```
In [1]:
```

```
import pandas as pd
import numpy as np
from sklearn.linear_model import LogisticRegression
from sklearn.preprocessing import StandardScaler
```

In [2]:

```
1 df=pd.read_csv(r"C:\Users\HP\Downloads\ionosphere.csv")
2 df
```

Out[2]:

	atr1	atr2	atr3	atr4	atr5	atr6	atr7	atr8	atr9	atr10	 atr26	atr27	atr28	atr29	atr3(
0	1	0	0.99539	-0.05889	0.85243	0.02306	0.83398	-0.37708	1.00000	0.03760	 -0.51171	0.41078	-0.46168	0.21266	-0.34090
1	1	0	1.00000	-0.18829	0.93035	-0.36156	-0.10868	-0.93597	1.00000	-0.04549	 -0.26569	-0.20468	-0.18401	-0.19040	-0.1159(
2	1	0	1.00000	-0.03365	1.00000	0.00485	1.00000	-0.12062	0.88965	0.01198	 -0.40220	0.58984	-0.22145	0.43100	-0.1736
3	1	0	1.00000	-0.45161	1.00000	1.00000	0.71216	-1.00000	0.00000	0.00000	 0.90695	0.51613	1.00000	1.00000	-0.20099
4	1	0	1.00000	-0.02401	0.94140	0.06531	0.92106	-0.23255	0.77152	-0.16399	 -0.65158	0.13290	-0.53206	0.02431	-0.62197
346	1	0	0.83508	0.08298	0.73739	-0.14706	0.84349	-0.05567	0.90441	-0.04622	 -0.04202	0.83479	0.00123	1.00000	0.1281
347	1	0	0.95113	0.00419	0.95183	-0.02723	0.93438	-0.01920	0.94590	0.01606	 0.01361	0.93522	0.04925	0.93159	0.08168
348	1	0	0.94701	-0.00034	0.93207	-0.03227	0.95177	-0.03431	0.95584	0.02446	 0.03193	0.92489	0.02542	0.92120	0.02242
349	1	0	0.90608	-0.01657	0.98122	-0.01989	0.95691	-0.03646	0.85746	0.00110	 -0.02099	0.89147	-0.07760	0.82983	-0.17238
350	1	0	0.84710	0.13533	0.73638	-0.06151	0.87873	0.08260	0.88928	-0.09139	 -0.15114	0.81147	-0.04822	0.78207	-0.00700

In [3]:

351 rows × 35 columns

```
pd.set_option('display.max_rows',10000000000)
pd.set_option('display.max_columns',10000000000)
pd.set_option('display.width',95)
```

In [4]:

```
1 print('This DataFrame has %d Rows and %d Columns'%(df.shape))
```

This DataFrame has 351 Rows and 35 Columns

In [5]:

1 df.head()

Out[5]:

	atr1	atr2	atr3	atr4	atr5	atr6	atr7	atr8	atr9	atr10	atr11	atr12	atr13	atr14	atr15	at
0	1	0	0.99539	-0.05889	0.85243	0.02306	0.83398	-0.37708	1.00000	0.03760	0.85243	-0.17755	0.59755	-0.44945	0.60536	-0.38
1	1	0	1.00000	-0.18829	0.93035	-0.36156	-0.10868	-0.93597	1.00000	-0.04549	0.50874	-0.67743	0.34432	-0.69707	-0.51685	-0.97
2	1	0	1.00000	-0.03365	1.00000	0.00485	1.00000	-0.12062	0.88965	0.01198	0.73082	0.05346	0.85443	0.00827	0.54591	0.00
3	1	0	1.00000	-0.45161	1.00000	1.00000	0.71216	-1.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	-1.00000	0.14
4	1	0	1.00000	-0.02401	0.94140	0.06531	0.92106	-0.23255	0.77152	-0.16399	0.52798	-0.20275	0.56409	-0.00712	0.34395	-0.27
4.6																

In [21]:

```
1 features_matrix=df.iloc[:,0:34]
```

In [7]:

```
1 target_vector=df.iloc[:,-1]
```

In [8]:

```
print('The Features Matrix Has %d Rows AND %d Columns(s)'%(features_matrix.shape))
```

The Features Matrix Has 351 Rows AND 34 Columns(s)

```
In [9]:
  1 print('The Target Matrix Has %d Rows AND %d Column(s)'%(np.array(target_vector).reshape(-1,1).shape))
The Target Matrix Has 351 Rows AND 1 Column(s)
In [10]:
  1 features_matrix_Standardized=StandardScaler().fit_transform(features_matrix)
In [11]:
eight=None, random_state=None, solver='lbfgs', max_iter=100, multi_class='auto', verbose=0, warm_start=False, n_jobs=None, l1_ratio=None
In [12]:
  1 Logistic_Regression_model=algorithm.fit(features_matrix_Standardized,target_vector)
In [20]:
  1
     observation=[[1,0,0.99539,-0.085889,0.852429999999999,0.02306,0.8339799999999,-0.37708,1.0,0.0376,0.852429999999999,-
                   0.59755,-0.44945,0.60536,-0.38223,0.8435600000000001,-0.38542,0.58212,-0.32192,0.56971,-0.29674,0.36946,-0.4
  2
                   0.56811, -0.51171, 0.4107800000000003, -4616800000000003, 0.21260, -0.3409, 0.42267, -0.54487, 0.18641, -0.453]]
  3
In [17]:
    predictions=Logistic_Regression_model.predict(observation)
    print("The model predicted the observation to belong to class %s"%predictions)
The model predicted the observation to belong to class ['g']
In [18]:
  1 print('The algorithm was Trained to predict one of the Two Classes %s'%(algorithm.classes_))
The algorithm was Trained to predict one of the Two Classes ['b' 'g']
In [19]:
 stays The probability of the observation we passed Belonging to class['b']Is %s"""%(algorithm.predict_proba(observation)[0][0]
  2
 says The probability of the observation we passed Belonging to class['g']Is %s"""%(algorithm.predict_proba(observation)[0][1]
The Model says The probability of the observation we passed Belonging to class['b']Is 0.0
The Model says The probability of the observation we passed Belonging to class['g']Is 1.0
In [ ]:
```

1