HERMETIC SURFACE MOUNT FIXED VOLTAGE NEGATIVE REGULATORS APPROVED TO DESC DRAWINGS

Three Terminal, Fixed Voltage, 1.5 Amp Precision Negative Regulators In Hermetic Surface Mount Package

FEATURES

- Hermetic Surface Mount Package
- Output Voltages: -5V, -12V, -15V
- Output Voltages Set Internally To ±1%
- Built-In Thermal Overload Protection
- · Short Circuit Current Limiting
- Product Is Available Hi-Rel Screened

DESCRIPTION

These three terminal negative regulators are supplied in a hermetically sealed surface mount package. All protective features are designed into the circuit including thermal shutdown, current limiting and safe-area control. With heat sinking, they can deliver over 1.5 amps of output current. These units feature internally trimmed output voltages to ±1% of nominal voltage. Standard voltages are -5V, -12V, and -15V. These units are ideally suited for Military applications where a hermetic surface mount package is required.

PART NUMBER DESIGNATOR

Standard Military Drawing Number

5962-8874601 NX

OM1905NMM

5962-8874701 NX

OM1912NMM

5962-8874801 NX

OM1915NMM

3.5

4_{11 R0} 3.5 - 53

ABSOLUTE MAXIMUM RATINGS @ 25°C

Input Voltage		35 V
Operating Junction Tempe	erature Range	C to + 150°C
Storage Temperature Ran	ge	C to + 150°C
Typical Power/Thermal Ch	narateristics:	
Rated Power @ 25° C	T _C	15W
	T _A	3W
Thermal Resistance	θ_{JC}	3.5°C/W
$\theta_{JA} \dots \dots$		

ELECTRICAL CHARACTERISTICS -5 Volt V_{IN} = -10V, I_o = 500mA, -55°C T_A 125°C (unless otherwise specified)

Parameter	Symbol	Test Conditions		Min.	Max.	Unit
Output Voltage	V _{OUT}	T _A = 25°C		-4.95	-5.05	V
		$V_{IN} = -7.5V \text{ to } -20V$	•	-4.85	-5.15	V
		$I_O = 5$ mA to 1.0 A, $P \le 15$ W				
Line Regulation	V _{RLINE}	V _{IN} = -7.5V to -20V			12	mV
(Note 1)			•		25	mV
(Note 4)		V _{IN} = -8.0V to -12V			5	mV
			•		12	mV
Load Regulation	V _{RLOAD}	I _O = 5mA to 1.5 Amp			20	mV
(Note 1)			•		25	mV
		I _O = 250mA to 750 mA			15	mV
			•		30	mV
Standby Current Drain	I _{SCD}				2.5	mA
			•		3.0	mA
Standby Current Drain	ΔI_{SCD}	$V_{IN} = -7.0V \text{ to } -20V$	•		0.4	mA
Change With Line	(Line)					
Standby Current Drain	ΔI_{SCD}	I _O = 5mA to 1000mA	•		0.4	mA
Change With Load	(Load)					
Dropout Voltage	V _{DO}	$\Delta V_{OUT} = 100$ mV, $I_{O} = 1.0$ A	•		2.5	V
Peak Output Current	I _{O (pk)}	T _A = 25°C		1.5	3.3	А
Short Circuit Current	I _{DS}	$V_{IN} = -35V$			1.2	А
(Note 2)			•		2.8	А
Ripple Rejection	ΔV_{IN}	$f = 120 \text{ Hz}, \Delta V_{IN} = -10 \text{V}$		63		dB
	ΔV_{OUT}	(Note 3)	•	60		dB
Output Noise Voltage	N _O	$T_A = 25$ °C, f =10 Hz to 100KHz			40	μV/V
(Note 3)						RMS
Long Term Stability	ΔV _{OUT}	$T_A = 25$ °C, $t = 1000$ hrs.			75	mV
(Note 3)	Δt					

Notes

- Load and Line Regulation are specified at a constant junction temperature. Pulse testing with low duty cycle is used. Changes in output voltage due to heating effects must be taken into account separately.
- 2. Short Circuit protection is only assured up to V_{IN} = -35V.
- 3. If not tested, shall be guaranteed to the specified limits.

The • denotes the specifications which apply over the full operating temperature range.

