(2012 年度前期 担当:佐藤)

固有値と固有ベクトル

n 次正方行列 A に対し,

$$A\vec{p} = \alpha \vec{p}$$

を満たす数 α を ${\bf A}$ の固有値, $\vec{p}\,(\ne\vec{0})$ を固有値 α に対する ${\bf A}$ の固有ベクトルとよぶ.

- 固有ベクトルは連立方程式 $(\alpha E_n A)\vec{x} = \vec{0}$ の $\vec{0}$ でない解 (非自明解) である.
- 固有値は $\det(\alpha E_n A) = 0$ を満たす数である.

・固有値, 固有ベクトルの求め方 -

- (1) 固有多項式 $f_A(t) = \det(tE_n A)$ を計算する.
- (2) $f_A(t) = 0$ の解 $t = \alpha$ を求める(この解 α が A の固有値 である).
- (3) (2) で求めた各 α に対し、連立方程式 $(\alpha E_n A)\vec{x} = \vec{0}$ の非自明解 $\vec{x} = \vec{p}$ を求める(この解 \vec{p} が A の固有値 α に対する固有ベクトル である).

問題 **4.3.** 行列の
$$A=\begin{pmatrix} 4 & -1 \\ 2 & 1 \end{pmatrix}$$
 に対して、以下の間に答えなさい。

- (1) 固有多項式 $f_A(t) = \det(t E_2 A)$ を求めなさい.
- (2) 2次方程式 $f_A(t) = 0$ の解 α を求めなさい.
- (3) 各 α に対し、連立方程式 $(\alpha E_2 A)\vec{x} = \vec{0}$ の解 \vec{p}_{α} を求めなさい.
- (4) 各 α に対し、 $A\vec{p}_{\alpha} = \alpha\vec{p}_{\alpha}$ が成り立つことを確かめなさい。

問題 4.4. 次の行列の固有値と固有ベクトルを求めなさい.

$$(1) \begin{pmatrix} -3 & 2 \\ -2 & 2 \end{pmatrix} \qquad (2) \begin{pmatrix} 1 & 2 \\ -2 & -3 \end{pmatrix} \qquad (3) \begin{pmatrix} 1 & -2 \\ 2 & -4 \end{pmatrix} \qquad (4) \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix}$$

$$(5) \begin{pmatrix} 1 & 2 & -2 \\ -1 & 4 & -2 \\ -1 & 1 & 1 \end{pmatrix}$$

10 4.2