Методы оптимизации. Семинар 6. Выпуклые функции.

Александр Катруца

Московский физико-технический институт, Факультет Управления и Прикладной Математики

10 октября 2017 г.

Напоминание

- Производная по скаляру
- Производная по вектору
- Производная по матрице
- Производная сложной функции

Определения функций

Выпуклая функция

Функция $f: X \subset \mathbb{R}^n \to \mathbb{R}$ называется выпуклой (строго выпуклой), если X — выпуклое множество и для $\forall \mathbf{x}_1, \mathbf{x}_2 \in X$ и $\alpha \in [0,1]$ ($\alpha \in (0,1)$) выполнено: $f(\alpha \mathbf{x}_1 + (1-\alpha)\mathbf{x}_2) \leq (<) \alpha f(\mathbf{x}_1) + (1-\alpha)f(\mathbf{x}_2)$

Вогнутая функция

Функция f вогнутая (строго вогнутая), если -f выпуклая (строго выпуклая).

Сильно выпуклая функция

Функция $f:X\subset\mathbb{R}^n\to\mathbb{R}$ называется сильно выпуклой с константой m>0, если X — выпуклое множество и для $\forall \mathbf{x}_1,\mathbf{x}_2\in X$ и $\alpha\in[0,1]$ выполнено:

$$f(\alpha \mathbf{x}_1 + (1 - \alpha)\mathbf{x}_2) \le \alpha f(\mathbf{x}_1) + (1 - \alpha)f(\mathbf{x}_2) - \frac{m}{2}\alpha(1 - \alpha)\|\mathbf{x}_1 - \mathbf{x}_2\|_2^2$$

Определения множеств

Надграфик (эпиграф)

Надграфиком функции f называется множество ері $f = \{(\mathbf{x}, y) : \mathbf{x} \in \mathbb{R}^n, \ y \in \mathbb{R}, \ y \geq f(\mathbf{x})\} \subset \mathbb{R}^{n+1}$

Множество подуровней (множество Лебега)

Множество подуровня функции f называется следующее множество $C_{\gamma} = \{\mathbf{x} | f(\mathbf{x}) \leq \gamma\}.$

Квазивыпуклая функция

Функция f называется квазивыпуклой, если её область определения и множество подуровней для любых γ выпуклые множества.

Критерии выпуклости

Дифференциальный критерий первого порядка

Функция f выпукла \Leftrightarrow она определена на выпуклом множестве X и $\forall \mathbf{x}, \mathbf{y} \in X \subset \mathbb{R}^n$ выполнено:

$$f(\mathbf{y}) \geq f(\mathbf{x}) + \nabla f^{\mathsf{T}}(\mathbf{x})(\mathbf{y} - \mathbf{x})$$

Дифференциальный критерий второго порядка

Непрерывная и дважды дифференцируемая функция f выпукла \Leftrightarrow она определена на выпуклом множестве X и $\forall \mathbf{x}, \mathbf{y} \in \mathbf{relint}(X) \subset \mathbb{R}^n$ выполнено: $\nabla^2 f(\mathbf{x}) \succ 0$.

Связь с надграфиком

Функция выпукла ⇔ её надграфик выпуклое множество.

Ограничение на прямую

Функция $f:X\to\mathbb{R}$ выпукла тогда и только тогда, когда X выпуклое множество и выпукла функция $g(t)=f(\mathbf{x}+t\mathbf{v})$ на множестве $\{t|\mathbf{x}+t\mathbf{v}\in X\}$ для всех $\mathbf{x}\in X$ и $\mathbf{v}\in\mathbb{R}^n$.

Критерии сильной выпуклости

Дифференциальный критерий первого порядка

Функция f сильно выпукла с константой $m \Leftrightarrow$ она определена на выпуклом множестве X и $\forall \mathbf{x}, \mathbf{y} \in X \subset \mathbb{R}^n$ выполнена:

$$f(\mathbf{y}) \ge f(\mathbf{x}) + \nabla f^{\mathsf{T}}(\mathbf{x})(\mathbf{y} - \mathbf{x}) + \frac{m}{2} \|\mathbf{y} - \mathbf{x}\|^2$$

Дифференциальный критерий второго порядка

Непрерывная и дважды дифференцируемая функция f сильно выпукла с константой $m \Leftrightarrow$ она определена на выпуклом множестве X и $\forall \mathbf{x} \in \mathbf{relint}(X) \subset \mathbb{R}^n$ выполнено:

$$\nabla^2 f(\mathbf{x}) \succeq m\mathbf{I}$$
.

Примеры

- 1. Квадратичная функция: $f(x) = \frac{1}{2} \mathbf{x}^\mathsf{T} \mathbf{P} \mathbf{x} + \mathbf{q}^\mathsf{T} \mathbf{x} + r$, $x \in \mathbb{R}^n$, $P \in S^n$
- 2. Нормы в \mathbb{R}^n
- 3. $f(\mathbf{x}) = \log(e^{x_1} + \ldots + e^{x_n}), \mathbf{x} \in \mathbb{R}^n$ гладкое приближение максимума
- 4. Логарифм детерминанта: $f(X) = -\log \det X$, $X \in S_{++}^n$
- 5. Множество выпуклых функций выпуклый конус
- 6. Поэлементный максимум выпуклых функций: $f(\mathbf{x}) = \max\{f_1(\mathbf{x}), f_2(\mathbf{x})\}, \text{ dom } f = \text{dom } f_1 \cap \text{dom } f_2$
- 7. Расширение на бесконечное множество функций: если для $\mathbf{y} \in \mathcal{A}$ функция $f(\mathbf{x}, \mathbf{y})$ выпуклая функция по \mathbf{x} , тогда $\sup f(\mathbf{x}, \mathbf{y})$ выпукла по \mathbf{x}
- 8. Максимальное собственное значение: $f(\mathbf{X}) = \lambda_{\max}(\mathbf{X})$

Неравенство Йенсена

Неравенство Йенсена

Для выпуклой функции f выполнено следующее неравенство:

$$f\left(\sum_{i=1}^n \alpha_i \mathbf{x}_i\right) \leq \sum_{i=1}^n \alpha_i f(\mathbf{x}_i),$$

где $\alpha_i \geq 0$ и $\sum\limits_{i=1}^n \alpha_i = 1.$

или в бесконечномерном случае: $p(x) \geq 0$ и $\int\limits_{x} p(x) = 1$

$$f\left(\int\limits_X p(x)xdx\right)\leq \int\limits_X f(x)p(x)dx$$

при условии, что интегралы существуют.

Примеры

- 1. Неравенство Гёльдера
- 2. Неравенство о среднем арифметическом и среднем геометрическом
- 3. $f(\mathbf{E}(x)) \leq \mathbf{E}(f(x))$
- 4. Выпуклость множества $\{\mathbf{x}|\prod_{i=1}^n x_i \geq 1\}$

Резюме

- Выпуклая функция
- Надграфик и множество подуровня функции
- Критерии выпуклости функции
- Неравенство Йенсена