

TECHNICAL

l			
AD			
עאן			

AD-E400 113

CONTRACTOR REPORT ARLCD-CR-78008

TNT EQUIVALENCY OF M10 PROPELLANT

F. L. MCINTYRE
NASA NATIONAL SPACE TECHNOLOGY LABORATORIES

PAUL PRICE
PROJECT ENGINEER, ARRADCOM

MARCH 1978

US ARMY ARMAMENT RESEARCH AND DEVELOPMENT COMMAND

LARGE CALIBER

WEAPON SYSTEMS LABORATORY

DOVER, NEW JERSEY

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The findings in this report are not to be construed as an official Department of the Army position.

DISPOSITION

Destroy this report when no longer needed. Do not return to the originator.

The citation in this report of the names of commercial firms or commercially available products or services does not constitute official endorsement or approval of such commercial firms, products, or services by the US Government.

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
REPORT NUMBER 2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER
Contractor Report ARLCD-CR-78008	
. TITLE (and Subtitle)	S. TYPE OF REPORT & PERIOD COVERED
TNT EQUIVALENCY OF M10 PROPELLANT	Final Report
7. AUTHOR(a)	8. CONTRACT OR GRANT NUMBER(8)
F. L. McIntyre, NASA-NSTL	or continue on only homosphay
P. Price, Project Engineer, ARRADCOM	MIPR 816B60201 F4W5
PERFORMING ORGANIZATION NAME AND ADDRESS NASA National Space Technology Laboratories Edgewood Arsenal Resident Laboratory Bay St. Louis, MS 39520	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS ARRADCOM Project 5764285
1. CONTROLLING OFFICE NAME AND ADDRESS	12. REPORT DATE March 1978
ARRADCOM ATTN: DRDAR-TSS Dover, NJ 07801	13. NUMBER OF PAGES 57
4. MONITORING AGENCY NAME & ADDRESS(If different from Controlling Office) ARRADCOM	15. SECURITY CLASS. (of this report)
ATTN: DRDAR-LCM	Unclassified
Dover, NJ 07801	15a. DECLASSIFICATION/DOWNGRADING SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release, distribution unlimited.

17. DISTRIBUTION STATEMENT (of the ebetrect entered in Block 20, If different from Report)

18. SUPPLEMENTARY NOTES

Tests were accomplished as part of the US Army Manufacturing Technology Program The primary objective of this program is to develop, on a timely basis, manufacturing process techniques and equipment for use in the production of Army materials.

19. KEY WORDS (Continue on reverse side if necessary and identify by block number)

M10 Propellant Scaled blast pressure

TNT equivalency Scaled distance

Scaled positive impulse Scaled time of arrival Geometric configuration

20. ABSTRACT (Continue on reverse side if necessary and identify by block number)

Peak, side-on blast overpressure and scaled, positive impulse have been measured for M10 single-perforated propellant, web size 0.018 inches, using configurations that simulate the handling of bulk material during processing and shipment. Quantities of 11.34, 22.7, 45.4, and 65.8 kg were tested in orthorhombic shipping containers and fiberboard boxes. High explosive equivalency values for each test series were obtained as a function of scaled distance by comparison

20. ABSTRACT (Continued)

to known pressure, arrival time and impulse characteristics for hemispherical TNT surface bursts. The equivalencies were found to depend significantly on scaled distance, with higher values of 150-100 percent (pressure) and 350-125 percent (positive impulse) for the extremes within the range from 1.19 to 3.57 m/kg $^{1/3}$. Equivalencies as low as 60-140 percent (pressure) and 30-75 percent (positive impulse) were obtained in the range of 7.14 to 15.8 m/kg $^{1/3}$. Within experimental error, both peak pressure and positive impulse scaled as a function of charge weight for all quantities tested in the orthorhombic configuration.

ACKNOWLEDGEMENTS

The author wishes to acknowledge the technical assistance of the Kellar Range field test crew of the Computer Sciences Corporation; D. A. Martin of the Edgewood Arsenal Resident Laboratory; Darl Westover and Joseph Caltagirone of ARRADCOM, Dover, NJ.

SUMMARY

M10 propellant, 0.018 inch web, single perforation, was detonated in configurations representative of orthorhombic shipping boxes, and a simulated inplant conveyor bucket. Blast output parameters were measured and TNT equivalency was computed based on comparison with TNT hemispherical surface bursts. The results of these tests are represented in the table below and in figures on the following pages. Within experimental error, the pressures and impulses from the orthorhombic and conveyor bucket configurations (11.34 kg, 22.68 kg, 45.36 kg, 65.77 kg) scaled according to the cube root of charge weight.

		Pressure (P) and Impulse (I) TNT Equivalency (%) at Scaled Distance											
Configuration Mass	1.19m/kg 1/3 (3.0ft/lb 1/3)		1.61m/kg ^{1/3} (4.05ft/lb ^{1/3})		2.13m (5.38ft	2.13m/kg 1/3 (5.38ft/lb 1/3)		3.57m/kg ^{1/3} 9.0ft/lb ^{1/3})		7.14m/kg ^{1/3} (18.0ft/lb ^{1/3})		15.9m/kg (40ft/lb ^{1/3})	
	P	I	P	I	P	I	P	I	P	I	P	I	
Ratio h/w < 1 11.34 kg 22.7 kg 45.36 kg	115	330	145	280	140	130	90	65	60	70	90	75	
Ratio h/w > 1 45.36 kg 65.77 kg	165	210	140	330	150	165	90	80	75	60	140	30	

TABLE OF CONTENTS

		Page No
Introdu	ction	1
Obj Mai Tes	ckground jective terial st Plan strumentation	1 1 1 2 2
Results		6
Te	ta Analysis st Results scussion	6 7 7
Conclu	sions	8
Referer	nces	9
Append	lixes	
Α	Field Data Sheets	25
В	Selected Photographs	35
С	Safety Approval	43
Distrib	ution List	45
Tables		
1	Transducer Calibration and Placement	5
2	Summary of Test Results, 11.34 kg Charges	11
3	Summary of Test Results, 22.68 kg Charges	11
4	Summary of Test Results 45.4 Charges with a Ratio h/w < 1	12

	5	Stainless Steel Vented Container with a Ratio h/w > 1	12
	6	Summary of Test Results 65.77 kg Charges	13
	7	Summary of Test Results of 11.34, 22.68 and 45.36 kg Charge Weight Combined with Ratio $h/w < 1$	13
	8	Summary of Test Results of 45.4 and 65.8 Charge Weights Combined with Ratio $h/w < 1$	14
	9	Fireball Duration and Diameter	14
Figu	ıres		
•	1	Test Container Configurations	3
	2	Typical Charge Placement for Equivalency Tests	4
	3	Test Area Showing Transducer and Camera Placement	4
	4	Pressure and Impulse vs. Scaled Distance, 11.34 kg Charges	15
	5	Pressure and Impulse vs. Scaled Distance, 22.68 kg Charges	16
	6	Pressure and Impulse vs. Scaled Distance, 45.4 kg Charges	17
	7	Pressure and Impulse vs. Scaled Distance, 45.4 kg Charge M-25 Stainless Steel Container Ratio h/w = 1: 0.4	18
	8	Pressure and Impulse vs. Scaled Distance, 65.77 kg Charges	19
	9	Pressure and Impulse vs. Scaled Distance for Combined Weights of 11.34, 22.68 and 45.4 kg Charges with a Ratio $h/w < 1$	20

10	Pressure and Impulse vs. Scaled Distance for Combined Weights of 45.4, 65.8 kg Charges with a Ratio $h/w > 1$	24
11	Pressure and Impulse Equivalencies	22
12	Composite TNT Equivalency of M10 Propellant	23
13	Deviation From Cube-root Scaling of M10 Propellant	24

.

INTRODUCTION

BACKGROUND

Plans are currently underway for designing new and modernizing existing U.S. Army Production facilities where M10 propellant is loaded into munitions. Although all building and equipment designs have not been finalized, it is known that bulk quantities of this material will be found at various points in the load, assemble and pack (LAP) operations.

M10 propellant is a Class 7 (DOT Class B) material and is shipped in four types of containers, the type being dictated by the weight of the propellant to be shipped. For a quantity of 22.7 kg the required container is a M-17 metal lined wood box, Drawing Number 76-4-56. For quantities of 45.4 kg two types of containers, a M-24 metal lined wood box, Drawing Number 76-4-46 and a M-25 stainless steel vented container, Drawing Number 7549033 are used. The M-24 metal lined wood box is also used for quantities of 68.0 kg. The various shipping containers of M10 propellant will be received and stored in Stradley Igloos. The bulk material will then be weighed into 11.34 kg increments and transferred via bucket conveyor to the propellant charge preparation building.

Safety engineering and cost effectiveness considerations require knowledge of hazardous material characteristics as an input to facility design requirements. In this instance, specific data is required on the explosive output characteristics of M10 propellant in quantities and configurations representative of those found in processing.

OBJECTIVE

The objective of this work was to determine the maximum output from the detonation of M10 propellant in terms of the airblast overpressure and positive impulse compared to known characteristics of a hemispherical surface blast of TNT.

MATERIAL

The test material was Propellant, Explosive, Solid Class B Propellant M10, Type 2 (Lot numbers RAD 68725 and RAD 88725), 0.018 inch web, single perforation (SP) grain, containing 98 percent nitrocellulose (13.25 percent N), 1 percent potassium sulfate and 1 percent diphenylamine. The propellant was received from Radford Army Ammunition Plant in standard shipping boxes (Drawing Number 76-4-46) containing 65.8 kg net mass.

TEST PLAN

Airblast output was evaluated for masses and configurations of M10 propellant representative of three shipping and in-plant situations. Physical characteristics of the test items were as follows:

- (1) An orthorhombic container, Figure 1(a), was used to simulate the conveyor bucket. Two-piece telescoping fiberboard boxes were fabricated and filled with 11.34 kg of M10 propellant.
- (2) M-17 metal-lined wood boxes, Figure 1(b), were used for charge weight of 22.68 kg. The box was approximately half full as shown in the figure.
- (3) M-24 metal-lined wood boxes, Figures 1(c, d), were used for 45.4 kg and 65.8 kg quantities of M10, with boosters placed as shown.
- (4) M-25 stainless steel vented container, Figure 1(e) was used for 45.4 kg quantities of M10 propellant.

A conical shaped booster charge of Composition C-4 high explosive was placed in the center of the top of each container, buried such that the apex was level with the top surface of the test material as shown in Figure 1(f). The booster was detonated with an engineers' special J-2 Blasting Cap inserted at the apex and embedded to the center of the cone. A single test for each configuration was performed using a booster equal to 1 percent by weight of the test charge, and subsequent visual observations indicated the absence of unburned propellant. However, since the TNT equivalent weight of C-4 is factored out during data analysis, 1.5 to 2 percent boosters were used to assure complete detonation in subsequent tests. Three or four tests were performed at each specified charge weight.

