Анализ алгоритмов

21 января 2021 г.

Содержание

1	Скорость роста длины записи коэффициентов при реализации метода Гаусса (10)	4
2	Представление "длинного" числа в файле (массиве, списке) как числа в системе счисления по модулю p ($p=1000$, если integer 2^{16} , если $p=10000000$ longinteger 2^{32}). Запись из файла. Оценка числа шагов. Вывод в файл. Оценка числа шагов (14) 2.1 Представление длинного числа	4 4 4 4
3	Сложение двух "длинных" положительных чисел. Оценка числа шагов (17)	5
4	Предикаты равенства и неравенств "длинных" положительных чисел. Оценка числа шагов (18)	5
5	Вычитание двух "длинных" положительных чисел. Оценка числа шагов (18)	5
6	Умножение "длинного" числа на короткое. Оценка числа шагов (19)	6
7	Умножение "длинных" чисел. Оценка числа шагов (20)	6
8	Деление "длинных" чисел. Оценка числа шагов (21)	6
9	Оценки числа шагов метода Гауса при действиях с "длинными" числами	6
10	Сортировки и оценки числа их шагов: Пузырёк. Сортировка вставками. Сортировка слияниями фон Неймана (25) 10.1 Пузырёк	6 6 7 7
11	Алгоритмы на графах, различные способы представления графа в компьютере	

	Алгоритм поиска в глубину. Оценки числа шагов в зависимости от способа представления графа	9
	Алгоритм поиска в ширину. Оценки числа шагов в зависимости от способа представления графа	9
	Задачи, решаемые с помощью этих алгоритмов:— выделение компонент связно проверка на двудольность и выделение долей,— выделение остова графа	ости,- 9
15	Нахождение остова минимального веса. Метод Р. Прима. Оценки числа шагов	9
16	Алгоритм Дейкстры поиска кратчайшего пути. Оценки числа шагов	9
17	Нахождение циклов и мостов в графе. Оценки числа шагов	9
18	Эйлеров цикл. Оценки числа шагов	9
19	Гамильтонов цикл. Оценки числа шагов	9
20	Алгоритм генерации всех независимых множеств. Оценки числа шагов	9
2 1	Теорема о НМ, ВП, КЛИКА. Оценки числа шагов	9
22	Отличия между интуитивным и математическим понятиями	9
23	Машины Тьюринга и их модификации. Тезис Тьюринга-Чёрча	9
24	Теорема о числе шагов MT, моделирующей работу k-ленточной MT	9
	Недетерминированные MT. Теорема о числе шагов MT, моделирующей работу недетерминированной MT	9
	Понятия сложности алгоритма от данных, сложность алгоритма, сложность задачи. Верхняя и нижняя оценки сложности	9
27	Соотношение между временем работы алгоритма требуемой памятью	9
2 8	Классы алгоритмов и задач. Схема обозначений	9
29	Классы P , NP и $P-SPACE$. Соотношения между этими классами	9
30	Полиномиальная сводимость и полиномиальная эквивалентность	9
31	Полиномиальная сводимость задачи ГЦ к задаче КОМИВОЯЖЁР	9
	Классы эквивалентности по отношению полиномиальной эквивалентности. Класс Р – пример такого класса	9

33	NP-полные задачи. Класс NP-полных задач — класс эквивалентности по	
	отношению полиномиальной эквивалентности	9
34	Задача ВЫПОЛНИМОСТЬ (ВЫП).Теорема Кука	9
35	Задача 3-ВЫПОЛНИМОСТЬ (3-ВЫП). Её NP-полнота	9
36	Задачи ВЕРШИННОЕ ПОКРЫТИЕ (ВП), НЕЗАВИСИМОЕ МНОЖЕСТВО (НМ), КЛИКА. NP-полнота задачи ВП. Полиномиальная эквивалентность этих трёх задач	9
37	NP-полнота задач ГЦ и ГП (без доказательства)	9
38	NP-полнота задач 3-С и РАЗБИЕНИЕ (без доказательства)	9
39	Метод сужения доказательства NP-полноты	9
40	"Похожие" задачи и их сложность	9
41	Анализ подзадач	9
42	Алгоритм решения задачи РАЗБИЕНИЕ	9
43	Задачи с числовыми параметрами. Псевдополиномиальные задачи	9

