Neural Networks

Artificial Neural Network

"If you want to make information stick, it's best to learn it, go away from it for a while, come back to it later, leave it behind again, and once again return to it - to engage with it deeply across time. Our memories naturally degrade, but each time you return to a memory, you reactivate its neural network and help to lock it in."

Joshua Foer

Bab ini membahas salah satu algoritma machine learning yang sedang populer belakangan ini, yaitu artificial neural network. Pembahasan dimulai dari hal-hal sederhana sampai yang lebih kompleks. Bab ini lebih berfokus pada penggunaan artifical neural network untuk supervised learning.

9.1 Definisi

Masih ingatkah Anda materi pada bab-bab sebelumnya? Machine learning sebenarnya meniru bagaimana proses manusia belajar. Pada bagian ini, peneliti ingin meniru proses belajar tersebut dengan mensimulasikan jaringan saraf biologis (neural network) [36, 37, 38, 39]. Kami yakin banyak yang sudah tidak asing dengan istilah ini, berhubung deep learning sedang populer dan banyak yang membicarakannya (dan digunakan sebagai trik pemasaran). Artificial neural network adalah salah satu algoritma supervised learning yang populer dan bisa juga digunakan untuk semi-supervised atau unsupervised learning [37, 39, 40, 41, 42]. Walaupun tujuan awalnya adalah untuk mensimulasikan jaringan saraf biologis, jaringan tiruan ini sebenenarnya simulasi

yang terlalu disederhanakan, artinya simulasi yang dilakukan tidak mampu menggambarkan kompleksitas jaringan biologis manusia¹.

Artificial Neural Network (selanjutnya disingkat ANN), menghasilkan model yang sulit dibaca dan dimengerti oleh manusia karena memiliki banyak layer (multilayer perceptron) dan sifat non-linearity (fungsi aktivasi). Pada bidang riset ini, ANN disebut agnostik (kita percaya, tetapi sulit membuktikan kenapa konfigurasi parameter yang dihasilkan training bisa benar). Secara matematis, ANN ibarat sebuah graf. ANN memiliki neuron/node (vertex), dan sinapsis (edge). Topologi ANN akan dibahas lebih detil subbab berikutnya. Sebagai gambaran, ANN berbentuk seperti Gambar. 9.1. Walaupun memiliki struktur seperti graf, operasi pada ANN paling baik dan mudah dijelaskan dalam notasi aljabar linear.

Gambar 9.1. Multilayer Perceptron.

9.2 Single Perceptron

Bentuk terkecil (minimal) sebuah ANN adalah single perceptron yang hanya terdiri dari sebuah neuron. Sebuah neuron diilustrasikan pada Gambar. 9.2. Secara matematis, terdapat feature vector \mathbf{x} yang menjadi input bagi neuron tersebut. Neuron akan memproses input \mathbf{x} melalui perhitungan jumlah perkalian antara nilai input dan synapse weight, yang dilewatkan pada fungsi non-linear [43, 44, 4]. Pada training, yang dioptimasi adalah nilai synapse weight (learning parameter). Selain itu, terdapat juga bias b sebagai kontrol tambahan (ingat materi steepest gradient descent). Output dari neuron

Quora: why is Geoffrey Hinton suspicious of backpropagation and wants AI to start over

adalah hasil fungsi aktivasi dari perhitungan jumlah perkalian antara nilai input dan synapse weight. Ada beberapa macam fungsi aktivasi, misal step function, sign function, rectifier dan sigmoid function. Untuk selanjutnya, pada bab ini, fungsi aktivasi yang dimaksud adalah jenis sigmoid function. Silahkan eksplorasi sendiri untuk fungsi aktivasi lainnya. Salah satu bentuk tipe sigmoid function diberikan pada persamaan 9.1. Bila di-plot menjadi grafik, fungsi ini memberikan bentuk seperti huruf S.

Gambar 9.2. Single Perceptron.

$$\sigma(u) = \frac{1}{1 + e^{-u}} \tag{9.1}$$

Perhatikan kembali, Gambar. 9.2 sesungguhnya adalah operasi aljabar linear. Single perceptron dapat dituliskan kembali sebagai 9.2.

$$o = f(\mathbf{x} \cdot \mathbf{w} + b) \tag{9.2}$$

dimana o adalah output dan f adalah fungsi non-linear yang dapat diturunkan secara matematis (differentiable non-linear function – selanjutnya disebut "fungsi non-linear" saja.). Bentuk ini tidak lain dan tidak bukan adalah persamaan model linear yang ditransformasi dengan fungsi non-linear. Secara filosofis, ANN bekerja mirip dengan model linear, yaitu mencari decision boudary. Apabila beberapa model non-linear ini digabungkan, maka kemampuannya akan menjadi lebih hebat (subbab berikutnya).

Untuk melakukan pembelajaran single perceptron, training dilakukan menggunakan perceptron training rule. Prosesnya sebagai berikut [4, 43, 44]:

- 1. Inisiasi nilai synapse weights, bisa random ataupun dengan aturan tertentu. Untuk heuristik aturan inisiasi, ada baiknya membaca buku referensi [1, 11].
- 2. Lewatkan input pada neuron, kemudian kita akan mendapatkan nilai *out- put.* Kegiatan ini disebut *feedforward*.

- 3. Nilai output (actual output) tersebut dibandingkan dengan desired output.
- 4. Apabila nilai *output* sesuai dengan *desired output*, tidak perlu mengubah apa-apa.
- 5. Apabila nilai *output* tidak sesuai dengan *desired output*, hitung nilai *er*ror kemudian lakukan perubahan terhadap *learning parameter* (synapse weight).
- 6. Ulangi langkah-langkah ini sampai tidak ada perubahan nilai *error*, nilai *error* kurang dari sama dengan suatu *threshold* (biasanya mendekati 0), atau sudah mengulangi proses latihan sebanyak N kali (*threshold*).

Error function diberikan pada persamaan 9.3 dan perubahan synapse weight diberikan pada persamaan 9.4. y melambangkan desired output², $f(\mathbf{x}, \mathbf{w})$ melambangkan actual output untuk \mathbf{x} sebagai input. η disebut sebagai learning rate ³.

$$E(\mathbf{w}) = (y - f(\mathbf{x}, \mathbf{w}))^2 \tag{9.3}$$

$$\Delta w_i = \eta(y - o)x_i \tag{9.4}$$

Hasil akhir pembelajaran adalah konfigurasi synapse weight. Saat klasifikasi, kita melewatkan input baru pada jaringan yang telah dibangun, kemudian tinggal mengambil hasilnya. Pada contoh kali ini, seolah-olah single perceptron hanya dapat digunakan untuk melakukan binary classification (hanya ada dua kelas, nilai 0 dan 1). Untuk multi-label classification, kita dapat menerapkan berbagai strategi. Metode paling umum adalah melewatkan output neurons pada fungsi softmax⁴, sehingga mendapatkan nilai distribusi probabilitas untuk tiap kelas.

9.3 Permasalahan XOR

Sedikit sejarah, perceptron sebenarnya cukup populer sekitar tahun 1950-1960. Entah karena suatu sebab, perceptron menjadi tidak populer dan digantikan oleh model linear. Saat itu, belum ada algoritma yang bekerja dengan relatif bagus untuk melatih perceptron yang digabungkan (multilayer perceptron). Model linear mendapat popularitas hingga kira-kira dapat disebut sekitar tahun 1990'an atau awal 2000'an. Berkat penemuan backpropagation sekitar awal 1980⁵, multilayer perceptron menjadi semakin populer. Perlu dicatat, komunitas riset bisa jadi seperti cerita ini.

Pada bab-bab sebelumnya, kamu telah mempelajari model linear dan model probabilistik. Kita ulangi kembali contoh data yang bersifat non-linearly separable, yaitu XOR yang operasinya didefinisikan sebagai:

² Pada contoh ini, kebetulan jumlah neuron output hanyalah satu.

³ Pada umumnya, kita tidak menggunakan satu data, tetapi batch-sized.

⁴ Sudah dibahas pada model linear.

http://people.idsia.ch/~juergen/who-invented-backpropagation.html

- XOR(0,0) = 0
- XOR(1,0) = 1
- XOR(0,1) = 1
- XOR(1,1) = 0

Ilustrasinya dapat dilihat pada Gambar. 9.3. Jelas sekali, XOR ini adalah fungsi yang tidak dapat diselesaikan secara langsung oleh model linear.

Gambar 9.3. Permasalahan XOR.

Seperti yang diceritakan pada bab model linear, solusi permasalahan ini adalah dengan melakukan transformasi data menjadi linearly-separable, misalnya menggunakan fungsi non-linear pada persamaan 9.5 dimana (x,y) adalah absis dan ordinat. Hasil transformasi menggunakan fungsi ini dapat dilihat pada Gambar. 9.4. Jelas sekali, data menjadi linearly separable.

$$\phi(x,y) = (x \times y, x + y) \tag{9.5}$$

Gambar 9.4. XOR ditransformasi.

Sudah dijelaskan pada bab model linear, permasalahan yang ada tidak sesederhana ini (kebetulan ditransformasikan menjadi data dengan dimensi yang sama). Pada permasalahan praktis, kita harus mentransformasi data menjadi dimensi lebih tinggi (dari 2D menjadi 3D). Berbeda dengan ide utama linear model/kernel method tersebut, **prinsip ANN adalah untuk melewatkan data pada fungsi non-linear** (non-linearities). Sekali lagi penulis

ingin tekankan, ANN secara filosofis adalah *trainable non-linear mapping functions*. ANN mentransformasi data ke *space*/ruang konsep yang berbeda, lalu mencari *non-linear decision boundary* dengan *non-linear functions*.

Perlu dicatat, kemampuan transformasi non-linear inilah yang membuat ANN menjadi hebat. ANN mungkin secara luas didefinisikan mencakup perceptron tetapi secara praktis, ANN sebenarnya mengacu pada multilayer perceptron dan arsitektur lebih kompleks (dijelaskan pada subbab berikutnya). Pada masa ini, hampir tidak ada lagi yang menggunakan single perceptron. Untuk bab-bab kedepan, ketika kami menyebut ANN maka yang diacu adalah multilayer perceptron dan arsitektur lebih kompleks (single perceptron di-exclude). Hal ini disebabkan oleh single perceptron tidak dapat mempelajari XOR function secara independen tanpa feature engineering, sementara multilayer perceptron bisa [45].

9.4 Multilayer Perceptron

Kamu sudah belajar training untuk single perceptron. Selanjutnya kita akan mempelajari multilayer perceptron (MLP) yang juga dikenal sebagai feed forward neural network. Kami tekankan sekali lagi, istilah "ANN" selanjutnya mengacu pada MLP dan arsitektur lebih kompleks. Seperti ilustrasi pada Gambar. 9.5, multilayer perceptron secara literal memiliki beberapa layers. Pada lecture note ini, secara umum ada 3 layers: input, hidden, dan output layer. Input layer menerima input (tanpa melakukan operasi apapun), kemudian nilai input (tanpa dilewatkan ke fungsi aktivasi) diberikan ke hidden units. Pada hidden units, input diproses dan dilakukan perhitungan hasil fungsi aktivasi untuk tiap-tiap neuron, lalu hasilnya diberikan ke layer berikutnya. Hasil dari input layer akan diterima sebagai input bagi hidden layer. Begitupula seterusnya hidden layer akan mengirimkan hasilnya untuk output layer. Kegiatan ini dinamakan feed forward [37, 4]. Hal serupa berlaku untuk artificial neural network dengan lebih dari 3 layers. Parameter neuron dapat dioptimisasi menggunakan metode qradient-based optimization (dibahas pada subabb berikutnya, ingat kembali bab 5). Perlu diperhatikan, MLP adalah gabungan dari banyak fungsi non-linear. Seperti yang disampaikan pada subbab sebelumnya, gabungan banyak fungsi non-linear ini lebih hebat dibanding single perceptron.

$$o_j = \sigma \left(\sum_{k=1}^M x_k w_{k,j} + \beta_j \right) \tag{9.6}$$

$$v_i = \sigma \left(\sum_{j=1}^H o_j u_{j,i} + \gamma_i \right) = \sigma \left(\sum_{j=1}^H \sigma \left(\left(\sum_{k=1}^M x_k w_{k,j} + \beta_j \right) u_{j,i} \right) + \gamma_i \right)$$

$$(9.7)$$

Gambar 9.5. Multilayer Perceptron 2.

Perhatikan persamaan 9.6 dan 9.7 untuk menghitung output pada layer yang berbeda. u, w adalah learning parameters. β, γ melambangkan noise atau bias. M adalah banyaknya hidden units dan H adalah banyaknya output units. Persamaan 9.7 dapat disederhanakan penulisannya sebagai persamaan 9.8. Persamaan 9.8 terlihat relatif lebih "elegan". Seperti yang disebutkan pada subbab sebelumnya, ANN dapat direpresentasikan dengan notasi operasi aljabar.

$$\mathbf{v} = \sigma(\mathbf{o}\mathbf{U} + \gamma) = \sigma((\sigma(\mathbf{x}\mathbf{W} + \beta))\mathbf{U} + \gamma) \tag{9.8}$$

Untuk melatih MLP, algoritma yang umumnya digunakan adalah back-propagation [46]. Arti kata backpropagation sulit untuk diterjemahkan ke dalam bahasa Indonesia. Kita memperbaharui parameter (synapse weights) secara bertahap (dari output ke input layer, karena itu disebut backpropagation) berdasarkan error/loss (output dibandingkan dengan desired output). Intinya adalah mengkoreksi synapse weight dari output layer ke hidden layer, kemudian error tersebut dipropagasi ke layer sebelum-sebelumnya. Artinya, perubahan synapse weight pada suatu layer dipengaruhi oleh perubahan synapse weight pada layer setelahnya⁶. Backpropagation tidak lain dan tidak bukan adalah metode gradient-based optimization yang diterapkan pada ANN.

