日本国特許庁

PATENT OFFICE
JAPANESE GOVERNMENT

別紙添付の書類に記載されている事項は下記の出願書類に記載されて いる事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出 願 年 月 日 Date of Application:

1998年 7月17日

出 願 番 号 Application Number:

平成10年特許願第203205号

出 願 人 Applicant (s):

株式会社半導体エネルギー研究所

CERTIFIED COPY OF PRIORITY DOCUMENT

1999年 6月 4日

特許庁長官 Commissioner, Patent Office

【書類名】

特許願

【整理番号】

P003927-01

【提出日】

平成10年 7月17日

【あて先】

特許庁長官 殿

【国際特許分類】

H01L 21/00

【発明の名称】

結晶性半導体薄膜及びその作製方法並びに半導体装置及

びその作製方法

【請求項の数】

16

【発明者】

【住所又は居所】

神奈川県厚木市長谷398番地 株式会社半導体エネル

ギー研究所内

【氏名】

山崎 舜平

【発明者】

【住所又は居所】

神奈川県厚木市長谷398番地 株式会社半導体エネル

ギー研究所内

【氏名】

大谷 久

【特許出願人】

【識別番号】

000153878

【氏名又は名称】

株式会社半導体エネルギー研究所

【代表者】

山崎 舜平

【手数料の表示】

【予納台帳番号】

002543

【納付金額】

21,000円

【提出物件の目録】

【物件名】

明細書 1

【物件名】

図面 1

【物件名】

要約書 1

【プルーフの要否】

要

【書類名】 明細書

【発明の名称】 結晶性半導体薄膜及びその作製方法並びに半導体装置及びその作製方法

【特許請求の範囲】

【請求項1】

炭素及び窒素の含有量が 5×10^{18} atoms/cm 3 以下且つ酸素の含有量が 1×10^{19} atoms/cm 3 以下であり、

主たる配向面が {110} 面であり、

隣接する結晶粒の間では等価な軸又は等価な軸に対して70.5°の回転関係にある軸とがなす回転角の絶対値が4°以内であり、

膜厚が5~40nmであり、

単結晶又は実質的に単結晶であることを特徴とする結晶性半導体薄膜。

【請求項2】

炭素及び窒素の含有量が 1×10^{18} atoms/cm 3 以下且つ酸素の含有量が 5×10^{18} atoms/cm 3 以下であり、

主たる配向面が {110} 面であり、

隣接する結晶粒の間では等価な軸又は等価な軸に対して70.5°の回転関係にある軸とがなす回転角の絶対値が4°以内であり、

膜厚が5~40nmであり、

単結晶又は実質的に単結晶であることを特徴とする結晶性半導体薄膜。

【請求項3】

炭素及び窒素の含有量が 5×10^{18} atoms/cm 3 以下且つ酸素の含有量が 1×10^{19} atoms/cm 3 以下であり、

主たる配向面が{110}面であり、

隣接する結晶粒の間では等価な軸又は等価な軸に対して70.5°の回転関係にある軸とがなす回転角の絶対値が4°以内であり、

膜厚が5~40nmであり、

単結晶又は実質的に単結晶である半導体薄膜を有し、

前記半導体薄膜をチャネル形成領域として含む薄膜トランジスタで構成され

た回路を有することを特徴とする半導体装置。

【請求項4】

炭素及び窒素の含有量が 1×10^{18} atoms/cm 3 以下且つ酸素の含有量が 1×10^{18} atoms/cm 3 以下であり、

主たる配向面が {110} 面であり、

隣接する結晶粒の間では等価な軸又は等価な軸に対して70.5°の回転関係にある軸とがなす回転角の絶対値が4°以内であり、

膜厚が5~40nmであり、

単結晶又は実質的に単結晶である半導体薄膜を有し、

前記半導体薄膜をチャネル形成領域として含む薄膜トランジスタで構成され た回路を有することを特徴とする半導体装置。

【請求項5】

紫外光又は赤外光を照射して非晶質半導体薄膜を結晶性半導体薄膜に変化させる第1熱処理工程と、

前記結晶性半導体薄膜に対して還元雰囲気中で900~1200℃の第2熱 処理工程と、

を有することを特徴とする結晶性半導体薄膜の作製方法。

【請求項6】

非晶質半導体薄膜中に当該非晶質半導体薄膜の結晶化を助長する触媒元素を 添加する工程と、

紫外光又は赤外光を照射して前記非晶質半導体薄膜を結晶性半導体薄膜に変 化させる第1熱処理工程と、

前記結晶性半導体薄膜に対して還元雰囲気中で900~1200℃の第2熱 処理工程と、

を有することを特徴とする結晶性半導体薄膜の作製方法。

【請求項7】

非晶質半導体薄膜中に当該非晶質半導体薄膜の結晶化を助長する触媒元素を 添加する工程と、

紫外光又は赤外光を照射して前記非晶質半導体薄膜を結晶性半導体薄膜に変

化させる第1熱処理工程と、

前記結晶性半導体薄膜に対してハロゲン元素を含む還元雰囲気中で第2熱処理を行う工程と、

を有することを特徴とする結晶性半導体薄膜の作製方法。

【請求項8】

請求項7において、前記第2熱処理は900~1200℃で行われることを 特徴とする結晶性半導体薄膜の作製方法。

【請求項9】

請求項5乃至請求項8において、前記第2熱処理はファーネスアニール処理 であることを特徴とする結晶性半導体薄膜の作製方法。

【請求項10】

請求項5乃至請求項9において、前記第2熱処理は酸素又は酸素化合物の濃度を10ppm以下とした還元雰囲気中で行われることを特徴とする結晶性 半導体薄膜の作製方法。

【請求項11】

紫外光又は赤外光を照射して非晶質半導体薄膜を結晶性半導体薄膜に変化させる第1熱処理工程と、

前記結晶性半導体薄膜に対して還元雰囲気中で900~1200℃の第2熱 処理工程と、

を有することを特徴とする半導体装置の作製方法。

【請求項12】

非晶質半導体薄膜中に当該非晶質半導体薄膜の結晶化を助長する触媒元素を 添加する工程と、

紫外光又は赤外光を照射して前記非晶質半導体薄膜を結晶性半導体薄膜に変 化させる第1熱処理工程と、

前記結晶性半導体薄膜に対して還元雰囲気中で900~1200℃の第2熱 処理工程と、

を有することを特徴とする半導体装置の作製方法。

【請求項13】

非晶質半導体薄膜中に当該非晶質半導体薄膜の結晶化を助長する触媒元素を 添加する工程と、

紫外光又は赤外光を照射して前記非晶質半導体薄膜を結晶性半導体薄膜に変 化させる第1熱処理工程と、

前記結晶性半導体薄膜に対してハロゲン元素を含む還元雰囲気中で第2熱処理を行う工程と、

を有することを特徴とする半導体装置の作製方法。

【請求項14】

請求項13において、前記第2熱処理は900~1200℃で行われることを特徴とする半導体装置の作製方法。

【請求項15】

請求項11乃至請求項14において、前記第2熱処理はファーネスアニール 処理であることを特徴とする半導体装置の作製方法。

【請求項16】

請求項11乃至請求項15において、前記第2熱処理は酸素又は酸素化合物の濃度を10ppm以下とした還元雰囲気中で行われることを特徴とする半導体装置の作製方法。

【発明の詳細な説明】

[0001]

