INF1130

Mathématiques pour l'informatique

Zied Zaier, PhD

Département d'informatique Université du Québec à Montréal

Contenu du présent document

- Introduction à la Mathématique Discrètes
- Étude des notions fondamentales de la logique.
- Notions de propositions logiques.
- Notions d'équivalences logiques.
- Notions fondamentales de la logique des prédicats.
- Notions de quantificateurs.
- Notions de variables liées.

Pourquoi dire math. DISCRÈTES?

Que représente des structures discrètes?

- "Discrète" Signifie composées de parties distinctes, séparables. (À l'opposition de continues)
 - discret VS continu ⇔ digital VS analogique
- "Structures" Objets construits à partir d'objets plus simples selon certains patterns définis.
- "Mathématiques Discrètes" Vouée à l'étude des objets mathématiques et des structures discrètes.

Quelques Structures Discrètes

- Propositions
- Prédicats
- Preuves
- Ensembles
- Fonctions
- Ordre
- Algorithmes
- Entiers
- Sommations

- Séquences
- Chaînes
- Permutations
- Combinaisons
- Relations
- Graphes
- Arbres
- Circuits Logiques
- Automate

Relations possibles entre Structures

• "→" : "Peu être définis en terme de"

Quelques notations utiles

Pourquoi étudier les Math. Discrètes?

- La base de tout traitement de l'information en format digital: <u>Manipulations discrètes de</u> <u>structures discrètes représentées en mémoire</u>.
- Le langage de base et la fondation conceptuelle des sciences informatiques.
- Les concepts des Math. Discrètes sont aussi utilisés en mathématique en général, en science, en ingénierie, en économie, biologie, etc., ...
- Un outil essentiel pour le raisonnement rationnel.

Utilisation des Math Discrètes en informatique

- Algorithmique et structures de données
- Langage de Programmation Compilateurs et interpréteurs.
- Réseautique
- Systèmes d'exploitation
- Architecture des ordinateurs

- Systèmes de gestion de base de données
- Cryptographie
- Correction d'erreurs dans le code
- Algorithmes en Graphisme et Animation, engins de jeux, etc....

Objectifs du cours

- Vérifier la validité d'énoncés, de fonctions , d'arguments logiques simples (preuves).
- Vérifier la rectitude d'un algorithme.
- Création d'instances simples d'arguments logiques valides et d'algorithmes correctes.
- Comprendre les définitions et les propriétés de diverses structures discrètes.
- Lire correctement, représenter et analyser diverses structures discrètes utilisant des notations standards.

Fondements de la logique

La Logique Mathématique permet la manipulation d'énoncés composés élaborés.

Incluant:

- Un langage formel pour les exprimer.
- Une notation concise pour les exprimer.
- Une méthodologie pour raisonner de façon objective sur leur véracité ou leur fausseté.

Fondements de la logique: Survol

- Logique propositionnelle:
 - Définitions de bases.
 - Règles d'équivalence et dérivations.
- Logique des prédicats.
- Prédicats:
 - Expressions quantifiées de prédicats.
 - Équivalences et dérivations.

Logique propositionnelle (section 1.1)

La Logique Propositionnelle est la logique d'énoncés composés construits à partir d'énoncés plus simples en utilisant des opérateurs (connecteurs) Booléens.

Quelques applications en science informatique:

- · Design de circuits electroniques digitaux .
- Exprimer des conditions dans des programmes.
- Requêtes dans une BD et des engins de recherche.

Définition: Proposition

Définition: Une *proposition* (dénotée p, q, r, ...) est:

- Un énoncé (*i.e.*, une phrase déclarative)
 - avec une sens bien défini, (sans ambiguïté)
- Ayant une valeur de vérité soit vraie (T) ou fausse (F)
 - Jamais les deux, ni entre les deux.
 - Cependant, il est possible de ne pas connaître la valeur de vérité,
 - et, la valeur de vérité peut *dépendre* d'une situation particulière ou du contexte.
- Nous verrons plus tard, en étudiant la théorie probabiliste qu'il est possible d'assigner un degré de certitude (entre T ou F) à des propositions.
 - Pour l'instant pensez! VRAI/FAUX