The test charge for each configuration was placed on a 0.61 by 0.61 by 0.0064m thick 1010 carbon steel witness plate in the center of the test area shown in Figure 2. The area was refurbished after each test subsequent to measurement of crater diameter and depth.

INSTRUMENTATION

Twelve Susquehanna Instruments Model ST-7 side-on blast transducers were mounted in wooden blocks that were buried so that the sensor was at ground level in two arrays within the test area shown in Figure 3. Distances between transducers and charges were calculated to correspond to scaled distances of 1.19, 1.61, 2.13, 3.57, 7.14 and 15.87 meter/kg^{1/3}. The transducers were individually calibrated prior to each test series with pressure pulses from a standard solenoid-actuated air pressure calibration fixture, adjusted to correspond to expected blast pressure on an assumed TNT equivalency of 100 percent. This calibration was verified initially by measuring free field blast pressures from 0.454 kg bare spherical charges of 50/50 pentolite. Signal line continuity and channelization were checked prior to each test. Details of

Figure 1. Test Container Configurations

Figure 2. Typical Charge Placement for Equivalency Tests

Figure 3. Test Area Showing Transducer and Camera Placement

distances between charge and transducers, calibration pressure and expected peak blast pressures at each distance are shown in Table 1.

Table 1. Transducer Calibration and Placement

	Scaled			Distance	e in Meters (I	t) From Ch	arge
Channel Number	Distance $m/kg^{1/3}$ (ft/1b ^{1/3})	Calibration Pressure kPa (psig)	Expected Pressure kPa (psig)	Charge Weight 11.34 kg (25 lb.)	Charge Weight 22.68 kg (50 lb)	Charge Weight 45.4 kg (100 lb)	Charge Weight 65.8 kg (145 lb)
1, 7	1.19	689	868.6	2.67	3.37	4.24	4.80
	(3.0)	(100)	(126.0)	(8.77)	(11.05)	(13.92)	(15.76)
2, 8	1.61	414	437.5	3.61	4.55	5.73	6.49
	(4.05)	(60)	(66.35)	(11.84)	(14.9)	(18.80)	(21.28)
3, 9	2.13 (5.38)	207.8 (30)	250. 5 (36. 33)	4.80 (15.73)	6.04 (19.8)	7.61 (24.97)	8.61 (28.26)
4, 10	3.57	68.9	87.9	8. 02	10.11	12.73	14.41
	(9.0)	(10)	(12.74)	(26. 32)	(33.2)	(41.77)	(47.28)
5, 11	7.14	34.5	24.9	16.04	20.21	25. 47	28. 82
	(18.0)	(5)	(3.605)	(52.63)	(66.3)	(83. 55)	(94. 55)
6, 12	15.87	34.5	7.45	35.64	44.92	56. 59	64.05
	(40.0)	(5)	(1.081)	(117.0)	(147.4)	(185. 66)	(210.14)

Each transducer with inherent charge amplifier was connected to an underground coaxial cable system which leads into the instrumentation building, approximately 600 feet from the test area. All signals were amplified by Dynamic 6457 units and recorded on a 14-track Sangamo Model 4700 tape recorder at 152 centimeters per second (60 ips), along with an initial timing signal from a break wire placed on the booster charge and one millisecond timing pulses. The nominal response (-3dB) for this recording system is 30 kHz. Data from channels 1, 2, 7 and 8 (i.e., the closest transducers) were simultaneously recorded at 305 centimeters per second (120 ips) on a Honeywell Model 96 tape recorder. Data from the magnetic tapes, read at 19.05 cm per second, was recorded on a Honeywell Model 1612 oscillograph operated at 101.6 cm per second.

Photographic coverage was restricted to one test for each configuration, see Figure 3. Motion picture coverage included a Hycam Model 41.004 camera operated at 1500-4000 frames per second (fps) and one Mitchell camera operated at 24 fps. One Hulcher Model 40, 70-mm sequencing still camera, was operated at 20 pictures per second. Fiducial markers in the field of view with 3.05 meter spacing aided in determination of fireball diameter. Standard meteorological data was recorded for each test.

DATA ANALYSIS

Peak blast overpressure, time of arrival and scaled positive impulse information was obtained in direct analog form from the oscillograph records. After exclusion of poor results that could be attributed to instrumentation malfunction, impingement of fragments on the transducer elements or improper calibration, average values for peak pressure and scaled positive impulse were calculated for each weight and scaled distance.

The average peak pressures were compared directly with standard reference curves for hemispherical TNT surface blasts (Reference 1) to derive TNT equivalency (E_p) as a percentage by weight based on equivalent side-on blast pressure at equal distances from the charge:

$$E_{p} = 100 \left[\frac{W_{TNT}}{W_{M10}} \right] = 100 \left[\frac{Z_{M10}^{3}}{Z_{TNT}^{3}} \right]$$
 constant pressure and distance (1)

where W is the weight of explosive, Z is scaled distance, P is the peak blast pressure and the subscripts refer to the explosive material.

Calculations of TNT impulse equivalency were based on the analytical method of McKown and McIntyre (Reference 2). Thus the impulse equivalency, $E_{\rm I}$, is given in terms of measured parameters by

$$E_{I} = 0.0163 \ Z_{M10}^{1.42} \ I_{M10}^{1.58}$$
 (2)

where I is the measured impulse in (kPa) (msec)/kg $^{1/3}$ at scaled distance Z in meters/kg $^{1/3}$.

An analysis of contributions to the measured peak pressure and impulse showed that the weight of booster material used for these tests is insignificant. To a first approximation, the TNT equivalencies of the C4 booster and the M10 propellant were assumed equal, i.e., the actual explosive charge weight is the sum of the booster and test material. Neglect of the booster then corresponds

to an error of 2 percent in weight of explosive and a maximum error of 1 percent in scaled distance. Uncertainties of this magnitude produce corresponding errors in pressure and impulse that are considerably below the standard deviation of reference tables (Reference 1) and are an order of magnitude less than experimental errors in normal blast measurements. The same conclusion is obtained for any reasonable assumption concerning the actual equivalency of the booster material; the contribution may be totally neglected for booster weights on the order of 2 percent, test material equivalencies in the range of 50 percent to 300 percent, and scaled distances in the range from 1 to 16 m/kg 1/3.

TEST RESULTS

Data sheets for all tests with pertinent measured parameters are given in Appendix A. Selected pretest and posttest still photographs are given in Appendix B. Test numbers shown are for local reference only and provide access to original range data files.

Average pressure, scaled positive impulse, and time of arrival data, with standard deviations, are summarized by test configuration in Tables 2 thru 6 and Figures 4 thru 9. Percent TNT equivalencies for all charge weights are shown in Figure 10 as functions of scaled distance. Composite equivalency curves based upon similar ratios of height to weight (h/w) are shown in Figure 11 and are reproduced in the Summary section of this report. Fireball duration and diameter as measured from the high speed motion pictures are given in Table 8.

DISCUSSION

The plots of peak pressure versus scaled distance (Figures 4 thru 8) from the orthorhombic configuration show the same general trend that has been observed in recent TNT equivalency determinations on other explosive and propellant materials. Compared to corresponding TNT hemispherical surface burst, the observed pressures are greater at the near field values ($Z \le 6$ m/kg^{1/3}) and less than the standard for far field values (Z > 6 m/kg^{1/3}). Impulse versus distance data shows similar tendencies, although impulse equivalencies were significantly higher than the pressure equivalencies at the near field values. Pressure and impulse data obtained from the 11.34, 22.78 and 45.5 kg charge masses in similar ratio h/w < 1 are fit by a single curve. Similarly, data from the 45.4 and 65.8 kg with similar ratio h/w > 1 also plot as a single curve. The composite data is shown in Tables 7 and 8 and Figures 9, 10 and 11. Essentially S-shaped TNT Equivalency curves were obtained by use of the mean data, see Figure 12.

Figure 13 is a graphical presentation of the deviation from cube root scaling using the M10 propellant data. A positive slope indicates that increasing charge masses at constant scaled distance results in an increase in pressure or impulse equivalency. Conversely, a negative slope is indicative of a decrease in pressure

or impulse equivalency for increased charge masses. Although a positive slope was obtained for side-on pressure and a negative slope was observed for scaled impulse, to within experimental error the data correlated with the standard TNT cube root scaling for all charge weights tested.

Fireball characteristics shown in Table 9 were obtained from the high speed motion pictures taken during a singular test at each charge weight. The fireball diameter and duration were compared to predictions from equations given by High (Reference 3):

$$D = 3.86 \text{ W}^{0.320} \text{ ; } T_D = 0.299 \text{ W}^{0.320}$$

where D is the fireball diameter in meters, W is the weight of material in kilograms, and $T_{\rm D}$ is the duration in seconds.

The observed fireball diameters do not agree with predicted values except for the data from the 11.34 kg test, and there does not appear to be any general correlation in the data. The fireball durations are fit reasonably well if the constant is revised, i.e.,

$$T_D \approx 0.13 \text{ W}^{0.320}$$

It is apparent that variations due to container construction, geometry, and ullage prohibit a detailed analysis with the limited data from these tests.

The 24 frame per second motion pictures were used only for test documentation and for verification of the fireball information obtained from the high speed film. The Hulcher camera provided excellent documentary photographs of the reaction characteristics, as shown in Appendix B.

CONCLUSIONS

- 1. The pressure and impulse TNT equivalency of M10, Type 2, SP 0.018 propellant in four orthorhombic configurations varies with scaled distance and is greater than 100 percent at near field values $(Z < 3m/kg^{1/3})$ and less than 100 percent at far field values $(Z \ge 3m/kg^{1/3})$.
- 2. Within experimental error, the pressures and impulses from the orthorhombic and conveyor bucket configurations (11.34 kg, 22.68 kg, 45.36 kg, 65.77 kg) scaled according to the cube root of charge weight.
- 3. The blast output from M10 propellant is dependent upon the configuration in which it is detonated.

REFERENCES

- 1. C. N. Kingery, "Air Blast Parameters Versus Distances for Hemispherical TNT Surface Bursts," BRL Report No. 1344, September 1966.
- 2. G. L. McKown, F. L. McIntyre, Preliminary Report; "TNT Equivalency of Composition A-5," June 1976.
- 3. R. W. High, Annals of New York Academy of Science 152 I, Pages 441-451 (1968).

