

DRV8836 SLVSB17D - MARCH 2012-REVISED APRIL 2016

DRV8836 Dual Low-Voltage H-Bridge IC

Features

- **Dual-H-Bridge Motor Driver**
 - Capable of Driving Two DC Motors or One Stepper Motor
 - Low MOSFET On-Resistance: $HS + LS 305 m\Omega$
- 1.5-A Maximum Drive Current Per H-Bridge
- Configure Bridges Parallel for 3-A Drive Current
- 2-V to 7-V Operating Supply Voltage
- Flexible PWM or PHASE/ENABLE Interface
- Low-Power Sleep Mode With 95-nA Maximum Supply Current
- Dedicated nSLEEP Input Pin
- Tiny 2.00-mm × 3.00-mm WSON Package

Applications

- Battery-Powered:
 - **DSLR Lenses**
 - Consumer Products
 - Toys
 - Robotics
 - Cameras
 - **Medical Devices**

3 Description

The DRV8836 provides an integrated motor driver solution for cameras, consumer products, toys, and other low-voltage or battery-powered motion control applications. The device has two H-bridge drivers, and can drive two DC motors or one stepper motor, as well as other devices like solenoids. The output driver block for each consists of N-channel power MOSFET configured as an H-bridge to drive the motor winding. An internal charge pump generates gate drive voltages.

The DRV8836 supplies up to 1.5-A of output current per H-bridge. It operates on a power supply voltage from 2 V to 7 V.

PHASE/ENABLE and IN/IN interfaces can be selected which are compatible with industry-standard devices. A low-power sleep mode is provided which turns off all unnecessary logic to provide a very low current state.

shutdown functions are provided for Internal overcurrent protection, short-circuit protection. undervoltage lockout, and overtemperature.

The DRV8836 is packaged in a tiny 12-pin WSON package (Eco-friendly: RoHS and no Sb/Br).

Device Information⁽¹⁾

PART NUMBER	PACKAGE	BODY SIZE (NOM)
DRV8836	WSON (12)	2.00 mm x 3.00 mm

(1) For all available packages, see the orderable addendum at the end of the datasheet.

Simplified Schematic

Copyright © 2016, Texas Instruments Incorporated

Table of Contents

1	Features 1	7.4 Device Functional Modes 9
2	Applications 1	8 Application and Implementation 11
3	Description 1	8.1 Application Information 11
4	Revision History2	8.2 Typical Application 11
5	Pin Configuration and Functions 3	9 Power Supply Recommendations 13
6	Specifications4	9.1 Bulk Capacitance
	6.1 Absolute Maximum Ratings	10 Layout
	6.2 ESD Ratings	10.1 Layout Guidelines
	6.3 Recommended Operating Conditions4	10.2 Layout Example 14
	6.4 Thermal Information	10.3 Thermal Considerations
	6.5 Electrical Characteristics5	11 Device and Documentation Support 16
	6.6 Timing Requirements	11.1 Documentation Support
	6.7 Typical Characteristics7	11.2 Community Resources 16
7	Detailed Description 8	11.3 Trademarks
	7.1 Overview 8	11.4 Electrostatic Discharge Caution 16
	7.2 Functional Block Diagram 8	11.5 Glossary
	7.3 Feature Description9	12 Mechanical, Packaging, and Orderable Information

4 Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Changes from Revision C (December 2015) to Revision D	Page
Deleted nFAULT from the Simplified Schematic in the Description section	1
Changes from Revision B (January 2014) to Revision C	Page
 Added ESD Ratings table, Feature Description section, Device Functional Modes, Application and Implementation section, Power Supply Recommendations section, Layout section, Device and Documentation Support section, and Mechanical, Packaging, and Orderable Information section 	1
Changes from Revision A (September 2013) to Revision B	Page
Added t _{OCR} and t _{DEAD} parameters to <i>Electrical Characteristics</i>	5

