Variables	Valor Calculado	Valor medido
<i>VR</i> 1(<i>V</i>)	2.05 <i>v</i>	2.05 <i>v</i>
IR1(mA)	2.5 <i>mA</i>	2.5 <i>mA</i>
VR2(V)	4.25 <i>v</i>	4.25 <i>v</i>
IR2(mA)	1.8 <i>mA</i>	1.9 <i>mA</i>
VR3(V)	2.12 <i>v</i>	2.12 <i>v</i>
IR3(mA)	963 <i>uA</i>	965 <i>uA</i>
VR4(V)	2.12 <i>v</i>	2.12 <i>v</i>
IR4(mA)	963 <i>mA</i>	965 <i>mA</i>
VR5(V)	3.70 <i>v</i>	3.70 <i>v</i>
IR5(mA)	2.05mA	2.05 <i>A</i>

$$vr1 + vr3 + vr4 + vr5 = 10v$$

 $2.05 + 2.12 + 2.12 + 3.70 = 10v$

Resolución del circuito:

Para la resolución del circuito en el simulador Tinkercad, primero es necesario elegir los materiales a utilizar (El generador, multímetro, resistencias, etc.) además elegir la capacidad de las resistencias.

- Colocamos nuestro protoboard, en este caso es un circuito en serie para lo cual colocares las resistencias teniendo cuidado con dejar alguna no conectada.
- Para las conexiones es necesario conectar los cables del generador al protoboard en la ranura de positivo
- Empezaremos a tomar la corriente desde la ranura positiva conectando con las resistencias respectivas y finalmente acabando en la ranura negativa
- Para la toma de datos de voltaje de las resistencias es necesario hacer un circuito en paralelo con nuestro multímetro a la resistencia deseada
- Para el caso de los amperios elegiremos la opción amperios en nuestro multímetro, realizaremos una conexión en serie con el circuito

1/	n	1	TA.	IF

VULIAJL						
	TRAYECTORIA	1	TRAYECTORIA	2	TRAYECTORIA	3
	CALCULADO	MEDIDO	CALCULADO	MEDIDO	CALCULADO	MEDIDO
VT (V)	10	10	10	10	10	10
VR1(V)	2,05	2,05			2.05	2,05
VR2(V)	4,25	4,25	4,25	4,25		
VR3(V)			2,12	2,12	2,12	2,12
VR4(V)					2,12	2,12
VR5(V)	3,7	3,7	3,70	3,70	3,70	3,70
$\sum V$	10	10	10	10	10	10

CORRIENTE

		_		_		_		_		_
	NODO	1	NODO	2	NODO	3	NODO	4	NODO	5
	CALCULADO	MEDIDO								
IT (V)	2.5mA	2.5mA	5.62mA	5.62mA	1926uA	1926uA	4.81mA	4.81mA	2.05mA	2.05mA
IR1(V)	2.5mA	2.5mA	2.5mA	2.5mA						
IR2(V)			1.8mA	1.8mA			1.8mA	1.8mA		
IR3(V)			963uA	965uA	963uA	965uA				
IR4(V)					963uA	965uA	963uA	965uA		
IR5(V)							2.05mA	2.05mA	2.05mA	2.05mA
$\sum I$	2.5mA	2.5mA	5.62mA	5.62mA	1926uA	1926uA	4.81mA	4.81mA	2.05mA	2.05mA

