

REMARKS

Claims 112-141, 151-168, 185-216 and 226-243 are currently pending in the application. The foregoing separate sheets marked as "Listing of Claims" show all the claims in the application, with an indication of the current status of each.

Applicant thanks Examiner for the indication in the Office Action dated 10/15/2004 that all claims in the application are allowed. Further to Examiner's comments in that Office Action, Applicant has hereby amended the specification by replacing the first paragraph of the specification with a replacement paragraph that recites that the parent application of the present application is now abandoned and is no longer copending.

Further, Applicant herewith submits a corrected Sequence Listing for the application in which the sequences on page 89 and the sequences on page 69 are listed as SEQ ID NOS: 15 and 16 and SEQ ID NOS: 17 and 18 , respectively. In addition, the specification has been amended in order to replace the two paragraphs that contain the sequences, paragraph [0380] on page 89 and paragraph [0329] on page 69, with replacement paragraphs that contain the SEQ ID NOS. Applicant submits that these amendments to the specification do not introduce any new matter, and requests entry of the replacement paragraphs. Applicant notes that the original paragraph [0380] contained underlining in the text within the sequence (the first 23 nucleotides) to indicate the T7 promoter sequence. This underlining has been retained in order to remain true to the original text, and should not be mistaken for new text, even though the new SEQ ID NOS. are also underlined to show that they are being added.

In view of the foregoing, Applicant submits that the application is now in *prima facie* condition for allowance. Should the Examiner find the application to be other than in condition for allowance, the Examiner is requested to contact the undersigned at 703-787-9400 (fax: 703-787-7557; email: ruth@wcc-ip.com) to discuss any other changes deemed necessary in a telephonic or personal interview.

If an extension of time is required for this response to be considered as being timely filed, a conditional petition is hereby made for such extension of time. Please charge any deficiencies in fees and credit any overpayment of fees to Attorney's Deposit Account No. 50-2041.

Respectfully submitted,

Ruth E. Tyler-Cross
Reg. No. 45,922

Whitham, Curtis & Christofferson, P.C.
11491 Sunset Hills Road, Suite 340
Reston, VA 20190
703-787-9400
703-787-7557 (fax)

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re patent application of Betenbaugh et al.

Serial number: 09/930,440

Group Art Unit: 1652

Attorney Docket Number: 03940077pa

Examiner: Rao

Filed: 2001-08-16

For: "**ENGINEERING INTRACELLULAR SIALYLATION PATHWAYS**"

SUBMISSION OF SUBSTITUTE SEQUENCE LISTING AND STATEMENT TO SUPPORT
FILING IN ACCORDANCE WITH 37 C.F.R. § 1.821-1.825

Commissioner for Patents
P.O. Box 1450
Alexandria, VA 22313-1450

Dear Sir:

In response to an Office Action mailed 10/15/2004, we enclose herein a corrected substitute computer readable form (diskette) and a corrected substitute paper copy of the sequence listings for the above-identified patent application. Please replace the Sequence Listing of the application with this substitute Sequence Listing. Also enclosed is a verified statement that the content of the paper and computer readable copies are the same and include no new matter.

Respectfully submitted,

Ruth E. Tyler Cross
Registration No. 45,922

Whitham, Curtis & Christofferson
11491 Sunset Hills Road; Suite 340
Reston, VA 20190
703-787-9400

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re patent application of Betenbaugh et al.

Serial number: 09/930,440

Attorney Docket Number: 03940077pa

Filed: 2001-08-16

For: "**ENGINEERING INTRACELLULAR SIALYLATION PATHWAYS**"

STATEMENT TO SUPPORT FILING AND SUBMISSION IN ACCORDANCE WITH

37 C.F.R. §§ 1.821-1.825

Assistant Commissioner for Patents
PO Box 1450
Alexandria, VA 22313-1450
Mail Stop SEQUENCE

Dear Sir:

In connection with a Substitute Sequence Listing submitted concurrently herewith, the undersigned states that:

1. the submission, filed herewith in accordance with 37 C.F.R. § 1.821 (g), does not include new matter;
2. the content of the attached paper copy and the attached computer readable copy of the Sequence Listing, submitted in accordance with 37 C.F.R. § 1.821(c) and (e), respectively, are the same; and
3. all statements made herein of their own knowledge are true and that all statements made on information and belief are believed to be true; and further, that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code and that

such willful false statements may jeopardize the validity of the application or any patent resulting therefrom.

