Computergrafik

Vorlesung im Wintersemester 2020/21 Kapitel 6: Rasterisierung, Clipping und Projektionstransformationen

Prof. Dr.-Ing. Carsten Dachsbacher Lehrstuhl für Computergrafik Karlsruher Institut für Technologie

Literatur

NOTICE

Fundamentals of Computer Graphics,
 P. Shirley, S. Marschner, 3rd Edition, AK Peters
 → Kapitel 7 und 8

Bildsynthese

- Bildsynthese (engl. Rendering)
 - erzeugt ein Rasterbild aus einer Szenenbeschreibung (Objekte)
 - also: bestimme, welche Objekte die Farbe jedes Pixels beeinflussen
- ▶ Bildbasiert (Image-Order Rendering) → Raytracing
 - betrachte einen Pixel nach dem anderen
 - finde heraus, welches Primitiv an dieser Stelle sichtbar ist
 - bestimme die Pixelfarbe
- ▶ Objektbasiert (Object-Order Rendering) → Rasterisierung
 - betrachte ein Objekt/ein Primitiv/eine Fläche nach der anderen
 - finde heraus, welche Pixel das Primitiv bedeckt
 - bestimme die Pixelfarbe

Interaktive/Echtzeit-Computergrafik

- Rasterisierung ist Grundlage fast aller interaktiven CG-Anwendungen
 - Repräsentation von Oberflächen meist durch Dreiecke
 - Abbilden von Dreiecken auf 2D Bildschirmkoordinaten + Clipping
 - Rasterisierung der Dreiecke
 - Interpolation von Farben, Texturkoordinaten, Tiefenwert, etc. für jeden Pixel (an den Eckpunkten gegeben)

Interaktive/Echtzeit-Computergrafik

- Rasterisierung ist Grundlage fast aller interaktiven CG-Anwendungen
 - Repräsentation von Oberflächen meist durch Dreiecke
 - Abbilden von Dreiecken auf 2D Bildschirmkoordinaten + Clipping
 - Rasterisierung der Dreiecke
 - ▶ Interpolation von Farben, Texturkoordinaten, Tiefenwert, etc. für jeden Pixel (an den Eckpunkten gegeben)
 - Schattierungsberechnung
 - Verdeckungsberechnung durch Tiefentest

Inhalt

Grundlagen für Rasterisierungsverfahren (Basis von OpenGL, Direct3D, ...)

- Grundlegende Rasterisierungsansätze (in der Übung)
- Clipping von Linien und Polygonen (in der Übung)
 - \triangleright Cohen-Sutherland und α -Clipping
 - Sutherland-Hodgeman
- Sichtbarkeit und Tiefenpuffer (Z-Buffer)
- Projektive Abbildungen
 - Clipping in homogenen Koordinaten
 - perspektivische Interpolation

Rasterisierung von konvexen Polygonen/Dreiecken

- Scanline-Verfahren (links)
 - interpoliere links und rechte Kante(n)
 - und dazwischen zeilenweise
- Edge-based/Kanten-basiertes Verfahren (rechts)
 - Dreieckskanten aufstellen
 - Pixel im Dreieck liegen in der positiven Halbebene aller Kanten

Clipping

- Clipping: Abschneiden von Linien/Polygon-Teilen die außerhalb des Bildschirms liegen (oder allg. außerhalb eines gewünschten Bereichs)
- Clipping kann wichtig sein für die Effizienz: rasterisiere nichts außerhalb des sichtbaren Bereichs, keine Objekte hinter der Kamera (in 3D)
- Clipping ist unbedingt notwendig zur Vermeidung problematischer Fälle bei Projektionen (gleich mehr)

Beispiel: Clipping gegen eine Kante

- Eingabe: Liste der Vertices des Polygons
- Ausgabe: Liste von Vertices des resultierenden Polygons
- hier:
 - ightharpoonup Eingabe: P_1, P_2, P_3, P_4
 - \triangleright Ausgabe: S_1 , P_3 , P_4 , S_2

Clipping

- Clipping: Abschneiden von Linien/Polygon-Teilen die außerhalb des Bildschirms liegen (oder allg. außerhalb eines gewünschten Bereichs)
- Clipping kann wichtig sein für die Effizienz: rasterisiere nichts außerhalb des sichtbaren Bereichs, keine Objekte hinter der Kamera (in 3D)
- Clipping ist unbedingt notwendig zur Vermeidung problematischer Fälle bei Projektionen (gleich mehr)

