Mixers

General considerations

- Mixer performs frequency translation by multiplying signals
- In down conversion mixer multiplies the LO and RF signals
- Switch mixer is equivalent to the RF signal multiplied by a rectangular waveform see Figure b.
- Switch mixer is linear time variant with respect to the RF port
- Switch mixer is non-linear timevariant with respect to the LO port

MOSFET as a Switch Mixer

- A MOS switch contributes a on-resistance which adds noise.
- The on resistance is controlled by the gate overdrive $V_{GS} = V_{LO} V_{RF}$ which changes with VRF introducing nonlinearity.

- For V_{RF}, the system is linear, time variant.
- For V_{LO}, the system is non linear, time variant.

$$V_{out}(f) = V_{in2}(f) * \sum_{n=-\infty}^{\infty} \frac{\sin(n\pi/2)}{n\pi} \mathcal{S}(f - n/T_1)$$

$$= \sum_{n=-\infty}^{\infty} \frac{\sin(n\pi/2)}{n\pi} V_{in2}(f - n/T_1)$$

Typical Mixer Performances

Noise Figure F	12 dB
IIP3	5 dBm
Gain	10 dB
Input Impedance	50Ω
Port-to-Port Isolation	n 10-20 dB

Single Side Band (SSB) Noise Figures

- In heterodyne down conversion the thermal noise of $R_{\rm S}$ in the signal band and the image band are both down converted.
- Thus the output SNR is half the input SNR and the SSB noise Figure of a perfect mixer is 3 dB.

Double Side Band (DSB) Noise Figures

In homodyne down conversion there is no image band and the thermal noise of $R_{\rm S}$ is just translated down to baseband Thus the output and input SNRs are the same and the DSB noise Figure of a perfect mixer is 0 dB.

Active and Passive Mixers

- Active mixers provide gain Fig (a): conversion gain
- Passive mixers do not provide gain Fig (b)
 - conversion loss (for ideal switch: $2/\pi$ amplitude of fundamental of LO)
 - more linear but conversion loss magnifies NF of IF stage

Noise and Linearity

- LNA Mixer combined NF must be low and linearity high.
- Linearity is essential for reducing mixing spurs
- Mixer IP2 is critical as this causes feedthroughs.
- For up conversion mixers NF is important only if inband noise of Rx must be low.
- Also for up conversion mixer linearity is determined by type of modulation and baseband signal swing.

Conversion Gain

- Input RF and output IF impedances are usually different
- Then the power gain conversion and voltage gain conversion are different
- Matching of the RF input is required to avoid reflection in the image reject filter
- The IF load impedance of the mixer is not equal to 50 Ω : the IF filter impedance is typically 500 to 1000 ohms.
- In homodyne impedance might even be higher to maximize the voltage gain.

Conversion Gain(..Contd)

- Voltage conversion gain = V_{rms,IF} / V_{rms,RF}
- Power conversion gain = $P_{L,IF}/P_{AVS}$
- Voltage conversion gain = power conversion gain, if $Z_{in} = Z_I = Z_S = 50$ ohms
- In homodyne voltage conversion gain not equal to power conversion gain due to wide variation of impedances between RF and baseband.
- In heterodyne they may be equal if impedances of IF stage (like first IF) is same as that of RF stages.
- In modern mixers voltage gain preferred as impedances can vary over Tx/Rx chain.
- Down conversion mixers need to have power gain as high as possible however due to low supply voltages in visi processes.
- To maintain linearity it is difficult to achieve more than 10 dB gain.
- In direct conversion transmitters maximize gain to relax PA gain requirement.
- In heterodyne transmitters IF mixers must provide moderate gain so as not compress RF mixers.

Port to Port Isolation

The isolation between the ports of a mixer is critical:

- LO RF feedthrough leads to LO leakage to the LNA(dc offset) and antenna (unwanted radiation).
- RF LO feedthrough allows strong interferers pulling on local oscillator.
- RF IF feedthrough might transmit beat components due to 2nd order non linearity.

The leakage can be mitigated by filtering or the isolation enhanced using a double balanced mixer.

Down conversion mixer vs Up conversion mixer

Down conversion Mixer

```
NF \rightarrow
          Important
Conversion gain → Important
Linearity → very important
  IM2 \rightarrow DC offset \rightarrow SNR degradation
  IM3 \rightarrow Amplitude degradation (interferers)
  Port-to-port isolation → Important
```

- LO to RF Isolation For direct conversion - RF to LO isolation receivers - RF to IF isolation
- LO to IF isolation → for heterodyne receivers (if LO and IF frequencies are nearby)

UP conversion Mixer

 $NF \rightarrow$ Not Important Conversion gain → Not Important but eases requirement on PA. For heterodyne IF mixers

> should not have too high gain otherwise RF mixers can get compressed.

