Lab 3: Data Preparation

CPE232 Data Models

Owner: 66070501043 - Phoorin Chinphuad

[1] Reviews on Pandas

- 1.1) Discover
 - methods to explore and understand your DataFrame

```
In [159...
                    import pandas as pd
                    df = pd.read_csv('./sources/lab/nss15.csv')
In [160...
                    # see the shape of the dataframe
                    print(df.shape)
                  (334839, 12)
In [161...
                    # seeing the summary of the dataframe
                    print(df.info())
                 <class 'pandas.core.frame.DataFrame'>
                 RangeIndex: 334839 entries, 0 to 334838
                 Data columns (total 12 columns):
                  # Column Non-Null Count
                                                                                          Dtype
                   0 caseNumber 334839 non-null int64
                   1 treatmentDate 334839 non-null object

      1
      treatmentDate
      334839 non-null
      object

      2
      statWeight
      334839 non-null
      float64

      3
      stratum
      334839 non-null
      object

      4
      age
      334839 non-null
      int64

      5
      sex
      334837 non-null
      object

      6
      race
      205014 non-null
      object

      7
      diagnosis
      334839 non-null
      int64

      8
      bodyPart
      334839 non-null
      int64

      9
      disposition
      334839 non-null
      int64

      10
      location
      334839 non-null
      int64

                   10 location 334839 non-null int64
11 product 334839 non-null int64
                  dtypes: float64(1), int64(7), object(4)
                 memory usage: 30.7+ MB
In [162...
                    # seeing the stats of the column in dataframe
                    print(df.describe())
```

```
31.385451
                                    39.343028
                                                                   60.154591
         mean
                1.510271e+08
         std
                1.720330e+06
                                    34.142933
                                                   26.105098
                                                                    6.170699
         min
                1.501032e+08
                                    4.965500
                                                    0.000000
                                                                   41.000000
         25%
                1.504405e+08
                                   15.059100
                                                   10.000000
                                                                   57.000000
         50%
                1.507358e+08
                                    15.776200
                                                   23.000000
                                                                   59.000000
         75%
                1.510231e+08
                                   74.881300
                                                   51.000000
                                                                   64.000000
                1.603418e+08
                                   97.923900
                                                  107.000000
                                                                   74.000000
         max
                      bodyPart
                                  disposition
                                                     location
                                                                      product
                334839.000000
                               334839.000000
                                                334839.000000 334839.000000
         count
                     64.374192
                                                                  2098.900854
         mean
                                      1.307930
                                                      2.485451
                     24.002331
                                     0.977627
                                                      3.217617
                                                                  1332.222670
         std
         min
                     0.000000
                                     1.000000
                                                     0.000000
                                                                  106.000000
         25%
                     35.000000
                                     1.000000
                                                     0.000000
                                                                  1211.000000
         50%
                     75.000000
                                     1.000000
                                                     1.000000
                                                                  1807.000000
         75%
                     82.000000
                                     1.000000
                                                     5.000000
                                                                  3265.000000
         max
                     94.000000
                                     9.000000
                                                     9.000000
                                                                  5555.000000
In [163...
          # seeing the first 5 rows of the dataframe
           print(df.head())
            caseNumber treatmentDate statWeight stratum
                                                             age
                                                                     sex
                                                                            race
         0
             150733174
                            7/11/2015
                                           15.7762
                                                          ٧
                                                               5
                                                                    Male
                                                                             NaN
         1
             150734723
                             7/6/2015
                                           83.2157
                                                          S
                                                              36
                                                                    Male
                                                                          White
         2
             150817487
                             8/2/2015
                                           74.8813
                                                          L
                                                              20
                                                                  Female
                                                                             NaN
         3
             150717776
                            6/26/2015
                                           15.7762
                                                          V
                                                              61
                                                                    Male
                                                                             NaN
         4
             150721694
                             7/4/2015
                                           74.8813
                                                          L
                                                              88
                                                                  Female Other
            diagnosis
                        bodyPart
                                  disposition
                                                location
                                                          product
         0
                              33
                                                        9
                    57
                                             1
                                                              1267
         1
                    57
                              34
                                             1
                                                        1
                                                              1439
         2
                    71
                              94
                                             1
                                                        0
                                                              3274
         3
                    71
                              35
                                             1
                                                        0
                                                               611
         4
                    62
                              75
                                             1
                                                        0
                                                              1893
In [164...
          # seeing the last 5 rows of the dataframe
          print(df.tail())
                                             statWeight stratum
                  caseNumber treatmentDate
                                                                  age
                                                                           sex
                                                                                 race
         334834
                  150739278
                                 5/31/2015
                                                15.0591
                                                               V
                                                                    7
                                                                          Male
                                                                                  NaN
         334835
                  150733393
                                 7/11/2015
                                                 5.6748
                                                               C
                                                                    3
                                                                       Female
                                                                                Black
         334836
                  150819286
                                 7/24/2015
                                                15.7762
                                                               ٧
                                                                   38
                                                                          Male
                                                                                  NaN
         334837
                  150823002
                                  8/8/2015
                                                97.9239
                                                               Μ
                                                                   38
                                                                       Female
                                                                                White
         334838
                  150723074
                                 6/20/2015
                                                49.2646
                                                               Μ
                                                                    5
                                                                       Female
                                                                               White
                  diagnosis
                             bodyPart
                                        disposition
                                                     location product
         334834
                         59
                                    76
                                                  1
                                                             1
                                                                   1864
                                                                   1931
                         68
                                    85
                                                             0
         334835
                                                  1
                         71
                                    79
                                                  1
                                                             0
                                                                   3250
         334836
                         59
                                    82
                                                  1
                                                             1
                                                                    464
         334837
                         57
                                                  1
                                                             9
         334838
                                    34
                                                                   3273
          # seeing the list of columns in the dataframe
In [165...
          print(df.columns)
         Index(['caseNumber', 'treatmentDate', 'statWeight', 'stratum', 'age', 'sex',
                 'race', 'diagnosis', 'bodyPart', 'disposition', 'location', 'product'],
```

