All the maths we know

21 October 2023

Set theory

\boldsymbol{c}		
~	PTS	
_	CLJ	

Seis	
Set	A collection of things, called its <i>elements</i> (or <i>members</i>).
$\boldsymbol{x} \in \boldsymbol{X}$	"x is an element of set X."
$X \cup Y$	The union of X and Y : all elements of X together with all elements of Y .
$X \cap Y$	The intersection of X and Y ; its elements are those that are elements of both X and Y .
$X \setminus Y$	The set difference: all elements of X that are not elements of Y . Sometimes $X-Y$.
$X \subset Y$	"Every element of X is an element of Y ." X is a $subset$ of Y .
$\{x \in X \mid P(x)\}$	The set of those elements of X satisfying the predicate P $(i.e., for which P(x) is true)$.
Ø	The empty set—the set with no members.

Pairs and tuples

Pair	An ordered list of two things: like a set but the
	order matters and they can be the same thing.
	For example: $(1,2)$.

n-tuple An ordered list of n things. For example: (x_1, x_2, \dots, x_n) .

 $X \times Y$ The Cartesian product of X and Y is the set of all pairs (x,y) where $x \in X$ and $y \in Y$.

Xⁿ The set of all n-tuples of elements of X. The Cartesian product of X with itself n times.

Maps

Map	A rule which assigns, to every element of a set
	(called the domain), an element of another set
	(called the codomain). Sometimes called a
	function, especially when the codomain is
	numbers.

 $f: X \to Y$ "f is a map from X to Y."

 $\mbox{$f\colon x\mapsto y$ "Specifically, f maps the element $x\in X$ to the element $y\in Y$."}$

 $f \circ g$ The map g followed by the map f.

Injection A map, $f: X \to Y$, is *injective* (also *one-to-one*) if no more than one element of X maps to a particular element of Y.

Surjection A map, $f: X \to Y$, is surjective (also onto) if every element of Y is mapped to by some element of X.

Bijection A map, $f: X \to Y$, is bijective if it is both injective and surjective (also "one-to-one and onto").

 $X \cong Y$ There exists a bijection between sets X and Y. Equivantly: X and Y are isomorphic as sets.

Useful maps

Operator A binary operator on a set X is a map $\star: X \times X \to X$. That is, a binary operator takes two elements of X and returns an element of X. Operators are typically written in "infix" notation, $x \star y$, rather than in a function notation, $\star(x,y)$.

Associative A binary operator, \star , is associative if

 $(a \star b) \star c = a \star (b \star c).$

Almost all operators you will meet are associative. Since the order in which the operations are carried out doesn't affect the result, the parentheses are often omitted, as in $a \star b \star c$.

Commutative A binary operator, \star , is *commutative* if

$$a \star b = b \star a$$
.

Numbers

- N The natural numbers: 0,1,2,....
- Z The *integers*: ..., -2, -1, 0, 1, 2, ...
- Q The *rationals:* All numbers that can be written as m/n where m and n are integers.
- R The reals: The rationals and "all the numbers in between."
- R⁺ The non-negative reals.
- C The *complex numbers*: Numbers of the form a + bi, where a and b are real numbers and $i^2 = -1$.

Vector spaces

Vector space A real vector space is a set, V, together with: (i) a commutative, associative, binary operator, +, on V; (ii) a map,

 $\cdot \colon R \times V \to V;$ and (iii) a distinguished element $0 \in V,$ such that:

- 1. v + 0 = v for all $v \in V$;
- 2. For any $v \in V$ there exists an element $-v \in V$ such that v + (-v) = 0;
- 3. $1 \cdot v = v$ for all $v \in V$;
- 4. $\alpha \cdot (\beta \cdot \nu) = (\alpha \beta) \cdot \nu$ for all $\alpha, \beta \in \mathbf{R}$ and all $\nu \in V$.
- 5. $\alpha \cdot (\nu + w) = \alpha \cdot \nu + \alpha \cdot w$ and $(\alpha + \beta) \cdot \nu = \alpha \cdot \nu + \beta \cdot \nu$ for all $\alpha, \beta \in \mathbf{R}$ and $\nu, w \in \mathbf{V}$.

Replacing R with C in the above we obtain a *complex vector space*.

Vector Subspace An element of a vector space.

