DECIDABLE AND UNDECIDABLE PROBLEMS

Dr. A. Beulah AP/CSE

LEARNING OBJECTIVE

- To Design Turing machines for any Languages (K3)
 - —To Understand the concept of Decidable and Undecidable Problems

DECIDABLE PROBLEMS

Decidable problems about regular Languages

- Acceptance problem for DFAs
- Acceptance problem for NFAs
- Acceptance problem for Regular Expressions
- Emptiness testing for DFAs
- 2 DFAs recognizing the same language

Decidable problems about Context Free Languages

- Does a given CFG generate a given string?
- Is the language of a given CFG empty?
- Every CFL is decidable by a Turing machine

UNDECIDABLE PROBLEMS

- Halting Problem
- Post's Correspondence problem
- Busy Beaver problem
- Whether the language accepted by a TM is empty
- Whether the language accepted by a TM is regular language
- Whether the language accepted by a TM is context free language

UNDECIDABLE PROBLEMS

THE HALTING PROBLEM

• An example of a <u>recursive enumerable</u> problem that is also <u>undecidable</u>

WHAT IS THE HALTING PROBLEM?

Does a given Turing Machine M halt on a given input w?
 or

• Is it possible to tell whether a given machine will halt for some given input?

WHAT IS THE HALTING PROBLEM?

• Example: Given an arbitrary Turing machine M over alphabet Σ = { a , b } , and an arbitrary string w over Σ , does M halt when it is given w as an input ?

$$HALT_{TM} = \{ \langle M, w \rangle | M \text{ is a TM which halts on } w \}$$

REVISIT UTM

Input string $\langle M, w \rangle$ $\langle M \rangle \longrightarrow \text{accepts} \qquad \text{U accepts w}$ $W \longrightarrow \text{rejects} \qquad \text{U rejects w}$

THEOREM: IS HALT_{TM} DECIDABLE?

- Halting Problem is undecidable
- If there was such a Turing Machine
 - Its input will have two portions, M and w
 - It outputs either a YES or a NO depending on whether M halts on input w

- Suppose Halting Problem is decidable
 - Plan: arrive at a contradiction
- If Halting Problem is decidable,
 - then there exists a TM T that decides Halting Problem

11

- Create a TM T' based on T as follows:
 - T takes in a TM M
 - In T', M is duplicated so that there are now two portions on the input tape
 - Feed this new input into T
 - When it is about to print reject, print accept instead
 - When it is about to print accept, send the program to an infinite loop

• Program T' takes a M as input, prints accept if M does not halt on input M, but goes into an infinite loop if M halts on input M

- Consider feeding TM T' to itself
- Consequence (two possibilities)
 - It prints accept
 - T' halts on input T'
 if T' does not halt on input T' → a contradiction
 - It goes to an infinite loop
 - T' does not halt on input T'
 if T' halts on input T' → a contradiction
- Therefore the supposition cannot hold, and Halting Problem is undecidable

- T' halts on input T' (prints a accept, see outer box) if
- T' does not halt on input T' (T should yield a reject, see inner box)
- T' does not halt on input T' (infinite loop, see outer box) if
- T' halts on input T' (T should yield a accept, see inner box)

HP IS SEMIDECIDABLE

- There are problems such as HP that cannot be solved
- Actually, HP is semidecidable, that is if all we need is print accept when M
 on w halts, but not worry about printing reject if otherwise, a TM
 machine exists for the halting problem
 - Just simulate M on w, print accept (or go to a final state) when the simulation stops
 - This means that HP is not recursive but it is recursively enumerable

HP IS SEMIDECIDABLE

THE DIAGONALIZATION LANGUAGE

- Example of a language that is <u>not recursive enumerable</u>
- (i.e, no TMs exist)

18 August 2022 A. Beulah Unit V

THE DIAGONALIZATION LANGUAGE

A LANGUAGE ABOUT TMS & ACCEPTANCE

- Let L be the language of all strings <M,w> s.t.:
 - 1. M is a TM (coded in binary) with input alphabet also binary
 - 2. w is a binary string
 - 3. M accepts input w.

