Turing Machine III

Zeyu Mi 2019-12-9

Adapted From:

IALC 9.1.2, 9.2.1, 9.2.2, 9.2.3 Stanford CS103 Turing Machine

Review: TM with Storage

Review: Multitrack TM

Review: Multi-tape TM

Tape 1
 ...
 B

$$X_1$$
 X_2
 X_3
 X_4
 B
 B
 B
 ...

 Tape 2
 ...
 B
 B
 B
 B
 B
 B
 B
 B
 B
 ...

 Tape 3
 ...
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 ...

Review: TM ≈ Idealized Computer

Effective Computation

- An effective method of computation is a form of computation with the following properties:
 - The computation consists of a set of steps.
 - There are fixed rules governing how one step leads to the next.
 - Any computation that yields an answer does so in finitely many steps.
 - Any computation that yields an answer always yields the correct answer.
- This is not a formal definition. Rather, it's a set of properties we expect out of a computational system.

Church-Turing Thesis

Every effective method of computation is either equivalent to or weaker than a Turing machine.

- This is not a theorem but a falsifiable scientific hypothesis.
 But it has been thoroughly tested! So we have strong faith in its correctness.
- This means Turing Machine can model any "computation".

How we investigate computability?

2.1 Discussion on Problems

Part1. Intro & Set theory(I): Basics & Formal Language.

Part2. Set Theory(II): Axiom system & Cardinality.

Part3. Capture Structures: Binary Relation & Function

2.2 Discussion on Computation

Part1. Turing Machine Basics.

Part2. Variants of Turing Machine. Church-Turing Thesis.

2.3 Discussion on computability

Part1. The Language of Turing Machine. R & RE

Part2. Undecidability.

Output of TM

- For a certain input string, the output of a TM can be one in three kinds:
 - The TM accepts this string.
 - The TM rejects this string.
 - Rather than accepting or rejecting, the TM loops forever on the input string and never stops.

Very Important Terminology

- Let *M* be a Turing machine and let *s* be a string.
 - M accepts s if it enters an accepting state when running on s
 - M rejects s if it enters a rejecting state when running on s.
 - M loops infinitely on s when running on s if it enters neither an accepting nor a rejecting state.
 - M does not accept s if it either rejects s or loops on s.
 - M does not reject s if it either accepts s or loops on s.
 - M halts on s if it accepts w or rejects s.

More Details of RE

- We've known that for a certain language L, if there exists a TM M such that L = L(M), then we call L is a **recursively enumerable** language(递归可枚举语言), or RE.
- So for any RE L, a TM M that L(M) = L, and any string W
 - If $w \in L$, M accepts w in finite steps.
 - If $w \notin L$, M does not accept w, it means M rejects w or loops forever
- We also call the TM M a recognizer for the language L, and L is Turing-recognizable(图灵可识别的).

More Details of RE

- In other words, as an recognizer, M will tell you correct on every correct input, but M is not necessary to tell you wrong on every wrong input.
 - You can not determine the input is correct or wrong until M halts.
- But a problem is solvable(computable) if the computation process finishes in finite steps.

Decider

- Some Turing machines always halt; they never go into an infinite loop.
- If M is a TM and M halts on every possible input, then we say that M is a decider.
- For deciders, accepting is the same as not rejecting and rejecting is the same as not accepting.

Recursive Language

- A language *L* is **recursive**(递归的) if there's a TM *M* such that:
 - If $w \in L$, M accepts w in finite steps.
 - If $w \notin L$, M rejects w in finite steps.
- We also call the TM M a **decider** for the language L, and L is **Turing-decidable**(图灵可判定的).
- Decidable problems, in some sense, are that can definitely be "solved" by a computer.
- Recursive Language is a subset of RE language

Language Hierarchy

Properties of R & RE

- Union/Intersection of two RE language is RE.
- Union/Intersection of two R language is R.

Union of Two RE

- Let L_1 , L_2 be two RE language, $L_{union} = L_1 \cup L_2$
- According to definition, there are two TMs M₁, M₂ accept L₁, L₂
- We can design a new TM M_3 based on M_1 and M_2
- M_3 concurrently simulates M_1 and M_2 , if any one accepts, then M_3 accepts. (How to simulate this process?)

Union of Two RE

- If $s \in L_{union}$ $\Rightarrow s \in L_1 \lor s \in L_2$ $\Rightarrow M_1$ or M_2 accepts $s \Rightarrow M_3$ accepts s
- If $s \notin L_{union}$ $\Rightarrow s \notin L_1 \land s \notin L_2$ $\Rightarrow M_1$ and M_2 do not accept $s \Rightarrow M_3$ does not accept s
- M_3 is a TM recognizing L_{union} accept accept • L_{union} is RE M_1 reject M_2 accept accept M_3

Intersection of Two RE

- Let L_1 , L_2 be two RE language, $L_{intersection} = L_1 \cap L_2$
- According to definition, there are two TMs M₁, M₂ accept L₁, L₂
- We can design a new TM M_3 based on M_1 and M_2
- M_3 first simulates M_1 , if M_1 accepts then simulates M_2 . If M_2 still accepts, then M_3 accepts. (How to simulate this process?)

