

FCC PART 90

TEST REPORT

For

Hytera Communications Corporation Ltd.

Hyt Tower, Hi-Tech Industrial Park North, Nanshan District, Shenzhen, China

FCC ID: YAMX1PVHF

Report Type: **Product Type:** Original Report Digital Portable Radio Tiger He **Test Engineer:** Tiger Ye **Report Number:** RSZ121203005-00B **Report Date:** 2013-03-21 Alvin Huang **Reviewed By:** RF Leader **Test Laboratory:** Bay Area Compliance Laboratories Corp. (Shenzhen) 6/F, the 3rd Phase of WanLi Industrial Building, ShiHua Road, FuTian Free Trade Zone Shenzhen, Guangdong, China Tel: +86-755-33320018 Fax: +86-755-33320008 www.baclcorp.com.cn

Note: This test report is prepared for the customer shown above and for the equipment described herein. It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. This report must not be used by the customer to claim product certification, approval, or endorsement by NVLAP*, or any agency of the Federal Government.

^{*} This report may contain data that are not covered by the NVLAP accreditation and shall be marked with an asterisk "★"

TABLE OF CONTENTS

GENERAL INFORMATION	4
PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	4
OBJECTIVE	
RELATED SUBMITTAL(S)/GRANT(S)	
TEST METHODOLOGY TEST FACILITY	
SYSTEM TEST CONFIGURATION	
DESCRIPTION OF TEST CONFIGURATION	
BLOCK DIAGRAM OF TEST SETUP	
SUMMARY OF TEST RESULTS	7
FCC §1.1307(b) & §2.1093 - RF EXPOSURE	8
APPLICABLE STANDARD	
FCC §2.1046 & §90.205- RF OUTPUT POWER	9
APPLICABLE STANDARD	
TEST PROCEDURE	
TEST EQUIPMENT LIST AND DETAILSTEST DATA	
FCC §2.1047 & §90.207 - MODULATION CHARACTERISTIC	
APPLICABLE STANDARDTEST EQUIPMENT LIST AND DETAILS	
TEST PROCEDURE	
TEST DATA	
FCC §2.1049, §90.209 & §90.210 – OCCUPIED BANDWIDTH & EMISSION MASK	20
APPLICABLE STANDARD	
TEST EQUIPMENT LIST AND DETAILS	20
Test Procedure	
TEST DATA	21
FCC §2.1051 & §90.210 - SPURIOUS EMISSIONS AT ANTENNA TERMINALS	26
APPLICABLE STANDARD	
TEST EQUIPMENT LIST AND DETAILS	
TEST PROCEDURE	
FCC §2.1053 & §90.210 - RADIATED SPURIOUS EMISSIONS	
TEST EQUIPMENT LIST AND DETAILS	
TEST PROCEDURE	
TEST DATA	
FCC §2.1055 & §90.213- FREQUENCY STABILITY	32
APPLICABLE STANDARD	
TEST EQUIPMENT LIST AND DETAILS	
Test Procedure	
FCC §90.214 - TRANSIENT FREQUENCY BEHAVIOR	34

Report No.: RSZ121203005-00B

Bay Area Compliance Laboratories Corp. (Shenzhen)

Applicable Standard	34
TEST EQUIPMENT LIST AND DETAILS	
Test Procedure	34
Test Data	3

Report No.: RSZ121203005-00B

FCC Part 90 Page 3 of 37

GENERAL INFORMATION

Product Description for Equipment under Test (EUT)

The *Hytera Communications Corporation Ltd.*'s product, model number: *X1p VHF (FCC ID: YAMX1PVHF)* (the "EUT") in this report was a *Digital Portable Radio*, which was measured approximately: 12.8 cm (L) x 6.5 cm (W) x 2.5 cm (H), rated input voltage: DC 7.4 V Li-ion battery.

Report No.: RSZ121203005-00B

The table is the related accessories list.

