Lesson 1

Part I: Systems of Linear Equations

<u>Definition</u>: A **linear equation** is in the form

$$a_1x_1 + a_2x_2 + \dots + a_nx_n = b,$$

where x_1, x_2, \ldots, x_n are variables, a_1, a_2, \ldots, a_n and b are scalars, and n is a positive integer.

For example, (1) $3x_1 + 4x_2 = -2x_1$

- $(2) (2 + x_1)x_2 = 6$
- $(3)\ \sqrt{5}\,x_1 + 4x_2 = 0$
- $(4)\ 5\sqrt{x_1} + 4x_2 = 0$

<u>Definition</u>: A **system of linear equations** (or a **linear system**) is a collection of one or more linear equations.

<u>Definition</u>: A **solution** of a system is a list of numbers (s_1, s_2, \ldots, s_n)

written as a column vector $\begin{bmatrix} s_1 \\ s_2 \\ \vdots \\ s_n \end{bmatrix}$ in \mathbb{R}^n such that every equation in the

system is satisfied when each x_i is replaced by s_i .

For example, $\begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}$ is a solution of the system $\begin{cases} 2x_1 + x_2 + x_3 = 1 \\ x_1 - 2x_2 - x_3 = 2 \end{cases}$.

1

Geometrical interpretation of the solutions of a system of two linear equations in two variables:

$$a_{11}x_1 + a_{12}x_2 = b_1$$

$$a_{21}x_1 + a_{22}x_2 = b_2$$

<u>Definition</u>: A linear system is

- **consistent** if it has either one solution or infinitely many solutions.
- **inconsistent** if it has no solution.

Matrix Notation – In linear algebra, we often use matrix notation to represent a linear system. For example, consider a linear system:

$$a_{11}x_1 + a_{12}x_2 + a_{13}x_3 = b_1$$

$$a_{21}x_1 + a_{22}x_2 + a_{23}x_3 = b_2$$

$$a_{31}x_1 + a_{32}x_2 + a_{33}x_3 = b_3$$

•
$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$$
: **coefficient matrix** of the system

•
$$\begin{bmatrix} A \mid \mathbf{b} \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & a_{13} & b_1 \\ a_{21} & a_{22} & a_{23} & b_2 \\ a_{31} & a_{32} & a_{33} & b_3 \end{bmatrix}$$
: **augmented matrix** of the system

The **size** of a matrix is the number of rows and number of columns. An $m \times n$ matrix is a rectangular array of numbers with m rows and n columns.

Example 1: Solve the system.

$$x_1 - x_2 = -4$$

$$x_1 + 2x_2 = 2$$

<u>Note</u>: 1. Two linear systems are **equivalent** if they have the same solution set.

2. Solving a linear system is a step-by-step process (row operations) of replacing it with an equivalent system until it can be easily solved.

Example 2: Solve the system.

$$x_2 + 5x_3 = -4$$

$$x_1 + 4x_2 + 3x_3 = -2$$

$$2x_1 + 7x_2 + 2x_3 = -2$$

Part II: Row Operations & Echelon Forms

Elementary Row Operations

- 1. **Interchange** Interchange two rows.
- 2. **Scaling** Multiply every entry in a row by a nonzero constant.
- 3. **Replacement/Row addition** Add a multiple of one row to another row.

<u>Definition</u>: Two matrices are called **row equivalent** if there is a sequence of elementary row operations that transforms one matrix into the other.

Statement: If the augmented matrices of two linear systems are row equivalent, then the systems have the same solution set.

Echelon Forms

<u>Note</u>: We call a row of a matrix a **zero row** if all its entries are 0 and a **nonzero row** otherwise. The **leading entry** of a nonzero row is the leftmost nonzero entry.

<u>Definition</u>:

- A matrix is in **row echelon form** (REF) if it satisfies the following three conditions:
 - 1. Each nonzero row lies above every zero row.
- 2. The leading entry of a nonzero row lies in a column to the right of the column containing the leading entry of any preceding row.
 - 3. All entries in a column below a leading entry are zero.
- A matrix in **reduced row echelon form** (RREF) satisfies two additional conditions:
 - 4. The leading entry in each nonzero row is 1.
 - 5. Each leading 1 is the only nonzero entry in its column.

Example 3: Determine which of the matrices is in reduced echelon form, which is only in echelon form, and which is not in echelon form.

REF satisfies 1--3 and RREF satisfies 1--5

- 1. row of zeros (if any) at the bottom
- 2. pivots go down and to the right
- 3. zeros below pivots
- 4. pivots = 1
- 5. zeros above and below pivots

$$(1) \begin{bmatrix} 1 & 1 & -2 & 0 \\ 0 & 0 & 4 & 3 \\ 0 & 0 & 0 & 2 \end{bmatrix}$$

$$(2) \begin{bmatrix} 1 & 0 & 0 & 3 & 0 \\ 0 & 1 & 0 & 1 & 3 \\ 0 & 0 & 1 & 0 & 2 \end{bmatrix}$$

$$(3) \begin{bmatrix} 1 & 0 & 0 & 3 & 0 \\ 0 & 1 & 0 & 1 & 3 \\ 1 & 0 & 1 & 0 & 0 \end{bmatrix}$$

$$\begin{bmatrix}
 1 & 1 & -2 & 0 \\
 0 & 1 & 4 & 3 \\
 0 & 0 & 1 & 2 \\
 0 & 0 & 0 & 0
 \end{bmatrix}$$

Theorem: (Uniqueness of the Reduced Echelon Form)

Each matrix is row equivalent to one and only one reduced echelon matrix.

Questions about Existence and Uniqueness of Solution

- 1. Is the system consistent; does at least one solution *exist*?
- 2. If a solution exists, is the solution *unique*?

Example 4: The augmented matrices of linear systems were reduced by row operations to the forms shown. Describe the solution sets of the original systems.

$$(1) \begin{bmatrix} 1 & 1 & -2 & 0 \\ 0 & 1 & 4 & 3 \\ 0 & 0 & 1 & 2 \end{bmatrix}$$

$$(2) \begin{bmatrix} 1 & 1 & -2 & 0 \\ 0 & 1 & 4 & 3 \\ 0 & 0 & 0 & 2 \end{bmatrix}$$

$$(3) \begin{bmatrix} 1 & 1 & -2 & 0 \\ 0 & 1 & 4 & 3 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Lesson 2

Part I: Row Reduction

Definition: Let A be a matrix.

- If A is in REF (or RREF), the first nonzero entry in each row is a **pivot**.
- A **pivot position** in A is a location that corresponds to a pivot.
- \bullet A **pivot column** is a column of A that contains a pivot position.
- The number of pivot positions in a matrix A is called the **rank** of A.

