

AMPLIACIÓN DE SISTEMAS OPERATIVOS Y REDES

Grado en Ingeniería Informática / Doble Grado Universidad Complutense de Madrid

TEMA 1.1. Revisión de IPv4. DHCP

PROFESORES:

Rubén Santiago Montero Eduardo Huedo Cuesta Luis M. Costero Valero

Arquitectura TCP/IP

Protocolo de Internet: IP

Protocolo de la capa de red en TCP/IP

- Especificado en RFC 791 (1981), proporciona un servicio básico de entrega de paquetes
- Protocolo no orientado a conexión y no fiable
 - No realiza detección ni recuperación de paquetes perdidos o erróneos
 - No garantiza que los paquetes lleguen en orden
 - No garantiza la detección de paquetes duplicados

Funciones básicas del protocolo IP

- Esquema global de direccionamiento
 - Dirección IP
- Encapsulado de datos y formato
 - Datagrama IP
- Fragmentación y reensamblaje de paquetes
 - División del paquete en fragmentos de un tamaño aceptable por la red
- Reenvío de paquetes
 - Retransmisión de paquetes de una red a otra basada en la información de la tabla de rutas, generada por protocolos de encaminamiento

Estructura y notación

- Las direcciones IP constan de 4 bytes (32 bits)
- Se representan en "notación decimal de punto" (ej. 10.0.0.1)

Direccionamiento basado en clases

Direccionamiento sin clases (CIDR, Classless Inter-Domain Routing)

- Intenta aliviar el problema del agotamiento de direcciones
- Elimina la estructura fija basada en clases, dividiendo l espacio de direcciones en bloques de tamaño arbitrarios
- Se representan en notación CIDR, que incluye la longitud del prefijo tras una barra

Máscara de red

- Sirve para determinar el prefijo de red de una dirección IP (Y lógica)
- Se representan en notación decimal de punto o CIDR

Direcciones de red

- Se utilizan para representar a una red completa en las tablas de rutas
- Nunca se utilizan como dirección destino ni se asignan a un host concreto

Direcciones de difusión (broadcast)

Se utilizan para enviar un paquete a todas las máquinas de la red local

Direcciones de bucle interno (loopback)

- Se utilizan para designar la máquina local
- Bloque 127.0.0.0/8 (típicamente 127.0.0.1)

Ejemplo

Un computador tiene asignada la dirección IP 150.26.193.66/21. Determinar:

- 1. La máscara de red en notación decimal de punto
- La dirección de la red
- 3. La dirección de difusión (broadcast) de la red
- 4. El número de direcciones útiles para las máquinas de la red
- 5. El rango de direcciones IP que pueden asignarse a las máquinas de la red

Calculadora IP, subnetting/supernetting: http://jodies.de/ipcalc

Direcciones privadas

- Conjunto de direcciones reservadas para uso privado
- No son válidas para su uso en Internet
- Los rangos de direcciones IP privadas son los siguientes:

```
10.0.0.0 - 10.255.255.255 ~ 1 red privada de clase A (/8)
```

- 172.16.0.0 172.31.255.255 ~ 16 redes privadas de clase B (/16)
- 192.168.0.0 192.168.255.255 ~ 256 redes privadas de clase C (/24)

Direcciones multicast (RFC 1112, 1989)

- Identifican de forma lógica a un grupo de hosts en el segmento de red
- Bloque 224.0.0.0/4, con 28 bits para especificar el grupo multicast. Ejemplos:
 - 224.0.0.1 (todos los hosts)
 - 224.0.0.2 (todos los routers)
 - 224.0.0.251 (mDNS)
- Dirección multicast Ethernet 01:00:5E:00:00:00 con los 23 bits menos significativos de la dirección IP:
 - IP: 224.0.0.1 → 23 bits
 - O MAC: 01:00:5E:00:00:01

