

Cátedra: MECANICA APLICADA
MECANICA Y MECANISMOS

UNIDAD 5: Correas trapezoidales

Trabajo practico A5:

DIMENSIONAMIENTO DE TRANSMISIONES POR CORREAS TRAPEZOIDALES

Problema 1

Para la resolución se utiliza el Catalogo técnico del fabricante DUNLOP

Generalidades de la selección de correas

Se pueden presentar varias situaciones a resolver:

- A) Dimensionamiento completo de un mando de transmisión, conociendo los datos de la <u>potencia</u> a transmitir, <u>velocidad</u> angular del eje motor y eje conducido, tipo de motor y maquina, horas de funcionamiento diarias y distancia entre centros aproximada.
- B) **Dimensionamiento completo de un mando de transmisión**, idem al caso anterior, con el agregado que se <u>limita la cantidad de correas</u> que se puede utilizar en el mando de transmisión.
- C) Estudio de verificación de un mando de transmisión, es el caso en que se conoce la información de los elementos que integran la transmisión, como ser la sección y longitud de correa, los diámetros de las poleas, la cantidad, etc. De esta manera, la verificación se tratará fundamentalmente de calcular la potencia admisible del mando instalado, y compararla con la potencia del servicio (si es que tenemos este último valor). Además, también puede ser verificada la distancia entre centros y longitud de correa.

Ejercicio 1

Dimensionar la transmisión utilizando correas trapezoidales para un compresor de aire que tiene un motor eléctrico de torque normal. de 10 kW y una velocidad nominal de 1450 rpm. El compresor es bicilindrico y trabaja a una velocidad nominal de 670 rpm. La distancia entre centros es de 480 mm ±30 mm. Se espera que funcione un máximo de 14 hs/dia. Seleccionar la sección de correa, longitud, diámetros de poleas, cantidad de correas y datos para el tensionado. Calcular la nueva distancia entre centros.

Maquina:

COMPRESOR DE AIRE A PISTON

Motor:

MOTOR ELECTRICO

Transmisión:

CORREAS EN "V"

Variables de entrada:

P: Potencia a transmitir

n₁: Velocidad del motor

n₂: Velocidad del compresor

C: distancia entre ejes

Tipo de servicio

Cantidad de correas (opcional)

<u>Variables de salida:</u>

- 1) Potencia corregida Pc
- 2) Tamaño de la sección
- 3) Relación de transmisión
- 4) Diámetros de poleas
- 5) Verificación velocidad tangencial
- 6) Distancia entre ejes (opcional)
- (7) Longitud de la correa.
- 8) Prestación base y adicional (HP)
- 9) Factor de correcc. por longitud Fcl
- 10)Angulo de contacto α
- 11) Factor de correcc. por arco $Fc\alpha$
- 12)Prestación efectiva (HP)
- 13) Cantidad de correas
- 14) Deflexión y tensionado.

Maquina conducida:

Compresor de aire

Velocidad: 670 rpm

Horas de trabajo: 14 hs/día

Maquina motora:

Motor eléctrico torque normal 10 kW

Velocidad: 1450 rpm

Distancia entre ejes 480 mm

Condición de func: normal.

1. Potencia corregida Pc

Se obtiene de afectar la potencia de la transmisión (de la erogada por el motor o la consumida por la maquina) por el factor de servicio (o factor de corrección de potencia):

$$P_c = P \cdot f_{cp}$$

$$P_c = 10kW \cdot 1,3 = 13kW = 17,4HP$$

El factor de servicio deberá seleccionarse de tabla 3 – pag. 36.

