Théorie des langages : THL CM 8

Uli Fahrenberg

EPITA Rennes

S5 2024

Aperçu

Aperçu •0000000000

Programme du cours

- Langages rationnels, automates finis
- Langages algébriques, grammaires hors-contexte, automates à pile
 - TP 1 : flex
 - QCM 1 : langages rationnels
- Parsage LL
- Parsage LR, partie 1
 - TP 2 : parsage LL
 - QCM 2 : parsage LL
- Parsage LR, partie 2
- Parsage LR, partie 3
- TP 3, 4 : flex & bison

Re: parsage ascendant: the basics

```
function BULRP(\alpha)
    if \alpha = S then
         return True
    for i \leftarrow 1 to |\alpha| do
         for i \leftarrow i to |\alpha| do
                                                             for A \in N do
                  if A \to \alpha_i \dots \alpha_i then \triangleright réduction / REDUCE
                       return BULRP(\alpha_1 \dots \alpha_{i-1} A \alpha_{i+1} \dots \alpha_n)
    return False
```

Définition (8.8)

Soit G une grammaire hors-contexte. Une production pointée de G est une paire $(A, \alpha \bullet \beta)$ telle que $A \to \alpha \beta$ est une production de G.

> Uli Fahrenberg Théorie des langages : THL 4/62

Re: automate de parsage LR(0)

Définition (8.10)

Soit G une grammaire hc et \mathcal{I} un ensemble de productions pointées de G. La clôture de \mathcal{I} est le plus petit ensemble $cl(\mathcal{I})$ t.g. $\mathcal{I} \subset cl(\mathcal{I})$ et

• si $(A, \alpha \bullet B\beta) \in cl(\mathcal{I})$ et $B \to \gamma$ est une production de G, alors $(B, \bullet \gamma) \in \mathcal{I}.$

Définition

L'automate de parsage LR(0) d'une grammaire hors-contexte G est l'automate fini déterministe (Q, q_0, F, δ) avec

- $Q = \{ cl(\mathcal{I}) \mid \mathcal{I} \text{ ensemble de productions pointées de } G \}$;
- $q_0 = \operatorname{cl}(\{(Z, \bullet S\})\});$
- $F = \{ q \in Q \mid \exists \text{ production } X \to w \text{ de } G \text{ t.q. } (X, w \bullet) \in q \}$
- et $\delta: Q \times V \to Q$ donnée par

 $\delta(q,\beta) = \operatorname{cl}(\{(X,\alpha\beta \bullet \gamma) \mid (X,\alpha \bullet \beta \gamma) \in q\}).$

Apercu 0000 0000000

$$X \rightarrow aYc$$
 (1)

$$Y \rightarrow b$$
 (2)

REDUCE

Re : algorithme de parsage

- empiler q_0
- repeat
 - $oldsymbol{g} q \leftarrow$ état en haut de la pile
 - 2 si $q = \text{\'etat final } X \to w \bullet$:
 - dépiler |w| états
 - $oldsymbol{g} g' \leftarrow$ état en haut de la pile
 - \circ empiler $\delta(q', X)$
 - sinon:
 - \bullet a \leftarrow next(input)
 - \circ empiler $\delta(q, a)$

until $q = \text{\'etat final } Z \to S \bullet (\checkmark) \text{ ou \'echec } (\checkmark)$

← possible X

SHIFT

← possible X

← possible X

Uli Fahrenberg

Re : exemple : automate de parsage

$$Z \rightarrow S$$
 (0)

$$S \rightarrow (S)$$
 (1)

$$| n$$
 (2)

$$\longrightarrow$$
 $Z \rightarrow \bullet S$

Re : exemple : automate de parsage

$$Z \rightarrow S$$
\$ (0)
 $S \rightarrow (S)$ (1)
 $\mid n$ (2)

$$\longrightarrow \begin{array}{c}
Z \to \bullet S \\
S \to \bullet (S) \\
S \to \bullet n
\end{array}$$

Aperçu

Re : exemple : automate de parsage

$$Z \rightarrow S$$
\$ (0)
 $S \rightarrow (S)$ (1)
 $\mid n$ (2)

$$\longrightarrow \begin{array}{c} Z \to \bullet S\$ \\ S \to \bullet (S) \\ S \to \bullet n \end{array} \qquad (S \to (\bullet S))$$

Aperçu

Re : exemple : automate de parsage

$$Z \rightarrow S$$
\$ (0)
 $S \rightarrow (S)$ (1)
 $\mid n$ (2)

$$\longrightarrow \begin{array}{c}
Z \to \bullet S \\
S \to \bullet (S) \\
S \to \bullet n
\end{array}$$

$$(S \to (\bullet S) \\
S \to \bullet (S) \\
S \to \bullet n$$

Uli Fahrenberg

Re : exemple : automate de parsage

$$Z \rightarrow S$$
\$ (0)
 $S \rightarrow (S)$ (1)
 $\mid n$ (2)

