

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ

ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ

ΜΕΛΕΤΗ ΤΗΣ ΑΠΟΔΟΣΗΣ ΠΡΩΤΟΚΟΛΛΟΥ ΠΡΟΣΒΑΣΗΣ ΣΤΟ ΜΕΣΟ ΣΕ ΔΙΚΤΥΑ LORAWAN

Σιταρίδης Παναγιώτης | 10249

Υπό την επίβλεψη του Καθηγητή Πέτρου Νικοπολιτίδη

Θεσσαλονίκη, 2024

Στόχος εργασίας

Απαιτήσεις συστημάτων ΙοΤ

- Ευρεία Κάλυψη
- Χαμηλή κατανάλωση ισχύος
- Ικανοποιητικός ρυθμός αποστολής δεδομένων
- Ανθεκτικότητα σε παρεμβολές
- Ασφάλεια

LPWANs

Γιατί δίκτυα LoRaWAN;

	NB-IoT	EC-GSM-IoT	LTE Cat M1	LoRa	SigFox	IQRF	RPMA	Telensa	DASH7
Modulation	QPSK, OFDMA (UL), SC-FDMA (DL)	GMSK, 8PSK	QPSK	CSS	DBPSK, GFSK	GFSK	DSSS, CDMA	FSK	GFSK
Band	Licensed, Sub-GHz	Licensed, Sub-GHz	Licensed, Sub-GHz	Unlicensed, Sub-GHz	Unlicensed, Sub-GHz	Unlicensed, Sub-GHz	Unlicensed, 2.4 GHz	Unlicensed, Sub-GHz	Unlicensed, Sub-GHz
Max Range (Km)	15	15	15	15	10	0 - 5	15	1 - 10	0 - 5
Peak data rate (kbps)	250 kbps (UL), 170 kbps (DL)	10	375	27	1	20	80	65	9.6, 55.666, 166.76
Security	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Indoor	Yes	Yes	Yes	Yes	No	Yes	Yes	No	No
Link budget (dB)	164	164	164	164	N/A	N/A	177	N/A	N/A
Mobility	No	Yes	Yes	Yes	No	Yes	Limited	No	N/A
Battery lifetime (Years)	10	10	10	10	5	N/A	15	10	N/A

Διαστρωμάτωση

Συσκευές LoRaWAN

Τερματική συσκευή: Διαθέτει πομποδέκτη LoRa και στέλνει δεδομένα στο δίκτυο. Παρουσιάζει χαμηλή κατανάλωση ισχύος και τροφοδοτείται με μπαταρία.

Πύλη δικτύου: Μεταβιβάζει μηνύματα και ενισχύει τα σήματα ως γέφυρα. Δέχεται συνεχή τροφοδοσία χωρίς κάποιον περιορισμό ως προς την κατανάλωση ισχύος.

Διακομιστής δικτύου: Είναι μοναδικός σε κάθε δίκτυο και διαθέτει λογισμικό για την διαχείρισή του. Δεν έχει περιορισμό ως προς την κατανάλωση ισχύος.

Διακομιστής εφαρμογών: Επεξεργάζεται δεδομένα για την εφαρμογή που του αντιστοιχεί. Δεν έχει περιορισμό ως προς την κατανάλωση ισχύος.

Ασφάλεια

Φυσικό Επίπεδο και CSS

Βασική Δομή Πακέτου LoRa

Preamble	PHDR	PHDR_CRC	PHY_Payload	CRC
----------	------	----------	-------------	-----

- **Preamble**: Το προοίμιο του σήματος
- **PHDR(Physical Header)**: Η φυσική Κεφαλίδα του μηνύματος. Περιέχει πληροφορίες όπως το μέγεθος του ωφέλιμου φορτίου και τον ρυθμό δεδομένων. Η χρήση του είναι προαιρετική.
- PHDR_CRC(Physical Header Cyclic Redundancy Check): Περιέχει έναν κωδικό ανίχνευσης σφαλμάτων για διόρθωση στην επικεφαλίδα. Η χρήση του είναι προαιρετική.
- PHY_Payload(Physical Payload): Το ωφέλιμο περιεχόμενο του μηνύματος.
- CRC(Cyclic Redundancy Check): Περιέχει έναν κωδικό ανίχνευσης σφαλμάτων για διόρθωση στο συνολικό πακέτο. Η χρήση του είναι προαιρετική.

