CIE6020/MAT3350 Selected Topics in Information Theory

Lecture 3: Inequalities

17 Janurary 2019

The Chinese University of Hong Kong, Shenzhen

Basic Inequalities

Lemma (Fundamental Inequality)

For any a > 0,

$$\ln a \le a - 1$$

with equality if and only if a = 1.

Lemma (Log-sum inequality)

For arbitrary non-negative numbers a_i , b_i , i = 1, ..., n we have

$$\sum_{i=1}^{n} a_i \log \frac{a_i}{b_i} \ge a \log \frac{a}{b}$$

where $a = \sum_i a_i$ and $b = \sum_i b_i$. The equality holds iff $a_i b = b_i a$ for $i = 1, \ldots, n$.

Proof.

- We may assume that a_i are positive and b_i are positive.
- Further, it is sufficient to prove the lemma for a = b.
- For this case, the statement becomes $\sum_i a_i \log \frac{b_i}{a_i} \le 0$ and follows from the inequality $\ln x \le x 1$.

3

Theorem (Information inequality)Let p and q be two PMF over the same alphabet. Then

$$D(p||q) \ge 0$$

with equality iff p(x) = q(x) for all x.

Corollary

For any two random variables X and Y,

$$I(X;Y) \ge 0$$

with equality iff X and Y are independent.

Corollary

For any two random variables X and Y,

$$I(X;Y) \ge 0$$

with equality iff X and Y are independent.

Corollary

$$I(X;Y|Z) \ge 0$$
,

with equality iff X and Y are conditional independent given Z.

 $H(X) \leq \log |\mathcal{X}|$ where \mathcal{X} is the alphabet of X. The equality holds iff X is uniformly distributed on \mathcal{X} .

Proof.

Let u be the uniform distribution on \mathcal{X} , i.e., $u(x)=|\mathcal{X}|^{-1}$, $x\in\mathcal{X}$. Then

$$\log |\mathcal{X}| - H(X) = \sum_{x} p(x) \log |\mathcal{X}| + \sum_{x} p(x) \log p(x)$$

$$= \sum_{x} p(x) \log 1/u(x) + \sum_{x} p(x) \log p(x)$$

$$= \sum_{x} p(x) \log \frac{p(x)}{u(x)}$$

$$\geq 1 \cdot \log \frac{1}{1}$$

$$= 0,$$
(1)

where inequality follows from the log-sum inequality. The equality in (1) holds if and only p(x) = u(x) for all $x \in \mathcal{X}$.

6

Theorem (Conditioning reduces entropy)

$$H(X|Y) \le H(X)$$

with equality iff X and Y are independent.

Theorem (Independence bound on entropy)

$$H(X_1, X_2, \dots, X_n) \le \sum_{i=1}^n H(X_i)$$

with equality iff X_i are independent.

Convextiy of Information Measures

Theorem (Convexity of relative entropy) D(p||q) is convex in the pair (p,q).

Theorem (Convexity of relative entropy)

D(p||q) is convex in the pair (p,q).

Proof.

The theorem says that if (p_1,q_1) and (p_2,q_2) are two pairs of probability mass functions, then

$$D(\lambda p_1 + \bar{\lambda}p_2||\lambda q_1 + \bar{\lambda}q_2) \le \lambda D(p_1||q_1) + \bar{\lambda}D(p_2||q_2)$$

for all $0 \le \lambda \le 1$.

Theorem (Concavity of entropy) H(p) is a concave function of p.

Theorem (Concavity of entropy)

H(p) is a concave function of p.

Proof.

$$H(p) = \log |\mathcal{X}| - D(p||u)$$

where u is the uniform distribution on $|\mathcal{X}|$.

The mutual information I(X;Y) is a concave function of p(x) for fixed p(y|x) and a convex function of p(y|x) for fixed p(x).

The mutual information I(X;Y) is a concave function of p(x) for fixed p(y|x) and a convex function of p(y|x) for fixed p(x).

Proof.

To prove the first part, we write

$$I(X;Y) = H(Y) - H(Y|X) = H(Y) - \sum p(x)H(Y|X = x).$$

The mutual information I(X;Y) is a concave function of p(x) for fixed p(y|x) and a convex function of p(y|x) for fixed p(x).

Proof.

To prove the first part, we write

$$I(X;Y) = H(Y) - H(Y|X) = H(Y) - \sum_{x} p(x)H(Y|X = x).$$

To prove the second part, we use I(X,Y) = D(p(x,y)||p(x)p(y)), where the latter is a convex function of (p(x,y),p(x)p(y)) = (p(x)p(y|x),p(x)p(y)), which is a linear function of p(y|x) when p(x) is fixed.

Data-Processing Inequality

Markov Chain

Definition (Markov chain) Random variables X, Y and Z form a Markov chain $X \to Y \to Z$ if

$$p(x, y, z)p(y) = p(x, y)p(y, z).$$

- 1. $X \to Y \to Z$ iff X and Z are conditional independent given Y
- 2. $X \to Y \to Z$ iff I(X; Z|Y) = 0.
- 3. $X \to Y \to Z$ implies $Z \to Y \to X$.

$$I(X;Y,Z) \ge I(X;Y)$$

with equality iff $X \to Y \to Z$ forms a Markov chain.

Theorem (Data processing inequality) If $X \to Y \to Z$, then $I(X;Y) \ge I(X;Z)$.

Theorem (Data processing inequality) If $X \to Y \to Z$, then $I(X;Y) \ge I(X;Z)$.

Proof.

Using the chain rule of mutual information to expend I(X;Y|Z) in two different ways:

$$I(X; Y, Z) = I(X; Z) + I(X; Y|Z)$$

= $I(X; Y) + I(X; Z|Y)$.

See that
$$I(X; Z|Y) = 0$$
 and $I(X; Y|Z) \ge 0$.

 $\begin{array}{l} \textbf{Corollary} \\ I(X;Y) \geq I(X;g(Y)) \text{, where } g \text{ is any function.} \end{array}$

Corollary

 $I(X;Y) \ge I(X;g(Y))$, where g is any function.

Corollary

If $X \to Y \to Z$, then $I(X;Y|Z) \le I(X;Y)$.

Information Diagram for Three Random Variables

