

三款SDR平台对比: HackRF, bladeRF和USRP

这篇文章是Taylor Killian今年8月发表在自己的博客上的。他对比了三款平价的SDR平台,认为这三款产品将是未来一年中最受欢迎的SDR平台。我觉得这篇文章很有参考价值,简单翻译一份转过来。 原文在这里:

http://www.taylorkillian.com/2013/08/sdr-showdown-hackrf-vs-bladerf-vs-usrp.html

翻起来才发现,太长了。觉得这么长就没必要翻译了,不符合快速阅读的习惯,深度阅读的人显然应该直接看原文。但是既然开了个头,就翻完吧。

以下是原文翻译:

今年或者明年看起来是SDR的黄金年代。将有三款新的SDR平台面世,用户可以有很多选择。这篇文章将比较这三款SDR平台: Great Scott Gadgets生产的**HackRF**, nuand生产的bladeRF, 和Ettus生产的USRP (B200/210)。

HackRF是Michael Ossmann开发的,他还开发过Ubertooth,这是第一款也是唯一款低价的蓝牙嗅探器(Bluetooth sniffer)。**HackRF**已经开发了好几个月了。Michael已经免费发放了500块**HackRF**的Beta版本给世界各地的黑客们。现在他正在开发正式版,并且正在众筹网站<u>Kickstarter</u>上销售。这将是市场上最便宜的一款SDR平台,而且它可以工作在很宽的频率范围

bladeRF也是在Kickstarter上成功建立的项目,而且产品都已经交付给用户了。bladeRF可以支持很宽的载频范围,带有一个大容量的FPGA,还有高速的USB3接口。开发者在时钟模块上花了不少钱,提供了VCTCXO,可以把精度校准到50 ppb。所有的模块都设计成同步的,因此没有ClockTamer。这款硬件现在可以在nuand网站上购买。

刚开始,这篇文章是想拿Ettus的USRP B100和N210跟**HackRF**、bladeRF比较。但当我把初稿发给Ettus公司看的时候,他们说新的USRP B200/210很快就要发布了,而且给我寄了一块开发版的B210。所以后来我重新修订了这篇文章。现在B210已经发布了,可以从Ettus购买。

Ettus可能是最老的SDR硬件生产商了。他们已经生产了很多款不同的USRP。USRP B200/210与之前的老款产品完全不同,是"单板"设计,而不再是"母板/子板"的组合。它也使用了USB3接口,支持很宽的射频频段。B200/210有一个新设计的 GPSDO接头,可以通过GPS模块把精度调整到几个ppb。B210还是Ettus的第一款独立支持2x2 MIMO的板卡。我会在B210上做一些测试,把测试结果发布在这个博客上。这里还有一些B210的<u>高清晰图片</u>:)

下表是三款硬件的对比! (Alin: 重点看这个表就够了^_^)

Specs

	HackRF	<u>bladeRF</u>		USRP		
		x40	x115	B100 Starter	B200	B210
Radio Spectrum	30 MHz – 6 GHz	300 MHz – 3.8 GHz		50 MHz – 2.2 GHz [1]	50MHz – 6 GHz	
Bandwidth	20 MHz	28 MHz		16 MHz [2]	61.44 MHz [3]	
Duplex	Half	Full		Full	Full	2x2 MIMO
Sample Size (ADC/DAC)	8 bit	12 bit		12 bit / 14 bit	12 bit	
Sample Rate (ADC/DAC)	20 Msps	40 Msps		64 Msps / 128 Msps	61.44 Msps	
Interface (Speed)	USB 2 HS (480 megabit)	USB 3 (5 gigabit)		USB 2 HS (480 megabit)	USB 3 (5 gigabit)	
FPGA Logic Elements	[4]	<u>40k</u>	<u>115k</u>	<u>25k</u>	<u>75k</u>	<u>150k</u>
Microcontroll	LPC43XX	Cypress FX3		Cypress	Cypress FX3	

