DISTRIBUCIÓN	MODELO	PARÁMETROS	ESPERANZA	VARIANZA
Uniforme Discreta (Equiprobabilidad)	$\frac{1}{n}$	n: Total individuos	$\mu = \sum_{i}^{n} x_i / n$	$\sum_{i}^{n} (x_i - \mu)^2 / n$
Bernoulli Consiste en realizar un experimento aleatorio una sóla vez y observar si cierto suceso ocurre o no, siendo p la probabilidad de que esto sea así (éxito) y q=1-p el que no lo sea (fracaso).	q = (1 - p) para $k = 0p para k = 1$	p: Razón de ocurrencia	E[X] = p	var[X] = p(1-p) = pq
Binomial Realizar n pruebas de Bernoulli, Xi, donde en todas ellas, la probabilidad de éxito es la misma (p), y queremos calcular el número de éxitos, X, obtenidos el total de las n pruebas.	$\binom{n}{x}p^x(1-p)^{n-x}$	n: Número de ensayos p: Probabilidad fija de éxito por ensayo	$\mathbb{E}[X] = np$	$\mathbb{V}\mathrm{ar}[X] = np(1-p)$
Poisson A partir de una frecuencia de ocurrencia media λ, la probabilidad de que ocurra un determinado número de eventos durante cierto período de tiempo o espacio. Se especializa en la probabilidad de ocurrencia de sucesos con probabilidades muy pequeñas, o sucesos "raros".	$\frac{e^{-\lambda}\lambda^k}{k!}$	λ: Velocidad de conteo, >0 k: Variable	E[k] = λ	Var[k] = λ

Hipergeométrica (Muestreos sin remplazos)	$\frac{\binom{d}{x}\binom{N-d}{n-x}}{\binom{N}{n}}$	N: Tamaño población n: Tamaño muestra extraída d: Número de individuos que cumplen característica x: Número de elementos en la muestra que cumplen característica	$E[X] = \frac{nd}{N}$	$\frac{n(m/N)(1 - (m/N))(N - n)}{(N - 1)}$
Uniforme Continua (Equiprobabilidad)	$\frac{1}{b-a}$	b,a: Extremos/límites del problema	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$
Exponencial (Tiempos de vida)	$\lambda e^{-\lambda x}$	λ dado, >0	$E[X] = \frac{1}{\lambda}$	$V(X) = \frac{1}{\lambda^2}$
Normal	$\frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}$	μ: Media $σ$: Desviación estándar, >0	$E[x] = \mu$	$Var[x] = \sigma^2$

Propiedades del valor esperado

$$\begin{split} & \operatorname{E}(aX+b) = a\operatorname{E}(X) + b & V(X) \geq 0 \\ & \operatorname{E}(aX+bY) = a\operatorname{E}(X) + b\operatorname{E}(Y) & V(aX+b) = a^2V(X) \end{split}$$

Propiedades de la varianza

$$V(X) \ge 0$$

$$V(aX + b) = a^2V(X)$$

$$V[x] = E[x^2] - [E[x]]^2$$