Exemples de propositions

- "C'est nuageux." (Dans une situation donnée.)
- "Ottawa est la capitale du Canada."
- "1 + 2 = 3"

Exemples qui ne sont pas des propositions:

- "Quelle heure est-il?" (interrogation, question)
- "OH! OH! OH!." (sans signification)
- "Fait ce devoir!" (impératif, commande)
- "Roule 4-5 minutes, tourne à gauche..." (vague)
- "1 + 2" (expression sans valeur de vérité)

Opérateurs / Connecteurs

Un *opérateur* ou un *connecteur* combine une ou plusieurs expressions (*opérandes*) en une expression plus grande, plus élaborée.

- Opérateurs *Unaires* requièrent 1 opérande (ex: -3);
- Opérateurs binaires requièrent 2 opérandes (ex: 3 × 4).
- Opérateurs propositionnels ou Booléens s'appliquent sur des propositions (ou leur valeur de vérité) plutôt que sur des nombres.

Opérateurs Booléens populaires

Nom formel	Nom court	<u>Parité</u>	symbolee
Négation	NOT (NON)	Unaire	٦
Conjonction	AND (ET)	Binaire	^
Disjonction	OR (OU)	Binaire	V
OU-Exclusif	XOR (OUX)	Binaire	\oplus
Implication	IMPLIQUE	Binaire	\rightarrow
Biconditionnel	SSI	Binaire	\leftrightarrow

L'opérateur de Négation

L'opérateur de *négation* "¬" (*NOT*) transforme une prop. dans sa forme logique complémentaire (*négation*).

Ex: SI p ="J'ai les cheveux blanc."

ALORS $\neg p$ = "Je n'ai pas les cheveux blanc."

Table de vérité du NOT:

$$\begin{array}{c|c} p & \neg p \\ \hline T & F \\ F & T \end{array}$$

T := True; F := False":=" "est défini comme" Opérande Résultat

L'opérateur de Conjonction

L'opérateur de *conjonction* "^" (*AND*, *ET*) combine deux propositions pour former leur *conjonction logique*.

Ex: p="J'irai à Québec." et q="J'irai au Châ teau Frontenac.", alors p∧q="J'ira à Québec et au Château Frontenac."

Rappel: "^" pointe vers le haut comme un "A", et correspond au "^ND"

Table de vérité (Conjonction)

Notez qu'une conjonction
 p₁ ∧ p₂ ∧ ... ∧ p_n
 de n propositions aura 2ⁿ rangées dans sa table de vérité.

Opéra		
р	q	p∧q
F	F	F
F	Т	F
Т	F	F
Т	Т	Т

 Aussi: Les opérations ¬ et ∧ sont suffisantes pour déduire n'importe quelles tables de vérités Booléennes

L'opérateur de Disjonction

L'opérateur de *disjonction* " \vee " (*OU*) combine deux propositions pour former une *disjonction* logique. p="Mon ordinateur a une bonne carte graphique." q="Mon ordinateur a un CPU performant." $p \vee q$ ="Mon ordinateur a soit une bonne carte graphique, **or (ou)** mon ordinateur a un CPU performant."

Table de vérité (Disjonction)

- Notez que pvq signifie que p est VRAI, ou q est vrai, ou les deux sont vraies!
- Cette opération est aussi appelée ou inclusif, et inclus la possibilité que p et q soient VRAIES.

p	q	$p \lor q$
F	F	F
F	T	T Notez la différence
T	F	T avec AND
T	T	Т

Un exercise simple

Posons p = "Il a plue la nuit dernière", q = "Le balai mécanique a lavée la rue cette nuit",

r = "La rue est mouillée ce matin."

Tranduisez chaque proposition:

```
¬p = "Il n'a pas plue la nuit dernière."
```

 $r \wedge \neg p$ = "La rue est mouillée mais il n'a pas plue"

 $\neg r \lor p \lor q =$ "Soit que la rue n'était pas mouillée, ou il a plue la nuit dernière, ou la rue a été lavée cette nuit."

