数学实验第二次实验报告

计算机系 计 43 2014011330 黄家晖 2017 年 3 月 21 日

1 实验目的

- 练习数值微分的计算;
- 掌握用 MATLAB 软件求解微分方程初值问题的数值解方法;
- 了解欧拉方法和龙格-库塔方法的基本思想和误差计算公式。

2 计算题

2.1 CH4-T6 小船渡河

2.1.1 数学建模和解析求解

首先建立平面直角坐标系,以 B 点为原点,正右方(即河水流动方向)为 x 轴正方向,正下方为 y 轴方向。在此坐标系下,A 点坐标为 (0,d),B 点坐标为 (0,0),设小船坐标为 (x,y)。

将小船的航行速度 v 分解为河水流速 v_1 和静水速度 v_2 ,并设向量 (x,y) 与 x 轴夹角为 θ 。则有下式成立:

$$\begin{cases} \frac{dx}{dt} = v_1 - v_2 \cos \theta \\ \frac{dy}{dt} = -v_2 \sin \theta \end{cases}$$

用上式除以下式,消去 dt,得到:

$$\frac{dx}{dy} = \frac{k - \cos \theta}{-\sin \theta}$$
代入 $\sin \theta = \frac{y}{\sqrt{x^2 + y^2}}$ 以及 $\cos \theta = \frac{x}{\sqrt{x^2 + y^2}}$,并设 $p = \frac{x}{y}$,则有:
$$\frac{dx}{dy} = \frac{k - \frac{p}{\sqrt{1 + p^2}}}{-\frac{1}{\sqrt{1 + r^2}}} = p - k\sqrt{1 + p^2}$$

又有:

$$\frac{dp}{dy} = \frac{\frac{dx}{dy}y - x}{y^2} = \frac{\frac{dx}{dy} - p}{y}$$

代入即可得到:

$$y\frac{dp}{dy} + p = p - k\sqrt{1 + p^2}$$

上述微分方程可以进行分离变量 y 和 p 进行求解:

$$-k\frac{dy}{y} = \frac{dp}{\sqrt{1+p^2}}$$

两边积分可得:

$$-k\ln(Cy) = \ln(p + \sqrt{p^2 + 1})$$

为了求出 p 和 y 的关系,上式两边同时求指数之后再正负相加,能导出 $\sqrt{1+p^2}$,p 和 y 的关系。最终化简结果为:

$$p = \frac{x}{y} = \frac{(Cy)^{-k} - (Cy)^k}{2}$$

代入初值 (p=0,y=d), 能够解出 $C=\frac{1}{d}$, 因此, 小船航线的解析表达式为:

$$x = \frac{y}{2} [(\frac{y}{d})^{-k} - (\frac{y}{d})^k], 0 < y \le d$$

现在考虑 y = 0 (即小船到达终点时)的情况,这时 x 的值为:

$$\lim_{y \to 0} \frac{1}{2} [(\frac{1}{d})^{-k} y^{-k+1} - (\frac{1}{d})^k y^{k+1}]$$

显然,当 k>1 时,上式括号内的第一项在 $y\to 0$ 时发散,最终小船的航线始终无法到达 (0,0) 点,反而会越飘越远。这也和实际情况相符:如果小船的速度不及静水的流速,那么无论航行多长时间,都无法到达终点。当 k=1 时,x 最终收敛结果为 $\frac{d}{2}\neq 0$,此时小船能够到达岸边,但是终点在 $(\frac{d}{2},0)$ 。而当 k<1 时,上式收敛,此时 x=0,即小船能够到达终点。

上述三种情况下小船的航线解析解图像如图 1所示(设 d=100)。

图 1: 各种 k 的情况下小船的航线解析解图像

2.1.2 数值法求解

算法设计 在小船航线和航行时间求解时,依然使用公式:

$$\begin{cases} \frac{dx}{dt} = v_1 - v_2 \cos \theta \\ \frac{dy}{dt} = -v_2 \sin \theta \end{cases}$$

其中 $\sin \theta = \frac{y}{\sqrt{x^2 + y^2}}$, $\cos \theta = \frac{x}{\sqrt{x^2 + y^2}}$ 。

