

DEMYSTIFYING AI

What is Data Science, Machine Learning, and Artificial Intelligence?

JULY 2020

LET'S START WITH DATA SCIENCE

Data science is a "concept to unify statistics, data analysis, machine learning and their related methods" in order to "understand and analyze actual phenomena" with data.

Data science is a multidisciplinary blend of data inference, algorithm development, and technology in order to solve analytically complex problems. Data science is the field of study that combines domain expertise, programming skills, and knowledge of math and statistics to extract meaningful insights from data.

Data science is the multi-disciplinary field of inquiry in which quantitative and analytical approaches, processes, and systems are developed and used to extract knowledge and insights from increasingly large and/or complex sets of data.

- NIH Strategic Plan for Data Science

ANALYTICS: A CONTINUUM OF QUESTIONS

Data becomes memorable when we ask deliberate questions

A CONTINUUM OF DATA-DRIVEN DECISION-MAKING

BUSINESS INTELLIGENCE

Typically backward-looking and descriptive, and often involves using deductive reasoning, slicing and dicing data, and creating reports

DATA SCIENCE

The art of turning data into actions; typically involves forward-looking analysis, answering questions, and creating new ones²

DATA SCIENCE FURTHER DEFINED

Data science is the art of turning data into actions.

DATA SCIENCE IS...

- Standardizing units, addressing missing values, and validating completeness of data
- The practice of obtaining, exploring, modeling, and interpreting data
- ldentifying hidden patterns and relationships for future prediction
- A way of **problem solving** and **thinking** that can be used in **everyday life**

DATA SCIENCE IS NOT...

New

Only machine learning

Methods dependent on **costly** and **complicated technology**

An attempt to replace human intelligence and intuition

DATA SCIENCE NEEDS EXPERTISE

Data Science is the multi-disciplinary field of inquiry...

DATA TO WISDOM DIAGRAM- DATA SCIENCE IN ACTION

WHY NOW?

...more sophisticated computer hardware and software solutions became necessary

...data is growing exponentially

...and investments in data science research became a priority

DATA SCIENCE IS EVERYWHERE:

CHECK THE WEATHER

You check the weather on your iPhone's weather app. Weather forecasts are developed using predictive analytics on historical data as well as real-time data retrieved from satellites

The National Oceanic and Atmospheric Administration (NOAA) uses data collected since the 1800's to identify time series trends in global temperatures. These reports help inform climate change projections, and have impact on businesses such as airlines and shipping companies.

BUY A CUP OF COFFEE

You head to a café to buy a cup of coffee. Retail chains use analytics to determine which products consumers will buy, preemptively assign staff to support high-traffic time periods, and ship supplies.

Starbucks uses geospatial data showing population density, consumer demographics, traffic patterns, and public transportation hubs to determine the optimal locations for new stores.

UPDATE YOUR SOCIAL MEDIA

You upload photos from a vacation you took to your Facebook profile. Facebook and other social media platforms use image recognition to recognize patters in the faces of individuals featured in photos.

U.S. Customs and Border Protection (CBP) is piloting facial recognition software at airports. Under this program, photos of visa-holders taken before their flight are compared against their passport photo using facial geometry scan.

ANALYTICS: A CONTINUUM OF QUESTIONS

Data becomes memorable when we ask deliberate questions

A CONTINUUM OF DATA-DRIVEN DECISION-MAKING

BUSINESS INTELLIGENCE

Typically backward-looking and descriptive, and often involves using deductive reasoning, slicing and dicing data, and creating reports

DATA SCIENCE

The art of turning data into actions; typically involves forward-looking analysis, answering questions, and creating new ones²

AI AS AN OUTCOME

the ability of machines to perform tasks that typically require human-level intelligence

perception

Describe and understand surroundings

Key Questions Answered What's happening now?

notification

Provide alerts, reminders, etc.

What do I need to know? suggestion

Build on past preferences and modify over time

What do you recommend?

automation

Follow routine steps to accomplish an objective

What should I do? prediction

Forecast the likelihood of future events based on past events

What can I expect to happen?

prevention

Apply cognitive reckoning to identify potential threats

What can/should I avoid? situational awareness

Summarize the current, and likely future, environment

What do I need to do now?

THE CURRENT ROLE OF AI:

Curator — Recommender — Orchestrator

NOT THE ROLE OF AI:

Critical Thinker — Decision Maker

10

HISTORY OF AI

Artificial Intelligence has long captured our imagination, but it has also existed as an area of serious academic research for more than 60 years

Al Events

1950's

Al coined by American Computer Scientist at Dartmouth College in 1956.

1970's: Al Winter

Reduced funding and interest in Al, fueled by pessimism from slow advances.

1980's - 1990's

Machine Learning shifts from a knowledge-driven approach to a data-driven approach largely thanks to the internet revolution.

2010's

Deep Learning becomes possible thanks to recent advances in Deep Learning Research, the explosion of available data, and the increased computing power from new hardware like GPU chips.

