

SAR TEST REPORT

REPORT NO.: SA110127C15

MODEL NO.: F-10C

FCC ID: VQK-F10C

RECEIVED: Jan. 27, 2011

TESTED: Feb. 09 ~ Feb. 10, 2011

ISSUED: Mar. 02, 2011

APPLICANT: FUJITSU LIMITED

ADDRESS: 1-1, Kamikodanaka 4-chome, Nakahara-ku,

Kawasaki 211-8588, Japan

ISSUED BY: Bureau Veritas Consumer Products Services (H.K.)

Ltd., Taoyuan Branch

LAB ADDRESS: No. 47, 14th Ling, Chia Pau Tsuen, Lin Kou Hsiang,

Taipei Hsien 244, Taiwan, R.O.C.

TEST LOCATION: No. 19, Hwa Ya 2nd Rd, Wen Hwa Tsuen, Kwei

Shan Hsiang, Taoyuan Hsien 333, Taiwan, R.O.C.

This test report consists of 27 pages in total except Appendix. It may be duplicated completely for legal use with the approval of the applicant. It should not be reproduced except in full, without the written approval of our laboratory. The client should not use it to claim product endorsement by TAF or any government agencies. The test results in the report only apply to the tested sample.

TABLE OF CONTENTS

RELE/	ASE CONTROL RECORD	3
1.	CERTIFICATION	
2.	GENERAL INFORMATION	5
2.1	GENERAL DESCRIPTION OF EUT	
2.2	GENERAL DESCRIPTION OF APPLIED STANDARDS	6
2.3	GENERAL INOFRMATION OF THE SAR SYSTEM	
2.4	TEST EQUIPMENT	
2.5	GENERAL DESCRIPTION OF THE SPATIAL PEAK SAR EVALUATION	
2.6	DESCRIPTION OF SUPPORT UNITS	
3.	DESCRIPTION OF ANTENNA LOCATION	
4.	RECIPES FOR TISSUE SIMULATING LIQUIDS	
5.	SYSTEM VALIDATION	
5.1	TEST PROCEDURE	
5.2	VALIDATION RESULTS	
5.3	SYSTEM VALIDATION UNCERTAINTIES	
6.	TEST RESULTS	
6.1	TEST PROCEDURES	
6.2	DESCRIPTION OF TEST CONDITION	
6.3	MEASURED SAR RESULT	
6.4	SAR LIMITS	
7.	INFORMATION ON THE TESTING LABORATORIES	. 27
APPE	NDIX A: TEST CONFIGURATIONS AND TEST DATA	
APPE	NDIX B: ADT SAR MEASUREMENT SYSTEM	
APPE	NDIX C: PHOTOGRAPHS OF SYSTEM VALIDATION	
APPE	NDIX D: SYSTEM CERTIFICATE & CALIBRATION	

RELEASE CONTROL RECORD

ISSUE NO.	REASON FOR CHANGE	DATE ISSUED
Original release	N/A	Mar. 02, 2011

1. CERTIFICATION

PRODUCT: Mobile phone

MODEL NO.: F-10C

BRAND: FOMA

APPLICANT: FUJITSU LIMITED

TESTED: Feb. 09 ~ Feb. 10, 2011

TEST SAMPLE: ENGINEERING SAMPLE

STANDARDS: FCC Part 2 (Section 2.1093)

FCC OET Bulletin 65, Supplement C (01-01)

RSS-102 Issue 4 (2010-03)

The above equipment (model: F-10C) has been tested by **Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch**, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's EMC characteristics under the conditions specified in this report.

PREPARED BY

Andrea Hsia / Specialist

, **DATE:** Mar. 02, 2011

APPROVED BY

Gary Chang / Assistant Manager

, **DATE**: Mar. 02, 2011

2. GENERAL INFORMATION

2.1 GENERAL DESCRIPTION OF EUT

EUT	Mobile phone					
MODEL NO.	F-100	F-10C				
FCC ID	VQK-F10C					
POWER SUPPLY		dc (Li-ion ba dc (Adapter)	• ,			
MODULATION TYPE		VCDMA 850 PCS 1900: (): WCDMA (Bar GMSK	nd 5) / H	ISDPA/	HSUPA
FREQUENCY RANGE	824N	1Hz ~ 849M	Hz ; 1850MHz ~	- 1910N	1Hz	
	СН	FREQ.	WCDMA 850	HSDP	A 850	HSUPA 850
	4132	826.4MHz	23.840dBm	22.51	0dBm	23.350dBm
OUANNEL EDECUENOIS	4182	836.4MHz	23.782dBm	22.40	0dBm	23.150dBm
CHANNEL FREQUENCIES UNDER TEST AND ITS	4233	846.6MHz	23.745dBm	22.31	0dBm	23.130dBm
CONDUCTED OUTPUT POWER	СН	FREQ.	PCS1900		GP	RS 1900 TS1
	512	1850.2MHz	29.188dBr	n	2	29.598dBm
	661	1880.0MHz	29.089dBr	n	2	29.598dBm
	810	1909.8MHz	29.091dBr			29.599dBm
MAX. AVERAGE SAR (1g)	Head	P	CDMA 850 ban CS1900 band:	0.956W	//kg	
INDA AVERAGE SAR (19)	Body: WCDMA 850 band: 0.310W/kg PCS1900 band: 0.177W/kg					
ANTENNA GAIN	WCDMA 850 band: TX: Integral antenna/ Monopole antenna with 1dBi gain (EUT open) Integral antenna/ Monopole antenna with -4dBi gain (EUT close) RX: Integral antenna/ Monopole antenna with 1dBi gain (EUT open) Integral antenna/ Monopole antenna with -2dBi gain (EUT close) PCS1900 band: TX: Integral antenna/ Monopole antenna with 0dBi gain (EUT open) Integral antenna/ Monopole antenna with -2dBi gain (EUT close) RX: Integral antenna/ Monopole antenna with -1dBi gain (EUT open) Integral antenna/ Monopole antenna with -2dBi gain (EUT open) Integral antenna/ Monopole antenna with -2dBi gain (EUT open)					
DATA CABLE	NA					
I/O PORTS	Refer to user's manual					
ACCESSORY DEVICES	Batte	ry				

NOTE:

1. The EUT uses the following Li-ion battery:

	<u> </u>
BRAND	Fujitsu Limited
MODEL	F19
RATING	3.7Vdc, 830mAh

2. The following accessories are for support units only.

PRODUCT	BRAND	DESCRIPTION
Adapter	SIVIK	I/P: 100-240Vac, 50-60Hz, 0.12A O/P: 5.4Vdc, 700mA
USB cable	NA	0.8m non-shielded cable without core

3. Hardware version: V2.0.04. Software version: R08.1

5. IMEI Code: 354690040004467

6. The above EUT information was declared by manufacturer and for more detailed features description, please refer to the manufacturer's specifications or User's Manual.

2.2 GENERAL DESCRIPTION OF APPLIED STANDARDS

According to the specifications of the manufacturer, this product must comply with the requirements of the following standards:

FCC Part 2 (2.1093)

FCC OET Bulletin 65, Supplement C (01-01)

RSS-102 Issue 4 (2010-03)

IEEE 1528-2003

All test items have been performed and recorded as per the above standards.

2.3 GENERAL INOFRMATION OF THE SAR SYSTEM

DASY4 (**Software 4.7 Build 80**) consists of high precision robot, probe alignment sensor, phantom, robot controller, controlled measurement server and near-field probe. The robot includes six axes that can move to the precision position of the DASY4 software defined. The DASY4 software can define the area that is detected by the probe. The robot is connected to controlled box. Controlled measurement server is connected to the controlled robot box. The DAE includes amplifier, signal multiplexing, AD converter, offset measurement and surface detection. It is connected to the Electro-optical coupler (ECO). The ECO performs the conversion form the optical into digital electric signal of the DAE and transfers data to the PC.

EX3DV4 ISOTROPIC E-FIELD PROBE

CONSTRUCTION Symmetrical design with triangular core

Built-in shielding against static charges

PEEK enclosure material (resistant to organic solvents, e.g., DGBE)

FREQUENCY 10 MHz to > 6 GHz

Linearity: ± 0.2 dB (30 MHz to 6 GHz)

DIRECTIVITY ± 0.3 dB in HSL (rotation around probe axis)

± 0.5 dB in tissue material (rotation normal to probe axis)

DYNAMIC RANGE 10 μ W/g to > 100 mW/g

Linearity: \pm 0.2 dB (noise: typically < 1 μ W/g)

DIMENSIONSOverall length: 330 mm (Tip: 20 mm)

Tip diameter: 2.5 mm (Body: 12 mm)

Typical distance from probe tip to dipole centers: 1 mm

APPLICATION High precision dosimetric measurements in any exposure scenario

(e.g., very strong gradient fields). Only probe which enables

compliance testing for frequencies up to 6 GHz with precision of better

30%.

NOTE

- 1. The Probe parameters have been calibrated by the SPEAG. Please reference "APPENDIX D" for the Calibration Certification Report.
- 2. For frequencies above 800MHz, calibration in a rectangular wave-guide is used, because wave-guide size is manageable.
- 3. For frequencies below 800MHz, temperature transfer calibration is used because the wave-guide size becomes relatively large.

TWIN SAM V4.0

CONSTRUCTION The shell corresponds to the specifications of the Specific

Anthropomorphic Mannequin (SAM) phantom defined in IEEE

1528-2003, EN 62209-1 and IEC 62209. It enables the dosimetric evaluation of left and right hand phone usage as well as body mounted usage at the flat phantom region. A cover prevents evaporation of the liquid. Reference markings on the phantom allow the complete setup of all predefined phantom positions and measurement grids by manually

teaching three points with the robot.