5 Pin Configuration and Functions

DSS Package 12-Pin WSON Top View

Pin Functions

PIN		I/O ⁽¹⁾	DECORUDION	EXTERNAL COMPONENTS		
NAME	NO.	1/01.7	DESCRIPTION	OR CONNECTIONS		
POWER AND GR	ROUND					
GND, Thermal pad	6	_	Device ground			
VCC	1	_	Device and motor supply	Bypass to GND with a 0.1-µF (minimum) ceramic capacitor		
CONTROL						
AIN1/APHASE	10	I	Bridge A input 1/PHASE input	IN/IN mode: Logic high sets AOUT1 high PH/EN mode: Sets direction of H-bridge A Internal pulldown resistor		
AIN2/AENBL	9	I	Bridge A input 2/ENABLE input	IN/IN mode: Logic high sets AOUT2 high PH/EN mode: Logic high enables H-bridge A Internal pulldown resistor		
BIN1/BPHASE	8	I	Bridge B input 1/PHASE input	IN/IN mode: Logic high sets BOUT1 high PH/EN mode: Sets direction of H-bridge B Internal pulldown resistor		
BIN2/BENBL	7	I	Bridge B input 2/ENABLE input	IN/IN mode: Logic high sets BOUT2 high PH/EN mode: Logic high enables H-bridge B Internal pulldown resistor		
MODE	11	I	Input mode select	Logic low selects IN/IN mode Logic high selects PH/EN mode Internal pulldown resistor		
nSLEEP	12	I	Sleep input	Active low places part in low-power sleep state Internal pulldown resistor		
OUTPUT	OUTPUT					
AOUT1 2		0	Bridge A output 1	Connect to motor winding A		
AOUT2	3	0	Bridge A output 2	Connect to motor winding A		
BOUT1	4	0	Bridge B output 1	Connect to motor winding P		
BOUT2	5	0	Bridge B output 2	Connect to motor winding B		

⁽¹⁾ Directions: I = input, O = output, OZ = tri-state output, OD = open-drain output, IO = input/output.

6 Specifications

6.1 Absolute Maximum Ratings (1)(2)

		MIN	MAX	UNIT
	Power supply voltage, VCC	-0.3	7	V
	Digital input pin voltage	-0.5	VCC + 0.5	V
	Peak motor drive output current	Internally limited		Α
	Continuous motor drive output current per H-bridge (3)	-1.5	1.5	Α
TJ	Operating junction temperature	-40	150	°C
T _{stg}	Storage temperature	-60	150	°C

⁽¹⁾ Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

6.2 ESD Ratings

			VALUE	UNIT
		Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 ⁽¹⁾	±2000	
V _(ESD)	Electrostatic discharge	Charged-device model (CDM), per JEDEC specification JESD22-C101 ⁽²⁾	±1500	V

⁽¹⁾ JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

 $T_A = 25$ °C (unless otherwise noted)

		MIN	MAX	UNIT
V_{CC}	Device power supply voltage	2	7	V
V_{IN}	Logic level input voltage	0	V_{CC}	V
I _{OUT}	H-bridge output current ⁽¹⁾	0	1.5	Α
f_{PWM}	Externally applied PWM frequency	0	250	kHz

⁽¹⁾ Power dissipation and thermal limits must be observed.

6.4 Thermal Information

		DRV8836	
	THERMAL METRIC ⁽¹⁾	DSS (WSON)	UNIT
		12 PINS	
$R_{\theta JA}$	Junction-to-ambient thermal resistance	50.4	°C/W
$R_{\theta JC(top)}$	Junction-to-case (top) thermal resistance	58	°C/W
$R_{\theta JB}$	Junction-to-board thermal resistance	19.9	°C/W
Ψ_{JT}	Junction-to-top characterization parameter	0.9	°C/W
ΨЈВ	Junction-to-board characterization parameter	20	°C/W
R ₀ JC(bot)	Junction-to-case (bottom) thermal resistance	6.9	°C/W

For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report, SPRA953.

⁽²⁾ All voltage values pertain to network ground terminal.

⁽³⁾ Power dissipation and thermal limits must be observed.

