Computer Lab Session 3: Multiple Regression Model in R EF3450 Semester B 2017-18

The example below is similar to problem in hand-in assignment 3, but uses a different data set. This handout explains the relevant R commands and output.

Uncovered Interest Parity (UIP)

The interest parity condition

$$1.(1+r_t) = (E[S_{t+1}]/S_t) * (1+r_t^{\star})$$

have a common approximation as

$$2.E[S_{t+1}] - S_t/S_t = r_t - r_t^*$$

which can be tested by considering the regression model as:

$$3.E[S_{t+1}] - S_t/S_t = \beta_0 + \beta_1 * r_t + \beta_2 * r_t^* + e_t$$

 $_{ t S_{ t Aus}}$: S_t , (the spot exchange rate, expressed as the price in AUD for one USD)

s ch Aus: $E[S_{t+1}] - S_t / S_t \star$ 100, (change in the spot exchange rate, percentage)

r Aus : r_t (the return of a 3-month Australia treasury bill, %)

r_us : r_t^* (the return of a 3-month US treasury bill, %)

Package

car is required:

```
install.packages('car')
library(car)
```

Load data into R

```
setwd('C:\\Users\\EFUser\\Desktop')
data_CLS3 <- read.csv('UIP_dataset_5.csv', stringsAsFactors = F)
str(data_CLS3)
## 'data.frame': 130 obs. of 5 variables:
## $ Date : chr "3/31/1970" "6/30/1970" "9/30/1970" "12/31/1970" ...
## $ s_Aus : num  0.89  0.89  0.89  0.89  0.89  0.89  0.89  0.84  0.84  ...
## $ s_ch_Aus: num  0  0  0  0  ...
## $ r_Aus : num  NA ...
## $ r_US : num  1.768  1.646  1.556  1.314  0.954 ...</pre>
```

Date transformation

Regression for UIP

```
reg_UIP <- lm( s_ch_Aus ~ r_Aus + r_US, data = data_CLS3)
```

Regression Result

```
summary(reg_UIP)
## Call:
## lm(formula = s ch Aus ~ r Aus + r US, data = data CLS3)
## Residuals:
##
              1Q Median
                               3Q
      Min
## -7.7303 -2.4788 -0.3899 2.1063 14.8365
##
## Coefficients:
##
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.5048 1.2180 -0.414 0.6796
## r Aus
               -0.9742
                           0.6104 - 1.596
                                           0.1143
## r US
                2.4141
                           0.9360
                                  2.579 0.0117 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 4.134 on 83 degrees of freedom
## (44 observations deleted due to missingness)
## Multiple R-squared: 0.07473,
                                 Adjusted R-squared:
## F-statistic: 3.352 on 2 and 83 DF, p-value: 0.03983
```

Report all coefficient estimates

```
reg_summary_UIP <- summary(reg_UIP)
reg_summary_UIP$coefficients[1,1]
## [1] -0.5048412
reg_summary_UIP$coefficients[2,1]
## [1] -0.9742184
reg_summary_UIP$coefficients[3,1]
## [1] 2.414129</pre>
```

95% confidence Interval for beta_1 and beta_2

confint () computes confidence intervals for one or more parameters in a fitted model. There is a default and a method for objects inheriting from class "lm".

Report the goodness of fit

```
reg_summary_UIP$r.squared
## [1] 0.07472651
reg_summary_UIP$adj.r.squared
## [1] 0.05243077
```

Hypothesis Testing

H0: Beta_0 <= 0 (one-tail right test)

```
To test restriction on one parameter we can still calculate t-statstics and then calculate p-value

t_stat_intercept <- ( reg_summary_UIP$coefficients[1,1]- 0 )/
reg_summary_UIP$coefficients[1,2]
pt(t_stat_intercept, df=83, lower.tail = FALSE)
## [1] 0.6602017
pt(t_stat_intercept, df=83, lower.tail = FALSE) < 0.05
## [1] FALSE
#Cannot reject the HO
pnorm(t_stat_intercept, lower.tail = FALSE) #approximately normal by large
sample
## [1] 0.6607363
pnorm(t_stat_intercept, lower.tail = FALSE) < 0.05
## [1] FALSE
#Cannot reject the HO
```

