Erciyes Üniversitesi Bilgisayar Mühendisliği Bölümü

BZ 313 Yazılım Mühendisliği 4. Fizibilite Çalışmaları

Fizibilite Çalışması

Tanım:

Bir projeye başlamadan önce, projenin uygulanabilir olup olmadığını anlamak için yapılan ön çalışmadır.

Fizibilite Sonunda Verilen Kararlar:

- II Tekrar düşün Ek analiz gerekebilir
- Sonlandır -> Proje iptal edilir

Çıktılar:

- •Çoğunlukla bütçe talebi oluşturur
- •Bir teklif (proposal) şeklinde sunulabilir

Fizibilite Çalışmaları Neden Zordur?

Şüphecilik:

•Client'lar proje kapsamından emin olmayabilir.

Faydaların ölçülmesi zordur:

•Kazanç ve etki çoğu zaman belirsizdir.

Yaklaşımın yanlış tanımlanması:

Kaynak tahminleri ve zaman çizelgesi çoğunlukla kaba hatlarla çizilir.

Organizasyonel değişiklik gerekliliği:

•Yeni süreçler, ekipler veya yapılar gerekebilir.

Deneyime bağımlılık:

Başarı büyük ölçüde deneyimli kişilerin kararına dayanır.

Kritik risk:

 Projenin başındaki hatalar → sonradan düzeltmesi en zor olan hatalardır.

Fizibilite Çalışmaları Neden Zordur?

- **♦** Savunma (Advocacy):
- •Bir proje için coşku yaratmak çoğu zaman savunuculukla mümkündür.
- •Örneğin: Bir firmayı riskli ve pahalı bir projeyi üstlenmeye ikna etmeye çalışmak.
- **C**oşku ve Riskler:
- Coşku genellikle faydalıdır ama...
 - Potansiyel faydalar abartılır
 - Riskler küçümsenir
- **Qikar Çatışması:**
- •Fizibilite çalışmasını yapan veya kararı veren kişiler:
 - Maddi kazanç
 - Kariyer gelişimi gibi çıkarlar nedeniyle tarafsız olmayabilir

Not: "BZ 313 dersinizde, yapacağınız fizibilite çalışması 'projeye devam etmeme' sonucunu da gayet olası şekilde önerebilir."

Karar Verici Tarafından Bakış Açısı

Fizibilite çalışması sonunda karar vericiler şu sorulara yanıt arar:

- Client:
 - Bu proje kimin için yapılıyor?
- Kapsam:
 - Projenin sınırları neler?
- Paydalar:
 - Beklenen faydalar neler?
 - Bu faydalar ölçülebilir mi?
 - Satış tahminleri yapılabiliyor mu?
- •**☆** Teknik:
 - Proje teknik olarak yapılabilir mi?
 - En az bir uygulanabilir teknik yol var mı?
- **Kaynaklar**:
 - Personel, zaman, ekipman gibi kaynakların tahmini yeterli mi?
- C Alternatifler:
 - Proje yapılmazsa hangi diğer seçenekler mevcut?

Riskler Nelerdir? En aza indirilebilir mi?

Teknik Riskler

- Zaman çizelgesi ve personel tahsisini içeren taslak bir plan mutlaka hazırlanmalı.
- Plan, beklenmedik durumlara karşı esnek olmalı.
- Çoğu zaman projeler, fizibilite planında öngörülenden 2 kat fazla personel ve/veya süre gerektirir.

Dış Riskler

Her sistem başka sistemler, kullanıcılar veya müşterilerle **etkileşim içindedir.**

Paydaşların kararlılığı: Kullanıcılar ve müşteriler gerçekten gerekli çabayı göstermeye hazır mı?

Dış baskılar: Yasal, organizasyonel veya çevresel engeller olabilir.

Organizasyonel Fizibilite

- **Değerlendirilmesi Gereken Sorular**
- •Firmanın yönetim uzmanlığı var mı?
- •Firmanın **teknik uzmanlığı** var mı?
 - İş taşerona verilse bile, denetim yapabilecek uzman bulunmalı.
- •Firma, personel ve iş akışı değişikliklerine nasıl tepki veriyor?
- **Ö**rnek
- •Belge Yönetim Sistemi:
 - Büro iş akışlarını dijitalleştiren bir sistemdir.
 - Organizasyonel değişime direnç gösterebilecek alanlara örnektir.

