Statistical Language Modelling

D. Thenmozhi
Associate Professor
SSNCE

Statistical Language Modelling

- Statistical Language Modelling
 - Is a probability distribution P(s) over all possible word sequences

- Dominant approach
 - N-gram model

Probabilistic Language Models

- Machine Translation:
 - P(high winds tonite) > P(large winds tonite)
- Spell Correction
 - The office is about fifteen minuets from my house
 - P(about fifteen minutes from) > P(about fifteen minuets from)
- Speech Recognition
 - P(I saw a van) >> P(eyes awe of an)

Probabilistic Language Models

 Goal: compute the probability of a sentence or sequence of words:

$$P(W) = P(w_1, w_2, w_3, w_4, w_5...w_n)$$

- Related task: probability of an upcoming word:
 P(w₅|w₁,w₂,w₃,w₄)
- A model that computes either of these:

P(W) or $P(w_n|w_1,w_2...w_{n-1})$ is called a language model.

N-gram model

 Decompose sentence probability into a product of conditional probabilities using the chain rule

$$P(x_1,x_2,x_3,...,x_n) = P(x_1)P(x_2|x_1)P(x_3|x_1,x_2)...P(x_n|x_1,...,x_{n-1})$$

$$P(w_1w_2...w_n) = \prod_i P(w_i|w_1w_2...w_{i-1})$$

$$P(\text{"its water is so transparent"}) = P(\text{its}) \times P(\text{water}|\text{its}) \times P(\text{is}|\text{its water})$$

$$\times P(\text{so}|\text{its water is}) \times P(\text{transparent}|\text{its water is so})$$

Probability Estimation

55

P(the | its water is so transparent that) =

Count(its water is so transparent that the)

Count(its water is so transparent that)

Markov Assumption (Simplifying Assumption)

 $P(\text{the }|\text{ its water is so transparent that}) \approx P(\text{the }|\text{that})$

OR

 $P(\text{the }|\text{ its water is so transparent that}) \approx P(\text{the }|\text{ transparent that})$

Markov Assumption

$$P(w_1 w_2 ... w_n) \approx \prod_i P(w_i | w_{i-k} ... w_{i-1})$$

For each word

$$P(w_i | w_1 w_2 ... w_{i-1}) \approx P(w_i | w_{i-k} ... w_{i-1})$$

Uni-gram

$$P(w_1 w_2 \dots w_n) \approx \prod_i P(w_i)$$

Bi-gram

$$P(w_i | w_1 w_2 ... w_{i-1}) \approx P(w_i | w_{i-1})$$

Estimating bi-gram probabilities

The Maximum Likelihood Estimate

$$P(w_i | w_{i-1}) = \frac{count(w_{i-1}, w_i)}{count(w_{i-1})}$$

$$P(w_i \mid w_{i-1}) = \frac{c(w_{i-1}, w_i)}{c(w_{i-1})}$$

Example

$$P(w_i \mid w_{i-1}) = \frac{c(w_{i-1}, w_i)}{c(w_{i-1})} \quad \begin{array}{l} <\mathsf{s} > \mathsf{l} \; \mathsf{am} \; \mathsf{Sam} \; \\ <\mathsf{s} > \mathsf{Sam} \; \mathsf{l} \; \mathsf{am} \; \\ <\mathsf{s} > \mathsf{l} \; \mathsf{do} \; \mathsf{not} \; \mathsf{like} \; \mathsf{green} \; \mathsf{eggs} \; \mathsf{and} \; \mathsf{ham} \; \\ <\mathsf{s} > \mathsf{l} \; \mathsf{do} \; \mathsf{not} \; \mathsf{like} \; \mathsf{green} \; \mathsf{eggs} \; \mathsf{and} \; \mathsf{ham} \; \\ <\mathsf{s} > \mathsf{l} \; \mathsf{do} \; \mathsf{not} \; \mathsf{like} \; \mathsf{green} \; \mathsf{eggs} \; \mathsf{and} \; \mathsf{ham} \; \\ <\mathsf{l} \; \mathsf{log} \; \mathsf{log}$$

$$P({\tt I}|{\tt ~~}) = \frac{2}{3} = .67 \qquad P({\tt Sam}|{\tt ~~}) = \frac{1}{3} = .33 \qquad P({\tt am}|{\tt I}) = \frac{2}{3} = .67 \\ P({\tt~~ }|{\tt Sam}) = \frac{1}{2} = 0.5 \qquad P({\tt Sam}|{\tt am}) = \frac{1}{2} = .5 \qquad P({\tt do}|{\tt I}) = \frac{1}{3} = .33~~$$

Example

- Training set
 - The Arabian Knights
 - These are the fairy tales of the east
 - The stories of the Arabian Knights are translated in many languages
- Test sentence
 - The Arabian Knights are the fairy tales of the east

Bi-gram model

• P(the/<s>)=0.67

P(Arabian /the)=0.4

P(Knights / Arabian)=1.0

• P(are / these)=1.0

P(the/are)=0.5

P(fairy /the)=0.2

• P(tales / fairy)= 1.0

P(of/ tales)= 1.0

P(the/of) = 1.0

• P(east/the)=0.2

P(stories/the)=0.2

P(of/stories)= 1.0

• P(are / Knights)= 1.0

P(translated / are)=0.5

P(in/ translated)= 1.0

• P(many/in)=1.0

P(languages /many)= 1.0

Bi-gram model

The Arabian Knights are the fairy tales of the east

 P(the/<s>) x P(Arabian /the) x P(Knights / Arabian) x P(are / these) x P(the/ are) x P(fairy /the) x P(tales / fairy) x P(of/ tales) x P(the/of) P(east/the)

