

Adjustable Precision Shunt Regulators

FEATURES

- · Unconditionally Stable.
- · Precision Reference Voltage.

AIC431 :2.495V ±0.5% TL431A :2.495V ±1.0% TL431 :2.495V ±1.6%

- Sink Current Capability: 200mA.
- Minimum Cathode Current for Regulation: 250μA.
- Equivalent Full-Range Temperature Coefficient: 50 ppm/°C.
- Fast Turn-On Response.
- Low Dynamic Output Impedance: 0.08Ω.
- · Adjustable Output Voltage.
- Low Output Noise.
- Space Saving SOT-89, SOT-23, TO-92 and SO8 packages.

TYPICAL APPLICATION CIRCUIT

Precision Regulator

■ DESCRIPTION

The AlC431/TL431A/TL431 are 3-terminal adjustable precision shunt regulators with guaranteed temperature stability over the applicable extended commercial temperature range. The output voltage may be set at any level greater than 2.495V (V_{REF}) up to 30V merely by selecting two external resistors that act as a voltage divider network. These devices have a typical output impedance of 0.08 Ω . Active output circuitry provides a very sharp turn-on characteristics, making these devices excellent improved replacements for zener diodes in many applications.

The precise $\pm 0.5\%$ reference voltage tolerance of the AIC431 makes it possible in many applications to avoid the use of a variable resistor, consequently saving cost and eliminating drift and reliability problems associated with it.

Analog Integrations Corporation 4F, 9, Industry E. 9th Rd, Science Based Industrial Park, Hsinchu Taiwan, ROC

ORDERING INFORMATION

AIC431 CX TL431A CX TL431 CX

PACKAGING TYPE S: SMALL OUTLINE U: SOT-23 X: SOT-89 Z: TO-92

ORDER NUMBER	PIN CONFIGURATION			
AIC431CS TL431ACS TL431CS (SO-8)	TOP VIEW CATHOD 1 ANODE 2 ANODE 3 NC 4	a REF 7 ANODE 6 ANODE 5 NC		
AIC431CUN TL431ACUN TL431CUN (SOT-23)	FRONT VIEW 1: CATHODE 2: VREF 3: ANODE	3 1 2		
AIC431CUS TL431ACUS TL431CUS (SOT-23)	FRONT VIEW 1: VREF 2: CATHODE 3: ANODE	3 1 2		
AIC431CX TL431ACX TL431CX (SOT-89)	FRONT VIEW 1: VREF 2: ANODE 3: CATHODE	1 2 3		
AIC431CZ TL431ACZ TL431CZ (TO-92)	FRONT VIEW 1: VREF 2: ANODE 3: CATHODE	1 2		

ABSOLUTE MAXIMUM RATINGS

Cathode Voltage	30V
Continuous Cathode Current	-10mA ~ 250mA
Reference Input Current Range	
Operating Temperature Range	-40°C ~ 85°C
Lead Temperature	260°C
Storage Temperature	-65°C ~ 150°C
Power Dissipation (Notes 1, 2)	SOT-89 Package 0.80W
	TO-92 Package 0.78W

Note 1: $T_{J, max} = 150$ °C. Note 2: Ratings apply to ambient temperature at 25°C.

■ TEST CIRCUITS

Fig. 1 Test Circuit for V_Z=V_{REF}

Fig. 2 Test circuit for V_Z>V_{REF}

Fig. 3 Test circuit for off-state Current

■ ELECTRICAL CHARACTERISTICS (Ta=25°C, unless otherwise specified.)

PARAMETER	TEST CONDITIONS		SYMBOL	MIN.	TYP.	MAX.	UNIT	
	$V_Z = V_{REF}$,		AIC431		2.482	2.495	2.508	
Reference Voltage	IL =10mA (Fig	g. 1)	TL431A	V_{REF}	2.470	2.495	2.520	V
			TL431		2.455	2.495	2.535	
Deviation of Reference Input Voltage Over Temperature (Note 3)	$V_z = V_{REF}$, $I_L = 10 \text{mA}$, $Ta = 0^{\circ}\text{C} \sim +85^{\circ}\text{C}$ (Fig. 1)		V_{DEV}		9.0	20	mV	
Ratio of the Change in Reference Voltage to	I_Z =10mA ΔV_Z =10V- V_{REF}		ΔV_{REF}		-0.5	-2.0	mV/V	
the Change in Cathode volt-age	(Fig. 2)	$\Delta V_Z = 3$	30V-10V	ΔV_Z		-0.35	-1.5	mV/V
Reference Input Current	R1 =10KΩ, R2=∞, I _L =10mA (Fig. 2)		I _{REF}		0.8	3.5	μΑ	

AIC431/TL431A/TL431

ELECTRICAL CHARACTERISTICS (Continued)

PARAMETER	TEST CONDITIONS	SYMBOL	MIN.	TYP.	MAX.	UNIT
Minimum Cathode current for Regulation	$V_Z=V_{REF}$ (Fig. 1)	I _{Z(MIN)}		0.25	0.5	mA
Off-State Current	$V_Z=20V$, $V_{REF}=0V$ (Fig. 3)	$I_{Z(OFF)}$		0.1	1.0	μΑ
Dynamic Output Impedance (Note 4)	V _z =V _{REF} Frequency= 0Hz (Fig. 1)	R _z		0.08	0.3	Ω

Note 3. Deviation of reference input voltage, V_{DEV} , is defined as the maximum variation of the reference input voltage over the full temperature range.

