Unit 2

Water and Solutions

Water and Heterogeneous systems

Objectives:

- 1. Explain surface tension
- 2. Describe the structure of ice and liquid water.
- 3. Distinguish between a suspension and a solution
- 4. Identify the characteristics of a colloid.

- Water in the liquid state:
 - Water is a polar molecule.

 δ + H_2O δ -

Hydrogen bonding: the negative end of the water molecule is attracted to the positive ends of other moleculesresulting in hydrogen bonding.

Water molecules "stick"
together to create
surface tension
to support light
weight objects.
It also tends to hold a drop
of a liquid in a spherical
shape.

Surfactants interfere with hydrogen bonding reducing surface tension.

This attraction between water molecules slows the tendency of water evaporation.

What s So Special About Water .asf

- Suspensions: a mixture from which particles settle out upon standing.
 - Have very large particles
 - Can be filtered
 - Ex. Muddy water
 some medicines (antibiotics)

Suspensions.asf

- Colloids
 - Have medium sized particles
 - Can not be filtered.
 - Many colloids are cloudy or milky in appearance.
 - Show Tyndall effect (the path of light is visible)
 - Colloids.asf

Types of colloids

Colloid type	Dispersion medium	Dispersed substance	Examples
Aerosol	Gas	Liquid	
Aerosol	Gas	Solid	
	Liquid	Gas	
	Liquid	Liquid	
	Liquid	Solid	
	Solid	Gas	
Solid emulsion	Solid	Liquid	
	Solid	Solid	

Types of colloids

Colloid type	Dispersion medium	Dispersed substance	Examples
Aerosol	Gas	Liquid	Clouds, fog,aerosol spray
Aerosol	Gas	Solid	Smoke, dust
Foam	Liquid	Gas	Shaving cream, whipped cream
Emulsion	Liquid	Liquid	Mayonaisse, milk
Sol	Liquid	Solid	Paint, ink
Solid aerosol	Solid	Gas	Marshmallow

Classwork: Complete the table on the last slide, giving examples for the different types of colloids.

Solutions

- Objectives:
 - Distinguish between a solvent and a solute
 - Describe what happens in the solution process
 - Explain what electrolytes are.
 - <u>Identify</u> the factors that determine the **rate** at which a solute *dissolves*.
 - <u>Identify</u> the factors that determine the mass of solute that <u>will dissolve</u> in a given mass of solvent.

Definitions

Solution - homogeneous mixture

Solute - substance

being dissolved

Solvent - present in

greater amount

Aqueous (water)

Tincture (alcohol)

Amalgam (mercury)

Organic Polar or Non-polar

Dental filling

Solution = Solute + Solvent

Types of Solutions

Solute	Solvent	Solution
Gaseous Solutio	ns	
gas liquid	gas gas	air (nitrogen, oxygen, argon gases) humid air (water vapor in air)
Liquid Solutions		
gas liquid solid	liquid liquid liquid	carbonated drinks (CO ₂ in water) vinegar (CH ₃ COOH in water) salt water (NaCl in water)
Solid Solutions		
liquid solid	solid solid	dental amalgam (Hg in Ag) sterling silver (Cu in Ag), alloys

- Solvation the process of dissolving:
 - solute particles are surrounded by solvent particles
 - solute particles are separated and pulled into solution
- Solution formation- The polarity or composition of the solute and the solvent will determine...Whether a substance <u>will</u> dissolve and how <u>much</u>

Dissolving of NaCl

Electrolytes

Electrolytes - solutions that carry an electric current

 $NaCl(aq) \rightarrow Na^+ + Cl^-$

 $HF(aq) \longrightarrow H^+ + F^-$

Factors determining <u>rate</u> of solution...

- 1. <u>Stirring</u> (agitation) moves fresh solvent into contact with the solute.
- 2. Smaller pieces increases the amount
- 3. Holigstærfæen pæratour thæ skastene molecules of the solvent move faster; speeds up dissolving.
- Higher Temperature ALSO Usually increases the <u>amount</u> that will dissolve (an exception is gases).

