Неокейнсиански модели

Андрей Василев avassilev@fmi.uni-sofia.bg

Основни въпроси

- Общи положения
- Домакинства
- Фирми
- Равновесие
- Изследване на модела за различни форми на парична политика

Общи положения

- Запазват се основните характеристики на разгледаните класически монетарни модели: липса на правителство, затворена икономика и т.н.
- Подобно на класическите модели имаме домакинства, фирми и централна банка.
- Основни разлики с класическите модели:
 - Монополистична конкуренция
 - Негъвкавост в цените

Домакинства (1)

Вече имаме не една стока, а множество (по-точно континуум) от стоки, потреблението на всяка от които е $C_t(i),\ i\in[0,1],$ по цена $P_t(i).$

Почти позната формулировка:

$$\max_{\{C_t\},\{N_t\}} E_0 \sum_{t=0}^{\infty} \beta^t U(C_t, N_t),$$

но сега C_t е индекс (агрегатор) на потребление (интерпретация!), зададен от

$$C_t := \left(C_t(i)^{\frac{\varepsilon-1}{\varepsilon}} di\right)^{\frac{\varepsilon}{\varepsilon-1}}.$$

Бюджетно ограничение:

$$Q_t B_t = B_{t-1} + W_t N_t - \int_0^1 P_t(i) C_t(i) di - T_t$$

Допълнително изискване: $\lim_{T \to \infty} E_t\{B_T\} \geq 0$

Домакинства (2)

В предходните лекции показахме, че задачата за минимизиране на разходите $\int_0^1 P_t(i) C_t(i) \, di$ при ограничение зададена стойност на агрегатора C_t има решение

(1)
$$C_t(i) = \left(\frac{P_t(i)}{P_t}\right)^{-\varepsilon} C_t, \ \forall i \in [0,1]$$

и е в сила

$$\int_0^1 P_t(i)C_t(i)\,di=P_tC_t,$$

където $P_t:=\left(\int_0^1 P_t(i)^{1-arepsilon}\,di\right)^{rac{1}{1-arepsilon}}.$

Следователно в крайна сметка бюджетното ограничение има познатия вид

$$Q_t B_t = B_{t-1} + W_t N_t - P_t C_t - T_t.$$

Домакинства (3)

За функцията на полезност

$$U(C_t, N_t) = \frac{C_t^{1-\sigma}}{1-\sigma} - \frac{N_t^{1+\varphi}}{1+\varphi}, \ \sigma > 0, \ \varphi \geq 1$$

лог-линеаризираните необходими условия отново имат вида

$$(2) w_t - p_t = \sigma c_t + \varphi n_t,$$

(3)
$$c_t = E_t\{c_{t+1}\} - \frac{1}{\sigma}(i_t - E_t\{\pi_{t+1}\} - \rho).$$

Отново при нужда ще използваме лог-линейна функция на търсене на пари

$$(4) m_t - p_t = y_t - \eta i_t.$$

- Имаме континуум от фирми, които индексираме с $i \in [0,1]$.
- Фирмите функционират в условия на монополистична конкуренция.
- Всяка фирма произвежда точно една от стоките в икономиката в количество, означавано с $Y_t(i)$, използвайки технологията

$$Y_t(i) = A_t N_t(i)^{1-\alpha}$$

при търсене на съответната стока, зададено с (1), и приемайки P_t и C_t за дадени.

- Във всеки период t дадена фирма с вероятност $1-\theta$ получава възможност да промени цената на стоката си $P_t(i)$, а с вероятност θ запазва цената на стойността от предходния период (схема на Калво, Calvo(1983)).
- За простота приемаме, че фирмите са идентични и имат еднакви външни ограничения (допускане за симетрия).
- Тогава за дадена целева функция те ще вземат едни и същи решения и за улеснение можем да изпускаме индексирането по стоките i.
- С P_t^* означаваме цената, която дадена фирма би избрала, когато в период t получи възможност да я актуализира.

Една фирма решава задачата за максимизиране на условната печалба

(5)
$$\max_{P_t^*} E_t \sum_{k=0}^{\infty} \theta^k \left\{ Q_{t,t+k} \left(P_t^* Y_{t+k|t} - \Psi_{t+k} (Y_{t+k|t}) \right) \right\}$$

при ограничения

$$Y_{t+k|t} = \left(\frac{P_t^*}{P_{t+k}}\right)^{-\varepsilon} C_{t+k}, \quad k = 0, 1, 2, \dots$$

Означения:

ullet Стохастичен дисконтов фактор (множител) – $Q_{t,t+k}$

$$Q_{t,t+k} := \beta^k (C_{t+k}/C_t)^{-\sigma} (P_t/P_{t+k})$$

• Функция на общите разходи (в зависимост от произвежданите количества) – $\Psi_t(\cdot)$

