Math 324: Linear Algebra Section 3.4: Applications of Determinants

Mckenzie West

Last Updated: December 29, 2023

Last Time.

- More Properties of Determinants
- The Adjoin of a Matrix
- Cramer's Rule

Today.

- Areas and Volumes
- Lines and Planes
- Cross Products

Area of a Parallelogram

The area of the parallelogram defined by (a, b) and (c, d) is

$$Area = \begin{vmatrix} a & b \\ c & d \end{vmatrix},$$

where ||A|| denotes the absolute value of the determinant.

Exercise 1.

Geometrically verify this formula using areas of rectangles and triangles.

Then find the area of the parallelogram defined by (3,1) and (2,3).

Area of a Triangle in the xy-Plane

The area of the triangle with vertices

$$(x_1, y_1), (x_2, y_2), \text{ and } (x_3, y_3)$$

can be calculated using

Area =
$$\frac{1}{2} \begin{vmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{vmatrix}$$
.

Exercise 2.

Find the area of the triangle with vertices (0,1),(3,2), and (5,7).

Note.

If three points are co-linear-meaning they all lie on the same line—then they will form a triangle with zero area.

Exercise 3.

Which of the following sets of points are co-linear? Use the area formula from the last slide.

- (a) (0,1),(2,5),(4,-2)
- (b) (-2,-7),(0,-1),(3,8)
- (c) (2,1),(2,2),(2,3)

Note.

Given two points, any other point (x, y) that is co-linear to these two will produce a triangle of zero area.

Two-Point Form of the Equation of a Line

An equation for the line passing through the points (x_1, y_1) and (x_2, y_2) is given by

$$0 = \begin{vmatrix} x & y & 1 \\ x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \end{vmatrix}.$$

Exercise 4.

Use the determinant formula to find an equation for the line passing through the points

- (a) (-3,2) and (1,5)
- (b) (1,1) and (-10,1)

Exercise 5.

Use the determinant formula to verify the point slope formula of the line passing through the points (x_1, y_1) and (x_2, y_2) :

$$y-y_1=m(x-x_1)$$

where
$$m = \frac{y_2 - y_1}{x_2 - x_1}$$
.

Brain Break.

If teleportation were possible, what would be the first place you'd teleport to?

Volume of a Tetrahedron.

The volume of the tetrahedron with vertices (x_1, y_1, z_1) , (x_2, y_2, z_2) , (x_3, y_3, z_3) , and (x_4, y_4, z_4) is given by

Volume =
$$\frac{1}{6} \begin{vmatrix} x_1 & y_1 & z_1 & 1 \\ x_2 & y_2 & z_2 & 1 \\ x_3 & y_3 & z_3 & 1 \\ x_4 & y_4 & z_4 & 1 \end{vmatrix}.$$

Exercise 6.

Find the volume of the Tetrahedron with vertices (1,0,1), (1,3,2), (4,7,1), and (-1,0,0).

Note.

If four points are co-planar—meaning they all lie on the same plane—then they will form a tetrahedron with zero area.

Exercise 7.

Which of the following sets of points are co-planar? Use the volume formula from the last slide.

- (a) (-2, -2, 1), (1, -3, -1), (-1, -2, -3), (-2, -3, 3)
- (b) (-2,3,2), (0,-2,1), (3,3,-3), (3,-2,-2)
- (c) (-3,-1,1), (1,3,1), (2,2,2), (-1,-1,2)

11

Note.

Given three points in 3-d space, any other point (x, y, z) that is co-planar to these three will produce a tetrahedron of zero volume.

Three-Point Form of the Equation of a Plane

An equation for the line passing through the points (x_1, y_1, z_1) , (x_2, y_2, z_2) , and (x_3, y_3, z_3) is given by

$$0 = \begin{vmatrix} x & y & z & 1 \\ x_1 & y_1 & z_1 & 1 \\ x_2 & y_2 & z_2 & 1 \\ x_3 & y_3 & z_3 & 1 \end{vmatrix}.$$

Exercise 8.

Use the determinant formula to find an equation for the plane passing through the points (3, -3, 3), (-1, 0, -2), and (-2, -1, -2)

Exercise 9.

The following three points lie on a single line in 3-d: (-1,0,-2), (-2,-1,-2), (-3,-2,-2). What happens when you try to find the plane that contains the three points?

A line in 3-d requires two linear equations: $a_1x + b_1y + c_1z = d_1$ and $a_2x + b_2y + c_2z = d_1$. Find an equation for the line containing these three points.