# Véletlen fizikai folyamatok

# 8. beadandó

#### Márton Tamás

# ${\it PJF19C}$ martontamas@caesar.elte.hu



### 1. feladat

#### Feladat leírás.

Ez egy példa arra, hogy hatvány alakú fokszámeloszlás esetén a hálózatnövekedési dinamika lényegtelennek tűnő részlete is befolyásolhatja a hatványkitevő értékét. Az eltölt lineáris preferenciával növekedő hálózatban egy k fokszámú csúcshoz való csatolódás valószínűsége  $(k+\lambda)/\sum_{\ell}(\ell+\lambda)N_{\ell}$ , ahol  $N_k$  a k fokszámú csúcsok száma. A 9. előadás jegyzetében megtalálható a levezetés, hogy  $\lambda=0$  (lineáris preferencia) esetén a fokszámeloszlás nagy k-ra hatvány alakú

$$P_k \sim k^{-3} \,. \tag{1}$$

Vigyük végig a lineáris preferenciára alkalmazott számolást a  $\lambda = 2$ -re és mutassuk meg, hogy ekkor az eloszlás nagy-k alakja

$$P_k \sim k^{-5} \,. \tag{2}$$

A fenti két eredmény azt sugallja, hogy (mint azt be is lehet bizonyítani) tetszőleges  $\lambda > 0$ -ra a következő eredmény igaz

$$P_k \sim k^{-(3+\lambda)} \,. \tag{3}$$

### Feladat megoldása.

Az előadási példához hasonlóan, ahol a rátát  $w_k = \frac{k}{A}$  alakban írtuk fel, így vizsgáljuk most is A értékét:

$$A = \sum_{l=1}^{N} = (l+\lambda)N_l = 2N + \lambda N = (2+\lambda)N$$
 (1.1)

Írjuk fel a Master-egyenletet a rendszerünkre:

$$N_k(N+1) = N_k(N) - \frac{k+\lambda}{A}N_k + \frac{k+\lambda-1}{A}N_{k-1}$$
$$N_1(N+1) = N_1(N) - \frac{1+\lambda}{A}N_1 + 1,$$

ami a következő alakra hozható:

$$\frac{dN_k}{dN} = -\frac{k+\lambda}{A}N_k + \frac{k+\lambda-1}{A}N_{k-1}$$
$$\frac{dN_1}{dN} = -\frac{1+\lambda}{A}N_1 + 1,$$

valamint behelyettesítem az A ra kapott értéket(1):

$$\frac{dN_k}{dN} = -\frac{k+\lambda}{(2+\lambda)N}N_k + \frac{k+\lambda-1}{(2+\lambda)N}N_{k-1}$$
$$\frac{dN_1}{dN} = -\frac{1+\lambda}{(2+\lambda)N}N_1 + 1,$$

valamint alkalmazom a  $\lambda=2$  helyettesítési értéket:

$$\frac{dN_k}{dN} = -\frac{k+2}{4N}N_k + \frac{k+1}{4N}N_{k-1}$$
$$\frac{dN_1}{dN} = -\frac{3}{4N}N_1 + 1.$$

Kihasználom, hogy a fokszámeloszlás definíciója:

$$P_k = \frac{N_k}{N}. (1.2)$$

Ekkor az egyenlet az alábbi alakra hozható:

$$\begin{split} \frac{dN_k}{dN} &= -\frac{k+2}{4} P_k + \frac{k+1}{4} P_{k-1} \\ &\frac{dN_1}{dN} = -\frac{3}{4} P_1 + 1. \end{split}$$

Valamint tudjuk, hogy:

$$\frac{dN_k}{dN} = \frac{d(NP_k)}{dN} = P_k + N\frac{dP_k}{dN},\tag{1.3}$$

ezért át tudom írni a Master-egyenletemet a fokszámeloszlásra vonatkozó differenciálegyenletekké:

$$P_k + N\frac{dP_k}{dN} = -\frac{k+2}{4}P_k + \frac{k+1}{4}P_{k-1}$$
$$P_1 + N\frac{dP_1}{dN} = -\frac{3}{4}P_1 + 1.$$

Majd átrendezem az egyenletet:

$$N\frac{dP_k}{dN} = -\frac{k+6}{4}P_k + \frac{k+1}{4}P_{k-1}$$
$$N\frac{dP_1}{dN} = -\frac{7}{4}P_1 + 1.$$

