Guião Projeto Experimental e Computacional*

Albertino Arteiro Carlos Fernandes Alexandre Afonso Marco Parente António Ramos Silva Pedro Marques

2 de março de $2022\,$

Conteúdo

1	Contexto	2
2	Introdução	2
3	Objetivos	3
4	Requisitos4.1 Propulsão4.2 Capacidade de transporte de carga4.3 Suspensão do tipo rocker-bogie4.4 Requisitos Dimensionais4.5 Sensores, actuadores e sistema de controlo	4 5
5	Ferramentas de Utilização Obrigatória 5.1 Programação	6
6	Gestão do projeto 6.1 Aquisição de componentes	
7	Classificação Final 7.1 Prova de obstáculos	9

^{*}Inspirado nos veículos da NASA (versão simplificada de um rover para exploração de Marte com suspensão Rocker-Bogie)

8 Anexo A 13

1 Contexto

No programa de Licenciatura em Engenharia Mecânica, os estudantes podem aprofundar os conhecimentos adquiridos ao longo do plano de estudos aplicando-os na realização do Projecto Experimental e Computacional. A variedade dos projetos que podem ser implementados é grande - desde veículos, robots e tecnologia médica. As ideias do projeto são propostas pelos professores ou estudantes, estando ainda prevista a possibilidade de colaboração com a indústria.

Divididos em equipas, os estudantes passam um semestre a desenvolver novas soluções técnicas para os seus respectivos projetos. Para além de tarefas de desenvolvimento complexas e desafios técnicos, os estudantes devem dominar o trabalho em equipa e crescer no seio do seu grupo ao longo do semestre. Para além das componentes técnicas, deverão também desenvolver competências complementares como gestão de projetos e marketing. Tal como na vida profissional, serão constantemente confrontados com novos problemas que precisam de ser resolvidos para que, no final do semestre, tenham um protótipo funcional que será posto à prova publicamente.

2 Introdução

Nos últimos anos, a NASA tem dedicado parte dos seus trabalhos à exploração de Marte. O explorador *Pathfinder* foi um dos primeiros a ser utilizado neste programa. Um *rover* de exploração deverá ser capaz de percorrer vários quilómetros em poucos meses e permitir a recolha de amostras de rochas e solo [1].

O objetivo das missões de um *rover* consistem em determinar a história geológica, climatológica e biológica do planeta Marte, e caracterizar os seus materiais próximos da superfície. A missão também fornecerá informações sobre o ambiente de Marte, e testará tecnologias chave para a exploração humana do planeta.

Os objetivos da missão são alcançados através da realização de análises *in situ*, e no regresso à Terra, de amostras selecionadas para estudos mais extensivos [2]. O *rover* poderá por isso estar equipado com uma câmara de imagem RGB, imagem multiespectral para ciência e navegação, microscópio óptico, espectrómetros (alfa, próton, neutrões, raio-X), sondas eletromagnéticas, analisador de gases, e calorímetro de varrimento diferencial.

O rover, Figura 1, atravessará a superfície de Marte, realizará análises in situ, enviará pacotes científicos, selecionará amostras e devolvê-las-á ao veículo de subida para entrega à Terra. Logo após a chegada, o rover irá também selecionar um local de aterragem para o Mars Ascent Vehicle (MAV).

Com o objetivo de construir um *rover*, o seu desenho e respetivos requisitos são descritos em mais pormenor na secção seguinte.

Figura 1: Rover Spirit and Opportunity para exploração de Marte [3]

3 Objetivos

Um rover deverá ser equipado com capacidade de navegação semi-autónoma, o que significa que pode planear e executar um caminho em direção a um ponto designado. Esta autonomia aumenta grandemente o alcance do rover, uma vez que reduz a necessidade de comandos frequentes a partir da Terra. Teoricamente, o rover pode percorrer vários quilómetros sem necessidade de intervenção humana a partir da Terra. Um possível sistema de mobilidade do rover é um mecanismo do tipo rocker-bogie de seis rodas, com capacidade de se mover através de terrenos acidentados [2].

O rover deverá possuir, obrigatoriamente, os seguintes elementos [3]:

- corpo: uma estrutura que protege os "órgãos vitais" do rover;
- cérebro: computadores programados para processar informação;
- medição de temperatura ambiente;
- "pescoço e cabeça": um mastro para uma máquina fotográfica de modo a conferir ao rover uma visão "humana";

- rodas e "pernas": para assegurar a sua mobilidade;
- energia: baterias (e painéis solares);
- comunicações: antenas para "falar" e "ouvir".