Aperçu 00000000000

Uli Fahrenberg

$$Z \rightarrow S$$
\$ (0)
 $S \rightarrow (S)$ (1)
 $| n$ (2)

Aperçu 000000●0000

Uli Fahrenberg

$$Z \rightarrow S$$
\$ (0)
 $S \rightarrow (S)$ (1)
 $\mid n$ (2)

Aperçu 000000●0000

Uli Fahrenberg

Re : exemple : automate de parsage

$$Z \rightarrow S$$
\$ (0)
 $S \rightarrow (S)$ (1)
 $\mid n$ (2)

Aperçu 000000●0000

Uli Fahrenberg

Re : exemple : automate de parsage

$$Z \rightarrow S$$
\$ (0)
 $S \rightarrow (S)$ (1)
 $\mid n$ (2)

Aperçu 000000●0000

Uli Fahrenberg

$$Z \rightarrow S$$
\$ (0)
 $S \rightarrow (S)$ (1)
 $\mid n$ (2)

Aperçu 00000000000

Re : exemple : table de parsage

Re: parsage LR(0)

Apercu

00000000000

- lire l'entrée de gauche à droite (L)
- approche ascendant
- construire une dérivation droite (R)
- pas de regard avant (0)

Parsage LALR(1) et GLR

21/62

Re: parsage SLR(1): exemple

$$Z \rightarrow S\$ \qquad (0)$$

$$S \rightarrow n-S \qquad (1)$$

$$\mid n \qquad (2)$$

état	action	n	_	\$	S
0	décaler	2			1
1	décaler			4	
2	réduire 2, décaler		3		conflit SHIFT/REDUCE
3	décaler	2			5
4	accepter				
5	réduire 1				

Uli Fahrenberg Théorie des langages : THL

Re : Simple LR(1)

- calculer la table LR(0)
- si conflits : conditionner l'action par le FOLLOW
- ullet passer du type état o action o entrée au type état o entrée o action

Exemple:
$$Z \rightarrow S$$
 (0)

$$S \rightarrow n-S$$
 (1)

$$S \rightarrow n$$
 (2)

état	action	n	_	\$	S		état	n	_	\$	<i>S</i>
0	décaler	2			1	-	0	d.2			d.1
1	décaler			4			1			d.4	
2	réd. 2, déc.		3			\Longrightarrow	2		d.3	r.2	
3	décaler	2			5		3	d.2			d.5
4	accepter						4	— accepter —		_	
5	réduire 1						5			r.1	

Uli Fahrenberg

Parsage LR(1)

Exemple

$$Z \rightarrow S$$
 (0)

$$S \rightarrow L=E$$
 (1)

$$L \rightarrow x$$
 (3)

$$|*E$$
 (4)

$$E \rightarrow L$$
 (5)

manipulation des pointeurs

Exemple

		état	X
Z o S	(0)	0	d.4
$S \rightarrow L = E$	(1)	1	
<i>E</i>	(2)	2	
L o x	(3)	3	
* <i>E</i>	(4)	4	
extstyle E o extstyle L	(5)	5	d.4
	()	6	
		7	d.4
		8	
		9	

état	X	*	=	\$	S	L	Ε
0	d.4	d.5			d.1	d.2	d.3
1				d.6			
2			d.7				
			r.5	r.5			
3				r.2			
4			r.3	r.3			
5	d.4	d.5				d.9	d.8
6			— a	accept	er —		
7	d.4	d.5				d.9	d.10
8			r.4	r.4			
9			r.5	r.5			
10			r.1	r.1			

Exemple

Uli Fahrenberg

$$Z \rightarrow S$$
 (0)

$$S \rightarrow L=E$$
 (1)

$$L \to \mathbf{x}$$
 (3)

$$|*E$$
 (4)

$$E \rightarrow L$$
 (5)

état	productions pointées
0	$Z \rightarrow \bullet S$ \$

$$Z \rightarrow S$$
 (0)

$$S \rightarrow L=E$$
 (1)

$$\mid E \mid (2)$$

$$L \to \mathbf{x}$$
 (3)

$$E \rightarrow L$$
 (5)