给定时间精度之后,即可使用 MATLAB 中自带的 ode45函数进行求解任意时刻的小船位置,将这些时刻的小船位置进行连接即可得到小船的航行曲线。当小船位置 y=0 时,即认为小船已经到达岸边,迭代结束。在实际实验中,考虑到 ode45速度较慢,可近似地将上述微分方程看作刚性方程,使用 ode23s方法进行求解。

MALTAB 程序 如下:

```
1 %% Math Exp Homework 2 T4
 _{\rm 2} % Get the position of a boat crossing river at arbitrary time
4 %% Define the constants of the boat.
5 % Global variables
6 global v1;
7 global v2;
8 v1 = 2;
9 v2 = 2;
10 k = v1 / v2;
11 d = 100;
13 %% Runge Kutta Method for velocity estimation
14 \text{ ts} = 0:1:265;
15 [t, xy] = ode23s(@xypartial, ts, [0, d]);
16 x = xy(:,1);
y = xy(:,2);
18 % Trim x,y for better plot
19 x = \max(x, 0);
y = \max(y, 0);
22 %% Analytical Solutions
x_ana = 0:0.1:100;
24 y_ana = (x_ana ./ 2) .* ((d ./ x_ana) .^ k - (x_ana ./ d) .^ k);
26 %% Plot the figure
27 figure;
28 set (gcf, 'Position', [100, 100, 760, 320])
29 % x(t), y(t)
30 subplot (1, 2, 1);
31 [AX] = plotyy(t,x,t,y);
32 grid on;
34 xlabel('Time');
35 legend('x(t)', 'y(t)');
36
37 % y(x)
38 subplot(1,2,2);
39 hold on;
40 plot(x, y);
41 plot(y_ana, x_ana, 'b--', 'LineWidth', 2);
42 xlabel('x');
43 ylabel('y');
44 set(gca,'ydir','reverse')
legend('y(x) \frac{1}{2}', 'y(x)
```

```
47 %% Output Tables
48 % Columns = t y x(num) x(ana)
49 t_output_indice = [1:8:266];
50 t_output = t(t_output_indice);
51 y_output = y(t_output_indice);
52 x1_output = x(t_output_indice);
53 x2_output = (y_output ./ 2) .* ((d ./ y_output) .^ k - (y_output ./ d) .^ k);
54 csvwrite('table',[t_output, y_output, x1_output, x2_output])
```

其中, xypartial函数实现如下:

```
1 function [ dx ] = xypartial( t, x )
2     global v1;
3     global v2;
4     norm = sqrt(x(1) ^ 2 + x(2) ^ 2);
5     dx = [v1 - v2 * x(1) / norm; - v2 * x(2) / norm];
6 end
```

计算结果 $v_1 = 1m/s$ 当 $d = 100m, v_1 = 1m/s, v_2 = 2m/s$ 时,数值法求解作图如图 2所示。 与解析解的比较如表 1所示。

