My Rendition of Hunter's Strong Inductive Proof of The Deduction Theorem for PS Branden Fitelson

02/13/07

Theorem. Let Γ be an arbitrary set of formulas of P, and let A and B be arbitrary formulas of P.

If
$$\Gamma \cup \{A\} \vdash_{PS} B$$
, then $\Gamma \vdash_{PS} A \supset B$.

If there is a derivation (in PS) of *B* from $\Gamma \cup \{A\}$, then there is a derivation (in PS) of $A \supset B$ from Γ alone.

Proof. We will prove this by *strong induction* on the length of derivations establishing $\Gamma \cup \{A\} \vdash_{PS} B$. More precisely, we will prove by strong induction that the statement S(n) is true for all $n \ge 1$, where S(n) is:

S(n): If there is a derivation (in PS) of B from $\Gamma \cup \{A\}$ of length n, *then* there is a derivation (in PS) of $A \supset B$ from Γ alone.

To prove that S(n) is true for all $n \ge 1$ by strong induction, we will proceed in two steps:

- I. **Basis Step**: Prove that S(1) is true.
- II. **Inductive Step**: Assume as our **inductive hypothesis** that S(i) is true for all i such that 1 < i < n. Then, use this inductive hypothesis to show that S(i) is true when i = n (i.e., that S(n) is true).

Having accomplished both (I) and (II), we will have succeeded in showing that S(n) is true for all $n \ge 1$.

In what follows, I will use \mathcal{D} to stand for some derivation (in PS) of B from $\Gamma \cup \{A\}$, and I will use \mathcal{D}' to stand for some derivation (in PS) of $A \supset B$ from Γ alone. Since we are concerned about the length of \mathcal{D} , I will use $\mathcal{D}_1, \mathcal{D}_2, \dots, \mathcal{D}_m$ to stand for the m lines of a derivation \mathcal{D} with length m. Now, the inductive proof.

I. Basis Step. Let \mathcal{D} be a derivation (in PS) of B from $\Gamma \cup \{A\}$ that is exactly one formula long. Thus, \mathcal{D} has exactly one term: *B*. So, $\mathcal{D} = \langle \mathcal{D}_1 \rangle = \langle B \rangle$. By the definition of a derivation in PS, we must have *either*:

- 1. *B* is an axiom, *or*
- 2. B is a member of the set Γ , or
- 3. *B* is *A* itself, *or*
- 4. B is an immediate consequence of two previous lines of \mathcal{D} by Modus Ponens.

Case 4 is *impossible* here, since $\mathcal{D} = \langle \mathcal{D}_1 \rangle = \langle \mathcal{B} \rangle$. So, we only need to look at Cases 1–3. For each of these three cases, we will show how to construct from \mathcal{D} another derivation (in PS) \mathcal{D}' of $A \supset B$ from Γ alone.

Case 1. *B* is an axiom. Then we can construct a 3-line derivation \mathcal{D}' showing $\Gamma \vdash_{PS} A \supset B$:

[1] B [Axiom, by assumption of Case 1] [2] $B \supset (A \supset B)$ [Axiom, by PS1] [3] $A \supset B$

[MP, 1, 2]

Note: \mathcal{D}' is a *proof* in this Case. So, $A \supset B$ is a *theorem* in this Case. Therefore, *trivially*, $A \supset B$ can be derived from any set Γ in this Case (23.5). Remember, these sorts of statements involving A, B. etc. are metalinguistic forms, not statements of P. What this gives you is a general metatheoretic *recipe* for taking *any B* falling into Case 1 and using it to generate a derivation of $A \supset B$ from Γ . \square

Case 2. *B* is a member of the set Γ . Again, we have a 3-line derivation \mathcal{D}' showing $\Gamma \vdash_{PS} A \supset B$:

[1] B [Given as a member of the set Γ]

[2] $B \supset (A \supset B)$ [Axiom, by PS1]

[3] $A \supset B$ [MP, 1, 2] \square **Case 3.** B = A. Here is a 5-line derivation \mathcal{D}' showing $\emptyset \vdash_{PS} A \supset B$, viz., $\emptyset \vdash_{PS} A \supset A$:

$[1] A\supset ((A\supset A)\supset A)$	[Axiom, by PS1]
$[2] (A \supset ((A \supset A) \supset A)) \supset ((A \supset (A \supset A)) \supset (A \supset A))$	[Axiom, by PS2]
$[3] (A \supset (A \supset A)) \supset (A \supset A)$	[MP, 1, 2]
$[4] A\supset (A\supset A)$	[Axiom, by PS1]
$[5] A \supset A$	[MP, 3, 4]

That is to say, $A \supset B = A \supset A$ is a *theorem* in this Case. So, in this Case, $A \supset B$ can — *trivially* — be derived from *any* set Γ (23.5). That completes the Basis Step of the strong inductive proof.

