Aktivierung mit Neutronen Versuch 702

Marcel Kebekus marcel.kebekus@tu-dortmund.de

Konstantin Mrozik konstantin.mrozik@tu-dortmund.de

Abgabe: 02.06.2020

TU Dortmund – Fakultät Physik

Inhaltsverzeichnis

1	Theorie					
	1.1	Neutronen als Ursprung von Kernreaktionen				
	1.2	Wirkungsquerschnitt	3			
	1.3	Erzeugung niedrigenergetischen Neutronen				
	1.4	Halbwertszeit	5			
2	Durchführung					
	2.1	Versuchsaufbau	6			
	2.2	Die Zerfälle	6			
3	Auswertung					
	3.1	Vorbereitung	7			
	3.2	Nullrate	7			
	3.3	Vanadium	7			
	3.4	Rhodium	9			
4	Disk	cussion	11			
Lit	eratı	ır	12			
5	Anh	ang	14			

Zielsetzung

Bestimmung von Halbwertszeiten verschiedener Isotopen.

1 Theorie

Ist das Verhältnis von Neutronen- und Protonenzahl nicht innerhalb einer engen Grenze, so kann ein Atomkern mit einer bestimmenten Wahrscheinlichkeit in einen stabilen oder in einen instabilen Kern zerfallen. Eine typische emprirische Darstellung für die Wahrscheinlichkeit einer solchen Umwandlung drückt die Halbwertszeit T aus, welche allerdings für verschiedene Zerfälle stark variiert. Sie beschreibt den Zeitraum nachdem die Hälfte einer bestimmten Anzahl von instabilen Kernen zerfallen ist.

Ursache für einen solchen Zerfall kann die Wechselwirkung mit einem Neutron sein.

1.1 Neutronen als Ursprung von Kernreaktionen

Wird ein Atomkern mit einem Neutrone beschossen, so führt die Absorption dessen zu einer Veränderung des Ursprungkerns A zu einem Zwischenkern (bzw. Compoundkern) A^* . Dieser Zwischenkern A^* hat dem entsprechend eine höhere Energie als A, da sowohl die kinetische Energie des Netrons als auch dessen Bindungsenergie hinzukommt. Durch die starke Wechselwirkung im Kern verteilt sich die Energie schnell im gesamten Kern und die Protonen und Neutronen beziehen schnell einen erhöhten Energiezustand, diesen Prozess nennt man Aufheizung. Durch die Energieverteilung als Folge der Aufheizung ist es dem Kern nicht möglich direkt wieder ein Neutron abzugeben, daher wird, falls das einfallende Neutron nur eine kleine kinetische Energie hatte, nach nur 10^{-16} Sekunden ein γ Photon emittiert um wieder in den Grundzustand zu gelangen.

$$_{z}^{m}\mathbf{A} + _{0}^{1}\mathbf{n} \rightarrow _{z}^{m+1}\mathbf{A}^{*} \rightarrow _{z}^{m+1}\mathbf{A} + \gamma$$

Der entstandene Kern ${}^{m+1}_{z}$ A ist oft nicht stabil, aber hat eine deutlich längere Lebenszeit als der Zwischenkern A*. Der Kern ${}^{m+1}_{z}$ A setzt sich aus folgenden Teilchen zusammen

$${}^{m+1}_{z}A \to {}^{m+1}_{z+1}C + e^- + E_{\text{kin}} + \bar{\nu_{\text{e}}}.$$
 (1)

Die Masse des Kerns ist dabei allerdings größer als die Summe der Teilchen in die er zerfällt. Daher taucht beim Zerfall 1, durch die Massendifferenz mit $\Delta E = mc^2$, die kinetische Energie $E_{\rm kin}$ auf, die zu Teilen dem Elektron und dem Neutrino zukommt.

1.2 Wirkungsquerschnitt

Die Wahrscheinlichkeit, dass ein Neutron von einem Kern eingefangen wird bezeichnet man als Wirkungsquerschnitt σ . Der Wirkungsquerschnitt entspricht dabei der Kernfläche, bei der alle auftreffenden Neutronen eingefangen werden würden.