SHELL THICKNESS 2 ± 0.2mm

FILLING VOLUME Approx. 25liters

DIMENSIONS Height: 810mm; Length: 1000mm; Width: 500mm

SYSTEM VALIDATION KITS:

CONSTRUCTION Symmetrical dipole with I/4 balun enables measurement of

feedpoint impedance with NWA matched for use near flat

phantoms filled with brain simulating solutions. Includes distance holder and tripod adaptor

CALIBRATION Calibrated SAR value for specified position and input power at

the flat phantom in brain simulating solutions

FREQUENCY 835, 1900MHz

RETURN LOSS > 20dB at specified validation position

POWER CAPABILITY > 100W (f < 1GHz); > 40W (f > 1GHz)

OPTIONS Dipoles for other frequencies or solutions and other calibration

conditions upon request

DEVICE HOLDER FOR SAM TWIN PHANTOM

CONSTRUCTION

The device holder for the mobile phone device is designed to cope with different positions given in the standard. It has two scales for the device rotation (with respect to the body axis) and the device inclination (with respect to the line between the ear reference points). The rotation centers for both scales is the ear reference point (ERP). Thus the device needs no repositioning when changing the angles. The holder has been made out of low-loss POM material having the following dielectric parameters: relative permittivity = 3 and loss tangent =0.02. The amount of dielectric material has been reduced in the closest vicinity of the device, since measurements have suggested that the influence of the clamp on the test results could thus be lowered. The device holder for the portable device makes up of the polyethylene foam. The dielectric parameters of material close to the dielectric parameters of the air.

DATA ACQUISITION ELECTRONICS

CONSTRUCTION

The data acquisition electronics (DAE3) consists of a highly sensitive electrometer grade preamplifier with auto-zeroing, a channel and gain-switching multiplex, a fast 16 bit AD converter and a command decoder and control logic unit. Transmission to the measurement server is accomplished through an optical downlink for data and status information as well as an optical uplink for commands and the clock. The mechanical probe is mounting device includes two different sensor systems for frontal and sideways probe contacts. They are used for mechanical surface detection and probe collision detection. The input impedance of the DAE3 box is 200MOhm; the inputs are symmetrical and floating. Common mode rejection is above 80 dB.

2.4 TEST EQUIPMENT

FOR SAR MEASURENENT

ITEM	NAME	BRAND	TYPE	SERIES NO.	DATE OF CALIBRATION	DUE DATE OF CALIBRATION
1	SAM Phantom	S&P	QD000 P40 CA	TP-1202	NA	NA
2	Signal Generator	Agilent	E8257C	MY43320668	Feb. 23, 2010	Feb. 22, 2011
3	E-Field Probe	S&P	EX3DV4	3573	Dec. 13, 2010	Dec. 12, 2011
4	DAE	S&P	DAE 3	579	Sep. 20, 2010	Sep. 19, 2011
5	Robot Positioner	Staubli Unimation	NA	NA	NA	NA
6	Validation Dipole	S&P	D835V2	4d021	Apr. 29, 2010	Apr. 28, 2011
7	Validation Dipole	S&P	D1900V2	5d036	Feb. 23, 2010	Feb. 22, 2011

NOTE: Before starting, all test equipment shall be warmed up for 30min.

FOR TISSUE PROPERTY

ITEM	NAME	BRAND	TYPE	SERIES NO.		DUE DATE OF CALIBRATION
1	Network Analyzer	Agilent	E5071C	MY46104190	Apr. 06, 2010	Apr. 05, 2011
2	Dielectric Probe	Agilent	85070D	US01440176	NA	NA

NOTE:

- 1. Before starting, all test equipment shall be warmed up for 30min.
- 2. The tolerance (k=1) specified by Agilent for general dielectric measurements, deriving from inaccuracies in the calibration data, analyzer drift, and random errors, are usually ±2.5% and ±5% for measured permittivity and conductivity, respectively. However, the tolerances for the conductivity is smaller for material with large loss tangents, i.e., less than ±2.5% (k=1). It can be substantially smaller if more accurate methods are applied

2.5 GENERAL DESCRIPTION OF THE SPATIAL PEAK SAR EVALUATION

The DASY4 post-processing software (SEMCAD) automatically executes the following procedures to calculate the field units from the micro-volt readings at the probe connector. The parameters used in the evaluation are stored in the configuration modules of the software:

Probe parameters: - Sensitivity Norm_i, a_{i0}, a_{i1}, a_{i2}

- Conversion factor ConvF_i

- Diode compression point dcpi

Device parameters: - Frequency F

- Crest factor Cf

Media parameters: - Conductivity

- Density

The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal, the diode type and the DC-transmission factor from the diode to the evaluation electronics. If the exciting field is pulsed, the crest factor of the signal must be known to correctly compensate for peak power. The formula for each channel can be given as:

$$V_i = U_i + U_i^2 \bullet \frac{cf}{dcp_i}$$

 V_i = compensated signal of channel i (i = x, y, z) U_i = input signal of channel I (i = x, y, z)

Cf =crest factor of exciting field (DASY parameter) dcp_i =diode compression point (DASY parameter)

From the compensated input signals the primary field data for each channel can be evaluated:

E-fieldprobes:
$$E_i = \sqrt{\frac{V_1}{Norm_i \cdot ConvF}}$$

H-fieldprobes:
$$H_i = \sqrt{V_i} \cdot \frac{a_{i0} + a_{i1}f + a_{i2}f^2}{f}$$

 V_i =compensated signal of channel I (i = x, y, z)

Norm_i =sensor sensitivity of channel i $\mu V/(V/m)2$ for (i = x, y, z)

E-field Probes

ConvF = sensitivity enhancement in solution

a_{ii} = sensor sensitivity factors for H-field probes

F = carrier frequency [GHz]

E_i = electric field strength of channel i in V/m H_i = magnetic field strength of channel i in A/m

The RSS value of the field components gives the total field strength (Hermitian magnitude):

$$E_{tot} = \sqrt{E_x^2 + E_y^2 + E_z^2}$$

The primary field data are used to calculate the derived field units.

$$SAR = E_{tot}^2 \cdot \frac{\sigma}{\rho \cdot 1'000}$$

SAR = local specific absorption rate in mW/g

 E_{tot} = total field strength in V/m

= conductivity in [mho/m] or [Siemens/m]

= equivalent tissue density in g/cm3

Note that the density is set to 1, to account for actual head tissue density rather than the density of the tissue simulating liquid. The entire evaluation of the spatial peak values is performed within the Post-processing engine (SEMCAD). The system always gives the maximum values for the 1g and 10g cubes. The algorithm to find the cube with highest averaged SAR is divided into the following stages:

- 1. The extraction of the measured data (grid and values) from the Zoom Scan
- 2. The calculation of the SAR value at every measurement point based on all stored data (A/D values and measurement parameters)
- 3. The generation of a high-resolution mesh within the measured volume
- 4. The interpolation of all measured values from the measurement grid to the high-resolution grid
- 5. The extrapolation of the entire 3-D field distribution to the phantom surface over the distance from sensor to surface
- 6. The calculation of the averaged SAR within masses of 1g and 10g.

The probe is calibrated at the center of the dipole sensors that is located 1 to 2.7mm away from the probe tip. During measurements, the probe stops shortly above the phantom surface, depending on the probe and the surface detecting system. Both distances are included as parameters in the probe configuration file. The software always knows exactly how far away the measured point is from the surface. As the probe cannot directly measure at the surface, the values between the deepest measured point and the surface must be extrapolated. The angle between the probe axis and the surface normal line is less than 30 degree.

The maximum search is automatically performed after each area scan measurement. It is based on splines in two or three dimensions. The procedure can find the maximum for most SAR distributions even with relatively large grid spacing. After the area scanning measurement, the probe is automatically moved to a position at the interpolated maximum. The following scan can directly use this position for reference, e.g., for a finer resolution grid or the cube evaluations. The 1g and 10g peak evaluations are only available for the predefined cube 7 x 7 x 7 scans. The routines are verified and optimized for the grid dimensions used in these cube measurements. The measured volume of 30 x 30 x 30mm contains about 30g of tissue. The first procedure is an extrapolation (incl. boundary correction) to get the points between the lowest measured plane and the surface. The next step uses 3D interpolation to get all points within the measured volume in a 1mm grid (42875 points). In the last step, a 1g cube is placed numerically into the volume and its averaged SAR is calculated. This cube is the moved around until the highest averaged SAR is found. If the highest SAR is found at the edge of the measured volume, the system will issue a warning: higher SAR values might be found outside of the measured volume. In that case the cube measurement can be repeated, using the new interpolated maximum as the center.

2.6 DESCRIPTION OF SUPPORT UNITS

NO.	PRODUCT	BRAND	MODEL NO.	SERIAL NO.
1	Universal Radio Communication Tester	R&S	CMU200	117260

NO.	SIGNAL CABLE DESCRIPTION OF THE ABOVE SUPPORT UNITS
1	NA

NOTE: All power cords of the above support units are non shielded (1.8m).

3. DESCRIPTION OF ANTENNA LOCATION

4. RECIPES FOR TISSUE SIMULATING LIQUIDS

For the measurement of the field distribution inside the SAM phantom, the phantom must be filled with 25 litters of tissue simulation liquid.

The following are some common ingredients:

• WATER- Deionized water (pure H20), resistivity _16 M - as basis for the liquid

• SUGAR- Refined sugar in crystals, as available in food shops - to reduce relative

permittivity

• SALT- Pure NaCl - to increase conductivity

• **CELLULOSE-** Hydroxyethyl-cellulose, medium viscosity (75-125mPa.s, 2% in water,

20_C),

CAS # 54290 - to increase viscosity and to keep sugar in solution

• PRESERVATIVE- Preventol D-7 Bayer AG, D-51368 Leverkusen, CAS # 55965-84-9 - to

prevent the spread of bacteria and molds

• **DGMBE-** Diethylenglycol-monobuthyl ether (DGMBE), Fluka Chemie GmbH,

CAS # 112-34-5 - to reduce relative permittivity

THE RECIPES FOR 835MHz SIMULATING LIQUID TABLE

INGREDIENT	HEAD SIMULATING LIQUID 835MHz (HSL-835)	MUSCLE SIMULATING LIQUID 835MHz (MSL-835)
Water	40.28%	50.07%
Cellulose	02.41%	NA
Salt	01.38%	0.94%
Preventtol D-7	00.18%	0.09%
Sugar	57.97%	48.2%
Dialactria Danamatana	f = 835MHz	f= 835MHz
Dielectric Parameters at 22	ε= 41.5 ± 5%	ε= 55.0 ± 5%
	σ = 0.97 ± 5% S/m	σ = 1.05 ± 5% S/m

THE RECIPES FOR 1900MHz SIMULATING LIQUID TABLE

INGREDIENT	HEAD SIMULATING LIQUID 1900MHz (HSL-1900)	MUSCLE SIMULATING LIQUID 1900MHz (MSL-1900)
Water	55.24%	70.16%
DGMBE	44.45%	29.44%
Salt	0.306%	00.39%
Dielectric Parameters at 22	f= 1900MHz ε= 40.0 ± 5% σ= 1.40 ± 5% S/m	f= 1900MHz ε= 53.3 ± 5% σ = 1.52 ± 5% S/m

