Procesamiento de Señales, Fundamentos

Trabajo Práctico 1

Jairo Mena

Profesor:

Pablo Slavkin

Universidad de Buenos Aires

MSE 5Co2020

1) Demostración que las siguientes ecuaciones cumplen con las propiedades de linealidad e invariación en el tiempo para determinar si con sistemas LTI:

a)
$$y(t) = x(t)*cos(t)$$

Para x(t) se realiza desplazamiento temporal

Si x(t-t₀) dá como resultado: x(t-t₀)*cos(t)

Para y(t) se realiza desplazamiento temporal

Si $y(t-t_0)$ dá como resultado: $x(t-t_0)*cos(t-t_0)$

$$x(t-t_0)*cos(t) \neq x(t-t_0)*cos(t-t_0)$$

Lo anterior demuestra que y(t) = x(t)*cos(t) no es un sistema invariante en el tiempo, por lo tanto, no es un sistema LTI.

b) y(t) = cos(x(t))

Para x(t) se aplica propiedad de proporcionalidad

Si $\alpha x(t)$ dá como resultado $\cos(\alpha x(t))$

Para y(t) se aplica propiedad de proporcionalidad

Si $\alpha y(t)$ dá como resultado $\alpha \cos(x(t))$

$$cos(\alpha x(t)) \neq \alpha cos(x(t))$$

Lo anterior demuestra que y(t) = cos(x(t)) no cumple con la propiedad de linealidad de proporcionalidad, por lo tanto, no es un sistema LTI.

c)
$$y(t) = e^{x(t)}$$

Para x(t) se aplica propiedad de proporcionalidad

Si $\alpha x(t)$ dá como resultado $e^{\alpha x(t)}$

Para y(t) se aplica propiedad de proporcionalidad

Si $\alpha y(t)$ dá como resultado $\alpha e^{x(t)}$

$$e^{\alpha x(t)} \neq \alpha e^{x(t)}$$

Lo anterior demuestra que $y(t) = e^{x(t)}$ no cumple con la propiedad de linealidad de proporcionalidad, por lo tanto, no es un sistema LTI.

d)
$$y(t) = \frac{1}{2}x(t)$$

Demostración de las propiedades de linealidad:

Para **x(t)** se aplica propiedad de proporcionalidad.

Si αx(t) dá como resultado ½ αx(t)

Para **y(t)** se aplica propiedad de proporcionalidad.

Si $\alpha y(t)$ dá como resultado $\alpha \frac{1}{2} x(t)$

$$\frac{1}{2} \alpha x(t) = \frac{\alpha}{2} x(t)$$

Para $x_1(t)$ y $x_2(t)$ se aplica propiedad aditivita.

Si $x_1(t) + x_2(t)$ entonces debe cumplir $y_1(t) + y_2(t)$

$$y_1(t) + y_2(t) = \frac{1}{2} (x_1(t) + x_2(t)) = \frac{1}{2} x_1(t) + \frac{1}{2} x_1(t)$$

Para $x_1(t)$ y $x_2(t)$ se aplica propiedad de superposición proporcional.

Si $\alpha x_1(t) + \beta x_2(t)$ entonces debe cumplir $\alpha y_1(t) + \beta y_2(t)$

$$\alpha y_1(t) + \beta y_2(t) = \frac{1}{2} (\alpha x_1(t) + \beta x_2(t)) = \frac{1}{2} \alpha x_1(t) + \frac{1}{2} \beta x_1(t)$$

Para **x(t)** se realiza desplazamiento temporal.

Si x(t-t₀) dá como resultado: ½ x(t-t₀)

Para **y(t)** se realiza desplazamiento temporal.

Si y(t-t₀) dá como resultado: ½ x(t-t₀)

$$\frac{1}{2} x(t-t_0) = \frac{1}{2} x(t-t_0)$$

Lo anterior demuestra que $y(t) = \frac{y}{x}x(t)$ cumple con todas las propiedades de linealidad y es un sistema invariante en el tiempo, por lo tanto, es un sistema LTI.