【発明が属する技術分野】

本発明は半導体薄膜を利用した半導体装置に関する技術であり、特に結晶性 珪素膜を利用した薄膜トランジスタ (Thin Film Transistor: TFT) で 構成する半導体装置及びその作製方法に関する。

[0002]

なお、本明細書において、半導体装置とは半導体特性を利用して機能する装置全般を指すものである。従って、TFTの如き単体の半導体素子のみならず、TFTを有する電気光学装置や半導体回路及びそれらを搭載した電子機器も半導体装置である。

[0003]

・【従来の技術】

近年、アクティブマトリクス型液晶表示装置の様な電気光学装置に用いられるTFTの開発が活発に進められている。

[0004]

アクティブマトリクス型液晶表示装置は、同一基板上に画素マトリクス回路とドライバー回路とを設けたモノリシック型表示装置である。また、さらに γ 補正回路、メモリ回路、クロック発生回路等のロジック回路を内蔵したシステムオンパネルの開発も進められている。

[0005]

この様なドライバー回路やロジック回路は高速動作を行う必要があるので、 活性層として非晶質珪素膜(アモルファスシリコン膜)を用いることは不適当 である。そのため、現状では結晶性珪素膜(単結晶シリコン膜又はポリシリコ ン膜)を活性層としたTFTが検討されている。

[0006]

本出願人は、ガラス基板上に結晶性珪素膜を得るための技術として特開平7 -130652号公報記載の技術を開示している。同公報記載の技術は、非晶質珪素膜に対して結晶化を助長する触媒元素を添加し、加熱処理を行うことで結晶性珪素膜を得るものである。

[0007]

この技術は触媒元素の作用により非晶質珪素膜の結晶化温度を50~10 0 ℃も引き下げることが可能であり、結晶化に要する時間も 1/5~1/ 10にまで低減することができる。

[0008]

【発明が解決しようとする課題】

しかしながら、TFTで組む回路に対して従来のLSIに匹敵する回路性能を要求される様になってくると、これまでの技術で形成された結晶性珪素膜では、仕様を満たすに十分な性能を有するTFTを作製することが困難な状況になってきた。

[0009]

本願発明では単結晶半導体薄膜又は実質的な単結晶半導体薄膜を実現するための技術を提供することを課題とする。なお、実質的な単結晶半導体薄膜とは、結晶粒界や欠陥等のキャリアの移動を阻害する障壁として機能する部分をなくした多結晶半導体薄膜の如き結晶性半導体薄膜を指す。

[0010]

そして、本願発明の単結晶半導体薄膜又は実質的な単結晶半導体薄膜をチャネル形成領域として有する高性能なTFTを実現させ、そのTFTで組まれた回路を有する高性能な半導体装置を提供することを課題とする。

[0011]

なお、本明細書中では単結晶半導体薄膜、多結晶半導体薄膜及び微結晶半導 体薄膜等の結晶性を有する半導体薄膜をまとめて結晶性半導体薄膜と呼ぶ。

[0012]

【課題を解決するための手段】

本願発明を実施するための構成の一つは、

紫外光又は赤外光を照射して非晶質半導体薄膜を結晶性半導体薄膜に変化させる第1熱処理工程と、

前記結晶性半導体薄膜に対して還元雰囲気中で900~1200℃の第2熱 処理工程と、

を有することを特徴とする。

[0013]

また、他の発明の構成は、

非晶質半導体薄膜中に当該非晶質半導体薄膜の結晶化を助長する触媒元素を 添加する工程と、

紫外光又は赤外光を照射して前記非晶質半導体薄膜を結晶性半導体薄膜に変 化させる第1熱処理工程と、

前記結晶性半導体薄膜に対して還元雰囲気中で900~1200℃の第2熱 処理工程と、

を有することを特徴とする。

[0014]

上記構成において、第2熱処理は結晶性半導体薄膜の表面に形成された自然酸化膜(例えば酸化珪素膜)が還元される温度であれば良く、具体的には90 $0\sim1200$ °C(好ましくは $1000\sim1100$ °C)の温度範囲で行われる。また、処理時間は少なくとも10分以上、代表的には $0.5\sim4$ 時間が好ましい。これは第2熱処理による効果を発揮するために必要な時間である。

[0015]

なお、第2熱処理は結晶性半導体薄膜を島状に加工してから行っても良い。 また、熱処理手段はファーネスアニール処理(電熱炉で行うアニール処理)で 行う。

[0016]

本願発明の特徴は、まず紫外光又は赤外光の照射による結晶化(以下レーザー結晶化と呼ぶ)技術を利用して結晶性半導体薄膜を形成し、その結晶性半導体薄膜に対して900~1200℃の還元雰囲気中(代表的には水素雰囲気)で熱処理を行う点にある。

[0017]

この場合、結晶化技術として紫外光を用いる場合はエキシマレーザー光又は紫外光ランプから発する強光を用いればよく、赤外光を用いる場合は赤外線レーザーや赤外光ランプから発する強光を用いれば良い。

[0018]

エキシマレーザーとしてはKrF、XeCl、ArFなどを励起ガスとして 用いれば良い。また、赤外線レーザーとしてはNd:YAGレーザー、Nd: ガラスレーザー、ルビーレーザーなどを用いることもできる。

[0019]

また、レーザー光のビーム形状は線状に加工したものでも良いし、面状に加工したものでも良い。線状に加工して用いる場合には、基板の一端から他端に向かってレーザー光を走査する様なレーザー装置を用いることが好ましい。

[0020]

また、面状に加工する場合は数十 cm^2 程度(好ましくは $10cm^2$ 以上)の面積を一括照射できる様に加工し、トータルエネルギーが5J以上

、好ましくは10J以上の出力のレーザー装置を用いると良い。その場合、エネルギー密度は100~800mJ/cm2とし、出力パルス幅は100nsec 以上、好ましくは200nsec~1msecとすることが好ましい。200nsec~1msecというパルス幅を実現するにはレーザー装置を複数台連結し、各レーザー装置の同期をずらすことで複数パルスの混合した状態を作れば良い。

[0021]

なお、レーザー結晶化させた後の結晶性半導体薄膜に対して行う還元雰囲気中での高温アニールには、まず結晶性半導体薄膜の表面を平坦化する効果がある。これは表面エネルギーを最小化しようとする半導体原子の増速表面拡散の結果である。

[0022]

また、同時にこの工程は結晶粒界や結晶粒内に存在する欠陥を著しく低減するといった効果をも有する。これは水素による未結合手の終端効果と、水素による不純物の除去効果及びそれに伴う半導体原子同士の再結合とによる。そのため、これらの効果を効率良く発揮させるためには、上述の様な処理時間が必要となる。

[0023]

従って、この還元雰囲気中における熱処理工程はファーネスアニールで行う必要がある。紫外光又は赤外光を照射することによって熱処理を行うと再結晶化が非平衡状態で進行するため結晶粒界や結晶粒内に応力や応力に起因する欠陥を生じるため好ましくない。その点、ファーネスアニールならば平衡状態で再結晶化が進行するのでその様な問題を避けることができる。

[0024]

