Scilab Textbook Companion for Electrical Power Systems by A. Husain¹

Created by
Shikhar Saxena
B.E. 3rd yr
Electrical Engineering
Thapar University
College Teacher
Dr Sunil Kumar Singla
Cross-Checked by
Lavitha Pereira

July 14, 2017

¹Funded by a grant from the National Mission on Education through ICT, http://spoken-tutorial.org/NMEICT-Intro. This Textbook Companion and Scilab codes written in it can be downloaded from the "Textbook Companion Project" section at the website http://scilab.in

Book Description

Title: Electrical Power Systems

Author: A. Husain

Publisher: CBS Publishers

Edition: 5

Year: 2009

ISBN: 8123914482

Scilab numbering policy used in this document and the relation to the above book.

Exa Example (Solved example)

Eqn Equation (Particular equation of the above book)

AP Appendix to Example(Scilab Code that is an Appednix to a particular Example of the above book)

For example, Exa 3.51 means solved example 3.51 of this book. Sec 2.3 means a scilab code whose theory is explained in Section 2.3 of the book.

Contents

Lis	st of Scilab Codes	4
1	Load Characteristics	5
2	Supply Systems	15
3	Conductors	19
4	Power Cables	25
5	Line insulators and supports	32
6	Sag and tension	36
7	Line Parameters	41
8	per unit representation	56
9	Short and medium lines	68
10	Long transmission lines	80
11	General networks constants	83
13	Control of voltage and reactive power	89
14	Load flow analysis	96
15	Economic operations of power systems	106

16 Symmetrical faults	112
17 Symmetrical components	119
18 Unsymmetrical faults	127
19 Power system stability	133
20 Travelling waves	144
22 Corona	151
24 System neutral grounding	153
25 Tarrifs	155
26 Power factor improvement	163

List of Scilab Codes

Exa 1.1	to calculate the average load monthly energy consump-	
	tion and load factor	5
Exa 1.2	to calculate the diversity factor avg load and laod factor	
	of each consumer avg load and load factor of combined	
	load	6
Exa 1.3	to find the maximum value and the consumption of en-	
	ergy in kWh	8
Exa 1.4	to plot the load duration curve from the chronological	
	load curve	8
Exa 1.5	to determine the load factor from the load duration curve	9
Exa 1.6	to calculate plant capacity factor load factor utilization	
	factor reserve capacity	10
Exa 1.7	to plot the chronological load duration load energy curve	
	and then calculating the load factor and the utilization	
	factor	10
Exa 1.8	to find the diversity factor of a power station	12
Exa 1.9	to calculate max demand on the station installed capac-	
	ity energy supplied in a year	13
Exa 2.1	To calculate the percentage saving in conductor material	15
Exa 2.2	To compare the amount of conductor material required	15
Exa 2.3	To calculate the volume of conductor	16
Exa 2.4	To calculate the percentage of additional load	17
Exa 2.5	To compare the diameter and weight	17
Exa 3.1	To determine the most economical size	19
Exa 3.2	to calculate the most economical cross sectional area .	20
Exa 3.3	to calculate the best current density of a three phase oh	
	line	21
Exa 3.4	To calculate rms value of curent for a 3 phase	22

Exa 3.5	To determine the most economical size of copper conductor	2
Exa 3.6	To calculate the most economical current density	2
Exa 4.1	To calculate the maximum stress on the insulation	2
Exa 4.1	To calculate the overall diameter and its most econom-	
LAG 1.2	ical diameter of a single core cable	2
Exa 4.3	To calculate potential gradient at the surface of teh con-	
LAG 1.0	ductor	2
Exa 4.4	To calculate the minimum diameter of the lead sheath	2
Exa 4.5	To calculate the diameter of the inter sheath and the	_
Δ <i>x</i> α 1.0	voltage	2
Exa 4.6	capacitance between any pair of conductors and the	_
2110 210	charging current	2
Exa 4.7	To calculate charging kvar	2
Exa 4.8	To calculate restitivity of the insulating material	3
Exa 4.9	To calculate capacitance charging current ic reactive var	
	dielectric loss and equivalent insulation resistance	
Exa 5.1	To calculate the voltage distribution across each unit	
	and the string efficiency	
Exa 5.2	To calculate voltage across the lowest unt and the string	
	efficiency	3
Exa 5.3	to find the voltage distribution and the string efficiency	3
Exa 5.6	to find the voltage between the conductors and the string	
	efficiency	3
Exa 5.7	to calculate the voltage across each unit as a percentage	
	of the total voltage	3
Exa 6.1	To calculate the sag	3
Exa 6.2	to calculate the deflected sag and the vertical component	
	of sag \dots	
Exa 6.3	determine tension and sag	3
Exa 6.4	to calculate the temperature at which sag will remain	
	same under conditions of no ice and no wind	3
Exa 6.5	to find the clearance between the conductor and the	
	water at a point midpoint between the towers	4
Exa 7.1	To calculate the inductance of each inductor inductive	
	reactance per km and loop inductance per km	4
Exa 7.2	To calculate inductance and inductive reactance per phase	
	per km of the line	4

Exa 7.3	To calculate the inductive reactance per phase per km	
	of the line	43
Exa 7.4	To calculate the effective inductance of the line	43
Exa 7.5	To calculate the inductance of the line per km	44
Exa 7.6	To calculate the inductive reactance per phase per km	
	of the system	44
Exa 7.7	determine the line inductance and the inductive reac-	
	tance	45
Exa 7.8	To calculate the capacitance of each conductor to neu-	
	tral per km and line to line capacitance and capacitance	
	susceptance to neutral per km	46
Exa 7.9	To calculate the charging current per km and the reac-	
	tive voltamperes	47
Exa 7.10	to find the capacitance per km to neutral and the ca-	
	pacitive reactance per phase per km	47
Exa 7.11	To calculate the capacitive reactance per phase per km	
	of the line	48
Exa 7.12	To calculate the capicitance of the line	48
Exa 7.13	To calculate the capacitance per km to neutral and the	
	capacitive reactance to neutral per km to the line	49
Exa 7.14	To calculate the inductive recatance and the capacitive	
	reactance per phase per km	50
Exa 7.15	To calculate the voltage induced per km	51
Exa 7.16	to calculate the voltage induced in telephone conductor	
	due to electrostatic effect	52
Exa 7.17	To calculate the inductance per unit length	53
Exa 7.18	To calculate the loop inductance of the line	54
Exa 8.1	To calculate the per unit impedance and admittance .	56
Exa 8.2	Three phase apparent power in pu	56
Exa 8.3	determine the total reactance in per unit	57
Exa 8.4	to calculate per unit impedances at 15 kva base	58
Exa 8.5	To calculate the voltage drop in line per unit	59
Exa 8.6	To calculte the through impedance	59
Exa 8.7	to determine the per phase generator voltage	62
Exa 8.8	to calculate the per unit impedance of all units	63
Exa 8.9	To calculte the volatge at the terminals of the motor .	64
Exa 8.10	To find the generator bus terminal voltage	65
Exa 9.1	calculate the current voltage and power factor of the load	68

Exa 9.2	calculate power factor voltage regulation and efficiency	69
Exa 9.3	calculate voltage and power factor	70
Exa 9.4	determine the voltage and power factor	71
Exa 9.5	the voltage at the generator busbars	72
Exa 9.6	determine voltage current power factor apparent power	
	efficiency and regulation of line	73
Exa 9.7	calculate receiving end load	77
Exa 9.8	to calculate A B C D constants sending end voltage	
	current power factor and efficiency	77
Exa 10.1	To calculate the A B C D constants	80
Exa 10.2	To calculate the sending end voltage sending end cur-	
	rent line charging current efficiency of transmission and	
	voltage regulation	81
Exa 11.2	To find the volatge current and pf at the sending end .	83
Exa 11.3	To calculate sending end voltage	84
Exa 11.4	To calculate the value of ABCD parameters and the	
	characteristic impedance	86
Exa 11.5	To determine the equivalent T network	87
Exa 13.1	To calculate the maximum power phase difference for	
	maximum power transmitted and the rating of synchronou	lS
	phase modifier	89
Exa 13.2	To find the rating of the modifier and the power factor	90
Exa 13.3	To calculate the sending voltage maximum power and	
	additional reactive power	91
Exa 13.4	To find the mva rating of synchronous phase modifier .	93
Exa 14.1	determine Ybus	96
Exa 14.2	determine modified Ybus	97
Exa 14.3	determine Ybus	98
Exa 14.4	determine Ybus	98
Exa 14.5	determine modified Ybus	99
Exa 14.6	determine Ybus	100
Exa 14.7	determine modified Ybus	101
Exa 14.8	determine the voltages at buses	103
Exa 15.1	to find the incremental cost of two units	106
Exa 15.2	to find the load division between the two units	106
Exa 15.3	determine the saving in fuel cost	107
Exa 15.4	find the loss coefficients and the transmission loss	108
Exa 15.5	find the penalty factor	109

Exa 15.6	find the penalty factor and the additional cost per hour	
	to increase the output of plant 1 by 1 MW	109
Exa 15.7	calculate the penalty factors for the two plants	110
Exa 15.8	determine the generation schedule and the load demand	110
Exa 16.1	To find the high voltage terminals of a transformer	112
Exa 16.2	to calculate the subtransient transient and synchronous	
	short circuit currents	113
Exa 16.3	To calculte the reactance of the reactor to prevent the	
	circuit breakers from overloading	115
Exa 16.4	To find the reactor necessary to prevent the switchgear	116
Exa 16.5	to find the reactor reactances	116
Exa 16.6	to determine short circuit MVA and fault current dis-	
	tribution	117
Exa 17.1	To calculate the positive negative zero sequence compo-	
	nent of currents and return neutral current	119
Exa 17.2	To detremine the symmetrical components of the 3 phase	
	system	120
Exa 17.3	To find the symmetrical components of the line current	122
Exa 17.7	To determine the complex power represented by three	
	phase voltages and three phase currents by symmetrical	
	and unbalanced components	124
Exa 18.1	To determine the fault current and the line to line volt-	
	ages	127
Exa 18.2	to find the sequence LLG and LL	129
Exa 18.3	To calculate voltage to neutral of the faulty phase	131
Exa 19.1	To find the steady state stability limit	133
Exa 19.2	To determine teh steady state stability limit	134
Exa 19.4	To calculate the kinetic energy	137
Exa 19.5	To calculate equivalent h constant at a base of 100MVA	137
Exa 19.6	To calculte whether the generator will remain in syn-	
	chronism	138
Exa 19.7	To estimate the sudden increase in generator output .	139
Exa 19.8	To detremine the stabilty of the system	139
Exa 19.9	To determine the critical clearing angle	140
Exa 19.10	To determine the critical clearing angle	141
Exa 19.11	To plot the sqing curve	142
Exa 20.1	to calculate the surge impedances and velocities of the	
	line and cable	144

Exa 20.2	To find the voltage distribution	146
Exa 20.3	to find the reflected voltage and current in the cable .	146
Exa 20.4	To determine from first principles the magnitudes of first	
	and second pulses	14'
Exa 20.5	To find the surge voltage distribution	148
Exa 20.6	To calculate the current voltage waves and the resistance	
	reflected from and transmitted beyond the junction .	148
Exa 20.7	To calculate the voltage across load	14
Exa 20.8	To find the maximum voltage	15
Exa 22.1	to determine the disruptive critical voltage visual criti-	
	cal voltages for local and general corona	15
Exa 22.2	to estimate the corona loss	153
Exa 24.1	to calculate reactance to neutralize the capacitance to	
	earth	15
Exa 24.2	To determine the inductance and kva rating	15
Exa 25.1	To determine the overall cost per kwh	15
Exa 25.2	To calculate the annual bill	15
Exa 25.3	To determine the cost of energy per kwh at the busbars	15
Exa 25.4	to determine the energy consumption per year and the	
	yearly bill	15
Exa 25.5	To detremine the saving in energy cost	15
Exa 25.6	To determine the total energy consummed and the total	
	bill	15
Exa 25.7	To determine which tariff is economical	15
Exa 25.8	to calculate the annual bill	15
Exa 25.9	To find the number of units for which the tariff is econ-	
	imical	16
Exa 25.10	to find the energy consumption per year	16
Exa 25.11	to find the generation cost per kwh	16
Exa 26.1	To claculate the value of capicitance	16
Exa 26.2	To calculate the capacitiance kVAr and the new supply	
	of current	16
Exa 26.3	to calculate the kVAr rating and capacitance per phase	16
Exa 26.4	To calculate the capacitance per phase	16
Exa 26.5	To calculate current to the motor at full load current	
	through capacitor and capacitance	16
Exa 26.6	To calculate the capacitance per phase	16
Exa. 26.7	To calculate the leading kyar kya rating and power factor.	

Exa 26.8	To calculate power factor leading kvar and kva	167
Exa 26.9	To calculate the total load kVA and power factor	168
Exa 26.10	To calculate the annual saving	169
Exa 26.11	To detremine the most economical pf and the kva rating	169
Exa 26.12	To detremine the annual savings	170
Exa 26.13	To estimate the limiting cost per kvar	170

Chapter 1

Load Characteristics

Scilab code Exa 1.1 to calculate the average load monthly energy consumption and 1

```
1 clear;
2 clc;
3 nos_lmps=8;
4 pow_of_lmp=60;
                                         //power in watts
5 dur_per_day=5;
                                        //duration in
     hours
6 t_dur=24;
                                       //duration in
     hours
7 \text{ max\_dem} = 1500;
                                      //demand in watts
9 nos_heaters=2;
                                     //power in watts
10 pow_of_heaters=1000;
11 dur_per_day_heater=3;
                                     //duration in hours
12
13 enrgy_lmp=(nos_lmps*pow_of_lmp*dur_per_day);
                                                       //
      energy in watt hour
14 energy_heater=(nos_heaters*pow_of_heaters*
     dur_per_day_heater); //energy in watt hour
15
16 act_ene_con=(enrgy_lmp + energy_heater);
                                                       //
      energy in watt hour
```

```
17
18 avg_load=(act_ene_con/t_dur);
                                                     //
      avverage load in watt
19 printf("\n The average load of the consumer is: %.2
      f W", avg_load);
20 mon_ene_con=(act_ene_con*30);
      monthly energy consumption in wtthour
21 printf("\n The monthly energy consumption of the
      consumer is: \%.0 \text{ f kWh}", mon_ene_con/1000);
22
23 load_fac=(avg_load/max_dem);
                                                     //
     load factor is unitless
24 printf("\n The load factor of the consumer is: %.4f
     ",load_fac);
```

 ${
m Scilab\ code\ Exa\ 1.2}$ to calculate the diversity factor avg load and laod factor of

```
1 //to calculate the a).diversity factor b).avg load
      and laod factor of each consumer c).avg load and
      load factor of combined load.
\frac{2}{\sqrt{\text{postfix}}} 1,2...4 shows the consumers.
4 clc;
5 //for consumer1
6 avg_load1=1;
                                   //load in kwatt
                                  //demand in kwatt
7 \text{ max\_dem1=5};
8 dem1_at8=5;
                                    //demand in kwatt
9 l_f1=(avg_load1/max_dem1); //load factor is
      unitless
10 printf ("\n the load factor for consumer 1 is: \%.2 f
      n, l_f1);
11
12 //for consumer2
13 \text{ max\_dem2=2};
                                  //demand in kwatt
14 dem2_at8=1.6;
                                      //demand in kwatt
```

```
15 \quad 1_{f2} = 0.15;
                                  //load factor is unitless
16 avg_load2=(1_f2*max_dem2); //load in kwatt
17 printf("\n the avg load for consumer 2 is:
                                                     \%.2 f \ n"
      ,avg_load2);
18
19 //for consumer3
20 avg_load3=0.5;
                                      //load in kwatt
                                     //demand in kwatt
21 \text{ max\_dem3=2};
22 dem3_at8=1;
                                     //demand in kwatt
23 l_f3=(avg_load3/max_dem3);
                                  //load factor is
      unitless
24 printf ("\n the load factor for consumer 3 is: \%.2 f
      n, 1_f3);
25
26 //for consumer4
27 \text{ max\_dem4} = 10;
                                    //demand in kwatt
                                     //demand in kwatt
28 \text{ dem4}_{at8=5};
                                  //load factor is unitless
29 \quad 1_f4=0.25;
30 avg_load4=(l_f4*max_dem4); //load in kwatt
31 printf("\n the avg load for consumer 4 is: \%.2 \,\mathrm{f} \n"
      ,avg_load4);
32
33 tot_avg_load=(avg_load1 + avg_load2 + avg_load3 +
      avg_load4); //load in kwatt
34 printf("\n the total avg load is: \%.2 \,\mathrm{f} \,\n",
      tot_avg_load);
35
36 tot_max_dem=(max_dem1 + max_dem2 + max_dem3 +
      max_dem4); //demand in kwatt
37 printf("\n the total maximum demand is: \%.2 \text{ f} \text{ n}",
      tot_max_dem);
38
39 \text{ tot\_dem\_at8=(dem1\_at8 + dem2\_at8 + dem3\_at8 +}
      dem4_at8);
                                //demand in kwatt
40 printf("\n the total demand at 8pm is: \%.2 \text{ f} \ \text{n}",
      tot_dem_at8);
41
42 div_fact=(tot_max_dem/tot_dem_at8);
```

Scilab code Exa 1.3 to find the maximum value and the consumption of energy in kWh

```
1 clear;
2 clc;
3
4 ene_con=600;
5 lf=.45;
6 t=24;
7 max_dem=ene_con/(t*lf);
8 printf("The maximum demand is:%.2 f kW\n", max_dem);
9
10 lf=.65;
11 ene_con=lf*max_dem*t;
12 printf("The energy consumed in 24h is:%.2 f kWh", ene_con);
```

 ${f Scilab\ code\ Exa\ 1.4}$ to plot the load duration curve from the chronological load cu

Scilab code Exa 1.5 to determine the load factor from the load duration curve

```
1 clear;
2 clc;
3 11=15;
                               //load in MW
                             //load in MW
4 12=10;
5 13=5;
                            //load in MW
6
7 t1=8;
                           //time in hours
                          //time in hours
8 t2=8;
9 t3=8;
                         //time in hours
10 t = 24;
                        //time in hours
11
12 \max_{\text{dem}=\max}(11,12,13); // \text{load in MW}
13 printf("\n the maximum demand is: \%.2 \text{ f MW} \setminus \text{n}",
      max_dem);
14
15 act_ener_consum=(11*t1 + 12*t2 + 13*t3); //energy
      consumed in MWH
16 printf("\n the actual energy consumed is: %.2 f MWH\
      n ",act_ener_consum);
17
18 avg_load=(act_ener_consum/t); //load in MW
19 printf("\n the average demand is: \%.2 \text{ f MW} \setminus n",
      avg_load);
```

Scilab code Exa 1.6 to calculate plant capacity factor load factor utilization fac

```
1 clear;
2 clc;
3 \text{ max\_dem} = 500;
                                        //demand is in
     MW
4 \min_{dem=400};
                                       //demand is in MW
5 \text{ cap\_plnt} = 750;
                                      //capacity of the
     plant is MW
7 avg_ann_load=(max_dem + min_dem)/2; //load is in
8 printf("\n the average annual load is: \%f MW\n",
     avg_ann_load);
9
                                   //capacity
10 cap_f = (avg_ann_load/cap_plnt);
     factoe is dimentionless
11 printf("\n the capacity factor is: \%f\n ",cap_f);
12
13 l_f=(avg_ann_load/max_dem); //load factor is
      dimentionless
14 printf("\n the load factor is: \%f\n",1_f);
15
16 u_f = (max_dem/cap_plnt);
                           // utilization
     factor is dimetionless
17 printf("\n the utilization factor is: \%f\n ",u_f);
```

Scilab code Exa 1.7 to plot the chronological load duration load energy curve and

```
1 // to plot the chronological ,load duration, load
      energy curve and then
2 //calculating the load factor and the utilization
      factor
3
4 clc;
5 clf();
                             //installed capacity in MW
6 inst_cap=100;
                           //demand in MW
7 \text{ max\_dem} = 70;
                           //time in hours
8 t1=6;
9 t2=9.5;
10 \ t3=0.5;
11 \ t4=2;
12 t5=6;
                          //demand in MW
13 d1 = 70;
14 d2=50;
15 d3 = 40;
16 	 d4 = 200;
17 	ext{ d5} = 10;
18
19 scf(0);
20 x = [0 1 2 3 4 5 6 7 8 9 10 11 12 12.5 13 14 15 16 17
      18 19 20 21 22 23 24];
21 //shows the time from 12pm to 12 am
\frac{22}{0.00} //0 shows 12am and 24 shows 12 pm
23
24 y = [20 20 10 10 10 10 10 10 50 50 50 50 40 40 50 50
      50 50 50 50 70 70 70 70 70 70];
25 //loads in MW
26
27 bar(x,y,0.5, 'blue');
28 xlabel('TIME');
                            //this is time
29 ylabel('LOAD IN MW');
30 title('CHRONOLOGICAL LOAD CURVE');
31
32
33 scf(1);
34 x=[0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
```

```
20 21 22 23 24];
35 //time in hours
36
40 20 20 10 10 10 10 10 10];
38 //loads in MW
39
40 bar(x,y,1,'red');
41 xlabel('TIME IN HOURS');
42 ylabel('LOAD IN MW');
43 title('LOAD DURATION CURVE');
45 \text{ ene} = ((d1*t1) + (d2*t2) + (d3*t3) + (d4*t4) + (5*t5))
           //energy in MWH
46
47 d_1f = (ene/(max_dem*24));
                                                //
     demand factor is dimentionless
48 printf("\n the demand factor is: \%f\n ",d_lf);
49
50 u_f = (max_dem/inst_cap);
                                              //
     utilization factor is dimentionless
51 printf("\n the utilization factor is:
                                          %f\n ",u_f);
52
53 scf(2);
54 x = [0, 10, 20, 40, 50, 70];
y = [0, 240, 420, 740, 895, 1015];
56 \text{ plot}(x,y);
57 xlabel('LOAD IN MW');
58 ylabel('ENERGY IN MWH');
59 title('LOAD ENERGY CURVE');
```

