Signaux Physiques

CHAPITRE 7 Notions sur l'Amplificateur Opérationnel

Dr N'CHO Janvier Sylvestre

Introduction

L'Amplificateur Opérationnel (abréviation AO) est un circuit intégré complexe constitué de résistances, de condensateurs, de transistors etc...

De façon beaucoup plus simple, l'AO est une **« boîte noire** » qui permet de réaliser diverses opérations mathématiques sur les signaux électriques : amplification, sommation, intégration, dérivation, comparateur...

Il peut aussi adapter des résistances pour les besoins d'un circuit.

Présentation de l'AO (1)

l'amplificateur opérationnel est un composant à 8 bornes. La borne 8 n'est pas connectée. Les bornes 1 et 5 ne sont pas à connaitre, elles servent à un réglage interne. L'amplificateur opérationnel doit être polarisé grâce à un générateur de tension symétrique $-15 \, V$, $+15 \, V$ ou ordinaire $0 \, V/4,5 \, V$. On utilise pour cela les bornes 4 et 7. C'est la première chose à brancher. La dernière chose à faire est de déconnecter ce générateur. Ce générateur n'est pas représenté dans les schémas des montages électriques.

- ✓ E^- : entrée inverseuse (borne 2)
- ✓ E^+ : entrée non inverseuse (borne 3)
- ✓ Une borne S appelée sortie (borne 6).

Présentation de l'AO (2)

- \square Borne : entrée inverseuse, Potentiel v_{-} , intensité i_{-} .
- \square Borne + : entrée non inverseuse, Potentiel v_+ , intensité i_+ .
- \square Borne S: sortie. Potentiel v_s , intensité i_s .
- $\square \varepsilon = v_+ v_-$: c'est la tension différentielle d'entrée

L'amplificateur Opérationnel est donc un composant actif avec 3 bornes de sortie délivrant les tensions $-V_{CC}$; 0; $+V_{CC}$.

Caractéristique statique de transfert (1)

Il existe deux types de régime de fonctionnement : le régime de saturation et le régime linéaire.

Caractéristique statique de transfert (2)

$$u_{s} = \mu \left(u_{+} - u_{-} \right) = \mu \, \varepsilon$$

• Régime linéaire \Rightarrow $u_s = \mu(u_+ - u_-) = \mu \varepsilon$ $\mu = \text{amplification différentielle} \approx 10^5$

• Régime de saturation $\Rightarrow u_s = \pm u_{sat} \approx 14 \text{ V}$

On est en régime linéaire quand $-\varepsilon_M < \varepsilon < +\varepsilon_M$ avec $\varepsilon_M = \mu_{sat}/\mu \approx 10^{-4} V$. On constate qu'en régime linéaire $\pm \varepsilon_M$ sont très faibles.

AO idéal (1)

Un **AO** idéal est un amplificateur différentiel de tension tel que :

- gain infini $\mu \to \infty$
- courant $i_{\perp} = i_{\perp} = 0$
- u_s est fini, $u_s = \mu \varepsilon$ donc $\varepsilon = 0$

Ces trois résultats sont indispensables pour faire les exercices

AO idéal (2)

Valeur typique des caractéristiques d'un AO		
Caractéristiques	Valeur réelle	Valeur idéale
Gain μ	10 ⁵ à 10 ⁸	∞
Impédance de sortie Z_s	10 à 100 Ω	0 Ω
Impédance d'entrée $\left \frac{Z_e}{z_e} \right $	$10^{5} \text{ à } 10^{13} \Omega$	∞ Ω

Montages usuels à AO idéal (1)

☐Suiveur de tension

$$i_e = i_+ = 0$$
 $u_e = u_+ = u_- = u_s$
 $u_e = e - ri_e = e$ $u_s = u_e = e$

$$\Rightarrow \left(\frac{u_s}{u_e} = \frac{u_s}{e} = 1 \right)$$

Montages usuels à AO idéal (2)

Amplificateur de tension

$$u_{+} = u_{-} = 0$$
 $u_{e} = Ri_{e}$ $u_{s} = -R'i_{e}$

$$\Rightarrow \overline{\left(\frac{u_s}{u_e} = -\frac{R'}{R}\right)}$$

On a un gain de -R'/R.

□Changeur de signe

$$R = R' \Rightarrow u_s = -u_e$$

Montages usuels à AO idéal (3)

☐ Sommateur de tensions

$$u_{+} = u_{-} = 0$$
 $u_{s} = -Ri$ $u_{e1} = Ri_{e1}$
 $u_{e2} = Ri_{e2}$ $i = i_{e1} + i_{e2}$

$$\Rightarrow \boxed{u_s = -\left(u_{e1} + u_{e2}\right)}$$

Montages usuels à AO idéal (4)

☐ Intégrateur simple

$$u_e = Ri_e$$
 $i_e = \frac{dq}{dt} = C\frac{du_C}{dt}$,
 $u_s = -u_C$ à $t = 0$ $u_s(0) = 0$,
condensateur déchargé $i_e = \frac{u_e}{R} = -C\frac{du_s}{dt}$,

$$\Rightarrow \left(u_s(t) = -\frac{1}{RC} \int_0^t u_e(t) dt \right)$$

Montages usuels à AO idéal (5)

☐ Dérivateur simple

On permute *R* et *C* dans le montage intégrateur.

$$i_e = C \frac{du_e}{dt} = -\frac{u_s}{R}$$

$$\Rightarrow u_s(t) = -RC \frac{du_e}{dt}$$

Exercices d'application (1)

Déterminer la fonction de transfert du montage suivant. L'amplificateur opérationnel est idéal et fonctionne en régime linéaire.

Exercice d'applications (2)

Nous considérons le filtre ci-dessous alimenté par un générateur sinusoïdal de pulsation ω . L'amplificateur est idéal et en mode linéaire.

- 1) Déterminer la nature du filtre à partir de son comportement asymptotique.
- 2) Exprimer la fonction de transfert en tension en fonction de R,C,α et ω , sous la forme :

$$\underline{H} = \frac{H_0}{1 + j\frac{\omega}{\omega_0}}$$

Préciser ω_0 et H_0 .

3) Déterminer la pulsation de coupure ω_c à -3 dB. En déduire la fréquence de coupure f_c .