A subset of a vector space that is itself a vector space with respect to the addition and scalar multiplication inherited from the larger space.

Equivalently: A subset, $U \subset V$ of a vector space, V, is a *subspace* if, for all $u, v \in U$ and number α , the combination $u + \alpha \cdot v$ is also in U.

Examples of vector spaces

Rⁿ (or Cⁿ) The set of n-tuples of R (or C), together with the operation of "element-wise" addition:

$$(x_1,\ldots,x_n)+(y_1,\ldots,y_n)\stackrel{\text{def}}{=}$$
$$(x_1+y_1,\ldots,x_n+y_n)$$

and multiplication by R (or C):

$$\lambda \cdot (x_1, \dots, x_n) \stackrel{\text{def}}{=} (\lambda x_1, \dots, \lambda x_n)$$

 \mathbf{R}^{X} (or \mathbf{C}^{X}) For X a set, \mathbf{R}^{X} denotes the set of all functions $X \to \mathbf{R}$, together with the operation of "pointwise addition":

$$(f+g)(x) \stackrel{\text{def}}{=} f(x) + g(x)$$

and "pointwise multiplication by R":

$$(\alpha f)(x) \stackrel{\text{def}}{=} \alpha f(x).$$

(The notation "(f+g)(x)" means "the function f+g, where + is addition of functions, evaluated at the point x.")

- $\begin{array}{ll} \mathfrak{P}_{\mathfrak{m}}(R) & \text{ The set of polynomials of degree at most } \mathfrak{m}. \\ & \text{ Thus, } f \in \mathfrak{P}_{\mathfrak{m}}(R) \text{ implies} \\ & f(x) = a_0 + a_1 x + \dots + a_{\mathfrak{m}} x^{\mathfrak{m}} \text{ for some } \mathfrak{m}. \end{array}$
- $\mathfrak{P}(\mathbf{R})$ The set of all polynomials of finite degree.

Combining vector spaces

Sum

(This definition is not commonplace.) For $U_1, U_2, ..., U_n$ subspaces of V, their sum is the set of all sums of vectors from the U_i :

$$U_1+\cdots+U_n\stackrel{\text{def}}{=} \big\{\nu_1+\cdots+\nu_n\ \big|\ \nu_i\in U_i\big\}.$$

Equivalently, it is the set of all sums from $\cup_i U_i$ (since sums from within the same U_i are already elements of that U_i). Equivalently, it is the span of $\cup_i U_i$.

Direct sum (Version 1: This definition is from Axler.) The sum of subspaces, $U_1 + \cdots + U_n$, is called a *direct sum* if the U_i satisfy the following property: if $v_1 + \cdots + v_n = 0$, where $v_i \in U_i$, then each of the v_i is 0. If the sum of the U_i is a direct sum, it is written $U_1 \oplus \cdots \oplus U_n$.

Direct sum (Version 2.) Suppose U_1, \ldots, U_n are vector spaces (not necessarily subspaces of some other space). Their direct sum, $U_1 \oplus \cdots \oplus U_n$, is:

- 1. The set $U_1 \times \cdots \times U_n$; together with
- 2. Addition and scalar multiplication given by

$$(u_1, \dots, u_n) + \alpha \cdot (v_1, \dots, v_n)$$

= $(u_1 + \alpha \cdot v_1, \dots, u_n + \alpha \cdot v_n).$

Note that there are natural injective maps $U_i \to U_1 \oplus \cdots \oplus U_n$ which "embed" the U_i as subspaces of the direct sum.

Linear independence and bases

Span	Let ν_1, \ldots, ν_n be vectors in a real vector space, V. The <i>span</i> of this set is the subspace given by
	$\{\alpha_1\nu_1+\cdots+\alpha_n\nu_n\mid\alpha_1,\ldots\alpha_n\in R\}$
	(and likewise for a complex vector space)
Linear independence	Vectors $v_1, \ldots, v_n \in V$ are linearly independent if $\alpha_1 v_1 + \cdots + \alpha_n v_m = 0$ implies $\alpha_1 = \cdots = \alpha_n = 0$.
Basis	(Of a vector space, V.) A collection of vectors that (a) spans V; (b) is linearly independent.
Dimension	(Of a vector-space, V.) The number of elements of any basis of V. (Noting that any two bases of V have the same cardinality.)