Accessory Name	;	Model	Description
	Antenna1	AN0140H01	136-145MHz
Antenna	Antenna2	AN0148H03	144-154MHz
Antenna	Antenna3	AN0158H02	153-164MHz
	Antenna4	AN0168H01	163-174MHz
Dattomy	Thin Battery	BL1103	Li-ion Battery;7.4V 1100 mAh
Battery	Thicker Battery	BL1809	Li-ion Battery;7.4V 1800 mAh
Body Worn	Belt Clip	PCN005	/
Body Wolli	Portable Charger	CH04L01	/
	Earphone 1	EWN07	Digital Wireless Covert Earpiece With in-Line Controller (Neckloop Sensor)
	Earphone 2	EWN08	Digital Wireless Covert Earpiece (Flatpack Sensor)
	Earphone 3	EAN19	3-wire Surveillance Earpiece with Transparent Acoustic Tube (Beige)
	Earphone 4	EAN21	3-wire Surveillance Earpiece with Transparent Acoustic Tube(Beige)
	Earphone 5	ESN14	Detachable Earpiece with Transparent Acoustic Tube,contains two parts,one is ACN-02,the other is ES-01
	Earphone 6	EAN22	Detachable Earpiece with Transparent Acoustic Tube,contains two parts,one is ACN-02,the other is ES-02
Earphone	Earphone 7	EHN20	Remote Swivel Earset, contains two parts, one is ACN-02, the other is EH-02
	Earphone 8	EHN21	Remote C-Earset, contains two parts, one is ACN-02, the other is EH-01
	Earphone 9	ACN-02	PTT&MIC cable(for use with Receive-Only Earpiece)
	Earphone 10	EH-01	Receive—Only C Style Earloop(for use with PTT&MIC cable)
	Earphone 11	EH-02	Receive—Only Ajustable Earhook with Swivel Speaker(for use with PTT&MIC cable)
	Earphone 12	ES-02	Receive-Only Earpiece with Transparent Acoustic Tube
	Earphone 13	ES-01	Receiver - Only Earpiece (for use with PTT&MIC cable)
Note: the Manuf	acturer is Hytera Com	munications Co.,	Ltd.

^{*} All measurement and test data in this report was gathered from production sample serial number: 1212005 (Assigned by BACL, Shenzhen). The EUT supplied by the applicant was received on 2012-12-03.

FCC Part 90 Page 4 of 37

Objective

This test report is prepared on behalf of *Hytera Communications Corporation Ltd.* in accordance with Part 2, and Part 90 of the Federal Communication Commissions rules.

Report No.: RSZ121203005-00B

Related Submittal(s)/Grant(s)

FCC Part 15.247 DSS submission with FCC ID: YAMX1PVHF.

Test Methodology

All tests and measurements indicated in this document were performed in accordance with the Code of federal Regulations Title 47 Part 2, Sub-part J as well as the following individual parts:

Part 90 - Private Land Mobile Radio Service

Applicable Standards: TIA 603-D and ANSI 63.4-2009.

All emissions measurement was performed and Bay Area Compliance Laboratories Corp. (Shenzhen). The radiated testing was performed at an antenna-to-EUT distance of 3 meters.

Test Facility

The Test site used by Bay Area Compliance Laboratories Corp. (Shenzhen) to collect test data is located on the 6/F, the 3rd Phase of WanLi Industrial Building, ShiHua Road, FuTian Free Trade Zone Shenzhen, Guangdong, China.

Test site at Bay Area Compliance Laboratories Corp. (Shenzhen) has been fully described in reports submitted to the Federal Communication Commission (FCC). The details of these reports have been found to be in compliance with the requirements of Section 2.948 of the FCC Rules on December 06, 2010. The facility also complies with the radiated and AC line conducted test site criteria set forth in ANSI C63.4-2009.

The Federal Communications Commission has the reports on file and is listed under FCC Registration No.: 382179. The test site has been approved by the FCC for public use and is listed in the FCC Public Access Link (PAL) database.

Additionally, Bay Area Compliance Laboratories Corp. (Shenzhen) is an ISO/IEC 17025 accredited laboratory, and is accredited by National Voluntary Laboratory Accredited Program (Lab Code 200707-0).

The current scope of accreditations can be found at http://ts.nist.gov/Standards/scopes/2007070.htm.

FCC Part 90 Page 5 of 37

SYSTEM TEST CONFIGURATION

Description of Test Configuration

The system was configured for testing in a test mode which has been done in the factory.

Report No.: RSZ121203005-00B

Equipment Modifications

No modification was made to the EUT tested.

Block Diagram of Test Setup

FCC Part 90 Page 6 of 37

SUMMARY OF TEST RESULTS

FCC Rules	Description of Test	Results
S§1.1307 (b); §2.1093	RF Exposure	Compliance
§2.1046; §90.205	RF Output Power	Compliance
§2.1047; §90.207	Modulation Characteristic	Compliance
\$2.1049; \$90.209; \$90.210	Occupied Bandwidth & Emission Mask	Compliance
§2.1051; §90.210	Spurious Emission at Antenna Terminal	Compliance
§2.1053; §90.210	Spurious Radiated Emissions	Compliance
§2.1055; §90.213	Frequency Stability	Compliance
§90.214	Transient Frequency Behavior	Compliance

Report No.: RSZ121203005-00B

Note: The uncertainty of any RF tests which use conducted method measurement is 0.96 dB.

The uncertainty of any radiation emissions measurement is 4.0 dB.

FCC Part 90 Page 7 of 37

FCC §1.1307(b) & §2.1093 - RF EXPOSURE

Applicable Standard

According to FCC §1.1307(b) and §2.1093, protable device operates Part 90 should be subjected to rountine environmental evaluation for RF exposure prior or equipment authorization or use.

Report No.: RSZ121203005-00B

Result: Compliance.

Please refer to SAR Report Number: R1212077-FCC-SAR.