L'opérateur OU Exclusif (*Exclusive Or*)

L'opérateur *OU-Exclusif* "⊕" (*XOR*) combine deux propositions formant leur "OU exclusif" logique.

p = "J'obtiendrai un A+ dans ce cours,"

q = "J'abandonnerai ce cours,"

 $p \oplus q$ = "Je vais soit avoir un A+ dans ce cours, ou j'abandonnerai (mais pas les deux)"

Table de vérité du OU-Exclusif

- Notez que p⊕q veut dire que p est vrai, ou q est vrai, mais pas les deux!
- Cette opération est appelée OU-exclusif, puisqu'elle exclus la possibilité que p et q soient VRAIES.

$$egin{array}{c|cccc} p & q & p \oplus q \\ \hline F & F & F \\ F & T & T \\ T & F & T \\ T & T & F \\ \hline \end{array}$$
 Notez la différence avec le OR

L'ambiguïté du Language Naturel

Notez qu'en français le "ou" peut être <u>ambïgu</u> en regard des cas inclusif et exclusif

Besoin du contexte pour désambiguïser le sens des propositions

L'opération Implication

Hypothèse Conclusion

L' implication $p \rightarrow q$ signifie que p implique q.

Ex:, posons p = "Vous étudiez beaucoup." q = "Vous obtenez une bonne note."

 $p \rightarrow q$ = "Si vous étudiez beaucoup, vous obtiendrai Alors une bonne note."

La table de vérité de l'Implication

T F

<u>seul</u>

cas

FAUX

- $p \rightarrow q$ est **faux** <u>seulement</u> quand p est VRAI mais que q n'est pas VRAI (**not** true). $\frac{p-q}{F} \frac{p \rightarrow q}{F}$
- $p \rightarrow q$ ne veut pas dire que p a causé q
- $p \rightarrow q$ ne requiert pas que p ou q **soit VRAIE**
- EX: "(1=0) → Dumbo l'éléphant vole" est VRAIE

Pourquoi l'implication semble bizarre?

- Considérons une phrase comme,
 - "Si je regarde CNN demain, il tombera de la grêle"
- En logique, cette phrase est considérée VRAIE tant que je ne regarde pas CNN ou qu'il grêle.
- Mais, dans une conversation normale, ce genre d'affirmation est déconcertante et questionnable.

Comment résoudre cette inconsistance

- Une phrase en langage courant "SI p ALORS q" peut signifier implicitement:
 - "Dans toutes les situations possibles, p implique q."
 - SI p est VRAI ALORS q est aussi VRAI.
 - SI p n'est pas VRAI ALORS q est FAUX.
 - Il existe une relation entre, l'hypothèse et la conclusion.
- Ce n'est pas le cas en logique.
 - $-p \rightarrow q$ signifie ¬p V q
- Ex.: "Si vous avez 100 au final, vous aurez A+"
 - Si vous avez 100, vous vous attendez à avoir un A+ (1→1=1)
 - Sinon, vous pourriez avoir un A+ quand même (0→1=1)
 - Par contre, si vous avez un 100 et n'avez pas un A+, vous vous sentirez probablement lésé (1→0 = 0)

Examples d'Implications

- "Si ce cours ne se termine jamais, Alors le soleil se lèvera demain." (rue) or False?
- "Si lundi est un jour de la semaine, Alors Je suis un singe." True or false
- "Si 1+1=6, Alors Obama est président." *True* or *False*?
- "Si la Suisse est un fromage, Alors je suis plus riche que Warren Buffet." (rue) or False?

Sens de phrases en langage courant $p \rightarrow q$

- "p implique q"
- "Si p, q"
- "quand p, q"
- "q si p"
- "q quand p"
- "q chaque fois que p"

- "p seulement si q"
- "Si p, Alors q" "p est suffisant pour que q"
 - "q est nécessaire pour que p"
 - "q découle de p"
- "chaque fois que p, q" "q est supposé par p"

Réciproque, Inverse, Contraposée

Formes découlants de l'implication $p \rightarrow q$:

- Sa réciproque est: $q \rightarrow p$.
- Son *inverse* est: $\neg p \rightarrow \neg q$.
- Sa contraposée: $\neg q \rightarrow \neg p$.
- Une de ces formes a le même sens (même table de vérité) que p → q. Laquelle ?
 Contraposee

Comment en être certain?