état	productions pointées
0	$Z \rightarrow \bullet S\$, S \rightarrow \bullet L=E, S \rightarrow \bullet E$

$$Z \rightarrow S$$
 (0)

$$S \rightarrow L=E$$
 (1)

$$\mid E \mid (2)$$

$$L \rightarrow x$$
 (3)

$$|*E$$
 (4)

$$E \rightarrow L$$
 (5)

	productions pointées
0	$Z \rightarrow \bullet S$, $S \rightarrow \bullet L = E$, $S \rightarrow \bullet E$
	$Z \rightarrow \bullet S$, $S \rightarrow \bullet L = E$, $S \rightarrow \bullet E$ $L \rightarrow \bullet x$, $L \rightarrow \bullet *E$, $E \rightarrow \bullet L$

$$Z \rightarrow S$$
 (0)

$$S \rightarrow L=E$$
 (1)

$$\mid E \mid (2)$$

$$L \rightarrow x$$
 (3)

$$|*E$$
 (4)

$$E \rightarrow L$$
 (5)

	productions pointées
0	$Z \rightarrow \bullet S$, $S \rightarrow \bullet L = E$, $S \rightarrow \bullet E$
	$Z \rightarrow \bullet S\$$, $S \rightarrow \bullet L = E$, $S \rightarrow \bullet E$ $L \rightarrow \bullet x$, $L \rightarrow \bullet *E$, $E \rightarrow \bullet L$ $Z \rightarrow S \bullet \$$ $S \rightarrow L \bullet = E$, $E \rightarrow L \bullet \checkmark$
1	$Z \rightarrow S \bullet \$$
2	$S \rightarrow L \bullet = E, E \rightarrow L \bullet \checkmark$
	'

Le problème :

$$Z \rightarrow S$$
\$ (0)

$$S \rightarrow L = E$$
 (1)

$$L \rightarrow x$$
 (3)

$$|*E$$
 (4)

$$E \rightarrow L$$
 (5)

• l'état 2 ne doit accepter que si le *L* est suivi d'un \$

Regard en avant

Définition

Soit G une grammaire hors-contexte. Une production pointée élargie de G est un triplet $(A, \alpha \bullet \beta, a)$ telle que $A \to \alpha \beta$ est une production de G et $a \in \Sigma \cup \{\varepsilon\}$.

- noté $A \to \alpha \bullet \beta$ [a]
- on a achevé α dans la production $A \to \alpha \beta$;
- il nous reste à trouver β ;
- la production n'est valable que si A est suivi par a dans l'entrée
- donc $a = \varepsilon$ (pas de contraint) ou $a \in FOLLOW(A)$

Définition

Soit G une grammaire hors-contexte et $\mathcal I$ un ensemble de productions pointées élargies de G. La clôture de $\mathcal I$ est le plus petit ensemble $\operatorname{cl}(\mathcal I)$ tel que $\mathcal I\subseteq\operatorname{cl}(\mathcal I)$ et

- si $(A, \alpha \bullet B\beta, a) \in cl(\mathcal{I}), B \to \gamma$ est une production de G et $b \in FIRST(\beta)$, alors $(B, \bullet \gamma, b) \in cl(\mathcal{I})$;
- si $(A, \alpha \bullet B, a) \in cl(\mathcal{I})$ et $B \to \gamma$ est une production de G, alors $(B, \bullet \gamma, a) \in cl(\mathcal{I})$.

34 / 62

Automate LR(1)

Définition

L'automate de parsage LR(1) d'une grammaire hors-contexte G est l'automate fini déterministe (Q, q_0, F, δ) avec

- $Q = \{ \operatorname{cl}(\mathcal{I}) \mid \mathcal{I} \text{ ensemble de prod. pointées élargies de } G \}$;
- $q_0 = cl(\{(Z, \bullet S\$, \varepsilon)\});$
- $F = \{ q \in Q \mid \exists \text{ production } X \to w \text{ de } G \text{ et } a \in \Sigma \cup \{\varepsilon\} \text{ tels que } (X, w \bullet, a) \in q \}$
- et $\delta: Q \times V \to Q$ donnée par $\delta(q,\beta) = \operatorname{cl}(\{(X,\alpha\beta \bullet \gamma,a) \mid (X,\alpha \bullet \beta \gamma,a) \in q\}).$

Uli Fahrenberg Théorie des langages : THL

Exemple, ter

$$Z \rightarrow S$$
 (0)

$$S \rightarrow L = E$$
 (1)

$$\mid E \mid (2)$$

$$L \rightarrow x$$
 (3)

$$E \rightarrow L$$
 (5)

productions pointées élargies
$Z \rightarrow \bullet S$ [ε]

Exemple, ter

$$Z \rightarrow S$$
 (0)

$$S \rightarrow L = E$$
 (1)

$$L \rightarrow x$$
 (3)

$$E \rightarrow L$$
 (5)

état	, , ,
0	$Z \rightarrow \bullet S$ [ε]
	$Z \to \bullet S $ [ε] $S \to \bullet L = E $ [\$], $S \to \bullet E $ [\$]

$$Z \rightarrow S$$
 (0)

$$S \rightarrow L = E$$
 (1)

$$L \rightarrow x$$
 (3)

$$E \rightarrow L$$
 (5)

