Experimental Techiques in Particle PhysicsRadiation a Challenge for Electronics and Detectors

Lecture 10, 2021-01-12

Dr. Stefan Metzger Fraunhofer INT

Radiation Fluence inside Detectors

Promising new physical results are related to some very rarely produced particles

High event rate (10⁹/s at LHC), very good spatial resolution and fast signal read out required, can be fulfilled with 3x10¹ silicon detectors, however:

Detectors and electronics will be harshly irradiated!

- ATLAS Inner Detector: Φ_{eq} up to 3 x 10^{14} cm⁻² per operational year
- 10 years of operation have to be guaranteed

What is the impact on silicon detectors?

How can we make silicon radiation harder?

ATLAS - Inner Detector

Radiation Fluence inside Detectors – Next Level

For the HL-LHC (High-Luminosity LHC) detector electronics,

- to operate between 2025 and 2035,
- at ionizing radiation levels of up to 10 MGy (1 GRad) in silicon and
- 10¹⁶ (1 MeV n_{eq})/cm² are expected,

thus requiring the use of radiation-hard by design electronics.

Critical Equipment near the Accelerator

Main reason requiring operation of electronics near accelerators:

- Cable distance to accelerator elements (detectors, magnets, vacuum, cryogenics, RF, beam instrumentation...)
- Lack of radiation-safe areas around accelerator (underground machine)

Main drivers for use of commercial systems:

- Cost
- Performance
- Availability and timeline

Mixed Radiation Fields inside Shielded Alcoves

- Main SEE contributors: hadrons (n, p, π) indirectly through ionization after nuclear interactions
 - Two main energy intervals can be distinguished:
 - thermal neutrons (causing SEEs through 10B capture)
 - equivalent high-energy hadrons (HEH with energy > 20 MeV + intermediate energy neutron contribution)
 - so the sensitivities to HEH and thermal neutrons (if relevant) need to be qualified
- Main TID contributors: charged hadrons, electrons/positrons, photons
- Main DD contributors: neutrons

So in areas (e.g. shielded alcoves) with typical annual fluences ranging from 10⁵ to 10⁹ HEH/cm² COTS based systems seems feasible.

Commercial-Grade vs Rad-Tolerant Grade FPGA

- Commercial-grade electronics are not specially manufactured to be operated in radiation environments and so they do not tolerate radiation.
- Some vendors offer dedicated radiation-tolerant FPGAs:
 - But the are 100 to 1000x more expensive
 - Because they are build typically for the space or military market where only small quantities are needed.
- However high-energy physics experiments typically use hundreds or thousands FPGAs.

Source: ALTERA

Source: XILINX

So HEP normally buy commercial-grade (COTS) FPGA..

Radiation Effects on Commercial-Grade FPGA

FPGA Type	TID	SEU in Configuration	SET	Destructive Events (SEL, etc.)
<u>SRAM</u>		sensitive	sensitive	insensitive
<u>Flash</u>		insensitive	sensitive	insensitive
<u>Antifuse</u>		insensitive	sensitive	insensitive

SRAM-Based FPGA

- SRAM-based FPGA store logic cells configuration data in the static memory (organized as an array of latches).
- Since SRAM are volatile and can't keep data without power source, such FPGAs must be programmed (configured) upon start.
- There are two basic modes of programming:
 - Master mode, when FPGA reads configuration data from an external source, such as an external Flash memory chip.
 - Slave mode, when FPGA is configured by an external master device, such as a processor. This can be usually done via a dedicated configuration interface or via a boundary-scan (JTAG) interface.
- SRAM-based FPGAs include most chips of Xilinx Virtex and Spartan families and Altera Stratix and Cyclone.
- SRAM-based FPGAs have an internal flash memory blocks, thus eliminating the need to have an external non-volatile memory (ref. Xilinx Spartan-3AN family).

