Unified problems MI=1003 5 Muliums

M	Minimun Strength r max i mize	equin	shudtive with a rent, reed to		
	Compute	07/0	for	anlable	maleins
	Ti	/MPn	e/v	Ca)/m ³	MPn/Mg/n2

	JE/MPn	e/Kas/m3	MPa/Mg/n2
Sleel	220	7900	27:8
and All	38-0	2800	125
Ti	850	4500	188
CFRP	700	1500	467
Word	30	600	50
Siz	3000	3000	

CFRP Works best for bows in truss.

7 . .

.. Non decide on huss configuration

Design Consideraturs:

Minimize number of boars (simplicity is good.

Ain to have all bars carrying princlar bonds

D loves simplest - Smallest number of Gars
in probably lowest man

Suspect 1 may have more bus at sue ottos - i. more efficient

In any case go with (2)

- • •

...
$$S(M_A = 0: 1.V_B - 10.2 = 0: V_B = +20 kN$$

. . .

Critical bon is BC - Connès highest lond Mis delemenes con - section

$$\frac{22.4\times10^3}{\sqrt{4}} = A_{crit}$$

$$\frac{22.4 \times 10^{3}}{700 \times 10^{6}} = 31.9 \times 10^{-6} \, \text{m}^{2} = 31.9 \, \text{mn}^{2} = 31.9 \,$$

... Tomt length of Gars

$$2\sqrt{2} + 1 + \sqrt{5} = 6.06 \text{ m}$$

:. The man = 1500 × 6.06 × 31.9×10 = 0.29 Kg