Respectfully submitted,

Ruth E. Tyler-Cross

Reg. No. 45,922

12/09/04

Date

Sequence Listing.ST25.txt
SEQUENCE LISTING

<110> Betenbaugh, Michael J.
Lawrence, Shawn J.
Lee, Yuan C.
Coleman, Timothy A.

<120> Engineering Intracellular Sialylation Pathways

<130> 03940077pa

<140> 09/930,440

<141> 2001-08-16

<150> US 60/122,582

<151> 1999-03-02

<150> US 60/169,624

<151> 1999-12-08

<150> US 60/227,579

<151> 2000-08-25

<150> US 09/516,793

<151> 2000-03-01

<160> 18

<170> PatentIn version 3.2

<210> 1

<211> 1429

<212> DNA

<213> Homo sapiens

<400> 1
atggcttcc caaagaagaa acttcagggt cttgtggctg caaccatcac gccaatgact 60
gagaatggag aaatcaactt ttcatgtattt ggtcagtatg tggattatct tgtgaaagaa 120
cagggagtga agaacatttt tgtaatggc acaacaggag aaggcctgtc cctgagcgtc 180
tcagagcgtc gccaggttgc agaggagtgg gtgacaaaag ggaaggacaa gctggatcag 240
gtgataattc acgttaggagc actgagcttg aaggagtac aggaactggc ccaacatgca 300
gcagaaatag gagctgatgg catcgctgtc attgcaccgt tcttcctcaa gccatggacc 360
aaagatatcc tgattaattt cctaaaggaa gtggctgctg ccgcctgtc cctgccattt 420
tattactatc acattcctgc cttgacaggg gtaaagattc gtgctgagga gtttgtggat 480
gggattctgg ataagatccc cacttccaa gggctgaaat tcagtgatac agatcttta 540
gacttcgggc aatgtgttga tcagaatcgc cagcaacagt ttgcttcct ttttgggtg 600
gatgagcaac ttttgagtgc tctgggtatg ggagcaactg gagcagtggg cagttttgt 660
tccagagatt tatcaacttt gttgtcaaac taggtttgg agtgtcacag accaaagcca 720
tcatgactct ggtctctggg attccaatgg gcccaccccg gcttccactg cagaaagcct 780
ccagggagtt tactgatagt gctgaagcta aactgaagag cctggatttc ctttcttca 840

Sequence Listing.ST25.txt

ctgatttaaa ggatggaaac ttggaagctg gtagctagtg cctctctatc aaatcagggt	900
ttgcaccttg agacataatc taccttaaat agtgcatttt tttctcaggg aattttagat	960
gaacttgaat aaactctcct agcaaatgaa atctcacaat aagcatttag gtacctttg	1020
tgagccttaa aaagtcttat tttgtgaagg ggcaaaaact ctaggagtca caactctcag	1080
tcattcattt cacagatttt tttgtggaga aatttctgtt tatatggatg aaatggaatc	1140
aagaggaaaa ttgttaattga ttaattccat ctgtcttag gagctctcat tatctcggtc	1200
tctggcctt aatccttattt taaagttgtc taatttaaa ccactataat atgtcttcat	1260
ttaataaaat attcatttgg aatcttagaa aactctgagc tactgcattt aggccaggcac	1320
ttaataacca aactgtaca a tgtctcaact gtatacaact caaaatacac cagctcattt	1380
ggctgctcag tctaactcta gaatggatgc tttgaattc atttcgatg	1429

