UNIVERSITY OF TORONTO FACULTY OF APPLIED SCIENCE & ENGINEERING		DATE Sept. 23/21 NAME Skepten Yong		
		COURSE NO.	COURSE NAME	2
	O FI			
	Reside Theorem			
	$\mathcal{L}^{-1}\{F(s)\} = \sum_{i=0}^{N} Res(F(s)e^{st}, s=P:)$	ulcre	P:,, PN ac p	oles of F
	Res (G(s), s=p) := 1 dsp-1 [G(s) (5-P)[]/s=P	where r=m	Hiplicas of p
	ey. Find 2-17 F(s)] = 1-1/ (15+1010)	£ (2+22+5) }		
	F(s) = (341) (5242542) 2-1			(F(s)e)+, s=-
	= (>+1)(5+1-1)(5+1+1)	+ Res	(F(s) est, s=-1-i)	
	f(t)=2-1/(c(s)) = -1-2+2 + (-1+1+1)((-1+i+1+i) +	e(-1-i)t	
	$= e^{-t} + e^{-t} \left(\frac{e^{it}}{(e_i)(i)} + \frac{e^{it}}{(e_i)(e_i)} \right) = e^{-t} \left[1 - \cos(t) \right] (t) $			
\cup	Alternaturely; using PF			
	F(s) = O+1/1542142) = A + BR+C = Find A = 1 B = 1			
	= -1 - 32+125.	2	C1	
	$=\frac{51}{541}-\frac{541}{640^{3}41}$	=> f(4)=(e-+ - e-+ cos(+))	((+)
	e.g. Rec circuit L(dy + R(of +y = ult) y=ve			
	Note: Use Coplace Transforms to	solve con	nsknt coeff. ODG	S (TD Model
	u4)=1(+) y(0)=j(0)=0		(5° Y(S) + RC S Y(S	
	2{j(+)} = 5 7(5)-y(0) = 57(5)		$\langle (2) = \frac{\langle (2)_s + S(2+1) \rangle}{\sqrt{2}}$	Pick)11=16 P1=
	2/9(+) {= 5°7(5) - 5y(0-) - 9(0-) = 5	3 Y(Z)	= s(52+16/5+100	
	231(4)}==		= 2(2,402+3)	$=\frac{2(241)(2+3)}{3}$
		4((+)= 2 17(0) = [1-	E + 1 -3+

Transfer Function (TF)

Assure term initial conditions:
$$y(0) = \ddot{y}(0) = \ddot{y}(0) = \frac{d^{1/4}}{dt^{1/4}}(0) = 0$$

$$u(0) = \dot{y}(0) = \ddot{y}(0) = 0$$

$$u(0) = \dot{y}(0) = 0$$

TF does NOT take into account initial conditions

$$Y(s) \left[s^{n} + a_{n} s^{n-1} + ... + a_{n} s + a_{0} \right] = V(s) \left[b_{n} s^{a_{1}} + ... + b_{0} \right]$$

$$Y_{(S)} = \frac{b_{(S)}s^{n} + ... + b_{(S)}}{s^{n} + a_{(N)}s^{n-n} + a_{(S)}} V(S)$$

$$(IO) \Leftrightarrow (TF)$$

$$The Dorah S Observed S Observed$$

Y(S) = G(S) U(S)