UPPSALA UNIVERSITET Matematiska institutionen Inger Sigstam

Skrivtid: 14.00 - 19.00. Tillåtna hjälpmedel: Bara pennor, radergummi, linjal och papper (det sistnämnda tillhandahålles). För godkänd kurs krävs att alla explicita kursmål är godkända samt att tentamenspoängen är minst 18 (inklusive ev bonuspoäng). För betyg 4 eller 5 krävs dessutom att tentamenspoängen är minst 25 resp minst 32.

Uppgifterna 1-5 behandlar satslogik. I dessa uppgifter används den satslogiska signaturen $\sigma = \{A, B, C\}$.

- **1.** Låt $\sigma = \{A, B, C\}$ vara en satslogisk signatur.
 - (a) Redogör för hur formler i LP(σ) byggs upp.
 - (b) Förklara vad som menas med en σ -struktur.
 - (c) Låt φ vara en formel i LP(σ). Vad menas med att φ är en tautologi?
 - (d) Låt Γ vara en mängd av formler och låt φ vara en formel i LP(σ). Vad menas med att $\Gamma \models \varphi$?
- **2.** Skriv följande sats på konjunktiv normalform (KNF), och på disjunktiv normalform (DNF). Förklara hur du kommit fram till ditt svar!

$$((A \longrightarrow B) \longrightarrow (C \land A)) \tag{4}$$

3. Konstruera formella bevis i naturlig deduktion för följande påståenden.

(a)
$$\neg A \lor B \vdash \neg (A \land \neg B)$$

(b)
$$A \longrightarrow (B \lor C), A, \neg C \vdash B \land A$$
 (4)

4. Avgör om följande slutledningar på formen $\Gamma \models \sigma$ är giltiga. För varje slutledning som inte är giltig, ange en σ -struktur som är motexempel. För varje slutledning som är giltig, konstruera att bevis i naturlig deduktion som vittnar om att $\Gamma \vdash \sigma$.

(a)
$$A \longrightarrow (B \land C) \models (A \longrightarrow B) \land C$$

(b)
$$(A \longrightarrow B) \land C \models A \longrightarrow (B \land C)$$
 (4)

5. Avgör om följande påståenden på formen $\Gamma \vdash \tau$ gäller, dvs om τ är bevisbar i naturlig deduktion från premisserna i Γ .

(a)
$$A \vee B$$
, $\neg A \vee \neg C$, $C \longrightarrow \neg B \vdash C$.

(b)
$$A, B \vdash C \lor \neg C$$
.

Motivera dina svar noggrant!

(4)

FLER UPPGIFTER PÅ NÄSTA SIDA!

Uppgifterna 6-11 behandlar predikatlogik, dvs första ordningens logik.

- **6.** Låt $\sigma = \langle \overline{c}; \overline{F}; \overline{P} \rangle$ vara signatur med ställigheterna $\langle 0; 1; 2 \rangle$.
 - (a) Ange alla slutna termer i språket LR(σ).
 - (b) Ange alla slutna atomära formler i språket $LR(\sigma)$.
 - (c) Låt τ vara formeln $\overline{P}(\overline{c}, \overline{c}) \land \forall x \exists y \overline{P}(x, y)$. Ange två σ -strukturer \mathcal{A} och \mathcal{B} så att $\mathcal{A} \models \tau$ och $\mathcal{B} \not\models \tau$.
- 7. Låt $\sigma = \langle ; \overline{F}; \overline{P}, \overline{Q} \rangle$ vara signatur med ställigheterna $\langle ; 2 ; 1, 2 \rangle$. Betrakta σ -strukturen $\mathcal{N} = \langle \mathbf{N}, F, P, Q \rangle$, där F(n, m) = n + m, $P(n) \iff n$ är ett primtal, och $Q(n, m) \iff n < m$. Översätt följande till predikatlogiska slutna formler i språket $LR(\sigma)$.
 - (a) Varje naturligt tal är summan av två primtal.
 - (b) För varje primtal finns ett annat primtal som är större än det första primtalet. (2)
- **8.** Låt $\sigma = \langle ;; \overline{P}, \overline{Q}, \overline{R} \rangle$ vara signatur med ställigheterna $\langle ;; 1, 1, 1 \rangle$. Konstruera formella bevis i naturlig deduktion för följande påståenden.

(a)
$$\forall x (\overline{P}(x) \longrightarrow \neg \overline{Q}(x)), \forall x (\overline{P}(x) \longrightarrow \overline{R}(x)), \exists x \, \overline{P}(x) \vdash \exists x (\overline{R}(x) \land \neg \overline{Q}(x))$$

(b) $\vdash \exists x \neg \overline{P}(x) \longrightarrow \neg \forall x \, \overline{P}(x)$ (4)

9. Låt $\sigma = \langle \, \overline{c} \, ; \, \overline{P}, \overline{Q}, \, \overline{R} \rangle$ vara signatur med ställigheterna $\langle \, 0; \, ; 1, \, 1, \, 2 \rangle$. Avgör om följande slutledningar på formen $\Gamma \models \sigma$ är giltiga. För varje slutledning som inte är giltig, ange en σ -struktur som är motexempel. För varje slutledning som är giltig, konstruera att bevis i naturlig deduktion som vittnar om att $\Gamma \vdash \sigma$.

(a)
$$\forall x(\overline{P}(x) \longrightarrow \overline{Q}(\overline{c})), \ \forall x(\overline{Q}(x) \longrightarrow \overline{R}(x,\overline{c})) \models \forall x(\overline{P}(x) \longrightarrow \overline{R}(x,\overline{c}))$$

(b) $\exists x \forall y \overline{R}(x,y) \models \forall y \exists x \overline{R}(x,y)$ (4)

10. Låt $\sigma = \langle ; ; \overline{R} \rangle$ av ställigheter $\langle ; ; 2 \rangle$. Låt $\Gamma = \{ \varphi_1, \varphi_2, \varphi_3 \}$, där

$$\begin{array}{rcl} \varphi_1 & = & \forall x \neg \overline{R}(x,x) \\ \varphi_2 & = & \forall x \forall y \forall z (\overline{R}(x,y) \wedge \overline{R}(y,z) \longrightarrow \overline{R}(x,z)) \\ \varphi_3 & = & \forall x \exists y \overline{R}(x,y) \end{array}$$

- (a) Ange en modell för Γ .
- (b) Visa att Γ är oberoende, dvs visa att ingen av formlerna i Γ kan bevisas i naturlig deduktion från de övriga två formlerna. (4)
- 11. Formulera sundhetssatsen och fullständighetssatsen för första ordningens logik samt förklara i ord vad de innebär. Ange gärna exempel på var i tentauppgifterna du har använt dig av någon av satserna, eller hur man skulle kunna använda dem.(2)