Home assignments 4 & 5

26.11.2022

This home assignment will not be collected and you do not need to submit it. Use it for your training.

Problem 1

We use N-period binomial model for a non-dividend paying stock with $u=2, d=\frac{1}{2}$, interest rate $r=\frac{1}{2}$, and initial stock price $S_0>0$. A derivative security pays amount

$$V_N = \ln S_N$$

at time N. Find a formula for V_0 and Δ_0 , the arbitrage-free price and the number of stocks in the replicating strategy at time 0, in terms of S_0 and N.

Remark. Such "log"-option appears in the computations related to the variance swap.

Problem 2

We use N-period binomial model with parameters u, d, and interest rate r such that $d < 1 \le 1 + r < u$. The *corridor* option with face value F and barriers L and U, L < U, pays at time N the amount

$$V_N = F \frac{1}{N} \sum_{n=1}^{N} 1_{\{L < S_n < U\}},$$

where S_n is the price of the stock at time n.

(i) Show that the arbitrage-free price of the option has the form:

$$V_n = f_n(S_n) + \frac{1}{(1+r)^{N-n}} F \frac{1}{N} \sum_{k=1}^n 1_{\{L < S_k < U\}}, \quad n = 0, 1, \dots, N,$$

and obtain FDE (finite-difference equation) for the functions (f_n) .

(ii) Compute $V_0 = f(S_0)$ and Δ_0 , the arbitrage-free price and the number of shares in the replicating strategy at time 0, if N = 2, u = 2, $d = \frac{1}{2}$, $r = \frac{1}{4}$, $S_0 = 4$, and option's parameters F = 100, L = 3, and U = 9.

Problem 3

We use N-period binomial model with parameters S_0 , u, d, and interest rate r such that d < 1 < 1 + r < u. The down-and-in rebate option pays

$$V_N = F1_{\{\tau \le N\}},$$

at time N, where F is the face value, L is the lower barrier, $L < S_0$, and τ is the exit time of the stock price S through L:

$$\tau = \inf\{n = 1, \dots, N : S_n \le L\}.$$

We set $\tau = N + 1$ if $S_n > L$ for all n = 0, 1, ..., N. In this case, the option expires worthless. Remark. Read the conditions carefully. The option expires at time N, not at exit time τ .

(i) Show that the arbitrage-free price of the option before τ has the form:

$$V_n = f_n(S_n), \quad n < \tau, \quad n = 0, 1, \dots, N.$$

Write FDE (finite-difference equation) for functions $f_n = f_n(x)$, n = 0, 1, ..., N. Do not forget about the boundary conditions and the formulas for the single-period risk-neutral probabilities!

(ii) Compute $V_0 = f_0(S_0)$ and Δ_0 , the arbitrage-free price and the number of shares in the replicating strategy at time 0, if N = 2, u = 2, $d = \frac{1}{2}$, the interest rate $r = \frac{1}{2}$, the initial stock price $S_0 = 4$, and the parameters of the option F = 27 and L = 3.

Problem 4

We use N-period binomial model for a non-dividend paying stock with parameters u, d and interest rate r. The BOOST (Banking On Overall Stability) option with face value F and barriers L and U, $L < S_0 < U$, pays at maturity N the amount

$$V_N = F \frac{\tau - 1}{N},$$

where τ is the first time $n \in \{1, ..., N\}$ when the stock price S_n exits (L, U):

$$\tau = \inf\{n \in \{1, \dots, N\} : S_n \le L \text{ or } S_n \ge U\}.$$

We set $\tau = N + 1$ if S remains inside of (L, U) for all times n = 1, ..., N. In this case, the option pays F at time N.

(i) Show that the arbitrage-free price of the option before τ has the form:

$$V_n = f_n(S_n), \quad n < \tau, \quad n = 0, 1, \dots, N.$$

Write FDE (finite-difference equation) for the functions $f_n = f_n(x)$, n = 0, 1, ..., N. Do not forget about the boundary conditions and the formulas for the single-period risk-neutral probabilities!