Örnek 1: Erciyes Üniversitesi (Fizibilite Çalışması Öncesi Karar)

Uygulamanın Ana Hatları

- •Durum: Üniversite hâlihazırda kağıt tabanlı bir belge ve kayıt yönetim sistemi kullanmaktadır.
- •Plan: Tüm belgelerin ve kayıtların dijital ortama aktarılacağı, dijital belge yönetim sistemine geçiş hedeflenmektedir.

•Amaç:

- Belgelerin hızlı erişimini sağlamak
- Bürokratik yükü azaltmak
- Uzun vadede maliyetleri düşürmek
- Daha güvenli arşivleme yapmak

Örnek 1: Kronoloji

Adımlar:

- 1.Bilgi İşlem Merkezi, **teknolojiyi göstermek için prototip** bir sistem geliştirdi.
- 2.Rektörlük, büyük bir bilgisayar sistemi **tedarik etmek için fonları onayladı.**
- 3.İzlenecek teknik yaklaşımı ve prototipin sonuçlarını değerlendirmek için, harici bir fizibilite çalışması yaptırıldı.

Sorunlar:

- Projeye devam kararı, fizibilite çalışması tamamlanmadan önce verildi.
- Fizibilite çalışması yalnızca **teknik yönlere** odaklandı; organizasyonel ve finansal boyutlar göz ardı edildi.

Örnek 1: Problemler

Kurumsal

- •Aracı firmanın üst yönetimi, böylesine büyük bir dönüşüm projesine liderlik etme deneyiminden yoksundu.
- •Personelin neredeyse tamamını etkileyecek iş akışı ve süreç değişiklikleri için çalışan görüşleri alınmadı.
- **♦** Hazırlık
- •Veri büyüklüğü ve veri türleri hakkında hiçbir ön çalışma yapılmadı.
- •Erişim için gerekli gizlilik ve yetkilendirme politikaları incelenmedi.
- **♦** Gereksinimler
- •Gereksinimler karmaşık ve sadece kısmen anlaşılır durumdaydı.
- •Üretim aşamasına geçildikten sonra bile büyük değişikliklerin kaçınılmaz olacağı açıktı.

Örnek 1: İkilem

- •Dış fizibilite çalışması:
- Aracı firma tarafından ödendi
- Yalnızca teknik konulara odaklandı
- Asıl ihtiyaç:
- •Üst yönetim düzeyinde kurumsal değişiklikler gerekiyordu.
- •Bu sorunlar ele alınsaydı:
- Yinelemeli iyileştirme + aşamalı yaklaşım
- Uzun vadede başarı şansı yüksek olabilirdi.
- X Ancak:
- •Aracı firma, üniversiteye para iade etmek istemedi.
- •Saf şelale modeli benimsendi.
- •Teklif talebi (RFP) yayınlandı ve büyük bir sözleşme imzalandı.
- XX Sonuç:

"İşte yazılım felaketleri böyle doğar."

izibilite
ere
ayattı
n kaçındı ve
e r

Fizibilite Çalışması: Kapsam

- Kapsamın Tanımı
- •Sistemin sınırlarını belirler.
- **♦** Kapsam Belgesi İçermelidir:
- Dahil edilen işlevler listesi
- •Hariç tutulan işlevler listesi
- Bağımlılıklar listesi
- Değiştirilecek mevcut sistemlerin listesi

Neden Kritik?

•Kapsam konusundaki karışıklık, müşteri memnuniyetsizliğinin en yaygın nedenlerinden biridir.

Müşteri Tepkilerine Örnekler:

- "Yapmayı planladığın tek şey bu mu?"
- •"Ama xyz yapacağını sanıyordum."
- •"Sistemi abc olmadan kullanamam."