Pertama-tama diberikan pasangan input (\mathbf{x}) dan desired output (\mathbf{y}) sebagai training data. Untuk meminimalkan loss, algoritma backpropagation menggunakan prinsip gradient descent (ingat kembali materi bab model linear). Kamu akan memperlajari bagaimana cara menurunkan backpropagation menggunakan teknik gradient descent, yaitu menghitung loss ANN pada Gam-

⁶ Kata "setelah" mengacu *layer* yang menuju *output layer*, "sebelum" mengacu layer yang lebih dekat dengan *input layer*.

bar. 9.5 yang menggunakan fungsi aktivasi sigmoid. Untuk fungsi aktivasi lainnya, pembaca dapat mencoba menurunkan persamaan sendiri!

Ingat kembali chain rule pada perkuliahan diferensial

$$f(g(x))' = f'(g(x))g'(x).$$
 (9.9)

Ingat kembali error, untuk MLP diberikan oleh persamaan 9.3 (untuk satu data point), dimana I adalah banyaknya output neuron.

$$E(\mathbf{P}) = \frac{1}{I} \sum_{i=1}^{I} (y_i - v_i)^2$$
 (9.10)

Mari kita lakukan proses penurunan untuk melatih MLP. Error/loss diturunkan terhadap tiap $learning\ parameter$.

Diferensial $u_{i,i}$ diberikan oleh turunan sigmoid function

$$\frac{\delta E(\mathbf{P})}{\delta u_{j,i}} = (y_i - v_i) \frac{\delta v_i}{\delta u_{j,i}}$$
$$= (y_i - v_i)v_i(1 - v_i)o_j$$

Diferensial $w_{k,j}$ diberikan oleh turunan sigmoid function

$$\begin{split} \frac{\delta E(\mathbf{P})}{\delta w_{k,j}} &= \sum_{i=1}^{H} (y_i - v_i) \frac{\delta v_i}{\delta w_{k,j}} \\ &= \sum_{i=1}^{H} (y_i - v_i) \frac{\delta v_i}{\delta o_j} \frac{\delta o_j}{\delta w_{k,j}} \\ &= \sum_{i=1}^{H} (y_i - v_i) [v_i (1 - v_i) u_{j,i}] [o_j (1 - o_j) x_k] \end{split}$$

Perhatikan, diferensial $w_{k,j}$ memiliki \sum sementara $u_{j,i}$ tidak ada. Hal ini disebabkan karena $u_{j,i}$ hanya berkorespondensi dengan satu output neuron. Sementara $w_{k,j}$ berkorespondensi dengan banyak output neuron. Dengan kata lain, nilai $w_{k,j}$ mempengaruhi hasil operasi yang terjadi pada banyak output neuron; atau banyak neuron mempropagasi error kembali ke $w_{k,j}$.

Metode penurunan serupa dapat juga digunakan untuk menentukan perubahan β dan γ . Jadi proses backpropagation untuk kasus Gambar. 9.5 dapat diberikan seperti pada Gambar. 9.6 dimana η adalah learning rate. Untuk artificial neural network dengan lebih dari 3 layers, kita pun bisa menurunkan persamaannya. Secara umum, proses melatih ANN (apapun variasi arsitekturnya) mengikuti framework perceptron training rule (subbab 9.2).

(2) Hidden to Output
$$v_{i} = \sigma \left(\sum_{j=1}^{H} o_{j} u_{j,i} + \gamma_{i} \right)$$

$$\sum_{j=1}^{H} o_{j} u_{j,i} + \gamma_{i}$$
(3) Output to Hidden
$$\delta_{i} = (y_{i} - v_{i}) v_{i} (1 - v_{i})$$

$$\Delta u_{j,i} = -\eta(t) \delta_{i} o_{j}$$

$$\Delta \gamma_{i} = -\eta(t) \delta_{i}$$
(1) Input to Hidden Layer
$$o_{j} = \sigma \left(\sum_{k=1}^{K} x_{k} w_{k,j} + \beta_{j} \right)$$

$$\sum_{k=1}^{H} \delta_{i} u_{j,i} o_{j} (1 - o_{j})$$

$$\Delta w_{k,j} = -\eta(t) \varphi_{j} x_{k}$$

$$\Delta \beta_{j} = -\eta(t) \varphi_{j}$$

Gambar 9.6. Proses latihan MLP menggunakan backpropagation.

9.5 Interpretability

Interpretability ada dua macam yaitu model interpretability (i.e., apakah struktur model pembelajaran mesin dapat dipahami) dan prediction interpretability (i.e., bagaimana memahami dan memverifikasi cara input dipetakan menjadi output) [47]. Contoh teknik pembelajaran mesin yang mudah diinterpretasikan baik secara struktur dan prediksinya adalah decision tree (bab 6.2). Struktur decision tree berupa pohon keputusan mudah dimengerti oleh manusia dan prediksi (keputusan) dapat dilacak (trace). Seperti yang sudah dijelaskan pada bagian pengantar, ANN (MLP) biasanya dianggap sebagai metode black box atau susah untuk dinterpretasikan (terutama model interpretability-nya). Hal ini disebabkan oleh kedalaman (depth) yaitu memiliki beberapa layer dan non-linearities. Suatu unit pada output layer dipengaruhi oleh kombinasi (arbitrary combination) banyak parameter pada layers sebelumnya yang dilewatkan pada fungsi non-linear. Sulit untuk mengetahui bagaimana pengaruh bobot suatu unit pada suatu layer berpengaruh pada output layer, beserta bagaimana pengaruh kombinasi bobot. Berbeda dengan model linear, kita tahu bobot setiap input (dalam bentuk feature vector). Salah satu arah riset adalah mencari cara agar keputusan (karena struktur lebih susah, setidaknya beranjak dari keputusan terlebih dahulu) yang dihasilkan oleh ANN dapat dijelaskan [48], salah satu contoh nyata adalah attention mechanism [49, 50] (subbab 11.4.4) untuk prediction interpretability. Survey tentang interpretability dapat dibaca pada paper oleh Doshi-Velez dan Kim [51].

Cara paling umum untuk menjelaskan keputusan pada ANN adalah menggunakan heat map. Sederhananya, kita lewatkan suatu data \mathbf{x} pada ANN, kemudian kita lakukan feed-forward sekali (misal dari input ke hidden layer dengan parameter \mathbf{W}). Kemudian, kita visualisasikan $\mathbf{x} \cdot \mathbf{W}$ (ilustrasi pada

Gambar. 9.7). Dengan ini, kita kurang lebih dapat mengetahui bagian *input* mana yang berpengaruh terhadap keputusan di *layer* berikutnya.

Gambar 9.7. Contoh heat map (attention mechanism) pada mesin translasi.

9.6 Binary Classification

Salah satu strategi untuk binary classification adalah dengan menyediakan hanya satu output unit di jaringan. Kelas pertama direpresentasikan dengan -1, kelas kedua direpresentasikan dengan nilai 1 (setelah diaktivasi). Hal ini dapat dicapai dengan fungsi non-linear seperti $sign^7$. Apabila kita tertarik dengan probabilitas masuk ke dalam suatu kelas, kita dapat menggunakan fungsi seperti sigmoid⁸ atau tanh⁹.

⁷ https://en.wikipedia.org/wiki/Sign_function

⁸ https://en.wikipedia.org/wiki/Sigmoid_function

 $^{^9}$ https://en.wikipedia.org/wiki/Hyperbolic_function

9.7 Multi-label Classification

Multilayer perceptron dapat memiliki output unit berjumlah lebih dari satu. Seumpama kita mempunyai empat kelas, dengan demikian kita dapat merepresentasikan keempat kelas tersebut empat output units. Kelas pertama direpresentasikan dengan unit pertama, kelas kedua dengan unit kedua, dst. Untuk C kelas, kita dapat merepresentasikannya dengan C output units. Kita dapat merepresentasikan data harus dimasukkan ke kelas mana menggunakan sparse vector, yaitu bernilai 0 atau 1. Elemen ke-i bernilai 1 apabila data masuk ke kelas c_i , sementara nilai elemen lainnya adalah 0 (ilurasi pada Gambar. 9.8). Output ANN dilewatkan pada suatu fungsi softmax yang melambangkan probabilitas class-assignment; i.e., kita ingin output agar semirip mungkin dengan sparse vector-desired output.

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{array}{c} \text{Kelas pertama} \\ \text{Kelas kedua} \\ \text{Kelas ketiga} \\ \text{Kelas keempat} \end{array}$$

Gambar 9.8. Ilustrasi representasi desired output pada Multi-label Classification.

Gambar 9.9. Deep Neural Network.

9.8 Deep Neural Network

Deep Neural Network (DNN) adalah artificial neural network yang memiliki banyak layer. Pada umumnya, deep neural network memiliki lebih dari 3 layers (input layer, N hidden layers, output layer), dengan kata lain adalah MLP dengan lebih banyak layer. Karena ada relatif banyak layer, disebutlah deep. Proses pembelajaran pada DNN disebut sebagai deep learning [9]. Jaringan neural network pada DNN disebut deep network.

Perhatikan Gambar. 9.9 yang memiliki 4 layers. Cara menghitung final output sama seperti MLP, diberikan pada persamaan 9.11 dimana β, γ, λ adalah noise atau bias.

$$f_i = \sigma \left(\sum_{j=1}^{H_2} u_{j,i} \sigma \left(\sum_{k=1}^{H_1} v_{k,j} \sigma \left(\sum_{m=1}^{M} x_m w_{m,k} + \beta_k \right) + \gamma_j \right) + \lambda_i \right)$$
(9.11)

Cara melatih deep neural network, salah satunya dapat menggunakan back-propagation. Seperti pada bagian sebelumnya, kita hanya perlu menurunkan rumusnya saja. **Penurunan diserahkan pada pembaca sebagai latihan**. Hasil proses penurunan dapat dilihat pada Gambar. 9.10.

(3) Hidden 2 to Output
$$f_{i} = \sigma \left(\sum_{j=1}^{H_{2}} g_{j} u_{j,i} + \lambda_{i} \right)$$

$$(2) \text{ Hidden 1 to Hidden 2}$$

$$g_{j} = \sigma \left(\sum_{k=1}^{H_{1}} o_{k} v_{k,j} + \gamma_{j} \right)$$

$$(3) \sum_{k=1}^{H_{2}} g_{j} u_{j,i} + \lambda_{i}$$

$$(4) \text{ Output to Hidden 2}$$

$$\Delta u_{j,i} = -\eta(t) \delta_{i} g_{j}$$

$$\Delta \lambda_{i} = -\eta(t) \delta_{i}$$

$$(5) \text{ Hidden 2 to Hidden 1}$$

$$\varphi_{j} = \sum_{i=1}^{H_{2}} \delta_{i} u_{j,i} g_{j} (1 - g_{j})$$

$$\Delta v_{k,j} = -\eta(t) \varphi_{j} o_{k}$$

$$\Delta \gamma_{j} = -\eta(t) \varphi_{j}$$

$$\Delta v_{k,j} = -\eta(t) \varphi_{j}$$

 ${\bf Gambar~9.10.~Proses~latihan~DNN~menggunakan~\it backpropagation.}$

¹⁰ Hanya istilah keren saja, tak ada arti spesial!

Deep network terdiri dari banyak layer dan synapse weight, karenanya estimasi parameter susah dilakukan. Arti filosofisnya adalah susah/lama untuk menentukan relasi antara input dan output. Walaupun deep learning sepertinya kompleks, tetapi entah kenapa dapat bekerja dengan baik untuk permasalahan praktis [9]. Deep learning dapat menemukan relasi "tersembunyi" antara input dan output, yang tidak dapat diselesaikan menggunakan multilayer perceptron (3 layers). Banyak orang percaya deep neural network lebih baik dibanding neural network yang lebar tapi sedikit layer, karena terjadi lebih banyak transformasi. Maksud lebih banyak transformasi adalah kemampuan untuk merubah input menjadi suatu representasi (tiap hidden layer dapat dianggap sebagai salah satu bentuk representasi input) dengan langkah hierarchical. Seperti contoh permasalahan XOR, permasalahan non-linearly separable pun dapat diselesaikan apabila kita dapat mentransformasi data (representasi data) ke dalam bentuk *linearly separable* pada ruang yang berbeda. Keuntungan utama deep learning adalah mampu merubah data dari nonlinearly separable menjadi linearly separable melalui serangkaian transformasi (hidden layers).

Ada beberapa strategi untuk mempercepat pembelajaran menggunakan deep learning, misalnya: regularisasi, successive learning, dan penggunaan autoencoder [9]. Sebagai contoh, saya akan menceritakan successive learning. Arti successive learning adalah jaringan yang dibangun secara bertahap. Misal kita latih ANN dengan 3 layers, kemudian kita lanjutkan 3 layers tersebut menjadi 4 layers, lalu kita latih lagi menjadi 5 layers, dst. Hal ini sesuai dengan [52], yaitu mulai dari hal kecil. Ilustrasinya dapat dilihat pada Gambar. 9.11. Menggunakan deep learning harus hati-hati karena pembelajaran cenderung divergen (artinya, minimum square error belum tentu semakin rendah seiring berjalannya waktu – swing relatif sering).

Gambar 9.11. Contoh Succesive Learning.

9.9 Tips

Pada contoh yang diberikan, error atau loss dihitung per tiap data point. Artinya begitu ada melewatkan suatu input, parameter langsung dioptimisasi sesuai dengan loss. Pada umumnya, hal ini tidak baik untuk dilakukan karena ANN menjadi tidak stabil. Metode yang lebih baik digunakan adalah teknik minibatches. Yaitu mengoptimisasi parameter untuk beberapa buah inputs. Jadi, update parameter dilakukan per batch. Data mana saja yang dimasukkan ke suatu batch dalam dipilih secara acak. Seperti yang mungkin kamu sadari secara intuitif, urutan data yang disajikan saat training mempengaruhi kinerja ANN. Pengacakan ini menjadi penting agar ANN mampu mengeneralisasi dengan baik. Kita dapat mengatur laju pembelajaran dengan menggunakan learning rate. Selain menggunakan learning rate, kita juga dapat menggunakan momentum (subbab 5.7).

Pada library/API deep learning, learning rate pada umumnya berubahubah sesuai dengan waktu. Selain itu, tidak ada nilai khusus (rule-of-thumb) untuk learning rate terbaik. Pada umumnya, kita inisiasi learning rate dengan nilai {0.001, 0.01, 0.1, 1} [1]. Kemudian, kita mencari parameter terbaik dengan metode grid-search¹¹, yaitu dengan mencoba-coba parameter secara exhaustive (brute-force) kemudian memilih parameter yang memberikan kinerja terbaik.