⁽²⁾ JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

6.5 Electrical Characteristics

 $T_A = 25$ °C, $V_{CC} = 5$ V (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
POWER S	SUPPLY					
I _{VCC}	VCC operating supply current	f _{PWM} = 50 kHz, no load		1.7	2.5	mA
		nSLEEP = 0 V, all inputs 0 V		40	95	- 4
I _{CCQ}	VCC sleep mode supply current	V _{CC} = 3 V, nSLEEP = 0 V, all inputs 0 V		10		nA
V_{UVLO}	VCC undervoltage lockout	V _{CC} rising			2	V
	voltage	V _{CC} falling			1.9	V
LOGIC-LE	EVEL INPUTS				•	
V _{IL}	Input low voltage				0.25 x _s V _{CC}	V
V _{IH}	Input high voltage		0.5 × V _{CC}			V
I _{IL}	Input low current	V _{IN} = 0	- 5		5	μΑ
I _{IH}	Input high current	V _{IN} = 3.3 V			50	μΑ
R _{PD}	Pulldown resistance			100		kΩ
H-BRIDGI	E FETS				·	
D	LIC - LC FFTi-t	$V_{CC} = 3 \text{ V, I }_{O} = 800 \text{ mA, T}_{J} = 25^{\circ}\text{C}$		370	420	mΩ
R _{DS(ON)}	HS + LS FET on resistance	$V_{CC} = 5 \text{ V}, I_{O} = 800 \text{ mA}, T_{J} = 25^{\circ}\text{C}$		305	355	11177
I _{OFF}	OFF-state leakage current				±200	nA
PROTECT	TION CIRCUITS				·	
I _{OCP}	Overcurrent protection trip level		1.6		3.5	Α
t _{DEG}	Overcurrent deglitch time			1		μs
t _{OCR}	Overcurrent protection retry time			1		ms
t _{DEAD}	Output dead time			100		ns
t _{TSD}	Thermal shutdown temperature	Die temperature	150	160	180	°C

6.6 Timing Requirements⁽¹⁾

 $T_A = 25$ °C, $V_{CC} = 5$ V, $R_L = 20$ Ω

NO.		1,11, - 20 12	MIN	MAX	UNIT
1	t ₁	Delay time, xPHASE high to xOUT1 low		210	ns
2	t ₂	Delay time, xPHASE high to xOUT2 high		150	ns
3	t ₃	Delay time, xPHASE low to xOUT1 high		150	ns
4	t ₄	Delay time, xPHASE low to xOUT2 low		210	ns
5	t ₅	Delay time, xENBL high to xOUTx high		150	ns
6	t ₆	Delay time, xENBL high to xOUTx low		150	ns
7	t ₇	Output enable time		210	ns
8	t ₈	Output disable time		210	ns
9	t ₉	Delay time, xINx high to xOUTx high		125	ns
10	t ₁₀	Delay time, xINx low to xOUTx low		125	ns
11	t _R	Output rise time	20	188	ns
12	t _F	Output fall time	8	30	ns

(1) Not production tested – ensured by design

80% OUTx 20%

Figure 1. Timing Requirements

Submit Documentation Feedback

6.7 Typical Characteristics

7 Detailed Description

7.1 Overview

The DRV8836 is an integrated motor driver solution used for brushed motor control. The device integrates two H-bridges, and can drive two DC motor or one stepper motor. The output driver block for each H-bridge consists of N-channel power MOSFETs. An internal charge pump generates the gate drive voltages. Protection features include overcurrent protection, short-circuit protection, undervoltage lockout, and overtemperature protection.

The bridges connect in parallel for additional current capability.

The mode pin allows selection of either a PHASE/ENABLE or IN/IN interface.

7.2 Functional Block Diagram

Copyright © 2016, Texas Instruments Incorporated

Submit Documentation Feedback

7.3 Feature Description

7.3.1 Sleep Mode

If the nSLEEP pin enters a logic-low state, the DRV8836 enters a low-power sleep mode. In this state all unnecessary internal circuitry is powered down.

7.3.2 Power Supplies and Input Pins

There is a weak pulldown resistor (approximately 100 k Ω) to ground on the input pins.

