- Measurement Invariance of the Dirty Dozen: Student and Working Adult Samples
- Yang Yang¹ & John Kulas²
- ¹ Roche
- ² Montclair State University

Author Note

- Add complete departmental affiliations for each author here. Each new line herein must be indented, like this line.
- Enter author note here.

5

- ⁹ Correspondence concerning this article should be addressed to Yang Yang, Shanghai,
- China. E-mail: yangyangsh@outlook.com

Abstract

Now we are evaluating the psychometric properties of the dirty dozen simplified Chinese version by using samples in real settings: job applicants and incumbents (in addition to students). We replicate a previous study using the student sample, then continue to evaluate with organizational data. We find that the scales are non-invariant. Seems to be revisiting these articles: Geng, Sun, Huang, Zhu, and Han (2015) and Grigoras, Butucescu, Miulescu,

Opariuc-Dan, and Iliescu (2020)

18 Keywords: keywords

Word count: X

- Measurement Invariance of the Dirty Dozen: Student and Working Adult Samples
- Initially we were interested in looking at reliance on student samples. Now we are
- evaluating the psychometric properties of the dirty dozen (DD) simplified Chinese version by
- using samples in real settings: job applicants and incumbents (in addition to students). We
- replicate a previous study using the student sample (Yang gonna send some articles), then
- continue to evaluate with organizational data. We find that the scales are non-invariant.
- SDSME another version (27 items).
- All studies investigating psychometric properties of these scales use University students.
- Some groups may be expected to exhibit different item-construct associations due to shifting motivational forces.
- ITC guidlines for translating and adapting tests recommends looking at possible differences across motives (Commission, 2017). For example,
- Yang's references: Church et al. (2011), Schoot, Lugtig, and Hox (2012), Schmitt and Kuljanin (2008), Geng, Sun, Huang, Zhu, and Han (2015), Grigoras, Butucescu, Miulescu, Opariuc-Dan, and Iliescu (2020), Jonason and Webster (2010)

35 Methods

We follow the We also look at intercorrelations among items within the samplings.

7 Participants

- In total 1106 individuals responded to the Dirty Dozen (as well as additional scales not
- the focus of the current presentation). This total was comprised of 208 working adults
- $_{40}$ low-stakes, 527 working adults high-stakes, and 371 students low-stakes individuals. After
- screening for undifferentiated responses via the R package careless (Yentes & Wilhelm,

2021), we retained 1054 respondents who had no more than 6 sequentially identical responses across the 12 total items.

4 Material

45 Procedure

- Decrease in $\Delta \chi^2$ across models indicates a lack of invariance (typically not considered a "good thing"). Multiple indices are consulted across models, including $\Delta \chi^2$, RMSEA, CFI, TLI, BIC, and AIC.
- Also want to look at correlations of the simplified Chinese version of the DD with the Honesty-Humility subscales (Sincerity, Fairness, Greed Avoidance, and Modesty).

51 Data analysis

We used R [Version 4.0.5; R Core Team (2021)] and the R-packages *careless* [Version 1.2.1; Yentes and Wilhelm (2021)], *corx* [Version 1.0.6.1; Conigrave (2020)], *foreign* [Version 0.8.81; R Core Team (2020)], *lavaan* [Version 0.6.8; Rosseel (2012)], *papaja* [Version 0.1.0.9997; Aust and Barth (2020)], and *semTools* [Version 0.5.5; Jorgensen,

Pornprasertmanit, Schoemann, and Rosseel (2021)] for all our analyses.

57 Results

- We looked at structural invariance as well as latent means (Meredith, 1993; Steinmetz, Schmidt, Tina-Booh, Wieczorek, & Schwartz, 2009). The models failed to exhibit metric invariance (Model 2 Model 1 exhibited a significant Δ on both χ^2 as well as RMSEA)
- Not sure how to pull table or identify object elements model1 object is too large to navigate easily.

