Deep Learning on Code with an Unbounded Vocabulary

ML4P, July 2018

Milan Cvitkovic, Badal Singh, Anima Anandkumar

In a nutshell

If you're familiar with the following three ideas:

- Abstract Syntax Tree (AST)
- Graph Neural Network (GNN)
- Out-of-Vocabulary (OoV) words in Natural Language Processing

then here's a summary of this work:

We develop models for general supervised learning tasks on source code. Our models make predictions by:

- 1. Parsing the input code into an AST
- 2. Adding edges to this AST to represent semantic information like data- and control-flow
- 3. Adding nodes/edges to this AST to represent the words (including OoV words) in the code
- 4. Consuming this augmented AST with a GNN

Our problem, and why care

- We're interested in doing supervised learning on source code
 - Supervised learning task = pairs (input data, desired output)
 - For source code, examples of supervised learning tasks include
 - Suggesting variable names
 - Finding bugs
 - Etc.
- Why bother?
 - It's hard to hand-craft rules for many tasks, but we may be able to learn rules with enough data

Our starting point: deep models for NLP

- Why deep models?
 - Learn general representations useful for a variety of tasks
- Why NLP models?
 - Natural language closest analog to code among modern ML topics

Summary: Challenges of applying NLP methods to code

- Code semantics are extremely sensitive to syntax
- The vocabulary of written code is unusual
- It isn't obvious how to read code
- Changes to code matter as much as the code
- Practical challenges

Code semantics are extremely sensitive to syntax

- Natural language sentences can be ill-formed and still get their point across
- Referents are more numerical than natural language
 - Arithmetic comparisons
 - Hardcoded numerical values
- Reuse of terms in different lexical scopes

The vocabulary of written code is unusual

- Natural language is mostly composed of words from a large, but fixed, vocabulary
- Code operates over an unbounded vocabulary, containing many newly-coined words:
 - Brand names
 - Abbreviations/Acronyms
 - Technical terms
 - o Etc.

It isn't obvious how to read code

- Code doesn't have an unambiguous written (or even execution) order
- Most code in a software package isn't relevant to any single query about that package
 - Code typically references many dependencies, most of which are sparsely used

Changes to code matter as much as the code

- The central object of modern software engineering is the diff, not static code
 - True, diffs can be additions of big, standalone blocks of code, but they usually aren't
- There isn't an analogous object of study in NLP

Practical Challenges

- It can be hard to get training data, and deep NLP is data-hungry
 - Often can't crowdsource
 - The more advanced the task we'd like to get labeled data for, the rarer those data are
 - Big tech companies have lots of data, but it's not accessible to most
- It can be hard to incorporate models usefully into the development workflow
 - Deep NLP models are often computationally expensive, even in deployment
 - Given the fallibility of machine-learned models, one needs to find inherently safe deployments

Summary: Challenges of applying NLP methods to code

- Code semantics are extremely sensitive to syntax
- The vocabulary of written code is unusual
- It isn't obvious how to read code
- Changes to code matter as much as the code
- Practical challenges

This work is about addressing (part of) the first and second bullets

Desiderata

- Syntax: Give the model a way to reason about syntactic structure
 - Model should understand relations between syntactic elements
- Vocab: Flexibly handle new words, but recognize old ones
 - E.g. upon seeing method "set_ml4p_dictionary" and variable "ml4p_dict" model:
 - Can utilize the fact that unknown word "ml4p" is in both
 - Can utilize learned understanding of "set", "dictionary", and "dict"
 - Usual strategy of fixed vocabulary or character-level understanding doesn't work

Prior work: deep models for relational data

- Recursive Neural Networks
 - o [C. Goller and A. Kuchler, 1996] assumed fixed tree structure
 - [R. Socher et al., 2011] general formulation
 - o [M. White et al., 2016] and others use on ASTs of code
- Aggregate representations of children at every node of a tree, process from leaves to root

Prior work: deep models for relational data

- Graph (Neural) Networks
 - o Evolved from Recursive Neural Networks [M. Gori et al., 2005]
 - Message Passing Neural Networks framework intro'd in [J. Gilmer et al., 2017]
 - o Graph Networks intro'd in [P. W. Battaglia et al., 2018]
 - [R. Kondor and S. Trivedi, 2018] gives rigorous characterization via permutation group representation theory
- Aggregate representations of neighbors at every node (and/or edge), repeat, combine into output
- [M. Allamanis, et al., 2017] and others apply to supervised learning on code

Prior work: deep models for relational data

• Graph Networks [P. W. Battaglia et al., 2018]

\mathbf{v}_i \mathbf{e}_k \mathbf{u}

Input Graph

Prior work: unbounded domains of discourse

- Neural Attention
 - Networks outputs scalar values for each element of a (potentially variable size) set
 - Larger values = more attention
- Pointer Networks [O. Vinyals et al., 2015]
 - o Generate ordered outputs by successively attending ("pointing") to elements of a set
- Pointer Sentinel Mixture Models [S. Merity et al., 2016]
 - Keep a cache of recently seen words in text
 - Can include them in outputs by pointing to them

Our contribution: Graph Vocabulary

• We're already constructing a graph of abstract entities - why not include words?

Our contribution: Graph Vocabulary

- We're already constructing a graph of abstract entities why not include words?
- Our full model:

Parse source code into Abstract Syntax Tree

Augment AST with semantic information

Add Graph Vocabulary

Process Augmented AST with Graph Network

Fill-In-The-Blank Task

- Task: hide single use of variable in code, model predicts what which variable we hid
- Accuracy:

		Fixed Vocab	CharCNN Only	Graph Vocab (ours)
Unseen files from seen repos	AST	0.58	0.60	0.89
	Augmented AST	0.80	0.90	0.97
Entirely unseen repos	AST	0.36	0.48	0.80
	Augmented AST	0.59	0.84	0.92

Variable Naming Task

- Task: hide all uses of a variable in code, model generates name via Recurrent NN
- Full-name reproduction accuracy (char-wise edit distance):

		Fixed Vocab	CharCNN Only	Graph Vocab (ours)
Unseen files from seen repos	AST	0.23 (7.22)	0.22 (8.67)	0.49 (3.87)
	Augmented AST	0.19 (7.64)	0.20 (7.46)	0.53 (3.68)
Entirely unseen repos	AST	0.05 (8.66)	0.06 (8.82)	0.38 (4.81)
	Augmented AST	0.04 (8.34)	0.06 (8.16)	0.41 (4.28)

Takeaways

- Graph Networks allow flexible reasoning over arbitrary entities and their relations
 - Nice way to combine "logical" and "learning" methods while letting both play to their strengths
- Using a Graph Vocabulary:
 - o Shouldn't ever hurt your model it can always learn to ignore the new nodes
 - Helps in all cases we tried, sometimes significantly

Future Directions

- Many advances in Graph Networks to be tried
 - o In particular, adding the right kinds of invariances/equivariances
- Many other entities and relations potentially worth including beyond AST structure and vocabulary
 - Compound words
 - Types (along with their hierarchies)
 - Useful for working with snippets
 - VCS history
 - Useful for working with diffs

Acknowledgments

- Miltos Allamanis
- Hyokun Yun
- Haibin Lin

Our code, for use on your code

https://github.com/mwcvitkovic/Deep Learning On Code With A Graph Vocabulary--Code Preprocessor

https://github.com/mwcvitkovic/Deep Learning On Code With A Graph Vocabulary

Questions, comments, concerns?