なお、レーザー結晶化に際して非晶質半導体薄膜中に当該非晶質半導体薄膜 の結晶化を助長する触媒元素を添加しておくこともできる。

[0025]

また、他の発明の構成は、

絶縁表面を有する基板上に非晶質半導体薄膜を形成する工程と、

紫外光又は赤外光を照射して前記非晶質半導体薄膜を結晶性半導体薄膜に変 化させる第1熱処理工程と、

前記結晶性半導体薄膜に対してハロゲン元素を含む還元雰囲気中で第2熱処理を行う工程とを有し、

前記非晶質半導体薄膜を形成する工程の前に、前記絶縁表面を有する基板上 に当該非晶質半導体薄膜の結晶化を助長する触媒元素を添加する工程を有する ことを特徴とする。

[0026]

この構成において第2熱処理は900~1200℃の温度で行われる。この 工程はハロゲン元素による金属元素のゲッタリング作用を狙ったものであり、 結晶性半導体薄膜中に存在する金属元素(非晶質半導体薄膜の結晶化を助長す る触媒元素を含む)をハロゲン化して除去することを目的としている。

[0027]

【発明の実施の形態】

以上の構成からなる本願発明の実施形態について、以下に記載する実施例で もって詳細な説明を行うこととする。

[0028]

【実施例】

[実施例1]

本実施例では、本願発明を実施して基板上にTFTを作製する工程について 説明する。説明には図1を用いる。

[0029]

まず、基板101として石英基板を用意した。基板101としては耐熱性の 高い材料を選択しなければならない。石英基板の代わりにシリコン基板、セラ ミックス基板、結晶化ガラス基板等の耐熱性の高い材料を用いることもできる

[0030]

ただし、石英基板を用いる場合は下地膜を設けても設けなくても良いが、他 の材料を用いる時は下地膜として絶縁膜を設けることが好ましい。絶縁膜 としては、酸化珪素膜 (SiOx)、窒化珪素膜 (Six Ny)、酸化窒化珪素膜 (SiOx Ny)、窒化アルミニウム膜 (Alx Ny) のいずれか若しくはそれらの積層膜を用いると良い。

[0031]

また、耐熱性金属層と酸化珪素膜とを積層した下地膜を用いると放熱効果が 大幅に高まるので有効である。放熱効果は上述の窒化アルミニウム膜と酸化珪 素膜との積層構造でも十分な効果を示す。

[0032]

こうして絶縁表面を有する基板101が準備できたら、エキシマレーザーを 用いた結晶化技術を利用して30nm厚の結晶性珪素膜を形成した。本実施 例では概略のみを説明する。

[0033]

まず本実施例では成膜ガスとしてジシラン(Si₂H₆)を用いた 減圧熱CVD法により20~60nm厚の非晶質珪素膜(図示せず)を形成 した。この時、膜中に混入するC(炭素)、N(窒素)及びO(酸素)といっ た不純物の濃度を管理することが重要である。これらの不純物が多く存在する と結晶化の進行が妨げられるからである。

[0034]

本出願人は炭素及び窒素の濃度が 5×10^{18} atoms/cm 3 以下(好ましくは 5×10^{18} atoms/cm 3 以下)、酸素の濃度が 5×10^{18} atoms/cm 3 以下(好ましくは 5×10^{18} atoms/cm 3 以下)となる様に不純物濃度を管理した。また、金属元素は 1×10^{17} atoms/cm 3 以下となる様に管理した。成膜段階でこの様な濃度管理をしておけば、外部汚染さえ防げばTFT作製工程中に不純物濃度が増加する様なことはない。

[0035]

非晶質珪素膜を成膜したら、450 \mathbb{C} 1 時間程度の水素出しを行った後、X 線励起のX e \mathbb{C} 1 エキシマレーザー光を用いて非晶質珪素膜の結晶化工程(第 2 熱処理)を行った。本実施例ではレーザー照射エリアが7 cm \times 7 cm で、レーザーエネルギー密度を300 mJ/cm 2 とし、レーザー光のパルス

幅を150nsecとした。こうして結晶性珪素膜102を得た。 (図1 (A))

[0036]

なお、減圧熱CVD法で形成した非晶質珪素膜と同等の膜質が得られるのであればプラズマCVD法を用いても良い。また、非晶質珪素膜の代わりに非晶質珪素膜中にゲルマニウムを含有させたシリコンゲルマニウム(Six Ge1-x (0<X<1)で表される)等の非晶質半導体薄膜を用いても良い。その場合、シリコンゲルマニウム中に含まれるゲルマニウムは5atomic %以下となる様にしておくことが望ましい。

[0037]

次に、還元雰囲気中で900~1200℃(好ましくは1000~1150 ℃)の温度範囲の熱処理工程(第2熱処理)を行った。本実施例では水素雰囲 気中で1050℃、1時間の加熱処理を行った。(図1(B))

[0038]

還元雰囲気としては水素雰囲気、アンモニア雰囲気、水素又はアンモニアを含む不活性雰囲気(水素と窒素又は水素とアルゴンの混合雰囲気など)が望ましいが、不活性雰囲気でも結晶性珪素膜の表面の平坦化は可能である。しかし、還元作用を利用して自然酸化膜の還元を行うとエネルギーの高いシリコン原子が多く発生し、結果的に平坦化効果が高まるので好ましい。

[0039]

ただし、特に注意が必要なのは雰囲気中に含まれる酸素又は酸素化合物(例えば〇H基)の濃度を10ppm以下(好ましくは1ppm以下)にしておくことである。さもないと水素による環元反応が起こらなくなってしまう。

[0040]

こうして結晶性珪素膜103を得た。結晶性珪素膜103は900~120 0℃という高い温度における水素熱処理によって非常に表面が平坦化された。 また、高い温度で熱処理されるので、結晶粒内には殆ど積層欠陥等が存在しな かった。この点については後述する。

[0041]

こうして実質的に単結晶と見なせる結晶性珪素膜103が得られたら、次に結晶性珪素膜103をパターニングして活性層104を形成した。なお、本実施例では活性層を形成する前に水素雰囲気中での熱処理を行っているが、活性層を形成した後に行うこともできる。その場合、パターン化されていることによって結晶性珪素膜に発生する応力が緩和されるため好ましい。

[0042]

そして熱酸化工程を行って活性層104の表面に10nm厚の酸化珪素膜105を形成した。この酸化珪素膜105はゲート絶縁膜として機能する。また、活性層は5nmの厚さだけ膜減りするため膜厚は30nmとなった。最終的に5~40nm厚の活性層(特にチャネル形成領域)が残る様に、熱酸化による膜減りを考慮して非晶質珪素膜(出発膜)の膜厚を決定しておくことが必要である。

[0043]

ゲート絶縁膜105を形成したら、その上に導電性を有する多結晶珪素膜を 形成し、パターニングによりゲート配線106を形成した。(図1(C))

[0044]

なお、本実施例ではゲート配線としてN型導電性を持たせた多結晶珪素膜を利用するが、材料はこれに限定されるものではない。特に、ゲート配線の抵抗を下げるにはタンタル、タンタル合金又はタンタルと窒化タンタルとの積層膜を用いることも有効である。さらに低抵抗なゲート配線を狙うならば銅や銅合金を用いても有効である。

[0045]

