Quantum Gaussian Elimination

https://youtu.be/nw0TkoGctqk

장경배

Information Set Decoding (ISD)

- ISD 연산은 코드기반암호에 대한 **효율적인** Brute-force
 - 공개키의 Information set (\bigcirc), 행렬 H_{n-k} 을 변경해가며 전수 조사

Brute-force

• Information set의 역행렬 \times 암호문 (\mathcal{C}) 의 결과 벡터가 특정 (Gaussian Elimination 사용) low-weight (\mathcal{C})를 만족할 경우, 원본 메시지 복구 (\mathcal{C})에 성공

$$e = (0000001100000000), (n = 16, t = 2)$$
Secret

$$C = He = (00000011)$$

 $(H_{n-k})^{-1} imes \mathcal{C}^T$ 의 Hamming weight가 t 인 경우, 공격 성공

$$\begin{pmatrix} 11011010 \\ 110101010 \\ 111111100 \\ 000011000 \\ 10110000 \\ 10011100 \\ 01111100 \end{pmatrix} \times \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} \rightarrow \text{Weight} = 2(t)$$

$$(H_{n-k})^{-1} \qquad C^{T}$$

Gaussian Elimination: Parallelization

- Row 대상의 병렬화에 대한 성능은 좋지 않았음, 반면, Column 대상의 병렬화에 대한 성능은 우수
 - Column에 대한 병렬화만 수행 > Row 대상은 추가 큐비트 대비, Depth 감소가 낮음

▸ Temp는 Garbage가 되고, 새로운 Temp에 현재 값 Copy

• Temp는 Garbage가 되고, 새로운 Temp에 현재 값 Copy

Gaussian Elimination: Parallelization

- Row 대상의 병렬화에 대한 성능은 좋지 않았음, 반면, Column 대상의 병렬화에 대한 성능은 우수
 - Column에 대한 병렬화만 수행 → Row 대상은 추가 큐비트 대비, Depth 감소가 낮음

• Temp는 Garbage가 되고, 새로운 Temp에 현재 값 Copy

Gaussian Elimination:Parallelization

- Gauss-Jordan elimination 양자 회로 병렬화
- 기존 구현 [*]

Matrix size	Method	Qubits	x	CX (CNOT)	CCX (Toffoli)	сссх	Multi-Controlled Swap	Depth
32 x 32	Gauss-Jordan Elimination	1,120	992	1,054	6,448	133,672	244,035	288,238

- 신규 구현: 회로 복잡도 및 Depth 대폭 감소
 - 병렬화를 통한 2차 개선

Matrix size	Method	Source	Qubits	Clifford	т	Full depth
22 × 22	Gauss-Jordan Elimination	신규	1,584	205,933	159,712	10,339
32 x 32		신규 + 병렬화	2,110	249,550	159,712	6,144

개선 방향?

- Elimination 병렬화를 가져 가면서, Swap에 대한 부분 병렬화 (완전 병렬화 X)
 - $O(n) \rightarrow O(n/2^{parallel_level})$

Thank you!