<210> 2

<211> 304

<212> PRT

<213> Homo sapiens

<400> 2

Met Ala Phe Pro Lys Lys Leu Gln Gly Leu Val Ala Ala Thr Ile
1 5 10 15

Thr Pro Met Thr Glu Asn Gly Glu Ile Asn Phe Ser Val Ile Gly Gln
20 25 30

Tyr Val Asp Tyr Leu Val Lys Glu Gln Gly Val Lys Asn Ile Phe Val
35 40 45

Asn Gly Thr Thr Gly Glu Gly Leu Ser Leu Ser Val Ser Glu Arg Arg
50 55 60

Gln Val Ala Glu Glu Trp Val Thr Lys Gly Lys Asp Lys Leu Asp Gln
65 70 75 80

Val Ile Ile His Val Gly Ala Leu Ser Leu Lys Glu Ser Gln Glu Leu
85 90 95

Ala Gln His Ala Ala Glu Ile Gly Ala Asp Gly Ile Ala Val Ile Ala
100 105 110

Pro Phe Phe Leu Lys Pro Trp Thr Lys Asp Ile Leu Ile Asn Phe Leu
115 120 125

Lys Glu Val Ala Ala Ala Pro Ala Leu Pro Phe Tyr Tyr Tyr His
130 135 140

Sequence Listing.ST25.txt

Ile Pro Ala Leu Thr Gly Val Lys Ile Arg Ala Glu Glu Leu Leu Asp
145 150 155 160

Gly Ile Leu Asp Lys Ile Pro Thr Phe Gln Gly Leu Lys Phe Ser Asp
165 170 175

Thr Asp Leu Leu Asp Phe Gly Gln Cys Val Asp Gln Asn Arg Gln Gln
180 185 190

Gln Phe Ala Phe Leu Phe Gly Val Asp Glu Gln Leu Leu Ser Ala Leu
195 200 205

Val Met Gly Ala Thr Gly Ala Val Gly Ser Phe Val Ser Arg Asp Leu
210 215 220

Ser Thr Leu Leu Ser Asn Val Leu Glu Cys His Arg Pro Lys Pro Ser
225 230 235 240

Leu Trp Ser Leu Gly Phe Gln Trp Ala His Pro Gly Phe His Cys Arg
245 250 255

Lys Pro Pro Gly Ser Leu Leu Ile Val Leu Lys Leu Asn Arg Ala Trp
260 265 270

Ile Ser Phe Leu Ser Leu Ile Arg Met Glu Thr Trp Lys Leu Val Ala
275 280 285

Ser Ala Ser Leu Ser Asn Gln Gly Phe Ala Pro Leu Arg His Asn Leu
290 295 300

<210> 3

<211> 1305

<212> DNA

<213> Homo sapiens

<400> 3

atggactcgg tggagaaggg ggccgccacc tccgtctcca acccgcgaaa ggcgaccgtcc 60

cggggccggc cgccgaagct gcagcgcaac tctcgcgccg gccaggcccgg aggtgtggag 120

aagccccgc acctggcagc cctaattctg gcccggggag gcagcaaagg catccccctg 180

aagaacatta agcacctggc ggggtcccg ctcattggct gggtcctgcg tgcggccctg 240

gattcagggg ctttccagag tgtatgggtt tcgacagacc atgatgaaat tgagaatgtg 300

gccaaacaat ttggtgacaca agttcatcga agaagttctg aagtttcaaa agacagctct 360

acctcaactag atgccatcat agaatttctt aattatyata atgaggktga cattgttaga 420

aatattcaag ctacttctyc atgttacat cctactgatc ttcaaaaaagt tgcagaaatg 480

Sequence Listing.ST25.txt

attcgagaag aaggatatga ttctgktttc tctgttgtga gacgccatca gtttcgatgg	540
agtgaaattc agaaaggagt tcgtgaagt accgaacctc tgaatttaaa tccagctaaa	600
cggcctcgtc gacaagactg ggatggagaa ttatatgaaa atggctcatt ttatggct	660
aaaagacatt tgatagagat gggtaacttg cagggtggaa aaatggcata ctacgaaatg	720
cgagctgaac atagtgtgga tatagatgtg gatattgatt ggcctattgc agagcaaaga	780
gtattaagat atggcttattt tggcaaagag aagcttaagg aaataaaact tttggttgc	840
aatattgtat gatgtctcac caatggccac atttatgtat caggagacca aaaagaaaata	900
atatctttagt atgtaaaaga tgctattggg ataagtttat taaagaaaag tggatttag	960
gtgaggctaa ttcagaaaag ggcctgttca aagcagacgc tgtcttctt aaaactggat	1020
tgcaaaaatgg aagtcaagt atcagacaag ctagcagttg tagatgaatg gagaaaagaa	1080
atggccctgt gctggaaaga agtggcatat cttggaaatg aagtgtctga tgaagagtgc	1140
ttgaagagag tgggcctaag tggcgctcct gctgatgcct gttcctacgc ccagaaggct	1200
gttggataca tttgcaaatg taatggtgcc cgtggtgcca tccgagaatt tgcagagcac	1260
atttgcctac taatggaaaa agttaataat tcatgccaaa aatag	1305