Testing the liquids using the Agilent Network Analyzer E8358A and Agilent Dielectric Probe Kit 85070D. The testing procedure is following as

- 1. Turn Network Analyzer on and allow at least 30min. warm up.
- 2. Mount dielectric probe kit so that interconnecting cable to Network Analyzer will not be moved during measurements or calibration.
- 3. Pour de-ionized water and measure water temperature (±1°).
- 4. Set water temperature in Agilent-Software (Calibration Setup).
- 5. Perform calibration.
- 6. Validate calibration with dielectric material of known properties (e.g. polished ceramic slab with >8mm thickness ϵ '=10.0, ϵ "=0.0). If measured parameters do not fit within tolerance, repeat calibration (±0.2 for ϵ ': ±0.1 for ϵ ").
- 7. Conductivity can be calculated from ε " by $\sigma = \omega \varepsilon_0 \varepsilon$ " = ε " f [GHz] / 18.
- 8. Measure liquid shortly after calibration. Repeat calibration every hour.
- 9. Stir the liquid to be measured. Take a sample (~ 50ml) with a syringe from the center of the liquid container.
- 10. Pour the liquid into a small glass flask. Hold the syringe at the bottom of the flask to avoid air bubbles.
- 11. Put the dielectric probe in the glass flask. Check that there are no air bubbles in front of the opening in the dielectric probe kit.
- 12. Perform measurements.
- 13. Adjust medium parameters in DASY4 for the frequencies necessary for the measurements ('Setup Config', select medium (e.g. Brain 900MHz) and press 'Option'-button.
- 14. Select the current medium for the frequency of the validation (e.g. Setup Medium Brain 900MHz).

FOR SIMULATING LIQUID

LIQUID T	YPE	HSL-835					
SIMULATING LIQUID TEMP.		TEMP. 21.2					
TEST DAT	ΓE	E Feb. 09, 2011					
TESTED E	ЗҮ		Morrison H	luang			
FREQ. (MHz)	LIQUID PARAMETER	STANDARD VALUE	PERCENTAGE I I IMIT/ 0				
826.4		41.54	42.26	1.73			
835.0	Permitivity	41.50	42.17	1.61			
836.4	()	41.50	42.06	1.35			
846.6		41.50	41.94	1.06	±5		
826.4		0.90	0.91	1.11	13		
835.0	Conductivity	0.90	0.92	2.22			
836.4	() S/m	0.90	0.93	3.33			
846.6		0.91	0.94	3.30			

LIQUID T	YPE	MSL-835				
SIMULATING LIQUID TEMP.			21.5			
TEST DAT	ΓE		Feb. 09,	2011		
TESTED E	ЗҮ		Morrison H	Huang		
FREQ. (MHz)	LIQUID PARAMETER	STANDARD MEASUREMENT VALUE		ERROR PERCENTAGE (%)	LIMIT(%)	
835.0	Permitivity	55.20	55.62	0.76		
836.4	()	55.20	55.57	0.67	±5	
835.0	Conductivity	0.97	0.98	1.03	10	
836.4	() S/m	0.97	0.98	1.03		

LIQUID T	YPE	HSL-1900						
SIMULATING LIQUID TEMP.			21.3					
TEST DATE			Feb. 10,	2011				
TESTED E	ВҮ		Morrison H	Huang				
FREQ. (MHz)	LIQUID PARAMETER	STANDARD VALUE						
1850.2		40.00	40.53	1.33				
1880.0	Permitivity	40.00	40.46	1.15				
1900.0	()	40.00	40.00 40.41 1.02					
1909.8		40.00	40.37	0.92	±5			
1850.2		1.40	1.37	-2.14	10			
1880.0	Conductivity	1.40	1.40	0.00				
1900.0	() S/m	1.40	1.41	0.71				
1909.8		1.40	1.43	2.14				

LIQUID T	YPE	MSL-1900					
SIMULATING LIQUID TEMP.			21.2				
TEST DATE			Feb. 10, 2011				
TESTED E	зү		Morrison H	luang			
FREQ. (MHz)	LIQUID PARAMETER	STANDARD MEASUREMENT VALUE		ERROR PERCENTAGE (%)	LIMIT(%)		
1880.0	Permitivity	53.30	54.62	2.48			
1900.0	()	53.30 54.53		2.31	±5		
1880.0	Conductivity	1.52 1.54 1.32			13		
1900.0	() S/m	1.52	1.57	3.29			

5. SYSTEM VALIDATION

The system validation was performed in the flat phantom with equipment listed in the following table. Since the SAR value is calculated from the measured electric field, dielectric constant and conductivity of the body tissue and the SAR is proportional to the square of the electric field. So, the SAR value will be also proportional to the RF power input to the system validation dipole under the same test environment. In our system validation test, 250mW RF input power was used.

5.1 TEST PROCEDURE

Before the system performance check, we need only to tell the system which components (probe, medium, and device) are used for the system performance check; the system will take care of all parameters. The dipole must be placed beneath the flat section of the SAM Twin Phantom with the correct distance holder in place. The distance holder should touch the phantom surface with a light pressure at the reference marking (little cross) and be oriented parallel to the long side of the phantom. Accurate positioning is not necessary, since the system will search for the peak SAR location, except that the dipole arms should be parallel to the surface. The device holder for mobile phones can be left in place but should be rotated away from the dipole.

- 1. The "Power Reference Measurement" and "Power Drift Measurement" jobs are located at the beginning and end of the batch process. They measure the field drift at one single point in the liquid over the complete procedure. The indicated drift is mainly the variation of the amplifier output power. If it is too high (above ±0.1 dB), the system performance check should be repeated; some amplifiers have very high drift during warm-up. A stable amplifier gives drift results in the DASY system below ±0.02dB.
- 2. The "Surface Check" job tests the optical surface detection system of the DASY system by repeatedly detecting the surface with the optical and mechanical surface detector and comparing the results. The output gives the detecting heights of both systems, the difference between the two systems and the standard deviation of the detection repeatability. Air bubbles or refraction in the liquid due to separation of the sugar-water mixture gives poor repeatability (above ±0.1mm). In that case it is better to abort the system performance check and stir the liquid.

- 3. The "Area Scan" job measures the SAR above the dipole on a plane parallel to the surface. It is used to locate the approximate location of the peak SAR. The proposed scan uses large grid spacing for faster measurement; due to the symmetric field, the peak detection is reliable. If a finer graphic is desired, the grid spacing can be reduced. Grid spacing and orientation have no influence on the SAR result.
- 4. The "Zoom Scan" job measures the field in a volume around the peak SAR value assessed in the previous "Area Scan" job (for more information see the application note on SAR evaluation).

About the validation dipole positioning uncertainty, the constant and low loss dielectric spacer is used to establish the correct distance between the top surface of the dipole and the bottom surface of the phantom, the error component introduced by the uncertainty of the distance between the liquid (i.e., phantom shell) and the validation dipole in the DASY4 system is less than ±0.1mm.

$$SAR_{tolerance}[\%] = 100 \times (\frac{(a+d)^2}{a^2} - 1)$$

As the closest distance is 10mm, the resulting tolerance SAR_{tolerance}[%] is <2%.

5.2 VALIDATION RESULTS

	SYSTEM VALIDATION TEST OF SIMULATING LIQUID							
FREQUENCY (MHz)	REQUIRED SAR (mW/g)	MEASURED SAR (mW/g)	DEVIATION (%)	SEPARATION DISTANCE	TESTED DATE			
HSL 850	2.37 (1g)	2.24	-5.49	15mm	Feb. 09, 2011			
MSL 850	2.52 (1g)	2.37	-5.95	15mm	Feb. 09, 2011			
HSL 1900	10.00 (1g)	9.38	-6.20	10mm	Feb. 10, 2011			
MSL 1900	10.30 (1g)	10.00	-2.91	10mm	Feb. 10, 2011			
TESTED BY	Morrison Huang.							

NOTE: Please see Appendix for the photo of system validation test.

5.3 SYSTEM VALIDATION UNCERTAINTIES

In the table below, the system validation uncertainty with respect to the analytically assessed SAR value of a dipole source as given in the IEEE 1528 standard is given. This uncertainty is smaller than the expected uncertainty for mobile phone measurements due to the simplified setup and the symmetric field distribution.

Error Description	Tolerance (±%)	Probability Distribution	Divisor	(0	Ci)	Unce	dard rtainty %)	(v _i)
				(1g)	(10g)	(1g)	(10g)	
Measurement System								
Probe Calibration	5.50	Normal	1	1	1	5.50	5.50	
Axial Isotropy	0.25	Rectangular	3	0.7	0.7	0.10	0.10	
Hemispherical Isotropy	1.30	Rectangular	3	0.7	0.7	0.53	0.53	
Boundary effects	1.00	Rectangular	3	1	1	0.58	0.58	
Linearity	0.30	Rectangular	3	1	1	0.17	0.17	
System Detection Limits	1.00	Rectangular	3	1	1	0.58	0.58	
Readout Electronics	0.30	Normal	1	1	1	0.30	0.30	
Response Time	0.80	Rectangular	3	1	1	0.46	0.46	
Integration Time	2.60	Rectangular	3	1	1	1.50	1.50	
RF Ambient Noise	3.00	Rectangular	3	1	1	1.73	1.73	9
RF Ambient Reflections	3.00	Rectangular	3	1	1	1.73	1.73	9
Probe Positioner	0.40	Rectangular	3	1	1	0.23	0.23	
Probe Positioning	2.90	Rectangular	3	1	1	1.67	1.67	
Max. SAR Eval.	1.00	Rectangular	3	1	1	0.58	0.58	
		Test sample	related					
Sample positioning	1.90	Normal	1	1	1	1.90	1.90	4
Device holder uncertainty	2.80	Normal	1	1	1	2.80	2.80	4
Output power variation-SAR drift measrurement	2.03	Rectangular	3	1	1	1.17	1.17	1
		Dipole Re	lated					
Dipole Axis to Liquid Distance	1.60	Rectangular	3	1	1	0.92	0.92	4
Input Power Drift	1.88	Rectangular	3	1	1	1.09	1.09	1
		Phantom and Tiss	ue paramet	ters				
Phantom Uncertainty	4.00	Rectangular	3	1	1	2.31	2.31	
Liquid Conductivity (target)	5.00	Rectangular	3	0.64	0.43	1.85	1.24	
Liquid Conductivity (measurement)	3.33	Normal	1	0.64	0.43	2.13	1.43	9
Liquid Permittivity (target)	5.00	Rectangular	3	0.6	0.49	1.73	1.41	
Liquid Permittivity (measurement)	2.48	Normal	1	0.6	0.49	1.49	1.22	9
	Combined Standard Uncertainty							
Coverage Factor for 95%							Kp=2	
Expanded Uncertainty (K=2)						17.47	16.76	

NOTE: About the system validation uncertainty assessment, please reference the section 7.

