

### INFERÊNCIA ESTATÍSTICA CONCEITOS INTERMEDIÁRIOS (Unidade 2)

## INFERÊNCIA ESTATÍSTICA (CONCEITOS INTERMEDIÁRIOS) ESTATÍSTICA SUFICIENTE

IESB

Instituto de Educação Superior de Brasília A Teoria e a Prática Juntas

• Uma estatística T=T(Y) é suficiente para um parâmetro θ quando resume toda informação sobre esse parâmetro contida na amostra Y. Se T é suficiente para θ, então, a distribuição condicional Y dada a estatística T(Y) é independente de θ, isto é:

$$P(\mathbf{Y} = \mathbf{y}|T = t, \theta) = P(\mathbf{Y} = \mathbf{y}|T = t).$$

o Ou seja, se X e Y são duas amostras tais que T(x)=T(y), então a inferência sobre θ é a mesma independente da observação X ou Y.

### Inferência Estatística (Conceitos Intermediários)

### Critério da fatoração e estatísticas



A Teoria e a Prática Juntas

#### CONJUNTAMENTE SUFICIENTES

O critério da fatoração é uma forma conveniente de caracterizar uma estatística suficiente. Uma condição necessária e suficiente para T ser suficiente para um parâmetro  $\theta$  é que a função (densidade ou de probabilidade)  $f_{\gamma}(y; \theta)$  possa ser decomposta como

$$f_{\mathbf{Y}}(\mathbf{y}; \theta) = h(\mathbf{y})g(t, \theta),$$

- Em que t=T(y) e h(y) não dependem de θ. Esse resultado é válido para o caso contínuo e discreto.
- O conceito de estatística suficiente é importante em estatística no sentido de se poder concentrar a informação sobre o parâmetro. Formalmente tem: se  $Y_1$ ,  $Y_2$ , ...,  $Y_n$  é uma amostra de uma densidade  $f(y; \theta)$ , em que  $\theta$  é um vetor de parâmetros, as estatísticas  $S_1$ ,  $S_2$ , ...,  $S_r$  são <u>conjuntamente suficientes</u> se, e somente se, a distribuição conjunta de  $Y_1$ ,  $Y_2$ , ...,  $Y_n$ , dadas  $S_1 = s_1$ ,  $S_2 = s_2$ , ...,  $S_r = s_r$  não depende de  $\theta$ .

### Inferência Estatística (Conceitos Intermediários)

#### FAMÍLIA EXPONENCIAL

Instituto de Educação Superior de Brasília A Teoria e a Prática Juntas



- Família exponencial de distribuições: conjunto de distribuições conhecidas inseridas em uma família paramétrica.
- Exemplos de distribuições:
  - Normal;
  - Binomial;
  - Binomial Negativa;
  - Gama;
  - o Poisson;
  - Normal Inversa;
  - Multinomial;
  - Beta;
  - Logarítmica, etc.
- o A importância da família exponencial de distribuições teve maior destaque, na área dos modelos de regressão, a partir do trabalho pioneiro de Nelder e Wedderburn (1972) que definiram os modelos lineares generalizados (MLG). Na teoria da

Prof. Natália Ribeiro S. Evangelista natalia.evangelista@iesb.br

Inferência Estatística auxilia nas diversas demonstrações das propriedades dos estimadores.

#### Inferência Estatística (Conceitos Intermediários) FAMÍLIA EXPONENCIAL UNIPARAMÉTRICA Instituto de Educação Superior de Brasília



A Teoria e a Prática Juntas

A família exponencial uniparamétrica é caracterizada por uma função (de probabilidade ou densidade) da seguinte forma:

$$f(x;\theta) = h(x) \exp \left[ \eta(\theta) t(x) - b(\theta) \right]. \tag{1.1}$$

onde:  $\eta(\theta)$ ,  $b(\theta)$ , t(x) e h(x) pertencem aos subconjuntos dos reais.

- Diversas distribuições conhecidas e importantes podem ser estruturadas de acordo com a função supra. Exemplos:
  - Distribuição de Poisson
  - Distribuição Binomial
  - Distribuição Normal

## INFERÊNCIA ESTATÍSTICA (CONCEITOS INTERMEDIÁRIOS) FAMÍLIA EXPONENCIAL UNIPARAMÉTRICA

IESB

Instituto de Educação Superior de Brasília A Teoria e a Prática Juntas

o Exemplo da distribuição de Poisson:

A distribuição de Poisson  $P(\theta)$  de parâmetro  $\theta > 0$ , usada para análise de dados na forma de contagens, tem função de probabilidade

$$f(x;\theta) = \frac{e^{-\theta}\theta^x}{x!} = \frac{1}{x!} \exp[x \log(\theta) - \theta]$$

e, portanto, é um membro da família exponencial (1.1) com  $\eta(\theta) = \log(\theta)$ ,  $b(\theta) = \theta$ , t(x) = x e h(x) = 1/x!.

