Boas-vindas ao Curso Básico de R do BMClima!

Este curso é a porta de entrada para o mundo da análise de dados em saúde e clima. O objetivo é preparar você para analisar dados e dominar a linguagem R para análise de dados.

Introdução ao R

Linguagem de Programação

O R é uma linguagem de programação poderosa e flexível, ideal para análise estatística e visualização de dados.

Ferramentas Complementares

O R é utilizado em conjunto com outras ferramentas, como RStudio, Google Colab, Git e GitHub, que facilitam o desenvolvimento e a colaboração.

Vantagens

O R é gratuito, de código aberto e possui uma comunidade ativa, com uma ampla gama de pacotes e ferramentas disponíveis.

Aplicações

O R é utilizado em diversas áreas, como saúde, meio ambiente, economia e marketing, para análise de dados complexos e geração de insights.

Instalando as Ferramentas

R

(1

Baixe o R do CRAN (Comprehensive R Archive Network) e instale seguindo as instruções para o seu sistema operacional.

2 RStudio

Git

(3)

Baixe o RStudio do site oficial e instale após instalar o R. O RStudio é um ambiente de desenvolvimento integrado (IDE) que facilita o uso do R.

Baixe o Git do site oficial e instale para controlar versões do código e facilitar o compartilhamento de projetos.

4

GitHub

Google Colab

5

Crie uma conta no GitHub para hospedar seus projetos, colaborar com outros desenvolvedores e compartilhar código.

Crie uma conta no Google Colab (opcional) para utilizar o R em um ambiente de nuvem, ideal para colaboração e projetos online.

(6)

Ferramentas Adicionais

Explore pacotes adicionais, como Latex, webshot e bookdown, que podem ser úteis para gerar relatórios, gráficos e livros.

Primeiros Passos na Programação

1 Conceitos Básicos

Aprenda sobre variáveis, constantes, operadores, tipos de dados e estruturas de dados, como vetores, matrizes, listas e dataframes.

2 Expressões e Funções

Entenda como funcionam expressões, fórmulas e funções, que são blocos de código reutilizáveis que facilitam a programação em R.

Organização do Código

Crie uma pasta de projeto, utilize a ferramenta "Projetos" do RStudio e desative as opções .RData e .Rhistory para manter seu trabalho organizado e evitar problemas.

4 Primeiro Script

Crie um arquivo chamado primeiroScript.R, salve-o e copie e cole o código fornecido para realizar cálculos simples e entender a interface do RStudio.

Funções e Pacotes

Funções

As funções são blocos de código reutilizáveis que executam tarefas específicas, como print(), c(), as.Date().

Objetos

Os objetos são nomes que guardam valores, como variáveis, constantes, etc. Utilize nomes descritivos e siga as regras de nomeação para manter seu código organizado.

Pacotes

Os pacotes são conjuntos de funções que estendem as capacidades do R. Utilize install.packages("nome_do_pacote") para instalar e library("nome_do_pacote") para carregar os pacotes.

Analisando Dados do SIM

Instalação e Carregamento

Instale e carregue os pacotes nece

2

3

4

5

Instale e carregue os pacotes necessários para o projeto, como remotes, microdatasus, tidyverse e readr.

Configuração da Pasta

Utilize as funções getwd() e setwd() para definir a pasta de trabalho e organizar os arquivos do projeto.

Download dos Dados

Baixe os dados do SIM (Sistema de Informação de Mortalidade) utilizando o pacote microdatasus.

Pré-processamento

Utilize a função process_sim() para pré-processar os dados do SIM, limpando e organizando as informações.

Inspeção e Análise

Utilize as funções head(), summary() e str() para inspecionar a estrutura dos dados e realizar análises estatísticas básicas.

Operador Pipe e Entrada/Saída de Dados

Operador Pipe

O operador pipe (%>%) encadeia funções de forma mais legível e eficiente. Em vez de criar variáveis intermediárias, você pode conectar funções diretamente, como dados %>% funcao1() %>% funcao2() %>% funcao3().

Entrada de Dados

Utilize funções como readline() para ler dados do teclado, read.csv() e read.table() para ler arquivos, e pacotes como DBI e RMySQL para acessar bancos de dados.

Saída de Dados

Exiba os resultados no console com print() e cat(), salve em arquivos com write.csv() e write.table(), ou utilize funções de plotagem para gerar gráficos.

Manipulação de Strings

Utilize funções para concatenar, extrair, substituir, converter, remover espaços, dividir, verificar padrões, formatar e manipular strings.

Estruturas de Controle e Loops

Estruturas de Decisão	Loops
if, else, ifelse	for
switch	while
case_when	repeat
	lapply(), sapply()
	apply(), tapply(), mapply()

```
remandado de em denámento dos 🕽 🗼
u se se segral aperanci ene fucion ancistado e
```

Pipeline de Dados

1 Coleta

Extraia dados de diversas fontes, como bancos de dados, APIs, arquivos CSV, etc. Utilizando o pacote microdatasus, você pode coletar dados do DataSUS.

2 Limpeza

Remova dados duplicados, inconsistentes ou incorretos. Padronize os formatos para garantir a integridade dos dados.

3 Transformação

Converta os dados em um formato adequado para análise. Agrupe, filtre e calcule novas métricas para obter insights relevantes.

4 Armazenamento

Carregue os dados processados em um local de destino, como um banco de dados, data warehouse ou data lake.

Projeto Final

Utilize o script fornecido como inspiração para construir um script em R que solucione o cenário proposto. Inclua as cinco etapas de uma pipeline de dados, coletando e processando dados do DataSUS com o pacote microdatasus.