

Budapesti Műszaki és Gazdaságtudományi Egyetem Villamosmérnöki és Informatikai Kar Méréstechnika és Információs Rendszerek Tanszék

Digitális technika VIMIAA01

Fehér Béla BME MIT

- A mikroprocesszoros rendszerek egyik legfontosabb alrendszere
- Feladata a processzoron futó program működésének támogatása, több szempontból is
 - Használatával a program felépítés, a program szerkezet jelentősen egyszerűsödhet
 - Használatával a program normál vagy rendkívüli eseményekre történő reakcióideje jelentősen javulhat
- Veszélyek:
 - Használatával a program valódi komplexitása jelentősen megnő (ha ez nem is nyilvánvaló)
 - A program virtuálisan párhuzamos "konkurrens"
 módon végrehajtódó részfunkciókat tartalmaz

- Összetett számítógép rendszerekben a megszakítások alatt gyakran két kategóriát is együtt értenek:
 - Megszakítások (Interrupt, IT)
 - Kivételek (Exceptions, EX)
 - Néha nincs megkülönböztetve, vagy keverednek a fogalmak
- Megszakítások:
 - Elsősorban a hardverhez kapcsolódó események jelzése
- Kivételek:
 - Elsősorban a programvégrehajtás során keletkező, ritka, de kezelendő események kezelése
- Együttes említésüket az eltérő keletkezésük ellenére a nagyon hasonló kezelési módjuk, kiszolgálásuk indokolja

Megszakítások:

- Elsősorban a hardverhez kapcsolódó események jelzése
- Normál működés közbeni kiszolgálási kérések
 - I/O periféria események
 - Időzítő által generált ütemező jelek
 - A megszakítás használatának előnye az egyszerűbb programszervezés
- Hibákra utaló jelzések
 - Memória paritáshiba
 - Tápfeszültség probléma, kimaradás
 - A megszakítás használatának előnye, az egyébként nagyon ritka eseményekre történő megbízható gyors reakció

Kivételek:

- Elsősorban a programvégrehajtás során keletkező, ritka, de kezelendő események
- Alkalmazói programok, aritmetikai kivételek
 - Osztás 0-val, művelet lebegőpontos NaN operandussal
 - Túlcsordulás, alucsordulás, átfordulás
 - Állandó ellenőrzésük túl sok időt venne igénybe, nem hatékony
- Rendszerprogram jelzései
 - Rendszer/felhasználó programvédelmi hiba
 - Verem alul/túlcsordulás
 - Érvénytelen utasításkód
 - Ezeket az eseteket az operációs rendszer kivétel kezelési mechanizmusa kezeli

BWE-WT.

Megszakítások és kivételek:

- Láttuk, a kiváltó események teljesen más jellegűek
- Ugyanakkor ritkák és speciális kezelést igényelnek
- Ezek a kódrészletek nem kell, hogy a fő program részei legyenek
- A speciális programrészletek meghívása, aktiválása történhet teljesen hasonló módon, mind a (hardver) megszakítás, mind a (szoftver) kivételkezelés során
- Egy azonos jelzés esetén, ettől a ponttól kezdve egységes kezelhetőségük kifejezetten előnyös
- A továbbiakban a megszakításokkal foglalkozunk, a MiniRISC környezetben nincs kivételkezelés

BME-MI:

- Megszakítások tehát:
- Alapvetően események jelzésére szolgálnak:
 - Aszinkron események: A külső események a rendszer működésétől függetlenül történnek (A perifériák a külső fizikai jelzéseket a rendszer órajelhez szinkronizálják)
 - Szinkron események: Valamilyen értelemben a program által kiváltott, annak működésével összefüggő események (pl. időzítő indítása adott értékkel, összetett periféria működésének indítása, ami adott idő múlva kiszolgálást kér)

• Megszakításrendszerek feladatai:

- Megszakítási események jelzése
- Megszakításkérés prioritásának kezelése
- Megszakításkérések engedélyezése / tiltása
- Megszakításforrás azonosítása
- Megszakítás kérés kiszolgáló szubrutin kezdőcímének meghatározása
- Megszakításkérés kiszolgáló szubrutin (ISR, Interrupt Service Routine) végrehajtása, a szükséges adminisztráció elvégzése
- Visszatérés a program eredeti állapotának visszaállításával

