Вычислить следующие интегралы:

 $\int \int xy^2dx dy$, если область Ω ограничена па-

раболой
$$y^2 = 2px$$
 и прямой $x = p/2$ $(p > 0)$.
3933. $\int_{0}^{\infty} \int \frac{dx \, dy}{\sqrt{2a - x}} (a > 0)$, если область Ω ограни-

чена кратчайшей дугой окружности с центром в точке (а, а) радиуса а, касающейся осей координат, и осями координат.

 $\iint |xy| dx dy$, если Ω — круг радиуса a о 3934.

центром в начале координат.

3935.
$$\iint_{\Omega} (x^2 + y^2) dx dy$$
, если Ω — параллелограмм

со сторонами y = x, y = x + a, y = a и y = 3a (a > 0). $\iint y^2 dx \ dy$, если Ω ограничена осью абсцисс

и первой аркой циклоиды $x = a (t - \sin t), y =$ $= a (1 - \cos t) (0 \le t \le 2\pi).$

В двойном интеграла

$$\iint_{\Omega} f(x, y) dx dy$$

перейти к полярным координатам r и ϕ , полагая x = $= r \cos \varphi$ и $y = r \sin \varphi$, и расставить пределы интегрирования, если:

3937. $\Omega - \text{круг } x^2 + y^2 \leq a^2$.

3938. $\Omega - \text{круг } x^2 + y^2 \le ax \ (a > 0)$.

3939. Ω — кольцо $a^2 \leqslant x^2 + y^2 \leqslant b^2$.

3940. Ω — треугольник $0 \le x \le 1$; $0 \le y \le 1-x$.

3941. Ω — параболический сегмент — $a \le x \le a$; $x^2/a \leqslant y \leqslant a.$

3942. В каком случае после перехода к полярным координатам пределы интегрирования будут янные?

Перейти к полярным координатам г и ф, полагая $x = r \cos \varphi$ и $y = r \sin \varphi$, и расставить пределы интегрирования в том и другом порядке в следующих интегралах:

3943.
$$\int_0^1 dx \int_0^1 f(x, y) dy$$
, **3944.** $\int_0^1 dx \int_{1-x}^{\sqrt{1-x^2}} f(x, y) dy$.