<210> 4
<211> 434
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<222> (133)..(133)
<223> Xaa can be any naturally occurring amino acid

<220>
<221> misc_feature
<222> (136)..(136)
<223> Xaa can be any naturally occurring amino acid

<220>
<221> misc_feature
<222> (147)..(147)
<223> Xaa can be any naturally occurring amino acid

<220>
<221> misc_feature
<222> (169)..(169)
<223> Xaa can be any naturally occurring amino acid

<400> 4

Met Asp Ser Val Glu Lys Gly Ala Ala Thr Ser Val Ser Asn Pro Arg
1 5 10 15

Gly Arg Pro Ser Arg Gly Arg Pro Pro Lys Leu Gln Arg Asn Ser Arg
Page 4

Sequence Listing.ST25.txt

20

25

30

Gly Gly Gln Gly Arg Gly Val Glu Lys Pro Pro His Leu Ala Ala Leu
35 40 45

Ile Leu Ala Arg Gly Gly Ser Lys Gly Ile Pro Leu Lys Asn Ile Lys
50 55 60

His Leu Ala Gly Val Pro Leu Ile Gly Trp Val Leu Arg Ala Ala Leu
65 70 75 80

Asp Ser Gly Ala Phe Gln Ser Val Trp Val Ser Thr Asp His Asp Glu
85 90 95

Ile Glu Asn Val Ala Lys Gln Phe Gly Ala Gln Val His Arg Arg Ser
100 105 110

Ser Glu Val Ser Lys Asp Ser Ser Thr Ser Leu Asp Ala Ile Ile Glu
115 120 125

Phe Leu Asn Tyr Xaa Asn Glu Xaa Asp Ile Val Gly Asn Ile Gln Ala
130 135 140

Thr Ser Xaa Cys Leu His Pro Thr Asp Leu Gln Lys Val Ala Glu Met
145 150 155 160

Ile Arg Glu Glu Gly Tyr Asp Ser Xaa Phe Ser Val Val Arg Arg His
165 170 175

Gln Phe Arg Trp Ser Glu Ile Gln Lys Gly Val Arg Glu Val Thr Glu
180 185 190

Pro Leu Asn Leu Asn Pro Ala Lys Arg Pro Arg Arg Gln Asp Trp Asp
195 200 205

Gly Glu Leu Tyr Glu Asn Gly Ser Phe Tyr Phe Ala Lys Arg His Leu
210 215 220

Ile Glu Met Gly Tyr Leu Gln Gly Lys Met Ala Tyr Tyr Glu Met
225 230 235 240

Arg Ala Glu His Ser Val Asp Ile Asp Val Asp Ile Asp Trp Pro Ile
245 250 255

Ala Glu Gln Arg Val Leu Arg Tyr Gly Tyr Phe Gly Lys Glu Lys Leu
260 265 270

Sequence Listing ST25.txt

Lys Glu Ile Lys Leu Leu Val Cys Asn Ile Asp Gly Cys Leu Thr Asn
275 280 285

Gly His Ile Tyr Val Ser Gly Asp Gln Lys Glu Ile Ile Ser Tyr Asp
290 295 300