ANY TM M IN BINARY-CODED FORM

- $M = \{ Q, \{0,1\}, \Gamma, \delta, q_0, B, F \}$
 - Map all states, tape symbols and transitions to integers
 (→ binary strings)
 - δ(q_i,X_j) = (q_k,X_l,D_m) will be represented as:→ 0ⁱ1 0^j1 0^k1 0^l1 0^m
- Result: Each TM can be written down as a long binary string
- Canonical ordering of TMs:
 - $-\{M_1, M_2, M_3, M_4, ..., M_i, ...\}$

ENUMERATING ALL BINARY STRINGS

- Let w be a binary string
- Then $1w \equiv i$, where i is some integer

```
E.g., If w=ε, then i=1;
If w=0, then i=2;
If w=1, then i=3; so on...
```

- If $1w \equiv i$, then call w as the ith word or ith binary string, denoted by w_i .
- A <u>canonical ordering</u> of all binary strings:
 - $-\{\varepsilon, 0, 1, 00, 01, 10, 11, 000, 100, 101, 110,\}$ $-\{w_1, w_2, w_3, w_4, w_i, ...\}$

THE DIAGONALIZATION LANGUAGE

- $L_d = \{ w_i \mid w_i \notin L(M_i) \}$
 - The language of all strings whose corresponding machine does *not* accept itself (i.e., its own code)

• <u>Table:</u> T[i,j] = 1, if M_i accepts w_i = 0, otherwise.

• Make a new language called

$$L_d = \{w_i \mid T[i,i] = 0\}$$

L_D IS NOT RE (I.E., HAS NO TM)

Proof (by contradiction):

Let M be the TM for L_d

 \rightarrow M has to be equal to some M_k s.t. $L(M_k) = L_d$

 \rightarrow Will w_k belong to L(M_k) or not?

1. If
$$w_k \in L(M_k) ==> T[k,k]=1 ==> w_k \notin L_d$$

2. If
$$w_k \notin L(M_k) ==> T[k,k]=0 ==> w_k \in L_d$$

A contradiction either way!!

POST'S CORRESPONDENCE PROBLEM

• Emil Post

DEFINITION

Given two lists A and B:

$$A = w_1, w_2, ..., w_k$$
 $B = x_1, x_2, ..., x_k$

The problem is to determine if there is a sequence of one or more integers i_1 , i_2 , ..., i_m such that:

$$w_{i_1}w_{i_2}...w_{i_m} = x_{i_1}x_{i_2}...x_{i_m}$$

 (w_i, x_i) is called a corresponding pair.

Indices may be repeated or omitted

EXAMPLE

A:

$$\frac{w_1}{100}$$

$$\frac{w_2}{11}$$

$$\frac{w_3}{111}$$

B:

$$x_1$$
001

$$\frac{x_2}{111}$$

$$x_{3}$$

PC-solution:

$$w_2 w_1 w_3 = x_2 x_1 x_3$$

11100111

EXAMPLE

A:

*w*₁ 00

 $w_2 \\ 001$

 $w_3 \\ 1000$

B:

 X_1

Unit V

 $\frac{x_2}{11}$

 $x_{3} = 0.011$

- There is no solution
- Because total length of strings from B is smaller than total length of strings from A

MODIFIED POST CORRESPONDENCE PROBLEM (MPCP)

Given two lists A and B:

$$A = W_1, W_2, ..., W_k$$
 $B = X_1, X_2, ..., X_k$

The problem is to determine if there is a sequence of one or more integers i_1 , i_2 , ..., i_m such that:

$$w_1 w_{i_1} w_{i_2} ... w_{i_m} = x_1 x_{i_1} x_{i_2} ... x_{i_m}$$

 (w_i, x_i) is called a corresponding pair.

• Pair (w_1, x_1) is forced to be at the beginning of the two strings.

EXAMPLE

	Α	В
i	W _i	X _i
_ 1	_11	1
2	<u>1</u>	111
3	0111	10
4	10	0

This MPCP instance has a solution: 3, 2, 2, 4:

$$W_1W_3W_2W_4 = X_1X_3X_2X_2X_4 = 1101111110$$

EXAMPLE

	Α	В
<u>i</u>	W _i	X _i
1	10	101
2	011	11
_ 3	101	011

Does this MPCP instance have a solution?

If M accepts w, the two lists can be matched. Otherwise, the two lists cannot be matched.

- Given M and w, there are five types of strings in list A and B:
- Starting string (first pair):

List A List B
q₀w#

where q_0 is the starting state of M.

• Strings from the transition function δ :

List A	List B	
qX	Yp	from $\delta(q,X)=(p,Y,R)$
ZqX	pZY	from $\delta(q,X)=(p,Y,L)$
<u>q#</u>	Yp#	from $\delta(q, \#) = (p, Y, R) \subset$
Zq#	pZY <u>#</u>	from $\delta(q, \#) = (p, Y, L) \leftarrow$

where Z is any tape symbol except the blank.

