INNOLUX DISPLAY CORPORATION LCD MODULE SPECIFICATION

Customer:	
Model Name:	AT070TN83 V.1
SPEC NO.:	A070-83-TT-11
Date:	2008/03/10

Version: 01

■ Preliminary Specification

□ Final Specification

Remark

- Embedded TTL T-con Board with LED Driver
- Touch Screen Panel

For Customer's Acceptance

Approved by	111	Comment
	1 1	

Approved by	Reviewed by	Prepared by
Joe Lin	James Yu	Kevin Chen
2008/03/31	2008/03/31	2008/03/31

InnoLux copyright 2004 All rights reserved, Copying forbidden.

Record of Revision

Contents

1.	General Specifications	1
2.	Pin Assignment	2
	2.1. TFT LCD Panel Driving Section	2
	2.2. Touch Screen Panel Section	5
3.	Operation Specifications	6
	3.1. Absolute Maximum Ratings	6
	3.2. Typical Operation Conditions	7
	3.3. Power Sequence	8
	3.4. Timing Characteristics	9
	3.4.1. Timing Conditions	9
	3.4.2. Timing Diagram	11
4.	Touch Screen Panel Specifications	13
	4.1. Electrical Characteristics	13
	4.2. Mechanical & Reliability Characteristics	14
	4.3. Linearity Definition	
	4.4. Housing Design Guide	16
5.		
6.	Reliability Test Items	21
7.	General Precautions	.22
	7.1. Safety	.22
	7.2. Handling	.22
	7.3. Static Electricity	.22
	7.4. Storage	.22
	7.5. Cleaning	
	Mechanical Drawing	
9.	Package Drawing	24
	9.1. Packaging Material Table	24
	9.2. Packaging Quantity	24
	9.3. Packaging Drawing	25

Page: 1/25

1. General Specifications

No.	Item	Specification	Remark
1	LCD size	7.0 inch(Diagonal)	
2	Driver element	a-Si TFT active matrix	
3	Resolution	800X3(RGB)X480	
4	Display mode	Normally white, Transmissive	
5	Dot pitch	0.0635(W)X0.1905(H) mm	
6	Active area	152.4 (W)X91.44 (H) mm	
7	Module size	165(W)X104(H)X6.5(D) mm	Note 1
8	Surface treatment	Anti-Glare	
9	Color arrangement	RGB-stripe	
10	Interface	Digital(TTL)	
11	Backlight power consumption	2.500W (Typ.)	Note 2
12	Panel power consumption	0.825W (Typ.)	Note 3
13	Weight	160g (Typ.)	

Note 1: Refer to Mechanical Drawing.

Note 2: Including LED Driver power consumption. Note 3: Including T-con Board power consumption.

Page: 2/25

2. Pin Assignment

2.1. TFT LCD Panel Driving Section

TTL Connector is used for the module electronics interface. The recommended model is

"FH33-40S-0.5SH(10)", manufactured by Hirose.

Pin No.	Symbol	I/O	Function	Remark
1	V_{LED}	Р	Power for LED driver	
2	V_{LED}	Р	Power for LED driver	
3	ADJ	I	Adjust the LED brightness with PWM Pulse	Note1,2
4	G _{LED}	Р	Ground for LED circuit	
5	G _{LED}	Р	Ground for LED circuit	
6	V _{CC}	Р	Power voltage for digital circuit	
7	V _{CC}	Р	Power voltage for digital circuit	
8	MODE	- A	DE or HV mode control	Note 3
9	DE		Data enable	
10	VS		Vsync signal input	
11	HS		Hsync signal input	
12	GND	Р	Power ground	
13	B5		Blue data input (MSB)	
14	B4	V 1	Blue data input	
15	В3	I	Blue data input	
16	GND	Р	Power ground	
17	B2	1	Blue data input	
18	B1	I	Blue data input	
19	В0	I	Blue data input(LSB)	
20	GND	Р	Power ground	
21	G5	I	Green data input(MSB)	
22	G4	I	Green data input	
23	G3	I	Green data input	
24	GND	Р	Power ground	
25	G2	I	Green data input	
26	G1	版推開於	Green data input	

The copyright belongs to InnoLux. Any unauthorized use is prohibited.