Örnek 2: Bir Üniversite Deposu (Kapsam Konusunda Karışıklık)

Durum

- •Devlet kuruluşu **L Üniversitesi**, uzun süreli depolama ve erişim için bir **depo sistemi** talep etti.
- •Dış kuruluş **C**, dijital materyalleri depolamak ve güncellemek için bir sistem geliştirdi.

♦ Sorun

- •Eksik alt sistemler:
 - Malzemeleri **organize edecek, doğrulayacak ve depoya yükleyecek** alt sistemler yapılmadı.
- •Beklentiler farklıydı:
 - L Üniversitesi: Alt sistemlerin depo sisteminin bir parçası olmasını bekliyordu.
 - C Kuruluşu: Alt sistemleri, depo sisteminden ayrı bir yapı olarak gördü.

♦ Sonuç

•Kapsam konusunda yanlış anlaşılma → Sistem beklentileri karşılamadı.

Fizibilite Çalışması: Faydalar

Temel Soru:

- •"Bu proje neden öneriliyor?"
- •"Faydaları ölçülebilir mi?"

Kurumsal Avantajlar

- Pazarlanabilir bir ürün oluşturma
- •Kurumun verimliliğini artırma (ör. personel tasarrufu)
- •Karmaşık sistemleri otomatik denetleme
- •Yeni veya geliştirilmiş servis (ör. müşterilere daha hızlı yanıt)
- •Güvenlik artırma

Not:

•Profesyonel faydalar (kişisel kariyer, prestij vb.) → Bir projeye başlamak için geçerli bir gerekçe değildir.

Ölçülebilir Kurumsal Faydalar

Verimliliği artırmak (ör. personel tasarrufu)

Karmaşık sistemleri otomatik denetlemek

Müşterilere daha hızlı hizmet sunmak

Güvenlik seviyesini artırmak

Geçersiz Profesyonel Faydalar

Kişisel kariyer kazanımları

Akademik/mesleki prestij

💼 Terfi veya iş güvenliği

CV'ye iyi görünmesi"

Özel ödül veya tanınırlık

Fizibilite Çalışması: Teknik

Amaç:

Önerilen sistemin teknik olarak uygulanabilir olduğunu göstermek.

- **İçermesi Gerekenler:**
- •Gereksinimlerin taslak listesi
- •Olası sistem tasarımı (ör. veritabanı, dağıtık sistem, vb.)
- •Kullanılacak yazılım seçenekleri (edinilecek veya geliştirilecek)
- •Kullanıcı sayısı, veri, işlem hacmi gibi tahminler
- **Q** Çıktı:
- •Bu kaba rakamlar, personel, zaman çizelgesi, ekipman ihtiyaçları için bir geçici plan oluşturur.

Not:

Gerçekte proje ilerledikçe izlenecek teknik yaklaşım değişebilir.

Fizibilite Çalışması: Planlama ve Kaynaklar

Fizibilite çalışması bir Taslak Plan İçermelidir:

•Personel ve ekipman ihtiyaçlarını tahmin et

•Örnek: 5 yazılım geliştirici, 2 test uzmanı, 1 sistem yöneticisi; ayrıca 3 sunucu ve lisanslı veritabanı yazılımı.

•Ön zaman çizelgesi oluştur

•Örnek: Gereksinim analizi: 1 ay, Tasarım: 2 ay, Uygulama: 6 ay, Test: 2 ay, Toplam: 11 ay.

•Önemli kilometre taşlarını ve karar noktalarını belirle

•Örnek: *Prototip hazır* → 3. ay; Kullanıcı testleri başlar → 7. ay; Beta sürüm yayında → 9. ay.

•Dış sistemlerle etkileşimleri ve bağımlılıkları tanımla

•Örnek: Yeni sistemin, üniversitenin mevcut öğrenci bilgi sistemi (OBS) ve e-posta altyapısı ile entegre çalışması.