- Megszakítási események jelzése:
 - A perifériaeszközök részéről egyedi vagy közösített IRQ vonalakon
 - Hagyományos rendszerekben voltak láncra fűzött "daisy chain" kialakítások (elosztott IT rendszer és vezérlő)
 → manapság ez már ritkán használt
 - PCI buszon 4 részben közösen használt IRQ vonal
 - Egyedi IRQ vonalak minden eszköz számára
 - Szintvezérelt vagy élvezérelt megoldással
 - Az esemény hatására IRQ = 1 lesz
 - Az esemény hatására IRQ egy 0→1 átmenetet generál
 - Mindkettő használható több forrás közösített jelzésére is

• Megszakítások prioritása:

- A kérések kiszolgálásának sorrendjét a prioritási beállítások határozzák meg
- Egyidejűség esetén mindig az aktuálisan legnagyobb prioritású kérés jut érvényre
- Egyszintű IT rendszer esetén egy IT kérés elfogadása automatikusan tiltja további kérések érvényre jutását (átmeneti késleltetés)
- Ha a megszakításrendszer többszintű, és az aktív IT kérés kiszolgálása engedélyezi újabb kérések elfogadását, akkor a beérkező magasabb prioritású kérések megszakíthatják az alacsonyabb szintű IT kiszolgáló rutinját is

- Megszakítások prioritása:
 - Prioritások kezelése:
 - Közvetlenül a CPU-ban, ha a CPU-nak van több megszakítás kérési (IRQi) bemenete
 - Egy speciális külső egységben, az ún. megszakítás vezérlőben (Interrupt Controller, ITC).
 - Az ITC, mint slave periféria fogadja az egyedi IRQi vonalakat, működési paraméterei programozhatóak, és a beállításoknak megfelelően továbbítja az aktuális kérést/kéréseket a CPU felé
 - Túl sok IT forrás esetén prioritás csoportok alakíthatók ki, a csoportok között definiált prioritási szintekkel

• Megszakítások prioritása:

- Tipikus prioritáskezelési módszerek
- Fix prioritás: A források egymáshoz viszonyított prioritása rögzített, a tervezés, vagy a rendszer konfiguráció során dől el
- Körbenforgó: Azonos prioritású egységek között a legutoljára kiszolgált egység a sor végére kerül
- Lehetséges kevert prioritási rendszer is:
 - Fix a csoportok között és körbenforgó a csoporton belül

- Megszakítások engedélyezése/tiltása:
 - Ezt maszkolásnak hívjuk
 - Lehet globális és lokális is
 - Globális engedélyezés / tiltás :
 - Rendszerszintű, a CPU-ban STI/CLI, EI/DI utasításokkal
 - Ha van a rendszerben, akkor a programozható megszakítás vezérlőben
 - Lokális, eszköz vagy funkció szintű enged. / tiltás
 - Az egyes perifériák parancsregiszterében
 - A teljes perifériára vagy akár egyedi eseményekre is

- Megszakítások engedélyezése/tiltása:
 - Egyes processzoroknál létezik ún. nem maszkolható megszakítás is
 - NMI Non-Maskable Interrupt
 - Ennek feladata, hogy MINDIG érvényre jusson!
 - Használata egyedi, abszolút sürgős esetekre:
 - Pl. tápfeszültség kimaradás
 - Az NMI csak élvezérelt jelzésű lehet
 - A kérés egy adott pillanatban lép fel és kiszolgálásra kerül
 - A statikus NMI kérés kezelés mindig megszakítaná önmagát is!

• A megszakításforrások azonosítása:

- A források azonosítása fontos a megfelelő kiszolgáló rutin (ISR) kezdőcímének meghatározásához
- Amennyiben minden forrásnak önálló jelvezetéke van, akkor az azonosítás automatikusan teljesül
- A közös vezetéken beérkező kérések kiszolgálásának megkezdéséhez a forrás azonosítása szükséges
 - Programozott lekérdezéssel a státuszregiszterek jelzőbitjei alapján, az első aktív állapotot kiválasztva
 - A lekérdezés sorrendje rögzíti a prioritást ezen a csoporton belül, de szoftverből ez könnyen konfigurálható

- A megszakításforrások azonosítása:
- Az azonosítás után az ISR kezdőcíme meghatározható
 - Programozott módon
 - A periféria által támogatott módon, ezt vektoros megszakítás rendszernek nevezzük
 - A megszakítás kiszolgáló rutinok kezdőcímei egy táblázatban vannak (Interrupt Vector Table), ennek báziscíme fix, vagy egy regiszterben konfigurálható
 - A periféria egy indexet ad ehhez a táblázathoz, ami alapján indirekt címzéssel a második lépésben az ISR belépési címe könnyen meghatározható