LIQUIDS

- Miscible means that two liquids can dissolve in each other
 - water and antifreeze
 - water and ethanol
- Partially miscible- slightly
 - water and ether
- Immiscible means they can't
 - oil and vinegar

Solids tend to dissolve best when:

- They are <u>heated</u>
- They are <u>stirred</u>
- Crushed into <u>smaller</u> particles

Gases tend to dissolve best when:

- The solution is <u>cold</u>
- The pressure is high
- Thermal pollution may result from industry using water for cooling

- Solubility- is the maximum amount of substance that will dissolve at a specific temperature. The units for solubility are: grams of solute/100 grams solvent
 - 1) Saturated solution Contains the maximum amount of solute NaCl = 36.0 g/100 mL water
 - 2) Unsaturated solution- Can still dissolve more solute (for example 28.0 grams of NaCl/100 mL)
 - 3) Supersaturated- solution that is holding (or dissolving) more than it theoretically can; Very unstable, can crystalize.

Factors Affecting Solubility

- Chemists use the axiom "like dissolves like":
 - Polar substances tend to dissolve in polar solvents.
 - Nonpolar substances tend to dissolve in nonpolar solvents.

TABLE 13.3 Solubilities of Some Alcohols in Water and in Hexane*		
Alcohol	Solubility in H ₂ O	Solubility in C_6H_{14}
CH ₃ OH (methanol)	∞	0.12
CH ₃ CH ₂ OH (ethanol)	∞	∞
CH ₃ CH ₂ CH ₂ OH (propanol)	∞	∞
CH ₃ CH ₂ CH ₂ CH ₂ OH (butanol)	0.11	∞
CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ OH (pentanol)	0.030	∞
CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ OH (hexanol)	0.0058	∞
CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ OH (heptanol)	0.0008	∞

^{*}Expressed in mol alcohol/100~g solvent at 20° C. The infinity symbol indicates that the alcohol is completely miscible with the solvent.

Factors Affecting Solubility

Example: ethanol in water

Ethanol = CH₃CH₂OH

The stronger the intermolecular attractions between solute and solvent, the more likely the solute will dissolve.

Factors Affecting Solubility

- Vitamin A is soluble in nonpolar compounds (like fats).
- Vitamin C is soluble in water.

Copyright © 2006 Pearson Prentice Hall, Inc.

Gases in Solution

Increasing pressure above solution forces more gas to dissolve.

- The solubility of liquids and solids does not change appreciably with pressure.
- But, the solubility of a gas in a liquid is directly proportional to its pressure.

Temperature and Solubility of Solids

Temperature	Solubility	(g/100 g H ₂ O)
	KCl(s)	
$NaNO_3(s)$		
0°	27.6	74
20°C	34.0	88
50°C	42.6	114
100°C	57.6	182

The solubility of most solids (decreases or in creases) with an increase in the temperature.

Temperature and Solubility of Gases

Temperature Solubility $(g/100 g H_2O)$

 $CO_2(g)$ $O_2(g)$

0°C 0.34 0.0070

20°C 0.17 0.0043

50°C 0.076 0.0026

The solubility of gases (decreases or increases) with an increase in temperatures Timberlake

Solubility

UNSATURATED SOLUTION

more solute dissolves

SATURATED SOLUTION

no more solute dissolves

SUPERSATURATED SOLUTION

becomes unstable, crystals form

increasing concentration

Figure 16.4 Interpreting Graphs

INTERPRETING GRAPHS

 a. Describe What happens to the solubility of KNO, as the temperature increases? b. Identify Which substance shows a decrease in solubility as temperature increases? Which substance exhibits the least change in solubility? c. Apply Concepts Suppose you added some solid sodium chloride (NaCl) to a saturated solution of sodium chloride at 20°C and warmed the mixture

the added sodium chloride?

a) 80g NaNO₃ at 45° C. The solution

is? unsaturated

b) 100g NaNO $_3$ at 45°C. The solution is ?

saturated

c) 120g NaNO₃ at 45°C. The solution is ?

supersaturated

d) How much more NaNO₃ can you add to a solution with 40g of NaNO₃ at 45°C until it becomes saturated?

60 g

e) What is the solubility of NH_3 at 25°C?

58 g

e) 100 g of water are saturated with NaNO₃ at 30°C. If the solution is heated to 60°C, how much more can be dissolved?

