Outline: Lecture 4

- Classification of Data Structure
- Array Data Structure
- Representation Linear Array in Memory
- Representation of Two Dimensional Array in Memory
- Representation of Multidimensional Array in Memory
- Operations on Array Data Structure
 - Traversing Linear Array
 - Insertion Operation
 - Time complexity Analysis
 - Best Case Analysis
 - Worst Case Analysis
 - Deletion Operation
 - Time complexity Analysis
 - Best Case Analysis
 - Worst Case Analysis
 - Binary Search Algorithm
 - Time complexity Analysis
 - Best Case Analysis
 - Worst Case Analysis

Classification of Data Structure:

Link List

Array Data Structure:

• Linear Array:

Two Dimensional Array:

Three Dimensional Array:

Representation of Linear Array in Memory:

Loc(A[4])=200+4x(4-0)=216 \Rightarrow Loc(A[k]) = Base(A) + w * (k - LB) where Base(A) is the base address of the array A, w is the size of the data type of the array element and LB is the Lower Bound (LB) of the array Find Loc(A[7])?

Representation of Two-Dimensional Array in Memory:

Representation of Two-Dimensional Array in Memory: (Cont..)

2000	A[0][0]	Do	
2004	A[0][1]	Ro w 0	
2008	A[0][2]		
2012	A[1][0]		
2016	A[1][1]	Ro w 1	
2020	A[1][2]	W I	
2024	A[2][0]		
2028	A[2][1]	Ro w 2	
2032	A[2][2]	W 2	
2036	A[3][0]		
2040	A[3][1]	Ro w 3	
2044	A[3][2]	WS	
2048	A[4][0]		
2052	A[4][1]	Ro w 4	
2056	A[4][2]		

2000	A[0][0]	
2004	A[1][0]	Colu
2008	A[2][0]	mn
2012	A[3][0]	0
2016	A[4][0]	
2020	A[0][1]	
2024	A[1][1]	Colu
2028	A[2][1]	mn
2032	A[3][1]	1
2036	A[4][1]	
2040	A[0][2]	
2044	A[1][2]	Colu
2048	A[2][2]	mn
2052	A[3][2]	2
2056	A[4][2]	

Representation of Multi-Dimensional Array in Memory:

Row-major Order:

In general for two-dimensional array, datatype $A[d_1][d_2]$;

$$Loc(A[k_1][k_2] = Base(A) + w * [(E_1 * d_2 + E_2)]$$

In general for *n*-dimensional array, datatype $A[d_1][d_2] \dots [d_n]$

$$Loc(A[k_1][k_2]...[k_n]) = Base(A) + w * [(...((E_1 * d_2 + E_2) * d_3 + E_3)...) * d_n + E_n]$$

where d_i is the length of i^{th} dimension of the array A, $E_i = k_i - LB_i$ where E_i is called the effective index of i^{th} dimension and LB_i is the lower bound of i^{th} dimension, w is the size of the datatype of the array A

Column-major Order:

In general for two-dimensional array, datatype $A[d_1][d_2]$;

$$Loc(A[k_1][k_2] = Base(A) + w * [(E_2 * d_1 + E_1)]$$

In general for *n-dimensional* array, datatype $A[d_1][d_2]\dots[d_n]$

$$Loc(A[k_1][k_2]....[k_n]) = Base(A) + w * [(....((E_n * d_{n-1} + E_{n-1}) * d_{n-2} + E_{n-2})... + E_2) * d_1 + E_1]$$

where d_i is the length of i^{th} dimension of the array A, $E_i = k_i - LB_i$ where E_i is called the effective index of i^{th} dimension and LB_i is the lower bound of i^{th} dimension, w is the size of the datatype of the array A.

