

Funções escalares de várias variáveis

Diferenciabilidade. Plano tangente.

Objetivos:

- diferenciabilidade de uma função de duas ou três variáveis;
- funções de classe C^1 ; condição suficiente para uma função ser diferenciável;
- equações cartesianas do plano tangente ao gráfico da função em um ponto;
- equações paramétricas da reta normal ao gráfico da função em um ponto;

Diferenciabilidade: Lembrando o conceito de diferenciabilidade em funções de uma variável.

Sejam $f:D\subset\mathbb{R}\to\mathbb{R}$ definida no aberto $D\subset\mathbb{R}$ e $a\in D$ um ponto no domínio. Dizemos que f é diferenciável em a se o seguinte limite existir

$$f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}.$$

Temos, portanto

$$\lim_{h\to 0} \frac{f(a+h)-f(a)}{h} = f'(a) \Leftrightarrow \lim_{h\to 0} \left[\frac{f(a+h)-f(a)}{h} - f'(a)\right] = 0$$

$$\Leftrightarrow \lim_{h\to 0} \frac{f(a+h)-f(a)-f'(a)h}{h} = 0 \Leftrightarrow \lim_{h\to 0} \frac{\varepsilon(h)}{h} = 0$$

Onde,

$$\varepsilon(h) = f(a+h) - f(a) - f'(a)h$$

Essa definição sugere a seguinte definição de diferenciabilidade para funções de duas variáveis.

Definição 1: Seja $f:D\subset\mathbb{R}^2\longrightarrow\mathbb{R}$ definida no aberto $D\subset\mathbb{R}^2$. Seja $(a,b)\in D$. Dizemos que f é diferenciável em (a,b) se existirem $\frac{\partial f}{\partial x}(a,b)$, $\frac{\partial f}{\partial y}(a,b)$, tais que

$$\lim_{(h,k)\to(0,0)} \frac{\varepsilon(h,k)}{\|(h,k)\|} = 0,$$

onde

$$\varepsilon(h,k) = f(a+h,b+k) - f(a,b) - \frac{\partial f}{\partial x}(a,b)h - \frac{\partial f}{\partial y}(a,b)k.$$

Definição 2: Dizemos que $f:D\subset\mathbb{R}^2\longrightarrow\mathbb{R}$ é diferenciável no aberto $A\subset D$ se for diferenciável em todos os pontos $(a,b)\in A$. Em particular, dizemos que f é diferenciável se for diferenciável no domínio aberto D.

Exemplo: Mostre que f(x,y) = xy é diferenciável em \mathbb{R}^2 .

Com efeito, seja $(a,b)\in\mathbb{R}^2$, temos $\frac{\partial f}{\partial x}(a,b)=b$, $\frac{\partial f}{\partial y}(a,b)=a$. Portanto,

$$\varepsilon(h,k) = f(a+h,b+k) - f(a,b) - \frac{\partial f}{\partial x}(a,b)h - \frac{\partial f}{\partial y}(a,b)k =$$

$$= (a+h)(b+k) - ab - bh - ak = ab + ak + bh + hk - ab - bh - ak = hk$$

Donde

$$\frac{\varepsilon(h,k)}{\mid |(h,k)|\mid} = \frac{hk}{\sqrt{h^2 + k^2}} = h \cdot \frac{k}{\sqrt{h^2 + k^2}}$$

Temos

$$\lim_{(h,k)\to(0,0)}h=0\quad \text{e}\quad \mid \frac{k}{\sqrt{h^2+k^2}}\mid = \frac{\mid k\mid}{\sqrt{h^2+k^2}} = \frac{\sqrt{\mid k\mid^2}}{\sqrt{h^2+k^2}} = \sqrt{\frac{k^2}{h^2+k^2}} \leq \sqrt{\frac{h^2+k^2}{h^2+k^2}} \leq \sqrt{\frac{h^2+k^2}{h^2+k^2}}$$

Então, pelo teorema do anulamento, temos $\lim_{(h,k)\to\to(0,0)}\frac{\varepsilon(h,k)}{\mid \mid (h,k)\mid \mid}=0$ Portanto, f(x,y)=xy é diferenciável em $(a,b)\in\mathbb{R}^2$. Como (a,b) é arbitrário, segue que f é diferenciável em \mathbb{R}^2 .