Formato del datagrama IP

Protocolo de Resolución de Direcciones: ARP

 Especificado en RFC 826 (1982), permite obtener la dirección MAC asociada a una dirección IP

Trama Ethernet

- La tabla ARP (ip neighbour) mantiene temporalmente la asociación entre direcciones IP y direcciones MAC
- Formato del mensaje ARP
 - Hardware es el protocolo de la capa de enlace (Type=0x1 y length=6 para Ethernet)
 - Protocol es el protocolo de la capa de red (Type=0x800 y length=4 para IPv4)

8	16 31
are Type	Protocol Type
Protocol length	Operation Request:1, Reply:2
Source hard	dware address
Source prot	tocol address
	rdware address n request)
Destination pr	otocol address
	Source prot Source prot Destination ha (Empty i

Reenvio de paquetes

 Cuando un host tiene que enviar un paquete, lo hace por el enlace adecuado para alcanzar el destino usando la tabla de rutas

- Reenvío basado en dirección destino. Se busca un destino que coincida y se reenvía por esa ruta (no orientado a conexión)
 - Entradas en la tabla (rutas) por host, red o por defecto
 - Las entradas de red pueden ser con o sin clase
- Reenvío basado en etiqueta. Cada paquete se etiqueta y se reenvía según esa etiqueta (orientado a conexión)
 - Reduce la complejidad de la tabla de rutas
 - Se usa siempre el mismo circuito (entrega en orden y tiempo predecible)
 - Campo Flow Label en la cabecera IPv6 y MPLS (Multiprotocol Label Switching)

Reenvío basado en dirección destino

- La tabla de rutas tiene información sobre:
 - Destino
 - Máscara de red o longitud de prefijo (para direccionamiento sin clase)
 - Interfaz (para entrega directa) y/o siguiente salto (para entrega indirecta)
 - Métrica (preferencia de ruta)
- El destino puede ser
 - Un host específico (/32)
 - Una red
 - Destino por defecto (0.0.0.0/0), para paquetes que no encajen en ninguna entrada
- Proceso de selección de destino:
 - Buscar la ruta más específica que encaje con la dirección destino (longest match prefix)
 - Si hay más de una ruta con igual especificidad, elegir la de menor métrica

Reenvío basado en dirección destino

- La tabla de rutas de un host contiene:
 - Rutas directas a las redes a las que se conecta cada interfaz
 - Rutas específicas configuradas de forma manual (ip route add dest)
 - Ruta por defecto configurada de forma manual (ip route add default) o automática (DHCP)

Ruta por defecto

Ruta establecida por DHCP (servidor 192.168.0.249)

```
$ ip route
default via 192.168.0.1 dev enp0s31f6 proto dhcp src 192.168.0.249 metric 202
default via 192.168.0.1 dev wlp3s0 proto dhcp src 192.168.0.223 metric 303
10.3.0.0/16 dev enp0s31f6 proto kernel scope link src 10.0.0.24
192.168.0.0/24 dev enp0s31f6 proto dhcp scope link src 192.168.0.249 metric 202
192.168.0.0/24 dev wlp3s0 proto dhcp scope link src 192.168.0.223 metric 303
```

Ruta directa al configurar la interfaz

Dos rutas a la red 192.168.0.0/24, se prefiere la de menor métrica (LAN > WiFi)

Reenvío basado en dirección destino

Ejemplo

Dada la siguiente topología de red:

- Determinar la tabla de rutas para el encaminador R1
- Describir el procesamiento de dos paquetes con dirección destino 201.4.22.35 y 18.24.32.78, respectivamente

Protocolo de Mensajes de Control de Internet: ICMP

Características

- Permite intercambiar mensajes de control en la red
- Los mensajes ICMP se pueden clasificar en dos tipos:
 - Error: para informar de situaciones de error en la red
 - o **Informativos**: sobre la presencia o el estado de un determinado sistema

0	
8	Tipo ICMP
	Código
16	
32	····· Checksum·····
-	
	ICMP Datos (Opcionales)