След заместване на израза за $Y_{t+k|t}$ във формулата за условната печалба имаме

$$E_{t} \sum_{k=0}^{\infty} \theta^{k} \left\{ Q_{t,t+k} \left[P_{t}^{*} \left(\frac{P_{t}^{*}}{P_{t+k}} \right)^{-\varepsilon} C_{t+k} - \Psi_{t+k} \left(\left(\frac{P_{t}^{*}}{P_{t+k}} \right)^{-\varepsilon} C_{t+k} \right) \right] \right\}$$

За получаване на необходимо условие за оптималност: 1) диференцираме по P_t^* и 2) приравняваме на нула. Диференцирането на израза в квадратни скоби дава

$$\left(\frac{P_t^*}{P_{t+k}}\right)^{-\varepsilon} C_{t+k} + P_t^*(-\varepsilon) \frac{(P_t^*)^{-\varepsilon-1}}{P_{t+k}^{-\varepsilon}} C_{t+k} - \psi_{t+k|t}(-\varepsilon) \frac{(P_t^*)^{-\varepsilon-1}}{P_{t+k}^{-\varepsilon}} C_{t+k},$$

където $\psi_{t+k|t} := \Psi'_{t+k}(Y_{t+k|t})$ са номиналните пределни разходи в период t+k при цена, определена в период t.

Правим следните преобразувания:

$$Y_{t+k|t} - \varepsilon Y_{t+k|t} + \frac{\varepsilon}{P_t^*} \psi_{t+k|t} Y_{t+k|t} =$$

$$Y_{t+k|t}\left(1-\varepsilon+\frac{\varepsilon}{P_t^*}\psi_{t+k|t}\right)=$$

$$\frac{Y_{t+k|t}}{P_t^*}\left((1-\varepsilon)P_t^* + \frac{1-\varepsilon}{1-\varepsilon}\varepsilon\psi_{t+k|t}\right) =$$

$$Y_{t+k|t} \frac{1-\varepsilon}{P_t^*} \left(P_t^* - \underbrace{\frac{\varepsilon}{\varepsilon-1}}_{\mathcal{M}} \psi_{t+k|t} \right).$$

След заместване, приравняване на нула, използване на линейното свойство на очакването и съкращаване на $\frac{1-\varepsilon}{P_t^*}$ получаваме необходимото условие за оптималност

(6)
$$\sum_{k=0}^{\infty} \theta^k E_t \left\{ Q_{t,t+k} Y_{t+k|t} \left[P_t^* - \mathcal{M} \psi_{t+k|t} \right] \right\} = 0.$$

За специалния случай, когато цените са гъвкави ($\theta=0$), условието (6) приема вида

$$P_t^* = \mathcal{M}\psi_{t|t},$$

което може да се интерпретира като формиране на цената P_t^* чрез прилагане на надбавка $\mathcal M$ върху пределните разходи $\psi_{t|t}.$

Ще пресметнем лог-линейно приближение на (6) около стационарно състояние с нулева инфлация. За целта дефинираме ценови индекс между периоди t и t+k като $\Pi_{t,t+k}:=P_{t+k}/P_t$ и реални пределни разходи в период t+k при цена, определена в период t, като $\mathrm{MC}_{t+k|t}:=\psi_{t+k|t}/P_{t+k}$. Тогава (6) може да се запише като

(7)
$$\sum_{k=0}^{\infty} \theta^{k} E_{t} \left\{ Q_{t,t+k} Y_{t+k|t} \left[\frac{P_{t}^{*}}{P_{t-1}} - \mathcal{M}MC_{t+k|t} \Pi_{t-1,t+k} \right] \right\} = 0.$$

За стационарно състояние с нулева инфлация имаме $P_t^*=P_{t+k},\ P_t^*/P_{t-1}=1$ и $\Pi_{t-1,t+k}=1$, откъдето $Y_{t+k|t}=Y$ и $\mathrm{MC}_{t+k|t}=\mathrm{MC}.$ Освен това в стационарното състояние $Q_{t,t+k}=\beta^k.$ Тогава от (7) следва $\mathrm{MC}=1/\mathcal{M}.$

Ще пресметнем лог-линейно приближение на (6) около стационарно състояние с нулева инфлация. За целта дефинираме ценови индекс между периоди t и t+k като $\Pi_{t,t+k}:=P_{t+k}/P_t$ и реални пределни разходи в период t+k при цена, определена в период t, като $\mathrm{MC}_{t+k|t}:=\psi_{t+k|t}/P_{t+k}$. Тогава (6) може да се запише като

