

planetmath.org

Math for the people, by the people.

ordinal space

Canonical name OrdinalSpace

Date of creation 2013-03-22 17:10:56 Last modified on 2013-03-22 17:10:56

Owner CWoo (3771) Last modified by CWoo (3771)

Numerical id 8

Author CWoo (3771) Entry type Definition Classification msc 54F05 Let α be an ordinal. The set $W(\alpha) := \{\beta \mid \beta < \alpha\}$ ordered by \leq is a well-ordered set. $W(\alpha)$ becomes a topological space if we equip $W(\alpha)$ with the interval topology. An *ordinal space* X is a topological space such that $X = W(\alpha)$ (with the interval topology) for some ordinal α . In this entry, we will always assume that $W(\alpha) \neq \emptyset$, or $0 < \alpha$.

Before examining some basic topological structures of $W(\alpha)$, let us look at some of its order structures.

- 1. First, it is easy to see that $W(\alpha) = \uparrow y \cup W(y)$, for any $y \in W(\alpha)$. Here, $\uparrow y$ is the upper set of y.
- 2. Another way of saying that $W(\alpha)$ is well-ordered is that for any non-empt subset S of $W(\alpha)$, $\bigwedge S$ exists. Clearly, $0 \in W(\alpha)$ is its least element. If in addition $1 < \alpha$, $W(\alpha)$ is also atomic, with 1 as the sole atom.
- 3. Next, $W(\alpha)$ is bounded complete. If $S \subseteq W(\alpha)$ is bounded from above by $a \in W(\alpha)$, then $b = \bigvee S$ is an ordinal such that $b \leq a < \alpha$, therefore $b \in W(\alpha)$ as well.
- 4. Finally, we note that $W(\alpha)$ is a complete lattice iff α is not a limit ordinal. If $W(\alpha)$ is complete, then $z = \bigvee W(\alpha) \in W(\alpha)$. So $z < \alpha$. This means that $z+1 \leq \alpha$. If $z+1 < \alpha$, then $z+1 \in W(\alpha)$ so that $z+1 \leq \bigvee W(\alpha) = z$, a contradiction. As a result, $z+1 = \alpha$. On the other hand, if $\alpha = z+1$, then $z = \bigvee W(\alpha) \in W(\alpha)$, so that $W(\alpha)$ is complete.

In any ordinal space $W(\alpha)$ where $0 < \alpha$, a typical open interval may be written (x,y), where $0 \le x \le y < \alpha$. If y is not a limit ordinal, we can also write (x,y) = [x+1,z] where z+1=y. This means that (x,y) is a clopen set if y is not a limit ordinal. In particular, if y is not a limit ordinal, then $\{y\} = (z,y+1)$ is clopen, where z+1=y, so that y is an isolated point. For example, any finite ordinal is an isolated point in $W(\alpha)$.

Conversely, an isolated point can not be a limit ordinal. If y is isolated, then $\{y\}$ is open. Write $\{y\}$ as the union of open intervals (a_i, b_i) . So $a_i < y < b_i$. Since y + 1 covers y, each b_i must be y + 1 or (a_i, b_i) would contain more than a point. If y is a limit ordinal, then $a_i < a_i + 1 < y$ so that, again, (a_i, b_i) would contain more than just y. Therefore, y can not be a limit ordinal and all a_i must be the same. Therefore $(a_i, b_i) = (z, y + 1)$, where z is the predecessor of y: z + 1 = y.

Several basic properties of an ordinal space are:

- 1. Isolated points in $W(\alpha)$ are exactly those points that are limit ordinals (just a summary of the last two paragraphs).
- 2. W(y) is open in $W(\alpha)$ for any $y \in W(\alpha)$. W(y) is closed iff y is not a limit ordinal.
- 3. For any $y \in W(\alpha)$, the collection of intervals of the form (a, y] (where a < y) forms a neighborhood base of y.
- 4. $W(\alpha)$ is a normal space for any α ;
- 5. $W(\alpha)$ is compact iff α is not a limit ordinal.

Some interesting ordinal spaces are

- $W(\omega)$, which is homeomorphic to the set of natural numbers \mathbb{N} .
- $W(\omega_1)$, where ω_1 is the first uncountable ordinal. $W(\omega_1)$ is often written Ω_0 . Ω_0 is not a compact space.
- $W(\omega_1 + 1)$, or Ω . Ω is compact, and, in fact, a one-point compactification of Ω_0 .

References

[1] S. Willard, General Topology, Addison-Wesley, Publishing Company, 1970.