清华大学本科生考试试题专用纸

考试课程 微积分 A(2) A卷

2022年6月14日9:00-11:00

系名 班级 姓名 学号

- **一、填空题**(每题 3 分, 共 45 分)
 - 1. 函数 $f(x) = x^2$ 在区域 $\Omega = \{(x, y, z) \in \mathbb{R}^3 | x^2 + y^2 + z^2 \le 5^2 \}$ 中的积分平均值

$$\frac{\iiint\limits_{\Omega} x^2 dx dy dz}{\iiint\limits_{\Omega} dx dy dz} = \underline{\qquad}.$$

- 2. 曲线 $L:|x|+|y|=\sqrt{2}$ 的线密度为 $\mu(x,y)=3+x^2-y^2$,则曲线 L 的质量为
- 3. 积分 $\int_0^{\pi} dy \int_y^{\pi} \frac{\sin x}{x} dx =$ ______.
- 4. 设 $\lambda > 0$,设 L_{λ}^{+} 为单位圆周 $x^{2} + y^{2} = \lambda^{2}$,逆时针为正向,则

$$\frac{1}{\pi\lambda^2} \left(\oint_{L_\lambda^+} (\sin x + y + e^y) dx + (3x + xe^y) dy \right) = \underline{\qquad}.$$

5. 如图, L^{+} 是单位球面 $x^{2} + y^{2} + z^{2} = 1$ 上的一条 C^{1} 曲线, 以

S(0,0,-1) 为起点,以N(0,0,1) 为终点.则

$$\int_{I^{+}} (y^{2} + z^{2}) dx + 2(z^{2} + x^{2}) dy + 3(x^{2} + y^{2}) dz = \underline{\hspace{1cm}}.$$

- 6. 三重积分 $\iiint_{x^2+y^2+z^2<1} \sqrt{|x|+y^2-\cos z+1}\sin(xy^2z^3)dxdydz=$ _______.
- 7. 设级数 $\sum_{n=0}^{\infty} a_n x^n$ 在 x = -4 处条件收敛,记 $\sum_{n=0}^{\infty} a_{2n} x^n$ 的收敛半径为 R ,则 R 的 最小值是_____.
- 8. 设幂级数 $y = \sum_{n=0}^{\infty} a_n x^n$ 的和函数是微分方程的初值问题 $\begin{cases} xy'' = y \\ y(0) = 0 \text{ 的解,则} \\ y'(0) = 1 \end{cases}$

$$\frac{1}{a_3} =$$
_____.

- 10. 设 ℝ3 中曲面

$$\Sigma: \begin{cases} x = r\cos\theta, \\ y = r\sin\theta, \ (0 \le r \le 1, 0 \le \theta \le 2\pi) \\ z = \theta, \end{cases}$$

取Σ朝上一侧为正向,则

$$\frac{1}{\pi} \iint_{\Sigma^+} 2y dy \wedge dz - 2x dz \wedge dx + dx \wedge dy = \underline{\hspace{1cm}}.$$

11. 设有向曲线 $L^{+}: x = t, y = t^{2}, z = t^{4}, 0 \le t \le 1$,参数 t 增加方向与曲线正向一致,则

$$\int_{I^{+}} 9y dx - 3x dy + 4z dz = \underline{\hspace{1cm}}.$$

12. 设 ℝ3 中曲面

$$\Sigma : x^2 + y^2 - 2z = 0 \ (0 \le z \le 8)$$

则

$$\iint_{\Sigma} \frac{1}{\pi \sqrt{x^2 + y^2 + 1}} dS = \underline{\qquad}.$$

- 13. 已知曲线积分 $\int_{L^+} (2x^2 + axy) dx + (x^2 + 3y^2) dy$ 与积分路径无关(只与曲线的起点和终点有关),则实数 a =______.
- 15. 设 $\vec{F}(x, y, z) = (yz, zx, x^2)$,则 div(rot $\vec{F}(x, y, z)$) = _____.
- 二、选择题 (每题3分,共30分)
 - 1. 函数项级数 $\sum_{n=1}^{\infty} \frac{(-1)^n}{n^2 + x^2}$ 在 \mathbb{R} 上_____.
 - A. 绝对收敛, 且一致收敛
- B. 绝对收敛, 但不一致收敛
- C. 条件收敛, 且一致收敛
- D. 条件收敛, 但不一致收敛
- 2. 已知 2π 周期函数 f(x) 在区间 $(-\pi,\pi]$ 上满足

$$f(x) = \begin{cases} 1, & 0 < x < \pi, \\ 0, & x = 0, \pi \\ -1, & -\pi < x < 0. \end{cases}$$