(7)
$$\sum_{k=0}^{\infty} \theta^{k} E_{t} \left\{ Q_{t,t+k} Y_{t+k|t} \left[\frac{P_{t}^{*}}{P_{t-1}} - \mathcal{M}MC_{t+k|t} \Pi_{t-1,t+k} \right] \right\} = 0.$$

За стационарно състояние с нулева инфлация имаме $P_t^*=P_{t+k},\ P_t^*/P_{t-1}=1$ и $\Pi_{t-1,t+k}=1$, откъдето $Y_{t+k|t}=Y$ и $\mathrm{MC}_{t+k|t}=\mathrm{MC}.$ Освен това в стационарното състояние $Q_{t,t+k}=\beta^k.$ Тогава от (7) следва $\mathrm{MC}=1/\mathcal{M}.$ Задача: Проверете последното твърдение.

Връзката (7) може да бъде записана като

$$\sum_{k=0}^{\infty} (\beta \theta)^k E_t \left\{ \widetilde{Q}_{t,t+k} Y_{t+k|t} \left[\frac{P_t^*}{P_{t-1}} - \mathcal{M} \mathsf{MC}_{t+k|t} \Pi_{t-1,t+k} \right] \right\} = 0,$$

където
$$\widetilde{Q}_{t,t+k} := \left(rac{C_{t+k}}{C_t}
ight)^{-\sigma} \left(rac{P_t}{P_{t+k}}
ight)$$
. Тогава

$$\begin{split} &\sum_{k=0}^{\infty} (\beta \theta)^{k} E_{t} \left\{ e^{\widetilde{q}_{t,t+k}} e^{y_{t+k|t}} e^{p_{t}^{*}} e^{-p_{t-1}} \right\} = \\ &\sum_{k=0}^{\infty} (\beta \theta)^{k} E_{t} \left\{ e^{\widetilde{q}_{t,t+k}} e^{y_{t+k|t}} e^{\mu} e^{\mathsf{mc}_{t+k|t}} e^{p_{t+k}} e^{-p_{t-1}} \right\}, \end{split}$$

където е използвано означението $\mu := \ln \mathcal{M}$. (При това означение в стационарното състояние имаме $mc = -\mu$.)

Нека означим стационарната стойност на $e^{\widetilde{q}_{t,t+k}}e^{y_{t+k|t}}e^{p_t^*}e^{-p_{t-1}}$ с e^{EQ_1} , а тази на $e^{\widetilde{q}_{t,t+k}}e^{y_{t+k|t}}e^{\mu}e^{\mathrm{mc}_{t+k|t}}e^{p_{t+k}}e^{-p_{t-1}}$ ще означим с e^{EQ_2} . Имаме $e^{\mathrm{EQ}_1}=e^{\mathrm{EQ}_2}$.

При линеаризиране на последния запис на НУ за оптималност около избраното стационарно състояние получаваме

$$\begin{split} &\sum_{k=0}^{\infty} (\beta \theta)^k E_t \bigg\{ e^{\mathsf{EQ}_1} + e^{\mathsf{EQ}_1} (\widetilde{q}_{t,t+k} - \widetilde{q}) + e^{\mathsf{EQ}_1} (y_{t+k|t} - y) + \\ e^{\mathsf{EQ}_1} (p_t^* - p^*) - e^{\mathsf{EQ}_1} (p_{t-1} - p) \bigg\} = \sum_{k=0}^{\infty} (\beta \theta)^k E_t \bigg\{ e^{\mathsf{EQ}_2} + \\ e^{\mathsf{EQ}_2} (\widetilde{q}_{t,t+k} - \widetilde{q}) + e^{\mathsf{EQ}_2} (y_{t+k|t} - y) + e^{\mathsf{EQ}_2} (\underbrace{\mathsf{mc}_{t+k|t} - \mathsf{mc}}) + \\ &= \underbrace{\mathsf{e}^{\mathsf{EQ}_2} (p_{t+k} - p)} - e^{\mathsf{EQ}_2} (p_{t-1} - p) \bigg\}. \end{split}$$

След съкращаване получаваме

$$\sum_{k=0}^{\infty} (\beta \theta)^k E_t \left\{ p_t^* - p_{t-1} \right\} = \sum_{k=0}^{\infty} (\beta \theta)^k E_t \left\{ \widehat{\mathrm{mc}}_{t+k|t} + p_{t+k} - p_{t-1} \right\}, \text{ r.e.}$$

(8)
$$p_t^* - p_{t-1} = (1 - \beta \theta) \sum_{k=0}^{\infty} (\beta \theta)^k E_t \left\{ \widehat{\mathsf{mc}}_{t+k|t} + (p_{t+k} - p_{t-1}) \right\}.$$

Задача: Покажете, че (8) може да се запише като

$$p_t^* = \mu + (1 - \beta \theta) \sum_{k=0}^{\infty} (\beta \theta)^k E_t \left\{ mc_{t+k|t} + p_{t+k} \right\}.$$

Понеже за $\mathcal{M}\approx 1$ имаме $\mu\approx \mathcal{M}-1$ (нетна надбавка), последният израз се интерпретира като формиране на цената чрез надбавка над претеглените очаквани номинални пределни разходи.