Table 2. Summary of Test Results, 11.34 kg Charges

R, meters	Z, m/kg ^{1/3} (ft/lb ^{1/3})	Time of Arrival (ms)	Peak Pressure kPa (psi)	Scaled Positive Impulse kPa. ms/kg 1/3 (psi. ms/lbs)	Pressure TNT Equivalency Percent	Impulse TNT Equivaler.cy Percent
2.67 (8.77)	1.19 (3.00)	0.99 <u>+</u> 0.10	1138 <u>+</u> 119 (165 <u>.</u> <u>+</u> 17.3)	593.9±106.8 (66.18±11.9)	155 <u>+</u> 15	385 <u>+</u> 100
3.61 (11.84)	1.61 (4.05)	1.74 <u>+</u> 0.15	578. <u>+68</u> (83. 9 <u>+</u> 9. 8)	336.2±52 (37.47±5.8)	140 <u>+</u> 22	300 <u>+</u> 35
4.80 (15.7)	2.13 (5.38)	3.17 <u>+</u> 0.22	245. 2 <u>+</u> 40 (35. 57 <u>+</u> 5. 71)	156.2 <u>+</u> 25.1 (17.41 <u>+</u> 2.8)	95 <u>+</u> 24	120 <u>+</u> 35
8.02 (26.3)	3.57 (9.0)	9. 22 <u>+</u> 0. 53	71.7 <u>+</u> 6.8 (10.4 <u>+</u> 0.99)	56.7±10.8 (6.32±1.2)	70 <u>+</u> 10	60 <u>+</u> 15
16.04 (52.6)	7.14 (18.0)	29.61 <u>+</u> 0.73	19.2 <u>+</u> 2 (2.78 <u>+</u> 0.33)	35.4+4.0 (3.95+0.45)	60 <u>+</u> 14	75 <u>+</u> 8
35.7 (117.0)	15.87 (40.0)	83.93 <u>+</u> 1.03	6.6±0.4 (0.95±0.06)	17.9±1.9 (2.00±0.21)	75 <u>+</u> 7	85 <u>+</u> 15

Table 3. Summary of Test Results, 22.68 kg Charges

R, meters (ft.)	Z, m/kg ^{1/3} (ft/lbs ^{1/3}	Time of Arrival (ms)	Peak Pressure kPa (psig)	Scaled Positive Impulse 1/3 kPa. ms/kg (psi. ms/lb ^{1/3})	Pressure TNT Equivalency Percent	Impulse TNT Equivalency Percent
3.37 (11.1)	1.19 (3.0)	1.25 <u>+</u> 0.09	1146 <u>+</u> 128 (163.3 <u>+</u> 18.6)	492.3 <u>+</u> 66.4 (54.86 <u>+</u> 7.4)	145 <u>+</u> 20	345 <u>+</u> 70
4.55 (14.9)	1.61 (4.05)	2.09±0.18	634 <u>+</u> 42 (91.9 <u>+</u> 6.05)	296.9±70.0 (33.09±7.8)	155 <u>+</u> 15	250 <u>+</u> 95
6.04 (19.8)	2.13 (5.38)	3.76 <u>+</u> 0.12		141.4 <u>+</u> 17.9 (15.76 <u>+</u> 2.0)	150 <u>+</u> 60	115 <u>+</u> 40
10.1 (33.2)	3.57 (9.0)	10. 16 <u>+</u> 0. 17	79.3±4.5 (11.50±0.65)	57.7±8.1 (6.43±0.9)	85 <u>+</u> 5	60 <u>+</u> 7
20.2 (66.3)	7.14 (18.0)	37.43 <u>+</u> 0.19	18.3 <u>+</u> 1.0 (2.66 <u>+</u> 0.15)	34.6±2.7 (3.86±0.3)	60 <u>+</u> 5	75 <u>+</u> 8
44.9 (147.4)	15.87 (40.0)	106.21 <u>+</u> 0.46	7.7 <u>+</u> 1.7 (1.11 <u>+</u> 0.24)	17.0±3.6 (1.90±0.4)	90 <u>+</u> 25	80 <u>+</u> 25

Table 4. Summary of Test Results 45.4 Charges With a Ratio $h/w < 1\,$

R, meters (ft.)	Z,m/kg ^{1/3} (ft/lb ^{1/3})	Time of Arrival (ms)	Peak Pressure kPa (psig)	Scaled Positive Impulse 1/3 kPa. ms/kg 1/3 (psi. ms/lbs)	Pressure TNT Equivalency Percent	Inpulse TNT Equivalency Percent
4. 24 (13. 92)	1.19 (3.0)	1. 6 6 <u>+</u> 0. 20	1066. 6 <u>+</u> 152 (154. 7 <u>+</u> 22. 1)	416.7 <u>+</u> 90 (46.44 <u>+</u> 10)	135±30	255+70
5.73 (18.80)	1.61 (4.05)	2. 81 <u>+</u> 0. 30	619 <u>+</u> 32 (89. 7 <u>+</u> 4.7)	293. 3±72 (32. 69±8)	150 <u>+</u> 10	230 <u>+</u> 70
7.61 (24.97)	2.13 (5.38)	4.40 <u>+</u> 0.45	367 <u>+</u> 83 (53, 2 <u>+</u> 12, 0)	167.8±27 (18.7±3.0)	165 <u>+</u> 45	125 <u>+</u> 25
12.73 (41.77)	3.57 (9.0)	14.67 <u>+</u> 0.75	71. 7 <u>+</u> 7. 1 (10. 4 <u>+</u> 1. 00)	58.9±2.2 (6.56±0.24)	75 <u>+</u> 10	65 <u>+</u> 5
25. 47 (83. 55)	7.14 (18.0)	47.17 <u>+</u> 1.62	18.8±3.4 (2.72±0.5)	28.5±2.1 (3.18±0.23)	60 <u>+</u> 15	55 <u>+</u> 10
56. 59 (185. 66)	15.87 (40.0)	1 3 4.04 <u>+</u> 2.18	7.10±1.6 (1.03±0.23)	10.1±2.7 (1.12±0.3)	95 <u>+</u> 20	55 <u>+</u> 15

Table 5. Summary of Test Results 45.4 kg Charge in the M-25 Stainless Steel Vented Container With a Ratio $h/w > 1\,$

R, meters	Z, m/kg 1/3 (ft/lbs 1/3)	Time of Arrival (ms)	Peak Pressure kPa (psig)	Scaled Positive Impulse 1/3 kPa·ms/kg 1/3 (psi·ms/lbs	Pressure TNT Equivalency Percent	Impulse TNT Equivalency Percent
4.24 (13.92)	1,19 (3,0)	1.43 <u>+</u> 0.11	1350 <u>+</u> 59 (195, 8 <u>+</u> 8, 5)	353 <u>+</u> 73 (39, 3 <u>+</u> 8, 1)	185 <u>+</u> 15	215 <u>+</u> 70
5.73 (18.80)	1.61 (4.05)	2.45 <u>+</u> 0.13	827 <u>+</u> 155 (120 <u>+</u> 22.5)	269 <u>+</u> 63 (30 <u>+</u> 7)	200 <u>+</u> 55	175 <u>+</u> 25
7.61 (24.97)	2.13 (5.38)	4.37 <u>+</u> 0.5	333 <u>+</u> 70 (48.3 <u>+</u> 10.1)	186 <u>+</u> 22 (20.7 <u>+</u> 2.5)	150 <u>+</u> 45	185 <u>+</u> 35
12.73 (41.77)	3.57 (9.0)	12.94+1.72	78.6 <u>+</u> 8.3 (11.4 <u>+</u> 1.2)	52 <u>+</u> 9.9 (5.8 <u>+</u> 1.1)	85 <u>+</u> 15	45 <u>+</u> 25
25.47 (83.55)	7.14 (18.0)	45 <u>+</u> 1.74	21.7±2.8 (3.15±0.4)	26.5+1.8 (2.95+0.2)	80 <u>+</u> 20	45 <u>+</u> 10
56.59 (185.66)	15.87 (40.0)	132.9 <u>+</u> 2.1	7.1±0.8 (1.03±0.12)	6.3 <u>+</u> 1.8 (.7 <u>+</u> 0.2)	60 <u>+</u> 20	15 <u>+</u> 5

Table 6. Summary of Test Results 65.77 kg Charges

R, meters	Z, m/kg ^{1/3} (ft/lbs ^{1/3})	Time of Arrival (ms)	Peak Pressure kPa (psig)	Scaled Positive Impulse 1/3 kPa.ms/kg 1/3 (psi.ms/lbs 1/3)	Pressure TNT Equivalency Percent	Impulse TNT Equivalency Percent
4.80 (15.76)	1.19 (3.0)	1.75 <u>+</u> 0.15	_	340.6±119 (37.96±13.3)	110 <u>+</u> 20	180 <u>+</u> 48
6.49 (21.28)	1. 61 (4. 05)	2.72 <u>+</u> 0.36	587 <u>+</u> 85 (85.1 <u>+</u> 12.3)	368 <u>+</u> 130 (41.02 <u>+</u> 14.5)	130 <u>+</u> 15	350 <u>+</u> 49
8.61 (28.26)	2.13 (5.38)	4.62 <u>+</u> 0.67	312 <u>+</u> 90 (45. 2 <u>+</u> 13. 04)	161.3 <u>+</u> 33 (17.98 <u>+</u> 3.7)	160 <u>+</u> 40	150 <u>+</u> 25
14. 41 (47. 28)	3.57 (9.0)	13.97 <u>+</u> 1.64	90. 4 <u>+</u> 14. 2 (13. 11 <u>+</u> 2. 06)	68. <u>+</u> 15 (7. 58 <u>+</u> 1. 7)	105 <u>+</u> 20	75 <u>+</u> 28
28. 82 (94. 55)	7.14 (18.0)	50. 5 <u>+</u> 1. 97	21.1 <u>+</u> 1 (3.06 <u>+</u> 0.13)	29.8 <u>+</u> 5.5 (3.32 <u>+</u> 0.61)	75 <u>+</u> 5	60 <u>+</u> 16
64.05 (210.14)	15.87 (40.0)	147.8 <u>+</u> 1.98	8.1 <u>+</u> 1.37 (1.17 <u>+</u> 0.2)	11±3.6 (1.23±0.4)	110 <u>+</u> 30	40 <u>+</u> 12

Table 7. Summary of Test Results of 11.34, 22.68 and 45.36 kg Charge Weight Combined with Ratio $h/w < 1\,$

