PhD Diary Entry for week beginning October 15th 2018

Nathan Hughes

October 26, 2018

Contents

1	Tas	Tasks		
	1.1	TODO Read Introduction to Diffusion Modelling		
		1.1.1 TODO Revise Partial Diff Equations		
	1.2	TODO Random Walk / Diffusion tutorials		
	1.3	Euler's method		
		1.3.1 Differential equations revision		
		1.3.2 Derivatives		
		1.3.3 My implementation of Euler's method:		
2	Inte	eresting		
3	Pap	Papers to read		
	3.1	TODO Glutamate triggers long-distance, calcium-based plant defense signaling [1]		
	3.2	TODO Necrotrophic Pathogens Use the SA Signaling Pathway to Promote Disease Devel-		
		opment in Tomato [2]		
	3.3	TODO Callose biosynthesis in arabidopsis with a focus on pathogen response: what we		
		have learned within the last decade [3]		
	3.4	TODO Regulation of solute flux through plasmodesmata in the root meristem [4]		
4	Pap	Paper review for Morris group meeting		
	4.1	A single fungal MAP kinase controls plant cell-to-cell invasion by the rice blast fungus [5]		
	4.2	What is the hypotheses		
	4.3	What gap do they aim to fill		
	4.4	How did they design the experiments to address their questions		
		4.4.1 Infection in relation to PD restrictions		
		4.4.2 Regulatory mechanism of fungus		
		4.4.3 Finding M. oryzae genes affecting infection		
	4.5	What were the results?		
	4.6	What is the significance of the results		
	4.7	Strengths/Weaknesses		
5	011	petions		

1 Tasks

1.1 **TODO** Read Introduction to Diffusion Modelling

- http://www.mathematica-journal.com/2012/03/diffusion-modeling/
 - This could be v.good to try and translate into python as an exercise / practice

1.1.1 **TODO** Revise Partial Diff Equations

- https://www.math.uni-leipzig.de/~miersemann/pdebook.pdf
- http://tutorial.math.lamar.edu/Classes/DE/TheHeatEquation.aspx

1.2 **TODO** Random Walk / Diffusion tutorials

- http://courses.washington.edu/matlab1/Lesson_18.html
- http://www.math.cmu.edu/~shlomo/courses/BioSystems/Lectures/RandomWalk.pdf

1.3 Euler's method

1.3.1 Differential equations revision

- y'' + 2y' = 3y
- f''(x) + 2f'(x) = 3f(x)
- $\bullet \quad \frac{d^2y}{dx^2} + 2\frac{dy}{dx} = 3y$

Solution to diff equation: function(s). Whereas algebraic equations have a number or set of numbers as their solution

1.3.2 Derivatives

- refers to instantaneous rate of change
- $\frac{dy}{dx}$
- f'(x) A.K.A. slope of tangent line at x

1.3.3 My implementation of Euler's method:

```
%matplotlib inline
    import numpy as np
    import matplotlib.pyplot as plt
3
    import numpy as np
4
    plt.close('all')
6
    def solve(h, f, t0, t1):
7
       y0 = 0
       x = np.arange(t0, t1+(t1 \% h), h)
9
       y = np.zeros(len(x))
10
       y[0] = y0
11
       for i in range(1, len(y)):
12
          y[i] = y[i-1] + (h * f(x[i-1], y[i-1]))
13
       plt.plot(x, y, '-', label='h=\{0\}'.format(h), alpha=0.3)
14
       return (x, y)
15
    x, y = solve(0.1, lambda x, y: x-(y+1), 0, 2)
16
    plt.suptitle('Eulers for x-(y+1)')
17
    plt.legend()
18
```

<matplotlib.legend.Legend at 0x120073080>

Eulers for x-(y+1)

2 Interesting

The figure:1 is sourced from [6]

Figure 1: Basic properties of symplastic transport. A: model outline. All fluxes through the walls are modelled as effective permeabilities (with units m/s). Concentrations are given as Ci,x in cell i at location x and Wi,i+1 in the wall between cell i and i + 1. Model parameters: decay constant σ , cell length l, effective wall permeability q and diffusion constant D. B: time series for a 1D tissue with a single producing cell (with rate β /volume = 2σ a.u.) in the middle (q = 1 m/s, = 0.001 s1, l = 100 m, D = 300 m 2/s). C: Dependence of profile steepness and time scales on σ (other parameters as in B). Simulation profiles are indicated with S, analytical predictions with T. D: Example steady state profile (solid red) with source left and reflecting wall right. This is the sum of two exponential functions (dashed): a decreasing one (cyan) and approximately the continuation of its reflection on the wall (blue). E: The steepness of the concentration profiles can be expressed using the characteristic length, the length over which the concentration drops with a factor 1/e (0.37). This can be expressed in number of cells (λ) or physical length (m; λ)

3 Papers to read

- 3.1 **TODO** Glutamate triggers long-distance, calcium-based plant defense signaling [1]
- 3.2 **TODO** Necrotrophic Pathogens Use the SA Signaling Pathway to Promote Disease Development in Tomato [2]
- 3.3 **TODO** Callose biosynthesis in arabidopsis with a focus on pathogen response: what we have learned within the last decade [3]
- 3.4 **TODO** Regulation of solute flux through plasmodesmata in the root meristem [4]

