Homework 9 Solutions

1. Let V, W be finite dimensional inner product spaces with $\dim(V) \leq \dim(W)$. Prove there is a linear map $T: V \to W$ such that $\langle T(v), T(v') \rangle_W = \langle v, v' \rangle_V$ for all $v, v' \in V$.

Proof. Let $\{v_1,\ldots,v_m\}$, $\{w_1,\ldots,w_n\}$ be orthonormal bases for V,W respectively. These exist by the Gram-Schmidt process. By the dimension condition, $m \leq n$. Define T as the unique linear map with $T(v_k) = w_k$ for each $1 \leq k \leq m$. Then, for $v,v' \in V$, we write $v = \sum_{k=1}^m a_k v_k$, $v' = \sum_{k=1}^m b_k v_k$. We have

$$\langle T(v), T(v') \rangle_W = \langle \sum_{k=1}^m a_k T(v_k), \sum_{k=1}^m b_k T(v_k) \rangle = \langle \sum_{k=1}^m a_k w_k, \sum_{k=1}^m b_k w_k \rangle$$

As $\langle v_i, v_k \rangle = \langle w_i, w_k \rangle$ for each j, k, we have

$$\langle \sum_{k=1}^{m} a_k w_k, \sum_{k=1}^{m} b_k w_k \rangle = \langle \sum_{k=1}^{m} a_k v_k, \sum_{k=1}^{m} b_k v_k \rangle = \langle v, v' \rangle_V$$

2. Let $T: V \to V$ be an orthogonal projection on a subspace of an inner product space V. Prove that $||T(v)|| \le ||v||$ for all $v \in V$.

Proof. For $v \in V$, write v = w + z where $w \in R(T)$, $z \in R(T)^{\perp}$, so T(v) = w. Then,

$$||T(v)||^2 = ||w||^2 \le ||w||^2 + ||z||^2 = ||w + z||^2 = ||v||$$

as $\langle w, z \rangle = 0$.

3. Let V be a finite dimensional inner product space and $T:V\to V$ be a projection such that $\|T(v)\|\leq \|v\|$ for each $v\in V$. Prove T is an orthogonal projection.

Proof. Suppose T be projection along Z; that is, N(T)=Z. Suppose T is not an orthogonal projection. Thus, if W=R(T), we have $Z\neq W^{\perp}$. Hence, $Z^{\perp}\neq W$ (if $Z^{\perp}=W$, then $(Z^{\perp})^{\perp}=Z=W^{\perp}$). As $\dim Z^{\perp}=\dim W$, we have $Z^{\perp}\backslash W\neq\emptyset$. Let $x\in Z^{\perp}\backslash W$. We show $\|T(x)\|>\|x\|$. Write T(x)=z+z' where $z\in Z$ and $z'\in Z^{\perp}$. This is possible as $V=Z\oplus Z^{\perp}$. Write $x=w_x+z_x$ where $w_x\in W$, $z_x\in Z$. Then, $T(x)=w_x=z+z'$, so $w_x-z'=z\in Z$. Thus, $x-z'=(w_x-z')+z_x\in Z$ and is also in Z^{\perp} , so x=z'. Hence, $\|T(x)\|^2=\|z+z'\|^2=\|z\|^2+\|z'\|^2=\|z\|^2+\|x\|^2$. As $x\notin W$, $T(x)\neq x$, so $z\neq 0$. Thus, $\|z\|^2>0$, so $\|T(x)\|^2>\|x\|^2$.

4. Let T be a normal operator on a finite dimensional inner product space. Suppose T is also a projection. Prove T is an orthogonal projection.

Proof. As T is normal, there is an orthonormal basis $\beta = \{v_1, \ldots, v_n\}$ for V such that $[T]_{\beta}$ is diagonal. As T is a projection, the eigenvalues of T all belong to $\{0,1\}$. Thus, if $\{v_1,\ldots,v_m\}$ have eigenvalue 1 and the rest have eigenvalue 0, we have, for $v = \sum_{k=1}^{n} c_k v_k \in V$

$$\langle T(v), T(v) \rangle = \langle \sum_{k=1}^{n} c_k T(v_k), \sum_{k=1}^{n} c_k (v_k) \rangle = \langle \sum_{k=1}^{m} c_k v_k, \sum_{k=1}^{m} c_k v_k \rangle = \sum_{k=1}^{m} |c_k|^2 \le \sum_{k=1}^{n} |c_k|^2 = \langle \sum_{k=1}^{n} c_k v_k, \sum_{k=1}^{n} c_k v_k \rangle = \langle v, v \rangle$$

so by problem 3, T is an orthogonal projection.

5. Let T be a normal operator on a finite dimensional complex inner product space such that $T^n = 0$ for some n > 0. Prove T = 0.

