Time Series Library (TSLib)

« Deep Time Series Models: A Comprehensive Survey and Benchmark »

数据集	数据集简介	数据输入特征数	样本长度	时间粒度
ETTh1,ETTh2	2个电力变压器的一小时级别粒度数据	7	17420	1 hour
ETTm1,ETTm2	2个电力变压器的15分钟级别粒度数据	7	69680	15 mins
Electricity	321个客户的用电量数据	321	26304	1 hour
Weather	Jena Climate时间序列数据集中基于多变量的 历史气象数据	21	52696	10 mins
Traffic	旧金山高速公路传感器记录的交通统计数据	862	17544	1 hour
Exchange	1990年至2016年8个国家的每日汇率数据	8	7588	1 day
ILI	美国疾病控制和预防中心每周流感统计数据	7	966	1 week

4	А	В	С	D	Е	F	G	Н	1
1	date 🅦	大利亚汇率()	英国汇率 1	加拿大汇率2	瑞士汇率 3	中国汇率 4	日本汇率 5	新西兰汇率6	○T新加坡汇率
2	1990/1/1 0:00	0.7855	1.611	0.861698	0.634196	0.211242	0.006838	0.525486	0.593
3	1990/1/2 0:00	0.7818	1.61	0.861104	0.633513	0.211242	0.006863	0.523972	0.594
4	1990/1/3 0:00	0.7867	1.6293	0.86103	0.648508	0.211242	0.006975	0.526316	0.5973
5	1990/1/4 0:00	0.786	1.637	0.862069	0.650618	0.211242	0.006953	0.523834	0.597
6	1990/1/5 0:00	0.7849	1.653	0.861995	0.656254	0.211242	0.00694	0.527426	0.5985
7	1990/1/6 0:00	0.7866	1.6537	0.86103	0.654879	0.211242	0.006887	0.526177	0.604
8	1990/1/7 0:00	0.7886	1.662	0.862887	0.661157	0.211242	0.006885	0.527565	0.607

exchange_rate数据集

收集了1990年至2016年,8个 国家的每日汇率值数据

ETTh1.csv数据集 文件:

- 8维特征
- 1小时级
- 两年数据
- · .csv格式

	А	В	С	D	Е	F	G	Н
1	date	HUFL	HULL	MUFL	MULL	LUFL	LULL	OT
2	2016/7/1 0:00	5.827	2.009	1.599	0.462	4.203	1.34	30.531
3	2016/7/1 1:00	5.693	2.076	1.492	0.426	4.142	1.371	27.787
4	2016/7/1 2:00	5.157	1.741	1.279	0.355	3.777	1.218	27.787
5	2016/7/1 3:00	5.09	1.942	1.279	0.391	3.807	1.279	25.044
6	2016/7/1 4:00	5.358	1.942	1.492	0.462	3.868	1.279	21.948
7	2016/7/1 5:00	5.626	2.143	1.528	0.533	4.051	1.371	21.174
8	2016/7/1 6:00	7.167	2.947	2.132	0.782	5.026	1.858	22.792
9	2016/7/1 7:00	7.435	3.282	2.31	1.031	5.087	2.224	23.144
10	2016/7/1 8:00	5.559	3.014	2.452	1.173	2.955	1.432	21.667
11	2016/7/1 9:00	4.555	2.545	1.919	0.817	2.68	1.371	17.446

数据集各列描述:

date	HUFL	HULL	MUFL	MULL	LUFL	LULL	ОТ
记录日期	高有用负 载	高无用负 载	中等有用 负载	中等无用 负载	低有用负 载	低无用负 载	油温度 (预测目 标值)

Dataset_ETT_hour类:

```
🚜 run.py 🔀 👸 exp. long. term. forecasting.py 🗡 🐔 TimesNet.py 🗡 🐉 data factory.py 🗡 🐉 data loader.py 🗡 🔼 TimesNet ETTh1.sh 🗡
                                                                                              A 10 A 81 ★ 25 ^
19
       # 读取ETTh1、ETTh2数据集类
       3 个用法
20
       |class Dataset_ETT_hour(Dataset):
          # 预测任务, features选项: [M, S, MS]; M: 多元变量预测多元变量, S: 单变量预测单变量, MS: 多元变量预测单变量
21
          # target: 目标变量的名称、scale: 是否对数据进行标准化
22
23
          # timeenc: 时间特征编码方式, 0 表示简单编码, 1 表示时间特征提取、freq: 时间序列的频率、seasonal_patterns: 季节性模式
24
          def __init__(self, args, root_path, flag='train', size=None,
25
                       features='S', data_path='ETTh1.csv',
                       target='OT', scale=True, timeenc=0, freq='h', seasonal_patterns=None):
              # size [seq_len, label_len, pred_len]
              self.args = args
```

