

ESPAÑA

(10) ES (11) NUMERO 514167
(21) (12) FECHA DE PRESENTACION
20 JUL. 1982
(13) A3
8305343

PATENTE DE INTRODUCCION

COMO DESGLOSE Y CON PRIORIDAD DE LA PATENTE NUM.
504.202/X SOLICITADA EL 6 DE JULIO DE 1.981.

(44) FECHA DE PUBLICIDAD	(51) CLASIFICACION INTERNACIONAL
(54) TITULO DE LA INVENCION "PROCEDIMIENTO DE OBTENCION DE BENZHIDRILPIPERAZINAS"	
Int. Cl ^s C07D295/00, A61K31/495	
(55) PATENTE EXTRANJERA U OTRA FUENTE DE INFORMACION Patente Búlgara nº 17385, solicitada 9-11-71, a favor de S. Zikolova, K.Ninov y P.Manolov.	
(71) SOLICITANTE (S) FERRER INTERNACIONAL, S.A.	
DOMICILIO DEL SOLICITANTE Gran Vía Carlos III, 94 - BARCELONA.-	
(72) INVENTOR (ES)	
(73) TITULAR (ES)	
(74) REPRESENTANTE PASCUAL CIVANTO CANTO 218-6	

La presente invención se refiere a un nuevo procedimiento de obtención de benzhidrيلpiperazinas de fórmula general I:

5

I

10

donde R significa un resto alquil de 2 a 8 átomos de carbono, un resto alquenil de 3 ó 4 átomos de carbono, un resto fenilalquil o un resto difenilalquil de longitud de cadena de 2 ó 3 átomos de carbono, además de restos fenoxietil, naftilmethyl, fenilacetil, difenilacetil, difenilpropionil, naftilacetil, ciclohexil, ciclopentil, dietilaminoethyl, piperidinoethyl o morfolinoethyl, incluyendo sales con ácidos orgánicos o inorgánicos farmacológicamente aceptables.

15

Los compuestos de fórmula general I ya fueron objeto de patente en nuestra anterior solicitud nº 504.202, en la cual dichos compuestos eran preparados por reacción de la benzhidrيلpiperazina (II) con el halogenuro XR (III) donde X es cloro, bromo o yodo y R tiene igual significado que en I:

20

+

XR

III

Posteriormente, se ha desarrollado un nuevo procedimiento de obtención de los compuestos de fórmula general I, lo cual -- constituye el objeto de la presente solicitud. Según este procedimiento, se hace reaccionar la piperazina substituida (IV) con el halogenuro de benzidrilo (V):

donde R y X tienen los significados supraindicados.

Esta reacción se efectúa en un medio constituido por un disolvente adecuado, tal como benceno, tolueno, xileno, metanol, etanol o agua, a temperatura ambiente, o mejor a reflujo, reduciendo de este modo la duración del procedimiento de obtención de I a unas 6 horas aproximadamente.

Como agentes de condensación se utilizan bases minerales u orgánicas adecuadas, como por ejemplo, el NaHCO_3 , CO_3Na_2 , piridina, trietilamina, etc.

Las bases así obtenidas por tratamiento con los ácidos correspondientes dan las sales deseadas.

Los compuestos de fórmula general I ejercen un marcado efecto vasodilatador, mostrando tan solo un efecto hipotensor de corta duración, lo que los hace muy indicados en el tratamiento de los trastornos de la circulación cerebral y coronaria, así como de los trastornos vasculares periféricos. Es especialmente interesante por su elevada actividad el compuesto nº 7 de la tabla

adjunta, el cual puede administrarse, mezclado con los excipientes adecuados, por vía oral en forma de comprimidos, cápsulas, jarabe, solución, etc., por vía inyectable y por vía rectal, a dosis diarias comprendidas entre 50 y 500 mg.

5 Hecha la descripción del invento se describe a continuación un ejemplo práctico, no limitativo, referido al posible camino para su obtención, según las líneas del procedimiento preconizado, industrializable, empleando cantidades mayores a las expuestas.

10 EJEMPLO 1: $N^1-(\text{beta-fenil})\text{etil}-N^4-\text{benzhidrilpiperazina}$
Se disuelven 4 g (0,021 m) de mono-N-(beta-fenil)-etilpiperazina en 80 ml de benceno, en presencia de 4 g (0,036 m) de carbonato sódico. La mezcla se calienta durante aproximadamente 30 minutos y luego se añade una solución de 4 g (0,021 m) de cloruro de benzhidrilo en 20 ml de benceno. La nueva mezcla así obtenida se calienta durante 5 horas. El sedimento que queda después del enfriamiento y de la filtración se seca sobre sulfato sódico y el benceno se elimina por destilación. Parte de este sedimento se disuelve en etanol mezclándolo luego con una disolución etérica de ácido oxálico. Por cristalización se obtiene el oxalato correspondiente, p.f.: 184-6°C. Contenido calculado: C 64,93%; H 5,97%; N 5,22%. Encontrado: C 64,58%; H 6,30%; N 4,99%.

