1

Assignment 6

Gautham Bellamkonda - CS20BTECH11017

Download all latex-tikz codes from

https://github.com/GauthamBellamkonda/AI1103/tree/main/Assignment6

1 Problem

Let $X_1, X_2, ..., X_n$ be a random sample of size $n \ge 2$ from a distribution having the probability density function

$$f(x;\theta) = \begin{cases} \frac{1}{\theta} \exp\left(-\frac{x}{\theta}\right) & x > 0, \\ 0, & \text{otherwise,} \end{cases}$$
 (1.0.1)

where $\theta \in (0, \infty)$. Let $X_{(1)} = \min \{X_1, X_2, ..., X_n\}$ and $T = \sum_{i=1}^{n} X_i$. Then $E(X_{(1)}|T)$ equals

- (A) $\frac{T}{n^2}$
- (B) $\frac{T}{n}$
- (C) $\frac{(n+1)T}{2n}$
- (D) $\frac{(n+1)^2T}{4n^2}$

2 Solution

Theorem 2.1 (Lehmann–Scheffé theorem). If T is a complete sufficient statistic for θ and

$$E(g(T)) = \tau(\theta) \tag{2.0.1}$$

then g(T) is the uniformly minimum-variance unbiased estimator (UMVUE) of $\tau(\theta)$.

Theorem 2.2.

$$T = \sum_{i=1}^{n} X_i \tag{2.0.2}$$

is a complete and sufficient statistic.

Proof. (Sufficiency)

$$f_X(x_1, x_2, \dots x_n) = f_{X_1}(x_1) f_{X_2}(x_2) \dots f_{X_n}(x_n) \quad (2.0.3)$$

$$= \frac{1}{\theta} \exp\left(-\frac{x_1}{\theta}\right) \dots \frac{1}{\theta} \exp\left(-\frac{x_n}{\theta}\right) \quad (2.0.4)$$

$$=1\cdot\frac{1}{\rho^n}\exp\left(-\frac{T}{\rho}\right) \tag{2.0.5}$$

$$= h(X) \cdot g(T, \theta) \tag{2.0.6}$$

with

$$g(T, \theta) = \frac{1}{\theta^n} \exp\left(-\frac{T}{\theta}\right)$$
 (2.0.7)

$$h(X) = 1 (2.0.8)$$

Therefore, T is a sufficient statistic.

(Completeness)

 X_i follow a gamma distribution, $X_i \sim \Gamma(1, \frac{1}{\theta})$. Hence, $T = \sum_{i=1}^{n} X_i$ follows a gamma distribution, $T \sim \Gamma(n, \frac{1}{\theta})$. Therefore, the expected value of a function g is

$$E(g(T)) = \int_0^\infty g(t) \frac{t^{n-1} e^{-\frac{t}{\theta}}}{\theta^n (n-1)!} dt$$
 (2.0.9)
$$= \frac{1}{\theta^n (n-1)!} \int_0^\infty g(t) t^{n-1} e^{-\frac{t}{\theta}} dt$$
 (2.0.10)

$$= \frac{1}{\theta^n (n-1)!} \int_0^\infty g(t) t^{n-1} e^{-\frac{t}{\theta}} dt \quad (2.0.10)$$

$$= \frac{1}{\theta^n (n-1)!} F\left(\frac{1}{\theta}\right) \tag{2.0.11}$$

$$= 0 \text{ for all } \theta > 0.$$
 (2.0.12)

The integral in (2.0.10) can be interpreted as the Laplace transform $F(s) = \int_0^\infty f(t)e^{-st}dt$ of the function $f(t) = t^{n-1}g(t)$ evaluated at $\frac{1}{\theta}$. If this transform is 0 for all θ in $(0, \infty)$, then f(t) = 0 almost everywhere in $(0, \infty)$. Therefore, g(t) = 0 almost everywhere in $(0, \infty)$ and hence,

$$\Pr(g(t) = 0) = 1$$
 (2.0.13)

Therefore, T is a complete statistic. \square

By the law of total expectation,

$$E(E(X_{(1)}|T)) = E(X_{(1)})$$
 (2.0.14)

By Lehmann-Scheffé theorem, with

$$\theta = X_{(1)}, \tag{2.0.15}$$

$$\tau(x) = E(x), (2.0.16)$$

$$g(T) = E(X_{(1)}|T).$$
 (2.0.17)

it follows from (2.0.14) that $E(X_{(1)}|T)$ is the UMVUE of $E(X_{(1)})$.

$$\Pr(X_{(1)} > x) = \Pr(X_1 > x) \dots \Pr(X_n > x) \quad (2.0.18)$$
$$= (1 - F_{X_1}(x)) \dots (1 - F_{X_n}(x))$$

$$= (1 - F_{X_1}(x))^n (2.0.20)$$

(2.0.19)

$$= \exp\left(-\frac{nx}{\theta}\right) \tag{2.0.21}$$

$$F_{X_{(1)}}(x) = 1 - \exp\left(-\frac{nx}{\theta}\right)$$
 (2.0.22)

$$f_{X_{(1)}}(x) = \frac{n}{\theta} \exp\left(-\frac{nx}{\theta}\right)$$
 (2.0.23)

Therefore, $X_{(1)}$ follows an exponential distribution with mean $\frac{\theta}{n}$.

$$E(X_{(1)}) = -\frac{\theta}{n} \tag{2.0.24}$$

Note that,

$$E\left(\frac{T}{n^2}\right) = E\left(\frac{\sum_{i=1}^n X_i}{n^2}\right) \tag{2.0.25}$$

$$=\frac{E(\sum_{i=1}^{n} X_i)}{n^2}$$
 (2.0.26)

$$=\sum_{i=1}^{n} \frac{E(X_i)}{n^2}$$
 (2.0.27)

$$=\sum_{i=1}^{n} \frac{\theta}{n^2}$$
 (2.0.28)

$$=\frac{\theta}{n}\tag{2.0.29}$$

$$= E(X_{(1)}) \tag{2.0.30}$$

Therefore, by Lehmann-Scheffé theorem, with

$$\theta = X_{(1)}, \tag{2.0.31}$$

$$\tau(x) = E(x), (2.0.32)$$

$$g(T) = \frac{T}{n^2},\tag{2.0.33}$$

it follows that $\frac{T}{n^2}$ is UMVUE of $E(X_{(1)})$.

Since there exists a unique UMVUE for $E(X_{(1)})$, it

follows that

$$E(X_{(1)}|T) = \frac{T}{n^2}$$
 (2.0.34)

Hence, option A is correct.

Fig. 4: Theory vs Simulated plot of $E(X_{(1)}|T)$