Scilab code Exa 1.8 to find the diversity factor of a power station

```
1 //to find the diversity factor of a power station 2
```

Scilab code Exa 1.9 to calculate max demand on the station installed capacity ener

```
1 //to calculate a).max demand on the station b).
      installed capacity c). energy supplied in a year
3 clc;
4 peak_11=25;
                           //load is in MW
                      //load is in MW
//load is in MW
5 peak_12=20;
6 peak_13=30;
                     //load factor is dimentionless
7 ann_lf=0.6;
8 d_f=1.65;
                       //diversity factor is
      dimentionless
10 max_dem = (peak_11 + peak_12 + peak_13)/d_f;
11 printf("\n the maximum demand is: \%.2 \text{ f MW} \setminus \text{n}",
      max_dem); //demand in
                                   MW
12
13 i_cap=(peak_11 + peak_12 + peak_13); //capacity
14 printf("\n the installed capacity is: \%.2 \text{ f MW} \setminus \text{n}",
      i_cap);
15
```

Chapter 2

Supply Systems

Scilab code Exa 2.1 To calculate the percentage saving in conductor material

```
1 clear;
2 clc;
3 //i=p/v;
4 //a=i/alpha;
5 //vol=2*l*a;
6
7 //calculating itf or the 2 supplies 250V and 400V
8 //a=v2/v1;
9 a=.625;
10 sav=(1-a)*100;
11 printf("the percenatge saving in the conductor material is:%.2f per cent",sav);
```

Scilab code Exa 2.2 To compare the amount of conductor material required

```
1 clear;
2 clc;
3
```

```
4 //il=p/v
5 //line loss=2i^2*r
6 //vol of conductor required v1=2*l*a1
7
8 a=1/6; //a=r1/r2
9 b=1/a //b=a2/a2
10
11 //v2=3*l*a2+ 0.5*l*a2
12 //v2/v1=3.5*l*a2/2*l*a1
13
14 c=3.5/(2*b); //c=v2/v1
15 printf("the ratio of the volumes of the conductors is:%.2f",c);
```

Scilab code Exa 2.3 To calculate the volume of conductor

```
1 clear;
2 clc;
3
4 s=5*10^6;
5 1=50*10^3;
6 \text{ pf} = 0.8;
7 \text{ eff} = .9;
8 v = 33 * 10^3;
9 rho=2.85*10^{(-8)};
10 pl=0.1*s*pf;
11 i=s/v;
12 a1=2*i*i*rho*l/pl;
13 vol=2*1*a1;
14 printf("the volume of theconductor required is: %.2 f
      cubic meter", vol);
15
16 / (b)
17
18 il=s/(sqrt(3)*v);
```

Scilab code Exa 2.4 To calculate the percentage of additional load

```
1 clear;
2 clc;
4 //a). single phase supply
5 / p1 = v1 * i1 * pf
6 // line loss = 2*i1*i1*r
7 //percentage line loss=line loss*100/(v8i*pf)
9 //b).three phase supply
10 / p3 = sqrt(3) * v * i 3 * pf
11 //percentage line loss=3*i3*i3*r*100/p3
12
13 //ratio of load transmitted
14
15 a=2; //a=p3/p1
16 add_load=(a-1)*100; //(p3-p1)/p1
17
18 printf ("the percentage of additional load is: %.2 f",
      add_load);
```

Scilab code Exa 2.5 To compare the diameter and weight

```
1 clear;
2 clc;
3
```

Chapter 3

Conductors

Scilab code Exa 3.1 To determine the most economical size

```
1 clear;
2 clc;
              //load in KW
3 1d=100;
6 v=500;.....// voltage in volts
7 res=1.75*(.000001);.....//restivity in milli
     ohm per cm sq
8 nos_cores=2;.....//number of feeder core
9 1=0.8;.....//length of tx line in km
10 area=1;.....//area in cm sq
11 cost_of_energy=0.12;..//cost in Rs per unit
12 dep=0.1.....//depreciation percentage is 10
13
14 flc=(ld*1000)/500;..//full load current
15
16 ra=(res*1*1000*1d);..//resistance* area in ohm-m
17
18 pow_loss=2*(flc*flc*ra*.001);.../(power loss*area)
     for the two cores in the cable
```

```
19
  ann_en_loss=pow_loss*365*24;../annual energy loss
20
      in KWH
  cost=ann_en_loss*cost_of_energy;..//(cost*area) of
21
      annual energy loss in Rs
22
  ann_dep=6*1*1000*dep;......//(ann_dep*area) in Rs
23
24
25
  c=(cost/ann_dep);
26
27 area=sqrt(c);.....//area in cm sq
28
29 d=(area*4/(%pi));
30 dia=sqrt(d);.....//diameter in cm
31 printf("\n the most economical size is: \%.2 \text{ f cm} \ "
      ,dia);
```

Scilab code Exa 3.2 to calculate the most economical cross sectional area

```
1 clear;
2 //clc();
3 l=10;....//length of tx line in km
4
5 s1=2500;....// power in KVA
6 s2=2000;....// power in KVA
7 s3=1500;....// power in KVA
8
9 t1=8;.....//time in hrs
10 t2=9;.....//time in hrs
11 t3=7;.....//time in hrs
12 dep_rate=0.08;..//depreciation rate
14 cost=0.15;.....//cost of energy in Rs
15 res=0.173.....//resistance per sq cm
```

```
17 nos_wd=250;.....//number of working days
18
19
  ann_int=6000*1*dep_rate;..//annual interst and
      depriciation on capitol cost in Rs
20
21 r=res*1;../(resistance*area) of each conductor in
     ohms
22
23 c = sqrt(3);
24 d=c*33;..../kv of tx line
25 i1=(s1/d);....//load current at 2500KVA in A
26
27 i2=(s2/d);....//load current at 2000KVA in A
28
29 i3=(s3/d); \dots //load current at 1500KVA in A
30
31 \ d_{en_loss} = (3*r/1000)*(t1*i1*i1 + t2*i2*i2 + t3*i3*i3
     ); ... // daily energy loss in KWH
32
33 ann_cost=d_en_loss*nos_wd;../annual enrgy loss in
     KWH
34
35 cost_el=ann_cost*cost;..//(cost of energy loss per
     annum) * area
36
37 e=cost_el/ann_int;../by kelvin's law area
38 f = sqrt(e);
39 printf("\n the most economical area is: %.2f sq cm\
     n ",f);../area in cm sq
```

 ${
m Scilab\ code\ Exa\ 3.3}$ to calculate the best current density of a three phase oh line

```
1 clear;
2 //clc();
3 a=2500;../usage of the over head line in a year in
```

```
hrs
4 cost=20;../cost of copper per kgf in Rs
5 dep_rate=0.125;../deprication rate
6 den=8.89;.../density of copper in gf per cm sq
7 r=0.173;.../resistance per conductor per km length
     and per sq cm in ohms
8 cost_en=0.16;../cost of energy perm unit in Rs
10 cap_cost=cost*den/100;..//(capitol cost of conductor
     )*length/area in Rs
11 dep=cap_cost*dep_rate;
12
13 cl=r/10000000;../copper loss per conductor/current
     sq*length/area
14
  ce=a*cost_en*cl;..//cost of energy loss per year)*
      area/(length*current sq)
16
17 d=dep/ce;
18
19 j=sqrt(d); ... // best current density in A/cm sq
20 printf("\n the current density is: \%.2 \, f \, A/sq \, meter \n
      ",j);
```

Scilab code Exa 3.4 To calculate rms value of curent for a 3 phase

```
1 clear;
2 //clc();
3 s=7500;..//maximum load in KVA
4 v=33;..//voltage of tx line in volts
5
6 a=sqrt(3);
7 im=s/(v*a);..//maximum current in A
8
9 kf=1.3;..//for a 0.4 load factor
```

```
10 irms=kf*0.4*im;
11 printf("The rms value of current is:%.2f A",irms);
```

Scilab code Exa 3.5 To determine the most economical size of copper conductor

```
1 clear;
2 clc;
3 funcprot(0);
4 s = 7500;
5 v = 33;
6 	 1f = 0.6;
7 \text{ kf} = 1.13;
8 cost_en=0.15;
9 dep_rate=0.1;
10 \text{ res} = 17.6;
11 im=s/(v*sqrt(3));
12 irms = 0.6 * kf * im;
13 rho = (17.6*10^4)/(10^5);
14 el=3*irms*irms*.1*rho*8760/1000;
15 ann_w=el*cost_en;
16 ann_dep=dep_rate *20000;
17 c=ann_w/ann_dep;
18 area=sqrt(c);
19 printf("The area is:\%.2 \, f \, sq \, cm", area);
```

Scilab code Exa 3.6 To calculate the most economical current density

```
1 clear;
2 //clc();
3 lc=0.5;
4 dep=0.09;
5 cost_en=0.12;
6 res=1.76;
```

```
7 l=1;
8
9 ann_cost=dep*25000;
10 lf=0.2*lc + 0.8*(lc^2);
11 al=3*.1*res*8760*lf/1000;
12 cost=al*cost_en;
13 d=ann_cost/cost;
14 j=sqrt(d);
15 printf("The current density is:%.2f A/sq cm",j);
```

Chapter 4

Power Cables

Scilab code Exa 4.1 To calculate the maximum stress on the insulation

```
//to calculate the maximum electric stress on the
    insulation

//clc();
v=6.5;..//working voltage in volts
d=10;..//diameter of conductor in mm
t=7.5;..//thickness of insulation in mm
R=(r+t);
a=R/r;
b=log([a]);

gmax=v/(r*b);
printf("\n the maximum electric stress on the
    insulation is: %.2 f kV/mm\n",gmax);
```

Scilab code Exa 4.2 To calculate the overall diameter and its most economical diam

```
1 clear;
2 //clc();
3 v=275;../working voltage in volts
4 vrms=v/sqrt(3);..//effective value of phase voltage
5 pv=vrms*sqrt(2);../peak value of phase voltage
6 gmax=15;..//maximum permissible stress in dielectric
8 r=pv/gmax;
10 d=2*r;..//economical core diameter in mm
11 printf("\n the economical core diameter is: \%.2 \text{fmm}\
     n",d);
12
13 R = \exp(1) *r;
14
15 D=2*R; ... //inner diameter of the sheath
16 printf("\n the inner diameter of the sheath is: \%.2
     fmm \setminus n", D);
```

 ${f Scilab\ code\ Exa\ 4.3}$ To calculate potential gradient at the surface of teh conductors

```
1 clear;
2 //clc();
3
4 d=10;..//diameter of the conductor in mm
5 r=d/2;..//radius in mm
6 t=10;..//thickness in mm
7 r1=(r+t);
8 R=(r+ 2*t);
9 e1=3;
10 e2=2.5;
11 v=60;..//voltage in kv
12
13 a=r1/r;
14 b=R/r1;
```

```
15  c=e1/e2;
16
17  d=(r)*(log([a]) + c*log([b]));
18
19  gmax1=v/d;
20
21  printf("\n the potenial gradient at the surface of the conductor is:%.2 f kV/mm\n",gmax1);
```

Scilab code Exa 4.4 To calculate the minimum diameter of the lead sheath

```
1 clear;
2 //clc();
3
4 v = 66;
5 r = 10;
6 \text{ e1=5};
7 e2=4;
8 e3=3;
9 gmax1=3.8;
10
11 gmax2=2.6;
12
13 gmax3=2;
14
15 r1=e1*r*gmax1/(e2*gmax2);
16
17 r2=e1*r*gmax1/(e3*gmax3);
18
19 a=r1/r;
20 b=r2/r1;
21
22 v1=gmax1*r*log([a]);
24 v2 = gmax2 * r1 * log([b]);
```

```
25
26 c=(v-v1-v2)/(gmax3*r2);
27 e=exp(c);
28
29 R=e*r2;
30
31 dia=2*R;
32 printf("\n the minimum diameter is: %.2 f mm\n ", dia );
```

 ${
m Scilab\ code\ Exa\ 4.5}$ To calculate the diameter of the inter sheath and the voltage

```
1 clear;
2 //clc();
4 v = 60;
5 \text{ gmax}=4;
6 v1=v/\exp(1);
7 r=v1/gmax;
8 d=2*r;
9 \text{ r1=v/gmax};
10 d1 = 2 * r1;
11 v2 = v - v1;
12 R=1.88*r1;
13 D=2*R;
14 printf("\n the diameter of cable is: \%f cm\n ",D);
15
16 //cable without sheath
17
18 x = \exp(1);
19 a=log([x]);
20 \text{ r1=v/gmax};
21 d1 = 2 * r1;
22
23 R1 = exp(1) * r1;
```

 ${
m Scilab\ code\ Exa\ 4.6}$ capacitance between any pair of conductors and the charging cu

```
1 clear;
2 //clc();
3 v=11;
4 ct=0.7;
5 cs=0.4;
6 cc=(ct-cs)/2;
7 printf("\n the capacitance between conductors is: % .2 f uF\n ",cc);
8
9 cl=0.5*(3*cc + cs);
10
11 ic=(v*2*3.14*50*2*cl*.001)/sqrt(3);..//charging current in ka/phase
12 printf("\n the charging current is: %.3 f A\n ",ic);
```

Scilab code Exa 4.7 To calculate charging kvar

```
1 clear;
2 //clc();
3
4 v=11;
5 cl=0.3;
6 l=5;
7 c0=2*cl*1;
8
9 tot_var=(v*v*2*3.14*50*cl*.01);
```

Scilab code Exa 4.8 To calculate restitivity of the insulating material

```
1 clear;
2 //clc();
3
4 r=0.4;
5 l=5;
6 d=20;
7 D=50;
8 a=D/d;
9 b=log([a]);
10
11 rho=2*3.14*l*r/b;..//resistivity in mega-ohm-m
12 printf("\n the resistivity is:%.2f M-Ohm-M\n ",rho);
```

 ${f Scilab\ code\ Exa\ 4.9}$ To calculate capacitance charging current ic reactive var diel

```
1 clear;
2 //clc();
3
4 v=11;
5 f=50;
6 d=20;
7 r=15;
8 er=2.4;
9 la=0.031;
10 l=2.5;
11
12 a=r*2/d;
13 b=log([a]);
```

```
14
15 cap=er/(18*b);
16 tot_cap=cap*1;
17 printf("\n the total capacitance is: \%.2 f F \ ",
      tot_cap);
18
19 //ic
20
21 ic=2*3.14*f*tot_cap*v;
22 printf("\n the charging current is: \%.2 f A\n",ic
      /1000);
23
24 //reactive var
25 \text{ var=v*ic};
26 printf("\n the reactive var is: \%.2 \, f \, kVAR\n", var
      /1000);
27
28 // dielectric loss
29
30 \text{ pd=v*ic*la};
31 printf("\n the dielectric loss is: \%.2 \text{ f W} \setminus \text{n}",pd);
32
33 ri=v*v/pd;..//resistance in mega-ohm
34 printf("\n the resistance is: \%.2 \, f \, M\!-\!O\!H\!M\!\setminus\!n ",ri);
```

Chapter 5

Line insulators and supports

Scilab code Exa 5.1 To calculate the voltage distribution across each unit and the

```
1 clear;
 2 //clc();
3 V=100; ... // voltage betwee line conductor and earth
4 k1=0.1;
 5 n=4;
 6 k=sqrt(k1);
8 V1=(V*sinh(k)/sinh(n*k));
9 printf("\n the voltage1 is: \%.2 \, f \, V \ ", V1);
10
11 V2 = (V*sinh(2*k)/sinh(n*k));
                                       \%.2 \text{ f V} \text{ n }", V2);
12 printf("\n the volatge2 is:
13
14 V3 = (V*sinh(3*k)/sinh(n*k));
15 printf("\n the voltage3 is:
                                       \%.2 \text{ f V} \text{ n }", V3);
16
17 V4 = V;
18 printf("\n the voltage4 is: \%.2 \text{ f V} \text{ n} ", V4);
19
20 \text{ v1=V1};
21
```

```
22  v2=V2-V1;
23
24  v3=V3-V2;
25
26  v4=V4-V3;
27
28  eff=(sinh(n*k)/(n*(sinh(n*k)-sinh((n-1)*k))));
29  printf("\n the string efficiency is: %.2f percent\n ",eff*100);
```

 ${
m Scilab\ code\ Exa\ 5.2}$ To calculate voltage across the lowest unt and the string effi

Scilab code Exa 5.3 to find the voltage distribution and the string efficiency

```
1 clear;
2 clc;
3
4 n=3;
5 c=[1.6 0 -1;1 0 0 ;1 1 1];//coeffient matrix
6 b=[0.109;.31;1];
```

```
7
8 v = inv(c)*b;
9 for i=1:1:3
       printf("The voltage across unit%d is:%.2f pu\n",
           i,v(i))
11 end
12
13 eff=1/(n*v(n));
14 printf("\n the string efficiency is: %.2f percent\n
      ",eff*100);
15
16 // with the string grading
17 a = [3.6037 \ 0 \ 0; 1.3037 \ 0 \ -1 \ ; 1 \ 1 \ 1]; // coefficient matrix
18 d = [1.1889; 0.0389; 1];
19
20 \quad v = inv(a) *d;
21 for i=1:1:3
       printf("The voltage across unit%d is:\%.2 f pu\n",
           i,v(i))
23 end
24
25 \text{ eff=1/(n*v(n))};
26 printf("\n the string efficiency is: \%.2 \, \mathrm{f} percent",
      eff*100);
27 // difference in answers is due to miscalculations
```

 ${
m Scilab\ code\ Exa\ 5.6}$ to find the voltage between the conductors and the string effi

```
1 clear;
2 clc;
3
4 n=4;
5 v2=14.2;
6 v3=20;
7 a=14.2;..//coeffiecients of the quadratic equation
```

```
14.2*k*k+22.6*k-5.8

8 b=22.6;
9 c=-5.8;
10
11 k=(-b+sqrt(b*b-4*a*c))/(2*a);
12 v1=v2/(1+k);
13 v4=(1+6*k+5*k*k+k*k*k)*v1;
14 V=v1+v2+v3+v4;
15 v1=sqrt(3)*V;
16 eff=V/(n*v4);
17
18 printf("\n the string efficiency is: %.2f percent", eff*100);
```

Scilab code Exa 5.7 to calculate the voltage across each unit as a percentage of t

```
1 clear;
2 clc;
3
4 //by using kcl at node a
5 / 20 * v1 - 18 * v2 - 3 * v3 = 0
6 //by kcl at node b
7 / 5 * v1 + 20 * v2 - 18 * v3 = 0
8 //total voltage across the string
9 / v1+v2+v3=V
10 c=[20 -18 -3; 5 \ 20 -18 ; 1 \ 1]; // coefficient matrix
11 b = [0;0;1];
12 v = inv(c) *b;
13 for i=1:1:3
       printf("The voltage across unit%d is:%.2f
           percent \ n",i,v(i)*100)
15 end
```

Chapter 6

Sag and tension

Scilab code Exa 6.1 To calculate the sag

```
1 clear;
2 clc;
3
4 uts=5758; //ultimate tensile strength
5 l=200;
6 wt=.604;
7
8 h=uts/2;
9 sag=wt*l*l/(8*h);
10
11 printf("The sag is:%.3f m",sag);
```

 ${\it Scilab\ code\ Exa\ 6.2}$ to calculate the deflected sag and the vertical component of s

```
1 clear;
2 clc;
3
4 wc=.844;
```

```
5 t=9.53;
6 d=19.53;
7 bl = 7950;
8 \text{ fs} = 2;
9 p=40;
10 wi = (\%pi)*t*(t+d)*913.5*10^(-6);
11 wh = (d+2*t)*p*10^(-3);
12 \text{ wr} = \text{sqrt}((\text{wc} + \text{wi})^2 + \text{wh}^2);
13
14 H=(bl/fs); //bl=breaking load fs=factor of
       safety
15 \quad 1 = 275;
16 sag=wr*l*1/(8*H);
17 printf("The deflected sag is: %.3 f m", sag);
18
19 vsag = (wc + wi) *1*1/(8*H);
20 printf("\n The vertical component of sag is:\%.2 \, \mathrm{f} m",
       vsag);
```

