明細書

癌高発現遺伝子

技術分野

5 本発明は、癌に関連する遺伝子、この遺伝子によりコードされるタンパク質、 およびこのタンパク質を認識する抗体に関する。本発明の遺伝子、タンパク質お よび抗体は、癌の診断および治療、ならびに癌の治療薬の開発において用いるこ とができる。

10 背景技術

これまでに、細胞の癌化と関連してその発現量が変化する遺伝子や、癌のマーカーとなりうる抗原が多数見いだされており、多くの研究が行われている。しかし、特定の癌を特異的に検出または治療することは依然として困難である。したがって、当該技術分野においては、癌の診断および治療に用いることができる、

15 さらに別の癌関連遺伝子およびタンパク質を同定することが求められている。

本発明に関連する先行技術文献情報としては以下のものがある: EP1033401; US2002022248; US2002042096; US200208150; US6337195; US6362321;

WO9738098; WO9920764; WO9929729; WO0006698; WO0012702;

WO0034477; WO0036107; WO0037643; WO0055174; WO0055320;

20 WO0055351; WO0055633; WO0058473; WO0073509; WO0100828;

WO0109317; WO0121653; WO0122920; WO0151513; WO0151628;

WO0154733; WO0155355; WO0157058; WO0159111; WO0160860;

WO0164835; WO0164886; WO0166719; WO0170976; WO0173027;

WO0175177; WO0177168; WO0192578; WO0194629; WO0200677;

WO0200889; WO0200939; WO0204514; WO0210217; WO0212280;

WO0220598; WO0229086; WO0229103; WO0258534; WO0260317;

WO0264797。

本発明は、癌の診断および治療剤として用いることができる遺伝子およびタンパク質を提供することを目的とする。

30

25

. 発明の開示

本発明者らは、癌組織において特定の遺伝子の発現が亢進していることを見いだし、本発明を完成させた。すなわち、本発明は、配列番号1-65のいずれかに記載されるヌクレオチド配列を有する遺伝子によりコードされるタンパク質またはそのフラグメントを提供する。

5 1つの観点においては、本発明は、配列番号1、2、28、29、30、31、32、51、52、60および61のいずれかに記載されるヌクレオチド配列を有する遺伝子、および該遺伝子によりコードされるタンパク質またはそのフラグメントを提供する。好ましくは、該遺伝子は、配列番号1、2、28、29、30、31および32のいずれかに記載されるヌクレオチド配列、より好ましくは10 配列番号1または2に記載されるヌクレオチド配列を有する。

これらのタンパク質やフラグメントは肺癌の診断または治療のための組成物と して有用である。

別の観点においては、本発明は、配列番号3、4、5、6、7、8、9、10、11、12、13、22、23、24、25、26、27、33、34、35、36、37、38、39、40、41、42、53、54および55のいずれか

15 36、37、38、39、40、41、42、53、54および55のいずれかに記載されるヌクレオチド配列を有する遺伝子、および該遺伝子によりコードされるタンパク質またはそのフラグメント提供する。好ましくは、該遺伝子は、配列番号3、4、5、6、7、8、9、10、11、12、13、22、23、24、25および26のいずれかに記載されるヌクレオチド配列を有する。

20 これらのタンパク質やフラグメントは胃癌の診断または治療のための組成物と して有用である。

別の観点においては、本発明は、配列番号3、7、20、21、46、47、48、49および50のいずれかに記載されるヌクレオチド配列を有する遺伝子、および該遺伝子によりコードされるタンパク質またはそのフラグメントを提供する。好ましくは、該遺伝子は、配列番号3、7、20、21、46、49および50のいずれかに記載されるヌクレオチド配列。より探すしては配利番号3、7、20、21、46、49および

50のいずれかに記載されるヌクレオチド配列、より好ましくは配列番号3、7、20および21のいずれかに記載されるヌクレオチド配列を有する。

これらのタンパク質やフラグメントは大腸癌の診断または治療のための組成物 として有用である。

30 別の観点においては、本発明は、配列番号14、15、16、17、18、1 9、43、44、45、56、57、58、59、62、63、64および65

のいずれかに記載されるヌクレオチド配列を有する遺伝子、および該遺伝子によりコードされるタンパク質またはそのフラグメントを提供する。好ましくは、該遺伝子は、配列番号 14、15、16、17、18、19、45、56、57、58、64および65のいずれかに記載されるヌクレオチド配列、より好ましくは、配列番号 14、15、16、17、18 、19 、64および65のいずれかに記載されるヌクレオチド配列を有する。

これらのタンパク質やフラグメントは肝癌の診断または治療のための組成物と して有用である。

好ましくは、本発明の組成物において、該遺伝子は、配列番号1、9、10、
10 14、20、22、24、25、26、27、28、29、32、38、39、
40、44、51、52、53、54および58のいずれかに記載されるヌクレ
オチド配列、より好ましくは、配列番号1、9、10、14、20、22、24、
25および26のいずれかに記載されるヌクレオチド配列を有する。

また好ましくは、本発明の組成物において、該遺伝子は、配列番号2、3、4、15、6、7、8、11、12、13、15、16、17、18、19、21、23、30、31、33、34、35、36、37、41、42、43、45、46、47、48、49、50、55、56、57、59、60、61、62および63のいずれかに記載されるヌクレオチド配列、より好ましくは、配列番号2、3、4、5、6、7、8、11、12、13、15、16、17、18、19、20 21および23のいずれかに記載されるヌクレオチド配列を有する。

別の観点においては、本発明は、上述の遺伝子またはそのフラグメントを発現する細胞またはベクターを提供する。これらの細胞やベクターは、本発明のタンパク質の製造、該タンパク質に対する抗体の製造、癌の診断・治療などに有用である。

25 また別の観点においては、本発明は、配列番号66-123に記載されるアミノ酸配列を有するタンパク質またはそのフラグメントを提供する。これらのタンパク質またはそのフラグメントは、抗体の製造の際の抗原として、または癌の診断・治療に有用である。

さらに別の観点においては、本発明は、上述のタンパク質またはそのフラグメ 30 ントを認識する抗体またはその抗原結合性フラグメントを提供する。本発明はま た、このような抗体を産生する細胞を提供する。 さらに別の観点においては、本発明は、配列番号1-65のいずれかに記載されるヌクレオチド配列もしくはこれに相補的なヌクレオチド配列を有するポリヌクレオチド、あるいはこれらのポリヌクレオチドに高ストリンジェントな条件下でハイブリダイズすることができるポリヌクレオチドを提供する。

5 さらに、本発明は、配列番号1-65のいずれかに記載されるヌクレオチド配列の少なくとも12個の連続するヌクレオチド配列もしくはこれに相補的なヌクレオチド配列を有するポリヌクレオチド、あるいは、配列番号1-65のいずれかに記載されるヌクレオチド配列を有するポリヌクレオチドに高ストリンジェントな条件下でハイブリダイズすることができる少なくとも12ヌクレオチドの長さのオリゴヌクレオチドを提供する。

これらのポリヌクレオチドは、癌の診断、タンパク質の製造、プライマー、遺伝子発現阻害の為のアンチセンス・siRNAなどに有用である。

さらに別の観点においては、本発明は、抗癌活性を有する化合物を同定する方法であって、培養ヒト細胞を試験化合物と接触させ、そして前記細胞において配列番号1-65のいずれかに記載されるヌクレオチド配列を含む遺伝子の発現量の変化を引き起こす化合物を抗癌活性を有する化合物として同定する、の各工程を含む方法を提供する。

さらに別の観点においては、本発明は、C20orf102 タンパク質を検出することを特徴とする癌の診断方法を提供する。好ましくは、癌は、肺癌、肝癌、また は膵癌である。本発明の方法においては、好ましくは、細胞外に分泌された C20orf102 タンパク質が検出される。また好ましくは、本発明の方法は C20orf102 タンパク質を認識する抗体を用いて行われる。好ましくは、本発明 の方法においては、血液中、血清中、または血漿中の C20orf102 タンパク質、あるいは細胞から分離した C20orf102 タンパク質が検出される。

25 別の態様においては、本発明は、以下の工程:

- (a) 被験者から試料を採取する工程:
- (b) 採取された試料に含まれる C20orf102 タンパク質を検出する工程を含む癌の診断方法を提供する。

30 図面の簡単な説明

15

図1は、癌関連遺伝子TEG1の発現解析の結果を示す。

- 図2は、癌関連遺伝子TEG2の発現解析の結果を示す。
- 図3は、癌関連遺伝子TEG2の発現解析の結果を示す。
- 図4は、癌関連遺伝子TEG3の発現解析の結果を示す。
- 図5は、癌関連遺伝子TEG4の発現解析の結果を示す。
- 5 図6は、癌関連遺伝子TEG5の発現解析の結果を示す。
 - 図7は、癌関連遺伝子TEG6の発現解析の結果を示す。
 - 図8は、癌関連遺伝子TEG6の発現解析の結果を示す。
 - 図9は、癌関連遺伝子TEG7の発現解析の結果を示す。
 - 図10は、癌関連遺伝子TEG8の発現解析の結果を示す。
- 10 図11は、癌関連遺伝子TEG9の発現解析の結果を示す。
 - 図12は、癌関連遺伝子TEG10の発現解析の結果を示す。
 - 図13は、癌関連遺伝子TEG11の発現解析の結果を示す。
 - 図14は、癌関連遺伝子TEG12の発現解析の結果を示す。
 - 図15は、癌関連遺伝子TEG13の発現解析の結果を示す。
- 15 図16は、癌関連遺伝子TEG14の発現解析の結果を示す。
 - 図17は、癌関連遺伝子TEG15の発現解析の結果を示す。
 - 図18は、癌関連遺伝子TEG16の発現解析の結果を示す。
 - 図19は、癌関連遺伝子TEG17の発現解析の結果を示す。
 - 図20は、癌関連遺伝子TEG18の発現解析の結果を示す。
- 20 図21は、癌関連遺伝子TEG19の発現解析の結果を示す。
 - 図22は、癌関連遺伝子TEG20の発現解析の結果を示す。
 - 図23は、癌関連遺伝子TEG21の発現解析の結果を示す。
 - 図24は、癌関連遺伝子TEG22の発現解析の結果を示す。
 - 図25は、癌関連遺伝子TEG23の発現解析の結果を示す。
- 25 図26は、癌関連遺伝子TEG24の発現解析の結果を示す。
 - 図27は、癌関連遺伝子TEG25の発現解析の結果を示す。
 - 図28は、癌関連遺伝子TEG26の発現解析の結果を示す。
 - 図29は、癌関連遺伝子TEG27の発現解析の結果を示す。
 - 図30は、癌関連遺伝子TEG28の発現解析の結果を示す。
- 30 図31は、癌関連遺伝子TEG29の発現解析の結果を示す。
 - 図32は、癌関連遺伝子TEG30の発現解析の結果を示す。

- 図33は、癌関連遺伝子TEG31の発現解析の結果を示す。
- 図34は、癌関連遺伝子TEG32の発現解析の結果を示す。
- 図35は、癌関連遺伝子TEG33の発現解析の結果を示す。
- 図36は、癌関連遺伝子TEG34の発現解析の結果を示す。
- 5 図37は、癌関連遺伝子TEG35の発現解析の結果を示す。
 - 図38は、癌関連遺伝子TEG36の発現解析の結果を示す。
 - 図39は、癌関連遺伝子TEG37の発現解析の結果を示す。
 - 図40は、癌関連遺伝子TEG38の発現解析の結果を示す。
 - 図41は、癌関連遺伝子TEG39の発現解析の結果を示す。
- 10 図42は、癌関連遺伝子TEG40の発現解析の結果を示す。
 - 図43は、癌関連遺伝子TEG41の発現解析の結果を示す。
 - 図44は、癌関連遺伝子TEG42の発現解析の結果を示す。
 - 図45は、癌関連遺伝子TEG43の発現解析の結果を示す。
 - 図46は、癌関連遺伝子TEG44の発現解析の結果を示す。
- 15 図47は、癌関連遺伝子TEG45の発現解析の結果を示す。
 - 図48は、癌関連遺伝子TEG46の発現解析の結果を示す。
 - 図49は、癌関連遺伝子TEG47の発現解析の結果を示す。
 - 図50は、癌関連遺伝子TEG48の発現解析の結果を示す。
 - 図51は、癌関連遺伝子TEG49の発現解析の結果を示す。
- 20 図52は、癌関連遺伝子TEG50の発現解析の結果を示す。
 - 図53は、癌関連遺伝子TEG51の発現解析の結果を示す。
 - 図54は、癌関連遺伝子TEG52の発現解析の結果を示す。
 - 図55は、癌関連遺伝子TEG53の発現解析の結果を示す。
 - 図56は、癌関連遺伝子TEG54の発現解析の結果を示す。
- 25 図57は、癌関連遺伝子TEG55の発現解析の結果を示す。
 - 図58は、癌関連遺伝子TEG56の発現解析の結果を示す。
 - 図59は、癌関連遺伝子TEG57の発現解析の結果を示す。
 - 図60は、癌関連遺伝子TEG58の発現解析の結果を示す。
 - 図61は、癌関連遺伝子TEG59の発現解析の結果を示す。
- 30 図62は、癌関連遺伝子TEG60の発現解析の結果を示す。
 - 図63は、癌関連遺伝子TEG61の発現解析の結果を示す。

- 図64は、癌関連遺伝子TEG62の発現解析の結果を示す。
- 図65は、癌関連遺伝子TEG63の発現解析の結果を示す。
- 図66は、癌関連遺伝子TEG64の発現解析の結果を示す。
- 図67は、新規遺伝子 K#1 の塩基配列およびアミノ酸配列を示す。
- 5 図 6 8 は、新規遺伝子 K#1 と GenBank No. XM_067369 とのアライメントを示す。
 - 図69は、新規遺伝子 K#1 のアミノ酸配列モチーフの解析結果を示す。
 - 図70は、新規遺伝子K#2(クローン11)の塩基配列およびアミノ酸配列を示す。
- 10図71は、新規遺伝子 K#2(クローン18)の塩基配列およびアミノ酸配列を示す。
 - 図72は、新規遺伝子 K#2(クローン11)と、ヒト LIN-28、線虫 LIN-28、 アフリカツメガエル LIN-28、ショウジョウバエ LIN-28 およびマウス LIN-28 のアミノ酸配列の比較を示す。
- 15 図73は、C20orf102遺伝子の肺扁平上皮癌における発現を示す。
 - 図74は、抗C20orf102 抗体を用いる、各種癌細胞株およびその培養上清に おけるC20orf102 タンパク質分子の検出を示す。
 - 図75は、抗 C20orf102 抗体を用いる、肺腺癌組織における C20orf102 タンパク質の発現解析の結果を示す。
- 20 図76は、抗 hNotum 抗体を用いる、各種癌細胞株およびその培養上清における hNotum タンパク質分子の検出を示す。
 - 図 77 は、抗 hNotum 抗体を用いる、肝癌組織における hNotum タンパク質の発現解析の結果を示す。
- 図78は、抗 K#2 抗体を用いる、K#2 強制発現細胞株および各種癌細胞株に 25 おける K#2 タンパク質分子の検出を示す。
 - 図79は、抗 K#2 抗体を用いる、肝癌組織における K#2 タンパク質の発現解析の結果を示す。
 - 図80は、抗 KIAA1359 抗体を用いる、KIAA1359 強制発現細胞株および各種癌細胞株における KIAA1359 タンパク質分子の検出を示す。
- 30 図81は、抗 KIAA1359 抗体を用いる、胃癌組織における KIAA1359 タンパ ク質の発現解析の結果を示す。

図82は、抗PEG10/ORF2 抗体を用いる、PEG10 強制発現細胞株および各種癌細胞株における PEG10 タンパク質分子の検出を示す。

図83は、抗PEG10/ORF2 抗体を用いる、肝細胞癌組織におけるPEG10タンパク質の発現解析の結果を示す。

5 図84は、抗 DUSP9 抗体を用いる、DUSP9 強制発現細胞株および各種癌細胞株における DUSP9 タンパク質分子の検出を示す。

図85は、抗DUSP9抗体を用いる、肝細胞癌組織におけるDUSP9タンパク質の発現解析の結果を示す。

図86は、抗 CystatinSN 抗体を用いる、大腸癌組織における CystatinSN 夕 10 ンパク質の発現解析の結果を示す。

図87は、抗SFRP4抗体を用いる、胃癌組織におけるSFRP4タンパク質の発現解析の結果を示す。

図88は、抗SFRP4抗体を用いる、SFRP4を強制発現させたCOS7細胞の培養上清おけるSFRP4タンパク質の検出を示す。

15

発明の詳細な説明

本発明は、癌組織において特定の遺伝子の発現が亢進している遺伝子、および この遺伝子によりコードされるタンパク質を利用する、癌の診断および治療のた めの組成物を提供する。

20

25

30

蛋白質

第1の観点においては、本発明は、配列番号1-65に記載される癌関連遺伝子によりコードされるタンパク質またはそのフラグメントを提供する。好ましくは、本発明の組成物は、配列番号66-123に記載されるアミノ酸配列を有するタンパク質またはそのフラグメントを含む。

本発明のタンパク質またはそのフラグメントは、癌の診断・治療や、抗体作製の際の抗原として有用である。

本発明の組成物においては、タンパク質またはそのフラグメントは、所望の免疫原性を有する限り、上述の配列から、1または数個のアミノ酸残基が欠失、置換または付加された変異体であってもよい。このような変異体は、好ましくは、上述のアミノ酸配列と、少なくとも80%、好ましくは90%またはそれ以上、

(1982) 79, 6409-6413) .

20

25

より好ましくは95%またはそれ以上の同一性を有するアミノ酸配列を有する。 アミノ酸配列の同一性は、比較すべき2つの配列において、同一である残基の 数を残基の総数で割り、100を乗ずることにより表される。標準的なパラメー 夕を用いて配列の同一性を決定するためのいくつかのコンピュータプログラム、 例えば、Gapped BLASTまたはPSI-BLAST (Altschu 5 1, et al. (1997) Nucleic Acids Res. 25:3 389-3402), BLAST (Altschul, et al. (199 0) J. Mol. Biol. 215:403-410)、およびスミスーウォー ターマン (Smith-Waterman) (Smith, et al. (19 81) J. Mol. Biol. 147:195-197) が利用可能である。 10 あるアミノ酸配列に対する1または複数個のアミノ酸残基の欠失、付加および /または他のアミノ酸による置換により修飾されたアミノ酸配列を有するタンパ ク質がその生物学的活性を維持することはすでに知られている(Mark, D. F. et al., Proc. Natl. Acad. Sci. USA (1984) 81, 5662-5666 Zoller, M. J. & Smith. M. Nucleic Acids Research (1982) 10, 6487-6500 Wang, A. et al., Science 15

変異するアミノ酸残基においては、アミノ酸側鎖の性質が保存されている別のアミノ酸に変異されることが望ましい。例えばアミノ酸側鎖の性質としては、疎水性アミノ酸(A、I、L、M、F、P、W、Y、V)、親水性アミノ酸(R、D、N、C、E、Q、G、H、K、S、T)、脂肪族側鎖を有するアミノ酸(G、A、V、L、I、P)、水酸基含有側鎖を有するアミノ酸(S、T、Y)、硫黄原子含有側鎖を有するアミノ酸(C、M)、カルボン酸およびアミド含有側鎖を有するアミノ酸(D、N、E、Q)、塩基含有側鎖を有するアミノ離(R、K、H)、芳香族含有側鎖を有するアミノ酸(H、F、Y、W)を挙げることができる(括弧内はいずれもアミノ酸の一文字標記を表す)。

224, 1431-1433 . Dalbadie-McFarland, G. et al., Proc. Natl. Acad. Sci. USA

当業者であれば公知の方法、例えば、部位特異的変異誘発法(Gotoh, T. et al. (1995) Gene 152, 271-275、Zoller, MJ, and Smith, M.(1983) Methods Enzymol. 100, 468-500、Kramer, W. et al. (1984) Nucleic Acids Res. 12, 9441-30 9456、Kramer W, and Fritz HJ(1987) Methods. Enzymol. 154, 350-367、Kunkel, TA(1985) Proc Natl Acad Sci USA. 82, 488-492、Kunkel (1988)

WO 2005/014818 PCT/JP2004/011650

Methods Enzymol. 85, 2763-2766) などを用いて、アミノ酸に適宜変異を導入することにより、該タンパク質と同等なタンパク質を調製することが可能である。

本発明のタンパク質は、後述するタンパク質を産生する細胞や宿主あるいは精 製方法により、アミノ酸配列、分子量、等電点または糖鎖の有無や形態などが異 なり得る。例えば、本発明のタンパク質を原核細胞、例えば大腸菌で発現させた 場合、本来のタンパク質のアミノ酸配列のN末端にメチオニン残基が付加され る。本発明のタンパク質はこのようなタンパク質も包含する。

5

10

15

20

25

30

本発明のタンパク質は、当業者に公知の方法により、組み換えタンパク質として、また天然のタンパク質として調製することが可能である。組み換えタンパク質であれば、本発明のタンパク質をコードする DNA を、適当な発現ベクターに組み込み、これを適当な宿主細胞に導入して得た形質転換体を回収し、抽出物を得た後、イオン交換、逆相、ゲル濾過などのクロマトグラフィー、あるいは本発明のタンパク質に対する抗体をカラムに固定したアフィニティークロマトグラフィーにかけることにより、または、さらにこれらのカラムを複数組み合わせることにより精製し、調製することが可能である。

また、本発明のタンパク質をグルタチオン S-トランスフェラーゼタンパク質 との融合タンパク質として、あるいはヒスチジンを複数付加させた組み換えタンパク質として宿主細胞(例えば、動物細胞や大腸菌など)内で発現させた場合には、発現させた組み換えタンパク質はグルタチオンカラムあるいはニッケルカラムを用いて精製することができる。融合タンパク質の精製後、必要に応じて融合タンパク質のうち、目的のタンパク質以外の領域を、トロンビンまたはファクターXa などにより切断し、除去することも可能である。

天然のタンパク質であれば、当業者に周知の方法、例えば、本発明のタンパク質を発現している組織や細胞の抽出物に対し、後述する本発明のタンパク質に結合する抗体が結合したアフィニティーカラムを作用させて精製することにより単離することができる。抗体はポリクローナル抗体であってもモノクローナル抗体であってもよい。

本発明は、また、本発明のタンパク質のフラグメント(部分ペプチド)を包含する。本発明のフラグメントは、例えば、本発明のタンパク質に対する抗体の作製、本発明のタンパク質に結合する化合物のスクリーニングや、本発明のタンパク質の促進剤や阻害剤のスクリーニングに利用し得る。また、本発明のタンパク

10

25

30

質のアンタゴニストや競合阻害剤になり得る。

本発明のフラグメントは、免疫原とする場合には、少なくとも7アミノ酸以上、好ましくは8アミノ酸以上、さらに好ましくは9アミノ酸以上のアミノ酸配列からなる。本発明のタンパク質の競合阻害剤として用いる場合には、少なくとも100アミノ酸以上、好ましくは200アミノ酸以上、さらに好ましくは300アミノ酸以上のアミノ酸配列を含む。

本発明のフラグメントは、遺伝子工学的手法、公知のペプチド合成法、あるい は本発明のタンパク質を適切なペプチダーゼで切断することによって製造するこ とができる。ペプチドの合成は、例えば、固相合成法、液相合成法のいずれによ ってもよい。

本発明は、また、本発明の DNA が挿入されたベクターを提供する。本発明のベクターは、宿主細胞内において本発明の DNA を保持させたり、本発明のタンパク質を発現させるために有用である。

ベクターとしては、例えば、大腸菌を宿主とする場合には、ベクターを大腸菌 (例えば、JM109、DH5a、HB101、XL1Blue) などで大量に増幅させ大量調製するために、大腸菌で増幅されるための「ori」をもち、さらに形質転換された大腸菌の選抜遺伝子(例えば、なんらかの薬剤(アンピシリンやテトラサイクリン、カナマイシン、クロラムフェニコール)により判別できるような薬剤耐性遺伝子)を有していることが好ましい。

20 ベクターの例としては、M13 系ベクター、pUC 系ベクター、pBR322、pBluescript、pCR-Script などが挙げられる。また、cDNA のサブクローニング、切り出しを目的とした場合、上記ベクターの他に、例えば、pGEM-T、pDIRECT、pT7 などが挙げられる。

本発明のタンパク質を生産する目的においてベクターを使用する場合には、特に、発現ベクターが有用である。発現ベクターとしては、例えば、大腸菌での発現を目的とした場合は、ベクターが大腸菌で増幅されるような上記特徴を持つほかに、宿主を JM109、DH5 α 、HB101、XL1-Blue などの大腸菌とした場合においては、大腸菌で効率よく発現できるようなプロモーター、例えば、lacZ プロモーター(Ward ら, Nature (1989) 341, 544-546; FASEB J. (1992) 6, 2422-2427)、araB プロモーター(Better ら, Science (1988) 240, 1041-1043)、または T7 プロモーターなどを持っていることが不可欠である。このようなベクタ

ーとしては、上記ベクターの他に pGEX-5X-1 (ファルマシア社製)、

「QIAexpress system」(キアゲン社製)、pEGFP、またはpET(この場合、宿主は $T7\ RNA$ ポリメラーゼを発現している BL21 が好ましい)などが挙げられる。

また、ベクターには、タンパク質分泌のためのシグナル配列が含まれていてもよい。タンパク質分泌のためのシグナル配列としては、大腸菌のペリプラズムに産生させる場合、pelB シグナル配列(Lei, S. P. et al J. Bacteriol. (1987) 169, 4379)を使用すればよい。宿主細胞へのベクターの導入は、例えば塩化カルシウム法、エレクトロポレーション法を用いて行うことができる。

大腸菌以外にも、例えば、本発明のタンパク質を製造するためのベクターとしては、哺乳動物由来の発現ベクター(例えば、pcDNA3 (インビトロゲン社製)や、pEGF-BOS (Nucleic Acids. Res.1990, 18(17),p5322)、pEF 、pCDM8)、昆虫細胞由来の発現ベクター(例えば「Bac-to-BAC baculovairus expression system」(ギブコ BRL 社製)、pBacPAK8)、植物由来の発現ベクター(例えば、pHSV、ば pMH1、pMH2)、動物ウィルス由来の発現ベクター(例えば、pHSV、

pMV、pAdexLcw)、レトロウィルス由来の発現ベクター(例えば、pZIPneo)、 酵母由来の発現ベクター(例えば、「Pichia Expression Kit」(インビトロゲン社製)、pNV11、SP-Q01)、枯草菌由来の発現ベクター(例えば、pPL608、pKTH50)が挙げられる。

CHO 細胞、COS 細胞、NIH3T3 細胞等の動物細胞での発現を目的とした場合には、細胞内で発現させるために必要なプロモーター、例えば SV40 プロモーター (Mulligan ら, Nature (1979) 277, 108)、MMLV-LTR プロモーター、EF1a プロモーター (Mizushima ら, Nucleic Acids Res. (1990) 18, 5322)、CMV プロモーターなどを持っていることが不可欠であり、細胞への形質転換を選抜するための遺伝子 (例えば、薬剤 (ネオマイシン、G418 など)により判別できるような薬剤耐性遺伝子)を有すればさらに好ましい。このような特性を有するベクターとしては、例えば、pMAM、pDR2、pBK-RSV、pBK-CMV、pOPRSV、pOP13 などが挙げられる。

さらに、遺伝子を安定的に発現させ、かつ、細胞内での遺伝子のコピー数の増幅を目的とする場合には、核酸合成経路を欠損した CHO 細胞にそれを相補する 30 DHFR 遺伝子を有するベクター(例えば、pCHOI など)を導入し、メトトレキセート(MTX)により増幅させる方法が挙げられ、また、遺伝子の一過性の発

現を目的とする場合には、SV40 T抗原を発現する遺伝子を染色体上に持つ COS 細胞を用いて SV40 の複製起点を持つベクター(pcD など)で形質転換する方法が挙げられる。複製開始点としては、また、ポリオーマウィルス、アデノウィルス、ウシパピローマウィルス(BPV)等の由来のものを用いることもできる。さらに、宿主細胞系で遺伝子コピー数増幅のため、発現ベクターは選択マーカーとして、アミノグリコシドトランスフェラーゼ(APH)遺伝子、チミジンキナーゼ(TK)遺伝子、大腸菌キサンチングアニンホスホリポシルトランスフェラーゼ(Ecogpt)遺伝子、ジヒドロ葉酸還元酵素(dhfr)遺伝子等を含むことができる。

10 また、本発明は、本発明のベクターが導入された宿主細胞を提供する。本発明のベクターが導入される宿主細胞としては特に制限はなく、例えば、大腸菌や種々の動物細胞などを用いることが可能である。本発明の宿主細胞は、例えば、本発明のタンパク質の製造や発現のための産生系として使用することができる。タンパク質製造のための産生系は、in vitro および in vivo の産生系がある。in vitro の産生系としては、真核細胞を使用する産生系や原核細胞を使用する産生系が挙げられる。

真核細胞を使用する場合、例えば、動物細胞、植物細胞、真菌細胞を宿主に用いることができる。動物細胞としては、哺乳類細胞、例えば、CHO (J. Exp. Med. (1995) 108, 945) 、COS、3T3、ミエローマ、BHK (baby hamster kidney)、HeLa、Vero、両生類細胞、例えばアフリカツメガエル卵母細胞 (Valle, et al., Nature (1981) 291, 358·340) 、あるいは昆虫細胞、例えば、Sf9、Sf21、Tn5 が知られている。CHO 細胞としては、特に、DHFR 遺伝子を欠損した CHO 細胞である dhfr-CHO (Proc. Natl. Acad. Sci. USA (1980) 77, 4216-4220) や CHO K-1 (Proc. Natl. Acad. Sci. USA (1968) 60, 1275) を好適に使用することができる。動物細胞において、大量発現を目的とする場合には特にCHO 細胞が好ましい。宿主細胞へのベクターの導入は、例えば、リン酸カルシウム法、DEAE デキストラン法、カチオニックリボソーム DOTAP (ベーリンガーマンハイム社製) を用いた方法、エレクトロポーレーション法、リポフェクションなどの方法で行うことが可能である。

30 植物細胞としては、例えば、ニコチアナ・タバカム (Nicotiana tabacum) 由 来の細胞がタンパク質生産系として知られており、これをカルス培養すればよい。

25

30

真菌細胞としては、酵母、例えば、サッカロミセス(Saccharomyces)属、例えば、サッカロミセス・セレビシエ(Saccharomyces cerevisiae)、糸状菌、例えば、アスペルギルス(Aspergillus)属、例えば、アスペルギルス・ニガー(Aspergillus niger)が知られている。

5 原核細胞を使用する場合、細菌細胞を用いる産生系がある。細菌細胞としては、 大腸菌(E. coli)、例えば、JM109、DH5a、HB101等が挙げられ、その他、 枯草菌が知られている。

これらの細胞を目的とする DNA により形質転換し、形質転換された細胞を in vitro で培養することによりタンパク質が得られる。培養は、公知の方法に従 い行うことができる。例えば、動物細胞の培養液として、例えば、DMEM、 MEM、RPMI1640、IMDM を使用することができる。その際、牛胎児血清 (FCS) 等の血清補液を併用することもできるし、無血清培養してもよい。培養時の pH は、約6~8 であるのが好ましい。培養は、通常、約30~40℃で約15~200 時間行い、必要に応じて培地の交換、通気、攪拌を加える。

15. 一方、in vivo でタンパク質を産生させる系としては、例えば、動物を使用する産生系や植物を使用する産生系が挙げられる。これらの動物または植物に目的とする DNA を導入し、動物または植物の体内でタンパク質を産生させ、回収する。本発明における「宿主」とは、これらの動物、植物を包含する。

動物を使用する場合、哺乳類動物、昆虫を用いる産生系がある。哺乳類動物としては、ヤギ、ブタ、ヒツジ、マウス、ウシを用いることができる(Vicki Glaser, SPECTRUM Biotechnology Applications, 1993)。また、哺乳類動物を用いる場合、トランスジェニック動物を用いることができる。

例えば、目的とする DNA を、ヤギ β カゼインのような乳汁中に固有に産生されるタンパク質をコードする遺伝子との融合遺伝子として調製する。次いで、この融合遺伝子を含む DNA 断片をヤギの胚へ注入し、この胚を雌のヤギへ移植する。胚を受容したヤギから生まれるトランスジェニックヤギまたはその子孫が産生する乳汁から、目的のタンパク質を得ることができる。トランスジェニックヤギから産生されるタンパク質を含む乳汁量を増加させるために、適宜ホルモンをトランスジェニックヤギに使用してもよい(Ebert, K.M. et al., Bio/Technology (1994) 12, 699-702)。

また、昆虫としては、例えばカイコを用いることができる。カイコを用いる場

15

20

25

30

合、目的のタンパク質をコードする DNA を挿入したパキュロウィルスをカイコ に感染させることにより、このカイコの体液から目的のタンパク質を得ることが できる(Susumu, M. et al., Nature (1985) 315, 592-594)。

さらに、植物を使用する場合、例えばタバコを用いることができる。タバコを 用いる場合、目的とするタンパク質をコードする DNA を植物発現用ベクター、 例えば pMON 530 に挿入し、このベクターをアグロバクテリウム・ツメファシ エンス(Agrobacterium tumefaciens)のようなバクテリアに導入する。このバ クテリアをタバコ、例えば、ニコチアナ・タバカム(Nicotiana tabacum)に感 染させ、本タバコの葉より所望のタンパク質を得ることができる(Julian K.-C.

10 Ma et al., Eur. J. Immunol. (1994) 24, 131-138) .

これにより得られた本発明のタンパク質は、宿主細胞内または細胞外(培地など)から単離し、実質的に純粋で均一なタンパク質として精製することができる。タンパク質の分離、精製は、通常のタンパク質の精製で使用されている分離、精製方法を使用すればよく、何ら限定されるものではない。例えば、クロマトグラフィーカラム、フィルター、限外濾過、塩析、溶媒沈殿、溶媒抽出、蒸留、免疫沈降、SDS・ポリアクリルアミドゲル電気泳動、等電点電気泳動法、透析、再結晶等を適宜選択、組み合わせればタンパク質を分離、精製することができる。

クロマトグラフィーとしては、例えばアフィニティークロマトグラフィー、イオン交換クロマトグラフィー、疎水性クロマトグラフィー、ゲル濾過、逆相クロマトグラフィー、吸着クロマトグラフィー等が挙げられる(Strategies for Protein Purification and Characterization: A Laboratory Course Manual. Ed Daniel R. Marshak et al., Cold Spring Harbor Laboratory Press, 1996)。これらのクロマトグラフィーは、液相クロマトグラフィー、例えば HPLC、FPLC 等の液相クロマトグラフィーを用いて行うことができる。本発明は、これらの精

製方法を用い、高度に精製されたタンパク質も包含する。

なお、タンパク質を精製前または精製後に適当なタンパク質修飾酵素を作用させることにより、任意に修飾を加えたり、部分的にペプチドを除去することもできる。タンパク質修飾酵素としては、例えば、トリプシン、キモトリプシン、リシルエンドペプチダーゼ、プロテインキナーゼ、グルコシダーゼなどが用いられる。

後述の実施例において示されるように、配列番号1-65に示される癌関連遺

WO 2005/014818 PCT/JP2004/011650

伝子の遺伝子配列(表 1 を参照)を元に PCR プライマーを設計し、ヒトの正常 および癌組織から得た cDNA を用いて、定量 PCR によりヒト組織における癌関 連遺伝子の発現量の定量化を行ったところ、本発明の癌関連遺伝子は特定のヒト 癌組織においてその発現が亢進されていることが見いだされた。

5 配列番号1、2、28、29、30、31、32、51、52、60および6 1に記載されるヌクレオチド配列を有する遺伝子は、肺癌においてその発現が亢進していることが見いだされた。すなわち、配列番号1、2、28、29、30、31、32、51、52、60および61に記載されるヌクレオチド配列を有する遺伝子によりコードされるタンパク質またはそのフラグメントは、肺癌の診断または治療において有用である。好ましくは、該遺伝子は、配列番号1、2、28、29、30、31および32のいずれかに記載されるヌクレオチド配列、より好ましくは配列番号1または2に記載されるヌクレオチド配列を有する。

配列番号3、4、5、6、7、8、9、10、11、12、13、22、23、24、25、26、27、33、34、35、36、37、38、39、40、41、42、53、54および55に記載されるヌクレオチド配列を有する遺伝

15

20

子は、胃癌においてその発現が亢進していることが見いだされた。すなわち、配列番号3、4、5、6、7、8、9、10、11、12、13、22、23、24、25、26、27、33、34、35、36、37、38、39、40、41、42、53、54および55に記載されるヌクレオチド配列を有する遺伝子によりコードされるタンパク質またはそのフラグメントは、胃癌の診断または治療において有用である。好ましくは、該遺伝子は、配列番号3、4、5、6、7、8、9、10、11、12、13、22、23、24、25および26のいずれかに記載されるヌクレオチド配列を有する。

配列番号3、7、20、21、46、47、48、49および50に記載され 3ヌクレオチド配列を有する遺伝子は、大腸癌においてその発現が亢進している ことが見いだされた。すなわち、配列番号3、7、20、21、46、47、48、49および50に記載されるヌクレオチド配列を有する遺伝子によりコード されるタンパク質またはそのフラグメントは、大腸癌の診断または治療において 有用である。好ましくは、該遺伝子は、配列番号3、7、20、21、46、49および50のいずれかに記載されるヌクレオチド配列、より好ましくは配列番号3、7、20および21のいずれかに記載されるヌクレオチド配列を有する。

10

配列番号14、15、16、17、18、19、43、44、45、56、57、58、59、62、63、64および65に記載されるヌクレオチド配列を有する遺伝子は、肝癌においてその発現が亢進していることが見いだされた。すなわち、配列番号14、15、16、17、18、19、43、44、45、56、57、58、59、62、63、64および65に記載されるヌクレオチド配列を有する遺伝子によりコードされるタンパク質またはそのフラグメントは、肝癌の診断または治療において有用である。好ましくは、該遺伝子は、配列番号14、15、16、17、18、19、45、56、57、58、64および65のいずれかに記載されるヌクレオチド配列、より好ましくは、配列番号14、15、16、17、18、19、64および65のいずれかに記載されるヌクレオチド配列を有する。

配列番号 1 - 6 5 に記載される癌関連遺伝子によりコードされるタンパク質またはそのフラグメントを含む本発明の組成物は、癌に対するワクチンとして用いることができる。上述のタンパク質またはその免疫原性フラグメントを、適当なアジュバントとともに、あるいは他の適当なポリペプチドとの融合タンパク質として、対象となるヒトまたはその他の動物に投与することにより、そのヒトまたは動物の体内で免疫応答を生じさせることができる。あるいは、本発明の組成物は、上述の癌関連遺伝子またはそのフラグメントを発現する細胞の形で投与してもよい。

20 また、本発明の組成物は、被検者が配列番号1-65に記載される癌関連遺伝 子によりコードされるタンパク質に対する抗体を有するか否かを測定することに より、特定の癌に罹患しているか否かを診断するために用いることができる。

抗体

別の観点においては、本発明は、配列番号1-65のいずれかに記載されるヌクレオチド配列を有する癌関連遺伝子によりコードされるタンパク質またはそのフラグメントを認識する抗体またはその抗原結合性フラグメントを提供する。さらに、該抗体またはその結合フラグメントを含む、癌を診断または治療するための組成物を提供する。本発明の抗体は、好ましくは、配列番号66-123で表されるアミノ酸配列を有するタンパク質またはそのフラグメントを認識することができる。本発明はまた、このような抗体を産生する細胞を提供する。

25

認識するとは、抗体が、特定の条件下において、上述の癌関連遺伝子によりコードされるタンパク質またはそのフラグメントに対して、他のポリペプチドに結合するより高い親和性をもって結合することを意味する。

本発明の抗体には、モノクローナル抗体およびポリクローナル抗体、ならびに 抗原決定基に特異的に結合する能力を保持している抗体およびTー細胞レセプタ ーフラグメント等の、抗体の変種および誘導体が含まれる。

又、本発明の抗体の種類は特に制限されず、マウス抗体、ヒト抗体、ラット抗体、ウサギ抗体、ヒツジ抗体、ラクダ抗体等や、ヒトに対する異種抗原性を低下させること等を目的として人為的に改変した遺伝子組換え型抗体、例えば、キメラ抗体、ヒト化抗体、等を適宜用いることができる。遺伝子組換え型抗体は、既知の方法を用いて製造することができる。キメラ抗体は、ヒト以外の哺乳動物、例えば、マウス抗体の重鎖、軽鎖の可変領域とヒト抗体の重鎖、軽鎖の定常領域からなる抗体であり、マウス抗体の可変領域をコードする DNA をヒト抗体の定常領域をコードする DNA と連結し、これを発現ベクターに組み込んで宿主に導入し産生させることにより得ることができる。ヒト化抗体は、再構成

(reshaped)ヒト抗体とも称され、ヒト以外の哺乳動物、たとえばマウス抗体の相補性決定領域(CDR; complementarity determining region)をヒト抗体の相補性決定領域へ移植したものであり、その一般的な遺伝子組換え手法も知られている。具体的には、マウス抗体の CDR とヒト抗体のフレームワーク領域

(framework region; FR) を連結するように設計した DNA 配列を、末端部にオーバーラップする部分を有するように作製した数個のオリゴヌクレオチドからPCR 法により合成する。得られた DNA をヒト抗体定常領域をコードする DNA と連結し、次いで発現ベクターに組み込んで、これを宿主に導入し産生させることにより得られる(欧州特許出願公開番号 EP 239400 、国際特許出願公開番号WO 96/02576参照)。CDR を介して連結されるヒト抗体のFR は、相補性決定領域が良好な抗原結合部位を形成するものが選択される。必要に応じ、再構成ヒト抗体の相補性決定領域が適切な抗原結合部位を形成するように抗体の可変領域のフレームワーク領域のアミノ酸を置換してもよい(Sato, K.et al., Cancer Res, 1993, 53, 851-856.)。

30 また、ヒト抗体の取得方法も知られている。例えば、ヒトリンパ球を in vitro で所望の抗原または所望の抗原を発現する細胞で感作し、感作リンパ球をヒトミ

25

30

エローマ細胞、例えば U266 と融合させ、抗原への結合活性を有する所望のヒト 抗体を得ることもできる(特公平1-59878参照)。また、ヒト抗体遺伝子の全 てのレパートリーを有するトランスジェニック動物を所望の抗原で免疫すること で所望のヒト抗体を取得することができる(国際特許出願公開番号 WO 93/12227, WO 92/03918, WO 94/02602, WO 94/25585, WO 96/34096, WO 5 96/33735 参照)。さらに、ヒト抗体ライブラリーを用いて、パンニングにより ヒト抗体を取得する技術も知られている。例えば、ヒト抗体の可変領域を一本鎖 抗体(scFv)としてファージディスプレイ法によりファージの表面に発現させ、 抗原に結合するファージを選択することができる。選択されたファージの遺伝子 を解析すれば、抗原に結合するヒト抗体の可変領域をコードする DNA 配列を決 10 定することができる。抗原に結合する scFv の DNA 配列が明らかになれば、当 該配列を適当な発現ベクターを作製し、ヒト抗体を取得することができる。これ らの方法は既に衆知であり、WO 92/01047, WO 92/20791, WO 93/06213, WO 93/11236, WO 93/19172, WO 95/01438, WO 95/15388 を参考にすることができ 15 る。

また、抗体は抗原に結合することができれば、抗体断片(フラグメント)等の低分子化抗体や抗体の修飾物などであってもよい。抗体断片の具体例としては、例えば、Fab、Fab'、F(ab')2、Fv、Diabody などを挙げることができる。このような抗体断片を得るには、これら抗体断片をコードする遺伝子を構築し、これを発現ベクターに導入した後、適当な宿主細胞で発現させればよい(例えば、Co, M. S. et al., J. Immunol. (1994) 152, 2968-2976; Better, M. and Horwitz, A. H., Methods Enzymol. (1989) 178, 476-496; Pluckthun, A. and Skerra, A., Methods Enzymol. (1989) 178, 497-515; Lamoyi, E., Methods Enzymol. (1986) 121, 652-663; Rousseaux, J. et al., Methods Enzymol. (1986) 121, 663-669; Bird, R. E. and Walker, B. W., Trends Biotechnol. (1991) 9, 132-137 参照)。

抗体の修飾物として、ポリエチレングリコール(PEG)等の各種分子と結合した抗体を使用することもできる。又、抗体に放射性同位元素、化学療法剤、細菌由来トキシン等の細胞傷害性物質などを結合することも可能であり、特に放射性標識抗体は有用である。このような抗体修飾物は、得られた抗体に化学的な修飾を施すことによって得ることができる。なお、抗体の修飾方法はこの分野にお

いてすでに確立されている。

5

10

15

20

25

30

又、本発明においては、細胞傷害活性を増強する目的などで、糖鎖を改変した 抗体などを用いることも可能である。抗体の糖鎖改変技術は既に知られている (例えば、WO00/61739、WO02/31140 など)。

又、本発明においては、2種以上の異なる抗原に対して特異性を有する多特異性抗体も含まれる。通常このような分子は2個の抗原を結合するものであるが(即ち、二重特異性抗体)、本発明における「多特異性抗体」は、それ以上(例えば、3種類の)抗原に対して特異性を有する抗体を包含するものである。多特異性抗体は全長からなる抗体、またはそのような抗体の断片(例えば、F(ab)2二特異性抗体)であり得る。

当分野において多特異性抗体の製造法は公知である。全長の二特異性抗体の産 生は、異なる特異性を有する2つの免疫グロブリン重鎖・軽鎖の共発現を含むも のである(Millstein et al., Nature 305:537-539 (1983))。免疫グロブリンの重鎖 および軽鎖はランダムに取り合わされるので、共発現を行う得られた複数のハイ ブリドーマ(クワドローマ)は、各々異なる抗体分子を発現するハイブリドーマの 混合物であり、このうち正しい二特異性抗体を産生するものを選択する必要があ る。選択はアフィニティークロマトグラフィー等の方法により行うことができる。 また、別な方法では所望の結合特異性を有する抗体の可変領域を免疫グロブリン の定常ドメイン配列に融合する。該定常ドメイン配列は、好ましくは免疫グロブ リンの重鎖の定常領域の内、ヒンジ、CH2 および CH3 領域の一部を少なくとも 含むものである。好ましくは、さらに軽鎖との結合に必要な重鎖の CH1 領域が 含まれる。免疫グロブリン重鎖融合体をコードする DNA、および、所望により 免疫グロブリン軽鎖をコードする DNA をそれぞれ別々の発現ベクターに挿入し、 適当な宿主生物に形質転換する。別々の発現ベクターに各遺伝子を挿入すること により、それぞれの鎖の存在割合が同じでない方が、得られる抗体の収量が上が る場合に、各鎖の発現割合の調節が可能となり都合が良いが、当然ながら、複数 の鎖をコードする遺伝子を一つのベクターに挿入して用いることも可能である。 好ましい態様においては、第一の結合特性を有する重鎖がハイブリッド免疫グ ロブリンの一方の腕として存在し、別の結合特性の重鎖・軽鎖複合体がもろ一方 の腕として存在する二重特異性抗体が望ましい。このように一方の腕のみに軽鎖 を存在させることにより、二重特異性抗体の他の免疫グロブリンからの分離を容

易に行うことができる。該分離方法については、WO94/04690参照。二特異性抗体の作成方法については、さらに、Sureshら(Methods in Enzymology 121:210 (1986))の方法を参照することができる。組換細胞培養物から得られる最終産物中のホモダイマーを減らしヘテロダイマーの割合を増加させる方法として、抗体の定常ドメインの CH3 を含み、一方の抗体分子において、他方の分子と結合する表面の1若しくは複数の小さな側鎖のアミノ酸を大きな側鎖のアミノ酸(例えば、チロシンやトリプトファン)に変え、他方の抗体分子の対応する部分の大きさ側鎖のアミノ酸を小さなもの(例えば、アラニンやスレオニン)に変えて第一の抗体分子の大きな側鎖に対応する空洞を設ける方法も知られている(WO96/27011)。

5

10

15

20

25

30

二重特異性抗体には、例えば、一方の抗体がアビジンに結合され、他方がビオチン等に結合されたようなヘテロ共役抗体が含まれる(米国特許第 4,676,980号;WO91/00360;WO92/00373;EP03089)。このようなヘテロ共役抗体の作成に利用される架橋剤は周知であり、例えば、米国特許第 4,676,980号にもそのような例が記載されている。

また、抗体断片より二特異性抗体を製造する方法も報告されている。例えば、化学結合を利用して製造することができる。例えば、まず $F(ab')_2$ 断片を作成し、同一分子内でのジフルフィド形成を防ぐため断片をジチオール錯化剤アルサニルナトリウムの存在化で還元する。次に $F(ab')_2$ 断片をチオニトロ安息香酸塩 (TNB)誘導体に変換する。メルカプトエチルアミンを用いて一方の $F(ab')_2$ -TNB 誘導体を Fab'-チオールに再還元した後、 $F(ab')_2$ -TNB 誘導体および Fab'-チオールを等量混合し二特異性抗体を製造する。

組換細胞培養物から直接、二重特異性抗体を製造し、単離する方法も種々、報告されている。例えば、ロイシンジッパーを利用した二重特異性抗体の製造方法が報告されている(Kostelny et al., J,Immunol. 148(5):1547-1553 (1992))。まず、Fos および Jun タンパク質のロイシンジッパーペプチドを、遺伝子融合により異なる抗体の Fab'部分に連結させ、ホモダイマーの抗体をヒンジ領域においてモノマーを形成するように還元し、抗体ヘテロダイマーとなるように再酸化する。また、軽鎖可変ドメイン(VL)に重鎖可変ドメイン(VH)を、これら2つのドメイン間での対形成できない位に短いリンカーを介して連結し、相補的な別のVL および VH ドメンと対を形成させ、それにより2つの抗原結合部位を形成させる

方法もある(Hollinger et al., Proc.Natl.Acad.Sci.USA 90:6444-6448 (1993))。また、一本鎖 Fv(sFV)を用いたダイマーについても報告されている(Gruger et al., J.Immunol. 152:5368 (1994))。さらに、二重特異性ではなく三重特異性の抗体についても報告されている(Tutt et al., J.Immunol. 147:60 (1991))。

5 本発明における「抗体」にはこれらの抗体も包含される。

本発明の抗体および抗体フラグメントは、任意の適当な方法、例えば、インビボ、培養細胞、インビトロ翻訳反応、および組換えDNA発現系により製造することができる。

モノクローナル抗体およびハイブリドーマを製造する手法は当該技術分野においてよく知られている(Campbell, "Monolonal Antibody Technology:Laboratory Techniquesin Biochemistry and Molecular Biology"、Elsevier Science Publishers, Amsterdam, The Netherlands, 1984; St. Groth et al.、J. Immunol. Methods 35:1-21, 1980)。上述の癌関連遺伝子によりコードされるタンパク質またはフラグメントを免疫原として用いて、抗体を生成することが知られている任意の動物(マウス、ウサギ等)に皮下または腹膜内注射することにより免疫することができる。免疫に際してアジュバントを用いてもよく、そのようなアジュバントは当該技術分野においてよく知られている。

ポリクローナル抗体は、免疫した動物から抗体を含有する抗血清を単離し、E LISAアッセイ、ウエスタンブロット分析、またはラジオイムノアッセイ等の 当該技術分野においてよく知られる方法を用いて、所望の特異性を有する抗体の 存在についてスクリーニングすることにより得ることができる。

25 モノクローナル抗体は、免疫した動物から脾臓細胞を切除し、ミエローマ細胞と融合させ、モノクローナル抗体を産生するハイブリドーマ細胞を作製することにより得ることができる。ELISAアッセイ、ウエスタンブロット分析、またはラジオイムノアッセイ等の当該技術分野においてよく知られる方法を用いて、目的とするタンパク質またはそのフラグメントを認識する抗体を産生するハイブリドーマ細胞を選択する。所望の抗体を分泌するハイブリドーマをクローニングし、適切な条件下で培養し、分泌された抗体を回収し、当該技術分野においてよ

く知られる方法、例えばイオン交換カラム、アフィニティークロマトグラフィー等を用いて精製することができる。あるいは、ゼノマウス株を用いてヒト型モノクローナル抗体を製造してもよい(Green, J. Immunol. Methods 231:11-23,1999; Wells, Eek, Chem Biol 2000 Aug; 7(8):R185-6を参照)。

5

20

モノクローナル抗体をコードする DNA は、慣用な方法(例えば、モノクローナル抗体の重鎖および軽鎖をコードする遺伝子に特異的に結合することができるオリゴヌクレオチドプローブを用いて)により容易に単離、配列決定できる。ハイブリドーマ細胞はこのような DNA の好ましい出発材料である。一度単離したならば、DNA を発現ベクターに挿入し、E.coli 細胞、サル COS 細胞、チャイニーズハムスター卵巣(CHO)細胞または形質転換されなければ免疫グロブリンを産生しないミエローマ細胞等の宿主細胞へ組換え、組換え宿主細胞からモノクローナル抗体を産生させる。また別の態様として、McCafferty ら(Nature 348:552-554 (1990))により記載された技術を用いて製造された抗体ファージライブラリーより抗体、または抗体断片は単離することができる。

上述の抗体は、検出可能なように標識することができる。標識としては、放射性同位体、アフィニティー標識(例えばピオチン、アビジン等)、酵素標識(例えば西洋ワサビペルオキシダーゼ、アルカリホスファターゼ等)、蛍光標識(例えばFITCまたはローダミン等)、常磁性原子等が挙げられる。そのような標識を行う方法は当該技術分野においてよく知られている。上述の抗体は、固体支持体上に固定化してもよい。そのような固体支持体の例には、プラスチック、アガロース、セファロース、ポリアクリルアミドおよびラテックスビーズ等が含まれる。抗体をそのような固体支持体に結合させる技術は当該技術分野においてよく知られている。

25 後述の実施例において記載されるように、本発明の癌関連遺伝子は、特定の癌組織において亢進された発現を示すため、本発明の抗体は、癌診断マーカーとして有用である。本発明の抗体を、ウエスタンブロット法、ELISA法、組織染色法などの手法において用いて、組織または細胞における、癌関連遺伝子によりコードされるタンパク質の発現を検出することができる。被験者の組織に由来する試料(例えば、生検サンプル、血液サンプル等)と本発明の組成物とを免疫複合体が形成されるような条件下で接触させ、該試料に抗体が結合するか否かを判

定することにより、該試料中の癌関連遺伝子によりコードされるタンパク質の存在または量を判定することができ、このことにより癌の診断、癌の進行または治癒のモニタリング、および予後の予測を行うことができる。本発明の診断用組成物は、試料中で上述の癌関連遺伝子によりコードされるタンパク質の存在を検出するためのキットとして提供することができる。このようなキットは、上述の抗体に加えて、洗浄試薬および結合した抗体の存在を検出しうる試薬、例えば、標識第2抗体、標識された抗体と反応しうる発色団、酵素、または抗体結合試薬、ならびに使用の指針を含むことができる。

5

15

20

25

30

さらに、本発明の癌関連遺伝子によりコードされるタンパク質に対する抗体は、 10 特定の癌細胞に対する特異性を有するため、癌の治療剤として、あるいは、薬剤 を癌組織に特異的にターゲティングさせるミサイル療法において用いることがで きる。好ましくは、本発明の組成物は、肺癌、胃癌、大腸癌および肝癌の診断お よび治療において用いられる。

本発明の治療剤は、当該技術分野においてよく知られる薬学的に許容しうる担体とともに、混合、溶解、顆粒化、錠剤化、乳化、カプセル封入、凍結乾燥等により、製剤化することができる。

経口投与用には、本発明の治療剤を、薬学的に許容しうる溶媒、賦形剤、結合剤、安定化剤、分散剤等とともに、錠剤、丸薬、糖衣剤、軟カプセル、硬カプセル、溶液、懸濁液、乳剤、ゲル、シロップ、スラリー等の剤形に製剤化することができる。

非経口投与用には、本発明の治療剤を、薬学的に許容しうる溶媒、賦形剤、結合剤、安定化剤、分散剤等とともに、注射用溶液、懸濁液、乳剤、クリーム剤、軟膏剤、吸入剤、座剤等の剤形に製剤化することができる。注射用の処方においては、本発明の治療剤を水性溶液、好ましくはハンクス溶液、リンゲル溶液、または生理的食塩緩衝液等の生理学的に適合性の緩衝液中に溶解することができる。さらに、組成物は、油性または水性のベヒクル中で、懸濁液、溶液、または乳濁液等の形状をとることができる。あるいは、治療剤を粉体の形態で製造し、使用前に滅菌水等を用いて水溶液または懸濁液を調製してもよい。吸入による投与用には、本発明の治療剤を粉末化し、ラクトースまたはデンプン等の適当な基剤とともに粉末混合物とすることができる。座剤処方は、本発明の治療剤をカカオバター等の慣用の坐剤基剤と混合することにより製造することができる。さらに、

本発明の治療剤は、ポリマーマトリクス等に封入して、持続放出用製剤として処方することができる。

投与量および投与回数は、剤形および投与経路、ならびに患者の症状、年齢、体重によって異なるが、一般に、本発明の治療剤は、1日あたり体重1kgあたり、約0.001mgから1000mgの範囲、好ましくは約0.01mgから10mgの範囲となるよう、1日に1回から数回投与することができる。

治療剤は通常非経口投与経路で、例えば注射剤(皮下注、静注、筋注、腹腔内 注など)、経皮、経粘膜、経鼻、経肺などで投与されるが、特に限定されず、経 口投与でもよい。

10

15

20

5

ポリヌクレオチド

さらに別の観点においては、本発明は、配列番号1-65のいずれかに記載されるヌクレオチド配列もしくはこれに相補的なヌクレオチド配列を有するポリヌクレオチド、あるいはこれらのポリヌクレオチドに高ストリンジェントな条件下でハイブリダイズすることができるポリヌクレオチドを提供する。

さらに、本発明は、配列番号1-65のいずれかに記載されるヌクレオチド配列の少なくとも12個の連続するヌクレオチド配列もしくはこれに相補的なヌクレオチド配列を有するポリヌクレオチド、あるいは、配列番号1-65のいずれかに記載されるヌクレオチド配列を有するポリヌクレオチドに高ストリンジェントな条件下でハイブリダイズすることができる少なくとも12ヌクレオチドの長さのオリゴヌクレオチドを含む組成物を提供する。

これらのポリヌクレオチドは、癌の診断、タンパク質の製造、プライマー、遺伝子発現阻害の為のアンチセンス・siRNA などに有用である。癌は、好ましくは、肺癌、胃癌、大腸癌および肝癌から選択される。

25 配列番号1-65に示される本発明の癌関連遺伝子は、後述の実施例において 示されるように、特定のヒト癌組織においてその発現が亢進されている。したが って、本発明の組成物は、癌関連遺伝子の発現をサイレンシングするためのアン チセンスオリゴヌクレオチド、リボザイム、siRNA等の薬剤として、および 癌関連遺伝子を検出するためのプローブまたはプライマーとして用いることがで 30 きる。又、本発明のタンパク質を製造する際に用いることも可能である。

本発明の組成物に含まれるポリヌクレオチドまたはオリゴヌクレオチドは、一

30

本鎖であっても二本鎖であってもよく、DNA、RNA、またはこれらの混合物、 あるいはPNA等の誘導体であってもよい。これらのポリヌクレオチドまたはオ リゴヌクレオチドは、ヌクレオシド間結合、塩基および/または糖において化学 的に修飾されていてもよく、5'末端および/または3'末端に修飾基を有してい てもよい。ヌクレオシド間結合の修飾の例としては、ホスホロチオエート、ホス 5 ホロジチオエート、ホスホルアミドチオエート、ホスホルアミデート、ホスホル ジアミデート、メチルホスホネート、アルキルホスホトリエステル、およびホル ムアセタール等が挙げられる。塩基修飾の例としては、5-フルオロウラシル、 5 - ブロモウラシル、5 - クロロウラシル、5 - ヨードウラシル、ヒポキサンチ ン、キサンチン、4-アセチルシトシン、および5-(カルボキシヒドロキシエ 10 チル)ウラシル等が挙げられる。糖修飾の例としては、 2'-O-アルキル、 2' -O-アルキル-O-アルキルまたは2'-フルオロ修飾等が挙げられる。また、 アラビノース、2-フルオロアラビノース、キシルロースおよびヘキソース等の 糖を用いてもよい。

15 本発明のポリヌクレオチドは、配列番号1-65のいずれかに記載されるヌクレオチド配列もしくはこれに相補的なヌクレオチド配列を有するポリヌクレオチド、あるいはこれらのポリヌクレオチドに高ストリンジェントな条件下でハイブリダイズすることができるポリヌクレオチドである。高ストリンジェントな条件下でハイブリダイズすることが可能なポリヌクレオチドは、通常、高い同一性を 有する。ここで、高い同一性とは、配列番号1-65のいずれかに記載されるヌクレオチド配列と70%以上の同一性を有し、好ましくは、80%以上の同一性、さらに好ましくは90%以上の同一性を有することを言う。

塩基配列の同一性は、Karlin and Altschul によるアルゴリズム BLAST(Proc. Natl. Acad. Sci. USA 90:5873-5877, 1993)によって決定することができる。このアルゴリズムに基づいて、BLASTN や BLASTX と呼ばれるプログラムが開発されている(Altschul et al. J. Mol. Biol.215:403-410, 1990)。BLAST に基づいて BLASTN によって塩基配列を解析する場合には、パラメーターはたとえば score = 100、wordlength = 12 とする。BLAST と Gapped BLAST プログラムを用いる場合には、各プログラムのデフォルトパラメーターを用いる。これらの解析方法の具体的な手法は公知である(http://www.ncbi.nlm.nih.gov.)。

さらに、本発明は、配列番号66-123に記載のアミノ酸配列をコードする

WO 2005/014818 PCT/JP2004/011650 27

ポリヌクレオチドを含む。これらのポリヌクレオチドは本発明のタンパク質を製造する際に用いることができ、又、配列番号1-65のいずれかに記載されるヌクレオチド配列またはその相補的な配列を有するポリヌクレオチドが癌細胞で高発現していることから、それらのポリヌクレオチドを検出して癌の診断を行う際のプローブとして用いること等が可能である。

5

25

30

又、本発明の組成物は、これを導入した細胞内で所望のアンチセンス、リボザ イム、siRNAを生成させることができる核酸構築物として提供してもよい。 本発明のポリヌクレオチドまたはオリゴヌクレオチドをアンチセンス、リボザ イム、siRNA などとして用いる場合、ポリヌクレオチドまたはオリゴヌクレオ チドは少なくとも12ヌクレオチド以上の鎖長を有していることが好ましく、さ 10 らに好ましくは12-50ヌクレオチドであり、特に好ましくは12-25ヌク レオチドである。これらのポリヌクレオチドまたはオリゴヌクレオチドは、所望 のアンチセンス、リボザイムまたはsiRNAの活性を有する限り、上述したヌ クレオチド配列から、1または数個の塩基が欠失、置換または付加された変異体 であってもよい。このような変異体は、好ましくは、上述のヌクレオチド配列と、 15 少なくとも70%、好ましくは90%またはそれ以上、より好ましくは95%ま たはそれ以上の同一性を有するヌクレオチド配列を有する。あるいは、このよう なポリヌクレオチドまたはオリゴヌクレオチドは、配列番号1-65のいずれか に記載されるヌクレオチド配列を有するポリヌクレオチドに高ストリンジェント な条件下でハイブリダイズすることができる。 20

ハイブリダイゼーションとの用語は、DNAまたはこれに対応するRNAが、溶液中でまたは固体支持体上で、別のDNAまたはRNA分子と水素結合相互作用により結合することを意味する。このような相互作用の強さは、ハイブリダイゼーション条件のストリンジェンシーを変化させることにより評価することができる。所望の特異性および選択性によって、種々のストリンジェンシーのハイブリダイゼーション条件を用いることができ、ストリンジェンシーは、塩濃度または変性剤の濃度を変化させることにより調節することができる。そのようなストリンジェンシーの調節方法は当該技術分野においてよく知られており、例えば、"Molecular Cloning: A Laboratory Manual"、第2版. Cold Spring Harbor Laboratory, Sambrook, Fritsch, & Maniatis, eds.、19

89) に記載されている。

ストリンジェントなハイブリダイゼーション条件とは、50%ホルムアミドの存在下で、700mMのNaCl中42%、またはこれと同等の条件をいう。ストリンジェントなハイブリダイゼーション条件の一例は、50%ホルムアミド、

5 5XSSC、50mMNaH₂PO₄、pH6.8、0.5%SDS、0.1mg/mL超音波処理サケ精子DNA、および5Xデンハルト溶液中で42℃で一夜のハイブリダイゼーション;2XSSC、0.1%SDSで45℃での洗浄;および0.2XSSC、0.1%SDSで45℃での洗浄である。

本発明のポリヌクレオチドおよびオリゴヌクレオチドは、当業者に公知の方法 で製造することが可能である。例えば、当該技術分野において知られるプロトコルを用いて、市販のDNA合成機(例えば394合成器、Applied Biosystems社製)で合成することができる。あるいは、本明細書に開示される配列情報に基づいて、適当なテンプレートとプライマーとを組み合わせて用いて、当該技術分野においてよく知られるPCR増幅技術により製造することができる。

さらに、本発明のポリペプチドを発現している細胞より cDNA ライブラリーを作製し、本発明のポリヌクレオチドの配列の一部をプローブにしてハイブリダイゼーションを行うことにより調製できる。cDNA ライブラリーは、例えば、文献(Sambrook, J. et al., Molecular Cloning、Cold Spring Harbor

20 Laboratory Press (1989))に記載の方法により調製してもよいし、市販の DNA ライブラリーを用いてもよい。また、本発明のポリペプチドを発現している細胞より RNA を調製し、逆転写酵素により cDNA を合成した後、本発明の DNA の配列(例えば、配列番号:1)に基づいてオリゴ DNA を合成し、これをプライマーとして用いて PCR 反応を行い、本発明のポリペプチドをコードする cDNA を増幅させることにより調製することも可能である。

また、得られた cDNA の塩基配列を決定することにより、それがコードする 翻訳領域を決定でき、本発明のタンパク質のアミノ酸配列を得ることができる。 また、得られた cDNA をプローブとしてゲノム DNA ライブラリーをスクリー ニングすることにより、ゲノム DNA を単離することも可能である。

30 より具体的には、例えば、まず本発明のタンパク質を発現する細胞、組織(例 えば、肺癌細胞、大腸癌細胞、肝癌細胞、胃癌細胞)などから、mRNA を単離

15

する。mRNA の単離は、公知の方法、例えば、グアニジン超遠心法(Chirgwin, J. M. et al., Biochemistry (1979) 18, 5294-5299) 、AGPC 法 (Chomczynski, P. and Sacchi, N., Anal. Biochem. (1987) 162, 156-159) 等により全 RNA を調製し、mRNA Purification Kit (Pharmacia 社) 等を使用して全 RNA から mRNA を精製する。また、QuickPrep mRNA Purification Kit (Pharmacia 社) を用いることにより mRNA を直接調製することもできる。

得られた mRNA から逆転写酵素を用いて cDNA を合成する。cDNA の合成は、AMV Reverse Transcriptase First-strand cDNA Synthesis Kit (生化学工業社) 等を用いて行うこともできる。また、5'-Ampli FINDER RACE Kit

(Clontech 製)およびポリメラーゼ連鎖反応 (polymerase chain reaction; PCR)を用いた 5'-RACE 法(Frohman, M. A. et al., Proc. Natl. Acad. Sci. U.S.A. (1988) 85, 8998-9002; Belyavsky, A. et al., Nucleic Acids Res. (1989) 17, 2919-2932) に従い、cDNA の合成および増幅を行うことができる。

得られた PCR 産物から目的とする DNA 断片を調製し、ベクターDNA と連結する。さらに、これより組換えベクターを作製し、大腸菌等に導入してコロニーを選択して所望の組換えベクターを調製する。目的とする DNA の塩基配列は、公知の方法、例えば、ジデオキシヌクレオチドチェインターミネーション法により確認することができる。

また、本発明の DNA においては、発現に使用する宿主のコドン使用頻度を考 20 慮して、より発現効率の高い塩基配列を設計することができる(Grantham, R. et al., Nucelic Acids Research (1981) 9, r43-74)。また、本発明の DNA は、 市販のキットや公知の方法によって改変することができる。改変としては、例え ば、制限酵素による消化、合成オリゴヌクレオチドや適当な DNA フラグメント の挿入、リンカーの付加、開始コドン(ATG)および/または終止コドン 25 (TAA、TGA、または TAG)の挿入等が挙げられる。

本発明のオリゴヌクレオチドは、試料中において癌関連遺伝子を検出するための核酸プローブとして用いることができる。本発明のプローブは、配列番号1-65に記載される塩基配列またはこれと相補的な塩基配列の少なくとも12塩基、20、30、50または100塩基またはそれ以上の連続する塩基配列を有し、

成し、これをハイブリダイゼーションが生じるような条件下でプローブと接触させ、試料に結合したプローブの存在または量を検出することにより、試料中における癌関連遺伝子またはその転写産物の存在または量または変異を検出することができる。

5 プローブは、固体支持体上に固定化してもよい。そのような固体支持体の例としては、限定されないが、プラスチック、アガロース、セファロース、ポリアクリルアミド、ラテックスピーズおよびニトロセルロース等が含まれる。プローブをそのような固体支持体に結合させる技術は当該技術分野においてよく知られている。プローブは、標準的な標識技術、例えば放射性標識、酵素標識(西洋ワサロのルオキシダーゼ、アルカリホスファターゼ)、蛍光標識、ビオチンーアビジン標識、化学発光等を用いて標識することにより可視化することができる。すなわち、本発明の組成物は、試料中の癌関連遺伝子またはその転写産物の存在を検出するためのキットとして提供することができる。このようなキットは、上述のプローブに加えて、洗浄試薬、結合したプローブの存在を検出することができる

15 試薬、ならびに使用の指針を含むことができる。

あるいは、本発明の診断用組成物は、配列番号1-65のいずれかに記載されるヌクレオチド配列を増幅することができる1組のプライマーを含んでいてもよい。このようなプライマーを用いて、適当な c DNAライブラリをテンプレートとして、ポリメラーゼ連鎖反応(PCR)により目的とする配列を増幅した後、

20 ハイブリダイゼーションまたは塩基配列決定などの手法によりPCR産物を分析し、試料中の癌関連遺伝子またはその転写産物の存在または量または変異を検出することができる。このようなPCR手法は当該技術分野においてよく知られており、例えば、"PCR Protocols, A Guide to Methods and Applications"、Academic Press, Michael, et al., eds. 1990に記載されている。

プライマーとして用いるためには、本発明のオリゴヌクレオチドは、好ましくは、配列番号1-65のいずれかに示される塩基配列、またはこれと相補的な塩基配列中の連続する少なくとも12塩基、好ましくは12-50塩基、より好ましくは12-20塩基の配列を有する。

30 本発明のポリヌクレオチドまたはオリゴヌクレオチドは、癌関連遺伝子により コードされるmRNAに結合しその発現を阻害するアンチセンス分子、またはm

10

RNAを切断するリボザイムまたはsiRNAとして用いて、癌関連遺伝子をサイレンシングすることができる。アンチセンス、リボザイムおよびsiRNA技術を用いて遺伝子発現を制御する方法は当該技術分野においてよく知られている。例えば、本発明の組成物を適当な担体とともに投与してもよく、あるいは、アンチセンス、リボザイムまたはsiRNAをコードするベクターを投与してインビボでこれらの発現を誘導してもよい。

"リボザイム"との用語は、mRNAを切断する触媒活性を有する核酸分子を表す。リボザイムは、一般に、エンドヌクレアーゼ、リガーゼまたはポリメラーゼ活性を示す。種々のタイプのトランス作用性リボザイム、例えばハンマーヘッドおよびヘアピンタイプのリボザイムが知られている。

"アンチセンス"とは、ゲノムDNAおよび/またはmRNAと特異的にハイブリダイズし、その転写および/または翻訳を阻害することによりそのタンパク質の発現を阻害する、核酸分子またはその誘導体を表す。結合は一般的な塩基対相補性によるものでもよく、または、例えば、DNAデュープレックスへの結合の場合には、二重ヘリックスの主溝における特異的相互作用によるものでもよい。アンチセンス核酸の標的部位としては、mRNAの5'末端、例えばAUG開始コドンまでおよびこれを含む5'非翻訳配列が好ましいが、mRNAの3'非翻訳配列またはコーディング領域の配列もmRNAの翻訳の阻害に有効であることが知られている。

siRNAとは、RNA干渉(RNAi)を行うことができる二本鎖核酸を意味する(例えば、Bass, 2001, Nature, 411, 428-429; Elbashir et al., 2001, Nature, 411, 4941, 4941, 498を参照)。siRNAは、配列特異的にmRNAを分解し、このことにより遺伝子の発現を抑制することができる。siRNAは、典型的には、標的とする配列に相補的な配列を含む20-25塩基対の長さの二本鎖RNAである。siRNA分子は、化学的に修飾されたヌクレオチドおよび非ヌクレオチドを含んでいてもよい。

さらに、本発明のポリヌクレオチドは、本発明のタンパク質を製造する際に用いることも可能である。

30

<u>スクリーニング</u>

さらに別の観点においては、本発明は、抗癌活性を有する化合物を同定する方法を提供する。この方法は、培養ヒト細胞を試験化合物と接触させ、そして前記細胞において配列番号1-65のいずれかに記載されるヌクレオチド配列を含む遺伝子の発現量の変化を引き起こす化合物を抗癌活性を有する化合物として同定する工程を含む。

試験化合物としては、天然または合成の任意の化合物を用いることができ、コンビナトリアルライブラリを用いてもよい。細胞における癌関連遺伝子の発現量は、例えば、上述した定量的PCR法により簡便に測定することができるが、当該技術分野において知られる他のいずれの方法を用いてもよい。

10

25

30

5

検査方法

本発明は、本発明の遺伝子またはタンパク質の発現量を測定する工程を含む、 癌の検査方法を提供する。以下に検査方法の具体的な態様を記載するが、本発明 の検査方法は、それらの方法に限定されるものではない。

15 本発明の検査方法の1つの態様としては、まず、被検者から RNA 試料を調製する。次いで、該 RNA 試料に含まれる本発明のタンパク質をコードする RNA の量を測定する。次いで、測定された RNA の量を対照と比較する。別の態様としては、まず、被検者から cDNA 試料を調製する。次いで、該 cDNA 試料に含まれる本発明のタンパク質をコードする cDNA の量を測定する。次いで、測定された cDNA の量を対照と比較する。

これらのような方法としては、当業者らに周知の方法、例えばノーザンブロッティング法、RTPCR法、DNAアレイ法等を挙げることができる。

DNA アレイ法においては、被検者から調製した RNA を鋳型として cDNA 試料を調製し、本発明のオリゴヌクレオチドが固定された基板と接触させ、該 cDNA 試料と該基板に固定されたヌクレオチドプローブとのハイブリダイズの強度を検出することにより、該 cDNA 試料に含まれる本発明の遺伝子の発現量を測定する。次いで、測定された本発明の遺伝子の発現量を対照と比較する。

被検者からの cDNA 試料の調製は、当業者に周知の方法で行うことができる。 cDNA 試料の調製の好ましい態様においては、まず被検者の細胞あるいは組織 (例えば、肺、大腸、胃、肝臓、など) から全 RNA の抽出を行う。全 RNA の抽出は、当業者にとって周知の方法、例えば次のようにして行うことができる。

全 RNA 抽出には純度の高い全 RNA が調製できる方法であれば、既存の方法およびキット等を用いることが可能である。例えば Ambion 社 "RNA later"を用い前処理を行った後、ニッポンジーン社"Isogen"を用いて全 RNA の抽出を行う。具体的方法にはそれらの添付プロトコールに従えばよい。

5 次いで、抽出した全RNAを鋳型として、逆転写酵素を用いてcDNAの合成を行い、cDNA 試料を調製する。全RNAからのcDNAの合成は、当業者に周知の方法で実施することができる。調製したcDNA 試料には、必要に応じて、検出のための標識を施す。標識物質としては、検出可能なものであれば特に制限はなく、例えば、蛍光物質、放射性元素等を挙げることができる。標識は、当業10 者によって一般的に行われる方法(L Luo et al., Gene expression profiles of laser-capturedadjacent neuronal subtypes. Nat Med. 1999, 117-122)で実施することができる。

ヌクレオチドプローブと該 cDNA とのハイブリダイズの強度の検出は、 cDNA 試料を標識した物質の種類に応じて当業者においては適宜行うことができる。例えば、cDNA が蛍光物質によって標識された場合、スキャナーによって蛍光シグナルを読み取ることによって検出することができる。

15

30

本発明の検査方法の別の態様としては、まず、被検者の細胞あるいは組織から タンパク質試料を調製する。次いで、該タンパク質試料に含まれる本発明のタン パク質の量を測定する。次いで、測定されたタンパク質の量を対照と比較する。

20 このような方法としては、SDS ポリアクリルアミド電気泳動法、並びに本発明の抗体を用いた、ウェスタンプロッティング法、ドットプロッティング法、免疫沈降法、酵素結合免疫測定法(ELISA)、および免疫蛍光法を例示することができる。又、本発明の遺伝子の発現量の測定のかわりに、本発明のタンパク質の発現量を測定することによっても、癌の診断を行うことが可能である。

25 上記の方法において、対照と比較して、本発明の遺伝子またはタンパク質の発現量が有意に上昇していた場合、被検者は、癌を発症している、もしくは発症する可能性が高いと判定される。

本発明はまた、癌の検査方法に用いるための検査薬を提供する。このような検 査薬としては、本発明のオリゴヌクレオチドを含む検査薬(オリゴヌクレオチド プローブが固定された基板を含む)、本発明の抗体を含む検査薬が挙げられる。 上記抗体は、検査に用いることが可能な抗体であれば、特に制限はない。抗体は 必要に応じて標識される。

上記の検査薬においては、有効成分であるオリゴヌクレオチドや抗体以外に、例えば、滅菌水、生理食塩水、植物油、界面活性剤、脂質、溶解補助剤、緩衝剤、タンパク質安定剤(BSA やゼラチンなど)、保存剤等が必要に応じて混合されていてもよい。

C20orf102 の検出

5

25

別の観点においては、本発明は、C20orf102 タンパク質を検出することを特徴とする癌の診断方法を提供する。本発明の方法は、C20orf102 タンパク質を10 検出することを特徴とする。C20orf102 は N 末端に分泌シグナルを有する分泌タンパク質であり、そのアミノ酸配列およびこれをコードする遺伝子配列およびアミノ酸配列は、GenBank 番号 NM_080607(配列番号2および66)に開示されている。本発明において、C20orf102 タンパク質とは、全長タンパク質およびその断片の両方を含むことを意味する。断片とは、C20orf102 タンパク質の任意の領域を含むポリペプチドであり、天然の C20orf102 タンパク質の機能を有していなくてもよい。C20orf102 タンパク質の分泌シグナルは配列番号66のアミノ酸配列において1-24番目(Psort 予測: http://psort.nibb.ac.jp/)が相当する。

本発明においては、癌細胞、特に肺癌、肝癌(例えば、中分化型肝癌)、膵癌 0 において、非常に高頻度で C20orf102 がタンパク質レベルで発現亢進している ことが見いだされた。また、C20orf102 に特異的なモノクローナル抗体を用いることにより、免疫組織診断が可能であることが示された。

本発明で検出する C20orf102 タンパク質はヒト C20orf102 タンパク質が好ましいが、それに限定されず、イヌ C20orf102、ネコ C20orf102、マウス C20orf102、ハムスターC20orf102 などいかなる C20orf102 でもよい。

本発明において検出される C20orf102 は分泌前の C20orf102 でもよいが、分泌後の C20orf102 が好ましい。C20orf102 は N 末端に分泌シグナルを有する分泌タンパク質であり、細胞内で産生された後に細胞外に分泌される。分泌後の C20orf102 とは、細胞外に存在する C20orf102 のことをいう。

30 本発明において検出とは、定量的または非定量的な検出を含み、例えば、非定量的な検出としては、単に C20orf102 タンパク質が存在するか否かの測定、

C20orf102 タンパク質が一定の量以上存在するか否かの測定、C20orf102 タンパク質の量を他の試料(例えば、コントロール試料など)と比較する測定などを挙げることができ、定量的な検出としては、C20orf102 タンパク質の濃度の測定、C20orf102 タンパク質の量の測定などを挙げることができる。

被検試料としては、C20orf102 タンパク質が含まれる可能性のある試料であれば特に制限されないが、哺乳類などの生物の体から採取された試料が好ましく、さらに好ましくはヒトから採取された試料である。被検試料の具体的な例としては、例えば、細胞、細胞破砕物、血液、間質液、血漿、血管外液、脳脊髄液、滑液、胸膜液、血清、リンパ液、唾液、尿などを挙げることができるが、好ましいのは血液、血清、または血漿である。又、生物の体から採取された細胞の培養液などの、被検試料から得られる試料も本発明の被検試料に含まれる。

5

10

15

25

診断される癌は、特に制限されず如何なる癌でもよいが、具体的には、肝癌、 膵臓癌、肺癌、大腸癌、乳癌、腎癌、脳腫瘍、子宮癌、肺癌、胃癌、前立腺癌、 白血病、リンパ腫などを挙げることができる。好ましいものは肺癌、肝癌、膵癌 である。

肝癌は、低分化型肝癌、中分化型肝癌、高分化型肝癌などに分類され、本発明による検出は如何なる肝癌でもよいが、中分化形肝癌の検出が好ましい。 肺癌は、さらに肺腺癌、肺扁平上皮癌、肺小細胞癌、肺大細胞癌などに分類され、 本発明による検出は如何なる肺癌でもよいが、肺腺癌の検出が好ましい。

20 本発明においては、被験試料中に C20orf102 タンパク質が検出された場合、 陰性コントロールまたは健常者と比較して被験試料中に検出される C20orf102 タンパク質の量が多いと判断される場合に、被験者が癌であるまたは癌になる可 能性が高いと判定される。

本発明の診断方法の好ましい態様としては、細胞から遊離し、血中に存在する C20orf102 タンパク質を検出することを特徴とする診断方法を挙げることがで きる。特に好ましくは、血中に存在する C20orf102 タンパク質またはその断片 を検出する。

被検試料に含まれる C20orf102 タンパク質の検出方法は特に限定されないが、 抗 C20orf102 抗体を用いた免疫学的方法により検出することが好ましい。免疫 30 学的方法としては、例えば、ラジオイムノアッセイ、エンザイムイムノアッセイ、 蛍光イムノアッセイ、発光イムノアッセイ、免疫沈降法、免疫比濁法、ウエスタ

10

15

20

25

30

ンプロット、免疫染色、免疫拡散法などを挙げることができるが、好ましくはエンザイムイムノアッセイであり、特に好ましいのは酵素結合免疫吸着定量法 (enzyme-linked immunosorbent assay: ELISA) (例えば、sandwich ELISA) である。ELISA などの上述した免疫学的方法は当業者に公知の方法により行うことが可能である。

抗 C20orf102 抗体を用いた一般的な検出方法としては、例えば、抗 C20orf102 抗体を支持体に固定し、ここに被検試料を加え、インキュベートを 行い抗 C20orf102 抗体と C20orf102 タンパク質を結合させた後に洗浄して、抗 C20orf102 抗体を介して支持体に結合した C20orf102 タンパク質を検出することにより、被検試料中の C20orf102 タンパク質の検出を行う方法を挙げることができる。

本発明において抗 C20orf102 抗体を固定するために用いられる支持体としては、例えば、アガロース、セルロースなどの不溶性の多糖類、シリコン樹脂、ポリスチレン樹脂、ポリアクリルアミド樹脂、ナイロン樹脂、ポリカーボネイト樹脂などの合成樹脂や、ガラスなどの不溶性の支持体を挙げることができる。これらの支持体は、ビーズやプレートなどの形状で用いることが可能である。ビーズの場合、これらが充填されたカラムなどを用いることができる。プレートの場合、マルチウェルプレート(96 穴マルチウェルプレート等)や、バイオセンサーチップなどを用いることができる。抗 C20orf102 抗体と支持体との結合は、化学結合や物理的な吸着などの通常用いられる方法により結合することができる。これらの支持体はすべて市販のものを用いることができる。

抗 C20orf102 抗体と C20orf102 タンパク質との結合は、通常、緩衝液中で行われる。緩衝液としては、例えば、リン酸緩衝液、Tris 緩衝液、クエン酸緩衝液、ホウ酸塩緩衝液、炭酸塩緩衝液、などが使用される。また、インキュベーションの条件としては、すでによく用いられている条件、例えば、4℃~室温にて1時間~24 時間のインキュベーションが行われる。インキュベート後の洗浄は、C20orf102 タンパク質と抗 C20orf102 抗体の結合を妨げないものであれば何でもよく、例えば、Tween20 等の界面活性剤を含む緩衝液などが使用される。

本発明の C20orf102 タンパク質検出方法においては、C20orf102 タンパク質を検出したい被検試料の他に、コントロール試料を設置してもよい。コントロール試料としては、C20orf102 タンパク質を含まない陰性コントロール試料や

C20orf102 タンパク質を含む陽性コントロール試料などがある。この場合、C20orf102 タンパク質を含まない陰性コントロール試料で得られた結果、C20orf102 タンパク質を含む陽性コントロール試料で得られた結果と比較することにより、被検試料中の C20orf102 タンパク質を検出することが可能である。また、濃度を段階的に変化させた一連のコントロール試料を調製し、各コントロール試料に対する検出結果を数値として得て、標準曲線を作成し、被検試料の数値から標準曲線に基づいて、被検試料に含まれる C20orf102 タンパク質を定量的に検出することも可能である。

5

30

抗 C20orf102 抗体を介して支持体に結合した C20orf102 タンパク質の検出の 10 好ましい態様として、標識物質で標識された抗 C20orf102 抗体を用いる方法を 挙げることができる。例えば、支持体に固定された抗 C20orf102 抗体に被検試 料を接触させ、洗浄後に、C20orf102 タンパク質を特異的に認識する標識抗体 を用いて検出する。

抗 C20orf102 抗体の標識は通常知られている方法により行うことが可能であ る。標識物質としては、蛍光色素、酵素、補酵素、化学発光物質、放射性物質な 15 どの当業者に公知の標識物質を用いることが可能であり、具体的な例としては、 ラジオアイソトープ(32P、14C、125I、3H、131I など)、フルオレセイン、ローダ ミン、ダンシルクロリド、ウンベリフェロン、ルシフェラーゼ、ペルオキシダー ゼ、アルカリホスファターゼ、β-ガラクトシダーゼ、β-グルコシダーゼ、ホー スラディッシュパーオキシダーゼ、グルコアミラーゼ、リゾチーム、サッカリド 20 オキシダーゼ、マイクロペルオキシダーゼ、ビオチンなどを挙げることができる。 標識物質としてビオチンを用いる場合には、ビオチン標識抗体を添加後に、アル カリホスファターゼなどの酵素を結合させたアビジンをさらに添加することが好 ましい。標識物質と抗 C20orf102 抗体との結合には、グルタルアルデヒド法、 マレイミド法、ピリジルジスルフィド法、過ヨウ素酸法、などの公知の方法を用 25 いることができる。

具体的には、抗 C20orf102 抗体を含む溶液をプレートなどの支持体に加え、 抗 C20orf102 抗体を支持体に固定する。プレートを洗浄後、タンパク質の非特 異的な結合を防ぐため、例えば BSA、ゼラチン、アルブミンなどでブロッキン グする。再び洗浄し、被検試料をプレートに加える。インキュベートの後、洗浄 し、標識抗 C20orf102 抗体を加える。適度なインキュベーションの後、プレー

25

トを洗浄し、プレートに残った標識抗 C20orf102 抗体を検出する。検出は当業者に公知の方法により行うことができ、例えば、放射性物質による標識の場合には液体シンチレーションや RIA 法により検出することができる。酵素による標識の場合には基質を加え、基質の酵素的変化、例えば発色を吸光度計により検出することができる。基質の具体的な例としては、2,2-アジノビス(3-エチルベンゾチアゾリン-6-スルホン酸)ジアンモニウム塩(ABTS)、1,2-フェニレンジアミン(オルソ・フェニレンジアミン)、3,3',5,5'-テトラメチルベンジジン(TMB)などを挙げることができる。蛍光物質の場合には蛍光光度計により検出することができる。

10 本発明の C20orf102 タンパク質検出方法の特に好ましい態様として、ビオチンで標識された抗 C20orf102 抗体およびアビジンを用いる方法を挙げることができる。

具体的には、抗 C20orf102 抗体を含む溶液をプレートなどの支持体に加え、 抗 C20orf102 抗体を固定する。プレートを洗浄後、タンパク質の非特異的な結 15 合を防ぐため、例えば BSA などでプロッキングする。再び洗浄し、被検試料を プレートに加える。インキュベートの後、洗浄し、ビオチン標識抗 C20orf102 抗体を加える。適度なインキュベーションの後、プレートを洗浄し、アルカリホ スファターゼ、ペルオキシダーゼなどの酵素と結合したアビジンを加える。イン キュベーション後、プレートを洗浄し、アビジンに結合している酵素に対応した 基質を加え、基質の酵素的変化などを指標に C20orf102 タンパク質を検出する。

本発明の C20orf102 タンパク質検出方法の他の態様として、C20orf102 タンパク質を特異的に認識する一次抗体を一種類以上、および該一次抗体を特異的に認識する二次抗体を一種類以上用いる方法を挙げることができる。

例えば、支持体に固定された一種類以上の抗 C20orf102 抗体に被検試料を接触させ、インキュベーションした後、洗浄し、洗浄後に結合している C20orf102 タンパク質を、一次抗 C20orf102 抗体および該一次抗体を特異的に認識する一種類以上の二次抗体により検出する。この場合、二次抗体は好ましくは標識物質により標識されている。

本発明の C20orf102 タンパク質の検出方法の他の態様としては、凝集反応を 30 利用した検出方法を挙げることができる。該方法においては、抗 C20orf102 抗 体を感作した担体を用いて C20orf102 を検出することができる。抗体を感作す る担体としては、不溶性で、非特異的な反応を起こさず、かつ安定である限り、いかなる担体を使用してもよい。例えば、ラテックス粒子、ベントナイト、コロジオン、カオリン、固定羊赤血球等を使用することができるが、ラテックス粒子を使用するのが好ましい。ラテックス粒子としては、例えば、ポリスチレンラテックス粒子、スチレン・ブタジエン共重合体ラテックス粒子、ポリビニルトルエンラテックス粒子等を使用することができるが、ポリスチレンラテックス粒子を使用するのが好ましい。感作した粒子を試料と混合し、一定時間攪拌する。試料中に抗 C20orf102 抗体が高濃度で含まれるほど粒子の凝集度が大きくなるので、凝集を肉眼でみることにより C20orf102 を検出することができる。また、凝集による濁度を分光光度計等により測定することによっても検出することが可能である。

5

10

15

20

25

30

本発明の C20orf102 タンパク質の検出方法の他の態様としては、例えば、表面プラズモン共鳴現象を利用したバイオセンサーを用いた方法を挙げることができる。表面プラズモン共鳴現象を利用したバイオセンサーはタンパク質ータンパク質間の相互作用を微量のタンパク質を用いてかつ標識することなく、表面プラズモン共鳴シグナルとしてリアルタイムに観察することが可能である。例えば、BIAcore(アマーシャムバイオサイエンス社製)等のバイオセンサーを用いることにより C20orf102 タンパク質と抗 C20orf102 抗体の結合を検出することが可能である。具体的には、抗 C20orf102 抗体を固定化したセンサーチップに、被検試料を接触させ、抗 C20orf102 抗体に結合する C20orf102 タンパク質を共鳴シグナルの変化として検出することができる。

本発明の検出方法は、種々の自動検査装置を用いて自動化することもでき、一度に大量の試料について検査を行うことも可能である。

本発明は、癌の診断のための被検試料中の C20orf102 タンパク質を検出するための診断薬またはキットの提供をも目的とするが、該診断薬またはキットは少なくとも抗 C20orf102 抗体を含む。該診断薬またはキットが ELISA 法等の EIA 法に基づく場合は、抗体を固相化する担体を含んでいてもよく、抗体があらかじめ担体に結合していてもよい。該診断薬またはキットがラテックス等の担体を用いた凝集法に基づく場合は抗体が吸着した担体を含んでいてもよい。また、該キットは、適宜、ブロッキング溶液、反応溶液、反応停止液、試料を処理するための試薬等を含んでいてもよい。

10

15

20

25

抗 C20orf102 抗体の作製

本発明で用いられる抗 C20orf102 抗体は C20orf102 タンパク質に特異的に結合すればよく、その由来、種類(モノクローナル、ポリクローナル)および形状を問わない。具体的には、マウス抗体、ラット抗体、ヒト抗体、キメラ抗体、ヒト化抗体などの公知の抗体を用いることができる。抗体はポリクローナル抗体でもよいが、モノクローナル抗体であることが好ましい。

又、支持体に固定される抗 C20orf102 抗体と標識物質で標識される抗 C20orf102 抗体は C20orf102 分子の同じエピトープを認識してもよいが異なるエピトープを認識することが好ましく、部位は特に制限されない。

本発明で使用される抗 C20orf102 抗体は、公知の手段を用いてポリクローナルまたはモノクローナル抗体として得ることができる。本発明で使用される抗 C20orf102 抗体として、特に哺乳動物由来のモノクローナル抗体が好ましい。 哺乳動物由来のモノクローナル抗体は、ハイブリドーマに産生されるもの、および遺伝子工学的手法により抗体遺伝子を含む発現ベクターで形質転換した宿主に 産生されるものを含む。

モノクローナル抗体産生ハイブリドーマは、基本的には公知技術を使用し、以下のようにして作製できる。すなわち、C20orf102 を感作抗原として使用して、これを通常の免疫方法にしたがって免疫し、得られる免疫細胞を通常の細胞融合法によって公知の親細胞と融合させ、通常のスクリーニング法により、モノクローナルな抗体産生細胞をスクリーニングすることによって作製できる。

具体的には、モノクローナル抗体を作製するには次のようにすればよい。

まず、抗体取得の感作抗原として使用される C20orf102 を、GenBank 受託番号: NM_080607 に開示された C20orf102 遺伝子/アミノ酸配列を発現することによって得る。すなわち、C20orf102 をコードする遺伝子配列を公知の発現ベクター系に挿入して適当な宿主細胞を形質転換させた後、その宿主細胞中または培養上清中から目的のヒト C20orf102 タンパク質を公知の方法で精製する。また、天然の C20orf102 を精製して用いることもできる。

次に、この精製 C20orf102 タンパク質を感作抗原として用いる。あるいは、 30 C20orf102 の部分ペプチドを感作抗原として使用することもできる。この際、 部分ペプチドはヒト C20orf102 のアミノ酸配列より化学合成により得ることも

とが望ましい。

20

25

できるし、C20orf102 遺伝子の一部を発現ベクターに組込んで得ることもでき、さらに天然の C20orf102 をタンパク質分解酵素により分解することによっても得ることができる。部分ペプチドとして用いる C20orf102 の部分および大きさは限られない。

5 感作抗原で免疫される哺乳動物としては、特に限定されるものではないが、細胞融合に使用する親細胞との適合性を考慮して選択するのが好ましく、一般的にはげっ歯類の動物、例えば、マウス、ラット、ハムスター、あるいはウサギ、サル等が使用される。

感作抗原を動物に免疫するには、公知の方法にしたがって行われる。例えば、一般的方法として、感作抗原を哺乳動物の腹腔内または皮下に注射することにより行われる。具体的には、感作抗原を PBS (Phosphate Buffered Saline) や生理食塩水等で適当量に希釈、懸濁したものに所望により通常のアジュバント、例えばフロイント完全アジュバントを適量混合し、乳化後、哺乳動物に 4~21 日毎に数回投与する。また、感作抗原免疫時に適当な担体を使用することもできる。特に分子量の小さい部分ペプチドを感作抗原として用いる場合には、アルブミン、キーホールリンペットへモシアニン等の担体タンパク質と結合させて免疫するこ

このように哺乳動物を免疫し、血清中に所望の抗体レベルが上昇するのを確認 した後に、哺乳動物から免疫細胞を採取し、細胞融合に付されるが、好ましい免 疫細胞としては、特に脾細胞が挙げられる。

前記免疫細胞と融合される他方の親細胞として、哺乳動物のミエローマ細胞を用いる。このミエローマ細胞は、公知の種々の細胞株、例えば、P3 (P3x63Ag8.653) (J. Immnol. (1979) 123, 1548-1550) 、 P3x63Ag8U.1 (Current Topics in Microbiology and Immunology (1978) 81, 1-7) 、 NS-1 (Kohler. G. and Milstein, C. Eur. J. Immunol. (1976) 6, 511-519) 、MPC-11 (Margulies. D.H. et al., Cell (1976) 8, 405-415) 、SP2/0 (Shulman, M. et al., Nature (1978) 276, 269-270)、FO(de St. Groth, S. F. et al., J. Immunol. Methods (1980) 35, 1-21)、S194(Trowbridge, I. S. J. Exp. Med.

1mmunol. Methods (1980) 35, 1-21) 、S194 (Trowbridge, I. S. J. Exp. Med. (1978) 148, 313-323) 、R210 (Galfre, G. et al., Nature (1979) 277, 131-30 133) 等が好適に使用される。

前記免疫細胞とミエローマ細胞との細胞融合は、基本的には公知の方法、たと

10

15

えば、ケーラーとミルステインらの方法(Kohler. G. and Milstein, C.、Methods Enzymol. (1981) 73, 3-46) 等に準じて行うことができる。

より具体的には、前記細胞融合は、例えば細胞融合促進剤の存在下に通常の栄養培養液中で実施される。融合促進剤としては、例えばポリエチレングリコール (PEG)、センダイウイルス (HVJ)等が使用され、更に所望により融合効率を高めるためにジメチルスルホキシド等の補助剤を添加使用することもできる。

免疫細胞とミエローマ細胞との使用割合は任意に設定することができる。例えば、ミエローマ細胞に対して免疫細胞を 1~10 倍とするのが好ましい。前記細胞融合に用いる培養液としては、例えば、前記ミエローマ細胞株の増殖に好適なRPMI1640 培養液、MEM 培養液、その他、この種の細胞培養に用いられる通常の培養液が使用可能であり、さらに、牛胎児血清 (FCS) 等の血清補液を併用することもできる。

細胞融合は、前記免疫細胞とミエローマ細胞との所定量を前記培養液中でよく 混合し、予め37℃程度に加温したPEG溶液(例えば平均分子量1000~6000程度)を通常30~60%(w/v)の濃度で添加し、混合することによって目的とする融合細胞(ハイブリドーマ)を形成する。続いて、適当な培養液を逐次添加し、遠心して上清を除去する操作を繰り返すことによりハイブリドーマの生育に好ましくない細胞融合剤等を除去する。

このようにして得られたハイブリドーマは、通常の選択培養液、例えば HAT 20 培養液(ヒポキサンチン、アミノプテリンおよびチミジンを含む培養液)で培養することにより選択される。上記 HAT 培養液での培養は、目的とするハイブリドーマ以外の細胞(非融合細胞)が死滅するのに十分な時間(通常、数日~数週間)継続する。ついで、通常の限界希釈法を実施し、目的とする抗体を産生するハイブリドーマのスクリーニングおよび単一クローニングを行う。

 目的とする抗体のスクリーニングおよび単一クローニングは、公知の抗原抗体 反応に基づくスクリーニング方法で行えばよい。例えば、ポリスチレン等ででき たビーズや市販の96ウェルのマイクロタイタープレート等の担体に抗原を結合 させ、ハイブリドーマの培養上清と反応させ、担体を洗浄した後に酵素標識第2 次抗体等を反応させることにより、培養上清中に感作抗原と反応する目的とする 抗体が含まれるかどうか決定できる。目的とする抗体を産生するハイブリドーマ を限界希釈法等によりクローニングすることができる。この際、抗原としては免

10

疫に用いたものを用いればよい。

また、ヒト以外の動物に抗原を免疫して上記ハイブリドーマを得る他に、ヒトリンパ球を in vitro で C20orf102 に感作し、感作リンパ球をヒト由来の永久分裂能を有するミエローマ細胞と融合させ、C20orf102 への結合活性を有する所望のヒト抗体を得ることもできる(特公平 1・59878 号公報参照)。さらに、ヒト抗体遺伝子の全てのレパートリーを有するトランスジェニック動物に抗原となる C20orf102 を投与して抗 C20orf102 抗体産生細胞を取得し、これを不死化させた細胞から C20orf102 に対するヒト抗体を取得してもよい(国際特許出願公開番号 WO 94/25585 号公報、WO 93/12227 号公報、WO 92/03918 号公報、WO 94/02602 号公報参照)。

このようにして作製されるモノクローナル抗体を産生するハイブリドーマは、 通常の培養液中で継代培養することが可能であり、また、液体窒素中で長期保存 することが可能である。

当該ハイブリドーマからモノクローナル抗体を取得するには、当該ハイブリド 15 ーマを通常の方法に従い培養し、その培養上清として得る方法、あるいはハイブ リドーマをこれと適合性がある哺乳動物に投与して増殖させ、その腹水として得 る方法などが採用される。前者の方法は、高純度の抗体を得るのに適しており、 一方、後者の方法は、抗体の大量生産に適している。

本発明では、モノクローナル抗体として、抗体遺伝子をハイブリドーマからクローニングし、適当なベクターに組み込んで、これを宿主に導入し、遺伝子組換え技術を用いて産生させた組換え型のものを用いることができる(例えば、Vandamme, A. M. et al., Eur. J. Biochem. (1990) 192, 767-775, 1990 参照)。具体的には、抗 C20orf102 抗体を産生するハイブリドーマから、抗 C20orf102 抗体の可変(V)領域をコードする mRNA を単離する。 mRNA の単離は、公知の方法、例えば、グアニジン超遠心法(Chirgwin, J. M. et al., Biochemistry (1979) 18, 5294-5299)、AGPC 法(Chomczynski, P.et al., Anal. Biochem. (1987) 162, 156・159)等により行って全 RNA を調製し、mRNA Purification Kit (Pharmacia 製)等を使用して目的の mRNA を調製する。また、QuickPrep mRNA Purification Kit (Pharmacia 製)を用いることにより mRNA を直接調製することもできる。

得られた mRNA から逆転写酵素を用いて抗体 V 領域の cDNA を合成する。

10

20

25

30

cDNA の合成は、AMV Reverse Transcriptase First-strand cDNA Synthesis Kit (生化学工業社製) 等を用いて行う。また、cDNA の合成および増幅を行うには、5'-Ampli FINDER RACE Kit (Clontech 製) および PCR を用いた 5'-RACE 法 (Frohman, M. A. et al., Proc. Natl. Acad. Sci. USA (1988) 85, 8998-9002、Belyavsky, A.et al., Nucleic Acids Res. (1989) 17, 2919-2932) 等を使用することができる。

得られた PCR 産物から目的とする DNA 断片を精製し、ベクターDNA と連結する。さらに、これより組換えベクターを作製し、大腸菌等に導入してコロニーを選択して所望の組換えベクターを調製する。そして、目的とする DNA の塩基配列を公知の方法、例えば、ジデオキシヌクレオチドチェインターミネーション法等により確認する。

目的とする抗 C20orf102 抗体の V 領域をコードする DNA を得たのち、これを、所望の抗体定常領域(C領域)をコードする DNA を含有する発現ベクターへ組み込む。

15 本発明で使用される抗 C20orf102 抗体を製造するには、抗体遺伝子を発現制 御領域、例えば、エンハンサー、プロモーターの制御のもとで発現するよう発現 ベクターに組み込む。次に、この発現ベクターにより、宿主細胞を形質転換し、 抗体を発現させる。

抗体遺伝子の発現は、抗体重鎖(H鎖)または軽鎖(L鎖)をコードする DNA を別々に発現ベクターに組み込んで宿主細胞を同時形質転換させてもよい し、あるいは H 鎖および L 鎖をコードする DNA を単一の発現ベクターに組み 込んで宿主細胞を形質転換させてもよい(WO 94/11523 号公報参照)。

また、組換え型抗体の産生には上記宿主細胞だけではなく、トランスジェニック動物を使用することができる。例えば、抗体遺伝子を、乳汁中に固有に産生されるタンパク質(ヤギ β 力ゼインなど)をコードする遺伝子の途中に挿入して融合遺伝子として調製する。抗体遺伝子が挿入された融合遺伝子を含む DNA 断片をヤギの胚へ注入し、この胚を雌のヤギへ導入する。胚を受容したヤギから生まれるトランスジェニックヤギまたはその子孫が産生する乳汁から所望の抗体を得る。また、トランスジェニックヤギから産生される所望の抗体を含む乳汁量を増加させるために、適宜ホルモンをトランスジェニックヤギに使用してもよい(Ebert, K.M. et al., Bio/Technology(1994)12, 699-702)。

10

15

20

25

30

本発明では、上記抗体のほかに、人為的に改変した遺伝子組換え型抗体、例えば、キメラ抗体、ヒト化(Humanized)抗体を使用できる。これらの改変抗体は、既知の方法を用いて製造することができる。

キメラ抗体は、前記のようにして得た抗体 V 領域をコードする DNA をヒト 抗体 C 領域をコードする DNA と連結し、これを発現ベクターに組み込んで宿 主に導入し産生させることにより得られる。この既知の方法を用いて、本発明に 有用なキメラ抗体を得ることができる。

ヒト化抗体は、再構成(reshaped)ヒト抗体とも称され、これは、ヒト以外の哺乳動物、例えばマウス抗体の相補性決定領域(CDR; complementarity determining region)をヒト抗体の相補性決定領域へ移植したものであり、その一般的な遺伝子組換え手法も知られている(欧州特許出願公開番号 EP 125023 号公報、WO 96/02576 号公報参照)。

具体的には、マウス抗体の CDR とヒト抗体のフレームワーク領域 (framework region; FR) とを連結するように設計した DNA 配列を、CDR および FR 両方の末端領域にオーバーラップする部分を有するように作製した数個のオリゴヌクレオチドをプライマーとして用いて PCR 法により合成する (WO98/13388 号公報に記載の方法を参照)。

CDR を介して連結されるヒト抗体のフレームワーク領域は、相補性決定領域が良好な抗原結合部位を形成するものが選択される。必要に応じ、再構成ヒト抗体の相補性決定領域が適切な抗原結合部位を形成するように、抗体の可変領域におけるフレームワーク領域のアミノ酸を置換してもよい(Sato, K.et al., Cancer Res. (1993) 53, 851-856)。

キメラ抗体およびヒト化抗体のC領域には、ヒト抗体のものが使用され、例えばH鎖では、 $C \gamma 1$ 、 $C \gamma 2$ 、 $C \gamma 3$ 、 $C \gamma 4$ を、L鎖では $C \kappa$ 、 $C \lambda$ を使用することができる。また、抗体またはその産生の安定性を改善するために、ヒト抗体C領域を修飾してもよい。

キメラ抗体は、ヒト以外の哺乳動物由来抗体の可変領域とヒト抗体由来の定常 領域とからなる。一方、ヒト化抗体は、ヒト以外の哺乳動物由来抗体の相補性決 定領域と、ヒト抗体由来のフレームワーク領域およびC領域とからなる。ヒト化 抗体はヒト体内における抗原性が低下されているため、本発明の治療剤の有効成 分として有用である。

本発明で使用される抗体は、抗体の全体分子に限られず、C20orf102 に結合 する限り、抗体の断片またはその修飾物であってもよく、二価抗体も一価抗体も 含まれる。例えば、抗体の断片としては、Fab、F (ab') 2、Fv、1個の Fab と 完全な Fc を有する Fab/c、またはH鎖若しくはL鎖の Fv を適当なリンカーで 連結させたシングルチェイン Fv (scFv) が挙げられる。具体的には、抗体を酵 5 素、例えばパパイン、ペプシンで処理し抗体断片を生成させるか、または、これ ら抗体断片をコードする遺伝子を構築し、これを発現ベクターに導入した後、適 当な宿主細胞で発現させる(例えば、Co, M.S. et al., J. Immunol. (1994) 152. 2968-2976. Better, M. & Horwitz, A. H. Methods in Enzymology (1989) 178, 10 476-496, Academic Press, Inc., Plueckthun, A. & Skerra, A. Methods in Enzymology (1989) 178, 476-496, Academic Press, Inc., Lamovi, E., Methods in Enzymology (1989) 121, 652-663, Rousseaux, J. et al., Methods in Enzymology (1989) 121, 663-669. Bird, R. E. et al., TIBTECH (1991) 9, 132-137 参照)。

15 scFv は、抗体の H 鎖 V 領域と L 鎖 V 領域とを連結することにより得られる。 この scFv において、H 鎖 V 領域と L 鎖 V 領域は、リンカー、好ましくはペプ チドリンカーを介して連結される (Huston, J. S. et al.、Proc. Natl. Acad. Sci. U.S.A. (1988) 85, 5879-5883)。 scFv における H 鎖 V 領域および L 鎖 V 領域 は、本明細書に抗体として記載されたもののいずれの由来であってもよい。 V 領 域を連結するペプチドリンカーとしては、例えばアミノ酸 12~19 残基からなる 任意の一本鎖ペプチドが用いられる。

scFv をコードする DNA は、前記抗体の H 鎖または H 鎖 V 領域をコードする DNA、および L 鎖または L 鎖 V 領域をコードする DNA のうち、それらの配列のうちの全部または所望のアミノ酸配列をコードする DNA 部分を鋳型とし、その両端を規定するプライマー対を用いて PCR 法により増幅し、次いで、さらにペプチドリンカー部分をコードする DNA、およびその両端が各々 H 鎖、L 鎖と連結されるように規定するプライマー対を組み合せて増幅することにより得られる。

また、一旦 scFv をコードする DNA が作製されると、それらを含有する発現 30 ベクター、および該発現ベクターにより形質転換された宿主を常法に従って得る ことができ、また、その宿主を用いることにより、常法に従って scFv を得るこ

とができる。

20

25

これら抗体の断片は、前記と同様にしてその遺伝子を取得し発現させ、宿主により産生させることができる。本発明における「抗体」にはこれらの抗体の断片も包含される。

5 抗体の修飾物として、標識物質等の各種分子と結合した抗 C20orf102 抗体を使用することもできる。本発明における「抗体」にはこれらの抗体修飾物も包含される。このような抗体修飾物は、得られた抗体に化学的な修飾を施すことによって得ることができる。なお、抗体の修飾方法はこの分野においてすでに確立されている。

10 さらに、本発明で使用される抗体は、二重特異性抗体(bispecific antibody)であってもよい。二重特異性抗体は C20orf102 分子上の異なるエピトープを認識する抗原結合部位を有する二重特異性抗体であってもよいし、一方の抗原結合部位が C20orf102 を認識し、他方の抗原結合部位が標識物質等を認識してもよい。二重特異性抗体は2種類の抗体の HL 対を結合させて作製することもできるし、異なるモノクローナル抗体を産生するハイブリドーマを融合させて二重特異性抗体産生融合細胞を作製し、得ることもできる。さらに、遺伝子工学的手法により二重特異性抗体を作製することも可能である。

前記のように構築した抗体遺伝子は、公知の方法により発現させ、取得することができる。哺乳類細胞の場合、常用される有用なプロモーター、発現させる抗体遺伝子、その3'側下流にポリAシグナルを機能的に結合させて発現させることができる。例えばプロモーター/エンハンサーとしては、ヒトサイトメガロウイルス前期プロモーター/エンハンサー (human cytomegalovirus immediate early promoter/enhancer) を挙げることができる。

また、その他に本発明で使用される抗体発現に使用できるプロモーター/エンハンサーとして、レトロウイルス、ポリオーマウイルス、アデノウイルス、シミアンウイルス 40 (SV40) 等のウイルスプロモーター/エンハンサー、あるいはヒトエロンゲーションファクター1α (HEF1α) などの哺乳類細胞由来のプロモーター/エンハンサー等が挙げられる。

SV40 プロモーター/エンハンサーを使用する場合は Mulligan らの方法

30 (Nature (1979) 277, 108) により、また、HEF1 α プロモーター/エンハン
サーを使用する場合は Mizushima らの方法(Nucleic Acids Res. (1990) 18,

15

20

5322) により、容易に遺伝子発現を行うことができる。

大腸菌の場合、常用される有用なプロモーター、抗体分泌のためのシグナル配列および発現させる抗体遺伝子を機能的に結合させて当該遺伝子を発現させることができる。プロモーターとしては、例えば lacz プロモーター、araB プロモーターを挙げることができる。lacz プロモーターを使用する場合は Ward らの方法 (Nature (1098) 341, 544-546; FASEB J. (1992) 6, 2422-2427) により、あるいは araB プロモーターを使用する場合は Better らの方法 (Science (1988) 240, 1041-1043) により発現することができる。

抗体分泌のためのシグナル配列としては、大腸菌のペリプラズムに産生させる 10 場合、pelB シグナル配列(Lei, S. P. et al J. Bacteriol. (1987) 169, 4379)を 使用すればよい。そして、ペリプラズムに産生された抗体を分離した後、抗体の 構造を適切に組み直して (refold) 使用する。

複製起源としては、SV40、ポリオーマウイルス、アデノウイルス、ウシパピローマウイルス(BPV)等の由来のものを用いることができ、さらに、宿主細胞系で遺伝子コピー数増幅のため、発現ベクターは、選択マーカーとしてアミノグリコシドトランスフェラーゼ(APH)遺伝子、チミジンキナーゼ(TK)遺伝子、大腸菌キサンチングアニンホスホリボシルトランスフェラーゼ(Ecogpt)遺伝子、ジヒドロ葉酸還元酵素(dhfr)遺伝子等を含むことができる。

本発明で使用される抗体の製造のために、任意の発現系、例えば真核細胞また は原核細胞系を使用することができる。真核細胞としては、例えば樹立された哺 乳類細胞系、昆虫細胞系、真糸状菌細胞および酵母細胞などの動物細胞等が挙げ られ、原核細胞としては、例えば大腸菌細胞等の細菌細胞が挙げられる。

好ましくは、本発明で使用される抗体は、哺乳類細胞、例えば CHO、COS、ミエローマ、BHK、Vero、HeLa 細胞中で発現される。

25 次に、形質転換された宿主細胞を in vitro または in vivo で培養して目的とする抗体を産生させる。宿主細胞の培養は公知の方法に従い行う。例えば、培養液として、DMEM、MEM、RPMI1640、IMDM を使用することができ、牛胎児血清(FCS)等の血清補液を併用することもできる。

前記のように発現、産生された抗体は、細胞、宿主動物から分離し均一にまで 30 精製することができる。本発明で使用される抗体の分離、精製はアフィニティー カラムを用いて行うことができる。例えば、プロテイン A カラムを用いたカラ

ムとして、Hyper D、POROS、Sepharose F.F. (Pharmacia 製)等が挙げられる。その他、通常のタンパク質で使用されている分離、精製方法を使用すればよく、何ら限定されるものではない。例えば、上記アフィニティーカラム以外のクロマトグラフィーカラム、フィルター、限外濾過、塩析、透析等を適宜選択、組み合わせることにより、抗体を分離、精製することができる(Antibodies A Laboratory Manual. Ed Harlow, David Lane, Cold Spring Harbor Laboratory, 1988)。

本発明の癌関連遺伝子

5

10 本発明において同定された癌関連遺伝子の名称、発現が亢進している癌組織、 ならびにこれらの遺伝子の配列およびコードされるタンパク質の配列を示す配列 番号の一覧を表1に示す。

・ アミ/酸 号 配列番号	99	67				99		69	70		71	72		73	74		75	76	77	78	79	8	81,82	83	84	85	86	87	88	88	06	5
遺伝子 配列番号	2	3	4	2	9	7	<u>∞</u>	9	=	12	13	15	16	17	8	19	2	22	_	6	14	21	64,65	23	24	25	26	27	78	29	90	7
発現が亢進している癌種	肺癌、中分化型肝癌、膵癌	冒癌、大腸癌、肺癌、膵癌、大腸癌転移組織(肝臓)	、中分化型肝癌、大腸	大腸癌、大腸癌転移組織(肝臓)	膵瘾	胃癌、	,胃癌、大腸癌、	低分化型肝癌、肺癌	胃癌、低分化型肝癌、膵癌、大腸癌転移組織(肝臓)	中·低分化型肝癌、肺癌	胃癌、大腸癌、中分化型肝癌、肺癌、膵癌、大腸癌転移組織(肝臓)	肝癌	肝癌	胃癌、大腸癌、肝癌、肺癌	- 1	肺癌、膵	大腸癌、	大腸癌、		胃癌、大腸癌、肺癌、大腸癌転移組織(肝臓)	肝癌	大陽瘟、肺瘟	化型肝	、肺癌、大腸癌転移組織(肝臓)	胃癌、大腸癌、中分化型肝癌、肺癌、大腸癌転移組織(肝臓)	膵癌	大陽癌、肺癌、大腸癌転移組織(肝臓)	肺癌、	大腸癌、低分化	肺瘕、膵癌	肺瘕、膵癌	
Ref.ID	NM 080607																NM 032256		NM 032119	NM_033409	NM 020407	NM 012133			NM_003667		NM 004442	NM 024531		NM_018936		PEOC PO PAIN
GenBank	AA206763	AI393930	BE645480	AA447317	AI217375	AI217375	BG492359	BF825703	AL389981.1	BG285837	AI343467	BF057073	H66658	NM 018123.1	AI380207	AF339813.1	AL136855.1	AI694413	AF055084.1	AA903862	NM 020407.1	AB047847.1		BE670584	AL524520	AK026404.1	AF025304.1	AK021918.1	AI767756	NM_018936.1	AL050348	A 4000 A 114
遺伝子名	C20orf102	ASCL2	EST	EST	EST	OK/SW-CL30	DKFZp686L1533	EST	LOC93082	EST	FLJ11041	EST	EST	ASPM	Sp5	IMAGE:297403	DKFZp434K2435	CBRC7TM 249	MASS1/VLGR1	C20orf54	RHBG	COPG2	EST	EST	GPR49	MUC17	EphB2	FLJ11856/GPCR4	HS6ST2	PCDHB2	WFDC3	012
暴号	TEG1	TEG2	TEG3	TEG4	TEG5	TEG6	TEG7	TEG8	TEG9	TEG10	TEG11	TEG12	TEG13	TEG14	TEG15	TEG16	TEG17	TEG18	TEG19	TEG20	TEG21	TEG22	TEG23	TEG24	TEG25	TEG26	TEG27	TEG28	TEG29	TEG30	TEG31	0000

アミノ酸 配列番号	92	93	94	95	96	97	86	66	100	101	102	103	104	105	106	107	108	109	110	Ξ	112	113	114	115	116	117	118	119	120	121	122	123
遺伝子 配列番号	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50	21	52	53	54	55	56	57	58	59	09		62	63
発現が亢進している癌種	肺癌、大腸癌	胃癌、大腸癌、肺癌、大腸癌転移組織(肝臓)、膵癌	、肺癌、膵癌	麻酒	,	大陽癌、肺癌、	移組織(肝臓)、膵癌		肺癌、大腸癌転移組	大腸癌	肺癌、大	グリア芽細胞腫、	グリア芽細胞腫、		島、肺瘍	胃癌、大腸癌、肺癌、低分化型肝癌、膵癌	胃癌、大腸癌、中・低分化型肝癌、グリア芽腫、肺癌、膵癌	<u> 高、低分化型肝癌、大腸癌転移組織(肝臓)、膵</u>	胃癌、大陽癌、肺癌、膵癌	、胃癌、大腸	グリア芽腫、大	肺癌、大陽癌、大腸癌転移組織(肝臓)	、大腸癌、	胃癌、グリア芽	,	中	胃癌、大腸癌、肝癌、膵癌	肺癌、肝芽腫	肺癌、膵癌	. 1		肝癌、肺癌、膵癌
Ref.ID	NM 002644	NM 004289	NM 004909				NM 014799	NM 014730	NM 014861	NM_002402		NM 017770	NM 133631	NM 018116	NM 001898	NM 138463	NM 019051	NM 052963	NM 022145	NM 001793	NM 003872	NM 001306	NM_001305	NM_003014	NM 024083	NM 007003	NM 012484	NM 015068	NM 002571	NM 032654	NM 001395	
GenBank	NM 002644.1	NM 004289.3		NM 007028	AB037780	NM 006398	NM 014799.1	BC000371.1	NM 014861.1	NM 002402.1	AB033025.1	BF508639	BF059159	BC002535.1	NM 001898.1	BE328850	BG028213	AW592604	BC005400.1	NM 001793.1	77706N	BE791251	NM 001305.1	AW089415	NM 024083.1	NM 007003.1	NM 012485.1	BE858180	NM 002571.1	BC004397.1	NM 001395.1	AB029012.1
遺伝子名	PIGR	NFE2L3	TRAG3	TRIM31	KIAA1359	ubiauitinD	Hephaestin	KIAA0152	KIAA0703	MEST/PEG1	KIAA1199	ELOVL2	ROB01	FLJ10504/misato	cvstatin SN	LOC116238	MRPL50	TOP1MT	FKSG14	CDH3	NRP2	CLDN3	CLDN4	SFRP4	ASPSCR1	GAGEC1	RHAMM	PEG10	PAEP	MGC10981	DUSP9	EST1B
番	TEG33	TEG34	TEG35	TEG36	TEG37	TEG38	TEG39	TEG40	TEG41	TEG42	TEG43	TEG44	TEG45	TEG46	TEG47	TEG48	TEG49	TEG50	TEG51	TEG52	TEG53	TEG54	TEG55	TEG56	TEG57	TEG58	TEG59	TEG60	TEG61	TEG62	TEG63	TEG64

TEG1(配列番号2;配列番号66)は、C20orf102をコードする。この遺伝子のGenBank受託番号はAA206763(参照配列NM_080607)である。この遺伝子は、肺癌、中分化型肝癌、膵癌で発現が亢進していることが見いだされた。この遺伝子の発現が癌と関連していることは知られていない。

5 TEG2(配列番号3;配列番号67)は、EST(ASCL2)をコードする。この 遺伝子のGenBank受託番号はAI393930である。この遺伝子は、胃癌、大 腸癌、肺癌、膵癌、大腸癌転移組織(肝臓)で発現が亢進していることが見いだ された。この遺伝子の発現が癌と関連していることは知られていない。

TEG3 (配列番号4) は、EST(EPST1isoform)をコードする。この遺伝子

10 のGenBank受託番号はBE645480である。この遺伝子は、胃癌、中分化
型肝癌、大腸癌、肺癌、膵癌、大腸癌転移組織(肝臓)で発現が亢進していることが見いだされた。この遺伝子の発現が癌と関連していることは知られていない。

TEG4 (配列番号5) は、ESTをコードする。この遺伝子のGenBank受託番号はAA447317である。この遺伝子は、胃癌、大腸癌、大腸癌転移組

15 織(肝臓)で発現が亢進していることが見いだされた。この遺伝子の発現が癌と 関連していることは知られていない。

TEG5(配列番号6)は、ESTをコードする。この遺伝子のGenBank受託番号はAI217375である。この遺伝子は、胃癌、膵癌で発現が亢進していることが見いだされた。この遺伝子の発現が癌と関連していることは知られていない。

TEG6(配列番号7;配列番号68)は、OK/SW-CL30をコードする。この遺伝子のGenBank受託番号はAI217375である。この遺伝子は、肺癌、胃癌、大腸癌、中分化型肝癌、で発現が亢進していることが見いだされた。この遺伝子の発現が癌と関連していることは知られていない。

25 TEG7(配列番号8)は、DKFZp686L1533をコードする。この遺伝子のGenBank受託番号はBG492359である。この遺伝子は、肺癌、胃癌、大腸癌、中・低分化型肝癌、大腸癌転移組織(肝臓)で発現が亢進していることが見いだされた。この遺伝子の発現が癌と関連していることは知られていない。

TEG8 (配列番号10;配列番号69) は、EST(Gene#30) をコードする。
30 この遺伝子によりコードされるタンパク質は膜タンパク質である。この遺伝子の
GenBank受託番号はBF825703である。この遺伝子は、胃癌、低分化型

15

20

肝癌、肺癌で発現が亢進していることが見いだされた。この遺伝子の発現が癌と 関連していることは知られていない。

TEG9(配列番号11;配列番号70)は、BC012317をコードする。この遺伝子のGenBank受託番号はAL389981.1である。この遺伝子は、胃癌、低分化型肝癌、膵癌、大腸癌転移組織(肝臓)で発現が亢進していることが見いだされた。この遺伝子の発現が癌と関連していることは知られていない。

TEG10(配列番号12)は、EST242881をコードする。この遺伝子のGenBank受託番号はBG285837である。この遺伝子は、胃癌、中・低分化型肝癌、肺癌で発現が亢進していることが見いだされた。この遺伝子の発現が癌と関連していることは知られていない。

TEG11(配列番号13;配列番号71)は、FLJ11041をコードする。この遺伝子のGenBank受託番号はAI343467である。この遺伝子は、胃癌、大腸癌、中分化型肝癌、肺癌、膵癌、大腸癌転移組織(肝臓)で発現が亢進していることが見いだされた。この遺伝子の発現が癌と関連していることは知られていない。

TEG12(配列番号15;配列番号72)は、ESTをコードする。この遺伝子のGenBank受託番号はBF057073である。後述の実施例に記載されるように、本発明においてこの遺伝子の全長配列が明らかになった。この遺伝子は、肝癌で発現が亢進していることが見いだされた。この遺伝子の発現が癌と関連していることは知られていない。

TEG13(配列番号16)は、ESTをコードする。この遺伝子のGenBank受託番号はH66658である。この遺伝子は、肝癌で発現が亢進していることが見いだされた。この遺伝子の発現が癌と関連していることは知られていない。

25 TEG14(配列番号17;配列番号73)は、ASPMをコードする。この 遺伝子のGenBank受託番号はNM_018123.1である。この遺伝子は、胃癌、 大腸癌、肝癌、肺癌で発現が亢進していることが見いだされた。この遺伝子の発 現が癌と関連していることは知られていない。

TEG15 (配列番号18; 配列番号74) は、Sp5 をコードする。この遺 30 伝子のGenBank受託番号はAI380207である。この遺伝子は、胃癌、大腸 癌、肝癌、肺癌で発現が亢進していることが見いだされた。この遺伝子の発現が

15

20

25

30

癌と関連していることは知られていない。

TEG16(配列番号19)は、IMAGE:297403をコードする。この遺伝子のGenBank受託番号は AF339813.1 である。この遺伝子は、肝癌、肺癌、膵癌、大腸癌転移組織(肝臓)で発現が亢進していることが見いだされた。この遺伝子の発現が癌と関連していることは知られていない。

TEG17(配列番号20;配列番号75)は、DKFZp434k2435をコードする。この遺伝子によりコードされるタンパク質は膜タンパク質である。この遺伝子のGenBank受託番号はAL136855.1(参照配列 NM_032256)である。この遺伝子は、胃癌、大腸癌、肺癌、膵癌で発現が亢進していることが見いだされた。この遺伝子の発現が癌と関連していることは知られていない。

TEG18(配列番号22;配列番号76)は、CBRC7TM_249をコードする。この遺伝子によりコードされるタンパク質は膜タンパク質である。この遺伝子のGenBank受託番号はAI694413である。この遺伝子は、胃癌、大腸癌、中・低分化型肝癌、膵癌、大腸癌転移組織(肝臓)で発現が亢進していることが見いだされた。この遺伝子の発現が癌と関連していることは知られていない。

TEG19(配列番号1;配列番号77)は、VLGR1をコードする。この遺伝子によりコードされるタンパク質は膜タンパク質である。この遺伝子のGenBank受託番号はAF055084.1(参照配列NM_032119)である。この遺伝子は、肺癌、膵癌で発現が亢進していることが見いだされた。この遺伝子の発現が癌と関連していることは知られていない。

TEG20(配列番号9;配列番号78)は、C20orf54をコードする。この遺伝子によりコードされるタンパク質は膜タンパク質である。この遺伝子のGenBank受託番号はAA903862(参照配列NM_033409)である。この遺伝子は、胃癌、大腸癌、肺癌、大腸癌転移組織(肝臓)で発現が亢進していることが見いだされた。この遺伝子の発現が癌と関連していることは知られていない。

TEG21(配列番号14;配列番号79)は、RHBGをコードする。この遺伝子によりコードされるタンパク質は膜タンパク質である。この遺伝子のGenBank受託番号はNM_020407.1(参照配列NM_020407)である。この遺伝子は、肝癌で発現が亢進していることが見いだされた。この遺伝子の発現が癌と関連していることは知られていない。

TEG22 (配列番号21;配列番号80)は、COPG2をコードする。この

15

25

遺伝子のGenBank受託番号はAB047847.1(参照配列NM_012133)である。この遺伝子は、大腸癌、肺癌で発現が亢進していることが見いだされた。この遺伝子の発現が癌と関連していることは知られていない。

TEG23 (配列番号64、65;配列番号81、82) は、ESTをコードする。この遺伝子のGenBank受託番号はAL039884である。後述の実施例に記載されるように、本発明において、この遺伝子の全長配列が明らかになった。この遺伝子は、低分化型肝癌、肺癌で発現が亢進していることが見いだされた。この遺伝子の発現が癌と関連していることは知られていない。

TEG24(配列番号23;配列番号83)は、BE670584をコードする。

10 この遺伝子のGenBank受託番号はBE670584である。この遺伝子は、胃癌、肺癌、大腸癌転移組織(肝臓)で発現が亢進していることが見いだされた。この遺伝子の発現が癌と関連していることは知られていない。

TEG25 (配列番号24;配列番号84)は、GRP49をコードする。この遺伝子によりコードされるタンパク質は膜タンパク質である。この遺伝子のGenBank受託番号はAL524520 (参照配列NM_003667)である。この遺伝子は、胃癌、大腸癌、中分化型肝癌、肺癌、大腸癌転移組織(肝臓)で発現が亢進していることが見いだされた。この遺伝子の発現が癌と関連していることは知られていない。

TEG26(配列番号25;配列番号85)は、MUC17をコードする。この 20 遺伝子によりコードされるタンパク質は膜タンパク質である。この遺伝子のGe nBank受託番号はAK026404.1である。この遺伝子は、胃癌、膵癌で発現 が亢進していることが見いだされた。この遺伝子の発現が胃癌と関連していることは知られていない。

TEG27(配列番号26;配列番号86)は、EPHB2をコードする。この遺伝子によりコードされるタンパク質は膜タンパク質である。この遺伝子のGenBank受託番号はAF025304.1(参照配列NM_004442)である。この遺伝子は、胃癌、大腸癌、肺癌、大腸癌転移組織(肝臓)で発現が亢進していることが見いだされた。この遺伝子の発現が大腸癌と関連していることは知られていない。

30 TEG28 (配列番号27; 配列番号87) は、GPCR41 (FLJ11856) をコードする。この遺伝子によりコードされるタンパク質は膜タンパク質である。こ

の遺伝子のGenBank受託番号はAK021918.1 (参照配列NM_024531)である。この遺伝子は、胃癌、大腸癌、肺癌、大腸癌転移組織(肝臓)、膵癌で発現が亢進していることが見いだされた。この遺伝子の発現が胃癌と関連していることは知られていない。

- 5 TEG29(配列番号28;配列番号88)は、HS6ST2をコードする。この遺伝子によりコードされるタンパク質は膜タンパク質である。この遺伝子のGenBank受託番号はAI767756である。この遺伝子は、肺癌、大腸癌、低分化型肝癌、膵癌で発現が亢進していることが見いだされた。この遺伝子の発現が肺癌と関連していることは知られていない。
- TEG30(配列番号29;配列番号89)は、PCDHB2をコードする。この遺伝子によりコードされるタンパク質は膜タンパク質である。この遺伝子のGenBank受託番号はNM_018936.1(参照配列NM_018936)である。この遺伝子は、肺癌、膵癌で発現が亢進していることが見いだされた。この遺伝子の発現が肺癌と関連していることは知られていない。
- 15 TEG31(配列番号30;配列番号90)は、WFDC3(C20orf167)をコードする。この遺伝子のGenBank受託番号はAL050348である。この遺伝子は、肺癌、膵癌で発現が亢進していることが見いだされた。この遺伝子の発現が肺癌と関連していることは知られていない。
- TEG32(配列番号31;配列番号91)は、C20orf42をコードする。この遺伝子のGenBank受託番号はNM_017671.1(参照配列NM_017671)である。この遺伝子は、肺癌、胃癌、大腸癌、大腸癌転移組織(肝臓)で発現が亢進していることが見いだされた。この遺伝子の発現が肺癌と関連していることは知られていない。
- TEG33(配列番号32;配列番号92)は、PIGRをコードする。この遺 25 伝子によりコードされるタンパク質は膜タンパク質である。この遺伝子のGen Bank受託番号はNM_002644.1(参照配列NM_002644)である。この遺伝 子は、肺癌、大腸癌で発現が亢進していることが見いだされた。この遺伝子の発 現が肺癌と関連していることは知られていない。
- TEG34(配列番号33;配列番号93)は、2FE2L3をコードする。この 30 遺伝子のGenBank受託番号はNM_004289.3(参照配列NM_004289)で ある。この遺伝子は、胃癌、大腸癌、肺癌、大腸癌転移組織(肝臓)、膵癌で発

10

20

30

現が亢進していることが見いだされた。この遺伝子の発現が胃癌と関連していることは知られていない。

TEG35 (配列番号34;配列番号94) は、TRAG3をコードする。この遺伝子のGenBank受託番号はNM_004909.1 (参照配列NM_004909) である。この遺伝子は、胃癌、肺癌、膵癌で発現が亢進していることが見いだされた。この遺伝子の発現が胃癌と関連していることは知られていない。

TEG36(配列番号35;配列番号95)は、TRIM31をコードする。この遺伝子のGenBank受託番号はNM_007028である。この遺伝子は、胃癌、膵癌、肺癌で発現が亢進していることが見いだされた。この遺伝子の発現が胃癌と関連していることは知られていない。

TEG37(配列番号36;配列番号96)は、KIAA1359をコードする。 この遺伝子のGenBank受託番号はAB037780である。この遺伝子は、胃 癌、肺癌、大腸癌、膵癌、大腸癌転移組織(肝臓)で発現が亢進していることが 見いだされた。この遺伝子の発現が胃癌と関連していることは知られていない。

TEG38(配列番号37;配列番号97)は、ubiqutinDをコードする。この遺伝子のGenBank受託番号はNM_006398である。この遺伝子は、胃癌、大腸癌、肺癌、中・低分化型肝癌、肺癌、膵癌で発現が亢進していることが見いだされた。この遺伝子の発現が胃癌と関連していることは知られていない。

TEG39 (配列番号38;配列番号98) は、Hephaestinをコードする。この遺伝子によりコードされるタンパク質は膜タンパク質である。この遺伝子のGenBank受託番号はNM_014799.1 (参照配列NM_014799) である。この遺伝子は、胃癌、大腸癌転移組織(肝臓)、膵癌で発現が亢進していることが見いだされた。この遺伝子の発現が胃癌と関連していることは知られていない。

TEG40 (配列番号39;配列番号99) は、KIAA0152をコードする。

25 この遺伝子によりコードされるタンパク質は膜タンパク質である。この遺伝子の GenBank受託番号はBC000371.1(参照配列NM_014730)である。この 遺伝子は、胃癌、大腸癌、グリア芽腫、肺癌で発現が亢進していることが見いだ された。この遺伝子の発現が胃癌と関連していることは知られていない。

TEG41 (配列番号40;配列番号100) は、KIAA0703 をコードする。 この遺伝子によりコードされるタンパク質は膜タンパク質である。この遺伝子の GenBank受託番号はNM_014861.1 (参照配列NM_014861) である。こ

の遺伝子は、胃癌、肺癌、大腸癌転移組織(肝臓)で発現が亢進していることが見いだされた。この遺伝子の発現が胃癌と関連していることは知られていない。

TEG42 (配列番号41;配列番号101) は、MEST/PEG1をコードする。この遺伝子のGenBank受託番号はNM_002402.1 (参照配列

5 NM_002402)である。この遺伝子は、胃癌、大腸癌、肺癌で発現が亢進していることが見いだされた。この遺伝子の発現が胃癌と関連していることは知られていない。

TEG43 (配列番号42;配列番号102) は、KIAA1199 をコードする。 この遺伝子のGenBank受託番号はAB033025.1 である。この遺伝子は、

10 胃癌、肺癌、大腸癌、膵癌で発現が亢進していることが見いだされた。この遺伝 子の発現が胃癌と関連していることは知られていない。

TEG44(配列番号43;配列番号103)は、ELOVL2をコードする。 この遺伝子のGenBank受託番号はBF508639(参照配列NM_017770)である。この遺伝子は、肝癌、グリア芽細胞腫、肺癌で発現が亢進していることが見いだされた。

TEG45(配列番号44;配列番号104)は、ROBO1をコードする。この遺伝子によりコードされるタンパク質は膜タンパク質である。この遺伝子のGenBank受託番号はBF059159(参照配列NM_133631)である。この遺伝子は、肝癌、グリア芽細胞腫、肺癌で発現が亢進していることが見いだされた。

- 20 TEG46(配列番号45;配列番号105)は、FLJ10504MISATOをコードする。この遺伝子のGenBank受託番号はBC002535.1(参照配列NM_018116)である。この遺伝子は、肝癌、肺癌、膵癌で発現が亢進していることが見いだされた。この遺伝子の発現が肝癌と関連していることは知られていない。
- 25 TEG47(配列番号46;配列番号106)は、cystatinSN をコードする。この遺伝子のGenBank受託番号はNM_001898.1(参照配列NM_001898)である。この遺伝子は、大腸癌、肺癌で発現が亢進していることが見いだされた。この遺伝子の発現が大腸癌と関連していることは知られていない。
- 30 TEG48 (配列番号47;配列番号107) は、LOC116238 をコードする。 この遺伝子のGenBank受託番号はBE328850 (参照配列 NM_138463) で

10

15

20

ある。この遺伝子は、胃癌、大腸癌、肺癌、低分化型肝癌、膵癌で発現が亢進していることが見いだされた。

TEG49(配列番号48;配列番号108)は、MRPL50をコードする。 この遺伝子のGenBank受託番号はBG028213(参照配列NM_019051)である。この遺伝子は、胃癌、大腸癌、中・低分化型肝癌、グリア芽腫、肺癌、膵癌で発現が亢進していることが見いだされた。

TEG50(配列番号49;配列番号109)は、TOP1mtをコードする。この遺伝子のGenBank受託番号はAW592604(参照配列NM_052963)である。この遺伝子は、大腸癌、低分化型肝癌、大腸癌転移組織(肝臓)、膵癌で発現が亢進していることが見いだされた。この遺伝子の発現が大腸癌と関連していることは知られていない。

TEG51(配列番号50;配列番号110)は、FKSG14をコードする。 この遺伝子のGenBank受託番号はBC005400.1(参照配列NM_022145) である。この遺伝子は、胃癌、大腸癌、肺癌、膵癌で発現が亢進していることが 見いだされた。この遺伝子の発現が大腸癌と関連していることは知られていない。

TEG52(配列番号51;配列番号111)は、CDH3をコードする。この遺伝子によりコードされるタンパク質は膜タンパク質である。この遺伝子のGenBank受託番号はNM_001793.1(参照配列NM_001793)である。この遺伝子は、肺癌、胃癌、大腸癌、膵癌で発現が亢進していることが見いだされた。

TEG53 (配列番号52;配列番号112) は、NRP2をコードする。この遺伝子によりコードされるタンパク質は膜タンパク質である。この遺伝子のGenBank受託番号はN90777 (参照配列 NM_003872) である。この遺伝子は、肺癌、グリア芽腫、大腸癌転移組織(肝臓)、膵癌で発現が亢進していることが見いだされた。

25 TEG54(配列番号53;配列番号113)は、CLDN3をコードする。この遺伝子によりコードされるタンパク質は膜タンパク質である。この遺伝子のGenBank受託番号はBE791251(参照配列NM_001306)である。この遺伝子は、胃癌、肺癌、大腸癌、大腸癌転移組織(肝臓)で発現が亢進していることが見いだされた。この遺伝子の発現が胃癌と関連していることは知られていない。

30 TEG55 (配列番号54;配列番号114) は、CLDN4をコードする。この遺伝子によりコードされるタンパク質は膜タンパク質である。この遺伝子のG

25

enBank受託番号はNM_001305.1 (参照配列NM_001305) である。この遺伝子は、胃癌、肺癌、大腸癌、大腸癌転移組織(肝臓)、膵癌で発現が亢進していることが見いだされた。この遺伝子の発現が胃癌と関連していることは知られていない。

- 5 TEG56(配列番号55;配列番号115)は、sfrp4をコードする。この 遺伝子のGenBank受託番号はAW089415(参照配列NM_003014)である。この遺伝子は、肺癌、胃癌、グリア芽腫、膵癌で発現が亢進していることが 見いだされた。この遺伝子の発現が胃癌と関連していることは知られていない。 TEG57(配列番号56;配列番号116)は、ASPSCR1をコードする。
- 10 この遺伝子のGenBank受託番号はNM_024083.1 (参照配列 NM_024083) である。この遺伝子は、肝癌、肺癌で発現が亢進していることが 見いだされた。この遺伝子の発現が肝癌と関連していることは知られていない。 TEG58 (配列番号57;配列番号117) は、GAGEC1をコードする。 この遺伝子のGenBank受託番号はNM_007003.1 (参照配列
- 15 NM_007003) である。この遺伝子は、肝癌で発現が亢進していることが見いだされた。この遺伝子の発現が肝癌と関連していることは知られていない。 TEG59 (配列番号58;配列番号118) は、RHAMM をコードする。

この遺伝子によりコードされるタンパク質は膜タンパク質である。この遺伝子のGenBank受託番号はNM_012485.1(参照配列NM_012484)である。この遺伝子は、胃癌、大腸癌、肝癌、膵癌で発現が亢進していることが見いだされた。この遺伝子の発現が肝癌と関連していることは知られていない。

TEG60 (配列番号59;配列番号119) は、PEG10をコードする。この遺伝子のGenBank受託番号はBE858180 (参照配列 NM_015068) である。この遺伝子は、肝癌、肺癌、肝芽腫で発現が亢進していることが見いだされた。

TEG61 (配列番号60;配列番号120) は、PAEP をコードする。この遺伝子のGenBank受託番号はNM_002571.1 (参照配列NM_002571) である。この遺伝子は、肺癌、膵癌で発現が亢進していることが見いだされた。

TEG62(配列番号61;配列番号121)は、MGC10981をコードする。 30 この遺伝子のGenBank受託番号はBC004397.1(参照配列NM_032654) である。この遺伝子は、肺癌、膵癌で発現が亢進していることが見いだされた。 TEG63 (配列番号62;配列番号122) は、DUSP9 をコードする。この遺伝子のGenBank受託番号はNM_001395.1 (参照配列 NM_001395) である。この遺伝子は、肝癌で発現が亢進していることが見いだされた。

TEG64(配列番号63;配列番号123)は、KIAA1089 をコードする。 5 この遺伝子のGenBank受託番号はAB029012.1である。この遺伝子は、 肝癌、肺癌、膵癌で発現が亢進していることが見いだされた。

本明細書において明示的に引用される全ての特許および参考文献の内容は全て本明細書の一部としてここに引用する。また、本出願が有する優先権主張の基礎 10 となる出願である日本特許出願2003-290704号の明細書および図面に 記載の内容は全て本明細書の一部としてここに引用する。

実施例

以下に実施例により本発明をより詳細に説明するが、これらの実施例は本発明 15 の範囲を制限するものではない。

実施例1

30

ヒト癌組織において発現が亢進する遺伝子の同定

ヒトの各種癌組織(肺腺癌、胃癌、大腸癌、肝細胞癌、脳腫瘍)において正常 20 組織に比べ発現が亢進する遺伝子の同定を行うために、ヒト各種癌摘出組織にお ける mRNA の発現解析を GeneChip (Gene Chip™ HG-133A,B Target; Affymetryx 社製)を用いて実施した。

1.1. ヒト肺腺癌において発現が亢進する遺伝子の同定

ヒト肺腺癌においてヒト正常肺組織に比べ発現が亢進する遺伝子を同定するた 25 めに、下記のようにして mRNA の発現解析を実施した。

すなわち、初めに各種分化度・ステージを含む 12 例の肺腺癌摘出組織の癌部位、および 1 例の正常肺より、ISOGEN(日本ジーン社)を用いて添付の方法に従い全 RNA を調製した。続いて、肺腺癌ならびに正常肺における mRNA の発現を Gene Chip TM HG・U133A,B(Affymetryx 社製)を用いて解析した。すなわち、癌部位に関しては 12 例分より調製した全 RNA をそれぞれ等量ずつ混合したもの 5μg を、また対照として 1 例の正常肺より調製した全 RNA 5μg を試

20

料として用い、Expression Analysis Technical Manual (Affymetryx 社) に準じて遺伝子発現解析を行った。それぞれの解析における全遺伝子の発現スコアの平均値を 100 とし、各遺伝子の発現量は相対値とした。

1.2. ヒト胃癌において発現が亢進する遺伝子の同定

5 ヒト胃癌においてヒト正常胃組織に比べ発現が亢進する遺伝子を同定するために、上記と同様の方法により mRNA の発現解析を実施した。

すなわち、3 例の胃癌摘出組織、および1 例の正常胃より上記と同様に全RNA を調製し、癌部位に関しては3 例分の全RNA をそれぞれ等量ずつ混合したもの $5\mu g$ を、また対照として1 例分の正常胃より調製した $5\mu g$ の全RNA を試料として用い、GeneChipTM HG-U133A,B(Affymetryx 社製)を用いてmRNA の発現を解析した。それぞれの解析における全遺伝子の発現スコアの平均値を 100 とし、各遺伝子の発現量は相対値とした。

1.3. ヒト大腸癌において発現が亢進する遺伝子の同定

ヒト大腸癌においてヒト正常大腸組織に比べ発現が亢進する遺伝子の同定を上 15 記と同様に実施した。

すなわち、3 例の大腸癌摘出組織の癌部位および 1 例の正常大腸組織より上記と同様に全 RNA を調製し、癌部位に関しては 3 例分の全 RNA をそれぞれ等量ずつ混合したもの $5\mu g$ を、また対照として 1 例分の正常胃より調製した $5\mu g$ の全 RNA を試料として用い、GeneChipTM HG-U133A,B(Affymetryx 社製)を用いて mRNA の発現を解析した。それぞれの解析における全遺伝子の発現スコアの平均値を 100 とし、各遺伝子の発現量は相対値とした。

1.4. ヒト肝細胞癌において発現が亢進する遺伝子の同定

ヒト肝細胞癌においてヒト正常肝臓に比べ発現が亢進する遺伝子の同定を上記 と同様に実施した。

 すなわち、3 例の C 型肝炎ウイルス感染型の中分化型肝細胞癌、3 例の C 型 肝炎ウイルス感染型の低分化型肝細胞癌部位および 1 例の正常肝臓組織より上 記と同様に全 RNA を調製し、各種分化度の異なる癌部位に関しては各 3 例分の 全 RNA を等量ずつ混合したもの 5μg を、また対照として 1 例分の正常肝臓よ り調製した 5μg の全 RNA を試料として用い、GeneChip™ HG-U133A,B
 (Affymetryx 社製) を用いて mRNA の発現を解析した。それぞれの解析にお

ける全遺伝子の発現スコアの平均値を 100 とし、各遺伝子の発現量は相対値と

した。

1.5. ヒトグリア芽腫において発現が亢進する遺伝子の同定

ヒトグリア芽腫においてヒト正常脳組織に比べ発現が亢進する遺伝子の同定を 上記と同様に実施した。

すなわち、5 例のグリア芽腫摘出組織の癌部位および1 例の正常脳組織より上記と同様に全 RNA を調製し、癌部位に関しては5 例分の全 RNA をそれぞれ等量ずつ混合したもの $5\mu g$ を、また対照として1 例分の正常脳組織より調製した $5\mu g$ の全 RNA を試料として用い、GeneChipTM HG-U133A,B(Affymetryx 社製)を用いて mRNA の発現を解析した。それぞれの解析における全遺伝子の発現スコアの平均値を 100 とし、各遺伝子の発現量は相対値とした。

以上の解析の結果、表2に示す遺伝子がそれぞれ対応する正常組織に比べmRNAの発現が亢進していることが明らかとなった。

.