Eje	erci	Tabla Nº 3 - Coeficiente de corrección Tipo de máquina conductora	Motores de corrie ardilla, sincrónico continua, bobinad	nte alterna, torque i os; fase partida. Mol do en shunt. Máquir rna, cilindros múltip	tores de corriente nas de combustión	Motores de corriente alternada, alto torque, alto deslizamiento, bobinado en serie y anillado colector. Motores de corriente continua, bobinado en serie y bobinado compound. Máquina a combustión interna, monocilindrica. Ejes en linea.					
		Tipo de máquina conducida	Servicio intermedio hasta 7 horas diarias	Servicio normal 8 a 15 horas diarias	Servicio continuo más de 16 horas diarias		ue directo y con en Servicio normal 8 a 15 horas diarias				
	\rightarrow	Agitador para lícuidos y semilíquidos, ventiladores y aspiradores, compresores y bombas centrífugas. Sopladores hasía 10 HP. Transportadores livianos.	1.0	1.1	1.2	1.1	1.2	1.3			
f_{cp}		Cintas transportadoras para arena, granos, e.c. Mezcladores de panadería. Se pladores de má de 10 HP, gel eradores. Línea a ejes (ejes principales), máquinas de lavaderos, máquinas herra nienta, punzadoras, prensa, guillotinas, bom pas rotativas positivas. Máquinas de imprenta, zarandas vibradoras y giratorias.	1.1	2	1.3	1.2	1.3	1.4			
		Máquina de ladrillos y cerámicas, elevadores a cangilones. Generadores y excitatrices. Compresores a pistón, transportadores, molinos a martillos, molinos batidores para papel, bombas a pistón, sopladores positivos. Pulverizadores, desmenuzadoras, sierras y máquinas para elaboración de madera, máquinas textiles.	1.2	1.3	1.4	1.4	1.5	1.6			

2. <u>Tamaño de la sección transversal de la correa</u>

3. Relación de transmisión

$$i = \frac{n_1}{n_2} = \frac{d_2}{d_1}$$
 $i = \frac{1450rpm}{670rpm} = 2.16$

4. <u>Tamaños de poleas</u>

Conociendo las velocidades de ambos ejes, obtenemos el radio de la polea motora de la tabla 1 – pag.14 y luego podremos calcular el diámetro de la polea conducida como sigue:

$$d_1 = 140mm$$
 $i = \frac{n_1}{n_2} = \frac{d_2}{d_1} \implies d_2 = i \cdot d_1$

$$d_2 = 2.16 \cdot 140mm = 303mm$$

Pero aumenta Longitud de correa, pesos de poleas.

5. Verificación de velocidad tangencial de la correa

Se deberá verificar que la velocidad tangencial de la correa no supere el valor de 30 m/s.

 $Vt = \frac{\pi \cdot 140mm \cdot 1450rpm}{60 \cdot 1000} = 10,6m/s$

6. <u>Distancia entre ejes (opcional)</u>

En el caso de este problema, la distancia entre ejes C esta definida como variable de entrada. Cuando la distancia entre centros no esta definida, hay varios criterios para establecerla, el catalogo Dunlop sugiere:

$$C \ge \frac{(i+1) \cdot d_1}{2} + d_1 \quad \text{para } 1 \le i < 3$$

$$C \ge d_2$$
 para $i \ge 3$

7. <u>Longitud de la correa</u>

Teniendo en cuenta las variables de entrada y los diámetros de polea, calculamos la longitud requerida de correa, usando la distancia entre centros C en su tolerancia mínima y máxima:

$$L = (2.C) + \left(\frac{\pi}{2} \cdot (d_1 + d_2)\right) + \left(\frac{\left(d_2 - d_1\right)^2}{4.C}\right)$$

$$C = 480mm \pm 30mm \qquad 450mm \le C \le 510mm$$

$$L_{\min} = (2 \cdot 450mm) + \frac{\pi}{2} \cdot (303mm + 140mm) + \frac{(303mm - 140mm)^2}{4 \cdot 450mm} = 1610,6mm$$

$$L_{med} = (2.480mm) + \left(\frac{\pi}{2} \cdot (140mm + 303mm)\right) + \left(\frac{(303mm - 140mm)^2}{4.480mm}\right) = 1669,7mm$$

$$L_{\text{max}} = (2 \cdot 510mm) + \frac{\pi}{2} \cdot (303mm + 140mm) + \frac{(303mm - 140mm)^2}{4 \cdot 510mm} = 1728,9mm$$