Para o Projeto Experimental e Computacional é esperado que o *rover* cumpra os seguintes objetivos:

- navegação (semi-)autónoma ao longo de um percurso sinuoso, a revelar aquando da prova final;
- capacidade de fotografar o terreno;
- transportar um recipiente aberto no topo, transportando 1.2 L de água, sem que ocorra derramamento ao longo da missão.

4 Requisitos

4.1 Propulsão

O sistema deve possuir propulsão autónoma com recurso a motores elétricos alimentados por bateria. Os sistemas de propulsão do *rover* são tipicamente aplicados diretamente em cada roda. No entanto, os estudantes são livres de definir o sistema de tração das rodas. O *rover* pode possuir entre 3 a 8 rodas sendo a justificação da escolha um dos parametros em avaliação.

4.2 Capacidade de transporte de carga

O rover deverá estar capacitado para transportar 1.2 L de água, necessária para a missão. Esta não deve ser derramada. Caso tal aconteça a integridade e bom funcionamento do rover não devem ficar comprometidas.

4.3 Suspensão do tipo rocker-bogie

Para poder percorrer terrenos particularmente difíceis e incertos, o rover de exploração deverá possuir um sistema de suspensão do tipo rocker-bogie [4, 5, 6, 7], tal como ilustrado na Figura 2. As proporções entre as dimensões deverão ser definidas pelos estudantes de acordo com o comportamento cinemático e dinâmico que pretendem conferir ao seu rover. Podem ser desenvolvidos sistemas baseados em variações deste tipo de suspensão e com um número de rodas diferente de 6.

Figura 2: (a) Diagrama esquemático de um sistema *rocker-bogie* e (b) caso particular de elevação da terceira roda ligada ao balancim (*rocker*) [8]

4.4 Requisitos Dimensionais

O protótipo deverá cumprir os seguintes requisitos dimensionais:

- \bullet Distância entre cada "eixo" do $bogie~(w) \colon [200\,\mathrm{mm}~;\,300\,\mathrm{mm}]$
- \bullet Altura (h): $[250\,\mathrm{mm}$; $300\,\mathrm{mm}]$
- $\bullet\,$ Comprimento total máximo: $750\,\mathrm{mm}$
- Largura total máxima: 750 mm
- $\bullet\,$ Massa total máxima sem carga: 7.5 kg

4.5 Sensores, actuadores e sistema de controlo

Para a movimentação e controlo do veículo serão disponibilizados diversos componentes como: rodas, motores, condicionadores de sinal, baterias, conectores etc...

Além dos elementos fornecidos os grupos podem desenvolver elementos à medida como: rodas, circuitos electrónicos, "sensores" etc...

Todos os elementos disponíveis serão indicados antes do início dos trabalhos, juntamente com os links para o fornecedor dos componentes e as suas folhas de características.

Grande parte destes elementos são para integrar com a família arduino, estando toda a informação disponível online.

Se necessário poderão ser fornecidos componentes extra ficando condicionado a: i) a justificação adequada para a sua utilização face as alternativas existentes e ii) os elementos estarem disponíveis para entrega atempada.

5 Ferramentas de Utilização Obrigatória

5.1 Programação

A Faculdade de Engenharia da Universidade do Porto permite aos seus alunos o acesso a um alargado conjunto de ferramentas computacionais que permitem a realização do Projeto Experimental e Computacional. O protótipo a materializar requer a execução de um conjunto de tarefas para as quais a utilização de linguagens de programação são especialmente úteis. Nomeadamente:

- dimensionamento da estrutura e dos diversos órgãos de máquinas;
- estudo do comportamento dinâmico do rover;
- programação do(s) elementos de comando e controlo utilizando a plataforma arduino ou similar.

Os estudantes podem desenvolver a sua própria programação ou fazer uso de exemplos ou trabalhos encontrados em páginas de Internet ou exemplos e outra origem. Sempre que não forem utilizadas programações feitas pelos próprios ou forem baseadas em outros estas devem ser devidamente referenciadas no relatório. Qualquer que seja a linguagem utilizada, devem sempre ser inseridos comentários para facilitar a interpretação do código ou do diagrama de blocos.