- Нека $S(t) \subset [0,1]$ е множеството на фирмите, които не са получили възможност да актуализират цената си в период t. Понеже сме приели, че сме в симетричния случай, всяка такава фирма в период t ще има една и съща цена $P_{t-1}(i) = P_{t-1}$.
- Останалите фирми са свободни да актуализират цената си и, както видяхме, избират цена $P_t^st.$
- Тогава общият ценови индекс ще има вида

$$P_{t} = \left[\int_{S(t)} P_{t-1}(i)^{1-\varepsilon} di + \int_{[0,1] \setminus S(t)} (P_{t}^{*})^{1-\varepsilon} di \right]^{\frac{1}{1-\varepsilon}}$$
$$= \left[\theta(P_{t-1})^{1-\varepsilon} + (1-\theta)(P_{t}^{*})^{1-\varepsilon} \right]^{\frac{1}{1-\varepsilon}},$$

където вторият ред следва от (вариант на) закона за големите числа.

При използване на стандартната дефиниция $\Pi_t := P_t/P_{t-1}$ имаме

(9)
$$\Pi_t^{1-\varepsilon} = \theta + (1-\theta) \left(\frac{P_t^*}{P_{t-1}}\right)^{1-\varepsilon}.$$

При лог-линеаризиране на (9) в околност на стационарно състояние с нулева инфлация, т.е. $\Pi_t = \Pi = 1$ и $P_t^* = P^* = P_t = P$, имаме

(10)
$$\pi_t = (1 - \theta)(p_t^* - p_{t-1}).$$

При използване на стандартната дефиниция $\Pi_t := P_t/P_{t-1}$ имаме

(9)
$$\Pi_t^{1-\varepsilon} = \theta + (1-\theta) \left(\frac{P_t^*}{P_{t-1}}\right)^{1-\varepsilon}.$$

При лог-линеаризиране на (9) в околност на стационарно състояние с нулева инфлация, т.е. $\Pi_t = \Pi = 1$ и $P_t^* = P^* = P_t = P$, имаме

(10)
$$\pi_t = (1 - \theta)(p_t^* - p_{t-1}).$$

Задача: Изведете уравнение (10).

Равновесие (1)

Условие за изравняване на търсенето и предлагането за всяка стока:

$$Y_t(i) = C_t(i), \forall i \in [0, 1], t = 0, 1, ...$$

Дефинираме общото производство в икономиката като

$$Y_t := \left[\int_0^1 Y_t(i)^{\frac{\varepsilon-1}{\varepsilon}} di\right]^{\frac{\varepsilon}{\varepsilon-1}}.$$

Тогава получаваме, че имаме изравняване и на съвкупното търсене и предлагане:

$$Y_t = C_t$$
.

Като използваме последната връзка, от уравнението на Ойлер (3) получаваме

(11)
$$y_t = E_t\{y_{t+1}\} - \frac{1}{\sigma}(i_t - E_t\{\pi_{t+1}\} - \rho).$$

Равновесие (2) Пазар на труд

Изравняване на търсенето и предлагането на труд:

$$N_t = \int_0^1 N_t(i) \, di.$$

След заместване на $N_t(i)$ от производствената функция в горното условие получаваме

$$N_{t} = \int_{0}^{1} \left(\frac{Y_{t}(i)}{A_{t}}\right)^{\frac{1}{1-\alpha}} di = \int_{0}^{1} \left(\frac{P_{t}(i)^{-\varepsilon}Y_{t}}{A_{t}P_{t}^{-\varepsilon}}\right)^{\frac{1}{1-\alpha}} di$$
$$= \left(\frac{Y_{t}}{A_{t}}\right)^{\frac{1}{1-\alpha}} \int_{0}^{1} \left(\frac{P_{t}(i)}{P_{t}}\right)^{-\frac{\varepsilon}{1-\alpha}} di.$$

Логаритмуваме и получаваме

$$(1-\alpha)n_t = y_t - a_t + d_t,$$

където
$$d_t := (1-lpha) \ln \int_0^1 \left(rac{P_t(i)}{P_t}
ight)^{-rac{arepsilon}{1-lpha}} \, di.$$

Равновесие (3)

Величината d_t може да се интерпретира като измерител на "разсейването" (разпръснатостта) на цените между различните фирми. За нея може да се докаже, че в околност на стационарно състояние с нулева инфлация тя е пренебрежима в сравнение с другите величини и може да се изпусне.