図1(C)の状態が得られたら、N型導電性又はP型導電性を付与する不純物を添加して不純物領域107を形成した。この時の不純物濃度は後のLDD領域の不純物濃度を鑑みて決定した。本実施例では1×10¹⁸atoms/cm³の濃度で砒素を添加したが、不純物も濃度も本実施例に限定される必要はない。

[0046]

次に、ゲート配線106の表面に5~10nm程度の薄い酸化珪素膜108を 形成した。これは熱酸化法やプラズマ酸化法を用いて形成すれば良い。この酸 化珪素膜108の形成には、次のサイドウォール形成工程でエッチングストッ パーとして機能させる目的がある。

[0047]

エッチングストッパーとなる酸化珪素膜108を形成したら、窒化珪素膜を 形成してエッチバックを行い、サイドウォール109を形成した。こうして図 1 (D) の状態を得た。

[0048]

なお、本実施例ではサイドウォールとして窒化珪素膜を用いたが、多結晶珪素膜や非晶質珪素膜を用いることもできる。勿論、ゲート配線の材料が変われば、それに応じてサイドウォールとして用いることのできる材料も変わることは言うまでもない。

[0049]

次に、再び先程と同一導電型の不純物を添加した。この時に添加する不純物 濃度は先程の工程よりも高い濃度とした。本実施例では不純物として砒素を用い、濃度は 1×10^{21} atoms/cm 3 とするがこれに限定する必要はない。この不純物の添加工程によりソース領域110、ドレイン領域111、LDD領域12及びチャネル形成領域113が画定した。(図1(E))

[0050]

こうして各不純物領域が形成されたらファーネスアニール、レーザーアニー ル又はランプアニール等の熱処理により不純物の活性化を行った。

[0051]

次に、ゲート配線106、ソース領域110及びドレイン領域1110表面に形成された酸化珪素膜を除去し、それらの表面を露呈させた。そして、5 nm程度のコバルト膜(図示せず)を形成して熱処理工程を行った。この熱処理によりコバルトとシリコンとの反応が起こり、シリサイド層(コバルトシリサイド層)114が形成された。(図1(F))

[0052]

この技術は公知のサリサイド技術である。従って、コバルトの代わりにチタンやタングステンを用いても構わないし、熱処理条件等は公知技術を参考にすれば良い。本実施例では赤外光を照射して熱処理工程を行った。

[0053]

こうしてシリサイド層114を形成したら、コバルト膜を除去した。その後、1μm厚の層間絶縁膜115を形成した。層間絶縁膜115としては、酸化珪素膜、窒化珪素膜、酸化窒化珪素膜又は樹脂膜(ポリイミド、アクリル、ポリアミド、ポリイミドアミド、ベンゾシクロブテン(BCB)等)を用いれば良い。また、これらの絶縁膜を自由な組み合わせで積層しても良い。

[0054]

次に、層間絶縁膜115にコンタクトホールを形成してアルミニウムを主成分とする材料でなるソース配線116及びドレイン配線117を形成した。最後に素子全体に対して水素雰囲気中で300℃2時間のファーネスアニールを行い、水素化を完了した。

[0055]

こうして、図1 (F)に示す様なTFTが得られた。なお、本実施例で説明した構造は一例であって本願発明を適用しうるTFT構造はこれに限定されない。従って、公知のあらゆる構造のTFTに対して適用可能である。また、結晶性珪素膜103を形成した以降の工程における数値条件も本実施例に限定される必要はない。さらには、公知のチャネルドープ工程(しきい値電圧を制御するための不純物添加工程)を本実施例のどこかに導入してもなんら問題はない。

[0056]

[0057]

また、本願発明はトップゲート構造に限らず、逆スタガ型TFTに代表されるボトムゲート構造に対しても容易に適用することが可能であることは言うま

でもない。

[0058]

また、本実施例ではNチャネル型TFTを例にとって説明したが、公知技術と組み合わせればPチャネル型TFTを作製することも容易である。さらに公知技術を組み合わせれば同一基板上にNチャネル型TFTとPチャネル型TFTとを形成して相補的に組み合わせ、CMOS回路を形成することも可能である。

[0059]

さらに、図1 (F) の構造においてドレイン配線117と電気的に接続する 画素電極(図示せず)を公知の手段で形成すればアクティブマトリクス型表示 装置の画素スイッチング素子を形成することも容易である。

[0060]

即ち、本願発明は液晶表示装置やEL(エレクトロルミネッセンス)表示装置などのアクティブマトリクス型の電気光学装置を作製する際にも実施することが可能である。

[0061]

[活性層の結晶構造に関する知見]

上記作製工程に従って形成した活性層は、微視的に見れば複数の針状又は棒状の結晶(以下、棒状結晶と略記する)が集まって並んだ結晶構造を有する。 このことはTEM(透過型電子顕微鏡法)による観察で容易に確認することができた。

[0062]

また、電子線回折及びX線回折を利用して活性層の表面(チャネルを形成する部分)が結晶軸に多少のずれが含まれているものの主たる配向面が {110} 面であることを確認した。本出願人がスポット径約1.5μmの電子線回折写真を詳細に観察した結果、 {110} 面に対応する回折斑点がきれいに現れているが、各斑点は同心円上に分布を持っていることが確認された。

[0063]

その様子を模式的に図8に示す。図8(A)は電子線回折パターンの一部を

模式的に示した図である。図8(A)において、801で示される複数の輝点は〈110〉入射に対応する回折スポットである。複数の回折スポット801は電子線照射エリアの中心点802を中心にして同心円上に分布している。

[0064]

ここで、点線で囲まれた領域803を拡大したものを図8(B)に示す。図8(B)に示す様に、実際の電子線回折パターンを詳細に観察すると、照射エリアの中心点802に対して回折スポット801が分布(ゆらぎ)を持っていることが判る。

[0065]

電子線照射エリアの中心点802から回折スポット801に対して引いた接線804と、電子線照射エリアの中心点802と回折スポットの中心点805とを結ぶ線分とがなす角は2°以下であった。この時、接線は2本引けるので、回折スポット801の分布は結局±2°以内の範囲に収まることになる。

[0066]

この傾向は実際の電子線回折パターンの全域で見受けられ、全体としては±2°以内(典型的には±1.5°以内、好ましくは±0.5°以内)に収まっている。回折スポットが分布を持つとはこの様なことを指している。

[0067]

また、この様な回折スポットの分布は、同一の結晶軸を有する個々の結晶粒が互いに結晶軸周りに回転した配置で集合している際に現れることが知られている。即ち、ある結晶面内に含まれる特定の軸(軸Aと呼ぶ)と、隣接する他の結晶面内に含まれる軸Aと等価な軸(軸Bと呼ぶ)とがなす角を回転角と呼ぶと、その回転角に相当する分だけ回折スポットの現れる位置がずれるのである。

[0068]

従って、複数の結晶粒が互いにある回転角を持った位置関係で集合している場合、個々の結晶粒が示す回折スポットの集合体として一つの電子線回折パターンが観察される。

[0069]

即ち、本実施例の結晶性半導体薄膜の様に±2°以内(典型的には±1.5°以内、好ましくは±0.5°以内)の範囲で回折スポットが広がりを持つ場合、隣接する結晶粒の間では等価な軸がなす回転角の絶対値が4°以内(典型的には3°以内、好ましくは1°以内)であることを意味している。