état	
0	$Z \to \bullet S $ [ε] $S \to \bullet L = E $ [\$], $S \to \bullet E $ [\$] $L \to \bullet x $ [=], $L \to \bullet * E $ [=]
-	$S \setminus A = E[C] \setminus A = C[C]$
	$3 \rightarrow \bullet L = E \ [\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $
	$L \to \bullet x = , L \to \bullet *E = $

$$Z \rightarrow S$$
 (0)

$$S \rightarrow L = E$$
 (1)

$$L \rightarrow x$$
 (3)

$$|*E$$
 (4)

$$E \rightarrow L$$
 (5)

état	
0	$Z o ullet S_{ullet}^{ullet} \left[arepsilon ight]$
	$Z \rightarrow \bullet S$ [ε] $S \rightarrow \bullet L = E$ [\$], $S \rightarrow \bullet E$ [\$] $L \rightarrow \bullet \times$ [=], $L \rightarrow \bullet * E$ [=] $E \rightarrow \bullet L$ [\$]
	$L o ullet \mathbf{x} [=], \ L o ullet \mathbf{*} E [=]$
	E o ullet L [\$]

$$Z \rightarrow S$$
 (0)

$$S \rightarrow L=E$$
 (1)

$$L \rightarrow x$$
 (3)

$$|*E$$
 (4)

$$E \rightarrow L$$
 (5)

état	productions pointées élargies
0	$Z o ullet S_{ullet}^{ullet} [arepsilon]$
	$Z \to \bullet S \ [\varepsilon]$ $S \to \bullet L = E \ [\$], S \to \bullet E \ [\$]$ $L \to \bullet x \ [=], L \to \bullet *E \ [=]$ $E \to \bullet L \ [\$]$ $L \to \bullet x \ [\$], L \to \bullet *E \ [\$]$
	$L \rightarrow \bullet_{\mathbf{X}} [=], L \rightarrow \bullet *E [=]$
	$E \rightarrow \bullet L$ [\$]
	$L \rightarrow \bullet x$ [\$], $L \rightarrow \bullet *E$ [\$]

$$Z \to S$$
\$ (0)
 $S \to L = E$ (1)
 $\mid E$ (2)
 $L \to x$ (3)
 $\mid *E$ (4)

 $E \rightarrow L$

état	productions pointées élargies
0	$Z \rightarrow \bullet S$ [ε]
	$S \rightarrow \bullet L = E$ [\$], $S \rightarrow \bullet E$ [\$] $L \rightarrow \bullet \times$ [=], $L \rightarrow \bullet * E$ [=] $E \rightarrow \bullet L$ [\$]
	$L \rightarrow \bullet \times [=], L \rightarrow \bullet *E [=]$
	$\mid E \rightarrow \bullet L $ [\$]
	$L \to \bullet \times [\$], L \to \bullet *E [\$]$ $Z \to S \bullet \$ [\varepsilon]$
1	Z o S ullet [arepsilon]
2	$S \rightarrow L \bullet = E $ [\$], $E \rightarrow L \bullet $ [\$]

• l'état 2 n'accepte que dans un contexte \$

(5)

Parsage LALR(1) et GLR

0000000

 $L \rightarrow \bullet *E$ [=], $E \rightarrow \bullet L$ [\$] $L \rightarrow \bullet \times$ [\$], $L \rightarrow \bullet *E$ [\$]

Exemple, complet

$$Z \rightarrow S$$
 (0) $L \rightarrow x$ (3)

$$S \rightarrow L=E$$
 (1) $|*E$ (4)

production	S
$Z \rightarrow \bullet S$	ε

$$L \to \bullet \times [\$], L \to \bullet *E [\$]$$

$$\begin{array}{c|c}
1 & Z \to S \bullet \$ [\varepsilon] \\
2 & S \to L \bullet = E [\$], E \to L \bullet [\$\checkmark]
\end{array}$$

$$Z \to S$$
\$ (0) $L \to x$ (3)
 $S \to L = E$ (1) $|*E|$ (4)
 $|E|$ (2) $E \to L$ (5)

Exemple, complet

$$Z \rightarrow S$$
\$ (0) $L \rightarrow x$ (3)
 $S \rightarrow L = E$ (1) $|*E|$ (4)
 $|E|$ (2) $E \rightarrow L$ (5)

d.1

Exemple, complet

d.4

0

d.5

$$Z \rightarrow S$$
\$ (0) $L \rightarrow x$ (3) $S \rightarrow L = E$ (1) $|*E|$ (4) $|E|$ (2) $E \rightarrow L$ (5) état $|x|$ * $|E|$ \$ $|E|$

