Filtragem Linear

Alexandre Xavier Falção

Instituto de Computação - UNICAMP

afalcao@ic.unicamp.br

Introdução

- Filtros lineares têm hoje um papel fundamental na extração de medidas (características) em redes neurais convolucionais.
- A filtragem linear resulta da convolução entre uma imagem (sinal) e um kernel.
- Portanto, para entender a filtragem linear, precisamos dos conceitos de imagem, adjacência, kernel, e convolução.

Imagem

Uma imagem \hat{I} é um par (D_I, \mathbf{I}) em que a função \mathbf{I} pode associar um conjunto de medidas $\mathbf{I}(p) = \{I_1(p), I_2(p), \dots, I_n(p)\}$ para cada elemento (pixel) do seu domínio espacial $D_I \in Z^m$. No caso mais simples, m = 2, $p = (x_p, y_p)$, $|D_I| = n_x \times n_y$, n = 1, e $\mathbf{I}(p)$ é um escalar — i.e., a imagem é monocromática.

Imagem

Uma imagem \hat{I} é um par (D_I, \mathbf{I}) em que a função \mathbf{I} pode associar um conjunto de medidas $\mathbf{I}(p) = \{I_1(p), I_2(p), \dots, I_n(p)\}$ para cada elemento (pixel) do seu domínio espacial $D_I \in Z^m$. No caso mais simples, m=2, $p=(x_p,y_p)$, $|D_I|=n_x\times n_y$, n=1, e $\mathbf{I}(p)$ é um escalar — i.e., a imagem é monocromática.

Neste caso, simplificando a notação, a imagem é o par $\hat{I} = (D_I, I)$.

Relação de Adjacência

Uma relação de adjacência é um relação binária definida em $D_I \times D_I$ com base em uma métrica entre pixels.

Relação de Adjacência

Uma relação de adjacência é um relação binária definida em $D_I \times D_I$ com base em uma métrica entre pixels.

Para simplificar, vamos considerar apenas relações ${\cal A}$ simétricas derivadas de

$$\mathcal{A}\colon \{(p,q)\in \mathcal{A}|\|q-p\|\leq r\},\,$$

onde r > 0 e $\|.\|$ é a norma Euclideana.

Detalhes de implementação

• A imagem pode ser armazenada em um vetor I[p], $p = 0, 1, \ldots, |D_I| - 1$, tal que $x_p = p \% n_x$ e $y_p = p / n_x$. Note que existe uma relação direta entre o índice p do vetor e o pixel $p = (x_p, y_p)$.

Detalhes de implementação

- A imagem pode ser armazenada em um vetor I[p], $p = 0, 1, \ldots, |D_I| 1$, tal que $x_p = p\%n_x$ e $y_p = p/n_x$. Note que existe uma relação direta entre o índice p do vetor e o pixel $p = (x_p, y_p)$.
- Para um dado valor de r>0, vamos considerar $q_i=(x_{q_i},y_{q_i})\in D_I$, $i=0,1,2,\ldots,|\mathcal{A}|-1$, como os pixels adjacentes de $p=(x_p,y_p)\in D_I$ (i.e., $(p,q_i)\in\mathcal{A}$).

Detalhes de implementação

- A imagem pode ser armazenada em um vetor I[p], $p = 0, 1, \ldots, |D_I| 1$, tal que $x_p = p \% n_x$ e $y_p = p / n_x$. Note que existe uma relação direta entre o índice p do vetor e o pixel $p = (x_p, y_p)$.
- Para um dado valor de r>0, vamos considerar $q_i=(x_{q_i},y_{q_i})\in D_I$, $i=0,1,2,\ldots,|\mathcal{A}|-1$, como os pixels adjacentes de $p=(x_p,y_p)\in D_I$ (i.e., $(p,q_i)\in\mathcal{A}$).
- Então podemos armazenar apenas os deslocamentos $(dx_i, dy_i) = (x_{q_i}, y_{q_i}) (x_p, y_p)$ em vetores dx[i] e dy[i] e acessar todo pixel q_i a partir de qualquer pixel p por $x_{q_i} = x_p + dx[i]$ e $y_{q_i} = y_p + dy[i]$, $i = 0, 1, 2, \ldots, |\mathcal{A}| 1$. Normalmente dx[0] = dy[0] = 0, facilitando a inclusão/exclusão do pixel p como seu adjacente.

Kernel

• Um kernel \hat{K} é um par (A, K) que associa um peso fixo $K(q-p)=w_i, i=0,1,2,\ldots,|A|-1$, para cada adjacente q_i de p.