Linearity → very important

- IM2 \rightarrow dc offset \rightarrow saturation of next stage
- IM3 → Amplitude degradation (spreading)
- Spurious frequencies

Port-to-port isolation → Important

- LO to o/p Isolation
 - For direct conversion receivers
- o/p to LO isolation
- IF to LO isolation → for heterodyne receivers (if LO

and IF frequencies are nearby)

Single and Double Balanced Mixers

- Single balanced mixer accommodates a single ended RF signal and a double ended LO signal.
- Double balanced mixer accommodates a double ended RF signal and a double ended LO signal e.g. Gilbert cell

Double Balanced MOSFET based Gilbert cell

Comparison of Single and Double Balanced Mixers

Single balanced Mixer:

- exhibits less input referred noise
- more susceptible to noise in LO signal
- LO-IF feedthrough is larger
- RF-IF feedthrough is larger

Double balanced Mixer:

- generates less even-order distortion (relax half IF issue, beat frequency).
- higher conversion gain.
- LO-IF feedthrough is reduced (balanced topology).

Note: High frequency RF-IF feedthrough is usually not important (can be removed by LPF). Low frequency RF-IF feedthrough of beat (due to LNA non-linearities) is a problem for the homodyne receiver.

Note: Advantages of double balance mixers disappear if used as single ended.

Single Balanced RZ (passive) Mixer Analysis

Considering only fundamental component of LO voltage,

$$\frac{V_{out1}}{V_{out1}} = \frac{V_{RF}(t)}{V_{out1}} \cdot \underbrace{\frac{1}{2}}_{half since differential LO i/p} \cdot \underbrace{\frac{4}{\pi} \cos \left(\omega_{LO} t\right)}_{fundamental component of LO} \cdot \underbrace{\frac{R_L}{R_L + R_{on}}}_{COS} = V_{RF}(t) \cdot \underbrace{\frac{2}{\pi} \cos \left(\omega_{LO} t\right)}_{TCOS} \cdot \underbrace{\frac{R_L}{R_L + R_{on}}}_{S(t) - S(t - \frac{T_{LO}}{2})} + \underbrace{\frac{1}{\pi} \cos \left(\omega_{LO} t\right)}_{S(t) - S(t - \frac{T_{LO}}{2})} + \underbrace{\frac{1}{\pi} \cos \left(\omega_{LO} t\right)}_{COS} \cdot \underbrace{\frac{1}{\pi} \cos \left(\omega_{LO} t\right)}_{COS} + \underbrace{\frac{1}{\pi} \cos \left(\omega_{LO} t\right)}_{COS} +$$

 $V_{RF}(t) \times \cos(\omega_{LO} t)$ will produce components like,

$$\frac{1}{2}\cos(\omega_{RF} - \omega_{LO}) + \underbrace{\frac{1}{2}\cos(\omega_{RF} + \omega_{LO})}_{\text{filtered out}}$$

$$\Rightarrow V_{out1}(t) = |V_{RF}| \cdot \frac{1}{\pi} \cos (\omega_{RF} - \omega_{LO}) t \cdot \frac{R_L}{R_L + R_{out}}$$

Similarly,

$$V_{out2}(t) = -|V_{RF}| \cdot \frac{1}{\pi} \cos \left(\omega_{RF} - \omega_{LO}\right) t \cdot \frac{R_L}{R_L + R_{on}}$$

Hence,

$$V_{IF}(t) = V_{out1}(t) - V_{out2}(t)$$

$$= |V_{RF}| \cdot \underbrace{\frac{2}{\pi} \cdot \frac{R_L}{R_L + R_{on}}}_{\text{Voltage Gain}} \cdot \cos (\omega_{RF} - \omega_{LO}) t$$

Figure 6.19 *Waveforms for passive mixer gain computation.*Javanta Mukherjee

16

Common Emitter and Common Base Bipolar Mixers

- · CE mixer has high input impedance : $Z_{in} = r_{\pi} + R_{E} + \beta R_{E} \approx \beta R_{E}$ better suited for homodyne receiver.
- · CB mixer has a lower input impedance $Z_{in} \approx R_E + 1/g_m$

$$I_{c1}(t) \approx \frac{-V_{RF}(t)}{R_S + R_E + 1/g_{m1}}$$

For LO square wave signal with 50% duty cycle,

the fundamental will have a component $(2/\pi)$

for a differential amplifier this will be $(4/\pi)$

Hence,
$$V_{out}(t) = \frac{V_{RF}(t) \times R_{C}}{R_{S} + R_{E} + 1/g_{m1}} \cdot \underbrace{2}_{\text{since differential o/p taken}} \cdot \underbrace{1/g_{m1}}_{\text{o/p t$$

 $V_{RF}(t) \times \cos(\omega_{LO} t)$ will produce components like,

$$\frac{1}{2}\cos(\omega_{RF}-\omega_{LO}) + \underbrace{\frac{1}{2}\cos(\omega_{RF}+\omega_{LO})}_{filtered\ out}$$

Hence,
$$V_{IF}(\omega) = \frac{|V_{RF}|}{R_S + R_E + 1/g_{m1}} \cdot \frac{2R_C}{\pi}$$
, Here V_{IF} and V_{RF} represent peak power.