图 2: $v_1 = 1m/s$ 的情况下小船的航线

从图表中可以清晰看出,数值解和解析解的结果比较相近,最终求得小船渡河所需的时间为 67 秒。

计算结果 $v_1 = 0m/s$ 此时静水速度为 0,小船理论上应该径直前进。数值法求解作图如图 3所示。与解析解的比较如表 2所示。

最终求得小船渡河所需的时间为50秒。

计算结果 $v_1 = 0.5m/s$ 数值法求解作图如图 4所示。与解析解的比较如表 3所示。

数值解和解析解的结果由于累计误差稍有差别但大体相近,最终求得小船渡河所需的时间为 53.5 秒。

计算结果 $v_1 = 1.5m/s$ 数值法求解作图如图 5所示。与解析解的比较如表 4所示。

从图表中可以清晰看出,数值解和解析解的结果比较相近,最终求得小船渡河所需的时间为 114 秒。

时间 (s)	$y(\mathbf{m})$	数值 $x(m)$	解析 $x(\mathbf{m})$	时间 (s)	$y(\mathbf{m})$	数值 $x(m)$	解析 $x(\mathbf{m})$
0.0	100.0	0.0	0.0	48.0	12.78	15.649	15.59
4.0	92.002	3.8368	3.8358	52.0	8.12	13.152	13.091
8.0	84.018	7.3279	7.3245	56.0	4.3946	10.079	10.021
12.0	76.067	10.444	10.437	59.0	2.3	7.459	7.4085
16.0	68.172	13.151	13.14	60.0	1.7454	6.5375	6.4903
20.0	60.363	15.414	15.398	61.0	1.2651	5.596	5.5528
24.0	52.676	17.196	17.173	62.0	0.86066	4.6374	4.5987
28.0	45.16	18.455	18.427	63.0	0.53305	3.6645	3.6311
32.0	37.874	19.151	19.117	64.0	0.28315	2.6803	2.653
36.0	30.892	19.245	19.205	65.0	0.11154	1.6878	1.668
40.0	24.305	18.705	18.659	66.0	0.0185	0.69011	0.67995
44.0	18.225	17.508	17.455	67.0	0.0	0.0	0.0

表 1: $v_1 = 1m/s$ 的情况下小船的航线数值

图 3: $v_1 = 0m/s$ 的情况下小船的航线

图 4: $v_1 = 0.5 m/s$ 的情况下小船的航线

时间 (s)	$y(\mathbf{m})$	数值 $x(m)$	解析 $x(m)$	时间 (s)	$y(\mathbf{m})$	数值 $x(m)$	解析 $x(m)$
0.0	100.0	0.0	0.0	26.0	48.0	0.0	0.0
2.0	96.0	0.0	0.0	28.0	44.0	0.0	0.0
4.0	92.0	0.0	0.0	30.0	40.0	0.0	0.0
6.0	88.0	0.0	0.0	32.0	36.0	0.0	0.0
8.0	84.0	0.0	0.0	34.0	32.0	0.0	0.0
10.0	80.0	0.0	0.0	36.0	28.0	0.0	0.0
12.0	76.0	0.0	0.0	38.0	24.0	0.0	0.0
14.0	72.0	0.0	0.0	40.0	20.0	0.0	0.0
16.0	68.0	0.0	0.0	42.0	16.0	0.0	0.0
18.0	64.0	0.0	0.0	44.0	12.0	0.0	0.0
20.0	60.0	0.0	0.0	46.0	8.0	0.0	0.0
22.0	56.0	0.0	0.0	48.0	4.0	0.0	0.0
24.0	52.0	0.0	0.0	50.0	0.0	0.0	0.0

表 2: $v_1 = 0m/s$ 的情况下小船的航线数值

时间 (s)	$y(\mathbf{m})$	数值 $x(m)$	解析 $x(\mathbf{m})$	时间 (s)	$y(\mathbf{m})$	数值 $x(m)$	解析 $x(m)$
0.0	100.0	0.0	0.0	30.0	40.396	9.2506	9.2327
1.5	97.0	0.73874	0.73864	31.5	37.477	9.3079	9.2879
3.0	94.0	1.4543	1.4541	33.0	34.572	9.3092	9.2882
4.5	91.001	2.1463	2.1456	34.5	31.682	9.2519	9.2298
6.0	88.002	2.8134	2.8124	36.0	28.811	9.1322	9.1085
7.5	85.004	3.4555	3.4537	37.5	25.961	8.9437	8.9193
9.0	82.007	4.0709	4.0686	39.0	23.136	8.6828	8.6567
10.5	79.011	4.6591	4.6561	40.5	20.342	8.3409	8.3142
12.0	76.017	5.2194	5.2153	42.0	17.583	7.9114	7.8836
13.5	73.025	5.7498	5.7451	43.5	14.868	7.3846	7.3556
15.0	70.035	6.2503	6.2444	44.5	13.088	6.9725	6.9439
16.5	67.048	6.7189	6.7119	45.5	11.335	6.5086	6.4791
18.0	64.065	7.154	7.1463	46.5	9.6166	5.9857	5.9569
19.5	61.085	7.5557	7.5463	47.5	7.9367	5.3995	5.3702
21.0	58.11	7.9207	7.9103	48.5	6.3068	4.7405	4.7123
22.5	55.14	8.2477	8.2365	49.5	4.7383	3.9997	3.9726
24.0	52.175	8.5366	8.5233	50.5	3.2515	3.1621	3.1382
25.5	49.217	8.7827	8.7686	51.5	1.8789	2.2082	2.1896
27.0	46.268	8.9854	8.9702	52.5	0.68658	1.1046	1.0938
28.5	43.326	9.1431	9.1258	53.5	0.0	1.0786e-08	0.0