FCC Part 90 Page 8 of 37

FCC §2.1046 & §90.205- RF OUTPUT POWER

Applicable Standard

FCC §2.1046 and §90.205.

Test Procedure

Conducted RF Output Power:

The RF output of the transmitter was connected to the input of the spectrum analyzer through sufficient attenuation.

Report No.: RSZ121203005-00B

Spectrum Analyzer Setting:

R B/W Video B/W 100 kHz 300 kHz

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Rohde & Schwarz	Signal Analyzer	FSIQ26	8386001028	2012-11-24	2013-11-23

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Shenzhen) attests that all calibrations have been performed in accordance to NVLAP requirements, traceable to National Primary Standards and International System of Units (SI).

FCC Part 90 Page 9 of 37

Test Data

Environmental Conditions

Temperature:	20~25 ℃
Relative Humidity:	50~56 %
ATM Pressure:	100.0~100.1 kPa

The testing was performed by Tiger Ye from 2013-02-21 to 2013-03-18.

Test Mode: Transmitting

Test Result: Compliance. Please refer to following table.

Modulation	Frequency (MHz)	Conducted Output Power (dBm)	Conducted Output Power (W)	Power level
	136.015	37.19	5.24	High Power
	130.013	29.80	0.95	Low Power
	141.135	37.22	5.27	High Power
	141.133	29.82	0.96	Low Power
	144.985	37.20	5.25	High Power
	144.983	29.77	0.95	Low Power
	144.015	37.16	5.20	High Power
	144.013	29.71	0.94	Low Power
	148.015	37.18	5.22	High Power
	148.013	29.68	0.93	Low Power
	153.965	37.21	5.26	High Power
Analog Modulation		29.66	0.92	Low Power
(FM/12.5kHz)	153.035	37.21	5.26	High Power
	133.033	29.79	0.95	Low Power
	158.520	37.22	5.27	High Power
	138.320	29.75	0.94	Low Power
	163.980	37.25	5.31	High Power
	103.980	29.73	0.94	Low Power
	162 020	37.15	5.19	High Power
	163.020	29.81	0.96	Low Power
	168.510	37.21	5.26	High Power
	100.310	29.80	0.95	Low Power
	173.970	37.16	5.20	High Power
	1/3.9/0	29.68	0.93	Low Power

Report No.: RSZ121203005-00B

FCC Part 90 Page 10 of 37

Modulation	Frequency (MHz)	Conducted Output Power (dBm)	Conducted Output Power (W)	Power level
	136.015	37.22	5.27	High Power
	150.015	29.81	0.96	Low Power
	141 125	37.14	5.18	High Power
	141.135	29.83	0.96	Low Power
	144.005	37.15	5.19	High Power
	144.985	29.69	0.93	Low Power
	144.015	37.16	5.20	High Power
	144.015	29.71	0.94	Low Power
	148.015	37.20	5.25	High Power
	148.013	29.72	0.94	Low Power
	153.965	37.23	5.28	High Power
Digital Modulation		29.68	0.93	Low Power
(4FSK/12.5kHz)	153.035	37.18	5.22	High Power
	133.033	29.80	0.95	Low Power
	158.520	37.17	5.21	High Power
	138.320	29.79	0.95	Low Power
	163.980	37.19	5.24	High Power
	103.980	29.71	0.94	Low Power
	163.020	37.23	5.28	High Power
	103.020	29.78	0.95	Low Power
	168.510	37.23	5.28	High Power
	100.510	29.81	0.96	Low Power
	173.970	37.18	5.22	High Power
	1/3.9/0	29.73	0.94	Low Power

FCC Part 90 Page 11 of 37

The antenna specification as below:

Model	Frequency Range(MHz)	Antenna Gain	Measurement
AN0140H01	136-145	-11.0dBi @136MHz -11.0dBi @139MHz -11.0dBi @142MHz -11.0dBi @145MHz	
AN0148H03	144-154	-11.5dBi @144MHz -11.0dBi @147MHz -10.0dBi @150MHz -9.5 dBi @154MHz	Length: 90mm Diameter: Top Diameter:
AN0158H02	153-164	-8.0 dBi @153MHz -7.5 dBi @157MHz -7.5 dBi @160MHz -7.5 dBi @164MHz	9.46mm, Bottom Diameter: 11.5mm
AN0168H01	163-174	-7.0 dBi @163MHz -6.5 dBi @167MHz -6.5 dBi @170MHz -6.7 dBi @174MHz	

Report No.: RSZ121203005-00B

Note: ERP= Conducted output power (dBm) +antenna gain (dBi)-2.15

FCC Part 90 Page 12 of 37

FCC §2.1047 & §90.207 - MODULATION CHARACTERISTIC

Applicable Standard

FCC§2.1047 & §90.207:

(a) Equipment which utilizes voice modulated communication shall show the frequency response of the audio modulating circuit over a range of 100 to 5000 Hz. for equipment which is required to have a low pass filter, the frequency response of the filter, or all of the circuitry installed between the modulation limited and the modulated stage shall be supplied.

