fishtoolbox

Contains a set of modules to analyze and visualize data from block1 and block2 of the experiment from 2021 September.

Dependencies

Install the following packages: - graph-tool * Installation on hpc via conda base environment bash conda install -c conda-forge graph-tool or via Apptainer/Singularity - fishproviz

 \bullet motion mapperpy fork

Figure 1: Dataflow

Data Flow

Using the HPC cluster

- 1. Start on the GPU sbatch scripts/hpc-python.sh
- 2. NOTEBOOK
- conda activate rapids-22.04
- Type ifconfig and get the inet entry for eth0, i.e. the IP address of the node
- srun --pty --partition=ex_scioi_gpu --gres=gpu:1 --time=0-02:00 bash -i to start a new shell with a GPU
- ssh -L localhost:5000:localhost:5000 user.name@[IP address] on your local machine
- jupyter-lab --no-browser --port=5000

Start

- set the BLOCK variable to BLOCK1 or BLOCK2 in config.py
- set the projectPath variable to the path of a new folder in config.py this is where the data will be stored
- setup fishprovis with the correct paths and area configurations.
- export the preprocessed data with python3 -m data_factory.processing
- repeat for the other block

Parameters

• parameters = set_parameters() to get the parameters that are used throughout the fishtoolbox

Data Factory

Processing

- load_trajectory_data_concat load the x y coordinates, projections (the three features), time index, area
- load_zVals_concat load the umap data
- load_clusters_concat load cluster labels for individuals and day parameter.kmeans = 5 to specify the clustering that you want to load.

Poltting

Caterpillar Plots

 \bullet ethnogram_of_clusters