ADVANCED ENCRYPTION STANDARD (AES)

Conf.univ.dr. Ana Cristina Dăscălescu Conf.univ.dr. Radu Boriga

- ➢ În ianuarie 1997, NIST a organizat un concurs de criptografie deschis cercetătorilor din întreaga lume, având ca subiect crearea unui nou standard, care să înlocuiască DES.
- > Regulile concursului erau:
 - algoritmul să fie un cifru bloc simetric
 - algoritmul trebuia să suporte chei de 128, 192 și 256 biţi
 - algoritmul trebuia să se poată implementa atât hardware,
 cât şi software
 - algoritmul trebuia să fie un standard public sau oferit cu licenţă nediscriminatorie

- În august 1998 NIST a selectat cinci finalişti pe criterii de securitate, eficienţă, flexibilitate şi cerinţe de memorie.
- > Finaliştii au fost:
 - Rijndael (Joan Daemen şi Vincent Rijmen 86 de voturi)
 - Serpent (Ross Anderson, Eli Biham, Lars Knudsen 56 voturi)
 - Twofish (echipa condusă de Bruce Schneier 31 voturi)
 - RC6 (RSA Laboratories 23 voturi)
 - MARS (IBM 13 voturi)
- ightharpoonup **Rijndael** se bazează pe teoria câmpului Galois, octeții fiind reprezentați ca elemente în câmpul finit extins $GF(2^8)$.

SISTEMUL DE CRIPTARE AES — PRELIMINARII MATEMATICE

- Pentru reprezentarea câmpului finit $GF(2^8)$ se poate alege reprezentarea clasică polinomială, cu impact pozitiv asupra complexității implementării.
- ightharpoonup Octetul b, format din biţii $b_7b_6b_5b_4b_3b_2b_1b_0$ şi scris sub forma hexazecimală, este considerat ca fiind un polinom de gradul 7 având coeficienţii egali cu 0 sau 1:

$$f(x) = b_7 x^7 + b_6 x^6 + b_5 x^5 + b_4 x^4 + b_3 x^3 + b_2 x^2 + b_1 x + b_0$$

SISTEMUL DE CRIPTARE AES — PRELIMINARII MATEMATICE

- Operaţia de adunare este definită ca suma a două polinoame în care coeficienţii se adună modulo 2 şi corespunde aplicării operatorului XOR asupra celor doi octeţi corespondenţi.
- ➤ Operaţia de înmulţire corespunde produsului a două polinoame modulo un polinom ireductibil *f* de grad 8, care pentru AES este:

$$f(X) = 1 + X + X^3 + X^4 + X^8$$

SISTEMUL DE CRIPTARE AES — PRELIMINARII MATEMATICE

Câmpul GF(28) definit de polinomul

$$f(X) = 1 + X + X^3 + X^4 + X^8$$

reprezintă mulțimea polinoamelor din clasa de resturi f(X).

> Exemplu:

$$\{57\} = \{01010111\} = X^6 + X^4 + X^2 + X + 1$$

$$\{83\} = \{10000011\} = X^7 + X + 1$$

$$\{57\} \bullet \{83\} = (X^{13} + X^{11} + X^9 + X^8 + X^6 + X^5 + X^4 + X^3 + 1)$$

$$mod (X^8 + X^4 + X^3 + X + 1) = X^7 + X^6 + 1 = \{11000001\}$$

$$\{57\} \bullet \{83\} = \{110000001\} = \{C1\}$$

- > În proiectarea AES s-a ţinut cont de trei criterii:
 - rezistenţa împotriva tuturor atacurilor cunoscute;
 - viteza mare pe un mare număr de platforme (aproximativ 40-50 MB/s);
 - simplicitatea proiectării.
- > AES foloseşte substituţii şi permutări!
- ➤ Toate operaţiile sunt la nivel de octet, pentru a permite implementări eficiente hardware şi software.

