Конспекты по матанализу

Владимир Милосердов, Владимир Шабанов $2 \ {\rm oktrsfpr} \ 2015 \ {\rm r}.$

Оглавление

1	1 Введение в пределы			5
	1.1	Преде	л последовательности	5
		1.1.1	Определение	5
	1.2	Преде	л функции	5
		1.2.1	Определение по Гейне	5
			Определение по Коши	
		1.2.3	Теорема о двух миллиционерах	6
		1.2.4	Доказательство эквивалентности определений по Коши и по Гейне	6

ОГЛАВЛЕНИЕ ОГЛАВЛЕНИЕ

Глава 1

Введение в пределы

1.1 Предел последовательности

1.1.1 Определение

Пусть имеется последовательность a_n . Тогда если начиная с некоторго элемента под индексом N каждый следующий элемент a_n , где n>N будет входить в ε -окрестность некоторой точки A, то говорят, что последовательность имеет предел и он равен A. $\forall \varepsilon>0, \exists N: \forall n>N: a_n\in \mathring{U}_\varepsilon(A)$

Определение Последовательность - сходящеяся, если она имеет предел.

Определение Последовательность – расходящеяся, если у нее нет предела

1.2 Предел функции

1.2.1 Определение по Гейне

Пределом функции f(x) в точке a называется точка A, если для любой сходящейся в точке a последовательности x_n множество соответсвующих значений $y_n = f(x_n), n \neq 0$ стремится к A.

$$\forall n \in \mathbb{N}, \lim_{n \to x_0} x_n = a$$
$$\lim_{n \to \infty} f(x_n) = A$$

1.2.2 Определение по Коши

Пределом функции f(x) в точке a называется точка A, если для любого $\varepsilon>0$ найдется $\delta>0$ такое, что для любого аргуманта x такого, что $0<|x-a|<\delta$ выполняется неравенство $|f(x)-A|<\varepsilon$

$$\lim_{x \to a} f(x) = A \iff \forall \varepsilon > 0: \ \exists \delta > 0: \ \forall x: \ 0 < |x - a| < \delta \implies |f(x) - A| < \varepsilon$$

1.2.3 Теорема о двух миллиционерах

Функция, "зажатая" между двумя функциями, имеющими одиннаковый предел имеет такой же предел.

Такой же предел.
$$\begin{cases} \varphi(x) \leq f(x) \leq \psi(x), \forall x \\ \lim_{x \to a} \varphi(x) = A \\ \lim_{x \to a} \psi(x) = A \end{cases} \implies \lim_{x \to a} f(x) = A$$

Доказательство:

Прибавим к каждой части неравенства $\varphi(x) \leq f(x) \leq \psi$ по -A: $\varphi(x) - A \le f(x) - A \le \psi(x) - A$. Из предыдущего неравенства и рисунка

очевидно, что для любых допустимых взаимных расположений точек $A, \varphi(x), \psi(x), f(x)$ верно следующее неравенство:

(1)
$$|f(x) - A| \le \max(|\varphi(x) - A|, |\psi(x) - a|)$$

Т.к. $\lim \varphi(x) = \lim \psi(x) = A$, то $\forall \varepsilon > 0$ существует ε -окрестность U_a и

$$\varphi(x) \in U_{\varepsilon}(a)$$
 и $\psi(x) \in U_{\varepsilon}(a)$. T.e. $|\varphi(x) - A| < \varepsilon$ и $|\psi(x) - A| < \varepsilon$.

Тогда из (1) следует: |f(x)-A|<arepsilon из чего согласно определению предела по Коши следует, что $\lim f(x) = A$, что и требовалось доказать.

Доказательство эквивалентности определений по Коши и 1.2.4 по Гейне

От Гейне к Коши

Докажем от противного. Пусть $A = \lim_{x \to a} f(x)$ (по Гейне) и он не равен пределу по Коши.

Т.е. (из определения по Коши):

$$\exists \varepsilon > 0: \ \forall \delta > 0: \ \exists x_\delta: \ 0 < |x_\delta - a| < \delta$$
 и $|f(x_\delta) - A| \ge \varepsilon$

Рассмотрим $\delta = \frac{1}{n}, n \in \mathbb{N}$, обозначим последовательность значений в точке δ через x_n . Тогда имеем:

 $0<|x_n-a|<rac{1}{n},$ где $0\to 0$ и $rac{1}{n}\to 0.$ Из строгости неравенства следует $x_n\neq a,$ а по теореме о трёх миллиционерах имеем:

 $|x_n-a|\to 0 \Rightarrow x_n\to a$, поэтому из определения по Гейне $f(x_n)\to A$, но по построению (t.k. $|f(x_{\delta}) - A| \ge \varepsilon$) $f(x_n) \not\to A$

Получили противоречие, значит если функция имеет предел по Гейне, то его можно определить и по Коши.

От Коши к Гейне

Пусть
$$A=\lim_{x\to a}f(x)$$
 по Коши. Т.е. $\forall \varepsilon>0:\ \exists \delta>0:\ \forall x:\ 0<|x-a|<\delta\ \Rightarrow\ |f(x)-A|<\varepsilon$

Выберем произвольную последовательность x_n такую, что $\lim_{n\to +\infty} x_n=a$. Т.к. x_n стремится к a, то для любого $\delta>0$ найдется такой номер (обозначим его n_δ), начиная с которго $\forall n>n_\delta$ будет выполнятся неравенство $|f(x_n)-A|<\varepsilon$, что по Коши равносильно $\lim_{n\to +\infty} f(x_n)=A$