Diseño factorial 2^k

Profesor: Mg.Sc. Rolando Salazar

- Se tienen k factores de 2 niveles cada uno donde estos puede ser de tipo cuantitativos o cualitativos.
- Es de utilidad en las etapas iniciales del trabajo experimental donde se evalúan muchos factores.
- El primer diseño 2^k es el 2^2 que tiene 2 factores A y B y cada uno tiene dos niveles.

Factor		Combinación de		Réplica			
\boldsymbol{A}	B	tratamientos	I	II	III	Total	
_		A bajo, B bajo	28	25	27	80	
+	_	A alto, B bajo	36	32	32	100	
-	+	A bajo, B alto	18	19	23	60	
+	+	A alto, B alto	31	30	29	90	

Concentración del reactivo,

A

$$A = \frac{1}{2n} \{ [ab - b] + [a - (1)] \}$$

$$= \frac{1}{2n} [ab + a - b - (1)]$$

$$B = \frac{1}{2n} \{ [ab - a] + [b - (1)] \}$$

$$=\frac{1}{2n}[ab+b-a-(1)]$$

$$AB = \frac{1}{2n} \{ [ab - b] - [a - (1)] \}$$

$$= \frac{1}{2n} [ab + (1) - a - b]$$

$$A = \frac{1}{2(3)} (90 + 100 - 60 - 80) = 8.33$$

$$B = \frac{1}{2(3)} (90 + 60 - 100 - 80) = -5.00$$

$$AB = \frac{1}{2(3)} (90 + 80 - 100 - 60) = 1.67$$

El efecto de A es positivo. Esto indica que al incrementar A de un nivelbaio a uno alto entonces el rendimiento aumenta.

$$SS_A = \frac{[ab+a-b-(1)]^2}{4n}$$

 $SS_B = \frac{[ab+b-a-(1)]^2}{4n}$

$$SS_{AB} = \frac{[ab+(1)-a-b]^2}{4n}$$

$$SS_A = \frac{(50)^2}{4(3)} = 208.33$$

 $SS_B = \frac{(-30)^2}{4(3)} = 75.00$

$$SS_{AB} = \frac{(10)^2}{4(3)} = 8.33$$

Orden estándar u orden de Yates: (1),a,b,ab

Efectos	(1)	а	b	ab
A:	1	+1	-1	+1
B:	-1	-1	+1	+1
AB:	+1	-1	-1	+1

Tabla 6-2 Signos algebraicos para calcular los efectos en el diseño 2²

Combinación de	Efecto factorial							
tratamientos	\overline{I}	A	В	AB				
(1)	+	_	_	+				
a	+	+	_	_				
b	+		+	_				
ab	_ + _	+	+	+				

$$A = \frac{1}{2n} \{ [ab - b] + [a - (1)] \}$$
$$= \frac{1}{2n} [ab + a - b - (1)]$$

Tabla 6-1 Análisis de varianza del experimento de la figura 6-1

Inch					
Fuente de variación	Suma de cuadrados	Grados de libertad	Cuadrado medio	F_0	Valor P
A	208.33	1	208.33	53.15	0.0001
B	75.00	1	75.00	19.13	0.0024
AB	8.33	1	8.33	2.13	0.1826
Error	31.34	8	3.92		
Total	323.00	11			

Modelo de regresión

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \varepsilon$$

Se usan variables codificadas, +1 para el nivel alto y -1 para el nivel bajo.

Adecuación del modelo

Verificación de los supuestos.

Diseño 2³

- Tres factores, cada uno con dos niveles.
- Ocho combinaciones de tratamientos: (1), a,b,ab,c,ac,bc y abc.
- ▶ Hay siete grados de libertad entre las combinaciones del diseño 2³;tres se asocian con los efectos principales A,B y C, cuatro con las interacciones AB,AC,BC y ABC.