Source: XILINX

SRAM-Based FPGA: Pros and Cons

- Re-programmable
 - can add features after installation,
 - allows to try more complex logic or to react to external conditions
- Fastest FPGA technology
 - Newest silicon process (e.g. 16 nm XILINX UltraScale+)
 - LVDS ports with 1.6 Gbps or SERDES with 32 Gbps
- Best TID tolerance
 - More than 5 kGy(Si) with some part types much higher

- Consumes the most power
- Is sensitive to SEUs in the Configuration memory
- Needs scrubbing (increases power consumption further)

Flash-Based FPGA

- The true flash-based FPGAs shouldn't be confused with the previous type. The SRAM-based FPGAs with internal flash memory use flash only during startup to load data to the SRAM configuration cells.
- On the contrary, true flash-based FPGA uses flash as a primary resource for configuration storage, and doesn't require SRAM (a similar technology is used in CPLDs – complex programmable logic devices, but the FPGA architecture is very different from that of CPLD).
- This technology has an advantage of being less power consumptive.
- Flash-based FPGAs are also more tolerant to radiation effects.
- Flash-based FPGA families such as *Igloo* and *ProASIC3* are manufactured by ACTEL.
- As in the previous case, using flash-based FPGAs can be a solution to prevent unauthorized bitstream copying.

Fig. 2: A floating-gate transistor used in flash memory

Source: ACTEL

Flash-Based FPGA: Pros and Cons

- Re-programmable
 - can add features after installation,
 - allows to try more complex logic or to react to external conditions
- Reliability
 - No SEUs in Configuration memory
- Intermediate density and speed
 - LVDS port up to 1.25 Gbps and SERDES up to 12.7 Gbps

- Intermediate TID tolerance
 - Ca. 700 Gy(Si) on Igloo2 or SmartFusion2
- Ability to be reprogrammed fails at much lower TID levels
- Design tools not as mature as for SRAMbased FPGAs

Antifuse-Based FPGA

- Antifuse-based FPGAs are different from the previous ones in that they can be programmed only once.
- The *antifuse* is a device that doesn't conduct current initially, but can be "burned" to conduct current (the antifuse behavior is thus opposite to that of the fuse, hence the name).
- The antifuse-based FPGA can't be then reprogrammed since there is no way to return a burned antifuse into the initial state.
- Antifuse-based device families include Axcelerator produced by Actel.

Antifuse-Based FPGA: Pros and Cons

- Reliability
 - No SEUs in Configuration memory
- Limited availability
- Only programmable once
- Lowest speed, e.g. 700 Mbps LVDS ports
- Intermediate TID tolerance: ca. 800 Gy(Si)

Example of Use of FPGAs at CERN

Use cases at CERN

	Present	Plans for next generation	
nanoFIP (accelerators)	ProASIC3. [1]	investigating Smartfusion2 and nanoXplore FPGA [2]	
LHC SciFi , Cal, and Muons	Antifuse AX, ProASIC	lgloo2	
LHCb RICH	Antifuse AX , ProASIC	Xilinx Kintex7 [4]	
ALICE ITS [7]	no FPGAs	Xilinx ultraScale(+), ProASIC3L (scrubber).	
ALICE TOF	ProASIC	Igloo2	
ALICE TPC	SmartFusion2		
ATLAS muon RPC	Xilinx	Xilinx	
ATLAS TGC Muon	Antifuse AX	Plan A : Xilinx Kintex-7 Plan B : PolarFire	
CMS RPC Muon	Xilinx SPARTAN3; Actel ProASIC+ as blind scrubber, every 10 minutes. Plan A : Xilinx Kintex7 and SmartFusion2 Plan B : PolarFire		n2.
CMS DT Muon	no FPGAs PolarFire		
CMS HCAL [10]	ProASIC3L, igloo2 Source: CERN		

Classification of Radiation Effects

Radiation Effects of Different Types of Radiation

Mechanism for Inducing a Single-Event Effect

- Deposition of energy of primary particle in matter
- Creation of electron hole pairs
- Transport of charge carriers (drift and diffusion)
- Collection of carriers in sensitive areas of the devices (= depleted pn-junction)
- "Electrical answer" of the system, if sufficient charge is collected (i.e. threshold = critical charge)

Single-Event ...

