## Data Acquisition Prototype: Project & System Requirements

# Phoenix Ambulatory Blood Pressure Monitoring System

14 September 2008 © 2008 Christopher J. Adams Copying and distribution of this document is permitted in any medium, provided this notice is preserved

1

## Agenda

- Purpose and Scope of this Document
- Project Vision
- System Vision & Scope (Business Requirements)
- User Requirements
  - Use Cases
  - Algorithms (Business Rules)
- System Requirements
  - Functional Requirements
  - Major Nonfunctional Requirements
- Requirements Work Outstanding

2

## Purpose and Scope of this Document

- Specify system requirements for a prototype of a data acquisition device
  - Incorporate system requirements of eventual Phoenix ABPM, but...
  - Do not specify the Phoenix ABPM
  - Supplement Phoenix requirements with prototypespecific requirements
- Incorporate results of sensor prototypes to-date

14 September 2008

3

## **Project Vision**

- Acquire community knowledge about
  - Data acquisition devices
  - Hardware and software co-design
  - Partitioning systems into subsystems
  - Allocating system requirements to subsystems
  - Embedded software architecture options (round robin, round robin w/ interrupts, ..., RTOS)
  - Hardware options (gates, clocks, memory, MP, buses, DMA, interrupts, ports, ...)
  - Designing low-power devices
  - Acquiring hardware components
  - Testing embedded software
- Document results so they can be reproduced

14 September 2008

## **Project Vision**

- Architecture basic technology
  - Hardware architecture
  - Hardware component selection
  - Embedded software architecture
  - Software language selection
  - Cross-platform development tools
- Prototype
  - Must build a device to evaluate interdependent design options
  - Learning is primary
  - Expect subsequent evolution
  - Willing to abandon device based on lessons learned
- Computing device is primary
  - Sensing is secondary
  - Acquired data may be simulated

14 September 2008

5

## System Vision

- Data acquisition device (next slides)
- Embedded analytics (next slides)
- Embedded data storage (next slides)
- Device allows ambulation during use
  - At least carriable
- Electrically self-contained
  - Does not rely on external power source
- Power-sensitive design
  - Design for either:
    - Low power, or
    - · Power measurement

14 September 2008 6

## System Vision

- Data acquisition device
  - Collects continuous analog signals from two sensors
    - · At least one is piezoelectric film sensor
      - Measurement Specialties SDT1-028K
  - Collects up to x (40?) samples per second from piezoelectric film sensor
  - Converts analog signals to digital signals
  - Collects discrete signals from wearer-pressable push-button
    - · Button down
    - Button up
  - Turns on and off a human-perceivable device-mounted light

14 September 2008

7

## System Vision

- Embedded analytics
  - Identifies / marks peak of each continuous waveform
    - Voltage
  - Identifies / marks trough of each continuous waveform
    - Voltage
  - Calculates biometrics
    - Heart rate
      - Beats per minute
    - Systolic blood pressure
      - mmHg
    - · Diastolic blood pressure
      - mmHg
  - Performs calculations over 5 cardiac cycles every 30 minutes
  - Translates different combinations of button-down and button-up signals into events

14 September 2008 8

## **System Vision**

- Embedded data storage
  - Timestamps each acquired & calculated value
  - Preserves three days of acquired & calculated data
  - Preserves all acquired values
    - See "Data acquisition device"
  - Preserves all calculated values
    - See "Embedded analytics"

14 September 2008

9

## System Vision Major Out-of-Scope Capabilities

- Capacity for 7 days of data
- Device calibration
- Patient alerts
- Localization outside of U.S.
  - Production
  - Use
- Analog signal processing
  - As alternative to digital signal processing
  - Separate research topic
- HMI beyond simple light bulb
  - Will not display calculated values
- Continued exclusion depends on analysis of power management 14 September 2008



### **Use Cases**

- Wearer signals the device to log an event
  - Assures data-acquisition logic despite sensor failure
- Technician or wearer confirms device functions
- Technician or wearer confirms data acquisition
- Technician connects device to wearer
- System collects data
- Wearer restarts data collection
- Technician downloads data to a file

14 September 2008 12

#### Use Cases

#### Wearer Signals Device to Log Event

- 1. Wearer pushes button
- 2. System activates status light
- 3. System logs button-down
- 4. Wearer observes status light
- 5. Wearer may pause
- 6. Wearer releases button
- 7. System logs button-up
- 8. System de-activates status light
- 9. Wearer observes status light
- 10. Wearer may pause
- 11. Wearer repeats sequence according to predefined code