公告

昵称: h2z园龄: 4年6个月粉丝: 317关注: 0+加关注

<	2020年2月					
日	_	=	Ξ	四	五	六
26	27	28	29	30	31	1
2	3	4	5	6	7	8
9	10	11	12	13	14	15
16	17	18	19	20	21	22
23	24	25	26	27	28	29
1	2	3	4	5	6	7

搜索

找找看
谷歌搜索

常用链接

我的随笔

我的评论我的参与

最新评论

我的标签

我的标签

Linux(17) delphi(10)

Kali(6)

Nmap(5)

PHP(5)

PHPStorm(5)

Proxmark3(4)

Burp Suite(4)
Docker(4)

VMware(4)

更多

随笔分类

C#(4)

Chrome(14) dcm4che(16)

dcmtk(20)

delphi 笔记(155)

DICOM(12)

Direct2D(6)

er			FX2	<u>FX2</u>		
Open Source	<u>Everything</u>	HDL + Code Schematics		HDL + Code Schematics	Host Code [5]	
Availability	January 2014	Now		Now	Now	
Cost	<u>\$300</u> [6]	<u>\$420</u>	<u>\$650</u>	<u>\$675</u>	<u>\$675</u>	<u>\$1100</u>

- [1] Separate daughterboards are required to receive/transmit. The WBX transceiver is included in this kit
- [2] Half this if 16 bit samples are used
- [3] 56 MHz for single half duplex channel, 30.72 MHz per channel full duplex
- [4] There is a CPLD on the board, but no FPGA
- [5] Ettus confirmed that the HDL + Code + Schematics will be released for the B210/B200
- [6] Estimated retail price, cheaper though Kickstarter

射频性能

HackRF和USRP B210的射频范围很宽。HackRF比B200/210还低20MHz,最高载频都可以达到6GHz。B210/200主要基于AD9361芯片。这块芯片其实是工作在70MHz~6GHz的,因此看起来B210/200稍微超出了一点使用范围,降低到50MHz。HackRF则采用了另一种方案,它使用了多个不同的射频芯片来支持宽频段。如果你看看它的<u>原理图</u>,就会发现它混合了几块芯片,每块芯片负责一段频谱,至少有6个频段切换开关。希望这么多的器件没有给系统引入太多噪声。

另外,**HackRF**捆绑了一个上变频器"<u>Ham It Up</u>",如果通过Kickstarter把两个东西打包购买的话,只要添\$35就可以了。这个板卡可以使**HackRF**的载频降低到300KHz。也可以<u>单独购买</u>这个"Ham It Up",大约\$43。我觉得USRP B210/200和WBX也可以使用这个"Ham It Up"。

对于更老的USRP B100来说,它可以用不同的子板来覆盖不同的频段。WBX子板可以覆盖50MHz~2.2GHz。新的CBX子板可以覆盖到6GHz。不过这种单独购买子板的方案的缺点是,成本会比**HackRF**和bladeRF高。

BladeRF可以支持300MHz到3.8GHz,它使用的芯片是LMS6002D。这款芯片提供了绝大部分射频功能,包含所有的混频器,ADC,DAC和其他一些功能。这款芯片与AD9361是类似的。不过,它最高只能支持3.8GHz。这意味着,不可能用bladeRF来实现5GHz频段的802.11n。现在,bladeRF有计划要发布一块扩展板卡,允许载频降低到10MHz,不过这个计划仍然在进行当中,还没有做出来。

双工性能

值得注意的是,**HackRF**不同于其他两款硬件,它不支持全双工。这意味着要切换收和发的话,必须每次给控制器发送命令。 微控制器处理切换可能要花费微秒级的时间。如果要算上信号到达计算机的时间,切换时间会更长。

bladeRF和USRP B210/200都可以支持全双工。USRP B100也支持全双工。有一些比较老的子板在B100上使用的时候,不支持全双工。但大部分的子板都可以支持。

