RAJIV GANDHI UNIVERSITY OF KNOWLEDGE AND TECHNOLOGIES, BASAR

(A.Y.2021-2022)

Subject:DE and VC

Exam:E1S2(all except EE)MT-II

DATE:1-10-2022

ID No:

Duration:60 Min

Subject code:MA1201

Max Marks:30

SECTION-A

Answer all the questions. Each carries two marks

 $10 \times 2 = 20$

Note: Write the amswers in orderly at one place

1. The general solution of the differential equation $(D^3 - 3D - 2)y = 0$ is ...

A.
$$y(x)=(c_1+c_2x)e^{-x}+c_3e^{2x}$$

C. $y(x)=(c_1+c_2x)e^x+c_3e^{2x}$

B.
$$y(x)=(c_1+c_2x)e^{-2x}+c_3e^{-x}$$

D. $y(x)=(c_1+c_2x)e^x+c_3e^{-2x}$

2. The general solution of differential equation $4x^2y^{ll} + y = 0$ is ...

A.
$$y(x) = (c_1 + c_2 \ln x) x^{-1/2}, x > 0$$

B. $y(x) = (c_1 + c_2 x) e^{x/2}, x > 0$
B. $y(x) = (c_1 + c_2 x) e^{x/2}, x > 0$
D. $y(x) = (c_1 + c_2 \ln x) x^{1/2}, x > 0$

B.
$$y(x)=(c_1+c_2x)e^{x/2}, x>0$$

$$C.y(x) = (c_1 + c_2 x)e^{x/2}, x > 0$$

$$D.y(x) = (c_1 + c_2 \ln x)x^{1/2}, x > 0$$

3. The particular Integral of $y^{ll} + y = 6sinx$ is ...

$$A.y_p = 3xcosx$$

$$A.y_p = 3xcosx$$
 $B.y_p = -3xcosx$ $C.y_p = -3xsinx$ $D.y_p = 3xsinx$

$$C.y_p = -3xsinx$$

$$D.y_n = 3xsinx$$

4.By changing the order of integration, the integral $\int_{-a}^{a} \int_{0}^{\sqrt{a^2-y^2}} f(x,y) dxdy$ transformed to ...

A.
$$\int_{-a}^{a} \int_{-\sqrt{a^2 - x^2}}^{\sqrt{a^2 - x^2}} f(x, y) dy dx$$

C. $\int_{0}^{a} \int_{-\sqrt{a^2 - x^2}}^{\sqrt{a^2 - x^2}} f(x, y) dy dx$

B.
$$\int_0^a \int_0^{\sqrt{a^2 - x^2}} f(x, y) dy dx$$

D.
$$\int_{-a}^a \int_0^{\sqrt{a^2 - x^2}} f(x, y) dy dx$$

C.
$$\int_0^a \int_{-\sqrt{a^2-x^2}}^{\sqrt{a^2-x^2}} f(x,y) dy dx$$

$$D. \int_{-a}^{a} \int_{0}^{\sqrt{a^2 - x^2}} f(x, y) dy dx$$

5. The value of the integral $\int \int_R x^2 dx dy$ over the region R bounded by the hyperbola xy=4, y=0.x=1, x=4 is...

$$A.-16/3$$

$$C.-30$$

D.30

6. The value of the integral $\int \int (x+y+z)dzdydx$ over the volume bounded by the planes x=0, x=1, y=0, y=1, z=0, z=1 is...

$$A_{\frac{5}{2}}$$

$$B_{\cdot \frac{3}{2}}$$

$$C.\frac{-3}{2}$$

A.
$$\frac{5}{2}$$
 B. $\frac{3}{2}$ C. $\frac{-3}{2}$ D. $\frac{-5}{2}$

7. The gradient of a scalar point function $\ln(x+y+z)$ at (1,2,-1) is... A. $\frac{i+j+k}{2}$ B. $\frac{i-j+k}{2}$ C. $\frac{i-j-k}{2}$ D. $\frac{-i-j-k}{2}$

$$B.\frac{i-j+k}{2}$$

$$C.\frac{i-j-k}{2}$$

D.
$$\frac{-i-j-1}{2}$$

8. The value of the integral $\int \int \frac{1}{xy} dx dy$, over the region bounded by $1 \le x \le 2, 1 \le y \le 2$ is...

A. $log2^2$ B. 2log2 C. log4 D. $(log2)^2$ 9. If f(x , y , z) = xsin(x + y + z), then Curl(gradf) is...
A.0 B. $\bar{0}$ C.1 D.-1
10. If $f(x,y,z) = x^2 - y^2$, C is the closed curve x = 3cost, y = 3sint, $0 \le t \le 2\pi$ then $\int_C f(x,y,z) ds = \dots$ A. $\frac{2}{3}$ B. $\frac{-2}{3}$ C. 0 D. $\frac{5}{3}$

SECTION-B

Answer any two of the following questions.

2 x 5

=

11. [2+3]

- (a) Find the equation of the tangent plane to the surface $z = 16 x^2 y^2$ at (1,3,6).
- (b) Find the directional derivative of xyz at (1,4,3) in the direction of the line from (1,2,3) to (1,-1,-3).

[2+3]

(a) Find the particular Integral of $(D^3 + 1)y = \cos(2x - 1)$

(b) Solve $y^{ll} + 16y = 32sec2x$ by the method of variation of parameters 13.

3. [5] Find the volume of the solid in the fifrst octant bounded by the paraboloid

 $z = 36 - 4x^2 - 9y^2$ 14. [2+3]

(a) Evaluate the integral $\int \int_R e^{x^2} dx dy$, where R is the region given by R = $[(x,y): 2y \le x \le 2, 0 \le y \le 1]$

(b)Evaluate $\int \int r^3 dr d\theta$ over the area included between the circles $r=2sin\theta$ and $r=4sin\theta$.

End os the MT Question paper