- 10.1.1) Let $a, b \in X$ and suppose $\rho(a, b) < \varepsilon \ \forall \ \varepsilon > 0$. We will show a = b by contradiction. So suppose for the sake on contradiction that the hypothesis holds but $a \neq b$. The $\rho(a, b) > 0$. Letting $\varepsilon = \rho(a, b)$, we have that $\rho(a, b) < \rho(a, b)$ which is a contradiction.
- 10.1.2) Prove $\{x_k\}$ bounded in X iff $\sup_{k \in \mathbb{N}} \rho(x_k, a) < \infty \ \forall \ a \in X$.
 - (⇒) Suppose that $\{x_k\}$ is bounded and let $b \in X$ and M > 0 by s.t. $\rho(x_k, b) \leq M \, \forall k$. Now pick some and hold some point $a \in X$. We have that

$$\sup_{k \in \mathbb{N}} \rho(x_k) a \leq \sup_{k \in \mathbb{N}} \{ \rho(x_k, b) + \rho(b, a) \}$$

$$= \sup_{k \in \mathbb{N}} \rho(x_k, b) + \rho(b, a)$$

$$= M + \rho(b, a)$$

$$< \infty.$$

- (\Leftarrow) Suppose that $M := \sup_{k \in \mathbb{N}} \rho(x_k, a) < \infty \ \forall \ a \in X$. Let $a = x_1$. Then $\rho(x_1, x_k) \leq M$.
- 10.1.4) Let $a \in X$. Prove that if $x_n = a \ \forall n \in \mathbb{N}$, then x_n converges. What does it converge to?
 - (a) Let $\varepsilon > 0$, $\rho(x_n, a) = 0 < \varepsilon \ \forall n \in \mathbb{N}$. By definition $\{x_n\} \to a$.
 - (b) Suppose $X = \mathbb{R}$ with the discrete metric. Prove that $x_n \to a$ as $n \to \infty$ iff $x_n = a$ for large n.
 - (⇒) Suppose $\{x_n\} \to a$. Let $\varepsilon = \frac{1}{2}$, then for some $N \in \mathbb{N}$, if $n \geq N$, then $\rho(x_n, a) = 0$. This implies $x_n = a$ for large n.
 - (\Leftarrow) Suppose that $x_n = a$ for large n. i.e. $\exists N \in \mathbb{N}$ s.t. $n \geq N \Rightarrow \rho(x_n, a) = 0$. For that same N, $\rho(x_n, a) < \varepsilon \ \forall \varepsilon > 0$.
- 10.1.5) (a) Let x_n, y_n be sequences in X which converge to the same point. Prove that $\rho(x_n, y_n) \to 0$ as $n \to 0$.

Let $\varepsilon > 0$. Then $\exists N, M \in \mathbb{N}$ s.t. $\rho(x_n, a) < \frac{\varepsilon}{2}$ and $\rho(y_n, a) < \frac{\varepsilon}{2}$. If $n \ge \max\{N, M\}$, then

$$\rho\left(x_n, y_n\right) \le \rho\left(x_n, a\right) + \rho\left(y_n, a\right) < \varepsilon$$

- (b) Show that the converse is false.
- 10.1.6) Let $\{x_n\}$ be a Cauchy sequence in X. Prove $\{x_n\}$ converges if at least one subsequence converges.
 - (\Rightarrow) Suppose $\{x_{n_i}\}$ is a convergent subsequence of $\{x_n\}$ that converges to $x \in X$. Let $\varepsilon > 0$. Then $\exists N'$ s.t. $\rho(x_n, x) < \frac{\varepsilon}{2}$.

Cauchy implies that $\exists N \text{ s.t. } \rho\left(x_n, x_{n_i}\right) < \frac{\varepsilon}{2}$. Therefore, $\rho\left(x_n, x\right) < \varepsilon \text{ for } n > \max\{N, N'\}$.

 (\Leftarrow) Suppose $\{x_n\} \to x$. $\{x_{2n}\}$ is a subsequence of $\{x_n\}$ which converges.

