Compositionality and algebraic properties of process operations

Ichiro Hasuo, Bart Jacobs and Ana Sokolova SOS group, Radboud University Nijmegen

LTS, synchronous parallel |, with $A(\cdot)$ commutative, partial

$$x \mid y \xrightarrow{a} x' \mid y' \iff x \xrightarrow{b} x', y \xrightarrow{c} y', a = b \cdot c$$

LTS, synchronous parallel |, with $A(\cdot)$ commutative, partial

$$x \mid y \xrightarrow{a} x' \mid y' \iff x \xrightarrow{b} x', y \xrightarrow{c} y', a = b \cdot c$$

Compositionality: $x \sim x', y \sim y' \implies x \mid y \sim x' \mid y'$

LTS, synchronous parallel |, with $A(\cdot)$ commutative, partial

$$x \mid y \xrightarrow{a} x' \mid y' \iff x \xrightarrow{b} x', y \xrightarrow{c} y', a = b \cdot c$$

Compositionality: $x \sim x', y \sim y' \implies x \mid y \sim x' \mid y'$

Commutativity: $x \mid y \sim y \mid x$

LTS, synchronous parallel |, with $A(\cdot)$ commutative, partial

$$x \mid y \xrightarrow{a} x' \mid y' \iff x \xrightarrow{b} x', y \xrightarrow{c} y', a = b \cdot c$$

Compositionality: $x \sim x', y \sim y' \implies x \mid y \sim x' \mid y'$

Commutativity: $x \mid y \sim y \mid x$

in a coalgebraic setting

How to ...

get a process operation on coalgebras which is compositional with algebraic properties?

How to ...

get a process operation on coalgebras which is compositional with algebraic properties?

By recognizing structure on the

- base category
- functor the type of coalgebras

Symmetric category:

Symmetric category:

Symmetric category:

Symmetric category:

Example: $\langle \mathbf{Sets}, \times, \gamma \rangle$, $\gamma(\langle x, y \rangle) = \langle y, x \rangle$

Semigroup category:

Semigroup category:

Semigroup category:

Semigroup category:

Example: $\langle \mathbf{Sets}, \times, \alpha \rangle$, $\alpha(\langle x, \langle y, z \rangle) = \langle \langle x, y \rangle, z \rangle$

symmetric functor F on a symmetric category with

$$s: F(-) \otimes F(+) \Rightarrow F(-\otimes +)$$

symmetric functor *F* on a symmetric category with

$$s: F(-) \otimes F(+) \Rightarrow F(-\otimes +)$$

such that

$$FX \otimes FY \xrightarrow{s} F(X \otimes Y)$$

$$\uparrow \qquad \qquad \downarrow F\gamma$$

$$FY \otimes FX \xrightarrow{s} F(Y \otimes X)$$

semigroup functor F on a semigroup category with

$$s: F(-) \otimes F(+) \Rightarrow F(-\otimes +)$$

semigroup functor F on a semigroup category with

$$s: F(-) \otimes F(+) \Rightarrow F(-\otimes +)$$

such that

 $\overline{A \times \underline{\hspace{0.5cm}} + 1}$ on Sets, given a partial \cdot on \overline{A} , with

$$s_{X,Y}: (A \times X + 1) \times (A \times Y + 1) \rightarrow A \times (X \times Y) + 1$$

defined by

$$s_{X,Y}(\langle u,v\rangle) = \begin{cases} \langle c,\langle x,y\rangle\rangle & u = \langle a,x\rangle,\ v = \langle b,y\rangle,\ c = a\cdot b \in A \\ * & \text{otherwise} \end{cases}$$

 $A \times \underline{\hspace{0.5cm}} + 1$ on Sets, given a partial \cdot on A, with

$$s_{X,Y}: (A \times X + 1) \times (A \times Y + 1) \rightarrow A \times (X \times Y) + 1$$

defined by

$$s_{X,Y}(\langle u,v\rangle) = \begin{cases} \langle c,\langle x,y\rangle\rangle & u = \langle a,x\rangle,\ v = \langle b,y\rangle,\ c = a\cdot b \in A \\ * & \text{otherwise} \end{cases}$$

- is a symmetric functor for $A(\cdot)$ partially commutative
- is a semigroup functor for $A(\cdot)$ a partial semigroup

Coalgebra structure

Result: If \mathbb{C} and F have structure (sym./sem./mon.) then $Coalg_{\mathcal{F}}$ has structure (sym./sem./mon.) with

$$\langle X, c_X \rangle \otimes \langle Y, c_Y \rangle = \langle X \otimes Y, s \circ (c_X \otimes c_Y) \rangle$$

Coalgebra structure

Result: If \mathbb{C} and F have structure (sym./sem./mon.) then $Coalg_{\mathcal{F}}$ has structure (sym./sem./mon.) with

$$\langle X, c_X \rangle \otimes \langle Y, c_Y \rangle = \langle X \otimes Y, s \circ (c_X \otimes c_Y) \rangle$$

Hence: process operations on F-coalgebras!

for $F = A \times _ + 1$ in Sets we get

parallel composition of deterministic systems

for $F = A \times _ + 1$ in Sets we get

parallel composition of deterministic systems

$$x \mid y \xrightarrow{a} x' \mid y' \iff x \xrightarrow{b} x', y \xrightarrow{c} y', a = b \cdot c$$

for $F = A \times _ + 1$ in Sets we get

parallel composition of deterministic systems

$$x \mid y \xrightarrow{a} x' \mid y' \iff x \xrightarrow{b} x', y \xrightarrow{c} y', a = b \cdot c$$

Note: $x \mid y$ denotes the state $\langle x, y \rangle$ in the composite coalgebra.

