| Universidad de Granada | Fundamentos Físicos y<br>Tecnológicos | Práctica de Laboratorio 1 |        |  |
|------------------------|---------------------------------------|---------------------------|--------|--|
| Apellidos:             |                                       |                           | Firma: |  |
| Nombre:                | DNI:                                  | Grupo:                    |        |  |

- 1. Simula un circuito divisor de tensión con una fuente de tensión de valor V en serie con dos resistencias de  $R_1$  y  $R_2$ . Coloca sondas que permitan medir la tensión entre los extremos de cada resistencias (que llamaremos  $V_1$  y  $V_2$  respectivamente) así como la corriente que atraviesa cada una (que llamaremos  $I_1$  e  $I_2$  respectivamente).
  - a) Completa la siguiente tabla realizando distintas simulaciones DC con los valores para V,  $R_1$  y  $R_2$  que se muestran en ella:

| V    | $R_1$               | $R_2$               | $V_1$ | $V_2$ |
|------|---------------------|---------------------|-------|-------|
| 10 V | $1 \text{ k}\Omega$ | $1 \text{ k}\Omega$ |       |       |
| 10 V | $1 \text{ k}\Omega$ | $2 k\Omega$         |       |       |
| 10 V | $1 \text{ k}\Omega$ | $4 \text{ k}\Omega$ |       |       |

b) ¿En qué resistencia se observa una mayor diferencia de potencial entre sus extremos? Justifica tu respuesta.

c) Completa la siguiente tabla realizando distintas simulaciones DC con los valores para V,  $R_1$  y  $R_2$  que se muestran en ella:

| V    | $R_1$                 | $R_2$  | $V_1$ | $V_2$ | $\frac{V_2}{V_1}$ | $I_1$ | $I_2$ |
|------|-----------------------|--------|-------|-------|-------------------|-------|-------|
| 1 V  | $2.2 \text{ k}\Omega$ | 4.7 kΩ |       |       |                   |       |       |
| 5 V  | $2.2 \text{ k}\Omega$ | 4.7 kΩ |       |       |                   |       |       |
| 10 V | 2.2 kΩ                | 4.7 kΩ |       |       |                   |       |       |

d) Calcula el cociente de las resistencias  $\frac{R_2}{R_1}$  y compáralo con los resultados de la columna  $\frac{V_2}{V_1}$  ¿Existe alguna relación entre los mismos? ¿Cuál es la justificación teórica de este hecho?

- 2. Simula un circuito divisor de corriente con una fuente de corriente de valor I en serie con dos resistencias en paralelo de valores  $R_1$  y  $R_2$ . Coloca sondas que permitan medir la tensión entre los extremos de cada resistencias (que llamaremos  $V_1$  y  $V_2$  respectivamente) así como la corriente que atraviesa cada una (que llamaremos  $I_1$  e  $I_2$  respectivamente).
  - a) Completa la siguiente tabla realizando distintas simulaciones DC con los valores para I,  $R_1$  y  $R_2$  que se muestran en ella:

| I    | $R_1$               | $R_2$               | $I_1$ | $I_2$ |
|------|---------------------|---------------------|-------|-------|
| 1 mA | $1 \text{ k}\Omega$ | $1 \text{ k}\Omega$ |       |       |
| 1 mV | $1 \text{ k}\Omega$ | $2 k\Omega$         |       |       |
| 1 mA | $1 \text{ k}\Omega$ | $4 \text{ k}\Omega$ |       |       |

b) ¿Por qué resistencia circula una mayor intensidad de corriente? Justifica tu respuesta.

c) Completa la siguiente tabla realizando distintas simulaciones DC con los valores para I,  $R_1$  y  $R_2$  que se muestran en ella:

| I     | $R_1$                 | $R_2$                 | $V_1$ | $V_2$ | $I_1$ | $I_2$ | $\frac{I_2}{I_1}$ |
|-------|-----------------------|-----------------------|-------|-------|-------|-------|-------------------|
| 1 mA  | $2.2 \text{ k}\Omega$ | $4.7 \text{ k}\Omega$ |       |       |       |       |                   |
| 5 mA  | $2.2 \text{ k}\Omega$ | $4.7 \text{ k}\Omega$ |       |       |       |       |                   |
| 10 mA | $2.2 \text{ k}\Omega$ | $4.7 \text{ k}\Omega$ |       |       |       |       |                   |

d) Calcula el cociente de las resistencias  $\frac{R_2}{R_1}$  y compáralo con los resultados de la columna  $\frac{I_2}{I_1}$  ¿Existe alguna relación entre los mismos? ¿Cuál es la justificación teórica de este hecho?

3. Simula el siguiente circuito teniendo en cuenta que I=1 mA, V=5 V,  $R_1$ =1 k $\Omega$ ,  $R_2$ =2 k $\Omega$ ,  $R_3$ =3 k $\Omega$ ,  $R_4$ =4 k $\Omega$  y  $R_5$ =5 k $\Omega$ . Calcula para cada elemento (fuente o resistencia) la diferencia de potencial entre sus extremos así como la intensidad que lo atraviesa.