Upset – SEU	Change of stored information	Memories, latches in digital systems
Multiple Bit/Cell Upset – MBU, MCU	Change of information in several logical or physical neighboring memory cells	Memories, latches in digital systems
Functional Interrupt – SEFI	Loss of normal functionality or operation	Complex devices with internal control logic
Transient – SET	Pulse of certain amplitude and length	Analogue und mixed-signal devices, photonics
Latchup – SEL	State of strongly increased current consumption	CMOS, BiCMOS
Gate Rupture – SEGR	Local disruption of the gate isolation	Power MOSFET
Burnout – SEB	Triggering of a permanent short circuit	BJT, Power MOSFET

Soft Error - SEU

■ Single-Event Upset ("soft – error")
■ Example 6-Transistor SRAM-Cell

Destructive SEL

- Devices in CMOS technology are prone to Single-Event Latchup
 - Ignition of a parasitic thyristor (pnpn-structure).
 - Current consumption increases strongly.

If not cleared immediately, device will be destroyed through thermally (local melting of silicon).

SEEs in Space

Source: NASA / ESA

Source: ESA

SEE in Airbus A330 Avionics - Qantas Flight 72

Source: ATSB

SEB in Power MOSFET Induced by Atmospheric Neutrons

Source: Proc. 6th Internat. Symp. Power Semiconductor Devices & IC's, Davos, Switzerland, May 3 1 - June 2 1994.

Total Dose and Displacement Damage Effects

- Ionization damage energy absorbed by ionization in insulating layers (SiO₂)
 - Charge carriers drift and diffuse to other regions
 - Charges can be trapped
 - => unintended concentration of charge, parasitic electric fields

Displacement Damage (TNID) – Basics (I)

- Atoms will be knocked from their lattice positions by the impinging particle and leave behind vacancies (Frenkel pairs).
- If their energy is sufficient they can knock out more atoms.

Source: IEEE TNS, Vol 19, p181,1972

Displacement Damage (TNID) – Basics (II)

- PKA Primary Knock on Atom
- 50 keV PKA (average recoil energy for PKA produced by 1 MeV neutrons)
- Displacement threshold in Silicon:
 - Single lattice atom (Frenkel pair):
 - E_d ~ 25 eV
 - Defect cluster
 - \blacksquare E_C ~ 5 keV
- Neutrons (elastic scattering)
 - \blacksquare E_n > 185 eV for single displacement
 - \blacksquare E_n > 35 keV for cluster
- Electrons
 - E_e > 255 keV for single displacement
 - E_e > 8 MeV for cluster
- ⁶⁰Co-gammas
 - Compton Electrons with max. $E_{\gamma} \sim 1$ MeV (no cluster production)

Displacement Damage (TNID) - NIEL

- The non-ionizing energy loss (NIEL) is similar to the energy loss through ionisation
- $D_{neutron}$ (1 MeV)/cm² = 95 MeV mb/cm²

Displacement Damage (TNID) - NIEL Hypothesis

- The NIEL hypothesis
 - The damage is introduced through stable defect centers
 - The number of defects is proportional to the NIEL
 - The microscopic character of the defects and their concentration is independent from the features of the primary particle
 - The change of basic electrical properties is proportional to the number of defects (Shockley Read Hall Theory)
- So one can test (simulate) of different particles types with different energy spectra with a single energy at a fixed energy

Displacement Damage (TNID) - NIEL Hypothesis - Example

	NIEL	Φ [cm ⁻²]	$NIEL \cdot \Phi \ [cm^{\text{-2}}]$
p+(10 MeV)	3.87	1.00 · 10 ¹⁰	3.871·10 ¹⁰
n ⁰ (14 MeV)	1.80	$2.15 \cdot 10^{10}$	3.871·10 ¹⁰

Displacement Damage (TNID) – Manifestation

- Formation of mid-gap states
 - facilitate transitions of electrons from VB to CB
 - increase of leakage current of a reverse-biased pn-junction
 - increase of noise $\propto \sqrt{I}$
 - Increased recombination in non-depleted regions, i.e. charge loss
- Formation of trapping centers (closer to band edge)
 - charge trapping + delayed release
 - loss of charge collection efficiency
- Formation of acceptor and donor-like levels
 - Change in doping characteristics: space-charge ("type") inversion n →p
 - change in depletion voltage
 - reverse annealing

