Département de Mathématiques

Faculté des Sciences

Université Badji Mokhtar-Annaba

Master 1: -Probabilités et Statistique -Actuariat

Série N°1

Pour résoudre l'exercice 1, on a besoin des rappels suivants:

Rappel 1.

Soit (X_i) une suite de v.a. définies sur un espace probabilisé (Ω, \mathcal{F}, P) , i.i.d. de loi $\mathcal{N}(0,1)$. On sait que si $X = \sum_{i} \lambda_i X_i$ telle que $\sum_{i} \lambda_i^2 < \infty$, alors

$$X \leadsto \mathcal{N}\left(0, \sum_{i} \lambda_i^2\right).$$

Soient $l^2(\mathbb{N}) := \left\{ (x_k) : \sum_{k=0}^{\infty} x_k^2 < \infty \right\}$ et soit \mathcal{H} le sous espace vectoriel fermé engendré par la famille (X_i) *i.e.*

$$\mathcal{H} = \left\{ X = \sum_{i} \lambda_{i} X_{i} : (\lambda_{i}) \in l^{2} (\mathbb{N}) \right\}$$

 \mathcal{H} s'appelle espace gaussien.

Rappel 2.

Rappelons que $L^2(\mathbb{R}_+, dt)$ muni de la forme bilinéaire

$$\langle f, f \rangle_{L^{2}(\mathbb{R}_{+}, dt)} = \int_{0}^{\infty} f(s) g(s) ds$$

est un espece de Hilbert. Soit $(e_k)_{k\in\mathbb{N}}$ une base orthonormée $L^2(\mathbb{R}_+, dt)$ et soit $\varphi \in L^2(\mathbb{R}_+, dt)$. Alors on a

$$\varphi \in L^{2}(\mathbb{R}_{+}, dt) \text{ . Alors on a}$$

$$-\varphi = \sum_{i} \lambda_{i} e_{i} \text{ où } \lambda_{i} = \langle \varphi, e_{i} \rangle_{L^{2}(\mathbb{R}_{+}, dt)}$$

$$- \|\varphi\|_{L^{2}(\mathbb{R}_{+}, dt)}^{2} = \sum_{i} \lambda_{i}^{2} \text{ (égalité de Parceval)}.$$

Exercice 1:

Soit $\Omega = \mathbb{R}^{\mathbb{N}}$ l'ensemble de toutes les applications $\omega : \mathbb{N} \to \mathbb{R}$. On désigne par X_k $(k \in \mathbb{N})$ la $k^{i \grave{e} m e}$ application coordonnée sur Ω $(i.e.\ X_k(\omega) = \omega(k))$. On muni de la Ω de la tribu $\mathcal{F} = \sigma(X_k; k \in \mathbb{N})$ et de la mesure de probabilité $P = \prod_i \frac{1}{\sqrt{2\pi}} e^{-\frac{x_i^2}{2}} dx_i$ défini par l'espérance d'une $v.a.\ X = f(X_0, X_1, ..., X_k)$:

$$\mathbb{E}(X) = \int_{\mathbb{R}^{k+1}} f(x_0, x_1, ..., x_k) \prod_{i=0}^{k} \frac{1}{\sqrt{2\pi}} e^{-\frac{x_i^2}{2}} dx_i$$

1. Montrer que les v.a. X_k $(k \in \mathbb{N})$ sont i.i.d. de loi $\mathcal{N}(0,1)$.

2. Montrer que $(X_k)_{k\in\mathbb{N}}$ est une base orthonormée de $L^2\left(\Omega,\mathcal{F},P\right)$. 3. Soit $(e_k)_{k\in\mathbb{N}}$ une base orthonormée $L^2\left(\mathbb{R}_+,dt\right)$ et soit $(c_{k,t})_{k\in\mathbb{N}}$ la suite réelle définie pour tout $t \in \mathbb{R}_+$ par

$$c_{k,t} = \left\langle \mathbf{1}_{[0,t]}, e_k \right\rangle_{L^2(\mathbb{R}_+, dt)} = \int_0^t e_k\left(s\right) ds.$$

On pose pour tout $t \in \mathbb{R}_+$:

$$B_t = \sum_{k=0}^{\infty} c_{k,t} X_k \text{ dans } L^2(\Omega, \mathcal{F}, P).$$

Montrer que $(c_{k,t})_{k\in\mathbb{N}}\in l^2(\mathbb{N})$ et que $(B_t)_{t\geq 0}$ est un mouvement brownien.

