Instituto Politécnico do Porto, Instituto Superior de Engenharia

Licenciatura em Eng. Electrotécnica e de Computadores, Teoria dos Sistemas, 21-Julho-2011

Todas as perguntas devem ser respondidas unicamente na folha de respostas.

Seleccione apenas uma das 4 alternativas assinalando-a na matriz de respostas.

O teste é com consulta. Duração da prova: 2:00

1. Considere o seguinte diagrama de blocos de um sistema de controlo representado na figura. Sejam $s \in \mathcal{L}$, respectivamente a variável e o operador de Laplace e sejam $R(s) = \mathcal{L}[r(t)]$ e $Y(s) = \mathcal{L}[y(t)]$, respectivamente, as transformadas de Laplace do sinais de entrada e de saída. Simplificando o diagrama de blocos de modo a obter a função de transferência do sistema $\frac{Y(s)}{R(s)}$, resulta:

A) $\frac{Y(s)}{R(s)} = \frac{G_1G_2G_3}{1+G_2(H_2+G_1G_3H_1)}$ B) $\frac{Y(s)}{R(s)} = \frac{G_1G_2G_3}{1+G_2(H_2+G_1H_1)}$ C) $\frac{Y(s)}{R(s)} = \frac{G_1G_2G_3}{1+G_1H_1+G_2H_2}$ D) $\frac{Y(s)}{R(s)} = \frac{G_1G_2G_3}{1+G_2H_2+G_1H_1G_3H_2}$

A)
$$\frac{Y(s)}{R(s)} = \frac{G_1 G_2 G_3}{1 + G_2 (H_2 + G_1 G_3 H_1)}$$

B)
$$\frac{Y(s)}{R(s)} = \frac{G_1 G_2 G_3}{1 + G_2 (H_2 + G_1 H_1)}$$

C)
$$\frac{Y(s)}{R(s)} = \frac{G_1 G_2 G_3}{1 + G_1 H_1 + G_2 H_2}$$

D)
$$\frac{Y(s)}{R(s)} = \frac{G_1 G_2 G_3}{1 + G_2 H_2 + G_1 H_1 G_3 H_2}$$

2. Considere o sistema hidráulico representado na figura seguinte, onde $q_0(t)$, $q_1(t)$ e $q_2(t)$ representam caudais. Sejam $h_1(t)$ e $h_2(t)$ a altura de liquido nos reservatórios 1 e 2, respectivamente, e sejam as suas áreas designadas por A_1 e A_2 . As resistências hidráulicas são representadas por R_0 , R_1 e R_2 . Sejam s e \mathcal{L} , respectivamente a variável e o operador de Laplace e sejam $Q_0(s)=\mathcal{L}[q_0(t)]$ e $Q_2(s)=\mathcal{L}[q_2(t)]$. A função de transferência do sistema $\frac{Q_2(s)}{Q_0(s)}$, resulta:

A)
$$\frac{Q_2(s)}{Q_0(s)} = \frac{Q_0(s)^7}{1 + (A_1R_1 + A_2R_2)s + A_1R_1A_2R_2s^2}$$
B) $\frac{Q_2(s)}{Q_0(s)} = \frac{1}{1 + (A_1R_1 + A_2R_2 + A_1R_2)s + A_1R_1A_2R_2s^2}$
C) $\frac{Q_2(s)}{Q_0(s)} = \frac{1}{1 + (A_1R_1 + A_2R_2)s + A_1R_1A_2R_2s^2}$
D) $\frac{Q_2(s)}{Q_0(s)} = \frac{R_2}{R_1[1 + (A_1R_1 + 2A_2R_2)s + A_1R_1A_2R_2s^2]}$

B)
$$\frac{Q_2(s)}{Q_0(s)} = \frac{1}{1 + (A_1R_1 + A_2R_2 + A_1R_2)s + A_1R_1A_2R_2s^2}$$

C)
$$\frac{Q_2(s)}{Q_0(s)} = \frac{1}{1 + (A_1R_1 + A_2R_2)s + A_1R_1A_2R_2s^2}$$