							Gene	Gene chip解析結果	上 经				
梅	分	発現が亢進している癌 種	握	電機	800	調	大鵬	大陽癌	五二二二二二二二二二二二二二二二二二二二二二二二二二二二二二二二二二二二二二二	中分化	南分代 對 新	溫	グリア
,011	000	は 十八八世 田田	; ;	000	900	100	0 30	701	- 1	4070	47位	9344	₩ K S
֓֞֝֟֝֝֝֟֝֝֟֝֟֝֝֟֝֝֟֝֟֟֟֝֝֟֟֝֓֓֓֓֓֓֓֟֟֝֟֝֓֓֟֟֝֓֓֓֟֟֝ ֓֓֓֓֓֞֓֞֓֓֓֓֞֓֓֓	CZUOTIUZ	言格、十分に半年を開発した。	26	0.62	30.0	408.0	70.4	730.0	10.	704	21.9	3 6	10.7
7001	ASCL	五台、 个 容包 田市 子久七世日市	- 60	277	3	440.0	1100	107.6	170.0	916	1644	52.0	0 98
3		正名、ナンじ9年記	3 2	7,40	26.1	44100	505	0.70	5 6	200	195	21.0	2.5
-EG4			30.9	73.1	41.4	7./	32.3	100.0	71	20.5	12.3	31.5	-
TEG5	EST	冒額	79.7	82	58.7	248.2	73.9	63.5	11.3	59.7	96.9	4	87.2
TEG6	OK/SW-CL_30	肺癌、胃癌、大腸癌、 中分化型肝癌	84.1	118.9	55.6	537.1	98.5	734.1	157.7	1781.4	160.8	78.7	106
TEG7	DKFZp686L1533	肺癌、胃癌、大腸癌、 中·低分化型肝癌	79.2	173.3	.14.6	588.5	89.2	750.3	22.7	158	309.6	15.5	87.1
TEG8	EST	胃癌、低分化型肝癌	59.1	50.8	37.5	260.7	36.3	22.7	58.7	26.8	120	68.7	17.4
TEG9	LOC93082	胃癌、低分化型肝癌	107.3	34.5	14.5	1030.1	89.2	21.9	130	155.6	448.1	18.5	105.4
TEG10	EST	胃癌、中·低分化型肝	38.1	37.8	32.8	385.8	20.3	20.5	28.2	103.9	356.5	60.2	63.5
TEG11	FLJ11041	胃癌、大腸癌、中分化型肝癌	607.1	481.8	16.9	261.5	19.2	522.1	97.9	128.1	56.2	43.2	49.2
TEG12	EST	田衛	809	65.2	91	38.6	44.5	62.2	16.2	194.3	527	66.2	47.7
TEG13		开绕	38	10.3	35.5	17	16.3	4.6	26.1	493.7	177.7	4.6	14.7
TEG14		胃癌、大腸癌、肝癌	1.3	45.1	3.8	107.3	18.2	93.6	3.6	111.3	246.1	1.5	83.8
TEG15		胃癌、大腸癌、肝癌	8	15.8	57.9	219.2	14.5	270.1	11.2	288.7	219.2	12	6.8
TEG16	IMAG	田衛	5.7	12.7	22	11.5	20.2	17.8	34.4	273.1	159.7	16.2	8.99
TEG17	DKFZp434K2435	胃癌、大腸癌	11.1	5.9	16.1	183.1	16.6	98.1	8.4	17.3	9.5	14.5	18.8
TEG18	CBRC7TM_249	胃癌、大腸癌、中・低分化型肝癌	13.6	86.6	45	240.4	19.6	175.4	158.8	699	949	13.5	47.9
TEG19	MASS1/VLGR1	쏗	23.6	254.4	17.1	5.3	18	4.3	133.6	77.4	21.2	21.8	111.8
TEG20	C20arf54	胃癌、大腸癌、肺癌	21.7	9.69	22.8	261.1	22.4	50.5	8.4	8.2	24.4	9.9	15.5
TEG21		肝癌	8.7	13.4	1.61	5.4	15.6	8.6	17.4	792.6	57.1	15.5	9.3
TEG22		大陽癌	11	6.99	83.1	47.5	21.7	178.4	52.8	8.7	22.6	40.9	78.7
TEG23	EST	低分化型肝癌	35.1	81.2	2	21.1	28	15.9	9.3	33.7	539.9	22.9	42.2
TEG24	EST	胃癌	28.9	19.4	35.6	197.1	44.8	1.08	5.2	15.5	31.1	57.6	58.8
TEG25	GPR49	胃癌、大腸癌、中分化 型肝癌	23.9	15.8	24.3	538.3	41.6	135.3	16.7	233.8	78.8	33.5	11.2
TEG26	MUC17	司衙	73.4	59.1	89.4	565.2	113.3	102.8	34.7	9.79	113.8	100	56.3
TEG27	EphB2	胃癌、大腸癌	23.2	47.5	6.8	218.7	62.8	189.4	9.9	55.1	13.6	28.7	49
TEG28	FLJ11856/GPCR 41	胃癌、大腸癌	22.2	35.2	9.1	229.5	63.8	197.5	2.7	5.1	67.3	4.4	78.3
TEG29	HS6ST2	肺癌、大腸癌、低分化 型肝癌	20.8	472.6	3.6	2.3	37.2	164.9	4.5	6.5	191.4	104	.69
TEG30	PCDHB2	肺癌	11.9	228.5	55.2	37.7	32.2	58.9	14.4	13.4	27.7	80.4	78
TEG31		肺癌	30.1	304.2	110.6	28.7	32.2	27.8	46.4	29.9	30.4	28.7	28.9
TEG32	2	肺癌、胃癌、大腸癌	11.6	43.8	127.7	365.4	175.8	535.2	7	17.3	4	23.5	15.4
TEG33	PIGR	計 極	63.2	382.6	129.9	149.3	520.1	423.7	102.3	101.8	96	65.2	1

		1					Gene	Gene chip解析結果	f結果				
神	格格	発現が元進している格・種	握	計	BIC	爾爾	大腦	大腸癌	出票	中分化型肝癌	低分化型肝癌	溋	グリア 芽腫
TEG34	NFE2L3	胃癌、大陽癌	37	62.4	55.2	144.9	22	216.8	27.4		37.3	13.7	27.8
TEG35	TRAG3	姆	1.8	1.7	1.9	74.4	1.2	1.3	1.7	1.6	1.4	1.4	1.9
TEG36	TRIM31	冒絕	16.9	13.2	14.6	155.2	67.3	52.7	21	41.4	31	4.6	26.8
TEG37	KIAA1359	胃癌、肺癌、大腸癌	22.8	190.3	7.5	521.1	196.8	196.7	37.9	5.7	9.1	3.5	40.6
TEG38	ubiquitinD	胃癌、大腸癌、肺癌、 中·低分化型肝癌	89.7	311.5	44.2	1172.8	60.1	605.7	269.2	1460.9	2542.8	42.1	69
TEG39	Hephaestin	調	97.6	97.3	75.8	341.5	568.8	419.1	34.6	50.6	27	126.1	91.6
TEG40		胃癌、大腸癌、グリア 芽腫	32.5	82.1	.36.2	214.9	58.2	233.5	25.1	45.8	94	22.6	109.4
TEG41	KIAA0703	三海	84.6	46.3	20.1	214.3	195.3	77.4	13.1	3.5	4.7	24.9	5.9
TEG42	MEST/PEG1	胃癌、大腸癌	235.9	406.2	97.6	524.3	178.4	640.8	423	248.4	455.9	207.2	771.4
TEG43	Γ	胃癌、肺癌、大腸癌	53.6	162.4	26.2	2.08	58.9	185	68.5	63.5	44.3	89.1	69.4
TEG44		肝癌、グリア芽細胞腫	10.1	9.0	2.8	3	15.5	1.9	68.8	224.9	233.5	76.5	121.2
TEG45	R0801	肝癌、グリア芽細胞腫	58.5	49.1	32.4	38	21.4	123.2	9.1	236.4	563	64.3	152.3
+	FLJ10504/misato		53.8	38.8	6.5	49.5	5.6	21.5	5.1	105.2	106.8	27.4	41.6
TEG47	cystatin SN		2.7	53.6	4.4	98.1	9.4	804.5	6.1	27.6	24.1	15.5	2.3
LEG48		胃癌、大腸癌、肺癌、 低分化型肝癌	6.9	159.3	45.6	122.8	10.1	136.9	43.3	63.2	220.2	8	60.5
rEG49	MRPL50	胃癌、大腸癌、中・低 分化型肝癌、グリア学	77.8	86.1	98.1	191.2	43.8	256.5	72	155.3	200.8	47.7	100
TEG50	TOP1MT	大陽傷、低分化型肝癌	16.5	30.8	19.1	49.7	31.3	206.4	24.9	31.9	306.2	25.5	19
TEG51	FKSG14	胃癌、大腸癌	23.1	38.1	=	114.8	32.2	165	14	37.8	31.9	5.6	82.6
TEG52		肺癌、胃癌、大腸癌	24.1	172.5	5.8	64.5	5.4	131.3	4.1	3.7	2.3	14.1	5.9
FG53		斯施	26.4	171.1	40.4	25.8	88	79.1	89.9	19.1	43.6	22.4	155.2
TEG54			3.2	147.6	0.8	624.4	1206.9	738.3	40.2	42.3	4.1	8.	9.0
TEG55	CLDN4	哥爾	70.1	193.6	3.9	364.8	258.4	325.8	7.1	37.4	45.4	3.3	2.5
TEG56	SFRP4	肺癌、胃癌、グリア芽	153.6	244.9	66.9	153.1	69.4	87.8	51.1	49.2	49.3	53.4	250.3
FG57	ASPSCR1		42.4	45.4	41.5	75.1	28.4	102.3	58.3	285.1	78.3	46.1	44.5
FG58		开癌	6.1	17.9	31.7	4.2	4.8	11.6	5.8	2014.7	45.9	8.2	12.1
FG59	RHAMM	胃癌、大腸癌、肝癌	19.6	46.1	35.6	115.3	36.2	158.6	10.6	103.2	84.5	7.4	55.4
TEG60	PEG10	肝癌、肺癌、肝芽腫	42.9	216.9	45.7	21.4	28.6	36.7	40.6	389.8	174.7	80.9	64.5
TEG61	PAEP	計 施	4.1	96.4	9.6	7.5	6.4	5.5	4.4	6.2	9	6.5	4.4
reg62	MGC10981	肺癌	58.1	459	59.7	44.9	91	71.6	98.6	87.7		26.8	뚕
TEG63	DUSP9	肝癌	70	33.7	25.9	28.9	30.9	24	46.4	212.7	687	49.4	24.1
TEG64	EST1B	肝癌	52.6	18.7	20.8	34.9	24.3	25.5	9	87	83.2	24.2	42.3

説2

特に TEG1-TEG18 に関しては今までにいかなる癌細胞においてもその発現 亢進が明らかになっておらず、今回の解析によりある種の癌において発現が亢進 することが示された。また、TEG19-TEG60 の各遺伝子に関しては、今までに 報告されていた癌種以外に、今回新たな癌種で発現が亢進することが明らかとな った。

1.6. 各種癌組織において発現が亢進する遺伝子の同定

TEG1-TEG64 の各遺伝子の、それぞれの癌種における発現解析を、GeneChip™ HG-U133A,B(Affymetryx 社製)、および GeneChip™ HG-U133plus2(Affymetryx 社製)を用いて実施した。すなわち、肺小細胞肺癌 10 例、肺扁平上皮癌 5 例、肺腺癌 5 例、大腸癌 7 例、大腸癌肝転移組織 8 例、腎癌 2 例、および膵癌 4 例の各検体を個々に上項と同様に全 RNA を調製した。そして、その全 RNA5pg を、GeneChip™ HG-U133A,B を用いて mRNA の発現解析を実施した。肺小細胞癌、大腸癌および大腸癌肝転移組織の一部については U-133A チップのみの解析である。それぞれの解析における全遺伝子の発現スコ アの平均値を 100 とし、各遺伝子の発現量は相対値とした。また、小細胞癌 22 例、および膵癌 27 例は、GeneChip™ HG-U133 plus 2 を用いて、同様に解析を実施した。

その結果、表3および4に示すように、TEG1-TEG64の各遺伝子が各癌種においても発現亢進していることが明らかとなった。

扱3

TEGL	番号	肺小細 胞癌1	肺小細 胞癌2	肺小細 胞癌3	肺小細 胞癌4	肺小細 胞癌5	肺小細 胞癌6		肺小細 胞癌8	肺小細 胞癌9	肺小細 胞癌1 0	肺扁平 上皮癌 1	肺扁平 上皮癌 2	肺扇平 上皮癌 3	肺扁平 上皮癌	肺扁平 上皮癌	肺腺癌 1	肺腺癌 2	肺腺癌 3	肺腺癌 4	肺腺癌	腎癌1
TEGE							20.8	15.6		155,7		23.8	14.5	22.3	15	15.5	34.4	146.7	1513	154	157	13.8
TEGS												50,5	17.1	13,3				22.3	6.9			10.5
TEGS 36.4 64.8 94.1 95.9 81.8 1.12 95.0 85.9 33.8 97.3 77.4 76.1 68.8 44.2 79.5 68.8 11.5																						146.3
TEGO						-																32.3
1509 3403 789.3 419.7 387.9 311.1 389.8 471.4 150.9 315 291.7 789.2 219.9 157.3 227.6 315.9 347.7 150.9 315 314.9 315.1 31			130.1		136,4		28,8	94.3		90.5												61.9 82.6
TEG01 63.6 37.4 61.1 7.8 62.3 10.7 63.5 26.0 15.8 63.4 15.1 10.2 32.2 63.4 63.5 10.7 10.2																		157.3	237.6	515.9	334.2	115.3
TEG11 1752 1955 80.5 298.3 92.3 35.6 80.5 208.3 92.3 35.6 80.5 208.3 92.3 35.6 80.5 208.3 92.3 35.6 80.5 208.3 92.3 35.6 80.5 208.3 92.3 35.6 80.5 208.3 92.3 35.6 80.5 208.3 92.3 35.6 80.5 208.3 92.3 35.6 80.5 208.3 92.3 35.6 80.5 208.3 92.3 35.6 80.5 208.3 92.3 35.6 80.5 208.3 92.3 35.6 80.5 208.3 92.3 35.6 80.5 208.3 92.3 35.6 80.5 208.3 35.6 35.2 1163 35.6 32.2 1163 35.6 32.2 35.6 35.2 1163 35.2 35.6 35.2 1163 35.2 35.6 35.2 1163 35.2 35.6 35.2 1163 35.2 35.6 35.2 1163 35.2 35.6 35.2						_																12.2
TEG11											 											27.5 64.2
TEG14 324 1341 127 171 869 435 127 171 869 431 127 171 869 431 127 171 869 431 127 171 869 431 127 171 869 431 127 171 869 431 127 171 869 431 127 171 869 441 451 175 1										35.6		956.2	165.2	897.4								28.2
TEG15 3294 1341 127 17.1 869 41.3 1202 57.4 165.5 34.0 67.4 146.4 137.5 176.5 55.1 25.0 177 737 58.7 156.1 18.0 15.0 14.0				├		 													37.1	54.8	32.7	81.3
TEG16									57.4		34											7.4
TEGIN 11.9 145.3 15 13.9 59.3 25.6 24.9 15.7 105.4 26 15 47.1 72.2 46.1 65.9 112.1 120.2 24.7 71.9 36.71 17.0 24.2 11.0 11.0 11.0 11.0 24.2 11.0 11.0 11.0 11.0 24.2 11.0 11.0 11.0 11.0 12.3 22.8 28.8 28.3 28.8 20.3 24.2 11.0 11.0 11.0 24.2 11.0 11.0 10.5 10.5 10.5 24.0 20.0 24.0 11.0 24.2 11.0 11.0 11.0 11.0 11.0 24.2 11.0 11.0 11.0 11.0 24.2 11.0 24.2 11.0 24.2 11.0 24.2 11.0 24.2 11.0 24.2 11.0 24.2 21.0	TEG15	8.9	15						<u> </u>		3.7											5.1 12.7
TEG19 827 111.9 123.8 126.8 126.5 127.1 2442 116.9 115.9 105.7 96.9 32.2 112.2 32.0 32.1 12.1													15.7	105.4	26	15						
TEG19																						9.7
TEQ20									 		 											
TEGG2							25.7	38.3														22.6 16.8
FEGG23									32.1		29.2								9,3	9.6	9	12.6
TEQ24 24.2 22.1 49.8 42.8 312 12.7 8.1 34.9 32.3 23.9 23.4 22.2 23.5 23.0 23.4 23.2 23.0 23.4 23.2 23.0 23.4 23.2 23.0 23.4 23.2 23.0 23.4 23.2 23.0 23.4 23.2 23.0 23.4 23.2 23.0 23.4 23.2 23.0 23.4 23.2 23.0 23.4 23.2 23.0 23.4 23.2 23.0 23.4 23.2 23.0 23.4 23.2 23.0 23.4 23.2 23.0 23.4 23.0 2									 		 											
FEG26 43,9 3.6 565,2 9.7 13,3 8 9.8 24,5 5.7 32 11,3 9.4 11,7 13,5 7.3 7.2 11,6 1.6 7.3 1.5 1.6 1.6 7.3 1.5 1.		24.2	22.1								 											48.5 18.9
TEG27 22.5 57.8 10.3 17 35.1 69.2 44.4 108 37.5 65.2 39.1 58 22 21.3 72.3 20.7 33.5 55.2 53.3 15.3									24.5	5.7	3,2	11.3	9.4	11.7	13.5	7.3	7.2	11.6				
TEG28 81.4 99.6 3.5 194 57.2 105.8 73.6 86.3 80.2 371.2 29.5 43.2 44.5 156.7 124.4 125.3 33 168.3 156.									100		65.0						37.3					43.3
TEG28																						
TEG30 22,2 150,6 314,9 315,2 50,8 526,1 59,6 105,8 47,8 56,4 9 139,8 66,4 7.2 132,6 54,1 126,3 134,9 47,7 22,5 22,1 126,3 134,9 47,7 22,5 22,1 126,3 134,9 47,7 22,5 22,1 134,9 47,7 22,5 22,1 134,9 47,7 22,5 22,1 134,9 47,7 22,5 22,1 134,9 47,7 22,5 22,1 134,9 47,7 22,5 22,1 134,9 47,7 22,5 22,1 134,9 47,7 22,5 23,7 134,9 47,7 22,5 23,7 134,9 47,7 22,5 23,7 134,9 47,7 22,5 23,7 134,9 47,7 22,5 23,7 134,9 47,7 22,5 23,7 134,9 47,7 22,5 23,7 134,9 47,7 22,5 23,7 134,9 47,7 22,5 23,7 134,9 47,7 22,5 23,7 134,9 47,7 22,5 23,7 134,9 47,7 22,5 23,7 134,9 47,7 22,5 23,7 134,9 47,7 22,5 23,7 134,9 47,7 23,7							52	108.6														
TEG32																		66.4	7.2	132.6	54.1	43,9
FEG33									337		45.4											
TEG34	TEG33																					
TEG36 20											19,1	38.9					57	61.4				
TEG37																						1.7
TEG38 231.7 369 414.2 260 320.8 158.2 141.6 194 37.2 105.6 837.4 123.8 178.1 258.3 194.8 163.9 454 239.1 88.7 2008 TEG39 26.3 44.8 33.4 49.8 87.8 88.9 44.3 85.3 32 41.8 121.2 51.5 104.7 82.2 55.6 48.5 90.6 45.6 58 71.8 TEG40 50.5 89.9 23.6 139.7 69 105.7 81.3 115.7 123.9 147.1 88.1 83.1 92.7 93.6 71.2 118.9 92 152.2 80.8 37.8 TEG41 21.5 156.1 19.6 3.2 89.3 17.1 11.5 5.8 16.4 21.8 85.7 4.9 7.8 36.8 178.7 77.2 139.3 42.2 29.1 2.3 TEG42 346.4 1024 450.2 330.4 127.9 907.8 893.5 580.3 438.8 291.1 367.6 721.1 30.9 476.1 330.1 594.7 189.2 773.8 380.4 472.7 TEG43 31.3 53.3 43.6 52.7 63.1 105.4 75 122.4 120.3 49.2 109.8 48.3 323 231.4 83.2 40 88.4 101.5 68 192.2 TEG44 127.4 12.3 3.6 9.8 28.2 25.5 67.2 3.7 12 7 3 2.6 4.8 16.4 2.9 3.6 9.2 0.5 12.9 17.7 17.6 32.2 44.2 13.3 10.3 80.8 66.3 34.7 41.5 451.5 56.2 4 95.3 53.8 21.4 20.3 12.4 20.3 49.2 109.8 48.3 32.3 23.1 48.2 29.3 69.2 0.5 12.9 17.7 12.4 12.3 36.6 61.4 11.8 32.6 13.5 54 49.3 52.5 73.5 25.8 32.7 4.7 108.2 60 93.9 79.8 93.2 12.6 48.1 48.4 48.																						
TEG40 50.5 89.9 23.6 139.7 69 105.7 91.3 115.7 123.8 147.1 88.1 83.1 92.7 93.6 71.2 218.9 92 152.2 80.8 137.8 TEG41 21.5 156.1 19.6 3.2 89.3 17.1 11.5 5.8 16.4 21.8 85.7 4.9 7.8 36.8 178.7 77.2 139.3 4.2 29.1 2.3 TEG42 346.4 1024 450.2 330.4 1279 907.8 693.5 580.3 438.8 291.1 367.6 721.1 309 476.1 330.1 594.7 189.2 773.8 380.4 472.7 TEG43 31.3 53.3 43.6 52.7 63.1 108.4 75 122.4 120.3 49.2 109.8 48.3 323 231.4 83.2 40.8 88.4 101.5 68 192.2 TEG44 127.4 12.3 3.6 9.8 28.2 25.5 67.2 3.7 12 7 3 2.8 4.8 16.4 2.9 3.6 9.2 0.5 12.9 1.7 TEG45 137.3 76.5 93.1 13.1 77.5 23.2 44.2 13.3 10.3 8.8 66.3 34.7 41.5 45.1 56.2 4 95.3 53.8 21.4 208.3 TEG47 6 4.3 2.3 69.7 84.1 366.9 56.6 194.5 25.4 1.2 21.1 34.4 8.4 24.1 22.5 320.6 365.1 13.4 204.3 140.7 TEG48 12.6 96.9 134.8 162.9 77.8 66.4 21.9 73.7 103.9 79.3 100.4 328.4 75.8 355.5 87.4 227.4 TEG49 284.4 113.4 76.1 103.2 83.2 52.5 52.5 12.9 12.3 233.2 78.1 158.3 55.7 113.1 69.1 64.7 TEG50 189.7 170.5 205.5 48.4 38.8 16.4 94.1 87.9 117.7 21.7 15.9 189.5 17.3 80 81.2 78 TEG52 15.9 277.4 9 85.8 21.6 8.1 27 86.3 38.2 96.4 525.6 99.7 80.8 18.8 10.8 456.3 172.3 182.9 101.4 208.3 TEG55 87.5 225.9 175.9 162.1 88.9 115.2 532.5 149.4 79.4 75.5 52.5 141.3 441 549 185.5 79.5 518.5 237.9 112.6 496.4 TEG57 48.7 48 90.1 97.6 54.4 89.4 60.6 119.7 84.1 95.6 22.3 85.5 141.3 441 549 185.5 79.5 518.5 237.9 112.6 496.4 TEG57 48.7 48 90.1 97.6 54.4 89.4 60.6 119.7 84.1 95.6 22.3 85.5 141.3 441 549 185.5 57.6 51.8 27.9 112.												837.4	123.8	178.1	258.3							
TEG41 21.5 156.1 19.6 3.2 89.3 17.1 11.5 5.8 16.4 21.8 85.7 4.9 7.8 36.8 178.7 77.2 139.3 4.2 20.1 2.3 TEG42 346.4 1024 450.2 330.4 1279 907.8 693.5 580.3 49.2 109.8 48.3 323 231.4 330.1 594.7 189.2 773.8 380.4 472.7 TEG43 31.3 53.3 43.6 52.7 63.1 108.4 75 122.4 120.3 49.2 109.8 48.3 323 231.4 83.2 40.8 84.1 101.5 66.8 192.2 TEG44 12.7 12.3 3.6 8.8 28.2 25.5 67.2 3.7 12 7 3 2.6 4.8 16.4 2.9 3.6 9.2 0.5 12.9 1.7 TEG45 137.3 76.5 93.1 13.1 77.5 23.2 44.2 13.3 10.3 8.8 66.3 34.7 41.5 45.1 56.2 4 95.3 53.8 21.4 208.3 TEG46 61.4 11.8 132.6 15.5 54 49.3 52.5 73.5 25.8 32.7 4.7 108.2 60 93.9 79.8 93.2 TEG47 6 4.3 2.3 69.7 84.1 366.9 56.6 194.5 25.4 1.2 21.1 34.4 8.4 24.1 22.5 320.6 365.1 13.4 204.3 140.7 TEG48 12.6 96.9 134.8 162.9 77.8 66.4 21.9 73.7 103.9 79.3 100.4 328.4 75.8 356.5 87.4 27.4 TEG49 284.4 113.4 76.1 103.2 83.2 52.5 121.9 122.3 233.2 78.1 158.3 53.5 57 113.1 69.1 84.7 TEG50 189.7 170.5 205.5 46.4 36.8 16.4 94.1 87.9 117.7 21.7 15.9 189.5 17.3 80 81.2 78 TEG51 182.7 183.2 103.6 115.4 139.2 117.4 72.5 91 93.3 62.2 70.2 89.5 33.4 170.5 127.9 65.7 TEG54 61.6 170 176.1 23.1 88.9 115.2 532.5 149.4 794.7 580.3 3.8																						66.9
TEG42 346.4 1024 450.2 330.4 1278 907.8 683.5 580.3 4388 291.1 367.6 721.1 309 476.1 330.1 594.7 189.2 773.8 380.4 472.7 TEG43 31.3 53.3 43.6 52.7 63.1 106.4 75 122.4 120.3 49.2 109.8 48.3 323 231.4 83.2 40 88.4 101.5 68 192.2 TEG44 12.7.4 12.3 3.6 9.8 28.2 25.5 67.2 3.7 12 7 3 2.6 4.8 16.4 2.9 3.6 9.2 0.5 12.9 1.7 TEG45 13.7.3 76.5 93.1 13.1 77.5 23.2 44.2 13.3 10.3 8.8 66.3 34.7 41.5 45.1 56.2 4 95.3 53.3 21.4 29.3 75.2 25.8 32.7 4.7 108.2 60																						
TEG43 31.3 53.3 43.6 52.7 63.1 106.4 75 122.4 120.3 49.2 109.8 48.3 323 231.4 83.2 40 88.4 101.5 68 192.2 TEG45 137.3 76.5 93.1 13.1 77.5 23.2 44.2 13.3 10.3 8.8 66.3 34.7 41.5 45.1 56.2 4 95.3 53.8 21.4 208.3 TEG46 61.4 11.8 132.6 15.5 54 49.3 52.5 73.5 25.8 32.7 4.7 108.2 60 93.9 79.8 93.2 TEG47 6 4.3 2.3 69.7 84.1 366.9 56.6 194.5 25.4 1.2 21.1 34.4 8.4 24.1 22.5 20.6 365.1 13.4 204.3 140.7 140.3 13.2 20.3 140.7 140.3 140.7 140.3 140.7 140.3 140.		346.4	1024																			
TEG45 137.3 76.5 93.1 13.1 77.5 23.2 44.2 13.3 10.3 8.8 66.3 34.7 41.5 45.1 56.2 4 95.3 53.8 21.4 208.3 TEG46 61.4 11.8 132.6 15.5 54 49.3 52.5 73.5 25.8 32.7 4.7 108.2 60 93.9 79.8 93.2 TEG47 6 4.3 2.3 69.7 84.1 366.9 56.6 194.5 25.4 1.2 21.1 34.4 24.1 22.5 32.0 365.1 13.4 204.3 140.7 TEG48 12.6 96.9 134.8 162.9 77.8 66.4 21.9 73.7 103.9 79.3 100.4 328.4 75.6 56.6 42.2 11.3 34.4 24.2 13.3 100.4 328.4 75.6 56.4 21.9 73.7 103.9 79.3 100.4 328.5 75.5												109.8						88.4		68	192.2	
TEG46 61.4 11.8 132.6 15.5 54 49.3 52.5 73.5 25.8 32.7 4.7 108.2 60 83.9 79.8 83.2 TEG47 6												86.3										
TEG47 6																						
TEG48 12.6 96.9 134.8 162.9 77.8 66.4 21.9 73.7 103.9 79.3 100.4 328.4 75.8 356.5 87.4 227.4 TEG50 189.7 170.5 205.5 46.4 38.8 16.4 94.1 87.9 117.7 21.7 15.9 189.5 17.3 80 81.2 78.1 103.6 115.4 139.2 117.4 72.5 91 93.3 62.2 70.2 89.5 33.4 170.5 127.9 65.7 127.7 15.9 189.7 17.3 80 81.2 78.1 78.2 117.3 80.8 16.4 94.1 87.9 117.7 21.7 15.9 189.5 17.3 80 81.2 78.2 117.4 72.5 91 93.3 62.2 70.2 89.5 33.4 170.5 126.3 117.3 80.8 18.1 19.5 290.3 97.7 74 434.6 18.1 117.4 72.5 99.7							366.9	56.6	194.5	25.4	1.2	21.1	34.4	8.4	24.1	22.5	320.0	365.1				
TEG50 189.7 170.5 205.5 46.4 38.8 16.4 94.1 87.9 117.7 21.7 15.9 189.5 17.3 80 81.2 78 TEG51 182.7 183.2 103.6 115.4 139.2 117.4 72.5 91 93.3 62.2 70.2 89.5 33.4 170.5 127.9 65.7 TEG52 15.9 277.4 9 85.8 21.6 8.1 27 86.3 28.2 96.4 525.6 99.7 80 89.0 445.3 19.5 290.3 97.7 9 83.8 21.6 8.1 27 86.3 28.2 96.4 525.6 99.7 80 89.0 452.4 19.5 290.3 97.7 74 434.6 180.3 136.1 113.3 86.1 180.9 133.2 62 103.5 249.9 77.9 42.8 166.6 170 176.1 215.1 88.9 115.2 532.5 149.4																						67
TEG51 182.7 183.2 103.6 115.4 139.2 117.4 72.5 91 93.3 62.2 70.2 89.5 33.4 170.5 127.9 65.7 TEG52 15.9 277.4 9 85.8 21.6 8.1 27 86.3 28.2 96.4 525.6 99.7 80 89.0 4 53.4 19.5 290.3 975 7.4 434.6 TEG53 15.1 54.8 23.4 96.4 46.5 33 136.1 113.3 86.1 180.9 132.2 62 103.5 249.9 77.9 42.8 TEG54 61.6 170 176.1 215.1 88.9 115.2 532.5 149.4 794.7 580.3 3.8 3.8 0.8 1.8 110.8 452.3 117.2 127.9 42.8 TEG55 87.5 225.9 175.9 162.1 123.6 88.4 263 138.4 228.9 319 19.1 <																						
TEG52 15.9 277.4 9 85.8 21.6 8.1 27 86.3 28.2 96.4 525.6 99.7 80 890.4 453.4 19.5 290.3 975 7.4 434.6 TEG53 15.1 54.8 23.4 96.4 46.5 33 136.1 113.3 86.1 180.9 133.2 62 103.5 249.9 77.9 42.8 TEG55 61.6 170 176.1 125.1 88.9 115.2 532.5 149.4 794.7 580.3 3.8 3.8 0.8 1.8 110.8 456.3 172.3 182.9 101.4 20.6 TEG55 87.5 225.9 175.9 162.1 123.6 88.4 263 138.4 228.9 319 19.1 188 42.7 57.7 298.1 159 139.2 129.5 43.6 35.2 TEG56 86.2 91.7 88.2 268.8 426.8 80.5 75.7	TEG51	182.7	183.2	2	103.0	6	115.4															
TEG54 61.6 170 176.1 215.1 88.9 115.2 532.5 149.4 794.7 580.3 3.8 3.8 0.8 1.8 110.8 456.3 172.3 182.9 101.4 20.6 TEG55 87.5 225.9 175.9 162.1 123.6 88.4 263 138.4 228.9 319 19.1 188 42.7 57.7 298.1 159 139.2 129.5 43.6 35.2 TEG56 86.2 91.7 88.2 76.8 183.4 274.6 86.8 305 80.5 75.7 522.5 141.3 441 549 185.5 79.6 518.5 23.9 112.6 496.4 TEG57 48.7 48 90.1 97.6 54.4 89.4 60.6 119.7 84.1 95.6 22.3 85.5 181.3 38 20.7 432.7 41.8 50.4 55.6 32.3 TEG58 3.2 15.4 12.7														7 80	890.4	453.4	19.	290.3	975	7.4	434.6	5.2
TEG55 87.5 225.9 175.9 162.1 123.6 88.4 263 138.4 228.9 319 19.1 188 42.7 57.7 298.1 159 139.2 129.5 43.6 35.2 TEG56 86.2 91.7 88.2 76.8 183.4 274.6 86.8 305 80.5 75.7 522.5 141.3 441 549 185.5 79.5 518.5 237.9 112.6 496.4 TEG57 48.7 48 90.1 97.6 54.4 89.4 60.8 119.7 84.1 95.6 22.3 85.5 18.1 38 20.7 432.7 41.6 50.4 55.6 32.7 TEG58 3.2 15.4 12.7 3.9 2.4 13.9 7 20.3 8.1 31.7 12.4 5.1 32.2 13.4 22.1 3.8 12.4 13.9 7 20.3 8.1 31.7 12.4 5.1 32.2 13.4																						153,5
TEG56 86.2 91.7 88.2 76.8 183.4 274.6 86.8 305 80.5 75.7 522.5 141.3 441 549 185.5 70.5 518.5 237.9 112.6 496.4 TEG57 48.7 48 90.1 97.6 54.4 89.4 60.6 119.7 84.1 95.6 22.3 85.5 18.1 38 20.7 432.7 41.6 50.4 55.6 32.7 TEG58 3.2 15.4 12.7 3.9 2.4 13.9 7 20.3 8,1 31.7 7.3 17.1 24.4 51.3 32.2 13.4 22.2 38.1 12.4 TEG59 85.6 141.4 112.1 22.1 55.3 99.8 71.2 46.1 62.9 20.5 42.8 78 79.8 72.1 45.3 70.1 21.5 99.8 118.1 106.1 10.2 12.5 99.8 118.1 106.1 10.2 45.3	TEG55	87.5	225.9	175.9	162.																	
IEG59 48.7 48 90.1 97.6 54.4 89.4 60.6 119.7 84.1 95.6 22.3 85.5 18.1 38 20.7 422.7 41.8 50.4 55.6 32.7 TEG59 85.6 141.4 112.1 22.1 55.3 99.8 71.2 46.1 62.9 20.5 42.8 78 79.8 72.1 45.3 70.1 21.5 99.8 81.8 106.1 TEG60 35.3 78.2 37.7 25.8 415.5 53.9 111.1 150.6 123.6 39.2 40.5 38.9 11.9 22.8 28.5 87.8 21.1 109.3 26.8 8.7 TEG62 44.1 44.4 112.8 76.5 8.5 9.4 8.3 8.9 10.4 5.7 4.9 6.8 53.3 6.1 56.9 50.9 547.9 787.8 533 9.5 67.6 68.6 79.5 63 61.6 69						8 183.4	274.6	86.8	305	80.5	75.7	522.5	141.	3 44	1 549							
TEG59 85.6 141.4 112.1 22.1 55.3 99.8 71.2 46.1 62.9 20.5 42.8 78 79.8 72.1 45.3 70.1 21.5 99.8 81.8 106.1 TEG60 35.3 78.2 37.7 25.8 415.5 53.9 111.1 150.6 123.6 39.2 40.5 38.9 11.9 22.8 26.5 87.8 21.1 109.3 26.8 8.7 TEG61 5.1 5.3 5.2 10.7 5.6 8.5 9.4 8.3 8.9 10.4 5.7 4.9 6.8 5.3 6.1 5.6 3.3 2.6 4.5 68.6 TEG62 44.1 44.4 112.8 76.5 93.8 60.8 79.5 63 61.6 69 50.9 547.9 787.8 533 9.9 67.2 78.7 78.7 78.7 78.7 78.7 78.7 78.7 78.7 78.7 78.7 <																		7 41.6	50.4			27.3
TEG60 35.3 78.2 37.7 25.8 415.5 53.9 111.1 150.6 123.6 39.2 40.5 38.9 11.8 22.8 26.5 87.8 21.1 109.3 26.8 8.7 TEG61 5.1 5.3 5.2 10.7 5.6 8.5 9.4 8.3 8.9 10.4 5.7 4.9 6.8 5.3 6.1 5.6 3.3 2.6 4.5 66.6 TEG62 44.1 44.4 112.8 76.5 93.8 60.8 79.5 63 61.6 69 50.9 547.9 787.8 533 9.7 67.2																						
TEG61 5.1 5.3 5.2 10.7 5.6 8.5 9.4 8.3 8.9 10.4 5.7 4.9 6.8 5.3 6.1 5.6 3.3 2.6 4.5 66.6 TEG62 44.1 44.4 112.8 76.5 93.8 60.8 79.5 63 61.6 69 50.9 547.9 787.8 533 9.7 67.2	TEG60	35.3	78.	2 37.7	25.	B 415.5	53.9	111.1	150.6	123.6	3 39.2	40.										
70.0 00 01.0 00.0 00.0 00.0 00.0 00.0 00												5.	7 4.9	6,1	B 5,	8 6.	1 5.	6 3.	3 2.6	4.5	68.6	8.8
	TEG62																				67.2	78,1
TEG63 19.4 42.1 34.1 49.3 27.2 40.7 48.6 38.4 58.5 87.6 47.2 43.2 65.5 43.3 17.7 39.3 28.8 41.4 17.7 22 TEG64 130.2 72.6 37.7 109.6 8 43.7 14.9 111.7 15.6 54 11.7 36.3 9.6 10.5 8 59.8 20.8 42 101.5 33.6																						

褒3

番号	腎癌2	大腸癌 1	大賜癌 2	大脳癌 3	大 <u>關癌</u> 4	大脇癌 5	大腸癌 6	大腸癌 7	大脇癌 転移組 機(肝 臓)1	大腸癌 転移組 機(肝 臓)2	転移組: 機(肝	転移組 織(肝	織(肝	転移組 織(肝	転移組 織(肝	膵癌1	膵癌2	膵癌3	膵癌4
TEG1	17.1							-	12	14.6	程)3 12.7	殿)4	殿)5	1€)6	殿)7	261.9	10.3	17.2	
TEG2	5.7								421.5	564.6	750.B					4.5	5.6	28.7	
TEG3	117.8								306.3	88,4	515.3					208,4	51.9	143.5	
TEG4 TEG5	33.6 92.7								17.5	42.2	131.4					38.6	39.1	48,4	
TEG6	24.6								55.9 46	54.4 24	84.2 194.8					36.2	56.2	182.1	
TEG7	61.9								356.9		987.4		-			166.5 387.9	12.2 65.6	18.6 212,3	
TEG8	23.2								15,2	23.6	11.5	 				29.7	26.4	10.7	├
TEG9	123								113.9	41.7	189.8					135.3	79	96	
TEG10 TEG11	133.4								171.7	138	138					130.8	5.9	55.8	
TEG12	68,5 69	-	<u> </u>	 			 		1120		229.8	 				1773	340.2	1011	
TEG13	22.5		_					 	88.8 41.9		52.6 2.8					48,3	51.5		
TEG14	5.8	38.5	124.2	136.2	34	11.9	119.5	128.8	96			5.6	107.4	30.6	107.8	95.5	12.1 78.6	14.2 32.5	125.1
TEG15	72.8								159		310.2		1.0	50,5	.07.0	13,4			
TEG16	188.7		ļ						61,5		17,2					21.3	348.5		
TEG17 TEG18	10.9 257.2					 	 		69.7 130.8		179		<u> </u>			14.9			
TEG19	6.8				 	-		 	130,8	100,4 8,9	193.5 6.4				 	146.8	46.9		
TEG20	12,1						<u> </u>		30.7		110					22.3			
TEG21	12.6		8.2	9,2	7.4	10.9	7.5	9.9	9.9		11	53.7	12.1	11.8	11.3	2.6			
TEG22	20.8 40.5	!							64.3		57.8					108.5			
TEG23	40.5	 	-	-					36,3		21.2	<u> </u>		<u> </u>		39.3			
TEG25	70.1		22.6	163,7	58.8	50.7	9.3	724.2	162,6 419.1		296.8 523,5	24.4	988.6	193.3	194.4	24.5			
TEG26	64,4					- 55		127.2	71.9		45.9		300.0	193.3	194.4	1.3 84.2			
TEG27	5.6		192.6	111.7	304.8	281.6		128.8	78.9				243.5	129,4	241.2				
TEG28	25.9		261.6	110.5	411.1	370.7	191.7	268.4	256.8		322.8		248.3	232.8	390,6				
TEG29 TEG30	9.3 229.7		 						38.3				ļ	<u> </u>		46.9		1.3	
TEG31	42,3					 	 	 	102.7		23.3	 	 	 	ļ	65.7			
TEG32	13.3		477	680.9	1074	1334	325.3	886.5	505.8			13	451	280.2	434,1	129.2 178.6			
TEG33	76.5		603.1	137.9		562.8	494.7		95.6					85.7	86.9				
TEG34	61.2		219.4	336.2		102.1			142.9			10.4	174.9	197.1	195,5				
TEG35	8,3	1	1.2 62.8	1.7	1.5 43.4	1.9		1.4	1	0.8		1.2	1.6	1.1	3.5				1.7
TEG37	6.5		02.8	- 64	43.4	44	24.4	30.4	83.2 264.3		39.8 245.4	15.7	54.5	129.6	41.9				
TEG38	590.3		699	706.8	508.4	689.7	321.2	252.9	637			57,6	963.9	737.1	1338	282.6 346.5			
TEG39	48.4			390,1		864.1			583,3					382.2	266.2				
TEG40	165			194.8		340.8			100.7					45.8	262.1				
TEG41 TEG42	2.6 44.8		144.7 542.7	35.9 606.6					29						74				
TEG43	41.6	422.9	78.6	53.7		519.3 134.6			750,9 201,1						728				
TEG44	2.9		0.6	1.9		7.4			1.7				315.7 3.3	60.6 1.8	155,8 3.5				
TEG45	24.7		44.6			8.6			112.8	75,9			34.1	85.4	38.4				
TEG48	13.7		 	1		L	ļ		9.7	30.4	3.9					14.3	310.5		
TEG47	5.1 22		21.2	454.5	39.2	225.4	7	68.8	318,5				91.9	26.7	158				
TEG49	33.8		 	 	 	 	 	 	238.3 179.6				├	 	 	110,7			
TEG50	13.6					1	 	 	135.9			 	 	 	 	181.8			
TEG51	62.9								97.7				1	 	1	198.9			
TEG52	5.9		38.2	102.9	121.2	319.1	122.8	146.1	195.9			12.4	16,6	18.3	9.2				
TEG53	65.1 69.7		701.3	1197	1061	1212	E74 0	0475	84.8					1		45			1
TEG55	52.5					551.6			912.6						519.7				
TEG56	62.3	93.4	45.2	124.9					98.1						269.8 62.8				
TEG57	33.3			28.7	37.3	66.5			32.4						53.2				
TEG58	13.2						8.4		2.7	4.5	3.5	21,8	8	14.9	3.2	6.7			
TEG59	20.6														166.4	92	108,2	36.3	119.8
TEG61	4.8								24.8										
TEG62	77.9		<u> </u>	1	1	3.0	11.5	4.5	60.6				5.1	7.4	E				
TEG63	29.1	32.6			17.7		16	16.6					29.6	29.6	28.9	358,7			
TEG64	10.2	10.9	47.5	18.3	26.3	59.8									9.3				

表4

	肺小細	肺小細	肺小細	肺小細	肺小細	肺小細	肺小細	肺小細	肺小細	肺小細	肺小細	肺バ細	肺小細	8市八字中	肺小細	Relativity som	Par ils 4m l
番号	胞肺癌 1	胞肺癌 2	胞肺癌 3	胞肺癌	胞肺癌 5	胞肺癌 6	胞肺癌	胞肺癌 8	胞肺癌 9	胞肺癌 10	胞肺癌	胞肺癌 12	胞肺癌	胞肺癌	胞肺癌		肺小細 胞肺癌
TEG1	3.7	4.4	13.4	19.5	3.5	31.6	4	9.3	23.2	2	48.5	5.4	13 2.3	14 5.2	15 2.5	16 12.7	17
TEG2	49.9	47.4	111.8	35.7	3.1	13.4	231.8	1.2	428.3	290.7	47.1	86.4	201.4	1000	194.4	384.6	1.7
TEG3	58.7	47.6	77.9	74.1	38.2	100.7	14.2	30.5	57.9	121.2	40.3	104.2	162.2	296	59.9	115.6	329.7
TEG4	8.4	16.9	12.3	13.1	9.1	18.8	13.7	2.4	1.6	8.5	10.2	8.8	6.6	20.6	19.7	9.5	4.9
TEG5	24	0.7	22.3	41.1	2.3	1.3	6.5	12.5	8.5	6.7	6.6	20.4	15	9.5	9.8	6.3	18.4
TEG6	45.8 875.1	55.7	46.9	19.1	57.3	8.7	38.6	38.9	248.4	15.2	14	19.4	34.1	24.2	693.1	1.1	10.8
TEGB	34.3	767.9 1.4	727 4.5	562.7 26.5	1360 2.8	1276	776.1	1122	528.3	1357	803.3	1056	1122	1506	1453	737	773.1
TEG9	18	30.6	29.6	12.3	19.5	26.5	2.3 15.1	4.5	2.4	2.6	1.2	1 1	2.5	5.4	5	4	0.9
TEG10	455	135.7	37.3	408.1	56.2	4340	29.8	6.2 35.8	10.6 34.7	56.2 33.1	6.1	32.9	46.2	64.1	8.5	52.2	101.9
TEG11	221.9	1359	71.7	517.3	457.3	483	472.3	301.5	387.8	210.7	163.2	298.6 110.7	458.4 1211	948	1157	217.3	627.3
TEG12	43.3	9.2	4.1	24.4	15.6	13.1	30.6	33.2	11.1	40.3	103.2	6.3	25.5	425.5 29.2	343.5 12.1	2897	725.8
TEG13	64.9	11.9	11.4	5.2	12.6	8.4	22	6.9	4.7	8.9	13.2	7.1	8.4	21.9	16.2	11.1 5.1	97.7 15.6
TEG14	667.4	1026	842.2	1322	1192	1229	912.9	776.5	665.8	2045	1404	387.7	562.1	522.3	657.9	633.3	338.9
TEG15	120.5	14.5	73.7	55.5	49.2	25.1	89.6	169.1	356.3	36.6	112	7.1	9.1	41.4		0.9	21.6
TEG16	80.9	855.6	122.8	188.5	113.6	39.4	120.5	166.2	57.7	70.8	42	0.9	5.7	66.8	53.1	25,3	12.4
TEG17 TEG18	3.2 39.6	44.7 7.1	75.3	19.7	2.8	53	3	5.4		15.1	72.9	225.2	104.8	44.5	30.4	83.4	77.6
TEG19	104.1	172,1	39.9 169.1	129.8 158.2	23.8 80.9	63.1	22.6	77.3	90.4	140.3	34.4	49.3	137.8	325.4	40.5	68.1	189.7
TEG20	3.8	1.9	1.8	10.2	3.6	212.3 1.2	231.7 3.9	116.3 1.9	118.9	4.8	82.1	190.7	41.8	27.6		53.4	15.9
TEG21	10	9.2	5.7	2.9	2.6	8.9	5.4	7.2	15.9 2	3.4	7.3 7.4	39.4	5.4	4.5		20.5	48.1
TEG22	86.8	63.5	60.4	45.2	180.4	42.6	94	68.8	60.8	43.3	25.5	6.4 28.2	13.4 98.9	16.5	7.4	3.6	14.6
TEG23	8.7	1.1	1.3	22.4	1.9	23.1	8.8	0.7	7.4	1.1	4.5			1.5	32.5 11.5	68.9 19.1	62.6 8
TEG24	153.1	1087	45.9	22.1	735.3	27.5	23.6	35.4		263.4	9.4		1.3		14.7	7.6	20.3
TEG25	34.7	18	79.3	43.1	8.7	16.7	142.9	13.3	77.7	13.1	11.7	0.5		112.9	0.7	30.1	6
TEG26	19.2	2.7	18.3	20.7	30.7	28.7	20.7	29.8	8.9	14.1	13	3.3		2.6	5.5	11.8	1.1
TEG27	77.4	8.6	45	100	17.6	67.3	292.9	142.3	27.8	54.7	221.3	39.4	44.1	40.6	32.4	86.3	66
TEG28	78.5	20.5 16.9	25.7 0.6	45.3	59.1	38.2	167.4	80.5	81.1	91.9					116.5	75.2	33.8
TEG30	85.3	169.6	5.1	0.7 34	1.9 242.9	0.8 155	79.9 145.2	20.1	20.4	512.7	103.5			204.9	183.8	101.5	31.1
TEG31	15.5	5.4	7.3	20.6	·3.4	3.9	145.2	338.2 3.2	19	13.1	124	39.7	27.7			115.7	51.3
TEG32	38.9	25.3	1.4	6.3	179.6	26.9	37.5	22.9	114.5	24.2 74.4	17.2 27.3			31.3		14.5	9.8
TEG33	54.4	41.7	36	65.4	41.6	18	39	23.5	39	19.1	33			4.2 53.1	160.6	8.5	811.5
TEG34	44.9	55.7	98.1	86.3	41.6	53.5	80.1	55.5	158.2	105.5				191.4	45.2 81	25.4 58.2	5.5 155.9
TEG35	2.3	13.1	31.2	4.8	34.9	1.2	1	2.4	23.6	2.7	0.9				0.9	0.7	153.5
TEG36	2.8	2.3	1	8.7	1.8	6.9	18.5	4.9	17.3	0.9	5.6				0.7	2	12.2
TEG37	5.2	16.3	12.3	7.7	42,5	40.7	2	61	25.5	8.8	76.8	48.2	2.6			121	57.3
TEG38	43.8	6.7 80.1	47.3	906.4	117.2	224.5		56.1	317.6	382	96.2				173	331.3	1125
TEG40	35.4	2.7	15.6 67.5	45.8 160.4	44.4 137	40.5		31.8		20.9		24	+	27.8	34.7	174.1	32.4
TEG41	41.2		17.4	1.5	3.3	49.1 15.6	: 78.5 24.3	127.7 6.2	271	127.7		290.4			2277	229.8	263.4
TEG42	5124	· · · · ·	5147	7568	3703	1016		9793	7.7 8120	27.7 1220	35.5 2572			5.8	12.3	9.7	7.1
TEG43	17.7	100.1	21.4	81.1	216	93.4	97.6	14.5		81.6		224.8 27.5				1205	1181
TEG44	169.1	398.1	216.4	279	5.4	88.5		227.4				7.2			81 67.5	347.7 62.5	83.5 85.2
TEG45	576.4		196.8	1091	1236	1573	911.3	126.4								287.7	150.7
TEG46	28.7	22.2	39.7	27.7	20.7	38.9			24.7	23.8				40.8		32.3	9.9
TEG47	23.9		1 1	11.2	23.7	36.4		38,1	306.6			27.4	109.2			898.5	6.6
TEG48	30.8 249.5		24.8	25	62.9	41.3			110.3							61.5	64.1
TEG50	6.2																
TEG51	357.8																
TEG52	37.7				7.4							+					
TEG53	37.8				36.9												
TEG54	5.7																-
TEG55	50.3		23.4	59.7	224.2												
TEG56	5				433.9		153.9										
TEG57	1.4						******		233.7								
TEG58	36.3				11.2						5.8	20.5					
TEG59 TEG60	740.8 54				726.6												
TEG61	2.6										,			16.3			
TEG62	27.3			1.1 52.6	2.7 17.8												1.4
TEG63	44.3																
TEG64	15.6																
		· · · · · · · · · · · · · · · · · · ·	<u> </u>	<u> </u>	<u> </u>	1 00.1	1 34		1 29.1	14.4	112.9	30.1	46.2	31	32.5	77.4	5.9

表4

			肺小細	肺小細	肺小細				Γ								
	胞肺癌 18	胞肺癌 19_	胞肺癌 20			膵癌1	膵癌2	膵癌3	膵癌4	膵癌5	膵癌6	膵癌7	膵癌8	膵癌9	膵癌1 O	膵癌1 1	膵癌1 2
TEG1	3.5	3.5	3.3	51.9	3.4	56.4	83.2	64.6	10.1	10.2	13.1	7.9	9.4	6.6	8.7	13.6	5.6
TEG2	85.5	866.4	273.9	28.5	460.8	7.6	7.6	14.8	84.6	103.7	24.3	3.7	24.3	14.3	41.4	209.5	43.8
TEG3	196.2 3.1	108 10.2	241.8 1.5	81.8 0.5	144.8	40.2	123.6	72.1	32.9	60	93.7	39.4	61.3	254.7	142.8	102.4	46.4
TEG5	3.6	1.4	1.6	14.8	23.4 15.4	19.3	21.6 30.4	10.6 19.5	35.2 57.9	13.5 31	28.1	23	17.4	8.6	52.8	28.1	18.3
TEG6	27	27.8	28.4	8.1	37.7	60.7	11.4	57.9	81.5		24.7 63.8	37.3 71.5	4.9 78.3	33.3 75.3	31.7	32.6	
TEG7	2744	659.2	1021	220.8	1304	624.8	384.3	597.7	300.2	596.9	328.6	497.5	161.4	360.7	66.9 340.7	38.2 331.1	89.8 108.6
TEG8	4.8	1.2	2.1	8.4	7.9	14.7	19.8	10.9	31	27.6	21.5	23.2	20.6	6.9	10.1	17.8	
TEG9	22.8	15.1	3.7	29.5	50.6	29.9	234.4	20.6	25.4	21.8	37.4		176.2	187.5		70.9	
TEG10	211.3	851.8	115.5	179	61.3	47.9	136	47.9		231.9	125.4	42.1	118.5	152.3	68	72.7	51
TEG11	276 52.1	393.6 12.5	548.6 31.4	604.3 8.2	369.7 27.4	411.3 14.7			44.6	141.8		338	674.6	1533	1582	973.6	
TEG13	5.6	3.7	16.7	17.1	19.7	15.2	17.3 25.2	26.2 5.1	9.8 24.6	28 19.8		18.3	20.5	28.2	17	20.7	10.3
TEG14	524.7	508.2	861.9	381.2	923.8		89					9.8 111.3	27.9 15.2	11.5 89.3		15.3	
TEG15	6.7	4.7	7.2	65.9	58.2	2.7	88.9			48.5			60.5		98.6 44.6		
TEG16	38.8	0.4	7.6	1.2	10.3		14.2	5.4		6			5.6		10.6		
TEG17	69.2	28.2	127.6	166.3	9.3					66.4		6.5	77.3				
TEG18	160.9	243.1	321.3	270.5	148.8	680.1		80.2			472.8		671.8			142.8	
TEG19 TEG20	131.1 2.3	277 12.5	19.9 8.5	118.2 18.3	21.4 1.5	1.8							6.2	4			6.7
TEG20	3.6	4.8	11.9	13.8						11.6 10.1			13.6				
TEG22	68.1	46.9	57.2	43.4							11.9 63.8		17.4 95.9		+	16.4 45.5	
TEG23	412.2	35	21	0.5	30.1	7.5							50.2				
TEG24	1.7	3.2	4.1	7.4	19.7	33	12	12.5					15.9				
TEG25	7.9	856			14.3					80.7	85.8		599.6				
TEG26	1.4	11.6								+			37.5	138.2	129.4		
TEG27 TEG28	44.7 17.9	11.3											5.4			50,8	
TEG29	233.1	26.3 8.4	48.2 131.8		63.9								56.1				
TEG30	67.9		9.3				23.2 307.8			0.3 52.5			80.4				
TEG31	17.8										83		91.3				
TEG32	20.4		4.3					434.7				851.7	542.1	603.7			
TEG33	28		3.8	• 37.2	4.5	121.4									123.9		
TEG34	246.1	145.6						212.2	237.6	337.5	150.9		500.5				
TEG35	264.7	3.1	+												2.4		
TEG36 TEG37	1.8 15.3		-														
TEG38	1101	2124											41.5				
TEG39	47.3																
TEG40	154.5		-														
TEG41	29			25.4													
TEG42	1759						511.9	725.9		1052			1923				
TEG43	55.4												118.5	248.8			
TEG44 TEG45	188.9																3.6
TEG46	17.1		18.1												-		
TEG47	9.5																
TEG48	39.5																
TEG49	492.7			477.7	323.5		675.3	3 754	421.9	835	323.8						
TEG50	17.2											184.3	85.4				
TEG51	465.3													290.2	2 276		
TEG52 TEG53	158.4 16.6		-														
TEG54	109.7					3 103.6 3 25.2											
TEG55	6.8																
TEG56	47.1																
TEG57	2.6	118.8	35.9														
TEG58	12.7				13.9	16.	13.9										
TEG59	1023								117.2	353.2							79.8
TEG60	9.6													7 8.9	2		
TEG62	8.9															6.3	3 4.5
TEG63	5.9																_
TEG64	8.5							6 4.							25.2		
				· · · · · · · · · · · · · · · · · · ·		·	·	7,0	-1 14	-1 77.3	71 3.1	14.4	7.6	12.	12.4	42,1	20.2

表4

番号	膵癌1 3	膵癌1 4	膵癌1 5	膵癌1 6	膵癌1 7	膵癌1 8	膵癌1 9	膵癌2 O	膵癌2 1	膵癌2 2	膵癌2 3	膵癌2 4	膵癌2 5	膵癌2 6	膵癌2 7
TEG1	94	8.9	25.4	111	8.5	3.7	44.8	5.6	59.1	143.6	103	61	195.4	218.7	43.4
TEG2	16.5	35.5	9.1	7.8	10	11.6	533.3	1.3	30.2	87.7	19.1	35.5	33.9	22.9	5.8
TEG3 TEG4	104 67.2	79.1 19.8	51.3	258.5	170	45.9	18.3	54.3	14.5	42.6	37	50	83.2	35.8	45.3
TEG5	12	36.9	14.7 33.2	11.9 28.4	14.2 56	14.4 15.9	14.7 20.1	14.8	10.4	12.3	7.1	8.5	12.9	24.9	10.8
TEG6	45.2	91.4	68.2	43.2	46.5	58	84.5	32.3 56.1	13.9 42.1	30.1	36 31.1	20.4 53.7	23.2 72.1	26.9	29.3
TEG7	255	775.5	67.7	388.5	401.2	677.6	502.5	421.1	656.4	511.9	470.4	226.7	221.1	10.2 360.8	68.9 95.7
TEG8	17.3	94	13.7	24	36.5	19.6	17.6	6.5	11.5	2.7	4.2	4.8	5.5		10.8
TEG9	122	103	431	67.2	265	108.9	180.2	59.6	141.4	183.9	78.9	68.8	216.7	353.4	427.8
TEG10 TEG11	56.3 931.4	37.5	43.4	135.2	35	20.7	10.4	36.2	66.9	30.7	20.9	30	48.6		19.2
TEG12	11.6	168 33.1	125.4 5.2	647.2 18.3	1786 7.8	646.5	26.4	2369	819	1724	551.3	1336	685.6		185.8
TEG13	29.8	17.2	4.8	4.9	5.6	14.2 12.4	12.9 11.5	21.9 42.1	2.5 9.3	11.4 10.7	19 8.2	7.3 9.6	13.9		8.8
TEG14	65.5	209.4		90.3	12.8	26.7	59.4	29.8	12.7	25.1	34.1	19.1	8.9 14.2		23.6 4.6
TEG15	43.1	159.7	13.6	27.5	50.5	50.2	120.7	49.5	80.8	29.6	22.5	71.9	31.6		19.8
TEG16	5.6	6.9		10.1	23.9	2.4	4.9	5.9	2.5	3.9	4.4	3.9			5.5
TEG17	6.6	22.8	16	67.1	50	24.7	91	19.8	31.7	2.5	67.2	54	5,3	37.7	10.2
TEG18 TEG19	108.1 5.3	230.9 5.2	217 18.3	737.1 4.8	833.7 159.2	725.6 3.3	201	197.8		388.4	67.3	239.6	21.4		
TEG20	29.5	12.3	14.7	150.4		40.2	35	3.5 35.6		3.1 25.5	21.1 11.4	22.2	46.1	101	
TEG21	15.1	8.7	3.1	32.3		2	1.8	11.2	1.4			36.9 3.2	28 8.6	+	27.1 9.8
TEG22	91.4	66.4	70.7			27.6	33.7	24.3			18.3	22.7	37.1		
TEG23	22.8	18.5	21.8	20.9		16.1	2.8	14.1	14.6		2	1.5			
TEG24	39	32.9			11.4		70.8				19.3	1.9	22		
TEG25 TEG26	27.6 134.4	469.7 89.6	35.3	20.8		19.8	54.4	+			20.8	11.3			
TEG27	44.1	2,5		403.7 33.4	57.3	305.2 14.9	22.8 53.4		36.6		646	21.8			
TEG28	93.1	60.1	40.4				130			26.1 213.2	229.1	39.5			
TEG29	159.9	12.1	92.6			6.5	1.1	20.5				119	173.6 15.3		105.1
TEG30	42.2	42.8	26.4	33.9			149.8					27.1	409.3		-
TEG31	94.7	14.5		17.5			10.1	218.3			440.6				
TEG32	365.5	1140		2518				260.5		467.3	530.8	315.6	345.4	231.8	
TEG33	150.2 263.9	136.8 341.3			133.8		117.6			109.9					
TEG35	1.6	60.1				254.6 3.3	272.2 1.9		109,4			148			
TEG36	80.9	6.5					656.7		481.7				2.2		
TEG37	69	1.6					121	189.2					135.3		3.6 70.2
TEG38	1415						2388								
TEG39	551.8				479.2				209	345.6	810.7	205.4			
TEG40 TEG41	818.3 201.3	301.3 111.1			331.6										637.9
TEG41	752.3			184 864.9			82.3 949.8								41.6
TEG43	108.4														
TEG44	2.8						+			_					
TEG45	53.5			146.2	85.6	24.5	-								
TEG46	16.5								18.3	30.8		57.9	28.4		
TEG47	25.8 305.5														
TEG49	289.5	-													
TEG50	97.5											+			
TEG51	310														
TEG52	249.1	71.3													
TEG53	67.7			30,6	44.6	18									
TEG54	146.6								80.9	174.9					
TEG55 TEG56	586.8												539.2	756.3	162.7
TEG57	128.2 8.4										+				
TEG58	24.7														
TEG59	467.3														
TEG60	34.4	50	29.4												
TEG61	2.7					2.1	3.6	6							
TEG62	196.1									157.2	143.5	67.5			
TEG63	33.3												19.6		
12404	<u> </u>	15.2	21 11.5	48.8	38.9	54.6	27.2	17.3	5.7	36	30.2	14.1	41	4.6	6.1

実施例2

5

RT-PCR を用いた発現亢進頻度の確認

上記の Gene chip 解析では各種摘出癌組織より調製した RNA をまとめて解析した点、ならびに Gene chip 解析の結果を確認するために、個々の癌サンプルならびに非癌部の正常組織における各遺伝子の mRNA の発現量を RT-PCR 法により解析し、発現亢進の程度、ならびに発現亢進頻度を検討した。

2.1. 各種癌組織からの一本鎖 cDNA の調製

各種ヒト癌組織、ならびに正常組織より以下のようにして PCR の際の鋳型 DNA として用いる一本鎖 cDNA を調製した。

10 すなわち、肺腺癌に関しては肺腺癌組織12例ならびに正常肺組織4例より、ヒト大腸癌に関しては10例のヒト大腸癌組織ならびに同摘出組織中の非癌部の正常大腸組織より、ヒト胃癌に関しては12例のヒト胃癌摘出組織、ならびに同摘出組織中の非癌部の正常胃組織より、ならびにヒト肝癌に関しては9例のヒト摘出肝癌組織ならびに同摘出組織中の非癌部よりそれぞれ全RNAを上記と同様の方法を用いて調製した後、全RNAより逆転写酵素SuperscriptII(GIBCOBRL社製)を用いて一本鎖cDNAを合成した。このようにして調製した一本鎖cDNAは後述のPCRの際に鋳型DNAとして用いた。

2.2. RTPCR を用いた発現解析

続いて、表 2 に示す各遺伝子に関して RTPCR 法により mRNA の発現量を解 20 析した。すなわち、25µLの PCR 反応液は、500mM KCl, 100 mM Tris-HCl(pH8.3), 20mM MgCl₂, 0.1% Gelatin、各 1.25 mM dNTPs(dATP, dCTP, dGTP, dTTP)、1µLの一本鎖 cDNA、5 pmole ずつの各遺伝子に特異的なセン スプライマー、アンチセンスプライマーのセット、0.75 µLの SYBR Green I (1000 倍希釈溶液,宝酒造社製)、0.25µLの recombinant Taq polymerase Mix 25 (FG Pluthero, Rapid purification of high-activity Taq DNA polymerase、 Nucl. Acids. Res. 1993 21: 4850-4851.)を含むように調製した後、初めに 94℃ で3分間一次変性を行い、94℃で15秒、57℃で15秒、72℃で30秒からなる サイクルを30回行なった。各遺伝子のRTPCRに用いたプライマーは表 5 に示 すものをそれぞれデザインし解析に用いた。

30 また、個々の RNA 中のヒト β -アクチン遺伝子発現量もヒト β -アクチンに特異的なセンスプライマー(配列番号 2 5 2 :

AGAAGGAGATCACTGCCCTGGCACC) ならびにアンチセンスプライマー (配列番号 2 5 3:CCTGCTTGCTGATCCACATCTGCTG) を用い上記と同様 に解析を行った。

Γ	医甲	5	<u></u>	6	—	က	rs.	<u></u>	6	I	6	LC	<u></u>	<u></u>			ء را	<u>-</u>	<u> </u>	I.			Ī.	Γ.				_	<u> </u>	_	_	_		_		_
	配列番号	125	127	129	131	133	135	137	139	141	143	145	147	149	151	153	155	157	159	191	163	165	167	169	171	173	175	111	179	181	83	185	187	189	191	102
アンチプライマー	配列	CTTGGCACAGGACCCAAGAG	GGTCCAGGTCATCTTTATTACGCC	AATGAGGAAACTGAGGCATAAAG	CCCCTTTTTGTCCAGCTTACTC	GCCACTGAACCAAAATCGGG	GCCCCGCTCCAAACATCACT	GCCATCCTCTGTCAAGTACCAG	GAATTCGTGGTGGCATGCCTTCT	TCTTCAATACCCAGGAGGTACAGG	AAGGAGTTAGCAGCAGCCTAGTTG	AGAAGCTATCAGGCGTTGCTGAA	TGCCGTGGTAATGTGAATCGC	GGAAAGTGTTAGACGCAGAAGGC	10156-10180 TGGACCTACTTCGTACATCAGAGGC	AGGCTTCCAACTTCCGCTGC	TCGGAAGGGTGTGAAAGAGGAC	CGTTGGGTCTTGATCAGCTTCTGTT	CCACGGTGTAGAAGAGCGATAC	18973-18992 CTCCTGAGCTCCACGATCTG	CAGCATCACCTTGACGTAGCTGA	GTAGCAGCCAGTCAGCATCTTCG	GGTCCACACTGCTCTCACTTCCT	GGGTTCACTTTGGTCTCTAGTACGG	GGATGTGCAGTGAAACTTGAAAGG	GCCATTTGGTTTGGATGTATTGAAG	CATTACCTGAGGCCTCTGAATTCGG	CCAGATGCAGGATCAACCCTTCTCA	CACGTGATAGATGCTGGTCGGG	GCCCGGAATCATGATGCTTG	TCAGGACTTGCCTTTGTTTCGG	TAGGGCACCGGGATCTCTAA	AACGCTCCCTGAAAACTGTAAC	GGATCGACATGATTCTGAAGGTG	CCCACAGTGTGATCTTGAAGTCC	
	位置	1661-1680	218–241	264-286	195-218	152-171	251-270	467-490	433-456	1437-1460	283–306	30-52	397-417	142-164	10156-10180	462-481	1232-1253	1559-1584	1395-1416	18973-18992	1480-1502	1451-1473	1113-1135	398-403	96-119	320-344	2167-2191	3753-3777	1723-1744	2855-2874	168-190	501-520	3034-3056	2488-2510	2249-2271	020 030
	格格	AT869	LS276	LS292	LS310	LS302	LS502	LS435	LS763	LS427	LS548	LS694	BFR	HR	ASPMR	SPR	AFR	LS154	C7TM_R	AT865	C20054_R	RHBGR	LS564	LS900	LS308	LS443	LS757	LS156	LS867	AT879	AT883	LS80	LS286	AT857	LS278	0200
	配列番号	124	126	128	130	132	134	136	138	140	142	144	146	148	150	152	154	156	158	160	162	164	166	168	170	172	174	176	178	180	182	184	186	188	96	100
センスプライマー	西乃列	GGATTCTCTGCCCTGTCACAC	CGGAGGGAGAGGATTTTCTAAG	GGGATTAGGAATATGGGCTCTG	CATCACATCATTTCACCCCAC.	ATGTGCCTGCCACTACCTCATC	ACTCGCACAGGCACAGGGAT	TTCTGCCTGAAGAAGCGTCATAC	GCGCATTTTGAGAGAAGTTGGGTACT	AACCCCTCTTTCTGTCCATGCCAG	/ NI	TTTCTATGGCATTCCAGCGG	CTTCACCTGCTCATTGCCTGTC	AACGACGAAAAGAGAAGGACCC	AAAGTTGCAGACAAAGGCGGAAGC	GACGGTGGGAACGGTTTAGAG	CACCTGCATCCATAGCACAGC	CCCTTCTTTGGTTTGCATCAGGTCT	TGTCTGTTGCATGCGGTTCA		GTTGGTCTCCATGTTCCTGCCTAAC	CGAGCATGAGGATAAAGCCCAG	TGGCAATGAAGCACCCCTCT	TCACATCTATCAACCACTGGCACCTA	CAAGCAAATGCAATGGCTGG	GCTGTGTTCTCTGGATAACCCAC	CTGGGACCTTCCAAAACATTGGCT	TCCAGGTACATATCACGCGCACAG		CTTGATAATGTGGGCAAACCCTT	GGCCCTAGGATTGTCCACTCA	GTGGGCCTGTGCATTGTTGG	CCTGTTTGCTGCTGAGAACATCTC	ACAGAGCCAAAGAACCCAAGA	TCTCCAGTGTACCCATGATGGAAG	し としていている コート・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
	位置	1505-1525	340-362	356-377	72-93	315-336	161-180	367–389	345-372	1310-1333	107-128	109-128	218-239	53-74	10078-10101	337-357	1158-1178	1455-1479	1247-1266	_	1298-1322		1001-1020	454-481	178–197	\neg		\neg		33		\neg			~	250-279
	A 楼	\blacksquare	LS275	LS291	LS309	LS301	LS501	LS434	LS762	LS426	LS547	LS693	BFF		\leq	SPF	AFF	LS153	C7TM F	AT864	C20054 F	RHBGF	LS563	LS899	LS307	LS442	LS756	LS155	LS866	AT878	AT882	LS79	LS285	AT856	LS277	2260
4	sendank参 考配列	듸	-			Al217375	AB062438	AL832235	BF825703	AL389981	BC017398	AI343467	BF067073	H66658	~	AI380207	AF339813.1	NM_032256	AB065686	NM_032119	NM_033409 C20054_F	NM020407	NM_012133	AL039884	BE670584	AL524520	AK026404	AF025304	AK021918	BC037325	231725 NM 018936	XM_173052	AK000123	NM 002644	NM_004289	NM 004909
] 	<u> </u>	-	\rightarrow	\rightarrow		_		226936	238383					237410	219918	235845	232453	223594		223582	228236	-+	223457		231341	213880	232321	209589		TEG29 230030	231725					220445
	梅	TEG:	TEG2	TEG3	TEG4	TEGS	TEG6	TEG7	TEG8	TEG9	TEG10	TEG11	TEG12	TEG13	TEG14	TEG15	TEG16	TEG17	TEG18	TEG19	TEG20								TEG28	TEG29			-4		_	FG35

	= rla		. T					<u> </u>	7	-	_	_	-	_		_	- T		-	-	-	_Y	~~	_				_			
	配列番号		_	1	ğ	233	<u>2</u> 2	207	8	211	213	215	217	219	221	223	225	227	229	23	233	235	237	239	24	243	245	247	249	251	253
アンチプライマー	配列	CAGGACTTCCTTTTCCATCAG	TCTGAAGGGGTGAAGTTCTTGAGGG	TGCTTTCACTTGTGCCACTGAG	ACTCCATGAGCATGCACAGAGTAGG	CGACGTGGCCATTCAATCGTACA	GATGGACCCCAGGACGGAGTAG	TGCTTCTAACCACTGAGGTATGAGG	GAGCGTTGCTTTCCTTAAAGACC	GGTAAAGTCCTCACCCCTGC	TTAGGCCACGTGTCTGCCA	CAGCAGCAGATGGGAAGAACTC	GCCCACCTCTACGTCGAAGAAGT	TACCCCGCAGAGAAGCAAAC	TCCAGGGAGATGTCTTGCCA	ccrecrecritaceras	TGCTGTTCATCCAACCACCG	CACTGTAGGTCAGTCACAGCA	CAGACCCTGAGGTTGCAGAA	GGCACCACGGGGTTGTAGAAGTCC	GGCGGAGTAAGGCTTGTCTGT	CCTACCACTATGGCTTGTGATGG	CTGAAAGAGGGTCTGCGTGTGG	CCTCCTGACCATCTCCTCTTCCTC	GCTGAGTAGACATGCAGATGACAAG	ATCTTCCTTGTCCGTCTCGTCC	CCTCGTTCGCCACCGTATAGTTGAT	GGACAGTGGCGATTTCAACC	ACAGGGGTGTGGACAGAAATG	GGGAGGAGCTGAGGCAATC	OCTGCTTGCTGATCCACATCTGCT
	存置	1677-1698	3161-3185	348-369	2535-2559	551-573	3119-3140	2064-2088	5565-5586	323-342	3773-3791	1419-1440	319-341	382-401	277-296	1479-1498	643-662	2867-2887	2509-2529	628-652	06/-0//	1456-1478	1429-1450	108-131	2861-2886	2087-2108	348-372	1330-1349	2043-2063	4309-4327	
	格	LS290	LS119	LS451	HEPH R	K0152 R	.K0703_R	TS386	LS382	ELOVLR	ROBR	FLJ1R	LS260	AT873	LS506	LS508	TS262	AT855	AT875	CLD3_R	CLD4_R	LS370	ASPR	JMR	RHAMMR	AT575	AT851	AT998	DUSPR	KIAAR	
	图 報	194	196	198	802	202	204	206	208	210	212	214	216	218	220	222	224	226	228	230	232	234	236	238	240	242	244	246	248	250	252
ナンスプライマー		GGGCTTGGTTTTGTGAGGTTCC	CCAAGTTACGTCAAAGTCTCAGGAGC	AAGAGAGCCATCCACCTTACCC	CGGCCAAGGACTGGACCAGA	ACTGCCAATCCTGCGTTCCA	CGCACCACGACGATGACGTTC	GACCAATAGCATCTGTGCCAGAG	TCCTAAACCATTCACCAAGAGCC		GTGGAGGGAGGCCTGGAC	ATGCCACACAGCCAGCTCAC	GCTATGTCTTTGCACCAGCCACC		AGCCGAGCATACACACCACC	ATCCTACAACCGAGCCAACCG	CCGCTGAACTCAGTCAATGGC	TGGGCAGTTTGACTTCAGCA	GTGTTCGAGGGAGTGATAGGG		TGTTGGCCGGCCTTATGGTG	GGAGACTTCCGACTTCCTTACAGG	GGACTTGCGAGACTTCGTGAGGAG	CTTCTCTTCCCTTCATTCTTCGCC			CCCCGAGGACAACCTGGAGATCGTT	CAACCACAGATCAGGGACAGGAGC	GCTCTTTGTGAGTGAGGGTGG		AGAAGGAGATCACTGCCCTGGCACC
	中	1358-1379	3043-3069	227-250	2429-2448	383-402	3000-3020	1985-2007	5448-5470	90-111	3719-3736	1305-1325	179-202	283-302	190-211	1377-1397	467-488	2745-2764	2311-2331	504-526	582-601	1298-1321	1339-1362	5-28	2		245–269	4	П	1	Π
	各	1.5289	╄	1	1	1_	_	╂	1_	FLOVIF	RORF	11.17	╀	┸	1 5505	1_	<u> </u>	L	AT874	CI D3 F	CI D4 F	18369	ASPF	JMF	RHAMME	AT574	AT850	AT997	DUSPF	KIAAF	
	GenBank参 考配列		AB037780	4=	_		206043 NM 014861	NM 002402		╄	+-	BC002535				TEG50 225802 NM 052963	NM 022145	NM 001793		_		NM 003014					206859 NM 002571	NM 032654	_		
	<u> </u>	215444			_ 1	200616	206043				213194	224233		_		225802	222848				_		218908				206859		_1	212147	7
	細마		TEG37	TEC:38	1112	TEG40	TEG41	TFG42	TFG43	TFG44	TEG45	TEGAR	TEG47	TEC48	TFC49	TF G50	TEG51	TEG52	TEG53	TEG54	TFG55	TEG56	TFG57	TFG58	TF G59	TFG60	TEG61	TFG62	TFG63	TEG64	8アクチン

PCR 法により増幅された産物は 1.0%アガロースゲル電気泳動後、エチジウムブロマイド染色にて確認を行う、または iCyclerQ リアルタイム PCR 解析システム (BIO-RAD 社) により mRNA 量を定量した。

TEG1 の発現解析

5 肺腺癌組織 12 例および正常肺組織 4 例より調製した RNA を用い、定量的 RT-PCR 法により遺伝子発現比較を行った。

PCR の結果、TEG1 遺伝子の mRNA は正常肺組織での発現は認められなかったのに対し、解析した 12 例の肺腺癌組織の内 10 例で明らかに TEG1 遺伝子の高発現が確認された(図1)。

10 同様にして、正常肺 5 例と肺扁平上皮癌 9 例の定量的 PCR 解析を実施した。 PCR の結果、TEG1 遺伝子の mRNA は正常肺組織での発現は認められなかったのに対し、解析した 9 例の肺扁平上皮癌組織の内 3 例で TEG1 遺伝子の発現 亢進が確認された(図 7 3)。

TEG2 の発現解析

5 例の大腸癌組織および同一サンプルの非癌部である正常大腸組織より調製した RNA、ならびに 11 例の胃癌組織および同一サンプルの非癌部である正常胃組織より調製した RNA を用い、RT-PCR 法により遺伝子発現比較を行った。

PCR の結果、TEG2 遺伝子の mRNA は解析した大腸癌においては 5 例中 3 例において、また胃癌においては 11 例中全で明らかに癌部において発現の亢進が確認された(図 2 、 3)。

TEG3 の発現解析

20

25

30

11 例の胃癌組織および同一サンプルの非癌部である正常胃組織より調製した RNA を用い、RT-PCR 法により遺伝子発現比較を行った。

PCR の結果、TEG3 遺伝子の mRNA は解析した胃癌においては 11 例中 9 例で明らかに癌部において発現の亢進が確認された(図 4)。

TEG4 の発現解析

11 例の胃癌組織および同一サンプルの非癌部である正常胃組織より調製した RNA を用い、RT-PCR 法により遺伝子発現比較を行った。

PCR の結果、TEG4 遺伝子の mRNA は解析した胃癌においては 11 例中 7 例で明らかに癌部において発現の亢進が確認された(図 5)。

TEG5 の発現解析

11 例の胃癌組織および同一サンプルの非癌部である正常胃組織より調製した RNA を用い、RT-PCR 法により遺伝子発現比較を行った。

PCR の結果、TEG5 遺伝子の mRNA は解析した胃癌においては 11 例中 7 例で明らかに癌部において発現の亢進が確認された(図 6)。

5 TEG6 の発現解析

9 例の大腸癌組織および同一サンプルの非癌部である正常大腸組織より調製した RNA、ならびに 11 例の胃癌組織および同一サンプルの非癌部である正常胃組織より調製した RNA を用い、RTPCR 法により遺伝子発現比較を行った。

PCR の結果、TEG6 遺伝子の mRNA は解析した大腸癌においては9例中3
10 例で明らかに癌部において発現の亢進が確認され、また胃癌においては解析した全ての正常胃においては全く発現が認められなかったのに対し、2 例で非常に強い mRNA の発現が確認された(図7、8)。

TEG7 の発現解析

11 例の胃癌組織および同一サンプルの非癌部である正常胃組織より調製した 15 RNA を用い、RT-PCR 法により遺伝子発現比較を行った。

PCR の結果、TEG7 遺伝子の mRNA は解析した胃癌においては 11 例中 6 例で明らかに癌部において発現の亢進が確認された(図 9)。

TEG8 の発現解析

11 例の胃癌組織および同一サンプルの非癌部である正常胃組織より調製した 20 RNA を用い、RT-PCR 法により遺伝子発現比較を行った。

PCR の結果、TEG8 遺伝子の mRNA は解析した正常胃においてはほとんど発現が認められないのに対し、胃癌においては 11 例中 1 例で顕著なmRNA の発現が確認された(図 1 0)。

TEG9 の発現解析

25 11 例の胃癌組織および同一サンプルの非癌部である正常胃組織より調製した RNA を用い、RT-PCR 法により遺伝子発現比較を行った。

PCR の結果、TEG9 遺伝子の mRNA は解析した胃癌においては 11 例中 6 例で明らかに癌部において発現の亢進が確認された(図 1 1 1 1 1

TEG10 の発現解析

30 11 例の胃癌組織および同一サンプルの非癌部である正常胃組織より調製した RNA を用い、RT-PCR 法により遺伝子発現比較を行った。

PCR の結果、TEG10 遺伝子の mRNA は解析した胃癌においては 11 例中 10 例で明らかに癌部において発現の亢進が確認された(図 1 2)。

TEG11 の発現解析

5

11 例の胃癌組織および同一サンプルの非癌部である正常胃組織より調製した RNA を用い、RT-PCR 法により遺伝子発現比較を行った。

PCR の結果、TEG11 遺伝子の mRNA は解析した胃癌においては 11 例中 10 例で明らかに癌部において発現の亢進が確認された(図 1 3)。

TEG12 の発現解析

9 例の肝癌組織および同一サンプルの非癌部より調製した RNA を用い、RT 10 PCR 法により遺伝子発現比較を行った。

PCR の結果、TEG12 遺伝子の mRNA は解析した肝癌 9 例中 6 例で明らかに 癌部において発現の亢進が確認され、特に中分化型肝癌(#21、29、32)および 低分化型肝癌(#22、111、115)において顕著な発現亢進が認められた(図 1 4)。

TEG13 の発現解析

9 例の肝癌組織および同一サンプルの非癌部より調製した RNA を用い、RT PCR 法により遺伝子発現比較を行った。

PCR の結果、TEG13 遺伝子の mRNA は解析した肝癌 9 例中 4 例で明らかに 癌部において発現の亢進が確認された(図 1 5)。

20 TEG14 の発現解析

9 例の肝癌組織および同一サンプルの非癌部より調製した RNA を用い、RT PCR 法により遺伝子発現比較を行った。

PCR の結果、TEG14 遺伝子の mRNA は解析した肝癌 9 例全てで癌部において顕著な発現の亢進が確認された(図 1 6)。

TEG15 の発現解析

9 例の肝癌組織および同一サンプルの非癌部より調製した RNA を用い、RT PCR 法により遺伝子発現比較を行った。

PCR の結果、TEG15 遺伝子の mRNA は解析した肝癌 9 例中 6 例で癌部において顕著な発現の亢進が確認された(図 1 7)。

30 TEG16 の発現解析

9 例の肝癌組織および同一サンプルの非癌部より調製した RNA を用い、RT

PCR 法により遺伝子発現比較を行った。

PCR の結果、TEG16 遺伝子の mRNA は解析した肝癌 9 例中 5 例で癌部において顕著な発現の亢進が確認された(図 1 8)。

TEG17 の発現解析

5 10 例の大腸癌組織および同一サンプルの非癌部である正常大腸組織より調製した RNA を用い、RT-PCR 法により遺伝子発現比較を行った。

PCR の結果、TEG17 遺伝子の mRNA は解析した 10 例全てにおいて癌部での発現亢進が確認され、特に 5 例において明らかに高発現していた(図 1 9)。 TEG18 の発現解析

10 11 例の胃癌組織および同一サンプルの非癌部である正常胃組織より調製した RNA を用い、RT-PCR 法により遺伝子発現比較を行った。

PCR の結果、TEG18 遺伝子の mRNA は解析した胃癌においては 11 例中 7 例で明らかに癌部において発現の亢進が確認された(20)。

TEG19 の発現解析

15 肺腺癌組織 12 例および正常肺組織 4 例より調製した RNA を用い、定量的 RT-PCR 法により遺伝子発現比較を行った。

PCR の結果、TEG19 遺伝子の mRNA は正常肺組織での発現は認められなかったのに対し、解析した 12 例の肺腺癌組織の内 3 例で明らかに発現が亢進することが確認された(図 2 1)。

20 TEG20 の発現解析

11 例の胃癌組織および同一サンプルの非癌部である正常胃組織より調製した RNA を用い、RT-PCR 法により遺伝子発現比較を行った。

PCR の結果、TEG20 遺伝子の mRNA は解析した胃癌においては 11 例中 6 例で明らかに癌部において発現の亢進が確認された(図 2 2) 。

25 TEG21 の発現解析

9例の肝癌組織および同一サンプルの非癌部より調製した RNA を用い、RT PCR 法により遺伝子発現比較を行った。

PCR の結果、TEG21 遺伝子の mRNA は解析した肝癌 9 例中 5 例で明らかに 癌部において発現の亢進が確認され、特に中分化型肝癌(#21、27、29、32)

において顕著な発現亢進が認められた(図23)。

TEG22 の発現解析

30

6 例の大腸癌組織および同一サンプルの非癌部である正常大腸組織より調製した RNA を用い、定量的 RT-PCR 法により遺伝子発現比較を行った。

PCR の結果、TEG22 遺伝子の mRNA は解析した 6 例中 3 例で癌部での発現 亢進が確認された(図 2 4)。

5 TEG23 の発現解析

9例の肝癌組織および同一サンプルの非癌部より調製した RNA を用い、RT PCR 法により遺伝子発現比較を行った。

PCR の結果、TEG23 遺伝子の mRNA は解析した肝癌 9 例中 6 例で明らかに 癌部において発現の亢進が確認された(図 2 5)。

10 TEG24 の発現解析

11 例の胃癌組織および同一サンプルの非癌部である正常胃組織より調製した RNA を用い、RTPCR 法により遺伝子発現比較を行った。

PCR の結果、TEG24 遺伝子の mRNA は解析した胃癌においては 11 例中 5 例で明らかに癌部において発現の亢進が確認された(図 2.6)。

15 TEG25 の発現解析

11 例の胃癌組織および同一サンプルの非癌部である正常胃組織より調製したRNAを用い、RTPCR 法により遺伝子発現比較を行った。

PCR の結果、TEG25 遺伝子の mRNA は解析した胃癌においては 11 例中 7 例で明らかに癌部において発現の亢進が確認された(図 2 7)。

20 TEG26 の発現解析

11 例の胃癌組織および同一サンプルの非癌部である正常胃組織より調製した RNA を用い、RT-PCR 法により遺伝子発現比較を行った。

PCR の結果、TEG26 遺伝子の mRNA は解析した胃癌においては 11 例中 4 例で明らかに癌部において発現の亢進が確認された(図 2 8)。

25 TEG27 の発現解析

11 例の胃癌組織および同一サンプルの非癌部である正常胃組織より調製した RNA を用い、RT-PCR 法により遺伝子発現比較を行った。

PCR の結果、TEG27 遺伝子の mRNA は解析した胃癌においては 11 例中 8 例で明らかに癌部において発現の亢進が確認された(図 2 9)。

30 TEG28 の発現解析

8例の胃癌組織および同一サンプルの非癌部である正常胃組織より調製した

RNA を用い、RT-PCR 法により遺伝子発現比較を行った。

PCR の結果、TEG28 遺伝子の mRNA は解析した胃癌においては 8 例中 5 例で明らかに癌部において発現の亢進が確認された(図 3 0)。

TEG29 の発現解析

5 肺腺癌組織 8 例および正常肺組織 4 例より調製した RNA を用い、定量的 RT PCR 法により遺伝子発現比較を行った。

PCR の結果、TEG29 遺伝子の mRNA は正常肺組織での発現は認められなかったのに対し、解析した 8 例の肺腺癌組織の内 7 例で明らかに発現が亢進することが確認された(図 3 1)。

10 TEG30 の発現解析

15

25

肺腺癌組織 12 例および正常肺組織 4 例より調製した RNA を用い、定量的 RT-PCR 法により遺伝子発現比較を行った。

PCR の結果、TEG30 遺伝子の mRNA は正常肺組織での発現はほとんど認められなかったのに対し、解析した 12 例の肺腺癌組織の内 11 例で mRNA の発現が確認され、さらにそれらの内 4 例で正常肺に比べ明らかに発現が亢進することが確認された(図 3 2)。

TEG31 の発現解析

肺腺癌組織 12 例および正常肺組織 4 例より調製した RNA を用い、定量的 RT-PCR 法により遺伝子発現比較を行った。

20 PCR の結果、TEG31 遺伝子の mRNA は正常肺組織での発現はほとんど認められなかったのに対し、解析した 12 例の肺腺癌組織の内 7 例で明らかに発現が亢進することが確認された(図 3 3)。

TEG32 の発現解析

肺腺癌組織 12 例および正常肺組織 4 例より調製した RNA を用い、定量的RT-PCR 法により遺伝子発現比較を行った。

PCR の結果、TEG32 遺伝子の mRNA は正常肺組織での発現に比べ、解析した 12 例の肺腺癌組織の内 4 例で明らかに明らかに発現が亢進することが確認された(図 3 4)。

TEG33 の発現解析

30 上記と同様に肺腺癌組織 12 例および正常肺組織 4 例より調製した RNA を用い、定量的 RT-PCR 法により遺伝子発現比較を行った。

PCR の結果、TEG33 遺伝子の mRNA は正常肺組織での発現は認められなかったのに対し、解析した 12 例の肺腺癌組織の内 9 例で mRNA の発現が確認され、特に 4 例において極めて高い mRNA の発現が確認された(図 3 5)。

TEG34 の発現解析

5 11 例の胃癌組織および同一サンプルの非癌部である正常胃組織より調製した RNA を用い、RT-PCR 法により遺伝子発現比較を行った。

PCR の結果、TEG34 遺伝子の mRNA は解析した 11 例中 8 例において明らかに癌部において発現の亢進が確認された(図 3 6)。

TEG35 の発現解析

10 11 例の胃癌組織および同一サンプルの非癌部である正常胃組織より調製した RNA を用い、RT-PCR 法により遺伝子発現比較を行った。

PCR の結果、TEG35 遺伝子の mRNA は解析した 11 例中 7 例において明らかに癌部において発現の亢進が確認された(図 3 7)。

TEG36 の発現解析

15 11 例の胃癌組織および同一サンプルの非癌部である正常胃組織より調製した RNA を用い、RT-PCR 法により遺伝子発現比較を行った。

PCR の結果、TEG36 遺伝子の mRNA は解析した 11 例中 8 例において明らかに癌部において発現の亢進が確認された(図38)。

TEG37 の発現解析

20 11 例の胃癌組織および同一サンプルの非癌部である正常胃組織より調製した RNA を用い、RT-PCR 法により遺伝子発現比較を行った。

PCR の結果、TEG37 遺伝子の mRNA は解析した 11 例中 7 例において明らかに癌部において発現の亢進が確認された(図39)。

TEG38 の発現解析

25 11 例の胃癌組織および同一サンプルの非癌部である正常胃組織より調製した RNA を用い、RT-PCR 法により遺伝子発現比較を行った。

PCR の結果、TEG38 遺伝子の mRNA は解析した 11 例中 8 例において明らかに癌部において発現の亢進が確認された(図 40)。

TEG39 の発現解析

30 11 例の胃癌組織および同一サンプルの非癌部である正常胃組織より調製した RNA を用い、RT-PCR 法により遺伝子発現比較を行った。

PCR の結果、TEG39 遺伝子の mRNA は解析した全体的に癌部での発現が高い傾向が認められ、特に 11 例中 6 例で癌部において発現の亢進が確認された(図 4 1)。

TEG40 の発現解析

5 11 例の胃癌組織および同一サンプルの非癌部である正常胃組織より調製した RNA を用い、RT-PCR 法により遺伝子発現比較を行った。

PCR の結果、TEG40 遺伝子の mRNA は解析した 11 例中 4 例において明らかに癌部において発現の亢進が確認された(図 4 2)。

TEG41 の発現解析

10 11 例の胃癌組織および同一サンプルの非癌部である正常胃組織より調製した RNA を用い、RT-PCR 法により遺伝子発現比較を行った。

PCR の結果、TEG41 遺伝子の mRNA は解析した 11 例中 4 例において明らかに癌部において発現の亢進が確認された(図 4 3)。

TEG42 の発現解析

15 11 例の胃癌組織および同一サンプルの非癌部である正常胃組織より調製した RNA を用い、RT-PCR 法により遺伝子発現比較を行った。

PCR の結果、TEG42 遺伝子の mRNA は正常胃においては全体的に発現が低いのに対し、解析した 11 例中 6 例において明らかに癌部において発現の亢進が確認された(図 4 4)。

20 TEG43 の発現解析

25

30

11 例の胃癌組織および同一サンプルの非癌部である正常胃組織より調製した RNA を用い、RT-PCR 法により遺伝子発現比較を行った。

PCR の結果、TEG43 遺伝子の mRNA は正常胃ではほとんど mRNA の発現が認められなかったのに対し、癌部においては解析した 11 例中 9 例でmRNA の発現が確認された(図 4 5)。

TEG44 の発現解析

9例の肝癌組織および同一サンプルの非癌部より調製した RNA を用い、RT PCR 法により遺伝子発現比較を行った。

PCR の結果、TEG44 遺伝子の mRNA は解析した肝癌 9 例中 5 例で癌部において明らかに発現の亢進が確認された(図 4 6)。

TEG45 の発現解析

11 例の肝癌組織および同一サンプルの非癌部より調製した RNA を用い、RT PCR 法により遺伝子発現比較を行った。

PCR の結果、TEG45 遺伝子の mRNA は解析した肝癌 11 例中 7 例で癌部において明らかに発現の亢進が確認された(図 4 7)。

5 TEG46 の発現解析

9 例の肝癌組織および同一サンプルの非癌部より調製した RNA を用い、RT PCR 法により遺伝子発現比較を行った。

PCR の結果、TEG46 遺伝子の mRNA は解析した肝癌 9 例全てにおいて癌部での発現の方が高い値を示し、特に 6 例で癌部において顕著な発現の亢進が確認された(図 4 8)。

TEG47 の発現解析

10

10 例の大腸癌組織および同一サンプルの非癌部である正常大腸組織より調製した RNA を用い、定量的 RTPCR 法により遺伝子発現比較を行った。

PCR の結果、TEG47 遺伝子の mRNA は解析した 10 例中 8 例のサンプルに おいて正常大腸組織に比較し、明らかに癌部での発現亢進が認められた(図 4 9)。

<u>TEG48 の発現解析</u>

10 例の大腸癌組織および同一サンプルの非癌部である正常大腸組織より調製した RNA を用い、RTPCR 法により遺伝子発現比較を行った。

20PCR の結果、TEG48 遺伝子の mRNA は解析した 10 例中 9 例において癌部での発現亢進が確認された(図 5 0)。

TEG49 の発現解析

6 例の大腸癌組織および同一サンプルの非癌部である正常大腸組織より調製した RNA を用い、定量的 RT-PCR 法により遺伝子発現比較を行った。

PCR の結果、TEG49 遺伝子の mRNA は解析した 6 例中 3 例において非癌部に比べ癌部において発現が亢進していることが確認された(図 $5\ 1$)。

TEG50 の発現解析

6 例の大腸癌組織および同一サンプルの非癌部である正常大腸組織より調製した RNA を用い、RT-PCR 法により遺伝子発現比較を行った。

30 PCR の結果、解析した 6 例全ての正常大腸組織では TEG50 由来のバンドの 増幅は認められなかったのに対し、癌部では 6 例中 4 例においてバンドの増幅

が認められ、癌部において発現が亢進することが確認された(図52)。 TEG51の発現解析

6 例の大腸癌組織および同一サンプルの非癌部である正常大腸組織より調製した RNA を用い、RT-PCR 法により遺伝子発現比較を行った。

5 PCR の結果、TEG51 遺伝子の mRNA はいずれの正常大腸組織でも PCR による増幅が認められなかったのに対し、解析した 6 例の大腸癌組織の内 5 例でTEG51 遺伝子の明らかな増幅が確認されたことより、大腸癌において発現が亢進していることが確認された(図 5 3)。

TEG52 の発現解析

10 肺腺癌組織 12 例および正常肺組織 4 例より調製した RNA を用い、定量的 RT-PCR 法により遺伝子発現比較を行った。

PCR の結果、TEG52 遺伝子の mRNA は正常肺組織に比べ解析した 12 例中 7 例で明らかに肺癌において発現が亢進することが確認された(図54)。

TEG53 の発現解析

15 肺腺癌組織 8 例および正常肺組織 4 例より調製した RNA を用い、定量的 RT PCR 法により遺伝子発現比較を行った。

PCR の結果、TEG53 遺伝子の mRNA は正常肺組織での発現は認められなかったのに対し、解析した 8 例の肺腺癌組織の全てで発現の亢進が確認された(図 5 5)。

20 TEG54 の発現解析

11 例の胃癌組織および同一サンプルの非癌部である正常胃組織より調製した RNA を用い、RT-PCR 法により遺伝子発現比較を行った。

PCR の結果、TEG54 遺伝子の mRNA は正常胃においては解析した 11 例中 9 例において明らかに癌部において発現の亢進が確認された(図 5 6)。

25 TEG55 の発現解析

11 例の胃癌組織および同一サンプルの非癌部である正常胃組織より調製した RNA を用い、RT-PCR 法により遺伝子発現比較を行った。

PCR の結果、TEG55 遺伝子の mRNA は解析した 11 例中 6 例において明らかに癌部において発現の亢進が確認された(図 5 7)。

30 TEG56 の発現解析

11 例の胃癌組織および同一サンプルの非癌部である正常胃組織より調製した

RNA を用い、RTPCR 法により遺伝子発現比較を行った。

PCR の結果、TEG56 遺伝子の mRNA は正常胃においては全体的に発現が低いのに対し、解析した 11 例中 9 例において明らかに癌部において発現の亢進が確認された(図 5 8)。

5 TEG57 の発現解析

9 例の肝癌組織および同一サンプルの非癌部より調製した RNA を用い、RT PCR 法により遺伝子発現比較を行った。

PCR の結果、TEG57 遺伝子の mRNA は解析した肝癌 9 例中 5 例で癌部において明らかに発現の亢進が確認された(図 5 9)。

10 TEG58 の発現解析

9 例の肝癌組織および同一サンプルの非癌部より調製した RNA を用い、RT PCR 法により遺伝子発現比較を行った。

PCR の結果、TEG58 遺伝子の mRNA は解析した肝癌 9 例中 5 例で癌部において明らかに発現の亢進が確認された(図 6 0)。

15 TEG59 の発現解析

20

25

9 例の肝癌組織および同一サンプルの非癌部より調製した RNA を用い、RT PCR 法により遺伝子発現比較を行った。

PCR の結果、TEG59 遺伝子の mRNA は解析した非癌部 9 例においては発現量が全体的に少ないのに対し、解析した肝癌 9 例全てで癌部において明らかに発現の亢進が確認された(図 6 1)。

TEG60 の発現解析

9 例の肝芽腫組織および 2 例の正常肝臓より調製した RNA を用い、RT-PCR 法により遺伝子発現比較を行った。

PCR の結果、TEG60 遺伝子の mRNA は解析した正常肝臓においてはほとんど発現が認められないのに対し、解析した肝芽腫 9 例の内 8 例において明らかに発現の亢進が確認された(図 6 2)。

TEG61 の発現解析

肺腺癌組織 12 例および正常肺組織 4 例より調製した RNA を用い、定量的 RT-PCR 法により遺伝子発現比較を行った。

30 その結果、TEG61 遺伝子の mRNA は正常肺組織での発現は認められなかったのに対し、解析した 12 例の肺腺癌組織の内 3 例で PAEP 遺伝子の高発現が確

認された(図63)。

TEG62 の発現解析

肺腺癌組織 12 例および正常肺組織 4 例より調製した RNA を用い、定量的 RT-PCR 法により遺伝子発現比較を行った。

5 PCR の結果、TEG62 遺伝子の mRNA は正常肺組織での発現に比べ、解析した 12 例の肺腺癌組織の内 8 例で明らかに発現が亢進することが確認された(図 6 4)。

TEG63 の発現解析

9 例の肝癌組織および同一サンプルの非癌部より調製した RNA を用い、RT 10 PCR 法により遺伝子発現比較を行った。

PCR の結果、TEG63 遺伝子の mRNA は解析した非癌部 9 例においては発現がほとんど認められないのに対し、解析した肝癌 9 例中 8 例で明らかに発現の亢進が確認された(図 6 5)。

TEG64 の発現解析

9 例の肝癌組織および同一サンプルの非癌部より調製した RNA を用い、RT PCR 法により遺伝子発現比較を行った。

PCR の結果、TEG64 遺伝子の mRNA は解析した肝癌 9 例中 8 例で癌部において明らかに発現の亢進が確認された(図 6 6)。

以上の結果より、これらの遺伝子、または蛋白の現量量を測定することで癌の 20 診断に用いられることが明らかになった。

実施例3

肝癌発現遺伝子 TEG12 の全長 cDNA の単離、同定

上記の Gene chip 解析ならびに RT-PCR 解析の結果、肝癌において発現が亢 25 進することが明らかになった TEG12 の cDNA 配列を明らかにするために、 cDNA の単離、同定を試みた。

すなわち、Gene chip 解析の際にプローブ配列の由来となった EST (GenBank; BF057073:配列番号 2 5 4) の近傍に存在する EST (GenBank; BU844373) を GenBank より抽出し各 EST にハイブリダイズするプライマー 80 をデザインし PCR による cDNA の増幅を行った。PCR はヒト肝癌細胞株である Hep3B、HuH6、HepG2 より調製した RNA を等量ずつ用い作製した一本鎖

10

25

cDNA を鋳型とし、各 5 pmole の PCR プライマーLS557(ATCCGCCAGG TGAAAGCCAA GTC:配列番号 2 5 5)ならびに LS589(GGGATTCACA TTACCACGGC AGTGC:配列番号 2 5 6)を用い実施した。なお、PCR は LA-PCR キット(宝酒造社製)を用い、94℃で 30 秒、63℃で 30 秒、そして72℃で 5 分からなるサイクルを 35 サイクル実施した結果、約 2000 bp のバンドが増幅された。PCR 増幅産物を pGEM-T easy ベクター(Promega 社製)に挿入した後、増幅遺伝子の塩基配列を定法により解析した結果、元々の EST(BF057073)の DNA 配列より 5'側の上流領域の配列を含む遺伝子であることが明らかになった。なお、PCR により増幅された DNA 配列は配列番号 2 5 7 に示す。

続いて、BF057073 の近傍にあると考えられる別の EST 配列 (BU859386) と上記により単離・同定された遺伝子の配列を元にデザインした PCR プライマーを用い PCR を実施した。PCR プライマーとしては各 5 pmole の LS858 (ATGGCTTCGT TCCCCGAGAC CGATTC:配列番号 2 5 8) ならびに

LS859 (GAAGACGAGG ATTCGATTGT TGCCAAAGT CCACC:配列番号 2 5 9) を用い、95℃で30 秒、68℃で3分のサイクルからなる反応を35 サイクル行った以外は上記と同様の条件にて実施した結果、約2,500bpのバンドが増幅された。PCR 増幅産物は上記と同様に pGEM-T easy ベクターに挿入した後、塩基配列の同定を行った結果、さらに5'-側の配列を含むことが明らかになった。なお、PCR により増幅された DNA 配列は配列番号 2 6 0 に示す。

以上の PCR 法により得られた 2 つの増幅産物の配列を基に全長 3,401 bp からなる新規 cDNA を同定し、一つのオープン・リーディング・フレームが見出された(図 6 7)。その塩基配列を配列番号 1 5 に、また塩基配列から類推されるアミノ酸配列を配列番号 7 2 に示した。今回単離・同定された配列を基に Blast検索を実施した結果、GenBank No. XM_067369(配列番号 2 6 3)と相同性を示すことが明らかになったものの、一部配列が異なっている領域が認められた(図 6 8)。以上の結果より肝癌細胞において特異的に発現が亢進する新規遺伝子を単離・同定し、K#1 と命名した。

今回単離した塩基配列より類推されるアミノ酸配列を元に既知蛋白との相同性 30 検索を行った結果、ヒト TRIM3α(Tripartite motif-containing 3、GenBank 番号 NM_006458)と 28.6%の相同性を、ヒト TRIM2 と 27.5%の相同性をそれ

ぞれ示した。TRIM ファミリーは現在までに 37 種が報告されており、いくつか の特徴的なモチーフをもつことが知られている(Reymond A., ら、EMBO J. (2001) 20. 2140-2151)。 そこで、K#1 のアミノ酸配列を基にモチーフ解析を行 った結果、アミノ酸配列の相同性と同様に TRIM3 ならびに TRIM2 と比較的類 似したモチーフ構造を持つことが明らかになり、実際に TRIM3α とは図69 に 5 示すように特徴的なモチーフが保存されていた。しかしながら、既知の TRIM ファミリーには完全に K#1 の示すモチーフ構造と同一の構造を示す分子は存在 していないことより、今回単離・同定した K#1 は TRIM2 および TRIM3 に比較 的類似した新規 TRIM 分子であることが強く示唆された。また、今回単離した K#1 と同様に TRIM 3 と同様の構造を示すラット BERP は、細胞内に局在し、 10 ミオシンV等と共役し蛋白の細胞内輸送に関与すること、あるいは神経突起の 伸展に関与することが示唆されている(El-Husseini,Aら、Biochem. Biophys. Res. Commun., 267, 906-911, 2000, El-Husseini, A 5, J. Biol. Chem. 274, 19771·19777、1999)。以上のことより、今回同定した K#1 蛋白は TRIM ファ ミリーに属し、さらにラット BERP と同様に細胞内の蛋白輸送などに関与する 15 ことで細胞の形態形成や増殖などに関与する可能性が考えられ、肝癌等の発現が 亢進する病態において重要な役割を示すこと、ならびに医薬品のターゲット分子 としての可能性が考えられた。

20 実施例 4

25

30

4-1. 肝癌発現遺伝子 (TEG23) の全長 cDNA の単離、同定

上記の Gene chip 解析ならびに RT-PCR 解析の結果、肝癌において発現が亢進することが明らかになった TEG23 の全長 cDNA 配列を明らかにするために、RACE(Rapid amplification of cDNA ends)法を用い cDNA の単離、同定を試みた。

すなわち、Gene chip 解析の際のプローブ配列(229349_at_u133B)より 5'-側の配列を同定するために SMART RACE cDNA Amplification Kit (Clontech 社製) を用いて 5'-RACE 解析を実施した。初めに、プローブの由来となったヒト EST (GenBank Accession No.AL039884:配列番号 2 6 1) の配列を元に設計したプライマーLS900(配列番号 2 6 2:GGGTTCACTT TGGTCTCTAG TACGG)を用い、肝癌細胞株 HepG2、HuH6、ならびに Hep3B より調製した

30

全 RNA をそれぞれ等量ずつ混合した 1000 ng の全 RNA よりキット添付の方法 に従い一本鎖 cDNA を合成した。続いて、合成した一本鎖 cDNA を鋳型として PCR により 5'-側の配列を含む cDNA を増幅した。すなわち、 $1.25\,\mu$ L の一本鎖 cDNA、5 pmole の LS900 を PCR プライマーとして用い、キット添付の方法に 従い PCR 反応を行った。PCR は初めに 94℃で 1 分間編成を行った後、98℃で 5 10 秒、68℃で 3 分のサイクルからなる反応を 35 サイクル、そして 72℃で 5 分 間インキュベートした。約5,000 bp の PCR 産物を pGEM-T easy ベクター (Promega 社製) に挿入し、常法により大腸菌 DH5α (東洋紡社製) を形質転 換後、得られた形質転換体よりプラスミド DNA を調製した。プラスミド DNA 中の挿入遺伝子の塩基配列を解析した結果、二種類の塩基配列持つ clone-11 と 10 clone-18 を得た。それぞれの配列の 3'側にヒト EST (GenBank Accession No.AL039884) の配列を付加したものを配列番号64と配列番号65に示す。 今回単離された二種類のクローンいずれにおいてもそれぞれ 250 アミノ酸 (clone-11)、または 210 アミノ酸(clone-18) をコードするオープン・リーデ 15 ィング・フレームを持つことが明らかになった(図70、71)。なお、clone・ 11より類推されるアミノ酸配列を配列番号81に、clone-18より類推されるア ミノ酸配列を配列番号82に示す。今回得られた二種のクローンにおいて類推さ れるアミノ酸配列を比較すると、clone-11 は clone-18 より N 末側に 40 アミノ 酸長いことより、今回単離された二種のクローンは 5'-側の使用しているエクソ ンの異なるスプライシング・バリアントである可能性が予測された。以上の結果 20 より肝癌細胞において発現が亢進する新規遺伝子を単離・同定し、K#2と命名し た。

K#2 (clone-11) のアミノ酸配列を基に Blast 検索を実施し、類縁の蛋白を同定した結果、ヒト LIN-28 (GenBank No. NM_024674) (配列番号 2 6 4) と71.8%の相同性、線虫 LIN-28 とは(GenBank No. NM_059880) (配列番号 2 6 5) と 33.1%の相同性を示すことが明らかになった。LIN-28 ホモログは線虫やショウジョウバエに加えマウス、ヒトといった高等生物においても保存されている蛋白であることより(Moss, E.G.ら、Dev. Biol.、258、432-442、2003)、ヒト LIN-28、線虫 LIN-28 に加え、さらにアフリカツメガエル LIN-28 (GenBank No.AF521098) (配列番号 2 6 6) 、ショウジョウバエ LIN-28

(GenBank No.AF521096) (配列番号267)、マウス LIN-28 (GenBank

No.NM_145833) (配列番号 2 6 8) を加え、それぞれのアミノ酸配列を比較したところ、いずれにおいてもコールド・ショック・ドメインおよび Zn フィンガー・ドメインを保持することが明らかとなったことより(図72)、今回単離・同定した K#2 は新たなヒト LIN・28 ホモログである可能性が強く示唆された。 なお、LIN・28 は mRNA に結合しmRNA からの翻訳や mRNA の安定性に関与することで、発生期の細胞運命の制御に関わるタンパク質であることが明らかになっている (Moss,E.G.ら、Cell、88、637・646、1997)。以上のことより、 K#2 蛋白も LIN・28 と同様の機能を有する可能性が考えられ、ヒト発生期の制御、あるいは癌細胞の発生、増殖、あるいは肝炎ウイルス等のウイルスの複製等に関 与することが予測された。

4-2. 抗 K#2 抗体の作製

25

30

抗 K#2 抗体を用いた癌の検出が可能かどうかを明らかにするために、抗 K#2 抗体の作製を行った。

K#2 の免疫用抗原として K#2 (clone・18) のアミノ酸の部分配列(1-210aa) を GST 融合タンパク質として、組み換え体の調製を実施した。すなわち、K#2 cDNA clone・18 を鋳型とし、プライマーF(配列番号278)、およびプライマーR(配列番号279)を用い PCR 法にて K#2(1・210aa)をコードする遺伝子を増幅し、続いて pGEM・Te ベクター(プロメガ社製)への挿入を行った。塩基配列を定法にて確認した後、制限酵素 EcoRI・NotI を用いて切断した遺伝子断片を pDEST15 (Invitrogen 社製)に挿入し、発現ベクターpDEST15-K#2 を構築した。

配列番号 2 7 8 (F): CACCATGGGATTTGGATTCATCTCCATGAT 配列番号 2 7 9 (R): TGTCTTTTTCCTTTTTTGAACTGAAGGCCCC

続いて、発現ベクターpDEST15-K#2 を上項と同様に GST 結合型抗原タンパク質(k#2(1-210aa))を上項と同様に調製し、K#2 ポリクローナル抗体の作製のため、k#2(1-210aa)-GST 融合タンパク質を免疫したウサギ抗血清の調製を実施した。すなわち、ニュージーランドホワイト種ウサギ(10 週齢雌、日本クレア社製)に PBS 懸濁した K#2_GST 融合タンパク質 $100 \mu g/0.5 m L/ m$ をフロイント完全アジュバント(DIFCO 社)0.5 m L と混合してエマルジョンにしたものを皮下注射により投与して初回免疫を行った。以後 2 週間間隔で、PBS に懸濁した K#2_GST 融合タンパク質 $100 \mu g/0.5 m L/ m$ をフロイント不完全アジュバ

ント $0.5 \, \mathrm{mL}$ と混合してエマルジョンにしたものを、皮下注射により投与して合計 $4 \, \mathrm{回}$ 免疫を実施した。免疫前、 $3 \, \mathrm{回}$ 、そして $4 \, \mathrm{回}$ 目免疫後に採血を実施し、 $K\#2_GST$ 融合タンパク質に対する抗体価上昇を ELISA 法で確認した。抗体価の上昇を確認した後、全採血を行い、K#2 免疫ウサギ抗血清を得た。これを抗 K#2 ポリクローナル抗体とした。

4-3. 抗 K#2 ポリクローナル抗体を用いた K#2 タンパク質分子の検出

上記により調製した K#2 免疫ウサギ抗血清の反応性を確認するために、K#2 強制発現細胞株ならびに各種癌細胞株の細胞ライゼートを用い K#2 の検出を行った。

- K#2 発現用動物細胞発現ベクターは前述の K#2 をコードする cDNA を 10 pcDNA3.1 に挿入し、K#2 遺伝子発現ベクターpcDNA3.1·K#2 とした。そして、 1 µg の発現ベクターpcDNA3.1-K#2 を 2 x 10 ⁵個 HEK293 細胞に FuGene6 試 薬(ロシュダイダイアグノスティック社製)を用いて導入し、K#2 を一過性発 現させた。発現ベクター導入3日後の細胞を回収し、培養細胞を RIPA 緩衝液 15 (150 mM 塩化ナトリウム、1% NP-40、0.5% デオキシコール酸、0.1% SD S、50 mM トリスヒドロキシアミノメタン塩酸塩 (pH8.0)) にて可溶化する ことで細胞ライゼートを調製した。それぞれ3mgタンパク質相当量のライゼー トを SDS-ポリアクリルアミドゲルに供し、SDS-PAGE によりタンパク質を分 離した後、Hybond·P(アマシャムバイオサイエンス社製)に転写した。そして 一次抗体として抗 K#2 ポリクローナル抗体(抗血清 5000 倍希釈)を使用し、 20 二次抗体に HRP 標識抗ウサギ IgG 抗体(ジャクソン社製)を用い、ECL プラ ス (アマシャムバイオサイエンス社製) による検出を行ったところ、K#2 と考 えられるバンドが検出された。
- 同時に各種癌細胞株の細胞ライゼートに関して同様にウエスタンブロット解析 25 を行った。その結果、GeneChipU133の解析結果と一致し、mRNA 発現スコア が高い細胞株においてのみ分子量約 27kDa の全長の K#2 と考えられるバンドを 検出することに成功した(図78)。なお、Li-7 細胞および Hep3B 細胞に関して GeneChip データはない。

4.4 抗 K#2 ポリクローナル抗体を用いた肝癌組織における K#2 のタンパク質30 の発現解析

K#2 癌の組織抽出物を用いて抗 K#2 ポリクローナル抗体によるウエスタンブ

15

ロット解析を実施した。ヒト組織抽出物調製は、組織片に RIPA 緩衝液(150 mM 塩化ナトリウム、1% NP-40、0.5% デオキシコール酸、0.1% SDS、50 mM トリスヒドロキシアミノメタン塩酸塩(pH8.0))を添加して超音波破砕後、遠心して上清画分を回収して行った。各々の抽出サンプルについて蛋白質濃度をブラッドフォード法で定量し、4mg/mL となるように調製した後、SDS-サンプルバッファーと等量混合し、95℃で 5 分間加熱処理を行った。15%ポリアクリルアミドゲルを調製して抽出物サンプルを 10mg ずつアプライし、SDS-PAGEを行った。

上記と同様に、抗 K#2 ポリクローナル抗体によるウエスタンブロット解析を実 10 施したところ、特異的な K#2 付近のバンドが、癌部特異的に検出された(図 7 9)。

以上の結果により、TEG23:K#2 分子は癌部特異的にタンパク質レベルにおいても発現が亢進し、かつ、癌細胞株において分泌されていることが明らかになったことにより、抗 K#2 抗体を用いた癌組織、および血清を用いた診断における有用性が示された。

実施例 5

抗 TEG1: C20orf102 モノクローナル抗体の作製

抗 C20orf102 抗体を用いた癌の検出が可能かどうかを明らかにするために、 20 抗 C20orf102 モノクローナル抗体の作製を行った。

5-1. C20orf102 cDNA の単離

C20orf102 の発現を行うために、まず C20orf102 の cDNA を以下のようにして単離した。肺腺癌組織より前述の方法に従い一本鎖 cDNA を調製し、それを鋳型としてE c o R I またはX h o I の制限酵素サイトのついたプライマーF

25 (配列番号: 2 6 9) と R (配列番号: 2 7 0)を用いて PCR 法にて、C20orf102 予測配列と一致する約 615bp 付近のバンドの検出に成功した。 P C R 用酵素および試薬には、アドバンテージ HF ポリメラーゼミックス(Advantage HF Polymerase Mix; クロンテック社製)およびアドバンテージ HF P C R バッファー(Advantage HF PCR buffer)、2 0 0 μM デオキシヌクレオチド三リン 酸、0.2 μMプライマーを用い、c D N A 1 μLを鋳型にした P C R (9 4 ℃ 3 0 秒、6 8 ℃ 3 0 秒、7 2 ℃ 3 分、3 5 サイクル)を行った。 P C R 法で得ら

れた特異的増幅断片はDNAライゲーションキット(タカラ社製)を用いてpGEM-T e a s yベクター(プロメガ社製)に挿入し、塩基配列を定法により確認したところ、単離した cDNA が C20orf102 に相当することが明らかとなった。なお、プライマーFは C20orf102 遺伝子($GenBank: NM_080607$)の 5-端にハイブリダイズするように、そしてRは 3-端にハイブリダイズするようにデザインした。

配列番号 2 6 9 (F): CGAATTCATGGGGGCCCCGCTCGCCGTAGC 配列番号 2 7 0 (R): CCTCGAGGAGGCTGCAGGCCTCCTGGTCCA 5-2. C20orf102 の免疫用抗原の調製

5

10 PCR産物を組み込んだpGEM-T easyベクターはコンピテント細胞 XL-1 Blue (ストラタジーン社製) へ形質転換し、5-ブロモ-4-クロ ロ-3- β -インドリルーガラクトピラノシド(5-Bromo-4-Chloro-3-Indolyl- β -Galactopyranoside; X-gal) を用いたカラーセレクションを行い、PCR産物 が組み込まれたベクターのみを選出した。形質転換は、コンピテント細胞に10 μL のライゲーション反応産物を加え、30分間氷冷後に、42℃のヒートショ 15 ック45秒、続けて2分間氷冷して形質転換を起こさせた。さらに、抗生物質耐 性遺伝子の発現を行うために抗生剤を含まないLB培地を900πL加え、3 7℃で30分間穏やかに撹拌した。遠心で菌体を回収し、20mg/mLのX-g alを20uL散布させた、アンピシリンを含むLBプレートに菌体をまき込み、 37℃で16時間培養した。プレート上で生育したコロニーのうち、発色をして 20 いないコロニー(PCR産物がベクターに組み込まれていることが予想されるも の)を5個選択し、最終濃度が100µg/mLのアンピシリンを含む5mLのL B培地で37℃、16時間激しく撹拌し、菌体を増殖させた。増殖した菌体の一 部から、フェノール/クロロホルム抽出によってプラスミドDNAを回収し、E 25 COR I $(8U/\mu L)$ を0. $5\mu L$ 、10×H バッファーを $2\mu L$ 、蒸留水 を7. 5μ L加え、37Cで1時間消化を行った。0. 8%のアガロースゲルを 用いた電気泳動で消化物のサイズが目的のPCR産物のサイズと同一であること を確認した。C20orf102の遺伝子が組み込まれたと考えられるプラスミドDN Aの回収はカンタムプレップ プラスミド ミニプレップキット (Quantum) Prep Plasmid MiniPrep Kit (バイオラッド社製)を用いて行った。溶出は蒸 30

留水で行った。塩基配列を定法にて確認した後、制限酵素 EcoRI-XhoI を用いて

切断した遺伝子断片を、大腸菌タンパク質発現用ベクターである pET41a ベクター (Novagen 社製) に挿入に組み換えた。 pET41に組み込まれた遺伝子は、GST融合タンパク質として翻訳される。

pET41を制限酵素(EcoRI および XhoI)で消化し、電気泳動を行い、キアクイック ゲル抽出キットで精製を行った。pGEM-T easyによって増幅した C20orf102 の配列をもつフラグメントはDNAライゲーションキットを用いてpET41に組み込みを行った。

pGEM-T e a s y から精製を行った C20orf102 フラグメント 4μ Lに、ライゲーションバッファー 5μ Lおよび pET 41 を 1μ L加え、 16 $\mathbb C$ で 30 分間保温した。

ライゲーション反応の終了したプラスミドDNAはXL-1 Blueへ形質 転換を行い、カナマイシンを含むLB培地で16時間振盪を行い、菌体を増殖させた。増殖させた大腸菌から、カンタムプレップ プラスミド ミニプレップキットを用いて、プラスミドの精製を行った。pET41へのC20orf102の挿入を確認するために、pETがもつ配列に対するプライマー(配列番号271および272)でシーケンスを行った。

配列番号 2 7 1: TTCGAACGCCAGCACATGGAC 配列番号 2 7 2: GCTAGTTATTGCTCAGCGGTG

5

10

15

20

25

pET41ベクターに組み込まれた C20orf102 を、T7プロモーターを持つ

コンピテント細胞BL21 Codon PLUS RIL (ノバジェン社製) に形質転換させた。

形質転換は、以下の手順で行った。 100μ LのBL21 Codon PLUS RILにpET-C20orf102-FLを 1μ g/ μ L 濃度で 1μ L加え5分間水冷した。その後、42℃の恒温層に20秒間漬け、ヒートショックを与えた。さらに2分間水冷した後、 900μ Lの抗生剤無添加のLBを加え、37℃で10分間インキュベートした後に、遠心($1000\times g$ 、5分)を行った。上清を廃棄した後コンピテント細胞を再懸濁させ、カナマイシンを含んだLBプレートにまきこんで<math>37℃で16時間、選択培養を行った。

大腸菌を用いて発現させた C20orf102 のGST融合タンパク質の精製はGS 30 Tとグルタチオンの結合を利用したアフィニティ精製で行った。まず、培養液を 6000×g、4℃で10分間遠心することで大腸菌の菌体を回収した。菌体溶 解バッファー(50 mM塩化ナトリウム、 1 mM EDTA、 1 mM ジチオスレイトール(DTT)、 <math>50 mMトリスヒドロキシアミノメタン塩酸塩, pH8.

遠心($3000 \times g$ 、 $4 \mathbb{C}$ 、 $5 \mathcal{H}$)でグルタチオンセファロースを回収し、10mL op BS-T(0.5%Triton X-100を含むPBS)で洗浄後、溶出バッファー(50mM還元型グルタチオン、200mM塩化ナトリウム1mM EDTA、1mMDTT、 $200mM Tris-HCl, pH8.0)を加えて<math>4\mathbb{C}$ で1時間転倒混和し、GST融合タンパク質を溶出させた。遠心($3000 \times g$ 、 $4\mathbb{C}$ 、 $5 \mathcal{H}$)によってグルタチオンセファロースを除去し、GST融合 C20orf102 精製蛋白質を得た。PD-10カラム(アマシャムバイオサイエンス社製)でPBS溶液とし、ブラッドフォード法によってタンパク質 濃度を定量し、SDS-PAGEによって純度を検定し、免疫に必要なタンパク

オサイエンス征襲)でPBS溶液とし、フラットフォート伝によってダンパク質 濃度を定量し、SDS-PAGEによって純度を検定し、免疫に必要なタンパク 質の量および純度を満たしていることを確認し、このタンパク質を以下に示すモノクローナル抗体作製のための免疫原とした。

5-3. C20orf102 モノクローナル抗体の作製

C20orf102 融合蛋白質を吸着させた。

5

10

15

20 ヒト C20orf102 の完全長蛋白質のGST-融合発現物(大腸菌発現物)精製品を免疫原とした。マウス(BALB/c雌6週齢)に50μg/匹で3回免疫した後、血清中の抗体価を検定した。抗体価検定法として、免疫原0.5μg/wellを固相化したELISA用プレートに、予めGST蛋白質で抗GST抗体のノイズを吸収させた免疫マウス血清の希釈列を反応させ、HRP標識抗マウス1が、大力を受けるを経て、基質添加後に得られた発色について450nmの吸光度を測定する方法(免疫抗原固相ELISA法)を使用した。

抗体価亢進を認めたマウスに $25\mu g$ / 匹を最終免疫し、72 時間後に脾臓細胞を採取し、骨髄腫細胞(P3 / NSI-1-Ag4-1)と細胞融合

(Kohler G, Milstein C: Nature 256, 495(1975)) を行った。HAT選択培地で 30 培養を行うことにより、ハイブリドーマを得た。ハイブリドーマの培養上清を予めGST蛋白質で吸収させた後に免疫抗原固相ELISAを行い、C20orf102

現物)に対して反応するものを一次選抜した。免疫抗原ELISA陽性のバイブリドーマについては、COS7細胞にC20orf102を強制発現させた細胞株のタンパク質抽出液を用いたウエスタン・ブロッティングにおいて特異性を検定した。陽性のものについて限界希釈法にてクローニングを行い、モノクローナル抗体産生株を樹立した。抗体産生ハイブリドーマをBALB/cマウスに接種することによってマウス腹水を得た。腹水中のモノクローナル抗体を硫安塩析法で精製し、精製抗体を調製した。以上により、抗 C20orf102 抗体 H9615 を作製した。

実施例 6

5

10 <u>抗 C20orf102 モノクローナル抗体を用いた C20orf102 タンパク質分子の検出</u> 上記により調製した抗 C20orf102 モノクローナル抗体 H9615 の反応性を確認 するために、C20orf102 強制発現細胞株ならびに各種癌細胞株の細胞ライゼー トを用い C20orf102 の検出を行った。

初めに、C20orf102 強制発現 COS7 細胞を用いウエスタンブロット解析によ り抗 C20orf102 モノクローナル抗体 H9615 の反応性を確認した。動物細胞発現 15 ベクターは前述の C20orf102 をコードする cDNA を pcDNA4Mvs-His (Invitrogen 社製) に挿入した C20orf102 遺伝子発現ベクターを使用した。す なわち、lug の発現ベクターを 5 x 104個の COS7 細胞に FuGene6 試薬(ロシ ュダイダイアグノスティック社製)を用いて導入し、C20orf102を一過性発現 させた。発現ベクター導入3日後の細胞を回収し、培養細胞をRIPA緩衝液 20 (150 mM 塩化ナトリウム、1% NP-40、0.5% デオキシコール酸、0.1% SD S、50 mM トリスヒドロキシアミノメタン塩酸塩 (pH8.0)) にて可溶化する ことで細胞ライゼートを調製した。それぞれ10μgタンパク質相当量のライゼ ートを SDS-ポリアクリルアミドゲルに供し、SDS-PAGE によりタンパク質を 分離した後、Hybond-P (アマシャムバイオサイエンス社製) に転写した。そし 25 て抗 C20orf102 モノクローナル抗体 H9615 (1µg/mL) を使用し、二次抗体に HRP 標識抗マウス IgG 抗体(ジャクソン社製)を用い、ECL プラス(アマシ ャムバイオサイエンス社製)による検出を行ったところ、理論分子量 22.5kDa 付近に特異的な C20orf102 と考えられるバンドが検出された。

30 同時に、各種癌細胞株の細胞ライゼートに関して同様にウエスタンプロット解析を行った。その結果、GeneChipU133の解析結果と一致し、mRNA発現スコ

アが高い細胞株においてのみ分子量約 22.5kDa の全長の C20orf102 と考えられるバンドを検出することに成功した(図74)。

さらに、C20orf102 遺伝子が予測配列として分泌シグナルを有することから、C20orf102 を発現する癌細胞株において分泌型の C20orf102 が培養上清中に検出できるか確認したところ、C20orf102 を高発現する癌細胞株の培養上清中にも強制発現細胞の培養上清と同じ分子量のバンドが抗 C20orf102 モノクローナル抗体により検出された(図74)。

以上の結果より、抗 C20orf102 モノクローナル抗体 H9615 は C20orf102 を特異的に検出できること、ならびに Gene Chip 解析による mRNA 発現の程度と C20orf102 タンパク質の発現の程度が一致することが明らかとなった。さらに、抗 C20orf102 モノクローナル抗体を用いた検討から C20orf102 発現細胞の培養 上清中に分泌型の C20orf102 が存在することが明らかとなったことより、分泌型 C20orf102 を検出することで癌細胞の有無を判断できる可能性が強く示唆された。

15

20

25

10

5

実施例7

<u>抗 C20orf102 モノクローナル抗体を用いた肺腺癌組織における C20orf102 のタ</u>ンパク質の発現解析

肺腺癌の組織抽出物を用いて抗 C20orf102 モノクローナル抗体 H9615 によるウエスタンブロット解析を実施した。ヒト組織抽出物調製は、組織片に RIPA 緩衝液(150 mM 塩化ナトリウム、1% NP-40、0.5% デオキシコール酸、0.1% SDS、50 mM トリスヒドロキシアミノメタン塩酸塩(pH8.0))を添加して超音波破砕後、遠心して上清画分を回収して行った。各々の抽出サンプルについて蛋白質濃度をブラッドフォード法で定量し、4mg/mL となるように調製した後、SDS・サンプルバッファーと等量混合し、95℃で 5 分間加熱処理を行った。15%ポリアクリルアミドゲルを調製して抽出物サンプルを 10μg ずつアプライし、SDS・PAGE を行った。上記と同様に、抗 C20orf102 モノクローナル抗体 H9615 によるウエスタンブロット解析を実施したところ、特異的な約 22.5kDa 付近のバンドが、癌部特異的に検出された(図 7 5)。

30 以上の結果により、TEG1:C20orf102分子は癌部特異的にタンパク質レベル においても発現が亢進し、かつ、癌細胞株において分泌されていることが明らか

になったことにより、モノクローナル抗体を用いた癌組織、および血清を用いた 診断における有用性が示された。

実施例8

5 抗 OK/SW-CL..30 抗体の作製

TEG6: OK/SW-CL..30 に関して、抗 OK/SW-CL..30 抗体を用いた癌の検出が可能かどうかを明らかにするために、抗 OK/SW-CL..30 抗体の作製を行った。8-1. hNotum cDNA の単離

公共データベース(UCSC および GenBank)の検索によって、OK/SW-10 CL..30 の cDNA 配列は部分配列であり、実際には OK/SW-CL..30 配列をすべて 含み、かつ、さらなる5'領域を含んだ仮想タンパク質 LOC147111 (GenBank:NM_178493:配列番号273-274) が全長 ORF 遺伝子である 可能性が見出された。その配列はシグナル配列を含み、かつ、ハエ Notum (NM 168642) と相同性 42.7%示すことから、新規遺伝子として hNotum と命 名し、以下の解析を実施した。まず hNotum の cDNA を以下のようにして単離 15 した。HepG2 細胞より前述の方法に従い一本鎖 cDNA を調製し、それを鋳型と してプライマーWT164(配列番号275)とLS746(配列番号276)を用い て PCR 法にて、hNotum 予測配列と一致する約 1.5kbp 付近のバンドの検出に 成功した。PCR 法は KOD plus キット(TOYOBO 社製)のプロトコールに準 じて調整した反応液に反応液総量の 5%に相当する DMSO を加え、初めに 20 95 ℃で2分間一次変性を行い、94 ℃で15 秒、68℃で90 秒からなるサイクル

25 なお、プライマーWT164 は hNotum 遺伝子(GenBank: NM_178493)の 5 端にハイブリダイズするように、そして LS746 は 3 端にハイブリダイズするようにデザインした。

したところ、単離した cDNA が hNotum であることが明らかとなった。

配列番号 2 7 5 (WT164): CACCGAATTCATGGGCCGAGGGGTGCGCGTG 配列番号 2 7 6 (LS746): CTCGAGGCTTCCGTTGCTCAGCATCCCCAG

を 35 回行なった。PCR 法で得られた特異的増幅断片を TOPO クローニング法

により pENTR (インビトロジェン社製) に挿入し、塩基配列を定法により確認

30 <u>8-2.</u> hNotum の免疫用抗原の調製

hNotum の免疫用抗原としてアミノ酸の部分配列(143aa-496aa)を GST・結

合型タンパク質として、組み換え体の調製を実施した。すなわち、上記の hNotum cDNA を鋳型とし、LS695 プライマー(配列番号 2 7 7)、および LS746(配列番号 2 7 6)を用い PCR 法にて hNotum(143aa-496aa)をコードする遺伝子を増幅し、続いて pGEM-T Easy ベクター(プロメガ社製)への 挿入を行った。塩基配列を定法にて確認した後、制限酵素 EcoRI-XhoI を用いて 切断した遺伝子断片を pET41a ベクター(Novagen 社製)に挿入し、発現ベクターを構築した。

配列番号 2 7 7 (LS695): GAATTCATGCGGCGCCTCATGAGCTCCCGGGA GST 融合抗原タンパク質 (hNortum 143aa-496aa を含む) の調製、および マウス免疫によるモノクローナル抗体の作製は上項と同様に実施した。その結果、 hNotum モノクローナル抗体 H9541 を作製した。

実施例9

5

25

30

抗 hNotum 抗体を用いた hNotum タンパク質分子の検出

15 作製したモノクローナル抗体の反応性を確認するために、hNotum 強制発現 細胞株ならびに各種癌細胞株の細胞ライゼートを用い hNotum の検出を行った。 コントロールには上記で使用した抗原部位 143aa-496aa を pcDNA4 に挿入した ベクターを使用した。予測分子量は 39.9kDa である。ウエスタンプロット解析 は上項と同様に実施し、一次抗体である H9541 は終濃度 100 μg/mL で実施し た。

その結果、図76に示すとおり37kDaマーカー位置付近にhNotum(143aa-496aa)と考えられる特異的なバンドが検出された。

続いて、各種癌細胞株の細胞ライゼートに関して同様にウエスタンブロット解析を行った。その結果、GeneChipU133の解析結果と一致し、mRNA発現スコアが高い細胞株においてのみ分子量約55kDaの全長のhNotumと考えられるバンドを検出することに成功した(図76)。

さらに、hNotum 遺伝子が予測配列として分泌シグナルを有することから、hNotum を発現する癌細胞株において分泌型の hNotum が培養上清中に検出できるか確認したところ、hNotum を高発現する癌細胞株の培養上清中にも強制発現細胞の培養上清と同じ分子量のバンドが抗 hNotum 抗体により検出された(図76)。

以上の結果より、hNotum モノクローナル抗体 H9541 は hNotum を特異的に 検出できること、ならびに GeneChip 解析による mRNA 発現の程度と hNotum タンパク質の発現の程度が一致することが明らかとなった。さらに、抗 hNotum 抗体を用いた検討から hNotum 発現細胞の培養上清中に分泌型の hNotum が存在することが明らかとなったことより、分泌型 hNotum を検出す ることで癌細胞の有無を判断できる可能性が強く示唆された。

実施例10

hNotum 抗体を用いた肝癌組織における hNotum のタンパク質の発現解析

10 肝癌の組織抽出物を用いて抗 hNotum 抗体によるウエスタンブロット解析を 実施した。上記と同様に、hNotum 抗体によるウエスタンブロット解析を実施 したところ、特異的な hNotum 付近のバンドが、癌部特異的に検出され、(図 77)。3 検体調査し、2 検体において陽性であった。、また、検体 26 に関し ては、同一患者より得た 2 ヶ所の肝細胞癌組織(S2、S5)のうち、一箇所の組 15 織で hNortum が陽性であった。

以上の結果により、TEG6:hNotum(OK/SW-CL..30)分子は癌部特異的にタンパク質レベルにおいても発現が亢進し、かつ、癌細胞株において分泌されていることが明らかになったことにより、モノクローナル抗体を用いた癌組織、および血清を用いた診断における有用性が示された。

TEG37:KIAA1359 について、抗 KIAA1359 抗体を用いた癌の検出が可能か

20

5

実施例11

11·1. 抗 KIAA1359 抗体の作製

どうかを明らかにするために、抗 KIAA1359 抗体の作製を行った。すなわち、
25 KIAA1359 の免疫用抗原としてアミノ酸の部分配列(76aa から 88aa)をペプ
チドタンパク質として、常法によりペプチド配列合成を実施した。ペプチド N
末端に C:システイン残基を付加し、Keyhole limpet hemocyanin (KLH) にコ
ンジュゲーションし免疫原とした。そしてモノクローナル抗体は上項と同様に実施した。そしてモノクローナル抗体 A8409A の単離に成功した。

30 ペプチド配列: PEAETRGAKRISPA(配列番号280)

11-2. KIAA1359 cDNA の単離

KIAA1359 の発現を行うために、まず KIAA1359 の cDNA を以下のようにして単離した。KIAA1359 発現細胞である MKN74 細胞より前述の方法に従い一本鎖 cDNA を調製し、それを鋳型としてプライマーF (配列番号 2 8 1) とR (配列番号 2 8 2) を用いて PCR 法にて、KIAA1359 の予測配列と一致する約 1.6kbp 付近のバンドの検出に成功した。PCR 法は Advanvtede HF2 キット (クロンテック社製) のプロトコールに準じて反応液を調製し、初めに 95 ℃で 1 分間一次変性を行い、94 ℃で 15 秒、63 ℃で 30 秒、68 ℃で 2 分からなるサイクルを 35 回行なった後、最後の伸長反応を 68 ℃で 6 分間からなる条件で実施した。PCR 法で得られた特異的増幅断片を TA クローニング法により pGEM-10 T Easy (プロメガ社製) に挿入し、塩基配列を定法により確認したところ、単離した cDNA が KIAA1359 であることが明らかとなった。そして、この cDNA を pcDNA4/myc・His A (Invitrogen 社製) に挿入し、KIAA1359 遺伝子発現ペクターとした。なお、プライマーFは KIAA1359 遺伝子 (GenBank: NM 152673) の 5・端にハイブリダイズするように、そしてR は 3・端にハイブ

NM_152673) の 5'-端にハイブリダイズするように、そしてR は 3'-端にハイブ 15 リダイズするようにデザインした。

配列番号 2 8 1 (F): GGATCCATGGGCTCTCTGGGGTCTGGCTCTGC 配列番号 2 8 2 (R): CTCGAGGCCTCTCCTGACACGCAGTAAGGAGACC 11-3. 抗 KIAA1359 抗体 A8409A を用いた KIAA1359 タンパク質分子の検出上記により作製した抗 KIAA1359 抗体 A8409A の反応性を確認するために、

20 KIAA1359 強制発現細胞株ならびに各種癌細胞株の細胞ライゼートを用い KIAA1359 の検出を行った。

コントロールとして、KIAA1359 を強制発現させた COS7 ライゼートを用い、各種癌細胞株の細胞ライゼートに関して同様にウエスタンブロット解析を行った。A8409A 抗体濃度は 100μg/mL で使用した。その結果、GeneChipU133 の解析スコアの高い、Capan1 において、コントロールの強制発現 KAII1359 と同等な約 100kDa の KAII1359 分子と考えられるバンドの検出に成功した(図80)。11-4. 抗 KIAA1359 抗体 A8409A を用いた胃癌組織における KIAA1359 のタンパク質の発現解析

胃癌の組織抽出物を用いて抗 KIAA1359 抗体 A8409A によるウエスタンブロ 30 ット解析を実施した。ヒト組織抽出物調製は、組織片に RIPA 緩衝液(150 mM 塩化ナトリウム、1% NP-40、0.5% デオキシコール酸、0.1% SDS、50 mM

トリスヒドロキシアミノメタン塩酸塩(pH8.0))を添加して超音波破砕後、遠心して上清画分を回収して行った。各々の抽出サンプルについて蛋白質濃度をブラッドフォード法で定量し、4mg/mL となるように調製した後、SDS・サンプルバッファーと等量混合し、95℃で5分間加熱処理を行った。10%ポリアクリルアミドゲルを調製して抽出物サンプルを10mgずつアプライし、SDS-PAGE を行った。

上記と同様に、抗 KIAA1359 抗体 A8409A によるウエスタンブロット解析を 実施したところ、特異的な 100kDa 付近のバンドが、癌部特異的に検出された (図 $8\ 1$)。

10 以上の結果により、TEG37:KIAA1359分子は癌部特異的にタンパク質レベルにおいても発現が亢進し、かつ、癌細胞株において発現亢進していることが明らかになったことにより、モノクローナル抗体を用いた癌組織、および血清を用いた診断における有用性が示された。

15 実施例 1 2

12-1. 抗 PEG10 抗体の作製

TEG60: PEG10 は通常のコドンユーセージにより翻訳する ORF1 と、ORF1 の終止コドン領域でフレームシフトが起こり、新たに翻訳される ORF2 の存在が、Shigemoto ら、Nucleic Acids Research, 29, 4079-4088, 2001 のマウス PEG10 の報告、あるいは Ono ら、Genomics, 73, 232-237, 2001 のヒト PEG10 のゲノム配列からの予測により、示唆されているが、実験的にヒト PEG10 の ORF2 存在を証明した報告は見つかっていない。そのため、我々は ORF2 部分のフレームシフトが実際に起こっているのかどうか、また、その新たに翻訳された領域が癌組織で存在するどうかを証明するため、予測した ORF2 アミノ酸配 列をもとに抗 PEG10/ORF2 モノクローナル抗体を作製し、証明することを試みた。

ORF2 アミノ酸配列 (配列番号283)

QLSCQGLKVFAGGKLPGPAVEGPSATGPEIIRSPQDDASSPHLQVMLQIHL
PGRHTLFVRAMIDSGASGNFIDHEYVAQNGIPLRIKDWPILVEAIDGRPIAS
GPVVHETHDLIVDLGDHREVLSFDVTQSPFFPVVLGVRWLSTHDPNITWS
TRSIVFDSEYCRYHCRMYSPIPPSLPPPAPQPPLYYPVDGYRVYQPVRYYY

VQNVYTPVDEHVYPDHRLVDPHIEMIPGAHSIPSGHVYSLSEPEMAALRD FVARNVKDGLITPTIAPNGAQVLQVKRGWKLQVSYDCRAPNNFTIQNQYP RLSIPNLEDQAHLATYTEFVPQIPGYQTYPTYAAYPTYPVGFAWYPVGRDG QGRSLYVPVMITWNPHWYRQPPVPQYPPPQPPPPPPPPPPPPSYSTL

5

20

25

30

12-2. PEG10 cDNA の単離

PEG10 の発現を行うために、まず PEG10 の cDNA を以下のようにして単離した。ヒト胎児肝組織より前述の方法に従い一本鎖 cDNA を調製し、それを鋳型としてプライマーF1 (配列番号 284) と R1 (配列番号 285) を用いて PCR 法にて、PEG10 予測配列と一致する約 2200kbp 付近のバンドの検出に成功した。PCR 法は Advantage 2 cDNA PCR キット (Clontech 社製) のプロトコールに準じて反応液を調製し、初めに 94 ℃で 1 分間一次変性を行い、94 ℃で 30 秒、68 ℃で 3 分からなるサイクルを 35 回行なった後、最後の伸長反応を 68 ℃で 10 分間からなる条件で実施した。PCR 法で得られた特異的増幅断片を TA クローニング法により pGEM-T easy (プロメガ社製) に挿入し、塩基配列を定法により確認したところ、単離した cDNA が PEG10 であることが明らかとなった。

なお、プライマーF1 は PEG10 遺伝子(GenBank: AB049834)の 5° -端にハイブリダイズするように、そして R1 は 3° -端にハイブリダイズするようにデザインした。

配列番号 2 8 4 (F1): GGATCCATGACCGAACGAAGAAGGGACGAG 配列番号 2 8 5 (R1): TCTAGACAGGGTACTGTAAGATGGAGGCGG 12-3. PEG10/ORF2 の免疫用抗原の調製およびモノクローナル抗体の作製 PEG10/ORF2 の免疫用抗原としてアミノ酸の部分配列 (ORF2/51aa・251aa) を GST・結合型タンパク質として、組み換え体の調製を実施した。

すなわち、上記の PEG10 cDNA を鋳型とし、F2 プライマー(配列番号 2 8 6)、および R2 プライマー(配列番号 2 8 7)を用い PCR 法にて PEG10 (ORF2/51aa-251aa)をコードする遺伝子を増幅し、続いて pGEM-T easy ベクター(プロメガ社製)への挿入を行った。塩基配列を定法にて確認した後、制限酵素 BamHI-XhoI を用いて切断した遺伝子断片を pET41c ベクター (Novagen 社製)に挿入し、発現ベクターpETc_PEG10_ORF2 を構築した。

10

配列番号 2 8 6 (F2): GGATCCATCTTCCGGGCAGACACACCCT 配列番号 2 8 7 (R2): CTCGAGTGCCATTTCAGGTTCGGACAGTG 続いて、発現ベクターpETc_PEG10_ORF2 を上項と同様に GST 結合型 PEG10_ORF2 タンパク質として調製、マウス免疫によるモノクローナル抗体の 作製を実施した。そして PEG10_ORF2 に対するモノクローナル抗体 H4128 を 作製した。

12-4. 抗 PEG10/ORF2 抗体を用いた PEG10 タンパク質分子の検出

上記により調製した抗 PEG10/ORF2 抗体 H4128 の反応性を確認するために、PEG10 強制発現細胞株ならびに各種癌細胞株の細胞ライゼートを用い PEG10 の検出を行った。

初めに、PEG10強制発現 COS7細胞を用いウエスタンプロット解析により抗 PEG10/ORF2 抗体 B0000A の反応性を確認した。動物細胞発現ベクターは前述 の PEG10 全長をコードする cDNA を pcDNA4HisMaxC(Invitrogen 社製)に 挿入した PEG10 遺伝子発現ベクターpcDNA4/HisMax PEG10 Full を使用し 15 た。PEG10 の N 末端に Xpress タグ配列が挿入されたコンストラクトとなって いる。すなわち、1 µg の発現ベクターpcDNA4/HisMax_PEG10 Full、もしく は陰性対照として pcDNA4(Mock)を 5 x 104個の COS7 細胞と Hep3B 細胞 に FuGene6 試薬(ロシュダイダイアグノスティック社製)を用いて導入し、 PEG10 を一過性発現させた。発現ベクター導入3日後の細胞を回収し、培養細 胞を RIPA 緩衝液(150 mM 塩化ナトリウム、1% NP-40、0.5% デオキシコー 20 ル酸、0.1% SDS、50 mM トリスヒドロキシアミノメタン塩酸塩 (pH8.0)) にて可溶化することで細胞ライゼートを調製した。それぞれ 5 mg タンパク質相当量のライゼートを SDS・ポリアクリルアミドゲルに供し、SDS・ PAGE によりタンパク質を分離した後、Hybond P(アマシャムバイオサイエン ス社製)に転写した。そして一次抗体として抗 Xpress 抗体(5000 倍希釈) 25 (インビトロジェン社製) もしくは PEG10/ORF2 抗体 H4128 (2µg/mL) を使 用し、二次抗体に HRP 標識抗マウス IgG 抗体(アマシャムバイオサイエンス社 製)を用い、ECL プラス(アマシャムバイオサイエンス社製)による検出を行 ったところ、Mock の陰性コントロールに対し、H4128 抗体により、PEG10 と 30 考えられる83kDa、50kDa付近のバンドが得意的に検出された(図82)。ま た、N末に標識された Xpress タグ抗体においても同様に約 83kDa 付近のバン

ドは特異的に検出されている。その約83kDa付近のものはORF1以降フレームシフトを起こし、ORF2の融合した全長サイズでなはないかと考察している。また、抗原としたORF2部分のアミノ酸配列は通常のフレームでは翻訳されないことから、ヒトPEG10においてフレームシフトが行われていることが、抗PEG10/ORF2 抗体 H4128 を用いることにより明らかとなった。

12-5. 抗 PEG10 抗体 H4128 を用いた肝細胞癌組織における PEG10 のタンパク質の発現解析

肝細胞癌および肝芽種の組織抽出物を用いて抗 PEG10 抗体によるウエスタンプロット解析を実施した。ヒト組織抽出物調製は、組織片に RIPA 緩衝液(150 mM 塩化ナトリウム、1% NP・40、0.5% デオキシコール酸、0.1% SDS、50 mM トリスヒドロキシアミノメタン塩酸塩(pH8.0))を添加して超音波破砕後、遠心して上清画分を回収して行った。各々の抽出サンプルについて蛋白質濃度をプラッドフォード法で定量し、4mg/mL となるように調製した後、SDS・サンプルバッファーと等量混合し、95℃で 5 分間加熱処理を行った。12%ポリアクリルアミドゲルを調製して抽出物サンプルを 10mg ずつアプライし、SDS・PAGEを行った。

上記と同様に、抗 PEG10 抗体 H4128 によるウエスタンブロット解析を実施したところ、特異的な 83kDa 付近のバンドと 50kDa 付近のバンドが、癌部特異的に検出された(図83)。このことにより強制発現させた PEG10 のみならず、肝細胞癌、肝芽種組織においても PEG10/ORF2 が存在することが明らかとなった。

以上の結果により、TEG60: PEG10分子は癌部特異的にタンパク質レベルにおいても発現が亢進していることが明らかになったことにより、モノクローナル抗体を用いた癌組織、および血清を用いた診断における有用性が示された。

25

20

実施例13

13-1. DUSP9 の免疫用抗原の調製およびモノクローナル抗体の作製

TEG63: DUSP9 に関して、モノクローナル抗体を用いた癌の検出が可能かどうかを明らかにするために、抗 DUSP9 抗体の作製を行った。

30 DUSP9 の免疫用抗原として DUSP9 全長配列を GST 融合タンパク質として、 組み換え体の調製を実施した。すなわち、HepG2 cDNA を鋳型とし、Ls772 プ の検出を行った。

25

30

ライマー(配列番号288)、および Ls773 プライマー(配列番号289)を 用い PCR 法にて DUSP9(385aa)をコードする遺伝子を増幅し、続いて pGEM・Te ペクター(プロメガ社製)への挿入を行った。塩基配列を定法にて確 認した後、制限酵素 EcoRI・HindIII を用いて切断した遺伝子断片を pET41a べ 5 クター(Novagen 社製)に挿入し、発現ベクターpET41a-DUSP9を構築した。 配列番号288(F):GAATTCATGGAGGGTCTGGGCCGCTC 配列番号289(R):CTCGAGGGTGGGGGCCAGCTCGAAG 続いて、発現ベクターpET41a-DUSP9を用いて上項と同様に GST 融合 DUSP9(1・385aa)タンパク質の調製を行い、マウス免疫によるモノクローナ ル抗体の作製を実施した。そして、抗 DUSP9 抗体#8901 を作製した。 13・2. 抗 DUSP9 抗体を用いた DUSP9 タンパク質分子の検出 上記により調製した抗 DUSP9 抗体#8901 の反応性を確認するために、

初めに、DUSP9 強制発現 COS7 細胞を用いウエスタンブロット解析により抗 DUSP9 抗体#8901 の反応性を確認した。動物細胞発現ベクターは前述の DUSP9 をコードする cDNA を pcDNA4Mys-His(Invitrogen 社製)に挿入した DUSP9 遺伝子発現ベクターpcDNA4-DUSP9 を使用した。すなわち、1 μg の発現ベクターpcDNA4-DUSP9 を 5 x 10⁴個の COS7 細胞に FuGene6 試薬 (ロシュダイダイアグノスティック社製)を用いて導入し、DUSP9 を一過性発

