参数更新公式

$$heta^{(t+1)} = heta^{(t)} - lpha
abla_{ heta^{(t)}} J$$

说明:

在第 t+1 步更新参数时,我们沿损失函数 J 的负梯度方向(下降最快方向)移动一小步(由学习率 α 控制),逐步降低损失函数值.

简单神经网络前向传播

$$m{x}:$$
 输入向量 $m{h} = f(m{W}m{x} + m{b}) \quad ($ 激活函数 $f)$ $m{s} = m{u}^Tm{h} \quad ($ 输出得分 $)$ $J_t(m{ heta}) = -\log \sigma(m{s}) \quad ($ 交叉熵损失 $)$ 其中 $\sigma(m{s}) = rac{1}{1 + \exp(-m{s})} \in (0,1]$

注:

- 最终输出通过 sigmoid 将得分映射为概率
- 损失函数应为负对数似然(修正原始公式)
- 完整训练需结合反向传播算法优化参数

🧠 常见 Non-linearities(激活函数)

名称	公式	图像特	优点	缺点
Sigmoid	$\sigma(x) = rac{1}{1+e^{-x}}$	S 型曲 线,输出 在 (0,1)	可解释为概率	梯度 消失、以为中心
Tanh	$ anh(x)=rac{e^x-e^{-x}}{e^x+e^{-x}}$	S 型曲 线,输出 在 (-1,1)	输出均值接近 0	仍有 梯度 消失 问题
ReLU(Rectified Linear Unit)	$\mathrm{ReLU}(x) = \mathrm{max}(0,x)$	左侧为 0,右侧 为直线	计算高效,缓解 梯度消失	负部无应经可死 经可死 死

名称	公式	图像特	优点	缺点
Leaky ReLU	$ ext{Leaky ReLU}(x) = egin{cases} x & x > 0 \ lpha x & x \leq 0 \end{cases}$	类似 ReLU, 但负值 有小斜 率	解决 ReLU 死 区问题	参数 α需 要调 参
ELU	$\mathrm{ELU}(x) = egin{cases} x & x > 0 \ lpha(e^x - 1) & x \leq 0 \end{cases}$	左侧指数下降, 右侧为 直线	输出均值接近 0,收敛快	计算 稍复 杂
Swish	$\mathrm{Swish}(x) = x \cdot \sigma(x)$	自门控 结构,平 滑连续	性能优于 ReLU	计算 成本 高
GELU	$\mathrm{GELU}(x) = x \cdot \Phi(x)$	类似 Swish, 基于正 态分布	表现优秀,广泛 用于 Transformer	计算 较复 杂
Softmax	$ ext{Softmax}(x_i) = rac{e^{x_i}}{\sum_j e^{x_j}}$	多分类 输出归 一化为 概率分 布	常用于最后一层	不适 合作

中文翻译

使用"交叉熵损失"进行训练 —— 你在 PyTorch 中经常用到它!

However, now, for deep networks, the first thing to try is ReLU: it trains quickly and performs well due to good gradient backflow.

ReLU has a negative "dead zone" that recent proposals mitigate

GELU is frequently used with Transformers (BERT, ROBERTa, etc.)

Non-linearities, old and new

• 到目前为止,我们的目标被表述为:最大化正确类别 y 的概率, 或者等价地,最小化该类别的负对数概率.

- 现在我们从信息论中的一个概念——交叉熵(Cross Entropy)的角度重新表述这个目标.
- 设真实概率分布为 p;模型输出的概率分布为 q.
- 交叉熵定义为:

$$H(p,q) = -\sum_i p_i \log q_i$$

- 假设真实标签(或称为目标、黄金标准)是一个 one-hot 分布,即在正确类别处为 1,其余为 0, 即 $p = [0, \dots, 0, 1, 0, \dots, 0]$.
- 因为 p 是 one-hot 向量,所以只剩下对应正确类别的那一项,即: **负对数似然(Negative Log-Likelihood)**: $-\log p(y|x)$

2.计算

梯度与雅可比矩阵

对于标量函数 $f(x) = f(x_1, \ldots, x_n)$,其梯度为:

$$f(oldsymbol{x}) = f(x_1, x_2, \dots, x_n) \
abla_{oldsymbol{x}} f = rac{\partial f}{\partial oldsymbol{x}} = \left[rac{\partial f}{\partial x_1}, \dots, rac{\partial f}{\partial x_n}
ight]$$

对于向量值函数 $\boldsymbol{f}(\boldsymbol{x}) = [f_1(\boldsymbol{x}), \ldots, f_m(\boldsymbol{x})]^T$,其雅可比矩阵为:

$$\mathbf{J}_{m{f}} = rac{\partial m{f}}{\partial m{x}} = egin{bmatrix} rac{\partial f_1}{\partial x_1} & \cdots & rac{\partial f_1}{\partial x_n} \ dots & \ddots & dots \ rac{\partial f_m}{\partial x_1} & \cdots & rac{\partial f_m}{\partial x_n} \end{bmatrix}$$
 $otag \
extrinspace{2mm}
extrinspace{2$

反向传播的链式法则示例

设 h = f(z),其中每个 $h_i = f(z_i)$,则导数为:

$$\frac{\partial h_i}{\partial z_j} = \begin{cases} f'(z_i) & \text{if } i = j \\ 0 & \text{otherwise} \end{cases}$$

对于复合函数 $h = f(\mathbf{W}\mathbf{x} + \mathbf{b})$,链式法则展开为:

$$rac{\partial m{h}}{\partial m{x}} = rac{\partial m{h}}{\partial m{z}} \cdot rac{\partial m{z}}{\partial m{x}}$$
对角矩阵 权重矩阵 $m{W}$

其中:

- z = Wx + b
- $\frac{\partial h}{\partial z}$ 是对角矩阵,对角线元素为 $f'(z_i)$
- $ullet rac{\partial z}{\partial x} = oldsymbol{W}$

反向传播的具体计算见 pdf 文件