根据github上的文档,B200有一个全双工通道。而B210有两个接收机和两个发射机,目的是为了支持2x2 MIMO。两个接收机可以调到同一个频点,发射机同样(可以与接收频点不同)。这样做可以利用无线信道的空间分集,传输更高速率的数据。MIMO技术已经在4G LTE和802.11n系统中实现了。

需要注意的是,如果同时进行接收和发送。发射机可能会对接收机产生一些噪声,因为毕竟发射机距离接收机很近。

与主机的通信

对SDR而言,与主机的通信方式是非常重要的,因为它决定了信号的带宽和可靠性。

USRP B100和**HackRF**都使用USB2.0接口。这决定了最高的数据传输速率是35MB/s。然而,由于我们常常会在多个USB接口上插入其他设备,他们是共享带宽的,因此实际的数据速率比这更低。

USRP B210/200和bladeRF使用USB3.0接口。它可以支持400MB/s的传输速率。这对于大部分SDR应用来说,带宽已经足够了。与USB2.0类似,多个USB接口会共享带宽。

有个潜在的问题是,USB3.0可能会被干扰。Intel警告说,2.4GHz频段的信号可能会对USB3.0造成干扰,建议采取一些屏蔽措施。一个简单的办法是,你可以给板卡包一张锡箔。bladeRF和B210/200的开发者都做了一些测试,并认为这不算什么大问题。bladeRF的射频模块外面是包有外壳的。B210/200也很容易添加铜外壳。另外B210/200的电路板上还有大面积的"铺地"。这也能起到很好的屏蔽作用。

经过我的测试,USRP B210与我的ASMedia控制器连接还是有问题的。它只能工作在USB2。实际上在我收到B210之前,Ettus的工程师就提醒过我,ASMedia USB3芯片不完全符合USB3标准。最后,我买了一个PCIe USB3接口卡,它用的是VL805芯片,价格大约\$20,现在我可以正常工作在USB3模式了。鉴于bladeRF也用的是FX3芯片,所以我想它可能也跟ASMedia不匹配。

ADC/DAG

ADC和DAC的量化精度非常重要,增加一个bit就可以使精度加倍。因此,使用14-bit DAC的USRP B100比使用8-bit DAC的 HackRF精度要好64倍。虽然说,一个便宜的8-bit精度的RTL-SDR就可以接收NOAA的气象卫星图像,但是更高的精度显然更有用。当然更好的天线和增益设置也会大有帮助。

另一个指标是ADC和DAC的转换速度。更高的采样率需要更大的处理带宽。许多老的通信系统可以使用非常低速的ADC或DAC,但比较新的通信系统,例如WiFi a/b/g,需要至少20MSps的ADC/DAC。在这三款硬件中,只有USRP B210/B200能够处理40MHz的802.11n信号。不过,即使USRP能够处理,计算机是否能够处理如此高速的数据,仍然是个巨大的挑战。实际上,即使仅仅想把这样高速的数据储存下来,都是一件麻烦事。

帯宽

EXCEL(5)

IOS(6)

Linux(21)

MacBook(2)

MatLab(1)

Meteor教程(22)

nodejs(11)

PACS(17)

phpMyAdmin(1)

QT(66)

RouterOS(6)

TuShare(1)

VMware(2)

VUE(33)

WEB(118)

WLD(110

WebUI(44) weiphp(1)

Win系统(5)

XGY(55)

安卓

路由器(26)

汽车(6)

软件工程(9)

深度学习(1)

数据库(5)

网络(55)

网络安全(242)

系统装机(20) 硬件相关(36)

油猴插件(2)

随笔档案

2019年12月(9)

2019年11月(8)

2019年10月(2)

2019年9月(7)

2019年8月(13)

2019年7月(9)

2019年6月(10)

2019年4月(10)

2019年3月(16)

2019年2月(13)

2019年2月(13)

2018年12月(17)

2018年11月(20)

2018年10月(24)

2018年9月(35)

2018年8月(30)

2018年7月(8)

2018年6月(26)

2018年5月(10)

2018年4月(11)

2018年3月(37)

2018年2月(12)

