Analysis - PMA 13 -

KYB

Thrn, it's a Fact mathrnfact@gmail.com

May 13, 2021

Overview

Sequences and Series of Functions Equicontinuous Families of Functions The Stone-Weierstrass Theorem

Definition

Let $\{f_n\}$ be a sequence of functions defined on a set E.

▶ We say that $\{f_n\}$ is pointwise bounded on E if for every $x \in E$, there exists a finite-valued function ϕ defined on E such that

$$|f_n(x)| < \phi(x)$$

for all $x \in E$.

lackbox We say that $\{f_n\}$ is uniformly bounded on E if there exists a number M such that

$$|f_n(x)| < M$$

for all $x \in E$.

Example

Let $f_n(x) = \sin nx$ for $0 \le x \le 2\pi$ and for all n. Then there is no convergent subsequence.

Example

Let
$$f_n(x) = \frac{x^2}{x^2 + (1 - nx)^2}$$
 for $0 \le x \le 1$. Then $\{f_n\}$ is uniformly bounded on $[0, 1]$ and $\lim_{n \to \infty} f_n(x) = 0$ for all x but $f_n\left(\frac{1}{n}\right) = 1$ for all n . So there is no subsequence converging uniformly on $[0, 1]$.

Definition

A family $\mathscr F$ of complex functions f defined on a set E in a metric space X is said to be equicontinuous on E if for every $\epsilon>0$ there exists a $\delta>0$ such that

$$|f(x) - f(y)| < \epsilon$$

whenever $d(x,y) < \delta$, $x,y \in E$, and $f \in \mathscr{F}$.

Theorem

If $\{f_n\}$ is a pointwise bounded sequence of complex functions on a countable set E, then $\{f_n\}$ has a subsequence $\{f_{n_k}\}$ such that $\{f_{n_k}(x)\}$ converges for every $x \in E$.

Theorem

If K is a compact metric space, if $f_n \in \mathcal{C}(K)$ for $n = 1, 2, 3, \cdots$ and if $\{f_n\}$ converges uniformly on K, then $\{f_n\}$ is equicontinuous on K.

Theorem

If K is compact, if $f_n \in \mathscr{C}(K)$ for $n = 1, 2, 3, \cdots$, and if $\{f_n\}$ is pointwise bounded and equicontinuous on K, then

- (a) $\{f_n\}$ is uniformly bounded on K,
- (b) $\{f_n\}$ contains a uniformly convergent subsequence.

Ex 7.1

Prove that every uniformly convergent sequence of bounded function is uniformly bounded.

Ex 7.11

Suppose $\{f_n\}$, $\{g_n\}$ are defined on E, and

- (a) $\sum f_n$ has uniformly bounded partial sums;
- (b) $g_n \to 0$ uniformly on E;
- (c) $g_1(x) \ge g_2(x) \ge g_3(x) \ge \cdots$ for every $x \in E$.

Prove that $\sum f_n g_n$ converges uniformly on E.

Ex 7.13

Assume that $\{f_n\}$ is a sequence of monotonically increasing functions on \mathbb{R} with $0 \le f_n(x) \le 1$ for all x and all n.

(a) Prove that there is a function f and a sequence $\{n_k\}$ such that

$$f(x) = \lim_{k \to \infty} f_{n_k}(x)$$

for every $x \in \mathbb{R}$.

(b) If, moreover, f is continuous, prove that $f_{n_k} \to f$ uniformly on compact sets.

Ex 7.15

Suppose f is a real continuous function on \mathbb{R} , $f_n(t) = f(nt)$ for $n = 1, 2, 3, \cdots$, and $\{f_n\}$ is equicontinuous on [0, 1]. What conclusion can you draw about f?

Ex 7.16

Suppose $\{f_n\}$ is an equicontinuous sequence of functions on a compact set K, and $\{f_n\}$ converges pointwise on K. Prove that $\{f_n\}$ converges uniformly on K.

Ex 7.17

- ▶ Define the notions of uniform convergence and equicontinuity for mappings into any metric space.
- ▶ Theorems 7.9 and 7.12 are valid for mappings into any metric space.
- ▶ Theorems 7.8 and 7.11 are valid for mappings into any compete metric space.
- ▶ Theorems 7.10, 7.16, 7.17, 7.24 and 7.25 hold for vector-valued functions, that is, for mappings into any \mathbb{R}^k .