Lungimea cheii (biţi)	Numărul de runde
128	10
192	12
256	14

- ➤ Vectorul de stare se iniţializează cu blocul de 128/192/256 biţi din textul clar în ordinea coloanelor, având 4 linii şi 4/6/8 coloane.
- O cheie de criptare se va reprezenta în mod similar.
- ➤ O stare pentru un bloc de 128 biţi şi o cheie tot de 128 biţi sunt structurate astfel:

A_0	A_4	A_8	A_{12}
A_1	A_5	A_9	A_{13}
A_2	A_6	A_{10}	A_{14}
$\overline{A_3}$	\overline{A}_7	A_{11}	\overline{A}_{15}

k_0	<i>k</i> ₄	<i>k</i> ₈	<i>k</i> ₁₂
k_1	<i>k</i> ₅	<i>k</i> 9	<i>k</i> ₁₃
k_2	<i>k</i> ₆	k_{10}	<i>k</i> ₁₄
k_3	<i>k</i> ₇	\overline{k}_{11}	<i>k</i> ₁₅

Fiecare rundă are la intrare o stare și folosește o cheie de rundă.

In afara rundei finale, fiecare rundă este formată din 4 transformări.

STRUCTURA UNEI RUNDE

> Transformarea SubBytes(stare)

										y							
		0	1	2	3	4	5	6	7	8	9	A	В	C	D	E	F
	0	63	7C	77	7B	F2	6B	6F	C5	30	01	67	2B	FE	D7	AB	76
	1	CA	82	C9	7D	FA	59	47	F0	AD	D4	A2	AF	9C	A4	72	C0
	2	B7	FD	93	26	36	3F	F7	CC	34	A5	E5	F1	71	D8	31	15
	3	04	C7	23	C3	18	96	05	9A	07	12	80	E2	EB	27	B2	75
	4	09	83	2C	1 A	1B	6E	5A	A0	52	3B	D6	B3	29	E3	2F	84
	5	53	D1	00	ED	20	FC	B1	5B	6A	CB	BE	39	4A	4C	58	CF
	6	D0	EF	AA	FB	43	4D	33	85	45	F9	02	7F	50	3C	9F	A 8
	7	51	A3	40	8F	92	9D	38	F5	BC	B6	DA	21	10	FF	F3	D2
\mathcal{X}	8	CD	0C	13	EC	5F	97	44	17	C4	A7	7E	3D	64	5D	19	73
	9	60	81	4F	DC	22	2A	90	88	46	EE	B8	14	DE	5E	0B	DB
	A	E0	32	3A	0A	49	06	24	5C	C2	D3	AC	62	91	95	E4	79
	В	E7	C8	37	6D	8D	D5	4E	A9	6C	56	F4	EA	65	7A	ΑE	08
	\mathbf{C}	BA	78	25	2E	1C	A6	B4	C6	E8	DD	74	1F	4B	BD	8B	8A
	D	70	3E	B5	66	48	03	F6	0E	61	35	57	B9	86	C1	1D	9E
	E	E1	F8	98	11		D9		94	9B	1E	87	E9	CE	55	28	DF
	F	8C	A1	89	0D	BF	E6	42	68	41	99	2D	0F	B0	54	BB	16

Transformarea este o substituție neliniară care operează pe octeți. Tabela de substituție (S-box) este o matrice inversabilă formată din compunerea a două transformări:

- 1. Fiecare octet $b \neq 0$ este înlocuit cu inversul său $b^{-1} \in GF(2^8)$
- 2. Rezultatul este modificat printr-o transformare afină peste Z_2

> Transformarea ShiftRows(stare)

 Liniile stării curente sunt rotite circular spre stânga cu 0, 1, 2 și 3 poziții.

B_0	B_4	B_8	B_{12}
B_1	B_5	B_9	B_{13}
B_2	B_6	B_{10}	B_{14}
B_3	\overline{B}_7	B_{11}	B_{15}

B_0	B_4	B_8	B_{12}
B_5	B_9	B_{13}	B_1
B_{10}	B_{14}	B_2	B_6
B_{15}	B_3	B_7	B_{11}

> Transformarea MixColumns(stare)

• Fiecare coloană a stării este privită ca un polinom de gradul 3 cu coeficienți în $GF(2^8)$, fiind apoi înmulțită cu polinomul $c(X) = \{03\}X^3 + \{01\}X^2 + \{01\}X + \{02\}$

în algebra polinoamelor modulo $X^4 + 1$.