### Inferência Estatística (Conceitos Intermediários)

#### Família exponencial Multiparamétrica



A Teoria e a Prática Juntas

A família exponencial multiparamétrica de dimensão k é caracterizada por uma função (de probabilidade ou densidade) da forma

$$f(\mathbf{x}; \boldsymbol{\theta}) = h(\mathbf{x}) \exp \left[ \sum_{i=1}^k \eta_i(\boldsymbol{\theta}) t_i(\mathbf{x}) - b(\boldsymbol{\theta}) \right]$$
equivalente à  $f(\mathbf{x}; \boldsymbol{\theta}) = h(\mathbf{x}) \exp \left[ \sum_{i=1}^k \theta_i t_i(\mathbf{x}) - b(\boldsymbol{\theta}) \right]$ 

em que  $\theta$  é um vetor de parâmetros, usualmente, de dimensão k, e as funções  $\eta_i(\theta)$ ,  $b(\theta)$ ,  $t_i(x)$  e h(x) têm valores em subconjuntos dos reais.

A forma abaixo é um caso especial:

$$f(x;\theta) = h(x) \exp \left[ \eta(\theta) t(x) - b(\theta) \right].$$

Diversas distribuições conhecidas são pertencentes à família exponencial multiparamétrica, dentre elas: Normal, Gama

# INFERÊNCIA ESTATÍSTICA (CONCEITOS INTERMEDIÁRIOS) MÉTODO DE MÁXIMA VEROSSIMILHANÇA

Instituto de Educação Superior de Brasília A Teoria e a Prática Juntas



- O Definição: a obtenção de estimadores pelo método conhecido por Máxima Verossimilhança (M.V) parte do princípio de que devemos escolher o(s) valor(es) do(s) parâmetro(s) desconhecido(s) que maximiza a probabilidade de obter a amostra particular observada, ou seja, o(s) valor(es) do(s) parâmetro(s) que torna aquela amostra a "mais provável".
- o Exemplo: consideremos a função de probabilidade de uma v.a. Binomial a qual é dada por

$$p(x) = \binom{n}{x} p^x (1-p)^{n-x}, \quad x = 0, 1, \dots, n.$$

Quando nós passamos a observar esta função não como dependente da amostra x(total de sucessos) mas sim como função do parâmetro p, temos o que denominamos função de verossimilhança, L(p), a qual deve ser maximizada para assim obtermos o estimador de máxima verossimilhança. Em geral, e por facilidade, nós maximizamos a log-verossimilhança a qual é o logaritmo neperiano da função de verossimilhança denotada por l(p) = lnL(p).

# INFERÊNCIA ESTATÍSTICA (CONCEITOS INTERMEDIÁRIOS) MÉTODO DE MÁXIMA VEROSSIMILHANÇA

IESB

Instituto de Educação Superior de Brasília A Teoria e a Prática Juntas

o Seja  $(X_1, X_2, ..., X_n)$  uma amostra aleatória da variável aleatória  $X \sim Poisson(\theta), \theta > 0$ . Encontre o Estimador de Máxima Verossimilhança (E.M.V.) de θ.

Nesse caso a função de verossimilhança é dada por

$$L(\theta|x) = \prod_{i=1}^{n} f(x_1, ..., x_n|\theta) = \prod_{i=1}^{n} \frac{\theta^{x_i} e^{-\theta}}{x_i!} = \frac{\theta^{\sum x_i} e^{-n\theta}}{\prod x_i!}$$

O logaritmos da função de verossimilhança é dado por:

$$l(\theta|x) = -n\theta + \sum_{i=1}^{n} x_i \ln(\theta) - \sum_{i=1}^{n} \ln x_i!$$

# INFERÊNCIA ESTATÍSTICA (CONCEITOS INTERMEDIÁRIOS) MÉTODO DE MÁXIMA VEROSSIMILHANÇA



Instituto de Educação Superior de Brasília A Teoria e a Prática Juntas

O estimador de máxima verossimilhança é obtido aplicando a 1ª derivada e igualando a 0 (zero). Isto é:

$$l(\theta|x) = -n + \frac{\sum_{i=1}^{n} x_i}{\hat{\theta}} = 0 \to \hat{\theta} = \bar{x}$$

Agora é preciso verificar se o resultado encontrado é um ponto de máximo:

$$\frac{d^2l(\theta|x)}{\theta} = \frac{-\sum_{i=1}^n x_i}{\hat{\theta}^2} : \theta = \bar{x} < 0$$

Logo,  $\hat{\theta} = \bar{x}$  é um EMV.