- 2) Ruido de cuantización:
 - 24 bits

• 16 bits

• 10 bits

8 bits

SNR =
$$1,76 + 6,02 * 8 = 49,92dB$$

2 bits

3) Utilizo la técnica de sobre muestreo, que consiste en realizar el muestreo a una frecuencia mayor de la que se está trabajando, de esta forma se hace que la densidad espectral sea menor. Lo anterior teniendo en cuenta, siempre y cuando el ruido no sea inherente a la señal de entrada.

$$S_{espectral} = \frac{P_q}{Fs}$$

Como se aprecia en la ecuación de densidad espectral aplicando una frecuencia de muestreo cuatro veces la frecuencia de muestreo anterior se obtiene 6dB de extras en la relación señal a ruido, utilizando los mismos 10 bits de SNR.

Aplicando sobre muestreo se obtiene:

$$S_{espectral} = \frac{P_q}{4 \, Fs}$$

4) Filtro antialias del trabajo final:

Para el trabajo final que consiste en la medición de los armónicos de las variables de corriente, voltaje y potencia, se va a medir dos entradas:

- Señal proveniente de un reductor de voltaje (Divisor) que está conectado al voltaje AC de 110V@60Hz.
- Señal proveniente de un transformador de corriente, que mide la corriente que pasa por un conductor.

Para las dos señales se requiere que la banda de interés es de (40Hz a 5kHz), ya que es el valor recomendable en donde se encuentran los posibles armónicos de las señales, sin embargo, para que no se admitan señales no deseadas por la caída de la curva del filtro de primer orden, se realiza el diseño del filtro con una frecuencia de corte menor a los de 5kHz y se escoge por facilidad del diseño 4.8kHz.

La frecuencia de muestreo del sistema será de 10kHz y se utiliza el mismo filtro para los dos canales. Se utilizará un filtro pasa bajo de primer orden.

Por lo tanto si, $R = 1k\Omega$ y $f_{corte} = 4.8kHz$.

$$C = rac{1}{2\pi R f_{corte}}$$
 $C = rac{1}{2\pi (1k\Omega)(4,8kHz)}$
 $C pprox 33.15nF$

Se escoge un valor de 33nF ya que es el valor que comercialmente se consigue.

Generación y simulación

- 1. Módulo o paquete con las siguientes funciones
 - senoidal (fs[Hz], f0[Hz], amp[0 a 1], muestras), fase [radianes]
 - Cuadrada (fs[Hz], f0[Hz], amp[0 a 1], muestras)
 - Triangular(fs[Hz], f0[Hz], amp[0 a 1], muestras)

2. Se realiza los siguientes experimentos

Con señales con parámetros:

- fs = 1000
- N = 1000
- fase = 0
- amp = 1


```
In [1]: ▶ import numpy as np
                 import matplotlib.pyplot as plt
                 import scipy.signal as scp
                 fig = plt.figure(10)
                 fs1 = 100
                 fs2 = 1100
                 f0 = 1
                 Amp = 1
                 faseSen = 0 * np.pi
                faseSq = 0 * np.pi
faseSaw = 0.5 * np.pi
                 N1 = np.linspace(0,f0,fs1)
                 N2 = np.linspace(0,f0,fs2)
                 sen = fig.add_subplot(3,1,1)
                sen.plot(N1, Amp * np.sin((2*np.pi*N1 + faseSen)),"b-")
sen.plot(N2, Amp * np.sin((2*np.pi*N2 + faseSen)),"r-")
                 sq = fig.add_subplot(3,1,2)
                sq.plot(N1, Amp * scp.square((2 * np.pi * f0 * N1) + faseSq, Amp/2),"b-")
sq.plot(N2, Amp * scp.square((2 * np.pi * f0 * N2) + faseSq, Amp/2),"r-")
                 saw = fig.add_subplot(3,1,3)
                saw.plot(N1, scp.sawtooth((2 * np.pi * f0 * N1) + faseSaw, Amp/2),"b-")
saw.plot(N2, scp.sawtooth((2 * np.pi * f0 * N2) + faseSaw, Amp/2),"r-")
                 sen.grid(True)
                 plt.show()
```


2.1. Se puede visualizar en la anterior gráfica que cuando se realiza un cambio así sea de un valor grande en la frecuencia de muestreo *Fs*, los resultados son casi imperceptibles, sin embargo, cuando las señales tienen altas frecuencias, como en la gráfica de la señal cuadrada se puede notar que hay una pequeña diferencia.