Clipping in 3D

Clipping gegen ein konvexes Sichtvolumen

Rasterisierung und Sichtbarkeit

- Maler-Algorithmus Sortieren der Polygone funktioniert nicht immer
- außerdem benötigt die Sortierung Zugriff auf alle Polygone

- wichtig für effiziente Verarbeitung (v.a. in Hardware): Pipelining
 - Bearbeitung eines Dreiecks nach dem anderen
 - unabhängig von allen anderen Dreiecken

Tiefenpuffer, Z-Buffering

Idee, Prinzip

- bildbasierter Ansatz: speichere für jeden Pixel Distanz zur nahsten Fläche
- Entfernung-/Tiefen-Wert wird pro Vertex berechnet und interpoliert
- zusätzlich zum Farbpuffer gibt es dazu den Z-Buffer (16 bis 32 Bit/Pixel)

zum Vergleich: Sichtbarkeit exakt

Tiefenpuffer, Z-Buffering

NOTICE

Rasterisierung mit Tiefenpuffer

- Initialisierung
 - fülle Farbpuffer/Framebuffer mit Hintergrundfarbe
 - fülle Tiefenpuffer mit maximalem Tiefenwert ("Far-Plane", gleich mehr)
- Rasterisierung

```
// in beliebiger Reihenfolge
foreach Dreieck {
   foreach Pixel(x,y) im projizierten Dreieck {
      // Tiefe durch Interpolation
      z = z(x,y)

      // Tiefentest
      if ( z < z_buffer[x,y] ) {
            z_buffer[x,y] = z;
            framebuffer[x,y] = color(x,y);
      }
} }</pre>
```


Tiefenpuffer als
Graustufenbild dargestell 12

Tiefenpuffer, Z-Buffering

Nachteile (oder besser: was man einfach bedenken sollte)

- zusätzlicher Speicherbedarf und -bandbreite (heute nicht mehr kritisch)
- begrenzte Genauigkeit und z-Aliasing (wichtig!)
- transparente Flächen können nicht ohne Weiteres behandelt werden
- unnötiger Aufwand in Szenen mit hoher Tiefenkomplexität
 - ▶ Tiefenkomplexität = Anzahl der Schnitte entlang eines Primärstrahls mit den Oberflächen der Szene
 - unnötiger Aufwand, weil verdeckte Flächen rasterisiert werden (gilt gleichermaßen für Maler-Algorithmus)

Vorteile

- Dreiecke können in beliebiger Reihenfolge verarbeitet werden
- Z-Buffering ist Standard in allen Rasterisierern (inkl. Grafik-Hardware)
- für die meisten der obigen Probleme existieren heute spezielle Lösungen oder Rendering-Techniken

Koordinatensysteme in der CG

- …jetzt aber zurück zu den Transformationen…
- Objekte in einer Szene werden zur Modellierung (Beschreibung) in ihrem eigenen Objekt- oder Modell-Koordinatensystem angegeben
- die Platzierung der Objekte im Weltkoordinatensystem erfolgt dann durch Translation, Rotation, Skalierung etc.
- Transformation in das Kamerakoordinatensystem ist notwendig für Rasterisierung

Kameratransformation

virtuelle Kamera definiert durch

Kamera und Sichtpyramide

- Position e und (negative) Blickrichtung w
- ightharpoonup "Up-Vektor" **up** \Rightarrow **u** = **up** \times **w** und **v** = **w** \times **u**

Projektion

- wir betrachten nur zwei Arten von Projektionen
 - orthographische Kamera:
 parallele Sichtstrahlen
 (Anm. wir betrachten nur senkrechte
 Projektionen auf die Bildebene, es
 gibt auch schiefe Projektionen
 mit parallelen Sichtstrahlen)
 - perspektivische Kamera: Sichtstrahlen ausgehend von einem Projektionszentrum
- es geht um die Frage, wie unterschiedliche Projektionen in der Grafik-Pipeline einheitlich durchgeführt werden

(Noch mehr) Koordinatensysteme in der CG

Canonical Viewing Volume

Orthographische Kamera/Projektion

- übliche Konvention bei Rasterisierungs-APIs (in Kamerakoordinaten):
 - $\triangleright x$ -Achse zeigt nach rechts, y-Achse nach oben, Blick in neg. z-Richtung
- \triangleright das Sichtvolumen (View Frustum) ist ein Quader $[l;r] \times [b;t] \times [n;f]$
 - left l, right r, bottom b, top t, near n und far f
 - ightharpoonup Achtung: n > f (beide negativ)
- die Bildebene ist parallel zur xy-Ebene