1.2) Selecting variables

dtype='object')

caseNumber

statWeight

count 3.348390e+05 334839.000000 334839.000000 334839.000000

age

diagnosis

• select specific columns from the DataFrame to create a new DataFrame with only those columns

```
df['age']
In [166...
                     5
Out[166...
          0
          1
                    36
          2
                    20
          3
                    61
                    88
          4
          334834 7
          334835
                    3
          334836 38
          334837 38
          334838
          Name: age, Length: 334839, dtype: int64
In [167...
          df['age'].head()
Out[167...
          0
               5
          1
               36
          2
               20
          3
               61
               88
          Name: age, dtype: int64
          df[['caseNumber', 'age']]
In [168...
Out[168...
                  caseNumber age
                    150733174
               0
                                 5
                    150734723
                                36
               2
                    150817487
                                20
                    150717776
                                61
               4
                    150721694
                                88
          334834
                    150739278
                               7
          334835
                    150733393
                                 3
          334836
                    150819286
                                38
          334837
                    150823002
                                38
          334838
                    150723074
                                 5
         334839 rows × 2 columns
In [169...
         # select columns based on the data type
          df.select_dtypes(include=['number'])
```

		caseNumber	statWeight	age	diagnosis	bodyPart	disposition	location	product
	0	150733174	15.7762	5	57	33	1	9	1267
	1	150734723	83.2157	36	57	34	1	1	1439
	2	150817487	74.8813	20	71	94	1	0	3274
	3	150717776	15.7762	61	71	35	1	0	611
	4	150721694	74.8813	88	62	75	1	0	1893
	•••								
33	4834	150739278	15.0591	7	59	76	1	1	1864
33	4835	150733393	5.6748	3	68	85	1	0	1931
33	4836	150819286	15.7762	38	71	79	1	0	3250
33	4837	150823002	97.9239	38	59	82	1	1	464
33	4838	150723074	49.2646	5	57	34	1	9	3273

334839 rows × 8 columns

```
In [170...
```

select row by .loc
df.loc[0]

Out[170...

caseNumber 150733174 treatmentDate 7/11/2015 15.7762 statWeight ٧ stratum 5 age sex Male race NaN 57 diagnosis 33 bodyPart disposition 1 location 9 1267 product Name: 0, dtype: object

In [171...

select column by .loc
df.loc[:6,'treatmentDate':'diagnosis']

Out[171...

	treatmentDate	statWeight	stratum	age	sex	race	diagnosis
0	7/11/2015	15.7762	V	5	Male	NaN	57
1	7/6/2015	83.2157	S	36	Male	White	57
2	8/2/2015	74.8813	L	20	Female	NaN	71
3	6/26/2015	15.7762	V	61	Male	NaN	71
4	7/4/2015	74.8813	L	88	Female	Other	62
5	7/2/2015	5.6748	С	1	Female	White	71
6	6/8/2015	15.7762	V	25	Male	Black	51

0		Γ	1	7	7	
U	uч	П	т	/	۷.	

	treatmentDate	age
4	7/4/2015	88
8	7/16/2015	98
39	5/3/2015	88
46	4/15/2015	91
63	1/12/2015	97
•••	•••	
334701	4/27/2015	86
334784	7/7/2015	82
334785	7/11/2015	86
334815	10/28/2015	85
334819	1/13/2015	85

20422 rows × 2 columns

In [173...

select row by .iloc
df.iloc[0:5]

Out[173...

	caseNumber	treatmentDate	statWeight	stratum	age	sex	race	diagnosis	bodyPart	dis
0	150733174	7/11/2015	15.7762	V	5	Male	NaN	57	33	
1	150734723	7/6/2015	83.2157	S	36	Male	White	57	34	
2	150817487	8/2/2015	74.8813	L	20	Female	NaN	71	94	
3	150717776	6/26/2015	15.7762	V	61	Male	NaN	71	35	
4	150721694	7/4/2015	74.8813	L	88	Female	Other	62	75	
4										•

In [174...

select column by .iloc
df.iloc[:,[0,1,2,3,4]]

\cap	14-	Γ1	7	/
U	иL	4	- /	4

	caseNumber	treatmentDate	statWeight	stratum	age
0	150733174	7/11/2015	15.7762	V	5
1	150734723	7/6/2015	83.2157	S	36
2	150817487	8/2/2015	74.8813	L	20
3	150717776	6/26/2015	15.7762	V	61
4	150721694	7/4/2015	74.8813	L	88
•••					
334834	150739278	5/31/2015	15.0591	V	7
334835	150733393	7/11/2015	5.6748	С	3
334836	150819286	7/24/2015	15.7762	V	38
334837	150823002	8/8/2015	97.9239	М	38
334838	150723074	6/20/2015	49.2646	М	5

334839 rows × 5 columns

1.3) Filtering the data

In [175...

filter rows based on the condition
df[df['age'] > 50]

Out[175...

	caseNumber	treatmentDate	statWeight	stratum	age	sex	race	diagnosis	bodyPar
3	150717776	6/26/2015	15.7762	V	61	Male	NaN	71	3
4	150721694	7/4/2015	74.8813	L	88	Female	Other	62	7
7	150704114	6/14/2015	83.2157	S	53	Male	White	57	3
8	150736558	7/16/2015	83.2157	S	98	Male	Black	59	7
16	150901411	8/27/2015	83.2157	S	65	Female	White	59	8
•••									
334811	150702215	6/27/2015	15.7762	V	51	Female	NaN	53	8
334815	151100368	10/28/2015	83.2157	S	85	Female	NaN	57	8
334819	150528367	1/13/2015	49.2646	М	85	Female	NaN	57	7
334826	150648619	6/17/2015	15.7762	V	52	Female	White	64	3
334829	150633526	4/4/2015	49.2646	М	51	Female	NaN	56	9

85235 rows × 12 columns

In [176... # filter coloum based on column name
 df.filter(like='age')

Out	[1]	76	
-----	-----	----	--

	age
0	5
1	36
2	20
3	61
4	88
•••	
334834	7
334835	3
334836	38
334837	38
334838	5

334839 rows × 1 columns

1.4) Sorting

• Sort the DataFrame by its index based on column

In [177...

sort the dataframe based on column name and ascending order
df.sort_values(by='statWeight', ascending=False)

Out[177...

