USN										
-----	--	--	--	--	--	--	--	--	--	--

RV COLLEGE OF ENGINEERING®

(An Autonomous Institution affiliated to VTU)

III Semester B. E. Fast Track Examinations July 2019

Computer Science and Engineering DATA STRUCTURES USING C

Time: 03 Hours Maximum Marks: 100

Instructions to candidates:

- 1. Answer all questions from Part A. Part A questions should be answered in first three pages of the answer book only.
- 2. Answer FIVE full questions from Part B.In Part B question number 2, 7 and 8 are compulsory. Answer any one full question from 3 and 4 & one full question from 5 and 6

PART-A

```
1
     1.1
            The Postfix form of the expression (A + B) * (C * D - E) * F/G is
                                                                                        02
     1.2
            What is the output of the following code?
            #include < stdio.h >
            int f(int n);
            main()
            {
               int n = 10:
               printf("\%d", f(n));
            int f(int n)
               if(n > 0)
                return(n + f(n-2));
                                                                                        02
     1.3
            Given
                        inorder
                                              postorder.
                                    and
                                                              Draw
                                                                         the
                                                                                 tree
            inorder= 20,30,35,40,45,50,55,60,70 postorder= 20,35,30,45,40,55,70,60,50
                                                                                        02
            In the delete operation on a heap_____ node is always deleted
                                                                                        01
     1.4
     1.5
            What does the following function do for a given linked list with first
            node as head
            void fun1(struct node * head)
               if(head == NULL)
                return;
               fun1(head \rightarrow next);
                printf("%d", head \rightarrow data);
                                                                                        02
     1.6
            Insert 10,20,5,15 into splay tree
                                                                                        02
            Give an Example for linear and non-linear data structure
     1.7
                                                                                        02
            Write the condition to check whether the Circular Queue is full
     1.8
                                                                                        02
     1.9
            Differentiate between malloc and calloc functions
                                                                                        02
```

	1.10	Identify the ideal data structure for the following: i) to implement a dictionary	
	1 1 1	ii) to implement token system in a bank	02
	1.11	Write getnode() function for a single linked list	01
		PART-B	
2	a b	Write a <i>C</i> program to implement Towers of Hasoi using recursion Illustrate an algorithm to convert a decimal number to binary number using stack. Trace algorithm to convert 10 into a binary. Show stack contents	06 10
		Differentiate 1 stress at the fellowing	
3	a	Differentiate between the following i) Static and dynamic memory allocation with example ii) Enqueue and dequeue operation on a linear queue with functions	
	b	iii) Linear Queue and Circular Queue. Write a <i>C</i> enqueue function to enqueue a message into a circular	10
		queue OR	06
4	а	Explain various memory allocation functions with syntax	06
'	b	Write a C Program to implement Queue using stack	10
5	a b	Write a <i>C</i> function to search for a element in single linked list Write a <i>C</i> program to check whether the given double linked list with	06
	D	header node is a palindrome	10
		OR	
6	a	Write a C function to print the middle element in a single linked list	06
	b	Write a C program to implement Circular single linked list	10
7	a b	Write a <i>C</i> function to implement insertion into a Binary Search tree i) Insert 2,1,4,5,9,3,6,7,16,0 to <i>AVL</i> tree ii) In the given tree delete 14	06
		(14)	
		(F) (F)	
		4 12 53	
		Fig(7b)	10
0		i) Circu the innet (2404 2242 7462 0440 4044 0670 4000)	
8	а	i) Given the input $\{3481,2313,7163,9149,4944,9679,1089\}$ and hash function $h(x) = x \mod 10$. Show the result of "Open addressing with linear probing"	
		ii) Explain Quadratic probing	06
	b	What is the difference between a binary search tree and a heap? For a	
		given sequence of numbers construct main heap and a BST	10
		34,23,67,45,12,54,87,43,98,75,84,93,31	10