Report No.: RSZ121203005-00B

(b) Equipment which employs modulation limiting, a curve showing the percentage of modulation versus the modulation input voltage shall be supplied.

Test Equipment List and Details

Manufacturer	Description	Model No.	Serial No.	Calibration Date	Calibration Due Date
HP	RF Communication Test Set	8920	3438A05201	2012-06-14	2013-06-13
LEADER	MILLIVOLTMETER	LMV-181A	6041126	2012-05-09	2013-05-08

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Shenzhen) attests that all calibrations have been performed in accordance to NVLAP requirements, traceable to National Primary Standards and International System of Units (SI).

Test Procedure

Test Method: TIA/EIA-603 2.2.3

Test Data

Environmental Conditions

Temperature:	25℃
Relative Humidity:	50 %
ATM Pressure:	100.0 kPa

The testing was performed by Tiger Ye on 2013-02-20.

Test Mode: Transmitting

Result: Compliance.

FCC Part 90 Page 13 of 37

Analog Modulation:

MODULATION LIMITING

Report No.: RSZ121203005-00B

Carrier Frequency: 156.000 MHz, Channel Separation=12.5 kHz, Low Power

Audio Input	Frequency Deviation (kHz)			Limit
Level [dB]	@ 300 Hz	@ 1kHz	@ 3 kHz	[kHz]
20.0	2.192	2.181	2.005	2.5
15.0	2.086	2.182	2.002	2.5
10.0	1.211	2.168	2.011	2.5
5.0	0.740	2.193	2.020	2.5
0.0	0.391	1.500	2.011	2.5
-5.0	0.282	0.868	2.043	2.5
-10.0	0.232	0.511	1.360	2.5
-15.0	0.164	0.321	0.821	2.5
-20.0	0.132	0.185	0.508	2.5

FCC Part 90 Page 14 of 37

Carrier Frequency: 156.000 MHz, Channel Separation=12.5 kHz, High Power

Audio Input	Frequency Deviation (kHz)			Limit
Level [dB]	@ 300 Hz	z @ 1kHz		[kHz]
20.0	2.200	2.182	2.008	2.5
15.0	2.081	2.175	2.008	2.5
10.0	1.213	2.179	2.015	2.5
5.0	0.735	2.193	2.018	2.5
0.0	0.381	1.500	2.013	2.5
-5.0	0.295	0.862	2.044	2.5
-10.0	0.222	0.501	1.366	2.5
-15.0	0.170	0.311	0.813	2.5
-20.0	0.133	0.177	0.564	2.5

FCC Part 90 Page 15 of 37

Audio Frequency Response

Carrier Frequency: 156.000 MHz, Channel Separation=12.5 kHz, Low Power

Audio Frequency (Hz)	Response Attenuation (dB)
300	-8.62
400	-6.31
500	-4.42
600	-3.30
700	-2.30
800	-1.63
900	-0.51
1000	0.00
1200	1.60
1400	2.98
1600	3.65
1800	4.72
2000	5.42
2200	6.38
2400	6.72
2600	7.55
2800	7.82
3000	8.20

FCC Part 90 Page 16 of 37

Carrier Frequency: 156.000 MHz, Channel Separation=12.5 kHz, High Power

Audio Frequency (Hz)	Response Attenuation (dB)
300	-10.66
400	-7.50
500	-5.64
600	-4.04
700	-2.64
800	-1.89
900	-0.86
1000	0.00
1200	1.08
1400	2.62
1600	3.46
1800	4.72
2000	5.33
2200	6.38
2400	6.84
2600	7.71
2800	8.09
3000	8.44

FCC Part 90 Page 17 of 37

Audio Frequency Low Pass Filter Response

Report No.: RSZ121203005-00B

Analog Modulation:

Carrier Frequency: 156.000 MHz, Channel Separation=12.5 kHz

Audio Frequency (kHz)	Response Attenuation (dB)	FCC Limit (dB)
3.0	-1.0	0.0
3.5	-5.3	-4.0
4.0	-8.8	-7.5
5.0	-14.2	-13.3
7.0	-23.0	-22.1
10.0	-32.5	-31.4
15.0	-43.4	-42.0
20.0	-52.7	-50.0
30.0	-54.6	-50.0
50.0	-55.5	-50.0
70.0	-55.6	-50.0

FCC Part 90 Page 18 of 37

Digital Modulation:

Carrier Frequency: 156.000 MHz, Channel Separation=12.5 kHz

Report No.: RSZ121203005-00B

Audio Frequency (kHz)	Response Attenuation (dB)	FCC Limit (dB)
3.0	-0.9	0.0
3.5	-5.5	-4.0
4.0	-8.5	-7.5
5.0	-14.0	-13.3
7.0	-23.0	-22.1
10.0	-33.2	-31.4
15.0	-43.4	-42.0
20.0	-52.5	-50.0
30.0	-54.6	-50.0
50.0	-55.5	-50.0
70.0	-55.8	-50.0

