Analyse II - Probabilités et intégrale de Lebesgue - Notes prises par Pierre Gervais

Marc Rosso

January 23, 2017

Contents

1	Cadre mathématiques pour l'aléatoire	2
2	Algèbre de Boole, tribus et mesures de probabilités	2
	2.1 Exemples de mesures de probabilités	7

1 Cadre mathématiques pour l'aléatoire

Question 1. En jetant une aiguille de taille 2a sur un parquet dont les lattes sont de largeurs 2ℓ , quelle est la probabilité que l'aiguille tombe sur une rainure ? (avec $a \leq \ell$).

On note r la distance du milieu de l'aiguille à la rainure la plus proche $(0 \le r \le \ell)$, et α l'angle des droites entre l'aiguille et la direction de la rainure $(0 \le \alpha \le \pi/2)$.

Pour r donné, et α_0 la valeur de contact on a

$$r = a \sin \alpha_0$$

La condition sur la position (r, α) de l'aiguille pour couper la rainure est

$$r \leqslant a \sin \alpha$$

Soit $D:=\{(r,\alpha)\in [0,\ell]\times [0,\pi/2]\mid r\leqslant a\sin\alpha\}$, intuitivement la probabilité associée à cet événement est le quotient

$$\mathbb{P}(D) = \frac{Aire(D)}{l \cdot \pi/2}$$

οù

$$Aire(D) = \int_0^{\pi/2} \int_0^{asin\alpha} dr d\alpha = a[-\cos\alpha]_0^{\pi/2} = a$$

enfin $\mathbb{P}(D) = \frac{a}{l} \cdot \frac{2}{\pi}$

2 Algèbre de Boole, tribus et mesures de probabilités

Définition 1. Soit Ω un ensemble, une algèbre de Boole $\mathcal{A} \subseteq \mathcal{P}(\Omega)$ est une classe de parties de Ω contenant Ω et stable par passage au complémentaire et par réunion.

Exemple 1.

1.
$$\mathcal{A} = \mathcal{P}(\Omega)$$

2.
$$\mathcal{A} = \{\Omega, \emptyset\}$$

3. Si
$$A \subseteq \Omega$$
, $\mathcal{A} = \{A, A^c, \emptyset, \Omega\}$

Proposition 1. Soit A une algèbre de Boole

1.
$$\emptyset \in \mathcal{A}$$

- 2. A est clos par intersection
- 3. A est clos par intersection et réunion finie

Définition 2. Soit Ω un ensemble, une tribu ou σ -algèbre \mathcal{A} est une classe de parties de Ω telle que

- 1. $\Omega \in \mathcal{A}$ (on l'appelle l'univers)
- 2. \mathcal{A} soit stable par passage au complémentaire
- 3. \mathcal{A} soit stable par union dénombrable

Proposition 2. Soit A une σ -algèbre

- 1. $\emptyset \in \mathcal{A}$
- 2. A est stable par intersection
- 3. A est stable par intersection dénombrable

Exemple 2.

- $\mathcal{P}(\Omega)$
- $\{\emptyset, \Omega\}$

Remarque 1.

1. Soit $(A_n)_{n\in\mathbb{N}}$ une suite de parties de Ω et $E=\{\omega\in\Omega\mid\omega\text{ est dans une infinité d'ensembles }A_n\}$, on a

$$E = \bigcap_{n \in \mathbb{N}} \left(\bigcup_{k \geqslant n} A_k \right) = \limsup A_n$$

La suite $B_n = \bigcup_{k \geqslant n} A_k = A_n \cup B_{n+1}$ est décroissante.

2. $F = \{ \omega \in \Omega \mid \omega \text{ est dans tous les } A_n \text{ sauf un nombre fini d'entre eux} \}$

$$\omega \in \bigcup_{n \in \mathbb{N}} \left(\bigcap_{k \geqslant n} A_k \right) = \liminf(A_n)$$

Définition 3. Soit Ω un ensemble, $\mathcal{C} \subseteq \mathcal{P}(\Omega)$ une classe de parties de Ω . Il existe une plus petite tribu contenant \mathcal{C} , appelée tribu engendrée par \mathcal{C} et notée $\sigma(\mathcal{C})$, en notant \mathcal{T} l'ensemble des tribus contenant \mathcal{C} :

$$\sigma(\mathcal{C}) = \bigcap_{\mathcal{A} \in \mathcal{T}} \mathcal{A}$$

Remarque 2.

