

Name des Prüflings:

Zenturie:

Klausur

Formale Grundlagen der Informatik I und II – A100 2. Quartal 2021

Matrikelnummer:

Dauer: 120 min	Seiten ohne Deckblatt: 4							Datum: 25. Juni 2021				
Hilfsmittel: Nordal	kademi	e Tasch	enrechn	er, Stift	e (aber 1	nöglich	nst kein	Stift in	roter Fa	rbe).		
Bemerkungen: Die Bestehen der Klaus				_	en. Es k	önnen	100 Pun	ıkte erre	eicht we	rden. Z	Lum	
Bitte lösen Sie nich	nt die H	leftung	!									
Bitte prüfen Sie zu	ınächst	die Kla	ausur (a	alle Tei	le) auf V	Vollstär	ndigkeit	t.				
Bitte vermerken S Zenturie, Aufgabe				_		le Ang	aben: N	Name, N	Matrike	lnumn	ner,	
Aufgabe:	1	2	3	4	5	6	7	8	9	10	Summe	
Erreichbare Punkte:	10	4	14	12	10	8	13	10	10	9	100	
Erreichte Punkte:												
Note:		Proze	ntsatz:		F	Ergänzu	ngsprüf	ung: _				
Datum:		U	nterschi	rift: _								
Datum:		U	nterschi	rift:								

Aufgabe 1 (10 Punkte)

Verständnisfragen

Tipp: Nehmen Sie sich für das Lesen und Verstehen der Aufgabenstellung viel Zeit, ansonsten verlieren Sie unnötig viele Punkte.

Hinweis:

- Jede mögliche Antwort ist am Anfang mit einem Schlüssen versehen (z. B. 1a, 1b, 1c).
- Schreiben Sie den Schlüssel der korrekten Antworten auf (nur als Beispiel gedacht: 1a, 1b). Mindestens eine Antwort ist richtig. Es können mehrere Antworten richtig sein.
- Falls Sie alle korrekten Antworten notiert haben, erhalten Sie zwei Punkte.
- Falls Sie nicht alle korrekten Antworten notiert haben, erhalten Sie keine Punkte.

Tans sie ment ane korrekten Antworten notiert naben, ernarten sie keine i unkte.
 1.1) (2 Punkte) Notieren Sie die Schlüssel der korrekten Antworten: □ 1a: Kellerautomaten sind ausdrucksstärker als Automaten mit ε-Übergängen, d h. die Klasse der von Kellerautomaten erzeugten Sprachen umfasst die Klasse
der von Automaten mit ϵ -Übergängen erzeugten Sprachen.
□ 1b: Kellerautomaten sind ausdrucksstärker als Turingmaschinen.
□ 1c: Rechtslineare Grammatiken beschreiben Typ-3-Sprachen.
1.2) (2 Punkte) Notieren Sie die Schlüssel der korrekten Antworten:
2a: Zu jeder Grammatik von Typ 2 gibt es einen nichtdeterministischen Keller automaten, der die zugehörige Sprache akzeptiert.
□ 2b: Zu jeder Grammatik von Typ 1 gibt es einen nichtdeterministischen Keller automaten, der die zugehörige Sprache akzeptiert.
2c: Zu jeder Grammatik von Typ 2 gibt es einen endlichen Automaten, der die zugehörige Sprache akzeptiert.
1.3) (2 Punkte) Notieren Sie die Schlüssel der korrekten Antworten:
3a: Grammatikregeln für Typ-2-Grammatiken haben nur Nicht-Terminalsymbole auf der linken Regelseite.
☐ 3b: Jede Grammatik in Kuroda-Normalform ist regulär.
☐ 3c: Jede Grammatik in Chomsky-Normalform ist kontextfrei.
1.4) (2 Punkte) Notieren Sie die Schlüssel der korrekten Antworten:
\square 4a: Für reguläre Ausdrücke α und β gilt: $\alpha \circ \beta \equiv \beta \circ \alpha$.
□ 4b: Für jeden regulären Ausdruck α gilt: $(\alpha \circ \epsilon) \equiv \epsilon$.
□ 4c: Für reguläre Ausdrücke α und β gilt: $(\alpha \mid \beta) \equiv (\beta \mid \alpha)$.
1.5) (2 Punkte) Notieren Sie die Schlüssel der korrekten Antworten:
Sei Σ ein Alphabet und $L \subseteq \Sigma^*$. Die folgenden Aussagen sind äquivalent dazu, dass L eine

 \Box 5a: Es gibt eine Turingmaschine M, die L akzeptiert, also L = L(M).

 \Box **5b:** Es gibt eine kontextsensitive Grammatik G, die L erzeugt, also L = L(G).

 \square 5c: L ist semi-entscheidbar.

Typ-0-Sprache ist:

Aufgabe 2 (4 Punkte)

Gegeben sei der folgende endliche Automat A:

Welche der Wörter ϵ , aa, ab und abb gehören zu L(A) (ohne Beweis)?

Aufgabe 3 (14 Punkte)

Konstruktion eines DEA:

- (a) Zeichnen Sie das Diagramm eines DEA A_1 , der alle Wörter aus $\{a,b\}^*$ akzeptiert, die eine gerade Anzahl an a's enthalten.
- (b) Geben Sie die schrittweise Verarbeitung des Wortes aba durch den Automaten A_1 an.
- (c) Geben Sie einen regulären Ausdruck α an mit $L(\alpha) = L(A_1)$.