7. <u>Longitud de la <mark>correa</mark></u>

Con la **longitud requerida de correa** buscamos en la tabla 6 – pag. 7 la longitud primitiva nominal mas cercana a la calculada:

Tabla № 6			Longitud prin	nitiva nominal	
Correa (in)	Sección Z (mm)	Sección A (mm)	Sección B (mm)	Sección C (mm	
41	1066	1075	1086	-	
42	1092	1106	11 <mark>00</mark>	_	
43	1117	1134	11 <mark>40</mark>	-	
44	1143	1153	11 <mark>56</mark>	1191	
45	1168	1186	11 <mark>84</mark>	1217	
46	1193	1199	12 <mark>04</mark>	1242	Corre
29	T3Z4	1032		13/0	B-6
60	1549	1556	15 <mark>56</mark>	1598	_ `
61	-	1584	16 01	1623	
62	-	1605	1626	1648	
63	-	1633	1641	1674	
(64)		1658	1674	1699	
65	-	1683	1695	1725	
66	-	1714	1724	1745	
67	-	1742	1743	1775	
68	()	1767	1770	1788	
69	(+)	1785	1794	1826	

Capacidad de transmisión de potencia por correa

Para determinar la capacidad de transmisión de potencia que tiene 1 correa en las condiciones seleccionadas en las etapas anteriores, se aplica la siguiente formula:

$$P_e = (P_b + \Delta P_i) . f_{cl} . f_{c\alpha}$$

P_e = Potencia efectiva de la correa

Es la **capacidad de transmisión de la correa** en las condiciones seleccionadas: velocidad, diámetros de las poleas y longitud de la correa

P_b = Potencia base

Es la capacidad de transmisión de la correa en las condiciones de ensayo del fabricante: **sección**, **relación de transmisión = 1**, **longitud de referencia**.

ΔP_i = Incremento de la potencia por relación de velocidad

Incremento de la velocidad para mandos con relaciones de velocidad distinta de 1.

f_{cl} = Factor de modificación de potencia por longitud.

Este factor considera la diferencia entre la longitud seleccionada, y la longitud con la que el fabricante hace el ensayo.

$f_{c\alpha}$ = Factor de modificación de potencia por ángulo de contacto.

Este factor considera la posibilidad de que el ángulo de contacto en la polea motora sea diferente de 180°.

8. Capacidad de transmisión base y adicional por correa

Usamos la tabla 2 – desde pag.27 para obtener la potencia en función del diámetro y la velocidad de la polea menor:

$$Pb = 3,52HP$$

 $\Delta Pi = 0,62HP$

```
Prestación adicional por relación de transmisión (en HP)
      1.02 1.05 1.09 1.13 1.19 1.25 1.35 1.52 2.00
 0.00 0.04 0.09 0.13 0.17 0.21 0.26 0.30 0.34 0.38
5 0.00 0.06 0.11 0.17 0.23 0.28 0.34 0.40 0.45 0.51
  De forma conservadora, para relación
  de velocidad >2 y velocidad de 1400
                                           09
  rpm, el incremento de prestación base
  es:
  \DeltaPi=0,62 HP
 0.00 0.06 0.12 0.18 0.24 0.29 0.35 0.41 0.47 0.53
 0.00 0.07 0.44 0.24 0.27 0.34 0.41 0.48 0.56 0.62
```


9. Factor de corrección de potencia por longitud de correa Utilizamos la tabla 4 – pag. 37 para obtener una variación de potencia en función de la longitud y la sección:

Tabla № 4			Sección de	a correa
Longitud correa	Z	Α	В	C
16	0.80	-		u u
24	0.83	-	3	25
26	0.84	0.81		-
31	0.89	0.84	6 . 9	<u>(4)</u>
35	0.92	0.87	0. <mark>3</mark> 1	-
38	0.93	0.88	0. <mark>3</mark> 3	-
42	0.95	0.90	0. <mark>8</mark> 5	-
46	0.97	0.92	0. <mark>8</mark> 7	-
51	0.99	0.94	0. <mark>8</mark> 9	0.80
55	1.00	0.96	0.70	0.81
60	-	0.98	0.92	0.82
68	+	1.00	0.95	0.85
75	-	1.02	0.97	0.87

Interpolando para long. 64 (entre 60 y 68):

Fcl=0,935

10. Angulo de contacto polea menor

$$\alpha = 180^{\circ} - \left[\left(57 \cdot \left(\frac{d_2 - d_1}{C} \right) \right) \right]$$

$$\alpha = 180^{\circ} - \left[\left(57 \cdot \left(\frac{303mm - 140mm}{480mm} \right) \right) \right] = 160,6^{\circ}$$

11. <u>Factor de corrección de potencia por arco de contacto</u> Utilizamos la tabla 5 – pag.38 para obtener la variación de potencia en función del arco de contacto en la polea menor:

Tabla № 5	Factor de corrección							
Arco de contacto sobre polea menor	Poleas acanaladas	Poleas acanalada/plana						
180°	1.00	Para polea						
175°	0.99	acanalada y						
170°	0.98	ángulo de contacto de 160°:						
167°	0.97	de 160 .						
164°	0 196	5 0.05						
160°	0.95	Fcα=0,95						

12. <u>Potencia efectiva por correa</u>

Ahora se determina la potencia total que puede transmitir 1 correa, la cual incluye 3 correcciones: por relación de velocidad, por arco de contacto y por **longitud**:

$$P_e = (P_b + \Delta P_i) . f_{cl} . f_{c\alpha}$$

$$P_b = 3,52HP$$

$$\Delta P_i = 0.62HP$$

$$f_{cl} = 0.935$$

$$f_{c\alpha} = 0.95$$

$P_e = (3,52HP + 0,62HP).0,935.0,95$

$P_{\rho} = 3,68HP$

Capacidad de potencia de la correa B-64, trabajando con poleas de 140 y 303 (diámetro), a 1400 rpm del eje motor.

Recordar que la potencia corregida es de 17.4 HP

13. Cantidad de correas necesaria para el mando

$$Q_s \leq 6$$

$$Q_s = \frac{P_c}{P_e}$$

$$Q_s = \frac{P_c}{P_s}$$
 $Q_s = \frac{17,4HP}{3,68HP} = 4,74 \Longrightarrow 5 \text{ correas}$

Resumen:

Correa B64 – Longitud de correa 1674 mm – Cant. 5 - d₁=140 d₂=303mm

Acciones correctivas para disminuir el numero de correas:

Aumentar los radios de las poleas (efecto 'disminutivo' "medio") Adoptar una sección transversal mayor (efecto 'disminutivo' mayor)

14. <u>Deflexión y tensionado de la correa</u>

$$Ls = \sqrt{\left(C^2 - \left(\frac{d_2 - d_1}{2}\right)^2\right)}$$

$$Ls = \sqrt{\left(480mm)^2 - \left(\frac{303mm - 140mm}{2}\right)^2\right)} = 473mm$$

Deflexión de 0.02 mm por milímetro del largo I Deflexión de 0.01 mm por milímetro del largo del $def = 0.02 \frac{mm}{mm} \cdot Ls$ = 500 mm $def = 0.02 \frac{mm}{mm} \cdot 473mm = 9.5mm$ mo supera los 500 mm.