 V_{LO} **Fundamental** component

Common Emitter and Common Base Bipolar Mixers

The voltage conversion gain:

$$A_{V} = \frac{|V_{RF}|}{|V_{RF}|_{\text{node X}}} = \frac{\frac{|V_{RF}|}{|R_{S}| + |R_{E}| + 1/|g_{m1}|} \cdot \frac{2R_{C}}{\pi}}{|V_{RF}| \cdot |Z_{in}|/(|Z_{in}| + |R_{S}|)} = \frac{\frac{|V_{RF}|}{|R_{S}| + |R_{E}| + 1/|g_{m1}|} \cdot \frac{2R_{C}}{\pi}}{|V_{RF}| \cdot (|R_{E}| + 1/|g_{m1}|)/(|R_{E}| + 1/|g_{m1}| + |R_{S}|)} = \frac{2}{\pi} \cdot \frac{R_{C}}{|R_{E}| + 1/|g_{m1}|}$$

For matched i/p, $R_S = R_E + 1/g_{m1}$

$$\Rightarrow A_V = \frac{1}{\pi} \frac{2R_C}{R_S}$$

The average IF power delivered to the load:

$$\begin{split} P_{IF} &= 2 \times \frac{\left(V_{IF} / 2\right)^{2}}{R_{C}} = \frac{V_{IF}^{2}}{2R_{C}} \\ &= \frac{\left|V_{RF} \right|^{2} \cdot R_{C}^{2}}{\left(R_{S} + R_{E} + 1 / g_{m1}\right)^{2}} \cdot \frac{4}{\pi^{2}} \cdot \frac{1}{2R_{C}} = \frac{\left|V_{RF} \right|^{2} \cdot R_{C}}{\left(R_{S} + R_{E} + 1 / g_{m1}\right)^{2}} \cdot \frac{2}{\pi^{2}} \\ &= \frac{\left|V_{RF} \right|^{2} \cdot R_{C}}{\left(2R_{S}\right)^{2}} \cdot \frac{2}{\pi^{2}} \end{split}$$

$$\frac{P_{AVS}}{2R_{S}} = \left| V_{RF} / 2R_{S} \right|^{2} \times R_{S} = \frac{\left| V_{RF} \right|^{2}}{4R_{S}}$$

Conversion power gain (with i/p matched),
$$A_P = \frac{\left|V_{RF}\right|^2 \cdot R_C}{4R_S^2} \cdot \frac{2}{\pi^2} = \frac{R_C}{R_S} \cdot \frac{2}{\pi^2}$$

$$\frac{\left|V_{RF}\right|^2}{4R_C}$$

In practice A_p is lower due to parasitics.

Analysis of Single Balanced Mixer

Considering only fundamental component of LO vol tage,

$$V_{out}(t) = I_{RF}(t) R_D \cdot \underbrace{\frac{1}{2}}_{\text{due to differential o/p}} \cdot \underbrace{\frac{1}{2}}_{\text{luctor differential of p}}$$

$$\frac{1}{2}$$
 nalf since differential LO i/p

$$\frac{4}{\pi}\cos\left(\omega_{LO}\ t\right)$$

$$I_{RF}(t) = g_{m1}V_{RF}\cos\omega_{RF}t$$

 $I_{RF}(t) \times \cos(\omega_{LO} t)$ will produce components like,

$$\frac{1}{2}\cos(\omega_{RF}-\omega_{LO}) + \underbrace{\frac{1}{2}\cos(\omega_{RF}+\omega_{LO})}_{filtered\ out}$$

$$\Rightarrow \frac{V_{IF}(t)}{\pi} = \frac{2}{\pi} g_{m1} R_D V_{RF} \cos \left(\omega_{RF} - \omega_{LO}\right) t$$

Voltage gain,
$$A_V = \frac{|V_{IF}|}{|V_{RF}|} = \frac{2}{\pi} g_{m1} R_D$$

Direct Feedthrough

- Important in homodyne receivers since second order beat components can pass through to baseband.
- Not so important in heterodyne receivers since IF frequency far from baseband.

DC value not zero

 V_{out} has a direct component of $I_{RF}(t)$

V_{out} has no direct component of I_{RF}(t)

Jayanta Mukherjee

20

Mixer Spurs

Mixer Linearity

Noise in Mixers

Noise in mixer is difficult to calculate due to the frequency translation and time variance.