Scilab code Exa 6.3 determine tension and sag

```
1 clear;
2 clc;
3
4 uts=14740;
5 a=538.4;
6 E=7000;
7 wc=1.805;
8 p=100;
9 1=335;
10 alpha=19.3*10*(-6);
11 fs=2;
12 n=4;
13 ds=3.35;
14 d=(1+2*n)*ds;
```

```
15 wh = (2/3)*d*p;
16
17 / (a).
18 wr=sqrt((wc+wh)^2 + wh^2);
19 T=(uts/fs); //bl=breaking load=uts fs=factor of
       safety
20 printf("The maximum working stress is: %.2 f kgf", T);
21 \text{ sag=wr*l*l/(8*T)};
22 printf("\n The deflected sag is:\%.3 \, \text{f m}", sag/1000);
23
24 / b).
25
26 \text{ t1=60};
27 T1 = T;
28 \text{ w1=wr};
29
30 K=T1-w1*w1*1*1*E*a/(24*T1*T1);
31 b = alpha*(t1-0)*E*a;
32 //by using the formula t2^2(t2-K+b)=w2^2*l*l*e*a/24
      and getting a solution by hit trial
33
34 T2 = 4083;
35 \text{ sag}_60=\text{wc}*1*1/(8*T2);
36 printf("\n The sag is:\%.3 \, \text{f m}", sag_60);
37
38 //c).
39 \text{ fs} = 4;
40 t2=30;
41 T=(uts/fs); //bl=breaking load=uts fs=factor of
       safety
42 K=T1-w1*w1*1*1*E*a/(24*T1*T1);
43 b=alpha*(t1-t2)*E*a;
44
45 //by using the formula t2^2(t2-K+b)=w2^2*1*1*e*a/24
      and getting a solution by hit trial
46
47 \quad T2 = 3132;
48 printf("\n The maximum working stress is:\%.2 \, f", T2);
```

Scilab code Exa 6.4 to calculate the temperature at which sag will remain same und

```
1 clear;
2 clc;
3
4 \text{ wc} = .594;
5 a=64.5;
6 t=9.53;
7 d=3*3.45;
8 \text{ sag} = 3.96;
9 p = 40;
10 E = 12700;
11 1=160;
12 alpha=1.7*10^{(-5)};
13 wi=(\%pi)*t*(t+d)*913.5*10^(-6);
14 wh = (d+2*t)*p*10^(-3);
15 wr = sqrt((wc+wi)^2 + wh^2);
16 \text{ w1=wr};
17 T1=w1*1*1/(sag*8);
18
19 \text{ w2=wc};
20 \text{ t1} = -5.5;
21 \quad T2 = wc * T1/w1;
22 //by using the formula t2^2(t2-K+b)=w2^2*1*1*e*a/24
23
24 t2=t1+(T1-T2)/(alpha*E*a);
25 printf ("The temperature at which the sag will remain
        the same:\%.2 f degC",t2);
```

 $\operatorname{Scilab} \operatorname{code} \operatorname{Exa} 6.5$ to find the clearance between the conductor and the water at a

```
1 clear;
2 clc;
4 1 = 270;
5 T = 1800;
6 w = 1;
7 h = 90 - 30;
8 \text{ ap} = 30;
9 x=(1/2)-T*h/(w*1);
10 x1 = -x + 1/2;
11 sag1=w*x1*x1/(2*T);
12 \text{ sag2=w*x*x/(2*T)};
13 hob=w*(1-x)^2/(2*T);
14
15 clearance=ap+sag1-sag2;
16 printf("The clearance between the conductor and
      water at point m is:\%.2 \, f m", clearance);
```

Chapter 7

Line Parameters

Scilab code Exa 7.1 To calculate the inductance of each inductor inductive reactan

```
1 clear;
2 //clc();
3 D=3;../spacing between the conductors in m
4 r=0.01; .. //radius of each conductor in m
5 r1=0.7788*r;
6 mu=50;..//relative permeability of steel
7 a = log([D/r1]);
8 b = log([D/r]);
10 1=2*10^{(-7)}*a*(10^6);.../inductance of each
      conductor in henry per km
11 printf("\n the inductive reactance is: %.2f mH/km\
     n ",1);
12
13 loop_1=2*1;
14 printf("\n the loop inductance is: \%.2 \text{ f mH/km} \ ",
      loop_1);
15
16
17
18 react=2*(%pi)*50*loop_1*.001;
```

Scilab code Exa 7.2 To calculate inductance and inductive reactance per phase per

```
1 clear;
2 //clc();
3 r=10.5;../radius of the conductor
4 d_ab=3;
5 d_bc=5;
6 d_ca=3.6;
8 Deq=(d_ab*d_bc*d_ca)^(1/3);
10 r1=0.7788*r/1000;
12 a=log([Deq/r1]);
13
14 1=2*10^{(-4)}*a;
15 printf("\n the inductance is: \%.5 \, f \, H/km\n",1);
16
17 x1=2*(\%pi)*50*1/10000;
18 printf("\n the inductive reactance is: \%f Ohm/km\n
      ",x1);
```

Scilab code Exa 7.3 To calculate the inductive reactance per phase per km of the 1

```
1 clear;
2 //clc();
3
4 d=6;
5 r=12.5;...//radius of each conductor
6 dm=(d*d*2*d)^(1/3);
7
8 dsl=0.7788*r/1000;
9
10 a=log([dm/dsl]);
11 l=2*a*10^(-7);
12
13 xl=2*(%pi)*l*50*1000;
14 printf("\n the inducatnce is: %.2 f Ohm/km\n",xl);
```

Scilab code Exa 7.4 To calculate the effective inductance of the line

```
1 clear;
2 //clc();
3
4 d_ab=3;
5 d_bc=4;
6 d_ca=5;
7 r=0.015;
8
9 d_aa=r*exp(-0.25);
10 d_bb=r*exp(-0.25);
11 d_cc=r*exp(-0.25);
12
```

Scilab code Exa 7.5 To calculate the inductance of the line per km

```
1 clear;
2 //clc();
3 D1=1;
4 D2=2;
5 r=0.5*25/1000;
6 a=sqrt(D1*D1+D2*D2)*D2;
7 b=0.7788*r*D1;
8 l=2*log([a/b])/10;
9 printf("\n the inductance is: %.3 f mH/km\n",1);
```

 ${
m Scilab\ code\ Exa\ 7.6}$ To calculate the inductive reactance per phase per km of the s

```
1 clear;
2 //clc();
3 r=0.5*3*4.75/1000;
4 d1=3;
5 d2=6;
6 dac1=6;
```

```
7 dbb1=9;
8 dca1=6;
9 \text{ dac=6};
10 dc1a1=6;
11
12 dab = sqrt(d1*d1 + (d1/2)*(d1/2));
13 dbc=dab;
14 \text{ da1b1=dab};
15 \text{ db1c1=dab};
16
17 dab1=sqrt(d1*d1 + (dac+d1/2)*(dac+d1/2));
18
19 dbc1=dab1;
20 \text{ dba1=dab1};
21 	ext{ db1c=dab1};
22 \quad da1b=dab1;
23
24 \ daa1 = sqrt(d2*d2 + d2*d2);
25
26 \ dcc1=sqrt(d2*d2 + d2*d2);
27
28 mgmd=(dab*dbc*dac*dab1*dbc1*dca1*da1b*db1c*dac1*
      da1b1*db1c1*dc1a1)^(1/12);
29 sgmd = (((0.7788*r)^3)*(daa1*dbb1*dcc1))^(1/6);
30 1=2*log([mgmd/sgmd]);
31 \text{ xl}=2*(\%\text{pi})*50*l*10^{(-5)};
32 printf("\n the inductance is: \%.4 \text{ f Ohm/km\n}",xl);
```

Scilab code Exa 7.7 determine the line inductance and the inductive reactance

```
1 clear;
2 //clc();
3 d=6;
4 s=0.3;
5 r=12.5/1000;
```

```
6 \text{ dab=}6;
7 dbc=6;
8 dca=12;
9
10 dsl = sqrt(0.7788*r*s);
11
12 dm=(dab*dbc*dca)^(1/3);
13
14 1b=2*log([dm/ds1])/10;
15
16 x1=2*(\%pi)*50*1b;
17
18 ds1=0.7788*r*sqrt(2);
19
20 \ 11=2*log([dm/ds1])/10;
21
22 \times 11 = 2*(\%pi)*50*11;
23 printf("\n the line inductance is: \%.3 \text{ f Ohm/km} \ n",
      x11/1000);
24
25 \text{ pu_red=}(xl1-xl)/xl1;
26 printf("\n the pu reduction is: \%.3 f\n", pu_red);
```

 ${\it Scilab\ code\ Exa\ 7.8}$ To calculate the capacitance of each conductor to neutral per

```
1 clear;
2 //clc();
3 d=3;
4 r=0.01;
5 cn=2*(%pi)*8.85*10^(-12)/log([d/r])*1000000000000;
6 printf("\n the capacitance is: %.2 f F/km\n ",cn);
7
8 cl=0.5*cn;
9 printf("\n the line to line capacitance is: %.2 f *10^(-9)F/km\n ",cl);
```

```
10
11 bc=2*(%pi)*50*cn;
12 printf("\n the capacitance susceptance is: %.2f
     *10^(-6) S/km\n ",bc/1000);
```

Scilab code Exa 7.9 To calculate the charging current per km and the reactive volt

 ${f Scilab\ code\ Exa\ 7.10}$ to find the capacitance per km to neutral and the capacitive

```
1 //taking calculations in eg7.3
2 clear;
3 //clc();
4 dm=7.56;
5 dsc=12.5/1000;
6 r=dsc;
```

```
7
8 cn=1/(18*10^(9)*log([dm/dsc]))*10^(12);
9 printf("the capacitance is: %.2f*10^(-9) F/km\n",cn
);
10
11 xc=1/(2*(%pi)*50*cn);
12 printf("the reactance is: %.2f*10^(5) Ohm\n",xc
*10000);
```

Scilab code Exa 7.11 To calculate the capacitive reactance per phase per km of the

```
1 clear;
2 // clc();
3 \text{ dm} = 5.4576;
4 r=7.125/1000;
5 daa1=6*sqrt(2);
6 \text{ dbb1=9};
7 dcc1=daa1;
9 dsc=((r^3)*(daa1*dbb1*dcc1))^(1/6);
10
11 cn=1/(18*10^{(9)}*log([dm/dsc]));
12 printf("\n the capacitance is: \%.2 \, f \, uF/km\n",cn
      *10^(12));
13
14 \text{ xc}=1/(2*(\%pi)*50*cn);
15 printf("\n the reactance is: \%.2 f Ohm/km\n",xc
      *.001);
```

Scilab code Exa 7.12 To calculate the capicitance of the line

```
1 //values taken from eg7.1
2 clear;
```

```
3 // clc();
4 r=10/1000;
5 d=3;
6 h = 6;
7 h1 = 2 * h;
8 h2=2*h;
9 h12=sqrt(d^2 + 4*h^2);
10
11 h21=h12;
12
13 hm=sqrt(h12*h21);
14 hs=sqrt(h1*h2);
15
16 cn=1/(18*(10^9)*(log([d/r])-log([hm/hs])));
17 printf("\n the capacitance is: \%f*10^{(-12)} F/m\n"
      ,cn*10^(12));
18
19 cl=0.5*cn;
20 printf("\n the capacitance is: \%f*10^{(-9)} F/km\n"
      ,cl*10^(12));
```

 ${\bf Scilab}\ {\bf code}\ {\bf Exa}\ {\bf 7.13}\ {\bf To}\ {\bf calculate}\ {\bf the}\ {\bf capacitance}\ {\bf per}\ {\bf km}\ {\bf to}\ {\bf neutral}\ {\bf and}\ {\bf the}\ {\bf capacitance}$

```
1 clear;
2 //clc();
3 //values as calculated in eg7.7.sce
4 d=6;
5 s=0.3;
6 r=12.5/1000;
7
8 dsc=sqrt(r*s);
9
10 dm=7.56;
11 cn=1/(18*(10^(9))*(log([dm/dsc])));
12 printf("\n the capacitance per km is: %.2f F/km\n",
```

```
cn*10^(12));
13
14 xcb=1/(2*(\%pi)*50*cn*1000);
15 printf("\n the reactance is: \%.2 f Ohm\n",xcb*.00001)
16
17 	ext{ ds1=sqrt}(2)*r;
18 \, dm1 = 7.56;
19
20 c1=1000/(18*(10^9)*(log([dm1/ds1])));
21 printf("\n the capacitance is: \%.2 \, f \, F/km\n",c1
      *10^(9));
22
23 \text{ xc1=1/(2*(\%pi)*50*c1)};
24 printf("\n the reactance is: \%.2 f Ohm\n",xc1);
25
26 \text{ cb}=13.721*(10^{(-9)});
27 pu_cap=(cb-c1)/c1;
28 printf("\n the per unit capacitance is: \%.3 \, f \setminus n",
      pu_cap);
```

 ${f Scilab\ code\ Exa\ 7.14}$ To calculate the inductive recatance and the capacitive react

```
1 clear;
2 //clc();
3 d=20;
4 s=0.5;
5 r=20/1000;
6 dab=20;
7 dbc=20;
8 dca=40;
9
10 dsl=((sqrt(2)*0.7788*r*(s*s*s))^(1/4));
11
12 dm=(dab*dbc*dca)^(1/3);
```

Scilab code Exa 7.15 To calculate the voltage induced per km

```
1 clear;
2 //clc();
3 dab=1.2;
4 d12=0.4;
5 db2=0.85;
6
7 db1=sqrt(0.8*0.8 + db2*db2);
8 
9 da2=db1;
10
11 da1=sqrt(d12*d12 + db2*db2);
12
13 v=2*(%pi)*50*2*60*log([db1*db1/da1*da1]);
14 printf("\n the voltage induced per unit length is: % .3 f V/km\n", v/10000);
```

Scilab code Exa 7.16 to calculate the voltage induced in telephone conductor due t

```
1 clear;
  2 clc;
  3
  4 Db0=6*cosd(30);
  5 Da0=3;
  6 D01=5;
  7 D12 = .6;
  8 Db1 = Db0 + D01
  9 Db2 = Db1 + D12;
10 Da1=sqrt(Da0*Da0+D01*D01);
11 Dc1=Da1;
12 Dc2=sqrt(Da0*Da0+5.6*5.6);
13 Da2=Dc2;
14 ia=200;
15 ib=200*(cosd(-120)+(\%i)*sind(-120));
16 ic=200*(cosd(120)+(%i)*sind(120));
17 \ lam = 2*10^{-7}*(ia*log([Da2/Da1])+ib*log([Db2/Db1])+ib*log([Db2/Db1])+ib*log([Db2/Db1])+ib*log([Db2/Db1])+ib*log([Db2/Db1])+ib*log([Db2/Db1])+ib*log([Db2/Db1])+ib*log([Db2/Db1])+ib*log([Db2/Db1])+ib*log([Db2/Db1])+ib*log([Db2/Db1])+ib*log([Db2/Db1])+ib*log([Db2/Db1])+ib*log([Db2/Db1])+ib*log([Db2/Db1])+ib*log([Db2/Db1])+ib*log([Db2/Db1])+ib*log([Db2/Db1])+ib*log([Db2/Db1])+ib*log([Db2/Db1])+ib*log([Db2/Db1])+ib*log([Db2/Db1])+ib*log([Db2/Db1])+ib*log([Db2/Db1])+ib*log([Db2/Db1])+ib*log([Db2/Db1])+ib*log([Db2/Db1])+ib*log([Db2/Db1])+ib*log([Db2/Db1])+ib*log([Db2/Db1])+ib*log([Db2/Db1])+ib*log([Db2/Db1])+ib*log([Db2/Db1])+ib*log([Db2/Db1])+ib*log([Db2/Db1])+ib*log([Db2/Db1])+ib*log([Db2/Db1])+ib*log([Db2/Db1])+ib*log([Db2/Db1])+ib*log([Db2/Db1])+ib*log([Db2/Db1])+ib*log([Db2/Db1])+ib*log([Db2/Db1])+ib*log([Db2/Db1])+ib*log([Db2/Db1])+ib*log([Db2/Db1])+ib*log([Db2/Db1])+ib*log([Db2/Db1])+ib*log([Db2/Db1])+ib*log([Db2/Db1])+ib*log([Db2/Db1])+ib*log([Db2/Db1])+ib*log([Db2/Db1])+ib*log([Db2/Db1])+ib*log([Db2/Db1])+ib*log([Db2/Db1])+ib*log([Db2/Db1])+ib*log([Db2/Db1])+ib*log([Db2/Db1])+ib*log([Db2/Db1])+ib*log([Db2/Db1])+ib*log([Db2/Db1])+ib*log([Db2/Db1])+ib*log([Db2/Db1])+ib*log([Db2/Db1])+ib*log([Db2/Db1])+ib*log([Db2/Db1])+ib*log([Db2/Db1])+ib*log([Db2/Db1])+ib*log([Db2/Db1])+ib*log([Db2/Db1])+ib*log([Db2/Db1])+ib*log([Db2/Db1])+ib*log([Db2/Db1])+ib*log([Db2/Db1])+ib*log([Db2/Db1])+ib*log([Db2/Db1])+ib*log([Db2/Db1])+ib*log([Db2/Db1])+ib*log([Db2/Db1])+ib*log([Db2/Db1])+ib*log([Db2/Db1])+ib*log([Db2/Db1])+ib*log([Db2/Db1])+ib*log([Db2/Db1])+ib*log([Db2/Db1])+ib*log([Db2/Db1])+ib*log([Db2/Db1])+ib*log([Db2/Db1])+ib*log([Db2/Db1])+ib*log([Db2/Db1])+ib*log([Db2/Db1])+ib*log([Db2/Db1])+ib*log([Db2/Db1])+ib*log([Db2/Db1])+ib*log([Db2/Db1])+ib*log([Db2/Db1])+ib*log([Db2/Db1])+ib*log([Db2/Db1])+ib*log([Db2/Db1])+ib*log([Db2/Db1])+ib*log([Db2/Db1])+ib*log([Db2/Db1])+ib*log([Db2/Db1])+ib*log([Db2/Db1])+ib*log([Db2/Db1])+ib*log([Db2/Db1])+ib*log([Db2/Db1])+ib*log([Db2/Db1])+ib*log([Db2/Db1])+ib*log([Db2/Db1])+ib*log
                    ic*log([Dc2/Dc1]));
18 lamda=sqrt(real(lam)^2+imag(lam)^2);
19 v=2*(\%pi)*50*lamda;
20 \text{ bc=6};
21 \text{ oc} = 3;
20 b0=sqrt(bc*bc-oc*oc);
23 \text{ hc} = 15;
24 \text{ hb=b0+hc};
25 \text{ ha=hc};
26 r = 19.53/2000;
27 \text{ va} = 132000/\text{sqrt}(3);
28 v1a=(log([(2*ha-Da1)/Da1])/log([(2*ha-r)/r]));
29 v1b = (log([(2*hb-Db1)/Db1])/log([(2*hb-r)/r]));
30 v1c = (log([(2*hc-Dc1)/Dc1])/log([(2*hc-r)/r]));
31 vb=v1b*(cosd(-120)+(\%i)*sind(-120));
32 \text{ vc=v1c*(cosd(120)+(%i)*sind(120))};
33 v1=va*(v1a+vb+vc);
34 V1=sqrt(real(v1)^2+imag(v1)^2);
35 printf("The voltage induced is :\%.2 f kV", V1/1000);
```

Scilab code Exa 7.17 To calculate the inductance per unit length

```
1 clear;
2 clc();
3 dad=6;
4 dbe=dad;
5 \text{ dae1} = \text{sqrt}(4*4 + 6*6);
6 dbd=dae1;
7 dce=dae1;
9 \text{ ded=} \text{sqrt} (8*8 + 6*6);
10 dcd=ded;
11 dm=(dad*dae1*dbd*dbe*dcd*dce)^(1/6);
12
13 dbc=4;
14 dcb=dbc;
15 daa=0.7788*20/1000;
16 dbb=daa;
17 dcc=daa;
18
19 \text{ dab}=4;
20 \, dbc=dab;
21 dba=dab;
22
23 dca=8;
24 dac=dca;
25
26 dsa=(daa*dab*dac*dba*dbb*dbc*dca*dcb*dcc)^(1/9);
27
28 la=2*10^{-7}*log([dm/dsa]);
29
30 \, ddd = 0.7788 * 40/1000;
31 dee=ddd;
32 \, dde = 4;
```

```
33 ded=dde;
34
35 dsb=(ddd*dde*dee*ded)^(1/4);
36
37 lb=2*10^(-7)*log([dm/dsb]);
38
39 l=100*(la+lb)/1000000;
40 printf("the inductance per unit length is: %.8f uH/m \n",1*10^(5));
```

Scilab code Exa 7.18 To calculate the loop inductance of the line

```
1 clear;
2 //clc();
3 \text{ dad}=4;
4 dae1=4.3;
5 \text{ dbd} = 3.5;
6 \text{ dbe} = 3.8;
7 \text{ dcd=2};
8 \, dce=2.3;
9
10 dm = (dad*dae1*dbd*dbe*dcd*dce)^(1/6);
11
12 \, daa=0.7788*3/100;
13 dbb=daa;
14 dcc=daa;
15
16 \text{ dab=0.5};
17 dbc=dab;
18 dca=dab;
19 dba=dab;
20
21 \, dbc=1.5;
22 \text{ dcb=dbc};
23 dca=2;
```

```
24 \, dac=dca;
25
26 dsa=(daa*dab*dac*dba*dbb*dbc*dca*dcb*dcc)^(1/9);
27
28 la=2*log([dm/dsa]);
29
30 \, ddd = 0.7788*4/100;
31 dee=ddd;
32 \, dde = 0.3;
33 ded=dde;
34
35 \text{ dsb=(ddd*dde*dee*ded)^(1/4)};
36
37 \quad lb=2*log([dm/dsb]);
38
39 l=100*(la+lb);
40 printf("the loop inductance is: \%.3 \text{ f mH}\n",1/10000);
```