condición 2

	Fuerza de deflexión	requerida para m	edir la tensión de in	stalación en transm	isiones con correa	s trapezoidales en	V				
			flexión de 0,02 por m irgo del tramo es de !		Condición 2 - Deflexión de 0,01 por milimetro del larç del tramo si el largo del tramo supera los 500 mm						
Corte de sección	Rango de diámetro de poleas pequeñas (mm)		e deflexión requerida o para velocidad de o		Fuerza F de deflexión requerida en el centro del tramo para velocidad de correas de:						
		De 0 m/s a 10 m/s (Nw)	De 10 m/s a 20 m/s (Ny)	De 20 m/s a 30 m/s (Nw)	De 0 m/s a 10 m/s (Nw)	De 10 m/s a 20 m/s (Nw)	De 10 m/s a 30 m/s (Nw)				
Z	56 a 100	8 a 12	7 a 9,5	6 a 7,5	4 a 6	3,5 a 5	3 a 4				
	arriba de 100	12 a 17	10 a 14	9 a 12	6 a 8,5	5,5 a 7	4,5 a 6				
Α	80 a 140	16 a 24	13 a 19	10 a 16	8 a 12	6,5 a 9,5	5,5 a 8				
	arriba de 140	24 a 35	1, a 28	16 a 24	12 a 18	9,5 a 14	8 a 12				
В	125 a 200	32 a 46	26 a 38	20 a 32	16 a 24	13 a 19	10 a 16				
	arriba de 200	48 a 70	38 a 58	32 a 48	24 a 35	19 a 29	16 a 24				
С	200 a 400	62 a 92	52 a 76	40 a 62	31 a 46	26 a 38	20 a 31				
	arriba de 400	92 a 140	72 a 116	62 a 92	46 a 70	38 a 58	31 a 46				
D	355 a 600	124 a 180	164 a 152	84 a 124	62 a 90	52 a 76	42 a 62				
	arriba de 600	180 a 268	152 a 230	124 a 180	90 a 134	76 a 115	62 a 90				

Para un vano recto de 473mm, perfil de correa B, diámetro de polea motora 140mm y vt=10,6m/s:

26 N<F<38 N Def=9.5 mm

Tabla A- pag.20

14. Ajuste de distancia entre centros

Para una distancia entre centros de 480mm, y perfil de correa B:

Tabla pag.18

	Despla	zamiento	(a) mínimo para	el mon	taje de la correa	(mm)	
Longitud de correa en milimetros.	Z	Α	В	С	D	Е	Desplazamiento (b) mínimo del tensor (mm)
500 % 1000	15	19	25	-	-	-	25
1001 % 1500	15	19	25	38	-	-	38
1501 % 2500	iĐ	ĺΘ	32	38	-		51)
2501 % 3000	-	25	32	38	-	-	63
3001 % 4000	-	25	38	38	51	-	75
4001 % 5000	-	-	-	51	51	63	90
5001 % 6000	-	-	-	51	51	63	101
6001 % 7000	-	-	-	51	63	63	113
7001 % 8500	-	-	-	51	63	76	127
8501 % 10500	-	-	-	51	63	76	152
> 10501	-	-	-	-	76	90	1,5 % 1

<u>Variables de entrada:</u>

P: Potencia a transmitir

n₁: Velocidad del motor

n₂: Velocidad del compresor

C: distancia entre ejes

Tipo de servicio

Cantidad de correas Qs=3

<u>Variables de salida:</u>

- 1) Potencia corregida Pc
- 2) Tamaño de la sección
- 3) Relación de transmisión
- 4) Diámetros de poleas
- 5) Verificación velocidad tangencial
- 6) Distancia entre ejes (opcional)
- 7) Longitud de la correa.
- 8) Prestación base y adicional (HP)
- 9) Factor de correcc. por longitud Fcl
- 10)Angulo de contacto α
- 11) Factor de correcc. por arco $Fc\alpha$
- 12)Prestación efectiva (HP)

13) Cantidad de correas (verificar)

14) Deflexión y tensionado.