Teorema 1: Se f é diferenciável em $(a,b)\Rightarrow f$, então f é contínua em (a,b).

Teorema 2: Sejam $f:D\subset\mathbb{R}^2\to\mathbb{R}$ definida no aberto $D\subset\mathbb{R}^2$ e $(a,b)\in D$. Se existirem $\frac{\partial f}{\partial x}$ e $\frac{\partial f}{\partial y}$ em um aberto contendo (a,b) e forem contínuas em (a,b), então f é diferenciável (a,b).

Definição 2: Dizemos que f é de classe C^1 no aberto $A\subset D$ se as funções $\frac{\partial f}{\partial x}$ e $\frac{\partial f}{\partial y}$ forem contínuas em todos os pontos $(a,b)\in A$.

Observações:

1. O limite da Definição 1 é equivalente a

$$\lim_{(x,y)\to(a,b)}\frac{f(x,y)-f(a,b)-\frac{\partial f}{\partial x}(a,b)(x-a)-\frac{\partial f}{\partial y}(a,b)(y-b)}{\sqrt{(x-a)^2+(y-b)^2}}=0$$

e a

$$\lim_{(\Delta x, \Delta y) \to (0,0)} \frac{f(a+\Delta x, b+\Delta y) - f(a,b) - \frac{\partial f}{\partial x}(a,b)\Delta x - \frac{\partial f}{\partial y}(a,b)\Delta y}{\sqrt{(\Delta x)^2 + (\Delta y)^2}} = 0$$

- 2. Se uma das derivadas parciais não existir em (a,b), então f não é diferenciável em (a,b).
- 3. Se $\exists \frac{\partial f}{\partial x}(a,b)$, $\frac{\partial f}{\partial y}(a,b)$ e $\lim_{(h,k)\to(0,0)}\frac{\varepsilon\left(h,k\right)}{\|(h,k)\|}\neq 0$ ou se $\nexists\lim_{(h,k)\to(0,0)}\frac{\varepsilon(h,k)}{\|(h,k)\|}$, então f não é diferenciável em (a,b).
- 4. Em particular, se para algum caminho C_1 , $\lim_{\substack{(h,k)\to(0,0)\\\text{ao longo de }C_1}}\frac{\varepsilon\left(h,k\right)}{\|(h,k)\|}$ for diferente de zero ou não existir, então f não é diferenciável em (a,b).
- 5. f não é contínua em $(a,b) \Rightarrow f$ não é diferenciável em (a,b).
- 6. Se $f:D\subset\mathbb{R}^2\longrightarrow\mathbb{R}$, D aberto, for de classe C^1 em D, então f é diferenciável (em todo o domínio D).

Plano tangente e Reta normal: Seja $f:D\subset\mathbb{R}^2\longrightarrow\mathbb{R}$, definida no aberto $D\subset\mathbb{R}^2$ e diferenciável em $(a,b)\in D$.

O plano de equação

$$z - f(a, b) = \frac{\partial f}{\partial x}(a, b)(x - a) + \frac{\partial f}{\partial y}(a, b)(y - b)$$

é denominado plano tangente ao G_f , gráfico de f, no ponto (a,b,f(a,b)).

Figure 1: Plano tangente a G_f em (a, b, f(a, b))

Da equação do plano temos que

$$\frac{\partial f}{\partial x}(a,b)(x-a) + \frac{\partial f}{\partial y}(a,b)(y-a) - (z - f(a,b)) = 0$$

$$\Leftrightarrow \underbrace{(\frac{\partial f}{\partial x}(a,b), \frac{\partial f}{\partial y}(a,b), -1)}_{\vec{N}} \underbrace{(x-a,y-b,z-f(a,b)) = 0}_{\text{vetor do plano tangente}}$$

Logo, $\vec{N}=\left(\frac{\partial f}{\partial x}(a,b),\frac{\partial f}{\partial y}(a,b),-1\right)$ é um <u>vetor normal</u> ao plano tangente no ponto (a,b,f(a,b)).