Chapter 8

per unit representation

Scilab code Exa 8.1 To calculate the per unit impedance and admittance

```
1 clear;
2 //clc();
3 z=complex(4,60);
4 mva_base=100;
5 kv_base=230;
6 zpu=z*mva_base/(kv_base^2);
7 printf('the per unit impedance is:');
8 disp(zpu)
9
10 ys=(%i)*(2*10^(-3));
11 ypu=ys*(kv_base^2)/mva_base;
12 printf("the per unit admittance is:");
13 disp(ypu);
```

Scilab code Exa 8.2 Three phase apparent power in pu

```
1 clear;
2 //clc();
```

Scilab code Exa 8.3 determine the total reactance in per unit

```
1 clear;
2 // clc();
3 \text{ sb} = 5000
4 x1=2.5;
5 x2=2.5;
6 n1 = 400;
7 n2 = 200;
8 x1e=x1+x2*(n1/n2)^2;
9
10 \text{ vb1} = 400;
11 x1epu=x1e*sb/vb1^2;
12 printf("\n Total per unit resistance refered to
      primary is: \%.2 f", x1epu);
13
14 x2e=x1+x2*(n2/n1)^2;
15 \text{ vb2=200};
16 \quad x2epu=x2e*sb/vb2^2;
17 printf("\n Total per unit resistnce refered to
      secondary is: %.2 f", x2epu);
18
19 //c) if the primary voltage is used as base
```

Scilab code Exa 8.4 to calculate per unit impedances at 15 kva base

```
1 clear;
2 clc;
3
4 x1_pu=.12;
5 \text{ sb2}=15;
6 \text{ sb1=10};
7 \text{ xg2=8};
8 \text{ xg1} = .12;
9 \text{ sbg2=5};
10 sbg1=100;
11 xtf=6;
12 sbtf=15;
13 xt = complex(4,60);
14 kv1 = 230;
15 x2_pu=x1_pu*(sb2/sb1);
16 \text{ xg_pu1=x2_pu*sbg1};
17 printf("\n The per unit reactance of generator 1 is:
       \%.2 f", xg_pu1);
18 xg_pu2=xg2*(sb2/sbg2);
19 printf("\n The per unit reactance of generator 2 is:
       \%.2 f", xg_pu2);
20 xtf_pu=xtf*(sb2/sbtf);
21 printf("\n The per unit reactance of transformer is:
       \%.2 f", xtf_pu);
```

Scilab code Exa 8.5 To calculate the voltage drop in line per unit

```
1 clear;
2 // clc();
3 s3q=10*10^6;
4 vl=10.5*1000;
5 il=s3q/(sqrt(3)*v1);
6 iph=il;
7 \text{ zph=5};
8 printf("\n Voltage drop in the line is: %.2f V",zph*
      iph);
9
10 //b).using per unit method to soolve
12 \text{ sb=10};
13 vlb=11;
14 vpu=vl/vlb;
15 \text{ sb3q=12};
16 \text{ spu}=s3q/sb3q;
17 ipu=spu/vpu;
18
19 zpu=zph*sb3q/vlb^2;
20 v=zpu*ipu*vlb/sqrt(3);
21 printf("\n voltage drop in the line per phase is: %
      .2 f V", v);
```

Scilab code Exa 8.6 To calculte the through impedance

```
1 clear;
2 //clc();
3 function [zpu] = puz(z1pu, sb2, sb1, vb1, vb2)
        zpu=z1pu*(sb2/sb1)*(vb1/vb2)^2;
5 endfunction
7 previousprot = funcprot(0)
8 funcprot(0)
9
10
11 function [parallel]=para(z1,z2)
12
        parallel=z1*z2/(z1+z2);
13 endfunction
14
15 previousprot = funcprot(0)
16 funcprot(0)
17
18
19 z1pu=0.20;
20 \text{ sb2=25};
21 \text{ sb1=30};
22 \text{ vb1=11};
23 \text{ vb2}=11;
24 zpu=puz(z1pu,sb2,sb1,vb1,vb2);
25 printf("\n the per unit reactance of the generator
       is: %f", zpu);
26 \text{ xg1=zpu};
27
28 z1pu=0.25;
29 \text{ sb2=25};
30 \text{ sb1} = 25;
31 \text{ vb1=11};
32 \text{ vb2=11};
33 zpu=puz(z1pu,sb2,sb1,vb1,vb2);
34 \text{ xg2=zpu};
35 printf("\n the per unit reactance of generator 2 is:
          %f",zpu);
36
```

```
37 z1pu=0.20;
38 \text{ sb2=60};
39 \text{ sb1}=30;
40 \text{ vb1=11};
41 \text{ vb2=11};
42 zpu=puz(z1pu,sb2,sb1,vb1,vb2);
43 \text{ xg11=zpu};
44 printf("\n the per unit reactnace of generator 1 is
       on 60MVA base: %f",zpu);
45
46 z1pu=0.25;
47 \text{ sb2=60};
48 \text{ sb1}=25;
49 \text{ vb1=11};
50 \text{ vb2}=11;
51 zpu=puz(z1pu,sb2,sb1,vb1,vb2);
52 \text{ xg22=zpu};
53 printf("\n the per unit reactnace of generator 2 is
       on 60MVA base: %f",zpu);
54
55 //calcultaion of per unit impedance of transformer
56
57 z1pu=0.10;
58 \text{ sb2} = 25;
59 \text{ sb1=60};
60 \text{ vb1=11};
61 \text{ vb2=11};
62 zpu=puz(z1pu,sb2,sb1,vb1,vb2);
63 \text{ xt1=zpu};
64 printf("\n the per unit reactnace of generator 1 is
       on 30MVA base: \%.3 f", zpu);
65
66 \text{ z1pu=0.10};
67 \text{ sb2=60};
68 \text{ sb1=60};
69 \text{ vb1=11};
70 \text{ vb2=11};
71 zpu=puz(z1pu,sb2,sb1,vb1,vb2);
```

```
72 \text{ xt2=zpu};
73 printf("\n the per unit reactnace of generator 1 is
      on 60MVA base: \%.3 f", zpu);
74
75 //calculation of through impedance
76
77 zt=para(xg1,xg2) + xt1;
78 printf("\n the through impedance at 25MVA base is:
      j\%.3 f",zt);
79
80 zt1=para(xg11,xg22)+xt2;
81 printf("\n the through impedance at 60MVA base is:
      j\%.3f",zt1);
82
83 //calcultaion in ohms
84 \text{ sb1} = 25
85 \text{ zb=vb1^2/sb1};
86 printf("\n actual impedance in ohms on 25MVA base is
      : j\%.3f",zb*zt);
87
88 \text{ sb2=60};
89 \text{ zb=vb1^2/sb2};
90 printf("\n actual impedance in ohms on 60MVA base is
      : j\%.3f",zb*zt1);
```

Scilab code Exa 8.7 to determine the per phase generator voltage

```
1 clear;
2 clc;
3
4 sb=100;
5 vb=15;
6 xg=.75;
7 sbg=75;
8 xtf=.1
```

```
9 sbtf=50;
10 xt = 100;
11 kvl = 220;
12 \text{ rl} = 500;
13 v1 = 210;
14 xg_pu=xg*(sb/sbg);
15 xtf_pu=xtf*(sb/sbtf);
16 \text{ xt_pu=xt*sb/((kv1)^2)};
17 rl_pu=rl*sb/((kvl)^2);
18 vpu=vl/kvl
19 i_pu=vpu/rl_pu;
20 v=i_pu*(rl_pu+(%i)*(xg_pu+xt_pu+xt_pu));
21 vg=round(sqrt(real(v)^2+imag(v)^2)*vb);
22 printf("The terminal voltage per phase is: %.2f kV",
      vg/sqrt(3));
23
24 // difference in answer is due to rounding off
```

Scilab code Exa 8.8 to calculate the per unit impedance of all units

```
1 clear;
2 clc;
3
4 sb=50;
5 kvl_hv=132;
6 kvl_lv=11;
7 blv=15;
8 btf2=180;
9 bkvl=180;
10 n=33/76;
11 zlpu=(%i)*.1;
12 z2pu=(%i)*.12;
13 kvlb1=11;
14 kvlb2=15;
15 kvl2b1=33;
```

```
16 \text{ kvl} 2b2 = 45.1;
17 zt = complex(25,75);
18 \text{ zm1} = (\%i) * .15;
19 zm2=(\%i)*.15;
20 \text{ sm1} = 30;
21 \text{ sm} 2 = 20;
22 \text{ kvlm} = 30
23 bt=blv*kvl_hv/kvl_lv;
24 \text{ vm=btf}2*n/sqrt(3);
25 putf1=z1pu*(kvlb1/kvlb2)^2;
26 printf("\n The per unit reacance of transformer 1 is
      : ");
27 disp(putf1);
28 \text{ sbtf2=3*20};
29 putf2=z2pu*(sb/sbtf2)*(kvl2b1/kvl2b2)^2;
30 printf("\n The per unit reacance of transformer 2 is
      : ");
31 disp(putf2);
32 \text{ pum1} = \text{zm1} * (\text{sb/sm1}) * (\text{kvlm/kvl2b2})^2;
33 printf("\n The per unit reacance of motor 1 is: ");
34 disp(pum1);
35 pum2=zm2*(sb/sm2)*(kvlm/kvl2b2)^2;
36 printf("\n The per unit reacance of motor 2 is: ");
37 disp(pum2);
38 put=zt*sb/(bkv1)^2;
39 printf("\n The per unit impedance of transmission
      line is: ");
40 disp(put);
```

Scilab code Exa 8.9 To calculte the volatge at the terminals of the motor

```
1 clear;
2 // clc();
3 ip1=24;
4 ip2=16;
```

```
5 \text{ sb} = 50;
6 tot_ip=ip1+ip2;
7 p=tot_ip/sb;
8 v = 30;
9 \text{ vb} = 45.1;
10 vpu=v/vb;
11 ipu=p/vpu;
12
13 zt1pu=0.0537;
14 zlpu=0.0385+(%i)*0.1157;
15 zt2pu=0.0535;
16 vg=vpu+((%i)*zt1pu +zlpu+(%i)*zt2pu)*ipu;
17
18 function [mag, theta] = c(r,i)
       mag=sqrt(r*r + i*i)
19
       theta=atand(i/r)
20
21 endfunction
22
23
24 previousprot = funcprot(0)
25 funcprot(0)
26
27 r=real(vg);
28 i = imag(vg);
29 [mag, theta] = c(r, i);
30 \text{ vt=mag}*15;
31 printf("\n the terminal voltage at the generator is:
       \%.2 f kV", vt);
```

Scilab code Exa 8.10 To find the generator bus terminal voltage

```
1 clear;
2 //clc();
3 function [zpu]=puz(z1pu,sb2,sb1,vb1,vb2)
4 zpu=z1pu*(sb2/sb1)*(vb1/vb2)^2;
```

```
5 endfunction
7 previousprot = funcprot(0)
8 funcprot(0)
9
10 z1pu=0.15;
11 \text{ sb2=20};
12 \text{ sb1} = 20;
13 \text{ vb1=11};
14 \text{ vb2=12.5};
15 zpu=puz(z1pu,sb2,sb1,vb1,vb2);
16 printf("\n the per unit reactance of the generator
      is: \%.2 f", zpu);
17 xg=zpu;
18
19 zpu=puz(0.15,20,15,11,11);
20 printf("\n the per unit reactance of the generator
      is: \%.2f", zpu);
21 \text{ xm=zpu};
22
23 zpu=puz(0.10,20,25,132,132);
24 printf("\n the per unit reactance of the generator
      is: \%.2 f", zpu);
25 \text{ xt1=zpu};
26
27 zpu=puz(0.10,20,20,132,132);
28 printf("\n the per unit reactance of the generator
      is: \%.2 f", zpu);
29 \text{ xt}2=\text{zpu};
30
31 xtl=((200+(\%i)*500))*20/(132)^2;
32
33 pl=5;
34 pf=0.8;
35 p=pl*pf;
36 q=p1*0.6;
37
38 \text{ vpu=1};
```

```
39 \text{ sb} = 20;
40 rpu=vpu^2*sb*p/(p*p+q*q);
41 xpu=vpu^2*sb*q/(p*p+q*q);
42
43 //when pf is changed to 0.9
44
45 vpu=1.1;
46 im=15*(0.9+(\%i)*sqrt(1-0.9^2))/(sb*vpu);
47
48 il=(p-(\%i)*q)/(sb*vpu);
49 i = im + il;
50 \text{ zt} = (\%i) * (xt1+xt2) + xt1;
51
52 \text{ vg=vpu+zt*i};
53
54 function [mag,theta]=c(r,i)
       mag=sqrt(r*r + i*i)
55
56
       theta=atand(i/r)
57 endfunction
58
59
60 previousprot = funcprot(0)
61 funcprot(0)
62
63 [mag, theta] = c(real(vg), imag(vg));
64 printf("\nthe terminal generator voltage is: %.2f kV
      ", mag *11);
```

Short and medium lines

Scilab code Exa 9.1 calculate the current voltage and power factor of the load

```
1 clear;
2 //clc();
3 //a).unity power factor
5 s = 200;
6 \text{ vr} = 2500;
7 r=1.4;
8 x = 0.8;
9 i=s*1000/vr;
10 z=r+(\%i)*x;
11 \text{ vs=vr+z*i};
12 qs=atand(imag(vs)/real(vs));
13 pf=cosd(qs);
14 printf("the power factor of the sending end is:\%.4\,\mathrm{f}\,\backslash
      n ",pf);
15
16 / b).load power factor =0.8
17
18 pfl=acosd(0.8);
19 vs=vr+z*i*(cosd(-pfl)+(%i)*sind(-pfl));
20 qs=atand(imag(vs)/real(vs));
```

```
21 pf1=qs-(-pf1);
                        //negative sign is due to the
      loadis lagging
22 pf=cosd(pf1);
23 printf(" the power factor of the sending end is: %.3 f
     n, pf);
24
(25 //c).load factor is 0.8 leading
26
27 pfl=acosd(0.8);
28 \text{ vs=vr+z*i*(cosd(pfl)+(\%i)*sind(pfl))};
29 qs=atand(imag(vs)/real(vs));
30 \text{ pf1=qs-(pf1)};
                       //negative sign is due to the
      loadis lagging
31 pf=cosd(pf1);
32 printf(" the power factor of the sending end is: %.3 f
      n, pf);
```

Scilab code Exa 9.2 calculate power factor voltage regulation and efficiency

```
1 clear;
2 //clc();
3 s = 15000/3;
4 v = 33000/sqrt(3);
5 \text{ pf} = 0.85;
6 1=8;
7 r = .29 * 1;
8 x=0.65*1;
9 i=s*1000/v;
10 qs=acosd(pf);
11 op=3*s*1000*pf;
12 ploss=3*i*i*r;
13
14 z=r+(\%i)*x;
15 vs=v+z*i*(cosd(-qs)+(%i)*sind(-qs));
16 vsp=sqrt(real(vs)^2+imag(vs)^2);
```

```
17 vsl=sqrt(3)*vsp;
18 printf("\n the line voltage at the sending end is: %
       .2 f kv, vsl/1000);
19
20 //b) phase difference
21 qs1=atand(imag(vs)/real(vs));
22 pf1=qs1-(-qs); //negative sign is due to the
      load is lagging
23 pf=cosd(pf1);
24 printf("\n the power factor of the sending end is:%
       .4 f", pf);
25
26 //c).line regulation
27
28 \operatorname{lr} = (\operatorname{vsp} - \operatorname{v}) / \operatorname{v};
29 printf("\n the line regulation of is:\%.2 \, f", lr);
30
31 //d).efficiency
32
33 \text{ n=op/(op+ploss)};
34 printf ("\n the transission efficiency is: \%.2 f
      percent", n*100);
```

Scilab code Exa 9.3 calculate voltage and power factor

```
1 clear;
2 //clc();
3 l=1000000; //length in cm
4 s=5000000;
5 v=11000/sqrt(3);
6 f=50;
7 pf=0.8;
8 rho=.000001774;
9 i=s/(3*v*pf);
10 rp=0.1*s/(3*i*i);
```

```
11 a=rho*1/rp;
12 r=sqrt(a/%pi);
13 \text{ r1=0.7788*r};
14 d=200;
15 L=2*.001*log([d/r1]);
16
17 xlp=2*(\%pi)*f*L;
18 qs=acosd(pf);
19 z=rp+(\%i)*xlp;
20 \text{ vs=v+z*i*(cosd(-qs)+(%i)*sind(-qs))};
21 vsp=sqrt(real(vs)^2+imag(vs)^2);
22 \text{ vsl=sqrt}(3)*vsp;
23 printf("\n the line voltage at the sending end is: \%
      .2 f kv, vsl/1000);
24
25 qs1=atand(imag(vs)/real(vs));
26 \text{ pf1=qs1-(-qs)};
                         //negative sign is due to the
      load is lagging
27 pf=cosd(pf1);
28 printf("\n the power factor of the sending end is:%
      .2f (lagging)",pf);
```

Scilab code Exa 9.4 determine the voltage and power factor

```
1 clear;
2 //clc();
3 a=sqrt(3);
4 r1=5;
5 r2=1.5;
6 pf=0.8;
7 rehv=r1+(a)*(a)*r2;
8 x1=10;
9 x2=3;
10 xehv=x1+(a)*(a)*x2;
11 r1=2; //resistance of the line
```

```
//recatance of the line
12 x1=3;
13 r=rl+rehv;
14 x = xl + xehv;
15 \text{ s} = 3000;
16 \quad v = 33000;
17 i=s*1000/(v*sqrt(3));
18 vr=v/sqrt(3);
19 qs=acosd(pf);
20 z = r + (\%i) *x;
21 vs=vr+z*i*(cosd(-qs)+(%i)*sind(-qs));
22 vsp=sqrt(real(vs)^2+imag(vs)^2);
23 \text{ vsl} = \text{sqrt}(3) * \text{vsp};
24 printf("\n the line voltage at the sending end is: \%
      .2 f kv, vsl/1000);
25
26 qs1=atand(imag(vs)/real(vs));
27 \text{ pf1=qs1-(-qs)};
                          //negative sign is due to the
      load is lagging
28 pf=cosd(pf1);
29 printf("\n the power factor of the sending end is:%
      .3 f", pf);
```

Scilab code Exa 9.5 the voltage at the generator busbars

```
1 clear;
2 //clc();
3
4 s=6000000;
5 v=6000;
6 pf=.8;
7 a=66/330;
8 r=7;
9 x=2;
10 rt=2;
11 xt=18;
```

Scilab code Exa 9.6 determine voltage current power factor apparent power efficien

```
1 clear;
2 clc();
3
4 function [r,i]=d(mag,theta)
       r=mag*cosd(theta);
5
       i=mag*sind(theta);
6
 7
  endfunction
9
10
11
12 previousprot = funcprot(0)
13 funcprot(0)
14
15 \text{ vr} = 60000;
16 pr=36000000;
17 p=(12*10^6);
18 pf=.8;
19 mag=p/(vr*pf);
20 theta=acosd(pf);
21
22 [r,i]=d(mag,theta);
```

```
23 ir=conj(complex(r,i));
24
25 f = 50;
26 \quad 1 = .1;
27 c = .25*10^{(-6)};
28 r = 2.5;
29 x1=2*(\%pi)*f*1;
30 z=r+(\%i)*x1;
31 y=(\%i)*2*(\%pi)*f*c;
32 //calculations by nominal T model
33
34 \text{ vab=vr+.}5*z*ir;
35 \text{ iab=y*vab};
36 is=ir+iab;
37 printf("\n The current in A at the sending end is:")
38 disp(is);
39 qi=atand(imag(is)/real(is));
40
41 //voltage drop in the left hand half of the line
42 vd=is*z/2;
43 vs=vab+is*z/2;
44 printf("\n The volatge in V at the sending end is:"
      );
45 disp(vs);
46 \text{ vl=} \text{sqrt}(3) * \text{vs};
47 qs=atand(imag(vs)/real(vs))-qi;
48 \text{ pfs=cosd(qs)};
49 printf("\n The lagging power factor at the sending
      end is:");
50 disp(pfs);
51 	ext{ s3=3*vs*conj(is)};
52 printf("\n The apparent power in VA at the sending
      end is:");
53 disp(s3);
54 eff=pr/real(s3);
55 printf("\n The transmission efficiency is: %.4f per
      cent", eff*100);
```

```
56
57 \quad A = 1 + .5 * z * y;
58 r = real(A);
59 i = imag(A);
60 function [mag, theta] = c(r,i)
61
        mag=sqrt(r*r + i*i)
62
        theta=atand(i/r)
63 endfunction
64 previousprot = funcprot(0)
65 funcprot(0)
66
67 \text{ [mag,theta]=c(r,i);}
68 magA=mag;
69 r = real(vs);
70 i = imag(vs);
71 [mag, theta] = c(r, i);
72
73 magV=mag;
74
75 vrnl=magV/magA;
76 reg=(vrnl-vr)/vr;
77 printf("\n The regulation is:\%.4 f per cent", reg*100)
78
79 //calculations based on pi model
80 printf("\n \n Calculations based on pi model:");
81 \text{ iab=y*vr/2};
82 i=ir+iab;
83 \text{ vd}=i*z;
84 \text{ vs=vr+vd};
85 printf("\n \nThe volatge in V at the sending end is
      :");
86 disp(vs);
87 \text{ icd=y*vs/2}
88 is=i+icd;
89 printf("\n The current in A at the sending end is:")
90 disp(is);
```

```
91 qis=atand(imag(vs)/real(vs))-atand(imag(is)/real(is)
       );
92 pfs=cosd(qis);
93 printf("\n The lagging power factor at the sending
       end is:");
94 disp(pfs);
95 \text{ s3=3*vs*conj(is)};
96 printf("\n The apparent power in VA at the sending
       end is:");
97 disp(s3);
98 eff=pr/real(s3);
99 printf("\n The transmission efficiency is:%.2f per
       cent", eff*100);
100
101 A = 1 + .5 * z * y;
102 \text{ r=real}(A);
103 \quad i = imag(A);
104 function [mag, theta] = c(r,i)
        mag=sqrt(r*r + i*i)
105
        theta=atand(i/r)
106
107 endfunction
108 previousprot = funcprot(0)
109 funcprot(0)
110
111 [mag, theta] = c(r, i);
112 magA=mag;
113 r=real(vs);
114 i=imag(vs);
115 [mag, theta] = c(r, i);
116
117 magV = mag;
118
119 vrnl=magV/magA;
120 reg=(vrnl-vr)/vr;
121 printf("\n The regulation is: \%.4 f per cent", reg*100)
```

