30. a. Find the Laplace transform of a periodic function f(t), with period 2, given by

(OR) b. Solve using Laplace transform method $y^{''}-3y^{'}+2y=2, y(0)=0, y^{'}(0)=5$

31. a. If $u+v=(x-y)(x^2+4xy+y^2)$ and f(z)=u+iv. Find f(z) in terms of z. b. (i) What is the region of the w-plane into which the rectangular region in the zplane bounded by the lines x = 0, y = 0, x = 1 and y = 2 is mapped under the

transformation w = z + 2 - i. [5 Marks] (ii) Find the bilinear transformation that maps the points -1, 0, 1 in the z-plane into the points 0, i, 3i in the w-plane. [7 Marks]

a. Find the Laurent's series expansion of $f(z) = \frac{1}{(z-1)(z-2)}$ valid in the region

(i) |z| < 1 (ii) 1 < |z| < 2 and (iii) |z| > 2

b. Evaluate using Contour integration

Reg. No

B.Tech. DEGREE EXAMINATION, JUNE 2023

Second Semester

18MAB102T - ADVANCED CALCULUS AND COMPLEX ANALYSIS

(For the candidates admitted during the academic year 2018-2019 to 2021-2022)

Note:

- i. Part A should be answered in OMR sheet within first 40 minutes and OMR sheet should be handed over to hall invigilator at the end of 40 minutes.

ha ii. P a	all invigilator at the end of 40 minutes. $art - B$ and $Part - C$ should be answered in answer	booklet.			
Time	e: 3 Hours		Max. N	Iarks :	: 100
	Part - A (20 × 1 Marks = 20 Answer All Questions		Mark	s BL	со
1,	The value of a double integral $\int\limits_0^2\int\limits_0^14xydxdy$	$oldsymbol{y}$ is	Í	2	1
	(A) 3 (C) 4 (B)				
2.		is equal to $\iint\limits_R r^2 dr d heta$ $\int\limits_R r dr d heta$. 1	1	1
3.	R The name of the curve $r = a(1 + \cos \theta)$ is	1 t	1	1	1
	(A) Leminiscate (B)	Cardioid Semicircle			
4.	By changing the double integration $\int\limits_0^a\int\limits_y^af(x,y)$	(y)dxdy into polar coordinates is	1	2	1
	$\int\limits_0^r\int\limits_0^r f(r, heta)rdrd heta$	$\int\limits_{0}^{rac{\pi}{4}}\int\limits_{0}^{rac{a}{\cos heta}}f(r, heta)drd heta \ \int\limits_{0}^{rac{\pi}{3}}\int\limits_{\cos heta}^{rac{a}{\cos heta}}f(r, heta)rdrd heta$			