INNOLUX

Page: 3/25

27	G0	I	Green data input(LSB)	
28	GND	Р	Power ground	
29	R5	I	Red data input(MSB)	
30	R4	I	Red data input	
31	R3	I	Red data input	
32	GND	Р	Power ground	
33	R2	I	Red data input	
34	R1	I	Red data input	
35	R0	I	Red data input(LSB)	
36	GND	Р	Power ground	k-/
37	DCLK	I	Sample clock	
38	GND	Р	Power ground	
39	L/R	I ₂ I	Select left or right scanning direction	Note 4,5
40	U/D		Select up or down scanning direction	Note 4,5

I: input, O: output, P: Power

Note1: Pin.3 is used to adjust brightness.

Note 2: ADJ signal=0~3.3V, Operating frequency:100~300Hz.

The copyright belongs to InnoLux. Any unauthorized use is prohibited.

Page: 4/25

Note 3: DE Mode: Mode="H",HS floating and VS floating; HV Mode: Mode="L" and DE floating.

Note 4: Selection of scanning mode.

Setting of scar	control input	Scanning direction
U/D	L/R	
GND	V _{CC}	Up to down, left to right
V _{CC}	GND	Down to up, right to left
GND	GND	Up to down, right to left
V _{CC}	V _{CC}	Down to up, left to right

Note 5: Scanning direction refer to the figure below.

Page: 5/25

2.2. Touch Screen Panel Section

Pin No.	Symbol	I/O	Function	Remark
1	Y2	Тор	Top electrode – differential analog	
2	X2	Right	Right electrode – differential analog	
3	Y1	Bottom	Bottom electrode – differential analog	
4	X1	Left	Left electrode – differential analog	

Note: Touch screen panel block

Page: 6/25

3. Operation Specifications

3.1. Absolute Maximum Ratings

(Note1)

Item	Symbol	Val	Unit	Remark		
item	Symbol	Min.	Max.	Oilit	Keillaik	
Power voltage	V _{CC}	-0.3	6.0	V		
Fower voilage	V _{LED}	A -	5.5	V		
Input signal voltage	Vı	-0.3	6.3	V		
Operation temperature	T _{OP}	-10	60	$^{\circ}\! \mathbb{C}$	Note 2,3	
Storage temperature	T _{ST}	-20	70	$^{\circ}\! \mathbb{C}$	Note 2,3	

Note1: The absolute maximum rating values of this product are not allowed to be exceeded at any times. A module should be used with any of the absolute maximum ratings exceeded, the characteristics of the module may not be recovered, or in an extreme condition, the module may be permanently destroyed.

Note2: 90% RH Max. (Max wet temp. is 40°C)

Maximum wet-bulb temperature is at 38°C or less. And No condensation (no drops of dew)

Note3: In case of temperature below 0° C, the response time of liquid crystal (LC) becomes slower and the color of panel darker than normal one.

Page: 7/25

3.2. Typical Operation Conditions

ltem	Symbol		Values	Unit	Remark	
item	Symbol	Min.	Тур.	Max.	Oilit	Remark
Power voltage	V _{CC}	3.1	3.3	3.5	V	Note 1
Fower voltage	V_{LED}	4.8	5.0	5.2	V	Note 2
Current consumption	Icc	-	250	300	mA	
Current consumption	I _{LED}	4- 1	500	550	mA	Note 3
Input logic high voltage	V _{IH}	0.7V _{CC}	V	V _{cc}	V	Note 4
Input logic low voltage	V _{IL}	0	<u> </u>	0.3V _{CC}	V	Note 4
LED life time	(20,000	-	49	Hr	Note 5

- Note 1: V_{CC} setting should match the signals output voltage (refer to Note 4) of customer's system board.
- Note 2: LED driving voltage.
- Note 3: LED driving current.
- Note 4: DCLK,DE,HS,VS,R0~ R5,G0~ G5,B0~ B5.
- Note 5: The "LED life time" is defined as the module brightness decrease to 50% original brightness at Ta=25 $^{\circ}$ C and V_{LED}=5.0V. The LED lifetime could be decreased if operating V_{LED} is larger than 5.0V.

INNOLUX

3.3. Power Sequence

Note: Data Signal includes DCLK, DE, HS, VS, R0~ R5, G0~ G5, B0~ B5.