- Il y a toujours au moins une tribu qui contient $\mathcal{C}:\mathcal{P}(\Omega)$
- Si A_1 et A_2 sont deux tribus, $A_1 \cap A_2$ est encore une tribu.

Exemple 3. La tribu borélienne de \mathbb{R} notée $B(\mathbb{R})$ est la tribu de \mathbb{R} engendrée par les intervalles fermés bornés [a,b] avec $-\infty < a \le b < +\infty$.

Propriété 1.

 $B(\mathbb{R})$ contient les intervalles ouverts et semi-ouverts :

$$[a, b] = \bigcup_{n>0} [a, b - 1/n]$$

Définition 4. Un espace probabilisable est un ensemble Ω muni d'une tribu $\mathcal{A} \subseteq \mathcal{P}(\Omega)$.

Une probabilité (ou mesure de probabilité) sur (Ω, \mathcal{A}) est une application $\mathbb{P}: \mathcal{A} \longrightarrow [0, 1]$ vérifiant les propriétés suivantes :

- masse unitaire : $\mathbb{P}(\Omega) = 1$
- σ -additivité : si $(A_n)_n$ est une suite d'éléments disjoints de \mathcal{A} , alors

$$\mathbb{P}\left(\bigcup_{n\geqslant 0} A_n\right) = \sum_{n=0}^{\infty} \mathbb{P}(A_n)$$

Remarque 3. L'ordre de sommation de la suite $(\mathbb{P}(A_n))_n$ n'est pas important car on a là une série à termes positifs, donc absolument convergente et un théorème nous indique que pour toute série absolument convergente $\sum a_n$ et toute permutation σ de \mathbb{N} , on a

$$\sum a_n = \sum a_{\sigma(n)}$$

Proposition 3. Soit \mathbb{P} une probabilité sur (Ω, \mathcal{A}) , alors

- 1. $\mathbb{P}(\emptyset) = 0$
- 2. Si $A_1, A_2, ...A_n$ sont deux à deux disjoints, $\mathbb{P}(A_1 \cup A_2 \cup ...A_n) = \mathbb{P}(A_1) + \mathbb{P}(A_2) + ...\mathbb{P}(A_n)$
- 3. $\mathbb{P}(A^c) = 1 \mathbb{P}(A)$
- 4. Pour tout $A, B \in \mathcal{A} : \mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B) \mathbb{P}(A \cap B)$
- 5. Si $A \subseteq B$ alors $\mathbb{P}(A) \leqslant \mathbb{P}(B)$

6. Si $(A_n)_n$ est une suite de parties dans A qui ne sont pas nécessairement disjointes

$$\mathbb{P}\left(\bigcup_{n\geqslant 0}A_n\right)\leqslant \sum_0^\infty \mathbb{P}(A_n)$$

Preuve 1.

Montrons le point 4 : soient $A, B \in \mathcal{A}$, on a $A \cup B = (A) \sqcup (B \setminus (A \cap B))$ d'où $\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B \setminus (A \cap B))$, or $B = (A \cap B) \sqcup (B \setminus (A \cap B))$, alors $\mathbb{P}(B) = \mathbb{P}(A \cap B) + \mathbb{P}(B \setminus (A \cap B))$ et donc

$$\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B) - \mathbb{P}(A \cap B)$$

On en déduit 5.

Montrons les points 3 et $1: \mathbb{P}(A) = \mathbb{P}(A \sqcup A^c) = \mathbb{P}(A) + \mathbb{P}(A^c) = 1$, donc $\mathbb{P}(A^c) = 1 - \mathbb{P}(A)$.