15. Redimensionamiento 1

Dado que la cantidad de correas Qs puede resultar elevada para esta aplicación, se hace a continuación la reducción de dicha cantidad. Para ello, se **impone** la cantidad de correas Qs que el diseñador requiere para el mando, por ejemplo: Os = 3

Entonces, sabiendo que la potencia corregida es:

$$Pc = 17,4HP$$

Se puede escribir que:

$$Qs = \frac{Pc}{Pe}$$
 \Rightarrow $3 = \frac{17,4HP}{Pe}$ \Rightarrow $Pe = \frac{17,4HP}{3} = 5,8HP$

$$Pe_req = 5.8HP$$

El concepto es simple, si la potencia corregida a transmitir por el mando es de **17,4 HP**, y se quiere utilizar **3 correas**, la potencia efectiva que debe transmitir cada una de ellas es de **5,8 HP**.

Primero se probará <u>aumentando el diámetro</u> de la polea menor para conseguir una transmisión de potencia de **5,8 H**P por correa (por mas que el valor de tabla es el de **potencia base**)

Nuevamente, usamos la tabla 2 – desde pag.27, pero en este caso se ingresa con la velocidad de la polea menor, y con la potencia calculada en el paso anterior, para obtener un diámetro de la polea menor:

				P	e_r	eq =	5,81	HP				r	<i>i</i> 1 = 1	400	rpm		
Tabla Nº 2	- Secci	ón B															
Nº R.P.M.	R.P.M. Prestación Base (en HP)																
De la polea	Diámetro primitivo de la polea menor (mm)												(
menor	117	122	127	132	137	142	147	152	157	162	168	173	178	183	138	193	L
870	1.74	1.93	2.12	2.31	2.49	2.68	2.87	3.05	3.24	3.42	3.60	3.79	3.97	4.45	4.33	4.50	d
1160	2.12	2.36	2.61	2.85	3.09	2.32	3.56	3.80	4.03	4.26	4.49	4.72	4.94	5. 7	5.39	5.61	
1750	2.72	3.06	3.39	3.72	4.05	4.37	4.69	5.01	5.32	5.62	5.92	5.92	6.22	6.51	6.80	7.08	
200	0.57	0.62	0.67	0.72	0.77	0.82	0.87	0.92	0.97	1.02	1.07	1.12	1.17	1.22	1.27	1.32	
400	0.97	1.07	0.16	1.26	1.35	1.45	1.54	1.64	1.73	1.82	2.91	2.01	2.10	2.19	2.28	2.37	_
600	1.32	1.46	1.60	1.73	1.87	2.01	2.14	2.28	2.41	2.54	2.68	2.81	2.94	3.07	3.20	3.33	0
800	1.63	1.81	1.99	2.16	2.34	2.51	2.69	2.86	3.03	3.20	3.37	3.54	3.71	3.38	4.05	4.21	-
1000	1.91	2.13	2.34	2.56	2.77	2.98	3.19	3.40	3.61	3.81	4.02	4.22	4.42	4.62	4.82	5.02	4
1200	2.17	2.42	2.67	2.92	3.16	3.41	3.65	3.89	4.13	4.37	4.60	4.84	5.07	5.30	5.52	5.75	
1400	2.39	2.66	2.90	3.24	3.52	3.79	4.07	4.34	4.61	4.07	5.13	5.33	5)5(5.91	6.16	6.41	(
1600	2 59	2 91	3 22	3 53	3.84	A 1A	A AA	A 7A	5.03	5 32	5.61	5 89	6 17	6 44	6 72	E de	

Nuevo diámetro para la polea menor:

$$d_1 = 183mm$$

$$d_2 = 395mm$$

A diferencia del anterior que era:

$$d_1 = 140mm$$

Ahora se realiza todo el calculo desde el paso 4 en adelante.