Exercice 2:

Soit $(B_t)_{t\geq 0} = (B_t^1, B_t^2, ..., B_t^d)_{t\geq 0}$ un processus de dimension $d\geq 1$.

Montrer que $(B_t)_{t>0}$ est un mouvement brownien standard de dimension d si et seulement si les $\overline{(B^i_t)}_{t\geq 0}$ sont des mouvements browniens réels standards indépendants i=1,2,...,d.

Exercice 3:

Soit $(B_t)_{t\geq 0}=\left(B_t^1,B_t^2,...,B_t^d\right)_{t\geq 0}$ un mouvement brownien de dimension $d \geq 1.$ Montrer que le processus $\left(\overline{M_t^{ij}} \right)_{t \geq 0}$ défini par

$$M_t^{ij} = B_t^i B_t^j - \delta_{ij} t$$
 δ_{ij} étant le symbole de Kronecker

est une martingale.

Solutions

Exercice 1:

1.On a pour tout réel x_k

$$P\left(X_{k} \leq x_{k}\right) = \mathbb{E}\left(\mathbf{1}_{]-\infty,x_{k}]}\left(X_{k}\right)\right) = \int_{-\infty}^{x_{k}} \frac{1}{\sqrt{2\pi}} e^{-\frac{t^{2}}{2}} dt,$$

qui signifie que $X_k \rightsquigarrow \mathcal{N}(0,1)$ pour tout $k \in \mathbb{N}$. De plus, pour tous entiers $k \neq l$ et pour toutes fonctions mesurables f et g, on a

$$\mathbb{E}(f(X_{k})g(X_{l})) = \int_{\mathbb{R}^{2}} f(x_{k})g(x_{l}) \frac{1}{\sqrt{2\pi}} e^{-\frac{x_{k}^{2}}{2}} \frac{1}{\sqrt{2\pi}} e^{-\frac{x_{l}^{2}}{2}} dx_{k} dx_{l}$$

$$\stackrel{Thm.Fubini}{=} \int_{\mathbb{R}} f(x_{k}) \frac{1}{\sqrt{2\pi}} e^{-\frac{x_{k}^{2}}{2}} dx_{k} \int_{\mathbb{R}} g(x_{l}) \frac{1}{\sqrt{2\pi}} e^{-\frac{x_{l}^{2}}{2}} dx_{l}$$

$$= \mathbb{E}(f(X_{k})) \mathbb{E}(g(X_{l})),$$

qui signifie que les v.a. X_k et X_l sont indépendantes. Ainsi les v.a. X_k sont i.i.d de loi $\mathcal{N}(0,1)$.

2.Montrons d'abord que $(X_k)_{k\in\mathbb{N}}$ est une base de $L^2(\Omega,\mathcal{F},P)$. Comme $\dim L^2(\Omega,\mathcal{F},P)=+\infty=\operatorname{card}(X_k)_{k\in\mathbb{N}}$, il suffit de montrer que la famille $(X_k)_{k\in\mathbb{N}}$ forme un système libre, ce qui revient à démontrer que tout sous système fini $\{X_0,X_1,...,X_n\}$ est libre. A cet effet, on consdère des scalaires $\lambda_0,\lambda_1,...,\lambda_n$ tels que

$$\lambda_0 X_0 + \lambda_1 X_1, \dots + \lambda_n X_n = 0.$$

En multipliant cette égalité par X_k , $k \in \{0, 1, ..., n\}$ arbitraire et en tenant compte du fait que

$$\mathbb{E}\left(X_{k}X_{l}\right) = \delta_{ij} \left(\mathbb{E}\left(X_{k}X_{l}\right) = \mathbb{E}\left(X_{k}\right)\mathbb{E}\left(X_{l}\right) = 0 \text{ si } k \neq l \text{ et } \mathbb{E}\left(X_{k}^{2}\right) = var\left(X_{k}\right) = 1,$$

on obtient $\lambda_k = 0$, d'où $\lambda_0 = \lambda_1 = \dots = \lambda_n = 0$ puisque k est arbitraire. Il résulte que $(X_k)_{k \in \mathbb{N}}$ est une base orthonormée de $L^2(\Omega, \mathcal{F}, P)$.