Κλάσεις

Class A Class B Class C

Class A

Pure Aloha

Μετάδοση με κατανομή Poisson

$$P\{X = \kappa\} = \frac{(r \cdot \Delta t)^{\kappa}}{\kappa!} \cdot e^{-r \cdot \Delta t}$$

κ: Πλήθος κόμβων που μεταδίδει στο διάστημα Δt

r: Μέσος συνολικός ρυθμός παραγωγής πακέτων

Δt: Χρονικό διάστημα παρατήρησης

Pure Aloha

Επιτυχής Μετάδοση

$$P_{success} = P\{X = 0\} = \frac{(r \cdot 2T)^0}{0!} \cdot e^{-r \cdot 2T} = e^{-2rT}$$

Pure Aloha

Ανεπιτυχής μετάδοση/Σύγκρουση

$$P_{collision} = 1 - P\{X = 0\} = 1 - e^{-2rT}$$

Περιγραφή Συστήματος Προσομοίωσης

Παραδοχές

- Ο μέγιστος αριθμός κόμβων στο σύστημα είναι 1000
- Οι τελικές συσκευές τίθενται σε λειτουργία κλάσης Α
- Διατηρείται μόνο το παράθυρο λήψης RX1
- Ο μέγιστος αριθμός αλλεπάλληλων αναμεταδόσεων είναι 40
- Το μέγιστο ποσοστό χρήσης του καναλιού από κάθε κόμβο είναι 1%
- Τερματισμός όταν η τηλεπικοινωνιακή συμφόρηση γίνει ίση με 2.

Προσδιορισμός αρχικών παραμέτρων

Παράμετροι	SF6	SF12
Bandwidth	125 kHz	125 kHz
Preamble	8 symbols	8 symbols
Header	Off	On
DE	Off	On
CRC	On	On
Payload	25 bytes	25 bytes
CR	4 → 4/8	4 → 4/8

Προσδιορισμός Χρονικών Παραμέτρων

Παράμετροι	SF6	SF12	
Χρόνος μετάδοσης(ΤοΑ)	47 msec	1974 msec	
Χρόνος μετάδοσης πακέτων επιβεβαίωσης	10 msec	663 msec	
Μέσος ρυθμός παραγωγής πακέτων ανά κόμβο	1 πακέτο ανά 5 sec	1 πακέτο ανά 300 sec	
Μέγιστο διάστημα αναμετάδοσης	20 sec	100 sec	
Ρυθμός αύξησης κόμβων	1 κόμβος ανά 17 min	1 κόμβος ανά 10 h	

Σχηματικό διάγραμμα κόμβου

Μεθοδολογία μετρήσεων

Τηλεπικοινωνιακή Συμφόρηση: G = Συνολικές μεταδόσεις · ΤοΑ Διάστημα κόμβου

Λόγος Συγκρούσεων: Collision rate = $\frac{\text{Ανεπιτυχείς μεταδόσεις}}{\text{Συνολικές μεταδόσεις}}$

Μέτρηση

- Επιτυχείς μεταδόσεις
- Ανεπιτυχείς μεταδόσεις
- Συνολικές μεταδόσεις

Αποτελέσματα για SF6

Αποτελέσματα για SF12

Σύγκριση αποτελεσμάτων SF6 - SF12

Σύγκριση αποτελεσμάτων SF6 - SF12

Εγκυρότητα αποτελεσμάτων SF6

Εγκυρότητα αποτελεσμάτων SF12

Συμπεράσματα

- Παράθεση θεωρητικού υποβάθρου →
 Επεξήγηση αλγοριθμικής διαδικασίας →
 Εγκυρότητα αποτελεσμάτων →

Στόχος επιτεύχθη

Μελλοντικές επεκτάσεις --- Μελέτη διαφορετικών πρωτοκόλλων

Ευχαριστώ για την προσοχή σας!