ANN sensitif terhadap inisialisasi parameter, dengan demikian banyak metode inisialisasi parameter misalkan, nilai synapse weights diambil dari distribusi binomial (silahkan eksplorasi lebih lanjut). Dengan hal ini, kinerja ANN dengan arsitektur yang sama dapat berbeda ketika dilatih ulang dari awal. Untuk menghindari bias inisialisasi parameter, biasanya ANN dilatih beberapa kali (umumnya 5, 10, atau 15 kali). Kinerja ANN yang dilaporkan adalah nilai kinerja rata-rata dan varians (variance). Untuk membandingkan dua arsitektur ANN pada suatu dataset, kita dapat menggunakan two sample t-test unequal variance (arsitektur X lebih baik dari arsitektur Y secara signifikan dengan nilai p < V).

Apabila kamu pikir dengan seksama, ANN sebenarnya melakukan transformasi non-linear terhadap *input* hingga menjadi *output*. Parameter diperbarahui agar transformasi non-linear *input* bisa menjadi semirip mungkin dengan *output* yang diharapkan. Dengan hal ini, istilah "ANN" memiliki asosiasi yang dekat dengan "transformasi non-linear". Kami ingin kamu mengingat, ANN (apapun variasi arsitekturnya) adalah **gabungan fungsi non-linear**, dengan demikian ia mampu mengaproksimasi fungsi non-linear (*decision boundary* dapat berupa fungsi non-linear).

Deep learning menjadi penting karena banyaknya transformasi (banyaknya hidden layers) lebih penting dibanding lebar jaringan. Seringkali (pada permasalahan praktis), kita membutuhkan banyak transformasi agar input bisa menjadi output. Setiap transformasi (hidden layer) merepresentasikan input

¹¹ https://en.wikipedia.org/wiki/Hyperparameter_optimization

menjadi suatu representasi. Dengan kata lain, hidden layer satu dan hidden layer lainnya mempelajari bentuk representasi atau karakteristik input yang berbeda.

Curriculum learning juga adalah tips yang layak disebutkan (mention) [53]. Penulis tidak mengerti detilnya, sehingga pembaca diharapkan membaca sendiri. Intinya adalah memutuskan apa yang harus ANN pelajari terlebih dahulu (mulai dari mempelajari hal mudah sebelum mempelajari hal yang susah).

9.10 Regularization and Dropout

Seperti yang sudah dijelaskan pada model linear. Kita ingin model mengeneralisasi dengan baik (kinerja baik pada training data dan unseen examples). Kita dapat menambahkan fungsi regularisasi untuk mengontrol kompleksitas ANN. Regularisasi pada ANN cukup straightforward seperti regularisasi pada model linear (subbab 5.8). Kami yakin pembaca bisa mengeksplorasi sendiri.

Selain itu, agar ANN tidak "bergantung" pada satu atau beberapa synapse weights saja, kita dapat menggunakan dropout. Dropout berarti me-nol-kan nilai synapse weights dengan nilai rate tertentu. Misalkan kita nol-kan nilai 30% synapse weights (dropout rate= 0.3) secara random. Hal ini dapat dicapai dengan teknik masking, yaitu mengalikan synapse weights dengan suatu mask.

Ingat kembali ANN secara umum, persamaan 9.12 dimana \mathbf{W} adalah synapse weights, \mathbf{x} adalah input (atau secara umum, dapat merepresentasikan hidden state pada suatu layer), b adalah bias dan f adalah fungsi aktivasi (non-linear). Kita buat suatu mask untuk synapse weights seperti pada persamaan 9.13, dimana \mathbf{p} adalah vektor dan $p_i = [0,1]$ merepresentasikan synapse weight diikutsertakan atau tidak. r% (dropout rate) elemen vektor \mathbf{p} bernilai 0. Biasanya \mathbf{p} diambil dari bernoulli distribution [1]. Kemudian, saat feed forward, kita ganti synapse weights menggunakan mask seperti pada persamaan 9.14. Saat menghitung backpropagation, turunan fungsi juga mengikutsertakan mask (gradient di-mask). Kami sarankan untuk membaca paper oleh Srivastava et al. [54] tentang dropout pada ANN. Contoh implementasi dropout dapat dilihat pada pranala berikut¹².

$$o = f(\mathbf{x} \cdot \mathbf{W} + b) \tag{9.12}$$

$$\mathbf{W}' = \mathbf{p} \cdot \mathbf{W} \tag{9.13}$$

$$o = f(\mathbf{x} \cdot \mathbf{W}' + b) \tag{9.14}$$

Baik regularization maupun dropout sudah menjadi metode yang cukup "standar" dan diaplikasikan pada berbagai macam arsitektur (tidak terbatas pada MLP saja).

¹² https://gist.github.com/yusugomori/cf7bce19b8e16d57488a

9.11 Vanishing and Exploding Gradients

Pada beberapa kasus, nilai gradien ($\Delta \mathbf{W}$ - perubahan parameter) sangat kecil (mendekati 0 - vanishing) atau sangat besar (explode). Vanishing gradient problem umum terjadi untuk ANN yang sangat dalam (deep), yaitu memiliki banyak layer. Hal ini juga terjadi pada arsitektur khusus, seperti recurrent neural network saat diberikan input yang panjang [55]. Turunan suatu fungsi bernilai lebih kecil dari fungsi tersebut. Artinya nilai gradient pada input layer bernilai lebih kecil dari output layer. Apabila kita memiliki banyak layer, nilai gradient saat backpropagation mendekati 0 ketika diturunkan kembali dalam banyak proses. Ilustrasi vanishing gradient diberikan pada Gambar. 9.12 (analogikan dengan heat map). Saat melakukan backpropagation, nilai gradien menjadi mendekati 0 (warna semakin putih). Penanganan permasalahan ini masih merupakan topik riset tersendiri. Untuk saat ini, biasanya digunakan fungsi aktivasi long short term memory (LSTM) atau gated recurrent unit (GRU) untuk menanganinya. Selain nilai gradien, nilai synapse weights juga bisa sangat kecil atau sangat besar. Hal ini juga tidak baik!

Gambar 9.12. Ilustrasi vanishing gradient problem.

9.12 Rangkuman

Ada beberapa hal yang perlu kamu ingat, pertama-tama jaringan neural network terdiri atas:

- 1. Input layer
- 2. $Hidden\ layer(s)$
- $3. \ Output \ layer$

Setiap edge yang menghubungkan suatu node dengan node lainnya disebut synapse weight. Pada saat melatih neural network kita mengestimasi nilai yang "bagus" untuk synapse weights.

Kedua, hal tersulit saat menggunakan neural network adalah menentukan topologi. Kamu bisa menggunakan berbagai macam variasi topologi neural network serta cara melatih untuk masing-masing topologi. Tetapi, suatu topologi tertentu lebih tepat untuk merepresentasikan permasalahan dibanding topologi lainnya. Menentukan tipe topologi yang tepat membutuhkan pengalaman.

Ketiga, proses training untuk neural network berlangsung lama. Secara umum, perubahan nilai synapse weights mengikuti tahapan (stage) berikut [9]:

- 1. Earlier state. Pada tahap ini, struktur global (kasar) diestimasi.
- 2. Medium state. Pada tahap ini, learning berubah dari tahapan global menjadi lokal (ingat steepest gradient descent).
- 3. Last state. Pada tahap ini, struktur detail sudah selesai diestimasi.

Neural network adalah salah satu learning machine yang dapat menemukan hidden structure atau pola data "implisit". Secara umum, learning machine tipe ini sering menjadi overfitting/overtraining, yaitu model memiliki kinerja sangat baik pada training data, tapi buruk pada testing data/unseen example. Oleh sebab itu, menggunakan neural network harus hati-hati.

Keempat, neural network dapat digunakan untuk supervised, semi-supervised, maupun unsupervised learning. Hal ini membuat neural network cukup populer belakangan ini karena fleksibilitas ini. Contoh penggunaan neural network untuk unsupervised learning akan dibahas pada bab 10. Semakin canggih komputer, maka semakin cepat melakukan perhitungan, dan semakin cepat melatih neural network. Hal ini adalah kemewahan yang tidak bisa dirasakan 20-30 tahun lalu.

Soal Latihan

9.1. Turunan

- (a) Turunkanlah perubahan noise/bias untuk training pada MLP.
- (b) Turunkanlah proses $training\ deep\ neural\ network$ pada Gambar. 9.10 termasuk perubahan noise/bias.

9.2. Neural Network Training

- (a) Sebutkan dan jelaskan cara lain untuk melatih artificial neural network (selain backpropagation) (bila ada)!
- (b) Apa kelebihan dan kekurangan backpropagation?
- (c) Tuliskan persamaan MLP dengan menggunakan momentum! (kemudian berikan juga backpropagation-nya)

9.3. Neural Network - Unsupervised Learning

Bagaimana cara menggunakan artificial neural network untuk unsupervised learning?

9.4. Regularization Technique

- (a) Sebutkan dan jelaskan teknik regularization untuk neural network! (dalam bentuk formula)
- (b) Mengapa kita perlu menggunakan teknik tersebut?

9.5. Softmax Function

- (a) Apa itu softmax function?
- (b) Bagaimana cara menggunakan softmax function pada neural network?
- (c) Pada saat kapan kita menggunakan fungsi tersebut?
- (d) Apa kelebihan fungsi tersebut dibanding fungsi lainnya?

9.6. Transformasi atribut

Pada bab 4, diberikan contoh klasifikasi dengan data dengan atribut nominal. Akan tetapi, secara alamiah neural network membutuhkan data dengan atribut numerik untuk klasifikasi. Jelaskan konversi/strategi penanganan atribut nominal pada neural network!

Dimensionality Reduction dan Representation Learning

"The goal is to turn data into information, and information into insight."

Carly Fiorina

Bab ini memuat materi yang relatif sulit (karena agak high level). Bab ini memuat materi autoencoder serta penerapannya pada pemrosesan bahasa alami (natural language processing - NLP). Berhubung aplikasi yang diceritakan adalah aplikasi pada NLP, kami akan memberi sedikit materi (background knowledge) agar bisa mendapat gambaran tentang persoalan pada domain tersebut. Bagi yang tertarik belajar NLP, kami sarankan untuk membaca buku [56]. Teknik yang dibahas pada bab ini adalah representation learning untuk melakukan pengurangan dimensi pada feature vector (dimensionality reduction), teknik ini biasanya digolongkan sebagai unsupervised learning. Artinya, representation learning adalah mengubah suatu representasi menjadi bentuk representasi lain yang ekuvalen, tetapi berdimensi lebih rendah; sedemikian sehingga informasi yang terdapat pada representasi asli tidak hilang/terjaga. Ide dasar teknik ini bermula dari aljabar linear, yaitu dekomposisi matriks.

10.1 Curse of Dimensionality

Pada bab model linear, kamu telah mempelajari ide untuk mentransformasi data menjadi dimensi lebih tinggi agar data tersebut menjadi linearly separable. Pada bab ini, kamu mempelajari hal sebaliknya, yaitu mengurangi dimensi. Curse of dimensionality dapat dipahami secara mendalam apabila kamu membaca buku [57]. Untuk melakukan klasifikasi maupun clustering, kita membutuhkan fitur. Fitur tersebut haruslah dapat membedakan satu instance dan instance lainnya. Seringkali, untuk membedakan instance satu

dan *instance* lainnya, kita membutuhkan *feature vector* yang berdimensi relatif "besar". Karena dimensi *feature vector* besar, kita butuh sumber daya komputasi yang besar juga. Untuk itu, terdapat metode-metode *feature selection*¹ untuk memilih fitur-fitur yang dianggap "representatif" dibanding fitur lainnya. Sayangnya, bila kita menggunakan metode-metode *feature selection* ini, tidak jarang kita kelihangan informasi yang memuat karakteristik data. Dengan kata lain, ada karakteristik yang hilang saat menggunakan *feature selection*. Karena alasan tersebut, permasalahan ini disebut "*curse*".

Pertanyaan yang kita ingin jawab adalah apakah ada cara untuk merepresentasikan data ke dalam bentuk yang membutuhkan memori lebih sedikit tanpa adanya kehilangan informasi? Kita bisa menggunakan cara lain untuk mengurangi kompleksitas komputasi adalah dengan melakukan kompresi feature vector. Representation learning adalah metode untuk melakukan kompresi feature vector, umumnya (typically) menggunakan neural network². Proses melakukan kompresi disebut *encoding*, hasil feature vector dalam bentuk terkompres disebut *coding*, proses mengembalikan hasil kompresi ke bentuk awal disebut (atau secara lebih umum, proses menginterpretasikan coding) decoding. Neural network yang mampu melakukan hal ini disebut encoder [58, 59, 60, 61, 62]. Contoh representation learning paling sederhana kemungkinan besar adalah autoencoder yaitu neural network yang dapat merepresentasikan data kemudian merekonstruksinya kembali. Ilustrasi autoencoder dapat dilihat pada Gambar. 10.1. Karena tujuan encoder untuk kompresi, bentuk terkompresi haruslah memiliki dimensi lebih kecil dari dimensi input. Neural network mampu melakukan "kompresi" dengan baik karena ia mampu menemukan hidden structure dari data. Ukuran utility function atau performance measure untuk autoencoder adalah mengukur loss. Idealnya, output harus sama dengan input, yaitu autoencoder dengan tingkat loss 0%.

Contoh klasik lainnya adalah N-gram language modelling, yaitu memprediksi kata y_t diberikan suatu konteks (surrounding words) misal kata sebelumnya y_{t-1} (bigram). Apabila kita mempunyai vocabulary sebesar 40,000 berarti suatu bigram model membutuhkan memory sebesar $40,000^2$ (kombinatorial). Apabila kita ingin memprediksi kata diberikan history yang lebih panjang (misal dua kata sebelumnya - trigram) maka kita membutuhkan memory sebesar $40,000^3$. Artinya, memory yang dibutuhkan berlipat secara eksponensial. Tetapi, terdapat strategi menggunakan neural network dimana parameter yang dibutuhkan tidak berlipat secara eksponensial walau kita ingin memodelkan konteks yang lebih besar [63].