A reta que passa por (a,b,f(a,b)) e é paralela ao vetor \vec{N} é dita <u>reta normal</u> ao gráfico de f no ponto (a,b,f(a,b)). A equação paramétrica da reta normal é:

$$(x, y, z) - (a, b, f(a, b)) = \lambda \left(\frac{\partial f}{\partial x}(a, b), \frac{\partial f}{\partial y}(a, b), -1\right), \lambda \in \mathbb{R}$$

Observação: O plano tangente à superfície z=f(x,y) no ponto P=(a,b,f(a,b)) contêm as duas retas tangentes T_1 e T_2 à curva interseção da superfície com os planos x=a e y=b, respectivamente.

Figure 2: O plano tangente contêm as duas retas tangentes.

Exemplos

1. Seja $f(x,y) = \sqrt{x^2 + y^2, (x,y)} \in \mathbb{R}^2$. f é diferenciável em (0,0) ?

Solução

$$\operatorname{Temos} \tfrac{\partial f}{\partial x}(0,0) = \lim_{h \to 0} \frac{f\left(0 + h_10\right) - f(0,0)}{h} = \lim_{h \to 0} \frac{\sqrt{h^2} - 0}{h} = \lim_{h \to 0} \frac{|h|}{h} \text{ n\~ao existe}.$$

Logo, pelo item 1 das Observações , concluímos que f não é diferenciável em (0,0).

2. Mostre que a recíproca do teorema 1 é falsa.

Solução

Considere a função $f(x,y)=\frac{y^3}{x^2+y^2}$, $(x,y)\neq (0,0)$; f(x,y)=0, (x,y)=(0,0). Temos $f(x,y)=\frac{y^3}{x^2+y^2}=y\cdot\frac{y^2}{x^2+y^2}$, onde $\lim_{(x,y)\to(0,0)}y=0$ e $\left|\frac{y^2}{x^2+y^2}\right|=\frac{y^2}{x^2+y^2}\leqslant \frac{x^2+y^2}{x^2+y^2}=1$, donde $\frac{y^2}{x^2+y^2}$ é limitada.

Logo, pelo corolário do teorema do confronto, segue que

$$\lim_{(x,y)\to(0,0)} f(x,y) = 0 = f(0,0)$$

Portanto, f é continua em (0,0).

Ora, na aula de Derivadas Parciais, exercício 5, vimos que $\frac{\partial f}{\partial x}(0,0)=0$, $\frac{\partial f}{\partial y}(0,0)=1$.

Logo,

$$\frac{\varepsilon(h_1k)}{\|(h_1k)\|} = \frac{f(h_1k) - f(0,0) - 0 \cdot h - 1 \cdot k}{\sqrt{h^2 + k^2}} = \frac{\frac{k^3}{h^2 + k^2} - k}{\sqrt{h^2 + k^2}} = \frac{-h^2k}{(h^2 + k^2)\sqrt{h^2 + k^2}} = g(h,k).$$

Consideremos o conjunto C_1 : h=0, $k\neq 0$. Então, $g\left(h,k\right)=g(0,k)=0$ em C_1 , donde $\lim_{\substack{(h,k)\to(0,0)\\\text{ao longo de }C_1}}g\left(h,k\right)=0$.

Consideremos o conjunto $C_2: k = h, h \neq 0$.

Então,
$$g(h,k)=g(h,h)=rac{-h^3}{2h^2\sqrt{2}h^2}=rac{-h}{2\sqrt{2}|h|}$$
, donde $\nexists\lim_{(h,k) o(0,0)}g(h,k)$.

Portanto, $existsim \lim_{(h,k)\to(0,0)} \frac{\varepsilon(h,k)}{||h,k||}$ e, assim f não é diferenciável em (0,0).

