Math 104 Makeup Final Exam May 2, 2007

	Name				
	Penn ID				
	Circle ϵ	exactly one profe	essor/TA combinat	ion:	
Professor: TA: time:	Andrew Rupinski	Jen Hom	Dr. van Erp Andrew Bressler 3 PM, TR	Alexa Mater	Tim DeVries
	Write all answers	(A, B, C, D, E,	F) in the spaces p	rovided below!	
1	6		11	_ 1	6
2	7		12	_ 1	7
3	8		13	_ 1	8
4	9		14	_ 1	9
5	10		15		20
	Sco	re: (10	00 points possible)		

- 1. The testing booklet contains 20 questions.
- 2. No calculators are permitted.
- 3. One piece of paper (8.5 in. by 11 in.) is permitted, with writing on both sides allowed.
- 4. There is no penalty for guessing.
- 5. No partial credit will be given.
- 6. Write all calculations on the pages provided. Extra pages are available if needed.

1. Find the limit.

$$\lim_{n\to\infty} \frac{2n + \cos(3n)}{3n + \sin(2n)}$$

A.) 0

B.) 1

 $C.) \cos(3)/\sin(2)$

D.) 2/3

E.) 3/2

F.) no limit exists

2. Find the volume of the solid obtained by rotating the region bounded by the curves

and y = 0 and x = 0 and

x = 2

about the y-axis.

A.) $4\pi e^4$ B.) $2\pi e^4$ C.) $2\pi (e^4 - 1)$ D.) $\pi (e^4 - 1)$ E.) $\pi \sqrt{e}$ F.) πe

3. Find an equation of the tangent to the curve

$$x = 2(t - \sin t), \qquad \qquad y = 2(1 - \cos t)$$

at the point

$$(x,y) = \left(\frac{2\pi}{3} - \sqrt{3}, 1\right).$$

A.)
$$y = \frac{\sqrt{3}}{4}x + \frac{7}{4} - \frac{\pi}{6}\sqrt{3}$$

B.)
$$y = \frac{\sqrt{3}}{3}x + 2 - \frac{2\pi}{9}\sqrt{3}$$

C.)
$$y = \frac{\sqrt{3}}{2}x + \frac{5}{2} - \frac{\pi}{3}\sqrt{3}$$

D.)
$$y = \sqrt{3}x + 4 - \frac{2\pi}{3}\sqrt{3}$$

E.)
$$y = 2\sqrt{3}x + 7 - \frac{4\pi}{3}\sqrt{3}$$

F.)
$$y = 3\sqrt{3}x + 10 - 2\pi\sqrt{3}$$

4. Determine the interval of convergence for the power series

$$\sum_{n=1}^{\infty} \frac{(x-2)^n}{n3^n} \, .$$

- A.) [-1,3)
- B.) (-1,3]
- C.) [-1, 5)
- D.) (-1, 5]
- E.) [3, 5)
- F.) (3,5]

5. Find the area of the region enclosed by the curves

 $y = e^x$ and $y = e^{-x}$ and x = 2.

A.) 3-e B.) $-1+2\ln 2$ C.) e^2-e^{-2} D.) e^2-1 E.) $5-e^{-2}$ F.) $e^2+e^{-2}-2$

6. Find the first five terms of the Maclaurin series for

$$f(x) = \frac{x}{1 - x^3} \,.$$

- A.) $1 + x + x^2 + x^3 + x^4 + \cdots$
- B.) $1 + x^3 + x^6 + x^9 + x^{12} + \cdots$
- C.) $x + x^4 + x^7 + x^{10} + x^{13} + \cdots$
- D.) $x^3 + x^4 + x^5 + x^6 + x^7 + \cdots$
- E.) $x^3 + x^6 + x^9 + x^{12} + x^{15} + \cdots$
- F.) $x + x^2 + x^3 + x^4 + x^5 + \cdots$

7. Evaluate the integral.

$$\int_0^1 \frac{dx}{x^{1/3}(x^{2/3}+1)}$$

A.) 0

B.) 2/3

C.) 1

D.) 3/2 E.) $\ln(2)$ F.) $\frac{3}{2}\ln(2)$

8. Determine whether the series is convergent or divergent. If the series is convergent, find

$$\sum_{n=0}^{\infty} e^{-3n}$$

- A.) $\frac{1}{e-1}$ B.) $\frac{e}{e-1}$ C.) $\frac{1}{1-e^3}$ D.) $\frac{1}{e^3-1}$ E.) $\frac{e^3}{e^3-1}$ F.) divergent

9. Consider the following two series:

$$\sum_{n=2}^{\infty} \frac{(-1)^n}{n \ln n} \quad \text{and} \quad \sum_{n=2}^{\infty} \frac{(-1)^n}{ne^n}$$

Which of the following is true?

