R and RStudio

BSDS 100 - Intro to Data Science with R

R and RStudio

Outline

- The R Programming Language and RStudio
 - R vs. other programming languages
 - Installation
 - Shortcuts

What is R?

- R is a user-friendly, open source integrated development environment (IDE).
- Known for having a rich set of packages and functions for statistical analysis
- Can run from a terminal window (using BASH scripting)

What is R?

"R is a language and environment for statistical computing and graphics. It is a GNU project which is similar to the S language and environment which was developed at Bell Laboratories by John Chambers and colleagues. R can be considered as a different implementation of S. There are some important differences, but much code written for S runs unaltered under R.

R provides a wide variety of statistical (linear and nonlinear modelling, classical statistical tests, time-series analysis, classification, clustering, etc.) and graphical techniques, and is highly extensible. The S language is often the vehicle of choice for research in statistical methodology, and R provides an Open Source" - R Website.

Why Use R?

- Open source (free)
- Platform agnostic
- Highly regarded visualization capabilities (ggplot2)
- Read/write from/to data sources
- Massive library of data manipulation and statistical packages

But... what about Excel?

Excel is great for certain things...

...but Not Everything

Sample Data

- Six columns of data with ~ 1.05 million rows
- Column 5: startDate
- Column 6: endDate
- Objective: test to see if endDate < startDate

Results

- Excel: ...
- R: 33 min (poor coding technique)
- R: 58.5 sec (improved coding technique)

...but Not Everything

Sample Data

- Six columns of data with ~ 1.05 million rows
- Column 5: startDate
- Column 6: endDate
- Objective: test to see if endDate < startDate

Results:

- Excel: ...
- R: 33 min (poor coding technique)
- R: 58.5 sec (improved coding technique)

What about Python?

9/27

Vectorization in R

- Vectorized code saves time asking type questions
- There is an optimized engine—a basic linear algebra system (BLAS)—that is highly efficient at solving linear algebra problems
- A lot or R functions are written in C (or variants)
- MATLAB, Mathematica and the NumPy package for Python are also vectorized

```
https://www.noamross.net/archives/
2014-04-16-vectorization-in-r-why/
```

Installing R

Download and install at this website:

```
https://www.r-project.org
```

 Important: You will have to re-install R from time-to-time to maintain the newest version so that code remains compatible!
 New versions generally come out every 4 - 6 months.

Installing RStudio

- RStudio has a very nice graphical user interface (GUI) that is easier to use than base R
- We will be using this throughout the course
- Make sure that you have R installed first. Then, download and install at this website:

https://www.rstudio.com/products/RStudio/

The R Graphical User Interface (GUI)

The RStudio GUI

RStudio

RStudio has 4 panels

- Console (bottom left) where all calculations are performed
- Scripting(top left) where writing of new scripts should be done
- Files/Packages/Help/Plots (bottom right) for easy analysis
- Workspace & History (top right) what is stored in your current Rsession (Variables/Data/Functions)

Really Advanced Calculators

At their core, R and RStudio are just calculators! Try the following

$$3 + 2 = ?$$

$$3 + 2 = ?$$
 $log(10) = ?$

$$\sqrt{32} = ?$$

Basic R Help Functions

Function	Action
?foo	Help on the function foo
??foo	Search the help system for instances
	of the function foo
data()	List all available example datasets
	contained in currently loaded pack-
	ages
getwd()	List the current working directory
ls()	List the objects in the current direc-
	tory

17/27

Basic R Workspace Functions

Function	Action
getwd()	List the current working directory.
setwd("mydirectory")	Change the current working directory to mydirectory.
ls()	List the objects in the current workspace.
rm(objectlist)	Remove (delete) one or more objects.
help(options)	Learn about available options.
options()	View or set current options.
history(#)	Display your last # commands (default = 25).
<pre>savehistory("myfile")</pre>	Save the commands history to myfile (default = .Rhistory).
<pre>loadhistory("myfile")</pre>	Reload a command's history (default = .Rhistory).
<pre>save.image("myfile")</pre>	Save the workspace to myfile (default = .RData).
<pre>save(objectlist, file="myfile")</pre>	Save specific objects to a file.
<pre>load("myfile")</pre>	Load a workspace into the current session (default = .RData).
d()	Quit R. You'll be prompted to save the workspace.

R and RStudio 18/27

Useful R Keyboard Shortcuts: Autocomplete

Shortcuts: History

Shortcuts: Execute Code

Shortcuts: Restarting an R Session

Important R Setting

A Brief Digression

- Whenever writing code, you want to be aware of your environment to ensure the fidelity of your results
- If you want to start with a clean environment and console every time, you can use:

```
rm(list=ls())
cat("\014")
```

- rm(list=ls()) removes all objects in the current environment
- ② On a Mac, cat ("\014") clear the console windows (same as
 ctrl + 1)
- Pros/cons to doing this. rm(list=ls()) can be annoying for another if they source your .R script in an environment they were working in.

Data Sets in R

- R comes built in with multiple data sets you can play with
- Many packages also have data sets
- data() will bring up a list of all data sets available across all loaded packages
- help(<nameOfDataSet>) will provide you a detailed description of the data set in question

How Big is *Big Data* in R?

- R holds data in memory, effectively limiting data to the amount of RAM a computer has access to
- It is not uncommon to work with a data set containing 100,000,000 elements (e.g., 100,000 observations of 1,000 variables or 1,000,000 observations of 100 variables) without difficulty
- Computation depends on what type of data is contained in each variable, e.g., a data set with 2.2 million records and twenty variables, which takes approximately one minute to load into memory

How Big is *Big Data* in ℝ?

- Also depends on what techniques and/or functions will be applied to the data
- The more complex and memory intensive the task, the smaller the data will be required to be
- Ex: basic plotting requires far less computational exertion than a complex statistical learning model
- Common Definition: Big Data refers to any data set that cannot be loaded into working memory on your personal computer

R and RStudio