DUSP9 強制発現細胞株ならびに各種癌細胞株の細胞ライゼートを用い DUSP9

現させた。発現ベクター導入 3 日後の細胞を回収し、培養細胞を RIPA 緩衝液 (150 mM 塩化ナトリウム、1% NP-40、0.5% デオキシコール酸、0.1% SD S、50 mM トリスヒドロキシアミノメタン塩酸塩 (pH8.0)) にて可溶化する ことで細胞ライゼートを調製した。その 3 mg タンパク質相当量のライゼートを SDS-ポリアクリルアミドゲルに供し、SDS-PAGE によりタンパク質を分離した 後、Hybond-P(アマシャムバイオサイエンス社製)に転写した。そして一次抗体として DUSP9 抗体(1 μg/mL)を使用し、二次抗体に HRP 標識抗マウス IgG 抗体(ジャクソン社製)を用い、ECL プラス(アマシャムバイオサイエンス社製)による検出を行ったところ、約 42kDa 付近に DUSP9 と考えられるバンドが検出された。

同時に各種癌細胞株の細胞ライゼートに関して同様にウエスタンブロット解析

20

を行った。その結果、GeneChipU133 の解析結果と一致し、mRNA 発現スコアが高い細胞株においてのみ分子量約 42kDa の全長 DUSP9 と考えられるバンドを特異的に検出することに成功した(図84)。

13-3. 抗 DUSP9 抗体を用いた肝細胞癌組織における DUSP9 のタンパク質の発現解析

肝細胞癌の組織抽出物を用いて抗 DUSP9 抗体#8901 によるウエスタンブロット解析を実施した。ヒト組織抽出物調製は、組織片に RIPA 緩衝液(150 mM塩化ナトリウム、1% NP-40、0.5% デオキシコール酸、0.1% SDS、50 mMトリスヒドロキシアミノメタン塩酸塩(pH8.0))を添加して超音波破砕後、遠10心して上清画分を回収して行った。各々の抽出サンプルについて蛋白質濃度をブラッドフォード法で定量し、4mg/mLとなるように調製した後、SDS-サンプルバッファーと等量混合し、95℃で 5 分間加熱処理を行った。12%ポリアクリルアミドゲルを調製して抽出物サンプルを 10mg ずつアプライし、SDS-PAGE を行った。

15 上記と同様に、抗 DUSP9 抗体#8901 によるウエスタンブロット解析を実施したところ、特異的な 42kDa 付近のバンドが、癌部特異的に検出された(図85)。特に低分化型肝細胞癌において3例中3例にて検出された。

以上の結果により、TEG63: DUSP9分子は癌部位において遺伝子発現亢進のみならず、タンパク質レベルにおいても癌部および癌細胞株において、発現亢進していることがモノクローナル抗体を用いることにおいて証明された。このことにより、モノクローナル抗体を用いた癌組織、および血清を用いた診断における有用性が示された。

実施例14

25 <u>14-1. 抗 CystatinSN 抗体の作</u>製

TEG47:CystatinSN に関して、抗 CystatinSN 抗体を用いた癌の検出が可能 かどうかを明らかにするために、抗 CystatinSN 抗体の作製を行った。

すなわち、CystatinSN の免疫用抗原としてアミノ酸の部分配列(60aa から75aa)をペプチドタンパク質として(GenBank No.: NM_001898 参照)、常30 法によりペプチド配列合成を実施した。ペプチド N 末端に C:システイン残基を付加し、Keyhole limpet hemocyanin (KLH) にコンジュゲーションし免疫原

とした。そしてモノクローナル抗体は上項と同様に作製した。そしてモノクローナル抗体の単離に成功した。

ペプチド配列: C-KDDYYRRPLRVLRARQ(配列番号290)

14-2. 抗 CystatinSN 抗体を用いた大腸癌組織における CystatinSN のタンパ ク質の発現解析

大腸癌の組織抽出物を用いて抗 CystatinSN 抗体によるウエスタンブロット解析を実施した。ヒト組織抽出物調製およびウエスタンプロット解析は上項と同様に実施した。抗 CystatinSN 抗体($4\mu g/mL$)によるウエスタンブロット解析を実施したところ、特異的な 15kDa 付近のバンドが、癌部特異的に検出された

10 (図86)。CystatinSN の予測分子量が約 16kDa であることから、癌部において特異的に CystatinSN が発現亢進していることが明らかとなった。

以上の結果により、TEG47:CystatinSN 分子は癌部特異的にタンパク質レベルにおいて発現亢進していることが明らかになったことにより、モノクローナル抗体を用いた癌組織、および血清を用いた診断における有用性が示された。

15

5

実施例15

抗 SFRP4 抗体の作製

TEG56: SFRP4 に関して、抗 SFRP4 抗体を用いた癌の検出が可能かどうかを明らかにするために、抗 SFRP4 抗体の作製を行った。

SFRP4 の発現を行うために、まず SFRP4 の cDNA を以下のようにして単離

20 <u>15-1</u>. SFRP4 cDNA の単離

した。胃癌組織より前述の方法に従い一本鎖 cDNA を調製し、それを鋳型として EcoRI または XhoI の制限酵素サイトのついたプライマーGC898(配列番号291)と GC899(配列番号292)を用いて PCR 法にて、目的サイズと一 致する約 1000bp 付近のバンドの検出に成功した。PCR 用酵素および試薬には、アドバンテージ HF ポリメラーゼミックス(Advantage HF Polymerase Mix;クロンテック社製)およびアドバンテージ HF PCRバッファー(Advantage HF PCR buffer)、200μM デオキシヌクレオチド三リン酸、0.2μMプライマーを用い、c DNA 1μLを鋳型にしたPCR(94℃30秒、68℃30秒、72℃3分、35サイクル)を行った。PCR 法で得られた特異的増幅断片はDNAライゲーションキット(タカラ社製)を用いてpGEM・Teasyベクタ

ー(プロメガ社製)に挿入し、塩基配列を定法により確認したところ、単離した cDNA が SFRP4 に相当することが明らかとなった。

なお、プライマーGC898 は SFR4_ORF 遺伝子 (GenBank: NM_003014) の 5'-端にハイブリダイズするように、そして GC899 は 3'-端にハイブリダイズするようにデザインした。

配列番号 2 9 1 (GC898): CGGGATCCATGTTCCTCTCCATCCTAGTGG 配列番号 2 9 2 (GC899): CGCTCGAGACACTCTTTTCGGGTTTGTTC 15-2. SFRP4 の免疫用抗原の調製

5

15

20

SFRP4 の免疫用抗原として上記の全長 SFRP4 配列を GST-結合型タンパク質 として、組み換え体の調製を実施した。すなわち、上記の pGEM-T に挿入された SFRP4 配列を、制限酵素 EcoRI-XhoI を用いて切断し、そして pET41a ベクター(Novagen 社製)に挿入し、発現ベクターGST-SFRP4 を構築した。

GST 融合抗原タンパク質の調製、およびマウス免疫によるモノクローナル抗体の作製は上項と同様に実施した。その結果、抗 SFRP4 モノクローナル抗体 A7113 を作製した。

<u>15-3.</u> 抗 SFRP4 抗体を用いた胃組織における SFRP4 のタンパク質の発現解析

胃癌の組織抽出物を用いて抗 SFRP4 抗体によるウエスタンブロット解析を実施した。上項と同様に、抗 SFRP4 抗体 A7113(40μ g/mL)によるウエスタンブロット解析を実施したところ、癌部において特異的な約 $50\,\mathrm{k}\,\mathrm{Da}$ 付近のバンドが検出された(図 8 7)。

同時に上記でクローニングした SFRP4 配列を挿入した発現ベクター SFRP4_pcDNA4His・Myc (Invitrogen 社)を COS7 細胞に強制発現させ、その 細胞ライゼートに対する抗 Myc 抗体 (5 千倍希釈、Invitrogen)によるウエス タンブロット解析を実施したところ、臨床検体で検出されたものと同一サイズの バンドが検出された(図88)。そのため、臨床検体で抗 SFRP4 モノクローナル 抗体により検出された 50kDa のバンドは SFRP4 であると考えられ、モノクローナル抗体により SFRP4 が癌部での亢進が特異的に検出されたことが明らかと なった。さらに、SFRP4 を強制発現させた COS7 細胞の培養上清の解析を試み たところ、シグナル配列を持つ SFRP4 が培養上清に分泌することが明らかとなった(図88)。

以上の結果により、TEG56:SFRP4分子は癌部特異的にタンパク質レベルに おいても発現が亢進し、かつ、癌細胞において分泌されていることが示唆された ことにより、モノクローナル抗体を用いた癌組織、および血清を用いた診断にお ける有用性が示された。

5

産業上の利用性

本発明の遺伝子、タンパク質および抗体は、癌の診断および治療、ならびに癌の治療薬の開発において用いることができる。

10

15

請求の範囲

- 1. 配列番号1-65のいずれかに記載されるヌクレオチド配列を有する遺伝子によりコードされるタンパク質またはそのフラグメント。
- 5 2. 配列番号1、2、28、29、30、31、32、51、52、60および61のいずれかに記載されるヌクレオチド配列を有する遺伝子によりコードされるタンパク質またはそのフラグメント。
 - 3. 請求項2記載のタンパク質またはそのフラグメントを含む、肺癌を診断または治療する為の組成物。
- 4. 配列番号3、4、5、6、7、8、9、10、11、12、13、22、23、24、25、26、27、33、34、35、36、37、38、39、40、41、42、53、54および55のいずれかに記載されるヌクレオチド配列を有する遺伝子によりコードされるタンパク質またはそのフラグメント。
 - 5. 請求項4記載のタンパク質またはそのフラグメントを含む、胃癌を診断 または治療する為の組成物。
 - 6. 配列番号3、7、20、21、46、47、48、49および50のいずれかに記載されるヌクレオチド配列を有する遺伝子によりコードされるタンパク質またはそのフラグメント。
- 7. 請求項6記載のタンパク質またはそのフラグメントを含む、大腸癌を診 20 断または治療する為の組成物。
 - 8. 配列番号14、15、16、17、18、19、43、44、45、5 6、57、58、59、62、63、64および65のいずれかに記載されるヌ クレオチド配列を有する遺伝子によりコードされるタンパク質またはそのフラグ メント。
- 25 9. 請求項8記載のタンパク質またはそのフラグメントを含む、肝癌を診断 または治療する為の組成物。
 - 10. 前記遺伝子が、配列番号1、9、10、14、20、22、24、25、26、27、28、29、32、38、39、40、44、51、52、53、54および58のいずれかに記載されるヌクレオチド配列を有する、請求項1記
- 30 載のタンパク質またはそのフラグメント。
 - 11. 前記遺伝子が、配列番号1、9、10、14、20、22、24、25

および26のいずれかに記載されるヌクレオチド配列を有する、請求項1記載の タンパク質またはそのフラグメント。

- 12. 配列番号66-123のいずれかに記載されるアミノ酸配列を有する、請求項1記載のタンパク質またはそのフラグメント。
- 5 13. 請求項1, 2, 4, 6, 8, 10, 11および12のいずかに記載のタンパク質またはそのフラグメントを認識する抗体。

10

15

- 14. 配列番号1-65のいずれかに記載されるヌクレオチド配列もしくはこれに相補的なヌクレオチド配列を有するポリヌクレオチド、およびこれらのポリヌクレオチドと高ストリンジェントな条件下でハイブリダイズするポリヌクレオチド。
- 15. 配列番号1-65のいずれかに記載されるヌクレオチド配列の少なくとも12個の連続するヌクレオチド配列もしくはこれに相補的なヌクレオチド配列を有するポリヌクレオチド、およびこれらのポリヌクレオチドと高ストリンジェントな条件下でハイブリダイズする少なくとも12個のヌクレオチドを有するポリヌクレオチド。
- 16. 配列番号が1、2、28、29、30、31、32、51、52、60 および61のいずれかである、請求項14または15記載のポリヌクレオチド。 17. 請求項16記載のポリヌクレオチドを含む、肺癌を診断または治療する 為の組成物。
- 20 18. 配列番号が3、4、5、6、7、8、9、10、11、12、13、2 2、23、24、25、26、27、33、34、35、36、37、38、3 9、40、41、42、53、54および55のいずれかである、請求項14ま たは15記載のポリヌクレオチド
- 19. 請求項18記載のポリヌクレオチドを含む、胃癌を診断または治療する 25 為の組成物。
 - 20. 配列番号が3、7、20、21、46、47、48、49および50のいずれかである、請求項14または15記載のポリヌクレオチド
 - 21. 請求項20記載のポリヌクレオチドを含む、大腸癌を診断または治療する為の組成物。
- 30 22. 配列番号が14、15、16、17、18、19、43、44、45、 56、57、58、59、62、63、64および65のいずれかである、請求

- 項14または15記載のポリヌクレオチド。
- 23. 請求項22記載のポリヌクレオチドを含む、肝癌を診断または治療する 為の組成物。
- 24. 配列番号が1、9、10、14、20、22、24、25、26、27、
- 5 28、29、32、38、39、40、44、51、52、53、54および58のいずれかである、請求項14または15記載のポリヌクレオチド。
 - 25. 請求項14, 15, 16, 18, 20, 22および24のいずれかに記載のポリヌクレオチドを含むベクター。
 - 26. 請求項25記載のベクターを含む細胞。
- 10 27. 抗癌活性を有する化合物を同定する方法であって、

培養ヒト細胞を試験化合物と接触させ、そして

前記細胞において配列番号1-65のいずれかに記載されるヌクレオチド配列を 含む遺伝子の発現量の変化を引き起こす化合物を抗癌活性を有する化合物として 同定する

- 15 の各工程を含む方法。
 - 28. 請求項1, 2, 4, 6, 8, 10, 11および12のいずかに記載のタンパク質、または請求項14, 15, 16, 18, 20, 22および24のいずれかに記載のポリヌクレオチドの発現量を測定することを特徴とする癌の診断方法
- 20 29. C20orf102 タンパク質を検出することを特徴とする癌の診断方法。
 - 30. 癌が肺癌、肝癌、または膵癌である請求項29記載の診断方法
 - 31. 分泌された C20orf102 タンパク質を検出することを特徴とする請求項29記載の診断方法。
- 3 2. C20orf102 タンパク質を認識する抗体を用いることを特徴とする請求項 25 2 9 記載の診断方法。
 - 33. 血液中、血清中、または血漿中の C20orf102 タンパク質を検出することを特徴とする請求項29記載の診断方法。
 - 34. 以下の工程:
 - (a) 被験者から試料を採取する工程:
- 30 (b) 採取された試料に含まれる C20orf102 タンパク質を検出する工程 を含む癌の診断方法。

- 35. 被験者から採取される試料が血液、血清、または血漿である請求項34記載の診断方法。
- 3 6. C20orf102 タンパク質細胞外領域を検出することを特徴とする請求項 3 4記載の診断方法。
- 5 37. C20orf102 タンパク質を認識する抗体を用いることを特徴とする請求項 34記載の診断方法。

1/66

図1

TEG2(大腸癌)

2/66

TEG2(胃癌)

図3

TEG3

3/66

TEG4

図5

TEG5

4/66

TEG6(大腸癌)

図7

TEG6(胃癌)

5/66

図9

図10

6/66

TEG9

図11

TEG₁₀

図12

7/66

TEG11

図13

TEG12

図14

8/66

図15

TEG14

図16

図17

図18

10/66

TEG17

図19

TEG18

図20

11/66

図21

図22

12/66

図23

図24

図25

#27

#29

#30

#32

#111

#115

TEG24

#21

#22

#26

図26

14/66

図27

図28

15/66

図29

図30

16/66

図31

図32

17/66

図33

図34

18/66

図35

図37

図38

20/66

TEG37

図39

TEG38

図40

21/66

図41

図42

22/66

TEG41

図43

TEG42

図44

23/66

図45

M9

M12 M13 M14 M15 M16 M18

0

#3

#4

#7

M6

24/66

図47

図48

25/66

図49

図50

26/66

TEG49

図51

図52

27/66

TEG51

図53

図54

28/66

図55

図56

29/66

図57

図58

30/66

TEG57

図59

TEG58

図60

31/66

図61

図62

32/66

図63

肺癌

正常肺

図64

33/66

図65

TEG64

図66

ATGGCTTCGTTCCCCGAGACCGATTTCCAGATCTGCTTGCT	60
MetAlaSerPheProGluThrAspPheGlnIleCysLeuLeuCysLysGluMetCysGly	20
TCGCCGGCGCCCTCTCCAACTCGTCCGCGTCGTCCTCCTCGCAGACGTCCACG	120
SerProAlaProLeuSerSerAsnSerSerAlaSerSerSerSerGlnThrSerThr	40
TCGTCGGGGGGCGCGGGGGGGCGCGCGCCTACACGTCCTGCCC	180
SerSerGlyGlyGlyGlyGlyProGlyAlaAlaArgArgLeuHisValLeuPro	60
TGCCTGCACGCCTTCTGCCGCCCCTGCCTCGAGGCGCACCGGCTGCCGGCGGCGGCGGC	240
CysLeuHisAlaPheCysArgProCysLeuGluAlaHisArgLeuProAlaAlaGlyGly	80
GGCGCGGCGGAGAGCCGCTCAAGCTGCGCTGCCCCGTGTGCGACCAGAAAGTAGTGCTA	300
GlyAlaAlaGlyGluProLeuLysLeuArgCysProValCysAspGlnLysValValLeu	100
GCCGAGGCGGCGTATGGACGCGCTGCCTTCGTCCGCCTTCCTGCTTAACAACCTGCTC	360
AlaGluAlaAlaGlyMETAspAlaLeuProSerSerAlaPheLeuLeuAsnAsnLeuLeu	120
GACGCGGTGGTGGCCACTGCCGACGAGCCGCCCCAAGAACGGGCGCGCCGCCCCCG	420
${\tt AspAlaValValAlaThrAlaAspGluProProProLysAsnGlyArgAlaGlyAlaPro}$	140
GCGGGAGCGGCCACACCACCACCACCACCACCACCCCCCC	480
AlaGlyAlaGlyGlyHisSerAsnHisArgHisHisAlaHisHisAlaHisProArgAla	160
TCCGCCTCCGCGCCACTCCCGCAGGCGCCGCAGCCGCCCCGCGCCTTCCCGGCA	540
${\tt SerAlaSerAlaProProLeuProGlnAlaProGlnProProAlaProSerArgSerAla}$	180
CCCGGCGGCCCTGCCGCTCGCGCGCTGCTGCTCCGCCGTCCTCACGGCTGCAGC	600
${\tt ProGlyGlyProAlaAlaSerProSerAlaLeuLeuLeuArgArgProHisGlyCysSer}$	200
TCGTGCGATGAGGGCAACGCAGCTTCTTCGCGCTGCCTCGACTGCCAGGAGCACCTGTGC	660
SerCysAspGluGlyAsnAlaAlaSerSerArgCysLeuAspCysGlnGluHisLeuCys	220
GACAACTGCGTCCGAGCGCACCAGCGCGTGCGCCTCACCAAGGACCACTACATCGAGCGC	720
${\tt AspAsnCysValArgAlaHisGlnArgValArgLeuThrLysAspHisTyrIleGluArg}$	240
GGCCCGCCGGTCCCGCTGCCGCAGCAGCGCGCAGCAGCTCGGGCCCCCCTTT	780
${\tt GlyProProGlyProGlyAlaAlaAlaAlaGlnGlnLeuGlyLeuGlyProProPhe}$	260
CCCGGCCCGCCCTTCTCCATCCTCTCAGTGTTTCCCGAGCGCCTCGGCTTCTGCCAGCAC	840
ProGlyProProPheSerIleLeuSerValPheProGluArgLeuGlyPheCysGlnHis	280

CACGACGACGAGGTGCTGCACCTGTACTGTGACACTTGCTCTGTACCCATCTGTCGTGAG	900
HisAspAspGluValLeuHisLeuTyrCysAspThrCysSerValProIleCysArgGlu	300
TGCACAATGGGCCGGCATGGGGGCCACAGCTTCATCTACCTCCAGGAGGCACTGCAGGAC	960
CysThrMetGlyArgHisGlyGlyHisSerPheIleTyrLeuGlnGluAlaLeuGlnAsp	320
TCACGGGCACTCACCATCCAGCTGCTGGCAGATGCCCAGCAGGGACGACAGGCAATCCAG	1020
SerArgAlaLeuThrIleGlnLeuLeuAlaAspAlaGlnGlnGlyArgGlnAlaIleGln	340
CTGAGCATCGAGCAGGCCCAGACGGTGGCGAACAGGTGGAGATGAAGGCGAAGGTTGTG	1080
LeuSerIleGluGlnAlaGlnThrValAlaGluGlnValGluMetLysAlaLysValVal	360
CAGTCGGAGGTCAAAGCCGTGACTGCGAGGCATAAGAAAGCCCTGGAGGAACGCGAGTGT	1140
${\tt GlnSerGluValLysAlaValThrAlaArgHisLysLysAlaLeuGluGluArgGluCys}$	380
GAGCTGCTGTGGAAGGTAGAAAAGATCCGCCAGGTGAAAGCCAAGTCTCTGTACCTGCAG	1200
GluLeuLeuTrpLysValGluLysIleArgGlnValLysAlaLysSerLeuTyrLeuGln	400
GTGGAGAAGCTGCGGCAAAACCTCAACAAGCTTGAGAGCACCATCAGTGCCGTGCAGCAG	1260
${\tt ValGluLysLeuArgGlnAsnLeuAsnLysLeuGluSerThrIleSerAlaValGlnGln}$	420
GTCCTGGAGGAGGGTAGAGCCTAGACATCCTACTGGCCCGAGACCGGATGCTGGCCCAG	1320
${\tt ValleuGluGluGlyArgAlaLeuAspIleLeuLeuAlaArgAspArgMetLeuAlaGln}$	440
GTGCAGGAGCTGAAGACCGTGCGGAGCCTCCTGCAGCCCCAGGAAGACGACCGAGTCATG	1380
${\bf ValGlnGluLeuLysThrValArgSerLeuLeuGlnProGlnGluAspAspArgValMet}$	460
TTCACACCCCCGATCAGGCACTGTACCTTGCCATCAAGTCTTTTTGGCTTTGTTAGCAGC	1440
${\tt PheThrProProAspGlnAlaLeuTyrLeuAlaIleLysSerPheGlyPheValSerSer}$	480
GGGGCCTTTGCCCCACTCACCAAGGCCACAGGCGATGGCCTCAAGCGTGCCCTCCAGGGT	1500
GlyAlaPheAlaProLeuThrLysAlaThrGlyAspGlyLeuLysArgAlaLeuGlnGly	500
AAGGTGGCCTCCTTCACAGTCATTGGTTATGACCACGATGGTGAGCCCCGCCTCTCAGGA	1560
LysValAlaSerPheThrValIleGlyTyrAspHisAspGlyGluProArgLeuSerGly	520
GGCGACCTGATGTCGGCTGTGGTCCTGGGCCCTGATGGCAACCTGTTTGGTGCAGAGGTG	1620
GlyAspLeuMetSerAlaValValLeuGlyProAspGlyAsnLeuPheGlyAlaGluVal	540
AGTGATCAGCAGAATGGGACATACGTGGTGAGTTACCGACCCCAGCTGGAGGGTGAGCAC	1680
SerAspGlnGlnAspGlvThrTvrValValSerTvrArgProGlnLeuGluGlvGluHis	560

CTGGTATCTGTGACACTGTGCAACCAGCACATTGAGAACAGCCCTTTCAAGGTGGTGGTC	1740
LeuValSerValThrLeuCysAsnGlnHisIleGluAsnSerProPheLysValValVal	580
AAGTCAGGCCGCAGCTACGTGGGCATTGGGCTCCCGGGCCTGAGCTTCGGCAGTGAGGGT	1800
LysSerGlyArgSerTyrValGlyIleGlyLeuProGlyLeuSerPheGlySerGluGly	600
GACAGCGATGGCAAGCTCTGCCGCCCTTGGGGTGTGAGTGTAGACAAGGAGGGCTACATC	1860
AspSerAspGlyLysLeuCysArgProTrpGlyValSerValAspLysGluGlyTyrIle	620
ATTGTCGCCGACCGCAGCAACCGCATCCAGGTGTTCAAGCCCTGCGGCGCCTTCCAC	1920
IleValAlaAspArgSerAsnAsnArgIleGlnValPheLysProCysGlyAlaPheHis	640
CACAAATTCGGCACCCTGGGCTCCCGGCCTGGGCAGTTCGACCGAC	1980
HisLysPheGlyThrLeuGlySerArgProGlyGlnPheAspArgProAlaGlyValAla	660
TGTGACGCCTCACGCAGGATCGTGGTGGCTGACAAGGACAATCATCGCATCCAGATCTTC	2040
CysAspAlaSerArgArgIleValValAlaAspLysAspAsnHisArgIleGlnIlePhe	680
ACGTTCGAGGGCCAGTTCCTCCAAGTTTGGTGAGAAAGGAACCAAGAATGGGCAGTTC	2100
${\tt ThrPheGluGlyGlnPheLeuLeuLysPheGlyGluLysGlyThrLysAsnGlyGlnPhe}$	700
AACTACCCTTGGGATGTGGCGGTGAATTCTGAGGGCAAGATCCTGGTCTCAGACACGAGG	2160
AsnTyrProTrpAspValAlaValAsnSerGluGlyLysIleLeuValSerAspThrArg	720
AACCACCGGATCCAGCTGTTTGGGCCTGATGGTGTCTTCCTAAACAAGTATGGCTTCGAG	2220
AsnHisArgIleGlnLeuPheGlyProAspGlyValPheLeuAsnLysTyrGlyPheGlu	740
GGGGCTCTCTGGAAGCACTTTGACTCCCCACGGGGTGTGGCCTTCAACCATGAGGGCCAC	2280
GlyAlaLeuTrpLysHisPheAspSerProArgGlyValAlaPheAsnHisGluGlyHis	760
TTGGTGGTCACTGACTTCAACAACCACCGGCTCCTGGTTATTCACCCCGACTGCCAGTCG	2340
${\tt LeuValValThrAspPheAsnAsnHisArgLeuLeuValIleHisProAspCysGlnSer}$	780
GCACGCTTTCTGGGCTCGGAGGGCACAGGCAATGGGCAGTTCCTGCGCCCACAAGGGGTA	2400
AlaArgPheLeuGlySerGluGlyThrGlyAsnGlyGlnPheLeuArgProGlnGlyVal	800
GCTGTGGACCAGGAAGGGCGCATCATTGTGGCGGATTCCAGGAACCATCGGGTACAGATG	2460
${\tt AlaValAspGlnGluGlyArgIleIleValAlaAspSerArgAsnHisArgValGlnMet}$	820
TTTGAATCCAACGGCAGCTTCCTGTGCAAGTTTGGTGCTCAAGGCAGCGGCTTTGGGCAG	2520
PheGluSerAsnGlySerPheLeuCysLysPheGlyAlaGlnGlySerGlyPheGlyGln	840

37/66

ATGGACCGCCCTTCCGGCATCGCCATCACCCCCGACGGAATGATCGTTGTGGTGGACTTT	2580
MetAspArgProSerGlyIleAlaIleThrProAspGlyMetIleValValValAspPhe	860
GGCAACAATCGAATCCTCGTCTTCTAATTGCATTTCCTAGGTTTCTGTGTTTTGGGGTGTG	2640
GlyAsnAsnArgIleLeuValPhe***	868
TGTGCGTGTCTCTCTCTCTCTCTCTCTTTCTCTCTCTCT	2700
AAGAAACAGTCTCAGGGAAATTTCTTTTTTTTTTTTTTT	2760
TACAACATTGCTTAAGTCCTACCTCATCTTTATTTTTTTT	2820
TTCTGCAGGGATTGAGCCTGTGAAGTGATAATTTCTATCTA	2880
TCCTTCTGCAACAGGCCCTCTTCCCCTCCTCAGTGGAGTTTGCATTTCCCTCTTCCCCTG	2940
CGTGGGGCATGATATGCACAAGCCTGGCATCTGTATGGCTGGGAGGGCACTGGATGTGTG	3000
TGGTGGGGTGTATTCTGTAGATTGAGCCAAGGAAACACAAAAAAAA	3060
AAACAAAAACTATAAAACATGGAAAAAATAGGATTTGAAATGCATAATTATAGAATACC	3120
TGTGTTCTTGAGAATACTGTTTATATGGGGTTTAGATTATGTTGTTGTTTTTGATCTTT	3180
TTGGAAAATCTTCTCTTTTTAAATGCTGCAACAGAGAAATTTCCTCTGTTCTCTGTTTAT	3240
ACCTCTTAATTGTATTGTCCAAGGCAGACATGATATAAGGAATATGCACTACCGTAGTAA	3300
$\tt CTCCCTGGCCGCAGAAACCACACTGCAAGCCTGTCCGGGGTGGGGTGCTGACTGCCATT$	3360
TGCCACTTTTAAATGGGCACTGCCGTGGTAATGTGAATCCC	3401

図67(続き)

K#1. nuc	1:
	1:ATGCGCGGACTGACCCAGCGGCCGGCGCGGCGGCGGCGGCGGACTTAATCGCGGGCGCA
K#1. nuc	1:
XM_067369. nuc	61:GCGCGAGGCTCGGGACCCAGAGCACCACCTACCGGCGGCACGGTCGGCGCAGCAGGCCCC
	1:
XM_067369. nuc	121:AGAAGGGCGGGAACGCTGTCAAGCCCAGGGGCACTTCGGCGAGGAGCCCCACCCGCCCT
	1:
XM_067369. nuc	181: CCAGCTGACCCTCAGCTGTGGCCCACATCCGGGGCCCAGAGCGCCGCGGAAACGCCGAAG
	1:
XM_067369.nuc	241:CCCGGCCGGCAGATAGCGCGGAAAGCGAAGAAGGAAGTTCCCGTCCCTCCTAAAGCCGAA
K#1. nuc	1:
XM_067369. nuc	301:GCCAAAGCGAAGTCTTTAAAGGCCAAGAAGGCAGTGTTGAAAGGTGTCCGCAGCCACAAA
K#1. nuc	1:
XM_067369.nuc	361: AAAAAGAAGATCCGCACGTCACCCACCTTACGGCGGCCCAAGACACCGCGACTCCGGAGA
K#1. nuc	1:CCCTCCTCCGGGCTGGGTTGCAAATGGCTTCGTTCCCCGAGACCGATT
	* *** * * * * * * * * *
XM_067369. nuc	421: CAGCCCAAATATC-CTCGGAAGAGCGCTCCTAGGAGAAACAAGCTTGACCACTATGCTAT
K#1. nuc	49:TCCAGATCTGCTTGCTGCAAGGAGATGTGCGGCTCGCCGGCGCCGCTCTCCTCCAACT
XM_067369. nuc	* * * * * * * * * * * * * * * * * * *
K#1. nuc	109:C-GTCCGCGTCGTCCTCCTCGCAGACGTCCACGTCGTCGGGGGGGCGGCGGGGGGCGGGGGCGGGGGGGG
XM_067369. nuc	539:TTGTGTTCATTGTGGATGTTAAAGCCAACAAGCACCAGATTAAACAGGCTGTGAAGAAGC
K#1. nuc	168:CCTGGGGCGGCGCGCCCCTACACGTCCTGCCCTGCACGCCTTCTGCCGCCCC
	** * * * * * * * * * * * * * * * * * * *
XM_067369. nuc	599:TCTATGACAAAGATGTGGTCAAGGTCAACACCCTGATTCGGCCTGATGGAGAAGAAGG
K#1. nuc	228:TGCCTCGAGGCGCACCGGCTGCCGGCGGCGGGGGGGGGG
	*** * ** ** ** * * * * * * * * *
YM 067369 nuc	659 · CCCCGCAGCCGCCCCCCCCTTCCCGCTCGGCACCCGGCCCCCTGCCGCTTCCCCGTCGG

K#1. nuc	288:CTGCGCTGCCCCGTGTGCGACCAGAAAGTAGTGCTAGCCGAGGCGGGGGGTATGGACGCG 347 * ***** ** * * * * * * * * * * * * *
XM_067369. nuc	719:CGCTGCTGCTCCGCCGTCCTCACGGCTGCAGCTCGTGCGATGAGGGCAACGCAGCTTCTT 778
'K#1. nuc	348:CTGCCTTCGTCCGCCTTCCTGCTTAACAACCTGCTCGACGCGGTGGTGGCCACTGCCGAC 407 * ** * * * * * * * * * * * * * * * *
XM_067369. nuc	779:CGCGCTGCCTCGACTGCCAGGAGCACCTGTGCGACAACTGCGTCCGAGCGCACCAGCGCG 838
K#1. nuc	408:GAGCCGCCCAAGAACGGGCGCGCCGCGCGCGCGCGGGGGG
XM_067369. nuc	839:TGCGCCTCACCAAGGACCACTACATCGAGCGCGGCCCGGCGGGTCCCGGTGCCGCAGCAG 898
K#1. nuc	467:CCACCGGCACCACGCTCACCACGCGCACCCGCGCGCGCGC
XM_067369. nuc	899:CGGCGCAG-CAGCTCGGGCCCGGCCCCTTTCCCGGCCCGCCCTTCTCCATCCTCTCA 957
K#1. nuc	527:GCAGGCGCCGCAGCCGCCCCCGCGCCTCCCGCTCGGCACCCGGCGGCCCTGCCGCTTCCCC 586 * *** * * * * * * * * * * * * * * * *
XM_067369. nuc	958:GTGTTTCCCGAGCGCCTCGGCTTCTGCCAGCACCACGACGACGAGTTGGGGCTTTTCACT 1017
K#1.nuc	587:GTCGGCGCTGCTGCCGCCGTCCTCACGGCTGCAGCTCGTGCGATGAGGGCAACGCAG- 645 * ** * * * * * * * * * * * * * * * *
XM_067369. nuc	1018: AGTTCTGTGCCTCCAGAGTCCGAAAGGCCTGCAGGCTCCGTGGCCCAGCCGGCATCCGGG 1077
K#1. nuc	646:CTTCTTCGCGCTGCCTCGACTGCCAGGAGCACCTGTGCGACAACTGCGTCCGAGCGCACC 705 * * * * * * * * * * * * * * * * * * *
XM_067369. nuc	1078:CGGGGAATCCAAGGCGAGGAATCCGAGGTCGCCGTCCCCGGAACAGCTGGCCGCGGCCC 1137
K#1. nuc	706:AGCGCGTGCGCCTCACCAAGGACCACTACATCGAGCGCGGCCCGGCCGG
XM_067369. nuc	1138:GCTGCGTGCCGCGGGTCCCGGGAGAGGCGGCGCGCGCGCG
K#1. nuc	766:CAGCAGCGGCGCAGCAGCTCGGGCTCGGGCCGCCCTTTCCCGGCCCGCCC
XM_067369. nuc	1198:CTGGTACATTCTTACATCCAGGCCACTAATATCAGACTAGGTAACACAGTCTTAACAACT 1257
K#1. nuc	826:TCTCAGTGTTTCCCGAGCGCCTCGGCTTCTGCCAGCACCACGACGACGAGGTGCTGCACC 885 * ** * * * * * * * * * * * * * * * *
XM_067369. nuc	$1258: TTTCTGGATAATGAAGCTAAGATTCAGGGCAAACTCTCATGCCAGGAGGTGCTGCACC\ 1315$

K#1. nuc	886:TGTACTGTGACACTTGGTCTGTACCCATCTGTCGTGAGTGCACAATGGGCCGGCATGGGG	945
XM_067369. nuc	1316: TGTACTGTGACACTTGCTCTGTACCCATCTGTCGTGAGTGCACAATGGGCCGGCATGGGG	1375
K#1. nuc	946:GCCACAGCTTCATCTACCTCCAGGAGGCACTGCAGGACTCACGGGCACTCACCATCCAGC	1005
XM_067369. nuc	1376: GCCACAGCTTCATCTACCTCCAGGAGGCACTGCAGGACTCACGGGCACTCACCATCCAGC	1435
K#1. nuc	1006:TGCTGGCAGATGCCCAGCAGGGACGACAGGCAATCCAGCTGA	1047

XM_067369. nuc	1436:TGCTGGCAGATGCCCAGCAGGGACGACAGGCAATCCAGACAAAGCAGAAGAAGCTGCTTC	1495
K#1. nuc	1048:GCATCGAGCAGGCCCAGACGGTGGCGGAACAGGTGGAGATGAAGGCGAAGG	1098

XM_067369. nuc	1496: TGCAGCTGAGCATCGAGCAGGCCCAGACGGTGGCGGAACAGGTGGAGATGAAGGCGAAGG	1555
K#1. nuc	1099:TTGTGCAGTCGGAGGTCAAAGCCGTGACTGCGAGGCATAAGAAAGCCCTGGAGGAACGCG	1158

XM_067369. nuc	1556: TTGTGCAGTCGGAGGTCAAAGCCGTGACGGCGAGGCATAAGAAAGCCCTGGAGGAACGCG	1615
K#1. nuc	1159: AGTGTGAGCTGCTGTGGAAGGTAGAAAAGATCCGCCAGGTGAAAGCCAAGTCTCTGTACC	1218

XM_067369. nuc	1616: AGTGTGAGCTGCTGTGGAAGGTAGAAAAGATCCGCCAGGTGAAAGCCAAGTCTCTGTACC	1675
K#1. nuc	1219:TGCAGGTGGAGAAGCTGCGGCAAAACCTCAACAAGCTTGAGAGCACCATCAGTGCCGTGC	1278
	***************************************	:
XM_067369. nuc	1676:TGCAGGTGGAGAAGCTGCGGCAAAACCTCAACAAGCTTGAGAGCACCATCAGTGCCGTGC	1735
K#1. nuc	1279: AGCAGGTCCTGGAGGAGGGTAGAGCGCTAGACATCCTACTGGCCCGAGACCGGATGCTGG	1338
	***************************************	:
XM_067369. nuc	1736:AGCAGGTCCTGGAGGAGGGTAGAGCGCTAGACATCCTACTGGCCCGAGACCGGATGCTGC	1795
K#1. nuc	1339: CCCAGGTGCAGGAGCTGAAGACCGTGCGGAGCCTCCTGCAGCCCCAGGAAGACGACCGAG	1398
	************************************	:
XM_067369. nuc	: 1796:CCCAGGTGCAGGAGCTGAAGACCGTGCGGAGCCTCCTGCAGCCCCAGGAAGACGACCGAC	1855
K#1.nuc	1399: TCATGTTCACACCCCCGATCAGGCACTGTACCTTGCCATCAAGTCTTTTGGCTTTGTTA	1458
	*************************************	;
XM_067369. nuc	: 1856:TCATGTTCACACCCCCCGATCAGGCACTGTACCTTGCCATCAAGTCTTTTGGCTTTGTT/	1915

K#1. nuc	1459:GCAGCGGGCCTTTGCCCCACTCACCAAGGCCACAGGCGATGGCCTCAAGCGTGCCCTCC ****************************	1518
XM_067369. nuc	1916:GCAGCGGGGCCTTTGCCCCACTCACCAAGGCCACAGGCGATGGCCTCAAGCGTGCCCTCC	1975
K#1. nuc	1519:AGGGTAAGGTGGCCTCCTTCACAGTCATTGGTTATGACCACGATGGTGAGCCCCGCCTCT ****************************	1578
XM_067369. nuc	1976: AGGGTAAGGTGGCCTCCTTCACAGTCATTGGTTATGACCACGATGGTGAGCCCCGCCTCT	2035
K#1. nuc	1579: CAGGAGGCGACCTGATGTCGGCTGTGGTCCTGGGCCCTGATGGCAACCTGTTTGGTGCAG	1638

XM_067369. nuc	2036: CAGGAGGCGACCTGATGTCGGCTGTGGTCCTGGGCCCTGATGGCAACCTGTTTGGTGCAG	2095
K#1. nuc	1639:AGGTGAGTGATCAGCAGAATGGGACATACGTGGTGAGTTACCGACCCCAGCTGGAGGGTG	1698
XM_067369. nuc	2096: AGGTGAGTGATCAGCAGAATGGGACATACGTGGTGAGTTACCGACCCCAGCTGGAGGGTG	2155
K#1. nuc	1699: AGCACCTGGTATCTGTGACACTGTGCAACCAGCACATTGAGAACAGCCCTTTCAAGGTGG	1758

XM_067369. nuc	2156: AGCACCTGGTATCTGTGACACTGTGCAACCAGCACATTGAGAACAGCCCTTTCAAGGTGG	2215
K#1. nuc	1759:TGGTCAAGTCAGGCCGCAGCTACGTGGGCATTGGGCTCCCGGGCCTGAGCTTCGGCAGTG	1818

XM_067369. nuc	2216:TGGTCAAGTCAGGCCGCAGCTACGTGGGCATTGGGCTCCCGGGCCTGAGCTTCGGCAGTG	2275
K#1. nuc	1819: AGGGTGACAGCGATGGCAAGCTCTGCCGCCCTTGGGGTGTGAGTGTAGACAAGGAGGGCT	1878

VM 067960 mm		
xm_067369. nuc	2276: AGGGTGACAGCGATGGCAAGCTCTGCCGCCCTTGGGGTGTGAGTGTAGACAAGGAGGGCT	2335
K#1. nuc	1879: ACATCATTGTCGCCGACCGCAGCAACAACCGCATCCAGGTGTTCAAGCCCTGCGGCGCCT	1938

XM_067369. nuc	2336: ACATCATTGTCGCCGACCGCAGCAACAACCGCATCCAGGTGTTCAAGCCCTGCGGCGCCT	2395
K#1. nuc	1939:TCCACCACAAATTCGGCACCCTGGGCTCCCGGCCTGGGCAGTTCGACCGAC	1000

XM_067369. nuc	: 2396:TCCACCACAAATTCGGCACCCTGGGCTCCCGGCCTGGGCAGTTCGACCGAC	2455
K#1. nuc	1999:TGGCCTGTGACGCCTCACGCAGGATCGTGGTGGCTGACAAGGACAATCATCGCATCCAGA	2058

YN 067960		
AM_OUTOUS. HUC	2456:TGGCCTGTGACGCCTCACGCAGGATCGTGGTGGCTGACAAGGACAATCATCGCATCCAGA	2515

K#1.nuc	2059: TCTTCACGTTCGAGGGCCAGTTCCTCCTCAAGTTTGGTGAGAAAGGAACCAAGAATGGGC	2118

XM_067369. nuc	2516:TCTTCACGTTCGAGGGCCAGTTCCTCCTCAAGTTTGGTGAGAAAGGAACCAAGAATGGGC	2575
K#1. nuc	2119: AGTTCAACTACCCTTGGGATGTGGCGGTGAATTCTGAGGGCAAGATCCTGGTCTCAGACA	2178

XM_067369. nuc	2576: AGTTCAACTACCCTTGGGATGTGGCGGTGAATTCTGAGGGCAAGATCCTGGTCTCAGACA	2635
K#1, nuc	2179:CGAGGAACCACCGGATCCAGCTGTTTGGGCCTGATGGTGTCTTCCTAAACAAGTATGGCT	2238

XM_067369. nuc	2636: CGAGGAACCACCGGATCCAGCTGTTTGGGCCTGATGGTGTCTTCCTAAACAAGTATGGCT	2695
K#1. nuc	2239:TCGAGGGGGCTCTCTGGAAGCACTTTGACTCCCCACGGGGTGTGGCCTTCAACCATGAGG	2298

XM_067369. nuc	2696:TCGAGGGGGCTCTCTGGAAGCACTTTGACTCCCCACGGGGTGTGGCCTTCAACCATGAGG	2755
K#1. nuc	2299:GCCACTTGGTGGTCACTGACTTCAACAACCACCGGCTCCTGGTTATTCACCCCGACTGCC	2358

XM_067369. nuc	2756:GCCACTTGGTGGTCACTGACTTCAACAACCACCGGCTCCTGGTTATTCACCCCGACTGCC	2815
K#1. nuc	2359: AGTCGGCACGCTTTCTGGGCTCGGAGGGCACAGGCAATGGGCAGTTCCTGCGCCCACAAG	2418

XM_067369. nuc	2816:AGTCGGCACGCTTTCTGGGCTCGGAGGGCACAGGCAATGGGCAGTTCCTGCGCCCACAAG	2875
K#1. nuc	2419:GGGTAGCTGTGGACCAGGAAGGGCGCATCATTGTGGCGGATTCCAGGAACCATCGGGTAC	2478

XM_067369. nuc	2876:GGGTAGCTGTGGACCAGGAAGGGCGCATCATTGTGGCGGATTCCAGGAACCATCGGGTAC	2935
K#1. nuc	2479: AGATGTTTGAATCCAACGGCAGCTTCCTGTGCAAGGTTTGGTGCTCAAGGCAGCGGCTTTG	2538

XM_067369. nuc	2936: AGATGTTTGAATCCAACGGCAGCTTCCTGTGCAAGGTTTGGTGCTCAAGGCAGCGGCTTTG	2995
K#1. nuc	2539:GGCAGATGGACCGCCCTTCCGGCATCGCCATCACCCCCGACGGAATGATCGTTGTGGTGG	2598

XM_067369. nuc	2996: GGCAGATGGACCGCCCTTCCGGCATCGCCATCACCCCCGACGGAATGATCGTTGTGGTGG	3055
K#1. nuc	2599: ACTTTGGCAACAATCGAATCCTCGTCTTCTAATTGCATTTCCTAGGTTTCTGTGTTTTGGG	2658

XM_067369. nuc	3056: ACTTTGGCAACAATCGAATCCTCGTCTTCTAA	3087
K#1. nuc	2659:GTGTGTGTGCGTGTCTCTCTCTCTCTCTCTCTCTTTTCTCTCTCTCTTTTTT	2718
XM 067369 nuc	3088:	3000

GTAATTGACAAAGTCACGTGTGCTCAGGGGGCCAGAAACTGGAGAGAGA	60
TCAAAAGAAGGAAAGCACATTAGACCATGCGAGCTAAATTTGTGATCGCACAAAATCAAG	120
ATGTTAGATTGATGCAGAAGATCACTCCGTTCCAAAGGGAAAGTTTTCATCTCACGAGTT	180
TGGAGCTGAGGGCCCGTGGGGCAACATGGCCGAAGGCGGGGCTAGCAAAGGTGGTGGAGA	240
MetAlaGluGlyGlyAlaSerLysGlyGlyGlyGlu	12
AGAGCCCGGGAAGCTGCCGGAGCCGGCAGAGGAGGAATCCCAGGTTTTGCGCGGAACTGG	300
GluProGlyLysLeuProGluProAlaGluGluGluSerGlnValLeuArgGlyThrGly	32
CCACTGTAAGTGGTTCAATGTGCGCATGGGATTTGGATTCATCTCCATGATAAACCGAGA	360
HisCysLysTrpPheAsnValArgMetGlyPheGlyPheIleSerMetIleAsnArgGlu	52
GGGAAGCCCCTTGGATATTCCAGTCGATGTATTTGTACACCAAAGCAAACTATTCATGGA	420
GlySerProLeuAspIleProValAspValPheValHisGlnSerLysLeuPheMetGlu	72
AGGATTTAGAAGCCTAAAAGAAGGAGAACCAGTGGAATTCACATTTAAAAAATCTTCCAA	480
GlyPheArgSerLeuLysGluGlyGluProValGluPheThrPheLysLysSerSerLys	92
AGGCCTTGAGTCAATACGGGTAACAGGACCTGGTGGGAGCCCCTGTTTAGGAAGTGAAAG	540
GlyLeuGluSerIleArgValThrGlyProGlyGlySerProCysLeuGlySerGluArg	112
AAGACCCAAAGGGAAGACACTACAGAAAAGAAAACCAAAGGGAGATAGAT	600
ArgProLysGlyLysThrLeuGlnLysArgLysProLysGlyAspArgCysTyrAsnCys	132
TGGTGGCCTTGATCATGCTAAGGAATGTAGTCTACCTCCTCAGCCAAAGAAGTGCCA	660
GlyGlyLeuAspHisHisAlaLysGluCysSerLeuProProGlnProLysLysCysHis	152
TTACTGTCAGAGCATCATGCACATGGTGGCCAAACTGCCCACATAAAAATGTTGCACAGCC	720
TyrCysGlnSerIleMetHisMetValAlaAsnCysProHisLysAsnValAlaGlnPro	172
ACCCGCGAGTTCTCAGGGAAGACAGGAAGCAGAATCCCAGCCATGCACTTCAACTCTCCC	780
ProAlaSerSerGlnGlyArgGlnGluAlaGluSerGlnProCysThrSerThrLeuPro	192
TCGAGAAGTGGGAGGCGGGCATGGCTGTACATCACCACCGTTTCCTCAGGAGGCTAGGGC	840
ArgGluValGlyGlyHisGlyCysThrSerProProPheProGlnGluAlaArgAla	212
AGAGATCTCAGAACGGTCAGGCAGGTCACCTCAAGAAGCTTCCTCCACGAAGTCATCTAT	900
GluIleSerGluArgSerGlyArgSerProGlnGluAlaSerSerThrLysSerSerIle	232
AGCACCAGAAGAGCAAAAAGGGGCCTTCAGTTCAAAAAAGGAAAAAGACATAACA	960
AlaProGluGluGlnSerLysLysGlyProSerValGlnLysArgLysLysThr***	250

GGTCTTCTTCATATGTTCTTTCCTTTACCCGGTTGCAAAGTCTACCTCATGCAAGTATAG	1020
GGGAACAGTATTTCACAAGCAGTAGCTGACCTGGGATTTTAACTACTATTGGGGAACTGT	1080
GAATTTTTTAAACAGACAAATCACTCTAAGCAAATTACATTTGAGCAGGGTGTCATGTTT	1140
TATGTTAATTCAGAGAATAAGATACTATGTCTGTCAATATGTGCATGTGTGAGAGGGAGA	1200
GAGCCTGAGTCTGTGTGTACATGAGGATTTTTATATAGGAATGTAGACACATATATAA	1260
AGAGGCTTTGTCTTTATATATTTGTGTATAGATCAAAGCACACACCCTCTCTCATATAAT	1320
TGGATATTTCCAAGAATTGAAAACCCATGTGAAGCATTATAGATAG	1380
CACTGGAGTTTTCTTGAAATACCACTTCTTTTATATATAT	1440
TTACCTTTTGTGTGAACCAAAGGATACTTCAGATCTCAGAGCTGCCAATTATGGGGTACT	1500
AAAGGTTTTTAAGACATCCAGTTCTCCCGAATTTGGGATTGCCTCTTTTTCTTGAAATCT	1560
CTGGAGTAGTAATTTTTTTCCCCCTTTTTTGAAGGCAGTACCTTAACTTCATATGCCTCT	1620
GACTGCCATAAGCTTTTTTGATTCTGGGATAACATAACTCCAGAAAAGACAATGAATG	1680
TAATTTGGGCCGATATTTCACTGTTTTAAATTCTGTGTTTAATTGTAAAATTAGATGCCT	1740
ATTAAGAGAAATGAAGGGGAGGATCATCTTAGTGGCTTGTTTTCAGTAGTATTTTAATAT	1800
CAGCTTCTTGTAACCTTTTCCATGTTGTGAGGGTTGTAAGGGATTGTGTGGCAACAGCAG	1860
CTTCCCTTGGCTAACTCAATCTTCTACCCATTGCTTAGAGCAGGGAGCCCTCCTTATTTA	1920
CTACTGAAGACCTTAGAGAACTCCAATTGTTTGGCATATATTTTTGGTGGTGGTTTTTAT	1980
TCCTCCTGGAGAGTTATCTAATTTGTTTCTAAAACAAACA	2040
AATACTGGGGTTGAGAATTAAAATTAAGTGGATGTTCACAGTTGCCCAATATATAT	2100
TGCAAATGATACGAAAAAGTGCAGCATTTAGTGGCAGTTAACAAGAGTGACAAGCCTGGG	2160
GCAGAGGTACCAAACCTCTCCCACCAGAGAGCTAGAAGTATTTTATACAGTAACTTTGAT	2220
CTTATGGAAGTGACCTTCAATGCTTATTCTGAAGTAACCTATATGGTGGATACAGGATGA	2280
ACATTCAGTGCCAGGGAGAATCTTCTCAGGTTGGTTCTCGTTAGAGTGATAAACTGGCTA	2340
GGGGCCATAGTATTGGTCCTGTTAGGTTTCGGTCATGGAAAAAAAA	2400
ATCCTGGCTCTAGATGTTATGGGCAAATTTCTGAAACATCTGCAAGAAGGTACCAGTTAA	2460
TTATAGTGCTTAATATTGGGAATAAGATTAAGCATTATAATTATAATGTATGGGCCTGTT	2520
GGTGTAAGCTCAGATAATTAAATAAAAATAGCATGACTCAAATGAGACATATTCTGCTGA	2580
ACAGTTTCTACTTCCTCCCCCCTGTCCTGTCATGGGAGACGTGTATAGTTGCTGCTGT	2640
TTCAGCAAACCACCATAAGACGAAAATGCCTCAGGTTGGGTTGCCAGTCCTTTACAACTC	2700
AGCTTGAATTTCACAACAGTGATTGTGAGAATCTGCGTGGTATACACTGAAATATCGGTG	2760
${\tt TGCTGTGATGCAAAGCTTACCTTTGACGATATTGAATGTGATATAGCTGTAGAGAAGTAC}$	2820
${\tt TTCCTTGCCTTATGTGAGGGATTTCAAACTTATTTAAATTATGTAGACAAATCAAAGTGGC}$	2880
${\tt ATTGCTTAATTTTAGCAGGCATAATAAGCAAGTTAACAGTAAAATGCAAAACATGATAA}$	2940
${\tt GCGTTGCTCAATTTTTAGCAGGTATAATAAGCAGGTTAACAGTAAAAATGCAAAACATGA}$	3000
${\tt TAGATAAGTCACTTTGAAAATTCAAACCAAAGTTCCTTCACCTTATGGAAATAGGAAATT}$	3060
${\tt ATGGACTTCAAAATTGGACACTTCCTGTTTACAAAAAGAAATTCAGAGCTAAAATCATGG}$	3120
${\tt TAAAAAAAAAAAACACTTGAGAACTATGGTCTTTATGGGTGCAATTTGAAATCCTTT}$	3180
${\tt TCATCATCTTACCAGACTAAACTAAGAGCACATACCAAACCTATCTTATGGTTGAAAGTT}$	3240
${\tt GGGGTTTATTTTTATATGAGAATATTATCACTATTACATAACATACTCAGGACAAAGAA}$	3300
${\tt CTTTGCTCAGGGAACATACCATGTAATATTTTTGTTGTTTTTCTTTACAGACTAGTCTACAG}$	3360
TCCTGCTTACTCAAAACAAACCAAATAACTTATACCTTTATATAAGTATTATGTACTGAT	3420

GATAGTAACTACCTCTGAGTTTGACACAGATCAAAATTTTTGAATATCAGATATCAGTTA	3480
TCCTATTTTTATTTCATGTGAAAACTCCTCTAAAGCAGATTCCCTCAACTCTGTGCATAT	3540
GTGAATATCACTGATGTGAACACATTGTTCATTTACATAGGTAAAATATTACTCTGTTTA	3600
CAGCAAAAGGCTACCTCATAGTTGATACATAGCACACCTGTATGTA	3660
TACAGGTGGCTGATAATTCTCTGGTACAGAACCTTTTTATCTGTATTATAAATAGCAATT	3720
CACAACTGCATGTTTCTGACAAACACTTGTGAATAATGAAGCATCTCGTTTTAGTTAG	3780
AAGTCTCCAAACATTTCCTTAAAATAATCATGTATTTAGTTTAAAGAATTATGGGCACTG	3840
TTCAACTTAAGCAAAACAGAACACGGAAGCAGTCTTAGAAGCACCACTTTGCCCAGAGGT	3900
GGAGGTTGGAAGGGGTAGCAGGGAGAGGGGTTGGTGTATGCAGGTATTCATGCTAGGCAA	3960
AGAGTTTAAAAGACGCCAATGTCCTTCATTTACTGTCTGT	4020
ATTGCAGCATTATAGCCCCAGGCACATAACTAACTAGCACTGGCTTGCCAAGGAATGAAC	4080
ATGCAATGCCATTACTAGCTATTGAGGGAAAAGGGTCTGTGTGAAGCATCACTTTGCAGG	4140
GATTACTAATGGTGGGGCAGCAGGTCTGTGAATTAAGTTATCTCTTGACCTCACCCTCAT	4200
GTCAACACAAATGTAATTCCTAAACAAGATGCATTGCCAGTCTCTTAGCCCTGTAAGCTG	4260
ATCTTTTGCTACATGGCAGACTATAATGAAAACATTTTTATACTTGGGTTTCTAGTCTTC	4320
ACTAGAAGGCCTTGGATGTATTTTTGCAGTTGAAAGATTTAGAAAGATTTTTACCTGCTT	4380
ATAACTTGGAAGTTTAGAGTGCAATGTAAGAAAAAAGATCAAGAAATGTCATGTTATTAG	4440
CATCAGTCCACCTCCAATATTGCCGATACTTTTTTTTTT	4500
${\tt CCAGTGCGGCCCCAAGTTACTGCTGGTTGTATTTAGTTTGTGAATAGGAGCCCATAAGTG}$	4560
${\tt TTAATAGACTTTGTAACATTCACTATAAGATGAATTATACAGGACATGGGAAATCTCATT}$	4620
AAGTCTTAAAGTTAATTTAAATTTATCTGTTTTCTCTAAGAAATGTTTATCATAAA	4680
${\tt ATATATATGTGTATTTCCCCTTTGGTTATAAAATTTGGGAAAGTATGTACAAGTGCAGCT}$	4740
${\tt GCACTGACTTTAATTTTCTAGATGTCTTAATGAGATTTATTT$	4800
${\tt TTGTTAAAAGCATCAAACTCTGTCTTACATAGCTGTCAACAGCCTCTTTAAGATGTGGTG}$	4860
${\tt GTTGTATGATCTGTGTCTTAATTGTTCAGTTAGAGTGAGAAGTTGACCTATGATTCATTT}$	4920
${\tt TTAAATTTTATATTTGGAACAAAGCTGCAAGTTATGGTAAAGTACTGTGAGAAGT}$	4980
${\tt ATTATGATATTAATGCATCTGTGGCTTAACACTTGTGAGAGTTACCAGCTTGAAAATGA}$	5040
${\tt TGGTGTTGACTACCTCTTGAATCACATCTATCAACCACTGGCACCTACCACCAAGCTGGC}$	5100
${\tt TTCAATTAGTATGTGTTTTTTGGTATTAACAACTAACCGTACTAGAGACCAAAGTGA}$	5160
${\tt ACCCTGATTTTATATGTCTTTAATAATGGTGTTTTTATCTAGTGTTTTTAAATTATCCTG}$	5220
${\tt TGTAGTATTTAGATTACCTCATTGTCCATTTTTGACTCATGTTGTTTACAAGTGAAAATAA}$	5280
${\tt AAACACTTGAACTGTATGTTTTTAAAAGACAAAAAAGGGGTAGATGTTTGGAATGCGTTT}$	5340
${\tt CACTCGCATGCAGTCATCTGGAGGGACTGAAGCACTGTTTGCCTTTCTGTACACTCTGGG}$	5400
${\tt TTTTATATTCTCATTTCATGCCTAATGTCTTATTCTGTCAATTATGGATATGTTGAGGTT}$	5460
${\tt TAAAAAAATTACTTGATTAAAAATAAAACATATAACGTTGGCATTTAAAAAAAA$	5520
АААААААААААААААА	5542

AGTAGCTCTAAACCATCTTCACGATTTCTCTTTCCTCCTCGTGCCCGCCGGAGAGAATAG	60
TTTCGCTGAAAATTTCTCTTTGTCAATGGGATCAGTATTAAATCAGCAATATACAAGTAA	120
AGTATCGCATGCTGTAATGTAAAATGTGGCTGAAAAATGGAGTTAAATGAATAAGTACAC	180
GCGGGGCTAGCAAAGGTGGTGGAGAAGAGCCCGGGAAGCTGCCGGAGCCGGCAGAGGAGG	240
AATCCCAGGTTTTGCGCGGAACTGGCCACTGTAAGTGGTTCAATGTGCGCATGGGATTTG	300
MetGlyPheGly	4
GATTCATCTCCATGATAAACCGAGAGGGAAGCCCCTTGGATATTCCAGTCGATGTATTTG	360
PhelleSerMETlleAsnArgGluGlySerProLeuAsplleProValAspValPheVal	24
TACACCAAAGCAAACTATTCATGGAAGGATTTAGAAGCCTAAAAGAAGGAGAACCAGTGG	420
HisGlnSerLysLeuPheMETGluGlyPheArgSerLeuLysGluGlyGluProValGlu	44
AATTCACATTTAAAAAATCTTCCAAAGGCCTTGAGTCAATACGGGTAACAGGACCTGGTG	480
PheThrPheLysLysSerSerLysGlyLeuGluSerIleArgValThrGlyProGlyGly	64
GGAGCCCCTGTTTAGGAAGTGAAAGAAGACCCAAAGGGAAGACACTACAGAAAAGAAAAC	540
SerProCysLeuGlySerGluArgArgProLysGlyLysThrLeuGlnLysArgLysPro	84
CAAAGGGAGATAGATGCTACAACTGTGGTGGCCTTGATCATCATGCTAAGGAATGTAGTC	600
LysGlyAspArgCysTyrAsnCysGlyGlyLeuAspHisHisAlaLysGluCysSerLeu	104
TACCTCCTCAGCCAAAGAAGTGCCATTACTGTCAGAGCATCATGCACATGGTGGCAAACT	660
ProProGlnProLysLysCysHisTyrCysGlnSerlleMETHisMETValAlaAsnCys	124
GCCCACATAAAAATGTTGCACAGCCACCCGCGAGTTCTCAGGGAAGACAGGAAGCAGAAT	720
ProHisLysAsnValAlaGlnProProAlaSerSerGlnGlyArgGlnGluAlaGluSer ·	144
CCCAGCCATGCACTTCAACTCTCCCTCGAGAAGTGGGAGGCGGGCATGGCTGTACATCAC	780
GlnProCysThrSerThrLeuProArgGluValGlyGlyHisGlyCysThrSerPro	164
CACCGTTTCCTCAGGAGGCTAGGGCAGAGATCTCAGAACGGTCAGGCAGG	840
ProPheProGlnGluAlaArgAlaGluIleSerGluArgSerGlyArgSerProGlnGlu	184
AAGCTTCCTCCACGAAGTCATCTATAGCACCAGAAGAGCAAAAAGGGGGCCTTCAG	900
AlaSerSerThrLysSerSerIleAlaProGluGluGlnSerLysLysGlyProSerVal	204
TTCAAAAAAGGAAAAAGACATAACAGGTCTTCTTCATATGTTCTTTCCTTTACCCGGTTG	960
GlnLysArgLysLysThr***	210

CAAAGTCTACCTCATGCAAGTATAGGGGAACAGTATTTCACAAGCAGTAGCTGACCTGGG	1020
ATTTTAACTACTATTGGGGAACTGTGAATTTTTTAAACAGACAAATCACTCTAAGCAAAT	1080
TACATTTGAGCAGGGTGTCATGTTTATGTTAATTCAGAGAATAAGATACTATGTCTGTC	1140
AATATGTGCATGTGAGAGAGAGAGAGCCTGAGTCTGTGTGTG	1200
TATAGGAATGTAGACACATATATAAAGAGGCTTTGTCTTTATATATTTGTGTATAGATCA	1260
AAGCACACCCTCTCTCATATAATTGGATATTTCCAAGAATTGAAAACCCATGTGAAGC	1320
ATTATAGATAGTTTTAAATTTAACCCACTGGAGTTTTCTTGAAATACCACTTCTTTATA	1380
TTATATAAAACTAAAAACACGACTGTTACCTTTTGTGTGAACCAAAGGATACTTCAGATC	1440
TCAGAGCTGCCAATTATGGGGTACTAAAGGTTTTTAAGACATCCAGTTCTCCCGAATTTG	1500
GGATTGCCTCTTTTTCTTGAAATCTCTGGAGTAGTAATTTTTTTT	1560
CAGTACCTTAACTTCATATGCCTCTGACTGCCATAAGCTTTTTTGATTCTGGGATAACAT	1620
AACTCCAGAAAAGACAATGAATGTGTAATTTGGGCCGATATTTCACTGTTTTAAATTCTG	1680
TGTTTAATTGTAAAATTAGATGCCTATTAAGAGAAATGAAGGGGAGGATCATCTTAGTGG	1740
${\tt CTTGTTTCAGTAGTATTTTAATATCAGCTTCTTGTAACCTTTTCCATGTTGTGAGGGTT}$	1800
GTAAGGGATTGTGTGGCAACAGCAGCTTCCCTTGGCTAACTCAATCTTCTACCCATTGCT	1860
TAGAGCAGGGAGCCCTCCTTATTTACTACTGAAGACCTTAGAGAACTCCAATTGTTTGGC	1920
ATATATTTTTGGTGGTGGTTTTTATTCCTCCTGGAGAGTTATCTAATTTGTTTCTAAAAC	1980
AAACAAGCAGCAAAGAAATGAATTAAATACTGGGGTTGAGAATTAAAATTAAGTGGATGT	2040
TCACAGTTGCCCAATATATATGACCTGCAAATGATACGAAAAAGTGCAGCATTTAGTGGC	2100
AGTTAACAAGAGTGACAAGCCTGGGGCAGAGGTACCAAACCTCTCCCACCAGAGAGCTAG	2160
${\tt AAGTATTTATACAGTAACTTTGATCTTATGGAAGTGACCTTCAATGCTTATTCTGAAGT}$	2220
AACCTATATGGTGGATACAGGATGAACATTCAGTGCCAGGGAGAATCTTCTCAGGTTGGT	2280
TCTCGTTAGAGTGATAAACTGGCTAGGGGCCATAGTATTGGTCCTGTTAGGTTTCGGTCA	2340
TGGAAAAAAATTATTTTGGGGTCATCCTGGCTCTAGATGTTATGGGCAAATTTCTGAA	2400
ACATCTGCAAGAAGGTACCAGTTAATTATAGTGCTTAATATTGGGAATAAGATTAAGCAT	2460
TATAATTATAATGTATGGGCCTGTTGGTGTAAGCTCAGATAATTAAATAAA	2520
ACTCAAATGAGACATATTCTGCTGAACAGTTTCTACTTCCTCTCCCGCCTGTCCTGTCAT	2580
GGGAGACGTGTATAGTTGCTGCTGTTTCAGCAAACCACCATAAGACGAAAATGCCTCAGG	2640
TTGGGTTGCCAGTCCTTTACAACTCAGCTTGAATTTCACAACAGTGATTGTGAGAATCTG	2700
CGTGGTATACACTGAAATATCGGTGTGCTGTGATGCAAAGCTTACCTTTGACGATATTGA	2760
ATGTGATATAGCTGTAGAGAAGTACTTCCTTGCCTTATGTGAGGATTTCAAACTTATTTA	2820
AATTATGTAGACAAATCAAAGTGGCATTGCTTAATTTTTAGCAGGCATAATAAGCAAGTT	2880
AACAGTAAAATGCAAAACATGATAAGCGTTGCTCAATTTTTAGCAGGTATAATAAGCAGG	2940
TTAACAGTAAAAATGCAAAACATGATAGATAAGTCACTTTGAAAATTCAAACCAAAGTTC	3000
CTTCACCTTATGGAAATAGGAAATTATGGACTTCAAAATTGGACACTTCCTGTTTACAAA	3060
AAGAAATTCAGAGCTAAAATCATGGTAAAAAAAAAAAAA	3120
TTATGGGTGCAATTTGAAATCCTTTTCATCATCTTACCAGACTAAACTAAGAGCACATAC	3180
CAAACCTATCTTATGGTTGAAAGTTGGGGTTTATTTTTTATATGAGAATATTAT	3240
${\tt TACATAACATACTCAGGACAAAGAACTTTGCTCAGGGAACATACCATGTAATATTTTTGT}$	3300
TGTTTCTTTACAGACTAGTCTACAGTCCTGCTTACTCAAAACAAAC	3360
CTTTATATAAGTATTATGTACTGATGATAGTAACTACCTCTGAGTTTGACACAGATCAAA	3420
ATTTTTGAATATCAGATATCAGTTATCCTATTTTTATTTCATGTGAAAACTCCTCTAAAG	3480

CAGATTCCCTCAACTCTGTGCATATGTGAATATCACTGATGTGAACACATTGTTCATTTA	3540
CATAGGTAAAATATTACTCTGTTTACAGCAAAAGGCTACCTCATAGTTGATACATAGCAC	3600
ACCTGTATGTATGCTGTTCCAGCCTTACAGGTGGCTGATAATTCTCTGGTACAGAACCTT	3660
TTTATCTGTATTATAAATAGCAATTCACAACTGCATGTTTCTGACAAACACTTGTGAATA	3720
ATGAAGCATCTCGTTTTAGTTAGCAAAGTCTCCAAACATTTCCTTAAAATAATCATGTAT	3780
TTAGTTTAAAGAATTATGGGCACTGTTCAACTTAAGCAAAACAGAACACGGAAGCAGTCT	3840
TAGAAGCACCACTTTGCCCAGAGGTGGAGGGTTGGAAGGGGTTAGCAGGGAGAGGGGTTGGT	3900
GTATGCAGGTATTCATGCTAGGCAAAGAGTTTAAAAGACGCCAATGTCCTTCATTTACTG	3960
TCTGTGCTGCCCTGAAGCCAAGCGTATTGCAGCATTATAGCCCCAGGCACATAACTAAC	4020
AGCACTGGCTTGCCAAGGAATGAACATGCAATGCCATTACTAGCTATTGAGGGAAAAGGG	4080
TCTGTGTGAAGCATCACTTTGCAGGGATTACTAATGGTGGGGCAGCAGGTCTGTGAATTA	4140
AGTTATCTCTTGACCTCACCCTCATGTCAACACAAATGTAATTCCTAAACAAGATGCATT	4200
GCCAGTCTCTTAGCCCTGTAAGCTGATCTTTTGCTACATGGCAGACTATAATGAAAACAT	4260
TTTTATACTTGGGTTTCTAGTCTTCACTAGAAGGCCTTGGATGTATTTTTGCAGTTGAAA	4320
GATTTAGAAAGATTTTTACCTGCTTATAACTTGGAAGTTTAGAGTGCAATGTAAGAAAAA	4380
AGATCAAGAAATGTCATGTTATTAGCATCAGTCCACCTCCAATATTGCCGATACTTTTTT	4440
TATTCTGGCTCAGTTTTATTTTGCACCAGTGCGGCCCCAAGTTACTGCTGGTTGTATTTA	4500
GTTTGTGAATAGGAGCCCATAAGTGTTAATAGACTTTGTAACATTCACTATAAGATGAAT	4560
TATACAGGACATGGGAAATCTCATTAAGTCTTAAAGTTAATTTAAATTAATT	4620
TTCTCTAAGAAATGTTTATCATAAAATATATATGTGTATTTCCCCTTTGGTTATAAAATT	4680
TGGGAAAGTATGTACAAGTGCAGCTGCACTGACTTTAATTTTCTAGATGTCTTAATGAGA	4740
TTTATTTGTTTTAGAGAAGAACATCTTGTTAAAAGCATCAAACTCTGTCTTACATAGCTG	4800
TCAACAGCCTCTTTAAGATGTGGTGGTTGTATGATCTGTGTCTTAATTGTTCAGTTAGAG	4860
TGAGAAGTTGACCTATGATTCATTTTTAAATTTTATATTTTGGAACAAAGCTGCAAGTTAT	4920
GGTAAAGTACTGTGCGGAGAAGTATTATGATATTTAATGCATCTGTGGCTTAACACTT	4980
GTGAGAGTTACCAGCTTGAAAATGATGGTGTTGACTACCTCTTGAATCACATCTATCAAC	5040
CACTGGCACCTACCACCAAGCTGGCTTCAATTAGTATGTGTTTGCTTTTTGGTATTAACAA	5100
CTAACCGTACTAGAGACCCAAAGTGAACCCTGATTTTTATATGTCTTTAATAATGGTGTTT	5160
TATCTAGTGTTTTTAAATTATCCTGTGTAGTATTTAGATTACCTCATTGTCCATTTTGAC	5220
TCATGTTGTTTACAAGTGAAAATAAAAACACTTGAACTGTATGTTTTTAAAAGACAAAAA	5280
AGGGGTAGATGTTTGGAATGCGTTTCACTCGCATGCAGTCATCTGGAGGGACTGAAGCAC	5340
TGTTTGCCTTTCTGTACACTCTGGGTTTTATATTCTCATTTCATGCCTAATGTCTTATTC	5400
TGTCAATTATGGATATGTTGAGGTTTAAAAAAATTACTTGATTAAAAATAAAACATATAA	5460
ССТТСССАТТТАЛАЛАЛАЛАЛАЛАЛАЛАЛАЛАЛАЛАЛАЛА	5507

Human K#2	1:MAEGGASKGGGEEPGKLPEPABEESQVLRGTGHCKWFNVRMG	42
Human	1:MGSVSNQQFAGGCAKAAEEAPEEAPEDAARAADEPQLLHGAGICKWFNVRMG	52
Mouse	1:MGSVSNQQFAGGCAKAAEKAPEEAPPDAARAADEPQLLHGAGICKWFNVRMG	52
Xenopus	1:MGSVSNQEITEGLPKSLDGTADIHKSDKSVIFQGSGVCKWFNVRMG	46
Drosophila	1:MENVQLENGLERRTTSQSSTSSANPANLASPTEECGCVRLGKCKWFNVAKG	51
C.elegans	1:MSTVVSEGRNDGNNRYSPQDEVEDRLPDVVDNRLTENMRVPSFERLPSPTPRYFGSCKWFNVSKG	65
		•
Human K#2	43:FGFISMINREGSPLDIPVDVFVHQSKLFMEGFRSLKEGEPVEFTFKK—-SSKGLESIRVTGP-GG	
Human	53:FGFLSMTARAGVALDPPVDVFVHQSKLHMEGFRSLKEGEAVEFTFKK—SAKGLESIRVTGP-GG	
Mouse		
Xenopus	53:FGFLSMTARAGVALDPPVDVFVHQSKLHMEGFRSLKEGEAVEFTFKKSAKGLESIRVTGP-GC	
"	47:FGFLTMTKKEGTDLETPLDVFVHQSKLHMEGFRSLKEGESVEFTFKKSSKGLESTQVTGP-GG	
Drosophila	52:WGFLTPNDGGQEVFVHQSVIQMSGFRSLGEQEEVEFECQRTSRGLEATRVSSR-HG	
C.elegans	66:YGFVIDDITGEDLFVHQSNLNMQGFRSLDEGERVSYYIQERSNGKGREAYAVSGEVEG	; 124
	コールドショックドメイン(CSD)	
		7
Human K#2	106: SPCLGSERRPKGKTLQKRKPKGDRCYNCGGLD-HHAKECS-LPPQPKKCHYCQSIMHMVANCPH	167
Human	116:VFCIGSERRPKGKSMQKRRSKGDRCYNCGGLD-HHAKECK-LPPQPKKCHFCQSISHMVASCPLI	177
Mouse	116:VFCIGSERRPKGKNMQKRRSKGDRCYNCGGLD-HHAKECK-LPPQPKKCHFCQSINHMVASCPLE	177
Xenopus	110:APCIGSERRPKVKGQQKRRQRGDRCYNCGGLD-HHAKECK-LPPQPKKCHFCQNPNHMVAQCPE	171
Drosophila	108:GSCQGSTYRPRINRRTRRM-RCYNCGEFANHIASECA-LGPQPKRCHRCRGEDHLHADCPH	166
C.elegans	125:QGLKGSRIHPLGRKKAVSL-RCFRCGKFATHKAKSCPNVKTDAKVCYTCGSEEHVSSICPER	184
	ジンクフィンガードメイン	_
Human K#2	168:NVAQPPASSQGRQEAESQPCTSTLPREVGGGHGCTSPPFFQEARAEISERSGRSFQEASSTKSSI	232
Human	178: AQQGPSAQGKPTYFREEEEEIHSPTLLPEAQN	209
Mouse	178:AQQGPSSQGKPAYF	191
Xenopus	172: AMQAANLEDQPITEEQELIPEIME	195
Drosophila	167:nvtqshsnsksisnnssssaaqekseeat	195
C.elegans	185:RRKHRPEQVAAEEAEAARMAAEKSSPTTSDDDIREKNSNSSDE	227
Human K#2	233: APEEOSKKGPSVOKRKKT	250

51/66

KATCIII

54/66

逐76

55/66

56/66

59/66

抗Xpress抗体 抗PEG10/ORF2抗体

図82

PCT/JP2004/011650

HIE細胞 Hnpe細胞 引略7AuH HebC7細胞 DNSbb-COSY細胞

SM 細胞

SM HLE 94пН HባP3 HepG2 1000 800 909 400 200 (ベロスqidOeneb)量ANAm 692UO

巡84

63/66

64/66

65/66

(壓小代高) 哈魯 浩癌部 (壓小代中) 储盛 雅靐非 (熟來游) 陪廳 非癌部 癌部(印環細胞型) 非癌部 (壓小代型)暗感 雅嶽非 浩癌部 (壓小代型) 暗融 非癌部

逐87

図88

SEQUENCE LISTING

<110>	ABU	RATANI, Hir	oyuki; PERS	EUS PROTEOM	ics inc.; c	HUGAI SEIYAK	U
KABUSH	IKI K	AISHA					
<120>			pressed in	Cancers		•	
<130>	PCG9	001W0					
<150>	JP 2	003-290704					
<151>	2003	-08-08					
<160>	292						
<170>	Pate	ntIn versio	n 3.1				
<210>	1 ·						
<211>	1934	1					
<212>	DNA						
<213>	homo	sapiens					
<400>	1						
agtaag	aatc	agcagcgcgg	gcaaggagta	cggacgggag	tcagaggcag	agcgagggtg	60
tgtgga	gggc	cggcggggac	cgccgggagc	gcgcggatgt	cggtgttcct	ggggccaggg	120
atgccc	tctg	catctttatt	agtaaatctt	ctttcagctt	tactcatcct	atttgtgttt	180
ggagaa	acag	aaataagatt	tactggacaa	actgaatttg	ttgttaatga	aacaagtaca	240
acagtt	attc	gtcttatcat	tgaaaggata	ggagagccag	caaatgttac	tgcaattgta	300
tcgctg	tatg	gagaggacgc	tggtgacttt	tttgacacat	atgctgcagc	ttttatacct	360
gccgga	gaaa	caaacagaac	agtgtacata	gcagtatgtg	atgatgactt	accagggcct	420
gacgaa	actt	ttatttttca	cttaacatta	cagaaacctt	cagcaaatgt	gaagcttgga	480
tggcca	agga	ctgttactgt	gacaatatta	tcaaatgaca	atgcatttgg	aattatttca	540
tttaat	atgc	ttccctcaat	cgcagtgagt	gagcccaagg	gcagaaatga	gtctatgcct	600
cttact	ctca	t cagggaaaaa	gggaacctat	$\tt ggaatggtca$	tggtgacttt	tgaggtagag	660
ggtggc	ccaa	atcccctga	tgaagatttg	$a \verb gtccag tta$	aaggaaatat	cacctttccc	720
cctggc	agag	caacagtaat	ttataacttg	gcagtactcg	at gac gag gt	accagaaaat	780
gatgaa	atat	ttttaattca	actgaaaagt	gtagaaggag	gagctgagat	taacacctct	840
aggaat	tcca	ttgagatcat	cattgagaaa	a at gat a gt c	${\tt ccgtgagatt}$	ccttcagagt	900
atttat	ttgg	ttcctgagga	agaccacata	ctcata attc	cagtagttcg	tggaaaggac	960
aacaat	ggaa	atctgattgg	atctgatgaa	tatgaggttt	caat cagtta	tgctgtcaca	1020
actggg	aatt	ccacagcaca	tgcccagcaa	aatctggact	tcattgatct	tcagccaaac	1080
acaact	gttg	tttttccacc	ttttattcat	gaatctcact	tgaaatttca	aatagttgat	1140
gacaco	atac	cggagattgc	tgaatcgttt	cacattatgt	tactaaaaga	taccttacag	1200
ggagat	gctg	tgctaataag	cccttctgtt	gtacaagtca	ccattaagcc	aaatgataaa	1260
ccttat	ggag	tcctttcatt	caacagtgtt	ttgtttgaaa	ggacagttat	aattgatgaa	1320

gatagaatat caagatatga agaaatcaca giggtiagaa atggaggaac ccatgggaat 1380 gtctctgcga attgggtggt gacaccgaac agcactgatc cctcaccagt aacagcagat 1440 atcagaccga gctctggagt tcttcatttt gcacaagggc agatgttggc aacaattcct 1500 cttactgggg gtgatgatga tcttccagaa gaggcagaag cttatctact tcaaattctg 1560 cctcatacaa tacgaggagg tgcagaagtg agcgagccag cggagctttt gttctacatt 1620 caggatagtg atgatgtcta tggcctaata acattttttc ctatggaaaa ccagaagatt 1680 gaaagcagcc caggtggacg atacttatcc tigagtttta caagactagg agggactaaa 1740 ggagatgtga ggttgcttta ttctgtactt tacattcctg ctggagctgt ggaccccttg 1800 caagcaaaag aaggcatett aaatatatea aggagaaatg accteatttt teeagageaa 1860 aaaactcaag tcactacaaa attaccaata agaaatgatg cattccttca aaatggagct 1920 cactiticiag tacagitgga aactgiggag tigitaaaca taaticcici aatcccaccc 1980 ataagcccta gattigggga aatcigcaat attictitac iggitacicc agccatigca 2040 aatggagaaa tiggciiici cagcaatcii ccaattatti tgcatgaacc agaagattii 2100 gctgctgaag tggtatacat tcccttacat cgggatggaa ctgatggcca ggctactgtc 2160 tactggagtt tgaagccctc tggctttaat tcaaaagcag tgaccccgga tgatataggc 2220 ccctttaatg gctctgtttt gtttttatct gggcaaagtg acacaacaat caacattact 2280 atcaaaggtg atgacatacc ggaaatgaat gaaactgtaa cactttctct agactgggtt 2340 aacgiggaaa accaagigci gaaatcigga tatactagcc gigacciaat tattitggaa 2400 aatgatgacc ctgggggggt ttttgaattt tctcctgctt ccagaggacc ctatgttata 2460 aaagaaggag aatctgtaga gctccacatc atccgatcaa gggggtccct tgttaagcag 2520 tttctacact accgagtaga gccaagagat agcaatgaat tctatggaaa cacgggagta 2580 ctagaattta aacctggaga aagggagata gtgatcacct tgctagcaag attggatggg 2640 ataccagagt tggatgaaca ctactgggtg gtcctcagca gccacggaga acgggaaagc 2700 aagtigggaa gigccaccat igicaatata acgaticiga aaaatgatga iccicatggc 2760 attatagaat tigiticiga iggiciaati gigaigataa aigaaagcaa aggagaigci 2820 atctatagtg ctgtttatga tgtagtaaga aatcgaggca actttggtga tgttagtgta 2880 tcatgggtgg ttagtccaga ctttacacaa gatgtatttc ctgtacaagg gactgttgtc 2940 tttggagatc aggaattttc aaaaaatatc accatttact cccttccaga tgagattcca 3000 gaagaaatgg aagaatttac cgttatccta ctgaatggca ctggaggagc taaagtggga 3060 aatagaacaa ctgcaactct gaggattaga agaaatgatg accccattta ttttgcagaa 3120 cctcgtgtag tgagggttca agaaggggag actgccaact ttacagttct cagaaatgga 3180 tctgttgatg tgacttgcat ggtccagtat gctaccaagg atgggaaggc tactgcaaga 3240 gagagagatt tcattcctgt tgaaaaagga gaaacgctca tttttgaggt tggaagtaga 3300 cagcagagca tatccatatt tgttaatgaa gatggtatcc cggaaacaga tgagcccttt 3360 tatataatcc tcttgaattc accaggtgat ccagtagtat atcaatatgg agtagctaca 3420 gtaataattg aagctaatga tgacccaaat ggcatttttt ctctggagcc catagacaaa 3480 gcagtggaag aaggaaagac taatgcattt tggattttga ggcaccgagg atactttggt 3540

agtgtttctg	tatcttggca	gctctttcag	aatgattctg	ctttgcagcc	tgggcaggag	3600
ttctatgaaa	cttcaggaac	tgttaacttc	atggatggag	aagaagcaaa	accaatcatt	3660
ctccatgctt	ttccagataa	aattcctgaa	ttcaatgaat	tttatttcct	aaaacttgta	3720
aacatttcag	gtggatcccc	${\tt aggtcctggg}$	ggccagctag	cagaaaccaa	cctccaggtg	3780
acagtaatgg	ctccattcaa	tgatgatccc	tttggagttt	ttatcttgga	tccagagtgt	3840
ttagagagag	aagtggcaga	agatgtcctg	tctgaagatg	atatgtctta	tattaccaac	3900
ttcaccattt	tgaggcagca	gggtgtgttt	ggtgatgtac	aactgggctg	ggaaatactg	3960
tccagtgagt	tccctgctgg	tctgccacca	atgatagatt	ttttactggt	tggaattttc	4020
cccaccaccg	tgcatttaca	acagcacatg	cggggtcacc	acagtggaac	ggatgctttg	4080
tactttaccg	gactagaagg	tgcatttggg	actggtaatt	caaaatacca	tcccttcagg	4140
aataatacaa	ttgccaactt	tacattttca	gcttgggtaa	tgcccaatgc	caatacgaat	4200
ggattcatta	tagcgaagga	tgacggtaat	ggaagcatct	actacggggt	aaaaatacaa	4260
acaaacgaat	cccatgtgac	actttccctt	cattataaaa	ccttgggttc	caatgctaca	4320
tacattgcca	agacaacagt	catgaaatat	ttagaagaaa	gtgtttggct	tcatctacta	4380
attatcctgg	aggatggtat	a atcgaattc	tacctggatg	gaaatgcaat	gcccagggga	4440
atcaagagtc	tgaaaggaga	agccattact	gacggtcctg	ggatactgag	aattggagca	4500
gggataaatg	gcaatgacag	atttacaggt	ctgatgcagg	atgtgaggtc	ctatgagcgg	4560
aaactgacgc	ttgaagaaat	ttatgaactt	catgccatgc	ccgcaaaaag	tgatttacac	4620
ccaatttctg	gațatctgga	gttcagacag	ggagaaacta	acaaatcatt	cattatttct	4680
gcaagagatg	acaatgacga	ggaaggagaa	gaattattca	ttcttaaact	agtttctgta	4740
tatggaggag	ctcgtatttc	ggaagaaaat	actactgcaa	gattaacaat	acaaaaaagt	4800
gacaatgcaa	atggcttgtt	tggtttcaca	ggagcttgta	taccagagat	tgcagaggag	4860
ggatcaacca	tttcttgtgt	ggt tgagaga	accagaggag	ctctggatta	tgtgcatgtt	4920
ttttacacca	tttcacagat	tgaaactgat	ggcattaatt	accttgttga	tgactttgct	4980
aatgccagtg	gaactattac	attccttcct	tggcagagat	cagaggttct	gaatatatat	5040
gttcttgatg	atgatattcc	tgaacttaat	gagtatttcc	gtgtgacatt	ggtttctgca	5100
attcctggag	atgggaagct	aggctcaact	cctaccagtg	gtgcaagcat	agatcctgaa	5160
aaggaaacga	ctgatatcac	catcaaagct	agtgatcatc	catatggctt	gctgcagttc	5220
tccacagggc	tgcctcctca	gcctaaggac	gcaatgaccc	tgcctgcaag	cagcgttcca	5280
catatcactg	tggaggagga	agatggagaa	atcaggttat	tggtcatccg	tgcacaggga	5340
cttctgggaa	gggtgactgc	ggaatttaga	acagtgtcct	tgacagcatt	cagtcctgag	5400
gattaccaga	atgttgctgg	cacattagaa	tttcaaccag	gagaaagata	taaatacatt	5460
ttcataaaca	tcactgataa	ttctattcct	gaactggaaa	aatctttaa	agttgagttg	5520
ttaaacttgg	aaggaggagt	agctgaactc	tttagggttg	atggaagtgg	tagtggtgat	5580
ggggacatgg	aattcttcct	tccaactatt	cacaaacgtg	ccagtctagg	agtggcttcc	5640
caaattctag	tgacaattgc	agcctctgac	cacgctcatg	gcgtatttga	atttagccct	5700
gagtcactct	ttgtcagtgg	aactgaacca	gaagatgggt	atagcactgt	tacattaaat	5760

gttataagac	atcatggaac	tctgtctcca	gtgactttgc	attggaacat	agactctgat	5820
cctgatggtg	atctcgcctt	cacctctggc	aacatcacat	ttgagattgg	gcagacgagc	5880
gccaatatca	ctgtggagat	attgcctgac	gaagacccag	aactggataa	ggcattctct	5940
gtgtcagtcc	tcagtgtttc	cagtggttct	ttgggagctc	atattaatgc	cacgitaaca	6000
gttttggcta	gtgatgatcc	atatgggata	ttcatttttt	ctgagaaaaa	cagacctgtt'	6060
aaagttgagg	aagcaaccca	gaacatcaca	ctatcaataa	taaggttgaa	aggcctcatg	6120
ggaaaagtcc	ttgtctcata	tgcaacacta	gatgatatgg	aaaaaccacc	ttattttcca	6180
cctaatttag	cgagagcaac	tcaaggaaga	gactatatac	cagcttctgg	atttgctctt	6240
tttggagcta	atcagagtga	ggcaacaata	gctatttcaa	ttttggatga	tgatgagcca	6300
gaaaggtccg	aatctgtctt	tatcgaacta	ctcaactcta	ctttagtagc	gaaagtacag	6360
agtcgttcaa	ttccaaattc	tccacgtctt	gggcctaagg	tagaaactat	tgcgcaacta	6420
attatcattg	ccaatgatga	tgcatttgga	actcttcagc	tctcagcacc	aattgtccga	6480
gtggcagaaa	atcatgttgg	acccattatc	aatgtgacta	gaacaggagg	agcatttgca	6540
gatgtctctg	tgaagtttaa	agctgtgcca	ataacagcaa	tagctggtga	agattatagt	6600
atagcttcat	cagatgtggt	cttgctagaa	ggggaaacca	gtaaagccgt	gccaatatat	6660
gtcattaatg	atatctatcc	tgaactggaa	gaatcttttc	ttgtgcaact	gatgaatgaa	6720
acaacaggag	gagccagact	aggggcttta	acagaggcag	tcattattat	tgaggcctct	6780
gatgacccct	atggattatt	tggttttcag	attactaaac	ttattgtaga	ggaacctgag	6840
tttaactcag	tgaaggtaaa	cctgccaata	attcgaaatt	ctgggacact	cggcaatgtt	6900
accgttcagt	gggttgccac	cattaatgga	cagcttgcta	ctggcgacct	gcgagttgtc	6960
tcaggtaatg	$t \\ gaccttt \\ gc$	ccctggggaa	accattcaaa	ccttgttgtt	agaggtcctg	7020
gctgacgacg	ttccggagat	tgaagaggtt	atccaagtgc	aactaactga	tgcctctggt	7080
ggaggtacta	ttgggttaga	tcgaattgca	a at at t at t a	ttcctgccaa	tgatgatcct	7140
tatggtacag	tagcctttgc	tcagatggtt	tatcgtgttc	aagagcctct	ggaaagaagt	7200
tcctgtgcta	atataactgt	caggcgaagc	ggagggcact	ttggtcggct	gttgttgttc	7260
tacagtactt	ccgacattga	tgtagtggct	ctggcaatgg	aggaaggtca	agatttactg	7320
tcctactatg	aatctccaat	tcaaggggtg	cctgacccac	tttggagaac	ttggatgaat	7380
gtctctgccg	tgggggagcc	cctgtatacc	tgtgccactt	tgtgccttaa	ggaacaagct	7440
tgctcagcgt	tttcattttt	${\tt cagtgcttct}$	${\tt gagggtcccc}$	agtgtttctg	gatgacatca	7500
tggatcagcc	cagctgtcaa	caattcagac	ttttggacct	acaggaaaaa	catgaccagg	7560
gtagcatctc	tittagtgg	tcaggctgtg	gctgggagtg	actatgagcc	tgtgacaagg	7620 -
caatgggcca	taatgcagga	aggtgatgaa	ttcgcaaatc	tcacagtgtc	tattcttcct	7680
gatgatttcc	cagagatgga	tgagagtttt	cta atttctc	tccttgaagt	tcacctcatg	7740
aacatttcag	ccagtttgaa	aaatcagcca	accataggac	agccaaatat	ttctacagtt	7800
gtcatagcac	taaatggtga	tgcctttgga	gtgtttgtga	tctacaatat	tagtcccaat	7860
acttccgaag	atggcttatt	tgitgaagtt	caggagcagc	cccaaacctt	ggtggagctg	7920
atgatacaca	ggacaggggg	cagcttaggt	caagtggcag	tcgaatggcg	tgttgttggt	7980

ggaacagcta	ctgaaggttt	agattttata	ggtgctggag	agattttgac	ctttgctgaa	8040
ggtgaaacca	aaaagacagt	cattttaacc	atcttggatg	actctgaacc	agaggatgac	8100
gaaagtatca	tagttagttt	ggtgtacact	gaaggtggaa	gtagaatttt	gccaagctcc	8160
gacactgtta	gagtgaacat	tttggccaat	gacaatgtgg	caggaattgt	tagctttcag	8220
acagcttcca	gatctgtcat	aggtcatgaa	ggagaaattt	tacaattcca	tgtgataaga	8280
actttccctg	gtcgaggaaa	tgttactgtt	aactggaaaa	ttattgggca	aaatctagaa	8340
ctcaattttg	$\tt ctaactttag$	cggacaactt	ttctttcctg	aggggtcgtt	gaatacaaca	8400
ttgtttgtgc	atttgttgga	tgacaacatt	cct gaggaga	aagaagtata	ccaagtcatt	8460
ctgtatgatg	tcaggacaca	${\tt aggagttcca}$	ccagccggaa	tcgccctgct	tgatgctcaa	8520
ggatatgcag	ctgtcctcac	agtagaagcc	agtgatgaac	${\tt cacatggagt}$	tttaaatttt	8580
gctctttcat	caagatttgt	gttactacaa	gaggctaaca	taacaattca	gcttttcatc	8640
aacagagaat	tiggatetet	aggagctatc	aatgtcacat	at accacggt	tcctggaatg	8700
ctgagtctga	agaaccaaac	agtaggaaac	$\tt ctag cag ag c$	cagaagttga	ttttgtccct	8760
atcattggct	ttctgatttt	agaagaaggg	gaaacagcag	cagccatcaa	cattaccatt	8820
cttgaggatg	atgtaccaga	gctagaagaa	tatttcctgg	tgaatttaac	ttacgtggga	8880
cttaccatgg	ctgcttcaac	ttcatttcct	cccagactag	attcagaagg	tttgactgca	8940
caagttatta	ttgatgccaa	tgatggggcc	cgaggtgtaa	ttgaatggca	acaaagcagg	9000
tttgaagtaa	atgaaaccca	tggaagttta	acattggtag	cccagaggag	cagagaacct	9060
cttggccatg	tttccttatt	tgtgtatgct	cagaatttgg	aagcacaagt	ggggctggat	9120
tatatcttca	ccccaatgat	tcttcatttt	gctgatggag	aaaggtataa	aaatgtcaat	9180
atcatgattc	ttgatgatga	cattccagaa	ggagatgaaa	aatttcagct	gattttaaca	9240
		gctagggaaa				9300
aatgatgacg	gccctggagt	tctatcattt	aacaacagtg	agcactttt	cctaagagag	9360
		ggagagtgtt				9420
caaggattgt	ttggaacagt	gacagttcag	ttcattgtga	cagaagtgaa	ttcctcaaat	9480
		ttccaaaggc				9540
		catattagac				9600
		tggaggtgct				9660
		ccctttgggg				9720
		agaagccaat			_	9780
		gagtgtgcag				9840
atgaggggaa	tggatgttgt	gttttccgta	tttcaaagtt	ttttggatga	atcagcttct	9900
		ggaaaattta		_		9960
		ggggatttt			-	10020
		taatattggt			_	10080
		ttctcttaac				10140
ttattcctgg	tacaaacaat	cattattctg	gaaagttctc	aagtaagata	ttttacttca	10200

gacagccaag	attatttaat	cattgcaagt	caaagagatg	attccgaatt	aactcaggtc	10260
ttcaggtgga	atggaggaag	cttcgtgttg	catcaaaaac	tccctgtccg	aggtgtgctg	10320
accgtggcct	tgttcaacaa	gggaggctct	gtgttcttag	ccatttccca	ggctaatgcc	10380
aggctaaact	cccttttatt	cagatggtct	ggcagtgggt	ttattaacti	tcaagaggtg	10440
cctgtcagtg	ggacaacaga	agttgaggct	ttgtcttcag	ccaatgatat	ttacctaata	10500
tttgccgaaa	atgtctttct	aggagatcag	aattcaattg	at atttt cat	ctgggagatg	10560
ggacagtctt	ccttcaggta	ttttcagtct	gtagattttg	ctgctgttaa	cagaatccac	10620
tccttcacac	cagcctcagg	aatagcccac	$at a ctt ctt \\ a$	ttgggccaag	atatgtctac	10680
tcttttactg	ctggaaattc	ggagcgtaat	caattctctt	ttgttctgga	agtaccttct	10740
gcttatgatg	tggtttctgt	tacagtaaag	tcccttaatt	caagcaagaa	tttaatagct	10800
ctagtgggag	ctcattcaca	tatatatgag	ctagcctaca	tttccagcca	ttctgacttt	10860
attcctagtt	caggtgaact	gatatttgaa	cctggtgaga	gagaagctac	aatagcagta	10920
aatatccttg	atgatacagt	tccagaaaaa	gaagaatcct	tcaaagttca	acttaaaaat	10980
cccaaaggag	gagcagagat	tggcattaat	gattctgtaa	caataaccat	tctgtctaat	11040
gatgatgcct	atggaattgt	tgcatttgct	cagaattcat	tatataagca	agtggaagaa	11100
atggagcaag	atagcctagt	aaccttgaac	gttgaacgct	taaaaggaac	atatggccgt	11160
ataaccatag	catgggaagc	tgatggaagt	attagtgata	tatttcctac	ctcaggagtg	11220
attttattta	ctgaaggcca	ggtactgtca	acaatcactc	taactattct	tgctgataat	11280
ataccagagt	tațcagaggt	tgtgattgta	accctcaccc	gtatcaccac	agaaggggtt	11340
gaggactcat	acaaaggtgc	tactattgat	caggacagaa	gcaagtctgt	tataacaact	11400
ttgcccaatg	actcaccttt	tggcttggtg	ggctggcgtg	ctgcgtctgt	cttcattaga	11460
gtagcagagc	ctaaagaaaa	caccaccact	cttcagttac	aaatagctcg	agataaagga	11520
ctacttgggg	atattgccat	tcacttgaga	gctcaaccca	atttcttact	gcatgtcgat	11580
aatcaagcta	ctgagaatga	agattatgta	ttgcaagaaa	caataataat	aatgaaagaa	11640
aacataaaag	aagctcatgc	cgaagtttcc	attttgccgg	atgaccttcc	tgaattggag	11700
gaaggattta	ttgtcactat	cactgaggtg	aacctggtga	actctgactt	ctctacagga	11760
cagccaagtg	tgcggaggcc	cggaatggaa	atagctgaga	taatgataga	agaaaatgac	11820
gatcccagag	gaattttat	gtttcatgtt	actagaggcg	ctggggaagt	tattactgcc	11880
tatgaggtgc	ctccaccctt	gaacgttctt	caagttcctg	tagtccggct	ggctggaagc	11940
tttggggcag	taaatgiita	ttggaaagca	tcaccagaca	gtgctggcct	ggaagacttt	12000
aaaccatctc	atgggattct	tgaatttgca	gataaacagg	ttactgcaat	gatagaaatc	12060
accataattg	atgatgctga	atttgaattg	acagagacgt	tcaatatttc	cttgatcagt	12120
gttgctggag	gtggcagact	tggtgatgat	gttgtggtaa	ctgttgttat	tccacaaaat	12180
gattctccat	ttggagtatt	tggatttgaa	gaaaagactg	taatgattga	tgaatccctt	12240
tcatccgatg	acccigatic	atatgtgaca	ttgacggttg	tccggtcccc	aggaggaaaa	12300
ggaaccgtcc	gacttgagtg	gaccatagat	gagaaggcta	aacataacct	tagtcctttg	12360
aatgggaccc	ttcattttga	tgagactgag	tcccagaaga	ccattgtgtt	gcacacactt	12420

caagacacag	tgttggagga	ggacaggcgt	ttcaccattc	agctgatatc	aattgatgag	12480
gtagaaatat	ctccagtaaa	aggtagtgca	tcaataatta	ttcggggtga	taagcgagca	12540
tcaggagaag	ttgggatagc	tccgtcatct	aggcacatcc	tcattgggga	accctcagca	12600
aaatataatg	gtaccgctat	tatcagcctt	gttcgaggcc	cagggatttt	gggggaggtc	12660
acagtgttct	ggaggatatt	ccctccttcc	gtgggggaat	ttgctgaaac	atcaggaaaa	12720
ctgacaatgc	gagacgaaca	gtctgcagtc	attgtagtaa	tacaggcttt	gaacgatgac	12780
attcccgagg	aaaaaagctt	ctatgagttt	cagctcactg	cagtcagtgg	gggaggagtt	12840
ctgagtgaat	ccagcagcac	tgccaacatc	acggtggtgg	ccagcgactc	tccctatggc	12900
cgatttgcct	tttcacatga	gcaacttcga	gtgtcagaag	cacagagggt	taacatcaca	12960
atcatccgtt	ccagtggaga	ttttggccat	gtgcgactct	ggtacaagac	gatgagcggg	13020
acagcggaag	caggcttgga	ttttgttcct	gcagcagggg	agctcctctt	tgaagcaggg	13080
gagatgagga	aaagtctgca	tgttgaaatc	cttgatgatg	actatcctga	aggcccagag	13140
gaattttctc	taacaattac	aaaggtggaa	ctccagggaa	gagggtatga	ttttaccatt	13200
caagaaaatg	gacttcagat	agatcaacct	cctgaaatag	gaaacatctc	cattgttcgc	13260
atcataataa	tgaaaaatga	taacgcagaa	ggcatcattg	aatttgaccc	aaagtatact	13320
gccttcgaag	tggaggaaga	tgttgggctg	atcatgatcc	cagtggtgag	gctacatgga	13380
acttatggct	atgtgacagc	tgatttcatc	tctcagagct	cctctgccag	tcccggaggt	13440
gttgattaca	ttttgcatgg	cagtacagtc	acctttcagc	atgggcaaaa	cttaagtttt	13500
ataaatatct	ccatcattga	tgacaatgaa	agtgaatttg	aggagcccat	tgaaattcta	13560
ctcactggag	ctactggagg	agcggtcctt	gggcgccacc	tagtgagcag	aatcataata	13620
gctaagagtg	actctccctt	tggagttata	aggtttctca	atcaaagcaa	aatttctatt	13680
gctaatccca	attccacaat	gattttatca	ctggtgctgg	agcggactgg	aggactcttg	13740
ggagagattc	aggtgaactg	ggagacagta	ggacccaact	ctcaagaagc	cttactgcca	13800
cagaatagag	acattgcaga	cccagtgagc	gggttgttct	attttggaga	aggagaagga	13860
ggagtgagaa	ccataattct	gacaatctat	cctcatgaag	aaattgaagt	tgaagagaca	13920
ttcattatta	aacttcatct	tgtgaaagga	gaagctaaat	tagactccag	agctaaagat	13980
gttacattaa	ccatacaaga	gtttggtgac	ccaaatggag	ttgttcagtt	tgctcctgaa	14040
actttgtcta	agaagactta	ttcagagcct	ctggctctgg	aagggcccct	gctcattacc	14100
ttctttgtca	gaagagtcaa	gggcaccttt	ggagagatta	tggtttactg	ggaattaagt	14160
agtgagtttg	acattactga	agactttctt	tccaccagtg	gatttttcac	cattgctgat	14220
ggagagagtg	aagctagctt	tgatgttcat	ttgctaccag	atgaggtacc	tgagatagag	14280
gaagattatg	tgatccagct	tgtttctgta	gagggaggag	ccgaactgga	tctggagaag	14340
agtatcacat	ggttctctgt	ttatgcaaat	gatgacccac	atggagtatt	tgccctgtat	14400
teggategee	agtcaatact	tattgggcag	aaccttatta	gatccatcca	aattaacata	14460
acccggcttg	ctggaacatt	tggagatgtg	gctgttgggc	ttcgaatatc	atcggatcat	14520
aaagaacagc	cgattgttac	cgaaaatgca	gagaggcagc	tggtggtcaa	agatggtgcc	14580
acatataaag	tggacgtggt	gccaataaag	aatcaggtct	tcctatcact	gggctctaat	14640

PCT/JP2004/011650

ttcactttgc aa	ctggtgac t	tgtgatgctt	gtcggtggac	gtttctatgg	aatgccaaca	14700
attetteagg aa	gcaaaatc t	tgctgtcctt	ccagtctctg	agaaagctgc	caattctcag	14760
gtcggatttg aa	tccactgc t	tttcaactc	atgaacatca	ctgctggcac	aagccacgtt	14820
atgatttcta gg	agaggcac a	atatggagct	ctctcggttg	cctggaccac	tggatatgct	14880
cctgggttag aa	attectga a	attcattgtt	gttggcaaca	tgaccccaac	actggggagc	14940
ctttcatttt cc	cacggtga a	acaaaggaaa	ggagttttcc	tgtggacgtt	tcctagccct	15000
ggttggccag ag	gcctttgt t	tcttcaccta	tcaggagtgc	agagcagtgc	tcctggcgga	15060
gctcaactcc ga	tcaggttt d	cattgttgct	gaaattgaac	caatgggcgt	cttccaattt	15120
tccactagct ca	agaaatat d	catagtgtca	gaagatacac	agatgatcag	attacatgta	15180
caaagactat tt	gggttcca (cagcgatctt	attaaagttt	cttatcagac	cactgcagga	15240
agcgccaagc ca	ctggaaga	ttttgagcct	gttcagaatg	gggaactgtt	ttttcaaaaa	15300
ttccaaactg ag	gttgattt	tgaaataacc	attattaatg	atcagctttc	tgagatagaa	15360
gaattittt ac	attaacct	tacttcagta	gaaattaggg	gattacaaaa	gtttgatgtt	15420
aattggagcc ca	cgcctgaa	tctagatttc	agtgttgcag	tgattacaat	attggataat	15480
gatgacctgg ca	ggaatgga	tatttccttc	cccgagacaa	ctgtggctgt	agcagttgac	15540
acaactetea tt	cctgtaga a	aactgaatcc	accacatacc	t cagcacaag	caagacgact	15600
accattctgc ag	ccaaccaa (cgtggttgcc	attgttactg	aggcaactgg	tgtatctgcc	15660
atccctgaga aa	cttgtcac o	ccttcatggc	$a cacct \verb gctg $	tgtctgaaaa	gcctgatgtg	15720
gccactgtaa ct	gccaatgt	ttccattcat	ggaacattca	gccttgggcc	atccattgtt	15780
tatattgaag ag	gagatgaa (gaatggcaca	ttcaacactg	${\tt cagaagttct}$	tatccgaaga	15840
actggtgggt tt	actggcaa	tgtcagcata	acagttaaaa	$\tt ctttcggtga$	aagatgtgct	15900
cagatggaac ca	aatgcatt	gccctttcgt	ggtatctatg	ggatttccaa	cctaacatgg	15960
gcagttgaag aa	gaagactt	tgaagaacaa	${\tt actcttaccc}$	ttatattcct	agatggagaa	16020
agagaacgta aa	gtatcagt	tcaaattttg	gatgatgatg	$a \verb gcctgaggg $	gcaggaattc	16080
tictacgigt ti	ctcacaaa	ccctcaaggg	ggagcacaga	ttgtggaggg	gaaggatgat	16140
actggatttg ca	gcttttgc	catggttatt	attacaggga	gtgaccttca	caatggcatc	16200
ataggatica gi	gaggagtc	ccagagtgga	ctagaactca	gggaaggagc	tgttatgaga	16260
agattgcacc tt	attgtcac	aagacagcca	aacagggcct	ttgaagatgt	caaggtcttt	16320
tggcgagtca ca	cttaacaa	aacagtcgtc	gtgctccaga	aggatggggt	aaacctgatg	16380
gaggaacttc ag	tctgtgtc	agggaccaca	accigiacaa	tgggtcaaac	aaaatgcttt	16440
atcagcattg as	ctcaaacc	agaaaaggta	ccacaggttg	aagtgtattt	ttttgtggaa	16500
ctatatgaag ct	actgctgg	agcagcaata	aacaacagtg	ccagattcgc	acagattaaa	16560
atcttagaaa gt						16620
gtggctcaca ag						16680
ctaatgatgt ct						16740
accatcatat ct						16800
tttgaacctg go	cagagaag	cactgtattg	gatgtcatcc	taacgccaga	gacaggatct	16860

ttaaattcat	ttcctaaacg	cttccagatt	gtcctttttg	acccaaaagg	tggtgccaga	16920
attgataaag	tgtatgggac	tgccaacatc	actcttgtct	cagatgcaga	ttcgcaggcc	16980
atttgggggc	ttgcagatca	gctacatcag	cctgtgaatg	atgatattct	caacagagtg	17040
ctccatacca	tcagcatgaa	agtggccaca	gaaaacacag	atgaacaact	cagtgccatg	17100
atgcatctaa	tagaaaagat	aactactgaa	ggaaaaattc	aagctttcag	tgttgccagc	17160
cgaactcttt	tctatgagat	tctttgttct	$\tt cttattaacc$	caaagcgcaa	ggacactagg	17220
ggattcagtc	actitgctga	agtgactgag	aattttgcct	tttctctgct	gactaatgtt	17280
acttgcggct	ctcctggtga	aaaaagcaaa	accat ccttg	atagttgccc	atatttgtca	17340
atattggctc	ttcactggta	tcctcagcaa	at caat ggac	acaagtttga	aggaaaggaa	17400
ggagattaca	ttcgaattcc	agagaggcta	${\tt ctggatgtcc}$	aggatgcaga	aataatggct	17460
gggaaaagta	catgtaaatt	agtccagttt	acagagtata	gcagccaaca	gtggtttata	17520
agtggaaaca	atcttcctac	cctaaaaaaat	aaggtattat	${\tt ctttgagtgt}$	gaaaggtcag	17580
agttcacaac	tcctgactaa	tgacaatgag	gttctctaca	${\tt ggatttatgc}$	tgctgagcct	17640
agaattattc	ctcagacatc	tctgtgtctc	ctttggaatc	${\tt aggctgctgc}$	aagctggttg	17700
tctgacagtc	agttttgcaa	agtgattgag	gaaactgcag	actatgtgga	atgtgcctgt	17760
tcacacatgt	ctgtgtatgc	tgtctatgct	cggactgaca	acttgtcttc	atacaatgaa	17820
gccttcttca	cttctggatt	tatatgtatc	tcaggtcttt	gcttggctgt	tctttcccat	17880
atcttctgtg	ccaggtactc	catgitigca	gctaaacttc	tgactcacat	gatggcagcc	17940
agcttaggta	caçagattct	gtttctggcg	tctgcatacg	caagtcccca	actcgctgag	18000
gagagctgtt	cagctatggc	tgctgtcaca	cattacctgt	atctttgcca	gtttagctgg	18060
atgctcattc	agtctgtgaa	tttctggtac	gtgctggtga	tgaatgatga	gcacacagag	18120
aggcgatatc	tgctgttttt	ccttctgagt	tggggactac	cagcttttgt	ggtgattctc	18180
ctcatagtta	ttttgaaagg	aatctatcat	cagagcatgt	cacagatcta	tggactcatt	18240
catggtgacc	tgtgttttat	tccaaacgtc	tatgctgctt	tgttcactgc	agctcttgtt	18300
cctttgacgt	gcctcgtggt	ggtgttcgtg	gtgttcatcc	atgcctacca	ggtgaagcca	18360
cagtggaaag	catatgatga	tgtcttcaga	ggaaggacaa	atgctgcaga	aattccactg	18420
attttatatc	tctttgctct	gatttccgtg	acatggcttt	ggggaggac t	acacatggcc	18480
tacagacact	tctggatgtt	ggttctcttt	gtcattttca	acagtctgca	gggactttat	18540
gttttcatgg	tttatttcat	tttacacaac	caaatgtgtt	gccctatgaa	ggccagttac	18600
actgtggaaa	tgaatgggca	tcctggaccc	agcacagcct	ttttcacgcc	cgggagtgga	18660
atgcctcctg	ctggagggga	aatcagcaag	tccacccaga	atctcatcgg	tgctatggag	18720
gaggtgccac	ctgactggga	gagagcatcc	ttccaacagg	gcagtcaggc	cagccctgat	18780
ttaaagccaa	gtccacaaaa	tggagccacg	ttcccgtcct	ctggaggata	tggccagggg	18840
tcactgatag	ccgatgagga	gtcccaggag	tttgatgatt	taatatttgc	attaaaaact	18900
ggtgctggtc	tcagtgtcag	tgataatgaa	tctggtcaag	gcagccagga	ggggggcacc	18960
ttgactgact	cccagatcgt	ggagctcagg	aggataccca	tcgccgacac	tcacctgtag	19020
cacctcacta	accattcgac	tgagcacact	ttcatatttg	tatcagcttt	tgtgctaaaa	19080

ctctctaagt	acatccacct	gtgtaatagg	aacctgtgaa	ttgtactgga'	tgattaatac	19140
aaacgtgatt	gttgtatttg	gagtataaat	tactgattgt	atgtgacctg	aaaattcact	19200
gctataagaa	aggtggagtc	agtttgtatc	agttaatagg	atgttcatat	tccaaggata	19260
ttagttgttt	ttttaatcat	cctatatggc	taacattgtt	taatgaaagt	aataatcaat	19320
aaagcaatag	aatctaaaaa	a			•	19341
<210> 2						
<211> 1955	2					
<212> DNA						
<213> home	sapiens					
<400> 2						
cttccgcgga	agggaagagt	cccgcagtcg	gaggcggccg	gctgggcgtg	cgctcgctcc	60
ccgaagccgg	ggctgggccg	gagccgggcg	${\tt agggctggga}$	$\mathtt{gctgggccgg}$	gtccggggac	120
agcgggcgag	gggcagctgc	cggagccggg	cagccaggcc	$\tt gctcagggca$	ggggacagct	180
ggcgccggtt	ctgcggtctc	cggggcccag	atgtgaggcg	gcggcgcccc	cggcccgaga	240
gcgcacgatg	ggggccccgc	tcgccgtagc	gctgggcgcc	$\tt ctccactacc$	tggcactttt	300
cctgcaactc	ggcggcgcca	cgcggcccgc	cggccacgcg	ccctgggaca	accacgtctc	360
cggccacgcc	ctgttcacag	agacacccca	tgacatgaca	gcacggacgg	gcgaggacgt	420
ggagatggcc	tgctccttcc	gcggcagcgg	ctcccctcc	tactcgctgg	agatccagtg	480
gtggtatgta	cggagccacc	gggactggac	cgacaagcag	gcgtgggcct	cgaaccagct	540
aaaagcatct	cagcaggaag	acgcagggaa	ggaggcaacc	aaaataagtg	tggtcaaggt	600
ggtgggcagc	aacatctccc	acaagctgcg	cctgtcccgg	gtgaagccca	cggacgaagg	660
cacctacgag	tgccgcgtca	tcgacttcag	cgacggcaag	gcccggcacc	acaaggtcaa	720
ggcctacctg	cgggtgcagc	caggggagaa	ctccgtcctg	catctgcccg	aagcccctcc	780
cgccgcgccc	gcccgccgc	ccccaagcc	aggcaaggag	ctgaggaagc	gctcggtgga	840
ccaggaggcc	tgcagcctct	agactgatgc	ccctgccccc	gcccatccgc	cccacgctg	900
tacagagtgc	atgaggagcc	gccggaccac	cggggaccga	ctgcctgcgt	ccagccgcgc	960
cccatccccg	aggccgcctg	tggccaccat	gtcggccctc	tttccaccac	cccttgctca	1020
gcatgtaagc	cccacccacc	cctgcccttt	cagacccctg	cggtgacctg	gctcggagaa	1080
ggtggccctg	ggcaccaagg	ggccaaccgc	cctgaacact	ggggcaggga	ccatgctggg	1140
gcccggggcc	accccttcc	tgtcaccagc	ttctgtggag	tccagtgttt	tgctttgctt	1200
gcttgtcccc	catcctgtcc	tgagccgggg	cccccagcc	tcgcctccct	cctcctacca	1260
tccctcactt	ggacctgggg	gtgtggacag	tgacccctcc	ctgaatatgg	acttgaatct	1320
tctgagcaga	actagggcct	ctccctggt	gaagacccag	ggaacccagg	agggcccttc	1380
tggggcagtg	gctctgcagg	gtcactcatg	gaggcctagg	ggaacagcga	gatgcccac	1440
cacctcctgg	cgagtccttc	ctgttcagct	ccctgtgcga	ccctccaggg	atgcagggga	1500
tccaggattc	tctgccctgt	cacacggcga	gtcagaaggg	aggggccttt	ccctcggacc	1560
catggcccca	ggcagagttt	tgcaccagca	ggaccccttt	gagggccttc	aaggctctcc	1620

caggagtece ce	tctgccgg	cccccaatg	ccccagctcc	ctcttgggtc	ctgtgccaag	1680
teegeeceag gg	cctggggc	tgttgggagc	caagggcccc	ctggtactca	gttccctcac	1740
gattcccgat cae	cgggcaca (cctgccccct	ggttatttgt	aaatatttct	attggaccca	1800
attctcctcg ga	attggctg	gcacctctgg	ttgccacagc	tcagtgatga	cgtgggggag	1860
gtgggagagg cc	gagggc t t	tgcctagggg	tgggttgccc	tgtatacatg	atccagtctg	1920
tgactaccag cc	aacctgaa	taaagcggtt	t t			1952
<210> 3						
<211> 932						
<212> DNA						
<213> homo s	apiens					
<400> 3 ·						
gggcgtgaga aa	ggcgacgg	cggcggcgcg	gaggagggt t	atctatacat	ttaaaaacca	60
gccgcctgcg cc	gcgcctgc	ggagacctgg	gagagtccgg	ccgcacgcgc	gggacacgag	120
cgtcccacgc tc	cctggcgc	gtacggcctg	ccaccactag	gcctcctatc	cccgggctcc	180
agacgaccta gg	acgcgtgc	cctggggagt	tgcctggcgg	cgccgtgcca	gaagccccct	240
tggggcgcca ca	gttttccc	cgtcgcctcc	ggttcctctg	$\verb cctgcacctt $	cctgcggcgc	300
gccgggacct gg	agcgggcg	ggtggatgca	ggcgcgatgg	acggcggcac	actgcccagg	360
tccgcgcccc ct	gcgccccc	cgtccctgtc	ggctgcgctg	cccggcggag	acccgcgtcc	420
ccggaactgt tg	çgctgcag	ccggcggcgg	cgaccggcca	ccgcagagac	cggaggcggc	480
gcagcggccg ta	gcgcggcg	caatgagcgc	gagcgcaacc	gcgtgaagct	ggtgaacttg	540
ggcttccagg cg	ctgcggca	gcacgtgccg	cacggcggcg	ccagcaagaa	gctgagcaag	600
gtggagacgc tg	cgctcagc	cgtggagtac	atccgcgcgc	tgcagcgcct	gctggccgag	660
cacgacgccg tg	cgcaacgc	gctggcggga	gggctgaggc	cgcaggccgt	gcggccgtct	720
gcgccccgcg gg	ccgccagg	gaccaccccg	gtcgccgcct	cgccctcccg	cgcttcttcg	780
tccccgggcc gc	gggggcag	ctcggagccc	ggctcccgc	gttccgccta	ctcgtcggac	840
gacagcggct go	gaaggcgc	gctgagtcct	gcggagcgcg	agctactcga	cttctccagc	900
tggttagggg go	tactgagc	gccctcgacc	ta.			932
<210> 4						
<211> 459						
<212> DNA						
<213> homo s	apiens					
<400> 4						
ggagagacaa gg	ggactccct	atgitacicc	tggactaaag	caatcctccc	acattggctt	60
tccaaagtgc tg	gaggtcaca	ggcacaagcc	cctgcgcccg	accacaagta	ggtgtttaa	120
accagtgttt ti	ttttaaca	aggcacaaac	attcgactta	agggtgacag	catagtactt	180
taccaggaat aa	aagttatgt	tttacacata	tacacgtgga	aaaaattaaa	accctatgaa	240
gttggtattg to	cttatatta	agtaatgagg	aaactgaggc	ataaagtagc	taaggatttt	300

gttcaaagag caagtgatgg cataatcaga acttgaaccc aggtctaccc agcatcagag cccatattcc taatccccac actggggctg caggaggaaa ttaatggaag gattcccaca aaacaagaca aatcttttac catataaata aattcacat	360 420 459
< 210 > 5	
<211> 667	
<212> DNA	
<213> homo sapiens	
<220>	
<pre><221> misc_feature</pre>	
<222> (435) (435)	
<223> n is a, g, c or t	
<220>	
<221> misc_feature	
<222> (652)(652)	
<223> n is a, g, c or t	
<400> 5	
tcgacccacg cgtccgtatt atccacttcc tctctcta tctttagtat tttaaagtaa	60
atcccagata gcatcacatc atttcacccc caccatagga tttcaaagat ctgttatatt	120
tcaagattga gtaaaagggc ttgaaattgg gttattgcaa tgaaactcta gaaaaagctt	180
gagggttcac ccaggagtaa gctggacaaa aaaggggttt gaggggtgga cccatcttgc	240
ctaaaaatct tgtctcatct ttctaaaaat tacatatgaa agaggaagat ttatgttact	300
tittatatg agagaatcgt cctttaatag aaaatttcta tigctgcatc agaattatgg	360
aggaacacaa aaaacatacc tcagtcctta gtgtgtccta aattaacaca tattcactta	420
ttagtgggta aatgnetata ttteatttea geacaaette teecetggta gaaaeteaaa	480
agaaatttet aatgattaaa etagggaagt tgeactggaa ttggatgget tateagagea	540
accgcagttt tccaggaagg aaattccaat ggccatgcgg ttggaaaatt ccccctagca	600
aataagggat taatttttaa aaaaggaagg ataaaggagg tetgggttet intggiitta	660
aaaaaaa	667
<210> 6	
<211> 418	•
<212> DNA	٠
<213> homo sapiens	
<400> 6	
ttitatagtg cigtatitgt aligggigaa tatgiggaaa itagggagti ciatgciitt	60
gatagagaca ggccaattta cttgctcatc cttgaatgca ggtttcttga cattcctttt	120
cactgitgaa totatticci gagocattac agccactgaa ccaaaatcgg gcacaagagt	180
tgacctgttt gtcataatac catcgaacca catattcacc acagtttcca ggcttcaagg	240

cttccaaaca 1	tctaggatcc	tctgccccat	ccacaggggt	gctgagcagt	ggcctggggg	300
tggtggtggc (ctcagatgag	gtagtggcag	gcacatcatc	agcccacgtt	ggctctggag	360
ccttatcatc	ttcatcctgg	tctctggtga	cactcaatga	ctcagaaatt	tctttttg	418
<210> 7						
<211> 1665					•	
<212> DNA						
<213> homo	sapiens					
<400> 7						
caacgacggc	agccccgccg	gctactacct	gaaggagtcc	aggggcagcc	ggcggtggct	60
cctcttcctg	gaaggcggct	ggtactgctt	caaccgcgag	aactgcgact	ccagatacga	120
caccatgcgg	cgcctcatga	gctcccggga	ctggccgcgc	actcgcacag	gcacagggat	180
cctgtcctca	cagccggagg	agaaccccta	ctggtggaac	gcaaacatgg	tcttcatccc	240
ctactgctcc	agtgatgttt	ggagcggggc	ttcatccaag	tctgagaaga	acgagtacgc	300
cttcatgggc	gccctcatca	tccaggaggt	ggtgcgggag	cttctgggca	gagggctgag	360
cggggccaag	gtgctgctgc	tggccgggag	cagcgcgggg	ggcaccgggg	tgctcctgaa	420
tgtggaccgt	gtggctgagc	agctggagaa	gctgggctac	ccagccatcc	aggtgcgagg	480
cctggctgac	tccggctggt	tcctggacaa	caagcagtat	cgccacacag	actgcgtcga	540
cacgatcacg	tgcgcgccca	cggaggccat	ccgccgtggc	atcaggtact	ggaacggggt	600
ggtcccggag	cgctgccgac	gccagttcca	ggagggcgag	gagtggaact	gcttctttgg	660
ctacaaggtc	tacccgaccc	tgcgctgccc	tgtgttcgtg	gtgcagtggc	tgtttgacga	720
ggcacagctg	acggtggaca	acgtgcacct	gacggggcag	ccggtgcagg	agggcctgcg	780
gctgtacatc	cagaacctcg	gccgcgagct	gcgccacaca	ctcaaggacg	tgccggccag	840
ctttgccccc	gcctgcctct	cccatgagat	catcatccgg	agccactgga	cggatgtcca	900
ggtgaagggg	${\tt acgtcgctgc}$	cccgagcact	gcactgctgg	gacaggagcc	tccatgacag	960
ccacaaggcc	agcaagaccc	ccctcaaggg	ctgcccgtc	cacctggtgg	acagctgccc	1020
ctggccccac	tgcaacccct	catgccccac	cgtccgagac	cagttcacgg	ggcaagagat	1080
gaacgtggcc	cagttcctca	tgcacatggg	cttcgacatg	cagacggtgg	cccagccgca	1140
gggactggag	cccagtgagc	tgctggggat	gctgagcaac	ggaagctagg	cagactgtct	1200
ggaggaggag	ccggcactga	ggggcccaga	cacccgctgc	cccagtgcca	cctcaccccc	1260
caccagcagg	ccctcccgtc	tcttcgggac	agggccccag	ccgtccccc	tgtctgggtc	1320
tgcccactgc	cctcctgccc	cggctttccc	tgccctctc	ccacagecea	gccagagaca	1380
agggacctgc	tgtcatcccc	atctgtggcc	tgggggtcct	tcctgacaac	gagggggtag	1440
ccagaagaga	agcactggat	tcctcagtcc	accagctcag	acagcaccca	ccggccccac	1500
ccatcaagcc	cttttatatt	attttataaa	gtgactttt	tattacttta	atttttaaa	1560
aaaaggaaaa	taagaatata	tgatgaatga	tattgttttg	; taactttta	aaaatgattt	1620
taaagagaca	aaaaagaaaa	aaaaaaaaa	aaaaaaaaa	aaaaa		1665
<210> 8						

<211> 3561

14/271

<212> DNA <213 homo sapiens **<400>** 8 atggcattag tgctgtcgga atcctgataa aacatcacaa acttctgttc gttggtatta 60 gggacagtat agagtgagtg cttgaagaac tgccttggct taccaatctc tctctccaca 120 acticcaatc atcictaggg aacctagcag aaacacticc acagagcaaa agttataata 180 cagaaagtga tgaaaggagg acgcaggctc tcaatgacgc caggtattcc cgggacccgc 240 ccaccgiggg cgitticcac ctacaggcag gcgitciccgg gggcggggct tgctcagggi 300 taacgtcact actgagcgcc gggcgcgttc cgttggcggc ggattcgaac gttcggactg 360 aggittitct gcctgaagaa gcgtcatacg gaccggattg tittcgctgg cccagtgtcc 420 ccggagcttg tgtgcgatac agagagcacc tcggaagctg aggcagctgg tacttgacag 480 agaggatggc gctgtcgacc atagtctccc agaggaagca gataaagcgg aaggctcccc 540 giggetitet aaagegagie ticaagegaa agaageetea actiegieig gagaaaagig 600 gigacitati ggiccaicig aacigittac igitigiica icgaitagca gaagagicca 660 ggacaaacgc tigigcgagi aaaigiagag tcaitaacaa ggagcaigia ciggccgcag 720 caaaggtatc tgaaaactga agagtggaga atatgttcag cagggaacaa gaggattctt 780 ttagaaataa gaggtagaag gtcacctcaa ataccacaaa atgaatggga agatgaacac 840 tatgcaagta ctcattaaaa acatcccaaa atgctggagg aaatgccgtg gaattaagga 900 atgactettt tgtggtagaa aattittatt teagagtata gacaetgett gtgetgggte 960 tettaatttt aetggatatt ataattttet tggaetgtta gattttetea gtgeaacatt 1020 totgagagoa aatatgitot gotoaattaa atacittota aagotagata aatgoottoo 1080 agtaagcaca ttaacattca atatgttata ttttaccaga ggtaaaacat ttatattcta 1140 aaacattata tictaaaatt tittacccca gggaaaataa aatgccaaaa atctcaacta 1200 ccacacatag ctttgtaata agatcaatgg gcaaatggaa tcagcttcag tttgcactaa 1260 tcctacatat atgtattaag gatatgtgta atgaactttg gccataataa attataacta 1320 atttatttca tcagttcact actatatttc tttcttgttt gcttctcctc ttgtcgtctc 1380 ticatatitg giagaatata tittatigaa tatciagiti cagattacci gagciicaga 1440 ttacatggaa tittggactg ttgaatactt ttgattgtgt agtggatata actaagcaat 1500 titttttttg gggtgcatac ttagaacgta atttctggat cttttgatag gcatattgtt 1560 ttagttigtt tictgctict ataacataat actgtagact gggtaatgta taaagaaaag 1620 agatttattt ccctcagagt tctggagatt gtccaagatc aaggggctgc atctggtgaa 1680 atccttcttg ctgtgtccta tatggtggaa agcatcacat ggcaaggaag catgcttgtg 1740 acagagagaa tgagagctga acttcatctt tttatcagca accccctcca gcaataatta 1800 acccaatccc acaataatgg ccttaatgta ttcatgtggg cagagtcctt ataactcagt 1860 caccicitga aggicccaci citaatgcig tcgcagtagc aattacatti caacatgagt 1920 ttiggaaggg atatttaaac catagcatac atgttigcta taaaaacgcc agttitccaa 1980

gtgaatgtac	ccattttaaa	cacccaccag	aatcatttgt	gagatctaat	tgttcattca	2040
atcttactat	acttggtatg	gtcaattatt	ttaattttag	caccataatg	aatatgtagt	2100
gatattaaat	ttggtattac	tttgcattaa	tgactaaaaa	ttagataaca	aatgatattg	2160
a a cttatttc	cacatgctta	ttgatcattt	ggatatatta	ctttgtgaag	ttcctttttg	2220
a a g c c t t t t g	${\tt cccattttc}$	tttgtgttgt	atttattttc	catactcatc	aaaaacatcc '	2280
caaaatgcta	gaggaaatgc	tctagaattc	aggaataact	tcttttgtgg	tagagaattt	2340
ttatttcaga	gtatagacac	tgtttgtgct	gggtttctta	attttactgg	atatcatcat	2400
tttcttgggc	tgtttgatca	agtttgattt	tcccagtgca	acatctctga	gagtaaatat	2460
gatctgctta	ataaaatatg	ttctaaagcc	agataagtgc	tttccagcaa	gtacaatttt	2520
$\tt ccttccagca$	agtataatac	ctggtttata	agcattacat	atattaatat	tattattttg	2580
tcagatagat	ataataaaag	tttaatattt	caatcttta	tggtaagtgc	tatttatata	2640
ctgtttaaga	aagaggcacc	catcatgaca	ataatgttct	atattttcct	atgaaagtct	2700
tgttttatat	ttcacattta	ggttttgatg	gtccttaaat	ataagatttt	tatacatgat	2760
attatgtatg	${\tt gatttaggtt}$	a atttattt	tatatggata	gccaactaac	ccagaaccac	2820
ttatcaaaaa	gacatccttt	atacattgaa	ttgcaatagt	gttttatcaa	aaccagctaa	2880
gtattttga	gtgagtgtat	ttctgaactc	tctaatttgt	ttcatttgtt	taccttttgt	2940
tgtattattt	cctcaccatc	ttaattattt	ttagccttat	aaaagctttg	atatttggta	3000
gtataagttt	tcctgtttag	tttttcttct	gtaatatttt	cttgactata	taaagtcctt	3060
gcatttctat	gtacatttta	gaataaaact	gtcaatttgc	acaaaataac	aggctgggat	3120
ttggatagag	attatgttga	tttgagggag	attggcattt	tatcaatatt	gtgtctttca	3180
gtcaatatac	agagtatatc	tatttagtta	ttttgatatt	aatttttctc	accaatgitt	3240
tatggtcctt	aaggaaaaag	ccttgcaatg	tttctatata	tgtgatccta	ggtagtggac	3300
ccttttagat	gttattataa	atgattttgc	tttttaatta	aatttcattt	ttcagttatt	3360
tctagtataa	agaaatggag	gtgactgatt	attggaaaca	tttatttgta	aattttctta	3420
tttttaattt	ttttgtagat	tcttgtaaat	tttctgcaga	aaatttatat	ttttttctgg	3480
ctttattgaa	ctgctttgaa	actccagtga	aatgttgaat	aaaagtgctg	ataattgata	3540
ttaaaaaaaa	aaaaaaaaaa	a				3561
⟨210⟩ 9						
<211> 262	8					
<212> DNA						
<213> hom	o sapiens					
<400> 9						
ggcacgagga	ctagaaggaa	gaagtatgga	gttaaagact	gcagcgtgaa	ctgaggagtc	60
ccggacaggc	cgcttgctgc	agaggatcca	gtccagatcc	caggagagcc	cctctgcccc	120
ttcggacctc	gtctcccatc	tacaaaacgt	gaagattggc	ccagttggcg	tgtctctaca	180
aaaaggtgca	tataccactg	ccccgctgca	ggctgatctg	agaaagcctc	tggcccaggg	240

cagataccgc catggccttc ctgatgcacc tgctggtctg cgtcttcgga atgggctcct

300

gggtgaccat	caatgggctc	tgggtagagc	tgccctgct	ggtgatggag	ctgcccgagg	360
gctggtacct	gccctcctac	ctcacggtgg	tcatccagct	ggccaacatc	gggccctcc	420
tggtcaccct	gctccatcac	ttccggccca	gctgcctttc	cgaagtgccc	atcatcttca	480
$\verb ccctgctggg $	cgtgggaacc	gtcacctgca	tcatctttgc	cttcctctgg	aatatgacct	540
cctgggtgct	ggacggccac	cacagcatcg	ctttcttggt	cctcaccttc	ttcctggccc	600
tggtggactg	cacctcttca	gtgaccttcc	tgccgttcat	gagccggctg	cccacctact	660
acctcaccac	cttctttgtg	ggtgaaggac	tcagcggcct	cttgcccgcc	ctggtggctc	720
ttgcccaggg	ctccggtctc	actacctgcg	tcaatgtcac	tgagatatca	gacagcgtac	780
caagccctgt	acccacgagg	gagactgaca	tcgcacaggg	agttcccaga	gctttggtgt	840
${\tt ccgccctccc}$	cggaatggaa	gcacccttgt	cccacctgga	gagccgctac	cttcccgccc	900
acttctcacc-	cctggtcttc	ttcctcctcc	tatccatcat	gatggcctgc	tgcctcgtgg	960
cgttctttgt	cctccagcgt	caacccaggt	gctgggaggc	ttccgtggaa	gacctcctca	1020
atgaccaggt	${\tt caccctccac}$	tccatccggc	tgcgggaaga	gaatgacttg	ggccctgcag	1080
gcatggtgga	cagcagccag	ggccaggggt	atctagagga	gaaagcagcc	ccctgctgcc	1140
cggcgcacct	ggccttcgtc	tataccctgg	tggccttcgt	caacgcgctc	accaacggca	1200
tgctgccctc	tgtgcagacc	tactcctgcc	tgtcctatgg	gccagttgcc	taccacctgg	1260
ctgccaccct	cagcattgtg	gccaaccctc	ttgcctcgtt	ggtctccatg	ttcctgccta	1320
acaggtctct	gctgttcctg	ggggtcctct	ccgtgcttgg	gacctgcttt	gggggctaca	1380
acatggccat	ggçggtgatg	agcccctgcc	ccctcttgca	gggccactgg	ggtggggaag	1440
tcctcattgt	ggcctcgtgg	gtgcttttca	$\tt gcggctgcct$	cagctacgtc	aaggtgatgc	1500
tgggcgtggt	cctgcgcgac	ctcagccgca	gcgccctctt	gtggtgcggg	gcggcggtgc	1560
agctgggctc	gctgctcgga	gcgctgctca	tgttccctct	ggtcaacgtg	ctgcggctct	1620
tctcgtccgc	ggacttctgc	aatctgcact	gtccagccta	ggcaggccgc	cgaccccgcc	1680
cccatcgctc	acggacggaa	ctggggtcca	gagaggccag	gtcacagagc	aaggggcagg	1740
aacagagaga	cagagcctga	gtaattgaat	catgaacgca	agtgcccact	ggggactgtg.	1800
gggaagatgg	cacctggaaa	tgcaaggtgc	ggctctatcc	ccaactctgt	gtcacactac	1860
ctgtgacgac	cagctcagat	ctcctttgct	ttgactctca	agagaggact	gatttgcagc	1920
atctagctgg	aggcaggccc	aagggtgtta	gaagggaaac	agctgggaca	gccggctgtc	1980
ccttcaggct	gtgtgacctt	gggaaagtca	tttggcttct	ctgtgcctgt	ttcttcatgc	2040
atgcagtggg	gattccagta	agtaccaact	acctcacagg	catggcacgg	aggcaaaagg	2100
aaaaagcagc	ccgcatcaag	caagccctcc	tgggccacct	gctgatctga	cagtccatcg	2160
tagtaacaag	agtggcagtc	tgcacaacct	agaagtggcc	agaagggttg	agacacgccc	2220
ctgccctctc	tcctttgccc	ctcagtctca	cagaggggct	tctacaagac	aagcagataa	2280
cgatagaatc	ttgggcatct	tggctttcgg	attctcagtg	tggagggacg	tagtacccca	2340
cacacccctt	cctgtcatcc	ttcctggccc	ataaagccca	ctagttggag	agtaagtacc	2400
ctcctggaag	cagggagaga	tgatttgctg	gtggggctgg	ggaaggccca	tccctgagcc	2460
tctgaaagtg	aactccccga	ccaggttggg	gaccagacat	gcagagcccc	tggaagtatt	2520

ctctcaaatg gaggcaacag aggtgattgt tattttgttt tagtttctgt ttttcatttt	2580
tttaaataaa ggcattccct gcttttaaaa aaaaaaaaaa	2628
<210> 10	
<211> 570	
<212> DNA	
<213> homo sapiens	
<400> 10	
cgtacataca tagtctgatg acagttggtg ggctgatttg aattatttct gtcttcatta	60
ccctttctgc tgcggttgat tctggtgtaa tggggatatc atcagaccaa gtcaggcttt	120
tgcccccacc caagaatgag aggaagtitt gttatgatgt ttctagctgt cgttcatcct	180
tccctgagac aatgaacaag tggaacacct tttaccagta tttgcagtca ccttttagta	240
agtitgatga tetgitgaag taettatggg etgeacaeae tteaacettg geagataata	300
tcaaaagttt tgaagacaga tatgattatt attctaaagc agaagcgcat tttgagagaa	360
gttgggtact ggctgtggat catttagctg cagtcctctt tcctacaacc ttgattagat	420
catataagtt ccagaagggc atgccaccac gaattcttct taatactgat gtagccctt	480
tcatcagtga ctttactgct tttcagaatg tagtcctggt tcttctaaat atgcttgaca	540
atgtggataa atctataggt tatctttgta	570
<210> 11 .	
<211> 1704 .	
<212> DNA	
<213> homo sapiens	
<400> 11	
gcctcaacct gacactcagc agcaagttag gcctatctac aaatctcctg ctctgtgccc	60
gcgcagtcca gtggaggaga tattcctaat tagggggcac ttccaagggg cggagtctcc	120
	120
gcggcgagtg gccgtggagg ggcgcaaggc agacggtctc cagccacgat acctgggcca	180
gcggcgagtg gccgtggagg ggcgcaaggc agacggtctc cagccacgat acctgggcca atcccagcct gtcacgtcat gcctagtgag ctgaacaagc tgcgtaactg tcgtgtgcct	
	180
atcccagcct gtcacgtcat gcctagtgag ctgaacaagc tgcgtaactg tcgtgtgcct	180 240
atcccagcct gtcacgtcat gcctagtgag ctgaacaagc tgcgtaactg tcgtgtgcct cagtttcccc acgtgtataa tggaaatgat tacaataaac aggacctttt tgaggagttg	180 240 300
atcccagcct gtcacgtcat gcctagtgag ctgaacaagc tgcgtaactg tcgtgtgcct cagtttcccc acgtgtataa tggaaatgat tacaataaac aggacctttt tgaggagttg ccatgaggac tgtcagacgc caaggcgccc cgagaggcac ttcgcttcca tgccgaggcc	180 240 300 360
atcccagcct gtcacgtcat gcctagtgag ctgaacaagc tgcgtaactg tcgtgtgcct cagtttcccc acgtgtataa tggaaatgat tacaataaac aggacctttt tgaggagttg ccatgaggac tgtcagacgc caaggcgccc cgagaggcac ttcgcttcca tgccgaggcc aagggcgcac aggtgcgtct ggacacgcgt ggctgcatcg cgcacaggcg caccacgttc	180 240 300 360 420
atcccagcct gtcacgtcat gcctagtgag ctgaacaagc tgcgtaactg tcgtgtgcct cagtttcccc acgtgtataa tggaaatgat tacaataaac aggacctttt tgaggagttg ccatgaggac tgtcagacgc caaggcgccc cgagaggcac ttcgcttcca tgccgaggcc aagggcgcac aggtgcgtct ggacacgcgt ggctgcatcg cgcacaggcg caccacgttc cacgacggca tcgtgttcag ccagcggccg gtgcgcctgg gcgagcgtgt ggcgctgcga	180 240 300 360 420 480
atcccagcct gtcacgtcat gcctagtgag ctgaacaagc tgcgtaactg tcgtgtgcct cagtttccc acgtgtataa tggaaatgat tacaataaac aggacctttt tgaggagttg ccatgaggac tgtcagacgc caaggcgccc cgagaggcac ttcgcttcca tgccgaggcc aagggcgcac aggtgcgtct ggacacgcgt ggctgcatcg cgcacaggcg caccacgttc cacgacggca tcgtgttcag ccagcggcc gtgcgcctgg gcgagcgtgt ggcgctgcga gtgctgcggg aggagagcgg ctggtgcggc ggcctccgcg tgggcttcac gcgcctggac	180 240 300 360 420 480 540
atcccagcct gtcacgtcat gcctagtgag ctgaacaagc tgcgtaactg tcgtgtgcct cagtttcccc acgtgtataa tggaaatgat tacaataaac aggacctttt tgaggagttg ccatgaggac tgtcagacgc caaggcgccc cgagaggcac ttcgcttcca tgccgaggcc aagggcgcac aggtgcgtct ggacacgcgt ggctgcatcg cgcacaggcg caccacgttc cacgacggca tcgtgttcag ccagcggccg gtgcgcctgg gcgagcgtgt ggcgctgcga gtgctgcgga aggagagcgg ctggtgcgc ggcctccgcg tgggcttcac gcgcctggac cccgcgtgcg tgtccgtgc cagcctgccg cccttcctgt gccccgacct ggaggagcag	180 240 300 360 420 480 540 600
atcccagcct gicacgicat gcctagigag cigaacaagc tgcgtaacig tcgtgtgcct cagtitccc acgtgtataa tggaaatgat tacaataaac aggaccitti tgaggagttg ccatgaggac tgicagacgc caaggcgccc cgagaggcac ttcgcticca tgccgaggcc aagggcgcac aggtgcgtct ggacacgcgt ggctgcatcg cgcacaggcg caccacgttc cacgacggca tcgtgttcag ccagcggcg gtgcgcctgg gcgagcgtgt ggcgctgcga gtgctgcggg aggagaggcg ctggtgcggc ggcctccgcg tgggcttcac gcgcctggac cccgcgtgcg tgtccgtgc cagcctgcg cccttcctgt gcccgacct ggaggagcag agcccgacgt gggcgccgt gctgcctgag ggctgcgcc tcactggga cttggtccgc	180 240 300 360 420 480 540 600 660
atcccagct gtcacgtcat gcctagtgag ctgaacaagc tgcgtaactg tcgtgtgcct cagtttccc acgtgtataa tggaaatgat tacaataaac aggacctttt tgaggagttg ccatgaggac tgtcagacgc caaggcgcc cgagaggcac ttcgcttcca tgccgaggcc aagggcgcac aggtgcgtct ggacacgcgt ggctgcatcg cgcacaggcg caccacgttc cacgacggca tcgtgttcag ccagcggcg gtgcgctgg gcgagcgtgt ggcgctgcga gtgctgcgg aggagagcgg ctggtgcgc ggcctccgcg tgggcttcac gcgcctggac cccgcgtgcg tgtccgtgc cagcctgcg cccttcctgt gcccgacct ggaggagcag agcccgacgt gggcgccgt gctgcctga ggctgcgcc tcactggga cttggtccgc ttctgggtgg accgccgg ctgcctcttc gccaaggtca acgccggcg ccgctcctg	180 240 300 360 420 480 540 600 660 720
atcccagct gtcacgtcat gcctagtgag ctgaacaagc tgcgtaactg tcgtgtgcct cagtttccc acgtgtataa tggaaatgat tacaataaac aggacctttt tgaggagttg ccatgaggac tgtcagacgc caaggcgccc cgagaggcac ttcgcttcca tgccgaggcc aagggcgcac aggtgcgtct ggacacgcgt ggctgcatcg cgcacaggcg caccacgttc cacgacggca tcgtgttcag ccagcggccg gtgcgcctgg gcgagcgtgt ggcgctgcga gtgctgcgga aggagagcgg ctggtgcgc ggcctccgcg tggcttcac gcgcctggac cccgcgtgcg tgtccgtgc cagcctgcg cccttcctgt gccccgacct ggaggagcag agcccgacgt gggcgcctg gctgcctga gcgctgcgc tcactggga cttggtccgc ttctgggtgg accgccggg ctgcctcttc gccaaggtca acgccggctg ccgcccttcttc gccaaggtca acgccggctg ctgctctg ctgcgtgac ctgcgtgag gcgtgccct tactgggag gcgtgccct cgcctcttc gccaaggtca acgccggctg ctgctcttg ctgcgtgag gcgtgcccg tgatggacc ttatggaccc ttatgaccc ttatgaccc ttatgaccc ttatgaccc ttatgaccc ttatgaccc ttatgaccc ttatgaccc ttatgac	180 240 300 360 420 480 540 600 660 720 780

tgcttctatc acgctgccaa cacccgcctt gtgccctgcg gccacacata cttctgcaga	960
tactgtgcct ggcgggtctt cagcgatacg gccaagtgcc ctgtgtgccg ctggcagata	1020
gaggcggtag cccctgcgca gggccctcct gctctgaggg ttgaggaagg ctcatgaaag	1080
gaggettece agtatgagtg geageeeggg cetagatetg agtetggeee etgeagagag	1140
gaaggaggcg cagccctacc ttctttctgg ggaagagtca gaaaggctga ttagcaagag	1200
gtgcggcaga gagaggaagg cagggaggtg ctgtctgctg cctccacctg ttccccaaca	1260
ggatagcaag gaaaaacccc tctttctgtc catgccagaa ctatccttct gatggggtgc	1320
ttigtitaga gatggggtgg cccaatcccc aatcagttit acatcigagg gagticaggt	1380
atctgttgtg actggtgaag ccctgtacct cctgggtatt gaagaacctg gacttgaagc	1440
aggaggtatc tgcaaggaat gtataaagtt ccacatggaa gctgggttgc ctcccacaag	g 1500
tccccagtag agtggatctg tagttacccg ccctgcctcc ctttcagggt ggtcatgagg	1560
tcccagagag accatgcatc tgaagatgat ttaaaacatg aaagtgtatt gttgtcactg	1620
tggtaatttc cttgccagtt tctgagatat caaaataaag tttgtgtttc ctgaaaaaaa	ı 1680
aaaaaaaaa aaaaa aaaa	1704
<210> 12	
<211> 1329	
<212> DNA	
<213> homo sapiens .	
<400> 12 .	
gggagctaca atgttttgtc attattcact ctgatgtgaa aaaggcagtg aatttaatag	g 60
aaaataactt cgtagagcaa aatctcaggt gtgtttttt agtgccgcag tcttggatga	a 120
tgggttccta gaagctctca acatctcttc ttaattggag aaagtgttaa gccccaaagt	t 180
agctggagca gtacatcttc aatttttgac aagaaaacag gaacttgatt actttgagtg	g 240
ctattcatta gtttctgctt tcattgagaa tgcaacaaaa gccaactagg ctgctgctaa	a 300
ctccttgctg gacttcttct gccactgtca caggaactgt aatctcactg gacaattaac	c 360
tagggagtet ticatetiga gigacigetg cacaaatgat eticaaagca tittagecae	c 420
cagaggaatt ctcttgaaat acccaaaatc catcagtatc ttgaatcatg ctggattttg	g 480
aagaattett aacaageeat gtaaaggggg etetetggee ttgaaatagt gatgttttt	t 540
atacagaaag gagaatgcag aatggtcaga ctaccatgca ctgttaaatt tgatttcaag	g 600
aaattacagg aaaactttcc aaagttccat ctcacagaaa ttatttttac aaagaattc	c 660
aagataagtt tagttttatg gaagactttt atgtggtttt tactcactct tcatctcag	a 720
catcaacaga tgattacatc acttatttag ctagtaaatt tattaatata aaaactcaga	a 780
gacattccaa tatccacatt gcttacacca ttaggcatag attcagtgtc agctatgaca	
attgaaaata agctgttttg tgatttaaag gtttaaattt ctctaaccaa actgcttga	
ccagatgcag gactgcaaat gttaatattt gttctggaag aacaatcaaa taagactta	
gaggaaaagg aatggccaca atccacctga aattttttt taaaaagtgt gcagcctac	
aaatcagaat gaaaatagaa gtacaagatt ataaacaaaa tgcaatcaaa cttttctta	a 1080

gcttacctaa agttatttca tctgaaaatt tcaagcaact ttgttcaaca ttaaattga	
aatctaaact aacaagtctt ttgaatttat gcatggtagt aaacattctc tctattaac	t 1200
gtattaccta aggctaaacc taaaattttt aagcaaaatt agaaaaatag tcttcactc	a 1260
tcaaaaaata aagtttgtta catttagtat tttcccaaga aaaaaaaaaa	a 1320
aaaaaaaa	1329
<210> 13	
<211> 560	
<212> DNA	
<213> homo sapiens	
<400> 13	
acaggictit tiatitaaca taaggccaaa gaagctatca ggcgitgcig aatacigic	c 60
actaactgta caaaatattg actgcatgcc tcgcaaacac caaaatatcc gctggaatg	c 120
catagaaata aataacttct gctataaaca catgaaaaca tatcaaactg ttatctctt	t 180
aaacatatig taaataaaaa aattaccagt acttctacac aataaatatt aagaaacca	t 240
tgacatagtt gaaatgcact catataaatt aacaacttta attacattag ccaaacaga	c 300
attggttaaa gaactgcatg tagtatgcaa aacaaaacaa	t 360
aaaaaaccaa caaaatagaa acaaacaaac aaacaacatc aaccacagaa cataaaaag	t 420
tttaaaataa aacaggette agattatett ggettteata attatatttt tettttaaa	g 480
aaaaatatca acccattgtc aatgcactgt ttttcaaagc atttaaatag agggtaaaa	c 540
cctttggaaa ttaatacaga	560
<210> 14	
<211> 1805	
<212> DNA	
<213> homo sapiens	
<400> 14	
aaagcctgcg agcgccagcc gagatcgcag cccaacccat ggccgggtct cctagccgc	g 60
ccgcgggccg gcgactgcag cttcccctgc tgtgcctctt cctccagggc gccactgcc	g 120
tcctctttgc tgtctttgtc cgctacaacc acaaaaccga cgctgccctc tggcaccgg	a 180
gcaaccacag taacgcggac aatgaatttt actttcgcta cccaagcttc caggacgtg	c 240
atgccatggt cttcgtgggc tttggcttcc tcatggtctt cctgcagcgt tacggcttc	a 300
gcagcgtggg cttcaccttc ctcctggccg cctttgccct gcagtggtcc acactggtc	c 360
agggetttet ceacteette caeggtggee acatecatgt tggegtggag ageatgate	a 420
atgctgactt ttgtgcgggg gccgtgctca tctcctttgg tgccgtcctg ggcaagacc	g 480
ggcctaccca gctgctgctc atggccctgc tggaggtggt gctgtttggc atcaatgag	t 540
ttgtgctcct tcatctcctg ggggtgagag atgccggagg ctccatgact atccacac	t 600
ttggtgccta cttcgggctc gtcctttcgc gggttctgta caggccccag ctggagaag	a 660
gcaagcaccg ccagggctcc gtctaccatt cagacctctt cgccatgatt gggaccatc	t 720