Page: 9/25

3.4. Timing Characteristics

3.4.1. Timing Conditions

Input signal characteristics of SYNC mode.

Input signal characteristics of STN		Values			Unit	Remark
Item	Symbol	Min.	Тур.	Max.	Offic	Kemark
Clock Period	tclk	23.2	25.0	30.7	ns	
Clock Frequency	fclk	32.4	40	43	MHz	
Clock Low Level Width	twcL	8	-			
Clock High Level Width	twch	8		-	ns	
Clock Rise/Fall Time	tclkr, tclkf		-	3	2	
HSYNC Period	t HP	862	1056	1100	tclk	
HSYNC Pulse Width	tнw		1	0	tclk	
HSYNC Back Porch	tнвр	- 3	45	P	t clk	
HSYNC Width + Back Porch	thw + tHBP	4.	46		t CLK	
Horizontal valid data width	tн∨	KI.	800		tclk	
HSYNC Front Porch	tHFP	thp - t	:HW - t HBP -	- t н∨	tclk	
Horizontal Blank	tнвк		thp - thv		tclk	
VSYNC Period	t VP	628	635	650	t HP	
VSYNC Pulse Width	t∨w	-	1	-	t HP	
VSYNC Back Porch	t vbp		22		t HP	
Vertical valid data width	tw		480		t HP	
Vertical Front Porch	t VFP	tvp - tvw - tvbp - tw		t HP		
Vertical Blank	t∨вк	tvp - tw		thp		
Data Setup Time	t DS	5		ns		
Data Hold Time	t DH	10	-	-	ns	

Page: 10/25

Input signal characteristics of DE mode.

Item		Symbol	Values			Unit	Remark
		Syllibol	Min.	Тур.	Max.	Unit	Remark
	Period	t clk	23.2	25.0	30.7	ns	
	Frequency	fclk	32.4	40	43	MHz	
	Low Level Width	t wcL	6		4 27		
DCLK	High Level Width	twcн	6	-	1	ns	
	Rise/Fall Time	tclkr, tclkf	-	7-	3	19	
	Duty	-	0.45	0.50	0.55	-	tclkl/ tclk
	Setup Time	tDES	5	-	- 6	2	•
	Hold Time	t DEH	10	-	- 44	ns	
	Rise/Fall Time	tDEr, tDEf	<i>y</i> -	-	16		
	Horizontal Period	thp	862	1056	1100		
DE	Horizontal Valid	thv	APA (800		t clk	
	Horizontal Blank	tнвк	81	thp - thv			
	Vertical Period	t vp	628	635	650		
	Vertical Valid	tw		480		t HP	
	Vertical Blank	tvвк		t∨P - tw			
DATA	Setup Time	tos	5	-	_		
	Hold Time	tон	10	-	-	ns	
	Rise/Fall Time	tor, tof	-	-	3		

Page: 11/25

3.4.2. Timing Diagram

Input Horizontal Timing

Page: 12/25

DE and RGB Input Timing

Page: 13/25

4. Touch Screen Panel Specifications

4.1. Electrical Characteristics

Item	Value			Unit	Remark	
item	Min.	Тур.	Max.	Oilit	Kelliaik	
Linearity	-1.5	-	1.5	%	Analog X and Y directions	
Terminal	350	- <	1200	Ω	X(Film side)	
Resistance	100	-	600	Ω	Y(Glass side)	
Insulation resistance	25		1	ΜΩ	DC 25V	
Voltage	-	-	7	٧	DC	
Chattering	/		10	ms	100kΩ pull-up	
Transparency	80		- 1	%		

Note: Avoid operating with hard or sharp material such as a ball point pen or a mechanical pencil except a polyacetal pen (tip R0.8mm or less) or a finger.

Page: 14/25

4.2. Mechanical & Reliability Characteristics

Item		Value		Unit	Remark	
Item	Min.	Тур.	Max.	Offic		
Active force	80	-	-	gf	Note 1	
Durability-surface scratching	Write 100,000	-	- 1	characters	Note 2	
Durability-surface pitting	1,000,000	-	1	touches	Note 3	
Surface hardness	3		1	H	102	

Note 1: Active force test condition

- (1) Input DC 5V on X direction, Drop off Polyacetal Stylus (R0.8), until output voltage stabilize ,then get the activation force •
- (2) R8.0mm Silicon rubber for finger Activation force test
- (3) Test point: 9 points

Note 2: Measurement for surface area.