Dabei ergibt sich der Wirkungsquerschnitt als

$$\sigma = \frac{u}{nKd}$$
 $[\sigma] = 10^{-24} \text{cm}^2 = 1 \text{barn.}$ (2)

Mit den Neutronen n die pro Sekunde auf die Folie treffen, der Anzahl u der Einfänge, der Dicke d der Folie und der Anzahl K der Atome pro cm². Außerdem ist σ damit abhängig von den eintreffenden Neutronen. Insbesondere lassen sich schnelle Neutronen für dessen De-Broglie-Wellenlänge (3) und dem Kernradius R gilt $\lambda \ll R (\approx 10^{-12} cm)$ geometrisch betrachten.

$$\lambda = \frac{h}{m_{\rm n}v} \tag{3}$$

Für die langsamen Neutronen ist die einfachere geometrische Betrachtung durch quantenmechanische Effekte nicht mehr möglich. In der Quantenmechanik tritt Absorption nur auf, wenn gilt $E_{\rm n}=\Delta E$ für die Energiedifferenz ΔE zweier Zustände des Kerns. Nach den Physikern Breit und Wigner lässt sich damit der Wirkungsquerschnitt in Abhängigkeit der Neutronenergie berechnen.

$$\sigma(E) = \sigma_0 \sqrt{\frac{E_{r_i}}{E}} \frac{\tilde{c}}{\left(E - E_{r_i}\right)^2 + \tilde{c}}.$$
(4)

Die Variablen \tilde{c} und σ_0 sind hierbei Konstaten und E_{r_i} repräsentiert den jeweiligen Energiezustand. Wenn nun $E \ll E_{r_i}$ kann $\left(E-E_{r_i}\right)^2$ als konstant angesehen werden und es folgt ein umgekehrt proportionaler Zusammenhang zwischen dem Wirkungsquerschnitt und der Neutronengeschwindigkeit.

$$\sigma(E) \propto \frac{1}{\sqrt{E}} \propto \frac{1}{v} \tag{5}$$

1.3 Erzeugung niedrigenergetischen Neutronen

Um Neutronen zu erzeugen werden 9 Be-Kerne mit α Teilchen aus dem Zerfall von 226 Ra beschossen.

$${}_{4}^{9}\text{Be} + {}_{2}^{4} \rightarrow {}_{6}^{12}\text{C} + {}_{0}^{1}\text{n}$$
 (6)

Um die kinetische Energie der Neutronen zu verringern müssen sie noch abgebremst werden. Die Abbremsung wird durch eine Materieschicht in der die Neutronen elastisch mit der Materie stoßen realisiert. Als passenedes Element für die Neutronen stellt sich Wasserstoff heraus, daher wird die Neutronenquelle von Paraffin umgeben. So führt ein Stoß ziwschen ihnen und dem Neutron zur einer Energieübertragung nach

$$E = E_0 \frac{4Mm}{(M+m)^2}. (7)$$

E beschreibt dabei die maximal übertragende Energie und M und m die Masse der Stoßpartner.

Nach mehrfachen Stößen erreicht die Energie des Paraffins die gleiche mittlere kitnetische Energie wie die Moleküle in der Umgebung (ca. $0,0025 \mathrm{eV}, T = 290 \mathrm{°K}$). Die resultierenden Neutronen mit der mittleren Geschwindigkeit von $2,2 \mathrm{km/s}$ nennt man thermische Neutronen.

Abbildung 1: Dargestellt ist der Querschnitt der Quelle für thermische Neutronen.[1,

- S. 213
- 1 Quelle schneller Elektronen
- 2 Bleiabschirmung
- 3 Paraffin
- 4 Stahlbehälter
- 5 Aktivierungsbohrung

1.4 Halbwertszeit

Die Anzahl N der noch nicht zuerfallenen Kerne zum Zeitpunkt t kann durch

$$N(t) = N_0 \cdot e^{\lambda t},\tag{8}$$

beschrieben werden. Dabei ist N_0 die Anzahl der Kerne zum Zeitpunkt t=0 und λ die Zerfallskonstante. Für die Halbwertszeit T gilt demnach

$$\frac{1}{2}N_0 = N_0 \cdot e^{\lambda T},\tag{9}$$

 $_{
m mit}$

$$T = \frac{\ln(2)}{\lambda}.\tag{10}$$

Da eine zuverlässige Messung von N(t) einige Schwierigkeiten mit sich bringt, wird auf die Messung der zerfallenen Kerne in einem Zeitintervall Δt zurückgegriffen. So gilt

$$N_{\Delta t}(t) = N(t) - N(t + \Delta t), \tag{11}$$

$$N_{\Delta t}(t) = N_0 e^{-\lambda t} - N_0 e^{-\lambda (t + \Delta t)} = N_0 (1 - e^{-\lambda \Delta t}) e^{-\lambda t}, \tag{12}$$

$$\ln(N_{\Delta t}(t)) = \ln\left(N_0(1 - e^{-\lambda \Delta t})\right) - \lambda t. \tag{13}$$

