1 Statistical Signal Modelling 1.1.b: Random Variable

Statistical Signal Modelling

1. Introduction to IPA and Random variable

2. Modelling of memoryless processes

- Sample-wise operators
- Uniform and non-uniform quantization

3. Discrete Stochastic Processes

- Definition
- Autocorrelation: Deterministic signals and processes
- Stationarity and Ergodicity
- Power Spectral Density (PSD)
- Stochastic processes filtering
- Examples

- Definition of random variable
- Moments of a random variable
- Random variable models
- Processing random variables
- Comparison of random variables

2. Multivariate Random Variables

- Definition of multivariate random variable
- Moments of a multivariate random variable
- Multivariate random variable models

Random Variable

Random variable: Assignment to a variable of the result of an experiment performed multiple (infinite) times.

In the context of Introduction to Audiovisual Processing, values will be real numbers.

Random Variable

Random variable: Assignment to a variable of the result of an experiment performed multiple (infinite) times

Cumulative distribution function (CDF) determines the probability that a given random variable (X) takes a value less than or equal to a given value (x).

$$F_X(x) = P(X \le x)$$

$$0 \le F_X(x) \le 1$$

Probability density function (PDF) provides a *relative likelihood* that a result is given in an experiment:

• It is a positive function which fulfills:

$$f_X(x) = \frac{dF_X(x)}{dx}$$

$$f_X(x) \ge 0$$

$$\int_{-\infty}^{\infty} f_X(x) dx = 1$$

$$P(a \le X \le b) = \int_a^b f_X(x) dx$$

- Definition of random variable
- Moments of a random variable
- Random variable models
- Processing random variables
- Comparison of random variables

2. Multivariate Random Variables

- Definition of multivariate random variable
- Moments of a multivariate random variable
- Multivariate random variable models

Often, the information conveyed by a random variable is represented by a small set of parameters, which have a practical interpretation; typically, its moments:

• Expected value (first order moment): measures the mean of the variable.

$$m_X = E\{X\} = \int_{-\infty}^{\infty} x f_X(x) dx$$

• Quadratic mean (second order moment): measures the dispersion of the variable around the origin. Related to power.

$$E\{X^2\} = \int_{-\infty}^{\infty} x^2 f_X(x) dx$$

• Variance: measures the dispersion of the variable around its mean:

$$\sigma_X^2 = var(X) = E\{[X - E\{X\}]^2\} = E\{[X - m_X]^2\} = \int_{-\infty}^{\infty} [x - m_X]^2 f_X(x) dx$$

ightharpoonup Demonstrate: $\sigma_X^2 = var(X) = E\{[X - E\{X\}]^2\} = E\{X^2\} - E^2\{X\}.$

- Definition of random variable
- Moments of a random variable
- Random variable models
- Processing random variables
- Comparison of random variables

2. Multivariate Random Variables

- Definition of multivariate random variable
- Moments of a multivariate random variable
- Multivariate random variable models

1.1

Common Probability Distributions

Commonly, we will assume that the behavior of the random variable that is being analyzed can be characterized by a given **probability distribution**.

• Uniform:

$$f_X(x; a, b) = \begin{cases} \frac{1}{b - a} & \text{for } a \le x \le b \\ 0 & \text{otherwise} \end{cases}$$

• Gaussian:

$$f_X(x; m_X, \sigma_X^2) = \frac{1}{\sqrt{2\pi\sigma_X^2}} exp\left[-\frac{[x - m_X]^2}{2\sigma_X^2}\right]$$

#=0. o'=02. — p=0. σ'=1f. — p=0. σ'=5f. — p=0. σ'=05. — p

• Laplacian:

$$f_X(x; m_X, b) = \frac{1}{2b} exp \left[-\frac{|x - m_X|}{b} \right]$$

1.1

Random Variable Models

In some cases, there will not be a simple mathematical model that correctly fits the random variable behavior and we will use an **empirical model**.

Example: Estimation of the pitch of a given speaker

In some cases, there will not be a simple mathematical model that correctly fits the random variable behavior and we will use an **empirical model**.

