Measuring of Entanglement Entropy in Valence Bond Quantum Monte Carlo Simulations

by

Ann Berlinsky Kallin

A thesis
presented to the University of Waterloo
in fulfillment of the
thesis requirement for the degree of
Master of Science
in
Physics

Waterloo, Ontario, Canada, 2010

© Ann Berlinsky Kallin 2010

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis, including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

Abstract

In this thesis we present methods for measuring entanglement entropy in spin-1/2 Heisenberg systems using quantum Monte Carlo in the valence bond basis. We first directly compare the recently proposed valence bond entanglement entropy to the standard definition of entanglement entropy: the von Neumann entanglement entropy. We find both cases in which SHUT UP THESIS I HATE YOU

We explain VB QMC techniques:

- single projector
- double projector
- loop algorithm Look at VB EE compared to vN Look at Renyi EE Area Laws

Acknowledgements

I would like to thank all the people who made this possible.

Contents

List of Tables						
List of Figures						
1	Introduction					
	1.1	Entan	glement Entropy		1	
		1.1.1	The von Neumann Entanglement Entropy		1	
		1.1.2	The Area Law		1	
	1.2 something else to go in the introduction?				1	
	1.3	Entan	glement Entropy		2	
		1.3.1	The von Neumann Entanglement Entropy		2	
		1.3.2	The Area Law		2	
	1.4	sometl	hing else to go in the introduction?		2	
		1.4.1	the VB QMC stuff?		2	
2	Quantum Monte Carlo in the Valence Bond Basis					
	2.1	Single	Projector		3	
	2.2	Double	e Projector		3	
	2.3	Loop I	Moves		3	
3	Valence Bond Entanglement Entropy					
	3.1	One D	Dimension		4	
	3.2	Appro	eaching Two Dimensions		4	
	3.3	The A	rea Law		4	

4	Measuring Rényi Entanglement Entropy						
	4.1	The Swap Operator	5				
	4.2	1D Results	5				
	4.3	The Ratio Operator	5				
	4.4	2D Results	5				
	4.5	The Area Law	5				
5	Pro	spects for Future Research	6				
6	6 Conclusions						
\mathbf{A}	APPENDICES						
$\mathbf{R}_{\mathbf{c}}$	References						

List of Tables

List of Figures

Introduction

1.1 Entanglement Entropy

Start off explaining what entanglement entropy is Area Law Corrections to Area Law Definitions of entropy

- 1.1.1 The von Neumann Entanglement Entropy
- 1.1.2 The Area Law
- 1.2 something else to go in the introduction?
- 1.3 Entanglement Entropy
- 1.3.1 The von Neumann Entanglement Entropy
- 1.3.2 The Area Law
- 1.4 something else to go in the introduction?
- 1.4.1 the VB QMC stuff?

Quantum Monte Carlo in the Valence Bond Basis

- 2.1 Single Projector
- 2.2 Double Projector
- 2.3 Loop Moves

Valence Bond Entanglement Entropy

- 3.1 One Dimension
- 3.2 Approaching Two Dimensions
- 3.3 The Area Law

Measuring Rényi Entanglement Entropy

- 4.1 The Swap Operator
- 4.2 1D Results
- 4.3 The Ratio Operator
- 4.4 2D Results
- 4.5 The Area Law

Prospects for Future Research

Conclusions

APPENDICES

Bibliography

[1] Anders W. Sandvik. Ground state projection of quantum spin systems in the valence-bond basis. *Phys. Rev. Lett.*, 95(20):207203, Nov 2005.