- -Scratch 100,000 times straight line on the film with a stylus change every 20,000 times.
- -Force: 250gf.
- -Speed: 60mm/sec.
- -Stylus: R0.8 polyacetal tip.
- Note 3: Pit 1,000,000 times on the film with a R0.8 silicon rubber.
 - -Force: 250gf.
 - -Speed: 2times/sec.

Page: 15/25

4.3. Linearity Definition

Va: maximum voltage in the active area of touch panel Vb: minimum voltage in the active area of touch panel

X: random measuring point Vxm: actual voltage of Lx point Vxi: theoretical voltage of Lx point

Distance(mm)

Linearity = [|Vxi-Vxm |/(Va-Vb)]*100%

Note: Test area is as follows and operation force is 150gf.

The copyright belongs to InnoLux. Any unauthorized use is prohibited.

Page: 16/25

4.4. Housing Design Guide

Housing design follow as below.

- 1) Avoid the design that housing overlap and press on the active area of the LCM.
- 2) Give enough gap(over 0.5mm at compressed) between the housing and TSP to protect wrong operating.

- 3) Use a buffer material(Gasket) between the TSP and housing to protect damage and wrong operating.
- 4) Avoid the design that buffer material overlap and press on the inside of TSP view area.

Page: 17/25

5. Optical Specifications

Item	Symbol	Condition	Values			Unit	Remark
item	Symbol	Condition	Min.	Тур.	Max.	Oilit	Remark
	θ_{L}	Ф=180°(9 o'clock)	60	70	-		Note 1
Viewing angle	θ_{R}	Φ=0°(3 o'clock)	60	70	1-15		
(CR≥ 10)	θτ	Φ=90°(12 o'clock)	40	50	degree		Note 7
	θ_{B}	Φ=270°(6 o'clock)	60	70	_		
Dooponoo timo	T _{ON}		1	10	20	msec	Note 3
Response time	T _{OFF}		1	15	30	msec	Note 3
Contrast ratio	CR	Normal θ=Φ=0°	400	500	4	-	Note 4
Color	W _X		0.26	0.31	0.36	-	Note 2 Note 5
chromaticity	W _Y		0.28	0.33	0.38	-	Note 6 Note 7
Luminance	L		190	240	-	cd/m ²	Note 6
Luminance uniformity	Yu		70	75	-	%	Note 6 Note 8

Test Conditions:

- 1. V_{CC} =3.3V, V_{LED} =5.0V.The ambient temperature is 25°C.
- 2. The test systems refer to Note 2.

Page: 18/25

Note 1: Definition of viewing angle range

Fig. 4-1 Definition of viewing angle

Note 2: Definition of optical measurement system.

The optical characteristics should be measured in dark room. After 30 minutes operation, the optical properties are measured at the center point of the LCD screen. (Response time is measured by Photo detector TOPCON BM-7, other items are measured by BM-5A/Field of view: 1° /Height: 500mm.)

Fig. 4-2 Optical measurement system setup

The copyright belongs to InnoLux. Any unauthorized use is prohibited.

Page: 19/25

Note 3: Definition of Response time

The response time is defined as the LCD optical switching time interval between "White" state and "Black" state. Rise time (T_{ON}) is the time between photo detector output intensity changed from 90% to 10%. And fall time (T_{OFF}) is the time between photo detector output intensity changed from 10% to 90%.

Fig. 4-3 Definition of response time

Note 4: Definition of contrast ratio

Contrast ratio (CR) = Luminance measured when LCD on the "White" state

Luminance measured when LCD on the "Black" state

Note 5: Definition of color chromaticity (CIE1931)

Color coordinates measured at center point of LCD.

Note 6: All input terminals LCD panel must be ground while measuring the center area of the panel. The LED driving condition is V_{LED}=5.0V.

Note 7: The values shall be measured without Touch Screen Panel.

Page: 20/25

Note 8: Definition of Luminance Uniformity

Active area is divided into 9 measuring areas (Refer to Fig. 4-4). Every measuring point is placed at the center of each measuring area.

