# Relational Database Design

### **Chapter 8: Relational Database Design**

- ☐ Features of Good Relational Design
- ☐ Atomic Domains and First Normal Form
- ☐ Decomposition Using Functional Dependencies
- ☐ Functional Dependency Theory
- ☐ Algorithms for Functional Dependencies
- ☐ Decomposition Using Multivalued Dependencies
- ☐ More Normal Form
- ☐ Database-Design Process
- ☐ Modeling Temporal Data

### **Combine Schemas?**

- ☐ Suppose we combine *instructor* and *department* into *inst\_dept* 
  - (No connection to relationship set inst\_dept)
- ☐ Result is possible repetition of information

| ID    | name       | salary | dept_name  | building | budget |
|-------|------------|--------|------------|----------|--------|
| 22222 | Einstein   | 95000  | Physics    | Watson   | 70000  |
| 12121 | Wu         | 90000  | Finance    | Painter  | 120000 |
| 32343 | El Said    | 60000  | History    | Painter  | 50000  |
| 45565 | Katz       | 75000  | Comp. Sci. | Taylor   | 100000 |
| 98345 | Kim        | 80000  | Elec. Eng. | Taylor   | 85000  |
| 76766 | Crick      | 72000  | Biology    | Watson   | 90000  |
| 10101 | Srinivasan | 65000  | Comp. Sci. | Taylor   | 100000 |
| 58583 | Califieri  | 62000  | History    | Painter  | 50000  |
| 83821 | Brandt     | 92000  | Comp. Sci. | Taylor   | 100000 |
| 15151 | Mozart     | 40000  | Music      | Packard  | 80000  |
| 33456 | Gold       | 87000  | Physics    | Watson   | 70000  |
| 76543 | Singh      | 80000  | Finance    | Painter  | 120000 |

#### What About Smaller Schemas?

Suppose we had started with *inst\_dept*. How would we know to split up (**decompose**) it into *instructor* and *department*? Write a rule "if there were a schema (dept\_name, building, budget), then *dept\_name* would be a candidate key" Denote as a **functional dependency**:  $dept name \rightarrow building, budget$ In *inst\_dept*, because *dept\_name* is not a candidate key, the building and budget of a department may have to be repeated. - This indicates the need to decompose *inst\_dept* Not all decompositions are good. Suppose we decompose employee(ID, name, street, city, salary) into employee1 (ID, name) employee2 (name, street, city, salary) The next slide shows how we lose information -- we cannot reconstruct the original *employee* relation -- and so, this is a **lossy decomposition**.

# **A Lossy Decomposition**



| ID                                         | name                     | street                         | city                                           | salary                           |
|--------------------------------------------|--------------------------|--------------------------------|------------------------------------------------|----------------------------------|
| :<br>57766<br>57766<br>98776<br>98776<br>: | Kim<br>Kim<br>Kim<br>Kim | Main<br>North<br>Main<br>North | Perryridge<br>Hampton<br>Perryridge<br>Hampton | 75000<br>67000<br>75000<br>67000 |

#### **Example of Lossless-Join Decomposition**



$$R_1 = (A, B)$$
  $R_2 = (B, C)$ 

| $\boldsymbol{A}$                               | В   | $\boldsymbol{C}$ |
|------------------------------------------------|-----|------------------|
| $\begin{array}{c} \alpha \\ \beta \end{array}$ | 1 2 | A<br>B           |
|                                                | 10  |                  |

r

| A                                                      | В         |
|--------------------------------------------------------|-----------|
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$ | 1<br>2    |
| $\prod_{A}$                                            | $_{B}(r)$ |

$$\prod_{A} (r) \bowtie \prod_{B} (r)$$

| A                                        | В   | C      |
|------------------------------------------|-----|--------|
| $egin{pmatrix} lpha \ eta \end{bmatrix}$ | 1 2 | A<br>B |

| В                | C      |  |
|------------------|--------|--|
| 1 2              | A<br>B |  |
| $\prod_{B,C}(r)$ |        |  |

#### **First Normal Form**

- Domain is **atomic** if its elements are considered to be indivisible units
  - Examples of non-atomic domains:
    - Set of names, composite attributes
    - Identification numbers like CS101 that can be broken up into parts
- ☐ A relational schema R is in **first normal form** if the domains of all attributes of R are atomic
- Non-atomic values complicate storage and encourage redundant (repeated) storage of data
  - Example: Set of accounts stored with each customer, and set of owners stored with each account
  - We assume all relations are in first normal form

# **Composite Attributes**



#### **Notation to Express Entity with Complex Attributes**

#### instructor

```
ID
name
  first_name
   middle_initial
   last_name
address
   street
     street_number
     street_name
     apt_number
   city
   state
  zip
{ phone_number }
date_of_birth
age()
```

#### First Normal Form (Cont'd)

- ☐ Atomicity is actually a property of how the elements of the domain are used.
  - Example: Strings would normally be considered indivisible
  - Suppose that students are given roll numbers which are strings of the form *CS0012* or *EE1127*
  - If the first two characters are extracted to find the department, the domain of roll numbers is not atomic.
  - Doing so is a bad idea: leads to encoding of information in application program rather than in the database.

# **Goal** — Devise a Theory for the Following

- $\square$  Decide whether a particular relation R is in "good" form.
- In the case that a relation R is not in "good" form, decompose it into a set of relations  $\{R_1, R_2, ..., R_n\}$  such that
  - each relation is in good form
  - the decomposition is a lossless-join decomposition
- ☐ Our theory is based on:
  - functional dependencies
  - multivalued dependencies

### **Functional Dependencies**

- ☐ Constraints on the set of legal relations.
- Require that the value for a certain set of attributes determines uniquely the value for another set of attributes.
- $\square$  A functional dependency is a generalization of the notion of a *key*.