Por medio del método descrito se pueden obtener los compuestos relacionados en la tabla siguiente:

	R	sal o base	p.f.
5	1) CH ₃ CH ₂ -	Clorhidrato	251-3° (d)
		Picrato	232-3° (d)
10	2) CH ₃ CH ₂ CH ₂ CH ₂ -	Clorhidrato	237-40°
		Oxalato	128-30° (d)
15		Tartrato	200-203°(d)
	3) CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ -	Oxalato	105-8° (d)
20		Picrato	218-21° (d)
		Tartrato	198-200°(d)
25	4) CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ -	Oxalato	124-6° (d)
		Picrato	225-7° (d)
		Tartrato	205-7° (d)
30	5) CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ -	Oxalato	140-2° (d)
		Tartrato	202-4° (d)
35	6) CH ₃ CH ₂ -	Oxalato	180-3° (d)
		Tartrato	205-8° (d)
40	7) CH ₂ = CHCH ₂ -	Clorhidrato	226-8°
	8) CH ₃ CH = CH . CH ₂ -	Oxalato	179-81° (d)
45		Picrato	210-12° (d)
	9) C ₆ H ₅ -CH ₂ CH ₂ -	Oxalato	184-6° (d)
50	10) C ₆ H ₅ CH ₂ CH ₂ CH ₂ -	Oxalato	198-9° (d)
		Picrato	213-5° (d)
55	11) (C ₆ H ₅) ₂ CHCH ₂ -	Oxalato	195-7° (d)

	12) $(C_6H_5)_2CHCH_2CH_2-$	Oxalato	230-33° (d)
		Picrato	288-90° (d)
	13) $\alpha-C_{10}^HCH_2-$	Oxalato	200-01° (d)
	14) $\alpha-C_{10}^HCH_2CH_2-$	Oxalato	192-4° (d)
5	15) $C_6H_5O-CH_2CH_2-$	Oxalato	158-60° (d)
	16) C_6H_5CO-	Oxalato	140-42°
		Tartrato	145-7°
	17) $p-ClC_6^H_4CO-$	Clorhidrato	237-40°
		Citrat	150-3° (d)
10	18) $3,4,5-(CH_3O)_3C_6H_2CO-$	Base	149-50°
	19) $C_6H_5CH_2CO-$	Base	141-3°
	20) $(C_6H_5)_2CHCO$	Picrato	188-90° (d)
	21) $(C_6H_5)_2CHCH_2CO-$	Base	113-5°
		Clorhidrato	128-30°
15	22) $\alpha-C_{10}^HCH_2CO-$	Base	166-70°
		Clorhidrato	257-9°
	23)	Oxalato	193-5° (d)
		Tartrato	160-2°
		Citrat	134-6° (d)
20	24)	Oxalato	186-8° (d)
		Tartrato	180-2° (d)
		Citrat	100-02° (d)
	25) $(C_2H_5)_2NCH_2CH_2-$	Oxalato	167-9° (d)
	26) $(CH_3)_2NCH_2CH_2-$	Oxalato	154-6° (d)
25		Tartrato	174-6° (d)

Oxalato 132-5º (d)

Tartrato 158-61º (d)

Oxalato 160-2º (d)

Tartrato 160-3º (d)

5

Descrita la esencialidad de la invención de modo suficiente como para poder ser llevada a la práctica por técnico en la materia se recaba hacer extensivo el privilegio que se solicita a las variaciones de detalle que no alteren a la esencia de la invención resumida en sus detalles de novedad en las siguientes reivindicaciones que extractan, resumen y complementan a la memoria que antecede.

REIVINDICACIONES

5

1º) - Procedimiento de obtención de benzhidrilpiperazinas de fórmula general I:

I

10

15

donde R significa un resto alquil de 2 a 8 átomos de carbono, un resto alquenil de 3 ó 4 átomos de carbono, un resto fenilalquil o un resto difenilalquil de longitud de cadena de 2 ó 3 átomos de carbono, además de restos fenoxietil, naftilmethyl, naftiletil, benzoil, p-clorobenzoil, trimetoxibenzoil, fenilacetil, difenilacetil, difenilpropionil, naftilacetil, ciclohexil, ciclopentil, dietilaminoethyl, dimetilaminoethyl, piperidinoethyl o morfolinoethyl, incluyendo sales con ácidos orgánicos o inorgánicos fisiológicamente aceptables, caracterizado por hacer reaccionar la piperazina de fórmula general IV:

IV

20

donde R tiene igual significado que en I, con el halogenuro de fórmula general V:

V

25

donde X significa cloro, bromo o yodo.

2º) - Procedimiento de obtención de benzhidrilpiperazinas, según la reivindicación anterior, caracterizado por efectuar la reacción en un disolvente adecuado, tal como benceno, tolueno, xileno, metanol, etanol o agua y en presencia de un álcali, convirtiéndose después las bases así obtenidas a sus sales con ácidos orgánicos o inorgánicos farmacéuticamente aceptables, según los procedimientos usuales de la Química Orgánica.

5

3º) - PROCEDIMIENTO DE OBTENCION DE BENZHIDRILPIPERAZINAS.

10

Todo ello tal y como ha quedado descrito y reivindicado en la presente memoria que consta de ocho hojas mecanografiadas y foliadas por una sola de sus caras.

MADRID, 20 JUL. 1982

PASCUAL GIVANTO
P. P.

Firmado: Miguel A. Santos Gironés