2018年1月(20)

2017年12月(17) 2017年11月(17)

2017年10月(14)

2017年0日(27)

2017年9月(27)

把所有的基带数据传到计算机,这是所有SDR硬件最主要的瓶颈,因为数据量实在太大。对使用USB2.0的USRP B100和 HackRF来说,这一瓶颈非常明显。而其他使用USB3.0的硬件,这一瓶颈就相对宽松一点。虽然bladeRF也使用USB3.0接口,但它不能达到与USRP B210/B200一样的采样带宽。因为bladeRF使用了LMS6002D中的带通滤波器。在bladeRF的论坛中,有讨论如何<u>关闭这一滤波器</u>,这样就可以使用外部的滤波器,从而增加采样带宽。关于USRP B210/B200,它的滤波器可以允许带宽高达56MHz的信号通过。

FPGA

如何使用这些基带信号呢?要么传到计算机上处理,要么在板卡上处理。bladeRF和USRP B210/200都有比较强大的FPGA,还有FX3微控制器。B210使用Spartan 6 LX150 FPGA,它有150k逻辑单元;B200使用LX75 FPGA,有75k的逻辑单元。bladeRF使用Cyclone 4 FPGA,x40有40k逻辑单元,x115有115k逻辑单元。USRP B100用的是比较小的FPGA,有25k逻辑单元。而**HackRF**使用的是CPLD,信号处理主要依赖于板上的微控制器。

逻辑单元的数量决定了FPGA的处理能力,显然越大越好。FPGA的长处是并行处理,短处是主频一般比微控制器低。如果开发者不是很擅长HDL语言的话,处理效率可能会比较低。

在USRP的<u>FAQ网页</u>上有FPGA的使用情况说明,说明了FPGA还剩多少资源可以使用。对B100而言,留给用户开发的空间非常小,而B210/B200则有比较大的剩余空间可供用户使用。关于bladeRF,据说x40 FPGA当前已使用了大约15%,因此剩余空间也非常充足。FPGA除了作为ADC/DAC与FX3之间的桥梁之外,还可以完成例如数字滤波器之类的信号处理任务。USRP中就包含了数字变频,抽值和插值模块等等。我没有看bladeRF的功能,可能跟USRP差不多。

有一个差别需要注意的是,Ettus使用的是Xilinx的芯片,而nuand使用的是Altera的芯片,因此稍有不同。相比Altera,Xilinx的FPGA中有更多的DSP模块,包括预加法器,乘法器和累加器;而Altera FPGA在DSP模块部分只有乘法器。这意味着,加法需要用逻辑阵列来实现,所以同样的功能,Altera FPGA需要更多的逻辑单元。而且,Altera的RAM比Xilinx少。不过对于bladeRF,芯片上的RAM可能也够用了。还有一点需要注意的是,B210的LX150不支持免费的Xilinx ISE,而LX75和Altera的FPGA是可以使用免费的开发软件的。

最后强调一下FPGA的价格。x40 Cyclone IV价格大约100美元,x115 Cyclone IV大约315美元。这都是Digi-Key上的报价,可能不是厂家的成本价。不过这个芯片选型,至少说明了nuand不是一块高质高端的硬件。

微控制器

除了较老的USRP B100,其他几款板卡都有非常强大的微控制器。B100用的是FX2来提供USB2.0连接,只有16KB的RAM。bladeRF和B210/200都用的是FX3,提供USB3.0连接。**HackRF**用的是一个双核LPC43XX芯片,处理USB2.0接口,以及控制射频芯片。

HackRF的微控制器运行在204MHz的主频,NXP制造,有一个ARM M4内核和一个M0协处理器。含有64KB的ROM和264KB的SRAM。这颗芯片负责很多工作:发送和接收USB链路上的数据,控制板卡上所有的射频芯片。还有计划要往里面添加抽值和插值模块。之所以选择微控制器而不是FPGA来处理,是因为希望用户能够使用C语言来更快的修改代码,而不是使用HDL语言。如果连上一个PortaPack,HackRF的这个微控制器能够不连接计算机,就直接变身为一个频谱分析仪。

