

Nombre:			
Curso:	2º ESO B	Examen 3	
Fecha:	15 de febrero de 2017	2ª Evaluación	

- **1.-** Uno de los embalses más grandes de la península ibérica es el de La Serena, de la cuenca del río Guadiana a su paso por la provincia de Badajoz. Su capacidad supera los 3.200 hm³ y ocupa una superficie de casi 14.000 hm². (**0,5 puntos por apartado**)
 - a) ¿Qué cantidad de agua, expresada en litros, puede almacenar este embalse?
 - **b)** ¿Qué superficie ocupa, expresada en cm²?
- **2.-** Una empresa marroquí de plásticos ha conseguido crear un plástico ultraligero, de última generación, que tiene una densidad de 0,75 g/cm³. (1 punto por apartado)
 - a) ¿Cuál es la masa de una esfera de plástico de 35 cm de radio?
 - **b)** ¿Qué volumen ocupa una masa de 15 kg de plástico?
 - c) Si con estos 15 kg de plástico, queremos construir un cubo, ¿cuánto tendría que medir su arista?
- **3.-** Completa la siguiente tabla con el símbolo, el nombre y la valencia o valencias de cada uno de los elementos de la tabla periódica que aparecen: (2 puntos y -0,25 puntos por error)

Co	Fr	Be	Al	Au

Plata	Hierro	Cromo	Platino	Estroncio

- **4.-** Una muestra de gas ocupa un volumen de 44,8 litros en condiciones estándar, es decir, 25 °C de temperatura y una presión de 1 atmósfera.
 - a) ¿Cuál será su presión a una temperatura de 32 °C, si sufre un proceso isobaro?
 - **b)** ¿Qué habría que hacer para que mediante un proceso isotermo su presión pase a ser de 2.500 hectopascales?
 - c) ¿A qué temperatura conseguiríamos que su volumen fuese de 25 litros y su presión de 1.900 mm de Hg?

${f 5.-}$ Dada la siguiente tabla: (1 punto por apartado)

P (atm)	1		4		10	
V (litros)	50	25		10		

- **a)** Completadla, aplicando la ley de *Boyle-Mariotte*.
- **b)** Representa P en función de V en el recuadro de abajo.

- 1.- Uno de los embalses más grandes de la península ibérica es el de La Serena, de la cuenca del río Guadiana a su paso por la provincia de Badajoz. Su capacidad supera los 3.200 hm³ y ocupa una superficie de casi 14.000 hm². (0,5 puntos por apartado)
 - a) ¿Qué cantidad de agua, expresada en litros, puede almacenar este embalse?
 - b) ¿Qué superficie ocupa, expresada en cm²?

$$3200hm^3 = 3200 hm^3 \cdot \frac{10^6 m^3}{1 hm^3} = 3,2 \cdot 10^9 m^3 = 3,2 \cdot 10^{12} dm^3 = 3,2 \cdot 10^{12} litros$$

Por tanto, su capacidad es de 3,2·10⁹ metros cúbicos y de 3,2·10¹² litros.

$$14.000hm^2 = 14.000 hm^2 \cdot \frac{10^8 cm^2}{1 hm^2} = 1,4 \cdot 10^{12} cm^2$$

- c) Así que, su área es de $1,4\cdot10^{12}$ cm²
- 2.- Una empresa marroquí de plásticos ha conseguido crear un plástico ultraligero, de última generación, que tiene una densidad de 0,75 g/cm³. (1 punto por apartado)
 - a) ¿Cuál es la masa de una esfera de plástico de 35 cm de radio?
 - b) ¿Qué volumen ocupa una masa de 15 kg de plástico?
 - c) Si con estos 15 kg de plástico, queremos construir un cubo, ¿cuánto tendría que medir su arista?
 - a) Para calcular la masa, como tenemos la densidad, solo nos falta el volumen, y como tenemos el radio de la esfera, podemos calcular su volumen:

$$V_{Esfera} = \frac{4}{3}\pi R^3 = \frac{4}{3}\pi (35cm)^3 = 179.594,38 \text{ cm}^3$$

Con el volumen y utilizando la fórmula de la densidad, calculamos la masa:

$$d = \frac{m}{V}$$
 \rightarrow $m = V \cdot d = 179.594,38 \text{ cm}^3 \cdot 0,75 \frac{g}{\text{cm}^3} = 134.695,76g$