FCC Part 90 Page 19 of 37

FCC §2.1049, §90.209 & §90.210 – OCCUPIED BANDWIDTH & EMISSION MASK

Report No.: RSZ121203005-00B

Applicable Standard

FCC §2.1049, §90.209 and §90.210

Emission Mask D—12.5 kHz channel bandwidth equipment. For transmitters designed to operate with a 12.5 kHz channel bandwidth, any emission must be attenuated below the power (P) of the highest emission contained within the authorized bandwidth as follows:

- 1) For any frequency removed from the center of the authorized bandwidth f_0 to 5.625 kHz removed from f_0 , 0dB.
- 2) On any frequency removed from the center of the authorized bandwidth by a displacement frequency (f_d in kHz) of more than 5.626 kHz but no more than 12.5 kHz, at least 7.27 (f_d –2.88 kHz) dB.
- 3) On any frequency removed from the center of the authorized bandwidth by a displacement frequency (f_d in kHz) of more than 12.5 kHz at least:

$$50+10\log P=50+10\log (1.574)=51.97 \text{ dB}$$

Emission Mask B. For transmitters that are equipped with an audio low-pass filter, the power of any emission must be attenuated below the unmodulated carrier power (P) as follows:

- 1) For any frequency removed from the center of the assigned channel by more than 50 percent up to and including 100 percent of the authorized bandwidth, at least 25 dB.
- 2) On any frequency removed from the center of the assigned channel by more than 100 percent up to and including 250 percent, at least 35 dB.
- 3) On any frequency removed from the center of the assigned channel by more than 250 percent at least:

$$43+10\log P=43+10\log (1.622)=45.10 \text{ dB}$$

The resolution bandwidth was 300 Hz or greater for measuring up to 250 kHz from the edge of the authorized frequency segment, and 30 kHz or greater for measuring more than 250 kHz from the authorized frequency segment.

Test Equipment List and Details

Manufacturer	Description	Model No.	Serial No.	Calibration Date	Calibration Due Date
Rohde & Schwarz	Signal Analyzer	FSIQ26	8386001028	2012-11-24	2013-11-23
НР	RF Communication Test Set	8920	3438A05201	2012-06-14	2013-06-13

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Shenzhen) attests that all calibrations have been performed in accordance to NVLAP requirements, traceable to National Primary Standards and International System of Units (SI).

FCC Part 90 Page 20 of 37

Test Procedure

The RF output of the transmitter was connected to the input of the spectrum analyzer through sufficient attenuation.

The resolution bandwidth of the spectrum analyzer was set at 300 Hz and the spectrum was recorded in the frequency band ± 35 kHz from the carrier frequency.

Report No.: RSZ121203005-00B

Test Data

Environmental Conditions

Temperature:	25 ℃
Relative Humidity:	50 %
ATM Pressure:	100.0 kPa

The testing was performed by Tiger Ye on 2013-02-20.

Modulation	99% Occupied Bandwidth (kHz)	26 dB Bandwidth (kHz)	Power Level
Analog Modulation	9.92	10.22	High Power
(12.5kHz)	9.92	10.22	Low Power
Digital Modulation	7.52	9.22	High Power
Digital Modulation	7.01	9.12	Low Power

Note:

Characteristic of P25 phase 2 systems:

The system uses 4FSK modulation which sends 4800symbols/sec with each symbol conveying 2 bits of information for a data rate of 9600 bps in a 12.5kHz channel, which is equivalent to 4800bps per 6.25kHz.Phase 2 P25 system use two-slot TDMA systems, that provides 2 voice paths in a 12.5 kHz channel, which is equivalent to one voice per 6.25kHz, thus meeting the a "one voice path per 6.25 kHz" efficiency standard.

FCC Part 90 Page 21 of 37

Analog Modulation: 99% Occupied & 26 dB Bandwidth with High Power

Report No.: RSZ121203005-00B

Analog Modulation: 99% Occupied & 26 dB Bandwidth with Low Power

FCC Part 90 Page 22 of 37

Analog Modulation: Emission Mask with High Power

Report No.: RSZ121203005-00B

Analog Modulation: Emission Mask with Low Power

FCC Part 90 Page 23 of 37

Digital Modulation: 99% Occupied & 26 dB Bandwidth with High Power

Report No.: RSZ121203005-00B

Digital Modulation: 99% Occupied & 26 dB Bandwidth with Low Power

FCC Part 90 Page 24 of 37

Digital Modulation: Emission Mask with High Power

Report No.: RSZ121203005-00B

Digital Modulation: Emission Mask with Low Power

FCC Part 90 Page 25 of 37

FCC §2.1051 & §90.210 - SPURIOUS EMISSIONS AT ANTENNA TERMINALS

Applicable Standard

Emission Mask D—12.5 kHz channel bandwidth equipment. For transmitters designed to operate with a 12.5 kHz channel bandwidth, any emission must be attenuated below the power (P) of the highest emission contained within the authorized bandwidth as follows:

Report No.: RSZ121203005-00B

- 1) For any frequency removed from the center of the authorized bandwidth f_0 to 5.625 kHz removed from f_0 , 0 dB.
- 2) On any frequency removed from the center of the authorized bandwidth by a displacement frequency (f_d in kHz) of more than 5.626 kHz but no more than 12.5 kHz, at least 7.27 (f_d –2.88 kHz) dB.
- 3) On any frequency removed from the center of the authorized bandwidth by a displacement frequency (f_d in kHz) of more than 12.5 kHz at least:

Emission Mask B. For transmitters that are equipped with an audio low-pass filter, the power of any emission must be attenuated below the unmodulated carrier power (P) as follows:

- 1) For any frequency removed from the center of the assigned channel by more than 50 percent up to and including 100 percent of the authorized bandwidth, at least 25 dB.
- 2) On any frequency removed from the center of the assigned channel by more than 100 percent up to and including 250 percent, at least 35 dB.
- 3) On any frequency removed from the center of the assigned channel by more than 250 percent at least:

The resolution bandwidth was 300 Hz or greater for measuring up to 250 kHz from the edge of the authorized frequency segment, and 30 kHz or greater for measuring more than 250 kHz from the authorized frequency segment.

Test Equipment List and Details

Manufacturer	Description	Model No.	Serial No.	Calibration Date	Calibration Due Date
Rohde & Schwarz	Signal Analyzer	FSIQ26	8386001028	2012-11-24	2013-11-23

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Shenzhen) attests that all calibrations have been performed in accordance to NVLAP requirements, traceable to National Primary Standards and International System of Units (SI).

FCC Part 90 Page 26 of 37

Test Procedure

The RF output of the EUT was connected to a spectrum analyzer through appropriate attenuation. The resolution bandwidth of the spectrum analyzer was set at 1MHz. Sufficient scans were taken to show any out of band emissions up to $10^{\rm th}$ harmonic.

Report No.: RSZ121203005-00B

Test Data

Environmental Conditions

Temperature:	25 ℃
Relative Humidity:	56 %
ATM Pressure:	100.1 kPa

The testing was performed by Tiger Ye on 2013-02-21.

Test Mode: Transmitting

Please refer to the following plots.

FCC Part 90 Page 27 of 37

Analog Modulation (156.0 MHz):

30 MHz – 1 GHz, Spacing Channel 12.5 kHz

Report No.: RSZ121203005-00B

1 GHz – 2 GHz, Spacing Channel 12.5 kHz

FCC Part 90 Page 28 of 37

Digital Modulation (156.0 MHz):

30 MHz - 1 GHz

Report No.: RSZ121203005-00B

1 GHz - 2 GHz

FCC Part 90 Page 29 of 37

FCC §2.1053 & §90.210 - RADIATED SPURIOUS EMISSIONS

Applicable Standard

FCC §2.1053 and §90.210

Test Equipment List and Details

Manufacturer	Description	Model No.	Serial No.	Calibration Date	Calibration Due Date
Sunol Sciences	Horn Antenna	DRH-118	A052304	2011-12-01	2014-11-30
Sunol Sciences	Broadband Antenna	JB1	A040904-2	2011-11-28	2014-11-27
Rohde & Schwarz	Signal Analyzer	FSIQ26	8386001028	2012-11-24	2013-11-23
HP	Signal Generator	8657A	3217A04699	2012-12-19	2013-12-18
A.H. System	Horn Antenna	SAS-200/571	135	2012-02-11	2015-02-10
HP	Synthesized Sweeper	8341B	2624A00116	2012-05-17	2013-05-16

Report No.: RSZ121203005-00B

Test Procedure

The transmitter was placed on a wooden turntable, and it was transmitting into a non-radiating load, which was also placed on the turntable.

The measurement antenna was placed at a distance of 3 meters from the EUT. During the tests, the antenna height and polarization as well as EUT azimuth were varied in order to identify the maximum level of emissions from the EUT. The test was performed by placing the EUT on 3-orthogonal axis.

The frequency range up to teeth harmonic of the fundamental frequency was investigated.

Remove the EUT and replace it with substitution antenna. A signal generator was connected to the substitution antenna by a non-radiating cable. The absolute levels of the spurious emissions were measured by the substitution.

Spurious emissions in dB =10 1g (TXpwr in Watts/0.001)-the absolute level

Spurious attenuation limit in dB = $43+10 \, Log_{10}$ (power out in Watts) Spurious attenuation limit in dB = $50+10 \, Log_{10}$ (power out in Watts) for EUT with a 12.5 kHz channel bandwidth.

Test Data

Environmental Conditions

Temperature:	25℃
Relative Humidity:	56 %
ATM Pressure:	100.1 kPa

The testing was performed by Tiger Ye on 2013-02-21.