Definition

We say that a sequence of functions $\{f_n\}$ converges uniformly on E to a function f if for every $\epsilon > 0$, there is an integer N such that $n \geq N$ implies

$$|f_n(x) - f(x)| \le \epsilon$$

for all $x \in E$.

Theorem (7.9)

Suppose

$$\lim_{n \to \infty} f_n(x) = f(x) \quad (x \in E).$$

Put

Theorem (7.12)

If $\{f_n\}$ is a sequence of continuous functions on E, and if $f_n \to f$ uniformly on E, then f is continuous on E.

Theorem (7.8)

The sequence of functions $\{f_n\}$, defined on E, converges uniformly on E if and only if for every $\epsilon > 0$ there exists an integer N such that $m, n \geq N$, $x \in E$ implies

$$|f_n(x) - f_m(x)| \le \epsilon.$$

Theorem (7.11)

Suppose $f_n \to f$ uniformly on a set E in a metric space. Let x be a limit point of E, and suppose that

$$\lim_{t \to x} f_n(t) = A_n.$$

Then $\{A_n\}$ converges, and

$$\lim_{t \to x} f(t) = \lim_{n \to \infty} A_n.$$

Theorem (7.10)

Suppose $\{f_n\}$ is a sequence of functions defined on E, and suppose

$$|f_n(x)| \le M_n.$$

Then $\sum f_n$ converges uniformly on E if $\sum M_n$ converges.

Theorem (7.16)

Let α be monotonically increasing on [a,b]. Suppose $f_n \in \mathcal{R}(\alpha)$ on [a,b], and suppose $f_n \to f$ uniformly on [a,b]. Then $f \in \mathcal{R}(\alpha)$ and

$$\int_{a}^{b} f \ d\alpha = \lim_{n \to \infty} \int_{a}^{b} f_n \ d\alpha.$$

Theorem (7.17)

Suppose $\{f_n\}$ is a sequence of functions, differentiable on [a,b] and such that $\{f_n(x_0)\}$ converges for some x_0 on [a,b]. If $\{f'_n\}$ converges uniformly on [a,b], then $\{f_n\}$ converges uniformly on [a,b], to a function f, and

$$f'(x) = \lim_{n \to \infty} f'_m(x).$$

Theorem (7.24)

If K is a compact metric space, if $f_n \in \mathcal{C}(K)$ for $n = 1, 2, 3, \cdots$ and if $\{f_n\}$ converges uniformly on K, then $\{f_n\}$ is equicontinuous on K.

Theorem (7.25)

If K is compact, if $f_n \in \mathscr{C}(K)$ for $n = 1, 2, 3, \dots$, and if $\{f_n\}$ is pointwise bounded and equicontinuous on K, then

- (a) $\{f_n\}$ is uniformly bounded on K,
- (b) $\{f_n\}$ contains a uniformly convergent subsequence.

Ex 7.18

Let $\{f_n\}$ be a uniformly bounded sequence of functions which are Riemann-integrable on [a,b], and put

$$F_n(x) = \int_a^x f_n(t) \ dt \quad (a \le x \le b).$$

Prove that there exists a subsequence $\{F_{n_k}\}$ which converges uniformly on [a,b].

Ex 7.19

Let K be a compact metric space, let S be a subset of $\mathscr{C}(K)$. Prove that S is compact if and only if S is uniformly closed, pointwise bounded, and equicontinuous.

Theorem

If f is a continuous complex function on [a,b], there exists a sequence of polynomial P_n such that

$$\lim_{n \to \infty} P_n(x) = f(x)$$

uniformly on [a,b]. If f is real, the P_n may be taken real.