7.3.3 Protection Circuits

The DRV8836 is fully protected against undervoltage, overcurrent, and overtemperature events.

7.3.3.1 Overcurrent Protection (OCP)

An analog current limit circuit on each FET limits the current through the FET by removing the gate drive. If this analog current limit persists for longer than the OCP time, all FETs in the H-bridge disable. After approximately 1 ms, the bridge re-enables automatically.

Overcurrent conditions on both high and low side devices, like a short to ground, supply, or across the motor winding results in an overcurrent shutdown.

7.3.3.2 Thermal Shutdown (TSD)

If the die temperature exceeds safe limits, all FETs in the H-bridge disable. Once the die temperature has fallen to a safe level operation automatically resumes.

7.3.3.3 Undervoltage Lockout (UVLO)

If at any time the voltage on the VCC pins falls below the undervoltage lockout threshold voltage, all circuitry in the device disables, and internal logic resets. Operation resumes when VCC rises above the UVLO threshold.

ERROR REPORT H-BRIDGE **INTERNAL FAULT** CONDITION RECOVERY **CIRCUITS** VCC undervoltage VCC < VUVLO None Disabled Disabled VCC > VUVLO (UVLO) IOUT > IOCP Overcurrent (OCP) None Disabled Operating tOCR Thermal shutdown TJ > TTSD Disabled Operating None TJ < TTSD - THYS (TSD)

Table 1. Device Protection

7.4 Device Functional Modes

The DRV8836 is active when the nSLEEP pin is set to a logic high. When in sleep mode, the H-bridge FETs disable (Hi-Z).

Table 2. Device Operating Modes

OPERATING MODE	CONDITION	H-BRIDGE	INTERNAL CIRCUITS
Operating	nSLEEP high	Operating	Operating
Sleep mode	nSLEEP low	Disabled	Disabled
Fault encountered	Any fault condition met	Disabled	See Table 1

7.4.1 Bridge Control

Two control modes are available in the DRV8836: IN/IN mode and PHASE/ENABLE mode. IN/IN mode is selected if the MODE pin is driven low or left unconnected; PHASE/ENABLE mode is selected if the MODE pin is driven to logic high. The following tables show the logic for these modes.

Table 3. IN/IN Mode

MODE	xIN1	xIN2	xOUT1	xOUT2	FUNCTION (DC MOTOR)
0	0	0	Z	Z	Coast
0	0	1	L	Н	Reverse
0	1	0	Н	L	Forward
0	1	1	L	L	Brake

Table 4. PHASE/ENABLE Mode

MODE	xENABLE	xPHASE	xOUT1	xOUT2	FUNCTION (DC MOTOR)
1	0	X	L	L	Brake
1	1	1	L	Н	Reverse
1	1	0	Н	L	Forward

Product Folder Links: DRV8836

Copyright © 2012-2016, Texas Instruments Incorporated

8 Application and Implementation

NOTE

The information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

8.1 Application Information

The DRV8836 is used in one or two motor control applications. When configured in parallel, the DRV8836 provides double the current to one motor.

8.2 Typical Application

The two H-bridges in the DRV8836 can be connected in parallel for double the current of a single H-bridge. Figure 5 shows the connections.

The following design is a common application of the DRV8836.

Figure 5. Parallel Mode Connections

8.2.1 Design Requirements

The design requirements are shown in Table 5.

Table 5. Design Requirements

DESIGN PARAMETER	REFERENCE	EXAMPLE VALUE
Motor voltage	VCC	4 V
Motor RMS current	IRMS	0.3 A
Motor startup current	ISTART	0.6 A
Motor current trip point	ILIMIT	0.5 A

8.2.2 Detailed Design Procedure

The following design procedure can be used to configure the DRV8836 in a brushed motor application.

8.2.2.1 Motor Voltage

The appropriate motor voltage depends on the ratings of the motor selected and the desired RPM. A higher voltage spins a brushed DC motor faster with the same PWM duty cycle applied to the power FETs. A higher voltage also increases the rate of current change through the inductive motor windings.

