Design XOR Gate

CS550 - Machine Learning and Business Intelligence

Submitted by: Divya Pandey(19665)

Instructor: Dr. Henry Chang

Table of Content

- Introduction
- Design
- Implementation
- Test
- Enhancement Ideas
- Conclusion
- References

Introduction

★ The XOR (Exclusive OR) gate is a logical operation that outputs true only when the inputs differ (one is true and the other is false).

★ The XOR gate problem was one of the early demonstrations of the power of neural networks and was used to show that neural networks could solve problems that traditional rule-based systems could not

Design

XOR Gate

The boolean representation of an XOR gate is;

$$x1x^2 + x^1x2$$

Design

Design

Multilayer Perceptptron

	XOR			
-				
X	Y	1	Z	
100				
0	0		0	
0	1		1	
1	0		1	
1	1		0	

Design AND Gate to calculate the values of W1,W2 and Y

$$Z := (W1 * X + W2 * Y >= T)$$

where T := 1.0.

Desired "And" Function

X	Y	Z
0	0	0
0	1	0
1	0	0
1	1	1

Loop 1:

W1=W2=0

$$Z := (0 * X + 0 * Y >= T)$$

X	Y	Z
0	0	0
0	1	0
1	0	0
1	1	0

Loop 2:

W1=W2=0.5

Z := (0.5 * X + 0.5 * Y >= T)

X	Y	Z
0	0	0
0	1	0
1	0	0
1	1	1

Design OR Gate to calculate the values of W1,W2 and Y

$$Z := (W1 * X + W2 * Y >= T)$$

where T := 1.0.

Desired "OR" Function

X	Y	z
0	0	0
0	1	1
1	0	1
1	1	1

Loop 1:

$$Z := (0*X + 0*Y >= T)$$

X	Y	Z
0	0	0
0	1	0
1	0	0
1	1	0

Loop 2:

$$Z := (0.5*X + 0.5*Y >= T)$$

X	Y	Z
0	0	0
0	1	0
1	0	0
1	1	1

Loop 3:

W1=W2=1.0

Z := (1.0*X + 1.0*Y >= T)

X	Y	Z
0	0	0
0	1	1
1	0	1
1	1	1

Design NAND Gate to calculate the values of W1,W2 and Y

$$Z := (W0 * C + W1 * X + W2 * Y >= T)$$

where T := 1.0.

The bias C for NAND is 1.0

Desired "NAND" Function

X	Y	z
0	0	1
0	1	1
1	0	1

Loop 1:

W0 = 0.0

W1=W2=0.5

$$Z := (0 * 1.0 + 0.5 * X + 0.5 * Y >= T)$$

C	X	Y	Z
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	1

Loop 2:

W0 = 0.5

W1=W2=0.5

$$Z := (0.5*1.0 + 0.5 * X + 0.5 * Y >= T)$$

С	x	Y	z
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

Loop 3:

W0 = 1.0

W1=W2=0.5

Z := (1.0*1.0+0.5*X+0.5*Y >= T)

С	X	Y	Z
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	1

Loop 4:

W0 = 1.0

W1=W2=0.0

$$Z := (1.0*1.0+0.0*X+0.0*Y >= T)$$

С	X	Y	Z
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	1

Loop 5:

W0 = 1.0

W1=W2=-0.5

Z := (1.0*1.0 + -0.5 * X + -0.5 * Y >= T)

С	X	Y	Z
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	0

Loop 6:

W0 = 1.5

W1=W2=-0.5

$$Z := (1.5*1.0 + -0.5 * X + -0.5 * Y >= T)$$

С	X	Y	Z
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	0

· What is the formula for

Z1 := X "AND" Y

Z1 := (0.5 * X + 0.5 * Y >= 1.0)

· What is the formula for

Z1 := X "OR" Y

Z1 := (1.0 * X + 1.0 * Y >= 1.0)

· What is the formula for

Z1 := X "NAND" Y

Bias is +1.5, C = 1; W0 = 1.5; W1=W2 = -0.5

Z2 := (1.5 * 1.0 + -0.5 * X + -0.5 * Y >= 1.0)

Z2 := (1.5 * 1.0 + -0.5 * X + -0.5 * Y >= 1.0)

Z2 := (-0.5 * Y) >= 0.5 * X + -1.5 * 1.0 + 1.0)

Z2 := (-0.5 * Y >= 0.5 * X - 0.5)

 $Z2 := (Y \le -X + 1.0)$

· What is the formula for

```
Z1 := X "Or" Y
Z2 := X "NAND" Y
Z := Z3 := Z1 "AND" Z2
Z := (X "OR" Y) "AND" (X "NAND" Y)
Z := (1.0 * X + 1.0 * Y >= 1.0) "AND" (1.5 * 1.0 + -0.5 * X + -0.5 * Y >= 1.0)
Z := (0.5 * (1.0 * X + 1.0 * Y >= 1.0) + 0.5 * (1.5 * 1.0 + -0.5 * X + -0.5 * Y >= 1.0) >= 1.0)
Z := (0.5 * (1.0 * X + 1.0 * Y >= 1.0) + 0.5 * (1.5 + -0.5 * X + -0.5 * Y >= 1.0) >= 1.0)
```