5.2 Desenhos de conjunto e desenhos de fabrico

Recorrendo às ferramentas CAD disponíveis na Faculdade de Engenharia da Universidade do Porto, para a construção dos diversos elementos os alunos deverão realizar:

- o desenho de conjunto do protótipo;
- os desenhos de fabrico de todos os componentes:
 - método do primeiro diedro;
 - cotagem com toleranciamento dimensional e geométrico;
 - lista de referências com a designação adequada de todos os componentes normalizados.

5.3 Fabricação de um protótipo funcional

Os alunos deverão utilizar os processos de fabrico que garantam a melhor funcionalidade ao protótipo. No entanto, deverão dar especial atenção aos seguintes pontos:

- peso do conjunto;
- estabilidade e fiabilidade;
- facilidade de execução;
- orçamento disponível;
- requisitos presentes no guião.

Não obstante os pontos acima referidos, os alunos deverão procurar empreender diferentes materiais e técnicas de fabrico na construção do seu protótipo. Relativamente aos materiais, deverão conceber obrigatoriamente, um componente do protótipo com cada um dos seguintes materiais:

- Materiais metálicos, por exemplo:
 - aço;
 - alumínio;
 - ligas de cobre/zinco.
- Materiais não metálicos, por exemplo:
 - polímeros.
- Materiais reciclados:
 - utilizar e adaptar um componente usado para cumprir uma nova funcionalidade

Quanto aos processos de fabrico, deverão procurar empreender:

- maquinagem dos componentes metálicos ou poliméricos;
- impressão 3D;
- processos de ligação.

6 Gestão do projeto

Encontra-se disponível nos conteúdos da unidade curricular um exemplo de um diagrama de *Gantt* para os estudantes poderem gerir as tarefas e etapas (*milestones*) do projeto. O diagrama de *Gantt* deverá ser modificado de acordo com os planos da equipa para ser incluído no relatório final.

É sugerido que em cada etapa as equipas completem as seguintes tarefas:

- MS1 Relatório de conceito
 - 1. Definição do sistema de propulsão
 - 2. Definição do sistema de transporte de carga
 - 3. Definição do sistema de suspensão
 - 4. Definição das dimensões do protótipo
 - 5. Definição do sistema de controlo
 - 6. Selecção de materiais
 - 7. Lista de componentes, incluindo sensores e actuadores
- MS2 Desenho de definição
- MS3 Relatório de testes de validação
 - 1. Prova de conceito
 - 2. Protótipo final

6.1 Aquisição de componentes

A escolha dos componentes necessários deverá ser definida durante a etapa MS1 descrita no ponto anterior. Após esta selecção deverá ser comunicado à equipa docente a lista de componentes a adquirir pela Faculdade de Engenharia da Universidade do Porto para que possam prosseguir o projeto.

A lista de componentes disponíveis na Faculdade de Engenharia para utilização e teste dos estudantes encontra-se no Anexo 8. Os componentes a utilizar no projeto da equipa devem ser escolhidos no catálogo das empresas enunciadas na tabela 1:

6.2 Impressão 3D de componentes

A impressão 3D de componentes deve ser calendarizada de acordo com a taxa de ocupação da impressora disponível para a Unidade Curricular. Para efetuar a calendarização, os estudantes deverão fazer a marcação no calendário disponível no *Moodle* da unidade curricular e submeter o ficheiro de impressão em formato ".gcode". Para a criação do programa de impressão deverão instalar o *software* "Prusa Slicer".

Tabela 1: lista de fornecedores

fornecedor	componentes	link
Botnroll	componentes eletrónicos e outros	https://www.botnroll.com/pt/
Aquario	componentes eletrónicos e outros	https://www.aquario.pt/
Ptrobotics	componentes eletrónicos e outros	https://www.ptrobotics.com/
Juncor	acessórios industriais e agricolas	https://www.juncor.pt/
Fabory	elementos de fixação	https://www.fabory.com/en
Ramada	aços e alumínios	https://www.ramada.pt/pt/
SOVE	plásticos técnicos	https://www.sove.pt

7 Classificação Final

A classificação final individual será atribuída tal como indicado pela equação 1:

$$CF = I \times 0.15 + R \times 0.35 + P \times 0.5$$
 (1)

onde:

- I classificação individual atribuída pelo(s) mentor(es) do grupo;
- R classificação do relatório de grupo;
- P classificação da prova de obstáculos de acordo com a equação 2

O relatório (**R**) será classificado tendo em consideração os seguintes critérios.