Así que la masa de la esfera de plástico de plástico es de 134,70 Kilogramos.

b) Para calcular el volumen, volvemos a utilizar la fórmula de la densidad:

$$d = \frac{m}{V} \rightarrow V = \frac{m}{d} = \frac{15.000 \text{ g/s}}{0.75 \text{ g/s cm}^{-3}} = \frac{20.000 \text{ cm}^3}{0.75 \text{ g/s cm}^{-3}} = \frac{10.000 \text{ cm}^3}{10^3 \text{ cm}^3} = \frac{20.000 \text{ cm}^3}{10^3$$

Por tanto, 15 kg de plástico ocupan un volumen de 20 litros

c) Para calcular la arista de un cubo de 15 kg, que como hemos visto ocupa un volumen de 20 litros, utilizaremos la fórmula del volumen de un cubo, de la que despejaremos la arista y la calcularemos después:

$$V_{cubo} = a^3 \rightarrow a = \sqrt[3]{a} = \sqrt[3]{20.000 cm^3} = 27,14 cm$$

Por lo que la arista del cubo debería ser de 24,14 centímetros.

3.- Completa la siguiente tabla con el símbolo, el nombre y la valencia o valencias de cada uno de los elementos de la tabla periódica que aparecen: (2 puntos y -0,25 puntos por error)

Co	Fr	Be	Al	Au
Cobalto	Francio	Berilio	Aluminio	Oro
2 y 3	1	2	3	1 y 3

Plata	Plata Hierro Cromo		Platino	Estroncio	
Ag	Fe	Cr	Pt	Sr	
1	2 y 3	2, 3 y 6	2 y 4	2	

- 4.- Una muestra de gas ocupa un volumen de 44.8 litros en condiciones estándar, es decir, $25\,^{\circ}$ C de temperatura y una presión de 1 atmósfera.
 - a) ¿Cuál será su presión a una temperatura de 32 °C, si sufre un proceso isobaro?
 - b) ¿Qué habría que hacer para que mediante un proceso isotermo su presión pase a ser de 2.500 hectopascales?
 - c) ¿A qué temperatura conseguiríamos que su volumen fuese de 25 litros y su presión de 1.900 mm de Hg?
 - a) Si sufre un proceso isobaro, la presión no cambia, así que la presión será de 1 atmosfera.
 - b) Escribimos la presión en atmósferas: 2.500HPa = 250.000Pa = 2

$$P_1 \cdot V_1 = P_2 \cdot V_2$$
 \rightarrow $V_2 = \frac{P_1 \cdot V_1}{P_2} = \frac{1 \text{ atm} \cdot 44, 81}{2,47 \text{ atm}} = 18,14 \text{ I}$

Pues tendíamos que reducir el volumen en 44,8 - 18,13 = 26,66 litros.

c) Para calcular la temperatura, utilizamos la ley combinada de los gases, pero antes pasaremos los 1.900 mm de Hg a atmósferas:

$$1.900$$
mmHg = 1.900 mmHg $\cdot \frac{1$ atm}{760 mmHg} = 2,5 atm

Mediante la ley combinada:

$$\frac{P_1 \cdot V_1}{T_1} = \frac{P_2 \cdot V_2}{T_2} \longrightarrow P_1 \cdot V_1 \cdot T_2 = P_2 \cdot V_2 \cdot T_1 \longrightarrow T_2 = \frac{P_2 \cdot V_2 \cdot T_1}{P_1 \cdot V_1} = \frac{2.5 \text{ atm} \cdot 25 \text{ f} \cdot 298 \text{ K}}{1 \text{ atm} \cdot 44.8 \text{ f}} = 415,73 \text{ K}$$

Por tanto, la temperatura pedida es de 142 °C.

5.- Dada la siguiente tabla:

Presión (atm)

P (atm)	1	2	4	5	10	50
V (litros)	50	25	12,5	10	5	1

Séries 1

a) Completadla, aplicando la ley de Boyle-Mariotte.

