Transcripción II

MARIA DEL PILAR MÁRQUEZ DEPARTAMENTO DE BIOLOGÍA

Haciendo memoria!!

Gen Procariota

Gen Eucariota

Haciendo memoria!!

Procariotas

Eucariotas

Haciendo memoria!!

RNA POLIMERASA

- Molde ADN 3' 5'
- Síntesis RNA 5′ 3′
- No requiere de *primer*

Procariota

Una sola polimerasa: holoenzima

Eucariota

Varias polimerasas: una para cada tipo de genes

RNApol I: rRNA

RNApol II: mRNA

RNApol III: tRNA

EUCARIOTAS

¿Cómo transcribir genes que se encuentran incorporados en los nucleosomas?

Nucleosoma

Complejo mediador

Proteínas reguladoras de unión al DNA (activadores/represores):

Enzimas modificadoras de nucleosomas

RNA polimerasas no pueden reconocer directamente el promotor: requieren de varios factores proteicos adicionales

Factores Generales de la Transcripción o GTFs

GTFs + **RNA polimerasa** → Promotor central

= Complejo de preiniciación

Factores Generales de la Transcripción (GTFs)

Función similar a factor sigma en procariotas:

- Reconocen elementos basales del promotor
- OPromueven apertura de la doble hélice
- OReclutan RNA polimerasa y favorecen la transición iniciación-elongación

Transcripción de genes tipo II (mRNA)

Promotor central de clase II:

combinación de 4 elementos basales (no siempre están los 4)

- CAJA TATA (-26)
- -Elemento Inr (iniciador) (+1)
- -Elemento **BRE** (TFIIB Recognition Element) (-35)
- -Elemento **DPE** (Downstream Promoter Element) (+30)

Caja TATA

- •Región del promotor entre 24 y 32bp corriente arriba del sitio de inicio de la transcripción
- •Sitio de ensamble del complejo de preiniciación (GTF + polimerasa)

After Gannon, F., O'Hare, K., Perrin, F., Le Pennec, J.P., Benoist, C., Cochet, M., Breathnach, R., Royal, A., Garapin, A., Cami, B., and Chambon, P., *Nature* 278, 433 (1978). Copyright 1999 John Wiley and Sons, Inc. All rights reserved.

Ensamblaje del complejo de preiniciación

- 1- CAJA TATA: unión del factor basal TFIID a través de la TBP (TATA Box Binding Protein)
 - → Dobla la doble cadena de DNA (80°):
- 2- Reclutamiento de más factores de transcripción: TFIIA y TFIIB: plataforma lista para recibir RNApol II
- 3- Reclutamiento de RNApol II TFIIF y TFIIH (helicasa)
- 4- TFIIH fosforila RNApol= inicio

Figure 11-18b Cell and Molecular Biology, 4/e (© 2005 John Wiley & Sons)

Complejo de preiniciación

Promotor central + GTFs + RNA pol II = complejo de preiniciación completo

 Ciclos de elongación abortivos
No es suficiente para dar inicio a transcripción!

¿Qué permite la transición hacia elongación?

→ Acción de activadores de la transcripción reclutados en secuencias reguladoras

Secuencias reguladoras y activadores

✓ Elementos proximales (- 50 a -200 pb)UAS (Upstream Activator Sequence)

✓ Elementos distales:

Enhancers (intensificadores o amplificadores)

Activación de la elongación:

Activadores promueven indirectamente la Fosforilación de cola CTD (dominio carboxilo terminal) de RNApol:

- Permite que la RNA polimerasa se desprenda de la mayoría de los GTFs
- → Transición iniciación/elongación
- = activación de la polimerización o <u>elongación</u>

Elongación

Tras activación, la RNA polimerasa se desplaza a lo largo de la cadena de DNA sobre un molde 3'→5' formando una burbuja de transcripción.

Terminación

Señales de poli-adenilación en el RNA reclutan factores proteicos: factor de especificidad de adenilación y escisión (CPSF) y factor estimulante de la escisión (CstF), que reclutan otras proteínas que inducen la escisión y la poli-adenilación del mRNA

Eventos post-transcripcionales

Maduración del RNA

RNAs

Class of RNA	Cell Type	Location of function in eukaryotic cells*	Function
Ribosomal RNA (rRNA)	Bacterial and eukaryotic	Cytoplasm	Structural and functional components of the ribosome
Messenger RNA (mRNA)	Bacterial and eukaryotic	Nucleus and cytoplasm	Carries genetic code for proteins
Transfer RNA (tRNA)	Bacterial and eukaryotic	Cytoplasm	Helps incorporate amino acids into polypeptide chain
Small nuclear RNA (snRNA)	Eukaryotic	Nucleus	Processing of pre-mRNA
Small nucleolar RNA (snoRNA)	Eukaryotic	Nucleus	Processing and assembly of rRNA
Small cytoplasmic RNA (scRNA)	Eukaryotic	Cytoplasm	Variable
MicroRNA (miRNA)	Eukaryotic	Cytoplasm	Inhibits translation of mRNA
Small interfering RNA (siRNA)	Eukaryotic	Cytoplasm	Triggers degradation of other RNA molecules

Maduración del RNA

Proceso por el cual cualquier tipo de RNA sufre modificaciones que lo llevan a adquirir su **funcionalidad**

modificación o procesamiento post-transcripcional

Luego de este proceso los RNAs son más resistentes a la acción de nucleasas y tridimensionalmente compactos.