0
$$Z \rightarrow \bullet S$$
 $[\varepsilon], S \rightarrow \bullet L = E$ $[\$]$
 $S \rightarrow \bullet E$ $[\$], L \rightarrow \bullet \times [=]$
 $L \rightarrow \bullet \times E$ $[=], E \rightarrow \bullet L$ $[\$]$
 $L \rightarrow \bullet \times [\$], L \rightarrow \bullet \times E$ $[\$]$
1 $Z \rightarrow S \bullet \$$ $[\varepsilon]$
2 $S \rightarrow L \bullet = E$ $[\$], E \rightarrow L \bullet$ $[\$\checkmark]$
3 $S \rightarrow E \bullet$ $[\$\checkmark]$
4 $L \rightarrow \times \bullet [=\checkmark], L \rightarrow \times \bullet E$ $[\$\checkmark]$
 $L \rightarrow \bullet \times E$ $[=], L \rightarrow \bullet \times E$ $[\$]$

état

0

Exemple, complet

$$Z \rightarrow S$$
\$ (0) $L \rightarrow x$ (3) $S \rightarrow L = E$ (1) $|*E|$ (4)

$$\begin{array}{|c|c|c|}\hline \text{ état} & \text{productions pointées élargies}\\\hline\\ 0 & Z \rightarrow \bullet S\$ \ [\varepsilon], \ S \rightarrow \bullet L = E \ [\$]\\ & S \rightarrow \bullet E \ [\$], \ L \rightarrow \bullet \times \ [=]\\ & L \rightarrow \bullet \times E \ [=], \ E \rightarrow \bullet L \ [\$]\\ & L \rightarrow \bullet \times \ [\$], \ L \rightarrow \bullet \times E \ [\$]\\ & 1 & Z \rightarrow S \bullet \$ \ [\varepsilon]\\ & 2 & S \rightarrow L \bullet = E \ [\$], \ E \rightarrow L \bullet \ [\$\checkmark]\\ & 3 & S \rightarrow E \bullet \ [\$\checkmark]\\ & L \rightarrow \times \bullet E \ [=], \ L \rightarrow \times \bullet E \ [\$]\\ & L \rightarrow \bullet \times E \ [=], \ L \rightarrow \bullet \times E \ [\$]\\ & L \rightarrow \bullet \times E \ [=], \ L \rightarrow \bullet \times E \ [\$]\\ & L \rightarrow \bullet \times \ [\$], \ L \rightarrow \bullet \times E \ [\$]\\ & L \rightarrow \bullet \times \ [\$], \ L \rightarrow \bullet \times E \ [\$]\\ \end{array}$$

Parsage LR(1)	
00000000	

état productions pointées élargies

Exemple, complet

$$Z o S$$
\$ (0) $L o x$ (3)
 $S o L = E$ (1) $|*E|$ (4) $|E|$ (2) $E o L$ (5)

 $|E|$ (2) $E o L$ (5)
 $|E|$ (3)
 $|E|$ (4) $|E|$ (5)
 $|E|$ (6)
 $|E|$ (1) $|E|$ (1) $|E|$ (2) $|E|$ (3)
 $|E|$ (4) $|E|$ (5)
 $|E|$ (6)
 $|E|$ (7)
 $|E|$ (8)
 $|E|$ (9)
 $|E|$ (9)
 $|E|$ (1)
 $|E|$ (1)
 $|E|$ (2)
 $|E|$ (3)
 $|E|$ (4)
 $|E|$ (5)

etat productions pointees elargies
$$0 \quad Z \to \bullet S \$ [\varepsilon], \ S \to \bullet L = E \ [\$]$$

$$S \to \bullet E \ [\$], \ L \to \bullet \times [=]$$

$$L \to \bullet \times E \ [=], \ E \to \bullet L \ [\$]$$

$$1 \quad Z \to S \bullet \$ [\varepsilon]$$

$$2 \quad S \to L \bullet = E \ [\$], \ E \to L \bullet \ [\$\checkmark]$$

$$3 \quad S \to E \bullet \ [\$\checkmark]$$

$$4 \quad L \to \times \bullet \ [=\checkmark], \ L \to \times \bullet E \ [\$]$$

$$5 \quad L \to \bullet \times E \ [=], \ L \to \bullet \times E \ [\$]$$

$$E \to \bullet L \ [=], \ L \to \bullet \times E \ [=]$$

$$L \to \bullet \times E \ [=], \ E \to \bullet L \ [\$]$$

$$L \to \bullet \times E \ [=], \ E \to \bullet L \ [\$]$$

$$L \to \bullet \times E \ [=], \ E \to \bullet L \ [\$]$$

$$6 \quad Z \to S \$ \bullet \ [\varepsilon\checkmark]$$

0

d.7

r.5

 $L \rightarrow \bullet *E [=], E \rightarrow \bullet L [\$]$ $L \rightarrow \bullet x$ [\$], $L \rightarrow \bullet *E$ [\$]

