Transport-Level Security

Web Security

- Web now widely used by business, government, individuals
- but Internet & Web are vulnerable
- have a variety of threats
 - integrity
 - confidentiality
 - denial of service
 - authentication
- need added security mechanisms

Where SSL Fits

Web Traffic Security Approaches

(a) Network Level

(b) Transport Level

(c) Application Level

SSL (Secure Socket Layer)

- transport layer security service
- originally developed by Netscape
- version 3 designed with public input
- subsequently became Internet standard known as TLS (Transport Layer Security)
- uses TCP to provide a reliable end-to-end service
- SSL has two layers of protocols

SSL Architecture

SSL Handshake Protocol	SSL Change Cipher Spec Protocol	SSL Alert Protocol	НТТР	
SSL Record Protocol				
TCP				
IP				

SSL Architecture

SSL connection

- a transient, peer-to-peer, communications link
- associated with 1 SSL session

SSL session

- an association between client & server
- created by the Handshake Protocol
- define a set of cryptographic parameters
- may be shared by multiple SSL connections

SSL Record Protocol Services

confidentiality

- using symmetric encryption with a shared secret key defined by Handshake Protocol
- AES, IDEA, RC2-40, DES-40, DES, 3DES, Fortezza, RC4-40, RC4-128
- message is compressed before encryption

message integrity

- using a MAC with shared secret key
- similar to HMAC but with different padding

SSL Record Protocol Operation

Fragment

Compress

Add MAC

Encrypt

Append SSL Record Header

SSL Change Cipher Spec Protocol

- one of 3 SSL specific protocols which use the SSL Record protocol
- a single message
- causes pending state to become current
- hence updating the cipher suite in use

SSL Alert Protocol

- conveys SSL-related alerts to peer entity
- severity
 - warning or fatal

1 byte 1 byte Level Alert

specific alert

(b) Alert Protocol

- fatal: unexpected message, bad record mac, decompression failure, handshake failure, illegal parameter
- warning: close notify, no certificate, bad certificate, unsupported certificate, certificate revoked, certificate expired, certificate unknown
- compressed & encrypted like all SSL data

SSL Handshake Protocol

- allows server & client to:
 - authenticate each other
 - to negotiate encryption & MAC algorithms
 - to negotiate cryptographic keys to be used
- comprises a series of messages in phases
 - Establish Security Capabilities
 - Server Authentication and Key Exchange
 - 3. Client Authentication and Key Exchange
 - 4. Finish

1 byte	3 bytes	≥ 0 bytes
Type	Length	Content

SSL Handshake Protocol

Cryptographic Computations

- master secret creation
 - a one-time 48-byte value
 - generated using secure key exchange (RSA / Diffie-Hellman) and then hashing info
- generation of cryptographic parameters
 - client write MAC secret, a server write MAC secret, a client write key, a server write key, a client write IV, and a server write IV
 - generated by hashing master secret

TLS (Transport Layer Security)

- IETF standard RFC 2246 similar to SSLv3
- with minor differences
 - in record format version number
 - uses HMAC for MAC
 - a pseudo-random function expands secrets
 - based on HMAC using SHA-1 or MD5
 - has additional alert codes
 - some changes in supported ciphers
 - changes in certificate types & negotiations
 - changes in crypto computations & padding