1 Скорость роста длины записи коэффициентов при реализации метода Гаусса (10)

$$||b_{ij}^r|| \le (r+1)M + r^2$$

- ||a|| длина записи числа a
- М максимальная длина записи элементов матрицы
- \bullet r ранг матрицы
- $||b_{ij}^r||$ длина записи коэффицента после r-й итерации
- 2 Представление "длинного" числа в файле (массиве, списке) как числа в системе счисления по модулю p (p = 1000, если integer 2^{16} , если p = 10000000 longinteger 2^{32}). Запись из файла. Оценка числа шагов. Вывод в файл. Оценка числа шагов (14)

2.1 Представление длинного числа

Всякое целое неотрицательное число x может быть представлено в m-ичной системе счисления (при $m \geq 2$) в виде $x = m^{k-1}x_0 + m^{k-2}x_1 + \dots mx_{k-2} + x_{k-1}$. При этом k – длина записи m-ичного представления числа $x, 0 \leq x_i \leq m-1$ при $i=0,\dots,k-1$

2.2 Запись из файла

Оценка числа шагов: квадратичное от длины записи исходного числа в файле количество "шагов".

Пусть в файле записано десятичное число, заданное словом $a_1 \cdots a_n$ ($0 \le a_i \le 9$). Требуется представить его динамическим массивом (или списком).

Под "шагом" понимается одна из следующих операций: считывание цифры из файла, запись цифры в целочисленный массив, выделение первой цифры многозначного числа и её удаление из него, приписывание цифры в конец числа. Заметим, что эти "шаги" не равнозначны, т.к. последние два требуют нахождения остатка от деления на 10, а также умножения на 10 и сложения.

2.3 Вывод в файл

Оценка числа шагов: линейное от длины записи исходного числа количество "шагов".

При выводе числа необходимо помнить, что в каждом элементе массива, в котором хранится многоразрядное число, записана не последовательность цифр, а число, записанное этими цифрами. Поэтому число, десятичная запись которого меньше, чем длина записи выбранного нами основания m, необходимо дополнить ведущими нулями.

Под "шагом" будем понимать одну из следующих операций: запись "макроцифры" в символьную переменную, сравнение длины записи "макроцифры" с $\|m-1\|$, дополнение строки ведущим нулём.

3 Сложение двух "длинных" положительных чисел. Оценка числа шагов (17)

Оценка числа шагов: общее число "шагов" при сложении двух неотрицательных чисел не превосходит $3 \max\{A[0], B[0]\} + 1$, то есть составляет $O(\max\{A[0], B[0]\})$

Чтобы сложить два неотрицательных многоразрядных числа, записанных в массивы A и B, достаточно последовательно складывать по модулю m числа, записанные в A[i], B[i] и d[i] для $i=1,\ldots,\max\{A[0],B[0]\}$, где d[1]=0, при i>1,d[i]— это 1 (если A[i-1]+B[i-1]+d[i-1]>m) или 0 в противном случае.

При подсчёте числа шагов в этом разделе под "шагом" понимается одна из следующих операций: вычисление $A[i-1]+B[i-1]+d[i-1] \mod m$, проверка условия A[i-1]+B[i-1]+d[i-1]>m и вычисление d[i]

4 Предикаты равенства и неравенств "длинных" положительных чисел. Оценка числа шагов (18)

Оценка числа шагов: если под "шагом" понимать количество сравнений "макроцифр", то обшее число "шагов" такой процедуры не превосходит A[0]. В общем случае число "шагов" вычисления каждого из четырёх предикатов не превосходит $\min\{A[0],B[0]\}$.

Оценим число шагов вычисления значений предикатов x=y и x< y для случая, когда A[0]=B[0].

Начиная со старшего разряда (то есть с A[A[0]] и B[B[0]]) сравниваем значения чисел в A[i] и B[i] до тех пор, пока они совпадают. Если для некоторого $i_0A[i_0] \neq B[i_0]$, то $x \neq y$. Если при этом $A[i_0] < B[i_0]$, то x < y, если $A[i_0] > B[i_0]$, то x > y.

5 Вычитание двух "длинных" положительных чисел. Оценка числа шагов (18)

Оценка числа шагов: общее число "шагов" при вычитании двух положительных чисел не превосходит $4 \max\{A[0], B[0]\} + 1$, то есть составляет $O(\max\{A[0], B[0]\})$.

При подсчёте числа шагов в этом разделе под "шагом" понимается одна из следующии операций: вычисление $A[i-1]-B[i-1]-d[i-1]\pmod{m}$, проверка условия A[i-1]+B[i-1]+d[i-1]>0 и вычисление d[i]. Кроме того, предварительно проверяется условие $x\geq y$.