FCC Part 90 Page 30 of 37

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Shenzhen) attests that all calibrations have been performed in accordance to NVLAP requirements, traceable to National Primary Standards and International System of Units (SI).

Test Mode: Transmitting

30MHz-2GHz:

	Receiver	TurnTable	Rx Antenna		Substituted		Absolute	FCC Part 90		
Frequency (MHz)	Reading (dBµV)	Angle Degree	Height (m)	Polar (H / V)	SG Level (dBm)	Cable loss(dB)	Antenna Gain(dB)	Level (dBm)	Limit (dBm)	Margin (dB)
		Analo	g Modula	tion (156.0	MHz), Cha	nnel Spaci	ng 12.5 kHz			
623.6	61.23	212	1.4	Н	-35.8	0.58	0	-36.38	-20	16.38
311.3	60.05	75	1.6	V	-37.0	0.37	0	-37.37	-20	17.37
623.6	58.71	280	1.4	V	-38.3	0.58	0	-38.88	-20	18.88
311.3	57.85	3	1.5	Н	-39.1	0.37	0	-39.47	-20	19.47
780.7	45.16	168	1.3	Н	-51.8	0.66	0	-52.46	-20	32.46
780.7	44.80	237	1.1	V	-52.2	0.66	0	-52.86	-20	32.86
1560.0	40.38	35	1.9	V	-61.6	0.95	9.4	-53.15	-20	33.15
1210.4	37.58	173	1.2	Н	-60.9	0.8	8.5	-53.20	-20	33.20
1210.4	37.35	141	1.1	V	-63.6	0.8	8.5	-55.90	-20	35.90
1560.0	38.82	33	1.4	Н	-64.8	0.95	9.4	-56.35	-20	36.35
		Digita	ıl Modula	tion (156.0	MHz), Cha	nnel Spacii	ng 12.5 kHz			
311.3	59.29	315	1.6	V	-37.7	0.37	0	-38.07	-20	18.07
623.6	59.44	138	1.1	V	-37.6	0.58	0	-38.18	-20	18.18
623.6	55.96	48	1.4	Н	-41.0	0.58	0	-41.58	-20	21.58
311.3	50.68	229	1.9	Н	-46.3	0.37	0	-46.67	-20	26.67
780.7	47.90	159	1.9	V	-49.1	0.66	0	-49.76	-20	29.76
1210.4	40.71	77	1.2	Н	-57.7	0.8	8.5	-50.00	-20	30.00
1560.0	39.66	292	1.0	V	-62.4	0.95	9.4	-53.95	-20	33.95
1210.4	37.99	103	1.2	V	-62.9	0.8	8.5	-55.20	-20	35.20
780.7	42.25	332	1.9	Н	-54.8	0.66	0	-55.46	-20	35.46
1560.0	36.57	306	1.2	Н	-67.1	0.95	9.4	-58.65	-20	38.65

Report No.: RSZ121203005-00B

Remark:	
(1)	Absolute level (dBm) = Substituted SG level -Cable loss + Antenna Gain
(2)	Measuring frequencies from 30 MHz to the 2 GHz.
(3)	Margin=Limit-Absolute Level

FCC Part 90 Page 31 of 37

FCC §2.1055 & §90.213- FREQUENCY STABILITY

Applicable Standard

FCC §2.1055 & §90.213

Test Equipment List and Details

Manufacturer	Description	Model No.	Serial No.	Calibration Date	Calibration Due Date
Hewlett-Packard	Frequency Counter	5343A	2232A00827	2012-04-15	2013-04-14
ESPEC	Temperature & Humidity Chamber	EL-10KA	09107726	2012-11-02	2013-11-01

Report No.: RSZ121203005-00B

Test Procedure

Frequency Stability vs. Temperature: The equipment under test was connected to an external DC power supply and the RF output was connected to a frequency counter via feed-through attenuators. The EUT was placed inside the temperature chamber. The DC leads and RF output cable exited the chamber through an opening made for the purpose.

After the temperature stabilized for approximately 20 minutes, the frequency output was recorded from the counter.

Test Data

Environmental Conditions

Temperature:	23~25 ℃		
Relative Humidity:	48~52 %		
ATM Pressure:	100.1 kPa		

The testing was performed by Tiger Ye on 2012-12-20 and 2013-01-25.

Test Mode: Transmitting

FCC Part 90 Page 32 of 37

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Shenzhen) attests that all calibrations have been performed in accordance to NVLAP requirements, traceable to National Primary Standards and International System of Units (SI).