3.5

ELECTRICAL CHARACTERISTICS -12 Volt $V_{IN} = -19V$, $I_0 = 500$ mA, -55°C T_A 125°C (unless otherwise specified)

Parameter	Symbol	Test Conditions		Min.	Max.	Unit
Output Voltage	V _{OUT}	T _A = 25°C		-11.88	-12.12	V
		V _{IN} = -14.5V to -27V	•	-11.64	-12.36	V
		$I_0 = 5$ mA to 1.0 A, P \leq 15W				
Line Regulation	V _{RLINE}	$V_{IN} = -14.5V \text{ to } -27V$			20	mV
(Note 1)			•		50	mV
(Note 4)		$V_{IN} = -16V \text{ to } -22V$			10	mV
			•		30	mV
Load Regulation	V _{RLOAD}	$I_O = 5mA$ to 1.5 Amp			32	mV
(Note 1)			•		60	mV
		$I_O = 250 \text{mA}$ to 750 mA			16	mV
			•		30	mV
Standby Current Drain	I _{SCD}				3.5	mA
			•		4.0	mA
Standby Current Drain	ΔI _{SCD}	$V_{IN} = -14.5V \text{ to } -27V$	•		0.8	mA
Change With Line	(Line)					
Standby Current Drain	Δl _{SCD}	$I_O = 5mA$ to 1000mA	•		0.5	mA
Change With Load	(Load)					
Dropout Voltage	V _{DO}	$\Delta V_{OUT} = 100$ mV, $I_O = 1.0$ A	•		1.8	V
Peak Output Current	I _{O (pk)}	$T_A = 25$ °C, $I_O = 5$ mA to 1A		1.5	3.3	А
Short Circuit Current	I _{DS}	V _{IN} = -35V			1.2	Α
(Note 2)			•		2.8	А
Ripple Rejection	ΔV_{IN}	$f = 120 \text{ Hz}, \Delta V_{IN} = -10 \text{V}$		56		dB
	ΔV _{OUT}	(Note 3)	•	53		dB
Output Noise Voltage	N _O	$T_A = 25$ °C, f =10 Hz to 100KHz			40	μV/V
(Note 3)						RMS
Long Term Stability	ΔV_{OUT}	$T_A = 25$ °C, $t = 1000$ hrs.			120	mV
(Note 3)	Δt					

Notes:

- Load and Line Regulation are specified at a constant junction temperature. Pulse testing with low duty cycle is used.
 Changes in output voltage due to heating effects must be taken into account separately.
- 2. Short Circuit protection is only assured up to $V_{IN} = -35V$.
- 3. If not tested, shall be guaranteed to the specified limits.
 - The denotes the specifications which apply over the full operating temperature range.
- 4. Minimum load current for full line regulation = 5 mA.

MECHANICAL OUTLINE

CONNECTION DIAGRAM

Pin 1 Ground Pin 2 Output Pin 3 Input

3.5

ELECTRICAL CHARACTERISTICS -15 Volt V_{IN} = -23V, I_o = 500mA, -55°C T_A 125°C (unless otherwise specified)

Parameter	Symbol	Test Conditions		Min.	Max.	Unit
Output Voltage	V _{OUT}	T _A = 25°C		-14.85	-15.15	V
		V _{IN} = -17.5V to -30V	•	-14.55	-15.45	V
		$I_0 = 5 \text{mA to } 1.0 \text{ A, P} \le 15 \text{W}$				
Line Regulation	V _{RLINE}	$V_{IN} = -17.5V \text{ to } -30V$			25	mV
(Note 1)			•		50	mV
(Note 4)		$V_{IN} = -20V \text{ to } -26V$			15	mV
			•		25	mV
Load Regulation	V _{RLOAD}	$I_O = 5mA$ to 1.5 Amp			35	mV
(Note 1)			•		75	mV
		$I_0 = 250 \text{mA}$ to 750 mA			21	mV
			•		45	mV
Standby Current Drain	I _{SCD}				6.0	mA
			•		6.5	mA
Standby Current Drain	ΔI_{SCD}	$V_{IN} = -17.5V \text{ to } -30V$	•		0.8	mA
Change With Line	(Line)					
Standby Current Drain	ΔI_{SCD}	$I_O = 5mA$ to 1000 mA	•		0.5	mA
Change With Load	(Load)					
Dropout Voltage	V _{DO}	$\Delta V_{OUT} = 100$ mV, $I_{O} = 1.0$ A	•		2.5	V
Peak Output Current	I _{O (pk)}	$T_A = 25^{\circ}C$		1.5	3.3	Α
Short Circuit Current	I _{DS}	V _{IN} = -35V			1.2	А
(Note 2)			•		2.8	Α
Ripple Rejection	ΔV_{IN}	$f = 120 \text{ Hz}, \Delta V_{IN} = -10 \text{V}$		53		dB
	ΔV_{OUT}	(Note 3)	•	50		dB
Output Noise Voltage	No	$T_A = 25^{\circ}C$, f =10 Hz to 100KHz			40	μV/V
(Note 3)						RMS
Long Term Stability	ΔV _{OUT}	$T_A = 25$ °C, $t = 1000$ hrs.			150	mV
(Note 3)	Δt					

Notes:

- Load and Line Regulation are specified at a constant junction temperature. Pulse testing with low duty cycle is used.
 Changes in output voltage due to heating effects must be taken into account separately.
- 2. Short Circuit protection is only assured up to $V_{IN} = -35V$.
- 3. If not tested, shall be guaranteed to the specified limits.

The • denotes the specifications which apply over the full operating temperature range.

TYPICAL PERFORMANCE CHARACTERISTICS

2 Г