UC Berkeley

Department of Electrical Engineering and Computer Sciences

ELECTRICAL ENGINEERING 126: PROBABILITY AND RANDOM PROCESSES

Problem Set 7

Spring 2017

Issued: Thursday, March 9, 2017 Due: Thursday, March 16, 2017

1. Inventory Management

Consider a Markov chain (X_n) , where X_n represents the quantity of an item in stock at time n. We will assume that the changes in stock are modeled by a simple random walk, that is,

$$\Pr(X_{n+1} = i + 1 \mid X_n = i) = \Pr(X_{n+1} = i - 1 \mid X_n = i) = \frac{1}{2}.$$

A (s, S) policy (for S > s) is given as follows:

- If the stock ever drops to 0, then buy enough items until we have replenished our stock to s.
- If the stock ever reaches S, then sell enough items until our stock is back down to s.

In other words, s is the *baseline*, and we return the baseline as soon as the stock drops to 0 or increases to S.

- (a) Let V_k denote the number of visits to k starting from i, before we reach 0 or S. Calculate $E_i[V_k] = E[V_k \mid X_0 = i]$.
- (b) $E_s[V] = \sum_{k=1}^{S-1} k E_s[V_k]$ represents the expected total quantity of the item that we will have in stock, starting from the baseline s, until we reach 0 or S. Calculate $E_s[V]$.
- (c) A cycle starts at the baseline and ends when we reach 0 or S (and then the next cycle starts). Let T_i denote the length of the ith cycle. Associated with each cycle is a transaction cost c_t , which represents the need to buy or sell items to meet our policy. Also, there is a holding cost c_h which is assumed to be proportional to V: $c_h = hV$. Therefore, the long-run average cost incurred by the policy is

$$LRAC = \frac{c_t + hE_s[V]}{E[T_i]}.$$

(The LRAC is an abbreviation for long-run average cost.) Find the optimal policy (s^*, S^*) which minimizes the LRAC.

2. Poisson Process Warm-Up

Consider a Poisson process $\{N_t, t \geq 0\}$ with rate $\lambda = 1$. Let random variable S_i denote the time of the *i*th arrival.

- (a) Given $S_3 = s$, find the joint distribution of S_1 and S_2 .
- (b) Find $E[S_2 | S_3 = s]$.
- (c) Find $E[S_3 | N_1 = 2]$.
- (d) Give an interpretation, in terms of a Poisson process with rate λ , of the following fact:

If N is a geometric random variable with parameter p, and X_i are IID exponential random variables with parameter λ , then $X_1 + \cdots + X_N$ has the exponential distribution with parameter λp .

3. Bus Arrivals at Cory Hall

Starting at time 0, the F line makes stops at Cory Hall according to a Poisson process of rate λ . Students arrive at the stop according to an independent Poisson process of rate μ . Every time the bus arrives, all students waiting get on.

- (a) Given that the interarrival time between bus i-1 and bus i is x, find the distribution for the number of students entering the ith bus.
- (b) Given that a bus arrived at 9:30 AM, find the distribution for the number of students that will get on the next bus.
- (c) Find the distribution of the number of students getting on the next bus to arrive after 11:00 AM. (You can assume that time 0 was infinitely far in the past.)

4. Sum-Quota Sampling

Consider the problem of estimating the mean inter-arrival time of a Poisson process. In what follows, recall that N_t denotes the number of arrivals by time t.

Sum-quota sampling is a form of sampling in which the number of samples is not fixed in advance; instead, we wait until a fixed $time\ t$, and take the average of the interarrival times seen so far. If we let X_i denote the ith inter-arrival time, then

$$\bar{X} = \frac{X_1 + \dots + X_{N_t}}{N_t}.$$

Of course, the above quantity is not defined when $N_t = 0$, so instead we must condition on the event $\{N_t > 0\}$. Compute $E[\bar{X} \mid N_t > 0]$, assuming that N_t is a Poisson process of rate λ .

5. Taxi Queue

Empty taxis pass by a street corner at a Poisson rate of two per minute and pick up a passenger if one is waiting there. Passengers arrive at the street corner at a Poisson rate of one per minute and wait for a taxi only if there are less than four persons waiting; otherwise they leave and never return. John arrives at the street corner at a given time. Find his expected waiting time, given that he joins the queue. Assume that the process is in steady state.

6. Poisson Queues

A continuous-time queue has Poisson arrivals with rate λ , and it is equipped with infinitely many servers. The servers can work in parallel on multiple customers, but they are non-cooperative in the sense that a single customer can only be served by one server. Thus, when there are k customers in the queue, k servers are active. Suppose that the service time of each customer is exponentially distributed with rate μ and they are i.i.d.

- (a) Argue that the queue-length is a Markov chain. Draw the transition diagram of the Markov chain.
- (b) Prove that for all finite values of λ and μ the Markov chain is positive-recurrent and find the invariant distribution.