O formă alternativă a operației MixColumns este:

$$\begin{pmatrix} C_0 \\ C_1 \\ C_2 \\ C_3 \end{pmatrix} = \begin{pmatrix} 02 & 03 & 01 & 01 \\ 01 & 02 & 03 & 01 \\ 01 & 01 & 02 & 03 \\ 03 & 01 & 01 & 02 \end{pmatrix} \begin{pmatrix} B_0 \\ B_5 \\ B_{10} \\ B_{15} \end{pmatrix}$$

- > Transformarea AddRoundKey(stare,cheie de rundă)
 - Se aplică operația XOR între starea curentă și cheia de rundă.
 - Cheia de rundă are lungime egală cu cea a cheii de criptare.

Generarea cheilor de rundă

- Cheile de rundă sunt derivate din cheia de criptare.
- Numărul cheilor de rundă este mai mare cu 1 decât numărul de runde.
- Generarea cheilor de rundă se realizează la nivel de cuvânt, adică grupuri de 4 octeți.
- Cheile de rundă sunt un alt element de neliniaritate al AES-ului și îi atenuează simetria.

> Performanțe AES

Round		Number of bits that differ	
	0123456789abcdeffedcba9876543210	1	
	0023456789abcdeffedcba9876543210	1	
0	0e3634aece7225b6f26b174ed92b5588	1	
U	0f3634aece7225b6f26b174ed92b5588	1	
	657470750fc7ff3fc0e8e8ca4dd02a9c	20	
1	c4a9ad090fc7ff3fc0e8e8ca4dd02a9c	20	
	5c7bb49a6b72349b05a2317ff46d1294		
2	fe2ae569f7ee8bb8c1f5a2bb37ef53d5	58	
	7115262448dc747e5cdac7227da9bd9c		
3	ec093dfb7c45343d689017507d485e62	59	
4	f867aee8b437a5210c24c1974cffeabc		
	43efdb697244df808e8d9364ee0ae6f5	61	
	721eb200ba06206dcbd4bce704fa654e		
5	7b28a5d5ed643287e006c099bb375302	68	
	0ad9d85689f9f77bc1c5f71185e5fb14	22	
6	3bc2d8b6798d8ac4fe36a1d891ac181a	64	
	db18a8ffa16d30d5f88b08d777ba4eaa		
7	9fb8b5452023c70280e5c4bb9e555a4b	67	
	f91b4fbfe934c9bf8f2f85812b084989		
8	20264e1126b219aef7feb3f9b2d6de40	65	
	cca104a13e678500ff59025f3bafaa34		
9	b56a0341b2290ba7dfdfbddcd8578205	61	
••	ff0b844a0853bf7c6934ab4364148fb9		
10	612b89398d0600cde116227ce72433f0	58	

>Avantaje AES

- AES se poate implementa pe un dispozitiv Smart Card, folosind un spaţiu redus de memorie RAM şi un număr redus de cicluri.
- Transformarea din cadrul unei runde este paralelă prin proiectare, ceea ce constituie un avantaj pentru viitoarele procesoare.
- AES nu folosește componente criptografice externe, cum ar fi cutii de substituție sau biţi aleatori.
- AES nu foloseşte operaţiuni aritmetice, ci doar operaţii la nivel de şiruri de biţi.

> Criptanaliza AES

• Forța brută

 Cheia secretă poate avea lungimi de 128, 192 sau 256 de biți, deci un atac de tip forță brută nu poate fi efectuat într-un timp util!

Criptanaliză

 Singurul atac criptanalitic cunoscut (atacul bipartit) nu pune în pericol securitatea AES, deoarece complexitatea sa este 2^{126.1}/ 2^{189.7}/2^{254.4}.

Atacuri de tip side-channel

- Se bazează pe deficiențele de implementare ale unui algoritm de criptare.
- Au fost publicate mai multe atacuri de acest tip, dar majoritatea sunt greu de aplicat în practică.