 $^{^{1}}$ http://scikit-learn.org/stable/modules/feature_selection.html

² Istilah representation learning pada umumnya mengacu dengan teknik menggunakan neural network.

Gambar 10.1. Contoh autoencoder sederhana.

10.2 Singular Value Decomposition

Sebelum masuk ke autoencoder secara matematis, penulis akan memberikan sedikit overview tentang dekomposisi matriks. Seperti yang sudah dijelaskan pada bab-bab sebelumnya, dataset dimana setiap instans direpresentasikan oleh feature vector dapat disusun menjadi matriks \mathbf{D} berukuran $M \times N$, dimana M adalah banyaknya instans³ dan N adalah dimensi fitur. Pada machine learning, dekomposisi atau reduksi dimensi sangat penting dilakukan terutama ketika dataset berupa sparse matrix. Matriks \mathbf{D} dapat difaktorisasi menjadi tiga buah matriks, dimana operasi ini berkaitan dengan mencari eigenvectors, diilustrasikan pada persamaan 10.1.

$$\mathbf{D} = \mathbf{U} \ \mathbf{V} \ \mathbf{W} \tag{10.1}$$

dimana **U** berukuran $M \times L$, **V** berukuran $L \times L$, dan **W** berukuran $L \times N$. Perlu diperhatikan, matriks **V** adalah sebuah diagonal matriks (elemennya adalah nilai eigenvectors dari **D**). Misalkan kita mempunyai sebuah matriks lain $\hat{\mathbf{V}}$ berukuran $K \times K$ (K < L), yaitu modifikasi matriks **V** dengan mengganti sejumlah elemen diagonalnya menjadi 0 (analogi seperti menghapus beberapa elemen yang dianggap kurang penting). Sebagai contoh, perhatikan ilustrasi berikut untuk L = 3 dan K = 2!

$$\mathbf{V} = \begin{bmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_2 & 0 \\ 0 & 0 & \lambda_L \end{bmatrix} \quad \hat{\mathbf{V}} = \begin{bmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_K & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

Kita juga dapat me-nol-kan sejumlah baris dan kolom pada matriks \mathbf{U} dan \mathbf{W} menjadi $\hat{\mathbf{U}}$ $(M \times K)$ dan $\hat{\mathbf{W}}$ $(K \times N)$. Apabila kita mengalikan semuanya,

³ Dapat dianalogikan dengan banyaknya training data.

kita akan mendapat matriks \mathbf{D} yang disebut low rank approximation dari matriks asli \mathbf{D} , seperti diilustrasikan pada persamaan 10.2.

$$\hat{\mathbf{D}} = \hat{\mathbf{U}} \ \hat{\mathbf{V}} \ \hat{\mathbf{W}} \tag{10.2}$$

Suatu baris dari matriks $\mathbf{E} = \hat{\mathbf{U}} \hat{\mathbf{V}}$ dianggap sebagai aproksimasi baris matriks \mathbf{D} berdimensi tinggi [1]. Artinya, menghitung dot-product $\mathbf{E}_i \cdot \mathbf{E}_j = \hat{\mathbf{D}}_i \cdot \hat{\mathbf{D}}_j$. Artinya, operasi pada matriks aproksimasi (walaupun berdimensi lebih rendah), kurang lebih melambangkan operasi pada matriks asli. Konsep ini menjadi fundamental autoencoder yang akan dibahas pada bab berikutnya.

10.3 Ide Dasar Autoencoder

Seperti yang sudah dijelaskan autoencoder adalah neural network yang mampu merekonstruksi input. Ide dasar autoencoder tidak jauh dari konsep dekomposisi/dimentionality reduction menggunakan singular value decomposition. Diberikan dataset \mathbf{D} , kita ingin mensimulasikan pencarian matriks $\hat{\mathbf{D}}$ yang merupakan sebuah low rank approximation dari matriks asli. Arsitektur dasar autoencoder diberikan pada Gambar. 10.1. Kita memberi input matriks \mathbf{D} pada autoencoder, kemudian ingin autoencoder tersebut menghasilkan matriks yang sama. Dengan kata lain, desired output sama dengan input. Apabila dihubungkan dengan pembahasan ANN pada bab sebelumnya, error function untuk melatih autoencoder diberikan pada persamaan 10.3, dimana \mathbf{o} adalah output dari jaringan, θ adalah ANN (kumpulan weight matrices)⁴, N adalah dimensi output, dan \mathbf{d}_i adalah data ke-i (feature vector ke-i).

$$E(\theta) = \frac{1}{N} \sum_{i=j}^{N} \left(\mathbf{d}_{i[j]} - \mathbf{o}_{i[j]} \right)^2$$

$$(10.3)$$

Persamaan 10.3 dapat kita tulis kembali sebagai persamaan 10.4, dimana f melambangkan fungsi aktivasi.

$$E(\theta) = \frac{1}{N} \sum_{j=1}^{N} \left(\mathbf{d}_{i[j]} - f(\mathbf{d}_i, \theta)_{[j]} \right)^2$$

$$(10.4)$$

Seperti yang sudah dijelaskan sebelumnya, desired output sama dengan input. Tetapi seperti yang kamu ketahui, mencapai loss sebesar 0% adalah hal yang susah. Dengan demikian, kamu dapat memahami secara intuitif bahwa autoencoder melakukan aproksimasi terhadap data asli. Gambar. 10.2 mengilustrasikan hubungan antara autoencoder dan singular value decomposition⁵. Perhatikan, hidden layer/coding adalah $\mathbf{E} = \hat{\mathbf{U}} \hat{\mathbf{V}}$. Dengan kata lain, kita

 $^{^4}$ Pada banyak literatur, kumpulan weight matrices ANN sering dilambangkan dengan θ

⁵ Hanya sebuah analogi.

Gambar 10.2. Hubungan autoencoder dan singular value decomposition.

dapat melakukan operasi dot-product pada coding untuk merepresentasikan dot-product pada data asli **D**. Ini adalah ide utama autoencoder, yaitu mengaproksimasi/mengkompresi data asli menjadi bentuk lebih kecil coding. Kemudian, operasi pada bentuk coding merepresentasikan operasi pada data sebenarnya.

Autoencoder terdiri dari encoder (sebuah neural network) dan decoder (sebuah neural network). Encoder merubah input ke dalam bentuk dimensi lebih kecil (dapat dianggap sebagai kompresi). Decoder berusaha merekonstruksi coding menjadi bentuk aslinya.

Sekarang kamu mungkin bertanya-tanya, bila autoencoder melakukan hal serupa seperti singular value decomposition, untuk apa kita menggunakan autoencoder? (mengapa tidak menggunakan aljabar saja?). Berbeda dengan teknik SVD, teknik *autoencoder* dapat juga mempelajari fitur non-linear⁶. Pada penggunaan praktis, autoencoder adalah neural network yang cukup kompleks (memiliki banyak hidden layer). Dengan demikian, kita dapat "mengetahui" berbagai macam representasi atau transformasi data. Framework autoencoder yang disampaikan sebelumnya adalah framework dasar. Pada kenyataannya, masih banyak ide lainnya yang bekerja dengan prinsip yang sama untuk mencari coding pada permasalahan khusus. Output dari neural network juga bisa tidak sama input-nya, tetapi tergantung permasalahan (kami akan memberikan contoh persoalan word embedding). Selain itu, autoencoder juga relatif fleksibel; dalam artian saat menambahkan data baru, kita hanya perlu memperbaharui parameter autoencoder saja. Kami sarankan untuk membaca paper [64, 65] perihal penjelasan lebih lengkap tentang perbedaan dan persamaan SVD dan autoencoder secara lebih matematis.

Apabila kamu hanya ingin mengerti konsep dasar representation learning, kamu dapat berhenti membaca sampai subbab ini. Secara sederhana

⁶ Hal ini abstrak untuk dijelaskan karena membutuhkan pengalaman.

representation learning adalah teknik untuk mengkompresi input ke dalam dimensi lebih rendah tanpa (diharapkan) ada kehilangan informasi. Operasi vektor (dan lainnya) pada level coding merepresentasikan operasi pada bentuk aslinya. Untuk pembahasan autoencoder secara lebih matematis, kamu dapat membaca pranala ini⁷. Apabila kamu ingin mengetahui lebih jauh contoh penggunaan representation learning secara lebih praktis, silahkan lanjutkan membaca materi subbab berikutnya. Buku ini akan memberikan contoh penggunaan representation learning pada bidang natural language processing (NLP).

10.4 Representing Context: Word Embedding

Pada domain NLP, kita ingin komputer mampu mengerti bahasa selayaknya manusia mengerti bahasa. Misalkan komputer mampu mengetahui bahwa "meja" dan "kursi" memiliki hubungan yang erat. Hubungan seperti ini tidak dapat terlihat berdasarkan teks tertulis, tetapi kita dapat menyusun kamus hubungan kata seperti WordNet⁸. WordNet memuat ontologi kata seperti hipernim, antonim, sinonim. Akan tetapi, hal seperti ini tentu sangat melelahkan, seumpama ada kata baru, kita harus memikirkan bagaimana hubungan kata tersebut terhadap seluruh kamus yang sudah dibuat. Pembuatan kamus ini memerlukan kemampuan para ahli linguistik.

Oleh sebab itu, kita harus mencari cara lain untuk menemukan hubungan kata ini. Ide utama untuk menemukan hubungan antarkata adalah statistical semantics hypothesis yang menyebutkan pola penggunaan kata dapat digunakan untuk menemukan arti kata [66]. Contoh sederhana, kata yang muncul pada "konteks" yang sama cenderung memiliki makna yang sama. Perhatikan "konteks" dalam artian NLP adalah kata-kata sekitar (surrounding words)⁹; contohnya kalimat "budi menendang bola", "konteks" dari "bola" adalah "budi menendang". Kata "cabai" dan "permen" pada kedua kalimat "budi suka cabai" dan "budi suka permen" memiliki kaitan makna, dalam artian keduanya muncul pada konteks yang sama. Sebagai manusia, kita tahu ada keterkaitan antara "cabai" dan "permen" karena keduanya bisa dimakan.

Berdasarkan hipotesis tersebut, kita dapat mentransformasi kata menjadi sebuah bentuk matematis dimana kata direpresentasikan oleh pola penggunaannya [56]. Arti kata *embedding* adalah transformasi kata (beserta konteksnya) menjadi bentuk matematis (vektor). "Kedekatan hubungan makna" (*semantic relationship*) antarkata kita harapkan dapat tercermin pada operasi vektor. Salah satu metode sederhana untuk merepresentasikan kata sebagai vektor adalah *Vector Space Model*. Konsep *embedding* dan *autoencoder*

⁷ https://jaan.io/what-is-variational-autoencoder-vae-tutorial/

⁸ https://wordnet.princeton.edu/

⁹ Selain surrounding words, konteks dalam artian NLP dapat juga berupa kalimat, paragraph, atau dokumen.

	Dokumen 1	Dokumen 2	Dokumen 3	Dokumen 4	• • •
King	1	0	0	0	
Queen	0	1	0	1	
Prince	1	0	1	0	
Princess	0	1	0	1	

Tabel 10.1. Contoh 1-of-V encoding.

sangatlah dekat, tapi kami ingin menakankan bahwa *embedding* adalah bentuk representasi konteks.

Semantic relationship dapat diartikan sebagai attributional atau relational similarity. Attributional similarity berarti dua kata memiliki atribut/sifat yang sama, misalnya anjing dan serigala sama-sama berkaki empat, menggongong, serta mirip secara fisiologis. Relational similarity berarti derajat korespondensi, misalnya anjing: menggongong memiliki hubungan yang erat dengan kucing: mengeong.

10.4.1 Vector Space Model

Vector space model (VSM)¹⁰ adalah bentuk embedding yang relatif sudah cukup lama tapi masih digunakan sampai saat ini. Pada pemodelan ini, kita membuat sebuah matriks dimana baris melambangkan kata, kolom melambangkan dokumen. Metode VSM ini selain mampu menangkap hubungan antarkata juga mampu menangkap hubungan antardokumen (to some degree). Asal muasalnya adalah statistical semantics hypothesis. Tiap sel pada matriks berisi nilai 1 atau 0. 1 apabila $kata_i$ muncul di $dokumen_i$ dan 0 apabila tidak. Model ini disebut 1-of-V/1-hot encoding dimana V adalah ukuran kosa kata. Ilustrasi dapat dilihat pada Tabel. 10.1.

Akan tetapi, 1-of-V encoding tidak menyediakan banyak informasi untuk kita. Dibanding sangat ekstrim saat mengisi sel dengan nilai 1 atau 0 saja, kita dapat mengisi sel dengan frekuensi kemunculan kata pada dokumen, disebut term frequency (TF). Apabila suatu kata muncul pada banyak dokumen, kata tersebut relatif tidak terlalu "penting" karena muncul dalam berbagai konteks dan tidak mampu membedakan hubungan dokumen satu dan dokumen lainnya (inverse document frequency/IDF). Formula IDF diberikan pada persamaan 10.5. Tingkat kepentingan kata berbanding terbalik dengan jumlah dokumen dimana kata tersebut dimuat. N adalah banyaknya dokumen, $\|d\epsilon D$; $t\epsilon d\|$ adalah banyaknya dokumen dimana kata t muncul.

$$IDF(t, D) = log\left(\frac{N}{|d\epsilon D; t\epsilon d|}\right)$$
 (10.5)

 $^{^{10}}$ Mohon bedakan dengan VSM ($vector\ space\ model)$ dan SVM ($support\ vector\ machine)$

Dengan menggunakan perhitungan TF-IDF yaitu TF*IDF untuk mengisi sel pada matriks Tabel. 10.1, kita memiliki lebih banyak informasi. TF-IDF sampai sekarang menjadi baseline pada information retrieval. Misalkan kita ingin menghitung kedekatan hubungan antar dua dokumen, kita hitung cosine distance antara kedua dokumen tersebut (vektor suatu dokumen disusun oleh kolom pada matriks). Apabila kita ingin menghitung kedekatan hubungan antar dua kata, kita hitung cosine distance antara kedua kata tersebut dimana vektor suatu kata merupakan baris pada matriks. Tetapi seperti intuisi yang mungkin kamu miliki, mengisi entry dengan nilai TF-IDF pun akan menghasilkan sparse matrix.

