21 基地抽象代数 2 NICOLAS KENG

21 基地抽象代数 2

1.(20')

- (1) 叙述有限 Galois 理论基本定理;
- (2) 叙述交换幺环上模的三个同构基本定理.
- 2. $R \in \mathsf{CRing}$, Abel 范畴 R-Mod. 证明:
- (1) 所有 Noether (resp. Artin) R-模构成 R-Mod 的一个 Abelian 全子范畴, 记为 \mathcal{N} (resp. \mathcal{A}).
- (2) 所有有限生成的投射 R-模是 R-Mod 的一个加性全子范畴 F, 但一般不是 Abel 范畴. 请找出对哪些环 R, F 是 Abel 范畴.
- 3. Klein 四元群 $G = \{x, y, xy, 1 \mid x^2 = y^2 = (xy)^2 = 1\}$ 的两个 \mathbb{F}_2 -表示

$$\rho_1: x \mapsto \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \ y \mapsto \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}; \qquad \rho_2: x \mapsto \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}, \ y \mapsto \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

计算这两个表示对应的 \mathbb{F}_2^3 的极大半单子模, 从而说明这两个表示都不是半单的.

- 4. R ∈ CRing, I ⊲ R 有限生成, 证明 TFAE:
- (1). R/I 平坦; (2). $I = I^2$; (3). I = Re, 其中 $e^2 = e$ 是幂等元.
- 5.1 交换幺环 $R\subset S,S$ 在 R 上整, k 代数闭, 环同态 $\varphi:R\to k$. 证明: 存在环同态 $\psi:S\to k$ 使得 $\psi|_R=\varphi.$
- 5.2 域 $F,A\in \mathsf{fgAlg}(F)$, 群 $G<\mathsf{Aut}_FA$, $|G|<+\infty$. 证明: $A^G=\{a\in A\mid g(a)=a,\,\forall g\in G\}\in \mathsf{fgAlg}(F)$.
 - 6. 取 $f(x) = x^5 + ax + b \in \mathbb{Q}[x]$, 证明 $Gal f \cong D_5$ 当且仅当成立如下三个条件:
 - 1. f(x) 在 \mathbb{Q} 上不可约;
 - 2. 判別式 $D(f) = 4^4 a^5 + 5^5 b^4 \in \mathbb{Q}^2$;
 - 3. f(x) 根式可解.
 - 7. (选做两个)
 - 1. 证明局部环 R,则有限生成平坦 R-模自由;
 - 2. $R \in \mathsf{CRing}$, F 是秩 n 自由 R-模, 证明 F 的自由子模 M 秩 $\leq n$;
 - 3. 证明; \mathbb{Z} 在 \mathbb{C} 上的整闭包不是 Noether 环.