ELEC ENG 3PI4 Laboratory 4 Induction Motors

Instructor:
Dr. Mahmoud Maghrabi

Stefan Tosti – *Tosti*– 400367761 Adam Poonah – *Poonaha* – 400338309 Muhammad Ghauri – *Ghaurm4* – 400399826

Submitted: 04-01-2024

Pre-Lab

Equation for calculating induction motor slip:

Motor slip speed: $n_{slip} = n_{sync}$ - n_m

Motor slip:
$$s = \left(\frac{n_{slip}}{n_{sync}}\right) * 100\% = \left(\frac{n_{sync} - n_m}{n_{sync}}\right) * 100\% = \left(\frac{\omega_{sync} - \omega_m}{\omega_{sync}}\right) * 100\%$$

Equation for calculating synchronous speed, n_{sync}:

Synchronous speed:
$$n_{sync} = \frac{120f_e}{P}$$

Torque-Speed characteristic curve of an induction motor:

A. Load Characteristics - Star Connection

N(rpm)	1770	1470	1170	870	770	670	570	470	270	100
T(Nm)	0	0.92	1.02	0.88	0.84	0.8	0.79	0.75	0.72	0.81
I _{Line} (A)	0.26	0.94	1.3	1.49	1.51	1.53	1.55	1.56	1.58	1.61
cosθ	0.497	0.831	0.775	0.73	0.726	0.718	0.715	0.712	0.703	0.698
P _{apparent} (W)	15.3	-93.5	120.5	130.1	131.5	132.1	133.1	133.4	132.8	134.4
P _{mech,out} (W)	0	118.38	137.74	122.52	95.48	70.16	46.08	28.67	13.89	8.9
(%)	0	126.609626	114.307	94.1737	72.6084	53.1113	34.6206	21.4918	10.4593	6.62202

Plots:

Questions:

1. Calculate the slip at the rated load for the experimental three-phase induction motor.

$$Ns = (120)(fs)/P = (120)(60)/4$$

$$S = \{(Ns - N)/Ns\}*100 = \{(1800-1650)/1800\}*100 = 8.3$$

2. Explain the torque-speed characteristic curves for the three-phase squirrel-cage induction motor.

Here, we see a linear slope between the full-load and no-load operating regions

3. How can you control the speed of the squirrel-cage induction motor? (Four methods)

There are various methods, including... voltage control, resistance control, frequency control, pole changing

4. How to operate the three-phase induction machine in generating mode?

To do this, we make Rotor speed > n_sync. In this case, S is negative and the direction of the air gap power is in the opposite direction, thus we operate the induction machine in generator mode.

B. Load Characteristics - Delta Connection

N(rpm)	178	1776	1765	1751	1738	1723	1706	1688	1674	1652	1627
	9										
T(Nm)	0	0.2	0.4	0.6	0.8	1	1.2	1.4	1.6	1.8	2
I _{Line} (A)	0.42	0.44	0.46	0.50	0.55	0.60	0.67	0.74	0.80	0.89	0.98
cosθ	-	-	-0.488	-0.580	-0.655	-0.712	-0.755	-0.789	-0.808	-0.825	-0.839
	0.23	0.371									
	8										
Papparent	-	-34.0	-47.3	-60.8	-75.0	-89.9	-105.2	-121.7	-135.1	-153.0	-172.2

(W)	20.9										
P _{mech,out}	0	46.4	91.9	136.4	179.85	223.58	263.41	303.4	338.3	0	47.06
(W)											
η(%)	0	136.4	194.29	224.34	239.8	248.7	250.38	249.52	250.4	0	27.32
		7									
Voltage	209.	209.2	208.7	208.9	209.0	208.8	208.8	208.4	209.0	209.2	209.1
	0										

Plots:

Questions:

- 1. Compare load characteristics of the three-phase induction motors with star and delta connections through Figures.
- 1.) Comparing T v.s. N, we see the same general trend. In part A we have a larger range of speed, and thus we can see more of the curve shape.

- 2.) Comparing I v.s. N, we see the same trend in the negative slope. We also have a limited range here and thus cannot see the full shape in part B
- 3.) Comparing T v.s. I, we see they both follow a positive trend, and have a parabolic shape.
- 4.) Comparing eeta v.s. N, we see a similar trend, but not the exact same. In part A, our graph peaks and then begin decreasing, whereas in part B we have limited range and thus we only see a steady value, and then a decrease
- 2. Power factor and efficiency affect the economical use of a motor. Calculate the product of power factor and efficiency, for each speed (delta connection) and compare it through Figures. What can be said of the results of the calculations?

cos	-0.276	-0.438	-0.567	-0.663	-0.731	-0.772	-0.808	-0.833	-0.848
%	0	117.67	164.59	186.27	196.51	207.05	205.2	200.52	194.3
product	0	-51.53946	-93.32253	-123.49701	-143.64881	-159.8426	-165.8016	-167.03316	-164.7664

We see that the product of power factor and efficiency decreases as we increase torque. We expect this because power factor and efficiency are inversely proportional, therefore as torque increases, so does the required power. This ultimately leads to a decrease in power factor.