Note: $\operatorname{rank}(A) = \operatorname{number} \text{ of pivots in } A_{\operatorname{ref}}$ = $\operatorname{number} \text{ of pivots in } A_{\operatorname{rref}}$

For example, if
$$A = \begin{bmatrix} 0 & 0 & 2 & -4 & -5 \\ 0 & 1 & -1 & 1 & 3 \\ 0 & 6 & 0 & -6 & 5 \end{bmatrix}$$
, then

$$A_{\text{ref}} = \begin{bmatrix} 0 & 1 & -1 & 1 & 3 \\ 0 & 0 & 2 & -4 & -5 \\ 0 & 0 & 0 & 2 \end{bmatrix} \quad \text{and} \quad A_{\text{rref}} = \begin{bmatrix} 0 & 1 & 0 & -1 & 0 \\ 0 & 0 & 1 & -2 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}.$$

Circle the pivot positions.

pivot columns:

$$rank(A) =$$

Question: How do we reduce a matrix A in REF or RREF?

The Row Reduction Algorithm

- 1. Working from the left, find the first column (pivot column) of the matrix that contains an nonzero entry.
- 2. Interchange rows (if necessary) so that the top entry (pivot) in the column is nonzero.

Note: If 1 or -1 is in the column, choose either as a pivot.

- 3. Use row replacement operations to make all entries beneath the pivot into zeros.
- 4. Repeat steps 1-3 on the submatrix consisting of all rows below the most recently obtained pivot until we reach the bottom row or there are no remaining nonzero rows.
- 5. Beginning with the rightmost pivot and working upward and to the left, create zeros above each pivot. If a pivot is not 1, make it 1 by a scaling operation.

Note: The combination of steps 1-4 is called the <u>forward phase</u> of the row reduction algorithm; step 5, which produces the unique reduced echelon form, is called the backward phase.

Example 1: Row reduce the matrix to RREF.

$$A = \begin{bmatrix} 0 & 0 & 2 & -4 & -5 \\ 0 & 1 & -1 & 1 & 3 \\ 0 & 6 & 0 & -6 & 5 \end{bmatrix}$$

Example 2: Solve the linear system whose augmented matrix has been reduced to the RREF.

$$\begin{bmatrix}
 1 & 0 & -2 & 0 \\
 0 & 1 & 4 & 3 \\
 0 & 0 & 0 & 0
 \end{bmatrix}$$

<u>Note</u>: 1. The variables that correspond to pivot columns in the matrix are called **pivot variables** (or **basic variables**); the other variables are called **free variables**.

- 2. We can use free variables as parameters to describe the solution set.
- 3. If the system is inconsistent, the solution set is empty, even when the system has free variables.

Part II: Existence and Uniqueness of the Solutions

Theorem: (Existence and Uniqueness Theorem)

A linear system is **consistent** if and only if the <u>rightmost column of the augmented matrix</u> is not a pivot column – that is, if and only if an echelon form of the augmented matrix has no row of the form

$$[0 \cdots 0 b], b \neq 0$$

If a linear system is consistent, then

- (i) it has a unique solution when there is no free variable.
- (ii) it has infinitely many solutions when there is at least one free variable.

For example, if the augmented matrix of the system $A\mathbf{x} = \mathbf{b}$ has been reduced to a REF:

$$(1) \begin{bmatrix} 3 & 2 & -2 & 2 & 0 \\ 0 & 2 & 4 & 1 & 3 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

$$(2) \begin{bmatrix} 3 & 2 & -2 & 2 & 0 \\ 0 & 2 & 4 & 1 & 3 \\ 0 & 0 & 0 & 0 & 2 \end{bmatrix}$$

An equivalent form of the Existence and Uniqueness Theorem:

Theorem: (Rouché-Capelli)

A linear system $A\mathbf{x} = \mathbf{b}$ is **consistent** if and only if

$$rank(A) = rank([A \mathbf{b}]),$$

where A is $m \times n$.

If a linear system is consistent, then

- (i) it has a unique solution when rank(A) = n.
- (ii) it has infinitely many solutions when rank(A) < n.

Recheck the previous examples using Rouché-Capelli Theorem:

$$(1) \begin{bmatrix} 3 & 2 & -2 & 2 & 0 \\ 0 & 2 & 4 & 1 & 3 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

$$\begin{bmatrix}
 3 & 2 & -2 & 2 & 0 \\
 0 & 2 & 4 & 1 & 3 \\
 0 & 0 & 0 & 0 & 2
 \end{bmatrix}$$

Use Row Reduction to Solve a Linear System

$$2x_1 - x_2 + 3x_3 - 4x_4 = 1$$

Example 3: Solve:
$$x_1 + 2x_2 - x_3 - 2x_4 = -2$$

$$2x_1 + 3x_2 + 2x_3 - 4x_4 = 3$$

Lesson 3

Part I: Vectors

Definition: An ordered list of numbers is called a **vector**.

In linear algebra, if a matrix has only one row or only one column it is called a vector. For example, let u_1 and u_2 be real numbers.

- $\mathbf{u} = \begin{bmatrix} u_1 \\ u_2 \end{bmatrix}$: a column vector in \mathbb{R}^2
- $\mathbf{u} = \begin{bmatrix} u_1 & u_2 \end{bmatrix}$: a row vector

Operations on Vectors

Let $\mathbf{u} = \begin{bmatrix} u_1 \\ u_2 \end{bmatrix}$ and $\mathbf{v} = \begin{bmatrix} v_1 \\ v_2 \end{bmatrix}$ be two vectors in \mathbb{R}^2 .

1.
$$\mathbf{u} = \mathbf{v} \iff$$

$$2. \mathbf{u} + \mathbf{v} = \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} + \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} =$$

$$3. c\mathbf{u} = c \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} =$$

For example, if $\mathbf{u} = \begin{bmatrix} 1 \\ 3 \end{bmatrix}$ and $\mathbf{v} = \begin{bmatrix} 2 \\ -1 \end{bmatrix}$, then

$$3\mathbf{u} - \mathbf{v} =$$

Vectors in
$$\mathbb{R}^n$$
 can be written as $\mathbf{u} = \begin{bmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{bmatrix}$.

The **zero vector** (denoted by $\mathbf{0}$) in \mathbb{R}^n is the vector whose n entries are all zero.

Properties of Vector Operations

For vectors $\mathbf{u}, \mathbf{v}, \mathbf{w}$ in \mathbb{R}^n and for scalars c and d:

1.
$$\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$$

2.
$$(\mathbf{u} + \mathbf{v}) + \mathbf{w} = \mathbf{u} + (\mathbf{v} + \mathbf{w})$$

3.
$$u + 0 = 0 + u = u$$

4.
$$\mathbf{u} + (-\mathbf{u}) = -\mathbf{u} + \mathbf{u} = \mathbf{0}$$
, where $-\mathbf{u} = (-1)\mathbf{u}$

5.
$$c(\mathbf{u} + \mathbf{v}) = c\mathbf{u} + c\mathbf{v}$$

6.
$$(c+d)\mathbf{u} = c\mathbf{u} + d\mathbf{u}$$

7.
$$c(d\mathbf{u}) = (cd)\mathbf{u}$$

8.
$$1u = u$$

Geometric Description of vectors in \mathbb{R}^2

1. The column vector $\mathbf{u} = \begin{bmatrix} u_1 \\ u_2 \end{bmatrix}$ can be graphed as a directed line segment from the origin (0,0) to the point (u_1,u_2) . It is called the posotion vector.