780

840

20/271

tcctgtggat cttctggcct agcttcaatg ctgcactcac agcgctgggg gctgggcagc

atcggacggc cctcaacaca tactactccc tggctgccag cacccttggc acctttgcct

tgtcagccct tgtaggggaa gatgggaggc ttgacatggt ccacatccaa aatgcagcgc	900
tggctggagg ggttgtggtg gggacctcaa gtgaaatgat gctgacaccc tttggggctc	960
tggcagctgg cttcttggct gggactgtct ccacgctggg gtacaagttc ttcacgccca	1020
tccttgaatc aaaattcaaa gtccaagaca catgtggagt ccacaacctc catgggatgc	1080
cgggggtcct gggggccctc ctgggggtcc ttgtggctgg acttgccacc catgaagctt	1140
acggagatgg cctggagagt gtgtttccac tcatagccga gggccagcgc agtgccacgt	1200
cacaggccat gcaccagctc ttcgggctgt ttgtcacact gatgtttgcc tctgtgggcg	1260
ggggccttgg agggctcctg ctgaagctac cctttctgga ctcccccca gactcccagc	1320
actacgagga ccaagttcac tggcaggtgc ctggcgagca tgaggataaa gcccagagac	1380
ctctgagggt ggaggaggca gacactcagg cctaacccac tgccagcccc tgagaggaca	1440
cgctcctttt cgaagatgct gactggctgc tactaggaag ttctttttga gctcccattc	1500
ctccagctgc aagaagggag ccatgagcca gaaggaggcc cctttccaca ggcagcgtct	1560
ccacagggag aggggcaaca ggaggctggg aaatggtggg gagtggggcc gtaactgggt	1620
acaatagggg gaacctcacc agatgcccaa cccgactgcc ctaccagcct gcacatgggt	1680
agaagaggcc aaattgaggc acccaagtga tccactggcc ccacgtcaca cagttacagt	1740
gaagcccaag ccaggcctgg ttgagggtga taaacgccac tgtctctaaa aaaaaaaaaa	1800
aaaaa .	1805
<210> 15	
<211> 3401	
<212> DNA	
<213> homo sapiens	
<400> 15	
atggcttcgt tccccgagac cgatttccag atctgcttgc tgtgcaagga gatgtgcggc	60
tegeeggege egeteteete caactegtee gegtegtegt eeteetegea gaegteeaeg	120
tcgtcggggg gcggcggcgg gggccctggg gcggcggcgc gccgcctaca cgtcctgccc	180
tgcctgcacg ccttctgccg cccctgcctc gaggcgcacc ggctgccggc ggcgggcggc	240
ggcgcggcgg gagagccgct caagctgcgc tgccccgtgt gcgaccagaa agtagtgcta	300
gccgaggcgg cgggtatgga cgcgctgcct tcgtccgcct tcctgcttaa caacctgctc	360
gacgcggtgg tggccactgc cgacgagccg ccgcccaaga acgggcgcgc cggcgctccg	420
gcgggagcgg gcggccacag caaccaccgg caccacgctc accacgcgca cccgcgcgcg	480
teegeeteeg egeegeeact eeegeaggeg eegeageege eegegeette eegeteggea	540
cccggcggcc ctgccgcttc cccgtcggcg ctgctgctcc gccgtcctca cggctgcagc	600
togtgogatg agggcaacge agettetteg egetgeeteg actgecagga geacetgtge	660
gacaactgcg tccgagcgca ccagcgcgtg cgcctcacca aggaccacta catcgagcgc	720
ggcccgccgg gtcccggtgc cgcagcagcg gcgcagcagc tcgggctcgg gccgcccttt	780

cccggcccgc ccttctccat	cctctcagtg	tttcccgagc	gcctcggctt	ctgccagcac	840
cacgacgacg aggtgctgca	cctgtactgt	gacacttgct	ctgtacccat	ctgtcgtgag	900
tgcacaatgg gccggcatgg	gggccacagc	ttcatctacc	tccaggaggc	actgcaggac	960
tcacgggcac tcaccatcca	gctgctggca	gatgcccagc	agggacgaca	ggcaatccag	1020
ctgagcatcg agcaggccca	gacggtggcg	gaacaggtgg	agatgaaggc	gaaggttgtg	1080
cagtcggagg tcaaagccgt	gactgcgagg	cataagaaag	$\operatorname{ccctggagga}$	acgcgagtgt	1140
gagctgctgt ggaaggtaga	aaagatccgc	caggtgaaag	${\tt ccaagtctct}$	gtacctgcag	1200
gtggagaagc tgcggcaaaa	cctcaacaag	cttgagagca	${\tt ccatcagtgc}$	cgtgcagcag	1260
gtcctggagg agggtagagc	gctagacatc	ctactggccc	gagaccggat	gctggcccag	1320
gtgcaggagc tgaagaccgt	gcggagcctc	ctgcagcccc	aggaagacga	ccgagtcatg	1380
ttcacacccc.ccgatcaggc	actgtacctt	gccatcaagt	cttttggctt	tgttagcagc	1440
ggggcctttg ccccactcac	caaggccaca	ggcgatggcc	tcaagcgtgc	cctccagggt	1500
aaggtggcct ccttcacagt	cattggttat	gaccacgatg	gtgagccccg	cctctcagga	1560
ggcgacctga tgtcggctgt	ggtcctgggc	cctgatggca	acctgtttgg	tgcagaggtg	1620
agtgatcagc agaatgggac	atacgtggtg	agttaccgac	cccagctgga	gggtgagcac	1680
ctggtatctg tgacactgtg	caaccagcac	attgagaaca	gccctttcaa	ggtggtggtc	1740
aagtcaggcc gcagctacgt	gggcattggg	ctcccgggcc	tgagcttcgg	cagtgagggt	1800
gacagcgatg gcaagctctg	ccgcccttgg	ggtgtgagtg	tagacaagga	gggctacatc	1860
attgicgccg accgcagcaa	caaccgcatc	caggtgttca	agccctgcgg	cgccttccac	1920
cacaaattcg gcaccctggg	ctcccggcct	gggcagttcg	accgaccagc	cggcgtggcc	1980
tgtgacgcct cacgcaggat	cgtggtggct	gacaaggaca	atcatcgcat	ccagatette	2040
acgttcgagg gccagttcct	cctcaagttt	ggtgagaaag	gaaccaagaa	tgggcagttc	2100
aactaccctt gggatgtggc	ggtgaattct	gagggcaaga	tcctggtctc	agacacgagg	2160
aaccaccgga tccagctgtt	tgggcctgat	ggtgtcttcc	taaacaagta	tggcttcgag	2220
ggggctctct ggaagcactt	tgactcccca	cggggtgtgg	ccttcaacca	tgagggccac	2280
ttggtggtca ctgacttcaa	. caaccaccgg	ctcctggtta	ttcaccccga	ctgccagtcg	2340
gcacgctttc tgggctcgga	gggcacaggo	aatgggcagt	tcctgcgccc	acaaggggta	2400
gctgtggacc aggaagggcg	; catcattgtg	g gcggattcca	ggaaccatcg	ggtacagatg	2460
tttgaatcca acggcagctt	cctgtgcaag	g tttggtgctc	aaggcagcgg	ctttgggcag	2520
atggaccgcc cttccggcat	cgccatcaco	cccgacggaa	tgatcgttgt	ggtggacttt	2580
ggcaacaatc gaatcctcgt	cttctaattg	g catttcctag	g gtttctgtgt	ttggggtgtg	2640
tgtgcgtgtc tctctctct	tctctctt	tctcttctc	tctcttttg:	g aatttcaaag	2700
aagaaacagt ctcagggaaa	tttcttttt	tcttttttt	: tttaaagaga	acaagaaaag	2760
tacaacattg cttaagtcct	acctcatcti	t tatttttta	ı cagatgaatg	tacttatctt	2820
ttctgcaggg attgagcctg	g tgaagtgata	a atttctatct	acctcataaa	tctttacatt	2880
tccttctgca acaggcccto	ttcccctcct	t cagtggagtt	tgcatttcc	tcttcccctg	2940
cgtggggcat gatatgcaca	a agcctggca	t ctgtatggct	gggagggcac	tggatgtgtg	3000

```
3060
tggtggggtg tattctgtag attgagccaa ggaaacacaa aaaaaaacta ctaagtaaaa
                                                                   3120
aaacaaaaaa ctataaaaca tggaaaaaat aggatttgaa atgcataatt atagaatacc
3180
                                                                   3240
ttggaaaatc ttctcttttt aaatgctgca acagagaaat ttcctctgtt ctctgtttat
                                                                   3300
acctcttaat tgtattgtcc aaggcagaca tgatataagg aatatgcact accgtagtaa
                                                                   3360
ctccctggc cgcagaaacc acactgcaag cctgtccggg gtggggtgct gactgccatt
                                                                   3401
tgccactttt aaatgggcac tgccgtggta atgtgaatcc c
⟨210⟩ 16
<211> 474
<212> DNA
<213> homo sapiens
<220>
<221> misc_feature
⟨222⟩ (1)..(1)
\langle 223 \rangle n is a, g, c or t
<220>
<221> misc_feature
⟨222⟩ (3).. (3)
<223> n is a, g, c or t
<220>
<221> misc_feature
⟨222⟩ (5).. (5)
\langle 223 \rangle n is a, g, c or t
<220>
<221> misc_feature
<222> (416)..(416)
\langle 223 \rangle n is a, g, c or t
<220>
<221> misc_feature
<222> (424)..(424)
\langle 223 \rangle n is a, g, c or t
<220>
<221> misc_feature
<222> (463).. (463)
\langle 223 \rangle n is a, g, c or t
<220>
<221> misc_feature
```

```
<222> (474).. (474)
\langle 223 \rangle n is a, g, c or t
<400> 16
ntnanttigt cagigaaacc aigigiaagi tiattagaaa giiggattii tiaacgacga
                                                                      60
aaagagaagg acccacacac cttaattttg tacctataag cttgcgttct gtctgcataa
                                                                     120
catagattta gcccagtctt agccttctgc gtctaacact ttcctaacta ttcatttaa
                                                                     180
gtctataagc atgggttaaa tgattacctc gtgcctgggc cttgtgttgg gggctctgag
                                                                     240
gaactetgea atettitiat titeattiit tgagacaggg atetigetet gicacacagg
                                                                     300
                                                                     360
gctgggagtg cagtgggtac catcacaggc tcactacagg cctcaacctc gtggggctca
attgatecet eccaecteag geetetteaa gtaggetgag gttacaggge acatgneace
                                                                     420
                                                                     474
atgncggggg gtaatttitt gtaggtttit gtaggagaca ggntttcacc aagn
<210> 17
<211> 10434
<212> DNA
<213> homo sapiens
<400> 17
                                                                       60
atggcgaacc ggcgagtggg gcgaggctgc tgggaagtga gcccgaccga gcggaggccg
cccgcggggc tgcggggccc cgcggccgag gaggaggcgt cttccccgcc ggtcctgtct
                                                                      120
ctcagccact tctgcaggtc tcctttcctt tgcttcgggg acgttctcct gggagcctca
                                                                      180
cggacgctgt ctctggccct agacaaccct aacgaggagg tggcagaagt gaagatctcc
                                                                      240
                                                                      300
cacticecgg cegeggacet gggetteagt gtgtegeage getgtttegt gttgeageet
aaagagaaaa tigitattic igitaacigg acaccacica aagaaggccg agiaagagag
                                                                      360
                                                                      420
attatgacat ttcttgtaaa tgatgttctg aaacaccaag ctatattact aggaaatgca
                                                                      480
gaagagcaga aaaagaaaaa gaggagtctt tgggatacca ttaaaaagaa gaaaatttca
                                                                      540
gcctctacaa gtcacaacag aagggtttca aatattcaga atgttaataa aacatttagt
                                                                      600
gtttcccaaa aagttgacag agttaggagc ccactacaag cttgtgaaaa cttggctatg
                                                                      660
aatgaaggcg gtcccccaac agaaaacaat tctttaatac ttgaagaaaa taaaataccc
                                                                      720
atateaceta ttagecetge ttteaatgaa tgecatggtg caacttgett gecactetet
                                                                      780
gtacgtcgat ctactaccta ctcatctctt catgcatcag aaaataggga actattaaat
                                                                      840
gtacacagtg ccaacgtttc aaaagtttct tttaatgaga aagctgtaac tgaaacttcc
                                                                      900
 tttaatictg taaatgitaa tggccaaaga ggagagaata gtaaacttag tcttaccccc
                                                                      960
aactgttctt caactttgaa cattacacaa agccaaatac attttctaag tccagattct
                                                                     1020
 tttgtaaata atagtcatgg agctaataat gaactagaat tagtaacatg tctttcatca
gatatgitta tgaaagataa ttcacagcci gigcaitigg aatcaacaat igcacaigaa
                                                                     1080
 atttatcaga aaattttaag tccagattct ttcataaaag ataattatgg actaaatcag
                                                                     1140
                                                                     1200
gatciagaat cagagtcagt taatcctatt ttatccccta atcaattttt aaaagataac
 atggcatata tgtgtacatc tcagcaaaca tgtaaagtac cattatcaaa tgaaaattct
                                                                     1260
```

			24/2/1			
caagtcccac	agtctcctga	agattggaga	aaaagtgaag	tttcgccacg	tattcctgaa	1320
tgtcagggtt	caaaatctcc	caaagctatt	tttgaagaac	tagtagaaat	gaagtcaaat	1380
tactacagtt	ttataaaaca	aaataatcct	aaattttctg	cagttcagga	tatttctagt	1440
catagccaca	ataaacaacc	taagagacgt	ccaatacttt	ctgccactgt	tactaaaagg	1500
aaggccacct	gtaccagaga	aaaccaaact	gagattaata	aaccaaaagc	aaaaagatgt	1560
ctcaacagtg	cagtgggtga	acatgaaaaa	gtaataaata	atcaaaagga	aaaagaagat	1620
tttcattctt	atcttccaat	tatagatcca	atattaagta	aatctaagag	ttataaaaac	.1680
gaggtaacac	$\operatorname{cctcttcgac}$	aacagcttca	gttgctcgga	aaagaaagag	cgatggaagc	1740
atggaagatg	caaatgtgag	agttgcaatt	acagaacata	cagaagtgcg	agaaatcaaa	1800
agaatccatt	tttctccctc	agagcctaaa	a cat cag ctg	ttaagaaaaac	aaaaaatgtg	1860
acaacaccca	tctcaaaacg	tattagcaac	agagagaaat	taaacctgaa	gaagaaaac t	1920
gatttatcaa	tattcagaac	tccaatttct	aaaacaaaca	aaaggacaaa	acccattatc	1980
gctgtggcac	agtccagttt	gaccttcata	aaaccattaa	aaacagatat	tcccagacac	2040
		aaacatgttt				2100
		aaattttata				2160
		tgctactctt				2220
		aaaagaggaa				2280
		tgcagcatgc				2340
		tgaaattgaa				2400
		agaacgtcag			_	2460
		tctagagaca				2520
		ggctatgttt				2580
		cccactgtt				2640
		gaaaaagtta				2700
		tcatgatcct				2760
		ggcttttca			-	2820
		gggattacct			_	2880
		tcttgccgta				2940
		gaactgggac				3000
		caatgttgac				3060
		tggaaataca			· -	3120
		gctttggaaa				3180
		ggaagaaatt				3240
		atgccattct		-		3300
		acaatatagt				3360
		taataaaaag				3420
5500515151	iaigiiatti	gatccaccat	iaccatectt	Retaigigee	alligacgci	3480

atatgtcagc	gtactactca	aactgtggaa	tgtacgcaaa	ctggttcagt	ggtattaaat	3540
tcatcatctg	aatctgatga	cagttctctg	gatatgtcac	ttaaagcatt	tgatcatgaa	3600
a a t a c t t c a g	agctatacaa	agagctccta	gaaaatgaaa	agaaaaattt	tcacttggtt	3660
aggtctgcag	ttagagacct	tggtggaata	ccțgctatga	ttaatcattc	agatatgtca	3720
a at a ca at tc	cagatgaaaa	ggtggttatt	acctatttgt	catttctttg	tgcaaggctt	3780
ttggatcttc	gtaaagaaat	aagagctgct	cgactcatac	aaacaacatg	gagaaaatat	3840
aaactaaaaa	cagateteaa	acgccatcag	gagagagaga	aagctgcaag	aattattcaa	3900
ttggctgtaa	tcaattttct	agcaaaacaa	agattgagaa	aaagagttaa	tgcagcactc	3960
gtcattcaga	aatattggcg	aagagtetta	gcacagagaa	aattattaat	gttaaaaaag	4020
gaaaagctgg	aaaaagttca	aaataaagca	gcatcactta	ttcagggata	t tggagaaga	4080
tattccacta	gacaaagatt	tctgaaattg	aaatattatt	caatcatcct	gcaatctagg	4140
ataagaatga	taattgctgt	tacatcttat	aaacgatatc	tttgggctac	agttacaatt	4200
cagaggcatt	ggcgtgctta	tttaagaaga	aaacaagatc	aacaaagata	tgaaatgcta	4260
aaatcatcaa	ctcttataat	ccaatctatg	ttcagaaaat	ggaagcaacg	taaaatgcaa	4320
tcacaagtaa	aagctacagt	aatattgcaa	agagctttta	gagaatggca	tttaagaaaa	4380
caagctaaag	aagaaaattc	tgctattatc	atacaatcat	ggtatagaat	gcataaagaa	4440
ttacggaagt	atatttatat	tagatettgt	gttgttatca	ttcagaaaag	atttcggtgc	4500
tttcaagccc	aaaagttata	taaaagaaga	aaagagtcca	tactaaccat	ccagaagtac	4560
tacaaagcat	atçtgaaagg	aaagattgag	cgcaccaact.	atttgcagaa	acgagctgca	4620
gccattcaat	tacaagctgc	ttttaggaga	ctgaaagctc	ataatttatg	tagacaaatt	4680
agagctgctt	gtgttattca	gtcatactgg	agaatgagac	aagacagagt	tcgattttta	4740
aaccttaaga	agactattat	caaatttcag	gcacatgtaa	gaaaacatca	acaacgacag	4800
aaatataaga	agatgaagaa	agcagctgtt	ataattcaga	ctcatttccg	agcttatatt	4860
tttgccatga	aagttctagc	atcttaccag	aaaacacgct	ctgctgtcat	tgtgctgcag	4920
tctgcatata	gagggatgca	agccaggaaa	atgtatattc	acatcctcac	atctgttata	4980
aagattcaat	catattatcg	tgcttatgtt	tctaaaaagg	aatttttgag	cctaaaaaat	5040
gctacaataa	aattgcagtc	aactgttaag	atgaaacaaa	cacgtaaaca	atatttgcat	5100
ttaagagcag	ctgcactatt	tatccagcaa	tgttaccgtt	ccaaaaaaat	agctgcacaa	5160
aagagagaag	agtatatgca	gatgcgggaa	tcttgtatca	aactgcaagc	atttgttaga	5220
ggataccttg	tccgaaagca	gatgaggtta	caaagaaaag	ctgttatttc	actacagtct	5280
tatttcagaa	tgagaaaggc	tcggcagtat	tatctgaaaa	tgtataaagc	aattattgtc	5340
attcagaatt	actatcatgo	atacaaagca	caggicaatc	agaggaagaa	cttcttgcaa	5400
gtcaaaaaag	cagctacttg	cttgcaagca	gcttacagag	gttataaagt	acgccagcta	5460
atcaaacaac	aatctatagc	tgctcttaaa	attcagtctg	cttttagagg	ctataataaa	5520
		gcttcaatct				5580
tacaagactc	ttcatgatac	aagaacacat	tttttgaaga	caaaggcagc	tgtgatttcc	5640
ctccagtctg	cttatcgtgg	ctggaaggtt	cggaaacaga	ttagaaggga	acatcaagct	5700

gccttgaaga	ttcagtctgc	ttttagaatg	gccaaggccc	agaaacagtt	tagattgttt	5760
aaaacagcag	cattagtcat	ccagcaaaat	ttcagagcat	ggactgcagg	aaggaagcaa	5820
tgtatggagt	atattgaact	ccgtcatgcg	gtactggtgc	ttcaatctat	gtggaaggga	5880
aaaacactga	gaagacagct	tcaaaggcaa	cataaatgtg	ctatcatcat	acagtcatac	5940
tatagaatgc	atgtgcaaca	aaagaagtgg	aaaatcatga	aaaaagctgc	tcttctgatt	6000
caaaagtatt	atagggctta	cagtattgga	agagaacaga	atcatttata	tttgaaaaaca	6060
aaagcagctg	tagtaacttt	acagtcagct	tatcgtggta	tgaaagtgag	aaaaagaata	6120
aaggattgca	acaaagcagc	agtcactata	cagtctaaat	a cagagetta	caaaaccaaa	6180
aagaaatatg	${\tt caacctatag}$	agcttcagct	attata attc	agagatggta	tcgaggtatt	6240
aaaattacaa	accatcagca	taaggagtat	cttaatttga	agaagacagc	aattaaaatc	6300
caatctgttt	atagaggtat	tagagttaga	$a \\ gacatattc$	aacacatgca	cagggcagcc	6360
acttttatta	a a g c c a t g t t	taaaatgcat	cagtcaagaa	taagttacca	tacaatgaga	6420
aaagcagcta	ttgttattca	agtaagatgt	agagcatatt	atcaaggtaa	aatgcagcgt	6480
gaaaagtacc	tgacaatttt	gaaagctgtt	aaagtccttc	agg caagttt	tagaggagta	6540
agagttagac	ggactcttag	aaagatgcag	actgcagcaa	cactcattca	gtcaaactac	6600
agaagataca	gacagcaaac	atactttaat	aagttaaaga	aaataacaaa	aacagtacag	6660
caaagatact	gggcaatgaa	agaaagaaac	atacaatttc	aaaggtataa	caaactgagg	6720
cattctgtaa	tatacattca	ggctattttt	aggggaaaga	aagctagaag	acatttaaaa	6780
atgatgcata	tagccgcaac	tctcattcag	aggagattta	gaactctaat	gatgagaaga	6840
agattcctct	ctctcaagaa	aactgctatt	ttgattcaga	gaaaatatcg	ggcacatctt	6900
tgtacaaagc	atcacttaca	gttccttcag	gtacaaaatg	cagttattaa	aatccagtca	6960
tcatacagaa	gatggatgat	aaggaaaagg	atgcgagaga	tgcacagggc	tgctactttc	7020
atccagtcta	ctttcagaat	gcacagatta	catatgagat	atcgagcttt	gaaacaggcc	7080
tccgttgtga	tccaacagca	ataccaagca	aatagagctg	caaaactgca	gaggcagcat	7140
tatctcagac	aaagacactc	tgctgtgatc	cttcaggctg	cattcagggg	tatgaaaact	7200
agaagacatt	tgaagagtat	gcattcctct	gcaaccctta	ttcagagtag	gtttagatca	7260
ttactggtga	ggagaagatt	catttccctc	aaaaaagcta	ctatttttgt	tcagaggaaa	7320
tatcgagcca	ccatttgtgc	caaacataaa	ttgtaccaat	tcttgcactt	aagaaaggca	7380
gccattacaa	tacagtcatc	ttacagaaga	ctgatggtaa	agaagaagtt	acaagaaatg	7440
caaagggctg	cagtictcat	tcaggctact	ttcaggatgc	acagaacata	tattacattt	7500
cagacttgga	aacatgcttc	aattctaatt	cagcaacatt	atcgaacata	tagagctgca	7560
aaattgcaaa	gagaaaatta	tatcagacaa	tggcattctg	ctgtggttat	tcaggctgca	7620
tataaaggaa	tgaaagcaag	acaacttta	agggaaaaac	acaaagcttc	tatcgtaata	7680
caaagcacct	acagaatgta	taggcagtat	tgtttctacc	aaaagcttca	gtgggctaca	7740
aaaatcatac	aagaaaaata	tagagcaaat	aaaaagaaac	agaaagtatt	tcaacacaat	7800
gaacttaaga	aagagacttg	tgttcaggca	ggttttcagg	; acatgaacat	aaaaaaacag	7860
attcaggaac	agcaccaggo	tgccattatt	attcagaagc	attgtaaagc	ctttaaaata	7920

	aggaagcatt	atctccacct	tagagcaaca	gtagtttcta	ttcaaagaag	atacagaaaa	7980
	ctaactgcag	tgcgtaccca	agcagttatt	tgtatacagt	cttattacag	aggctttaaa	8040
	gtacgaaagg	atattcaaaa	tatgcaccgg	gctgccacac	taattcagtc	attctatcga	8100
	atgcacaggg	ccaaagttga	ttatgaaaca	aagaaaactg	caattgtggt	tatacagaat	8160
	tattataggt	tgtatgttag	agtaaaaaca	gaaagaaaaa	acttttagc	agttcagaaa '	8220
	tctgtacgaa	ctattcaggc	tgcttttaga	ggcatgaaag	ttagacaaaa	attgaaaaat	8280
	gtatcagagg	aaaagatggc	agccattgtt	aaccaatctg	cactctgctg	ttacagaagt	8340
	aaaactcagt	atgaagctgt	tcaaagtgaa	ggtgttatga	ttcaagagtg	gtataaagct	8400
	${\tt tctggccttg}$	cttgttcaca	ggaagcagag	tatcattctc	aaagtagggc	tgcagtaaca	8460
	attcaaaaag	${\tt cttttgtag}$	aatggtcaca	agaaaactgg	aaacacagaa	atgtgctgcc	8520
	${\tt ctacggattc}$	agttcttcct	tcagatggct	gtgtatcgga	gaagatttgt	tcagcagaaa	8580
	$a \\ gagctgcta$	tcactttaca	gcattatttt	aggacgtggc	aaaccagaaa	acagttttta	8640
,	ctatatagaa	aagcagcagt	ggttttacaa	aatcactaca	${\tt gagcatttct}$	gtctgcaaaa	8700
	catcaaagac	aagtctattt	acagatcaga	agcagtgtta	tcattattca	agctagaagt	8760
	aaaggattta	tacagaaacg	gaagtttcag	gaaattaaaa	atagcaccat	aaaaattcag	8820
	gctatgtgga	ggagatatag	agccaagaaa	tatttatgta	aagtgaaagc	tgcctgcaag	8880
	attcaagcct	ggtatagatg	ttggagagca	cacaaagaat	atctagctat	attaaaagct	8940
	gttaaaatta	ttcaaggttg	$\tt cttctatacc$	aaactagaga	gaacacggtt	tttgaatgtg	9000
	agagcatcag	caattatcat	tcagagaaaa	tggagagcta	tacttcctgc	aaagatagct	9060
	catgaacact	tcttaatgat	aaaaagacat	cgagctgctt	gtttgatcca	agcacattat	9120
	agaggatata	aaggaaggca	ggtctttctt	cggcagaaat	ctgctgcttt	gatcatacaa	9180
	aaatatatac	gagccaggga	ggctggaaag	catgaaagga	taaaatatat	tgaatttaaa	9240
	aaatctacag	ttatcctaca	agcactggtg	cgtggttggc	tagtacgaaa	aagatttta	9300
	gaacagagag	ccaaaattcg	acttcttcac	ttcactgcag	ctgcatatta	tcacctgaat	9360
	gctgttagaa	ttcaaagagc	ctataaactt	tacctggctg	tgaagaatgc	taacaagcag	9420
	gttaattcag	tcatctgtat	tcagagatgg	tttcgagcaa	gattacaaga	aaagagattt	9480
	attcagaaat	atcatagcat	caaaaagatt	gagcatgaag	gtcaagaatg	tctgagccag	9540
	cgaaataggg	ctgcatcagt	aatacagaaa	gcagtgcgcc	attttctcct	ccgtaaaaag	9600
	caggaaaaat	tcactagtgg	aatcattaaa	attcaggcat	tatggagagg	ctattcttgg	9660
	aggaagaaaa	atgattgtac	aaaaattaaa	gctatacgac	taagtcttca	agttgttaat	9720
	agggagattc	gagaagaaaa	caaactctac	aaaagaactg	cacttgcact	tcattacctt	9780
	ttgacatata	agcacctttc	tgccattctt	gaggccttaa	aacacctaga	ggtagttact	9840
	agattgtctc	cactttgttg	tgagaacatg	gcccagagtg	gagcaatttc	taaaatattt	9900
	gttttgatcc	gaagttgtaa	tcgcagtatt	ccttgtatgg	aagtcatcag	atatgctgtg	9960
	caagtcttgc	ttaatgtatc	taagtatgag	aaaactactt	cagcagttta	tgatgtagaa	10020
	aattgtatag	atatactatt	ggagcttttg	cagatatacc	gagaaaagcc	tggtaataaa	10080
	gttgcagaca	aaggcggaag	catttttaca	aaaacttgtt	gtttgttggc	tattttactg	10140

aagacaacaa ataga	agcctc tgatgtacga	agtaggtcca	aagitgitga	ccgtatttac	10200
agtctctaca aactt	tacage teataaacat	aaaatgaata	ctgaaagaat	actttacaag	10260
caaaagaaga attc	ttctat aagcattcct	tttatcccag	aaacacctgt	aaggaccaga	10320
atagtticaa gacti	taagcc agattgggtt	ttgagaagag	ataacatgga	agaaatcaca	10380
aatcccctgc aagc	tattca aatggtgatg	gatacgcttg	gcattcctta	ttag	10434
<210> 18					
<211> 1925					
<212> DNA					
<213> homo sap	iens				
<400> 18					
agaccgcgcg cggg	gcgagc gagcggggcg	cggcgagggg	caagggcggg	gagggccccg	60
gcgctcagag cagg	cgccag ggaggcaggc	tgggcggccc	ttcgtcctcg	ccttcgggtg	120
tccatggccg cggt	ggccgt cctccggaac	gactcgctgc	aggcctttct	ccaggaccgc	180
accccagcg cctc	cccgga cctgggcaag	cactcgcccc	tggcattgct	ggccgccacc	240
tgtagccgca tcgg	ccagcc gggcgcggcg	gcgcccccgg	acttcctgca	ggtgccctac	300
gacccgcgc tggg	ctcacc ctccaggcto	ttccacccgt	ggaccgccga	catgccggcg	360
cactcgccag gcgc	actgcc gcccccgcat	cccagcttgg	ggctgacgcc	gcagaagacg	420
cacctgcagc cgtc	cttcgg ggctgcgcac	gagetteece	ttacaccccc	cgccgacccc	480
tcgtacccct acga	igticic gccggtcaag	atgctgccct	cgagcatggc	ggctctgccc	540
gccagctgcg cgcc	cgccta cgtgccctac	gcggcgcagg	ccgcgctgcc	gccaggctac	600
tccaacctgc tgcc	tccgcc gccgccaccg	g ccccgccgc	ccacctgccg	ccagttgtca	660
cccaacccgg cccc	cgacga cctcccgtgg	g tggagcatcc	cgcaggcggg	cgccgggccg	720
ggggcctccg gggt	tccggg aagcggccto	tccggcgcct	gtgccggggc	ccccacgcg	780
ccccgcttcc ccgc	ctctgc ggccgctgct	gctgcggccg	ccgccgccct	acaaagaggc	840
ctggtgttgg gccc	egtegga etttgegeag	g taccagagcc	agatcgccgc	gctgctgcag	900
accaaggccc ccct	tggcggc cacggccagg	g aggtgccgcc	gctgccgctg	tcccaactgc	960
caggcggcgg gcgg	gcgcccc cgaggcggag	g ccggggaaga	agaagcagca	cgtgtgccac	1020
gtgccgggct gcgg	gcaaggt gtacgggaag	g acgicgcacc	tgaaggcgca	cctgcgctgg	1080
cacacgggcg agcg	gaccett cgtgtgcaad	tggctcttct	gcgggaagag	cttcacgcgc	1140
teggaegage tgea	agoggoa cotgoggac	t cacacgggcg	agaagcgctt	tgcctgtccc	1200
gagtgcggca agcg	gcttcat gcgcagcga	c caccicgcga	agcacgtcaa	gactcaccag	1260
aataagaagc tcaa	aagtogo tgaggoogg	g gttaagcggg	aggacgcgcg	ggacctgtga	1320
gccctcccgg aggt	tggaccc ccttcccag	c acctctgcga	gagatccggg	gacctgtggg	1380
cagctggcgg aggg	ggagact cagcagacg	g acceteteeg	ttgcctgcct	cccaaaatgg	1440
agccaggctt ccaa	actteeg etgeetteg	g acatagggac	ccagttccca	ggagcgggga	1500
ggtagggttg gggd	ctggggc atttggatt	g taattgggag	ctctgccgta	cgccagggcg	1560
gttccaaact ctaa	aaccgtt cccaccgtc	a gggagaccta	cagtiteggg	ggaccaccct	1620

•					
ggtctggcct tgtatatagg	aaatgctgct	gaactgaata	gaaaggaact	tgggagattt	1680
gaaacagtgc tcgggttttc	gctaggaccg	gtttgggctt	tgtacaggtt	atttaatagc	1740
ttigitaaag ataattataa	taattataac	attaataaaa	atgttgcttt	tgtcttcagc	1800
tccatgcaga gctacagcat	gatatgtctc	tgtaaagtga	tcagcagttg	cagcgtgaaa	1860
ataaatactt taactcaggg	gtcactacag	gaagaccccg	ttgaaaaaaa	aaaaaaaaaa	1920
aaaaa					1925
<210> 19				•	
<211> 1638					
<212> DNA					
<213> homo sapiens					
<400> 19					
aagaattcgg cacgagtgaa	aatgtaagat	tatctgagta	atggacaatt	tctaatattc	60
atttttaaa gtagctaact	ctgccttatt	atccccttcc	acttttcccc	tggatgggtg	120
atttatataa tggaatgcag	tgtcattgat	tgtgtttgaa	ggaggcacac	taaatagcac	180
actatigita tetigaaaat	ttgttttatt	ttgtttttgc	ccattttta	aatcatttca	240
ttctattttt gcccatgtct	cttgtaatga	gctacacatg	taattagtac	acagagttct	300
ggtgatgtat tcattcatga	gtttaggaag	tgagattttc	agcttcattt	ccttctaagc	360
atctcaacta ggagcacagg	ggagacaaaa	aagattgcaa	cctctttata	cagttgtgtt	420
tgacccttgg cactctattc	ttacttcaat	tatcgtccat	tgtaatgatc	ccttttcatg	480
tctagcttaa ccctaaactg	tgagttcctt	gagaataaga	actttgtcac	agtgatgttt	540
taatatatto toaccacaca	ataaaggatc	taagtgtgtg	ctcaataaat	gggtatttgt	600
tgggaaattt aaacaagaaa	tagtgaatta	ttttctattc	actatttgga	taccctttct	660
ccaaagatat tttttatttg	agagtatctt	atttacagta	aaaatcacaa	atattatata	720
tacaatttag ttttgacaaa	tgtctacatt	tctatccttt	acccaggcct	tcaataagaa	780
aataataata attttttcc	caaagacata	atctggttat	ttggttattt	ggctgaaaca	840
atgaatatet tigatacatg	gattetttaa	taatgaatct	gttatttagt	atttagtcat	900
tacticataa igaticcaaa	tttcctaata	acttcttccc	ccactatcca	ccccatccc	960
ctgccctgc aaaaaagaca	. aaacaaatct	ccctttccct	caggaagtag	ttgatttggt	1020
gcctgtgtaa ggtagttcat	gcatttcctt	cttctgtttt	gttaccatac	cgtatgcttg	1080
gcactcagta caccaagaaa	acaaagaggc	attgcctgtc	tcgaagttgc	ttagagtcta	1140
gtgggggaga taatgcacac	ctgcatccat	agcacagcaa	tgtgtacata	ataacaaaga	1200
tctgaaaacc ccagtcagtt	ttctatgttt	tgtcctcttt	cacacccttc	cgagagttct	1260
atctaatgta actatgaatg	gtcactgtgt	ctttattttt	ggcccagact	cttctcaatg	1320
cticagecte aegtatecas	ctacctactg	attattctgc	ttggacatac	atcagccatt	1380
ttaaatttgg cctgagttga	actcattctc	tttctctccc	acattcattg	tgttttcatt	1440
tgttttcttg aaatctcctg	g gttaagtcag	ttcaggttgc	tatagaaaaa	aattttgggt	1500
ctggcgtggt gtcttgtgc	tgtaatccca	gaatgttggg	aagcctaggt	gggcagattg	1560

cttgagcctc aggagttcga gaccagccag ggtgattatg aggaaactct gtctctgcaa	1620
aaaaaaaaa aaaaaaaa	1638
<210> 20	
<211> 2706	
<212> DNA	
<213> homo sapiens	
<400> 20	
ccgtgtgcag tcgccccgcg ccccgcgcga cccttcgggt aaactacgaa ctgggagttc	60
tgaagaatgg gtaaagactt tcgttactat ttccagcatc cctggtctcg catgattgtg	120
gcttacttgg tgatcttctt taacttctta atatttgcgg aggacccagt ttctcatagc	180
caaacagaag ccaatgttat tgttgttgga aactgttttt catttgttac aaataaatac	240
cctagaggag ttggctggag gattttgaag gtgcttctat ggctacttgc cattctcaca	300
ggactaatag ctggcaaatt tctgttccat cagcgtttgt ttggtcagtt gctccgatta	360
aaaatgtttc gagaagatca tgggtcgtgg atgacaatgt tcttcagcac aattctcttt	420
ctcttcatat tttctcacat atacaacacg attcttctaa tggatgggaa catgggagca	480
tatatcatta cagactatat gggcatccga aatgaaagtt tcatgaaatt agctgcagta	540
gggacctgga tgggggactt tgtcacagct tggatggtca ctgatatgat gcttcaggac	600
aaaccctatc ctgactgggg aaaatcagca agagctttct ggaagaaagg aaatgttagg	660
atcactttat tciggacagt tctttttact ctgacgtctg tggttgtact tgtgattaca	720
acggactgga tcagctggga caagctgaat cggggatttt tgcccagtga tgaagtttcc	780
agagcattcc tigctictit tatctiggtc titigacctic tiattgigat gcaggactgg	840
gaattcccac atttcatggg agatgttgat gtaaatctcc ctggtttgca cacccctcac	900
atgcagttca agattccttt cttccagaaa atcttcaagg aggaatatcg tattcacata	960
acaggcaaat ggtttaacta tggaattatc ttcctcgtct tgattttgga tcttaatatg	1020
tggaagaacc aaatatttta taaacctcat gaatatgggc aatatatcgg cccggggcag	1080
aagatatata cagtgaaaga ctcagaaagt ttaaaagatt tgaacagaac caagctatcc	1140
tgggaatgga ggtccaatca cactaaccct cggactaata aaacatatgt tgagggagac	1200
atgitettae acageaggit cataggagee agiettgatg teaagigtet ggeetitgit	1260
ccaagectga tagectttgt gtggtttgga ttetttattt ggttetttgg acgatttttg	1320
aaaaatgagc cacgcatgga gaatcaagac aaaacttaca ctcgcatgaa aagaaaatct	1380
ccatcagaac atagcaaaga catgggaatc actcgagaaa acacccaggc ttcagtagaa	1440
gaccccttga atgacccttc tttggtttgc atcaggtctg acttcaatga gatcgtctac	1500
aagtetteee acctaacete ggaaaacttg ageteacagt tgaacgaate tactagtgea	1560
acagaagctg atcaagaccc aacgacttct aaaagtacac ctacgaacta gactcggaga	1620
tagacttgga gataacacaa aaagcaacct tgagtgtaac tttaaaaatt tagtctttcc	1680
ttitgtatat gtaaggitta cgiagigita ggiaaaaata igaacaaigc cacaacggig	1740
ctcaacatgc tttttctagg attcattgtt ttctatttgt attataatac acgtgcctac	1800

I lata tan anni ata ammatan kata anni ata anni a	1000
tgtatactca acagtcctct agagattgct tttcacaatt gcacaagcta ttactgact	
tacagcatag tggaagatta gctgatgacc catgtatctg atgttcaacc atagtggtge	
cttgagacat taaactgttt ttaactgtac cagaaatgaa gtgtggaaca gttacctaa	
ctatticaca tgggcgtttt gtatacaact attttgatct acacttgatg tctgagcag	
aaacagaaat agctaaatgt gactcaggaa gtatctcttg gtttcttatt cagcagcag	
gttggtgact ttgacaactg gactgcagag aaacatggtg atcacctttt aatttttat	
ggctgtctgc caaatataaa tacagatgca aaattcagta ataggagatc cataaccca	a . 2220
catgggtcac tactcgtgaa atgtgacttt ctcccaccag taattgaaat gaggtgatg	a 2280
tacctaatta tgttttccta attaaagata aattgctact tgattaaaaa tcctgccct	t 2340
caccitiggg aacaaaggit aagagacaca giigggcgaa cicicaaati tatiggcat	t 2400
tacacaaagt cccagacaac caaggaactg aagttttcat catatgagag cagcacatc	c 2460
caccatttac aatattcgta tatctttctg caaatatggc tctggatagt gaaaattga	a 2520
aaacatatgc caaccctgag caagggaact cctcaaaaaa tcatgcagcg gaaccttgt	c 2580
aggtagagaa gccgtgcatg aaagaatttg tttaatgtct tgttttgcgt atgtgtttt	t 2640
tgtttttgtt ttttaagaac taaatattgc acattaataa ataagaatta tacagcaaa	a 2700
aaaaaa	2706
<210> 21	
<211> 3110	
<212> DNA	
<213> homo sapiens	
<400> 21	
tcgccggctg cggcgcctgg gacggttgcg gtgggtctgg gcgctgggaa gtcgtccaa	g 60
atgattaaaa aattogacaa gaaggacgag gagtotggta gtggotocaa tootttooa	g 120
catctggaga agagtgctgt tttacaggag gctcgtatat tcaatgaaac tccaatcaa	t 180
ccaagaagat gtttgcatat tcttacaaag attctttact tactgaacca gggtgaaca	ic 240
titiggaacaa eggaagetae agaageette titigeaatga egegatigit teaatetaa	t 300
gatcaaacat tgaggagaat gtgctacctt accatcaaag aaatggctac catctctga	ıg 360
gatgtgataa ttgtcacaag cagtctgact aaagacatga ctggaaaaga agatgtata	ıc 420
cgaggcccgg ccatcagagc tctctgcagg atcaccgatg gaacaatgtt gcaagccat	t 480
gaaagataca tgaagcaggc cattgtggat aaagtttcca gtgtatccag ttcagcact	g 540
gtatcttccc tgcacatgat gaagataagc tatgatgtgg ttaagcgctg gatcaatga	ıa 600
gcccaagaag ctgcatcaag tgataatatt atggtccagt accatgcatt gggagtcc	g 660
tatcacctta gaaagaatga tcgacttgct gtttccaaga tgttgaataa gtttactaa	1a 720
tetggtetea agteacagtt tgettaetge atgetgatee gaattgeeag tegettae	ta 780
aaagaaactg aggatggcca tgaaagtcca ctgtttgatt tcattgagag ctgcttgcg	
aataaacatg aaatggttat tiatgaagct gcitcagcta tcatccatct tcctaactg	gc 900
actgcaagag agttggcacc tgctgtttca gttcttcaac ttttctgtag ttctcctaa	

		gatatgcagc					1020
1	gctgttactg	cctgcaatct	ggacttagaa	aacttaatca	cagactcaaa	cagaagcatt	1080
į	gctaccttag	ccattactac	actcctcaaa	acaggaagtg	agagcagtgt	ggaccggctc	1140
	atgaagcaga	tatcttcttt	tgtgtctgaa	atctcagatg	agttcaaggt	ggtggttgta	1200
	caggcaatta	gtgctctctg	tcagaaatac	cctcgaaagc	acagtgtcat	gatgactttc	1260
	ctctccaaca	tgctccgaga	tgatggaggc	tttgagtaca	agcgggccat	tgtggactgt	1320
	ataatcagca	ttgtggaaga	gaaccctgag	agtaaagaag	caggcctagc	ccacctttgt	1380
	gaattcattg	aggactgtga	acacactgtt	ctggctacta	agattctaca	cttgttgggc	1440
	aaagagggcc	ctagaacgcc	tgtccctcc	aaatatatcc	gttttatttt	taatagggtt	1500
	gtcctggaga	atgaggctgt	cagagctgct	gctgtgagtg	ctttggctaa	atttggggct	1560
	cagaatgaga	gtcttctccc	aagcatcctt	gtactcttac	agaggtgtat	gatggatact	1620
	gatgacgagg	tacgagacag	agctaccttc	tatctgaatg	tgctgcagca	gaggcagatg	1680
	gcactaaatg	ccacatatat	ctttaatggt	ttgacggtct	ctgtaccagg	gatggaaaaa	1740
	gccttacacc	agtacacgtt	ggagccttca	gaaaaaccgt	ttgacatgaa	atcaattcct	1800
	cttgctatgg	ctcctgtctt	tgaacagaaa	gcagaaatca	cacttgtggc	tactaagcca	1860
	gagaagttgg	ctccttccag	gcaagacatt	ttccaagaac	aattggctgc	cattcctgag	1920
	tttctgaata	taggaccctt	gttcaagtct	tctgagcctg	ttcaacttac	agaagcagag	1980
	acagaatatt	ttgttcgatg	tatcaagcac	atgittacca	atcacatcgt	gttccagttt	2040
	gactgcacca	acacteteaa	tgaccagctg	ctggaaaaag	tgacagtgca	gatggagcca	2100
	tcagattcct	atgaagtgct	gtcttgtatc	ccagccccca	gccttcctta	taaccaacca	2160
	ggaatatgtt	acactcttgt	tcgtttgcct	gatgatgacc	ctacagcagt	tgcaggctcc	2220
	tttagctgca	ccatgaagtt	tacagtccgg	gactgtgacc	ctaacactgg	agttccagat	2280
	gaggatgggt	atgatgatga	gtatgtgctg	gaagateteg	aagtgactgt	gtctgaccat	2340
	attcagaaag	tactgaagcc	taactttgct	gctgcttggg	aagaggtggg	agataccttt	2400
	gagaaagagg	aaacctttgc	cctcagttct	accaaaaccc	t t gaagaggc	tgtcaacaat	2460
	atcatcacat	ttctgggcat	gcagccatgt	gagaggtccg	ataaagtacc	tgagaacaag	2520
	aattcccatt	cgctctatct	ggcaggtata	ttcagaggtg	gctatgattt	attggtgagg	2580
	tccaggctgg	ccttagccga	tggagtgacc	atgcaggtga	ctgtcagaag	taaagagaga	2640
	acacctgtag	atgttatctt	agcttctgtt	ggataaatgc	ttactggaca	agaggaaact	2700
	gatgcacact	acatggtcag	tgggctttta	ggctagtggc	atcagtttcc	cagaatcaga	2760
	cttttgaaga	tgaatgactt	tggagaagca	aattaaacat	ttggccctga	gccagcagat	2820
	caagcaaatg	tctatctttg;	cgcatgggtt	gtttttttt	tttttcttt	tattctactt	2880
	ggtcagcttt	gggacgatag	tgcagctttg	ggtgatcttg	aaaatcaaat	actatcctat	2940
	actccagctg	cttaacttca	ttttattctt	taatgtgtac	ctgaaagctc	ctggcaatgc	3000
	tggaaaattt	ttatcccaga	ggggtggggg	ggaggggga	ggggaagcca	gagiccacti	3060
	ttgtcacaat	tcattttat	taatagaaaa	taaacactta	ttccagtttc	; ,	3110
	<210> 22						

<211> 1723	
<212> DNA	
<213> homo sapiens	
<400> 22	
tagataaaag caaagataat atttcattgg ttacagttat acagttacac agttatacag	60
ttgccttatt tggtctatcc catgaggaag tcctagttac taattacgtt tttgttggct	120
gcttctgatt ggttgagctt aagttctgtg tttctttaac ataggcattt acaagaaata	180
ccacaaataa agtttcagac atgcttgcaa atcaagcaag gttaaggtca cttaggaggc	240
ccaactggct ctgtctgctc aaggattctt ctggcctcgt ctccatttta catgaactgt	300
tgcataaata aacacagagt acctgaaaca acggaggtga tcattctgcc taccgagtgt	360
tggccacgcc aagcttggag tgttgctctt attcttaggg agtttatttt taagtaatct	420
catcigiaaa igggatiaca atccacaaac igacciigia taigaticca iicciicicc	480
cagcccagcc ccacactcca aggttttccc tttgcttata aggggtagtc acccttttt	540
atttcgacct tccaaacatt ctgggagttt tcctccttta ggccaactac agcgcagagg	600
agegetttet eetgetgggt tteteegact ggeetteeet geageeggte etettegeee	660
ttgtcctcct gtgctacctc ctgaccttga cgggcaactc ggcgctggtg ctgctggcgg	720
tgcgcgaccc gcgcctgcac acgcccatgt actacttcct ctgccacctg gccttggtag	780
acgcgggctt cactactagc gtggtgccgc cgctgctggc caacctgcgc ggaccagcgc	840
totggotgcc gcgcagccac tgcacggccc agctgtgcgc:atcgctggct ctgggttcgg	900
ccgaatgcgt cctcctggcg gtgatggctc tggaccgcgc ggccgcagtg tgccgccgc	960
tgcgctatgc ggggctcgtc tccccgcgcc tatgtcgcac gctggccagc gcctcctggc	1020
taagcggcct caccaactcg gttgcgcaaa ccgcgctcct ggctgagcgg ccgctgtgcg	1080
cgccccgcct gctggaccac ttcatctgtg agctgccggc gttgctcaag ctggcctgcg	1140
gaggcgacgg agacactacc gagaaccaga tgttcgccgc ccgcgtggtc atcctgctgc	1200
tgccgtttgc cgtcatcctg gcctcctacg gtgccgtggc ccgagctgtc tgttgcatgc	1260
ggttcagcgg aggccggagg agggcggtgg gcacgtgtgg gtcccacctg acagccgtct	1320
gcctgttcta cggctcggcc atctacacct acctgcagcc cgcgcagcgc tacaaccagg	1380
cacggggcaa gitcgtatcg cictictaca ccgtggtcac acctgctctc aacccgcica	1440
tctacaccct caggaataag aaagtgaagg gggcagcgag gaggctgctg cggagtctgg	1500
ggagaggcca ggctgggcag tgagtagttg gggaggggag	1560
aaggatggaa atacccctta gtgagtcagt ttagacttca ggctgttcat ttttgtatga	1620
taatcigcaa gattigicci aaggagicca aigggggata igitticcic ccgigaggaa	1680
atgtttagtt cttgagggaa aaatccctaa atcctctata tac	1723
<210> 23	
<211> 545	
<212> DNA	
<213> homo sapiens	

⟨400⟩ 23	
tttaatagtt agactcatac tttattttga caaatttaag atagaaaaat atcataatgt	60
gaatatagca gitgcictit itgiaacatg gittgggatg igcagigaaa citgaaagga	120
cttgctttac aggtggtccc tcttctggct gggtttcagt taattctgaa ttatattcca	180
gccattgcat ttgcttgaaa gaatattgga cacagtaaaa aaaagaacag gtttggcatt	240
caataataaa tattataaag caatgaacca aaacaacttt taaaataatt actgaaagca	300
aacticagac ticatgatta aagctaagaa cicatattit caaaatagci ttaacagtti	. 360
ctatcaatat ataatacaat agtaggacac ttatttttaa aaaacaagtg agtagaatca	420
gagtaaatat gatatttcag atgactataa acagtaaaca tcaattcaat	480
atcatttcag caatatactc tgtgcccagc tggcgataaa aactgtagtt ctatcatcaa	540
aaaat	545
<210> 24	
<211> 2880	
<212> DNA	
<213> homo sapiens	
<400> 24	
tgctgctctc cgcccgcgtc cggctcgtgg ccccctactt cgggcaccat ggacacctcc	60
cggctcggtg tgctcctgtc cttgcctgtg ctgctgcagc tggcgaccgg gggcagctct	120
cccaggtctg gtgtgttgct gaggggctgc cccacacact gtcattgcga gcccgacggc	180
aggatgttgc tcagggtgga ctgctccgac ctggggctct cggagctgcc ttccaacctc	240
agegtettea cetectacet agaceteagt atgaacaaca teagteaget geteegaat	300
cccctgccca gtctccgctt cctggaggag ttacgtcttg cgggaaacgc tctgacatac	360
atteccaagg gageatteae tggeetttae agtettaaag tiettatget geagaataat	420
cagetaagae aegtaceeae agaagetetg cagaatttge gaageettea atecetgegt	480
ctggatgcta accacatcag ctatgtgccc ccaagctgtt tcagtggcct gcattccctg	540
aggeacetgt ggetggatga caatgegtta acagaaatee eegteeagge tittagaagt	600
ttatcggcat tgcaagccat gaccttggcc ctgaacaaaa tacaccacat accagactat	660
gcctttggaa acctctccag cttggtagtt ctacatctcc ataacaatag aatccactcc	720
ctgggaaaga aatgctttga tgggctccac agcctagaga ctttagattt aaattacaat	780
aacctigatg aatteeceae tgeaattagg acacteteea accttaaaga actaggattt	840
catagcaaca atatcaggtc gatacctgag aaagcattig taggcaaccc ttctcttatt	900 960
acaatacatt totatgacaa toocatocaa tttgttggga gatotgottt toaacattta	1020
cctgaactaa gaacactgac tctgaatggt gcctcacaaa taactgaatt tcctgattta actggaactg caaacctgga gagtctgact ttaactggag cacagatctc atctcttct	1020
caaaccgtct gcaatcagtt acctaatctc caagtgctag atctgtctta caacctatta	1140
gaagatttac ccagttitic agtctgccaa aagcticaga aaattgacct aagacataat	1200
gaaatctacg aaattaaagt tgacactttc cagcagtigc ttagcciccg atcgctgaat	1260
baaaroraoo aaarraaabr rbaoaorrio oaboabribo rrabooroob aroborbaar	1200

	•					
ttggcttgga	acaaaattgc	tattattcac	cccaatgcat	tttccacttt	gccatcccta	1320
ataaagctgg	acctatcgtc	caacctcctg	tcgtcttttc	ctataactgg	gttacatggt	1380
ttaactcact	taaaattaac	aggaaatcat	gccttacaga	gcttgatatc	atctgaaaac	1440
tttccagaac	tcaaggttat	agaaatgcct	tatgcttacc	agtgctgtgc	atttggagtg	1500
tgtgagaatg	cctataagat	ticta atcaa	tggaataaag	gtgacaacag	cagtatggac	1560
gaccttcata	agaaagatgc	tggaatgttt	caggctcaag	atgaacgtga	ccttgaagat	1620
ttcctgcttg	actttgagga	agacctgaaa	gcccttcatt	cagtgcagtg	ttcaccttcc	1680
ccaggcccct	tcaaaccctg	tgaacacctg	cttgatggct	ggctgatcag	aattggagtg	1740
tggaccatag	cagttctggc	acttacttgt	aatgctttgg	tgacttcaac	agttttcaga	1800
tccctctgt	acatttcccc	cattaaactg	ttaattgggg	tcatcgcagc	agtgaacatg	1860
ctcacgggag	tctccagtgc	${\tt cgtgctggct}$	ggtgtggatg	cgttcacttt	tggcagcttt	1920
gcacgacatg	gtgcctggtg	ggagaatggg	gttggttgcc	atgtcattgg	ttttttgtcc	1980
atttttgctt	cagaatcatc	tgttttcctg	cttactctgg	cagccctgga	gcgtgggttc	2040
tctgtgaaat	attctgcaaa	atttgaaacg	aaagctccat	tttctagcct	gaaagtaatc	2100
attttgctct	gtgccctgct	ggccttgacc	atggccgcag	ttcccctgct	gggtggcagc	2160
aagtatggcg	cctccctct	ctgcctgcct	ttgccttttg	gggagcccag	caccatgggc	2220
tacatggtcg	ctctcatctt	gctcaattcc	ctttgcttcc	tcatgatgac	cattgcctac	2280
accaagctct	actgcaattt	ggacaaggga	gacctggaga	atatttggga	ctgctctatg	2340
gtaaaacaca	ttgccctgtt	gctcttcacc	aactgcatcc	taaactgccc	tgtggctttc	2400
ttgtccttct	cctctttaat	aaaccttaca	tttatcagtc	ctgaagtaat	taagtttatc	2460
cttctggtgg	tagtcccact	tcctgcatgt	ctcaatcccc	ttctctacat	cttgttcaat	2520
cctcacttta	aggaggatct	ggtgagcctg	agaaagcaaa	cctacgtctg	gacaagatca	2580
aaacacccaa	gcttgatgtc	aattaactct	gatgatgtcg	aaaaacagtc	ctgtgactca	2640
actcaagcct	tggtaacctt	taccagctcc	agcatcactt	atgacctgcc	tcccagttcc	2700
gtgccatcac	cagcttatcc	agtgactgag	agctgccatc	tttcctctgt	ggcatttgtc	2760
ccatgtctct	aattaatatg	tgaaggaaaa	tgttttcaaa	ggttgagaac	ctgaaaatgt	2820
gagattgagt	atatcagagc	agtaattaat	aagaagagc t	gaggtgaaac	tcggtttaaa	2880
<210> 25						
<211> 378	39					
<212> DNA	`					
<213> hom	no sapiens					
<400> 25						
ctctcagtac	cacgccggtg	gccagttctg	g aggctagcac	cctttcaaca	actcctgttg	60
acaccagca	acctgtgacc	acttcttctc	caaccaattc	atctcctaca	actgctgaag	120
ttaccagca	t gccaacatca	actgctggtg	g aaggaagcac	tccattaaca	aatatgcctg	180
tcagcacca	caccggtggcc	agttctgagg	ctagcaccct	ttcaacaact	cctgttgact	240

ccaacacttt tgttaccagt tctagtcaag ccagttcatc tccagcaact cttcaggtca 300

ccactatgcg tatgtctact ccaagtgaag gaagctcttc attaacaact atgctcctca 360 gcagcacata tgtgaccagt tctgaggcta gcacaccttc cactccttct gttgacagaa 420 gcacacctgt gaccactict actcagagea attctactcc tacacctcct gaagttatca 480 ccctgccaat gtcaactcct agtgaagtaa gcactccatt aaccattatg cctgtcagca 540 ccacatcggt gaccattict gaggctggca cagcttcaac acttcctgtt gacaccagca 600 caccigigat cacticiace caagicagii catciccigi gaciccigaa ggiaccacca 660 tgccaatctg gacgcctagt gaaggaagca ctccattaac aactatgcct gtcagcacca . 720 cacgtgtgac cagctctgag ggtagcaccc tttcaacacc ttctgttgtc accagcacac 780 ctgtgaccac ttctactgaa gccatttcat cttctgcaac tcttgacagc accaccatgt 840 ctgtgtcaat gcccatggaa ataagcaccc ttgggaccac tattcttgtc agtaccacac 900 ctgttacgag gtttcctgag agtagcaccc cttccatacc atctgtttac accagcatgt 960 ctatgaccac tgcctctgaa ggcagttcat ctcctacaac tcttgaaggc accaccacca 1020 1080 tgcctatgtc aactacgagt gaaagaagca ctttattgac aactgtcctc atcagcccta tatotgtgat gagtoottot gaggocagoa cactttcaac acctoctggt gataccagoa 1140 cacctttgct cacctctacc aaagccggtt cattctccat acctgctgaa gtcactacca 1200 tacgtatttc aattaccagt gaaagaagca ctccattaac aactctcctt gtcagcacca 1260 1320 cacticcaac tagcittect ggggccagca tagcitcgac acciccitt gacacaagca caacttttac cccttctact gacactgcct caactcccac aattcctgta gccaccacca 1380 tatctgtatc agigatcaca gaaggaagca cacctgggac aaccattttt attcccagca 1440 ctcctgtcac cagtictact gctgatgtct ttcctgcaac aactggtgct gtatctaccc 1500 ctgtgataac ticcactgaa ctaaacaca catcaacctc cagtagtagt accaccacat 1560 ctttttcaac tactaaggaa tttacaacac ccgcaatgac tactgcagct cccctcacat 1620 atgigaccat gictacigce eccageacae ecagaacaae eageagagge igeactaeit 1680 ctgcatcaac gctttctgca accagtacac ctcacacctc tacttctgtc accacccgtc 1740 ctgtgacccc ttcatcagaa tccagcaggc cgtcaacaat tacttctcac accatcccac 1800 ctacattice teetgeteae teeagtacae eteeaacaae etetgeetee teeacgaetg 1860 tgaaccctga ggctgtcacc accatgacca ccaggacaaa acccagcaca cggaccactt 1920 ccttcccac ggtgaccacc accgctgtcc ccacgaatac tacaattaag agcaacccca 1980 cctcaactcc tactgtgcca agaaccacaa catgctttgg agatgggtgc cagaatacgg 2040 cctctcgctg caagaatgga ggcacctggg atgggctcaa gtgccagtgt cccaacctct 2100 attatgggga gitgtgtgag gaggtggtca gcagcattga catagggcca ccggagacta 2160 tctctgccca aatggaactg actgtgacag tgaccagtgt gaagttcacc gaagagctaa 2220 2280 aaaaccactc ttcccaggaa ttccaggagt tcaaacagac attcacggaa cagatgaata tigigiatic egggatecet gagtatgieg gggtgaacat cacaaageta egtetiggea 2340 gtgtggtggt ggagcatgac gtcctcctaa gaaccaagta cacaccagaa tacaagacag 2400 2460 tattggacaa tgccaccgaa gtagtgaaag agaaaatcac aaaagtgacc acacagcaaa 2520 taatgattaa tgatatttgc tcagacatga tgtgtttcaa caccactggc acccaagtgc

aaaacattac ggtgaccca	g tacgaccctg	a a g a g g a c t g	ccggaagatg	gccaaggaat	2580
atggagacta cttcgtagt	g gagtaccggg	accagaagcc	atactgcatc	agcccctgtg	2640
agcctggctt cagtgtctc	c aagaactgta	acctcggcaa	gtgccagatg	tctctaagtg	2700
gacctcagtg cctctgcgt	g accacggaaa	${\tt ctcactggta}$	${\tt cagtgggag}$	acctgtaacc	2760
agggcaccca gaagagtct	g gtgtacggcc	tcgtgggggc	aggggtcgtg	ctgatgctga	2820
tcatcctggt agctctcct	g atgctcgttt	tccgctccaa	gagagaggtg	aaacggcaaa	2880
agtacagatt gtctcagtt	a tacaagtggc	aagaagagga	cagtggacca	gctcctggga	. 2940
ccttccaaaa cattggctt	t gacatctgcc	aagatgatga	ttccatccac	ctggagtcca	3000
tctatagtaa tttccagcc	c tccttgagac	acatagaccc	tgaaacaaag	agatccgaat	3060
tcagaggcct caggtaatg	a cgacatcatt	ttaaggcatg	gagctgagaa	gtctgggagt	3120
gaggagatcc cagtccggc	t aagcitggig	gagcattttc	ccattgagag	ccttccatgg	3180
gaactcaatg ttcccattg	t aagtacagga	aacaagccct	gtacttacca	aggagaaaga	3240
ggagagacag cagtgctgg	g agatteteaa	atagaaaccc	gtggacgctc	caatgggctt	3300
gtcatgatat caggctagg	c tttcctgctc	atttttcaaa	gacgctccag	atttgagggt	3360
actctgactg caacatctt	t caccccattg	atcgccagga	ttgatttggt	tgatctggct	3420
gagcaggcgg gtgtccccg	t cctccctcac	tgccccatat	gtgtccctcc	taaagctgca	3480
tgctcagttg aagaggacg	a gaggacgacc	ttctctgata	gaggaggacc	acgcttcagt	3540
caaaggcata caagtatct	a tctggacttc	cctgctagca	cttccaaaca	agctcagaga	3600
tgttcctccc ctcatctgc	c cgggttcagt	accatggaca	gcgccctcga	cccgctgttt	3660
acaaccatga ccccttgga	c actggactgc	atgcacttta	catatcacaa	aatgctctca	3720
taagaattat tgcatacca	t cttcatgaaa	aacacctgta	tttaaatata	gagcatttac	3780
cttttggta		•			3789
<210> 26					
⟨211⟩ 4711					
<212> DNA					
<213> homo sapiens		•			
<400> 26					
gccccgggaa gcgcagcca	t ggctctgcgg	aggctggggg	ccgcgctgct	gctgctgccg	60
ctgctcgccg ccgtggaag	a aacgctaatg	gactccacta	cagcgactgc	tgagctgggc	120
tggatggtgc atcctccat	c agggtgggaa	gaggtgagtg	gctacgatga	gaacatgaac	180
acgatecgea egtaceagg	t gtgcaacgtg	tttgagtcaa	gccagaacaa	ctggctacgg	240
accaagttta tccggcgcc	g tggcgcccac	cgcatccacg	tggagatgaa	gttttcggtg	300
cgtgactgca gcagcatco	c cagcgtgcct	ggctcctgca	aggagacctt	caacctctat	360
tactatgagg ctgactttg	a ctcggccacc	aagaccttcc	ccaactggat	ggagaatcca	420
tgggtgaagg tggatacca	t tgcagccgac	gagagcttct	cccaggtgga	cctgggtggc	480
cgcgtcatga aaatcaaca	c cgaggtgcgg.	agcttcggac	ctgtgtcccg	cagcggcttc	540
tacctggcct tccaggact	a tggcggctgc	atgtccctca	tcgccgtgcg	tgtcttctac	600

cgcaagtgcc	cccgcatcat	ccagaatggc	gccatcttcc	aggaaaccct	gtcgggggct	660
gagagcacat	cgctggtggc	tgcccggggc	agctgcatcg	ccaatgcgga	agaggtggat	720
gtacccatca	agctctactg	taacggggac	ggcgagtggc	tggtgcccat	cgggcgctgc	780
atgtgcaaag	caggcttcga	ggccgttgag	aatggcaccg	tctgccgagg	ttgtccatct	840
gggactttca	aggccaacca	aggggatgag	gcctgtaccc	actgtcccat	caacagccgg	900
accacttctg	aaggggccac	caactgtgtc	tgccgcaatg	gctactacag	agcagacctg	960
gacccctgg	a cat g c c c t g	cacaaccatc	ccctccgcgc	cccaggctgt	gatttccagt	1020
gtcaatgaga	cctccctcat	gctggagtgg	accctcccc	gcgactccgg	aggccgagag	1080
gacctcgtct	acaacatcat	ctgcaagagc	tgtggctcgg	gccggggtgc	ctgcacccgc	1140
tgcggggaca	$at \verb gtaca \verb gta a$	cgcaccacgc	cagctaggcc	tgaccgagcc	acgcatttac	1200
atcagtgacc	tgctggccca	${\tt cacccagtac}$	accttcgaga	tccaggctgt	gaacggcgtt	1260
actgaccaga	gccccttctc	$\verb"gcctcagttc"$	gcctctgtga	acatcaccac	caaccaggca	1320
gctccatcgg	cagtgtccat	catgcatcag	gtgagccgca	ccgtggacag	cattaccctg	1380
tcgtggtccc	agccggacca	gcccaatggc	gtgatcctgg	actat gaget	gcagtactat	1440
gagaaggagc	tcagtgagta	caacgccaca	gccataaaaa	gccccaccaa	cacggtcacc	1500
gtgcagggcc	tcaaagccgg	cgccatctat	gtcttccagg	tgcgggcacg	caccgtggca	1560
ggctacgggc	gctacagcgg	caagatgtac	ttccagacca	tgacagaagc	cgagtaccag	1620
acaagcatcc	$aggagaagt \\t$	gccactcatc	atcggctcct	cggccgctgg	cctggtcttc	1680
ctcattgctg	tggttgtcat	cgccatcgtg	tgtaacagaa	gacgggggtt	tgagcgtgct	1740
gactcggagt	acacggacaa	gctgcaacac	tacaccagtg	gccacatgac	cccaggcatg	1800
aagatctaca	tcgatccttt	cacctacgag	gaccccaacg	aggcagtgcg	ggagtttgcc	1860
aaggaaattg	acatctcctg	tgtcaaaatt	gagcaggtga	tcggagcagg	ggagtttggc	1920
gaggtctgca	gtggccacct	gaagctgcca	ggcaagagag	agatctttgt	ggccatcaag	1980
acgctcaagt	cgggctacac	ggagaagcag	cgccgggact	tcctgagcga	agcctccatc	2040
atgggccagt	tcgaccatcc	caacgtcatc	cacctggagg	gtgtcgtgac	caagagcaca	2100
cctgtgatga	tcatcaccga	gttcatggag	aatggctccc	tggactcctt	tctccggcaa	2160
aacgatgggc	agttcacagt	catccagctg	gtgggcatgc	ttcggggcat	cgcagctggc	2220
atgaagtacc	tggcagacat	gaactatgtt	caccgtgacc	tggctgcccg	caacatcctc	2280
gtcaacagca	acctggtctg	caaggtgtcg	gactttgggc	tctcacgctt	tctagaggac	2340
gatacctcag	accccaccta	caccagtgcc	ctgggcggaa	agatccccat	ccgctggaca	2400
gccccggaag	ccatccagta	ccggaagttc	acctcggcca	gtgatgtgtg	gagctacggc	2460
attgtcatgt	gggaggtgat	gtcctatggg	gagcggccct	actgggacat	gaccaaccag	2520
gatgtaatca	atgccattga	gcaggactat	cggctgccac	cgcccatgga	ctgcccgagc	2580
gccctgcacc	aactcatgct	ggactgttgg	cagaaggacc	gcaaccaccg	gcccaagttc	2640
ggccaaattg	tcaacacgct	agacaagatg	atccgcaatc	ccaacagcct	caaagccatg	2700
gcgcccctct	cctctggcat	caacctgccg	ctgctggacc	gcacgatccc	cgactacacc	2760
agctttaaca	cggtggacga	gtggctggag	gccatcaaga	tggggcagta	caaggagagc	2820

ticgccaatg ccggcticac ctcctttgac gtcgtgtctc agatgatgat ggaggacatt 2880 ctccgggttg gggtcacttt ggctggccac cagaaaaaaa tcctgaacag tatccaggtg 2940 atgcgggcgc agatgaacca gattcagtct gtggaggttt gacattcacc tgcctcggct 3000 caccicitic iccaageeee geeeceteig ecceaegige eggeeeteet ggigetetat 3060 ccactgcagg gccagccact cgccaggagg ccacgggcca cgggaagaac caagcggtgc 3120 cagccacgag acgtcaccaa gaaaacatgc aactcaaacg acggaaaaaa aaagggaatg 3180 ggaaaaaaga aaacagatcc tgggaggggg cgggaaatac aaggaatatt tittaaagag 3240 gatteteata aggaaageaa tgaetgttet tgegggggat aaaaaaggge ttgggagatt 3300 catgcgatgt gtccaatcgg agacaaaagc agtttctctc caactccctc tgggaaggtg 3360 acctggccag agccaagaaa cactttcaga aaaacaaatg tgaaggggag agacaggggc 3420 cgcccttggc tcctgtccct gctgctcctc taggcctcac tcaacaacca agcgcctgga 3480 ggacgggaca gatggacaga cagccaccct gagaacccct ctgggaaaat ctattcctgc 3540 caccactggg caaacagaag aattttictg tctttggaga gtattttaga aactccaatg 3600 aaagacactg titctcctgt tggctcacag ggctgaaagg ggcttttgtc ctcctgggtc 3660 agggagaacg cggggacccc agaaaggtca gccttcctga ggatgggcaa cccccaggtc 3720 tgcagctcca ggtacatatc acgcgcacag cctggcagcc tggccctcct ggtgcccact 3780 cccgccagcc cctgcctcga ggactgatac tgcagtgact gccgtcagct ccgactgccg 3840 ctgagaaggg tigatcctgc atctgggttt gtttacagca attcctggac tcgggggtat 3900 tttggtcaca gggtggtttt ggtttagggg gtttgtttgt tgggttgttt tttgttttt 3960 ggttttttt aatgacaatg aagtgacact ttgacatttc ctaccttttg aggacttgat 4020 ccttctccag gaagaaggtg ctttctgctt actgacttag gcaatacacc aagggcgaga 4080 ttttatatgc acatttctgg atttttttat acggttttca ttgacactct tccctcctc 4140 caccigccac caggecicac caaageccac igccaigggg ccaiciggge catteagaga 4200 ctggagtgag atttgggtgt ggagggggag gcgccaaggt ggaggagctt cccactccag 4260 gactgttgat gaaagggaca gattgaggag gaagtgggct ctgaggctgc agggctggaa 4320 gtccttgccc acttcccact ctcctgcccc aatctatcta gtacttccca ggcaaatagg 4380 cccctttgag gctcctgagt gccctcagat ggtcaaaacc cagttttccc tctgggagcc 4440 taaaccaggc tgcatcggag gccaggaccc ggatcattca ctgtgatacc ctgccctcca 4500 gagggtgcgc tcagagacac gggcaagcat gcctcttccc ttccctggag agaaagtgtg 4560 tgatttctct cccacctcct tccccccacc agacctttgc tgggcctaaa ggtcttggcc 4620 atggggacgc cctcagtcta gggatctggc cacagactcc ctcctgtgaa ccaacacaga 4680 cacccaagca gagcaatcag ttagtgaatt g 4711 **<210> 27**

<211> 1853

<212> DNA

<213> homo sapiens

<400> 27

ggcacgaggg	tccctgggcc	ggacggcggt	gtcccggcgt	ggcgggaagc	cggcactgga	60
gcgggagcgc	actgggcgcg	ggaccgggag	gcgcagggac	cggacggctc	ccgagtcgcc	120
cacctgacgc	tagaagaagt	cttcacttcc	caggagagcc	aaagcgtgtc	tggccctagg	180
tgggaaaaga	actggctgtg	acctttgccc	tgacctggaa	gggcccagcc	ttgggctgaa	240
tggcagcacc	cacgcccgcc	cgtccggtgc	tgacccacct	gctggtggct	ctcttcggca	300
tgggctcctg	ggctgcggtc	aatgggatct	gggtggagct	acctgtggtg	gtcaaagagc	360
ttccagaggg	ttggagcctc	ccctcttacg	tctctgtgct	tgtggctctg	gggaacctgg	420
gtctgctggt	ggtgaccctc	tggaggaggc	tggccccagg	aaaggacgag	caggtcccca	480
tccgggtggt	gcaggtgctg	ggcatggtgg	gcacagccct	gctggcctct	ctgtggcacc	540
atgtggcccc	agtggcagga	cagttgcatt	ctgtggcctt	cttagcactg	gcctttgtgc	600
tggcactggc	atgctgtgcc	tcgaatgtca	${\tt ctttcctgcc}$	cttcttgagc	cacctgccac	660
ctcgcttctt	acggtcattc	ttcctgggtc	aaggcctgag	tgccctgctg	ccctgcgtgc	720
tggccctagt	gcagggtgtg	ggccgcctcg	agtgcccgcc	agcccccatc	aacggcaccc	780
ctggccccc	gctcgacttc	cttgagcgtt	ttcccgccag	${\tt caccttcttc}$	tgggcactga	840
ctgcccttct	ggtcgcttca	gctgctgcct	tccagggtct	tctgctgctg	ttgccgccac	900
caccatctgt	acccacaggg	gagttaggat	caggcctcca	ggtgggagcc	ccaggagcag	960
aggaagaggt	ggaagagtcc	tcaccactgc	aagagccacc	aagccaggca	gcaggcacca	1020
cccctggtcc	agaccctaag	gcctatcagc	ttctatcagc	ccgcagtgcc	tgcctgctgg	1080
gcctgttggc	cgçcaccaac	gcgctgacca	atggcgtgct	gcctgccgtg	cagagctttt	1140
cctgcttacc	ctacgggcgt	ctggcctacc	acctggctgt	ggtgctgggc	agtgctgcca	1200
atcccctggc	ctgcttcctg	gccatgggtg	tgctgtgcag	gtccttggca	gggctgggcg	1260
gcctctctct	gctgggcgtg	ttctgtgggg	gctacctgat	ggcgctggca	gtcctgagcc	1320
cctgcccgcc	cctggtgggc	acctcggcgg	gggtggtcct	cgtggtgctg	tcgtgggtgc	1380
tgtgtcttgg	cgtgttctcc	tacgtgaagg	tggcagccag	ctccctgctg	catggcgggg	1440
gccggccggc	attgctggca	gccggcgtgg	ccatccaggt	gggctctctg	ctcggcgctg	1500
ttgctatgtt	cccccgacc	agcatctatc	acgtgttcca	cagcagaaag	gactgtgcag	1560
acccctgtga	ctcctgagcc	tgggcaggtg	gggaccccgc	tccccaacac	ctgtctttcc	1620
ctcaatgctg	ccaccatgcc	tgagtgcctg	cagcccagga	ggcccgcaca	ccggtacact	1680
cgtggacacc	tacacactcc	ataggagatc	ctggctttcc	agggtgggca	agggcaagga	1740
gcaggcttgg	agccagggac	cagtgggggc	tgtagggtaa	gcccctgagc	ctgggaccta	1800
catgtggttt	gcgtaataaa	acatttgtat	ttaaaaaaaa	aaaaaaaaa	aaa	1853
< 210 > 28						
<211> 256	4					
<212> DNA						
<213> hom	o sapiens					
<400> 28						
		•				

tcattccccc agggtaactc tgagcccccg gctccgagct ccctcgaggc cgcctaccgg 120 cgtcgggaac atggatgaga aatccaacaa gctgctgcta gctttggtga tgctcttcct 180 attigccgtg atcgtcctcc aatacgtgtg ccccggcaca gaatgccagc tcctccgcct 240 gcaggcgttc agctcccgg tgccggaccc gtaccgctcg gaggatgaga gctccgccag 300 gttcgtgccc cgctacaatt tcacccgcgg cgacctcctg cgcaaggtag acttcgacat' 360 caagggcgat gacctgatcg tgttcctgca catccagaag accgggggca ccactttcgg 420 ccgccacttg gtgcgtaaca tccagctgga gcagccgtgc gagtgccgcg tgggtcagaa 480 gaaatgcact tgccaccggc cgggtaagcg ggaaacctgg ctcttctcca ggttctccac 540 gggctggagc tgcgggttgc acgccgactg gaccgagctc accagctgtg tgccctccgt 600 ggtggacggc aagcgcgacg ccaggctgag accgtccagg aacttccact acatcaccat 660 cctccgagac ccagtgtccc ggtacttgag tgagtggagg catgtccaga gaggggcaac 720 atggaaagca tccctgcatg tctgcgatgg aaggcctcca acctccgaag agctgcccag 780 ctgctacact ggcgatgact ggtctggctg ccccctcaaa gagtttatgg actgtcccta 840 caatctagcc aacaaccgcc aggtgcgcat gctctccgac ctgaccctgg taggctgcta 900 caacctctct gtcatgcctg aaaagcaaag aaacaaggtc cttctggaaa gtgccaagtc 960 aaatctgaag cacatggcgt tcttcggcct cactgagttt cagcggaaga cccaatatct 1020 gtttgagaaa accttcaaca tgaactttat ttcgccattt acccagtata ataccactag 1080 ggcctctagt gtagagatca atgaggaaat tcaaaagcgt attgagggac tgaattttct 1140 ggatatggag tigtacagct atgccaaaga cctttttttg cagaggtacc agtttatgag 1200 gcagaaagag catcaggagg ccaggcgaaa gcgtcaggaa caacgcaaat ttctgaaggg 1260 aaggctccttcagacccatt tccagagcca gggtcagggc cagagccaga atccgaatca 1320 gaatcagagt cagaacccaa atccgaatgc caatcagaac ctgactcaga atctgatgca 1380 gaatetgaet cagagitiga gecagaagga gaacegggaa ageeegaage agaacteagg 1440 caaggagcag aatgataaca ccagcaatgg caccaacgac tacataggca gtgtagagaa 1500 atggcgttaa atggctcaaa aaggcctgta catacttctc ccaaagcgcc actgaaaaga 1560 tggcatagct taaaagatga aagtgtccaa acacatcctg cttccttcat tggggaagtt 1620 ttaaaaaaaa giitagaigi igcciitaca giigcciitc aaiicagigi taiacigigi 1680 gtaggtaaaa caaatctcaa tatggaatta aattgtcttt ttggggttgg actaaatatg 1740 aaatccgaaa gccaaaccag actcaccaga aattgctgtt tagatatttt aagaagttct 1800 taaattagit atggagacaa agtgaaaaca taaaatgtga ccatttaact tatggctaag 1860 aaatggactt taaattattc atgatacact gttaaaaccc aatcttggaa tcaaatattt 1920 tttccagggg tgagaataag tataaacata aagcaactaa aatgaaacat aaaacctttt 1980 attitctict gattitaaca aggaatctat tiaaatagaa taacaactga tggtgaatct 2040 taccgagcig tagaaaataa aaaattcctc tccaaacatg ggtagtttta tgtcaaaata 2100 ttggcttttc aagaacagga ctcatatctt gatatttaag agatgtttaa aattttaaac 2160 tttttctacc ttctactgtt taaaggtttt acacagggtg tatctcacat taaacaaaac 2220 accitititt caaitiicit tagitttaat tgaaaatgit tgcttttaaa actgataggt 2280

attgttggaa	agcaggatga	agcctgagcc	agtggaaaag	cttgttacag	aaaaaacatt	2340
ttgtgttatt	gctgtggtgt	gcatgatttg	caaagattaa	gtgcattttc	tctgtctata	2400
ctgattattg	tatatagagg	atgttataaa	tatacatata	catttttgcc	attatgtaaa	2460
tcccatgatt	tcaactgtaa	acatctgtcc	attggtgtag	ctttacaaac	cattcactga	2520
ttttgtgtaa	tttaacaata	gatatgaaat	aaagtttaaa	ttac	•	2564
<210> 29						
⟨211⟩ 273	3					
<212> DNA						
<213> hom	o sapiens					
< 400> 29						
gctttctaag	gcggtcgctc	cgggaaatcc	${\tt gggccctagg}$	attgtccact	catcccagta	60
tcagcgagat	acggggagat	agagttagcg	acaacgtgag	ccagagctgg	agcacgtttg	120
gtgagagacc	agaaagcaat	ggaggccgga	gaggggaagg	agcgcgttcc	gaaacaaagg	180
caagtcctga	tattctttgt	tttgctgggc	atagctcagg	ctagttgcca	gcctaggcac	240
tattcagtgg	ccgaggaaac	ggagagtggc	tcctttgtgg	ccaatttgtt	aaaagacctg	300
gggctggaga	taggagaact	tgctgtgagg	ggggccaggg	tcgtttccaa	aggaaaaaaa	360
atgcatttgc	agttcgatag	gcagaccggg	gatttgttgt	taaatgagaa	attggaccgg	420
gaggagctgt	gcggcccac	agagccctgt	gtcctacctt	tccaggtgtt	actagaaaat	480
cccttgcagt	tttttcaggc	ggagctacgg	attagggacg	taaatgatca	ttccccagtt	540
ttcctagaca	aagaaatact	tttgaaaatt	ccagaaagta	tcactcctgg	aactactttc	600
ttaatagaac	gtgcccagga	cttggatgta	ggaaccaaca	gtctccaaaa	ttacacaatc	660
agtcccaatt	tccactttca	tcttaattta	caagacagtc	tcgatggcat	aatattacca	720
cagctggtgc	tgaacagagc	cctggatcgc	gaggagcagc	ctgagatcag	gttaaccctc	780
acagcgctag	atggcgggag	tccacccagg	tccggcacgg	ccctggtacg	gattgaagtt	840
gtggacatca	atgacaacgt	cccagagttt	gcaaagctgc	tctatgaggt	gcagatcccg	900
gaggacagco	ccgttggatc	ccaggttgcc	atcgtctctg	ccagggattt	agacattgga	960
actaatggag	; aaatatetta	tgcattttcc	caagcatctg	aagacattcg	caaaacgttt	1020
cgattaagtg	caaaatcggg	agaactgctt	ttaagacaga	aactggattt	cgaatccatc	1080
cagacataca	cagtaaatat	tcaggcgaca	gatggtgggg	gcctatctgg	aacttgtgtg	1140
gtatttgtco	aagtgatgga	. tttgaatgac	aatcctccgg	aactaactat	gtcgacactt	1200
atcaatcaga	ı teccagaaaa	cttgcaggac	accctcattg	ctgtattcag	cgtttcagat	1260
cctgactccg	gagacaacgg	aaggatggtg	tgctccatcc	aagatgatct	tccttttttc	1320
ttgaaacctt	ctgttgagaa	cttttacact	ctggtgataa	gcacggccct	ggaccgggag	1380
accagatcca	g aatacaacat	caccatcacc	gtcaccgact	tegggacace	caggctgaaa	1440
accgagcaca	ı acataaccgt	gctggtctcc	gacgtcaatg	acaacgcccc	cgccttcacc	1500
caaacctcc	acaccctgtt	cgtccgcgag	aacaacagcc	ccgccctgca	categgeage	1560
gtcagcgcca	a cagacagaga	ctcgggcacc	aacgcccagg	tcacctactc	gctgctgccg	1620

ccccaggacc cgcacctgcc cctcgcctcc ctgg	tctcca tcaacgcgga caacggccac 1680
ctgttcgctc tccagtcgct ggactacgag gccc	tgcagg cgttcgagtt ccgcgtgggc 1740
gccgcagacc gcggctcccc ggcgttgagc agcg	aggege tggtgegegt getggtgetg 1800
gacgccaacg acaactcgcc cttcgtgctg tacc	cgctgc agaacggctc cgcgccctgc 1860
accgagctgg tgcccgggc ggccgagccg ggct	acctgg tgaccaaggt ggtggcggtg 1920
gacggcgact cgggccagaa cgcctggctg tcgt	accage tgctcaagge cacggageee 1980
gggctgttcg gcgtgtgggc gcacaatggc gagg	tgcgca ccgccaggct gctgagggag 2040
cgcgacgctg ccaagcagag gctggtggtg ctgg	tcaagg acaatggcga gcctccgcgc 2100
tcggccaccg ccacgctgca cgtgctcctg gtgg	acgget teteceagee etacetgetg 2160
ctcccggagg cggcaccggc ccaggcccag gccg	actige teacegicia eciggiggig 2220
gcgttggcct cggtgtcttc gctcttcctc ttct	cggtgc tcctgttcgt ggcggtgcgg 2280
ctgtgcagga ggagcagggc ggcctcggtg ggtc	gctgct cggtgcccga gggccccttt 2340
ccagggcaga tggtggacgt gagcggcacc ggga	ccctgt cccagagcta ccagtacgag 2400
gtgtgtctga ctggaggctc cgggacaaat gagt	tcaagt tcctgaagcc aattatcccc 2460
aacttcgttg ctcagggtgc agagagggtt agcg	aggcaa atcccagttt caggaagagc 2520
tttgaattca cttaagtgtt aataaggatc tact	gagget agtetegttt aatttgtgga 2580
aagteetttt ttactgettt geecattgga ggtg	tctcct tttattagaa agtaaccatc 2640
ttattccaat tctatgcatg ttactggtat ttat	aaatgt atgagttttt ttgcggtata 2700
ataaatgtaa atțiictig taiictaaaa aaa	2733
<210> 30	
<211> 1007	
<212> DNA	•
<213≯ homo sapiens	
<400> 30	••
cggaagcgcg acgctggagc tgcggggtta ccat	
aggacagtta cacttagagg ccttcatcat catg	atgita agcigccici ticiictgaa 120
ggcacttctt gctcttgggt ctctggaatc ctgg	ataact gcaggagaac atgcaaaaga 180
gggagaatgc cctccccata agaacccatg caaa	gagetg tgccagggtg atgaattgtg 240
tccggctgaa cagaagtgct gcaccacagg ctgt	
ggggaggaaa agagattgcc ctagggttat tcgg	aaacaa teetgitiga aaaggigeat 360
cactgatgag acatgtccag gtgtaaagaa atgc	tgcacg cttggctgca acaagagctg 420
tgtagtccca atctctaaac agaagctggc agag	tttggt ggtgaatgtc ccgctgaccc 480
ccttccgtgt gaggagctgt gtgatgggga tgca	
cagcaccggc tgtggccgca cctgcctcgg agac	_
tccaaaagtt ctggtgggcc tgtgcattgt tggc	
tggagaaaaa tgttgcaagt caggctgtgg ccgc	_
aaaactgacc atgaacccca actggactgt gagg	tctgat tccgaattag agatcccggt 780

gccctagctg tg	gctgatttg	tctggagctt	ctttggtaat	tctggaagct	tttcctggca	840
gtcaagagag gg	gtgacatcc	tggggcttgt	gacatttcca	ggggcactca	tggccctctc	900
tgctctgctt c	tcctcctgc	cgctgaccag	agcatgggaa	atagccctgg	attgggtagt	960
gggtgtgtgg tg	gcttctctt	tcccgataaa	ggctggtgct	gacctct		1007
<210> 31						
<211> 4720						
<212> DNA						
<213> homo s	sapiens					
<400> 31						
gcgagaccta go	caggcccgg	ggctgggcgt	gccctcgcct	gccacgctgc	gcgctgccct	60
cagccgggcc go	ctggggccg	tgcagtgcac	cgggcacgcc	gcgccaggct	gggggcaggc	120
accgagcctc cg	gtgggaggt	cccgaggcag	cttcgcctgc	tcgccctggc	tccagccctc	180
accigccgca go	ccttagctg	agcagccgcc	gccactgggc	gcccccgct	cccacttcg	240
ccagcgcccg c	tcctcggct	cggcccgggg	tagtttgtag	ggacgcagct	ctccacgtgc	300
gcgactgcga gg	gctggacgc	tacgggctcc	tggaaaggag	acaccagcat	ttgccacaat	360
gctgtcatcc ac	ctgacttta	catttgcttc	ctgggagctt	gtggtccgcg	ttgaccatcc	420
caatgaagag ca	agcagaaag	acgtcacact	gagagtatct	ggagaccttc	atgttggagg	480
agtgatgctc as	agttagtag	aacagatcaa	tatatcccaa	gactggtcag	actttgctct	540
ttggtgggaa ca	agaagcatt	gctggcttct	gaaaacccac	tggaccctgg	acaaatatgg	600
ggtccaggca ga	atgcaaagc	ttctcttcac	ccctcagcat	aaaatgctgc	gccttcgtct	660
gccgaatttg as	agatggtga	ggttgcgagt	cagcttctca	gctgtggttt	ttaaagctgt	720
cagtgatate to	gcaaaatcc	tgaatattag	aagatcagaa	gagctttcct	tgttaaagcc	780
gtctggtgac ta	attttaaga	agaagaagaa	aaaagacaaa	aataataagg	aacccataat	840
tgaagatatt c	taaacctgg	agagttctcc	aacagcttca	ggttcatcag	taagtcctgg	900
tttatacagt as	aaaccatga	cccctatata	tgaccccatc	aatggaacac	cagcatcatc	960
caccatgact to	ggttcagtg	acagcccttt	gacggaacaa	aactgcagca	tcctcgcatt	1020
cagccaaccc co	cccagtccc	cagaagcact	tgcggatatg	taccagcctc	ggtctctggt	10.80
tgataaagcc aa	agctcaatg	caggttggct	agactcctca	cgctccctta	tggaacaagg	1140
catccaagag ga	atgagcagc	tgctcttacg	atttaaatat	tattctttct	tcgacttgaa	1200
tcctaaatat ga	atgctgtcc	gaataaacca	actctatgag	caagccaggt	gggccattct	1260
cttagaagaa a	ttgattgca	cagaggaaga	aatgttgatc	tttgcagctc	tacagtacca	1320
cattagcaaa c	tgtcgttgt	ctgctgaaac	acaggatttt	gcaggcgagt	ccgaggttga	1380
tgaaatagaa go	cggcgcttt	ctaatttgga	agtaacccta	gaaggtggaa	aagcggacag	1440
ccttttggag ga	acattactg	atatccctaa	acttgcagat	aatctcaaat	tatttaggcc	1500
caagaagtta c	taccaaaag	ctttcaaaca	atattggttt	atctttaaag	acacatccat	1560
agcatacttt aa	aaaataagg	aacttgaaca	aggagaacca	ctagaaaaaac	taaatcttag	1620
aggctgcgaa g	ttgtgcccg	atgtaaatgt	agcaggaaga	aaatttggaa	tcaagttact	1680

aatccctgtt	gccgatggta	tgaatgaaat	gtatttgaga	tgtgaccatg	agaatcaata	1740
cgcccaatgg	atggctgcct	gcatgttggc	atcgaagggc	aaaaccatgg	cagacagctc	1800
ctaccagcca	gaggtcctca	acatcctttc	atttctgagg	atgaaaaaca	ggaactctgc	1860
atctcaggtg	gcttccagtc	tcgaaaacat	ggatatgaac	ccagaatgtt	ttgtgtcacc	1920
acggtgtgca	aagaaacaca	aatccaaaca	gctggccgcc	cggatcctgg	aggcgcacca	1980
gaacgtggcc	cagatgcccc	tggtcgaagc	caagctgcgg	ttcatccagg	cgtggcagtc	2040
actgcctgag	tttggcctca	cctactacct	tgtcagattt	aaaggaagca	aaaaagatga	. 2100
cattctggga	gtttcatata	acaggttgat	taaaattgat	gcagccaccg	ggattccagt	2160
gacaacatgg	agattcacaa	atatcaaaca	gtggaatgta	aactgggaaa	cccggcaggt	2220
ggtcatcgag	tttgaccaaa	acgtctttac	tgctttcacc	tgcctgagtg	cagattgcaa	2280
gattgtgcac	gagtacattg	gcggctacat	tttcttgtcc	acccgctcca	aggaccagaa	2340
tgaaacactc	gatgaggact	tgttccacaa	attgaccggc	ggtcaggatt	gaaacaagca	2400
cgcgtgctcg	gctcacacca	acaaggcaag	ccaaaggcgc	ccctccccag	agggatccct	2460
aacgtgccca	gcatgtagat	tctggactaa	cagacaacat	acattcaccg	ctggtcaccc	2520
agatcctcat	tcaaacccac	tgctggcaca	tccctttcct	tactttgccc	tgtgctacca	2580
gccacggaag	gagcctctct	tgtttttct	ataaaatggg	taggcaggag	aaaagcaggt	2640
gccctaagat	tgctctaagg	cccagcatgt	${\tt ggttacagtt}$	ctctgacttg	cagaacctgc	2700
caggtgtatg	gctacaagtt	atcctcgtgc	tgatctgtct	cattactaag	tcaatggaga	2760
agacagaaag	gtaaaaatca	cgtgtagcaa	gaacaactct	tatttcacaa	actcaggtat	2820
gaaacgaaac	gcctgtcctt	catggaactg	cttttagctc	ctgtcttttc	aaaatggcag	2880
agggagttcc	tacacacact	ttttccctgg	aggccaaggt	ctaggggtag	aaaggggagg	2940
ggtggggcta	ccaggtagca	gttgacaacc	caaggtcaga	ggagtggccc	tcagtgtcat	3000
ctgtccacag	tgatacctgc	caagatgacc	actgacccac	atctggtctt	agtcattggt	3060
ctcctcagat	ttctggggcc	acctgcaagc	cccattccat	tcctacagat	ctctcagcca	3120
cctgtaagtc	ctttgtgaag	atgtgggtga	cacaggggga	caggaaaacc	catttctcaa	3180
cccagatcca	tgtctccact	gcttctactc	tgggttggga	ttcaggaaga	caggcacagt	3240
cctctctgtt	catagaaaca	cctgccagtg	tcaaggattc	cagtcaggtg	tctatcccaa	3300
ctggtcaggg	agagaagggc	agacccattc	tcaaagacca	ccatgtccaa	ggtctgacag	3360
ctccccactg	gctgcccca	caggggcttt	aggctggtct	gggtcatggg	gaagcgtccc	3420
tcttatcgct	ggtctgtgtt	ctcctggatt	tggtatctat	gttggtacga	ctcctggcct	3480
tttatctaaa	ggactttggc	ttttgtaaat	cacaagccaa	taatagactt	ttttctcccc	3540
ctctgttttt	tgctgtgtca	tctctgcctt	gagactgcct	tgagacagtg	cttgccttga	3600
gagagtgagc	caattaacag	ctgcctgaat	tgtcattttc	cattttggtt	tgttagaggt	3660
gggaggggtg	ggttttgaga	aggtcaaaag	caataccaga	agtaaaggga	aatatcagac	3720
aatatttat	tatttttca	tagatgttct	gccacacaaa	gaacttgggg	tgtaaggata	3780
aggcaaaagc	tccaatccca	tttttcagtt	ctcctaggat	gcacccttca	gggagcctgg	3840
ccagagttcc	gaggctcgtg	agcgtcagct	gttgctttat	tttccatcaa	agccctctga	3900

gaagtgagac ctcagcaatt ccgggagcca catagagaca gac	ttggcaa gggacccct 3960
ggttctgagc cagtagctgc catctggaaa ttcctcttt agc	ctctcct tagaggtgaa 4020
tgtgaatgaa gcctcccagg cacccgctga atttctgagg cct	tgcttaa agctcagaag 4080
tggtttaggc atttggaaaa tctggttcac atcataaaga act	tgatttg aaatgttttc 4140
tatagaaaca agtgctaagt gtaccgtatt atacttgatg ttg	gtcattt ctcagtccta 4200
tttctcagit ctattatttt agaacctagt cagitcitta aga	ttataac tggtcctaca 4260
ttaaaataat gcttctcgat gtcagatttt acctgtttgc tgc	tgagaac atctctgcct 4320
aatttaccaa agccagacct tcagttcaac atgcttcctt agc	ttttcat agttgtctga 4380
catttccatg aaaacaaagg aaccaacttt gttttaacca aac	tttgttt ggttacagtt 4440
ttcaggggag cgtttcttcc atgacacaca gcaacatccc aaa	ngaaataa acaagtgtga 4500
caaaaaaaaa aaaaaacaaa cctaaatgct actgttccaa aga	ngcaactt gatggttttt 4560
tttaatactg agtgcaaaag gtcacccaaa ttcctatgat gaa	aatttaa attaatgggc 4620
acctttcaac atcatttgct tccttatcta cagitgattc aga	aatctgc atttttatt 4680
cttttatatg acttttaagt aaaagattta tatggatttg	4720
<210> 32	
<211> 4266	
<212> DNA	
<213> homo sapiens .	
<400> 32 .	
agagtttcag ttttggcagc agcgtccagt gccctgccag tag	gctcctag agaggcaggg 60
gttaccaact ggccagcagg ctgtgtccct gaagtcagat caa	acgggaga gaaggaagtg 120
gctaaaacat tgcacaggag aagtcggcct gagtggtgcg gcg	gctcggga cccaccagca 180
atgctgctct tcgtgctcac ctgcctgctg gcggtcttcc cas	gccatctc cacgaagagt 240
cccatatttg gtcccgagga ggtgaatagt gtggaaggta ac	tcagtgtc catcacgtgc 300
tactacccac ccacctctgt caaccggcac acccggaagt ac	tggtgccg gcagggagct 360
agaggtggct gcataaccct catctcctcg gagggctacg to	tccagcaa atatgcaggc 420
agggctaacc tcaccaactt cccggagaac ggcacatttg tgg	gtgaacat tgcccagctg 480
agccaggatg actccgggcg ctacaagtgt ggcctgggca to	aatagccg aggcctgtcc 540
tttgatgtca gcctggaggt cagccagggt cctgggctcc tag	aatgacac taaagtctac 600
acagtggacc tgggcagaac ggtgaccatc aactgccctt tc	aagactga gaatgeteaa 660
aagaggaagt ccttgtacaa gcagataggc ctgtaccctg tg	ctggtcat cgactccagt 720
ggttatgtaa atcccaacta tacaggaaga atacgccttg at	attcaggg tactggccag 780
ttactgttca gcgttgtcat caaccaactc aggctcagcg at	gctgggca gtatctctgc 840
caggctgggg atgattccaa tagtaataag aagaatgctg ac	ctccaagt gctaaagccc 900
gagcccgagc tggtttatga agacctgagg ggctcagtga cc	ttccactg tgccctgggc 960
cctgaggtgg caaacgtggc caaatttctg tgccgacaga gc	agtgggga aaactgtgac 1020
gtggtcgtca acaccctggg gaagagggcc ccagcctttg ag	ggcaggat cctgctcaac 1080

ccccaggaca	aggatggctc	attcagtgtg	gtgatcacag	gcctgaggaa	ggaggatgca	1140
gggcgctacc	tgtgtggagc	ccattcggat	ggtcagctgc	aggaaggctc	gcctatccag	1200
gcctggcaac	tcttcgtcaa	tgaggagtcc	acgattcccc	gcagccccac	tgtggtgaag	1260
ggggtggcag	gaggctctgt	ggccgtgctc	tgcccctaca	accgtaagga	aagcaaaagc	1320
atcaagtact	ggtgtctctg	ggaaggggcc	${\tt cagaatggcc}$	gctgcccct	gctggtggac	1380
agcgaggggt	gggttaaggc	ccagtacgag	ggccgcctct	ccctgctgga	ggagccaggc	1440
aacggcacct	tcactgtcat	cctcaaccag	$\tt ctcaccagcc$	gggacgccgg	cttctactgg	1500
tgtctgacca	acggcgatac	tctctggagg	accaccgtgg	agatcaagat	tatcgaagga	1560
gaaccaaacc	tcaaggtacc	agggaatgtc	acggctgtgc	tgggagagac	tctcaaggtc	. 1620
ccctgtcact	ttccatgcaa	attctcctcg	tacgagaaat	actggtgcaa	gtggaataac	1680
acgggctgcc	aggccctgcc	cagccaagac	gaaggcccca	$\tt gcaaggcctt$	cgtgaactgt	1740
gacgagaaca	gccggcttgt	ctccctgacc	ctgaacctgg	tgaccagggc	tgatgagggc	1800
tggtactggt	gtggagtgaa	gcagggccac	ttctatggag	${\tt agactgcagc}$	cgtctatgtg	1860
gcagttgaag	agaggaaggc	agcggggtcc	cgcgatgtca	gcctagcgaa	ggcagacgct	1920
	agaaggtgct					1980
	tttttgcaga					2040
	ctgtggattc					2100
gtctccaccc	tggtgcccct	gggcctggtg	ctggcagtgg	${\tt gagccgtggc}$	tgtgggggtg	2160
	ggçacaggaa					2220
	cagacttcga					2280
tcttcgatca	ctcaggagac	atccctcgga	ggaaaagaag	${\tt agtttgttgc}$	caccactgag	2340
	agaccaaaga					2400
	aagacttcct					2460
	cctagacggt					2520
	atcctggggc					2580
	tcctactgtc					2640
	tgttcctatt					2700
	gagaacctca					2760
	cagggtggga					2820
	atgggatgtc					2880
	cttctttcct					2940
	gatgctgtga		•			3000
	gaagccacag					3060
	gctcacctct					3120
	gtcatgtatg					3180
	ataagaaaat					3240
ttttttgaga	cggagtctct	cactgtcgcc	${\tt caggctggag}$	tgcagtggcg	caatctcggc	3300

tcactgcaac ctccgcctcc	caggitgaca	ccattctcct	gcctcaccct	cccaagtagc	3360
tgggactaca ggcgcctgcc	agcacgcctg	gctaattttt	tgtattttta	gtagagacag	3420
ggtttcaccg tgttagccag	gatggtctcg	atctcctgac	ctcgtgatcc	gcctgcctct	3480
gcctcccaaa gtgctgggat	tacaggcgtg	agccaccgcg	tccggcctct	ttttttcttt	3540
tcttttttt gagacaaagt	ctcactgtgt	cacccagact	ggaatgcagt	gacacaatct	3600
cggctcactg aaacctctgc	cttccaggtt	caagctattc	tcatgcctca	gcctctcaag	3660
tagctgggac tacagatgtg	ggccaccatg	tctggctaat	ttttttttt	ttttttttt	.3720
tttgtagaga cagggtttcg	ccatgttgac	gagactggtc	tcgaactcct	ggcctcaagt	3780
gatetgeege eteagettet	caaagtactg	ggattatata	ggcatgagcc	actgagcctg	3840
gccctgaagc gtttttctca	aaggccctca	gtgagataaa	ttagatttgg	catctcctgt	3900
cctgggccag. ggatctctct	acaagagccc	ctgccctct.	gttggaggca	cagttttaga	3960
ataaggagga ggagggagaa	gagaaaatgt	aaaggaggga	gatctttccc	aggccgcacc	4020
atttctgtca ctcacatgga	cccaagataa	aagaatggcc	aaaccctcac	aacccctgat	4080
gtttgaagag ttccaagttg	aagggaaaca	aagaagtgit	tgatggtgcc	agagagggc	4140
tgctctccag aaagctaaaa	tttaatttct	tttttcctct	gagttctgta	cttcaaccag	4200
cctacaagct ggcacttgct	aacaaatcag	aaatatgaca	attaatgatt	aaagactgtg	4260
attgcc					4266
<210> 33 .			•		
<211> 2618 .					
<212> DNA					
<213≻ homo sapiens		,	•		
<400> 33		•			
atgaagcacc tgaagcggtg	g gtggtcggcc	ggcggcggcc	tcctgcacct	caccctcctg	60
ctgagcttgg cggggctcc	g cgtagaccta	gatctttacc	tgctgctgcc	gccgcccacc	120
ctgctgcagg acgagctgc	gttcctgggc	ggcccggcca	gctccgccta	cgcgctcagc	180
cccttctcgg cctcgggag	g gtgggggcgc	gcgggccact	tgcaccccaa	gggccgggag	240
ctggaccctg ccgcgccgc	c. cgagggccag	ctgctccggg	aggtgcgcgc	gctcggggtc	300
cccttcgtcc ctcgcacca	g cgtggatgca	tggctggtgc	acagcgtggc	tgccgggagc	360
gcggacgagg cccacgggc	t gctcggcgcc	gccgccgcct	cgtccaccgg	aggagccggc	420
gccagcgtgg acggcggca	g ccaggctgtg	caggggggcg	gcggggaccc	ccgagcggct	480
cggagtggcc ccttggacg	c cggggaagag	gagaaggcac	ccgcggaacc	gacggctcag	540
gtgccggacg ctggcggat	g tgcgagcgag	gagaatgggg	tactaagaga	aaagcacgaa	600
gctgtggatc atagttccc					660
aactcacttc agcagaatg	a igaigaigaa	aacaaaatag	cagagaaacc	tgactgggag	720
gcagaaaaga ccactgaat	c tagaaatgag	agacatctga	atgggacaga	tacttctttc	780
tctctggaag acttattcc	a gttgctttca	tcacagcctg	aaaattcact	ggagggcatc	840
tcattgggag atattcctc	t tccaggcagt	atcagtgatg	gcatgaattc	ttcagcacat	900

tatcatgtaa	acttcagcca	ggctataagt	caggatgtga	atcttcatga	ggccatcttg	960
ctttgtccca	a caata catt	tagaagagat	ccaacagcaa	ggacttcaca	gtcacaagaa	1020
${\tt ccatttctgc}$	agttaaattc	tcataccacc	aatcctgagc	aaacccttcc	tggaactaat	1080
t tg a caggat	ttctttcacc	ggttgacaat	catatgagga	atctaacaag	ccaagaccta	1140
${\tt ctgtatgacc}$	ttgacataaa	tatatttgat	gagataaact	taatgtcatt	ggccacagaa	1200
gacaactttg	atccaatcga	tgtttctcag	ctttttgatg	aaccagattc	tgattctggc	1260
ctttctttag	attcaagtca	caataatacc	tctgtcatca	agtctaattc	ctctcactct	1320
gtgtgtgatg	aaggtgctat	aggttattgc	actgaccatg	aatctagttc	ccatcatgac	1380
ttagaaggtg	ctgtaggtgg	ctactaccca	gaacccagta	agcittgtca	cttggatcaa	1440
agtgattctg	atttccatgg	agatcttaca	tttcaacacg	tatttcataa	ccacacttac	1500
cacttacagc	caactgcacc	agaatctact	tctgaacctt	ttccgtggcc	tgggaagtca	1560
cagaagataa	ggagtagata	ccttgaagac	acagatagaa	acttgagccg	tgatgaacag	1620
cgtgctaaag	ctttgcatat	${\tt cccttttct}$	gtagatgaaa	ttgtcggcat	gcctgttgat	1680
tctttcaata	gcatgttaag	tagatattat	ctgacagacc	tacaagtctc	acttatccgt	1740
gacatcagac	gaagagggaa	aaataaagtt	gctgcgcaga	actgtcgtaa	acgcaaattg	1800
gacataattt	tgaatttaga	agatgatgta	tgtaacttgc	aagcaaagaa	ggaaactctt	1860
aagagagagc	aagcacaatg	taacaaagct	attaacataa	tgaaacagaa	actgcatgac	1920
ctttatcatg	atattttag	tagattaaga	gatgaccaag	gtaggccagt	caatcccaac	1980
cactatgctc	tccagtgtac	ccatgatgga	agtatcttga	tagtacccaa	agaactggtg	2040
gcctcaggcc	acaaaaagga	aacccaaaag	ggaaagagaa	agtgagaaga	aactgaagat	2100
ggactctatt	atgtgaagta	gtaatgttca	gaaactgatt	atttggatca	gaaaccattg	2160
aaactgcttc	aagaattgta	tctttaagta	ctgctacttg	aataactcag	ttaacgctgt	2220
tttgaagctt	acatggacaa	atgtttagga	cttcaagatc	acacttgtgg	gcaatctggg	2280
ggagccacaa	cttttcatga	agtgcattgt	atacaaaatt	catagttatg	tccaaagaat	2340
aggttaacat	gaaaacccag	taagactttc	catcttggca	gccatccttt	ttaagagtaa	2400
gttggttact	tcaaaaagag	caaacactgg	ggatcaaatt	attttaagag	gtatttcagt	2460
tttaaatgca	aaatagcctt	attttcattt	agtttgttag	cactatagtg	agcttttcaa	2520
acactattt	aatctttata	tttaacttat	aaattttgct	ttctatggaa	ataaattttg	2580
tatttgtatt	aaaaattaac	ttttcccttt	tatacaga			2618
<210> 34						
<211> 799						
<212> DNA						
<213> hom	o sapiens					
<400> 34						
gtgcaatggc	tagtactatg	tgtcaacttg	tctaggctat	actgctcagc	tgtgtggtca	60
aacagtagtc	tagatgttgc	tgtgaaggta	ttttgtagat	gtgatcaaca	tttacaatca	120

gttgatttta agtaaagcag tttaacttcc aatatgtgga tgggcctcat ccaattagtt 180

gaaggtgtta	agagaaaaga	ccaaggtttc	ctggaaaagg	aattctacca	caagactaac	240
ataaaaatgc	actgtgagtt	tcatgcctgc	tggcctgcct	tcactgtcct	gggggaggc t	300
tggagagacc	aggtggactg	gagtatactg	ttgagagacg	ctggtctggt	gaagatgtcc	360
aggaaaccac	gagcctccag	cccattgtcc	aacaaccacc	caccaacacc	aaagaggttc	420
ccaagacaac	tcggaaggga	aaagggaccc	atcgaggaag	ttccaggaac	aaaaggctct	480
ccataaaaga	ccgccgcttc	aaaaaaacct	gaggaatgga	gtgggccaac	actatccagc	540
cactctgacc	agccgaacga	ggaactcaat	caaaatgagc	catagcggga	çcacaagggc	. 600
aaggagacca	ccactttctc	cagtctcttt	tcggacagcc	agtaattccc	gggcaaggcc	660
agagacttca	agtctatctg	aaaagtctcc	agaggtctaa	ccccagataa	atagocaaca	720
gggtgtagag	tacgttttac	accccaaagg	gtatgcccca	tgtgagggaa	ataaaatgaa	780
catgttgtaa	aaaaaaaa					799
<210> 35						
<211> 2050)					
<212> DNA						
	sapiens					
<400> 35						
		gtagcaagaa				60
acagacttgg	cacagettee	tacagtcttg	aaacagccct	gttgttctgt	catggccagt	120
	•	gcaagaggaa				180
		ctgtgggcac				240
		tttcaaatgt				300
gcaatcaggt	tcaactcgct	gttgcggaat	ctggtggaga	aaatccaagc	tctacaagcc	360
tctgaggtgc	agtccaaaag	gaaagaggc t	acatgcccga	ggcaccagga	gatgttccac	420
		gaagttcctc				480
aaatcccata	atgtcagctt	gatcgaagaa	gctgcccaga	attatcaggg	gcagattcaa	540
		gcaaaaggag				600
		cacggaccag				660
		agtcctagag				720
tactggctgg	gtcatgaggg	aacggaagcg	gggaaacact	atgttgcctc	cactgagcca	780
		gctcgttgat				840
		caaagtcgtc				900 -
aacccaaccc	ctgttcctct	ggaactggag	aaaaaactca	gtgaagcaaa	atcaagacac	960
		gaaaaaattc				1020
		aagcatgaat				1080
		gaacaaaacc				1140
					cctgtttcgg	1200
gcctcgtctg	ctgggaaagt	cacttttcca	gtatgtctcc	tggcctctta	tgatgagatt	1260

tctggtcaag gagcgagct	c tcaggatacg	aagacatttg	acgttgcgct	gtccgaggag	1320
ctccatgcgg cactgagtg	a gtggctgaca	gcgatccggg	cttggttttg	tgaggttcct	1380
tcaagctaag ccagctcag	a gaacacgggg	agcggtggtg	ctacacggac	ttcggagcat	1440
agagtggcgc tgagtgagtg	g gctgagaccg	accacggttc	ttgacttagt	ggaattgggt	1500
cgaaggagtg gagaatggg	a gggctcgggc	tactgagagt	ggagatgggg	gcgggggtgg	1560
tggtgaagag agttggaga	a ggaatggacg	aattcttgag	caaaaggagg	ggaagagaca	1620
atctccagcc acccgcccc	a cgcttgactt	$\tt cttatcactt$	tggctgtggt	gccgcctagt	1680
ggaaaaagga agtccctgc	a gcagtccccg	cactctttaa	gcagctgttt	accgaaggca	1740
ccagttcagc caggagtga	a atccggagag	gagcaacgcc	${\tt agcctgggtc}$	acagtccatc	1800
aaaccccatg agcccgacc	a ctctcgctct	tccttacatt	cccacgtccc	ccttctctcc	1860
caaccctca tatcagcaa	g ggaaattaat	taatgagatt	tgataaatca	gtagatagaa	1920
tgaggtcccc attctgaaa					1980
gtggatggag acacttcta	a ctttaataaa	ctgcgactga	acgiggaaaa	aaaaaaaaa	2040
aaaaaaaaa					2050
<210> 36					
<211> 1537					
<212> DNA					
<213> homo sapiens					
⟨400⟩ 36 .					
agticigigg agcagcggt	g gccggctagg	atgggctctc	tggggtctga	ctctgcccct	60
tttcttcttc tgctgggag	g gtggggtctc	taggagetet	gcaggcccca	gcacccgcag	120
agcagacact gcgatgaca	a cggacgacac	agaagtgccc	gctatgactc	tagcaccggg	180
ccacgccgct ctggaaact	c aaacgctgag	cgctgagacc	tcttctaggg	cctcaacccc	240
agccggcccc attccagaa	•				300
gaccaggagt ttcacaaaa	a catctcccaa	cttcatggtg	ctgatcgcca	cctccgtgga	360
gacatcagcc gccagtggc					420
aggcagtgat cccagggaa	g ccatctttga	caccctttgc	accgatgaca	tctctgaaga	480
ggcaaagaca ctcacaatg					540
cctgtcctca gagagcagc					600
ggcctcagag agcagcgcc	t cttccgacgg	cctccatcca	gtcatcaccc	cgtcacgggc	660
ctcagagagc agcgcctct	t ccgacggcct	ccatccagtc	atcaccccgt	cacgggcctc	720
agagagcagc gcctcttcc	g acggccccca	tccagtcatc	acccctcat	ggtccccggg	780
atctgacgtc actctcctc	g ctgaagccct	ggtgactgtc	acaaacatcg	aggitatiaa	840
ttgcagcatc acagaaata	g aaacaacgac	ttccagcatc	cctggggcct	cagacacaga	900
tctcatcccc acggaaggg	g tgaaggcctc	gtccacctcc	gatccaccag	ctctgcctga	960
ctccactaac acaaaacca	c acatcactga	ggtcacagcc	tctgccgaga	ccctgtccac	1020
agccggcacc acagagtca	g ctgcacctga	tgccacgatt	gggaccccac	tccccaccaa	1080

•						
cagcaccata	gaaagagaag	tgacagcacc	cggggccacg	accctcagtg	gagctctggc	1140
cacagggaat	cccctggaag	aaacctcagc	cctctctgtt	gagacaccaa	gttacgtcaa	1200
agtctcagga	gcagctccgg	tctccataga	ggctgggtca	gcagtgggca	aaacaacttc	1260
ctttgctggg	agctctgctt	cctcctacag	cccttggaa	gccgccctca	agaacttcac	1320
cccttcagag.	acactgacca	cggacatcgc	aaccaagggg	cccttcccca	ccagcagggc	1380
ccctcttcct	tctgtccctc	cgactacaac	caacagcagc	tgaaggacga	acagcatctt	1440
agccaagacc	acaacctcag	cgaagaccac	gatgaagccc	ccaacagcca	cgcccaccac	.1500
tgctcggacg	aggccgacca	cagacatgag	tgcaggt			1537
⟨210⟩ 37	•	•		•		
<211> 777:						
<212> DNA-						
<213> homo	sapiens					
<400> 37 ·						
ggccccttgt	ctgcagagat	ggctcccaat	gcttcctgcc	tctgtgtgca	tgtccgttcc	60
gaggaatggg	atttaatgac	ctttgatgcc	aacccatatg	acagcgtgaa	aaaaatcaaa	120
gaacatgtcc	ggtctaagac	caaggttcct	gtgcaggacc	aggitcitii	gctgggctcc	180
aagatcttaa	agccacggag	aagcctctca	tcttatggca	ttgacaaaga	gaagaccatc	240
caccttaccc	tgaaagtggt	gaagcccagt	gatgaggagc	tgcccttgtt	tcttgtggag	300
tcaggtgatg	aggcaaagag	gcacctcctc	caggtgcgaa	ggtccagctc	agtggcacaa	360
gtgaaagcaa	tgatcgagac	taagacgggt	ataatccctg	agacccagat	tgtgacttgc	420
aatggaaaga	gactggaaga	tgggaagatg	atggcagatt	acggcatcag	aaagggcaac	480
ttactcttcc	tggcatctta	ttgtattgga	gggtgaccac	cctggggatg	gggtgttggc	540
aggggtcaaa	aagcttattt	cttttaatct	cttactcaac	gaacacatct	tctgatgatt	600
tcccaaaatt	aatgagaatg	agatgagtag	agtaagattt	gggtgggatg	ggtaggatga	660
agtatattgc	ccaactctat	gtttctttga	ttctaacaca	attaattaag	tgacatgatt	720
tttactaatg	tattactgag	actagtaaat	aaatttttaa	ggcaaaatag	agcattc	777
⟨210⟩ 38						
<211> 423	1					
<212> DNA	•					
<213> hom	o sapiens					
〈400〉 38						
ggaaaagagg	gcacccagcc	cttcccctc	cctcatcctc	ccatcccagt	aaaccctgcc	60
aaattggaat	cctggactta	atttaggaga	aaggccctgt	aaccaagata	ctgactgaac	120
atggctggcg	gactcaggct	ggggtctgca	gtgcagcatt	aatgggccgc	tgacatgaat	180
atggagtagt	tttctctagc	aaagagtggc	ttccagcttc	ttaaagtctg	acaagaaccg	240
gataggggga	acctacaaga	agaccatcta	taaagaatac	aaggatgact	catacacaga	300
						0.00

tgaagtggcc cagcctgcct ggttgggctt cctggggcca gtgttgcagg ctgaagtggg

360

ggatgtcatt	cttattcacc	tgaagaattt	tgccactcgt	ccctatacca	tccaccctca	420
tggtgtcttc	tacgagaagg	actctgaagg	ticcctatac	ccagatggct	cctctgggcc	480
actgaaagct	gatgactctg	t t c c c c c g g g	gggcagccat	atctacaact	ggaccattcc	540
agaaggccat	gcacccaccg	atgctgaccc	agcgtgcctc	acctggatct	accattctca	600
tgtagatgct	ccacgagaca	ttg caactgg	cctaattggg	cctctcatca	cctgtaaaag.	660
aggagccctg	gatgggaact	ccctcctca	acgccaggat	gtagaccatg	atttcttcct	720
cctcttcagt	gtggtagatg	agaacctcag	ctggcatctc	aatgagaaca	ttgccactta	. 780
ctgctcagat	$\tt cctgcttcag$	tggacaaaga	agatgagaca	tttcaggaga	gcaataggat	840
gcatgcaatc	aatggctttg	tttttgggaa	tttacctgag	ctgaacatgt	gtgcacagaa	900
acgtgtggcc	tggcacttgt	ttggcatggg	caatgaaatt	gatgtccaca	cagcattttt	960
ccatggacag	atgctgacta	cccgtggaca	ccacactgat	gtggctaaca	tctttccagc	1020
cacctttgtg	actgctgaga	tggtgccctg	ggaacctggt	acctggttaa	ttagctgcca	1080
agtgaacagt	cactttcgag	atggcatgca	ggcactctac	a a g g t c a a g t	cttgctccat	1140
ggcccctcct	gtggacctgc	tcacaggcaa	agttcgacag	tacttcattg	aggcccatga	1200
gattcaatgg	gactatggcc	cgatggggca	tgatgggagt	actgggaaga	atttgagaga	1260
gccaggcagt	atctcagata	agtttttcca	${\tt gaagagctcc}$	agccgaattg	ggggcactta	1320
ctggaaagtg	cgatatgaag	cctttcaaga	tgagacattc	caagagaaga	tgcatttgga	1380
ggaagatagg	catcttggaa	tcctggggcc	agtgatccgg	${\tt gctgaggtgg}$	gtgacaccat	1440
tcaggtggtc	ttctacaacc	gtgcctccca	$\tt gccattcagc$	atgcagcccc	atggggtctt	1500
ttatgagaaa	gactatgaag	gcactgtgta	caatgatggc	tcatcttacc	ctggcttggt	1560
tgccaagccc	tttgagaaag	taacataccg	$\tt ctggacagtc$	cccctcatg	ccggtcccac	1620
tgctcaggat	cctgcttgtc	tcacttggat	gtacttctct	${\tt gctgcagatc}$	ccataagaga	1680
cacaaattct	ggcctggtgg	gcccgctgct	ggtgtgcagg	${\tt gctggtgcct}$	tgggtgcaga	1740
tggcaagcag	aaaggggtgg	ataaagaatt	ctttcttctc	ttcactgtgt	tggatgagaa	1800
caagagctgg	tacagcaatg	ccaatcaagc	agctgctatg	ttggatttcc	gactgctttc	1860
agaggatatt	gagggcttcc	aagactccaa	tcggatgcat	gccattaatg	ggtttctgtt	1920
ctctaacctg	cccaggctgg	acatgtgcaa	gggtgacaca	gtggcctggc	acctgctcgg	1980
cctgggcaca	gagactgatg	tgcatggagt	catgttccag	ggcaacactg	tgcagcttca	2040
gggcatgagg	aagggtgcag	ctatgctctt	tcctcatacc	tttgtcatgg	ccatcatgca	2100
gcctgacaac	cttgggacat	ttgagattta	ttgccaggca	ggcagccatc	gagaagcagg	2160
gatgagggca	atctataatg	tctcccagtg	tcctggccac	caagccaccc	ctcgccaacg	2220
ctaccaagct	gcaagaatct	actatatcat	ggcagaagaa	gtagagtggg	actattgccc	2280
tgaccggagc	tgggaacggg	aatggcacaa	ccagtctgag	aaggacagtt	atggttacat	2340
tttcctgagc	aacaaggatg	ggctcctggg	ttccagatac	aagaaagctg	tattcaggga	2400
atacactgat	ggtacattca	ggatccctcg	gccaaggact	ggaccagaag	aacacttggg	2460
aatcttgggt	ccacttatca	aaggtgaagt	tggtgatatc	ctgactgtgg	tattcaagaa	2520
taatgccagc	cgcccctact	ctgtgcatgc	tcatggagtg	ctagaatcta	ctactgtctg	2580

gccactggct gctgagcctg gtgaggtggt cacttatcag tggaacatcc cagagaggtc 2640 tggccctggg cccaatgact ctgcttgtgt ttcctggatc tattattctg cagtggatcc 2700 catcaaggac atgtatagtg gcctggtggg gcccttggct atctgccaaa agggcatcct 2760 ggagccccat ggaggacgga gtgacatgga tcgggaattt gcattgttgt tcttgatttt 2820 tgatgaaaat aagtottggt atttggagga aaatgtggca acccatgggt cccaggatcc 2880 aggcagtatt aacctacagg atgaaacttt cttggagagc aataaaatgc atgcaatcaa 2940 tgggaaactc tatgccaacc ttaggggtct taccatgtac caaggagaac gagtggcctg 3000 gtacatgctg gccatgggcc aagatgtgga tctacacacc atccactttc atgcagagag 3060 cttcctctat cggaatggcg agaactaccg ggcagatgtg gtggatctgt tcccagggac 3120 tititgaggit giggagatgg tggccagcaa ccctgggaca tggctgatgc actgccatgt 3180 3240 cttaagccct ctcaccgtca tcaccaaaga gactgaaaaa gcagtgcccc ccagagacat 3300 tgaagaaggc aatgtgaaga tgctgggcat gcagatcccc ataaagaatg ttgagatgct 3360 ggcctctgtt ttggttgcca ttagtgtcac ccttctgctc gttgttctgg ctcttggtgg 3420 agiggitigg taccaacaic gacagagaaa gciacgacgc aataggaggi ccaiccigga 3480 tgacagcttc aagcttctgt ctttcaaaca gtaacatctg gagcctggag atatcctcag 3540 gaagcacate tgtagtgeae teccageagg ceatggaeta gteactaace ceacacteaa 3600 aggggcatgg gtggtggaga agcagaagga gcaatcaagc ttatctggat atttctttct 3660 ttatttatti tacatggaaa taatatgatt tcactttttc tttagtttct ttgctctacg 3720 tgggcacctg gcactaaggg agtaccttat tatcctacat cgcaaatttc aacagctaca 3780 ttatatttcc ttctgacact tggaaggtat tgaaatttct agaaatgtat ccttctcaca 3840 aagtagagac caagagaaaa actcattgat tgggtttcta ctictttcaa ggactcagga 3900 aatttcactt tgaactgagg ccaagtgagc tgttaagata acccacactt aaactaaagg 3960 ctaagaatat aggettgatg ggaaattgaa ggtaggetga gtattgggaa tecaaattga 4020 attitgatic iccitggcag igaactacit igaagaagig gicaaigggi igitgcigcc 4080 atgagcatgt acaacctcig gagctagaag ciccicagga aagccagtic iccaagtici 4140 taacctgtgg cactgaaagg aatgttgagt tacctcttca tgttttagac agcaaaccct 4200 atccattaaa gtacttgtta gaacactgaa a 4231 <210> 39 **<211>** 6322 <212> DNA <213> homo sapiens **<400>** 39 ctgagagcga catgtccccg gcgctcagg cggagcggcc cgtggcgctg ttttctgag 60 tccggggtgg cctggcagcc ggccgaggac gagggtcggc gggggctgcc cccgtggtgg 120 tggccgccat gctgggagcc tgggcggttg agggaaccgc tgtggcgctc ctgcgactgc 180 tgctgctgct gctgccgccg gcgatccggg gacccgggct cggcgtggcc ggcgtggccg 240

	gcgcggcggg	ggccgggctg	cccgagagcg	tcatttgggc	ggtcaacgcg	ggtggagagg	300
	cgcatgtgga	cgtgcacggg	atccacttcc	gcaaggaccc	tttggaaggc	cgggtgggcc	360
	gagcctcaga	ctatggcatg	aaactgccaa	tcctgcgttc	caaccctgag	gaccagatcc	420
	tgtatcaaac	tgagcggtac	aatgaggaga	cctttggcta	cgaagtgccc	atcaaagagg	480
	agggggacta	cgtgctggtc	ttgaaatttg	cagaggtcta	ctttgcacag	tcccagcaaa	540
	aggtatttga	tgtacgattg	aatggccacg	tcgtggtgaa	ggacttggat	atctttgatc	600
	gtgttgggca	tagcacagct	cacgatgaaa	t tatacct a t	gagcatcaga	aaggggaagc	660
	tgagtgtcca	gggggaggtg	tccaccttca	cagggaaact	ctacattgag	tttgtcaagg	720
_	ggtactatga	caatcccaag	gtctgtgcac	tctacatcat	ggctgggaca	gtggatgatg	780
	taccaaagct	·tcagcctcat	ccgggattgg	agaagaaaga	agaggaagaa	gaagaagaag	840
	aatatgatga	agggtctaat	$\tt ctcaaaaaaac$	agaccaataa	gaaccgggtg	cagtcaggcc	900
	cccgcacacc	caacccctat	gcctcggaca	a cag cag cct	${\tt catgtttccc}$	atcctggtgg	960
	ccttcggagt	cttcattcca	accctcttct	gcctctgccg	gttgtgagaa	caaatgacta	1020
	tcctgaacag	ggtggagggg	tgtgggaaag	aaaccagcca	tattggtttt	ggtttctgta	1080
	tttttcacaa	tgattaatga	acaaaaacaa	agagaaaaaa	aacacacatc	aattaaagga	1140
	gacaaaaaga	ggcagagcga	gtagagagca	gccctcattc	accacctggt	cccagacgtg	1200
	cttcagtcct	cgtcctctct	ttgtggctgg	ctcccagcct	tctctttcct	cttgaggata	1260
	cttagggtaa	actggatcct	tcctgctcaa	ggatcctcat	ttgtatacct	agtggaaagg	1320
	actctgaact	cagaggagtc	actgttcctt	tttttaggtt	agaaattaac	agcagggaaa	1380
	tgccatctta	ttacctgaga	cgaccagcac	tgggagttag	gtacggtctg	aagttatgtc	1440
	tagataagac	ttcagacgtc	ctgggattga	aagaatgtgt	gtgaaggggt	agaatttgtg	1500
	cggtaaagac	ttaaaaaaaa	aagtagggag	attaaaaaaa	aagaaagaaa	atgcttcctt	1560
	atctggaagc	cttictggat	taatccagtg	atggtcccac	ctttagtgtt	tgagctttgt	1620
	cattgcttgt	ctccctggca	tgtgccagtt	atagactgtc	cagcatccaa	gacgtttcgg	1680
	ttatgtcggg	tcctcagatc	gcctctgact	tgttaccaca	acaaatcatt	ttgatttcag	1740
	tgcctgttgg	ggacttgatt	tcttctcagg	ttttgtttgt	ttgtttgttt	ccttaatctg	1800
	gctcatttga	aatttcttct	ccctctcaac	catcccacta	agttatagcc	aagaagggaa	1860
	ggagacacgg	ggatttgggg	ttctctgctt	gaatgtcttc	tcctttacca	cctcaccttg	1920
	ttggtacctc	cctccctgga	tctctgagcc	agcagccagg	aggacctgac	ccagcagttc	1980
	tttactggcc	cctttgtagg	gccttgctgc	cagggggcag	ggatgctttc	cagcctgcag	2040
	caacagaaca	cttgacctta	aaagtctctt	ctggtctttg	gattagaaaa	ggcttatgtt	2100
	agcatagctt	aagagcaacc	tcagagactt	gagccctact	aagtgactga	ccactgttta	2160
	gagtgtctgg	tatctgatgt	tcatttattc	ccatgttctt	gtgtgtcaca	gttcagccag	2220
	ttttggttta	tgcctagagc	tacttcaagg	aactagacta	. attagctata	taggcccagc	2280
	gatgcttctt	attgatctta	atagtatgcc	cttccttccc	ctgtcctttc	atttctctat	2340
	ccaagtagca	gtcaggttct	tggtgtgatg	ggactgaaag	aattccagtc	agccagagcc	2400
	ttggcagctc	tgaagctaac	cttagcatct	aagtgtcgat	cttgaattcc	ctgaaaaaaat	2460

ttctatagga	aatgaagctt	ccctggtccc	ctcctttctg	gccattgtca	tccatttccc	2520
agttagggca	acaatgaagg	aggacccagc	caagctagaa	ggaattttgt	ggatgggaga	2580
cagcaggatt	agcttcagct	tgggctggag	cagtcaatat	aggatctcag	gccaggcccg	2640
cttttctaga	atgigitiaa	ttttgagttt	gctttattag	atatgttttt	taagagctct	2700
gtatatttga	actgctcctt	atgtgacaaa	ataggtagct	cttgggctca	tgtcctgggt	2760
tttggctctt	taatgattac	tccaggccag	catttagtcg	tttgagaatt	gtagcctgtt	2820
gttttcgctg	tgacttgggt	ctcagtgcta	gggtattgag	tcaggcagct	ggagggttgt	. 2880
ggcccgaggc	tgcagtcaga	ggtatacttc	ccatagtgct	tcacacagct	ccctgcttc	2940
taaaggataa	ggtactgtag	ccttggtcct	ggggaccacc	tgcctggggc	agtggacatc	3000
ctaactaaac	${\tt aggcttctgg}$	cagtagcttt	ggttcctatc	ccatcgaaat	tccccaaagc	3060
cctgggccac-	tgccattggg	ttagtcaaga	tgaaggagga	ggactggctg	cctccatttt	3120
gccttgtttg	ttagtttgcc	tgggtctgtc	tgaggaagga	gggggtcccg	ccttccacct	3180
caacacatcc	cttcagtgac	tcagagtctc	agaaggaaac	cctgactcct	ggggccattt	3240
cctaatggta	ctgtaagcca	agcagctttg	cttctgcctc	tgtttccaag	cccacccttt	3300
tcccctgagc	tcagggttag	ggatgggcgc	tttcctctct	ggttgtgaac	gaaaggaagg	3360
aacatctttc	tatggctaac	aaaaactaaa	ggggaagtga	ggaaacagga	agaagtatgg	3420
tgggggctgg	ggtagactcc	cctggagcca	agcctatcca	gctaacaaga	gctccctggg	3480
gctggtcaca	gctggctcat	gatgctgaac	ttgaaagttt	ttttgttttt	gtttttgttt	3540
tgtggctcct	ccaagatata	ggtacatgaa	gtttaggtta	aaggggtggg	attctttatt	3600
tttatttttg	tattgtatgt	gtcaagaatt	actctgttgt	tcaccttttg	ctttttgcac	3660
tgtttgttct	cttatctgta	ttttgagctt	agtgctagga	ctgagaggct	gcaccatagg	3720
gaatgtatgg	gagatggtga	ggggtgccag	tgaggggtgc	gtggaggaga	ggcctgggct	3780
cctctactgg	atctacactc	tgtcccaggt	ttttagatcc	cactgagccc	agctgactga	3840
aaacaaggac	agtcagggtg	aaacttcttt	tgccagaagt	gtggcctgag	ttgaatttct	3900
gggaggatga	cgcagatgtc	tgctgcagag	ctgggctgag	agttctgcag	tctagctctg	3960
acttaggtca	ggggcctgtt	ggtctctcat	tggacgtttt	tgggtctcac	tcatgcttac	4020
tgaaacattg	tgccaagaaa	ctctgtggga	tttgtgtccc	ttaaaccaga	ctcacttttc	4080
tgaaaaatct	ccattgttga	ggagaggctg	ctcaatcgac	accccgagtt	ctcatgactg	4140
				caggaagact		4200
				ttgccctccc		4260
ctactgggat	cacgttagcg	ggcatttagg	ctttgatgag	agggcacagt	ttgagttagg	4320
tttacctccc	cctttctgtg	cctgggaact	gtttggtcca	gctttagaac	tgtggttttg	4380
acttccttat	ctcttgggag	aagcttctgt	tttaaggaat	tictcttcct	tcttctcctg	4440
				aatctcagct		4500
				ccctttccct		4560
				gccctcccta		4620
aaggacccac	cccggtcagc	acagtgcctt	ttcctctcct	gctctgagcc	agggtggggc	4680

attccctcta ga	ittcaggtt	tgggcagggg	tcctatagtc	cctgccatgg	ggctgcttcc	4740
ctgtcccttc co	etccccttt	gctggcctac	tctggcataa	ttcaagtgtc	ttcttgcctt	4800
ggggatcctt ag	gtggcatca	aatggcaaca	tggaatattg	tcctccatgc	ccctccagaa	4860
ggacctagga ga	agtaggtga	gctttccaaa	gtgagagacg	aatctttctt	tcttttttt	4920
tttaaagggc ag	ggatgggta	tgctttgggc	tttctccttc	tgtggccccg	gaggaaggag	4980
agactgaggc aa	aggcaaagt	gatagtacac	tgaagcagaa	ccggaaacac	ccaggaactg	5040
ttcagaaatc to	cagaagaaa	tctgcttctc	ttcgatggaa	agatataatt	aacgatcaaa	5100
gagetetaag aa	aaattgcaa	agaagcctta	atgttcaagc	tttagaaaga	tcagagcaat	5160
ttttctcttt ca	agtccaa <u>ac</u>	taagactctc	tgtatttaaa	tctctctggg	gcaagagggc	5220
tagatttcct ca	attttgtta	tgagactaga	ttggtaccag	tagatcagct	gcctagcgag	5280
ggcaggtttc.t	tctttgcat	ctgtgtggct	tgcttccagt	${\tt ctggcctgtc}$	ctttccagct	5340
gccttttgtc ta	agcctgcta	tggggggcca	gattatcttg	ataagagcag	gtgatttggg	5400
gactagctgg g	ttggtagga	aaagagcagg	atggatctct	tgggacaggt	tccccagga	5460
gtataaacac aa	aggagccag	gattgtcctg	gcagccaagg	aaacagtagt	gcctgtttga	5520
gttggcagag ag	gggccttgg	${\tt cacctcttgc}$	atccaggcag	tcttgtgaga	tgggggcaca	5580
tagcactggg g	aaagcagaa	${\tt ctccattctc}$	acctctattt	tgagcttcag	tgctttattt	5640
cagtatgagg a	aaaacaaca	acaaactgaa	${\tt gtgcgctttc}$	cgtcctttca	aaggacaact	5700
gtcgggaagg g	agagccgag	ttgcgaggta	ggaggggagc	actggcaggg	agagacattc	5760
ttgactcctc t	cttccctgg	tgtgttgtga	tccagggaat	gaaaagaaat	ttgaccctgg	5820
attggttctc t	ccttggact	taaggaatct	taccttttcc	ttccacaaag	ttctcccagg	5880
caaggaccag c	tgcccattc	tgagcccagg	gcagcctctt	caaccattat	tggtctaacc	5940
tggcttgtca g	gaaaccaag	cccacccttc	cacattgggc	ctggctgctc	tattctgtac	6000
caagtactgg a	gaaaaagca	tcaagttctt	agcccttgta	gcttctaccc	tagtttccca	6060
tectetetet g	tggaggcca	aaccaactct	ttgccagcag	ccacaacatg	cattgacagc	6120
ggcacagtga g	atataactg	atgggctttg	aacctggttg	gccggggaag	ctgtaggggt	6180
ggatagaget g	gctttcctt	ctgggctgtc	tccatctgac	cctacccctt	ccatgtccca	6240
ccccactccc a	ccaaaaagt	acaaaatcag	gatgtttttc	actgtccatt	gctttgtgtt	6300
ttaataaaca a	tttgcagtg	ac				6322
<210> 40						
<211> 3600						
<212> DNA						
<213> homo	sapiens					
<400> 40						
gaatcaacag a	atttgtctt	tttgtgactg	gtttatttca	cttaacttca	tcctcaaggt	60
tcaacttaaa g	gtgtatcca	tgttgtagca	cgtgtcagca	ttttctttcg	ttctcaggct	120
aaatagtatt t	cattgtgtg	tgtacaccat	gtttcatgca	ttcattcatc	ccttgaaaga	180

tiggigggti gittccicci tittgcttit gigaacagig ciacgaacai ggitgiacaa

240

acatetettg gagececact ageagtteet ttgggtatat acceeaaagt ggaattgetg 300 gatctggtag ctcccttttt aattttttga ggaatcgcca cacagtttcc ataacagctg 360 caccatitta cattcccaag acctttttt ttttttttt tttaagaaga aaagatgtgt 420 ttctgcattt ctggaagtct atgctgcatt tccatttgtt gaaatttaag accagagtca 480 tettttetge tgtaattata atggteactg gettgtgeet ttteeteete tetetgeece 540 atctgcacgg ggtctttgaa caagtcccag caccttggtg gacaagcctg tgtccctggc 600 ccatcatgga agccgctgcc tttcagagtg ggagtctgta ccctgttgcc tcattccttg . 660 ctgcgcccat gagtgagctt gtgcctgacc tctccttcca ggtggactta cacactgggc 720 tgtcggagtt ctcggtgacg cagcgccggc tggcccatgg ctggaatgag tttgttgctg 780 acaacagcga acctgtgtgg aagaaatacc tggatcagtt taagaacccc ctgatcctgc 840 tgctgctggg ctctgccctg gtgagtgtcc tcaccaagga gtatgaggac gccgtcagca 900 tcgccacggc agtgcttgtc gtggtcactg tcgccttcat ccaggagtac aggtcggaga 960 aatctctgga agagctgacc aagctggttc ctccagaatg taactgccta agagaaggaa 1020 aactccagca cctgcttgct cgagaactgg ttcctggtga tgtcgtatct ctctcgatcg 1080 gagaccggat ccctgcagac atccgactca ctgaggtcac ggacctcttg gtggatgaat 1140 ccagiticac cggggaagcc gagccatgia giaaaacaga cagcccctig acaggcggtg 1200 gggacctcac caccctcagc aacatcgtct tcatggggac cctggtgcag tatgggaggg 1260 gccagggggt cgtgattgga acaggggaaa gctctcagtt cggagaagtg tttaagatga 1320 tgcaggctga agagacacct aaaactcctt tgcagaaaag catggacagg ctaggaaagc 1380 aactgacact cttctccttt ggcataatcg gtctcatcat gctcattggc tggtcgcaag 1440 ggaaacaact cctgagtatg ttcacgatcg gggtcagcct ggctgtggcg gctattccag 1500 agggtctgcc catcgtcgtc atggtgacgc tggtcctggg agtgctgcgg atggccaaga 1560 agcgggtcat cgtgaagaag ttacccatcg tggagacttt aggttgctgc agcgttctct 1620 gttctgacaa gacggggact ctgactgcca atgaaatgac agtgacccag cttgtaacgt 1680 cagatgggct tcgtgccgag gtcagcggag ttgggtatga cggtcaaggg actgtgtgtc 1740 tictaccatc caaggaagte attaaggaat titceaatgt ctcagtggga aagttagtgg 1800 aggcgggctg tgttgccaac aatgcggtca tcagaaagaa cgccgtgatg gggcagccca 1860 ccgagggtgc attgatggcc ctggcgatga agatggactt aagtgatatt aaaaattcat 1920 atataagaaa aaaagagatt ccattcagtt cagagcagaa gtggatggcg gtgaaatgca 1980 gtctgaagac tgaggatcag gaagacattt acttcatgaa aggggccttg gaagaggtga 2040 tecgetactg caccatgiae aacaaegggg geateceet geegetgaeg eeceageaga 2100 ggtcattctg cctgcaggaa gagaagagga tggggtcgct cggtttgcgg gtgctggccc 2160 tggcttctgg gcccgagctg gggcggctga cgtttctagg tcttgtgggc atcattgacc 2220 ccccgagagt tggcgtgaag gaagcagtcc aggttctctc cgagtctggt gtgtctgtga 2280 agatgataac gggggatgcc ctggagacgg ccttggccat aggaagaaac atcggcctgt 2340 gcaacgggaa gctgcaagcc atgtccgggg aggaggtgga cagcgtggag aagggcgagc 2400 tggccgaccg cgtggggaag gtgtccgtgt tcttcaggac cagcccaaag cacaagctca 2460

•					
aaatcatcaa ggct	tctgcag gagtcagggg	cgatcgtggc	catgactggg	gatggggtga	2520
acgacgcagt ggcc	ctgaag tctgcagaca	ttgggatcgc	catggggcag	acagggacgg	2580
acgicagcaa agag	ggccgcc aacatgatcc	tggtggatga	tgacttctca	gccatcatga	2640
atgcagtgga ggaa	aggcaag ggtattttt	acaacatcaa	aaactttgtc	cgattccagc	2700
tgagcacgag cato	ctccgcc ctgagtctca	tcactctgtc	caccgtgttc	aacctgccca	2760
gcccctcaa cgcc	catgcag atcctatgga	tcaacatcat	catggatggg	ccaccggcgc	2820
agagettggg ggta	agagece gttgacaaag	acgccttcag	gcagccacca	cggagtgtgc	.2880
gggacaccat ccto	cagcaga gccctcatco	tgaagatcct	catgtccgcg	gccatcatca	2940
tcagcgggac ccto	ctitate ticiggaagg	agajgcctga	agacagagca	agcactcccc	3000
gcaccacgac gate	gacgitc actigititg	tgittitcga	tctcttcaac	gccttgacct	3060
gccgctctca gacc	caagctg atatttgaga	tcggctttct	caggaaccac	atgttcctct	3120
actccgtcct gggg	gtccatc ctggggcago	tggcggtcat	ttacatcccc	ccgctgcaga	3180
gggtcttcca gacg	ggagaac ctgggagcgo	ttgatttgct	gtttttaact	ggattggcct	3240
catccgtctt cat	tttgtca gagctcctca	aactatgtga	aaaatactgt	tgcagcccca	3300
agagagtcca gat	gcaccct gaagatgtgt	agtggaccgc	actccgcggc	accttcccta	3360
atcatctcga tct	ggttgtg actgtggcco	ctgccgtgtc	tcctcgtcag	gggagacttt	3420
taggaggccg cag	ccttcca tcaccggato	agtttttcct	cttaggaaag	ctgcaggaac	3480
ctcgtgggct ccap	gggacce aggcccacat	ccatccagcg	ttcccgctgg	ctgtgggaca	3540
gacagggagg ggç	ctgtaca gaaacaccad	actgtttatt	aaatcacaat	gatttttatt	3600
<210> 41		,			
<211> 2507					
<212> DNA		•			
<213> homo say	piens				
<400> 41					
cagcacaccc cgg	cacctcc tctgcggcag	g ctgcgcctcg	caagcgcagt	gccgcagcgc	60
acgccggagt ggc	tgtaget geeeggegeg	g gcgccgccct	gcgcgggctg	tgggctgcgg	120
gctgcgcccc cgc	tgctggc cagctctgca	a cggctgcggg	ctctgcggcg	cccggtgctc	180
	cgggcgg catgggataa		_		240
	tggtggg tccaggtggg				300
cctgcacatc cca	cccctc agetetecc	tgcccttcac	tcatggaagt	cttcaggcaa	360
gtttttcact tac	aagggac tgcgtatct	t ctaccaagac	tctgtgggtg	tggttggaag	420
tccagagata gtt	gtgcttt tacacggtt	t tccaacatcc	agctacgact	ggtacaagat	480
tigggaaggi cig	accttga ggtttcatc	g ggtgattgcc	cttgatttct	taggctttgg	540
	ccgagac cacatcact				600
	catcing ggctccaga				660
	gctcagg agcttctct		_		720
taccataaag agt	ctctgtc tgtcaaatg	g aggtatettt	cctgagactc	accgtccact	780