Scilab code Exa 9.7 calculate receiving end load

```
1 clear;
2 clc;
3
4 f = 50;
5 1 = 150;
6 L=.2;
7 C=1.5*10^{(-6)};
8 vr=110000/sqrt(3);
9 \text{ vs=vr};
10 xl=2*(\%pi)*f*L;
11 z=(\%i)*x1;
12 y=(\%i)*2*(\%pi)*f*C;
13 iab=y*vr/2;
14 // i = i r + i a b
15 //using the forumla vs=vr+i*z
16
17 ir=sqrt(vs*vs-(vr+iab*z)^2)/imag(z);
18 printf("The load current is: %.3 f A", ir);
```

 ${f Scilab\ code\ Exa\ 9.8}$ to calculate A B C D constants sending end voltage current pow

```
1 clear;
2 clc;
3
4 v1=132000;
5 s=50000000;
6 pf=.85;
7 l=80;
8
9 function [r,i]=d(mag,theta)
```

```
r=mag*cosd(theta);
10
        i=mag*sind(theta);
11
12
13 endfunction
14
15
16
17 previousprot = funcprot(0)
18 funcprot(0)
19
20 \text{ mag} = 96;
21 theta=78;
22 [r,i]=d(mag,theta);
23 z = complex(r,i);
24
25 \text{ mag} = .001;
26 \text{ theta=90};
27 [r,i] = d(mag, theta);
28 \text{ y=complex(r,i)};
29
30 vrp=vl/sqrt(3);
31 Irp=s/(sqrt(3)*vl*pf);
32
33 mag=Irp;
34 theta=-acosd(pf);
35 [r,i] = d(mag, theta);
36 irp=complex(r,i);
37
38 //a). for the nominal T network parameters are
39 A=1+.5*z*y;
40 B=z*(1+.25*z*y);
41 C=y;
42 D=A;
43
44 disp(A);
45 disp(B);
46 disp(C);
47 disp(D);
```

```
48
49 //phase voltage at the sending end is
50 \text{ vsp}=A*\text{vrp}+B*\text{irp};
51 \text{ vsl} = \text{sqrt}(3) * \text{vsp};
52 disp(vsp);
53
54 / (c).
55 is=C*vrp+D*irp;
56 disp(is);
57
58 //d).
59 qs=atand(imag(vsp)/real(vsp))-atand(imag(is)/real(is
60 printf("\n The power factor at the sending end is:%
      .3f (lagging)",cosd(qs));
61
62 / e).
63 r=real(vsl);
64 i=imag(vsl);
65 function [mag, theta] = c(r,i)
       mag=sqrt(r*r + i*i)
66
       theta=atand(i/r)
67
68 endfunction
69 previousprot = funcprot(0)
70 funcprot(0)
71
72 [mag, theta] = c(r, i);
73 Vsl=mag;
74
75 r=real(is);
76 i=imag(is);
77 [mag, theta] = c(r, i);
78
79 Is=mag;
80 eff=s/(sqrt(3)*Vsl*Is*cosd(qs));
81 printf("\n The efficiency of transmission is:\%.2 f
      per cent",eff*100);
```

Long transmission lines

Scilab code Exa 10.1 To calculate the A B C D constants

```
1 clear;
2 //clc();
3 z=12.5 + (\%i)*66;
4 y=(\%i)*4.4*(10^{-4});
5 yS=sqrt(z*y);
7 aS=real(yS);
9 bS=imag(yS);
10
11 A = \cosh(yS);
12
13 printf("\n the constant A is: \%f\n ",A);
14
15 D=A;
16
17 printf("\n the constant D is: \%f\n ",D);
18
19 zo=sqrt(z/y);
20 B=zo*sinh(yS);
21
```

```
22 printf("\n the constant B is: %f\n ",B);
23
24 C=sinh(yS)/(zo);
25
26 printf("\n the constant C is: %f\n ",C);
```

Scilab code Exa 10.2 To calculate the sending end voltage sending end current line

```
1 clear;
2 //clc();
3 v = 275 * 1000;
4 vrp=v/sqrt(3);
5 p=250*10^{(6)};
6 \cos q = 0.9;
7 ir1=p/(sqrt(3)*v*cosq);
8 ir=ir1*(cosd(25.84) + (\%i)*sind(-25.84));
9
10 A=0.9855138 + 0.0027367*(\%i);
11 D=0.9855138 + 0.0027367*(\%i);
12 C = -0.0000004 + 0.0004379*(%i);
13 B=12.37926 + 65.692432*(%i);
14
15 \text{ is=C*vrp + D*ir};
16 printf('the sending end current is:');
17 disp(is);
18 \text{ vsp=A*vrp + B*ir};
19 printf('the sending end voltage is:');
20 disp(vsp);
21 ps=real(3*vsp*conj(is));
22
23 tx_eff=p/ps;
24 printf("\n the transmission efficiency is: %.3f pu\
      n ", tx_eff);
25
26 vnl=polar(vsp)/A;
```

General networks constants

Scilab code Exa 11.2 To find the volatge current and pf at the sending end

```
1 clear;
2 clc;
3 function [r,i]=d(mag,theta)
        r=mag*cosd(theta);
        i=mag*sind(theta);
7 endfunction
9 previousprot = funcprot(0)
10 funcprot(0)
11
12 // clc();
13 mag=0.98;
14 \text{ theta=3};
15 [r,i]=d(mag,theta);
16 A = complex(r,i);
17
18 \quad D=A;
19
20 \text{ mag} = 110;
21 theta=75;
```

```
22 [r,i]=d(mag,theta);
23 B = complex(r,i);
24
25 \text{ mag} = 0.0005;
26 theta=88;
27 [r,i] = d(mag, theta);
28 C = complex(r,i);
29
30 v = 132 * 10^{(3)};
31 s=50*10^{(6)};
32 \text{ pf} = 0.8;
33
34 vrp=v/sqrt(3);
35 mag=vrp;
36 \text{ theta=0};
37 [r,i] = d(mag, theta);
38 vr=complex(r,i);
39
40 i=s/(sqrt(3)*v);
41 mag=i;
42 theta=-acosd(pf);
43 [r,i] = d(mag, theta);
44 ir=complex(r,i);
45
46 \text{ vsp=A*vr + B*ir};
47 printf('the voltage at the sending end is:');
48 disp(vsp);
49 \text{ is=C*vr} + D*ir;
50 printf('the current at the sending end is:');
51 disp(is);
52 qs=atand(imag(vsp)/real(vsp))-atand(imag(is)/real(is
53 printf("The power factor is: %.4f", cosd(qs));
```

Scilab code Exa 11.3 To calculate sending end voltage

```
1 clear;
2 //clc();
4 function [r,i]=d(mag,theta)
 5
        r=mag*cosd(theta);
 6
        i=mag*sind(theta);
  endfunction
8
10 previousprot = funcprot(0)
11 funcprot(0)
12
13 \text{ mag} = 0.97;
14 theta=0.6;
15 [r,i] = d(mag, theta);
16 a1 = complex(r,i);
17
18
19 mag = 60;
20 theta=70;
21 [r,i] = d(mag, theta);
22 b1 = complex(r,i);
23
24
25 mag=0.97;
26 \text{ theta=0.4};
27 [r,i]=d(mag,theta);
28 \quad a2 = complex(r,i);
29
30 \text{ mag} = 50;
31 theta=76;
32 [r,i] = d(mag, theta);
33 b2 = complex(r,i);
34
35 s=50*10^{(6)};
36 v = 132 * 10^{(3)};
37 \text{ pf} = 0.8;
38
```

```
39
40 vrp=v/sqrt(3);
41 \text{ mag=vrp};
42 theta=0;
43 [r,i]=d(mag,theta);
44 vr=complex(r,i);
45
46 i=s/(sqrt(3)*v*pf);
47 \text{ mag=i};
48 theta=-acosd(pf);
49 [r,i] = d(mag, theta);
50 ir = complex(r,i);
51
52 A=(a1*b2 + a2*b1)/(b1 + b2);
53
54 B=(b1*b2)/(b1+b2);
55
56 \text{ vsp=A*vr + B*ir};
57 printf('the sending end phase voltage is:');
58 disp(vsp);
```

 ${\bf Scilab}\ {\bf code}\ {\bf Exa}\ {\bf 11.4}\ {\bf To}\ {\bf calculate}\ {\bf the}\ {\bf value}\ {\bf of}\ {\bf ABCD}\ {\bf parameters}\ {\bf and}\ {\bf the}\ {\bf characteris}$

```
1 clear;
2 //clc();
3 function [r,i]=d(mag,theta);
4    r=mag*cosd(theta);
5    i=mag*sind(theta);
6
7 endfunction
8
9 previousprot = funcprot(0);
10 funcprot(0);
11
12 mag=120;
```

```
13 theta=60;
14 [r,i] = d(mag, theta);
15 z = complex(r,i);
16
17 mag=5*10^{(-3)};
18 theta=90;
19 [r,i] = d(mag, theta);
20 y = complex(r,i);
21 A=1 + 0.5*z*y;
22 printf('the value of A is:');
23 disp(A)
24 B=z;
25 printf('the value of B is:');
26 disp(B)
27 C=y*(1+ 0.25*(z)*(y));
28 printf('the value of C is:');
29 disp(C)
30 D = A;
31 printf('the value of D is:');
32 disp(D)
```

Scilab code Exa 11.5 To determine the equivalent T network

```
//to determine the equivalent t-network
//clc();
rab=720;
rac_oc=1240;
rcd=910;
r3=sqrt((rac_oc-rab)*(rcd));
printf("\n the R3 resistance is: %f ohm\n",r3);
r2=rcd-r3;
printf("\n the R2 resistance is: %f ohm\n",r2);
```

```
13 r1=rac_oc-r3;
14 printf("\n the R1 resistance is: %f ohm\n",r1);
```

Control of voltage and reactive power

 ${\bf Scilab}\ {\bf code}\ {\bf Exa}\ {\bf 13.1}\ {\bf To}\ {\bf calculate}\ {\bf the}\ {\bf maximum}\ {\bf power}\ {\bf phase}\ {\bf difference}\ {\bf for}\ {\bf maximum}\ {\bf p}$

```
1 clear;
2 clear;
   //clc();
   function [mag,theta]=c(r,i)
       mag=sqrt(r*r + i*i)
       theta=atand(i/r)
9 endfunction
10
11
12 previousprot = funcprot(0)
13 funcprot(0)
14
15
   r = 10;
16 \quad x = 30;
17 i=x;
18 \text{ vs} = 132;
   vr=vs;
```

```
20
    z=r + (\%i)*x;
21
    B=z;
22
    A=1;
23
    b=atand(x/r);
24
    a=0;
25
26
    [mag, theta] = c(r, i);
    pm = (vs*vr/mag) - ((A*vr^(2)/mag)*cosd(theta));
27
    printf("\n the maximum power is: %.2 f MW\n",pm);
28
29
30 //maximum power is at an angle
31 del=theta;
32 printf("\n the maximum power angle is: %.2f degrees
      \n",del);
33
34 //determining the rating of the syncronous phase
      modifier
35
36 pl=100;
37 pr0=-(vr^2)*r/mag^(2);
38
39 qr0 = -(vr^{(2)}*x)/mag^{(2)};
40
41 pr=vs*vr/mag;
42
43 = q = qrt(pr^{2} - (pr0 - pl)^{2}) + qr0;
44
45 \text{ qpm=pl*tand(acosd(0.9))} - q;
46 printf("\n the rating of the phase modifier is: %.2
      f (leading)",qpm);
```

Scilab code Exa 13.2 To find the rating of the modifier and the power factor

```
1 clear;
2 //clc();
```

```
3 function [mag,theta]=c(r,i)
        mag=sqrt(r*r + i*i)
        theta=atand(i/r)
7 endfunction
9 previousprot = funcprot(0)
10 funcprot(0)
11
12 r = 25;
13 x = 90;
14 i=x;
15 [mag, theta] = c(r, i);
16 \text{ vs} = 145;
17 \text{ vr} = 132;
18
19 pl=0;
20 p = 50;
21 pr0=-(vr^2)*r/mag^(2);
22
23 qr0=-(vr^{(2)}*x)/mag^{(2)};
24
25 \text{ pr=vs*vr/mag};
26
27 q=sqrt(pr^(2) - (pr0 - pl)^(2)) + qr0;
28
29 \quad qpm=q;
30 printf("\n the rating of the synchronous phase
      modifier is: \%.2 \text{ f MVAr} \ \text{n}, qpm);
31 phi=atand(qpm/p);
32 printf("\n the pf is: \%.2f (lagging)\n",phi);
```

Scilab code Exa 13.3 To calculate the sending voltage maximum power and additional

```
1 clear;
```

```
//clc();
3
4
   function [mag, theta] = c(r, i)
5
6
        mag=sqrt(r*r + i*i)
        theta=atand(i/r)
8 endfunction
9
10
11 previousprot = funcprot(0)
12 funcprot(0)
13
14
15 function [r,i]=d(mag,theta)
        r=mag*cosd(theta);
16
        i=mag*sind(theta);
17
18
19 endfunction
20
21
22
23 previousprot = funcprot(0)
24 funcprot(0)
25
26 \text{ vr} = 275;
27 vrl=vr*1000;
28 	 pf = .9;
29
   vrp=vrl/sqrt(3);
30
    vs = 290;
31
32 \text{ magA} = .94;
33 mag=magA;
34 thetaA=1;
35 theta=thetaA;
36 [r,i]=d(mag,theta);
37 A=complex(r,i);
38
39 \text{ magB} = 107;
```

```
40 mag=magB;
41 thetaB=78;
42 theta=thetaB;
43 \quad [r,i]=d(mag,theta);
44 B = complex(r,i);
45 pr=300*10^6;
46 ir=pr/(sqrt(3)*vrl*pf);
47 mag=ir;
48 theta=-acosd(0.9);
                 [r,i]=d(mag,theta);
50 \text{ ir=complex(r,i)};
51 \text{ vsp=A*vrp+B*ir};
52 \text{ vsl} = \text{sqrt}(3) * \text{vsp};
53 printf("The line voltage at the sending end:");
54 disp(vsl)
55 \text{ pm} = (\text{vs*vr/magB}) - ((\text{magA*vr}^{(2)}/\text{magB})*\text{cosd}(\text{thetaB} - \text{magB}) + (\text{magB}) +
                           thetaA));
                  printf("\n the maximum power is: %.2 f MW\n",pm);
56
57
            //determining the rating of the syncronous phase
                           modifier
59
60 \text{ pl} = 450;
61 pr=pl*pf;
62 pr0=-(vr^2)*magA*cosd(thetaB-thetaA)/magB;
63 qr0=-(vr^2)*magA*sind(thetaB-thetaA)/magB;
64 rhor=vs*vr/magB;
65 q=sqrt(rhor^(2) - (pr - pr0)^(2)) + qr0;
67 \text{ qpm=pr*tand(acosd(0.9))} - q;
68 printf ("\n the rating of the phase modifier is: \%.2
                            f MVAr", qpm);
```

Scilab code Exa 13.4 To find the mva rating of synchronous phase modifier

```
1 clear;
2 // clc();
4 r = 14;
5 x = 48;
6 i=x;
7 \text{ vs} = 70;
8 \text{ vr} = 66;
9
   function [mag,theta]=c(r,i)
10
        mag=sqrt(r*r + i*i)
11
12
        theta=atand(i/r)
13 endfunction
14
15
16 previousprot = funcprot(0)
17 funcprot(0)
18
19 [mag, theta] = c(r, i);
20
21 z=r + (\%i)*x;
22 y=(\%i)*4*10^{-4};
23
24 A=1 + 0.5*z*y;
25
26 [mag, theta] = c(real(A), imag(A));
27 a=theta;
28 \quad A1 = mag;
29
30 B=z;
31
32 function [mag, theta] = c(r,i)
33
        mag=sqrt(r*r + i*i)
        theta=atand(i/r)
34
35 endfunction
36
37 \text{ [mag,theta] = c(r,i);}
38 b=theta;
```

```
39 B1=mag;
40
41 pr0=-(A1*vr^2)*cosd(b-a)/(B1);
42
43 qr0=-(A1*vr^2)*sind(b-a)/(B1);
44
45 \text{ pr=vs*vr/B1};
46
47 pl=0;
48
49 q=sqrt(pr^(2) - (pr0 - pl)^(2)) + qr0;
50
51 \text{ qpm=q};
52
53 s = 24;
54 prat=s*0.8;
55
56 q=sqrt(pr^(2) - (pr0 - prat)^(2)) + qr0;
57
58 qpmrat=prat*tand(acosd(0.8))-q;
59 printf("\n the rating of the synchronous phase
      modifier is: %.2f MVAr \setminus n", qpmrat);
```

Load flow analysis

Scilab code Exa 14.1 determine Ybus

```
1 clear;
2 clc;
3
4 n=5;
5 m = 5;
6 y=zeros(n,m);
7 z12 = (\%i) * .2;
8 z23=(\%i)*.25;
9 z34 = (\%i) * .3
10 z45 = (\%i) * .25;
11 z14=(\%i)*.5;
12 z15 = (\%i) * .2;
13 y(1,2)=1/z12;
14 y(2,3)=1/z23;
15 y(3,4)=1/z34;
16 y(4,5)=1/z45;
17 y(1,4)=1/z14;
18 y(1,5)=1/z15;
19
20
21 \quad for \quad i=1:1:n
```

```
22
     for j=1:1:m
23
           y(j,i)=(y(i,j)+y(i,j))/2;
24
25
           end
26 \text{ end}
27 \quad Y = y;
28 \quad for \quad i=1:1:n
29
       for j=1:1:m
30
            if (i==j) then
                 for k=1:1:n
31
                 y(i,i)=y(i,i)+Y(j,k);
32
33
34
            else
                 y(i,j)=y(i,j)*(-1);
35
            end
36
37
       end
38 end
39 disp(y)
```

Scilab code Exa 14.2 determine modified Ybus

```
12 y(i,j)=-y(i,j);

13 y(j,i)=y(i,j);

14 disp(y)
```

Scilab code Exa 14.3 determine Ybus

```
1 clear;
2 clc;
4 y = [-12*(\%i) (\%i)*5 0 (\%i)*2 (\%i)*5;5*(\%i) -(\%i)*9
      (\%i)*4 0 0;0 4*(\%i) -(\%i)*7.33 (\%i)*3.33 0;(\%i)*2
       0 \ 3.33*(\%i) \ -(\%i)*9.33 \ (\%i)*4;5*(\%i) \ 0 \ 0 \ (\%i)*4
      -(\%i)*9];
5 Y = y;
6 i=3;
7 j=5;
8 k=1;
9 1=3;
10 z35=(\%i)*.05;
11 z13 = (\%i) * .01;
12 y(k,1)=1/z13;
13 y(i,j)=1/z35;
14 y(k,k)=Y(k,k)+y(k,i);
15 y(i,i)=Y(i,i)+y(i,j)+y(k,i);
16 y(j,j)=Y(j,j)+y(l,j);
17 y(i,j) = -y(i,j);
18 y(j,i)=y(i,j);
19 y(k,1)=-y(k,1);
20 y(1,k)=y(k,1);
21 disp(y)
```

Scilab code Exa 14.4 determine Ybus

```
1 clear;
2 clc;
4 z12 = .06 + (\%i) * .18;
5 z23 = .08 + (\%i) * .24;
6 z13 = .03 + (\%i) * .09;
7
8 n=3;
9 m = 3;
10 y=zeros(n,m);
11 y(1,2)=1/z12;
12 y(1,3)=1/z13;
13 y(2,3)=1/z23;
14
15 for i=1:1:n
    for j=1:1:m
16
          y(j,i)=(y(i,j)+y(i,j))/2;
17
18
19
           end
20 \, \text{end}
21 \quad Y = y;
22 \quad for \quad i=1:1:n
23
       for j=1:1:m
            if (i==j) then
24
25
                 for k=1:1:n
                 y(i,i)=y(i,i)+Y(j,k);
26
27
                 end
28
            else
                 y(i,j)=y(i,j)*(-1);
29
30
            end
31
       end
32 end
33
34 disp(y)
```

