

Electronic Circuits and Systems (EEE211)

Course Work: Assignment-1

Deadline: 09-October-2024, 17:00 hours @ LMO

Calculate the base, collector, and emitter currents and the C-E voltage for a common-emitter circuit shown in Figure. 1. The circuit parameters are: $V_{BB} = 2 V$, $V_{CC} = 3.3 V$, $R_C = 3.2 k\Omega$, and $R_B = 430 k\Omega$. The transistor parameters are $\beta = 150$ and $V_{BE} = 0.7 V$. [10 Marks]

Figure. 1

Calculate the characteristics (I_C, V_{CE}) of a circuit including base and emitter currents, which consists of an emitter resistor shown in Figure. 2. The circuit parameters are annotated in the figure and the transistor parameters are: $\beta = 80$ and $V_{BE(on)} = 0.7 V$. [13 Marks]

Figure. 2

3) For the circuit shown in Figure. 3, assume the circuit parameters are: $V_{CC} = 5 V$, $V_{BB} = 1.025 V$, $R_B = 100 k\Omega$, and $R_C = 6 k\Omega$. Consider the transistor parameters as $\beta = 150$, $V_{BE(on)} = 0.7 V$, and $V_A = 150 V$. (a) Calculate the Q-point values (I_{CQ}, V_{CEQ}) using DC analysis, (b) Determine the small-signal hybrid- π parameters (r_{π}, g_m, r_o) , (c) Find the small-signal voltage gain $A_v = V_o/V_s$. [22 Marks]

Dr. Suneel Kommuri

4) For the circuit shown in Figure. 4, consider $R_E = 0.6 k\Omega$, $R_C = 5.6 k\Omega$, $\beta = 120$, $V_{BE(on)} = 0.7 V$, $R_1 = 250 k\Omega$, and $R_2 = 75 k\Omega$. (a) Calculate the Q-point values (I_{CQ}, V_{CEQ}) using DC analysis, (b) Determine the small-signal hybrid— π parameters (r_{π}, g_m, r_o) , (c) Find the small-signal voltage gain $A_v = V_o/V_s$, assuming $V_A = \infty$, (d) Determine the input resistance looking into the base of the transistor. [25 Marks]

Figure. 4

For the circuit shown in Figure. 5, consider the circuit parameters as $V_{CC} = V_{EE} = 3.3 \ V$, $R_S = 500 \ k\Omega$, $R_L = 6 \ k\Omega$, $R_B = 100 \ k\Omega$, $R_E = 12 \ k\Omega$, and $R_C = 12 \ k\Omega$. The transistor parameters are: $\beta = 120$, $V_{BE(on)} = 0.7 \ V$, and $V_A = \infty$. (a) Calculate the Q-point values $\left(I_{CQ}, V_{CEQ}\right)$ using DC analysis, (b) Determine the small-signal hybrid— π parameters (r_{π}, g_m, r_o) , (c) Find the small-signal voltage gain $A_v = v_o/v_s$, (d) Find the small-signal current gain $A_i = i_o/i_i$, (e) Determine the input resistance R_i and output resistance R_o . [30 Marks]

Figure. 5