Example: Estimation of the luminance of a given point in a scene

- Definition of random variable
- Moments of a random variable
- Random variable models
- Processing random variables
- Comparison of random variables

2. Multivariate Random Variables

- Definition of multivariate random variable
- Moments of a multivariate random variable
- Multivariate random variable models

Processing of Random Variables

If X is a continuous random variable and y = g(x) is a strictly monotonic function, in the interval where $f_X(x)$ is defined, with inverse function $x = g^{-1}(y)$, then the pdf of Y = g(X) is given by:

$$f_Y(y) = \left| \frac{dg(x)}{dx} \right|^{-1} \cdot f_X(x) = \left| \frac{dg^{-1}(y)}{dy} \right| \cdot f_X(g^{-1}(y))$$

Example: $Y = X^3$; $X \in [0,1]$

Uniform distribution: pdf estimated through 10000 samples

 $y = x^3$

Resulting distribution

Processing of Random Variables

Example:

$$Y = X^2$$
; $X \in [0, \infty)$

$$f_Y(y) = \left| \frac{d g^{-1}(y)}{dy} \right| \cdot f_X(g^{-1}(y)) = \frac{1}{2\sqrt{y}} f_X(\sqrt{y})$$

Figure Given a random variable $X \in [0,1]$ with uniform pdf $f_X(x)$, determine the pdf $f_Y(y)$ of $Y = X^2$

$$f_X(x) = \begin{cases} 1 & \text{for } 0 \le x \le 1 \\ 0 & \text{otherwise} \end{cases}$$

$$f_Y(y) = \begin{cases} \frac{1}{2\sqrt{y}} & \text{for } 0 \le y \le 1\\ 0 & \text{otherwise} \end{cases}$$

Its **mean and variance** are: (Note that their values depend on the original pdf $f_X(x)$)

$$m_Y = E\{Y\} = \int_{-\infty}^{\infty} y f_Y(y) dy = 1/3$$

$$\sigma_Y^2 = E\{[Y - m_Y]^2\} = E\{Y^2\} - E^2\{Y\} = 4/45$$

Actually, to determine the mean (and other parameters) of y = g(x), it is not necessary to obtain $f_Y(y)$ since:

$$E\{Y\} = E\{g(X)\} = \int_{-\infty}^{\infty} g(x) f_X(x) dx$$

Example: Y = kX

> Its **mean and variance** are:

$$m_Y = E\{Y\} = km_X$$

$$\sigma_Y^2 = E\{[Y - m_Y]^2\} = k^2 \sigma_X^2$$

Adding Independent Random Variables

Given **two independent random variables** X and Y with probability density functions $f_X(x)$ and $f_Y(y)$ respectively, the pdf of its sum Z = X + Y is the **convolution** of their pdf's:

$$f_Z(z) = f_X(x) * f_Y(y)$$

$$f_Z(z) = \int_{-\infty}^{\infty} f_X(\omega) \cdot f_Y(z - \omega) d\omega$$

- ightharpoonup Compute the **pdf of the sum** between a random variable X and a constant value a: Z = X + a.
- \triangleright Compute its **mean** and **variance** (relate them with those of X)

Adding Independent Random Variables

The expected value of the sum of a set of (independent) random variables is the sum of their expected values:

$$Z = \sum_{i=1}^{N} X_i \qquad \rightarrow \qquad m_Z = E\{Z\} = \sum_{i=1}^{N} m_{X_i}$$

The variance of the sum of a set of independent random variables is the sum of their variances:

$$Z = \sum_{i=1}^{N} X_i \quad \to \quad \sigma_Z^2 = var(Z) = E\{[Z - E\{Z\}]^2\} = \sum_{i=1}^{N} \sigma_{X_i}^2 = \sum_{i=1}^{N} var(X_i)$$

 \triangleright Compute the **mean and the variance** of the **difference** between two independent random variables: Z = X - Y

Models depend on parameters (θ) which may be variable and unknown (random variables (θ)), deterministic but unknown (parameters) or deterministic and known (given values):

- Joint probability density distribution of the random variable X and the random variable Θ that parametrizes the pdf.
- $f_{X,\Theta}(x,\theta)$

$$f_{X,\Theta}(x,\theta) = f_X(x|\Theta=\theta)f_{\Theta}(\theta)$$

- Conditional pdf of X given the occurrence of the value θ of Θ . Typically used in optimization processes over θ , when $f_{\Theta}(\theta)$ is known (MAP estimation).
- $f_X(x|\theta = \theta) = \frac{f_{X,\Theta}(x,\theta)}{f_{\Theta}(\theta)} \to f_X(x|\theta)$
- Probability density function of X given the value θ . Typically used in optimization processes over θ , assuming that θ is deterministic but unknown (ML estimation).

