

Mohammad Jahanbakhsh

انواع داده

وزن ، تعداد بچه

• عددی (پیوسته یا گسسته) Numeric

عالى / خوب / متوسط

• ترتیبی Order

رنگ چشم

• اسمى Nominal يا طبقه اى Nominal

جنسیت ، تب داشتن

باينری Binary

Binary data

	Beer	Wine	Juice	Coffee	Tea
Leia	no	yes	yes	no	yes
Luke	yes	yes	yes	no	no
Han	yes	no	yes	yes	no

Possible values: yes, no

Binary data

	Beer	Wine	Juice	Coffee	Tea
Leia	0	1	1	0	1
Luke	1	1	1	0	0
Han	1	0	1	1	0

1 = yes, 0 = no

Another possible codification could be "yes" = 1, and "no" = 0 Or also with logical values: "yes" = TRUE, and "no" = FALSE.

Ordinal encoding

How often do you drink these beverages?

	Beer	Wine	Juice	Coffee	Tea
Leia	never	some	always	some	always
Luke	always	some	always	never	never
Han	always	some	some	always	never

How often do you drink these beverages?

	Beer	Wine	Juice	Coffee	Tea
Leia	1	2	3	2	3
Luke	3	2	3	1	1
Han	3	2	2	3	1

1 = never, 2 = sometimes, 3 = always

Possible values: never, sometimes, always

you will very likely have to transform the values of the categories to some numeric coding. For instance, you can assign values 1 = "never", 2 = "sometimes", and 3 = "always."

One-hot encoding

Tid	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Feature Normalization

Min Max Scaler

$$z_i = rac{x_i - min(x)}{max(x) - min(x)}$$

Standardization

Original Data

$$z = \frac{x-\mu}{\sigma}$$

with mean:

$$\mu = \frac{1}{N} \sum_{i=1}^{N} (x_i)$$

and standard deviation:

$$\sigma = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (x_i - \mu)^2}$$

Log normalization

Natural log using the constant e~(pprox 2.718)

$$e^{3.4} = 30$$

useful when we have features with high variance.

انواع الگوريتم هاي يادگيري

Supervised Learning Unsupervised Learning یادگیری بی ناظر یادگیری نیمه نظارتی پادگیری نیمه نظارتی **Reinforcement Learning**

یادگیری با ناظر یادگیری تقویتی

CLASSICAL MACHINE LEARNING

یادگیری با ناظر Supervised Learning

	AGE	SEX	BMI	BP		Serum	Meas	suren	nents	• • •	Response
Patient	x1	x2	x3	x4	x5	x 6	x7	x8	x9	x10	y
1	59	2	32.1	101	157	93.2	38	4	4.9	87	151
2	48	1	21.6	87	183	103.2	70	3	3.9	69	75
3	72	2	30.5	93	156	93.6	41	4	4.7	85	141
4	24	1	25.3	84	198	131.4	40	5	4.9	89	206
5	50	1	23.0	101	192	125.4	52	4	4.3	80	135
6	23	1	22.6	89	139	64.8	61	2	4.2	68	97
:	:	:	:	:	:	:	;	:	:	:	:
441	36	1	30.0	95	201	125.2	42	5	5.1	85	220
442	36	1	19.6	71	250	133.2	97	3	4.6	92	57

3.

Boston Housing

	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	TAX	PTRATIO	В	LSTAT	PRICE
0	0.00632	18.0	2.31	0.0	0.538	6.575	65.2	4.0900	1.0	296.0	15.3	396.90	4.98	24.0
1	0.02731	0.0	7.07	0.0	0.469	6.421	78.9	4.9671	2.0	242.0	17.8	396.90	9.14	21.6
2	0.02729	0.0	7.07	0.0	0.469	7.185	61.1	4.9671	2.0	242.0	17.8	392.83	4.03	34.7
3	0.03237	0.0	2.18	0.0	0.458	6.998	45.8	6.0622	3.0	222.0	18.7	394.63	2.94	33.4
4	0.06905	0.0	2.18	0.0	0.458	7.147	54.2	6.0622	3.0	222.0	18.7	396.90	5.33	36.2

طبقه بندی classification

Training data

x_1	x_2	У
0.9	2.3	+1
3.5	2.6	+1
2.6	3.3	+1
2.7	4.1	+1
1.8	3.9	+1
6.5	6.8	-1
7.2	7.5	-1
7.9	8.3	-1
6.9	8.3	-1
8.8	7.9	-1
9.1	6.2	-1

Virginica

Setosa

Versicolor

مرز تصمیم گیری

Average intensity

معروف ترین دسته بند ها

ماشین بردار پشتیبان

درخت تصمیم

انزدیک ترین همسایه

Instance-based learning

Feature 1

Model-based learning

طبقه بندی چندکلاسه خطی

خوشه بندی

DBSCAN

K-means

کاربرد های یادگیری ماشین کلاسیک

تقسیم کتاب ها به موضوعات مختلف دستهبندی ژنهایی با عملکر دهای مشابه ميزان فروش محصولات تشخیص خبر جعلی شناسایی تقلب(داده پرت) بیش بینی قیمت سهام پیشبینی بارندگی پیش بینی میزان فروش پیش بینی اهدای خون تشخيص چهره

Overfit & under fit

Model Evaluation

Confusion matrix

Accuracy =
$$\frac{TP + TN}{TP + TN + FP + FN}$$

$$Precision = \frac{TP}{TP + FP}$$

Recall
$$=$$
 $\frac{TP}{TP + FN}$

Specificity =
$$\frac{TN}{TN + FP}$$

$$\mathbf{F1}\text{-score} = \frac{2\mathrm{TP}}{2\mathrm{TP} + \mathrm{FP} + \mathrm{FN}}$$

(True Positive): the number of correct classifications of positive examples.

(True Negative): the number of correct classifications of negative examples.

(False Positive): the number of incorrect classifications of negative examples.

(False Negative) :: the number of incorrect classifications of positive examples.

Model Evaluation

Regression

- •(MAE) mean absolute error
- (MSE) mean squared error (RMSE) root mean squared error; interpretable in the same units as the response vector or y units
- (RAE) Relative absolute error, also known as residual sum of square
- (RSE) Relative squared error
- (R2); Popular metric for the accuracy of your model. represents how close the data values are to the fitted regression line. The higher the better

$$R^{2} = \frac{SSR}{SST} = \frac{\sum (\hat{y}_{i} - \bar{y})^{2}}{\sum (y_{i} - \bar{y})^{2}}$$

$$MAE = \frac{1}{n} \sum_{i=1}^{n} |y_i - \hat{y}_i|$$

MSE =
$$\frac{1}{n} \sum_{i=1}^{n} (y_i - \tilde{y}_i)^2$$

$$RMSE = \sqrt{\sum_{i=1}^{n} \frac{(\hat{y}_i - y_i)^2}{n}}$$

RAE =
$$\frac{\sum_{i=1}^{n} |y_i - \hat{y}_i|}{\sum_{i=1}^{n} |y_i - \overline{y}|}$$

RSE =
$$\frac{\sum_{i=1}^{n} (y_i - \hat{y}_i)^2}{\sum_{i=1}^{n} (y_i - \bar{y})^2}$$

where
$$\overline{y} = \frac{1}{n} \sum_{i=1}^{n} y_i$$