- 2. The sum of two vectors $\mathbf{u} + \mathbf{v}$: use the Parallelogram Rule
- 3. Scalar multiplication of a vector $c\mathbf{u}$:
 - (i) c > 0:
 - (ii) c < 0:

Note: The set of all scalar multiples of a nonzero vector \mathbf{u} is a line through the origin and \mathbf{u} .

Example 1: Given two vectors $\mathbf{u} = \begin{bmatrix} 1 \\ 3 \end{bmatrix}$ and $\mathbf{v} = \begin{bmatrix} 2 \\ -1 \end{bmatrix}$, find the vectors $\mathbf{u} + \mathbf{v}, 2\mathbf{v}, -\mathbf{v}$ and display them on a graph.

Part II: Vector Equations

Linear Combinations

<u>Definition</u>: Given vectors $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_p \in \mathbb{R}^n$ and scalars c_1, c_2, \dots, c_p , the vector \mathbf{b} defined by

$$\mathbf{b} = c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \dots + c_p \mathbf{v}_p$$

is called a **linear combination** of $\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_p$ with weights c_1, c_2, \cdots, c_p .

For Example, let $\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_p \in \mathbb{R}^n$.

- (1) A linear combination of $\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_p$ with weights $c_1 = c_2 = \cdots = c_p = 0$ is
- (2) A linear combination of $\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_p$ with weights $c_1 = 1, c_2 = \cdots = c_p = 0$ is
- (3) A linear combination of $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_p$ with $c_i = 1$ and other weights $c_j = 0$ (if $j \neq i$) is

Statement: Let $\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_n$, and \mathbf{b} be vectors in \mathbb{R}^m . \mathbf{b} can be written as a linear combination of $\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_n$ if and only if there exist weights x_1, x_2, \dots, x_n such that

$$x_1 \mathbf{a}_1 + x_2 \mathbf{a}_2 + \dots + x_n \mathbf{a}_n = \mathbf{b} \tag{1}$$

that is, the **vector equation** (1) has a solution.

Statement: A vector equation

$$x_1\mathbf{a}_1 + x_2\mathbf{a}_2 + \dots + x_n\mathbf{a}_n = \mathbf{b}$$

has the same solution set as the linear system $A\mathbf{x} = \mathbf{b}$.

Moreover, **b** can be generated by a linear combination of columns of A if and only if there exists a solution to the linear system A**x** = **b**.

<u>Definition</u>: If $\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_p \in \mathbb{R}^n$, then

Span
$$\{\mathbf{v}_1, \dots, \mathbf{v}_p\} = \{c_1\mathbf{v}_1 + \dots + c_p\mathbf{v}_p \mid c_1, \dots, c_p \text{ are scalars.}\}$$

is the subset of \mathbb{R}^n spanned by $\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_p$.

For example, let $S = \text{Span}\{\mathbf{v}_1, \dots, \mathbf{v}_p\} = \{c_1\mathbf{v}_1 + \dots + c_p\mathbf{v}_p \mid c_i \in \mathbb{R}\}.$ Then (1) $\mathbf{0} \in S$

(2)
$$\mathbf{v}_1 \in S$$

(3)
$$c\mathbf{v}_1 \in S$$

<u>Conclusion</u>: S contains every scalar multiple of a vector \mathbf{v}_i (i = 1 : p).

Statement: The following statements are logically equivalent:

- 1. A vector **b** is in Span $\{\mathbf{a}_1, \dots, \mathbf{a}_n\}$.
- 2. A vector equation $x_1\mathbf{a}_1 + x_2\mathbf{a}_2 + \cdots + x_n\mathbf{a}_n = \mathbf{b}$ has a solution.
- 3. A linear system $A\mathbf{x} = \mathbf{b}$ with augmented matrix $[\mathbf{a}_1 \ \mathbf{a}_2 \ \cdots \ \mathbf{a}_n \ \mathbf{b}]$ is consistent.

Example 2: Let $\mathbf{a}_1 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$, $\mathbf{a}_2 = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$, and $\mathbf{b} = \begin{bmatrix} 4 \\ -1 \end{bmatrix}$. Determine whether \mathbf{b} can be written as a linear combination of \mathbf{a}_1 and \mathbf{a}_2 . If yes, find weights and display the vectors on a graph.

Geometric Description of a Spanned Set in \mathbb{R}^3

- 1. Span $\{\mathbf{u}\}$
 - (i) If $\mathbf{u} = \mathbf{0}$, then Span $\{\mathbf{u}\} =$
 - (ii) If $\mathbf{u} \neq \mathbf{0}$, then Span $\{\mathbf{u}\}$ =

2. Span $\{\mathbf{u}, \mathbf{v}\}$

Assume that $\mathbf{u}, \mathbf{v} \neq \mathbf{0}$.

- (i) If $\mathbf{v} = c\mathbf{u}$, then Span $\{\mathbf{u}, \mathbf{v}\} =$
- (ii) If $\mathbf{v} \neq c\mathbf{u}$, then Span $\{\mathbf{u}, \mathbf{v}\} =$

3. Span $\{\mathbf{u}, \mathbf{v}, \mathbf{w}\} =$

Example 3: Let
$$\mathbf{a}_1 = \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}$$
, $\mathbf{a}_2 = \begin{bmatrix} 2 \\ 1 \\ 3 \end{bmatrix}$, and $\mathbf{b} = \begin{bmatrix} 4 \\ -1 \\ 2 \end{bmatrix}$.

- (1) What is Span $\{\mathbf{a}_1, \mathbf{a}_2\}$?
- (2) Is \mathbf{b} in Span $\{\mathbf{a}_1, \mathbf{a}_2\}$?

Lesson 4

Part I: The Matrix-Vector Product

<u>Definition</u>: Let $A = [\mathbf{a}_1 \ \mathbf{a}_2 \cdots \mathbf{a}_n]$ be an $m \times n$ matrix and $\mathbf{x} \in \mathbb{R}^n$. The **product of** A **and** \mathbf{x} is the linear combination of the columns of A using the corresponding entries in \mathbf{x} as weights.

$$A\mathbf{x} = [\mathbf{a}_1 \ \mathbf{a}_2 \ \cdots \ \mathbf{a}_n] \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} \stackrel{\text{def}}{=} x_1 \mathbf{a}_1 + x_2 \mathbf{a}_2 + \cdots + x_n \mathbf{a}_n$$

Note: The product $A\mathbf{x}$ is defined only when the number of columns in A is equal to the number of entries in \mathbf{x} .

