

## **SCHEME OF WORK**

## MARCH - JULY 2025

COURSE NAME : INTRODUCTION TO ALGORITHM DESIGN AND DEVELOPMENT

COURSE CODE : CSC121 LEVEL : DIPLOMA

CREDIT UNIT : 3

CONTACT HOUR : LECTURE (2 HOURS) & LAB (2 HOURS)

PROGRAM : DIPLOMA IN COMPUTER SCIENCE (CDCS110)

PART :1

FACULTY : COLLEGE OF COMPUTING, INFORMATICS AND MATHEMATICS

LECTURER : SITI SARAH BINTI MD ILYAS

**10** 013 - 4586414

**⊕** B1 - 60

ASSESSMENTS : QUIZ - 10%

PRACTICAL TEST - 25%
WRITTEN TEST - 30%
GROUP PROJECT - 35%

## **Course Learning Outcomes:**

CLO1: Apply the concepts of computer systems, problem solving and algorithm design and development (C3)

CLO2: Display practical skills in algorithm design and developments for different types of programming control structures (P3)

CLO3: Demonstrate professional and ethical practices in tasks related to problem-solving solutions and algorithm developments (A3)

| AKTIVITI PERKULIAHAN    |                                                  |                                                                                                  |                      |  |  |
|-------------------------|--------------------------------------------------|--------------------------------------------------------------------------------------------------|----------------------|--|--|
| PERINGKAT PROGRAM       | AKTIVITI                                         | TARIKH                                                                                           | TEMPOH               |  |  |
| Pra-Diploma / Diploma   | Minggu Interim                                   |                                                                                                  |                      |  |  |
| (Pelajar Part 1 Sahaja) | Cuti Minggu Interim                              |                                                                                                  |                      |  |  |
|                         | Kuliah 1                                         | 24 - 30 Mac 2025<br>*24 - 29 Mac 2025                                                            | 1 Minggu<br>(Online) |  |  |
| Semua Pelajar           | Proses Entrance Survey                           | 24 Mac – 27 April 2025                                                                           | 4 Minggu             |  |  |
|                         | Cuti Khas Perayaan                               | 31 Mac - 5 April 2025<br>[Aidil-Fitri: 31 March – 1 April]                                       | 1 Minggu             |  |  |
|                         | Kuliah 2                                         | 7 April – 29 Mei 2025<br>*6 April – 29 Mei 2025                                                  | 8 Minggu             |  |  |
|                         | Cuti Pertengahan Semester/<br>Cuti Khas Perayaan | 30 Mei – 8 Jun 2025<br>*30 Mei – 7 Jun 2025<br>[Pesta Menuai: 30 – 31 Mei]<br>[Gawai: 1 – 2 Jun] | 1 Minggu             |  |  |
|                         | Kuliah 3                                         | 9 Jun – 13 Julai 2025<br>*8 Jun – 12 Julai 2025                                                  | 5 Minggu             |  |  |
|                         | Student Feedback Online (SuFO)                   | 23 Jun – 27 Julai 2025                                                                           | 5 Minggu             |  |  |
|                         | Proses Exit Survey                               | 23 Jun – 27 Julai 2025                                                                           | 5 Minggu             |  |  |
|                         | English Exit Test (Speaking)                     | 14 – 20 Julai 2025                                                                               | 1 Minggu             |  |  |
|                         | Cuti Ulangkaji                                   | 14 - 20 Julai 2025                                                                               | 1 Minggu             |  |  |