• A megszakításrendszerek változatai:

- Egyszintű megszakítás rendszer:
 - A CPU vagy a normál programot hajtja végre vagy valamelyik megszakítás kiszolgáló szubrutint
 - Ha már átváltott a megszakításra, újabb megszakítást nem tud fogadni, mertaz IRQ elfogadásakor a továbbiakat automatikusan letiltja (és visszatéréskor újból engedélyezi)
- Többszintű megszakítás rendszer
 - A CPU a normál program végrehajtási szinten túl a megszakítások alatt is fogadhat további megszakításkérést
 - Az alacsony prioritású megszakítás rutinok futása is megszakítható a magasabb prioritású kérések által
 - A prioritás tehát nem csak az elfogadáskor, hanem a kiszolgálás alatt is érvényre juthat

BME-MI

- A megszakításrendszer változatai:
 - A megfelelő megszakítási rendszer kiválasztása a rendszer követelmények alapján lehetséges
 - A cél mindig a CPU terhelés optimalizálása, a kérések kiszolgálásának gyorsítása
 - A legkedvezőbb kialakítás gyakran extra hardver beépítésével lehetséges, a rendszer minden pontján
 - Speciális kiegészítések a periféria egységekben
 - Speciális kiegészítések a rendszer kommunikációs kapcsolataiban
 - Speciális kiegészítések a processzorban

- A periféria egységek speciális hardver egységei a megszakításos kiszolgálás támogatásához
- A megszakítás alrendszer alapvető elemei:
 - A megszakítást engedélyező parancsbit (bitek)
 - Egyedi, bitenkénti vagy a periféria egészére szóló
 - A megszakítási esemény azonosítása és ennek alapján egy statikus, de törölhető jelző flag előállítása
 - Az IRQ vonalat meghajtó kimeneti logika
 - Ez esetleg speciális nyitott kollektoros kimenetet kíván
- A megszakítás kérés törlése, nyugtázása
 - Automatikusan, a lekérdezéssel
 - Külön törlő paranccsal

- A processzoros rendszer speciális hardver egységei a megszakításos kiszolgálás támogatásához
- A rendszerbusz megszakítás jelei
 - Megszakítás kérés jel/jelek (NMI + IRQi):
 - Önálló jelek perifériánként
 - Egyetlen jel az IRQi jelek logikai VAGY kapcsolatával
 - Egyetlen jel az IRQi jelek speciális "közösíthető" áramköri megoldásával ("huzalozott" VAGY)
 - Megszakítás elfogadás jelzés (IACK): Egyes processzorok ezzel jelzik a perifériák számára az IRQ elfogadás fázisát, amikor pl. az ISR vektor címe (indexe) a CPU számára elküldhető

- A processzoros rendszer speciális hardver egységei a megszakításos kiszolgálás támogatásához
- Az ITC megszakítás vezérlő kialakítási lehetőségei
- Központi megszakítás vezérlő
 - Egyetlen egység, sok IRQi bemeneti vonallal
 - Eng./tiltás, prioritások, ISR vektorok a CPU felé
 - A perifériák egyszerűbbek
- Elosztott megszakítás vezérlő ("daisy chain")
 - Minden egység egy közös IRQ vonalat vezérel
 - Az IACKIN-IACKOUT vonal láncba kötve fut végig, az aktív kérő blokkolja a továbbadást
 - Bonyolult egységek, de külső busznál hatékony

BME-MI

A CPU megszakításrendszere

- A processzor felkészítése a megszakítások fogadására és kiszolgálására
 - A processzorok általában kevés (1,2) megszakítás kérő bemenettel rendelkeznek (IRQ, NMI)
 - A processzor felé a megszakítás kérések tetszőleges időpillanatban kiadhatók
 - A megszakítás hatására a processzor az utasítás végrehajtási sorrendet az előzetesen lefordított kódhoz képest módosítja
 - A processzor a megszakítást csak utasítás végrehajtás végén engedi érvényre jutni, amennyiben az IT engedélyezett (IE = 1)

MiniRISC processzor – Vezérlő állapotgép

FPGA labor

A CPU megszakításrendszere

- A megszakítás kiszolgálásának folyamata a MiniRISC processzor szempontjából a következő:
 - A CPU észleli az IRQ vonal aktiválását
 - A CPU az aktuális utasítást végrehajtja
 - Ha az (IE = 1 és IRQ = 1), akkor az EXECUTE fázis után belép az IRQ_REQ állapotba. (Egyébként soha.)
 - Az IRQ_REQ állapotban lényegében végrehajt egy szubrutinhívást a **Megszakításvektor** címére (0x01). Egyúttal a legfontosabb adatokat, állapotjelző biteket a hardver verembe menti (PC, ZCNV, IE, IF)
 - PC = 0x01, IE = 0 és IF = 1 állapottal végrehajtja az ISR megszakítás kiszolgáló rutinra ugró utasítást.