Απορίες;

Επιπρόσθετες διαφάνειες για περαιτέρω εξήγηση

Δομή Πακέτου LoRa στο επίπεδο ζεύξης

Over the Air Activation

Activation By Personalization

OTAA vs ABP

OTAA(Over the Air Activation)

ABP(Activation By Personalization)

Ασφάλεια

Ασφάλεια

Πολυπλοκότητα < Πολυπλοκότητα

Ταχύτητα

Ταχύτητα

Διάρκεια μετάδοσης

$$n_{payload} = 8 + max \left(ceil \left[\frac{(8PL - 4SF + 28 + 16CRC - 20IH)}{4(SF - 2DE)} \right] \cdot (CR + 4), 0 \right)$$

Class B

Class C

Προσομοίωση

- Χρήση αρχικού συστήματος από το άρθρο «Slotted ALOHA on LoRaWAN-Design, Analysis, and Deployment» του T. Polonelli
- Ανάλυση του συστήματος και αλγοριθμική εξήγηση
- Μεθοδολογία Μετρήσεων
- Εξαγωγή και ερμηνεία αποτελεσμάτων
- Σύγκριση αποτελεσμάτων με αυτά του T. Polonelli

Πιθανές καταστάσεις των κόμβων

- Αρχική κατάσταση: Οι νέοι κόμβοι και οι κόμβοι που ολοκλήρωσαν επιτυχημένα την μετάδοσή τους
- Κατάσταση μετάδοσης: Οι κόμβοι που μεταδίδουν εκείνη την στιγμή
- Κατάσταση αναμετάδοσης: Οι κόμβοι που δεν κατάφεραν να ολοκληρώσουν επιτυχώς την μετάδοσή τους και προσπαθούν ξανά σε τυχαία χρονική στιγμή
- Κατάσταση αναμονής προς επιβεβαίωση: Οι κόμβοι που ολοκλήρωσαν την μετάδοσή τους και περιμένουν επιβεβαίωση ή όχι από την πύλη για να καταλάβουν αν μετέδωσαν επιτυχώς.

Μεθοδολογία μετρήσεων με συμβολή πακέτων επιβεβαίωσης


```
Διεκπεραιωτική ικανότητα: S = 

Επιτυχείς μεταδόσεις · ToA + Επιτυχείς επιβεβαιώσεις · AckToA
Διάστημα κόμβου
```

Λόγος Συγκρούσεων: Collision rate = $\frac{\text{Ανεπιτυχείς μεταδόσεις}}{\text{Συνολικές μεταδόσεις}}$

Μέτρηση

- Επιτυχείς μεταδόσεις
- Ανεπιτυχείς μεταδόσεις
- Συνολικές μεταδόσεις
- Επιτυχείς επιβεβαιώσεις
- Συνολικές επιβεβαιώσεις

Αποτελέσματα για SF6 με συμβολή πακέτων επιβεβαίωσης

Αποτελέσματα για SF12 με συμβολή πακέτων επιβεβαίωσης

Υπολογισμός βασικών παραμέτρων

Όπως προαναφέρθηκε στην ενότητα 2.6.1, εφόσον χωρίζουμε κάθε σύμβολο σε 2^{SF} chips, προκύπτει η εξής σχέση:

$$1 symbol = 2^{SF} chips (1)$$

Επίσης, αφού κάθε σύμβολο αναπαρίσταται σε bits, πλήθους SF, προφανώς ισχύει:

$$1 symbol = SF bits (2)$$

Μία βασική και σταθερή παράμετρος στην επικοινωνία LoRa είναι το εύρος ζώνης (BW). Στην ουσία το εύρος ζώνης αντιπροσωπεύει τον ρυθμό μετάδοσης των chips. Δηλαδή:

$$R_{chip} = BW(Hz \,\dot{\eta} \, chips/sec \,) \tag{3}$$

Έτσι αντίστοιχα μπορούμε να υπολογίσουμε την περίοδο ενός chip από την σχέση:

$$T_{chip} = \frac{1}{R_{chip}} = \frac{1}{BW} \text{ (sec)}$$

Υπολογισμός βασικών παραμέτρων

Στην περίπτωση του συμβόλου LoRa, για να βρούμε τον ρυθμό μετάδοσης εκμεταλλευόμαστε τις σχέσεις (1) και (3):

$$R_{chip} = BW(chips/sec) \stackrel{(1)}{\Rightarrow} R_{sym} = \frac{BW}{2^{SF}}(symbols/sec) \tag{5}$$

Και προφανώς η περίοδος συμβόλου είναι η εξής:

$$T_{sym} = \frac{1}{R_{sym}} = \frac{2^{SF}}{BW}(sec) \tag{6}$$