Val Lys Asp Ala Ile Gly Ile Ser Leu Leu Lys Lys Ser Gly Ile Glu
305 310 315 320

Val Arg Leu Ile Ser Glu Arg Ala Cys Ser Lys Gln Thr Leu Ser Ser
325 330 335

Leu Lys Leu Asp Cys Lys Met Glu Val Ser Val Ser Asp Lys Leu Ala
340 345 350

Val Val Asp Glu Trp Arg Lys Glu Met Gly Leu Cys Trp Lys Glu Val
355 360 365

Ala Tyr Leu Gly Asn Glu Val Ser Asp Glu Glu Cys Leu Lys Arg Val
370 375 380

Gly Leu Ser Gly Ala Pro Ala Asp Ala Cys Ser Tyr Ala Gln Lys Ala
385 390 395 400

Val Gly Tyr Ile Cys Lys Cys Asn Gly Gly Arg Gly Ala Ile Arg Glu
405 410 415

Phe Ala Glu His Ile Cys Leu Leu Met Glu Lys Val Asn Asn Ser Cys
420 425 430

Gln Lys

<210> 5
<211> 1080
<212> DNA
<213> Homo sapiens

<400> 5
atgcccctgg agctggagct gtgtcccgaa cgctgggtgg gcggggcaaca cccgtgccttc 60
atcattgccg agatcgccca gaaccaccag ggcgacctgg acgttagccaa gcgcatgatc
cgcatggcca aggagtgtgg ggctgattgt gccaagttcc agaagagtga gctagaattc 120
aagtttaatc ggaaagcctt ggagaggcca tacacctcga agcattcctg ggggaagacg
tacggggagc acaaacgaca tctggagttc agccatgacc agtacaggga gctgcagagg 180
tacgcccagg aggttggat cttcttcaact gcctctggca tggatgagat ggcagttgaa 240
ttcctgcatg aactgaatgt tccattttc aaagttggat ctggagacac taataatttt 300
360
420

Sequence Listing.ST25.txt

ccttatctgg	aaaagacagc	caaaaaaggt	cgcccaatgg	tgatctccag	tgggatgcag	480
tcaatggaca	ccatgaagca	agtttatcag	atcgtgaagc	ccctcaaccc	caacttctgc	540
ttcttcagt	gtaccagcgc	ataccgcgc	cagcctgagg	acgtcaacct	gcgggtcatc	600
tcggaatatac	agaagctctt	tcctgacatt	cccatagggt	attctggca	tgaaacaggc	660
atagcgatat	ctgtggccgc	agtggctctg	ggggccaagg	tgttggAACG	tcacataact	720
ttggacaaga	cctggaaggg	gagtgaccac	tcggcctcgc	tggagcctgg	agaactggcc	780
gagctgggtgc	ggtcagtgcg	tcttggag	cgtccccctgg	gctcccaac	caagcagctg	840
ctgcccgtg	agatggcctg	aatgagaag	ctggcaagt	ctgtggtgcc	caaagtgaaa	900
attccggaag	gcaccattct	aacaatggac	atgctcaccc	tgaagggtggg	tgagccaaa	960
gcctatcctc	ctgaagacat	cttaatcta	gtggcaaga	aggtcctgg	cactgttcaa	1020
gaggatgaca	ccatcatgga	agaattggta	gataatcatg	gcaaaaaat	caagtctaa	1080