## **Functional Dependencies (Cont.)**



$$\alpha \subseteq R$$
 and  $\beta \subseteq R$ 

☐ The functional dependency

$$\alpha \rightarrow \beta$$

**holds on** R if and only if for any legal relations r(R), whenever any two tuples  $t_1$  and  $t_2$  of r agree on the attributes  $\alpha$ , they also agree on the attributes  $\beta$ . That is,

$$t_1[\alpha] = t_2[\alpha] \implies t_1[\beta] = t_2[\beta]$$

 $\square$  Example: Consider r(A,B) with the following instance of r.

 $\square$  On this instance,  $A \rightarrow B$  does **NOT** hold, but  $B \rightarrow A$  does hold.

# **Functional Dependencies (Cont.)**

- $\square$  K is a superkey for relation schema R if and only if  $K \to R$
- $\square$  K is a candidate key for R if and only if
  - $K \rightarrow R$ , and
  - for no  $\alpha \subset K$ ,  $\alpha \to R$
- ☐ Functional dependencies allow us to express constraints that cannot be expressed using superkeys. Consider the schema:

inst\_dept (ID, name, salary, dept\_name, building, budget).

We expect these functional dependencies to hold:

dept\_name→ building AND ID → building

but would not expect the following to hold:

 $dept\_name \rightarrow salary$ 

### **Use of Functional Dependencies**

- ☐ We use functional dependencies to:
  - test relations to see if they are legal under a given set of functional dependencies.
    - If a relation r is legal under a set F of functional dependencies, we say that r satisfies F.
  - specify constraints on the set of legal relations
    - We say that *F* holds on *R* if all legal relations on *R* satisfy the set of functional dependencies *F*.
- Note: A specific instance of a relation schema may satisfy a functional dependency even if the functional dependency does not hold on all legal instances.
  - For example, a specific instance of *instructor* may, by chance, satisfy  $name \rightarrow ID$ .

# **Functional Dependencies (Cont.)**

- ☐ A functional dependency is **trivial** if it is satisfied by all instances of a relation
  - Example:
    - ID,  $name \rightarrow ID$
    - $name \rightarrow name$
  - In general,  $\alpha \to \beta$  is trivial if  $\beta \subseteq \alpha$

### Closure of a Set of Functional Dependencies

- $\Box$  Given a set F of functional dependencies, there are certain other functional dependencies that are logically implied by F.
  - For example: If  $A \to B$  and  $B \to C$ , then we can infer that  $A \to C$
- The set of **all** functional dependencies logically implied by F is the **closure** of F.
- $\square$  We denote the *closure* of F by  $\mathbb{F}^+$ .
- $\Box$  F<sup>+</sup> is a superset of *F*.

### **Boyce-Codd Normal Form**



$$\alpha \rightarrow \beta$$

where  $\alpha \subseteq R$  and  $\beta \subseteq R$ , at least one of the following holds:

- $\alpha \rightarrow \beta$  is trivial (i.e.,  $\beta \subseteq \alpha$ )
- $\alpha$  is a superkey for R
- ☐ Example schema *not* in BCNF:

instr\_dept (ID, name, salary, dept\_name, building, budget )

□ because dept\_name→ building, budget holds on instr\_dept, but dept\_name is not a superkey

### Decomposing a Schema into BCNF

Suppose we have a schema R and a non-trivial dependency  $\alpha \rightarrow \beta$  causes a violation of BCNF.

We decompose *R* into:

- ( $\alpha \cup \beta$ )
- $-(R-(\beta-\alpha))$
- $\Box$  In our example,
  - $\alpha = dept\_name$
  - $\beta = building$ , budget

and *inst\_dept* is replaced by

- $(\alpha \cup \beta) = (dept\_name, building, budget)$
- $(R (\beta \alpha)) = (ID, name, salary, dept\_name)$

### **BCNF** and **Dependency Preservation**

- ☐ Constraints, including functional dependencies, are costly to check in practice unless they pertain to only one relation
- ☐ If it is sufficient to test only those dependencies on each individual relation of a decomposition in order to ensure that *all* functional dependencies hold, then that decomposition is *dependency preserving*.
- Because it is not always possible to achieve both BCNF and dependency preservation, we consider a weaker normal form, known as *third normal form*.

#### **Third Normal Form**



$$\alpha \rightarrow \beta \text{ in } F^+$$

at least one of the following holds:

- $\alpha \rightarrow \beta$  is trivial (i.e.,  $\beta \in \alpha$ )
- $\alpha$  is a superkey for R
- Each attribute *A* in  $\beta$   $\alpha$  is contained in a candidate key for *R*.

(**NOTE**: each attribute may be in a different candidate key)

- ☐ If a relation is in BCNF it is in 3NF (since in BCNF one of the first two conditions above must hold).
- ☐ Third condition is a minimal relaxation of BCNF to ensure dependency preservation.

#### **Goals of Normalization**

- $\square$  Let *R* be a relation scheme with a set *F* of functional dependencies.
- $\square$  Decide whether a relation scheme R is in "good" form.
- In the case that a relation scheme R is not in "good" form, decompose it into a set of relation scheme  $\{R_1, R_2, ..., R_n\}$  such that
  - each relation scheme is in good form
  - the decomposition is a lossless-join decomposition
  - Preferably, the decomposition should be dependency preserving.

