DEEP LEARNING

LECTURE 6: GENERATIVE ADVERSARIAL NETWORKS

Reference Slides

Namju Kim. Generative Adversarial Networks (GAN)

https://www.slideshare.net/ssuser77ee21/generative-adversarial-networks-70896091

• Taehoon Kim. 지적 대화를 위한 깊고 넓은 딥러닝

https://www.slideshare.net/carpedm20/ss-63116251

01 Introduction

Branches of ML

Supervised Learning

The discriminative model learns how to classify input to its class.

Unsupervised Learning

The generative model learns the distribution of training data.

Probability Basics (Review)

Random variable

Probability mass function

What if x is actual images in the training data?

At this point, x can be represented as a (for example) 64x64x3 dimensional vector.

Probability density function

There is a $p_{data}(x)$ that represents the distribution of actual images.

Let's take an example with human face image dataset. Our dataset may contain few images of men with glasses.

 x_1 is a 64x64x3 high dimensional vector representing a man with glasses.

Our dataset may contain many images of women with black hair.

Our dataset may contain very many images of women with blonde hair.

 x_3 is a 64x64x3 high dimensional vector representing a woman with blonde hair.

Our dataset may not contain these strange images.

 x_4 is an 64x64x3 high dimensional vector representing very strange images.

→ Distribution of images generated by the model

The goal of the generative model is to find a $p_{model}(x)$ that approximates $p_{data}(x)$ well.

> Distribution of actual images

Generative Adversarial Networks

(64x64x3)

Objective Function of GAN

Objective function

Objective Function of GAN

Objective function

Training with real images

Training with fake images

Training with real images

Training with fake images

$$z \longrightarrow G \longrightarrow G(z) \longrightarrow D(G(z))$$

```
import torch
     import torch.nn as nn
    D = nn.Sequential(
         nn.Linear(784, 128),
        nn.ReLU(),
        nn.Linear(128, 1),
        nn.Sigmoid())
     G = nn.Sequential(
         nn.Linear(100, 128),
        nn.ReLU(),
14
        nn.Linear(128, 784),
        nn.Tanh())
     criterion = nn.BCELoss()
     d_optimizer = torch.optim.Adam(D.parameters(), lr=0.01)
     g_optimizer = torch.optim.Adam(G.parameters(), lr=0.01)
     # Assume x be real images of shape (batch size, 784)
     # Assume z be random noise of shape (batch_size, 100)
24
     while True:
        # train D
        loss = criterion(D(x), 1) + criterion(D(G(z)), 0)
        loss.backward()
        d_optimizer.step()
        # train G
        loss = criterion(D(G(z)), 1)
        loss.backward()
        g_optimizer.step()
```


Define the discriminator

input size: 784 hidden size: 128 output size: I

Discriminator


```
import torch
     import torch.nn as nn
     D = nn.Sequential(
         nn.Linear(784, 128),
         nn.ReLU(),
         nn.Linear(128, 1),
         nn.Sigmoid())
     G = nn.Sequential(
         nn.Linear(100, 128),
         nn.ReLU(),
14
         nn.Linear(128, 784),
         nn.Tanh())
     criterion = nn.BCELoss()
     d optimizer = torch.optim.Adam(D.parameters(), lr=0.01)
     g_optimizer = torch.optim.Adam(G.parameters(), lr=0.01)
     # Assume x be real images of shape (batch size, 784)
     # Assume z be random noise of shape (batch_size, 100)
24
     while True:
         # train D
         loss = criterion(D(x), 1) + criterion(D(G(z)), 0)
         loss.backward()
         d_optimizer.step()
         # train G
         loss = criterion(D(G(z)), 1)
         loss.backward()
```

g_optimizer.step()

