Math. - CC 1 - S1 - Analyse

vendredi06octobre2017- Durée $1\ \mathrm{h}$

Toutes les réponses seront justifiées. La notation tiendra compte du soin apporté à la rédaction.

Exercice 1

1. Soit (u_n) une suite décroissante, de limite nulle. Pour $n \in \mathbb{N}$, on note $S_n = \sum_{k=0}^n (-1)^k u_k$.

a. Montrer que les suites (S_{2n}) et (S_{2n+1}) sont adjacentes.

b. En déduire la nature de la série $\sum (-1)^k u_k$.

2. Pour $n \in \mathbb{N}$, on note $I_n = \int_0^1 \frac{x^n}{1+x} dx$.

a. Montrer que pour tout $n \in \mathbb{N}$, $0 \le I_n \le \frac{1}{n+1}$.

b. Pour $n \in \mathbb{N}$, calculer $I_n + I_{n+1}$.

c. Déduire de ce qui précède la convergence et la somme de la série $\sum_{k>1} \frac{(-1)^k}{k}$.

Exercice 2

Soit $x \in \mathbb{R}_+^*$. On considère l'intégrale suivante :

$$I(x) = \int_1^x \frac{\ln t}{(1+t)^2} dt$$

1. Calculer I(x).

2. Déterminer les limites de I(x) en 0 et en $+\infty$.

3. A l'aide du changement de variable $u = \frac{1}{t}$, montrer que $I(x) - I\left(\frac{1}{x}\right) = 0$.

Exercice 3

On considère la suite de terme général $u_n = \frac{(2n)!}{(2^n n!)^2}$, pour $n \in \mathbb{N}^*$.

1. Donner un équivalent simple de $v_n = \ln(u_{n+1}) - \ln(u_n)$ et de $w_n = \ln((n+1)u_{n+1}) - \ln(nu_n)$.

2. En déduire que $\lim_{n\to+\infty}u_n=0$, et que $\lim_{n\to+\infty}nu_n=+\infty$. Indication : On considèrera des séries...

3. Déterminer la nature de la série $\sum_{n\geq 1} u_n$.

Fin de l'énoncé d'analyse