Assignment Name

H. Ryott Glayzer

20th February 2024

Notice of ADA Accommodation and Methods

I have an ADA accommodation to do my assignment on paper. This document is a utilization of that accommodation. This assignment will utilize questions from the textbook, *Chemistry: Atoms First, 2e*, to practice the skills and learning objectives for this class.

Valence Bond Theory

Q.1: Explain how σ and π bonds are similar and how they are different.

Q.5: A friend tells you that N_2 has three π bonds due to the overlap of the three p-orbitals in each Nitrogen atom. Do you agree?

Hybrid Atomic Orbitals

Q.9: Explain why a Carbon atom cannot form five bonds using sp^3d hybrid orbitals.

Q.13: Sulfuric acid is manufactured by the series of reactions:

$$S_8(s) + 8O_2(g) \longrightarrow 8SO_2(g)$$

$$2 SO_2(g) + O_2(g) \longrightarrow 2 SO_3(g)$$

$$\begin{array}{l} 2\,SO_2(g) + O_2(g) \longrightarrow 2\,SO_3(g) \\ SO_3(g) + H_2O(I) \longrightarrow H_2SO_4(I) \end{array}$$

Draw the Lewis Structure, predict the molecular geometry by VSEPR, and determine the hybridization of sulfur for the following:

- a. Circular S₈ model
- b. SO₂ molecule
- c. SO₃ molecule
- d. H₂SO₄ molecule

Q.17: Strike-anywhere matches contain a layer of KClO₃ and a layer of P₄S₃. The heat produced by the friction of striking the match causes these two compounds to react vigorously, which sets fire to the wooden stem of the match. KClO₃ contains the ClO₃ ion. P₄S₃ is an unusual molecule with the following skeletal structure:

- a. Write the Lewis structures for P_4S_3 and the CIO_3^- ion.
- b. Describe the geometry about the P atoms, the S atom, and the Cl atom in these species
- c. Assign a hybridization to the P atoms, the S atom, and tho CI atom in these species
- d. Determine the oxidization states and formal charge of the atoms in P_4S_3 and the ClO_3^- ion.

3 Multiple Bonds

Q.21: The bond energy of a C-C single bond averages 347 kJ mol⁻¹; that of a \mathbb{C} \mathbb{C} \mathbb{C} triple bond averages

Q.25: Identify the hybridization of the central atom in each of the following molecules and ions that contain multiple bonds:

- a. CINO
- b. CS₂
- c. Cl₂CO
- d. Cl₂SO
- e. SO₂F₂
- f. XeO₂F₂
- g. CIOF₂⁺

Q.29: Draw the orbital diagram for carbon in CO_2 showing how many carbon atom electrons ore in each orbital.

4 Molecular Orbital Theory

Q.33: Can a molecule with an odd number of electrons ever be diamagnetic? Explain why or why not.

Q.37: Explain why an electron in the bonding molecular orbital in the H_2 molecule has a lower energy than an electron in the 1s atomic orbital hydrogen atoms.

Grading

Points Possible	Points Earned	Score
32	X	X/32