8.2.2.2 Low-Power Operation

When entering sleep mode, TI recommends setting all inputs as a logic low to minimize system power.

8.2.3 Application Curve

The following scope captures motor startup as VCC ramps from 0 V to 6 V. Channel 1 is V_{CC} , and Channel 4 is the motor current of an unloaded motor during startup. The motor used is a NMB Technologies Corporation OOB7PA12C, PPN7PA12C1. As V_{CC} ramps the current in the motor increases until the motor speed builds up. The motor current then reduces for normal operation.

Inputs are set as follows:

Mode: IN/INAIN1: HighAIN2: Low

Figure 6. Motor Startup With No Load

9 Power Supply Recommendations

9.1 Bulk Capacitance

The appropriate local bulk capacitance is an important factor in motor drive system design. More bulk capacitance is generally beneficial but may increase costs and physical size.

The amount of local capacitance needed depends on a variety of factors, including:

- · The highest current required by the motor system
- The power supply's capacitance and ability to source current
- The amount of parasitic inductance between the power supply and motor system
- The acceptable voltage ripple
- The type of motor used (brushed DC, brushless DC, stepper)
- · The motor braking method

The inductance between the power supply and motor drive system limits the rate current changes from the power supply. If the local bulk capacitance is too small, the system responds to excessive current demands or dumps from the motor with a change in voltage. When adequate bulk capacitance is used, the motor voltage remains stable and high current can be quickly supplied.

The datasheet provides a recommended value, but system-level testing is required to determine the appropriate sized bulk capacitor.

Figure 7. Bulk Capacitor

10 Layout

10.1 Layout Guidelines

The VCC pin should be bypassed to GND using low-ESR ceramic bypass capacitors with a recommended value of 0.1-µF rated for VCC. This capacitor should be placed as close to the VCC pin as possible with a thick trace or ground plane connection to the device GND pin.

The VCC pin must bypass to ground using an appropriate bulk capacitor. This component may be an electrolytic and should be located close to the DRV8836.

10.2 Layout Example

Figure 8. Layout Recommendation

10.3 Thermal Considerations

The DRV8836 has thermal shutdown (TSD) as described in *Thermal Shutdown (TSD)*. If the die temperature exceeds approximately 150°C, the device disables until the temperature drops to a safe level.

Any tendency of the device to enter thermal shutdown is an indication of either excessive power dissipation, insufficient heatsinking, or an ambient temperature that is too high.

10.3.1 Power Dissipation

The power dissipated in the output FET resistance or $R_{DS(on)}$ dominates the power dissipation in the DRV8836. The average power dissipation when running both H-bridges can be roughly estimated by Equation 1:

$$P_{TOT} = 2 \times R_{DS(ON)} \times (I_{OUT(RMS)})^2$$

where

 P_{TOT} is the total power dissipation, $R_{DS(ON)}$ is the resistance of the HS plus LS FETs, and $I_{OUT(RMS)}$ is the RMS output current being applied to each winding. $I_{OUT(RMS)}$ is equal to approximately 0.7x the full-scale output current setting. The factor of 2 comes from the fact that there are two H-bridges. (1)

The maximum amount of power dissipated in the device is dependent on ambient temperature and heatsinking.

Thermal Considerations (continued)

NOTE

 $R_{\text{DS(ON)}}$ increases with temperature. As the device heats, the power dissipation increases. This must be taken into consideration when sizing the heatsink.

10.3.2 Heatsinking

The PowerPAD™ package uses an exposed pad to remove heat from the device. For proper operation, this pad must be thermally connected to copper on the PCB to dissipate heat. On a multi-layer PCB with a ground plane, this can be accomplished by adding a number of vias to connect the thermal pad to the ground plane. On PCBs without internal planes, copper area can be added on either side of the PCB to dissipate heat. If the copper area is on the opposite side of the PCB from the device, thermal vias are used to transfer the heat between top and bottom layers.

For more information on PCB design, refer to TI application report SLMA002, *PowerPAD™ Thermally Enhanced Package*, and TI application brief SLMA004, *PowerPAD™ Made Easy*, available at www.ti.com.

