Neighbourhood Processing

Neighbourshood

$$(x-1, j-1)$$
 $(x, j-1)$ $(x+1, j-1)$

Diagonal neighbourg of P, ND(P) 8-neighbors of P, Nz(P)

offivitibA 0

Distance Measures

P(2), 9(5,t)

Neighbourshood Timessing vs Non-Linears openations pouremody isy Linears openations. Prospenty: H[fango +f(xergs)] CtivitibbA Q (これはないなりまり) (x-4.3-4) (x-5.4) (x+4), (x-4)1 Homo geneity groperato: - (2) ph = 9 to modulgion - + [++] THE Dingonal veighbour [(6,00) t] thos)= [(6,00) t a] the Distance Mensymes Neighbourshood operations 6(x9) & (2) + Da(Pa) = / (a-s) +(3-t · Euclidean Distanch: (cos), distance (city- City) instance): D, (ca) 1= 1 Ation elso tis pixel's value
was calculated
with the help of
the 3x3 relaboration of the

input

L= 30 Nia dexil contput

Neighbourshood Operation: Mechanism

Meighbourshood processing is also called special filteroing babban about to and and a second in special design to admin

Box Special filtering consists of:

1) A neighbourhood (defined by the filter Kenne or Mask

MA predefined Operation

Shinear Operation

Non-Linear Operation

A processed image is generated as the centers of the filters karonel visits each pixel in the input image

Padding Pixolly P = 2

Linean Special Filtering

Formula:

- · Kernel Shape: mxn
- · Numbers of pixels padded: padded:
- · Stroide: sto etaismon primotif Inipage 185
- · Input image shape in MXNa
- · Output image shape: HXW

if we want input and output to be same shape

No. of Padding pixels,
$$p = \frac{m-1}{2}$$

$$= \frac{n-1}{2}$$

7	ヌ	6	pw					
7	ス	B	5		T	1	1/9	
6	6	4	3		1	13	5	
	5	3	2		4	d	e [200
		-		+			192	1
	-		-	+		-	-	-

- · Padding = Wearest; P=1 HXN
- · input image = 6x6

brotke

· Out image = HXW

$$= 6 \times \left(\frac{N+2P-N}{5}+1\right)$$

$$= \frac{1}{5}$$

=
$$floor \left(\frac{6+2\cdot 1-3}{1}+1\right)$$

Karonel (3×3)

0	-1	0
-1	5	-1
0	-1	0
		CAT

Padding

Tex Karonel Stroide a proble 27 图 Solution soution-O: Don't visite bonder pinels. - image shronks. Solution- (1): Do Padding Padding Type: 1 Zemo Padding: extend anto pinel value = 0 1 Constant Padding: image extend on pixel value = some 10 Mirmon Padding: Mirmoon the edge pixels Repeat edge pixals. (11) Clamp/Edge/Neanest: Neanes 7 Normily padding . Padding >

Coronelation Answer

IXX Sliding dot product. of the

It is the measure of similarity of the two signals as a function of the displacement of one function relative to other.

of alon of

THE Grand weight matrix 20120 1 (2014 511de Traver)

Similarity (44 dian 123)

Linier Spetial filtering is basically.

a 2D signal cornelation operation.

and correlation operation.

Sive same

Convolution of Asoma

180° and then find the compelation,

180° and then find the compelation,

it's called convolution reason with a start of the compelation,

original filters:

13 16 2

90° motate:

13 16 2

910 12

180° motate:

12 16 13

Applications

original filters with a compelation,

180° motate:

180° mota

2	16	13
12	10	9
6	5	4

- p//workers

and Correlation gives same negult

Smoothing Spetial Filters

- Linears
- o Box l'avegage filtering
- o Median filtering

Linears Smoothing Filters Average Ftep:

Da Pixel at average 800 5 11

D(x,d) = mn

Haussian Filter: $W(x,z) = e^{-\frac{x^2+y^2}{2\sigma^2}}$

Smoothing Spetial Felt Applications

- 1 Blurming the edges
- 3 Den oising
- (g) Low pays Filtering (getting mid of high variations)

For the same Karmel Size the gaussian blux priserves more information than avegrage filtering

Gedge betters proeserve mai mm = (6x) ~

> En Gaussian Filter: $\frac{x+3^{2}}{20^{2}}$ $\Rightarrow (32) = 6$ A Patrician A

Non-Linear smoothing filtering order statistic filtering

(** Karonel MTET TT WAR

meighbourshood at value symmer sorst

and Statistical operation prinzer value

Tag Tagla 1

- 1 Median filtering: attarente value (after sorsting)
- Max and Min Siltering.
- m Midpoint Littering
- (1) Alpha-trimmed mean filtering.

Median filtering possible constraine and	COM
THE Granssian / Box filtering related Smoot	hing
median filtering - 3 (972	水光
Smoothing To but Median filte better.	mng
better.	
Box > Gaussian > Median filtering	1
Linear Brimstill Won-Linearing	1
Exmost 12 trioqbiM	
Alpha - trommed of mean tittemon:	(V)

Unsharp Masking & High Boost Filtering

- (D) Blurs the original image:

 f'(x,y) = Blurs[f(x,y)]
- 2) $g_{mask}(x,y) = f(x,y) f'(x,y)$
- 3 $g(x, \delta) = f(x, \delta) + g_{max}(x, \delta)$