Displacement Damage (TNID) - Minority carrier lifetime

- Minority carrier lifetime τ = average time it takes for a minority carrier to recombine
 - In n-type Si holes are minority carriers
 - And in p-type Si electrons
- τ strongly depends on concentration of recombination centers
- Effect of change of minority carrier lifetime
 - Reduces detector sensitivity
 - Reduces amplification of bipolar transistors
 - Reduces charge transfer efficiency (CTE) in CCDs
 - Reduces light output of LEDs
 - Increases threshold current of laser diodes
 - Reduces current transfer ratio (CTR) in opto-couplers

$$\frac{1}{\tau} = \frac{1}{\tau_o} + \mathbf{K} \phi$$

Displacement Damage (TNID) - Charge Trapping

Displacement Damage (TNID) – Leakage Current

- Uniform distribution of active defects
- $I_d = I_0 + \alpha \cdot \Phi \cdot A_d$
- Partial annealing after initial irradiation

M.Moll, SIMDET 2016, 5-7 September 2016, LPNHE Paris

Displacement Damage (TNID) – Depletion Voltage

- Effective doping changes with fluence Φ
 - Traps remove donors
 - II. Traps create acceptors
- This can lead to a type inversion, e.g. from n- to ptype
- $U_{dep} \propto |N_{eff}| d^2$

M.Moll, SIMDET 2016, 5-7 September 2016, LPNHE Paris

Displacement Damage (TNID) – Annealing

Instead of depletion voltage better plot the change in the effective space charge ΔN_{eff}

Michael Moll - CERN EP-TA1-SD Seminar - 14.2.2001

Displacement Damage (TNID) - Annealing Behavior

Michael Moll - CERN EP-TA1-SD Seminar - 14.2.2001

Hamburg model

$$\Delta N_{eff}(\Phi_{eq},t) = N_a(\Phi_{eq},t) + N_c(\Phi_{eq}) + N_r(\Phi_{eq},t)$$

Displacement Damage (TNID) – Annealing Behavior

Short term annealing

- $N_a = \Phi_{eq} \cdot \sum_i g_{ai} \cdot e^{-t/\tau_i}$
- lacktriangle First order decay of acceptors introduced proportional to $\Phi_{\sf eq}$ during irradiation

Stable damage

- $N_c = N_{c0} \cdot (1 e^{-c \cdot \Phi_{eq}}) + g_c \cdot \Phi_{eq}$
- Incomplete "donor removal" + introduction of stable acceptors

Long term reverse annealing

- $N_Y = N_{Y,\infty} \cdot (1 \frac{1}{1 + t/\tau_W})$
- Second order parameterization (with $N_Y = N_{Y,\infty} \cdot \Phi_{eq}$) gives best fit
- But τ_Y independent of Φ_{eq} => underlying defect reaction based on first order process

Displacement Damage (TNID) - Bipolar Transistors

- Most prominent effect is reduction of bipolar amplification
- In discrete npn-transistors with narrow base TNID effects typically compared to TID effects
- Bipolar transistors can exhibit strong TNID sensitivity due to
 - Lateral pnp-transistors with wide base
 - Depends strongly on external circuitry
 - Relevant for proton fluences > 2.10¹¹ cm⁻²

Source: B. G. Rax, et al., IEEE Trans. Nucl. Sci., 45(2632 (1998).

TID in MOS Devices - Basics

- Ionizing radiation produce electron-hole pairs in SiO₂
- Electrons leave the SiO2 rapidly
- Holes drift much slower and might be captured in oxide traps
- Drifting holes release hydrogen which change Si/SiO2 interface through deposition of interface traps which are
 - positive für pMOS
 - negative for nMOS

TID in MOS Devices – pMOS (I)

- Fast build-up of positive oxide traps (Q_{ot})
 - Negative threshold voltage shift (ΔV_{ot})
- Delayed build-up of positive interface states (Q_{it})
 - Negative threshold voltage shift (ΔV_{it})
- Always negative threshold voltage shift (ΔV_{th})

TID in MOS Devices – pMOS (II)

- Fast build-up of positive oxide traps (Q_{ot})
 - Negative threshold voltage shift (ΔV_{ot})
- Delayed build-up of positive interface states (Q_{it})
 - Negative threshold voltage shift (ΔV_{it})
- Always negative threshold voltage shift (ΔV_{th})

TID in MOS Devices – nMOS (I)

- Fast build-up of positive oxide traps (Q_{ot})
 - Negative threshold voltage shift (ΔV_{ot})
- Delayed build-up of negative interface states (Q_{it})
 - Positive threshold voltage shift (ΔV_{it})
- Positive threshold voltage shift (ΔV_{th}) possible depending on dose (i.e. Rebound)