<210> 6

<211> 359

<212> PRT

<213> Homo sapiens

<400> 6

Met Pro Leu Glu Leu Glu Leu Cys Pro Gly Arg Trp Val Gly Gly Gln
1 5 10 15

His Pro Cys Phe Ile Ile Ala Glu Ile Gly Gln Asn His Gln Gly Asp
20 25 30

Leu Asp Val Ala Lys Arg Met Ile Arg Met Ala Lys Glu Cys Gly Ala
35 40 45

Asp Cys Ala Lys Phe Gln Lys Ser Glu Leu Glu Phe Lys Phe Asn Arg
50 55 60

Lys Ala Leu Glu Arg Pro Tyr Thr Ser Lys His Ser Trp Gly Lys Thr
65 70 75 80

Tyr Gly Glu His Lys Arg His Leu Glu Phe Ser His Asp Gln Tyr Arg
85 90 95

Glu Leu Gln Arg Tyr Ala Glu Glu Val Gly Ile Phe Phe Thr Ala Ser
100 105 110

Gly Met Asp Glu Met Ala Val Glu Phe Leu His Glu Leu Asn Val Pro
115 120 125

Sequence Listing.ST25.txt

Phe Phe Lys Val Gly Ser Gly Asp Thr Asn Asn Phe Pro Tyr Leu Glu
130 135 140

Lys Thr Ala Lys Lys Gly Arg Pro Met Val Ile Ser Ser Gly Met Gln
145 150 155 160

Ser Met Asp Thr Met Lys Gln Val Tyr Gln Ile Val Lys Pro Leu Asn
165 170 175

Pro Asn Phe Cys Phe Leu Gln Cys Thr Ser Ala Tyr Pro Leu Gln Pro
180 185 190

Glu Asp Val Asn Leu Arg Val Ile Ser Glu Tyr Gln Lys Leu Phe Pro
195 200 205

Asp Ile Pro Ile Gly Tyr Ser Gly His Glu Thr Gly Ile Ala Ile Ser
210 215 220

Val Ala Ala Val Ala Leu Gly Ala Lys Val Leu Glu Arg His Ile Thr
225 230 235 240

Leu Asp Lys Thr Trp Lys Gly Ser Asp His Ser Ala Ser Leu Glu Pro
245 250 255

Gly Glu Leu Ala Glu Leu Val Arg Ser Val Arg Leu Val Glu Arg Ala
260 265 270

Leu Gly Ser Pro Thr Lys Gln Leu Leu Pro Cys Glu Met Ala Cys Asn
275 280 285

Glu Lys Leu Gly Lys Ser Val Val Ala Lys Val Lys Ile Pro Glu Gly
290 295 300

Thr Ile Leu Thr Met Asp Met Leu Thr Val Lys Val Gly Glu Pro Lys
305 310 315 320

Ala Tyr Pro Pro Glu Asp Ile Phe Asn Leu Val Gly Lys Lys Val Leu
325 330 335

Val Thr Val Glu Glu Asp Asp Thr Ile Met Glu Glu Leu Val Asp Asn
340 345 350

His Gly Lys Lys Ile Lys Ser
355

<210> 7
<211> 1059
<212> DNA

Sequence Listing.ST25.txt

<213> Escherichia coli

<400> 7

atgagtaata tataatcgt tgctgaaatt gggtgcacc ataatggtag tggttatatt	60
gcaagsagaa atgatattaa aagccaaaga ggccgggttt aatgcagtaa aattccaaac	120
atttaaagct gataaattaa tttagctat tgcacctaag gcagagtatc aaataaaaaa	180
cacaggagaa tttagaatctc agttagaaat gacaaaaaaag cttgaaatga agtacgca	240
ttatctccat ctaatggaaat atgcagtcag tttaaattta gatgtttttt ctaccccttt	300
tgacgaagac tctattgatt tttagcatc tttagaaacaa aaaatatgga aaatcccttc	360
aggtgagttt ttgaattttac cgtatcttga aaaaatagcc aagcttccga tccctgataa	420
gaaaataatc atatcaacag gaatggctac tattgtgag ataaaacagt ctgtttctat	480
ttttataaat aataaagttc cggttgtaa tattacaata ttacattgca atactgaata	540
tccaacgccc tttaggatg taaaccttta tgctattaat gattgaaaa aacacttccc	600
taagaataac ataggcttct ctgatcattc tagcgggttt tatgcagcta ttgcggcggt	660
gccttatgga ataactttt ttgaaaaaca ttttacttta gataaatcta tgtctggccc	720
agatcatttgc gcctcaatag aacctgatga actgaaacat ctttgttattt gggtcaggtt	780
tgttggaaaaa tcttttaggtt caaatagtaa agtggttaca gcttcagaaa ggaagaataa	840
aatcgttagca agaaagtcta ttatagctaa acagagataa aaaaagggtga ggtttttca	900
gaaaaaaaaata taacaacaaa aagaccttgtt aatggtatca gtccgatgga gtggtataat	960
ttattggta aaattgcaga gcaagactttt attccagatg aattaataat tcatacgaa	1020
ttcaaaaatc agggggata atgagaacaa aaattatttgc	1059