3.On a d'aprés l'égalité de Parceval et la définition des $c_{k,t}$,

$$\sum_{k\in\mathbb{N}}\!c_{k,t}^2=\left\|\mathbf{1}_{[0,t]}\right\|_{L^2(\mathbb{R}_+,dt)}^2=\int\limits_0^{+\infty}\left(\mathbf{1}_{[0,t]}\right)^2(s)\,ds=t<+\infty,$$

d'où $(c_{k,t})_{k\in\mathbb{N}}\in l^{2}\left(\mathbb{N}\right)$.

-On a pour tout $t, h \in \mathbb{R}_+$

$$B_{t+h} - B_t = \sum_{k=0}^{\infty} (c_{k,t+h} - c_{k,t}) X_k$$

Comme

$$c_{k,t+h} - c_{k,t} = \int_{t}^{t+h} e_k(s) ds = \left\langle \mathbf{1}_{[t,t+h]}, e_k \right\rangle_{L^2(\mathbb{R}_+,dt)},$$

alors on a, d'aprés l'égalité de Parceval,

$$\sum_{k=0}^{\infty} \left(c_{k,t+h} - c_{k,t} \right)^2 = \left\| \mathbf{1}_{[t,t+h]} \right\|_{L^2(\mathbb{R}_+,dt)}^2 = \int_{0}^{+\infty} \left(\mathbf{1}_{[t,t+h]} \right)^2 (s) \, ds = h < +\infty,$$

c'est-à-dire que $(c_{k,t+h}-c_{k,t})_{k\in\mathbb{N}}\in l^2(\mathbb{N})$, qui signifie que la variable aléatoire $B_{t+h}-B_t$ est gaussienne. De plus,

$$\mathbb{E}(B_{t+h} - B_t) = \sum_{k=0}^{\infty} (c_{k,t+h} - c_{k,t}) \mathbb{E}(X_k) = 0$$

 et

$$var(B_{t+h} - B_t) = \sum_{k=0}^{\infty} (c_{k,t+h} - c_{k,t})^2 var(X_k) = \sum_{k=0}^{\infty} (c_{k,t+h} - c_{k,t})^2 = h,$$

d'où $B_{t+h} - B_t \rightsquigarrow \mathcal{N}(0,h)$.

Il reste à démontrer que $B_{t+h} - B_t$ est indépendante de \mathcal{F}_t . Comme \mathcal{F}_t est engendrée par les variables aléatoires B_s , $s \leq t$, il suffit de montrer que les variables aléatoires $B_{t+h} - B_t$ et B_s sont indépendantes pour tout $s \leq t$. Pour cela, on considère le vecteur $(B_{t+h} - B_t, B_s)$ est gaussien. Comme

$$\alpha (B_{t+h} - B_t) + \beta B_s = \sum_{k=0}^{\infty} (\alpha (c_{k,t+h} - c_{k,t}) + \beta c_{k,s}) X_k \text{ pour tout } \alpha, \beta \text{ réels}$$

avec

$$\alpha\left(c_{k,t+h}\right) + \beta\left(c_{k,s}\right) \in l^{2}\left(\mathbb{N}\right),$$

alors la variable $\alpha(B_{t+h} - B_t) + \beta B_s$ est gaussienne, qui signifie que le vecteur $(B_{t+h} - B_t, B_s)$ est gaussien. Il suffit alors de montrer que $cov(B_{t+h} - B_t, B_s) =$