Linear maps

Linear map	A map, T: $V \to W$ (where V and W are vector spaces) such that $T(u+v) = T(u) + T(v) \text{ and } T(\alpha u) = \alpha T(u)$ for all $u,v \in V$.
$\mathcal{L}(V,W)$	The set of all linear maps $V \to W$ with the vector space structure given by $(S + \alpha T)(\nu) \equiv S(\nu) + \alpha T(\nu) \text{ for any } S, T \in V.$
1_{V}	The identity map $1_V \colon V \to V$ where $1_V \colon \nu \mapsto \nu$.
0	Composition of linear maps. For linear maps $T: V \to W$ and $S: W \to X$, their composition $S \circ T$ is that linear map given by $(S \circ T)(v) \equiv S(T(v))$. Composition is associative and the identity map is a left and right identity.
Image	Of a linear map, that subspace of the codomain that is mapped to by <i>some</i> element of the domain. Sometimes called the <i>range</i> . However, range used to mean "codomain" so the term can be ambiguous.
Null space	(Or "kernel".) Of a linear map, that subspace of the domain whose image is the subspace containing only the zero vector.
Inverse	For $T:V\to W$ a linear map, the <i>inverse</i> (if it exists) is the linear map T^{-1} such that $TT^{-1}=1_V$ and $T^{-1}T=1_W$.
Isomorphism	An isomorphism of vector spaces V and W is an invertible, linear map between the two. If an isophormism exists the vector spaces are said to be $isomorphic$.

Quotient space

The set $\{\alpha + \mu \mid \mu \in U\}$. What you get by

"translating" U by α .

Coset (Or "translate," in Axler's terminology.) For U a subspace of V, a coset of U in V is the set $\alpha+U$ for some $\alpha\in V$.

Two cosets are either identical or disjoint.

Every vector in V lies in one and only one

Quotient Of a vector space V by a subspace U:

- 1. The set of all cosets of U; together with
- 2. The vector space structure given by

$$(a + U) + \alpha \cdot (b + U) = (a + \alpha \cdot b) + U,$$

noting that this formula does not depend on which representatives a and b are chosen.

V/U The quotient of V by a subspace U. Quotient The map, $\pi: V \to V/U$, which takes $v \in V$ to

map its coset v + U.

coset.

a + U

Dual space

Dual space The dual of a real (respectively, complex) vector space V is the vector space $V^* = \mathcal{L}(V, \mathbf{R})$ (respectively, $V^* = \mathcal{L}(V, \mathbf{C})$). An element of V^* is sometimes called a *linear functional*.

Dual basis For $(e_{(1)}, \ldots, e_{(n)})$ a basis of V, the dual basis is that basis $(f^{(1)}, \ldots, f^{(n)})$ of V^* such that

$$f^{(\mathfrak{i})}(e_{(\mathfrak{j})}) = egin{cases} 1 & ext{if } \mathfrak{i} = \mathfrak{j}, \\ 0 & ext{otherwise}. \end{cases}$$

Dual map For $\varphi\colon U\to V$ a linear map, its dual (sometimes called its transpose), is that map $\varphi^*\colon V^*\to U^*$ such that, for all $\mathfrak u\in U$ and $\tilde{\mathfrak v}\in V^*,$

$$\tilde{\mathbf{v}}(\boldsymbol{\varphi}(\mathbf{u})) = (\boldsymbol{\varphi}^*(\tilde{\mathbf{v}}))(\mathbf{u}).$$

Annihilator For $U \subset V$ a subset of V, the annihilator of U is that subspace $U^0 \subset V^*$ of the dual of V given by

$$U^0 = {\{\tilde{\mathbf{u}} \in V^* \mid \tilde{\mathbf{u}}(w) = 0 \text{ for all } w \in U\}}.$$

Operators I

Operator Invariant subspace Minimal

polynomial

A linear map from a vector space to itself. A subspace $U \subset V$ is $\mathit{invariant}$ under operator T if $Tu \in U$ for all $u \in U$.

Of an operator, T on a finite-dimensional vector space over field F. The (unique) monic polynomial $p \in \mathcal{P}(F)$ such that p(T) = 0. ("Monic" means that the coefficient of the highest-degree term is 1.)