63

Measurement invariance models:

##

Estimator

```
##
  ## Model 1 : fit.configural
  ## Model 2 : fit.loadings
67
  ## Model 3 : fit.intercepts
  ## Model 4 : fit.means
69
  ##
70
  ## Chi-Squared Difference Test
71
  ##
72
                                  BIC Chisq Chisq diff Df diff Pr(>Chisq)
  ##
                      Df
                           AIC
73
  ## fit.configural 153 37059 37640 1407.7
  ## fit.loadings
                     171 37135 37626 1518.9
                                                  111.25
                                                                  1.837e-15 ***
                                                              18
  ## fit.intercepts 189 37230 37632 1650.5
                                                  131.54
                                                              18 < 2.2e-16 ***
                     195 37344 37716 1775.9
                                                  125.40
                                                               6 < 2.2e-16 ***
  ## fit.means
  ## ---
  ## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
  ##
80
  ##
  ## Fit measures:
  ##
83
  ##
                       cfi rmsea cfi.delta rmsea.delta
84
  ## fit.configural 0.641 0.153
                                         NA
                                                      NA
85
  ## fit.loadings
                     0.615 0.150
                                      0.027
                                                   0.003
86
  ## fit.intercepts 0.582 0.148
                                      0.032
                                                   0.001
87
  ## fit.means
                     0.548 0.152
                                      0.034
                                                   0.004
  ## lavaan 0.6-8 ended normally after 108 iterations
  ##
90
```

ML

92	##	Optimization method	NLMINB
93	##	Number of model parameters	117
94	##		
95	##	Number of observations per group:	
96	##	working adults low-stakes	191
97	##	working adults high-stakes	510
98	##	students low-stakes	351
99	##		
100	##	Model Test User Model:	
101	##		
102	##	Test statistic	1407.674
103	##	Degrees of freedom	153
104	##	P-value (Chi-square)	0.000
105	##	Test statistic for each group:	
106	##	working adults low-stakes	182.467
107	##	working adults high-stakes	523.812
108	##	students low-stakes	701.395
109	##		
110	##	Model Test Baseline Model:	
111	##		
112	##	Test statistic	3696.466
113	##	Degrees of freedom	198
114	##	P-value	0.000
115	##		
116	##	User Model versus Baseline Model:	
117	##		
118	##	Comparative Fit Index (CFI)	0.641

119	##	Tucker-Lewis Index (TLI)	0.536
120	##		
121	##	Loglikelihood and Information Criteria:	
122	##		
123	##	Loglikelihood user model (HO)	-18412.727
124	##	Loglikelihood unrestricted model (H1)	-17708.890
125	##		
126	##	Akaike (AIC)	37059.454
127	##	Bayesian (BIC)	37639.593
128	##	Sample-size adjusted Bayesian (BIC)	37267.983
129	##		
130	##	Root Mean Square Error of Approximation:	
131	##		
132	##	RMSEA	0.153
133	##	90 Percent confidence interval - lower	0.146
134	##	90 Percent confidence interval - upper	0.160
135	##	P-value RMSEA <= 0.05	0.000
136	##		
137	##	Standardized Root Mean Square Residual:	
138	##		
139	##	SRMR	0.110
140	##		
141	##	Parameter Estimates:	
142	##		
143	##	Standard errors	Standard
144	##	Information	Expected
145	##	Information saturated (h1) model	Structured

```
##
   ##
147
   ## Group 1 [working adults low-stakes]:
148
   ##
149
   ## Latent Variables:
150
   ##
                             Estimate
                                        Std.Err z-value P(>|z|)
151
         mach =~
   ##
152
   ##
           A30
                                1.000
153
           A31
                                0.392
                                          0.095
                                                     4.111
                                                               0.000
   ##
154
   ##
           A32
                                0.224
                                          0.096
                                                     2.332
                                                               0.020
155
   ##
           A33
                                0.538
                                          0.063
                                                     8.507
                                                               0.000
156
   ##
         narc =~
157
   ##
           A34
                                1.000
158
           A35
                                0.262
                                          0.263
                                                     0.996
                                                               0.319
   ##
159
           A36
                                                     5.394
                                                               0.000
   ##
                                1.982
                                          0.367
160
   ##
           A37
                                1.752
                                          0.332
                                                     5.277
                                                               0.000
161
   ##
         psyc =~
162
   ##
           A38
                                1.000
163
   ##
           A39
                                1.328
                                          0.240
                                                     5.541
                                                               0.000
164
   ##
           A40
                                0.820
                                          0.195
                                                     4.196
                                                               0.000
165
                                                     3.969
   ##
           A41
                                0.814
                                          0.205
                                                               0.000
166
   ##
167
   ## Covariances:
168
                                                            P(>|z|)
   ##
                             Estimate
                                        Std.Err z-value
169
   ##
         mach ~~
170
                                                     4.691
   ##
           narc
                                0.311
                                          0.066
                                                               0.000
171
   ##
                                0.700
                                          0.144
                                                     4.859
                                                               0.000
           psyc
172
```

