Week 5 Written Assignment

Name: HanYunChen Student ID: 112652010

October 7, 2025

1. Normalization of the Multivariate Gaussian

Let

$$f(x) = \frac{1}{\sqrt{(2\pi)^k |\Sigma|}} \exp\left(-\frac{1}{2}(x-\mu)^{\top} \Sigma^{-1}(x-\mu)\right), \tag{1}$$

where $x, \mu \in \mathbb{R}^k$ and $\Sigma \in \mathbb{R}^{k \times k}$ is symmetric positive definite. We show $\int_{\mathbb{R}^k} f(x) dx = 1$.

Proof. Because Σ is positive definite, it has a symmetric square root $\Sigma^{1/2}$ with $(\Sigma^{1/2})^2 = \Sigma$ and $|\Sigma^{1/2}| = |\Sigma|^{1/2}$. Set the change of variables

$$y = \Sigma^{-1/2}(x - \mu) \qquad \Longleftrightarrow \qquad x = \Sigma^{1/2}y + \mu. \tag{2}$$

Then the Jacobian determinant is $dx = |\Sigma^{1/2}| dy = |\Sigma|^{1/2} dy$, and

$$\int_{\mathbb{R}^k} f(x) \, dx = \int_{\mathbb{R}^k} \frac{1}{(2\pi)^{k/2} |\Sigma|^{1/2}} \exp\left(-\frac{1}{2} y^\top y\right) |\Sigma|^{1/2} dy \tag{3}$$

$$= \prod_{i=1}^{k} \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-y_i^2/2} \, dy_i = 1, \tag{4}$$

since each 1D integral is the standard normal integral.

2. Matrix calculus identities

Let $A, B \in \mathbb{R}^{n \times n}$ and $x \in \mathbb{R}^n$.

(a)
$$\frac{\partial}{\partial A} \operatorname{tr}(AB) = B^{\top}$$

Using $tr(AB) = \sum_{i,j} A_{ij}B_{ji}$, for a fixed entry A_{pq} we have

$$\frac{\partial}{\partial A_{pq}}\operatorname{tr}(AB) = B_{qp}.\tag{5}$$

Therefore the matrix of partial derivatives equals B^{\top} .

(b)
$$x^{\top}Ax = \operatorname{tr}(xx^{\top}A)$$

By cyclicity of trace,

$$\operatorname{tr}\left(xx^{\top}A\right) = \operatorname{tr}\left(Axx^{\top}\right) = \sum_{i,j} A_{ij}x_{j}x_{i} = x^{\top}Ax. \tag{6}$$

(c) Maximum likelihood estimators for $\mathcal{N}(\mu, \Sigma)$

Suppose $x_1, \ldots, x_n \in \mathbb{R}^k$ are i.i.d. samples from $\mathcal{N}(\mu, \Sigma)$ with density in Part 1. The log-likelihood is

$$\ell(\mu, \Sigma) = -\frac{nk}{2} \log(2\pi) - \frac{n}{2} \log|\Sigma| - \frac{1}{2} \sum_{i=1}^{n} (x_i - \mu)^{\top} \Sigma^{-1} (x_i - \mu).$$
 (7)

Estimator of μ . Using the identity $\nabla_{\mu} ((x-\mu)^{\top} \Sigma^{-1} (x-\mu)) = -2\Sigma^{-1} (x-\mu)$,

$$\nabla_{\mu}\ell(\mu,\Sigma) = \sum_{i=1}^{n} \Sigma^{-1}(x_i - \mu). \tag{8}$$

Setting it to zero gives

$$\hat{\mu} = \frac{1}{n} \sum_{i=1}^{n} x_i$$
 (9)

Estimator of Σ . It is convenient to differentiate w.r.t. Σ^{-1} (denote $S = \Sigma^{-1}$). Using $\partial \log |\Sigma|/\partial \Sigma^{-1} = -\Sigma$ and

$$\frac{\partial}{\partial S} \sum_{i=1}^{n} (x_i - \mu)^{\top} S(x_i - \mu) = \sum_{i=1}^{n} (x_i - \mu) (x_i - \mu)^{\top}, \tag{10}$$

we get

$$\frac{\partial \ell}{\partial S} = \frac{n}{2} \Sigma - \frac{1}{2} \sum_{i=1}^{n} (x_i - \mu) (x_i - \mu)^{\top}. \tag{11}$$

Setting to zero and plugging $\hat{\mu}$ yields

$$\hat{\Sigma} = \frac{1}{n} \sum_{i=1}^{n} (x_i - \hat{\mu})(x_i - \hat{\mu})^{\top}$$
 (12)

(Note: this is the MLE. The unbiased sample covariance uses 1/(n-1).)

3. Unanswered questions (for reflection)

- Why are multivariate Gaussian contours ellipsoids determined by eigenvectors/eigenvalues of Σ ?
- What breaks if Σ is not positive definite?
- Why does MLE use 1/n while the unbiased estimator uses 1/(n-1)?

References.

- Course lecture notes and assignment instructions.
- OpenAI. (2025)ChatGPT (GPT-5) From https://chat.openai.com/