[0070]

なお、結晶軸が〈110〉軸の場合、結晶面内に含まれる等価な軸としては〈111〉軸が挙げられるが、本願発明の結晶性半導体薄膜では〈111〉軸同士が70.5 (又は70.4という説もある)の回転角をもって接した結晶粒界が多く見られる。この場合も等価な軸が70.5°±2°の回転角をもっていると考えられる。

[0071]

即ち、本願発明の結晶性半導体薄膜は隣接する結晶粒の間では等価な軸又は 等価な軸に対して70.5°の回転関係にある軸がなす回転角の絶対値が4° 以内(典型的には3°以内、好ましくは1°以内)であるとも言える。

[0072]

また、本出願人は個々の棒状結晶が接して形成する結晶粒界をHR-TEM (高分解能透過型電子顕微鏡法)により観察し、結晶粒界において結晶格子に 連続性があることを確認した。これは観察される格子縞が結晶粒界において連 続的に繋がっていることから容易に確認できた。

[0073]

なお、結晶粒界における結晶格子の連続性は、その結晶粒界が「平面状粒界」と呼ばれる粒界であることに起因する。本明細書における平面状粒界の定義は、「Characterization of High-Efficiency Cast-Si Solar Cell Wafers by MBIC Measurement; Ryuichi Shimokawa and Yutaka Hayashi, Japanese Journal of Applied Physics vol.27, No.5, pp.751-758, 1988」に記載された「Planar boundary」である。

[0074]

上記論文によれば、平面状粒界には双晶粒界、特殊な積層欠陥、特殊なtwist 粒界などが含まれる。この平面状粒界は電気的に不活性であるという特

徴を持つ。即ち、結晶粒界でありながらキャリアの移動を阻害するトラップと して機能しないため、実質的に存在しないと見なすことができる。

[0075]

特に結晶軸(結晶面に垂直な軸)が〈110〉軸である場合、{211} 双晶粒界は Σ 3の対応粒界とも呼ばれる。 Σ 値は対応粒界の整合性の程度を示す指針となるパラメータであり、 Σ 値が小さいほど整合性の良い粒界であることが知られている。

[0076]

本出願人が本願発明を実施して得た結晶性珪素膜を詳細にTEMを用いて観察した結果、結晶粒界の殆ど(90%以上、典型的には95%以上)がΣ3の対応粒界、即ち {211} 双晶粒界であることが判明した。

[0077]

二つの結晶粒の間に形成された結晶粒界において、両方の結晶の面方位が $\{1\ 1\ 0\}$ である場合、 $\{1\ 1\ 1\}$ 面に対応する格子縞がなす角を θ とすると、 $\theta=70.5^\circ$ の時に Σ 3 の対応粒界となることが知られている。

[0078]

本願発明の結晶性珪素膜は、結晶粒界において隣接する結晶粒の各格子縞がまさに約70.5°の角度で連続しており、その事からこの結晶粒界は{21} 及晶粒界であるという結論に辿り着いた。

[0079]

なお、 $\theta = 38.9$ ° の時には $\Sigma 9$ の対応粒界となるが、この様な他の結晶粒界も存在した。

[0080]

この様な対応粒界は、同一面方位の結晶粒間にしか形成されない。即ち、本 願発明を実施して得た結晶性珪素膜は面方位が概略 {110} で揃っているか らこそ、広範囲に渡ってこの様な対応粒界を形成しうる。

[0081]

この様な結晶構造(正確には結晶粒界の構造)は、結晶粒界において異なる 二つの結晶粒が極めて整合性よく接合していることを示している。即ち、結晶 粒界において結晶格子が連続的に連なり、結晶欠陥等に起因するトラップ準位を非常に作りにくい構成となっている。従って、この様な結晶構造を有する結晶性半導体薄膜は実質的に結晶粒界が存在しない見なすことができる。

[0082]

またさらに、図1 (B) に示す還元雰囲気における熱処理工程によって結晶 粒内に存在する欠陥が殆ど消滅していることがTEM観察によって確認されて いる。これはこの熱処理工程の前後で欠陥数が大幅に低減されていることから も明らかである。

[0083]

この欠陥数の差は電子スピン共鳴分析(Electron Spin Resonance: ESR)によってスピン密度の差となって現れる。現状では実施例1の作製工程に従って作製された結晶性珪素膜のスピン密度は少なくとも 5×10

17spins/cm3以下(好ましくは 3×1017spins/cm

3以下)であることが判明している。ただし、この測定値は現存する 測定装置の検出限界に近いので実際のスピン密度はさらに低いと予想される。

[0084]

また、この熱処理工程は還元雰囲気、特に水素雰囲気で行われるので僅かに 残った欠陥も水素終端されて不活性化している。従って、結晶粒内の欠陥は実 質的に存在しないと見なしてよいと考える。

[0085]

以上の事から、本願発明を実施することで得られた結晶性半導体薄膜は結晶 粒内及び結晶粒界が実質的に存在しないため、単結晶半導体薄膜又は実質的な 単結晶半導体薄膜と考えて良い。

[0086]

[TFTの電気特性に関する知見]

本実施例で作製したTFTは純粋な単結晶珪素を用いたMOSFETに匹敵 する電気特性を示した。本発明者らが試作したTFTからは次に示す様なデー タが得られている。

[0087]

- (1)スイッチング性能(オン/オフ動作切り換えの俊敏性)の指標となるサブスレッショルド係数が、Nチャネル型TFTおよびPチャネル型TFTともに $60\sim100\,\text{mV/decade}$ (代表的には $60\sim85\,\text{mV/decade}$)と小さい。
- (2) TFTの動作速度の指標となる電界効果移動度(μFE)が、Nチャネル型TFTで 200~650cm2/Vs (代表的には 300~500cm2/Vs)、Pチャネル型TFTで100~300cm2/Vs (代表的には 150~200cm2/Vs)と大きい
- (3) TFTの駆動電圧の指標となるしきい値電圧 (Vth) が、Nチャネル型TFTで $-0.5\sim1.5$ V、Pチャネル型TFTで $-1.5\sim0.5$ Vと小さい。

[0088]

以上の様に、極めて優れたスイッチング特性および高速動作特性が実現可能 であることが確認されている。

[0089]

〔回路特性に関する知見〕

次に、本願発明を実施して形成したTFTを用いて作製されたリングオシレータによる周波数特性を示す。リングオシレータとはCMOS構造でなるインバータ回路を奇数段リング状に接続した回路であり、インバータ回路1段あたりの遅延時間を求めるのに利用される。実験に使用したリングオシレータの構成は次の様になっている。

段数:9段

TFTのゲイト絶縁膜の膜厚:30nm及び50nm

TFTのゲイト長: 0.6μm

[0090]

このリングオシレータによって発振周波数を調べた結果、500MHz~1 GHzの発振周波数を得ることができた。また、実際にLSI回路のTEGの 一つであるシフトレジスタを作製して動作周波数を確認した。その結果、ゲイ

ド絶縁膜の膜厚30nm、ゲイト長 $0.6\mu m$ 、電源電圧5V、段数50段 のシフトレジスタ回路において動作周波数 $50\sim150MHz$ の出力パルスが得られた。