FX3微控制器运行在200MHz主频,有一个ARM926EJ-S内核。这个芯片有GPIF,一旦开启,可以使ARM内核处于IDLE状态。它有512KB的SRAM,没有ROM。这款芯片有几种启动方式,包括USB启动方式,firmware常常用这种方式加载。bladeRF有4MB的SPI Flash,它含有微控制器和FPGA的代码,可以在脱机的情况下支持板卡的运行。B210只有32KB的EPROM,用于存储一些基础配置程序,没有Flash。因为没有Flash,所以B210/200想要脱机运行的话,是非常困难的。nuand的开发者们希望能够在bladeRF上脱机运行OpenBTS和OpenLTE。已经有在B210上运行LTE系统的例子了,但是是在连接计算机(Core i7处理器)的情况下。能否在FX3上运行LTE系统,很值得怀疑。

开发者社区

软件无线电是个很大的概念,已经存在了十多年。一个硬件平台的使用者论坛或者社区是非常重要的。这些人可以相互提供技术支持,分享新创意。他们推动着创新的车轮持续前进。因此,对于一个生产SDR平台的公司,开发者社区是非常重要的,而且应给予大力支持。最简单的一个方法就是,开放源码,开放硬件。下面说说这三家公司都是怎么做的。

源代码

对SDR硬件而言,软件是非常重要的。幸运的是,这三款硬件都支持GNU Radio,它包含大量的免费且开源的代码。它还有非常好的图形界面,适合快速开发和测试。HackRF和bladeRF在GNU Radio中的驱动,放在gr-osmosdr项目中,与RTL-SDR dongle的驱动包一样。bladeRF的驱动是前几个星期添加进去的(Alin:作者的写作时间是2013年8月),因此如果你要用的话,请及时更新代码。HackRF的驱动已经发布有一段时间了。而对于USRP,gr-uhd原本就是GNU Radio的一部分,需要安装UHD驱动库,UHD驱动可以从Ettus官网得到。

这三款硬件板卡,所有的代码,HDL文件和电路原理图都可以免费获得,除了USRP B210/B200的还没有发布。HackRF更为开放,它甚至公布了所有的KiCad制板文件,包括原始格式的电路原理图(不是PDF)和PCB布线图。USRP B100和bladeRF的电路原理图是PDF格式的。我希望B210/200也能尽快开放原理图。HackRF的开放程度,使得其他人可以继续改进HackRF的设计,而且也是开发者社区的读者们非常好的学习材料。我想其他人可以很容易重用其中的一些设计。USRP有一个独特的好处是,它的应用类代码非常丰富。因为USRP已经有很长的历史了,从2006年以来,已经有很多人使用过USRP。有很多的学术论文使用了USRP和GNU Radio进行实验。也涌现出很多新颖的应用和代码。UHD,是所有USRP板卡通用的接口,经过这么多年的优化改进,已经非常稳定成熟。一个GNU Radio应用,只要硬件满足要求,就很容易在各种USRP板卡上使用。也就是说,USRP对GNU Radio的支持是最好的。Ettus还发布了一个免费的Linux镜像,它包含了GNU Radio以及其他一些工具软件,可以以最快的速度搭建出一个GNU Radio的开发环境。虽然这个镜像目前只有UHD,但是把gr-osmosdr添加进去也应该很容易。

HackRF比USRP的历史要短得多,才刚开始开发一套代码(Alin:开发环境驱动什么的),不过进展很快。它应该能与GNU Radio兼容,正在测试当中。HackRF的优势在于,它有很多黑客型粉丝。已经有至少500块免费的HackRF交付使用,到本文写作的时间为止,又有1100块HackRF已经在Kickstarter上被预定了。这些用户可以为软件开发做出很大的贡献。相比 USRP在学术界影响力,HackRF在黑客界有更大的影响力。当然,这两个人群有一部分重合的地方。但我认为黑客们更有能