<210> 8

<211> 346

<212> PRT

<213> Escherichia coli

<400> 8

Met Ser Asn Ile Tyr Ile Val Ala Glu Ile Gly Cys Asn His Asn Gly
1 5 10 15

Ser Val Asp Ile Ala Arg Glu Met Ile Leu Lys Ala Lys Glu Ala Gly
20 25 30

Val Asn Ala Val Lys Phe Gln Thr Phe Lys Ala Asp Lys Leu Ile Ser
35 40 45

Ala Ile Ala Pro Lys Ala Glu Tyr Gln Ile Lys Asn Thr Gly Glu Leu
50 55 60

Sequence Listing.ST25.txt

Glu Ser Gln Leu Glu Met Thr Lys Lys Leu Glu Met Lys Tyr Asp Asp
65 70 75 80

Tyr Leu His Leu Met Glu Tyr Ala Val Ser Leu Asn Leu Asp Val Phe
85 90 95

Ser Thr Pro Phe Asp Glu Asp Ser Ile Asp Phe Leu Ala Ser Leu Lys
100 105 110

Gln Lys Ile Trp Lys Ile Pro Ser Gly Glu Leu Leu Asn Leu Pro Tyr
115 120 125

Leu Glu Lys Ile Ala Lys Leu Pro Ile Pro Asp Lys Lys Ile Ile Ile
130 135 140

Ser Thr Gly Met Ala Thr Ile Asp Glu Ile Lys Gln Ser Val Ser Ile
145 150 155 160

Phe Ile Asn Asn Lys Val Pro Val Gly Asn Ile Thr Ile Leu His Cys
165 170 175

Asn Thr Glu Tyr Pro Thr Pro Phe Glu Asp Val Asn Leu Asn Ala Ile
180 185 190

Asn Asp Leu Lys Lys His Phe Pro Lys Asn Asn Ile Gly Phe Ser Asp
195 200 205

His Ser Ser Gly Phe Tyr Ala Ala Ile Ala Ala Val Pro Tyr Gly Ile
210 215 220

Thr Phe Ile Glu Lys His Phe Thr Leu Asp Lys Ser Met Ser Gly Pro
225 230 235 240

Asp His Leu Ala Ser Ile Glu Pro Asp Glu Leu Lys His Leu Cys Ile
245 250 255

Gly Val Arg Cys Val Glu Lys Ser Leu Gly Ser Asn Ser Lys Val Val
260 265 270

Thr Ala Ser Glu Arg Lys Asn Lys Ile Val Ala Arg Lys Ser Ile Ile
275 280 285

Ala Lys Thr Glu Ile Lys Lys Gly Glu Val Phe Ser Glu Lys Asn Ile
290 295 300

Thr Thr Lys Arg Pro Gly Asn Gly Ile Ser Pro Met Glu Trp Tyr Asn
305 310 315 320

Sequence Listing.ST25.txt

Leu Leu Gly Lys Ile Ala Glu Gln Asp Phe Ile Pro Asp Glu Leu Ile
325 330 335

Ile His Ser Glu Phe Lys Asn Gln Gly Glu
340 345

<210> 9
<211> 20
<212> DNA
<213> Artificial

<220>
<223> synthetic oligonucleotide primer: T/C, T, I,
C,A,C/T,T,G,G,C,A,C/T,A/T/C,T,I,G,T,I,G,A

<220>
<221> misc_feature
<222> (1)..(1)
<223> n = t or c

<220>
<221> misc_feature
<222> (3)..(3)
<223> n = i

<220>
<221> misc_feature
<222> (6)..(6)
<223> n = c or t

<220>
<221> misc_feature
<222> (12)..(12)
<223> n = c or t

<220>
<221> misc_feature
<222> (13)..(13)
<223> n = a, c or t

<220>
<221> misc_feature
<222> (15)..(15)
<223> n = i

<220>
<221> misc_feature
<222> (18)..(18)
<223> n = i

<400> 9
ntncantggc anntngtnga

20

<210> 10
<211> 20
<212> DNA
<213> Artificial

Sequence Listing.ST25.txt

<220>
<223> synthetic oligonucleotide primer
G,A,G/A,A/T,T,A/C/T,G,A,C/T,I,I,I,C,C,I,G,G/C,I,C,A

