Exercices

Classes des adresses IP

Déterminer la classe des adresses suivantes :

196.52.11.46

Classe C

128.4.36.10

Classe B

12.97.65.8

Classe A

221.638.4.58

Classe C

Calculs IP

Adresse IP: 152.232.18.205 / 3

Classe: B

Masque réseau binaire : 1110 0000 . 0000 0000 . 0000 0000 . 0000 0000 .

Masque réseau décimal : 224.0.0.0 Adresse du réseau : 128.0.0.0/3

Adresse de diffusion dans ce réseau : 159.255.255.255

Première adresse IP disponible : 128.0.0.1

Dernière adresse IP disponible : 159.255.255.254

Adresse IP: 232.52.200.158 / 8

Classe : D

Première adresse IP disponible : 232.0.0.1

Dernière adresse IP disponible : 232.255.255.254

Plans d'adressage IP

On considère l'adresse IP 196.53.21.0.

Quatre réseaux locaux A, B, C, D sont reliés par des routeurs.

On affecte autant d'adresses IP à chaque réseau local. On réserve 8 adresses IP par réseau.

Déterminer : le masque réseau, l'adresse du sous-réseau, la plage d'adresses réservées pour les points de services ultérieurs, la plage d'adresses des stations, l'adresse broadcast

Masque réseau :

On veut 4 sous-réseaux. 2^k = 4 \Leftrightarrow k = 2. Il faut donc réserver 2 bits : 1111 1111 . 1111 1111 . 1110 0000 255.255.255.192

Adresse du sous-réseau	IP réservés	IP stations	Adresse broadcast
196.53.21.0	196.53.21.1 à	196.53.21.9 à	196.53.21.63
	196.53.21.8	196.53.21.62	
196.53.21.64	196.53.21.65 à	196.53.21.73 à	196.53.21.127
	196.53.21.72	196.53.21.126	
196.53.21.128	196.53.21.129 à	196.53.21.137 à	196.53.21.191
	196.53.21.136	196.53.21.190	
196.53.21.192	196.53.21.193 à	196.53.21.201 à	196.53.21.255
	196.53.21.200	196.53.21.254	

On considère l'adresse IP 73.0.0.0.

1500 machines doivent disposer de leur espace d'adresse IP.

Remplir ce tableau :

	Adresse du sous- réseau	IP réservés	IP stations	Adresse broadcast
1 ^{er} réseau	73.0.0.0	73.0.0.1 à 73.0.0.20	73.0.0.21 à 73.0.31.254	73.0.31.255
7 ^{ème} réseau	73.0.192.0	73.0.192.1 à 73.0.192.20	73.0.192.21 à 73.0.223.254	73.0.223.255
41 ^{ème} réseau	73.5.0.0	73.5.0.1 à 73.5.0.20	73.5.0.21 à 73.5.31.254	73.5.31.255
151 ^{ème} réseau	73.18.192.0	73.18.192.1 à 73.18.192.20	73.18.192.21 à 73.18.223.254	73.18.223.255
241 ^{ème} réseau	73.30.0.0	73.30.0.1 à 73.30.0.20	73.30.0.21 à 73.31.254	73.30.31.255
481 ^{ème} réseau	73.60.0.0	73.60.0.1 à 73.60.0.20	73.60.0.21 à 73.60.31.254	73.60.31.255

Calculs de sous-réseaux

Adresse réseau : 95.214.183.63 / 16 Nombre de sous-réseaux à faire : 64

Nombre de bits pour faire les sous-réseaux : 6 (car 2⁶=64)

Masque binaire: 1111 1111 . 1111 1111 . 1111 1100 . 0000 0000 .

Masque réseau décimal : 255.255.252.0

N°Sous-Réseau	ı Sous-Réseau	1 ^{re} IP	Dernière IP	Ad. de diff. dans sous-réseau
0	95.214.180.0	95.214.180.1	95.214.183.254	95.214.183.255
1	95.214.184.0	95.214.184.1	95.214.187.254	95.214.187.255
2	95.214.188.0	95.214.188.1	95.214.191.254	95.214.191.255
3	95.214.192.0	95.214.192.1	95.214.195.254	95.214.195.255
63	95.215.176.0	95.215.176.1	95.215.179.254	95.215.179.255

Passages réseaux de paquets IP/ Fragmentation

On considère une station E qui émet un paquet IP De 1004 octets à destination d'une station R. La trame est émise sur le réseau D, puis elle traverse successivement les réseaux E et F.

Le réseau D admet une taille maximum de paquet de 1200 octets. Le réseau D admet une taille maximum de paquet de 800 octets. Le réseau D admet une taille maximum de paquet de 200 octets.

Correction

Tables de routage

1.

Compléter pour chaque réseau A, B, C et D :

- Le numéro de réseaux,
- Le broadcast,
- Le masque

On considère ces adresses :

P1-A = 129.5.6.254

P1-B = 130.104.105.254

P3-C = 192.33.192.254

P4-D = 16.16.16.254

P4-E = 129.10.11.254

- 2. Donnez la table de routage de la station α . On suppose que son interface réseau s'appelle eth0, et que la boucle locale s'appelle lo (pour « loop »).
- 3. Donnez la table de routage de P1 (eth0 du côté réseau A, eth1 du côté réseau B).
- 4. Donnez la table de routage de P2 (eth0 du côté réseau B, eth1 du côté réseau C).

Correction

Analyse de paquets IP

```
45 00 00 54 8B FE 00 00 FF 01 XX XX 81 68 FE 06 81 68 FE 05
```

45 00 00 54 8B FE 00 00 FF 01 XX XX 81 68 FE 06 81 68 FE 05

4:4 bits = version iPv4

5 : LE = nombre de mots de 4 octets. 5 = pas d'option.

00: DServ

00 54 : LT = Longueur Totale du paquet IP, en octets

On passe de l'hexa au décimal : $0054 = 5 \times 16^{1} + 4 = 80 + 4 = 84$

8B FE : id (en hexa), pour différencier le paquet et éviter la creation de doublons

00 00 : DF/MF/Offset

FF: TTL = Time To Live = durée de vie, fixée par le système d'exploitation = nombre de routers ou passerelle qu'il a le droit de passer

01: Protocole (ICMP)

XX XX : Checksum

81 68 FE 06 : Adresse IP de l'émetteur

On passe de l'hexa au décimal :

 $81 = 8 \times 16 + 1 = 128 + 1 = 129$

68 6 x 16 + 8 = 96 + 8 = 104

FE = FF - 1 = 255 - 1 = 254

⇒ 129.104.254.6

81 68 FE 05 : Adresse IP du destinataire

⇒ 129.104.254.5