

Bachelor's Thesis: Performance-Analysis of VPP

Intermediate Talk

Presenter: Peter Okelmann— Advisors: Paul Emmerich, Dominik Scholz— Supervisor: Prof. Dr.-Ing. Georg Carle

VPP: a fast software router

VPP (Vector Packet Processing):

- ► deployable to mainstream architechtures
- ► fast, user-space NIC drivers
- ► can run in virtualized containers

"It is the open source version of Cisco's Vector Packet Processing (VPP) technology" [1] and is now beeing developed by FD.io ("The Fast Data Project").

Feature Highlights:

- vecorized processing of packets in badges
- utilizes high-speed dpdk drivers
- modular and extendable packet-processing graph [4]
- cpu-scalability

Testing Methodology

For latency measurements the optimum of throughput to latency has to be found. Otherwise a worst case of latency is triggered, because packet queues fill up. [3]

VPP properties to test:

- ► raw forwarding throughput
- ► latency: cache and memory impact
- packet processing graphs utilizing multiple cpu cores
- ► testing specific processing nodes / router features

Testing Parameters

MoonGen [2] scripts can generate testing load according to the following testing parameters:

- packet rate
- packet size
- ► traffic type (ethernet, UDP, multiple flows)
- traffic pattern (inter packet gaps)
- ▶ grant warmup time

Gathered testing results:

- ► latency histogram
- ► throughput
- ► linux perf stats (cache misses...)
- ► linux perf record (cpu-time spent per symbol)
- ► internal vpp state information

12 Throughput

VPP on Intel E5-2640 @ 2.0GHz (cesis) with 10G networking

VPP config	max Mpps	stable Mpps	Relative
offered load	14.86	14.86	100%
I2 xconnect	10.4	10.1	68%
l2 bridge: no features	9.35	9.2	62%
l2 bridge: mac-age	8.62	8.6	58%
l2 bridge: mac-learn	8.51	8.3	56%
l2 bridge: mac-learn, mac-age	8.50	8.3	56%

12 Throughput per Flows sending to many destinations

- [1] What is vpp? https://wiki.fd.io/view/VPP/What_is_VPP%3F. Accessed on 2019-01-16.
- [2] P. Emmerich, S. Gallenmüller, D. Raumer, F. Wohlfart, and G. Carle. MoonGen: A Scriptable High-Speed Packet Generator. In Internet Measurement Conference 2015 (IMC'15), Tokyo, Japan, Oct. 2015.
- [3] S. Gallenmüller, P. Emmerich, F. Wohlfart, D. Raumer, and G. Carle. Comparison of frameworks for high-performance packet io. In Proceedings of the Eleventh ACM/IEEE Symposium on Architectures for networking and communications systems, pages 29–38. IEEE Computer Society, 2015.
- [4] L. Linguaglossa, D. Rossi, S. Pontarelli, D. Barach, D. Marjon, and P. Pfister. High-speed software data plane via vectorized packet processing (extended version). Tech. Rep., 2017.