# INFERÊNCIA ESTATÍSTICA (CONCEITOS INTERMEDIÁRIOS) MÉTODO DOS MOMENTOS

### IEG

Instituto de Educação Superior de Brasília A Teoria e a Prática Juntas

Seja uma a.a.  $X' = [X_1, X_2, ..., X_n]$  de uma população com f.p. ou f.d.p. dependendo de k parâmetros  $\theta_1, \theta_2, ..., \theta_k$ . Os momentos ordinários da população  $m_j = \int_{-\infty}^{\infty} x^j f(x, \theta_1, ..., \theta_k) dx$ , se existirem, são funções dos k parâmetros  $m_j = f(\theta_1, \theta_2, ..., \theta_k)$ , j = 1,2,3, ... Considere, também, os momentos ordinários da amostra,  $M_j = \frac{\sum x^j}{n}$ , j = 1,2,3, ..., forme o sistema de equações:

$$M_j = m_j = f(\theta_1, \theta_2, ... \theta_k), j = 1,2,3, ....$$

e admita que tem solução única,  $\hat{\theta}_j(X_1, X_2, ..., X_n)$ , j = 1,2,3, ...,k. Então, estes k estimadores, solução do sistema de equações, são os estimadores dos parâmetros pelo Método dos Momentos.

Os estimadores obtidos pelo Método dos Momentos são em geral consistentes e possuem distribuição assintótica Gaussiana, porém não são assintoticamente mais eficientes do que os estimadores de máxima verossimilhança.

#### Inferência Estatística (Conceitos Intermediários) Instituto de Educação Superior de Brasília TEOREMA DE RAO BLACKWELL

A Teoria e a Prática Juntas

- Seja  $[X_1, X_2, \dots, X_n]$  uma a.a. da densidade  $f(.,\theta)$ , e seja  $S_1 = s_1(X)$ ,  $S_2 = s_2(X)$ , ...,  $S_k = s_k(X)$  um conjunto de estatísticas conjuntamente suficientes. Seja a estatística T = t(X) um estimador não-viciado de  $q(\theta)$ . Defina T' por  $T' = E[T \mid S_1, S_2, ...]$  $,S_k]$ , então:
  - T' é uma estatística e é uma função de estatísticas suficientes  $S_1, S_2, ... S_k$ ;
  - $E_{\theta}[T'] = q(\theta)$ , isto é T' é um estimador não-viciado de  $q(\theta)$ ;
  - $V_{\theta}[T'] \leq V(T)$  qualquer que seja  $\theta \in V_{\theta}[T'] < V(T)$  para algum  $\theta$  a menos que T seja igual a T' com probabilidade 1.

### INFERÊNCIA ESTATÍSTICA (CONCEITOS INTERMEDIÁRIOS) Instituto de Educação Superior de Brasília

IESB

TEOREMA DE LEHMANN-SCHEFFÉ

- Se T(X) é uma estatística suficiente e completa e S(X) é um estimador não-viciado de  $q(\theta)$ , então  $T^*(X) = E[S(X) \mid T(X)]$  é um estimador UMVU de  $q(\theta)$ . Se  $V_{\theta}(T^*(X)) < \infty$  qualquer que seja  $\theta$ ,  $T^*(X)$  é o único estimador UMVU de  $q(\theta)$ .
- o Podemos usar o Teorema de Lehmann-Scheffé na busca de estimadores UMVU de dois modos:
  - Se nós podemos achar uma estatística da forma h[T(X)] tal que h[T(X)] seja um estimador não-viciado de q(θ), então h[T(X)] é UMVU para q(θ).
  - Se nós podemos achar algum estimador não-viciado S(X) de  $q(\theta)$ , então  $E[S(X) \mid T(X)]$  é UMVU para  $q(\theta)$ .

UMVU: ESTIMADORES NÃO-VICIADOS UNIFORMEMENTE DE MÍNIMA VARIÂNCIA.

A Teoria e a Prática Juntas

# INFERÊNCIA ESTATÍSTICA (CONCEITOS INTERMEDIÁRIOS) EXERCÍCIO

Instituto de Educação Superior de Brasília A Teoria e a Prática Juntas



LISTA DE EXERCÍCIOS 1 – parte II

Data limite de entrega: vide cronograma em "Sistema de avaliação"