High Performance Computing assignment Exercise 1

Piero Zappi

May 2024

Objective

- Evaluate and compare the performance of various algorithms in the OpenMPI library for collective operations, focusing on broadcast and barrier operations.
- Develop prediction models to estimate the latency of these implementations.

Experimental setup

- ORFEO cluster:
 - 2 EPYC nodes
 - 128 cores per node \rightarrow 256 cores
- OSU benchmark for the analysis.
- bash scripts to automate the data collection process.
- –map-by core policy.
- Collect measures varying the number of processes from 2 to 256 and the size of the messages from 1 to 2¹⁷ bytes.

Broadcast - Algorithms

Chain

Broadcast - Average latency analysis 3D heatmaps

Broadcast - Average latency analysis Latency fixing message sizes

Broadcast - Performance models

Models' structure:

$$\log_2(\mathsf{avg_lat}) = \beta_1 * \mathsf{proc_num} + \beta_2 * \log_2(\mathsf{mess_size}) + \beta_3 * \log_2(\mathsf{mess_size})^2$$

Models' summaries:

Algorithm	β_1	β_2	β_3	Adj. R ²
Default	0.0147	-0.1461	0.0278	0.970
Basic Linear	0.0215	0.0980	0.0148	0.970
Binary Tree	0.0155	-0.2100	0.0358	0.979
Chain	0.0182	-0.1212	0.0262	0.969

Broadcast - Performance models Actual and predicted data

Barrier - Algorithms and average latency analysis

Barrier - Performance models

Model for linear algorithm $(x = proc_num)$:

$$avg_lat = \beta_1 * x + \beta_2 * I(x > 128) + \beta_3 * (x * I(x > 128))$$

Model for tree algorithm:

$$avg_lat = \beta_1 * proc_num + \beta_2 * (proc_num)^2$$

Model for double ring algorithm:

$$avg_lat = \beta_1 * proc_num$$

Models' summaries:

Algorithm	β_1	β_2	β_3	Adj. R ²
Tree	0.0735	-0.0001		0.987
Linear	0.2301	-47.0331	0.3585	0.997
Double Ring	0.7853			0.999

Barrier - Performance models Actual and predicted data