- 2017年8月(90)
- 2017年7月(32)
- 2017年6月(17)
- 2017年5月(15)
- 2017年4月(25)
- 2017年3月(46)
- 2017年2月(2)
- 2017年1月(27)
- 2016年12月(20)
- 2016年11月(16)
- 2016年10月(2)
- 2016年9月(5)
- 2016年8月(22)
- 2016年7月(9)
- 2016年6月(5)
- 2016年5月(24)
- 2016年4月(27) 2016年3月(42)
- 2016年2月(13)
- 2016年1月(21)
- 2015年12月(11)
- 2015年11月(26)
- 2015年10月(11)
- 2015年9月(11)
- 2015年8月(21)

最新评论

- 1. Re:大众车机天宝187A Hack笔记软件硬件都这么厉害,反正我不懂。 凸
 - --岁月时光漫步
- 2. Re:对自助提卡系统EDLM的一次代码审计 您好,我是Gcow安全团队负责人,这篇文章 是我团队原创,您并没有标注版权
- ,希望您有点版权意识,侵权可耻!!
 - --Gcow安全团队
- 3. Re:再来一篇装逼老文章: 屏幕传输算法 最后一段写的太好了 特意登录来评论 我曾经 也是一个热爱黑客技术的人 无奈万恶的金钱 社会 误国误民 实乃不幸!
 - --拔丝煎面
- 4. Re:深入浅出的讲解傅里叶变换(真正的通俗易懂)
- 一个空间直角坐标, x轴是时间, y轴是频率, z轴是幅度, 在时域上我们看到的是x轴和z轴, 在频域上我们看到的是y轴和z轴(幅度谱)、y轴和x轴(相位谱)。
 - --苍梧一君
- 5. Re:深入浅出的讲解傅里叶变换 (真正的通俗易懂)

Pi和相位,那部分一开始看蒙了,忘记了相位的概念,Pi又不知道是什么。结果查其他资料才恍然大悟......为什么Pi不用符合表示啊2333

--奈何2234

阅读排行榜

- 1. 深入浅出的讲解傅里叶变换(真正的通俗易懂)(269978)
- 2. Linux中文乱码问题终极解决方法(85911)
- 3. git-svn: 通过git来管理svn代码(25369)
- 4. HeatMap (热图) 的原理和实现(21697)
- 5. vue2.0动态添加组件(21474)

力写出更多更优秀的代码。

nuand团队是最近才发布的bladeRF的GNU Radio驱动。我估计大约有400个用户从Kickstarter上得到了bladeRF板卡。另 外,还有相当一部分用户直接从nuand的网站订购了bladeRF。所有这些用户都能够为bladeRF的代码开发做出贡献。因为 bladeRF跟USRP B210一样,使用了FX3,大容量的FPGA和单芯片的射频收发芯片,我估计两款硬件的驱动代码中,有相当 一部分可以共享。虽然Xilinx和Altera之间的差别,给代码重用带来了一点麻烦,但是我想只要黑客们做出足够的努力, bladeRF就可以与UHD接口兼容,于是可以兼容USRP已有的大量的应用程序。

硬件

在硬件的开放性方面,HackRF是做得最好的。而USRP呢,B210/B200使用的AD9361芯片可能是一个开放性的障碍。因为 Analog Devices网站上只提供了1页的datasheet。因此除了Ettus公司以外,其他人很难获得更详细的信息,除非你也跟AD 公司签过NDA。不过Ettus公司的人承诺说,他们会开放相关的驱动的源代码。除了AD9361芯片以外,B210/B200上的其他 芯片都有比较详细的资料。关于bladeRF,LMS6002D芯片有长达15页的datasheet,而且还有45页的编程和校准指南,这 些对于其他开发者来说都是现成的。

