

Probability and Statistics Probability Distributions for Discrete Random Variables Conditional probability

Lecture 3. Class 1.

Time: 11:30- 1:30 Department:Bit

Taxonomy of Probability Distributions

- Normal distribution
- Standard normal distribution
- Gamma distribution
- Exponential distribution
- •Chi square distribution
- •Lognormal distribution
- Weibull distribution

Probability Distributions for Discrete Random Variables

The probability distribution for a discrete random variable x is a graph, table or formula that gives the possible values of x and the probability p(x) associated with each value.

We must have

$$0 \le p(x) \le 1$$
 and $\sum p(x) = 1$

Toss a fair coin three times and define x =number of heads.

 \underline{x}

ннн	
ННТ	1/8
нтн	1/8
ТНН	1/8
111111	1/8
HTT	1/8

$$P(x = 0) = 1/8$$

 $P(x = 1) = 3/8$
 $P(x = 2) = 3/8$
 $P(x = 3) = 1/8$

X	p(x)
0	1/8
1	3/8
2	3/8
3	1/8

0.5 F	(X)				
0.4	ı				Probability
0.3			ž		Histogram for x
0.2					
0.1					
0.0	0	1	2	3 ×	

Toss two dice and define x = sum of two dice.

x	p(x)
2	1/36
3	2/36
4	3/36
5	4/36
6	5/36
7	6/36
8	5/36
9	4/36
10	3/36
11	2/36
12	1/36

Probability Distributions

Probability distributions can be used to describe the population.

- **Shape:** Symmetric, skewed, mound-shaped...
- **Outliers:** unusual or unlikely measurements
- **Center and spread:** mean and standard deviation. A population mean usually is called μ and a population standard deviation usually is called σ .

The Mean and Standard Deviation

Let x be a discrete random variable with probability distribution p(x). Then the mean, variance and standard deviation of xare given as

Mean:
$$\mu = \sum xp(x)$$

Mean:
$$\mu = \sum xp(x)$$

Variance: $\sigma^2 = \sum (x - \mu)^2 p(x)$

Standard deviation :
$$\sigma = \sqrt{\sigma^2}$$

Toss a fair coin 3 times and record *x* the number of heads.

X	p(x)	xp(x)	$(x-\mu)^2 p(x)$
0	1/8	0	$(-1.5)^2(1/8)$
1	3/8	3/8	$(-0.5)^2(3/8)$
2	3/8	6/8	$(0.5)^2(3/8)$
3	1/8	3/8	$(1.5)^2(1/8)$

$$\mu = \sum xp(x) = \frac{12}{8} = 1.5$$

$$\sigma^2 = \sum (x - \mu)^2 p(x)$$

$$\sigma^2 = .28125 \pm .09375 + .09375 + .28125 = .75$$

$$\sigma = \sqrt{.75} = .688$$

The probability distribution for *x* the number of heads in tossing 3 fair coins.

Key Concepts

1. Experiments and the Sample Space

- 1. Experiments, events, mutually exclusive events, simple events
- 2. The sample space

2. Probabilities

- 1. Relative frequency definition of probability
- 2. Properties of probabilities
 - a. Each probability lies between 0 and 1.
 - b. Sum of all simple-event probabilities equals 1.
- 3. P(A), the sum of the probabilities for all simple events in A

Key Concepts

3. Counting Rules

- 1. mn Rule; extended mn Rule

$$P_r^n = \frac{n!}{(n-r)!}$$

2. Permutations:
$$P_r^n = \frac{n!}{(n-r)!}$$
3. Combinations:
$$C_r^n = \frac{n!}{r!(n-r)!}$$

Key Concepts

- 4. Discrete Random Variables and Probability Distributions
 - 1. Random variables, discrete and continuous
 - 2. Properties of probability distributions

$$0 \le p(x) \le 1$$
 and $\sum p(x) = 1$

- 3. Mean or expected value of a discrete random variable: $Mean : \mu = \sum xp(x)$
- 4. Variance and standard deviation of a discrete random variable:

Variance :
$$\sigma^2 = \sum (x - \mu)^2 p(x)$$

Standard deviation : $\sigma = \sqrt{\sigma^2}$

Conditional probability

- Def: The prob event A given that B was happen is
- $P(A/B) = , P(B) \neq 0$
 - ان احتمال حصول الحادثة () علما ان الحادثة () قد حصلت هو مايسمى بالاحتمال . الشرطى

EX

- Three coins are tossed, Let
- A= first coin is head
- B= at least two heads. Find p(A/B)
- SOL/ $\varsigma = 2^3 = 8$
- $\varsigma = \{ HHH,TTT,THH,HTH,HHT,HTT,THT,TTH \}$
- A = \[HHH, HTH, HHT, HTT \]

B=
$$\left\{ \text{HHH, THH, HTH, HHT} \right\}$$

 $A = AB = \text{HHH, HTH, HHT}$
 $P(A) = 4/8 \ P(B) = 4/8,$
 $P(AB) = 3/8$
 $P(A/B) = 3/4$
Are A and B independent
 $p(AB) = P(A) P(B)$
 $3/8 \neq 4/8 \cdot 4/8$
A, B not indep

THANK YOU