Une approche inspirée de la finance mathématique pour étudier des fluctuations stochastiques intermittentes de viscosité dans les cellules vivantes

Soft Matter, Mai 2020

C. Bostoen & J-F. Berret Rebecca Goulancourt

Historique et enjeux

Biomécanique cellulaire

Historique

- Étude récente, depuis 20 ans
- Précurseur : Francis Crick, propriétés physiques du cytoplasme

Enjeux

- Adhésion, différenciation, migration
- Migration et prolifération de cellules cancéreuses
- → Relation entre propriétés biomécaniques et activité

Qu'est-ce que la viscosité?

 Mesure de la friction entre deux couches de liquide en mouvement

Eau $\eta = 1.10^{-3} \text{ Pa s}$

Miel $\eta \sim 10 \ Pa \ s$

Cellules fibroblastiques A549 Grossissement x60 10 Pa s < η < 100 Pa s

Cytoplasme → propriétés visco-élastique

Objectif de l'étude :

Caractériser la viscosité intracellulaire et ses fluctuations

Protocole biologique

- Cellules fibroblastiques
 A549 incubée avec des
 nanofils magnétiques
- Les aiguilles
 sédimentent sur la surface de la cellule

Entrent par phagocytose

Cellules fibroblastiques A549 Grossissement x60

Protocole biologique

 Aiguille soumise à un champ magnétique tournant

Régime oscillatoire

--> Flèches blanches : axes

→ Flèches Orange : cytoplasme

→ Flèche rouge : fil magnétique

Protocole biologique

- Ω = dérivée locale d'un maximum \rightarrow viscosité
 - (rad.s⁻¹)
- $\eta(t) \rightarrow série temporelle$

Graphe de la fréquence angulaire des aiguilles en fonction du temps $Pour \ \omega_{champ} = 104.10^{-3} \ Hz$

Analyse statistique

Trois premières étapes obligatoires :

Bouchaud & Potters, 2003

Analyse statistique

- Données de viscosité stochastiques

 « General Random Walk » (GRW)
- General Random Walk + Hole effect (HE) sur le variogramme
- Ornstein-Ülenbeck process
 → Fonction oscillatoire → indicatif de relation entre le temps et la viscosité

ACF & PACF

Degré de corrélation entre X_t et X_{t-k} (lag)

Conclusions de l'ACF vraiment **significatives**?

Variogramme

Degré de corrélation de viscosité par rapport au **temps**

Des paliers importants correspondent à des lag précis ->
 temps spécifiques à la viscosité intracellulaire

Le paramètre α

 Paramètre clé α → détermine l'aspect aléatoire et autorégressif des données

$\alpha = 0$	α = 1	0 < α < 1
	Données « purement Random Walk »	α différent de 0 : autorégressivité
Données totalement aléatoires	Distribution Brownienne	Données stochastiques ET autorégressves
		GRW + HE

• Il a été montré que α ~ 0.60 indépendamment des modèles et méthodes (ACF, variogramme, calcul de régression et distribution)

$$X_{t+1} = \alpha^* X_t + \epsilon$$

Conclusion

- Mêmes conclusions peut importe les approches :
 - Complémentarité des différents modèles
 - Validité des modèles appliqués à nos données
- GRW et GRW + HE parfaitement adaptés à des données stochastiques et autorégressives
- Mean-reverting: temps de relaxation cellulaire incluse entre
 1-10 et 100-200s
- Modèles des marchés financiers utilisés en biologie

Même approche sur
différents domaines (pour des
séries temporelles aléatoires
et autorégressives)