6. TEST RESULTS

6.1 TEST PROCEDURES

The EUT makes a phone call to the communication simulator station. Establish the simulation communication configuration rather the actual communication. Then the EUT could continuous the transmission mode. Adjust the PCL of the base station could controlled the EUT to transmitted the maximum output power. The base station also could control the transmission channel. The SAR value was calculated via the 3D spline interpolation algorithm that has been implemented in the software of DASY4 SAR measurement system manufactured and calibrated by SPEAG. According to the IEEE 1528 / EN 62209-1, the recommended procedure for assessing the peak spatial-average SAR value consists of the following steps:

- Power reference measurement
- Verification of the power reference measurement
- Area scan
- Zoom scan
- Power reference measurement

The area scan was performed for the highest spatial SAR location. The zoom scan with 30mm x 30mm x 30mm volume was performed for SAR value averaged over 1g and 10g spatial volumes.

In the zoom scan, the distance between the measurement point at the probe sensor location (geometric center behind the probe tip) and the phantom surface is 3mm and maintained at a constant distance of ± 0.5 mm during a zoom scan to determine peak SAR locations. The distance is 2mm between the first measurement point and the bottom surface of the phantom. The secondary measurement point to the bottom surface of the phantom is with 7mm separation distance.

The measurement time is 0.5s at each point of the zoom scan. The probe boundary effect compensation shall be applied during the SAR test. Because of the tip of the probe to the Phantom surface separated distances are longer than half a tip probe diameter.

In the area scan, the separation distance is 2mm between the each measurement point and the phantom surface. The scan size shall be included the transmission portion of the EUT. The measurement time is the same as the zoom scan. At last the reference power drift shall be less than ±5%.

6.2 DESCRIPTION OF TEST CONDITION

TEST DATE	TISSUE TYPE / FREQ.	TEMPERATURE (°C)		HUMIDITY (%RH)	TESTED BY	
ILOI DAIL		EQ. AIMBENT LIC		HOWIDTT (78KH)	ILGILDBI	
Feb. 09, 2011	HSL835	22.1	21.2	56	Morrison Huang	
Feb. 09, 2011	MSL835	22.6	21.5	57	Morrison Huang	
Feb. 10, 2011	HSL1900	22.2	21.3	58	Morrison Huang	
Feb. 10, 2011	MSL1900	22.3	21.2	58	Morrison Huang	

6.3 MEASURED SAR RESULT

SAR (1g)						
HEAD	RIG	ЭНТ	LE	FT		
CHANNEL	CHEEK TILT (Body)		CHEEK (Body)	TILT		
	WCD	MA 850				
CH 4132: 826.4MHz	0.964	-	0.742	-		
CH 4182: 836.4MHz	0.980	0.215	0.795	0.249		
CH 4233: 846.6MHz	0.922	1	0.711	-		
	PC	S 1900				
CH 512: 1850.2MHz	0.822	-	0.794	-		
CH 661: 1880.0MHz	0.888	0.262	0.835	0.332		
CH 810: 1909.8MHz	0.956	-	0.917	-		

SAR (1g)							
Distance between	n EUT and phantom	n is 15mm					
CHANNEL	CHANNEL BODY/BOTTOM BODY/FRONT						
WCDMA 850							
CH 4182: 836.4MHz	CH 4182: 836.4MHz 0.310 0.139						
GPRS 1900 TS1							
CH 661: 1880.0MHz 0.177 0.132							
PCS 1900							
CH 661: 1880.0MHz 0.151 0.112							

NOTE:

- 1. In this testing, the limit for General Population Spatial Peak averaged over 1g, 1.6 W/kg, is applied.
- 2. Please see the Appendix A for the data.
- 3. The variation of the EUT conducted power measured before and after SAR testing should not over 5%.
- 4. Body SAR for HSDPA & HSUPA mode is not required since the maximum average output of each RF channel with HSDPA & HSUPA active is less than 1/4 dB higher than that measured without HSDPA using 12.2kbps RMC and maximum SAR for 12.2kbps RMC is less than 75% of the SAR limit.
- SAR test of head cheek position is measured at body position instead of head cheek. Since the cube can not be scanned completely at Right head cheek.
- 6. Per DA-02-1438A1, when 1-g SAR for the middle channel is less than 0.8 W/kg, testing for the other channels is not required

6.4 SAR LIMITS

	SAR (W/kg)			
HUMAN EXPOSURE	(GENERAL POPULATION / UNCONTROLLED EXPOSURE ENVIRONMENT)	(OCCUPATIONAL / CONTROLLED EXPOSURE ENVIRONMENT)		
Spatial Peak (averaged over 1 g)	1.6	8.0		

NOTE: This limits accord to 47 CFR 2.1093 – Safety Limit.

7. INFORMATION ON THE TESTING LABORATORIES

We, Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, were founded in 1988 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are accredited and approved according to ISO/IEC 17025.

Copies of accreditation certificates of our laboratories obtained from approval agencies can be downloaded from our web site: www.adt.com.tw/index.5.phtml. If you have any comments, please feel free to contact us at the following:

Linko EMC/RF Lab:Hsin Chu EMC/RF Lab:Tel: 886-2-26052180Tel: 886-3-5935343Fax: 886-2-26051924Fax: 886-3-5935342

Hwa Ya EMC/RF/Safety/Telecom Lab:

Tel: 886-3-3183232 Fax: 886-3-3185050

Web Site: www.adt.com.tw

The address and road map of all our labs can be found in our web site also.

---END---

Product Name: Mobile Phone; Model Number: F-10C

Liquid Level Photo

Tissue 835MHz D=150mm

Tissue 1900MHz D=150mm

Date/Time: 2011/2/9 05:30:47

Right Head-Cheek-WCDM A850-Ch4182

Communication System: WCDMA850; Frequency: 836.4 MHz; Duty Cycle: 1:1

Medium: HSL835 Medium parameters used : f = 836.4 MHz; σ = 0.93 mho/m; ϵ_r = 42.06; ρ = 1000

kg/m³

Phantom section: Right Section; DUT test position: Cheek; Modulation type: BPSK

DASY4 Configuration:

- Probe: EX3DV4 SN3753; ConvF(9.06, 9.06, 9.06); Calibrated: 2010/12/13
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn579; Calibrated: 2010/9/20
- Phantom: SAM Twin Phantom V4.0; Type: QD 000 P40 CA; Serial: TP 1202
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Touch position - Middle/Area Scan (7x17x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.707 mW/g

Touch position - Middle/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 4.11 V/m; Power Drift = 0.173 dB

Peak SAR (extrapolated) = 0.964 W/kg

SAR(1 g) = 0.639 mW/g; SAR(10 g) = n.a.

Maximum value of SAR (measured) = 0.820 mW/g

Date/Time: 2011/2/9 06:47:55

M01-Right Head-Cheek-WCDM A850-Ch4132 (Head In Body)

Communication System: WCDMA850; Frequency: 826.4 MHz; Duty Cycle: 1:1

Medium: HSL835 Medium parameters used : f = 826.4 MHz; $\sigma = 0.91$ mho/m; $\epsilon r = 42.26$; $\rho = 1000$

kg/m³

Phantom section: Flat Section; DUT test position: Body; Modulation Type: BPSK

Separation Distance: 5 mm (The front side of the EUT to the Phantom)

DASY4 Configuration:

- Probe: EX3DV4 SN3753; ConvF(9.06, 9.06, 9.06); Calibrated: 2010/12/13
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn579; Calibrated: 2010/9/20
- Phantom: SAM Twin Phantom V4.0; Type: QD 000 P40 CA; Serial: TP 1202
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Touch position - Low/Area Scan (17x7x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 1.19 mW/g

Touch position - Low/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 21.2 V/m; Power Drift = 0.121 dB

Peak SAR = 1.42 W/kg

SAR(1 g) = 0.964 mW/g; SAR(10 g) = 0.636 mW/g

Date/Time: 2011/2/9 07:01:50

M01-Right Head-Cheek-WCDM A850-Ch4182 (Head In Body)

Communication System: WCDMA850; Frequency: 836.4 MHz; Duty Cycle: 1:1

Medium: HSL835 Medium parameters used: f = 836.4 MHz; $\sigma = 0.93$ mho/m; $\epsilon r = 42.06$; $\rho = 1000$

kg/m³

Phantom section: Flat Section; DUT test position: Body; Modulation Type: BPSK

Separation Distance: 5 mm (The front side of the EUT to the Phantom)

DASY4 Configuration:

- Probe: EX3DV4 SN3753; ConvF(9.06, 9.06, 9.06); Calibrated: 2010/12/13
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn579; Calibrated: 2010/9/20
- Phantom: SAM Twin Phantom V4.0; Type: QD 000 P40 CA; Serial: TP 1202
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Touch position - Middle/Area Scan (17x7x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 1.20 mW/g

Touch position - Middle/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 21.4 V/m; Power Drift = 0.071 dB

Peak SAR = 1.46 W/kg

SAR(1 g) = 0.980 mW/g; SAR(10 g) = 0.643 mW/g

Maximum value of SAR (measured) = 1.22 mW/g

香港商立德國際商品試驗有限公司桃園分公司

Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch

Date/Time: 2011/2/9 07:15:21

M01-Right Head-Cheek-WCDM A850-Ch4233 (Head In Body)

Communication System: WCDMA850; Frequency: 846.6 MHz; Duty Cycle: 1:1

Medium: HSL835 Medium parameters used : f = 846.6 MHz; $\sigma = 0.94$ mho/m; $\epsilon r = 41.94$; $\rho = 1000$

kg/m³

Phantom section: Flat Section; DUT test position: Body; Modulation Type: BPSK

Separation Distance: 5 mm (The front side of the EUT to the Phantom)

DASY4 Configuration:

- Probe: EX3DV4 SN3753; ConvF(9.06, 9.06, 9.06); Calibrated: 2010/12/13
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn579; Calibrated: 2010/9/20
- Phantom: SAM Twin Phantom V4.0; Type: QD 000 P40 CA; Serial: TP 1202
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Touch position - High/Area Scan (17x7x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 1.11 mW/g

Touch position - High/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 20.7 V/m; Power Drift = 0.123 dB

Peak SAR = 1.38 W/kg

SAR(1 g) = 0.922 mW/g; SAR(10 g) = 0.601 mW/g

Maximum value of SAR (measured) = 1.15 mW/g

Date/Time: 2011/2/9 08:55:53

M02-Right Head-Tilt-WCDM A850-Ch4182

Communication System: WCDMA850; Frequency: 836.4 MHz; Duty Cycle: 1:1

Medium: HSL835 Medium parameters used : f = 836.4 MHz; $\sigma = 0.93$ mho/m; $\epsilon r = 42.06$; $\rho = 1000$

kg/m³

Phantom section: Right Section; DUT test position: Tilt; Modulation type: BPSK

DASY4 Configuration:

- Probe: EX3DV4 SN3753; ConvF(9.06, 9.06, 9.06); Calibrated: 2010/12/13
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn579; Calibrated: 2010/9/20
- Phantom: SAM Twin Phantom V4.0; Type: QD 000 P40 CA; Serial: TP 1202
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Tilt position - Middle/Area Scan (7x17x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.240 mW/g

Tilt position - Middle/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 9.04 V/m; Power Drift = 0.074 dB

Peak SAR = 0.275 W/kg

SAR(1 g) = $\frac{0.215}{mW/g}$; SAR(10 g) = 0.162 mW/g Maximum value of SAR (measured) = 0.247 mW/g

Date/Time: 2011/2/9 11:29:55

M03-Left Head-Cheek-WCDM A850-Ch4132

Communication System: WCDMA850; Frequency: 826.4 MHz; Duty Cycle: 1:1

Medium: HSL835 Medium parameters used: f = 826.4 MHz; σ = 0.91 mho/m; ϵ_r = 42.26; ρ = 1000

kg/m³

Phantom section: Left Section: DUT test position: Cheek: Modulation type: BPSK

DASY4 Configuration:

- Probe: EX3DV4 SN3753; ConvF(9.06, 9.06, 9.06); Calibrated: 2010/12/13
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn579; Calibrated: 2010/9/20
- Phantom: SAM Twin Phantom V4.0; Type: QD 000 P40 CA; Serial: TP 1202
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Touch position - Low/Area Scan (7x17x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.876 mW/g

Touch position - Low/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 6.66 V/m; Power Drift = 0.043 dB

Peak SAR = 1.14 W/kg

SAR(1 g) = 0.742 mW/g; SAR(10 g) = 0.471 mW/g

Maximum value of SAR (measured) = 0.959 mW/g

Date/Time: 2011/2/9 10:34:23

M03-Left Head-Cheek-WCDM A850-Ch4182

Communication System: WCDMA850; Frequency: 836.4 MHz; Duty Cycle: 1:1

Medium: HSL835 Medium parameters used: f = 836.4 MHz; $\sigma = 0.93$ mho/m; $\epsilon r = 42.06$; $\rho = 1000$

kg/m³

Phantom section: Left Section; DUT test position: Cheek; Modulation type: BPSK

DASY4 Configuration:

- Probe: EX3DV4 SN3753; ConvF(9.06, 9.06, 9.06); Calibrated: 2010/12/13
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn579; Calibrated: 2010/9/20
- Phantom: SAM Twin Phantom V4.0; Type: QD 000 P40 CA; Serial: TP 1202
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Touch position - Middle/Area Scan (7x17x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.927 mW/g

Touch position - Middle/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 7.58 V/m; Power Drift = -0.114 dB

Peak SAR = 1.26 W/kg

SAR(1 g) = 0.795 mW/g; SAR(10 g) = 0.498 mW/g

Maximum value of SAR (measured) = 1.02 mW/g

Date/Time: 2011/2/9 11:46:14

M03-Left Head-Cheek-WCDM A850-Ch4233

Communication System: WCDMA850; Frequency: 846.6 MHz; Duty Cycle: 1:1

Medium: HSL835 Medium parameters used : f = 846.6 MHz; σ = 0.94 mho/m; ϵ_r = 41.94; ρ = 1000

kg/m³

Phantom section: Left Section; DUT test position: Cheek; Modulation type: BPSK

DASY4 Configuration:

- Probe: EX3DV4 SN3753; ConvF(9.06, 9.06, 9.06); Calibrated: 2010/12/13
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn579; Calibrated: 2010/9/20
- Phantom: SAM Twin Phantom V4.0; Type: QD 000 P40 CA; Serial: TP 1202
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Touch position - High/Area Scan (7x17x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.863 mW/g

Touch position - High/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

az=5mm

Reference Value = 6.35 V/m; Power Drift = 0.030 dB

Peak SAR = 1.10 W/kg

SAR(1 g) = 0.711 mW/g; SAR(10 g) = 0.448 mW/g

Maximum value of SAR (measured) = $0.923 \,\text{mW/g}$

Date/Time: 2011/2/9 12:02:03

M04-Left Head-Tilt-WCDM A850-Ch4182

Communication System: WCDMA850; Frequency: 836.4 MHz; Duty Cycle: 1:1

Medium: HSL835 Medium parameters used : f = 836.4 MHz; $\sigma = 0.93$ mho/m; $\epsilon r = 42.06$; $\rho = 1000$

kg/m³

Phantom section: Left Section; DUT test position: Tilt; Modulation type: BPSK

DASY4 Configuration:

- Probe: EX3DV4 SN3753; ConvF(9.06, 9.06, 9.06); Calibrated: 2010/12/13
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn579; Calibrated: 2010/9/20
- Phantom: SAM Twin Phantom V4.0; Type: QD 000 P40 CA; Serial: TP 1202
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Tilt position - Middle/Area Scan (7x17x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.268 mW/g

Tilt position - Middle/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 10.1 V/m; Power Drift = 0.046 dB

Peak SAR = 0.316 W/kg

SAR(1 g) = 0.249 mW/g; SAR(10 g) = 0.187 mW/g

Maximum value of SAR (measured) = 0.287 mW/g

Date/Time: 2011/2/9 14:19:19

M05-WCDM A850-Ch4182

Communication System: WCDMA850; Frequency: 836.4 MHz; Duty Cycle: 1:1

Medium: MSL835 Medium parameters used: f = 836.4 MHz; σ = 0.98 mho/m; ϵ_r = 55.57; ρ = 1000

kg/m³

Phantom section: Flat Section; DUT test position: Body; Modulation Type: BPSK

Separation Distance: 15 mm (The bottom side of the EUT to the Phantom)

DASY4 Configuration:

- Probe: EX3DV4 SN3753; ConvF(9.07, 9.07, 9.07); Calibrated: 2010/12/13
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn579; Calibrated: 2010/9/20
- Phantom: SAM Twin Phantom V4.0; Type: QD 000 P40 CA; Serial: TP 1202
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Body Position - Mid Ch4182/Area Scan (7x10x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.354 mW/g

Body Position - Mid Ch4182/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 18.3 V/m; Power Drift = 0.097 dB

Peak SAR = 0.441 W/kg

SAR(1 g) = 0.310 mW/g; SAR(10 g) = 0.216 mW/g

Maximum value of SAR (measured) = 0.378 mW/g

Date/Time: 2011/2/9 14:35:11

M06-WCDM A850-Ch4182

Communication System: WCDMA850; Frequency: 836.4 MHz; Duty Cycle: 1:1

Medium: MSL835 Medium parameters used: f = 836.4 MHz; σ = 0.98 mho/m; ϵ_r = 55.57; ρ = 1000

kg/m³

Phantom section: Flat Section; DUT test position: Body; Modulation Type: BPSK

Separation Distance: 15 mm (The front side of the EUT to the Phantom)

DASY4 Configuration:

- Probe: EX3DV4 SN3753; ConvF(9.07, 9.07, 9.07); Calibrated: 2010/12/13
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn579; Calibrated: 2010/9/20
- Phantom: SAM Twin Phantom V4.0; Type: QD 000 P40 CA; Serial: TP 1202
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Body Position - Mid Ch4182/Area Scan (7x10x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.165 mW/g

Body Position - Mid Ch4182/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 11.8 V/m; Power Drift = 0.122 dB

Peak SAR = 0.190 W/kg

SAR(1 g) = $\frac{0.139}{mW/g}$; SAR(10 g) = $0.100 \frac{mW/g}{measured}$ Maximum value of SAR (measured) = $0.167 \frac{mW/g}{measured}$

0.167 0.137 0.107 0.076 0.046 0.016

Date/Time: 2011/2/10 05:49:47

Right Head-Cheek-PCS1900-Ch661

Communication System: PCS1900; Frequency: 1880 MHz; Duty Cycle: 1:8.3

Medium: HSL1900 Medium parameters used: f = 1880 MHz; σ = 1.4 mho/m; ϵ_r = 40.46; ρ = 1000

kg/m³

Phantom section: Right Section; DUT test position: Cheek; Modulation type: GMSK

DASY4 Configuration:

- Probe: EX3DV4 SN3753; ConvF(7.9, 7.9, 7.9); Calibrated: 2010/12/13
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn579; Calibrated: 2010/9/20
- Phantom: SAM Twin Phantom V4.0; Type: QD 000 P40 CA; Serial: TP 1202
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Touch position - Middle/Area Scan (7x17x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.786 mW/g

Touch position - Middle/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 4.38 V/m; Power Drift = 0.185 dB

Peak SAR (extrapolated) = 1.18 W/kg

SAR(1 g) = 0.711 mW/g; SAR(10 g) = 0.365 mW/g Maximum value of SAR (measured) = 0.972 mW/g

Touch position - Middle/Zoom Scan (5x5x7)/Cube 1: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 4.38 V/m; Power Drift = 0.185 dB

Peak SAR (extrapolated) = 1.05 W/kg

SAR(1 g) = 0.690 mW/g; SAR(10 g) = 0.411 mW/g Maximum value of SAR (measured) = 0.865 mW/g

Date/Time: 2011/2/10 06:49:37

M07-Right Head-Cheek-PCS1900-Ch512 (Head in Body)