Prouvons l'équivalence de $p \rightarrow q$ et sa contraposée par table de vérité:

L'opérateur biconditionnel

Une forme *biconditionelles* $p \leftrightarrow q$ est vraie si la proposition p est vraie et si *la proposition* q est vraie. Nous dirons p SSI q.

p = "Obama gagne les élections de 2008."

q = "Obama sera président jusqu'en 2012."

 $p \leftrightarrow q$ = "Obama gagne les élections de 2008, SSI, Obama sera président jusqu'en 2012."

Table de vérité de la biconditionnelle

- p ↔ q signifie que p et q ont la même valeur de vérité.
- Notez que cette table de vérité est l'opposée du XOR ⊕
 Donc, p ↔ q est équivalent ¬(p ⊕ q)

p	q	$p \leftrightarrow q$
F	F	T
F	T	F
T	F	F
T	T	T

 p ↔ q ne veut pas dire que p et q sont VRAIES, ou que chacune est la cause de l'autre, ou découlent d'une cause commune.

Précédence des opérateurs

- Nous pouvons avoir des énoncés composés
 - $-r \lor p \rightarrow q$
- Quel est l'ordre d'application des opérateurs logiques?
 - Les parenthèses spécifient l'ordre
 - $-r \lor (p \rightarrow q)$: Implication en premier
- Si pas de parenthèses, la précédence des opérateurs intervient

Opérateur	Précédence
7	1
^	2
٧	3
\rightarrow	4
\leftrightarrow	5

Opérations Booléennes (Sommaire)

• Table de vérité des opérateurs logiques vus jusqu'à maintenant.

p	q	$\neg p$	$p \land q$	$p \lor q$	$p \oplus q$	$p \rightarrow q$	$p \leftrightarrow q$
F	F	T	F	F	F	T	T
F	T	T	F	T	T	T	F
T	F	F	F	T	T	F	F
T	T	F	T	T	F	T	T

Quelques Notations Alternatives

Nom:	not	and	or	xor	implies	iff
Proposition logique:	Г	^	>	\oplus	\rightarrow	\leftrightarrow
Algèbre Booléenne:	\overline{p}	pq	+	\oplus		
C/C++/Java (wordwise):	!	&&		! =		==
C/C++/Java (bitwise):	~	&		^		
Portes Logiques:	->>		\supset	>>		

Opérations Logiques et Binaires

- Un bit est un binary (base 2) digit: 0 ou 1.
- Les bits sont aussi utilisés pour représenter des valeurs de vérité.
- Par convention:
 0 représente "FAUX"; 1 représente "VRAI".
- L' Algèbre Booléenne est comme l'algèbre conventionnelle sauf que les variables sont logiques (bits), + est le "or", et la multiplication est le "and".

Chaîne de Bits

- Une chaîne de Bits de longueur n est une séquence ordonnée (séries, tuple) de n≥0 bits.
- Par convention, les chaînes de bits sont écrites généralement de gauche à droite:
 BLPS "1001101010" est 1.
- Alors la chaîne de bits correspond en base 10 à:1101₂=8+4+1=13.

Opérations sur les Bits (Bitwise)

- Opérations booléennes peuvent être appliquées sur des chaînes de bits autant que des bits individuels.
- EX:

 0110110110
 1100011101

 1110111111 (Bit-wise OR)
 0100010100 (Bit-wise AND)
 1010101011 (Bit-wise XOR)

Récapitulations (sec. 1.1)

- Définitions sur les propositions
- Opérateurs sur les propositions logiques
 - Notations symboleiques.
 - Équivalents dans le langage courant.
 - Sens logique.
 - Tables de vérité.

- Proposition simples vs. composées.
- Notations alternatives.
- Bits et chaînes de bits.
- Section: 1.2
 - Équivalences propositionnelles.
 - Comment les prouver.