	caseNumber	treatmentDate	statWeight	stratum	age	sex	race	diagnosis	bodyPar
59985	151114128	11/1/2015	97.9239	М	17	Male	Black	64	3
239709	150809041	8/2/2015	97.9239	М	34	Female	White	57	8
239711	151018719	10/5/2015	97.9239	М	72	Female	Black	59	3
239659	151138100	10/25/2015	97.9239	М	24	Male	NaN	64	3
239696	150903084	8/25/2015	97.9239	М	75	Male	NaN	53	7
•••								···	
123586	151201944	11/28/2015	4.9655	С	11	Female	White	56	3
123589	151226169	12/8/2015	4.9655	С	5	Male	Black	64	3
138289	151132404	11/8/2015	4.9655	С	6	Female	White	57	7
138295	151136771	11/14/2015	4.9655	С	5	Female	Black	59	7
138235	151150939	11/19/2015	4.9655	C	14	Female	White	64	9

334839 rows × 12 columns

In [178...

sort the index of the dataframe
df.sort_index()

\cap	4	- Г	1	7	0	
\cup	uι	. 1	т.	/	0	

	caseNumber	treatmentDate	statWeight	stratum	age	sex	race	diagnosis	bodyPar
0	150733174	7/11/2015	15.7762	V	5	Male	NaN	57	3
1	150734723	7/6/2015	83.2157	S	36	Male	White	57	3.
2	150817487	8/2/2015	74.8813	L	20	Female	NaN	71	9.
3	150717776	6/26/2015	15.7762	V	61	Male	NaN	71	3
4	150721694	7/4/2015	74.8813	L	88	Female	Other	62	7
•••									
334834	150739278	5/31/2015	15.0591	V	7	Male	NaN	59	7
334835	150733393	7/11/2015	5.6748	С	3	Female	Black	68	8
334836	150819286	7/24/2015	15.7762	V	38	Male	NaN	71	7
334837	150823002	8/8/2015	97.9239	М	38	Female	White	59	8
334838	150723074	6/20/2015	49.2646	М	5	Female	White	57	3,

334839 rows × 12 columns

1.5) Add/Remove

• This section shows how to manipulate the DataFrame's structure

In [179...

Dropping the column
df.drop(columns=['disposition'])

Out[179...

	caseNumber	treatmentDate	statWeight	stratum	age	sex	race	diagnosis	bodyPar
0	150733174	7/11/2015	15.7762	V	5	Male	NaN	57	3
1	150734723	7/6/2015	83.2157	S	36	Male	White	57	3,
2	150817487	8/2/2015	74.8813	L	20	Female	NaN	71	9.
3	150717776	6/26/2015	15.7762	V	61	Male	NaN	71	3
4	150721694	7/4/2015	74.8813	L	88	Female	Other	62	7
•••									
334834	150739278	5/31/2015	15.0591	V	7	Male	NaN	59	7
334835	150733393	7/11/2015	5.6748	C	3	Female	Black	68	8
334836	150819286	7/24/2015	15.7762	V	38	Male	NaN	71	7
334837	150823002	8/8/2015	97.9239	М	38	Female	White	59	8
334838	150723074	6/20/2015	49.2646	М	5	Female	White	57	3,

334839 rows × 11 columns

In [180...

Adding column and create into a new column
df.assign(new_column=df['diagnosis'] + df['bodyPart'])

Ο.	[- a	\circ	\sim	
()	IT I	- 1	\times	0	
\circ	4 6 1	-	\circ	$\cup \cdots$	

		caseNumber	treatmentDate	statWeight	stratum	age	sex	race	diagnosis	bodyPar
	0	150733174	7/11/2015	15.7762	V	5	Male	NaN	57	3
	1	150734723	7/6/2015	83.2157	S	36	Male	White	57	3,
	2	150817487	8/2/2015	74.8813	L	20	Female	NaN	71	9.
	3	150717776	6/26/2015	15.7762	V	61	Male	NaN	71	3
	4	150721694	7/4/2015	74.8813	L	88	Female	Other	62	7
	•••									
334	4834	150739278	5/31/2015	15.0591	V	7	Male	NaN	59	7
334	4835	150733393	7/11/2015	5.6748	С	3	Female	Black	68	8
334	4836	150819286	7/24/2015	15.7762	V	38	Male	NaN	71	7:
334	4837	150823002	8/8/2015	97.9239	М	38	Female	White	59	8
334	4838	150723074	6/20/2015	49.2646	М	5	Female	White	57	3,

334839 rows × 13 columns

In [181...

```
# Removing the column and assigning it to a new variable
ages = df.pop('age')
```

- 1.6) Clean missing
 - to remove rows with missing values or replace missing values with a specified value

In [182...

replaceing the missing values with a specified value
df.fillna(value=0)

Out[182...

	caseNumber	treatmentDate	statWeight	stratum	sex	race	diagnosis	bodyPart	dis
0	150733174	7/11/2015	15.7762	V	Male	0	57	33	
1	150734723	7/6/2015	83.2157	S	Male	White	57	34	
2	150817487	8/2/2015	74.8813	L	Female	0	71	94	
3	150717776	6/26/2015	15.7762	V	Male	0	71	35	
4	150721694	7/4/2015	74.8813	L	Female	Other	62	75	
•••									
334834	150739278	5/31/2015	15.0591	V	Male	0	59	76	
334835	150733393	7/11/2015	5.6748	С	Female	Black	68	85	
334836	150819286	7/24/2015	15.7762	V	Male	0	71	79	
334837	150823002	8/8/2015	97.9239	М	Female	White	59	82	
334838	150723074	6/20/2015	49.2646	М	Female	White	57	34	

334839 rows × 11 columns

In [183... # Remove the rows with missing values
df.dropna()

Out[183...

	caseNumber	treatmentDate	statWeight	stratum	sex	race	diagnosis	bodyPart	dis
1	150734723	7/6/2015	83.2157	S	Male	White	57	34	
4	150721694	7/4/2015	74.8813	L	Female	Other	62	75	
5	150721815	7/2/2015	5.6748	С	Female	White	71	76	
6	150713483	6/8/2015	15.7762	V	Male	Black	51	33	
7	150704114	6/14/2015	83.2157	S	Male	White	57	30	
•••									
334830	150628863	6/8/2015	15.7762	V	Female	White	64	79	
334831	150607637	5/22/2015	5.6748	С	Female	Black	59	94	
334835	150733393	7/11/2015	5.6748	C	Female	Black	68	85	
334837	150823002	8/8/2015	97.9239	М	Female	White	59	82	
334838	150723074	6/20/2015	49.2646	М	Female	White	57	34	