Така получаваме линейно приближение за връзката между съвкупно производство, технологии и заетост

(12)
$$y_t = a_t + (1 - \alpha)n_t$$
.

Обърнете внимание, че ако сме се съгласили да работим с точност до линейно приближение, уравнение (12) е еквивалентно с това да сме приели, че имаме производствена функция от типа Коб-Дъглас на макро ниво:

$$Y_t = A_t N_t^{1-\alpha}.$$

Пределният продукт на труда MPN $_t$ за производствената функция $Y_t = A_t N_t^{1-lpha}$ има вида

$$\mathsf{MPN}_t = \frac{\partial}{\partial N_t} \left(A_t N_t^{1-\alpha} \right) = (1-\alpha) A_t N_t^{-\alpha},$$

откъдето

$$\mathsf{mpn}_t = \mathsf{ln}(1 - \alpha) + \mathsf{a}_t - \alpha \mathsf{n}_t.$$

За тази производствена технология общите номинални разходи за производство са $TC_t^n=W_tN_t=W_t\left(\frac{Y_t}{A_t}\right)^{\frac{1}{1-\alpha}}$ и тогава номиналните пределни разходи са

$$MC_t^n = \frac{\partial TC_t^n}{\partial Y_t} = \frac{W_t}{(1-\alpha)A_tN_t^{-\alpha}} = \frac{W_t}{MPN_t}.$$

Реалните пределни разходи са

$$\mathsf{MC}_t := \frac{\mathsf{MC}_t^n}{P_t} = \frac{W_t}{P_t(1-\alpha)A_tN_t^{-\alpha}} = \frac{W_t}{P_t\mathsf{MPN}_t}.$$

Тогава логаритмуваните реални пределни разходи за икономиката са

$$\begin{aligned} \mathsf{mc}_t &= (w_t - p_t) - \mathsf{mpn}_t \\ &= (w_t - p_t) - (a_t - \alpha n_t) - \mathsf{ln}(1 - \alpha) \\ &= (w_t - p_t) - \frac{1}{1 - \alpha} (a_t - \alpha y_t) - \mathsf{ln}(1 - \alpha), \end{aligned}$$

където последният ред е получен с използване на (12). Ако искаме да запишем усреднени реални пределни разходи или усреднен реален продукт на труда, в нашия случай предходните формули запазват вида си, понеже формално трябва да разделим на "броя" на агентите в икономиката, който е мярката на интервала [0,1], т.е. 1.

Равновесие (6) <u>Резулт</u>ати на ниво фирма

Предходните разсъждения могат формално да се приложат и на ниво фирма, а не само на агрегирано ниво за цялата икономика, тъй като структурата на задачата е същата. Единствената разлика ще бъде, че за отделната фирма търсенето, съответно производството, реалните пределни разходи и пределният продукт на труда, се формират за период t+k евентуално при цена, определена в t. Съответно имаме

$$\begin{split} \mathsf{mc}_{t+k|t} &= (w_{t+k} - p_{t+k}) - \mathsf{mpn}_{t+k|t} \\ &= (w_{t+k} - p_{t+k}) - \frac{1}{1-\alpha} (a_{t+k} - \alpha y_{t+k|t}) - \mathsf{ln}(1-\alpha). \end{split}$$

Ще използваме последната формула, за да изразим реалните пределни разходи за една фирма чрез усреднените реални пределни разходи за икономиката като цяло.

Имаме

$$\begin{aligned} \mathsf{mc}_{t+k|t} &= (w_{t+k} - p_{t+k}) - \frac{1}{1 - \alpha} (a_{t+k} - \alpha y_{t+k|t}) - \ln(1 - \alpha) \\ &= (w_{t+k} - p_{t+k}) - \frac{1}{1 - \alpha} (a_{t+k} \pm \alpha y_{t+k} - \alpha y_{t+k|t}) - \ln(1 - \alpha) \\ &= \mathsf{mc}_{t+k} + \frac{\alpha}{1 - \alpha} (y_{t+k|t} - y_{t+k}) \\ &= \mathsf{mc}_{t+k} + \frac{\alpha}{1 - \alpha} (-\varepsilon (p_t^* - p_{t+k}) + c_{t+k} - y_{t+k}) \end{aligned}$$

Окончателно получаваме

(13)
$$\begin{aligned} \mathsf{mc}_{t+k|t} &= \mathsf{mc}_{t+k} - \frac{\alpha \varepsilon}{1 - \alpha} (p_t^* - p_{t+k}) \\ &= \mathsf{mc}_{t+k} + \frac{\alpha}{1 - \alpha} (y_{t+k|t} - y_{t+k}). \end{aligned}$$

При $\alpha=0$ (постоянна възвращаемост от мащаба) получаваме като частен случай на (13) връзката $\mathrm{mc}_{t+k|t}=\mathrm{mc}_{t+k}$, т.е. пределните разходи на фирмата не зависят от индивидуалната цена (или обем на производството) и са едни и същи за различните фирми.