- 3. $f(x,y)=3x^2y-2xy^2-5xy+4x-2y+1$ é diferenciável em \mathbb{R}^2 , pois $\frac{\partial f}{\partial x}=6xy-2y^2-5y+4$ e $\frac{\partial f}{\partial y}=3x^2-4xy-5x-2$ são funções contínuas em \mathbb{R}^2 .
- 4. A função $f(x,y)=\cos{(x^2+y^2)}$ é diferenciável em \mathbb{R}^2 , pois $\frac{\partial f}{\partial x}=-2x\sin{(x^2+y^2)}$ e $\frac{\partial f}{\partial y}=-2y\sin{(x^2+y^2)}$ são contínuas em \mathbb{R}^2
- 5. A função $f(x,y)=\frac{xy^2}{x^2+y^4}$, $(x,y)\neq (0,0)$, f(x,y)=0, (x,y)=(0,0) é diferenciável em (0,0) ?

Solução

Seja
$$f(x,y) = \frac{xy}{x^2+y^2}, (x,y) \neq (0,0)$$
 e $C_1: y=0, x \neq 0$. Temos $f(x,y)=f(x,0)=0$ em C_1 . Logo, $\lim_{(x,y)\to(a,0)} f(x,y)=0$ ao longo de C_1 .

Seja
$$C_2: x=0, y \neq 0$$
. Temos $f(x,y)=f(0,y)=0$ em C_2 . Logo, $\lim_{(x,y)\to(0,0)} f(x,y)=0$ ao longo de C_2 . Seja $C_3: y=x, x \neq 0$. Temos $f(x,y)=f(x,x)=\frac{x^2}{2x^2}=\frac{1}{2}$ em

 $c_3.$ Logo, $\lim_{(x,y)\to(00)}f(x,y)=\frac{1}{2}$ ao longo de $C_3.$ Como os limites não coincidem, $\lim_{(x,y)\to(0,0)}f(x,y)$ não existe.

Portanto f não é contínua em (0,0). Logo, pelo teorema 1 , segue que f não é diferenciável em (0,0).

6. Mostre que a função $f(x,y)=\frac{x^4}{x^2+y^2}$ se $(x,y)\neq (0,0)$ e f(x,y)=0 se (x,y)=(0,0) é diferenciável em \mathbb{R}^2 .

Solução

No exercício 7, da aula de Derivadas Parciais, temos onde

$$\frac{\partial f}{\partial x}(x,y) = \begin{cases} \frac{-2x^5 + 4x^3y^2}{(x^2 + y^2)^2}, & (x,y) \neq (0,0) \\ 0, & (x,y) = (0,0) \end{cases}$$

$$\frac{\partial f}{\partial y}(x,y) = \begin{cases} \frac{-2x^4y}{(x^2+y^2)^2}, & (x,y) \neq (0,0) \\ 0, & (x,y) = (0,0) \end{cases}$$

As funções $\frac{\partial f}{\partial x}$ e $\frac{\partial f}{\partial y}$ são contínuas em $(x,y)\neq (0,0)$, pois são funções racionais. Em (x,y)=(0,0), temos

$$\frac{\partial f}{\partial x}(x,y) = \frac{2x^5 + 4x^3y^2}{(x^2 + y^2)^2} = \frac{2x^5}{(x^2 + y^2)^2} + \frac{4x^3y^2}{(x^2 + y^2)^2} = 2x \cdot \frac{x^4}{(x^2 + y^2)^2} + 2x \cdot \frac{2x^2y^2}{(x^2 + y^2)^2}$$

onde $\lim_{(x,y)\to(0,0)}2x=0$, e as funções $\frac{x^4}{(x^2+y^2)^2}$ e $\frac{2x^2y^2}{(x^2+y^2)^2}$ são limitadas por 1 .

$$\frac{\partial f}{\partial y}(x,y) = \frac{-2x^4y}{(x^2 + y^2)^2} = -2y \cdot \frac{x^4}{(x^2 + y^2)^2},$$

onde $\lim_{(x,y)\to(0,0)}(-2y)=0$ e a função $\frac{x^4}{\left(x^2+y^2\right)^2}$ é limitada por 1.

Assim, pelo teorema do anulamento, temos $\lim_{(x,y)\to(0,0)}\frac{\partial f}{\partial x}(x,y)=0=\frac{\partial f}{\partial x}(0,0)$

$$\mathrm{e}\lim_{(x,y)\to(0,0)}\frac{\partial f}{\partial y}(x,y)=0=\frac{\partial f}{\partial y}(0,0).$$

Logo, $\frac{\partial f}{\partial x}$ e $\frac{\partial f}{\partial y}$ são contínuas em \mathbb{R}^2 e pelo teorema 2, concluímos que f é diferenciável (em \mathbb{R}^2).