Communication System: PCS1900; Frequency: 1850.2 MHz; Duty Cycle: 1:8.3

Medium: HSL1900 Medium parameters used: f = 1850.2 MHz; σ = 1.37 mho/m; ϵ_r = 40.53; ρ = 1000

kg/m³

Phantom section: Flat Section; DUT test position: Body; Modulation Type: GMSK

Separation Distance: 5 mm (The front side of the EUT to the Phantom)

DASY4 Configuration:

- Probe: EX3DV4 SN3753; ConvF(7.9, 7.9, 7.9); Calibrated: 2010/12/13
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn579; Calibrated: 2010/9/20
- Phantom: SAM Twin Phantom V4.0; Type: QD 000 P40 CA; Serial: TP 1202
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Touch position - Low/Area Scan (17x7x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 1.08 mW/g

Touch position - Low/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 16.3 V/m; Power Drift = 0.016 dB

Peak SAR = 1.37 W/kg

SAR(1 g) = 0.822 mW/g; SAR(10 g) = 0.463 mW/g

Maximum value of SAR (measured) = 1.10 mW/g

Date/Time: 2011/2/10 07:03:28

M07-Right Head-Cheek-PCS1900-Ch661 (Head in Body)

Communication System: PCS1900; Frequency: 1880 MHz; Duty Cycle: 1:8.3

Medium: HSL1900 Medium parameters used: f = 1880 MHz; σ = 1.4 mho/m; ϵ r = 40.466; ρ = 1000

kg/m³

Phantom section: Flat Section; DUT test position: Body; Modulation Type: GMSK

Separation Distance: 5 mm (The front side of the EUT to the Phantom)

DASY4 Configuration:

- Probe: EX3DV4 SN3753; ConvF(7.9, 7.9, 7.9); Calibrated: 2010/12/13
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn579; Calibrated: 2010/9/20
- Phantom: SAM Twin Phantom V4.0; Type: QD 000 P40 CA; Serial: TP 1202
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Touch position - Middle/Area Scan (17x7x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 1.16 mW/g

Touch position - Middle/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 16.2 V/m; Power Drift = -0.029 dB

Peak SAR = 1.49 W/kg

SAR(1 g) = 0.888 mW/g; SAR(10 g) = 0.498 mW/g

Maximum value of SAR (measured) = 1.19 mW/g

Date/Time: 2011/2/10 07:17:39

M07-Right Head-Cheek-PCS1900-Ch810 (Head in Body)

Communication System: PCS1900; Frequency: 1909.8 MHz; Duty Cycle: 1:8.3

Medium: HSL1900 Medium parameters used : f = 1909.8 MHz; σ = 1.43 mho/m; ϵ_r = 40.37; ρ = 1000

kg/m³

Phantom section: Flat Section; DUT test position: Body; Modulation Type: GMSK

Separation Distance: 5 mm (The front side of the EUT to the Phantom)

DASY4 Configuration:

- Probe: EX3DV4 SN3753; ConvF(7.9, 7.9, 7.9); Calibrated: 2010/12/13
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn579; Calibrated: 2010/9/20
- Phantom: SAM Twin Phantom V4.0; Type: QD 000 P40 CA; Serial: TP 1202
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Touch position - High/Area Scan (17x7x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 1.28 mW/g

Touch position - High/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 16.1 V/m; Power Drift = 0.034 dB

Peak SAR = 1.63 W/kg

SAR(1 g) = 0.956 mW/g; SAR(10 g) = 0.535 mW/g

Date/Time: 2011/2/10 08:13:58

M08-Right Head-Tilt-PCS1900-Ch661

Communication System: PCS1900; Frequency: 1880 MHz; Duty Cycle: 1:8.3

Medium: HSL1900 Medium parameters used: f = 1880 MHz; $\sigma = 1.4$ mho/m; $\epsilon r = 40.46$; $\rho = 1000$

kg/m³

Phantom section: Right Section; DUT test position: Tilt; Modulation type: GMSK

DASY4 Configuration:

- Probe: EX3DV4 SN3753; ConvF(7.9, 7.9, 7.9); Calibrated: 2010/12/13
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn579; Calibrated: 2010/9/20
- Phantom: SAM Twin Phantom V4.0; Type: QD 000 P40 CA; Serial: TP 1202
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Tilt position - Middle/Area Scan (7x17x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.327 mW/g

Tilt position - Middle/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 10.7 V/m; Power Drift = 0.161 dB

Peak SAR = 0.386 W/kg

SAR(1 g) = 0.262 mW/g; SAR(10 g) = 0.167 mW/g

Maximum value of SAR (measured) = 0.326 mW/g

Date/Time: 2011/2/10 08:49:55

M09-Left Head-Cheek-PCS1900-Ch512

Communication System: PCS1900; Frequency: 1850.2 MHz; Duty Cycle: 1:8.3

Medium: HSL1900 Medium parameters used: f = 1850.2 MHz; σ = 1.37 mho/m; ϵ_r = 40.53; ρ = 1000

kg/m³

Phantom section: Left Section: DUT test position: Cheek: Modulation type: GMSK

DASY4 Configuration:

- Probe: EX3DV4 SN3753; ConvF(7.9, 7.9, 7.9); Calibrated: 2010/12/13
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn579; Calibrated: 2010/9/20
- Phantom: SAM Twin Phantom V4.0; Type: QD 000 P40 CA; Serial: TP 1202
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Touch position - Low/Area Scan (7x17x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.999 mW/g

Touch position - Low/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 3.87 V/m; Power Drift = -0.194 dB

Dook CAD 4.20 W///a

Peak SAR = 1.30 W/kg

SAR(1 g) = $\frac{0.794}{mW/g}$; SAR(10 g) = 0.444 mW/gMaximum value of SAR (measured) = 1.08 mW/g

0.868 0.656 0.444 0.232 0.020

Date/Time: 2011/2/10 08:33:44

M09-Left Head-Cheek-PCS1900-Ch661

Communication System: PCS1900; Frequency: 1880 MHz; Duty Cycle: 1:8.3

Medium: HSL1900 Medium parameters used: f = 1880 MHz; $\sigma = 1.4$ mho/m; $\epsilon r = 40.46$; $\rho = 1000$

kg/m³

Phantom section: Left Section; DUT test position: Cheek; Modulation type: GMSK

DASY4 Configuration:

- Probe: EX3DV4 SN3753; ConvF(7.9, 7.9, 7.9); Calibrated: 2010/12/13
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn579; Calibrated: 2010/9/20
- Phantom: SAM Twin Phantom V4.0; Type: QD 000 P40 CA; Serial: TP 1202
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Touch position - Middle/Area Scan (7x17x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 1.08 mW/g

Touch position - Middle/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 3.93 V/m; Power Drift = -0.103 dB

Peak SAR = 1.39 W/kg

SAR(1 g) = 0.835 mW/g; SAR(10 g) = 0.460 mW/g

Maximum value of SAR (measured) = $1.15 \,\text{mW/g}$

Date/Time: 2011/2/10 09:05:10

M09-Left Head-Cheek-PCS1900-Ch810

Communication System: PCS1900; Frequency: 1909.8 MHz; Duty Cycle: 1:8.3

Medium: HSL1900 Medium parameters used : f = 1909.8 MHz; σ = 1.43 mho/m; ϵ_r = 40.37; ρ = 1000

kg/m³

Phantom section: Left Section; DUT test position: Cheek; Modulation type: GMSK

DASY4 Configuration:

- Probe: EX3DV4 SN3753; ConvF(7.9, 7.9, 7.9); Calibrated: 2010/12/13
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn579; Calibrated: 2010/9/20
- Phantom: SAM Twin Phantom V4.0; Type: QD 000 P40 CA; Serial: TP 1202
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Touch position - High/Area Scan (7x17x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 1.16 mW/g

Touch position - High/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm,

dz=5mm

Reference Value = 4.26 V/m; Power Drift = -0.093 dB

Peak SAR = 1.53 W/kg

SAR(1 g) = 0.917 mW/g; SAR(10 g) = 0.497 mW/g

Maximum value of SAR (measured) = 1.27 mW/g

Date/Time: 2011/2/10 09:22:35

M10-Left Head-Tilt-PCS1900-Ch661

Communication System: PCS1900; Frequency: 1880 MHz; Duty Cycle: 1:8.3

Medium: HSL1900 Medium parameters used: f = 1880 MHz; σ = 1.4 mho/m; ϵ r = 40.46; ρ = 1000

kg/m³

Phantom section: Left Section; DUT test position: Tilt; Modulation type: GMSK

DASY4 Configuration:

- Probe: EX3DV4 SN3753; ConvF(7.9, 7.9, 7.9); Calibrated: 2010/12/13
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn579; Calibrated: 2010/9/20
- Phantom: SAM Twin Phantom V4.0; Type: QD 000 P40 CA; Serial: TP 1202
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Tilt position - Middle/Area Scan (7x17x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.401 mW/g

Tilt position - Middle/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 11.3 V/m; Power Drift = 0.084 dB

Peak SAR = 0.518 W/kg

SAR(1 g) = 0.332 mW/g; SAR(10 g) = 0.202 mW/g

Maximum value of SAR (measured) = 0.431 mW/g

Date/Time: 2011/2/10 11:12:23

M11-GPRS1900 TS1-Ch661

Communication System: GPRS1900; Frequency: 1880 MHz; Duty Cycle: 1:8.3

Medium: MSL1900 Medium parameters used: f = 1880 MHz; σ = 1.54 mho/m; ϵ_r = 54.62; ρ = 1000

kg/m³

Phantom section: Flat Section; DUT test position: Body; Modulation Type: GMSK / UL 1 time slot

Separation Distance: 15 mm (The Bottom side of the EUT to the Phantom)

DASY4 Configuration:

- Probe: EX3DV4 SN3753; ConvF(7.17, 7.17, 7.17); Calibrated: 2010/12/13
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn579; Calibrated: 2010/9/20
- Phantom: SAM Twin Phantom V4.0; Type: QD 000 P40 CA; Serial: TP 1202
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Body Position - Mid Ch661/Area Scan (7x10x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.227 mW/g

Body Position - Mid Ch661/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 4.09 V/m; Power Drift = -0.052 dB