# **How good is BCNF?**

- ☐ There are database schemas in BCNF that do not seem to be sufficiently normalized
- ☐ Consider a relation

inst\_info (ID, child\_name, phone)

- where an instructor may have more than one phone and can have multiple children

| ID                      | child_name                           | phone                                                        |
|-------------------------|--------------------------------------|--------------------------------------------------------------|
| 99999<br>99999<br>99999 | David<br>David<br>William<br>Willian | 512-555-1234<br>512-555-4321<br>512-555-1234<br>512-555-4321 |

inst\_info

# **How good is BCNF? (Cont.)**

- ☐ There are no non-trivial functional dependencies and therefore the relation is in BCNF
- Insertion anomalies i.e., if we add a phone 981-992-3443 to 99999, we need to add two tuples

(99999, David, 981-992-3443) (99999, William, 981-992-3443)

# **How good is BCNF? (Cont.)**

☐ Therefore, it is better to decompose *inst\_info* into:

inst\_child

| ID                      | child_name                           |
|-------------------------|--------------------------------------|
| 99999<br>99999<br>99999 | David<br>David<br>William<br>Willian |

inst\_phone

| ID                      | phone                                                        |
|-------------------------|--------------------------------------------------------------|
| 99999<br>99999<br>99999 | 512-555-1234<br>512-555-4321<br>512-555-1234<br>512-555-4321 |

☐ This suggests the need for higher normal forms, such as Fourth Normal Form (4NF).

### **Functional-Dependency Theory**

- ☐ We now consider the formal theory that tells us which functional dependencies are implied logically by a given set of functional dependencies.
- ☐ We then develop algorithms to generate lossless decompositions into BCNF and 3NF
- ☐ We then develop algorithms to test if a decomposition is dependency-preserving

### Closure of a Set of Functional Dependencies

- $\Box$  Given a set F set of functional dependencies, there are certain other functional dependencies that are logically implied by F.
  - For e.g.: If  $A \to B$  and  $B \to C$ , then we can infer that  $A \to C$
- The set of **all** functional dependencies logically implied by F is the **closure** of F.
- $\square$  We denote the *closure* of F by  $F^+$ .

### Closure of a Set of Functional Dependencies

- We can find F<sup>+</sup>, the closure of F, by repeatedly applying **Armstrong's Axioms:** 
  - if  $\beta \subseteq \alpha$ , then  $\alpha \to \beta$  (reflexivity)
  - if  $\alpha \to \beta$ , then  $\gamma \alpha \to \gamma \beta$  (augmentation)
  - if  $\alpha \to \beta$ , and  $\beta \to \gamma$ , then  $\alpha \to \gamma$  (transitivity)
- ☐ These rules are
  - sound (generate only functional dependencies that actually hold), and
  - **complete** (generate all functional dependencies that hold).

# **Example**

- $P = \{A, B, C, G, H, I\}$   $F = \{A \rightarrow B \}$   $A \rightarrow C \}$   $CG \rightarrow H \}$   $CG \rightarrow I \}$   $B \rightarrow H\}$
- $\Box$  some members of  $F^+$ 
  - $A \rightarrow H$ 
    - by transitivity from  $A \rightarrow B$  and  $B \rightarrow H$
  - $AG \rightarrow I$ 
    - by augmenting  $A \to C$  with G, to get  $AG \to CG$  and then transitivity with  $CG \to I$
  - $CG \rightarrow HI$ 
    - by augmenting  $CG \rightarrow I$  to infer  $CG \rightarrow CGI$ , and augmenting of  $CG \rightarrow H$  to infer  $CGI \rightarrow HI$ , and then transitivity

# **Procedure for Computing F**<sup>+</sup>

☐ To compute the closure of a set of functional dependencies F:

```
repeat

for each functional dependency f in F^+

apply reflexivity and augmentation rules on f

add the resulting functional dependencies to F^+

for each pair of functional dependencies f_1 and f_2 in F^+

if f_1 and f_2 can be combined using transitivity

then add the resulting functional dependency to F^+

until F^+ does not change any further
```

# **Closure of Functional Dependencies (Cont.)**

- ☐ Additional rules:
  - If  $\alpha \to \beta$  holds and  $\alpha \to \gamma$  holds, then  $\alpha \to \beta \gamma$  holds (union)
  - If  $\alpha \to \beta \gamma$  holds, then  $\alpha \to \beta$  holds and  $\alpha \to \gamma$  holds (**decomposition**)
  - If  $\alpha \to \beta$  holds and  $\gamma \not \beta \to \delta$  holds, then  $\alpha \gamma \to \delta$  holds (**pseudotransitivity**)

The above rules can be inferred from Armstrong's axioms.

#### **Closure of Attribute Sets**

- Given a set of attributes  $\alpha$ , define the *closure* of  $\alpha$  under F (denoted by  $\alpha^+$ ) as the set of attributes that are functionally determined by  $\alpha$  under F
- $\square$  Algorithm to compute  $\alpha^+$ , the closure of  $\alpha$  under F

```
result := \alpha;
while (changes to result) do
for each \beta \to \gamma in F do
begin
if \beta \subseteq result then result := result \cup \gamma
end
```

# **Example of Attribute Set Closure**

- $\Box$  R = (A, B, C, G, H, I)
- $F = \{A \to B \\ A \to C \\ CG \to H \\ CG \to I \\ B \to H\}$
- $\Box$   $(AG)^+$ 
  - 1. result = AG
  - 2. result = ABCG  $(A \rightarrow C \text{ and } A \rightarrow B)$
  - 3. result = ABCGH  $(CG \rightarrow H \text{ and } CG \subseteq AGBC)$
  - 4. result = ABCGHI  $(CG \rightarrow I \text{ and } CG \subseteq AGBCH)$
- $\square$  Is AG a candidate key?
  - 1. Is AG a super key?
    - 1. Does  $AG \rightarrow R$ ? == Is  $(AG)^+ \supseteq R$
  - 2. Is any subset of AG a superkey?
    - 1. Does  $A \rightarrow R$ ? == Is  $(A)^+ \supseteq R$
    - 2. Does  $G \rightarrow R$ ? == Is  $(G)^+ \supseteq R$