6 Умножение "длинного" числа на короткое. Оценка числа шагов (19)

Оценка числа шагов: общее число операций не превосходит $\max\{1, 2 + 6A[0] + \max\{1, 3\}\} = 5 + 6A[0]$, то есть составляет O(A[0]).

Здесь под шагом будем понимать одну из следующих операций: умножение макроцифр, сложение макроцифр, вычисление неполного частного и остатка от деления результата предыдущих операций на m. В условном операторе после else выполняется одно присваивание и оператор цикла, в котором (помимо двух операций, необходимых для организации цикла) производятся: умножение, сложение, остатка от деления на m, вычисление неполного частного. Всего в операторе цикла 6 "шагов".

7 Умножение "длинных" чисел. Оценка числа шагов (20)

Оценка числа шагов: В предположении, что $B[0] \leq A[0]$ (это условие проверяется за 1 «шаг» и в противном случае можно умножать B на A), получаем оценку O(A[0]B[0]).

8 Деление "длинных" чисел. Оценка числа шагов (21)

Оценка числа шагов: $O(A[0]B[0] \cdot (A[0] - B[0]))$

Будем подбирать неполное частное от деления чисел x и y, записанных в массивах A и B, делением промежутка, в котором оно может находиться, пополам. Пусть L и U – нижняя и верхняя границы промежутка соответственно, $M = \left\lfloor \frac{L+U}{2} \right\rfloor$ – целая часть середины промежутка, $z = y \cdot M$ – число, которое будем сравнивать с делимым.

При этом будем предполагать, что число, записанное в A, больше числа, затисанного в B (в противном случае неполное частное равно 0, а остаток совпадает с делимым).

9 Оценки числа шагов метода Гауса при действиях с "длинными" числами

Итоговая асимптотика: $O(\min(n, m) \cdot nm)$ При n = m эта оценка превращается в $O(n^3)$ Для длинных чисел получается $O(M*n^3)$.

10 Сортировки и оценки числа их шагов: Пузырёк. Сортировка вставками. Сортировка слияниями фон Неймана (25)

10.1 Пузырёк

Сложность: $O(n^2)$

В теле циклов сравниваются значения a[i] и a[j]. В случае необходимости содержание элементов массива меняются местами. Обмен значениями переменных x и y можно осуществить с помощью трёх операторов присваивания с использованием вспомогательной переменной

 $z:z:=x; x:=y; y:=z.^3$ Таким образом, в теле цикла каждый раз выполняется не более четырёх операций.

10.2 Сортировка вставками

Сложность: $O(n^2)$

Элементы входной последовательности просматриваются по одному, и каждый новый поступивший элемент размещается в подходящее место среди ранее упорядоченных элементов.

10.3 Сортировка слияниями фон Неймана

Сложность: $O(n \log_2 n)$

Сортируемый массив разбивается на две части примерно одинакового размера; Каждая из получившихся частей сортируется отдельно, например — тем же самым алгоритмом; Два упорядоченных массива половинного размера соединяются в один.

- 11 Алгоритмы на графах, различные способы представления графа в компьютере
- 12 Алгоритм поиска в глубину. Оценки числа шагов в зависимости от способа представления графа
- 13 Алгоритм поиска в ширину. Оценки числа шагов в зависимости от способа представления графа
- 14 Задачи, решаемые с помощью этих алгоритмов:— выделение компонент связности,— проверка на двудольность и выделение долей,— выделение остова графа
- 15 Нахождение остова минимального веса. Метод Р. Прима. Оценки числа шагов
- 16 Алгоритм Дейкстры поиска кратчайшего пути. Оценки числа шагов
- 17 Нахождение циклов и мостов в графе. Оценки числа шагов
- 18 Эйлеров цикл. Оценки числа шагов
- 19 Гамильтонов цикл. Оценки числа шагов
- 20 Алгоритм генерации всех независимых множеств. Оценки числа шагов
- 21 Теорема о НМ, ВП, КЛИКА. Оценки числа шагов
- 22 Отличия между интуитивным и математическим понятиями
- 23 Машины Тьюринга и их модификации. Тезис Тьюринга-Чёрча
- 24 Теорема о числе шагов МТ, моделирующей работу k-ленточной МТ
- 25 Недетерминированные M_JT. Теорема о числе шагов MT, моделирующей работу недетерминированной MT
- 26 Понятия сложности алгоритма от данных, сложность алгоритма, сложность задачи. Верхняя и нижняя оценки сложности
- 27 Соотношение между временем работы алгоритма требуемой