Peak SAR = 0.284 W/kg

SAR(1 g) = 0.177 mW/g; SAR(10 g) = 0.102 mW/g

Maximum value of SAR (measured) = $0.230 \,\mathrm{mW/g}$

Date/Time: 2011/2/10 11:27:07

M12-GPRS1900 TS1-Ch661

Communication System: GPRS1900; Frequency: 1880 MHz; Duty Cycle: 1:8.3

Medium: MSL1900 Medium parameters used: f = 1880 MHz; σ = 1.54 mho/m; ϵ_r = 54.62; ρ = 1000

kg/m³

Phantom section: Flat Section; DUT test position: Body; Modulation Type: GMSK / UL 1 time slot

Separation Distance: 15 mm (The Front side of the EUT to the Phantom)

DASY4 Configuration:

- Probe: EX3DV4 SN3753; ConvF(7.17, 7.17, 7.17); Calibrated: 2010/12/13
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn579; Calibrated: 2010/9/20
- Phantom: SAM Twin Phantom V4.0; Type: QD 000 P40 CA; Serial: TP 1202
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Body Position - Mid Ch661/Area Scan (7x10x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.171 mW/g

Body Position - Mid Ch661/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 6.37 V/m; Power Drift = 0.124 dB

Peak SAR = 0.208 W/kg

SAR(1 g) = $\frac{0.132}{0.132}$ mW/g; SAR(10 g) = 0.080 mW/g Maximum value of SAR (measured) = 0.173 mW/g

Date/Time: 2011/2/10 11:47:53

M13-PCS1900-Ch661

Communication System: PCS1900; Frequency: 1880 MHz; Duty Cycle: 1:8.3

Medium: MSL1900 Medium parameters used: f = 1880 MHz; σ = 1.54 mho/m; ϵ_r = 54.62; ρ = 1000

kg/m³

Phantom section: Flat Section; DUT test position: Body; Modulation Type: GMSK

Separation Distance: 15 mm (The Bottom side of the EUT to the Phantom)

DASY4 Configuration:

- Probe: EX3DV4 SN3753; ConvF(7.17, 7.17, 7.17); Calibrated: 2010/12/13
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn579; Calibrated: 2010/9/20
- Phantom: SAM Twin Phantom V4.0; Type: QD 000 P40 CA; Serial: TP 1202
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Body Position - Mid Ch661/Area Scan (7x10x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.192 mW/g

Body Position - Mid Ch661/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 3.25 V/m; Power Drift = -0.081 dB

Peak SAR = 0.241 W/kg

SAR(1 g) = $\frac{0.151}{mW/g}$; SAR(10 g) = 0.087 mW/g Maximum value of SAR (measured) = 0.196 mW/g

Date/Time: 2011/2/10 12:05:34

M14-PCS1900-Ch661

Communication System: PCS1900; Frequency: 1880 MHz; Duty Cycle: 1:8.3

Medium: MSL1900 Medium parameters used: f = 1880 MHz; σ = 1.54 mho/m; ϵ_r = 54.62; ρ = 1000

kg/m³

Phantom section: Flat Section; DUT test position: Body; Modulation Type: GMSK

Separation Distance: 15 mm (The Front side of the EUT to the Phantom)

DASY4 Configuration:

- Probe: EX3DV4 SN3753; ConvF(7.17, 7.17, 7.17); Calibrated: 2010/12/13
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn579; Calibrated: 2010/9/20
- Phantom: SAM Twin Phantom V4.0; Type: QD 000 P40 CA; Serial: TP 1202
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Body Position - Mid Ch661/Area Scan (7x10x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.143 mW/g

Body Position - Mid Ch661/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 5.07 V/m; Power Drift = -0.062 dB

Peak SAR = 0.176 W/kg

SAR(1 g) = 0.112 mW/g; SAR(10 g) = 0.068 mW/g Maximum value of SAR (measured) = 0.147 mW/g

Date/Time: 2011/2/9 04:11:24

SystemPerformanceCheck-D835V2-HSL835 MHz

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:4d021; Test Frequency: 835 MHz

Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1; Modulation type: CW

Medium: HSL835; Medium parameters used: f = 835 MHz; $\sigma = 0.92$ mho/m; $\epsilon_r = 42.17$; $\rho = 1000$ kg/m³;

Liquid level: 150 mm

Phantom section: Flat Section; Separation distance: 15 mm (The feet point of the dipole to the

Phantom) Air temp.: 22.1 degrees; Liquid temp.: 21.2 degrees

DASY4 Configuration:

- Probe: EX3DV4 SN3753; ConvF(9.06, 9.06, 9.06); Calibrated: 2010/12/13
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn579; Calibrated: 2010/9/20
- Phantom: SAM Twin Phantom V4.0; Type: QD 000 P40 CA; Serial: TP 1202
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

d=15mm, Pin=250mW/Area Scan (7x9x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 2.9 mW/g

d=15mm, Pin=250mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 56.0 V/m; Power Drift = 0.028 dB

Peak SAR (extrapolated) = 3.45 W/kg

SAR(1 g) = 2.24 mW/g; SAR(10 g) = 1.46 mW/g

Date/Time: 2011/2/9 13:51:21

SystemPerformanceCheck-D835V2-MSL835 MHz

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:4d021; Test Frequency: 835 MHz

Communication System: CW ; Frequency: 835 MHz; Duty Cycle: 1:1; Modulation type: CW Medium: MSL835;Medium parameters used: f = 835 MHz; σ = 0.98 mho/m; ϵ_r = 55.62; ρ = 1000 kg/m³; Liquid level: 150 mm

Phantom section: Flat Section; Separation distance: 15 mm (The feet point of the dipole to the Phantom) Air temp.: 22.6 degrees; Liquid temp.: 21.5 degrees

DASY4 Configuration:

- Probe: EX3DV4 SN3753; ConvF(9.07, 9.07, 9.07); Calibrated: 2010/12/13
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn579; Calibrated: 2010/9/20
- Phantom: SAM Twin Phantom V4.0; Type: QD 000 P40 CA; Serial: TP 1202
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

d=15mm, Pin=250mW/Area Scan (7x9x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 3.04 mW/g

d=15mm, Pin=250mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 55.2 V/m; Power Drift = 0.008 dB

Peak SAR (extrapolated) = 3.56 W/kg

SAR(1 g) = $\frac{2.37}{mW/g}$; SAR(10 g) = $\frac{1.55}{mW/g}$ Maximum value of SAR (measured) = $\frac{3.01}{mW/g}$

Date/Time: 2011/2/10 04:36:09

SystemPerformanceCheck-D1900V2-HSL1900 MHz

DUT: Dipole 1900 MHz ; Type: D1900V2 ; Serial: D1900V2 - SN:5d036 ; Test Frequency: 1900 MHz

Communication System: CW ; Frequency: 1900 MHz; Duty Cycle: 1:1; Modulation type: CW Medium: HSL1900;Medium parameters used: f = 1900 MHz; σ = 1.41 mho/m; ϵ_r = 40.41; ρ = 1000 kg/m 3 ; Liquid level : 150 mm

Phantom section: Flat Section; Separation distance: 10 mm (The feet point of the dipole to the Phantom) Air temp.: 22.2 degrees; Liquid temp.: 21.3 degrees

DASY4 Configuration:

- Probe: EX3DV4 SN3753; ConvF(7.9, 7.9, 7.9); Calibrated: 2010/12/13
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn579; Calibrated: 2010/9/20
- Phantom: SAM Twin Phantom V4.0; Type: QD 000 P40 CA; Serial: TP 1202
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

d=10mm, Pin=250mW/Area Scan (7x7x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 13.6 mW/g

d=10mm, Pin=250mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 99.8 V/m; Power Drift = -0.060 dB Peak SAR = 17.8 W/kg

SAR(1 g) = $\frac{9.38}{M}$ mW/g; SAR(10 g) = 4.86 mW/g Maximum value of SAR (measured) = 13.4 mW/g

Date/Time: 2011/2/10 10:41:07

SystemPerformanceCheck-D1900V2-MSL1900 MHz

DUT: Dipole 1900 MHz ; Type: D1900V2 ; Serial: D1900V2 - SN:5d036 ; Test Frequency: 1900 MHz

Communication System: CW ; Frequency: 1900 MHz; Duty Cycle: 1:1; Modulation type: CW Medium: MSL1900;Medium parameters used: f = 1900 MHz; σ = 1.57 mho/m; ϵ_r = 54.53; ρ = 1000 kg/m 3 ; Liquid level : 150 mm

Phantom section: Flat Section; Separation distance: 10 mm (The feet point of the dipole to the Phantom) Air temp.: 22.3 degrees; Liquid temp.: 21.2 degrees

DASY4 Configuration:

- Probe: EX3DV4 SN3753; ConvF(7.17, 7.17, 7.17); Calibrated: 2010/12/13
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn579; Calibrated: 2010/9/20
- Phantom: SAM Twin Phantom V4.0; Type: QD 000 P40 CA; Serial: TP 1202
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

d=10mm, Pin=250mW/Area Scan (7x7x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 14.2 mW/g

d=10mm, Pin=250mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 98.8 V/m; Power Drift = 0.081 dB

Peak SAR = 18.0 W/kg

SAR(1 g) = $\frac{10}{10}$ mW/g; SAR(10 g) = 5.16 mW/g Maximum value of SAR (measured) = 14.4 mW/g

APPENDIX B: BV ADT SAR MEASUREMENT SYSTEM

APPENDIX C: PHOTOGRAPHS OF SYSTEM VALIDATION

APPENDIX D: SYSTEM CERTIFICATE & CALIBRATION

D1: PHANTOM

Schmid & Partner Engineering AG

Zeughausstrasse 43, 8004 Zurich, Switzerland, Phone +41 1 245 97 00, Fax +41 1 245 97 79

Certificate of conformity / First Article Inspection

Item .	SAM Twin Phantom V4.0		
Type No	QD 000 P40 CA		
Series No	TP-1150 and higher	5	
Manufacturer / Origin -	Untersee Composites		
	Hauptstr. 69	•	
•	CH-8559 Fruthwilen	• •	
~	Switzerland		

Tests

The series production process used allows the limitation to test of first articles. Complete tests were made on the pre-series Type No. QD 000 P40 AA, Serial No. TP-1001 and on the series first article Type No. QD 000 P40 BA, Serial No. TP-1006. Certain parameters have been retested using further series units (called samples).

