$8_{12} (K8a_5)$

Ideals for irreducible components 2 of X_{par}

$$I_1^u = \langle u^{14} - u^{13} + 3u^{12} - 2u^{11} + 6u^{10} - 3u^9 + 7u^8 - 2u^7 + 6u^6 + 4u^4 + 2u^2 + u + 1 \rangle$$

* 1 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 14 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

$$I_1^u = \langle u^{14} - u^{13} + 3u^{12} - 2u^{11} + 6u^{10} - 3u^9 + 7u^8 - 2u^7 + 6u^6 + 4u^4 + 2u^2 + u + 1 \rangle$$

(i) Arc colorings

$$a_{3} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -u \\ u^{3} + u \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} u^{2} + 1 \\ -u^{2} \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} u^{4} + u^{2} + 1 \\ -u^{4} \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} u^{9} + 2u^{7} + 3u^{5} + 2u^{3} + u \\ -u^{9} - u^{7} - u^{5} + u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} u^{6} + u^{4} + 2u^{2} + 1 \\ -u^{8} - 2u^{6} - 2u^{4} - 2u^{2} \end{pmatrix}$$

- (ii) Obstruction class = -1

(iii) Cusp Shapes
$$=4u^{12}-4u^{11}+8u^{10}-8u^9+16u^8-12u^7+12u^6-12u^5+8u^4-4u^3+4u^2-8u-2$$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_4	$u^{14} + u^{13} + \dots - u + 1$
c_2, c_5	$u^{14} + 5u^{13} + \dots + 3u + 1$
c_3, c_7	$u^{14} - u^{13} + \dots + u + 1$
c_6, c_8	$u^{14} - 5u^{13} + \dots - 3u + 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
$c_1, c_3, c_4 \ c_7$	$y^{14} + 5y^{13} + \dots + 3y + 1$
$c_2, c_5, c_6 \ c_8$	$y^{14} + 9y^{13} + \dots + 15y + 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.772300 + 0.626535I	-1.19029 + 3.41271I	-2.10600 - 2.62516I
u = 0.772300 - 0.626535I	-1.19029 - 3.41271I	-2.10600 + 2.62516I
u = -0.050221 + 1.076790I	4.64273 + 2.76747I	5.41762 - 3.21377I
u = -0.050221 - 1.076790I	4.64273 - 2.76747I	5.41762 + 3.21377I
u = 0.727524 + 0.860849I	-4.64273 - 2.76747I	-5.41762 + 3.21377I
u = 0.727524 - 0.860849I	-4.64273 + 2.76747I	-5.41762 - 3.21377I
u = -0.494052 + 0.663856I	0.022819 + 1.377700I	0.88590 - 4.12207I
u = -0.494052 - 0.663856I	0.022819 - 1.377700I	0.88590 + 4.12207I
u = -0.622207 + 1.001070I	1.19029 + 3.41271I	2.10600 - 2.62516I
u = -0.622207 - 1.001070I	1.19029 - 3.41271I	2.10600 + 2.62516I
u = 0.683715 + 1.025590I	-8.93586I	0. + 7.26077I
u = 0.683715 - 1.025590I	8.93586I	0 7.26077I
u = -0.517057 + 0.454483I	-0.022819 + 1.377700I	-0.88590 - 4.12207I
u = -0.517057 - 0.454483I	-0.022819 - 1.377700I	-0.88590 + 4.12207I

II. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1, c_4	$u^{14} + u^{13} + \dots - u + 1$
c_2, c_5	$u^{14} + 5u^{13} + \dots + 3u + 1$
c_3, c_7	$u^{14} - u^{13} + \dots + u + 1$
c_6, c_8	$u^{14} - 5u^{13} + \dots - 3u + 1$

III. Riley Polynomials

Crossings	Riley Polynomials at each crossing
$c_1, c_3, c_4 \\ c_7$	$y^{14} + 5y^{13} + \dots + 3y + 1$
c_2, c_5, c_6 c_8	$y^{14} + 9y^{13} + \dots + 15y + 1$