But for multiple parameters or restrictions we need linearHypothesis() from car package. Let's try function from one restriction on one parameter case

```
linearHypothesis (reg_UIP,
## Linear hypothesis test
##
## Hypothesis:
## (Intercept) = 0
Im object

Each restruction is
wrap by ""
LS: regressor(s)
RS: hypothesized
value
```

```
tailed test
                                                              - If you want only one
## Model 1: restricted model
## Model 2: s ch Aus ~ r Aus + r US
                                                              side shaded area
                                                              divided it by two
## Res.Df RSS Df Sum of Sq
                                       F Pr(>F)
## 1 84 1421.6
        83 1418.6 1
                        2.9362 0.1718 0.6796
p value both <- linearHypothesis(reg UIP, "(Intercept)=0")[2,6]
1 - p value both/2
## [1] 0.6602017
# 1. by symmetric right tail = left tail hence divided by 2,
# and 2. P(X \le t) = 1 - P(X \ge t)
1 - p \text{ value both/} 2 < 0.05
## [1] FALSE
Cannot reject the HO
```

p-value for the two

H0: Beta 1 = 1

```
linearHypothesis(reg UIP, "r Aus = 1")
## Linear hypothesis test
##
## Hypothesis:
## r Aus = 1
##
## Model 1: restricted model
## Model 2: s ch Aus ~ r Aus + r US
##
##
   Res.Df
             RSS Df Sum of Sq
                                F Pr(>F)
## 1
       84 1597.5
## 2
        83 1418.6 1 178.82 10.462 0.00175 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
linearHypothesis(reg UIP, "r Aus = 1")[2, 6] <0.05</pre>
## [1] TRUE
Reject the HO
```

H0: Beta 1 = -1

```
linearHypothesis(reg UIP, "r Aus = -1")
## Linear hypothesis test
##
## Hypothesis:
## r Aus = -1
##
## Model 1: restricted model
## Model 2: s ch Aus ~ r Aus + r US
##
   Res.Df RSS Df Sum of Sq F Pr(>F)
##
## 1 84 1418.7
       83 1418.6 1 0.030496 0.0018 0.9664
linearHypothesis(reg UIP, "r Aus = -1")[2, 6] <0.05
## [1] FALSE
Cannot reject the HO
```

H0: Beta_1 + Beta_2 = 0

```
linearHypothesis(reg UIP, "r Aus + r US = 0")
## Linear hypothesis test
##
## Hypothesis:
                                        Restriction on two
## r Aus + r US = 0
                                        parameter
##
## Model 1: restricted model
## Model 2: s ch Aus ~ r Aus + r US
##
   Res.Df RSS Df Sum of Sq F Pr(>F)
##
## 1 84 1494.2
## 2
       83 1418.6 1
                       75.601 4.4232 0.03848 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
linearHypothesis (reg UIP, "r Aus + r US = 0") [2, 6] < 0.05
## [1] TRUE
Reject the HO and conclude Beta 1 and Beta 2 cannot offset each other
```

H0: Intercept = 0, Beta_1 = -1, Beta_2 = 1

```
linearHypothesis(reg_UIP, c("(Intercept) = 0", "r_Aus = -1", "r US = 1")
## Linear hypothesis test
##
## Hypothesis:
                                         Multiple restrictions are placed within c()
## (Intercept) = 0
                                         and separated by,
## r Aus = -1
## r_US = 1
##
## Model 1: restricted model
## Model 2: s ch Aus ~ r Aus + r US
##
   Res.Df RSS Df Sum of Sq F Pr(>F)
##
## 1
       86 1751.9
## 2
                      333.29 6.4999 0.0005273 ***
        83 1418.6 3
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
linearHypothesis(reg UIP, c("(Intercept) = 0", "r Aus = -1", "r US = 1"))[2,
61 < 0.05
## [1] TRUE
Reject the HO: either Intercept is significantly different from 0, or Beta 1
is significantly is different from 1, or Beta 2 is significantly different
from -1, or both (or all )
```