### **Uses of Attribute Closure**



- ☐ Testing for superkey:
  - To test if  $\alpha$  is a superkey, we compute  $\alpha^{+}$ , and check if  $\alpha^{+}$  contains all attributes of R.
- ☐ Testing functional dependencies
  - To check if a functional dependency  $\alpha \to \beta$  holds (or, in other words, is in  $F^+$ ), just check if  $\beta \subseteq \alpha^+$ .
  - That is, we compute  $\alpha^+$  by using attribute closure, and then check if it contains  $\beta$ .
  - Is a simple and cheap test, and very useful
- ☐ Computing closure of F
  - For each  $\gamma \subseteq R$ , we find the closure  $\gamma^+$ , and for each  $S \subseteq \gamma^+$ , we output a functional dependency  $\gamma \to S$ .

#### **Canonical Cover**

- ☐ Sets of functional dependencies may have redundant dependencies that can be inferred from the others
  - For example:  $A \to C$  is redundant in:  $\{A \to B, B \to C, A \to C\}$
  - Parts of a functional dependency may be redundant
    - E.g.:  $\{A \to B, B \to C, A \to CD\}$  can be simplified to  $\{A \to B, B \to C, A \to D\}$
    - E.g.:  $\{A \to B, B \to C, AC \to D\}$  can be simplified to  $\{A \to B, B \to C, A \to D\}$
- ☐ Intuitively, a canonical cover of F is a "minimal" set of functional dependencies equivalent to F, having no redundant dependencies or redundant parts of dependencies

#### **Extraneous Attributes**

- Consider a set *F* of functional dependencies and the functional dependency  $\alpha \rightarrow \beta$  in *F*.
  - Attribute A is **extraneous** in  $\alpha$  if  $A \in \alpha$  and F logically implies  $(F \{\alpha \to \beta\}) \cup \{(\alpha A) \to \beta\}$ .
  - Attribute *A* is **extraneous** in  $\beta$  if  $A \in \beta$  and the set of functional dependencies  $(F \{\alpha \rightarrow \beta\}) \cup \{\alpha \rightarrow (\beta A)\}$  logically implies *F*.
- □ *Note:* implication in the opposite direction is trivial in each of the cases above, since a "stronger" functional dependency always implies a weaker one
- $\square$  Example: Given  $F = \{A \rightarrow C, AB \rightarrow C\}$ 
  - B is extraneous in  $AB \to C$  because  $\{A \to C, AB \to C\}$  logically implies  $A \to C$  (I.e. the result of dropping B from  $AB \to C$ ).
- $\square$  Example: Given  $F = \{A \rightarrow C, AB \rightarrow CD\}$ 
  - C is extraneous in  $AB \to CD$  since  $AB \to C$  can be inferred even after deleting C

## Testing if an Attribute is Extraneous

- Consider a set F of functional dependencies and the functional dependency  $\alpha \rightarrow \beta$  in F.
- $\Box$  To test if attribute  $A \in \alpha$  is extraneous in  $\alpha$ 
  - 1. compute  $(\{\alpha\} A)^+$  using the dependencies in F
  - 2. check that  $(\{\alpha\} A)^+$  contains  $\beta$ ; if it does, A is extraneous in  $\alpha$
- $\Box$  To test if attribute *A* ∈ β is extraneous in β
  - 1. compute  $\alpha^+$  using only the dependencies in  $F' = (F \{\alpha \rightarrow \beta\}) \cup \{\alpha \rightarrow (\beta A)\},\$
  - 2. check that  $\alpha^+$  contains A; if it does, A is extraneous in  $\beta$

#### **Canonical Cover**

- $\square$  A canonical cover for F is a set of dependencies  $F_c$  such that
  - F logically implies all dependencies in  $F_c$  and
  - $F_c$  logically implies all dependencies in F, and
  - No functional dependency in  $F_c$  contains an extraneous attribute, and
  - Each left side of functional dependency in  $F_c$  is unique.
- ☐ To compute a canonical cover for *F*: repeat

Use the union rule to replace any dependencies in F

$$\alpha_1 \rightarrow \beta_1$$
 and  $\alpha_1 \rightarrow \beta_2$  with  $\alpha_1 \rightarrow \beta_1 \beta_2$ 

Find a functional dependency  $\alpha \rightarrow \beta$  with an

extraneous attribute either in  $\alpha$  or in  $\beta$ 

/\* Note: test for extraneous attributes done using  $F_{c}$ , not F\*/

If an extraneous attribute is found, delete it from  $\alpha \rightarrow \beta$ 

**until** F does not change

Note: Union rule may become applicable after some extraneous attributes have been deleted, so it has to be re-applied

## **Computing a Canonical Cover**

$$R = (A, B, C)$$

$$F = \{A \to BC$$

$$B \to C$$

$$A \to B$$

$$AB \to C\}$$

- $\square$  Combine  $A \to BC$  and  $A \to B$  into  $A \to BC$ 
  - Set is now  $\{A \rightarrow BC, B \rightarrow C, AB \rightarrow C\}$
- $\Box$  A is extraneous in  $AB \to C$ 
  - Check if the result of deleting A from  $AB \rightarrow C$  is implied by the other dependencies
    - Yes: in fact,  $B \rightarrow C$  is already present!
  - Set is now  $\{A \rightarrow BC, B \rightarrow C\}$
- $\Box$  C is extraneous in  $A \to BC$ 
  - Check if  $A \to C$  is logically implied by  $A \to B$  and the other dependencies
    - Yes: using transitivity on  $A \rightarrow B$  and  $B \rightarrow C$ .