Proof, Step 1

We may assume that [a,b]=[0,1] and f(0)=f(1)=0. Furthermore, we define f(x)=0 for $x\notin [0,1]$. Put $Q_n(x)=c_n(1-x^2)^n$ where c_n satisfies

$$\int_{-1}^{1} Q_n(x) \ dx = 1.$$

Since

$$\int_{-1}^{1} (1 - x^2)^n dx = 2 \int_{0}^{1} (1 - x^2)^n dx \ge 2 \int_{0}^{1/\sqrt{n}} (1 - x^2)^n dx$$
$$\ge 2 \int_{0}^{1/\sqrt{n}} (1 - nx^2) dx = \frac{4}{3\sqrt{n}} > \frac{1}{\sqrt{n}},$$

$$c_n < \sqrt{n}$$
.

Proof, Step 2

For any $\delta > 0$, we have

$$Q_n(x) \le \sqrt{n}(1-\delta^2)^n \quad \delta \le |x| \le 1,$$

so that $Q_n \to 0$ uniformly on $\delta \le |x| \le 1$.

Set

$$P_n(x) = \int_{-1}^1 f(x+t)Q_n(t) dt \quad 0 \le x \le 1.$$

By a simple change of variable,

$$P_n(x) = \int_{-x}^{1-x} f(x+t)Q_n(t) dt = \int_0^1 f(t)Q_n(t-x) dt,$$

and the last integral is clearly a polynomial in x. Thus $\{P_n\}$ is a sequence of polynomials, which are real if f is real.

Proof, Step 3

Given $\epsilon > 0$, we choose $\delta > 0$ such that $|y - x| < \delta$ implies $|f(y) - f(x)| < \frac{\epsilon}{2}$. Let $M = \sup |f(x)|$. Then

$$|P_n(x) - f(x)| = \left| \int_{-1}^{1} [f(x+t) - f(x)] Q_n(t) dt \right|$$

$$\leq \int_{-1}^{1} |f(x+t) - f(x)| Q_n(t) dt$$

$$\leq 2M \int_{-1}^{-\delta} Q_n(t) dt + \frac{\epsilon}{2} \int_{-\delta}^{\delta} Q_n(t) dt + 2M \int_{\delta}^{1} Q_n(t) dt$$

$$\leq 4M \sqrt{n} (1 - \delta^2)^n + \frac{\epsilon}{2} < \epsilon.$$

Corollary

For every interval [-a,a], there is a sequence of real polynomials P_n such that $P_n(0)=0$ and such that

$$\lim_{n \to \infty} P_n(x) = |x|$$

uniformly on [-a, a].

Definition

- ▶ A family \mathscr{A} of complex functions defined on a set E is said to be an algebra if for all $f,g \in \mathscr{A}$ and for all $c \in \mathbb{C}$,
 - (i) $f+g\in\mathscr{A}$;
 - (ii) $fg \in \mathscr{A}$;
 - (iii) $cf \in \mathscr{A}$.
- ▶ If \mathscr{A} has the property that $f \in \mathscr{A}$ whenever $f_n \in \mathscr{A}$ and $f_n \to f$ uniformly on E, then \mathscr{A} is said to be uniformly closed.
- Let \mathscr{B} be the set of all functions which are limits of uniformly convergent sequences of members of \mathscr{A} . Then \mathscr{B} is called the uniform closure of \mathscr{A} .

Example

The set of all polynomials is an algebra, and the Weierstrass theorem may be stated by saying that the set of continuous on [a, b] is the uniform closure of the set of polynomials on [a, b].

Theorem

Let \mathscr{B} be the uniform closure of an algebra \mathscr{A} of bounded functions. Then \mathscr{B} is a uniformly closed algebra.

Definition

- Let $\mathscr A$ be a family of functions on a set E. Then $\mathscr A$ is said to separate points on E if every pair of distinct points $x_1, x_2 \in E$ there corresponds a function $f \in \mathscr A$ such that $f(x_1) \neq f(x_2)$.
- ▶ If to each $x \in E$ there corresponds a function $g \in \mathscr{A}$ such that $g(x) \neq 0$, we say that \mathscr{A} vanishes at no point of E.

Example

- \blacktriangleright The algebra of all polynomials in one variable has these properties on \mathbb{R} .
- ► An algebra of all even polynomials does not separate points.

