Roll Number:	
--------------	--

Thapar Institute of Engineering & Technology, Patiala

Department of Computer Science & Engineering MID SEMESTER EXAMINATION (Sep 2018)

B. E. - III Year, Semester V

Course Code: UCS701

Sep 22, 2018, Saturday, 8:00 - 10:00 AM

Course Name: Theory of Computation

Time: 2 Hours, M. Marks: 30

Name of Faculty: AKU, NKA, NS, RAH

Note: Attempt all questions. Assume missing data, if any, suitably.

Q1(a)	Design a deterministic finite automaton over $\Sigma = \{a, b\}$ for the following languages. Give a description for your answer. n_a and n_b denote the number of a and number of b respectively. $L_1 = \{w \mid n_a(w) \bmod 3 > n_b(w) \bmod 3\}$	(3)
Q1(b)	Design a minimized deterministic finite automaton for the set of string defined over $\Sigma = \{0,1\}$. Every 00 is followed by one 1. For example, the strings 101, 0010, 0010011001 are accepted strings, but 0001 and 00100 are rejected string.	(3)
Q2	Write down regular expression for the following languages over alphabet {a, b} that accept all strings having: i) Two substring aa and bb. ii) Every a is followed by at least one b. iii) All string except aa and aaa.	(6)
Q3.	Regular Languages are closed under union, intersection, concatenation, Kleene closure and Complement. Given two languages, L and M, define the exclusive-or of L and M as the set of all strings w such that w is in L and not in M or w is in M and not in L. Show that the exclusive-or of two regular languages is regular using the above mentioned closed properties.	(3)
Q.4	Convert DFA into regular expression using state elimination method.	(3)
Q5	Using pumping lemma, prove that $L = \{a^{2^n} \mid n \ge 0\}$ is not a regular language.	(4)
Q6	Construct regular grammar for the following languages and derive one string using the generated grammar: i) $aa^*(ab+a)^*$ ii) $(aa)^*(ba^*)^*$	(4)

**** End of Paper ****