Das Zeitintervall Δt muss dabei passend gewählt werden. Ist es zu klein so folgen große statistische Fehler, ist es zu groß, so folgen systematische Fehler für λ .

2 Durchführung

2.1 Versuchsaufbau

Mit dem hier genutzten Aufbau lassen sich Halbwertszeiten im Bereich von Sekunden bis Stunden messen.

Abbildung 2: Darstellung des Versuchsaufbaus.

Gezeigt ist Quelle der Neutronen mit den zylindrischen Proben, abgeschirmt durch einen Bleimantel, der die Hintergrundstrahlung absorbieren soll.[1, S. 217]

Mithilfe eines Geiger-Müller-Zählrohres kann nun die von den zylinderförmigen Proben ausgesandte β — und γ —Strahlung detektiert werden. Um den Nulleffekt zu verringern (Einfluss der natürlichen Hintergrundstrahlung), befindet sich das Zählrohr in eimem Abschirmblock aus Blei. Die Messzeit Δt lässt isch über das Gerät einstellen (rel. Genauigkeit 10^{-5}).

2.2 Die Zerfälle

Untersucht werden die Zerfälle der Isotope Rhodium ¹⁰³Rh und Vanadium ⁵¹V.

$$^{51}_{23}\text{V} + \text{n} \rightarrow ^{52}_{23}\text{V} \rightarrow ^{52}_{24}\text{Cr} + e^{-} + \bar{\nu_{e}}$$
 (14)

$${}^{103}_{45}\text{Rh} + n \begin{cases} \rightarrow {}^{104\text{i}}_{45}\text{Rh} \rightarrow {}^{104}_{45}\text{Rh} + \gamma \rightarrow {}^{104}_{46}\text{Pb} + e^{-} + \bar{\nu_{e}} & 10\% \\ \rightarrow {}^{103}_{45}\text{Rh} \rightarrow {}^{104}_{46}\text{Pb} + e^{-} + \bar{\nu_{e}} & 90\% \end{cases}$$
(15)

Mit dem Verfahren aus Abschnitt 1.4 kann für Vanadium die Halbwertszeit ermittelt werden. Bei Rhodium treten allerdings Besonderheiten auf.

So zeigt sich in der Gl. 15, dass neben dem zu 90% entstende instabile Isotop 104 Rh ebenfalls auch das instabile 104i Rh entstehen kann. Diese beiden Zerfälle laufen mit

verschieden Halbwertszeiten T nebeneinander ab. Der Strahlungsdetektor kann die energiearme γ -Strahlung der ¹⁰⁴ⁱRh nachweisen, sodass mit der Methodik aus Abschnitt 1.4 für beide Prozesse die Halbwertszeit bestimmt werden kann.

3 Auswertung

3.1 Vorbereitung

Als Vorbereitung für den Verusch werden die Halbwertszeiten für 104 Rh und 52 V recherschiert. (Quellen: [5] , [4])

$$T_{52V} = (224, 5 \pm 0, 3)s$$
 (16)

$$T_{104\text{Rh}} = (42, 3 \pm 0, 4)\text{s}$$
 (17)

$$T_{104i_{\rm Rh}} = (260, 4 \pm 1, 8)s$$
 (18)

(19)

3.2 Nullrate

Über die aufgenommenen Daten für die Nullrate wurden diese Summiert und anschließend durch die Anzahl der Messwerte dividiert. Der Mittlewert für die poissonverteilten Untergrundraten ergibt sich somit als:

$$N_{\rm U} = (139 \pm 4) \, \frac{\rm Imp}{300 \rm s}$$
 (20)

$$\Delta N_{\rm U} = \sqrt{\sum_{i=1}^{n} \left(\frac{1}{n} \Delta N_{\rm U_i}\right)^2} \tag{21}$$

Mit der Anzahl n der Messwerte. In diesem Experiment gilt n = 7.