Kernel

• Um kernel \hat{K} é um par (A, K) que associa um peso fixo $K(q-p)=w_i, i=0,1,2,\ldots,|A|-1$, para cada adjacente q_i de p.

• Então basta representar um kernel pelos vetores dx[i], dy[i], e w[i].

Convolução

- A filtragem linear é essencialmente o resultado da convolução de uma imagem $\hat{I} = (D_I, I)$ por um kernel $\hat{K} = (A, K)$ ("imagem móvel").
- A rigor, o kernel precisa ser refletido com relação à origem de A, mas podemos assumir que o kernel já está refletido sem perda de generalidade.
- A convolução $\hat{I} * \hat{K}$ entre \hat{I} e \hat{K} resulta, portanto, uma imagem $\hat{J} = (D_J, J)$ onde, para todo $p \in D_J$,

$$J(p) = \sum_{\forall (p,q) \in \mathcal{A}} I(q) \mathcal{K}(q-p) = \sum_{i=0}^{|\mathcal{A}|-1} I(q_i) w_i.$$

A rigor, $D_I \subset D_J$, mas constumamos adotar $D_J = D_I$ na filtragem linear.

Algoritmo de filtragem linear

Entrada:
$$\hat{I} = (D_I, I)$$
 e $\hat{K} = (A, K)$.
Saída: $\hat{J} = (D_I, J)$.

- 1. Para todo $p \in D_J$, faça
- 2. $J(p) \leftarrow 0$.
- 3. Para todo $(p,q) \in A$, tal que $q \in D_I$, faça
- 4. $J(p) \leftarrow J(p) + I(q)K(q-p).$

Algoritmo de filtragem linear

Entrada:
$$\hat{I} = (D_I, I)$$
 e $\hat{K} = (A, K)$.
Saída: $\hat{J} = (D_I, J)$.

- 1. Para todo $p \in D_J$, faça
- 2. $J(p) \leftarrow 0$.
- 3. Para todo $(p,q) \in \mathcal{A}$, tal que $q \in D_I$, faça
- 4. $J(p) \leftarrow J(p) + I(q)K(q-p).$

Isto é, basta varrer os vetores de deslocamento dx[i], dy[i], calcular q_i , verificar se $q_i \in D_I$, e então acumular no vetor J[p] o valor $I[q_i]w[i]$.

Exercício

Um exercício interessante é resolver a convolução por multiplicação matricial. Basta criar uma matriz onde as colunas armazenam os valores I(p) dos pixels de \hat{I} e as linhas armazenam os valores $I(q_i)$ de seus adjacentes. O kernel neste caso é uma matriz com uma única linha, onde os elementos das colunas são os pesos w_i . Multiplica-se a matriz do kernel pela matriz da imagem estendida pela adjacência.

O realce de bordas usando os kernels de Sobel é um exemplo típico.

$$K_y = \left[egin{array}{ccc} -1 & -2 & -1 \ 0 & 0 & 0 \ 1 & 2 & 1 \end{array}
ight] \quad K_x = \left[egin{array}{ccc} -1 & 0 & 1 \ -2 & 0 & 2 \ -1 & 0 & 1 \end{array}
ight]$$

O realce de bordas usando os kernels de Sobel é um exemplo típico.

$$K_y = \left[egin{array}{ccc} -1 & -2 & -1 \ 0 & 0 & 0 \ 1 & 2 & 1 \end{array}
ight] \quad K_x = \left[egin{array}{ccc} -1 & 0 & 1 \ -2 & 0 & 2 \ -1 & 0 & 1 \end{array}
ight]$$

O realce de bordas usando os kernels de Sobel é um exemplo típico.

$$K_y = \left[egin{array}{ccc} -1 & -2 & -1 \ 0 & 0 & 0 \ 1 & 2 & 1 \end{array}
ight] \quad K_x = \left[egin{array}{ccc} -1 & 0 & 1 \ -2 & 0 & 2 \ -1 & 0 & 1 \end{array}
ight]$$

O realce de bordas usando os kernels de Sobel é um exemplo típico.

$$K_y = \left[egin{array}{ccc} -1 & -2 & -1 \ 0 & 0 & 0 \ 1 & 2 & 1 \end{array}
ight] \quad K_x = \left[egin{array}{ccc} -1 & 0 & 1 \ -2 & 0 & 2 \ -1 & 0 & 1 \end{array}
ight]$$