От формула (13) също така се вижда, че:

- по-големият обем на производството за дадена фирма спрямо средното за икономиката води до по-големи реални пределни разходи спрямо средните;
- при по-висока цена, определена в момент t, в сравнение със средната цена за момент t+k реалните пределни разходи на фирмата са под средните.

При заместване на израза за $\mathrm{mc}_{t+k|t}$ от (13) в уравнение (8) и преобразуване получаваме

$$\begin{aligned} p_t^* - p_{t-1} &= (1 - \beta \theta) \sum_{k=0}^{\infty} (\beta \theta)^k E_t \left\{ \Theta \widehat{\mathsf{mc}}_{t+k} + (p_{t+k} - p_{t-1}) \right\} \\ &= (1 - \beta \theta) \Theta \sum_{k=0}^{\infty} (\beta \theta)^k E_t \left\{ \widehat{\mathsf{mc}}_{t+k} \right\} + \sum_{k=0}^{\infty} (\beta \theta)^k E_t \left\{ \pi_{t+k} \right\}, \end{aligned}$$

където
$$\Theta:=rac{1-lpha}{1-lpha+lphaarepsilon}\leq 1.$$

Задача: Покажете, че първият и вторият ред на горното равенство са еквивалентни.

Горното равенство може да бъде записано като

(14)
$$p_t^* - p_{t-1} = \beta \theta E_t \{ p_{t+1}^* - p_t \} + (1 - \beta \theta) \Theta \widehat{mc}_t + \pi_t.$$

Като заместим (10) в (14) стигаме до уравнението за инфлацията

(15)
$$\pi_t = \beta E_t \{ \pi_{t+1} \} + \lambda \widehat{\mathsf{mc}}_t,$$

където $\lambda := \frac{(1-\theta)(1-\beta\theta)}{\theta}\Theta$.

След рекурсивно заместване в (15) можем да получим инфлацията, изразена като функция на очакваните отклонения на реалните пределни разходи от стационарната им стойност

$$\pi_t = \lambda \sum_{k=0}^{\infty} \beta^k E_t \left\{ \widehat{\mathsf{mc}}_{t+k} \right\}.$$

Усреднените реални пределни разходи могат да бъдат записани във вида

$$\mathsf{mc}_t = \underbrace{\left(w_t - p_t\right)}_{\mathsf{прилагаме}\ (2)} - \mathsf{mpn}_t$$

$$= \left(\sigma y_t + \varphi n_t\right) - \left(y_t - n_t\right) - \mathsf{ln}(1 - \alpha)$$

$$= \left(\sigma + \frac{\varphi + \alpha}{1 - \alpha}\right) y_t - \frac{1 + \varphi}{1 - \alpha} a_t - \mathsf{ln}(1 - \alpha).$$

Ако цените са гъвкави, реалните пределни разходи са постоянни: $mc = -\mu$.

Задача: Убедете се в това, като използвате (7).

Дефинираме *естественото ниво на производство* y_t^n като нивото на производство в условия на гъвкави цени:

(17)
$$mc = \left(\sigma + \frac{\varphi + \alpha}{1 - \alpha}\right) y_t^n - \frac{1 + \varphi}{1 - \alpha} a_t - \ln(1 - \alpha),$$

откъдето

$$y_t^n = \psi_{ya}^n a_t + \vartheta_a^n$$

при означенията

$$\psi_{ya}^{n} := \frac{1+\varphi}{\sigma(1-\alpha)+\varphi+\alpha}, \quad \vartheta_{y}^{n} := -\frac{(1-\alpha)(\mu-\ln(1-\alpha))}{\sigma(1-\alpha)+\varphi+\alpha} > 0.$$

Ако $\mu=0$, т.е. няма надбавка, което се интерпретира като условия на съвършена конкуренция, тогава (18) съвпада с формулата за случая на класическия монетарен модел.

Изваждайки (17) от (16) получаваме

(19)
$$\widehat{\mathsf{mc}}_t = \left(\sigma + \frac{\varphi + \alpha}{1 - \alpha}\right) \underbrace{\left(y_t - y_t^n\right)}_{:= \widetilde{y}_t} = \left(\sigma + \frac{\varphi + \alpha}{1 - \alpha}\right) \widetilde{y}_t.$$

Величината \widetilde{y}_t представлява отклонението на (лог) производството от потенциалната му стойност и за краткост я наричаме *отклонение от потенциалното производство* (output gap). В случая потенциалната стойност е стойността на производството при гъвкави цени.