4 Paper review for Morris group meeting

4.1 A single fungal MAP kinase controls plant cell-to-cell invasion by the rice blast fungus [5]

- The fungus they have used is Magnaporthe oryzae and it effects rice
- When this fungus gets into cells, it expands and seeks to colonise as many cells as possible. It does this by way of tendril like appendages called hyphae
- Whilst this process is happening the attacker secretes effectors that try and suppress host defence responses
- The fungus seeks out "pit fields" which are plasmodesmata rich sites and the process repeats

4.2 What is the hypotheses

In English:

• Inhibiting a single enzyme (kinase) prevents fungal infections from spreading through plant cells

4.3 What gap do they aim to fill

• The aim of this research is to find methods of reducing the 30% of rice crop which is lost annually to blast disease (aforementioned fungus)

4.4 How did they design the experiments to address their questions

4.4.1 Infection in relation to PD restrictions

- The experiment started with ultrastructural analysis of cells infected by pathogens
- The analysis confirmed that fungal hyphae were present between cells
- They noticed that the infection sites' plasmodesmata were still open at 27hrs post inoculation

- Callose deposition was noticed at 30hrs as it formed around invasive hyphae
- The hypothesis proposed is that the infection was suppressing / clearing PD before penetrating into neighbouring cells
- To test whether fungus could manipulate PD's SEL (size exclusion limit) two different mCherry (flourophone) molecules were bombarded at infected tissue and again at uninfected tissue results below:

Figure 2: mCherry at infected cells

- This showed that infection was clearly having an effect on PD being able to regulate the SEL
- And that PD were not reacting until around 25~ hrs post invasion

4.4.2 Regulatory mechanism of fungus

- Pmk1 A MAPK (mitogen activated protein kinase) was identified which is essential for infection development
- PMK1 null mutants cannot infect plant leaves
- The experiment used a conditionally activated Pmk1
 - Using a chemical genetic approach
 - They generated an analog sensitive allele of PKm1 (by using magic)
- They then used this mutant, allowing PMK1 to be active at the start of the infection phase and then suppressing it
- This treatment blocked invasion of adjacent epi-dermal cells, resulting in the infected cells becoming filled with fungal hyphae

- The morphology of the hyphae appeared unaffected
- This was tested in both another rice cultivar and barley

4.4.3 Finding M. oryzae genes affecting infection

- RNA-seq was performed on the pmk1 mutants
- The results showed that 1457 fungal genes differentiated
 - -11.5% of the total protein-encoding genes
- 715 genes were up-regulated and 742 were down-regulated

4.5 What were the results?

• That pmk1 could contain the key to deactivating fungus' ability to infect new cells

4.6 What is the significance of the results

4.7 Strengths/Weaknesses

Table 1: Strengths/Weaknesses of Paper

Strengths	Weaknesses
Experimental design seemed en point	They still have 1400+ genes to narrow down
	Details on RNA-seq seem pretty sparse

5 Questions

- How do plants handle multiple attacks at once, does it struggle more at a 1:1 ratio or is it slightly easier to fend off multiple attacks as it's already producing defence chemicals/signals?
- In [6] chapter 2, figure 2.1 How does one even start to form the equations for movement

References

- [1] Masatsugu Toyota, Dirk Spencer, Satoe Sawai-Toyota, Wang Jiaqi, Tong Zhang, Abraham J. Koo, Gregg A. Howe, and Simon Gilroy. Glutamate triggers long-distance, calcium-based plant defense signaling. *Science*, 361(6407):1112–1115, September 2018. 00003.
- [2] Taha Abd El Rahman, Mohamed El Oirdi, Rocio Gonzalez-Lamothe, and Kamal Bouarab. Necrotrophic pathogens use the salicylic acid signaling pathway to promote disease development in tomato. *Molecular plant-microbe interactions: MPMI*, 25(12):1584–1593, December 2012.
- [3] Dorothea Ellinger and Christian A. Voigt. Callose biosynthesis in Arabidopsis with a focus on pathogen response: What we have learned within the last decade. *Annals of Botany*, 114(6):1349–1358, October 2014. 00050.

- [4] Heidi L. Rutschow, Tobias I. Baskin, and Eric M. Kramer. Regulation of Solute Flux through Plasmodesmata in the Root Meristem. *Plant Physiology*, 155(4):1817–1826, April 2011. 00077.
- [5] Wasin Sakulkoo, Miriam Osés-Ruiz, Ely Oliveira Garcia, Darren M. Soanes, George R. Littlejohn, Christian Hacker, Ana Correia, Barbara Valent, and Nicholas J. Talbot. A single fungal MAP kinase controls plant cell-to-cell invasion by the rice blast fungus. *Science*, 359(6382):1399–1403, March 2018. 00004.
- [6] E. E. Deinum. Simple Models for Complex Questions on Plant Development. PhD thesis, s.n., S.l., 2013. 00010.