Loss Function

Regression: Output a Scalar

Stock market forecast

) = Dow Jones Industrial Average at tomorrow

Self-driving car

) = Steering wheel direction

Recommendation

$$f($$
 Consumer Product $) =$ Purchasing likelihood

Example Application

Estimating the Combat Power (CP) of a Pokémon after evolution

Step One: Model

w and b are parameters (can be any value)

$$f_1$$
: y = 10.0 + 9.0 · x_{cp}

$$f_2$$
: y = 9.8 + 9.2 · x_{cp}

$$f_3$$
: y = -0.8 - 1.2 · x_{cp}

..... infinite

Linear model:
$$y = b + \sum_{i=1}^{n} w_i x_i$$
 w_i : weight, b: bias

Feature

Step Two: Goodness of Function

Step Two: Goodness of Function, Continued

$$y = b + w \cdot x_{cp}$$
Loss function L :
Input: A function
Output: How bad it is

$$L(f) = \sum_{n=1}^{10} \frac{\text{Estimation error}}{\left(\hat{y}^n - f(x_{cp}^n)\right)^2}$$
Sum over examples
$$L(w, b) = \sum_{n=1}^{10} \left(\hat{y}^n - \left(b + w \cdot x_{cp}^n\right)\right)^2$$

Simple Linear Regression Model

1 input and just fit a line to data

"Cost" of Using a Given Line

Residual sum of squares (RSS)

Example I: Part I

$$h_{ heta}(x)= heta_1 x$$
 (for fixed $heta_1$, this is a function of x)
$$3 = 0$$

$$1 = 0$$

$$0 = 0$$

$$1 = 0$$

$$0 = 0$$

$$1 = 0$$

$$0 = 0$$

$$1 = 0$$

$$0 = 0$$

$$1 = 0$$

$$2 = 0$$

$$3 = 0$$

$$J(\theta_1) = \frac{1}{2m} \sum_{i=1}^{m} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^2$$
$$J(\theta_1)$$

(function of the parameter $heta_1$)

Example I: Part II

$$h_{\theta}(x) = \theta_1 x$$
$$h_{\theta}(x)$$

(for fixed θ_1 , this is a function of x)

$$J(\theta_1) = \frac{1}{2m} \sum_{i=1}^{m} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^2$$

 $J(\theta_1)$

(function of the parameter θ_1)

Example I: Part III

$$h_{\theta}(x) = \theta_1 x$$
$$h_{\theta}(x)$$

(for fixed θ_1 , this is a function of x)

$$J(\theta_1) = \frac{1}{2m} \sum_{i=1}^{m} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^2$$

$$J(\theta_1)$$

(function of the parameter $heta_1$)

Example II: Part I

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

$$h_{\theta}(x)$$
 (for fixed θ_0 , θ_1 , this is a function of x)
$$\begin{array}{c} 500 \\ 400 \\ 100 \\ 200 \\ 100 \\ 300 \\ 100 \\ 2000 \\ 3000 \\ 3000 \\ \text{Size in feet}^2 \text{ (x)} \\ h_{\theta}(x) = 50 + 0.06x \\ \end{array}$$

$$J(heta_0, heta_1)=rac{1}{2m}\sum_{i=1}^mig(h_ heta(x^{(i)})-y^{(i)}ig)^2\ Jig(heta_0, heta_1ig)$$
 (function of the parameters $heta_0, heta_1$)

Example II: Part II

Example II: Part III

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$
$$h_{\theta}(x)$$

(for fixed θ_0 , θ_1 , this is a function of x)

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^2$$
$$J(\theta_0, \theta_1)$$

(function of the parameters θ_0, θ_1)

Example II: Part IV

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$
$$h_{\theta}(x)$$

(for fixed θ_0 , θ_1 , this is a function of x)

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^2$$
$$J(\theta_0, \theta_1)$$

(function of the parameters $heta_0, heta_1$)

Example II: Part V

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$
$$h_{\theta}(x)$$

(for fixed θ_0 , θ_1 , this is a function of x)

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^2$$
$$J(\theta_0, \theta_1)$$

(function of the parameters θ_0, θ_1)

Example II: Part VI

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$
$$h_{\theta}(x)$$

(for fixed θ_0 , θ_1 , this is a function of x)

(function of the parameters θ_0, θ_1)

Step Three: Best Function