	٠						
cctt	ctccaa	aagctactca	aagatggagg	tgtgctgtca	cccatcctca	cacgactgat	840
gaac	ttcttt	gtattctctc	gaggtctcac	cccagtcttt	gggccgtata	ctcggccctc	900
tgag	gagtgag	ctgtgggaca	tgtgggcagg	gatccgcaac	aatgacggga	acttagtcat	960
tgac	agtete	ttacagtaca	tcaatcagag	gaagaagttc	agaaggcgct	gggtgggagc	1020
tctt	gcctct	gtaactatcc	ccattcattt	tatctatggg	ccattggatc	ctgtaaatcc	1080
ctat	ccagag	tttttggagc	tgtacaggaa	aacgctgccg	cggtccacag	tgtcgattct	1140
ggat	gaccac	attagccact	atccacagct	agaggatccc	atgggcttct	tgaatgcata	.1200
tate	gggcttc	at caact cct	tctgagctgg	aaagagtagc	ttccctgtat	tacctcccct	1260
acto	ccttat	gtgttgtgta	ttccacttag	gaagaaatgc	ccaaaagagg	tcctggccat	1320
caaa	acataat	tctctcacaa	agtccacttt	actcaaattg	gtgaacagtg	tataggaaga	1380
agco	cagcagg	agctctgact	aaggttgaca	taatagtcca	cctcccatta	ctttgatatc	1440
tgat	tcaaatg	tatagacttg	gctttgtttt	ttgtgctatt	aggaaattct	gatgagcatt	1500
acta	attcact	gatgcagaaa	gacgttcttt	tgcataaaag	acttttttt	aacactttgg	1560
acti	tctctga	aatatttaga	agtgctaatt	tctggcccac	ccccaacagg	aattctatag	1620
taag	ggaggag	gagaaggggg	gctccttccc	tctcctcgaa	tgacgttatg	ggcacatgcc	1680
tttt	taaaagt	tctttaagca	a ca cagaget	gagtcctctt	tgtcatacct	ttggatttag	1740
tgti	ttcatca	gctgttttta	gttataaaca	ttttgttaaa	atagatattg	gtttaaatga	1800
taca	agtattt	taggtatgat	ttaagactat	gatttaccta	tacattatat	atattttata	1860
aaga	atactaa	acçagcatac	ccttactctg	ccagagtagt	gaagctaatt	aaacacattt	1920
ggt	ttctgaa	taaattgaac	taaatccaaa	ctatttccta	aaatcacagg	acattaagga	1980
ccaa	atagcat	ctgtgccaga	gatgtactgt	tattagctgg	gaagaccaat	tctaacagca	2040
aata	aacagtc	tgagactcct	catacctcag	tggttagaag	catgtctctc	ttgagctaca	2100
gtag	gagggga	agggattgtt	gtgtagtcaa	gtcaccatgc	tgaatgtaca	ctgattcctt	2160
tata	gatgact	gcttaactcc	ccactgcctg	tcccagagag	gctttccaat	gtagctcagt	2220
aat	tcctgtt	actttacaga	caggaaagtt	ccagaaactt	taagaacaaa	ctctgaaaga	2280
cct	atgagca	aatggtgctg	aatactttt	ttttaaagcc	acatttcatt	gtcttagtca	2340
aag	caggatt	attaagtgat	tatttaaaat	tcgtttttt	aaattagcaa	cttcaagtat	2400
aac	aactttg	aaactggaat	aagtgtttat	tttctattaa	taaaaatgaa	ttgtgacaaa	2460
aaa	aaaaaaa	aaaaaaaaa	aaaaaaaaa	aaaaaaaaa	aaaaaaa		2507
<21	0> 42						
<21	1> 356	0					
<21	2> DNA						
<21	3> hom	o sapiens					
<40	0> 42						
gag	ctagcgc	tcaagcagag	cccagcgcgg	tgctatcgga	cagagcctgg	cgagcgcaag	60
cgg	cgcgggg	agccagcggg	gctgagcgcg	gccagggtct	gaacccagat	ttcccagact	120
	, ,			,			

agctaccact ccgcttgccc acgccccggg agctcgcggc gcctggcggt cagcgaccag 180

acgtccgggg	ccgctgcgct	cctggcccgc	gaggcgtgac	actgtctcgg	ctacagaccc	240
agagggagca	cactgccagg	atgggagctg	ctgggaggca	ggacttcctc	ttcaaggcca	300
tgctgaccat	cagctggctc	actctgacct	gcttccctgg	ggccacatcc	acagtggctg	360
ctgggtgccc	tgaccagagc	cctgagttgc	aaccctggaa	ccctggccat	gaccaagacc	420
accatgtgca	tatcggccag	ggcaagacac	tgctgctcac	ctcttctgcc	acggtctatt.	480
ccatccacat	ctcagaggga	ggcaagctgg	tcattaaaga	ccacgacgag	ccgattgttt	540
tgcgaacccg	gcacatcctg	attgacaacg	gaggagagct	gcatgctggg	agtgccctct	. 600
gccctttcca	gggcaatttc	accatcattt	tgtatggaag	ggctgatgaa	ggtattcagc	660
cggatcctta	ctatggtctg	aagtacattg	gggttggtaa	aggaggcgct.	cttgagttgc	720
atggacagaa	aaagctctcc	tggacatttc	tgaacaagac	ccttcaccca	ggtggcatgg	780
cagaaggagg	ctatttttt	gaaaggagct	ggggccaccg	tggagttatt	gttcatgtca	840
tcgaccccaa	atcaggcaca	gtcatccatt	ctgaccggtt	tgacacctat	agatccaaga	900
aagagagtga	acgtctggtc	cagtatttga	acgcggtgcc	cgatggcagg	atcctttctg	960
ttgcagtgaa	tgatgaaggt	tctcgaaatc	tggatgacat	ggccaggaag	gcgatgacca	1020
aattgggaag	caaacacttc	ctgcaccttg	gatttagaca	cccttggagt	tttctaactg	1080
tgaaaggaaa	tccatcatct	tcagtggaag	accatattga	atatcatgga	catcgaggct	1140
ctgctgctgc	ccgggtattc	aaattgttcc	agacagagca	tggcgaatat	ttcaatgttt	1200
ctttgtccag	tgagtgggtt	caagacgtgg	agtggacgga	gtggttcgat	catgataaag	1260
tatctcagac	taaaggtggg	gagaaaattt	cagacctctg	gaaagctcac	ccaggaaaaa	1320
tatgcaatcg	tcccattgat	atacaggcca	ctacaatgga	tggagttaac	ctcagcaccg	1380
aggttgtcta	caaaaaaggc	caggattata	ggtttgcttg	ctacgaccgg	ggcagagcct	1440
gccggagcta	ccgtgtacgg	ttcctctgtg	ggaagcctgt	gaggcccaaa	ctcacagtca	1500
ccattgacac	caatgtgaac	agcaccattc	tgaacttgga	ggataatgta	cagtcatgga	1560
aacctggaga	taccctggtc	attgccagta	ctgattactc	catgtaccag	gcagaagagt	1620
tccaggtgct	tccctgcaga	tcctgcgccc	ccaaccaggt	caaagtggca	gggaaaccaa	1680
tgtacctgca	catcggggag	gagatagacg	gcgtggacat	gcgggcggag	gttgggcttc	1740
tgagccggaa	catcatagtg	atgggggaga	tggaggacaa	atgctacccc	tacagaaacc	1800
acatcigcaa	tttctttgac	ttcgatacct	ttgggggcca	catcaagttt	gctctgggat	1860
ttaaggcagc	acacttggag	ggcacggagc	tgaagcatat	gggacagcag	ctggtgggtc	1920
agtacccgat	tcacttccac	ctggccggtg	atgtagacga	aaggggaggt	tatgacccac	1980
ccacatacat	cagggacctc	tccatccatc	atacattctc	tcgctgcgtc	acagtccatg	2040
gctccaatgg	cttgttgatc	aaggacgttg	tgggctataa	ctctttgggc	cactgcttct	2100
tcacggaaga	tgggccggag	gaacgcaaca	cttttgacca	ctgtcttggc	ctccttgtca	2160
agtctggaac	cctcctcccc	tcggaccgtg	acagcaagat	gtgcaagatg	atcacagagg	2220
actcctaccc	ggggtacatc	cccaagccca	ggcaagactg	caatgctgtg	tccaccttct	2280
ggatggccaa	tcccaacaac	aacctcatca	actgtgccgc	tgcaggatct	gaggaaactg	2340
gattttggtt	tatttttcac	cacgtaccaa	cgggcccctc	cgtgggaatg	tactccccag	2400

gttattcaga	gcacattcca	ctgggaaaat	tctataacaa	ccgagcacat	tccaactacc	2460
gggctggcat	gatcatagac	aacggagtca	aaaccaccga	ggcctctgcc	aaggacaagc	2520
ggccgttcct	ctcaatcatc	tctgccagat	acagccctca	ccaggacgcc	gacccgctga	2580
agccccggga	gccggccatc	atcagacact	tcattgccta	caagaaccag	gaccacgggg	2640
cctggctgcg	cggcggggat	gtgtggctgg	acagctgccg	gtttgctgac	aatggcattg	2700
gcctgaccct	ggccagtggt	ggaaccttcc	cgtatgacga	cggctccaag	caagagataa	2760
agaacagctt	gtttgttggc	gagagtggca	acgtggggac	ggaaatgatg	gacaatagga	2820
tctggggccc	tggcggcttg	gaccatagcg	gaaggaccct	ccctataggc	cagaattttc	2880
caattagagg	aattcagtta	tatgatggcc	ccatcaacat	ccaaaactgc	actttccgaa	2940
${\tt agtttgtggc}$	$\tt cctggagggc$	cggcacacca	gcgccctggc	cttccgcctg	aataatgcct	3000
ggcagagctg	ccccataac	aacgtgaccg	gcattgcctt	tgaggacgtt	ccgattactt	3060
ccagagtgtt	cttcggagag	${\tt cctgggccct}$	ggttcaacca	gctggacatg	gatggggata	3120
agacatctgt	gttccatgac	gtcgacggct	ccgtgtccga	gtaccctggc	tcctacctca	3180
cgaagaatga	caactggcat	tcgttggctt	caaaggcagc	ttccggccca	tctgggtgac	3240
actggacact	gaggatcaca	aagccaaaat	$\tt cttccaagtt$	gtgcccatcc	ctgtggtgaa	3300
gaagaagaag	ttgtgaggac	agctgccgcc	cggtgccacc	tcgtggtaga	ctatgacggt	3360
gactcttggc	agcagaccag	tgggggatgg	ctgggtcccc	cagcccctgc	cagcagctgc	3420
ctgggaaggc	cgtgtttcag	ccctgatggg	ccaagggaag	gctatcagag	accctggtgc	3480
tgccacctgc	ccctactcaa	gtgtctacct	ggagcccctg	gggcggtgct	ggccaatgct	3540
ggaaacattc	actttcctgc					3560
⟨210⟩ 43 ·			•			
<211> 234	0		•			
<212> DNA						•
<213> hom	o sapiens					
<400> 43						
gatagcgccg	ggcagaggga	cccggctacc	ctggacagcg	catcgccgcc	cgcccgggtc	60
gccgcgccac	agccgctgcg	gatcatggaa	catctaaagg	cctttgatga	tgaaatcaat	120
gcttttttgg	acaatatgtt	tggaccgcga	gattctcgag	tcagagggtg	gttcacgttg	180
gactcttacc	ttcctacctt	ttttcttact	gtcatgtatc	tgctctcaat	atggctgggt	240
aacaagtata	tgaagaacag	acctgctctt	tctctcaggg	gtatcctcac	cttgtataat	300
cttggaatca	cacttctctc	cgcgtacatg	ctggcagagc	tcattctctc	cacttgggaa	360 -
ggaggctaca	acttacagtg	tcaagatctt	accagcgcag	gggaagctga	catccgggta	420
gccaaggtgc	tttggtggta	ctatttctcc	aaatcagtag	agttcctgga	cacaattttc	480
ttcgttttgc	ggaaaaaaac	gagtcagatt	acttttcttc	atgtatatca	tcatgcttct	540
atgtttaaca	tctggtggtg	tgtcttgaac	tggatacctt	gtggacaaag	tttctttgga	600
ccaacactga	acagttttgt	ccacattctt	atgtactcct	actatggact	ttctgtgttt	660
ccatctatgc	acaagtatct	ttggtggaag	aaatatctca	cacaggetea	gctggtgcag	720

ttcgtgctca ccatcacgca cac	catgage geegtegtga	aaccgtgtgg	cttccccttc	780
ggttgtctca tcttccagtc atc	ttatatg ctaacgttag	tcatcctctt	cttaaatttt	840
tatgttcaga cataccgaaa aaag	gccaatg aagaaagata	tgcaagagcc	acctgcaggg	900
aaagaagtga agaatggttt ttc	caaagcc tacttcactg	cagcaaatgg	agtgatgaac	960
aagaaagcac aataaaaatg agt	aacagaa aaagcacata	tactagccta	acagat tggc	1020
tigitttaaa gcaaagacig aat	tgaaggt tacatgtttt	aggataaact	aatttcttt	1080
gagticataa atcattigta ccc	agaatgt attaatatat	tgctattagg	ttaatcigit	.1140
aactgaatgc tttgatcagc att	gaggtga tgctcacctc	cgaggacctc	agaactggtg	1200
cagettetet eteceteet eec	acagact gaacctttcg	ccagaagctg	tccttataac	1260
gccttatacg catacacagc cag	gaaacgt ggagcattgt	ttctcacaga	gagtetecaa	1320
ataaaaaggg titigiicag att	aaaatgt ttacaacaaa	atgttaatta	tattctaaat	1380
acagggtatg tictaatcta tat	taagcaa taatgccagt	gcataatcat	tccatttgtt	1440
cctttagcaa tcaaccccag aaa	atattaa aatgggatca	tacacagaag	atagaaaaat	1500
ctagcaaaac ttctctttct gta	agccaga gtcttgtcta	tcagattccc	acaaccactc	1560
ctgattctaa atttagtgat atg	gtaatga aattggtatt	tattttaaat	attagttatt	1620
ctaaggagaa aaaaatgctt ctg	caagatt ttcataattc	aggggctgtg	gataggattg	1680
ttcctctgtt tccctaatca ttc	atctgtt catgtctccc	tcttgtgcca	gtcagcctag	1740
gttatacaga tgccatgctc cac	accacga gcagtgtaca	aatctggctg	cccgtttact	1800
ttctgagcaa gcactggagt cca	ctccgac cttttcttt	gaacatgcat	gctgctggaa	1860
tatgtataaa tcagaactag cag	gaagtagc agagtgatgg	gagcaaaata	ggcactgaat	1920
tegteaacte tittigiga gee	tactigt gaatattacc	tcagatacct	gttgtcactc	1980
ttcacaggit atttaagitc tig	gaagctgg gaggaaaaag	atggagtagc	ttggaaagat	2040
tccagcactg agccgtgagc cgg	gtcatgag ccacgataaa	aaatgccagt	ttggcaaact	2100
cagcactcct gttccctgct cag	gtatatg cgatctctac	tgagaagcaa	gcacaaaagt	2160
agaccaaagt attaatgagt att	ttcctttc tccataagtg	caggactgtt	actcactact	2220
aaactctacc aagaatggaa acc	aagaata ttttctgaag	attttttga	agattaattt	2280
ataccctata aaataaaact tgi	tagette gatgaagtea	aaaaaaaaaa	aaaaaaaaaa	2340
<210> 44				
<211> 7475				
<212> DNA				
<213≻ homo sapiens				
<400> 44				
acttcagacg ccgctgatcc ggg	gaggagct ggggtgagcc	gcggcggccg	tctctcccac	60
ccgcagcagc atcctctctg ccc	cttctctg ccaccccggg	gagagccggg	agctgcctct	120
ttacagette cacgagecag ggg	gtgcaggc agctgccccc	aggaagtttg	ggcttctgcg	180
tagittaggg gigccigcga gca	gcccaga gggcgagggg	ccgagggcga	tgttgggcgc	240
cgcgcgggc tgggggcgcc cap	gaagacgt gcgagtgtcc	gcggtcctgc	tgctgtctcc	300

agtaccetee geatececca agtgatggga acaagggeee geecaggeag eegetgtege 360 cgcaccgccc cctcgctcgc tctctgcgcg cggagtcacc cagtcacact cccggcaccc 420 cgagcccttc ctccggagct gctgcttcta ctttggctgc tatcgccgcc gccgcgggtg 480 gcccgctgct gactgggctc gccgggagac ggagaagcac tttttggccc tccctcagca 540 gctctcacac cccaactttg ccgccgccgc cgcgcctgcc ctcgcagcgg cgctcggccg 600 cacattgtgg gggcgcacgc cgggaggctc cgcaagaccg tggaggcagg aaacggcact 660 actgcgctic tgcctcggct ctitgttgtt cgctttggat ggttcttgaa agtgtctgag . 720 cctcctcgga aatcctgggg ccggagaaga caaaccttgg aattcttcct ctgcaaaagt 780 ctctgagata ctgacaagcg tccggaaagg tcgacgagta attgccctga aaactcttgg 840 ctaatigacc cacgitgctt atattaagcc titgigigig gigigiggct tcatacattt 900 ggggacccta tttccactcc ctcctcttgg catgagactg tatacaggat ccacccgagg 960 acaatgattg cggagcccgc tcacttttac ctgtttggat taatatgtct ctgttcaggc 1020 tcccgtcttc gtcaggaaga ttttccacct cgcattgttg aacacccttc agacctgatt 1080 gtctcaaaag gagaacctgc aactttgaac tgcaaagctg aaggccgccc cacacccact 1140 attgaatggt acaaaggggg agagagagtg gagacagaca aagatgaccc tcgctcacac 1200 cgaatgttgc tgccgagtgg atcittatti ticitacgta tagtacatgg acggaaaagt 1260 agacctgatg aaggagteta tgtetgtgta geaaggaatt acettggaga ggetgtgage 1320 cacaatgcat cgctggaagt agccatactt cgggatgact tcagacaaaa cccttcggat 1380 gtcatggttg cagtaggaga gcctgcagta atggaatgcc aacctccacg aggccatcct 1440 gagcccacca tttcatggaa gaaagatggc tctccactgg atgataaaga tgaaagaata 1500 actatacgag gaggaaaget catgateact tacaccegta aaagtgacge tggcaaatat 1560 gtttgtgttg gtaccaatat ggttggggaa cgtgagagtg aagtagccga gctgactgtc 1620 ttagagagac catcatttgt gaagagaccc agtaacttgg cagtaactgt ggatgacagt 1680 gcagaattta aatgtgaggc ccgaggtgac cctgtaccta cagtacgatg gaggaaagat 1740 gatggagagc tgcccaaatc cagatatgaa atccgagatg atcatacctt gaaaattagg 1800 aaggtgacag ctggtgacat gggttcatac acttgtgttg cagaaaatat ggtgggcaaa 1860 gctgaagcat ctgctactct gactgttcaa gaacctccac attitgttgt gaaaccccgt 1920 gaccaggitg tigctitigg acggactgia actiticagi gigaagcaac cggaaatcci 1980 caaccagcta ttttctggag gagagaaggg agtcagaatc tacttttctc atatcaacca 2040 ccacagical ccagccgait ticagicic cagactggcg accicacaat tactaatgic 2100 cagcgatcig atgitiggita tiacatcigc cagactitaa atgitigcigg aagcatcatc 2160 acaaaggcat attiggaagt tacagatgtg attgcagatc ggcctcccc agttattcga 2220 caaggiccig igaatcagac igiagccgig gaiggcacti icgiccicag cigigiggcc 2280 acaggcagic cagigcccac caticigigg agaaaggaig gagiccicgi ticaacccaa 2340 gactetegaa teaaacagtt ggagaatgga gtactgeaga teegatatge taagetgggt 2400 gatactggic ggtacacctg cattgcatca acccccagtg gtgaagcaac atggagtgct 2460 tacattgaag ttcaagaatt tggagttcca gttcagcctc caagacctac tgacccaaat 2520

ttaatcccta	gtgccccatc	aaaacctgaa	gtgacagatg	tcagcagaaa	tacagtcaca	2580
ttatcgtggc	aaccaaattt	gaattcagga	gcaactccaa	catcttatat	tatagaagcc	2640
ttcagccatg	catctggtag	${\tt cagctggcag}$	accgtagcag	agaatgtgaa	aacagaaaca	2700
tctgccatta	aaggactcaa	acctaatgca	atttaccttt	tccttgtgag	ggcagctaat	2760
gcatatggaa	ttagtgatcc	aagccaaata	tcagatccag	tgaaaacaca	agatgtccta	2820
ccaacaagtc	agggggtgga	ccacaagcag	gtccagagag	agctgggaaa	tgctgttctg	2880
cacctccaca	acccaccgt	$\tt cctttcttcc$	tcttccatcg	aagtgcactg	gacagtagat .	2940
caacagtctc	agtatataca	aggatataaa	attctctatc	ggccatctgg	agccaaccac	3000
ggagaatcag	actggttagt	ttttgaagtg	aggacgccag	ccaaaaacag	tgtggtaatc	3060
cctgatctca	gaaagggagt	caactatgaa	attaaggctc	gcccttttt	taatgaattt	3120
caaggagcag	atagtgaaat	${\tt caagtttgcc}$	aaaaccctgg	aagaagcacc	cagtgcccca	3180
ccccaaggtg	taactgtatc	caagaatgat	ggaaacggaa	ctgcaattct	agttagttgg	3240
cagccacctc	cagaagacac	tcaaaatgga	atggtccaag	agtataaggt	ttggtgtctg	3300
ggcaatgaaa	ctcgatacca	catcaacaaa	acagtggatg	gttccacctt	ttccgtggtc	3360
attccctttc	ttgttcctgg	aatccgatac	agtgtggaag	tggcagccag	cactggggct	3420
gggtctgggg	taaagagtga	gcctcagttc	atccagctgg	atgcccatgg	aaaccctgtg	3480
tcacctgagg	accaagtcag	cctcgctcag	cagatttcag	atgtggtgaa	gcagccggcc	3540
ttcatagcag	gtattggagc	agcctgttgg	atcatcctca	tggtcttcag	catctggctt	3600
tatcgacacc	gcaagaagag	aaacggactt	actagtacct	acgcgggtat	cagaaaagtc	3660
ccgtctttta	ccttcacacc	aacagtaact	taccagagag	gaggcgaagc	tgtcagcagt	3720
ggagggaggc	ctggacttct	caacatcagt	gaacctgccg	cgcagccatg	gctggcagac	3780
		caaccacaat				3840
aatggaaaca	gcgacagcaa	cctcactacc	tacagtcgcc	cagctgattg	tatagcaaat	3900
tataacaacc	aactggataa	caaacaaaca	aatctgatgc	tccctgagtc	aactgtttat	3960
ggtgatgtgg	accttagtaa	caaaatcaat	gagatgaaaa	ccttcaatag	cccaaatctg	4020
		tccatcaggg				4080
atccagtcaa	acctcagcaa	caacatgaac	aatggcagcg	gggactctgg	cgagaagcac	4140
tggaaaccac	tgggacagca	gaaacaagaa	gtggcaccag	ttcagtacaa	catcgtggag	4200
caaaacaagc	tgaacaaaga	ttatcgagca	aatgacacag	ttcctccaac	tatcccatac	4260
aaccaatcat	acgaccagaa	cacaggagga	tcctacaaca	gctcagaccg	gggcagtagt	4320
acatctggga	gtcaggggca	caagaaaggg	gcaagaacac	ccaaggtacc	aaaacagggt	4380
ggcatgaact	gggcagacct	gcttcctcct	ccccagcac	atcctcctcc	acacagcaat	4440
agcgaagagt	acaacatttc	tgtagatgaa	agctatgacc	aagaaatgcc	atgtcccgtg	4500
ccaccagcaa	ggatgtattt	gcaacaagat	gaattagaag	aggaggaaga	tgaacgaggc	4560
cccactcccc	ctgttcgggg	agcagcttct	tctccagctg	ccgtgtccta	tagccatcag	4620
tccactgcca	ctctgactcc	ctcccacag	gaagaactcc	agcccatgtt	acaggattgt	4680
ccagaggaga	ctggccacat	gcagcaccag	cccgacagga	gacggcagcc	tgtgagtcct	4740

cctccaccac	cacggccgat	ctccctcca	catacctatg	gctacatttc	aggacccctg	4800
gtctcagata	tggatacgga	tgcgccagaa	gaggaagaag	acgaagccga	catggaggta	4860
gccaagatgc	aaaccagaag	gcttttgtta	cgtgggcttg	agcagacacc	tgcctccagt	4920
gttggggacc	tggagagctc	tgtcacgggg	tccatgatca	acggctgggg	ctcagcctca	4980
gaggaggaca	acatttccag	cggacgctcc	agtgttagtt	cttcggacgg	ctcctttttc	5040
actgatgctg	actttgccca	ggcagtcgca	gcagcggcag	$a \verb gtatgctgg $	tctgaaagta	5100
gcacgacggc	aaatgcagga	tgctgctggc	cgtcgacatt	ttcatgcgtc	tcagtgccct	5160
aggcccacaa	gtcccgtgtc	tacagacagc	aacatgagtg	ccgccgtaat	gcagaaaaacc	5220
agaccagcca	agaaac t gaa	acaccagcca	ggacatctgc	gcagagaaac	ctacacagat	5280
gatcttccac	cacctcctgt	gccgccacct	gctataaagt	${\tt cacctactgc}$	ccaatccaag	5340
acacagctgg	aagtacgacc	tgtagtggtg	ccaaaactcc	cttctatgga	tgcaagaaca	5400
gacagatcat	cagacagaaa	aggaagcagt	tacaagggga	gagaagtgtt	ggatggaaga	5460
caggitgitg	acatgcgaac	aaatccaggt	gatcccagag	aagcacagga	acagcaaaat	5520
gacgggaaag	gacgtggaaa	caaggcagca	aaacgagacc	ttccaccagc	aaagactcat	5580
ctcatccaag	aggatattct	accttattgt	agacctactt	ttccaacatc	aaataatccc	5640
agagatccca	gttcctcaag	ctcaatgtca	tcaagaggat	caggaagcag	acaaagagaa	5700
caagcaaatg	taggtcgaag	aaatattgca	gaaatgcagg	tacttggagg	atatgaaaga	5760
	•	attagaggaa				5820
tgagatctaa	tgtgaaaatc	atcactcaag	atgcctcctg	tcagatgaca	catgacgcca	5880
gataaaatgt	tcagtgcaat	cagagtgtac	aaattgtcgt	ttttattcct	cttattggga	5940
tatcatttta	aaaactttat	tgggttttta	ttgttgttgt	ttgatcccta	accctacaaa	6000
		ctgttggagc				6060
		cagtcatcag				6120
cattttgccg	ctgagatatg	gcattgcact	gcttatatgc	caagctaatt	tatagcaaga	6180
		ttgatattca				6240
tctatagcca	actgctaatg	caaattaaaa	catatttcat	tttaacatga	tttcaaaatc	6300
		gctggaagaa			_	6360
		acattgtaaa				6420
		tcattgaagt		_		6480
		atctctggtt				6540
		atcatcaaaa			_	6600
		tgagtaagaa				6660
					tttgtttttg	6720
		ctctctctt			_	6780
		_			attgaaaaaa	6840
			-		atttggaata	6900
tttgaataat	gacagatggt	gaagtaacat	gcatacttta	ttgtgggcca	tgaaccaaat	6960

·					
ggttcttact tttcctggac t	taaagaaaa	aaagaggttt	aagtttgttg	tggccaatgt	7020
cgaaacctac aagatticct ta	aaaatctct	aatagaggca	ttacttgctt	tcaattgaca	7080
aatgatgccc tctgactagt ag	gatttctat	gatccttttt	tgtcatttta	tgaatatcat	7140
tgattttata attggtgcta t	ttgaagaaa	aaaatgtaca	tttattcata	gatagataag	7200
tatcaggict gaccccagig ga	aaaacaaag	ccaaacaaaa	ctgaaccaca	aaaaaaaagg	7260
ctggtgttca ccaaaaccaa a	cttgttcat	ttagataatt	tgaaaaagtt	ccatagaaaa	7320
ggcgtgcagt actaagggaa c	aatccatgt	gattaatgtt	ttcattatgt	tcatgtaaga	7380
agccccttat ttttagccat a	attttgcat	actgaaaatc	caataatcag	aaaagtaatt	7440
ttgtcacatt atttattaaa a	atgttctca	aatac .			7475
<210> 45					
<211> 1898		,	•		
<212> DNA					
<213≻ homo sapiens					
⟨400⟩ 45	•				
agcgcagtat ggcgggcggg g	cccgggagg	tgctcacact	gcagttggga	cattttgccg	60
gtttcgtggg cgcgcactgg t	ggaaccagc	aggatgctgc	gctgggccga	gcgaccgatt	120
ccaaggagcc cccgggagag c	tgtgcccg	acgtcctgta	tcgtacgggc	cggacgctgc	180
acggccagga gacctacacg c	cgcgactca	tcctcatgga	tctgaagggt	agtttgagct	240
ccctaaaaga ggaaggtgga c	tctacaggg	acaaacagtt	ggatgctgca	atagcatggc	300
aggggaagct caccacacac a	aagaggaac	tctatcccaa	gaacccttat	ctccaagact	360
ttctgagtgc agagggagtg c	tgagtagtg	atggtgtctg	gagggtcaaa	tccattccca	420
atggcaaagg ttcctcacca c	tccccaccg	ctacaactcc	aaaaccactt	atccctacag	480
aggccagcat cagggtctgg t	cagacttcc	tcagagtcca	tctccatccc	cggagcatct	540
gtatgattca gaagtacaac c	acgatgggg	aagcaggtcg	gctggaggct	tttggccaag	600
gggaaagtgt cctaaaggaa c	ccaagtacc	aggaagagc t	ggaggacagg	ctgcatttct	660
acgtggagga atgtgactac t	tgcagggct	tccagatcct	gtgtgacctg	cacgatggct	720
tctctggggt aggcgcgaag g	gcggcagagc	tgctacaaga	tgaatattca	gggcggggaa	780
taataacctg gggcctgcta c	ctggtccct	accatcgtgg	ggaggcccag	agaaacatct	840
atcgtctatt aaacacagct t	ttggtctcg	tgcacctgac	tgctcacagc	tctcttgtct	900
gccccttgtc cttgggtggg a	igcc t gggcc	tgcgacccga	gccacctgtc	agcttccctt	960
accigcatta igaigceaci c	etgcccttcc	actgcagtgc	${\tt catcctggct}$	acagccctgg	1020
acacagtcac tgttccttat c	gcctgtgtt	cctctccagt	ttccatggtt	catctggctg	1080
acatgctgag cttctgtggg a	aaaaggtgg	tgacagcagg	agcaatcatc	cctttcccct	1140
tggctccagg ccagtccctt c	ctgattccc	tggtgcagtt	tggaggagcc	accccatgga	1200
ccccactgtc tgcatgtggg g	gageettetg	gaacacgtig	ctttgcccag	tcagtggtgc	1260
tgaggggtat agacagagca t	gccacacaa	gccagctcac	cccagggaca	cctccaccct	1320
ctgcccttca tgcatgtacc a	actggggaag	aaatcttggc	tcagtattta	caacagcagc	1380

•					
agcctggagt catgagttct to	cccatctgc	tgctgactcc	ctgcagggtg	gctcctcctt	1440
accccacct cttctcaagc to	gcagtccac	cgggtatggt	tctggatggt	tccccaagg	1500
gagcagcagt ggagagcatc co	cagtgtttg	gggcactgtg	ttcctcttcg	tccctgcacc	1560
agaccetgga ageettggee ag	gagacctca	ccaaactcga	cttgcggcgc	tgggccagct	1620
tcatggatgc tggagtggag c	acgatgacg	tagcagagct	gctgcaggag	ctacaaagcc	1680
tggcccagtg ctaccagggt g	gtgacagcc	tcgtggacta	aagttcccag	tgtgggagaa	1740
aggagctagt ttgcaataaa a	acagctgga.	tgcaggagcc	cagtgtcttc	atgcagagga	.1800
gctcaatgtc gcgggactag c	tacaccaac	atatgcactt	tttacattta	gaaacactgt	1860
gattagacca cagaacaata a	atatgtgcc	atcagacc			1898
<210> 46					
⟨211⟩ 782 ·					
<212> DNA					
<213≯ homo sapiens					
<400> 46					
gggctccctg cctcgggctc t	caccctcct	ctcctgcagc	tccagctttg	tgctctgcct	60
ctgaggagac catggcccag t	atctgagta	ccctgctgct	cctgctggcc	accctagctg	120
tggccctggc ctggagcccc a	aggaggagg	ataggataat	cccgggtggc	atctataacg	180
cagaccicaa igaigagigg g	gtacagcgtg	cccttcactt	cgccatcagc	gagtataaca	240
aggccaccaa agatgactac t	acagacgtc	cgctgcgggt	actaagagcc	aggcaacaga	300
ccgttggggg ggtgaattac t	tcttcgacg	tagaggtggg	ccgcaccata	tgtaccaagt	360
cccagcccaa cttggacacc t	tgtgccttcc	atgaacagcc	agaactgcag	aagaaacagt	420
tgtgctcttt cgagatctac g	gaagttccct	gggagaacag	aaggtccctg	gtgaaatcca	480
ggtgtcaaga atcctaggga t	tctgtgccag	gccattcgca	ccagccacca	cccactccca	540
cccctgtag tgctcccacc c	ctggactgg	tggcccccac	cctgcgggag	gcctccccat	600
gtgcctgcgc caagagacag a	acagagaagg	$\tt ctgcaggagt$	${\tt cctttgttgc}$	tcagcagggc	660
gctctgccct ccctccttcc t	ttcttgcttc	taatagccct	ggtacatggt	acacacccc	720
ccacctcctg caattaaaca g	gtagcatcgc	ctccctctga	aaaaaaaaa	aaaaaaaaa	780
aa					782
⟨210⟩ 47			•		
<211> 1107					
<212> DNA					
<213> homo sapiens					
<400> 47					
ggcacgaggg gctggcggcc g	ggcgggagag	gcggccggcc	tggactggcc	cgagagggat	60
cccggttccc agaacagacc t	taggaggcgg	cctcgagggc	ggacggcagg	gagggccagc	120
atgccccgac tgctgcaccc c	cgccctgccg	ctgctcctgg	gcgccacgct	gaccttccgg	180

gcgctccggc gcgcgctctg tcgcctgccc ctacccgtgc acgtgcgcgc cgacccctg

240

cgcacctggc	gctggcacaa	cctgctcgtc	tccttcgctc	actccattgt	gtcggggatc	300
tgggcactgc	tgtgtgtatg	gcagactcct	gacatgttag	tggagattga	gacggcgtgg	360
tcactttctg	gctatttgct	cgtttgcttc	tctgcggggt	atttcatcca	cgatacggtg	420
gacatcgtgg	ctagcggaca	gacgcgagcc	tcttgggaat	accttgtcca	tcacgtcatg	480
gccatgggtg	ccttcttctc	cggcatcttt	tggagcagct	ttgtcggtgg	gggtgtctta	540
acactactgg	tggaagtcag	caacatcttc	ctcaccattc	gcatgatgat	gaaaatcagt	600
aatgcccagg	atcatctcct	ctaccgggtt	aacaagtatg	tgaacctggt	catgtacttt	. 660
ctcttccgcc	tggcccctca	ggcctacctc	acccatttct	tcttgcgtta	tgtgaaccag	720
aggaccctgg	gcaccttcct	gctgggtatc	ctgctcatgc	tggacgtgat	gatcataatc	780
tacttttccc	gcctcctccg	ctctgacttc	tgccctgagc	atgtccccaa	gaagcaacac	840
aaagacaagt	tcttgactga	${\tt gtgaggggca}$	${\tt cagagcctgg}$	gacaacaaaa	acggacaagg	900
ccagaaacag	cttcatatgg	acactgggac	ttagccccaa	gcctgggtgt	cctctgaggc	960
cagcctctcc	accttctgag	cctgcgccca	cactattgaa	aacactaatg	aaagtaaaaa	1020
aaaaaaaaa	aaaaaaaaa	aaaaaaaaa	aaaaaaaaa	aaaaaaaaa	aaaaaaaaa	1080
	aaaaaaaaa	aaaaaaa	١.			1107
<210> 48						
<211> 102	7		•			
<212> DNA						
<213> home	o sąpiens					
<400> 48				•		
aggcccgtgg	atctcatcga	agatggcggc	gcgatctgtg	tcgggcatta	ccagaagagt	60
cttcatgtgg	acagtctcag	ggacaccatg	tagagaattt	tggtctcgat	tcagaaaaga	120
gaaagagcca	gtggttgttg	agacagtaga	agagaaaaag	gaacctatcc	tagtgtgtcc	180
	agccgagcat					240
cgttaaagaa	gtttttggtt	catctcttcc	tagtaattgg	caagacatct	ccctggaaga	300
tagtcgtcta	aagttcaatc	ttctggctca	tttagctgat	gacttgggtc	atgtagtccc	360
taactccaga	ctccaccaga	tgtgcagggt	tagagatgtt	cttgatttct	ataatgtccc	420
tattcaagat	agatctaaat	ttgatgaact	cagtgccagt	aatctgcccc	ccaatttgaa	480
aatcacttgg	agttactaag	caattcggaa	gagaaacaca	ttgaaatcac	tgtctttccc	540
tgagcaaggg	ggctgctcat	tagatetttt	gatactttac	catgtgaaat	actaccagaa	600
ctgttctcta	aacccacttt	ttctgtagag	gaatgtatca	tcttttttt	tctcatatta	660
caaatggaca	aataacggac	tttctatttt	catatttgct	gaaaccattt	tttaaatgaa	720
attaggtcat	tatttatgaa	aagttttgag	agggcactgt	caacttgggt	ttaagacagg	780
aggacattgc	aagttcacac	ctttcataag	cataaagtag	ttgcaagaaa	gtattttcat	840
cctgttagga	ttcatatcta	agatagagtt	atgcattgca	catacacaaa	taaactttta	900
ttagatagat	acctataaaa	gaaacataaa	agtatgtitgt	gtattactga	cagttctaga	960
ttaatttctt	ttagaattaa	agtagatttg	ttaaagtgaa	aaaaaaaaaa	aaaaaaaaa	1020
						-

aaaaaaa				1027
<210> 49				
<211> 1923				
<212> DNA				
<213> homo sapiens			•	
<400> 49				
ctttcccgga ggctggcaga tgcgcgtggt g	gcggctgctg d	cggctccggg	cggctctgac	. 60
gctgctcggg gaggtccccc gccgcccggc c	ctcccggggt g	gtcccgggct	cgcgcaggac	120
gcagaagggc agtggagcca ggtgggagaa g	ggagaagcac g	gaagacgggg	tgaagtggag	180
acagctggag cacaagggcc cgtacttcgc a	accccatac g	gagccccttc	ccgacggagt	240
gcgtttcttc tatgaaggaa ggcctgtgag a	attgagcgtg g	gcagcggagg	aggtcgccac	300
tttttatggg aggatgttag atcatgaata c	cacaacaaag g	gaggttttcc	ggaagaactt	360
cttcaatgac tggcgaaagg aaatggcggt g	ggaagagagg g	gaagtcatca	agagcctgga	420
caagtgtgac ttcacggaga tccacagata c	ctttgtggac a	aaggccgcag	cccggaaagt	480
cctgagcagg gaggagaagc agaagctaaa a	agaagaggca g	gaaaaacttc	agcaagagtt	540
cggctactgt attitagatg gtcaccaaga a	aaaaataggc a	aacttcaaga	ttgagccgcc	600
tggcttgttc cgtggccgtg gcgaccatcc c	caagatgggg a	atgctgaaga	gaaggatcac	660
gccagaggat gtggttatca actgcagcag g	ggactcgaag a	atccccgagc	cgccggcggg	720
gcaccagtgg aaggaggtgc gctccgataa c	caccgtcacg i	tggctggcag	cttggaccga	780
gagegtteag aactecatea agtacateat g	gctgaaccct i	tgctcgaagc	tgaaggggga	840
gacagettgg cagaagtttg aaacageteg a	acgcctgcgg g	ggatttgtgg	acgagatccg	900
ctcccagtac cgggctgact ggaagtctcg g	ggaaatgaag a	acgagacagc	gggcggtggc	960
cctgtatttc atcgataagc tggcactgag a	agcaggaaat g	gagaaggagg	acggtgaggc	1020
ggccgacacc gtgggctgct gttccctccg c	cgtggagcac g	gtccagctgc	acccggaggc	1080
cgatggctgc caacacgtgg tggaatttga c	cttcctgggg a	aaggactgca	tccgctacta	1140
caacagagtg ccggtggaga agccggtgta c	caagaactta (cagctcttta	tggagaacaa	1200
ggaccccgg gacgacctct tcgacaggct g	gaccacgacc a	agcctgaaca	agcacctcca	1260
ggagctgatg gacgggctga cggccaaggt g	gttccggacc i	tacaacgcct	ccatcactct	1320
gcaggagcag ctgcgggccc tgacgcgcgc c	cgaggacagc a	atagcagcta	agatcttatc	1380
ctacaaccga gccaaccgag tcgtggccat t	tctctgcaac (catcagcgag	caacccccag	1440
tacgitcgag aagicgaigc agaaicicca g	gacgaagatc (caggcaaaga	aggagcaggt	1500
ggctgaggcc agggcagagc tgaggagggc g	gagggctgag (cacaaagccc	aaggggatgg	1560
caagtccagg agtgtcctgg agaagaagag g	gcggctcctg g	gagaagctgc	aggagcagct	1620
ggcgcagctg agtgtgcagg ccacggacaa g	ggaggagaac a	aagcaggtgg	ccctgggcac	1680
gtccaagctc aactacctgg accccaggat c	cagcattgcc 1	tggtgcaagc	ggttcagggt	1740
gccagtggag aagaictaca gcaaaacaca g	gcgggagagg i	ttcgcctggg	ctctcgccat	1800
ggcaggagaa gactttgaat tctaacgacg a	agccgtgttg a	aaacttcttt	tgtatgtgtg	1860

tgtgttttt	tcactattaa	agcagtactg	gggaattttg	tacaataaaa	aaaaaaaaa	1920
aaa						1923
<210> 50						
<211> 1794					•	
<212> DNA					•	
<213> homo	sapiens					
<400> 50						
cacatataat	aatagcaact	cctggtcgac	tgattgacca	cttgaaacct	ttcgtatttt	60
ccaagtgctg	gcaagcgctt	cctgcgcagg	ccgaggcgac	ctggagtttg	tgacgctgtg	120
atggtctaga	ggctggagat	t caagatctg	ggtgccatca	ttttctggtt	ctgttgatga	180
ccctcttcca-	ggttacatac	agcttacatc	ttgcatcctc	aagcgttttt	cttataaggc	240
taaaaattca	caaagcatat	atcaatgaat	caggaggatc	tagatccgga	tagtactaca	300
gatgtgggag	atgitacaaa	tactgaagaa	gaacttatta	$\tt gagaatgtga$	agaaatgtgg	360
aaagatatgg	aagaatgtca	gaataaatta	tcacttattg	gaactgaaac	actcaccgat	420
tcaaatgctc	agctatcatt	gttaattatg	caagtaaaat	gtttaaccgc	tgaactcagt	480
caatggcaga	aaaaaacacc	tgaaacaatt	${\tt cccttgactg}$	aagacgttct	cataacatta	540
ggaaaagaag	agttccaaaa	gctgagacaa	gatcttgaaa	tggtactgtc	cactaaggag	600
tcaaagaatg	aaaagttaaa	ggaagactta	gaaagggaac	aacggtggtt	ggatgaacag	660
caacagataa	tggaatctct	taatgtacta	cacagtgaat	tgaaaaataa	ggttgaaaca	720
ttttctgaat	caagaatctt	taatgaactg	aaaactaaaa	tgcttaatat	aaaagaatat	780
aaggagaaac	tcttgagtac	cttgggcgag	tttctagaag	accattttcc	tctgcctgat	840
agaagtgtta	aaaagaaaaa	gaaaaacatt	caagaatcat	ctgtaaacct	gataacactg	900
catgaaatgt	tagagattct	tataaataga	ttatttgatg	ttccacatga	tccatatgtc	960
aaaattagtg	attccttttg	gccaccttat	gttgagctgc	tgctgcgtaa	tggaattgcc	1020
ttgagacatc	cagaagatçc	aacccgaata	agattagaag	ctttccatca	gtaaaaggat	1080
gttttctttt	ttcacacagt	aaaaattctt	atcattcaag	gatattggaa	ccacaggact	1140
atttggataa	aaaacattat	ttgcaaatta	atgcgcatag	tacttttatt	gcaaaatggc	1200
atgtgctgcc	atctattatt	catttttaaa	tggtcatttc	ttattcagtg	agtgctttag	1260
tgttttaaac	tatatggata	agaatgcagg	tagataatat	tctaggcata	aaacatttaa	1320
tgtaccttac	ctcatgcaat	attctttgga	ttctttgttg	atttatgata	ttgctaatat	1380
aatattttct	taaaatatat	aacaatatct	tttatgcatt	tgagttccag	ctggtgcttc	1440
tttatattta	gaaattataa	tgggaaggtc	atttaattta	cagatggttt	taaaattgag	1500
gtaatatctg	aggtggcata	atttaaaaat	atttagcaaa	tttgtttcat	atatactgtc	1560
ttatttctag	atttgtttaa	aattggaata	tgaaaaacta	atggataaag	ctagcataaa	1620
attgatattt	tagttigtat	tattaatata	tcatgttacc	ttatatatta	atctactctt	1680
gattctgcta	attattacca	acaaaattgt	attcatgaca	ttttattaat	cctctgtgaa	1740
ttttctgtaa	ataaaattat	ttctgaaaat	ctctaaaaaa	aaaaaaaaaa	aaaa	1794

51

3205

<210>

<211>

72/271

<212> DNA <213> homo sapiens **<400>** 51 aaaggggcaa gagctgagcg gaacaccggc ccgccgtcgc ggcagctgct tcacccctct 60 ctctgcagcc atggggctcc ctcgtggacc tctcgcgtct ctcctccttc tccaggtttg 120 ctggctgcag tgcgcggcct ccgagccgtg ccgggcggtc ttcagggagg ctgaagtgac 180 cttggaggcg ggaggcgcgg agcaggagcc cggccaggcg ctggggaaag tattcatggg 240 ctgccctggg caagagccag ctctgtttag cactgataat gatgacttca ctgtgcggaa 300 tggcgagaca gtccaggaaa gaaggtcact gaaggaaagg aatccattga agatcttccc 360 atccaaacgt atcttacgaa gacacaagag agattgggtg gttgctccaa tatctgtccc 420 tgaaaatggc aagggtccct tcccccagag actgaatcag ctcaagtcta ataaagatag 480 agacaccaag attttctaca gcatcacggg gccgggggca gacagccccc ctgagggtgt 540 cttcgctgta gagaaggaga caggctggtt gttgttgaat aagccactgg accgggagga 600 gattgccaag tatgagctct ttggccacgc tgtgtcagag aatggtgcct cagtggagga 660 ccccatgaac atctccatca tcgtgaccga ccagaatgac cacaagccca agtttaccca 720 ggacaccttc cgagggagtg tcttagaggg agtcctacca ggtacttctg tgatgcaggt 780 gacagecacg gaigaggaig aigecateta cacetacaat ggggtggtig ettactecat ·840 ccatagccaa gaaccaaagg acccacacga cctcatgttc accattcacc ggagcacagg 900 caccatcage gteateteea gtggeetgga cegggaaaaa gteeetgagt acacactgae 960 catccaggcc acagacatgg atggggacgg ctccaccacc acggcagtgg cagtagtgga 1020 gatectigat gecaatgaca atgeteceat gtitgaeeee cagaagtaeg aggeecatgt 1080 gcctgagaat gcagtgggcc atgaggtgca gaggctgacg gtcactgatc tggacgcccc 1140 caacicacca gcgtggcgtg ccacctacct tatcatgggc ggtgacgacg gggaccattt 1200 taccatcacc acceaccity agageaacca gggeatecity acaaccagga agggitigga 1260 ttttgaggcc aaaaaccagc acaccctgta cgttgaagtg accaacgagg ccccttttgt 1320 gctgaagctc ccaacctcca cagccaccat agtggtccac gtggaggatg tgaatgaggc 1380 acctgtgttt gtcccaccct ccaaagtcgt tgaggtccag gagggcatcc ccactgggga 1440 gcctgtgtgt gtctacactg cagaagaccc tgacaaggag aatcaaaaga tcagctaccg 1500 catcctgaga gacccagcag ggtggctagc catggaccca gacagtgggc aggtcacagc 1560 tgtgggcacc ctcgaccgtg aggatgagca gtttgtgagg aacaacatct atgaagtcat 1620 ggtcttggcc atggacaatg gaagccctcc caccactggc acgggaaccc ttctgctaac 1680 actgattgat gicaatgacc atggcccagt ccctgagccc cgtcagatca ccatctgcaa 1740 ccaaagccct gtgcgccagg tgctgaacat cacggacaag gacctgtctc cccacacctc 1800 ccctttccag gcccagctca cagatgactc agacatctac tggacggcag aggtcaacga 1860 ggaaggigac acagiggici igicccigaa gaagiiccig aagcaggata caiaigacgi 1920

gcacctttct	ctgtctgacc	atggcaacaa	agagcagctg	acggtgatca	gggccactgt	1980
gtgcgactgc	catggccatg	tcgaaacctg	ccctggaccc	tggaagggag	gtttcatcct	2040
ccctgtgctg	ggggctgtcc	tggctctgct	gttcctcctg	ctggtgctgc	ttttgttggt	2100
gagaaagaag	cggaagatca	aggagcccct	cctactccca	gaagatgaca	cccgtgacaa	2160
cgtcttctac	tatggcgaag	aggggggtgg	cgaagaggac	caggactatg	acatcaccca	2220
gctccaccga	ggtctggagg	ccaggccgga	ggtggttctc	cgcaatgacg	tggcaccaac	2280
${\tt catcatcccg}$	acacccatgt	accgtcctcg	gccagccaac	ccagatgaaa	tcggcaactt	2340
tataattgag	aacctgaagg	cggctaacac	agaccccaca	gcccgccct	acgacaccct	2400
 cttggtgttc	gactatgagg	gcagcggctc	cgacgccgcg	tccctgagct	ccctcacctc	2460
ctccgcctcc	gaccaagacc	aagattacga	ttatctgaac	${\tt gagtggggca}$	gccgcttcaa	2520
gaagctggca	gacatgtacg	gtggcgggga	ggacgactag	$\verb"gcggcctgcc"$	tgcagggctg	2580
gggaccaaac	gtcaggccac	agag catctc	${\tt caaggggtct}$	${\tt cagttcccc}$	ttcagctgag	2640
gacttcggag	cttgtcagga	${\tt agtggccgta}$	$\tt gcaacttggc$	ggagacaggc	tatgagtctg	2700
acgitagagi	ggttgcttcc	ttagcctttc	aggatggagg	aatgtgggca	gtttgacttc	2760
agcactgaaa	acctctccac	${\tt ctgggccagg}$	gttgcctcag	aggccaagtt	tccagaagcc	2820
tcttacctgc	cgtaaaatgc	tcaaccctgt	gtcctgggcc	tgggcctgct	gtgactgacc	2880
tacagtggac	tttctctctg	gaatggaacc	ttcttaggcc	tcctggtgca	acttaatttt	2940
tttttttaat	gctatcttca	aaacgttaga	gaaagttctt	caaaagtgca	gcccagagct	3000
gctgggccca	ctggccgtcc	tgcatttctg	gtttccagac	cccaatgcct	cccattcgga	3060
tggatctctg	cgtttttata	${\tt ctgagtgtgc}$	ctaggttgcc	ccttattttt	tattttccct	3120
gttgcgttgc	tatagatgaa	${\tt gggtgaggac}$	aatcgtgtat	atgtactaga	actttttat	3180
taaagaaact	tttcccagaa	aaaaa				3205
<210> 52						
<211> 278	1					
<212> DNA						
<213> hom	o sapiens		•			
<400> 52						
atggatatgt	ttcctctcac	ctgggttttc	ttagccctct	acttttcaag	acaccaagtg	60
agaggccaac	cagacccacc	gtgcggaggt	cgtttgaatt	ccaaagatgc	tggctatatc	120
acctctcccg	gttaccccca	ggactacccc	tcccaccaga	actgcgagtg	gattgtttac	180
gcccccgaac	ccaaccagaa	gattgtcctc	aacttcaacc	ctcactttga	aatcgagaag	240
cacgactgca	agtatgactt	tatcgagatt	cgggatgggg	acagtgaatc	cgcagacctc	300
ctgggcaaac	actgtgggaa	catcgccccg	cccaccatca	tctcctcggg	ctccatgctc	360
tacatcaagt	tcacctccga	ctacgcccgg	cagggggcag	gcttctctct	gcgctacgag	420
atcttcaaga	caggctctga	agattgctca	aaaaacttca	caagccccaa	cgggaccatc	480
gaatctcctg	ggtttcctga	gaagtatcca	cacaacttgg	actgcacctt	taccatcctg	540
gccaaaccca	agatggagat	catcctgcag	ttcctgatct	ttgacctgga	gcatgaccct	600

ttgcaggtgg	gagaggggga	ctgcaagtac	gattggctgg	acatctggga	tggcattcca	660
				caccctctga		720
				cggtggccaa		780
				actttcagtg		840
ctgggcatgg	agtctggccg	gattgctaat	gaacagatca	gtgcctcatc	tacctactct	900
gatgggaggt	ggacccctca	acaaagccgg	ctccatggtg	atgacaatgg	ctggaccccc	960
aacttggatt	ccaacaagga	gtatctccag	gtggacctgc	gctttttaac	catgctcacg	1020
gccatcgcaa	cacagggagc	gatttccagg	gaaacacaga	atggctacta	cgtcaaatcc	1080
tacaagctgg	aagtcagcac	taatggagag	gactggatgg	tgtaccggca	tggcaaaaac	1140
cacaaggtat	ttcaagccaa	caacgatgca	actgaggtgg	ttctgaacaa	gctccacgct	1200
ccactgctga	caaggtttgt	tagaatccgc	cctcagacct	ggcactcagg	tatcgccctc	1260
cggctggagc	tcttcggctg	ccgggtcaca	gatgctccct	gctccaacat	gctggggatg	1320
ctctcaggcc	tcattgcaga	$\tt ctcccagatc$	tccgcctctt	ccacccagga	atacctctgg	1380
agccccagtg	cagcccgcct	ggtcagcagc	cgctcgggct	ggttccctcg	aatccctcag	1440
gcccagcccg	gtgaggagtg	gcttcaggta	gatctgggaa	cacccaagac	agtgaaaggt	1500
gtcatcatcc	agggagcccg	cggaggagac	agtatcactg	ctgtggaagc	cagagcattt	1560
gtgcgcaagt	tcaaagtctc	ctacagccta	aacggcaagg	actgggaata	cattcaggac	1620
cccaggaccc	agcagccaaa	gctgttcgaa	gggaacatgc	actatgacac	ccctgacatc	1680
cgaaggtttg	accccattcc	ggcacagtat	gtgcgggtat	acccggagag	gtggtcgccg	1740
gcggggattg	ggatgcggct	ggaggtgctg	ggctgtgact	ggacagactc	caagcccacg	1800
gtaaaaacgc	tgggacccac	tgtgaagagc	gaagagacaa	ccacccccta	cccaccgaa	1860
gaggaggcca	cagagtgtgg	ggagaactgc	agctttgagg	atgacaaaga	tttgcagctc	1920
ccttcgggat	tcaattgcaa	cttcgatttc	ctcgaggagc	cctgtggttg	gatgtatgac	1980
catgccaagt	ggctccggac	cacctgggcc	agcagctcca	gcccaaacga	ccggacgttt	2040
ccagatgaca	ggaatttctt	gcggctgcag	agtgacagcc	agagagaggg	ccagtatgcc	2100
cggctcatca	gccccctgt	ccacctgccc	cgaagcccgg	tgtgcatgga	gttccagtac	2160
caggccacgg	gcggccgcgg	ggtggcgctg	caggtggtgc	gggaagccag	ccaggagagc	2220
aagttgctgt	gggtcatccg	tgaggaccag	ggcggcgagt	ggaagcacgg	gcggatcatc	2280
ctgcccagct	acgacatgga	gtaccagatt	gtgttcgagg	gagtgatagg	gaaaggacgt	2340
tccggagaga	ttgccattga	tgacattcgg	ataagcactg	atgtcccact	ggagaactgc	2400
atggaaccca	tctcggcttt	tgcagtggac	atcccagaaa	tacatgagag	agaaggatat	2460
gaagatgaaa	ttgatgatga	atacgaggtg	gactggagca	attcttcttc	tgcaacctca	2520
gggtctggcg	cccctcgac	cgacaaagaa	aagagctggc	tgtacaccct	ggatcccatc	2580
ctcatcacca	tcatcgccat	gagctcactg	ggcgtcctcc	tgggggccac	ctgtgcaggc	2640
ctcctgctct	actgcacctg	ttcctactcg	ggcctgagct	cccgaagctg	caccacactg	2700
gagaactaca	acttcgagct	ctacgatggc	cttaagcaca	aggtcaagat	gaaccaccaa	2760
aagtgctgct	ccgaggcatg	a				2781

<210> 53	
<211> 1294	
<212> DNA	
<213≯ homo sapiens	
⟨400⟩ 53	
caaagccaca ggcaggtgca ggcgcagccg cggcgagagc gtatggagcc gagccgttag	60
cgcgcgccgt cggtgagtca gtccgtccgt ccgtccgtcc gtcggggcgc cgcagctccc	120
gccaggccca gcggccccgg cccctcgtct ccccgcaccc ggagccaccc ggtggagcgg	180
gccttgccgc ggcagccatg tccatgggcc tggagatcac gggcaccgcg ctggccgtgc	240
tgggctggct gggcaccatc gtgtgctgcg cgttgcccat gtggcgcgtg tcggccttca	300
tcggcagcaa catcatcacg tcgcagaaca tctgggaggg cctgtggatg aactgcgtgg	360
tgcagagcac cggccagatg cagtgcaagg tgtacgactc gctgctggca ctgccacagg	420
accttcaggc ggcccgcgcc ctcatcgtgg tggccatcct gctggccgcc ttcgggctgc	480
tagtggcgct ggtgggcgcc cagtgcacca actgcgtgca ggacgacacg gccaaggcca	540
agatcaccat cgtggcaggc gtgctgttcc ttctcgccgc cctgctcacc ctcgtgccgg	600
tgtcctggtc ggccaacacc attatccggg acttctacaa ccccgtggtg cccgaggcgc	660
agaagcgcga gatgggcgcg ggcctgtacg tgggctgggc	720
tggggggcgc gctgctctgc tgctcgtgtc ccccacgcga gaagaagtac acggccacca	780
aggicgicta ciccgcgccg cgciccaccg gcccgggagc cagccigggc acaggciacg	840
accgcaagga ctacgtctaa gggacagacg cagggagacc ccaccaccac caccaccacc	900
aacaccacca ccaccaccgc gagctggagc gcgcaccagg ccatccagcg tgcagccttg	960
cctcggaggc cagcccaccc ccagaagcca ggaagccccc gcgctggact ggggcagctt	1020
ccccagcagc cacggctttg cgggccgggc agtcgacttc ggggcccagg gaccaacctg	1080
catggactgt gaaacctcac ccttctggag cacggggcct gggtgaccgc caatacttga	1140
ccaccccgtc gagccccatc gggccgctgc ccccatgctc gcgctgggca gggaccggca	1200
gccctggaag gggcacttga tatttttcaa taaaagcctt tcgttttgca aaaaaaaaaa	1260
aaaaaaaaaa aaaaaaaaaaa aaaa	1294
<210> 54	
<211> 1712	
<212> DNA	
<213> homo sapiens	
<400> 54	•
ggcacgaggg gcagctgtcg gctggaagga actggtctgc tcacacttgc tggcttgcgc	60
atcaggactg gctttatctc ctgactcacg gtgcaaaggt gcactctgcg aacgttaagt	120
ccgtccccag cgcttggaat cctacggccc ccacagccgg atcccctcag ccttccaggt	180
cctcaactcc cgcggacgct gaacaatggc ctccatgggg ctacaggtaa tgggcatcgc	240
gctggccgtc ctgggctggc tggccgtcat gctgtgctgc gcgctgccca tgtggcgcgt	300

gacggccttc atcggcagca	acattgtcac	ctcgcagacc	atctgggagg	gcctatggat	360
gaactgcgtg gtgcagagca	ccggccagat	gcagtgcaag	gtgtacgact	cgctgctggc	420
actgccgcag gacctgcagg	cggcccgcgc	cctcgtcatc	atcagcatca	tcgtggctgc	480
tctgggcgtg ctgctgtccg	tggtgggggg	caagtgtacc	aactgcctgg	aggatgaaag	540
cgccaaggcc aagaccatga	tcgtggcggg	cgtggtgttc	ctgttggccg	gccttatggt	600
gatagtgccg gtgtcctgga	cggcccacaa	catcatccaa	gacttctaca	atccgctggt	660
ggcctccggg cagaagcggg	agatgggtgc	$\tt ctcgctctac$	gtcggctggg	ccgcctccgg	720
cctgctgctc cttggcgggg	ggctgctttg	${\tt ctgcaactgt}$	ccaccccgca	cagacaagcc	780
ttactccgcc aagtattctg	ctgccgctc	tgctgctgcc	agcaactacg	tgtaaggtgc	840
cacggctcca ctctgttcct	ctctgctttg	ttcttccctg	${\tt gactgagctc}$	agcgcaggct	900
gtgacccag gagggccctg	ccacgggcca	ctggctgctg	gggactgggg	actgggcaga	960
gactgagcca ggcaggaagg	cagcagcctt	${\tt cagcctctct}$	ggcccactcg	gacaacttcc	1020
caaggccgcc tcctgctagc	aagaacagag	tccaccctcc	tctggatatt	ggggagggac	1080
ggaagtgaca gggtgtggtg	gtggagtggg	${\tt gagctggctt}$	ctgctggcca	ggatggctta	1.140
accetgactt tgggatetge	ctgcatcggt	gttggccact	gtccccattt	acattttccc	1200
cactetgtet geetgeatet	cctctgttgc	gggtaggcct	tgatatcacc	tctgggactg	1260
tgccttgctc accgaaaccc	gcgcccagga	gtatggctga	ggccttgccc	acccacctgc	1320
ctgggaagtg cagagtggat	ggacgggttt	agaggggagg	ggcgaaggtg	ctgtaaacag	1380
gtttgggcag tggtggggga	gggggccaga	${\tt gaggcggctc}$	aggttgccca	gctctgtggc	1440
ctcaggactc tctgcctcac	ccgcttcagc	ccagggcccc	tggagactga	tcccctctga	1500
gtcctctgcc ccttccaagg	acactaatga	gcctgggagg	gtggcaggga	ggaggggaca	1560
gcttcaccct tggaagtcct	ggggttttc	ctcttccttc	tttgtggttt	ctgttttgta	1620
atttaagaag agctattcat	cactgtaatt	attattattt	tctacaataa	atgggacctg	1680
tgcacaggaa aaaaaaaaaa	aaaaaaaaa	aa			1712
<210> 55					
<211> 2820		•			
<212> DNA					
<213> homo sapiens					
<400> 55					
ggcgggttcg cgcccgaag	gctgagagct	ggcgctgctc	gtgccctgtg	tgccagacgg	60
cggagctccg cggccggacc	ccgcggcccc	gctttgctgc	cgactggagt	ttgggggaag	120
aaactctcct gcgccccaga	agatttcttc	ctcggcgaag	ggacagcgaa	agatgagggt	180
ggcaggaaga gaaggcgctt					240
ttcctctcca tcctagtggc					300
gcgccctgcg aggcggtgcg					360
atgcccaacc acctgcacca	cagcacgcag	gagaacgcca	tcctggccat	cgagcagtac	420
gaggagctgg tggacgtgaa	ctgcagcgcc	gtgctgcgct	tcttcttctg	tgccatgtac	480

- · · · ·

gcgcccattt	gcaccctgga	gttcctgcac	gaccctatca	agccgtgcaa	gtcggtgtgc	540
			atgaagatgt			600
${\tt agcctggcct}$	gcgacgagct	gcctgtctat	gaccgtggcg	tgtgcatttc	gcctgaagcc	660
atcgtcacgg	acctcccgga	ggatgttaag	tggatagaca	tcacaccaga	catgatggta	720
			cgcctaagcc			780
			agcaaaaact			840
			aatgaggtca			900
			cgaactcaag			960
				•	ttacgagtgg	1020
${\tt cgttcaagga}$	tgatgcttct	tgaaaattgc	ttagttgaaa	aatggagaga	tcagcttagt	1080
aaaagatcca	tacagtggga	agagaggctg	caggaacagc	ggagaacagt	tcaggacaag	1140
aagaaaacag	ccgggcgcac	cagtcgtagt	aatccccca	aaccaaaggg	aaagcctcct	1200
gctcccaaac	cagccagtcc	caagaagaac	attaaaacta	ggagtgccca	gaagagaaca	1260
aacccgaaaa	gagtgtgagc	taactagttt	ccaaagcgga	gacttccgac	ttccttacag	1320
gatgaggctg	ggcattgcct	gggacagcct	atgtaaggcc	atgtgcccct	tgccctaaca	1380
actcactgca	gtgctcttca	tagacacatc	ttgcagcatt	tttcttaagg	ctatgcttca	1440
gtttttcttt	gtaagccatc	acaagccata	gtggtaggtt	tgccctttgg	tacagaaggt	1500
gagttaaagc	tggtggaaaa	${\tt ggcttattgc}$	attgcattca.	gagtaacctg	tgtgcatact	1560
ctagaagagt	aggaaaata	atgcttgtta	caattcgacc	taatatgtgc	attgtaaaat	1620
aaatgccata	tttcaaacaa	aacacgtaat	ttttttacag	tatgttttat	taccttttga	1680
tatctgttgt	tgcaatgtta	gtgatgtttt	aaaatgtgat	gaaaatataa	tgtttttaag	1740
aaggaacagt	agtggaatga	atgttaaaag	atctttatgt	gtttatggtc	tgcagaagga	1800
tttttgtgat	gaaaggggat	tttttgaaaa	attagagaag	tagcatatgg	aaaattataa	1860
tgtgttttt	taccaatgac	ttcagtttct	gtttttagct	agaaacttaa	aaacaaaaat	1920
aataataaag	aaaaataaat	aaaaaggaga	ggcagacaat	gtctggattc	ctgttttttg	1980
gttacctgat	ttccatgatc	at gat gcttc	ttgtcaacac	cctcttaagc	agcaccagaa	2040
acagtgagtt	tgtctgtacc	attaggagtt	aggtactaat	tagttggcta	atgctcaagt	2100
attttatacc	cacaagagag	gtatgtcact	catcttactt	cccaggacat	ccaccctgag	2160
aataatttga	caagcttaaa	a a t g g c c t t c	atgtgagtgc	caaattttgt	ttttcttcat	2220
ttaaatattt	tctttgccta	aatacatgtg	agaggagtta	aatataaatg	tacagagagg	2280
aaagttgagt	tccacctctg	aaatgagaat	tacttgacag	ttgggatact	ttaatcagaa	2340
aaaaagaact	tatttgcagc	atttatcaa	caaatttcat	aattgtggac	aattggaggc	2400
atttatttta	aaaaacaatt	ttattggcct	tttgctaaca	cagtaagcat	gtattttata	2460
aggcattcaa	taaatgcaca	acgcccaaag	gaaataaaat	cctatctaat	cctactctcc	2520
actacacaga	ggtaatcact	attagtattt	tggcatatta	ttctccaggt	gtttgcttat	2580
gcacttataa	aatgatttga	acaaataaaa	ctaggaacct	gtatacatgt	gtttcataac	2640
ctgcctcctt	tgcttggccc	tttattgaga	taagttttcc	tgtcaagaaa	gcagaaacca	2700

tctcatttct aacagctgtg	ttatattcca	tagtatgcat	tactcaacaa	actgttgtgc	2760
tattggatac ttaggtggtt	tcttcactga	caatactgaa	taaacatctc	accggaattc	2820
<210> 56					
<211> 1858					
<212> DNA				•	
<213≻ homo sapiens					
<400> 56					
gctgcggccc cgcccctgg	ccgcgtggct	gcgcgtcctg	gctgttgccg	ataaagttgt	60
ttgacgccgg cccggcggcg	ggtcacgtga	gcggaaaatg	gcggccccgg	caggcggcgg	120
aggctccgcg gtgtcggtgc	tggccccgaa	cggccggcgc	cacacggtga	aggtgacgcc	180
gagcaccgtg ctgcttcagg	ttctggagga	cacgtgccgg	cggcaggact	tcaacccctg	240
tgaatatgat ctgaagtttc	agaggagcgt	gctcgacctt	tctctccagt	ggagatttgc	300
caacctgccc aacaatgcca	agctggagat	ggtgcccgct	tcccggagcc	gtgaggggcc	360
tgagaacatg gttcgcatcg	ctttgcagct	ggacgatggc	tcgaggttgc	aggactcttt	420
ctgttcaggc cagaccctct	gggagcttct	cagccatttt	ccacagatca	gggagtgcct	480
gcagcacccc ggcggggcca	ccccagtctg	${\tt cgtgtacacg}$	agggatgagg	tgacgggtga	540
agctgccctg cggggcacga	cgctgcagtc	gctgggcctg	accgggggca	gcgccaccat	. 600
caggitigic atgaagigct	acgaccccgt	gggcaagacc	ccaggaagcc	tgggctcgtc	660
agcgtcggct ggccaggcag	ccgccagcgc	tccacttccc	ttggaatctg	gggagctcag	720
ccgcggcgac ttgagccgtc	cggaggacgc	$\tt ggacacctca$	${\tt gggccctgct}$	gcgagcacac	780
tcaggagaag cagagcacaa	gggcacccgc	${\tt agctgcccc}$	tttgttcctt	tctcgggtgg	840
gggacagaga ctggggggcc	ctcctgggcc	cacgaggcct	ctgacatcat	cttcagctaa	900
gttgccgaag tccctctcca	gccctggagg	ccctccaag	ccaaagaagt	ccaagtcggg	960
ccaggatccc cagcaggagc	aggagcagga	gcgggagcgg	gatccccagc	aggagcagga	1020
gcgggagcgg cccgtggacc	gggagcccgt	ggaccgggag	ccggtggtgt	gccaccccga	1080
cctggaggag cggctgcagg	cctggccagc	ggagctgcct	gatgagttct	ttgagctgac	1140
ggtggacgac gtgagaagac	gcttggccca	gctcaagagt	gagcggaagc	gcctggaaga	1200
agccccttg gtgaccaagg	ccttcaggga	ggcgcagata	aaggagaagc	tggagcgcta	1260
cccaaaggtg gctctgaggg	tcctgttccc	cgaccgctac	gtcctacagg	gcttcttccg	1320
ccccagcgag acagtggggg	acttgcgaga	cttcgtgagg	agccacctgg	ggaaccccga	1380
gctgtcattt tacctgttca	tcacccctcc	aaaaacagtc	ctggacgacc	acacgcagac	1440
cctctttcag gcgaacctct	tcccggccgc	tctggtgcac	ttgggagccg	aggagccggc	1500
aggigictac ciggagccig	gcctgctgga	gcatgccatc	tccccatctg	cggccgacgt	1560
gctggtggcc aggtacatgt	ccagggccgc	cgggtcccct	tccccattgc	cagcccctga	1620
ccctgcacct aagtctgagc	cagctgctga	ggagggggcg	ctggtccccc	ctgagcccat	1680
cccagggacg gcccagcccg	tgaagaggag	cctgggcaag	gtgcccaagt	ggctgaagct	1740
gccggccagc aagaggtgag	agctgccagc	ctgaggtgcc	cactccgcca	gccacaggac	1800

cacctcctct	gccagcagga	ataaagactt	gtgcatccct	caaaaaaaaa	aaaaaaaa	1858
<210> 57						
<211> 493						•
<212> DNA						
<213> homo	sapiens					
<400> 57						
gccacttctc	ttcccttcat	tcttcgccag	gctctctgct	gactcaagtt	cttcagttca	60
cgatcttcta	gttgcagcga	tgagtgcacg	agtgagatca	agatccagag	gaagaggaga	120
tggtcaggag	gctcccgatg	tggttgcatt	cgtggctccc	ggtgaatctc	agcaagagga	180
accaccaact	gacaatcagg	atattgaacc	tggacaagag	agagaaggaa	cacctccgat	240
cgaagaacgt.	aaagtagaag	gtgattgcca	ggaaatggat	$\tt ctggaaaaga$	ctcggagtga	300
gcgtggagat	ggctctgatg	taaaagagaa	gactccacct	a a t c c t a a g c	atgctaagac	360
taaagaagca	ggagatgggc	agccataagt	taaaaagaag	acaagctgaa	gctacacaca	420
tggctgatgt	cacattgaaa	atgtgactga	aaatttgaaa	attctctcaa	taaagtttga	480
gttttctctg	aag					493
<210> 58						
<211> 2957	,				•	
<212> DNA	•				•	•
<213> homo	sapiens					
<400> 58						
gccagtcacc	ttcagtttct	ggagctggcc	gtcaacatgt	cctttcctaa	ggcgcccttg	60
aaacgattca	atgacccttc	tggttgtgca	ccatctccag	gtgcttatga	tgttaaaact	120
ttagaagtat	tgaaaggacc	agtatccttt	cagaaatcac	aaagatttaa	acaacaaaaa	180
gaatctaaac	aaaatcttaa	tgttgacaaa	gatactacct	tgcctgcttc	agctagaaaa	240
gttaagtctt	cggaatcaaa	gattcgtgtt	cttctacagg	aacgtggtgc	ccaggacagc	300
cggatccagg	atctggaaac	tgagttggaa	aagatggaag	caaggctaaa	tgctgcacta	360
agggaaaaaa	catctctctc	tgcaaataat	gctacactgg	aaaaacaact	tattgaattg	420
accaggacta	atgaactact	aaaatctaag	ttttctgaaa	atggtaacca	gaagaatttg	480
agaattctaa	gcttggagtt	gatgaaactt	agaaacaaaa	gagaaacaaa	gatgaggggt	540
atgatggcta	agcaagaagg	catggagatg	aagctgcagg	tcacccaaag	gagtctcgaa	600
gagtctcaag	$\tt ggaaaatagc$	ccaactggag	ggaaaacttg	tttcaataga	gaaagaaaag	660
attgatgaaa	aatctgaaac	agaaaaactc	ttggaataca	tcgaagaaat	tagttgtgct	720
tcagatcaag	tggaaaaata	caagctagat	attgcccagt	tagaagaaaa	tttgaaagag	780
aagaatgatg	aaattttaag	ccttaagcag	tctcttgagg	agaatattgt	tatattatct	840
aaacaagtag	aagatctaaa	tgtgaaatgt	cagctgcttg	aaaaagaaaa	agaagaccat	900
gtcaacagga	atagagaaca	caacgaaaat	ctaaatgcag	agatgcaaaa	c,t taaaaacag	960
aagtttattc	ttgaacaaca	ggaacgtgaa	aagcttcaac	aaaaagaatt	acaaattgat	1020

tcacttctgc	aacaagagaa	agaattatct	tcgagtcttc	atcagaagct	ctgttctttt	1080
caagaggaaa	tggttaaaga	gaagaatctg	tttgaggaag	aattaaagca	aacactggat	1140
gagcttgata	aattacagca	aaaggaggaa	caagctgaaa	ggctggtcaa	gcaattggaa	1200
gaggaagcaa	aatctagagc	tgaagaatta	aaactcctag	aagaaaagct	gaaagggaag	1260
${\tt gaggctgaac}$	tggagaaaag	tagtgctgct	catacccagg	ccaccctgct	tttgcaggaa	1320
aagtatgaca	$\tt gtatggtgca$	aagccttgaa	gatgttactg	ctcaatttga	aagctataaa	1380
gcgttaacag	ccagtgagat	agaagatett	aagctggaga	actcatcatt	acaggaaaaa	1440
gcggccaagg	ctgggaaaaa	tgcagaggat	gttcagcatc	agattttggc	aactgagagc	1500
tcaaatcaag	aatatgtaag	gatgetteta	gatctgcaga	ccaagtcagc	actaaaggaa	1560
acagaaatta	aagaaatcac	agtttcttt	cttcaaaaaa	taactgattt	gcagaaccaa	1620
ctcaagcaac	aggaggaaga	ctttagaaaa	cagctggaag	atgaagaagg	aagaaaagct	1680
gaaaaagaaa	atacaacagc	agaattaact	gaagaaatta	acaagtggcg	tctcctctat	1740
gaagaactat	ataataaaac	aaaacctttt	cagctacaac	tagatgcttt	tgaagtagaa	1800
aaacaggcat	tgttgaatga	acatggtgca	gctcaggaac	agctaaataa	aataagagat	1860
tcatatgcta	aattattggg	tcatcagaat	ttgaaacaaa	aaatcaagca	tgttgtgaag	1920
ttgaaagatg	aaaatagcca	actcaaatcg	gaagtatcaa	aactccgctg	tcagcttgct	1980
aaaaaaaac	aaagtgagac	aaaacttcaa	gaggaattga	at a a a gttct	aggtatcaaa	2040
cactttgatc	cttcaaaggc	ttttcatcat	gaaagtaaag	aaaattttgc	cctgaagacc	2100
ccattaaaag	aaggcaatac	aaactgttac	cgagctccta	tggagtgtca	agaatcatgg	2160
aagtaaacat	ctgagaaacc	tgttgaagat	tatttcattc	gtcttgttgt	tattgatgtt	2220
gctgttatta	tatttgacat	gggtatttta	taatgttgta	tttaatttta	actgccaatc	2280
cttaaatatg	tgaaaggaac	atttttacc	a a a g t g t c t t	ttgacatttt	attttttctt	2340
gcaaatacct	cctccctaat	gctcaccttt	at cacct cat	tctgaaccct	ttcgctggct	2400
ttccagctta	gaatgcatct	catcaactta	aaagtcagta	tcatattatt	atcctcctgt	2460
tctgaaacct	tagtttcaag	agtctaaacc	ccagattctt	cagcttgatc	ctggaggtct	2520
tttctagtct	gagcttcttt	agctaggcta	aaacacettg	gcttgttatt	gcctctactt	2580
tgattctgat	aatgctcact	tggtcctacc	tattatcctt	ctacttgtcc	agttcaaata	2640
agaaataagg	acaagcctaa	cttcatagaa	acctctctat	ttttaatcag	ttgtttaata	2700
atttacaggt	tcttaggctc	catcctgttt	gtatgaaatt	ataatctgtg	gattggcctt	2760
taagcctgca	ttcttaacaa	actcttcagt	taattcttag	atacactaaa	aatctgagaa	2820
actctacatg	taactatttc	ttcagagttt	gtcatatact	gcttgtcatc	tgcatgtcta	2880
ctcagcattt	gattaacatt	tgtgtaatat	gaaataaaat	tacacagtaa	gtcatttaac	2940
caaaaaaaaa	aaaaaaa					2957
/210> 50						

<210> 59

<211> 6399

<212> DNA

<213≻ homo sapiens

<400> 59

81/271

catcetteet gtettegeag aggagteete gegtgaaata agegggtttt gaaaacaaaa 60 aaaagaagga gtggaagagg gggccaggat ccaggcctcc atccccacag aagtgaagct 120 acagetggga ggtetectee caccecaace gteaccetgg gteecgactg eccaceteet 180 cctcctcccc ctcccccaa caacaacaac aacaacaact ccaagcacac cggccataag 240 agtgcgtgtg tccccaacat gaccgaacga agaagggacg agctctctga agagatcaac 300 aacttaagag agaaggtcat gaagcagtcg gaggagaaca acaacctgca gagccaggtg 360 cagaagcica cagaggagaa caccacctt cgagagcaag tggaacccac ccctgaggat 420 gaggatgatg acategaget eegeggtget geageagetg etgeeceaec ecetecaata 480 gaggaagagt gcccagaaga cctcccagag aagttcgatg gcaacccaga catgctggct 540 cctttcatgg cccagtgcca gatcttcatg gaaaagagca ccagggattt ctcagttgat 600 cgtgtccgtg tctgcttcgt gacaagcatg atgaccggcc gtgctgcccg ttgggcctca 660 gcaaagctgg agcgctccca ctacctgatg cacaactacc cagctttcat gatggaaatg 720 aagcatgtct ttgaagaccc tcagaggcga gaggttgcca aacgcaagat cagacgcctg 780 cgccaaggca tggggtctgt catcgactac tccaatgctt tccagatgat tgcccaggac 840 ctggattgga acgagcctgc gctgattgac cagtaccacg agggcctcag cgaccacatt 900 caggaggagc tctcccacct cgaggtcgcc aagtcgctgt ctgctctgat tgggcagtgc 960 attcacattg agagaaggct ggccagggct gctgcagctc gcaagccacg ctcgccaccc 1020 cgggcgctgg tgttgcctca cattgcaagc caccaccagg tagatccaac cgagccggtg 1080 ggaggtgccc gcatgcgcct gacgcaggaa gaaaaagaaa gacgcagaaa gctgaacctg 1140 tgcctctact gtggaacagg aggicactac gctgacaatt gtcctgccaa ggcctcaaag 1200 tettegeegg egggaaacte eeeggeeegg etgtagaggg acetteageg acegggeeag 1260 aaataataag gtccccacaa gatgatgcct catctccaca cttgcaagtg atgctccaga 1320 ttcatcttcc gggcagacac accetgttcg tccgagccat gatcgattct ggtgcttctg 1380 gcaacticat tgatcacgaa tatgttgctc aaaatggaat tcctctaaga atcaaggact 1440 ggccaatact tgtggaagca attgatgggc gccccatagc atcgggccca gttgtccacg 1500 aaactcacga cctgatagtt gacctgggag atcaccgaga ggtgctgtca tttgatgtga 1560 ctcagtctcc attcttccct gtcgtcctag gggttcgctg gctgagcaca catgatccca 1620 atatcacatg gagcactcga tctatcgtct ttgattctga atactgccgc taccactgcc 1680 ggatgtattc tccaatacca ccatcgctcc caccaccagc accacaaccg ccactctatt 1740 atccagtaga tggatacaga gittaccaac cagigaggia tiactaigic cagaaigigi 1800 acactccagt agatgagcac gtctacccag atcaccgcct ggttgaccct cacatagaaa 1860 tgatacctgg agcacacagt attcccagtg gacatgtgta ttcactgtcc gaacctgaaa 1920 tggcagctct tcgagatttt gtggcaagaa atgtaaaaga tgggctaatt actccaacga 1980 ttgcacctaa tggagcccaa gttctccagg tgaagagggg gtggaaactg caagtttctt 2040 atgatigccg agciccaaac aattitacia tecagaatea giateetege etatetatte 2100 caaatttaga agaccaagca cacctggcaa cgtacactga attcgtacct caaatacctg 2160

4080

4140

4200

4260

4320

4380

gataccaaac ataccccaca tatgccgcgt acccgaccta cccagtagga ttcgcctggt 2220 acceagtggg acgagacgga caaggaagat cactatatgt acctgtgatg atcacttgga 2280 atccacactg gtaccgccag cctccggtac cacagtaccc gccgccacag ccgccgcctc 2340 caccaccacc accgccgccg cctccatctt acagtaccct gtanatacct gtcatgtcct 2400 teaggatete tgeceteaaa atttatteet gtteagette teaateagtg aetgtgtget. 2460 aaattttagg ctactgtate tteaggeeac etgaggeaca teetetetga aaeggetatg 2520 gaaggitagg gccactcigg aciggcacac atcctaaagc accaaaagac citcaacatt 2580 ttctgagagc aacagagtat ttgccaataa atgatctctc atttttccac cttgactgcc 2640 ___aatctaacta_acaataatta_ataagtttac tttccagcca gtcctggaag tctgggtttt 2700 acctgccaaa acctccatca ccatctaaat tataggctgc caaatttgct gtttaacatt 2760 tacagagaag cigatacaaa cgcaggaaat gcigattict ttatggaggg ggagacgagg 2820 aggaggagga catgactttt cttgcggttt cggtaccctc tttttaaatc actggaggac 2880 tgaggcctta ttaaggaagc caaaattatc ggtgcagtgt ggaaaggctt ccgtgatcct 2940 ctcgctgcac ccttagaaac ttcaccgtct tcaaactcca tttccatggt tctgttaatt 3000 ctcaaggagc agcaactcga ctggttctcc caggagcagg aaaaaccctt gtgacatgaa 3060 acateteagg cetgaaaaga aagtgetete teagatggae tettgeatgt taagaetatg 3120 tcitcacate atggtgcaaa teacatgtae ecaatgacte eggetttgae acaacacett 3180 accatcatca tgccatgatg gcttccacaa agcattaaac ctggtaacca gagattactg 3240 gtggctccag cgttgttaga tgttcatgaa atgtgaccac ctctcaatca cctttgaggg 3300 ctaaagagta gcacatcaaa aggactccaa aatcccatac ccaactctta agagatttgt 3360 cctggtactt cagaaagaat tttcatgagt gttcttaatt ggctggaaaa gcaccagctg 3420 acgititgga agaatciate catgigicig eciccataig catetgggea titeatette 3480 agiccccica itagacigia gcattaggai gigiggagag aggagaaaig attiagcacc 3540 cagattcaca ctcctatgcc tggaaggggg acatctttga agaagaggaa ttagggctgt 3600 ggacactgic itgaggaigi ggaciiccii agigagcicc acaitaciig aiggiaacca 3660 cticaaaagg atcagaatcc acgtaatgaa aaaggteeet etagaggatg gagetgatgt 3720 gaagcigcca aiggaigaaa agccicagaa agcaacicaa aggacicaaa gcaacggaca 3780 acacaagagt tgtcttcagc ccagtgacac ctctgatgtc ccctggaagc tttgtgctaa 3840 cctgggactg cctgacticc tttagcctgg tcccttgcta ctaccttgaa ctgttttatc 3900 taacctctct ttttctgttt aattctttgc tactgccatt gaccctgctg caggatttgt 3960 gtcattttcc tgcctggttg ctgagactcc attttgctgc cacacacaga gatgtaagag 4020 -

gcaggcttta attgccaaag cacagtttga gcagtagaaa acaacatggt gtatatctca

aattgcctga catgaagagg agtctaacgg tgaagtttca cttttcatca gcatcatctt

tcacatgitc attatcatcy gctcttattc tttgcatgtt taaacacttt aaaatttttt

agtataatti tiagigigit tigaagiggi gactaggeti teaaaaacti eeattigaat

tacaaagcac tatccagttc ttattgttaa actaagtaaa aatgataagt aacatagtgt

aaaatattcc tttactgtga acttcttaca atgctgtgaa tgagaggctc ctcagaactg

gagcattigi ataataattc	atcctgttca	tcttcaattt	taacatcata	tataatttca	4440
attctatcaa ttgggccttt	aaaaatcata	taaaaggata	taaaatttga	aaagagaaac	4500
ctaattggct atttaatcca	aaacaacttt	ttttttcct	tcaatggaat	cagaaagctt	4560
gtcaatcact catgtgtttt	agagtaatta	cttttaaaat	ggtgcatttg	tgcttctgaa	4620
ctattttgaa gagtcacttc	tgtttacctc	aagtatcaat	tcatcctcca	tacatttgaa	4680
ttcaagttgt tttttgtcaa	atttacagtt	gtcaattgat	cttcaagctg	cagggtgcct	4740
agaaatgggc cgttgtctgt	agccctggca	tgtgcacacg	gacatttgcc	accactgcaa	4800
gcaaaagtct ggagaagttc	accaacgaca	agaacgatta	gggaaaatat	gctgctgtgg	4860
gttaacaact cagaaagtco	ctgatccaca	tttggctgtt	tactaaagct	tgtgattaac	4920
tttttggcag tgtgtactat	gctctattgc	tatatatgct	atctataaat	gtagatgtta	4980
aggataagta attctaaatt	tattattcta	tagttttgaa	gtttggttaa	gtttcctttc	5040
actcaattga tttattttgt	tgttaatcaa	atttatgtta	attggatcct	ttaaattttt	5100
tttggcattt tccaacaaaa	atggctttat	tcataagaaa	ggaaaaaaat	caatggaatt	5160
tgatatctaa agaagttaga	aagggagcaa	aataaaaaac	ataaaggaga	tagatgaatt	5220
agtaagcaaa tcagtagtcg	agtttttcaa	actggcaaaa	ttaattaatt	gacttttagc	5280
ccaaatttac attgttaatt	aaatcaagaa	ggaagaagat	ctaagagctc	ccattgatag	5340
gcaagcctag agagaactag	ctaaatttat	catgctagga	tattgaaaca	cagaaagttt	5400
acatacattt atgaagggto	aatttagttt	ggacagtgag	gtatttgtct	tagtggaaaa	5460
aaggagaatt agtctgatca	aatcgtgaag	taatacagtg	aacttgcagg	tgcacaaaat	5520
aagagggcca catctatatg	gtgcagtctg	gaattctgtt	taagtttgta	ggtacctctt	5580
ggacticiga attgatccag	ttgtcatcca	ccacagacat	ctcacatcag	atacagacag	5640
ttccaagatt gacaacagag	aacaacctgc	tggaaagacc	tgggcagaaa	tggagagccc	5700
tgcgggaacc atgctacatt	ttcatctaaa	gagagaatgc	acatctgatg	agactgaaag	5760
tictitgitg tittagatig	tagaatggta	ttgaattggt	ctgtggaaaa	ttgcattgct	5820
tttatttctt tgtgtaatca	agtttaagta	ataggggata	tataatcata	agcattttag	5880
ggtgggaggg actattaagt	aattttaagt	gggtggggtt	atttagaatg	ttagaataat	5940
attatgtatt agatatcgct	ataagtggac	atgcgtactt	acttgtaacc	ctttacccta	6000
taattgctat ccttaaagat	ttcaaataaa	ctcggaggga	actgcaggga	gaccaactta	6060
tttagagcga attggacatg	gataaaaacc	ccagtgggag	aaagttcaaa	ggtgattaga	6120
ttaataattt aatagaggat	gagtgacctc	tgataaatta	ctgctagaat	gaacttgtca	6180
atgatggatg gtaaatttto	atggaagtta	taaaagtgat	aaataaaaac	ccttgctttt	6240
acccctgtca gtagccctco	tcctaccact	gaaccccatt	gcccctaccc	ctccttctaa	6300
ctttattgct gtattctctt	cactctatat	ttctctctat	ttgctaatat	tgcattgctg	6360
ttacaataaa aattcaataa	agatttagtg	gttaagtgc			6399
<210> 60					

<211> 811

<212> DNA

<213> homo sapiens	
<400> 60	
catecetetg getecagage teagageeae ecacageege agecatgetg tgeeteetge	60
tcaccctggg cgtggccctg gtctgtggtg tcccggccat ggacatcccc cagaccaagc	120
aggacctgga gctcccaaag ttggcaggga cctggcactc catggccatg gcgaccaaca	180
acatetecet catggegaca etgaaggeee etetgagggt ecacateace teaetgttge	240
ccaccccga ggacaacctg gagatcgttc tgcacagatg ggagaacaac agctgtgttg	300
agaagaaggt ccttggagag aagactggga atccaaagaa gttcaagatc aactatacgg	360
tggcgaacga ggccacgctg ctcgatactg actacgacaa tttcctgttt ctctgcctac	420
aggacaccac caccccatc cagagcatga tgtgccagta cctggccaga gtcctggtgg	480
aggacgatga gatcatgcag ggattcatca gggctttcag gcccctgccc aggcacctat	540
ggtacttgct ggacttgaaa cagatggaag agccgtgccg tttctagctc acctccgcct	600
ccaggaagac cagactccca cccttccaca cctccagagc agtgggactt cctcctgccc	660
titcaaagaa taaccacage teagaagaeg atgaegtggt catetgtgte gecateeet	720
tcctgctgca cacctgcacc attgccatgg ggaggctgct ccctgggggc agagtctctg	780
gcagaggita tiaataaacc citggagcat g	811
<210> 61	
<211> 1685	
<212> DNA	
<213> homo sapiens	
<400> 61	
gtcaaaggaa gttagtacat taaacaaatg gtggtaggag ggaggatttg gcccaactgg	60
ctccaaccta tctggtcaac acgtatgttg ggtagaacag aggtggagaa aagcctagat	120
cagggatgta tacgcttcct tggggcagac gcagcctggc cctgcggagc gatttcaagc	180
ctcgttcacg aacatggcca aggacactgc cagcctcttc attcccctgt gtggatgctc	240
caactccaaa agtggaacca cagggcaaat gaatgtcggc acgtgtcggt atggcagcct	300
cgctcttcga cagctggtgt gggggttacc acctggggct agctggcctc atcttcgtta	360
gcactgagac tggtctacca gttgcacaga ttcagatttg aaaatctcag gtgcaaatcc	420
caagtggcga tggcatgtaa ccacatcaaa ctcaacatct gcacctaact cccaccttct	480
ttctctggga aatcttcctg gacatgccca gatggactca ggagcccatc acctgtaaat	540
ccccacactg cagccctgcc acttgcttgt ctgcatgtgt gggtccgctg gaccactttg	600
gtgtatcttt gagccccttg agtgaaaaaa tgctgcctgg ctggctccct gattagacat	660
ccaacataat gaggactaac accaatacaa acacttaaga gatgacatat cgccctagct	720
	120
ggatctacta cagggaaggg aagagggtgc tgggtccagg caggctgagt gtctcatgtc	780
ggatctacta cagggaaggg aagagggtgc tgggtccagg caggctgagt gtctcatgtc ttaatgcttc tctgcccaat ctatttccgg ctggatgtgg agtctgaagg cctggcaccc	
	780

ggaagtaaac	cggatgggat	aagaatggct	tgctgtggac	cacaggcacc	gcaggataac	1020
cattcctcag	aactcctcgt	actgctctag	tgcttggagg	tccgtgtatt	acctcagcta	1080
ttccaaccgc	accaaccacg	ggagccacgt	gtctacgtct	gacagataaa	gatgctgagt	1140
ttagagtctg	caaggcttga	caaccacaga	tcagggacag	gagctgaggt	ctcctgacct	1200
ggagcccagg	gccacccgga	gctgcaagaa	acctgcactc	acaactgcct	cctattttaa	1260
aatgctgagt	cgatcccaca	ggtggcaaac	cagttctggg	cttcaattta	caagcagtca	1320
gaaaagctgg	gttgaaatcg	ccactgtcct	tctatgtggc	tgatgaggaa	ggatgacggt	1380
gcccaccgct	ccatctctcc	agctgacccc	aagctggcac	tcacgggtgg	gcaggctcag	1440
acaggcccag	ctccaccaag	<u>tgcacttgaa</u>	gccggaatgc	aagacatccg	atggtatact	1500
tactcgaacc	cgtccttttc	acaacagccg	cgggatccgc	tttctttggc	tgactgctca	1560
gagtcttccc	ttttcctgtg	accccattag	acgccatggg	${\tt gggctttta}$	cccttgagct	1620
gttgaaataa	acatataaga	acattaaaaa	taaacacaaa	gtcaaacaaa	aaaaaaaaa	1680
aaaaa						1685
<210> 62						
<211> 230	3					
<212> DNA						
<213> hom	o sapiens					
<400> 62						
cgcttcccgc	cgcccgagct	tcggaaactt	cccggccgcg	acgcagggaa	ccggcgcgga	60
gaaccgagca	gagcggagcg	cccgtggtcc	agcgtgtagg	gagccgatcg	cccatggagg	120
gtctgggccg	ctcgtgcctg	tggctgcgtc	gggagctgtc	gccccgcgg	ccgcggctcc	180
tgctcctgga	ctgccgcagc	cgcgagctgt	acgagtcggc	gcgcatcggt	ggggcgctga	240
gcgtggccct	gccggcgctc	ctgctgcgcc	gcctgcggag	gggcagcctg	tcggtgcgcg	300
cgctcctgcc	tgggccgccg	ctgcagccgc	ccccgcctgc	ccccgtgctc	ctgtacgacc	360
agggcggggg	ccggcgccgg	cgcggggagg	ccgaggccga	ggccgaggag	tgggaggccg	420
agtcggtgct	gggcaccctg	ctgcagaagc	tgcgagagga	aggctacctg	gcctactacc	480
tccagggagg	cttcagcaga	ttccaggccg	agtgccctca	cctgtgtgag	accagccttg	540
ctggccgtgc	cggctccagc	atggcgccgg	tgcccggtcc	agtgcccgtg	gtggggttgg	600
gcagcctgtg	cctgggctcc	gactgctctg	atgcggaatc	cgaggctgac	cgcgactcca	660
tgagctgtgg	cctggattcg	gagggtgcca	caccccacc	agtggggctg	cgggcatcct	720
tccctgtcca	gatectgece	aacctctatc	tgggcagtgc	ccgggattcc	gccaatttgg	780 ·
agagcctggc	caaactgggc	atccgctaca	tcctcaatgt	caccccaac	ctcccaaact	840
tcttcgagaa	gaatggtgac	tttcactaca	agcagatccc	catctccgac	cactggagcc	900
agaacctgto	gcggttcttt	ccggaggcca	ttgagttcat	tgatgaggcc	ttgtcccaga	960
actgcggggt	gctcgtccac	tgcttggcgg	gggtcagccg	ttctgtcacc	gtcactgtgg	1020
cctacctcat	gcagaagctc	cacctctctc	tcaacgatgc	ctatgacctg	gtcaagagga	1080
agaagtctaa	catctcccc	aacttcaact	tcatggggca	gttgctggac	tttgagcgca	1140

gcttgcggct ggaggagcgc cactcgcagg agcagggcag tggggggcag gcatctgcgg 1200

	gerigeger ggaggagege	cactegeagg	agcagggcag	tggggggcag	gcatctgcgg	1200
	cctccaaccc gccctccttc	ttcaccaccc	ccaccagtga	tggcgccttc	gagctggccc	1260
	ccacctaggg ccccgtggcc	ggcaggccgg	ccctgcccc	accccaccc	acgggtgtcc	1320
	ctgcccactc gtgtggcaag	ggaggggagg	gcaggagggc	tcggcctgag	cagggtgctg	1380
	gggggagagc gcaatacctc	acgcgggctg	ccgtcctaat	caacgtgcct	atggcgggac ·	1440
	cacgctcgga gcctgcctct	tctgcgactg	ttacttttc	tttgcgggat	gggggtgggg	1500
	gttccctctc caggtggttg	tccaagccca	ggtcccggcc	ctgggtgctc	agccagctcg	1560
	gctaggccct gcgcctccct	gcgcttcccc	cttcaggaag	ggtgtgtgcc	acctcgttgc	1620
,	actggatccc agtggctgct	tgggggagag	gcgtttgcca	tcactggtgt	tgtcacctcc	1680
	ctgtttctcc accaagggct	tgggcctctc	ggggctgggg	cctcccaggg	gatggggacc	1740
	cagaggtgca.gtggccgccc	acatccatgg	cctaggagct	actgggcagg	ttcccggcca	1800
	cacatctggt gggctgtttt	gtttttttt	ttcctcttcc	cccagatgtc	ttgacgggat	1860
	cactggggct ctttgtgagt	gagggtggcc	aaactaccgc	cggaggagat	ggggtctcag	1920
	agcgagagct gcggaggggg	aggggaagaa	${\tt gaaggcctca}$	${\tt cttttgctgc}$	tgcggggccc	1980
	acacagccgc tgctactttg	gggggtgggg	aaggggccaa	gctgcagaca	cacacagtca	2040
	ttcatttctg tccacacccc	tgtgggtggc	gggtgtgcgt	gtgtgtgctt	gtgtgtgcgc	2100
	acgtgtcggc gctcacacac	acatgctagc	${\tt ccactgatgc}$	acccagccca	gggctggcag	2160
	tctttgcagc gtggggccgt	ctcaccctgg	agcctggaga	${\tt ggatctatgc}$	ttgtttgttt	2220
	tigiaatcca taicatagit	gctttcttta	attgttcctt	ctgaataaac	agtttattta	2280
	agataaaaaa aaaaaaaaaa	aaa				2303
	<210> 63					
	<211> 4578					
	<212> DNA					
	<213≯ homo sapiens					
	<400> 63					
	agcgggtcgt gggcagccgc	ctcacagcga	tggcggccga	gcagggccgg	tggcggcggc	. 60
	ggctgcggct acggccggag	acggcagtgt	tggcggtagt	ggtgggtggc	aggggcctgt	120
	gaccgggagc tgccccgga	cccgggcacc	atgagccaag	gccccccac	aggggagagc	180
	agcgagcccg aagcaaaagt	cctccacact	aagcggcttt	accgggctgt	ggtggaggct	240
	gtgcatcgac ttgacctcat	cctttgcaac	aaaactgctt	atcaagaagt	attcaaacca	300
	gaaaacatta gcctgaggaa	caagctgcgt	gagctctgcg	tcaagcttat	gttcctgcac	360
	ccagtggact atgggagaaa	ggctgaggag	ctgctgtgga	gaaaggtata	ctatgaagtt	420
	atccagctta tcaagactaa	caaaaagcac	atccacagcc	ggagcacttt	ggaatgtgcc	480
	tacaggacgc acctggttgc	tggtattggc	ttctaccagc	atctccttct	ctatatccag	540
	tcccactacc agctggaact	gcagtgctgc	atcgactgga	cccatgtcac	tgacccctc	600
	ataggatgca agaagccagt	gtctgcctca	gggaaggaga	tggattgggc	acagatggca	660
	tgtcaccgat gtctggtgta	tctgggggat	ttgtcccgat	atcagaatga	attagctggc	720

WO 2005/014818 PCT/JP2004/011650

gtagataccg	agctgctagc	cgagagattt	tactaccaag	ccctgtcagt	agctcctcag	780
attggaatgc	ccttcaatca	gctgggcacc	ctggcaggca	gcaagtacta	taatgtggaa	840
gccatgtatt	gctacctgcg	ctgcatccag	tcagaagtgt	cctttgaggg	agcctatggg	900
aacctcaagc	ggctgtatga	caaggcagcc	aaaatgtacc	accaactgaa	gaagtgtgag	960
actcggaaac	tgtctcctgg	caaaaagcga	tgtaaagaca	ttaaaaggtt	gctagtgaac'	1020
tttatgtatc	tgcaaagcct	${\tt cctacagccc}$	aaaagcagct	ccgtggactc	agagctgacc	1080
tcactttgcc	agtcagtcct	ggaggacttc	aacctctgcc	tcttctacct	gccctcctca	1140
cccaacctca	${\tt gcctggccag}$	tgaggatgag	gaggagtatg	agagtggata	tgctttcctc	1200
ccggaccttc	tcatctttca	aatggtcatc	atctgcctta	tgtgtgtgca	cagcttggag	1260
agagcaggat	ccaagcagta	${\tt cagtgcagcc}$	attgccttca	ccctggccct	cttttcccac	1320
ctcgtcaatc.	atgtcaacat	acggctgcag	gctgagctgg	aagagggcga	gaatcccgtc	1380
ccggcattcc	agagtgatgg	cacagatgaa	ccagagtcca	aggaacctgt	ggagaaagag	1440
gaggagccag	atcctgagcc	tcctcctgta	acaccccaag	tgggtgaggg	cagaaagagc	1500
cgtaagttct	ctcgcctctc	ctgtctccgc	cgtcgccgcc	acccacccaa	agttggtgat	1560
gacagtgacc	tgagtgaagg	ctttgaatcg	$\tt gactcaagcc$	atgactcagc	ccgggccagt	1620
gagggctcag	acagtggctc	tgacaagagt	cttgaaggtg	ggggaacggc	ctttgatgct	1680
gaaacagact	cggaaatgaa	tagccaggag	tcccgatcag	acttggaaga	tatggaggaa	1740
gaggagggga	cacggtcacc	aaccctggag	cccctcggg	gcagatcaga	ggctcccgat	1800
tccctcaatg	gcccactggg	ccccagtgag	gctagcattg	${\tt ccagcaatct}$	acaagccatg	1860
tccacccaga	tgttccagac	taagcgctgc	ttccgactgg	ccccacctt	tagcaacctg	1920
ctcctccagc	ccaccaccaa	ccctcatacc	tcggccagcc	acaggccttg	cgtcaatggg	1980
gatgtagaca	agccttcaga	gccagcctct	gaggagggct	ctgagtcgga	ggggagtgag	2040
tccagtggac	gctcctgtcg	gaatgagcgc	agcatccagg	agaagcttca	ggtcctgatg	2100
		tgtgaaagtc				2160
ctcatcatcg	tgtgtgcgca	gagctctcaa	agtctgtgga	${\tt accgcctgtc}$	tgtgttgctg	2220
aatctgttgc	ctgctgctgg	tgaactccag	gagtctggcc	tggccttgtg	tcctgaggtc	2280
caagatcttc	ttgaaggttg	tgaactgcct	gacctcccct	ctagccttct	gctcccagag	2340
		gccccgctc				2400
acggatcggc	ccctgctcag	caccttagag	gagtcagtgg	tgcgcatctg	ctgcatccgc	2460
agctttggtc	atttcatcgc	ccgcctgcaa	ggcagcatcc	tgcagttcaa	cccagaggtt	2520
ggcatcttcg	tcagcattgc	ccagtctgag	caggagagcc	tgctgcagca	ggcccaggca	2580
cagttccgaa	tggcacagga	ggaagctcgt	cggaacaggc	tcatgagaga	catggctcag	2640
		gtctcagctg				2700
tcagccatgt	ctccctacct	cgtccctgac	acccaggccc	tctgccacca	tctccctgtc	2760
atccgccaac	tggccaccag	tggccgcttc	attgtcatca	tcccaaggac	agtgatcgat	2820
		ggaacaccca				2880
gcagagttta	aaaaaggaaa	caggtacatt	cgctgccaga	aagaggtggg	aaagagcttt	2940

1	gagcggcata	agctgaagag	gcaggatgca	gatgcctgga	ctctctataa	gatcctagac	3000
į	agctgcaaac	agctgactct	ggcccagggg	gcaggtgagg	aggatccgag	tggcatggtg	3060
	accatcatca	caggccttcc	actggacaac	cccagcgtgc	tttcaggccc	catgcaggca	3120
į	gccctgcagg	ccgctgccca	${\tt cgccagtgtg}$	gacatcaagg	atgttctgga	cttctacaag	3180
	cagtggaagg	aaattggttg	atactgaccc	ccaggccctg	cagtggggct	gactccagat	3240
	ctctcctgcc	ctccctggca	gccaggacca	gcacctgtag	tcaccccacc	acacgcagac	3300
	tcatgcacgc	acacaggagg	gaggcctagc	tgctcagagg	$\tt ctg cagggag$	ggcccaggag	3360
	ccggctggga	gggtggggtc	cctttgttgc	caagacgtta	ggaaagcgag	gaaagtgett	3420
- '	ggattaggag	agtcttgtgg	gcccctggcc	${\tt agccttcctg}$	cctcagctcc	cctgctgtct	3480
	ccaggggcag	gtggtaggca	tgggtacctg	catttcactg	gaatgggttc	ttggatctct	3540
	gaggggaagg	aacagcaaaa	gaggcccttc	ttcctcaccc	aagatgcagg	gtggttgggg	3600
	ccaggagttt	ggaccctcta	ggtcttgggg	gaagagctgg	gtaatacctg	gtgtctgagt	3660
	gattctctgc	agacccttcc	cctcctcaag	gatcacccat	cctcctttca	gccccttta	3720
	tggggaccag	gcagctctgg	agccagccac	aggggctgtt	agagaagcaa	ggcctggagt	3780
	ggcctgcacc	gagtagcagg	gtcagggttc	gtgtgctcct	cctcctgctg	caggggctgc	3840
	acatcccatt	gcccacttc	tgctttgtgt	ctccctctgt	$\tt ctagcttcca$	gggcagggag	3900
	caggccccac	ctagggctgc	aggcagtctg	gcctgtgcca	$\tt gcacggtctc$	ctgtgcccac	3960
	cagccccaca	ggtgctgtgc	tttgtgctct	tggctgctgt	gctgggacag	aatgggatgc	4020
	caggaagaga	agaaaggggg	tgcagtctga	ggccaccacc	cccttccta	tctaagggag	4080
	ggctgaagac	aaggggccgg	cattcagtgg	gcagcagaaa	ggagaggctc	cttgaagctg	4140
	ctcagtcaga	ggcccccgtc	cctccttttg	$\tt ccttccgcag$	gactgaagac	ctgaaggggc	4200
	tggcttttgg	agtgttgagg	tgaatatctg	ggagcagaga	tcatgaatag	ctcagggcag	4260
	tgaatggcgc	accaagagca	gggctgtgtg	tgggaggctg	cagccaggat	tgcctcagct	4320
	cctcccctc	aggctgggag	gatagcacag	gctaggggct	cggggtggag	ggtctcagct	4380
	ctgctgcccc	cacccagta	$\tt ctagcctagc$	ttcccaagct	gtggcttaga	ggatagttgg	4440
	cttcctgcct	ctctcctcta	aaatagcaag	tctgggaaat	$\operatorname{cctggggtga}$	gtggagtcac	4500
	cccactccca	gttgctggca	gagactgaga	ctaaagcatc	acttaataaa	cccccaagc	4560
	ccaaaaaaaa	aaaaaaaa					4578
	<210> 64						
	<211> 5542	2					
	<212> DNA						
	<213> home	sapiens					
	<400> 64						
	gtaattgaca	aagtcacgtg	tgctcagggg	gccagaaact	ggagagagga	gagaaaaaaa	· 60
	tcaaaagaag	gaaagcacat	tagaccatgc	gagctaaatt	tgtgatcgca	caaaatcaag	120
	atgttagatt	gatgcagaag	atcactccgt	tccaaaggga	aagttttcat	ctcacgagtt	180
	tggagctgag	ggcccgtggg	gcaacatggc	cgaaggcggg	gctagcaaag	gtggtggaga	240

agagcccggg	aagctgccgg	agccggcaga	ggaggaatcc	caggttttgc	gcggaactgg	300
ccactgtaag	tggttcaatg	tgcgcatggg	atttggattc	atctccatga	taaaccgaga	360
gggaagcccc	ttggatattc	cagtcgatgt	atttgtacac	caaagcaaac	tattcatgga	420
aggatttaga	agcctaaaag	aaggagaacc	agtggaattc	acatttaaaa	aatcttccaa	480
aggccttgag	tcaatacggg	taacaggacc	tggtgggagc	ccctgtttag	gaagtgaaag.	540
aagacccaaa	gggaagacac	tacagaaaaag	aaaaccaaag	ggagatagat	gctacaactg	600
tggtggcctt	gatcatcatg	ctaaggaatg	tagtctacct	cctcagccaa	agaagtgcca	660
ttactgtcag	agcatcatgc	acatggtggc	aaactgccca	cataaaaatg	ttgcacagcc	720
acccgcgagt	tctcagggaa	gacaggaagc	agaatcccag	ccatgcactt	caactctccc	780
tcgagaagtg	ggaggcgggc	atggctgtac	atcaccaccg	tttcctcagg	aggctagggc	840
agagatetea	gaacggtcag	gcaggtcacc	tcaagaagct	tcctccacga	agtcatctat	900
agcaccagaa	gagcaaagca	aaaaggggcc	ttcagttcaa	aaaaggaaaa	agacataaca	960
ggtcttcttc	atatgttctt	tcctttaccc	ggttgcaaag	tctacctcat	gcaagtatag	1020
gggaacagta	tttcacaagc	${\tt agtagctgac}$	ctgggatttt	aactactatt	ggggaactgt	1080
gaattttta	aacagacaaa	tcactctaag	caa attacat	ttgagcaggg	tgtcatgttt	1140
tatgttaatt	cagagaataa	gatactatgt	ctgtcaatat	gtgcatgtgt	gagaggaga	1200
gagcctgagt	ctgtgtgtgt	acatgaggat	ttttatatag	gaatgtagac	acatatataa	1260
agaggctttg	tctttatata	tttgtgtata	gatcaaagca	cacaccctct	ctcatataat	1320
tggatatttc	caagaattga	aaacccatgt	gaagcattat	agatagtttt	aaatttaacc	1380
cactggagtt	ttcttgaaat	accacttctt	ttatattata	taaaactaaa	aacacgactg	1440
ttaccttttg	tgtgaaccaa	${\tt aggatacttc}$	agatctcaga	gctgccaatt	atggggtact	1500
aaaggttttt	aagacatcca	gttctcccga	atttgggatt	gcctcttttt	cttgaaatct	1560
ctggagtagt	aattttttc	cccttttt	gaaggcagta	ccttaacttc	atatgcctct	1620
gactgccata	agctttttg	attctgggat	aacataactc	cagaaaaagac	aatgaatgtg	1680
taatttgggc	cgatatttca	ctgttttaaa	ttctgtgttt	aattgtaaaa	ttagatgcct	1740
attaagagaa	atgaagggga	ggatcatctt	agtggcttgt	tttcagtagt	attttaatat	1800
cagcttcttg	taaccttttc	catgttgtga	gggttgtaag	ggattgtgtg	gcaacagcag	1860
cttcccttgg	ctaactcaat	cttctaccca	ttgcttagag	cagggagccc	tccttattta	1920
ctactgaaga	ccttagagaa	ctccaattgt	ttggcatata	tttttggtgg	tggtttttat	1980
tcctcctgga	gagttatcta	atttgtttct	aaaacaaaca	agcagcaaag	aaatgaatta	2040
aatactgggg	ttgagaatta	aaattaagtg	gatgttcaca	gttgcccaat	atatatgacc	2100
tgcaaatgat	acgaaaaagt	gcagcattta	gtggcagtta	acaagagtga	caagcctggg	2160
gcagaggtac	caaacctctc	ccaccagaga	gctagaagta	ttttatacag	taactttgat	2220
cttatggaag	tgaccttcaa	tgcttattct	gaagtaacct	atatggtgga	tacaggatga	2280
acattcagtg	ccagggagaa	tcttctcagg	ttggttctcg	ttagagtgat	aaactggcta	2340
ggggccatag	tattggtcct	gttaggtttc	ggtcatggaa	aaaaaaatta	ttttggggtc	2400
atcctggctc	tagatgttat	gggcaaattt	ctgaaacatc	tgcaagaagg	taccagttaa	2460

	ttatagtgct	taatattggg	aataagatta	agcattataa	ttataatgta	tgggcctgtt	2520
•	ggtgtaagct	cagataatta	aataaaaata	gcatgactca	aatgagacat	attctgctga	2580
	acagtttcta	cttcctctcc	cgcctgtcct	gtcatgggag	acgigiaiag	ttgctgctgt	2640
	ttcagcaaac	caccataaga	cgaaaatgcc	tcaggttggg	ttgccagtcc	tttacaactc	2700
	agcttgaatt	t cacaa cag t	gattgtgaga	atctgcgtgg	tatacactga	aatatcggtg ⁻	2760
	tgctgtgatg	caaagcttac	ctttgacgat	attgaatgtg	atatagctgt	agagaagtac	2820
	ttccttgcct	tatgtgagga	tttcaaactt	atttaaatta	tgtagacaaa	tcaaagtggc	2880
	attgcttaat	ttttagcagg	cata at a a g c	aagttaacag	taaaatgcaa	aacatgataa	2940
.	gcgttgctca	attttagca	ggtataataa	gcaggttaac	agtaaaaatg	caaaacatga	3000
	tagataagtc	actttgaaaa	ttcaaaccaa	agttccttca	ccttatggaa	ataggaaatt	3060
	atggacttca.	aaattggaca	cttcctgttt	acaaaaagaa	attcagagct	aaaatcatgg	3120
	taaaaaaaaa	tagaaacact	tgagaactat	ggtctttatg	ggtgcaattt	gaaatccttt	3180
	tcatcatctt	accagactaa	actaagagca	cataccaaac	${\tt ctatcttatg}$	gttgaaagtt	3240
	ggggtttatt	ttttatatga	gaatattatc	actattacat	aacatactca	ggacaaagaa ·	3300
	ctttgctcag	ggaacatacc	atgtaatatt	tttgttgttt	ctttacagac	tagtctacag	3360
	tcctgcttac	tcaaaacaaa	ccaaataact	tataccttta	tataagtatt	atgtactgat	3420
	gatagtaact	acctctgagt	ttgacacaga	tcaaaatttt	tgaatatcag	atatcagtta	3480
	tcctattttt	atttcatgtg	aaaactcctc	taaagcagat	tccctcaact	ctgtgcatat	3540
	gtgaatatca	ctgatgtgaa	cacattgttc	atttacatag	gtaaaatatt	actctgttta	3600
	cagcaaaaagg	ctacctcata	gttgatacat	agcacacctg	tatgtatgct	gttccagcct	3660
	tacaggtggc	tgataattct	ctggtacaga	acctttttat	ctgtattata	aatagcaatt	3720
	cacaactgca	tgtttctgac	aaacacttgt	gaataatgaa	$\tt gcatctcgtt$	ttagttagca	3780
	aagtctccaa	acatttcctt	aaaataatca	tgtatttagt	ttaaagaatt	atgggcactg	3840
	ttcaacttaa	gcaaaacaga	acacggaagc	agtcttagaa	gcaccacttt	gcccagaggt	3900
	ggaggttgga	aggggtagca	gggagagggg	ttggtgtatg	caggtattca	tgctaggcaa	3960
	agagtttaaa	agacgccaat	gtccttcatt	tactgtctgt	gctgccctga	agccaagcgt	4020
	attgcagcat	tatagcccca	ggcacataac	taactagcac	tggcttgcca	aggaatgaac	4080
	atgcaatgcc	attactagct	attgagggaa	aagggtctgt	gtgaagcatc	actttgcagg	4140
	gattactaat	ggtggggcag	caggtctgtg	aattaagtta	tctcttgacc	tcaccctcat	4200
	gtcaacacaa	atgtaattcc	taaacaagat	gcattgccag	tctcttagcc	ctgtaagctg	4260
	atcttttgct	acatggcaga	ctataatgaa	aacatttta	tacttgggtt	tctagtcttc	4320
	actagaaggc	cttggatgta	tttttgcagt	tgaaagattt	agaaagattt	ttacctgctt	4380
	ataacttgga	agtttagagt	gcaatgtaag	aaaaaagatc	aagaaatgtc	atgttattag	4440
	catcagtcca	cctccaatat	tgccgatact	ttttttattc	tggctcagtt	ttattttgca	4500
	ccagtgcggc	cccaagttac	tgctggttgt	atttagtttg	tgaataggag	cccataagtg	4560
	ttaatagact	ttgtaacatt	cactataaga	tgaattatac	aggacatggg	aaatctcatt	4620
	aagtcttaaa	gttaatttaa	attaatttat	ctgttttctc	taagaaatgt	ttatcataaa	4680

atatatatgt	gtatttcccc	tttggttata	aaatttggga	aagtatgtac	aagtgcagct	4740
gcactgactt	taattttcta	gatgtcttaa	tgagatttat	ttgttttaga	gaagaacatc	4800
ttgttaaaag	catcaaactc	tgtcttacat	agctgtcaac	agcctcttta	agatgtggtg	4860
gtigtatgat	ctgtgtctta	attgttcagt	tagagtgaga	agttgaccta	tgattcattt	4920
ttaaatttta	tatttggaac	aaagctgcaa	gttatggtaa	agtactgtac	tgtgagaagt'	4980
attatgatat	ttaatgcatc	tgtggcttaa	cacttgtgag	agttaccagc	ttgaaaatga	5040
tggtgttgac	tacctcttga	atcacatcta	tcaaccactg	gcacctacca	ccaagctggc	5100
ttcaattagt	atgtgttgct	ttttggtatt	aacaactaac	${\tt cgtactagag}$	accaaagtga	5160
accctgattt	ttatatgtct	ttaataatgg	tgttttatct	agtgttttta	aattatcctg	5220
tgtagtattt	agattacctc	attgtccatt	ttgactcatg	ttgtttacaa	gtgaaaataa	5280
aaacacttga.	actgtatgtt	tttaaaagac	aaaaaagggg	tagatgtttg	gaatgcgttt	5340
cactcgcatg	cagtcatctg	gagggactga	agcactgttt	gcctttctgt	acactctggg	5400
ttttatattc	tcatttcatg	cctaatgtct	tattctgtca	attatggata	tgttgaggtt	5460
taaaaaaatt	acttgattaa	aaataaaaca	tataacgitg	gcatttaaaa	aaaaaaaaa	5520
	aaaaaaaaa	aa				5542
<210> 65			e*			
<211> 5507	7					
<212> DNA	•					
	o sapiens					
<400> 65						
				gtgcccgccg		60
				aatcagcaat		120
				agttaaatga		180
		•		gccggagccg		240
				caatgtgcgc		300
				tattccagtc		360
				aaaagaagga		420
				acgggtaaca		480
				gacactacag		540
				tcatgctaag		600
				catgcacatg		660 -
				gggaagacag		720
				cgggcatggc		780
				gtcaggcagg		840
				aagcaaaaag		900
				ttctttcctt		960
caaagtctac	ctcatgcaag	tataggggaa	cagtatttca	caagcagtag	ctgacctggg	1020

attitaacta ctattgggga actgtgaatt ttitaaacag acaaatcact ctaagcaaat 1080 tacatitgag cagggtgica igittiatgi taaticagag aataagatac tatgicigic 1140 aatatgtgca tgtgtgagag ggagagagcc tgagtctgtg tgtgtacatg aggattttta 1200 tataggaatg tagacacata tataaagagg ctttgtcttt atatatttgt gtatagatca 1260 aagcacacac cctctctcat ataattggat atttccaaga attgaaaacc catgtgaagc 1320 attatagata giittaaatt taacccacig gagiittett gaaataccac iictittata 1380 ttatataaaaa ctaaaaaacac gactgttacc ttttgtgtga accaaaggat acttcagatc 1440 tcagagcigc caattatggg gtactaaagg titttaagac atccagtict cccgaattig 1500 ggattgcctc tttttcttga aatctctgga gtagtaattt ttttccccct tttttgaagg 1560 cagtacctta acticatatg cctctgactg ccataagctt ttttgattct gggataacat 1620 aactccagaa aagacaatga atgtgtaatt tgggccgata tttcactgtt ttaaattctg 1680 tgtttaattg taaaattaga tgcctattaa gagaaatgaa ggggaggatc atcttagtgg 1740 cttgttttca gtagtatttt aatatcagct tcttgtaacc ttttccatgt tgtgagggtt 1800 gtaagggatt gtgtggcaac agcagcttcc cttggctaac tcaatcttct acccattgct 1860 tagagcaggg agccctcctt atttactact gaagacctta gagaactcca attgtttggc 1920 atatatitit ggtggtggtt titaticcic ctggagagtt atctaatttg titctaaaac 1980 aaacaagcag caaagaaatg aattaaatac tggggttgag aattaaaatt aagtggatgt 2040 tcacagttgc ccaatatata tgacctgcaa atgatacgaa aaagtgcagc atttagtggc 2100 agttaacaag agtgacaagc ctggggcaga ggtaccaaac ctctcccacc agagagctag 2160 aagtatttta tacagtaact tigatcitat ggaagtgacc ticaatgcit attcigaagt 2220 aacctatatg gtggatacag gatgaacatt cagtgccagg gagaatctic tcaggttggt 2280 tctcgttaga gtgataaact ggctaggggc catagtattg gtcctgttag gtttcggtca 2340 tggaaaaaaa aattattttg gggtcatcct ggctctagat gttatgggca aatttctgaa 2400 acatcigcaa gaaggtacca gitaattata gigcitaata tigggaataa gattaagcat 2460 tataattata atgtatgggc ctgttggtgt aagctcagat aattaaataa aaatagcatg 2520 actcaaatga gacatatict gctgaacagt ttctacticc tctcccgcct gtcctgtcat 2580 gggagacgtg tatagttgct gctgtttcag caaaccacca taagacgaaa atgcctcagg 2640 tigggitgcc agiccittac aacicagcii gaatticaca acagigatig igagaatcig 2700 cgtggtatac actgaaatat cggtgtgctg tgatgcaaag cttacctttg acgatattga 2760 atgigatata gcigiagaga agiacticci igccitatgi gaggattica aactiattia 2820 aattatgtag acaaatcaaa gtggcattgc ttaattttta gcaggcataa taagcaagtt 2880 aacagtaaaa tgcaaaacat gataagcgtt gctcaatttt tagcaggtat aataagcagg 2940 ttaacagtaa aaatgcaaaa catgatagat aagtcacttt gaaaattcaa accaaagttc 3000 cttcacctta tggaaatagg aaattatgga cttcaaaatt ggacacttcc tgtttacaaa 3060 aagaaattca gagctaaaat catggtaaaa aaaaatagaa acacttgaga actatggtct 3120 ttatgggtgc aatttgaaat ccitttcatc atcttaccag actaaactaa gagcacatac 3180 caaacctatc ttatggttga aagttggggt ttatttttta tatgagaata ttatcactat 3240 . ,

•						
tacataacat	actcaggaca	aagaactttg	ctcagggaac	ataccatgta	atatttttgt	3300
tgtttcttta	cagactagtc	tacagtcctg	cttactcaaa	acaaaccaaa	taacttatac	3360
ctttatataa	gtattatgta	ctgatgatag	taactacctc	tgagtttgac	acagatcaaa	3420
atttttgaat	atcagatatc	agttatccta	tttttatttc	atgtgaaaac	tcctctaaag	3480
cagattccct	caactctgtg	catatgtgaa	tatcactgat	gtgaacacat	tgttcattta ·	3540
cataggtaaa	atattactct	gtttacagca	aaaggctacc	tcatagttga	tacatagcac	3600
acctgtatgt	atgctgttcc	agccttacag	gtggctgata	attctctggt	acagaacctt	3660
tttatctgta	ttataaatag	caattcacaa	ctgcatgttt	ctgacaaaca	cttgtgaata	3720
atgaagcatc	tcgttttagt	tagcaaagtc	tccaaacatt	tccttaaaat	aatcatgtat	3780
ttagtttaaa	gaattatggg	cactgttcaa	cttaagcaaa	acagaacacg	gaagcagtct	3840
tagaagcacc	actttgccca	${\tt gaggtggagg}$	ttggaagggg	tagcagggag	aggggttggt	3900
gtatgcaggt	attcatgcta	ggcaaagagt	ttaaaagacg	ccaatgtcct	tcatttactg	3960
tctgtgctgc	cctgaagcca	${\tt agcgtattgc}$	agcattatag	ccccaggcac	ataactaact	4020
agcactggct	tgccaaggaa	tgaacatgca	atgccattac	tagctattga	gggaaaaggg	4080
tctgtgtgaa	gcatcacttt	gcagggatta	ctaatggtgg	ggcagcaggt	ctgtgaatta	4140
agttatctct	tgacctcacc	ctcatgtcaa	$cacaa at \verb"gta"$	attcctaaac	aagatgcatt	4200
gccagtctct	tagccctgta	agctgatctt	ttgctacatg	gcagactata	atgaaaacat	4260
ttttatactt	gggtttctag	tcttcactag	aaggccttgg	at gtatttt	gcagttgaaa	4320
gatttagaaa	gatttttacc	tgcttataac	ttggaagttt	agagtgcaat	gtaagaaaaa	4380
agatcaagaa	atgtcatgtt	attagcatca	gtccacctcc	aatattgccg	atacttttt	4440
tattctggct	cagttttatt	ttgcaccagt	gcggccccaa	gttactgctg	gttgtattta	4500
gtttgtgaat	aggagcccat	aagtgttaat	$a \\ gactt \\ t \\ gt \\ a$	a cattcacta	taagatgaat	4560
tatacaggac	atgggaaatc	tcattaagtc	ttaaagttaa	tttaaattaa	tttatctgtt	4620
ttctctaaga	aatgtttatc	ataaaatata	tatgtgtatt	tcccctttgg	ttataaaatt	4680
tgggaaagta	tgtacaagtg	cagctgcact	gactttaatt	ttctagatgt	cttaatgaga	4740
tttatttgtt	ttagagaaga	a catcttgtt	aaaagcatca	aactctgtct	tacatagctg	4800
tcaacagcct	ctttaagatg	tggtggttgt	atgatctgtg	tcttaattgt	tcagttagag	4860
tgagaagttg	acctatgatt	catttttaaa	ttttatattt	ggaacaaagc	tgcaagttat	4920
ggtaaagtac	tgtactgtga	gaagtattat	gatatttaat	$\tt gcatctgtgg$	cttaacactt	4980
gtgagagtta	ccagcttgaa	aatgatggtg	ttgactacct	cttgaatcac	atctatcaac	5040
cactggcacc	taccaccaag	ctggcttcaa	ttagtatgtg	ttgctttttg	gtattaacaa	5100
ctaaccgtac	tagagaccaa	agtgaaccct	gatttttata	tgtctttaat	aatggtgttt	5160
		tcctgtgtag				5220
		aataaaaaca				5280
		cgtttcactc				5340
		ctgggtttta				5400
tgtcaattat	ggatatgttg	aggittaaaa	aaattacttg	attaaaaata	aaacatataa	5460

5507 **<210>** 66 **<211> 204** <212> PRT <213> homo sapiens **<400>** 66 Met Gly Ala Pro Leu Ala Val Ala Leu Gly Ala Leu His Tyr Leu Ala 5 15 Leu Phe Leu Gln Leu Gly Gly Ala Thr Arg Pro Ala Gly His Ala Pro 20 25 30 Trp Asp Asn His Val Ser Gly His Ala Leu Phe Thr Glu Thr Pro His 40 Asp Met Thr Ala Arg Thr Gly Glu Asp Val Glu Met Ala Cys Ser Phe 50 55 60 Arg Gly Ser Gly Ser Pro Ser Tyr Ser Leu Glu Ile Gln Trp Trp Tyr 65 70 75 80 Val Arg Ser His Arg Asp Trp Thr Asp Lys Gln Ala Trp Ala Ser Asn 85 90 Gln Leu Lys Ala Ser Gln Gln Glu Asp Ala Gly Lys Glu Ala Thr Lys 100 105 Ile Ser Val Val Lys Val Val Gly Ser Asn Ile Ser His Lys Leu Arg 115 120 Leu Ser Arg Val Lys Pro Thr Asp Glu Gly Thr Tyr Glu Cys Arg Val 130 135 140 Ile Asp Phe Ser Asp Gly Lys Ala Arg His His Lys Val Lys Ala Tyr 150 -155 Leu Arg Val Gln Pro Gly Glu Asn Ser Val Leu His Leu Pro Glu Ala 165 170 175 Pro Pro Ala Ala Pro Ala Pro Pro Pro Pro Lys Pro Gly Lys Glu Leu 180 185 190 Arg Lys Arg Ser Val Asp Gln Glu Ala Cys Ser Leu 195 200 <210> 67 <211> 193 <212> PRT <213> homo sapiens **<400>** 67

Met Asp Gly Gly Thr Leu Pro Arg Ser Ala Pro Pro Ala Pro Pro Val 15 10 Pro Val Gly Cys Ala Ala Arg Arg Arg Pro Ala Ser Pro Glu Leu Leu 20 30 25 Arg Cys Ser Arg Arg Arg Pro Ala Thr Ala Glu Thr Gly Gly Gly 40 Ala Ala Ala Val Ala Arg Arg Asn Glu Arg Glu Arg Asn Arg Val Lys 50 55 60 Leu Val Asn Leu Gly Phe Gln Ala Leu Arg Gln His Val Pro His Gly 70 80 65 75 Gly Ala Ser Lys Lys Leu Ser Lys Val Glu Thr Leu Arg Ser Ala Val 85 90 Glu Tyr Ile Arg Ala Leu Gln Arg Leu Leu Ala Glu His Asp Ala Val 105 Arg Asn Ala Leu Ala Gly Gly Leu Arg Pro Gln Ala Val Arg Pro Ser 115 120 125 Ala Pro Arg Gly Pro Pro Gly Thr Thr Pro Val Ala Ala Ser Pro Ser 135 140 Arg Ala Ser Ser Ser Pro Gly Arg Gly Gly Ser Ser Glu Pro Gly Ser 150 155 Pro Arg Ser Ala Tyr Ser Ser Asp Asp Ser Gly Cys Glu Gly Ala Leu 165 170 175 Ser Pro Ala Glu Arg Glu Leu Leu Asp Phe Ser Ser Trp Leu Gly Gly 180 190 185 Tyr **<210>** 68 **<211> 354** <212> PRT <213> homo sapiens **<400>** 68 Met Arg Arg Leu Met Ser Ser Arg Asp Trp Pro Arg Thr Arg Thr Gly 10 Thr Gly Ile Leu Ser Ser Gln Pro Glu Glu Asn Pro Tyr Trp Trp Asn 20 25 Ala Asn Met Val Phe Ile Pro Tyr Cys Ser Ser Asp Val Trp Ser Gly 35 40 45

Ala	Ser 50	Ser	Lys	Ser	Glu	Lys 55	Asn	Glu	Tyr	Ala	Phe 60	Met	Gly	Ala	Leu
Ile 65	Ile	Gln	Glu	Val	Val 70	Arg	Glu	Leu	Leu	Gly 75	Arg	Gly	Leu	Ser	Gly 80
Ala	Lys	Val	Leu	Leu 85	Leu	Ala	Gly	Ser	Ser 90	Ala	Gly	Gly	Thr	Gly 95	Val
Leu	Leu	Asn	Val 100	Asp	Arg	Val	Ala	Glu 105	Gln	Leu	Glu	Lys	Leu 110	Gly	Tyr
Pro	Ala	Ile 115	Gln	<u>Val</u>	Arg	Gly	<u>L</u> eu 120	Ala	Asp	Ser	Gly	Trp 125	Phe	Leu	Asp
Asn	Lys 130	Gln	Tyr	Arg	His	Thr 135	Asp	Cys.	Val	Asp	Thr 140	Ile	Thr	Cys	Ala
Pro	Thr	Glu	Ala	Ile	Arg	Arg	Gly	Ile	Arg	Tyr	Trp	Asn	Gly	Val	Val
145					150					155					160
Pro	Glu	Arg	Cys	Arg 165	Arg	Gln	Phe	Gln	Glu 170	Gly	Glu	Glu	Trp	Asn 175	Cys
Phe	Phe	Gly	Tyr 180	Lys	Val	Tyr	Pro	Thr 185	Leu	Arg	Cys	Pro	Val 190	Phe	Val
Val	Gln	Trp	Leu	Phe	Asp	Glu	Ala	Gln	Leu	Thr	Val	Asp	Asn	Val	His
		195					200					205			
Lėu	Thr 210	Gly	Gln	Pro	Val	Gln 215	Glu	Gly	Leu		Leu 220	Tyr	Ile	Gln	Asn
Leu	Gly	Arg	Glu	Leu	Arg	His	Thr	Leu	Lys	Asp	Val	Pro	Ala	Ser	Phe
225				•	230					235					240
Ala	Pro	Ala	Cys	Leu 245	Ser	His	Glu	Ile	Ile 250		Arg	Ser	His	Trp 255	Thr
Asp	Val	Gln	Val 260	Lys	Gly	Thr	Ser	Leu 265	Pro	Arg	Ala	Leu	His 270	Cys	Trp
Asp	Arg	Ser 275	Leu	His	Asp	Ser	His 280	Lys	Al.a	Ser	Lys	Thr 285	Pro	Leu	Lys
Gly	Cys 290		Val	His	Leu	Val 295	Asp	Ser	Cys	Pro	Trp 300	Pro	His	Cys	Asn
Pro	Ser	Cys	Pro	Thr	Val	Arg	Asp	Gln	Phe	Thr	Gly	Gln	Glu	Met	Asn
305					310					315					320
Val	Ala	Gln	Phe	Leu 325	Met	His	Met	Gly	Phe	Asp	Met	Gln	Thr	Val 335	Ala
Gln	Pro	Gln	Gly		Glu	Pro	Ser	Glu		Leu	Gly	Met	Leu		Asn

			340					345					350		
Gly	Ser														
<210	>	69													
<211	> :	362													
<212	> :	PRT													
<213	> :	homo	sapi	ens											
<400	>	69													
Met	Ala	Phe	Leu	Pro	Ser	Trp	Val	Cys	Val	Ļeu	Val	Gly	Ser	Phe	Ser
1				5					10					15	
Ala	Ser	Leu	Ala	Gly	Thr	Ser	Asn	Leu	Ser	Glu	Thr	Glu	Pro	Pro	Leu
			20					25					30		
Trp	Lys	Glu	Ser	Pro	Gly	Gln	Leu	Ser	Asp	Tyr	Arg	Val	Glu	Asn	Ser
		35					40					45			
Met	Tyr	Ile	Ile	Asn	Pro	Trp	Val	Tyr	Leu	Glu	Arg	Met	Gly	Me t	Tyr
	50					55					60				
Lys	Ile	Ile	Leu	Asn	Gln	Thr	Ala	Arg	Tyr	Phe	Ala	Lys	Phe	Ala	Pro
65					70					75					80
Asp	Asn	Glu	Gļn	Asn	Ile	Leu	Trp	Gly	Leu	Pro	Leu	Gln	Tyr	Gly	Trp
				85					90					95	
Gln	Tyr	Arg	Thr	Gly	Arg	Leu	Ala	Asp	Pro	Thr	Arg	Arg	Thr	Asn	Cys
			100					105	•				110		
Gly	Tyr	Glu	Ser	Gly	Asp	His	Met	Cys	Ile	Ser	Val	Asp	Ser	Trp	Trp
		115					120					125			
Ala	Asp	Leu	Asn	Tyr	Phe	Leu	Ser	Ser	Leu	Pro	Phe	Leu	Ala	Ala	Val
	130					135				•	140				
Asp	Sei	Gly	Val	Met		He	Ser	Ser	Asp		Val	Arg	Leu	Leu	
145					150					155					160
Pro	Pro	Lys	Asn		Arg	Lys	Phe	Cys			Val	Ser	Ser		Arg
				165					170		_	_	_	175	
Ser	Sei	Phe			Thr	Met	Asn			Asp	Tyr	Tyr			Ala
			180					185					190		
Glu	Ala	His		Glu	Arg	Ser			Leu	Ala	Val			Leu	Ala
		195					200			_	_	205			-
Ala		Leu	Phe	Pro	Thr			He	Arg	Ser			Phe	Gln	Lys
	210		_	_		215			m:		220		.	Di	7.1
Gly	Me	t Pro	Pro	Arg	Ile	Leu	Leu	Asn	Thr	Asp	val	Ala	Pro	Phe	He

225					230					235					240
Ser	Asp	Phe	Thr	Ala	Phe	Gln	Asn	Val	Val	Leu	Val	Leu	Leu	Asn	Met
				245					250					255	
Leu	Asp	Asn	Val	Asp	Lys	Ser	Ile	Ala	Leu	Val	Ser	Tyr	Pro	Ile	Glu
			260					265					270		
Ser	Thr	Leu	Asp	Asn	Leu	Ala	Val	Val	Asp	Trp	Pro	Trp	Phe	Lys	Trp
		275					280					285			
Asp	Tyr	Ser	Ser	Thr	Trp	Met	Cys	Thr	His	Leu	Ser	Lys	Glu	Leu	Leu
	290					295					300				
Ala	Arg	Tyr	Arg	Pro	Ser	Gly	Leu	Lys	Ala	Thr	Leu	Tyr	Thr	Gly	Phe
305		•			310					315					320
Ser	Phe	Ser	Ile		Leu	Arg	Tyr	Arg		Pro	Tyr	Gln	Ser		Gln
				325					330					335	
Tyr	Lys	Trp		Pro	Arg	Pro	Thr		Cys	Ile	Asp	Phe		His	Pro
		_	340		_		_	345	_				350		
Glu	Arg		Thr	Val	Cys	Arg		Arg	Ser						
•		355					360								
<21 (70 													
< 21		137													
<21 :															
		PRT		•											
<21	3>	homo	sap	i ens											
<21:	3> : 0>	homo 70			Λla	Uio	A = a	Cvra	Vol	Tro	ጥ ሴ ም	Λνα	Val	Λla	Ala
<21 <40 Met	3> : 0>	homo 70		Arg	Ala	His	Arg	Cys		Trp	Thr	Arg	Val		Ala
<21: <40: Met	3> 0> Pro	homo 70 Arg	Pro	Arg 5					10					15	
<21: <40: Met	3> 0> Pro	homo 70 Arg	Pro Gly	Arg 5	Ala Pro			Thr	10				Ser	15	
<213 <400 Met 1 Ser	3> 0> Pro Arg	homo 70 Arg Thr	Pro Gly 20	Arg 5 Ala	Pro	Arg	Ser	Thr 25	10 Thr	Ala ·	Ser	Cys	Ser 30	15 Ala	Ser
<213 <400 Met 1 Ser	3> 0> Pro Arg	homo 70 Arg Thr Cys	Pro Gly 20	Arg 5 Ala	Pro	Arg	Ser Val	Thr 25	10 Thr	Ala ·	Ser	Cys Cys	Ser 30	15 Ala	
<21: <400 Met 1 Ser	3> 0> Pro Arg	homo 70 Arg Thr Cys 35	Pro Gly 20 Ala	Arg 5 Ala Trp	Pro Ala	Arg Ser	Ser Val 40	Thr 25 Trp	10 Thr Arg	Ala · Cys	Ser Glu	Cys Cys 45	Ser 30 Cys	15 Ala Gly	Ser Arg
<21: <400 Met 1 Ser	3> 0> Pro Arg Arg	homo 70 Arg Thr Cys 35	Pro Gly 20 Ala	Arg 5 Ala Trp	Pro	Arg Ser Ala	Ser Val 40	Thr 25 Trp	10 Thr Arg	Ala · Cys	Ser Glu Ser	Cys Cys 45	Ser 30 Cys	15 Ala Gly	Ser Arg
<21: <400 Met 1 Ser Gly	3> 0> Pro Arg Arg Ala 50	homo 70 Arg Thr Cys 35 Ala	Pro Gly 20 Ala Gly	Arg 5 Ala Trp Ala	Pro Ala Ala	Arg Ser Ala 55	Ser Val 40 Ser	Thr 25 Trp Ala	10 Thr Arg	Ala Cys Ala	Ser Glu Ser 60	Cys Cys 45 Arg	Ser 30 Cys	15 Ala Gly Trp	Ser Arg Thr
<pre><21: <400 Met 1 Ser Gly Arg Pro</pre>	3> 0> Pro Arg Arg Ala 50	homo 70 Arg Thr Cys 35 Ala	Pro Gly 20 Ala Gly	Arg 5 Ala Trp Ala	Pro Ala Ala Cys	Arg Ser Ala 55	Ser Val 40 Ser	Thr 25 Trp Ala	10 Thr Arg	Ala Cys Ala	Ser Glu Ser 60	Cys Cys 45 Arg	Ser 30 Cys	15 Ala Gly Trp	Ser Arg Thr
<pre><21: <400 Met 1 Ser Gly Arg Pro 65</pre>	3> 0> Pro Arg Arg Ala 50 Arg	homo 70 Arg Thr Cys 35 Ala	Pro Gly 20 Ala Gly Cys	Arg 5 Ala Trp Ala Pro	Pro Ala Ala Cys 70	Arg Ser Ala 55 Pro	Ser Val 40 Ser	Thr 25 Trp Ala Cys	10 Thr Arg Trp	Ala Cys Ala Pro	Ser Glu Ser 60 Ser	Cys 45 Arg Cys	Ser 30 Cys Ala	15 Ala Gly Trp Pro	Ser Arg Thr Thr 80
<pre><21: <400 Met 1 Ser Gly Arg Pro 65</pre>	3> 0> Pro Arg Arg Ala 50 Arg	homo 70 Arg Thr Cys 35 Ala	Pro Gly 20 Ala Gly Cys	Arg 5 Ala Trp Ala Pro	Pro Ala Ala Cys	Arg Ser Ala 55 Pro	Ser Val 40 Ser	Thr 25 Trp Ala Cys	10 Thr Arg Trp	Ala Cys Ala Pro	Ser Glu Ser 60 Ser	Cys 45 Arg Cys	Ser 30 Cys Ala	15 Ala Gly Trp Pro	Ser Arg Thr Thr 80
<pre><21: <400 Met 1 Ser Gly Arg Pro 65 Trp</pre>	3> 0> Pro Arg Arg Ala 50 Arg	homo 70 Arg Thr Cys 35 Ala Ala	Pro Gly 20 Ala Gly Cys	Arg 5 Ala Trp Ala Pro Ala 85	Pro Ala Ala Cys 70 Arg	Arg Ser Ala 55 Pro	Ser Val 40 Ser Ala	Thr 25 Trp Ala Cys	10 Thr Arg Trp Arg	Ala Cys Ala Pro 75 Cys	Ser Glu Ser 60 Ser	Cys 45 Arg Cys	Ser 30 Cys Ala Ala	15 Ala Gly Trp Pro Ala 95	Ser Arg Thr Thr 80 Ala
<pre><21: <400 Met 1 Ser Gly Arg Pro 65 Trp</pre>	3> 0> Pro Arg Arg Ala 50 Arg	homo 70 Arg Thr Cys 35 Ala Ala	Pro Gly 20 Ala Gly Cys	Arg 5 Ala Trp Ala Pro Ala 85 Thr	Pro Ala Ala Cys 70 Arg	Arg Ser Ala 55 Pro	Ser Val 40 Ser Ala	Thr 25 Trp Ala Cys	Trp Arg Pro 90 Gly	Ala Cys Ala Pro 75 Cys	Ser Glu Ser 60 Ser	Cys 45 Arg Cys	Ser 30 Cys Ala Ala	15 Ala Gly Trp Pro Ala 95 Ala	Ser Arg Thr Thr 80

		115					120					125			
Cys	Pro 130	Ser	Ala	Pro	Arg	Ser 135	Gly	Pro							
<210)>	71													
<211	l>	426													
<212	2>	PRT													
<213	3>	homo	sap	i ens											
<400)>	71													
Met _. 1	Pro	<u>L</u> eu	<u>L</u> eu	Trp.	Leu	Arg	Gly	Phe	Leu 10	Leu _.	Ala	Ser	Cys	Trp 15	Ile
Ile	Val	Arg	Ser 20	Ser	Pro	Thr	Pro	Gly 25	Ser	Glu	Gly	His	Ser 30	Ala	Ala
Pro	Asp	Cys 35	Pro	Ser	Cys	Ala	Leu 40	Ala	Ala	Leu	Pro	Lys 45	Asp	Val	Pro
Asn	Ser 50	Gln	Pro	Glu	Met	Val 55	Glu	Ala	Val	Lys	Lys 60	His	Ile	Leu	Asn
Met 65	Let	ı His	Leu	Lys	Lys 70	Arg	Pro	Asp	Val	Thr 75	Gln	Pro	Val	Pro	Lys 80
Ala	Ala	a Leu	Lęu	Asn 85	Ala	Ile	Arg	Lys	Leu 90	His	Val	Gly	Lys	Val 95	Gly
Glu	Ası	n Gly	Tyr 100	Val	Glu	Ile	Glu	Asp 105	Asp	Ile	Gly	Arg	Arg 110	Ala	Glu
Met	Ası	n Glu 115	Leu	Met	Glu	Gln	Thr 120	Ser	Glu	Ile	Ile	Thr 125	Phe	Ala	Glu
Ser	Gly 130	y Thr O	Ala	Arg	Lys	Thr 135	Leu	His	Phe	Glu	Ile 140	Ser	Lys	Glu	Gly
Ser 145	Ası	p Leu	Ser	Val	Val 150	Glu	Arg	Ala	Glu	Val 155	Trp	Leu	Phe	Leu	Lys 160
Val	Pro	o Lys	Ala	Asn 165	Arg	Thr	Arg	Thr	Lys 170	Val	Thr	Ile	Arg	Leu 175	Phe
Gln	Gli	n Gln	Lys 180	His	Pro	Gln	Gly	Ser 185		Asp	Thr	Gly	Glu 190		Ala
Glu	Glı	u Val 195	Gly	Leu	Lys	Gly	Glu 200		Ser	Glu	Leu	Leu 205	Leu	Ser	Glu
Lys	Va :	l Val O	Asp	Ala	Arg	Lys 215		Thr	Trp	His	Val 220	Phe	Pro	Val	Ser
Ser	Se	r Ile	Gln	Arg	Leu	Leu	Asp	Gln	Gly	Lys	Ser	Ser	Leu	Asp	Val

225					230					235					240
Arg	Ile	Ala	Cys	Glu	Gln	Cys	Gln	Glu	Ser	Gly	Ala	Ser	Leu	Val	Leu
				245					250					255	
Leu	Gly	Lys	Lys	Lys	Lys	Lys	Glu	Glu	Glu	Gly	Glu	Gly	Lys	Lys	Lys
			260					265					270		
Gly	Gly	Gly	Glu	Gly	Gly	Ala	Gly	Ala	Asp	Glu	Glu	Lys	Glu	Gln	Ser
		275	•				280					285			
His	Arg	Pro	Phe	Leu			Gln	Ala	Arg			Glu	Asp	His	Pro
·							-			•	300	_			
	Arg	Arg	Arg	Arg		Gly	Leu	Glu	Cys		Gly	Lys	Val	Asn	
305			_		310			_		315		• •	01	m	320
Cys	Cys	Lys	Lys		Phe	Phe	Val	Ser		Lys	Asp	He	Gly		ASI
			* 1	325	D	0	01	Т	330	A1.	A ~ m	Т	C***	335	Clar
Asp	Trp	He			Pro	Ser	Gly		HIS	Ala	ASII	171		Glu	Gly
C1	C	Dmo	340		Ilo	A 1 a	C1	345	Sor	Clv	Sor	Sar	350	Sar	Dho .
GIU	Cys		ser	піѕ	116	Ala	Gly 360	1111	261	GIY	261	365	rea	261	1116
ніс	Co.	355	Vol	Ϊlα	Aon	Uic	Tyr	Ara	Mot	Ara	C1v		Ser	Pro	Phe
піз	370		Val	116	, No II	375	1 9 1	AI B	мет	nig	380	1113	501	110	1 110
Δ1a			Ive	Ser	Cvs		Val	Pro	Thr	I.vs		Arg	Pro	Met	Ser
385	11311	DCu	. Lys	501	390		141	110	****	395	200				400
	Len	Tvr	Tvr	Asp			Gln	Asn	Ile		Lvs	Lys	Asp	Ile	
	200		-,-	405		,			410		_•		-	415	
Asn	Met	Ile	Val			Cys	Gly	Cys	Ser						
			420)				425							
<21	0>	72												•	
<21	1>	868													
<21	2>	PRT													
<21	3>	homo	sap	iens	3										
<40	0>	72													
Met	Ala	ı Sei	Phe	e Pro	Glu	Thr	Asp	Phe	Gln	lle	Cys	Leu	Leu	Cys	Lys
1				5					10					15	
Glu	Met	Cys	Gly	/ Sei	Pro	Ala	Pro	Leu	Ser	Ser	Asn	Ser		Ala	Ser
			20					25					30		
Ser	Sei	Sei	s Sei	Gli	1 Thr	Sei		Ser	Ser	Gly	Gly		Gly	Gly	Gly
		35					40		_	_		45	_		
Pro	Gly	/ Ala	a Ala	a Ala	a Arg	g Arg	g Leu	His	Val	Leu	Pro	Cys	Leu	His	Ala

.