Aufgabe 4 (12 Punkte)

NEA in DEA überführen:

Gegeben sei ein NEA $A = (\Sigma, S, \delta, s_0, F)$ mit $\Sigma = \{a, b\}$, $S = \{s_0, s_1, s_2\}$, $F = \{s_0, s_2\}$ und δ gegeben durch die folgende Tabelle:

$$\begin{array}{c|cccc}
 & a & b \\
\hline
s_0 & s_1 & - \\
s_1 & \{s_1, s_2\} & s_0 \\
s_2 & - & s_1
\end{array}$$

- (a) Zeichnen Sie das zum NEA A zugehörige Diagramm.
- (b) Transformieren Sie den NEA A zu einem äquivalenten DEA und zeichnen Sie diesen DEA als Diagramm.

Aufgabe 5 (10 Punkte)

DEA minimieren:

Gegeben sei der DEA $A = (\Sigma, S, \delta, q_0, F)$ mit $\Sigma = \{0, 1\}$, $S = \{q_0, q_1, q_2, q_3, q_4\}$, $F = \{q_4\}$ und δ gegeben durch das folgende Diagramm:

- (a) Minimieren Sie den DEA A mit Hilfe des Markierungsalgorithmus, und stellen Sie hierzu eine Tabelle für die Zustandspaare auf.
- (b) Zeichnen Sie den minimierten DEA.

Aufgabe 6 (8 Punkte)

Gegeben sei der reguläre Ausdruck $\alpha = (ba)^* | (a(bb|a))$

- (a) Geben Sie zwei verschiedene Worte an, die in $L(\alpha)$ liegen (ohne Beweis).
- (b) Geben Sie einen DEA A, der $L(A) = L(\alpha)$ erfüllt, als Diagramm an.

Aufgabe 7 (13 Punkte)

Grammatik zu DEA:

Gegeben sei die folgende Grammatik $G = (\{a, b, c, d\}, \{S, B, C, D\}, P, S)$ mit Regelmenge

$$P = \{S \rightarrow aB | aC,$$

$$B \rightarrow bB | bD,$$

$$C \rightarrow cC | dD,$$

$$D \rightarrow \epsilon\}.$$

- (a) Ist G eine rechts- oder linkslineare Grammatik?
- (b) Zeigen Sie (durch schrittweise Ableitung) oder widerlegen Sie: (i) $abb \in L(G)$, (ii) $accd \in L(G)$.
- (c) Geben Sie einen endlichen Automaten an, der die von G erzeugte Sprache akzeptiert.
- (d) Geben Sie einen regulären Ausdruck an, der die Sprache L(G) beschreibt.

Aufgabe 8 (10 Punkte)

Gegeben sei die Sprache $L = \{b^m a^n c^m \mid m, n \in \mathbb{N}\}.$

- (a) Bestimmen Sie den höchsten Typ der Sprache L (ohne Beweis).
- (b) Geben Sie eine Grammatik G mit L(G) = L an und eine schrittweise Ableitung für das Wort bbacc in G an.

Aufgabe 9 (10 Punkte)

- (9.1) Formulieren Sie die Churchsche These.
- (9.2) Sei Σ ein Alphabet und $L \subseteq \Sigma^*$. Definieren Sie, wann L entscheidbar genannt wird.
- (9.3) Geben Sie eine Turingmaschine $T = (\Sigma, S, \Gamma, \delta, s_0, \#, F)$ formal an, die zu einer natürlichen Zahl in Strichcodierung 2 addiert (z. B. $| \rightarrow | | | |$) und auf dem am weitesten rechts stehenden Strich stoppt.

Aufgabe 10 (9 Punkte)

(10.1) Seien a, b, c, d, e, f Funktionen von \mathbb{N}_0 nach $\mathbb{R}_{>0}$ definiert durch

$$a(n) = 5n + 1,$$

 $b(n) = log(n) + 3$, falls $n > 0$, $b(0) = 0$
 $c(n) = 2^n + 7$,
 $d(n) = 42$,
 $e(n) = n^3$,
 $f(n) = n + 12$ für alle $n \in \mathbb{N}_0$.

Sortieren Sie für die oben gegebenen Funktionen die O-Klassen O(a), O(b), O(c), O(d), O(e) und O(f) bezüglich ihrer Teilmengenbeziehung. Nutzen Sie ausschließlich die echte Teilmenge \subset sowie die Gleichheit = für die Beziehungen zwischen den Mengen.

Die angegebenen Beziehungen müssen weder bewiesen noch begründet werden.

Folgendes Beispiel illustriert diese Schreibweise für Funktionen f_1 bis f_5 (diese haben nichts mit den oben angegebenen Funktionen zu tun):

$$O(f_4) \subset O(f_3) = O(f_5) \subset O(f_1) = O(f_2)$$

- (10.2) (i) Definieren Sie den Begriff NP-vollständig.
 - (ii) Geben Sie ein Beispiel für ein Problem an, das NP-vollständig ist.

Viel Erfolg!