Като заместим израза за $\widehat{\mathrm{mc}}_t$ от (19) в уравнение (15) можем да получим инфлацията в даден период като функция на очакваната инфлация и отклонението от потенциалното производство

(20)
$$\pi_t = \beta E_t \{ \pi_{t+1} \} + \kappa \widetilde{y}_t,$$

при
$$\kappa := \lambda \left(\sigma + \frac{\varphi + \alpha}{1 - \alpha} \right)$$
.

Уравнение (20) се нарича *неокейнсианска крива на Филипс* (New Keynesian Phillips Curve).

За сравнение, в курса по Макроикономика-1 във ФМИ се разглежда опростен вариант на крива на Филипс:

$$\pi_t = \bar{\pi} + b\hat{y}_t + \varepsilon_{2,t}.$$

Равновесие (15) Динамично IS уравнение

Нека запишем уравнение (11) като

$$\underbrace{y_{t}-y_{t}^{n}}_{\widetilde{y}_{t}} = \underbrace{E_{t}\{y_{t+1}\}-E_{t}\{y_{t+1}^{n}\}}_{E_{t}\{\widetilde{y}_{t+1}\}} \underbrace{+E_{t}\{y_{t+1}^{n}\}-y_{t}^{n}}_{E_{t}\{\Delta y_{t+1}^{n}\}} - \frac{1}{\sigma}(i_{t}-E_{t}\{\pi_{t+1}\}-\rho).$$

След преобразуване получаваме т.нар. динамично IS уравнение (динамична IS крива, dynamic IS equation):

(21)
$$\widetilde{y}_{t} = -\frac{1}{\sigma} (i_{t} - E_{t} \{ \pi_{t+1} \} - r_{t}^{n}) + E_{t} \{ \widetilde{y}_{t+1} \},$$

където r_t^n е естественото ниво на лихвения процент и се дефинира като

(22)
$$r_t^n := \rho + \sigma E_t \{ \Delta y_{t+1}^n \}$$
$$= \rho + \sigma \psi_{va}^n E_t \{ \Delta a_{t+1}^n \}.$$

За сравнение, вариант на IS крива от Макроикономика-1:

$$\hat{\mathbf{y}}_t = -\mathbf{a}(\mathbf{r}_t - \bar{\mathbf{r}}) + \varepsilon_{1,t}$$
.

Равновесие (16) Динамично IS уравнение

Динамичното IS уравнение (21) може да бъде записано като

$$\widetilde{y}_{t} = -\frac{1}{\sigma} (r_{t} - r_{t}^{n}) + E_{t} \{ \widetilde{y}_{t+1} \}
= -\frac{1}{\sigma} \sum_{k=0}^{T-1} E_{t} \{ r_{t+k} - r_{t+k}^{n} \} + E_{t} \{ \widetilde{y}_{t+T} \}, \quad T = 1, 2, ...$$

Нека е в сила $\lim_{T\to\infty} E_t\{\tilde{y}_{t+T}\}=0$, т.е. очакваме в дългосрочен план влиянието на номиналните негъвкавости в икономиката да бъде елиминирано.

Тогава след граничен преход за $T o \infty$ имаме

(23)
$$\widetilde{y}_{t} = -\frac{1}{\sigma} \sum_{k=0}^{\infty} E_{t} \{ r_{t+k} - r_{t+k}^{n} \},$$

т.е. отклонението от потенциалното производство е функция на очакваните отклонения на реалния лихвен процент от естественото му ниво.

- Неокейнсианската крива на Филипс определя инфлацията при зададена траектория на отклонението от потенциалното производство.
- Динамичното IS уравнение определя потенциалното производство при зададени траектории на:
 - естественото ниво на лихвения процент r_t^n от (22) е ясно, че то е екзогенно, като зависи само от процеса за технологията;
 - реалния лихвен процент $r_t := i_t E_t\{\pi_{t+1}\}$ той по дефиниция зависи от номиналния лихвен процент i_t .
- За да решим модела е необходимо да въведем и някаква форма на икономическа политика. По-нататък ще разглеждаме варианти за въвеждане конкретно на парична политика.

Въвеждане на парична политика (1)

Просто правило за определяне на номиналния лихвен процент

Приемаме, че номиналният лихвен процент се определя по правилото

(24)
$$i_t = \rho + \phi_\pi \pi_t + \phi_y \widetilde{y}_t + \nu_t,$$

където $\phi_{\pi}, \; \phi_{y} \geq 0$, а ν_{t} най-често се приема за случаен компонент с нулева средна.

