Multivariate Meta-Analysis of Vector Autoregressive Model Coefficients: A Two-Step Structural Equation Modeling Approach

Ivan Jacob Agaloos Pesigan (ijapesigan@psu.edu) Michael A. Russell (mar60@psu.edu) Sy-Miin Chow (symiin@psu.edu)

The Pennsylvania State University

Sept. 18, 2024

. Sestespenfinálizáltados szírági feringsulspensynlypnégonfoinfieffi

First-Order Discrete-Time Vector Autoregressive Model

$$\eta_{i,t} = \beta \eta_{i,t-1} + \zeta_{i,t} \tag{1}$$

First-Order Continuous-Time Vector Autoregressive Model

$$d\eta_{i,t} = \left(\mathbf{\Phi}\eta_{i,t}\right)dt + \mathbf{\Sigma}^{\frac{1}{2}}d\mathbf{W}_{i,t} \tag{2}$$

Vector Autoregressive Model

- ▶ In Equations 1 and 2, β and Φ do not have the subscript i, meaning we assume that the dynamics is invariant across individuals.
- ▶ However, this is such a strong assumption to make, it is more likely that the dynamics vary across individuals (β_i and Φ_i).
- ▶ Let $\mathbf{y}_i = \operatorname{Vec}(\boldsymbol{\beta}_i)$ or $\mathbf{y}_i = \operatorname{Vec}(\boldsymbol{\Phi}_i)$.
- We assume that the vector of coefficients for each individual, \mathbf{y}_i , come from a multivariate normal distribution with some mean and covariance matrix, $\mathbf{y} \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$.

Meta-Analysis

- First Stage: Estimate the parameters (\mathbf{y}_i) and the sampling covariance matrix (\mathbf{V}_i^2) per individual i.
- Second Stage: Pool the coefficients using the corresponding sampling covariance matrix as a weight matrix.
 - ▶ The average/pooled estimate is given by α .
 - lacktriangle The variability around the pooled estimate is given by au^2 .
- ▶ Meta-analysis as a structural equation model (Cheung, 2015).

Meta-Analysis as a Structural Equation Model

Figure 1 Average/Pooled Coefficients

$$\mu_i(\theta) = \alpha$$

Meta-Analysis as a Structural Equation Model

Figure 2
Between- and Within-Level Variability

$$\mathbf{\Sigma}_{i}\left(\mathbf{ heta}
ight)=\mathbf{ au}^{2}+\mathbf{V}_{i}^{2}$$

Meta-Analysis as a Structural Equation Model

In meta-analysis, it is customary to quantify the heterogeneity of effect sizes using the two sources of variability (1²; Higgins & Thompson, 2002)

$$\mathbf{I}^2 = \frac{\hat{\boldsymbol{\tau}}^2}{\hat{\boldsymbol{\tau}}^2 + \tilde{\mathbf{V}}^2} \tag{4}$$

 I^2 is interpreted as the proportion of the total variation in effect sizes that is due to between-individual heterogeneity.

Covariates

Figure 3
Covariates

$$\mu_i(\theta) = \alpha + \beta x_i$$

Distal Outcomes

Figure 4
Distal Outcomes

Mixture of Normal Distributions

$$\mu_k(\theta_k)$$

$$\mathbf{\Sigma}_{k}\left(\boldsymbol{\theta}_{k}\right)$$

where k represents the $k^{\rm th}$ normal distribution.

Multivariate Meta-Analysis of Vector Autoregressive Model Coefficients: A Two-Step Structural Equation Modeling Approach

Ivan Jacob Agaloos Pesigan (ijapesigan@psu.edu) Michael A. Russell (mar60@psu.edu) Sy-Miin Chow (symiin@psu.edu)

The Pennsylvania State University

Sept. 18, 2024

. Sestespenfinálizáltados szírági feringsulspensynlypnégonfoinfieffi

References

References I

Cheung, M. W.-L. (2015). Meta-analysis: A structural equation modeling approach. Wiley.

https://doi.org/10.1002/9781118957813

Higgins, J. P. T., & Thompson, S. G. (2002). Quantifying heterogeneity in a meta-analysis. Statistics in Medicine, 21(11), 1539–1558. https://doi.org/10.1002/sim.1186