表 3: $v_1 = 0.5 m/s$ 的情况下小船的航线数值

图 5: $v_1 = 1.5 m/s$ 的情况下小船的航线

时间 (s)	$y(\mathbf{m})$	数值 $x(m)$	解析 $x(\mathbf{m})$	时间 (s)	$y(\mathbf{m})$	数值 $x(m)$	解析 $x(m)$
0.0	100.0	0.0	0.0	90.0	0.34391	12.161	12.106
5.0	90.009	7.1147	7.1129	95.0	0.13664	9.6637	9.6126
10.0	80.083	13.408	13.402	99.0	0.053902	7.6641	7.6184
15.0	70.307	18.805	18.794	100.0	0.04112	7.1642	7.12
20.0	60.788	23.243	23.225	101.0	0.03076	6.6642	6.6216
25.0	51.652	26.677	26.653	102.0	0.022495	6.1642	6.1233
30.0	43.04	29.094	29.063	103.0	0.016023	5.6642	5.6254
35.0	35.096	30.52	30.483	104.0	0.011058	5.1642	5.1273
40.0	27.948	31.026	30.983	105.0	0.0073499	4.6642	4.6296
45.0	21.695	30.725	30.676	106.0	0.004663	4.1642	4.1318
50.0	16.383	29.755	29.701	107.0	0.0027912	3.6642	3.6343
55.0	12.008	28.266	28.208	108.0	0.0015496	3.1642	3.1371
60.0	8.5147	26.399	26.338	109.0	0.00077713	2.6642	2.6399
65.0	5.8162	24.271	24.21	110.0	0.00033735	2.1642	2.1429
70.0	3.8021	21.978	21.915	111.0	0.00011713	1.6642	1.6449
75.0	2.3573	19.583	19.521	112.0	2.7407e-05	1.1642	1.144
80.0	1.3677	17.133	17.072	113.0	2.5694 e-06	0.66424	0.63304
85.0	0.72778	14.654	14.595	114.0	0.0	0.16424	0

表 4: $v_1 = 1.5 m/s$ 的情况下小船的航线数值

计算结果 $v_1 = 2m/s$ 数值法求解作图如图 6所示。与解析解的比较如表 5所示。

图 6: $v_1 = 2m/s$ 的情况下小船的航线

时间 (s)	$y(\mathbf{m})$	数值 $x(m)$	解析 $x(\mathbf{m})$	时间 (s)	$y(\mathbf{m})$	数值 $x(m)$	解析 $x(m)$
0.0	100.0	0.0	0.0	136.0	0.70705	50.005	49.998
8.0	84.073	14.663	14.659	144.0	0.5131	50.006	49.999
16.0	68.657	26.44	26.431	152.0	0.37224	50.007	49.999
24.0	54.401	35.216	35.203	160.0	0.27006	50.007	50.0
32.0	41.915	41.224	41.216	168.0	0.196	50.007	50.0
40.0	31.587	45.022	45.011	176.0	0.14221	50.007	50.0
48.0	23.438	47.265	47.253	184.0	0.10316	50.008	50.0
56.0	17.225	48.525	48.516	192.0	0.074856	50.008	50.0
64.0	12.585	49.216	49.208	200.0	0.054325	50.008	50.0
72.0	9.1642	49.588	49.58	208.0	0.039413	50.008	50.0
80.0	6.6636	49.786	49.778	216.0	0.028593	50.008	50.0
88.0	4.8405	49.89	49.883	224.0	0.020751	50.008	50.0
96.0	3.5135	49.946	49.938	232.0	0.015057	50.008	50.0
104.0	2.5499	49.975	49.967	240.0	0.010923	50.008	50.0
112.0	1.8509	49.99	49.983	248.0	0.0079251	50.008	50.0
120.0	1.343	49.999	49.991	256.0	0.0057517	50.008	50.0
128.0	0.97432	50.003	49.995	264.0	0.0041731	50.008	50.0

