Trapping and imaging of single atom in the present of light shift

Yichao Yu May 26, 2016 Ni Group/Harvard

- MOT Loading
- Trapping
- Imaging
- Works for Cs

- MOT Loading
- Trapping
- Imaging
- Works for Cs

- MOT Loading
- Trapping
- Imaging
- Works for Cs

- MOT Loading
- Trapping
- Imaging
- Works for Cs

$$\bullet \ \beta = \frac{\alpha_e}{\alpha_g}$$

- Inefficient cooling; Heating
- Shift imaging light out of resonance

$$\bullet \ \beta = \frac{\alpha_e}{\alpha_g}$$

- Inefficient cooling; Heating
- Shift imaging light out of resonance

$$\bullet \ \beta = \frac{\alpha_e}{\alpha_g}$$

- Inefficient cooling; Heating
- Shift imaging light out of resonance

Atom	Cs			Na
λ_{trap}	922	935	970	700
β_{cycle}	2	1	0.6	-1

$$\bullet \ \beta = \frac{\alpha_e}{\alpha_g}$$

- Inefficient cooling; Heating
- Shift imaging light out of resonance

Atom	Cs			Na
λ_{trap}	922	935	970	700
β_{cycle}	2	1	0.6	-1

$$\bullet \ \beta = \frac{\alpha_e}{\alpha_g}$$

- Inefficient cooling; Heating
- Shift imaging light out of resonance

Atom	Cs			Na
λ_{trap}	922	935	970	700
β_{cycle}	2	1	0.6	-1

$$\beta = \frac{\alpha_e}{\alpha_g}$$

- Inefficient cooling; Heating
- Shift imaging light out of resonance

Atom	Cs			Na
λ_{trap}	922	935	970	700
β_{cycle}	2	1	0.6	-1

Cs single atom loading

λ_{trap} 922		935 970	
Loading	No	Yes	Yes

Cs single atom imaging

Trap switching

- Alternate between resonant and trap light
- Switching at 1 3MHz

Trap switching

- Alternate between resonant and trap light
- Switching at 1 3MHz

Trap switching

- Alternate between resonant and trap light
- Switching at 1 3MHz

Cs single atom imaging

Trap switching

- Alternate between resonant and trap light
- Switching at 1 3MHz

Cs single atom imaging

Trap switching

- Alternate between resonant and trap light
- Switching at 1 3MHz

May 26, 2016