 $Z \to S$ [$\varepsilon \checkmark$] $S \rightarrow L = \bullet E$ [\$]

Parsage	11 127
i aisage	L11(
00000	

0

état productions pointées élargies $Z \rightarrow \bullet S$ [ε], $S \rightarrow \bullet L = E$ [\$] $S \rightarrow \bullet E$ [\$], $L \rightarrow \bullet x$ [=] $L \rightarrow \bullet *E [=], E \rightarrow \bullet L [\$]$

 $L \rightarrow \bullet \times [\$], L \rightarrow \bullet *E [\$]$

$$Z \rightarrow S$$
\$ (0) $L \rightarrow x$ (3)

$$S \to L = E \quad (1) \qquad |*E \quad (4)$$

r.5

d.7

$$Z \to S \bullet \$ [\varepsilon]$$

$$S \to L \bullet = E [\$], E \to L \bullet [\$\checkmark]$$

5
$$L \to * \bullet E = , L \to * \bullet E =$$
 $E \to \bullet L = , L \to \bullet x =$

$$L \to \bullet *E = , E \to \bullet L =$$

$$\begin{array}{c|c}
L \to \bullet \times [\$], L \to \bullet *E [\$] \\
Z \to S\$ \bullet [\varepsilon \checkmark]
\end{array}$$

7
$$S \rightarrow L = \bullet E$$
 [\$], $E \rightarrow \bullet L$ [\$]
 $L \rightarrow \bullet \times$ [\$], $L \rightarrow \bullet * E$ [\$]

Parsage LR	(
0000000	٦

état

0

productions pointées élargies $Z \rightarrow \bullet S$ [ε], $S \rightarrow \bullet L = E$ [\$]

 $S \rightarrow \bullet E$ [\$], $L \rightarrow \bullet x$ [=] $L \rightarrow \bullet *E [=], E \rightarrow \bullet L [\$]$

 $L \to \bullet \times [\$], L \to \bullet *E [\$]$

$$Z \rightarrow S$$
 (0)

$$L \rightarrow x$$
 (3)

$$S \rightarrow L=E$$
 (1)

d.2

0

3

$$(2) E \rightarrow L (5)$$

r.3

r.3

d.3

$$Z \to S \bullet \$ [\varepsilon]$$

$$S \to L \bullet = E [\$], E \to L \bullet [\$\checkmark]$$

$$S \to E \bullet [\$\checkmark]$$

$$\begin{bmatrix}
4 & L \to x \bullet [=\checkmark], L \to x \bullet [\$\checkmark] \\
5 & L \to * \bullet E [=], L \to * \bullet E [\$]
\end{bmatrix}$$

$$E \rightarrow \bullet L [=], L \rightarrow \bullet x [=]$$

 $L \rightarrow \bullet *E [=], E \rightarrow \bullet L [\$]$

6
$$L \to \bullet x$$
 [\$], $L \to \bullet *E$ [\$] $Z \to S \bullet [\varepsilon \checkmark]$

7
$$S \rightarrow L = \bullet E$$
[\$], $E \rightarrow \bullet L$ [\$]
 $L \rightarrow \bullet x$ [\$], $L \rightarrow \bullet *E$ [\$]

d.9

d.8

3

d.4

d.5

état

0

Exemple, complet

$$Z \rightarrow S$$
 (0) $L \rightarrow x$ (3)

$$S \to L = E \quad (1) \qquad | *E \quad (4)$$

r.3

r.2

r.3

$$\begin{array}{c|c} L \to \bullet \times [\$], \ L \to \bullet *E \ [\$] \\ Z \to S \bullet \$ \ [\varepsilon] \\ S \to L \bullet = E \ [\$], \ E \to L \bullet \ [\$\checkmark] \\ S \to E \bullet \ [\$\checkmark] \end{array}$$

 $S \rightarrow \bullet E$ [\$], $L \rightarrow \bullet \times$ [=] $L \rightarrow \bullet * E$ [=], $E \rightarrow \bullet L$ [\$]

$$L \to \times \bullet [=\checkmark], L \to \times \bullet [\$\checkmark]$$

$$L \to * \bullet E [=], L \to * \bullet E [\$]$$

$$E \rightarrow \bullet L [=], L \rightarrow \bullet x [=]$$

 $L \rightarrow \bullet *E [=], E \rightarrow \bullet L [\$]$
 $L \rightarrow \bullet x [\$], L \rightarrow \bullet *E [\$]$