Soit A_n une suite dans \mathcal{A} , on pose $A_1' = A_1$, $A_2' = A_2 \setminus A_1 = A_2 \cap A_1^c$, ... $A_n' = A_n \cap (A_1 \cup A_2 ... A_{n-1})^c$. Les A_k' sont deux à deux disjoints et $A_k' \subseteq A_k$ et donc

$$\mathbb{P}\left(\bigcup_{n\geqslant 0}A_n\right)\leqslant \sum_{n=0}^{\infty}\mathbb{P}\left(A_n\right)$$

Proposition 4. Soient $A_1, A_2, ... A_n$ des éléments de A, on a

$$\mathbb{P}\left(A_1 \cup A_2..A_n\right) = \sum_{k=1}^n (-1)^{k+1} \sum_{I \in \mathcal{P}_k(\llbracket 1, n \rrbracket)} \mathbb{P}\left(\bigcap_{i \in I} A_i\right)$$

Définition 5. Soit $\omega \in \Omega$, on pose

$$\mathbb{P}_{\omega}(A) = \begin{cases} 1 & \text{si } \omega \in A \\ 0 & \text{sinon} \end{cases}$$

C'est la masse de Dirac au point ω .

Soit $(\omega_n)_n$ une suite d'éléments distincts de Ω et $(\alpha_n)_n$ une suite de réels à valeurs dans [0,1] tels que $\sum_{n=0}^{\infty} \alpha_n = 1$, la fonction suivante est une probabilité :

$$\mathbb{P} = \sum_{n=0}^{\infty} \alpha_n \mathbb{P}_{\omega_n}$$

Preuve 2. En effet, \mathbb{P} vérifie les deux axiomes d'une mesure de probabilité :

$$\mathbb{P}(\Omega) = \sum_{n=0}^{\infty} \alpha_n \underbrace{\mathbb{P}_{\omega_n}(\Omega)}_{1} = \sum_{n=0}^{\infty} \alpha_n = 1$$

et pour toute suite d'éléments $(A_n)_n$ de \mathcal{A} deux à deux disjoints :

$$\begin{split} \mathbb{P}\left(\bigcup_{k\geqslant 0}A_k\right) &= \sum_{n=0}^\infty \alpha_n \mathbb{P}_{\omega_n}\left(\bigcup_{k\geqslant 0}A_k\right) \\ &= \sum_{n=0}^\infty \alpha_n \sum_{k=0}^\infty \mathbb{P}_{\omega_n}(A_k) \\ &= \sum_{n=0}^\infty \sum_{k=0}^\infty \alpha_n \mathbb{P}_{\omega_n}(A_k) \\ &= \sum_{k=0}^\infty \sum_{n=0}^\infty \alpha_n \mathbb{P}_{\omega_n}(A_k) \text{ car il s'agit d'une série à termes positifs} \\ &= \sum_{k=0}^\infty \mathbb{P}\left(A_k\right) \end{split}$$

Exemple 4. Loi de Poisson : $\alpha_n = \frac{\lambda^n}{n!} e^{-\lambda}$

Exemple 5. Équiprobabilité sur un ensemble fini

Soient
$$\Omega = \{\omega_1, ...\omega_n\}, \ \mathcal{A} = \mathcal{P}(\Omega), \ \mathbb{P} = \frac{1}{n} \sum_{k=1}^n \mathbb{P}_{\omega_k} \text{ et } \alpha_k = 1/n.$$
On retrouve $\mathbb{P}(A) = \frac{1}{n} \sum_{k=1}^n \mathbb{P}_{\omega_k}(A) = \frac{|A|}{n}$

Remarque 4. Lorsque Ω est un ensemble fini ou dénombrable, on prendra souvent $\mathcal{A} = \mathcal{P}(\Omega)$.

Exemple 6. Le paradoxe de Bertrand

Soit \mathcal{C} le cercle de centre O et de rayon 1. On considère les cordes [A, B] sur le cercle et on se pose la question suivante : quelle est la probabilité pour qu'une corde non-diamètre prise au hasard soit de longueur au moins $\sqrt{3}$? La corde est entièrement déterminée par la position de son milieu M car OAB est un triangle isocèle et M est le pied de la hauteur perpendiculaire à (OM).