For Analog Modulation (Channel Spacing 12.5 kHz)

Reference Frequency: 156.0 MHz, Limit: ±5 ppm						
Test Envi	ronment	Frequency Measure with Time Elapsed				
$ \begin{array}{c c} \textbf{Temperature} & \textbf{Power Supplied} \\ (\texttt{°C}) & (V_{DC}) \end{array} $		Measured Frequency error (MHz)	Frequency Error (ppm)			
	Frequency Stability	y versus Input Temper	rature			
50	7.4	155.999957	0.273			
40	7.4	155.999965	0.225			
30	7.4	155.999977	0.145			
20	7.4	155.999970	0.193			
10	7.4	155.999958	0.269			
0	7.4	155.999960	0.254			
-10	7.4	155.999958	0.270			
-20	7.4	155.999960	0.254			
-30	7.4	155.999979	0.138			
Frequency Stability versus Input Voltage						
20	6.3	155.999951	0.314			
20	6.2	155.999946	0.346			

Report No.: RSZ121203005-00B

For Digital Modulation (Channel Spacing 12.5 kHz)

Reference Frequency: 156.0 MHz, Limit: ±5 ppm						
Test Envi	ironment	Frequency Measure with Time Elapsed				
		Measured Frequency error (MHz)	Frequency Error (ppm)			
	Frequency Stability	y versus Input Temper	ature			
50	7.4	155.999948	0.332			
40	7.4	155.999959	0.260			
30	7.4	155.999952	0.305			
20	7.4	155.999950	0.321			
10	7.4	155.999938	0.398			
0	7.4	155.999931	0.444			
-10	7.4	155.999960	0.257			
-20	7.4	155.999949	0.325			
-30	7.4	155.999938	0.399			
Frequency Stability versus Input Voltage						
20	6.3	155.999936	0.412			
20	6.2	155.999941	0.378			

FCC Part 90 Page 33 of 37

FCC §90.214 - TRANSIENT FREQUENCY BEHAVIOR

Applicable Standard

Regulations: FCC §90.214

Test method: ANSI/TIA-603-D 2010, section 2.2.19.3

Test Equipment List and Details

Manufacturer	Description	Model No.	Serial No.	Calibration Date	Calibration Due Date
Rohde & Schwarz	Signal Analyzer	FSIQ26	8386001028	2012-11-24	2013-11-23
HP	RF Communication Test Set	8920	3438A05201	2012-06-14	2013-06-13
Agilent	VECTOR SIGNAL ANALYZER	89441A	75182	2012-05-12	2013-05-11

Report No.: RSZ121203005-00B

Test Procedure

- a) Connect the EUT and test equipment as shown on the following block diagram.
- b) Set the Spectrum Analyzer to measure FM deviation, and tune the RF frequency to the transmitter assigned frequency.
- c) Set the signal generator to the assigned transmitter frequency and modulate it with a 1 kHz tone at ± 12.5 kHz deviation and set its output level to -100dBm.
- d) Turn on the transmitter.
- e) Supply sufficient attenuation via the RF attenuator to provide an input level to the Spectrum Analyzer that is 40 dB below the maximum allowed input power when the transmitter is operating at its rated power level. Note this power level on the Spectrum Analyzer as P₀.
- f) Turn off the transmitter.
- g) Adjust the RF level of the signal generator to provide RF power equal to P₀. This signal generator RF level shall be maintained throughout the rest of the measurement.
- h) Remove the attenuation 1, so the input power to the Spectrum Analyzer is increased by 30 dB when the transmitter is turned on.
- i) Adjust the vertical amplitude control of the spectrum analyzer to display the 1000 Hz at ±4 divisions vertically centered on the display. Set trigger mode of the Spectrum Analyzer to "Video", and tune the "trigger level" on suitable level. Then set the "tiger offset" to -10ms for turn on and -15ms for turn off.
- j) Turn on the transmitter and the transient wave will be captured on the screen of Spectrum Analyzer. Observe the stored display. The instant when the 1 kHz test signal is completely suppressed is considered to be t_{on} . The trace should be maintained within the allowed divisions during the period t_1 and t_2 .
- k) Then turn off the transmitter, and another transient wave will be captured on the screen of Spectrum Analyzer. The trace should be maintained within the allowed divisions during the period t₃.

FCC Part 90 Page 34 of 37

Test Data

Environmental Conditions

Temperature:	25 ℃		
Relative Humidity:	50 %		
ATM Pressure:	100.0 kPa		

The testing was performed by Tiger Ye on 2013-02-20.

Channel Separation (kHz)	Transient Period (ms)	Transient Frequency	Result
	<5 (t1)	+/-12.5 kHz	
12.5	<20 (t2)	+/-6.25 kHz	Pass
	<5 (t3)	+/-12.5 kHz	

Report No.: RSZ121203005-00B

Please refer to the following plots.

FCC Part 90 Page 35 of 37

Channel Spacing 12.5 kHz (FM):

Turn on

Report No.: RSZ121203005-00B

Turn off

FCC Part 90 Page 36 of 37

Channel Spacing 12.5 kHz (4FSK):

Turn on

Report No.: RSZ121203005-00B

Turn off

***** End of Report *****

FCC Part 90 Page 37 of 37