import torch

Define the generator

input size: 100 hidden size: 128

output size: 784


```
import torch.nn as nn
D = nn.Sequential(
    nn.Linear(784, 128),
    nn.ReLU(),
    nn.Linear(128, 1),
    nn.Sigmoid())
G = nn.Sequential(
    nn.Linear(100, 128),
    nn.ReLU(),
    nn.Linear(128, 784),
    nn.Tanh())
```

```
criterion = nn.BCELoss()
     d optimizer = torch.optim.Adam(D.parameters(), lr=0.01)
     g_optimizer = torch.optim.Adam(G.parameters(), lr=0.01)
     # Assume x be real images of shape (batch size, 784)
     # Assume z be random noise of shape (batch_size, 100)
24
     while True:
         # train D
         loss = criterion(D(x), 1) + criterion(D(G(z)), 0)
         loss.backward()
         d_optimizer.step()
         # train G
         loss = criterion(D(G(z)), 1)
         loss.backward()
         g_optimizer.step()
```


Binary Cross Entropy Loss (h(x), y)

$$-y \log h(x) - (1-y) \log(1-h(x))$$


```
criterion = nn.BCELoss()
     d optimizer = torch.optim.Adam(D.parameters(), lr=0.01)
     g_optimizer = torch.optim.Adam(G.parameters(), lr=0.01)
     # Assume x be real images of shape (batch size, 784)
     # Assume z be random noise of shape (batch_size, 100)
24
     while True:
         # train D
         loss = criterion(D(x), 1) + criterion(D(G(z)), 0)
         loss.backward()
        d_optimizer.step()
         # train G
         loss = criterion(D(G(z)), 1)
         loss.backward()
34
         g_optimizer.step()
```


Optimizer for D and ${\sf G}$


```
import torch
import torch.nn as nn

build import torch
nn.Sequential(
nn.Linear(784, 128),
nn.ReLU(),
nn.Sigmoid())

full import torch
nn.Linear(128, 1),
nn.Sequential(
nn.Linear(128, 1),
nn.ReLU(),
nn.Linear(100, 128),
nn.ReLU(),
nn.Linear(128, 784),
nn.Tanh())

criterion = nn.BCELoss()
```

```
g_optimizer = torch.optim.Adam(G.parameters(), lr=0.01)

# Assume x be real images of shape (batch_size, 784)

# Assume z be random noise of shape (batch_size, 100)

while True:
    # train D

loss = criterion(D(x), 1) + criterion(D(G(z)), 0)

loss.backward()

d_optimizer.step()

# train G

loss = criterion(D(G(z)), 1)

loss.backward()

g_optimizer.step()
```

d optimizer = torch.optim.Adam(D.parameters(), lr=0.01)

x is a tensor of shape (batch_size, 784). z is a tensor of shape (batch_size, 100).


```
import torch
     import torch.nn as nn
    D = nn.Sequential(
         nn.Linear(784, 128),
        nn.ReLU(),
        nn.Linear(128, 1),
        nn.Sigmoid())
     G = nn.Sequential(
         nn.Linear(100, 128),
        nn.ReLU(),
14
        nn.Linear(128, 784),
        nn.Tanh())
     criterion = nn.BCELoss()
18
     d optimizer = torch.optim.Adam(D.parameters(), lr=0.01)
     g_optimizer = torch.optim.Adam(G.parameters(), lr=0.01)
     # Assume x be real images of shape (batch size, 784)
     # Assume z be random noise of shape (batch size, 100)
     while True:
        # train D
        loss = criterion(D(x), 1) + criterion(D(G(z)), 0)
        loss.backward()
        d_optimizer.step()
        # train G
        loss = criterion(D(G(z)), 1)
```

loss.backward()
g_optimizer.step()