Solubility vs. Temperature for Solids

Precipitation Reactions

- **Precipitation Reaction-** a reaction that results in the formation of an insoluble product.
- These reactions usually involve ionic compounds.
- Formation of PbI₂:
 - $Pb(NO_3)_{2(aq)} + 2KI_{(aq)} \rightarrow PbI_{2(s)} + 2KNO_{3(aq)}$

Precipitato The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Precipitation Reactions

- How do you know whether or not a precipitate will form when a compound is added to a solution?
- By knowing the solubility of the solute!
- **Solubility-** The maximum amount of solute that will dissolve in a given quantity of solvent at a specific temperature.
- Three levels of solubility: Soluble, slightly soluble or insoluble.

Precipitation Reactions

Ions That Form Soluble Compounds	Exceptions
Group 1 ions (Li+, Na+, etc.)	
ammonium (NH ₄ +)	
nitrate (NO ₃ ⁻)	
acetate (C ₂ H ₃ O ₂ ⁻ or CH ₃ COO ⁻)	
hydrogen carbonate (HCO ₃ ⁻)	
chlorate (ClO ₃ ⁻)	
perchlorate (ClO ₄ ⁻)	
halides (Cl ⁻ , Br ⁻ , I ⁻)	when combined with Ag ⁺ , Pb ²⁺ , and Hg ₂ ²⁺
sulfates (SO ₄ ²⁻)	when combined with Ag ⁺ , Ca ²⁺ , Sr ²⁺ , Ba ²⁺ , and Pb ²⁺

Ions That Form Insoluble Compounds	Exceptions
carbonate (CO ₃ ²⁻)	when combined with Group 1 ions or ammonium $(\mathrm{NH_4}^+)$
chromate (CrO ₄ ²⁻)	when combined with Group 1 ions or ammonium $(\mathrm{NH_4}^+)$
phosphate (PO ₄ ³⁻)	when combined with Group 1 ions or ammonium $(\mathrm{NH_4}^+)$
sulfide (S ²⁻)	when combined with Group 1 ions or ammonium $(\mathrm{NH_4}^+)$
hydroxide (OH ⁻)	when combined with Group 1 ions, Ca^{2+} , Ba^{2+} , or Sr^{2+}

Determining Solubility

- Determine the level of solubility for the following:
 - (1) Ag₂SO₄
 - (2) CaCO₃
 - (3) Na₃PO₄

Classwork: solubility graph handout

Concentration of Solutions

Objectives:

- 1. <u>Solve</u> problems involving the molarity of a solution.
- Describe the effect of dilution on the total moles of solute in solution.
- 3. <u>Define</u> percent by volume and percent by mass solutions.

$$Mass\% = \frac{mass\ A}{1}$$

 $\overline{total\ mass\ of\ solution}$

mass A $\frac{1}{total\ mass\ of\ solution} \times 10^6$ mass A

 $\frac{mass 11}{total \ mass \ of \ solution} \times 10^9$

$$X_A = \frac{moles\ of\ solute}{total\ moles}$$

$$M = rac{moles~of~solute}{L~of~solution}$$

$$m = \frac{moles\ of\ solute}{kg\ of\ solvent}$$

Concentration is...

- a measure of the amount of solute dissolved in a given quantity of solvent
- A <u>concentrated</u> solution has a *large* amount of solute
- A <u>dilute</u> solution has a *small* amount of solute
 - These are *qualitative* descriptions
- But, there are ways to express solution concentration quantitatively (<u>NUMBERS</u>!)

CONCENTRATED

DILUTE

Notice how dark the solutions appears.

Notice how light the solution appears.

Lots of solute, in a small amount of solvent.

Solute particle

Solvent particle

Concentrated solution

Small amount of solute in a large amount of solvent.

Dilute solution

- Making solutions
 1) Pour in a *small amount* of the solvent, maybe about onehalf
- 2) Then add the pre-massed solute (and mix by swirling to dissolve it)
- 3) Carefully fill to final volume.

Molarity: a unit of concentration

- Molarity = n (moles of solute)
 V (liters of solution)
 - Abbreviated with a capital M, such as 6.0 M
 - Units M or mol/L
- This is the most widely used concentration unit used in chemistry.

 How many grams of sodium chloride, NaCl, do you need to prepare 250.mL of a 0.5M NaCl solution? Molar mass NaCl= 58.5 g/mol 2. What volume of a 1.0M NaCl solution can you prepare if you have 45.0g of NaCl? Molar mass NaCl = 58.5g / mol?

Classwork: p 54 # 19-21