MAT 25 Homework 5

Hardy Jones 999397426 Professor Bae Fall 2013

1. 2.2.1

(a) $\lim \frac{1}{6n^2+1} = 0$ We need to show

$$\frac{1}{6n^2 + 1} < \epsilon$$

$$\frac{1}{\epsilon} < 6n^2 + 1$$

$$\frac{1}{\epsilon} - 1 < 6n^2$$

$$\frac{1 - \epsilon}{\epsilon} < 6n^2$$

$$\frac{1 - \epsilon}{6\epsilon} < n^2$$

$$\sqrt{\frac{1 - \epsilon}{6\epsilon}} < n$$

Let $\epsilon > 0$. Choose $N \in \mathbb{N} | N > \sqrt{\frac{1-\epsilon}{6\epsilon}}$. Let $n \geq N$. So, $n \geq N > \sqrt{\frac{1-\epsilon}{6\epsilon}} \implies \frac{1}{6n^2+1} < \epsilon$ Thus $|a_n - 0| < \epsilon$.

(b) $\lim \frac{3n+1}{2n+5} = \frac{3}{2}$ We need to show

$$\begin{aligned} &\frac{3n+1}{2n+5} < \epsilon \\ &3n+1 < 2n\epsilon + 5\epsilon \\ &1 - 5\epsilon < (2\epsilon - 3)n \\ &\frac{1 - 5\epsilon}{2\epsilon - 3} < n \end{aligned}$$

Let $\epsilon > 0$. Choose $N \in \mathbb{N} | N > \frac{1-5\epsilon}{2\epsilon-3}$. Let $n \geq N$. So, $n \geq N > \frac{1-5\epsilon}{2\epsilon-3} \implies \frac{3n+1}{2n+5} < \epsilon$. Thus $|a_n - \frac{3}{2}| < \epsilon$. (c) $\lim \frac{2}{\sqrt{n+3}} = 0$ We need to show

$$\frac{2}{\sqrt{n+3}} < \epsilon$$

$$\frac{2}{\epsilon} < \sqrt{n+3}$$

$$\frac{4}{\epsilon^2} < n+3$$

$$\frac{4}{\epsilon^2} - 3 < n$$

Let $\epsilon > 0$. Choose $N \in \mathbb{N} | N > \frac{4}{\epsilon^2} - 3$. Let $n \ge N$. So, $n \ge N > \frac{4}{\epsilon^2} - 3 \implies \frac{2}{\sqrt{n+3}} < \epsilon$. Thus $|a_n - 0| < \epsilon$.

2. 2.2.5

(a) $a_n = \lfloor \frac{1}{n} \rfloor$

It is easy to see that after the first element in the sequence, all values are 0. $\lim a_n = 0$

Proof. Let $\epsilon > 0$. Choose N > 1. Let $n \ge N$. So, $n \ge N > 1 \implies \left\lfloor \frac{1}{n} \right\rfloor = 0 < \epsilon$. Thus, $|a_n - 0| < \epsilon$.

(b) $a_n = \left\lfloor \frac{10+n}{2n} \right\rfloor$

Again we see that after some elements all values are 0.

 $\lim a_n = 0$

Proof. Let $\epsilon > 0$. Choose N > 10.

Let $n \ge N$. So, $n \ge N > 10 \implies \left\lfloor \frac{10+n}{2n} \right\rfloor = 0 < \epsilon$.

Thus, $|a_n - 0| < \epsilon$.

3. 2.2.7

(a) A sequence (a_n) diverges to ∞ if, for every positive number ϵ , there exists an $N \in \mathbb{N}$ such that whenever $n \geq N$ it follows that $|a_n| > \epsilon$ $\lim \sqrt{n} = \infty$

Proof. Let $\epsilon > 0$.

We want to show

$$\sqrt{n} > \epsilon$$
$$n > \epsilon^2$$

Choose $N > \epsilon^2$. Let $n \ge N$. So, $n \ge N > \epsilon^2 \implies \sqrt{n} > \epsilon$. Thus, $|a_n| > \epsilon$.