- What is noise in RF before down-conversion?
- What is noise in IF after down-conversion?
- need time-domain noise analysis since noise exhibits time-varying statistics due to switching.

Passive Mixer Noise calculation

Assuming 50% duty cycle of the LO, the o/p contains half

$$\overline{\mathbf{V}_{\mathrm{n,out}}^2} = 2kT[(R_{on} || R_L) + R_L]$$

Hence,
$$\overline{V_{n,\text{out}}^2} = 2kT[(R_{on} || R_L) + R_L]$$

$$\Rightarrow \overline{V_{n,\text{in}}^2} = \overline{V_{n,\text{out}}^2} / \left(\frac{1}{\pi} \cdot \frac{R_L}{R_L + R_{on}}\right)^2$$
voltage gain

$$= 2\pi^2 kT \frac{(R_{on} + R_L)(2R_{on} + R_L)}{R_L}$$

Source of Noise

In RF path

- Drain current noise of M2 & M3.
- Drain current noise of M1.

In IF path:

• Drain Resistance R_D.

Figure 6.49 Loss of RF current to ground through C_P .

Criteria Affecting the Noise Performance

The LO signal is not usually a square wave and the transistors M2 and M3 are simultaneously on for part of the period. During this time M2 and M3 injects their noise at the output.

Note: while M2 and M3 are simultaneously on, the noise from M1 appears as a common mode component and does not contribute to the output.

Mixed Bag Solutions:

- Use larger LO swing (reduces time for which M2 and M3 are simultaneously 'ON' (section 6.3.1 new edition, razavi))
- Lower C_p (smaller W of transistor)

Quantitative Analysis

Methodology:

- For each source of noise calculate a conversion gain.
- Multiply the magnitude of each noise by the corresponding conversion gain and add up all the resulting powers.
- Divide the output by the overall conversion gain to get the input referred noise voltage $\overline{V_{ni}^2}$.
- Calculate the mixer noise figure: $F = \frac{V_{ni}^2}{4kTR_s}$

Single balanced active Mixer Noise calculation

Oscillator noise Ignored here

Figure 6.57 Noise of input device and one switching device in an active mixer.

 $\overline{V_{n,R_D}^2} = 4kTR_D, \overline{I_{n,M_1}^2} = 4kT(\gamma) g_{m1},$

drain current noise of M

Oscillator noise also present here.

In RF

$$= \pi^{2} \left(\frac{C_{p}^{2} \omega^{2}}{g_{m2}^{2}} + 1 \right) kT \left(\frac{4(\gamma)}{g_{m1}} + \frac{4(\gamma)}{g_{m2}} \frac{C_{p}^{2} \omega^{2}}{g_{m1}^{2}} + \frac{8}{g_{m1}^{2} R_{D}} \right)$$

Jayanta Mukherjee 28

single ended voltage conversion gain see Eqn 6.76 in new edition

Single balanced active Mixer Noise calculation

For, single ended mixer,
$$\overline{V_{n,X}^2} = \frac{1}{2} \left(\overline{I_{n,M_1}^2} R_D^2 + \overline{V_{n,M_2}^2} C_P^2 \omega^2 R_D^2 \right) + 4kTR_D$$

$$\begin{split} \overline{V_{n,in,single\ ended}^{2}} &= \frac{\left[\frac{1}{2}\cdot\left(\overline{I_{n,M_{1}}^{2}}R_{D}^{2} + \overline{V_{n,M_{2}}^{2}}\ C_{P}^{2}\omega^{2}R_{D}^{2}\right) + 4kTR_{D}}{\frac{1}{\pi^{2}}g_{m1}^{2}R_{D}^{2}\frac{g_{m2}^{2}}{C_{P}^{2}\omega^{2} + g_{m2}^{2}}} \\ &= \pi^{2}\left(\frac{C_{P}^{2}\omega^{2}}{g_{m2}^{2}} + 1\right)kT\left(\frac{2(\gamma)}{g_{m1}} + \frac{2(\gamma)}{g_{m2}^{2}}C_{P}^{2}\omega^{2} + \frac{4}{g_{m1}^{2}}R_{D}^{2}\right) \\ \Rightarrow V_{n,in,single\ ended}^{2} &< V_{n,in,single\ balanced}^{2} \end{split}$$

MOS Mixers Versus Bipolar Mixers

- MOS mixers require typically 1 V of differential LO drive to experience complete switching: M2 and M3 are simultaneously on for a greater fraction of the period: injecting more noise at the output.
- The channel noise is typically several times lower than the bipolar shot noise. So MOS and BJT have approximately the same noise performance in mixers.
- As M2 and M3 are simultaneously on for a greater fraction of the period, the conversion gain of MOS might be lower, because when both are ON only common mode gain is provided and not differential gain.