205014 rows × 11 columns

[2] Data Cleaning and Preparation

.isnull, .dropna, .fillna

2.1) checking

```
In [184...
          df.columns
          Index(['caseNumber', 'treatmentDate', 'statWeight', 'stratum', 'sex', 'race',
Out[184...
                  'diagnosis', 'bodyPart', 'disposition', 'location', 'product'],
                 dtype='object')
In [185...
          # isnull checking
          df.isnull().sum()
Out[185...
          caseNumber
                                 0
           treatmentDate
           statWeight
           stratum
           sex
                                 2
           race
                          129825
           diagnosis
                                 0
           bodyPart
                                 0
           disposition
           location
                                 0
           product
           dtype: int64
```

```
# percentage of missing values for the race
In [186...
           df.race.isnull().sum()/df.shape[0]*100
Out[186...
           np.float64(38.772365226272925)
In [187...
           df.shape[0]
Out[187...
           334839
           2.2) Drop column
In [188...
           # remove column by using
           df = df.drop(columns=['race'])
In [189...
           df.head()
Out[189...
              caseNumber treatmentDate statWeight stratum
                                                                    sex diagnosis bodyPart disposition loca
           0
                150733174
                                7/11/2015
                                               15.7762
                                                                   Male
                                                                               57
                                                                                          33
                                                                                                       1
           1
                150734723
                                 7/6/2015
                                               83.2157
                                                              S
                                                                   Male
                                                                               57
                                                                                          34
           2
                150817487
                                 8/2/2015
                                               74.8813
                                                              L Female
                                                                               71
                                                                                          94
                                                                                                       1
           3
                150717776
                                 6/26/2015
                                               15.7762
                                                                   Male
                                                                               71
                                                                                          35
           4
                150721694
                                 7/4/2015
                                               74.8813
                                                              L Female
                                                                               62
                                                                                          75
                                                                                                       1
           2.3) Data imputation
In [190...
           # fillna
           df['age'] = df['age'].fillna(df['age'].median())
```

```
KeyError
                                          Traceback (most recent call last)
File c:\Users\Feen Phoorin\AppData\Local\Programs\Python\Python313\Lib\site-packages\pandas
\core\indexes\base.py:3805, in Index.get_loc(self, key)
  3804 try:
            return self._engine.get_loc(casted_key)
-> 3805
   3806 except KeyError as err:
File index.pyx:167, in pandas._libs.index.IndexEngine.get_loc()
File index.pyx:196, in pandas._libs.index.IndexEngine.get_loc()
File pandas\\_libs\\hashtable_class_helper.pxi:7081, in pandas._libs.hashtable.PyObjectHashT
able.get_item()
File pandas\\ libs\\hashtable class helper.pxi:7089, in pandas. libs.hashtable.PyObjectHashT
able.get_item()
KeyError: 'age'
The above exception was the direct cause of the following exception:
KeyError
                                         Traceback (most recent call last)
Cell In[190], line 2
      1 # fillna
----> 2 df['age'] = df['age'].fillna(df['age'].median())
File c:\Users\Feen_Phoorin\AppData\Local\Programs\Python\Python313\Lib\site-packages\pandas
\core\frame.py:4102, in DataFrame.__getitem__(self, key)
   4100 if self.columns.nlevels > 1:
          return self._getitem_multilevel(key)
-> 4102 indexer = self.columns.get_loc(key)
   4103 if is_integer(indexer):
   4104
          indexer = [indexer]
File c:\Users\Feen_Phoorin\AppData\Local\Programs\Python\Python313\Lib\site-packages\pandas
\core\indexes\base.py:3812, in Index.get_loc(self, key)
           if isinstance(casted_key, slice) or (
   3807
   3808
                isinstance(casted key, abc.Iterable)
   3809
                and any(isinstance(x, slice) for x in casted_key)
  3810
  3811
               raise InvalidIndexError(key)
-> 3812
          raise KeyError(key) from err
  3813 except TypeError:
   3814
          # If we have a listlike key, check indexing error will raise
          # InvalidIndexError. Otherwise we fall through and re-raise
  3815
           # the TypeError.
   3816
  3817
          self._check_indexing_error(key)
KeyError: 'age'
```

[Q1] From the above cell, Why it showing an error?

Ans: Because the line | ages = df.pop('age') | removes the 'age' column from df, so when I try to fill missing values in df['age'], the column no longer exists.

[Q2] Fix the error from Q1 problem.

```
In [191... # [Q2]
# hint: see the cell that run `df.pop()`
df["age"] = ages
```

```
# fillna again
df['age'] = df['age'].fillna(df['age'].median())
df.head()
```

Out[191...

	caseNumber	treatmentDate	statWeight	stratum	sex	diagnosis	bodyPart	disposition	loca
0	150733174	7/11/2015	15.7762	V	Male	57	33	1	
1	150734723	7/6/2015	83.2157	S	Male	57	34	1	
2	150817487	8/2/2015	74.8813	L	Female	71	94	1	
3	150717776	6/26/2015	15.7762	V	Male	71	35	1	
4	150721694	7/4/2015	74.8813	L	Female	62	75	1	
4									•

2.4) Drop row that have missing value

```
In [192...
          # remove column by using .dropna()
          df = df.dropna()
In [193...
          df.isnull().sum()
                           0
Out[193...
          caseNumber
          treatmentDate
                           0
          statWeight
          stratum
                           0
           sex
                           0
          diagnosis
          bodyPart
                           0
          disposition
           location
          product
                           0
          age
          dtype: int64
```

