Презентация по выполнению упражнения

Фигура Лиссажу

Горяйнова АА

Российский университет дружбы народов, Москва, Россия

Докладчик

- Горяйнова Алёна
- студентка
- Российский университет дружбы народов

Выполнить упражнение по ознакомлению с программой *xcos*.

Постройте с помощью хсоз фигуры Лиссажу со следующими параметрами:

1)
$$A = B = 1, a = 2, b = 2, \delta = 0; \pi/4; \pi/2; 3\pi/4; \pi;$$

2)
$$A=B=1, a=2, b=4, \ \delta=0; \ \pi/4; \ \pi/2; \ 3\pi/4; \ \pi;$$

3)
$$A = B = 1, a = 2, b = 6, \delta = 0; \pi/4; \pi/2; 3\pi/4; \pi;$$

4)
$$A=B=1, a=2, b=3, \ \delta=0; \ \pi/4; \ \pi/2; \ 3\pi/4; \ \pi.$$

Фигура Лиссажу

Математическое выражение для кривой Лиссажу:

$$\begin{cases} x(t) = Asin(at + \delta), \\ y(t) = Bsin(bt), \end{cases}$$

где A,B – амплитуды колебаний, a,b – частоты, δ – сдвиг фаз.

Блоки в хсоѕ

- · CLOCK_c запуск часов модельного времени;
- GENSIN_f блок генератора синусоидального сигнала;
- CSOPXY анимированное регистрирующее устройство для построения графика типа y = f(x);
- · TEXT_f задаёт текст примечаний.

Рис. 1: Модель для построения фигуры Лиссажу в хсоѕ

~	Ввод значений	+ >
	Установите параметры блока GENSIN_f	
Генератор синусоидальных колебаний		
	Абсолютная величина	1
	Частота (рад/с)	2
	Фаза (рад)	ol
		ОК Отменить

Рис. 2: Ввод параметров для генератора синусоидальных колебаний

Рис. 3: Ввод параметров для CSOPXY

Рис. 4: Фигура Лиссажу: $A=B=1, a=2, b=2, \delta=0$

Рис. 5: Фигура Лиссажу: $A=B=1, a=2, b=2, \delta=\pi/4$

Рис. 6: Фигура Лиссажу: $A=B=1, a=2, b=2, \delta=\pi/2$

Рис. 7: Фигура Лиссажу: $A=B=1, a=2, b=2, \delta=3\pi/4$

Рис. 8: Фигура Лиссажу: $A=B=1, a=2, b=2, \delta=\pi$

Рис. 9: Ввод параметров для генератора синусоидальных колебаний

Рис. 10: Фигура Лиссажу: $A=B=1, a=2, b=4, \delta=0$

Рис. 11: Фигура Лиссажу: $A=B=1, a=2, b=4, \delta=\pi/4$

Рис. 12: Фигура Лиссажу: $A=B=1, a=2, b=4, \delta=\pi/2$

Рис. 13: Фигура Лиссажу: $A=B=1, a=2, b=4, \delta=3\pi/4$

Рис. 14: Фигура Лиссажу: $A=B=1, a=2, b=4, \delta=\pi$

Рис. 15: Ввод параметров для генератора синусоидальных колебаний

Рис. 16: Фигура Лиссажу: $A=B=1, a=2, b=6, \delta=0$

Рис. 17: Фигура Лиссажу: $A=B=1, a=2, b=6, \delta=\pi/4$

Рис. 18: Фигура Лиссажу: $A=B=1, a=2, b=6, \delta=\pi/2$

Рис. 19: Фигура Лиссажу: $A=B=1, a=2, b=6, \delta=3\pi/4$

Рис. 20: Фигура Лиссажу: $A=B=1, a=2, b=6, \delta=\pi$

Рис. 21: Ввод параметров для генератора синусоидальных колебаний

Рис. 22: Фигура Лиссажу: $A=B=1, a=2, b=3, \delta=0$

Рис. 23: Фигура Лиссажу: $A=B=1, a=2, b=3, \delta=\pi/4$

Рис. 24: Фигура Лиссажу: $A=B=1, a=2, b=3, \delta=\pi/2$

Рис. 25: Фигура Лиссажу: $A=B=1, a=2, b=3, \delta=3\pi/4$

Рис. 26: Фигура Лиссажу: $A=B=1, a=2, b=3, \delta=\pi$

В результате выполнения данной лабораторной работы я выполнила упражнение по ознакомлению с программой *xcos*.