Équivalence Propositionnelle (sec. 1.2)

- Deux propositions composées syntaxiquement différentes peuvent être identiques du point de vue sémantique. Elles sont alors dites équivalentes. Il existe:
 - Diverses règles ou lois d'équivalence.
 - Des dérivations symboliques pour prouver les équivalences.

Tautologies et Contradictions

Une *tautologie* est une proposition composée qui est **VRAIE** et ce pour toutes les combinaisons de valeurs des propositions atomiques la composant.

Ex. p ∨ ¬p [Quelle est la table de vérité?]
Une contradiction est une proposition composée qui est FAUSSE dans tous les cas.
Ex. p ∧ ¬p [La table de vérité?]

Les autres propositions composées sont des contingences.

Équivalence logique

$p \Leftrightarrow q$

 Les propositions composées p et q sont logiquement équivalentes (exprimée p ⇔ q) SSI p et q possèdent les mêmes valeurs logiques dans toutes les rangées de leur table de vérité.

Preuve d'équivalence par table de vérité

Ex. Prouvez que $p \lor q \Leftrightarrow \neg(\neg p \land \neg q)$.

Lois d'Équivalence

- Similaires aux identités arithmétiques utilisées en algèbre, mais appliquées aux équivalences propositionnelles.
- Peuvent être substituées entièrement ou en partie à des propositions complexes pour en prouver l'équivalence.

Lois d'équivalence- Exemples

- Identité: $p \land T \Leftrightarrow p \quad p \lor F \Leftrightarrow p$
- Domination: $p \lor T \Leftrightarrow T$ $p \land F \Leftrightarrow F$
- Idempotence: $p \lor p \Leftrightarrow p$ $p \land p \Leftrightarrow p$
- Double négation: ¬¬p ⇔ p
- Commutativité: $p \lor q \Leftrightarrow q \lor p$ $p \land q \Leftrightarrow q \land p$
- Associativité: $(p \lor q) \lor r \Leftrightarrow p \lor (q \lor r)$ $(p \land q) \land r \Leftrightarrow p \land (q \land r)$

Autres lois d'équivalence

- Distributivité: $p \lor (q \land r) \Leftrightarrow (p \lor q) \land (p \lor r)$ $p \land (q \lor r) \Leftrightarrow (p \land q) \lor (p \land r)$
- De Morgan:

$$\neg(p \land q) \Leftrightarrow \neg p \lor \neg q$$
$$\neg(p \lor q) \Leftrightarrow \neg p \land \neg q$$

Tautologie/contradiction triviale (Équivalences logiques utiles:ELU)

$$p \vee \neg p \Leftrightarrow \mathbf{T} \qquad p \wedge \neg p \Leftrightarrow \mathbf{F}$$
$$(p \to q) \Leftrightarrow (\neg p \vee q)$$