Scilab code Exa 14.5 determine modified Ybus

```
1 clear;
2 clc;
3
5 y = [(5-15*(\%i)) (-1.67+5*(\%i)) (-3.33+10*(\%i))
       ;(-1.67+5*(\%i)) (2.91-8.75*(\%i)) (-1.25+3.75*(\%i))
      ); (-3.33+10*(\%i)) (-1.25 + 3.75*(\%i))
       (4.58-13.75*(\%i))];
6 \quad Y = y;
7 ya=-2.5*(\%i);
8 \text{ yb=ya};
9 \text{ yc=ya};
10 \text{ yd=ya};
11 ye=ya;
12 yf = ya;
13 i=1;
14 j=2;
15 k=3;
16 y(k,k) = Y(k,k) + yb + yf;
17 y(i,i)=Y(i,i)+ya+yc;
18 y(j,j)=Y(j,j)+ye+yd;
19 disp(y)
```

Scilab code Exa 14.6 determine Ybus

```
1 clear;
2 clc;
3
4 n=4;
5 m=4;
6 y=zeros(n,m);
7 z12=.25+(%i)*1.0;
8 z13=.20+(%i)*.8;
```

```
9 z14 = .30 + (\%i) *1.2;
10 z23 = .20 + (\%i) * .8;
11 z34 = .15 + (\%i) * .6;
12 y(1,2)=1/z12;
13 y(1,3)=1/z13;
14 y(1,4)=1/z14;
15 y(2,3)=1/z23;
16 y(3,4)=1/z34;
17
18
19
20 \quad for \quad i=1:1:n
     for j = 1:1:m
21
          y(j,i)=(y(i,j)+y(i,j))/2;
22
23
24
           end
25 end
26 \quad Y = y;
27 	 for 	 i=1:1:n
28
       for j=1:1:m
29
            if (i==j) then
                 for k=1:1:n
30
                y(i,i)=y(i,i)+Y(j,k);
31
32
                 end
33
            else
                y(i,j)=y(i,j)*(-1);
34
35
            end
36
       end
37 end
38 disp(y)
```

Scilab code Exa 14.7 determine modified Ybus

```
1 clear;
2 clc;
```

```
3
4 n=4;
5 m=4;
6 y=zeros(n,m);
7 z12 = .25 + (\%i) *1.0;
8 z13 = .20 + (\%i) * .8;
9 z14 = .30 + (\%i) *1.2;
10 z23 = .20 + (\%i) * .8;
11 z34 = .15 + (\%i) * .6;
12 y(1,2)=1/z12;
13 y(1,3)=1/z13;
14 y(1,4)=1/z14;
15 y(2,3)=1/z23;
16 y(3,4)=1/z34;
17
18
19
20 for i=1:1:n
21
      for j=1:1:m
           y(j,i)=(y(i,j)+y(i,j))/2;
22
23
24
           end
25 end
26 \quad Y = y;
27 \text{ for } i=1:1:n
28
       for j = 1:1:m
29
            if (i==j) then
                 for k=1:1:n
30
                 y(i,i)=y(i,i)+Y(j,k);
31
32
                 end
33
            else
                 y(i,j)=y(i,j)*(-1);
34
35
            end
36
       end
37 \text{ end}
38
39 \text{ ya} = -.08*(\%i);
40 \text{ yb=ya};
```

```
41 yc=ya;

42 yd=ya;

43 yk=ya;

44 yf=ya;

45 i=1;

46 j=2;

47 k=3;

48 l=4;

49 y(k,k)=y(k,k)+yf;

50 y(i,i)=y(i,i)+ya+yc+yb;

51 y(j,j)=y(j,j)+yd;

52 y(l,l)=y(l,l)+yk;

53 disp(y)
```

Scilab code Exa 14.8 determine the voltages at buses

```
1 clear;
2 \text{ clc};
3
4
5 n=3;
6 \text{ m=3};
7 y = zeros(n,m);
8 y(1,2) = (-(\%i)*3);
9 y(1,3)=(-(\%i)*4);
10 y(2,3) = (-(\%i)*5);
11
12 for i=1:1:n
13
     for j = 1:1:m
           y(j,i)=(y(i,j)+y(i,j))/2;
14
15
16
           end
17 \text{ end}
18 Y = y;
19 for i=1:1:n
```

```
20
       for j = 1:1:m
21
             if (i==j) then
22
                  for k=1:1:n
                  y(i,i)=y(i,i)+Y(j,k);
23
24
                  end
25
             else
                  y(i,j)=y(i,j)*(-1);
26
27
             end
28
       end
29 \quad \mathbf{end}
30
31 \quad v = [1.02 \quad 1 \quad 1];
32
33 alpha=1.6;
34
35 \text{ del} = [0 \ 0 \ 0];
36 pl = [0 50 60];
37 q1 = [0 25 30];
38 pg = [0 25 0];
39 qg = [0 15 0];
40 \text{ bmva=100};
41 p2=(pg(2)-pl(2))/bmva;
42 q2 = (qg(2) - q1(2))/bmva;
43
44 p3=(pg(3)-pl(3))/bmva;
45 q3 = (qg(3) - ql(3))/bmva;
46
47 p = [0 p2 p3];
48 q = [0 q2 q3];
49 \quad for \quad i=1:1:2
        v1=zeros(1,3);
50
51
        v2=v;
52
        for j=2:1:3
              for k=1:1:3
53
                   if (k^{-j}) then
54
                        v1(j)=v1(j)-y(j,k)*v(k);
55
56
57
                   end
```

```
58
59
             end
             v(j)=(1/y(j,j))*((p(j)-(%i)*q(j))/conj(v(j))
60
                +v1(j));
             delv(j)=v(j)-v2(j);
61
             v(j)=v2(j)+alpha*delv(j);
62
63
64
        \quad \text{end} \quad
65 printf("The voltages at the end of:%d iteration are"
      ,i);
             disp(v)
66
67 \text{ end}
```

Economic operations of power systems

Scilab code Exa 15.1 to find the incremental cost of two units

```
1 clear;
2 clc;
3
4 b=[1 -2 ;1 1];
5 c=[0;450];
6 a=inv(b)*c;
7 p1=a(1);
8 p2=a(2);
9 ic1=2+.01*p1;
10 ic2=2+.02*p2;
11 printf("the incremental fuel cost of first generator is:%.2 f Rs/MWh",ic1);
12 printf("\n the incremental fuel cost of second generator is:%.2 f Rs/MWh",ic2);
```

Scilab code Exa 15.2 to find the load division between the two units

```
1 clear;
2 clc;
4 p1max = 200;
5 p2max=p1max;
6 p1min=50;
7 p2min=p1min;
9 p1=p1min;
10 p2=p1;
11 ic1=.16*p1+30;
12 \text{ ic2}=.20*p2+25;
13 printf ("For the plant output %.2 f MW p1=%.2fMW
                                                         p2=
     \%.2fMW\n",(p1+p2),p1,p2);
14
15 for ic=40:5:60
16
       ic1=ic;
17
       ic2=ic;
18
19
           p1=(ic1-30)/.16;
20
       p2=(ic2-25)/.20;
21
       printf ("For the plant output %.2 f MW p1=%.2fMW
22
            p2=\%.2fMW\n",(p1+p2),p1,p2);
23
       end
24
25 p1 = 200;
26 p2 = 200;
27 printf ("For the plant output %.2 f MW p1=%.2fMW
                                                         p2=
     \%.2fMW\n",(p1+p2),p1,p2);
```

Scilab code Exa 15.3 determine the saving in fuel cost

```
1 clear;
2 clc;
```

```
4 function ic1=f(p1),ic1=.16*p1+30;
5 endfunction
6
7 function ic2=f1(p2),ic2=.20*p2+25;
8 endfunction
9 c1=intg(50,57.5,f);
10 c2=intg(65,57.5,f1);
11 printf("the increase in cost of unit 1 is:%.3f Rs/h\n",c1);
12 printf("the increase in cost of unit 2 is:%.3f Rs/h\n",c2);
13
14 net=c1+c2;
15 sav=net*365*24;
16 printf("The total yearly saving is:%.2f Rs",sav);
```

Scilab code Exa 15.4 find the loss coefficients and the transmission loss

```
1 clear;
2 \text{ clc};
3
4 zac=complex(.05,.2);
5 rac=real(zac);
6 \text{ vc} = 1;
7 i1=1.05;
8 i2 = .9;
9 zbc=complex(.04,.16);
10 rbc=real(zbc);
11 zcd=complex(.03,.12);
12 rcd=real(zcd);
13 \text{ va=vc+zac*i1};
14 \text{ vb=vc+zbc*i2};
15 p1=real(va*conj(i1));
16 p2=real(vb*conj(i2));
```

```
17 b11=(rac+rcd)/(real(va)^2);
18 b12=rcd/(real(va)*real(vb));
19 b22=(rbc+rcd)/(real(vb)^2);
20 p1=p1*p1*b11+p2*p2*b22+2*p1*p2*b12;
21 printf("The transmission loss is:%.4 f pu",p1);
```

Scilab code Exa 15.5 find the penalty factor

```
1 clear;
2 clc;
3
4 p1=200;
5 p2=p1;
6 a=.2;..// a=del(pl)/del(p2)
7 12=1/(1-a);
8 ic1=.15*p1+150;
9 ic2=.25*p2+175;
10 11=12*ic2/ic1;
11 printf("The penalty factor of plant 1 is: %.4f",11);
```

 ${
m Scilab\ code\ Exa\ 15.6}$ find the penalty factor and the additional cost per hour to i

```
1 clear;
2 clc;
3
4 b11=.001;
5 b12=-.0001;
6 b22=.0013;
7
8 p1=150;
9 p2=275;
10 a=2*p1*b11+2*p2*b12;
11 11=1/(1-a);..// a=del(pl)/del(p2)
```

```
12 printf("The penalty factor of plant 1 is: %.4f\n",11
    );
13 lamda=200;
14 ic1=lamda/11;
15 printf("The incremental cost is:%.0f Rs/MWh",ic1);
```

Scilab code Exa 15.7 calculate the penalty factors for the two plants

```
1 clear;
2 clc;
3
4 p1=100;
5 p1=5;
6 b11=p1/(p1*p1);
7 a=2*p1*b11;..// a=del(pl)/del(p1)
8 l1=1/(1-a);
9 a1=0;..// a1=del(pl)/del(p1)
10 l2=1/(1-a1);
11
12 printf("The penalty factor of plant 1 is: %.3f\n",11 );
13 printf("The penalty factor of plant 2 is: %.3f\n",12 );
```

Scilab code Exa 15.8 determine the generation schedule and the load demand

```
1 clear;
2 clc;
3
4 p1=125;
5 p1=12.5
6 b12=0;
7 b22=0;
```

```
8
9 b11=pl/(p1*p1);
10 lamda=70;
11 a=.000016;
12 p1=82.8729;..//ic1=.25*p1+40;
13 p2=100;
14 p1=.0008*p1*p1;
15 pr=p1+p2-p1;
16 printf("The total load is:%.4 f MW\n",pr);
17 l1=1/(1-a);
18 a1=0;
19 l2=1/(1-a1);
20 p2=(lamda-50)/.2;
21 printf("for the optimal dispatch P1=%.2 f MW\n",p1);
22 printf("for the optimal dispatch P2=%.2 f MW\n",p2);..
//ic2=.20*p2+50
```

Symmetrical faults

Scilab code Exa 16.1 To find the high voltage terminals of a transformer

```
1 clear;
2 //clc();
3 s = 15;
4 s1=10;
5 \text{ xg1}=(\%i)*0.1;
6 \text{ xg1_pu=xg1*s/s1};
8 \text{ xg2}=(\%i)*0.075;
9 s2=5;
10 xg2_pu=xg2*s/s2;
12 xt1_pu=(\%i)*0.06;
13 z=5+(\%i)*20;
14 v1=33;
15 z_pu=z*s/v1^2;
16 // printf("%z", z_pu);
17
18 //three phase fault Fa
19
20 x1 = (\%i) *0.15;
21 	 x2 = (\%i) *0.225;
```

```
22
23  ze_pu=xt1_pu+(x1*x2/(x1+x2));
24  Ssc=s/(imag(ze_pu));
25  ifault=Ssc*1000/(sqrt(3)*v1);
26  printf("The fault current is:%.2f A\n",ifault);
27
28  //three phase fault at phase b
29
30  xt=0.06887 + (%i)*0.27548;
31  ze_pu2=xt1_pu+(x1*x2/(x1+x2)) +xt;
32  z_pu=sqrt(real(ze_pu2)^2 + imag(ze_pu2)^2);
33  ifault=fb*1000/(sqrt(3)*v1);
34  ifault=fb*1000/(sqrt(3)*v1);
35  printf("The fault current is:%.2f A",ifault);
```

 ${
m Scilab\ code\ Exa\ 16.2}$ to calculate the subtransient transient and synchronous short

```
1 clear;
2 //clc();
3 x2d=(%i)*0.3;
4 x11=(%i)*0.08;
5 xline=(%i)*0.55;
6 x12=(%i)*0.08;
7
8 ig=0.75;
9 z2t=x2d +xl1 +xline + xl2;
10 er=1;
11 eint=er+ig*z2t;
12 e2int=sqrt(real(eint)^2 + imag(eint)^2);
13
14 x2gf=imag(x2d + xl1);
15 i2d=e2int/x2gf;
16
17 x2bf=imag(xl1 +xline);
```

```
18 i2df=er/x2bf;
19 tot_i2d=i2d +i2df;
20 printf ("The total subtransient short circuit current
       is:\%.3 f pu\n",tot_i2d);
21
22 //calculation of effect of maximum dc component
      offset
23
24 i2g=sqrt(2)*i2d;
25 i2f=sqrt(2)*i2df;
26 tot_i=i2g+i2f;
27 max_sc=sqrt(tot_i2d^2+tot_i^2);
28
29 \text{ sb} = 50;
30 \text{ vlb} = 138 * 10^{(3)};
31 ilb=sb/(sqrt(3)*vlb*(10^(-6)));
32 isc=ilb*max_sc;
34 //caculation of prefault voltage behind transient
      reactance
35
36 \times 1d = (\%i) *0.35;
37 z1t=x1d+x11+xline+x12;
38 eint1=er+ig*z1t;
39 elint=sqrt(real(eint1)^2 + imag(eint1)^2);
40
41 \times 1gf = imag(x1d + x11);
42 i1d=e1int/x1gf;
44 x1bf=imag(xl1 +xline);
45 i1df=er/x1bf;
46 tot_i1d=i1d +i1df;
47 printf ("The total transient short circuit current is
      :\%.3 f pu n, tot_i1d);
48
49 isc1=ilb*tot_i1d;
50
51 //calculation of prefault voltage behind synchronous
```

```
reactance
52
53 \text{ xd} = (\%i) *1.25;
54 \text{ zt}=xd+xl1+xline+xl2;
55
56 \text{ eint3=er+ig*zt};
57 e3int=sqrt(real(eint3)^2 + imag(eint3)^2);
58
59 \times 3gf = imag(xd + xl1);
60 i3d=e3int/x3gf;
61
62 x3bf=imag(xl1 +xline);
63 i3df=er/x3bf;
64 \text{ tot_i3d=i3d +i3df};
65 printf("The total synchronous short circuit current
      is:\%.3 f pu \n",tot_i3d);
```

Scilab code Exa 16.3 To calculte the reactance of the reactor to prevent the circu

```
1 clear;
2 //clc();
3 sb=50*10^6;
4 xg=0.2;
5 sg=10*10^6;
6
7 xgpu=sb*xg/sg;
8 xpg=1/4;
9 ssc=500;
10 xu=1/15;
11 vl=33*10^3;
12 ifl=sb/(sqrt(3)*vl);
13 vn=vl/sqrt(3);
14 x=vn*xu/ifl;
15 printf("the reactance of the reactor is:%.2 f Ohm",x);
```

Scilab code Exa 16.4 To find the reactor neccessary to prevent the switchgear

```
1 clear;
2 // clc();
4 sb=7.5*10^6;
5 v1=3.3*10^3;
6 \text{ sga}=3;
7 \text{ sgb} = 4.5;
8 \text{ xgb} = 0.08;
9 \text{ xga} = 0.07;
10 xga_pu=sb*xga/sga;
11 xgb_pu=sb*xgb/sgb;
12
13 xgp=(xga_pu*xgb_pu)/(xga_pu+xgb_pu);
14 \text{ xu} = 0.0724;
16 ifl=sb/(sqrt(3)*v1);
17 vn=v1/sqrt(3);
18 x = xu * vn / ifl;
19 printf("the reactance of the reactor is:%.3f A",x);
```

Scilab code Exa 16.5 to find the reactor reactances

```
1 clear;
2 clc;
3 //xt=(.075+1.5x)*(.15)/(.075+1.5x+.15);
4 ssc=200;
5 xpu=.15;
6 ifl=20*10^(6)/(sqrt(3)*11000);
7 vp=11000/sqrt(3);
```

Scilab code Exa 16.6 to determine short circuit MVA and fault current distribution

```
1 clear;
2 clc;
3
4 xt = (.15+.1)*(.2)/(.15+.1+.2);
5 \text{ sb} = 25;
6 \text{ ssc=sb/xt};
7 printf("\n The short circuit MVA is: \%.2 f \n", ssc);
8 if = 1/((\%i)*xt);
9 ib=sb/(sqrt(3)*11000);
10 if = if * ib;
11 printf("\n The fault current in A is:");
12 disp(round(if*1000000));
13 if1=(.15+.1)*if/(.15+.1+.2);
14 printf("\n The fault current in A supplied by
      generator 1 is:");
15 disp(round(if1*1000000));
16 if2=if-if1;
17 printf("\n The fault current in A in reactor is:");
18 disp(round(if2*1000000));
19 xpu = .45;
20 \text{ vfl} = 6350;
```

Symmetrical components

Scilab code Exa 17.1 To calculate the positive negative zero sequence component of

```
1 clear;
2 //clc();
4 function [r,i]=d(mag,theta)
       r=mag*cosd(theta);
        i=mag*sind(theta);
8 endfunction
10 previousprot = funcprot(0)
11 funcprot(0)
12
13 \text{ mag} = 100;
14 \text{ theta=30};
15
16 [r,i] = d(mag, theta);
17 ia=complex(r,i);
18 \text{ mag} = 50;
19 theta=300;
20
21 [r,i]=d(mag,theta);
```

```
22 ib = complex(r,i);
23
24 \text{ mag} = 30;
25 theta=180;
26 [r,i]=d(mag,theta);
27 ic=complex(r,i);
28
29 ia0=(1/3)*(ia+ib+ic);
30 printf("The zero sequence component of current in
      amperes is:");
31 disp(ia0);
32
33 \text{ mag=1};
34 theta=120;
35 [r,i]=d(mag,theta);
36 alpha=complex(r,i);
37
38 ia1=(1/3)*(ia+alpha*ib+alpha^2*ic);
39 printf("The positive sequence component of current
      in amperes is:");
40 disp(ia1);
41
42 ia2=(1/3)*(ia+alpha^2*ib+alpha*ic);
43 printf("The negative sequence component of current
      in amperes is:");
44 disp(ia2);
45
46 in=ia+ib+ic;
47 printf ("The return current to the neutral conductor
      in amperes is:");
48 disp(in);
```

 ${
m Scilab\ code\ Exa\ 17.2}$ To detremine the symmetrical components of the 3 phase system

```
1 clear;
```

```
2 //clc();
4 function [r,i]=d(mag,theta)
       r=mag*cosd(theta);
5
6
       i=mag*sind(theta);
8 endfunction
10 previousprot = funcprot(0)
11 funcprot(0)
12
13 ia=complex(12,6);
14 ib = complex(12, -12);
15 ic=complex(-15,10);
16 mag=1;
17 theta=120;
18 [r,i] = d (mag, theta);
19 alpha=complex(r,i);
20
21 ia0=(1/3)*(ia+ib+ic);
22 printf ("The zero sequence component of current in
      amperes is:");
23 disp(ia0);
24 ia1=(1/3)*(ia+alpha*ib+alpha^2*ic);
25 printf("The positive sequence component of current
     in amperes ia1=");
26 disp(ia1)
27
28 ib1=alpha^2*ia1;
29 printf("The positive sequence component of current
      in amperes ib1=");
30 disp(ib1);
31
32 ic1=alpha*ia1;
33 printf("The positive sequence component of current
      in amperes ic1=");
34 disp(ic1);
35
```

```
36 ia2=(1/3)*(ia+alpha^2*ib+alpha*ic);
37 printf("The negative sequence component of current
        in amperes ia2=");
38 ib2=alpha*ia2;
39 printf("The negative sequence component of current
        in amperes ib2=");
40 disp(ib2);
41 ic2=alpha^2*ia2;
42 printf("The negative sequence component of current
        in amperes ic2=");
43 disp(ic2);
```

Scilab code Exa 17.3 To find the symmetrical components of the line current

```
1 clear;
2 // clc();
3
4 function [r,i]=d(mag,theta)
       r=mag*cosd(theta);
        i=mag*sind(theta);
6
8 endfunction
10 previousprot = funcprot(0)
11 funcprot(0)
12
13 \text{ mag} = 150;
14 theta=0;
15 [r,i] = d(mag, theta);
16 ia=complex(r,i);
17 mag=150;
18 theta=-120;
19 [r,i] = d(mag, theta);
20 ib = complex(r,i);
21 \text{ mag} = 150;
```

```
22 theta=120;
23 [r,i]=d(mag,theta);
24 ic=complex(r,i);
25 \text{ mag=1};
26 \text{ theta=} 120;
27 [r,i]=d(mag,theta);
28 alpha=complex(r,i);
29
30 ia0 = (ia + ib + ic)/3;
31 printf("The zero sequence component of current in
      amperes is:");
32 disp(round(ia0));
33 ia1=(ia+alpha*ib+ (alpha^2)*ic)/3;
34 printf("The positive sequence component of current
      in amperes ia1=");
35 disp(round(ia1));
36 ia2=(ia+alpha^2*ib+alpha*ic)/3;
37 printf ("The negative sequence component of current
      in amperes ia2=");
38 disp(round(ia2));
39 //b).after fuse removal between two lines
40
41 i_b=0;
42 i_c = 0;
43 i_a0 = (ia + i_b + i_c)/3;
44 printf("The zero sequence component of current in
      amperes is:");
45 disp(i_a0);
46
47 ia1=(ia+alpha*i_b+alpha^2*i_c)/3;
48 printf ("The positive sequence component of current
      in amperes ia1=");
49 disp(round(ia1));
50
51 ia2=(ia+alpha^2*i_b+alpha*i_c)/3;
52 printf ("The negative sequence component of current
      in amperes ia2=");
53 disp(ia2);
```

