

(a) She measures the length l of the pendulum four times with a metre rule and records the following values.

<i>l /</i> cm			
l_1	l_2	l_3	l_4
85.5	86.0	87.5	85.5

She calculates the mean length $l_{\rm m}$ of the pendulum using the following method:

$$l_{\rm m} = \frac{85.5 + 86.0 + 87.5 + 85.5}{4} = 86.1 \,\rm cm$$

(i) Calculate a more accurate value for $l_{\rm m}$.

(2)

calculated value for $l_{\rm m}$.

(2)

(b) She sets the pendulum into oscillations with small amplitude and uses a stopwatch to determine the time period.

The student releases the pendulum at A and simultaneously starts the stopwatch. She measures the time taken for 5 oscillations and divides the value by 5. She repeats the procedure twice and calculates a mean time period.

Explain two modifications to the student's method that would improve the value obtained for the time period.

(4)