Soit r = OM, la longueur de la corde ℓ vérifie

$$\frac{\ell}{2} = \sqrt{1 - r^2}$$

On déduit de $\ell/2 \geqslant \sqrt{3}$ l'inégalité $r \leqslant 1/2$.

On regarde les $M \in \overline{\mathcal{B}}_{1/2}(O)$, il y a plusieurs façons de choisir la probabilité :

- 1. L'aire du disque : $\frac{\pi \times 1/4}{\pi} = 1/4$
- 2. Si on paramètre M par ses coordonnées polaires dans $[0,1] \times [0,2\pi[$ et l'ensemble cherché $[0,1/2] \times [0,2\pi[$. Si on prend la mesure produit

$$\frac{1/2 \times \pi}{2\pi} = 1/2$$

Propriété 2. Soit $(A_n)_n$ une suite à valeurs dans une tribu \mathcal{A}

- $Si(A_n)_n$ est croissante, alors $\mathbb{P}\left(\bigcup A\right) = \lim_n \mathbb{P}(A_n)$
- $Si(A_n)_n$ est décroissante, alors $\mathbb{P}\left(\bigcap A\right) = \lim_n \mathbb{P}(A_n)$

Proposition 5. Soit $\mathbb{P}: \mathcal{A} \longrightarrow [0,1]$ vérifiant

- $\mathbb{P}(\Omega) = 1$
- $\mathbb{P}(A \sqcup B) = \mathbb{P}(A) + \mathbb{P}(B)$ pour tout éléments disjoints de A
- $Si\ (A_n)_n$ est une suite croissante de $\mathcal A$ alors $\lim \lim_n \mathbb P\left(A_n\right) = \mathbb P\left(\bigcup A\right)$

Rappels Dans un ensemble totalement ordonné de taille n, il existe $\binom{n}{k}$ suites strictement croissantes et $\binom{n+k-1}{k}$ largement croissantes.

L'équation $x_1 + x_2 + ... x_k = n$ admet $\binom{n+k-1}{k}$ solutions dans \mathbb{N}^k

2.1 Exemples de mesures de probabilités

Loi de Bernoulli : pile ou face

$$\Omega = \{0, 1\}, \mathbb{P}(()\{1\}) = p \in [0, 1] \text{ et } \mathbb{P}(\{0\}) = 1 - p.$$

Loi binomiale Soit E un ensemble à N éléments partitionné en deux ensembles E_1 et E_2 . On considère une suite de n tirages avec remise. Quelle est la probabilité pour que exactement k termes viennent de E_1 ?

$$\Omega = E^n$$
, Card $\Omega = N^n$ et $\mathcal{A} = \mathcal{P}(\Omega)$

- on choisit les éléments de E_1 qui se réalisent : $\vert E_1\vert^k$ choix
- on choisit à quels tirages ils se réalisent : $\binom{n}{k}$ choix
- on choisit les événements de ${\cal E}_2$ qui se réalisent : $|{\cal E}_2|^{n-k}$ choix

en divisant par le cardinal de Ω et en notant $M=\mathrm{Card}\ E_1$ on a comme probabilité pour un tel événement :

$$\binom{n}{k} \frac{M^k (N-M)^{n-k}}{N^n} = \binom{n}{k} \left(\frac{M}{N}\right)^k \left(1 - \frac{M}{N}\right)^{n-k} = \binom{n}{k} p^k (1-p)^{n-k}$$

On peut interpréter cette loi comme un loi de probabilité sur $\{0,1,...n\}$ ou pour tout k

$$\mathbb{P}\left(\left\{k\right\}\right) = \binom{n}{k} p^k (1-p)^{n-k}$$

Loi hypergéométrique On considère cette fois les tirages sans-remise, dont exactement k termes appartiennent à E_1 .

$$\Omega = \mathcal{P}_n(E)$$

Pour un tirage dont k éléments sont dans E_1 , on choisit k éléments **distincts** de E_1 : $\binom{N_1}{k}$ et le reste dans E_2 : $\binom{N-N_1}{n-k}$ la probabilité d'un tel événelent est ainsi

$$\frac{\binom{N}{k}\binom{N-N_1}{n-k}}{\binom{N}{n}}$$