Package 'varbin'

October 12, 2022

Type Package

Title Optimal Binning of Continuous and Categorical Variables

Version 0.2.1

Date 2018-09-21

Author Daniel Safai

Maintainer Daniel Safai <danielsafai@gmail.com>

Description Tool for easy and efficient discretization of continuous and categorical data.

The package calculates the most optimal binning of a given explanatory variable with respect to a user-specified target variable. The purpose is to assign a unique Weight-of-Evidence value to each of the calculated binpoints in order to recode the original variable.

The package allows users to impose certain restrictions on the functional form on the resulting binning while maximizing the overall information value in the original data.

The package is well suited for logistic scoring models where input variables may be subject to restrictions such as linearity by e.g. regulatory authorities. An excellent source describing in detail the development of scorecards, and the role of Weight-of-Evidence coding in credit scoring is (Siddiqi 2006, ISBN: 978–0-

471–75451–0). The package utilizes the discrete nature of decision trees and Isotonic Regression to accommodate the trade-off between flexible functional forms and maximum information value.

License GPL (>= 2)

Imports rpart

Encoding UTF-8

LazyData true

RoxygenNote 6.1.0

NeedsCompilation no

Repository CRAN

Date/Publication 2018-10-12 13:50:03 UTC

2 varbin

R topics documented:

varbin		varbin	
Index			8
	varbin.plot		
	varbin.kink		
	varbin.factor		
	varbin.convert		

Description

Optimal binning of numerical variable

Usage

```
varbin(df, x, y, p=0.05, custom_vec=NA)
```

Arguments

df	A data frama
ut	A data frame
X	String. Name of continuous variable in data frame.
у	String. Name of binary response variable (0,1) in data frame.
p	Percentage of records per bin. Default 5 pct. (0.05) . This parameter only accepts values greater than $0.00\ (0\ pct.)$ and lower than $0.50\ (50\ pct.)$.
custom_vec	Numerical input vector with custom cutpoints. E.g. custom_vec=c(20, 50, 75) for a variable representing age, will result in the cutpoints [<20, <50, <75, >=75]. NA results in the default unrestricted (most optimal) binning.

Value

The command varbin generates a data frame with necessary info and utilities for binning. The user should save the output result so it can be used with e.g. varbin.plot, or varbin.convert.

```
# Set seed and generate data
set.seed(1337)
target <- as.numeric(runif(10000, 0, 1)<0.2)
age <- round(rnorm(10000, 40, 15), 0)
age[age<20] <- round(rnorm(sum(age<20), 40, 5), 0)
age[age>95] <- round(rnorm(sum(age>95), 40, 5), 0)
inc <- round(rnorm(10000, 100000, 10000), 0)
educ <- sample(c("MSC", "BSC", "SELF", "PHD", "OTHER"), 10000, replace=TRUE)</pre>
```

varbin.convert 3

```
df <- data.frame(target=target, age=age, inc=inc, educ=educ)
# Perform unrestricted binning
result <- varbin(df, "age", "target")
# Perform custom binning
result2 <- varbin(df, "age", "target", custom_vec=c(30,40,60,75))</pre>
```

varbin.convert

varbin.convert

Description

Generate new variable based on constructed binnings

Usage

```
varbin.convert(df, ivTable, x)
```

Arguments

df A data frame

ivTable Output from either varbin, varbin.factor, varbin.monotonic or varbin.kink.

x String. Name of variable in data frame for which binnings should be applied.

Value

The command varbin.convert appends a new variable named "WoE_[x]" to the data frame. The new variable consist of the Weight of Evidence values from the resulting binning.

```
# Set seed and generate data
set.seed(1337)
target <- as.numeric(runif(10000, 0, 1)<0.2)
age <- round(rnorm(10000, 40, 15), 0)
age[age<20] <- round(rnorm(sum(age<20), 40, 5), 0)
age[age>95] <- round(rnorm(sum(age>95), 40, 5), 0)
inc <- round(rnorm(10000, 100000, 100000), 0)
educ <- sample(c("MSC", "BSC", "SELF", "PHD", "OTHER"), 10000, replace=TRUE)
df <- data.frame(target=target, age=age, inc=inc, educ=educ)

# Split train/test
df_train <- df[1:5000, ]
df_test <- df[5001:nrow(df), ]

# Perform unrestricted binnings
result <- varbin.factor(df_train, "educ", "target")
result2 <- varbin(df_train, "age", "target")</pre>
```

4 varbin.factor

```
# Convert test data
df_new <- varbin.convert(rbind(df_train, df_test), result,"educ")
df_new <- varbin.convert(df_new, result2, "age")</pre>
```

varbin.factor

varbin.factor

Description

Binning of categorical variable

Usage

```
varbin.factor(df, x, y, custom_vec=NA)
```

Arguments

df A data frame

x String. Name of factor variable in data frame.

y String. Name of binary response variable (0,1) in data frame.

custom_vec Character input vector with custom cutpoints. E.g. custom_vec=c("STUDENT",

"UNEMP,RETIRED", "EMPLOYED") for a variable representing occupation, will result in the cutpoints ["STUDENT", "UNEMP,RETIRED", "EMPLOYED"]. NA results in default binning (no binning) i.e. the cutpoints ["STUDENT", "UNEMP", "RETIRED", "EMPLOYED"] corresponding to the levels of the factor

variable.