- R1 Clareza e objetividade de exposição de ideias e conteúdos;
- R2 Conteúdos apresentados;
- R3 Justificação das opções tomadas e elementos de ponderação;
- R4 Organização e design.

A avaliação dos parâmetros referentes à prova de obstáculos (\mathbf{P}) , será atribuída de acordo com os seguintes critérios:

- P1 O rover que obtiver melhor desempenho para um determinado parâmetro obterá a classificação de 20 valores;
- P2 Para o ponto anterior apenas serão considerados os *rovers* que terminem o percurso de obstáculos;
- P3 A nota para um determinado parâmetro (**E**, **T** ou **M**) será calculada utilizando: o resultado obtido pelo grupo, o valor do melhor classificado, e a variação relativa entre eles. A nota de um grupo é obtida utilizando os percentis apresentados na tabela 2.

P4 O júri pode atribuir uma classificação extra de até 2 (dois) para a classificação da prova pelo desempenho global do *rover*.

$$P = E \times 0.3 + M \times 0.3 + T \times 0.4; \tag{2}$$

E – estabilidade demonstrada durante o teste, calculada através da equação 3;

$$\mathbf{E} = \frac{V_{\text{liquido remanescente}}}{V_{\text{liquido inicial (1,2L)}}} \times 20; \tag{3}$$

M – massa do rover, incluindo baterias totalmente carregadas e a sua autonomia sem o recipiente de liquido.

T – classificação obtida para o tempo demorado a terminar o percurso. Ultrapassado o tempo limite ou não terminado o percurso a classificação será 7 valores.

Percentil	Variação relativa	Nota
A	5 %	20
В	5-10%	19
С	10-20%	17
D	20-40%	15
E	40-60 %	14
F	60-100 %	12
G	restantes	10

Tabela 2: Tabela de percentis

7.1 Prova de obstáculos

Para avaliar o desempenho do rover será criada uma pista de obstáculos com aproximadamente 10 metro. Os obstáculos serão semelhantes aos apresentados. Durante o semestre estará disponível uma pista, em conceito igual à que será utilizada durante a avaliação, para testes de desenvolvimento. A pista de obstáculos permitirá três tipos de caminhos: directo, acidentado, plano, cada um será marcada com uma de três cores. Os alunos podem desenvolver o rover para seguir um desses caminhos pré-concebidos ou possuir navegação autónoma (não utilizando estas marcações de cores). A navegação autónoma, bem-sucedida, implica uma classificação extra de 3 valores desde que a classificação final não ultrapasse os 20 valores. O rover deve possuir um topo plano com uma área de 150 × 150 milímetros para a colocação do recipiente de água destapado (semelhante a um gobelé). A protecção dos elementos eléctricos e electrónicos deve ser acautelada e será uma dos parâmetros analisados durante a avaliação do projecto.

Figura 3: conceito da pista de obstáculos

Referências

- [1] Verma, Abhisek, Chandrajeet Yadav, Bandana Singh, Arpit Gupta, Jaya Mishra e Abhishek Saxena: *Design of Rocker-Bogie Mechanism*. International Journal of Innovative Science and Research Technology, 2(5):312–338, 2017.
- [2] Schock, A., V. Sankarankandath e M. Shirbacheh: Requirements and designs for Mars Rover RTGs. Em Proceedings of the 24th Intersociety Energy Conversion Engineering Conference, páginas 2681–2691 vol.6, 1989.
- [3] Spirit and Opportunity: Twin Mars Exploration Rovers. https://mars.nasa.gov/mer/mission/rover/. Accessed: 2021-07-01.
- [4] Harrington, Brian D. e Chris Voorhees: The Challenges of Designing the Rocker-Bogie Suspension for the Mars Exploration Rover. Proceedings of the 37th Aerospace Mechanisms Symposium, páginas 185–195, 2004.
- [5] Nayar, Hari, Junggon Kim, Brendan Chamberlain-Simon, Kalind Carpenter, Michael Hans, Anna Boettcher, Gareth Meirion-Griffith, Brian Wilcox e Brian Bittner: *Design optimization of a lightweight rocker-bogie rover for ocean worlds applications*. International Journal of Advanced Robotic Systems, 16(6):1–20, 2019, ISSN 17298814.
- [6] Yadav, Nitin, Balram Bhardwaj e Suresh Bhardwaj: Design analysis of Rocker Bogie Suspension System and Access the possibility to implement in Front Loading Vehicles. IOSR Journal of Mechanical and Civil Engineering Ver. III, 12(3):2278–1684, 2015.
- [7] Shivam, Jinde Akhil Kumar, Prakash Subramaniam, Lilly Mercy e S. Durai Raj: *Design* and fabrication of smart rover using rocker bogie mechanism. AIP Conference Proceedings, 2311(December), 2020, ISSN 15517616.
- [8] Choi, Dongkyu, Young Seog Kim, Se Jung Jung, H. Kim e Jongwon Kim: R-Mo: A new mobile robotic platform to reduce variations in height and pitch angle on rugged terrain.

