

Functions and their timing

Time Complexity

In computer science, the time complexity is the computational complexity that describes the amount of time it takes to run an algorithm.

Time complexity is commonly estimated by counting the number of elementary operations performed by the algorithm, supposing that each elementary operation takes a fixed amount of time to perform

Big-O- Notation! O(n)

Name	Time Complexity
Constant	O(1)
Logarithmic	O(log n)
Linear	O(n)
Quadratic	O(n^2)
Exponential	O(2^n)

Speed is key!

Linear: Get the first value in a dataset

Logarithmic: Reducing size of input (skipping values in input)

Binary Search!

Linear Time: Use each value once

Quadratic: Linear time for each value in data: For x in data For y in data

Exponential: growth doubling in output! Recursive calculation of fibinaci

Common Data Structure Operations

Data Structure	Time Complexity							Space Complexity	
	Average				Worst				Worst
	Access	Search	Insertion	Deletion	Access	Search	Insertion	Deletion	
<u>Array</u>	Θ(1)	Θ(n)	θ(n)	Θ(n)	0(1)	0(n)	0(n)	0(n)	0(n)
<u>Stack</u>	Θ(n)	θ(n)	θ(1)	Θ(1)	0(n)	0(n)	0(1)	0(1)	0(n)
Queue	Θ(n)	Θ(n)	Θ(1)	Θ(1)	0(n)	0(n)	0(1)	0(1)	0(n)
Singly-Linked List	Θ(n)	Θ(n)	θ(1)	Θ(1)	0(n)	0(n)	0(1)	0(1)	0(n)
Doubly-Linked List	Θ(n)	θ(n)	Θ(1)	Θ(1)	0(n)	0(n)	0(1)	0(1)	0(n)
Skip List	$\theta(\log(n))$	$\theta(\log(n))$	θ(log(n))	Θ(log(n))	0(n)	0(n)	0(n)	0(n)	0(n log(n))
Hash Table	N/A	θ(1)	θ(1)	Θ(1)	N/A	0(n)	0(n)	0(n)	0(n)
Binary Search Tree	$\theta(\log(n))$	$\theta(\log(n))$	θ(log(n))	Θ(log(n))	0(n)	0(n)	0(n)	0(n)	0(n)
Cartesian Tree	N/A	$\theta(\log(n))$	θ(log(n))	$\theta(\log(n))$	N/A	0(n)	0(n)	0(n)	0(n)
B-Tree	$\theta(\log(n))$	$\theta(\log(n))$	$\theta(\log(n))$	$\theta(\log(n))$	0(log(n))	0(log(n))	O(log(n))	0(log(n))	0(n)
Red-Black Tree	$\theta(\log(n))$	$\theta(\log(n))$	θ(log(n))	Θ(log(n))	0(log(n))	0(log(n))	O(log(n))	0(log(n))	0(n)
Splay Tree	N/A	$\theta(\log(n))$	$\theta(\log(n))$	$\theta(\log(n))$	N/A	0(log(n))	0(log(n))	0(log(n))	0(n)
AVL Tree	$\theta(\log(n))$	$\theta(\log(n))$	θ(log(n))	$\theta(\log(n))$	0(log(n))	0(log(n))	O(log(n))	0(log(n))	0(n)
KD Tree	$\theta(\log(n))$	$\theta(\log(n))$	θ(log(n))	$\theta(\log(n))$	0(n)	0(n)	0(n)	0(n)	0(n)