Analysis of the Anthrax Vaccine Studies

David Madigan
Columbia University
www.stat.columbia.edu/~madigan

madigan@yahoo.com

Plan of Campaign

- Modulate NHP immune response to AVA by dose variation (2003 committee)
 - Hu-AVA, 1/5, 1/10, 1/20, 1/40, saline controls
 - 0-wk, 4-wk, 26-wk IM
- Build comprehensive immunologic profile
- Challenge at 12, 32, & 42 months after first vaccination
- Build a model for predicting a defined outcome (i.e. survival)
- Apply this relationship to the human clinical study to predict protection of vaccinees

Review of the CDC Macaque Study Analysis

Table 1. Basic Statistics for Primate Groups

Group	Со	unt	Approx. Week	Vaccine
Number	Treated	Control	Challenged	Dilution
1	10	2	228	1:1
2	9	1	228	1:5
3	10	2	228	1:10
4	10	2	52	1:20
5	10	2	52	1:40
6	10	2	52	1:10
7	10	2	52	1:20
8	10	2	52	1:40
9	9	2	124	1:10
10	10	2	124	1:1
11	8	2	124	1:5
12	8	2	124	1:20
Total	114	23		

Table 2. Death Rate by Dose

Vaccine		Oute	come
Dilution	Count	Died	Death Rate
1:1	20	2	10%
1:5	17	0	0%
1:10	29	9	31%
1:20	28	10	36%
1:40	20	7	35%
control	23	16	70%
Total	137	44	32%

Figure 1. Log IgG at weeks 8 and 30 as a function of vaccine dose.

Figure 2. Log IgG at weeks 8 and 30 as a function of survival status.

Logistic Regression Model

Linear model for log odds of category membership:

$$\log \frac{p(y=1 \mid \mathbf{x}_i)}{p(y=-1 \mid \mathbf{x}_i)} = \sum \beta_i x_{ij} = \beta \mathbf{x}_i$$

Conditional probability model

"Stage 2" Analysis

	All Groups	
Predictor	Estimate	p-value
log IgG week 8	-0.34	0.37
log IgG week 30	-0.65	0.02
Sex=F	-0.21	0.36
Dose	1.39	0.32

"Stage 3" Analysis

	All Groups	
Predictor	Estimate	p-value
log IgG peak	-0.29	0.09
Last ED50	-0.97	0.01
Last IFNeli	-0.05	0.71
Last SI	0.06	0.76

Out-of-Sample Predictive Performance

	CV Performance	
Model	Accuracy	ROC Area
Stage 2, Four Predictor	0.73	0.77
Stage 2, IgG Week 30	0.73	0.78
Stage 3, Four Predictor	0.70	0.76
Stage 3, peakIgG + last ED50	0.70	0.79
Stage 4, Eight Predictor, Complete	<u>0.76</u>	<u>0.80</u>
Stage 4, IgG38+IL4/IFNeli, Complete	0.75	0.79
Stage 4, Three Predictor, Limited	0.73	0.78
Stage 4, IgG34+SI8, Limited	0.71	0.79

A Model for IgG response in humans

Shock Size

Decay Rate

4IM Group

Shock Size

Decay Rate

Why a model?

- Provides a simplified characterization of immune response to dosing schedules
- •Quantifies the relationship between immune response and age, sex, etc.
- Can be used to predict immune response to future doses or challenges