

Distribution of iPhone Models

Epic Games, Inc. v. Apple Inc., Case No. 4:20-cv-05460-YGR-TSH (N.D. Cal) Summary pursuant to Federal Rule of Evidence 1006

Model [A]	Sample [B]	RBC Survey		
		Share [C]	Lower 95% CI [D]	Upper 95% CI [E]
iPhone SE	4.3%	6%	3.9%	8.1%
iPhone 11 Pro Max	5.4%	9%	6.4%	11.6%
iPhone 11 Pro	4.6%	6%	3.9%	8.1%
iPhone 11	16.6%	17%	13.6%	20.4%
iPhone XS Max	3.5%	4%	2.2%	5.8%
iPhone XS	3.4%	3%	1.5%	4.5%
iPhone XR	14.7%	12%	9.1%	14.9%
iPhone X	4.9%	4%	2.2%	5.8%
iPhone 8	17.5%	15%	11.8%	18.2%
iPhone 7	14.1%	16%	12.7%	19.3%
Earlier iPhone	11.1%	8%	5.5%	10.5%

This table compares the distribution of iPhone models used by respondents in my survey with respondents in a survey conducted by RBC Capital Markets in October 2020.

Column B ("Sample") shows the distribution of iPhone models of respondents in my survey who passed the Reliability Test.

Column C ("Share") shows the distribution of iPhone models of respondents in the RBC Survey.

Columns D and E ("Lower 95% CI" and "Upper 95% CI") show the 95 percent confidence intervals of RBC's estimates. It is calculated assuming that the distribution follows a normal distribution, and the upper and lower bounds of the confidence interval are calculated as $Share \pm 1.96 \times \sqrt{p \times (1-p)/n}$ where p is the share of the model and n is the number of respondents in the RBC survey (469).