

Group A

植微四 馬詠芝、植微四 王靖曈 心理四 徐聖琁、心理四 李彥廷 生醫電資所博三 王子毅

TABLE OF CONTENTS

01

Topic

研究主題

02

Method

資料處理

建模/調整

03

Result

模型成果

04

Conclusion

結論

研究主題與目標

- 以 NBA 球隊比賽數據和球員資料來預測兩隊比賽的勝負
- 目標:
 - 建置準確的預測模型
 - 了解重要特徵值
 - 部署網頁以呈現成果

資料處理 - 篩選與前處理

球隊傳統數據:

- 1. 選擇 90-91 賽季後的逐場數據
- 2. 整理成主場球隊和客場球隊的數據差(主-客)
- 3. 以主客隊「過去十場的平均」進行預測

球員相關資料:

 以球隊中「入選全明星賽之球員數」、「年度前三隊球員數」、 「MVP 排行榜之球員數」作為球隊陣容實力指標

資料處理 - 特徵值分析

資料處理 - 特徵值分析

資料處理 - 特徵值分析

模型建置與調整

- Pycaret
- Auto-sklearrn
- TPOT

PyCaret

Pycaret特色

來自R Caret

Classification and Regression Training

資料解釋、視覺化

用簡單的指令即獲得詳細的報告及圖表

開源&低程式碼

適合素人資料科學家

相容性

無痛切換至所有支 援Python的環境

前10名important features

- 入選全明星賽人數 前一年獲選年度前三隊人數 前一年 MVP 排行榜球員數
- 2 罰球數 三分球命中率

前10名important features

- 入選全明星賽人數 前一年獲選年度前三隊人數 前一年 MVP 排行榜球員數
- 罰球數 三分球命中率

LogisticRegression

Training data: 66.8%

Testing data: 69.9%

球員影響力>>球隊影響力

Autosklearn

AutoSklearn

- 基於Sklearn開發
- 自動測試多種模型及超參數
- 最後輸出一個集成模型

AutoSklearn

● 只有球隊資料 (2 hr)

```
automlclassifierV1 Training dataset: 0.6666222340709145
automlclassifierV1 Testing dataset: 0.6611030478955007
```

● 加入球員資料、dev (1 hr)

```
automlclassifierV1 Training dataset: 0.7100423778235683
automlclassifierV1 Testing dataset: 0.6793655730057534
```

Autosklearn 最終的模型內容

Rank	Ensemble_weight	Model	Cost
1	0.02	Stochastic Gradient Descent	0.3293029
2	0.32	Gradient_boosting	0.3297694
3	0.42	Linear Discriminant Analysis	0.3308192
4	0.1	Gradient_boosting	0.3354457
5	0.12	Quadratic Discriminant Analysis	0.3433381
6	0.02	Gradient_boosting	0.4008009

TPOT

Tree-based Pipeline Optimization Tool

TPOT特色

使用Genetic Programming

自動產生最佳模型訓練及測試 的pipeline並提供程式碼

可設定提早停止訓練的時間, 且停止之後可以接續訓練。

TPOT

Training data: 67.8%

Testing data: 67.3%

```
import numpy as np
import pandas as pd
from sklearn.model selection import train test split
from sklearn.pipeline import make pipeline
from sklearn.preprocessing import Normalizer, RobustScaler
from sklearn.svm import LinearSVC
# NOTE: Make sure that the outcome column is labeled 'target' in the data file
tpot data = pd.read csv('PATH/TO/DATA/FILE', sep='COLUMN SEPARATOR', dtype=np.float64)
features = tpot data.drop('target', axis=1)
training_features, testing_features, training_target, testing_target = \
            train test split(features, tpot data['target'], random state=None)
# Average CV score on the training set was: 0.6783561074176807
exported_pipeline = make_pipeline(
    Normalizer(norm="12"),
    Normalizer(norm="11"),
    RobustScaler(),
    LinearSVC(C=20.0, dual=False, loss="squared_hinge", penalty="l1", tol=1e-05)
exported pipeline.fit(training features, training target)
results = exported pipeline.predict(testing features)
```

Prediction Interface Demo

結論

- 建置之模型準確度:
 - Pycaret: 69.9%
 - TPOT: 67.3%
 - Auto-scikitlearn: 67.9%
 - ⇒ 前人表明 NBA Upset rate = 30%,故本研究完全符合文獻
- 球隊的「球員陣容」主宰比賽勝負
- 成果部署於網頁供使用者使用

Thanks for Listening

A39