•Teslim edilebilir öğeler ve teslim tarihleri için ön liste oluştur

•Örnek: *Kullanıcı arayüzü prototipi → 3. ay; Pilot sürüm → 8. ay; Nihai sürüm → 11. ay.*

Fizibilite Çalışması: Alternatifler ve Riskler

♦ Riskler

- •Ne yanlış gidebilir?
- •İlerleme nasıl izlenecek, sorunlar nasıl görünebilir kılınacak? (Visibility)
- •Geri dönüş / alternatif senaryolar neler?

♦ Alternatifler

- •Mevcut sistem ile devam etmek mi?
- •Mevcut sistemi geliştirmek mi?
- •Yeni bir sistem **sıfırdan kurmak** mı?
- •Geliştirme şirket içinde mi yapılacak, yoksa **dışarıya sözleşme** mi verilecek?
 - (Sözleşme nasıl yönetilecek?)
- Teslimat aşamaları ve plan revizyon noktaları neler olacak?

Fizibilite Çalışmaları için Teknikler

Öncelik:

Müşteri ve geliştirme ekibinin, sistemin hedefleri hakkında aynı anlayışa sahip olmasıdır.

- **♦** Geliştirme Ekibinin Hedefleri Anlaması için
 - •Müşteri ve kurum personeliyle **görüşmeler**
 - •Mevcut sistemlerin (rakipler dahil) incelemesi

- **♦ Müşterinin Önerilen Sistemi Takdir Etmesi için**
 - •Temel özelliklerin veya benzer sistemlerin gösterilmesi
 - •Kullanıcı arayüzü mock-up'larının hazırlanması
 - •Tipik işlemler veya etkileşimler arasında navigasyon gösterimi

Fizibilite Çalışmaları için Teknikler

- **♦ Bütçe (Ana Hatlarıyla):**
 - •n kişi → ör. 6 kişi
 - •m ay boyunca $\rightarrow \ddot{o}r. \ 8 \ ay$
 - •Aylık maliyet (\$x) \rightarrow ör. kişi başı 4.000 \$
 - •Ekipman & Tesisler → sunucular, lisans yazılımları, ofis altyapısı
 - Acil durum payı (%50+ önerilir)

- **♦** Aşamalar & Kilometre Taşları:
 - •Teslim edilebilir kısımlar → ör. Kullanıcı arayüz prototipi, Beta sürüm, Nihai sürüm
 - •Yaklaşık tarihleri \rightarrow 3. ay, 6. ay, 9. ay
 - •Planlanan sürümler \rightarrow V1.0 \rightarrow temel işlevsellik, V2.0 \rightarrow ek modüller

Fizibilite Çalışması: Karar

Farklı organizasyonların farklı karar stilleri vardır:

- •Ekibi ve süreci izlemek
- Ayrıntılı yazılı raporları incelemek
- •Bilgili kişileri yüz yüze sorgulamak

Amaç:

Tüm bu süreçlerin sonunda, verilen bilgiler ışığında "Proje devam edecek mi, edilmeyecek mi?" sorusuna doğru karar vermek.

Fizibilite Raporu

Olması Gereken Özellikler

- Yazılı, **iyi hazırlanmış** ve **iyi sunulmuş** bir belge olmalı.
- Hedef kitlesi: Müşteri, finansal yönetim, teknik yönetim vb.
- Okunabilirlik dengesi:
 - Herkesin okuyacağı kadar kısa
 - Hiçbir önemli konunun atlanmayacağı kadar uzun
- Ayrıntılar → Ek belgeler olarak sunulabilir.

Not:

"Okunmayan veya anlaşılmayan bir rapor hiçbir işe yaramaz."

BZ313: Fizibilite Raporları

Ödevlerinizin biri fizibilite raporlarının oluşturulması olacaktır.

BZ313: Fizibilite Raporu

1. Taslak Plan

- Temel faaliyetler
- •Kilometre taşları
- •Zaman çizelgesi (→ ayrıntılar **Proje Yönetimi** dersinde)

2. İşletmeyle İlgili Hususlar

- Organizasyonel etkiler
- Operasyonel değişiklikler
- •Araştırma Ödevi: Yazılım patentleri konusunu inceleyin.