[0091]

以上の様なリングシレータおよびシフトレジスタの驚異的なデータは、本発明のTFTが単結晶シリコンを利用したIGFETに匹敵する、若しくは凌駕する性能を有していることを示している。

[0092]

(実施例2)

本実施例では成膜した非晶質珪素膜中に対して非晶質珪素膜の結晶化を助長する触媒元素(本実施例ではニッケルを例にとる)を添加した後で紫外光又は 赤外光の照射による結晶化を行う場合について説明する。説明には図2を用いる。

[0093]

なお、本実施例はレーザー結晶化工程以前に違いがあるだけで、基本的には 実施例1の記載に従えば良い。従って実施例1の内容と本実施例の内容とを組 み合わせることは容易である。

[0094]

まず、セラミックス基板201上に酸化珪素膜でなる下地膜202を設け、 その上にジシランを成膜ガスとして用いた非晶質珪素膜203を減圧熱CVD 法により成膜した。勿論、非晶質珪素膜の代わりに非晶質シリコンゲルマニウ ム膜を用いても良い。

[0095]

次に、重量換算で10~10000ppm (本実施例では10ppm) のニッケルを含む酢酸ニッケル塩水溶液をスピンコート法により塗布し、非晶質珪素膜203上にニッケルを含む層204を形成する。なお、スピンコート法を行う前に非晶質珪素膜203上に5~10nm程度の酸化珪素膜を設けておくと濡れ性の改善に効果的である。

[0096]

ニッケルを含む層204を形成したら、450℃1時間の水素だし工程を行う。この工程は非晶質珪素膜203中にニッケルを添加する工程と考えることができる。またこの時、非晶質珪素膜203中へニッケルが拡散し、水素脱離が促進されるという効果もある。

[0097]

こうして図2(A)の状態が得られたら、X線励起のXeC1 エキシマレーザー光を用いて非晶質珪素膜203の結晶化を行った。本実施例ではレーザー照射エリアが $10cm \times 10cm$ で、レーザーエネルギー密度を350 mJ/cm^2 とし、レーザー光のパルス幅を400 nsecとした。こうして結晶性珪素膜205を得た。(図2(B))

[0098]

この結晶化工程では、まずニッケルシリサイドを核とした核生成が起こり、 次第に核が成長して全体が結晶化する。本実施例の場合、レーザー光のパルス 幅は400nsecと長めに設定してあるので、十分な結晶成長を行わせるこ とが可能である。また、パルス幅の短いレーザー光照射に較べて熱処理時間が 長くなるので、応力等に起因する欠陥を生じにくいという利点がある。

[0099]

こうしてレーザー結晶化工程が終了したら、還元雰囲気中で $900 \sim 120$ $0 \circ \mathbb{C}$ (好ましくは $1000 \sim 1150 \circ \mathbb{C}$) の温度範囲の熱処理工程(第2熱処理)を行った。本実施例ではアンモニア雰囲気中で $110 \circ \mathbb{C}$ 、1時間の加熱処理を行った。(図2(C))

[0100]

勿論、還元雰囲気として水素雰囲気、水素又はアンモニアを含む不活性雰囲気としても良い。また、雰囲気中に含まれる酸素又は酸素化合物(例えばOH基)の濃度は10ppm以下(好ましくは1ppm以下)にしておくことが重要である。

[0101]

こうして結晶性珪素膜206を得た。結晶性珪素膜206は900~120 0℃という高い温度における水素熱処理によって非常に表面が平坦化された。 また、高い温度で熱処理されるので、結晶粒内には殆ど積層欠陥等が存在しなかった。

[0102]

本実施例ではこうして得られた結晶性珪素膜206をチャネル形成領域として有する薄膜トランジスタを複数形成し、その様な薄膜トランジスタで様々な回路を組んで半導体回路、電気光学装置、電子機器等の半導体装置を作製する。なお、薄膜トランジスタの作製工程は実施例1を参考にすれば良い。

[0103]

また、非晶質珪素膜の結晶化を助長する触媒元素としてニッケル(Ni)の代わりに、コバルト(Co)、鉄(Fe)、パラジウム(Pd)、白金(Pt)、銅(Cu)、金(Au)といった格子侵入型の触媒元素又はゲルマニウム(Ge)、鉛(Pb)、錫(Sn)といった格子置換型(又は溶融型)の触媒元素を用いることができる。

[0104]

また、本実施例では非晶質珪素膜の形成後にその表面側(ゲート絶縁膜との 界面側)にニッケルを含む層を形成した例を示したが、予め非晶質珪素膜の下 地膜表面にニッケルを含む層を形成しておき、その上に非晶質珪素膜を成膜し てレーザー結晶化を行うこともできる。その場合、非晶質珪素膜の裏面側(下 地膜との界面側)からニッケルが添加されることになる。

[0105]

(実施例3)

本実施例では、実施例2において還元雰囲気中における900~1200℃ の熱処理工程を行う際に結晶性珪素膜中のニッケルを除去する工程を兼ねる場 合について説明する。

[0106]

本実施例では水素雰囲気中に $0.1\sim5$ wt%のハロゲン化水素(代表的には塩化水素)を混合した雰囲気中で $900\sim1200$ Cの熱処理工程を行った。ハロゲン化水素としては他にもNF₃やHBrなどを用いることもできる。

[0107]

本実施例を採用することで、結晶性珪素膜中から触媒元素を除去又は低減することができる。触媒元素の濃度は $1 \times 10^{17} a toms/cm^3$ 以下にまで低減されるので、触媒元素の存在によってTFT特性(特にオフ電流値)がばらつく様なことを防ぐことができる。

[0108]

(実施例4)

本実施例では、実施例2において還元雰囲気中における900~1200℃ の熱処理工程を行う前に、結晶性珪素膜中からニッケルを除去する工程を行う 場合の例について説明する。

[0109]

本実施例の場合、膜中のニッケルを除去するためにハロゲン元素のゲッタリング作用を利用した。これはハロゲン元素とニッケルとが化合することで揮発性のハロゲン化ニッケルになることを利用した技術である。この技術の詳細は特開平9-312260号公報に記載されているが、結晶性珪素膜をハロゲン元素を含む雰囲気中に置き、700~1150℃(代表的には950~1100℃)の熱処理工程を0.5~8時間程度行うという構成から成り立つ。

[0110]

本実施例では酸素と塩化水素とを混合したガス中に処理基板を置き、950 $^{\circ}$ $^{\circ$

[0111]

また、このハロゲン元素によるゲッタリング工程は還元雰囲気中における9 00~1200℃の熱処理工程の前に行っても後に行っても良い。

[0112]

本実施例を採用することで、結晶性珪素膜中から触媒元素を除去又は低減す

ることができる。触媒元素の濃度は1×10¹⁷atoms/cm³以下にまで低減 されるので、触媒元素の存在によってTFT特性(特にオフ電流値)がばらつ く様なことを防ぐことができる。なお、本実施例は実施例3と組み合わせても 良い。

[0113]

(実施例5)

本実施例では、実施例2において還元雰囲気中における900~1200℃ の熱処理工程を行う前にニッケルを除去するに際して実施例4とは異なる手段 を用いる場合について説明する。

[0114]