D)
$$\frac{Q_2(s)}{Q_0(s)} = \frac{R_2}{R_1[1 + (A_1R_1 + 2A_2R_2)s + A_1R_1A_2R_2s^2]}$$

3. Considere a resposta temporal c(t) de um sistema de segunda ordem para um sinal de entrada u(t) em degrau unitário. Sejam $s \in \mathcal{L}$, respectivamente a variável e o operador de Laplace, sejam $U(s) = \mathcal{L}[u(t)]$, $C(s) = \mathcal{L}[c(t)]$, seja ζ o coeficiente de amorteciento, ω_n a frequência natural não amortecida, t_p o tempo de pico e $c(t_p)$ o valor do pico da resposta temporal. Se $t_p=0,5$ seg, $c(t_p)=1,76$ e $\lim_{t\to\infty}c(t_p)=1,1,$

então o sistema pode descrito pela função de transferência $\frac{C(s)}{U(s)} = \frac{K\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2}$ tal que:

A)
$$K = 1, 0, \omega_n = 6,666, \zeta = 0,260$$

B)
$$K = 1, 1, \omega_n = 6,366, \zeta = 0,160$$

C)
$$K = 1, 2, \omega_n = 5,566, \zeta = 0,166$$

D)
$$K = 1, 3, \omega_n = 3,666, \zeta = 0,666$$

4. Considere um sistema cuja função de transferência (em malha fechada) tem como denominador o polinómio $D(s) = s^3 + 2s^2 + (K_1 + 1)s + K_2$, $K_1, K_2 \in \Re$. Pelo critério de estabilidade de Routh-Hurwitz sabe-se que o sistema é estável para:

1

A)
$$K_2 > 0 \wedge K_2 < 2K_1 + 2$$

B)
$$K_2 > 1 \land K_2 < 2K_1$$

C)
$$K_1 > 2 \land K_2 < K_3$$

C)
$$K_1 > 2 \land K_2 < K_1$$

D) $K_1 > K_2 \land K_2 < 2$

- 5. Considere um sistema com função de transferência (em malha aberta) $G(s) = \frac{K}{s(s+1)(s+2)(s+3)}$ e o respectivo lugar de raízes directo (LRD).
- 5.a) O ponto σ de intersecção das assimptotas (também chamado de centróide) no eixo real vem:
- A) $\sigma = -1$
- B) $\sigma = -\frac{1}{2}$ C) $\sigma = -2$
- D) $\sigma = -\frac{3}{2}$
- 5.b) O traçado no LRD no eixo real situa-se nos intervalos:
- A) $\sigma \in [-\infty, -3] \cup [-1, 0]$
- B) $\sigma \in]-\infty, -3] \cup [-2, -1]$
- C) $\sigma \in]-3, -2] \cup [-1, 0]$
- D) $\sigma \in [-3, -2] \cup [-2, -1]$
- **6.** Considere um sistema cuja função de transferência em malha aberta é dada por $G(s) = \frac{2(s+3)}{s(s+1)(s+2)}$ Seja a margem de fase designada por MF. Então, tem-se:
- **6.a)** A) MF = 15, 8 graus, B) MF = 32, 8 graus, C) MF = 23, 5 graus, D) MF = 49, 8 graus
- 6.b) Obtém-se o diagrama assimptótico de Bode das amplitudes representado na figura para:
- A) Traçado "Resposta A"
- B) Traçado "Resposta B"
- C) Traçado "Resposta C"
- D) Traçado "Resposta D"
- 7. Considere um sistema cuja função de transferência (em malha aberta) é dada por $G\left(s\right)=\frac{10}{s(s+1)^{2}}.$
- 7.a) Pretende-se sintonizar um controlador P (Proporcional) pelo método de Ziegler-Nichols (malha fechada). os parâmetros K (ganho proporcional), T_i (constante de tempo integral) e T_d (constante de tempo diferencial) vêm dadas por:
- A) $K = 0.120, T_i = 3.14, T_d = 0.785$
- B) K = 0.238, $T_i = 0.923$, $T_d = 0.257$
- C) $K = 0.571, T_i = 1.184, T_d = 0.501$
- D) $K = 0.373, T_i = 2.101, T_d = 0.325$
- **7.b)** Considere que se optou por um controlador P (Proporcional) com ganho K=0.100. Obtém-se um margem de fase MF de:
- A) MF = 11, 4 graus, B) MF = 21, 4 graus, C) MF = 31, 4 graus, D) MF = 41, 4 graus