Scaled Distance Z, m/kg/3 (ft/lbs ^{1/3})	Scaled Time of Arrival ms/kg ^{1/3}	Peak Pressure kPa (psig)	Scaled Positive Impulse 1/3 kPa·ms/kg 1/3 (psi·ms/lbs 1/3)	Pressure TNT Equivalency Percent	Impulse TNT Equivalency Percent
1.19 (3.0)	0.44+0.03	1027±83 (149±12)	501 <u>+</u> 72 55.8 <u>+</u> 8)	113 <u>+</u> 10	326 <u>+</u> 39
1.61 (4.05)	0.76+0.04	613 <u>+</u> 48 (88 <u>.</u> 9 <u>+</u> 7)	318 <u>+</u> 36 (35 <u>.</u> 4 <u>+</u> 4)	143 <u>+</u> 14	2 7 9 <u>+</u> 42
2.13 (5.38)	1.32 <u>+</u> 0.07	299 <u>+</u> 62 (43, 4 <u>+</u> 9)	149 <u>+</u> 18 (16.6 <u>+</u> 2)	138 <u>+</u> 31	128_+22
3.57 (9.0)	3.84 <u>+</u> 0.18	74 <u>+</u> 7 (10.7 <u>+</u> 1)	59.2 <u>+</u> 4.5 (6.6 <u>+</u> 0.5)	87 <u>+</u> 13	64 <u>+</u> 6
7.14 (18.0)	13.17 <u>+</u> 0.28	19 <u>+</u> 2 (2.7 <u>+</u> 0.3)	32.3 <u>+</u> 6.3 (3.6 <u>+</u> 0.7)	62 <u>+</u> 11	71 <u>+</u> 8
15.87 (40.0)	37.47 <u>+</u> 0.45	7.6±1.4 (1.1±0.2)	16.6 <u>+</u> 2.7 (1.85 <u>+</u> 0.3)	93 <u>+</u> 46	77 <u>+</u> 15

Table 8. Summary of Test Results of 45.4 and 65.8 kg Charge Weights Combined With Ratio $h/w < 1\,$

Scaled Distance 1/3 Z, m/kg (ft/lbs 1/3)	Scaled Time of Arrival ms/kg ^{1/3}	Peak Pressure kPa (psig)	Scaled Positive Impulse 1/3 kPa·ms/kg 1/3 (psi·ms/lbs)	Pressure TNT Equivalency Percent	Impulse TNT Equivalency Percent
1.19 (3.0)	0.43+0.03	1218 <u>+</u> 193 (176 <u>•</u> 6 <u>+</u> 28)	347 <u>+</u> 54 (38.7 <u>+</u> 6)	163 <u>+</u> 36	211 <u>+</u> 43
1.61 (4.05)	0.68 <u>+</u> 0.05	579 <u>+</u> 83 (83, 9 <u>+</u> 12)	347 <u>+</u> 54 (38.7 <u>+</u> 6)	140 <u>+</u> 29	329_+51
2.13 (5.38)	1.19 <u>+</u> 0.11	325 <u>+</u> 90 (47 <u>.</u> 1 <u>+</u> 13)	169 <u>+</u> 27 (18.8 <u>+</u> 3)	151 <u>+4</u> 9	164 <u>+</u> 29
3.57 (9)	3.28 <u>+</u> 1.00	81. 4 <u>+</u> 9 (11. 8 <u>+</u> 1.3)	62 <u>+</u> 9 (6.9 <u>+</u> 1)	89 <u>+</u> 17	79 <u>+</u> 16
7.14 (18)	12.57 <u>+</u> 0.30	20.9 ± 0.8 (3.03 ± 0.11)	28.7±3.6 (3.2±0.4)	74 <u>+</u> 6	57 <u>+</u> 10
15.87 (40)	36.72 <u>+</u> 0.38	8.5 <u>+</u> 1.7 (1.24 <u>+</u> 0.24)	9,2 <u>+</u> 1,8 (1,03 <u>+</u> 0,2)	140 <u>+</u> 55	30 <u>+</u> 10

Table 9. Fireball Duration and Diameter

Charge Weight, kg (lb)	Maximum Fireball Diameter, meters (ft)	Fireball Duration, ms
11.34 (25)	9.14 (30)	300
22.68 (50)	18.29 (60)	300
45.4 (100)	19.81 (65)	550
65.77 (145)	30.48 (100)	550

Figure 4. Pressure and Impulse vs. Scaled Distance, 11.34 kg Charges

Figure 5. Pressure and Impulse vs. Scaled Distance, 22.68 kg Charges

Figure 6. Pressure and Impulse vs. Scaled Distance, 45.4 kg Charges

Figure 7. Pressure and Impulse vs. Scaled Distance, 45.4 kg Charge M-25 Stainless Steel Container Ratio h/w = 1:0.4

Figure 8. Pressure and Impulse vs. Scaled Distance, 65.77 kg Charges

Figure 9. Pressure and Impulse vs. Scaled Distance for Combined Weights of 11.34, 22.68 and 45.4 kg Charges with a Ratio h/w < 1

Figure 10. Pressure and Impulse vs. Scaled Distance for Combined Weights of 45.4, 65.8 kg Charges with a Ratio h/w > 1

Figure 11. Pressure and Impulse Equivalencies

Figure 12. Composite TNT Equivalency of M10 Propellant

Where P₁ = Side on Pressure, 11.34 kg Charge Weight

P_i = Side on Pressure, ith Charge Weight

Figure 13. Deviation From Cube-root Scaling of M10 Propellant.

APPENDIX A

FIELD DATA SHEETS

Test Number 15-6-01 A1

TEST TITLE	Explosive Equivalency Testing	DATE	4/8/76
TEST SAMPLE	M10 Propellant; M-24 Shipping Container	TIME	1324 Hrs.
SAMPLE WEIGHT	100 lbs/45.36 kg	TEMP.	79°F/26. 1°C
IGNITION SOURCE	J-2 Engineer's Special Blasting Cap	HUMIDITY	50%
BOOSTER WT.	1 lb. /. 45 kg Comp C-4, 1% of Charge Wt.	BAR. PRES.	29. 86
TEST NUMBER	15-6-01 A ₁	WIND DIR.	300*
CONTRACT NO.	NAS8-27750	WIND VEL.	9 Knote

OMPOSITION C-4 BOOSTER CHARGE	Ratio $h/w = 0.59$
0. 48m (19") GROUND ZERO	
3.4011 (11.0	-1

	Not Drswn to Scale
FIELD EVALUATION	
No data channele 3 and 12	
Complete detonetion. No unburned propellant wee found.	

		A Test	45.4 kg M10 Pro	pellant	
Channel No.	Distance Meters (ft.)	Psak Prsssure kPa (psig)	Scaled Positive Impulse 1/3 kPa.msec/kg 1/3 (psi.msec/lbs 1/3)	Time of Arrival (msec)	Remarks
1	4. 24	965, 3 (140)	305 (33, 99)	1.6	
7	(13.92	965, 3 (140)	360 (40, 12)	1.6	
2	5.73	579. 2 (84)	499.6 (55.68)	2. 8	
8	(18. 80)	867. 7 (126)	329, 5 (36, 72)	2.8	
3	7.61	-	-	3.8	No data
9	(24. 97)	475. 7 (69)	160. 7 (17. 91)	4.0	
4	12.73	62.1	61 (6. 80)	14.1	
10	(41, 77)	96. 5 (14)	65. 2 (7. 27)	15.7	
5	25.47	12.4 (1.8)	29. 97 (3. 34)	47.0	
11	(83. 55)	20, 7	(3.01)	44.8	
6	56. 57	10.3	14.4 (1.60)	134.4	
12	(185, 66)	-	-	-	No data

Test Number 15-6-01 A2

TEST TITLE	Explosive Equivelency Teeting	DATE	4/8/76
TEST SAMPLE	M10 Propellent; M-24 Shipping Containe	erTIME	1457 Hre.
SAMPLE WEIGHT	100 lbs/45, 36 kg	TEMP.	82°F/27.8°C
IGNITION SOURCE	J-2 Engineer'e Speciel Blasting Cap	HUMIDITY	34%
BOOSTER WT.	J-2 Engineer's Special Blasting Cap 1.5 lbs/0.68 kg Comp C-4, 1.5% of Charge Wt.	BAR. PRES.	29.81
TEST MIMBED	15-6-01 Ag	WIND DIR.	30°
CONTRACT NO.	NAS8-27750	WIND VEL.	5 Knote

Complete detonetion	
Box ends East & West	
Crater Dimension 0.64 meter deep by 3.36 meter wide	
Acoustice date was messured	

		A Test	15.4 kg M10 Prop	ellant	
Channel No.	Distance Maters (ft.)	Peak Pressure kPa (psig)	Scelsd Positive Impulse 1/3 kPa, msec/kg 1/3 (psl. msec/lbs	Tims of Arrival (msec)	Remarks
1	4. 24	1310 (190)	416. 8 (46. 45)	2.0	
7	(13, 92)	1034, 2 (150)	475. 7 (53. 01)	1.8	
2	5. 73	579. 2 (84)	280, 2 (31, 23)	2, 8	
8	(18, 80)	661.9 (96)	275. 8 (30. 74)	2, 8	
3	7.61	227, 5 (33)	36.6 (4.08)	4.7	
9	(24. 97)	413. 7 (80)	163. 9 (18. 27)	4.8	
4	12.73	51. 7 (7. 5)	59 (6, 58)	13.4	
10	(41.77)	72. 4 (10. 5)	59. 3 (6. 61)	15.0	
5	25, 47	14.5	23. 8 (2. 65)	45.7	
11	(83, 55)	(3.0)	29. 3	48.3	
6	56. 59 (185. 60)	6, 9 (1, 0) 13, 8	13.3 (1.48) 10.7	131.3	
12	(103-60)	(2, 0)	(1. 19)	135.8	

Test Number 15-6-01 A3

TEST TITLE	Explosive Equivalency Testing	DATE	4/9/78
FEST SAMPLE	M10 Propellant: M-24 Shipping Container	TIME	1255 Hrs.
SAMPLE WEIGHT	100 lbs/45, 36 kg	TEMP.	74°F/23.3°C
IGNITION SOURCE	J-2 Engineer's Special Blasting Csp	HUM1DITY	24%
BOOSTER WT,	1.0 lbs/.45 Kg; Comp C-4 1% of Charge Wt.	BAR. PRES.	30.05
TEST NUMBER	15-6-01 A ₃	WIND DIR.	900*
CONTRACT NO.	NAS8-27750	WIND VEL.	11 Knots

COMPOSITION C-4 BOOSTER CHARGE	Ratio h/w = 0.59
GROUND ZERO	
	Not Drawn to Scals

		A Test	45.4 kg M10 Pro	pellant	
Channel No.	Distance Meters (ft.)	Peak Pressure kPa (psig)	Scaled Positive impulae 1/3 kPa.msec/kg 1/3 (psi.msec/lbs 1/3)	Time of Arrival (msec)	Remarks
1	4.24	-	-	2.0	Bad data ringing
7	(13.92)	827. 4 (120)	353.0 (39.34)	1.6	
2	5.73	599, 8 (87)	362.6 (40.41)	2. 8	
8	(18.80)	661.9 (96)	142. 9 (15. 93)	2, 5	
3	7. 61	289.6 (42)	-	4.4	No peak
9	(24. 97)	496. 4 (72)	169.9 (18.93)	4.2	
4	12.73	79. 3 (11. 5)	62, 5 (6, 97)	14.2	
10	(41.77)	48.3	57. 2 (6. 37)	14. 8	
5	25. 47	17.4 (2, 52)	28.3 (3.15)	45,9	
11	(83, 55)	13, 8 (2. 0)	31, 9 (3, 55)	48.6	
6	56.59	6.2	15, 8	132, 1	
12	(185, 66)	6. 2	8. 8 (0. 98)	136, 6	

FIELD EVALUATION
Complete detonation. No unburned propellant. A 1% booster weight is to be utilized throughout the remainder of the test period.