Scilab code Exa 17.7 To determine the complex power represented by three phase vol

```
1 clear;
2 //clc();
4 function [r,i]=d(mag,theta)
5
        r=mag*cosd(theta);
6
        i=mag*sind(theta);
8 endfunction
10 previousprot = funcprot(0)
11 funcprot(0)
12
13 \text{ mag=10};
14 theta=190;
15
16 [r,i] = d(mag, theta);
17 ia0=complex(r,i);
18
19 \text{ mag=6};
20 \text{ theta=20};
21
22 [r,i]=d(mag,theta);
23 ia1 = complex(r,i);
24
25 \text{ mag=5};
26 \text{ theta=50};
27
28 [r,i]=d(mag,theta);
29 ia2 = complex(r,i);
30
31 ia=(ia0+ia1+ia2);
32
```

```
33 \text{ mag}=1;
34 theta=120;
35
36 [r,i]=d(mag,theta);
37
38 alpha=complex(r,i);
39
40 ib=(ia0 + alpha^2*ia1 + alpha*ia2);
41
42 ic=ia0+alpha*ia1+alpha^2*ia2;
43
44 \text{ mag} = 30;
45 theta=-30;
46
47 [r,i] = d(mag, theta);
48 \text{ va0=complex(r,i)};
49
50 \text{ mag} = 450;
51 theta=0;
52
[r,i]=d(mag,theta);
54 \text{ val=complex(r,i)};
55
56 \text{ mag} = 225;
57 theta=40;
58
[r,i]=d(mag,theta);
60 va2=complex(r,i);
61
62 \text{ va} = (\text{va}0 + \text{va}1 + \text{va}2);
63
64 \text{ mag=1};
65 theta=120;
66
67 [r,i]=d(mag,theta);
68
69 alpha=complex(r,i);
70
```

```
71 vb=(va0 +alpha^2*va1 +alpha*va2);
72
73 vc=va0+alpha*va1+alpha^2*va2;
74
75 s=3*va0*conj(ia0)+ 3*va1*conj(ia1)+ 3*va2*conj(ia2);
76 printf("The complex power with symmetrical components in VA is:");
77 disp(s);
78
79 s1=va*conj(ia)+vb*conj(ib)+ vc*conj(ic);
80 printf("The complex power unbalanced three phase components in VA is:");
81 disp(s1);
```

Unsymmetrical faults

Scilab code Exa 18.1 To determine the fault current and the line to line voltages

```
1 clear;
2 //clc();
4 function [r,i]=d(mag,theta)
        r=mag*cosd(theta);
6
        i=mag*sind(theta);
8 endfunction
9
10
11
12 previousprot = funcprot(0)
13 funcprot(0)
14
15 \text{ ea=1};
16 \text{ za0=(\%i)*0.08};
17 za1=(%i)*0.12;
18 za2=(%i)*0.12;
19 sb=25*10^6;
20 \text{ vb} = 11000;
21
```

```
22 \text{ zf} = (\%i) *0.03;
23 ia1=ea/(za0+za1+za2+3*zf);
24
25 ia0=ia1;
26 ia2=ia1;
27 \text{ mag=1};
28 \text{ theta=120};
29
30 [r,i]=d(mag,theta);
31
32 alpha=complex(r,i);
33
34 ia=ia0+ia1+ia2;
35
36 \text{ ibas=sb/(sqrt(3)*vb)};
37
38 ia=ia1*ibas;
39 ib=0;
40 ic=0;
41
42 \text{ val=ea-zal*ial};
43
44 va2=-za1*ia1;
45
46 \text{ va0} = -(za0 + 3*zf)*ia1;
47
48
49 \text{ va=va0+va1+va2};
50
51 vb=va0+alpha^2*va1+alpha*va2;
52
53 \text{ v_c=va0+alpha*va1+alpha^2*va2};
54
55 \text{ vab1=va-vb};
56
57 \text{ vbc1=vb-v_c};
58
59 \text{ vca1=v_c-va};
```

```
60
61 vbas=11/sqrt(3);
62
63 vab=vab1*vbas;
64 printf("The voltage of line ab in kV is vab=");
65 disp(vab);
66
67 vbc=vbc1*vbas;
68 printf("The voltage of line bc in kV is vbc=");
69 disp(round(vbc));
70
71 vca=vca1*vbas;
72 printf("The voltage of line ca in kV is vca=");
73 disp(vca);
```

Scilab code Exa 18.2 to find the sequence LLG and LL

```
1 clear;
2 // clc();
3
5 function [r,i]=d(mag,theta)
        r=mag*cosd(theta);
6
        i=mag*sind(theta);
7
9 endfunction
10
11
12
13 previousprot = funcprot(0)
14 funcprot(0)
15
16
17 \times 0g1 = 0.05;
18 \times 1g1 = 0.3;
```

```
19 x2g1=0.2;
20 \times 0g2 = 0.03;
21 \times 1g2 = 0.25;
22 \times 2g2 = 0.15;
23 \times 011 = 0.70;
24 \times 111 = 0.3;
25 \times 211 = 0.3;
26 \times 012 = 0.7;
27 \times 112 = 0.3;
28 \times 212 = 0.3;
29 \times 0t1 = 0.12;
30 \text{ x1t1=0.12};
31 \times 2t1 = 0.12;
32 \times 0t2 = 0.1;
33 \times 1t2 = 0.1;
34 \text{ x2t2=0.1};
35 \text{ vf} = 1;
36 ia01=0;
37
38 z1=(\%i)*((x1g1+x1t1)*(x1g2 +x1t1 + x111*0.5))/(x1g1
      +x1t1 + x1g2 + x1t1 + x1l1 * 0.5;
x2t1 + x2g2 + x2t2 + x212 * 0.5;
40 z0=(\%i)*(x0g1+x0t1);
41 //a).LLG fault
42 za0=z0;
43 za2=z2;
44 ia1=vf/(z1+(z0*z2/(za0+za2)));
45 printf("The positive sequence current in amperes is:
      ");
46 disp(ia1);
47
48 ia0 = -(3.1729*z2/(z0+z2));
49 printf("The zero sequence current in amperes is:");
50 disp(ia0);
51
52 ia2 = -ia1 * z0/(z0 + z2);
53 printf("The negative sequence current in amperes is:
```

```
")
54 disp(ia2);
55
56 //b).LL fault
57
58 ia11=vf/(z1+z2);
59 printf("The positive sequence current in amperes is:
      ");
60 disp(ia11);
61
62 ia21=-ia11;
63 printf ("The negative sequence current in amperes is:
      ");
64 disp(ia21);
65
66 ia=ia01+ia11+ia21;
67 printf("phase a fault current is:")
68 disp(ia);
69
70 \text{ mag} = 1;
71 theta=120;
72 [r,i] = d(mag, theta);
73 alpha=complex(r,i);
74
75 ib=ia01+alpha^2*ia11+alpha*ia21;
76 printf("phase b fault current in pu is:")
77 disp(ib);
78
79 ic=ia01+alpha*ia11+alpha^2*ia21;
80 printf("phase c fault current in pu is:")
81 disp(ic);
```

Scilab code Exa 18.3 To calculate voltage to neutral of the faulty phase

```
1 clear;
```

```
2 //clc();
3 xz1g=(\%i)*1.2;
4 \text{ xz1f} = (\%i) *1.0;
5
6 xz2g=(\%i)*0.9;
7 \text{ xz2f} = (\%i) *1.0;
8
9 \text{ xz0g} = (\%i)*0.4;
10 xz0f = (\%i)*3.0;
11
12 vf=11000/sqrt(3);
13 \text{ za0=xz0g +xz0f};
14 \text{ za1=xz1g +xz1f};
15 za2=xz2g +xz2f;
16
17 ia0=vf/(za0+za1+za2);
18 ia1=ia0;
19 ia2=ia0;
20
21 ifault=3*ia0;
va=vf-ia0*(xz0g+xz1g+xz2g);
23 printf("The voltage to neutral of the faulty phase
      is:\%.2f\ V", va);
```

Power system stability

Scilab code Exa 19.1 To find the steady state stability limit

```
1 clear;
2 // clc();
3 \text{ vs} = 132;
4 vr = vs;
5 \quad A = 0.97;
6 \text{ alpha=0.6};
7 B=60;
8 z=B;
9 \text{ bet} = 70;
10 C = 0.001;
11 del=91;
12
13 prm=vs*vr/B -A*vr^2*cosd(bet-alpha)/B;
14 printf("the steady state stability limit is:%.2f MW\
      n", prm);
15
16 //shunt admittance neglected
17
18 y = 0;
19 A1=1 +z*y/2;
20 \quad alpha1=0;
```

```
21 D = A;
22 C=y*(1 +z*y/2);
23
24 prm=vs*vr/B -A1*vr^2*cosd(bet-alpha1)/B;
25 printf ("the steady state stability limit is: \%. 2 f MW\
     n", prm);
26
27
28 //both shunt admittance and series resistance is
      neglected
29
30 B1=B*sind(bet);
31 bet1=90;
32
33 prm=vs*vr/B1 -A1*vr^2*cosd(bet1-alpha1)/B1;
34 printf ("the steady state stability limit is: \%.2 f MW\
     n", prm);
```

 ${\it Scilab\ code\ Exa\ 19.2}$ To determine teh steady state stability limit

```
1 clear;
2 //clc();
3
4
5 function [mag,theta]=c(r,i)
6    mag=sqrt(r*r + i*i)
7    theta=atand(i/r)
8 endfunction
9
10
11 previousprot = funcprot(0)
12 funcprot(0)
13
14
15 //a).inductor switch open
```

```
16 \text{ xdg} = 0.8;
17 \text{ xt} = 0.1;
18 \text{ xl} = 0.6;
19 xr = 0.6;
20
21 e = 1.2;
22 v = 1;
23
24 x = xdg + xt + .5 * x1 + 0.5 * x1;
25 pm=e*v/x;
26 printf("the steady state stability limit with
       inductor switch S open is:\%.2 f pu n, pm);
27
28
29 //b).inductor switch closed
30
31 z1 = (xdg + xt + 0.5*x1);
32 z2=0.5*x1;
33 z3=xr;
34 b = (\%i) * z1 + (\%i) * z2 + (((\%i) * z1 * (\%i) * z2) / ((\%i) * z3));
35
36 B = imag(b);
37 \times 1 = B;
38 \text{ pm}=e*v/x1;
39 printf("the steady state stability limit with
       inductor switch S closed is: \%.2 f pu\n",pm);
40
41 //c). with the inductor replaced with a shunt
       capaicitor of same per unit
42
43 z31 = -0.6;
44 b1=(\%i)*z1 + (\%i)*z2 + (((\%i)*z1*(\%i)*z2)/((\%i)*z31))
45 B1 = imag(b1);
46 \text{ x2=B1};
47 pm2=e*v/x2;
48 printf("the steady state stability limit with the
       inductor replaced with a shunt capacitor is: \%.2 f
```

```
pu \setminus n", pm);
49
50 //d). when the shunt capacitor is replaced with a
      series capacitor
51
52 \text{ xc} = -0.6;
53 x3=xdg+xt+xl+xc;
54 \text{ pm}=e*v/x3;
55 printf("the steady state stability limit when the
      shunt capaicitor is replaced with a series
      capacitor is:\%.2 f pu n, pm);
56
57 //e). when the shunt inductor is replaced with a
      resistor
58
59 \text{ z}11=xdg + xt +0.5*x1;
60 z3=1.5;
61
62 r = 1;
63 i=z11/z3;
64 \text{ [mag,theta]=c(r,i);}
65 \text{ A1=mag};
66 alpha1=theta;
67
68 b = ((\%i) * z11 + (\%i) * z2 + ((\%i) * z11 * (\%i) * z2) / z3);
69
70 r=real(b);
71 i=imag(b);
72
73
74 [mag,theta]=c(r,i);
75 B1=mag;
76 bet2=theta:
77 pm=e*v/B1 - A1*v^2*cosd(bet2-alpha1)/B1;
78 printf("the steady state stability limit when the
      shunt inductor is replaced with a resistor is: %.2
      f pu \setminus n", pm);
```

Scilab code Exa 19.4 To calculate the kinetic energy

```
1 clear;
2 //clc();
3 f = 50;
4 s = 60;
5 j = 9000;
6 p=2;
7 \text{ bs} = 50;
8 n=120*f/p;
9 ke=0.5*j*(2*(\%pi)*n/60)^2;
10 printf ("The kinetic energy at rated speed is: %.0 f MJ
      n, ke/1000000);
11
12 //to calculate inertia constants M and H
13
14 H=ke/s;
15 printf("the inertia constants H is:\%.3\,f MJ/MVA\n",H
      /1000000);
16
17 M=ke/(180*f*1000000);
18 printf ("the inertia constants M is: \%.3 f MJs/elec.deg
      n, M);
19
20 //the inertia constants
21
22 iner_const=M/bs;
23 printf("The inertia constant is: \%.6 f pu", iner_const)
```

Scilab code Exa 19.5 To calculate equivalent h constant at a base of 100MVA

```
1 clear;
2 //clc();
3 s1=500;
4 h1=4.6;
5 s2=1500;
6 s=100;
7 h2=3;
8 ke=s1*h1 + s2*h2;
9 H=ke/s;
10 printf("the inertia constants H is:%.0f MJ/MVA\n",H);
;
```

Scilab code Exa 19.6 To calculte whether the generator will remain in synchronism

```
1 clear;
2 //clc();
3
4 function y=z(x)
5 y = sin(x)
6 endfunction
8 \text{ exact} = -2.5432;
9
10 pe=50;
11 pm = 100;
12 p_inc=30;
13
14 del1=asin(pe/pm);
15
16 //at point b
17 pb=80;
18 del2=asin(pb/pm);
19
20 a1=pb*(0.927-0.523)-100*intg(0.523,0.927,z);
21
```

```
22 a2=100*intg(0.927,(3.14-0.927),z)-80*(3.14-2*del2);
23
24 if a1<a2 then
25     disp("the generator will remain stable");
26 else
27     disp("the system is unstable");
28 end</pre>
```

Scilab code Exa 19.7 To estimate the sudden increase in generator output

```
1 clear;
2 //clc();
3
4 //at point a
5
6 pe=30;
7 pmax=60;
8 del1=asin(pe/pmax);
9
10 //by hit and trial methid
11
12 del2=60.4;
13 p1=pmax*sind(del2);
14
15 per_load=p1-pe;
16 printf("The maximum permissible sudden increase of load is:%.2 f MW", per_load);
```

Scilab code Exa 19.8 To detremine the stabilty of the system

```
1 clear;
2 //clc();
3
```

```
4 function y=z(x)
5 y = sin(x)
6 endfunction
8 \text{ exact} = -2.5432;
9
10
11 pe=80;
12 \text{ pmax} = 200;
13 del1=asin(pe/pmax);
14
15 //at curve b
16
17 \text{ pmax2=100};
18 del2=asin(pe/pmax2);
19 \text{ delm} = 3.14 - \text{del2};
20
21 a1=pe*(del2-del1) - pmax2*intg(del1,del2,z);
22
23 a2=pmax2*intg(del2,delm,z)-pe*(delm-del2);
24
25 if a1<a2 then
       disp("the generator will remain stable");
26
27
28
       else
              disp("the system is unstable");
29
30 end
```

Scilab code Exa 19.9 To determine the critical clearing angle

```
1 clear;
2 //clc();
3 ps=0.6;
4 pmax3=0.8;
5 pmax2=0.3333;
```

Scilab code Exa 19.10 To determine the critical clearing angle

```
1 clear;
2 //clc();
4 //pre fault condtion
6 \text{ xg=0.3};
7 x1=0.5;
8 x=xg +x1*0.5;.../ since the line reactances are in
      parallel
9 pe1=1;
10 e = 1.4;
11 vc=1;
12 ps=1;
13 pmax1=e*vc/x;
14
15 del0=asin(ps/pmax1);
16
17 // after star delta conversion
18
19 xb=0.075;
20 \text{ xc} = 0.175;
21 \text{ xe=0.0525};
22 \text{ xa=0.375};
```

```
23
24 \text{ xac}=xa+xc+(xa*xc/xe);
25
26 \text{ pmax2=e*vc/xac};
27
28 	 x1=xg+x1;
29 pmax3=e*vc/x1;
30
31 \text{ pe3=1};
32 \text{ del2=} asin(pe3/pmax3);
33 \text{ delm} = 3.14 - \text{del2};
34
35 delc=acosd((ps*(delm-del0)-pmax2*cos(del0)+ pmax3*
       cos(delm))/(pmax3-pmax2));
36 printf("the critical clearing angle is:%.2f deg",
       delc);
```

Scilab code Exa 19.11 To plot the sqing curve

```
1 clear;
2 //clc();
3
4 H=2.7;
5 s=1;
6 fr=50;
7
8 del0=23.13;
9 pmax1=2.545;
10 pmax2=0.778;
11 pmax3=1.75;
12 ps=1;
13 del_del0=0;
14
15 M=H*s/(180*fr);
16 del_del=zeros(1,9);
```

```
17 pa=zeros(1,9);
18 del=zeros(1,9);
19 // for t=0-
20 pmax=pmax1;
21 // for t = 0+;
22 pmax=pmax2;
23 p=ps-pmax2*sind(del0);
24 \text{ pa_avg=0.5*p};
25 pa(1)=pa_avg;
26 t=[.1:.9:9];
27 del(1)=del0;
28 del(2)=del_del0+8.33*pa_avg;
29
30 del(2)=del0+del(2);
31 for i=2:1:9
       pa(i)=ps-.778*sind(del(i));
32
       del_del(i+1)=del_del(i)+8.33*pa(i);
33
34
       del(i+1) = del(i) + del_del(i+1);
35 end
36
37 plot(t,del)
38 xlabel("time in secs");
39 ylabel('torque angle in degrees');
```

Chapter 20

Travelling waves

Scilab code Exa 20.1 to calculate the surge impedances and velocities of the line

```
1 clear;
2 //clc();
3 11=2*10^{(-3)};
4 c1=0.01*10^{(-6)};
6 z1=sqrt(l1/c1);
7 printf("The surge impedance of the overhead line is:
      \%.0 f Ohm n, z1);
8 v1=1/sqrt(l1*c1);
  printf("The velocity of the wave in overhead line is
       :\%.2 f \text{ km/s/n}, v1);
10
11 \quad 12 = 0.25 * 10^{(-3)};
12 c2=0.102*10^{-6};
13
14 z2 = sqrt(12/c2);
15 printf ("The surge impedance of the cable line is: \%.2
      f Ohm\n",z2);
16 \text{ v2=1/sqrt}(12*c2);
17 printf ("The velocity of the wave in cable is: %.2 f km
      /\,\mathrm{s}\,\backslash\,\mathrm{n} ", v2);
```

```
18
19
20 \text{ ef} = 100 * 1000;
21 inc=ef/z1;
22
23 tau1=(2*z2)/(z2+z1);
24 \text{ et=tau1*ef};
25 printf ("The transmitted voltage in the cable is:\%.2 f
       kV n, et/1000);
26
27 taui1=(2*z1)/(z2+z1);
28 it=taui1*inc;
29 printf ("The transmitted current in the cable is: \%. 2 f
       A \setminus n", it);
30
31 \text{ rhov1}=(z2-z1)/(z1+z2);
32 \text{ er=rhov1*ef};
33 printf("The reflected voltage in the cable is: \%. 2 f
      kV n, er/1000);
34
35
36 \text{ rhoi1}=(z1-z2)/(z1+z2);
37 ir=rhoi1*inc;
38 printf ("The reflected current in the cable is: \%.2 f A
      n, ir);
39
40 disp('the surge voltage has been changed to 100kV');
41
42
43 \text{ ef} = 100;
44 inc=ef *1000/z2;
45
46 tau2=(2*z1)/(z2+z1);
47 et=tau2*ef;
48 printf ("The transmitted voltage in the cable is: \%.2 f
       kV \setminus n", et);
49
50 taui2=(2*z2)/(z2+z1);
```

Scilab code Exa 20.2 To find the voltage distribution

Scilab code Exa 20.3 to find the reflected voltage and current in the cable

```
1 clear;
2 //clc();
3 z1=100;
4 z2=600;
5 z3=1000;
6 ef=1000;
7 et=2*ef/((1/z2 + 1/z3)*100 +1);
8 er=et -ef;
9 printf("The reflected voltage in the line is:%.0f V\n",er);
10
11 i1=et/z2;
12 i2=et/z3;
13 i=i1 + i2;
14 printf("The current in the cable is:%.2f A\n",i);
```