1

Proof. As T is normal, it has a basis of eigenvectors, say $\{v_1, \ldots, v_m\}$ with eigenvalues $\lambda_1, \ldots, \lambda_m$. Then, $T^n(v_k) = \lambda_k^n v_k = 0$ for all n, so $\lambda_k = 0$ for all k. Hence, T = 0 on a basis, so T = 0.

6. Let T be a normal operator on a finite dimensional complex inner product space. Prove for any integer n > 1 there is a linear operator S such that $T = S^n$.

Proof. As T is normal, there is an orthonormal basis $\beta = \{v_1, \ldots, v_m\}$ of eigenvectors, say with eigenvalues $\lambda_1, \ldots, \lambda_m$. For each λ_k , let μ_k be such that $\mu_k^n = \lambda_k$. These exist by the fundamental theorem of algebra. Define S by $S(v_k) = \mu_k v_k$. Then, $S^n(v_k) = \mu_k^n v_k = T(v_k)$ for each k, so $S^n = T$ as these transformations are equal on a basis.

7. Let T be a unitary operator on a finite dimensional inner product space and $W \subseteq V$ a finite dimensional T-invariant subspace. Prove that W^{\perp} is also T-invariant.

Proof. Let $x \in W^{\perp}$ and $w \in W$. Then, $\langle w, T(x) \rangle = \langle T^*(w), x \rangle = \langle T^{-1}(w), x \rangle$ as $T^* = T^{-1}$. As T is unitary, it is an isomorphism, so T^{-1} is also an isomorphism. Hence, $\dim T^{-1}(X) = \dim(X)$ for any subspace $X \subseteq V$. In particular, $\dim T^{-1}(W) = \dim(W)$, but $W \subseteq T^{-1}(W)$ as W is T-invariant, so $W = T^{-1}(W)$. Thus, $T^{-1}(w) \in W$, so $\langle T^{-1}(w), x \rangle = 0$ as $x \in W^{\perp}$. As this holds for all $w \in W$, $T(x) \in W^{\perp}$.

8. Find an orthogonal matrix whose first row is $(\frac{1}{3}, \frac{2}{3}, \frac{2}{3})$.

Solution. Take any basis where $(\frac{1}{3},\frac{2}{3},\frac{2}{3})$ is the first element and perform Gram-Schmidt. Then, use the results as the rows of the orthogonal matrix. For example, we could take $\{(\frac{1}{3},\frac{2}{3},\frac{2}{3}),(-4,1,1),(0,1,-1)\}$ (to start off orthogonally) and normalize to $\{(\frac{1}{3},\frac{2}{3},\frac{2}{3}),(\frac{-4}{\sqrt{18}},\frac{1}{\sqrt{18}}),(0,\frac{1}{\sqrt{2}},\frac{-1}{\sqrt{2}})\}$ giving the matrix

$$\begin{bmatrix} \frac{1}{3} & \frac{2}{3} & \frac{2}{3} \\ \frac{-4}{\sqrt{18}} & \frac{1}{\sqrt{18}} & \frac{1}{\sqrt{18}} \\ 0 & \frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}} \end{bmatrix}$$

9. Let T be a unitary operator on a complex finite dimensional inner product space V. Prove there exists a unitary operator S such that $T = S^2$.

Proof. Let S be as constructed in problem 6. We show S is unitary. Let $\beta=\{v_1,\ldots,v_m\}$ be as in problem 6, so $S(v_k)=\mu_k v_k,\, T(v_k)=\lambda_k v_k,\, \mu_k^2=\lambda_k.$ Then, as β is an orthonormal basis, $S^*(v_k)=\overline{\mu_k}v_k.$ Hence, $SS^*(v_k)=|\mu_k|^2v_k=|\lambda_k|v_k.$ Now, T is unitary, so $T^*(v_k)=\overline{\lambda_k}v_k$ and, as $T^*=T^{-1}$, we have $T^*(v_k)=T^{-1}(v_k)=\frac{1}{\lambda_k}v_k.$ Thus, $\lambda_k\overline{\lambda_k}v_k=v_k$, which is $|\lambda_k|^2=1.$ Hence, $SS^*(v_k)=v_k$ for all k, so $SS^*=Id.$

10. Let T be a self-adjoint positive definite operator on a finite dimensional inner product space V. Prove there is an operator S such that $S^*S = T$.

Proof. Let $\beta = \{v_1, \dots, v_n\}$ be an orthonormal basis for V such that $T(v_k) = \lambda_k v_k$ for each $v_k \in \beta$. This exists as T is self-adjoint. As T is positive definite, $\lambda_k > 0$ for each k. Let $S: V \to V$ by $S(v_k) = \sqrt{\lambda_k} v_k$ (the positive square root). Then, as β is an orthonormal basis, $S^*(v_k) = \overline{\sqrt{\lambda_k}} v_k = \sqrt{\lambda_k} v_k$ for each v_k . Thus, $S^*S(v_k) = \lambda_k v_k = T(v_k)$ for all k, so $S^*S = T$.