

iSCALARE

Лаборатория суперкомпьютерных технологий для биомедицины, фармакологии и малоразмерных структур

Виртуализация

Григорий Речистов

grigory.rechistov@phystech.edu

12.05.2014

На предыдущих лекциях:

•Симуляция

На этой лекции:

- •Виртуализация как частный случай симуляции
- •Условия эффективной виртуализации

Первое упоминание виртуализации

- •IBM System/360 1960 гг.
- •Popek Gerald J., Goldberg Robert P. Formal requirements for virtualizable third generation architectures // Communications of the ACM. V. 17. #7. 1974.

Признаки виртуализации

- •**Изоляция** каждая виртуальная машина должна иметь доступ только к тем ресурсам, которые были ей назначены.
- •Эквивалентность любая программа, исполняемая под управлением ВМ, должна демонстрировать поведение, полностью идентичное реальной системе, за исключением эффектов,
- •**Эффективность** «статистически преобладающее подмножество инструкций виртуального процессора должно исполняться напрямую хозяйским процессором, без вмешательства монитора ВМ»

Модель

- Один процессор, исполняющий инструкции
 - Состояние: (M, P, R)
 - Два режима M: *u* и *s*
 - Указатель текущей инструкции Р
 - Границы сегмента памяти R (I,b)
- Оперативная память
 - Линейная E с ячейками E[n]

События ловушки (trap)

- •Вызванные попыткой изменить состояние процессора (потока управления)
- •Вызванные механизмом защиты памяти (ловушка з.п.)
- • $E[0] \leftarrow (M1,P1,R1)$
- \bullet (M2,P2,R2) \leftarrow E[1]

Инструкции

- •Привилегированные (privileged). Исполнение с M=u всегда вызывает ловушку потока управления.
- •Служебные (sensitive)
 - Инструкции, исполнение которых закончилось без ловушки защиты памяти и вызвало изменение М и/или R.
 - Инструкции, поведение которых в случаях, когда они не вызывают ловушку защиты памяти, зависит или от режима М, или от значения R.
- •Безвредные не служебные

Достаточное условие

Множество служебных инструкций является подмножеством привилегированных инструкций

Почему это так

- •Программы исполняют безобидные инструкции напрямую
- •Служебные инструкции вызывают ловушку → переход в монитор, который их эмулирует
- •Привилегированные инструкции (ОС в ВМ) → ловушка
- •Изоляция
- •Эквивалентность
- •Эффективность

Что не упомянуто в условии Г. и П.

- •Сложные схемы трансляции адресов
- 🥊 •Периферия
 - •Многопроцессорные системы

Трансляция адресов - Виртуальная машина 1 Первый уровень преобразования адресов адресов уровень преобразования - Виртуальная машина 2 Первый уровень преобразования адресов Второй у Виртуальные Физические Настоящие адреса гостевых ОС адреса приложений адреса хозяина Лаборатория суперкомпьютерных технологий для биомедицины, фармакологии и 13 малоразмерных структур

TLB

Виртуальный адрес	Физический адрес	Тэг
0x11112222	0x22220000	VM1
0x11112222	0x11110000	VM2
0x44443333	0x55554444	MON0
0xabcd9876	0x00001234	VM1
0xabcd9876	0x11111234	VM3

Периферийные устройства

Периферийные устройства консервативный подход Прерывание Устройство Монитор ВМ **BM** 1 •Все прерывания доставляется **BM 2** монитору •Монитор «впрыскивает» их в ВМ •Повышенная латентность доставки прерываний

Периферийные устройства аппаратная поддержка Прерывание Устройство Монитор ВМ **BM 1** •Аппаратура поддерживает выборочную доставку **BM 2** прерываний напрямую в ВМ

Многопроцессорность

- •Планировка исполнения N виртуальных процессоров на M физических, $N \geq M$
 - Справедливая (fairness)
 - Эффективная характерные длительности синхронизационных процессов внутри ВМ должны быть близки к наблюдаемым на реальной аппаратуре
- •Проблема вытеснения потоков, заблокировавших ресурсы (lock holder preemption)
 - Монитору необходимо детектировать новый класс гостевых инструкций — синхронизационные примитивы (атомарные)

Литература

- •Harlan McGhan. The gHost in the Machine: Parts 1,2,3 // Microprocessor Report. 2007.
- http://mpronline.com
- Matias Zabaljauregui. Hardware Assisted
 Virtualization Intel Virtualization Technology.
- 2008

Спасибо за внимание!

Все материалы курса выкладываются на сайте лаборатории: http://iscalare.mipt.ru/material/course_materials/

Замечание: все торговые марки и логотипы, использованные в данном материале, являются собственностью их владельцев. Представленная здесь точка зрения отражает личное мнение автора, не выступающего от лица какой-либо организации.