Bipolar Junction Transistor

What is transistor action and how does it occur in a BJT?

Is BJT two back-to-back diodes connected together?

How does a BJT amplify?

Transistor

Trans-resistor

Current I_{O} is much more sensitive to V_{IN} than V_{O}

"Ideal Transistor"

Transfer Characteristics

Output Characteristics

Voltage controlled Current Source (VCCS)

Transistors can be used for AMPLIFICATION

By choosing sufficiently larger load resistance, voltage gain can be obtained

Bipolar Junction Transistor (BJT)

More Realistic View

BJT is not symmetric: emitter and collector cannot be simply interchanged

Top View

Background

If doping in N region is much larger than doping in p region then $I_N >> I_P$

Basic Transistor Operation

We will assume that doping in emitter is much more than base so that electron current is much larger than hole current

$$I_N >> I_P$$

In the reverse biased junction current is small because there are very few electrons in P and holes in N-region

Basic Transistor Operation

$$I = I_N + I_P$$

$$I_{\scriptscriptstyle E} = I_{\scriptscriptstyle N} + I_{\scriptscriptstyle P}$$

$$I_{\scriptscriptstyle B}\cong I_{\scriptscriptstyle P}$$

Current Gain:
$$\beta = \frac{I_C}{I_B} = \frac{I_N}{I_P} >> 1$$

Transistor action

Current is affected by base-emitter voltage and not by collector-base voltage

Alternative representation

$$I_B = I_{BS} \left(e \times p \left(\frac{V_{BE}}{V_T} \right) - 1 \right)$$

$$I_{C} = I_{S} \left(e \times p \left(\frac{V_{BE}}{V_{T}} \right) - 1 \right)$$

$$I_{B} = \frac{I_{C}}{\beta_{F}}$$

$$\beta = \frac{I_C}{I_B}$$

Transistor Characteristics

Forward Active Mode

Output Characteristics of the transistor 12.0m I_{B2} 3.0m 0.0m_{0.0} 1.4 VCE

$$V_{CE} = V_{CB} + V_{BE}$$

$$= V_{BE} - V_{BC}$$

$$V_{\scriptscriptstyle CE} = 0.7 - V_{\scriptscriptstyle BC}$$

Modes of operation

Saturation

Why does I_C drop in saturation?

$$V_{CE} = V_{CB} + V_{BE}$$

$$= V_{BE} - V_{BC}$$

$$V_{\scriptscriptstyle CE} = 0.7 - V_{\scriptscriptstyle BC}$$

Note that in saturation: $\frac{I_c}{\beta I_B} < 1$

Model of a BJT in Saturation mode

$$I_C \neq \beta_F I_B$$

$$V_{CESat.} \cong 0.2V$$

Model of a BJT in Saturation mode

Generalized Transistor Model

Forward Active Mode

$$I_{C} = \beta_{F} \times I_{B}$$

$$I_{E} = I_{C} + I_{B}$$

$$I_{C} = \alpha_{F} \times I_{E}$$

$$\alpha_{F} = \frac{\beta_{F}}{1 + \beta_{F}}$$

 β_F : Common Emitter Current Gain

 α_F : Common Base Current Gain

Forward Active Mode

Reverse Active Mode

Ebers Moll Model

Forward Active Mode: Early Voltage

$$I_{c} = I_{s} \left(\exp\left(\frac{V_{BE}}{V_{T}}\right) - 1 \right)$$

$$I_{B} = \frac{I_{c}}{\beta_{F}}$$

Early Voltage