173	##	narc ~~				
174	##	psyc	0.251	0.065	3.863	0.000
175	##					
176	##	Intercepts:				
177	##		Estimate	Std.Err	z-value	P(> z)
178	##	.A30	1.948	0.089	21.789	0.000
179	##	.A31	1.901	0.083	22.999	0.000
180	##	.A32	4.607	0.083	55.484	0.000
181	##	.A33	1.340	0.056	24.095	0.000
182	##	.A34	1.393	0.061	22.680	0.000
183	##	.A35	4.267	0.091	46.791	0.000
184	##	.A36	1.890	0.083	22.892	0.000
185	##	.A37	1.508	0.078	19.429	0.000
186	##	.A38	2.984	0.122	24.507	0.000
187	##	.A39	1.759	0.087	20.119	0.000
188	##	. A40	2.031	0.100	20.231	0.000
189	##	.A41	3.288	0.109	30.174	0.000
190	##	mach	0.000			
191	##	narc	0.000			
192	##	psyc	0.000			
193	##					
194	##	Variances:				
195	##		Estimate	Std.Err	z-value	P(> z)
196	##	.A30	0.678	0.099	6.865	0.000
197	##	.A31	1.174	0.122	9.608	0.000
198	##	.A32	1.274	0.131	9.725	0.000
199	##	.A33	0.345	0.041	8.401	0.000

200	##	. A34	0.562	0.063	8.951	0.000
201	##	. A35	1.578	0.162	9.753	0.000
202	##	. A36	0.682	0.099	6.890	0.000
203	##	. A37	0.666	0.088	7.523	0.000
204	##	. A38	2.350	0.247	9.509	0.000
205	##	. A39	0.610	0.098	6.251	0.000
206	##	. A40	1.601	0.168	9.514	0.000
207	##	. A41	1.948	0.204	9.572	0.000
208	##	mach	0.848	0.157	5.419	0.000
209	##	narc	0.158	0.052	3.008	0.003
210	##	psyc	0.482	0.172	2.812	0.005
211	##					
212	##					
213	##	Group 2 [working a	adults high	-stakes]:		
214	##					
215	##	Latent Variables:				
216	##		Estimate	Std.Err	z-value	P(> z)
217	##	mach =~				
218	##	A30	1.000			
219	##	A31	0.495	0.059	8.361	0.000
220	##	A32	0.152	0.060	2.537	0.011
221	##	A33	0.398	0.031	12.716	0.000
222	##	narc =~				
223	##	A34	1.000			
224	##	A35	0.377	0.148	2.544	0.011
225	##	A36	1.683	0.188	8.946	0.000
226	##	A37	0.622	0.098	6.323	0.000

227	##	psyc =~				
228	##	A38	1.000			
229	##	A39	1.148	0.139	8.287	0.000
230	##	A40	0.408	0.087	4.692	0.000
231	##	A41	0.864	0.142	6.100	0.000
232	##					
233	##	Covariances:				
234	##		Estimate	Std.Err	z-value	P(> z)
235	##	mach ~~				
236	##	narc	0.336	0.038	8.881	0.000
237	##	psyc	0.579	0.079	7.293	0.000
238	##	narc ~~				
239	##	psyc	0.251	0.039	6.388	0.000
240	##					
241	##	Intercepts:				
242	##		Estimate	Std.Err	z-value	P(> z)
243	##	. A30	1.761	0.050	34.986	0.000
244	##	. A31	1.727	0.047	36.930	0.000
245	##	. A32	4.788	0.047	101.300	0.000
246	##	. A33	1.204	0.025	48.421	0.000
247	##	. A34	1.224	0.033	36.737	0.000
248	##	. A35	4.422	0.050	87.885	0.000
249	##	. A36	1.825	0.050	36.532	0.000
250	##	. A37	1.198	0.030	39.522	0.000
251	##	. A38	3.076	0.075	40.922	0.000
252	##	. A39	1.539	0.044	35.365	0.000
253	##	.A40	1.557	0.048	32.693	0.000