Variables de entrada:

P: Potencia a transmitir

n₁: Velocidad del motor

n₂: Velocidad del compresor

C : distancia entre ejes

Tipo de servicio

Cantidad de correas Qs=2

<u>Variables de salida:</u>

- 1) Potencia corregida Pc
- 2) Tamaño de la sección
- 3) Relación de transmisión
- 4) Diámetros de poleas
- 5) Verificación velocidad tangencial
- 6) Distancia entre ejes (opcional)
- 7) Longitud de la correa.
- 8) Prestación base y adicional (HP)
- 9) Factor de correcc. por longitud Fcl
- 10)Angulo de contacto α
- 11) Factor de correcc. por arco $Fc\alpha$
- 12)Prestación efectiva (HP)

13)Cantidad de correas (verificar)

14) Deflexión y tensionado.

16. <u>dimensionamiento 3</u>

Una segunda alternativa sería reducir aún mas en numero de correas Qs. Ahora, se **impone** la cantidad de correas Qs = 2.

$$Qs = 2$$

Entonces, sabiendo que la potencia corregida es:

$$Pc = 17,4HP$$

Se puede escribir que:

$$Qs = \frac{Pc}{Pe}$$
 \Rightarrow $2 = \frac{17,4HP}{Pe}$ \Rightarrow $Pe = \frac{17,4HP}{2} = 8,7HP$

$$Pe_req = 8,7HP$$

El concepto es simple, si la potencia corregida a transmitir por el mando es de **17,4 HP**, y se quiere utilizar **2 correas**, la potencia efectiva que debe transmitir cada una de ellas es de **8,7 HP**.

Primero se probará <u>aumentando el diámetro</u> de la polea menor para conseguir una transmisión de potencia de **8,7 HP** por correa (por mas que el valor de tabla es el de **potencia base**)

Nuevamente, usamos la tabla 2 – desde pag.27, pero en este caso se ingresa con la velocidad de la polea menor, y con la potencia calculada en el paso anterior, para obtener un diámetro de la polea menor:

					Pe	_re	<i>q</i> =	8,71	HP					n1	= 14	400 <i>i</i>	rpm	
Tabla Nº 2	Tabla № 2 - Sección B																	
Nº R.P.M.		Prestación Base (en HP)																
De la polea		Diámetro primitivo de la polea menor (mm)																
menor	117	122	127	132	137	142	147	152	157	162	168	173	178	183	188	193	198	203
870	1.74	1.93	2.12	2.31	2.49	2.68	2.87	3.05	3.24	3.42	3.60	3.79	3.97	4.15	4.33	4.50	4.68	4.86
1160	2.12	2.36	2.61	2.85	3.09	2.32	3.56	3.80	4.03	4.26	4.49	4.72	4.94	5.17	5.39	5.61	5.83	6.05
1750	2.72	3.06	3.39	3.72	4.05	4.37	4.69	5.01	5.32	5.62	5.92	5.92	6.22	6.51	6.80	7.08	7.36	7.90
200	0.57	0.62	0.67	0.72	0.77	0.82	0.87	0.92	0.97	1.02	1.07	1.12	1.17	1.22	1.27	1.32	1.36	1.41
400	0.97	1.07	0.16	1.26	1.35	1.45	1.54	1.64	1.73	1.82	2.91	2.01	2.10	2.19	2.28	2.37	2.47	2.56
600	1.32	1.46	1.60	1.73	1.87	2.01	2.14	2.28	2.41	2.54	2.68	2.81	2.94	3.07	3.20	3.33	3.46	3.59
800	1.63	1.81	1.99	2.16	2.34	2.51	2.69	2.86	3.03	3.20	3.37	3.54	3.71	3.88	4.05	4.21	4.38	4.54
1000	1.91	2.13	2.34	2.56	2.77	2.98	3.19	3.40	3.61	3.81	4.02	4.22	4.42	4.62	4.82	5.02	5.22	5.41
1200	2.17	2.42	2.67	2.92	3.16	3.41	3.65	3.89	4.13	4.37	4.60	4.84	5.07	5.30	5.52	5.75	5.98	6.20
1400	2.39	2.00	2.90	3.24	3.02	3.19	4.07	4.34	4.01	4.07	0.13	0.39	J.63	0.91	0.10	D I	6.66	6.90
1600	2 59	2 91	3 22	3 53	3 84	A 1A	A AA	A 7A	5.03	5 32	5.61	5 89	6 17	6 44	6 72	AP A	X 25	751

