Signed Permutations and Two-Rooted Graphs

Hannah Li Jack Ramsey Haley Schilling Caleb Stanford Dr. Marion Scheepers

2015-07-31

Outline

Signed permutations and cdr

From permutations to graphs

Two-rooted graphs and gcdr

Matrices and mcdr

Trichotomy of matrices

Trichotomy of two-rooted graphs

Enumeration results

Criterion for cdr-sortability

Signed permutations

A **signed permutation** of length n is an (ordered) list of n integers, $[s_1, s_2, s_3, \ldots, s_n]$, such that

$$\{|s_i| : 1 \le i \le n\} = \{1, 2, 3, \dots, n\}.$$

Example:

[1,3,-4,2] is a signed permutation of size four.

 $\left[2,5,4,3,1\right]$ is a signed permutation of size five.

Signed permutations

A **signed permutation** of length n is an (ordered) list of n integers, $[s_1, s_2, s_3, \ldots, s_n]$, such that

$$\{|s_i| : 1 \le i \le n\} = \{1, 2, 3, \dots, n\}.$$

Example:

[1,3,-4,2] is a signed permutation of size four. [2,5,4,3,1] is a signed permutation of size five.

(**Biological motivation:** Each number represents a block of DNA, and the negative numbers represent blocks of DNA that are upside down.)

Pointers

Pointers can be assigned to entries of a signed permutation. Example: Consider the signed permutation [3, -5, 2, 1, -4]. The signed permutation with pointers is $[{}_{(2,3)}3_{(3,4)}, {}_{(5,6)} - 5_{(4,5)}, {}_{(1,2)}2_{(2,3)}, {}_{(0,1)}1_{(1,2)}, {}_{(4,5)}4_{(3,4)}]$

The cdr operation

cdr selects two pointers from entries with opposite signs and reverses and negates the entries between them. *Example:*

$$\begin{split} \mathsf{cdr}_{(3,4)} \ \ \mathsf{on} \ [3_{(3,4)}, -5, 2, 1, -4_{(3,4)}] \\ \mathsf{yields} \ [3_{(3,4)}, {}_{(3,4)}4, -1, -2, 5] \end{split}$$

More examples

 $\begin{array}{l} \text{Permutation}: \ [-2, {}_{(3,4)}-3, -5, 1, {}_{(3,4)}4] \\ \text{After } \mathsf{cdr}_{(3,4)}: [-2, -1, 5, 3, 4]. \end{array}$

More examples

Permutation :
$$[-2, (3,4) - 3, -5, 1, (3,4)4]$$

After $cdr_{(3,4)} : [-2, -1, 5, 3, 4]$.

- A signed permutation needs a positive and negative entry in order for cdr to be applied.
- ▶ cdr always creates an **adjacency**, which is i, i + 1 or -(i + 1), -i.
- A signed permutation α is **cdr-sortable** if there is a sequence of cdr moves which sorts it to the identity [1, 2, 3, ..., n].

Research questions

▶ Which signed permutations are cdr-sortable?

Research questions

- ▶ Which signed permutations are cdr-sortable?
- ▶ More generally, for signed permutations α and β , does a sequence of cdr moves exist that go from α to β ?

Research questions

- Which signed permutations are cdr-sortable?
- ▶ More generally, for signed permutations α and β , does a sequence of cdr moves exist that go from α to β ?
- ▶ How many signed permutations are cdr-sortable?

Big picture

 $0 \quad [\quad -5 \qquad \quad 3 \qquad \quad 1 \qquad \quad -2 \qquad \quad 4 \quad] \quad \ 6$

$$0_{(0,1)}[_{(5,6)}^{}-5_{(4,5)},_{(2,3)}^{}3_{(3,4)},_{(0,1)}^{}1_{(1,2)},_{(2,3)}^{}-2_{(1,2)},_{(3,4)}^{}4_{(4,5)}]_{(5,6)}^{}6$$

Rooted graphs

A **multi-rooted graph** $G = (V, E, V_0)$ is an undirected, simple graph with vertex set V, edge set E, and a distinguished set of vertices $V_0 \subseteq V$ called **roots**.

