Задание VI. Обработка последовательной файловой структуры на языке Си

Разработать последовательную структуру данных для представления простейшей базы данных на файлах в СП Си в соответствии с заданным вариантом. Составить программу генерации внешнего нетекстового файла заданной структуры, содержащего представительный набор записей (15-20). Распечатать содержимое сгенерированного файла в виде таблицы и выполнить над ним заданное действие для 2-3 значений параметров запроса p и распечатать результат.

Действие по выборке данных из файла оформить в виде *отдельной программы* с параметрами запроса, вводимыми из стандартного входного текстового файла, или получаемыми из командной строки UNIX. Второй способ задания параметров обязателен для работ, оцениваемых на хорошо и отлично. Параметры задаются с помощью ключей –f (распечатка файла) или –р parameter (параметры конкретного варианта задания). Получение параметров из командной строки производится с помощью стандартных библиотечных функций argc и argv.

Структуры данных и константы, совместно используемые программами, следует вынести в отдельный заголовочный файл.

В процессе отладки и тестирования рекомендуется использовать команды обработки текстовых файлов ОС UNIX и переадресацию ввода-вывода. Сгенерированные и отформатированные тестовые данные необходимо заранее поместить в текстовые файлы и распечатывать при протоколировании. Рекомендуется подобрать реальные или правдоподобные тестовые данные. Число наборов тестовых данных должно быть не менее трёх. Имя файла с бинарными данными является обязательным параметром второй программы.

Отчёт должен содержать оценку пространственной и временной сложности использованного алгоритма. В состав отчета также рекомендуется включить графическую иллюстрацию структуры файла и запроса на выборку.

В качестве дополнительного задания (принимается в качестве идеи решения задачи и способа тестирования):

– описать структуру файла как реляционную таблицу и сформулировать действие в виде запроса на структурированном языке запросов SQL, или на Прологе [10, 11]. Так, задание варианта 48 может быть специфицировано на языке SQL следующим образом:

Описание таблицы: CREATE TABLE ABIT (SURNAME CHAR (80), INITIALS CHAR(2), MATH INTEGER, PHYS INTEGER, LIT LOGICAL);

3anpoc: SELECT SURNAME, INITIALS FROM ABIT WHERE (LIT=TRUE) AND (MATH+PHYS> (SELECT AVG(MATH+PHYS) FROM ABIT WHERE LIT=TRUE));

– добавить проверку правильности работы процедуры запроса в протоколе, путем сравнения её результатов с результатами, получаемыми из исходных текстовых файлов командами UNIX.

Варианты заданий

Содержимое и структура файла

- 1–11. Сведения о составе комплектующих личных ПЭВМ в студенческой группе: фамилия владельца, число и тип процессоров, объём памяти, тип видеоконтроллера (встроенный, внешний, AGP, PCI) и объём видеопамяти, тип (SCSI/IDE, ATA/SATA), число и ёмкость винчестеров, количество интегрированных контроллеров и внешних (периферийных) устройств, операционная система.
- 12 21. Информация об успеваемости студентов данной группы по всем предметам: фамилия, инициалы, пол, номер группы, отметки по экзаменам и зачетам.
- 22 31. Сведения о вступительных экзаменах абитуриентов: фамилия, инициалы, пол, номер школы, наличие медали, оценки в баллах и зачет/незачет по сочинению.
- 32 39. Информация о пассажирах аэропорта: фамилия, инициалы, количество вещей, общий вес вещей, пункт назначения, время вылета, наличие пересадок, сведения о детях.
- **40 47**. Общая информация о выпускниках школы студента: фамилия, инициалы, пол, номер класса, буква класса, в каком ВУЗе учится, где работает, в каком полку служит и т.п.