Tudjuk, hogy stacionárius megoldásnál az összes derivált zérus, így:

$$P_k^{stac} = -\frac{k}{k+5} P_{k-1}^{stac} = \frac{k(k-1)}{(k+5)(k+4)} P_{k-2}^{stac} = \dots = \frac{k!}{(k+5)!} P_1^{stac}$$
$$P_1^{stac} = \frac{4}{7}.$$

Ha megvizsgálom külön a  ${\cal P}_k$  fokszámeloszlását, akkor:

$$P_k^{stac} = \frac{k!}{(k+5)!} \cdot \frac{4}{7} = \frac{4}{7} \cdot \frac{1}{(k+5)(k+4)(k+3)(k+2)(k+1)} \approx \frac{1}{k^5}.$$

Tehát megkaptuk a helyes végeredményt, miszerint  $P_k \approx k^{-(3+\lambda)}$ , azaz ha  $\lambda=2$  akkor  $P_k \approx k^{-5}$ 

### 2. feladat

#### Feladat leírás.

A 9. előadáson vizsgált, lineáris preferenciával növekedő hálózatban egy k fokszámú csúcshoz való csatolódás valószínűsége  $k/\sum_{\ell} \ell N_{\ell}$ , ahol  $N_k$  a k fokszámú csúcsok száma. Az előadáson megmutattuk, hogy a fokszámeloszlás nagy k-ra hatvány alakú  $P_k \sim k^{-3}$ .

#### Feladatok:

- (i) Vizsgáljuk meg, hogy a fenti eredmény függ-e a kezdeti feltételektől! Indítsunk szimulációkat
  - (1) egy csúcsból,
  - (2) öt, lineárisan csatolt csúcsból  $[N_1(t=0)=2, N_2(0)=3, N_{k\neq 1,2}=0]$ ,
- (3) öt, kereszt alakban összekapcsolt csúcsból  $[N_1(0) = 4, N_4(0) = 1, N_{k\neq 1,4} = 0]$ , s hasonlítsuk össze a fokszámeloszlások nagy k-s viselkedését nagy (csúcsok száma:  $N \approx 10^5 10^6$ ) hálózatokra.
- (ii) Találjuk meg a maximális fokszámú csúcsot a fenti szimulációkban generált hálózatokban, s határozzuk meg a maximális fokszám átlagát  $\langle k_{max} \rangle$  elég nagy csúcsszám esetére. Függ-e  $\langle k_{max} \rangle$  a kezdeti feltételektől?

#### Feladat megoldása.

A hálózat szimulációját Pythonban írtam Jupyter-notebook-ban. Az (1),(2),(3) feladat megoldásához létrehoztam a fokszámokat:

A szimulációhoz, az adatok kiszámolásához egy törzset használtam, különböző N értékek mellett. A szimuláció lépései a következők voltak:

- kiválasztunk egy mar lent levő csúcsot véletlenszerűen,
- leszámoljuk a kivalásztott csúcs éleinek számát fokszám=k,
- kiválasztott csúcshoz  $w_k$  valószínűséggel kötöm az új berakott csúcsot,
- $w_k = k/A$ ,
- $A = \sum l * Nl$  ahol Nl az l éllel rendelkező csúcsok száma,
- húzok egy számot véletlenszerűen [0, 1] között,
- ha a random szám  $< w_k$ , hozzákötöm a csúcshoz, ha nem, választok új csúcsot es előröl kezdem a folyamatot,
- $\bullet$  a (2) és a (2) feladat eseteben a szimuláció for ciklusa (5,N) között fut.

```
\begin{array}{l} w_{\_}k = k \ / \ A \\ P = random.random() \\ \\ \textbf{if}(P < w_{\_}k): \\ & fokszamok[random\_kivalasztott\_csucs] \ += \ 1 \\ & fokszamok[i] = 1 \\ & osszekotes\_megtortent = True \end{array}
```