<u>Definition</u>: An $n \times n$ identity matrix is defined as

$$I = \begin{bmatrix} 1 & 0 & 0 & \cdots & 0 \\ 0 & 1 & 0 & \cdots & 0 \\ \vdots & & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \end{bmatrix} = [\mathbf{e}_1 \ \mathbf{e}_2 \ \cdots \ \mathbf{e}_n].$$

For example, consider a product of a 3×3 identity matrix I and

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} :$$

Note: If I is an $n \times n$ identity matrix, $I\mathbf{x} = \mathbf{x}$ for any $\mathbf{x} \in \mathbb{R}^n$.

Properties of the Matrix-Vector Product

Theorem: If A is an $m \times n$ matrix, **u** and **v** are vectors in \mathbb{R}^n , and c is a scalar, then

1.
$$A(\mathbf{u} + \mathbf{v}) = A\mathbf{u} + A\mathbf{v}$$

$$2. \ A(c\mathbf{u}) = c(A\mathbf{u})$$

How to Calculate the Matrix-Vector Product?

1. Use the definition:

Example 1: If
$$A = \begin{bmatrix} 1 & 2 & 3 \\ -1 & 3 & 4 \\ 2 & -3 & -5 \end{bmatrix}$$
 and $\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$, calculate

$$A\mathbf{x} \stackrel{\text{def}}{=}$$

Note: If $\mathbf{x} = [x_i]$ and $\mathbf{y} = [y_i]$ are vectors in \mathbb{R}^n , the **dot product** of \mathbf{x} and \mathbf{y} is

$$\mathbf{x} \cdot \mathbf{y} \stackrel{\text{def}}{=} x_1 y_1 + x_2 y_2 + \dots + x_n y_n.$$

2. Row-Vector Rule for Ax:

When the product $A\mathbf{x}$ is defined, the *i*th entry in $A\mathbf{x}$ is the <u>dot product</u> of the *i*th row of A and the vector \mathbf{x} .

Example 2: Calculate the product:

$$(1) \begin{bmatrix} 2 & 0 & 6 \\ 3 & 1 & 4 \end{bmatrix} \begin{bmatrix} 1 \\ 5 \end{bmatrix} =$$

$$(2) \begin{bmatrix} 1 & 2 & -2 \\ 0 & 3 & 5 \end{bmatrix} \begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix} =$$

$$(3) \begin{bmatrix} 3 & 1 \\ 2 & 4 \\ -1 & 0 \end{bmatrix} \begin{bmatrix} 2 \\ 5 \end{bmatrix} =$$

Part II: Matrix Equations

<u>Definition</u>: An equation of the form $A\mathbf{x} = \mathbf{b}$ is called a **matrix** equation.

We can write a linear system in three ways:

(1) as linear equations

(2) as a vector equation

(3) as a matrix equation

Theorem: (Test for Consistency)

Let A be an $m \times n$ matrix. The following are logically equivalent:

- 1. The matrix equation $A\mathbf{x} = \mathbf{b}$ is consistent.
- 2. The vector equation $x_1\mathbf{a}_1 + x_2\mathbf{a}_2 + \cdots + x_n\mathbf{a}_n = \mathbf{b}$ has a solution.
- 3. **b** is in Span $\{\mathbf{a}_1, \mathbf{a}_2, \cdots, \mathbf{a}_n\}$.
- 4. The linear system with augmented matrix $[\mathbf{a}_1 \ \mathbf{a}_2 \ \cdots \ \mathbf{a}_n \ \mathbf{b}]$ is consistent.

<u>Definition</u>: Let each $\mathbf{v}_i \in \mathbb{R}^m$. We say that a set $\{\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_p\}$ **spans** \mathbb{R}^m if <u>every vector</u> in \mathbb{R}^m is a linear combination of $\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_p$, and we write

$$\mathbb{R}^m = \operatorname{Span} \{ \mathbf{v}_1, \cdots, \mathbf{v}_p \}.$$

For example, if
$$\mathbf{v}_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
, $\mathbf{v}_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$, then $\mathbb{R}^2 = \operatorname{Span}\{\mathbf{v}_1, \mathbf{v}_2\}$.

Theorem: Let A be an $m \times n$ matrix. The following statements are logically equivalent:

- 1. For each $\mathbf{b} \in \mathbb{R}^m$, the equation $A\mathbf{x} = \mathbf{b}$ has a solution.
- 2. Each **b** in \mathbb{R}^m is a linear combination of the columns of A.
- 3. The columns of A span \mathbb{R}^m .
- 4. A has a pivot position in every row.
- 5. $\operatorname{rank}(A) = m$.

Example 3: Let
$$A = \begin{bmatrix} 1 & 2 & 3 \\ -1 & 3 & 4 \\ 2 & -6 & -7 \end{bmatrix}$$
 and $\mathbf{b} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}$.

- (1) Is the equation $A\mathbf{x} = \mathbf{b}$ consistent for all possible b_1, b_2, b_3 ?
- (2) Do the columns of A span \mathbb{R}^3 ?

Example 4: Let
$$A = \begin{bmatrix} 1 & 2 & 3 \\ -1 & 3 & 4 \\ 2 & -6 & -8 \end{bmatrix}$$
 and $\mathbf{b} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}$.

- (1) Is the equation $A\mathbf{x} = \mathbf{b}$ consistent for all possible b_1, b_2, b_3 ?
- (2) Do the columns of A span \mathbb{R}^3 ?

Lesson 5

Part I: Homogeneous Linear Systems

<u>Definition</u>: A linear system is called **homogeneous** if it can be written in the form $A\mathbf{x} = \mathbf{0}$, where A is an $m \times n$ matrix and $\mathbf{0} \in \mathbb{R}^m$ is the zero vector.

<u>Note</u>: A homogeneous linear system $A\mathbf{x} = \mathbf{0}$ always has at least one solution, $\mathbf{x} = \mathbf{0}$ (the zero vector in \mathbb{R}^n). It is called the **trivial solution**. Therefore, a homogeneous system is consistent.

Statement: A homogeneous equation $A\mathbf{x} = \mathbf{0}$ has a **nontrivial solution** if and only if the equation has at least one free variable.

For example, consider a homogeneous equation $A\mathbf{x} = \mathbf{0}$, where

$$A = \begin{bmatrix} 1 & -1 \\ -2 & 2 \end{bmatrix}.$$

Summary: For a homogeneous equation $A\mathbf{x} = \mathbf{0}$:

- 1. If the system has no free variable, it has only the trivial solution and the solution set is Span $\{0\}$.
- 2. If the system has one free variable, its solution can be expressed as a parametric vector equation

$$\mathbf{x} = t\mathbf{v}, \quad t \in \mathbb{R}$$

and the solution set is Span $\{v\}$.

3. If the system has two free variables, its solution can be expressed as a parametric vector equation

$$\mathbf{x} = s\mathbf{u} + t\mathbf{v}, \quad s, t \in \mathbb{R}$$

and the solution set is Span $\{\mathbf{u}, \mathbf{v}\}$.