По усмотрению преподавателя задачи могут быть сформулированы, в соответствии с номером группы, для сотрудников фирмы (1), преподавателей кафедры (2), больных в больнице (3), жильцов дома (4), рейтинговых таблиц спортсменов (5), хит-парадов (6), осужденных в местах заключения (7), залогодателей ломбарда (8), клиентов службы знакомств (9), покойников на кладбище (10), покупателей интернет-магазина (11), абонентов телефонных компаний (12), владельцев автомобилей (13) и т.д.

Тестовые данные не должны нарушать действующее законодательство о персональных данных.

Действия (* обозначены более сложные задания):

- 1. Найти всех владельцев двухпроцессорных компьютеров, имеющих не более p внешних устройств.
- 2.* Напечатать список однофамильцев, имеющих однотипные компьютеры.
- 3.* Распечатать типичные конфигурации компьютеров в группе (более p владельцев).
- 4. Отпечатать список студентов, компьютеры которых нуждаются в апгрейде (более p устройств).
- 5.* Для всех студентов, имеющих более одного компьютера, распечатать сведения о самом мощном из них.
- 6. Распечатать сведения обо всех компьютерах-серверах и рабочих станциях.
- 7. Составить аннотированный список неукомплектованных компьютеров (некомплект p устройств).
- 8. Составить список мультимедийных компьютеров и бездисковых рабочих станций.
- 9. Составить список плохо сконфигурированных компьютеров.
- 10. Составить список компьютеров с фирменными комплектующими.
- 11. Перечислить все компьютеры студентов группы, платформа которых отлична от WINTEL.
- 12. Выяснить, сколько студенток группы p получают стипендию.
- 13. Выяснить, сколько студенток группы p имеют ровно одну пятёрку.
- 14. Выяснить, сколько студентов группы p имеют больше двух троек.
- 15. Напечатать список потенциальных стипендиатов студентов, у которых одна тройка, а все остальные оценки четвёрки и пятёрки или все пятёрки и одна четвёрка.
- 16. Найти фамилии лучших студенток курса (не имеющих отметок ниже четырех и по сумме баллов не уступающих другим студентам своей группы).
- 17. Выяснить, в какой группе студентки имеют максимальный средний балл.
- 18.* Выяснить, в какой группе разность между максимальным и минимальным средним баллом студентов максимальна.
- 19.* Выяснить, в какой группе учится максимальное число студентов с минимальным на курсе средним баллом.
- 20.* Выяснить, в какой группе учится максимальное число студенток с максимальным на курсе средним баллом.
- 21.* Напечатать список *p* лучших студентов курса (с наивысшими средними баллами).
- 22. Найти абитуриентов-медалистов, не набравших проходной балл p.
- 23. Найти абитуриентов-медалистов, получивших неудовлетворительную оценку по математике.
- 24. Найти абитуриентов, имеющих заданную сумму баллов p.
- 25. Найти абитуриентов, имеющих сумму баллов от p_1 до p_2 .
- 26. Найти абитуриентов-немедалистов, суммарный балл которых выше среднего.
- 27. Найти абитуриенток, получивших по двум предметам одинаковые оценки.
- 28. Найти абитуриенток, имеющих по всем предметам разные оценки.
- 29. Найти абитуриентов, получивших максимальную оценку по одному предмету, но не набравших проходного балла p.
- 30. Найти абитуриенток, получивших одинаковые оценки по всем предметам, но не набравшим проходного балла p.
- 31.* Найти абитуриентов, имеющих полупроходной балл, при наличии p мест на факультете.
- 32. Найти пассажиров, вес багажа которых отличается от максимального веса менее чем на p кг.
- 33.* Найти пассажира, средний вес вещей багажа которого отличается не более чем на p кг от среднего веса вещей пассажиров для каждого рейса.
- 34. Найти пассажиров, имеющих более p вещей.
- 35. Найти пассажиров, число вещей которых превосходит среднее число вещей не менее, чем на p штук.
- 36.* Определить, имеются ли два пассажира, багаж которых совпадает по числу вещей и различается по весу не более чем на p кг.
- 37. Выяснить, имеется ли пассажир, багаж которого состоит из p_1 вещей весом не менее p_2 кг.
- 38.* Дать сведения о пассажирах, число вещей которых не меньше, чем в любом другом багаже, а вес вещей не больше, чем в любом другом багаже с этим же числом вещей.
- 39. Выяснить, имеется ли пассажир, багаж которого превышает багаж каждого из остальных пассажиров и по числу вещей и по весу.
- 40.* Выяснить, имеются ли в школе однофамильцы.
- 41.* Выяснить, имеются ли однофамильцы в каких-либо параллельных классах.
- 42.* Выяснить, имеются ли однофамильцы в каком-нибудь классе.
- 43.* Выяснить, в каком классе учится максимальное число учениц.
- 44. Выяснить, на сколько учеников в p-х классах школы больше, чем в десятых.
- 45.* Найти среднее число учениц в классах школы.
- 46.* Найти классы, в которых число учеников больше числа учениц.
- 47. Найти классы, выпускники которых либо поступили в вузы, либо призваны на военную службу.

