■ TABLE 8.2 Loss Coefficients for Pipe Components $\left(h_L = K_L \frac{V^2}{2g}\right)$ (Data from Refs. 5, 10, 27)

Component	K_L	
a. Elbows		
Regular 90°, flanged	0.3	
Regular 90°, threaded	1.5	
Long radius 90°, flanged	0.2	V
Long radius 90°, threaded	0.7	
Long radius 45°, flanged	0.2	
Regular 45°, threaded	0.4	_
b. 180° return bends		V
180° return bend, flanged	0.2	
180° return bend, threaded	1.5	
c. Tees		
Line flow, flanged	0.2	
Line flow, threaded	0.9	V
Branch flow, flanged	1.0	
Branch flow, threaded	2.0	
d. Union, threaded	0.08	v TT
*e. Valves		
Globe, fully open	10	
Angle, fully open	2	100
Gate, fully open	0.15	14
Gate, $\frac{1}{4}$ closed	0.26	V
Gate, $\frac{1}{2}$ closed	2.1	
Gate, $\frac{3}{4}$ closed	17	
Swing check, forward flow	2	V
Swing check, backward flow	∞	-
Ball valve, fully open	0.05	
Ball valve, $\frac{1}{3}$ closed	5.5	
Ball valve, $\frac{2}{3}$ closed	210	

^{*}See Fig. 8.32 for typical valve geometry.