Box ands Esst and West
Acoustics dats was measured
Crater dimension 0.76 meters deep by 4.09 meters wide.

Test Number 15-6-01 A4

TEST TITLE	Explosive Equivalency Testing	DATE	4/9/76
TEST SAMPLE	M10 Propellant; M-24 Shipping Container	TIME	1408 Hrs.
SAMPLE WEIGHT	100 lbs/45, 36 kg	TEMP.	76°F/24.4°C
IGNITION SOURCE	J-2 Engineer's Special Blasting Cap	HUMIDITY	21%
BOOSTER WT.	J-2 Engineer's Special Blasting Csp 1.0 lbs/. 45 Kg Comp C-4 1% of Charge Wt.	BAR. PRES.	30.03
	15-6-01 A ₄	WIND DIR.	340°
CONTRACT NO.	NAS8-27750	WIND VEL.	11 Knots

		A Test	45. 4 kg M10 Prop	ellant	
		Peak	Scaled Positive	Tlme	
	Distance	Pressure	Impulse 1/2	of	
Channel	Meters	kPs	kPa.msec/kg	Arrival	
No.	(ft.)	(pslg)	Impulse 1/3 kPa.msec/kg 1/3 (psi.msec/lbs 1/3)	(msec)	Remarks
			302. 2		Ringing impulse estimated
1	4.24		(55. 96)	1.7	
_	(13.92)	965.3	360		
7		(140)	(40. 12)	1.4	
2		620.5	-		Hit 3 Txdcr limited sfter peal
-	3.13	(90)	-	2.8	Before return to baseline
8	(18, 80)	529.5	176		
°		(76, 8)	(19.61)	2,5	
3		282.7	-		
	7.61	(41)		4.9	Poor peak
9	(24. 97)	372.3	153.9	1	
		(54)	(17.15)	4.8	
4		75. 8	58, 1		
	12.73	(11)	(6, 47)	14.3	
10	(41, 77)	48.3	43	1	
		19.3	(4. 79)	15,3	
5	25, 47	(2.8)	24.9 (2.78)	46.3	
	(83, 55)	15.2	32.6	46.3	-
11	(00.00)	(2, 2)	(3, 63)	48.7	
		8.9	18. 4	70.1	
8	56.59	(1.0)	(2, 05)	131.8	
	(185, 66)	13. 8	7.4		
12	,,	(2.0)	(0, 82)	136.0	1

FIELD EVALUATION			
Complete detonation			
Photographic coverags.	Hycsm 1500 (fps)	Hulcher (20 pps)	Documentary (24 fps)
Box ends East and West			,
Crster dimension 0,81 r	nsters deep by 4.1	meters wide	
Acoustics data was meas	ured.		

Test Number 15-6-01 A5

TEST TITLE	Explosive Equivalency Teating	DATF.	4/9/76
FEST SAMPLE	M10 Propellant: M-24 Shipping Container	TIME.	1505 Hrs.
SAMPLE WEIGHT	100 lbs '45, 36 kg	TEMP.	77°F/25°C
GNITION SOURCE	- 1-2 Engineer's Special Blasting Cap	HUMIDITY	22%
BOOSTER WT.	1 lbs/. 45 kg; Comp C-1 1 % of Charge Wt.	BAR. PRES.	30.02
PEST NUMBER	15-6-01 A ₅	WIND DIR.	360*
CONTRACT NO.	NAS8-27750	WIND VEL.	10 Knots

COMPOSITION C-4 BOOSTER CHARGE	Ratio h/w = 0.59
GROUND ZERO	The state of the s
	Not Drawn to Scale

TELD EVALUATION	
Box ends orientated East and West	
Acoustics data was measured	
Crater dimansion 0.65 meters by 4 05 meters wide.	

		A Test	45.4 kg M10 Prop	oellant	
Channel No.	Distance Meters (ft.)	Peak Pressure kPa (psig)	Scaled Positive Impulse 1/3 kPa.msec/kg 1/3 (psl.msec/lbs	Time of Arrival (msec)	Remarks
1	4.24	-	(J= V	1.6	Ringing. Unable to determine peak. Txdcr was replaced.
7	(13.92)	965.3 (140)	586. 8 (65. 39)	1.5	
2	5,73	620.5 (90)	331, 2 (36, 91)	3.6	
8	(18.80)	624.7 (90.6)	126. 6 (14.11)	2.7	
3	7.61	-	-	3.7	Bad txder.
9	(24.97)	330.9 (48)	131.8 (14.69)	4.7	
4	12.73	68.9 (10)	58 (6.46)	14.2	
10	(41.77)	62.1	55, 8 (6, 22)	15.7	
5	25.47	20.7	23. 6 (2. 63)	46,3	
11	(83, 55)	16.5 (2.4)	34 (3.79)	49.9	
6	56.59	6.2	15.6	132, 2	
12	(185.66)	13.8	10.7	136.2	

Test Number 15-6-01 A6

TEST TITLE	Explosive Equivalency Tast	DATE	8/7/76
TEST SAMPLE	M10 Propellant; M25 Shipping Contain	TIME	1305
SAMPLE WEIGHT	100 lbs /45, 4 kg	TEMP.	85°F/29.4°C
IGNITION SOURCE	J2 Engineer's Special Blasting Cap	HUMIDITY	31%
BOOSTER WT.	1.5 lbs/0.68 kg; Comp 4 1 1/2% of Charge Wt.	BAR. PRES.	30.01
PEST NUMBER	24-6-01A ₆	WIND DIR.	30%
CONTRACT NO.	NAS8-27750	WIND VEL.	12 Knots

	ture Coveraga deasuremants			
	detonation			
Crater Di	menaion .45 metar	s daep by 3.02 n	neters wide	

		A Tes	t 45.4 kg M- M10	Propellan	t
Channel No.	Distance Meters (ft.)	kPa	Scaled Poeltive Impulse 1/3 kPa.msec/kg 1/3 (psi.msec/lbs 1/3)	Time of Arrival (msec)	Remarks
1	4, 24	1379 (200)	342.8 (38.20)	1.35	
7	(13.92)	1379	286.3 (31.91)	1.4	
2	5. 73	827.4 (120)	2.9 (24.41)	2.35	
8	(18.80)	827.4 (120)	252.3 (28.12	2.6	1.imited
3	7, 61	293 (42. 5)	173.1 (19.29)	3.55	Limited
9	(24.97)	413.7	212.1 (23.64)	4.6	
4	12.73	68.9 (10.0)	44.5	11.5	
10	(41.71)	84.1 (12.2)	58. 2 (6. 49)	14.3	
5	25.47	(3.5)	21.9 (2.44)	43.8	
11	(83, 55)	18.8	34.0 (3.79)	46.8	Double Peak
8	56, 59	10.3	4.3 (0.48)	130.4	
12	(185, 66)	5.5	7.9	134.2	

Test Number 15-6-01 A7

TEST TITLE	Explosive Equivalency Test	DATE	6/7/76
TEST SAMPLE	M10 Propellant: M25 Shipping Container	TIME	1418
SAMPLE WEIGHT	I5. lkg (100 lbs)	TEMP.	85°F/29.4°C
IGNITION SOURCE		пиминту	30
ROOSTER WT,	T. 5 lbs/0. 68 kg; Comp 4 1 1/2% of Charge Wt.	RAR, PRES,	30.00
TEST NUMBER	2·I-6-01 A ₇	WIND DIR.	70°
CONTRACT NO.	NAS8-27750	WIND VEL.	4 Knots

COMPOSITION C-4 BOOSTER CHARGE	Ratio h/w = 2.5
GROUND ZERO	
	Not Drawn to Scale

	A7 Test 45.4 kg M10 Propellant					
Channel No.	Distance Meters (ft.)	Peak Pressure kPa (psIg)	kPa.msec/kg 1/3 (psi.msec/lbs)	Time of Arrivat (nisec)	Remarks	
ı	4.24	1379 (200)	628, 5 (70, 04)	1.6		
7	(13, 91)	1261.7 (183)	429.5 (47.86)	1.5		
2	5.73	517.1 (75)	-	2.8	Limited (did not return to baseline) Rad	
8	(18, 80)	827. 4 (120)	311.1 (34.67)	2, 4	L.Imited	
3	7, 61	293 (42.5)	173,1 (19,29)	4.7		
9	(24.97)	586.1 (85)	255.6 (23.48	3.8	Limited	
4	12.73	46 (6.67)	32 (3, 57)	14.55		
10	(41.71)	82.7 (12.0)	72. 1 (8. 04)	11.4		
5	25. 47	24.1	26. 2 (2, 92)	47.0	Double Peak	
11	(83. 55)	18.8 (2.73)	27.2 (3.03)	44.0	Double Peak	
6	56, 59	6.9	(0.49)	134.0		
12	(185. 66)		70.78)	130.0		

coustica Measurements	
Complete Detonation	
Crater Dimension . 47 meters deep by 3, 32 meters wide	

Test Number 15-6-02 B1

TEST TITLE TEST SAMPLE	Explosive Equivalency Testing M10 Propellant; M-17 Shipping Container	DATE TIME	4/10/78 1030 Hrs.
SAMPLE WEIGHT	And the second of the second o	TEMP.	75°F/23.8°C
IGNITION SOURCE	J-2 Engineer's Special Blasting Cap	HUMIDITY	28%
BOOSTER WT.	1% Charge Wt.	BAR. PRES.	30.17
TEST NUMBER	15-6-02 B ₁	WIND DIR.	150°
CONTRACT NO.	NAS8-27750	WIND VEL.	4 Knots