表 5: $v_1 = 2m/s$ 的情况下小船的航线数值

可以看出,极限情况下小船会在离终点 50m 处的位置附近,这与解析解的分析是一致的。但是在数值求解的过程中,虽然 t 增大,但是小船始终与岸边有微小的距离,可以这样分析:小船越靠近岸边,径向速度越慢,以至于最后所有的速度分量全部用于平衡水流速度。但无论如何,小船在这种情况下始终无法到达 B 点。

结论 使用龙格-库塔方法能够较为精确地对微分方程进行数值求解。小船的航向和航行时间具体数值请参阅上述章节。

2.2 CH4-T10 3 级龙格 -库塔方法

2.2.1 精确度和误差分析

假定 $y_n = y(x_n)$, 对于 k_1 :

$$k_1 = f(x_n, y(x_n)) = y'(x_n)$$

对于 k_2 和 k_3 ,使用二元泰勒展开,并利用 $y'' = f_x + f \cdot f_y$:

$$k_2 = y'(x_n) + thf_x(x_n, y(x_n)) + thk_1f_y(x_n, y(x_n)) + O(h^2) = y'(x_n) + thy''(x_n) + O(h^2)$$

$$k_3 = y'(x_n) + (1-t)hy''(x_n) + O(h^2)$$

于是:

$$y_{n+1} = y(x_n) + \frac{h}{2}(k_2 + k_3) = y(x_n) + hy'(x_n) + O(h^3)$$

又结合:

$$y(x_{n+1}) = y(x_n) + hy'(x_n) + \frac{h^2}{2}y''(x_n) + O(h^3)$$

相减即可得到局部截断误差:

$$T_{n+1} = y(x_{n+1}) - y_{n+1} = \frac{h^2}{2}y''(x_n) + O(h^3)$$

所以无论 t 取何值,该方法均为 2 阶,其局部误差截断主项为 $\frac{h^2}{2}y''(x_n)$ 。

2.2.2 稳定性分析

分析稳定性时,令 $f(x,y)=-\lambda y$,其中 $\lambda>0$ 。代入左式和 t=1,龙格 -库塔公式可化为:

$$\begin{cases} k_1 = -\lambda y_n \\ k_2 = -\lambda y_n + \lambda^2 h y_n \\ k_3 = -\lambda y_n \end{cases}$$

因此:

$$y_{n+1} = (1 - h\lambda + \frac{\lambda^2 h^2}{2})y_n$$

$$\tilde{y_{n+1}} = (1 - h\lambda + \frac{\lambda^2 h^2}{2})\tilde{y_n}$$

相减即可得到:

$$\epsilon_{n+1} = \epsilon_n (1 - h\lambda + \frac{\lambda^2 h^2}{2})$$

为了使得方法稳定,即误差不增长,需要保证:

3 应用题 10

$$|1 - h\lambda + \frac{\lambda^2 h^2}{2}| \le 1$$

使用变量代换法即可将上述方程换成普通的一元二次方程求解,该龙格-库塔方法的稳定性条件是:

$$h \le \frac{2}{\lambda}$$

解毕。

3 应用题

3.1 CH4-T5 放射性废物处理

3.1.1 模型建立

通过对海中正在下降的圆筒作受力分析,可以发现圆筒受重力 G,浮力 F 和阻力 f 的影响,设圆筒质量为 m,重力加速度为 g,则 G=mg,阻力与下沉速度比例系数为 α 。当桶的下降速度为 v 时,列出受力方程如下:

$$\frac{dv}{dt} = \frac{G - F - \alpha v}{m}$$

对于初值,假设桶从速度为 0 开始自由下落,即 v(0) = 0。

3.1.2 解析解法

对于上述一阶非齐次线性微分方程,直接代入通解公式即可得到:

$$v = \frac{G - F}{\alpha} (1 - e^{-\frac{\alpha}{m}t})$$

此时,桶已经下降的深度为(假设 h(0) = 0):

$$h = \int_0^t v(\tau)d\tau = \frac{G - F}{\alpha} \left(t + \frac{m}{\alpha} e^{-\frac{\alpha}{m}t}\right) - \frac{m(G - F)}{\alpha^2}$$