• \mathbb{C} , F - with structure (sym./sem./mon.)

- \mathbb{C} , F with structure (sym./sem./mon.)
- final coalgebra exists $C_Z = \langle Z, \zeta \rangle$

- ullet C, F with structure (sym./sem./mon.)
- final coalgebra exists $C_Z = \langle Z, \zeta \rangle$

- ullet C, F with structure (sym./sem./mon.)
- final coalgebra exists $C_Z = \langle Z, \zeta \rangle$
- $\parallel = \mathrm{beh}_{Z \otimes Z} : C_Z \otimes C_Z \to C_Z$ is the f.c.s. map

- ullet C, F with structure (sym./sem./mon.)
- ullet final coalgebra exists $C_Z = \langle Z, \zeta
 angle$
- $\|=\mathrm{beh}_{Z\otimes Z}:C_Z\otimes C_Z\to C_Z$ is the f.c.s. map

Then: $\langle Z, \zeta \rangle$ with \parallel is a sym./sem./mon. object in Coalg $_{\mathcal{F}}$

 \bullet \mathbb{C} , F - with structure (sym./sem./mon.)

- \mathbb{C} , F with structure (sym./sem./mon.)
- ullet final coalgebra exists $C_Z = \langle \overline{Z, \zeta} \rangle$

- \mathbb{C} , F with structure (sym./sem./mon.)
- final coalgebra exists $C_Z = \langle Z, \zeta \rangle$
- $\|: C_Z \times C_Z \to C_Z$ is an operation

- \mathbb{C} , F with structure (sym./sem./mon.)
- ullet final coalgebra exists $C_Z = \langle Z, \zeta
 angle$
- $\|: C_Z \times C_Z \to C_Z \text{ is an operation}\|$

Then:
$$x \parallel y = y \parallel x$$
 $x \parallel (y \parallel z) = (x \parallel y) \parallel z \dots$ algebraic properties hold in $C_Z(\parallel)$

In Sets...

- \mathbb{C} , F with structure (sym./sem./mon.)
- final coalgebra exists $C_Z = \langle Z, \zeta \rangle$
- $\|: C_Z \times C_Z \to C_Z \text{ is an operation}\|$

Also:
$$x \mid y \sim y \mid x$$
 $x \mid (y \mid z) \sim (x \mid y) \mid z \dots$ in any composite coalgebra

Beh. of the components \Rightarrow beh. of the composite

Beh. of the components \Rightarrow beh. of the composite

If: \mathbb{C} , F - with structure, final exists

Beh. of the components ⇒ beh. of the composite

If: \mathbb{C} , F - with structure, final exists

Then: $beh_{X \otimes Y} = \| \circ (beh_X \otimes beh_Y) \|$

Beh. of the components \Rightarrow beh. of the composite

If: \mathbb{C} , F - with structure, final exists

Then: $beh_{X \otimes Y} = || \circ (beh_X \otimes beh_Y)$

In Sets: $x \sim x', y \sim y' \Rightarrow x \mid y \sim x' \mid y'$

bisimilarity (the f.c.s.) is a congruence

(Plotkin, Turi)

In $\mathcal{K}\ell(T)$, trace semantics is f.c.s. for TF - coalgebras.

In $\mathcal{K}\ell(T)$, trace semantics is f.c.s. for TF - coalgebras.

If: \mathbb{C} , T - with structure

In $\mathcal{K}\ell(T)$, trace semantics is f.c.s. for TF - coalgebras.

If: \mathbb{C} , T - with structure

Then: $\mathcal{K}\ell(T)$ has structure

In $\mathcal{K}\ell(T)$, trace semantics is f.c.s. for TF - coalgebras.

If: \mathbb{C} , T - with structure

Then: $\mathcal{K}\ell(T)$ has structure

If also: \overline{F} - with structure in $\mathcal{K}\ell(T)$

In $\mathcal{K}\ell(T)$, trace semantics is f.c.s. for TF - coalgebras.

If: \mathbb{C} , T - with structure

Then: $\mathcal{K}\ell(T)$ has structure

If also: \overline{F} - with structure in $\mathcal{K}\ell(T)$

Then: trace semantics is compositional

Conclusion

structure yields process operations

- * with algebraic properties
- * with compositional f.c.s.

Conclusion

structure yields process operations

- * with algebraic properties
- * with compositional f.c.s.

Future: full generality?