		B Teat	22.68 kg M10 Pro	pellant	
Channel No.	Distance Meters (ft.)	l.De	Scaled Positive Impulse 1/3 kPa, msec/kg 1/3 (psl. msec/lbs 1)	Time of Arrival (msec)	Remarks
1	3.37	1241.1 (180)	383, 53 (42, 74)	1.2	
7	(11.05)	1034.2 (150)	485.74 (54.13)	1.0	
2	4.55	661. 9 (96)	436.74 (48.67)	1.9	
8	(14.92)	579. 2 (84)	301.42 (33.59)	1.6	
3	6.04	289.6 (42)	46.68 (5.20)	3.4	Bad data
9	(19.82)	393 (57)	174.89 (19.49)	2.8	
4	10.11	82.7 (12)	60,12 (6,70)	9.0	
10	(33.16)	82.7 (12)	37. 42 (4, 17)	8.8	
5	20.21	17.2	36, 61 (4, 08)	29.3	
11	(66.31)	18.8	31. 88 (3. 55)	29.7	
6	44.92	9.0	19.65 (2.19)	83.3	
12	(147. 36)	6.9	12. 92	84.1	

Complete reaction. No unburned propellant	
All instrumentation functioned	
Crater dimension 8.76 metera deep by 2.4 meters wide	
Box orientsted North and South	

Test Number 15-6-02 B2

TIST TITLE	Explosive Equivalency Testing	DATE	4/10/76
TEST SAMPLE	M10 Propellant; M-17 Shipping Container	TIME	1130 Hra.
SAMPLE WEIGHT	50 lbs/22.68 kg	TEMP.	75°F/23,8°C
IGNITION SOURCE	J-2 Engineer's Special Blasting Cap	HUMIDITY	26%
BOOSTER WT.	1 lb/. 45 kg Comp C-4 2% of Charge Wt.	BAR. PRES.	30. 17
TEST NUMBER	15-6-02 B2	WIND DIR.	195*
CONTRACT NO.	NAS8-27750	WIND VEL.	8 Knota

COMPOSITION C-4 BOO	STER CHARGE	Ratio h/w = 0.6
GROUND ZERO	T	uiid ummm
		Not Drawn to Scale

		B ₂ Test 2	2.68 kg M10 Prop	ellant	
Channel No.	Distance Meters (ft.)	Peak Prassure kPa (pslg)	Scaled Positive Impulse 1/3 kPa.msec/kg 1/3 (psi.msec/lbs ^{1/3})	Time of Arrival (msec)	Remarks
1	3, 37	1241.1 (180)	454. 2 (50. 61)	1.3	Ringing
7	(11.05)	1034. 2 (150)	396.6 (44.20)	1.35	
2	4. 55	620. 5 (90)	219, 5 (32, 48)	2.2	
8	(14.92	648. 1 (94)	197. 5 (22, 01)	2. 3	
3	6.04	248. 2 (36)	154, 3 (17, 19)	4.0	
9	(19, 82)	413.7	141. 4 (15. 76)	3,95	
4	10.11	68.9 (10)	57. 6 (6, 42)	10.4	
10	(33. 16)	79.3 (11.5)	59. 9 (6. 68)	10,0	
5	20, 21	(3.0)	35, 3 (3, 93)	37.6	Double peak
11	(66. 31)	19.3 (2.8)	34, 5 (3, 84)	37, 65	Double peak
6	44.92	10.3	18.6	106.5	Double peak
12	(147. 36)	6.9 (1.0)	1·1. 0 (1. 56)	106.3	Double peak

FIFLD EVALUATION

Complete reaction. No unburned propellant found. Will utilize 1 pound booster for the remainder of the testa. This choice was made based upon the witness plate rather than peak pressure.

Crater dimension 0.32 meter deep by 2.4 meters wide.

Box orientation North and South

Test Number 15-6-02 B3

TEST TITLE	Explosive Equivalency Testing	DATE	4/10/76
TEST SAMPLE	M10 Propellant; M-17 Shipping Container	TIME	1250 Hra.
SAMPLE WEIGHT	50 lba/22.68 kg	TEMP.	76°F/24.4°C
IGNITION SOURCE	J-2 Engineer's Special Blasting Cap	HUMIDITY	27%
BOOSTER WT.	1 lb/. 45 kg, Comp C-4, 2% of Charge Wt.	BAR. PRES.	30.16
TEST NUMBER	15-6-02 B3	WIND DIR.	185°
CONTRACT NO.	NAS8-27750	WIND VEL.	8 Knota

		0			
Channal No.	Distanca Meters (ft.)	Peak Pressure kPa (psig)	Scalad Positive Impulse 1/3 kPa.msec/kg 1/3 (psi.msec/lbs 1/3)	Time of Arrival (msac)	Remarks
1	3. 37	1241.1 (180)	514.7 (57.36)	1.3	Ringing
7	(11.05)	965. 3 (140)	469.5 (52.32)	1.2	Limited
2	4.55	496. 4 (72)	314. 0 (34. 99)	2.2	
8	(14. 92)	661.9 (96)	279.8 (31.18)	2, 2	
3	8.04	268.9 (39)	129.1 (14.39)	3.7	
9	(19.82)	441.3	123.5 (13.76)	3. 7	
4	10. 11	75. 8 (11)	66.0 (7.35)	10, 2	
10	(33.16)	79.3 (11.5)	58.1 (6.47)	10.2	
5	20.21	-	-	37.4	Limited ringing
11	(66.31)	19.3	32. 5 (3. 62)	37.4	Double peak
6	44.92	10.3	22. 6 (2. 52)	106. 5	Double peak
12	(147. 36)	6.9	17.1 (1.91)	105, 5	Double peak

FIELD EVALUATION		
Complete reaction.	No unburned propellant was found.	
Crater dimension 0.3	11 meters deep by 2.4 metera wide.	
Box orientation North	and South	

Test Number 15-6-02 B4

TEST TITLE	Explosive Equivalency Testing	DATE	4/10/76
TEST SAMPLE	M10 Propellant; M-17 Shipping Conta	inerTIME	1130 Hrs.
SAMPLE WEIGHT	50 lbs/22.68 kg	TEMP.	77°F/25°C
IGNITION SOURCE	J-2 Engineer's Special Blasting Cap	HUMIDITY	28%
BOOSTER WT.	1 lb/. 45 kg, Comp C-1, 25 of Charge	Wt. BAR. PRES.	30.15
TEST NUMBER	15-6-02 B ₄	WIND DIR.	180°
CONTRACT NO.	NAS8-27750	WIND VEL.	11 Knote

		B ₄ Teet 2	2.68 kg M10 Prop	eilent	
Channel No.	Distance Meters (ft.)	Peak Pressure kPa (psig)	Scaled Positive impulse 1/3 kPa.msec/kg 1/3 (psi. msec/lbs	Time of Arrival (meec)	Remarks
1	3.37	-	-	1.15	Ringing
7	(11.05	-	-	1.2	Limited
2	4.65	628. 8 (91. 2)	337. 0 (37. 56)	1.8	
8	(14. 92)	661.9 (96)	307, 2 (34, 23)	2.25	
3	6.04	206.6	130,9 (14,59)	3.7	
9	(19.82)	434. 4 (83)	137. 1 (15. 28)	3. 7	
4	10.11	62.7 (12)	66 (7. 35)	10	
10	(33.16)	68.3 (9.9)	57. 2 (6. 37)	9.9	
5	20. 21	-	-	37, 25	Bad channel
11	(66.31)	15.9 (2.3)	35. 4 (3. 95)	37. 4	Double peak
6	44.92	7.6 (1,1)	21.0	106, 54	Double peak
12		6.2	15.7	106.4	Double peak

FIELD EVALUATION Complete resction. No unburned propellant was found. Creter dimension 0.31 meter deep by 2.46 meter wide. Box orientation North and South.

Test Number 16-6-01 B5

TEST TITLE	Explosive Equivalency Testing	DATE	4/12/78
TEST SAMPLE	M10 Propellant M-17 Shipping Container	TIME	1030 Hrs.
SAMPLE WEIGHT	50 lbs/22.68 kg	TEMP.	81°F/27.2°C
IGNITION SOURCE	J-2 Engineer's Special Blasting Cap	HUMIDITY	48%
BOOSTER WT.	1 lb/.45 kg Comp C-4 2% of Charge Wt.	BAR. PRES.	30.20
TEST NUMBER	16-6-01 B ₅	WIND DIR.	310°
CONTRACT NO.	NAS8-27750	WIND VEL.	9 Knote

		I			
i	N	Peak	Scaled Positive	Time	1
	Distance	Pressure	impulse 1/3	of	ĺ
Channel	Meters	kPa	kPa.msec/kg	Arrival	
No.	(ft.)	(psig)	impuise kPa.msec/kg 1/3 (psi. msec/lbs 1/3)	(msec)	Remarks
1	-	-		100	Ringing. Bad data.
1	3.37	10-Table		1.2	
7	(11.05)	758.4	567.2		
		(110)	(63, 21)	1.3	Limited
2		537.8	401.1		
	4.55	(78)	(44.70)	2.05	Double peak
8	(14.92)	648.1	247.5		
		(84)	(27.58)	2.1	Double peak
3		-	-		
	8.04	-	-	3.75	(Hit 3) Bad eignal
9	(18.82)	393	155. 4		
		(57)	(17. 32)	3.7	Double peak
4		81.4	57.3		
	10.11	(11.8)	(6, 39)	10.2	
10	(33. 16)	60.7	53.8		
		(11.7)	(5.99)	10.4	
5	20, 21	17. 2	33. 5		- CTCCCCT-1
	(68. 31)	(2.5)	(3.73)	37.25	Double peak
11	(00.01)	(3.0)	(4, 35)	37.7	Double peak
		8.8	17.2	3	Locate bear
6	44.92	(1.0)	(1. 92)	105.7	Double peak
$\overline{}$	(147. 36)	5. 5	12.5	1000	LOUVIE PERK
12	(==00)	(0.8)		106.4	

Box orientation North ar	d South		
Photographic coverage.	Included Hycam 1500 (fps),	Hulcher (20pps	and documentary (24for
Crater dimension 0.33 r	neter deep by 2.21 meter wi	de.	y min decumentary (pripe

Test Number 16-6-02 C1

TEST TITLE	Explosive Equivalency Testing	DATE	4/13/76
TEST SAMPLE	M10 Propellant; M-24 Shipping Container	TIME	1245 Hrs.
SAMPLE WEIGH	T 145 lbs/65.77 kg	TEMP.	82°F/27.8°C
IGNITION SOURC	E J-2 Engineer's Special Blasting Cap	HUMIDITY	49%
ROOSTER WT.	1.5 Ibs/6.68 kg; Comp C-4 1% of Charge Wt.	BAR. PRES.	30.12
TEST NUMBER	16-6-02 C1	WIND DIR.	160°
CONTRACT NO.	NAS8-27750	WIND VEL.	7 Knots