$$Z \to S \bullet [\varepsilon \checkmark]$$

$$S \to L \bullet E [\$], E \to \bullet L [\$]$$

$$L \to \bullet \times [\$], L \to \bullet *E [\$]$$

$$L \to *E \bullet [=\checkmark], L \to *E \bullet [\$\checkmark]$$

$$L \to *E \bullet [=\checkmark], L \to *E \bullet [\$\checkmark]$$

$$E \to L \bullet [=\checkmark], E \to L \bullet [\$\checkmark]$$

9

10

11

12

13

14

d.12

d.13

52/62

Parsage LALR(1) et GLR

Exemple, bis

	état	productions pointées élargies
	0	$Z \rightarrow \bullet S$ [ε], $S \rightarrow \bullet L = E$ [\$], $S \rightarrow \bullet E$ [\$], $L \rightarrow \bullet x$ [=]
		$L \rightarrow \bullet *E [=], E \rightarrow \bullet L [\$], L \rightarrow \bullet \times [\$], L \rightarrow \bullet *E [\$]$
	1	$Z o S ullet \S[arepsilon]$
	2	$S \rightarrow L \bullet = E $ [\$], $E \rightarrow L \bullet $ [\$\script*]
7 Cf (0)	3	$S o E ullet [\$ \checkmark]$
$Z \rightarrow S$ (0)	4	$L \to x \bullet [=\checkmark], L \to x \bullet [\$\checkmark]$
$S \rightarrow L=E$ (1)	5	$L \to * \bullet E [=], L \to * \bullet E [\$], E \to \bullet L [=], L \to \bullet x [=]$
E (2)		$L \rightarrow \bullet *E [=], E \rightarrow \bullet L [\$], L \rightarrow \bullet x [\$], L \rightarrow \bullet *E [\$]$
, ,	6	$Z o S$ $\bullet [\varepsilon \checkmark]$
$L \to \mathbf{x}$ (3)	7	$S \rightarrow L = \bullet E$ [\$], $E \rightarrow \bullet L$ [\$], $L \rightarrow \bullet x$ [\$], $L \rightarrow \bullet *E$ [\$]
* <i>E</i> (4)	8	$L \to *E \bullet [= \checkmark], L \to *E \bullet [\$ \checkmark]$
,	9	$E o Lullet \left[= \checkmark ight], \ E o Lullet \left[\$ \checkmark ight]$
$E \to L$ (5)	10	$S \to L = E \bullet [\$ \checkmark]$
	11	$E o L ullet [\$ \checkmark]$
	12	$L \to x \bullet [\$ \checkmark]$
	13	$L \to * \bullet E$ [\$], $E \to \bullet L$ [\$], $L \to \bullet x$ [\$], $L \to \bullet *E$ [\$]
	14	$L \to *E \bullet [\$\checkmark]$

Exemple, bis

```
état
                                                        productions pointées élargies
                                                        Z \rightarrow \bullet S [\varepsilon], S \rightarrow \bullet L = E [$], S \rightarrow \bullet E [$], L \rightarrow \bullet x [=]
                                                        L \rightarrow \bullet *E = , E \rightarrow \bullet L = , L \rightarrow \bullet x = , L \rightarrow \bullet *E = 
                                                        Z \to S \bullet \S [\varepsilon]
                                                     \mid S \rightarrow L \bullet = E \ [\$], E \rightarrow L \bullet \ [\$\checkmark]
                                                     S \rightarrow E \bullet [\$ \checkmark]
Z \rightarrow S
                          (0)
                                                       L \rightarrow x \bullet [= \checkmark], L \rightarrow x \bullet [$\checkmark]
                                             5
S \rightarrow L=E (1)
                                                       L \rightarrow * \bullet E = , L \rightarrow * \bullet E = , L \rightarrow \bullet x = 
                                                        L \rightarrow \bullet *E = , E \rightarrow \bullet L = , L \rightarrow \bullet x = , L \rightarrow \bullet *E = 
          | E
                          (2)
                                                       Z \to S [\varepsilon \checkmark]
 L \rightarrow x (3)
                                                       S \rightarrow L = \bullet E [$], E \rightarrow \bullet L [$], L \rightarrow \bullet x [$], L \rightarrow \bullet *E [$]
                                                       L \to *E \bullet [= \checkmark], L \to *E \bullet [$\checkmark]
           |*E (4)
                                                        E \rightarrow L \bullet [= \checkmark], E \rightarrow L \bullet [\$ \checkmark]
E \rightarrow L
                          (5)
                                            10
                                                        S \rightarrow L=E \bullet [\$ \checkmark]
                                            11
                                                        E \rightarrow L \bullet [\$ \checkmark]
                                            12
                                                       L \rightarrow x \bullet [\$ \checkmark]
                                                        L \rightarrow * \bullet E [$], E \rightarrow \bullet L [$], L \rightarrow \bullet x [$], L \rightarrow \bullet * E [$]
                                            13
                                                       L \to *E \bullet [\$\checkmark]
                                            14
```

Parsage LALR(1)

Définition

Deux productions pointées élargies $A \to \alpha \bullet \beta$ [a] et $A \to \alpha' \bullet \beta'$ [b] sont équivalent LALR(1) si $\alpha = \alpha'$ et $\beta = \beta'$.

 les items sont identiques, mais les contextes peuvent être différents

Définition

L'automate LALR(1) d'une grammaire hors-contexte G est le quotient de l'automate LR(1) de G sous équivalence LALR(1).