Corrida	A	В	C	Etiquetas	A_{\cdot}	В	C^{\perp}
1	_	_	_	(1)	0	0	0
2	+	_	_	à	1	0	0
3	_	+	_	b	0	1	0
4	+	+	_	ab	1	1	0
5	_	_	+	c	0	0	- 1
6	+		+	ac	1	0	1
7	_	+	+	bc	0	1	1
8	+	+	+	abc	1	1	1

.

a) Vista geométrica

		Factor	
Corrida	A	В	C
1	_	_	_
2	+	_	-
2 3	-	+	-
4	+	+	
5		-	+
6	+	***	+
7	-	+	+
8	+	+	+

b) La matriz del diseño

$$A = \frac{1}{4n} [a - (1) + ab - b + ac - c + abc - bc]$$

$$B = \bar{y}_{B^{+}} - \bar{y}_{B^{-}}$$

$$= \frac{1}{4n} [b + ab + bc + abc - (1) - a - c - ac]$$

$$C = \bar{y}_{C^{+}} - \bar{y}_{C^{-}}$$

$$= \frac{1}{4n} [c + ac + bc + abc - (1) - a - b - ab]$$

$$AB = \frac{[abc - bc + ab - b - ac + c - a + (1)]}{4n}$$

$$AC = \frac{1}{4n}[(1) - a + b - ab - c + ac - bc + abc]$$

$$BC = \frac{1}{4n}[(1) + a - b - ab - c - ac + bc + abc]$$

$$ABC = \frac{1}{4n}\{[abc - bc] - [ac - c] - [ab - b] + [a - (1)]\}$$

$$= \frac{1}{4n}[abc - bc - ac + c - ab + b + a - (1)]$$

Tabla 6-3 Signos algebraicos para calcular los efectos del diseño 2³

Combinación de				Efect	o factorial		,	
tratamientos	\overline{I}	A	В	AB	С	AC	ВС	ABC
(1)	+	_	_	+	_	+	+	
à	+	+	-	_	_	_	+	+
b	+	_	+	_		+	_	+
ab	+	+	+	+	_	_	_	_
c	+	_	_	+	+	_	 .	+
ac	+	+	_	_	+	+	-	_
bc	+	_	+	_	+	_	+	_
abc	+	+	+	r +	+	+	+	+

Sin tomar en cuenta la columna I, cada columna tiene el mismo número de signos positivos y negativos. La suma de los productos de los signos de dos columnas es cero. La columna I multiplicada por cualquiera de las columnas la deja sin cambio. Multiplicar dos columnas produce otra.

I: Elemento identidad.

$$AB \times B = AB^2 = A$$

Cada efecto tiene un contraste correspondiente con un solo grado de libertad. La suma de cuadrados:

$$SS = \frac{\text{(Contraste)}^2}{8n}$$

Donde n es la cantidad de réplicas.

Ejemplo

Una empresa embotelladora de refrescos está interesada en obtener alturas de llenado más uniformes en las botellas que se fabrican en su proceso de manufactura. La máquina de llenado llena cada botella a la altura objetivo correcta, pero en la práctica, existe variación en torno a este objetivo, y a la embotelladora le gustaría entender mejor las fuentes de esta variabilidad y reducirla.

El ingeniero del proceso puede controlar tres variables durante el proceso de llenado: el porcentaje de carbonatación (A), la presión de operación en el llenador (B) y las botellas producidas por minuto o rapidez de línea (C). Es sencillo controlar la presión y la rapidez, pero el porcentaje de carbonatación es más difícil de controlar durante la manufactura real debido a que varía con la temperatura. Sin embargo, para los fines de un experimento, el ingeniero puede controlar la carbonatación en dos niveles: 10 y 12 por ciento. Elige dos niveles para la presión (25 y 30 psi) y dos niveles para la rapidez de línea (200 y 250 bpm). El ingeniero decide correr dos réplicas de un diseño factorial.

La variable de respuesta observada es la desviación promedio de la altura del llenado objetivo que se observa en una corrida de producción de botellas con cada conjunto de condiciones. Las desviaciones positivas son alturas de llenado arriba del objetivo, mientras que las desviaciones negativas son alturas de llenado abajo del objetivo.