Eventos de maduración

- Fraccionamiento (*cleavage*) de la molécula
- Modificación covalente de nucleótidos
- Corte o adición de nucleótidos en los extremos
- Corte y empalme (ayuste splicing) de la molécula

Fraccionamiento de la molécula: tRNA y rRNA

El transcrito primario contiene varios precursores

Procesamiento del pre-RNA

exonucleasas

tRNA (eucariota): corte y empalme - Proceso enzimático

Proceso mediado por endonucleasas

Modificación covalente de nucleótidos

T timina

Pseudouridina

D dihidrouridina

N nucleótido metilado

tRNA fenilalanina

Corte y/o adición de nucleótidos en los extremos

tRNA

La secuencia 5' CCA 3' se añade al extremo 3' (se adiciona por medio de enzimas después del procesamiento)

Maduración de un mRNA

- Corte de nucleótidos en extremo 3'
- Adición de nucleótidos en ambos extremos (5' y 3')
- Corte y empalme

Corte y/o adición de nucleótidos en los extremos

mRNA Eucariota

5' adición de caperuza de metilguanosina en dirección reversa

- Añadida cuando el transcrito tiene pocos nucleótidos
- Esencial para la traducción aunque no codifica para ningún aminoácido

3' adición de cola poli-A

- Corte de la última parte de la secuencia sintetizada en el extremo 3' del mRNA
- Adición de la cola (100-200 A)

© The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

The ends of eukaryotic mRNAs

Corte y empalme (splicing) del mRNA

Eliminación de intrones y unión de secuencias de exones

EXÓN: Secuencia del gen que se expresa

INTRÓN: secuencia del gen que se encuentra entre los intrones y no se expresa

Empalmosoma (spliceosoma)

Complejo ribonucleoprotéico responsable de la eliminación de los intrones del transcrito primario de mRNA.

Compuestos por snRNAs (RNAs pequeños nucleares)

snRNPs (ribonucleoproteínas nucleares pequeñas)

catalytically activated spliceosome

Watson et al. Biología molecular del gen. 7ª Edición

Exón: cualquier región retenida en un mRNA maduro

Intrón: regiones eliminadas en el mRNA maduro

Cómo se distinguen los intrones de los exones?

Corte y empalme <u>alternativo</u> de mRNA

- Proceso de inclusión o exclusión de regiones del pre-mRNA
- Fuente importante de diversidad de proteínas eucariotas
- Regulación temporal o tejido-específica
 - Se piensa que el 90% de los genes en el genoma humano experimenta empalme alternativo, generando más de una **isoforma**

Isoforma: productos alternativos del splicing

Corte y empalme alternativo de mRNA

¿Cómo saber si un gen se está expresando (se está transcribiendo)?: Northern Blot

Detección de RNA

- Separación de diferentes RNA por tamaño a través de electroforesis
- Detección del gen con una *sonda complementaria al gen (RNA) de interés

^{*}Sonda: Secuencia específica de ssDNA marcada, que se hibridará con una secuencia complementaria de ssRNA

¿Cómo saber si un gen se está expresando (se está transcribiendo)?

*Se puede determinar la expresión de un gen en una condición determinada

Permite observar los patrones de expresión de un gen determinado p.ej entre diferentes tejidos, órganos, estados de desarrollo, condiciones de estrés, etc.

¿Cómo saber si un gen se está expresando (se está transcribiendo)?: qRT-PCR

Permite la cuantificación de la expresión de genes

El RNA es transcrito a cDNA (DNA complementario) con una transcriptasa reversa a partir de mRNA o RNA total. El cDNA se usa como molde en la reacción de la qPCR

PCR a partir del cDNA

Nota: repasar plenaria PCR

http://vcell.ndsu.edu/animations/transcription/movie-flash.htm

Para llevar a casa...

Estructura general de un gen

Estructura de un gen procariota

Estructura de un gen eucariota

PROCARIOTAS	EUCARIOTAS
Transcripción y traducción acopladas	Transcripción y traducción compartimentalizadas
RNA polimerasa 1 sola	RNA polimerasa 3 tipos
Reconocimiento del promotor: Factor sigma:	Reconocimiento del promotor: GTFs
Promotor: caja -10 y caja -35	Promotor: diferentes cajas según el tipo de genes - TATA
	Se necesitan elementos adicionales para la transcripción: activadores, complejo mediador, enhancers, proteínas remodeladoras de la cromatina
Terminación: dependiente de rho / independiente de rho	Terminación: secuencias terminadoras / endonucleasas

RNA	MODIFICACIONES	
PROCARIOTAS		
mRNA	No hay modificaciones	
tRNA	Fraccionamiento del precursor, modificación de bases, modificación de extremos	
rRNA	Fraccionamiento del precursor, metilación de bases	
EUCARIOTAS		
mRNA	Adición de nucleótidos en los extremos (5' CAP y 3' poli A); corte y empalme	
tRNA	Fraccionamiento del precursor, modificación de bases, corte y empalme, modificación de extremos	
rRNA	Fraccionamiento del precursor, metilación de bases	