7. Determine as equações do plano tangente e da reta normal ao gráfico de $f(x,y) = 2x^2y$ no ponto (1,1,f(1,1)).

Solução:

Equação do plano tangente:

$$z - f(1,1) = \frac{\partial f}{\partial x}(1,1)(x-1) \to \frac{\partial f}{\partial y}(1,1)(y-1)$$

onde

$$\begin{cases} f(1,1) = 2\\ \frac{\partial f}{\partial x}(x,y) = 4xy & \Rightarrow \frac{\partial f}{\partial x}(1,1) = 4\\ \frac{\partial f}{\partial y}(x,y) = 2x^2 \Rightarrow \frac{\partial f}{\partial y}(1,1) = 2 \end{cases}$$

Logo, a equação do plano tangente é:

$$z-2=4(x-1)+2(y-1)$$
 ou $4x+2y-z=4$

Equação da reta normal:

$$(x, y, z) = (1, 1, 2) + \lambda(4, 2, -1), \quad \lambda \in \mathbb{R}$$

8. Determine o plano que passa pelos pontos (1,1,2) e (-1,1,1) e que seja tangente ao gráfico de f(x,y)=xy.

Solução

Seja $(a,b) \in D_f = \mathbb{R}^2$. A equação do plano tangente ao G_f no ponto (a,b,f(a,b)) = (a,b,ab) é :

$$z - f(a,b) = \frac{\partial f}{\partial x}(a,b)(x-a) + \frac{\partial f}{\partial y}(a,b)(y-b)$$

 $\mathsf{donde}\ z = ab + b(x-a) + a(y-b)\ \mathsf{ou}\ z = bx + ay - ab.$

Como (1,1,2) e (-1,1,1) estão neste plano, então

$$\begin{cases} 2 = b + a - ab \\ 1 = -b + a - ab \end{cases}$$

 $(1)-(2)\Rightarrow 1=2b\Rightarrow b=\frac{1}{2}.$ Substituindo $b=\frac{1}{2}$ em (1), temos $2=\frac{1}{2}+a-\frac{a}{2}$, donde a=3. Assim, a equação do plano tangente é:

$$z = \frac{1}{2}x + 3y - \frac{3}{2} \text{ on } x + 6y - 2z = 3$$

- 9. Seja $f(x,y) = \frac{x^4y}{x^2+y^2}$, $(x,y) \neq (0,0)$ e f(x,y) = 0, (x,y) = (0,0).
 - (a) Calcule $f_x(0,0)$, $f_y(0,0)$.
 - (b) f é diferenciável em (0,0)?
 - (c) f é contínua em (0,0).

Solução

(a) $\mathrm{Temos}\, f_x(0,0) = \lim_{h \to 0} \frac{f(h,0) - f(0,0)}{h} = \lim_{h \to 0} \frac{0 - 0}{h} = \lim_{h \to 0} 0 = 0, \, f_y(0,0) = \lim_{k \to 0} \frac{f(0,k) - f(0,0)}{k} = \lim_{k \to 0} \frac{0 - 0}{k} = \lim_{k \to 0} 0 = 0.$

(b) Temos $\varepsilon(h_1k) = f(h,k) - f(0,0) - f_x(0,0)h - f_y(0,0)k = \frac{h^4k}{h^2 + k^2} - 0 - 0 \cdot h - 0 \cdot k = \frac{h^4k}{h^2 + k^2}$.