Example 1: The augmented matrix of $A\mathbf{x} = \mathbf{0}$ has been row reduced to the RREF below. Find the solution set in parametric vector form and describe it geometrically.

$$\begin{bmatrix}
1 & 0 & 2 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0
\end{bmatrix}$$

Example 2: Describe all solutions of the homogeneous system:

$$x_1 - 3x_2 + 2x_3 = 0$$

Part II: Nonhomogeneous Linear Systems

<u>Definition</u>: A linear system is called **nonhomogeneous** if it can be written in the form $A\mathbf{x} = \mathbf{b}$, where $\mathbf{b} \neq \mathbf{0}$.

Compare solutions for homogeneous and nonhomogeneous systems:

Theorem: Let \mathbf{v}_h be a general solution of the homogeneous equation $A\mathbf{x} = \mathbf{0}$. Suppose $A\mathbf{x} = \mathbf{b}$ is consistent for a given vector \mathbf{b} and let \mathbf{p} be a solution to $A\mathbf{x} = \mathbf{b}$. Then the solution set of $A\mathbf{x} = \mathbf{b}$ is the set of all vectors in the form $\mathbf{x} = \mathbf{p} + \mathbf{v}_h$.

Summary: Geometrically, if $A\mathbf{x} = \mathbf{b}$ has a solution \mathbf{p} ,

- 1. and if $A\mathbf{x} = \mathbf{0}$ has no free variable, its solution \mathbf{p} is unique and the solution set is a single point \mathbf{p} .
- 2. and if $A\mathbf{x} = \mathbf{0}$ has one free variable, its solution is

$$\mathbf{x} = \mathbf{p} + t\mathbf{v}, \ t \in \mathbb{R}$$

and the solution set is a line through \mathbf{p} parallel to the line spanned by \mathbf{v} .

3. and if $A\mathbf{x} = \mathbf{0}$ has two free variables, its solution is

$$\mathbf{x} = \mathbf{p} + s\mathbf{u} + t\mathbf{v}, \ s, t \in \mathbb{R}$$

and the solution set is a plane through ${\bf p}$ parallel to the plane spanned by ${\bf u}$ and ${\bf v}$.

 $\underline{\text{Example 3}}$: Find the solutions of the system in parametric vector form and describe the solution set geometrically.

$$x_1 + 2x_2 - 3x_3 = 5$$

 $2x_1 + x_2 - 3x_3 = 13$
 $-x_1 + x_2 = -8$

 $\underline{\text{Example 4}}$: Find the solutions of the system in parametric vector form and describe the solution set geometrically.

$$2x_1 - 4x_2 + 6x_3 = 8$$

Lesson 6

Part I: Linear Independence

Definition:

• A set of vectors $\{\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_p\}$ in \mathbb{R}^n is **linearly independent** if the vector equation

$$x_1\mathbf{v}_1 + x_2\mathbf{v}_2 + \dots + x_p\mathbf{v}_p = \mathbf{0} \tag{1}$$

has only the trivial solution.

• If there is a nontrivial solution to the vector equation (1), then the set $\{\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_p\}$ is **linearly dependent**.

Note: Write $A = [\mathbf{v}_1 \ \mathbf{v}_2 \ \cdots \ \mathbf{v}_p].$

- 1. The vector equation (1) can be written as $A\mathbf{x} = \mathbf{0}$, and therefore, the set $\{\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_p\}$ is linearly independent if $A\mathbf{x} = \mathbf{0}$ has only the trivial solution. ($\iff A\mathbf{x} = \mathbf{0}$ has
- 2. The set $\{\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_p\}$ is linearly dependent $\iff A\mathbf{x} = \mathbf{0}$ has
- 3. When $\{\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_p\}$ is linearly dependent, the equation $c_1\mathbf{v}_1 + c_2\mathbf{v}_2 + \cdots + c_p\mathbf{v}_p = \mathbf{0}, c_1, \cdots c_p \text{ not all zero}$

is a linear dependence relation among $\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_p$.

Example 1: Let
$$\mathbf{v}_1 = \begin{bmatrix} 1 \\ -2 \\ 0 \end{bmatrix}$$
, $\mathbf{v}_2 = \begin{bmatrix} -2 \\ 4 \\ 1 \end{bmatrix}$, and $\mathbf{v}_3 = \begin{bmatrix} 3 \\ -6 \\ -1 \end{bmatrix}$.

(1) Show that $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ is linearly dependent.

(2) Find a linear dependence relation among $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$.

Statement: The columns of matrix A are linearly independent $\iff A\mathbf{x} = \mathbf{0}$ has only the trivial solution.

Example 2: Determine if the columns of matrix A are linearly independent.

$$A = \begin{bmatrix} 1 & 2 & 3 \\ -2 & 4 & 5 \\ 3 & -2 & 1 \end{bmatrix}$$

Part II: Special Cases for Linear Dependence

1. A set of one vector: $\{\mathbf{v}_1\}$ $\{\mathbf{v}_1\}$ is linearly dependent $\iff \mathbf{v}_1 = \mathbf{0}$.

2. A set of two vectors: $\{\mathbf{v}_1, \mathbf{v}_2\}$ $\{\mathbf{v}_1, \mathbf{v}_2\}$ is linearly dependent $\iff \mathbf{v}_2 = c\mathbf{v}_1$.

- 3. A set of two or more vectors: $\{\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_p\}$ **Theorem:** $S = \{\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_p\}$ is linearly dependent
 - \iff at least one of the vectors in S is a linear combination of the others.

Special cases when linear dependence is automatic

Theorem:

If S contains more vectors than there are entries in each vector, then S is linearly dependent. That is, any set $S = \{\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_p\}$ in \mathbb{R}^n is linearly dependent if p > n.

Theorem:

If a set S in \mathbb{R}^n contains the zero vector, then S is linearly dependent.

Geometric representation of dependence relations in \mathbb{R}^3

Example 3: Describe each set geometrically in \mathbb{R}^3 .

(1) Span
$$\{\mathbf{u}, \mathbf{v}\}$$
, where $\mathbf{u} = \begin{bmatrix} 1 \\ 3 \\ 5 \end{bmatrix}$, $\mathbf{v} = \begin{bmatrix} -2 \\ -6 \\ -10 \end{bmatrix}$

(2) Span
$$\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$$
, $\mathbf{u} = \begin{bmatrix} 1 \\ 0 \\ -3 \end{bmatrix}$, $\mathbf{v} = \begin{bmatrix} 0 \\ -1 \\ 4 \end{bmatrix}$, $\mathbf{w} = \begin{bmatrix} 2 \\ -1 \\ -2 \end{bmatrix}$

Example 4: Determine by inspection if the given set is linearly dependent.

$$(1) \begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \end{bmatrix}, \begin{bmatrix} -2 \\ -4 \\ -6 \\ -9 \end{bmatrix}$$

$$(2) \begin{bmatrix} 1 \\ 3 \\ 5 \end{bmatrix}, \begin{bmatrix} 6 \\ 7 \\ 8 \end{bmatrix}, \begin{bmatrix} 2 \\ 0 \\ 6 \end{bmatrix}, \begin{bmatrix} 1 \\ 4 \\ 9 \end{bmatrix}$$

$$(3) \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 4 \\ 3 \end{bmatrix}$$

$$(4) \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}, \begin{bmatrix} 2 \\ 3 \\ 0 \end{bmatrix}, \begin{bmatrix} 5 \\ 8 \\ 3 \end{bmatrix}$$

Lesson 7

Part I: Transformations

<u>Definition</u>: A **transformation** (**function** or **mapping**)

$$T: \mathbb{R}^n \to \mathbb{R}^m$$

is a rule that assigns to each vector \mathbf{x} in \mathbb{R}^n a vector $T(\mathbf{x})$ in \mathbb{R}^m .