Matrices

 $\label{eq:matrix} \begin{array}{ll} \mbox{Matrix} & \mbox{An } m \times n \mbox{ matrix } A \mbox{ is } m \times n \mbox{ numbers, } A_{ij}, \\ & \mbox{indexed by } i \in \{1, \dots, m\} \mbox{ and } j \in \{1, \dots, n\}. \\ & \mbox{(Axler writes the elements as } A_{i,j}.) \\ & \mbox{Conventionally, the matrix is written as a rectangular array of the numbers, with } A_{ij} \mbox{ being written in the ith row (starting at the top) and } \\ & \mbox{jth column (starting from the left).} \\ & \mbox{If } T\colon V \to W \mbox{ is a linear map and } \vec{e}_j \in V \mbox{ a basis of } \\ \end{array}$

If $T: V \to W$ is a linear map and $\vec{e}_j \in V$ a basis o V and $\vec{f}_i \in W$ a basis of W, the matrix of T is given by:

$$T(\vec{e}_j) = \sum_i T_{ij} \vec{f}_i.$$

(That is, T_{ij} is the ith component of $T(\vec{e_j})$ with respect to the basis $\vec{f_i}$.)

 $R^{m,n}$ The set of all $m \times n$ matrices over R (or C, mutatis mutandis).

Addition of matrices and multiplication of matrices by numbers is defined elementwise:

$$(A + B)_{ij} \stackrel{\text{def}}{=} A_{ij} + B_{ij}$$
$$(\lambda A)_{ij} \stackrel{\text{def}}{=} \lambda A_{ij}.$$

Under these definitions, $\mathbf{R}^{m,n}$ is a vector space. (The zero element of this space is the matrix $\mathbf{0}_{ij} = 0$.)

"Multiplication" of matrices is defined between an $l \times m$ and and $m \times n$ matrix, the result being an $l \times n$ matrix:

$$(AB)_{ij} = \sum_{k=1}^{m} A_{ik} B_{kj}.$$

Transpose The transpose of A_{ij} is the matrix A_{ji} .

Rank The rank of a matrix $A_{ij} \in \mathbf{R}^{m,n}$ is the

dimension of the span of the n vectors $\vec{c}_j \in \mathbf{R}^m$ where $\vec{c}_j = A_{ij}$ (that is, the \vec{c}_j are the "columns" of A_{ij}).

The dimension of the span of the "rows" of A_{ij} is also the rank.

Upper Of a matrix, having zero for all entries below triangular the diagonal.

Diagonal Of a matrix, having zero for all entries except on the diagonal.

Eigenvalues

Eigenvalue Of an operator, T. A number λ such that there exists a vector $v \neq 0$ with $Tv = \lambda v$.

Eigenvector Of an operator, T. A non-zero vector, ν , such that $T\nu = \lambda \nu$ for some number λ .

Operators II

Commuting Operators A and B commute if AB - BA = 0.

Inner product spaces

Inner product

On a real or complex vector space, V, a conjugate-symmetric, positive-definite map $V \times V \rightarrow F$, written $\langle v, w \rangle$ for $v, w \in F$, which is linear in its first argument (and conjugate linear in its second). That is:

$$\begin{split} \langle \nu, w \rangle &\geqslant 0 & \text{(positive)} \\ \langle \nu, \nu \rangle &= 0 &\Longrightarrow \nu = 0 & \text{(definite)} \\ \langle \nu, w \rangle &= \overline{\langle w, \nu \rangle} & \text{(conj. symm.)} \\ \langle \nu, x + \lambda y \rangle &= \langle \nu, x \rangle + \lambda \langle \nu, y \rangle & \text{(linear)} \end{split}$$

An inner product space is a vector space, V, together with an inner product on V.

Norm

(Given an inner product) the norm of ν is

$$\|\mathbf{v}\| = \sqrt{\langle \mathbf{v}, \mathbf{v} \rangle}.$$

Most authors give an independent definition of a norm, from which it follows that the above construction gives rise to a norm, in those authors' sense.

The Cauchy-Schwarz inequality is that $|\langle v, w \rangle| \leq ||v|| ||w||$ with the inequality saturated only if v and w are colinear. The triangle inequality is that $\|v + w\| \le \|v\| + \|w\|.$

Orthogonal Describes two vectors, v and w, having the property that $\langle v, w \rangle = 0$.

Orthonormal A list of vectors is orthonormal if every vector in the list has norm 1 and is orthogonal to every other vector in the list.