10.1.7) Prove that \mathbb{R} with the discrete metric is complete.

Suppose $\{x_n\}$ is a Cauchy sequence. Let $\varepsilon < 1$. Then $\exists N \in \mathbb{N}$ s.t. n, m > N implies $\rho(x_n, x_m) < \varepsilon$. Since we are using the discrete metric, $\rho(x_n, x_m) = 0$ implies $x_n = x_m$. Therefore $\{x_n\} \to x_k$, for some element x_k in the sequence which is an element of X.

10.1.8) (a) Prove C[a, b] in example 10.6 is complete. The norm of f is defined to be $||f|| = \sup_{x \in [a,b]} |f(x)|$ and metric $\rho(f,g) = ||f-g||$.

Suppose that $\{f_k\}$ is a Cauchy sequence of functions s.t. $f_k \in C[a, b]$. Then $\exists N \in \mathbb{N}$ s.t. $m, n \geq N$ implies $\rho(() f_m, f_n) < \varepsilon$. So

$$\sup_{x \in [a,b]} |f_m(x) - f_n(x)| < \varepsilon \,\forall \, m, n \ge N.$$

Being a Cauchy sequence implies f_k is uniformly convergent by Lemma 7.11 which implies that $\{f_k\} \to f$. By Thm 7.9, f is continuous on [a, b]. Thus $\{f_k\}$ converges in C[a, b] and C[a, b] is therefore complete.

(b) Define $f_1 := \int_a^b |f(x)| dx$ and define $dist(f,g) := \|f - g\|_1$. We show that dist is a metric. $dist(f,g) \ge 0$ is clear and $f = g \iff dist(f,g) = 0$. dist is symmetric as the order of arguments doesn't affect the integral. For the triangle inequality, let $h \in C[a,b]$ also. We have that

$$|f - g| \le |f - h| + |h - g|.$$

Since both quantities are positive, integrating does not affect the inequality, therefore

$$\int_{a}^{b} |f - g| \le \int_{a}^{b} |f - h| + |h - g|$$
$$= \int_{a}^{b} |f - h| + \int_{a}^{b} |h - g|$$

which says that

$$\rho(f,g) \le \rho(f,h) + \rho(h,g).$$

10.1.9) (a) Consider $x \in B_r(a)$. The distance between x and the "edge" of the ball is less than $r - \rho(x, a)$. So define

$$\varepsilon < r - \rho(x, a)$$
.

Then $\forall y \in B_{\varepsilon}(x)$, we have the following inequality

$$\rho(y, a) \le \rho(y, x) + \rho(x, a)$$

$$< r - \rho(x, a) + \rho(x, a)$$

$$= r$$

Thus $y \in B_r(a)$.

(b) Let $a \neq b$ be distinct in X. Prove $\exists r > 0 : B_r(a) \cap B_r(b) = \emptyset$. Let

$$r:=\frac{1}{2}\rho\left(a,b\right)$$

and suppose for the sake of contradiction that $y \in B_r(a) \cap B_r(b)$. Then we have that

$$2r > \rho(a, y) + (y, b)$$

$$\leq \rho(a, b)$$

$$= 2r$$

which implies that r > r, which is a contradiction.

(c) Consider two balls $B_r(a)$ and $B_s(b)$ and a point $x \in B_r(a) \cap B_s(b)$.

The distance between x and the closest edge of each balls are $r - \rho(a, x)$ and $s - \rho(x, b)$, respectively. Let

$$c < min \{r - \rho(a, x), s - \rho(x, b)\}$$

It follows that $B_c(x) \subset B_r(a) \cap B_s(b)$. The distance between x and the furthest edge is $r + \rho(a, x)$ and $s + \rho(x, b)$. So we define

$$d > max \{r + \rho(a, x), s + \rho(x, b)\}$$

It follows that

$$B_d(x) \supset B_r(a) \cup B_s(b)$$
.