3.3 Vanadium

Um mit den Berechnungen zu Beginnen muss zunächst die Untergrundrate von den messwerten abgezogen werden. Da die Messung der Impulsrate von Vanadium in 30 Sekunden Intervallen gemacht wurde wird $N_{\rm U}$ auf das passende Intervall angepasst.

$$N_{\rm U,Vanadium} = \frac{N_{\rm U}}{10} = (13,9\pm0,4)\; \frac{\rm Imp}{30\rm s} \label{eq:NUVanadium}$$

Mit 13 wird nun ein linearer Ausgleich gefertigt.

Für den blauen "Ausgleich 1" ergibt sich:

$$\begin{split} \ln(N(t)) &= m \cdot t + b \\ m &= (-0,00317 \pm 0,00016) \mathrm{s}^{-1} \\ \lambda &= -m = (0,00317 \pm 0,00016) \mathrm{s}^{-1} \\ T1_{^{52}\mathrm{V}} &= \frac{\ln(2)}{\lambda} = (219 \pm 11) \mathrm{s} \end{split}$$

Abbildung 3: Darstellung der Impulse pro 30s zum Zeitpunkt t in einem halblogarithmischen Plot.

Zur Bestimmung der Zerfallsrate wird zunächst das gesamte Zahlrratenintervall verwendet. Aufgrund der geringen Zählrate am Ende des Intervalls, welche in den Untergrund eingeht, wird eine weitere Ausgleichsgerade gezogen, für welche das Intervall bis zur doppelten Halbwertszeit gewählt wird.

Und für den orangenen "Ausgleich 2" mit gleicher Funktion:

$$\begin{split} m &= (-0,00372 \pm 0,00023) \mathrm{s}^{-1} \\ \lambda &= -m = (0,00372 \pm 0,00023) \mathrm{s}^{-1} \\ T2_{^{52}\mathrm{V}} &= \frac{\ln(2)}{\lambda} = (186 \pm 11) \mathrm{s} \end{split}$$

3.4 Rhodium

Auch für die Messwerte des Rhodium zerfalls muss die Nullrate herausgerechnet werden. Dazu wird selbige wieder an das Intervall, in diesem Fall 15 Sekunden, angepasst.

$$N_{\rm U,Rhodium} = \frac{N_{\rm U}}{20} = (6, 96 \pm 0, 22) \; \frac{\rm Imp}{15 \rm s}$$

Aus dem Ausgleich ergibt sich für den langsamen Zerfall:

Abbildung 4: Die Impuls pro 15s zum Zeitpunkt t halblogarithmisch dargestellt. Es werden zwei Teilbereiche deutlich, die auf die Teilreaktionen 15 zuückzuführen sind. Dabei wird der kurzlebige Zerfall vom langlebigen Zerfall überlagert.

Die Ausgleichsgerade wird hierbei nur für den langlebigen Zerfall betrachtet.

$$\ln(N(t)) = m \cdot t + b$$

$$m = (-0,0031 \pm 0,0006) \text{s}^{-1}$$

$$\lambda = -m = (0,0031 \pm 0,0006) \text{s}^{-1}$$

$$T_{^{104}i\text{Rh}} = \frac{\ln(2)}{\lambda} = (230 \pm 50) \text{s}$$

Um eine Aussage über die Halbwertszeit T des kurzlebigen Zerfalls, welcher vom langlebigen Zerfall überlager wird, zu machen, muss zunächst der Zählratenanteil $N_{\rm langl.}(t)$ abgezogen werden. Über eine Regression am langlebigen Anteil aus Abb. 4 kann somit auf die Zählrate des kurzlebigen Zerfalls zurückgeschlossen werden. Es ergibt sich

$$N_{\text{kurzl.}} = N_{\text{gesamt}} - N_{\text{langl.}}.$$
 (22)

Für $N_{\rm langl.}$ ergibt sich über die Regression

$$N_{\text{langl.}} = e^{m \cdot t + b}. \tag{23}$$

Somit folgt für die Impulsrate N zum Zeiptunkt t für den kurzlebigen Zerfall

Abbildung 5: Die Impulse pro 15s zum Zeitpunkt t für den kurzlebigen Zerfall halblogarithmisch aufgetragen.