14 September 2008 13

#### Use Cases

#### Technician or Wearer Confirms Device Functions

- 1. User signals device-start event
- 2. System runs diagnostics
- 3. System toggles the status light in a pattern indicating successful start-up
- 4. Technician observes status light

14 September 2008 14

#### <u>Use Cases</u> Technician or Wearer Confirms Data Acquisition

14 September 2008 15

#### <u>Use Cases</u> Technician Connects Device to Wearer

- 1. Technician starts device
  - Signals device-start event
  - Use case "Wearer Signals Device to Log Event"
- 2. Technician confirms device functions
  - Signals run-diagnostics event
  - Use case "Wearer Signals Device to Log Event"
- 3. Technician places and fastens device on wearer
- 4. Wearer confirms device is comfortable
- 5. Technician confirms data acquisition
  - Signals device-start event
  - Use case "Wearer Signals Device to Log Event"
- 6. Technician starts data acquisition
  - Signals acquisition-start event
  - Use case "Wearer Signals Device to Log Event"

14 September 2008

16

#### <u>Use Cases</u> System Collects Data

- 1. System waits for configured duration
- 2. System activates status light
- 3. Systems periodically reads data from each sensor
  - Periodicity configured sensor-by-sensor
- 4. System timestamps and stores each reading
- 5. System continues reading data for configured duration
- 6. System calculates embedded analytics
- 7. System timestamps and stores each calculated value
- 8. System deactivates status light
- 9. Above sequence repeats

14 September 2008

17

#### <u>Use Cases</u> Wearer Confirms Device is Working

- 1. Wearer signals device-check event
  - Use case "Wearer Signals Device to Log Event"
- 2. Wearer observes status light to confirm device function

14 September 2008 18

#### <u>Use Cases</u> Wearer Restarts Data Collection

- 1. Wearer places and fastens device on self
- 2. Wearer confirms data acquisition
  - Use case "Technician Confirms Data Acquisition"
- 3. Wearer signals acquisition-start event
  - Use case "Wearer Signals Device to Log Event"

14 September 2008 19

## <u>Use Cases</u> Technician Downloads Data to File

- 1. Technician connects device to storage system
- 2. Technician signals download-initiation event
  - Use case "Wearer Signals Device to Log Event"
- 3. System transforms data into transmission format and downloads transformed data to file, while manipulating status light to signal download progressing
- 4. System signals completion of download with status light

14 September 2008 20

## Algorithms

- Calculation of pressure wave
- Waveform peak
- Waveform trough
- Heart rate
- Systolic blood pressure
- Diastolic blood pressure

14 September 2008 21

### Calculation of Pressure Wave

- Chen et. al, US Patent No. 6,599,251
  - Arterial pulse delay proportional to blood pressure
    - $P = a + b \ln(T)$ 
      - T = Time delay(milliseconds)
      - a,b = constants depending on
        - » nature of the subject
        - » signal detecting device



14 September 2008

## **Functional Requirements**

- Downloaded Data
  - ::=
    - Head
      - Device ID
      - ( Absolute base time )
      - Timestamp of download initiation
    - Body
      - { Acquired/calculated Item }\*
        - » Sensor ID/Data Source ID
        - » Timestamp of acquisition/calculation
        - » Information type
        - » Value
    - Tail
      - Timestamp of download completion
      - End of data marker
  - If timestamps are relative
- $_{14\;\mathrm{September}\;2008}^{\bullet}$  then download must include absolute base time

23

## **Functional Requirements**

- Acquired/calculated information type
  - Acquisition control event
    - · Start device
    - Stop device
    - · Start acquisition
    - · Stop acquisition
    - · Run diagnostics
    - · Test acquisition
  - Wearer event
  - Acquired continuous value
    - mV
  - Acquired discrete value
- 14 September 2008 off, down/up, yes/no

- Acquired/calculated information type
  - Calculated values
    - Heart rate
      - Beats per minute
    - · Systolic blood pressure
      - mmHg
    - · Diastolic blood pressure
      - mmHg

24

## Major Nonfunctional Requirements

- Interfaces
  - Outgoing
    - · Downloaded data is well-formed XML
      - Want to understand impact of tagging the data
  - Physical Connectors
    - Device downloads data via a USB device
- Physical Constraints
  - Wearer wears or carries device during operation
- Legal Requirements
  - All software to be publicly licensed
- Safety Requirements
  - Electro-Magnetic Interference
    - Device cannot electrically interfere with other electronic devices
    - Ref: FCC Part 68

14 September 2008 25

### Requirements Work Outstanding

- [Bob S] What are the frequency and resolution requirements for:
  - HR?
  - DBP?
  - SBP?
- [Dick S] Background about power management circuits
- Analysis of algorithms

14 September 2008 26