IEEE JOURNAL OF

SOLID-STATE CIRCUITS

A PUBLICATION OF THE IEEE SOLID-STATE CIRCUITS SOCIETY

JANUARY 2018 VOLUME 53 NUMBER 1 IJSCBC (ISSN 0018-9200)

CDECTAT	TOOTIE		AA4= TEEE	TATESTA TAREAUTA	COLTE CELEBR	OTD OTTER	CONTENDENTO
SPECIAL	. ISSUE (ON THE	2017 LEEE	INTERNATIONAL.	SOLID-STATE	CIRCUITS	CONFERENCE

Introduction to the January Special Issue on the 2017 IEEE International Solid-State Circuits Conference	3
DIGITAL CIRCUIT TECHNIQUES	
A Digitally Controlled Fully Integrated Voltage Regulator With On-Die Solenoid Inductor With Planar Magnetic Core in 14-nm Tri-Gate CMOS	
P. Kumar, R. Jain, S. Weng, S. T. Kim, G. E. Matthew, N. Desai, X. Liu, K. Ravichandran, J. W. Tschanz, and V. De	8
An Analog-Assisted Tri-Loop Digital Low-Dropout Regulator M. Huang, Y. Lu, SP. U, and R. P. Martins	20
A Successive Approximation Recursive Digital Low-Dropout Voltage Regulator With PD Compensation and Sub-LSB	
Duty Control	35
A Noise Reconfigurable All-Digital Phase-Locked Loop Using a Switched Capacitor-Based Frequency-Locked Loop	
and a Noise Detector	50
DIGITAL ARCHITECTURES AND SYSTEMS	
A Low-Power Speech Recognizer and Voice Activity Detector Using Deep Neural Networks	
	66
A 1920 × 1080 30-frames/s 2.3 TOPS/W Stereo-Depth Processor for Energy-Efficient Autonomous Navigation of Micro Aerial Vehicles	
Q. Dong, M. Saligane, B. Kempke, L. Gong, Z. Zhang, R. Dreslinski, D. Sylvester, D. Blaauw, and HS. Kim	76
The 24-Core POWER9 Processor With Adaptive Clocking, 25-Gb/s Accelerator Links, and 16-Gb/s PCIe Gen4 C. Gonzalez, M. Floyd, E. Fluhr, P. Restle,	
D. Dreps, M. Sperling, R. Rao, D. Hogenmiller, C. Vezyrtis, P. Chuang, D. Lewis, R. Escobar, V. Ramadurai,	
R. Kruse, J. Pille, R. Nett, P. Owczarczyk, J. Friedrich, J. Paredes, T. Diemoz, S. Islam, D. Plass, and P. Muench	91
Zen: An Energy-Efficient High-Performance ×86 Core	
S. Rangarajan, D. John, C. Henrion, R. Schreiber, M. Rodriguez, S. Kosonocky, S. Naffziger, and A. Novak	102
A Low-Power Convolutional Neural Network Face Recognition Processor and a CIS Integrated With Always-on Face	
Detector K. Bong, S. Choi, C. Kim, D. Han, and HJ. Yoo	115

(Contents Continued on Back Cover)