- \mathbb{R}^n is the **domain** of T and \mathbb{R}^m is the **codomain** of T.
- The vector $T(\mathbf{x})$ in \mathbb{R}^m is the **image** of \mathbf{x} .
- The set of all images $\{T(\mathbf{x}) \mid \mathbf{x} \in \mathbb{R}^n \}$ is the **range** of T.

<u>Definition</u>: A transformation T is a **matrix transformation** if, for each $\mathbf{x} \in \mathbb{R}^n$, we can write $T(\mathbf{x}) = A\mathbf{x}$, where A is an $m \times n$ matrix.

Note: For a matrix transformation $T(\mathbf{x}) = A\mathbf{x}$, the range of T is the set of all linear combinations of the columns of A.

Example 1: Let $T: \mathbb{R}^2 \to \mathbb{R}^3$ be the transformation defined by $T(\mathbf{x}) =$

$$\overline{A}\mathbf{x}$$
, where $A = \begin{bmatrix} 1 & -2 \\ 3 & 4 \\ 1 & -4 \end{bmatrix}$. Let $\mathbf{b} = \begin{bmatrix} -1 \\ 2 \\ -2 \end{bmatrix}$ and $\mathbf{c} = \begin{bmatrix} -2 \\ 1 \\ 2 \end{bmatrix}$.

(1) Find the image of **u** under T if $\mathbf{u} = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$.

(2) Find all $\mathbf{x} \in \mathbb{R}^2$, if any, whose image under T is \mathbf{b} .

(3) Determine whether the vector \mathbf{c} is in the range of T.

Example 2:

(1) Let
$$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$
. Show that the transformation $T : \mathbf{x} \longmapsto A\mathbf{x}$

projects each point in \mathbb{R}^3 onto the x_1x_2 -plane. Find the domain, codomain, and the range of T.

(2) Let
$$A = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$
. If T is the transformation so that $T(\mathbf{x}) = A\mathbf{x}$, describe the transformation geometrically.

 x_3 x_2 x_1

Part II: Linear Transformations

Definition: A transformation T is a **linear** if

1. $T(\mathbf{u} + \mathbf{v}) = T(\mathbf{u}) + T(\mathbf{v})$ for all \mathbf{u}, \mathbf{v} in the domain of T, and

2. $T(c\mathbf{u}) = c T(\mathbf{u})$ for all scalar c and all \mathbf{u} in the domain of T.

Note: If T is a linear transformation, then $T(\mathbf{0}) = \mathbf{0}$.

Statement: T is a linear transformation if and only if

$$T(c\mathbf{u} + d\mathbf{v}) = c T(\mathbf{u}) + d T(\mathbf{v})$$

for any scalars c, d, and for any \mathbf{u} , \mathbf{v} in the domain of T.

For example, if $T: \mathbb{R}^2 \to \mathbb{R}^2$ is a linear transformation that maps \mathbf{e}_1 to the vector $\begin{bmatrix} 1 \\ -2 \end{bmatrix}$ and maps \mathbf{e}_2 to the vector $\begin{bmatrix} -1 \\ 0 \end{bmatrix}$, then

$$T\left(\begin{bmatrix}2\\-3\end{bmatrix}\right) =$$

Note: A matrix transformation $T: \mathbb{R}^n \to \mathbb{R}^m$ defined by $T(\mathbf{x}) = A\mathbf{x}$, where A is an $m \times n$ matrix, is linear.

Theorem: Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation. Then there exists a unique matrix A such that

$$T(\mathbf{x}) = A\mathbf{x}$$
 for all $\mathbf{x} \in \mathbb{R}^n$,

and A is the $m \times n$ matrix in the form

$$A = [T(\mathbf{e}_1) \ T(\mathbf{e}_2) \ \cdots \ T(\mathbf{e}_n)],$$

where $\mathbf{e}_1, \mathbf{e}_2, \cdots, \mathbf{e}_n$ are the columns of the $n \times n$ identity matrix I.

<u>Definition</u>: The matrix $A = [T(\mathbf{e}_1) \ T(\mathbf{e}_2) \ \cdots \ T(\mathbf{e}_n)]$ is called the **standard matrix** of the linear transformation T.

Note: Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ is a transformation defined as $T(\mathbf{x}) = r\mathbf{x}, \ r \in \mathbb{R}$.

- 1. T is linear.
- 2. T is called a contraction when $0 \le r \le 1$ and a dilation when r > 1.

Example 3: Find the standard matrix A of the dilation transformation $T(\mathbf{x}) = 2\mathbf{x}, \ \mathbf{x} \in \mathbb{R}^3$.

Example 4: Find the standard matrix A of the linear transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$ that rotates each point of the plane through an angle θ .

Note: T is called a rotation transformation.

Lesson 8

Part I: Geometric Linear Transformations

<u>Recall</u>: If $T : \mathbb{R}^n \to \mathbb{R}^m$ is a linear transformation, we can write $T(\mathbf{x}) = A\mathbf{x}$, where $A = [T(\mathbf{e}_1) \ T(\mathbf{e}_2) \ \cdots \ T(\mathbf{e}_n)]$ is the $m \times n$ standard matrix.

Example 1: Find the standard matrix A of each transformation T.

(1) reflection through the line $x_2 = x_1$:

(2) reflection through the line $x_2 = -x_1$:

(3) reflection through the origin:

(4) reflection through the line x_2 -axis:

(5) projection onto x_1 -axis:

(6) vertical contraction and expansion by a factor of k (k > 0):

Example 2: The matrix transformations defined by the matrices

$$\begin{bmatrix} 1 & k \\ 0 & 1 \end{bmatrix} \quad \text{and} \quad \begin{bmatrix} 1 & 0 \\ k & 1 \end{bmatrix}$$

are called horizontal shear and vertical shear transformations, respectively. Find the image of the square $[0,1] \times [0,1]$ under each of the transformations for k > 0.

Example 3: Find the standard matrix A of the linear transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$ that first performs a horizontal shear that transforms \mathbf{e}_2 into $\mathbf{e}_2 + 2\mathbf{e}_1$ (leaving \mathbf{e}_1 unchanged) and then reflects the points through x_1 -axis.