254	##	. A41	2.800	0.069	40.364	0.000
255	##	mach	0.000			
256	##	narc	0.000			
257	##	psyc	0.000			
258	##					
259	##	Variances:				
260	##		Estimate	Std.Err	z-value	P(> z)
261	##	. A30	0.564	0.053	10.564	0.000
262	##	.A31	0.938	0.061	15.403	0.000
263	##	. A32	1.123	0.070	15.926	0.000
264	##	.A33	0.200	0.014	14.029	0.000
265	##	.A34	0.434	0.030	14.306	0.000
266	##	.A35	1.272	0.080	15.941	0.000
267	##	. A36	0.902	0.068	13.291	0.000
268	##	. A37	0.418	0.027	15.564	0.000
269	##	.A38	2.415	0.158	15.304	0.000
270	##	. A39	0.350	0.048	7.324	0.000
271	##	. A40	1.079	0.069	15.726	0.000
272	##	. A41	2.105	0.137	15.401	0.000
273	##	mach	0.728	0.083	8.767	0.000
274	##	narc	0.131	0.026	4.974	0.000
275	##	psyc	0.468	0.108	4.315	0.000
276	##					
277	##					
278	##	Group 3 [student	s low-stakes]:		
279	##					
280	##	Latent Variables	:			

281	##		Estimate	Std.Err	z-value	P(> z)
282	##	mach =~				
283	##	A30	1.000			
284	##	A31	0.322	0.076	4.220	0.000
285	##	A32	0.424	0.063	6.764	0.000
286	##	A33	0.854	0.078	10.963	0.000
287	##	narc =~				
288	##	A34	1.000			
289	##	A35	1.286	0.240	5.359	0.000
290	##	A36	1.756	0.300	5.853	0.000
291	##	A37	1.486	0.276	5.387	0.000
292	##	psyc =~				
293	##	A38	1.000			
294	##	A39	1.430	0.150	9.551	0.000
295	##	A40	0.785	0.119	6.627	0.000
296	##	A41	1.130	0.140	8.083	0.000
297	##					
298	##	Covariances:				
299	##		Estimate	Std.Err	z-value	P(> z)
300	##	mach ~~				
301	##	narc	0.433	0.076	5.678	0.000
302	##	psyc	0.794	0.105	7.585	0.000
303	##	narc ~~				
304	##	psyc	0.326	0.060	5.403	0.000
305	##					
306	##	Intercepts:				
307	##		Estimate	Std.Err	z-value	P(> z)

308	##	. A30	2.627	0.082	31.924	0.000
309	##	.A31	2.316	0.072	32.342	0.000
310	##	. A32	4.826	0.057	84.238	0.000
311	##	. A33	1.801	0.066	27.348	0.000
312	##	. A34	1.638	0.063	26.055	0.000
313	##	. A35	4.490	0.063	70.785	0.000
314	##	. A36	2.083	0.067	30.984	0.000
315	##	. A37	1.892	0.072	26.127	0.000
316	##	. A38	3.903	0.073	53.138	0.000
317	##	. A39	2.205	0.074	29.698	0.000
318	##	.A40	1.829	0.072	25.382	0.000
319	##	.A41	3.903	0.078	49.869	0.000
320	##	mach	0.000			
321	##	narc	0.000			
322	##	psyc	0.000			
323	##					
324	##	Variances:				
325	##		Estimate	Std.Err	z-value	P(> z)
326	##	. A30	1.474	0.124	11.919	0.000
327	##	.A31	1.707	0.129	13.240	0.000
328	##	. A32	0.990	0.075	13.148	0.000
329	##	. A33	0.863	0.076	11.335	0.000
330	##	. A34	1.276	0.095	13.396	0.000
331	##	. A35	1.227	0.093	13.238	0.000
332	##	. A36	1.241	0.099	12.522	0.000
333	##	. A37	1.593	0.120	13.220	0.000
334	##	. A38	1.407	0.109	12.936	0.000

335	##	. A39	0.938	0.085	11.028	0.000
336	##	. A40	1.522	0.116	13.139	0.000
337	##	. A41	1.528	0.119	12.827	0.000
338	##	mach	0.903	0.151	5.989	0.000
339	##	narc	0.112	0.039	2.896	0.004
340	##	psyc	0.487	0.099	4.944	0.000