利用 f(x) 的 Fourier 级数,可得级数

$$1 + \frac{1}{3} - \frac{1}{5} - \frac{1}{7} + \frac{1}{9} + \frac{1}{11} - \frac{1}{13} - \frac{1}{15} + \cdots$$

的和为<u>____</u>

- A. $\frac{\pi}{4\sqrt{2}}$ B. $\frac{\pi}{2\sqrt{3}}$ C. $\frac{\pi}{4\sqrt{2}}$ D. $\frac{\pi}{2\sqrt{2}}$
- 3. 幂级数 $\sum_{n=1}^{\infty} \frac{(-1)^n x^n}{\left(1 + \frac{1}{2} + \frac{1}{2} + \dots + \frac{1}{n}\right)^n}$ 的收敛域为______.
 - A. {0}
- B. $(-\infty, +\infty)$ C. (-1,1)
- D. (-1,1]
- 4. 设a为常数,则级数 $\sum_{i=1}^{\infty} \left(\frac{\sin(na)}{n^2} + \frac{(-1)^n}{n} \right)$ ______.
 - A. 绝对收敛

B. 条件收敛

C. 发散

- D. 收敛性与 a 的取值有关
- 5. 设 $D = \{(x, y) | x^2 + y^2 \le 1 \}$, 记

$$I_1 = \iint_D \left(\cos\sqrt{x^2 + y^2} + 100(x + y)\right) dxdy$$
,

$$I_2 = \iint_{D} (\cos(x^2 + y^2) + 10(x + y)) dxdy$$
,

$$I_3 = \iint_D \left(\cos\left(x^2 + y^2\right)^2 + x + y\right) dxdy.$$

以下结论正确的是_____

- A. $I_1 < I_2 < I_3$ B. $I_2 < I_1 < I_3$ C. $I_3 < I_2 < I_1$ D. $I_3 < I_1 < I_2$
- 6. 空间曲线 L^+ 为柱面 |x|+|y|=1 与平面 x+y+z=0 的交线,它围绕 z 轴的正 方向逆时针旋转,则

$$\oint_{L^{r}} (z-y)dx + (x-z)dy + (y-x)dz = \underline{\qquad}.$$

D. $12\sqrt{3}$

7. 积分
$$\iint_{x^2+y^2 \le 1} (1+xy) dxdy = _____.$$

A. $\frac{\pi}{2}$ B. π C. $\frac{3\pi}{2}$

D. 2π

8. 记
$$\sum_{n=2}^{\infty} \frac{x^n}{n(n-1)}$$
 的和函数为 $S(x)$,则 $S'\left(\frac{1}{2}\right) =$ ______.

A. $\ln 2 - \ln 3$

B. $\ln 3 - \ln 2$ C. $-\ln 2$

D. ln 2

9. 积分
$$\int_0^2 dy \int_0^{\sqrt{4-y^2}} (x^2 + y^2) dx =$$
______.

Α. 2π

D. 8π

10. 设Ω为单位球体
$$x^2 + y^2 + z^2 \le 1$$
, 则流速场

$$\vec{F}(x, y, z) = (x + yz, y + zx, z + xy)$$

在单位时间内流出 Ω 的流量 $\iint_{\alpha\Omega^+} \vec{F} \cdot \vec{n} dS = \underline{\hspace{1cm}}$.

Α. π

B. 2π

C. 4π

D. 0

三、解答题(共25分)

1. (10分)设
$$D = \{(x,y) | x \ge 0, y \ge 0, 0 \le x + y \le 2\}$$
, 计算二重积分

$$\iint_{\mathbb{R}} e^{\frac{y-x}{y+x}} dx dy.$$

2. (10分) 计算曲面积分:

$$I = \iint_{S^+} \frac{x dy \wedge dz + y dz \wedge dx + z dx \wedge dy}{\sqrt{(x^2 + y^2 + z^2)^3}},$$

其中 S^+ 为曲面 $1 - \frac{z}{7} = \frac{(x-2)^2}{25} + \frac{(y-1)^2}{16}$ $(z \ge 0)$ 的上侧.

3. (5分)已知正项级数 $\sum_{n=1}^{\infty} a_n$ 收敛,数列 $\{b_n\}_{n\geq 1}$ 由以下等式确定:

$$b_n = \ln(e^{a_n} - a_n)$$
, $\forall n \ge 1$.

证明:级数 $\sum_{n=1}^{\infty} \frac{b_n}{a_n}$ 收敛.