Apunte Único: Álgebra Lineal Computacional - Práctica $7\,$

Por alumnos de ALC Facultad de Ciencias Exactas y Naturales UBA

última actualización 22/06/25 @ 22:24

Choose your destiny:

(click click 🕈 en el ejercicio para saltar)

- Notas teóricas
- Ejercicios de la guía:
 - 1. 3. 5. 7. 9. 11. 13. 15.
 - 2. 4. 6. 8. 10. 12. 14. 16.
- © Ejercicios de Parciales

1.

Esta Guía 7 que tenés se actualizó por última vez: $\frac{22/06/25 @ 22:24}{}$

Escaneá el QR para bajarte (quizás) una versión más nueva:

El resto de las guías repo en github para descargar las guías con los últimos updates.

Si querés mandar un ejercicio o avisar de algún error, lo más fácil es por Telegram <a>.

Notas teóricas:

* Matriz de iteraciones M_I :

Busco un sistema equivalente al clásico y querido Ax = b, porque invertir A se complica:

$$Ax = b \Leftrightarrow A = B + C \Leftrightarrow (B + C)x = b \stackrel{!}{\Leftrightarrow} x = \underbrace{-B^{-1}C}_{M_I} x + \underbrace{B^{-1}b}_{\tilde{b}} \Leftrightarrow x = \underbrace{M_I x + \tilde{b}}_{\tilde{b}} \stackrel{*}{\bullet}^1.$$

Donde B se elige porque es más fácil que invertir que A sino me estaría pegando un tiro en el pie. La matriz M_I es la matriz de iteraciones, la cual se va a usar así:

espectativa
$$\rightarrow x = M_I x + \tilde{b}$$

realidad $\rightarrow x_{k+1} = M_I x_k + \tilde{b}$

error $\rightarrow x - x_{k+1} = e_{k+1} = M_I e_k$

Y ese error, si le mando M_I reiteradas veces:

$$e_{k+1} = M_I \cdot e_k = M_I \cdot M_I e_{k-1} = \dots = M_I^{k+1} e_0 \Leftrightarrow e_{k+1} = M_I^{k+1} e_0$$

Si el error de iterar k+1 veces $e_{k+1} \to 0$, entonces quiere decir que $M_I^{k+1} \to 0$ entonces la espectativa y la realidad no van a diferir más que lo que diferían al principio antes de iterar:

$$e_{k+1} \xrightarrow{k \to 0} 0 \Leftrightarrow M_i^{k+1} \xrightarrow{k \to 0} 0 \iff \rho(M_I) < 1$$
Donde $\rho(M_I) = \lambda_{\text{máx}}$

* Jacobi y Gauss-Seidel: Si una matriz $A \in \mathbb{R}^{n \times n}$

$$\begin{array}{c} \operatorname{diagonal} \\ A = L + \overset{\uparrow}{D} + \overset{}{U} \\ \operatorname{trianguluar} \ \operatorname{triangular} \\ \operatorname{inferior} \ \ \operatorname{superior} \end{array}$$

 \underline{s} Jacobi: Tomando en este caso $\underline{B} = D$ entonces, me queda la matriz de iteraciones para resolver \underline{s}^1 :

$$\left\{\begin{array}{ccc} M_J &=& -D^{-1}(L+U)\\ \tilde{b} &=& D^{-1}b \end{array}\right.$$

 $\stackrel{\bullet}{\mathbf{x}}$) Gauss-Seidel: Tomando en este caso B = L + D entonces, me queda la matriz de iteraciones para resolver $\stackrel{\bullet}{\mathbf{x}}$:

$$\begin{cases} M_{GS} = -(L+D)^{-1}U \\ \tilde{b} = (L+D)^{-1}b \end{cases}$$

ullet Si A es estrictamente diagonal dominante, es decir:

$$|a_{ii}| > \sum_{i \neq j} |a_{ij}| \quad \forall i \in \mathbb{N}_{\leq n}$$

entonces Jacobi y Gauss-Seidel convergen.

- Si A es tridiagonal entonces $\rho(T_{GS}) = \rho^2(T_J)$
- Si A es simétrica (hermitiana) y definida positiva entonces Gauss-Seidel converge.

Ejercicios de la guía:

Ejercicio 1. S... hay que hacerlo!

Si querés mandá la solución \rightarrow al grupo de Telegram \bigcirc , o mejor aún si querés subirlo en IATEX \rightarrow una pull request al \bigcirc

Ejercicio 2. O... hay que hacerlo!

Si querés mandá la solución \rightarrow al grupo de Telegram \bigcirc , o mejor aún si querés subirlo en IATEX \rightarrow una pull request al \bigcirc .