Operations on Array Data Structure: Traversing Linear Array

Traversing a linear array means accessing and processing each element of the array exactly once.

```
void display (int n)
int i;
 for (i=0 ; i<n ; i++)
   printf("%d", a[i]);
/* Assumption:: here the array
a is declared globally */
```


Output: 10 -45 13 95

Time complexity : f(n) = O(n)

Insertion Operation on Array Data Structure

		111361					
0	1	2	3	4	5	6	7
10	-14	84	15	9	20		

Insertion Operation on Array Data Structure: (Cont...)

- In case of insertion operation, we first check the overflow condition
- 2. The position **pos** given by the user must be checked its validity that means whether the position is valid position or not (valid position range: $1 \le pos \le (n+1)$)

Deletion Operation on Array Data Structure:

Deletion Operation on Array Data Structure: (Cont...)

- In case of deletion operation, we first check the underflow condition
- 2. The position **pos** given by the user must be checked its validity that means whether the position is valid position or not (valid position range: $1 \le pos \le n$)

```
void deletion (int pos)
  int i;
  if (n==0) // No Element is present in the given array
   printf("\n Underflow");
  else
    if ((pos>=1) && (pos<=n))) // valid position
        //Shifting from left to right starting from pos to (n-1)
        for ( i=pos ; i <=(n-1) ; i++ )
         a[i]=a[i+1];
       // a[n-1] is logically empty now
         n=n-1; // the number of element n is updated
    else
      printf("\n Invalid position");
```

Time complexity Analysis:

Best Case Analysis:

Here n=5

Best case Situation: If we want to delete at the nth position, then n=n-1

Hence, f(n) = O(1) [Constant time]

Worst Case Analysis: If we want to delete at the first position,

(n-1) no. of shifting to be done

Hence, f(n) = O(n - 1) = O(n)

Binary Search Algorithm:

Limitations:

- 1) The list must be sorted
- The data structure, containing the list of sorted elements, must have direct access to any element without accessing any other elements

```
n=7, x=49, Initially, beg=0, end=(n-1)=6,
mid=(beg+end)/2;
If (x==a[mid])
    printf("\n Search is successful ");
else
If(x>a[mid])
    beg=mid+1;
    else
    end=mid-1;
```

beg	end	mid
0	6	3
4	6	5
6	6	6
6	5	STOP

Binary Search Algorithm: (Cont..)

```
int binary_search(int x)
 int\ beg = 0, end = n - 1, mid;
 while(beg \le end)
   mid = (beg + end)/2;
   if(x == a[mid])
     return(mid);
   if(x < a[mid])
     end = mid - 1;
    else
     beg = mid + 1;
 return(-1);
//Iterative Method
```

```
int b_search(int x, int beg, int end)
   if(beg \leq end)
      mid = (beg + end)/2;
      if(x == a[mid])
        return(mid);
      if(x < a[mid])
         end = mid - 1;
         b_search(x, beg, end);
       else
         beg = mid + 1;
         b_search(x, beg, end);
    else
     return(-1);
      Lecture 4: Data Structure & Algorithms
```

```
Worst Case Time Complexity:
T(n) = c + T(n/2) and T(1) = 1
T(n) = c + T\left(\frac{n}{2}\right)
T\left(\frac{n}{2}\right) = c + T\left(\frac{n}{2^2}\right)
T(n) = c + T\left(\frac{n}{2}\right)
         =c+c+T\left(\frac{n}{2^2}\right)
         =2c+T\left(\frac{n}{2^2}\right)
T\left(\frac{n}{2^2}\right) = c + T\left(\frac{n}{2^3}\right)
T(n) = 3c + T\left(\frac{n}{2^3}\right)
T(n) = kc + T\left(\frac{n}{2^k}\right)
Let T\left(\frac{n}{2^k}\right) = T(1)
Therefore, \frac{n}{2^k} = 1
\Rightarrow 2^k = n \Rightarrow k = \log_2 n
T(n) = kc + T\left(\frac{n}{2k}\right)
      = c \log_2 n + T(1) = O(\log_2 n)
Best Case Time Complexity:
T(n) = O(1)
```