Orthographische Projektion

- Nonvention: wir suchen nun die Abbildung, die das View Frustum $[l;r] \times [b;t] \times [n;f]$ auf den Einheitswürfel $[-1;1]^3$ abbildet
 - ightharpoonup l auf x = -1, r auf x = 1, b auf y = -1, n auf z = -1, ...
 - Ziel: z-Wert ("Tiefe") zur Sichtbarkeitsbestimmung verwenden

$$\mathbf{M}_{orth} = \begin{bmatrix} \frac{2}{r-l} & 0 & 0 & -\frac{r+l}{r-l} \\ 0 & \frac{2}{t-b} & 0 & -\frac{t+b}{t-b} \\ 0 & 0 & \frac{-2}{n-f} & \frac{n+f}{n-f} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

- diese Matrix bereitet nur vor (ist eine "Projektionstransformation"), die Projektion im eigentlichen Sinn ist das Weglassen der z-Komponente!
- die orthographische Projektionstransformation ist eine affine Abbildung

Perspektivische Projektion

 auch hier suchen wir eine Projektionstransformation, die das Sichtvolumen auf den Einheitswürfel [−1; 1]³ abbildet
 → einheitliche Behandlung unterschiedlicher Projektionen

- Nonvention in diesem Beispiel: Projektionszentrum liegt bei (0, -D) auf der negativen z-Achse, Blick in Richtung der positiven z-Achse
- ightharpoonup Projektion auf die Bildebene mit z=0

$$\frac{x'}{D} = \frac{x}{z+D} \Rightarrow x' = \frac{x}{\frac{Z}{D}+1} = {}^{"}{} {\begin{pmatrix} x_h \\ w_h \end{pmatrix}}$$

- \triangleright nach einer "herkömmlichen" Projektion wäre z'=0
 - wir berechnen z' analog zu x' mit $z' = \frac{z}{z_{/D}+1} = {z_h \choose W_h}$
 - ightharpoonup ... und heben z' als Tiefe für den späteren Z-Buffer-Test auf

- Nonvention in diesem Beispiel: Projektionszentrum liegt bei (0, -D) auf der negativen z-Achse, Blick in Richtung der positiven z-Achse
- \triangleright Projektion auf die Bildebene mit z=0

$$\frac{x'}{D} = \frac{x}{z+D} \Rightarrow x' = \frac{x}{\frac{Z}{D}+1} = {\binom{x_h}{w_h}}$$

- \triangleright nach einer "herkömmlichen" Projektion wäre z'=0
 - warum Tiefe $z' = \frac{z}{z_{/_D}+1}$ und nicht einfach z für Z-Buffering?
 - Genauigkeit bei der Repräsentation der Tiefenwerte
 - perspektivisch-korrekte Attributinterpolation

Betrachtung der Abbildung des Tiefenwerts

- ightharpoonup wie hängt z und $z' = \frac{z}{z_{/D}+1}$ zusammen?
 - \triangleright Scherung in w-Richtung (hier D=2) und anschließende Dehomogenisierung

$$\begin{pmatrix} x_h \\ z_h \\ w_h \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1/D & 1 \end{pmatrix} \begin{pmatrix} x \\ z \\ 1 \end{pmatrix}$$

A: vor der Kamera, z > 0

→ kleinerer, positiver Tiefenwert

B: vor der Kamera, aber $z < 0 \rightarrow$ Abbildung auf negative Werte

C: hinter der Kamera, $z < -D \rightarrow Abbildung auf positive Werte$

Kameraposition

 $ightarrow -\infty$

Betrachtung der Abbildung des Tiefenwerts

- Nicht-Linearität der z-Transformation
 - ightharpoonup wir möchten z' diskretisieren und für den Tiefentest verwenden, um herauszufinden welches Primitiv in einem Pixel vor welchem liegt
 - gut: höhere Genauigkeit für nahe Oberflächen, dafür wenig Präzision für entfernte Oberflächen (große Werte)
- ightharpoonup positive Werte für Objekte hinter der Kamera, gegen $-\infty$ für $z \to -D$
- Lösung: beschränke Tiefenbereich des View Frustum mit Near und Far (Clipping) Planes

wir suchen eine spezielle Projektion so, dass die Sichtpyramide auf den

Einheitswürfel $[-1;1]^3$ abgebildet wird, d.h. auch "near" auf -1 und "far" auf +1

nach der Projektionstransformation haben wir noch homogene Koordinaten!