Majd a legnagyobb fokszámmal rendelkező csúcsot kerestem meg és ennek kiírását oldottam meg, valamint az ábrázoláshoz készítettem elő az adatokat, ami az analitikus görbét is tartalmazza.

```
\#Legnagyobb\ fokszamu\ csucs\ megtalalasa
index = where(fokszamok == max(fokszamok))
print("Az_ennyiedik_csucs(ok)nak_van_maximalis_fokszama:_" +
        str(csucsok[index[0]]) + "_ami_ekkora_fokszamu:_" +
        str (max(fokszamok)))
\#unique-izalas
fokszameloszlas = | |
fokszamokfajtaja = []
for i in range (0,N):
        if fokszamok[i] not in fokszamokfajtaja:
                fokszamokfajtaja.append(fokszamok[i])
                fokszameloszlas.append(1)
        if fokszamok[i] in fokszamokfajtaja:
                fokszameloszlas [fokszamokfajtaja.index(fokszamok[i])] += 1
\#kiiratas
for i in range (0,len(fokszameloszlas)):
        print("Mekkora_fokszam:_" + str(fokszamokfajtaja[i]) +
        "._Ennek_gyakorisaga: "+str (fokszameloszlas[i]))
fokszameloszlas = numpy.array(fokszameloszlas)
fokszamokfajtaja = numpy.array(fokszamokfajtaja)
eloszlasfuggveny = fokszameloszlas / N
\#analitikus mo
def analitikus mo(k):
        return 1/(k**3)
k = linspace(1, max(fokszamokfajtaja), 1000)
```

Ábrázoltam a szimuláció eredményeit, melyen látható, hogy a három különböző kezdőparaméterekkel rendelkező rendszerek, mennyire térnek el a  $P_k \approx k^{-3}$  alaktól. Az ábrákról leolvasható, hogy kellően nagy N-ekre a rendszer megközelíti az elméleti értéket a logaritmikus skálás ábrázolt értékeken jól látszik hogy növekvő N-ek esetén, hogyan mozognak a szimulált adatok, sajnos számítási kapacitás hiányában nem tudtam a  $10^5-10^6$ -os tartományig elmenni, mivel a számítógépem nem engedte, de az N=100 as feltétel mellett jól megfigyelhető az eltérés.

#### 1.részfeladat













### 2.részfeladat





# Fokszámeloszlás, öt lineárisan csatolt csúcsból indítás, N=1000



# Fokszámeloszlás, öt lineárisan csatolt csúcsból indítás, N=3000



## Fokszámeloszlás, öt lineárisan csatolt csúcsból indítás, N = 100



# Fokszámeloszlás, öt lineárisan csatolt csúcsból indítás, N=1000







### 3.részfeladat















1.5

Fokszám logaritmusa

2.0

2.5

3.0

1.0

0.5

0.0

## Fokszámeloszlás, öt kereszt csatolt csúcsból indítás, N=1000Szimulált eloszlásfüggvény 0





Feladatunk volt megvizsgálni a maximális fokszám átlagának,  $\langle k_{max} \rangle$ -nak a kezdeti feltételektől való függését. Ebben az esetben úgy jártam el, hogy N = 100, 1000 és 3000 esetére 7-szer lefuttattam a szimulációt mindhárom kezdeti feltételből indítva, lejegyeztem a maximális fokszámú csúcsokat, ezeket kiátlagoltam, és a hibát a következő formulával számoltam:

$$\sigma^2 = \frac{1}{n} \sum_{i=1}^n (x_i - \langle x \rangle)^2, \rightarrow \sigma = \sqrt{\sigma^2}$$
(2.1)

A mérési adatokat az alábbi táblázatok tartalmazzák. Ezek után kiábrázoltam a kapott  $\langle k_{maxi} \rangle$  átlagértékeket hibával együtt, ezt láthatjuk a 2..1 ábrán, amiről leolvashatjuk, hogy mindhárom kezdeti konfiguráció hibahatáron belül közel egyező megoldást ad, illetve mindhárom esetén ahogy várhattuk, N növelésével  $\langle k_{maxi} \rangle$  növekvő tendenciát mutat.



2..1. ábra.  $\langle k_{max} \rangle$  N és kezdeti konfiguráció függése.

| N             | $\langle k_{max} \rangle$ maximális fokszám |
|---------------|---------------------------------------------|
| 100           | 17                                          |
| 100           | 15                                          |
| 100           | 22                                          |
| 100           | 20                                          |
| 100           | 23                                          |
| 100           | 12                                          |
| 100           | 14                                          |
| Átlag hibával | $17.57 \pm 3.9$                             |

1. táblázat.  $\langle k_{max} \rangle$  maximális fokszámok, s azok átlaga hibával, N = 100 esetre, egy csúcsból indított szimuláció esetében.

| N             | $\langle k_{max} \rangle$ maximális fokszám |
|---------------|---------------------------------------------|
| 1000          | 57                                          |
| 1000          | 66                                          |
| 1000          | 36                                          |
| 1000          | 58                                          |
| 1000          | 65                                          |
| 1000          | 60                                          |
| 1000          | 43                                          |
| Átlag hibával | $55 \pm 10.4$                               |