	50					55					60				
Phe	Cys	Arg	Pro	Cys	Leu	Glu	Ala	His	Arg	Leu	Pro	Ala	Ala	Gly	Gly
65					70					75					80
Gly	Ala	Ala	Gly	Glu 85	Pro	Leu	Lys	Leu	Arg 90	Cys	Pro	Val	Cys	Asp 95	Gln
Lys	Val	Val	Leu 100	Ala	Glu	Ala	Ala	Gly 105	Met	Asp	Ala	Leu	Pro 110	Ser	Ser
Ala	Phe	Leu 115	Leu	Asn	Asn	Leu	Leu 120	Asp	Ala	Val	Val	Ala 125	Thr	Ala	Asp
Glu	Pro 130	Pro	Pro	Lys	Asn	Gly 135	Arg	Ala	Gly	Ala	Pro 140	Ala	Gly	Ala	Gly
Gly 145	His	Ser	Asn	His	Arg 150	His	His	Ala	His	His 155	Ala	His	Pro	Arg	Ala 160
	Ala	Ser	Ala	Pro 165		Leu	Pro	Gln	Ala 170		Gln	Pro	Pro	Ala 175	
Ser	Arg	Ser	Ala 180		Gly	Gly	Pro	Ala 185		Ser	Pro	Ser	Ala 190		Leu
Leu	Arg	Arg 195	Pro	His	Gly	Cys	Ser 200		Cys	Asp	Glu	Gly 205		Ala	Ala
Ser	Ser 210		Cys	Leu	Asp	Cys 215	Gln	Glu	His	Leu	Cys 220		Asn	Cys	Val
Arg 225		His	Gln	Arg	Val 230			Thr	Lys	Asp 235		Tyr	Ile	Glu	Arg 240
Gly	Pro	Pro	Gly	Pro 245		Ala	Ala	Ala	Ala 250		Gln	Gln	Leu	Gly 255	Leu
Gly	Pro	Pro	Phe 260	Pro		Pro	Pro	Phe 265	Ser		Leu	Ser	Val 270	Phe	Pro
Glu	Arg	Leu 275	Gly	Phe	Cys	Gln	His 280		Asp	Asp	Glu	Val 285		His	Leu
Tyr	Cys 290		Thr	Cys	Ser	Val 295		Ile	Cys	Arg	Glu 300		Thr	Met	Gly
Arg		Gly	Gly	His	Ser 310		Ile	Tyr	Leu	Gln 315		Ala	Leu	Gln	Asp 320
		Ala	Leu	Thr 325	Ile		Leu	Leu	Ala 330	. Asp		Gln	Gln	Gly 335	Arg
Gln	Ala	Ile	Gln 340	Leu		Ile	Glu	Gln 345	Ala		Thr	Val	Ala 350	Glu	

						•			102	/271						
•	Val	Glu	Me t 355	Lys	Ala	Lys	Val	Val 360	Gln	Ser	.Glu	Val	Lys 365	Ala	Val	Thr
	Ala	Arg 370	His	Lys	Lys	Ala	Leu 375	Glu	Glu	Arg	Glu	Cys 380	Glu	Leu	Leu	Trp
	Lys 385	Val	Glu	Lys	Ile	Arg 390	Gln	Val	Lys	Ala	Lys 395	Ser	Leu	Tyr	Leu	Gln 400
	Val	Glu	Lys	Leu	Arg 405	Gln	Asn	Leu	Asn	Lys 410	Leu	Glu	Ser	Thr	I le 415	Ser
	Ala	Val	Gln_	Gln 420	<u>Val</u>	Leu	_Glu	Glu	Gly 425	Arg	Ala	Leu	Asp	Ile 430	Leu	_Leu_
	Ala	Arg	Asp 435	Arg	Met	Leu	Ala	Gln 440	Val	Gln	Glu	Leu	Lys 445	Thr	Val	Arg
	Ser	Leu 450	Leu	Gln	Pro	Gln	Glu 455	Asp	Asp	Arg	Val	Met 460	Phe	Thr	Pro	Pro
	Asp 465	Gln	Ala	Leu	Tyr	Leu 470	Ala	Ile	Lys	Ser	Phe 475	Gly	Phe	Val	Ser	Ser 480
	Gly	Ala	Phe	Ala	Pro 485	Leu	Thr	Lys	Ala	Thr 490	Gly	Asp	Gly	Leu	Lys 495	Arg
	Ala	Leu	Gln	Gļy 500	Lys	Val	Ala	Ser	Phe 505	Thr	Val	Ile	Gly	Tyr 510	Asp	His
	Asp	Gly	Glu 515	Pro	Arg	Leu	Ser	Gly 520	Gly	Asp	Leu	Met	Ser 525	Ala	Val	Val
	Leu	Gly 530	Pro	Asp	Gly	Asn	Leu 535		Gly	Ala	Glu	Val 540	Ser	Asp	Gln	Gln
	Asn 545	Gly	Thr	Tyr	Val	Val 550	Ser	Tyr	Arg	Pro	Gln 555	Leu	Glu	Gly	Glu	His 560
	Leu	Val	Ser	Val	Thr 565	Leu	Cys	Asn	Gln	His 570	Ile	Glu	Asn	Ser	Pro 575	Phe
	Lys	Val	Val	Val 580	Lys	Ser	Gly	Arg	Ser 585	Tyr	Val	Gly	Ile	Gly 590	Leu	Pro
	Gly	Leu	Ser 595	Phe	Gly	Ser	Glu	Gly 600	Asp	Ser	Asp	Gly	Lys 605	Leu	Cys	Arg
	Pro	Trp 610	Gly	Val	Ser	Val	Asp 615	Lys	Glu	Gly	Tyr	Ile 620	Ile	Val	Ala	Asp
	Arg 625	Ser	Asn	Asn	Arg	Ile 630	Gln	Val	Phe	Lys	Pro 635		Gly	Ala	Phe	His 640
	His	Lys	Phe	Gly	Thr	Leu	Gly	Ser	Arg	Pro	Gly	Gln	Phe	Asp	Arg	Pro

	•														
				645					650					655	
Ala	Gly	Val	Ala	Cys	Asp	Ala	Ser	Arg	Arg	Ile	Val	Val	Ala	Asp	Lys
			660					665					670		
Asp	Asn	His	Arg	Ile	Gln	Ile		Thr	Phe	Glu	Gly		Phe	Leu	Leu
		675		_			680					685	_	_	_
Lys		Gly	Glu	Lys	Gly		Lys	Asn	Gly	Gln		Asn	Туг	Pro	Trp
	690	41.	W7 _ 1	A	0	695	C1	Y	T 3 -	T	700	C	A ==	Th m	A
	vai	Ala	vai	ASI	Ser		GIY	Lys	116			ser	ASP	1111	720
705.	шіс	Arc	Τlα	C1n	710 Leu		Clv	Dro	Aen	715 Clv	•	Dhρ	I en	Δen	
TSII	1113		116	725	Lcu	1110	dly	110	730	diy	741	THE	Bou	735	L) S
	Glv				Ala	Leu	Trp	Lys		Phe	Asp	Ser	Pro		Gly
- 5 -	•		740	•			•	745					750		
Val	Ala	Phe	Asn	His	Glu	Gly	His	Leu	Val	Val	Thr	Asp	Phe	Asn	Asn
		755					760					765			
His	Arg	Leu	Leu	Val	Ile	His	Pro	Asp	Cys	Gln	Ser	Ala	Arg	Phe	Leu
	770					775					780				
Gly	Ser	Glu	Gly	Thr	Gly	Asn	Gly	Gln	Phe		Arg	Pro	Gln	Gly	
785					790					795					800
Ala	Val	Asp	GIn		Gly	Arg	He	He		Ala	Asp	Ser	Arg		HIS
A = ~	Vo 1	Cln	Mot	805	Clu	Car	Aon	Clar	810	Dho	Lan	Cvc	Twe	815 Pho	Clv
Arg	Vai	GIII	мет 820	rne	GIU	261	ASII	825	ser	rne	Leu	Cys	830		Gly
Ala	Gln	Glv		Glv	Phe	Glv	Gln		Asp	Arg	Pro	Ser			Ala
111 4	0111	835	501	41 ,	1110	0.,	840			0		845	,		
Ile	Thr		Asp	Gly	Met	Ile		Val	Val	Asp	Phe	Gly	Asn	Asn	Arg
	850					855					860				
Ile	Leu	Val	Phe												
865															
<21	0>	73													
		3477													
	2>			_											
		homo	sap	iens										•	
	0>		A		Wal	C1	. A = ~	C1++	Cvo	Ten	C1.	Va l	Sar	Dro	Thr
met 1	AIS	ı ASD	Arg	Arg 5	val	GIY	AIR	GIY	10	пр	GIU	, val	261	1.5	Thr
	Arg	g Arg	Pro	-	Ala	Glv	Leu	Arg		Pro	Ala	Ala	Glu		Glu
		,	, ~			3		0	3						

.

			20					25					30		
Ala	Ser	Ser	Pro	Pro	Val	Leu	Ser	Leu	Ser	His	Phe	Cys	Arg	Ser	Pro
		35					40					45			
Phe	Leu	Cys	Phe	Gly	Asp	Val	Leu	Leu	Gly	Ala	Ser	Arg	Thr	Leu	Ser
	50					55					60				
Leu	Ala	Leu	Asp	Asn	Pro	Asn	Glu	Glu	Val	Ala	Glu	Val	Lys	Ile	Ser
65					70					75					80
His	Phe	Pro	Ala	Ala	Asp	Leu	Gly	Phe	Ser	Val	Ser	Gln	Arg	Cys	Phe
			-	<u>.85</u>					9 <u>0</u>					95	
Val	Leu	Gln	Pro	Lys	Glu	Lys	Ile	Val	Ile	Ser	Val	Asn	Trp	Thr	Pro
		•	100					105					110		
Leu	Lys	Glu	Gly	Arg	Val	Arg	Glu	Ile	Met	Thr	Phe	Leu	Val	Asn	Asp
		115					120					125			
Val		Lys	His	Gln	Ala		Leu	Leu	Gly	Asn	Ala	Glu	Glu	Gln	Lys
_	130					135					140				
	Lys	Lys	Arg	Ser		Trp	Asp	Thr	Ile		Lys	Lys	Lys	Ile	
145					150					155					160
Ala	Ser	Thr	Ser		Asn	Arg	Arg	Val		Asn	He	Gln	Asn		Asn
	mı		,	165	_	۵,	_		170				_	175	_
Lys	Thr	Phe		Val	Ser	Gln	Lys		Asp	Arg	Val	Arg		Pro	Leu
01	41-	•	180		T .	4.1		185	a 1	01	0.1		190	m:	61
GIN	Ala		Glu	Asn	Leu	Ala	Met	Asn	Glu	Gly	Gly		Pro	Thr	Glu
Aan	Aan	195	T 044	T1.	Τ	Clas	200	1 a m	Y	T1.	D	205	0	D	71.
ASII		Ser	Leu	116	Leu		Glu	ASII	Lys	116		116	ser	Pro	116
Cor	210 Dro	410	Dho	Aan	C1	215	u; .	C1	A 1 a	ጥኤ ••	220	Lan	Dwa	Torr	C
225	rio	Ala	rne	W2II	230	Cys	His	GIY	Ald	235	Cys	Leu	PIO	ren	
	Ara	Δrσ	Sar	Thr		Tur	Ser	Sar	Ιωι		Δla	Sar	Clu	Acn	240
141	Λ1 B	ni 5	261	245	1111	1 9 1	261	261	250		nia	261	Giu	255	nı g
Glu	Ī en	I en	Aen		Hic	Ser	Ala	Acn			Ive	Val	Ser		Δen
Oru	Dou	DCu .	260	141	1113	501	ma	265	741	501	Lys	141	270	THE	иоп
Glu	ĭ.vs	Ala		Thr	Glu	Thr	Ser		Asn	Ser	Val	Asn		Asn	Glv
014	Dyo	275	,	****	014	1111	280		11011	501	, 41	285	141	11011	ury
Gln	Arø		Glu	Asn	Ser	Lvs	Leu		T.en	Thr	Pro		Cvs	Ser	Ser
	290	J. J	J. U	11	~01	295		~~1	204		300	.1011	J J J	501	501
Thr		Asn	Ile	Thr	Gln		Gln	Ile	His	Phe		Ser	Pro	Asp	Ser
305					310					315					320

								.00	,						
Phe	Val	Asn	Asn	Ser 325	His	Gly	Ala	Asn	Asn 330	Glu	Leu	Glu	Leu	Val 335	Thr
Cys	Leu	Ser	Ser 340	Asp	Met	Phe	Met	Lys 345	Asp	Asn	Ser	Gln	Pro 350	Val	His
Leu	Glu	Ser 355	Thr	Ile	Ala	His	Glu 360	Ile	Tyr	Gln	Lys	Ile 365	Leu	Ser	Pro
Asp	Ser 370	Phe	Ile	Lys	Asp	Asn 375	Tyr	Gly	Leu	Asn	Gln 380	Asp	Leu	Glu	Ser
Glu	<u>Ser</u>	Val	Asn	Pro	Ile	Leu	Ser	Pro.	Asn.	Gln	Phe	Leu	Lys	Asp	Asn
385					390					395					400
Met	Ala	Tyr.	Met	Cys 405	Thr	Ser	Gln	Gln	Thr 410	Cys	Lys	Val	Pro	Leu 415	Ser
Asn	Glu	Asn	Ser	Gln	Val	Pro	Gln	Ser	Pro	Glu	Asp	Trp	Arg	Lys	Ser
			420					425					430		
Glu	Val	Ser	Pro	Arg	Ile	Pro	Glu	Cys	Gln	Gly	Ser	Lys	Ser	Pro	Lys
		435					440					445			
Ala	Ile	Phe	Glu	Glu	Leu	Val	Glu	Met	Lys	Ser	Asn	Tyr	Tyr	Ser	Phe
,	450					455					460				
Ile	Lys	Gln	Asņ	Asn	Pro	Lys	Phe	Ser	Ala	Val	Gln	Asp	Ile	Ser	Ser
465					470					475					480
His	Ser	His	Asn	Lys	Gln	Pro	Lys	Arg	Arg	Pro	Ile	Leu	Ser	Ala	Thr
				485					490					495	
Val	Thr	Lys	Arg 500	Lys	Ala	Thr	Cys	Thr 505		Glu	Asn	Gln	Thr 510	Glu	Ile
Asn	Lys	Pro	Lys	Ala	Lys	Arg	Cys	Leu	Asn	Ser	Ala	Val	Gly	Glu	His
		515					520			•		525			
Glu	Lys	Val	Ile	Asn	Asn	Gln	Lys	Glu	Lys	Glu	Asp	Phe	His	Ser	Tyr
	530					535					540				
Leu	Pro	Ile	Ile	Asp	Pro	Ile	Leu	Ser	Lys	Ser	Lys	Ser	Tyr	Lys	Asn
545					550					555					560
Glu	Val	Thr	Pro	Ser 565		Thr	Thr	Ala	Ser 570		Ala	Arg	Lys	Arg 575	Lys
Ser	Asp	Gly	Ser 580		Glu	Asp	Ala	. Asn 585		Arg	; Val	Ala	. Ile 590		Glu
His	Thr	Glu 595		Arg	; Glu	Ile	Lys 600		Ile	His	Phe	Ser 605		Ser	Glu
Pro	Lys	Thr	Ser	Ala	Val	Lys	Lys	Thr	Lys	Asn	Val	Thr	Thr	Pro	Ile

	610					615					620				
Ser	Lys	Arg	Ile	Ser	Asn	Arg	Glu	Lys	Leu	Asn	Leu	Lys	Lys	Lys	Thr
625					630					635					640
Asp	Leu	Ser	Ile	Phe	Arg	Thr	Pro	Ile	Ser	Lys	Thr	Asn	Lys	Arg	Thr
				645					650					655	
Lys	Pro	Ile	Ile	Ala	Val	Ala	Gln	Ser	Ser	Leu	Thr	Phe	Ile	Lys	Pro
			660					665					670		
Leu	Lys	Thr	Asp	Ile	Pro	Arg	His	Pro	Met	Pro	Phe	Ala	Ala	Lys	Asn
		675					680					685	.		
Met	Phe	Tyr	Asp	Glu	Arg	Trp	Lys	Glu	Lys	Gln	Glu	Gln	Gly	Phe	Thr
	690	٠				695					700				
Trp	Trp	Leu	Asn	Phe	He	Leu	Thr	Pro	Asp	Asp	Phe	Thr	Val	Lys	
705					710					715					720
Asn	Ile	Ser	Glu		Asn	Ala	Ala	Thr		Leu	Leu	Gly	Ile		Asn
61		_		725		_			730	mı		a 1	.	735	
GIn	His	Lys		Ser	Val	Pro	Arg		Pro	Thr	Lys	Glu		Met	Ser
-			740	mı	. 1			745				v	750		
Leu		755	Tyr	Inr	Ala	Arg	Cys 760	Arg	Leu	Asn	Arg	765	Arg	Arg	Ala
Ala	Cys	Arg	Leu	Phe	Thr	Ser	Glu	Lys	Met	Val	Lys	Ala	Ile	Lys	Lys
	770					775					780				
Leu	Glu	Ile	Glu	Ile	Glu	Ala	Arg	Arg	Leu	Ile	Val	Arg	Lys	Asp	Arg
785					790					795					800
His	Leu	Trp	Lys	Asp	Val	Gly	Glu	Arg	Gln	Lys	Val	Leu	Asn	Trp	Leu
				805					810					815	
Leu	Ser	Tyr		Pro	Leu	Trp	Leu		Ile	Gly	Leu	Glu		Thr	Tyr
	۵,	_	820	_	_			825	_		 .		830	_	
Gly	Glu		He	Ser	Leu	Glu	Asp	Asn	Ser	Asp	Val		Gly	Leu	Ala
36 - 4	D1	835	T	4	A	T	840	m	A	D	4	845	A 1 -	41.	01
мет		116	Leu	Asn	Arg		Leu	Irp	Asn	Pro		116	Ala	Ala	GIU
Ф	850	TT : _	D a	ΨL	17 n 1	855 D=-	TT:_	T	Т	A	860	C1	11: -	01	6 1
	Arg	HIS	Pro	Inf		Pro	His	Leu	IYI		ASP	GIY	HIS	GIU	
865	Τ	C = =	T	Dha	870	Lou	T	T 0	T ou	875	Lau	T ou	Wa 1	C	880
Ald	Leu	ser	LYS		IIII	Leu	Lys	гуѕ	890		ren	red	Val		rne
Lon	Ann	Тт, +	۸1 م	885	Tla	Car	۸	Lou			ціс	Aon	D=0	895	Lou
Իգդ	ush	ı yı		гÃЯ	116	261	Arg	905		ush	1112	ush			ren
			900					500					910		

Phe		Lys 915	Asp	Ala	Glu		Lys . 920	Ala	Ser	Lys	Gl1	u Ile 925	Leu	Leu	Ala
Phe	Ser 930	Arg	Asp	Phe	Leu	Ser 935	Gly	Glu	Gly	Asr	94	u Ser O	Arg	His	Leu
	Leu	Leu	Gly	Leu		Val	Asn	His	Val			r Pro	Phe	Asp	
945					950					95	5				960
Phe	Asp	Phe	Ala	Val 965	Thr	Asn	Leu	Ala	970		o Le	u Gln	Cys	Gly 975	
Arg	Leu	<u>Val</u>	Arg	Thr	Me t	Ģlu.	Leu	Leu	Thr	Gli	n As	n Trp	Asp	Leu	Ser
			980					985					990)	
Lys	Lys	Leu	Arg	Ile	Pro	Ala	Ile	Se	r Aı	g L	eu G	ln Ly	s M	let H	is Asn
		995					1000)				10	05		
Val	Asp	H	e Va	l Le	u Gli	ı Val	Le	u L	ys S	Ser .	Arg	Gly	Ile	Glu	Leu
	1010)				101	5					1020			
Ser	Asp	Gl	u Hi	s Gl	y Ası	ı.Thi	· Il	e L	eu S	Ser :	Lys	Asp	Ile	Val	Asp
	102	5				103	30					1035			
Arg	His	Ar	g Gl	u Ly	s Th	r Lei	ı Ar	g L	eu I	Leu :	Trp	Lys	Ile	Ala	Phe
	1040	0				104	1 5					1050			
Ala	Phe	Gl	n Ya	l As	p Il	e Se	r Le	eu A	sn l	Leu	Asp	Gln	Leu	Lys	Glu
	105	5				10	60					1065			
Glu	Ile	Al	a Ph	e Le	u Ly	s Hi	s Th	ır L	ys :	Ser	Ile	Lys	Lys	Thr	Ile
	107	0				10	75					1080			
Ser	Leu	Le	u Se	r Cy	s Hi	s Se	r As	sp A	sp]	Leu	Ile	Asn	Lys	Lys	Lys
	108	5				10	90					1095			
Gly	Lys	Ar	g As	p Se	r Gl	y Se	r Pi	ne G	lu (Gln	Tyr	Ser	Glu	Asn	Ile
	110	0				11	05					1110			
Lys	Leu	Le	u Me	t As	p Tr	p Va	l As	sn A	la	Val	Cys	Ala	Phe	Tyr	Asn
	111	5				11	20					1125			
Lys	Lys	Va	l Gl	u As	n Ph	e Th	r V	al S	er :	Phe	Ser	Asp	Gly	Arg	Val
	113	0				11	35					1140			
Leu	Cys	Ту	r Le	u Il	e Hi	s Hi	s T	yr E	lis	Pro	Cys	Tyr	Val	Pro	Phe
	114	5				11	50					1155			
Asp	Ala	. 11	e Cy	s Gl	n Ar	g Th	r T	hr G	3ln	Thr	Val	Glu	Cys	Thr	Gln
	116	0				11	65					1170			
Thr	Gly	Se	r Va	ıl Va	ıl Le	u As	n S	er S	Ser	Ser	Glu	Ser	Asp	Asp	Ser
	117	5				11	80					1185		•	
Ser	Leu	As	р Ме	et Se	er Le	u Ly	s A	la F	Phe	Asp	His	Glu	Asn	Thr	Ser

	1190					1195					1200			
Glu	Leu	Tyr	Lys	Glu	Leu	Leu	Glu	Asn	Glu	Lys	Lys	Asn	Phe	His
	1205					1210					1215			
Leu	Val	Arg	Ser	Ala	Val	Arg	Asp	Leu	Gly	Gly	Ile	Pro	Ala	Met
,	1220					1225					1230			
Ile	Asn	His	Ser	Asp	Met	Ser	Asn	Thr	Ile	Pro	Asp	Glu	Lys	Val
	1235					1240					1245			
Val	Ile	Thr	Tyr	Leu	Ser	Phe	Leu	Cys	Ala	Arg	Leu	Leu	Asp	Leu
	1250					1255				-	1260			
Arg	Lys	Glu	Ile	Arg	Ala	Ala	Arg	Leu	Ile	Gln	Thr	Thr	Trp	Arg
	1265					1270					1275			
Lys	Tyr	Lys	Leu	Lys	Thr	Asp	Leu	Lys	Arg	His	Gln	Glu	Arg	Glu
	1280					1285					1290			
Lys	Ala	Ala	Arg	Ile	Ile	Gln	Leu	Ala	Val	Ile	Asn	Phe	Leu	Ala
:	1295					1300					1305			
Lys	Gln	Arg	Leu	Arg	Lys	Arg	Val	Asn	Ala	Ala	Leu	Val	Ile	Gln
	1310					1315					1320			
Lys	Tyr	Trp	Arg	Arg	•	Leu		Gln	Arg	Lys	Leu	Leu	Met	Leu
	1325		•			1330					1335			
			Lys	Leu	Glu	Lys		Gln	Asn			Ala	Ser	Leu
			_	_		1345		_			1350	_		_
He		Gly	Tyr	Trp	Arg	Arg		Ser	Thr	Arg		Arg	Phe	Leu
-	1355		<i>m</i>		•	1360			01	0	1365			37)
Lys			Tyr	lyr	Ser	Ile		Leu	GIN	Ser			Arg	мет
Tlo	1370		Vol.	ጥե •	C 0 m	1375		A = ~	Т	Lou	1380		ጥኤ	Wo I
116	1385		Val	1111	261	Tyr 1390		AIg	1 9 1	Leu	11p 1395	Ala	1111	Vai
Thr			Δισ	Hic	Trn	Arg		Tvr	Ī <u>6</u> 11	Aro		Ινο	Gln	Aen
1111	1400		111 6	1115	пр	1405		1,1	Dou	**** 5	1410		O I II	пор
Gln			Tvr	Glu	Met	Leu		Ser	Ser	Thr			Ile	Gln
	1415		-,-			1420					1425			
Ser			Arg	Lys	Trp	Lys		Arg	Lys	Met			Gln	Val
	1430		Ū		_	1435		_			1440			
Lys			Val	Ile	Leu	Gln		Ala	Phe	Arg	Glu	Trp	His	Leu
-	1445					1450					1455			
Arg	Lys	Gln	Ala	Lys	Glu	Glu	Asn	Ser	Ala	Ile	Ile	Ile	Gln	Ser
	1460					1465					1470			

	Tyr 1475	Arg	Met	His	Lys	Glu 1480			Lys	Tyr	Ile 1485	Tyr	Ile	Arg
	Cys 1490	Val	Val	Ile	Ile	Gln 1495	Lys	Arg	Phe	Arg	Cys 1500	Phe	Gln	Ala
	Lys 1505	Leu	Tyr	Lys	Arg	Arg 1510				Ile	Leu 1515		Ile	Gln
	Tyr 1520	Tyr	Lys	Ala	Tyr	Leu 1525	Lys	Gly	Lys	Ile	Glu 1530	Arg	Thr	Asn
	Ļęu 1535	[Glņ	<u>Lys</u>	Arg	Ala	Ala 1540			Gln	Leu	Gln 1545	Ala	Ala	Phe
Arg	Arg 1550		Lys	Ala	His	Asn 1555		Cys	Arg	Gln	Ile 1560	Arg	Ala	Ala
Cys	Val 1565		Gln	Ser	Tyr	Trp 1570			Arg	Gln	Asp 1575	Arg	Val	Arg
Phe	Leu 1580		Leu	Lys	Lys	Thr 1585		Ile	Lys	Phe	Gln 1590	Ala	His	Val
Arg	Lys 1595		Gln	Gln	Arg	Gln 1600		Tyr	Lys	Lys	Met 1605	Lys	Lys	Ala
Ala	Val 1610		Ile	Gln	Thr	His 1615		Arg		Tyr	4 0 0 0		Ala	Met
Lys	Val 1625		Ala	Ser	Tyr	Gln 1630							Ile	Val
Leu	Gln 1640		Ala	Tyr	Arg	Gly 1645				Arg			Tyr	Ile
His	Ile 1655		Thr	Ser	Val	Ile 1660	-	Ile	Gln	Ser	Tyr 1665	-	Arg	Ala
Tyr	Val 1670		Lys	Lys		Phe 1675		Ser	Leu	Lys	Asn 1680		Thr	Ile
Lys	Leu 1685		Ser	Thr	Val	Lys 1690		Lys	Gln	Thr	Arg 1695		Gln	Tyr
Leu	His 1700		Arg	Ala	Ala	Ala 1705		Phe	Ile	Gln	Gln 1710		Tyr	Arg
Ser	Lys 1715		Ile	Ala	Ala	Gln 1720	-	Arg	Glu	Glu	Tyr 1725		Gln	Met
Arg	Glu 1730		Cys	Ile	Lys	Leu 1735		Ala	Phe	Val	Arg 1740		Tyr	Leu
Val	Arg	Lys	Gln	Met	Arg	Leu	Gln	Arg	Lys	Ala	Val	Ile	Ser	Leu

	1745					1750					1755			
Gln	Ser	Tyr	Phe	Arg	Met	Arg	Lys	Ala	Arg	Gln	Tyr	Tyr	Leu	Lys
	1760					1765					1770			
Met	Tyr	Lys	Ala	Ile	Ile	Val	Ile	Gln	Asn	Tyr	Tyr	His	Ala	Tyr
	1775					1780					1785			
Lys	Ala	Gln	Val	Asn	Gln	Arg	Lys	Asn	Phe	Leu	Gln	Val	Lys	Lys
	1790					1795					1800			
Ala	Ala	Thr	Cys	Leu	Gln	Ala	Ala	Tyr	Arg	Gly	Tyr	Lys	Val	Arg
	1805					1810					1815			
Gln	Leu	He	Lys	Gln	Gln	Ser	Ile	Ala	Ala	Leu	Lys	Ile	Gln	Ser
	1820					1825					1830			
Ala	Phe	Arg	Gly	Tyr	Asn	Lys	Arg	Val	Lys	Tyr	Gln	Ser	Val	Leu
•	1835					1840					1845			
Gln	Ser	Ile	Ile	Lys	Ile	Gln	Arg	Trp	Tyr	Arg	Ala	Tyr	Lys	Thr
	1850					1855					1860			
Leu	His	Asp	Thr	Arg	Thr	His	Phe	Leu	Lys	Thr	Lys	Ala	Ala	Val
	1865					1870					1875			
Ile	Ser	Leu	Gln	Ser	Ala		Arg	Gly	Trp	Lys		Arg	Lys	Gln
	1880	_				1885					1890	•		
He	Arg	Arg	Glu	His	Gln		Ala	Leu	Lys	Ile		Ser	Ala	Phe
	1895	4.1				1900				_	1905	_		
Arg	Met	Ala	Lys	Ala	Gln		Gln	Phe	Arg	Leu		Lys	Thr	Ala
A 1 -	1910	W- 1	T1_	C1	O1	1915	DI	A	A 1 -	m	1920		61	
Ala	Leu	vaı	116	GIN	GIN		rne	Arg	Ala	irp		Ala	Gly	Arg
Lvc	1925	Ctro	Mot	Clu	Т	1930	C1	T ou	A n.a.	IIio	1935	Vol	T 0.11	Va l
га	Gln 1940	Cys	Met	GIU	1 9 1	1945	GIU	reu	Alg	піѕ	1950	Val	ren	vai
Len	Gln	Ser	Met	Trn	Tvc		Tve	Thr	Ī A11	Δrσ		Cln	ľΔn	Gln
Dog	1955	501	140 0	110	נינים	1960	טעמ	1111	Deu	111 6	1965	UIII	LCu	GIII
Arg	Gln	His	Lvs	Cvs	Ala		He	He	Gln	Ser		Tvr	Arg	Met
,	1970		-,-	-,-		1975			••••		1980	- 3 -	*** 6	1201
His	Val	Gln	Gln	Lys	Lys		Lys	Ile	Met	Lys		Ala	Ala	Leu
	1985			•	-	1990	•	-		• •	1995			
Leu	Ile	Gln	Lys	Tyr	Tyr		Ala	Tyr	Ser	Ile		Arg	Glu	Gln
	2000					2005					2010	_		
Asn	His	Leu	Tyr	Leu	Lys	Thr	Lys	Ala	Ala	Val	Val	Thr	Leu	Gln
	2015					2020					2025			

Ser	Ala 2030	Tyr	Arg	Gly		Lys 2035				Arg	Ile 2040	Lys	Asp	Cys
Asn	Lys 2045	Ala	Ala	Val	Thr	Ile 2050	Gln	Ser	Lys	Tyr	Arg 2055	Ala	Tyr	Lys
Thr	Lys 2060	Lys	Lys	Tyr	Ala	Thr 2065	Tyr	Arg		Ser	Ala 2070	Ile	Ile	Ile
Gln	Arg 2075	Trp	Tyr		Gly	Ile 2080	Lys	Ile	Thr	Asn	His 2085	Gln	His	Lys
Ģļų	Tyr 2090			Leu		Lys. 2095				Lyș	Ile 2100	Gln	Ser	Va _l 1
Tyr	Arg 2105	Gly	Ile		Val	Arg 2110	_			Gln	His 2115	Met	His	Arg
Ala	Ala 2120	Thr	Phe		-	Ala 2125	Met	Phe	Lys	Met	His 2130	Gln	Ser	Arg
Ile	Ser 2135	Tyr	His	Thr	Met	Arg 2140					Val 2145	Ile	Gln	Val
Arg	Cys 2150	Arg	Ala			Gln 2155				Gln	Arg 2160	Glu	Lys	Tyr
Leu	Thr 2165	Ile	Ļeu	Lys	Ala	Val 2170					Ala 2175	Ser	Phe	Arg
Gly			Val		Arg	Thr	Leu	Arg	Lys	Met	Gln		Ala	Ala
Thr		Ile				Tyr 2200	Arg	Arg	Tyr	Arg	Gln	Gln	Thr	Tyr
Phe		Lys				Ile 2215						Gln	Arg	Tyr
Trp		Met	Lys	Glu	Arg	Asn 2230		Gln	Phe	Gln		Tyr	Asn	Lys
Leu		His	Ser	Val	Ile	Tyr 2245	Ile	Gln	Ala	Ile		Arg	Gly	Lys
Lys		Arg	Arg	His	Leu	Lys 2260	Met	Met	His	Ile		Ala	Thr	Leu
Ile		Arg	Arg	Phe	Arg	Thr 2275	Leu	Met	Met	Arg		Arg	Phe	Leu
Ser		Lys	Lys	Thr		Ile 2290	Leu	Ile	Gln	Arg		Tyr	Arg	Ala
His			Thr	Lys		His		Gln	Phe	Leu			Gln	Asn

.

	2300					2305					2310			
Ala	Val	Ile	Lys	Ile	Gln	Ser	Ser	Tyr	Arg	Arg	Trp	Met	Ile	Arg
	2315					2320		•			2325			
Lys	Arg	Met	Arg	Glu	Met	His	Arg	Ala	Ala	Thr	Phe	Ile	Gln	Ser
	2330					2335					2340			
Thr	Phe	Arg	Met	His	Arg	Leu	His	Met	Arg	Tyr	Arg	Ala	Leu	Lys
	2345					2350					2355			
Gln	Ala	Ser	Val	Val	He	Gln	Gln	Gln	Tyr	Gln	Ala	Asn	Arg	Ala
	2360					2365					2370			
Ala	Lys	Leu	Gln	Arg	Gln	His	Tyr	Leu	Arg	Gln	Arg	His	Ser	Ala
	2375					2380					2385			
Val		Leu	Gln	Ala	Ala			Gly	Met	Lys	Thr	Arg	Arg	His
_	2390	_			_	2395			_		2400	_	_	
Leu		Ser	Met	His	Ser				Leu	Ile	Gln	Ser	Arg	Phe
	2405	T		77 1		2410			* 1	^	2415	.		. 1
Arg		Leu	Leu	vai	Arg				He	Ser	Leu	Lys	Lys	Ala
Th =	2420	Dha	Vol.	C1m	A	2425			41a	Th	2430	C	A 1 ~	T
IIII			Val	•				Arg	Ala	шг	Ile	Cys	Ala	Lys
Иiс	2435		Tarr			2440		ارم آ	Ara	Lve	2445 Ala	Λla	ماآ	Th r
1113	2450	Leu	1 9 1	GIII	1116	2455	1113	Leu	nig	гуз	2460		116	1111
Ile		Ser	Ser	Tvr	Arø		Len	Met	Val	Į.vs	Lys		Len	Gln
110	2465	DUI	DUI	131	8	2470		MCt	741	DJS	2475	шуо	Deu	O I II
Glu		Gln	Arg	Ala	Ala			Ile	Gln	Ala	Thr	Phe	Arg	Met
	2480					2485					2490			
His		Thr	Tyr	Ile	Thr			Thr	Trp	Lys	His	Ala	Ser	Ile
	2495					2500					2505			
Leu	Ile	Gln	Gln	His	Tyr	Arg	Thr	Tyr	Arg	Ala	Ala	Lys	Leu	Gln
•	2510					2515					2520			
Arg	Glu	Asn	Tyr	Ile	Arg	Gln	Trp	His	Ser	Ala	Val	Val	Ile	Gln
	2525					2530					2535			
Ala	Ala	Tyr	Lys	Gly	Met	Lys	Ala	Arg	Gln	Leu	Leu	Arg	Glu	Lys
	2540					2545					2550			
His	Lys	Ala	Ser	Ile	Val	Ile	Gln	Ser	Thr	Tyr	Arg	Met	Tyr	Arg
	2555					2560					2565			
Gln	Tyr	Cys	Phe	Tyr	Gln	Lys	Leu	Gln	Trp	Ala	Thr	Lys	Ile	Ile
	2570					2575					2580			

								•	.0,2	•					
	Gln	Glu 2585	Lys	Tyr	Arg	Ala	Asn 2590	Lys	Lys	Lys	Gln	Lys 2595	Val	Phe	Gln
	His	Asn 2600	Glu	Leu	Lys	Lys	Glu 2605	Thr	Cys	Val	Gln	Ala 2610	Gly	Phe	Gln
	Asp	Met 2615	Asn	Ile	Lys	Lys	Gln 2620	Ile	Gln	Glu	Gln	His 2625	Gln	Ala	Ala
	Ile	Ile 2630	Ile	Gln	Lys	His	Cys 2635	Lys	Ala	Phe	Lys	Ile 2640	Arg	Lys	His
•• -	Tyr	Leu 2645	His	Leu	Arg	Ala	Thr_ 2650	Val	.Val	Ser	Ile	Gln_ 2655	Arg	Arg	Tyr
	Arg	Lys 2660	Leu	Thr	Ala	Val	Arg 2665	Thr	Gln	Ala	Val	Ile 2670	Cys	Ile	Gln
	Ser	Tyr 2675	Tyr	Arg	Gly	Phe	Lys 2680	Val	Arg	Lys	Asp	Ile 2685	Gln	Asn	Met
	His	Arg 2690	Ala	Ala	Thr	Leu	Ile 2695		Ser	Phe	Tyr	Arg 2700	Met	His	Arg
	Ala	Lys 2705	Val	Asp	Tyr	Glu	Thr 2710	Lys	Lys	Thr	Ala	Ile 2715	Val	Val	Ile
	Gln	Asn 2720	Tyr	Ţyr	Arg	Leu	Tyr 2725	Val	Arg	Val	Lys	Thr 2730	Glu	Arg	Lys
	Asn	Phe 2735	Leu	Ala	Val	Gln	Lys 2740	Ser	Val	Arg	Thr	Ile 2745	Gln	Ala	Ala
	Phe	Arg 2750	Gly	Met	Lys	Val	Arg 2755	Gln	Lys	Leu	Lys	Asn 2760	Val	Ser	Glu
	Glu	Lys 2765	Met	Ala	Ala	Ile	Val 2770		Gln	Ser	Ala	Leu 2775	Cys	Cys	Tyr
	Arg	Ser 2780	Lys	Thr	Gln	Tyr	Glu 2785		Val	Gln	Ser	Glu 2790	Gly	Val	Met
,	Ile	Gln 2795	Glu	Trp	Tyr	Lys	Ala 2800		Gly	Leu	Ala	Cys 2805	Ser	Gln	Glu
	Ala	Glu 2810	Tyr	His	Ser	Gln	Ser 2815		Ala	Ala	Val	Thr 2820	Ile	Gln	Lys
	Ala	Phe 2825	Cys	Arg	Met	Val	Thr 2830		Lys	Leu	Glu	Thr 2835	Gln	Lys	Cys
	Ala	Ala 2840	Leu	Arg	Ile	Gln	Phe 2845		Leu	Gln	Met	Ala 2850	Val	Tyr	Arg
	Arg	Arg	Phe	Val	Gln	Gln	Lys	Arg	Ala	Ala	Ile	Thr	Leu	Gln	His

	2855					2860					2865			
Tyr	Phe	Arg	Thr	Trp	Gln	Thr	Arg	Lys	Gln	Phe	Leu	Leu	Tyr	Arg
	2870					2875					2880			
Lys	Ala	Ala	Val	Val	Leu	Gln	Asn	His	Tyr	Arg	Ala	Phe	Leu	Ser
	2885					2890					2895			
Ala	Lys	His	Gln	Arg	Gln	Val	Tyr	Leu	Gln	Ile	Arg	Ser	Ser	Val
	2900					2905					2910			
											Gln	•		
											2925			
Phe		Glu	He	Lys	Asn		Thr	Ile	Lys	Ile	Gln	Ala	Met	Trp
	2930	m				2935		-	•	_	2940	_		
Arg		Tyr	Arg	Ala	Lys		Tyr	Leu	Cys	Lys	Val	Lys	Ala	Ala
Cvva	2945	T l o	Cln	410	Т т т	2950	A = ~	C	Т	A == ~	2955	п: -	Y	C1
Cys	2960	116	GIII	Ala	11p	2965	Arg	Cys	11p	Arg	Ala 2970	HIS	Lys	GIU
Tyr		Ala	Πρ	I en	Tve		Val	Ινο	110	בוז	Gln	C1v	Cvc	Dho
1 y 1	2975	nia	116	Leu	гуз	2980	vai	гуз	116	116	2985	Gly	Cys	LIIC
Tvr		Lvs	Len	Gln	Arg		Arø	Phe	Len	Asn	Val	Aro	Ala	Ser
-,-	2990	2,5	Dou	oru,	****	2995	*****	1110	Dou	71011	3000	6	711 U	501
Ala		Ile	Ile	Gln	Arg		Trp	Arg	Ala	Ile	Leu	Pro	Ala	Lvs
	3005					3010					3015			-,-
Ile	Ala	His	Glu	His	Phe	Leu	Met	Ile	Lys	Arg	His	Arg	Ala	Ala
	3020					3025					3030			
Cys	Leu	Ile	Gln	Ala	His	Tyr	Arg	Gly	Tyr	Lys	Gly	Arg	Gln	Val
	3035					3040					3045			
Phe	Leu	Arg	Gln	Lys	Ser	Ala	Ala	Leu	I l·e	Ile	Gln	Lys	Tyr	Ile
	3050					3055					3060			
Arg	Ala	Arg	Glu	Ala	Gly	Lys	His	Glu	Arg	Ile	Lys	Tyr	Ile	Glu
•	3065					3070					3075			
Phe		Lys	Ser	Thr	Val		Leu	Gln	Ala	Leu	Val	Arg	Gly	Trp
_	3080	_				3085					3090			
Leu		Arg	Lys	Arg	Phe		Glu	Gln	Arg	Ala	Lys	Ile	Arg	Leu
	3095	~ .				3100	_	_			3105			
Leu		Phe	Thr	Ala	Ala		Tyr	Tyr	HIS	Leu	Asn	Ala	Val	Arg
T1 -	3110	۸	A 1 =	m ·-	T	3115	ጥ	T	A 1 =	W- 1	3120	A	A 1 -	A
116		Arg	AIA	ıyr	ГÀS		IÀL	ьeu	AIA	val	Lys	ASN	AIA	ASI
	3125					3130					3135			

Lys		Val	Asn			•					Trp	Phe	Arg	Ala
	3140					3145					3150			
Arg	Leu 3155	Gln	Glu	Lys	Arg	Phe 3160				Tyr	His 3165	Ser	Ile	Lys
T *** 0		C1.,	шіс	Clu	Clv					C 0 #		A = ~	Aon	۸
L A 2		GIU	піз				GIU	Cys	Leu	Ser	Gln	Arg	ASII	Arg
A 1 -	3170	G	¥7 - 1			3175		1			3180		-	
Ala		Ser	vaı	116	GIN						Phe	Leu	Leu	Arg
_	3185			_		3190					3195			
Lys		<u>G</u> In	Glu	Lys	Phe		Ser	Gly	Ile	He	Lys	lle	Gln	Ala
_	3200			_	_							_		
Leu		Arg	Gly	Tyr	Ser			-	-		Asp	Cys	Thr	Lys
	3215					3220								
Ile	Lys	Ala	Ile	Arg	Leu						Asn	Arg	Glu	Ile
	3230					3235					3240			
Arg	Glu	Glu	Asn	Lys	Leu						Leu	Ala	Leu	His
•	3245					3250				•	3255			
Tyr	Leu	Leu	Thr	Tyr	Lys	His	Leu	Ser	Ala	Ile	Leu	Glu	Ala	Leu
	3260					3265					3270			
Lys	His	Leu	Glu	Val	Val	Thr	Arg	Leu	Ser	Pro	Leu	Cys	Cys	Glu
	3275					3280					3285			
Asn	Met	Ala	Gln	Ser	Gly	Ala	Ile	Ser	Lys	Ile	Phe	Val	Leu	Ile
	3290					3295			•		3300			
Arg	Ser	Cys	Asn	Arg	Ser	Ile	Pro	Cys	Met	Glu	Val	Ile	Arg	Tyr
	3305					3310					3315			
Ala	Val	Gln	Val	Leu	Leu	Asn	Val	Ser	Lys	Tyr	Glu	Lys	Thr	Thr
	3320					3325					3330			
Ser	Ala	Val	Tyr	Asp	Val	Glu	Asn	Cys	Ile	Asp	Ile	Leu	Leu	Glu
	3335					3340					3345			
Leu	Leu	Gln	Ile	Tyr	Arg	Glu	Lys	Pro	Gly	Asn	Lys	Val	Ala	Asp
	3350					3355					3360			
Lys	Gly	Gly	Ser	Ile	Phe	Thr	Lys	Thr	Cys	Cys	Leu	Leu	Ala	He
	3365					3370					3375			
Leu	Leu	Lys	Thr	Thr	Asn	Arg	Ala	Ser	Asp	Val	Arg	Ser	Arg	Ser
	3380					3385					3390			
Lys	Val	Val	Asp	Arg	Ile	Tyr	Ser	Leu	Tyr	Lys	Leu	Thr	Ala	His
	3395					3400					3405			
Lys	His	Lys	Met	Asn	Thr	Glu	Arg	Ile	Leu	Tyr	Lys	Gln	Lys	Lys

Asn Ser Ser Ile Ser Ile Pro Phe Ile Pro Glu Thr Pro Val Arg Thr Arg Ile Val Ser Arg Leu Lys Pro Asp Trp Val Leu Arg Arg Asp Asn Met Glu Glu Ile Thr Asn Pro Leu Gln Ala Ile Gln Met Val Met Asp Thr Leu Gly Ile Pro Tyr <210> 74 **<211>** 398. <212> PRT <213> homo sapiens **<400>** 74 Met Ala Ala Val Ala Val Leu Arg Asn Asp Ser Leu Gln Ala Phe Leu Gln Asp Arg Thr Pro Ser Ala Ser Pro Asp Leu Gly Lys His Ser Pro Leu Ala Leu Leu Ala Ala Thr Cys Ser Arg Ile Gly Gln Pro Gly Ala Ala Ala Pro Pro Asp Phe Leu Gln Val Pro Tyr Asp Pro Ala Leu Gly Ser Pro Ser Arg Leu Phe His Pro Trp Thr Ala Asp Met Pro Ala His Ser Pro Gly Ala Leu Pro Pro Pro His Pro Ser Leu Gly Leu Thr Pro 90 . Gln Lys Thr His Leu Gln Pro Ser Phe Gly Ala Ala His Glu Leu Pro Leu Thr Pro Pro Ala Asp Pro Ser Tyr Pro Tyr Glu Phe Ser Pro Val Lys Met Leu Pro Ser Ser Met Ala Ala Leu Pro Ala Ser Cys Ala Pro Ala Tyr Val Pro Tyr Ala Ala Gln Ala Ala Leu Pro Pro Gly Tyr Ser Asn Leu Leu Pro Pro Pro Pro Pro Pro Pro Pro Pro Thr Cys Arg Gln Leu Ser Pro Asn Pro Ala Pro Asp Asp Leu Pro Trp Ser Ile

				180					185					190		
	Pro	Gln	Ala	Gly	Ala	Gly	Pro	Gly	Ala	Ser	Gly	Val	Pro	Gly	Ser	Gly
			195					200					205			
	Leu	Ser	Gly	Ala	Cys	Ala	Gly	Ala	Pro	His	Ala	Pro	Arg	Phe	Pro	Ala
		210					215					220				
	Ser	Ala	Ala	Ala	Ala	Ala	Ala	Ala	Ala	Ala	Ala	Leu	Gln	Arg	Gly	Leu
	225					230					235					240
	Val	Leu	Gly	Pro	Ser	Asp	Phe	Ala	Gln	Tyr	Gln	Ser	Gln	Ile	Ala	Ala
					245					250					255	
	Leu	Leu	Gln	Thr	Lys	Ala	Pro	Leu	Ala	Ala	Thr	Ala	Arg	Arg	Cys	Arg
				260					265					270		
	Arg	Cys	Arg	Cys	Pro	Asn	Cys	Gln	Ala	Ala	Gly	Gly	Ala	Pro	Glu	Ala
			275					280					285			
	Glu		Gly	Lys	Lys	Lys	Gln	His	Val	Cys	His	Val	Pro	Gly	Cys	Gly
		290					295					300				
		Val	Tyr	Gly	Lys		Ser	His	Leu	Lys		His	Leu	Arg	Trp	
•	305					310					315					320
	Thr	Gly	Glu	Arg		Phe	Val	Cys	Asn		Leu	Phe	Cys	Gly		Ser
	~.	m1		,	325		_			330	_				335	~ 1
	Phe	Thr	Arg		Asp	Glu	Leu	Gln		HIS	Leu	Arg	Thr		Thr	Gly
	C 1	T	A	340	A 1 -	0	D	01	345	01	Y	A	DL -	350	A	0
	GIU	Lys	_	Pne	Ala	Cys	Pro	Glu	Cys	GIY	Lys	Arg		мет	Arg	ser
	Aon	Шio	355	A 1 o	T 170	u: o	Vo 1	360	Th.	u; c	Cln	Aon	365	T 77.0	Lou	Ϊ 170
	ASP	370		Ala	LYS	піз	375	Lys	İIII	піз	GIII	380		LYS	ren	гаг
	Va 1			Δ1α	C1v	Val		Arg	Clu	Aen	Λla			ĪΔII		
	385		UIU	Ara	GIY	390	Буз	ME	Ulu	лор	395	mg	usp	LCu		
	<21	٠.	75			000					000					
	<21		514													
	<21		PRT													
	< 21	_		sap	iens											
	<40		75	-												
				Asp	Phe	Arg	Tyr	Tyr	Phe	Gln	His	Pro	Trp	Ser	Arg	Met
	1				5					10					15	
	Ile	Val	Ala	Tyr	Leu	Val	Ile	Phe	Phe	Asn	Phe	Leu	Ile	Phe	Ala	Glu
				20					25					30		
	Asp	Pro	Val	Ser	His	Ser	Gln	Thr	Glu	Ala	Asn	Val	Ile	Val	Val	Gly

	•	35					40					45			
Asn	Cys	Phe	Ser	Phe	Val	Thr	Asn	Lys	Tyr	Pro	Arg		Val	Gly	Trp
	50					55					60				
Arg	Ile	Leu	Lys	Val	Leu	Leu	Trp	Leu	Leu	Ala	Ile	Leu	Thr	Gly	Leu
65					70					75					80
Ile	Ala	Gly	Lys		Leu	Phe	His	Gln		Leu	Phe	Gly	Gln	Leu	Leu
A	T		W. J	85	4.	01			90	_	_			95	
Arg	Leu	Lys			Arg	Glu	Asp		Gly	Ser	Trp	Met		Met	Phe
Phe	Ser	Thr	100		Phe	ľΔ11	Dha	105	Dho	Sor	Uio	Tla	110	1 an	 Th.
1110	DCI	1115	110	LCu	THE	Leu	120	116	rne	261	піѕ	125	IJI	ASII	1111
Ile	Leu		Met	Asp	Gly	Asn		Gly	Ala	Tyr	Ile		Thr	Asp	Tyr
	130					135					140			•	
Met	Gly	Ile	Arg	Asn	Glu	Ser	Phe	Met	Lys	Leu	Ala	Ala	Val	Gly	Thr
145					150	•				155					160
Trp	Met	Gly	Asp		Val	Thr	Ala	Trp	Met	Val	Thr	Asp	Met	Met	Leu
	4	_	_	165					170					175	
Gln	Asp	Lys		Tyr	Pro	Asp	Trp		Lys	Ser	Ala	Arg		Phe	Trp
Τ *** 0	T ***	C1	180	17. 1	A	T1 -	TI	185	D1	m	m1	** 1	190	D 1	mı
Lys	LYS	195	ASII	Vai	Arg	116		Leu	rne	Trp	Thr		Leu	Phe	Thr
T.en	Thr		Val	Val	Val	I en	200 Val	בוז	Thr	Th r	Acn	205	Ilo	Sor	Trn
Dou	210	501	,	141	741	215	141	110	1111	1111	220	пр	116	261	11 þ
Asp		Leu	Asn	Arg	Gly		Leu	Pro	Ser	Asp		Val	Ser	Arg	Ala
225					230					235					240
Phe	Leu	Ala	Ser	Phe	Ile	Leu	Val	Phe	Asp	Leu	Leu	Ile	Val	Met	Gln
				245					250					255	
Asp	Trp	Glu		Pro	His	Phe	Met	Gly	Asp	Val	Asp	Val	Asn	Leu	Pro
	_		260	_				265					270		
Gly	Leu		Thr	Pro	His	Met		Phe	Lys	Ile	Pro		Phe	Gln	Lys
Tla	Dho	275	Clu	C1	Т	A	280	TT: -	Y 1 -	m1	01	285		D.	
116	290	гÃЯ	GIU	GIU	Tyr	Arg 295	116	uis	116	111	300	ГÀS	ırp	rne	ASN
Tvr		Ile	He	Phe	Leu		Ĭ.e11	Πe	Len	Asn		Asn	Met	Trn	Ινο
305	,				310	,	20 u	110	20 u	315	Dou	11011	1110 6	111	320
	Gln	Ile	Phe	Tyr	Lys	Pro	His	Glu	Tyr		Gln	Tyr	Ile	Gly	
				325					330	-				335	

WO 2005/014818 PCT/JP2004/011650

Gly Gln Lys	Ile Tyr Th	r Val Lys	Asp Ser Glu 345	Ser Leu Lys 350	
Asn Arg Thr 355	Lys Leu Se	r Trp Glu 360	Trp Arg Ser	Ash His Thr 365	Asn Pro
Arg Thr Asn 370	Lys Thr Ty	r Val Glu 375	Gly Asp Met	Phe Leu His 380 ·	Ser Arg
Phe Ile Gly 385	Ala Ser Le 39		Lys Cys Leu 395	Ala Phe Val	Pro Ser 400
Leu Ile Ala	Phe Val Tr 405	Phe Gly	Phe_Phe_Ile 410	Trp Phe Phe	Gly Arg 415
Phe Leu Lys	Asn Glu Pr 420	o Arg Met	Glu Asn Gln 425	Asp Lys Thr 430	Tyr Thr
Arg Met Lys 435	Arg Lys Se	r Pro Ser 440	Glu His Ser	Lys Asp Met 445	Gly Ile
Thr Arg Glu 450	Asn Thr Gl	n Ala Ser 455	Val Glu Asp	Pro Leu Asn 460	Asp Pro
Ser Leu Val 465	Cys Ile Ar		Phe Asn Glu 475	Ile Val Tyr	Lys Ser 480
Ser His Leu	Thr Ser Gl 485	u Asn Leu	Ser Ser Gln 490	Leu Asn Glu	Ser Thr 495
Ser Ala Thr	Glu Ala As 500	p Gln Asp	Pro Thr Thr 505	Ser Lys Ser 510	
Thr Asn					
<210> 76					
<211> 316					
⟨212⟩ PRT					
	sapiens				
	Asn Gln Al	a Ser Ala	Glu Glu Arg	Phe Len Len	len Clv
1	5	u 501 111u	10	THE BEG DOG	15
Phe Ser Asp	Trp Pro Se	r Leu Gln	Pro Val Leu 25	Phe Ala Leu	Val Leu
Leu Cys Tyr 35	Leu Leu Th	r Leu Thr 40	Gly Asn Ser	Ala Leu Val 45	Leu Leu
Ala Val Arg 50	Asp Pro Ar	g Leu His 55	Thr Pro Met	Tyr Tyr Phe	Ļeu Cys

His	Leu	Ala	Leu	Val	Asp	Ala	Gly	Phe	Thr	Thr	Ser	Val	Val	Pro	Pro
65					70					75					80
Leu	Leu	Ala	Asn	Leu	Arg	Gly	Pro	Ala	Leu	Trp	Leu	Pro	Arg	Ser	His
				85					90					95	
Cys	Thr	Ala	Gln	Leu	Cys	Ala	Ser	Leu	Ala	Leu	Gly	Ser	Ala	Glu	Cys
			100					105					110		
Val	Leu	Leu	Ala	Val	Met	Ala	Leu	Asp	Arg	Ala	Ala	Ala	Val	Cys	Arg
		115					120					125			
Pro	Leu	Arg	Ţyr	Ala	Gly	Leu	Val	Ser	Pro	Arg	Leu	Cys	Arg	Thr	Leu
	130					135					140		•		
Ala	Ser	Ala	Ser	Trp	Leu	Ser	Gly	Leu	Thr	Asn	Ser	Val	Ala	Gln	Thr
145					150					155					160
Ala	Leu	Leu	Ala	Glu	Arg	Pro	Leu	Cys	Ala	Pro	Arg	Leu	Leu	Asp	His
				165					170					175	
Phe	Ile	Cys	Glu	Leu	Pro	Ala	Leu	Leu	Lys	Leu	Ala	Cys	Gly	Gly	Asp
			180					185					190		
Gly	Asp	Thr	Thr	Glu	Asn	Gln	Met	Phe	Ala	Ala	Arg	Val	Val	Ile	Leu
		195					200					205			
Leu	Leu	Pro	Phe	Ala	Уаl	Ile	Leu	Ala	Ser	Tyr	Gly	Ala	Val	Ala	Arg
	210					215					220				
Ala	Val	Cys	Cys	Met	Arg	Phe	Ser	Gly	Gly	Arg	Arg	Arg	Ala	Val	Gly
225					230				•	235					240
Thr	Cys	Gly	Ser	His	Leu	Thr	Ala	Val	Cys	Leu	Phe	Tyr	Gly	Ser	Ala
				245					250					255	
Ile	Tyr	Thr	Tyr	Leu	Gln	Pro	Ala	Gln	Arg	Tyr	Asn	Gln	Ala	Arg	Gly
			260					265					270		
Lys	Phe	Val	Ser	Leu	Phe	Tyr	Thr	Val	Val	Thr	Pro	Ala	Leu	Asn	Pro
		275					280					285			
Leu	Ile	Tyr	Thr	Leu	Arg	Asn	Lys	Lys	Val	Lys	Gly	Ala	Ala	Arg	Arg
	290	1				295					300				
Leu	Leu	Arg	Ser	Leu	Gly	Arg	Gly	Gln	Ala	Gly	Gln				
305					310					315	I				
<21	<0	77													
<21	1>	6307	,												
<21	2>	PRT													
<21	3>	homo	sap	iens	i										
<40	0>	77													

,

	Ser	Val	Phe	_	Gly	Pro	Gly	Met		Ser	Ala	Ser	Leu		Val			
1				5					10					15				
Asn	Leu	Leu	Ser 20	Ala	Leu	Leu	Ile	Leu 25	Phe	Val	Phe		Glu 30	Thr	Glu			
Ile	Arg	Phe 35	Thr	Glÿ	Gln	Thr	Glu 40	Phe	Val	Val	Asn	Glu 45	Thr	Ser	Thr	٠		
Thr	Val 50	Ile	Arg	Leu	Ile	Ile 55	Glu	Arg	Ile	Gly	Glu 60	Pro	Ala	Asn	Val			
Thr	Ala	Ile	Val	Ser	Leu	Tyr	Glv	Glu	Asp	Ala	Glv	Asp	Phe	Phe	Asp			
65					70			7.7		75		:-# <i>F</i> .	-,		80	•	•	• • •
	Tvr	Ala	Ala	Ala		Ile	Pro	Ala	Glv		Thr	Asn	Arg	Thr				
	.,.		****	85	1110		110		90	014	****	11011	**** 0	95	,			
Tvr	Tle	Ala	Val		Asn	Asp	Asn	Len		Glv	Pro	Asn	Gln		Phe			
1 9 1	110	nia	100	O y S	пор	nsp	пър	105	110	ury	110	пор	110	1111	THE			
Ϊlα	Dha	Иic		Thr	Lou	Gln	Tvo		Sar	A 1 a	Acn	Va 1		Lon	C177			
116	1116	115	Leu	1111	LCu	GIII	120	110	261	піа	изп	125	гуз	Leu	Gly			
Trn	Dro		Thr	Va 1	Th r	Va l		T1a	T 011	Cor	Aan		Aon	41 a	Dho			
111	130	nig	1111	Val	1111	Val 135	1111	116	Leu	261	140	иsр	ASII	Ala	rne			
C1**		Tlo	Cor.	Dho	Aan		Lon	Dno	Co#	Tla		Vo 1	°0.	C1	Dno			
	116	116	261	rne		Met	Leu	Pro	Ser		Ala	Val	ser	Glu				
145	C1	۸	A	01	150	Mad	D	T	Φ1	155	T1-	A	01	T	160			
Lys	GIY	Arg	ASII		ser	Met	Pro	Leu		Leu	116	Arg	GIU		Gly			
m)	m	01		165	37.1	37.1	mı.	70.1	170	** 1	0.1	0.1	0.1	175				
ınr	lyr	GIY		vaı	мет	Val	Inr		Glu	vai	GIU	Gly		Pro	Asn			
_	_		180		_		_	185	_	۵.			190		_			
Pro	Pro		Glu	Asp	Leu	Ser			Lys	Gly	Asn		Thr	Phe	Pro			
_		195		 1			200		_			205						
Pro			Ala	Thr	Val	Ile	Tyr	Asn	Leu	Ala		Leu	Asp	Asp	Glu			
	210					215					220							
	Pro	Glu	Asn	Asp		Ile	Phe	Leu	Ile	Gln	Leu	Lys	Ser	Val	Glu			
225					230					235					240			
Gly	Gly	Ala	Glu	Ile	Asn	Thr	Ser	Arg	Asn	Ser	Ile	Glu	Ile	Ile	Ile			
				245					250					255				
Glu	Lys	Asn	Asp	Ser	Pro	Val	Arg	Phe	Leu	Gln	Ser	Ile	Tyr	Leu	Val			
			260					265					270					
Pro	Glu	Glu	Asp	His	Ile	Leu	Ile	Ile	Pro	Val	Val	Arg	Gly	Lys	Asp			
		275					280					285						
Asn	Asn	Gly	Asn	Leu	Ile	Gly	Ser	Asp	Glu	Tyr	Glu	Val	Ser	Ile	Ser			

	290					295					300				
Tyr	Ala	Val	Thr	Thr	Gly	Asn	Ser	Thr	Ala	His	Ala	Gln	Gln	Asn	Leu
305					310					315					320
Asp	Phe	Ile	Asp	Leu	Gln	Pro	Asn	Thr	Thr	Val	Val	Phe	Pro	Pro	Phe
				325					330					335	
Ile	His	Glu	Ser	His	Leu	Lys	Phe	Gln	Ile	Val	Asp	Asp	Thr	Ile	Pro
			340					345					350		
Glu	Ile	Ala	Glu	Ser	Phe	His	Ile	Met	Leu	Leu	Lys	Asp	Thr	Leu	Gln
	***	355					360		-			365	-		
Gly	Asp	Ala	Val	Leu	Ile	Ser	Pro	Ser	Val	Val	Gln	Val	Thr	Ile	Lys
	370					375					380				
Pro	Asn	Asp	Lys	Pro	Tyr	Gly	Val	Leu	Ser	Phe	Asn	Ser	Val	Leu	Phe
385					390					395					400
Glu	Arg	Thr	Val	Ile	Ile	Asp	Glu	Asp	Arg	Ile	Ser	Arg	Tyr	Glu	Glu
				405					410					415	
Ile	Thr	Val		Arg	Asn	Gly	Gly		His	Gly	Asn	Val		Ala	Asn
			420					425		_			430		
Trp	Val		Thr	Pro	Asn	Ser	Thr	Asp	Pro	Ser	Pro		Thr	Ala	Asp
		435	,	_			440					445			_
He		Pro	Ser	Ser	Gly		Leu	His	Phe	Ala		Gly	GIn	Met	Leu
	450		~		mı	455	0.1				460	ъ.	0.1	01	A 1 -
	Thr	He	Pro	Leu		Gly	Gly	Asp	Asp		Leu	Pro	Glu	Glu	
465	41	m	.	.	470	т.	¥	D	77.	475	71 -	A	01	Q1	480
Glu	Ala	lyr	Leu			116	Leu	Pro			116	Arg	Gly		Ala
C1	Wa 1	Com	C1	485		Cl.,	Τ	Lou	490		Ha	Cln	Aan	495	Aan
GIU	Val	Set	500	Pro	Ala	GIU	Leu	505	rne	.171	116	GIII	510		ASP
Aan	Val	Тъг		Lan	Πla	Th r	Phe		Dro	Mot	Clu	Aen			ΤΙΔ
Asp	Val	515	GIY	LCU	116	1111	520	1110	110	MCt	Giu	525	GIII	гуз	116
Glu	Ser		Pro	Glw	Glv	Δτσ	Tyr	Ĭ en	Ser	Ĭ e11	Ser		Thr	Aro	Ī en
Olu	530	DCI	110	Oly	ury	535	1 9 1	LCu	501	Dea	540	THE	1 11 1	111 6	Lcu
Glv		Thr	Tve	Glv	Asn		Arg	Len	Len	Tvr		Va 1	Len	Tvr	Ile
545		1111	цys	OIY	550		1118	ьсu	ьcu	555		ıaı	ьсu	1 9 1	560
		Glv	Ala	Va 1			Leu	Gln	Ala			Giv	Ile	I.en	
110	111 U	ory	111 U	565		110	Dou	7111	570		UIU		- 10	575	
He	Ser	Arø	Arø			Len	Ile	Phe			Gln	Lvs	Thr		
-10	201	0	580			u		585				,_	590		
			200												

	•														
Thr	Thr	Lys 595	Leu	Pro	Ile	Arg	Asn 600	Asp	Ala	Phe	Leu	Gln 605	Asn	Gly	Ala
His	Phe 610	Leu	Val	Gln	Leu	Glu 615	Thr	Val	Glu	Leu	Leu 620	Asn	Ile	Ile	Pro
Leu 625	Ile	Pro	Pro	Ile	Ser 630	Pro	Arg	Phe	Gly	Glu 635	Ile	Cys	Asn	Ile	Ser 640
Leu	Leu	Val	Thr	Pro 645	Ala	Ile	Ala	Asn	Gly 650	Glu	Ile	Gly	Phe	Leu 655	Ser
Asņ	<u>Leu</u>	Pro	11e 660	Ile	Leu	His	Ģlų	Pro 665	Glụ	Asp	Phe	Ala	Ala 670	Glu	Val
Val	Tyr	Ile 675	Pro	Leu	His	Arg	Asp 680	Gly	Thr	Asp	Gly	Gln 685	Ala	Thr	Val
Tyr	Trp 690	Ser	Leu	Lys	Pro	Ser 695	Gly	Phe	Asn	Ser	Lys 700	Ala	Val	Thr	Pro
Asp 705	Asp	Ile	Gly	Pro	Phe 710	Asn	Gly	Ser	Val	Leu 715	Phe	Leu	Ser	Gly	Gln 720
Ser	Asp	Thr	Thr	Ile 725	Asn	Ile	Thr	Ile	Lys 730	Gly	Asp	Asp	Ile	Pro 735	Glu
Met	Asn	Glu	Tḥr 740	Val	Thr	Leu	Ser	Leu 745	Asp	Trp	Val	Asn	Val 750	Glu	Asn
Gln	Val	Leu 755	Lys	Ser	Gly	Tyr	Thr 760	Ser	Arg	Asp	Leu	Ile 765	Ile	Leu	Glu
Asn	Asp 770	Asp	Pro	Gly	Gly	Val 775	Phe	Glu	Phe	Ser	Pro 780	Ala	Ser	Arg	Gly
Pro 785	Tyr	Val	Ile	Lys	Glu 790	Gly	Glu	Ser	Val	Glu 795	Leu	His	Ile	Ile	Arg 800
Ser	Arg	Gly	Ser	Leu 805	Val	Lys	Gln	Phe	Leu 810	His	Tyr	Arg	Val	Glu 815	Pro
Arg	Asp	Ser	Asn 820	Glu	Phe	Tyr	Gly	Asn 825	Thr	Gly	Val	Leu	Glu 830	Phe	Lys
Pro	Gly	Glu 835	Arg	Glu	Ile	Val	Ile 840	Thr	Leu	Leu	Ala	Arg 845	Leu	Asp	Gly
Ile	Pro 850	Glu	Leu	Asp	Glu	His 855	Tyr	Trp	Val	Val	Leu 860	Ser	Ser	His	Gly
Glu 865	Arg	Glu	Ser	Lys	Leu 870	Gly	Ser	Ala	Thr	Ile 875	Val	Asn	Ile	Thr	Ile 880
Leu	Lys	Asn	Asp	Asp	Pro	His	Gly	Ile	Ile	Glu	Phe	Val	Ser	Asp	Gly

885 . 890 . 895	
Leu Ile Val Met Ile Asn Glu Ser Lys Gly Asp Ala Ile Tyr Ser Ala	
900 905 910	
Val Tyr Asp Val Val Arg Asn Arg Gly Asn Phe Gly Asp Val Ser Val	
915 920 925	•
Ser Trp Val Val Ser Pro Asp Phe Thr Gln Asp Val Phe Pro Val Gln	
930 935 940	
Gly Thr Val Val Phe Gly Asp Gln Glu Phe Ser Lys Asn Ile Thr Ile	
945 955 950 955 960 Tyr Ser Leu Pro Asp Glu Ile Pro Glu Glu Met Glu Glu Phe Thr Val	
965 970 975	
Ile Leu Leu Asn Gly Thr Gly Gly Ala Lys Val Gly Asn Arg Thr Thr	
980 985 990	
Ala Thr Leu Arg Ile Arg Arg Asn Asp Asp Pro Ile Tyr Phe Ala Glu	i
995 1000 1005	
Pro Arg Val Val Arg Val Gln Glu Gly Glu Thr Ala Asn Phe Thr	
1010 1015 1020	
Val Leu Arg Asn Gly Ser Val Asp Val Thr Cys Met Val Gln Tyr	
1025 1030 1035	
Ala Thr Lys Asp Gly Lys Ala Thr Ala Arg Glu Arg Asp Phe Ile 1040 1045 1050	
Pro Val Glu Lys Gly Glu Thr Leu Ile Phe Glu Val Gly Ser Arg	
1055 1060 1065	
Gln Gln Ser Ile Ser Ile Phe Val Asn Glu Asp Gly Ile Pro Glu	
1070 1075 1080	
Thr Asp Glu Pro Phe Tyr Ile Ile Leu Leu Asn Ser Pro Gly Asp	
1085 1090 1095	
Pro Val Val Tyr Gln Tyr Gly Val Ala Thr Val Ile Ile Glu Ala	
1100 1105 1110	
Asn Asp Asp Pro Asn Gly Ile Phe Ser Leu Glu Pro Ile Asp Lys	
1115 1120 1125	
Ala Val Glu Glu Gly Lys Thr Asn Ala Phe Trp Ile Leu Arg His	
1130 1135 1140 Arg Gly Tyr Phe Gly Ser Val Ser Trp Gln Leu Phe Gln	
1145 1150 1155	
Asn Asp Ser Ala Leu Gln Pro Gly Gln Glu Phe Tyr Glu Thr Ser	
1160 1165 1170	

	-													
Gly		Val	Asn	Phe	Met	Asp		Glu	Glu	Ala		Pro	Ile	Ile
T	1175	A 1 -	Dh.a	Dea	A	1180		n	01	D1 -	1185	01	DL -	Ф
Leu		Ala	rne	Pro	ASP	Lys	116	Pro	Glu	Pne		GIU	rne	Iyr
D1	1190	T	T	17 - 1	A	1195	0	0.1	01	0	1200	Q1	D	01
Pne		Lys	Leu	vaı	ASI	Ile		Gly	Gly	Ser		Gly	Pro	GIY
01	1205		4.1	01	m1	1210				m.	1215		4.1	.
Gly		Leu	Ala	GIU	ınr	Asn	Leu	Gin	val	Thr		мет	Ala	Pro
mh .	1220	A	Λ	D	nı.	1225	₹7 - 1	TO 1		T	1230	D	01	0
<u>Pne</u>		ASD	ASP	ÄĽO	küé	Gly		rne	116	Leu		Pro	Giu	Cys
T	1235	A	01	¥7_ 1	A 1 -	1240		T 7. 1		α .	1245	A	A	16-1
Leu			GIU	Val	Ala	Glu		vaı	Leu	Ser		ASP	ASP	мет
C	1250		Th	Aan	Dha	1255		T a	۸	C1m	1260	C1	Vol	Dha
ser	_		1111	ASII	rne	Thr		Leu	_			GIY	Val	rne
Class	1265		Cln	T 011	C1**	1270		Tio		Com	22.0	C1	Dha	Dwa
Gry	1280		GIII	Leu	GIY	Trp 1285		116	rea	261	1290		rne	F10
A 1 a			Dro	Dro	Mat	Ile		Dha	Lou	Lou			Ha	Dha
Ala	1295		110	110	Met	1300	_	THE	Leu	ren	1305		116	THE
Pro			Val	Hie	T 611	Gln		Hic	Mot	Δrσ			Hie	Ser
110	1310		, a i	1113	LCu	1315		1113	MCt	МБ	1320		1113	DCI
Glv			Ala	T.eu	Tvr	Phe		Glv	T.em	Glu			Phe	Glv
01,	1325			Dou	1,1	1330		01,		014	1335		10	01,
Thr			Ser	Lvs	Tvr	His		Phe	Arg	Asn			He	Ala
	1340			3	- 3 -	1345			0		1350			
Asn			Phe	Ser	Ala	Trp		Met	Pro	Asn			Thr	Asn
	1355					1360								
Gly	Phe	Ile	Ile	Ala	Lys	Asp	Asp	Gly	Asn	Gly	Ser	Ile	Tyr	Tyr
	1370					1375					1380			
Gly	Val	Lys	Ile	Gln	Thr	Asn	Glu	Ser	His	Val	Thr	Leu	Ser	Leu
	1385					1390					1395			
His	Tyr	Lys	Thr	Leu	Gly	Ser	Asn	Ala	Thr	Tyr	Ile	Ala	Lys	Thr
	1400					1405					1410			
Thr	Val	Met	Lys	Tyr	Leu	Glu	Glu	Ser	Val	Trp	Leu	His	Leu	Leu
	1415					1420					1425			
Ile	Ile	Leu	Glu	Asp	Gly	Ile	Ile	Glu	Phe	Tyr	Leu	Asp	Gly	Asn
	1430	1				1435					1440	ı		
Ala	Met	Pro	Arg	Gly	Ile	Lys	Ser	Leu	Lys	Gly	Glu	Ala	Ile	Thr

	1445					1450					1455			
Asp	Gly			_		Arg						Asn	Gly	Asn
	1460					1465					1470			
Asp	Arg	Phe	Thr	Gly	Leu	Met	Gln	Asp	Val	Arg	Ser	Tyr	Glu	Arg
	1475					1480					1485			
Lys	Leu	Thr	Leu	Glu	Glu	Ile	Tyr	Glu	Leu	His	Ala	Met	Pro	Ala
	1490					1495					1500			
Lys	Ser	Asp	Leu	His	Pro	Ile	Ser	Gly	Tyr	Leu	Glu	Phe	Arg	Gln
	1505	•				1510					1515			
						Phe	Ile	Ile	Ser	Ala	_	Asp	Asp	Asn
	1520										1530			
Asp		Glu	Gly	Glu	Glu	Leu						Val	Ser	Val
m	1535	01	4.1			1540					1545			
Tyr						Ser						Ala	Arg	Leu
ጥኤ	1550				A a m			A			1560	C1	Dh.	ጥዜ
101		GIII	Lys			Asn 1570						GIY	rne	ınr
Clv	1565	Cvc	Ιlα			Ile						Th.	Ιlα	Cor
Gly	1580			•		1585						1111	116	261
Cvs			-			Arg						Va 1	Hic	Val
030	1595	741	o.u		1111							741	1113	141
Phe		Thr	He			Ile						Asn	Tvr	Len
	1610									~- ,			-,-	
Val	Asp	Asp	Phe	Ala	Asn	Ala						Phe	Leu	Pro
	1625					1630					1635			
Trp	Gln	Arg	Ser	Glu	Val	Leu	Asn	Ile	Tyr	Val	Leu	Asp	Asp	Asp
	1640					1645					1650			
Ile	Pro	Glu	Leu	Asn	Glu	Tyr	Phe	Arg	Val	Thr	Leu	Val	Ser	Ala
	1655					1660					1665			
Ile	Pro	Gly	Asp	Gly	Lys	Leu	Gly	Ser	Thr	Pro	Thr	Ser	Gly	Ala
	1670					1675					1680			
Ser	Ile	Asp	Pro	Glu	Lys	Glu	Thr	Thr	Asp	Ile	Thr	Ile	Lys	Ala
	1685					1690					1695			
Ser		His	Pro	Tyr	Gly	Leu	Leu	Gln	Phe	Ser		Gly	Leu	Pro
_	1700	_	_			1705		_	_		1710	_		
Pro		Pro	Lys	Asp	Ala	Met		Leu	Pro	Ala		Ser	Val	Pro
	1715					1720					1725			

	Ile 1730		Val	Glu	Glu	Glü 1735	Asp	Gly	Glu	Ile	Arg 1740	Leu	Leu	Val
Ile	Arg 1745	Ala	Gln	Gly	Leu	Leu 1750	Gly	Arg	Val	Thr	Ala 1755	Glu	Phe	Arg
Thr	Val 1760		Leu	Thr	Ala	Phe 1765	Ser	Pro	Glu	Asp	Tyr 1770	Gln	Asn	Val
Ala	Gly 1775		Leu	Glu	Phe	Gln 1780	Pro	Gly	Glu	Arg	Tyr 1785	Lys	Tyr	Ile
Phe	Ile 1790	Ąsņ	<u>Ile</u>	Thr	Asp	Asn 1795		Ile	Pro		Leu 1800	Glu	Lys	Ser
Phe	Lys 1805		Glu	Leu	Leu	Asn 1810		Glu	Gly	Gly	Val 1815	Ala	Glu	Leu
Phe	Arg 1820		Asp		Ser	Gly 1825		Gly	Asp	Gly	Asp 1830	Met	Glu	Phe
Phe	Leu 1835		Thr		His	Lys 1840		Ala	Ser	Leu	Gly 1845		Ala	Ser
Gln	Ile 1850					Ala 1855			Asp	His	Ala 1860		Gly	Val
Phe	Glu 1865		Şer	Pro	Glu	Ser 1870		Phe	Val	Ser	Gly 1875		Glu	Pro
Glu	Asp 1880	_	Tyr	Ser	Thr	Val 1885							His	His
Gly	Thr 1895		Ser	Pro	Val	Thr 1900		His	Trp	Asn	Ile 1905		Ser	Asp
Pro	Asp 1910	-	Asp	Leu	Ala	Phe 1915					Ile 1920		Phe	Glu
Ile	Gly 1925		Thr	Ser	Ala	Asn 1930		Thr	Val	Glu	Ile 1935		Pro	Asp
Glu	Asp 1940		Glu	Leu	Asp	Lys 1945		Phe	Ser	Val	Ser 1950		Leu	Ser
Val		Ser	Gly	Ser	Leu	Gly 1960		His	Ile	Asn	Ala 1965		Leu	Thr
Val		Ala	Ser	Asp	Asp	Pro 1975	Tyr	Gly	Ile	Phe	Ile 1980		e Ser	Glu
Lys		Arg	g Pro	Val	Lys	Val 1990	Glu	Glu	Ala	Thr		Asr	ı Ile	Thr
Leu			: Ile	Arg	; Leu	Lys		Leu	Met	Gly				ı Val

	2000					2005					2010			
Ser	Tyr	Ala	Thr	Leu [.]	Asp	Asp	Met	Glu	Lys	Pro	Pro	Tyr	Phe	Pro
	2015					2020					2025			
Pro	Asn	Leu	Ala	Arg	Ala	Thr	Gln	Gly	Arg	Asp	Tyr	Ile	Pro	Ala
	2030					2035								
Ser			Ala	Leu	Phe						Glu	Ala	Thr	Ile
	2045			-		2050					2055		0.1	•
											Arg		Glu	Ser
											2070		Val	C1-
vai	2075		Giu		Leu	2080	ser			Vai	Ala 2085	Lys	Val	GIII
Ser										Glv	Pro	Lve	Val	Gln
501	2090		110	110	11011	2095				Oly		Буз	741	o r u
Thr			Gln	Leu	Ile				Asn	Asp	Asp	Ala	Phe	Gly
	2105					2110				_				
Thr	Leu	Gln	Leu	Ser	Ala	Pro	Ile	Val	Arg	Val	Ala	Glu	Asn	His
	2120					2125					2130			
Val	Gly	Pro	Ile	Ile	Asn	Val	Thr	Arg	Thr	Gly	Gly	Ala	Phe	Ala
	2135					2140					2145			
Asp			Val	Lys	Phe					Ile	Thr	Ala	Ile	Ala
	2150		_			2155					2160	_	_	
Gly			Tyr	Ser	He						Val		Leu	Glu
01	2165		C	T	41.	2170							۸	Y 1 -
GIY	2180				Ala						Ile 2190	ASII	ASP	He
Tyr											Leu	Met	Asn	GIn
1 9 1	2195		Dou	UIU	Olu	2200		DCu	741	0111	2205		11011	o.u
Thr			Gly	Ala	Arg			Ala	Leu	Thr	Glu		Val	Ile
	2210					2215					2220			
Ile	Ile	Glu	Ala	Ser	Asp	Asp	Pro	Tyr	Gly	Leu	Phe	Gly	Phe	Gln
	2225					2230					2235			
Ile	Thr	Lys	Leu	Ile	Val	Glu	Glu	Pro	Glu	Phe	Asn	Ser	Val	Lys
	2240					2245					2250			
Val			Pro	Ile	Ile			Ser	Gly	Thr	Leu		Asn	Val
· · ·	2255		_			2260			٥.	0.1	2265		m.	0 1
Thr			Trp	Val	Ala			Asn	Gly	Gln	Leu		Thr	Gly
	2270					2275					2280			

Asp	Leu 2285	Arg	Val	Val	Ser	Gly 2290		Val	Thr	Phe	Ala 2295	Pro	Gly	Glu
Thr	Ile 2300	Gln	Thr	Leu			Glu	Val	Leu	Ala		Asp	Val	Pro
Glu	Ile 2315	Glu	Glu	Val	Ile	G1n 2320	Val	Gln	Leu	Thr	Asp 2325	Ala	Ser	Gly
Gly	Gly 2330	Thr	Ile	Gly	Leu	Asp 2335		Ile	Ala	Asn	Ile 2340	Ile	Ile	Pro
	Asn 2345	Asp	Asp	Lió	Tyr	Gly 2350		.Val	Ala	Phe	Ala_ 2355	Gln	Met	Val
Tyr	Arg 2360	Val	Gln	Glu	Pro	Leu 2365	Glu	Arg	Ser	Ser	Cys 2370	Ala	Asn	Ile
Thr	Val 2375	Arg	Arg	Ser	Gly	Gly 2380	His	Phe	Gly	Arg	Leu 2385	Leu	Leu	Phe
Tyr	Ser 2390	Thr	Ser	Asp	Ile	Asp 2395	Val	Val	Ala	Leu	Ala 2400	Met	Glu	Glu
Gly	Gln 2405	Asp	Leu	Leu	Ser	Tyr 2410	Tyr	Glu	Ser	Pro	Ile 2415	Gln	Gly	Val
Pro	Asp 2420	Pro	Ļeu	Trp	Arg	Thr 2425		Met	Asn	Val	Ser 2430	Ala	Val	Gly
Glu	Pro 2435	Leu	Tyr	Thr		Ala 2440		Leu	Cys	Leu	Lys 2445	Glu	Gln	Ala
Cys	Ser 2450	Ala	Phe	Ser		Phe 2455	Ser	Ala	Ser	Glu	Gly 2460	Pro	Gln	Cys
Phe	Trp 2465	Met	Thr	Ser	Trp	Ile 2470				Val	Asn 2475	Asn	Ser	Asp
Phe	Trp 2480	Thr	Tyr	Arg	Lys	Asn 2485	Met	Thr	Arg	Val	Ala 2490	Ser	Leu	Phe
Ser	Gly 2495	Gln	Ala	Val	Ala	Gly 2500	Ser	Asp	Tyr	Glu	Pro 2505	Val	Thr	Arg
Gln	Trp 2510	Ala	Ile	Met	Gln	Glu 2515	Gly	Asp	Glu	Phe	Ala 2520	Asn	Leu	Thr
Val	Ser 2525	Ile	Leu	Pro	Asp	Asp 2530	Phe	Pro	Glu	Met	Asp 2535	Glu	Ser	Phe
Leu	Ile 2540	Ser	Leu	Leu	Glu	Val 2545	His	Leu	Met	Asn	Ile 2550	Ser	Ala	Ser
Leu	Lys	Asn	Gln	Pro	Thr		Gly	Gln	Pro	Asn		Ser	Thr	Val

	2555					2560					2565			
Val	Ile	Ala	Leu	Asn	Gly	Asp	Ala	Phe	Gly	Val	Phe	Val	Ile	Tyr
	2570					2575					2580			
Asn	He	Ser	Pro	Asn	Thr	Ser	Glu	Asp	Gly	Leu	Phe	Val	Glu	Val
	2585					2590					2595			•
Gln		Gln	Pro	Gln	Thr		Val	Glu	Leu	Met	Ile	His	Arg	Thr
	2600	_	_			2605					2610			
Gly											Arg	Val	Val	Gly
	2615		 TL			2620					2625	 Cl	 01	
GIY		Ala	ınr	GIU	GIY			rne	116	GIY	Ala	GIY	GIU	He
T 611	2630	Dho	ΔΙο	C111	Clv	2635		Twe	Twe	Th r	2640 Val	ماآ	Ι Δ11	Thr
Lcu	2645	THE	mu	oru	dly	2650	1111	Lys	Буз	1111	2655	110	LCu	1111
Ile		Asp	Asp	Ser	Glu		Glu	Asp	Asp	Glu	Ser	Ile	Ile	Val
	2660	•	•			2665					2670			
Ser	Leu	Val	Tyr	Thr	Glu	Gly	Gly	Ser	Arg	Ile	Leu	Pro	Ser	Ser
	2675					2680					2685			
Asp	Thr	Val	Arg	Val	Asn	Ile	Leu	Ala	Asn	Asp	Asn	Val	Ala	Gly
	2690					2695					2700			
Ile	Val	Ser	Phe	Gln	Thr	Ala	Ser	Arg	Ser	Val	Ile	Gly	His	Glu
	2705					2710					2715			
Gly		Ile	Leu	Gln	Phe		Val	lle	Arg	Thr	Phe	Pro	Gly	Arg
61	2720	¥7_ 1	m1	¥7 - 1	A	2725		71.	71.	01	2730	A	T	01
GIY		vaı	ınr	vai	Asn			116	116	Gly	Gln	ASI	Leu	GIU
Lon	2735	Dho	A1 a	Acn	Dha	2740		Cln	T on	Dho	2745 Phe	Dro	Clu	Clv.
Leu	2750	1116	AId	VSII	Inc	2755		G111	LCu	Inc	2760	110	Giu	Gly
Ser		Asn	Thr	Thr	Leu			His	Leu	Leu	Asp	Asp	Asn	Ile
	2765				_ •	2770					2775			
Pro	Glu	Glu	Lys	Glu	Val	Tyr	Gln	Val	Ile	Leu	Tyr	Asp	Val	Arg
	2780					2785					2790			
Thr	Gln	Gly	Val	Pro	Pro	Ala	Gly	Ile	Ala	Leu	Leu	Asp	Ala	Gln
	2795					2800					2805			
Gly	Tyr	Ala	Ala	Val	Leu	Thr	Val	Glu	Ala	Ser	Asp	Glu	Pro	His
	2810					2815					2820			
Gly		Leu	Asn	Phe	Ala			Ser	Arg	Phe	Val	Leu	Leu	Gln
	2825					2830					2835			

Glu	Ala 2840	Asn	Ile	Thr	Ile	Gln 2845	Leu	Phe	Ile	Asn	Arg 2850	Glu	Phe	Gly
Ser	Leu 2855	Gly	Ala	Ile	Asn	Val 2860	Thr	Tyr	Thr	Thr	Val 2865	Pro	Gly	Met
Leu	Ser 2870	Leu	Lys	Asn	Gln	Thr 2875	Val	Gly	Asn	Leu	Ala 2880	Glu	Pro	Glu
Val	Asp 2885	Phe	Val	Pro	Ile	Ile 2890			Leu	Ile	Leu 2895	Glu	Glu	Gly
Gļu	Thr 2900	Ala	Ala	Ala	<u>Ile</u>	Asn 2905		Thr	I <u>l</u> e	Leu	Glu 2910	Asp	Asp _.	Val
Pro	Glu 2915	Leu	Glu	Glu	Tyr	Phe 2920		Val	Asn	Leu	Thr 2925	Tyr	Val	Gly
Leu	Thr 2930	Met	Ala	Ala	Ser	Thr 2935		Phe		Pro	Arg 2940	Leu	Asp	Ser
Glu	Gly 2945	Leu	Thr	Ala	Gln	Val 2950		Ile	Asp	Ala	Asn 2955	Asp	Gly	Ala
Arg	Gly 2960	Val	Ile	Glu	Trp	Gln 2965		Ser	Arg	Phe	Glu 2970	Val	Asn	Glu
Thr	His 2975		Şer	Leu	Thr	Leu 2980					Ser 2985		Glu	Pro
Leu	Gly 2990		Val	Ser	Leu	Phe 2995				Gln	Asn 3000		Glu	Ala
Gln	Val 3005		Leu	Asp	Tyr	Ile 3010		Thr	Pro	Met	Ile 3015		His	Phe
Ala	Asp 3020	-	Glu	Arg	Tyr	Lys 3025		Val		Ile	Met 3030		Leu	Asp
Asp	Asp 3035		Pro	Glu	Gly	Asp 3040		Lys	Phe	Gln	Leu 3045		Leu	Thr
Asn	Pro 3050		Pro	Gly	Leu	Glu 3055		Gly	Lys	Asn	Thr 3060		Ala	Leu
Ile	Ile 3065		Leu	Ala	Asn	Asp 3070		Gly	Pro	Gly	Val 3075		Ser	Phe
Asn	Asn 3080		Glu	His	Phe	Phe 3085		Arg	Glu	Pro	Thr 3090		Leu	Tyr
Val	Gln 3095		Ser	Val	Ala	Val 3100		Tyr	Ile	Val	Arg 3105		Pro	Ala
Gln			Phe	Gly	Thr			Val	Gln	Phe	Ile	Val	Thr	Glu

	3110					3115					3120			
Val	Asn					Ser						Ser	Lys	Gly
	3125					3130					3135			
Tyr	Ile	Val	Leu	Glu	Glu	Gly	Val	Arg	Phe	Lys	Ala	Leu	Gln	Ile
	3140					3145					3150			
Ser	Ala	Ile	Leu	Asp	Thr	Glu	Pro	Glu	Met	Asp	Glu	Tyr	Phe	Val
	3155					3160					3165			
Cys	Thr	Leu	Phe	Asn	Pro	Thr	Gly	Gly	Ala	Arg	Leu	Gly	Val	His
	3170	-				3175					3180	-		
Val		Thr	Leu	Ile	Thr	Val				Gln		Pro	Leu	Gly
_	3185					3190					3195			
Leu		Ser	He	Ser	Ala	Val			Arg	Ala		Ser	He	Asp
71.	3200	01	A 1 -	A	4.	3205			.		3210	•	A	/m1
116		GIU	Ala	ASI	Arg	Thr				Asn		Ser	Arg	inr
Aon	3215	Τlα	Aan	Lou	A 1 a	3220 Val				Trn	3225	Th r	Va l	Sor
изп	3230	116	nsp	ren	Ala						3240	1111	101	261
Glu		Ala	Phe	Glv	Met	Arg						Phe	Ser	Val
Olu	3245		1110	•	•	3250					3255	1110	DOI	,
Phe			Phe			Glu						Cys	Phe	Phe
	3260					3265				•		- •		
Thr	Leu	Glu	Asn	Leu	Ile	Tyr	Gly	Ile	Met	Leu	Arg	Lys	Ser	Ser
	3275					3280					3285			
Val	Thr	Val	Tyr	Arg	Trp	Gln	Gly	Ile	Phe	Ile	Pro	Val	Glu	Asp
	3290					3295					3300			
Leu	Asn	Ile	Glu	Asn	Pro	Lys	Thr	Cys	Glu	Ala	Phe	Asn	Ile	Gly
	3305					3310					3315			
Phe	Ser	Pro	Tyr	Phe	Val	Ile		His	Glu	Glu	_		Glu	Glu
	3320					3325					3330			
Lys			Leu	Asn	Ser	Val		Thr	Phe	Thr			Phe	Lys
_	3335					3340			_		3345			
Leu			Val	Gln	Thr	Ile		He	Leu	Glu			Gln	Val
A au	3350		ጥኤ	O	۸	3355		4	Т	Lau	3360		A 1 a	C
Arg	-		ınr	ser	ASP	Ser		ASP	TAL	Leu	3375		AIA	ser
Cln	3365		Aan	90=	<u>C1</u> 111	3370 Leu		Gln	۷al	DhΔ			Aon	Clv
GIII	3380	_	ush	261	GIU	3385		Q I II	101	1116	3390		usii	ary
	9900					9909					0000			

Gly	Ser 3395	Phe	Val	Leu	His	Gln 3400					Arg 3405	Gly	Val	Leu
Thr		Ala	Len	Phe	Asn						Phe	Len	Ala	He
	3410		204			3415				,	3420	200		
Ser		Ala	Asn								Phe	Arg	Trp	Ser
201	3425				6	3430				Доц	3435	*** 6	111	501
Glv		Glv	Phe							Pro	Val	Ser	Glv	Thr
,	3440	,				3445					3450	201	V.,	
Thr		Val	Glu								Ile	Tvr	Leu	Ile
	3455			-		3460								
Phe											Ser	Ile	Asp	Ile
	3470										3480			
Phe	Ile	Trp	Glu	Met	Gly	Gln	Ser	Ser	Phe	Arg	Tyr	Phe	Gln	Ser
	3485					3490					3495	,	•	
Val	Asp	Phe	Ala	Ala	Val	Asn	Arg	Ile	His	Ser	Phe	Thr	Pro	Ala
	3500					3505					3510			
Ser	Gly	Ile	Ala	His	Ile	Leu	Leu	Ile	Gly	Pro	Arg	Tyr	Val	Tyr
	3515					3520	•				3525			
Ser	Phe	Thr	Ala	Gly	Asn	Ser	Glu	Arg	Asn	Gln	Phe	Ser	Phe	Val
	3530			•		3535					3540			
Leu	Glu	Val	Pro	Ser	Ala	Tyr	Asp	Val	Val	Ser	Val	Thr	Val	Lys
	3545					3550			•		3555			
Ser	Leu	Asn									Val	Gly	Ala	His
٠						3565								
Ser		Ile	Tyr	Glu	Leu			Ile	Ser	Ser	His	Ser	Asp	Phe
	3575	_				3580			•		3585			
He		Ser	Ser	Gly	Glu			Phe	Glu	Pro	Gly	Glu	Arg	Glu
	3590	* 1	. 1	** .		3595				mı.	3600	_	۵.	_
Ala		11e	Ala	Val	Asn			Asp	Asp	Thr	Val		Glu	Lys
C1	3605	0	nı	T	¥7 - 1	3610		T	A	n	3615		0.1	41-
GIU			rne	Lys	vai			Lys	ASII	Pro	Lys	_	GIY	Ala
Clu	3620		110	Aan	Aan	3625		Th.	Ilo	ጥኤ "	3630		0	Aan
GIU	3635	GIY	116	ASII	wsh	3640		1111	116	1111	Ile 3645		ser	ASII
Aen		Δla	Тът #-	C1 17	Πa			Dh△	ΔΙα	Clr	Asn		Lou	Ттт
ush	3650		1 9 1	GIÀ	116	3655		1110	AIG	AIII	3660		red	1 1 1
ZV.]			Gln	Glu	Met			Asp	Ser	I.en	Val		[.en	Agn
د و د	0.111	, 41	oru	GIU	III C L	UIU	0111	, 10 P	501	Dod	141	T 11 T	Dou	17911

	3665					3670					3675			
Val	Glu	Arg	Leu	Lys	Gly						Thr	Ile	Ala	Trp
	3680					3685					3690			
Glu	Ala	Asp	Gly	Ser	He	Ser	Asp	Ile	Phe	Pro	Thr	Ser	Gly	Val
	3695					3700					3705			
Ile		Phe	Thr	Glu	Gly				Ser	Thr	Ile	Thr	Leu	Thr
	3710								_		3720	•		
		Ala	Asp	Asn	He						Val	Val	He	Val
Th.	3725	Тъ ••	A = ~	Πa	Th =	3730						Cor	Т	T ***
1111	3740					3745	GIU	GIA	Vai	GIU	Asp 3750	261	1 9 1	r A 2
Glv							Arg	Ser	I.vs	Ser	Val	He	Thr	Thr
u.,	3755				0111	3760				501	3765			
Leu		Asn	Asp	Ser	Pro					Gly	Trp	Arg	Ala	Ala
	3770					3775					3780			
Ser	Val	Phe	Ile	Arg	Val	Ala	Glu	Pro	Lys	Glu	Asn	Thr	Thr	Thr
	3785					3790					3795			
Leu	Gln	Leu	Gln	Ile.	Ala				Gly	Leu	Leu	Gly	Asp	Ile
	3800										3810			
Ala		His	Leu	Arg	Ala				Phe	Leu	Leu	His	Val	Asp
۸	3815	A 1 -	Τ Ι	C1	A	3820			37 - 1	T	3825	01	Th	11.
ASII	3830	Ala	1111	GIU	ASII	3835			vai		Gln 3840	GIU	ınr	116
Ile		Met	Lve	Gln	Asn						Ala	GIn	Val	Ser
110	3845			oru		3850			711 u		3855	0.4	, 41	501
Ile											Gly	Phe	Ile	Val
	3860					3865					3870			
Thr	Ile	Thr	Glu	Val	Asn	Leu	Val	Asn	Ser	Asp	Phe	Ser	Thr	Gly
	3875					3880					3885			
Gln	Pro	Ser	Val	Arg	Arg	Pro	Gly	Met	Glu	Ile	Ala	Glu	He	Met
	3890					3895					3900			
Ile			Asn	Asp	Asp		_	Gly	Ile	Phe	Met	Phe	His	Val
mt	3905		. 1	01	01	3910		TV	41-	TT	3915	17 1	.	n
inr		_	Ala	Gly	Glu			ınr	Ala	ıyr	Glu	val	Pro	Pro
Pro	3920 Len		V21	יום [Cln	3925 Val		Vء۱	۱وV	Ara	3930 Leu	Δla	Clv	Sar
110	3935		101	ъсп	AIII	3940		141	1 4 1	wg	3945	VIT	G Y A	261
	5500					5510					5510			

Phe	Gly 3950	Ala	Val	Asn	Val	Tyr 3955	Trp	Lys	Ala	Ser	Pro 3960	Asp	Ser	Ala
Gly	Leu 3965	Glu	Asp	Phe	Lys	Pro 3970	Ser	His	Gly	Ile	Leu 3975	Glu	Phe	Ala
Asp	Lys 3980		Val	Thr	Ala	Met 3985	Ile	Glu	Ile	Thr	Ile 3990	Ile	Asp	Asp
Ala	Glu 3995	Phe	Glu	Leu	Thr	Glu 4000	Thr	Phe	Asn	Ile	Ser 4005	Leu	Į l e	Ser
Val_	Ala_ 4010		<u>Gly</u>	<u>G</u> ly	Arg	Leu 4015		Asp	Asp	_Val	Val 4020	Val	Thr	Val
Val	Ile 4025		Gln	Asn	Asp	Ser 4030	Pro	Phe	Gly	Val	Phe 4035	Gly	Phe	Glu
Glu	Lys 4040		Val	Met	Ile	Asp 4045	Glu	Ser	Leu	Ser	Ser 4050	Asp	Asp	Pro
Asp	Ser 4055		Val	Thr	Leu	Thr 4060		Val	Arg	Ser	Pro 4065		Gly	Lys
	4070					Trp 4075					4080			
	4085		·			Gly 4090					4095			
	4100	1				Leu 4105					4110			
	4115					Thr 4120					4125			
	4130)				Lys 4135			٠		4140			
	4145	;				Gly 4150	ı				4155	ı		
	4160)				Glu 4165	ı				4170)		
	4175	j				Arg 4180	l				4185	i		
	4190)				Phe 4195	i				4200)		
	4205	5				4210)				4215	i		
116	e val	٧al	. 116	Gln	Ala	Leu	Asn	ASP	ASP	116	rro	GIU	լ ԵՐԸ	LYS

•

	4220					4225					4230			
Ser	Phe	Tyr	Glu	Phe	Gln	Leu	Thr	Ala	Val	Ser	Gly	Gly	Gly	Val
	4235					4240					4245			
Leu	Ser	Glu	Ser	Ser	Ser	Thr	Ala	Asn	Ile	Thr	Val	Val	Ala	Ser
	4250					4255					4260			
Asp	Ser	Pro	Tyr	Gly	Arg	Phe	Ala	Phe	Ser	His	Glu	Gln	Leu	Arg
	4265					4270					4275			
Val	Ser	Glu	Ala	Gln	Arg	Val	Asn	Ile	Thr	Ile	Ile	Arg	Ser	Ser
	4280					4285					4290			
Gly	Asp	Phe	Gly	His	Val	Arg	Leu	Trp	Tyr	Lys	Thr	Met	Ser	Gly
	4295	•				4300					4305			
Thr	Ala	Glu	Ala	Gly	Leu	Asp	Phe	Val	Pro	Ala	Ala	Gly	Glu	Leu
	4310					4315					4320			
Leu	Phe	Glu	Ala	Gly	Glu	Met	Arg	Lys	Ser	Leu	His	Val	Glu	Ile
	4325					4330					4335			
Leu	Asp	Asp	Asp	Tyr	Pro	Glu	Gly	Pro	Glu	Glu	Phe	Ser	Leu	Thr
	4340					4345					4350			
Ile			Val	•					Gly	Tyr	Asp	Phe	Thr	Île
	4355					4360					4365			
Gln		Asn	Gly	Leu				Gln	Pro	Pro	Glu	Ile	Gly	Asn
	4370					4375			_	_	4380	_		
He		He	Val	Arg				Met	Lys	Asn	Asp	Asn	Ala	Glu
01	4385	T1.	01	D1		4390		m	mı		4395	01	** 1	01
GIY		116	GIU	rne	ASP		Lys	iyr	Inr	Ala	Phe	GIU	vai	GIU
Clu	4400	Vo 1	C1	Tan	T l a	4405	710	Dma	Vo l	Wa 1	4410	T 0.11	II: 0	C1
Giu	4415	V d. 1	GIY	ren	116	ме і 4420		P10	۷ d ·1	Vai	Arg 4425	ren	піѕ	GIY
Thr		Glv	Tur	Val	Thr			Dhρ	Ιlο	Ser	Gln	Sar	Sar	Sar
1111	4430	G1 y	1 9 1	, 41	1111	4435	пор	1110	110	DCI	4440	oci	DCI	501
Ala		Pro	Glv	Glv	Val		Tvr	Ile	Len	His	Gly	Ser	Thr	Val
	4445		,	,	,	4450			200		4455	201		, 41
Thr		Gln	His	Glv	Gln		Leu	Ser	Phe	Ile	Asn	Ile	Ser	Ile
	4460			•		4465					4470			
Ile			Asn	Glu	Ser		Phe	Glu	Glu	Pro	Ile	Glu	Ile	Leu
	4475					4480					4485			
Leu	Thr	Gly	Ala	Thr	Gly	Gly	Ala	Val	Leu	Gly	Arg	His	Leu	Val
	4490					4495					4500			
•														

	Arg 4505	Ile	Ile			Lys 4510	Ser	Asp	Ser	Pro	Phe 4515	Gly	Val	Ile
	Phe 4520	Leu	Asn	Gln	Ser	Lys 4525			Ile	Ala	Asn 4530	Pro	Asn	Ser
	Met 4535	Ile	Leu	Ser	Leu	Val 4540	Leu	Glu	Arg	Thr	Gly 4545	Gly	Leu	Leu
	Glu 4550	Ile	Gln	Val	Asn	Trp 4555	Glu	Thr	Val	Gly	Pro 4560	Asn	Ser	Gln
	Ala 4565	Leu	Leu	Pro	Gln	Asn 4570			Ile	Αļα	Asp 4575	Pro	Val	Ser
Gly	Leu 4580	Phe	Tyr	Phe	Gly	Glu 4585	Gly	Glu	Gly	Gly	Val 4590	Arg	Thr	Ile
Ile	Leu 4595	Thr	Ile	Tyr	Pro	His 4600	Glu	Glu	Ile	Glu	Val 4605	Glu	Glu	Thr
Phe	Ile 4610	Ile	Lys	Leu	His	Leu 4615		_	_	Glu	Ala 4620	Lys	Leu	Asp
Ser	Arg 4625	Ala	Lys	Asp	Val	Thr 4630	Leu	Thr	Ile	Gln	Glu 4635	Phe	Gly	Asp
Pro	Asn 4640	Gly	Val	Val	Gln	Phe 4645					Leu 4650	Ser	Lys	Lys
Thr	Tyr 4655	Ser	Glu	Pro	Leu	Ala 4660				Pro	Leu 4665	Leu	Ile	Thr
Phe	Phe 4670	Val	Arg	Arg	Val	Lys 4675		Thr	Phe	Gly	Glu 4680		Met	Val
Tyr	Trp 4685	Glu	Leu	Ser	Ser	Glu 4690	Phe	_	Ile		Glu 4695	Asp	Phe	Leu
Ser	Thr 4700	Ser	Gly	Phe	Phe	Thr 4705	Ile	Ala	Asp	Gly	Glu 4710		Glu	Ala
Ser	Phe 4715	Asp	Val	His	Leu	Leu 4720	Pro	Asp	Glu	Val	Pro 4725	Glu	Ile	Glu
Glu	Asp 4730		Val	Ile	Gln	Leu 4735		Ser	Val	Glu	Gly 4740		Ala	Glu
Leu	Asp 4745		Glu	Lys	Ser	Ile 4750		Trp	Phe	Ser	Val 4755	Tyr	Ala	Asn
Asp	Asp 4760		His	Gly	Val	Phe 4765		Leu	Tyr	Ser	Asp 4770		Gln	Ser
Ile	Leu	Ile	Gly	Gln	Asn	Leu	Ile	Arg	Ser	Ile	Gln	Ile	Asn	Ile

	4775					4780					4785			
Thr	Arg					Phe						Gly	Leu	Arg
	4790					4795					4800			
Ile	Ser	Ser	Asp	His	Lys	Glu	Gln	Pro	Ile	Val	Thr	Glu	Asn	Ala
	4805					4810					4815			
Glu	Arg	Gln	Leu	Val	Val	Lys	Asp	Gly	Ala	Thr	Tyr	Lys	Val	Asp
	4820					4825					4830			
Val	Val	Pro	He	Lys	Asn	Gln	Val	Phe	Leu	Ser	Leu	Gly	Ser	Asn
	4835					4840				••	4845			
Phe	Thr	Leu	Gln	Leu	Val	Thr	Val	Me t	Leu	Val	Gly	Gly	Arg	Phe
	4850					4855								
Tyr		Met	Pro	Thr	Ile	Leu			Ala	Lys		Ala	Val	Leu
_	4865	_	01	_		4870				** 1		~1	01	
Pro		Ser	Glu	-		Ala						Pne	Glu	Ser
ፐ ኬ »	4880	Dha	Cin			4885				C1**		202	Wi o	Vo l
1111	4895					Asn 4900	116			GIY		วยา	піз	Val
Mot						Thr						Val	Δla	Trn
MCt	4910		m e	•							4920	141	mu	11D
Thr			Tvr			Gly						Phe	He	Val
	4925					4930								
Val			Met	Thr	Pro	Thr						Phe	Ser	His
	4940					4945					4950			
Gly	Glu	Gln	Arg	Lys	Gly	Val	Phe	Leu	Trp	Thr	Phe	Pro	Ser	Pro
	4955					4960					4965			
Gly	Trp	Pro	Glu	Ala	Phe	Val	Leu	His	Leu	Ser	Gly	Val	Gln	Ser
	4970					4975					4980			
Ser	Ala	Pro	Gly	Gly	Ala	Gln	Leu	Arg	Ser	Gly	Phe	Ile	Val	Ala
	4985					4990					4995			
Glu			Pro	Met	Gly	Val		Gln	Phe	Ser			Ser	Arg
_	5000			_		5005		0.1		٠.	5010			1
Asn			Val	Ser	Glu	Asp		GIn	met	11e			His	Val
01	5015		nı.	01	Dh.	5020		A ===	Υ	71.	5025		0	Т
GIN	_		rne	GIŸ	rne	His		ASD	ren	116	5040		ser	TAL
Cln	5030		Δla	<u> </u>	Sar	5035 Ala		Pro	رام آ	Glu			<u>C111</u>	Pro
GIII	5045		nid	агу	יזמנו	5050			ьcu	GIU	5055		GIU	110
	0040					0000		•			0000			

Val	Gln 5060	Asn	Gly	Glu	Leu	Phe 5065	Phe	Gln	Lys		Gln 5070	Thr	Glu	Val
Asp	Phe 5075	Glu	Ile	Thr	Ile	Ile 5080		Asp	Gln	Leu	Ser 5085	Glu	Ile	Glu
Glu	Phe 5090	Phe	Tyr	Ile	Asn	Leu 5095	Thr	Ser	Val	Glu	Ile 5100	Arg	Gly	Leu
Gln	Lys 5105			Val	Asn	Trp 5110		Pro	Arg	Leu	Asn 5115	Leu	Asp	Phe
Ser	Val 5120		<u>Val</u>	Ile	Thr	Ile 5125			Asn _.	Asp	Asp5130	_Leu	Ala	Gly
Met	Asp 5135	Ile	Ser	Phe	Pro	Glu 5140		Thr	Val	Ala	Val 5145	Ala	Val	Asp
Thr	Thr 5150		Ile	Pro	Val	Glu 5155		Glu	Ser	Thr	Thr 5160	Tyr	Leu	Ser
Thr	Ser 5165		Thr	Thr	Thr	Ile 5170					Asn 5175	Val	Val	Ala
Ile	Val 5180		Glu	Ala		Gly 5185		Ser	Ala	Ile	Pro 5190		Lys	Leu
Val	Thr 5195		Ḥis	Gly	Thr	Pro 5200		Val	Ser	Glu	Lys 5205	Pro	Asp	Val
Ala	Thr 5210		Thr	Ala	Asn	Val 5215							Ser	Leu
Gly	Pro 5225		Ile	Val		Ile 5230		Glu	Glu	Met	Lys 5235		Gly	Thr
Phe	Asn 5240		Ala	Glu	Val	Leu 5245		Arg	Arg	Thr	Gly 5250		Phe	Thr
Gly	Asn 5255		Ser	Ile	Thr	Val 5260		Thr	Phe	Gly	Glu 5265		Cys	Ala
Gln		Glu	Pro	Asn	Ala	Leu 5275		Phe	Arg	Gly	Ile 5280		Gly	Ile
Ser	Asn 5285		Thr	Trp	Ala	Val 5290		Glu	Glu	Asp	Phe 5295		Glu	Gln
Thr	Leu 5300		Leu	Ile	Phe	Leu 5305		Gly	Glu	Arg	Glu 5310		Lys	Val
Ser		Gln	Ile	Leu	Asp	Asp 5320	Asp	Glu	Pro	Glu		Gln	Glu	Phe
Phe			Phe	Leu	Thr	Asn		Gln	Gly	Gly			Ile	Val

	5330					5335					5340			
Glu	Gly	Lys	Asp	Asp	Thr	Gly	Phe	Ala	Ala	Phe	Ala	Met	Val	Ile
	5345					5350					5355			
Ile	Thr	Gly	Ser	Asp	Leu	His	Asn	Gly	Ile	Ile	Gly	Phe	Ser	Glu
	5360					5365					5370			
Glu	Ser	Gln	Ser	Gly	Leu	Glu	Leu	Arg	Glu	Gly	Ala	Val	Met	Arg
	5375					5380					5385			
Arg	Leu	His	Leu	Ile	Val	Thr	Arg	Gln	Pro	Asn	Arg	Ala	Phe	Glu
	5390					5395					5400			
Asp	Val	Lys	Val	Phe	Trp	Arg	Val	Thr	Leu	Asn	Lys	Thr	Val	Val
	5405					5410					5415			
Val	Leu	Gln	Lys	Asp	Gly	Val	Asn	Leu	Met	Glu	Glu	Leu	Gln	Ser
	5420					5425					5430			
Val	Ser	Gly	Thr	Thr	Thr	Cys	Thr	Met	Gly	Gln	Thr	Lys	Cys	Phe
	5435					5440					5445			
Ile			Glu	Leu	Lys			Lys	Val	Pro	Gln	Val	Glu	Val
	5450					5455					5460			
Tyr			Val					Ala	Thr	Ala	Gly	Ala	Ala	Ile
	5465					5470			_		5475		_	
Asn			Ala	Arg						He	Leu	Glu	Ser	Asp
01 m	5480		0 - 4	T		5485				01	5490	۸	T	A 1 -
GIU		GIN	ser	Leu	vai			ser	vaı	GIY	Ser	Arg	Leu	Aia
Vol	5495	u; c	T ***0	Ιο	A 1 a	5500		Τlο	Co.	Lou	5505	Vol	A 1 o	A = c=
Val	5510		гаг	LyS	Ala	5515		116	261	Leu	Gln 5520		AId	Alg
Aen			Thr	Clv	I en			Ser	Va l	Δen	Phe		Thr	Gln
мор	5525		1111	UI y	DCu	5530		501	741	11311	5535		1111	OIN
Gln			Ser	Ala	Glu			Glv	Arg	Thr	Ile		Ser	Pro
0.4	5540		501		-	5545		01,			5550		551	
Ala			Glv	Lvs	Asp			Ile	Thr	Glu	Gly		Leu	Val
	5555		_		•	5560					5565			
Phe	Glu	Pro	Gly	Gln	Arg	Ser	Thr	Val	Leu	Asp	Val	Ile	Leu	Thr
	5570					5575					5580			
Pro	Glu	Thr	Gly	Ser	Leu	Asn	Ser	Phe	Pro	Lys	Arg	Phe	Gln	Ile
	5585					5590					5595			
Val	Leu	Phe	Asp	Pro	Lys	Gly	Gly	Ala	Arg	Ile	Asp	Lys	Vạl	Tyr
	5600					5605					5610			

PCT/JP2004/011650

Gly	Thr 5615	Ala	Asn	Ile	Thr	Leu 5620	Val	Ser	Asp	Ala	Asp 5625	Ser	Gln	Ala		
Ile	Trp 5630	Gly	Leu	Ala	Asp	Gln 5635	Leu	His	Gln	Pro	Val 5640	Asn	Asp	Asp		
Ile	Leu 5645	Asn	Arg	Val	Leu	His 5650	Thr	Ile	Ser	Met	Lys 5655	Val	Ala	Thr	٠	
Glu	Asn 5660	Thr	Asp	Glu	Gln	Leu 5665	Ser	Ala	Met	Met	His 5670	Leu	Ile	Glu		
 Lys.	Ile 5675	Thr	Thr	Glu	Gly	Lys. 5680	Ile	Gln	Ala,	Phe	Ser 5685	Val	Ala	Ser	-	
Arg	Thr 5690	Leu	Phe	Tyr	Glu	Ile 5695	Leu	Cys	Ser	Leu	Ile 5700	Asn	Pro	Lys		
Arg	Lys 5705	Asp	Thr	Arg	Gly	Phe 5710		His	Phe	Ala	Glu 5715	Val	Thr	Glu		
Asn	Phe 5720	Ala	Phe	Ser	Leu	Leu 5725		Asn	Val	Thr	Cys 5730	Gly	Ser	Pro		
Gly	Glu 5735	Lys	Ser	Lys	Thr	Ile 5740	Leu	Asp	Ser	Cys	Pro 5745	Tyr	Leu	Ser		
Ile	Leu 5750	Ala	Ļeu	His	Trp	Tyr 5755		Gln	Gln	Ile	Asn 5760		His	Lys		
Phe	Glu 5765	Gly	Lys	Glu	Gly	Asp 5770		Ile	Arg	Ile	Pro 5775	Glu	Arg	Leu		
Leu	Asp 5780	Val	Gln	Asp	Ala	Glu 5785		Met	Ala	Gly	Lys 5790	Ser	Thr	Cys		
Lys	Leu 5795	Val	Gln	Phe	Thr	Glu 5800		Ser		Gln	Gln 5805	Trp	Phe	Ile		
Ser	Gly 5810	Asn	Asn	Leu	Pro	Thr 5815		Lys	Asn	Lys	Val 5820		Ser	Leu		
Ser	Val 5825	Lys	Gly	Gln	Ser	Ser 5830		Leu	Leu	Thr	Asn 5835	Asp	Asn	Glu		
Val	Leu 5840	Tyr	Arg	Ile	Tyr	Ala 5845		Glu	Pro	Arg	Ile 5850		Pro	Gln		
Thr	Ser 5855	Leu	Cys	Leu	Leu	Trp 5860		Gln	Ala	Ala	Ala 5865	Ser	Trp	Leu		
Ser	Asp 5870		Gln	Phe	Cys	Lys 5875		Ile	Glu	Glu	Thr 5880		Asp	Tyr		
Val	Glu	Cys	Ala	Cys	Ser	His	Met	Ser	Val	Tyr	Ala	Val	Tyr	Ala		

	5885					5890					5895			
Arg	Thr	Asp	Asn	Leu	Ser	Ser	Tyr	Asn	Glu	Ala	Phe	Phe	Thr	Ser
	5900					5905					5910			
Gly		Ile	Cys	Ile	Ser	Gly				Ala	Val	Leu	Ser	His
	5915	_			_	5920					5925			
He			Ala	Arg	Tyr	Ser				Ala		Leu	Leu	Thr
m:	5930		4.1	4.7	0	5935					5940	7.1	_	
						Leu							Leu	Ala
	.5945 Δ1a					5950 Gln							Sor	A 1 o
501						5965				Giu	5970	Cys	261	Ala
Met						Tyr				Cvs		Phe	Ser	Trp
	5975							- •			5985			
Met	Leu	Ile	Gln	Ser	Val	Asn	Phe	Trp	Tyr	Val	Leu	Val	Met	Asn
	5990					5995					6000			
Asp	Glu	His	Thr	Glu	Arg	Arg	Tyr	Leu	Leu	Phe	Phe	Leu	Leu	Ser
	6005					6010					6015			
Trp		Leu	Pro			Val						Val	Ile	Leu
	6020					6025					6030		_	
Lys		He	Tyr	His	Gin	Ser					_	Gly	Leu	He
u; o	6035	Aon	Low	C***	Dho			Aan		Т	6045	410	Ι	nh e
піѕ	6050	ASP	ren	Cys	rne	Ile 6055				lyr	6060	Ala	reu	rne
Thr		Ala	Len	Val	Pro	Leu						Val	Phe	Va 1
	6065		Dou	, 42		6070		-	Dou		6075	,	1110	,
Val		Ile	His	Ala	Tyr	Gln						Lys	Ala	Tyr
	6080					6085					6090	-		
Asp	Asp	Val	Phe	Arg	Gly	Arg	Thr	Asn	Ala	Ala	Glu	Ile	Pro	Leu
	6095					6100					6105			
Ile	Leu	Tyr	Leu	Phe	Ala	Leu	Ile	Ser	Val	Thr	Trp	Leu	Trp	Gly
	6110					6115					6120			
Gly		His	Met	Ala	Tyr	Arg	His	Phe	Trp	Met		Val	Leu	Phe
77 1	6125	D1		•	_	6130	.				6135		•••	_
val		rne	Asn	ser	Leu	Gln	Gly	Leu	lyr	val		Met	val	Tyr
Pho	6140	Ι _Δ 11	Иio	Aan	Cln	6145 Met	Cve	Cve	Dro	Ma+	6150	ΔΙα	Sa-	Ττ
1 116	6155	ren	1112	VSII	GIII	мет 6160	Uy S	Oy S	110	me 1	6165	uig	2¢1	TÄL
	0100					0100					0100			

Thr	Val 6170	Glu	Met	Asn	Gly	His 617		o G	ly P	ro	Ser	Thr 6180	Ala	Phe	Phe
Thr	Pro	Glv	Ser	Glv	Met			·n A	la G	lv :	Glv		Ile	Ser	Lvs
	6185	,	201	,		619		0 11		- J	u.,	6195	110	201	2,5
Ser	Thr	Gln	Asn	Leu	Ile			a M	et G	lu	Glu		Pro	Pro	Asp
	6200					620					014	6210			
Trp	Glu	Arg	Ala	Ser	Phe			n G	lv S	er	Gln			Pro	Asp
-	6215	_				622						6225		•	
Leu	Lys	Pro	Ser	Pro	Gln			уА	la T	hr	Phe			Ser	Gly
	6230					623			•			6240			
Gly	Tyr	Gly	Gln	Gly	Ser	Leu	11	e A	la A	sp	Glu	Glu	Ser	Gln	Glu
	6245					625	0					6255			
Phe	Asp	Asp	Leu	Ile	Phe	Ala	Le	eu L	ys T	hr	Gly	Ala	Gly	Leu	Ser
	6260					626	5					6270			
Val	Ser	Asp	Asn	Glu	Ser	Gly	G]	ln G	ly S	er	Gln	Glu	Gly	Gly	Thr
	6275					628	0					6285			
Leu	Thr	Asp	Ser	Gln	Ile	Val	G 3	lu L	eu A	rg	Arg	Ile	Pro	Ile	Ala
	6290					629	5					6300			
Asp	Thr	His	Ļeu												
	6305														
<210	0> 7	8													
	1> 4														
	2> P														
	3> h		sapi	ens											
	0> 7		_												
	His	Leu	Leu		Cys	Val	Phe	Gly		·Gl	y Se	er Tr	p Va		r Ile
1		_	_	5 		_	_	_	10				_	15	
Asn	Gly			Val	Glu	Leu	Pro		Leu	ı Va	.l Me	et GI		ı Pro	o Glu
01	m		20	.		m		25	** 1	••			30	4.1	
Gly	Trp		Leu	Pro	Ser	Tyr		Thr	Val	Va	.1 1.			ı Ala	a Asn
T1 -		35 D	7	T	17. 1	M1	40	T	***			45			
116	Gly	Pro	Leu	Leu			Leu	Leu	HIS	Н1			g Pro	o Se	r Cys
T	50	01	37 - 1	D		55	ni	TD1	Т		60		1 (1-	. ጥե	*** 1
	Ser	Մ I Ա	v a. I	011		116	rne	1111	Let			ıy va	1 61	y IN:	
65	Cvc	11.	ī l c	Dha	70	Dha	I 011	ፐተተ	A ==	75 Mo			т т ⊷ .	a Va	80 1 Tau
1111	Cys	116	116	Pne 85	uig	THE	ren	пр	90	i Me	ι 11	11 9G	1 11)	va. و 95	ւ ԻԲՈ
				OU					JU					ฮฮ	

Asp	Gly	His		Ser	Ile	Ala	Phe	Leu	Val	Leu	Thr	Phe	Phe	Leu	Ala
			100					105					110		
Leu	Val		Cys	Thr	Ser	Ser	Val	Thr	Phe	Leu	Pro	Phe	Met	Ser	Arg
		115					120					125			
Leu		Thr	Tyr	Tyr	Leu	Thr	Thr	Phe	Phe	Val	Gly	Glu	Gly	Leu	Ser
	130					135					140				
Gly	Leu	Leu	Pro	Ala	Leu	Val	Ala	Leu	Ala	Gln	Gly	Ser	Gly	Leu	Thr
145					150					155					160
Thr	Cys	<u>Val</u>	Așn	_Va l	Thr	Glu	<u>Ile</u>	Ser	Asp	Ser	Val	Pro	Ser	Pro	Val
				165					170					175	
Pro	Thr	Arg	Glu	Thr	Asp	He	Ala	Gln	Gly	Val	Pro	Arg	Ala	Leu	Val
			180					185					190		
Ser	Ala	Leu	Pro	Gly	Met	Glu	Ala	Pro	Leu	Ser	His	Leu	Glu	Ser	Arg
		195					200					205			
Tyr	Leu	Pro	Ala	His	Phe	Ser	Pro	Leu	Val	Phe	Phe	Leu	Leu	Leu	Ser
	210					215					220				
Ile	Me t	Met	Ala	Cys	Cys	Leu	Val	Ala	Phe	Phe	Val	Leu	Gln	Arg	Gln
225					230					235					240
Pro	Arg	Cys	Tṛp	Glu	Ala	Ser	Val	Glu	Asp	Leu	Leu	Asn	Asp	Gln	Val
				245					250					255	
Thr	Leu	His	Ser	Ile	Arg	Leu	Arg	Glu	Glu	Asn	Asp	Leu	Gly	Pro	Ala
			260					265					270		
Gly	Me t	Val	Asp	Ser	Ser	Gln	Gly	Gln	Gly	Tyr	Leu	Glu	Glu	Lys	Ala
		275					280					285			
Ala	Pro	Cys	Cys	Pro	Ala	His	Leu	Ala	Phe	Val	Tyr	Thr	Leu	Val	Ala
	290					295				•	300				
Phe	Val	Asn	Ala	Leu	Thr	Asn	Gly	Met	Leu	Pro	Ser	Val	Gln	Thr	Tyr
305					310					315					320
Ser	Cys	Leu	Ser	Tyr	Gly	Pro	Val	Ala	Tyr	His	Leu	Ala	Ala	Thr	Leu
				325					330					335	
Ser	Ile	Val	Ala	Asn	Pro	Leu	Ala	Ser	Leu	Val	Ser	Met	Phe	Leu	Pro
			340					345					350		
Asn	Arg	Ser	Leu	Leu	Phe	Leu	Gly	Val	Leu	Ser	Val	Leu	Gly	Thr	Cys
		355					360					365			
Phe	Gly	Gly	Tyr	Asn	Met	Ala	Met	Ala	Val	Met	Ser	Pro	Cys	Pro	Leu
	370					375					380			•	
Leu	Gln	Gly	His	Trp	Gly	Gly	Glu	Val	Leu	Ile	Val	Ala	Ser	Trp	Val

385
Algorithms
Leu Arg Asp
Call Leu Gly Ser Leu Leu Gly Ala Leu Leu Met Phe Pro Leu Val Asn Asn Ass Ass Ass Leu Ass Ass
Call Leu Gly Ser Leu Leu Gly Ala Leu Leu Met Phe Pro Leu Val Asn Asn Ass Ass Ass Leu Ass Ass
Gln Leu Gly Ser Leu Leu Gly Ala Leu Leu Met Phe Pro Leu Val Asn 435
Val Leu Arg Leu Phe Ser Ser Ala Asp Phe Cys Asn Leu His Cys Pro Ala 450 455 460 4
Val Leu Arg Leu Phe Ser Ala Asp Phe Cys Asn Leu His Cys Pro Ala 450 450 460 4
Ala 465 <210> 79 <211> 458 <212> PRT <213> homo sapiens <400> 79 Met Ala Gly Ser Pro Ser Arg Ala Ala Gly Arg Arg Leu Gln Leu Pro 1 5 . 10 15
Ala 465 <210> 79 <211> 458 <212> PRT <213> homo sapiens <400> 79 Met Ala Gly Ser Pro Ser Arg Ala Ala Gly Arg Arg Leu Gln Leu Pro 1 5 . 10 15
465 <210> 79 <211> 458 <212> PRT <213> homo sapiens <400> 79 Met Ala Gly Ser Pro Ser Arg Ala Ala Gly Arg Arg Leu Gln Leu Pro 1 5 10 15
<pre> <210> 79 <211> 458 <212> PRT <213> homo sapiens <400> 79 Met Ala Gly Ser Pro Ser Arg Ala Ala Gly Arg Arg Leu Gln Leu Pro 1</pre>
<pre> <211> 458 <212> PRT <213> homo sapiens <400> 79 Met Ala Gly Ser Pro Ser Arg Ala Ala Gly Arg Arg Leu Gln Leu Pro 1 5 . 10 15</pre>
<pre> <212> PRT <213> homo sapiens <400> 79 Met Ala Gly Ser Pro Ser Arg Ala Ala Gly Arg Arg Leu Gln Leu Pro 1</pre>
<pre><213> homo sapiens <400> 79 Met Ala Gly Ser Pro Ser Arg Ala Ala Gly Arg Arg Leu Gln Leu Pro 1</pre>
<pre><400> 79 Met Ala Gly Ser Pro Ser Arg Ala Ala Gly Arg Arg Leu Gln Leu Pro 1</pre>
Met Ala Gly Ser Pro Ser Arg Ala Ala Gly Arg Arg Leu Gln Leu Pro 1 5 . 10 15
1 5 . 10 15
Leu Leu Cys Leu Phe Leu Gln Gly Ala Thr Ala Val Leu Phe Ala Val
20 25 30
Phe Val Arg Tyr Asn His Lys Thr Asp Ala Ala Leu Trp His Arg Ser
35 40 . 45
Asn His Ser Asn Ala Asp Asn Glu Phe Tyr Phe Arg Tyr Pro Ser Phe
50 55 60
Gln Asp Val His Ala Met Val Phe Val Gly Phe Gly Phe Leu Met Val
65 70 75 80
Phe Leu Gln Arg Tyr Gly Phe Ser Ser Val Gly Phe Thr Phe Leu Leu
85 90 95
Ala Ala Phe Ala Leu Gln Trp Ser Thr Leu Val Gln Gly Phe Leu His
100 105 110
Ser Phe His Gly Gly His Ile His Val Gly Val Glu Ser Met Ile Asn
115 120 125
Ala Asp Phe Cys Ala Gly Ala Val Leu Ile Ser Phe Gly Ala Val Leu
130 135 140
Gly Lys Thr Gly Pro Thr Gln Leu Leu Leu Met Ala Leu Leu Glu Val
145 150 155 160
Val Leu Phe Gly Ile Asn Glu Phe Val Leu Leu His Leu Leu Gly Val

				165					170					175	
Arg	Asp	Ala	Gly	Gly	Ser	Met	Thr	Ile	His	Thr	Phe	Gly	Ala	Tyr	Phe
			180					185					190		
Gly	Leu	Val	Leu	Ser	Arg	Val	Leu	Tyr	Arg	Pro	Gln	Leu	Glu	Lys	Ser
		195					200					205			
Lys	His	Arg	Gln	Gly	Ser	Val	Tyr	His	Ser	Asp	Leu	Phe	Ala	Met	Ile
	210					215					220				
Gly	Thr	Ile	Phe	Leu	Trp	Ile	Phe	Trp	Pro	Ser	Phe	Asn	Ala	Ala	Leu
225					230					235					240
Thr	Ala	Leu	Gly	Ala	Gly	Gln	His	Arg	Thr	Ala	Leu	Asn	Thr	Tyr	Tyr
		•		245					250					255	
Ser	Leu	Ala		Ser	Thr	Leu	Gly	Thr	Phe	Ala	Leu	Ser		Leu	Val
			260					265					270		_
Gly	Glu		Gly	Arg	Leu	Asp		Val	His	Ile	Gln		Ala	Ala	Leu
		275					280	_	_			285	_		_
Ala	Gly	Gly	Val	Val	Val		Thr	Ser	Ser	Glu		Met	Leu	Thr	Pro
	290		_			295		_		0.1	300	 .	•	m:	-
	Gly	Ala	Leu	Ala	•	Gly	Phe	Leu	Ala		Thr	vai	Ser	Inr	
305			, Di	701	310	D	71.	j	01	315	T	Ď1	Y	7 7 - 1	320
GIY	Tyr	Lys	rne		ınr	Pro	116	Leu		Ser	Lys	rne	Lys		GII
A	Th	C	C1	325	TT: a	100	ĭ	11: 4	330	Wo t	Dec	C1	Wo I	335	C1
ASP	inr	Cys		Väl	HIS	ASI	Leu		GIY	мет	Pro	GIA		Leu	Gly
A 1 a	Lou	Lou	340	Vol	Lou	Vo 1	41a	345	Ι 011	Λlο	Th =	Шio	350	A 1 n	Тъл г
Ald	Leu	355	GIY	Vai	Leu	Val	360	GIY	Leu	Ala	1111	365	Giu	nia	1 9 1
Clv	Aen		Ιωπ	Glu	Sar	Val		Dro	TΔ11	.Tla	Δla		Glv	Gln	Arg
GIY	370	dly	Leu	Giu	261	375	1 116	110	Leu	110	380		Uly	UIII	Mg
Ser		Thr	Ser	Gln	Ala		His	Gln	Len	Phe			Phe	Val	Thr
385	,,,,	••••	501	0111	390		****	0111	Dou	395		nou.	10	,	400
	Met	Phe	Ala	Ser			Glv	Glv	Leu			Leu	Leu	Leu	
Jou				405	,	0.,	01 3	01,	410		01,			415	
Leu	Pro	Phe	Leu		Ser	Pro	Pro	Asp			His	Tvr	Glu		Gln
			420					425				-,-	430		
Val	His	Trp		Val	Pro	Glv	Glu			Asp	Lys	Ala			Pro
		435					440			-	J -	445		J	
Leu	Arg			Glu	Ala	Asp			Ala						
	450					455									

<210	>	80						•							
<211	>	871													
<212	> :	PRT													
< 213	>	homo	sapi	ens											
<400)>	80													
Met	Ile	Lys	Lys	Phe	Asp	Lys	Lys	Asp	Glu	Glu	Ser	Gly	Ser	Gly	Ser
1				5					10					15	
Asn	Pro	Phe	Gln	His	Leu	Glu	Lys	Ser	Ala	Val	Leu	Gln	Glu	Ala	Arg
			20					<u>25</u>					30		
Ile	Phe	Asn	Glu	Thr	Pro	Ile		Pro	Arg	Arg	Cys		His	Ile	Leu
	_	35 -	_	_	_	_	40					45			
Thr		Ile	Leu	Tyr	Leu		Asn	Gln	Gly	Glu		Phe	Gly	Thr	Thr
01	50	W1	C1	A 1 -	D1	55	41.	W - 1	M1	A	60	D1	01	0	A
	Ala	Thr	GIU	Ala		rne	Ala	met	ınr		Leu	rne	GIN	26L	
65 Asp	Cin	Thr	T an	Ara	70	Mot	Cvc	Тъг	Ι Δ11	75	Πa	Iwe	Cln	Mat	80 Ala
ASP	GIII	Thr	ren	85	Alg	Met	Cys	1 9 1	90	1111	116	LyS	GIU	ме і 95	Ald
Thr	Tle	Ser	Glu		Val	ء ۱۱	Ile	Val		Ser	Ser	Len	Thr		Asn
****	110	501	100	nop	; 41	110	110	105	****	501	501	Dou	110	D ,0	шр
Met	Thr	Gly	•	Glu	Asp	Val	Tvr		Glv	Pro	Ala	Ile		Ala	Leu
		115	-•-				120					125			
Cys	Arg	; Ile	Thr	Asp	Gly	Thr		Leu	Gln	Ala	Ile	Glu	Arg	Tyr	Met
	130					135					140				
Lys	Gln	Ala	Ile	Val	Asp	Lys	Val	Ser	Ser	Val	Ser	Ser	Ser	Ala	Leu
145					150					155					160
Val	Ser	Ser	Leu	His	Met	Met	Lys	Ile	Ser	Tyr	Asp	Val	Val	Lys	Arg
				165					170					175	
Trp	Ιle	Asn	Glu	Ala	Gln	Glu	Ala	Ala	Ser	Ser	Asp	Asn	Ile	Met	Val
			180					185					190		
Gln	Туг	His	Ala	Leu	Gly	Val	Leu	Tyr	His	Leu	Arg	Lys	Asn	Asp	Arg
		195					200					205			
Leu		Val	Ser	Lys	Met		Asn	Lys	Phe	Thr		Ser	Gly	Leu	Lys
_	210			_	_	215	_				220	_	ē	_	_
	Glr	Phe	Ala	Tyr		Met	Leu	He	Arg		Ala	Ser	Arg	Leu	
225	0.1	m¹	0.1		230	** *	0 1	ο	n	235	D!	A	D1: -	71	240
Lys	GIU	Thr	Glu		Gly	HIS	Glu	ser		Leu	rne	ASP	rne		Glu
				245					250					255	

Ser	Cys	Leu	Arg 260	Asn	Lys	His	Glu	Me t 265	Val	Ile	Tyr	Glu	Ala 270	Ala	Ser
Ala	Ile	Ile 275	His	Leu	Pro	Asn	Cys 280	Thr	Ala	Arg	Glu	Leu 285	Ala	Pro	Ala
Val	Ser 290	Val	Leu	Gln	Leu	Phe 295	Cys	Ser	Ser	Pro	Lys 300	Pro	Ala	Leu	Arg
Tyr 305	Ala	Ala	Val	Arg	Thr 310	Leu	Asn	Lys	Val	Ala 315	Met	Lys	His.	Pro	Ser 320
	Vạl	Thr	Ala	Cys 325	Asn	Leu	Asp	Leu	Glu 330		Leu	Ile	Thr	Asp. 335	
Asn	Arg	Ser	Ile 340		Thr	Leu	Ala	Ile 345		Thr	Leu	Leu	Lys 350		Gly
Ser	Glu	Ser 355	Ser	Val	Asp	Arg	Leu 360	Met	Lys	Gln	Ile	Ser 365	Ser	Phe	Val
Ser	Glu 370	Ile	Ser	Asp	Glu	Phe	Lys	Val	Val	Val	Val 380	Gln	Ala	Ile	Ser
Ala 385	Leu	Cys	Gln	Lys	Tyr 390	Pro	Arg	Lys	His	Ser 395	Val	Met	Met	Thr	Phe 400
Leu	Ser	Asn	Met	Leu 405	Arg	Asp	Asp	Gly		Phe		Tyr	Lys	Arg 415	Ala
Ile	Val	Asp	Cys 420	Ile	Ile	Ser	Ile	Val 425			Asn		Glu 430	Ser	Lys
Glu	Ala	Gly 435	Leu	Ala	His	Leu	Cys 440		Phe	Ile	Glu	Asp 445	Cys	Glu	His
Thr	Val 450	Leu	Ala	Thr	Lys	Ile 455	Leu	His	Leu	Leu	Gly 460	Lys	Glu	Gly	Pro
Arg 465	Thr	Pro	Val	Pro	Ser 470	Lys	Tyr	Ile	Arg	Phe 475	Ile	Phe	Asn	Arg	Val 480
Val	Leu	Glu	Asn	Glu 485	Ala	Val	Arg	Ala	Ala 490	Ala	Val	Ser	Ala	Leu 495	Ala
Lys	Phe	Gly	Ala 500	Gln	Asn	Glu	Ser	Leu 505	Leu	Pro	Ser	Ile	Leu 510	Val	Leu
Leu	Gln	Arg 515	Cys	Met	Met	Asp	Thr 520		Asp	Glu	Val	Arg 525	Asp	Arg	Ala
Thr	Phe 530	Tyr	Leu	Asn	Val	Leu 535	Gln	Gln	Arg	Gln	Met 540	Ala	Leu	Asn	Ala
Thr	Tyr	Ile	Phe	Asn	Gly	Leu	Thr	Val	Ser	Val	Pro	Gly	Met	Glu	Lys

	545					550					555					560
		Leu	His	Gln	Tvr	Thr	Leu	Glu	Pro	Ser		Lvs	Pro	Phe	Asp	
					565					570		_•-			575	
	I.vs	Ser	Tle	Prn		Ala	Met	Ala	Pro		Phe	Glu	Gln	I.vs		Glu
	2,5	501	110	580	Dou	u	1120 0	****	585	141	1110	014	0111	590	211 u	oru.
	Ιlρ	Th r	T en		Ala	Thr	Lys	Pro		Ινο	I A11	Δla	Pro		Δrσ	Cl n
	110	1111	595	141	/11 u	1111	ЦуБ	600	Olu	LJS	Dea	711 0	605	501	**** 6	OIII
	Aen	ΤlΔ		Cln	Glu	Gln	Leu		Δ1a	ΠΔ	Dro	Cl 11		I All	Aen	ΙΙο
	nsp	610		GIII	Ulu									rea	лэп	116
	C1**		-	Dha	T *** C		615 Sor							C1.,	4 1 a	Clu
•		FIU	ren	rne	L y S		Ser	Giu	FIO	Val		ren	1111	GIU	Ald	
	625	C1	т	Dho	Vo I	630	Crra	T 1 a	T	II: a	635	Dh.a	ጥե	Aan	m: c	640
	1111	GIU	TÄI	rne		AIR	Cys	116	LyS		меі	rne	1111	ASII		116
	37 - 1	TN1	C1	D1	645	0	W1	A	m1	650	4	.	01	T	655	01
	vai	rne	GIN		ASP	Cys	Thr	ASI		Leu	ASI	ASP	GIN		Leu	GIU
		•	m1	660	.		01		665		•	m	~ 1	670		•
	Lys	Val		Val	Gin	Me t	Glu		Ser	Asp	Ser	Tyr		Val	Leu	Ser
	_		675		_	_	_	680	_	_		_	685		_	_
	Cys		Pro	Ala	Pro	Ser	Leu	Pro	Tyr	Asn	Gln		Gly	He	Cys	Tyr
		690					695					700				
		Leu	Val	Arg	Leu		Asp	Asp	Asp	Pro		Ala	Val	Ala	Gly	
	705					710					715					720
	Phe	Ser	Cys	Thr	Met	Lys	Phe	Thr	Val	Arg	Asp	Cys	Asp	Pro	Asn	Thr
	•				725					730			٠		735	
	Gly	Val	Pro	Asp	Glu	Asp	Gly	Tyr	Asp	Asp	Glu	Tyr	Val	Leu	Glu	Asp
				740					745					750		
	Leu	Glu	Val	Thr	Val	Ser	Asp	His	Ile	Gln	Lys	Val	Leu	Lys	Pro	Asn
			755					760					765			
	Phe	Ala	Ala	Ala	Trp	Glu	Glu	Val	Gly	Asp	Thr	Phe	Glu	Lys	Glu	Glu
		770					775					780				
	Thr	Phe	Ala	Leu	Ser	Ser	Thr	Lys	Thr	Leu	Glu	Glu	Ala	Val	Asn	Asn
	785					790					795					800
	Ile	Ile	Thr	Phe	Leu	Gly	Met	Gln	Pro	Cys	Glu	Arg	Ser	Asp	Lys	Val
					805					810					815	
	Pro	Glu	Asn	Lys	Asn	Ser	His	Ser	Leu	Tyr	Leu	Ala	Gly	Ile	Phe	Arg
				820					825					830		
	Gly	Gly	Tyr	Asp	Leu	Leu	Val	Arg	Ser	Arg	Leu	Ala	Leu	Ala	Asp	Gly
			835					840					845			

Val Thr Met Gln Val Thr Val Arg Ser Lys Glu Arg Thr Pro Val Asp Val Ile Leu Ala Ser Val Gly **<210> 81 <211> 250** <212> PRT $\langle 213 \rangle$ homo sapiens **<400> 81** Met Ala Glu Gly Gly Ala Ser Lys Gly Gly Gly Glu Glu Pro Gly Lys Leu Pro Glu Pro Ala Glu Glu Glu Ser Gln Val Leu Arg Gly Thr Gly His Cys Lys Trp Phe Asn Val Arg Met Gly Phe Gly Phe Ile Ser Met Ile Asn Arg Glu Gly Ser Pro Leu Asp Ile Pro Val Asp Val Phe Val 55 . His Gln Ser Lys Leu Phe Met Glu Gly Phe Arg Ser Leu Lys Glu Gly Glu Pro Val Glu Phe Thr Phe Lys Lys Ser Ser Lys Gly Leu Glu Ser Ile Arg Val Thr Gly Pro Gly Gly Ser Pro Cys Leu Gly Ser Glu Arg Arg Pro Lys Gly Lys Thr Leu Gln Lys Arg Lys Pro Lys Gly Asp Arg Cys Tyr Asn Cys Gly Gly Leu Asp His His Ala Lys Glu Cys Ser Leu Pro Pro Gln Pro Lys Lys Cys His Tyr Cys Gln Ser Ile Met His Met Val Ala Asn Cys Pro His Lys Asn Val Ala Gln Pro Pro Ala Ser Ser Gln Gly Arg Gln Glu Ala Glu Ser Gln Pro Cys Thr Ser Thr Leu Pro Arg Glu Val Gly Gly His Gly Cys Thr Ser Pro Pro Phe Pro Gln Glu Ala Arg Ala Glu Ile Ser Glu Arg Ser Gly Arg Ser Pro Gln Glu

WO 2005/014818 PCT/JP2004/011650

151/271

Ala Ser Ser Thr Lys Ser Ser Ile Ala Pro Glu Glu Gln Ser Lys Lys Gly Pro Ser Val Gln Lys Arg Lys Lys Thr **<210> 82 <211> 210** <212> PRT $\langle 213 \rangle$ homo sapiens **<400> 82** Met Gly Phe Gly Phe Ile Ser Met Ile Asn Arg Glu Gly Ser Pro Leu Asp Ile Pro Val Asp Val Phe Val His Gln Ser Lys Leu Phe Met Glu Gly Phe Arg Ser Leu Lys Glu Gly Glu Pro Val Glu Phe Thr Phe Lys Lys Ser Ser Lys Gly Leu Glu Ser Ile Arg Val Thr Gly Pro Gly Gly Ser Pro Cys Leu Gly Ser Glu Arg Arg Pro Lys Gly Lys Thr Leu Gln Lys Arg Lys Pro Lys Gly Asp Arg Cys Tyr Asn Cys Gly Gly Leu Asp His His Ala Lys Glu Cys Ser Leu Pro Pro Gln Pro Lys Lys Cys His Tyr Cys Gln Ser Ile Met His Met Val Ala Asn Cys Pro His Lys Asn Val Ala Gln Pro Pro Ala Ser Ser Gln Gly Arg Gln Glu Ala Glu Ser Gln Pro Cys Thr Ser Thr Leu Pro Arg Glu Val Gly Gly His Gly Cys Thr Ser Pro Pro Phe Pro Gln Glu Ala Arg Ala Glu Ile Ser Glu Arg Ser Gly Arg Ser Pro Gln Glu Ala Ser Ser Thr Lys Ser Ser Ile Ala Pro Glu Glu Gln Ser Lys Lys Gly Pro Ser Val Gln Lys Arg Lys Lys Thr

<210)>	83																	
<211	>	391																	
<212	?>	PRT																	
<213	3>	homo	sapi	ens															
<400)>	83														•			
Met 1	Arg	Gln	Leu	Cys 5	Arg	Gly	Arg	Val	Leu 10	Gly	Ile	Ser	Val	Ala 15	Ile				
Ala	His	Gly	Val 20	Phe	Ser	Gly	Ser	Leu 25		Ile	Leu	Leu	Lys 30	•	Leu				
Ile	Ser	Arg	• • • • • • • • • • • • • • • • • • • •	Gln	Phe	Ser	Phe 40		Thr	Leu	Val	Gln 45		Leu	Thr	•••		•	
Ser	Ser 50	Thr	Ala	Ala	Leu	Ser 55		Glu	Leu	Leu	Arg		Leu	Gly	Leu				
Ile 65	Ala	Val	Pro	Pro	Phe 70	Gly	Leu	Ser	Leu	Ala 75		Ser	Phe	Ala	Gly 80				
	Ala	Val	Leu	Ser 85		Leu	Gln	Ser	Ser 90		Thr	Leu	Trp	Ser 95					
Arg	Gly	Leu	Ser 100		Pro	Met	Tyr	Val		Phe	Lys	Arg	Cys 110		Pro				
Leu	Val	Thr 115	•	Leu	Ile	Gly	Val 120		Val	Leu	Lys	Asn 125		Ala	Pro				
Ser	Pro	Gly	Val	Leu	Ala	Ala 135	Val	Leu	Ile	Thr	Thr 140		Gly	Ala	Ala				
Leu 145	Ala	Gly	Ala	Gly	Asp 150	Leu	Thr	Gly	Asp	Pro 155	Ile	Gly	Tyr	Val	Thr 160				
Gly	Val	Leu	Ala	Val 165	Leu	Val	His	Ala	Ala 170	Tyr	Leu	Val	Leu	Ile 175	Gln				
Lys	Ala	Ser	Ala 180	Asp	Thr	Glu	His	Gly 185	Pro	Leu	Thr	Ala	Gln 190	Tyr	Val				
Ile	Ala	Val 195	Ser	Ala	Thr	Pro	Leu 200	Leu	Val	Ile	Cys	Ser 205	Phe	Ala	Ser		-		
Thr	Asp 210	Ser	Ile	His	Ala	Trp 215	Thr	Phe	Pro	Gly	Trp 220	Lys	Asp	Pro	Ala				
Met 225	Val	Cys	Ile	Phe	Val 230	Ala	Cys	Ile	Leu	Ile 235	Gly	Cys	Ala	Met	Asn 240				
Phe	Thr	Thr	Leu	His 245	Cys	Thr	Tyr	Ile	Asn 250	Ser	Ala	Val	Thr	Thr 255	Ser				

Leu Phe Ile Ala Gly Val Val Val Asn Thr Leu Gly Ser Ile Ile Tyr Cys Val Ala Lys Phe Met Glu Thr Arg Lys Gln Ser Asn Tyr Glu Asp Leu Glu Ala Gln Pro Arg Gly Glu Glu Ala Gln Leu Ser Gly Asp Gln Leu Pro Phe Val Met Glu Glu Leu Pro Gly Glu Gly Gly Asn Gly Arg Ser Glu Gly Gly Glu Ala Ala Gly Gly Pro Ala Gln Glu Ser Arg Gln Glu Val Arg Gly Ser Pro Arg Gly Val Pro Leu Val Ala Gly Ser Ser Glu Glu Gly Ser Arg Arg Ser Leu Lys Asp Ala Tyr Leu Glu Val Trp Arg Leu Val Arg Gly Thr Arg Tyr Met Lys Lys Asp Tyr Leu Ile Glu Asn Glu Glu Leu Pro Ser Pro **<210> 84 <211> 907** <212> PRT $\langle 213 \rangle$ homo sapiens **<400>** 84 Met Asp Thr Ser Arg Leu Gly Val Leu Leu Ser Leu Pro Val Leu Leu Gln Leu Ala Thr Gly Gly Ser Ser Pro Arg Ser Gly Val Leu Leu Arg Gly Cys Pro Thr His Cys His Cys Glu Pro Asp Gly Arg Met Leu Leu Arg Val Asp Cys Ser Asp Leu Gly Leu Ser Glu Leu Pro Ser Asn Leu Ser Val Phe Thr Ser Tyr Leu Asp Leu Ser Met Asn Asn Ile Ser Gln Leu Leu Pro Asn Pro Leu Pro Ser Leu Arg Phe Leu Glu Glu Leu Arg Leu Ala Gly Asn Ala Leu Thr Tyr Ile Pro Lys Gly Ala Phe Thr Gly

Leu	Tyr	Ser 115	Leu	Lys	Val	Leu	Met 120	Leu	Gln	Asn	Asn	Gln 125	Leu	Arg	His
Val	Dro		Clar	۵1ء	Ι Δ11	Gln		Ton	1 = ~	Sar	T A11		Sar	Lou	Ara
141	130		UIU	Mia	LCu	135	Von	rea	ni g	SCI	140	GIII	DCI	Leu	nig
Leu		د ۱ ۵	Aen	Hie	۵۱۱		Туг	Vá 1	Dro	Dro		Cvc	Dhα	Sar	Cl _w
145	ush	ΛΙα	изп	111.2	150	261	I y I	Vai	rio	155	261	Cys	THE	261	160
Leu	Иic	Sar	Ĭωι	Ara		Ιρπ	Trn	Lou	Aon		Acn	Λla	Ī AII	Th #	
LCu	1113	DCI	LCu	165	1113	Leu	пр	rea	170	nsp	Uon	піа	LCu,	175	Giu
Ile	Pro	Val	GIn		Phe	Aro	Ser	Ī en		Δla	I en	Cln	Ala		Thr
110,_		• 24	180	111.00	7 II.O	**** P	. Dor	185	pcı	111 d	non.	_01 <u>ii</u>	190	.m.c t	. ****
Len	Ala	Len		Lvs	Ile	His	His		Pro	Asn	Tvr	Ala	Phe	Glv	Asn
204		195	11011	2,0	110	****	200	110	110	, no p	.,.	205	1110	u,	11011
Leu	Ser		Leu	Val	Val	Leu		Leu	His	Asn	Asn		Ile	His	Ser
	210					215					220	0			
Leu	Gly	Lys	Lys	Cys	Phe		Gly	Leu	His	Ser		Glu	Thr	Leu	Asp
225					230					235					240
Leu	Asn	Tyr	Asn	Asn	Leu	Asp	Glu	Phe	Pro	Thr	Ala	Ile	Arg	Thr	Leu
				245					250					255	
Ser	Asn	Leu	Lys	Glu	Leu	Gly	Phe	His	Ser	Asn	Asn	Ile	Arg	Ser	Ile
			260					265					270		
Pro	Glu	Lys	Ala	Phe	Val	Gly	Asn	Pro	Ser	Leu	Ile	Thr	Ile	His	Phe
		275					280		•			285			
Tyr	Asp	Asn	Pro	Ile	Gln	Phe	Val	Gly	Arg	Ser	Ala	Phe	Gln	His	Leu
	290					295					300				
Pro	Glu	Leu	Arg	Thr	Leu	Thr	Leu	Asn	Gly	Ala	Ser	Gln	Ile	Thr	Glu
305					310					·315					320
Phe	Pro	Asp	Leu	Thr	Gly	Thr	Ala	Asn	Leu	Glu	Ser	Leu	Thr	Leu	Thr
				325					330					335	
Gly	Ala	Gln		Ser	Ser	Leu	Pro	Gln	Thr	Val	Cys	Asn	Gln	Leu	Pro
			340					345					350		
Asn	Leu		Val	Leu	Asp	Leu			Asn	Leu	Leu		Asp	Leu	Pro
		355					360					365			
Ser		Ser	Val	Cys	Gln		Leu	Gln	Lys	Ile		Leu	Arg	His	Asn
6.1	370	_			_	375		-			380	_	_	_	_
	He	Tyr	Glu	He		Val	Asp	Thr	Phe		Gln	Leu	Leu	Ser	
385	~			_	390	_		-		395	• -				400
Arg	Ser	Leu	Asn	Leu	Ala	Trp	Asn	Lys	He	Ala	He	He	His	Pro	Asn

				405				•	410					415	
Ala	Phe	Ser	Thr	Leu	Pro	Ser	Leu	Ile	Lys	Leu	Asp	Leu	Ser	Ser	Asn
			420					425					430		
Leu	Leu		Ser	Phe	Pro	Ile		Gly	Leu	His	Gly		Thr	His	Leu
_	_	435					440		_			445	_		
Lys		Thr	Gly	Asn	His		Leu	Gln	Ser	Leu		Ser	Ser	Glu	Asn
Dh.	450	C1	Τ	T	Va l	455	Cla	W- 1	D	Т	460	Т	C1m	Ca	C
	Pro	GIU	Leu	гаг	Val			met	Pro		Ala	ТУГ	GIII	Cys	
465	 Dha	Clar	Val	Cure.	470 Glu	•	11 a	T	I 770	475	- Cor	Aon	Cin	Trn	480
AId	rne	GIY	Yai	485	GIU	voii	Ala	1 9 1	490	116	261	ven	GIH	495	ASII
Lys	Gly	Ąsp	Asn	Ser	Ser	Met	Asp	Asp	Leu	His	Lys	Lys	Asp	Ala	Gly
			500					505					510		
Met	Phe		Ala	Gln	Asp	Glu		Asp	Leu	Glu	Asp		Leu	Leu	Asp
D 1	01	515					520		0	•••	01	525	0	.	a
Phe		Glu	Asp	Leu	Lys		Leu	HIS	Ser	Vai		Cys	Ser	Pro	Ser
D	530	D	Dh.	T	D	535	01	YY : _	T	T	540	C1	T	T	Y 1 -
	Gly	Pro	rne	Lys	Pro	Cys	GIU	HIS	Leu		ASD	GIY	111	Leu	
545	Πο	Clv	Val	Trn	550 Thr	Ιlο	Λla	Va l	Lan	555	Ι Δ11	Thr	Cve	Aen	560
AIG	116	Gly	141	565	1111	116	ліа	Val	570	ΛIα	Leu	1111	Cys	575	nia
Len	Val	Thr	Ser		Val	Phe	Arg	Ser		Len	Tvr	Tle	Ser		He
204			580			2 0	0	585		200	.,.		590		
Lys	Leu	Leu		Gly	Val	Ile	Ala		Val	Asn	Met	Leu		Gly	Val
		595					600					605			
Ser	Ser	Ala	Val	Leu	Ala	Gly	Val	Asp	Ala	Phe	Thr	Phe	Gly	Ser	Phe
	610					615					620				
Ala	Arg	His	Gly	Ala	Trp	Trp	Glu	Asn	Gly	Val	Gly	Cys	His	Val	Ile
625					630					635					640
Gly	Phe	Leu	Ser	Ile	Phe	Ala	Ser	Glu	Ser	Ser	Val	Phe	Leu	Leu	Thr
				645					650					655	
Leu	Ala	Ala	Leu 660		Arg	Gly	Phe	Ser 665	Val	Lys	Tyr	Ser	Ala 670	Lys	Phe
Glu	Thr	Ινς			Phe	Ser	Ser		Ινο	Val	ماآ	Ιlρ		Ĭ en	Cve
oru	1111	675			1110	201	680		دور	, u i	110	685	Dou	Dou	OJ 3
Ala	Leu			Leu	Thr	Met			Val	Pro	Leu		Glv	Glv	Ser
	690					695			•		700				- -

_	_	01				_	_	_	_	_	_		61	0.1	D.
	Tyr	Gly	Ala	Ser		Leu	Cys	Leu	Pro		Pro	Phe	Gly	Glu	
705					710					715				_	720
Ser	Thr	Met	Gly		Met	Val	Ala	Leu	Ile	Leu	Leu	Asn	Ser		Cys
				725					730					735	
Phe	Leu	Met	Met	Thr	Ile	Ala	Tyr	Thr	Lys	Leu	Tyr	Cys	Asn	Leu	Asp
			740					745					750		
Lys	Gly	Asp	Leu	Glu	Asn	Ile	Trp	Asp	Cys	Ser	Met	Val	Lys	His	Ile
		755					760					765			
Аlа	Leu	Leu	Leu	Phe	Thr	Asn	Cys	Ile	Leu	Asn	Cys	Pro	Val	Ala	Phe
	770					775					780				
Leu	Ser	Phe	Ser	Ser	Leu	Ile	Asn	Leu	Thr	Phe	Ile	Ser	Pro	Glu	Val
785					790					795					800
Ile	Lys	Phe	Ile	Leu	Leu	Val	Val	Val	Pro	Leu	Pro	Ala	Cys	Leu	As n
				805					810					815	
Pro	Leu	Leu	Tyr	Ile	Leu	Phe	Asn	Pro	His	Phe	Lys	Glu	Asp	Leu	Val
			820					825					830		
Ser	Leu	Arg	Lys	Gln	Thr	Tyr	Val	Trp	Thr	Arg	Ser	Lys	His	Pro	Ser
	•	835					840					845			
Leu	Met	Ser	Ile	Asn	Ser	Asp	Asp	Val	Glu	Lys	Gln	Ser	Cys	Asp	Ser
	850					855					860				
Thr	Gln	Ala	Leu	Val	Thr	Phe	Thr	Ser	Ser	Ser	Ile	Thr	Tyr	Asp	Leu
865					870					875					880
Pro	Pro	Ser	Ser	Val	Pro	Ser	Pro	Ala	Tyr	Pro	Val	Thr	Glu	Ser	Cys
				885					890					895	
His	Leu	Ser	Ser	Val	Ala	Phe	Val	Pro	Cys	Leu					
			900					905							
<21	0>	85													
<21	1>	982													
<21	2>	PRT													
<21	3>	homo	sap	i ens											
<40	0>	85													
Met	Pro	Thr	Ser	Thr	Ala	Gly	Glu	Gly	Ser	Thr	Pro	Leu	Thr	Asn	Met
1				5					10					15	
	Val	Ser	Thr	Thr	Pro	Val	Ala	Ser	Ser	Glu	Ala	Ser	Thr	Leu	Ser
			20					25					30		
Thr	Thr	Pro		Asp	Ser	Asn	Thr	Phe	Val	Thr	Ser	Ser	Ser	Gln	Ala
	_	35		- &-			40					45		•	
		-													

Ser	Ser 50	Ser	Pro	Ala	Thr	Leu 55	Gln	Val	Thr	Thr	Met 60	Arg	Met	Ser	Thr
Pro 65	Ser	Glu	Gly	Ser	Ser 70	Ser	Leu	Thr	Thr	Met 75	Leu	Leu	Ser	Ser	Thr 80
Tyr	Val	Thr	Ser	Ser 85	Glu	Ala	Ser	Thr	Pro 90		Thr	Pro	Ser	Val 95	
Arg	Ser	Thr	Pro		Thr	Thr	Ser	Thr 105		Ser	Asn	Ser _.	Thr		Thr
Pro	Pro		Val	Ile	Thr	Leu			Ser	Th r	Pro			Val	Şer _
ጥե	Dno	115	Th n	Tlo	Mo +	Dno	120	Co.	ጥե	Th =	°	125	TL	Tla	C
IHI	130	Leu	Thr	116	Meı	135	vai	ser	Inr	Inr	ser 140	vai	1111	116	261
Glu		Gly	Thr	Ala	Ser		Leu	Pro	Val	Asp		Ser-	Thr	Pro	Val
145					150					155					160
Ile	Thr	Ser	Thr	Gln	Val	Ser	Ser	Ser	Pro	Val	Thr	Pro	Glu	Gly	Thr
				165					170					175	
Thr	Met	Pro	Ile	Trp	Thr	Pro	Ser		Gly	Ser	Thr	Pro		Thr	Thr
	_		180	mı				185	_	_			190		_
Met	Pro		Ser	Thr	Thr	Arg		Thr	Ser	Ser	Glu		Ser	Thr	Leu
Sar	Th r	195	Sar	Val	Va l	Th =	200	Th •	Dro	Vo l	Th.	205	cor.	ТЬ.	Clu
261	210	110	Ser	Val	Val	215	261	1111		Val	220	1111	261	1111	GIU
Ala		Ser	Ser	Ser	Ala		Leu	Asp	Ser	Thr		Met	Ser	Val	Ser
225					230					235					240
Met	Pro	Met	Glu	Ile	Ser	Thr	Leu	Gly	Thr	Thr	Ile	Leu	Val	Ser	Thr
				245					250					255	
Thr	Pro	Val	Thr 260	Arg	Phe	Pro	Glu	Ser 265	Ser	Thr	Pro	Ser	11e 270	Pro	Ser
Val	Tyr	Thr	Ser	Met	Ser	Met	Thr		Ala	Ser	Glu	Gly		Ser	Ser
		275					280					285			
Pro	Thr	Thr	Leu	Glu	Gly	Thr	Thr	Thr	Met	Pro	Met	Ser	Thr	Thr	Ser
	290					295					300				
	Arg	Ser	Thr	Leu		Thr	Thr	Val	Leu		Ser	Pro	Ile	Ser	
305	0	D	0 -	01	310	0	mı.		0	315	T	n	01	Α.	320
мет	ser	rro	Ser		Ala	ser	Inr	Leu		Thr	Pro	Pro	Gly		Thr
Sar	Thr	Pro	Leu	325	ፐ ከ ቍ	Sar	Thr	Tue	330	Clv	۲۵۳	Ph△	۳۵۶	335	Dro
501	1111	110	Leu	ւշև	1111	261	1111	r y S	uiq	GIY	חבו	THE	Der	TIG	110

			340					345					350		
Ala	Glu	Val	Thr	Thr	Ile	Arg	Ile	Ser	Ile	Thr	Ser	Glu	Arg	Ser	Thr
		355					360					365			
Pro	Leu	Thr	Thr	Leu	Leu	Val	Ser	Thr	Thr	Leu	Pro	Thr	Ser	Phe	Pro
	370					375					380				
Gly	Ala	Ser	He	Ala	Ser	Thr	Pro	Pro	Leu	Asp	Thr	Ser	Thr	Thr	Phe
385					390					395					400
Thr	Pro	Ser	Thr	Asp	Thr	Ala	Ser	Thr	Pro	Thr	Ile	Pro	Val	Ala	Thr
				405			-		410					415	
Thr	Ile	Ser		Ser	Val	Ile	Thr	Glu	Gly	Ser	Thr	Pro	Gly	Thr	Thr
													430		
Ile	Phe		Pro	Ser	Thr	Pro				Ser	Thr		Asp	Val	Phe
_	4.	435										445	_		
.Pro		Thr	Thr	Gly	Ala	Val	Ser	Thr	Pro	Vai		Thr	Ser	Thr	Glu
T	450	ጥե	D., .	0	TT 1	455	0	0	0	ML	460	ጥ 1	O	D1	G
	ASII	Inr	Pro	ser		Ser	Ser	ser	ser		101	ınr	ser	rne	
465	Th =	T ***	C1.,	Dho	470	ጥሉ ።	Dno	A 1 o	Mot	475	ጥ ኤ ••	41a	41 a	Dec	480
1111	1111	LYS	GIU		•	Thr				1111	IHI	Ala	Ala	495	reu
Thr	Tur	Va 1	Thr			Thr				Thr	Dro	Ara	Thr		Sar
1111	1 9 1	741	500	mc i	501	1111	Mid	505	DCI	1111	110	шę	510	1111	DCI
Arg	Glv	Cvs		Thr	Ser	Ala	Ser		T.en	Ser	Ala	Thr		Thr	Pro
**** 6	41 3	515			501		520	****		501		525	501		110
His	Thr		Thr	Ser	Val	Thr				Val	Thr		Ser	Ser	Glu
	530					535					540				
Ser	Ser	Arg	Pro	Ser	Thr	Ile	Thr	Ser	His	·Thr	Ile	Pro	Pro	Thr	Phe
545					550					555					560
Pro	Pro	Ala	His	Ser	Ser	Thr	Pro	Pro	Thr	Thr	Ser	Ala	Ser	Ser	Thr
				565					570					575	
Thr	Val	Asn	Pro	Glu	Ala	Val	Thr	Thr	Met	Thr	Thr	Arg	Thr	Lys	Pro
			580					585					590		
Ser	Thr	Arg	Thr	Thr	Ser	Phe	Pro	Thr	Val	Thr	Thr	Thr	Ala	Val	Pro
		595					600					605			
Thr	Asn	Thr	Thr	Ile	Lys	Ser	Asn	Pro	Thr	Ser	Thr	Pro	Thr	Val	Pro
	610					615					620				
Arg	Thr	Thr	Thr	Cys	Phe	Gly	Asp	Gly	Cys	Gln	Asn	Thr	Ala	Şer	Arg
625					630					635					640

	-														
Cys	Lys	Asn	Gly	Gly 645	Thr	Trp	Asp	Gly	Leu 650	Lys	Cys	Gln	Cys	Pro 655	Asn
Leu	Tyr	Tyr	Gly 660		Leu	Cys	Glu	Glu 665		Val	Ser	Ser	Ile 670		Ile
Gly	Pro	Pro 675		Thr	Ile	Ser	Ala 680		Met	Glu	Leu	Thr 685		Thr	Val
Thr	Ser 690		Lys	Phe	Thr	Glu 695		Leu	Lys	Asn	His 700		Ser	Gln	Glu
Phe 705		Gl u	Phe	Lys	Gln 710		Phe	Thr	Glu	Gln 715		Asn	<u>Ile</u>	Val	Tyr 720
	Gly	Ile	Pro	Glu 725	Tyr	Val	Gly	Val	Asn 730		Thr	Lys	Leu	Arg 735	
Gly	Ser	Val	Val 740		Glu	His	Asp	Val 745		Leu	Arg	Thr	Lys 750	Tyr	Thr
Pro	Glu	Tyr 755	Lys	Thr	Val	Leu	Asp 760	Asn	Ala	Thr	Glu	Val 765	Val	Lys	Glu
Lys	Ile 770	Thr	Lys	Val	Thr	Thr 775	Gln	Gln	Ile	Met	Ile 780	Asn	Asp	Ile	Cys
Ser 785		Met	Mẹt	Cys	Phe 790	Asn	Thr	Thr	Gly	Thr 795	Gln	Val	Gln	Asn	Ile 800
Thr	Val	Thr	Gln	Tyr 805	Asp	Pro	Glu	Glu	Asp 810		Arg	Lys	Met	Ala 815	Lys
Glu	Tyr	Gly	Asp 820	Tyr	Phe	Val	Val	Glu 825	Tyr	Arg	Asp	Gln	Lys 830	Pro	Tyr
Cys	Ile	Ser 835		Cys	Glu	Pro	Gly 840	Phe	Ser	Val	Ser	Lys 845	Asn	Cys	Asn
Leu	Gly 850		Cys	Gln	Met	Ser 855		Ser	Gly	Pro	G1n 860		Leu	Cys	Val
Thr 865		Glu	Thr	His	Trp 870	Tyr	Ser	Gly	Glu	Thr 875		Asn	Gln	Gly	Thr 880
Gln	Lys	Ser	Leu	Val 885	Tyr	Gly	Leu	Val	Gly 890		Gly	Val	Val	Leu 895	Met
Leu	Ile	Ile	Leu 900		Ala	Leu	Leu	Met 905		Val	Phe	Arg	Ser 910		Arg
Glu	Val	Lys 915		Gln	Lys	Tyr	Arg 920		Ser	Gln	Leu	Tyr 925		Trp	Gln
Glu	Glu	Asp	Ser	Gly	Pro	Ala	Pro	Gly	Thr	Phe	Gln	Asn	Ile	Gly	Phe

930		935	940	
Asp Ile Cys	Gln Asp Asp	Asp Ser Ile	His Leu Glu Ser Ile Tyr Se	er
945	950		955 90	60
Asn Phe Gln	Pro Ser Leu	Arg His Ile	Asp Pro Glu Thr Lys Arg So	er
	965		970 975	
Glu Phe Arg	Gly Leu Arg			
	980			
⟨210⟩ 86				
⟨211⟩ 987				
⟨212⟩ PRT				
	sapiens			
<400> 86	A A T	01 - 41 - 41 -	Tour Tour Tour Tour Date Tour T	
		GIY AIA AIA	Leu Leu Leu Pro Leu L	eu
l Ala Ala Val	5	Tou Mot Asp	10 15 Ser Thr Thr Ala Thr Ala G	1 11
Ala Ala vai	20	25	30	ıu
Leu Gly Trn			Gly Trp Glu Glu Val Ser G	1v
35	mov var irib	40	45	- 3
	Asn Met Asn		Thr Tyr Gln Val Cys Asn V	al
50	•	55	60	
Phe Glu Ser	Ser Gln Asn	Asn Trp Leu	Arg Thr Lys Phe Ile Arg A	rg
65	70		. 75	0
Arg Gly Ala	His Arg Ile	His Val Glu	Met Lys Phe Ser Val Arg A	sp
	85		90 95	
Cys Ser Ser	Ile Pro Ser	Val Pro Gly	Ser Cys Lys Glu Thr Phe A	sn
	100	105	. 110	
	Tyr Glu Ala		Ser Ala Thr Lys Thr Phe P	ro
115		120	125	
	Glu Asn Pro		Val Asp Thr Ile Ala Ala A	sp
130	Con Clm Vol	135	140	
	Ser Gin vai	-	Gly Arg Val Met Lys Ile A 155 1	60
145 The Clu Val			Ser Arg Ser Gly Phe Tyr L	
Ini Olu fal	165	OIN TIO AUT	170 175	, o u
Ala Phe Gln		Glv Cvs Met	Ser Leu Ile Ala Val Arg V	al
	180	185		
Phe Tyr Arg			Gln Asn Gly Ala Ile Phe G	Hn

.