Statistical semantics hypothesis diturunkan lagi menjadi empat macam hipotesis [66]:

- 1. Bag of words
- $2. \ Distributional \ hypothesis$
- 3. Extended distributional hypothesis
- 4. Latent relation hypothesis

Silakan pembaca mencari sumber tersendiri untuk mengerti keempat hipotesis tersebut atau membaca paper Turney dan Pantel [66].

10.4.2 Sequential, Time Series, dan Compositionality

Bahasa manusia memiliki dua macam karakteristik yaitu adalah data berbentuk **sequential data** dan memenuhi sifat **compositionality**. Sequential data adalah sifat data dimana suatu kemunculan $data_i$ dipengaruhi oleh data sebelumnya $(data_{i-1}, data_{i-2}, ...)$. Perhatikan kedua kalimat berikut:

- 1. Budi melempar bola.
- 2. Budi melempar gedung bertingkat.

Pada kedua kalimat tersebut, kalimat pertama lebih masuk akal karena bagaimana mungkin seseorang bisa melempar "gedung bertingkat". Keputusan kita dalam memilih kata berikutnya dipengaruhi oleh kata-kata sebelumnya, dalam hal ini "Budi melempar" setelah itu yang lebih masuk akal adalah "bola". Contoh lain adalah data yang memiliki sifat *time series* yaitu gelombang laut, angin, dan cuaca. Kita ingin memprediksi data dengan rekaman masa lalu, tapi kita tidak mengetahui masa depan. Kita mampu memprediksi cuaca berdasarkan rekaman parameter cuaca pada hari-hari sebelumnya. Ada yang berpendapat beda *time series* dan *sequential* (sekuensial) adalah diketahuinya sekuens kedepan secara penuh atau tidak. Penulis tidak dapat menyebutkan *time series* dan sekuensial sama atau beda, silahkan pembaca menginterpretasikan secara bijaksana.

Data yang memenuhi sifat *compositionality* berarti memiliki struktur hirarkis. Struktur hirarkis ini menggambarkan bagaimana unit-unit lebih kecil berinteraksi sebagai satu kesatuan. Artinya, interpretasi/pemaknaan unit

yang lebih besar dipengaruhi oleh interpretasi/pemaknaan unit lebih kecil (subunit). Sebagai contoh, kalimat "saya tidak suka makan cabai hijau". Unit "cabai" dan "hijau" membentuk suatu frasa "cabai hijau". Mereka tidak bisa dihilangkan sebagai satu kesatuan makna. Kemudian interaksi ini naik lagi menjadi kegiatan "makan cabai hijau" dengan keterangan "tidak suka", bahwa ada seseorang yang "tidak suka makan cabai hijau" yaitu "saya". Pemecahan kalimat menjadi struktur hirarkis berdasarkan syntactical role disebut constituent parsing, contoh lebih jelas pada Gambar. 10.3. N adalah noun, D adalah determiner, NP adalah noun phrase, VP adalah verb phrase, dan S adalah sentence. Selain bahasa manusia, gambar juga memiliki struktur hirarkis. Sebagai contoh, gambar rumah tersusun atas tembok, atap, jendela, dan pintu. Tembok, pintu, dan jendela membentuk bagian bawah rumah; lalu digabung dengan atap sehingga membentuk satu kesatuan rumah.

Gambar 10.3. Contoh Constituent Tree¹¹.

10.4.3 Distributed Word Representation

Seperti yang disebutkan pada bagian sebelumnya, kita ingin hubungan kata (yang diinferensi dari konteksnya) dapat direpresentasikan sebagai operasi vektor seperti pada ilustrasi Gambar. 10.4. Kata "raja" memiliki sifat-sifat yang dilambangkan oleh suatu vektor (misal 90% aspek loyalitas, 80% kebijaksanaan, 90% aspek kebangsaan, dst), begitu pula dengan kata "pria", "wanita", dan "ratu". Jika sifat-sifat yang dimiliki "raja" dihilangkan bagian sifat-sifat "pria"-nya, kemudian ditambahkan sifat-sifat "wanita" maka idealnya operasi ini menghasilkan vektor yang dekat kaitannya dengan "ratu". Dengan kata lain, raja yang tidak maskulin tetapi fenimin disebut ratu. Seperti yang disebutkan sebelumnya, ini adalah tujuan utama embedding yaitu merepresentasikan "makna" kata sebagai vektor sehingga kita dapat memanipulasi banyak hal berdasarkan operasi vektor. Hal ini mirip (tetapi tidak sama)

¹ source: Pinterest

dengan prinsip singular value decomposition dan autoencoder yang telah dijelaskan sebelumnya.

Raja - Pria + Wanita = ?

Gambar 10.4. Contoh Operasi Vektor Kata.

Selain vector space model, apakah ada cara lain yang mampu merepresentasikan kata dengan lebih baik? Salah satu kekurangan VSM adalah tidak memadukan sifat sekuensial pada konstruksi vektornya. Cara lebih baik ditemukan oleh [40, 41] dengan ekstensi pada [62]. Idenya adalah menggunakan teknik representation learning dan prinsip statistical semantics hypothesis. Metode ini lebih dikenal dengan sebutan word2vec. Tujuan word2vec masih sama, yaitu merepresentasikan kata sebagai vektor, sehingga kita dapat melakukan operasi matematis terhadap kata. Encoder-nya berbentuk Continous bag of words(CBOW) atau Skip Gram. Pada CBOW, kita memprediksi kata diberikan suatu "konteks". Pada arsitektur "Skip Gram" kita memprediksi konteks, diberikan suatu kata. Ilustrasi dapat dilihat pada Gambar. 10.5. Bagian projection layer pada Gambar. 10.5 adalah coding layer. Kami akan memberikan contoh CBOW secara lebih detil.

Perhatikan Gambar. 10.6. Diberikan sebuah konteks "si kucing duduk ... tiker". Kita harus menebak apa kata pada "..." tersebut. Dengan menggunakan teknik autoencoder, output layer adalah distribusi probabilitas katai pada konteks tersebut. Kata yang menjadi jawaban adalah kata dengan probabilitas terbesar, misalkan pada kasus ini adalah "beralaskan". Dengan arsitektur ini, prinsip sekuensial atau time series dan statistical semantics hypothesis terpenuhi (to a certain extent). Teknik ini adalah salah satu contoh penggunaan neural network untuk unsupervised learning. Kita tidak perlu mengkorespondensikan kata dan output yang sesuai karena input vektor didapat dari statistik penggunaan kata. Agar lebih tahu kegunaan vektor kata, kamu dapat mencoba kode dengan bahasa pemrograman Python 2.7 yang disediakan penulis¹². Buku ini telah menjelaskan ide konseptual word embedding pada level abstrak. Apabila kamu tertarik untuk memahami detilnya secara matem-

¹² https://github.com/wiragotama/GloVe_Playground

Gambar 10.5. CBOW vs Skip Gram [41].

Gambar 10.6. CBOW.

atis, kamu dapat membaca berbagai penelitian terkait 13 . Silahkan baca paper oleh Mikolov [40, 41] untuk detil implementasi word embedding.

10.4.4 Distributed Sentence Representation

Kita sudah dapat merepresentasikan kata menjadi vektor, selanjutnya kita ingin mengonversi unit lebih besar (kalimat) menjadi vektor. Salah satu cara

¹³ Beberapa orang berpendapat bahwa evil is in the detail.

paling mudah adalah menggunakan nilai rata-rata representasi word embedding untuk semua kata yang ada pada kalimat tersebut (average of its individual word embeddings). Cara ini sering digunakan pada bidang NLP dan cukup powerful, sebagai contoh pada paper oleh Putra dan Tokunaga [67]. Pada NLP, sering kali kalimat diubah terlebih dahulu menjadi vektor sebelum dilewatkan pada algoritma machine learning, misalnya untuk analisis sentimen (kalimat bersentimen positif atau negatif). Vektor ini yang nantinya menjadi feature vector bagi algoritma machine learning.

Kamu sudah tahu bagaimana cara mengonversi kata menjadi vektor, untuk mengonversi kalimat menjadi vektor cara sederhananya adalah merataratakan nilai vektor kata-kata pada kalimat tersebut. Tetapi dengan cara sederhana ini, sifat sekuensial dan compositional pada kalimat tidak terpenuhi. Sebagai contoh, kalimat "anjing menggigit Budi" dan "Budi menggigit anjing" akan direpresentasikan sebagai vektor yang sama karena terdiri dari kata-kata yang sama. Dengan demikian, representasi kalimat sederhana dengan merata-ratakan vektor kata-katanya juga tidaklah sensitif terhadap urutan¹⁴. Selain itu, rata-rata tidak sensitif terhadap compositionality. Misal frase "bukan sebuah pengalaman baik" tersusun atas frase "bukan" yang diikuti oleh "sebuah pengalaman baik". Rata-rata tidak mengetahui bahwa "bukan" adalah sebuah modifier untuk sebuah frase dibelakangnya. Sentimen dapat berubah bergantung pada komposisi kata-katanya (contoh pada Gambar. 10.7).

Gambar 10.7. Contoh analisis sentimen (Stanford)¹⁵

Cara lainnya adalah meng-encode kalimat sebagai vektor menggunakan recursive autoencoder. Recursive berarti suatu bagian adalah komposisi dari bagian lainnya. Penggunaan recursive autoencoder sangat rasional berhubung

¹⁴ Karena ini recurrent neural network bagus untuk language modelling.

¹⁵ http://nlp.stanford.edu:8080/sentiment/rntnDemo.html

Gambar 10.8. Contoh recursive autoencoder.

Gambar 10.9. Contoh recursive autoencoder dengan sentiment[59].

data memenuhi sifat compositionality yang direpresentasikan dengan baik oleh topologi recursive neural network. Selain itu, urutan susunan kata-kata juga tidak hilang. Untuk melatih recursive autoencoder, output dari suatu layer adalah rekonstruksi input, ilustrasi dapat dilihat pada Gambar. 10.8. Pada setiap langkah recursive, hidden layer/coding layer berusaha men-decode atau merekonstruksi kembali vektor input.

Lebih jauh, untuk sentimen analisis pada kata, kita dapat menambahkan output pada setiap hidden layer, yaitu sentimen unit gabungan, seperti pada Gambar. 10.9. Selain menggunakan recursive autoencoder, kamu juga dapat menggunakan recurrent autoencoder. Kami silahkan pada pembaca untuk memahami recurrent autoencoder. Prinsipnya mirip dengan recursive autoencoder.

Teknik yang disampaikan mampu mengonversi kalimat menjadi vektor, lalu bagaimana dengan paragraf, satu dokumen, atau satu frasa saja? Teknik umum untuk mengonversi teks menjadi vektor dapat dibaca pada [61] yang lebih dikenal dengan nama paragraph vector atau doc2vec.

10.5 Tips

Bab ini menyampaikan penggunaan neural network untuk melakukan kompresi data (representation learning) dengan teknik unsupervised learning. Hal yang lebih penting untuk dipahami bahwa ilmu machine learning tidak berdiri sendiri. Walaupun kamu menguasai teknik machine learning tetapi tidak mengerti domain dimana teknik tersebut diaplikasikan, kamu tidak akan bisa membuat learning machine yang memuaskan. Contohnya, pemilihan fitur machine learning pada teks (NLP) berbeda dengan gambar (visual processing). Mengerti machine learning tidak semata-mata membuat kita bisa menyelesaikan semua macam permasalahan. Tanpa pengetahuan tentang domain aplikasi, kita bagaikan orang buta yang ingin menyetir sendiri!

Soal Latihan

10.1. Feature Selection

Sebutkan dan jelaskan berbagai macam teknik feature selection!

10.2. LSI dan LDA

- (a) Jelaskanlah matrix factorization dan principal component analysis!
- (b) Jelaskanlah Latent Semantic Indexing (LSI) dan Latent Dirichlet Allocation (LDA)!
- (c) Apa persamaan dan perbedaan antara LSI, LDA, dan Autoencoder?

10.3. Variational Autoencoder

Jelaskan apa itu *Variational autoencoder*! Deskripsikan perbedaannya dengan *autoencoder* yang sudah dijelaskan pada bab ini?

Arsitektur Neural Network

As students cross the threshold from outside to insider, they also cross the threshold from superficial learning motivated by grades to deep learning motivated by engagement with questions. Their transformation entails an awakening—even, perhaps, a falling in love.

John C. Bean

Seperti yang sudah dijelaskan pada bab 10, data memiliki karakteristik (dari segi behaviour) misal sequential data, compositional data, dsb. Terdapat arsitektur khusus artificial neural network (ANN) untuk menyelesaikan persoalan pada tipe data tertentu. Pada bab ini, kami akan memberikan beberapa contoh variasi arsitektur ANN yang cocok untuk tipe data tertentu. Penulis akan berusaha menjelaskan semaksimal mungkin ide-ide penting pada masing-masing arsitektur. Tujuan bab ini adalah memberikan pengetahuan konseptual (intuisi). Pembaca harus mengeksplorasi tutorial pemrograman untuk mampu mengimplementasikan arsitektur-arsitektur ini.

11.1 Convolutional Neural Network

Subbab ini akan memaparkan **ide utama** dari convolutional neural network (CNN) berdasarkan paper asli dari LeCun dan Bengio [68] (sekarang (2018) sudah ada banyak variasi). CNN memiliki banyak istilah dari bidang pemrosesan gambar (karena dicetuskan dari bidang tersebut), tetapi demi mempermudah pemahaman intuisi CNN, diktat ini akan menggunakan istilah yang lebih umum juga.