Preuve de tautologie

 $[\neg p \land (p \lor q)] \rightarrow q$

 $\Leftrightarrow [(\neg p \land p) \lor (\neg p \land q)] \rightarrow q$

 \Leftrightarrow [F \vee (¬ $p \land q$)] $\rightarrow q$

 $\Leftrightarrow [\neg p \land q] \rightarrow q$

 $\Leftrightarrow \neg [\neg p \land q] \lor q$

 $\Leftrightarrow [\neg(\neg p) \lor \neg q] \lor q$

 $\Leftrightarrow [p \lor \neg q] \lor q$

 $\Leftrightarrow p \vee [\neg q \vee q]$

 $\Leftrightarrow p \vee [q \vee \neg q]$

 $\Leftrightarrow p \vee T$

 \Leftrightarrow T

Distributivité

ELU

Identitité

ELU

DeMorgan

Double Négation

Associativité

Commutativité

ELU

Domination

Autre preuve d'équivalence logique

 $\neg(p \lor (\neg p \land q)) \Leftrightarrow (\neg p \land \neg q)$

 $\Leftrightarrow \neg p \land \neg (\neg p \land q)$

 $\Leftrightarrow \neg p \wedge [\neg (\neg p) \vee \neg q)]$

 $\Leftrightarrow \neg p \land (p \lor \neg q)$

 $\Leftrightarrow (\neg p \land p) \lor (\neg p \land \neg q)$

 $\Leftrightarrow \mathsf{F} \vee (\neg p \wedge \neg q)$

 $\Leftrightarrow (\neg p \land \neg q) \lor \mathsf{F}$

 $\Leftrightarrow (\neg p \land \neg q)$

De Morgan

De Morgan

Double Négation

Distributivité

ELU

Commutativité

Identité

Définir des opérateurs par les Équivalences

Avec les équivalences, de nouveaux opérateurs peuvent être déduits en termes d'autres opérateurs:

- OU Exclusif: $p \oplus q \Leftrightarrow (p \lor q) \land \neg (p \land q)$ $p \oplus q \Leftrightarrow (p \land \neg q) \lor (q \land \neg p)$
- Implication: $p \rightarrow q \Leftrightarrow \neg p \lor q$
- Biconditionnelle:

$$p \leftrightarrow q \Leftrightarrow (p \rightarrow q) \land (q \rightarrow p)$$
$$p \leftrightarrow q \Leftrightarrow \neg (p \oplus q)$$

Revue: Logique Propositionnelle sec. (1.1-1.2)

- Propositions atomiques : p, q, r, ...
- Opérateurs Booléens : ¬ ∧ ∨ ⊕ → ↔
- Propositions composées:

$$s := (p \land \neg q) \lor r$$

- Équivalences: $p \land \neg q \Leftrightarrow \neg (p \to q)$
- Preuves d'équivalences par:
 - Tables de vérité.
 - Dérivations symboliques. $p \Leftrightarrow q \Leftrightarrow r \dots$

Logique des prédicats (sec.1.3)

- La logique des prédicats est une extension de la logique propositionnelle permettant un raisonnement concis sur diverses classes d'entités.
- La logique propositionnelle traite des propositions simples (phrases) comme des entités atomiques.
- Par contre, la *logique des prédicats* distingue le sujet d'une phrase de son prédicat.
 - Termes de la grammaire Française?

Sujets et Prédicats

- Dans la phrase "La vache rumine":
 - La phrase "La vache" correspond au sujet l'objet ou l'entité par rapport auquel la phrase complète est construite.
 - La phrase "rumine" correspond au prédicat- une propriété qui est VRAIE pour le sujet.
- En logique des prédicats, un prédicat représente une fonction P(·) qui transpose les objets en propositions.
 - -P(x) ="x rumine" (ou x est un objet quelconque).

Conventions associées aux prédicats

- Convention: Variables en minuscules x, y, z... Dénotent les objets/entités; variables en majuscules P, Q, R... dénotent les prédicats.
- Il faut savoir que l'application d'un prédicat P à un objet x est une proposition P(x). Mais le prédicat P lui même (ex: P="rumine") n'est pas une proposition (pas une phrase complète).
 - Ex: si P(x) = "x est un nombre premier",
 P(3) est la proposition "3 est un nombre premier."
- En Java: les predicats sont des méthodes qui retournent des valeurs booléenne
 - someLinkedList.isEmpty()
 - isPrime(17)

Applications de la logique des prédicats

- Notation formelle pour écrire des définitions mathématiques, axiomes et théorêmes clairs, concis, et non ambigüs.
- La logique des prédicats peut avec une notation très simple (symboles de fonctions, opérateur "=", des quantifieurs, et quelques règles de construction de preuves) définir de multiples systèmes mathématiques et prouver le bon fonctionnement de ce système.

Applications pratiques de la logique des prédicats

- C'est la base pour exprimer les spécifications formelles de systèmes complexes.
- Utiliser comme outil de validation automatique de preuves et dans de multiples systèmes en Intelligence Artificielle.
 - Ex: Systèmes de vérification automatique de programmes.
- Des énoncés en logique des prédicats sont supportés par des interpréteurs de requêtes de BD et autres librairies de classes
 - Ils sont perçus comme des outils de programmation.