Ejercicio 3. Considerar el sistema Ax = b para $A = \begin{pmatrix} 64 & -6 \\ 6 & -1 \end{pmatrix}$ y $b = (1, 2)^t$.

- a) Demostrar que el método de Jacobi converge para todo dato inicial.
- b) Sea J la matriz de iteración. Hallar la normas 1, ∞ y 2 de J. ¿Contadice la convergencia del método?
- c) Hallar una norma $\|\cdot\|$ en la cual $\|J\|$ sea < 1. Sugerencia: Considerar una base de autovectores de J.

e... hay que hacerlo!

Si querés mandá la solución \rightarrow al grupo de Telegram \bigcirc , o mejor aún si querés subirlo en IAT $_{\rm E}{\rm X} \rightarrow$ una pull request al \bigcirc

Ejercicio 4. O... hay que hacerlo!

Si querés mandá la solución \rightarrow al grupo de Telegram \bigcirc , o mejor aún si querés subirlo en IATEX \rightarrow una pull request al \bigcirc

Ejercicio 5. O... hay que hacerlo!

Si querés mandá la solución \rightarrow al grupo de Telegram \bigcirc , o mejor aún si querés subirlo en \LaTeX una pull request al \bigcirc .

Ejercicio 6. O... hay que hacerlo!

Si querés mandá la solución \rightarrow al grupo de Telegram \bigcirc , o mejor aún si querés subirlo en IATEX \rightarrow una pull request al \bigcirc

Ejercicio 7. O... hay que hacerlo!

Si querés mandá la solución \rightarrow al grupo de Telegram \bigcirc , o mejor aún si querés subirlo en IATEX \rightarrow una pull request al \bigcirc .

Ejercicio 8. O... hay que hacerlo!

Si querés mandá la solución → al grupo de Telegram , o mejor aún si querés subirlo en IATEX→ una pull request al

Ejercicio 9. O... hay que hacerlo!

Si querés mandá la solución \rightarrow al grupo de Telegram \bigcirc , o mejor aún si querés subirlo en IATEX \rightarrow una pull request al \bigcirc .

Ejercicio 10. S... hay que hacerlo!

Si querés mandá la solución \rightarrow al grupo de Telegram \bigcirc , o mejor aún si querés subirlo en IAT_FX \rightarrow una pull request al \bigcirc

♠¡Aportá con correcciones, mandando ejercicios, ★ al repo, críticas, todo sirve. La idea es que la guía esté actualizada y con el mínimo de errores. Ejercicio 11. O... hay que hacerlo!

Si querés mandá la solución \rightarrow al grupo de Telegram \bigcirc , o mejor aún si querés subirlo en LATEX \rightarrow una pull request al \bigcirc .

Ejercicio 12. O... hay que hacerlo!

Si querés mandá la solución \rightarrow al grupo de Telegram \bigcirc , o mejor aún si querés subirlo en IATEX \rightarrow una pull request al \bigcirc .

Ejercicio 13. ⊚... hay que hacerlo! ⊖

Si querés mandá la solución \rightarrow al grupo de Telegram \bigcirc , o mejor aún si querés subirlo en IAT $_{\rm E}$ X \rightarrow una pull request al \bigcirc .

Ejercicio 14. O... hay que hacerlo!

Si querés mandá la solución \rightarrow al grupo de Telegram \bigcirc , o mejor aún si querés subirlo en IAT $_{\rm E}$ X \rightarrow una pull request al \bigcirc .

Ejercicio 15. O... hay que hacerlo!

Si querés mandá la solución \rightarrow al grupo de Telegram \bigcirc , o mejor aún si querés subirlo en IATEX \rightarrow una pull request al \bigcirc .

Ejercicio 16. O... hay que hacerlo!

Si querés mandá la solución \rightarrow al grupo de Telegram \bigcirc , o mejor aún si querés subirlo en IAT $_{\rm E}$ X \rightarrow una pull request al \bigcirc 0.

Ligrania Epircicios de parciales:

- ♦1. [segundo recu 5/12/2024] Se desea resolver el sistema Ax = b para un $b \in \mathbb{R}^3$ y $A = \begin{pmatrix} 1 & 0 & \alpha \\ 1 & 1 & 0 \\ -1 & 1 & 1 \end{pmatrix}$ con $\alpha \in \mathbb{R}$.
- (a) Determinar los valores de α para los cuales el método de Gauss-Seidel converge para cualquier vector inicial x_0 .
- (b) Probar que si $\alpha=0$ el método de Jacobi converge en 3 pasos para cualquier x_0 . Sugerencia: analizar B_J^3 , siendo B_J la matriz que gobierna la iteranción del método de Jacobi.