S
h

Phone: (Off.) +88-0721-711108 Cell: +88-01716-697645

Fax : +88-0721-750064

E-mail: shiuly_math_ru@yahoo.com Web: www.ru.ac.bd/mathematics

Date

vector Spaces and Subspaces

Field: $(F; +, \cdot)$

F - non-empty set and + , one binary operations , Axioms for addition:

(closer law)

Az for all a, b, cef (a+b)+c = (b+e)+a (a associative Law)

(As) There exists $0 \in F$ such that a+0=0+a=a for all $a \in F$. $[0 \rightarrow additive identity]$

Ay For every $a \in F$, there exists, $-a \in F$ such that a+(-a)=(-a)+a=0 $[-a \rightarrow inverse inverse of a7]$

(A5) Addition is commutative : a+b=b+a, for all a, beF

Axioms for multiplication:

M) If a, bef, then abef

(ab). c = a. (be) for all a, b, c & F [Multiplication is associative]

 \widehat{M}_3 There exists 1 in F such that $a.1 = 1.a = a \ \forall \ a \in F$, $[1 \rightarrow \text{multiplicative identity}]$.

(My) for every alf, there exists an element $d \in F$ such that $a \cdot d = d \cdot a = 1$ $\begin{bmatrix} d \\ a \end{bmatrix}$ inverse of a for multiplication J

M3) Multiplication is commulative: a.b=b.a for all a,b∈F.
Distributive laut:

(i) a (b+c) = ab+ac ∀ a, b, c∈F

(i) (a+b)c=ac+bc ∀ a,b,c∈F

Examples: - Treal number (R), (ii) complex number (C)

2 vector spaces:
Vector space: Let K be a field and let V be a non-empty set
with rules of addition and sealow will all him which assigns to
any u, veV, u+veV and to any ueV, kek kuev.
then V is called a vector space over K if the following axioms
any $u, v \in V$, $u+v \in V$ and to any $u \in V$, $k \in K$, $k u \in V$. Then V is called a vector space over K if the following axioms hold: Axioms for addition: [The elements of V are called vectors (A) $u, v, w \in V$
$\widehat{A_{1}} \overline{u,v,\omega \in V}, (u+v)+\omega = u+(v+\omega)$
(A2) There is a vector in I I shall in a be which
$u+0=0+u=u$ \forall $u\in V$ $[0\rightarrow zero\ vector]$ for each vector $u\in V$ there is a vector in V , denoted by $-u$ for which $u+(-u)=0$. $[-u\rightarrow inverse\ of\ u]$
for each vector UEV there is a vector in V denoted by -U
Joe which $u + (-u) = 0$. [-u \rightarrow inverse of u]
Axioms for multiplication:
Mi) For my kek me ony u, ve V, k(u+v) = ku+kv.
M2) for any scalars $a, b \in K$ and $u \in V$, $(a+b)u = au + bu$.
(M3) For any a, bck and any UETT (GL) = a (1)
(M_3) for any a , bek and any $u \in V$, $(ab)u = a(bu)$ (M_4) for the unit scalar $a \in V$
(My) For the unit scalar 1EK, 1·u=u \ u \ u \ v.
Example: Det K be an arbitrary field. The set of all n-tuples of element of K with vector addition and scalar multiplication defined by
$(a_1, a_2, \dots, a_n) + (b_1, b_2, \dots, b_n) = (a_1 + b_1, a_2 + b_2, \dots, a_n + b_n)$
and k(a, az,, an) = (ka, , kaz,, kan) where ai, bi, kEK.
is a vector space over K. This space is denoted by K".
This space is denoted by K".