A **two-rooted graph** is a rooted graph in which $|V_0| = 2$. In drawing the graphs, we will denote the roots with diamonds.

The gcdr operation

We define the **gcdr** operation, an operation defined on a specific vertex of a two-rooted graph. (The operation has also been called **local complement**.)

From a two-rooted graph $G = (V, E, V_0)$, we construct $G' = (V, E', V_0) = \gcd_v(G)$ by examining the closed neighborhood of v, N[v], which includes v. All edges in this neighborhood are complemented.

The gcdr operation

We define the **gcdr** operation, an operation defined on a specific vertex of a two-rooted graph. (The operation has also been called **local complement**.)

From a two-rooted graph $G = (V, E, V_0)$, we construct $G' = (V, E', V_0) = \gcd_v(G)$ by examining the closed neighborhood of v, N[v], which includes v. All edges in this neighborhood are complemented.

- gcdr is legal at a non-root, odd-degree vertex.
- gcdr on the vertex of an overlap graph is equivalent to cdr on the corresponding permutation and pointer.
- ► Applying gcdr to a vertex isolates the vertex.

gcdr

Example:

gcdr digraph

Figure : All two-rooted graphs with n=3, connected by gcdr moves. Blue vertices correspond to overlap graphs of permutations.

Big picture

For an undirected graph G with vertex set $\{1, 2, ..., n\}$ and edge set E, the (mod 2) Laplacian matrix is $A = (a_{i,j})$, where

$$a_{i,j} = egin{cases} 1 & i
eq j, (i,j) \in E \ 0 & i
eq j, (i,j)
otin E \ \deg(i) & i = j \end{cases}$$

For an undirected graph G with vertex set $\{1, 2, ..., n\}$ and edge set E, the (mod 2) Laplacian matrix is $A = (a_{i,j})$, where

$$a_{i,j} = egin{cases} 1 & i
eq j, (i,j) \in E \ 0 & i
eq j, (i,j)
otin E \ \deg(i) & i = j \end{cases}$$

Since we are working mod 2, the diagonal entry $a_{i,i}$ is 0 if vertex i is of even degree (unoriented), and 1 if vertex i is of odd degree (oriented).

Example:

Example:

The (mod 2) Laplacian matrix E satisfies:

- E is symmetric.
- ▶ The vector of ones is in ker *E*.

mcdr

Let E be a matrix and let i be a non-root index. Let $\mathbb{1}_i$ be the $n \times n$ matrix which is 1 at (row i, column i), and 0 elsewhere.

mcdr

Let E be a matrix and let i be a non-root index. Let $\mathbb{1}_i$ be the $n \times n$ matrix which is 1 at (row i, column i), and 0 elsewhere.

The **mcdr** operation can be applied when $E_{i,i} = 1$, and i is not a root index. It maps

$$E \stackrel{\operatorname{mcdr}_{i}}{\longmapsto} E + E \mathbb{1}_{i} E.$$

Trichotomy of matrices

Let X_{\diamond} be the subset of $X=\mathbb{F}_2^n$ generated by the coordinates corresponding to root vertices. Let $P_{\diamond}: X \to X_{\diamond}$ be the projection matrix which restricts to those coordinates. The following subspace of $X_{\diamond} \times X_{\diamond}$ is invariant under mcdr:

$$\Pi(E) := \big\{ (P_{\diamond}x, Ex) \ : \ x \in X, \ Ex \in X_{\diamond} \big\}.$$

Trichotomy of matrices

Let X_{\diamond} be the subset of $X=\mathbb{F}_2^n$ generated by the coordinates corresponding to root vertices. Let $P_{\diamond}: X \to X_{\diamond}$ be the projection matrix which restricts to those coordinates. The following subspace of $X_{\diamond} \times X_{\diamond}$ is invariant under mcdr:

$$\Pi(E) := \big\{ (P_{\diamond}x, Ex) \ : \ x \in X, \ Ex \in X_{\diamond} \big\}.$$

