Examen intra

MAT-2910 : Analyse numérique pour l'ingénieur Remarques :

Hiver 2014

- Toutes les réponses doivent être justifiées. Dans le cas contraire, une réponse sera considérée comme nulle.
- 2) Seules les calculatrices avec l'auto-collant de la Faculté sont autorisées.
- 3) L'examen est noté sur 100 points et compte pour 30% de la note finale.

Question 1. (25 points)

Soit

$$f(x) = 1 - x + x^2 - x^3$$

possédant une unique racine réelle r=1.

a) [10 pts] Soit

$$g_1(x) = (x^3 + f(x))^{\frac{1}{3}}$$

- Montrer que r est un point fixe de g_1 .
- Déterminer la nature de r pour g_1 (attractif, répulsif ou indéterminé), si la méthode du point fixe appliquée à g_1 converge et, le cas échéant, à quel ordre.
- b) [15 pts] Soit

$$g_{\alpha}(x) = x + \frac{1}{\alpha}f(x)$$
 $\alpha \neq 0$

- Si on devait choisir entre $\alpha=4$ et $\alpha=5$, quelle valeur donnerait la meilleure méthode de point fixe?
- Peut-on choisir α pour avoir une convergence quadratique?
- Peut-on choisir α pour avoir une convergence cubique?
- Que se passe-t'il si $\alpha < 0$?

Question 2. (20 points)

Soit

$$w(x) = \frac{1}{1+x} + e^x$$

- a) [5 pts] Calculer le polynôme de Taylor de degré 2 de w(x) autour de $x_0 = 0$ et en déduire une approximation de w(0,025).
- b) [5 pts] Exprimer le terme d'erreur pour le polynôme développé en a)
- c) [10 pts] En utilisant le terme d'erreur calculé en b), donner une majoration de l'erreur absolue et en déduire le nombre de chiffres significatifs dans l'approximation obtenue en a).

Question 3. (30 points)

Soit le système $A\vec{x} = \vec{b}$ suivant,

$$\begin{bmatrix} 2 & 6 & -2 \\ 6 & 15 & 3 \\ -2 & 3 & 17 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 4 \\ 9 \\ 5 \end{bmatrix}.$$

- a) [5 pts] Est-ce que A admet une factorisation de Choleski?
- b) [10 pts] Factoriser A avec la décomposition LU de Crout.
- c) [10 pts] Trouver \vec{x} à l'aide de cette autre factorisation LU de A:

$$A = \left[\begin{array}{rrr} 1 & 0 & 0 \\ 3 & -1 & 0 \\ -1 & 3 & 7 \end{array} \right] \left[\begin{array}{rrr} 2 & 6 & -2 \\ 0 & 3 & -9 \\ 0 & 0 & 6 \end{array} \right]$$

d) [5 pts] Calculer le déterminant de A.

Question 4. (25 points)

Le but de cet exercice est d'obtenir une approximation numérique de π . (Mettez votre calculatrice en radian!)

- a) [5 pts] Soit $f_1(x) = \cos(x) + 1$. Quelle est la multiciplicité de π pour $f_1(x)$?
- b) [5 pts] Faire 4 itérations de Newton à partir de $x_0 = 3$ et faire un tableau contenant les itérations et les erreurs absolues correspondantes.
- c) [5 pts] Pour $f_1(x)$, quel est l'ordre de convergence? Quel est le taux de convergence? Nous avons fait toutes les itérations nécessaires en utilisant la méthode de Newton à partir de $x_0 = 2$ avec une autre fonction, notée $f_2(x)$. Voici le tableau obtenu.

n	x_n	$ e_n $	$\frac{ e_{n+1} }{ e_n }$	$\frac{ e_{n+1} }{ e_n ^2}$	$\frac{ e_{n+1} }{ e_n ^3}$
0	2.00000000000000000	1.14159e-00	9.14027e-01	8.00660e-01	7.01353e-01
1	4.185039863261519	1.04344e-01	6.45647e-01	6.18763e-01	5.92999e-01
2	2.467893674514666	6.73698e-01	1.84939e-01	2.74513e-01	4.07472e-01
3	3.266186277569106	1.24593e-01	5.20685e-03	4.17907e-02	3.35416e-01
4	3.140943912317635	6.48741e-04	1.40288e-07	2.16247e-04	3.33334e-01
5	3.141592653680804	9.10111e-11	0	0	0
6	3.141592653589793	0	-	-	-

- d) [5 pts] Déduire du tableau l'ordre de convergence et le taux de convergence de la méthode de Newton appliquée à f_2 .
- e) [5 pts] Quelle est la multiciplicité de π pour $f_2(x)$?

Aide Mémoire

Analyse d'erreurs

- Erreur du développement de Taylor :

$$R_n(h) = \frac{f^{(n+1)}(\xi)}{(n+1)!} h^{(n+1)} \qquad \text{où } \xi \text{ est compris entre } x_0 \text{ et } x_0 + h$$

- Propagation d'erreurs

$$\Delta f \leq \left| \frac{\partial f(x^*, y^*, z^*)}{\partial x} \right| \Delta x + \left| \frac{\partial f(x^*, y^*, z^*)}{\partial y} \right| \Delta y + \left| \frac{\partial f(x^*, y^*, z^*)}{\partial z} \right| \Delta z$$

Équations non linéaires

– Convergence des méthodes de points fixes : si $e_n = x_n - r$ alors

$$e_{n+1} = g'(r)e_n + \frac{g''(r)e_n^2}{2} + \frac{g'''(r)e_n^3}{3!} + \cdots$$

– Méthode de Steffenson : $x_1 = g(x_0)$ et $x_2 = g(x_1)$

$$x_e = x_0 - \frac{(x_1 - x_0)^2}{x_2 - 2x_1 + x_0}$$