(C) 2 (D) -2
6. The value of
$$curlgrad\phi$$
 is

(A) 0
(C)
$$\vec{a}$$
 (B) 1
(D) π

7. If
$$\vec{F}$$
 is irrotational and C is a closed curve, then $\oint_C \vec{F} \cdot d\vec{r} =$

2

	Ø 75.					
8.	The relation between a surface integral and (A) Green's theorem (C) Gauss Divergence theorem	a volume integral is known as (B) Stoke's theorem (D) workdone	1	1	2	
9.	If $L\{f(t)\} = F(s)$, then $L\{f(at\}) = (A) sF(s)$	(B) $\frac{1}{F}(\frac{s}{s})$	1	1	3	
	(C) $\frac{1}{a}F\left(\frac{a}{s}\right)$	(B) $\frac{1}{s}F\left(\frac{s}{a}\right)$ (D) $\frac{1}{a}F\left(\frac{s}{a}\right)$				
10.	If $L[f(t)] = F[s]$ then $L[tf(t)] =$		1	1	3	32
	(A) $\frac{d}{ds}F(s)$	$^{(B)}-\frac{d}{ds}F(s)$				
	$(-1)^n \frac{d}{ds} F(s)$	$^{(D)}-\frac{d^2}{ds^2}F(s)$				
11.	Find the inverse Laplace transform of $\frac{2}{e^2}$. 1	2	3	
	(A) t^2 (C) 2	(B) 3t (D) 2t				
12.	Find the inverse Laplace transform of $\frac{1}{(s-1)^n}$	$\frac{1}{(-1)^2+1} = 0$	1	2	3	
	(A) $e^{-t}\cos t$ (C) $e^t\sin t$	(B) $e^t \cos t$ (D) $e^{-t} \sin t$				
13.	The Cauchy-Riemaan equation in polar co- (A) $ru_r=v_{\theta}, rv_r=-u_{\theta}$ (C) $ru_r=-v_{\theta}, rv_r=-u_{\theta}$	ordinates is (B) $ru_r = -v_\theta, rv_r = u_\theta$ (D) $ru_r = v_\theta, rv_\tau = u_\theta$	1	1	4	
14.	An analytic function with constant modulus (A) zero (C) harmonic	s is (B) analytic (D) constant	1	1	4	
15.	The transformation $w = cz$ where c is real c (A) rotation (C) magnification	constant represents (B) reflection (D) magnification and rotation	1	1	4	
16.	The fixed points of the transformation $w =$	$\frac{2z+6}{z+7}$	1	2	4	2
	(A) -6, 1 (C) -6, -1	(B) 6, -1 (D) 6, 1				
17.	The value of $\oint_c \frac{z^2}{z-2} dz$ where c is a circle	z =1 is	- 1	2	5	
	(A) 0 (C) $\frac{\pi}{2}$	(B) 2 (D) π		2		4
18.	If $f(z) = \frac{z}{(z-1)^2(z-2)}$ then		1	1	5	
	 (A) z = 1 is a pole of order 2 and z = 2 is a pole of order 1 (C) z = 1 is a pole of order 2 and z = 2 is a pole of order 2 	 (B) z = 1 is a pole of order 1 and z = 2 is a pole of order 2 (D) z = 1 is a pole of order 1 and z = 2 is a pole of order 1 	2			
	is a pote of order 2	is a pole of order 1				

19. If $f(z) = \frac{\sin z}{z}$ then	1	2	5
(A) $z = 0$ is a pole of order 3 (B) $z = 0$ is a pole of order 2 (C) $z = 0$ is a removable singularity (D) $z = 0$ is a essential singularity			
	1	1	s: 5
The residue of $f(z) = \frac{1}{z+1}$ at $z = -1$ is			
(A) e^{-2} (B) $-2e^{-2}$ (C) -1 (D) $2e^{-2}$			
Part - B (5 × 4 Marks = 20 Marks) Answer any 5 Questions			CO
21.	4	3	- 1
22. Find a unit normal vector to the level surface $x^2 + 2y^2 + z^2 = 7$ at the parameter $(1, -1, 2)$.	point 4	3	2
23. Find Laplace Transform of $e^{2t}\cos 2t$	4	3	3
24. Analyze whether the function $u = e^{-2x} \sin 2y$ is harmonic.	4	4	4
Using Cauchy's integral formula, evaluate $\int_C \frac{e^{-z}}{z+1} dz$ where C is a circle $ z =1$	2	4	·5
26. Using partial fraction method, find the inverse Laplace transform of $\frac{1}{s(s+3)}$	4	3	3
27. Find the area of the region bounded by the parabolas $y = x^2$ and $x = y^2$	4	4	1
Part - C (5 × 12 Marks = 60 Marks) Answer All Questions		Marks BL	
28. a. Change the order of integration and evaluate $\int\limits_0^a \int\limits_{\frac{x^2}{a}}^{2a-x} xydydx$	12 .	4	1
b. Find the volume of a sphere $x^2 + y^2 + z^2 = a^2$ by using triple integrals.		9	
29. a. i. Find the angle between the surfaces $x^2 + yz = 2$ and $x + 2y - z = 2$ at (1,	1,1) 12	4	2
[6 Marks)			
ii. Show that the vector field			
\vec{F} given by $\vec{F} = (x^2 - yz)\vec{i} + (y^2 - zx)\vec{j} + (z^2 - xy)\vec{k}$ is irrotational and hence find its scalar potential. [6 Marks]			
(OD)			

(OR)

b. Verify Stoke's theorem for $\vec{F}=(y-z+2)\vec{i}+(yz+4)\vec{j}-xz\vec{k}$ over the surface of a cube x=0,y=0,z=0,x=2,y=2,z=2 above the XOY plane.