Test whether lag exchange rate changes have effect on exchange rate changes

1. Creage a lag variable for exchage rate changes

```
data_CLS3$s_ch_Aus_1lag <-c(NA, data_CLS3$s_ch_Aus[-nrow(data_CLS3)])
head(data_CLS3,3); tail(data_CLS3,3)

## Date s_Aus s_ch_Aus r_Aus r_US s_ch_Aus_1lag

## 1 1970-03-31 0.89 0 NA 1.767580 NA

## 2 1970-06-30 0.89 0 NA 1.646393 0

## 3 1970-09-30 0.89 0 NA 1.555814 0

## Date s_Aus s_ch_Aus r_Aus r_US s_ch_Aus_1lag

## 128 2001-12-31 1.95 -1.025641 1.031432 0.4864391 0.000000

## 129 2002-03-31 1.93 -6.217617 1.041128 0.4297221 -1.025641

## 130 2002-06-30 1.81 1.104972 1.147594 0.4272540 -6.217617
```

2. Include the lag term as regressor

```
reg carryOver <- lm( s ch Aus ~ r Aus + r US + s ch Aus 1lag, data =
data CLS3)
summary(reg carryOver)
##
## Call:
## lm(formula = s ch Aus ~ r Aus + r US + s ch Aus 1lag, data = data CLS3)
## Residuals:
   Min
             1Q Median
##
                             3Q
## -7.3874 -2.5605 -0.5374 2.3686 15.1651
##
## Coefficients:
##
              Estimate Std. Error t value Pr(>|t|)
## (Intercept)
              -0.4490 1.2171 -0.369 0.7132
## r_Aus
                          0.6108 -1.517 0.1332
               -0.9264
## r US
                           0.9486 2.351 0.0211 *
                 2.2302
## s ch Aus 1lag 0.1209 0.1072 1.127 0.2630
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 4.128 on 82 degrees of freedom
## (44 observations deleted due to missingness)
                                Adjusted R-squared: 0.05551
## Multiple R-squared: 0.08884,
## F-statistic: 2.665 on 3 and 82 DF, p-value: 0.05323
```

3. Is the carry-over impact significance?

```
reg_carryOver_lagY <- summary(reg_carryOver)$coefficient[4, ]
reg_carryOver_lagY[[4]] < 0.05
## [1] FALSE
Not statistically different from 0 at 5% level</pre>
```

Plot for the complete sample period

1. Subset data that have complete observation

complete.cases() return a logical vector (TRUE, FALSE, or NA) indicating which cases are complete (in other word, no missing values for a particular row)

```
ix_complete <- complete.cases (data_CLS3)
data_CLS3_complete <- data_CLS3[ix_complete, ]</pre>
```

2. Plot the Actual change in exchange rate

3. Add the predicted change in exchange rate on top

Plot for sample period between 1980 and 1999

1. Subset data that between 1980 and 1999

```
ix_80_99 <- (data_CLS3_complete$Date > '1980-01-01' & data_CLS3_complete$Date
< '1999-12-31')
data_CLS3_00_01 <- data_CLS3_complete[ix_80_99, ]</pre>
```

2. Plot the Actual change in exchange rate

3. Add the predicted change in exchange rate on top

Plot residual against whole sample period

```
plot(data_CLS3$Date[ix_complete], unname(resid(reg_carryOver)) )
lines(data_CLS3$Date[ix_complete], unname(resid(reg_carryOver)), col = 'red')
```