Intersection of Two RE

- If $s \in L_{intersection}$ $\Rightarrow s \in L_1 \land s \in L_2$ $\Rightarrow M_1 \text{ and } M_2 \text{ accepts } s \Rightarrow M_3 \text{ accepts } s$
- If $s \notin L_{intersection}$ $\Rightarrow s \notin L_1 \lor s \notin L_2$ $\Rightarrow M_1 \text{ or } M_2 \text{ does not accept } s \Rightarrow M_3 \text{ does not accept } s$
- M_3 is a TM recognizing $L_{intersection}$
- *L*_{intersection} is RE

Properties of R & RE

- Union/Intersection of two RE language is RE.
- Union/Intersection of two R language is R.

It can be similarly proved.

- A language L's complement \overline{L} is the set containing all valid strings not in L
 - $-\overline{L} = \Sigma^* L$, recall that Σ^* is total available string set
- Properties:
 - If L is recursive, so is \overline{L}
 - If both L and \overline{L} is RE, then L is recursive

If L is recursive, so is \overline{L} .

Proof:

• Let L = L(M) for some TM M that always halts. We construct a TM \overline{M} such that $\overline{L} = L(\overline{M})$ by "flipping" the result of M.

If both L and \overline{L} is RE, then L is recursive

Proof:

• Let $L=L(M_1)$ and $\overline{L}=L(M_2)$ for some TM M_1 and M_2 . We construct a TM M_3 that always halts such that $L=L(M_3)$ by combining M_1 and M_2

- For any language L, L can be one of three kinds types: R, RE but not R (If any), not RE.
- But there are only four possible types combination of L and \overline{L}
 - Both L and \bar{L} are R
 - Both L and \overline{L} are not RE
 - One of L and \overline{L} is RE, the other one is not RE

Both in Recursive

Both in Not RE

Both in Not RE

R & RE

• We've know $R \subseteq RE$, but more important question is that:

$$R = RE$$
?

 That is, if you can just confirm "yes" answers to a problem, can you necessarily solve that problem?

29

Universal Turing Machine 通用图灵机

An Observation

- When we've been discussing Turing machines, we've talked about designing specific TMs to solve specific problems.
 - TM for $0^n 1^n$
- Does this match your real-world experiences? Do you have one computing device for each task you need to perform?
- Or can we make a "reprogrammable Turing machine?"

A TM Simulator

- We've known it is possible to program a TM simulator on an unbounded-memory computer.
- We could imagine it as a method

boolean simulateTM(TM M, string w)

- with the following behavior:
 - If M accepts w, then simulateTM(M, w) returns true.
 - If M rejects w, then simulateTM(M, w) returns false.
 - If M loops on w, then simulateTM(M, w) loops infinitely.

A TM Simulator

- It is also known that anything that can be done with an unbounded-memory computer can be done with a TM
- This means that there must be some TM that has the behavior of this simulateTM method.

The Universal Turing Machine

- Theorem (Turing, 1936): There is a Turing machine U_{TM} called the Universal Turing Machine that, when run on an input of the form $\langle M, w \rangle$, where M is a Turing machine and w is a string, simulates M running on w and does whatever M does on w (accepts, rejects, or loops).
- U_{TM} behaves as follows:
 - If M accepts w, then U_{TM} accepts $\langle M, w \rangle$
 - If M rejects w, then U_{TM} rejects $\langle M, w \rangle$
 - If M loops on w, then U_{TM} loops on $\langle M, w \rangle$

Encoding Input with binary

- Input string may contains any possible character in the input alphabet of M
- But we know everything on your computer is a string over {0, 1}
- We can let the input alphabet to be {0,1}
- It not necessary to limit the alphabet as {0,1}, but only for simplicity.