Luminance Uniformity (Yu) =
$$\frac{B_{min}}{B_{max}}$$

L-----Active area length W----- Active area width

Fig. 4-4 Definition of measuring points

 B_{max} : The measured maximum luminance of all measurement position. B_{min} : The measured minimum luminance of all measurement position.

Page: 21/25

6. Reliability Test Items

(Note 3)

Item	Test C	Remark	
High Temperature Storage	Ta = 80°C	240 hrs	Note 1,Note 4
Low Temperature Storage	Ta = -30°C	240hrs	Note 1,Note 4
High Temperature Operation	Ts = 70°C	240hrs	Note 2,Note 4
Low Temperature Operation	Ta = -20°C	240hrs	Note 1,Note 4
Operate at High Temperature and Humidity	+40℃, 90%RH	240 hrs	Note 5
Thermal Shock	-30°C/30 min ~ +80°c cycles, Start with col with high temperature	Note 4	
Vibration Test			
Mechanical Shock	100G 6ms,±X, ±Y, ± direction		
Package Vibration Test			
Package Drop Test Height:60 cm 1 corner, 3 edges, 6 surfaces			
Electro Static Discharge	±2KV, Human Bod		

- Note 1: Ta is the ambient temperature of samples.
- Note 2: Ts is the temperature of panel's surface.
- Note 3: In the standard condition, there shall be no practical problem that may affect the display function. After the reliability test, the product only guarantees operation, but doesn't guarantee all the cosmetic specification.
- Note 4: Before cosmetic and function test, the product must have enough recovery time, at least 2 hours at room temperature.
- Note 5: Before cosmetic and function test, the product must have enough recovery time, at least 24 hours at room temperature.

Page: 22/25

7. General Precautions

7.1. Safety

Liquid crystal is poisonous. Do not put it in your mouth. If liquid crystal touches your skin or clothes, wash it off immediately by using soap and water.

7.2. Handling

- 1. The LCD panel is plate glass. Do not subject the panel to mechanical shock or to excessive force on its surface.
- 2. The polarizer attached to the display is easily damaged. Please handle it carefully to avoid scratch or other damages.
- 3. To avoid contamination on the display surface, do not touch the module surface with bare hands.
 - 4. Keep a space so that the LCD panels do not touch other components.
- 5. Put cover board such as acrylic board on the surface of LCD panel to protect panel from damages.
- 6. Transparent electrodes may be disconnected if you use the LCD panel under environmental conditions where the condensation of dew occurs.
 - 7. Do not leave module in direct sunlight to avoid malfunction of the lcs.

7.3. Static Electricity

- 1. Be sure to ground module before turning on power or operating module.
- 2. Do not apply voltage which exceeds the absolute maximum rating value.

7.4. Storage

- 1. Store the module in a dark room where must keep at 25±10°C and 65%RH or less.
- 2. Do not store the module in surroundings containing organic solvent or corrosive gas.
 - 3. Store the module in an anti-electrostatic container or bag.

7.5. Cleaning

- 1. Do not wipe the polarizer with dry cloth. It might cause scratch.
- 2. Only use a soft sloth with IPA to wipe the polarizer, other chemicals might permanent damage to the polarizer.

INNOLUX

Page: 23/25

8. Mechanical Drawing

Page: 24/25

9. Package Drawing

9.1. Packaging Material Table

No.	Item	Model (Material)	Dimensions (mm)	Unit Weight (kg)	Quantity	Remark
1	LCM Module	AT070TN83 V.1	165 X 104 X 6.5	0.160	50 pcs	
2	Partition	BC Corrugated Paper	512 X 349 X 226	1.466	1 set	
3	Corrugated Bar	BC Corrugated Paper	<mark>512</mark> X 162	0.046	4 set	
4	Corrugated Board	BC Corrugated Paper	510 X 343	0.130	1 pcs	
5	Dust-Proof Bag	PE	700 X 530	0.048	1 pcs	
6	A/S Bag	PE	180 X 160 X 0.05	0.002	50 pcs	
7	Carton	Corrugated paper	530 X 355 X 255	1.100	1 pcs	
8	Total weight		11.028kg±5%	() Y		

9.2. Packaging Quantity

Total LCM quantity in Carton: no. of Partition 2 Rows x quantity per Row 25 = 50

Page: 25/25

9.3. Packaging Drawing