• $0.67 \times 0.4 \times 1.0 \times 1.0 \times 0.5 \times 0.2 \times 1.0 \times 1.0 \times 1.0 \times 0.2$ = 0.0067

Issues in bi-gram model

- Multiplying the probability might cause a numerical underflow
- To avoid this, sum their logs

$$\log(p_1 \times p_2 \times p_3 \times p_4) = \log p_1 + \log p_2 + \log p_3 + \log p_4$$

- Surrers from data sparseness
- Zero probability entries in bi-gram matrix
- Soln: Smoothing techniques
 - Refers to the task of re-evaluating zero-probability or lowprobability n-grams and assigning them non-zero values
 - Add-one smoothing, good-turing smoothing and catching techniques

- Also called Laplace smoothing
- Pretend we saw each word one more time than we did
- Just add one to all the counts!

$$P_{MLE}(w_i \mid w_{i-1}) = \frac{c(w_{i-1}, w_i)}{c(w_{i-1})}$$

MLE estimate:

Add-1 estimate:
$$P_{Add-1}(w_i \mid w_{i-1}) = \frac{c(w_{i-1}, w_i) + 1}{c(w_{i-1}) + V}$$

Berkeley Restaurant project sentences

	i	want	to	eat	chinese	food	lunch	spend
i	5	827	0	9	0	0	0	2
want	2	0	608	1	6	6	5	1
to	2	0	4	686	2	0	6	211
eat	0	0	2	0	16	2	42	0
chinese	1	0	0	0	0	82	1	0
food	15	0	15	0	1	4	0	0
lunch	2	0	0	0	0	1	0	0
spend	1	0	1	0	0	0	0	0

	i	want	to	eat	chinese	food	lunch	spend
i	0.002	0.33	0	0.0036	0	0	0	0.00079
want	0.0022	0	0.66	0.0011	0.0065	0.0065	0.0054	0.0011
to	0.00083	0	0.0017	0.28	0.00083	0	0.0025	0.087
eat	0	0	0.0027	0	0.021	0.0027	0.056	0
chinese	0.0063	0	0	0	0	0.52	0.0063	0
food	0.014	0	0.014	0	0.00092	0.0037	0	0
lunch	0.0059	0	0	0	0	0.0029	0	0
spend	0.0036	0	0.0036	0	0	0	0	0

	i	want	to	eat	chinese	food	lunch	spend
i	6	828	1	10	1	1	1	3
want	3	1	609	2	7	7	6	2
to	3	1	5	687	3	1	7	212
eat	1	1	3	1	17	3	43	1
chinese	2	1	1	1	1	83	2	1
food	16	1	16	1	2	5	1	1
lunch	3	1	1	1	1	2	1	1
spend	2	1	2	1	1	1	1	1

	i	want	to	eat	chinese	food	lunch	spend
i	0.0015	0.21	0.00025	0.0025	0.00025	0.00025	0.00025	0.00075
want	0.0013	0.00042	0.26	0.00084	0.0029	0.0029	0.0025	0.00084
to	0.00078	0.00026	0.0013	0.18	0.00078	0.00026	0.0018	0.055
eat	0.00046	0.00046	0.0014	0.00046	0.0078	0.0014	0.02	0.00046
chinese	0.0012	0.00062	0.00062	0.00062	0.00062	0.052	0.0012	0.00062
food	0.0063	0.00039	0.0063	0.00039	0.00079	0.002	0.00039	0.00039
lunch	0.0017	0.00056	0.00056	0.00056	0.00056	0.0011	0.00056	0.00056
spend	0.0012	0.00058	0.0012	0.00058	0.00058	0.00058	0.00058	0.00058

Advanced smoothing algorithms

- Intuition used by many smoothing algorithms
 - Good-Turing
 - Kneser-Ney
 - Witten-Bell
- Use the count of things we've seen once
 - to help estimate the count of things we've never seen

Good-Turing smoothing

 $N_1 = 3$

 $N_2 = 2$

 $N_3 = 1$

- N_c = the count of things we've seen c times
- Sam I am I am Sam I do not eat

```
I    3
sam    2
am    2
do    1
not    1
```

eat 1

Good-Turing smoothing

- You are fishing (a scenario from Josh Goodman), and caught:
 - 10 carp, 3 perch, 2 whitefish, 1 trout, 1 salmon, 1 eel = 18 fish
- How likely is it that next species is trout?
 - 1/18
- How likely is it that next species is new (i.e. catfish or bass)
 - Let's use our estimate of things-we-saw-once to estimate the new things.
 - 3/18 (because N₁=3)
- Assuming so, how likely is it that next species is trout?
 - Must be less than 1/18
 - How to estimate?

Good-Turing smoothing

$$P_{GT}^*$$
 (things with zero frequency) = $\frac{N_1}{N}$ $c^* = \frac{(c+1)N_{c+1}}{N_c}$

- Unseen (bass or catfish)
 Seen once (trout)
 - c = 0:
 - MLE p = 0/18 = 0
 - P*_{GT} (unseen) = N₁/N = 3/18
 C*(trout) = 2 * N2/N1

- - c = 1
- MLE p = 1/18

•
$$P_{GT}^{*}(trout) = 2/3 / 18 = 1/27$$

Summary

- SLM
- N-gram models
- Bi-gram model
- Smoothing techniques

Questions

- Where will you used statistical language modelling?
- What are the applications of SLM?
- What is the dominant SLM?
- Why do you need smoothing techniques in bigram LM?