(ii) Compute $V_0 = f_0(S_0)$ and Δ_0 , the arbitrage-free price and the number of shares in the replicating strategy at time 0, when N = 3, u = 2, $d = \frac{1}{2}$, $r = \frac{1}{4} = 25\%$, the initial stock price $S_0 = 4$, and the option parameters F = 150, L = 3, and U = 9.

Problem 5

We use N-period binomial model with parameters S_0 , u, d, and interest rate r such that d < 1 < 1 + r < u. The up-in-put option becomes European put with strike K and maturity N as soon as the price of the stock crosses the upper barrier $U > S_0$, that is, at the exit time

$$\tau = \min\{1 \le n \le N : S_n \ge U\}.$$

We set $\tau = \infty$ if the price of the stock is less than U for all times. In this case, the up-in-put expires worthless.

(i) Write the system of FDEs for the functions $f_n = f_n(x)$ and $g_n = g_n(x)$, n = 0, 1, ..., N, such that

 $f_n = f_n(x)$ is the put price at time n if the stock price is x;

 $g_n = g_n(x)$ is the up-in-put price at time n if the stock price is x and $n < \tau$.

(ii) Let N=3, $S_0=4$, u=2, $d=\frac{1}{2}$, and $r=\frac{1}{4}$. For the up-in put with strike K=5 and upper barrier U=7, determine the price V_0 and the number of stocks Δ_0 in the replicating strategy at time n=0.

Problem 6

We use N-period binomial model with parameters S_0 , u, d, and interest rate r such that d < 1 < 1 + r < u. The up-and-out rebate option with upper barrier U pays the face value F at time N if $S_n < U$ for all times $n = 1, \ldots, N$. Otherwise, it expires worthless. Note that the initial time n = 0 is not a barrier time.

(i) Show that the arbitrage-free price of the option under the condition that the upper barrier U has not been crossed before and at time n, that is, at times $1, \ldots, n$, has the form

$$V_n = f_n(S_n), \quad n = 0, 1, \dots, N.$$

Write FDE (finite-difference equation) for the functions $f_n = f_n(x)$, n = 0, 1, ..., N. Do not forget about the boundary conditions and the formulas for the single-period risk-neutral probabilities!

(ii) Compute $V_0 = f_0(S_0)$ and Δ_0 , the arbitrage-free price and the number of shares in the replicating strategy at time 0, when N = 2, u = 2, $d = \frac{1}{2}$, $r = \frac{1}{4}$, the initial stock price $S_0 = 4$, and the option parameters F = 25 and U = 5.

Problem 7

We use binomial model with N=3 periods, initial stock price $S_0=4$, relative factors u=2, $d=\frac{1}{2}$, and interest rate $r=\frac{1}{4}$. Compute the initial prices of the American put, call, and straddle options, whose intrinsic values at time $n=1,\ldots,N$ are given by

$$G_n^P = \max(K - S_n, 0), \quad G_n^C = \max(S_n - K, 0), \quad G_n^S = |K - S_n|,$$

where K=4 is the strike. Note that the initial time 0 is not an exercise time. Explain why the price of the American straddle is strictly less than the sum of the prices of the American put and call options.

Problem 8

Consider the N=6-period binomial model on a non-dividend paying stock with parameters $S_0=4$, $u=2,\ d=\frac{1}{2}$ and take the interest rate $r=\frac{1}{4}$. Denote by S_n the price of the stock at time n and let K=6 be a fixed amount of cash.

a) The payment process of the American option has the form:

$$G_n = S_n + K, \quad n = 0, 1, \dots, N.$$

The holder of the option can exercise it at any time n = 0, 1, ..., N.

b) The payoff of the European option at the maturity N is given by

$$G_N = S_N + K.$$

Compute the difference $V_0^A - V_0^E$ of the arbitrage-free prices of these options.