 $2015~\mathrm{IEEE/RSJ}$ International Conference on Intelligent Robots and Systems (IROS), páginas $4343-4348,\,2015.$

8 Anexo A

Projeto Experimental & Computacional (L.EM031) Lista de componentes disponíveis

Referência	Fornecedor	Link/descrição	Pre (€)	eço Unit
MOT01063	Botnroll	Módulo Driver Motores L298N	€	7.90
MOT02067	Botnroll	Arduino Mega 2560 R3 Compatível com driver CH340 e Cabo USB	€	2.90
ARD02095	Botnroll	Arduino Mega 2560 R3 Compatível com driver CH340 e Cabo USB	€	21.50
SEN03024	Botnroll	Sensor Seguidor de Linha	€	6.50
B0067	Botnroll	ArduCAM Mini Camera Module Shield w/ 2 MP OV2640 for Arduino		
CEL01005	Botnroll	Breadboard 830 Pontos Transparente	€	5.90
2330006		Amortecedores em Alumínio (85mm) 1,	€	11.34
COM01018	Botnroll	Módulo Bluetooth HC-05 para Arduino	€	6.80
BAT02010	Botnroll	Hacker LiPoBattery 7.4 V / 900mAh Fios jumper flat-cable M/F 40 pinos	€	11.95
CAB01047	Botnroll	20cm Fios Jumper flat-cable M/M 40 pinos	€	3.65
CAB01048	Botnroll	<u>20cm</u>	€	3.65
51050.030.050	Fabory	DIN 912 Aço inoxidável (Inox) A2 70 M3	€	9.80
51050.030.020	Fabory	DIN 912 Aço inoxidável (Inox) A2 70 M3		3.70
51050.050.050	Fabory	DIN 912 Aço inoxidável (Inox) A2 Min.50		8.90
51060.030.020	Fabory	ISO 10642 Aço inoxidável (Inox) A2 M3X		2.45
51060.050.030	Fabory	ISO 10642 Aço inoxidável (Inox) A2 M5X		4.80
20300.030.001	Fabory	1 metro DIN 976-1A Aço Zincado 4.8 M	€	6.70
20300.050.001	Fabory	1 metro DIN 976-1A Aço Zincado 4.8 M	€	6.30
01300.030.001	Fabory	DIN 934 Aço Zincado 8 M3	€	1.38
01300.050.001	Fabory	DIN 934 Aço Zincado 8 M5	€	2.25
51730.030.001	Fabory	DIN 985 Aço inoxidável (Inox) A2 M3	€	4.50
51730.050.001	Fabory	DIN 985 Aço inoxidável (Inox) A2 M5	€	4.40

Projeto Experimental & Computacional (L.EM031) Lista de fornecedores

Fornecedor	componentes	link
Botnroll	Componentes eletronicos e outros	https://www.botnroll.com/pt/
Aquario	Componentes eletronicos e outros	https://www.aquario.pt/
Ptrobotics	Componentes eletronicos e outros	https://www.ptrobotics.com/
SKF	Rolamentos e chumaceiras	https://www.skf.com/pt
Fabory	Elementos de fixação	https://www.fabory.com/en
Ramada	Aços e aluminios	https://www.ramada.pt/pt/
SOVE	platicos técnicos	https://www.sove.pt/