GTM

CORPORATION

ISSUED DATE :2005/01/17 REVISED DATE :2005/03/22B

G2310

N-CHANNEL ENHANCEMENT MODE POWER MOSFET

BVDSS	60V
RDS(ON)	$90 m\Omega$
ID	3A

Description

The G2310 utilized advanced processing techniques to achieve the lowest possible on-resistance, extremely efficient and cost-effectiveness device.

The G2310 is universally used for all commercial-industrial applications.

Features

- *Simple Drive Requirement *Small Package Outline

Package Dimensions

REF.	Millimeter		REF.	Millimeter		
ΠLI.	Min.	Max.	nLI.	Min.	Max.	
Α	2.70	3.10	G	1.90 REF.		
В	2.40	2.80	Н	1.00	1.30	
С	1.40	1.60	K	0.10	0.20	
D	0.35	0.50	J	0.40	-	
Е	0	0.10	L	0.85	1.15	
F	0.45	0.55	М	0°	10°	

Absolute Maximum Ratings

About the maximum reatings							
Parameter	Symbol	Ratings	Unit				
Drain-Source Voltage	V_{DS}	60	V				
Gate-Source Voltage	V_{GS}	±20	V				
Continuous Drain Current ³ , V _{GS} @4.5V	I _D @TA=25°℃	3.0	A				
Continuous Drain Current ³ , V _{GS} @4.5V	I _D @TA=70°C	2.3	A				
Pulsed Drain Current ^{1,2}	I _{DM}	10	Α				
Power Dissipation	P _D @Ta=25°C	1.38	W				
Linear Derating Factor		0.01	W/℃				
Operating Junction and Storage Temperature Range	Tj, Tstg	-55 ~ +150	$^{\circ}$ C				

Thermal Data

Parameter	Symbol	Ratings	Unit
Thermal Resistance Junction-ambient ³ Max.	Rthj-a	90	°C/W

G2310 Page: 1/4

Electrical Characteristics(Tj = 25℃ Unless otherwise specified)

Parameter	Symbol	Min.	Тур.	Max.	Unit	Test Conditions
Drain-Source Breakdown Voltage	BV _{DSS}	60	-	-	V	V _{GS} =0, I _D =250uA
Breakdown Voltage Temperature Coefficient	$\triangle BV_{DSS} / \triangle Tj$	-	0.05	-	V /°C	Reference to 25°C, I _D =1mA
Gate Threshold Voltage	V _{GS(th)}	1.0	-	3.0	V	V _{DS} =V _{GS} , I _D =250uA
Forward Transconductance	G fs	-	5.0	-	S	V _{DS} =5V, I _D =3A
Gate-Source Leakage Current	I _{GSS}	-	-	±100	nA	V _{GS} = ±20V
Drain-Source Leakage Current(Tj=25°C)		-	-	10	uA	V _{DS} =60V, V _{GS} =0
Drain-Source Leakage Current(Tj=70°C)	I _{DSS}	-	-	25	uA	V _{DS} =48V, V _{GS} =0
Static Drain-Source On-Resistance	D	-	-	90	$m\Omega$	V _{GS} =10V, I _D =3A
	R _{DS(ON)}	-	-	120		V _{GS} =4.5V, I _D =2A
Total Gate Charge ²	Qg	-	6	10	nC	I _D =3A V _{DS} =48V V _{GS} =4.5V
Gate-Source Charge	Q _{gs}	-	1.6	-		
Gate-Drain ("Miller") Change	Q _{gd}	-	3	-		
Turn-on Delay Time ²	T _{d(on)}	-	6	-		V_{DS} =30V I_{D} =1A V_{GS} =10V R_{G} =3.3 Ω R_{D} =30 Ω
Rise Time	T _r	-	5	-	ns	
Turn-off Delay Time	T _{d(off)}	-	16	-		
Fall Time	T _f	-	3	-		
Input Capacitance	C _{iss}	-	490	780	pF	V _{GS} =0V V _{DS} =25V f=1.0MHz
Output Capacitance	C _{oss}	-	55	-		
Reverse Transfer Capacitance	C _{rss}	-	40	-		

Source-Drain Diode

Parameter	Symbol	Min.	Тур.	Max.	Unit	Test Conditions
Forward On Voltage ²	V_{SD}	1	-	1.2	٧	I _S =1.2A, V _{GS} =0V
Reverse Recovery Time	T _{rr}	-	25	-	ns	I _S =3A, V _{GS} =0V dI/dt=100A/µs
Reverse Recovery Charge	Q_{rr}	-	26	-	nC	

Notes: 1. Pulse width limited by Max. junction temperature.

- 2. Pulse width≤300us, duty cycle≤2%.
- 3. Surface mounted on 1 in² copper pad of FR4 board;270°C/W when mounted on min. copper pad.

G2310 Page: 2/4

Characteristics Curve

Fig 1. Typical Output Characteristics

Fig 3. On-Resistance v.s. Gate Voltage

Fig 5. Forward Characteristics of Reverse Diode

Fig 2. Typical Output Characteristics

Fig 4. Normalized On-Resistance v.s. Junction Temperature

Fig 6. Gate Threshold Voltage v.s. Junction Temperature

G2310 Page: 3/4

f=1.0MHz

Fig 7. Gate Charge Characteristics

Fig 8. Typical Capacitance Characteristics

Fig 9. Maximum Safe Operating Area

Fig 10. Effective Transient Thermal Impedance

Fig 11. Switching Time Waveform

Fig 12. Gate Charge Waveform

- Important Notice:

 All rights are reserved. Reproduction in whole or in part is prohibited without the prior written approval of GTM.
- GTM reserves the right to make changes to its products without notice.

 GTM semiconductor products are not warranted to be suitable for use in life-support Applications, or systems.

GTM assumes no liability for any consequence of customer product design, infringement of patents, or application assistance.

Office And Factory:

Taiwan: No. 17-1 Tatung Rd. Fu Kou Hsin-Chu Industrial Park, Hsin-Chu, Taiwan, R. O. C.

- : 886-3-589-7061 FAX: 886-3-597-9220, 597-0785

 China: (201203) No.255, Jang-Jiang Tsai-Lueng RD. , Pu-Dung-Hsin District, Shang-Hai City, China: 86-21-5895-7671 ~ 4 FAX: 86-21-38950165

G2310 Page: 4/4