	•														
		195					200					205			
Glu	Thr	Leu	Ser	Gly	Ala	Glu	Ser	Thr	Ser	Leu	Val	Ala	Ala	Arg	Gly
	210					215					220				
Ser	Cys	Ile	Ala	Asn	Ala	Glu	Glu	Val	Asp	Val	Pro	Ile	Lys	Leu	Tyr
225					230					235					240
Cys	Asn	Gly	Asp	Gly	Glu	Trp	Leu	Val	Pro	Ile	Gly	Arg	Cys	Met	Cys
				245					250					255	
Lys	Ala	Gly	Phe	Glu	Ala	Val	Glu	Asn	Gly	Thr	Val	Cys	Arg	Gly	Cys
			260					265					270		
Pro	Ser		Thr	Phe	Lys	Ala	Asn	Gln	Gly	Asp	Glu		Cys	Thr	His
		275					280					285			
Cys		Ile	Asn	Ser	Arg		Thr	Ser	Glu	Gly		Thr	Asn	Cys	Val
	290		01		_	295		•			300				_
	Arg	Asn	Gly	Tyr		Arg	Ala	Asp	Leu		Pro	Leu	Asp	Met	
305	Th.	Th.	Tio	Dma	310	41.	Dwo	C1m	41.	315	T1a	Com	Com.	Vo 1	320
Cys	Inr	1111	116		ser	Ala	Pro	GIII		vaı	116	ser	ser		ASII
Clu	ፐ ክ ድ	Cor	Lou	325	Ι	Clu	Ten	Th =	330	Dro	۸	Aon	Sor	335	Clv
Giu	1111	261	340	Met	rea	GIU	Trp	345	110	110	MIR	nsp	350	GIA	GIY
Arø	Glu	Asn	•	Val	Tvr	Aen	Ile		Cvs	Lve	Ser	Cvs		Ser	Glv
, m 6	oru	355	Dou	141	1,11	11511	360	110	0,50	D) S	501	365	ory	DCI	dly
Arg	Glv		Cvs	Thr	Arg	Cvs	Gly	Asp	Asn	Val	Gln		Ala	Pro	Arg
0	370		-,-		0	375	,				380				0
Gln	Leu	Gly	Leu	Thr	Glu		Arg	Ile	Tyr	Ile		Asp	Leu	Leu	Ala
385					390					395					400
His	Thr	Gln	Tyr	Thr	Phe	Glu	Ile	Gln	Ala	·Val	Asn	Gly	Val	Thr	Asp
				405					410					415	
Gln	Ser	Pro	Phe	Ser	Pro	Gln	Phe	Ala	Ser	Val	Asn	Ile	Thr	Thr	Asn
			420					425					430		
Gln	Ala	Ala	Pro	Ser	Ala	Val	Ser	Ile	Met	His	Gln	Val	Ser	Arg	Thr
		435					440					445			
Val	Asp	Ser	Ile	Thr	Leu	Ser	Trp	Ser	Gln	Pro	Asp	Gln	Pro	Asn	Gly
	450					455					460				
Val		Leu	Asp	Tyr		Leu	Gln	Tyr	Tyr		Lys	Glu	Leu	Ser	Glu
465					470					475					480
Tyr	Asn	Ala	Thr		Ile	Lys	Ser	Pro		Asn	Thr	Val	Thr		Gln
				485					490					495	

Gly	Leu	Lys		Gly	Ala	Ile	Tyr	Val	Phe	Gln	Val	Arg	Ala	Arg	Thr
			500					505					510		
Val	Ala	Gly	Tyr	Gly	Arg	Tyr		Gly	Lys	Met	Tyr	Phe	Gln	Thr	Met
•		515					520					525			
Thr		Ala	Glu	Tyr	Gln		Ser	Ile	Gln	Glu	Lys	Leu	Pro	Leu	Ile
	530					535					540				
	Gly	Ser	Ser	Ala	Ala	Gly	Leu	Val	Phe	Leu	Ile	Ala	Val	Val	Val
545					550					555					560
Ile	Ala	Ile	<u>Va</u> l		Asn.	Arg	Arg	Arg	Gly	Phe	Glu	Arg	Ala	Asp	Ser
				565			•		570					575	
Glu	Tyr	Thr		Lys	Leu	Gln	His		Thr	Ser	Gly	His	Met	Thr	Pro
			580					585					590		
Gly	Met		Ile	Tyr	Ile	Asp		Phe	Thr	Tyr	Glu	Asp	Pro	Asn	Glu
		595				-	600					605			
Ala		Arg	Glu	Phe	Ala		Glu	He	Asp	Ile		Cys	Val	Lys	He
	610					615					620				
	Gln	Val	Ile	Gly		Gly	Glu	Phe	Gly	Glu	Val	Cys	Ser	Gly	His
625					630					635					640
Leu	Lys	Leu	Ьio		Lys	Arg	Glu	He	Phe	Val	Ala	Ile	Lys	Thr	Leu
•				645					650					655	
Lys	Ser	Gly		Thr	Glu	Lys	Gln	Arg	Arg	Asp	Phe	Leu	Ser	Glu	Ala
			660					665	•				670		
Ser	Ile		Gly	Gln	Phe	Asp	His	Pro	Asn	Val	Ile	His	Leu	Glu	Gly
		675					680					685			
Val		Thr	Lys	Ser	Thr	Pro	Val	Met	Ile	Ile	Thr	Glu	Phe	Met	Glu
	690					695				•	700				
	Gly	Ser	Leu	Asp	Ser	Phe	Leu	Arg	Gln	Asn	Asp	Gly	Gln	Phe	Thr
705					710					715					720
Val	Ile	Gln	Leu	Val	Gly	Met	Leu	Arg	Gly	He	Ala	Ala	Gly	Met	Lys
				725					730					735	
Tyr	Leu	Ala	Asp	Met	Asn	Tyr	Val	His	Arg	Asp	Leu	Ala	Ala	Arg	Asn
			740					745					750		
Ile	Leu	Val	Asn	Ser	Asn	Leu	Val	Cys	Lys	Val	Ser	Asp	Phe	Gly	Leu
		755					760					765			
Ser	Arg	Phe	Leu	Glu	Asp	Asp	Thr	Ser	Asp	Pro	Thr	Tyr	Thr	Ser	Ala
	770					775					780				
Leu	Gly	Gly	Lys	Ile	Pro	Ile	Arg	Trp	Thr	Ala	Pro	Glu	Ala	Ile	Gln

785 790 795 800	0
Tyr Arg Lys Phe Thr Ser Ala Ser Asp Val Trp Ser Tyr Gly Ile Va	
805 810 815	
Met Trp Glu Val Met Ser Tyr Gly Glu Arg Pro Tyr Trp Asp Met Th	r
820 825 830	
Asn Gln Asp Val Ile Asn Ala Ile Glu Gln Asp Tyr Arg Leu Pro Pro	0
835 840 845	
Pro Met Asp Cys Pro Ser Ala Leu His Gln Leu Met Leu Asp Cys Tri 850 855 860	Ç
850 855 860 860 855 B60 850 851 B10 B10 B10 B10 B10 B10 B10 B10 B10 B1	r
865 870 875 886	
Leu Asp Lys Met Ile Arg Asn Pro Asn Ser Leu Lys Ala Met Ala Pro	
885 890 895	
Leu Ser Ser Gly Ile Asn Leu Pro Leu Leu Asp Arg Thr Ile Pro Asi	p
900 905 910	
Tyr Thr Ser Phe Asn Thr Val Asp Glu Trp Leu Glu Ala Ile Lys Me	t
915 920 925	
Gly Gln Tyr Lys Glu Ser Phe Ala Asn Ala Gly Phe Thr Ser Phe Asi	Ç
930 . 935 940 Val Val Ser Gln Met Met Met Glu Asp Ile Leu Arg Val Gly Val Th	r
945 950 955 966	
Leu Ala Gly His Gln Lys Lys Ile Leu Asn Ser Ile Gln Val Met Arg	
965 970 975	_
Ala Gln Met Asn Gln Ile Gln Ser Val Glu Val	
980 985	
<210> 87	
<211> 445	
<pre><212> PRT</pre>	
<213> homo sapiens <400> 87	
Met Ala Ala Pro Thr Pro Ala Arg Pro Val Leu Thr His Leu Leu Va	1
1 5 10 15	L
Ala Leu Phe Gly Met Gly Ser Trp Ala Ala Val Asn Gly Ile Trp Val	l
20 25 30	
Glu Leu Pro Val Val Val Lys Glu Leu Pro Glu Gly Trp Ser Leu Pro)
35 40 45 .	
Ser Tyr Val Ser Val Leu Val Ala Leu Gly Asn Leu Gly Leu Leu Va	ĺ

	50					55					60				
Val	Thr	Leu	Trp	Arg	Arg	Leu	Ala	Pro	Gly	Lys	Asp	Glu	Gln	Val	Pro
65					70				•	7 5					80
Ile	Arg	Val	Val	Gln	Val	Leu	Gly	Met	Val	Gly	Thr	Ala	Leu	Leu	Ala
				85					90					95	
Ser	Leu	Trp		His	Val	Ala	Pro		Ala	Gly	Gln	Leu	His	Ser	Val
A 1	D1		100		4.7	D1	. , .	105	. 1	_	4.1	0	110		
Ala				Leu	Ala				Ala	Leu			Cys	Ala	Ser
Aan		115_	-	Lou	Dro		120	•	111:0	Lou		125 Pro	A = ~	Dha	Lou
ASII	130	1111	rne	ren	FIU	135	Leu	sei	nis	Leu	140	rio	Arg	rne	Leu
Arø			Phe	T.eu	Glv		Glv	Len	Ser	Ala		Len	Pro	Cvs	Val
145	501	Ino		200	150	0111	O.J	Dou	501	155	Dou	ДСЦ	110	0,5	160
	Ala	Leu	Val	Gln		Val	Gly	Arg	Leu		Cys	Pro	Pro	Ala	
				165	•		•		170		•			175	
Ile	Asn	Gly	Thr	Pro	Gly	Pro	Pro	Leu	Asp	Phe	Leu	Glu	Arg	Phe	Pro
			180					185					190		
Ala	Ser	Thr	Phe	Phe	Trp	Ala	Leu	Thr	Ala	Leu	Leu	Val	Ala	Ser	Ala
		195					200					205			
Ala	Ala	Phe	Gln	Gly	Leu	Leu	Leu	Leu	Leu	Pro	Pro	Pro	Pro	Ser	Val
	210					215					220				
	Thr	Gly	Glu	Leu	•	Ser	Gly	Leu	Gln		Gly	Ala	Pro	Gly	
225					230	_	_	_	_	235		_	_	_	240
Glu	Glu	Glu	Val		Glu	Ser	Ser	Pro		Gln	Glu	Pro	Pro		Gln
41 a	A 1 o	C1**	Th m	245	Dno	C1++	Dno	Aan	250	T ***	A1.	Т	Cln	255	Lou
Ald	Ala	GIY	260	1111	FIU	GIY	PIO	265	FIU	LYS	Ald	1 9 1	270	Leu	Leu
Ser	Ala	Arø		Ala	Cvs	Len	Len		T.e.11	I.en	Ala	Ala	Thr	Asn	Ala
501		275	501		0,5	204	280	UI,	Dou	Dou	,,, u	285	1111	11011	111 4
Leu	Thr		Gly	Val	Leu	Pro		Val	Gln	Ser	Phe		Cys	Leu	Pro
	290		·			295					300		•		
Tyr	Gly	Arg	Leu	Ala	Tyr	His	Leu	Ala	Val	Val	Leu	Gly	Ser	Ala	Ala
305					310					315					320
Asn	Pro	Leu	Ala	Cys	Phe	Leu	Ala	Met	Gly	Val	Leu	Cys	Arg	Ser	Leu
				325					330					335	
Ala	Gly	Leu	Gly	Gly	Leu	Ser	Leu	Leu	Gly	Val	Phe	Cys	Gly	Gly	Tyr
			340					345					350		

Leu Met Ala Leu Ala Val Leu Ser Pro Cys Pro Pro Leu Val Gly Thr Ser Ala Gly Val Val Leu Val Val Leu Ser Trp Val Leu Cys Leu Gly Val Phe Ser Tyr Val Lys Val Ala Ala Ser Ser Leu Leu His Gly Gly Gly Arg Pro Ala Leu Leu Ala Ala Gly Val Ala Ile Gln Val Gly Ser Leu Leu Gly Ala Val Ala Met Phe Pro Pro Thr Ser Ile Tyr His Val Phe His Ser Arg Lys Asp Cys Ala Asp Pro Cys Asp Ser **<210>** 88 **<211>** 459 <212> PRT $\langle 213 \rangle$ homo sapiens **<400>** 88 Met Asp Glu Lys Ser Asn Lys Leu Leu Leu Ala Leu Val Met Leu Phe Leu Phe Ala Val Ile Val Leu Gln Tyr Val Cys Pro Gly Thr Glu Cys Gln Leu Leu Arg Leu Gln Ala Phe Ser Ser Pro Val Pro Asp Pro Tyr Arg Ser Glu Asp Glu Ser Ser Ala Arg Phe Val Pro Arg Tyr Asn Phe Thr Arg Gly Asp Leu Leu Arg Lys Val Asp Phe Asp Ile Lys Gly Asp Asp Leu Ile Val Phe Leu His Ile Gln Lys Thr Gly Gly Thr Thr Phe Gly Arg His Leu Val Arg Asn Ile Gln Leu Glu Gln Pro Cys Glu Cys Arg Val Gly Gln Lys Lys Cys Thr Cys His Arg Pro Gly Lys Arg Glu Thr Trp Leu Phe Ser Arg Phe Ser Thr Gly Trp Ser Cys Gly Leu His Ala Asp Trp Thr Glu Leu Thr Ser Cys Val Pro Ser Val Val Asp Gly

Lys	Arg	Asp	Ala	Arg 165	Leu	Arg	Pro	Ser	Arg 170	Asn	Phe	His	Tyr	Ile 175	Thr
Ile	Leu	Arg	Asp 180	Pro	Val	Ser	Arg	Tyr 185	Leu	Ser	Glu	Trp	Arg 190	His	Val
Gln	Arg	Gly 195	Ala	Thr	Trp	Lys	Ala 200	Ser	Leu	His	Val	Cys 205	Asp	Gly	Arg
Pro	Pro 210	Thr	Ser	Glu	Glu	Leu 215	Pro	Ser	Cys	Tyr	Thr 220	Gly	Asp	Asp	Trp
Ser 225	Gly	Cys	Pro	Leu	Lys 230	Glu	Phe	Met	Asp	Cys	Pro	Ţyr	Asn	Leu	Ala 240
	Asn	Arg	Gln	Val 245		Met	Leu	Ser	Asp 250		Thr	Leu	Val	Gly 255	
Tyr	Asn	Leu	Ser 260		Met	Pro	Glu	Lys 265		Arg	Asn	Lys	Val 270		Leu
Glu	Ser	Ala 275		Ser	Asn	Leu	Lys 280		Met	Ala	Phe	Phe 285		Leu	Thr
Glu	Phe 290	Gln	Arg	Lys	Thr	Gln 295	Tyr	Leu	Phe	Glu	Lys 300	Thr	Phe	Asn	Met
As n 305	Phe	Ile	Sẹr	Pro	Phe 310	Thr	Gln	Tyr	Asn	Thr 315	Thr	Arg	Ala	Ser	Ser 320
	Glu	Ile	Asn	Glu 325		He	Gln	Lys	Arg		Glu	Gly	Leu	Asn 335	
Leu	Asp	Met	Glu 340		Tyr	Ser	Tyr	Ala 345		Asp	Leu	Phe	Leu 350		Arg
Tyr	Gln	Phe 355	Met	Arg	Gln	Lys	Glu 360		Gln	Glu	Ala	Arg 365	Arg	Lys	Arg
Gln	Glu 370	Gln	Arg	Lys	Phe	Leu 375	Lys	Gly	Arg	Leu	Leu 380	Gln	Thr	His	Phe
Gln 385	Ser	Gln	Gly	Gln	Gly 390	Gln	Ser	Gln	Asn	Pro 395	Asn	Gln	Asn	Gln	Ser 400
Gln	Asn	Pro	Asn	Pro 405	Asn	Ala	Asn	Gln	Asn 410		Thr	Gln	Asn	Leu 415	Met
Gln	Asn	Leu	Thr 420	Gln	Ser	Leu	Ser	Gln 425	Lys	Glu	Asn	Arg	Glu 430	Ser	Pro
Lys	Gln	Asn 435	Ser	Gly	Lys	Glu	Gln 440	Asn	Asp	Asn	Thr	Ser 445	Asn	Gly	Thr
Asn	Asp	Tyr	Ile	Gly	Ser	Val	Glu	Lys	Trp	Arg					

	450					455		•							
<210)> 8	39													
<211	> 7	798													
<212	?> I	PRT													
<213	3> 1	omo	sapi	ens											
<400)> {	39													
Met	Glu	Ala	Gly	Glu	Gly	Lys	Glu	Arg	Val	Pro	Lys	Gln	Arg	Gln	Val
1				5					10					15	
 Leu	Ile	Phe	Phe	Val	Leu	Leu	Gly	Ile	Ala	Gln	Ala.	Ser	Cys	Gln	Pro
			20					25					30		
Arg	His	Tyr	Ser	Val	Ala	Glu	Glu	Thr	Glu	Ser	Gly	Ser	Phe	Val	Ala
		35					40					45			
Asn		Leu	Lys	Asp	Leu	Gly	Leu	Glu	Ile	Gly	Glu	Leu	Ala	Val	Arg
	50					55					60				
	Ala	Arg	Val	Val		Lys	Gly	Lys	Lys		His	Leu	Gln	Phe	
65	01	m.	.		70	_	_		a 1	75	_		_		80
Arg	Gin	Thr	Gly		Leu	Leu	Leu	Asn		Lys	Leu	Asp	Arg		Glu
T	0	C1	D	85 Th		D	0	37 - 1	90	D	D1	01	37 - 1	95	.
Leu	Cys	Gly	•	ınr	GIU	Pro	Cys		Leu	Pro	rne	GIN		Leu	Leu
Clu	Aan	Dro	100	Cln	Dha	Dha	Cln	105	Cla	Lon	A = ~	110	110	Aan	Vo 1
GIU	usn	Pro 115	Leu	GIII	rne	rne	120	Ald	GIU.	Leu	Alg	125	Alg	ASD	Vai
Aen	Asn	His	Ser	Pro	V a 1	Dhρ		Aen	Tve	Clu	ماآ		I All	Twe	114
11011	130	1115	501	110	141	135	DCu	nsp	цуз	Ulu	140	LCu	LCu	Буз	110
Pro		Ser	He	Thr	Pro		Thr	Thr	Phe	Len		Glu	Arg	Ala	Glr
145					150	01,			- 110	155		014			160
	Leu	Asp	Val	Gly		Asn	Ser	Leu	Gln		Tyr	Thr	Ile	Ser	
-		-		165					170					175	
Asn	Phe	His	Phe	His	Leu	Asn	Leu	Gln	Asp	Ser	Leu	Asp	Gly	Ile	Πle
			180					185					190		
Leu	Pro	Gln	Leu	Val	Leu	Asn	Arg	Ala	Leu	Asp	Arg	Glu	Glu	Gln	Pro
		195					200					205			
Glu	Ile	Arg	Leu	Thr	Leu	Thr	Ala	Leu	Asp	Gly	Gly	Ser	Pro	Pro	Arg
	210					215					220				
Ser	Gly	Thr	Ala	Leu	Val	Arg	Ile	Glu	Val	Val	Asp	Ile	Asn	Asp	Asn
225					230					235					240
Va 1	Pro	Glu	Phe	Ala	Tve	I en	T e11	Tyr	Cln	Val	Gln	He	Pro	Glu	Acr

				245					250					255	
Ser	Pro	Val	Gly	Ser	Gln	Val	Ala	Ile	Val	Ser	Ala	Arg	Asp	Leu	Asp
			260					265					270		
Ile	Gly	Thr	Asn	Gly	Glu	Ile	Ser	Tyr	Ala	Phe	Ser	Gln	Ala	Ser	Glu
		275					280					285			
Asp	Ile	Arg	Lys	Thr	Phe	Arg	Leu	Ser	Ala	Lys	Ser	Gly	Glu	Leu	Leu
	290					295					300				
Leu	Arg	Gln	Lys	Leu	Asp	Phe	Glu	Ser	Ile	Gln	Thr	Tyr	Thr	Val	Asn
305					310					315					320
Ile	Gln	Ala	Thr	Asp	Gly	Gly	Gly	Leu	Ser	Gly	Thr	Cys	Val	Val	Phe
				325					330					335	
Val	Gln	Val	Met	Asp	Leu	Asn	Asp	Asn	Pro	Pro	Glu	Leu	Thr	Met	Ser
			340					345					350		
Thr	Leu		Asn	Gln	Ile	Pro		Asn	Leu	Gln	Asp		Leu	He	Ala
		355		_	Ā	_	360	_				365			
Val		Ser	Val	Ser	Asp		Asp	Ser	Gly	Asp		Gly	Arg	Met	Vai
•	370	- 1	.			375		Di	D 1	·	380	D	0	WT. 1	01
	ser	116	Gln	Asp	•	Leu	Pro	rne	rne		Lys	Pro	ser	vai	
385	Dh.a	Т	Th =	T a	390	11.	Com	ጥե	A 1 -	395	A	۸	C1	Th.	400
ASII	rne	IYI	Thr		vai	116	Ser	1111	410	Leu	ASP	AIR	GIU	415	Arg
Sar	Clas	Tur	Asn	405	Th r	ΠA	Thr	Val		Aon	Dho	Clv	Thr		Ara
261	GIU	1 9 1	420	116	1111	116	1111	425	1111	ASP	rne	GIY	430	110	AI B
I e II	Ive	Thr	Glu	Hic	Asn	Ile	Thr		Len	Val	Ser	Asn		Acn	Asn
Lcu	пуо	435			11511							445		11011	пор
Asn	Ala		Ala											Arg	Gln
	450					455			-,-		460			0	
Asn			Pro	Ala	Leu			Gly	Ser	Val		Ala	Thr	Asp	Arg
465					470					475					480
Asp	Ser	Gly	Thr	Asn	Ala	Gln	Val	Thr	Tyr	Ser	Leu	Leu	Pro	Pro	Gln
				485					490					495	
Asp	Pro	His	Leu	Pro	Leu	Ala	Ser	Leu	Val	Ser	Ile	Asn	Ala	Asp	Asn
			500					505					510		
Gly	His	Leu	Phe	Ala	Leu	Gln	Ser	Leu	Asp	Tyr	Glu	Ala	Leu	Gln	Ala
		515					520					525			
Phe	Glu	Phe	Arg	Val	Gly	Ala	Ala	Asp	Arg	Gly	Ser	Pro	·Ala	Ļeu	Ser
	530					535					540				

	Glu	Ala	Leu	Val		Val	Leu	Val	Leu		Ala	Asn	Asp	Asn	
545 D	D1	77 1			550	-	0 1		۵.	555		~	0	mi	560
Pro	rne	Val	Leu		Pro	Leu	Gin	Asn	_	Ser	Ala	Pro	Cys		Glu
_		_		565			_		570				_	575	
Leu	Val	Pro		Ala	Ala	Glu	Pro		Tyr	Leu	Val	Thr		Val	Vai
			580					585					590		
Ala	Val	Asp	Gly	Asp	Ser	Gly		Asn	Ala	Trp	Leu		Tyr	GIn	Leu
		595					600					605			
Leu		Ala	Thr	Glu	Pro		Leu	Phe	Gly.	Val		Ala	His	Äsn	Ģly
	610					615					620				
Glu	Val	Arg	Thr	Ala		Leu	Leu	Arg	Glu		Asp	Ala	Ala	Lys	Gln
625					630					635					640
Arg	Leu	Val	Val		Val	Lys	Asp	Asn	Gly	Glu	Pro	Pro	Arg	Ser	Ala
				645					650					655	
Thr	Ala	Thr	Leu	His	Val	Leu	Leu	Val	Asp	Gly	Phe	Ser	Gln	Pro	Tyr
			660					665					670		
Leu	Leu	Leu	Pro	Glu	Ala	Ala	Pro	Ala	Gln	Ala	Gln	Ala	Asp	Leu	Leu
		675			•		680					685			
Thr	Val	Tyr	Leu	Val	Val	Ala	Leu	Ala	Ser	Val	Ser	Ser	Leu	Phe	Leu
	690					695					700				
Phe	Ser	Val	Leu	Leu	Phe	Val	Ala	Val	Arg	Leu	Cys	Arg	Arg	Ser	Arg
705					710				•	715					720
Ala	Ala	Ser	Val	Gly	Arg	Cys	Ser	Val	Pro	Glu	Gly	Pro	Phe	Pro	Gly
				725					730					735	
Gln	Met	Val	Asp	Val	Ser	Gly	Thr	Gly	Thr	Leu	Ser	Gln	Ser	Tyr	Gln
			740					745		•			750		
Tyr	Glu	Val	Cys	Leu	Thr	Gly	Gly	Ser	Gly	Thr	Asn	Glu	Phe	Lys	Phe
		755					760					765			
Leu	Lys	Pro	Ile	Ile	Pro	Asn	Phe	Val	Ala	Gln	Gly	Ala	Glu	Arg	Val
	770	ŀ				775					780				
Ser	Glu	Ala	Asn	Pro	Ser	Phe	Arg	Lys	Ser	Phe	Glu	Phe	Thr		
785					790					795					
<21	<0>	90													
<21	1>	231													
<21	2>	PRT													
<21	3>	homo	sap	iens											
ZADI	n's	۵n													

Met Met Leu Ser Cys Leu Phe Leu Leu Lys Ala Leu Leu Ala Leu Gly Ser Leu Glu Ser Trp Ile Thr Ala Gly Glu His Ala Lys Glu Gly Glu Cys Pro Pro His Lys Asn Pro Cys Lys Glu Leu Cys Gln Gly Asp Glu Leu Cys Pro Ala Glu Gln Lys Cys Cys Thr Thr Gly Cys Gly Arg Ile Cys Arg Asp Ile Pro Lys Gly Arg Lys Arg Asp Cys Pro Arg Val Ile Arg Lys Gln Ser Cys Leu Lys Arg Cys Ile Thr Asp Glu Thr Cys Pro Gly Val Lys Lys Cys Cys Thr Leu Gly Cys Asn Lys Ser Cys Val Val Pro Ile Ser Lys Gln Lys Leu Ala Glu Phe Gly Gly Glu Cys Pro Ala Asp Pro Leu Pro Cys Glu Glu Leu Cys Asp Gly Asp Ala Ser Cys Pro Gln Gly His Lys Cys Cys Ser Thr Gly Cys Gly Arg Thr Cys Leu Gly Asp Ile Glu Gly Gly Arg Gly Gly Asp Cys Pro Lys Val Leu Val Gly Leu Cys Ile Val Gly Cys Val Met Asp Glu Asn Cys Gln Ala Gly Glu Lys Cys Cys Lys Ser Gly Cys Gly Arg Phe Cys Val Pro Pro Val Leu Pro Pro Lys Leu Thr Met Asn Pro Asn Trp Thr Val Arg Ser Asp Ser Glu Leu Glu Ile Pro Val Pro **<210> 91** <211> 677 <212> PRT <213> homo sapiens **<400> 91** Met Leu Ser Ser Thr Asp Phe Thr Phe Ala Ser Trp Glu Leu Val Val

Arg	Val	Asp	His 20	Pro	Asn	Glu	Glu	Gln 25	Gln	Lys	Asp	Val	Thr 30	Leu	Arg
Val	Ser	Gly 35	Asp	Leu	His	Val	Gly 40	Gly	Val	Met	Leu	Lys 45	Leu	Val	Glu
Gln	Ile 50	Asn	Ile	Ser	Gln	Asp 55	Trp	Ser	Asp	Phe	Ala 60	Leu	Trp	Trp	Glu
Gln 65	Lys	His	Cys	Trp	Leu 70	Leu	Lys	Thr	His	Trp 75	Thr	Leu	Asp	Lys	Tyr 80
Gly	<u>V</u> a l	Gļņ	Ala	Asp 85	Ala	Lys	Leu	Leu	Phe 90	Tḥr	Pro.	Ģļņ	His	<u>Ļу</u> § 95	Met
Leu	Arg	Leu	Arg 100	Leu	Pro	Asn	Leu	Lys 105	Met	Val	Arg	Leu	Arg 110	Val	Ser
Phe	Ser	Ala 115	Val	Val	Phe	Lys	Ala 120	Val	Ser	Asp	Ile	Cys 125	Lys	Ile	Leu
Asn	Ile 130	Arg	Arg	Ser	Glu	Glu 135	Leu	Ser	Leu	Leu	Lys 140	Pro	Ser	Gly	Asp
Tyr 145	Phe	Lys	Lys	Lys	Lys 150	Lys	Lys	Asp	Lys	Asn 155	Asn	Lys	Glu	Pro	Ile 160
	Glu	Asp	Iļe	Leu 165	•	Leu	Glu	Ser	Ser 170	Pro	Thr	Ala	Ser	Gly 175	
Ser	Val	Ser	Pro 180		Leu	Tyr	Ser	Lys 185		Met	Thr	Pro	Ile 190		Asp
Pro	Ile	Asn 195	Gly	Thr	Pro	Ala	Ser 200		Thr	Met	Thr	Trp 205		Ser	Asp
Ser	Pro 210	Leu		Glu	Gln	Asn 215	Cys	Ser	Ile	Leu	Ala 220		Ser	Gln	Pro
Pro 225	Gln		Pro	Glu	Ala 230	Leu		Asp	Met	Tyr 235		Pro	Arg	Ser	Leu 240
		Lys	Ala	Lys 245			Ala	Gly	Trp 250	Leu	Asp	Ser	Ser	Arg 255	
Leu	Met	Glu	Gln 260	Gly	Ile	Gln	Glu	Asp 265	Glu		Leu	Leu	Leu 270		Phe
Lys	Tyr	Tyr 275	Ser		Phe	Asp	Leu 280	Asn		Lys	Tyr	Asp 285	Ala	Val	Arg
Ile	Asn 290	Gln		Tyr	Glu	G1n 295	Ala		Trp	Ala	Ile 300	Leu		Glu	Glu
Ile			Thr	Glu	Glu			Leu	Ile	Phe			Leu	Gln	Tyr

His lie Ser Lys Leu Ser Leu Ser Ala Glu Thr Gln Asp Phe Ala Gly 325
Glu Ser Glu Val Asp Glu Ile Glu Ala Ala Leu Ser Asn Leu Glu Val 340
The Leu Glu Gly Gly Lys Ala Asp Ser Leu Leu Glu Asp Ile The Asp 365 Ile Pro Lys Leu Ala Asp Asn Leu Lys Leu Pro Arg Pro Lys Lys Leu 370 Ile Pro Lys Ala Pro Lys Gln Tyr Trp Pro Ile Pro Lys Asp The Ser 380 Ile Pro Lys Ala Pro Lys Gln Tyr Trp Pro Ile Pro Lys Lys Trp Asp Asp
Thr Leu Glu Gly Gly Lys Ala Asp Ser Leu Leu Glu Asp Ile Thr Asp 355 360 365 365 360 365 365 360 365 360 365 360 365 360 365 360 365 360 36
Second S
Tile Pro Lys Leu Ala Asp Asn Leu Lys Leu Phe Arg Pro Lys Lys Leu Arg
Sample S
Leu Pro Lys Ala Phe Lys Gln Tyr Trp Phe Ile Phe Lys Asp Thr Ser 385 390 395 400 Ile Ala Tyr Phe Lys Asn Lys Glu Leu Glu Gln Gln Gly Glu Pro Leu Glu 415 Glu Leu Glu Gln Gln Gly Glu Pro Leu Glu Glu Gln Gln Gly Glu Pro Leu Glu 415 Lys Leu Asn Leu Arg Gly Cys Glu Val Val Pro Asp Val Asn Val Ala Ala Ala Ala Gln Tyr Leu Arg Cys 425 430 Gly Arg Lys Phe Gly Ile Lys Leu Leu Ile Pro Val Ala Asp Gly Ala Gln Tyr Ala Gln
385
Tile Ala Tyr
Lys Leu Asn Leu Arg Gly Cys Glu Val Val Pro Asp Val Asn Val Ala
Lys Leu Asn Leu Arg Gly Cys Glu Val Val Pro Asp Val Asn Val Ala Asn Val Ala
Cly Arg Lys Phe Gly Ile Lys Leu Leu Ile Pro Val Ala Asp Gly Met 435
Cly Arg Lys Phe Cly Ile Lys Leu Leu Ile Pro Val Ala Asp Gly Met
435 440 445 445 445 445 Asn Glu Met Tyr Ala Glu Asp Ser Ala Glu Tyr Ala Ala Ala Ala Ala Ala Ala Glu Glu Ala His Glu Asn Val Ala
Asn Glu Met Tyr Leu Arg Cys Asp His Glu Asn Gln Tyr Ala Gln Trp 450
450 455 460 Met Ala Ala Cys Met Leu Ala Ser Lys Gly Lys Thr Met Ala Asp Ser 465 Tyr Gln Pro Glu Val Leu Asp Leu Arg Het Lys Asp Met Lys Ser Tyr Gln Pro Glu Val Leu Asp Pro Pro Pro Het Lys Met Asp Asp Asn Arg Asn Pro Glu Cys Phe Val Asp Ser Ser Leu Glu Asp Asp Met Asn Pro Glu Cys Phe Val Ser Pro Arg Cys Ala Lys His Lys His Lys His Asn Val Ala Met Asn Fro Fro Fro Arg Cys Arg Lys His Lys His Lys
Met Ala Ala Cys Met Leu Ala Ser Lys Gly Lys Thr Met Ala Asp Ser 465 470 470 480 475 480 480 480 480 480 480 480 480 480 480 490 490 495 495 495 495 495 495 495 480 480 480 480 480 480 480 480 480 490 480 495 495 495 480 480 480 480 480 490 480 490 480 4
465
Asn Arg Asn Ser Ala Ser Gln Val Ala Ser 505 Ser Leu Glu Asn Met Asp 500 Met Asn Pro Glu Cys Phe Val Ser 520 Fro Arg Cys Ala Lys Lys His Lys 520 Ser Lys Gln Leu Ala Ala Ala Arg Ile Leu Glu Ala His Gln Asn Val Ala
Asn Arg Asn Ser Ala Ser Gln Val Ala Ser Ser Leu Glu Asn Met Asp 500
Met Asn Pro Glu Cys Phe Val Ser Pro Arg Cys Ala Lys Lys His Lys Ser Lys Gln Leu Ala Ala Arg Ile Leu Glu Ala His Gln Asn Val Ala
Met Asn Pro Glu Cys Phe Val Ser Pro Arg Cys Ala Lys Lys His Lys 515 520 525 Ser Lys Gln Leu Ala Ala Arg Ile Leu Glu Ala His Gln Asn Val Ala
515 520 525 Ser Lys Gln Leu Ala Ala Arg Ile Leu Glu Ala His Gln Asn Val Ala
Ser Lys Gln Leu Ala Ala Arg Ile Leu Glu Ala His Gln Asn Val Ala
530 535 540
Gln Met Pro Leu Val Glu Ala Lys Leu Arg Phe Ile Gln Ala Trp Gln
545 550 555 560
Ser Leu Pro Glu Phe Gly Leu Thr Tyr Tyr Leu Val Arg Phe Lys Gly 565 570 575
Ser Lys Lys Asp Asp Ile Leu Gly Val Ser Tyr Asn Arg Leu Ile Lys
580 585 590
Ile Asp Ala Ala Thr Gly Ile Pro Val Thr Thr Trp Arg Phe Thr Asn
595 600 605

Ile Lys Gln Trp Asn Val Asn Trp Glu Thr Arg Gln Val Val Ile Glu Phe Asp Gln Asn Val Phe Thr Ala Phe Thr Cys Leu Ser Ala Asp Cys Lys Ile Val His Glu Tyr Ile Gly Gly Tyr Ile Phe Leu Ser Thr Arg Ser Lys Asp Gln Asn Glu Thr Leu Asp Glu Asp Leu Phe His Lys Leu Thr Gly Gly Gln Asp <210> 92 ⋅ **<211>** 764 <212> PRT <213> homo sapiens **<400> 92** Met Leu Leu Phe Val Leu Thr Cys Leu Leu Ala Val Phe Pro Ala Ile Ser Thr Lys Ser Pro Ile Phe Gly Pro Glu Glu Val Asn Ser Val Glu Gly Asn Ser Val Ser Ile Thr Cys Tyr Tyr Pro Pro Thr Ser Val Asn Arg His Thr Arg Lys Tyr Trp Cys Arg Gln Gly Ala Arg Gly Gly Cys Ile Thr Leu Ile Ser Ser Glu Gly Tyr Val Ser Ser Lys Tyr Ala Gly Arg Ala Asn Leu Thr Asn Phe Pro Glu Asn Gly Thr Phe Val Val Asn Ile Ala Gln Leu Ser Gln Asp Asp Ser Gly Arg Tyr Lys Cys Gly Leu Gly Ile Asn Ser Arg Gly Leu Ser Phe Asp Val Ser Leu Glu Val Ser Gln Gly Pro Gly Leu Leu Asn Asp Thr Lys Val Tyr Thr Val Asp Leu Gly Arg Thr Val Thr Ile Asn Cys Pro Phe Lys Thr Glu Asn Ala Gln Lys Arg Lys Ser Leu Tyr Lys Gln Ile Gly Leu Tyr Pro Val Leu Val

Ile	Asp	Ser	Ser 180	Gly	Tyr	Val	Asn	Pro 185	Asn	Tyr	Thr	Gly	Arg 190	Ile	Arg
Leu	Asp	Ile		Gly	Thr	Gly	Gln		Leu	Phe	Ser	Val		Ile	Asn
		195					200					205			
Gln	Leu	Arg	Leu	Ser	Asp	Ala	Gly	Gln	Tyr	Leu	Cys	Gln	Ala	Gly	Asp
	210					215					220				
Asp	Ser	Asn	Ser	Asn	Lys	Lys	Asn	Ala	Asp	Leu	Gln	Val	Leu	Lys	Pro
225					230					235					240
Glu	Ььо	Glu	Leu	Val	Tyr	Glu	Asp	Leu	Arg	Gly	Ser	Val	Thr	Phe	His.
				245					250					255	
Cys	Ala	Leu		Pro	Glu	Val	Ala		Val	Ala	Lys	Phe		Cys	Arg
01	0	•	260	0.1				265			ā		270		_
GIN	Ser	Ser	Gly	Glu	Asn	Cys				Val	Asn		Leu	Gly	Lys
Ara	4 l o	275 Pro	41a	Dho	Cla	C1	280	Tla		T au	A a m	285 Date	C1	۸	Υ
Alg	290	Pro	Ala	rne	Glu	295	Arg	116	reu	Leu	300	PIO	GIII	ASP	Lys
Asn		Ser	Phe	Ser	Val		Ιlρ	Thr	C1v	I A11		Twe	Glu	Acn	Ala
305	dry	501	THE	501	310	141	110	1111	GIY	315	nig	гуs	Giu	ush	320
	Arg	Tyr	Leu	Cvs	•	Ala	His	Ser	Asp		Gln	Len	Gln	Glu	
•		- • -		325					330	0.,	0111	204	0	335	O.J
Ser	Pro	Ile	Gln		Trp	Gln	Leu	Phe		Asn	Glu	Glu	Ser		Ile
			340					345			•		350		
Pro	Arg	Ser	Pro	Thr	Val	Val	Lys	Gly	Val	Ala	Gly	Gly	Ser	Val	Ala
		355					360					365			
Val	Leu	Cys	Pro	Tyr	Asn	Arg	Lys	Glu	Ser	Lys	Ser	Ile	Lys	Tyr	Trp
	370					375				•	380				
	Leu	Trp	Glu	Gly		Gln	Asn	Gly	Arg	Cys	Pro	Leu	Leu	Val	Asp
385			_		390					395					400
Ser	Glu	Gly ·	Trp		Lys	Ala	Gln	Tyr		Gly	Arg	Leu	Ser		Leu
61	01		~ 1	405	.				410		_			415	
GIU	Glu	Pro		Asn	Gly	Thr	Phe		Val	He	Leu	Asn		Leu	Thr
C 0. #	A = ~	100	420	C1	Dh.	T	Τ	425	T	ጥե	A	01	430	mı.	
261	Arg	Asp 435	Ala	GIY	Pne	lyr		Cys	Leu	ınr	ASI		ASP	Inr	Leu
Trn	Δrσ	Thr	Thr	Val	Clu	IΙΔ	440	Πla	Ιlα	Clu	Clv	445	Dro	Aon	Lou
111	450	1111	1111	141	uıu	455	гуз	116	116	GIU	460	GIU	110	USII	ren
Lys		Pro	Glv	Asn	Val		Ala	Val	Leu	Glv		Thr	Leu	Lvs	Val
			3												

465					470					475					480
Pro	Cys	His	Phe	Pro	Cys	Lys	Phe	Ser	Ser	Tyr	Glu	Lys	Tyr	Trp	Cys
				485					490					495	
Lys	Trp	Asn	Asn	Thr	Gly	Cys	Gln		Leu	Pro	Ser	Gln		Glu	Gly
_	_	_	500	.	.			505			a		510		
Pro	Ser		Ala	Phe	Val	Asn		Asp	Glu	Asn	Ser		Leu	Val	Ser
Lou	Th.,	515	Aon	Τ 011	Vol	ጥ ኤ	520	A 1 a	Aan	C10	C1***	525	Ттт	Ten	Crro
	530		Asn	Leu	Val	535	AIG	Ald	ASP	GIU	540	110	I y I	ΙΙÞ	Cys
		••	Gln	Gĺv	His		Tvr	Glv	Gln	Thr		Ala	Val	Tvr	Val
545	,			 ,	550	1110			oru.	555			,	-,-	560
	Val		Glu	Arg		Ala			Ser		Asp	Val	Ser	Leu	
				565					570					575	
Lys	Ala	Asp	Ala	Ala	Pro	Asp	Glu	Lys	Val	Leu	Asp	Ser	Gly	Phe	Arg
			580					585					590		
Glu	Ile	Glu	Asn	Lys	Ala	Ile	Gln	Asp	Pro	Arg	Leu	Phe	Ala	Glu	Glu
		595					600					605			
Lys		Val	Ala	Asp	Thr		Asp	Gln	Ala	Asp		Ser	Arg	Ala	Ser
¥7. 1	610	0	. 01	O	0	615	C1	C1	01	01	620	0	A	۸1.	T
	ASP	261	Gly	Ser	5er 630	GIU	GIU	GIII	GIY	635	261	ser	Arg	Ala	640
625 Val	Ser	Thr	Leu	Val		Ι 611	Clv	Ī <u>6</u> 11	Va.l		Δla	Val	Glv	Ala	
141	DCI	1111	LCu	645	110		GIY		650		111 a	141	Gry	655	, u.i
Ala	Val	Gly	Val		Arg	Ala	Arg	His			Asn	Val	Asp		Val
			660					665		-			670		
Ser	Ile	Arg	Ser	Tyr	Arg	Thr	Asp	Ile	Ser	Met	Ser	Asp	Phe	Glu	Asn
		675					680					685			
Ser	Arg	Glu	Phe	Gly	Ala	Asn	Asp	Asn	Met	Gly	Ala	Ser	Ser	Ile	Thr
	690					695					700				
		Thr	Ser	Leu			Lys	Glu	Glu		Val	Ala	Thr	Thr	Glu
705		mı	0.1	m1	710		n .	T	T	715	T	A	0	0	720
Ser	Inr	Inr	Glu			GIU	Pro	Lys			Lys	Arg	ser	ser 735	Lys
Clu	Clu	ΛΙο	Clu	725 Mot		Tur	Ive	Δen	730 Phe		Ī en	Gln	Ser		Thr
GIU	GIU	nid	740		uiq	TAI	гуS	745		שטע	ыcu	OIH	750		1111
Val	Ala	Ala	Glu		Gln	Asn	Glv			Glu	Ala				
		755				μ	760							•	

<210	>	93													
<211	>	694													
<212	> :	PRT													
<213	> :	homo	sapi	ens											
<400	>	93													
	Lys	His	Leu	Lys 5	Arg	Trp	Trp	Ser		Gly	Gly	Gly			His
1	Th r	Leu	Lou		Sor	Lou	11 n	C111	10	Ara	Val	Aan		15 Asn	Lou
Leu	1111		20		DCI	LCu		.25		urg	141	nsp 	<u>30</u>	пор	LCu
Tyr	Leu	Leu 35	Leu	Pro	Pro	Pro	Thr 40	Leu	Leu	Gln	Asp	Glu 45	Leu	Leu	Phe
ĪΔn	Clv	Gly	Pro	Δla	Ser	Ser		Tur	ΔΙα	Ī 611	Sar		Phe	Ser	Δla
LCu	50	ury	110	1114	DCI	55	mu	1 9 1	mu	ьси	60	110	1110	DCI	7110
Ser	Gly	Gly	Trp	Gly	Arg	Ala	Gly	His	Leu	His	Pro	Lys	Gly	Arg	Glu
65					70					75					80
Leu	Asp	Pro	Ala	Ala 85	Pro	Pro	Glu	Gly	Gln 90	Leu	Leu	Arg	Glu	Val 95	Arg
Ala	Leu	Gly	Val		Phe	Val	Pro	Arg		Ser	Val	Asp	Ala		Let
			100		•			105					110		
Val	His	Ser	Val	Ala	Ala	Gly	Ser	Ala	Asp	Glu	Ala	His	Gly	Leu	Let
		115					120					125			
Gly	Ala	Ala	Ala	Ala	Ser	Ser	Thr	Gly	Gly	Ala	Gly	Ala	Ser	Val	Asp
	130)				135					140				
Gly	Gly	Ser	Gln	Ala	Val	Gln	Gly	Gly	Gly	Gly	Asp	Pro	Arg	Ala	Ala
145					150					155					160
Arg	Ser	Gly	Pro	Leu	Asp	Ala	Gly	Glu	Glu	Glu	Lys	Ala	Pro	Ala	Glı
				165					170					175	
Pro	Thr	Ala			Pro	Asp	Ala		Gly	Cys	Ala	Ser		Glu	Ası
			180					185					190		
Gly	Val	Leu	Arg	Glu	Lys	His		Ala	Val	Asp	His			Gln	His
		195					200			_		205		_	
Glu		ı Asn	Glu	Glu	Arg			Ala	GIn	Lys		Asn	Ser	Leu	GII
01	210		A	A	O1	215		11 -	A 1 _	C1	220	D	A	T	01.
	AST	ı Asp	ASP	ASP			LYS	116	Ala		LYS	rro	ASP	11b	
225	C1-		ጥኒ	ጥጌ	230		۸	۸۵۳	C1	235	u: ~	T 0	Aan	C1++	240
AIA	GIL	ı Lys	1111	1nr 245		ser	игg	H2II	250		піѕ	Leu	ASII	255	1111
				440					400					400	

.

		•														
	Asp	Thr	Ser	Phe 260	Ser	Leu	Glu	Asp	Leu 265	Phe	Gln	Leu	Leu	Ser 270	Ser	Gln
	Pro	Glu	Asn 275	Ser	Leu	Glu	Gly	Ile 280	Ser	Leu	Gly	Asp	Ile 285	Pro	Leu	Pro
	Gly	Ser 290	Ile	Ser	Asp	Gly	Met 295	Asn	Ser	Ser	Ala	His		His	Val	Asn
	Phe 305	Ser	Gln	Ala	Ile	Ser 310	Gln	Asp	Val	Asn	Leu 315		Glu	Ala	Ile	Leu 320
<u>. </u>	Leu	Cys	Pro	Asn	Asn 325	Thr	Phe	Arg	Arg	Asp 330		<u>Th</u> r	Ala	Arg	Thr 335	Ser
	Gln	Ser	Gln	Glu 340	Pro	Phe	Leu	Gln	Leu 345	Asn	Ser	His	Thr	Thr 350		Pro
	Glu	Gln	Thr 355	Leu	Pro	Gly	Thr	Asn 360	Leu	Thr	Gly	Phe	Leu 365	Ser	Pro	Val
	Asp	Asn 370	His	Met	Arg	Asn	Leu 375	Thr	Ser	Gln		Leu 380	Leu	Tyr	Asp	Leu
	Asp 385	Ile	Asn	Ile	Phe	Asp 390	Glu	Ile	Asn	Leu	Me t 395	Ser	Leu	Ala	Thr	Glu 400
	Asp	Asn	Phe	Așp	Pro 405	Ile	Asp	Val	Ser	Gln 410	Leu	Phe	Asp	Glu	Pro 415	Asp
	Ser	Asp	Ser	Gl _. y 420	Leu	Ser	Leu	Asp	Ser 425	Ser	His	Asn	Asn	Thr 430	Ser	Val
	Ile	Lys	Ser 435	Asn	Ser	Ser	His	Ser 440	Val	Cys	Asp	Glu	Gly 445	Ala	Ile	Gly
	Tyr	Cys 450	Thr	Asp	His	Glu	Ser 455	Ser	Ser	His	His	Asp 460	Leu	Glu	Gly	Ala
	Val 465	Gly	Gly	Tyr	Tyr	Pro 470	Glu	Pro	Ser	Lys	Leu 475	Cys	His	Leu	Asp	Gln 480
	Ser	Asp	Ser	Asp	Phe 485	His	Gly	Asp	Leu	Thr 490	Phe	Gln	His	Val	Phe 495	His
	Asn	His	Thr	Tyr 500	His	Leu	Gln	Pro	Thr 505	Ala	Pro	Glu	Ser	Thr 510	Ser	Glu
	Pro	Phe	Pro 515	Trp	Pro	Gly	Lys	Ser 520	Gln	Lys	Ile	Arg	Ser 525	Arg	Tyr	Leu
	Glu	Asp 530	Thr	Asp	Arg	Asn	Leu 535	Ser	Arg	Asp	Glu	Gln 540		Ala	Lys	Ala
	Leu		Ile	Pro	Phe	Ser	Val	Asp	Glu	Ile	Val		Met	Pro	Val	Asp

•														
545				550					555					560
Ser Phe	Asn	Ser	Met	Leu	Ser	Arg	Tyr	Tyr	Leu	Thr	Asp	Leu	Gln	Val
			565					570					575	
Ser Lei	Ile	Arg	Asp	Ile	Arg	Arg	Arg	Gly	Lys	Asn	Lys	Val	Ala	Ala
		580					585					590		
Gln Ası	Cys	Arg	Lys	Arg	Lys	Leu	Asp	Ile	Ile	Leu	Asn	Leu	Glu	Asp
	595					600					605			
Asp Val	Cys	Asn	Leu	Gln	Ala	Lys	Lys	Glu	Thr	Leu	Lys	Arg	Glu	Gln
610)				615				_	620	_			
Ala Gli	Cys	Asn	Lys	Ala	Ile	Asn	Ile	Met	Lys	Gln	Lys	Leu	His	Asp
625				630					635					640
Leu Ty	His	Asp	Ile	Phe	Ser	Arg	Leu	Arg	Asp	Asp	Gln	Gly	Arg	Pro
			645					650					655	
Val Ası	Pro	Asn	His	Tyr	Ala	Leu	Gln	Cys	Thr	His	Asp	Gly	Ser	Ile
		660					665					670		
Leu Ile	· Val	Pro	Lys	Glu	Leu	Val	Ala	Ser	Gly	His	Lys	Lys	Glu	Thr
	675					680					685			
Gln Lys	Gly	Lys	Arg	Lys										
690		•												
<210>	94													
<211>	110													
<212>	PRT													
	homo	sap	iens											
<400>	94		_											
Met Tr	Met	Gly		He	Gln	Leu	Val		Gly	Val	Lys	Arg		Asp
1		_	5				_	10					15	
Gln Gly	Phe		Glu	Lys	Glu	Phe		His	Lys	Thr	Asn		Lys	Met
	61	20	***			_	25					30		
His Cys		Phe	HIS	Ala	Cys		Pro	Ala	Phe	Thr		Leu	Gly	Glu
	35					40	_		_	_	45			
Ala Tri	Arg	Asp	Gln	Val		Trp	Ser	He	Leu		Arg	Asp	Ala	Gly
50	-		•		55 -	_			~	60	_	_	_	
Leu Val	Lys	met	Ser		Lys	Pro	Arg	Ala		Ser	Pro	Leu	Ser	
65		_	m.	70					75	٥,	_	۵.		80
Asn His	rro	rr0		LL0	Lys	Arg	rne		Arg	GIN	Leu	Gly		Glu
Lys Gly	_		85	α,	*, •		01	90		α,	0	D	95	
					1/01	11	1 1 1 17	Thr	277	1 1 17	V 0 **	PrΛ		

	100	105	110
<210> 95			
<211> 425			
<212> PRT			
	sapiens		
<400> 95			
	Glv Gln Phe Va	l Asn Lvs Leu Gln (Glu Glu Val Ile Cys
1	5	10	15
	Leu Asp Ile Le		Thr Ile Asp Cys Gly
	20	25	30
His Asn Phe	Cys Leu Lys Cy	s Ile Thr Gln Ile (Gly Glu Thr Ser Cys
35		40	45
Gly Phe Phe	Lys Cys Pro Le	u Cys Lys Thr Ser	Val Arg Arg Asp Ala
50	55	(60
Ile Arg Phe	Asn Ser Leu Le	u Arg Asn Leu Val	Glu Lys Ile Gln Ala
65	70	75	80
Leu Gln Ala	Ser Glu Val Gl	n Ser Lys Arg Lys	Glu Ala Thr Cys Pro
	85	90	95
Arg His Gln	Glu Met Phe Hi	s Tyr Phe Cys Glu	Asp Asp Gly Lys Phe
	100	105	110
Leu Cys Phe	Val Cys Arg Gl	u Ser Lys Asp His	Lys Ser His Asn Val
115		120	125
Ser Leu Ile	Glu Glu Ala Al	a Gln Asn Tyr Gln	Gly Gln Ile Gln Glu
130	13	35	140
Gln Ile Gln	Val Leu Gln Gl	n Lys Glu Lys Glu	Thr Val Gln Val Lys
145	150	155	160
Ala Gln Gly	Val His Arg Va	al Asp Val Phe Thr	Asp Gln Val Glu His
	165	170	175
Glu Lys Gln	Arg Ile Leu Th	ır Glu Phe Glu Leu	Leu His Gln Val Leu
	180	185	190
Glu Glu Glu	Lys Asn Phe Le	eu Leu Ser Arg Ile	Tyr Trp Leu Gly His
195		200	205
			Ser Thr Glu Pro Gln
210	21		220
			Lys Thr Lys Gln Asn
225	230	235	. 240
Met Pro Pro	Arg Gln Leu Le	eu Glu Asp Ile Lys	Val Val Leu Cys Arg

•				
	245		250	255
Ser Glu Glu	Phe Gln Phe	Leu Asn Pro	Thr Pro Val Pro	Leu Glu Leu
	260	265		270
Glu Lys Lys	Leu Ser Glu	Ala Lys Ser	Arg His Asp Ser	Ile Thr Gly
275		280	285	
	Lys Phe Lys	Asp Gln Leu	Gln Ala Asp Arg	Lys Lys Asp
290		295	300	
	Phe Phe Lys	Ser Met Asn	Lys Asn Asp Met	Lys Ser Trp
	310		315	320
Gly Leu Leu		Asn His Lys	Met Asn Lys Thr	
	325	01 4 mi	330	335
Gly Ser Ser			Thr Ser Gly Pro	
IIia Can Can	340	345	Db - 4 - 41 - C	350
	Ala Pro Ser		Phe Arg Ala Ser	Ser Ala Gly
355	Dho Dro Val	360	365	Cla Ilo Son
370	rne rio vai	375	Ala Ser Tyr Asp 380	Giu lie ser
	Ala Car Car		Lys Thr Phe Asp	Val Ala Lou
385	390		395	400
	•		Glu Trp Leu Thr	
201 014 014	405	ina boa bor	410	415
Ala Trp Phe		Pro Ser Ser		110
,	420	425	•	
<210> 96				
<211> 429				
<212> PRT				
<213> homo	sapiens			
<400> 96				
Met Thr Thr	Asp Asp Thr	Glu Val Pro	Ala Met Thr Leu	Ala Pro Gly
1	5		10	15
His Ala Ala	Leu Glu Thr	Gln Thr Leu	Ser Ala Glu Thr	Ser Ser Arg
	20	25		30
Ala Ser Thr	Pro Ala Gly	Pro Ile Pro	Glu Ala Glu Thr	Arg Gly Ala
35		40	45	
Lys Arg Ile	Ser Pro Ala	Arg Glu Thr	Arg Ser Phe Thr	Lys Thr Ser
50		55	60	•
Pro Asn Phe	Met Val Leu	lle Ala Thr	Ser Val Glu Thr	Ser Ala Ala

65					70					75					80
Ser	Gly	Ser	Pro	Glu 85	Gly	Ala	Gly	Met	Thr 90	Thr	Val	Gln	Thr	Ile 95	Thr
Gly	Ser	Asp	Pro	Arg	Glu	Ala	Ile	Phe	Asp	Thr	Leu	Cys	Thr	Asp	Asp
			100					105					110		
Ile	Ser	Glu	Glu	Ala	Lys	Thr	Leu	Thr	Met	Asp	Ile	Leu	Thr	Leu	Ala
		115					120					125			
His	Thr	Ser	Thr	Glu	Ala	Lys	Gly	Leu	Ser	Ser	Glu	Ser	Ser	Ala	Ser
	130				•	135					140				
Ser	Asp	Gly	Pro	His	Pro	Val	Ile	Thr	Pro	Ser	Arg	Ala	Ser	Glu	Ser
145					150					155					160
Ser	Ala	Ser	Ser	Asp	Gly	Leu	His	Pro	Val	Ile	Thr	Pro	Ser	Arg	Ala
				165					170					175	
Ser	Glu	Ser		Ala	Ser	Ser	Asp		Leu	His	Pro	Val		Thr	Pro
			180		_	_		185	_				190	_	
Ser	Arg		Ser	Glu	Ser	Ser		Ser	Ser	Asp	Gly		His	Pro	Val
	m.1	195	_	_		_	200	_	ā			205	_		a 1
He		Pro	Ser	Trp	Ser		Gly	Ser	Asp	Val	Thr	Leu	Leu	Ala	Glu
	210	T 7 1	, m	77 1	mı.	215		0.1	T7 1	.,	220	•	•	. .	mı
	Leu	vai	Thr	vai		Asn	He	Glu	vai		Asn	Cys	Ser	116	
225	T1 -	01	т ъ	ጥե	230	C	C	*1.	D	235	A 1 -	0	۸	ጥե -	240
GIU	116	GIU	ınr		ınr	ser	261	116		ыу	Ala	ser	ASD		ASP
Lou	Ιlο	Dro	The	245	Clv	Va l	Tro	Λla	250	Cor	Th =	Sor	Aan	255 Dro	Dro
Leu	116	FIU	260	Glu	GIY	Vai	LYS	265	261	261	Thr	261	270	110	110
Δla	Ι Δ11	Pro		Ser	Thr	Acn	Thr		Pro	Hie	Ιlρ	Thr		Val	Thr
Mia	LCu	275	пор	501	1111	11511	280		110	TILS	110	285	Olu	V 4.1	1111
Ala	Ser		Glu	Thr	Leu	Ser			Glv	Thr	Thr		Ser	Ala	Ala
111 0	290		014		200	295	****		U.,	****	300	014	201		
Pro		Ala	Thr	Ile	Glv		Pro	Leu	Pro	Thr		Ser	Thr	Ile	Glu
305					310					315					320
	Glu	Val	Thr	Ala			Ala	Thr	Thr		Ser	Gly	Ala	Leu	
J				325		-			330			<u>.</u>		335	
Thr	Gly	Asn	Pro		Glu	Glu	Thr	Ser			Ser	Val	Glu		Pro
	-		340					345					350		
Ser	Tyr	Val	Lys	Val	Ser	Gly	Ala	Ala	Pro	Val	Ser	Ile	Glu	Ala	Gly
		355					360					365			

WO 2005/014818 PCT/JP2004/011650

182/271

Ser Ala Val Gly Lys Thr Thr Ser Phe Ala Gly Ser Ser Ala Ser Ser Tyr Ser Pro Leu Glu Ala Ala Leu Lys Asn Phe Thr Pro Ser Glu Thr Leu Thr Thr Asp Ile Ala Thr Lys Gly Pro Phe Pro Thr Ser Arg Ala Pro Leu Pro Ser Val Pro Pro Thr Thr Asn Ser Ser **<210> 97 <211>** 165 <212> PRT <213 homo sapiens **<400> 97** Met Ala Pro Asn Ala Ser Cys Leu Cys Val His Val Arg Ser Glu Glu Trp Asp Leu Met Thr Phe Asp Ala Asn Pro Tyr Asp Ser Val Lys Lys Ile Lys Glu His Val Arg Ser Lys Thr Lys Val Pro Val Gln Asp Gln Val Leu Leu Gly Ser Lys Ile Leu Lys Pro Arg Arg Ser Leu Ser Ser Tyr Gly Ile Asp Lys Glu Lys Thr Ile His Leu Thr Leu Lys Val Val Lys Pro Ser Asp Glu Glu Leu Pro Leu Phe Leu Val Glu Ser Gly Asp Glu Ala Lys Arg His Leu Leu Gln Val Arg Arg Ser Ser Val Ala Gln Val Lys Ala Met Ile Glu Thr Lys Thr Gly Ile Ile Pro Glu Thr Gln Ile Val Thr Cys Asn Gly Lys Arg Leu Glu Asp Gly Lys Met Met Ala Asp Tyr Gly Ile Arg Lys Gly Asn Leu Leu Phe Leu Ala Ser Tyr Cys Ile Gly Gly **<210> 98 <211> 891**

<212	2> 1	PRT						•							
<213	3> 1	nomo	sapi	ens											
<400)> !	98						٠							
Met	His	Ala	Ile	Asn	Gly	Phe	Val	Phe	Gly	Asn	Leu	Pro	Glu	Leu	Asn
1				5					10					15	
Me t	Cys	Ala	Gln	Lys	Arg	Val	Ala	Trp	His	Leu	Phe	Gly	Met	Gly	Asn
			20					25					30		
Glu	Ile	Asp	Val	His	Thr	Ala	Phe	Phe	His	Gly	Gln	Met	Leu	Thr	Thr
		35					4 0					45			
Arg	Gly	His	His	Thr	Asp	Val	Ala	Asn	Ile	Phe	Pro	Ala	Thr	Phe	Val
	50					55					60				
	Ala	Glu	Met	Val		Trp	Glu	Pro	Gly		Trp	Leu	Ile	Ser	Cys
65			a		70		Ā			75		_		_	80
Gin	Val	Asn	Ser		Phe	Arg	Asp	Gly		Gln	Ala	Leu	Tyr		Val
T	0	0	0	85	41.	T	.	** 1	90			mı	61	95	
Lys	ser	Cys		мет	Ala	Pro	Pro		Asp	Leu	Leu	Thr		Lys	Val
A = ~	Cln	Т	100	11.	C1.	۸1.	II: a	105	T1.	CI.	Τ	A =	110	C1	D
Aig	GIII		rne	116	GIU	Ala		GIU	116	GIII	1rp		IYI	ыу	Pro
Mot	Clv	115	Aen	Clar	Cor	Th r	120	T 770	Aan	Lou	A = ~	125	Dno	C1**	Co.=
MCt	130	1113	nsp	GIY	261	Thr 135	GIY	r A 2	ven	Leu	140	GIU	FIU	GIY	261
He		Asn	Lve	Phe	Phe	Gln	Ive	Ser	Ser	Ser		ماآ	Clv	C1v	Th r
145	501	пор	шуы	THO	150	OIII	Буз	DCI	501	155	Mg	110	dly	dly	160
	Trp	Lvs	Val	Arg		Glu	Ala	Phe	Gln		Glu	Thr	Phe	Gln	
	•			165					170	,				175	0.4
Lys	Met	His	Leu		Glu	Asp	Arg	His		Gly	Ile	Leu	Gly		Val
			180					185					190		
Ile	Arg	Ala	Glu	Val	Gly	Asp	Thr	Ile	Gln	Val	Val	Phe	Tyr	Asn	Arg
		195					200					205			
Ala	Ser	Gln	Pro	Phe	Ser	Met	Gln	Pro	His	Gly	Val	Phe	Tyr	Glu	Lys
	210					215					220				
Asp	Tyr	Glu	Gly	Thr	Val	Tyr	Asn	Asp	Gly	Ser	Ser	Tyr	Pro	Gly	Leu
225					230					235					240
Val	Ala	Lys	Pro	Phe	Glu	Lys	Val	Thr	Tyr	Arg	Trp	Thr	Val	Pro	Pro
				245					250					255	
His	Ala	Gly	Pro	Thr	Ala	Gln	Asp	Pro	Ala	Cys	Leu	Thr	Trp	Met	Tyr
			260					265					270		

.

Phe	Ser	Ala 275	Ala	Asp	Pro	Ile	Arg 280	Asp	Thr	Asn	Ser	Gly 285	Leu	Val	Gly		
Pro	Leu 290	Leu	Val	Cys	Arg	Ala 295	Gly	Ala	Leu	Gly	Ala 300	Asp	Gly	Lys	Gln		
Lys	Gly	Val	Asp	Lys	Glu	Phe	Phe	Leu	Leu	Phe	Thr	Val	Leu	Asp	Glu	•	
305					310					315					320		
Asn	Lys	Ser	Trp	Tyr 325	Ser	Asn	Ala	Asn	Gln 330	Ala	Ala	Ala	Met	Leu 335	Asp		
Phe	Arg	Leu	Leu	Ser	$\hbox{\rm Gl} u$	Asp	Ile	${\tt Glu}$	Gly	Phe	Ģln	Asp	Ser	Asn	Arg		
			340					345					350				
Met	His	Ala	Ile	Asn	Gly	Phe	Leu	Phe	Ser	Asn	Leu	Pro	Arg	Leu	Asp		
		355					360					365					
Met	Cys	Lys	Gly	Asp	Thr	Val	Ala	Trp	His	Leu	Leu	Gly	Leu	Gly	Thr		
	370					375					380						
Glu	Thr	Asp	Val	His	Gly	Val	Met	Phe	Gln	Gly	Asn	Thr	Val	Gln	Leu		
385					390			•		395					400		
Gln	Gly	Met	Arg	Lys	Gly	Ala	Ala	Met	Leu	Phe	Pro	His	Thr	Phe	Val		
				405				•	410					415			
Met	Ala	Ile	Met	Gln	Pro	Asp	Asn	Leu	Gly	Thr	Phe	Glu	Ile	Tyr	Cys		
			420					425					430			•	
Gln	Ala	Gly	Ser	His	Arg	Glu	Ala	Gly	Met	Arg	Ala	Ile	Tyr	Asn	Val		
		435					440					445					
Ser	Gln	Cys	Pro	Gly	His	Gln	Ala	Thr	Pro	Arg	Gln	Arg	Tyr	Gln	Ala		
	450					455					460						
Ala	Arg	Ile	Tyr	Tyr	Ile	Met	Ala	Glu	Glu	Val	Glu	Trp	Asp	Tyr	Cys		
465					470					475					480		
Pro	Asp	Arg	Ser	Trp	Glu	Arg	Glu	Trp	His	Asn	Gln	Ser	Glu	Lys	Asp		
				485					490					495			
Ser	Tyr	Gly	Tyr	Ile	Phe	Leu	Ser	Asn	Lys	Asp	Gly	Leu			Ser		
			500					505					510				
Arg	Tyr	Lys	Lys	Ala	Val	Phe	Arg	Glu	Tyr	Thr	Asp			Phe	Arg		
		515					520)				525					
Ile	Pro	Arg	Pro	Arg	Thr	Gly	Pro	Glu	Glu	His	Leu	Gly	Ile	Leu	Gly		
	530					535					540						
Pro	Leu	ı Ile	Lys	Gly	Glu	Val	Gly	Asp	Ile	Leu	Thr	Val	Val	Phe	Lys		
545	i				550	l				555					560		
Asr	Asn	ı Ala	Ser	Arg	g Pro	Tyr	Ser	Val	His	Ala	His	Gly	Val	Leu	Glu		

	•			565					570					575	
Ser	Thr	Thr	Val	Trp	Pro	Leu	Ala	Ala	Glu	Pro	Gly	Glu	Val	Val	Thr
			580					585					590		
Tyr	Gln		Asn	Ile	Pro	Glu		Ser	Gly	Pro	Gly		Asn	Asp	Ser
	_	595	~			_	600					605		_	
Ala		Val	Ser	Trp	He		Tyr	Ser	Ala	Val		Pro	He	Lys	Asp
Mot	610	Sor	Cl _w	Ι ωι	Val	615	Dro	Lon	A10	Ile	620	Cln	T 270	Clar	Ϊlα
625	1 9 1	261	GIY	Leu	630		110	ren		635	Cys	GIII	гуз		640
	Glu	Pro	His	Gly	• • • • • •		Ser	Asp		Asp	Arg	Glu	Phe		
				645	·			•	650	_	_			655	
Leu	Phe	Leu	Ile	Phe	Asp	Glu	Asn	Lys	Ser	Trp	Tyr	Leu	Glu	Glu	Asn
			660					665					670		
Val	Ala		His	Gly	Ser	Gln	Asp	Pro	Gly	Ser	Ile	Asn	Leu	Gln	Asp
		675			_		680					685		_	_
Glu		Phe	Leu	Glu	Ser		Lys	Met	His	Ala		Asn	Gly	Lys	Leu
Т.,	690	Aon	Ι 011	Ara	Clv	695	Th +	Mot	T	Cln	700	Clu	Ara	Vo l	A 1 o
705	Ald	N2II	Leu	ni g	710	ren	1111	Met	1 y 1	Gln 715	GIY	Giu	Alg	Vai	720
	Tvr	Met	Leu	Ala		Glv	Gln	Asp	Val	Asp	Leu	His	Thr	Ile	
	-3-			725		,			730					735	
Phe	His	Ala	Glu	Ser	Phe	Leu	Tyr	Arg	Asn	Gly	Glu	Asn	Tyr	Arg	Ala
			740					745					750		
Asp	Val	Val	Asp	Leu	Phe	Pro	Gly	Thr	Phe	Glu	Val	Val	Glu	Met	Val
		755					760					765			
Ala		Asn	Pro	Gly	Thr		Leu	Met	His	Cys		Val	Thr	Asp	His
Vol	770	A 1 a	C1**	Ma+	C1.	775	Y 0.11	Dha	ጥ ե »	Wo 1	780	Com	۸	Th m	C1
785	nıs	Ala	GIY	meı	790	1111	reu	rne	Ш	Val 795	rne	Ser	Arg	ш	800
	Leu	Ser	Pro	Len		Val	He	Thr	Lvs	Glu	Thr	Glu	Lvs	Ala	
				805		,			810	•••			-,-	815	
Pro	Pro	Arg	Asp	Ile	Glu	Glu	Gly	Asn	Val	Lys	Met	Leu	Gly	Met	Gln
			820					825					830		
Ile	Pro	Ile	Lys	Asn	Val	Glu	Met	Leu	Ala	Ser	Val	Leu	Val	Ala	Ile
		835					840					845			
Ser		Thr	Leu	Leu	Leu		Val	Leu	Ala	Leu		Gly	Val	Val	Trp
	850					855					860				

Tyr 865	Gln	His	Arg	Gln	Arg 870	Lys	Leu	Arg	Arg	Asn 875	Arg	Arg	Ser	Ile	Leu 880
	Asp	Ser	Phe	Lys 885		Leu	Ser	Phe	Lys 890						
<210)> !	99													
<211	> :	292													
<212	!> 1	PRT													
<213	3> 1	nomo	sapi	ens											
<400)>_!	99													
Met 1	Leu	Gly	Ala	Trp 5	Ala	Val	Glu	Gly	Thr 10	Ala	Val	Ala	Leu	Leu 15	Arg
Leu	Leu	Leu	Leu 20	Leu	Leu	Pro	Pro	Ala 25	Ile	Arg	Gly	Pro	Gly 30	Leu	Gly
Val	Ala	Gly 35	Val	Ala	Gly	Ala	Ala 40	Gly	Ala	Gly		Pro 45	Glu	Ser	Val
Ile	Trp 50	Ala	Val	Asn	Ala	Gly 55	Gly	Glu	Ala	His	Val 60	Asp	Val	His	Gly
Ile 65	His	Phe	Arg	Lys	Asp 70	Pro	Leu	Glu	Gly	Arg 75	Val	Gly	Arg	Ala	Ser 80
Asp	Tyr	Gly	Met	Lys 85	Leu	Pro	Ile	Leu	Arg 90	Ser	Asn	Pro	Glu	Asp 95	Gln
Ile	Leu	Tyr	Gln 100	Thr	Glu	Arg	Tyr	Asn 105	Glu	Glu	Thr	Phe	Gly 110	Tyr	Glu
Val	Pro	Ile 115	Lys	Glu			Asp 120	Tyr	Val	Leu	Val	Leu 125	Lys	Phe	Ala
Glu	Val 130		Phe	Ala	Gln	Ser 135	Gln	Gln	Lys	Val	Phe 140	Asp	Val	Arg	Leu
Asn	Gly	His	Val	Val	Val	Lys	Asp	Leu	Asp	He	Phe	Asp	Arg	Val	Gly
145					150					155					160
His	Ser	Thr	Ala	His 165	Asp	Glu	Ile	Ile	Pro 170	Met	Ser	Ile	Arg	Lys 175	Gly
Lys	Leu	Ser	Val 180		Gly	Glu	Val	Ser 185	Thr	Phe	Thr	Gly	Lys 190		Tyr
Ile	Glu	Phe	Val	Lys	Gly	Tyr	Tyr 200		Asn	Pro	Lys	Val 205		Ala	Leu
Tyr	Ile 210	Met	Ala	Gly	Thr	Val 215		Asp	Val	Pro	Lys 220		Gln	Þго	His

	•														
Pro G	ly]	Leu	Glu	Lys	Lys	Glu	Glu	Glu	Glu	Glu	Glu	Glu	Glu	Tyr	Asp
225					230					235					240
Glu G	ly	Ser	Asn	Leu	Lys	Lys	Gln	Thr	Asn	Lys	Asn	Arg	Val	Gln	Ser
				245					250					255	
Gly P	ro .	Arg	Thr	Pro	Asn	Pro	Tyr	Ala	Ser	Asp	Asn	Ser	Ser	Leu	Met
			260					265					270		
Phe P	ro	Ile	Leu	Val	Ala	Phe	Gly	Val	Phe	Ile	Pro	Thr	Leu	Phe	Cys
		275					280					285			
Leu (Cys	Arg	Leu												
	290														
<210>		00.													
<211 >		63													
<212 >		RT													
<213			sapi	iens											
(400)		00	•												
Met I			Phe	His	Leu	Leu	Lvs	Phe	Lvs	Thr	Arg	Val	Ile	Phe	Ser
1				5			_,,		10		0			15	
Ala V	Val	Πρ	Ile		Va 1	Thr	Glv	I.em		T.e11	Phe	I.en	Len		Len
1114	,	110	20	1400		****	013	25	0,0	204	1110	200	30	501	
Pro I	Hic	I en	•	Glv	Val	Phe	Gln		Val	Pro	Ala	Pro		Trn	Thr
1101	.113	35	1113	dry	741	Inc	40	OIII	741	110	111 u	45	115	11.0	****
Ser I	11 <i>م</i> آ		Pro	Trn	Pro	ماآ		Clu	Δla	Δla	Δla		Gln	Ser	Glv
	50	Cys	110	пр	110	55	MCI	oru	Mia	ma	60	Inc	UIII	501	Oly
Ser 1		Тагт	Dro	Va 1	Λla		Dha	Ι Δ11	Λla	Ala		Mat	Sar	Gl 11	Ī en
65	Leu	1 9 1	110	Vai	70	261	1 116	ren	nia	75		Met	261	GIU	80
•	D == 0	Aan	Lou	000		Cln	Vol	Aon	Lou			C1**	Lou	Sor	
Val 1	110	ASP	Leu		rne	GIII	Val	ASP		ші	1111	GIY	Leu	95	GIU
Dh. (0	17 n 1	ጥኤ	85 Cl=	۸	۸ ه	Tan	A 1 a	90	C1	Т	Aon	C1		Vo l
Phe	ser	vai		GIII	Arg	Arg	Leu			GIY	цр	ASII			Val
4.1			100	. .		** 1	m	105			.	A	110		T
Ala	Asp		Ser	Glu	Pro	val			Lys	lyr	Leu			rne	Lys
		115		_	_	_	120		_		_	125			
Asn 1		Leu	Ile	Leu	Leu			Gly	Ser	Ala		Val	Ser	Val	Leu
	130					135					140				
Thr	Lys	Glu	Tyr	Glu	Asp	Ala	Val	Ser	Ile			Ala	Val	Leu	
145					150					155					160
Val	Val	Thr	Val	Ala	Phe	Ile	Gln	Glu	Tyr	Arg	Ser	Glu	Lys	Ser	Leu
				165					170)				175	

Glu	Glu	Leu	Thr	Lys	Leu	Val	Pro	Pro	Glu	Cys	Asn	Cys	Leu	Arg	Glu
			180					185					190		
Gly	Lys		Gln	His	Leu	Leu	Ala	Arg	Glu	Leu	Val	Pro	Gly	Asp	Val
		195					200					205			
Val		Leu	Ser	Ile	Gly		Arg	Ile	Pro	Ala	Asp	Ile	Arg	Leu	Thr
	210			_	_	215					220				
	Val	Thr	Asp	Leu	Leu	Val	Asp	Glu	Ser		Phe	Thr	Gly	Glu	
225	D	0	0	T	230			~		235	۵.				240
-GI Ü	LÏO	ŗĂ2	zer.		Thr	Asp	Ser	Pro		Thr	Gly	Gly	Gly		Leu
Th r	Th r	Lon	Cor	245	T l o	Vo I	Dha	Mo t	250	ጥե	T	17 - 1	C1	255	C1
1111	1111	ren	260	NSII	Ile	Val	rne	ме і 265	GIY	1111	Leu	vai		ıyr	ыу
Arσ	Glv	C1 n		Val	Val	Ile	Glv		C1v	Clu	Sar	Sar	270	Dha	Clv
6	U1 y	275	dry	141			280	1111	GIY	GIU	261	285	GIII	THE	GIY
Glu	Val		Lvs	Met	Me t			Glu	Gln	Thr	Pro		Thr	Pro	Len
	290		-,-			295		0.4	oru,		300	2,5		110	Deu
Gln	Lys	Ser	Met	Asp	Arg	Leu	Gly	Lys	Gln	Leu		Leu	Phe	Ser	Phe
305					310			-		315					320
Gly	Ile	Ile	Gļy	Leu	Ile	Met	Leu	Ile	Gly	Trp	Ser	Gln	Gly	Lys	Gln
				325					330					335	
Leu	Leu	Ser	Met	Phe	Thr	Ile	Gly	Val	Ser	Leu	Ala	Val	Ala	Ala	Ile
			340					345					350		
Pro	Glu	Gly	Leu	Pro	Ile	Val	Val	Met	Val	Thr	Leu	Val	Leu	Gly	Val
		355					360					365			
Leu	Arg	Met	Ala	Lys	Lys	Arg	Val	Ile	Val	Lys	Lys	Leu	Pro	Ile	Val
	370					375				•	380				
	Thr	Leu	Gly	Cys	Cys	Ser	Val	Leu	Cys		Asp	Lys	Thr	Gly	Thr
385	 .		Ā		390					395					400
Leu	Thr	Ala	Asn		Met	Thr	Val	Thr		Leu	Val	Thr	Ser		Gly
T	A	41-	01	405	•	0.1	T 7 1	01	410			~ 1		415	
Leu	Arg	AIa		Vai	Ser	Gly	vai		Tyr	Asp	Gly	GIn		Thr	Val
C***	T 011	Lon	420	Com	T	C1	1 7 - 1	425	T	C1	nh.	0	430	¥7_ 1	
Cys	Leu	435	FIU	ser	Lys	GIU		116	rys	GIU	rne		ASII	vaı	ser
Val	61 v		Len	Val	Glu	A 1 a	440	Cvc	Val	A 1 o	Ann	445	A 1 o	Vo 1	II.
141	450	гуз	LUU	101	GIU	455	GIÀ	O y S	vai	uiq	460	וופת	nia	Val	116
Arg		Asn	Ala	Val	Me t		Gln	Pro	Thr	Gln		Ala	I.en	Met	Ala
0	_, _			,		~ ^ 3					~ 4 3			-11 O F	414 (4

465					470					475					480
Leu	Ala	Met	Lys	Met	Asp	Leu	Ser	Asp	Ile	Lys	Asn	Ser	Tyr	Ile	Arg
				485					490					495	
Lys	Lys	Glu	Ile	Pro	Phe	Ser	Ser	Glu	Gln	Lys	Trp	Met	Ala	Val	Lys
			500					505					510		
Cys	Ser	Leu	Lys	Thr	Glu	Asp	Gln	Glu	Asp	Ile	Tyr	Phe	Met	Lys	Gly
		515					520					525			
Ala	Leu	Glu	Glu	Val	Ile	Arg	Tyr	Cys	Thr	Met			Asn	Gly	Gly
	530				**	535					540				
Ile	Pro	Leu	Pro	Leu	Thr	Pro	Gln	Gln	Arg		Phe	Cys	Leu	Gln	
545	_				550	_		_		555	_		_		560
Glu	Lys	Arg	Met		Ser	Leu	Gly	Leu		Val	Leu	Ala	Leu		Ser
0.1	D	01	T	565	A	T	/D1	nı.	570	G1	T	V - 1	C1	575	T1-
Gly	Pro	Glu		Gly	Arg	Leu	inr		Leu	GIY	Leu	vai		116	116
Aan	Dro	Dro	580	Vo l	Clw	Vo l	T *** 0	585	A 1 a	Vo l	Cln	Val	590	Sor	Clu
ASP	FIU	595	AIR	Val	Gly	Val	600	Giu	Ala	V 4 1	GIII	605	Leu	nei	Giu
Sar	Clv		Car	Val	Lys	Moi		Thr	C1v	Aen	Δla		Clu	Thr	Δla
261	610	141	261	141	,Lys	615	110	1111	Uly	пор	620	DCu	Olu	1111	ma
I.en		He	Glv	Arg	Asn		G1v	Len	Cvs	Asn		Lvs	Len	Gln	Ala
625	711 0	110	01,	••••	630		013	200	0,0	635	01,	_, .			640
	Ser	Gly	Glu	Glu	Val	Asp	Ser	Val	Glu		Gly	Glu	Leu	Ala	_
		•		645		•			650	·	Ţ			655	
Arg	Val	Gly	Lys	Val	Ser	Val	Phe	Phe	Arg	Thr	Ser	Pro	Lys	His	Lys
			660					665					670		
Leu	Lys	Ile	Ile	Lys	Ala	Leu	Gln	Glu	Ser	·Gly	Ala	Ile	Val	Ala	Met
		675					680					685			
Thr	Gly	Asp	Gly	Val	Asn	Asp	Ala	Val	Ala	Leu	Lys	Ser	Ala	Asp	Ile
	690					695					700				
Gly	Ile	Ala	Met	Gly	Gln	Thr	Gly	Thr	Asp	Val	Ser	Lys	Glu	Ala	Ala
705					710					715					720
Asn	Met	Ile	Leu		Asp	Asp	Asp	Phe			Ile	Met	Asn		
				725					730					735	
Glu	Glu	Gly			Ile	Phe	Tyr			Lys	Asn	Phe			Phe
۵,			740			0		745		Ţ	* 1	m₁.	750		m)
Gln	Leu			Ser	ile	Ser			ser	Leu	116			ser	Thr
		755	1				760					765			

•
Val Phe Asn Leu Pro Ser Pro Leu Asn Ala Met Gln Ile Leu Trp Ile
770 775 780
Asn Ile Ile Met Asp Gly Pro Pro Ala Gln Ser Leu Gly Val Glu Pro
785 790 795 800
Val Asp Lys Asp Ala Phe Arg Gln Pro Pro Arg Ser Val Arg Asp Thr
805 810 815
Ile Leu Ser Arg Ala Leu Ile Leu Lys Ile Leu Met Ser Ala Ala Ile
820 825 830
Ile Ile Ser Gly Thr Leu Phe Ile Phe Trp Lys Glu Met Pro Glu Asp
835 840 845
Arg Ala Ser Thr Pro Arg Thr Thr Thr Met Thr Phe Thr Cys Phe Val
850 855 860
Phe Phe Asp Leu Phe Asn Ala Leu Thr Cys Arg Ser Gln Thr Lys Leu
865 870 875 880
Ile Phe Glu Ile Gly Phe Leu Arg Asn His Met Phe Leu Tyr Ser Val
885 890 895
Leu Gly Ser Ile Leu Gly Gln Leu Ala Val Ile Tyr Ile Pro Pro Leu
900 905 910
Gln Arg Val Phe Gln Thr Glu Asn Leu Gly Ala Leu Asp Leu Leu Phe
915 920 925
Leu Thr Gly Leu Ala Ser Ser Val Phe Ile Leu Ser Glu Leu Leu Lys
930 935 940
Leu Cys Glu Lys Tyr Cys Cys Ser Pro Lys Arg Val Gln Met His Pro
945 950 955 960
Glu Asp Val
<210> 101
<211> 335
<212> PRT
<213> homo sapiens
<400> 101
Met Val Arg Arg Asp Arg Leu Arg Arg Met Arg Glu Trp Trp Val Gln
1 5 10 15
Val Gly Leu Leu Ala Val Pro Leu Leu Ala Ala Tyr Leu His Ile Pro
20 25 30
Pro Pro Gln Leu Ser Pro Ala Leu His Ser Trp Lys Ser Ser Gly Lys
35 40 45

Phe Phe Thr 50	Tyr Lys Gly	Leu Arg 1 55	lle Phe Tyr	Gln Asp	Ser Val Gly	У
Val Val Gly 65	Ser Pro Glu 70	lle Val V	Val Leu Leu 75	His Gly	Phe Pro Thi 80	
Ser Ser Tyr	Asp Trp Tyr 85	Lys Ile T	Orp Glu Gly	Leu Thr	Leu Arg Pho 95	е
His Arg Val	Ile Ala Let 100		Leu Gly Phe 105		Ser Asp Lys 110	S
Pro Arg Pro 115	His His Typ	Ser Ile I 120	Phe Glu Gl <u>n</u>	Ala Ser 125	Ile Val Gli	u
Ala Leu Leu 130	Arg His Leu	Gly Leu (135	Gln Asn Arg	Arg Ile 140	Asn Leu Leu	u
Ser His Asp 145	Tyr Gly Asr 150		Ala Gln Glu 155	Leu Leu	Tyr Arg Tyr 160	
Lys Gln Asn	Arg Ser Gly 165	Arg Leu 1	Thr Ile Lys 170	Ser Leu	Cys Leu Se 175	r
Asn Gly Gly	Ile Phe Pro		His Arg Pro 185		Leu Gln Ly: 190	S
Leu Leu Lys 195	Asp Gly Gly	Val Leu S 200	Ser Pro Ile	Leu Thr 205	Arg Leu Me	t
Asn Phe Phe 210	Val Phe Ser	Arg Gly I	Leu Thr Pro	Val Phe 220	Gly Pro Ty	r
Thr Arg Pro 225	Ser Glu Ser 230		Trp Asp Met 235	Trp Ala	Gly Ile Arg 240	
Asn Asn Asp	Gly Asn Let 245	ı Val Ile <i>I</i>	Asp Ser Leu 250 ·	Leu Gln	Tyr Ile Ası 255	n
Gln Arg Lys	Lys Phe Arg 260		Frp Val Gly 265		Ala Ser Va 270	1
Thr Ile Pro 275	Ile His Phe	e Ile Tyr (280	Gly Pro Leu	Asp Pro 285	Val Asn Pro	0
Tyr Pro Glu 290	Phe Leu Glu	1 Leu Tyr <i>A</i> 295	Arg Lys Thr	Leu Pro 300	Arg Ser Th	r
Val Ser Ile 305	Leu Asp Asp 310		Ser His Tyr 315	Pro Gln	Leu Glu Ası 320	
Pro Met Gly	Phe Leu Asi 325	ı Ala Tyr M	Met Gly Phe 330	Ile Asn	Ser Phe 335	
<210> 102						

.

<211	!> !	992													
<212	2> 1	PRT													
<21 3	3> 1	homo	sapi	ens											
<400)>	102													
Met	Gly	Ala	Ala	Gly	Arg	Gln	Asp	Phe	Leu	Phe	Lys	Ala	Met	Leu	Thr ·
1				5					10					15	
Ile	Ser	Trp	Leu 20	Thr	Leu	Thr	Cys	Phe 25	Pro	Gly	Ala	Thr	Ser 30	Thr	Val
Ala	Ala	G <u>l</u> y 35	Cys	P.ro	Ąsp	Gln	Ser 40	Pro	Glu	Leu	Gln.	Pro 45	Ţrp	Ąsn	Pro
Gly	His 50	Asp	Gln	Asp	His	His 55		His	Ile	Gly	Gln 60		Lys	Thr	Leu
Leu 65	Leu	Thr	Ser	Ser	Ala 70	Thr	Val	Tyr	Ser	Ile 75	His	Ile	Ser	Glu	Gly 80
Gly	Lys	Leu	Val	Ile 85	Lys	Asp	His	Asp	Glu 90	Pro	Ile	Val	Leu	Arg 95	Thr
Arg	His	Ile	Leu 100	Ile	Asp	-Asn	Gly	Gly 105	Glu	Leu	His	Ala	Gly 110		Ala
Leu	Cys	Pro 115	Pḥe	Gln	Gly	Asn	Phe 120		Ile	Ile	Leu	Tyr 125		Arg	Ala
Asp	Glu 130	Gly	Ile	Gln	Pro	Asp 135	Pro	Tyr	Tyr	Gly	Leu 140		Tyr	Ile	Gly
Val 145	Gly	Lys	Gly	Gly	Ala 150	Leu	Glu	Leu	His	Gly 155	Gln	Lys	Lys	Leu	Ser 160
Trp	Thr	Phe	Leu	Asn 165	Lys	Thr	Leu	His	Pro 170		Gly	Met	Ala	Glu 175	Gly
Gly	Tyr	Phe	Phe 180	Glu	Arg	Ser	Trp	Gly 185	His	Arg	Gly	Val	Ile 190	Val	His
Val	Ile	Asp 195	Pro	Lys	Ser	Gly	Thr 200	Val	Ile	His	Ser	Asp 205	Arg	Phe	Asp
Thr	Tyr 210	Arg	Ser	Lys	Lys	Glu 215	Ser	Glu	Arg	Leu	Val 220	Gln	Tyr	Leu	Asn
Ala 225	Val	Pro	Asp	Gly	Arg 230	Ile	Leu	Ser	Val	Ala 235	Val	Asn	Asp	Glu	Gly 240
Ser	Arg	Asn	Leu	Asp 245	Asp	Met	Ala	Arg	Lys 250	Ala	Met	Thr	Lys	Leu 255	
Ser	Lvs	His	Phe	Leu	His	Len	Glv	Phe	Arø	His	Pro	Trp	Ser	Phe	Len

			260					265					270		
Thr	Val	Lys	Gly	Asn	Pro	Ser	Ser	Ser	Val	Glu	Asp	His	Ile	Glu	Tyr
		275					280					285			
His	Gly	His	Arg	Gly	Ser	Ala	Ala	Ala	Arg	Val	Phe	Lys	Leu	Phe	Gln
	290					295					300				
Thr	Glu	His	Gly	Glu	Tyr	Phe	Asn	Val	Ser	Leu	Ser	Ser	Glu	Trp	Val
305					310					315					320
Gln	Asp	Val	Glu	Trp	Thr	Glu	Trp	Phe	Asp	His	Asp	Lys	Val	Ser	Gln
				325					330					335	
Thr	Lys	Gly	Gly	Glu	Lys	Ile	Ser	Asp	Leu	Trp	Lys	Ala	His	Pro	Gly
			340					345					350		
Lys	Ile	Cys	Asn	Arg	Pro	Ile	Asp	Ile	Gln	Ala	Thr	Thr	Met	Asp	Gly
		355					360					365			
Val	Asn	Leu	Ser	Thr	Glu	Val	Val	Tyr	Lys	Lys	Gly	Gln	Asp	Tyr	Arg
	370					375					380				
	Ala	Cys	Tyr	Asp	Arg	Gly	Arg	Ala	Cys	Arg	Ser	Tyr	Arg	Val	Arg
385					390					395					400
Phe	Leu	Cys	Gly		Pro	Val	Arg	Pro		Leu	Thr	Val	Thr	Ile	Asp
,				405					410					415	
Thr	Asn	Val		Ser	Thr	Ile	Leu		Leu	Glu	Asp	Asn		Gln	Ser
_	_	_	420					425					430		
Trp	Lys		Gly	Asp	Thr	Leu		He	Ala	Ser	Thr		Tyr	Ser	Me t
_		435				٠.	440	_	_	_	_	445	_		_
Tyr		Ala	Glu	Glu	Phe		Val	Leu	Pro	Cys		Ser	Cys	Ala	Pro
	450	** 1	Ţ			455					460			.	
	Gin	vai	Lys	vai	Ala	Gly	Lys	Pro	met		Leu	HIS	116	Gly	
465	7 1.	۸	C1	W- 1	470	Mal	A	41-	C1	475	01	Y	T	O	480
GIU	116	ASP	GIY		Asp	мет	Arg	AIa		vai	GIY	ren	Leu		Arg
1.00	110	110	Vo 1	485	C1	C1	Mak	C1	490	T	Cura	Т	D == 0	495	A
ASII	116	116		меі	Gly	GIU	мет		ASP	Lys	Cys	171		ТУГ	Arg
A a m	II; o	Ha	500	Aan	Dh.a	Dha	A	505	Aan	ጥե	Dha	C1	510	II : a	11.
ASII	піѕ		Cys	ASII	Phe	Pne		rne	ASP	Ш	rne		GIY	шз	116
T	Dha	515	T an	C1	Dh.o	T a	520	A 1 a	IIi a	Lou	C1	525	ጥኤ	C1	Lan
гЛЯ		HIA	ren	GIÄ	Phe		BIR	иıя	uis	ren		αιλ	THL	GIÜ	Leu
Iwo	530	Ma+	Clv	Cln	Cln	535	Vol	<u>C1v</u>	Cln	Tur	540 Pro	ΠΔ	Ніс	Dha	Uic
	пт	MGI	GIÀ	GIII	Gln	ren	٧dl	ary	GIII		110	116	1112	THE	
545					550					555					560

.. . .

Leu	Ala	Gly	Asp	Val 565	Asp	Glu	Arg	Gly	Gly 570	Tyr	Asp	Pro	Pro	Thr 575	Tyr	
Ile	Arg	Asp	Leu 580	Ser	Ile	His	His	Thr 585	Phe	Ser	Arg	Cys	Val 590	Thr	Val	
His	Gly	Ser 595	Asn	Gly	Leu	Leu	Ile 600	Lys	Asp	Val	Val	Gly 605	Tyr	Asn	Ser	
Leu	Gly 610	His	Cys	Phe	Phe	Thr 615	Glu	Asp	Gly	Pro	Glu 620	Glu	Arg	Asn	Thr	
 Phe 625	Asp	His	Cys	Leu	Gly 630	Ļėü	Leu	Val	Lys	Ser 635	Gly	Tķŗ	Lęų	Leu	Pro 640	
	Asp	Arg	Asp	Ser 645		Met	Cys	Lys	Met 650		Thr	Glu	Asp			
Pro	Gly	Tyr	Ile 660		Lys	Pro	Arg	Gln 665		Cys	Asn	Ala	Val 670	655 Ser	Thr	
Phe	Trp	Met 675		Asn	Pro	Asn	Asn 680		Leu	Ile	Asn	Cys 685		Ala	Ala	
Gly	Ser 690		Glu	Thr	Gly	Phe		Phe	Ile	Phe	His 700		Val	Pro	Thr	
Gly		Ser	Vạl	Gly	Me t	Tyr	Ser	Pro	Gly	Tyr		Glu	His	Ile	Pro	
705					710			•		715					720	
Leu	Gly	Lys	Phe	Tyr 725	Asn	Asn	Arg	Ala	His 730	Ser	Asn	Tyr	Arg	Ala 735	Gly	
Met	Ile	Ile	Asp 740	Asn	Gly	Val	Lys	Thr 745	Thr	Glu	Ala	Ser	Ala 750	Lys	Asp	
Lys	Arg	Pro 755	Phe	Leu	Ser	Ile	Ile 760	Ser	Ala	Arg	Tyr	Ser 765	Pro	His	Gln	
Asp	Ala 770	Asp	Pro	Leu	Lys	Pro 775		Glu	Pro	Ala	Ile 780		Arg	His	Phe	
Ile 785		Tyr	Lys	Asn	Gln 790	Asp	His	Gly	Ala	Trp 795		Arg	Gly	Gly	Asp 800	
	Trp	Leu	Asp	Ser 805		Arg	Phe	Ala	Asp 810		Gly	Ile	Gly	Leu 815		
Leu	Ala	Ser	Gly 820		Thr	Phe	Pro	Tyr 825		Asp	Gly	Ser	Lys 830		Glu	
Ile	Lys	Asn 835		Leu	Phe	Val	Gly 840		Ser	Gly	Asn	Val 845		Thr	Glu	
Me t	Met		Asn	Arg	Ile	Trp		Pro	Gly	Gly	Leu		His	Ser	Gly	

850			855					860				
Arg Thr Leu	Pro I	le Gly	Gln	Asn	Phe	Pro	I l·e	Arg	Gly	Ile	Gln	Leu
865		870					875					880
Tyr Asp Gly	Pro I	le Asn	Ile	Gln	Asn	Cys	Thr	Phe	Arg	Lys	Phe	Val
	88	85				890					895	
Ala Leu Glu	Gly A	rg His	Thr	Ser	Ala	Leu	Ala	Phe	Arg	Leu	Asn	Asn
	900				905					910		
Ala Trp Gln	Ser C	ys Pro	His	Asn	Asn	Val	Thr	Gly	Ile	Ala	Phe	Glu
915				920					925			
Asp Val Pro	Ile T	hr Ser	Arg	Val	Phe	Phe	Gly	Glu	Pro	Gly	Pro	Trp
930			935					940				
Phe Asn Gln	Leu A	sp Met	Asp	Gly	Asp	Lys	Thr	Ser	Val	Phe	His	Asp
945		950					955					960
Val Asp Gly			Glu	Tyr	Pro	Gly	Ser	Tyr	Leu	Thr	Lys	Asn
		65				970					975	
Asp Asn Trp		er Leu	Ala	Ser		Ala	Ala	Ser	Gly	Pro	Ser	Gly
4	980				985		•			990		
<210> 103												
<211> 296												
	•											
<212> PRT	•											
<212> PRT <213> homo	sapie:	ns										
<212> PRT <213> homo <400> 103	_											
<212> PRT <213> homo <400> 103 Met Glu His	Leu L		Phe	Asp	Asp		Ile	Asn	Ala	Phe		Asp
<212> PRT <213> homo <400> 103 Met Glu His 1	Leu L	ys Ala				10					15	
<212> PRT <213> homo <400> 103 Met Glu His	Leu L 5 Gly P	ys Ala			Arg	10				Phe	15	
<212> PRT <213> homo <400> 103 Met Glu His 1 Asn Met Phe	Leu L 5 Gly P 20	ys Ala ro Arg	Asp	Ser	Arg 25	10 Val	Arg	Gly	Trp	Phe 30	15 Thr	Leu
<212> PRT <213> homo <400> 103 Met Glu His 1 Asn Met Phe Asp Ser Tyr	Leu L 5 Gly P 20	ys Ala ro Arg	Asp	Ser Phe	Arg 25	10 Val	Arg	Gly	Trp Tyr	Phe 30	15 Thr	Leu
<212> PRT <213> homo <400> 103 Met Glu His 1 Asn Met Phe Asp Ser Tyr 35	Leu L 5 Gly P 20 Leu P	ys Ala ro Arg ro Thr	Asp Phe	Ser Phe 40	Arg 25 Leu	10 Val Thr	Arg Val	Gly Met	Trp Tyr 45	Phe 30 Leu	15 Thr Leu	Leu Ser
<pre><212> PRT <213> homo <400> 103 Met Glu His 1 Asn Met Phe Asp Ser Tyr</pre>	Leu L 5 Gly P 20 Leu P	ys Ala ro Arg ro Thr	Asp Phe Tyr	Ser Phe 40	Arg 25 Leu	10 Val Thr	Arg Val	Gly Met Pro	Trp Tyr 45	Phe 30 Leu	15 Thr Leu	Leu Ser
<pre><212> PRT <213> homo <400> 103 Met Glu His 1 Asn Met Phe Asp Ser Tyr</pre>	Leu L 5 Gly P 20 Leu P Gly A	ys Ala ro Arg ro Thr sn Lys	Asp Phe Tyr 55	Ser Phe 40 Met	Arg 25 Leu Lys	10 Val Thr Asn	Arg Val Arg	Gly Met Pro 60	Trp Tyr 45 Ala	Phe 30 Leu Leu	15 Thr Leu Ser	Leu Ser Leu
<pre><212> PRT <213> homo <400> 103 Met Glu His 1 Asn Met Phe Asp Ser Tyr</pre>	Leu L 5 Gly P 20 Leu P Gly A	ys Ala ro Arg ro Thr sn Lys hr Leu	Asp Phe Tyr 55	Ser Phe 40 Met	Arg 25 Leu Lys	10 Val Thr Asn	Arg Val Arg	Gly Met Pro 60	Trp Tyr 45 Ala	Phe 30 Leu Leu	15 Thr Leu Ser	Leu Ser Leu Ala
<pre><212> PRT <213> homo <400> 103 Met Glu His 1 Asn Met Phe Asp Ser Tyr</pre>	Leu L 5 Gly P 20 Leu P Gly A Leu T	ys Ala ro Arg ro Thr sn Lys hr Leu 70	Asp Phe Tyr 55 Tyr	Ser Phe 40 Met	Arg 25 Leu Lys Leu	10 Val Thr Asn Gly	Arg Val Arg Ile 75	Gly Met Pro 60 Thr	Trp Tyr 45 Ala Leu	Phe 30 Leu Leu	15 Thr Leu Ser	Leu Ser Leu Ala 80
<pre><212> PRT <213> homo <400> 103 Met Glu His 1 Asn Met Phe Asp Ser Tyr</pre>	Leu L 5 Gly P 20 Leu P Gly A Leu T Ala G	ys Ala ro Arg ro Thr sn Lys hr Leu 70 lu Leu	Asp Phe Tyr 55 Tyr	Ser Phe 40 Met	Arg 25 Leu Lys Leu	10 Val Thr Asn Gly	Arg Val Arg Ile 75	Gly Met Pro 60 Thr	Trp Tyr 45 Ala Leu	Phe 30 Leu Leu	15 Thr Leu Ser Ser	Leu Ser Leu Ala 80
<pre><212> PRT <213> homo <400> 103 Met Glu His 1 Asn Met Phe Asp Ser Tyr</pre>	Leu L 5 Gly P 20 Leu P Gly A Leu T Ala G 8	ys Ala ro Arg ro Thr sn Lys hr Leu 70 lu Leu 5	Asp Phe Tyr 55 Tyr	Ser Phe 40 Met Asn	Arg 25 Leu Lys Leu Ser	10 Val Thr Asn Gly Thr 90	Arg Val Arg Ile 75 Trp	Gly Met Pro 60 Thr	Trp Tyr 45 Ala Leu Gly	Phe 30 Leu Leu Gly	15 Thr Leu Ser Ser Tyr 95	Leu Ser Leu Ala 80 Asn
<pre><212> PRT <213> homo <400> 103 Met Glu His 1 Asn Met Phe Asp Ser Tyr</pre>	Leu L 5 Gly P 20 Leu P Gly A Leu T Ala G 8 Gln A	ys Ala ro Arg ro Thr sn Lys hr Leu 70 lu Leu 5	Asp Phe Tyr 55 Tyr	Ser Phe 40 Met Asn	Arg 25 Leu Lys Leu Ser	10 Val Thr Asn Gly Thr 90	Arg Val Arg Ile 75 Trp	Gly Met Pro 60 Thr	Trp Tyr 45 Ala Leu Gly	Phe 30 Leu Leu Gly	15 Thr Leu Ser Ser Tyr 95	Leu Ser Leu Ala 80 Asn
<pre><212> PRT <213> homo <400> 103 Met Glu His 1 Asn Met Phe Asp Ser Tyr</pre>	Leu L 5 Gly P 20 Leu P Gly A Leu T Ala G 8 Gln A 100	ys Ala ro Arg ro Thr sn Lys hr Leu 70 lu Leu 5 sp Leu	Asp Phe Tyr 55 Tyr Ile	Ser Phe 40 Met Asn Leu Ser	Arg 25 Leu Lys Leu Ser Ala 105	10 Val Thr Asn Gly Thr 90 Gly	Arg Val Arg Ile 75 Trp Glu	Gly Met Pro 60 Thr Glu	Trp Tyr 45 Ala Leu Gly Asp	Phe 30 Leu Leu Gly Ile 110	15 Thr Leu Ser Ser Tyr 95 Arg	Leu Ser Leu Ala 80 Asn

115 120 125	
Asp Thr Ile Phe Phe Val Leu Arg Lys Lys Thr Ser Gln Ile Thr Ph	е
130 135 140	
Leu His Val Tyr His His Ala Ser Met Phe Asn Ile Trp Trp Cys Va	l
145 150 155 16	0
Leu Asn Trp Ile Pro Cys Gly Gln Ser Phe Phe Gly Pro Thr Leu Ass	n
165 170 175	
Ser Phe Val His Ile Leu Met Tyr Ser Tyr Tyr Gly Leu Ser Val Ph	e
180 185 190	
Pro Ser Met His Lys Tyr Leu Trp Trp Lys Lys Tyr Leu Thr Gln Al	a
195 200 205	
Gln Leu Val Gln Phe Val Leu Thr Ile Thr His Thr Met Ser Ala Va	1
210 215 220	
Val Lys Pro Cys Gly Phe Pro Phe Gly Cys Leu Ile Phe Gln Ser Se	
225 230 235 24	
Tyr Met Leu Thr Leu Val Ile Leu Phe Leu Asn Phe Tyr Val Gln Th	r
245 250 255	
Tyr Arg Lys Lys Pro Met Lys Lys Asp Met Gln Glu Pro Pro Ala Gl	У
260 265 270	
Lys Glu Val Lys Asn Gly Phe Ser Lys Ala Tyr Phe Thr Ala Ala As	n
275 280 285	
Gly Val Met Asn Lys Lys Ala Gln 290 295	
<210> 104	
<211> 1612	
<212> PRT	
<213> homo sapiens	
<400> 104	
Met Ile Ala Glu Pro Ala His Phe Tyr Leu Phe Gly Leu Ile Cys Le	u
1 5 10 15	_
Cys Ser Gly Ser Arg Leu Arg Gln Glu Asp Phe Pro Pro Arg Ile Va	I
20 25 30	
Glu His Pro Ser Asp Leu Ile Val Ser Lys Gly Glu Pro Ala Thr Le	u
35 40 45	
Asn Cys Lys Ala Glu Gly Arg Pro Thr Pro Thr Ile Glu Trp Tyr Ly	s
50 55 60	
Gly Gly Glu Arg Val Glu Thr Asp Lys Asp Asp Pro Arg Ser His Arg	g

65					70					75					80
·Me t	Leu	Leu	Pro	Ser 85	Gly	Ser	Leu	Phe	Phe 90	Leu	Arg	Ile	Val	His 95	Gly
Arg	Lys	Ser	Arg		Asp	Glu	Gly	Val		Val	Cvs	Val	Ala		Asn
			100		-			105	- 3 -	,			110	0	
Tyr	Leu	Gly	Glu	Ala	Val	Ser	His	Asn	Ala	Ser	Leu	Glu		Ala	Ile
		115					120					125			
Leu	Arg	Asp	Asp	Phe	Arg	Gln	Asn	Pro	Ser	Asp	Val	Met	Val	Ala	Val
	130					135					140				
Gly	Glu	Pro	Ala	Val	Met	Glu	Cys	Gln	Pro	Pro	Arg	Gly	His	Pro	Glu
145		٠			150					155					160
Pro	Thr	Ile	Ser	Trp	Lys	Lys	Asp	Gly	Ser	Pro	Leu	Asp	Asp	Lys	Asp
				165					170					175	
Glu	Arg	He		Ile	Arg	Gly	Gly		Leu	Met	He	Thr	Tyr	Thr	Arg
_			180		_	_		185					190		
Lys	Ser		Ala	Gly	Lys	Tyr		Cys	Val	Gly	Thr		Met	Val	Gly
01.		195	•	0.1	 .	4.1	200	_	 .		_	205		_	_
Glu		Glu	Ser	Glu	Val	Ala	Glu	Leu	Thr	Val		Glu	Arg	Pro	Ser
Dha	210	T	1 m m	Des	C	215	T	41-	3 7_ 1	M1	220	A			
	vai	Lys	Arg	PIO		Asn	Leu	Ala	vai		vaı	Asp	Asp	Ser	
225	Dho	T 770	Ctro	C1.,	230	A = ~	C1	Aan	Dma	235	Des	ጥե	¥7 o 1	۸	240
GIU	rne	гар	Cys	245		Arg			250	Val	PTO	THL	Väl	255	rrp
Aro	Tve	Asn	Asn			Leu				Ara	Tur	Cln	Πο		Aen
711 6	Буз	пор	260	uly	UIU	LCu	110	265	261	пц	1 9 1	Giu	270	AI g	nsp
Asp	His	Thr		Lvs	Ile	Arg	Lvs		Thr	Ala	Glv	Asp		Glv	Ser
		275		-,-		0	280				01,	285	11200	01,	501
Tyr	Thr		Val	Ala	Glu	Asn		Val	Gly	Lys	Ala		Ala	Ser	Ala
	290					295			•	•	300				
Thr	Leu	Thr	Val	Gln	Glu	Pro	Pro	His	Phe	Val	Val	Lys	Pro	Arg	Asp
305					310					315					320
Gln	Val	Val	Ala	Leu	Gly	Arg	Thr	Val	Thr	Phe	Gln	Cys	Glu	Ala	Thr
				325					330					335	
Gly	Asn	Pro	Gln	Pro	Ala	Ile	Phe	Trp	Arg	Arg	Glu	Gly	Ser	Gln	Asn
			340					345					350		
Leu	Leu	Phe	Ser	Tyr	Gln	Pro	Pro	Gln	Ser	Ser	Ser	Arg	Phe	Ser	Val
		355					360					365			

Ser	Gln 370	Thr	Gly	Asp	Leu	Thr 375	Ile	Thr	Asn	Val	Gln 380	Arg	Ser	Asp	Val
Gly 385	Tyr	Tyr	Ile	Cys	Gln 390	Thr	Leu	Asn	Val	Ala 395	Gly	Ser	Ile	Ile	Thr 400
Lys	Ala	Tyr	Leu	Glu 405	Val	Thr	Asp	Val	Ile 410	Ala	Asp	Arg	Pro	Pro 415	Pro ·
Val	Ile	Arg	Gln 420	Gly	Pro	Val	Asn	Gln 425	Thr	Val	Ala	Val	Asp 430	Gly	Thr
Phe	<u>Val</u>	Leu 435	Ser	Cys	Val	Ala	Thr 440	Gly	Ser _.	Pro	ya l	Pro 445	Thŗ	Ile	Leu
Trp	Arg 450	Lys	Asp	Gly	Val	Leu 455	Val	Ser	Thr	Gln	Asp 460	Ser	Arg	Ile	Lys
Gln 465	Leu	Glu	Asn	Gly	Val 470	Leu	Gln	Ile	Arg	Tyr 475	Ala	Lys	Leu	Gly	Asp 480
				485				,	490			Gly		495	
			500					505				Pro	510		
		515					520					Pro 525			
	530					535					540	Ser			
545					550					555		Ile	•		560
				565					570	•		Glu		575	
			580					585				Ala	590		
		595					600					Asp 605 Thr			
	610					615					620	Ala			
625					630					635		Glu			640
				645					650			Lys		655	_
		•				- 	• -								~ . •

			660					665					670		
Arg	Pro		Gly	Ala	Asn	His	Gly	Glu	Ser	Asp	Trp	Leu	Val	Phe	Glu
		675					680					685			
Val	Arg	Thr	Pro	Ala	Lys		Ser	Val	Val	Ile		Asp	Leu	Arg	Lys
C1**	690	Aan	Т	C1	Tla	695	A 1 -	A	n .	D1	700	A	01	D1	0.1
705	Val	ASII	1 7 1	GIU	710	Lys	Ala	Arg	Pro		Pne	Asn	GIU	Pne	
	Ala	Asn	Ser	Cl 11		Twe	Dhα	Δla	T 170	715	Lou	Clu	Clu	. 41 o	720
u.,	/11 U	nsp	DCI	725	110	цуз	1 116		730					735	
Ser	Ala	Pro	Pro		Glv	Val	Thr								-
			740		3			745		2,0	11011	пор	750	11011	OI,
Thr	Ala	Ile	Leu	Val	Ser	Trp	Gln	Pro	Pro	Pro	Glu	Asp		Gln	Asn
		755					760					765			
Gly	Me t	Val	Gln	Glu	Tyr	Lys	Val	Trp	Cys	Leu	Gly	Asn	Glu	Thr	Arg
	770					775					780				
	His	Ile	Asn	Lys		Val	Asp	Gly	Ser	Thr	Phe	Ser	Val	Val	Ile
785					790					795					800
Pro	Phe	Leu	Val		Gly	Ile	Arg	Tyr		Val	Glu	Val	Ala		Ser
ጥե	<u>C1</u>	41.	C1	805	C1	37 - 1	T	0	810	D .	01	D1	7.1	815	_
1111	Gly	Ala	820	ser	GIY	vaı	Lys	ser 825	GIU	Pro	Gin	Pne		GIn	Leu
Asn	Ala	Hie		Acn	Dro	Va 1	Sar		Cln	Asn	Cin	Vol	830	Lou	41 a
пор	ma	835	dly	non	110	141	840	110	GIU	nsp	GIII	845	261	Leu	Ald
Gln	Gln		Ser	Asp	Val	Val		Gln	Pro	Ala	Phe		Ala	Glv	Ile
	850			•		855	•				860			0.,	
Gly	Ala	Ala	Cys	Trp	Ile	Ile	Leu	Met	Val	Phe		Ile	Trp	Leu	Tyr
865					870					875					880
Arg	His	Arg	Lys	Lys	Arg	Asn	Gly	Leu	Thr	Ser	Thr	Tyr	Ala	Gly	Ile
				885					890					895	
Arg	Lys	Val		Ser	Phe	Thr	Phe	Thr	Pro	Thr	Val	Thr	Tyr	Gln	Arg
	٠.		900		_			905					910		
Gly	Gly		Ala	Val	Ser	Ser		Gly	Arg	Pro	Gly		Leu	Asn	Ile
C o =	C1	915 Dec	A 1 -	A 1 -	01	D	920	T	41.		m.	925	.		
261	Glu 930	110	AIA	AIA	GIN		ırp	Leu	на	ASP		ırp	Pro	Asn	Thr
Glv	Asn	Acn	Hic	Aen	Aen	935 Cvs	Ser	ماآ	Sar	Cuc	940 Cvs	Thr	Δla	ር1 _ተ	Acr
945	11011	11011	1113	17911	950	O y S	001	116	OC1	955	U y S	1111	UIG	άīλ	960
0.10					550					J U U					300

Gly Asn Ser Asp Ser Asn Leu Thr Thr Tyr Ser Arg Pro Ala Asp Cys Ile Ala Asn Tyr Asn Asn Gln Leu Asp Asn Lys Gln Thr Asn Leu Met Leu Pro Glu Ser Thr Val Tyr Gly Asp Val Asp Leu Ser Asn Lys Ile Asn Glu Met Lys Thr Phe Asn Ser Pro Asn Leu Lys Asp Gly Arg Phe Val Asn Pro Ser Gly Gln Pro Thr Pro Tyr Ala Thr Thr Gln Leu Ile Gln Ser Asn Leu Ser Asn Asn Met Asn Asn Gly Ser Gly Asp Ser Gly Glu Lys His Trp Lys Pro Leu Gly Gln Gln Lys Gln Glu Val Ala Pro Val Gln Tyr Asn Ile Val Glu Gln Asn Lys Leu Asn Lys Asp Tyr Arg Ala Asn Asp Thr Val Pro Pro Thr Ile Pro Tyr Asn Gln Ser Tyr Asp Gln Asn Thr Gly Gly Ser Tyr Asn Ser Ser Asp Arg Gly Ser Ser Thr Ser Gly Ser Gln Gly His Lys Lys Gly Ala Arg Thr Pro Lys Val Pro Lys Gln Gly Gly Met Asn Trp Ala Asp Leu Leu Pro Pro Pro Pro Ala His Pro Pro Pro His Ser Asn Ser Glu Glu Tyr Asn Ile Ser Val Asp Glu Ser Tyr Asp Gln Glu Met Pro Cys Pro Val Pro Pro Ala Arg Met Tyr Leu Gln Gln Asp Glu Leu Glu Glu Glu Glu Asp Glu Arg Gly Pro Thr Pro Pro Val Arg Gly Ala Ala Ser Ser Pro Ala Ala Val Ser Tyr Ser His Gln Ser Thr Ala Thr Leu Thr Pro Ser Pro Gln Glu Glu Leu Gln Pro Met Leu Gln Asp Cys Pro Glu Glu Thr Gly His Met Gln His

	1235					1240					1245			
Gln	Pro	Asp	Arg	Arg	Arg	Gln	Pro	Val	Ser	Pro	Pro	Pro	Pro	Pro
	1250					1255					1260			
Arg	Pro	Ile	Ser	Pro	Pro	His	Thr	Tyr	Gly	Tyr	Ile	Ser	Gly	Pro
	1265					1270					1275			
Leu	Val	Ser	Asp	Met	Asp	Thr	Asp	Ala	Pro	Glu	Glu	Glu	Glu	Asp
	1280					1285					1290			
Glu	Ala	Asp	Met	Glu	Val	Ala	Lys	Met	Gln	Thr	Arg	Arg	Leu	Leu
	1295	-				1300					1305			
Leu	Arg	Gly	Leu	Glu	Gln	Thr	Pro	Ala	Ser	Ser	Val	Gly	Asp	Leu
	1310	•				1315					1320			
Glu	Ser	Ser	Val							Gly		Gly	Ser	Ala
	1325					1330					1335			
Ser	Glu	Glu	Asp	Asn	Ile							Val	Ser	Ser
_	1340					1345					1350			
Ser	Asp	Gly	Ser	Phe	Phe							Gln	Ala	Val
	1355				_	1360					1365			
Ala	Ala			•								Arg	Arg	Gln
.,						1375					1380		0.1	
met	Gln	Asp	Ala									Ser	GIn	Cys
D	1385	D	TL			1390					1395	M - 1	0	A 1 -
Pro	Arg	Pro	ınr					Inr	ASP	ser		мет	ser	Ala
۸1.	1400	Mo +	Cln			1405		A 1 -	T	T	1410	T	11: -	Cim
Ala	Val	меι	GIII	Lys	Inr		Pro	Ala	Lys	Lys		Lys	HIS	GIN
Dro	1415	u; o	Ι 011	A == ~	A = ~	1420	Th.,	Т	ጥኤቱ	Aan	1425	Ton	Dro	Dea
rio	Gly 1430	піз	ren	AIG	Alg	1435	1111	1) 1	1111	ASD	1440	Leu	riu	F10
Dro	Pro	Va 1	Dro	Dro	Dro		Ιlα	Tve	Sar	Dro		Λla	Cln	Car
110	1445	Val	110	110	110	1450	116	гуз	261	110	1455	Λια	GIII	261
Lvc	Thr	Gln	Ĭ 611	Cln	Val		Pro	Va 1	Val	Val		Ive	Ī en	Pro
цуо	1460	OIII	ьсц	Olu	141	1465	110	741	141	vui	1470	ப்	LCu	110
Ser	Met	Asn	Ala	Arσ	Thr		Aro	Ser	Ser	Asn		Lvs	Glv	Ser
501	1475	115 p	2114	**** 6	1111	1480		501	501	. to b	1485	2,0	01)	501
Ser	Tyr	Lvs	Glv	Arg	Glu			Asn	Glv	Arg		Val	Val	Asp
	1490	-,5	- 1 3	•••		1495	204		,	0	1500			
Met	Arg	Thr	Asn	Pro	Glv		Pro	Arg	Glu	Ala		Glu	Gln	Gln
· = •	1505				- - J	1510		0			1515	- **		

Asn Asp Gly Lys Gly Arg Gly Asn Lys Ala Ala Lys Arg Asp Leu Pro Pro Ala Lys Thr His Leu Ile Gln Glu Asp Ile Leu Pro Tyr Cys Arg Pro Thr Phe Pro Thr Ser Asn Asn Pro Arg Asp Pro Ser Ser Ser Ser Ser Met Ser Ser Arg Gly Ser Gly Ser Arg Gln Arg Glu Gln Ala Asn Val Gly Arg Arg Asn Ile Ala Glu Met Gln Val Leu Gly Gly Tyr Glu Arg Gly Glu Asp Asn Asn Glu Glu Leu Glu Glu Thr Glu Ser <210> 105 <211> 570 <212> PRT <213> homo sapiens **<400> 105** Met Ala Gly Gly Ala Arg Glu Val Leu Thr Leu Gln Leu Gly His Phe Ala Gly Phe Val Gly Ala His Trp Trp Asn Gln Gln Asp Ala Ala Leu Gly Arg Ala Thr Asp Ser Lys Glu Pro Pro Gly Glu Leu Cys Pro Asp Val Leu Tyr Arg Thr Gly Arg Thr Leu His Gly Gln Glu Thr Tyr Thr Pro Arg Leu Ile Leu Met Asp Leu Lys Gly Ser Leu Ser Ser Leu Lys Glu Glu Gly Gly Leu Tyr Arg Asp Lys Gln Leu Asp Ala Ala Ile Ala Trp Gln Gly Lys Leu Thr Thr His Lys Glu Glu Leu Tyr Pro Lys Asn Pro Tyr Leu Gln Asp Phe Leu Ser Ala Glu Gly Val Leu Ser Ser Asp Gly Val Trp Arg Val Lys Ser Ile Pro Asn Gly Lys Gly Ser Ser Pro

Leu 145	Pro	Thr	Ala	Thr	Thr 150	Pro	Lys	Pro	Leu		Pro	Thr	Glu		
	A	¥7 - 1	T	C		nı.				155	-		_		160
116	Arg	Val	111		Asp	rne	Leu	Arg		HIS	Leu	HIS	Pro		Ser
71.	Λ.	M - 1		165		m			170		a :			175	_
116	Cys	met		GIn	Lys	Tyr	Asn		Asp	Gly	Glu	Ala		Arg	Leu
			180					185					190		
Glu	Ala		Gly	Gln	Gly	Glu		Val	Leu	Lys	Glu		Lys	Tyr	Gln
		195					200					205			
Gļu		Leu	Glu	Asp	Arg		His	Phe	Tyr	Val	Glu	Glu	Cys	Asp	Tyr
	210					215					220				
Leu	Gln	Gly	Phe	Gln	Ile	Leu	Cys	Asp	Leu	His	Asp	Gly	Phe	Ser	Gly
225					230					235					240
Val	Gly	Ala	Lys	Ala	Ala	Glu	Leu	Leu	Gln	Asp	Glu	Tyr	Ser	Gly	Arg
				245					250					255	
Gly	Ile	Ile	Thr	Trp	Gly	Leu	Leu	Pro	Gly	Pro	Tyr	His	Arg	Gly	Glu
			260					265					270		
Ala	Gln	Arg	Asn	Ile	Tyr	Arg	Leu	Leu	Asn	Thr	Ala	Phe	Gly	Leu	Val
		275					280					285			
His	Leu	Thr	Aļa	His	Ser	Ser	Leu	Val	Cys	Pro	Leu	Ser	Leu	Gly	Gly
	290					295					300				
Ser	Leu	Gly	Leu	Arg	Pro	Glu	Pro	Pro	Val	Ser	Phe	Pro	Tyr	Leu	His
305					310				•	315					320
Tyr	Asp	Ala	Thr	Leu	Pro	Phe	His	Cys	Ser	Ala	Ile	Leu	Ala	Thr	Ala
				325					330					335	
Leu	Asp	Thr	Val	Thr	Val	Pro	Tyr	Arg	Leu	Cys	Ser	Ser	Pro	Val	Ser
			340					345		•			350		
Met	Val	His	Leu	Ala	Asp	Met	Leu	Ser	Phe	Cys	Gly	Lys	Lys	Val	Val
		355					360					365			
Thr	Ala	Gly	Ala	Ile	Ile	Pro	Phe	Pro	Leu	Ala	Pro	Gly	Gln	Ser	Leu
	370					375					380				
Pro	Asp	Ser	Leu	Val	Gln	Phe	Gly	Gly	Ala	Thr	Pro	Trp	Thr	Pro	Leu
385					390					395					400
Ser	Ala	Cys	Gly	Glu	Pro	Ser	Gly	Thr	Arg	Cys	Phe	Ala	Gln	Ser	Val
				405					410					415	
Val	Leu	Arg	Gly	Ile	Asp	Arg	Ala	Cys	His	Thr	Ser	Gln	Leu	Thr	Pro
			420					425					430		
Gly	Thr	Pro	Pro	Pro	Ser	Ala	Leu	His	Ala	Cys	Thr	Thr	Gly	Glu	Glu

•				
435		440	445	
Ile Leu Ala Gln	Tyr Leu Gln	Gln Gln Gln	Pro Gly Val Met	Ser Ser
450	455		460	
Ser His Leu Leu	Leu Thr Pro	Cys Arg Val	Ala Pro Pro Tyr	Pro His
465	470		475	480
Leu Phe Ser Ser	Cys Ser Pro	Pro Gly Met	Val Leu Asp Gly	Ser Pro
	485	490		495
		Ile Pro Val	Phe Gly Ala Leu	Cys Ser
500		_. 505	510	
	His Gln Thr		Leu Ala Arg Asp	Leu Thr
515		520	525	
			Met Asp Ala Gly	Val Glu
530	535		540	Ala Cla
545	550	Leu Gin Giu	Leu Gln Ser Leu 555	560
Cys Tyr Gln Gly		Ten Val Asn	000	300
Cys Tyr Gin Gry	565	570		
<210> 106	000			
<211> 141	•			
<212> PRT				
<213> homo sap	iens			
<400> 106		-		
Met Ala Gln Tyr	Leu Ser Thr	Leu Leu Leu	Leu Leu Ala Thr	Leu Ala
1	5	10		15
Val Ala Leu Ala	Trp Ser Pro	Lys Glu Glu	Asp Arg Ile Ile	Pro Gly
20		25	. 30	
Gly Ile Tyr Asn	ı Ala Asp Leu	Asn Asp Glu	Trp Val Gln Arg	Ala Leu
35		40	45	
		Asn Lys Ala	Thr Lys Asp Asp	Tyr Tyr
50	55		60	
		Arg Ala Arg	Gln Gln Thr Val	
65	70	01 V-1 01	75	80
vai ASN IYF Phe			Arg Thr Ile Cys	
Sar Cln Dra Acr	85	90 Cve Ala Pha	Hie Clu Cla Dec	95 Glu Leu
Ser Gill Pro Asi	ren vah IIII		His Glu Gln Pro	
100	ì	105	110	
Gln Lve Lve Glr		105 Phe Glu Ile	110 Tyr Glu Val Pro	

Asn Arg Arg Ser Leu Val Lys Ser Arg Cys Gln Glu Ser <210> 107 **<211> 247** <212> PRT <213> homo sapiens **<400>** 107 Met Pro Arg Leu Leu His Pro Ala Leu Pro Leu Leu Gly Ala Thr Leu Thr Phe Arg Ala Leu Arg Arg Ala Leu Cys Arg Leu Pro Leu Pro Val His Val Arg Ala Asp Pro Leu Arg Thr Trp Arg Trp His Asn Leu Leu Val Ser Phe Ala His Ser Ile Val Ser Gly Ile Trp Ala Leu Leu Cys Val Trp Gln Thr Pro Asp Met Leu Val Glu Ile Glu Thr Ala Trp Ser Leu Ser Gly Tyr Leu Leu Val Cys Phe Ser Ala Gly Tyr Phe Ile His Asp Thr Val Asp Ile Val Ala Ser Gly Gln Thr Arg Ala Ser Trp Glu Tyr Leu Val His His Val Met Ala Met Gly Ala Phe Phe Ser Gly Ile Phe Trp Ser Ser Phe Val Gly Gly Val Leu Thr Leu Leu Val Glu Val Ser Asn Ile Phe Leu Thr Ile Arg Met Met Lys Ile Ser Asn Ala Gln Asp His Leu Leu Tyr Arg Val Asn Lys Tyr Val Asn Leu Val Met Tyr Phe Leu Phe Arg Leu Ala Pro Gln Ala Tyr Leu Thr His Phe Phe Leu Arg Tyr Val Asn Gln Arg Thr Leu Gly Thr Phe Leu Leu Gly Ile Leu Leu Met Leu Asp Val Met Ile Ile Ile Tyr Phe Ser Arg Leu Leu Arg Ser Asp Phe Cys Pro Glu His Val Pro Lys Lys Gln His