最后的点评

HackRF,是一款覆盖频率最宽,而且价格最低廉的SDR板卡。它几乎所有的信息都是开源的,甚至包括KiCad文件。缺点是 它没有FPGA,使用的低速的USB2接口,ADC/DAC的精度比较低。总的来说,HackRF非常适合那些对开放性要求很高的黑 客, 和那些那些对价格敏感的用户。

bladeRF,它的亮点在于大容量的FPGA和高速的USB3接口。它能够支持比较宽的频段,但是不如另外两者。它的ADC/DAC 精度也还不错。我建议那些想脱机运行程序,并且射频频点不需要太高的人们,考虑选择这款硬件,

USRP B100,这是一款比较老的板卡了,不能支持高带宽的应用。它通过替换子板来改变射频频段,最高可以支持到6GHz。 它支持UHD接口。B100的价格跟B200是一样的,但能力却比B200差很多。所以我建议,只有当你有一些很特殊的应用,或 者你要使用自己开发的子板时,才考虑B100。

USRP B210/B200,可以支持很宽的频段,也支持高速的接口带宽。它们有大容量的FPGA和快速的USB3接口。不过 AD9361这款芯片的开放性略差。B210/B200是三款硬件中价格最贵的。但它们的很多指标已经与Ettus的另一款高端的 N210板卡可以媲美。而且,B210还是唯一一款直接支持2x2 MIMO的板卡。我相信B210/B200将是最近市场上,性能最强 的SDR平台,而且将得到Ettus公司的大力支持。我建议那些需要高带宽、宽频段,而且不需要脱机使用的应用,考虑这款硬件

最后,我希望人们能够用这三款非常优秀的软件无线电平台,开发出更多新颖的应用。我用了几个星期的时间搜集整理这三款 平台的信息,有一些没能收入文中,如果您有任何问题,请在评论中提出。感谢您的阅读,并且欢迎您再回来看看我将要发表 的关于B210的测试结果(Alin:到2013年11月27日为止,这个测试结果还未发表)。

有两款硬件都是USB3.0接口的,说明USB3.0将成为SDR平台的主流接口。这与我们两年前的看法也是一致的。USB3的优点 是USB接口数量多,而且很普及,速度也够快。但缺点是传输距离可能不够远,所以我个人认为10G或者更高速率的以太网接 口也将是另一种主流的接口。

另外我发现这三款硬件的电路板都印成了黑底白字,比原来绿色的酷多了。看来硬件工程师们也开始注意"柜子背面的板子也要 漂亮"了。

h2z <u> 关注 - 0</u>

粉丝 - 317 +加关注

« 上一篇: 形同虚设: 花费700美元便可突破门禁

» 下一篇: 2013 年最不可思议的 10 个硬件开源项目

posted @ 2016-05-12 10:40 h2z 阅读(9641) 评论(0) 编辑 收藏

刷新评论 刷新页面 返回顶部

0

注册用户登录后才能发表评论,请登录或注册, 访问网站首页。

【推荐】超50万行VC++源码:大型组态工控、电力仿真CAD与GIS源码库

【活动】腾讯云服务器推出云产品采购季 1核2G首年仅需99元

【推荐】开年采购季,百度智能云全场云服务器低至1折起 【推荐】精品问答:前端开发必懂之 HTML 技术五十问

【推荐】35个面试详解,170道挑战题,1460个精彩问答 | Java面试宝典

评论排行榜

- 1. 深入浅出的讲解傅里叶变换(真正的通俗易 懂) (35)
- 2. 大众车机天宝187A Hack笔记(6)
- 3. windows环境按照dcm4chee(3)
- 4. Ubuntu 16.04 安装 VMware-Workstati on-12(3)
- 5. 网易云音乐PC客户端加密API逆向解析(2)

推荐排行榜

- 1. 深入浅出的讲解傅里叶变换 (真正的通俗易 懂) (128)
- 2. 八百元八核的服务器? 二手服务器搭建指南
- 3. UML类图符号 各种关系说明以及举例(3)
- 4. 制作一个老旧C118的GSM便携式测试设备
- 5. 遇到Elements in iteration expect to ha ve 'v-bind:key' directives.' 这个错误(2)