

NASA Non-Flow-Through PEM Fuel Cell System for Aerospace Applications

Koorosh R. Araghi

Principle Investigator, Energy Conversion Branch

NASA Lyndon B. Johnson Space Center/EP3

Houston, Texas 77058 USA

281.483.5836

Koorosh.r.araghi@nasa.gov

Overview

- Basic PEM Fuel Cell
- NASA PEM Fuel Cell Development History
- Top-level comparison of aerospace fuel cell systems: Flow through vs. Non-Flow-Through (NFT)
- Recent NASA Fuel Cell Development Activities
- Details of NFT Fuel Cell systems
- Testing and Test Results of NFT fuel cell stacks
- Future Activities
- Summary

Major Fuel Cell Types

Proton Exchange Membrane (PEM)

Fuel Cell Basics

PEM Fuel Cell I-V Curve

Overview of a Fuel Cell System

NASA PEMFC Development History

- NASA initiated PEMFC studies during Shuttle upgrade program in late 1990's at JSC
 - High DDT&E costs prevented switch from alkaline to PEM, in spite of several technical advantages
- Reusable Launch Vehicle (RLV) program funded initial development of PEMFC technology (2001)
 - · A single vendor selected
- RLV transitioned into Next Generation Launch Technology, Space Launch Initiative, and eventually Exploration Technology Development Program, programs (2001-2007)
 - Two vendors selected for Breadboard development
 - One vendor down-selected for Engineering Model development
 - Disadvantages of flow-through PEMFC systems became evident during testing of Engineering Model; balance-of-plant experienced multiple failures (rotating mechanical components)
- Began investigation of "passive" balance-of-plant concepts for flow-through technology (2005)
 - Reactant pumps replaced with injectors/ejectors
 - Mechanical water separators replaced with membrane water separators
- In parallel, began investigation of non-flow-through technology through SBIR program (2005)
 - Single vendor awarded contract
- Down-selected to non-flow-through technology over flow-through technology; initiated in-house development of balance-of-plant (2008)

PEM Fuel Cell Development

Shuttle "Active BOP" **Alkaline**

Flow-Through

"Active BOP" PEM

Flow-Through

"Passive BOP" PEM

Flow-Through

Non-Flow-Through

"Passive BOP"

PEM

(injector/ejector, passive water separator)

Active Mechanical Component (pump, active water separator)

Fuel Cell Technology Progression to Simpler Balance-of-Plant

System-Level Comparison of Flow-Through vs. Non-Flow-Through PEMFC Technology

Design Parameter	Flow-Through	Non-Flow-Through		
Efficiency	_	_		
Mass		✓		
Volume		✓		
Parasitic Power		✓		
Reliability		✓		
Reactant Utilization		✓		
Equivalent Reactant Storage "Depth-of-Discharge"		✓		
Life		✓		
Cost		✓		
TRL	✓			

Fuel Cell Technical Approach: "Non-Flow-Through" Water Management

Develop "non-flow-through" proton exchange membrane fuel cell technology to improve systemlevel mass, volume, reliability, and parasitic power

Flow-Through components eliminated in Non-Flow-Through system include:

Pumps or injectors/ejectors for recirculation

O₂ / H₂O

 Motorized or passive external water separators

Non-Flow-Through PEMFC technology characterized by dead-ended reactants and internal product water removal

- Tank pressure drives reactant feed; no recirculation
- Water separation occurs through internal cell H_2O

Non Flow Through Water Management

- No Moving Parts
- Pure Liquid Water
- No Parasite Power

NFT Stack Test Results

Vendor	# Cells	Active Area Vcc	Vcc1	Steady State Test ²	Load Profile Test ³	Separator ΔP ⁴	Max Current Density	Sensitivity	
			VCC					Inert ⁵	Orientation
		cm ²	Volts	Pass/Fail	Pass/Fail	psid	mA/cm ²		
Α	4	50	0.82	Pass	Pass	8	500	High	Not Tested
	4	50	0.83	Pass	Pass	8	500	Medium	None
6	4	150	0.81	Pass	Pass	8	800	Medium	None
	16	50	0.82	Pass	Pass	8	1,000	Medium	None
В	4	50	0.63	Pass	Pass	30	500	Medium	None
	4	200	0.75	Pass	Fail	30	350	Low	None
С	4	69	0.81	Pass	Fail	30	200	Medium	Not Tested
	2	69	0.84	Pass	Pass	30	500	Medium	Not Tested
D	4	86	0.83	Pass	Fail	4	400	Medium	Not Tested

Notes:

- ¹ = Average Cell Voltage at the Design point of 200 mA/cm²
- ² = 200 mA/cm2 for 4 hours at design temperature and pressure
- ³ = NASA Defined 4-hour Load profile ranging from 0 to 500 mA/cm²
- ⁴ = Maximum acceptable differential pressure between Oxygen and Water Cavities
- ⁵ = Based on vent frequency and vent duration for a normalized by current density and reactant purity
- ⁶ = Cell Voltage at start of test Testing stopped at 1,330 hours due to facility computer failure

Non-Flow-Through PEMFC System Schematic

NFT Fuel Cell Power System vs. FT System

Non-flow-through PEMFC system has a substantially simpler balance-of-plant than conventional flow-through PEMFC system. This offers significant advantages.

Future NFT Fuel Cell Power Systems

Demonstrations

- Carnegie-Mellon Scarab Rover
- NASA MARCO POLO ISRU Lander

Future Tests

- Upgraded Water Separator Technology
- Miniaturized Electrical Packaging
- Integrated Passive Thermal Technology

Summary

- NASA is researching passive NFT PEM fuel cell technologies for primary fuel cell power plants in air-independent applications.
- NFT fuel cell power systems have a higher power density than flow through systems due to both reduced parasitic loads and lower system mass and volume. Reactant storage still dominates system mass/volume considerations.
- NFT fuel cell stack testing has demonstrated equivalent short term performance to flow through stacks. More testing is required to evaluate long-term performance.