Lo anterior nos demuestra en forma práctica la teoría de Nyquist, porque las altas frecuencias en los cambios abruptos de la señal cuadrada se encuentran por encima de la frecuencia de muestreo, por lo tanto, se puede visualizar las diferencias.

Las frecuencias de las otras señales se encuentran muy por debajo de la frecuencia de Nyquist, por lo tanto, no se percibe ninguna diferencia.

00

0.2

0.4

Procesamiento de Señales, Fundamentos Jairo Mena

```
In [1]: ▶ import numpy as np
                   import matplotlib.pyplot as plt
                   import scipy.signal as scp
                   fig = plt.figure(10)
                   fs1 = 490
fs2 = 510
                   f0 = 1
                   Amp = 1
                   faseSen = 0 * np.pi
faseSq = 0 * np.pi
                   faseSaw = 0.5 * np.pi
                   N1 = np.linspace(0,f0,fs1)
                   N2 = np.linspace(0,f0,fs2)
                    \begin{split} & sen = fig.add\_subplot(3,1,1) \\ & sen.plot(N1, Amp * np.sin((2*np.pi*N1 + faseSen)),"b-") \\ & sen.plot(N2, Amp * np.sin((2*np.pi*N2 + faseSen)),"r-") \\ \end{split} 
                   sq = fig.add_subplot(3,1,2)
                   sq.plot(N1, Amp * scp.square((2 * np.pi * f0 * N1) + faseSq, Amp/2),"b-")
sq.plot(N2, Amp * scp.square((2 * np.pi * f0 * N2) + faseSq, Amp/2),"r-")
                   saw = fig.add_subplot(3,1,3)
                   Saw.plot(N1, scp.sawtooth((2 * np.pi * f0 * N1) + faseSaw, Amp/2),"b-")
saw.plot(N2, scp.sawtooth((2 * np.pi * f0 * N2) + faseSaw, Amp/2),"r-")
                   sen.grid(True)
                   plt.show()
                      0
                     -1
                      1
                      0
                     -1
```

2.2. En la gráfica anterior se puede vislumbrar que los cambios de la frecuencia de muestreo es muy pequeño, por lo tanto, los resultados se aproximan mucho a su igualdad, se nota en las gráficas que las dos señales se sobreponen una con otra. Lo anterior demuestra de nuevo el teorema de Nyquist.

10

En este caso las frecuencias de muestreo se acercan a 500 veces la señal, por lo tanto, no se encuentra diferencia.

Adquisición y reconstrucción

- **1.** Se genera un tono de LA-440. Y se digitaliza con 10, 8, 4 y 2 bits con el ADC, se envía los datos al PC, y se muestra en pantalla.
- **1.1.** Señal original con su máximo, mínimo y RMS.
- 1.2. Señal adquirida con su máximo, mínimo y RMS.
- **1.3.** Señal error = Original Adquirida
- 1.4. Histograma de error

Señal tono LA-440 con digitalización con 10 bits

Máximo Señal Original Minimo Señal Original RMS Señal Original Máximo Señal Adquirida Minimo Señal Adquirida RMS Señal Adquirida

Señal tono LA-440 con digitalización con 8 bits

Máximo Señal Original Minimo Señal Original RMS Señal Original Máximo Señal Adquirida Minimo Señal Adquirida RMS Señal Adquirida

Señal tono LA-440 con digitalización con 4 bits

Máximo Señal Original Minimo Señal Original RMS Señal Original Máximo Señal Adquirida Minimo Señal Adquirida RMS Señal Adquirida

Página 10 de 24

Señal tono LA-440 con digitalización con 2 bits

La distribución del error de cuantificación en las digitalización con un número de bits de 10 y 8 bits es muy parecida, tiende a tener más error a los extremos de los voltajes límites de conversión. Se puede concluir que lo anterior debido a que existe un pequeño desfase entre la señal original y la adquirida.