Nombre:			
Curso:	2º ESO C	Examen 3	
Fecha:	San Valentín 2017	2ª Evaluación	

- **1.-** Uno de los embalses más grandes de la península ibérica es el de La Serena, de la cuenca del río Guadiana a su paso por la provincia de Badajoz. Su capacidad supera los 3.200 hm³ y ocupa una superficie de casi 14.000 hm². (**0,5 puntos por apartado**)
 - a) ¿Qué cantidad de agua, expresada en litros y m³, puede almacenar este embalse?
 - **b)** ¿Qué superficie ocupa, expresada en dm²?
- **2.-** Una empresa marroquí de plásticos ha conseguido crear un plástico ultraligero, de última generación, que tiene una densidad de 0,75 g/cm³. (1 punto por apartado)
 - a) ¿Cuál es la masa de un bloque cúbico de plástico de 35 cm de arista?
 - **b)** ¿Qué volumen ocupa una masa de 10 kg de plástico?
 - c) Si con estos 10 kg de plástico, queremos construir un cilindro de 10 cm de altura, ¿cuánto tendría que medir su radio?
- **3.-** Completa la siguiente tabla con el símbolo, el nombre y la valencia o valencias de cada uno de los elementos de la tabla periódica que aparecen: (2 puntos y -0,25 puntos por error)

Fe	K	Ni	Mg	Hg

Cesio	Oro	Cobre	Estaño	Plomo

- **4.-** Una determinada masa de gas ocupa un volumen de 15 litros en las condiciones estándar de presión y temperatura (25 °C y 1 atm). Calcula: (**1 punto por apartado**)
 - a) Su volumen si la temperatura pasa a ser de 125°C y su presión no cambia.
 - **b)** ¿Qué volumen en Hectolitros ocupará esta misma masa de gas cuando la presión descienda hasta los 700 mm de Hg y la temperatura aumente hasta los 80°C?
 - c) ¿Cómo se llama el proceso que sufre el gas en el apartado a)? ¿Por qué se llama así?

$\bf 5.-$ Dada la siguiente tabla: (1 punto por apartado)

P (atm)	0,25		1		4	
V (litros)	80	50		10		

- **a)** Completadla, aplicando la ley de *Boyle-Mariotte*.
- **b)** Representa P en función de V en el recuadro de abajo.

Feliz día de San Valentín

- 1.- Uno de los embalses más grandes de la península ibérica es el de La Serena, de la cuenca del río Guadiana a su paso por la provincia de Badajoz. Su capacidad supera los 3.200 hm³ y ocupa una superficie de casi 14.000 hm². (0,5 puntos por apartado)
 - a) ¿Qué cantidad de agua, expresada en litros y m³, puede almacenar este embalse?
 - b) ¿Qué superficie ocupa, expresada en dm²?

$$3200hm^3 = 3200hm^3 \cdot \frac{10^6m^3}{1hm^3} = 3, 2 \cdot 10^9m^3 = 3, 2 \cdot 10^{12}dm^3 = 3, 2 \cdot 10^{12} litros$$

Por tanto, su capacidad es de 3,2·10⁹ metros cúbicos y de 3,2·10¹² litros.

$$14.000hm^2 = 14.000 hm^2 \cdot \frac{10^6 dm^2}{1 hm^2} = 1,4.10^{10} dm^2$$

Así que, su área es de 1,4·10¹⁰ dm²

- 2.- Una empresa marroquí de plásticos ha conseguido crear un plástico ultraligero, de última generación, que tiene una densidad de 0,75 g/cm³. (1 punto por apartado)
 - a) ¿Cuál es la masa de un bloque cúbico de plástico de 35 cm de arista?
 - b) ¿Qué volumen ocupa una masa de 10 kg de plástico?
 - c) Si con estos 10 kg de plástico, queremos construir un cilindro de 10 cm de altura, ¿cuánto tendría que medir su radio?
 - a) Para calcular la masa, como tenemos la densidad, solo nos falta el volumen, y como tenemos la arista del cubo, podemos calcular su volumen:

$$V_{cubo} = a^3 = (35cm)^3 = 42.875 cm^3$$

Con el volumen y utilizando la fórmula de la densidad, calculamos la masa:

$$d = \frac{m}{V} \rightarrow m = V \cdot d = 42.875 \text{ cm}^3 \cdot 0.75 \frac{g}{\text{cm}^3} = 32.156,25g$$

Así que la masa del bloque cúbico de plástico es de 32,16 Kilogramos.