Tabla 6-4 El experimento de la altura de llenado, ejemplo 6-1

	Fac	tores codifica	dos		ión de la e llenado	Niveles del factor		
Corrida	A	В	C	Réplica 1	Réplica 2	Bajo (-1)	Alto (+1)	
1	-1	-1	-1	-3	-1	A (psi) 10	12	
2	1	-1	-1	0	1	B (psi) 25	30	
3	-1	1	-1	-1	0	C (b/min) 200	250	
4	1	1	-1	2	3			
5	-1	-1	1	-1	0			
6	1	-1	1	2	1			
7	-1	1	1	1	1			
8	1	1	1	6	5			

Ejercicio:

Estimar los efectos de los factores A y BC.

Tabla 6-5 Resumen de la estimación de los efectos del ejemplo 6-1

Factor	Estimación del efecto	Sumas de cuadrados	Contribución porcentual		
\overline{A}	3.00	36.00	46.1538		
B	2.25	20.25	25.9615		
<i>C</i>	1.75	12.25	15.7051		
AB	0.75	2.25	2.88462		
AC	0.25	0.25	0.320513		
BC	0.50	1.00	1.28205		
ABC	0.50	1.00	1.28205		
Error puro		5.00	6.41026		
Total		78.00			

Los efectos principales explican el mayor porcentaje de variabilidad total.

$$SS_A = \frac{(24)^2}{16} = 36.00$$

$$SS_B = \frac{(18)^2}{16} = 20.25$$

$$SS_C = \frac{(14)^2}{16} = 12.25$$

$$SS_{AB} = \frac{(6)^2}{16} = 2.25$$

$$SS_{AC} = \frac{(2)^2}{16} = 0.25$$

$$SS_{BC} = \frac{(4)^2}{16} = 1.00$$

$$SS_{ABC} = \frac{(4)^2}{16} = 1.00$$

Tabla 6-6 Análisis de varianza de los datos de la altura de llenado

Fuente de	Suma de	Grados de	Cuadrado		<i>.</i>	
variación	cuadrados	libertad	medio	F_{0}	$\operatorname{Valor} P$	
Porcentaje de carbonatación (A)	36.00	1	36.00	57.60	< 0.0001	
Presión (B)	20.25	1	20.25	32.40	0.0005	
Velocidad de línea (C)	12.25	1	12.25	19.60	0.0022	
AB	2.25	1	2.25	3.60	0.0943	
AC	0.25	1	0.25	0.40	0.5447	
BC	1.00	1	1.00	1.60	0.2415	
ABC	1.00	1	1.00	1.60	0.2415	
Error	5.00	8	0.625			
Total	78.00	15				

Diseño 2^k

- Diseño con k factores que tienen dos niveles cada uno.
- Incluye k efectos principales, $\binom{k}{2}$ interacciones de dos factores, ... hasta una interacción de k factores.
- Se usa la notación vista para los tratamientos: (1),adb, etc.

Contraste
$$_{AB\cdots K} = (a \pm 1)(b \pm 1)\cdots(k \pm 1)$$

Contraste_{AB} =
$$(a-1)(b-1)(c+1)$$

= $abc+ab+c+(1)-ac-bc-a-b$

Contraste
$$_{ABCD} = (a-1)(b-1)(c-1)(d-1)(e+1)$$

 $= abcde + cde + bde + ade + bce$
 $+ ace + abe + e + abcd + cd + bd$
 $+ ad + bc + ac + ab + (1) - a - b - c$
 $- abc - d - abd - acd - bcd - ae$
 $- be - ce - abce - de - abde - acde - bcde$

$$AB \cdots K = \frac{2}{n2^k} (\text{Contraste}_{AB \cdots K})$$

$$SS_{AB\cdots K} = \frac{1}{n2^k} (Contraste_{AB\cdots K})^2$$

Una réplica del diseño 2^k

- Cuando los recursos son limitados.
- No se cuenta con una estimación del error, este se estima suponiendo que algunas interacciones de orden superior son insignificantes.
- Gráfica de probabilidad normal de las estimaciones de los efectos, lo que son insignificantes se localizarán sobre una línea recta en esa gráfica, los significativos no estarán sobre la línea.