Can use attribute closure of *A* in more complex cases

The canonical cover is: 
$$A \to B$$
  
  $B \to C$ 

## **Lossless-join Decomposition**

 $\square$  For the case of  $R = (R_1, R_2)$ , we require that for all possible relations r on schema R

$$r = \prod_{R_1}(r) \bowtie \prod_{R_2}(r)$$

- A decomposition of R into  $R_1$  and  $R_2$  is lossless join if at least one of the following dependencies is in  $F^+$ :
  - $R_1 \cap R_2 \rightarrow R_1$
  - $R_1 \cap R_2 \rightarrow R_2$
- ☐ The above functional dependencies are a sufficient condition for lossless join decomposition; the dependencies are a necessary condition only if all constraints are functional dependencies

### **Example**

$$R = (A, B, C)$$

$$F = \{A \to B, B \to C\}$$

- Can be decomposed in two different ways
- $\square$   $R_1 = (A, B), R_2 = (B, C)$ 
  - Lossless-join decomposition:

$$R_1 \cap R_2 = \{B\} \text{ and } B \rightarrow BC$$

- Dependency preserving
- $\square$   $R_1 = (A, B), R_2 = (A, C)$ 
  - Lossless-join decomposition:

$$R_1 \cap R_2 = \{A\} \text{ and } A \to AB$$

- Not dependency preserving (cannot check  $B \rightarrow C$  without computing  $R_1 \quad R_2$ )

## **Dependency Preservation**

- $\Box$  Let  $F_i$  be the set of dependencies  $F^+$  that include only attributes in  $R_i$ .
  - A decomposition is **dependency preserving**, if  $(F_1 \cup F_2 \cup ... \cup F_n)^+ = F^+$
  - If it is not, then checking updates for violation of functional dependencies may require computing joins, which is expensive.

## **Testing for Dependency Preservation**

- To check if a dependency  $\alpha \to \beta$  is preserved in a decomposition of R into  $R_1$ ,  $R_2, ..., R_n$  we apply the following test (with attribute closure done with respect to F)
  - $result = \alpha$ while (changes to result) do for each  $R_i$  in the decomposition  $t = (result \cap R_i)^+ \cap R_i$  $result = result \cup t$
  - If *result* contains all attributes in  $\beta$ , then the functional dependency  $\alpha \rightarrow \beta$  is preserved.
- $\square$  We apply the test on all dependencies in F to check if a decomposition is dependency preserving
- This procedure takes polynomial time, instead of the exponential time required to compute  $F^+$  and  $(F_1 \cup F_2 \cup ... \cup F_n)^+$

## **Example**

- R = (A, B, C)  $F = \{A \rightarrow B$   $B \rightarrow C\}$   $Key = \{A\}$
- $\square$  R is not in BCNF
- $\square$  Decomposition  $R_1 = (A, B), R_2 = (B, C)$ 
  - $R_1$  and  $R_2$  in BCNF
  - Lossless-join decomposition
  - Dependency preserving

## **Testing for BCNF**

- $\square$  To check if a non-trivial dependency  $\alpha \rightarrow \beta$  causes a violation of BCNF
  - 1. compute  $\alpha^+$  (the attribute closure of  $\alpha$ ), and
  - 2. verify that it includes all attributes of R, that is, it is a superkey of R.
- Simplified test: To check if a relation schema R is in BCNF, it suffices to check only the dependencies in the given set F for violation of BCNF, rather than checking all dependencies in F<sup>+</sup>.
  - If none of the dependencies in F causes a violation of BCNF, then none of the dependencies in F<sup>+</sup> will cause a violation of BCNF either.
- $\square$  However, simplified test using only F is incorrect when testing a relation in a decomposition of  $\mathbb{R}$ 
  - Consider R = (A, B, C, D, E), with  $F = \{A \rightarrow B, BC \rightarrow D\}$ 
    - Decompose R into  $R_1 = (A, B)$  and  $R_2 = (A, C, D, E)$
    - Neither of the dependencies in F contain only attributes from (A, C, D, E) so we might be mislead into thinking  $R_2$  satisfies BCNF.
    - In fact, dependency  $AC \rightarrow D$  in  $F^+$  shows  $R_2$  is not in BCNF.

#### **Testing Decomposition for BCNF**

- $\square$  To check if a relation  $R_i$  in a decomposition of R is in BCNF,
  - Either test  $R_i$  for BCNF with respect to the **restriction** of F to  $R_i$  (that is, all FDs in  $F^+$  that contain only attributes from  $R_i$ )
  - or use the original set of dependencies F that hold on R, but with the following test: for every set of attributes  $\alpha \subseteq R_i$ , check that  $\alpha^+$  (the attribute closure of  $\alpha$ ) either includes no attribute of  $R_i$   $\alpha$ , or includes all attributes of  $R_i$ .
    - If the condition is violated by some  $\alpha \to \beta$  in F, the dependency  $\alpha \to (\alpha^+ \alpha) \cap R_i$  can be shown to hold on  $R_i$ , and  $R_i$  violates BCNF.
    - We use above dependency to decompose  $R_i$

#### **BCNF Decomposition Algorithm**

```
result := {R};

done := false;

compute F^+;

while (not done) do

if (there is a schema R_i in result that is not in BCNF)

then begin

let \alpha \to \beta be a nontrivial functional dependency that

holds on R_i such that \alpha \to R_i is not in F^+,

and \alpha \cap \beta = \emptyset;

result := (result -R_i) \cup (R_i - \beta) \cup (\alpha, \beta);

end

else done := true;
```

Note: each  $R_i$  is in BCNF, and decomposition is lossless-join.