Value

The command varbin generates a data frame with necessary info and utilities for binning. The user should save the output result so it can be used with e.g. varbin.plot, or varbin.convert.

```
# Set seed and generate data
set.seed(1337)
target <- as.numeric(runif(10000, 0, 1)<0.2)
age <- round(rnorm(10000, 40, 15), 0)
age[age<20] <- round(rnorm(sum(age<20), 40, 5), 0)
age[age>95] <- round(rnorm(sum(age>95), 40, 5), 0)
inc <- round(rnorm(10000, 100000, 100000), 0)
educ <- sample(c("MSC", "BSC", "SELF", "PHD", "OTHER"), 10000, replace=TRUE)
df <- data.frame(target=target, age=age, inc=inc, educ=educ)

# Perform unrestricted binning
result <- varbin.factor(df, "educ", "target")

# Perform custom binning
result2 <- varbin.factor(df, "educ", "target", custom_vec=c("MSC,BSC,PHD", "SELF", "OTHER"))</pre>
```

varbin.kink 5

Description

Impose global/local extremum i.e. a kink restriction on binning of numerical variable (if possible)

Usage

```
varbin.kink(df, x, y, p=0.05)
```

Arguments

df	A data frame
x	String. Name of continuous variable in data frame.
У	String. Name of binary response variable (0,1) in data frame.
p	Percentage of records per bin. Default 5 pct. (0.05). This parameter only accepts values greater than 0.00 (0 pct.) and lower than 0.50 (50 pct.).

Value

The command varbin.kink generates a data frame with necessary info and utilities for a variable where the binnings are restricted such that the functional form is characterized by having a global/local minimum/maximum i.e. a kink. The function will not work for variables where both a monotonically in- or decreasing functional form can't be imposed The user should save the output result so it can be used with e.g. varbin.plot, or varbin.convert.

```
# Set seed and generate data
set.seed(1337)
target <- as.numeric(runif(10000, 0, 1)<0.2)
age <- round(rnorm(10000, 40, 15), 0)
age[age<20] <- round(rnorm(sum(age<20), 40, 5), 0)
age[age>95] <- round(rnorm(sum(age>95), 40, 5), 0)
inc <- round(rnorm(10000, 100000, 100000), 0)
educ <- sample(c("MSC", "BSC", "SELF", "PHD", "OTHER"), 10000, replace=TRUE)
df <- data.frame(target=target, age=age, inc=inc, educ=educ)

# Perform restricted binning - note the kink shape of the WoE values in the output
result <- varbin.kink(df, "inc", "target")</pre>
```

6 varbin.monotonic

|--|--|

Description

Monotonically in- or decreasing restriction on binning of numerical variable

Usage

```
varbin.monotonic(df, x, y, p=0.05, increase=F, decrease=F, auto=T)
```

Arguments

df	A data frame
X	String. Name of continuous variable in data frame.
у	String. Name of binary response variable (0,1) in data frame.
p	Percentage of records per bin. Default 5 pct. (0.05) . This parameter only accepts values greater than 0.00 $(0$ pct.) and lower than 0.50 $(50$ pct.).
increase	Logical (TRUE/FALSE). Whether to force an increasing monotonic functional form (if possible)
decrease	Logical (TRUE/FALSE). Whether to force a decreasing monotonic functional form (if possible)
auto	Logical (TRUE/FALSE). Whether to choose which of the two above is most optimal

Value

The command varbin generates a data frame with necessary info and utilities for a monotonically inor decreasing functional form restriction imposed to the binning. The user should save the output result so it can be used with e.g. varbin.plot, or varbin.convert.

```
# Set seed and generate data
set.seed(1337)
target <- as.numeric(runif(10000, 0, 1)<0.2)
age <- round(rnorm(10000, 40, 15), 0)
age[age<20] <- round(rnorm(sum(age<20), 40, 5), 0)
age[age>95] <- round(rnorm(sum(age>95), 40, 5), 0)
inc <- round(rnorm(10000, 100000, 10000), 0)
educ <- sample(c("MSC", "BSC", "SELF", "PHD", "OTHER"), 10000, replace=TRUE)
df <- data.frame(target=target, age=age, inc=inc, educ=educ)

# Perform monotonically restricted binning
result <- varbin.monotonic(df, "inc", "target")</pre>
```

varbin.plot 7

varbin.plot varbin.plot

Description

Generate simple plot to visualize binning results

Usage

```
varbin.plot(ivTable)
```

Arguments

ivTable

Output from either varbin, varbin.factor, varbin.monotonic or varbin.kink.

Value

The command varbin.plot generates a simple plot with the Weight of Evidence values on the y-axis and the cutpoints/binnings on the x-axis. Gives a nice overview of the functional form and the relatioship between the explanatory variable and the dependent variable.

```
# Set seed and generate data
set.seed(1337)
target <- as.numeric(runif(10000, 0, 1)<0.2)
age <- round(rnorm(10000, 40, 15), 0)
age[age<20] <- round(rnorm(sum(age<20), 40, 5), 0)
age[age>95] <- round(rnorm(sum(age>95), 40, 5), 0)
inc <- round(rnorm(10000, 100000, 10000), 0)
educ <- sample(c("MSC", "BSC", "SELF", "PHD", "OTHER"), 10000, replace=TRUE)
df <- data.frame(target=target, age=age, inc=inc, educ=educ)

# Perform restricted binning
result <- varbin.kink(df, "inc", "target")
# Plot result
varbin.plot(result)</pre>
```

Index

```
varbin, 2
varbin.convert, 3
varbin.factor, 4
varbin.kink, 5
varbin.monotonic, 6
varbin.plot, 7
```