Introduction – Part 1

How to install and use Jupyter Notebook

Go to https://www.anaconda.com/download

Download Anaconda3

Install Anaconda3

Click Jupyter Notebook

Click Desktop

Create a Folder

Rename the Folder

Create a new notebook Rename the notebook

Program code and Run cell

Text (Bold)

Text (Heading)

ELEC2600

Insert

Cell

Kernel

run cell, select below

Widgets

C → Markdown

ELEC2600

View

Kernel

File

Insert

Delete a cell

Ex. 06

a = np.array([1, 4, 5])

b = np.array([1, 4, 5, 5, 4, 1, 1, 1])

```
for i in range(a.size):
   print(f'a\{[i]\} = ', a[i])
   compare = np.equal(b, a[i])
   print(compare)
   count = np.cumsum(compare)
   print(count)
   print(' ')
a[0] = 1
[ True False False False True True]
[1 1 1 1 1 2 3 4]
a[1] = 4
[False True False False True False False]
[0 1 1 1 2 2 2 2]
a[2] = 5
[False False True True False False False]
[0 0 1 2 2 2 2 2]
```

np.equal

np.cumsum

How to obtain the relative frequency versus *n*?

How to plot the relative frequency versus *n*?

Relative frequency

- Let $N_1(n)$, $N_2(n)$ and $N_3(n)$ be the *number of times* that we pick balls 1, 2, and 3 in n trials (*events*).
- □ Define the *relative frequency* of the outcome k as $f_k(n)$
- This experiment exhibits statistical regularity: as n increases, the relative frequency approaches a constant value

$$\lim_{n\to\infty} f_k(n) = p_k$$

where p_k indicates the probability of outcome k.

Provides a key connection between measurement of physical quantities and probability models!

Introduction – Part 2

How to handle excel file

Go to https://pandas.pydata.org/pandas-docs/stable/index.html

Click API reference

Click DateFrame

Getting started User Guide

API reference

Development Release notes

Input/output

General functions

Series

DataFrame

pandas.DataFrame

pandas.DataFrame.index

pandas.DataFrame.columns

pandas.DataFrame.dtypes

pandas.DataFrame.info

pandas.DataFrame.groupby

DataFrame.groupby(by=None, axis=0, level=None, as_index=True, sort=True, group_keys=True, observed=False, dropna=True) # [source]

Group DataFrame using a mapper or by a Series of columns.

A groupby operation involves some combination of splitting the object, applying a function, and combining the results. This can be used to group large amounts of data and compute operations on these groups.

Click and read the description of the followings (groupby, count and sum)

Function application, GroupBy & window

DataFrame.apply (func[, axis, raw,])	Apply a function along an axis of the DataFrame.
<pre>DataFrame.applymap (func[, na_action])</pre>	Apply a function to a Dataframe elementwise.
DataFrame.pipe (func, *args, **kwargs)	Apply chainable functions that expect Series or DataFrames.
DataFrame.agg ([func, axis])	Aggregate using one or more operations over the specified axis.
DataFrame.aggregate ([func, axis])	Aggregate using one or more operations over the specified axis.
DataFrame.transform (func[, axis])	Call func on self producing a DataFrame with the same axis shape as self.
DataFrame.groupby ([by, axis, level,])	Group DataFrame using a mapper or by a Series of columns.
DataFrame.rolling (window[, min_periods,])	Provide rolling window calculations.
DataFrame.expanding ([min_periods, axis, method])	Provide expanding window calculations.
DataFrame.ewm ([com, span, halflife, alpha,])	Provide exponentially weighted (EW) calculations.

Computations / descriptive stats

DataFrame.abs ()	Return a Series/DataFrame with absolute numeric value of each element.
DataFrame.all ([axis, bool_only, skipna])	Return whether all elements are True, potentially over an axis.
DataFrame.any (*[, axis, bool_only, skipna])	Return whether any element is True, potentially over an axis.
DataFrame.clip ([lower, upper, axis, inplace])	Trim values at input threshold(s).
DataFrame.corr ([method, min_periods,])	Compute pairwise correlation of columns, excluding NA/null values.
DataFrame.corrwith (other[, axis, drop,])	Compute pairwise correlation.
DataFrame.count ([axis, numeric_only])	Count non-NA cells for each column or row.
	Count non-IVA cells for each column or row.
DataFrame.sem ([axis, skipna, ddof, numeric_only])	Return unbiased standard error of the mean over requested axis.
DataFrame.sem ([axis, skipna, ddof, numeric_only]) DataFrame.skew ([axis, skipna, numeric_only])	Return unbiased standard error of the mean
	Return unbiased standard error of the mean over requested axis.

Ex.01 – Groupby and Count

print(data) Class Price Index fruit fruit fruit 10 fruit 10 fruit vegetable vegetable vegetable vegetable vegetable 10 fruit 12 fruit 13 vegetable 14 vegetable vegetable 15 vegetable 16

Ex.01 - Groupby and Count

```
n_class = data.groupby('Class')['Price'].count()
print(n_class)
print('')

print('Number of fruits = ', n_class['fruit'])
print('')

print('Total number of products', sum(n_class))
```

```
Class
fruit 7
vegetable 9
Name: Price, dtype: int64
```

Relative frequency?

```
Number of fruits = 7
```

Total number of products 16

Ex.02 – Groupby and Sum

```
print(data)
print(' ')

n_class = data.groupby('Class')['Price'].sum()
print(n_class)
```

Total price of fruit = ?

Total price of vegetable = ?

	Class	Price	
Index			
1	fruit	5	
2	fruit	5	
3	fruit	10	
4	fruit	10	
5	fruit	3	
6	vegetable	1	
7	vegetable	1	
8	vegetable	5	
9	vegetable	2	
10	vegetable	4	
11	fruit	5	
12	fruit	5	
13	vegetable	1	
14	vegetable	5	
15	vegetable	2	
16	vegetable	4	

```
Class
fruit 43
vegetable 25
Name: Price, dtype: int64
```

Ex.03 – Create a new column

```
data['data_price'] = data['Price'] > 4
print(data)
print(' ')

print('The sum of data_price = ', sum(data['data_price']))
print(' ')

n_fruit_4 = data.groupby('Class')['data_price'].sum()
print(n_fruit_4)
```

True = 1 False = 0

fruit (Price > 4) + vegetable (Price > 4) = 8

fruit (Price > 4) = ?

vegetable (Price > 4) = ?

Class	Price	data_price
fruit	5	True
fruit	5	True
fruit	10	True
fruit	10	True
fruit	3	False
vegetable	1	False
vegetable	1	False
vegetable	5	True
vegetable	2	False
vegetable	4	False
- fruit	5	True
fruit	5	True
vegetable	1	False
vegetable	5	True
vegetable	2	False
vegetable	4	False
	fruit fruit fruit fruit fruit vegetable vegetable vegetable vegetable vegetable vegetable vegetable vegetable vegetable	fruit 5 fruit 10 fruit 10 fruit 3 vegetable 1 vegetable 5 vegetable 2 vegetable 4 fruit 5 fruit 5 fruit 5 vegetable 1 vegetable 2 vegetable 2

The sum of data_price = 8

```
Class
fruit 6
vegetable 2
Name: data_price, dtype: int64
```

Event A

Event B

Prior probability of event A

Prior probability of event B

P(A)

P(B)

Event A and Event B both occur

 $P(A \cap B)$

Conditional probability

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

What is the prior probability of fruit?

What is the probability $P[(Price > 4) \cap Fruit]$?

What is the conditional probability P[(Price > 4) | Fruit]?