<220>
<221> misc_feature
<222> (3)..(3)
<223> n = g or a

<220>
<221> misc_feature
<222> (4)..(4)
<223> n = a or t

<220>
<221> misc_feature
<222> (6)..(6)
<223> n = a,c or t

<220>
<221> misc_feature
<222> (9)..(9)
<223> n = c or t

<220>
<221> misc_feature
<222> (10)..(10)
<223> n = i

<220>
<221> misc_feature
<222> (11)..(11)
<223> n = i

<220>
<221> misc_feature
<222> (12)..(12)
<223> n = i

<220>
<221> misc_feature
<222> (15)..(15)
<223> n is a, c, g, or t

<220>
<221> misc_feature
<222> (17)..(17)
<223> n = g or c

<220>
<221> misc_feature
<222> (18)..(18)
<223> n = i

<400> 10
ganntngann nnccngnnca

<210> 11
<211> 20
<212> DNA
<213> Artificial

Sequence Listing.ST25.txt

```
<220>
<223> synthetic oligonucleotide primer
      T,G,I,C/G,C,I,G,G,I,I,I,G/A,T,C,T/G/A,A,T/A,C/T,T,C

<220>
<221> misc_feature
<222> (3)..(3)
<223> n = i

<220>
<221> misc_feature
<222> (4)..(4)
<223> n = c or g

<220>
<221> misc_feature
<222> (6)..(6)
<223> n = i

<220>
<221> misc_feature
<222> (9)..(9)
<223> n = i

<220>
<221> misc_feature
<222> (10)..(10)
<223> n = i

<220>
<221> misc_feature
<222> (11)..(11)
<223> n = i

<220>
<221> misc_feature
<222> (12)..(12)
<223> n = g or a

<220>
<221> misc_feature
<222> (15)..(25)
<223> n = t, g or a

<220>
<221> misc_feature
<222> (17)..(17)
<223> n = t or a

<220>
<221> misc_feature
<222> (18)..(18)
<223> n = c or t

<400> 11
tgnncngnn nntcnanntc
```

20

```
<210> 12
<211> 20
<212> DNA
```

Sequence Listing.ST25.txt

<213> Artificial
<220>
<223> synthetic oligonucleotide primer A, C/A/G, C/T,
T,C,G/A,T,C,I,C,C,I,I,I,G/A,T,G

<220>
<221> misc_feature
<222> (2)..(2)
<223> n = c, a or g

<220>
<221> misc_feature
<222> (3)..(3)
<223> n = c or t

<220>
<221> misc_feature
<222> (6)..(6)
<223> n = g or a

<220>
<221> misc_feature
<222> (9)..(9)
<223> n = i

<220>
<221> misc_feature
<222> (12)..(12)
<223> n = i

<220>
<221> misc_feature
<222> (15)..(15)
<223> n = i

<220>
<221> misc_feature
<222> (16)..(16)
<223> n = i

<220>
<221> misc_feature
<222> (17)..(17)
<223> n = i

<220>
<221> misc_feature
<222> (18)..(18)
<223> n = g or a

<400> 12
anntcntcnc cnccnnnntg

20

<210> 13
<211> 54
<212> DNA
<213> Artificial

<220>
<223> synthetic oligonucleotide primer

Sequence Listing.ST25.txt

<400> 13
tgtaatacga ctcactatag ggcggatccg ccatcatgcc gctggagctg gagc 54

<210> 14
<211> 34
<212> DNA
<213> Artificial

<220>
<223> synthetic oligonucleotide primer

<400> 14
gtacggtacc ttattaagac ttgattttt tgcc 34

<210> 15
<211> 54
<212> DNA
<213> Artificial

<220>
<223> synthetic oligonucleotide primer

<400> 15
tgtaatacga ctcactatag ggcggatccg ccatcatgga ctcggtgag aagg 54

<210> 16
<211> 44
<212> DNA
<213> Artificial

<220>
<223> synthetic oligonucleotide primer

<400> 16
gtacggtacc ttactatTTT tggcatGAAT tattaACTTT ttCC 44

<210> 17
<211> 14
<212> PRT
<213> Escherichia coli

<400> 17

Ile Ile Ala Ile Ile Pro Ala Arg Ser Gly Ser Lys Gly Leu
1 5 10

<210> 18
<211> 14
<212> PRT
<213> Homo sapiens

<400> 18

Leu Ala Ala Leu Ile Leu Ala Arg Gly Gly Ser Lys Gly Ile
1 5 10