Пример

- Тип данных: имя и фамилия больного, температура.
- Задание: вывести имена и фамилии больных, температура которых ниже средней по больнице.
- Проект состоит из трех файлов: person.h, persons_dump.c, cool_persons.c

person.h:

```
#ifndef __person_h__
    #define __person_h__
    typedef struct {
      char name[50];
      int temp;
    } person;
    #endif
persons dump.c
    #include <stdio.h>
    #include <string.h>
    #include <errno.h>
    #include "person.h"
    void usage()
      printf("Usage: program filename\n");
   int readperson(person *p)
     return scanf("%[^t]\t%d\n", p->name, &p->temp) == 2;
   int main(int argc, char* argv[])
     if (argc != 2) {
       usage();
       return 1;
     person p;
     FILE *out = fopen(arqv[1], "w");
     if (!out) {
       perror("Can't open file");
       return 2;
     while (readperson(&p))
       fwrite(&p, sizeof(p), 1, out);
     return 0;
   }
```

```
#include <stdio.h>
 #include <stdlib.h>
 #include "person.h"
 /*
 Программа просматривает данные бинарного файла пациентов больницы
 и выводит имена и фамилии больных, температура которых меньше средней
 по лечебному учреждению
 */
void usage()
  printf("Usage: program filename\n");
int main(int argc, char* argv[])
  if (argc != 2) {
    usage();
    return 1;
  person p;
  FILE *in = fopen(argv[1], "r");
  if (!in) {
    perror("Can't open file");
     return 2;
   int temp sum = 0;
   int n = 0;
  while (fread(\&p, sizeof(p), 1, in) == 1) {
    temp sum += p.temp;
    ++n;
   fseek(in, 0, SEEK SET);
  if (n == 0) {
    printf("No people, average temperature is not defined\n");
     return 3;
  double avg = (double)temp sum / n;
  while (fread(\&p, sizeof(p), 1, in) == 1)
     if (p.temp < avq)</pre>
     printf("%s\n", p.name);
 return 0;
```

Литература к заданию VI

- 1. Кристиан К. Введение в операционную систему UNIX. –М.: Финансы и статистика, 1985.
- 2. Беляков И.Н., Рабовер Ю.И., Фридман А.Л. Мобильная операционная система: Справочник. –М.: Радио и связь, 1991.
- 3. Баурн С. Операционная система UNIX. –М.: Мир, 1986.
- 4. Зайцев В.Е. и др. СD-хрестоматия по курсу информатики. –М.: МАИ, 1997-2004.
- 5. Дейт К. Дж.. Введение в системы баз данных. М.: Наука, 1981.
- 6. Каймин В.А., Титов В.К., и др. Информатика. Учебное пособие и сборник задач с решениями (для школьников). М.: Бридж, 1994.

