Association Analysis

Association Analysis

Let's go shopping!

Milk, eggs, cereal, bread

Customer2

Eggs, sugar

Customer3

- What do my customer buy? Which product are bought together?
- Aim: Find associations and correlations between the different items that customers place in their shopping basket

Example

TID	Items
1	Bread, Peanuts, Milk, Fruit, Jam
2	Bread, Jam, Soda, Chips, Milk, Fruit
3	Steak, Jam, Soda, Chips, Bread
4	Jam, Soda, Peanuts, Milk, Fruit
5	Jam, Soda, Chips, Milk, Bread
6	Fruit, Soda, Chips, Milk
7	Fruit, Soda, Peanuts, Milk
8	Fruit, Peanuts, Cheese, Yogurt

Examples

```
\{bread\} \Rightarrow \{milk\}
\{soda\} \Rightarrow \{chips\}
\{bread\} \Rightarrow \{jam\}
```

- Given a set of transactions T, the goal of association rule mining is to find all rules having
 - support ≥ minsup threshold
 - ▶ confidence ≥ minconf threshold

What is an Association Rule?

- \square Implication of the form $X \Rightarrow Y$, where X and Y are itemsets
- □ Example, $\{bread\} \Rightarrow \{milk\}$
- Rule Evaluation Metrics, Suppor & Confidence
- Support (s)
 - Fraction of transactions that contain both X and Y
- Confidence (c)
 - Measures how often items in Y appear in transactions that contain X

$$s = \frac{\sigma(\{\text{Bread}, \text{Milk}\})}{\# \text{ of transactions}} = 0.38$$

$$c = \frac{\sigma(\{\text{Bread}, \text{Milk}\})}{\sigma(\{\text{Bread}\})} = 0.75$$

Naïve Solution

- Brute-force approach:
 - List all possible association rules
 - Compute the support and confidence for each rule
 - Prune rules that fail the minsup and minconf thresholds
- Brute-force approach is computationally prohibitive!

Alternative Solution: 2-step approach

```
{Bread, Jam} \Rightarrow {Milk} s=0.4 c=0.75 {Milk, Jam} \Rightarrow {Bread} s=0.4 c=0.75 {Bread} \Rightarrow {Milk, Jam} s=0.4 c=0.75 {Jam} \Rightarrow {Bread, Milk} s=0.4 c=0.6 {Milk} \Rightarrow {Bread, Jam} s=0.4 c=0.5
```

All the above rules are binary partitions of the same itemset:

{Milk, Bread, Jam}

- Rules originating from the same itemset have identical support but can have different confidence
- We can decouple the support and confidence requirements!

Alternative Solution: 2-step approach

- Frequent Itemset Generation
 - ▶ Generate all itemsets whose support ≥ minsup
- Rule Generation
 - Generate high confidence rules from frequent itemset
 - ▶ Each rule is a binary partitioning of a frequent itemset
- Frequent itemset generation is computationally expensive

Frequent Itemset Generation

Frequent Itemset Generation

Reducing the number of Frequent Itemsets

- Apriori principle
 - If an itemset is frequent, then all of its subsets must also be frequent
- Apriori principle holds due to the following property of the support measure:

$$\forall X, Y : (X \subseteq Y) \Rightarrow s(X) \ge s(Y)$$

Support of an itemset never exceeds the support of its subsets

Illustrating Apriori Principle

Applying Apriori Principle

Items (1-itemsets)

Item	Count
Bread	4
Peanuts	4
Milk	6
Fruit	6
Jam	5
Soda	6
Chips	4
Steak	1
Cheese	1
Yogurt	1

Minimum Support = 4

2-itemsets

2-Itemset	Count
Bread, Jam	4
Peanuts, Fruit	4
Milk, Fruit	5
Milk, Jam	4
Milk, Soda	5
Fruit, Soda	4
Jam, Soda	4
Soda, Chips	4

3-itemsets

3-Itemset	Count
Milk, Fruit, Soda	4

Apriori Algorithm

- Let k=1
- Generate frequent itemsets of length 1
- Repeat until no new frequent itemsets are identified
 - Generate length (k+1) candidate itemsets from length k frequent itemsets
 - Prune candidate itemsets containing subsets of length k that are infrequent
 - Count the support of each candidate by scanning the DB
 - Eliminate candidates that are infrequent, leaving only those that are frequent

Rule Generation

Naïve Approach

- Given a frequent itemset L, find all non-empty subsets f ⊂ L such that f → L − f satisfies the minimum confidence requirement
- If {A,B,C,D} is a frequent itemset, candidate rules:
 ABC →D, ABD →C, ACD →B, BCD →A, A →BCD, B →ACD, C →ABD, D →ABC, AB →CD, AC → BD, AD → BC, BC →AD, BD →AC, CD →AB
- If |L| = k, then there are 2^k 2 candidate association rules (ignoring L → Ø and Ø → L)

Efficient Approach

 \square c(ABC \rightarrow D) can be larger or smaller than c(AB \rightarrow D)

c(ABC → D) ≥ c(AB → CD) ≥ c(A → BCD)

Efficient Approach

Rule Generation

Generating Rules: example

Trans-ID	Items
1	ACD
2	BCE
3	ABCE
4	BE
5	ABCE

Rule	Conf.
$\{BC\} = > \{E\}$	100%
{BE} =>{C}	75%
$\{CE\} = > \{B\}$	100%
{B} =>{CE}	75%
$\{C\} = > \{BE\}$	75%
{E} =>{BC}	75%

Frequent Itemset	Support
{BCE},{AC}	60%
{BC},{CE},{A}	60%
{BE},{B},{C},{E}	80%