MEMORY	
A 512-Gb 3-b/Cell 64-Stacked WL 3-D-NAND Flash Memory	
DH. Kim, W. Jeong, HJ. Kim, I. H. Park, HW. Park, J. Lee, J. Park, YL. Ahn, J. Y. Lee,	
SB. Kim, H. Yoon, J. D. Yu, N. Choi, N. Kim, H. Jang, J. Park, S. Song, Y. Park, J. Bang, S. Hong,	
	124
Y. Choi, MS. Kim, H. Kim, P. Kwak, JD. Ihm, D. S. Byeon, JY. Lee, KT. Park, and KH. Kyung	124
An 8-Gb 12-Gb/s/pin GDDR5X DRAM for Cost-Effective High-Performance Applications	
M. Balakrishnan, M. Broschwitz, C. Chetreanu, S. Dietrich, F. Funfrock, M. A. Gonzalez, T. Hein, E. Huber,	
D. Lauber, M. Ivanov, M. Kuzmenka, C. N. Mohr, J. O. Garrido, S. Padaraju, S. Piatkowski, J. Pottgiesser, P. Pfefferl,	
M. Plan, J. Polney, S. Rau, M. Richter, R. Schneider, R. O. Seitter, W. Spirkl, M. Walter, J. Weller, and F. Vitale	134
A Time-Based Receiver With 2-Tap Decision Feedback Equalizer for Single-Ended Mobile DRAM Interface	
IM. Yi, MK. Chae, SH. Hyun, SJ. Bae, JH. Choi, SJ. Jang, B. Kim, JY. Sim, and HJ. Park	144
1.4Gsearch/s 2-Mb/mm ² TCAM Using Two-Phase-Pre-Charge ML Sensing and Power-Grid Pre-Conditioning to	
Reduce Ldi/dt Power-Supply Noise by 50%	
I. Arsovski, A. Patil, R. M. Houle, M. T. Fragano, R. Rodriguez, R. Kim, and V. Butler	155
IMAGERS, MEMS, MEDICAL AND DISPLAYS	
A Resistor-Based Temperature Sensor With a 0.13 pJ·K ² Resolution FoM	
S. Pan, Y. Luo, S. H. Shalmany, and K. A. A. Makinwa	164
A 27 µW 0.06 mm ² Background Resonance Frequency Tuning Circuit Based on Noise Observation for a 1.71 mW	10.
CT-ΔΣ MEMS Gyroscope Readout System With 0.9 °/h Bias Instability	174
	174
A 3.9-kHz Frame Rate and 61.0-dB SNR Analog Front-End IC With 6-bit Pressure and Tilt Angle Expressions of	
Active Stylus Using Multiple-Frequency Driving Method for Capacitive Touch Screen Panels	
JS. An, SH. Han, J. E. Kim, DH. Yoon,	
YH. Kim, HH. Hong, JH. Ye, SJ. Jung, SH. Lee, JY. Jeong, KH. Baek, SK. Hong, and OK. Kwon	187
A 1.8-V 6.9-mW 120-fps 50-Channel Capacitive Touch Readout With Current Conveyor AFE and Current-Driven	
$\Delta\Sigma$ ADC H. Hwang, H. Lee, M. Han, H. Kim, and Y. Chae	204
A $1.8e_{rms}^{-}$ Temporal Noise Over 110-dB-Dynamic Range 3.4 μm Pixel Pitch Global-Shutter CMOS Image Sensor	
With Dual-Gain Amplifiers SS-ADC, Light Guide Structure, and Multiple-Accumulation Shutter	
M. Kobayashi, Y. Onuki, K. Kawabata, H. Sekine, T. Tsuboi,	
T. Muto, T. Akiyama, Y. Matsuno, H. Takahashi, T. Koizumi, K. Sakurai, H. Yuzurihara, S. Inoue, and T. Ichikawa	219
A 2.1-Mpixel Organic Film-Stacked RGB-IR Image Sensor With Electrically Controllable IR Sensitivity	
S. Machida, S. Shishido, T. Tokuhara,	
M. Yanagida, T. Yamada, M. Izuchi, Y. Sato, Y. Miyake, M. Nakata, M. Murakami, M. Harada, and Y. Inoue	229
TECHNOLOGY DIRECTIONS	
An Actively Detuned Wireless Power Receiver With Public Key Cryptographic Authentication and Dynamic Power	
Allocation	236
A Tri-Slope Gate Driving GaN DC–DC Converter With Spurious Noise Compression and Ringing Suppression for	230
Automotive Applications	247
Always-On 12-nW Acoustic Sensing and Object Recognition Microsystem for Unattended Ground Sensor Nodes	247
	261
S. Jeong, Y. Chen, T. Jang, J. ML. Tsai, D. Blaauw, HS. Kim, and D. Sylvester	261
A Monolithically Integrated Large-Scale Optical Phased Array in Silicon-on-Insulator CMOS	275
S. Chung, H. Abediasl, and H. Hashemi	275
An Architecture for Large-Area Sensor Acquisition Using Frequency-Hopping ZnO TFT DCOs	205
Y. Afsar, T. Moy, N. Brady, S. Wagner, J. C. Sturm, and N. Verma	297
Cryo-CMOS Circuits and Systems for Quantum Computing Applications	
L. Song, M. Shahmohammadi, R. B. Staszewski, A. Vladimirescu, M. Babaie, F. Sebastiano, and E. Charbon	309