## **Example of BCNF Decomposition**

- R = (A, B, C)  $F = \{A \rightarrow B$   $B \rightarrow C\}$   $Key = \{A\}$
- $\square$  R is not in BCNF ( $B \rightarrow C$  but B is not superkey)
- Decomposition
  - $R_1 = (B, C)$
  - $R_2 = (A,B)$

## **Example of BCNF Decomposition**

- □ class (course\_id, title, dept\_name, credits, sec\_id, semester, year, building, room\_number, capacity, time\_slot\_id)
- ☐ Functional dependencies:
  - course\_id→ title, dept\_name, credits
  - building, room\_number→capacity
  - course\_id, sec\_id, semester, year→building, room\_number, time\_slot\_id
- ☐ A candidate key {course\_id, sec\_id, semester, year}.
- BCNF Decomposition:
  - *course\_id*→ *title*, *dept\_name*, *credits* holds
    - but *course\_id* is not a superkey.
  - We replace *class* by:
    - course(course\_id, title, dept\_name, credits)
    - class-1 (course\_id, sec\_id, semester, year, building, room\_number, capacity, time\_slot\_id)

## **BCNF Decomposition (Cont.)**

- □ course is in BCNF
  - How do we know this?
- $\square$  building, room\_number $\rightarrow$ capacity holds on class-1
  - but {building, room\_number} is not a superkey for class-1.
  - We replace *class-1* by:
    - classroom (building, room\_number, capacity)
    - section (course\_id, sec\_id, semester, year, building, room\_number, time\_slot\_id)
- □ *classroom* and *section* are in BCNF.

## **BCNF** and **Dependency Preservation**

- $\square$  It is not always possible to get a BCNF decomposition that is R = (J, K, L)

Two candidate keys = JK and JL

- R is not in BCNF
- Any decomposition of *R* will fail to preserve

$$JK \rightarrow L$$

This implies that testing for  $JK \rightarrow L$  requires a join

#### **Third Normal Form: Motivation**

- ☐ There are some situations where
  - BCNF is not dependency preserving, and
  - efficient checking for FD violation on updates is important
- □ Solution: define a weaker normal form, called Third Normal Form (3NF)
  - Allows some redundancy (with resultant problems; we will see examples later)
  - But functional dependencies can be checked on individual relations without computing a join.
  - There is always a lossless-join, dependency-preserving decomposition into 3NF.

## **3NF Example**

- ☐ Relation *dept\_advisor*:
  - $dept\_advisor$  ( $s\_ID$ ,  $i\_ID$ ,  $dept\_name$ )  $F = \{s\_ID, dept\_name \rightarrow i\_ID, i\_ID \rightarrow dept\_name\}$
  - Two candidate keys: s\_ID, dept\_name, and i\_ID, s\_ID
  - *R* is in 3NF
    - $s_ID$ ,  $dept_name \rightarrow i_ID$   $s_ID$   $dept_name$  is a superkey
    - i\_ID → dept\_name
       dept\_name is contained in a candidate key

## **Redundancy in 3NF**





- 
$$R = (J, K, L)$$
  
 $F = \{JK \rightarrow L, L \rightarrow K\}$ 

| J     | L     | K     |
|-------|-------|-------|
| $j_1$ | $l_1$ | $k_1$ |
| $j_2$ | $l_1$ | $k_1$ |
| $j_3$ | $l_1$ | $k_1$ |
| null  | $l_2$ | $k_2$ |

- $\square$  repetition of information (e.g., the relationship  $l_1, k_1$ )
  - (i\_ID, dept\_name)
- need to use null values (e.g., to represent the relationship  $l_2$ ,  $k_2$  where there is no corresponding value for J).
  - (i\_ID, dept\_name<sub>I</sub>) if there is no separate relation mapping instructors to departments

## **Testing for 3NF**

- $\square$  Optimization: Need to check only FDs in F, need not check all FDs in  $F^+$ .
- Use attribute closure to check for each dependency  $\alpha \to \beta$ , if  $\alpha$  is a superkey.
- $\Box$  If α is not a superkey, we have to verify if each attribute in β is contained in a candidate key of *R* 
  - this test is rather more expensive, since it involve finding candidate keys
  - testing for 3NF has been shown to be NP-hard
  - Interestingly, decomposition into third normal form (described shortly) can be done in polynomial time

## **3NF Decomposition Algorithm**

```
Let F_c be a canonical cover for F;
i := 0;
for each functional dependency \alpha \rightarrow \beta in F_c do
 if none of the schemas R_i, 1 \le i \le i contains \alpha \beta
        then begin
                i := i + 1;
                R_i := \alpha \beta
           end
if none of the schemas R_i, 1 \le i contains a candidate key for R
 then begin
           i := i + 1;
           R_i := any candidate key for R;
        end
/* Optionally, remove redundant relations */
repeat
if any schema R_i is contained in another schema R_k
     then /* delete R_i */
       R_j = R;;
       i=i-1:
return (R_1, R_2, ..., R_i)
```

## **3NF Decomposition Algorithm (Cont.)**

- ☐ Above algorithm ensures:
  - each relation schema  $R_i$  is in 3NF
  - decomposition is dependency preserving and lossless-join
  - Proof of correctness is at end of this presentation (click here)

### **3NF Decomposition: An Example**

- ☐ Relation schema:
  - cust\_banker\_branch = (customer\_id, employee\_id, branch\_name, type )
- ☐ The functional dependencies for this relation schema are:
  - 1.  $customer_id$ ,  $employee_id \rightarrow branch_name$ , type
  - 2.  $employee\_id \rightarrow branch\_name$
  - 3.  $customer_id$ ,  $branch_name \rightarrow employee_id$
- ☐ We first compute a canonical cover
  - branch\_name is extraneous in the r.h.s. of the 1st dependency
  - No other attribute is extraneous, so we get  $F_C$ =

```
customer_id, employee_id → type
employee_id → branch_name
customer_id, branch_name → employee_id
```