首先,代入题中所给的数据,根据上面导出的 v(t) 解析式反解出当 v=40ft/s 时的时间。得到 t=11.8243s。再将这个数值代入 h(t) 中求解下落深度,得到 h=238.76ft。可以看出,当速度已经达到 40ft/s 时,桶还没有到达海底,因此桶会发生破裂。此外,也可以画出桶的下降速度和下落深度随时间的变化图像,如图 7所示。从图像中可以明显地看出,当深度未达到 300 英尺时,速度已经超过 40 英尺每秒。因此桶会与海底冲撞而发生破裂,工程师赢得了官司。

3.1.3 数值解法

算法设计 根据模型可知,该微分方程可以使用龙格-库塔方法进行数值求解,且满足指定的精度需求。因此使用 MATLAB 中自带的 ode455 级 4 阶公式进行数值求解,并根据情况调整计算精度。此外,为了计算桶的下落高度,需要进行积分操作,这里使用的是上一个实验所学的 trap函数进行计算。

3 应用题

图 7: 桶的下降速度和下落深度随时间的变化图像 -解析解法

MATLAB 程序 如下:

```
1 %% Math Exp Homework 2 T5
_{\rm 2} % Get the velocity and depth of a falling backet
4 %% Define the constants of the backet.
5 % Global variables
6 global m;
7 global G;
8 global F;
9 global alpha;
m = 527.436 * 0.4536;
11 g = 9.8;
12 G = m * g;
13 F = 470.327 * 0.4536 * 9.8;
14 alpha = 0.08 * 0.4536 * 9.8 / 0.3048;
16 depth_water = 300 * 0.3048;
17 speed_limit = 40 * 0.3048;
18
19 %% Runge Kutta Method for velocity estimation
20 ts = 0:0.1:13;
v0 = 0;
22 [t, v] = ode45(@vpartial, ts, v0);
24 %% Linear integral for depth integral
25 h = [0];
26 for i = 2:length(t)
h = [h; trapz(t(1:i), v(1:i))];
```

4 收获与建议 12

时间 (s)	速度 (ft/s)	下落高度 (ft)	时间 (s)	速度 (ft/s)	下落高度 (ft)
11.1	37.6155	210.6495	12.1	40.9054	249.9113
11.2	37.9452	214.4275	12.2	41.2335	254.0182
11.3	38.2748	218.2385	12.3	41.5615	258.158
11.4	38.6042	222.0825	12.4	41.8892	262.3305
11.5	38.9334	225.9594	12.5	42.2169	266.5358
11.6	39.2625	229.8691	12.6	42.5443	270.7739
11.7	39.5914	233.8118	12.7	42.8716	275.0447
11.8	39.9201	237.7874	12.8	43.1988	279.3482
11.9	40.2487	241.7959	12.9	43.5258	283.6844
12.0	40.5771	245.8372	13.0	43.8526	288.0533

表 6: 深度与速度随时间的变化表

```
28 end
29
30 %% Plot the figure
31 [AX] = plotyy(t,h / 0.3048,t,v / 0.3048);
32 grid on;
33 set(AX(1), 'yTick', 0:50:300);
34 set(AX(2), 'yTick', 0:10:60);
35
36 xlabel('Time');
37 ylabel('Value (measured by ft)');
38 legend('Depth', 'Velocity');
```

其中, vpartial函数实现如下:

计算结果 程序执行之后,深度与速度随时间的变化如表 6所示。画出的图像如图 8所示。可以看出,使用数值解法与解析解法所得到的图像基本相同。约 11.9 秒时,桶的下落速度达到 40ft/s,而此时下落高度约 240ft, 没有到达海底,速度有效。

结论 桶会与海底冲撞而发生破裂,工程师赢得了官司。

4 收获与建议

通过这次的实验,我对 MATLAB 中提供微分方程求解函数理解更加深刻,通过实际编程、画图的方式观察了方程求解的结果,这是书本上无法学到的知识。同时,在做上机实验的过程中,我对 MATLAB 这款软件的使用也更加熟练了。希望在之后的课堂上老师能够当堂进行相关的技巧演示并给出题目的分步解答。

4 收获与建议 13

图 8: 桶的下降速度和下落深度随时间的变化图像 -数值解法