| SAM Block | Week                         | Торіс                                                                                                                                                                                                                                                                                                      | Description                            |
|-----------|------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|
| 1         | <b>1</b><br>24 – 30 March    | INTRODUCTION TO THE COURSE  Ice breaking Overview of OBE and course via lesson plan and syllabus contents  TOPIC 1: INTRODUCTION TO COMPUTER SYSTEMS Computer Definition Overview and History of Computers Basic Components of the Von Neumann Architecture  Lab activity: Tutorial 1                      | Entrance survey                        |
|           | 31 March – 6<br>April        | SPECIAL BREAK                                                                                                                                                                                                                                                                                              | 31/3 – 1/4<br>(Aidil Fitri)            |
|           | <b>2</b><br>7 - 13 April     | TOPIC 1: INTRODUCTION TO COMPUTER SYSTEMS  • Electronic Data and Instructions  • System Unit: system board, microprocessor, RAM & ROM  • Input/Output devices  Lab activity: Tutorial 2                                                                                                                    | Entrance survey                        |
|           | <b>3</b><br>14 – 20 April    | TOPIC 2: INTRODUCTION TO PROBLEM-SOLVING AND ALGORITHM DESIGN  • What is a problem and examples of problems: Simple Real-world problem/transaction  • What is problem-solving?  • Program development life cycle Lab activity:  • Group Project briefing (Guidelines, scoring rubrics and report template) | Entrance survey                        |
|           | 4                            | Introduction to software and installation: <a href="http://www.flowgorithm.org/download/">http://www.flowgorithm.org/download/</a> TOPIC 2: INTRODUCTION TO PROBLEM-SOLVING AND ALGORITHM DESIGN                                                                                                           |                                        |
|           | 21 – 27 April                | <ul> <li>Details of problem analysis: Input, Process and Output</li> <li>Basic concepts of algorithm and algorithm presentation (pseudocode and flowchart):</li> <li>The basic structure/symbols in Pseudocode and flowchart</li> </ul>                                                                    | QUIZ (10%) TOPIC 1 & 2 Entrance survey |
|           | <b>5</b><br>28 April – 4 May | Lab activity  TOPIC 3: ALGORITHM DESIGN FOR SEQUENCE CONTROL STRUCTURE  Understanding about data type, data, information  Arithmetic Operators, identifiers (variables and constants)  Assignment statements  Lab activity                                                                                 | Labor Day<br>(1 May)                   |
|           | <b>6</b><br>5 – 11 May       | TOPIC 3: ALGORITHM DESIGN FOR SEQUENCE CONTROL STRUCTURE  • Analysis of simple problems (state problem objectives, input, process and output)  • Algorithm development for sequence control structure (pseudocode and flowchart)  Lab activity                                                             |                                        |

| 2 | 7<br>12 – 18 May<br>8<br>19 – 25 May | TOPIC 4: ALGORITHM DESIGN FOR SELECTION CONTROL STRUCTURE  Analysis of problems requiring selection structure  Boolean values, relational operators, and expressions  Logical operators  Operator precedence  Lab activity  TOPIC 4: ALGORITHM DESIGN FOR SELECTION CONTROL STRUCTURE  Algorithm development for selection control structure (pseudocode and flowchart) | Wesak Day<br>(12 May)<br>Keputraan DYMM<br>Tuanku Raja Perlis<br>(17 May)               |
|---|--------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|
|   |                                      | PRACTICAL TEST (25%) - TOPICS: 3 & 4                                                                                                                                                                                                                                                                                                                                    |                                                                                         |
|   | <b>9</b><br>26 – 29 May              | <ul> <li>TOPIC 5: ALGORITHM DESIGN FOR REPETITION CONTROL STRUCTURE</li> <li>Analysis of problems requiring repetition control structure</li> <li>Setting three requirements of a repetition structure: initialization, condition and updating</li> </ul>                                                                                                               |                                                                                         |
|   |                                      | Lab activity                                                                                                                                                                                                                                                                                                                                                            |                                                                                         |
|   | 30 May – 8 June                      | MID TERM BREAK                                                                                                                                                                                                                                                                                                                                                          | 30 – 31 May<br>(Harvest Festival)<br>1 -2 June<br>(Gawai)<br>7 – 8 June<br>(Aidil Adha) |
|   | 10                                   | TOPIC 5: ALGORITHM DESIGN FOR REPETITION CONTROL STRUCTURE                                                                                                                                                                                                                                                                                                              |                                                                                         |
|   | 9 – 15 June                          | Algorithm development for repetition control structure (pseudocode and flowchart)  Lab activity                                                                                                                                                                                                                                                                         |                                                                                         |
| 3 | <b>11</b><br>16 – 28 June            | TOPIC 6: ALGORITHM DESIGN FOR PROGRAMS USING MODULES (FUNCTIONS)  Analysis of problems requiring modules (functions)  Basic types of functions  Parameter passing: Passing-by-value and passing-by-reference.  Algorithm development for modular programming (pseudocode and flowchart)  Lab activity                                                                   | WRITTEN TEST (30%)  TOPICS: 2 - 5  27 June (Awal Muharam)                               |
|   | <b>12</b><br>23 – 29 June            | TOPIC 6: ALGORITHM DESIGN FOR PROGRAMS USING MODULES (FUNCTIONS)  • Algorithm development for modular programming (pseudocode and flowchart)  Lab activity                                                                                                                                                                                                              |                                                                                         |
|   | <b>13</b><br>30 June – 6 July        | TOPIC 6: ALGORITHM DESIGN FOR PROGRAMS USING MODULES (FUNCTIONS) Algorithm development for modular programming (pseudocode and flowchart) Lab activity                                                                                                                                                                                                                  | SUFO                                                                                    |
|   | <b>14</b><br>7 – 13 July             | GROUP PROJECT PRESENTATION AND REPORT SUBMISSION (35%)  TOPICS: 2 - 6                                                                                                                                                                                                                                                                                                   | SUFO                                                                                    |
|   | 14 – 20 July                         | REVISION WEEK                                                                                                                                                                                                                                                                                                                                                           | SUFO                                                                                    |