132

Sekarang, mari kita memasuki cerita CNN dari segi pemrosesan gambar. Objek bisa saja dterlatak pada berbagai macam posisi seperti diilustrasikan oleh Gambar. 11.1. Selain tantangan variasi posisi objek, masih ada juga tantangan lain seperti rotasi objek dan perbedaan ukuran objek (scaling). Kita ingin mengenali (memproses) objek pada gambar pada berbagai macam posisi yang mungkin (translation invariance). Salah satu cara yang mungkin adalah dengan membuat suatu mesin pembelajaran (ANN) untuk regional tertentu seperti pada Gambar. 11.2 (warna biru) kemudian meng-copy mesin pembelajaran untuk mampu mengenali objek pada regional-regional lainnya. Akan tetapi, kemungkinan besar ANN copy memiliki konfigurasi parameter yang sama dengan ANN awal. Hal tersebut disebabkan objek yang memiliki informasi prediktif (predictive information) yang berguna untuk menganalisisnya. Dengan kata lain, objek yang sama (smile) memiliki bentuk yang sama. ANN (MLP) bisa juga mempelajari prinsip translation invariance, tetapi memerlukan jauh lebih banyak parameter dibanding CNN (subbab berikutnya secara lebih matematis) yang memang dibuat dengan prinsip translation invariance (built-in).

Gambar 11.1. Motivasi convolutional neural network.

Gambar 11.2. Motivasi convolutional neural network, solusi regional.

11.1.1 Convolution

Seperti yang sudah dijelaskan, motivasi CNN adalah untuk mampu mengenali aspek yang informatif pada regional tertentu (lokal). Dibanding mengcopy mesin pembelajaran beberapa kali untuk mengenali objek pada banyak regional, ide lebih baik adalah untuk menggunakan sliding window. Setiap operasi pada window¹ bertujuan untuk mencari aspek lokal yang paling informatif. Ilustrasi diberikan oleh Gambar. 11.3. Warna biru merepresentasikan satu window, kemudian kotak ungu merepresentasikan aspek lokal paling informatif (disebut filter) yang dikenali oleh window. Dengan kata lain, kita mentransformasi suatu window menjadi suatu nilai numerik (filter). Kita juga dapat mentransformasi suatu window (regional) menjadi d nilai numerik (d-channels, setiap elemen berkorespondensi pada suatu filter). Window ini kemudian digeser-geser sebanyak N kali, sehingga akhirnya kita mendapatkan vektor dengan panjang $d \times N$. Keseluruhan operasi ini disebut sebagai convolution².

Gambar 11.3. Sliding window.

Agar kamu lebih mudah memahami prinsip ini, kami berikan contoh dalam bentuk 1-D pada Gambar. 11.4. Warna biru merepresentasikan feature vector (regional) untuk suatu input (e.g., regional pada suatu gambar, kata pada kalimat, dsb). Pada contoh ini, setiap 2 input ditransformasi menjadi vektor berdimensi 2 (2-channels); menghasilkan vektor berdimensi 4 (2 $window \times 2$).

Gambar 11.4. 1D Convolution.

¹ Dikenal juga sebagai receptive field.

² Istilah convolution yang diterangkan pada konteks machine learning memiliki arti yang berbeda pada bidang signal processing.

Pada contoh sebelumnya, kita menggunakan window selebar 2, satu window mencakup 2 data; i.e., $window_1 = (x_1, x_2)$, $window_2 = (x_2, x_3)$, \cdots . Untuk suatu input \mathbf{x} . Kita juga dapat mempergunakan stride sebesar s, yaitu seberapa banyak data yang digeser untuk window baru. Contoh yang diberikan memiliki stride sebesar satu. Apabila kita memiliki stride = 2, maka kita menggeser sebanyak 2 data setiap langkah; i.e., $window_1 = (x_1, x_2)$, $window_2 = (x_3, x_4)$, \cdots .

Selain sliding window dan filter, convolutional layer juga mengadopsi prinsip weight sharing. Artinya, synapse weights untuk suatu filter adalah sama walau filter tersebut dipergunakan untuk berbagai window. Sebagai ilustrasi, perhatikan Gambar. 11.5, warna yang sama pada synapse weights menunjukan synapse weights bersangkutan memiliki nilai (weight) yang sama. Tidak hanya pada filter hitam, hal serupa juga terjadi pada filter berwarna oranye (i.e., filter berwarnya oranye juga memenuhi prinsip weight sharing). Walaupun memiliki konfigurasi bobot synapse weights yang sama, unit dapat menghasilkan output yang berbeda untuk input yang berbeda. Konsep weight sharing ini sesuai dengan cerita sebelumnya bahwa konfigurasi parameter untuk mengenali karakteristik informatif untuk satu objek bernilai sama walau pada lokasi yang berbeda. Dengan weight sharing, parameter neural network juga menjadi lebih sedikit dibanding menggunakan multilayer perceptron (feed-forward neural network).

Gambar 11.5. Konsep weight sharing.

11.1.2 Pooling

Pada tahap convolution, kita merubah setiap k-sized window menjadi satu vektor berdimensi d (yang dapat disusun menjadi matriks \mathbf{D}). Semua vektor yang dihasilkan pada tahap sebelumnya dikombinasikan (pooled) menjadi satu vektor \mathbf{c} . Ide utamanya adalah mengekstrak informasi paling informatif (semacam meringkas). Ada beberapa teknik pooling, diantaranya: max pooling, average pooling, dan K-max pooling³; diilustrasikan pada Gambar. 11.6. Max pooling mencari nilai maksimum untuk setiap dimensi vektor. Average pooling

³ Kami ingin pembaca mengeksplorasi sendiri dynamic pooling.

mencari nilai rata-rata tiap dimensi. *K-max pooling* mencari *K* nilai terbesar untuk setiap dimensinya (kemudian hasilnya digabungkan). Gabungan operasi convolution dan pooling secara konseptual diilustrasikan pada Gambar. 11.7.

Gambar 11.6. Contoh pooling.

Gambar 11.7. Convolution dan pooling.

Setelah melewati berbagai operasi convolution dan pooling, kita akan memiliki satu vektor yang kemudian dilewatkan pada multilayer perceptron untuk melakukan sesuatu (tergantung permasalahan), misal klasifikasi gambar, klasifikasi sentimen, dsb (Ilustrasi pada Gambar. 11.8).

Gambar 11.8. Convolutional Neural Network⁴.

11.1.3 Rangkuman

Kemampuan utama convolutional neural network (CNN) adalah arsitektur yang mampu mengenali informasi prediktif suatu objek (gambar, teks, potongan suara, dsb) walaupun objek tersebut dapat diposisikan dimana saja pada input. Kontribusi CNN adalah pada convolution dan pooling layer. Convolution bekerja dengan prinsip sliding window dan weight sharing (mengurangi kompleksitas perhitungan). Pooling layer berguna untuk merangkum informasi informatif yang dihasilkan oleh suatu convolution (mengurangi dimensi). Pada ujung akhir CNN, kita lewatkan satu vektor hasil beberapa operasi convolution dan pooling pada multilayer perceptron (feed-forward neural network), dikenal juga sebagai fully connected layer, untuk melakukan suatu pekerjaan (e.g., klasifikasi). Perhatikan, pada umumnya CNN tidak berdiri sendiri, dalam artian CNN biasanya digunakan (dikombinasikan) untuk arsitektur yang lebih besar.

11.2 Recurrent Neural Network

Ide dasar recurrent neural network (RNN) adalah membuat topologi jaringan yang mampu merepresentasikan data sequential (sekuensial) atau time series [69], misalkan data ramalan cuaca. Cuaca hari ini bergantung kurang lebih pada cuaca hari sebelumnya. Sebagai contoh apabila hari sebelumnya mendung, ada kemungkinan hari ini hujan⁵. Walau ada yang menganggap sifat data sekuensial dan time series berbeda, RNN berfokus sifat data dimana instans waktu sebelumnya (t-1) mempengaruhi instans pada waktu berikutnya (t). Intinya, mampu mengingat history.

Secara lebih umum, diberikan sebuah sekuens data $\mathbf{x} = (x_1, \dots, x_N)$. Data x_t (i.e., vektor, gambar, teks, suara) dipengaruhi oleh data sebelum-sebelumnya (history), ditulis sebagai $P(x_t \mid \{x_1, \dots, x_{t-1}\})$. Kami harap

 $^{^4}$ mathworks.com

⁵ Mohon bertanya pada ahli meteorologi untuk kebenaran contoh ini. Contoh ini semata-mata pengalaman pribadi penulis.

kamu ingat kembali materi markov assumption yang diberikan pada bab 7. Pada markov assumption, diasumsikan bahwa data x_t (data point) hanya dipengaruhi oleh **beberapa data sebelumnya saja** (analogi: windowing). Setidaknya, asumsi ini memiliki dua masalah:

- 1. Menentukan window terbaik. Bagaimana cara menentukan banyaknya data sebelumnya (secara optimal) yang mempengaruhi data sekarang.
- 2. Apabila kita menggunakan markov assumption, artinya kita mengganggap informasi yang dimuat oleh data lama dapat direpresentasikan oleh data lebih baru (x_t memuat informasi dari x_{t-J} ; J adalah ukuran window). Penyederhanaan ini tidak jarang mengakibatkan informasi yang hilang.

RNN adalah salah satu bentuk arsitektur ANN untuk mengatasi masalah yang ada pada markov assumption. Ide utamanya adalah memorisasi⁶, kita ingin mengingat **keseluruhan** sekuens (dibanding markov assumption yang mengingat sekuens secara terbatas), implikasinya adalah RNN mampu mengenali dependensi yang panjang (misal x_t ternyata dependen terhadap x_1). RNN paling sederhana diilustrasikan pada Gambar. 11.9. Ide utamanya adalah terdapat pointer ke dirinya sendiri.

Gambar 11.9. Bentuk konseptual paling sederhana recurrent NN.

Ilustrasi Gambar. 11.9 mungkin sedikit susah dipahami karena berbentuk sangat konseptual. Bentuk lebih matematis diilustrasikan pada Gambar. 11.10 [69]. Perhitungan hidden state pada waktu ke-t bergantung pada input pada waktu ke-t (x_t) dan hidden state pada waktu sebelumnya (h_{t-1}) .

Konsep ini sesuai dengan prinsip recurrent yaitu **mengingat** (memorisasi) kejadian sebelumnya. Kita dapat tulis kembali RNN sebagai persamaan 11.1.

$$\mathbf{h}_t = f(x_t, \mathbf{h}_{t-1}, b) \tag{11.1}$$

dimana f adalah fungsi aktivasi (non-linear, dapat diturunkan). Demi menyederhanakan penjelasan, penulis tidak mengikutsertakan bias (b) pada fungsifungsi berikutnya. Kami berharap pembaca selalu mengingat bahwa bias adalah parameter yang diikutsertakan pada fungsi $artificial\ neural\ network$.

⁶ Tidak merujuk hal yang sama dengan dynamic programming.

Gambar 11.10. Konsep Recurrent Neural Network.

Gambar 11.11. Konsep feed forward pada RNN.

Fungsi f dapat diganti dengan variasi $neural\ network^7$, misal menggunakan $long\ short-term\ memory\ network\ (LSTM)\ [70]$. Buku ini hanya akan menjelaskan konsep paling penting, silahkan eksplorasi sendiri variasi RNN.

Secara konseptual, persamaan 11.1 memiliki analogi dengan full markov chain. Artinya, hidden state pada saat ke-t bergantung pada semua hidden state dan input sebelumnya.

$$\mathbf{h}_{t} = f(x_{t}, \mathbf{h}_{t-1})$$

$$= f(x_{t}, f(x_{t-1}, \mathbf{h}_{t-2}))$$

$$= f(x_{t}, f(x_{t-1}, f(\{x_{1}, \dots, x_{t-2}\}, \{\mathbf{h}_{1}, \dots, \mathbf{h}_{t-3}\})))$$
(11.2)

Training pada recurrent neural network dapat menggunakan metode back-propagation. Akan tetapi, metode tersebut kurang intuitif karena tidak mampu mengakomodasi training yang bersifat sekuensial time series. Untuk itu, terdapat metode lain bernama backpropagation through time [71].

Sebagai contoh kita diberikan sebuah sekuens \mathbf{x} dengan panjang N sebagai input, dimana x_t melambangkan input ke-i (data point dapat berupa e.g., vektor, gambar, teks, atau apapun). Kita melakukan feed forward data tersebut ke RNN, diilustrasikan pada Gambar. 11.11. Perlu diingat, RNN

⁷ https://en.wikipedia.org/wiki/Recurrent_neural_network

mengadopsi prinsip parameter sharing (serupa dengan weight sharing pada CNN) dimana neuron yang sama diulang-ulang saat process feed forward.

Kemudian kita memperbaharui parameter (synapse weights) berdasarkan propagasi error (backpropagation). Pada backpropagation biasa, kita perbaharui parameter sambil mempropagasi error dari hidden state ke hidden state sebelumnya. Tetapi, pada backpropagation through time, dilakukan unfolding pada neural network. Kita mengupdate parameter, saat kita sudah mencapai hidden state paling awal. Hal ini diilustrasikan pada Gambar. 11.12⁸. Gambar. 11.12 dapat disederhanakan menjadi bentuk lebih abstrak (konseptual) pada Gambar. 11.13.

Gambar 11.12. Konsep Backpropagation Through Time [39].

Kita mempropagasi error dengan adanya efek dari next states of hidden layer. Synapse weights diperbaharui secara large update. Synapse weight tidak diperbaharui per layer. Hal ini untuk merepresentasikan neural network yang mampu mengingat beberapa kejadian masa lampau dan keputusan saat ini dipengaruhi oleh keputusan pada masa lampau juga (ingatan). Untuk mengerti proses ini secara praktikal (dapat menuliskannya sebagai pro-

⁸ Prinsip ini mirip dengan weight sharing.

Gambar 11.13. Konsep Backpropagation Through Time [1]. Persegi berwarna merah umumnya melambangkan multi-layer perceptron.

gram), penulis sarankan pembaca untuk melihat materi tentang *computation graph*⁹ dan disertasi PhD oleh Mikolov [39].

Walaupun secara konseptual RNN dapat mengingat seluruh kejadian sebelumnya, hal tersebut sulit untuk dilakukan secara praktikal untuk sekuens yang panjang. Hal ini lebih dikenal dengan vanishing atau exploding gradient problem [55, 72, 73]. Seperti yang sudah dijelaskan, ANN dan variasi arsitekturnya dilatih menggunakan teknik stochastic gradient descent (gradient-based optimization). Artinya, kita mengandalkan propagasi error berdasarkan turunan. Untuk sekuens input yang panjang, tidak jarang nilai gradient menjadi sangat kecil dekat dengan 0 (vanishing) atau sangat besar (exploding). Ketika pada satu hidden state tertentu, gradient pada saat itu mendekati 0, maka nilai yang sama akan dipropagasikan pada langkah berikutnya (menjadi lebih kecil lagi). Hal serupa terjadi untuk nilai gradient yang besar.

