

planetmath.org

Math for the people, by the people.

proof that every group of prime order is cyclic

 ${\bf Canonical\ name} \quad {\bf ProofThat Every Group Of Prime Order Is Cyclic}$

Date of creation 2013-03-22 13:30:55 Last modified on 2013-03-22 13:30:55 Owner Wkbj79 (1863) Last modified by Wkbj79 (1863)

Numerical id 7

Author Wkbj79 (1863)

Entry type Proof Classification msc 20D99

 $Related\ topic \qquad Proof That GIn GImplies That Langle GRangle Le G$

The following is a proof that every group of prime order is cyclic.

Let p be a prime and G be a group such that |G|=p. Then G contains more than one element. Let $g\in G$ such that $g\neq e_G$. Then $\langle g\rangle$ contains more than one element. Since $\langle g\rangle\leq G$, by Lagrange's theorem, $|\langle g\rangle|$ divides p. Since $|\langle g\rangle|>1$ and $|\langle g\rangle|$ divides a prime, $|\langle g\rangle|=p=|G|$. Hence, $\langle g\rangle=G$. It follows that G is cyclic.