Datetime

2.5) Working with the datetime format

```
In [194... df["treatmentDate"] = pd.to_datetime(df["treatmentDate"], format="%m/%d/%Y")

C:\Users\Feen_Phoorin\AppData\Local\Temp\ipykernel_19824\3208943844.py:1: SettingWithCopyWarning:
    A value is trying to be set on a copy of a slice from a DataFrame.
    Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
    df["treatmentDate"] = pd.to_datetime(df["treatmentDate"], format="%m/%d/%Y")

In [195... df.info()
```

```
Index: 334837 entries, 0 to 334838
         Data columns (total 11 columns):
             Column
                            Non-Null Count
                                              Dtvpe
         --- -----
                             _____
                                              ----
             caseNumber
         0
                             334837 non-null int64
         1
             treatmentDate 334837 non-null datetime64[ns]
         2
                           334837 non-null float64
             statWeight
         3
             stratum
                             334837 non-null object
         4
             sex
                            334837 non-null object
         5
             diagnosis
                           334837 non-null int64
         6
             bodyPart
                            334837 non-null int64
         7
             disposition
                             334837 non-null int64
         8
             location
                             334837 non-null int64
         9
                             334837 non-null int64
             product
                             334837 non-null int64
         10 age
         dtypes: datetime64[ns](1), float64(1), int64(7), object(2)
         memory usage: 30.7+ MB
In [196...
         df['Year'] = df['treatmentDate'].dt.year
         C:\Users\Feen_Phoorin\AppData\Local\Temp\ipykernel_19824\1686165144.py:1: SettingWithCopyWar
         ning:
         A value is trying to be set on a copy of a slice from a DataFrame.
         Try using .loc[row_indexer,col_indexer] = value instead
         See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guid
         e/indexing.html#returning-a-view-versus-a-copy
          df['Year'] = df['treatmentDate'].dt.year
In [197...
         df['Month'] = df['treatmentDate'].dt.month
        C:\Users\Feen_Phoorin\AppData\Local\Temp\ipykernel_19824\404848564.py:1: SettingWithCopyWarn
         ing:
         A value is trying to be set on a copy of a slice from a DataFrame.
         Try using .loc[row_indexer,col_indexer] = value instead
         See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guid
         e/indexing.html#returning-a-view-versus-a-copy
           df['Month'] = df['treatmentDate'].dt.month
In [198...
          df.head()
Out[198...
             caseNumber treatmentDate statWeight stratum
                                                                    diagnosis bodyPart disposition
                                                               sex
                                                                                                  loca
          0
               150733174
                             2015-07-11
                                           15.7762
                                                         V
                                                              Male
                                                                          57
                                                                                    33
                                                                                                1
          1
               150734723
                             2015-07-06
                                           83.2157
                                                              Male
                                                                          57
                                                                                    34
          2
               150817487
                             2015-08-02
                                           74.8813
                                                         L Female
                                                                          71
                                                                                    94
                                                                                                1
          3
               150717776
                             2015-06-26
                                                              Male
                                                                          71
                                                                                    35
                                           15.7762
          4
               150721694
                             2015-07-04
                                           74.8813
                                                         L Female
                                                                          62
                                                                                    75
                                                                                                1
         4
          [Q3] Can you change the format to DD/MM/YYYY? Show your work.
In [199...
          # change the format to DD/MM/YYYY
          df["treatmentDate"] = df["treatmentDate"].dt.strftime("%d/%m/%Y")
```

<class 'pandas.core.frame.DataFrame'>

df

C:\Users\Feen_Phoorin\AppData\Local\Temp\ipykernel_19824\2894307848.py:2: SettingWithCopyWar
ning:

A value is trying to be set on a copy of a slice from a DataFrame.

Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guid e/indexing.html#returning-a-view-versus-a-copy

df["treatmentDate"] = df["treatmentDate"].dt.strftime("%d/%m/%Y")

Out[199...

	caseNumber	treatmentDate	statWeight	stratum	sex	diagnosis	bodyPart	disposition
0	150733174	11/07/2015	15.7762	V	Male	57	33	
1	150734723	06/07/2015	83.2157	S	Male	57	34	
2	150817487	02/08/2015	74.8813	L	Female	71	94	
3	150717776	26/06/2015	15.7762	V	Male	71	35	
4	150721694	04/07/2015	74.8813	L	Female	62	75	
•••								
334834	150739278	31/05/2015	15.0591	V	Male	59	76	
334835	150733393	11/07/2015	5.6748	С	Female	68	85	
334836	150819286	24/07/2015	15.7762	V	Male	71	79	
334837	150823002	08/08/2015	97.9239	М	Female	59	82	
334838	150723074	20/06/2015	49.2646	М	Female	57	34	

334837 rows × 13 columns

4

Combine Dataframe by .merge and .concat

2.6 Merge

```
import pandas as pd

superstore_order = pd.read_csv('./sources/lab/Superstore/superstore_order.csv')
superstore_people = pd.read_csv('./sources/lab/Superstore/superstore_people.csv')
superstore_return = pd.read_csv('./sources/lab/Superstore/superstore_return.csv')
```

In [281... superstore_order.info()

```
<class 'pandas.core.frame.DataFrame'>
        RangeIndex: 8880 entries, 0 to 8879
        Data columns (total 21 columns):
            Column
                        Non-Null Count Dtype
        --- -----
                         _____
            Row ID
                        8880 non-null int64
         0
         1
            Order ID
                        8880 non-null object
         2
            Order Date
                        8880 non-null object
                        8880 non-null object
         3
            Ship Date
                        8880 non-null object
         4
           Ship Mode
         5 Customer ID 8880 non-null object
         6 Customer Name 8880 non-null object
                      8880 non-null object
         7
            Segment
         8 Country
                        8880 non-null object
         9
                        8880 non-null object
            City
                        8880 non-null object
         10 State
         11 Postal Code 8880 non-null int64
         12 Region 8880 non-null object
        13 Product ID 8880 non-null object
14 Category 8880 non-null object
         15 Sub-Category 8880 non-null object
         16 Product Name 8880 non-null object
         17 Sales
                     8880 non-null float64
                        8880 non-null int64
         18 Quantity
         19 Discount
                        8880 non-null float64
         20 Profit
                          8880 non-null float64
        dtypes: float64(3), int64(3), object(15)
        memory usage: 1.4+ MB
In [282...
         superstore_people.info()
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 4 entries, 0 to 3
        Data columns (total 2 columns):
         # Column Non-Null Count Dtype
            _____
          Person 4 non-null
                                 object
            Region 4 non-null
                                  object
        dtypes: object(2)
        memory usage: 196.0+ bytes
In [283...
         superstore_return.info()
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 296 entries, 0 to 295
        Data columns (total 2 columns):
         # Column Non-Null Count Dtype
                     -----
            Returned 296 non-null
                                    object
            Order ID 296 non-null
         1
                                   object
        dtypes: object(2)
        memory usage: 4.8+ KB
In [284...
         superstore_order.merge(superstore_return[superstore_return["Returned"]=="Yes"],
          on="Order ID",
          how="inner")\
          [["Customer ID", "Returned"]]\
          .drop_duplicates()
```

\cap	4-	700	/1
U	uч	Z04	+

	Customer ID	Returned
0	ZD-21925	Yes
3	TB-21055	Yes
10	JS-15685	Yes
13	LC-16885	Yes
20	BS-11755	Yes
•••		
688	ED-13885	Yes
689	TS-21205	Yes
696	MF-17665	Yes
702	SH-19975	Yes
705	RB-19435	Yes

222 rows × 2 columns

[Q4] What does the argument how="inner" do?

