# High Performance Computing for Science and Engineering

Exercise 9: Sparse Linear Algebra with MPI

#### Sparse linear systems

$$Au = b$$

- appear from grid-based discretization of PDEs
- less memory compared to dense representation
- less operations for matrix-vector product:

sparse: O(nnz)

dense:  $O(n^2)$ 

nnz - nonzero elements

n - rows

• libraries: MKL Pardiso, Hypre, PETSc

### Diffusion equation

$$\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2}$$



advanced

grid decomposition



#### Mapping grid to vector



rank 0

rank 1

vector

NY = 3

number of blocks:

NBX = 2

NBY = 1

Example: shift operator

| O  | 1  | 2  | 3  | 4  | 5  |
|----|----|----|----|----|----|
| 6  | 7  | 8  | 9  | 10 | 11 |
| 12 | 13 | 14 | 15 | 16 | 17 |



| 5  | 0  | 1  | 2   | 3  | 4  |
|----|----|----|-----|----|----|
| 11 | 9  | 7  | 000 | 9  | 10 |
| 17 | 12 | 13 | 14  | 15 | 16 |



communication needed

## Example: shift operator



use MPI\_ANY\_SOURCE to receive from unknown sources

• use MPI\_Probe to get the message size

• for weak scaling, keep the number of cells per rank constant:

| number of processors | 1  | 4   | 9   | 16  | 36  | 49  |
|----------------------|----|-----|-----|-----|-----|-----|
| NX=NY=N              | 64 | 128 | 192 | 256 | 384 | 448 |