In our case, there are two roots, so $X_{\diamond} \cong \mathbb{F}_2^2$, and $X_{\diamond} \times X_{\diamond} \cong \mathbb{F}_2^4$. It turns out that there are only three possibilities for $\Pi(E)$:

$$\Pi(E) = \{(0,0,0,0), (1,0,0,0), (0,1,0,0), (1,1,0,0)\}$$
 (a)

$$\Pi(E) = \{(0,0,0,0), (0,1,1,1), (1,0,1,1), (1,1,0,0)\}$$
 (b)

$$\Pi(E) = \{(0,0,0,0), (1,1,0,0), (0,0,1,1), (1,1,1,1)\} \quad \text{(c)}.$$

Trichotomy of matrices

Let X_{\diamond} be the subset of $X=\mathbb{F}_2^n$ generated by the coordinates corresponding to root vertices. Let $P_{\diamond}:X\to X_{\diamond}$ be the projection matrix which restricts to those coordinates. The following subspace of $X_{\diamond}\times X_{\diamond}$ is invariant under mcdr:

$$\Pi(E) := \big\{ (P_{\diamond}x, Ex) \ : \ x \in X, \ Ex \in X_{\diamond} \big\}.$$

In our case, there are two roots, so $X_{\diamond} \cong \mathbb{F}_2^2$, and $X_{\diamond} \times X_{\diamond} \cong \mathbb{F}_2^4$. It turns out that there are only three possibilities for $\Pi(E)$:

$$\Pi(E) = \{(0,0,0,0), (1,0,0,0), (0,1,0,0), (1,1,0,0)\}$$
 (a)

$$\Pi(E) = \{(0,0,0,0), (0,1,1,1), (1,0,1,1), (1,1,0,0)\} \quad \textbf{(b)}$$

$$\Pi(E) = \{(0,0,0,0), (1,1,0,0), (0,0,1,1), (1,1,1,1)\} \quad \text{(c)}.$$

We can translate this trichotomy back into the language of two-rooted graphs.

gcdr digraph

Figure : All two-rooted graphs with n = 3, connected by gcdr moves.

Parity cuts

A parity cut of a two-rooted graph G = (V, E, (x, y)) is a partition of V into V_1 and V_2 such that

- (i) for all non-root $v \in V_1$, v is adjacent to an even number of vertices in V_2
- (ii) for all non-root $w \in V_2$, w is adjacent to an even number of vertices in V_1 .

Example of a Parity Cut

a-b-c trichotomy

A two-rooted graph G with roots x, y satisfies

- ▶ **property (a)** if there is a parity cut $\{V_1, V_2\}$ of G such that $x \in V_1$, $y \in V_2$, x is connected to an even number of vertices in V_2 , and y is connected to an even number of vertices in V_1 .
- ▶ **property (b)** if there is a parity cut $\{V_1, V_2\}$ of G such that $x \in V_1$, $y \in V_2$, x is connected to an odd number of vertices in V_2 , and y is connected to an odd number of vertices in V_1 .
- ▶ **property (c)** if there is a parity cut $\{V_1, V_2\}$ of G such that $x, y \in V_1$, and x, y are each connected to an odd number of vertices in V_2 .

Illustration

- Note $0 \in \{0,2\}$ and $4 \in \{1,3,4\}$. Also, 0 connects to an even number of vertices in $\{1,3,4\}$.
- G satisfies property (a).

Illustration

- Note $0 \in \{0, 1, 2, 3\}$ and $4 \in \{3, 4\}$. Also, 0 connects to an odd number of vertices in $\{1, 3, 4\}$.
- ► *G* satisfies property (b).

Illustration

- Note $0, 4 \in \{0, 4\}$. 0 connects to an odd number of vertices in $\{1, 2, 3\}$.
- ► G satisfies property (c).

▶ Properties (a), (b), and (c) are invariant under (g)cdr.

- ▶ Properties (a), (b), and (c) are invariant under (g)cdr.
- ▶ The overlap graph of the signed permutation [1, 2, ..., n] satisfies property (a).