The average temperature coefficient of the reference input voltage, αV_{REF} is defined as:

$$\Delta VREF \frac{ppm}{^{\circ}C} = \frac{\pm \left[\frac{VMAX - VMIN}{VREF(at 25^{\circ}C)}\right] 10^{6}}{T2 - T1} = \frac{\pm \left[\frac{VDEV}{VREF(at 25^{\circ}C)}\right] 10^{6}}{T2 - T1}$$

Where:

 T_2 - T_1 =full temperature change.

 αV_{REF} can be positive or negative depending on whether the slope is positive or negative.

Example: V_{DEV}= 9.0mV, V_{REF}= 2495mV,

 T_2 – T_1 = 70°C, slope is negative.

$$aVREF = \frac{\left[\frac{9.0mV}{2495mV}\right]_{10^6}}{70^{\circ}C} = -50ppm/^{\circ}C$$

Note 4. The dynamic output impedance, $R_{\mathbf{Z}^{i}}$ is defined as:

$$R_Z = \frac{\Delta V_Z}{\Delta I_Z}$$

When the device is programmed with two external resistors, R1 and R2, (see Fig. 2), the dynamic output impedance of the overall circuit, is defined as:

$$rz = \frac{\Delta Vz}{\Delta Iz} \cong Rz \left[1 + \frac{R1}{R2}\right]$$

TYPICAL PERFORMANCE CHARACTERISTICS

TYPICAL PERFORMANCE CHARACTERISTICS (Continued)

Test Circuit For Frequency Response

TYPICAL PERFORMANCE CHARACTERISTICS (Continued)

Pulse Response Tek Run: 50MS/s Average IIII Input Pulse Generator f=100kHz Output AIC431

Test Circuit For Pulse Respnose

The areas between the curves represent condition that may cause the device oscillate

Test Circuit for Stability Boundary Conditions

SYMBOL

■ BLOCK DIAGRAM

APPLICATION EXAMPLES

LED on when Low Limit<V $_{IN}$ < High Limit

$$\text{Low Limit} \cong \mathsf{V}_{\mathsf{REF}} \text{ (1+R1B/R2B)} \qquad \text{Delay=R x C x ℓn (} \frac{\mathsf{V}_{\mathsf{IN}}}{\mathsf{V}_{\mathsf{IN}}-\mathsf{V}_{\mathsf{REF}}} \text{)}$$

 $High\ Limit \cong V_{REF}\ (1{+}R1A/R2A)$

Fig. 4 Voltage Monitor

Fig. 5Delay Timer

Fig. 6 Current Limiter or Current Source

Fig. 7 Constant-Current Sink

APPLICATION EXAMPLES (Continued)

 $V_{OUT} \cong (1+R1/R2) \times V_{REF}$

Fig 8. Higher-Current Shunt Regulator

Fig 9. Crow Bar

Low Limit $\cong V_{REF}$ (1+ R1B/ R2B)+ V_{BE} High Limit $\cong V_{REF}$ (1+ R1A/ R2A)

Fig 10. Over-Voltage/Under-Voltage Protection Circuit

■ PHYSICAL DIMENSIONS

• 8 LEAD PLASTIC SO (unit: mm)

SYMBOL	MIN	MAX	
Α	1.35	1.75	
A1	0.10	0.25	
В	0.33	0.51	
С	0.19	0.25	
D	4.80	5.00	
Е	3.80	4.00	
е	1.27(TYP)		
Н	5.80	6.20	
L	0.40	1.27	

• SOT-23 (unit: mm)

SYMBOL	MIN MAX		
Α	1.00	1.30	
A1	ı	0.10	
A2	0.70	0.90	
b	0.35	0.50	
С	0.10	0.25	
D	2.70	3.10	
Е	1.40	1.80	
е	1.90 (TYP)		
Н	2.60	3.00	
L	0.37	_	
1	1°	9°	

SOT-23 MARKING

Part No.	Marking
AIC431CUN	AC1N
TL431CUN	AC2N
TL431ACUN	AC3N

Part No.	Marking
AIC431CUS	AC1S
TL431CUS	AC2S
TL431ACUS	AC3S

■ PHYSICAL DIMENSIONS (Continued)

• SOT-89 (unit: mm)

SYMBOL	MIN	MAX	
Α	1.40	1.60	
В	0.36	0.48	
С	0.35	0.44	
D	4.40	4.60	
D1	1.62	1.83	
Е	2.29	2.60	
е	1.50 (TYP.)		
e1	3.00 (TYP.)		
Н	3.94	4.25	
L	0.89	1.20	

SOT-89 MARKING

Part No.	Marking
AIC431CX	AC01B
TL431CX	AC02B
TL431ACX	AC03B

• TO-92 (unit: mm)

SYMBOL	MIN	MAX	
А	4.32	5.33	
С	0.38 (TYP.)		
D	4.40	5.20	
E	3.17	4.20	
e1	1.27 (TYP.)		
L	12.7 -		