Uli Fahrenberg

		état	X	*	=	\$	S	L	Ε
		0	d.4	d.5			d.1	d.2	d.3
Z o S	(0)	1				d.6			
$S \rightarrow L = E$	(1)	2			d.7	r.5			
<i>E</i>	(2)	3				r.2			
'		₁ 4			r.3	r.3			
$L \rightarrow x$	(3)	/ ₁ 5	d.4	d.5				d.9	d.8
* <i>E</i>	(4)	// 6			— а	ccepte	er —		
E o L	(5)	/ 7	d.12	d.13				d.11	d.10
	` ,	, 8			r.4				
		9			r.5				
		\				r.1			
		\\`11				r.5			
		\\12				r.3			
		\`13	d.12	d.13				d.11	d.14
		14				r.4			

		état	X	*	=	\$	S	L	Ε
		0	d.4	d.5			d.1	d.2	d.3
Z o S\$	(0)	1				d.6			
$S \rightarrow L=E$	(1)	2			d.7	r.5			
<i>E</i>	` '	3				r.2			
'	(2)	4			r.3	r.3			
L o x	(3)	5	d.4	d.5				d.9	d.8
* <i>E</i>	(4)	6			— а	ccepte	er —		
E o L	(5)	7	d.12	d.13				d.11	d.10
	()	8			r.4	r.4			
		9			r.5	r.5			
		10				r.1			
			ı				'		

Résolution de conflits

Exemple:

$$Z \rightarrow E\$ \qquad (0)$$

$$E \rightarrow E+E \qquad (1)$$

$$\mid E*E \qquad (2)$$

$$\mid n \qquad (3)$$

état	+	*	n	\$	E
0			d.2		g.1
1	d.4	d.5		d.3	
2	r.3	r.3		r.3	
3		_	– acce	pter -	_
4			d.2		g.6
5			d.2		g.6 g.7
6	d.4	d.5			
	r.1	r.1		r.1	
7	d.4	d.5			
	r.2	r.2		r.2	

- une grammaire ambiguë
- donc pas LR(k) pour n'importe quel k

Résolution de conflits

Exemple:

$$Z \rightarrow E\$ \qquad (0)$$

$$E \rightarrow E + E \qquad (1)$$

$$\mid E*E \qquad (2)$$

$$\mid n \qquad (3)$$

état	+	*	n	\$	Е	
0			d.2		g.1	
1	d.4	d.5		d.3		
2	r.3	r.3		r.3		
3		— accepter —				
4			d.2		g.6	
5			d.2		g.6 g.7	
6	d.4	d.5				
	r.1	r.1		r.1		
7	d.4	d.5				
	r.2	r.2		r.2		

- une grammaire ambiguë
- donc pas LR(k) pour n'importe quel k
- associativité : d.4 \Rightarrow n + (n + n); $r.1 \Rightarrow (n + n) + n$
- priorité : d.5 \Rightarrow n*(n+n); r.1 \Rightarrow (n*n)+n

Parsage LALR(1) et GLR

Résolution de conflits

Exemple:

$$Z \rightarrow E\$ \qquad (0)$$

$$E \rightarrow E+E \qquad (1)$$

$$\mid E*E \qquad (2)$$

$$\mid n \qquad (3)$$

état	+	*	n	\$	Е	
0			d.2		g.1	
1	d.4	d.5		d.3		
2	r.3	r.3		r.3		
3		— accepter —				
4			d.2		g.6	
5			d.2		g.7	
6	d.4	d.5				
	r.1	r.1		r.1		
7	d.4	d.5				
	r.2	r.2		r.2		

- une grammaire ambiguë
- donc pas LR(k) pour n'importe quel k
- associativité : d.4 \Rightarrow n + (n + n); $r.1 \Rightarrow (n + n) + n$
- priorité : d.5 \Rightarrow n*(n+n); r.1 \Rightarrow (n*n)+n
- solution : règles de priorité
- ici : r.1 > d.4, r.2 > d.5, r.2 > d.4, $d.5 > r.1 \Leftarrow !$

Uli Fahrenberg

Parsage LR généralisé

- embrace non-determinism!
- parsage GLR : en cas de conflit, suivre tous les chemins en parallel
- « parsage parallel », « parsage Tomita »
- implémenter l'automate (non-déterministe) de parsage sans déterminisation
- états : productions pointées, pas de clôture
- algorithme en temps exponentiel, pas linéaire
- optimisation : partager préfixes et suffixes de piles