- ▶ Properties (a), (b), and (c) are invariant under (g)cdr.
- ▶ The overlap graph of the signed permutation [1, 2, ..., n] satisfies property (a).
- ▶ The overlap graph of the signed permutation $[-n, -(n-1), \ldots, -1]$ satisfies property (b).

- ▶ Properties (a), (b), and (c) are invariant under (g)cdr.
- ▶ The overlap graph of the signed permutation [1, 2, ..., n] satisfies property (a).
- ▶ The overlap graph of the signed permutation $[-n, -(n-1), \ldots, -1]$ satisfies property (b).
- ▶ If a signed permutation α is cdr-sortable, then its overlap graph satisfies property (a). But not all (a)-permutations are cdr-sortable.

gcdr digraph

Figure : All two-rooted graphs with n = 3, connected by gcdr moves.

Enumeration of Graphs

Let *n* be the number of non-root vertices.

n	a(n)	b(n)	c(n)
0	1	1	0
1	3	3	2
2	23	23	18
3	351	351	322
4	11119	11119	10530
5	703887	703887	689378

The total number of graphs is

$$a(n) + b(n) + c(n) = 2^{\binom{n+2}{2}}$$
.

Toggling the edge between \diamond_1 and \diamond_2 is a bijection from graphs of property (a) to graphs of property (b). So

$$a(n) = b(n)$$
.

A bijection shows that

$$a(n) = (2^n + 1)a(n - 1) + 2^n(2^n - 2)a(n - 2); \ a(0) = 1$$

from which we derive

$$a(n) + (2^{n} - 1)a(n - 1) = \frac{1}{2}2^{\binom{n+2}{2}}.$$

We can also use

$$a(n) + (2^{n} - 1)a(n - 1) = \frac{1}{2}2^{\binom{n+2}{2}}; \ a(0) = 1$$

to get that, explicitly:

$$a(n) = \sum_{k=0}^{n} \left(\prod_{i=1}^{k} 2^{i+1} \right) \left(\prod_{i=k+1}^{n} (1-2^{i}) \right).$$

Verla Graph

Given an overlap graph, the vertex-oriented **verla graph** is constructed as follows:

- Assign orientations to the overlap graph vertices with odd degree are oriented and vertices with even degree are unoriented.
- ▶ Remove the (0,1) and (n, n+1) vertices.

This construction is used solely for the cdr Sortability Theorem.

Example

$$\alpha = [-5, 3, 1, -2, 4]$$

Overlap Graph

Verla Graph

The cdr sortability theorem

Theorem

Let α be a signed permutation. The following are equivalent:

- 1. α is cdr-sortable.
- 2. The overlap graph of α satisfies property (a), and every nontrivial component of the verla graph of α has an oriented vertex.

Example

$$\alpha = [-5, 3, 1, -2, 4]$$

Overlap Graph

Verla Graph

Example

$$\alpha = [-5, 3, 1, -2, 4]$$

Overlap Graph

5, 6 0, 1 1, 2 3, 4) (2, 3) Verla Graph

References

- K. Adamyk, E. Holmes, G. Mayfield, D.J. Moritz, M. Scheepers, B.E. Tenner and H. Wauck, Sorting permutations: Games, genomes and Graphs, arXiv1410.2353
- A. Bergeron, C. Chauve, T. Hartman, K. St-Onge, On the of Sequences of Reversals that Sort a Signed Permutation, Proceedings of JOBIM 2002, (2002), 99 - 107.
- C.L. Jansen, M. Scheepers, S.L. Simon, E. Tatum, Context Directed Reversals and the Ciliate Decryptome (preprint)
- ► C.L. Jansen, M. Scheepers, S.L. Simon, E. Tatum, *Permutation Sorting and a Game on Graphs*, arXiv:1411.5429v1
- ▶ S. Hannenhalli, P. Pevzner, *Transforming Cabbage Into Turnip* (Polynomial Algorithm for Sorting Signed Permutations by Reversals), J. Assoc.Comput. Mach. 46 (1999) 1–27.

Acknowledgements

This research was funded by NSF REU Grant DMS-1359425 for the Boise State University Mathematics REU, and Boise State University.