Ejemplo

Un producto químico se fabrica en un envase presurizado. Se lleva a cabo un experimento factorial en la planta piloto para estudiar los factores que se piensa influyen en el índice de filtración de este producto. Los factores son la temperatura (A), la presión (B), la concentración del formaldehído (C) y la velocidad de ágitación (D). Cada factor está presente con dos niveles. La matriz del diseño y los datos de la respuesta obtenidos de una sola réplica del experimento se muestran en la tabla. Las 16 corridas se hacen de manera aleatoria. El ingeniero del proceso está interesado en maximizar el índice de filtración. Las condiciones actuales del proceso producen índices de filtración de alrededor de 75 gal/h. Además en el proceso se usa actualmente el factor C en el nivel alto. Al ingeniero le gustaría reducir la concentración de formaldehído lo más posible, pero no ha podido hacerlo porque siempre produce indices de filtración más bajos.

Tabla 6-10 Experimento del índice de filtración en la planta piloto

Número		Fac	ctor		Etiqueta de	Índice de
de corrida	\overline{A}	В	С	\overline{D}	la corrida	filtración (gal/h)
1		_	_	_	(1)	45
2	+	_	-	_	à	71
3		+	_	_	b	48
4	+	+	_	_	ab	65
5	_	_	+	_	. c	68
6	+	_	+	_	ac	60
7	_	+	+		bc	80
8	+	+	+	_	abc	65
9	_		_	+	d	43
10	+	_		+	ad	100
11	_	+		+	bd	45
12	+	+		+	abd	104
13	_	-	+	+	cd	75
14	+	_	+	+	acd	86
15	_	+	+	+	bcd	70
16	+	+	+	+	abcd	96

Tabla 6-11 Constantes de los contrastes del diseño 24

	A	В	AB	С	AC	BC	ABC	D	AD	BD	ABD	CD	ACD	BCD	ABCD
(1)	_	_	+		+	+	-	_	+	+	_	+	_	_	+
a	+	-		_	_	+	+	_	_	+ 1	+	+	+	_	-
b	_	+	_	_	+		+	_	+	_	+	+	-	+	-
ab	+	+	+	_	_	_	_					+	+	+	+
c		_	+	+	_	_	+		+	+	-		+	+	-
ac	+	-		+	+		_	_	_	+	+		_	+	+
bc	_	+	-	+	· —	+	_	_	+	_	+	_	+	_	+
abc	+	+	+	+	+	+	+	-						-	-
d		-	+	_ '	+	+	_	+	_		+		+	+	-
ad	+	_	_ '			+	+	+	+	-				+	+
bd	_	+	_		+	-	+	+	_	+	_		+		+
abd	+	+	+	_	_	_		+	+	+	+	-	_	_	_
cd	_	_	+	+	_	_	+	+	_	_	+	+	****	_	+
acd	+	_	****	+	+		_	+	+	_	_	+	+ .		_
bcd		+	_	+	_	+		+	_	+	_	+	-	+	_
abcd	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+

Tabla 6-12 Estimaciones de los efectos de los factores y sumas de cuadrados del diseño factorial 2⁴ del ejemplo 6-2

Término del modelo	Estimación del efecto	Suma de cuadrados	Contribución porcentual				
\overline{A}	21.625	1870.56	32.6397				
B	3.125	39.0625	0.681608				
C	9.875	390.062	6.80626				
D	14.625	855.563	14.9288				
AB	0.125	0.0625	0.00109057				
AC	-18.125	1314.06	22.9293				
AD	16.625	1105.56	19.2911				
BC	2.375	22.5625	0.393696				
BD	-0.375	0.5625	0.00981515				
CD	-1.125	5.0625	0.0883363				
ABC	1.875	14.0625	0.245379				
ABD	4.125	68.0625	1.18763				
ACD	-1.625	10.5625	0.184307				
BCD	-2.625	27.5625	0.480942				
ABCD	1.375	7.5625	0.131959				