説明には図3を用いる。まず、実施例2に示された工程を経て非晶質珪素膜の結晶化を行った。そうして形成した結晶性珪素膜301上に酸化珪素膜でなるマスク302を形成した。このマスク302には開口部303が設けられている。(図3(A))

[0115]

次に、マスク302をマスクとして15族から選ばれた元素(本実施例ではリン)を添加した。添加方法はイオン注入法、プラズマドーピング法、気相拡散法など公知のどの様な手段を用いても構わない。(図3(B))

[0116]

こうしてマスク302の開口部303によって露呈した結晶性珪素膜中にリンが添加された領域304が形成された。本実施例ではこの領域を便宜上ゲッタリング領域と呼ぶことにする。ゲッタリング領域304に含まれるリン濃度は $1\times10^{19}\sim1\times10^{21}$ atoms/cm 3 となる様にリンの添加量を調節した。

[0117]

ゲッタリング領域304を形成した後、550~750℃(好ましくは600~650℃)の温度範囲で2~24時間(好ましくは8~12時間)の熱処理を行うことでゲッタリング工程を行った。本実施例では600℃12時間の熱処理工程を行った。(図3(C))

[0118]

[0119]

次に、パターニングを施して結晶性珪素膜305のみでなる活性層306、307を形成した。そして、水素雰囲気中において1050℃1時間の熱処理工程を行い、活性層表面の平坦化と結晶性の改善とを行った。勿論、熱処理条件は本実施例に限定されず、実施例1と同様の条件から選択できる。

[0120]

活性層を形成してから水素アニール(水素を含む雰囲気中での熱処理)を行ったのは、ゲッタリング領域304が残ったまま800℃を超える熱処理を行うと、リンが結晶性珪素膜305の方へと逆拡散してしまうからである。本実施例の様にゲッタリング領域304を完全に除去してから水素アニールを行った方が、チャネル形成領域にリンが混入しないので望ましい。

[0121]

こうして図3(D)の状態を得たら、後は実施例1に示した作製工程に従ってTFTを作製すれば良い。勿論、公知の他の手段によりTFTを作製しても本願発明の効果を損ねるものではない。

[0122]

また、図3(B)の工程(ゲッタリング工程)を行う前に結晶性珪素膜に対して紫外光又は赤外光を照射する工程を行っても構わない。こうすることでリンが活性化され、ゲッタリング効率が高まる。

[0123]

また、リンを添加してからマスク302を除去し、その後で紫外光又は赤外

光を照射することもできる。こうすることでリンの活性化とニッケルの拡散と が行われ、さらにゲッタリング効率を高めることが可能となる。

[0124]

また、非晶質珪素膜の結晶化が終了した直後に還元雰囲気中における900 ~1200℃の熱処理工程を行い、その後で本実施例に示したゲッタリング工 程を行っても良い。

[0125]

なお、本実施例は実施例3又は実施例4と組み合わせても良い。

[0126]

(実施例6)

本実施例ではリンを用いて触媒元素(本実施例ではニッケル)をゲッタリングする上で、ソース領域及びドレイン領域を利用する場合の例について説明する。説明には図4を用いる。

[0127]

まず実施例2に示した工程を含むTFT作製工程に従ってNチャネル型TFT401及びPチャネル型TFT402を形成した。TFT作製工程は実施例1に従った。なお、Pチャネル型TFTの作製工程例については実施例1で説明していないが、構造はNチャネル型TFTと同一であるので、活性層に添加する不純物の導電型を13族から選ばれた元素(代表的にはボロン)に変えれば良い。

[0128]

こうして図4(A)の状態を得た。Nチャネル型TFT401のソース領域403及びドレイン領域404は5× 10^{20} atoms/cm 3 の濃度でリンが添加されて形成されている。また、Pチャネル型TFT402のソース領域405及びドレイン領域406は5× 10^{20} atoms/cm 3 の濃度のリンと1.5× 10^{21} atoms/cm 3 の濃度のボロンとが添加されている。

[0129]

次に図4 (A) の状態で500~650℃、1~12時間(本実施例では5 50℃1時間)の熱処理工程(ゲッタリング工程)を行った。この時、ソース 領域403、405及びドレイン領域404、406が各々ゲッタリング領域として機能した。Pチャネル型TFT405側では、リンよりもボロンの濃度の方が高いにも関わらず良好にニッケルをゲッタリングすることが可能であった。

[0130]

このゲッタリング工程では、ゲート配線直下のチャネル形成領域から隣接するソース領域及びドレイン領域に向かって、ニッケルが移動してゲッタリングされる。そのため、チャネル形成領域中のニッケル濃度は 1×10^{17} atoms/cm³以下(おそらくは 1×10^{16} atoms/cm³以下)にまで低減された。

[0131]

なお、本実施例に示したゲッタリング工程は実施例2~実施例5のどの実施 例とも組み合わせることが可能である。

[0132]

(実施例7)

本実施例では、本願発明によって作製された反射型液晶表示装置の例を図2に示す。画素TFT(画素スイッチング素子)の作製方法やセル組工程は公知の手段を用いれば良いので詳細な説明は省略する。

[0133]

図5 (A)において11は絶縁表面を有する基板(酸化珪素膜を設けたセラミックス基板)、12は画素マトリクス回路、13はソースドライバー回路、14はゲイトドライバー回路、15は対向基板、16はFPC(フレキシブルプリントサーキット)、17は信号処理回路である。信号処理回路17としては、D/Aコンバータ、γ補正回路、信号分割回路などの従来ICで代用していた様な処理を行う回路を形成することができる。勿論、ガラス基板上にICチップを設けて、ICチップ上で信号処理を行うことも可能である。

[0134]

さらに、本実施例では液晶表示装置を例に挙げて説明しているが、アクティブマトリクス型の表示装置であればEL(エレクトロルミネッセンス)表示装置やEC(エレクトロクロミックス)表示装置に本願発明を適用することも可

能であることは言うまでもない。

[0135]

ここで図5(A)のドライバー回路13、14を構成する回路の一例を図5(B)に示す。なお、TFT部分については既に実施例1で説明しているので、ここでは必要箇所のみの説明を行う。

[0136]

図5 (B) において、501、502はNチャネル型TFT、503はPチャネル型TFTであり、501と503のTFTでCMOS回路を構成している。504は窒化珪素膜/酸化珪素膜/樹脂膜の積層膜でなる絶縁層、その上にはチタン配線505が設けられ、前述のCMOS回路とTFT502とが電気的に接続されている。チタン配線はさらに樹脂膜でなる絶縁層506で覆われている。二つの絶縁層504、506は平坦化膜としての機能も有している

[0137]

また、図5(A)の画素マトリクス回路12を構成する回路の一部を図5(C)に示す。図5(C)において、507はダブルゲート構造のNチャネル型TFTでなる画素TFTであり、画素領域内に大きく広がる様にしてドレイン配線508が形成されている。なお、ダブルゲート構造以外にシングルゲート構造やトリプルゲート構造などを採用しても構わない。

[0138]

その上には絶縁層504が設けられ、その上にチタン配線505が設けられている。この時、絶縁層504の一部には凹部が落とし込み部が形成され、最下層の窒化シリコン及び酸化シリコンのみが残される。これによりドレイン配線508とチタン配線505との間で補助容量が形成される。