3. Risk Analizi

- •Ne yanlış gidebilir?
- •Risklerin belirlenmesi ve sınıflandırılması
- •Geri dönüş planı (alternatif senaryolar)

BZ 313: Zorluklar

- •Haftada kaç saat çalışabileceksiniz?
- •Ekip üyelerinin mevcut becerileri nelerdir?

- •Tüm **uygulama, dokümantasyon ve sunum**, dönem sonuna kadar bitirilmeli.
- •Fazla hırs → dönem sonunda gösterilecek bir şey olmama riski.

- •Geliştirme için özel donanım ya da yazılım ihtiyaçları var mı?
- •Lisanslı araçlara erişim durumu.

- •Müşteri yeterince **müsait** mi?
- •Proje süresince yardımcı ve işbirlikçi olacak mı?

Başlangıç Süresi

- •Ekip oluşturma
- •İlk toplantılar ve planlama
- •Gerekli yazılım edinme
- Yeni sistemleri öğrenme süreci

- Lisanslar, fikri mülkiyet ve ticari sırlar
- Patent veya telif hakları ile ilgili kısıtlamalar

- •İletişim problemleri
- Beklenmedik teknik engeller
- Motivasyon düşüklüğü

BZ 313: Risk Nasıl En Aza İndirilir?

Risk Yönetimi Teknikleri

- 1.Çeşitli Hedef Düzeyleri Tanımla
 - 1. Gerekli (olmazsa olmaz işlevler)
 - 2. Arzu Edilen (proje kalitesini artıran özellikler)
 - 3. () isteğe Bağlı (ekstra özellikler, vaktiniz kalırsa)

2.Görünür Yazılım Süreci

- 1.Ara çıktılar üretin (mock-up, prototip, demo)
- 2. Müşteri ve ekip ilerlemeyi görebilsin

3. Etkili İletişim

- 1. Ekip içi düzenli toplantılar
- 2. Müşteri ile açık ve sürekli iletişim

4. İyi Tanımlanmış Geliştirme Süreci

- 1.Belirli roller ve sorumluluklar
- 2. Uygun yazılım metodolojisi seçimi (Çevik, yinelemeli, vs.)

İyi süreçler iyi yazılımların ortaya çıkmasını sağlar İyi süreçler riski azaltır

BZ 313 Ödev Raporları: Dikkat Edilecek Noktalar

Sorumluluk

•Raporun tamamını okumak ve düzenlemek için bir ekip üyesi görevlendirin.

jçerik Tutarlılığı

- •Farklı yazarların yazdığı bölümler birbiriyle uyumlu mu?
- •Örneğin: Kapsam, gereksinimler ve plan bölümleri aynı hedefi mi *qösteriyor?*

Üslup ve Anlaşılabilirlik

- •Metin açık ve sade mi?
- •Gereksiz jargon var mı? Müşterinin (client) anlayamayacağı teknik ifadelerden kaçınılmalı.

Dil Düzenlemesi

- •Türkçe dil bilgisi ve akış için tanıdığınız bir arkadaşınıza okutun.
- •Gözden geçirilmiş bir rapor, profesyonel görünüm sağlar.

BZ313 Fizibilite Çalışmaları: Sık Karşılaşılan Sorunlar

Amaç

- Bir projenin, planlanan sürede makul maliyetle uygulanabilir olup olmadığını belirlemek.
- •Rapor, devam edilip edilmeyeceğine dair öneri sunar, ama nihai karar müşteri + geliştirme ekibine aittir.

Sık Karşılaşılan Problemler

1. Kapsam Belirsizliği

1.Net kapsam tanımı olmadan, uygulanabilirlik açık değildir.

2. Yetersiz Planlama

1.Faaliyetler yeterince ayrıntılı tanımlanmaz → harcanacak çaba ikna edici olmaz.

3. Aşırı İddialı Projeler

1.Rapor, ilerlemenin nasıl izleneceğini ve gerekirse kapsamın nasıl ayarlanacağını açıklamaz.

Erciyes Üniversitesi Bilgisayar Mühendisliği Bölümü

BZ 313 Yazılım Mühendisliği 4. Fizibilite Çalışmaları

Dersin Sonu