Part II: Onto and One-to-One Transformations

<u>Definition</u>: A mapping $T : \mathbb{R}^n \to \mathbb{R}^m$ is a **onto** if the equation $T(\mathbf{x}) = \mathbf{b}$ has a <u>solution</u> for <u>each</u> $\mathbf{b} \in \mathbb{R}^m$.

Geometrically it means that each $\mathbf{b} \in \mathbb{R}^m$ is the image of at least one $\mathbf{x} \in \mathbb{R}^n$.

<u>Definition</u>: A mapping $T: \mathbb{R}^n \to \mathbb{R}^m$ is a **one-to-one** if whenever $T(\mathbf{x}) = \mathbf{b}$ has a solution for $\mathbf{b} \in \mathbb{R}^m$, the solution is <u>unique</u>.

Geometrically it means that each **b** in the range of T is the image of exactly one $\mathbf{x} \in \mathbb{R}^n$.

Theorem: If $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation, then T is one-to-one $\iff T(\mathbf{x}) = \mathbf{0}$ has only the trivial solution.

Example 4: Let $T: \mathbb{R}^4 \to \mathbb{R}^3$ be a linear transformation with the standard matrix $A = \begin{bmatrix} 1 & 3 & 2 & 0 \\ 0 & -2 & 1 & 4 \\ 0 & 0 & 0 & 3 \end{bmatrix}$.

(1) Does T map \mathbb{R}^4 onto \mathbb{R}^3 ?

(2) Is T one-to-one?

Theorem: Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation and let A be the standard matrix of T. Then

1. T maps \mathbb{R}^n onto $\mathbb{R}^m \iff$ the columns of A span \mathbb{R}^m .

2. T is one-to-one \iff the columns of A are linearly independent.

Example 5: Let $T: \mathbb{R}^2 \to \mathbb{R}^3$ be a linear transformation so that

$$T\left(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}\right) = \begin{bmatrix} 2x_1 + 3x_2 \\ 4x_1 - x_2 \\ x_1 + x_2 \end{bmatrix}.$$

(1) Does T map \mathbb{R}^2 onto \mathbb{R}^3 ?

(2) Is T one-to-one?

Lesson 9

Part I: Matrices

<u>Recall</u>: We have used the following notation for an $m \times n$ matrix A:

$$A = [\mathbf{a}_1 \quad \cdots \quad \mathbf{a}_j \quad \cdots \quad \mathbf{a}_n]$$

where
$$\mathbf{a}_j = \begin{bmatrix} a_{1j} \\ \vdots \\ a_{ij} \\ \vdots \\ a_{mj} \end{bmatrix} \in \mathbb{R}^m \ (j = 1:n),$$

and we can rewrite matrix A in the form:

$$A = \begin{bmatrix} a_{11} & \cdots & a_{1j} & \cdots & a_{1n} \\ \vdots & & \vdots & & \vdots \\ a_{i1} & \cdots & a_{ij} & \cdots & a_{in} \\ \vdots & & \vdots & & \vdots \\ a_{m1} & \cdots & a_{mj} & \cdots & a_{mn} \end{bmatrix} = [a_{ij}] \ (i = 1 : m, \ j = 1 : n)$$

Equality of Two Matrices

Two matrices are equal if they have the same size and their corresponding entries are equal.

i.e.,
$$A = B \iff a_{ij} = b_{ij}, (i = 1 : m, j = 1 : n)$$

Sums and Scalar Multiples of Matrices

<u>Definition</u>: Let $A = [a_{ij}]$ and $B = [b_{ij}]$ be two $m \times n$ matrices, and let r be a scalar.

- $\bullet \ A + B = [a_{ij} + b_{ij}]$
- $rA = [ra_{ij}]$

Note: A + B is defined only when A and B have the same size.

Properties of Sums and Scalar Multiples of Matrices

Theorem: Let A, B, and C be $m \times n$ matrices, and let r and s be scalars. Then

- 1. A + B = B + A
- 2. (A+B)+C = A + (B+C)
- 3. A + 0 = A, where 0 is the $m \times n$ zero matrix.
- $4. \ r(A+B) = rA + rB$
- 5. (r+s)A = rA + sA
- 6. r(sA) = (rs)A

Example 1: Let $A = \begin{bmatrix} 1 & -2 & 3 \\ -2 & 4 & 1 \end{bmatrix}$, $B = \begin{bmatrix} 2 & 1 & -3 \\ 5 & 4 & -2 \end{bmatrix}$, and let 0 be the 2×3 zero matrix. Find:

$$2(A - B) + 0 =$$

Special Matrices

<u>Definition</u>: The **main diagonal** of a matrix $A = [a_{ij}]$ is the list of entries a_{ii} .

• A matrix $D_{n\times n}$ is a **diagonal matrix** if its non-diagonal entries are zero. (i.e., $d_{ij} = 0$ for all $i \neq j$)

Note: The $n \times n$ identity matrix I is a diagonal matrix.

• A matrix $L_{n \times n}$ is an **lower triangular matrix** if its non-zero entries are only in the lower triangle of the matrix. (i.e., $l_{ij} = 0$ for all i < j)

• A matrix $U_{n\times n}$ is an **upper triangular matrix** if its non-zero entries are only in the upper triangle of the matrix. (i.e., $u_{ij} = 0$ for all i > j)

Part II: Matrix Multiplication

<u>Recall</u>: If $T : \mathbb{R}^n \to \mathbb{R}^m$ is a linear transformation, we can write $T(\mathbf{x}) = A\mathbf{x}$, where A is an $m \times n$ matrix.

Statement: Let A be an $m \times n$ matrix, B is an $n \times p$ matrix, and $\mathbf{x} \in \mathbb{R}^p$. The **composition of linear transformations**

$$T: \mathbb{R}^p \longrightarrow \mathbb{R}^n \longrightarrow \mathbb{R}^m$$

$$\mathbf{x} \longmapsto B\mathbf{x} \longmapsto A(B\mathbf{x})$$

is a linear transformation

$$T: \mathbb{R}^p \longrightarrow \mathbb{R}^m$$
$$\mathbf{x} \longmapsto (AB)\mathbf{x}$$

If
$$B = [\mathbf{b}_1 \quad \cdots \quad \mathbf{b}_j \quad \cdots \quad \mathbf{b}_p]$$
 and $\mathbf{x} = \begin{bmatrix} x_1 \\ \vdots \\ x_p \end{bmatrix}$, then

$$B\mathbf{x} \stackrel{\text{def}}{=}$$

$$A(B\mathbf{x}) =$$

How to Calculate the Matrix Multiplication?