[0139]

また、画素マトリクス回路内に設けられたチタン配線505はソース・ドレイン配線と後の画素電極との間において電界遮蔽効果をもたらす。さらに、複数設けられた画素電極間の隙間ではブラックマスクとしても機能する。

[0140]

そして、チタン配線505を覆って絶縁層506が設けられ、その上に反射 性導電膜でなる画素電極509が形成される。勿論、画素電極209の表面に 反射率を上げるための工夫をなしても構わない。また、実際には画素電極50 9の上に配向膜や液晶層が設けられるが、ここでの説明は省略する。

[0141]

本願発明を用いて以上の様な構成でなる反射型液晶表示装置を作製することができる。勿論、公知の技術と組み合わせれば容易に透過型液晶表示装置を作製することもできる。さらに、公知の技術と組み合わせればアクティブマトリクス型のEL表示装置も容易に作製することができる。

[0142]

また、図面では区別していないが画素マトリクス回路を構成する画素TFTと、ドライバー回路や信号処理回路を構成するCMOS回路とでゲート絶縁膜の膜厚を異ならせることも可能である。

[0143]

画素マトリクス回路ではTFTに印加される駆動電圧が高いので50~20 Onm程度の膜厚のゲート絶縁膜が必要である。一方、ドライバー回路や信号処理回路ではTFTに印加される駆動電圧は低く、逆に高速動作が求められるのでゲート絶縁膜の膜厚を3~30nm程度と画素TFTよりも薄くすることが有効である。

[0144]

(実施例8)

本願発明は従来のIC技術全般に適用することが可能である。即ち、現在市場に流通している全ての半導体回路に適用できる。例えば、ワンチップ上に集積化されたRISCプロセッサ、ASICプロセッサ等のマイクロプロセッサに適用しても良いし、D/Aコンバータ等の信号処理回路から携帯機器(携帯電話、PHS、モバイルコンピュータ)用の高周波回路に適用しても良い。

[0145]

図6に示すのは、マイクロプロセッサの一例である。マイクロプロセッサは 典型的にはCPUコア21、RAM22、クロックコントローラ23、キャッ シュメモリ24、キャッシュコントローラ25、シリアルインターフェース26、I/Oポート27等から構成される。

[0146]

勿論、図3に示すマイクロプロセッサは簡略化した一例であり、実際のマイクロプロセッサはその用途によって多種多様な回路設計が行われる。

[0147]

しかし、どの様な機能を有するマイクロプロセッサであっても中枢として機能するのはIC (Integrated Circuit) 28である。IC28は半導体チップ29上に形成された集積化回路をセラミック等で保護した機能回路である

[0148]

そして、その半導体チップ29上に形成された集積化回路を構成するのが本願発明の構造を有するNチャネル型TFT30、Pチャネル型TFT31である。なお、基本的な回路はCMOS回路を最小単位として構成することで消費電力を抑えることができる。

[0149]

また、本実施例に示したマイクロプロセッサは様々な電子機器に搭載されて中枢回路として機能する。代表的な電子機器としてはパーソナルコンピュータ、携帯型情報端末機器、その他あらゆる家電製品が挙げられる。また、車両(自動車や電車等)の制御用コンピュータなども挙げられる。

[0150]

(実施例9)

本願発明の電気光学装置は、様々な電子機器のディスプレイとして利用される。その様な電子機器としては、ビデオカメラ、スチルカメラ、プロジェクター、プロジェクションTV、ヘッドマウントディスプレイ、カーナビゲーション、パーソナルコンピュータ、携帯情報端末(モバイルコンピュータ、携帯電話、電子書籍等)などが挙げられる。それらの一例を図7に示す。

[0151]

図7(A)は携帯電話であり、本体2001、音声出力部2002、音声入

力部2003、表示装置2004、操作スイッチ2005、アンテナ2006 で構成される。本願発明を音声出力部2002、音声入力部2003、表示装置2004やその他の信号制御回路に適用することができる。

[0152]

図7(B)はビデオカメラであり、本体2101、表示装置2102、音声入力部2103、操作スイッチ2104、バッテリー2105、受像部2106で構成される。本願発明を表示装置2102、音声入力部2103やその他の信号制御回路に適用することができる。

[0153]

図7(C)はモバイルコンピュータ(モービルコンピュータ)であり、本体2201、カメラ部2202、受像部2203、操作スイッチ2204、表示装置2205で構成される。本願発明は表示装置2205やその他の信号制御回路に適用できる。

[0154]

図7(D)はゴーグル型ディスプレイであり、本体2301、表示装置2302、アーム部2303で構成される。本発明は表示装置2302やその他の信号制御回路に適用することができる。

[0155]

図7(E)はリア型プロジェクターであり、本体2401、光源2402、表示装置2403、偏光ビームスプリッタ2404、リフレクター2405、2406、スクリーン2407で構成される。本発明は表示装置2403やその他の信号制御回路に適用することができる。

[0156]

図7(F)は携帯書籍(電子書籍)であり、本体2501、表示装置2502、2503、記憶媒体2504、操作スイッチ2505、アンテナ2506で構成される。本発明は表示装置2502、2503やその他の信号制御回路に適用することができる。

[0157]

以上の様に、本願発明の適用範囲は極めて広く、あらゆる分野の電子機器に

適用することが可能である。

【図面の簡単な説明】

- 【図1】 薄膜トランジスタの作製工程を示す図。【図2】 薄膜トランジスタの作製工程を示す図。【図3】 薄膜トランジスタの作製工程を示す図。【図4】 薄膜トランジスタの作製工程を示す図。
- 【図5】 電気光学装置の構成を示す図。
- 【図6】 半導体回路の構成を示す図。
- 【図7】 電子機器の構成を示す図。
- 【図8】 電子線回折パターンを模式的に示した図。

【書類名】

図面

【図1】

【図2】

【図3】

【図4】

【図5】

11:絶縁表面を有する基板 12:画素マトリクス回路 13:ソースドライパー回路 14:ゲイトドライパー回路 15:対向基板 16:FPC 17:信号処理回路

【図6】

【図7】

【図8】

(B)

【書類名】 要約書

【要約】

【課題】 単結晶半導体薄膜又は実質的な単結晶半導体薄膜を形成するための技術を提供する。

【解決手段】 非晶質半導体薄膜に対して紫外光又は赤外光を照射することにより結晶性半導体薄膜102を得る。そして結晶性半導体薄膜102に対して、還元雰囲気において900~1200℃の熱処理を行う。この工程により結晶性半導体薄膜103の表面が著しく平坦化され、且つ、結晶粒界及び結晶粒内の欠陥が消滅して単結晶半導体薄膜又は実質的な単結晶半導体薄膜が得られる。

【選択図】 図1

【書類名】

職権訂正データ

【訂正書類】

特許願

<認定情報・付加情報>

【特許出願人】

申請人

【識別番号】

000153878

【住所又は居所】

神奈川県厚木市長谷398番地

【氏名又は名称】

株式会社半導体エネルギー研究所

出願人履歴情報

識別番号

[000153878]

1. 変更年月日

1990年 8月17日

[変更理由]

新規登録

住 所

神奈川県厚木市長谷398番地

氏 名

株式会社半導体エネルギー研究所