长时预测示例脚本:

```
model_name=TimesNet
python -u run.py \
 --task_name long_term_forecast \
 --root_path ./dataset/ETT-small/ \
 --data_path ETTh1.csv \
 --model_id ETTh1_96_96 \
 --model $model_name \
 --data ETTh1 \
  --features M \
  --seq_len 96 \
 --label_len 48 \
 --pred_len 96 \
 --e_layers 2 \
 --d_layers 1 \
 --factor 3 \
 --c_out 7 \
 --d_model 16 \
 --d_ff 32 \
 --itr 1 \
 --top_k 5
```

数据集构成:

```
if self.features == 'M' or self.features == 'MS':
```

```
# 多特征: 排除日期列

cols_data = df_raw.columns[1:]

df_data = df_raw[cols_data]

elif self.features == 'S':

# 单特征: 仅选择目标列

df_data = df_raw[[self.target]]
```

根据特征, 选择不同的数据列

模型预测输出:

```
(2785, 96, 7)
[[[-0.10912043 0.9184426
                    0.07979733 ... -0.4020451 0.5361992
  -0.720092361
 [ 0.09899503  0.9421642
                    0.23975384 ... -0.27258646 0.6385776
  -0.72398686]
 [ 0.32184052  0.9100838
                    0.33293867 ... -0.20767187 0.6255687
  -0.72224313]
 [ 0.27041888  0.1737634
                    0.20396459 ... -0.07382867 0.35848248
  -0.723561471
 -0.7247473 ]
                    0.24572605 ... -0.1927617 0.51490444
 [ 0.42512244  0.6815027
  -0.7554367 ]]
```

II Short-term Forecasting

II Short-term Forecasting

M4数据集:

- 六种采样频率
- 训练集+测试集
- · .csv格式
- 单变量时间序 列预测
- 历史观测值长度不定

m4
Daily-test.csv
🛂 Daily-train.csv
Hourly-test.csv
Hourly-train.csv
M4-info.csv
Monthly-test.csv
Monthly-train.csv
Quarterly-test.csv
💶 Quarterly-train.csv
💶 submission-Naive2.csv
🖒 test.npz
🦺 training.npz
Weekly-test.csv
Weekly-train.csv
Yearly-test.csv
🛂 Yearly-train.csv

数据集	输入特征数	预测长度
M4-Yearly	1	6
M4-Quarterly	1	8
M4-Monthly	1	18
M4-Weakly	1	13
M4-Daily	1	14
M4-Hourly	1	48

4	А	В	С	D	Е	F	G	н	1	J	К	L	М	N	0	Р	Q	R	S	Т	U	٧
1	V1	V2	V3	V4	V5	٧6 '	√7 \	√8	V9	V10	V11	V12	V13	V14	V15	V16	V17	V18	V19	V20	V21	V22
2	Y1	5172.1	5133.5	5186.9	5084.6	5182	5414.3	5576.2	5752.9	5955.2	6087.8	6238.9	6317.2	6262.7	6361	6427.4	6654.9	6835.4	6925.5	7073.5	7144	7230.6
3	Y2	2070	2104	2394	1651	1492	1348	1198	1192	1105	1008	994	1420	1582	1286	1133	1322	1157	1244	1843	1794	1426
4	Y3	2760	2980	3200	3450	3670	3850	4000	4160	4290	4530	4720	4890	5070	5220	5420	5660	5820	5940	6070	6200	6520
5	Y4	3380	3670	3960	4190	4440	4700	4890	5060	5200	5490	5690	5910	6120	6340	6530	6710	6850	6980	7130	7320	7630
6	Y5	1980	2030	2220	2530	2610	2720	2970	2980	3100	3230	3340	3430	3810	3780	3930	3840	3890	3840	3930	4050	4040
7	Y6	1988.65	2073.59	2144.04	2147.85	2180.73	2240.89	2311.21	2392.71	2470.71	2572.71	2718.48	2778.76	2903.94	2918.9	2977.39	3062.05	3151.34	3361.47	4009.21		
8	Y7	2158.96	2216.71	2252.75	2217.93	2215.01	2235.28	2282	2328.25	2343.31	2405.12	2502.4	2521.06	2604.74	2620.9	2640.29	2698.93	2748.12	2912.29	3669.46		
9	Y8	2164.71	2169.77	2240.05	2294.09	2327.14	2351.64	2368.54	2364.42	2344.55	2347.72	2419.65	2396.56	2374.46	2371.94	2367.11	2358.06	2343.01	2347.41	2400.96		

II Short-term Forecasting

年频率预测数据:

年频率真实数据:

III Imputation

III Imputation

数据集	数据集简介	数据输入特征数	样本长度	时间粒度
ETTh1,ETTh2	2个电力变压器的一小时级别粒度数据	7	17420	1 hour
ETTm1,ETTm2	2个电力变压器的15分钟级别粒度数据	7	69680	15 mins
Electricity	321个客户的用电量数据	321	26304	1 hour
Weather	Jena Climate时间序列数据集中基于多变量的 历史气象数据	21	52696	10 mins

```
class Exp_Imputation(Exp_Basic):
                                                        A 4 A 19 ★ 5 ^
  def train(self, setting):
           # random mask
           # 获取输入数据的形状, B: 16, T: 96, N: 7
           B, T, N = batch_x.shape
           print(B, T, N)
           # 生成随机掩码
           mask = torch.rand((B, T, N)).to(self.device)
           # 根据掩码率设置掩码,
           mask[mask <= self.args.mask_rate] = 0 # masked</pre>
           mask[mask > self.args.mask_rate] = 1 # remained
           # 对输入数据进行掩码填充,填充0
           inp = batch_x.masked_fill(mask == 0, 0)
           # 打印输入数据
           print(inp)
           # 通过模型进行预测
           outputs = self.model(inp, batch_x_mark, None, None, mask)
```

```
16 96 7
tensor([[[-0.2363, 0.3469, -0.1284, ..., -0.5156, -0.1388, 0.7553],
      [-0.1095, 0.6354, 0.1227, ..., -0.8429, -0.1880, 0.7475],
      随机掩码,用0填充
      [0.1669, 0.0000, 0.0776, \ldots, 0.7047, 1.0211, -0.0190],
      [-0.0634, 0.5392, -0.0833, \ldots, 0.1693, 0.6816, 0.0000],
      [-0.1326, 0.0000 -0.1092, ..., -0.0994, 0.0000
                                           0.1803]],
torch.Size([16, 96, 7])
tensor([[[ 0.1917, 1.1854, 0.2043, ..., 0.0821, 0.3506, 0.2195],
      [0.4900, 0.5696, 0.0346, \ldots, -0.3302, 0.3620, -0.5090],
      [0.4743, 0.5061, 0.4429, \ldots, -0.2648, 0.3130, 0.0427],
               使用模型预测值填充被掩码的值
      [-0.2734, 1.1172, 0.0734, \ldots, -0.6112, 0.2719, 0.1856],
      [ 0.0118, 1.1298, -0.1555, ..., -0.4783, 0.0689, -0.2087],
      [0.2862, 1.1872, 0.2556, \ldots, -0.5008, 0.2046]
                                           0.2912]],
```

IV Anomaly Detection

IV Anomaly Detection

数据集	数据集简介	数据输入特征数	序列长度	时间粒度
SMD	服务器机组时序异常数据	38	100	1 min
MSL	包含火星好奇号探测器的异常情况	55	100	1 min
SMAP	NASA航天器系统遥测异常数据	25	100	1 min
SwaT	水处理传感器时序异常数据	51	100	1 min
PSM	服务器节点时序异常数据	25	100	1 min

PSM数据集:

• 训练集: 132481

• 验证集: 26398

• 测试集: 87841

• 25个特征

• 0: 无异常、1: 有异常

PSM数据目录:

• test.csv: 测试集

• test label.csv: 测试

集标签

• train.csv: 训练集

4	А	В	С	D	Е	F	G	Н	1	J	К	L	М	N	0	Р	Q	R	S	Т	U	V	W	Х	Υ	Z
1	timestamp_(min)	feature_0	feature_1	feature_2	feature_3	feature_4	feature_5	feature_6 1	eature_7	feature_8	feature_9	feature_1	feature_2	feature_2	feature_2	feature_2	feature_24									
2	0	0.73269	0.76175	0.60685	0.48875	0.42431	0.40361	0.51932	0.39879	0.45145	0.44708	0.46334	0.48732	0.15193	0.13846	0.20147	0.3188	0.45186	0.5715	0.46972	0.60988	0.00843	0	0.48184	0.00654	0.13825
3	1	0.7328	0.76185	0.60713	0.48878	0.43201	0.41026	0.51136	0.40257	0.45566	0.44947	0.45927	0.49466	0.15149	0.13801	0.20211	0.32146	0.45612	0.56223	0.46653	0.62981	0.00843	0	0.47722	0.00654	0.11521
4	2	0.73294	0.76159	0.6069	0.48879	0.41886	0.40772	0.48864	0.39653	0.4561	0.45128	0.47159	0.49033	0.15367	0.14076	0.20335	0.34722	0.45669	0.572	0.48785	0.6436	0.00675	0	0.49262	0.00871	0.09217
5	3	0.73289	0.76166	0.60648	0.4888	0.4179	0.40424	0.5	0.40559	0.46002	0.45663	0.47691	0.48086	0.15343	0.14121	0.20135	0.3619	0.46053	0.56335	0.47951	0.64469	0.00843	0	0.45706	0.00871	0.14286
6	4	0.73279	0.76157	0.60678	0.4888	0.4211	0.40741	0.51136	0.39955	0.45851	0.45461	0.45103	0.4588	0.15333	0.13972	0.2031	0.35977	0.45883	0.56335	0.4483	0.62995	0.00675	0	0.47222	0.00654	0.17051
- 7	5	0.73265	0.7613	0.60782	0.48875	0.40314	0.40203	0.52841	0.38369	0.44968	0.45066	0.4458	0.43763	0.1513	0.13873	0.20305	0.35735	0.45015	0.57777	0.46276	0.62695	0.00675	0	0.47596	0.01307	0.13825
8	6	0.73254	0.76142	0.60759	0.48875	0.42591	0.40836	0.52841	0.41956	0.45338	0.44598	0.46135	0.44798	0.15583	0.14095	0.20206	0.36461	0.45371	0.56661	0.47529	0.6294	0.00675	0.00356	0.48732	0.00871	0.12903
9	7	0.73257	0.76148	0.60864	0.48877	0.42848	0.41532	0.53409	0.41125	0.46479	0.46006	0.46515	0.47246	0.14885	0.13532	0.20218	0.30791	0.46508	0.56724	0.4882	0.63131	0.00843	0.00356	0.4738	0.01089	0.14286
10	8	0.73244	0.7616	0.60888	0.48881	0.42752	0.41089	0.51705	0.4071	0.46406	0.46224	0.46796	0.48128	0.15048	0.1371	0.2003	0.31	0.46451	0.57689	0.49319	0.63636	0.00843	0	0.48132	0.00871	0.14747

IV Anomaly Detection

模型训练阶段

输入结构:

输出结构:

模型测试阶段

测试集真实标签:

4	А	В	С	
1	timestamp_(min)	label		
2	132480	0		
3	132481	0		
4	132482	0		
5	132483	0		
6	132484	0		
7	132485	0		
8	132486	0		
9	132487	0		
10	132488	0		

测试集预测标签:

Accuracy: 0.9803, Precision: 0.9845, Recall: 0.9438, F-score: 0.9637

V Classification

V Classification

数据集	数据集简介	输入数据特征数	训练样本长度	分类类别数
EthanolConcentration	乙醇浓度光谱时序数据	3	261个(1751, 3)的特征向量	4
FaceDetection	面部图像时序数据	144	5890个(62, 144)的特征向量	2
Handwriting	手写UCR时序数据	3	150个(152,3)的特征向量	26
Heartbeat	心音记录时序数据	61	204个(405,61)的特征向量	2
JapaneseVowels	UCI档案时序数据	12	270个(29,12)的特征向量	9
PEMS-SF	旧金山湾区高速公路车 道占用率数据	963	267个(144,963)的特征向量	7
SelfRegulationSCP1	皮层慢电位时序数据	6	268个(896,6)的特征向量	2
SelfRegulationSCP2	皮层慢电位时序数据	7	200个(1152,7)的特征向量	2
SpokenArabicDigits	声音时序数据	13	6599个(93,13)的特征向量	10
UWaveGestureLibrary	手势运动加速器时序数 据	3	120个(315,3)的特征向量	8

V Classification

```
블 EthanolConcentration_TRAIN.ts🛛 📙 EthanolConcentration_TEST.ts 🗵
      @problemName EthanolConcentration
      @timeStamps false
23
      Omissing false
 2.4
      @univariate false
       @dimensions 3
      @equalLength true
 26
27
      @seriesLength 1751
 28
       @classLabel true E35 E38 E40 E45
 29
       @data
      1724.8,1726.9,1726.8,1725.0,1725.7,1725.9,1
31
      1763.6,1759.5,1759.9,1758.8,1757.7,1756.3,1
32
      1775.3,1777.0,1778.2,1776.0,1773.0,1769.8,1
 33
      1747.8,1745.3,1745.0,1745.9,1746.5,1746.8,1
 34
      1742.1,1742.3,1743.7,1744.9,1745.1,1745.9,1
35
      1756.4,1753.2,1754.7,1754.8,1754.2,1753.8,1
      1771.2,1768.4,1765.5,1764.3,1767.9,1771.1,1
36
```

EthanolConcentration数 据集:

- 训练集样本: 261
- 测试集样本: 263
- 序列长度: 1751
- 数据特征维度: 3
- 类标签: E35、E38、

E40、E45

模型输入:

模型预测类别索引输出结果:

真实类别标签索引:

accuracy: 0.2737642585551331

谢谢!