### **3NF Decompsition Example (Cont.)**

The **for** loop generates following 3NF schema: (customer id, employee id, type) (<u>employee\_id</u>, branch\_name) (customer\_id, branch\_name, employee\_id) Observe that (customer id, employee id, type) contains a candidate key of the original schema, so no further relation schema needs be added At end of for loop, detect and delete schemas, such as (employee\_id, branch name), which are subsets of other schemas - result will not depend on the order in which FDs are considered The resultant simplified 3NF schema is: (customer\_id, employee\_id, type) (customer\_id, branch\_name, employee\_id)

#### **Comparison of BCNF and 3NF**

- ☐ It is always possible to decompose a relation into a set of relations that are in 3NF such that:
  - the decomposition is lossless
  - the dependencies are preserved
- ☐ It is always possible to decompose a relation into a set of relations that are in BCNF such that:
  - the decomposition is lossless
  - it may not be possible to preserve dependencies.

#### **Design Goals**

- ☐ Goal for a relational database design is:
  - BCNF.
  - Lossless join.
  - Dependency preservation.
- ☐ If we cannot achieve this, we accept one of
  - Lack of dependency preservation
  - Redundancy due to use of 3NF
- ☐ Interestingly, SQL does not provide a direct way of specifying functional dependencies other than superkeys.
  - Can specify FDs using assertions, but they are expensive to test, (and currently not supported by any of the widely used databases!)
- Even if we had a dependency preserving decomposition, using SQL we would not be able to efficiently test a functional dependency whose left hand side is not a key.

#### **Multivalued Dependencies**

- ☐ Suppose we record names of children, and phone numbers for instructors:
  - inst\_child(ID, child\_name)
  - *inst\_phone(ID, phone\_number)*
- ☐ If we were to combine these schemas to get
  - inst\_info(ID, child\_name, phone\_number)
  - Example data:

```
(99999, David, 512-555-1234)
```

(99999, David, 512-555-4321)

(99999, William, 512-555-1234)

(99999, William, 512-555-4321)

- ☐ This relation is in BCNF
  - Why?

#### **Multivalued Dependencies (MVDs)**



$$\alpha \rightarrow \rightarrow \beta$$

holds on R if in any legal relation r(R), for all pairs for tuples  $t_1$  and  $t_2$  in r such that  $t_1[\alpha] = t_2[\alpha]$ , there exist tuples  $t_3$  and  $t_4$  in r such that:

$$t_1[\alpha] = t_2[\alpha] = t_3[\alpha] = t_4[\alpha]$$
  
 $t_3[\beta] = t_1[\beta]$   
 $t_3[R - \beta] = t_2[R - \beta]$   
 $t_4[\beta] = t_2[\beta]$   
 $t_4[R - \beta] = t_1[R - \beta]$ 

## MVD (Cont.)

 $\square$  Tabular representation of  $\alpha \rightarrow \rightarrow \beta$ 

|       | α               | β                   | $R-\alpha-\beta$    |
|-------|-----------------|---------------------|---------------------|
| $t_1$ | $a_1 \dots a_i$ | $a_{i+1} \dots a_j$ | $a_{j+1} \dots a_n$ |
| $t_2$ | $a_1 \dots a_i$ | $b_{i+1} \dots b_j$ | $b_{j+1} \dots b_n$ |
| $t_3$ | $a_1 \dots a_i$ | $a_{i+1} \dots a_j$ | $b_{j+1} \dots b_n$ |
| $t_4$ | $a_1 \dots a_i$ | $b_{i+1} \dots b_j$ | $a_{j+1} \dots a_n$ |

## **Example**



$$< y_1, z_1, w_1 > \in r \text{ and } < y_1, z_2, w_2 > \in r$$

then

$$< y_1, z_1, w_2 > \in r \text{ and } < y_1, z_2, w_1 > \in r$$

 $\square$  Note that since the behavior of Z and W are identical it follows that

$$Y \longrightarrow Z \text{ if } Y \longrightarrow W$$

## **Example (Cont.)**

 $\Box$  In our example:

$$ID \longrightarrow child\_name$$
  
 $ID \longrightarrow phone\_number$ 

- ☐ The above formal definition is supposed to formalize the notion that given a particular value of *Y*(*ID*) it has associated with it a set of values of *Z* (*child\_name*) and a set of values of *W*(*phone\_number*), and these two sets are in some sense independent of each other.
- ☐ Note:
  - If  $Y \rightarrow Z$  then  $Y \rightarrow Z$
  - Indeed we have (in above notation)  $Z_1 = Z_2$ The claim follows.

#### **Use of Multivalued Dependencies**

- ☐ We use multivalued dependencies in two ways:
  - 1. To test relations to **determine** whether they are legal under a given set of functional and multivalued dependencies
  - 2. To specify **constraints** on the set of legal relations. We shall thus concern ourselves *only* with relations that satisfy a given set of functional and multivalued dependencies.
- If a relation r fails to satisfy a given multivalued dependency, we can construct a relations r' that does satisfy the multivalued dependency by adding tuples to r.

## Theory of MVDs

- ☐ From the definition of multivalued dependency, we can derive the following rule:
  - If  $\alpha \to \beta$ , then  $\alpha \to \beta$

That is, every functional dependency is also a multivalued dependency

- The **closure**  $D^+$  of D is the set of all functional and multivalued dependencies logically implied by D.
  - We can compute  $D^+$  from D, using the formal definitions of functional dependencies and multivalued dependencies.
  - We can manage with such reasoning for very simple multivalued dependencies, which seem to be most common in practice
  - For complex dependencies, it is better to reason about sets of dependencies using a system of inference rules (see Appendix C).