TID in MOS Devices – nMOS (II)

- Fast build-up of positive oxide traps (Q_{ot})
 - Negative threshold voltage shift (ΔV_{ot})
- Delayed build-up of negative interface states (Q_{it})
 - Positive threshold voltage shift (∆V_{it})
- Positive threshold voltage shift (ΔV_{th}) possible depending on dose (i.e. Rebound)

How to make Electronics and Detectors more Radiation Hard? (I)

Strategies:

- 1. Material engineering
- Device engineering
- Change of operational conditions
- 4. Mitigation

Inside integrated circuit

Outside integrated

circuit

Source: ECSS-Q-HB-60-02A

How to make Electronics and Detectors more Radiation Hard? (II)

Material engineering

- New materials
 - Si-Ge devices
 - Silicon Carbide (SiC), Gallium Nitride (GaN)
 - Diamond
- Defect engineering of Silicon
 - Examples: Oxygen rich Silicon
 - Pre-irradiated Si
 - Needs profound understanding of radiation damage
 - Microscopic defects and macroscopic parameters
 - Dependence on particle type and energy
 - Defect formation kinetics and annealing

How to make Electronics and Detectors more Radiation Hard? (III)

Device engineering

- Thin oxides
- Silicon-on-insulator
- P-type silicon detectors (n-in-p)
- Thin detectors, epitaxial detectors
- 3D detectors and Semi 3D detectors, Stripixels
- Monolithic devices

Change of detector operational conditions

- Supply voltages
- Cryogenic temperatures

How to make Electronics and Detectors more Radiation Hard? (IV)

Mitigation

- Redundancy, e.g. Triple-modular redundancy (TMR) plus majority voter
- Error detection and correction (EDAC),
 e.g. parity bit, Hamming code
- Watchdogs
- Scrubbing
- Temporal annealing
- Local spot shielding

But be careful when implementing TMR or other mitigation techniques into FPGAs.

- Decreases available number of gates
- Can slow down system
- Incorrect implementation can increase errors

Source: ECSS-Q-HB-60-02A

Source: Tethers Unlimited Inc.

LHC Pixel Sensors

- Fluences of up to 10¹⁴ cm⁻²yr⁻¹for innermost detectors
- Type inversion occurs at ~2-3·10¹²cm⁻²
 - n-bulk effectively becomes p-bulk
 - depletion voltage first decreases, then increases with increasing fluence
 - pn interface (diode) migrates from p+n side to n+p side after type inversion
- Mitigation: n+ in n-type
 - Bias from backside
 - Guard rings
 - Insulation of n+ in n pixels with pspray
 - operation possible also without full depletion

before type inversion

after type inversion

3D Silicon Sensors

[S. Parker et al., ICFA Instr. Bull. 14, 30 (1997),C. Da Via et al., NIM A 694, 321 (2012), NIM A 765, 151 (2014)]

- 3D array of p+ and n+ electrodes
- particle path (signal) different from drift path
- short drift path, fast charge collection
- depletion (sideward) at low voltages, high field

- radiation tolerant: 50% charge
 @ 10¹⁶ cm⁻²
- good for inclined tracks
- slightly larger C (noise)
- now also in diamond, CdTe

Radiation Effects in Polymers

- Radiolysis due to Ionization
- Breaking of Bonds
- Depending on Chemical Structure
 - Aromatics harder than Aliphates
- Possibly re-arrangement to other/new molecules
 - Material gets harder, more brittle or fluid
- Small molecules are evaporated
 - Change of volume
- Intensity of effects depend on ambient atmosphere especially Oxygen
- Rad-hard polymers
 - Kapton® (Polyimide),
 - PEEK® (Polyetheretherketon) (stable > 1 Grad)

Source: http://www.orthoassociates.com/SP11B16/Crosslink.gif

Quelle: Beta Gamma Service

Radiation Effects in Materials

Teflon

Paper

Delrin

Glass pipe

Radiation Effects in Different Glases

Glas - Change of Refractive Index

Electro-Static Discharge (ESD) in Insulators

- ESD) in acrylic-glass.
- Lichtenberg-Figure

Source: Wikipedia

Thank you for your attention.

