Presented by Team - Survey Corps

BENFORD'S LAW ANALYSIS ON TWITTER DATA

Maths & Al Project

Team Members

Shriti Negi Sayuri Janbandhu Devaansh Kathuria Geethika

Code Contributors

Code

Shriti, Geethika – Led the development of core notebook code and implementation.

Analysis

Sayuri- Provided insights, interpretations, and data-driven conclusions. (Also played a major role in designing and creating this presentation.)

Debug

Devaansh – Identified and resolved critical bugs to ensure smooth execution.

Presentation Contributors

Design

Shriti – Created the overall visual theme, layout, and slide aesthetics.

Editing

Devaansh, Geethika – Refined the content, ensured clarity, and maintained consistency throughout the presentation.

Content

Sayuri - Wrote and structured the main content, aligning it with the project's goals.

Introduction to Benford's Law

What is Benford's Law?

Benford's Law predicts that in many naturally occurring datasets, the leading digit is more likely to be small.

Distribution:

1 appears ~30% of the time 9 appears <5% of the time

Used in forensic accounting, fraud detection, and anomaly detection.

"Benford's Law helps us detect whether a dataset behaves 'naturally' or shows signs of manipulation."

Project Objective & Dataset Overview

Aim:

o To verify whether Benford's Law holds for numerical data in a real-world Twitter dataset.

Dataset:

- CSV file sourced from Twitter data.
- Key numerical columns analysed:
 - o id
 - followersCount
 - o friendsCount

Key Questions:

- Do these columns follow the expected digit distribution according to Benford's Law?
- Which features show the most or least conformity?

Why Twitter Data?

- Massive volume and naturally generated user metrics.
- o Diverse behavior patterns make it ideal to test Benford's hypothesis.

How We Tested Benford's Law


```
import numpy as np
from scipy.stats import chisquare

# Extract leading digit
digits = df['followersCount'].dropna().astype(str)
digits = digits.str.lstrip('-').str.replace('.', '').str[0].astype(int)

# Count observed frequencies
observed = [digits.tolist().count(d) for d in range(1, 10)]

# Expected frequencies (Benford's Law)
expected = [np.log10(1 + 1/d) * len(digits) for d in range(1, 10)]

# Chi-square test
chi2, p_value = chisquare[observed, f_exp=expected]
```

- 1. Extract the first digit of each numeric value
- 2. Count how often each digit (1-9) appears
- 3. Calculate expected frequencies using Benford's formula:

$$\circ$$
 P(d) = $\log_{10}(1 + 1/d)$

4. Run a Chi-square goodness-of-fit test5. Plot observed vs expected frequencies

Data → Digit Extraction → Frequency → Chi² Test → Plot

Observed vs Expected Results

Column	Chi² Value	p-value	Fit Quality
id	27.71	0.0005	X Poor fit
followersCount	25.48	0.0013	⚠ Moderate fit
friendsCount	23.32	0.003	✓ Best fit

Which column matched Benford's Law best? -friendsCount

- The observed distribution (orange line) is quite close to the expected Benford curve (blue).
- Fewer sharp deviations in digit frequencies.
- Chi-square statistic = 23.32, p-value = 0.0030 (still significant, but lowest chi² among all).

Which deviated most? -id

- The orange line diverges the most from Benford's curve.
- Especially visible in digits 2-5.
- Chi-square statistic = 27.71, p-value = 0.0005
- Likely due to IDs being artificially generated or sequential, which violates Benford's assumptions.

Middle Ground -followersCount

- Has moderate deviation better than id, worse than friendsCount.
- Chi-square = 25.48, p-value = 0.0013

What Does It Tell Us?

01.

Overall Conformity with Benford's Law

- All three numerical columns (id, followersCount, friendsCount) showed a general trend consistent with Benford's Law.
- However, none of the columns perfectly fit the expected distribution (all p-values < 0.05).

02.

Statistical Takeaway

- Chi-square test results for all columns were significant.
- Implies that although the shape resembles Benford's curve, true statistical conformity is not achieved.
- Lower Chi² value = better match → friendsCount is closest.

03.

Conclusion from Insights

- Columns like followersCount and friendsCount show partial natural compliance with Benford's Law — useful in fraud or anomaly detection.
- id does not represent organic data, confirming Benford's Law is best applied to naturally occurring datasets.

Conclusion & Future Scope

Conclusion

- Benford's Law provides a useful lens to analyze patterns in real-world numerical data.
- From the Twitter dataset:
 - friendsCount showed the best fit.
 - o id diverged due to artificial generation.
- The results reinforce that Benford's Law works best with organically distributed, large-scale data.

> Future Scope

- Q Test additional Twitter features, e.g., retweet counts, likes, or tweet lengths.
- @ Incorporate machine learning to detect anomalies or bots based on Benford deviation.
- 🏶 Apply Benford's Law to other social platforms or domains (finance, health, etc.).
- Automate Benford-check pipelines for real-time fraud detection.

Benford's Law is a powerful statistical tool when used on the right kind of data — especially for detecting unnatural or manipulated patterns.

66

Benford's Law is a quiet reminder that even in the messiness of life, patterns often hide where we least expect them -in the very first digit. 99

THANK YOU

~Team **SURVEY CORPS**