II. Inductive Step. *Assume* the following strong inductive hypothesis:

Inductive Hypothesis (IH): The Deduction Theorem $[\Gamma \cup \{A\} \vdash_{PS} B \Rightarrow \Gamma \vdash_{PS} A \supset B]$ holds for every derivation \mathcal{D} of B from $\Gamma \cup \{A\}$ with length less than n.

And, using this assumed inductive hypothesis (IH), prove:

Inductive Conclusion: The Deduction Theorem $[\Gamma \cup \{A\} \vdash_{PS} B \Rightarrow \Gamma \vdash_{PS} A \supset B]$ holds for every derivation \mathcal{D} of B from $\Gamma \cup \{A\}$ with length equal to n.

Let \mathcal{D} be an arbitrary derivation (in PS) of B from $\Gamma \cup \{A\}$ with length *equal to n*. Our goal is to use the (IH) on \mathcal{D} to show that there must be a derivation (in PS) of $A \supset B$ from Γ alone. Again, four Cases:

- 1. *B* is an axiom.
- 2. B is a member of the set Γ.
- 3. B is A itself.
- 4. *B* is an immediate consequence of two previous lines of \mathcal{D} by Modus Ponens.

For Cases 1–3, we can generate a derivation \mathcal{D}' just as we did in the Basis Step. This time, Case 4 is *not* impossible, since \mathcal{D} *could* have *many* lines prior to the final line on which \mathcal{B} occurs ($n \ge 3$ in Case 4).

Case 4. B is an immediate consequence of two lines \mathcal{D}_i and \mathcal{D}_j of \mathcal{D} , where i and j are both less than n. Therefore, because of the way (MP) works, we must have either $\mathcal{D}_i = \mathcal{D}_j \supset B$ or $\mathcal{D}_j = \mathcal{D}_i \supset B$. I will assume that $\mathcal{D}_j = \mathcal{D}_i \supset B$. [The proof could also be run on the other assumption $\mathcal{D}_i = \mathcal{D}_j \supset B$.]

There are derivations of each of \mathcal{D}_i and \mathcal{D}_j from $\Gamma \cup \{A\}$, each of which are *less than n* lines long. So, by (IH), we know that both $\Gamma \vdash_{PS} A \supset \mathcal{D}_i$, and $\Gamma \vdash_{PS} A \supset \mathcal{D}_j$ [$\Gamma \vdash_{PS} A \supset (\mathcal{D}_i \supset B)$]. Then, we reason:

```
1. \Gamma \vdash_{PS} A \supset \mathcal{D}_i  [\Gamma \cup \{A\} \vdash_{PS} \mathcal{D}_i, i < n, (IH)]

2. \Gamma \vdash_{PS} A \supset (\mathcal{D}_i \supset B)  [\Gamma \cup \{A\} \vdash_{PS} \mathcal{D}_j, j < n, (IH), \mathcal{D}_j = \mathcal{D}_i \supset B]

3. \vdash_{PS} (A \supset (\mathcal{D}_i \supset B)) \supset ((A \supset \mathcal{D}_i) \supset (A \supset B))  [Axiom, by PS2]

4. \Gamma \vdash_{PS} (A \supset \mathcal{D}_i) \supset (A \supset B)  [From 2 and 3, by 23.45, see below]

5. \Gamma \vdash_{PS} A \supset B  [From 1 and 4, by Hunter's 23.4]
```

Metatheorem 23.45. If $\Gamma \vdash_{PS} A$ and $\vdash_{PS} A \supset B$, then $\Gamma \vdash_{PS} B$.

Proof. 23.45 follows from Hunter's 23.4 & 23.5. If $\Gamma \vdash_{PS} A$, then there is a derivation \mathfrak{D} of A from Γ . And, if $\vdash_{PS} A \supset B$, then the (k-step) *proof* of $A \supset B$ can be inserted into \mathfrak{D} (prior to its last line), yielding a new (k-step longer) derivation \mathfrak{D}' of A from Γ . Then, we can apply (MP) to the lines in \mathfrak{D}' containing A and $A \supset B$ to infer B, which yields a derivation \mathfrak{D}'' of B from Γ . \square

Using (IH), we have shown that *if* there is a derivation \mathcal{D} (of any length $n \geq 3$) of B from $\Gamma \cup \{A\}$ in which B is derived using (MP) from two previous lines of \mathcal{D} , *then* there is a derivation \mathcal{D}' of $A \supset B$ from Γ alone (do we know how to *construct* \mathcal{D}' *from* \mathcal{D} ?). That's Case 4, and the Inductive Step. \square

So, we have shown that (I) S(1) is true, and that (II) *if* S(i) is true for all i < n, *then* S(i) is true when i = n. Therefore, by the principle of strong mathematical induction, S(n) is true for all $n \ge 1$, as desired.