

Análise e teatamento de dados	0)
· Energia de excitação	
V (V) I (mA) In(I) Fit Resíduos Pontos	
-1,074 0.003 -5.80914 -2,58909 3,220051	
-0,042 0.0713 -2.64086 -2,42713 0,213726 0,6	
1,126 0,3159 -1,15233 -2,24383 -1,0915 0,5	
2,173 0,4835 -0,7267 -2,07952 -1,35281	
3,263 0,4674 -0,76057 -1,90846 -1,14789	
4,591 0,3666 -1,00348 -1,70004 -0,69656	D 000 04
5,444 0,3155 -1,1536 -1,56618 -0,41258	
5,563 0,3103 -1,17022 -1,5475 -0,37729	
5,852 0,2989 -1,20765 -1,50215 -0,2945	2 12 12
6,078 0,2917 -1,23203 -1,46668 -0,23465 -2 0 2 4 6	8 10 12
6,399 0,2817 -1,26691 -1,4163 -0,14939 V (Volt)	
6,433 0,2826 -1,26372 -1,41097 -0,14724	
6,739 0,2769 -1,2841 -1,36294 -0,07884 Energia de excitaç	ao
7,046 0,273 -1,29828 -1,31476 -0,01648 0,305	
7,218 0,2694 -1,31156 -1,28777 0,023787	
7,388 0,2708 -1,30637 -1,26109 0,045283	
7,796 0,2705 -1,30748 -1,19706 0,110422 0,29	
8,148 0,2718 -1,30269 -1,14182 0,160869 $\leq 0,285$ $= 0,0079V^2 - 0,12$	28V + 0,7453
8,182 0,2687 -1,31416 -1,13648 0,177676 - 0,28	A
8,514 0,2745 -1,2928 -1,08438 0,208423 0,275	5 9
9,027	O. San Care Care Care Care Care Care Care Care
9,3 0,2847 -1,25632 -0,96103 0,295291 0,265	0 0 10
9,932 0,2921 -1,25000 0,03071 0,371554	8 9 10
10,809 0,3101 -1,17086 -0,72421 0,44665 V (Volt)	
10,975 0,3146 -1,15645 -0,69816 0,458294	
Resíduos — Qui	Wilder.
4	
Sem S	Son Mary
2	
son	
Sesiduos 1	
-2 0 2 4 6 8 10 12	
-2	
V (Volt)	
I'(V) = 0,0158 V - 0,1228 I(+,7)=0,0079x(7,77)2 - 0,1228x7,77	103453
	10,110
I'(V) = 0 (=) V = 7,77 V (=) I(7,77) ~ 0,268 mA	/
Ee = e x V = 7,77 eV Energia de excitação = 7,77 eV V	
182 2221	0
ER (1.) = 18,3-7,77) × 100=0,47.	
8,3 Incates de En	
01.000/2	

· Energia de ionização ? MI?

	V (V)	1 (µA)	In(I)	Fit	Resíduos	
	0,191	3,28	1,187843	-0,09978	-1,28762	
	1,29	3,26	1,181727	0,178863	-1,00286	
	2,804	3,36	1,211941	0,562722	-0,64922	
	4,244	3,34	1,205971	0,927819	-0,27815	(A)
	5,617	3,27	1,18479	1,275929	0,091139	-
	6,715	3,27	1,18479	1,554316	0,369526	
	7,979	3,27	1,18479	1,87479	0,69	
	9,154	3,28	1,187843	2,1727	0,984856	
	9,87	3,3	1,193922	2,354234	1,160312	
	11,655	3,31	1,196948	2,806803	1,609855	
	12,915	4,82	1,572774	3,126263	1,553489	
Ī	13,516	9,37	2,237513	3,27864	1,041127	
	13,796	14,12	2,647592	3,349632	0,702039	
	14,219	31,59	3,452841	3,456879	0,004038	
	14,68	54,44	3,997099	3,573761	-0,42334	
	15,396	87,34	4,469809	3,755295	-0,71451	(A
1	16,127	119,18	4,780635	3,940633	-0,84	=
-	17,156	162,11	5,088275	4,201525	-0,88675	
	18,072	198,2	5,289277	4,433768	-0,85551	
	19,435	251	5,525453	4,779343	-0,74611	
	21,31	322,8	5,777033	5,25473	-0,5223	

)

nos ajustes

I = 37, 172 V - 478, 36

I=0 => N=15'8+ N

Ei= | e x V | = 12,87 eV

Energia de ionização = 12,87 e V

ER (1) = 112 - 12,871 × 100 = 7,25%

NA

Investeza Vala procurado em S

12x=12113 eV

= emitida (enegia de ionização)

(= hf => 12,87×1,6×10-19 = 6,626×10-34 f (=>) f=3,1×1015 +2

(0 = 2f => 2 = (2,13×106)/(3,1×1015) (=>) 2 = 6,9×10-10 m (=>) 2 = 69 nm

-> ladiação ultravioleta

· Para as eletrões colidirem inelasticamente a variação de enorgia tem que ser igual à energia cinética.

 $\Delta E = |E_1 - E_0| = 1 - 3.4 + 13.61 = 10.2 \text{ eV}$ $E_1 = |E_1 - E_0| = 1 - 3.4 + 13.61 = 10.2 \text{ eV}$ $E_2 = |E_1 - E_0| = 1 - 3.4 + 13.61 = 10.2 \text{ eV}$ $E_3 = |E_1 - E_0| = 1 - 3.4 + 13.61 = 10.2 \text{ eV}$ $E_4 = |E_1 - E_0| = 1 - 3.4 + 13.61 = 10.2 \text{ eV}$ $E_4 = |E_1 - E_0| = 1 - 3.4 + 13.61 = 10.2 \text{ eV}$ $E_5 = |E_1 - E_0| = 1 - 3.4 + 13.61 = 10.2 \text{ eV}$ $E_6 \Rightarrow \text{estado fundamental}$ $E_7 = |E_1 - E_0| = 1 - 3.4 + 13.61 = 10.2 \text{ eV}$ $E_7 = |E_1 - E_0| = 1 - 3.4 + 13.61 =$

→ velocidade dos eleteões quando as colisões, resultantes da excitação, são inelásticas

Conclusão

Com esta atividade poi passível determinar valores experimentais de primeira energia de ionização e de exitação dos eletrões do átorno de xénon com ume margem de elle peletivamente a valores previstos, de 725% e 6,4%, respetiumente. Inte person mento + as Monting A paetre dos geáficos de pontos obtidos, a energia de excitação poi calculade a partie da equação de ajuste polinomial de gran 2, neum intervalo que continhe o mínimo do geático, e esse mínimo coelespondic ao potencial acelerador: te = ex Vacel. A energia de ionização foi calculade a partir da equação de ajuste linear num intervalo em que il aumentare significativamente, na qual se considelava I rule, obtendo - se assim o potencial de aceleração limiar, que permitie calcular a energic de ionização: Ei=lex Vacel emiar l. A partir da equação da energia cinética calculou-se a salocidade dos eletrões para cade caso, e a frequêncie de radiação, obtendo-se assim o compeimento de onde da eadiação emitido ou absolvido pelo eletras. Conclui-se que os eletrões do átomo de xénon, quando excitados ou ionizados, absoevem e emitem, respetivamente, radiação coltravioleta, Caponas para a primeira energia de excitação e de ionização)