

Assessment Report

on

"Predict Loan Default"

submitted as partial fulfillment for the award of

BACHELOR OF TECHNOLOGY DEGREE

SESSION 2024-25

in

CSE(AIML)

By

Name: Vikrant Baliyan

Roll Number: 202401100400211

Section: C

Under the supervision of

"ABHISHEK SHUKLA"

KIET Group of Institutions, Ghaziabad

May, 2025

1. Introduction

This report outlines a machine learning approach to predict loan default using financial history and credit scores. The goal is to classify whether a borrower will default on a loan based on features such as income, employment status, credit history, and other financial indicators. Accurate prediction of loan default can help financial institutions minimize risk and improve lending decisions.

2. Methodology

The methodology used in this classification problem consists of the following steps:

1. **Data Loading**: The dataset is loaded from a CSV file.

2. Data Preprocessing:

- Removal of the non-informative identifier column (LoanID).
- Encoding of categorical features using LabelEncoder.
- 3. **Train-Test Split**: The dataset is split into 80% training and 20% testing sets.
- 4. **Model Training**: A RandomForestClassifier is trained on the training data.

5. Model Evaluation:

- A confusion matrix is used to visualize classification performance.
- Accuracy, precision, recall, and F1-score are reported.

3. CODE

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import LabelEncoder
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import confusion_matrix, classification_report
# Load dataset
df = pd.read_csv("1. Predict Loan Default.csv")
if 'LoanID' in df.columns:
  df = df.drop(columns=['LoanID'])
# Encode categorical variables
categorical_cols = df.select_dtypes(include='object').columns
for col in categorical_cols:
  le = LabelEncoder()
  df[col] = le.fit_transform(df[col])
# Features and target
X = df.drop(columns=['Default'])
y = df['Default']
# Train-test split
```

```
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

# Model training

clf = RandomForestClassifier(random_state=42)

clf.fit(X_train, y_train)

y_pred = clf.predict(X_test)

# Evaluation

print(confusion_matrix(y_test, y_pred))

print(classification_report(y_test, y_pred))
```

4. Output

Confusion Matrix:

Predicted No Default Predicted Default

Actual No Default 45,000 170

Actual Default 5,617 283

5. References

- Scikit-learn documentation
- Seaborn documentation
- Matplotlib documentation
- Dataset: Provided by user