 $f_X(x;\theta)$

- Definition of random variable
- Moments of a random variable
- Random variable models
- Processing random variables
- Comparison of random variables

2. Multivariate Random Variables

- Definition of multivariate random variable
- Moments of a multivariate random variable
- Multivariate random variable models

Comparison of Random Variables

In some cases, it is interesting to compare random variables to understand how they are related. Typical comparison measures are extensions of the previous moments:

Covariance $(c_{X,Y})$: Given two random variables (X, Y), it measures its joint variability:

- Its **sign** shows the tendency in the linear relationship between the variables.
- Its **magnitude** depends on the magnitudes of the variable: not direct interpretation.
 - The correlation coefficient $(\rho_{X,Y})$ is a normalized version.

$$c_{X,Y} = E\{[X - m_X][Y - m_Y]\} = \iint_{-\infty}^{\infty} [x - m_X][y - m_Y] f_{X,Y}(x, y) dx dy$$

1.1

The **correlation coefficient** is a normalized version of the covariance measure:

$$\rho_{X,Y} = \frac{c_{X,Y}}{\sigma_X \sigma_Y} = \frac{E\{[x - m_X][y - m_Y]\}}{\sigma_X \sigma_Y}$$

Several sets of (x, y) points, with the correlation coefficient of X and Y for each set. Note that the correlation reflects the noisiness and direction of a linear relationship (top row), but not the slope of that relationship (middle), nor many aspects of nonlinear relationships (bottom). [Wikimedia Commons]

Comparison of Random Variables

As an adaptation of the second order moment, we define as well a measure that does not depend of the random variable expected values (m_X, m_Y) :

Correlation: Measures the **joint variability of two random variables** (X, Y) regardless their expected values:

Same comments with respect to sign and magnitude as before.

$$r_{X,Y} = E\{XY\} = \iint_{-\infty}^{\infty} xy f_{X,Y}(x,y) dx dy$$

$$c_{X,Y} = r_{X,Y} - m_X m_Y$$

If the two random variables (x, y) are **independent**:

$$r_{X,Y} = E\{XY\} = E\{X\}E\{Y\} = m_X m_Y$$

$$c_{X,Y}=0$$

- Definition of random variable
- Moments of a random variable
- Random variable models
- Processing random variables
- Comparison of random variables

2. Multivariate Random Variables

- Definition of multivariate random variable
- Moments of a multivariate random variable
- Multivariate random variable models

Another way to study sets of random variables is assuming that they create a **multivariate random variable**. Given N random variables, $X_1, X_2, ..., X_N$, we define a vector:

 $\underline{X} = [X_1, X_2, ..., X_N]^T$

Example 1:

 $\underline{X} = \begin{bmatrix} X_r[n] \\ X_l[n] \end{bmatrix}$

Stereo audio (N = 2)

Time (s)

Another way to study sets of random variables is assuming that they create a **multivariate random variable**. Given N random variables, $X_1, X_2, ..., X_N$, we define a vector:

 $\underline{X} = [X_1, X_2, ..., X_N]^T$

Example 2: Color images (N = 3)

$$\underline{X} = \begin{bmatrix} X_R[m, n] \\ X_G[m, n] \\ X_B[m, n] \end{bmatrix}$$

Multivariate Random Variable

1.1

Another way to study sets of random variables is assuming that they create a **multivariate random variable**. Given N random variables, $X_1, X_2, ..., X_N$, we define a vector:

$$\underline{X} = [X_1, X_2, ..., X_N]^T$$

Example 3:

Hyperspectral images (N > 70)

$$\underline{X} = \begin{bmatrix} X_{B_1}[m,n] \\ X_{B_2}[m,n] \\ \dots \\ X_{B_k}[m,n] \\ \dots \\ X_{B_N}[m,n] \end{bmatrix}$$

Another way to study sets of random variables is assuming that they create a **multivariate random variable**. Given N random variables, $X_1, X_2, ..., X_N$, we define a vector:

 $\underline{X} = [X_1, X_2, ..., X_N]^T$

Example 3:

Frames of audio signals (N > 70)

As for scalar random variables, the (joint) cumulative distribution and probability density functions are defined:

• **Joint cumulative distribution function** determines the probability that every component of a random variable $(\underline{X} = [X_1, X_2, ..., X_N]^T)$ takes a value less than or equal to the associated components of a given vector (x):

$$F_{\underline{X}}(\underline{x}) = F_{\underline{X}}(x_1, x_2, ..., x_N) = P(X_1 \le x_1, X_2 \le x_2, ..., X_N \le x_N)$$

• **Joint probability density function** provides a *relative likelihood* that a result is given in an experiment:

$$f_{\underline{X}}(\underline{x}) = f_{\underline{X}}(x_1, x_2, ..., x_N) = \frac{\partial^N F_{\underline{X}}(x_1, x_2, ..., x_N)}{\partial x_1 \partial x_2 ... \partial x_N}$$

$$f_{\underline{X}}(\underline{x}) \ge 0$$

$$\int_{-\infty}^{\infty} f_{\underline{X}}(\underline{x}) d\underline{x} = 1$$

- Definition of random variable
- Moments of a random variable
- Random variable models
- Processing random variables
- Comparison of random variables

2. Multivariate Random Variables

- Definition of multivariate random variable
- Moments of a multivariate random variable
- Multivariate random variable models

Moments of a Multivariate RV

The previous **moment definitions** can be extended to the case of multivariate random variables

Expected value (first order moment): It is a measure of the mean of the multivariate random variable.

$$\underline{m}_{\underline{X}} = E\{\underline{X}\} = E\{[X_1, X_2, ..., X_N]^T\} = [E\{X_1\}, E\{X_2\}, ..., E\{X_N\}]^T = \int_{-\infty}^{\infty} \underline{x} \, f_{\underline{X}}(\underline{x}) d\underline{x}$$

Covariance: It measures the dispersion of the multivariate random variable around its expected value:

$$\underline{\underline{\mathbf{C}}}_{\underline{X}} = covar(\underline{X}) = E\left\{ [\underline{X} - E\{\underline{X}\}] [\underline{X} - E\{\underline{X}\}]^T \right\}$$

 \square Example of covariance matrix for N=2

- Definition of random variable
- Moments of a random variable
- Random variable models
- Processing random variables
- Comparison of random variables

2. Multivariate Random Variables

- Definition of multivariate random variable
- Moments of a multivariate random variable
- Multivariate random variable models

Common Probability Distributions

Commonly, we will assume that the behavior of the random variable that is being analyzed can be characterized by a given **probability distribution**.

A typical case is the **Gaussian model**:

$$f_{\underline{X}}(\underline{x}) = \frac{1}{\sqrt{(2\pi)^N |\underline{\mathbf{c}}_{\underline{X}}|}} exp\left[-\frac{\left[\underline{x} - \underline{m}_{\underline{X}}\right]^T \underline{\underline{\mathbf{c}}}_{\underline{X}}^{-1} \left[\underline{x} - \underline{m}_{\underline{X}}\right]}{2}\right]$$

Real random variable:Usual case in this course

$$f_{\underline{X}}(\underline{x}) = \frac{1}{\pi^N |\underline{\underline{\mathbf{C}}}_{\underline{X}}|} exp\left[-\left[\underline{x} - \underline{m}_{\underline{X}}\right]^H \underline{\underline{\mathbf{C}}}_{\underline{X}}^{-1} \left[\underline{x} - \underline{m}_{\underline{X}}\right] \right]$$

Complex random variable:

Transform domain

where $\underline{x}^H = (\underline{x}^*)^T$ denotes **Hermitian**; that is, conjugate transpose.

As in the scalar case, in some cases, there will not be a simple mathematical model that correctly fits the random variable behavior and we will use an **empirical model**:

The 2D histogram of the Cb, Cr components of an image as its joint pdf estimate

- Definition of random variable
- Moments of a random variable
- Random variable models
- Processing random variables
- Comparison of random variables

2. Multivariate Random Variables

- Definition of multivariate random variable
- Moments of a multivariate random variable
- Multivariate random variable models