The Universal Turing Machine

Encoding TM

- In order to take a Turing Machine as an input, we need to encoding the TM. Similarly, we shall encode TM with binary.
- We first assign integers to the states, tape symbols and directions
 - We assume the states are $q_1, q_2, ..., q_k$ for some k. q_1 is the input state and q_2 is the only accept state.(Is it right?)
 - The tape symbols are $X_1, X_2, ..., X_m$ for some $m. X_1, X_2, X_3$ are 0, 1, B respectively.
 - Refer to direction L as D_1 , R as D_2

Encoding TM

- After assigning each state, symbol and direction an integer, we can encode the transition function δ .
- Suppose one transition rule is $\delta(q_i, X_j) = (q_k, X_l, D_m)$, we shall code this rule by the string $0^i 10^j 10^k 10^l 10^m$.
 - Notice i, j, k, l, m are at least one, so there're no occurrences of two or more consecutive 1's with in the code for a transition
- So let C_i donate the code for the ith transition rule, we can encode the whole TM as:
 - $-C_1 11C_2 11C_3 11 \dots 11C_n$

Example of Code for TM

• Let a TM: $M = (\{q_1, q_2, q_3\}, \{0,1\}, \{0,1,B\}, \{\delta\}, q_1, B, q_2)$

$$- X_1 = 0, X_2 = 1, X_3 = B, D_1 = L, D_2 = R$$

• Transition Function δ :

$$-\delta(q_1,1)=(q_3,0,R)$$

$$-\delta(q_3,0)=(q_1,1,R)$$

$$-\delta(q_3,1)=(q_2,0,R)$$

$$-\delta(q_3, B) = (q_3, 1, L)$$

Example of Code for TM

- Let a TM: $M = (\{q_1, q_2, q_3\}, \{0,1\}, \{0,1,B\}, \{\delta\}, q_1, B, q_2)$ - $X_1 = 0, X_2 = 1, X_3 = B, D_1 = L, D_2 = R$
- Transition Function δ :

$$- \delta(q_1, 1) = (q_3, 0, R) \Rightarrow \delta(q_1, X_2) = (q_3, X_1, D_2) \Rightarrow \mathbf{0}100100010100$$

$$- \delta(q_3, 0) = (q_1, 1, R) \Rightarrow \delta(q_3, X_1) = (q_1, X_2, D_2) \Rightarrow \mathbf{0}001010100100$$

$$- \delta(q_3, 1) = (q_2, 0, R) \Rightarrow \delta(q_3, X_2) = (q_2, X_1, D_2) \Rightarrow \mathbf{0}00100100100$$

$$- \delta(q_3, B) = (q_3, 1, L) \Rightarrow \delta(q_3, X_3) = (q_3, X_2, D_1) \Rightarrow \mathbf{0}0010001000100$$

Code for this TM:

Machine M

Machine M

42

Machine M

The Language of U_{TM}

- Recall that the language of a TM is the set of all strings that TM accepts.
- U_{TM} when run on a string $\langle M, w \rangle$, where M is a TM and w is a string, will
 - Accept $\langle M, w \rangle$ if M accepts w
 - Reject $\langle M, w \rangle$ if M rejects w
 - Loop on $\langle M, w \rangle$ if M loops on w.

The Language of U_{TM}

• The universal language, donated L_u , is the language of the U_{TM}

$$L_u = L(U_{TM}) = \{ \langle M, w \rangle | M \text{ is a TM and M accepts w} \}$$
$$= \{ \langle M, w \rangle | M \text{ is a TM and } w \in L(M) \}$$

Useful fact:

$$\langle M, w \rangle \in L_u \Leftrightarrow M \ accepts \ w$$

• Because $L_u = L(U_{TM})$, we know that $L_u \in RE$

The Language of U_{TM}

- If M accepts w, then we have:
 - U_{TM} accepts $\langle M, w \rangle$
 - U_{TM} accepts $\langle U_{TM}, \langle M, w \rangle \rangle$
 - U_{TM} accepts $\langle U_{TM}, \langle U_{TM}, \langle M, w \rangle \rangle \rangle$
 - **–**

Next

Self-Reference

– Turing machines that compute on themselves!

Undecidable Problems

Problems truly beyond the limits of algorithmic problem-solving!

测试范围

两部分:

- 形式化验证 (70%)
- 图灵机 (30%)

测试范围

形式化验证部分: 70%

- 命题逻辑:程序转化,DPLL算法
- 谓词逻辑:程序转化, lazy SMT techniques, EUF solver, Nelson-Oppen method, trigger matching
- 霍尔逻辑: 公理和推导规则,循环不变量,最弱前置条件

不考的部分:

Switch variable, GSAT, eager SMT techniques, 对lazy SMT techniques的优化(incremental T-solver, theory propagation), e-matching, 公理系统,最强后置条件

测试范围

图灵机部分: 30%

- 图灵机基础:DFA;图灵机定义、表示、计算;设计图灵 机解决某一问题。RE&R的定义,性质(交并补)
- 不可判定性:不可判定问题(通用图灵机语言、停机问题);了解构造证明和规约。

期末考试范围

课程组统一出卷阅卷

- 命题范围: 逻辑1,2,4,5章
- 集合论9,10,11章