Sin embargo cuando el número de bits de digitalización es de 4 y 2 bits el error se distribuye de forma aproximada homogénea, se puede concluir que es porque se genera el error de cuantificación en toda la señal.

2. Señal Cuadrada con digitalización con 10 bits

Señal Cuadrada con digitalización con 8 bits

Página 12 de 24

Señal Cuadrada con digitalización con 4 bits

Señal Cuadrada con digitalización con 2 bits

Página 13 de 24

En la señal cuadrada se puede apreciar que el error se establece en la parte cercana a los cero voltios y es debido a que los máximos picos de la señal de la diferencia de las señales (señal de error) se encuentra en el cambio abrupto de cero al mayor voltaje.

En todas las digitalizaciones se aprecia el mismo fenómeno. Y se puede concluir que como es una señal que tienen solamente dos amplitudes entonces no hay mucha diferencia entre los números de bits en las digitalizaciones.

Señal Triangular con digitalización con 10 bits

Señal Triangular con digitalización con 8 bits

Señal Triangular con digitalización con 4 bits

Página 15 de 24

Señal Triangular con digitalización con 2 bits

En la señal triangular se aprecia que en todas las digitalizaciones el error es casi homogéneo, como también el error aumenta a medida que el número de bits de cuantificación disminuye.

Se puede concluir que la cuantificación si afecta la relación señal a ruido.

Sistema de números

1. Diferencias entre la representación flotante de simple precisión de (32b) y el sistema de punto fijo Qn.m.

	Flotante Simple	Punto fijo Qn.m
Precisión	Mayor	Menor
Espacio entre números (GAP)	variable	constante
Determinismo	Menor	Mayor
Rango Dinámico	Mayor	Menor
Procesamiento	Mayor	Menor
Costo	Mayor	Menor

2. Se escribe los bits de los siguientes números decimales (o el más cercano) en float, Q1.15, Q2.14

2.1. Decimal 0.5

• Signo *0b0*

Exponente *0b011111110*

Representación en Hexadecimal de Flotante *0x3F000000*

- Representación en Hexadecimal Q1.15 *0x4000*
- Representación en Hexadecimal Q2.14 *0x2000*

2.2. Decimal **-0.5**

• Signo *0b1*

Exponente *0b011111110*

Representación en Hexadecimal Flotante OxBF000000

- Representación en Hexadecimal Q1.15 *0xC000*
- Representación en Hexadecimal Q2.14 *0xA000*

2.3. Decimal -1.25

• Signo Ob1

Exponente *0b01111111*

Representación en Hexadecimal Flotante OxBFA00000

- Representación en Hexadecimal Q1.15 No se puede representar por ser menor a -1
- Representación en Hexadecimal Q2.14 OxD000

2.4. Decimal 0.001

• Signo ObO

Exponente *0b 01110101*

Mantisa 1,= 00000110001001001101110

Representación en Hexadecimal Flotante 0x3A83126E

- Representación en Hexadecimal Q1.15 *0x0021*
- Representación en Hexadecimal Q2.14 *0x0010*

2.5. Decimal -2.001

• Signo *0b1*

Exponente *Ob 10001001*

Representación en Hexadecimal Flotante OxC4FA2000

- Representación en Hexadecimal Q1.15 No se puede representar por ser menor a -1
- Representación en Hexadecimal Q2.14 El valor más cercano seria -2 0xC000

2.6. Decimal 20400000

• Signo *0b0*

Exponente *Ob 10011010*

Mantisa 1,= 10000101000110010110000

Representación en Hexadecimal Flotante Ox4D428CBO

- Representación en Hexadecimal Q1.15 No se puede representar por ser mayor a 1
- Representación en Hexadecimal Q2.14 No se puede representar por ser mayor a 2

Apéndice.