0, or

$$cov (B_{t+h} - B_t, B_s) = \mathbb{E} ((B_{t+h} - B_t) B_s) - \mathbb{E} (B_{t+h} - B_t) \mathbb{E} (B_s) = \mathbb{E} ((B_{t+h} - B_t) B_s)$$

$$= \langle B_{t+h} - B_t, B_s \rangle_{L^2(\Omega, \mathcal{F}, P)}$$

$$= \langle \sum_{k=0}^{\infty} (c_{k,t+h} - c_{k,t}) X_k, \sum_{l=0}^{\infty} c_{l,s} X_l \rangle_{L^2(\Omega, \mathcal{F}, P)}$$

$$= \sum_{k,l=0}^{\infty} (c_{k,t+h} - c_{k,t}) c_{l,s} \langle X_k, X_l \rangle_{L^2(\Omega, \mathcal{F}, P)}$$

$$= \sum_{k,l=0}^{\infty} (c_{k,t+h} - c_{k,t}) c_{l,s} \delta_{kl}$$

$$= \sum_{k,l=0}^{\infty} (c_{k,t+h} - c_{k,t}) c_{l,s} \langle e_k, e_l \rangle_{L^2(\mathbb{R}_+, dt)}$$

$$= \langle \sum_{k=0}^{\infty} (c_{k,t+h} - c_{k,t}) e_k, \sum_{l=0}^{\infty} c_{l,s} e_l \rangle_{L^2(\mathbb{R}_+, dt)}$$

$$= \langle \sum_{k=0}^{\infty} (c_{k,t+h} - c_{k,t}) e_k, \sum_{l=0}^{\infty} c_{l,s} e_l \rangle_{L^2(\mathbb{R}_+, dt)}$$

$$= \langle 1_{[t,t+h]}, 1_{[0,s]} \rangle_{L^2(\mathbb{R}_+, dt)}$$

$$= \int_{0}^{+\infty} 1_{[t,t+h]} (u) 1_{[0,s]} (u) du = \int_{0}^{+\infty} 1_{[t,t+h] \cap [0,s]} (u) du = 0,$$

Ainsi $(B_t)_{t\geq 0}$ est à accroissements indépendants par rapport au passé. Il résulte que $(B_t)_{t\geq 0}$ est un mouvement brownien.

Exercice 2:

1.On suppose que $(B_t)_{t>0}$ est un mouvement brownien de dimension d.

*Comme $B_t^i = \pi_i(B_t)$, où $\pi_i : \mathbb{R}^d \to \mathbb{R}$ est l'application projection définie par $\pi_i(x) = x_i$, qui est mesurable, alors B_t^i est \mathcal{F}_t -mesurable comme composition de deux fonctions mesurables, d'où $(B_t^i)_{t\geq 0}$ est adapté.

*Comme $B_{t+h} - B_t \rightsquigarrow \mathcal{N}(0, hI)$, alors les marginales $B_{t+h}^i - B_t^i$ sont également gaussiennes et on a $\mathbb{E}\left(B_{t+h}^i - B_t^i\right) = \pi_i\left(\mathbb{E}\left(B_{t+h} - B_t\right)\right) = 0$. La matrice des covariances du vecteur $B_{t+h} - B_t$ étant $C\left(B_{t+h} - B_t\right) = hI = (h\delta_{ij})$, alors $var\left(B_{t+h}^i - B_t^i\right) = h$ pour tout i = 1, 2, ..., d. Il résulte que

$$B_{t+h}^{i} - B_{t}^{i} \rightsquigarrow \mathcal{N}(0,h)$$
.

*Comme $B_{t+h} - B_t$ est indépendante de \mathcal{F}_t , alors il en est de même pour $B_{t+h}^i - B_t^i = \pi_i (B_{t+h} - B_t)$, qui signifie que $(B_t^i)_{t \geq 0}$ est à accroissements indépendants du passé. Il résulte que les processus $(B_t^i)_{t \geq 0}$ sont des mouvements browniens réels standards.

*Comme $B_t \rightsquigarrow \mathcal{N}(0,tI)$, qui signifie que le vecteur B_t est gaussien de matrice des covariance diagonale, alors les marginales B_t^i sont indépendantes.

2.On suppose que les $(B_t^i)_{t\geq 0}$ sont des mouvements browniens réels standards indépendants i=1,2,...,d et montrons que $(B_t)_{t\geq 0}$ est un mouvement brownien standard de dimension d.

 $*(B_t)_{t\geq 0}$ est adapté car toutes les composantes B_t^i de B_t sont \mathcal{F}_t —mesurables donc B_t aussi.