Ans: Keeps only the rows with matching values in both DataFrames based on the specified on = column

[Q5] In your opinion, what information that the result above conveys?

Ans: The result above conveys customer return behavior by listing customers who have returned at least one product.

More merging...

```
In [285...
```

```
superstore_order.merge(superstore_return,
on="Order ID" ,
how="inner")
```

	Row ID	Order ID	Order Date	Ship Date	Ship Mode	Customer ID	Customer Name	Segment	Country	
) 19	CA- 2014- 143336	27/08/2014	01/09/2014	Second Class	ZD-21925	Zuschuss Donatelli	Consumer	United States	Fr
	1 20	CA- 2014- 143336	27/08/2014	01/09/2014	Second Class	ZD-21925	Zuschuss Donatelli	Consumer	United States	Fr
;	2 21	CA- 2014- 143336	27/08/2014	01/09/2014	Second Class	ZD-21925	Zuschuss Donatelli	Consumer	United States	Fr
:	3 56	CA- 2016- 111682	17/06/2016	18/06/2016	First Class	TB-21055	Ted Butterfield	Consumer	United States	
	4 57	CA- 2016- 111682	17/06/2016	18/06/2016	First Class	TB-21055	Ted Butterfield	Consumer	United States	
•	•									
70	2 8870	CA- 2017- 101805	01/12/2017	06/12/2017	Standard Class	SH-19975	Sally Hughsby	Corporate	United States	
70	3 8871	CA- 2017- 101805	01/12/2017	06/12/2017	Standard Class	SH-19975	Sally Hughsby	Corporate	United States	
704	4 8872	CA- 2017- 101805	01/12/2017	06/12/2017	Standard Class	SH-19975	Sally Hughsby	Corporate	United States	
70	5 8873	US- 2014- 105137	10/10/2014	10/10/2014	Same Day	RB-19435	Richard Bierner	Consumer	United States	Со
70	5 8874	US- 2014- 105137	10/10/2014	10/10/2014	Same Day	RB-19435	Richard Bierner	Consumer	United States	Со
707	rows ×	22 colum	ns							

2.7) Concatenate

pd.concat([superstore_order, superstore_people], axis=1, join='inner')

_		г	\sim	$\overline{}$	_	
()	ПΤ		-)	×	6	
\sim	uч		\leq	\circ	\cup	

	Row ID	Order ID	Order Date	Ship Date	Ship Mode	Customer ID	Customer Name	Segment	Country	
0	1	CA- 2016- 152156	08/11/2016	11/11/2016	Second Class	CG-12520	Claire Gute	Consumer	United States	Hend
1	2	CA- 2016- 152156	08/11/2016	11/11/2016	Second Class	CG-12520	Claire Gute	Consumer	United States	Hend
2	3	CA- 2016- 138688	12/06/2016	16/06/2016	Second Class	DV-13045	Darrin Van Huff	Corporate	United States	An
3	4	US- 2015- 108966	11/10/2015	18/10/2015	Standard Class	SO-20335	Sean ODonnell	Consumer	United States	Laude

4 rows × 23 columns

[Q6] What is the difference between inner and outer on parameter join in pd.concat?

Ans:

- Inner Join: Included only the rows with matching indices in both DataFrames.
- Outer Join: Includes all rows in both DataFrames, filling missing values with NaN.

Groupby

In [287... superstore_order.groupby(['Segment','Ship Mode'])[['Sales','Quantity','Discount','Profit']]

		Sales	Quantity	Discount	Profit
Segment	Ship Mode				
Consumer	First Class	138594.9328	2455	110.29	18953.7264
	Same Day	53660.6340	1001	43.85	8555.7193
	Second Class	203605.6822	3489	127.29	24701.9148
	Standard Class	627061.3262	10430	443.05	68864.9892
Corporate	First Class	97720.1209	1670	73.07	12660.2526
	Same Day	41716.5550	366	14.50	1120.9222
	Second Class	130759.9288	2027	71.47	15582.1762
	Standard Class	359359.2109	6203	262.82	49832.6780
Home Office	First Class	76743.8674	924	39.82	11829.8821
	Same Day	20968.5170	343	12.50	3909.3442
	Second Class	77175.1080	1148	37.80	12785.8953
	Standard Class	218325.9795	3595	142.14	27298.5786

[Q7] Describe an information that the result above conveys?

Ans: The result above conveys a summation of the sales activity, profit, quantity sold, and discounting patterns based on the customer segments and shipping modes.

```
In [288... superstore_order["Profit Ratio"] = superstore_order["Profit"]/superstore_order["Sales"]
superstore_order[['Profit', 'Sales', 'Profit Ratio']]
```

Out[288...

In [289...

	Profit	Sales	Profit Ratio
0	41.9136	261.9600	0.1600
1	219.5820	731.9400	0.3000
2	6.8714	14.6200	0.4700
3	-383.0310	957.5775	-0.4000
4	2.5164	22.3680	0.1125
•••			
8875	-34.7580	185.3760	-0.1875
8876	-153.2024	58.9240	-2.6000
8877	225.6000	480.0000	0.4700
8878	9.5340	34.0500	0.2800
8879	92.5056	192.7200	0.4800

8880 rows × 3 columns

Category	Sub-Category	
Furniture	Bookcases	-0.127756
	Chairs	0.045028
	Furnishings	0.140782
	Tables	-0.147916
Office Supplies	Appliances	-0.145513
	Art	0.251678
	Binders	-0.191641
	Envelopes	0.421913
	Fasteners	0.301157
	Labels	0.429984
	Paper	0.425586
	Storage	0.092382
	Supplies	0.104970
Technology	Accessories	0.219012
	Copiers	0.317826
	Machines	-0.059535
	Phones	0.118926

[Q8] Describe an information that the result above conveys?

Ans: The results above show the average profit ratio for each subcategory in each category, with positive values indicating profit and negative values indicating loss.