Donde,

$$\frac{\varepsilon(h_1k)}{\|(h,k)\|} = \frac{\frac{h^4k}{h^2+k^2}}{\sqrt{h^2+k^2}} = \frac{h^4k}{(h^2+k^2)\sqrt{h^2+k^2}} = h^2 \cdot \frac{h^2}{h^2+k^2} \cdot \frac{k}{\sqrt{h^2+k^2}}$$

onde,

$$\begin{split} \lim_{(h,k)\to(0,0)} &= 0, \left|\frac{h^2}{h^2+k^2}\right| = \frac{h^2}{h^2+k^2} \leqslant \frac{h^2+k^2}{h^2+k^2} = 1, \left|\frac{k}{\sqrt{h^2+k^2}}\right| = \frac{|k|}{\sqrt{h^2+k^2}} \\ &= \sqrt{\frac{|k|^2}{h^2+k^2}} = \sqrt{\frac{k^2}{h^2+k^2}} \leqslant \sqrt{\frac{h^2+k^2}{h^2+k^2}} = 1. \end{split}$$

Logo, pelo teorema do anulamento, segue que

$$\lim_{(h,k)\to(0,0)} \frac{\varepsilon(h,k)}{\|(h_1k)\|} = 0$$

portanto, f é diferenciável em (0,0).

- (c) Se f é diferenciável em (0,0), então f contínua em (0,0).
- 10. Considere a superfície S de equação $z=2x^2+2y^2$.
 - (a) Determine o ponto $P_0\in S$, tal que o plano tangente aS em P_0 seja ortogonal ao vetor $V=\left(0,1,-\frac{1}{6}\right)$.
 - (b) Escreva a equação do plano tangente referido no item (a).

Solução

(a) a equação do plano tangente aS em $P_0=(a,b,z(a,b))=(a,b,2a^2+2b^2)$ é:

$$z = z(a,b) + z_x(a,b)(x-a) + z_y(a,b)(y-b)$$

onde,

$$z_x(a,b) = 4x|_{(a,b)} = 4a$$
 e $z_y(a,b) = 4y|_{(a,b)} = 4b$

Temos então,

$$z = 2a^2 + 2b^2 + 4ax - 4a^2 + 4by - 4b^2$$

ou seja,

$$4ax + 4by - z = 2a^2 + 2b^2$$

Daí, concluímos que (4a,4b,-1) é um vetor ortogonal ao plano tangente a S em P_0 . Como queremos que plano tangente a S em P_0 seja ortogonal ao vetor $V=\left(0,1,-\frac{1}{6}\right)$, então

$$(4a,4b,-1)//\left(0,1,-\frac{1}{6}\right)$$

ou seja, $(4a,4b,-1)=\lambda\left(0,1,-\frac{1}{6}\right)$, para algum $\lambda\in\mathbb{R}$. Logo, $4a=0,4b=\lambda,-1=\frac{-\lambda}{6}$. Donde, $a=0,\lambda=6$ e $b=\frac{6}{4}=\frac{3}{2}$. Então, o ponto P_0 é dado por $P_0=\left(0,\frac{3}{2},2,\frac{9}{4}\right)=\left(0,\frac{3}{2},\frac{9}{2}\right)$.

(b) A equação do plano tangente é:

$$6y - z = \frac{9}{2}$$
 ou $12y - 2z - 9 = 0$

Exercícios

- 1. Seja $f(x,y)=\frac{3x^5}{x^2+y^2}$ se $(x,y)\neq (0,0)$ e f(x,y)=0 se (x,y)=(0,0).
 - (a) Determine $\frac{\partial f}{\partial x}(0,0)$, $\frac{\partial f}{\partial y}(0,0)$.
 - (b) f é diferenciável em (0,0) ? Por quê?
- 2. Verifique se a função $f(x,y)=x^{\frac{1}{3}}\cos y$ é diferenciável em (0,0).
- 3. Determine as equações do plano tangente e da reta normal ao gráfico da função $f(x,y)=xe^{x^2-y^2}$ no ponto (2,2,f(2,2)).
- 4. Encontre o ponto onde o plano tangente ao gráfico da função $f(x,y)=x^2y^2+2(x-y)$ é horizontal.

Respostas

- 1. (a) 0;0
 - (b) É diferenciável em (0,0)
- 2. f não é diferenciável em (0,0), pois não existe $\frac{\partial f}{\partial x}(0,0)$
- 3. $z = 9x 8y; (x, y, z) = (2, 2, 2) + \lambda(9, -8, -1), \lambda \in \mathbb{R}$
- 4. (-1, 1, -3)

