HW04

PB19071405 王昊元 2022 年 04 月 26 日

1. a. 未进行调度的情况下和已调度的情况下的指令顺序及停顿如下:

时钟周期数	未调度	已调度		
1	DADDIU R4,R1,#800	DADDIU R4,R1,#800		
2	L.D $F2,0(R1)$	L.D F2,0(R1)		
3	Stall	L.D F6,0(R2)		
4	$\mathrm{MUL.D}\ \mathrm{F4,F2,F0}$	$\mathrm{MUL.D}\ \mathrm{F4,F2,F0}$		
5	L.D~F6,0(R2)	DADDIU R1,R1,#8		
6	Stall	DADDIU R2,R2,#8		
7	Stall	DSLTU R3,R1,R4		
8	Stall	Stall		
9	Stall	Stall		
10	ADD.D $F6,F4,F6$	$ADD.D\ F6,F4,F6$		
11	Stall	Stall		
12	Stall	Stall		
13	Stall	BNEZ R3,foo		
14	S.D $F6,0(R2)$	S.D $F6,0(R2)$		
15	DADDIU R1,R1,#8			
16	DADDIU R2,R2,#8			
17	DSLTU $R3,R1,R4$			
18	Stall			
19	BNEZ R3,foo			
20	Stall			

未调度时,结果向量 Y 中每个元素的执行时间,也就是循环的时钟周期为 19,调度后为 13。 为使处理器硬件独自匹配调度编译器所实现的性能改进,时钟频率应当为原来的 $\frac{19}{13}=1.46$ 倍。

b. 展开 3 次可消除循环开销,指令调度结果如下:

	北人		
时钟周期数	指令		
1	DADDIU R4,R1,#800		
2	L.D $F2,0(R1)$		
3	L.D F6,0(R2)		
4	$\mathrm{MUL.D}\ \mathrm{F4,F2,F0}$		
5	L.D F2,8(R1)		
6	L.D F10,8(R2)		
7	$\mathrm{MUL.D}\ \mathrm{F8,F2,F0}$		
8	L.D F2,16(R1)		
9	L.D F14,16(R2)		
10	$\mathrm{MUL.D}\ \mathrm{F}12,\!\mathrm{F}2,\!\mathrm{F}0$		
11	$ADD.D~F6,\!F4,\!F6$		
12	DADDIU R1,R1,#24		
13	ADD.D F10,F8,F10		
14	ADD.D R2,R2, $\#24$		
15	DSLTU R3,R1,R4		
16	ADD.D F14,F12,F14		
17	S.D $F6,-24(R2)$		
18	S.D $F10,-16(R2)$		
19	BNEZ R3,foo		
20	S.D F14,-8 $(R2)$		

由上表可知,处理 Y 中的 3 个元素的执行时间为 19 个周期,即每个元素的执行时间为 $\frac{19}{3}$ 个周期。

2. 如下图所示:

	 指令	42.64	执行/左/ 按思注词	写 CDB	
迭代		发射	执行/存储器访问		注释
1	L.D F2,0(R1)	1	2	3	Mr. (d. Do to to
1	MUL.D F4,F2,F0	2	4	19(=4+15)	等待 F2 写回
1	L.D F6,0(R2)	3	4	5	
1	ADD.D F6,F4,F6	4	20	30(=20+10)	等待 F4 写回
1	S.D F6,0(R2)	5	31		等待 F6 写回
1	DADDIU R1,R1,#8	6	7	8(=7+1)	
1	DADDIU R2,R2,#8	7	8	9(=8+1)	
1	DSLTU $R3,R1,R4$	8	9	10(=9+1)	
1	BNEZ R3,foo	9	11		等待 R3 写回
2	L.D $F2,0(R1)$	10	12	13	等待跳转结果
2	$\mathrm{MUL.D}\ \mathrm{F4,F2,F0}$	11	19	34(=19+15)	等待乘法器空闲
2	L.D F6,0(R2)	12	13	14	
2	ADD.D $F6,F4,F6$	13	35	45(=35+10)	等待 F4 写回
2	S.D $F6,0(R2)$	14	46		等待 F6 写回
2	DADDIU R1,R1,#8	15	16	17(=16+1)	
2	DADDIU R2,R2,#8	16	17	18(=17+1)	
2	DSLTU $R3,R1,R4$	17	18	19(=18+1)	
2	BNEZ R3,foo	18	20		等待 R3 写回
3	L.D $F2,0(R1)$	19	20	21	
3	$\mathrm{MUL.D}\ \mathrm{F4,F2,F0}$	20	34	49(=34+15)	等待乘法器空闲
3	L.D F6,0(R2)	21	22	23	
3	ADD.D $F6,F4,F6$	22	50	60(=50+10)	等待 F4 写回
3	S.D $F6,0(R2)$	23	61		等待 F6 写回
3	DADDIU R1,R1,#8	24	25	26(=25+1)	
3	DADDIU R2,R2,#8	25	26	27(=26+1)	
3	DSLTU R3,R1,R4	26	27	28(=27+1)	
3	BNEZ R3,foo	27	29		等待 R3 写回

PS: 因为 EX 和 MEM 在同一时钟周期完成,所以表中执行指令的周期和访问存储器的周期合并。

- 第1次迭代周期为31(=31-1+1)周期
- 第 2 次迭代周期为 37(=46-10+1) 周期
- 第 3 次迭代周期为 43(=61-19+1) 周期

3. (1)

 $=1\times85\%$ + 平均一个分支分支预测的 CPI \times 15%

=0.85+命中的 CPI + 未命中的 CPI \times 0.15

 $= 0.85 + (90\% \times (90\% \times 1 + 10\% \times 4) + 10\% \times 3) \times 0.15$

= 1.0705

(2)

$$CPI' = 没有分支的 CPI + 分支预测的 CPI$$

= $1 \times 85\% + 2 \times 15\%$
= 1.15

采用分支目标缓冲执行速度更快。

4. 因为只考虑无条件转移指令,所以当缓冲命中时,则等同于预测正确的情况。

CPI = 没有分支的 CPI + 分支预测的 CPI

由

$$CPI_1 = 1 \times 95\% + CPI_{jump} \times 5\% = 1.1$$

可知 $CPI_{jump} = 3$ 则有

$$CPI_2 = 1 \times 95\% + (90\% \times 1 + 10\% \times 3) \times 5\% = 1.01$$