2. táblázat.  $\langle k_{max} \rangle$  maximális fokszámok, s azok átlaga hibával, N = 1000 esetre, egy csúcsból indított szimuláció esetében.

| N             | $\langle k_{max} \rangle$ maximális fokszám |
|---------------|---------------------------------------------|
| 3000          | 67                                          |
| 3000          | 88                                          |
| 3000          | 174                                         |
| 3000          | 116                                         |
| 3000          | 74                                          |
| 3000          | 63                                          |
| 3000          | 127                                         |
| Átlag hibával | $17.57 \pm 3.9$                             |

3. táblázat.  $\langle k_{max} \rangle$  maximális fokszámok, s azok átlaga hibával, N = 3000 esetre, egy csúcsból indított szimuláció esetében.

| N             | $\langle k_{max} \rangle$ maximális fokszám |
|---------------|---------------------------------------------|
| 100           | 23                                          |
| 100           | 13                                          |
| 100           | 17                                          |
| 100           | 16                                          |
| 100           | 14                                          |
| 100           | 13                                          |
| 100           | 11                                          |
| Átlag hibával | $15.28 \pm 3.7$                             |

4. táblázat.  $\langle k_{max} \rangle$  maximális fokszámok, s azok átlaga hibával, N = 100 esetre,öt lineárisan csatolt csúcsból indított szimuláció esetében.

| N             | $\langle k_{max} \rangle$ maximális fokszám |
|---------------|---------------------------------------------|
| 1000          | 96                                          |
| 1000          | 46                                          |
| 1000          | 63                                          |
| 1000          | 41                                          |
| 1000          | 46                                          |
| 1000          | 33                                          |
| 1000          | 63                                          |
| Átlag hibával | $55.42 \pm 19.5$                            |

5. táblázat.  $\langle k_{max} \rangle$  maximális fokszámok, s azok átlaga hibával, N = 1000 esetre, öt lineárisan csatolt csúcsból indított szimuláció esetében.

| N             | $\langle k_{max} \rangle$ maximális fokszám |
|---------------|---------------------------------------------|
| 3000          | 65                                          |
| 3000          | 95                                          |
| 3000          | 92                                          |
| 3000          | 125                                         |
| 3000          | 81                                          |
| 3000          | 89                                          |
| 3000          | 109                                         |
| Átlag hibával | $92.42 \pm 20$                              |

6. táblázat.  $\langle k_{max} \rangle$  maximális fokszámok, s azok átlaga hibával, N = 3000 esetre, öt lineárisan csatolt csúcsból indított szimuláció esetében.

| N             | $\langle k_{max} \rangle$ maximális fokszám |
|---------------|---------------------------------------------|
| 100           | 18                                          |
| 100           | 22                                          |
| 100           | 21                                          |
| 100           | 13                                          |
| 100           | 13                                          |
| 100           | 28                                          |
| 100           | 16                                          |
| Átlag hibával | $19 \pm 4.9$                                |

7. táblázat.  $\langle k_{max} \rangle$  maximális fokszámok, s azok átlaga hibával, N = 100 esetre,öt kereszt alakban csatolt csúcsból indított szimuláció esetében.

| N             | $\langle k_{max} \rangle$ maximális fokszám |
|---------------|---------------------------------------------|
| 1000          | 36                                          |
| 1000          | 76                                          |
| 1000          | 38                                          |
| 1000          | 55                                          |
| 1000          | 50                                          |
| 1000          | 86                                          |
| 1000          | 99                                          |
| Átlag hibával | $62.85 \pm 22.6$                            |

8. táblázat.  $\langle k_{max} \rangle$  maximális fokszámok, s azok átlaga hibával, N = 1000 esetre, öt kereszt alakban csatolt csúcsból indított szimuláció esetében.

| N             | $\langle k_{max} \rangle$ maximális fokszám |
|---------------|---------------------------------------------|
| 3000          | 172                                         |
| 3000          | 91                                          |
| 3000          | 63                                          |
| 3000          | 85                                          |
| 3000          | 186                                         |
| 3000          | 79                                          |
| 3000          | 168                                         |
| Átlag hibával | $120.57 \pm 48.3$                           |

9. táblázat.  $\langle k_{max} \rangle$  maximális fokszámok, s azok átlaga hibával, N = 3000 esetre, öt kereszt alakban csatolt csúcsból indított szimuláció esetében.