Univers du discours

- La possibilité de distinguer des objets à partir de prédicats permet de faire des affirmations sur un ensemble d'objets en un seul coup.
- Ex: posons P(x)="x+1>x". Nous pouvons alors dire: "Pour tout nombre x, P(x) est VRAI" au lieu de faire l'énumération: (0+1>0) ∧ (1+1>1) ∧ (2+1>2) ∧ ...
- La collection des valeurs de *x* est appelée l'univers du discours (domaine) de *x*.

Univers du discours

- Dans les langages de programmation le ud correspond à la notion de type. En JAVA, il existe deux catégories de type: : type reference (objets et arrays), et des types primitifs comme int, boolean, char, etc.
- Exemples de ud en Java:
 int, char, int[][], Object, String,
 java.util.LinkedList, Exception,
 etc.

Quantificateurs

- Les quantificateurs sont une notation permettant de quantifier (compter) combien d'objects dans l'univers du discours satisfont un prédicat donné.
- "∀" POUR TOUT ou quantificateur universel.
 ∀x P(x) Pour tout x, P est satisfait.
- "∃" EXISTE or quantificateur existentiel.
 ∃x P(x) il existe une valeur de x tel que P(x) est VRAI.

Quantificateur Universel ∀

- Exemple:
 - Avec le u.d. de x les étudiants en informatique.
- Posons S(x) le prédicat "x est dans le cours INF1130"
- Posons P(x) le prédicat "x étudient la logique des prédicats."
- Avec le quantificateur universel, ∀x (S(x) -> P(x)), est la proposition:
 - "Tous les étudiants en informatique du cours INF1130 étudient la logique des prédicats"
 - i.e., "Tous les étudiants du cours INF1130 étudient la logique des prédicats."
 - i.e., "Chaque étudiant du cours INF1130, étudie la logique des prédicats."

Quanficateur Existentiel 3

- Exemple: Posons l'u.d. de x est: sièges au spectacle de Billy Talent
- Posons P(x) le prédicat "x est réservé"
 Alors la quantification existentielle de P(x), ∃x P(x), donne la proposition:
 - "Quelque sièges sont réservés pour le spectacle."
 - "Un siège est réservé pour le spectacle."
 - "Au moins un siège est réservé pour le spectacle."

Négations

- ∀x : Que représente ¬∀x ?
- ∃x : Que représente ¬∃x ?
- Que représente la négation de ∀x P(x)?
- Ou la négation de ∃x P(x)?
- $\neg (\forall x P(x)) : \exists x \neg P(x)$
- \neg ($\exists x P(x)$) : $\forall x \neg P(x)$

Variables libres ou liées

- Une expression comme P(x) possède une variable libre x (x est non définie).
- Un quantificateur (∀ ou ∃) opèrent sur une expression ayant une ou plusieurs variables libres, et lie une ou plusieurs de ces variables, pour produire une expression ayant une ou plusieurs variables liées.

Exemples de liaisons

- P(x,y) a 2 variables libres, x et y.
- $\forall x P(x,y)$ a 1 variable libre, et une variable liée.
- "P(x), où x=3" permet de lier x.
- Une expression avec <u>aucune</u> variable libre est une proposition réelle.
- Une expression avec <u>une ou plus</u> variables libres ne reste qu'un prédicat:

```
Ex: posons Q(y) = \forall x P(x,y)
```

Quantificateurs imbriqués (sec. 1.4)

```
Exemple: Posons l'u.d. de x et y sont des personnes.
```

```
Posons A(x,y)="x aime y" (prédicat: 2 f.v., x,y)
Alors \exists y \ A(x,y) = "Quelqu'un est aimé par x."
```

(prédicat: 1 f.v., x)

Alors $\forall x (\exists y \ A(x,y)) =$

"Chacun a quelqu'un qu'il aime."

(Une **Proposition** avec variable libre.)

Exemple: Quantificateur

 $\forall x : Pour tout x$ ∃y: Il existe un 'y'

Si C(x,y)="x compte sur y," s'exprime en français

non ambigue :

 $\forall x(\exists y \ C(x,y))=$

Chacun a quelqu'un sur qui compter.