		C Test 6	5.77 kg M10 Prop	ellant	
Channel No.	Distance Meters (ft.)	Peak Pressure kPa (pslg)	Scaled Positive Impulse I/3 kPa.msec/kg 1/3 (psi. msec/lbs 1)	Time of Arrival (msec)	Remarks
I	4.8	-	-	1.6	Transducer was destroyed
7	(15, 76)	689, 5 (100)	370.6 (41.30)	1.8	
2	6.49	579.2 (84)	304.7 (33.96)	2.5	
8	(21.28)	488.1 (70.8)	401.5 (44.74)	2. 8	
3	8.77	200.8	-	3. 8	Peak failed to return to baseline
9	(28. 76)	446.8 (64.8)	170.0 (18.95)	5. 0	
4	14, 41	106. 2 (15. 4)	92. 8 (10. 34)	12.0	
10	(47.28)	75.8 (11)	56. 7 (6. 32)	15.4	
5	28.82	20.0	21.5	48.55	
11	(94, 56)	22.1	30.6	51.9	
6	64.05	7.9	14.0 (1.56)	145, 25	
12	(210.14)	8.6	7. 6	149.15	

FIELD EVALUATION	
Box orintation North and South	
Complete detonstion	
Photographic coverage included Hy	cam (1500 fps) Hulcher (20pps) documentary (24fps
Crater dimension 0.30 meter deep	by 2.72 meter wide

Test Number 16-6-02 C2

TEST TITLE	Explosive Equivalency Testing	DATE	4/13/76
TEST SAMPLE	M10 Propellants M-24 Shipping Container	TIME	1445 Hrs.
SAMPLE WEIGHT	145 lbs/65.77 kg	TEMP.	78°F/25.6°C
IGNITION SOURCE	J-2 Engineer's Special Blasting Cap_	HUMIDITY	56%
BOOSTER WT.	2. 5 lbs./1. 13 kg Comp C-4 1. 5 % of Charge Wt.	BAR. PRES.	30.11
TEST NUMBER	16-6-02 C ₂	WIND DIR.	195°
CONTRACT NO.	NAS8-27750	WIND VEL.	9 Knots

Channel No.	Distance Msters (ft.)	Peak Pressure kPa (psig)	Scaled Positive Impulse 1/3 kPa.msec/kg 1/3 (psi.msec/lbs	Time of Arrival (masc)	Remarks
		1379.0	317.8		
I	4. 8	(200)	(35, 42)	1.7	
	(15.76)	772. 2	236, 0		
7	,,	(112)	(26.30)	1.9	
-		537. 8	389.0		
2	6.49	(78)	(43, 35)	2.7	
	(21.28)	620.5	374.4		
8	,	(90)	(41.72)	3.0	
		268.9	148.6		
3	8.77	(39)	(16.56)	4.5	
9	(28, 70)	455, 1	139.9		
9		(66)	(15.59)	5. 2	
4		106.2	79.9		
4	14.41	(15.4)	(8,9)	14.0	
10	(47.28)	77. 2	47.0		1
		(11.2)	(5, 24)	15.7	
5		22.8	23.7		
	28. 82	(3.3)	(2, 64)	49.7	
11	(64. 56)	22.1	33.1		
		(3.2)	(3.69)	52, 4	
6		10.3	4.8		
	64.05	(1.5)	(0, 54)	147.4	
12	(210, 14)	10.3	9. 2 (1.02)	150	

FIELD EVALUATION		
Box orientation North and	South	
Crater dimension 0.33 me	ters deep by 2.72 meters wide	
	·	

Test Number 16-6-02 C3

TEST SAMPLE TEST S	dancy Testing DATE	4/14/76 1300 Hrs.
SAMPLE WEIGHT 145 1bs/65.77 kg	TEMP.	82°F/27.8°C
IGNITION SOURCE J-2 Engineer's S BOOSTER WT 1.5 lbs/.68 kg C	pecial Blasting Cap HUMIDITY	527.
BOOSTER WT. 1.5 lbs/. 68 kg C -10 of Charge Wt.	omp C-4; BAR. PRFS.	30.13
TEST NUMBER 16-6-02 C3	WIND DIR.	150°
CONTRACT NO. NAS8-27750	WIND VE1	13 Knots

COMPOSITION C-4 BOOSTER CHARGE	Ratio h/w = 1.7
. .	
GROUND ZERO	manananana
	Not Drawn to Scale

	Not Drawn to Scale
FIELD EVALUATION	
Box orientation North and South	
Crater dimension 0,41 meters deep by 3,05 meters wide	·

C ₃ Test 85.77 kg M10 Propellant					
Channel No.	Distance Meters (ft.)	Draggi re	Scaled Positive Impulse 1/3 kPa.msec/kg 1/3 (psl. msec/lbs	Time of Arrival (msec)	Remarks
1	4.8	-	-	1.6	Txdcr destroyed.
7	(15.76)	965.3 (140)	556.8 (62.05)	1.9	
2	8.49	524 (76)	436.6 (43.68)	2.1	
8	(21. 28)	510. 2 (74)	355. 2 (39. 58)	3.2	
3	8.77	228.9 (33.2	243.0 (27.08)	3. 6	
9	(26. 76)	289.6 (42)	765.0 (18.39)	5.3	
4	14.41	96.5 (14)	50.3 (5.60)	12.1	
10	(47, 28)	74.5 (10.8)	58. 1 (6. 46)	15, 6	
5	28.82	20.7	18.5 (2,06)	48,6	
11	(94. 56)	20.7	31.2 (3.48)	53.2	
6	84.05	6.2	15.1 (1.68)	145.9	
12	(210.14)	8.3 (1.2)	8.6	149.8	

Test Number 16-6-02 C4

TEST TITLE	Explosive Equivalency Testing M10 Propellant;	DATE	4/14/78
TEST SAMPLE	M-24 Shipping Contsiner	TIME	1405 Hrs.
SAMPLE WEIGHT	145 lbs/65.77 kg	TEMP.	80°F/26.7°C
IGNITION SOURCE	J-2 Engineer's Special Blasting Csp	HUMIDITY	54%
BOOSTER WT.	1.5 lbs/0.68 kg; Comp C-4; 1% of Charge Wt.	BAR. PRES.	30.11
TEST NUMBER	16-6-02 C ₄	WIND DIR.	150°
CONTRACT NO.	NAS8-27750	WIND VEL.	11 Knota

C ₄ Test 65.77 kg M10 Propellant					
Channel No.	Distance Meters (ft.)	Peak Pressure kPs (pslg)	Scaled Positive Impulse 1/3 kPa.msec/kg 1/3 (psl.msec/lbs 1/3)	Time of Arrival (msec)	Remarks
1	4.8	-	-	1.6	Cable damage.
7	(15.76)	965.3 (140)	333. 4 (37. 15)	1.8	
2	8.49	519. 2 (84)	487.5 (53,44)	2.3	
8	(21, 28)	827. 4 (120)	345.3 (36,48)	3.1	
3	8.77	289.8 (42)	145.5 16.21	4.6	
9	(28.78)	386.1 (56)	170.7 (19.02)	5.4	
4	14.41	98.5	76. 3 (8. 50)	13.2	
10	(47.28)	82.7 (12)	71.5 (7.97)	15.6	
5	28.82	21.4	28.5 (2.95)	48.8	
11	94.56	20.7	32.8	51.1	
6	64.05	8.2	14.7	146.5	
12	(210.14)	9.0	(1. 64) 11. 8 (1. 32)	148.5	

FIELD EVALUATION	
Box orientation North and South	
Crater dimension 0.46 meters deep by 3.56 meters wide	

Test Number 16-6-02 C5

TEST TITLE	Explosive Equivalency	DATE	4/15/78
TEST SAMPLE	Explosive Equivalency M10 Propellant; M-24 Shipping Container	TIME	1301 Hrs.
SAMPLE WEIGHT	145 lbs/65.77 kg	TEMP.	81°F/27.2°C
GNITION SOURCE	J-2 Engineer's Special Blasting Cap	HUMIDITY	51%
BOOSTER WT.	1.5 lbs/0.68 kg Comp C-4 1% of Charge Wt.	BAR. PRES.	30.11
TEST NUMBER	18-6-02 C5	WIND DIR.	105°
CONTRACT NO.	NAS8-27750	WIND VEL.	14 Knots

COMPOSITION C-4 BOOSTER CHARGE	Ratio h/w = 1.7
GROUND ZERO	
Timuliui inimi	
	Not Drawn to Scal

		C Test	55.77 kg M10 Pro	pellant	
Channel	Distance Meters	kPa	Scaled Positive Impulse 1/3 kPa,msec/kg 1/3	Time of Arrival	
No.	(ft.)	(palg)	(psi. msec/ibs ^{1/.3})	(msec)	Remarks
1	4.8	-	-	1.6	Hit??
7	(15.76)	1034. 2 (150)	-	2.0	Failed to return to baseline
2	6.49		-	2.5	Transducer damaged
8	(21.28)	758. 4 (110)	88.5 (9.86)	3.0	
3	8.77	-		3. 8	Missed data
9	(28. 78)	889. 4 (129)	189.6 (21.13)	5, 0	
4	14. 41	75. 8 (11)	65.3 (7.28)	12,2	
10	(47. 28)	-	-	_	No data
5	28, 82	20.7	30. 9 (3. 44)	48.1	
11	(94. 56)	20 (2, 9)	34. 5 (3. 85)	52, 7	
6	64.05	12.4	14.9	145. 2	
12	(210.14)	10.3	11.4 (1.27)	150, 2	

Test Number 17-7-01 D1

TEST TITLE	Explosive Equivalency Testing	DATE	4/19/76
TEST SAMPLE	M10 Propellant Scaled Shipping Container	TIME	1257 Нга.
SAMPLE WEIGHT	25 lbs/11.34 kg	TEMP.	81°F/27.2°C
IGNITION SOURCE	J-2 Engineer's Blasting Cap	HUMIDITY	53%
BOOSTER WT.	J-2 Engineer's Blasting Cap 0, 25 lbs/0. 11 kg Comp C-4 1% of Charge Wt.	BAR. PRES.	30.08
TEST NUMBER	17-7-01 D ₁	WIND DIR.	190*
CONTRACT NO.	NAS8-27750	WIND VEL.	10 Knots

			1.34 kg (25 lb) M1		
Channel No.	Distance Meters (ft.)	Peak Pressure kPa (pslg)	Scaled Poaltive Impulse kPa.msec/kg 1/3 (psl. msec/lbs	Time of Arrival (msec)	Remarks
1	2.87	1241.1 (180)	745.1 (83.024)	0.95	
7	(8.77)	1172. I (170)	475. 6 (53. 0)	1.0	
2	3. 61	620. 5 (90)	331.03 (36.89)	1.8	
8	(11.84)	661.9 (98)	350.8 (39.01)	1.8	
3	4.80	227.5	149.7 (16.68)	3, 25	
9	(15.70)	262. 0 (38)	188.9 (21.05)	3.4	
4	8.02	79.3 (11.5)	71.7 (7.99)	9.4	
10	(26. 52)	67.6	46. 4 (5. 17)	10.2	
5	18.04	22.8	26.1 (2.91)	29, 45	
11	(52.83)	18.3	35. 12 (3. 91)	31.0	
8	35, 7	6.2 (0.8)	19.6 (2.18)	83.2	
12	(116.86)	8.9 (1.0)	18. 21 (2. 03)	85.8	

FIELD EVALUATION	
Photographic coverage i	included Hycam (1500 fps) Hulchen (20pps) documentation (24fps)
Complete detonation. N	o visible signs of unburned propellant
Crater dimension 0.25	meter deep by 2.59 meters wide
Box orientation long sid	e North and South.