Theorem

Suppose $\mathscr A$ is an algebra of functions on a set E, $\mathscr A$ separates points on E, and $\mathscr A$ vanishes at no point of E. Suppose x_1, x_2 are distinct points of E, and c_1, c_2 are constants (real if $\mathscr A$ is a real algebra). Then $\mathscr A$ contains a function f such that

$$f(x_1) = c_1, \quad f(x_2) = c_2.$$

Theorem

Let $\mathscr A$ be an algebra of real continuous functions on a compact set K. If $\mathscr A$ separates on K and if $\mathscr A$ vanishes at no point of K, then the uniform closure $\mathscr B$ of $\mathscr A$ consists of all real continuous functions on K.

 $\begin{array}{l} \text{Step 1} \\ \text{If } f \in \mathscr{B} \text{, then } |f| \in \mathscr{B}. \end{array}$

Step 2

If $f,g \in \mathcal{B}$, then $\max(f,g), \min(f,g) \in \mathcal{B}$.

Step 3

Given a real function f, continuous on K, a point $x \in K$, and $\epsilon > 0$, there exists a function $g_x \in \mathcal{B}$ such that $g_x(x) = f(x)$ and

$$g_x(t) > f(t) - \epsilon \quad t \in K.$$

Step 4

Given a real function f, continuous on K, and $\epsilon > 0$, there exists a function $h \in \mathscr{B}$ such that

$$|h(x) - f(x)| < \epsilon \quad x \in K.$$

Since \mathscr{B} is uniformly closed, this statement is equivalent to the conclusion of the theorem.

Definition

A complex algebra $\mathscr A$ is said to be self-adjoint if for every $f\in\mathscr A$, $\overline f\in\mathscr A$, where $\overline f(x)=\overline{f(x)}$.

Theorem

Suppose $\mathscr A$ is a self-adjoint algebra of complex continuous functions on a compact set K, $\mathscr A$ separates points on K, and $\mathscr A$ vanishes at no point of K. Then the uniform closure $\mathscr B$ of $\mathscr A$ consists of all complex continuous functions on K. In other words, $\mathscr A$ is dense in $\mathscr C(K)$.

Ex 7.20

If f is continuous on $\left[0,1\right]$ and if

$$\int_0^1 f(x)x^n \, dx = 0 \quad (n = 0, 1, 2, \cdots),$$

prove that f(x) = 0 on [0, 1].

Ex 7.21

Let K be the unit circle in the complex plane, and let $\mathscr A$ be the algebra of all functions of the form

$$f(e^{i\theta}) = \sum_{n=0}^{N} c_n e^{in\theta} \quad (\theta \text{ real}).$$

Then $\mathscr A$ separates points on K and $\mathscr A$ vanishes at no point of K, but nevertheless there are continuous on K which are not in the uniform closure of $\mathscr A$.

Ex 7.22

Assume $f \in \mathcal{R}(\alpha)$ on [a,b], and prove that there are polynomials P_n such that

$$\lim_{n \to \infty} \int_{a}^{b} |f - P_n|^2 d\alpha = 0.$$

Ex 7.23

Put $P_0 = 0$, and define, for $n = 0, 1, 2, \cdots$,

$$P_{n+1}(x) = P_n(x) + \frac{x^2 - P_n^2(x)}{2}.$$

Prove that

$$\lim_{n \to \infty} P_n(x) = |x|,$$

uniformly on [-1,1].

Ex 7.24

Let X be a metric space, with metric d. Fix a point $a \in X$. Assign to each $p \in X$ the function f_p defined by

$$f_p(x) = d(x, p) - d(x, a) \quad (x \in X).$$

Prove that $|f_p(x)| \leq d(p,a)$ for all $x \in X$, and therefore $f_p \in \mathscr{C}(X)$. Prove that

$$||f_p - f_q|| = d(p,q)$$

for all $p, q \in X$.

If $\Phi(p) = f_p$, it follows that Φ is an isometry of X onto $\Phi(X) \subset \mathscr{C}(X)$.

Let Y be the closure of $\Phi(X)$ in $\mathscr{C}(X)$. Show that Y is complete.(Hence, every metric space is a dense subset of a complete metric space.)

Ex 7.25, Picard Interation

Suppose ϕ is a continuous bounded real function in the strip defined by $0 \le x \le 1, -\infty < y < \infty$. Prove that the initial-value problem

$$y' = \phi(x, y), \quad y(0) = c$$

has a solution.

The End