Machine Learning/ AI Timeline

What is a GPU?

A graphics processing unit or (GPU) is designed to handle lots of parallel computations and have large memory bandwidth, which leads to higher efficiency.

Source: NVIDIA

AN OVERVIEW OF ARTIFICIAL INTELLIGENCE

Artificial Intelligence (AI) is the ability of machines to perform tasks that typically require human-level intelligence; AI has existed since the **1950s**, but progress has recently accelerated

Source: Booz Allen analysis, Michael Copeland for NVIDIA

12

HISTORICAL LOOK AT TECHNOLOGY ADOPTION

Historically, technology advancements have always generated a spectrum of emotions. We need to **dispel fears**, in order to adopt **AI** and realize its benefits

Source: Louis Anslow, Timeline.com

AI, MACHINE LEARNING, AND DEEP LEARNING

AI is often conflated with machine learning and deep learning; **deep learning** is a sub-field of **machine learning**, both of which are techniques for achieving AI

Source: NVIDIA

HOW DO PEOPLE LEARN?

Learning from sources of knowledge happens in two main ways:

DIRECT	INDIRECT
Facts and specific details that you retain in various methods	Experiences you must have on your own to retain
Washington DC is the capital of the US	Balancing on a bicycle
 More than half of the coastline of the entire United States is in Alaska 	Pronunciation of a foreign language

Moving between deductive and inductive reasoning during the learning cycle is a learning technique used by humans and machines

UMD Cognitive Neurosciences, Booz Allen analysis There are other forms of learning, this is a summary for context setting

HOW DO MACHINES LEARN?

Five approaches to structuring machine learning algorithms

	"TRIBE"	ORIGINS	MOTIVATION	TECHNICAL APPROACH
1. Fill in gaps in existing knowledge	SYMBOLISTS	Logic, Philosophy	Automate the scientific method	Inverse Deduction
2. Emulate the human brain	CONNECTIONISTS	Neuroscience	Reverse engineer the human brain via math model of neurons	Backpropagation
3. Simulate evolution over generations	EVOLUTIONARIES	Evolutionary Biology	Replicate the evolution of the human brain over generations	Genetic Programming
4. Systematically reduce uncertainty	BAYESIANS	Statistics	Test hypotheses to determine the certainty of knowledge	Probabilistic Inference
5. Find similarities between old and new	ANALOGIZERS	Psychology	Use previous problems / solutions and extrapolate into new context	Kernel Machines

MAKING AI EXPLAINABLE

Unexplainable Al

- Why did you do that?
- Why not something else
- When do you fail?
- When can I trust you?
- How do I correct an error?

Explainable AI

- I understand why
- I understand why not
- I know when you succeed
- I know when you fail
- I know why you erred

WHAT AI CANNOT DO

Tell the difference between fried chicken and a goldendoodle

Tell the difference between corgi butt and a loaf of bread

TODAY'S AI IS IMPRESSIVE, BUT FALLS FAR SHORT OF SCIENCE FICTION

Source: Booz Allen analysis

19

KEY RISKS WITH AI TODAY

Previously, the **technological challenges impeded AI's adoption**, while many of today's challenges stem from **human concern around the impacts**

	KEY CHALLENGES	SOLUTION	
ADOPTION RISKS	Lack of understanding of what AI can or can't do causing unnecessary fear in people	Initiate comprehensive educational campaigns to demystify AI	
ADOPTION RISKS	Fear and lack of preparedness by all of the workforce to spend more time using critical thinking skills and less time on rote tasks	Widespread workforce reskilling programs that prepare all employees to operate in their modified roles	
TECHNOLOGICAL RISKS	The rise in adversarial AI and "deepfakes"	Require robust, transparent, and explainable AI solutions with clear audit trails	
	Mounting uncertainty over the future regulatory landscape	Ensure measured, monitored roll outs of AI solutions with clearly documented processes	
	Al's ability to amplify bias in datasets in a way that inflicts harm among marginalized people	Prioritize ethics early in the design and development process	
ETHICAL RISKS	Lack of clarity around how to ensure AI solutions are built and used in an ethical manner	Require involvement from leadership and key stakeholders throughout a solution's development (e.g., Board Members)	

Source: Booz Allen analysis

Booz | Allen | Hamilton®

AI SPENDING AND NATIONAL STRATEGIES

We must continue to invest to maintain our advantage as the international arena becomes more competitive

RUSSIA

Russia declared AI to be a key geopolitical asset and is increasing investments accordingly. Focused primarily on AI in military applications

- Perceived to lag behind advances in the U.S and China, with primary interest in using AI to offset asymmetric military capabilities
- Strong focus on leveraging AI for upgrading existing weapons platforms

UNITED STATES

Current leader in both spending and technical advancement, but increasingly narrow lead