- Dehomogenisieren danach nennt man "Normalisierungstransformation"
 - right sog. Normalized Device Coordinates, Bildschirmkoordinaten (x', y') erhalten wir danach durch Weglassen der Tiefe

▶ Projektionstransformation und anschließendes Dehomogenisieren (die Normalisierungstransformation) bilden zusammen das View Frustum auf den Einheitswürfel $[-1; 1]^3$ (in kartesischen Koordinaten) ab

- eine oft gebrauchte Konvention (z.B. auch bei OpenGL) ist
 - Kamera befindet sich im Ursprung
 - Blickrichtung entlang der negativen z-Achse
- wie viele Punkte bestimmen eindeutig die Projektionstransformation?

Bestimmung der Projektionsmatrix

- wie viele Punkte bestimmen eindeutig eine affine 3D-Transformation?
 - \triangleright 3 × 4 Einträge einer 4 × 4 Matrix (linearer Teil und Translation)
 - 12 Unbekannte, also 4 Punkte in 3D

- \triangleright eine Projektion in 3D ist definiert durch die Abb. von 5 Punkten im \mathbb{R}^3
 - \triangleright 4 \times 4 Matrix, aber homogene Koordinaten sind skalierungsinvariant
 - \triangleright 5 × 3 = 4 × 4 1 Elemente
- \triangleright Projektion in 2D: $3 \times 3 1 = 8$ Elemente, also 4 Punkte im \mathbb{R}^2

Bestimmung der Projektionsmatrix (in 2D)

2D Projektionstransformation: $3 \times 3 - 1$ Unbekannte

- betrachte Abbildung von 4 Punkten in 2D (Faktoren k_i wg. homogenen Koordinaten)
 - ▶ Kameraposition nach —∞

$$\mathbf{M} \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}_h = k_1 \begin{pmatrix} 0 \\ -1 \\ 0 \end{pmatrix}_h$$

x-Richtung beibehalten

$$\mathbf{M} \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}_h = k_2 \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}_h$$

Bestimmung der Projektionsmatrix (in 2D)

- \triangleright ergibt 12 Gleichungen für 12 Unbekannte: $3 \times 3 1 + 4$ (für k_1, \dots, k_4)
 - Ergebnis in diesem Beispiel:

$$\mathbf{M_{2D}} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \frac{f+n}{f-n} & \frac{-2fn}{f-n} \\ 0 & 1 & 0 \end{pmatrix}$$

Projektionstransformation in 3D (mit beliebig asymmetrischem Frustum)

$$\mathbf{M_{3D}} = \begin{bmatrix} \frac{2n}{r-l} & 0 & \frac{r+l}{r-l} & 0\\ 0 & \frac{2n}{t-b} & \frac{t+b}{t-b} & 0\\ 0 & 0 & \frac{n+f}{n-f} & \frac{-2fn}{n-f}\\ 0 & 0 & -1 & 0 \end{bmatrix}$$

http://www.songho.ca/opengl/gl_projectionmatrix.html http://www.scratchapixel.com/lessons/3d-basicrendering/perspective-and-orthographic-projection-matrix/

Normalisierungstransformation und Clipping

betrachten wir nochmals die Abbildung der Tiefe...

Normalisierungstransformation und Clipping

Abbildung der Tiefe bereitet beim Clipping Schwierigkeiten

Normalisierungstransformation und Clipping

Abbildung der Tiefe bereitet beim Clipping Schwierigkeiten

Clipping und Projektionen

- Clipping in kartesischen Koordinaten nach der Normalisierungstransformation ist falsch: Ambiguitäten und falsche Liniensegmente
- ► nach der Dehomogenisierung (x' = x/w) müssten Tiefenwerte von Liniensegmenten betrachtet werden, um problematische Fälle zu erkennen
- \triangleright es kann auch passieren, dass w=-z=0 ist \rightarrow Division durch 0?
- aber wie würde Clipping für ein Polygon funktionieren?

Normalisierungstransformation und Clipping

Abbildung der Tiefe bereitet beim Clipping Schwierigkeiten

Clipping und Projektionen

- Option 1: Clipping gegen das Frustum in Welt- oder Kamerakoordinaten vor der Projektionstransformation
 - stelle 6 Ebenengleichungen auf (geht direkt aus Projektionsmatrix)
 - ▶ konvexer Körper → Clipping wie bisher/wie in der Übung
 - funktioniert, aber es geht effizienter!