 $\exists y (\forall x C(x,y)) =$

Il existe quelqu'un sur qui tous peuvent compter même lui-même.

 $\exists x (\forall y \ C(x,y)) =$

Il existe quelqu'un qui compte sur tous même lui-même.

 $\forall y(\exists x \ C(x,y))=$

Tous ont quelqu'un qui compte sur eux.

 $\forall x (\forall y \ C(x,y)) =$ Tous comptent sur tous même eux-mêmes.

D'autres conventions

- Parfois l'u.d. est restreint à l'intérieure de la quantification, ex:,
 - $\forall x > 0 P(x)$ correspond à
 - "Pour tout x > 0, P(x)."
 - $= \forall x (x>0 \rightarrow P(x))$
 - $-\exists x>0 P(x)$ correspond à

"Il existe un x > 0 tel que P(x)."

$$=\exists x (x>0 \land P(x))$$

Un peu plus sur la liaison

- $\forall x \exists x' P(x)$ x n'est pas une f.v. dans $\exists x P(x)$, alors la liaison $\forall x \text{ n'est pas utilisée}$.
- (∀x P(x)) ∧ Q(x) La variable x est hors de la portée du quantificateur ∀x, donc x est une f.v.. Une proposition incomplète.
- (∀x P(x)) ∧ (∃x Q(x)) Légale, puisque nous avons 2 x différents

Règles d'équivalence des quantificateurs

 Définitions des quantificateurs: Si l'u.d.=a,b,c,...

$$\forall x \ P(x) \Leftrightarrow P(a) \land P(b) \land P(c) \land \dots$$
$$\exists x \ P(x) \Leftrightarrow P(a) \lor P(b) \lor P(c) \lor \dots$$

• Nous pouvons alors prouver les règles:

$$\forall x \ P(x) \Leftrightarrow \neg \exists x \ \neg P(x)$$
$$\exists x \ P(x) \Leftrightarrow \neg \forall x \ \neg P(x)$$

 Quelle règle d'équivalence propositionnelle peut être utilisée?

DeMorgan's

D'autres règles d'équivalence

- $\forall x \forall y P(x,y) \Leftrightarrow \forall y \forall x P(x,y)$ $\exists x \exists y P(x,y) \Leftrightarrow \exists y \exists x P(x,y)$
- $\forall x (P(x) \land Q(x)) \Leftrightarrow (\forall x P(x)) \land (\forall x Q(x))$ $\exists x (P(x) \lor Q(x)) \Leftrightarrow (\exists x P(x)) \lor (\exists x Q(x))$
- Exercise:

Voir à prouver ces propositions.

– Quelles règles d'équivalences propositionnelles utilisées vous?

Exemple

- $\forall x (C(x) \vee \exists y (C(y) \land F(x,y)))$ où
 - C(x): "x a un portable"
 - F(x,y): "x et y sont amis"
 - U.d. de x et y sont les étudiants de l'école
- $\forall x (C(x) \vee \exists y (C(y) \land F(x,y)))$

- Pour tout x, x a un portable OU
- Il existe un y qui a aussi un portable ET x et y sont amis

Autre exemple

- Si <u>une personne est femme</u> et <u>est un parent</u>, alors <u>cette personne est la mère de quelqu'un</u>.
- F(x): "x est une femme", P(x): "x est un parent"
- M(x,y): "x est la mère de y"
- Pour chaque personne x, Si x est un parent, alors x est la mère de quelqu'un.
- $\forall x ((F(x) \land P(x)) \rightarrow \exists y M(x,y))$

Revue: Logique des prédicats (sec 1.3)

- Objets *x*, *y*, *z*, ...
- Prédicats P, Q, R, ... sont des fonctions qui associent les objets x aux propositions P(x).
- Prédicats multi-valués P(x, y).
- Quantificateurs: (∀x P(x)) = "Pour tous x' P(x)."

 $(\exists x P(x))$ ="Il existe des x tel que P(x)."