Step 4: Please prove that your designed XOR Gate work

$$\circ$$
 X=1, Y=1

$$\circ$$
 X=1, Y=0

$$\circ$$
 X=0, Y=1

$$\circ$$
 X=0, Y=0

$$Z1 := X "Or" Y$$

$$Z2 := X "NAND" Y$$

$$Z := Z3 := Z1 "AND" Z2$$

$$Z := (X "OR" Y) "AND" (X "NAND" Y)$$

$$Z := (1.0 * X + 1.0 * Y >= 1.0)$$
 "AND" $(1.5 * 1.0 + -0.5 * X + -0.5 * Y >= 1.0)$

$$Z := (0.5 * (1.0 * X + 1.0 * Y >= 1.0) + 0.5 * (1.5 * 1.0 + -0.5 * X + -0.5 * Y >= 1.0) >= 1.0)$$

$$Z := (0.5 * (1.0 * X + 1.0 * Y >= 1.0) + 0.5 * (1.5 + -0.5 * X + -0.5 * Y >= 1.0) >= 1.0)$$

Take X=1, Y=1

$$Z := (0.5 * (1.0 * 1.0 + 1.0 * 1.0 >= 1.0) + 0.5 * (1.5 + -0.5 * 1.0 + -0.5 * 1.0 >= 1.0) >= 1.0)$$

$$Z := (0.5 * (1.0 + 1.0 >= 1.0) + 0.5 * (1.5 + -0.5 + -0.5 >= 1.0) >= 1.0)$$

$$Z := (0.5 * (2.0 >= 1.0) + 0.5 * (0.5 >= 1.0) >= 1.0)$$

$$Z := (0.5 * (true) + 0.5 * (false) >= 1.0)$$

$$Z := (0.5 * 1 + 0.5 * 0 >= 1.0)$$

$$Z := (0.5 + 0.0 >= 1.0)$$

$$Z := (false)$$

Z = 1

Take X=1, Y=0

```
Z := (0.5 * (1.0 * 1.0 + 1.0 * 0.0 >= 1.0) + 0.5 * (1.5 + -0.5 * 1.0 + -0.5 * 0.0 >= 1.0) >= 1.0)
Z := (0.5 * (1.0 + 0.0 >= 1.0) + 0.5 * (1.5 + -0.5 + -0.0 >= 1.0) >= 1.0)
Z := (0.5 * (1.0 >= 1.0) + 0.5 * (1.0 >= 1.0) >= 1.0)
Z := (0.5 * (true) + 0.5 * (true) >= 1.0)
Z := (0.5 * 1 + 0.5 * 1 >= 1.0)
Z := (0.5 + 0.5 >= 1.0)
Z := (true)
```

Z = 1

Take X=0 ,Y=1

$$Z := (0.5 * (1.0 * 0.0 + 1.0 * 1.0 >= 1.0) + 0.5 * (1.5 + -0.5 * 0.0 + -0.5 * 1.0 >= 1.0) >= 1.0)$$

$$Z := (0.5 * (0.0 + 1.0 >= 1.0) + 0.5 * (1.5 + -0.0 + -0.5 >= 1.0) >= 1.0)$$

$$Z := (0.5 * (1.0 >= 1.0) + 0.5 * (1.0 >= 1.0) >= 1.0)$$

$$Z := (0.5 * (true) + 0.5 * (true) >= 1.0)$$

$$Z := (0.5 * 1 + 0.5 * 1 >= 1.0)$$

$$Z := (0.5 + 0.5 >= 1.0)$$

$$Z := (true)$$

 $\mathbf{Z} = \mathbf{0}$

Take X=0 ,Y=0

$$Z := (0.5 * (1.0 * 0.0 + 1.0 * 0.0 >= 1.0) + 0.5 * (1.5 + -0.5 * 0.0 + -0.5 * 0.0 >= 1.0) >= 1.0)$$

$$Z := (0.5 * (0.0 + 0.0 >= 1.0) + 0.5 * (1.5 + -0.0 + -0.0 >= 1.0) >= 1.0)$$

$$Z := (0.5 * (0.0 >= 1.0) + 0.5 * (1.5 >= 1.0) >= 1.0)$$

$$Z := (0.5 * (false) + 0.5 * (true) >= 1.0)$$

$$Z := (0.5 * 0 + 0.5 * 1 >= 1.0) Z := (0.0 + 0.5 >= 1.0)$$

$$Z := (false)$$

OR	NAND	XOR
X Y Z1	X Y Z2	X Y Z3
00 0	00 1	00 0
0 1 1 AND	0 1 1 ==>	01 1
10 1	10 1	10 1
11 1	11 0	11 0

From Above Calculations, Hence "OR" AND "NAND" GATE Operations Output is XOR GATE.

Enhancement Ideas

 We can use try implementing XOR gate using different neural network architectures such as Convolutional Neural Networks (CNNs) or Recurrent Neural Networks (RNNs) to see if they improve the performance of the XOR gate.

Conclusion

Overall, the XOR problem is an important problem in neural networks
because it has been used extensively to demonstrate the power and limitations
of different neural network architectures and techniques, and is still relevant
today as a benchmark problem for evaluating the performance of new neural
network models.

GitHub Link

★ https://github.com/divyapandey03/Machine-Learning/tree/main/Logic%20Circuit%20 Design/Design%20XOR%20Gate

References

★ Dukor, S. (2020, March 07). Neural representation of and, or, not, XOR and XNOR logic gates (Perceptron algorithm). Retrieved March 30, 2023, from https://medium.com/@stanleydukor/neural-representation-of-and-or-not-xor-and-xnor-logic-gates-perceptron-algorithm-b0275375fea1

★ https://hc.labnet.sfbu.edu/~henry/sfbu/course/machine_learning/neural_network/slide/ann.ht ml#gate