$$\begin{split} m &= (-0,0192 \pm 0,0009) \mathrm{s}^{-1} \\ \lambda &= -m = (0,0192 \pm 0,0009) \mathrm{s}^{-1} \\ T_{^{104}\mathrm{Rh}} &= \frac{\ln(2)}{\lambda} = (36,2 \pm 1,7) \mathrm{s} \end{split}$$

4 Diskussion

Im Experiment wurde die Nullrate als (139 ± 4) Sekunden bestimmt. Die Genauigkeit der Nullrate kann nicht gut bewertet werden, da hierfür keine Literaturwerte existieren können. Zudem wurde im Experiment nur über 300 Sekunden gemessen. Um den statistischen Fehler der Rate gering zu halten, wäre es besser, wenn über mindestens 500 Sekunden gemessen werden würde.

Wie in Tabelle 1 aufgetragen, werden alle Halbwertszeiten mit einer relativen Abweichung von weniger als 20% bestimmt. Überraschend ist es, dass die Halbwertszeit für Vanadium auf dem kurzen Intervall viel ungenauer bestimmt wird, als auf dem längeren Intervall mit den vermeintlich ungenauen Werten. Diese Abweichung kann dadurch erklärt werden, dass für das Intervall zu wenige Messdaten aufgenommen wurden, und daher statistische Fehler die Messung stark beeinflussen.

	Vanadium	Rho	dium
	T/s	$T_{104\text{Rh}}$ / s	$T_{104i\mathrm{Rh}}$ / s
Literatur[5],[4]	$224,5\pm0,3$	$42,3\pm0,4$	$260,4\pm1,8$
Ermittelt	219 ± 11	$36,2 \pm 1,7$	230 ± 50
	186 ± 11		
Abweichung / %	2,6	13,02	14,49
	17,0		

 $\begin{tabelle} \textbf{Tabelle 1:} Darstellung der Halbwertszeiten T für Vanadium und Rhodium im Vergleich mit den Literaturwerten. \end{tabelle}$

Literatur

- [1] Tu Dortmund. "Versuch V702: Ativierung mit Neutronen". In: ().
- [2] John D. Hunter. "Matplotlib: A 2D Graphics Environment". Version 1.4.3. In: Computing in Science & Engineering 9.3 (2007), S. 90–95. URL: http://matplotlib.org/.
- [3] Travis E. Oliphant. "NumPy: Python for Scientific Computing". Version 1.9.2. In: Computing in Science & Engineering 9.3 (2007), S. 10–20. URL: http://www.numpy.org/.
- [4] Rhodium. URL: http://w-oess.de/Kernphysik/Elemente/045-rh.html.
- [5] Vanadium. URL: http://w-oess.de/Kernphysik/Elemente/023-v.html.
- [6] Zählrohr. URL: https://de.wikipedia.org/wiki/Z%C3%A4hlrohr#Geiger-M%C3%BCller-Z%C3%A4hlrohr.

5 Anhang

t / s	N / Impulse
30	189
60	197
90	150
120	159
150	155
180	132
210	117
240	107
270	94
300	100
330	79
360	69
390	81
420	46
450	49
480	61
510	56
540	40
570	45
600	32
630	27
660	43
690	35
720	19
750	28
780	27
810	36
840	25
870	29
900	18
930	17
960	24
990	21
1020	25
1050	21
1080	24
1110	25
1140	17
1170	20
1200	19
1230	20
1260	18
1290	$_{14}$ 16
1320	17

1320 17

Tabelle 2: Messwerte zu Vanadium.

t / s	N / Impulse
15	667
30	585
45	474
60	399
75	304
90	253
105	213
120	173
135	152
150	126
165	111
180	92
195	79
210	74
225	60
240	52
255	56
270	53
285	41
300	36
315	37
330	32
345	36
360	38
375	34
390	40
405	21
420	35
435	33
450	36
465	20
480	24
495	30
510	30
525	26
540	28
555	23
570	20
585	28
600	17
615	26
630	19
645	13
660	17

Tabelle 3: Messwerte zu Rhodium. 15