

TalkingData
Predicting consumer demographics

Vivian Wu

+ Problem

- Businesses need to be smart to survive in the competitive business world
- Have to, at the bare minimum, be mindful of:
 - Knowing what their clients need
 - Being able to meet that demand
 - Attracting new clients
- Need to properly interpret and make use of the data

*Project Description

- TalkingData
 - China's largest data intelligence solution provider
 - Founded in 2011

 Using their data, predict a mobile user's demographic group (gender & age group)

Data Acquisition

- Data acquired from a Kaggle competition
- Data source comprised of 8 separate CSV files:
 - app_events.csv
 - app_labels.csv
 - events.csv
 - gender_age_test.csv
 - gender_age_train.csv
 - label_categories.csv
 - phone_brand_device_model.csv
 - sample_submission.csv

Data Wrangling

- Most of the datasets were too large to process on a single machine
- Dask
 - Large datasets spread over multiple nodes
 - Enables parallel computation
 - Full support for Python (unlike Spark, a popular alternative)

```
app_events = dd.read_csv('talkingdata/app_events.csv')
app_labels = dd.read_csv('talkingdata/app_labels.csv')
events = dd.read_csv('talkingdata/events.csv')
train = dd.read_csv('talkingdata/gender_age_train.csv')
label_categories = dd.read_csv('talkingdata/label_categories.csv')
phone_brand_model = dd.read_csv('talkingdata/phone_brand_device_model.csv')
```

Data Wrangling

- No missing values
- Create new column: "app_count"
 - Only attainable through merging multiple tables
 - Grouped by "device_id" after each merge to remove duplicates and get app count

	device_id	gender	age	group	app_count	phone_brand	device_model
0	-8260683887967679142	М	35	M32-38	53	小米	MI 2
1	7477216237379271436	F	37	F33-42	26	华为	荣耀6 plus
2	6352067998666467520	М	32	M32-38	19	华为	荣耀畅玩4X
3	8026504930081700361	М	25	M23-26	31	小米	MI 4
4	-7271319853104672050	М	27	M27-28	34	三星	Galaxy Note 3

Exploratory Data Analysis

- Majority of data gathered from eastern region of China
 - 5 most populous cities (Shanghai, Beijing, Tianjin, Shenzhen, Guangzhou) are located in eastern China

+

Exploratory Data Analysis

Bar chart of age group distribution

- Top two age group (female): under 23 and 33-42
- Top two age group (male): 23-26 and 32-38
- Gender imbalance in dataset, but is representative of the Chinese population because male population outnumbers female population by at least 30 million

Exploratory Data Analysis

■ Top 10 mobile phone brands in China

Leading by a staggering amount

Exploratory Data Analysis

Chinese men and women have slightly different preferences when it comes to mobile devices

- Huawei & Meizu devices more popular to men
- Chinese women more likely to get a Samsung over Huawei

Inferential Statistics

Most, if not all, features in this dataset have skewed distributions

- Mann-Whitney U test
 - Tests whether two samples are likely to derive from the same population

Inferential Statistics

- Null hypotheses:
 - The distributions of age between genders are the same
 - The distributions of number of apps per device by gender are the same
- Significance level: 0.05

Mann Whitney U p-value (age): 0.05365886631268518

- 1. Distributions of age between genders are the same
 - P-value is slightly larger than 0.05
 - Fail to reject null hypothesis

```
Mann Whitney U p-value (number of apps): 1.4108724351737035e-13
```

- 2. Distributions of number of apps are *not* the same
 - P-value is significantly smaller than 0.05
 - Reject null hypothesis

Machine Learning

- Random Forest Classifier
- Combine brand and model into one column

phone_brand	device_model
小米	MI 2
华为	荣耀6 plus
华为	荣耀畅玩4X
小米	MI 4
三星	Galaxy Note 3

- Men and women seem to have slightly different preferences in mobile phone brands
- Use phone to predict demographic group

Machine Learning

- Machine learning algorithms have difficulty working with categorical data
 - Use a method called Feature Hashing to convert each unique phone value to a hash value

	app_count	t	0	1	2	3	4	5	6	7	8	 880	881	882	883	884	885	886	887	888	889
0	53	3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
1	26	ò	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2	19)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
3	31		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
4	34	ı	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

Machine Learning

Result of model performance

- F1 score is a metric that measures accuracy
 - F1 score close to 1 indicates predictions are quite accurate
 - Looking at just the kind of phone and number of apps is not enough

Conclusion

- Poor model performance
- Ideas to improve performance (NEXT STEPS):
 - Utilize text mining and/or Natural Language Processing (NLP) techniques to analyze mobile app label categories
 - 900+ unique label categories in dataset
 - Different gender/age group possibly interested in different kinds of mobile apps
 - App categories should improve model performance
 - Analyze app usage based on time of day