In general, the more copper area that can be provided, the more power can be dissipated.

11 Device and Documentation Support

11.1 Documentation Support

11.1.1 Related Documentation

For related documentation see the following:

- Calculating Motor Driver Power Dissipation, SLVA504
- DRV8835/DRV8836 Evaluation Module, SLVU694
- Understanding Motor Driver Current Ratings, SLVA505

11.2 Community Resources

The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers.

Design Support *TI's Design Support* Quickly find helpful E2E forums along with design support tools and contact information for technical support.

11.3 Trademarks

PowerPAD, E2E are trademarks of Texas Instruments. All other trademarks are the property of their respective owners.

11.4 Electrostatic Discharge Caution

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

11.5 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.

12 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

PACKAGE OPTION ADDENDUM

29-Mar-2016

PACKAGING INFORMATION

Orderable Device	Status	Package Type	_	Pins	_	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
	(1)		Drawing		Qty	(2)	(6)	(3)		(4/5)	
DRV8836DSSR	ACTIVE	WSON	DSS	12	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	836	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. **Pb-Free** (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead/Ball Finish Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

29-Mar-2016

PACKAGE MATERIALS INFORMATION

www.ti.com 29-Mar-2016

TAPE AND REEL INFORMATION

A0	Dimension designed to accommodate the component width
	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing			Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
DRV8836DSSR	WSON	DSS	12	3000	180.0	8.4	2.25	3.25	1.05	4.0	8.0	Q1

www.ti.com 29-Mar-2016

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)	
DRV8836DSSR	WSON	DSS	12	3000	210.0	185.0	35.0	

DSS (R-PWSON-N12)

PLASTIC SMALL OUTLINE NO-LEAD

NOTES:

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. SON (Small Outline No-Lead) package configuration.
- D. The package thermal pad must be soldered to the board for thermal and mechanical performance.
- E. See the additional figure in the Product Data Sheet for details regarding the exposed thermal pad features and dimensions.

DSS (R-PWSON-N12)

PLASTIC SMALL OUTLINE NO-LEAD

THERMAL INFORMATION

This package incorporates an exposed thermal pad that is designed to be attached directly to an external heatsink. The thermal pad must be soldered directly to the printed circuit board (PCB). After soldering, the PCB can be used as a heatsink. In addition, through the use of thermal vias, the thermal pad can be attached directly to the appropriate copper plane shown in the electrical schematic for the device, or alternatively, can be attached to a special heatsink structure designed into the PCB. This design optimizes the heat transfer from the integrated circuit (IC).

For information on the Quad Flatpack No—Lead (QFN) package and its advantages, refer to Application Report, QFN/SON PCB Attachment, Texas Instruments Literature No. SLUA271. This document is available at www.ti.com.

The exposed thermal pad dimensions for this package are shown in the following illustration.

Bottom View

Exposed Thermal Pad Dimensions

4210135-2/D 02/16

NOTE: All linear dimensions are in millimeters

DSS (R-PWSON-N12)

PLASTIC SMALL OUTLINE NO-LEAD

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. This package is designed to be soldered to a thermal pad on the board. Refer to Application Note, QFN/SON PCB Attachment, Texas Instruments Literature No. SLUA271, and also the Product Data Sheets for specific thermal information, via requirements, and recommended board layout. These documents are available at www.ti.com http://www.ti.com.
- E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC 7525 for stencil design considerations.
- F. Customers should contact their board fabrication site for solder mask tolerances.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products Applications

Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive **Amplifiers** amplifier.ti.com Communications and Telecom www.ti.com/communications **Data Converters** dataconverter.ti.com Computers and Peripherals www.ti.com/computers **DLP® Products** www.dlp.com Consumer Electronics www.ti.com/consumer-apps DSP dsp.ti.com **Energy and Lighting** www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical Logic Security www.ti.com/security logic.ti.com

Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense

Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video

RFID www.ti-rfid.com

OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com

Wireless Connectivity www.ti.com/wirelessconnectivity