Berdasarkan pemaparan ini, RNN adalah teknik untuk merubah suatu sekuens input, dimana x_t merepresentasikan data ke-t (e.g., vektor, gambar, teks) menjadi sebuah output vektor \mathbf{y} . Vektor \mathbf{y} dapat digunakan untuk permasalahan lebih lanjut (buku ini memberikan contoh sequence to sequence pada subbab 11.4). Bentuk konseptual ini dapat dituangkan pada persamaan 11.3. Biasanya, nilai y dilewatkan kembali ke sebuah multi-layer perceptron (MLP) dan fungsi softmax untuk melakukan klasifikasi akhir (final output) dalam bentuk probabilitas, seperti pada persamaan 11.4.

$$\mathbf{y} = \text{RNN}(x_1, \cdots, x_N) \tag{11.3}$$

final output =
$$softmax(MLP(y))$$
 (11.4)

Perhatikan, arsitektur yang penulis deskripsikan pada subbab ini adalah arsitektur paling dasar. Untuk arsitektur state-of-the-art, kamu dapat membaca paper yang berkaitan.

⁹ https://www.coursera.org/learn/neural-networks-deep-learning/ lecture/4WdOY/computation-graph

11.3 Part-of-speech Tagging Revisited

Pada bab sebelumnya, kamu telah mempelajari konsep dasar recurrent neural network. Selain digunakan untuk klasifikasi (i.e., hidden state terakhir digunakan sebagai input klasifikasi), RNN juga dapat digunakan untuk memprediksi sekuens seperti persoalan part-of-speech tagging (POS tagging) [74, 75, 76]. Kami harap kamu masih ingat materi bab 7 yang membahas apa itu persoalan POS tagging.

Diberikan sebuah sekuens kata $\mathbf{x} = \{x_1, \dots, x_N\}$, kita ingin mencari sekuens output $\mathbf{y} = \{y_1, \dots, y_N\}$ (sequence prediction); dimana y_i adalah kelas kata untuk x_i . Perhatikan, panjang input dan output adalah sama. Ingat kembali bahwa pada persoalan POS tagging, kita ingin memprediksi suatu kelas kata yang cocok y_i dari kumpulan kemungkinan kelas kata C ketika diberikan sebuah history seperti diilustrasikan oleh persamaan 11.5, dimana t_i melambangkan kandidat POS tag ke-i. Pada kasus ini, biasanya yang dicari tahu setiap langkah (unfolding) adalah probabilitas untuk memilih suatu kelas kata $t \in C$ sebagai kelas kata yang cocok untuk di-assign sebagai y_i .

Ilustrasi diberikan oleh Gambar. 11.14.

$$y_1, \dots, y_N = \underset{t_1, \dots, t_N; t_i \in C}{\arg \max} p(t_1, \dots, t_N \mid x_1, \dots, x_N)$$
 (11.5)

Gambar 11.14. POS tagging menggunakan RNN.

Apabila kita melihat secara sederhana (markov assumption), hal ini tidak lain dan tidak bukan adalah melakukan klasifikasi untuk setiap instance pada sekuens input (persamaan 11.6). Pada setiap time step, kita ingin menghasilkan output yang bersesuaian.

$$y_i = \operatorname*{arg\,max}_{t_i \in C} p(t_i|x_i) \tag{11.6}$$

Akan tetapi, seperti yang sudah dibahas sebelum sebelumnya, markov assumption memiliki kelemahan. Kelemahan utama adalah tidak menggunakan keseluruhan history. Persoalan ini cocok untuk diselesaikan oleh RNN karena kemampuannya untuk mengingat seluruh sekuens (berbeda dengan hidden

markov model (HMM) yang menggunakan markov assumption). Secara teoritis (dan juga praktis¹⁰), RNN lebih hebat dibanding HMM. Dengan ini, persoalan POS tagging (full history) diilustrasikan oleh persamaan 11.7.

$$y_i = \operatorname*{arg\,max}_{t_i \in C} p(t_i | x_1, \cdots, x_N)$$

$$\tag{11.7}$$

Pada bab sebelumnya, kamu diberikan contoh persoalan RNN untuk satu output; i.e., diberikan sekuens input, output-nya hanyalah satu kelas yang mengkategorikan seluruh sekuens input. Untuk persoalan POS tagging, kita harus sedikit memodifikasi RNN untuk menghasilkan output bagi setiap elemen sekuens input. Hal ini dilakukan dengan cara melewatkan setiap hidden layer pada RNN pada suatu jaringan (anggap sebuah MLP + softmax). Kita lakukan prediksi kelas kata untuk setiap elemen sekuens input, kemudian menghitung loss untuk masing-masing elemen. Seluruh loss dijumlahkan untuk menghitung backpropagation pada RNN. Ilustrasi dapat dilihat pada Gambar. 11.15. Tidak hanya untuk persoalan POS tagging, arsitektur ini dapat juga digunakan pada persoalan sequence prediction lainnya seperti named entity recognition¹¹. Gambar. 11.15 mungkin agak sulit untuk dilihat, kami beri bentuk lebih sederhananya (konseptual) pada Gambar. 11.16. Pada setiap langkah, kita menentukan POS tag yang sesuai dan menghitung loss yang kemudian digabungkan. Backpropagation dilakukan dengan mempertimbangkan keseluruhan (jumlah) loss masing-masing prediksi.

Gambar 11.15. Sequence prediction menggunakan RNN.

Berdasarkan arsitektur yang sudah dijelaskan sebelumnya, prediksi POS tag ke-i bersifat independen dari POS tag lainnya. Padahal, POS tag lain-

 $^{^{10}}$ Sejauh yang penulis ketahui. Tetapi hal ini bergantung juga pada variasi arsitektur.

¹¹ https://en.wikipedia.org/wiki/Named-entity_recognition

Gambar 11.16. Sequence prediction menggunakan RNN (disederhakan) [1]. Persegi berwarna merah umumnya melambangkan multi-layer perceptron.

nya memiliki pengaruh saat memutuskan POS tag ke-i (ingat kembali materi bab 7); sebagai persamaan 11.8.

$$y_i = \underset{t_i \in C}{\arg \max} p(t_i \mid y_1, \dots, y_{i-1}, x_1, \dots, x_i)$$
 (11.8)

Salah satu strategi untuk menangani hal tersebut adalah dengan melewatkan POS tag pada sebuah RNN juga, seperti para persamaan 11.9 [1] (ilustrasi pada Gambar. 11.17). Untuk mencari keseluruhan sekuens terbaik, kita dapat menggunakan teknik $beam\ search$ (detil penggunaan dijelaskan pada subbab berikutnya). RNN $^{\rm x}$ pada persamaan 11.9 juga lebih intuitif apabila diganti menggunakan $bidirectional\ RNN$ (dijelaskan pada subbab berikutnya).

$$p(t_i \mid y_1, \dots, y_{i-1}, x_1, \dots, x_i) =$$
softmax(MLP([RNN^x(x_1, \dots, x_i); RNN^t(t_1, \dots, t_{i-1})])) (11.9)

 ${\bf Gambar~11.17.}$ Sequence prediction menggunakan RNN (disederhakan). Persegi melambangkan RNN.

11.4 Sequence to Sequence

Pertama-tama, kami ingin mendeskripsikan kerangka conditioned generation. Pada kerangka ini, kita ingin memprediksi sebuah kelas y_i berdasarkan kelas yang sudah di-hasilkan sebelumnya (history yaitu y_1, \dots, y_{i-1}) dan sebuah conditioning context \mathbf{c} (berupa vektor).

Arsitektur yang dibahas pada subbab ini adalah variasi RNN untuk permasalahan sequence generation¹². Diberikan sekuens input $\mathbf{x} = (x_1, \dots, x_N)$. Kita ingin mencari sekuens output $\mathbf{y} = (y_1, \dots, y_M)$. Pada subbab sebelumnya, x_i berkorespondensi langsung dengan y_i ; i.e., y_i adalah kelas kata (kategori) untuk x_i . Tetapi, pada permasalahan saat ini, x_i tidak langsung berkorespondensi dengan y_i . Setiap y_i dikondisikan oleh **seluruh** sekuens input \mathbf{x} (conditioning context dan history $\{y_1, \dots, y_{i-1}\}$. Dengan itu, M (panjang sekuens output) tidak mesti sama dengan N (panjang sekuens input). Permasalahan ini masuk ke dalam kerangka conditioned generation dimana keseluruhan input \mathbf{x} dapat direpresentasikan menjadi sebuah vektor \mathbf{c} (coding). Vektor \mathbf{c} ini menjadi variabel pengkondisi untuk menghasilkan output \mathbf{y} .

Pasangan input-output dapat melambangkan teks bahasa X-teks bahasa Y (translasi), teks-ringkasan, kalimat-POS tags, dsb. Artinya ada sebuah input dan kita ingin menghasilkan (generate/produce) sebuah output yang cocok untuk input tersebut. Hal ini dapat dicapai dengan momodelkan pasangan input-output $P(\mathbf{y} \mid \mathbf{x})$. Umumnya, kita mengasumsikan ada kumpulan parameter θ yang mengontrol conditional probability, sehingga kita transformasi conditional probability menjadi $P(\mathbf{y} \mid \mathbf{x}, \theta)$. Conditional probability $P(\mathbf{y} \mid \mathbf{x}, \theta)$ dapat difaktorkan sebagai persamaan 11.10. Kami harap kamu mampu membedakan persamaan 11.10 dan persamaan 11.5 (dan 11.8) dengan jeli. Sedikit perbedaan pada formula menyebabkan makna yang berbeda.

$$P(\mathbf{y} \mid \mathbf{x}, \theta) = \prod_{t=1}^{M} P(y_t \mid \{y_1, \dots, y_{t-1}\}, \mathbf{x}, \theta),$$
 (11.10)

Persamaan 11.10 dapat dimodelkan dengan encoder-decoder model yang terdiri dari dua buah RNN dimana satu RNN sebagai encoder, satu lagi sebagai decoder. Ilustrasi encoder-decoder dapat dilihat pada Gambar. 11.18. Gabungan RNN encoder dan RNN decoder ini disebut sebagai bentuk sequence to sequence. Warna biru merepresentasikan encoder dan warna merah merepresentasikan decoder. "<EOS>" adalah suatu simbol spesial (untuk praktikalitas) yang menandakan bahwa sekuens input telah selesai dan saatnya berpindah ke decoder.

Sebuah encoder merepresentasikan sekuens input \mathbf{x} menjadi satu vektor \mathbf{c}^{13} . Kemudian, decoder men-decode representasi \mathbf{c} untuk menghasilkan (generate) sebuah sekuens output \mathbf{y} . Perhatikan, arsitektur kali ini berbeda dengan arsitektur pada subbab 11.3. Encoder-decoder (neural network) bertin-

¹² Umumnya untuk bidang pemrosesan bahasa alami.

 $^{^{\}rm 13}$ Ingat kembali bab10untuk mengerti kenapa hal ini sangat diperlukan.

Gambar 11.18. Konsep encoder-decoder [73].

dak sebagai kumpulan parameter θ yang mengatur conditional probability. Encoder-decoder juga dilatih menggunakan prinsip gradient-based optimization untuk tuning parameter yang mengkondisikan conditional probability [73]. Dengan ini, persamaan 11.10 sudah didefinisikan sebagai neural network sebagai persamaan 11.11. "enc" dan "dec" adalah fungsi encoder dan decoder, yaitu sekumpulan transformasi non-linear.

$$y_t = \text{dec}(\{y_1, \dots, y_{t-1}\}, \text{enc}(\mathbf{x}), \theta)$$
 (11.11)

Begitu model dilatih, encoder-decoder akan mencari output \mathbf{y}^* terbaik untuk suatu input \mathbf{x} , dillustrasikan pada persamaan 11.12. Masing-masing komponen encoder-decoder dibahas pada subbab-subbab berikutnya. Untuk abstraksi yang baik, penulis akan menggunakan notasi aljabar linear. Kami harap pembaca sudah familiar dengan representasi neural network menggunakan notasi aljabar linear seperti yang dibahas pada bab 9.

$$\mathbf{y}^* = \arg\max_{\mathbf{y}} p(\mathbf{y} \mid \mathbf{x}, \theta)$$
 (11.12)

11.4.1 Encoder

Seperti yang sudah dijelaskan, encoder mengubah sekuens input \mathbf{x} menjadi satu vektor \mathbf{c} . Tiap data point pada sekuens input x_t umumnya direpresentasikan sebagai feature vector \mathbf{e}_t . Dengan demikian, encoder dapat direpresentasikan dengan persamaan 11.13

$$\mathbf{h}_{t} = f(\mathbf{h}_{t-1}, \mathbf{e}_{t})$$

$$= f(\mathbf{h}_{t-1}\mathbf{U} + \mathbf{e}_{t}\mathbf{W})$$
(11.13)

dimana f adalah fungsi aktivasi non-linear; \mathbf{U} dan \mathbf{W} adalah matriks bobot (weight matrices-merepresentasikan synapse weights).

Representasi input \mathbf{c} dihitung dengan persamaan 11.14, yaitu sebagai weighted sum dari hidden states [49], dimana q adalah fungsi aktivasi nonlinear. Secara lebih sederhana, kita boleh langsung menggunakan \mathbf{h}_N sebagai \mathbf{c} [73].

$$\mathbf{c} = q(\{\mathbf{h}_1, \cdots, \mathbf{h}_N\}) \tag{11.14}$$

Walaupun disebut sebagai representasi keseluruhan sekuens input, informasi-informasi awal pada input yang panjang dapat hilang. Artinya \mathbf{c} lebih banyak memuat informasi input ujung-ujung akhir. Salah satu strategi yang dapat digunakan adalah dengan membalik (reversing) sekuens input. Sebagai contoh, input $\mathbf{x} = (x_1, \cdots, x_N)$ dibalik menjadi (x_N, \cdots, x_1) agar bagian awal (\cdots, x_2, x_1) lebih dekat dengan decoder [73]. Informasi yang berada dekat dengan decoder cenderung lebih diingat. Kami ingin pembaca mengingat bahwa teknik ini pun tidaklah sempurna.