Mensajes Error		
Tipo	Significado	
3	Destination Unreachable	
4	Source Quench	
11	Time Exceeded	
12	Parameter Problem	

Mensajes Informativos		
Tipo	Significado	
0	Echo Reply	
5	Redirect	
8	Echo Request	
9	Router Solicitation	
10	Router Advertisement	

ICMP: Echo Request/Reply

- Se utilizan para ver si un computador es alcanzable
- Formato de los mensajes Echo Request/Echo Reply:
 - Identificador: Permite establecer la correspondencia entre solicitud (Request) y respuesta (Reply); ambos con el mismo identificador.
 - Secuencia: También se utiliza para establecer la correspondencia entre solicitud y respuesta, cuando se envían varios Echo Requests consecutivos con el mismo identificador.
 - Datos: Un número determinado de bytes aleatorios.
- La orden ping envía mensajes ICMP Echo Request y espera la recepción de mensajes ICMP Echo Reply

Protocolo de Configuración Dinámica de Hosts: DHCP

- Proporciona configuración automática de los parámetros de la red
 - Dirección IP y máscara de red
 - Router predeterminado
 - Servidores DNS
 - Otros parámetros y servicios de red

Antecedentes

- RARP (Reverse ARP, 1984): Sólo es útil en el segmento de red. Únicamente provee la dirección IP
- BOOTP (Bootstrap Protocol, 1985): Soluciona los problemas de RARP pero sólo soporta configuraciones estáticas (similar a DHCP en configuración estática)

Características (RFC 2131, 1993)

- Protocolo cliente/servidor sobre UDP en el puerto 67 para el servidor y el 68 para el cliente (el puerto cliente no es un puerto efímero)
- Control de errores basado en sumas de comprobación, temporizadores y retransmisiones
- Protocolo TFTP para la transferencia de ficheros con información adicional o imágenes de arranque
- DHCP Relay Agent para servidores/clientes en diferentes redes

DHCP: Diagrama de estados y mensajes

- DHCPDISCOVER: Mensaje del cliente (broadcast) para descubrir los servidores disponibles (puede contener la última dirección IP asignada)
- DHCPOFFER: Respuesta de los servidores, con una oferta de parámetros de configuración (puede recibirse más de una)
- DHCPREQUEST: Petición de oferta del cliente (broadcast, para notificar a todos los servidores) o extensión del tiempo de cesión, donde el servidor seleccionado se especifica en una opción
- DHCPACK: Mensaje de confirmación del servidor con parámetros definitivos
- DHCPRELEASE: Mensaje del cliente para informar al servidor de que ha finalizado el uso de la dirección IP (no es obligatorio)

DHCP: Formato del mensaje

Length in byted defined in the length field.

Opcode: 0x01 (request), 0x02 (reply)

Hw type - length: 1 - 6 para Ethernet

Trans. ID: Correspondencia entre solicitud y respuesta

Your IP: ofrecida por el servidor

Server name - Boot filename: compatibilidad con BOOTP

Options: Información de configuración (RFC 2132)

- Servidores DNS
- Host name
- TCP/IP (MTU, TTL...)
- Servidores NTP, SMTP, POP3...
- DHCP extensions (tipo de mensaje DHCP, servidor TFTP, tiempo de cesión, ld. servidor, ld. cliente...)

Ejemplos de preguntas teóricas

¿Cuál de los siguientes parámetros NO se puede configurar usando DHCP? □ Dirección física (MAC) □ Dirección de red (IP) □ Router predeterminado
¿Qué mensaje DHCP se usa para realizar una petición de oferta por parte del cliente? DHCPDISCOVER DHCPOFFER DHCPREQUEST
Con la introducción de CIDR, se pretende ampliar el espacio total de direcciones. dividir el espacio de direcciones en bloques de tamaño fijo. aliviar el problema del agotamiento de direcciones.