1. Use the definition:

<u>Definition</u>: If A is an $m \times n$ matrix, and if $B = [\mathbf{b}_1 \quad \cdots \quad \mathbf{b}_j \quad \cdots \quad \mathbf{b}_p]$ is an $n \times p$ matrix, then the **product** AB is the $m \times p$ matrix with columns $A\mathbf{b}_j$, j = 1 : p.

$$AB = A[\mathbf{b}_1 \quad \cdots \quad \mathbf{b}_j \quad \cdots \quad \mathbf{b}_p]$$

$$\stackrel{\text{def}}{=} [A\mathbf{b}_1 \quad \cdots \quad A\mathbf{b}_j \quad \cdots \quad A\mathbf{b}_p]$$

<u>Note</u>: For matrix multiplication, the number of columns in the first matrix must be equal to the number of rows in the second matrix.

Example 2: Compute AB if the product is defined.

$$A = \begin{bmatrix} 1 & -2 & 3 \\ -2 & 4 & 1 \end{bmatrix} \text{ and } B = \begin{bmatrix} 2 & 1 \\ 1 & 4 \\ -1 & 2 \end{bmatrix}$$

2. Row-Column Rule for Computing AB

If A is an $m \times n$ matrix and B is an $n \times p$ matrix, the (i, j)-entry of AB is the dot product of the *i*th row of A and the *j*th column of B.

Example 3: Let
$$A = \begin{bmatrix} 2 & 0 & 1 \\ -1 & 1 & 3 \end{bmatrix}$$
 and $B = \begin{bmatrix} 1 & 2 & -3 & 1 \\ 0 & -2 & 1 & 4 \\ 1 & 3 & -1 & 1 \end{bmatrix}$

(1) Find the second column of AB.

$$(2) AB =$$

(3)
$$BA =$$

Properties of Matrix Multiplication

Let A be an $m \times n$ matrix, and let B and C have sizes for which the indicated sums and products are defined. Then:

- 1. A(BC) = (AB)C
- $2. \ A(B+C) = AB + AC$
- 3. (A+B)C = AC + BC
- 4. r(AB) = (rA)B = A(rB) for any scalar r
- 5. $I_m A = A = A I_n$, where I_m and I_n are the $m \times m$ and $n \times n$ identity matrices, respectively.

Warnings:

- 1. In general, $AB \neq BA$.
- 2. The **cancellation law** does not hold for matrix multiplication. That is, if AB = AC, then it is not true in general that B = C.

3. The **zero-product rule** does not hold for matrix multiplication. That is, if AB = 0 (the zero matrix), we <u>cannot</u> conclude in general that either A = 0 or B = 0.

Unit 1 Review

Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation so that $T(\mathbf{x}) = A\mathbf{x}$, where $A_{m \times n} = [\mathbf{a}_1 \ \mathbf{a}_2 \ \cdots \ \mathbf{a}_n].$

• A has a pivot position in every column.

• A has a pivot position in every row.

- 1. Let $A = [\mathbf{a}_1 \ \mathbf{a}_2 \ \mathbf{a}_3] = \begin{bmatrix} 1 & 0 & 5 \\ -2 & 1 & -6 \\ 0 & 2 & 8 \end{bmatrix}$ and $\mathbf{b} = \begin{bmatrix} 2 \\ -1 \\ 6 \end{bmatrix}$.
- (1) Determine if \mathbf{b} is a linear combination of the columns of A.

(2) If yes, represent vector \mathbf{b} as a linear combination of the columns of A by setting the parameter $x_3 = 0$. Is this the only representation possible?

(3) Do the columns of A span \mathbb{R}^3 ?

- 2. Let $A = \begin{bmatrix} 1 & -3 & 2 \\ -2 & 5 & -1 \\ 3 & -6 & -3 \end{bmatrix}$ and $\mathbf{b} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}$.
- (1) Determine if the equation $A\mathbf{x} = \mathbf{b}$ is consistent for all possible b_1, b_2, b_3 .

(2) If not, give a description of the set of all $\bf b$ for which the equation is consistent.

(3) Describe the vectors \mathbf{b} geometrically as a span of the least possible number of vectors.

3. Consider a homogeneous matrix equation $A\mathbf{x} = \mathbf{0}$, where

$$A = \begin{bmatrix} 1 & 0 & 3 & 1 \\ 0 & 2 & 1 & 4 \\ 0 & 0 & 1 & 2 \end{bmatrix}.$$

(1) Find the solutions in the parametric vector form, and describe the solutions geometrically.

(2) Does the nonhomogeneous system $A\mathbf{x} = \mathbf{b}$ has a solution for any $\mathbf{b} \in \mathbb{R}^3$?

(3) Find the general solution to $A\mathbf{x} = \mathbf{b}$ for $\mathbf{b} = \begin{bmatrix} -1 \\ 0 \\ -2 \end{bmatrix}$, and describe the solution geometrically.

4. Let $A = [\mathbf{a}_1 \ \mathbf{a}_2 \ \mathbf{a}_3] = \begin{bmatrix} 1 & -3 & 2 \\ -2 & 7 & 1 \\ -4 & 6 & h \end{bmatrix}$, and let $\mathbf{b} = \begin{bmatrix} 1 \\ -4 \\ k \end{bmatrix}$.

(1) Find h so that the set of the columns of A is linearly dependent.

(2) Find h and k so that the system $A\mathbf{x} = \mathbf{b}$ has

a unique solution:

infinitely many solutions:

no solution:

5. Let
$$A = \begin{bmatrix} \mathbf{a}_1 & \mathbf{a}_2 & \mathbf{a}_3 \end{bmatrix} = \begin{bmatrix} 1 & -3 & 2 \\ 3 & -8 & 8 \\ 0 & 1 & 2 \\ 1 & 0 & 8 \end{bmatrix}$$
, $\mathbf{b}_1 = \begin{bmatrix} 1 \\ 6 \\ 4 \\ 10 \end{bmatrix}$, and $\mathbf{b}_2 = \begin{bmatrix} 1 \\ 6 \\ 3 \\ 10 \end{bmatrix}$.

(1) Find all vectors, if any, whose images under the transformation T are vector \mathbf{b}_1 and \mathbf{b}_2 , respectively, where $T(\mathbf{x}) = A\mathbf{x}$.

- (2) Whether the vectors \mathbf{b}_1 and \mathbf{b}_2 are in the range of T.
- (3) Does range of $T = \mathbb{R}^4$?
- (4) Is there only one vector $\mathbf{x} \in \mathbb{R}^3$, for every **b** in the range of T, that maps into **b**?

6. Let $T: \mathbb{R}^3 \to \mathbb{R}^2$ be the linear transformation so that

$$T\left(\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}\right) = \begin{bmatrix} x_1 - 5x_2 + 4x_3 \\ x_2 - 6x_3 \end{bmatrix}.$$

- (1) Find the standard matrix A of the transformation.
- (2) Determine whether the equation $T(\mathbf{x}) = \mathbf{b}$ has a solution for any \mathbf{b} in \mathbb{R}^2 .
- (3) Determine whether the equation $T(\mathbf{x}) = \mathbf{b}$ a unique solution for any \mathbf{b} in the range of T.

7. True or False:

If a system $A\mathbf{x} = \mathbf{b}$ has no free variable, then it has a unique solution.