Pivot and Melt

Pivot

In [290... superstore_order.pivot_table(index="State", columns="Ship Mode", values="Order ID", aggfund

Ship Mode	First Class	Same Day	Second Class	Standard Class
State				
Alabama	9.0	1.0	18.0	30.0
Arizona	42.0	15.0	22.0	123.0
Arkansas	10.0	2.0	8.0	35.0
California	302.0	106.0	346.0	1000.0
Colorado	43.0	5.0	32.0	95.0
Connecticut	19.0	8.0	11.0	39.0
Delaware	16.0	2.0	13.0	55.0
District of Columbia	0.0	0.0	3.0	7.0
Florida	47.0	25.0	57.0	210.0
Georgia	19.0	15.0	31.0	108.0

In [291... pivot_table_result = superstore_order.pivot_table(index="State", columns="Ship Mode", value pivot_table_result

Ship Mode	First Class	Same Day	Second Class	Standard Class
State				
Alabama	9.0	1.0	18.0	30.0
Arizona	42.0	15.0	22.0	123.0
Arkansas	10.0	2.0	8.0	35.0
California	302.0	106.0	346.0	1000.0
Colorado	43.0	5.0	32.0	95.0
Connecticut	19.0	8.0	11.0	39.0
Delaware	16.0	2.0	13.0	55.0
District of Columbia	0.0	0.0	3.0	7.0
Florida	47.0	25.0	57.0	210.0
Georgia	19.0	15.0	31.0	108.0
Idaho	3.0	0.0	2.0	13.0
Illinois	58.0	24.0	96.0	249.0
Indiana	13.0	3.0	30.0	79.0
lowa	1.0	1.0	4.0	17.0
Kansas	6.0	1.0	2.0	15.0
Kentucky	12.0	5.0	49.0	62.0
Louisiana	7.0	2.0	14.0	15.0
Maine	0.0	0.0	0.0	5.0
Maryland	18.0	7.0	12.0	63.0
Massachusetts	14.0	4.0	35.0	71.0
Michigan	20.0	16.0	43.0	151.0
Minnesota	9.0	4.0	13.0	59.0
Mississippi	3.0	4.0	7.0	36.0
Missouri	7.0	2.0	20.0	24.0
Montana	1.0	1.0	0.0	13.0
Nebraska	6.0	3.0	6.0	20.0
Nevada	4.0	1.0	12.0	17.0
New Hampshire	2.0	0.0	10.0	13.0
New Jersey	5.0	1.0	20.0	87.0
New Mexico	1.0	0.0	9.0	22.0
New York	155.0	57.0	183.0	606.0
North Carolina	36.0	14.0	40.0	139.0
North Dakota	0.0	0.0	5.0	2.0
Ohio	66.0	47.0	84.0	199.0

Ship Mode	First Class	Same Day	Second Class	Standard Class
State				
Oklahoma	5.0	6.0	7.0	44.0
Oregon	20.0	0.0	15.0	81.0
Pennsylvania	103.0	9.0	78.0	341.0
Rhode Island	16.0	0.0	21.0	16.0
South Carolina	3.0	5.0	18.0	16.0
South Dakota	2.0	0.0	0.0	9.0
Tennessee	21.0	2.0	24.0	118.0
Texas	125.0	37.0	161.0	537.0
Utah	4.0	2.0	19.0	28.0
Vermont	0.0	0.0	1.0	2.0
Virginia	39.0	4.0	33.0	115.0
Washington	56.0	34.0	97.0	265.0
West Virginia	0.0	0.0	0.0	3.0
Wisconsin	12.0	3.0	10.0	66.0
Wyoming	0.0	0.0	0.0	1.0

Melt

In [292... melted_result = pd.melt(pivot_table_result.reset_index(), id_vars=["State"], var_name="Ship
melted_result

Out[292...

	State	Ship Mode	Order Count
0	Alabama	First Class	9.0
1	Arizona	First Class	42.0
2	Arkansas	First Class	10.0
3	California	First Class	302.0
4	Colorado	First Class	43.0
•••			
191	Virginia	Standard Class	115.0
192	Washington	Standard Class	265.0
193	West Virginia	Standard Class	3.0
194	Wisconsin	Standard Class	66.0
195	Wyoming	Standard Class	1.0

196 rows × 3 columns

[Q9] What is the advantage of using melt?

Ans: Using melt() helps simplify data manipulation by turning wide-format data into a more flexible, readable, and analyzable long format. It's especially useful for tasks like grouping, summarizing, and visualizing data efficiently.

[Q10] From the superstore_order, display the ascending order considering values in the 'Profit' column to group the 'Category'.

I have provided 2 answers for [Q10], since this question is confusing.

In [302... superstore_order.pivot_table(index="Category", values="Profit", aggfunc="sum").sort_values(

Out[302... Profit

Category

Furniture 16858.5619

Office Supplies 105827.0238

Technology 133410.4932

In [303... superstore_order.sort_values(by='Profit', ascending=True).groupby('Category').head(5) # Display the 5 rows with the lowest profit in each group.

Out[303		Row ID	Order ID	Order Date	Ship Date	Ship Mode	Customer ID	Customer Name	Segment	Country
	7772	7773	CA- 2016- 108196	25/11/2016	02/12/2016	Standard Class	CS-12505	Cindy Stewart	Consumer	United States
	683	684	US- 2017- 168116	04/11/2017	04/11/2017	Same Day	GT-14635	Grant Thornton	Corporate	United States
	3011	3012	CA- 2017- 134845	17/04/2017	23/04/2017	Standard Class	SR-20425	Sharelle Roach	Home Office	United States
	4991	4992	US- 2017- 122714	07/12/2017	13/12/2017	Standard Class	HG-14965	Henry Goldwyn	Corporate	United States
	3151	3152	CA- 2015- 147830	15/12/2015	18/12/2015	First Class	NF-18385	Natalie Fritzler	Consumer	United States
	5310	5311	CA- 2017- 131254	19/11/2017	21/11/2017	First Class	NC-18415	Nathan Cano	Consumer	United States
	1199	1200	CA- 2016- 130946	08/04/2016	12/04/2016	Standard Class	ZC-21910	Zuschuss Carroll	Consumer	United States
	2697	2698	CA- 2014- 145317	18/03/2014	23/03/2014	Standard Class	SM- 20320	Sean Miller	Home Office	United States
	27	28	US- 2015- 150630	17/09/2015	21/09/2015	Standard Class	TB-21520	Tracy Blumstein	Consumer	United P States
	3324	3325	CA- 2014- 165309	11/11/2014	15/11/2014	Standard Class	KD-16270	Karen Daniels	Consumer	United States
	2928	2929	US- 2017- 120390	19/10/2017	26/10/2017	Standard Class	TH-21550	Tracy Hopkins	Home Office	United States
	5320	5321	US- 2017- 162558	02/10/2017	05/10/2017	First Class	Dp-13240	Dean percer	Home Office	United States
	463	464	CA- 2016- 109869	22/04/2016	29/04/2016	Standard Class	TN-21040	Tanja Norvell	Home Office	United States
	1369	1370	US- 2015- 103471	24/12/2015	28/12/2015	Standard Class	JR-15670	Jim Radford	Consumer	United States

