EECS 203: Discrete Mathematics Fall 2023

Discussion 1 Notes

1 Definitions

- Proposition:
- Proof:
- Negation:
- Disproof/Refutation:
- Even:
- Odd:

Solution:

- **Proposition**: A statement about the world that has a truth value (either true or false) or false, but not both.
- **Proof**: A proof shows that a proposition is true by a step-by-step explanation. Each step should be easy enough to follow, even if the overall statement is not obvious.
- **Negation**: The negation of a proposition is the statement with the opposite truth value. In English, we often just add or remove the word "not" to get the negation.
- Disproof/Refutation: When you prove that a proposition is false, this is called a disproof or a refutation. You have disproved or refuted the statement. This generally involves proving that the negation is true.
- Even: An integer x is even if there exists an integer k with x = 2k.
- Odd: An integer x is odd if there exists an integer k with x = 2k + 1

2 Symbolic Logic Review

- $p \wedge q$:
- $p \lor q$:
- $p \rightarrow q$:
- ¬p:

Solution:

- $p \wedge q$: p and q
- $p \lor q$: p or q
- $p \to q$: if p then q
- $\neg p$: not p (this is a negation of p)

3 Exercises

1. Meet your Classmates!

Say hello to your classmates. Your peers are an amazing resource, so this exercise is to help you meet some of them.

Tip: One of the questions in Homework 1 is to give some classmates' names and uniqnames, so this is your head start on that!

In a group of 3 or more:

- a) Introduce yourself
- b) Write down each others' names and uniquames
- c) Find one thing you all have in common

Solution: Answers will vary. :-)

2. Propositions

Which of these are propositions? What are the truth values of those that are propositions?

- a) Do not pass go.
- b) What time is it?
- c) There are no black flies in Maine.
- d) The moon is made of green cheese.
- e) $2^n > 100$
- f) Your discussion leader's favorite number is 2
- g) 4 + x = 5

Solution:

- a) This is **not** a proposition; it's a command and does not have a truth value.
- b) This is **not** a proposition; it's a question.
- c) This is a proposition that is false, as anyone who has been to Maine knows.
- d) This **is** a proposition that is false.
- e) This is **not** a proposition; its truth value depends on the value of n. This is a predicate, which you will hear more of later.
- f) This is a proposition, even if you don't know whether it is true or false.
- g) This is **not** a proposition; its truth value depends on the value of x. This is also a predicate.

3. Beginning to Think Logically \star

Find the negations of each of the following statements. Discuss with a neighbor what that negation means and if there are any other ways to express that statement. (We will formally define some rules for logic later on.)

- a) I am a student.
- b) My sister and my mom like ice cream.
- c) I will wear a dress or skirt today.

- d) We all have phones.
- e) Nobody knows everything.
- f) Someone in this class is a math major.

Solution:

- a) I am not a student.
- b) My sister does not like ice cream or my mom does not like ice cream.
- c) I will not wear a dress nor a skirt today.

 Equivalently, I will not wear a dress and I will not wear a skirt today.
- d) We don't all have phones.

 In other words, at least one of us does not have a phone.
- e) Somebody knows everything
- f) No one in this class is a math major.

4. Truth Tables

Fill in the following truth table.

*Reminder: \land denotes "and", \lor denotes "or", and \rightarrow denotes "implies"/"if...then".

p	q	r	$p \rightarrow q$	$q \rightarrow r$	$(p \to q) \land (q \to r)$	$p \lor r$	$ [(p \to q) \land (q \to r)] \to (p \lor r) $
Т	Τ	Т					
T	T	F					
T	\mathbf{F}	Τ					
T	\mathbf{F}	F					
F	T	Τ					
F	Τ	F					
F	F	Τ					
F	F	F					

Solution:			

			ı	İ		1	
p	q	r	$p \rightarrow q$	$q \to r$	$(p \to q) \land (q \to r)$	$p \lor r$	$[(p \to q) \land (q \to r)] \to (p \lor r)$
Т	Τ	Τ	Т	Τ	T	Т	T
Τ	\mathbf{T}	\mathbf{F}	T	F	${ m F}$	T	T
Τ	\mathbf{F}	T	F	Τ	${ m F}$	Т	${ m T}$
Τ	\mathbf{F}	F	F	Τ	${ m F}$	Т	${ m T}$
F	\mathbf{T}	Τ	T	${ m T}$	${ m T}$	Т	T
F	T	F	Т	F	${ m F}$	F	${ m T}$
F	\mathbf{F}	Τ	Т	${ m T}$	${ m T}$	Т	${ m T}$
F	\mathbf{F}	F	Т	${ m T}$	${ m T}$	F	F
			ı		1	ı	1

5. Logic Puzzle

Knights always tell the truth and Knaves always lie. Figure out what A and B are in each scenario!

- a) A says, "Either I am a Knave, or B is a Knight."
- b) A says, "I am a Knave, but B isn't."

Solution:

- a) A is a Knight and B is a Knight. A cannot be a Knave, because then their claim would be a truth. Because A must be a Knight and can only tell the truth, B must be a Knight.
- b) A is a Knave and B is a Knave. If A were a Knight, A would not be able to claim to be a Knave. In order to make A's statement a lie, B must be a Knave.