Código en Python de la Adquisición y reconstrucción

```
In [ ]:
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.animation import FuncAnimation
length = 512
fs = 10000
factorOrg = 1.024 / 32767
factorAdc = 1.024 / 512
header = b'header'
fig = plt.figure (1 )
adcAxe = fig.add_subplot (2,1,1)
time = np.linspace(0,length/fs,length)
plt.title("Adquisición y reconstrucción")
plt.xlabel("Tiempo [Seg]")
plt.ylabel("Voltaje [V]")
orgin, adcin, errin, orgMaxin, orgMinin, orgRmsin, adcMaxin, adcMinin, adcRmsin = plt.p
lot ([],[],'b',[],[],'r',[],[],'g',[],[],'c',[],[],'c',[],[],'c',[],[],'c',
[],[],'c')
adcAxe.grid ( True )
adcAxe.set_ylim (-1.1, 1.1)
adcAxe.set_xlim ( 0 ,length/fs )
hisAxe = fig.add_subplot (2,1,2)
plt.xlabel("Voltage [Error]")
plt.ylabel("N error")
def findHeader(f):
    index = 0
     sync = False
     while sync==False:
         data=b''
          while len(data) <1:
          data = f.read(1)
if data[0]==header[index]:
               index+=1
               if index>=len(header):
                    sync=True
          else:
               index=0
def readIntSignedFile(f):
     raw=b'
     while len(raw)<2:
         raw += f.read(1)
     return (int.from_bytes(raw[0:2],"little",signed=True))
def update(t):
     findHeader ( logFile )
     org = []
```



```
adc = []
    err = []
    for chunk in range(length):
       orgN = readIntSignedFile(logFile) * factorOrg
        adcN = readIntSignedFile(logFile) * factorAdc
        errN = orgN - adcN
        org.append (orgN)
adc.append (adcN)
        err.append (errN)
    orgLn.set_data ( time, org)
    adcLn.set_data ( time, adc )
    errLn.set_data ( time, err)
    ormMaxValue = readIntSignedFile(logFile) * factorOrg
   orgMaxLn.set_data ( time,np.full(length,ormMaxValue))
orgMaxLn.set_label(ormMaxValue)
    orgMinValue = readIntSignedFile(logFile) * factorOrg
    orgMinLn.set_data ( time,np.full(length, orgMinValue))
    orgMinLn.set_label(orgMinValue)
    orgRmsValue = readIntSignedFile(logFile) * factorOrg
    orgRmsLn.set_data (time,np.full(length,orgRmsValue))
    orgRmsLn.set_label(orgRmsValue)
    adcMaxValue = readIntSignedFile(logFile) * factorAdc
    adcMaxLn.set_data ( time,np.full(length,adcMaxValue))
    adcMaxLn.set_label(adcMaxValue)
    adcMinValue = readIntSignedFile(logFile) * factorAdc
    adcMinLn.set_data ( time,np.full(length,adcMinValue))
    adcMinLn.set_label(adcMinValue)
    adcRmsValue = readIntSignedFile(logFile) * factorAdc
    adcRmsLn.set_data (time,np.full(length,adcRmsValue))
    adcRmsLn.set_label(adcRmsValue)
    legLg = adcAxe.legend(loc=4)
    plt.hist(err)
   return orgln, adcLn, errln, orgMaxLn, orgMinLn, orgRmsLn, adcMaxLn, adcMinLn, adcRm
sLn, legLg,
logFile=open("putty.log","w+b")
ani=FuncAnimation(fig,update,10,None,blit=True,interval=10,repeat=True)
plt.show()
```