В литературата правило за определяне на лихвения процент от типа на (24) се нарича *правило на Тейлър*.

Въвеждане на парична политика (2)

Просто правило за определяне на номиналния лихвен процент

След заместване на (24) в (21), опростяване и последващо заместване на резултата в (20) получаваме системата

(25)
$$\left[\begin{array}{c} \widetilde{y}_t \\ \pi_t \end{array}\right] = \mathbf{A}_T \left[\begin{array}{c} E_t\{\widetilde{y}_{t+1}\} \\ E_t\{\pi_{t+1}\} \end{array}\right] + \mathbf{B}_T(\widehat{r}_t^n - \nu_t),$$

където $\hat{r}^n_t := r^n_t -
ho$ и

$$\mathsf{A}_{\mathcal{T}} := \Omega \begin{bmatrix} \sigma & 1 - \beta \phi_{\pi} \\ \sigma \kappa & \kappa + \beta (\sigma + \phi_{y}) \end{bmatrix}, \ \mathsf{B}_{\mathcal{T}} := \Omega \begin{bmatrix} 1 \\ \kappa \end{bmatrix} \ \text{ sa } \Omega := \frac{1}{\sigma + \phi_{y} + \kappa \phi_{\pi}}.$$

И двете променливи \tilde{y}_t и π_t зависят от променливи, които ще бъдат определени през следващия период, съответно условията на Бланшар-Кан изискват и двете собствени числа на матрицата \mathbf{A}_T да бъдат по-големи по модул от 1. Това условие е изпълнено, ако е в сила

$$\kappa(\phi_{\pi}-1)+(1-\beta)\phi_{V}>0.$$

Въвеждане на парична политика (3)

Просто правило за определяне на номиналния лихвен процент

Ще разгледаме ефектите при избраното правило за определяне на лихвения процент от шокове в паричната политика и в технологиите. За целта приемаме, че динамиката на ν_t и a_t се задава от $\mathsf{AR}(1)$ процесите

$$egin{aligned}
u_t &=
ho_
u
u_{t-1} + arepsilon_t^
u, &
ho_
u &\in [0,1), \ arepsilon_t^
u &- ext{бял шум със средна 0,} \ a_t &=
ho_a a_{t-1} + arepsilon_t^a, &
ho_a &\in [0,1), \ arepsilon_t^a &- ext{бял шум със средна 0.} \end{aligned}$$

В книгата на Galí тези два случая са разгледани аналитично, като променливите от модела са представени като функция на съответните шокове (вж. §§3.4.1.1 и 3.4.1.2). Ние ще изследваме ефектите числено с помощта на Dynare.

Забележка: По-нататък ще използваме означението $I_t:=m_t-p_t$ за реалните парични баланси.

Въвеждане на парична политика (4)

Просто правило за определяне на номиналния лихвен процент – шок в u_t

Въвеждане на парична политика (5)

Просто правило за определяне на номиналния лихвен процент – шок в a_t

Въвеждане на парична политика (6)

Екзогенно зададено парично предлагане

При този вариант на парична политика се предполага, че централната банка определя не номиналния лихвен процент, а паричното предлагане m_t .

За записване на системата в подходящ вид са необходими някои трансформации. Уравнение (4) може да бъде записано във вида

$$\widetilde{y}_t - \eta i_t = I_t - y_t^n.$$

След заместване в (21) и опростяване получаваме

(26)
$$(1 + \sigma \eta)\widetilde{y}_t = \sigma \eta E_t\{\widetilde{y}_{t+1}\} + I_t + \eta E_t\{\pi_{t+1}\} + \eta r_t^n - y_t^n.$$

Освен това, от тъждеството $l_t:=m_t-p_t$ следва $\Delta l_t:=\Delta m_t-\Delta p_t$, т.е.

(27)
$$I_{t-1} = I_t + \pi_t - \Delta m_t.$$

Въвеждане на парична политика (7)

Екзогенно зададено парично предлагане

Ще разгледаме реакциите на модела при шокове в паричното предлагане и в технологиите. Приемаме, че Δm_t и a_t се описват с процесите

$$\Delta m_t =
ho_m \Delta m_{t-1} + arepsilon_t^m, \quad
ho_m \in [0,1), \ arepsilon_t^m$$
 – бял шум със средна 0, $a_t =
ho_a a_{t-1} + arepsilon_t^a, \quad
ho_a \in [0,1), \ arepsilon_t^a$ – бял шум със средна 0.

Въвеждане на парична политика (8) Екзогенно зададено парично предлагане – шок в Δm_t

Въвеждане на парична политика (9)

Екзогенно зададено парично предлагане – шок в a_t