• Strings for copying:

List A List B

X

where X is any tape symbol (including the blank).

Strings for consuming the tape symbols at the end:

List A	List B	
Xq	q	
qΥ	q	
XqY	q	

where q is an accepting state, and each X and Y is any tape symbol except the blank.

MAPPING L_U TO MPCP

Ending string:

List A List B

q## #

where q is an accepting state.

• Using this mapping, we can prove that the original L_U instance has a solution if and only if the mapped MPCP instance has a solution.

Consider the following Turing machine:

$$M = (\{q_0, q_1\}, \{0,1\}, \{0,1,\#\}, \delta, q_0, \#, \{q_1\})$$

Consider input w=110.

 Now we will construct an MPCP instance from M and w. There are five types of strings in list A and B:

• Starting string (first pair):

List A# #q₀110#

• Strings from the transition function δ :

List A List B

 $q_1 10 \text{ (from } \delta(q_0,0)=(q_1,0,L))$

• Strings for copying:

Strings for consuming the tape symbols at the end:

List A

$$\begin{array}{c} x = 5 \\ & 0 \\ & 1 \\ & 1 \\ & 1 \end{array}$$

$$q_1$$

$$0q_11$$

$$q_1$$

$$q_1Q$$

7= |

$$q_1Q$$

$$q_1$$

$$q_1$$

$$q_1$$

 $1q_10$

$$q_1$$

$$q_1$$

45

• Ending string:

Now, we have constructed an MPCP instance.

List A	List B
1. <u>#</u>	#q ₀ 110#
2. <u>q₀1</u>	$0q_0$
3. 0q ₀ 0	q_100
4. 1q ₀ 0	q ₁ 10
5. #	#
6. 0	0
7. 1	1
8. q ₁ ##	#

List A	List B
9. 0q ₁	q_1
10. 1q ₁	q_1
11. q ₁ 0	q_1
12. q ₁ 1	q_1
13. 0q ₁ 1	q_1
14. 1q ₁ 0	q_1
15. 0q ₁ 0	q_1
16. 1q ₁ 0\	q_1

Unit V

47

EXAMPLE OF ULP TO MPCP

This ULP instance has a solution:

 $q_0 110 \xrightarrow{\#} 0q_0 10 \rightarrow 00q_0 0 \rightarrow 0q_1 00 \text{ (halt)}$

Does this MPCP instance has a solution?

List A: #
$$q_0 1 1 0 # 0 q_0 1 0 # 0 0 q_0 0 # 0 q_1 0 0 # q_1 0 # q_1 # #$$

List B: # $q_0 1 1 0 # 0 q_0 1 0 # 0 0 q_0 0 # 0 q_1 0 0 # q_1 0 # q_1 # #$

The solution is the sequence of indices:

2, 7, 6, 5, 6, 2, 6, 5, 6, 3, 5, 15, 6, 5, 11, 5, 8

CLASS DISCUSSION

Consider the input w = 101. Construct the corresponding MPCP instance I and show that M will accept w by giving a solution to I.

CLASS DISCUSSION (CONT'D)

List A	List B	List A	List B
1. #	#q ₀ 101#	9. 0q ₁	q_1
2. $q_0 1$	$0q_0$	10. 1q ₁	q_1
3. 0q ₀ 0	q ₁ 00	11. q ₁ 0	q_1
4. 1q ₀ 0	q ₁ 10	12. q ₁ 1	q_1
5. #	#	13. 0q ₁ 1	q_1
6. 0	0	14. 1q ₁ 0	q_1
7. 1	1	15. 0q ₁ 0	q_1
8. q ₁ ##	#	16. 1q ₁ 0	q_1

TEST YOUR KNOWLEDGE

- Which of the following problems is undecidable?
 - Deciding if a given context-free grammar is ambiguous.
 - Deciding if a given string is generated by a given context-free grammar.
 - Deciding if the language generated by a given context-free grammar is empty.
 - Deciding if the language generated by a given context-free grammar is finite.

18 August 2022 A. Beulah Unit V 51

SUMMARY

- What is undecidability
- Recursive and Recursive enumerable languages

REFERENCE

 Hopcroft J.E., Motwani R. and Ullman J.D, "Introduction to Automata Theory, Languages and Computations", Second Edition, Pearson Education, 2008