Train the discriminator with real images

Train the discriminator with fake images

Forward, Backward and Gradient Descent

```
import torch
     import torch.nn as nn
    D = nn.Sequential(
         nn.Linear(784, 128),
         nn.ReLU(),
        nn.Linear(128, 1),
        nn.Sigmoid())
    G = nn.Sequential(
         nn.Linear(100, 128),
        nn.ReLU(),
14
        nn.Linear(128, 784),
        nn.Tanh())
     criterion = nn.BCELoss()
     d optimizer = torch.optim.Adam(D.parameters(), lr=0.01)
    g_optimizer = torch.optim.Adam(G.parameters(), lr=0.01)
    # Assume x be real images of shape (batch size, 784)
     # Assume z be random noise of shape (batch_size, 100)
24
    while True:
         # train D
        loss = criterion(D(x), 1) + criterion(D(G(z)), 0)
         loss.backward()
         d_optimizer.step()
        # train G
        loss = criterion(D(G(z)), 1)
        loss.backward()
         g_optimizer.step()
```


Train the generator to deceive the discriminator


```
import torch
     import torch.nn as nn
    D = nn.Sequential(
         nn.Linear(784, 128),
         nn.ReLU(),
         nn.Linear(128, 1),
         nn.Sigmoid())
     G = nn.Sequential(
         nn.Linear(100, 128),
         nn.ReLU(),
14
         nn.Linear(128, 784),
         nn.Tanh())
     criterion = nn.BCELoss()
     d optimizer = torch.optim.Adam(D.parameters(), lr=0.01)
     g optimizer = torch.optim.Adam(G.parameters(), lr=0.01)
     # Assume x be real images of shape (batch size, 784)
     # Assume z be random noise of shape (batch_size, 100)
24
     while True:
         # train D
         loss = criterion(D(x), 1) + criterion(D(G(z)), 0)
         loss.backward()
         d_optimizer.step()
         # train G
        loss = criterion(D(G(z)), 1)
         loss.backward()
         g_optimizer.step()
```



```
x \longrightarrow D \longrightarrow D(x)
```


The complete code can be found here

https://github.com/yunjey/pytorch-tutorial

```
import torch
     import torch.nn as nn
    D = nn.Sequential(
         nn.Linear(784, 128),
         nn.ReLU(),
         nn.Linear(128, 1),
         nn.Sigmoid())
     G = nn.Sequential(
         nn.Linear(100, 128),
         nn.ReLU(),
         nn.Linear(128, 784),
         nn.Tanh())
     criterion = nn.BCELoss()
     d optimizer = torch.optim.Adam(D.parameters(), lr=0.01)
     g_optimizer = torch.optim.Adam(G.parameters(), lr=0.01)
     # Assume x be real images of shape (batch size, 784)
     # Assume z be random noise of shape (batch size, 100)
24
     while True:
         # train D
         loss = criterion(D(x), 1) + criterion(D(G(z)), 0)
         loss.backward()
         d_optimizer.step()
         # train G
         loss = criterion(D(G(z)), 1)
         loss.backward()
         g_optimizer.step()
```


• Deep Convolutional GAN(DCGAN), 2015

The authors present a model that is still highly preferred.

- No pooling layer (Instead strided convolution)
- Use batch normalization
- Adam optimizer(lr=0.0002, beta l = 0.5, beta 2 = 0.999)

• Latent vector arithmetic

Extensions of GAN

• CycleGAN: Unpaired Image-to-Image Translation

presents a GAN model that transfer an image from a source domain A to a target domain B in the absence of paired examples.

How does it work?

• Results

winter Yosemite → summer Yosemite

Results

Odd columns contain real images and even columns contain generated images.

SVHN-to-MNIST

MNIST-to-SVHN

• Generative Adversarial Text to Image Synthesis, 2016

presents a novel model architecture that generates an image from the text.

• Training with (real image, right text)

• Training with (fake image, right text)

Training with (real image, wrong text)

StackGAN

• StackGAN: Text to Photo-realistic Image Synthesis

StackGAN

• Generating 128x128 from scratch

Generates a 128x128 image from scratch (not guarantee good result)

StackGAN

• Generating 128x128 from 64x64

Thank you