- A.) both series are absolutely convergent
- B.) both series are conditionally convergent
- C.) both series are divergent
- D.) one series is absolutely convergent, and one series is conditionally convergent
- E.) one series is absolutely convergent, and one series is divergent
- F.) one series is conditionally convergent, and one series is divergent

10.	Find	the	volume	of the	solid	obtained	by rotati	ng the	region	bounded by	the curves
y =	$=e^x$		and		y =	0	and	x	=0	and	x = 1

about the y-axis.

A.) $2\pi e$ B.) 2π C.) $2\pi(e-1)$ D.) πe E.) π F.) $\pi(e-1)$

11. Evaluate the integral.

$$\int_{3}^{4} \frac{4}{x^2 - 4} \, dx$$

A.) ln(12/5)

B.) ln(5/3)

C.) $\ln(1/3)$ D.) $4\ln(7)$

E.) ln(4/3)

F.) ln(2/15)

12. Find the area of the surface obtained by rotating the curve

$$y = 2x^2 + 1$$
, $3 \le y \le 9$

about the y-axis.

- A.) $\frac{\pi}{48}(65\sqrt{65}-1)$
- B.) $\frac{2\pi}{3}(5\sqrt{5}-1)$
- C.) $\frac{\pi}{12}(17\sqrt{17} 5\sqrt{5})$
- D.) $\frac{\pi}{24} (65\sqrt{65} 17\sqrt{17})$
- E.) $\pi \left(\frac{99}{10} \frac{5\sqrt{5}}{6} \right)$
- F.) $\frac{2\pi}{3}(5\sqrt{5}-2\sqrt{2})$

13. Consider the following three series:

$$\sum_{n=1}^{\infty} \frac{1}{n + \sqrt{n}} \quad \text{and} \quad \sum_{n=1}^{\infty} \frac{1}{n^2 + \sqrt{n}} \quad \text{and} \quad \sum_{n=1}^{\infty} \frac{1}{n^2 + n}$$

Which of the following is true?

- A.) only the first series converges
- B.) only the second series converges
- C.) only the third series converges
- D.) both the first and second series converge
- E.) both the first and third series converge
- F.) both the second and third series converge

14. Find the first few terms of the Maclaurin series for

$$f(x) = \int \frac{\sin x}{x} \, dx \, .$$

A.)
$$C + x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \cdots$$

B.)
$$C + 1 - \frac{x^2}{(3)(3!)} + \frac{x^4}{(5)(5!)} - \frac{x^6}{(7)(7!)} + \cdots$$

C.)
$$C + 1 - \frac{x^2}{3!} + \frac{x^4}{5!} - \frac{x^6}{7!} + \cdots$$

D.)
$$C + 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \cdots$$

E.)
$$C + x - \frac{x^3}{(3)(3!)} + \frac{x^5}{(5)(5!)} - \frac{x^7}{(7)(7!)} + \cdots$$

F.)
$$C + x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \cdots$$

15	Find the	volume of	the solid	obtained	bw	rotating	the region	hounded	bv	the	CHTVOS
TO.	r ma me	vorume or	the sond	obtamed	Dy	rotating	the region	bounded	Dy	une	curves

 $y = x^{3/2}$ and y = 0 and x = 1

about the y-axis.

A.) $2\pi/5$ B.) $\pi/2$ C.) $5\pi/4$ D.) $4\pi/3$ E.) $5\pi/2$ F.) $4\pi/7$

16. A curve C is defined by the parametric equations

$$x = t - 3t^3$$
, $y = 3t^2$.

The curve is given below. Notice that part of the curve contains a loop. Find the length of the loop.

- A.) 0
- B.) 8/9 C.) $\frac{4\sqrt{3}}{3}$ D.) $\frac{16\sqrt{3}}{5}$ E.) $\frac{8\sqrt{3}}{15}$ F.) 16/45

17. The curve

$$r = 2\sin(3\theta)$$

is a calculus flower with three leaves. Find the area of the region contained in the flower.

- A.) $\pi/6$
- B.) $\pi/4$
- C.) $\pi/3$
- D.) $\pi/2$
- E.) π
- F.) 2π

18. Evaluate the integral.

$$\int_0^{1/2} \sqrt{1 - 4x^2} \, dx$$

A.) $\pi/8$ B.) $\pi/6$

C.) $\pi/4$ D.) $\pi/3$ E.) $\pi/2$ F.) π

19. Evaluate the integral.

$$\int_0^1 x^2 e^{2x} \, dx$$

A.) $\frac{1}{4}(e^2-1)$ B.) $\frac{1}{4}(5e^2-1)$ C.) $\frac{1}{4}(3e^2+1)$ D.) $\frac{1}{2}e^2-1$ E.) -1/2 F.) $\frac{5}{2}e^2-4$

20. Find the limit.

$$\lim_{x \to 0} \frac{\sin x + \cos x - 1 - x}{x^2}$$

A.) -1/2

B.) 0