Analytic Geometry

George Ţurcaș

Maths & Comp. Sci., UBB Cluj-Napoca

October 15, 2022

Vectors: an introduction

Both knew their vectors pretty well...

- Let \mathcal{E} denote the Euclidean plane \mathcal{E}_2 or the Euclidean 3-space \mathcal{E}_3 . A pair $(A,B) \in \mathcal{E} \times \mathcal{E}$ is called an *ordered pair* of points or a *vector at the point A*. Such a pair is, shortly, denoted by \overrightarrow{AB} . The point A is the *original point*, while B is the *terminal point* and the line AB (if $A \neq B$) gives the direction of \overrightarrow{AB} . A vector \overrightarrow{AB} at A has the *orientation* from A to B, i.e. from its original to its terminal point.
- The length of the segment [AB] represents the length of the vector \overrightarrow{AB} and is denoted by $||\overrightarrow{AB}||$ or by $||\overrightarrow{AB}||$. Usually, the vector $|\overrightarrow{AB}|$ at |AB|| is represented as

An equivalence relation on pairs of points...

• Let consider the relation $\mathcal{E} \times \mathcal{E}$: $(A, B) \sim (C, D)$ if and only if the segments [AD] and [BC] have the same midpoint.

An equivalence relation on pairs of points...

- Let consider the relation $\mathcal{E} \times \mathcal{E}$: $(A, B) \sim (C, D)$ if and only if the segments [AD] and [BC] have the same midpoint.
- When the points A, B, C and D are not collinear, this means that $(A,B) \sim (C,D)$ if and only if ABCD is a parallelogram.
- ullet It is not difficult to check that " \sim " is an equivalence relation.

An equivalence relation on pairs of points...

- Let consider the relation $\mathcal{E} \times \mathcal{E}$: $(A, B) \sim (C, D)$ if and only if the segments [AD] and [BC] have the same midpoint.
- When the points A, B, C and D are not collinear, this means that $(A,B) \sim (C,D)$ if and only if ABCD is a parallelogram.
- It is not difficult to check that " \sim " is an equivalence relation.
- Let us denote by V_3 the set $(\mathcal{E}_3 \times \mathcal{E}_3)/_{\sim}$ of equivalence classes and by V_2 the set $(\mathcal{E}_2 \times \mathcal{E}_2)/_{\sim}$.

- If $\overrightarrow{AB} \in \mathcal{E} \times \mathcal{E}$, its equivalence class is denoted by \overline{AB} and is called a vector in \mathcal{E} (\mathcal{E}_2 or \mathcal{E}_3). In this case, \overrightarrow{AB} is a representative of \overline{AB} .
- Suppose that $A \neq B$. The line AB defines the *direction* of the vector \overline{AB} . The *length* of \overline{AB} is given by

$$||\overline{AB}|| = ||\overrightarrow{AB}|| = AB,$$

the length of the segment [AB]. The *orientation* of \overline{AB} , from A to B, is given by the orientation of \overline{AB} .

We shall denote the vectors in V_2 or V_3 by small letters: \overline{a} , \overline{b} ,... \overline{u} , \overline{v} , \overline{w} .

Proposition

Given a vector \overline{a} in V_2 (or V_3) and a fixed point A, there exists a unique representative of \overline{a} , having the original point at A.

Vector operations

Let \overline{a} and \overline{b} be two vectors in V_3 (or V_2). The sum of \overline{a} and \overline{b} is the vector denoted by $\overline{a} + \overline{b}$, so that, if $\overrightarrow{AB} \in \overline{a}$ and $\overrightarrow{BC} \in \overline{b}$, then \overrightarrow{AC} is the representative of $\overline{a} + \overline{b}$.