- \$2 billion investment into DARPA's AI Next fund
- \$2.2 billion into Artificial Intelligence Initiative Act to fund AI research and create a national AI strategy
- Executive Order issued by President Trump in February 2019 on "Maintaining American Leadership in Artificial Intelligence"

UNITED KINGDOM

One of the top research engines in the world, with organizations like DeepMind and Oxford's Future of Humanity Institute. Positioning to be the leader in ethics, policy, and global regulatory frameworks

- Al Investment deal worth £1 billion
- \$30 million to build AI Tech Incubators
- 1,000 Government backed AI PhDs

CHINA

Grand ambitions to leverage AI for geopolitical positioning; on par with the U.S. in some technical areas, with significant planned investments

- \$30 billion dollar investment into a state owned VC firm to fund innovation
- Part of the Chinese investment includes \$2 billion for an Al research park in Beijing
- Comprehensive national plan to become a world leader in Al and create an industry worth \$150 billion

Source: Booz Allen analysis

PROBLEM 1ST VS. AI 2ND

IS AI EVER OVERKILL?

A GOOD IDEA?

It's a Good Idea, but Too Soon

Generalized intelligence that's indistinguishable from humans

Humanoid robotics

Intelligent language generation

It's an Excellent Choice!

Identifying people and objects in images or video

Translating speech or text from one language to another

Detecting fraud and other anomalous behavior

Autonomous vehicles

GOLDILOCKS ZONE FOR AI

It's Probably Excessive

Searching across multiple databases

Creating monthly financial dashboards

Automating that Excel spreadsheet Jennifer made before she left on TDY

WHAT AI CAN DO...

Al Can.... ✓ Automate simple, rules-based tasks ✓ Find and act on patterns in data

Examples of Al's Capabilities Everyday human stuff Security & Justice Science & Medicine Travel Discover new uses for Recognize objects in images Spot burglars in your home Drive on a highway existing drugs Navigate a map of the London Write its own encryption Flv a drone Spot cancer in tissue slides Underground language better than human Predict parking Transcribe speech better than epidemiologists Predict social unrest 5 days difficulty by area professional transcribers before it happens Predict hypoglycemic events Translate between languages in diabetics 3 hrs. in advance Unscramble pixelated **Agriculture** Identify diabetic retinopathy images Speak from photos Detect crop disease Detect malware Find the text in a paragraph Analyze the genetic code of that answers your question DNA to detect genomic Spray pesticide with Verify your identity conditions pinpoint accuracy Recognize emotions in images of Anticipate fraudulent Detect a range of conditions faces Predict crop yields payment attacks before from images Recognize emotions in speech they happen Solve the quantum state of Sort cucumbers many particles at once

COMMON APPLICATIONS: AI

INPUTS		BUSINESS QUESTION	AI TASK	HEALTHCARE	GOV SERVICES	GEOSPATIAL
		What <u>type</u> of thing is "it"?	CLASSIFICATION	Image Classification	Cyber Security	Full Motion Video analysis
Text Data Im	Images	To what <u>extent</u> is "it" present?	SEGMENTATION	Tumor Size/Shape Analysis	Route Planning	Building + Road Detection
	Œ,	What is the likely outcome?	PREDICTION	Survivability Prediction	Preventative Maintenance	Disaster Relief
	Audio	What will satisfy the objective?	RECOMMENDATIONS	Therapy Recommendation	Recommendation Engine	Infrastructure Planning
		What is the speaker saying?	NATURAL LANGUAGE PROCESSING	Expert diagnosis	Real time Language Translation	Verbal Scene Description

AI OPPORTUNITIES

AI CAPABILITY	•	TECHNIQUE	USE CASES	EXAMPLE APPLICATIONS
Automation Mature/deployed	2	Robotic Process Automation (RPA)	 Routine task automation Business process reengineering/improvement 	A software "bot" transposes data from patient records into an online database
Pattern recognition &		Machine Learning Software and Platforms	 Complex task automation Real-time data analysis and response 	Software scans patient data to identify new indicators of disease
Response Maturing/Pilots and some scaled deployment		Computer Vision	 Image/video tagging Real-time video analysis Sentiment analysis Facial recognition Scene analysis Biometrics 	A x-ray machine automatically identifies anomalies in patient scans
	(Az)	Natural Language Processing and Generation	 Virtual assistants Chatbots Machine translation Speech recognition Language detection Sentiment analysis Text analysis Report generation Insight summarization 	Virtual assistants engage with patients to ask about symptoms and route them to the correct care provider
		Autonomous Systems and Robotics	 Co-bots Smart manufacturing Smart logistics Companion robots Partially autonomous vehicles/unmanned systems 	A robotic surgeon performs surgery, automatically responding to changes in a patient's condition in real time
Contextual Reasoning In the lab	P	Semantic or "Cognitive" computing	 Execution of tasks requiring context, judgment Fully autonomous vehicles 	A vehicle drives down a crowded city road, responding to bad weather, unexpected pedestrian behavior, and obstacles in traffic

QUESTIONS?