#### **Fourth Normal Form**

- A relation schema R is in **4NF** with respect to a set D of functional and multivalued dependencies if for all multivalued dependencies in  $D^+$  of the form  $\alpha \rightarrow \rightarrow \beta$ , where  $\alpha \subseteq R$  and  $\beta \subseteq R$ , at least one of the following hold:
  - $\alpha \rightarrow \beta$  is trivial (i.e.,  $\beta \subseteq \alpha$  or  $\alpha \cup \beta = R$ )
  - $\alpha$  is a superkey for schema R
- ☐ If a relation is in 4NF it is in BCNF

## **Restriction of Multivalued Dependencies**

- $\Box$  The restriction of D to R<sub>i</sub> is the set D<sub>i</sub> consisting of
  - All functional dependencies in D<sup>+</sup> that include only attributes of R<sub>i</sub>
  - All multivalued dependencies of the form

$$\alpha \rightarrow \rightarrow (\beta \cap R_i)$$

where  $\alpha \subseteq R_i$  and  $\alpha \longrightarrow \beta$  is in  $D^+$ 

#### **4NF Decomposition Algorithm**

```
result: = {R};
done := false;
compute D^+;
Let D<sub>i</sub> denote the restriction of D<sup>+</sup> to R<sub>i</sub>
while (not done)
   if (there is a schema \mathbf{R}_i in result that is not in 4NF) then
      begin
         let \alpha \rightarrow \beta be a nontrivial multivalued dependency that holds
          on R_i such that \alpha \to R_i is not in D_i, and \alpha \cap \beta = \phi;
        result := (result - R_i) \cup (R_i - \beta) \cup (\alpha, \beta);
      end
   else done:= true;
Note: each R_i is in 4NF, and decomposition is lossless-join
```

## **Example**

- $P = \{A, B, C, G, H, I\}$   $F = \{A \longrightarrow B \}$   $B \longrightarrow HI$ 
  - $CG \longrightarrow H$
- $\square$  R is not in 4NF since  $A \rightarrow \longrightarrow B$  and A is not a superkey for R
- Decomposition
  - a)  $R_1 = (A, B)$

 $(R_1 \text{ is in 4NF})$ 

b)  $R_2 = (A, C, G, H, I)$ 

( $R_2$  is not in 4NF, decompose into  $R_3$  and

- $R_4$ )
- c)  $R_3 = (C, G, H)$

 $(R_3 \text{ is in 4NF})$ 

d)  $R_4 = (A, C, G, I)$ 

( $R_4$  is not in 4NF, decompose into  $R_5$  and

- $R_6$ 
  - $A \rightarrow \rightarrow B$  and  $B \rightarrow \rightarrow HI \Rightarrow A \rightarrow \rightarrow HI$ , (MVD transitivity), and
  - and hence  $A \rightarrow \rightarrow I$  (MVD restriction to  $R_4$ )
- e)  $R_5 = (A, I)$

 $(R_5 \text{ is in 4NF})$ 

 $f)R_6 = (A, C, G)$ 

 $(R_6 \text{ is in } 4NF)$ 

| ID    | name       | salary | dept_name  | building | budget |
|-------|------------|--------|------------|----------|--------|
| 22222 | Einstein   | 95000  | Physics    | Watson   | 70000  |
| 12121 | Wu         | 90000  | Finance    | Painter  | 120000 |
| 32343 | El Said    | 60000  | History    | Painter  | 50000  |
| 45565 | Katz       | 75000  | Comp. Sci. | Taylor   | 100000 |
| 98345 | Kim        | 80000  | Elec. Eng. | Taylor   | 85000  |
| 76766 | Crick      | 72000  | Biology    | Watson   | 90000  |
| 10101 | Srinivasan | 65000  | Comp. Sci. | Taylor   | 100000 |
| 58583 | Califieri  | 62000  | History    | Painter  | 50000  |
| 83821 | Brandt     | 92000  | Comp. Sci. | Taylor   | 100000 |
| 15151 | Mozart     | 40000  | Music      | Packard  | 80000  |
| 33456 | Gold       | 87000  | Physics    | Watson   | 70000  |
| 76543 | Singh      | 80000  | Finance    | Painter  | 120000 |



| ID                                         | name                     | street                         | city                                           | salary                           |
|--------------------------------------------|--------------------------|--------------------------------|------------------------------------------------|----------------------------------|
| :<br>57766<br>57766<br>98776<br>98776<br>: | Kim<br>Kim<br>Kim<br>Kim | Main<br>North<br>Main<br>North | Perryridge<br>Hampton<br>Perryridge<br>Hampton | 75000<br>67000<br>75000<br>67000 |

| A     | В     | С     | D     |
|-------|-------|-------|-------|
| $a_1$ | $b_1$ | $c_1$ | $d_1$ |
| $a_1$ | $b_2$ | $c_1$ | $d_2$ |
| $a_2$ | $b_2$ | $c_2$ | $d_2$ |
| $a_2$ | $b_3$ | $c_2$ | $d_3$ |
| $a_3$ | $b_3$ | $c_2$ | $d_4$ |

| building | room_number | capacity |
|----------|-------------|----------|
| Packard  | 101         | 500      |
| Painter  | 514         | 10       |
| Taylor   | 3128        | 70       |
| Watson   | 100         | 30       |
| Watson   | 120         | 50       |



| dept_name | ID    | street | city       |
|-----------|-------|--------|------------|
| Physics   | 22222 | North  | Rye        |
| Physics   | 22222 | Main   | Manchester |
| Finance   | 12121 | Lake   | Horseneck  |

| dept_name | ID    | street | city       |
|-----------|-------|--------|------------|
| Physics   | 22222 | North  | Rye        |
| Math      | 22222 | Main   | Manchester |