De esta manera nos damos cuenta que no existe un tamaño de polea menor para la sección B, que pueda transmitir 8,7 HP a 1400 rpm, por aumentamos a sección C

Ahora usamos la tabla 2 – pag.31, pero en este caso se ingresa con la velocidad de la polea menor, y con la potencia calculada en el paso anterior, para obtener un diámetro de la polea menor:

	Tabla № 2	Secció	in C												
\	Nº D.P.M				Prestación Base (en HP)										
	De la			Diámetro primitivo de la polea menor (mm)											
	polea menor	178	190	203	216	229	241 254		267 279		292 305		317		
	870	4.43	5.26	6.09	6490	7.70	8.49	9.26			11.50				
	1160	5.28	6.32	7.34	8 34	9.31					13.90	14.70			
	1750	6.23	7.56	8.84	10.10	11.20			14.30		16.00	16.80	17.40		
	100	0.86	0.98	1.10	1 22	1.34	1.46	1.58	1.70	1.82	1.93	2.05	2.16		
	200	1.49	1.72	1.95	2 17	2.40	2.62	2.84	3.06	3.28	3.50	3.72	3.93		
	300	2.05	2.37	2.70	3.03	3.35	3.67	3.99	4.31	4.62	4.94	5.25	3.56		
	400	2.55	2.97	3.39	3,81	4.23	4.65	5.06	5.47	5.87	6.28	6.68	7.08		
	500	3.01	3.53	4.04	4.55	5.06	5.56	6.06	6.55	7.05	7.53	8.02	8.50		
	600	3.43	4.04	4.64	5.24	5.83	6.42	7.00	7.58	8.15	8.72	9.28	9.83		
	700	3.83	4.52	5.21	5.89	6.56	7.23	7.89	8.54	9.19	9.82	10.50	11.10		
	800	4.19	4.97	5.74	6.50	7.25	7.99	8.72	9.44	10.20	10.90	11.50	12.20		
	900	4.53	5.39	6.23	7.06	7.88	8.69	9.49	10.30	11.00	11.80	12.60	23.30		
	1000	4.84	5.77	6.69	7.59	8.47	9.34	10.20	11.00	11.90	12.70	13.50	14.20		
	1100	5.12	6.12	7.10	8. 07	8.01	9.94	10.90	11.70	12.60	13.50	14.30	15.10		
	1200	5.37	6.44	7.48	8.51	9.51	10.50	11.40	12.40	13.30	14.10	15.00	15.80		
	1300	5.60	6.73	7.83	8.00	9.94	11.00	12.00	12.90	13.80	14.70	15.60	16.40		
	1400	5.70	6.98	9 (8)	9.24	10.30	11.40	12.40	13.40	14.30	15.20	16.10	16.90		

$$Pe_req = 8,7HP$$

$$n1 = 1400rpm$$

Nuevo diámetro para la polea menor:

$$d_1 = 216mm$$

$$d_2 = 467mm$$

Ahora se realiza todo el calculo desde el paso 4 en adelante.

Ejercicio 1: Conclusión

 $\overline{Dimensionamiento-1}$

$$Dimensionamiento-2$$

Dimensionamiento - 3

$$perfil - B$$

$$d_1 = 140mm$$

$$d_2 = 303mm$$

$$Q_s = 5$$

$$perfil - B$$

$$d_1 = 183mm$$

$$d_2 = 395mm$$

$$Qs = 3$$

$$d_1 = 216mm$$

$$d_2 = 467mm$$

$$Qs = 2$$

costo????