- If \overline{v} is a vector in $\overrightarrow{V_3}$ (or V_2), then the *opposite vector* of \overline{v} is denoted by $-\overline{v}$, so that, if \overrightarrow{AB} is a representative of \overline{v} , then \overrightarrow{BA} is a representative of $-\overline{v}$.
- The sum $\overline{a} + (-\overline{b})$ will be, shortly, denoted by $\overline{a} \overline{b}$ and it will be called the *difference* of the vectors \overline{a} and \overline{b} .
- Let \overline{a} be a vector in V_3 (or V_2) and k be a real number. The *product* $k \cdot \overline{a}$ is the vector defined as follows:

 - ② if k > 0, then $k \cdot \overline{a}$ has the same direction and orientation as \overline{a} and $||k \cdot \overline{a}|| = k \cdot ||\overline{a}||$;
 - 3 if k < 0, then $k \cdot \overline{a}$ has the same direction as \overline{a} , opposite orientation to \overline{a} and $||k \cdot \overline{a}|| = -k \cdot ||\overline{a}||$.

The components of a vector

• Let \overline{a} be a vector in V_2 and xOy be a rectangular coordinates system in \mathcal{E}_2 . There is a unique point $A \in \mathcal{E}_2$, such that $\overrightarrow{OA} \in \overline{a}$. The coordinates of the point A are called the *components* of the vector \overline{a} and write $\overline{a}(a_1, a_2)$.

The components of a vector

- Let \overline{a} be a vector in V_2 and xOy be a rectangular coordinates system in \mathcal{E}_2 . There is a unique point $A \in \mathcal{E}_2$, such that $\overrightarrow{OA} \in \overline{a}$. The coordinates of the point A are called the *components* of the vector \overline{a} and write $\overline{a}(a_1, a_2)$.
- Similarly, \overline{a} a vector in V_3 and a rectangular coordinate system Oxyz in \mathcal{E}_3 , there exists a unique point $A(a_1,a_2,a_3)$, such that $\overrightarrow{OA} \in \overline{a}$. The triple (a_1,a_2,a_3) gives the *components* of \overline{a} and we denote it by $\overline{a}(a_1,a_2,a_3)$.
- Since $\overline{0}(0,0)$ in V_2 and $\overline{0}(0,0,0)$ in V_3 , then two vectors are equal if and only if they have the same components.

Theorem

Let $\overline{a}(a_1, a_2)$ and $\overline{b}(b_1, b_2)$ be two vectors in V_2 and $k \in \mathbb{R}$. Then:

- (1) the components of $\overline{a} + \overline{b}$ are $(a_1 + b_1, a_2 + b_2)$;
- (2) the components of $k \cdot \overline{a}$ are (ka_1, ka_2) .

An analogous theorem for 3D

Theorem

Let $\overline{a}(a_1, a_2, a_3)$ and $\overline{b}(b_1, b_2, b_3)$ be two vectors in V_3 and $k \in \mathbb{R}$. Then:

- (1) the components of $\overline{a} + \overline{b}$ are $(a_1 + b_1, a_2 + b_2, a_3 + b_3)$;
- (2) the components of $k \cdot \overline{a}$ are (ka_1, ka_2, ka_3) .

Theorem

(1) If $P_1(x_1, y_1)$ and $P_2(x_2, y_2)$ are two points in \mathcal{E}_2 , then

$$\overline{P_1P_2}(x_2-x_1,y_2-y_1).$$

(2) If $Q_1(x_1, y_1, z_1)$ and $Q_2(x_2, y_2, z_2)$ are two points in \mathcal{E}_3 , then

$$\overline{Q_1Q_2}(x_2-x_1,y_2-y_2,z_2-z_1).$$

The set of vectors is a very structured one

Theorem (Prop. of the summation)

Let \overline{a} , \overline{b} and \overline{c} be vectors in V_3 (or V_2) and $\alpha, \beta \in \mathbb{R}$. Then:

- 1) $\overline{a} + \overline{b} = \overline{b} + \overline{a}$ (commutativity);
- 2) $(\overline{a} + \overline{b}) + \overline{c} = \overline{a} + (\overline{b} + \overline{c})$ (associativity);
- **3)** $\overline{a} + \overline{0} = \overline{0} + \overline{a} = \overline{a}$ ($\overline{0}$ is the neutral element for summation);
- **4)** $\overline{a} + (-\overline{a}) = (-\overline{a}) + \overline{a} = \overline{0}$ $(-\overline{a})$ is the inverse of \overline{a} ;
- **5)** $\alpha(\beta \overline{a}) = (\alpha \beta) \overline{a};$
- **6)** $\alpha \cdot (\overline{a} + \overline{b}) = \alpha \cdot \overline{a} + \beta \cdot \overline{b}$ (multiplication by real scalars is distributive with respect to the summation of vectors);
- 7) $(\alpha + \beta) \cdot \overline{a} = \alpha \cdot \overline{a} + \beta \cdot \overline{a}$ (multiplication by real scalars is distributive with respect to the summation of scalars);
- 8) $1 \cdot \overline{a} = \overline{a}$.

Proposition

(1) Let $\overline{a}(a_1, a_2)$ be a vector in V_2 . The length of \overline{a} is given by

$$||\overline{a}|| = \sqrt{a_1^2 + a_2^2}.$$

(2) Let $\overline{a}(a_1, a_2, a_3)$ be a vector in V_3 . The length of \overline{a} is given by

$$||\overline{a}|| = \sqrt{a_1^2 + a_2^2 + a_3^3}.$$

- The vectors $\overline{i}(1,0)$ and $\overline{j}(0,1)$ in V_2 are called the *unit vectors* (or *versors*) of the coordinate axes Ox and Oy.
- The vectors $\overline{i}(1,0,0)$, $\overline{j}(0,1,0)$ and $\overline{k}(0,0,1)$ are called the *unit* vectors (or versors) of the coordinate axes Ox, Oy and Oz.
- It is clear that

$$||\bar{i}|| = ||\bar{j}|| = ||\bar{k}|| = 1.$$

Interlude... not really related to the course

• In general, if we are given an equivalence relation \sim on a set X, then the set of equivalence classes X/\sim is "smaller" than the whole set X.

Interlude... not really related to the course

- In general, if we are given an equivalence relation \sim on a set X, then the set of equivalence classes X/\sim is "smaller" than the whole set X.
- Always smaller?... Take $X=\mathbb{R}$ and say that for $x,y\in\mathbb{R}$ we have $x\sim y$ if and only if $x-y\in\mathbb{Z}$. Then, every real number has a representative in [0,1), so we can think of \mathbb{R}/\sim as of the interval [0,1). But is this really "smaller" than \mathbb{R} ?

So far we have defined the operations

$$+: V_2 \times V_2 \to V_2, \quad (\overline{a}, \overline{b}) \mapsto \overline{a} + \overline{b}$$

 $\cdot: \mathbb{R} \times V_2 \to V_2, \quad (k, \overline{a}) \mapsto k \cdot \overline{a}$

and, of course,

$$+: V_3 \times V_3 \to V_3, \quad (\overline{a}, \overline{b}) \mapsto \overline{a} + \overline{b}$$

 $\cdot: \mathbb{R} \times V_3 \to V_3, \quad (k, \overline{a}) \mapsto k \cdot \overline{a}.$

V_2 the same thing as \mathbb{R}^2 , or V_3 the same thing as \mathbb{R}^3 ?

Theorem

- $(V_2, +)$ is a vector space over \mathbb{R} , which is isomorphic to $(\mathbb{R}^2, +)$. The set $\{\bar{i}, \bar{j}\}$ is a base of V_2 , therefore $\dim_{\mathbb{R}} V_2 = 2$.
- **2** $(V_3, +)$ is a vector space over \mathbb{R} , which is isomorphic to $(\mathbb{R}^3, +)$. The set $\{\bar{i}, \bar{j}, \bar{k}\}$ is a base of V_3 , therefore $\dim_{\mathbb{R}} V_3 = 3$.