 ${
m Scilab\ code\ Exa\ 20.4}$ To determine from first principles the magnitudes of first an

```
1 clear;
2 //clc();
3
4 z2=50;
5 z1 = 400;
6 z3=400;
7 \text{ ef} = 10;
9 tau1=(2*z2)/(z1 + z2);
10 rho1=(z1-z2)/(z2+z1);
11 tau2=(2*z3)/(z3 + z2);
12 rho2=(z3-z2)/(z3+z2);
13 etb=tau1*tau2*ef;
14 printf ("The transmitted part entering the line BC is
      :\%.2 f kV n, etb);
15
16 eta=rho1*rho2*tau1*ef;
```

Scilab code Exa 20.5 To find the surge voltage distribution

```
1 clear;
2 //clc();
3
4 1=265*10^{(-6)};
5 c=0.165*10^{(-6)};
7 z2=sqrt(1/c);
8 z1=400;
9 \text{ ef} = 500;
10 z3 = 1000;
11 et1= (2*z2)*ef/(z1 + z2);
12 printf("The incident voltage in the cable is:%.0f kV
      \n",et1);
13
14 \text{ erb}=(z3 - z2)*et1/(z3 + z2);
15 printf ("The reflected voltage at the transformer end
       is:\%.0 f kV n, erb);
16
17 vcd=et1+erb;
18 printf ("The voltage at the junction is: %.0 f kV", vcd)
```

 ${
m Scilab\ code\ Exa\ 20.6}$ To calculate the current voltage waves and the resistance ref

```
1 clear;
2 //clc();
```

```
3 z1=400;
4 z2=600;
5 \text{ zp} = 2000;
6 \text{ ef1=100};
7 ef2=(2/z1)*ef1/(1/z1 + 1/z2 + 1/zp);
8 er1=ef2-ef1;
9 printf("The voltage reflected in line1 is:%d kV n",
      er1);
10
11 ir1=round(er1)/z1;
12 printf("The current reflected in line1 is:%.2f kV\n"
      ,ir1*1000);
13
14 zp=1/(-(1/z1)-(1/z2)+(2/z1));
15 printf("The resistance at the junction is: %.0 f Ohm",
      zp);
```

Scilab code Exa 20.7 To calculate the voltage across load

```
1 clear;
2 //clc();
3
4 z=500;
5 r=10*10^(3);
6 c=0.005*10^(-6);
7 tau=c*r*z/(z + r);
8
9 ef=10;
10 t=5*10^(-6);
11 e=(2*r*ef/(z + r))*(1- exp(-t/tau));
12 printf("The voltage across load after 5us is:%.2f kV",e);
```

${\it Scilab\ code\ Exa\ 20.8}$ To find the maximum voltage

```
1 clear;
2 //clc();
3
4 z1=400;
5 z2=300;
6 z3=300;
7 z2=300;
8 zd=50;
9
10 et=2*(1/z1)/(1/z1 + 1/z2 + 1/z3);
11 et1=et*(2*zd/(z2 + zd));
12 t=3.1534;
13 v=250*(exp(-.05*t) - exp(-t));
14 e=et1*v;
15 printf("The maximum voltage is:%.2f kV",e);
```

Chapter 22

Corona

Scilab code Exa 22.1 to determine the disruptive critical voltage visual critical

```
1 clear;
2 //clc();
3 v = 132;
4 f = 50;
5 1=150;
6 d=19.53*10^{(-3)};
7 t=30;
8 p = 750;
9 v_grad=21.1;
10 sur_fact=0.85;
11 l_sur_fact=0.72;
12 g_sur_fact=0.82;
13 D=3.8;
14
15 r=d/2;
16 \text{ del} = (0.392*p)/(273 + t);
17 e=v_grad*100*sur_fact*r*del*log([D/r]);
18 printf("The disruptive critical voltage is:%.2f kV\n
     ",e);
19
20 ev=v_grad*100*l_sur_fact*r*del*(1 +(0.0301/sqrt(r*
```

```
del)))*log([D/r]);
21 printf("The visual critical voltage for local corona
    is:%.2f kV\n",ev);
22
23 evg=v_grad*100*g_sur_fact*r*del*(1 +(0.0301/sqrt(r*
    del)))*log([D/r]);
24 printf("The visual critical voltage for general
    corona is:%.2f kV",evg);
```

Scilab code Exa 22.2 to estimate the corona loss

```
1 clear;
2 // clc();
3 v = 110;
4 f = 50;
5 1 = 150;
6 d=10*10^{(-3)};
7 irr_fac=0.85;
8 v_grad=30;
9 p = 750;
10 t = 30;
11 D=2.5;
12
13 r = d/2;
14 del=(0.392*p)/(273 + t);
15 e=v_grad*100*irr_fac*r*del*log([D/r])/sqrt(2);
16
17 en=v/sqrt(3);
18 pc=(244/del)*(f+25)*(en-e)^(2)*sqrt(r/D)*1/100000;
19
20 tot_loss=3*pc;
21 printf("The total corona loss is: %.2 f kW", tot_loss)
22 //difference in answer is due to rounding off of pc
```

Chapter 24

System neutral grounding

 ${
m Scilab\ code\ Exa\ 24.1}$ to calculate reactance to neutralize the capacitance to earth

```
clear;
//clc();
f=50;
cap=1.2*10^(-6);
xl=1/(3*2*(%pi)*cap*f);
printf("The inductive reactance to neutralize 100
    percent of the capacitance is:%.2f Ohm\n",xl);

xl1=xl/0.9;
printf("The inductive reactance to neutralize 90
    percent of the capacitance is:%.2f Ohm\n",xl1);

xl2=xl/0.8;
printf("The inductive reactance to neutralize 80
    percent of the capacitance is:%.2f Ohm",xl2)
```

Scilab code Exa 24.2 To determine the inductance and kva rating

```
1 clear;
2 //clc();
3
4 l=80
5 cap=0.00914*10^(-6)*1;
6 vl=132*1000;
7 vph=vl/sqrt(3);
8 f=50;
9 l=1/(3*(2*(%pi)*f)^(2)*cap);
10 printf("The inductance is:%.2f H\n",1)
11
12 il=vph/((2*(%pi)*f)*1);
13 kvar=vph*il/1000;
14 printf("The rating of the arc suppression coil is:%.2f kVA",kvar)
```

Chapter 25

Tarrifs

Scilab code Exa 25.1 To determine the overall cost per kwh

```
1 clear;
2 //clc();
3 max_dem=80;
4 pf=0.45;
5 tar_md=750;
6 tar_en=1.1;
7 ann_ener_cons=max_dem*pf*8760;
8 ce=1.1*ann_ener_cons;
9
10 cf=tar_md*max_dem;
11 tot=ce+cf;
12 cost_per_kwh=tot/ann_ener_cons;
printf("the overall cost is:%.2f Rs",cost_per_kwh);
```

Scilab code Exa 25.2 To calculate the annual bill

```
1 clear;
2 //clc();
```

```
3
4 con_load=50;
5 max_dem=40;
6 t=8;
7 days=300;
8 tar_f=5000;
9 tar_md=800;
10 tar_kwh=1.15;
11
12 ene_con=con_load*t*days;
13 ann_bill=tar_f + tar_md*max_dem + tar_kwh*ene_con;
14 printf("the annual bill is:%.0f Rs",ann_bill);
```

Scilab code Exa 25.3 To determine the cost of energy per kwh at the busbars

```
1 clear;
2 //clc();
3 op=960*10^(6);../kWh generated per year
4 lf = 0.55;
5 tar_fix=1000;
6 tar_kwh=0.4;
7
8 \max_{dem=op/(1f*8760)};
9 ann_dem_cost=tar_fix*max_dem;
10 ann_ene_cost=op*0.4;
11 tot= ann_dem_cost+ ann_ene_cost;
12 cost=tot/op;
13 printf("the cost of energy per kwh at the busbars is
      :\%.3 f Rs, cost);
14 // difference in answer is due to the misprint in the
       calculation of total annual charges
```

Scilab code Exa 25.4 to determine the energy consumption per year and the yearly b

```
1 clear;
2 //clc();
3 11 = 100;
4 t1=9;
5 12=125;
6 t2=6;
7 13=50;
8 t3=7;
9 14=5;
10 t4=2;
11 tar_md=800;
12 tar_kwh=1.3;
13
14 ene_per_day=11*t1 + 12*t2+ 13*t3+ 14*t4;
15 ann_ene=ene_per_day * 365;
16 printf("The annual energy consumption is:%.0f kWh\n"
      ,ann_ene);
17 ann_cost=ann_ene*tar_kwh;
18 \text{ max\_dem=12};
19 ann_md=max_dem*tar_md;
20 tot=ann_cost + ann_md;
21
22 printf("the energy consumption per year and the
      yearly bill is: \%.0 f Rs", tot);
```

Scilab code Exa 25.5 To detremine the saving in energy cost

```
1 clear;
2 //clc();
3 ann_con=200000;
4 lf=0.4;
5 tar_md=750;
6 tar_kwh=1.15;
7 lf1=0.6;
```

```
9 avg_l=ann_con/8760;
10 max_dem=avg_l/lf;
11
12 max_dem1=avg_l/lf1;
13 red=max_dem - max_dem1;
14 sav=tar_md*red;
15 printf("The saving in energy cost is:%.2 f Rs",sav);
```

Scilab code Exa 25.6 To determine the total energy consummed and the total bill

```
1 clear;
2 // clc();
3 \text{ max\_dem} = 150;
4 lf=0.65;
5 tar_md=900;
6 tar_kwh=1.3;
7 pf = 0.82;
9 max_kva_dem=max_dem/pf;
10 ann_con=(max_dem)*1f*8760;
11 printf("the total energy consumed is:\%.0 f \text{ kWh} n",
      ann_con);
12 ann_cost=ann_con*tar_kwh;
13 ann_dem_cost=tar_md*max_kva_dem;
14 ann_bill=ann_cost + ann_dem_cost;
15 printf ("The annual electricity bill is: %.0 f Rs",
      ann_bill);
```

Scilab code Exa 25.7 To determine which tariff is economical

```
1 clear;
2 //clc();
3 max_dem=100;
```

```
4 tar_md=800;
5 tar_kwh=1.3;
6 tar_kwh1=1.83;
7 t = 3600;
8 lf=0.8;
9 avg_dem=max_dem*lf;
10 ann_ene=avg_dem*t;
11 ann_bill=(tar_md*max_dem + tar_kwh*ann_ene);
12
13 ann_bill1=tar_kwh1*ann_ene;
14
15 if (ann_bill > ann_bill1) then
16
       disp("flat rate tarrif is better");
17 else
       disp("two part tariff is better");
18
19
20 \text{ end}
```

Scilab code Exa 25.8 to calculate the annual bill

```
1 clear;
2 //clc();
3 w_days=300;
4 t=8;
5 tar_mdh=75;
6 tar_kwh=1.15;
7
8 tar_mdl=80;
9 tar_kwhl=1.43;
10
11 avg_load=400;
12 pf=0.8;
13 max_dem=500;
14 loss=0.04;
15 dep=0.15;
```

```
16 \text{ cost} = 900;
17
18 max_kva=max_dem/pf;
19 cap=max_kva/(1-loss);
20 cost_hv=cost*cap;
21 ann_int=dep*cost;
22 ann_max_dem=tar_mdh*12*max_kva;
23
24 ene_con=avg_load*w_days*t/(1-loss);
25
26 cost_ene_con=ene_con*tar_kwh;
27 tot_charges=ann_max_dem + cost_ene_con;
28 printf("The annual bill is:\%.0 f Rs n", tot_charges);
29
30 //low voltage supply
31
32 ann_max_deml=tar_mdl*12*max_kva;
33 ann_ene_conl=avg_load*w_days*t;
34 cost_ene_con=ann_ene_conl*tar_kwhl;
35 tot_costl=ann_max_deml + cost_ene_con;
36 printf("The annual bill is: \%.0 f Rs", tot_costl);
```

 ${f Scilab\ code\ Exa\ 25.9}$ To find the number of units for which the tariff is econimical

```
1 clear;
2 //clc();
3
4 tar_kwh=1.43;
5 flat_tar=1.83;
6 fixed=400;
7 units=fixed/(flat_tar-tar_kwh);
8 printf("the number of units for which the tariff is econimical is:%.0f",units);
```

Scilab code Exa 25.10 to find the energy consumption per year

```
1 clear;
2 clc;
3
4 //c1=500+.9x;
5 //c2=1.83x-60;
6 //c1=c2;
7 x=(500+60)/(1.83-.90);
8 printf("The energy consumed per year is: %.2 f kWh", round(x));
```

Scilab code Exa 25.11 to find the generation cost per kwh

```
1 clear;
2 //clc();
3 ins_cap=500*10^(6);
4 cap_cost=35000*10^(3);
5 \text{ dep=0.12};
6 fuel_con=0.85;
7 fuel_cost=0.8;
8 \text{ oper_cost=0.25};
9 p_load=475*10^(6);
10 lf=0.82;
11 avg_load=p_load*lf;
12 ene_gen=avg_load*8760/1000;
13 tot_inv=ins_cap*cap_cost/1000000;
14
15 ann_dep=dep*tot_inv;
16
17 fuel_con_yr=fuel_con*avg_load*8760/1000;
18
```

Chapter 26

Power factor improvement

Scilab code Exa 26.1 To claculate the value of capicitance

```
1 clear;
2 // clc();
3 i1=0.75;
4 v = 240;
5 p=80;
6 q1=acosd(1/(3*i1));
7 q2=0;
8 ic=i1*cosd(q1)*(tand(q1)-tand(q2));
9 cap=ic/(v*2*(%pi)*50);
10 printf("The capaciatnce is:\%.2\,\mathrm{f} uF\n",cap*1000000);
11
12 t1 = acosd(0.95);
13
14 ic1=i1*cosd(q1)*(tand(q1)-tand(t1));
15 cap1=ic1/(v*2*(\%pi)*50);
16 printf ("The capaciatnee is:\%.2 \text{ f uF} \ \text{n}", cap1*1000000);
```

Scilab code Exa 26.2 To calculate the capacitiance kVAr and the new supply of curr

```
1 clear;
2 //clc();
3 i1=20;
4 f=50;
5 v = 230;
6 q1 = acosd(0.75);
7 q2 = acosd(0.9);
9 ic=i1*cosd(q1)*(tand(q1)-tand(q2));
10
11 cap=ic/(v*2*(\%pi)*f);
12 printf ("The capaciatnce is:\%.2 \text{ f uF} \ \text{n}", cap*1000000);
13
14 qc=v*ic;
15 printf("The kVAr is:\%.3 \text{ f kVAr} \ \text{n}",qc/1000);
16 i2=i1*cosd(q1)/cosd(q2);
17 printf("the new supply current is: %.2 f A", i2);
```

Scilab code Exa 26.3 to calculate the kVAr rating and capacitance per phase

```
1 clear;
2 //clc();
3
4 p=750/3;
5 v=400;
6 q1=acosd(0.7);
7 q2=acosd(0.95);
8 qcp=p*(tand(q1)-tand(q2));
9 printf("The kVAr is:%.3 f kVAr\n",qcp);
10 cap=qcp*1000/(v*v*2*(%pi)*50);
11 printf("The capacitance is:%.0 f uF\n",cap*1000000);
```

Scilab code Exa 26.4 To calculate the capacitance per phase

```
1 clear;
2 //clc();
3 op=40;
4 eff=0.85;
5 ip=op/eff;
6 p=ip/3;
7 v=400;
8
9 q1=acosd(0.72);
10 q2=acosd(0.98);
11
12 qcp=p*(tand(q1)-tand(q2));
13 cap=qcp*1000/(v*v*2*(%pi)*50);// capacitance in milli farad
14 printf("The capacitance is:%.2f uF\n",cap*1000000);
```

 ${
m Scilab\ code\ Exa\ 26.5}$ To calculate current to the motor at full load current through

```
1 clear;
2 //clc();
3
4 op=7500;
5 \text{ eff=0.87};
6 ip=op/eff;
7 v = 230;
9 p=ip;
10 pf = .75;
11 q1=acosd(pf);
12 q2=acosd(1);
13
14 i=p/(v*pf);
15 printf("the current is:\%.2 f A\n",i);
16 qcp=p*(tand(q1)-tand(q2));
17
```

```
18 ic=qcp/v;
19 cap=qcp*1000/(v*v*2*(%pi)*50);// capacitance in
          milli farad
20 printf("The capacitance is:%.2 f uF\n", cap*1000);
```

Scilab code Exa 26.6 To calculate the capacitance per phase

```
1 clear;
2 //clc();
3 p=50/3;
4 q1 = acosd(0.72);
5 q2 = acosd(0.9);
7 qcp=p*(tand(q1)-tand(q2));
8 v = 415;
9
10 ic=qcp/v;
11 cap=ic*1000/(v*2*(%pi)*50);..// capacitance in milli
12 printf ("The capacitance is:\%.2 \text{ f uF} \ \text{n}", cap*1000000);
13
14 //in delta connection
15
16 vp=v/sqrt(3);
17
18 icd=qcp/vp;
19 cap=icd*1000/(vp*2*(%pi)*50);// capacitance in milli
       farad
20 printf("The capacitance is:\%.2 \, f \, uF \ n", cap*1000000);
```

 ${\bf Scilab}\ {\bf code}\ {\bf Exa}\ {\bf 26.7}$ To calculate the leading kvar kva rating and power factor

```
1 clear;
```

```
2 //clc();
3 p1=500;
4 p2=100;
5 q1=acosd(.707);
6 q2=acosd(0.95);
7 lkvar=(p1*tand(q1) - (p1+p2)*tand(q2));
8 printf("The kVAr is:%.2 f kVAr\n", lkvar);
9
10 kva=sqrt(p2*p2 + lkvar*lkvar);
11 printf("The kVA is:%.2 f kVA\n", kva);
12
13 pf=(p2/kva);
14 printf("The power factor is:%.3 f leading\n",pf);
```

Scilab code Exa 26.8 To calculate power factor leading kvar and kva

```
1 clear;
2 //clc();
3 v1 = 400;
4 i1=36;
5 \text{ pf} = 0.8;
7 p1=sqrt(3)*v1*i1*pf;
8 \text{ op}=15*746;
9 \text{ eff} = 0.85;
10 p2=op/eff;
11
12 //as per ques 26.7
13 p1=19.953;
14 p2=12.979;
15 q1 = acosd(0.8);
16 	ext{ q2=acosd (0.92)};
17 qm = ((p1*tand(q1)) - (p1+p2)*tand(q2))/p2;
18 pf=cosd(atand(qm));
19 printf("The power factor is:\%.4 f leading\n",pf);
```

Scilab code Exa 26.9 To calculate the total load kVA and power factor

```
1 clear;
2 // clc();
3 s = 15;
4 \text{ sa=complex(s,0)};
6 \text{ s1}=40;
7 sb1 = complex(s1*0.6, s1*0.8);
8 \text{ sb=conj(sb1)};
9
10 \text{ s}2=25;
11 sc1 = complex(s2*0.8, s2*0.6);
12 sc=conj(sc1);
13
14 \text{ st=sa + sb + sc};
15
16 t_kvar=sqrt((real(st)^2) + (imag(st)^2));
17 printf("The kVA is:\%.2 \text{ f kVA} \n",t_kvar);
18
19 pf=real(st)/t_kvar;
20 printf("The power factor is:\%.4 f lagging n",pf);
21
22 cap=-imag(st);
23 printf("The capacitance is:\%.0 \, f \, kVAr \, leading \n", cap)
```

Scilab code Exa 26.10 To calculate the annual saving

```
1 clear;
2 //clc();
3
4 x=900;
5 p=2000;
6 q1=acosd(0.8);
7 q2=acosd(0.96);
8 smd=x*p*((1/cosd(q1))- (1/cosd(q2)));
9
10 y=0.15*1950;
11 ann_cost=y*p*(tand(q1)-tand(q2));
12 tot_ann=smd-ann_cost;
13 printf("The annual saving is:%.0f Rs",tot_ann);
```

 ${\it Scilab\ code\ Exa\ 26.11}$ To detremine the most economical pf and the kva rating

```
1 clear;
2 //clc();
3 p=900;
4 q1=acosd(0.65);
5 x=1000;
6 y=0.15*2000;
7 pf=sqrt(1- (y/x)^2);
8 printf("The power factor is:%.4f lagging\n",pf);
9
10 q2=acosd(pf);
11 qc=p*(tand(q1)-tand(q2));
12 printf("The capacitance is:%.0f uF\n",qc);
```

$Scilab\ code\ Exa\ 26.12$ To detremine the annual savings

```
1 clear;
2 //clc();
3 p=800;
4 pf1=.72;
5 q1=acosd(pf1);
6 x = 500;
7 y = 160;
8 pf = sqrt(1 - (y/x)^2);
10 q2=acosd(pf);
11 qc=p*(tand(q1)-tand(q2));
12
13 smd=x*p*((1/pf1)-(1/pf));
14
15 ann_cost=y*qc;
16 sav=smd-ann_cost;
17 printf("The annual saving is: \%.0 f Rs", sav);
```

Scilab code Exa 26.13 To estimate the limiting cost per kvar

```
1 clear;
2 //clc();
3 q1=round(acosd(0.707));
4
5 q2=round(acosd(0.866));
6
7 x=8000;
8
9 y=x*((cosd(q2)- cosd(q1))/sind(q1-q2));
10 printf("the limiting cost per kvar is:%.2f Rs",y);
```

// difference in answer is due to the approximation of decimals