Test Number 17-6-01 D4

TEST TITLE	Explosive Equivalency Testing	DATE	4/20/76
TEST SAMPLE	M10 Propellant; Scaled Shipping Container	TIME	1227 Hrs.
SAMPLE WEIGHT	25 lbs/11.34 kg	TEMP.	79°F/26. 1°C
GNITION SOURCE	J-2 Engineer's Special Blasting Csp	HUMIDITY	64%
BOOSTER WT.	0.5 lbs/0.23 kg, Comp C-4, 2% of Charge Wt.	BAR. PRES.	29.93
TEST NUMBER	17-6-01 D ₄	WIND DIR.	190°
ONTRACT NO.	NAS8-27750	WIND VEL.	11 Knots

COMPOSITION C-4 BOOSTER CHARGE	Ratio h/w=0.4
	T. T.
GROUND ZERO	mannannan ar
	Not Drawn to Scale

		D Test	11.34 kg (25 lb) M	10 Propel	lant
Channel	Distance Meters	Peak Pressure kPa	1 7 - /1-1/3	l'ime of Arrival	
NO.	(ft.)	(pslg)	(psi, msec/lbs 1/3)	(msec)	Remarks
1	2.67	1172.1 (170)	591.8 (65.95)	1.15	
7	(8.77)	1241.1 (180)	878. 7 (97. 92)	1.0	
2	3.61	289.6 (42)	296. 4 (33. 03)	1.9	
8	(11.84)	537. 8 (78)	335.1 (37.34)	1.6	
3	4.8	220.6 (32)	134.4 (14.98)	3. 4	
9	(15, 70)	386.1 (56)	148.3 (16.52)	2. 75	
4	8.02	75.8 (11.0)	66. 0 (7. 35)	9.0	
10	(26.32)	41.4 (6.0)	42, 9 (4, 78)	8.8	
5	16.04	17.9	34.7 (3.86)	29.3	
11	(52.63)	16. 2 (2. 35)	36.5 (4.07)	29,7	
6	35.7	6, 2	17.1	83.3	
12	(116.96)	6.9	16. 2 (1. 81)	84.1	

FIELD EVALUATIO	N			
Box orientation Nort	h and South			
Crster dimension 0.	27 meters deep	by 2.97 meters	wide	

Test Number 17-6-01 D5

TEST TITLE	Explosive Equivalency Testing	DATE	4/20/76
TEST SAMPLE	M10 Propellant; Scaled Shipping Container	TIME	1300 Hrs.
SAMPLE WEIGHT	25 lbs/11.34 kg	TEMP.	83°F/28.3°C
IGNITION SOURCE	J-2 Engineer's Special Blasting Cap	HUMIDITY	63%
BOOSTER WT.	.5 lbs/, 23 kg, Comp C-4 2% of Charge Wt,	BAR, PRES.	29.93
TEST NUMBER	17-6-01 D5	WIND DIR.	180*
CONTRACT NO.	NAS8~27750	WIND VEL.	6 Knots

Channel No.	Distance Meters (ft.)	Peak Pressure kPs (psig)	Scaled Positive Impulse 1/3 kPs.msec/kg 1/3 (psl.msec/lbs	Time of Arrival (msec)	Remarks
I	2.67	1241,1 (180)	619.3 (89.01)	1.1	
7	(8.77)	1241.1 (180)	551.9 (61.40)	0.9	
2	3. 61	482.6 (70)	327.8 (38.53)	1.8	
8	(11.84)	806. 7 (117)	390, 2 (43, 48)	1,65	
3	4.8	248.2	135, 9 (15, 15)	3, 2	
9	(15.7)	317. 2 (46)	169.7	3, 2	
4	8.02	86.2 (12.5	64.5	8.7	
10	(26.32)	62.1	49. 5 (5. 52)	9.4	
5	16.04	20.7	36.3	28. 9	
11	(52.63)	17.9 (2.6)	39.0 (4.35)	30,1	
6	35. 7	6.2	19.6	83. 2	
12	(116.96)	6.9	18.6 (1.85)	84.8	

FIELD EVALUATION	
Box orientation North and South	
Crster dimension 0.30 meters deep by 2.95 meters wide	

APPENDIX B

SELECTED PHOTOGRAPHS

PRETEST CONFIGURATION 22.68 kg CHARGE

POST TEST CRATER 22.68 kg CHARGE

PRETEST CONFIGURATION 45.4 kg CHARGE

POST TEST CRATER AND WITNESS PLATE

PRETEST CONFIGURATION 65.8 kg CHARGE

POST TEST CRATER 65.8 kg CHARGE

Fireball Characteristics from Hulcher Model 40 Sequencing Camera (Frame Rate 50 ms/frame) 22.68 kg Charge Weight

Fireball Characteristics from Hulcher Model 40 Sequencing Camera (Frame Rate 50 ms/frame) 11.34 kg Charge Weight

Fireball Characteristics from Hulcher Model 40 Sequencing Camera (Frame Rate 50 ms/frame) 45.4 kg Charge Weight

Fireball Characteristics from Hulcher Model 40 Sequencing Camera (Frame Rate 50 ms/frame) 65.8 kg Charge Weight

APPENDIX C

SAFETY APPROVAL

Mr. Khwaja/cs/5441

DRSAR-IRC-E (2 Jun 77) 1st Ind

SUBJECT: Preliminary Report, TNT Equivalency Test of M10 Propellant

HQ, US Army Armament Materiel Readiness Command, Rock Island, IL 61299

TO: Commander, US Army Armament Research and Development Command,

ATTN: DRDAR-LCM-SP, Dover, NJ 07801

1. Subject draft report on TNT Equivalency Test of M10 Propellant was reviewed and is approved by HQ, ARRCOM including DRSAR-SF and HQ, DARCOM, DRCSF-E.

GEORGE H

Chief, Chemical Technology Division

2. Request ARRADCOM proceed with the final publication of the report.

FOR THE COMMANDER:

wd all incl

CF:
PM, MPBME
(DRCPM-PBM-T-SF/
DRCPM-PBM-LA/DRCPM-PBM-LN2)
Cdr, DARCOM
(DRCSF-E)

DISTRIBUTION LIST

```
Commander
US Army Armament Research and Development Command
ATTN: DRDAR-CG
       DRDAR-LC
       DRDAR-LCM
       DRDAR-LCM-S (12)
       DRDAR-SF
       DRDAR-TSS (5)
       DRDAR-LCU-P
Dover, NJ 07801
Commander
US Army Materiel Development and Readiness Command
ATTN: DRCDE
       DRCIS-E
       DRCPA-E
       DRCPP-I
       DRCDI
       DRCSG-S
5001 Eisenhower Avenue
Alexandria, VA 22333
Commander
USDRC Installations and Services Agency
ATTN: DRCIS-RI-IU
       DRCIS-RI-IC
Rock Island, IL 61299
Commander
US Army Armament Materiel and Readiness Command
ATTN: DRSAR-IR (2)
       DRSAR-IRC
       DRSAR-ISE (2)
       DRSAR-IRC-E
       DRSAR-PDM
       DRSAR-LC (2)
       DRSAR-ASF (2)
       DRSAR-SF (3)
```

Rock Island, IL 61299

Chairman
Dept of Defense Explosives Safety Board
Forrestall Bldg
Washington, DC 20314

Project Manager for Munition Production
Base Modernization and Expansion
US Army Materiel Development and Readiness Command
ATTN: DRCPM-PBM-LA
DRCPM-PBM-SF

DRCPM-PBM-EP (2)

Dover, NJ 07801

Director
Ballistic Research Laboratory
ARRADCOM
ATTN: DRDAR-BLE, C. Kingery (2)
Aberdeen Proving Ground, MD 21010

Defense Documentation Center (12) Cameron Station Alexandria, VA 22314

Commander
US Army Construction Engineering
Research Laboratory
ATTN: CERL-ER
Champaign, IL 61820

Office, Chief of Engineers ATTN: DAEN-MCZ-E Washington, DC 20314

US Army Engineer District, Huntsville ATTN: Construction Division-HAD-ED (2) P.O. Box 1600 West Station Huntsville, AL 35807

Commander
Indiana Army Ammunition Plant
ATTN: SARIN-OR (2)
SARIN-SF
Charlestown, IN 47111

Commander Kansas Army Ammunition Plant ATTN: SARKA-CE Parsons, KS 67537

Commander
Lone Star Army Ammunition Plant
ATTN: SARLS-IE
Texarkana, TX 57701

Commander
Milan Army Ammunition Plant
ATTN: SARMI-S
Milan, TN 38358

Commander Radford Army Ammunition Plant ATTN: SARRA-IE (2) Radford, VA 24141

Commander
Badger Army Ammunition Plant
ATTN: SARBA (2)
Baraboo, WI 53913

Commander
Holston Army Ammunition Plant
ATTN: SARHO-E
Kingsport, TN 37662

Commander lowa Army Ammunition Plant ATTN: SARIO-A Middletown, IA 52638

Commander Joliet Army Ammunition Plant ATTN: SARJO-SS-E Joliet, IL 60436

Commander Longhorn Army Ammunition Plant ATTN: SARLO-O Marshall, TX 75670 Commander Louisiana Army Ammunition Plant ATTN: SARLA-S Shreveport, LA 71102

Commander Newport Army Ammunition Plant ATTN: SARNE-S Milan, TN 38358

Commander
Pine Bluff Arsenal
ATTN: SARPB-ETA
Pine Bluff, AR 71601

Commander Sunflower Army Ammunition Plant ATTN: SARSU-O Lawrence, KS 66044

Commander Volunteer Army Ammunition Plant ATTN: SARVO-T Chattanooga, TN 34701

Weapon System Concept Team/CSL ATTN: DRDAR-ACW Aberdeen Proving Ground, MD 21010

Technical Library
ATTN: DRDAR-CLJ-L
Aberdeen Proving Ground, MD 21010

Technical Library ATTN: DRDAR-TSB-S Aberdeen Proving Ground, MD 21005

Benet Weapons Laboratory Technical Library ATTN: DRDAR-LCB-TL Watervliet, NY 12189 Commander
US Army Armament Materiel and REadiness Command
ATTN: DRSAR-LEP-L
Rock Island, IL 61299