Вопросы для самостоятельного изучения к заданию VII курсового проекта

РАЗРЕЖЕННЫЕ МАТРИЦЫ

- 1. Представление массивов в памяти ЭВМ.
- 2. Адресация элементов массивов и ее использование для представления структур данных.
- 3. Передача параметров-массивов и параметров-записей.
- 4. Ошибки адресации массивов и их последствия при выполнении программ в операционных системах с защитой памяти и без неё.
- 5. Приемы обработки и ввода/вывода массивов на скалярных ЭВМ.
- 6. Представление обычных и вариантных записей (структур) в памяти ЭВМ.
- 7. Приемы обработки и ввода/вывода записей.
- 8. Разреженные матрицы. Их представление в памяти ЭВМ.
- 9. Особенности хранения в памяти ЭВМ треугольных, симметричных и квазидиагональных матриц.
- 10. Приемы хранения и обработки разреженных матриц на языке Си.

Задание VII. Разреженные матрицы.

Составить программу на языке Си с процедурами и/или функциями для обработки *прямоугольных* разреженных матриц с элементами целого (группы 6, 8), вещественного (группы 2-5), или комплексного (группы 1, 7) типов, которая:

- 1. вводит матрицы различного размера, представленные во входном текстовом файле в обычном формате (по строкам), с одновременным размещением ненулевых элементов в разреженной матрице в соответствии с заданной схемой;
- 2. печатает введенные матрицы во внутреннем представлении согласно заданной схеме размещения и в обычном (естественном) виде;
- 3. выполняет необходимые преобразования разреженных матриц (или вычисления над ними) путем обращения к соответствующим процедурам и/или функциям;
- 4. печатает результат преобразования (вычисления) согласно заданной схеме размещения и в обычном виде.

В процедурах и функциях предусмотреть проверки и печать сообщений в случаях ошибок в задании параметров. Для отладки использовать матрицы, содержащие 5–10% ненулевых элементов с максимальным числом элементов 100.

Вариант схемы размещения матрицы определяется по формуле ((N+3)%4)+1, где N — номер студента по списку в группе. Вариант преобразования определяется по формуле ((N-1)%11)+1. Вариант физического представления (1-1)%11+10 отображение на массив, (N-1)%11+10 отображение на массив, (N-1)%11+10 определяются по формуле (N-1)%11+10 отображение на динамические структуры) определяются по формуле (N-1)%11+10 отображение на динамические структуры) определяются по формуле (N-1)%11+10 отображение на динамические структуры индексы заменяются соответствующими ссылками.

Варианты схемы размещения матрицы: все матрицы $m \times n$ хранятся *по строкам*, в порядке возрастания индексов ненулевых элементов.

1. Цепочка ненулевых элементов в векторе A со строчным индексированием (индексы в массиве M равны 0, если соответствующая строка матрицы содержит только нули)

M:	в массиве А		ки Индекс начала 2-и строки	I	Стро	екс начала N-ои оки		
A:	Номер столбца		Индекс следующего ненулевого элемента этой строки (или 0)	-	ıбца		Индекс следующего ненулевого элемента этой строки (или 0)	

Индекс, равный нулю, означает отсутствие ненулевых элементов в строке (или в ее остатке).

Если матрицы не изменяются программой, возможна экономия памяти за счет отказа от хранения в массиве A индексов следующего элемента столбца (когда элементы идут подряд). Вставка и удаление при этом способе возможны, но чересчур дороги: число перестановок элементов составит O(N) вместо O(1).

2. Один вектор:

Ненулевому элементу соответствуют две ячейки: первая содержит номер столбца, вторая содержит значение элемента. Нуль в первой ячейке означает конец строки, а вторая ячейка содержит в этом случае номер следующей хранимой строки. Нули в обеих ячейках являются признаком конца перечня ненулевых элементов разреженной матрицы.

0	Номер строки	Номер столбца	Значение	Номер столбца	Значение		•••
•••							
0	Номер	Номер столбца	Значение			0	0