A few definitions

- Let \overline{a} and \overline{b} be two nonzero vectors in V_3 (or V_2). They are *linearly dependent* if there exist the scalars $\alpha, \beta \in \mathbb{R}^*$ such that $\alpha \overline{a} + \beta \overline{b} = \overline{0}$.
- Let set \overline{a} , \overline{b} and \overline{c} be three nonzero vectors in V_3 . They are *linearly dependent* if there exist the scalars $\alpha, \beta, \gamma \in \mathbb{R}$, not all equal to zero, such that $\alpha \overline{a} + \beta \overline{b} + \gamma \overline{c} = \overline{0}$.
- The vectors \overline{a} and \overline{b} in V_3 (or V_2), $\overline{a}, \overline{b} \neq \overline{0}$, are *collinear* if they have representatives situated on the same line.
- The vectors \overline{a} , \overline{b} and \overline{c} in V_3 , \overline{a} , \overline{b} , $\overline{c} \neq \overline{0}$ are *coplanar* if they have representatives situated in the same plane.

Theorem

- The vectors \overline{a} and \overline{b} are linearly dependent if and only if they are collinear.
- 2 The vectors \overline{a} , \overline{b} and \overline{c} are linearly dependent in V_3 if and only if they are coplanar.

Proof.

1. If the vectors \overline{a} and \overline{b} are collinear, then there exists a scalar $\alpha \in \mathbb{R}^*$ such that $\overline{a} = \alpha \cdot \overline{b}$, i.e.

$$1 \cdot \overline{a} + (-\alpha) \cdot \overline{b} = \overline{0},$$

so, by definition, \overline{a} and \overline{b} are linearly dependent.

Conversely, if $\alpha \overline{a} + \beta \overline{b} = \overline{0}$ for some scalars $\alpha, \beta \in \mathbb{R}^*$, then we can write $\overline{a} = \left(-\frac{\beta}{\alpha}\right) \overline{b}$. By definition, \overline{a} and \overline{b} are collinear.

2. Suppose that the vectors \overline{a} , \overline{b} and \overline{c} are linearly dependent. Then, there exist $\alpha,\beta,\gamma\in\mathbb{R}$ not all zero, such that $\alpha\overline{a}+\beta\overline{b}+\gamma\overline{c}=\overline{0}$. Suppose that $\gamma\neq 0$. One obtains

$$\overline{c} = \left(-\frac{\alpha}{\gamma}\right)\overline{a} + \left(-\frac{\beta}{\gamma}\right)\overline{b}.$$

If \overrightarrow{OA} and \overrightarrow{OB} are representative of \overline{a} respectively \overline{b} , then the representative \overrightarrow{OC} of \overline{c} , constructed as below, is coplanar with \overrightarrow{OA} and \overrightarrow{OB} .

Conversely, if \overline{a} , \overline{b} and \overline{c} are coplanar, let us consider the representatives $\overrightarrow{OA} \in \overline{a}$, $\overrightarrow{OB} \in \overline{b}$ and $\overrightarrow{OC} \in \overline{c}$, situated in the same plane. In the diagram below, OMCN is a parallelogram.

Then, there exist $\alpha, \beta \in \mathbb{R}$ such that $\overrightarrow{OM} = \alpha \cdot \overrightarrow{OA}$ and $\overrightarrow{ON} = \beta \cdot \overrightarrow{OB}$. Hence $\overrightarrow{OC} = \overrightarrow{OM} + \overrightarrow{ON} = \alpha \cdot \overrightarrow{OA} + \beta \cdot \overrightarrow{OB}$ and $\overline{c} = \alpha \cdot \overline{a} + \beta \cdot \overline{b}$, so that $\alpha \cdot \overline{a} + \beta \cdot \overline{b} + (-1) \cdot \overline{c} = \overline{0}$ and the vectors \overline{a} , \overline{b} and \overline{c} are linearly dependent.

To keep in mind...

- The set $\{\overline{a}, \overline{b}\}$ is a base in V_2 if and only if the vectors \overline{a} , \overline{b} are not collinear.
- The set $\{\overline{a}, \overline{b}, \overline{c}\}$ is a base in V_3 if and only if the vectors \overline{a} , \overline{b} , \overline{c} are not coplanar.

Thank you very much for your attention!