

What is claimed is:

- 1 1. A method comprising determining a power savings level for a mobile station
2 based on an amount of data traffic.

- 1 2. The method of claim 1 further comprising determining the amount of data
2 traffic as a percentage of traffic activity within a time interval.

- 1 3. The method of claim 1 wherein determining a power savings level comprises
2 determining a time interval for the mobile station to sleep.

- 1 4. The method of claim 3 wherein determining a time interval for the mobile
2 station to sleep comprises comparing a desired sleep interval and a required wake-
3 up time to receive broadcast and multicast packets.

- 1 5. The method of claim 3 wherein the time interval for the mobile station to
2 sleep is expressed as a number of 802.11 compliant beacon intervals.

- 1 6. The method of claim 5 wherein the method is performed within a beacon
2 monitor task run in response to an interrupt caused by a Target Beacon
3 Transmission Times (TBTT) timer.

- 1 7. The method of claim 5 wherein determining a time interval for the mobile
2 station to sleep comprises comparing a Delivery Traffic Indication Message (DTIM)
3 count within a received beacon with a time interval associated with the power
4 saving level.

- 1 8. A method comprising:
2 determining a desired sleep interval to sleep to save power;

3 determining a broadcast time to wake up to receive packets from an access
4 point; and

5 setting a wake-up time based on the desired sleep interval and the broadcast
6 time.

1 9. The method of claim 8 wherein determining a desired sleep interval
2 comprises determining a desired number of beacon intervals to sleep.

1 10. The method of claim 8 wherein determining a desired sleep interval
2 comprises determining a desired number of beacon intervals to sleep based, at least
3 in part, on a volume of data traffic.

1 11. The method of claim 10 wherein determining a desired sleep interval further
2 comprises selecting one of a plurality of power savings levels based on the volume
3 of data traffic.

1 12. The method of claim 8 wherein determining a broadcast time comprises
2 examining a Traffic Indication Map (TIM) element within an 802.11 compliant
3 beacon.

1 13. The method of claim 8 wherein setting a wake-up time comprises setting the
2 wake-up time to the end of one desired sleep interval when the broadcast time is
3 more than two desired sleep intervals in the future.

1 14. The method of claim 8 wherein setting a wake-up time comprises setting the
2 wake-up time to the broadcast time when the broadcast time is less than two desired
3 sleep intervals in the future.

1 15. An apparatus having a machine-readable medium with instructions stored
2 thereon that when accessed, result in a machine performing:

3 waking up a mobile station to receive a beacon;
4 evaluating traffic activity; and
5 setting a power savings level for the mobile station based on the traffic
6 activity.

1 16. The apparatus of claim 15 wherein evaluating traffic activity comprises
2 determining a percentage of traffic time over a time interval.

1 17. The apparatus of claim 16 wherein the power savings level may be set
2 differently each time the traffic activity is evaluated.

1 18. The apparatus of claim 15 further comprising setting a sleep time associated
2 the power savings level.

1 19. The apparatus of claim 15 wherein setting a power savings level comprises
2 determining a number of beacon intervals for the mobile station to sleep.

1 20. The apparatus of claim 19 wherein determining a number of beacon intervals
2 for the mobile station to sleep comprises comparing a desired number of beacon
3 intervals with a Delivery Traffic Indication Message (DTIM) count.

1 21. An apparatus configured to communicate in an 802.11 wireless network, and
2 configured to sleep for a number of beacon intervals based on traffic volume.

1 22. The apparatus of claim 21 comprising a network interface card.

1 23. The apparatus of claim 21 comprising a mobile computer.

1 24. An electronic system comprising:
2 a plurality of antennas;

3 a radio interface coupled to the plurality of antennas;
4 a processor coupled to the radio interface; and
5 a static random access memory with instructions stored thereon that when
6 accessed, result in the processor performing:
7 waking up an apparatus to receive a beacon, evaluating traffic activity, and
8 setting a power savings level for the apparatus based on the traffic activity.

1 25. The electronic system of claim 24 wherein setting a power savings level
2 comprises determining a time interval for the apparatus to sleep.

1 26. The electronic system of claim 25 wherein determining a time interval for
2 the apparatus to sleep comprises comparing a desired sleep interval and a required
3 wake-up time to receive multicast packets.

1 27. The electronic system of claim 25 wherein the time interval for the apparatus
2 to sleep is expressed as a number of beacon intervals.