Yang also wanted correlations

Discussion

367

368

References 346 Aust, F., & Barth, M. (2020). papaja: Create APA manuscripts with R Markdown. 347 Retrieved from https://github.com/crsh/papaja 348 Church, A. T., Alvarez, J. M., Mai, N. T., French, B. F., Katigbak, M. S., & Ortiz, F. 349 A. (2011). Are cross-cultural comparisons of personality profiles meaningful? 350 Differential item and facet functioning in the revised NEO personality inventory. 351 Journal of Personality and Social Psychology, 101(5), 1068–1089. 352 Commission, I. T. (2017). The ITC guidelines for translating and adapting tests 353 (second edition). 354 Conigrave, J. (2020). Corx: Create and format correlation matrices. Retrieved from 355 https://CRAN.R-project.org/package=corx 356 Geng, Y., Sun, Q., Huang, J., Zhu, Y., & Han, X. (2015). Dirty dozen and short dark 357 triad: A chinese validation of two brief measures of the dark triad. Chinese 358 Journal of Clinical Psychology, 23(2), 246–250. 359 Grigoras, M., Butucescu, A., Miulescu, A., Opariuc-Dan, C., & Iliescu, D. (2020). 360 The measurement invariance of the short dark triad: Implications for high-and 361 low-stakes contexts. Journal of Individual Differences, 1–12. 362 Jonason, P. K., & Webster, G. D. (2010). The dirty dozen: A concise measure of the 363 dark triad. Psychological Assessment, 22(2), 420–432. 364 Jorgensen, T. D., Pornprasertmanit, S., Schoemann, A. M., & Rosseel, Y. (2021). 365

Meredith, W. (1993). Measurement invariance, factor analysis and factorial

https://CRAN.R-project.org/package=semTools

semTools: Useful tools for structural equation modeling. Retrieved from

- invariance. Psychometrika, 58(4), 525–543. 369 R Core Team. (2020). Foreign: Read data stored by 'minitab', 's', 'SAS', 'SPSS', 370 'stata', 'systat', 'weka', 'dBase', ... Retrieved from 371 https://CRAN.R-project.org/package=foreign R Core Team. (2021). R: A language and environment for statistical computing. 373 Vienna, Austria: R Foundation for Statistical Computing. Retrieved from 374 https://www.R-project.org/ 375 Rosseel, Y. (2012). lavaan: An R package for structural equation modeling. Journal 376 of Statistical Software, 48(2), 1–36. Retrieved from 377 https://www.jstatsoft.org/v48/i02/ 378 Schmitt, N., & Kuljanin, G. (2008). Measurement invariance: Review of practice and 379 implications. Human Resource Management Review, 18(4), 210–222. 380 Schoot, R. van de, Lugtig, P., & Hox, J. (2012). Developmetrics: A checklist for 381 testing measurement invariance. European Journal of Developmental Psychology, 382 9(4), 486-492.383 Steinmetz, H., Schmidt, P., Tina-Booh, A., Wieczorek, S., & Schwartz, S. H. (2009). 384 Testing measurement invariance using multigroup CFA: Differences between 385 educational groups in human values measurement. Quality & Quantity, 43(4), 386 599-616. 387
- Yentes, R. D., & Wilhelm, F. (2021). Careless: Procedures for computing indices of careless responding.

 $\label{eq:calculations} \begin{tabular}{ll} Table 1 \\ Scale intercorrelations (all participants). \end{tabular}$

	1	2	3	4	5	6	7	M	SD
1. Machiavelliansm	-							1.62	0.78
2. Narcissism	.29***	-						3.69	1.07
3. Psychopathy	.57***	.19***	-					1.51	0.62
4. Fairness	34***	02	45***	_				5.40	0.84
5. GreedAvoidance	26***	45***	24***	.27***	-			3.52	1.14
6. Modesty	23***	43***	17***	.15**	.43***	-		3.72	0.85
7. Sincerity	14**	.04	04	.23***	.11*	.18***	_	3.85	0.74
8. HonestyHumility	38***	37***	35***	.61***	.77***	.68***	.51***	4.12	0.59

Note. * p < 0.05; ** p < 0.01; *** p < 0.001

	Constrained parameters	Free parameters	comparison model
configural	FMean (=0)	fl+inter+res+var	
Weak/loading invariance	fl+Fmean (=0)	inter+res+var	configural
Strong/scalar invariance	fl+inter	res+var+Fmean*	Weak/loading invariance
strict invariance	fl+inter+res	Fmean*+var	Strong/scalar invariance

Note. fl= factor loadings, inter = item intercepts, res = item residual variances, Fmean = mean of latent variable, var = variance of latent variable

Figure 1. Steps for measurement invariance (taken from Xu, 2012).

^{*}Fmean is fixed to 0 in group 1 and estimated in the other group(s)