11.4.2 Decoder

Seperti yang sudah dijelaskan sebelumnya, encoder memproduksi sebuah vektor \mathbf{c} yang merepresentasikan sekuens input. Decoder menggunakan representasi ini untuk memproduksi (generate) sebuah sekuens output $\mathbf{y} = (y_1, \cdots, y_M)$, disebut sebagai proses **decoding**. Mirip dengan encoder, kita menggunakan RNN untuk menghasilkan output seperti diilustrasikan pada persamaan 11.15.

$$\mathbf{h}'_{t} = f(\mathbf{h}'_{t-1}, \mathbf{e}'_{t-1}, \mathbf{c})$$

$$= f(\mathbf{h}'_{t-1}\mathbf{H} + \mathbf{e}'_{t-1}\mathbf{E} + \mathbf{c}\mathbf{C})$$
(11.15)

dimana f merepresentasikan fungsi aktivasi non-linear; \mathbf{H} , \mathbf{E} , dan \mathbf{C} merepresentasikan weight matrices. Hidden state \mathbf{h}'_t melambangkan distribusi probabilitas suatu objek (e.g., POS tag, kata yang berasal dari suatu himpunan) untuk menjadi output y_t . Umumnya, y_t adalah dalam bentuk feature-vector \mathbf{e}'_t .

Dengan penjelasan ini, mungkin pembaca berpikir Gambar. 11.18 tidak lengkap. Kamu benar! Penulis sengaja memberikan gambar simplifikasi. Gambar lebih lengkap (dan lebih nyata) diilustrasikan pada Gambar. 11.19.

Kotak berwarna ungu dan hijau dapat disebut sebagai lookup matrix atau lookup table. Tugas mereka adalah mengubah input x_t menjadi bentuk feature vector-nya (e.g., word embedding) dan mengubah \mathbf{e}_t' menjadi y_t . Komponen "Beam Search" dijelaskan pada subbab berikutnya.

11.4.3 Beam Search

Kita ingin mencari sekuens output yang memaksimalkan nilai probabilitas pada persamaan 11.12. Artinya, kita ingin mencari output terbaik. Pada suatu tahapan decoding, kita memiliki beberapa macam kandidat objek untuk dijadikan output. Kita ingin mencari sekuens objek sedemikian sehingga probabilitas akhir sekuens objek tersebut bernilai terbesar sebagai output. Hal ini dapat dilakukan dengan algoritma Beam Search¹⁴.

¹⁴ https://en.wikipedia.org/wiki/Beam_search

Gambar 11.19. Konsep encoder-decoder (full).

```
beamSearch(problemSet, ruleSet, memorySize)

openMemory = new memory of size memorySize

nodeList = problemSet.listOfNodes

node = root or initial search node

add node to OpenMemory;

while(node is not a goal node)

delete node from openMemory;

expand node and obtain its children, evaluate those children;

if a child node is pruned according to a rule in ruleSet, delete it;

place remaining, non-pruned children into openMemory;

if memory is full and has no room for new nodes, remove the worst

node, determined by ruleSet, in openMemory;

node = the least costly node in openMemory;
```

Gambar 11.20. Beam Search¹⁵.

Secara sederhana, algoritma Beam Search mirip dengan algoritma Viterbi yang sudah dijelaskan pada bab 7, yaitu algoritma untuk mencari sekuens dengan probabilitas tertinggi. Perbedaannya terletak pada heuristic. Untuk menghemat memori komputer, algoritma Beam Search melakukan ekspansi terbatas. Artinya mencari hanya beberapa (B) kandidat objek sebagai sekuens berikutnya, dimana beberapa kandidat objek tersebut memiliki probabilitas $P(y_t \mid y_{t-1})$ terbesar. B disebut sebagai beam-width. Algoritma Beam Search bekerja dengan prinsip yang mirip dengan best-first search (best-B search) yang sudah kamu pelajari di kuliah algoritma atau pengenalan kecerdasan

 $^{^{15}\ \}rm https://en.wikibooks.org/wiki/Artificial_Intelligence/Search/Heuristic_search/Beam_search$

buatan 16 . Pseudo-code *Beam Search* diberikan pada Gambar. 11.20 (*direct quotation*).

11.4.4 Attention-based Mechanism

Seperti yang sudah dijelaskan sebelumnya, model encoder-decoder memiliki masalah saat diberikan sekuens yang panjang (vanishing atau exploding gradient problem). Kinerja model dibandingkan dengan panjang input kurang lebih dapat diilustrasikan pada Gambar. 11.21. Secara sederhana, kinerja model menurun seiring sekuens input bertambah panjang. Selain itu, representasi **c** yang dihasilkan encoder harus memuat informasi keseluruhan input walaupun sulit dilakukan. Ditambah lagi, decoder menggunakan representasinya **c** saja tanpa boleh melihat bagian-bagian khusus input saat decoding. Hal ini tidak sesuai dengan cara kerja manusia, misalnya pada kasus translasi bahasa. Ketika mentranslasi bahasa, manusia melihat bolak-balik bagian mana yang sudah ditranslasi dan bagian mana yang sekarang (difokuskan) untuk ditranslasi. Artinya, manusia berfokus pada suatu bagian input untuk menghasilkan suatu translasi.

Gambar 11.21. Permasalahan input yang panjang.

Sudah dijelaskan sebelumnya bahwa representasi sekuens input **c** adalah sebuah weighted sum. **c** yang sama digunakan sebagai input bagi decoder untuk menentukan semua output. Akan tetapi, untuk suatu tahapan decoding (untuk hidden state \mathbf{h}'_t tertentu), kita mungkin ingin model lebih berfokus pada bagian input tertentu daripada weighted sum yang sifatnya generik. Ide ini adalah hal yang mendasari attention mechanism [49, 50]. Ide ini sangat

¹⁶ https://www.youtube.com/watch?v=j1H3jAAGlEA&t=2131s

berguna pada banyak aplikasi pemrosesan bahasa alami. Attention mechanism dapat dikatakan sebagai suatu soft alignment antara input dan output. Mekanisme ini dapat membantu mengatasi permasalahan input yang panjang, seperti diilustrasikan pada Gambar. 11.22.

Gambar 11.22. Menggunakan vs. tidak menggunakan attention.

Dengan menggunakan attention mechanism, kita dapat mentransformasi persamaan 11.15 pada decoder menjadi persamaan 11.16

$$\mathbf{h}_t' = f'(\mathbf{h}_{t-1}', \mathbf{e}_{t-1}', \mathbf{c}, \mathbf{k}_t) \tag{11.16}$$

dimana \mathbf{k}_t merepresentasikan seberapa (how much) decoder harus memfokuskan diri ke hidden state tertentu pada encoder untuk menghasilkan output saat ke-t. \mathbf{k}_t dapat dihitung pada persamaan 11.17

$$\mathbf{k}_{t} = \sum_{i=1}^{N} \alpha_{t,i} \mathbf{h}_{i}$$

$$\alpha_{t,i} = \frac{\exp(\mathbf{h}_{i} \cdot \mathbf{h}'_{t-1})}{\sum_{z=1}^{N} \exp(\mathbf{h}_{z} \cdot \mathbf{h}'_{t-1})}$$
(11.17)

dimana N merepresentasikan panjang input, \mathbf{h}_i adalah $hidden\ state$ pada encoder pada saat ke-i, \mathbf{h}'_{t-1} adalah $hidden\ state$ pada $decoder\ saat\ ke\ t-1$.

Sejatinya \mathbf{k}_t adalah sebuah weighted sum. Berbeda dengan \mathbf{c} yang bernilai sama untuk setiap tahapan decoding, weight atau bobot $(\alpha_{t,i})$ masing-masing hidden state pada encoder berbeda-beda untuk tahapan decoding yang berbeda. Perhatikan Gambar. 11.23 sebagai ilustrasi (lagi-lagi, bentuk encoder-decoder yang disederhanakan). Terdapat suatu bagian grafik yang

menunjukkan distribusi bobot pada bagian input representation dan attention. Distribusi bobot pada weighted sum **c** adalah pembobotan yang bersifat generik, yaitu berguna untuk keseluruhan (rata-rata) kasus. Masing-masing attention (semacam layer semu) memiliki distribusi bobot yang berbeda pada tiap tahapan decoding. Walaupun attention mechanism sekalipun tidak sempurna, ide ini adalah salah satu penemuan yang sangat penting.

Gambar 11.23. Encoder-decoder with attention.

Seperti yang dijelaskan pada bab 9 bahwa neural network susah untuk dimengerti. Attention mechanism adalah salah satu cara untuk mengerti neural network. Contoh yang mungkin lebih mudah dipahami diberikan pada Gambar. 11.24 yang merupakan contoh kasus mesin translasi [49]. Attention mechanism mampu mengetahui soft alignment, yaitu kata mana yang harus difokuskan saat melakukan translasi bahasa (bagian input mana berbobot lebih tinggi). Dengan kata lain, attention mechanism memberi interpretasi kata pada output berkorespondensi dengan kata pada input yang mana. Sebagai informasi, menemukan cara untuk memahami (interpretasi) ANN adalah salah satu tren riset masa kini [48].

11.4.5 Variasi Arsitektur Sequence to Sequence

Selain RNN, kita juga dapat menggunakan bidirectional RNN (BiRNN) untuk mengikutsertakan pengaruh baik hidden state sebelum $(\mathbf{h}_1, \dots, \mathbf{h}_{t-1})$ dan setelah $(\mathbf{h}_{t+1}, \dots, \mathbf{h}_N)$ untuk menghitung hidden state sekarang (\mathbf{h}_t) [77, 78, 79]. BiRNN menganggap \mathbf{h}_t sebagai gabungan (concatenation) forward hidden state $\mathbf{h}_t^{\rightarrow}$ dan backward hidden state $\mathbf{h}_t^{\leftarrow}$, ditulis sebagai $\mathbf{h}_t = \mathbf{h}_t^{\rightarrow} + \mathbf{h}_t^{\leftarrow 17}$.

 $^{^{\}rm 17}$ Perhatikan! +disini dapat diartikan sebagai penjumlahan atau konkatenasi

Gambar 11.24. Attention mechanism pada translasi bahasa [49]. Warna lebih terang merepresentasikan bobot (fokus/attention) lebih tinggi.

Forward hidden state dihitung seperti RNN biasa yang sudah dijelaskan pada subbab encoder, yaitu $\mathbf{h}_t^{\rightarrow} = f(\mathbf{h}_{t-1}^{\rightarrow}, \mathbf{e}_t)$. Backward hidden state dihitung dengan arah terbalik $\mathbf{h}_t^{\leftarrow} = f(\mathbf{h}_{t+1}^{\leftarrow}, \mathbf{e}_t)$. Ilustrasi encoder-decoder yang menggunakan BiRNN dapat dilihat pada Gambar. 11.25.

Selain variasi RNN menjadi BiRNN kita dapat menggunakan stacked RNN seperti pada Gambar. 11.26 dimana output pada RNN pertama bertindak sebagai input pada RNN kedua. Hidden states yang digunakan untuk menghasilkan representasi encoding adalah RNN pada tumpukan paling atas. Kita juga dapat menggunakan variasi attention mechanism seperti neural checklist model [80] atau graph-based attention [81]. Selain yang disebutkan, masih banyak variasi lain yang ada, silahkan eksplorasi lebih lanjut sendiri.

11.4.6 Rangkuman

Sequence to sequence adalah salah satu bentuk conditioned generation. Artinya, menggunakan RNN untuk menghasilkan (generate) suatu sekuens output yang dikondisikan oleh variabel tertentu. Diktat ini memberikan contoh bagaimana menghasilkan suatu sekuens output berdasarkan sekuens input (conditioned on a sequence of input). Selain input berupa sekuens, konsep ini juga dapat diaplikasikan pada bentuk lainnya. Misalnya, menghasilkan caption saat input yang diberikan adalah sebuah gambar [82]. Kita ubah encoder menjadi sebuah

 ${\bf Gambar\ 11.25.}\ Encoder\text{-}decoder\ {\bf dengan\ BiRNN}.$

 ${\bf Gambar\ 11.26.}\ Encoder\text{-}decoder\ {\bf dengan}\ stacked\ {\bf RNN}.$

CNN (ingat kembali sub bab 11.1) dan decoder berupa RNN [82]. Gabungan CNN-RNN tersebut dilatih bersama menggunakan metode backpropagation.

Perhatikan, walaupun memiliki kemiripan dengan hidden markov model, sequence to sequence bukanlah generative model. Pada generative model, kita ingin memodelkan joint probability $p(x,y) = p(y \mid x)p(x)$ (walaupun secara tidak langsung, misal menggunakan teori Bayes). Sequence to sequence adalah discriminative model walaupun output-nya berupa sekuens, ia tidak memodelkan p(x) (berbeda dengan (hidden markov model). Kita ingin memodelkan conditional probability $p(y \mid x)$ secara langsung, seperti classifier lainnya (e.g., logistic regression). Jadi yang dimodelkan antara generative dan discriminative model adalah dua hal yang berbeda.

11.5 Arsitektur Lainnya

Selain arsitektur yang sudah dipaparkan, masih banyak arsitektur lain baik bersifat generik (dapat digunakan untuk berbagai karakteristik data) maupun spesifik (cocok untuk data dengan karakteristik tertentu atau permasalahan tertentu) sebagai contoh, Restricted Boltzman Machine¹⁸ dan General Adversarial Network (GaN)¹⁹. Saat buku ini ditulis, GaN dan adversarial training sedang populer.

Soal Latihan

- **11.1. POS** *tagging* Pada subbab 11.3, disebutkan bahwa *bidirectional recurrent neural network* lebih cocok untuk persoalan POS *tagging*. Jelaskan mengapa! (hint: bab 7)
- 11.2. Eksplorasi Jelaskanlah pada teman-temanmu apa dan bagaimana prinsip kerja:
- (a) Restricted Boltzman Machine
- (b) General Adversarial Network

 $^{^{18}\ \}mathtt{https://deeplearning4j.org/restrictedboltzmannmachine}$

 $^{^{19}\ \}mathtt{https://deeplearning4j.org/generative-adversarial-network}$