Test	Requirement	Details	Units tested
Shape	Compliance with the geometry according to the CAD model.	IT'IS CAD File (*)	First article, Samples
Material thickness	Compliant with the requirements according to the standards	2mm +/- 0.2mm in specific areas	First article, Samples
Material parameters	Dielectric parameters for required frequencies	200 MHz - 3 GHz Relative permittivity < 5 Loss tangent < 0.05.	Material sample TP 104-5
Material resistivity	The material has been tested to be compatible with the liquids defined in the standards	Liquid type HSL 1800 and others according to the standard.	Pre-series, First article

Standards

- [1] CENELEC EN 50361
- [2] IEEE P1528-200x draft 6.5
- [3] IEC PT 62209 draft 0.9
- (*) The IT'IS CAD file is derived from [2] and is also within the tolerance requirements of the shapes of [1] and [3].

Conformity

Based on the sample tests above, we certify that this item is in compliance with the uncertainty requirements of SAR measurements specified in standard [1] and draft standards [2] and [3].

Date

28.02.2002

Signature / Stamp

Engineering AG

Zeughausstrasse 43, CH-8004 Zurich
Tel. +41 1 245 97 00, Fex +41 1 245 97 79

Schmid & Partner

1. +13 1 245 97 00, Fox +41 12

F. Rambalt

D2: DOSIMETRIC E-FIELD PROBE

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

Auder

Accreditation No.: SCS 108

Object EX3DV4-SN:3753 Calibration procedure(s) QA CAL-01 v6. QA CAL-14 v3. QA CAL-23 v3 and CA CAL-25 v2 Calibration procedure procedure procedure procedure procedure.

Calibration date:

December 13-2010

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

	Cal Date (Certificate No.)	Scheduled Calibration
GB41293874	1-Apr-10 (No. 217-01136)	Apr-11
MY41495277	1-Apr-10 (No. 217-01136)	Apr-11
MY41498087	1-Apr-10 (No. 217-01136)	Apr-11
SN: S5054 (3c)	30-Mar-10 (No. 217-01159)	Mar-11
SN: S5086 (20b)	30-Mar-10 (No. 217-01161)	Mar-11
SN: S5129 (30b)	·	Mar-11
SN: 3013		Dec-10
SN: 660	20-Apr-10 (No. DAE4-660_Apr10)	Apr-11
ID#	Check Date (in house)	Scheduled Check
US3642U01700	4-Aug-99 (in house check Oct-09)	In house check: Oct-11
US37390585	18-Oct-01 (in house check Oct-10)	In house check: Oct-11
Name	Function	Signature
Kara same		
Nicia Kuatar	A Paulo Maria	1997
	MY41495277 MY41498087 SN: S5054 (3c) SN: S5086 (20b) SN: S5129 (30b) SN: 3013 SN: 660 ID # US3642U01700 US37390585 Name Kata Postoric	MY41495277 1-Apr-10 (No. 217-01136) MY41498087 1-Apr-10 (No. 217-01136) SN: S5054 (3c) 30-Mar-10 (No. 217-01159) SN: S5086 (20b) 30-Mar-10 (No. 217-01161) SN: S5129 (30b) 30-Mar-10 (No. 217-01160) SN: 3013 30-Dec-09 (No. ES3-3013_Dec09) SN: 660 20-Apr-10 (No. DAE4-860_Apr10) ID # Check Date (in house) US3642U01700 4-Aug-99 (in house check Oct-09) US37390585 18-Oct-01 (in house check Oct-10) Name Function

Issued: December 14, 2010

Certificate No: EX3-3753_Dec10

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL NORMx,y,z tissue simulating liquid sensitivity in free space sensitivity in TSL / NORMx,y,z

ConvF DCP

diode compression point

CF A, B, C crest factor (1/duty_cycle) of the RF signal modulation dependent linearization parameters

Polarization φ

φ rotation around probe axis

Polarization 9

9 rotation around an axis that is in the plane normal to probe axis (at measurement center).

i.e., 9 = 0 is normal to probe axis

Calibration is Performed According to the Following Standards:

 a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003

b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide).
 NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is
 implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included
 in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- Ax,y,z; Bx,y,z; Cx,y,z, VRx,y,z: A, B, C are numerical linearization parameters assessed based on the data of
 power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the
 maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

Certificate No: EX3-3753 Dec10

EX3DV4 SN:3753 December 13, 2010

Probe EX3DV4

SN:3753

Manufactured:

March 16, 2010

Calibrated:

December 13, 2010

Calibrated for DASY/EASY Systems

(Note: non-compatible with DASY2 system!)

EX3DV4 SN:3753 December 13, 2010

DASY/EASY - Parameters of Probe: EX3DV4 SN:3753

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm $(\mu V/(V/m)^2)^A$	0.34	0.49	0.52	± 10.1%
DCP (mV) ^B	99.3	98.8	103.0	

Modulation Calibration Parameters

UID	Communication System Name	PAR		A dB	B dBuV	С	VR mV	Unc ^E (k=2)
10000	cw	0.00	X	0.00	0.00	1.00	120.2	± 2.9 %
			Υ	0.00	0.00	1.00	111.7	
		<u> </u>	Z	0.00	0.00	1.00	118.9	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^A The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6).

^B Numerical linearization parameter: uncertainty not required.

E Uncertainty is determined using the maximum deviation from linear response applying recatangular distribution and is expressed for the square of the field value.

DASY/EASY - Parameters of Probe: EX3DV4 SN:3753

Calibration Parameter Determined in Head Tissue Simulating Media

f [MHz]	Validity [MHz] ^C	Permittivity	Conductivity	ConvF X Co	nvFY Co	nvF Z	Alpha	Depth Unc (k=2)
750	± 50 / ± 100	41.9 ± 5%	0.89 ± 5%	9.52	9.52	9.52	0.52	0.72 ± 11.0%
835	± 50 / ± 100	41.5 ± 5%	0.90 ± 5%	9.06	9.06	9.06	0.58	0.70 ± 11.0%
1750	± 50 / ± 100	40.1 ± 5%	1.37 ± 5%	8.25	8.25	8.25	0.67	0.64 ± 11.0%
1900	± 50 / ± 100	40.0 ± 5%	1.40 ± 5%	7.90	7.90	7.90	0.54	0.71 ± 11.0%
2000	± 50 / ± 100	40.0 ± 5%	1.40 ± 5%	7.82	7.82	7.82	0.62	0.65 ± 11.0%
2450	± 50 / ± 100	39.2 ± 5%	1.80 ± 5%	7.11	7.11	7.11	0.38	0.83 ± 11.0%
5200	± 50 / ± 100	$36.0 \pm 5\%$	$4.66 \pm 5\%$	4.96	4.96	4.96	0.32	1.90 ± 13.1%
5300	± 50 / ± 100	$35.9 \pm 5\%$	4.76 ± 5%	4.69	4.69	4.69	0.40	1.90 ± 13.1%
5500	± 50 / ± 100	$35.6 \pm 5\%$	$4.96 \pm 5\%$	4.43	4.43	4.43	0.45	1.90 ± 13.1%
5600	± 50 / ± 100	$35.5 \pm 5\%$	5.07 ± 5%	4.44	4.44	4.44	0.45	1.90 ± 13.1%
5800	± 50 / ± 100	$35.3 \pm 5\%$	5.27 ± 5%	4.32	4.32	4.32	0.45	1.90 ± 13.1%

^c The validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2). The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

DASY/EASY - Parameters of Probe: EX3DV4 SN:3753

Calibration Parameter Determined in Body Tissue Simulating Media

f [MHz]	Validity [MHz] ^C	Permittivity	Conductivity	ConvF X	ConvF Y	ConvF Z	Alpha	Depth Unc (k=2)
750	± 50 / ± 100	55.5 ± 5%	0.96 ± 5%	9.25	9.25	9.25	0.54	0.74 ± 11.0%
835	± 50 / ± 100	55.2 ± 5%	$0.97 \pm 5\%$	9.07	9.07	9.07	0.55	0.73 ± 11.0%
1750	± 50 / ± 100	53.4 ± 5%	1. 49 ± 5 %	7.48	7.48	7.48	0.32	1.19 ± 11.0%
1900	± 50 / ± 100	53.3 ± 5%	1.52 ± 5%	7.17	7.17	7.17	0.55	0.96 ± 11.0%
2000	± 50 / ± 100	53.3 ± 5%	1.52 ± 5%	7.22	7.22	7.22	0.96	0.52 ± 11.0%
2300	± 50 / ± 100	52.8 ± 5%	1.85 ± 5%	7.11	7.11	7.11	0.54	0.75 ± 11.0%
2450	± 50 / ± 100	52.7 ± 5%	1.95 ± 5%	6.91	6.91	6.91	0.54	0.88 ± 11.0%
2600	± 50 / ± 100	52.5 ± 5%	2.16 ± 5%	6.86	6.86	6.86	0.97	0.34 ± 11.0%
3500	± 50 / ± 100	$51.3 \pm 5\%$	3.31 ± 5%	6.19	6.19	6.19	0.35	1.20 ± 13.1%
5200	± 50 / ± 100	$49.0 \pm 5\%$	$5.30 \pm 5\%$	4.21	4.21	4.21	0.55	1.95 ± 13.1%
5300	± 50 / ± 100	$48.9 \pm 5\%$	$5.42 \pm 5\%$	4.02	4.02	4.02	0.55	1.95 ± 13.1%
5500	± 50 / ± 100	$48.6 \pm 5\%$	5.65 ± 5%	3.69	3.69	3.69	0.55	1.95 ± 13.1%
5600	± 50 / ± 100	48.5 ± 5%	5.77 ± 5%	3.41	3.41	3.41	0.60	1.95 ± 13.1%
5800	± 50 / ± 100	$48.2 \pm 5\%$	$6.00 \pm 5\%$	3.90	3.90	3.90	0.60	1.95 ± 13.1%

^c The validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2). The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

Frequency Response of E-Field

(TEM-Cell:ifi110 EXX, Waveguide: R22)

Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

Dynamic Range f(SAR_{head})

(TEM cell, f = 900 MHz)

Uncertainty of Linearity Assessment: ± 0.6% (k=2)

EX3DV4 SN:3753 December 13, 2010

Conversion Factor Assessment

Deviation from Isotropy in HSL

Error (ϕ, ϑ) , f = 900 MHz

Uncertainty of Spherical Isotropy Assessment: ± 2.6% (k=2)

EX3DV4 SN:3753

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	Not applicable
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	9 mm
Tip Diameter	2.5 mm
Probe Tip to Sensor X Calibration Point	1 mm
Probe Tip to Sensor Y Calibration Point	1 mm
Probe Tip to Sensor Z Calibration Point	1 mm
Recommended Measurement Distance from Surface	2 mm