1 Height of a tree

Let $a,b,c\in\mathbb{R}^2$ be vectors as illustrated in the figure below. We know from the lecture that the angle α between two vectors a,c is defined by

$$\cos(\alpha) = \frac{a^{\mathsf{T}}c}{\|a\|_2\|c\|_2}.$$

Use this equality to compute the height $||b||_2$ of the tree in the figure below. The angle $\alpha := 36.87^{\circ}$ and the distance to the tree $a := (4,0)^{\top}$ are given.

Solution:

$$a = (4,0), b = (0,h), c = (4,h)$$

$$\cos(\alpha) = \frac{a^{\top}c}{\|a\| \|c\|}$$

$$\Rightarrow \|c\| = \frac{4}{\cos(\alpha)}$$

$$\Rightarrow \|c\| = 5$$

$$\Rightarrow 25 = \|c\|^2 = \|a\|^2 + \|b\|^2 = 16 + h^2$$

$$\Rightarrow h = 3$$