b) Para calcular el volumen, volvemos a utilizar la fórmula de la densidad:

$$d = \frac{m}{V} \rightarrow V = \frac{m}{d} = \frac{10.000g}{0.75g \cdot cm^{-3}} = 13.333,33cm^{3} = 13.333,33cm^{3} \cdot \frac{1 litro}{10^{3} cm^{3}} = 13,333 litros$$

Por tanto, 10 kg de plástico ocupan un volumen de 13,33 litros

c) Para calcular el radio de un cilindro de 10 kg, que como hemos visto ocupa un volumen de 13,33 litros, utilizaremos la fórmula del volumen de un cilindro, del que despejaremos el radio y lo calcularemos después:

$$V_{cilindro} = \pi \cdot R^2 \cdot h$$
 \rightarrow $\frac{V}{\pi \cdot h} = R^2$ \rightarrow $R = \sqrt{\frac{V}{\pi \cdot h}} = \sqrt{\frac{13.333,33cm^3}{\pi \cdot 10cm}} = 20,6cm$

Por lo que la altura del cilindro debería ser de 20,6 centímetros.

3.- Completa la siguiente tabla con el símbolo, el nombre y la valencia o valencias de cada uno de los elementos de la tabla periódica que aparecen: (2 puntos y -0,25 puntos por error)

Fe	K	Ni	Mg	Hg
Hierro	Potasio	Níquel	Magnesio	Mercurio
2 y 3	1	2 y 3	2	1 y 2

Cesio	Oro	Cobre	Estaño	Plomo
Cs	Au	Cu	Sn	Pb
1	1 y 3	1 y 2	2 y 4	2 y 4

- 4.- Una determinada masa de gas ocupa un volumen de 15 litros en las condiciones estándar de presión y temperatura (25 $^{\circ}$ C y 1 atm). Calcula: (1 punto por apartado)
 - a) Su volumen si la temperatura pasa a ser de 125°C y su presión no cambia.
 - b) ¿Qué volumen en Hectolitros ocupará esta misma masa de gas cuando la presión descienda hasta los 700 mm de Hg y la temperatura aumente hasta los 80°C?
 - c) ¿Cómo se llama el proceso que sufre el gas en el apartado a)? ¿Por qué se llama así?
 - a) Si la presión con cambia, quiere decir que se trata de un proceso isobaro en el que se verifica le ley de Charles. Si expresamos todas las medidas en unidades del S.I. y calculamos:

Donde hemos utilizado la ley de Charles y hemos despejado el volumen 2:

$$V_2 = \frac{V_1 \cdot T_2}{T_1} = \frac{15l \cdot 398 \cancel{K}}{298 \cancel{K}} = 20,03 \text{ litros}$$

Por lo que su volumen al aumentar 100 grados la temperatura será de 20,03 litros.

b) Sabemos que una atmósfera son 760 mm de Hg, por tanto $P_2 = \frac{700 mmHg}{760 mmHg / atm} = 0,92 atm$, además:

Usando la ecuación combinada de los gases: $\frac{P_1 \cdot V_1}{T_1} = \frac{P_2 \cdot V_2}{T_2} \longrightarrow P_1 \cdot V_1 \cdot T_2 = P_2 \cdot V_2 \cdot T_1$

Y despejando
$$V_2$$
, llegamos a: $V_2 = \frac{P_1 \cdot V_1 \cdot T_2}{P_2 \cdot T_1} = \frac{1 \text{ atm} \cdot 15l \cdot 353 \text{ K}}{0.92 \text{ atm} \cdot 298 \text{ K}} = 19,31 \text{ litros}$

Así que el volumen en hectolitros será 0,19 Hectolitros.

c) El proceso que sufre el gas en el apartado **a)** se llama **proceso isobaro** puesto que la presión antes y después es la misma, es decir 1 atm, y por tanto constante.

P (atm)	0,25	0,4	1	2	4	5
V (litros)	80	50	20	10	5	4

a) Completadla, aplicando la ley de Boyle-Mariotte.

Para calcular los valores de la tabla utilizamos la ley de Boyle: $P_1 \cdot V_1 = P_2 \cdot V_2$ \rightarrow $\begin{cases} P_2 = \frac{\iota_1 \cdot \iota_1}{V_2} \\ V_2 = \frac{P_1 \cdot V_1}{P_2} \end{cases}$

b) Representa P en función de V en el recuadro de abajo.

Séries 1