*De même, comme les $B_{t+h}^i - B_t^i$ sont indépendantes de \mathcal{F}_t , alors il en est de même pour $B_{t+h} - B_t$.

*Comme les variables aléatoires $B^i_{t+h} - B^i_t$ sont gaussiennes et indépendantes, alors toute combinaison linéaire de ces variables aléatoires est également gaussienne. Il résulte que le vecteur $B_{t+h} - B_t$ est gaussien. De plus $var\left(B^i_{t+h} - B^i_t\right) = h$ et $cov\left(B^i_{t+h} - B^i_t, B^j_{t+h} - B^j_t\right) = 0$ à cause de l'indépendance, c'est-à-dire que les éléments diagonaux de la matrice des covariance du vecteur $B_{t+h} - B_t$ sont tous égaux à h et les éléments non diagonaux sont tous nuls, d'où $C\left(B^i_{t+h} - B^i_t\right) = hI$ et on a $B_{t+h} - B_t \leadsto \mathcal{N}\left(0, hI\right)$.

 $(B_t)_{t>0}$ est donc un mouvement brownien standard de dimension d.

Exercice 3:

On sait, d'aprés l'exercice précédant, que les (B_t^i) sont des mouvements brownien réels indépendants. Ainsi,

-Si i=j, alors $M_t^{ij}=(B_t^i)^2-t$, qui est une martingale, d'aprés le cours.

-Si i = j, alors $M_t^{ij} = B_t^i B_t^j$.

 $*M_t^{ij}$ est \mathcal{F}_t -mesurable comme étant le produit de deux v.a. \mathcal{F}_t -mesurables, d'où $\left(M_t^{ij}\right)$ est adapté.

*On a, d'aprés l'inégalité de Holder,

$$\mathbb{E}\left(\left|M_t^{ij}\right|\right) \leq \sqrt{\mathbb{E}\left(\left(B_t^i\right)^2\right)}\sqrt{\mathbb{E}\left(\left(B_t^j\right)^2\right)} = \sqrt{t}\sqrt{t} = t < \infty$$

*On a pour tout $t, h \ge 0$,

$$M_{t+h}^{ij} - M_{t}^{ij} = B_{t+h}^{i} B_{t+h}^{j} - B_{t}^{i} B_{t}^{j} = B_{t+h}^{i} \left(B_{t+h}^{j} - B_{t}^{j} \right) + B_{t}^{j} \left(B_{t+h}^{i} - B_{t}^{i} \right).$$

Comme (B_t^i) et (B_t^j) sont des martingales, alors

$$\mathbb{E}\left(B_{t+h}^{j} - B_{t}^{j} \mid \mathcal{F}_{t}\right) = \mathbb{E}\left(B_{t+h}^{i} - B_{t}^{i} \mid \mathcal{F}_{t}\right) = 0, \mathbb{E}\left(B_{t+h}^{j} \mid \mathcal{F}_{t}\right) = B_{t}^{j}$$

et comme les $v.a.\ B^i_{t+h}$ et $B^j_{t+h}-B^j_t$ son indépendates, alors on a

$$\mathbb{E}\left(M_{t+h}^{ij} - M_{t}^{ij} \mid \mathcal{F}_{t}\right) = \mathbb{E}\left(B_{t+h}^{i} \left(B_{t+h}^{j} - B_{t}^{j}\right) \mid \mathcal{F}_{t}\right) + \mathbb{E}\left(B_{t}^{j} \left(B_{t+h}^{i} - B_{t}^{i}\right) \mid \mathcal{F}_{t}\right)$$

$$= \mathbb{E}\left(B_{t+h}^{i} \mid \mathcal{F}_{t}\right) \mathbb{E}\left(B_{t+h}^{j} - B_{t}^{j} \mid \mathcal{F}_{t}\right) + B_{t}^{j} \mathbb{E}\left(\left(B_{t+h}^{i} - B_{t}^{i}\right) \mid \mathcal{F}_{t}\right)$$

$$= 0,$$

ce qui montre que $\left(M_t^{ij}\right)$ est une martingale pour tout i,j=1,2,...,d.