Normal Q-Q Plot

Tabla 6-13 Análisis de varianza del experimento del índice filtración en la planta piloto en A, C y D

Fuente de variación	Suma de cuadrados	Grados de libertad	Cuadrado medio	F_0	Valor P
\overline{A}	1870.56	1	1870.56	83.36	< 0.0001
C	390.06	1	390.06	17.38	< 0.0001
D	855.56	1	855.56	38.13	< 0.0001
AC	1314.06	1	1314.06	58.56	< 0.0001
AD	1105.56	1	1105.56	49.27	< 0.0001
CD	5.06	1	5.06	<1	
ACD	10.56	1	10.56	<1	
Error	179.52	8	22.44		
Total	5730.94	15			·

Transformación de datos

Ejemplo:

Daniel describe un diseño factorial 2⁴ utilizado para estudiar la rapidez de avance de una perforadora como una función de cuatro factores: la carga de la perforadora (A), la rapidez de flujo (B), la velocidad de rotación (C) y el tipo de lodo de perforación usado (D). Los datos se presentan en la figura:

Figura 6-17 Datos del experimento de perforación del ejemplo 6-3.

Efectos de localización y dispersión en un diseño factorial no replicado

Los residuales dan información de la variabilidad del proceso.

Ejemplo

Se corrió un diseño 2⁴ en un proceso de manufactura de paneles laterales y ventanas de un avión comercial. Los paneles se hacen en una prensa, y bajo las condiciones actuales es demasiado elevado el número promedio de defectos por panel en una operación de prensado. (El promedio actual del proceso es 5.5 defectos por panel.) Se investigan cuatro factores utilizando una sola réplica de un diseño 24 en el que cada réplica corresponde a una sola operación de prensado. Los factores son la temperatura (A), el tiempo de sujeción (B), el flujo de resina (C) y el tiempo de cierre en el prensado

Factores	Bajo ()	Alto (+)
A = Temperatura (°F)	295	325
B = Tiempo de sujeción (min)	7	9
C = Flujo de resina	10	20
D = Tiempo de cierre (s)	15	30

Figura 6-24 Datos del experimento del proceso de los paneles del ejemplo 6-4.

$$H_0: \sigma^2(B^+) = \sigma^2(B^-) \text{ versus } H_1: \sigma^2(B^+) \neq \sigma^2(B^-)$$

$$F_B^* = \ln \frac{S^2(B^+)}{S^2(B^-)}$$
 Tiene una distribución aproximadamente normal estándar

Confusión en el diseño factorial 2k

- La confusión o mezclado es una técnica mediante la cual un experimento factorial completo se distribuye en bloques.
- La estructura generada corresponden a diseños de bloques incompletos.
- Diseño factorial 2^k en 2^p bloques incompletos, p<k
- Lo usual es confundir la interacción de orden más alto con los bloques.

Confusión en dos bloques

Se tiene una solo réplica de un diseño factorial 2^k con k=2. Se cuenta con dos lotes de materia prima, cada lote alcanza para probar dos combinaciones de tratamientos

Figura 7-1 Diseño 2² en dos bloques.

Tabla 7-3 Tabla de signos positivos y negativos para el diseño 22

Combinación de	Efecto factorial				
tratamientos	\overline{I}	A	В	AB	
(1)	+		_	+	
à	+	+	_	_	
b	+	_	+	_	
ab	+	+	+	+	

Para confundir o mezclar un efecto A, B o AB, con los bloques.

Del libro que se les compartió, diseño de experimentos de Kuehl, leer y estudiar: 15.5 Análisis cuando no se cumplen las suposiciones del análisis univariado.

Referencias bibliográficas

- Montgomery, D. (2004). Diseño y análisis de experimentos. 2da edición. Editorial Limusa.
- Notas de clase del profesor Victor Maehara, del curso Diseños Experimentales II.
- Kuehl, R. (2001). Diseño de experimentos. Principios estadísticos de diseño y análisis de investigación. 2da edición. Thomson Learning.
- Notas de clase del profesor Felipe De Mendiburu, del curso de Diseños Experimentales II.