Clipping in homogenen Koordinaten

- Option 2: Clipping in homogenen Clip-Koordinaten
 - nach der Projektionstransformation, aber vor dem Dehomogenisieren

- Für alle Punkte auf der grünen Seite gilt nach dem Dehomogenisieren (also in NDC): x' = x/w = 1
- \triangleright vor dem Dehomogenisieren gilt: x = w
- erlaubt alle Transformationen (Modell, Kamera, Projektion) in einer Matrix zusammenzufassen

Perspektivische Projektion in 2D

Normalisierungstransformation und Clipping

Clipping geg. alle Seiten vor Normalisierungstrafo löst Mehrdeutigkeiten

Clipping in homogenen Koordinaten

- Option 2: Clipping in homogenen Clip-Koordinaten
 - nach der Projektionstransformation, aber vor dem Dehomogenisieren
- Vorgehen (so macht man es!):
 - Projektionstransformation
 - Clipping in homogenen Koordinaten
 - ▶ dann perspektivische Division durch w
 → ergibt Normalized Device Coords.
 (Einheitswürfel)
 - ▶ dann Projektion auf Bildschirmkoordinaten und Viewport-Transformation (Abb. von $x, y \in [-1; 1]$ auf Bildschirmauflösung Breite × Höhe)

NDC-To-Viewport Transformation

- der Viewport ist der rechteckige Bereich in dem das Bild dargestellt wird
- projizierte Koordinaten (x', y') durch Weglassen der Tiefe (= orthographische Projektion)

- $\triangleright (x', y')$ liegen im Bereich $[-1; 1]^2$ und wir benötigen Pixelkoordinaten
- be deshalb verwendet man die Viewport-Transformation, die NDC auf den Bildbereich $[x; x + width] \times [y; y + height]$ abbildet:

$$x_w = \frac{1}{2}(x'+1) \cdot width + x$$
 bzw. $y_w = \frac{1}{2}(y'+1) \cdot height + y$

Koordinatensysteme in der CG

- lineare Interpolation im Bildraum bei der Interpolation von Texturkoordinaten, Farben, Normalen etc. führt zu Verzerrungen bei perspektivischen Abbildungen
 - lineare Interpolation = baryzentrische Koordinaten im Bildraum
 - ▶ lineare Interpolation (bzw. linearer Teil der affinen Interpol.) ändert Längenverhältnisse nicht, perspektivische Projektionen aber schon!

- lineare Interpolation im Bildraum führt zu Verzerrungen
 - ▶ lineare Interpolation (bzw. linearer Teil der affinen Interpol.) ändert Längenverhältnisse nicht, perspektivische Projektionen aber schon!
 - am deutlichsten sichtbar bei Textur(koordinaten)
- Bsp.: perspektivisch-korrekte Interpolation (rechts) und Interpolation im Bildraum (links), das Quadrat besteht aus 2 Dreiecken

Veranschaulichung in 2D:

- ightharpoonup Bildebene bei z=1 (obdA)
- Ineare Interpolation entlang der Kante $\overline{\mathbf{v_1}\mathbf{v_2}}$ mit $\mathbf{v_1} = (x_1, z_1)$ und $\mathbf{v_2} = (x_2, z_2)$ im Bildraum:

$$\mathbf{p_{Bild}}(t) = \mathbf{p_1} + t(\mathbf{p_2} - \mathbf{p_1}) = \frac{x_1}{z_1} + t\left(\frac{x_2}{z_2} - \frac{x_1}{z_1}\right)$$

Veranschaulichung in 2D:

 \triangleright lineare Interpolation entlang der Kante $\overline{\mathbf{v_1}\mathbf{v_2}}$ vor der Projektion:

im Allgemeinen gilt natürlich

$$\frac{x_1}{z_1} + t\left(\frac{x_2}{z_2} - \frac{x_1}{z_1}\right) = \mathbf{p_{Bild}}(t) \neq \mathbf{p_{Persp}}(t) = \frac{x_1 + t(x_2 - x_1)}{z_1 + t(z_2 - z_1)}$$

▶ wenn dies nicht für Punkte auf der Kante gilt, dann auch nicht für Attribute (Anm. affine Abbildung Punkt ↔ Attribut)

Affine Abbildung von Texturraum ↔ Objektraum

- die Texturkoordinaten der Vertices repräsentieren die Texturparametrisierung eines Dreiecks
- Zusammenhang zwischen Orts- und Texturkoordinaten lässt sich als eindeutige affine Abbildung beschreiben:

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix} \begin{pmatrix} s \\ t \\ 1 \end{pmatrix}$$

Beispiel: Texturkoordinaten (baryzentrische Interpolation = ParallelKoSys)

- beim Rasterisieren finden wir alle Pixel, die das Dreieck bedeckt
 - wir berechnen zunächst zu jedem Pixel (Punkt auf der Bildebene) die Position in Kamerakoordinaten vor der Projektion (nur mal so, um herauszufinden was wir eigentl. interpolieren sollten!)
- ightharpoonup ab hier weisen wir Punkten ${f v}$, noch eine Texturkoordinate s zu

Gesucht: Zusammenhang zwischen x' und z

- Für einen Punkt \mathbf{v} gilt $\frac{x}{z} = \frac{x'}{d}$ bzw. hier bestimmen wir die Kameraposition x für eine Pixelposition x' mit: $x = x' \cdot z$
- ightharpoonup zweite Möglichkeit x in Abhängigkeit von z zu beschreiben: in Kamerakoordinaten lassen sich A,B so bestimmen, dass gilt x=Az+B

- ▶ Kamerakoordinaten für eine Pixelposition: $x = x' \cdot z$ (1)
- \triangleright in Kamerakoordinaten gilt: x = Az + B (2)
- \triangleright setzt man (1)=(2), so erkennt man Zusammenhang zwischen x' und z
- ... und damit, wie man Tiefe z bei der Rasterisierung interpoliert?
 - Abstand der Fläche zur Kamera für jeden Pixel (Tiefenpuffer)
 - \triangleright berechnen der Kamerakoord. $x = x' \cdot z$ (und daraus die Attribute)

- ightharpoonup Kamerakoordinaten für eine Pixelposition: $x = x' \cdot z$
- \triangleright in Kamerakoordinaten gilt: x = Az + B

$$\Rightarrow x' \cdot z = Az + B \iff z = \frac{B}{x' - A}$$

ightharpoonup offensichtlich ist z nicht linear in x', d.h. eine lineare Interpolation im Bildraum ist falsch!

Und jetzt der Trick...

$$\triangleright x' \cdot z = Az + B \iff z = \frac{B}{x' - A}$$

- ightharpoonup aber: $\frac{1}{z} = \frac{1}{B}x' \frac{A}{B}$
- \Rightarrow man darf $^1/_z$ linear im Bildraum interpolieren und erhält x mit $x = \frac{x'}{^1/_z}$

- \Rightarrow man darf $^1/_Z$ linear im Bildraum interpolieren und erhält x mit $x = \frac{x'}{^1/_Z}$
- \triangleright die Attribute könnten dann über baryzentrische Koordinaten interpoliert werden (berechnet mittels x bzgl. der Vertices in Kamerakoord.)
- be ebenso darf man gleich s/z, t/z, ... (berechnet an den Vertices) im Bildraum interpolieren und erhält durch Division mit dem interpolierten 1/z direkt die perspektivisch-korrekt interpolierten Attribute

Perspektivisch-korrekte Interpolation und homogene Koordinaten

- \triangleright zur Erinnerung: die 3D-Projektionsmatrix erzeugt " $w = \pm z$ "
- ▶ lineare Interpolation von S/W, t/W und 1/W
- \triangleright pro Pixel: Division s/w durch 1/w, ...

"Fallstudie" Quake (1996, Intel Pentium)

Rasterisierung vs. Raytracing

Rasterisierung

- sehr effizient, Hardware-Umsetzung ist einfach
- nur für "Primärstrahlen": globale Effekte (Schatten, Spiegelungen, indirektes Licht, etc.) nur über spezielle Techniken oder Raytracing
- Handhabung komplexer Szenen durch räumliche Datenstrukturen
 - > i.W. Entfernen von nicht-sichtbaren und verdeckten Szenenteilen
- spezielle Techniken, z.B. zur Einschränkung der Schattierungsberechnung auf sichtbare Flächen
- Anwendung: Echtzeit-Rendering

Raytracing

- konzeptionell einfaches Verfahren
- Sekundärstrahlen, komplexe Beleuchtungseffekte sind einfach
- Handhabung komplexer Szenen durch räumliche Datenstrukturen
- früher: nur Offline-Rendering, zunehmend interaktives Rendering bzw. ausgewählte Teile im Echtzeit-Rendering