Codigo en C en la placa PsoC5 de Cypress CY8C5888LTI-LP097 con un Cortex-M3

```
/* -----
* Copyright JAIRO MENA, MAY 2020
* All Rights Reserved
* UNPUBLISHED, LICENSED SOFTWARE.
* CONFIDENTIAL AND PROPRIETARY INFORMATION
* WHICH IS THE PROPERTY OF jamenaso.
#include "project.h"
#include "arm_math.h"
#include "math.h"
#include <stdbool.h>
#define DEVICE_0 0
#define NBYTES 2
#define HIGH 1
#define LOW 0
#define SAMPLES LENGTH 512
#define LA_440 440
#define FS 10000
uint16 t f = LA 440;
uint16 t sweept = 1;
uint32_t tick = 0 ;
bool timer flag;
int16_t sampleSig;
int8 t orgSig;
float t = 0;
float32_t ORG_float_V[SAMPLES_LENGTH] = {0};
float32 t ADC float V[SAMPLES LENGTH] = {0};
int16_t sampleAdc(float* vector, uint16_t index);
float32_t maxValue, minValue, rms;
uint32 t maxIndex, minIndex = 0;
float32 t sinSig;
uint8_t square;
int16 t orgSaw;
double DoubleFrequAmpRetSawtooth(double x,double f,double amp);
void sendInt16(uint16 t value);
void USBUART Configuration()
    USBUART Start (DEVICE 0, USBUART 5V OPERATION);
    while (!USBUART_bGetConfiguration());
                                Page 1 of 4
```

```
main.c
   USBUART CDC Init();
void ADC_Configuration()
   ADC_Start();
   ADC_StartConvert();
int main (void)
   uint32 t nSample;
   CyGlobalIntEnable;
   USBUART Configuration();
   ADC_Configuration();
   Timer ADC Start();
   Timer ADC ISR Start();
   //VDAC8_Start();
   WaveDAC8_1_Start();
   timer_flag = false;
   nSample = 0;
   while (true)
        if(timer flag)
           timer_flag = false;
            //Señal Senoisoidal
           VDAC8_SetValue((uint8_t)((128*sin(t*f*2*PI))+128))₽
           ORG float V[nSample] = (float32_t)(128* sin(t*f*2*PI));
           sendInt16((int16 t) (128*sin(t*f*2*PI)));
            //Señal Cuadrada
           t=((tick %(sweept*FS))/(float)FS);
           sinSig = sin(t*f*2*PI);
            if(sinSig > 0)
              square = 255;
              square = 0;
           VDAC8 SetValue((uint8 t)square);
           ORG float V[nSample] = (float32 t)square - 127;
            sendInt16((int16_t)square - 127);
            */
            orgSaw = sampleAdc(ORG float V,nSample)?
```

```
main.c
            sendInt16((int16_t)orgSaw);
            ADC float V[nSample] = (float32 t) (orgSaw>>14);
            sendInt16((int16 t)(orgSaw>>14));
            if (++nSample >= SAMPLES LENGTH)
                nSample = 0;
                arm max f32 ( ORG float V, SAMPLES LENGTH, &maxValue, >
&maxIndex );
                arm min f32 ( ORG float V, SAMPLES LENGTH, &minValue, P
&minIndex );
                arm_rms_f32 ( ORG_float_V, SAMPLES_LENGTH, &rms );
                 sendInt16((int16 t) (maxValue));
                 sendInt16((int16 t)(minValue));
                 sendInt16((int16 t)(rms));
                 arm_max_f32 ( ADC_float_V, SAMPLES_LENGTH, &maxValue, >
&maxIndex );
                 arm min f32 ( ADC float V, SAMPLES LENGTH, &minValue, P
&minIndex );
                 arm rms f32 ( ADC float V, SAMPLES LENGTH, &rms );
                 sendInt16((int16_t)(maxValue));
                sendInt16((int16_t)(minValue));
sendInt16((int16_t)(rms));
                 USBUART PutString("header");
                 while (!USBUART CDCIsReady()) {}
                 LED_Write(~LED_Read());
            tick++;
}
int16_t sampleAdc(float* vector, uint16_t index)
    int16_t sample;
   while(!ADC_IsEndConversion(ADC_RETURN_STATUS)){};
   sample = (ADC\_GetResult16()-32767);
   vector[index] = sample;
   return sample;
void sendInt16(uint16 t value)
```



```
main.c

uint8_t d[NBYTES];
d[HIGH] = (uint8_t) (value >> 8);
d[LOW] = (uint8_t) (value);
USBUART_PUTData(d,NBYTES);
while(!USBUART_CDCIsReady()) {}
}

void Timer_ADC_ISR_Interrupt_InterruptCallback()
{
   timer_flag = true;
   Timer_ADC_ReadStatusRegister();
   PIN_AUX_0_Write(~PIN_AUX_0_Read());
}
/* [] END OF FILE */
```

Configuración gráfica del PSoC