Lys Asp Lys Phe Leu Thr Glu ⟨210⟩ 108 <211> 158 <212> PRT <213> homo sapiens **<400>** 108 Met Ala Ala Arg Ser Val Ser Gly Ile Thr Arg Arg Val Phe Met Trp Thr Val Ser Gly Thr Pro Cys Arg Glu Phe Trp Ser Arg Phe Arg Lys Glu Lys Glu Pro Val Val Val Glu Thr Val Glu Glu Lys Lys Glu Pro Ile Leu Val Cys Pro Pro Leu Arg Ser Arg Ala Tyr Thr Pro Pro Glu Asp Leu Gln Ser Arg Leu Glu Ser Tyr Val Lys Glu Val Phe Gly Ser Ser Leu Pro Ser Asn Trp Gln Asp Ile Ser Leu Glu Asp Ser Arg Leu Lys Phe Asn Leu Leu Ala His Leu Ala Asp Asp Leu Gly His Val Val Pro Asn Ser Arg Leu His Gln Met Cys Arg Val Arg Asp Val Leu Asp Phe Tyr Asn Val Pro Ile Gln Asp Arg Ser Lys Phe Asp Glu Leu Ser Ala Ser Asn Leu Pro Pro Asn Leu Lys Ile Thr Trp Ser Tyr <210> 109 <211> 601 <212> PRT <213 homo sapiens **<400>** 109 Met Arg Val Val Arg Leu Leu Arg Leu Arg Ala Ala Leu Thr Leu Leu Gly Glu Val Pro Arg Arg Pro Ala Ser Arg Gly Val Pro Gly Şer Arg

Arg	Thr	Gln 35	Lys	Gly	Ser	Gly	Ala 40	Arg	Trp	Glu	Lys	Glu 45	Lys	His	Glu
Asp	Gly 50	Val	Lys	Trp	Arg	G1n 55	Leu	Glu	His	Lys	Gly 60	Pro	Tyr	Phe	Ala
Pro 65	Pro	Tyr	Glu	Pro	Leu 70	Pro	Asp	Gly	Val	Arg 75	Phe	Phe	Tyr	Glu	Gly 80
Arg	Pro	Val	Arg	Leu 85	Ser	Val	Ala	Ala	Glu 90	Glu	Val	Ala	Thr	Phe 95	Tyr
Gly	Arg	Met	Leu 100	Asp	His	Gjļų	Tyr	Thr 105	Thr.	Lys	Gl _. u _.	Val	Phe 110	Arg	Ļуġ
Asn	Phe	Phe 115	Asn	Asp	Trp	Arg	Lys 120	Glu	Met	Ala	Val	Glu 125	Glu	Arg	Glu
Val	Ile 130	Lys	Ser	Leu	Asp	Lys 135	Cys	Asp.	Phe	Thr	Glu 140	Ile	His	Arg	Tyr
Phe 145	Val	Asp	Lys	Ala	Ala 150	Ala	Arg	Lys	Val	Leu 155	Ser	Arg	Glu	Glu	Lys 160
	Lys	Leu	Lys	Glu 165		Ala	Glu	Lys	Leu 170		Gln	Glu	Phe	Gly 175	
Cys	Ile	Leu	Aşp 180		His	Gln	Glu	Lys 185		Gly	Asn	Phe	Lys 190		Glu
Pro	Pro	Gly 195		Phe	Arg	Gly	Arg 200		Asp	His	Pro	Lys 205		Gly	Met
Leu	Lys 210		Arg	Ile	Thr	Pro 215		Asp	Val	Val	Ile 220		Cys	Ser	Arg
Asp 225		Lys	Ile	Pro	Glu 230		Pro	Ala	Gly	His	Gln	Trp	Lys	Glu	Val 240
	Ser	Asp	Asn	Thr 245		Thr	Trp	Leu	Ala 250		Trp	Thr	Glu	Ser 255	
Gln	Asn	Ser	Ile 260		Tyr	Ile	Met	Leu 265		Pro	Cys	Ser	Lys 270		Lys
Gly	Glu	Thr 275		Trp	Gln	Lys	Phe 280		Thr	Ala	Arg	Arg 285		Arg	Gly
Phe	Val 290	Asp	Glu	Ile	Arg	Ser 295		Tyr	Arg	Ala	Asp		Lys	Ser	Arg
Glu 305		Lys	Thr	Arg	Gln 310		Ala	Val	Ala	Leu 315	Tyr	Phe	Ile	Asp	Lys 320
	Ala	Leu	Arg	Ala		Asn	Glu	Lys	Glu		Gly	Glu	Ala	Ala	

32	25	330	335
Thr Val Gly Cys Cy	ys Ser Leu Arg V	al Glu His Val Gln	Leu His Pro
340	. 3	45	350
Glu Ala Asp Gly Cy	ys Gln His Val V	al Glu Phe Asp Phe	Leu Gly Lys
355	360	365	
Asp Cys Ile Arg Ty	yr Tyr Asn Arg V	al Pro Val Glu Lys	Pro Val Tyr
370	375	380	,
Lys Asn Leu Gln Le	eu Phe Met Glu A	sn Lys Asp Pro Arg	Asp Asp Leu
385	390	395	400
Phe Asp Arg Leu Th	hr Thr Thr Ser L	eu Asn Lys His Leu	Gln Glu Leu
. 40	05	410	415
Met Asp Gly Leu Th	hr Ala Lys Val P	he Arg Thr Tyr Asn	Ala Ser Ile
420		25	430
		eu Thr Arg Ala Glu	Asp Ser Ile
435	440	445	
		rg Ala Asn Arg Val	Val Ala Ile
450	455	460	
	•	ro Ser Thr Phe Glu	
465	470	475	480
		la Lys Lys Glu Gln	
	85	490	495
		rg Ala Glu His Lys	-
		05	510
		lu Lys Lys Arg Arg	Leu Leu Glu
515	520	525	The Ass Irra
530	535	eu Ser Val Gln Ala 540	IIII ASP LYS
		Sly Thr Ser Lys Leu	Aon Tur Lou
545	550	555	560
		sys Lys Arg Phe Arg	
	65	570	575
		arg Glu Arg Phe Ala	
580		85	590
Ala Met Ala Gly G			000
595	600		
⟨210⟩ 110			
<211> 269			•

<21	2>	PRT													
<21	3>	homo	sap	iens											
<40	<0>	110													
Met	Asn	Gln	Glu	Asp	Leu	Asp	Pro	Asp	Ser	Thr	Thr	Asp	Val	Gly	Asp
1				5					10					15	
Val	Thr	Asn	Thr 20	Glu	Glu	Glu	Leu	Ile 25	Arg	Glu	Cys	Glu	Glu 30	Met	Trp
Lys	Asp	Met 35	Glu	Glu	Cys		Asn 40	Lys		Ser		Ile 45		Thr	Glu
Thr	Leu 50	Thr	Asp	Ser	Asn								Met	Gln	Val
Lys 65	Cys	Leu	Thr	Ala	Glu 70	Leu	Ser	Gln	Trp	Gln 75		Lys	Thr	Pro	G1 u
Thr	Ile	Pro	Leu	Thr 85	Glu	Asp	Val	Leu	Ile 90		Leu	Gly	Lys	Glu 95	
Phe	Gln	Lys	Leu 100	Arg	Gln	Asp	Leu	Glu 105	Met	Val	Leu	Ser	Thr 110		Glu
Ser	Lys	Asn 115	Glu	Lys	Leu	Lys	Glu 120	Asp	Leu	Glu	Arg	Glu 125		Arg	Trp
Leu	Asp 130	Glu	Gln	Gln	Gln	Ile 135		Glu	Ser	Leu	Asn 140		Leu	His	Ser
Glu 145	Leu	Lys	Asn	Lys	Val 150		Thr	Phe	Ser	Glu 155		Arg	Ile		Asn 160
	Leu	Lys	Thr	Lys 165		Leu	Asn	Ile	Lys 170		Tyr	Lys	Glu		
Leu	Ser	Thr	Leu 180		Glu	Phe	Leu	Glu 185		His	Phe	Pro	Leu 190		Asp
Arg	Ser	Val 195	Lys	Lys	Lys	Lys	Lys 200		Ile	Gln	Glu	Ser 205		Val	Asn
Leu	Ile 210	Thr	Leu	His	Glu	Met 215		Glu	Ile	Leu	Ile 220		Arg	Leu	Phe
Asp 225	Val	Pro	His	Asp	Pro 230		Va _. l	Lys	Ile	Ser 235		Ser	Phe	Trp	Pro 240
	Tyr	Val	Glu	Leu 245		Leu	Arg	Asn	Gly 250		Ala	Leu	Arg	His 255	
Glu	Asp	Pro	Thr 260		Ile	Arg	Leu	Glu 265		Phe	His	Gln			

<210)>	111													
<211	>	829													
<212	?>	PRT													
< 213	3>	homo	sapi	ens											
<400)>	111													
Met 1	Gly	Leu	Pro	Arg 5	Gly	Pro	Leu	Ala	Ser 10	Leu	Leu	Leu		Gln 15	Val
Cys	Trp	Leu	Gln 20	Cys	Ala	Ala	Ser	Glu 25	Pro	Cys	Arg		Va.l 30	Phe	Arg
Glu	Ala	Glu 35	Val	Thr	Leu	Glu	Ala 40	Gly	Gly	Ala	Glu	Gln 45	Glu	Pro	Gly
Gln ·.		Leu	Gly	Lys	Val	Phe 55	Met	Gly	Cys	Pro	Gly 60	Gln	Glu	Pro	Ala
Leu 65	Phe	Ser	Thr	Asp	Asn 70	Asp	Asp	Phe	Thr	Val 75	Arg	Asn	Gly	Glu	Thr 80
Val	Gln	Glu	Arg	Arg 85	Ser	Leu	Lys	Glu	Arg 90	Asn	Pro	Leu	Lys	Ile 95	Phe
Pro	Ser	Lys	Arg 100	Ile	Ļeu	Arg	Arg	His 105	Lys	Arg	Asp	Trp	Val 110	Val	Ala
Pro	Ile	Ser 115	Val	Pro	Glu	Asn	Gly 120	Lys	Gly	Pro	Phe	Pro 125	Gln	Arg	Leu
Asn	Gln 130	Leu	Lys	Ser	Asn	Lys 135	Asp	Arg	Asp	Thr	Lys 140	Ile	Phe	Tyr	Ser
I le 145	Thr	Gly	Pro	Gly	Ala 150	Asp	Ser	Pro	Pro	Glu 155	Gly	Val	Phe	Ala	Val 160
Glu	Lys	Glu	Thr	Gly 165	Trp	Leu	Leu	Leu	Asn 170	Lys	Pro	Leu	Asp	Arg 175	Glu
Glu	Ile	Ala	Lys 180	Tyr	Glu	Leu	Phe	Gly 185	His	Ala	Val	Ser	Glu 190	Asn	Gly
Ala	Ser	Val 195	Glu	Asp	Pro	Met	Asn 200	Ile	Ser	Ile	Ile	Val 205	Thr	Asp	Gln
Asn	Asp 210	His	Lys	Pro	Lys	Phe 215	Thr	Gln	Asp	Thr	Phe 220	Arg	Gly	Ser	Val
Leu 225	Glu	Gly	Val	Leu	Pro 230	Gly	Thr	Ser	Val	Met 235	Gln	Val	Thr	Ala	Thr 240
Asp	Glu	Asp	Asp	Ala 245	Ile	Tyr	Thr	Tyr	Asn 250	Gly	Val	Val	Ala	Tyr 255	Ser

•

Ile	His	Ser	Gln 260	Glu	Pro	Lys	Asp	Pro 265	His	Asp	Leu	Met	Phe 270	Thr	Ile
His	Arg	Ser 275	Thr	Gly	Thr	Ile	Ser 280		Ile	Ser	Ser	Gly 285		Asp	Arg
Glu	Lys 290		Pro	Glu	Tyr	Thr 295		Thr	Ile	Gln	Ala 300		Asp	Met	Asp ·
Glv		Glv	Ser	Thr	Thr		Ala	Val	Ala	Val		Gln	He	Len	Asn
305	•				310			,		315	,	0.4		. 	320
	Asn	Asp	Asn	Ala		Met	Phe	Asp	Pro		Lys	Tyr	Glu	Ala	His
				325	·	•	•	-	330	•	. •	• •		335	
Val	Pro	Glu	Asn	Ala	Val	Gly	His	Glu	Val	Gln	Arg	Leu	Thr	Val	Thr
			340					345					350		
Asp	Leu	Asp	Ala	Pro	Asn	Ser	Pro	Ala	Trp	Arg	Ala	Thr	Tyr	Leu	Ile
•		355					360					365			
Met	Gly	Gly	Asp	Asp	Gly	Asp	His	Phe	Thr	Ile	Thr	Thr	His	Pro	Glu
	370					375					380				
	Asn	Gln	Gly	Ile	Leu	Thr	Thr	Arg	Lys	Gly	Leu	Asp	Phe	Glu	Ala
385					390					395					400
Lys	Asn	Gln	Hįs		Leu	Tyr	Val	Glu	Val	Thr	Asn	Glu	Ala		Phe
	_	_	_	405		_			410					415	
Val	Leu	Lys		Pro	Thr	Ser	Thr		Thr	He	Val	Val		Val	Glu
۸	W- 1	A	420	A 1 -	D	¥7 1	D1	425		D	•		430	•••	.
ASP	vai		GIU	Ala	Pro	vai		vai	Pro	Pro	Ser		Val	Val	Glu
Va 1	C1n	435	Clv	Τlα	Dro	Th.	440	Clu	Dno	Vo l	C***0	445	Т	Th	A1 =
Yaı	450	GIU	Gly	116	LIU	455	GIA	GIU	Pro	vai	460	Val	lyr	ппг	Ala
Glu		Pro	Asn	Lve	GIn		Gln	Twe	Ile	Sar		Δτα	مات	LOII	Ara
465	, rob	110	пор	n y o	470	11311	UIII	гуз	110	475	1 9 1	MIG	116	rea	480
_	Pro	Ala	Glv	Trp		Ala	Met	Asp	Pro		Ser	Glv	Gln	Va l	
•			•	485					490			. ,	V	495	****
Ala	Val	Gly	Thr		Asp	Arg	Glu	Asp	Glu	Gln	Phe	Val	Arg		Asn
		·	500		-	Ū		505					510		
Ile	Tyr	Glu	Val	Met	Val	Leu	Ala	Met	Asp	Asn	Gly	Ser		Pro	Thr
		515					520				-	525			
Thr	Gly	Thr	Gly	Thr	Leu	Leu	Leu	Thr	Leu	Ile	Asp	Val	Asn	Asp	His
	530					535					540				
Glv	Pro	Val	Pro	Clu	Pro	Δrσ	Gln	Πρ	Thr	Πρ	Cve	Aen	Clp	Car	Dro

WO 2005/014818 PCT/JP2004/011650

545 550 555 560
Val Arg Gln Val Leu Asn Ile Thr Asp Lys Asp Leu Ser Pro His Thr
565 570 575
Ser Pro Phe Gln Ala Gln Leu Thr Asp Asp Ser Asp Ile Tyr Trp Thr
580 585 590
Ala Glu Val Asn Glu Glu Gly Asp Thr Val Val Leu Ser Leu Lys Lys
595 600 605
Phe Leu Lys Gln Asp Thr Tyr Asp Val His Leu Ser Leu Ser Asp His
610 615 620
Gly Asn Lys Glu Gln Leu Thr Val Ile Arg Ala Thr Val Cys Asp Cys
625 630 635 640
His Gly His Val Glu Thr Cys Pro Gly Pro Trp Lys Gly Gly Phe Ile
645 650 655
Leu Pro Val Leu Gly Ala Val Leu Ala Leu Leu Phe Leu Leu Val
660 665 670
Leu Leu Leu Val Arg Lys Lys Arg Lys Ile Lys Glu Pro Leu Leu
675 680 685
Leu Pro Glu Asp Asp Thr Arg Asp Asn Val Phe Tyr Tyr Gly Glu Glu 690 695 700
Gly Gly Glu Glu Asp Gln Asp Tyr Asp Ile Thr Gln Leu His Arg
705 710 715 720
Gly Leu Glu Ala Arg Pro Glu Val Val Leu Arg Asn Asp Val Ala Pro
725 730 735
Thr Ile Ile Pro Thr Pro Met Tyr Arg Pro Arg Pro Ala Asn Pro Asp
740 745 750
Glu Ile Gly Asn Phe Ile Ile Glu Asn Leu Lys Ala Ala Asn Thr Asp
755 760 765
Pro Thr Ala Pro Pro Tyr Asp Thr Leu Leu Val Phe Asp Tyr Glu Gly
770 775 780
Ser Gly Ser Asp Ala Ala Ser Leu Ser Ser Leu Thr Ser Ser Ala Ser
785 790 795 800
Asp Gln Asp Gln Asp Tyr Asp Tyr Leu Asn Glu Trp Gly Ser Arg Phe
805 810 815
Lys Lys Leu Ala Asp Met Tyr Gly Gly Gly Glu Asp Asp
820 825
<210> 112 .
<211> 926

$\langle 212$! >	PRT													
<213	3>	homo	sapi	ens											
<400)>	112													
Met 1	Asp	Met	Phe	Pro 5	Leu	Thr	Trp	Val	Phe 10	Leu	Ala	Leu	Tyr	Phe 15	Ser
Arg	His	Gln	Val 20	Arg	Gly	Gln	Pro	Asp 25	Pro	Pro	Cys	Gly	Gly 30	Arg	Leu
Asn		Lys 35									_	Tyr 45.	Pro	Gln	Asp
Tyr		Ser										Ala	Pro	Glu	Pro
Asn 65	Gln	Lys	Ile	Val	Leu 70	Asn	Phe	Asn	Pro	His 75	Phe	Glu	Ile	Glu	Lys 80
His	Asp	Cys	Lys	Tyr 85	Asp	Phe	Ile	Glu	Ile 90	Arg	Asp	Gly	Asp	Ser 95	Glu
Ser	Ala	Asp	Leu 100	Leu	Gly	Lys	His	Cys 105	Gly	Asn	Ile	Ala	Pro 110	Pro	Thr
Ile	Ile	Ser 115	Ser	Gly	Ser	Met	Leu 120	Tyr	Ile	Lys	Phe	Thr 125	Ser	Asp	Tyr
Ala	Arg 130	Gln	Gly	Ala	Gly	Phe 135	Ser	Leu	Arg	Tyr	Glu 140	Ile	Phe	Lys	Thr
Gly 145	Ser	Glu	Asp	Cys	Ser 150	Lys	Asn	Phe	Thr	Ser 155	Pro	Asn	Gly	Thr	Ile 160
Glu	Ser	Pro	Gly	Phe 165	Pro	Glu	Lys	Tyr	Pro 170	His	Asn	Leu	Asp	Cys 175	Thr
Phe	Thr	Ile	Leu 180	Ala	Lys	Pro	Lys	Met 185	Glu	Ile	Ile	Leu	Gln 190	Phe	Leu
Ile	Phe	Asp 195	Leu	Glu	His	Asp	Pro 200	Leu	Gln	Val	Gly	Glu 205	Gly	Asp	Cys
Lys	Tyr 210	Asp	Trp	Leu	Asp	Ile 215	Trp	Asp	Gly	Ile	Pro 220	His	Val	Gly	Pro
Leu 225	Ile	Gly	Lys	Tyr	Cys 230	Gly	Thr	Lys	Thr	Pro 235	Ser	Glu	Leu	Arg	Ser 240
Ser	Thr	Gly	Ile	Leu 245	Ser	Leu	Thr	Phe	His 250	Thr	Asp	Met	Ala	Val 255	Ala
Lys	Asp	Gly	Phe 260	Ser	Ala	Arg	Tyr	Tyr 265	Leu	Val	His	Gln	Glu 270	Pro	Leu

Glu	Asn	Phe 275	Gln	Cys	Asn	Val	Pro 280	Leu	Gly	Met	Glu	Ser 285	Gly	Arg	Ile
Ala	Aen		Gln	Πρ	Ser	Ala		Ser	Thr	Tur	Ser		Clv	Aro	Trn
ma	290	oru	GIII	110	501	295	DCI	501	1111	1) 1	300	пър	GIY	mg	111
Thr		Cln	Gln	Ser	Arg		Hic	Clv	Aen	Δen		Glv	Trn	Thr	Pro
305	110	UIII	OIII	DCI	310	БСц	1113	Uly	пор	315	11511	Gly	11p	1111	320
	Ι Δ11	Aen	Car	Acn	Lys	Gln	Tur	Ι Δ11	Cln		Aen	Ι Δ11	Δrσ	Dho	
11311	ьси	nsp	501	325	Lys	uiu	1 9 1	bcu	330	141	пор	LCu	MI 6	335	LCu
Thr	Met	I en	Thr		Πe	Ala	Thr	Cl n		Δla	Πρ	Ser	Δrσ		Thr
	'inc'r'	reu.	340	1110	_, 1 _1 U _	, <u>,,,,,,,</u>		345	ury	vii.a.	110.	'iori	350	Oru	****
Gln	Asn	Glv		Tvr	Val	Lvs	Ser		ī.vs	T.en	Gln	Val		Thr	Asn
0111		355	-,-	.,.	,	23,5	360	- 3 -	1,0	Dou	01 u	365	001	****	
Glv	Glu		Trp	Met	Val	Tvr		His	Glv	Lvs	Asn		Lvs	Val	Phe
	370		•			375				•	380		•		
Gln	Ala	Asn	Asn	Asp	Ala		Glu	Val	Val	Leu		Lys	Leu	His	Ala
385										395					400
Pro	Leu	Leu	Thr	Arg	Phe	Val	Arg	Ile	Arg	Pro	Gln	Thr	Trp	His	Ser
				405					410					415	
Gly	Ile	Ala	Leu	Arg	Leu	Glu	Leu	Phe	Gly	Cys	Arg	Val	Thr	Asp	Ala
			420					425					430		
Pro	Cys	Ser	Asn	Met	Leu	Gly	Met	Leu	Ser	Gly	Leu	Ile	Ala	Asp	Ser
		435					440		•			445			
Gln	Ile	Ser	Ala	Ser	Ser	Thr	Gln	Glu	Tyr	Leu	Trp	Ser	Pro	Ser	Ala
	450					455					460				
Ala	Arg	Leu	Val	Ser	Ser	Arg	Ser	Gly	Trp	Phe	Pro	Arg	Ile	Pro	Gln
465					470					475					480
Ala	Gln	Pro	Gly	Glu	Glu	Trp	Leu	Gln	Val	Asp	Leu	Gly	Thr	Pro	Lys
				485					490					495	
Thr	Val	Lys	Gly	Val	Ile	Ile	Gln	Gly	Ala	Arg	Gly	Gly	Asp	Ser	Ile
			500					505					510		
Thr	Ala	Val	Glu	Ala	Arg	Ala	Phe	Val	Arg	Lys	Phe	Lys	Val	Ser	Tyr
		515					520					525			
Ser			Gly	Lys	Asp			Tyr	Ile	Gln		Pro	Arg	Thr	Gln
	530					535					540				
	Pro	Lys	Leu	Phe	Glu	Gly	Asn	Met	His		Asp	Thr	Pro	Asp	
545				_	550				_	555					560
Arg	Arg	Phe	Asp	Pro	Ile	Pro	Ala	Gln	Tyr	Val	Arg	Val	Tyr	Pro	Glu

				565					570					575	
Arg	Trp	Ser	Pro	Ala	Gly	Ile	Gly	Met	Arg	Leu	Glu	Val	Leu	Gly	Cys
			580					585					590		
Asp	Trp	Thr	Asp	Ser	Lys	Pro	Thr	Val	Lys	Thr	Leu	Gly	Pro	Thr	Val
		595					600					605			
Lys	Ser	Glu	Glu	Thr	Thr	Thr	Pro	Tyr	Pro	Thr	Glu	Glu	Glu	Ala	Thr
	610					615					620				
Glu	Cys	Gly	Glu	Asn	Cys	Ser	Phe	Glu	Asp	Asp	Lys	Asp	Leu	Gln	Leu
625	-				630					635					640
Pro	Ser	Gly	Phe	Asn	Cys	Asn	Phe	Asp	Phe	Leu	Glu	Glu	Pro	Cys	Gly
				645					650					655	
Trp	Met	Tyr	Asp	His	Ala	Lys	Trp	Leu	Arg	Thr	Thr	Trp	Ala	Ser	Ser
			660					665					670		
Ser	Ser	Pro	Asn	Asp	Arg	Thr	Phe	Pro	Asp	Asp	Arg	Asn	Phe	Leu	Arg
		675					680					685			
Leu	Gln	Ser	Asp	Ser	Gln	Arg	Glu	Gly	Gln	Tyr	Ala	Arg	Leu	Ile	Ser
	690					695					700				
Pro	Pro	Val	His	Leu	Pro	Arg	Ser	Pro	Val	Cys	Met	Glu	Phe	Gln	Tyr
705					710					715					720
Gln	Ala	Thr	Gly	Gly	Arg	Gly	Val	Ala	Leu	Gln	Val	Val	Arg	Glu	Ala
				725					730					735	
Ser	Gln	Glu		Lys	Leu	Leu	Trp		Ile	Arg	Glu	Asp	Gln	Gly	Gly
			740					745					750		
Glu	Trp		His	Gly	Arg	He		Leu	Pro	Ser	Tyr		Met	Glu	Tyr
		755					760		_			765			
Gln		Val	Phe	Glu	Gly		He	Gly	Lys	Gly		Ser	Gly	Glu	He
. 1	770			* 1		775	•	mi		** 1	780		0.1		•
	116	Asp	ASP	116		116	Ser	Inr	Asp		Pro	Leu	Glu	ASI	
785	01	D	71.	0	790	DL -	41-	17 - 1	A	795	D	01	T1-	TT: -	800
мет	GIU	Pro	116		Ala	Pne	Ala	vai		116	Pro	GIU	Ile		GIU
A	01	C1	Ψ	805	۸	O1	71 a	۸	810	C1	Т	01	17 - 1	815	T
Arg	GIU	GIY		Giu	ASP	GIU	116		ASP	GIU	lyr	GIU	Val	ASP	1rp
°	Acr	Ca=	820	S	۸1.	ጥኤ 🕳	Sa=	825	Çar.	C1+-	A 1 a	Dec	830	ፐ ዜ =	100
ser	ASII		ser	ser	BIR	IIII		GIY	ser	αιλ	HIG		Ser	1111	ASD
Two	C1 :-	835	Sar	Тип	Lau	Т-17-2-	840	ינם آ	Acn	Dro	Ιlα	845	ΠΔ	Thr	110
LYS			SEL	ттр	ւեն			րգ _п	vsh	1.10	860	Իգп	Ile	† 11 1	116
	850					855					000				

	•														
Ile	Ala	Met	Ser	Ser	Leu	Gly	Val	Leu	Leu	Gly	Ala	Thr	Cys	Ala	Gly
865					870					875					880
Leu	Leu	Leu	Tyr	Cys	Thr	Cys	Ser	Tyr	Ser	Gly	Leu	Ser	Ser	Arg	Ser
				885					890			,		895	
Cys	Thr	Thr	Leu	Glu	Asn	Tyr	Asn	Phe	Glu	Leu	Tyr	Asp	Gly	Leu	Lys
			900					905					910		
His	Lys	Val	Lys	Met	Asn	His	Gln	Lys	Cys	Cys	Ser	Glu	Ala		
		915					920					925	·		
<210)> 1	113													
<211	> 2	220													
<212	?> I	PRT.													
<213	3> 1	omo	sapi	iens											
<400)> 1	113													
Met	Ser	Met	Gly	Leu	Glu	Ile	Thr	Gly	Thr	Ala	Leu	Ala	Val	Leu	Gly
1				5					10					15	
Trp	Leu	Gly	Thr	Ile	Val	Cys	Cys	Ala	Leu	Pro	Met	Trp	Arg	Val	Ser
			20					25					30		
Ala	Phe	Ile	Gly	Ser	Asn	Ile	Ile	Thr	Ser	Gln	Asn	Ile	Trp	Glu	Gly
		35			•		40					45	-		_
Leu	Trp	Met	Asn	Cys	Val	Val	Gln	Ser	Thr	Gly	Gln	Met	Gln	Cys	Lys
	50					55					60			•	-
Val	Tyr	Asp	Ser	Leu	Leu	Ala	Leu	Pro	Gln	Asp	Leu	Gln	Ala	Ala	Arg
65					70					75					80
Ala	Leu	Ile	Val	Val	Ala	Ile	Leu	Leu	Ala	Ala	Phe	Gly	Leu	Leu	Val
				85										95	
Ala	Leu	Val	Gly	Ala	Gln	Cys	Thr	Asn	Cys	·Val	Gln	Asp	Asp	Thr	Ala
			100					105					110		
Lys	Ala	Lys	Ile	Thr	Ile	Val	Ala	Gly	Val	Leu	Phe	Leu	Leu	Ala	Ala
		115					120					125			
Leu	Leu	Thr	Leu	Val	Pro	Val	Ser	Trp	Ser	Ala	Asn	Thr	Ile	Ile	Arg
	130					135					140				
Asp	Phe	Tyr	Asn	Pro	Val	Val	Pro	Glu	Ala	Gln	Lys	Arg	Glu	Met	Gly
145					150					155					160
Ala	Gly	Leu	Tyr	Val	Gly	Trp	Ala	Ala	Ala	Ala	Leu	Gln	Leu	Leu	
				165	-	-			170					175	•
Gly	Ala	Leu	Leu		Cys	Ser	Cys	Pro		Arg	Glu	Lys	Lys		Thr
			180	•	-		=	185		_		-	190		-

Ala Thr Lys Val Val Tyr Ser Ala Pro Arg Ser Thr Gly Pro Gly Ala Ser Leu Gly Thr Gly Tyr Asp Arg Lys Asp Tyr Val **<210>** 114 <211> 209 <212> PRT $\langle 213 \rangle$ homo sapiens **<400> 114** Met Ala Ser Met Gly Leu Gln Val Met Gly Ile Ala Leu Ala Val Leu Gly Trp Leu Ala Val Met Leu Cys Cys Ala Leu Pro Met Trp Arg Val Thr Ala Phe Ile Gly Ser Asn Ile Val Thr Ser Gln Thr Ile Trp Glu Gly Leu Trp Met Asn Cys Val Val Gln Ser Thr Gly Gln Met Gln Cys Lys Val Tyr Asp Ser Leu Leu Ala Leu Pro Gln Asp Leu Gln Ala Ala Arg Ala Leu Val Ile Ile Ser Ile Ile Val Ala Ala Leu Gly Val Leu Leu Ser Val Val Gly Gly Lys Cys Thr Asn Cys Leu Glu Asp Glu Ser Ala Lys Ala Lys Thr Met Ile Val Ala Gly Val Val Phe Leu Leu Ala Gly Leu Met Val Ile Val Pro Val Ser Trp Thr Ala His Asn Ile Ile Gln Asp Phe Tyr Asn Pro Leu Val Ala Ser Gly Gln Lys Arg Glu Met Gly Ala Ser Leu Tyr Val Gly Trp Ala Ala Ser Gly Leu Leu Leu Leu Gly Gly Gly Leu Leu Cys Cys Asn Cys Pro Pro Arg Thr Asp Lys Pro Tyr Ser Ala Lys Tyr Ser Ala Ala Arg Ser Ala Ala Ala Ser Asn Tyr Val

$\langle 210$)>	115													
<211	>	346		,											
<212	2> 1	PRT													
<21 3	3> 1	homo	sapi	ens											
<400)>	115													
Met	Phe	Leu	Ser	Ile	Leu	Val	Ala	Leu	Cys	Leu	Trp	Leu	His	Leu	Ala
1				5					10					15	
Leu	Gly	Val	Arg	Gly	Ala	Pro	Cys	Glu	Ala	Val	Arg	Ile	Pro	Met	Cys
			20					25					30		
Arg	His	Met 35	Pro	Trp	Asn	Ile	Thr 40	Arg	Met	Pro	Asn	His 45	Leu	His	His
Ser	Thr	Gln	Glu	Asn	Ala	Ile		Ala	Ile	Glu	Gln		Glu	Glu	Leu
	50					55					60				
Val	Asp	Val	Asn	Cys	Ser	Ala	Val	Leu	Arg	Phe	Phe	Phe	Cys	Ala	Met
65					70					75					80
Tyr	Ala	Pro	Ile	Cys	Thr	Leu	Glu	Phe	Leu	His	Asp	Pro	Ile	Lys	Pro
				85					90					95	
Cys	Lys	Ser	Val	Cys	Gln	Arg	Ala	Arg	Asp	Asp	Cys	Glu	Pro	Leu	Met
			100					105					110		
Lys	Me t	Tyr	Asn	His	Ser	Trp	Pro	Glu	Ser	Leu	Ala	Cys	Asp	Glu	Leu
		115					120					125			
Pro		Tyr	Asp	Arg	Gly		Cys	Ile	Ser	Pro		Ala	Ile	Val	Thr
	130		01		•••	135	_			- 1	140				
	Leu	Pro	Glu	Asp		Lys	Trp	He	Asp		Thr	Pro	Asp	Met	
145	Clm	C1	A = ~	Des	150	1.00	Va 1	A	Ca	155	A	T a.,	Com	Dwo	160
1 PA	GIII	Glu	Arg	165	Leu	ASP	val	ASP	170	LYS	arg	ren	ser		ASP
Δrσ	Cve	Lys	Γ_{VC}		Ive	V2 1	Two	Pro		Īριι	Δ1a	Thr	Tur	175	Sar
ui g	∪y S	БХЭ	180	ьys	гуs	141	гì	185	1111	ren	піа	1111	190		261
Lvs	Asn	Tyr		Tvr	Val	Πe	His		Lvs	Ile	Lvs	Ala			Arø
, 0	. 10 11	195	201	- 3 -	,	110	200	u	2,5	110	~,0	205	, 41	0111	•••
Ser	Glv	Cys	Asn	Glu	Val	Thr		Val	Val	Asp	Val		Glu	Ile	Phe
	210			J - W		215				P	220	_,,_	-		•
Lys		Ser	Ser	Pro	Ile		Arg	Thr	Gln	Val		Leu	Ile	Thr	Asn
225					230		J			235					240
Ser	Ser	Cys	Gln	Cys	Pro	His	Ile	Leu	Pro	His	Gln	Asp	Val	Leu	Ile
				245					250					255	

Met Cys Tyr Glu Trp Arg Ser Arg Met Met Leu Leu Glu Asn Cys Leu 260 265 270	Į
Val Glu Lys Trp Arg Asp Gln Leu Ser Lys Arg Ser Ile Gln Trp Glu	ı
275 280 285	
Glu Arg Leu Gln Glu Gln Arg Arg Thr Val Gln Asp Lys Lys Thr	
290 295 300	
Ala Gly Arg Thr Ser Arg Ser Asn Pro Pro Lys Pro Lys Gly Lys Pro)
305 310 315 320	
Pro Ala Pro Lys Pro Ala Ser Pro Lys Lys Asn Ile Lys Thr Arg Ser	٠
325 330 335	
Ala Gln Lys Arg Thr Asn Pro Lys Arg Val 340 345	
<210> 116	
<211> 553	
<212> PRT	
<213> homo sapiens	
<400> 116	
Met Ala Ala Pro Ala Gly Gly Gly Ser Ala Val Ser Val Leu Ala	Ĺ
1 . 5 . 10 . 15	
Pro Asn Gly Arg Arg His Thr Val Lys Val Thr Pro Ser Thr Val Leu	l
20 25 30	
Leu Gln Val Leu Glu Asp Thr Cys Arg Arg Gln Asp Phe Asn Pro Cys	;
35 40 45	
Glu Tyr Asp Leu Lys Phe Gln Arg Ser Val Leu Asp Leu Ser Leu Gln 50 55 60	Ĺ
50 55 60 Trp Arg Phe Ala Asn Leu Pro Asn Asn Ala Lys Leu Glu Met Val Pro	١
65 70 75 80	,
Ala Ser Arg Ser Arg Glu Gly Pro Glu Asn Met Val Arg Ile Ala Leu	1
85 90 95	
Gln Leu Asp Asp Gly Ser Arg Leu Gln Asp Ser Phe Cys Ser Gly Gln	l
100 105 110	
Thr Leu Trp Glu Leu Leu Ser His Phe Pro Gln Ile Arg Glu Cys Leu	i
115 120 125	
Gln His Pro Gly Gly Ala Thr Pro Val Cys Val Tyr Thr Arg Asp Glu	l
130 135 140	
Val Thr Gly Glu Ala Ala Leu Arg Gly Thr Thr Leu Gln Ser Leu Gly	
145 150 155 160)

Leu	Thr	Gly	Gly	Ser 165	Ala	Thr	Ile	Arg	Phe 170	Val	Met	Lys	Cys	Tyr 175	Asp
Pro	Val	Gly	Lys 180	Thr	Pro	Gly	Ser	Leu 185	Gly	Ser	Ser	Ala	Ser 190	Ala	Gly
Gln	Ala	Ala 195	Ala	Ser	Ala	Pro	Leu 200	Pro	Leu	Glu	Ser	Gly 205	Glu	Leu	Ser
Arg	Gly 210	Asp	Leu	Ser	Arg	Pro 215	Glu	Asp	Ala	Asp	Thr 220	Ser	Gly	Pro	Cys
.Cys .	Glu	His	Thr	G_{1n}	Glu	Lys.	Gln	Ser	Thr	Arg	Ala	Pro	Ala	Ala	Ala
225					230					235					240
Pro	Phe	Val	Pro	Phe 245	Ser	Gly	Gly	Gly	G1n 250	Arg	Leu	Gly	Gly	Pro 255	Pro
Gly	Pro	Thr	Arg 260	Pro	Leu	Thr	Ser	Ser 265	Ser	Ala	Lys	Leu	Pro 270	Lys	Ser
Leu	Ser	Ser 275	Pro	Gly	Gly	Pro	Ser 280	Lys	Pro	Lys	Lys	Ser 285	Lys	Ser	Gly
Gln	Asp	Pro	Gln	Gln	Glu	Gln	Glu	Gln	Glu	Arg	Glu	Arg	Asp	Pro	Gln
	290					295					300				
Gln	Glu	Gln	Gļu	Arg	Ġlu	Arg	Pro	Val	Asp	Arg	Glu	Pro	Val	Asp	Arg
305					310					315					320
Glu	Pro	Val	Val	Cys	His	Pro	Asp	Leu	Glu	Glu	Arg	Leu	Gln	Ala	Trp
				325					330					335	
Pro	Ala	Glu	Leu	Pro	Asp	Glu	Phe	Phe	Glu	Leu	Thr	Val	Asp	Asp	Val
			340					345					350		
Arg	Arg	Arg	Leu	Ala	Gln	Leu	Lys	Ser	Glu	Arg	Lys	Arg	Leu	Glu	Glu
		355					360					365			
Ala	Pro	Leu	Val	Thr	Lys	Ala	Phe	Arg	Glu	Ala	Gln	Ile	Lys	Glu	Lys
	370					375					380				
Leu	Glu	Arg	Tyr	Pro	Lys	Val	Ala	Leu	Arg	Val	Leu	Phe	Pro	Asp	Arg
385					390					395					400
Tyr	Val	Leu	Gln	Gly	Phe	Phe	Arg	Pro	Ser	Glu	Thr	Val	Gly	Asp	Leu
				405					410					415	
Arg	Asp	Phe	Val	Arg	Ser	His	Leu	Gly	Asn	Pro	Glu	Leu	Ser	Phe	Tyr
			420					425					430		
Leu	Phe	Ile	Thr	Pro	Pro	Lys	Thr	Val	Leu	Asp	Asp	His	Thr	Gln	Thr
		435					440					445			
Leu	Phe	Gln	Ala	Asn	Leu	Phe	Pro	Ala	Ala	Leu	Val	His	Leu	Gly	Ala

.

450		455	460	
Glu Glu Pro	Ala Gly Val	Tyr Leu Glu	Pro Gly Leu	Leu Glu His Ala
465	470		475	480
Ile Ser Pro	Ser Ala Ala	Asp Val Leu	Val Ala Arg	Tyr Met Ser Arg
	485		490	495
Ala Ala Gly			Ala Pro Asp	Pro Ala Pro Lys
a aı n	500	505	* ** 1 **	510 _.
				Pro Glu Pro Ile
515 Pro Cly Thr			,	525
530 ·	Ald GIII FIO	535	540	Lys Val Pro Lys
	Leu Pro Ala	Ser Lys Arg	010	
545	550	_		
<210> 117				
<211> 102				
<212> PRT				
<213> homo	sapiens			
<400> 117	•			
Met Ser Ala	Arg Val Arg	Ser Arg Ser	Arg Gly Arg	Gly Asp Gly Gln
1	5		10	15
Glu Ala Pro			Ala Pro Gly	Glu Ser Gln Gln
Clas Clas Dec	20	25	The Chu Bre	30
GIU GIU Pro	Pro Inr Asp	40	lie Giu Pro	Gly Gln Glu Arg 45
	Pro Pro Ile		Lvs Val Glu	Gly Asp Cys Gln
50	110 110 110	55	· 60	diy hop oys din
	Leu Glu Lys			Asp Gly Ser Asp
65	70		75	80
Val Lys Glu	Lys Thr Pro	Pro Asn Pro	Lys His Ala	Lys Thr Lys Glu
	85		90	95
Ala Gly Asp	Gly Gln Pro	•		
	100			
<210> 118				
<211> 724				
<212> PRT				
⟨213⟩ homo	sapiens			•
<400> 118				

Met 1	Ser	Phe	Pro	Lys 5	Ala	Pro	Leu	Lys	Arg 10	Phe	Asn	Asp	Pro	Ser 15	Gly
Cys	Ala	Pro	Ser 20	Pro	Gly	Ala	Tyr	Asp 25	Val	Lys	Thr	Leu	Glu 30	Val	Leu
Lys	Gly	Pro 35	Val	Ser	Phe	Gln	Lys 40	Ser	Gln	Arg	Phe	Lys 45	Gln	Gln	Lys
Glu	Ser 50	Lys	Gln	Asn	Leu	Asn 55	Val	Asp	Lys	Asp	Thr 60	Thr	Leu	Pro	Ala
Ser 65	Ala	Ārg	Lys	Va <u>l</u>	Ly <u>s</u> 70	Ser	Ser	Glu	Ser	Lys 75	Glu	Ser	Gln	Lys	As _n 80
Asp	Lys	Asp	Leu	Lys 85	Ile	Leu	Glu	Lys	Glu 90	Ile	Arg	Val	Leu	Leu 95	Gln
Glu	Arg	Gly	Ala 100	Gln	Asp	Ser	Arg	11e 105	Gln	Asp	Leu	Glu	Thr 110	Glu	Leu
Glu	Lys	Met 115	Glu	Ala	Arg	Leu	Asn 120	Ala	Ala	Leu	Arg	Glu 125	Lys	Thr	Ser
	130					135					140	Ile			
Arg 145	Thr	Asn	Gļu	Leu	Leu 150	Lys	Ser	Lys	Phe	Ser 155	Glu	Asn	Gly	Asn	Gln 160
				165					170			Leu		175	
			180					185				Glu	190		
		195					200					Ser 205			
	210					215					220	Lys			
Asp 225		Lys	Ser	Glu	Thr 230	Glu	Lys	Leu	Leu	Glu 235		Ile	Glu	Glu	Ile 240
Ser	Cys	Ala	Ser	Asp 245		Val	Glu	Lys	Tyr 250		Leu	Asp	Ile	Ala 255	Gln
Leu	Glu	Glu	Asn 260		Lys	Glu	Lys	Asn 265		Glu	Ile	Leu	Ser 270	Leu	Lys
Gln	Ser	Leu 275		Glu	Asn	Ile	Val 280		Leu	Ser	Lys	Gln 285		Glu	Asp
Leu	Asn	Val	Lys	Cys	Gln	Leu	Leu	Glu	Lys	Glu	Lys	Glu	Asp	His	Val

	290					295					300				
Asn	Arg	Asn	Arg	Glu	His	Asn	Glu	Asn	Leu	Asn	Ala	Glu	Met	Gln	Asn
305					310					315					320
Leu	Lys	Gln	Lys	Phe	Ile	Leu	Glu	Gln	Gln	Glu	Arg	Glu	Lys	Leu	Gln
				325					330				·	335	
Gln	Lys	Glu	Leu	Gln	Ile	Asp	Ser	Leu	Leu	Gln	Gln	Glu	Lys	Glu	Leu
			340					345					350		
Ser	Ser	Ser	Leu	His	Gln	Lys	Leu	Cys	Ser	Phe	Gln	Glu	Glu	Met	Val
		355					360				••	365			
Lys	Glu	Lys	Asn	Leu	Phe	Glu	Glu	Glu	Leu	Lys	Gln	Thr	Leu	Asp	Glu
	370					375					380				
Leu	Asp	Lys	Leu	Gln	Gln	Lys	Glu	Glu	Gln	Ala	Glu	Arg	Leu	Val	Lys
385					390					395					400
Gln	Leu	Glu	Glu	Glu	Ala	Lys	Ser	Arg	Ala	Glu	Glu	Leu	Lys	Leu	Leu
				405					410					415	
Glu	Glu	Lys	Leu	Lys	Gly	Lys	Glu	Ala	Glu	Leu	Glu	Lys	Ser	Ser	Ala
			42 <u>0</u>					425					430		
Ala	His	Thr	Gln	Ala	Thr	Leu	Leu	Leu	Gln	Glu	Lys	Tyr	Asp	Ser	Met
		435	•				440					445			
Val	Gln	Ser	Leu	Glu	Asp	Val	Thr	Ala	Gln	Phe	Glu	Ser	Tyr	Lys	Ala
	450				â	455					460				
Leu	Thr	Ala	Ser	Glu	He	Glu	Asp	Leu	Lys	Leu	Glu	Asn	Ser	Ser	Leu
465					470					475					480
Gln	Glu	Lys	Ala		Lys	Ala	Gly	Lys		Ala	Glu	Asp	Val	Gln	His
				485					490					495	
Gln	He	Leu		Thr	Glu	Ser	Ser		Gln	Glu	Tyr	Val		Met	Leu
_			500	mı	_	_		505	_				510	_	~-
Leu	Asp		Gln	Thr	Lys	Ser		Leu	Lys	Glu	Thr		He	Lys	Glu
		515		- 1	_	۵,	520				_	525			_
He		Vai	Ser	Phe	Leu		Lys	He	Thr	Asp		Gin	Asn	Gln	Leu
_	530	.		۵,		535		_	.		540				
	Gin	Gln	Glu	Glu	Asp	Phe	Arg	Lys	Gin		Glu	Asp	Glu	Glu	
545	τ	A 7	01		550		m¹	mı.	A 1	555	T	mı.	01	01.	560
Arg	Lys	Ala	Glu		Glu	Asn	Ihr	Ihr		Glu	reu	ınr	Glu		116
A	T	Т	A :	565	Τ	т	01	01	570	Т	A = ==	T	ጥե	575	D
ASN	LYS	ırp		Leu	Leu	ıyr	GIU		ren	ıyr	ASN	LYS		ГÀЗ	rr0
			580					585					590		

Phe Gln Leu Gln Leu Asp Ala Phe Glu Val Glu Lys Gln Ala Leu Leu Asn Glu His Gly Ala Ala Gln Glu Gln Leu Asn Lys Ile Arg Asp Ser Tyr Ala Lys Leu Leu Gly His Gln Asn Leu Lys Gln Lys Ile Lys His Val Val Lys Leu Lys Asp Glu Asn Ser Gln Leu Lys Ser Glu Val Ser Lys Leu Arg Cys Gln Leu Ala Lys Lys Gln Ser Glu Thr Lys Leu Gln Glu Glu Leu Asn Lys Val Leu Gly Ile Lys His Phe Asp Pro Ser Lys Ala Phe His His Glu Ser Lys Glu Asn Phe Ala Leu Lys Thr Pro Leu Lys Glu Gly Asn Thr Asn Cys Tyr Arg Ala Pro Met Glu Cys Gln Glu Ser Trp Lys **<210>** 119 **<211>** 325 <212> PRT <213 homo sapiens **<400>** 119 Met Thr Glu Arg Arg Arg Asp Glu Leu Ser Glu Glu Ile Asn Asn Leu Arg Glu Lys Val Met Lys Gln Ser Glu Glu Asn Asn Leu Gln Ser Gln Val Gln Lys Leu Thr Glu Glu Asn Thr Thr Leu Arg Glu Gln Val Glu Pro Thr Pro Glu Asp Glu Asp Asp Asp Ile Glu Leu Arg Gly Ala Ala Ala Ala Ala Pro Pro Pro Pro Ile Glu Glu Cys Pro Glu Asp Leu Pro Glu Lys Phe Asp Gly Asn Pro Asp Met Leu Ala Pro Phe Met Ala Gln Cys Gln Ile Phe Met Glu Lys Ser Thr Arg Asp Phe Ser

Val	Asp	Arg 115	Val	Arg	Val	Cys	Phe 120	Val	Thr	Ser	Met	Met 125	Thr	Gly	Arg
Ala	Ala 130	Arg	Trp	Ala	Ser	Ala 135	Lys	Leu	Glu	Arg	Ser 140	His	Tyr	Leu	Me t
His 145	Asn	Tyr	Pro	Ala	Phe 150	Met	Met	Glu	Met	Lys 155	His	Val	Phe	Glu	Asp 160
Pro	Gln	Arg	Arg	Glu 165	Val	Ala	Lys	Arg	Lys 170	Ile	Arg	Arg	Leu	Arg 175	Gln
Gly.	Met	_Gly_	<u>Ser</u> 180	Val	Ile.	Asp	Tyr	Ser 185	Asn	Ala	Phe	Gļņ	Met 190	Ile	Ala_
Gln	Asp	Leu 195		Trp	Asn	Glu	Pro 200		Leu	Ile	Asp	Gln 205	Tyr	His	Glu
Gly	Leu 210		Asp	His	Ile	Gln 215		Glu	Leu	Ser	His 220	Leu	Glu	Val	Ala
Lys 225		Leu	Ser	Ala	Leu 230		Gly	Gln	Cys	Ile 235	His	Ile	Glu	Arg	Arg 240
	Ala	Arg	Ala	Ala 245	Ala	Ala	Arg	Lys	Pro 250	Arg	Ser	Pro	Pro	Arg 255	Ala
Leu	Val	Leu	Pṛo 260	His	Ile	Ala	Ser	His 265		Gln	Val	Asp	Pro 270		Glu
Pro	Val	Gly 275			Arg	Met	Arg 280	Leu	Thr	Gln	Glu	Glu 285			Arg
Arg	Arg 290	Lys	Leu	Asn	Leu	Cys 295	Leu		Cys	Gly	Thr 300		Gly	His	Tyr
Ala 305	Asp		Cys	Pro	Ala 310	Lys		Ser	Lys	Ser	Ser		Ala	Gly	Asn 320
		Ala	Pro	Leu 325											
<21 <21		120		0.20											
<21	2>	162 PRT													
	3> 0>	homo 120	sap	iens									•		
Met 1	Asp	Ile	Pro	Gln 5	Thr	Lys	Gln	Asp	Leu 10	Glu	Leu	Pro	Lys	Leu 15	Ala
Gly	Thr	Trp	His 20	Ser	Met	Ala	Met	Ala 25	Thr	Asn	Asn	Ile	Ser 30	Leu	Met

WO 2005/014818 PCT/JP2004/011650

226/271

Ala Thr Leu Lys Ala Pro Leu Arg Val His Ile Thr Ser Leu Leu Pro 35 45 40 Thr Pro Glu Asp Asn Leu Glu Ile Val Leu His Arg Trp Glu Asn Asn 50 55 60 Ser Cys Val Glu Lys Lys Val Leu Gly Glu Lys Thr Gly Asn Pro Lys 70 75 Lys Phe Lys Ile Asn Tyr Thr Val Ala Asn Glu Ala Thr Leu Leu Asp 85 90 95 Thr Asp Tyr Asp Asn Phe Leu Phe Leu Cys Leu Gln Asp Thr Thr Thr 100 105 110 Pro Ile Gln Ser Met Met Cys Gln Tyr Leu Ala Arg Val Leu Val Glu 115 120 125 Asp Asp Glu Ile Met Gln Gly Phe Ile Arg Ala Phe Arg Pro Leu Pro 130 135 140 Arg His Leu Trp Tyr Leu Leu Asp Leu Lys Gln Met Glu Glu Pro Cys 145 150 160 155 Arg Phe **<210> 121 <211> 55** <212> PRT $\langle 213 \rangle$ homo sapiens **<400> 121** Met Ala Lys Asp Thr Ala Ser Leu Phe Ile Pro Leu Cys Gly Cys Ser 10 1 15 Asn Ser Lys Ser Gly Thr Thr Gly Gln Met Asn Val Gly Thr Cys Arg 25 Tyr Gly Ser Leu Ala Leu Arg Gln Leu Val Trp Gly Leu Pro Pro Gly 35 40 45 Ala Ser Trp Pro His Leu Arg 50 55 **<210>** 122 **<211> 384** <212> PRT <213 homo sapiens **<400>** 122 Met Glu Gly Leu Gly Arg Ser Cys Leu Trp Leu Arg Arg Glu Leu Ser

•

1				5			•		10					15	
Pro	Pro	Arg	Pro 20	Arg	Leu	Leu	Leu	Leu 25	Asp	Cys	Arg	Ser	Arg 30	Glu	Leu
Tyr	Glu	Ser 35	Ala	Arg	Ile	Gly	Gly 40	Ala	Leu	Ser	Val	Ala 45	Leu	Pro	Ala
Leu	Leu 50	Leu	Arg	Arg	Leu	Arg 55	Arg	Gly	Ser	Leu	Ser 60	Val	Arg	Ala	Leu
Leu <u>65</u>	Pro	Gly	Pro	Pro	Leu 70	Gln	Pro	Pro	Pro	Pro	Ala	Pro	Val	Leu	Leu 80
Tyr	Asp	Gln	Gly	Gly 85	Gly	Arg	Arg	Arg	Arg 90	Gly	Glu	Ala	Glu	Ala 95	Glu
Ala	Glu	Glu	Trp 100	Glu	Ala	Glu	Ser	Val 105	Leu	Gly	Thr	Leu	Leu 110	Gln	Lys
Leu	Arg	Glu 115	Glu	Gly	Tyr	Leu	Ala 120	Tyr	Tyr	Leu	Gln	Gly 125	Gly	Phe	Ser
Arg	Phe 130	Gln	Ala	Glu	Cys	Pro 135	His	Leu	Cys	Glu	Thr 140	Ser	Leu	Ala	Gly
Arg 145	Ala	Gly	Ser	Ser	Me t 150	Ala	Pro	Val	Pro	Gly 155	Pro	Val	Pro	Val	Val 160
Gly	Leu	Gly	Ser	Leu 165	Cys	Leu	Gly	Ser	Asp 170	Cys	Ser	Asp	Ala	Glu 175	Ser
Glu	Ala	Asp	Arg 180	Asp	Ser	Met	Ser	Cys 185	Gly	Leu	Asp	Ser	Glu 190	Gly	Ala
Thr	Pro	Pro 195	Pro	Val	Gly	Leu	Arg 200	Ala	Ser	Phe	Pro	Val 205	Gln	Ile	Leu
Pro	Asn 210	Leu	Tyr	Leu	Gly	Ser 215	Ala	Arg	Asp	Ser	Ala 220	Asn	Leu	Glu	Ser
Leu 225	Ala	Lys	Leu	Gly	Ile 230	Arg	Tyr	Ile	Leu	Asn 235	Val	Thr	Pro	Asn	Leu 240
Pro	Asn	Phe	Phe	Glu 245	Lys	Asn	Gly	Asp	Phe 250	His	Tyr	Lys	Gln	Ile 255	Pro
Ile	Ser	Asp	His 260	Trp	Ser	Gln	Asn	Leu 265	Ser	Arg	Phe	Phe	Pro 270	Glu	Ala
Ile	Glu	Phe 275	Ile	Asp	Glu	Ala	Leu 280	Ser	Gln	Asn	Cys	Gly 285	Val	Leu	Val
His	Cys 290	Leu	Ala	Gly	Val	Ser 295	Arg	Ser	Val	Thr	Val 300	Thr	Val	Ala	Tyr

Leu Met Gl	ı Lys Leu	His Leu 310	Ser Leu	Asn Asp 315		Asp Leu Val 320
	s Lys Ser 325	Asn Ile	Ser Pro			Met Gly Gln 335
Leu Leu As	Phe Glu 340	Arg Ser	Leu Arg 345		Glu Arg	His Ser Gln 350
Glu Gln Gl 35		Gly Gln	Ala Ser 360	Ala Ala	Ser Asn 365	Pro Pro Ser
	r Thr Pro			Ala Phe		Ala Pro Thr
370		375			380	
<210> 123	r					
<211> 101 <212> PRT	0					
	o sapiens					
<400> 123	o sapiens					
	n Glv Pro	Pro Thr	Glv Glu	Ser Ser	Glu Pro	Glu Ala Lys
1	; 5		01, 014	10	014 110	15
		Arg Leu	Tyr Arg		Val Glu	Ala Val His
	20	. –	25			30
Arg Leu As	p Leu Ile	Leu Cys	Asn Lys	Thr Ala	Tyr Gln	Glu Val Phe
35			40		45	
Lys Pro Gl	u Asn Ile	Ser Leu	Arg Asn	Lys Leu	Arg Glu	Leu Cys Val
50		55			60	
Lys Leu Me	t Phe Leu	His Pro	Val Asp	Tyr Gly	Arg Lys	Ala Glu Glu
65		70		75		80
Leu Leu Tr	p Arg Lys	Val Tyr	Tyr Glu	Val Ile	Gln Leu	Ile Lys Thr
	85			90		95
Asn Lys Ly		His Ser			Glu Cys	Ala Tyr Arg
mi	100	01 11	105			110 .
		Gly lle		Tyr Gln		Leu Leu Tyr
11		Clm Tax	120	Cl C	125	
130	і піз ІўІ			GIH CYS	-	Asp Trp Thr
	r Aen Dra	135 11 11 11 1		Ive Ive	140 Pro Val	Ser Ala Ser
145	r voh IIC	150	GIY CYS	155 155		160
	u Met Asr		Gln Met			Cys Leu Val
J., J., UI	165			170	III III E	175
	. 00					110

Tyr	Leu	Gly	Asp	Leu	Ser	Arg	Tyr	Gln	Asn	Glu	Leu	Ala	Gly	Val	Asp
			180					185					190		
Thr	Glu	Leu	Leu	Ala	Glu	Arg	Phe	Tyr	Tyr	Gln	Ala	Leu	Ser	Val	Ala
		195					200					205			
Pro	Gln	Ile	Gly	Met	Pro	Phe	Asn	Gln	Leu	Gly	Thr	Leu	Ala	Gly	Ser
	210					215					220				
	Tyr	Tyr	Asn	Val		Ala	Met	Tyr	Cys	Tyr	Leu	Arg	Cys	Ile	Gln
225					230					235		, .			240
Ser	Glu	Val	Ser		Glu	Gly	Ala	Tyr	Gly	Asn	Leu	Lys	Arg	Leu	Tyr
				245					250					255	
Asp	Lys	Ala		Lys	Met	Tyr	His		Leu	Lys	Lys	Cys		Thr	Arg
_	_	_	260		_	_		265	_				270	_	_
Lys	Leu		Pro	Gly	Lys	Lys		Cys	Lys	Asp	Ile		Arg	Leu	Leu
** 1		275		m	_	- -	280	_	_		_	285	_	_	_
vai	Asn	Phe	Met	Tyr	Leu		Ser	Leu	Leu	Gin		Lys	Ser	Ser	Ser
W- 1	290	0	Q1	۲	m	295	T	0	01	0	300		a 1		D 1
	Asp	ser	GIU	Leu	•	ser	Leu	Cys	GIn		vai	Leu	Glu	Asp	
305	T	C	T	Dh.	310	T	D., .	0	0	315	A	¥	0	.	320
ASII	Leu	Cys	ren		IYI	Leu	Pro	ser		Pro	ASI	Leu	zer		Ala
Sor	C1::	Aan	Clu	325	C1	Т	Cl.,	C0=	330	Т	41.	Dha	T	335	A
261	Glu	nsp	340	GIU	GIU	lyi	GIU			lyr	Ala	rne		Pro	ASP
ΙΔ11	Leu	מוז		Cln	Mot	Vo I	Ila	345	Ста	Lou	Mo t	C***	350	II; o	C 0 #
ьси	Leu	355	THE	GIH	MEI	Val	360	116	Cys	ren	Mei	365	Vai	піз	ser
Len	Glu		Ala	Glv	Ser	Twe		Tur	Sar	ΔΙο	Δla		Δla	Dha	Thr
Deu	370	111.5	111 G	Oly	DCI	375	OIM	1 9 1				116	піа	THE	1111
I.en	Ala	Len	Phe	Ser	His		Val	Aen				Πe	Aro	Ĭ en	Gln
385			- 110	201	390	204	,		*****	395	11011	110		Dou	400
	Glu	Leu	Glu	Glu		Glu	Asn	Pro	Val		Ala	Phe	Gln	Ser	
				405	,				410				•••	415	p
Gly	Thr	Asp	Glu		Glu	Ser	Lvs	Glu		Val	Glu	Lvs	Glu		Glu
		-	420					425					.430		
Pro	Asp	Pro	Glu	Pro	Pro	Pro	Val		Pro	Gln	Val	Gly		Glv	Arg
	_	435					440					445		•	0
Lys	Ser		Lys	Phe	Ser	Arg		Ser	Cys	Leu	Arg		Arg	Arg	His
	450					455					460	_			
Pro	Pro	Lys	Val	Gly	Asp	Asp	Ser	Asp	Leu	Ser	Glu	Gly	Phe	Glu	Ser

465					470					475					480
Asp	Ser	Ser	His	Asp	Ser	Ala	Arg	Ala	Ser	Glu	Gly	Ser	Asp	Ser	Gly
				485					490					495	
Ser	Asp	Lys	Ser	Leu	Glu	Gly	Gly	Gly	Thr	Ala	Phe	Asp	Ala	Glu	Thr
			500					505					510		
Asp	Ser	Glu	Met	Asn	Ser	Gln	Glu	Ser	Arg	Ser	Asp	Leu	Glu	Asp	Met
		515					520					525			
Glu	Glu	Glu	Glu	Gly	Thr	Arg	Ser	Pro	Thr	Leu	Glu	Pro	Pro	Arg	Gly
	530	-				535					540	-			
Arg	Ser	Glu	Ala	Pro	Asp	Ser	Leu	Asn	Gly	Pro	Leu	Gly	Pro	Ser	Glu
545					550					555					560
Ala	Ser	Ile	Ala	Ser	Asn	Leu	Gln	Ala	Met	Ser	Thr	Gln	Met	Phe	Gln
				565					570					575	
Thr	Lys	Arg	Cys	Phe	Arg	Leu	Ala	Pro	Thr	Phe	Ser	Asn	Leu	Leu	Leu
			580					585					590		
Gln	Pro	Thr	Thr	Asn	Pro	His	Thr	Ser	Ala	Ser	His	Arg	Pro	Cys	Val
		595					600					605			
Asn	Gly	Asp	Val	Asp	Lys	Pro	Ser	Glu	Pro	Ala	Ser	Glu	Glu	Gly	Ser
	610					615					620				
Glu	Ser	Glu	Gly	Ser	Glu	Ser	Ser	Gly	Arg	Ser	Cys	Arg	Asn	Glu	Arg
625					630					635					640
Ser	Ile	Gln	Glu	Lys	Leu	Gln	Val	Leu	Met	Ala	Glu	Gly	Leu	Leu	Pro
				645					650	•				655	
Ala	Val	Lys	Val	Phe	Leu	Asp	Trp	Leu	Arg	Thr	Asn	Pro	Asp	Leu	Ile
			660					665					670		
Ile	Val	Cys	Ala	Gln	Ser	Ser	Gln	Ser	Leu	Trp	Asn	Arg	Leu	Ser	Val
		675					680					685			
Leu	Leu	Asn	Leu	Leu	Pro	Ala	Ala	Gly	Glu	Leu	Gln	Glu	Ser	Gly	Leu
	690					695					700				
Ala	Leu	Cys	Pro	Glu	Val	Gln	Asp	Leu	Leu	Glu	Gly	Cys	Glu	Leu	Pro
705					710					715					720
Asp	Leu	Pro	Ser	Ser	Leu	Leu	Leu	Pro	Glu	Asp	Met	Ala	Leu	Arg	Asn
				725					730					735	
Leu	Pro	Pro	Leu	Arg	Ala	Ala	His	Arg	Arg	Phe	Asn	Phe	Asp	Thr	Asp
			740					745					750		
Arg	Pro	Leu	Leu	Ser	Thr	Leu	Glu	Glu	Ser	Val	Val		Ile	Cys	Cys
		755					760					765			

WO 2005/014818 PCT/JP2004/011650

Ile Arg Se 770	r Phe Gly	His Phe		Arg Leu	Gln Gly 780	Ser Ile Leu
Gln Phe As 785	n Pro Glu	Val Gly 790	Ile Phe	Val Ser 795	Ile Ala	Gln Ser Glu 800
Gln Glu Se	r Leu Leu 805		Ala Gln	Ala Gln 810	Phe Arg	Met Ala Gln 815
Glu Glu Al	a Arg Arg 820	Asn Arg	Leu Met 825	Arg Asp	Met Ala	Gln Leu Arg 830
83	5		840		845	Gln Pro Lys
850		855			860	Gln Ala Leu
Cys His Hi 865	s Leu Pro	Val Ile 870	Arg Gln	Leu Ala 875	Thr Ser	Gly Arg Phe 880
Ile Val Il	e Ile Pro 885		Val Ile	Asp Gly 890	Leu Asp	Leu Leu Lys 895
Lys Glu Hi	s Pro Gly 900	Ala Arg	Asp Gly 905		Tyr Leu	Glu Ala Glu 910
Phe Lys Ly 91		Arg Tyr	Ile Arg 920	Cys Gln	Lys Glu 925	Val Gly Lys
Ser Phe Gl 930	u Arg His	Lys Leu 935		Gln Asp	Ala Asp 940	Ala Trp Thr
Leu Tyr Ly 945	s Ile Leu	Asp Ser 950	Cys Lys	Gln Leu 955	Thr Leu	Ala Gln Gly 960
Ala Gly Gl	u Glu Asp 965		Gly Met	Val Thr 970	Ile Ile	Thr Gly Leu 975
Pro Leu As	p Asn Pro 980	Ser Val	Leu Ser 985		Met Gln	Ala Ala Leu 990
Gln Ala Al 99		Ala Ser	Val As:	p Ile Ly	s Asp Va 100	l Leu Asp Phe 05
Tyr Lys G	ln Trp Ly	s Glu Il	e Gly			
1010		10	15			
<210> 124						
⟨211⟩ 21						
<212> DNA						
<213> hom	o sapiens	1				•
<400> 124						

ggattc	tctg ccctgtcaca c	21
<210>	125	
<211>	20	
<212>	DNA	
<213>	homo sapiens	
<400>	125	
cttggc	acag gacccaagag	20
<210>	126	
<211>	23	
<212>	DNA	
<213>	homo sapiens	
<400>	126	
cggagg	ggag aggattitct aag	23
<210>	127	
<211>	24	
<212>	DNA	
<213>	homo sapiens	
<400>	127	
ggtcca	ggtc atcittatta cgcc	24
<210>	128	
<211>	22	
<212>	DNA	
<213>	homo sapiens	
<400>	128	
gggatt	agga atatgggctc tg	22
<210>	129	
<211>	23	
<212>	DNA	
<213>	homo sapiens	
<400>	129	•
aatgag	gaaa cigaggcata aag	23
<210>	130	
<211>	22	
<212>	DNA .	
<213>	homo sapiens	
<400>	130 .	
catcac	atca tttcacccc ac	22

<210>	131	
<211>	23	
<212>	DNA	
<213>	homo sapiens	
<400>	131	
cccttt	ttt gtccagctta ctc	23
<210>	132	
<211>	22	
<212>	DNA	
<213>	homo sapiens	
<400>	132	
atgtgcc	etge cactacetea te	22
<210>	133	
<211>	20	
<212>	DNA	
<213>	homo sapiens	
<400>	133	
gccactg	gaac caaaatcggg	20
<210>	134	
<211>	20	
	DNA	
<213>	homo sapiens	
	134	
	acag gcacagggat	20
	135	
<211>	20	
<212>		
	homo sapiens	
<400>		
	ctcc aaacatcact	20
<210>	•	
<211>		
<212>		
	homo sapiens	
<400>		
		23
<210>	137	

<211>	24	
<212>	DNA	
<213>	homo sapiens	
<400>	137	
gccatc	ctct ctgtcaagta ccag	24
< 210>	138	
<211>	28	
<212>	DNA	
⟨213⟩	homo sapiens	
<400>	138	
gcgcat	tttg agagaagttg ggtactgg	28
<210>	139	
<211>	24	
<212>	DNA	
<213>	homo sapiens	
<400>	139	
gaattc	gtgg tggcatgccc ttct	24
<210>	140	
<211>	24	
<212>	DNA	
<213>	homo sapiens	
<400>	140	
aacccc	tctt tctgtccatg ccag	24
<210>	141	
<211>	24	
<212>	DNA ·	
<213>	homo sapiens	
<400>	141	
tcttca	atac ccaggaggta cagg	24
<210>	142	
<211>	22	
<212>	DNA .	
<213>	homo sapiens	
<400>	142	
gcagtc	ttgg atgatgggtt cc	22
<210>	143	
<211>	24	

WO 2005/014818 PCT/JP2004/011650

<212>	DNA	
<213>	homo sapiens	
<400>	143	
aaggag	ttag cagcagccta gttg	24
<210>	144	
<211>	20	
<212>	DNA	
<213>	homo sapiens	
<400>	. 144	
tttcta	tggc attccagcgg	20
<210>	145	
<211>	23	
<212>	DNA	
<213>	homo sapiens	
<400>	145	
agaagc	tatc aggcgttgct gaa	23
<210>	146	
<211>	22	
<212>	DNA .	
<213>	homo sapiens	
<400>	146	
cttcac	ctgc tcattgcctg tc	22
<210>	147	
<211>	21	
<212>	DNA	
<213>	homo sapiens	
<400>	147	
tgccgt	ggta atgtgaatcc c	21
<210>	148	
<211>	22	
<212>	DNA	
<213>	homo sapiens	
<400>	148	
aacgac	gaaa agagaaggac cc	22
<210>	149	
<211>	23	
<212>	DNA	

<213>	homo sapiens		
<400>	149		
ggaaag	tgtt agacgcagaa	ggc	23
<210>			
<211>	24		
<212>	DNA		
<213>	homo sapiens		
<400>	150		
aaagtt	gcag acaaaggcgg	aagc	24
<210>			
<211>	25		
<212>	DNA		
<213>	homo sapiens		
<400>	151		
tggacc	tact tcgtacatca	gaggc	25
<210>	152		
<211>	21		
<212>	DNA		
<213>	homo sapiens		
<400>	152		
gacggt	ggga acggtttaga	g	21
<210>	153		
<211>	20		
<212>	DNA		
<213>	homo sapiens		
<400>	153		
aggc t t	ccaa cttccgctgc		20
<210>	154		
<211>	21		
<212>	DNA		
<213>	homo sapiens		
<400>	154		
cacctg	catc catagcacag	c	21
<210>	155		
<211>	22		
<212>	DNA		
⟨213⟩	homo saniens		

.

<400>	> 155	
tcggaag	agggt gtgaaagagg ac	22
<210>	> 156	
<211>	> 25	
<212>	> DNA	•
<213>	homo sapiens	
< 400>	> 156	,
cccttc	ctttg gtttgcatca ggtct	25
<210>	157	
<211>	> 26	
<212>	> DNA	
<213>	homo sapiens	
<400>	> 157	
cgttggg	gggtct tgatcagctt ctgttg	26
<210>	> 158	
<211>	> 20	
<212>	> DNA	
<213>	homo sapiens .	
<400>	> 158 ·	
tgtctg	gttgc atgcggttca	20
<210>	> 159	
<211>	> 22	
<212>	> DNA	
<213>	homo sapiens	
<400>	> 159	
ccacgg	ggtgta gaagagcgat ac	22
<210>	> 160	
<211>	> 21	
<212>	> DNA	
<213>	homo sapiens	
<400>	> 160	
ggtcac	nctgat agccgatgag g	. 21
<210>	> 161	
<211>	> 20	
<212>	> DNA	
<213>	homo sapiens	
<400>	161	

ctcctga	aget ccacgatetg	20	}
<210>	162		
<211>	25		
<212>	DNA		
<213>	homo sapiens	·	
<400>	162		
gttggt	ctcc atgitcctgc ctaa	ac 25	į
<210>	163		
<211>	23	·	
<212>	DNA		
<213>	homo sapiens		
<400>	163		
cagcate	cacc tigacgiage iga	23	;
<210>	164		
<211>	22		
<212>	DNA		
<213>	homo sapiens		
<400>	164		
cgagca	tgag gataaagccc ag	22)
<210>	165		
<211>	23		
<212>	DNA	•	
<213>	homo sapiens		
<400>	165		
gtagca	gcca gtcagcatct tcg	23	3
<210>	166	•	
<211>	20		
<212>	DNA		
<213>	homo sapiens		
<400>	166		
tggcaa	tgaa gcaccctct	20)
<210>	167		
<211>	23		
<212>	DNA		
<213>	homo sapiens		
<400> '	167		
ggtcca	cact gctctcactt cct	23	3

<210>	168	
<211>	28	
<212> 1	DNA	
<213> 1	homo sapiens	
<400>	168	
tcacatc	tat caaccactgg cacctacc	28
<210>	169	
<211>	25	
<212>	<u>DNA</u>	
<213>	homo sapiens	
<400>	169	
gggttca	ctt tggtctctag tacgg	25
	170	
	20	
	DNA	
	homo sapiens	
	170	
	atg caatggctgg	20
<210>	·	
	24	
	DNA	
	homo sapiens	
	171	
	cag tgaaacttga aagg	24
	172	
(211)		
	DNA	
	homo sapiens	
	172	
	tet etetggataa eecae	2,5
	173	
	25	
	DNA	
	homo sapiens	
<400>		0.
gccaitt (210>	ggt ttggatgiat tgaag	25
ヘムエリン	1 / 4	

(211)	24		
<212>	DNA		
<213>	homo sapiens		
〈400 〉	174		
ctgggad	ctt ccaaaacatt :	ggct	24
<210>	175		
<211>	25		
<212>	DNA		
<213>	homo sapiens		
<400>	175		
cattaco	tga ggcctctgaa	ttcgg	25
<210>	176		
<211>	24		
<212>	DNA		
<213>	homo sapiens		
<400>	176		
tccaggi	aca tatcacgcgc	acag	24
<210>	177		
<211>	25		
<212>	DNA		
<213>	homo sapiens		
<400>	177		
ccagatg	gcag gatcaaccct	tctca	25
<210>	178		
<211>	24	•	
<212>	DNA		
<213>	homo sapiens		
<400>	178		
gtgctgt	cgt gggtgctgtg	tctt	24
<210>	179		
<211>	22		
<212>	DNA		
<213>	homo sapiens		
<400>	179		
cacgtga	itag atgctggtcg	gg	22
<210>	180		
<211>	23		

<212>	DNA	
<213>	homo sapiens	
<400>	180	
cttgat	aatg tgggcaaacc ctt	23
<210>	181	
<211>	20	
<212>	DNA .	
<213>	homo sapiens	
<400>	.181	
gcccgg	aatc atgatgcttg	20
<210>	182	
<211>	21	
<212>		
<213>	homo sapiens	
<400>	182	
	agga ttgtccactc a	21
<210>		
<211>	•	
<212>	·	
	homo sapiens	
<400>		
	cttg cctttgtttc gg	22
⟨210⟩		
⟨211⟩		
<212>	DNA	
	homo sapiens	
<400>		
	ctgt gcattgttgg	20
<210>		
<211>		
<212>		
	homo sapiens	
<400>		
	accg ggatctctaa	20
<210>		
<211>	·	
<212>	DNA	

PCT/JP2004/011650

<213>	homo sapiens	
<400>	186	
cctgtt	tgct gctgagaaca tctc	24
<210>	187	
<211>	23	
<212>	DNA	
<213>	homo sapiens	
<400>	187	
aacgc t	cccc tgaaaactgt aac	23
<210>	188	
<211>	22	
<212>	DNA	
<213>	homo sapiens	
<400>	188	
acagag	acca aagaacccaa ga	22
< 210>		
<211>		
<212>	•	
	homo sapiens	
<400>	189	
	acat gattctgaag gtg	23
<210>	190	
<211>		
<212>	DNA	
	homo sapiens	
<400>		
	gtgt acccatgatg gaag	24
<210>		
<211>	24	
<212>	DNA	
	homo sapiens	
	191	
	agig igaicitgaa gicc	24
<210>		
<211>	23	
<212>	DNA .	
(213)	homo saniens	

WO 2005/014818 PCT/JP2004/011650

<400>	192		
cactgt	gagt ttcatgcctg	ctg	23
<210>	193		
<211>	22		
<212>	DNA		
<213>	homo sapiens		
<400>	193		
tcgtgg	tttc ctggacatct	tc	22
< <u>210></u>	194		
<211>	22		
<212>	DNA		
<213>	homo sapiens		
<400>	194		
gggctt	ggtt ttgtgaggtt	cc	22
<210>	195	•	
<211>	23		
<212>	DNA		
<213>	homo sapiens .		
<400>	195 .		
caggga	cttc ctttttccat	cag	23
<210>	196		
<211>	27	•	
<212>	DNA		
<213>	homo sapiens		
<400>	196		
ccaagt	tacg tcaaagtctc	aggagca	27
<210>	197		
<211>	25		
	DNA		
	homo sapiens		
<400>	197		
tctgaa	gggg tgaagttctt	gaggg	25
<210>	198		
<211>	24		
<212>	DNA		
	homo sapiens		
<400>	198		

aagagaa	agac catccacctt	accc	24
<210>	199		
<211>	22		
<212>	DNA		
<213>	homo sapiens	•	
<400>	199		
tgcttte	cact tgtgccactg	ag .	22
<210>	200		
<211>	20		
<212>	DNA		
<213>	homo sapiens		
<400>	200		
cggccaa	agga ctggaccaga		20
<210>	201		
<211>	25		
<212>	DNA		
<213>	homo sapiens		
<400>	201		
actccat	gag caigcacaga	gtagg	25
<210>	202		
<211>	20		
<212>	DNA	•	
<213>	homo sapiens		
<400>	202		
actgcca	atc ctgcgttcca		20
<210>	203	•	
<211>	23		
<212>	DNA		
<213>	homo sapiens		
<400>	203		
cgacgtg	gcc attcaatcgt	aca	23
<210>	204		
<211>	21	·	
<212>	DNA ·		
<213>	homo sapiens		
<400>	204		
cgcacca	cga cgatgacgtt	c	21

<210>	205	
<211>	22	
<212>	DNA	
<213>	homo sapiens	
<400>	205	
gatgga	cccc aggacggagt ag	22
<210>	206	
<211>	23	
<212>	DNA	
<213>	homo sapiens	
<400>	206	
gaccaa	tagc atctgtgcca gag	23
<210>	207	
<211>	25	
<212>	DNA	
<213>	homo sapiens	
<400>	207	
tgcttc	taac cactgaggta tgagg	25
<210>	208	
<211>	23	
<212>	DNA	
<213>	homo sapiens	
<400>		
	acca ttcaccaaga gcc	23
<210>	209	
<211>	23	
<212>		
	homo sapiens	
<400>		
	tgct ttccttaaag acc	2,3
<210>		
<211>		
<212>		
	homo sapiens	
<400>		
	ectg tetactecat te	22
<210>	211	

<211>	20	
<212>	DNA	
<213>	homo sapiens	
<400>	211	
ggtaaa	igtec teaccetige	20
<210>	212	
<211>	18	
<212>	DNA	
<213>	homo sapiens	
<400>		
gtggag	ggag gcctggac	18
<210>		
<211>	19	
<212>	DNA	
<213>	homo sapiens	
<400>	213	
ttaggo	cacg tgtctgcca	19
<210>	214	
(211)	21	
<212>	DNA	
<213>	homo sapiens	
〈400 〉	214	
atgcca	caca agccagcica c	21
(210)	215	
(211>	22	
(212>		
(213>	homo sapiens	
〈400 〉	215	
cagcag	caga tgggaagaac tc	22
(210>		
(211>	23	
(212>	DNA .	
(213>	homo sapiens	
(400>		
	tett tgeaceagee ace	23
(210>		-
(211)		

<212>	DNA	
<213>	homo sapiens	
<400>		
gcccad	ctct acgtcgaaga agt	23
<210>		
<211>	20	
<212>	DNA	
<213>	homo sapiens	
<400>	_ 218	
tccatt	gtgt cggggatctg	20
<210>	219	
<211>	20	
<212>	DNA	
<213>	homo sapiens	
<400>	219	
tacccc	gcag agaagcaaac	20
<210>		
<211>	•	
<212>	•	
<213>	• · · · · · · · · · · · · · · · · · · ·	
<400>		
	gcat acacaccacc	20
<210>		
<211>	20	
<212>	DNA	
	homo sapiens	
<400>		
	gaga tgtcttgcca	20
⟨210⟩	•	
<211>		
<212>		
<213>		
<400>		
	caac cgagccaacc g	21
<210>	223	
<211>	20 .	
<212>	DNA	

<213>	homo sapiens			
<400>	223			
cctgct	cctt ctttgcctgg	20		
<210>	224			
<211>	21			
<212>	DNA			
<213>	homo sapiens			
<400>	224			
ccgctg	aact cagtcaatgg c	21		
<210>	225			
<211>	20			
<212>	DNA			
<213>	homo sapiens			
< 400>	225			
tgctgt	tcat ccaaccaccg	20		
<210>	226			
<211>	20			
<212>	DNA .			
<213>	homo sapiens			
<400>	226			
tgggca	gttt gacttcagca	20		
<210>	227			
< 211>	21			
<212>	DNA			
<213>	homo sapiens			
<400>	227			
cactgt	aggt cagtcacagc a	21		
<210>	228			
<211>	21			
<212>	DNA			
<213>	homo sapiens			
<400>	228			
gtgttc	gtgttcgagg gagtgatagg g 21			
<210>	229			
<211>	20			
<212>	DNA .			
⟨213⟩	homo sapiens			

<400>	229	
cagacco	ctga ggttgcagaa	20
<210>	230	
<211>	23	
<212>	DNA	
<213>	homo sapiens	
<400>	230	
tgcacca	aact gcgtgcagga cga	23
<2 <u>10</u> >	231	
<211>	25	
<212>	DNA	
<213>	homo sapiens	
<400>	231	
ggcacca	acgg ggitgtagaa giccc	25
<210>	232	
<211>	20	
<212>	DNA	
<213>	homo sapiens .	
<400>	232	
tgttgg	ccgg ccttatggtg	20
<210>	233	
<211>	21	
<212>	DNA	
<213>	homo sapiens	
<400>	233	
ggcggag	gtaa ggcttgtctg t	21
<210>	234	
<211>	24	
	DNA	
	homo sapiens	
<400>	234	
ggagac	ttcc gacttcctta cagg	24
<210>	235	
<211>	23	
<212>	DNA	
	homo sapiens .	
<400>	235	

cctacc	acta tggcttgtga	tgg	23
<210>	236 -		
<211>	24		
<212>	DNA		
<213>	homo sapiens		
<400>	236		
ggactt	gcga gacttcgtga	ggag	24
<210>	237		
<211>	22		
<212>	DNA		
<213>	homo sapiens		
<400>	237		
ctgaaag	gagg gictgcgtgt	gg	22
<210>	238		
<211>	24		
<212>	DNA		
<213>	homo sapiens		
<400>	238		
cttctc	ttcc cttcattctt	cgcc	24
<210>	239		
<211>	24		
<212>	DNA	•	
	homo sapiens		
<400>	239		
cctcctg	gacc atctcctctt	cctc	24
<210>	240		
<211>	24		
	DNA		
	homo sapiens		
<400>			
	tagg ctccatcctg	tttg	24
	241		
<211>			
	DNA		
	homo sapiens		
<400>			
gctgagt	aga catgcagatg	acaage	26

<210>	242	
<211>	22	
<212>	DNA	
<213>	homo sapiens	
<400>	242	
agaccaa	agca cacciggcaa cg	22
<210>	243	
<211>	22	
<212>	DNA	
<213>	homo sapiens	
<400>	243	
atcttco	cttg tccgtctcgt cc	22
<210>	244	
<211>	25	
<212>	DNA	
<213>	homo sapiens	
<400>	244	
cccgag	ggac aacciggaga icgii	25
<210>	245	
<211>	25	
<212>	DNA	
	homo sapiens	
<400>	245	
	tcgc caccgtatag ttgat	25
<210>		
(211)	24	
	DNA	
	homo sapiens	
	246	
	caga tcagggacag gagc	2,4
	247	
(211)	20	
	DNA	
	homo sapiens	
	ggc gatttcaacc .	20
(210)	248	

WO 2005/014818 PCT/JP2004/011650

<211>	21	
<212>	DNA	
<213>	homo sapiens	
<400>	248	
gctctt	tgtg agtgagggtg g	21
<210>	249	
<211>	21	
<212>	DNA	
<213 ≥	homo sapiens	
<400>	249	
acagggg	gtgt ggacagaaat g	21
<210>	250	
<211>	22	
<212>	DNA	
<213>	homo sapiens	
<400>	250	
cagtggg	gcag cagaaaggag ag	22
< 210>	251	
<211>	19	
<212>		
<213>	homo sapiens	
<400>	251	
gggagga	agct gaggcaatc	19
<210>	252	
<211>	25	
<212>	DNA	
	homo sapiens	
<400>		
	gat cactgccctg gcacc	25
<210>	253	
(211)	24	
<212>		
	homo sapiens	
<400>		
		24
(210)		
(211)	613	

<212> DNA	
<213> homo sapiens	
<400> 254	
gccatggaaa aaccctcgtt tatttgatta aacaaaaata aaataagctg cataggaaca	60
attttaaagt ccaaagagac accaactttg ttttaaggct gtagtagctg atacagcatc	120
teettgetae eteeteege ettetetgtg gaccacagtg atacatteag aagcetgtta	180
gctaacacag gagtttttga acacttttcc attggttctt cacctgctca ttgcctgtca	240
tgcctgcggc ctgcaattag taacatttta agatttaaaa tgtgaaagcc aaaagaggag	300
gggggaaaaa aacccaaaat caaccaaaca aaaactcact tttgcctaaa ggtttggggg	360
gaaatcttca tttccccacc catctactgc attgatggga ttcacattac cacggcagtg	420
cccatttaaa agtggcaaat ggcagtcagc accccaccc ggacaggctt gcagtgtggt	480
ttctgcggcc aggggagtta ctacggtagt gcatattcct tatatcatgt ctgccttgga	540
caaatacaaa ttaagaggtt taacttagtc attctaacat aaggcaactt gcccacatta	600
attccccaa ttg	613
<210> 255	
<211> 23	
<212> DNA	
<213> homo sapiens	
<400> 255	
atccgccagg tgaaagccaa gtc	23
<210> 256	
<211> 25	
<212> DNA	
<213> homo sapiens	
<400> 256	
gggattcaca ttaccacggc agtgc	25
<210> 257	
<211> 2237	
<212> DNA	
<213> homo sapiens	
<400> 257	
atccgccagg tgaaagccaa gtctctgtac ctgcaggtgg agaagctgcg gcaaaacctc	60
aacaagcttg agagcaccat cagtgccgtg cagcaggtcc tggaggaggg tagagcgcta	120
gacatectae tggcccgaga ccggatgetg gcccaggtge aggagetgaa gaccgtgegg	180
agcctcctgc agccccagga agacgaccga gtcatgttca caccccccga tcaggcactg	240
taccttgcca tcaagtcttt tggctttgtt agcagcgggg cctttgcccc actcaccaag	000
	300

ggttatgacc	acgatggtga	gcccgcctc	tcaggaggcg	acctgatgtc	ggctgtggtc	420
ctgggccctg	atggcaacct	gtttggtgca	gaggtgagtg	atcagcagaa	tgggacatac	480
gtggtgagtt	accgacccca	gctggagggt	gagcacctgg	tatctgtgac	actgtgcaac	540
cagcacattg	agaacagccc	tttcaaggtg	gtggtcaagt	caggccgcag	ctacgtgggc	600
attgggctcc	cgggcctgag	cttcggcagt	gagggtgaca	gcgatggcaa	gctctgccgc	660
		caaggagggc				720
cgcatccagg	tgttcaagcc	ctgcggcgcc	ttccaccaca	aattcggcac	cctgggctcc	. 780
cggcctgggc	agttcgaccg	accagccggc	gtggcctgtg	acgcctcacg	caggatcgtg	840
gtggctgaca	aggaçaatça	tegeatecag	atcttcacgt	tcgagggcca	gttcctcctc.	900
aagtttggtg	agaaaggaac	caagaatggg	cagttcaact	acccttggga	tgtggcggtg	960
aattctgagg	gcaagatcct	ggtctcagac	acgaggaacc	accggatcca	gctgtttggg	1020
		${\tt caagtatggc}$				1080
tcccacggg	gtgtggcctt	caaccatgag	ggccacttgg	tggtcactga	cttcaacaac	1140
caccggctcc	tggttattca	${\tt ccccgactgc}$	cagtcggcac	gctttctggg	ctcggagggc	1200
acaggcaatg	ggcagttcct	gcgcccacaa	ggggtagctg	tggaccagga	agggcgcatc	1260
attgtggcgg	attccaggaa	ccatcgggta	cagatgtttg	aatccaacgg	cagcttcctg	1320
tgcaagtttg	gtgctcaagg	cagcggcttt	gggcagatgg	accgcccttc	cggcatcgcc	1380
atcacccccg	acggaatgat	cgttgtggtg	gactttggca	acaatcgaat	cctcgtcttc	1440
taattgcatt	tcctaggttt	ctgtgtttgg	ggtgtgtgtg	cgtgtctctc	tctctctc	1500
		tttttgaatt				1560
ttttttcttt	tttttttta	aagagaacaa	gaaaagtaca	acattgctta	agtcctacct	1620
catctttatt	ttttacaga	tgaatgtact	tatcttttct	gcagggattg	agcctgtgaa	1680
gtgataattt	ctatctacct	cataaatctt	tacatttcct	tctgcaacag	gccctcttcc	1740
cctcctcagt	ggagtttgca	tttccctctt	ccctgcgtg	gggcatgata	tgcacaagcc	1800
tggcatctgt	atggctggga	gggcactgga	tgtgtgtggt	ggggtgtatt	ctgtagattg	1860
agccaaggaa	acacaaaaaa	aaactactaa	gtaaaaaaac	aaaaaactat	aaaacatgga	1920
aaaaatagga	tttgaaatgc	ataattatag	aatacctgtg	ttcttgagaa	tactgtttat	1980
		tgttgttttg				2040
gctgcaacag	agaaatttcc	tctgttctct	gtttatacct	cttaattgta	ttgtccaagg	2100
cagacatgat	ataaggaata	tgcactaccg	tagtaactcc	cctggccgca	gaaaccacac	2160
tgcaagcctg	tccggggtgg	ggtgctgact	gccatttgcc	acttttaaat	gggcactgcc	2220
gtggtaatgt						2237
<210> 258						
<211> 27						
<212> DNA						
<213> homo	sapiens					
(100)						

<400> 258

atggcttcgt tccccgagac cg	gatttc		•		27
⟨210⟩ 259	347770				
<211> 34					
<212> DNA					
<213> homo sapiens				•	
<400> 259					
gaagacgagg attcgattgt tg	gccaaagtc c	acc			. 34
<210> 260					
<211> 2604					
<212> DNA					
<213> homo sapiens					
<400> 260 ·					
atggettegt teccegagae eg	gatitccag a	tctgcttgc	tgtgcaagga	gatgtgcggc	60
tcgccggcgc cgctctcctc ca	aactcgtcc g	cgtcgtcgt	cctcctcgca	gacgtccacg	120
tcgtcggggg gcggcggcgg gg	ggccctggg g	cggcggcgc	gccgcctaca	cgtcctgccc	180
tgcctgcacg ccttctgccg co	ccctgcctc g	aggcgcacc	ggctgccggc	ggcgggcggc	240
ggcgcggcgg gagagccgct ca	aagctgcgc t	gccccgtgt	gcgaccagaa	agtagtgcta	.300
gccgaggcgg cgggtatgga cg	gcgctgcct t	cgtccgcct	tcctgcttaa	caacctgctc	360
gacgcggtgg tggccactgc ca	gacgagccg c	cgcccaaga	acgggcgcgc	cggcgctccg	420
gcgggagcgg gcggccacag ca	aaccaccgg c	accacgete	accacgcgca	cccgcgcgcg	480
teegeeteeg egeegeeact e	ccgcaggcg.c	cgcagccgc	ccgcgccttc	ccgctcggca	540
cccggcggcc ctgccgcttc c	ccgtcggcg c	tgctgctcc	gccgtcctca	cggctgcagc	600
tcgtgcgatg agggcaacgc ag	gcttcttcg c	gctgcctcg	actgccagga	gcacctgtgc	660
gacaactgcg tccgagcgca c	cagcgcgtg c	gcctcacca	aggaccacta	catcgagcgc	720
ggcccgccgg gtcccggtgc c	gcagcagcg g	gcgcagcagc	tcgggctcgg	gccgcccttt	780
cccggcccgc ccttctccat c	ctctcagtg t	ttcccgagc	gcctcggctt	ctgccagcac	840
cacgacgacg aggtgctgca c	ctgtactgt g	gacacttgct	ctgtacccat	ctgtcgtgag	900
tgcacaatgg gccggcatgg g	ggccacagc t	ttcatctacc	tccaggaggc	actgcaggac	960
tcacgggcac tcaccatcca g	ctgctggca g	gatgcccagc	agggacgaca	ggcaatccag	1020
ctgagcatcg agcaggccca g	acggtggcg g	gaacaggtgg	agatgaaggc	gaaggttgtg	1080
cagtcggagg tcaaagccgt g	actgcgagg c	cataagaaag	ccctggagga	acgcgagtgt	1140
gagctgctgt ggaaggtaga a	aagateege e	caggtgaaag	ccaagtctct	gtacctgcag	1200
gtggagaagc tgcggcaaaa c	ctcaacaag c	cttgagagca	ccatcagtgc	cgtgcagcag	1260
gtcctggagg agggtagagc g	ctagacatc c	ctactggccc	gagaccggat	gctggcccag	1320
gtgcaggagc tgaagaccgt g	geggageete e	ctgcagcccc	aggaagacga	ccgagtcatg	1380
ttcacacccc ccgatcaggc a	ctgtacctt g	gccatcaagt	cttttggctt	tgttagcagc	1440
ggggcctttg ccccactcac c	aaggccaca g	ggcgatggcc	tcaagcgtgc	cctccagggt	1500

ggcgacctg	t ccttcacagt	cattggttat	gaccacgatg	gtgagccccg	cctctcagga	1560
	a tgtcggctgt	ggtcctgggc	cctgatggca	acctgtttgg	tgcagaggtg	1620
agtgatcag	e agaatgggac	atacgtggtg	agttaccgac	cccagctgga	gggtgagcac	1680
ctggtatct	g tgacactgtg	caaccagcac	attgagaaca	gccctttcaa	ggtggtggtc	1740
aagtcaggc	gcagctacgt	gggcattggg	ctcccgggcc	tgagcttcgg	cagtgagggt [*]	1800
gacagcgat	g gcaagctctg	ccgcccttgg	ggtgtgagtg	tagacaagga	gggctacatc	1860
attgtcgcc	g accgcagcaa	caaccgcatc	caggtgttca	agccctgcgg	cgccttccac	. 1920
cacaaattc	g gcaccctggg	ctcccggcct	gggcagttcg	accgaccagc	cggcgtggcc	1980
tgtgacgcc	t_cacgcaggat	cgtggtggct	gacaaggaca	atcatcgcat	ccagatette	2040
acgitcgag	g gccagttcct	cctcaagttt	ggtgagaaag	gaaccaagaa	tgggcagttc	2100
aactaccct	t gggatgtggc	ggtgaattct	gagggcaaga	tcctggtctc	agacacgagg	2160
aaccaccgg	a tccagctgtt	tgggcctgat	ggtgtcttcc	taaacaagta	tggcttcgag	2220
ggggctctc	t ggaagcactt	tgactcccca	cggggtgtgg	ccttcaacca	tgagggccac	2280
ttggtggtc	a ctgacttcaa	caaccaccgg	ctcctggtta	ttcaccccga	ctgccagtcg	2340
gcacgcttt	tgggctcgga	gggcacaggc	aatgggcagt	tcctgcgccc	acaaggggta	2400
gctgtggac	aggaagggcg	catcattgtg	gcggattcca	ggaaccatcg	ggtacagatg	2460
tttgaatcc	a acggcagctt	cctgtgcaag	tttggtgctc	aaggcagcgg	ctttgggcag	2520
atggaccgc	cttccggcat	cgccatcacc	cccgacggaa	tgatcgttgt	ggtggacttt	2580
ggcaacaat	gaatcctcgt	cttc	•			2604
<210> 26	L			•		
<211> 649)					
<212> DNA	1		•			
<213> hor	no sapiens					
<400> 26	Į.		•			
tttttttt	ttttttttt	ttttttttt	ttttttaaag	gccaacgtta	tatgttttat	60
ttttaatca	ı gtaattttt	taaacctcaa	catatccata	attgacagaa	taagacatta	120
ggcatgaaa	gagaatataa	aacccagagt	gtacagaaag	gcaaacagtg	cttcagtccc	180
tccagatga	tgcatgcgag	tgaaacgcat	tccaaacatc	tacccctttt	ttgtctttta	240
aaaacatac	gttcaagtgt	ttttattttc	acttgtaaac	aacatgagtc	aaaatggaca	300
atgaggtaa	t ctaaatacta	cacaggataa	tttaaaaaaca	ctagataaaa	caccattatt	360
	t aaaaatcagg	gttcactttg	gtctctagta	cggttagttg	ttaataccaa	420
	· atantan++~	a a coco co e t t	ggtggtaggt	greagtgatt	astsastata	480
	aiaciaaiig	aaguuaguii	00,00,00,	900m9 r 88-r r	gaiagaigig	TOU
aaagacata aaagcaaca	tagtcaacac					540
aaagacata aaagcaacac attcaagagg		catcattttc	aagctggtaa	ctctcacaag	tgttaagcca	
aaagcaacac aattcaagagg cagatgcat	g tagtcaacac	catcattttc atacttctca	aagctggtaa cagtacagta	ctctcacaag ctttaccata	tgttaagcca	540
aaagcaacac aattcaagagg cagatgcat	tagtcaacac aaatatcata tataaaattt	catcattttc atacttctca	aagctggtaa cagtacagta	ctctcacaag ctttaccata	tgttaagcca	540 600

<212> DNA						
<213> hom	o sapiens					
<400> 262						
gggttcactt	tggtctctag	tacgg				25
<210> 263						
<211> 308	7 .					
<212> DNA						_
<213> hom	o sapiens					
<400> 263						
atgcgcggac	tgacccagcg	gccggcgcgg	cggcgccggg	cggacttaat	cgcgggcgca	60
	cgggacccag					120
	ggaacgctgt					180
	ctcagctgtg					240
cccggccggc	agatagcgcg	gaaagcgaag	aaggaagttc	ccgtccctcc	taaagccgaa	300
gccaaagcga	agtctttaaa	ggccaagaag	gcagtgttga	aaggtgtccg	cagccacaaa	360
aaaaagaaga	tccgcacgtc	acccacctta	cggcggccca	agacaccgcg	actccggaga	420
cagcccaaat	atcctcggaa	gagcgctcct	aggagaaaca	agcttgacca	ctatgctatc	480
atcaagtttc	tgctgaccac	tgagtctgcc	atgaagaaga	tagaagacaa	taacacactt	540
gtgttcattg	tggatgttaa	agccaacaag	caccagatta	aacaggctgt	gaagaagctc	600
tatgacaaag	atgtggtcaa	ggtcaacacc	ctgattcggc	ctgatggaga	gaagaaggcg	660
ccgcagccgc	ccgcgccttc	$\tt ccgctcggca$	cccggcggcc	ctgccgcttc	cccgtcggcg	720
ctgctgctcc	gccgtcctca	${\tt cggctgcagc}$	tcgtgcgatg	agggcaacgc	agcttcttcg	780
cgctgcctcg	actgccagga	$\tt gcacctgtgc$	gacaactgcg	tccgagcgca	ccagcgcgtg	840
cgcctcacca	aggaccacta	catcgagcgc	ggcccgccgg	gtcccggtgc	cgcagcagcg	900
	tcgggctcgg					960
tttcccgagc	gcctcggctt	ctgccagcac	cacgacgacg	agttggggct	tttcactagt	1020
tctgtgcctc	cagagtccga	aaggcctgca	ggctccgtgg	cccagccggc	atccgggcgg	1080
	gcgaggaatc				_	1140
gcgtgccgcg	ggtcccggga	gaggcgggcg	${\tt caggctagag}$	cagcaaagga	aacttttctg	1200
	acatccaggc					1260
ctggataatg	aagctaagat	tcagggcaaa	ctctcatgcc	aggaggtgct	gcacctgtac	1320
tgtgacactt	gctctgtacc	catctgtcgt	gagtgcacaa	tgggccggca	tgggggccac	1380
agcttcatct	acctccagga	ggcactgcag	gactcacggg	cactcaccat	ccagctgctg	1440
gcagatgccc	agcagggacg	acaggcaatc	cagacaaagc	agaagaagct	gcttctgcag	1500
	agcaggccca					1560
	tcaaagccgt					1620
gagctgctgt	ggaaggtaga	aaagatccgc	caggtgaaag	ccaagtctct	gtacctgcag	1680

gtggagaagc	tgcggcaaaa	cctcaacaag	cttgagagca	ccatcagtgc	cgtgcagcag	1740
			ctactggccc			1800
			ctgcagcccc			1860
			gccatcaagt			1920
			ggcgatggcc			1980
			gaccacgatg			2040
			cctgatggca			2100
			agttaccgac			2160
			attgagaaca			2220
			ctcccgggcc			2280
			ggtgtgagtg			2340
attgtcgccg	accgcagcaa	caaccgcatc	caggtgttca	agccctgcgg	cgccttccac	2400
cacaaattcg	gcaccctggg	ctcccggcct	gggcagttcg	accgaccagc	cggcgtggcc	2460
tgtgacgcct	cacgcaggat	cgtggtggct	gacaaggaca	atcatcgcat	ccagatette	2520
acgitcgagg	gccagttcct	cctcaagttt	ggtgagaaag	gaaccaagaa	tgggcagttc	2580
			gagggcaaga			2640
			ggtgtcttcc			2700
ggggctctct	ggaagcactt	tgactcccca	cggggtgtgg	ccttcaacca	tgagggccac	2760
			ctcctggtta			2820
gcacgctttc	tgggctcgga	gggcacaggc	aatgggcagt	tcctgcgccc	acaaggggta	2880
			gcggattcca			2940
			tttggtgctc			3000
			cccgacggaa			3060
	gaatcctcgt					3087
<210> 264						
<211> 209			•			
<212> PRT						
<213> Homo	sapiens					
<400> 264						
Met Gly Ser	Val Ser As	n Gln Gln P	he Ala Gly	Gly Cys Ala	Lys Ala	
1	5		10		15	
Ala Glu Glu	Ala Pro Gl	u Glu Ala P	ro Glu Asp	Ala Ala Arg	Ala Ala	
	20		25	30		
Asp Glu Pro	Gln Leu Le	u His Gly A	la Gly Ile		Phe Asn	
35		40		45		•
Val Arg Met	Gly Phe Gl	y Phe Leu S	er Met Thr	Ala Arg Ala	Gly Val	
50		r-r		-		

60

50

55

	a Lei	ı Ası	Pro	Pro	Va]	Asp	Val	Phe	Val	His	Glr	Sei	Lys	s Lei	ı His
65					70					75					80
Me	t Glu	ı Gly	Phe	e Arg	g Sei	Leu	Lys	Glu	Gly	Glu	Ala	. Val	Glı	ı Phe	Thr
	_			85					90					95	
Phe	e Lys	S Lys			Lys	Gly	Leu	Glu	Ser	Ile	Arg	, Val	Thi	Gly	r Pro
			100					105					110		
Gly	y Gly			e Cys	Ile	Gly			Arg	Arg	Pro	Lys	Gly	Lys	Ser
15		115					120				•	125			
Me			Arg	Arg	Ser			Āsp	Arg	Cys	Tyr	Asn	Cys	Gly	Gly
Τ	130		***		-	135		_	_		140				
		HIS	HIS	Ala			Cys	Lys	Leu		Pro	Gln	Pro	Lys	Lys
145		. Dh.a	0	01	150		•			155		_			160
Cys	HIS	Pne	e Cys				Ser	His			Ala	Ser	Cys		Leu
Ιτιο		Cin	Cln	165		٠	A 7 -	01	170		~		_	175	
цуз	, Ala	ı GIII	180		PFO	ser	Ala		GIY	Lys	Pro	Thr			Arg
G1 11	C111	CI 11			IΙο	шіс	Çon.	185	Th	Τ	T	D	190		01
010	Ulu	195		Giu	116	шз	200	Pro	ınr	Leu	Leu		Glu	Ala	Gln
Asn		100			•		200					205			
11011			•												
<21	0>	265													
<21	1>	227													
<21	2>	PRT					-								
<21	3>	Caen	orha	bdit	is e	legai	18								
<40	0>	265													
Met	Ser	·Thr	Val	Val	Ser	Glu	Gly	Arg	Asn	Asp	Gly	Asn	Asn	Arg	Tyr
1				5					10					15	
Ser	Pro	Gln	Asp	Glu	Val	Glu	Asp	Arg	Leu	Pro	Asp	Val	Val	Asp	Asn
			20					25					30		
Arg	Leu	Thr	Glu	Asn	Met	Arg	Val	Pro	Ser	Phe	Glu	Arg	Leu	Pro	Ser
		35					40					45			
Pro		Pro	Arg	Tyr	Phe	Gly	Ser	Cys	Lys	Trp	Phe	Asn	Val	Ser	Lys
~.	50					55					60				
	Tyr	Gly	Phe	Val		Asp	Asp	He	Thr		Glu	Asp	Leu	Phe	Val
65 Ti	0.	0		_	70					75					80
HIS	GIN	Ser	Asn		Asn	Met	Gln			Arg	Ser	Leu	Asp	Glu	Gly
				85					90					95	

Glu	ı Arg	Val			Tyr	Ile	Gln			Ser	Asn	Gly			Arg
			100					105					110		
Glu	ı Ala	Tyr 115		Val	Ser	Gly	Glu 120		Glu	Gly	Gln	Gly 125		Lys	Gly
Ser	· Aro			Dro	I All	Clv			Ι ***	۸1 ۵	W- 1			Λ	0
DUI	130		1113	110	ren	135		, Lys	LYS	Ala	. vai 140	ser	Leu	Arg	Cys
Phe	e Arg	Cys	Gly	Lys	Phe	Ala	Thr	His	Lys	Ala	Lys	Ser	Cys	Pro	Asn
145					150					155					160
Val	Lys	Thr	Asp	Ala	Lys	Val	Cys	Tyr	Thr	Cys	Gly	Ser	Glu	Glu	His
•	•	•	••	165					170		. •			175	-
Val	Ser	Ser	Ile			Glu	Arg	Arg		Lvs	His	Arg	Pro		Gln
			180				3	185		,		0	190	Jiu	~1H
Val	Ala	Ala			Ala	Glu	Ala			Met	Ala	Ala		Lve	Ser
		195				~ - u	200		6			205	Jiu	пyo	DCI
Ser	Pro			Ser	Asn	Aen			Arm	<u>C111</u>	Ive		Sar	Aon	S
·	210		~	201	, rob	215	ush	116	un g	GIU		ugil	26I	usii	Set
Ser	Asp	Gln				210					220				
225		uiu													
<21		266			•										
<21 <21		200 195	٠												
<21:	_	PRT													
<21:			nito '	100	io										
<40¢		166 266	pus :	Iacv	12				•						
-	•		Vo 1	Co-	۸	C1	01.	T 1	m1	0.	.		_	_	
	Gly	ser	val	_											Ser
1	۸ ـ	C1	mı.	-	A						_			10	
ren	Asp	ыу		Ala	Asp	He	His		Ser	Asp	Lys	Ser		Ile	Phe
<i>a</i> 1	. .	•	20		_	_	_	25					30		
Gin	Gly		Gly	Val	Cys	Lys		Phe	Asn	Val	Arg	Me t	Gly	Phe	Gly
		35					40					45			
Phe	Leu	Thr	Met	Thr	Lys	Lys	Glu	Gly	Thr	Asp	Leu	Glu	Thr	Pro	Leu
	50					55					60				
Asp	Val	Phe	Val	His	Gln	Ser	Lys	Leu	His	Met	Glu	Gly	Phe	Arg	Ser
65					70					75					80
Leu	Lys	Glu	Gly	Glu	Ser	Val	Glu	Phe	Thr	Phe	Lys	Lys	Ser		
				85					90		-			95	
Gly	Leu	Glu	Ser	Thr	Gln	Val	Thr	Glv		Glv	Glv	Ala			Ile
-			100			,-		105		- - J	,	🕶	110	J, U	-10
			~ - •					100					110		

Gly Ser Clu	Ara Ara	T Dro I wa	. Wal 7	0101	01 1	A A	a .
Gly Ser Glu 115		S IIU Lys	vai Lys 120	GIY GIR	1 GIN LYS 125		Gin
Arg Gly Asp		. Tvr Asn		Cly Lau			Two
130		135		dly Leo	140	IIIS AId	. Lys
Glu Cys Lys	Leu Pro			Lvs Cvs		Cvs Gln	Asn
145		150		155		0,0 011	160
Pro Asn His	Met Val	Ala Gln	Cys Pro			Gln Ala	
	165			170		175	
Asn Leu Glu	Asp Glr	Pro Ile	Thr Glu	Glu Gln	Glu Leu	Ile Pro	Glu.
	180		185			190	
Ile Met Glu							
195							
<210> 267							
〈211〉 195							
⟨212⟩ PRT		1	•				
	opniia m	elanogas	ter				
	Val Cla	Ton Cla	Aon Clar	Law Clas	A A	mı mı	
Met Glu Asn 1	var Grii 5	ren ein	ASH GIY	Leu Giu	Arg Arg		Ser
Gln Ser Ser	•	Ser Ala	Asn Pro		Lou Ala	15	Th =
	20	DOI MIA	25	MIG ASH	Leu Ala	30	1111
Glu Glu Cys		Val Arg		Lvs Cvs	Lvs Trn		Va 1
35			40	_,, _,,	45	1110 11011	,
Ala Lys Gly	Trp Gly	Phe Leu	Thr Pro	Asn Asp		Gln Glu	Val
50		55			60		
Phe Val His	Gln Ser	Val Ile	Gln Met	Ser Gly	Phe Arg	Ser Leu	Gly
65		70		75			80
Glu Gln Glu	Glu Val	Glu Phe	Glu Cys	Gln Arg	Thr Ser	Arg Gly	Leu
a	85			90		95	
Glu Ala Thr		Ser Ser		Gly Gly	Ser Cys	Gln Gly	Ser
The Tree Array	100	71 4	105	m		110	
Thr Tyr Arg	Pro Arg	lle Asn		Thr Arg		Arg Cys	Tyr
Asn Cys Cly	Cla Dho	Ala Aan	120	Ala Can	125	41. 7	٥,
Asn Cys Gly 130	dia Lue	135	піз 11е	via Sel		Ala Leu	Gly
Pro Gln Pro	Lvs Ara		Arg Cuc	Arg Cly	140	Hic In-	и; -
145	~,0 1116	150	me oys	155	ora ush	mis red	
		100		100			160

Ala A	sp Cy	s Pro	His 165	Lys	Asn	Val	Thr	Gln 170	Ser	His	Ser	Asn	Ser 175	Lys
Ser I	le Se	r Asn 180		Ser	Ser	Ser	Ser 185		Ala	Gln	Glu	Lys 190		Glu
Glu A	la Th													
<210>														
<211>													•	
<212>														
<213>		musc	ulus											
<400>	268	3												
Met G	ly Se	r Val	Ser	Asn	Gln	Gln	Phe	Ala	Gly	Gly	Cys	Ala	Lys	Ala
1			5					10					15	
Ala G	lu Ly	s Ala	Pro	Glu	Glu	Ala	Pro	Pro	Asp	Ala	Ala	Arg	Ala	Ala
		20					25					30		
Asp G	lu Pr	o Gln	Leu	Leu	His	Gly	Ala	Gly	Ile	Cys	Lys	Trp	Phe	Asn
	35	j				40					45			
Val A	rg Me	t Gly	Phe	Ģly	Phe	Leu	Ser	Met	Thr	Ala	Arg	Ala	Gly	Val
	0				55					60				
	eu As	p Pro	Pro	Val	Asp	Val	Phe	Val	His	Gln	Ser	Lys	Leu	His
·65				70					75					80
Met G	lu Gl	y Phe		Ser	Leu	Lys	Glu		Glu	Ala	Val	Glu	Phe	Thr
D1 -	_	_	85	_		_		90					95	
Phe L	ys Ly	s Ser	Ala	Lys	Gly	Leu		Ser	Ile	Arg	Val		Gly	Pro
	1 17-	100	0		0.1	•	105			_		110	_	
GIY G		.l Phe	Cys	116	Gly		Glu	Arg	Arg	Pro		Gly	Lys	Asn
Mot C	11 1n Iv		A = ~	Con	T *** 0	120	1	A	C	Т	125	0	01	01
	30	s Arg	AIR	261		GIY	ASP	Arg	Cys		ASII	Cys	GIY	GIY
		c Hic	Ala	T 370	135	C370	T ***0	Lou	Dro	140	Cln	Dmo	T	T
Leu A 145	sp m	3 1113	nia	150	Giu	Cys	гуз	rea	155	FIO	GIII	Pro	Lys	
	is Ph	e Cys	Gln		ΙΙρ	Acn	Hic	Met		Δla	Ser	Cv2 e	Dro	160
J, J 11			165	201	110	11011	*** 0	170	, 4, 1	111 U	201	o y a	175	ьcu
Lys A	la Gl	n Gln		Pro	Ser	Ser	Gln		Lvs	Pro	Ala	Tvr		Arø
-	- •	180	- - y	•			185	- - J	_, -		0	190		
Glu G	lu Gl		Glu	Ile	His	Ser		Ala	Leu	Leu	Pro		Ala	Gln
	19					200					205		_	

Asn						•
<210>	269					
<211>	30					
<212>	DNA					
<213>	homo sapiens					
<400>	269					
cgaatt	catg ggggccccg	tcgccgtage	:		•	30
<210>				•		00
<211>	30					
<212>	DNA					
<213>	homo sapiens					
<400>	270					
cctcga	ggag gctgcaggcc	tcctggtcca	l			30
<210>	271					
<211>	21					
<212>	DNA					
<213>	homo sapiens .					
<400>	271 .					
ttcgaa	cgcc agcacatgga	С		-		21
<210>	272					
<211>	21		•			
<212>	DNA					
<213>	homo sapiens					
<400>	272					
	tatt gctcagcggt	g				21
<210>	273					
<211>	2233					
<212>	DNA					
	homo sapiens					
<221>	CDS					
	(281) (1768)					
	273					
	agc gggccgcagc					60
	ccc agctgcggag					120
	ctt ctccgccagg					180
agtgccc	ccg acacccccgg	cccggcaccc	ccggcccggc	atcccccgcc	gccgccgccg	240

	ccgcctcaag	gccgcccgct	ccccgcaggt	ggacgcggcc	atgggccgag	gggtgcgcgt	300	
	gctgctgctg	ctgagcctgc	tgcactgcgc	cgggggcagc	gagggcagga	agacctggcg	360	
	gcgccggggt	cagcagccgc	ctcctcccc	gcggaccgag	gcggcgccgg	cggccggaca	420	
	gcccgtggag	agcttcccgc	tggacttcac	ggccgtggag	ggtaacatgg	acagetteat	480	
	ggcgcaagtc	aagagcctgg	cgcagtccct	gtacccctgc	tccgcgcagc	agctcaacga	540	
	ggacctgcgc	ctgcacctcc	tactcaacac	ctcggtgacc	tgcaacgacg	gcagccccgc	600	
	cggctactac	ctgaaggagt	ccaggggcag	ccggcggtgg	ctcctcttcc	tggaaggcgg	660	
	ctggtactgc	ttcaaccgcg	agaactgcga	ctccagatac	gacaccatgc	ggcgcctcat	720	
	gageteegg	gactggccgc	gcactcgcac	aggcacaggg	atcctgtcct	cacageegga	780	
	ggagaacccc	tactggtgga	acgcaaacat	ggtcttcatc	ccctactgct	ccagtgatgt	840	
	ttggagcggg	gcttcatcca	agtctgagaa	gaacgagtac	gccttcatgg	gcgccctcat	900	
	catccaggag	gtggtgcggg	agcttctggg	cagagggctg	agcggggcca	aggtgctgct	960	
	gctggccggg	agcagcgcgg	ggggcaccgg	ggtgctcctg	aatgtggacc	gtgtggctga	1020	
	gcagctggag	aagctgggct	acccagccat	ccaggtgcga	ggcctggctg	actccggctg	1080	
	gttcctggac	aacaagcagt	atcgccacac	agactgcgtc	gacacgatca	cgtgcgcgcc	1140	
	cacggaggcc	atccgccgtg	gcatcaggta	ctggaacggg	gtggtcccgg	agcgctgccg	1200	
	acgccagttc	caggagggcg	aggagtggaa	ctgcttcttt	ggctacaagg	tctacccgac	1260	
	cctgcgctgc	cctgtgttcg	tggtgcagtg	gctgtttgac	gaggcacagc	tgacggtgga	1320	
	caacgtgcac	ctgacggggc	agccggtgca	ggagggcctg	cggctgtaca	tccagaacct	1380	
					agctttgccc		1440	
	ctcccatgag	atcatcatcc	ggagccactg	gacggatgtc	caggtgaagg	ggacgtcgct	1500	
	gccccgagca	ctgcactgct	gggacaggag	cctccatgac	agccacaagg	ccagcaagac	1560	
	cccctcaag	ggctgccccg	tccacctggt	ggacagctgc	ccctggcccc	actgcaaccc	1620	
	ctcatgcccc	accgtccgag	accagttcac	ggggcaagag	atgaacgtgg	cccagttcct	1680	
	catgcacatg	ggcttcgaca	tgcagacggt	ggcccagccg	cagggactgg	agcccagtga	1740	
	gctgctgggg	atgctgagca	acggaagcta	ggcagactgt	ctggaggagg	agccggcact	1800	
,	gaggggccca	gacacccgct	gccccagtgc	cacctcaccc	cccaccagca	ggccctcccg	1860	
					tctgcccact		1920	
,	cccggctttc	cctgcccctc	tcccacagcc	cagccagaga	caagggacct	gctgtcatcc	1980	
i	ccatctgtgg	cctgggggtc	cttcctgaca	acgagggggt	agccagaaga	gaagcactgg	2040	
i	attcctcagt	ccaccagctc	agacagcacc	caccggcccc	acccatcaag	cccttttata	2100	
	ttattttata	aagtgacttt	tttattactt	taattttta	aaaaaaggaa	aataagaata	2160	
					tttaaagaga		2220	
	aaaaaaaaa	aaa					2233	
<	(210) 274							
	(011) 100							

<211> 496

<212> PRT

<21	3>	homo	sap	iens												
< 40	0>	274														
Met	Gly	Arg	Gly	Val	Arg	Val	Leu	Leu	Leu	Leu	Ser	Leu	Leu	His	Cys	
1				5					10					15		
Ala	Gly	Gly	Ser	Glu	Gly	Arg	Lys	Thr	Trp	Arg	Arg	Arg	Gly	Gln	Gln	•
			20					25					30			
Pro	Pro	Pro	Pro	Pro	Arg	Thr	Glu	Ala	Ala	Pro	Ala	Ala	Gly	Gln	Pro	
		35					40					45				
Val	Glu	Ser	Phe	Lio	Leu	Asp	Phe	Thr	Ala	<u>Val</u>	Glu	Gly	Asn	Met	Asp	
	50					55					60					
Ser	Phe	Met	Ala	Gln	Val	Lys	Ser	Leu	Ala	Gln	Ser	Leu	Tyr	Pro	Cys	
65					70					75					80	
Ser	Ala	Gln	Gln		Asn	Glu	Asp	Leu	Arg	Leu	His	Leu	Leu	Leu	Asn	
	_			85	•				90					95		
Thr	Ser			Cys	Asn	Asp	Gly		Pro	Ala	Gly	Tyr	Tyr	Leu	Lys	
21	•		200	_				105					110			
Glu	Ser		Gly	Ser	Arg	Arg		Leu	Leu	Phe	Leu		Gly	Gly	Trp	
		115					120					125				
IJГ		rne	Aşn	Arg	Glu		Cys	Asp	Ser	Arg	Tyr	Asp	Thr	Met	Arg	
A	130	M = 1				135	_	_			140					
	Leu	met	Ser	Ser		Asp	Trp	Pro	Arg		Arg	Thr	Gly	Thr		
145	T	C	0	01	150 D	0.1	01			155	_	_			160	
116	reu	ser	ser		Pro	GIU	GIU	Asn		Tyr	Trp	Trp	Asn		Asn	
Mat	Val	Dho	Ιlο	165 Pro	Т	C	Com	C	170	37 - 1	m	0	0.1	175		
MCt	141	1116	180	IIO	1 9 1	Cys	ser		ASD	vai	Trp	Ser		Ala	Ser	
Ser	Ive	Ser		Lve	Acn	Clu	Ттт	185	Dho	Mat	Gly	41-	190	T1.	T1 -	
DCI	Lys	195	uiu	Гуз	иоп	Giu	200	Ala	rne	Met	GIY	205	reu	116	116	
Gln	Gln		Val	Arø	Gln	Len		Clv	Δrσ	Cl _v	Leu		C1v	A 1 a	I ***	
	210		,	6	oru	215	LCu	Uly	ni S	GIY	220	261	GIY	Ald	LAZ	
Val		Leu	Len	Ala	Glv		Ser	Ala	Glv	Glv	Thr	Clv	Val	Ι Δ11	Lou	
225					230	501	501		0.1	235	1111	dly	vai	LCu	240	
	Val	Asp	Arg	Val		Glu	Gln	Len	Glu		Leu	Glv	Tvr	Pro		
		•	Ū	245					250	-,0	204	O. J.	.,.	255	711 u	
Ile	Gln	Val	Arg		Leu	Ala	Asp	Ser		Trp	Phe	Len	Asn		Lvs	
			260	-			•	265	•		-	-	270		_,,	
Gln	Tyr	Arg	His	Thr	Asp	Cys	Val	Asp	Thr	Ile	Thr	Cys			Thr	

		275					280					285			
Glu		He	Arg	Arg	Gly			Tyr	Trp	Asn	Gly	Val	Val	Pro	Glu
A	290	A	A	01.	70.1	295					300				
	Cys	Arg	Arg	Gin		Gin	Glu	Gly	Glu		Trp	Asn	Cys	Phe	
305	т	T	37 - 1	т	310	mı.			•	315					320
GIY	lyr	LYS	vai		Pro	Inr	Leu	Arg		Pro	Val	Phe	Val		Gln
Trn	Lou	Dho	Aan	325	A 1 a	C1-	T	Т П	330					335	
пр	ren	rne	340	Glu	Ala	GIII	Leu		vai	Asp	Asn	Val			Thr
Glv	Gln	Dra		Cln	Clu	Clar	 Lou	345	Lau	-			350.		Δ1
GIY	OIII	355	Val	GIII	GIU	GIY	360	AIg	ren	lyr	Ile		ASI	Leu	GIY
Arg	Gln		Arg	His	Thr	[,en		Aen	Val	Pro	Ala	365 Ser	Dho	Δ1 n	Dro
0	370	_54	8		***1	375	шyo	wp	4 07 1	110	380	PCI	1 116	піц	110
Ala		Leu	Ser	His	Glu		Ile	He	Arg	Ser	His	Trn	Thr	Asn	Val
385	·				390			,		395	****	11.5	* ***	пър	400
Gln	Val	Lys	Gly	Thr		Leu	Pro	Arg	Ala		His	Cvs	Trp	Asp	
				405					410			-,-		415	6
Ser	Leu	His	Asp	Ser	His	Lys	Ala	Ser	Lys	Thr	Pro	Leu	Lys		Cys
			420		•			425					430	•	- • -
Pro	Val	His	Leu	Val	Asp	Ser	Cys	Pro	Trp	Pro	His	Cys	Asn	Pro	Ser
		435					440					445			
Cys	Pro	Thr	Val	Arg	Asp	Gln	Phe	Thr	Gly	Gln	Glu	Met	Asn	Val	Ala
	450					455					460				
Gln	Phe	Leu	Met	His	Met	Gly	Phe	Asp	Met	Gln	Thr	Val	Ala	Gln	Pro
465					470					475					480
Gln	Gly	Leu	Glu	Pro	Ser	Glu	Leu	Leu	Gly	Met	Leu	Ser	Asn	Gly	Ser
				485					490					495	
<210		275													
<211		81													
<212	_		-												
<213			sapi	ens											
<400			,										•		
			tggg	ccga	g gg	gtgo	gcgt	g							
<210		76	•												
<211		0													
<212	<i>/</i> U	NA													

<213> homo sapiens

31

<400>	276	
ctcgag	gctt ccgttgctca gcatccccag	30
<210>	277	
<211>	32	
<212>	DNA	
<213>	homo sapiens	
<400>	277	
gaattc	atgc ggcgcctcat gagctcccgg ga	32
<210>	278	
<211>	30	
<212>	DNA	
<213>	homo sapiens	
<400>	278	
	ggga tttggattca tctccatgat	30
<210>	279	
<211>	31	
<212>	DNA	
<213>	•	
<400>	·	
	tttc cttttttgaa ctgaaggccc c	31
<210>	280	
<211>	14	
<212>	PRT	
<213>	homo sapiens	
<400>	280	
Pro Gli	u Ala Glu Thr Arg Gly Ala Lys Arg Ile Ser Pro Ala	
l (24.2)	5 10	
(210)	281	
(211)	34	
(212)	DNA	
(213)	homo sapiens	
(400)	281	
		34
(210)	282	
(211)	34	
(212)	DNA .	
(213)	homo sapiens	

34

<40	>00	282													
cto	gagg	gcc t	ctcc	tgac	ac e	cagt	aagg	ga ga	cc						
		283													
<21	1>	402													
< 21	2>	PRT													
<21	3>	homo	sap	iens											
<40	0>	283													
Gln	l Leu	Ser	Cys	Gln	Gly	Leu	Lys	Val	Phe	Ala	Gly	Gly	Lys	Leu	Pro
1				5					_10		. .			1.5	
Gly	Pro	Ala	Val 20	Glu	Gly	Pro	Ser	Ala 25	Thr	Gly	Pro	Glu	11e 30	Ile	Arg
Ser	Pro	Gln	Asp	Asp	Ala	Ser	Ser		His	Leu	Gln	Val		Leu	Gln
		35					40	•				45			
Ile	His 50	Leu	Pro	Gly	Arg	His 55	Thr	Leu	Phe	Val	Arg 60	Ala	Met	Ile	Asp
Ser	Gly	Ala	Ser	Gly	Asn	Phe	Ile	Asp	His	Glu		Val	Ala	Gln	Asn
65					70					75	-				80
Gly	Ile	Pro	Leu	Arg	Ile	Lys	Asp	Trp	Pro	Ile	Leu	Val	Glu	Ala	Ile
				85					90					95	
Asp	Gly	Arg	Pro	Ile	Ala	Ser	Gly	Pro	Val	Val	His	Glu	Thr	His	Asp
			100					105					110		
Leu	Ile	Val	Asp	Leu	Gly	Asp	His	Arg	Glu	Val	Leu	Ser	Phe	Asp	Val
		115					1.20					125			
Thr	Gln	Ser	Pro	Phe	Phe	Pro	Val	Val	Leu	Gly	Val	Arg	Trp	Leu	Ser
m1	130		_			135					140				
	His	Asp	Pro	Asn		Thr	Trp	Ser	Thr		Ser	Ile	Val	Phe	Asp
145		m.	^		150	•••	_			155					160
ser	Glu	туr	Cys		Tyr	His	Cys	Arg		Tyr	Ser	Pro	Ile		Pro
Car	Lass	D	D	165 Date:		n	α:		170	_	_	_		175	
ser	Leu	PT0		Pro	Ala	Pro	Gln		Pro	Leu	Tyr	Tyr		Val	Asp
C150	ጥ ተታ ∽	A = ~	180	Т	C1	n	₩ - 1	185	т	m	m	** -	190		
ary	Tyr		vaı	ıyr	GIN	PT0		Arg	Tyr	Tyr	lyr		Gln	Asn	Val
Tur	Th r	195	Vo 1	۸۵-	C1	11: -	200	Т	D	۸	TT 2	205		••	
1) 1	Thr 210	110	141	ASD	GIU		val	IÄL	011	ASP		Arg	Leu	val	Asp
Pro		ماآ	GIn	Mαŧ	[]^	215 Pro	C1++	Λ1 ₀	п; ^	Ç^=	220	D	C	01	17.2
225	His	110	ora	MC 1	230	110	άīλ	uig	1115	235	116	rro	ser	GIY	
0					4 O U					400					240

Val	Tyr	Ser	Leu		Glu	Pro	Glu	Met		Ala	Leu	Arg	Asp	Phe 255	Val		
A 1 n	۸	Aan	Vol	245	A a n	C1-4	Lau	Tio	250	Dro	Th +	۵ ا ۲	Δla	_	Acn		
Ala.	Alg	ASII	260	L)S	ASD	GIY	ren	11e 265	1111	FIU	1111	116	270	110	USII		
Clw	Λla	Cln		ĬΔIJ	Cln	Vo 1	I 770	Arg	Clv	Trn	Twe	Len		Val	Ser .		
Gly	nia	275	Val	Leu	GIII	Val	280	MIR	GIY	пр	гур	285	GIII	141	561		
Tvr	Aen		Δτσ	Δla	Pro	Aen		Phe	Thr	Ile	Gln		Gln	Tvr	Pro		
lyı	290	Cys	MIG	Ala	110	295	USII	Inc	1111	110	300	71011	o i ii		110	•	
Arg		Ser	Ile	Pro	Asn		Glu	Asp	Gln	Ala		Leu	Ala	Thr	Tyr		
 305	20 0.	.001	110		310	Dou	.010	.15,15	,-,-,-,	315		11	127 1		320	•	
	Glu	Phe	Val	Pro		Ile	Pro	Gly	Tyr		Thr	Tyr	Pro	Thr	Tyr		
				325					330					335			
Ala	Ala	Tyr	Pro	Thr	Tyr	Pro	Val	Gly	Phe	Ala	Trp	Tyr	Pro	Val	Gly		
			340					345					350				
Arg	Asp	Gly	Gln	Gly	Arg	Ser	Leu	Tyr	Val	Pro	Val	Met	Ile	Thr	Trp		
		355					360					365					
Asn	Pro	His	Trp	Tyr	Arg	Gln	Pro	Pro	Val	Pro	Gln	Tyr	Pro	Pro	Pro		
	370					375					380						
Gln	Pro	Pro	Pŗo	Pro	Pro	Pro	Pro	Pro	Pro	Pro	Pro	Pro	Ser	Tyr	Ser		
385					390					395					400		
Thr	Leu																
< 21	0>	284															
<21	1>	30															
<21	2>	DNA															
<21	3>	homo	sap	iens						•							
<40	0>	284															
gga	tcca	tga	ccga	acga	ag a	aggg	acga	g									30
< 21		285															
<21	1>	30															
<21	-	DNA															ė
		homo	sap	iens									٠				
<40	0>	285															
			gtac	tgta	ag a	tgga	ggcg	g									30
<21		286															
< 21		28				•								•			
<21	2>	DNA															

<213>	homo sapiens	
<400>		0.0
	atct tccgggcaga cacaccct	28
•	287	
<211>	29	
<212>		
	homo sapiens	
<400>		
	tgcc atttcaggtt cggacagtg	29.
<210>	288	
<211>	26	
<212>		
	homo sapiens	
<400>		
	atgg agggtctggg ccgctc	26
<210>		
<211>		
<212>	·	
	homo sapiens	
<400>		
	ggtg ggggccagct cgaag	25
<210>		
•	16	
<212>		
	homo sapiens	
<400>		
Lys As	p Asp Tyr Tyr Arg Arg Pro Leu Arg Val Leu Arg Ala Arg Gln	
1	5 10 15	
<210>		
<211>		
<212>	DNA	
<213>	homo sapiens	
<400>	291	
cgggat	ccat gitccicicc atcctagigg	30
<210>	292	
<211>	29 .	
<212>	DNA	

WO 2005/014818 PCT/JP2004/011650

271/271

<213> homo sapiens

<400> 292

cgctcgagac actcttttcg ggtttgttc

29

International application No. PCT/JP2004/011650

A.	CL	ASS	IF	ICAT	TOI:	V	OF	SU	JB.	IECT	, V	L	ΑT	П	≅R

Int.Cl⁷ C12N15/12, C12Q1/68, C07K14/82, A61K31/711, C07K16/32, C12N5/10, G01N33/15, G01N33/50

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

Int.Cl⁷ C12N15/12, C12Q1/68, C07K14/82, A61K31/711, C07K16/32, C12N5/10,
G01N33/15, G01N33/50

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

JSTPlus, WPI(DIALOG), BIOSIS(DIALOG), PUBMED,

EMBL/DDBJ/Genbank/SwissProt/PIR/Geneseq

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
x	WO 02/046415 A2 (INCYTE GENOMICS, INC.), 13 June, 2002 (13.06.02), & AU 2002727902 A Claims; page 66, lines 27 to 29; sequence No. 30	1-3,10,11, 13-16,24-27
х	US 2003/0003538 A1 (DIETRICH R.S. et al.), 02 January, 2003 (02.01.03), Claims; sequence Nos. 15, 16 (Family: none)	1-3,10,11, 13-16,24-27
х	WO 03/029424 A2 (CURAGEN CORP.), 10 April, 2003 (10.04.03), & AU 2002357648 A1 & AU 2002356534 A1 Claims; pages 83 to 84; sequence Nos. 161, 162	1-3,10,11, 13-16,24-27

	documents are listed in the continuation of Box C.		See patent family annex.					
"A" document to be of pa	tegories of cited documents: defining the general state of the art which is not considered articular relevance	"T"	later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention					
filing date		"X"	document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is					
special reas	which may throw doubts on priority claim(s) or which is stablish the publication date of another citation or other ason (as specified)	"Y"						
"P" document	referring to an oral disclosure, use, exhibition or other means published prior to the international filing date but later than y date claimed	"&"	combined with one or more other such documents, such combination being obvious to a person skilled in the art document member of the same patent family					
Date of the actual 19 Oct	completion of the international search cober, 2004 (19.10.04)	Date	of mailing of the international search report 02 November, 2004 (02.11.04)					
	ing address of the ISA/ ese Patent Office	Aut	horized officer					
Facsimile No.		Tele	phone No.					
Form PCT/ISA/2	210 (second sheet) (January 2004)							

International application No.
PCT/JP2004/011650

C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT	
Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
E,X	WO 04/040000 A2 (PRIMAL INC.), 13 May, 2004 (13.05.04), Claims; sequence No. 788 (Family: none)	1-3,10,11, 13-16,24-27
	·	

International application No. PCT/JP2004/011650

Box No. II Observations where certain claims were found unsearchable (Continuation of item 2 of first sheet)
This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons: 1. Claims Nos.: 28-37 because they relate to subject matter not required to be searched by this Authority, namely: The inventions as set forth in claims 28 to 37 pertain to methods for treatment of the human body by therapy and diagnostic methods and thus relate to a subject matter which this International Searching Authority is not required, under the provisions of Article 17(2)(a)(i) (continued to extra sheet.) 2. Claims Nos.: because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:
3. Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).
Box No. III Observations where unity of invention is lacking (Continuation of item 3 of first sheet)
This International Searching Authority found multiple inventions in this international application, as follows: (See extra sheet.)
1. As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.
2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:
4. X No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.: The parts relating to SEQ ID NO:1 in claims 1 to 3, 10, 11, 13 to 16 and 24 to 27.
Remark on Protest
No protest accompanied the payment of additional search fees.

International application No.
PCT/JP2004/011650

Continuation of Box No.II-1 of continuation of first sheet(2)

of the PCT and Rule 39.1(iv) of the Regulations under the PCT, to search.

Continuation of Box No.III of continuation of first sheet (2)

The polynucleotides having the base sequences represented by SEQ ID NOS:1 to 65 as described in claim 1 and polypeptide expressed thereby have no common chemical structure. Namely, these inventions relating different SEQ ID NOS are common to each other exclusively in being specifically expressed exclusively in lung cancer, stomach cancer, colon caner or liver cancer tissues.

However, document 1 reports genes specifically expressed in colon caner and lung cancer (Table 2, columns Co and Lu).

Document 2 reports a gene specifically expressed in stomach cancer (Table 1).

Document 3 reports a gene specifically expressed in liver cancer (Table 2).

Therefore, being specifically expressed exclusively in lung cancer, stomach cancer, colon caner or liver cancer tissues cannot be considered as a special technical matter in the meaning within PCT Rule 13.2.

Such being the case, the inventions relating respectively to 65 different SEQ ID NOS, among the inventions as set forth in claims 1 to 27, cannot be considered as a group of inventions so linked as to form a single general inventive concept. Namely, these inventions are recognized as 65 groups of inventions respectively relating to 65 polynucleotides different from each other and polypeptides expressed thereby.

- Document 1: SCHEURLE D. et al., Cancer gene discovery using digital differential display, Cancer Res. (2000), Vol.60, No.15,p.4037-4043
- Document 2: Matthias P.A.E. et al., Expression of Metallothionein II in Intestinal Metaplasia, Dysplasia, and Gastric Cancer, Cancer Research (2000), Vol.60, p.1995-2001
- Document 3: Xu X.R. et al., Insight into hepatocellular carcinogene sis at transcriptome level by comparing gene expression profiles of hepatocellular carcinoma with those of corresponding noncancerous liver, Proc. Natl. Acad. Sci. USA. (2001), Vol.98, No.26, p.4037-4043

国際調査報告 国際出願番号 PCT/JP2004/011650 発明の属する分野の分類 (国際特許分類 (IPC)) Int.Cl' C12N15/12, C12Q1/68, C07K14/82, A61K31/711, C07K16/32, C12N5/10, G01N33/15, G01N33/50 в. 調査を行った分野 調査を行った最小限資料(国際特許分類(IPC)) Int.Cl' C12N15/12, C12Q1/68, C07K14/82, A61K31/711, C07K16/32, C12N5/10, G01N33/15, G01N33/50 最小限資料以外の資料で調査を行った分野に含まれるもの 国際調査で使用した電子データベース (データベースの名称、調査に使用した用語) JSTPlus, WPI(DIALOG), BIOSIS(DIALOG), PUBMED EMBL/DDBJ/Genbank/SwissProt/PIR/Geneseg C. 関連すると認められる文献 引用文献の 関連する カテゴリー* 引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示 請求の範囲の番号 X WO 02/046415 A 2 (INCYTE GENOMICS, INC.) 1-3, 10, 11, 2002.06.13 13-16, 24-27 &AU 2002727902 A (請求の範囲,第66頁27-29行,配列番号30参照) X US 2003/0003538 A1 (DIETRICH P.S. et al.) 1-3, 10, 11, 2003.01.02 13-16, 24-27 (請求の範囲,配列番号15,16参照) ファミリー無し 区欄の続きにも文献が列挙されている。 パテントファミリーに関する別紙を参照。 * 引用文献のカテゴリー の日の後に公表された文献 「A」特に関連のある文献ではなく、一般的技術水準を示す 「T」国際出願日又は優先日後に公表された文献であって もの 出願と矛盾するものではなく、発明の原理又は理論 「E」国際出願日前の出願または特許であるが、国際出願日 の理解のために引用するもの 以後に公表されたもの 「X」特に関連のある文献であって、当該文献のみで発明 「L」優先権主張に疑義を提起する文献又は他の文献の発行 の新規性又は進歩性がないと考えられるもの 日若しくは他の特別な理由を確立するために引用する 「Y」特に関連のある文献であって、当該文献と他の1以 文献 (理由を付す) 上の文献との、当業者にとって自明である組合せに 「O」口頭による開示、使用、展示等に言及する文献 よって進歩性がないと考えられるもの 「P」国際出願日前で、かつ優先権の主張の基礎となる出願 「&」同一パテントファミリー文献 02 11 2004 国際調査を完了した日 国際調査報告の発送日 19. 10. 2004 国際調査機関の名称及びあて先 特許庁審査官(権限のある職員) 9453 4 B 日本国特許庁(ISA/JP) 上 條 隆 郵便番号100-8915

電話番号 03-3581-1101 内線 3448

東京都千代田区霞が関三丁目4番3号

C (続き).	関連すると認められる文献	
引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号
X	WO 03/029424 A2 (CURAGEN CORP.) 2003.04.10 &AU 2002357648 A1 &AU 2002356534 A1 (請求の範囲,第83-84頁,配列番号161,162参照)	1-3, 10, 11, 13-16, 24-27
EX	WO 04/040000 A2 (PRIMAL INC.) 2004.05.13 (請求の範囲,配列番号788参照) ファミリー無し	1-3, 10, 11, 13-16, 24-27
		-

712 - IMA	請求の範囲の一部の調査ができないときの意見(第1ページの2の続き)
法第8条	第3項(PCT17条(2)(a))の規定により、この国際調査報告は次の理由により請求の範囲の一部について作
成しなか	
1. X	請求の範囲 <u>28-37</u> は、この国際調査機関が調査をすることを要しない対象に係るものである。
	つまり、 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
	請求の範囲28-37に係る発明は、人間の診断方法又は治療方法に該当するから、特許協力条約第17条(2)(a)(i)及び特許協力条約に基づく規則39.1(iv)の規定によりこの国際調査機関が調査をすることを要しない対象に係るものである。
2.	請求の範囲は、有意義な国際調査をすることができる程度まで所定の要件を満たしてい
	ない国際出願の部分に係るものである。つまり、
•	
	·
	'
3.	請求の範囲は、従属請求の範囲であってPCT規則6.4(a)の第2文及び第3文の規定に
	従って記載されていない。
	·
第Ⅲ欄	発明の単一性が欠如しているときの意見 (第1ページの3の続き)
MT III	光明の年にか人知しているとさの意見(第1ページの3の記さ)
次に立	************************************
, , , , ,	こののシャーでは、一つによったというがられる。
쎩g	リページ参照のこと
14.2	· · · · · · · · · · · · · · · · · · ·
. 1. \Box	出願人が必要な追加調査手数料をすべて期間内に執付したので、この同際調本報告は、すべての調本可能や 特 少
1. 🗌	出願人が必要な追加調査手数料をすべて期間内に納付したので、この国際調査報告は、すべての調査可能な請求 の範囲について作成した。
1.	出願人が必要な追加調査手数料をすべて期間内に納付したので、この国際調査報告は、すべての調査可能な請求 の範囲について作成した。
1	の範囲について作成した。
2.	の範囲について作成した。 追加調査手数料を要求するまでもなく、すべての調査可能な請求の範囲について調査することができたので、追 加調査手数料の納付を求めなかった。
	の範囲について作成した。 追加調査手数料を要求するまでもなく、すべての調査可能な請求の範囲について調査することができたので、追加調査手数料の納付を求めなかった。 出願人が必要な追加調査手数料を一部のみしか期間内に納付しなかったので、この国際調査報告は、手数料の納
2.	の範囲について作成した。 追加調査手数料を要求するまでもなく、すべての調査可能な請求の範囲について調査することができたので、追 加調査手数料の納付を求めなかった。
2.	の範囲について作成した。 追加調査手数料を要求するまでもなく、すべての調査可能な請求の範囲について調査することができたので、追加調査手数料の納付を求めなかった。 出願人が必要な追加調査手数料を一部のみしか期間内に納付しなかったので、この国際調査報告は、手数料の納
2.	の範囲について作成した。 追加調査手数料を要求するまでもなく、すべての調査可能な請求の範囲について調査することができたので、追加調査手数料の納付を求めなかった。 出願人が必要な追加調査手数料を一部のみしか期間内に納付しなかったので、この国際調査報告は、手数料の納
2.	の範囲について作成した。 追加調査手数料を要求するまでもなく、すべての調査可能な請求の範囲について調査することができたので、追加調査手数料の納付を求めなかった。 出願人が必要な追加調査手数料を一部のみしか期間内に納付しなかったので、この国際調査報告は、手数料の納
2. 🗌	の範囲について作成した。 追加調査手数料を要求するまでもなく、すべての調査可能な請求の範囲について調査することができたので、追加調査手数料の納付を求めなかった。 出願人が必要な追加調査手数料を一部のみしか期間内に納付しなかったので、この国際調査報告は、手数料の納付のあった次の請求の範囲のみについて作成した。
2. 🗌	の範囲について作成した。 追加調査手数料を要求するまでもなく、すべての調査可能な請求の範囲について調査することができたので、追加調査手数料の納付を求めなかった。 出願人が必要な追加調査手数料を一部のみしか期間内に納付しなかったので、この国際調査報告は、手数料の納付のあった次の請求の範囲のみについて作成した。 出願人が必要な追加調査手数料を期間内に納付しなかったので、この国際調査報告は、請求の範囲の最初に記載
2. 🗌	の範囲について作成した。 追加調査手数料を要求するまでもなく、すべての調査可能な請求の範囲について調査することができたので、追加調査手数料の納付を求めなかった。 出願人が必要な追加調査手数料を一部のみしか期間内に納付しなかったので、この国際調査報告は、手数料の納付のあった次の請求の範囲のみについて作成した。
2. 🗌	の範囲について作成した。 追加調査手数料を要求するまでもなく、すべての調査可能な請求の範囲について調査することができたので、追加調査手数料の納付を求めなかった。 出願人が必要な追加調査手数料を一部のみしか期間内に納付しなかったので、この国際調査報告は、手数料の納付のあった次の請求の範囲のみについて作成した。 出願人が必要な追加調査手数料を期間内に納付しなかったので、この国際調査報告は、請求の範囲の最初に記載
2. 🗌	の範囲について作成した。 追加調査手数料を要求するまでもなく、すべての調査可能な請求の範囲について調査することができたので、追加調査手数料の納付を求めなかった。 出願人が必要な追加調査手数料を一部のみしか期間内に納付しなかったので、この国際調査報告は、手数料の納付のあった次の請求の範囲のみについて作成した。 出願人が必要な追加調査手数料を期間内に納付しなかったので、この国際調査報告は、請求の範囲の最初に記載されている発明に係る次の請求の範囲について作成した。
2.	の範囲について作成した。 追加調査手数料を要求するまでもなく、すべての調査可能な請求の範囲について調査することができたので、追加調査手数料の納付を求めなかった。 出願人が必要な追加調査手数料を一部のみしか期間内に納付しなかったので、この国際調査報告は、手数料の納付のあった次の請求の範囲のみについて作成した。 出願人が必要な追加調査手数料を期間内に納付しなかったので、この国際調査報告は、請求の範囲の最初に記載されている発明に係る次の請求の範囲について作成した。 請求の範囲1-3,10,11,13-16,24-27のうち配列番号1に係るもの
2.	の範囲について作成した。 追加調査手数料を要求するまでもなく、すべての調査可能な請求の範囲について調査することができたので、追加調査手数料の納付を求めなかった。 出願人が必要な追加調査手数料を一部のみしか期間内に納付しなかったので、この国際調査報告は、手数料の納付のあった次の請求の範囲のみについて作成した。 出願人が必要な追加調査手数料を期間内に納付しなかったので、この国際調査報告は、請求の範囲の最初に記載されている発明に係る次の請求の範囲について作成した。 請求の範囲1-3,10,11,13-16,24-27のうち配列番号1に係るもの 至手数料の異議の申立てに関する注意
2.	の範囲について作成した。 追加調査手数料を要求するまでもなく、すべての調査可能な請求の範囲について調査することができたので、追加調査手数料の納付を求めなかった。 出願人が必要な追加調査手数料を一部のみしか期間内に納付しなかったので、この国際調査報告は、手数料の納付のあった次の請求の範囲のみについて作成した。 出願人が必要な追加調査手数料を期間内に納付しなかったので、この国際調査報告は、請求の範囲の最初に記載されている発明に係る次の請求の範囲について作成した。 請求の範囲1-3,10,11,13-16,24-27のうち配列番号1に係るもの

第Ⅲ欄の続き

請求の範囲1に記載された配列番号1-65に示す塩基配列を有するポリヌクレオチドおよびそれによって発現されるポリペプチドは、互いに共通の化学構造を有するものでなく、 肺癌、胃癌、大腸癌、または肝癌組織においてのみ特異的に発現することにおいてのみ互い に他の配列番号に係る発明と共通する。

しかしながら、文献1には、大腸癌や肺癌のそれぞれにおいて特異的に発現する遺伝子が記載されている(表2 Co欄、Lu欄)。

また、文献2には、胃癌において特異的に発現する遺伝子が記載されている(表1)。 また、文献3には、肝癌において特異的に発現する遺伝子が記載されている(表2)。 よって、肺癌、胃癌、大腸癌、または肝癌組織においてのみ特異的に発現することはPC T規則13.2における特別な技術的事項であるとはいえない。

よって、請求の範囲1~27に記載された発明のうち65個の個別の配列番号それぞれに係る発明は、単一の一般的発明概念を形成するように互いに連関している一群の発明であるとはいえず、異なった65個のポリヌクレオチドおよびそれによって発現されるポリペプチドそれぞれに関する65個の発明からなる発明群であると認める。

- 文献1: SCHEURLE D. et al., Cancer gene discovery using digital differential display, Cancer Res. (2000), Vol. 60, No. 15, p. 4037-4043
- 文献 2: Matthias P. A. E. *et al.*, Expression of Metallothionein II in Intestinal Metaplasia, Dysplasia, and Gastric Cancer, Cancer Research (2000), Vol. 60, p. 1995-2001
- 文献3: Xu X. R. et al., Insight into hepatocellular carcinogenesis at transcriptome level by comparing gene expression profiles of hepatocellular carcinoma with those of corresponding noncancerous liver, Proc. Natl. Acad. Sci. USA. (2001), Vol. 98, No. 26, p. 4037-4043

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:
☐ BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
☐ LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
Потивр.

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.