Turma Aluno $N^{\underline{0}}$:

Respostas

	Α	В	С	D	
1.					1.
2.					2.
3.					3.
4.					4.
5.a)					5.a)
5.b)					5.b)
6.a)					6.a)
6.b)					6.b)
7.a)					7.a)
7.b)					7.b)

1.
$$\frac{R}{7}$$
 $O \rightarrow [6_1]$ $O \rightarrow [6_2]$ $O \rightarrow [6_3]$ $O \rightarrow$

$$\frac{C}{R} = \frac{\frac{G_1 G_2 G_3}{1 + G_2 H_2}}{1 + \frac{G_1 G_2 G_3 H_1}{1 + G_2 H_2}} = \frac{G_1 G_2 G_3}{1 + G_2 G_3 H_1}$$

$$\frac{1 + \frac{G_1 G_2 G_3 H_1}{1 + G_2 H_2}}{1 + \frac{G_2 G_3 H_1}{1 + G_2 H_2}} = \frac{1 + \frac{G_1 G_2 G_3}{1 + G_2 G_3 H_1}}{1 + \frac{G_1 G_2 G_3}{1 + G_2 H_2}}$$

$$Q_0 = \frac{H_1 - H_2}{2} + \delta A_1 H_1$$

$$Q_{0} = Q_{1} + AA_{1} + A_{2}$$

$$Q_{1} = \frac{H_{1} - H_{2}}{R_{1}}$$

$$Q_{2} = \frac{H_{2}/R_{2}}{R_{2}}$$

$$Q_{1} = \frac{A_{2} + A_{3} + A_{4}}{R_{2}}$$

$$Q_{0} = \frac{H_{1} - H_{2}}{R_{1}} + \delta A_{1} + H_{1} \oplus A_{2}$$

$$Q_{2} = \frac{H_{2} - H_{2}}{R_{1}} = \frac{1}{2} A_{2} + \frac{1}{2} A_{2} + \frac{1}{2} A_{2} \oplus A_{2} \oplus A_{3} \oplus A_{4} \oplus A_{4} \oplus A_{5} \oplus A_{5}$$

QoR, = -Hz + (1+A, R, S) [(1+AAzRa)Hz + QzR,]
QoR, = -QzRz+(1+A, R, S) (1+AAzRa)RzQz + (1+A,RS)RQZ
QoR, = [-Rz+(1+A,RS)(1+AzRS)Rz+(1+A,RS)R,]Qz

3)
$$f_{g} = 0.5 \text{ Ly}$$
 $(\frac{1}{f}) = 1/46$, $c_{5} = 1/1$
 $f_{g} = 0.5 \text{ Ly}$ $f_{g} = 1/6 = 1/40 = 1/136$
 $f_{g} = 0.5 \text{ Ly}$ $f_{g} = 0.5$
 $f_{g} =$

$$\frac{53}{5^2}$$
 | 1 | 1
 $\frac{5^2}{5^2}$ | 2 | 10 ic \longrightarrow 25 + 2=0 =1 > 5=± j
 $\frac{5^1}{5^2}$ | 1-5 ic \longrightarrow 1-5 ic =0 => $K=0.2$
 $\frac{2\pi}{5^2}$ | 10 ic \longrightarrow $\frac{2\pi}{5^2}$ = 1 \Longrightarrow $\frac{7}{5^2}$ = 6.28
 $\frac{7}{5^2}$ = 3.14 j | 1d = 0.785

7.6)
$$K = 0.1$$
 $\Rightarrow g(s) = \frac{10 \times 0.1}{5(str)^2} = \frac{1}{5(str)^2}$
 $\frac{1}{W(W^2H)} = 1 \Rightarrow W = 0.682 \text{ ad/s}$
 $180 - [90 + 2 \text{ arctg}(w)] = 180 - 158.6 = 21,4 gness$
 $W = 0.682$