	Row ID	Order ID	Order Date	Ship Date	Ship Mode	Customer ID	Customer Name	Segment	Country
5639	6640	CA- 2014- 108609	31/10/2014	02/11/2014	Second Class	AJ-10780	Anthony Jacobs	Corporate	United States

15 rows × 23 columns

[Q11] Create a new column that calculates the total price (sale*quantity) before discount then group by 'product id' and 'category', then show the mean of the total price

#enter your code here
superstore_order["Total Price Before Discount"] = superstore_order["Sales"]*superstore_order
superstore_order.groupby(["Product ID", "Category"]).agg(mean_total_price_bf_discounting =

Out[306...

mean_total_price_bf_discounting

Product ID	Category	
FUR-BO-10000112	Furniture	7426.566000
FUR-BO-10000330	Furniture	1258.192000
FUR-BO-10000362	Furniture	1726.898000
FUR-BO-10000468	Furniture	426.532400
FUR-BO-10000711	Furniture	3194.100000
	•••	
TEC-PH-10004912	Technology	747.320000
TEC-PH-10004922	Technology	673.249500
TEC-PH-10004924	Technology	57.149333
TEC-PH-10004959	Technology	412.009000
TEC-PH-10004977	Technology	2441.475429

1846 rows × 1 columns

[Q12] Complete the function to apply ratio column that calculates from First Class and Standard Class columns on pivot_table_result

```
In [295... # [Q12] Complete the function to apply `ratio` column that calculates from `First Class` an
    # function to transform the ratio
    def get_class_ratio(row):
        # get the first class column
        first_class = row['First Class']
        # get the standard class column
        standard_class = row['Standard Class']

# calculate the ratio
    ratio = first_class / standard_class
```

```
return ratio

pivot_table_result["ratio"] = pivot_table_result.apply(get_class_ratio, axis=1)

pivot_table_result.head()
```

Out[295...

Ship Mode	First Class	Same Day	Second Class	Standard Class	ratio
State					
Alabama	9.0	1.0	18.0	30.0	0.300000
Arizona	42.0	15.0	22.0	123.0	0.341463
Arkansas	10.0	2.0	8.0	35.0	0.285714
California	302.0	106.0	346.0	1000.0	0.302000
Colorado	43.0	5.0	32.0	95.0	0.452632

[Q13] After complete Q12, What does the apply function do?

Ans: apply function in Pandas is used to apply function along the rows or columns of a DataFrame

[Q14] Create a new column(short_ratio) that works the same as Q12 but with lambda function

```
In [ ]: # [Q14] Create a new column(`short_ratio`) that works the same as Q12 but with `lambda` fun
pivot_table_result["short_ratio"] = pivot_table_result.apply(lambda row: row['First Class']
pivot_table_result.head()
```

Out[]:	Ship Mode	First Class	Same Day	Second Class	Standard Class	ratio	short_ratio
	State						
	Alabama	9.0	1.0	18.0	30.0	0.300000	0.300000
	Arizona	42.0	15.0	22.0	123.0	0.341463	0.341463
	Arkansas	10.0	2.0	8.0	35.0	0.285714	0.285714
	California	302.0	106.0	346.0	1000.0	0.302000	0.302000
	Colorado	43.0	5.0	32.0	95.0	0.452632	0.452632

[Q15] What is the difference between using function in apply and lambda function? give 2 examples use case.

Ans: A function is generally used when there is a need to reuse logic, handle complex calculations, or perform multiple operations, but it requires a prior definition. In contrast, a lambda function is perfect for simple and concise logic, especially when the operation is a one-time task that doesn't need to be reused or require a prior definition.

Example use case:

```
In [318...
          df1['Ship Mode'].unique()
Out[318... array(['Second Class', 'Standard Class', 'First Class', 'Same Day'],
                 dtype=object)
In [319...
          # using apply regular function to define the shipping rate by shipping mode (ignore a dista
          def calculate_shipping_rate(row):
              if row['Ship Mode'] == 'Same Day':
                  shipping_rate = 100.00
              elif row['Ship Mode'] == 'First Class':
                  shipping_rate = 80.00
              elif row['Ship Mode'] == 'Second Class':
                  shipping_rate = 50.00
              else:
                  shipping_rate = 30.00
              return shipping_rate
          df1['Ship Rate'] = df1.apply(calculate_shipping_rate, axis=1)
          df1[['Ship Mode', 'Ship Rate']]
```

Out[319...

	Ship Mode	Ship Rate
0	Second Class	50.0
1	Second Class	50.0
2	Second Class	50.0
3	Standard Class	30.0
4	Standard Class	30.0
•••		
8875	Standard Class	30.0
8876	Standard Class	30.0
8877	Standard Class	30.0
8878	Standard Class	30.0
8879	First Class	80.0

8880 rows × 2 columns

```
In [320... # using apply Lambda to calculate total price
superstore_order['Total Price'] = superstore_order.apply(lambda row : row['Total Price Before
superstore_order[['Total Price Before Discount', 'Discount', 'Total Price']]
```

Ο.		г	-	2	0	
OL.	IT.		~	1	и	
\circ			\sim	_	\cup	

	Total Price Before Discount	Discount	Total Price
0	523.9200	0.00	523.920000
1	2195.8200	0.00	2195.820000
2	29.2400	0.00	29.240000
3	4787.8875	0.45	2633.338125
4	44.7360	0.20	35.788800
•••			
8875	370.7520	0.20	296.601600
8876	58.9240	0.80	11.784800
8877	1920.0000	0.00	1920.000000
8878	102.1500	0.00	102.150000
8879	2119.9200	0.00	2119.920000

8880 rows × 3 columns