MiniRISC processzor – IT elfogadás

Programmemória interfész

- Ugrás vagy szubrutinhívás esetén a programszámláló értéke módosul(hat) a végrehajtási (execute) fázisban
- Megszakításkérés kiszolgálása esetén az INT_REQ állapotban a programszámlálóba betöltődik a megszakítás vektor (0x01)
- Az aktuális utasítás végrehajtása 4 órajel ciklus hosszú:

FETCH_DECODE_EXECUTE_INT_REQ

 A fenti két esetben a következő lehívási (fetch) fázisra éppen időben megjelenik az új cím a programmemória címbuszán

FPGA labor

A CPU megszakításrendszere

- Processzor állapot értelmezése:
- A megszakítás elfogadásakor a CPU aktuális állapotát úgy kell elmenteni, hogy az ISR rutin befejezése után, a normál program egyértelműen folytatható legyen.
 - Ez általában hardveresen, automatikusan megtörténik
- A megszakításrutin elindításakor gondoskodni kell a programállapot megőrzéséről is
 - Az ISR-en belül használt regiszterek értékét el kell menteni és visszatérés előtt vissza kell állítani a korábbi értékre

A CPU megszakításrendszere

- Processzor és program állapot értelmezése:
- A regiszter állapotmentés mértéke, módja, támogatása processzoronként eltérő → Késleltetési idő csökkentése
 - Egyenként, memóriába, vagy az ott lévő verembe
 - Vektorosan egy regisztercím tartományt automatikusan
 - Független, új regiszterkészlet elérhetősége, automatikus, vagy egy utasításos váltással
- Egy érdekes gondolat: A megszakítási állapot olyan, mintha egy új processzort működtetnénk
 - IRQ hatására a "fő" processzor leáll, de bizonyos változói, memóriája elérhetők az újonnan indított "IT" processzor számára

- Megszakítások engedélyezése:
- A megszakításkérések elfogadása, kiszolgálása programozottan engedélyezhető
 - MiniRISC STI, CLI utasítások (Set IE, Clear IE)
 - Lehetnek olyan működési állapotok amikor ez szükséges (pl. kritikus programrészlet végrehajtása, ami nem megszakítható)
 - Ugyanez a helyzet az ISR-be belépéskor, ekkor automatikusan tiltódik a további IT elfogadás (IE=0)
 - A RESET állapotban az IE = 0, azaz ha használni szeretnénk megszakítást, akkor azt külön engedélyezni kell

MiniRISC processzor – Megszakítás

A MiniRISC megszakítási rendszere

- Aktív magas megszakításkérő bemenet (IRQ)
- Egyszerű megszakítási rendszer
 - A perifériától csak jelzés jön, a kérés azonosítása a programban történik
 - A megszakításkezelő rutin címe fix 0x01

Megszakítások kiszolgálása a MiniRISC esetén

- Alapvetően a szubrutinhívásra hasonlít
- Ha IE=1 és IRQ=1, akkor az aktuális utasítás végrehajtása után
 - A visszatérési cím és a flag-ek (ALU státusz bitek, IE, IF) elmentésre kerülnek a verembe (stack)
 - A megszakítás vektor (0x01) betöltésre kerül a programszámlálóba és az IE bit törlődik

Visszatérés a megszakításból: RTI utasítás

 A PC-be betöltésre kerül a visszatérési cím és visszaállításra kerülnek a flag-ek a veremből

```
00:
       imp start
      jmp usrt rx
02: start:
02:
      mov r0, #0
03:
      mov LD, r0
      mov r0, \#0x3b
04:
05:
      mov UC, r0
06:
      sti
07: loop:
07:
       jsr delay
08:
     - mov r8, #str
09:
       jsr print_str
       jmp loop
0A:
stack←{PC (0x09),flag-ek} •
PC←0x01, IE←0
30: usrt rx:
30:
      mov r15, UD
31:
      mov LD, r15
32:
       rti
```

{PC,flag-ek}←stack

Az ISR megszakítás rutin

- Az ISR megszakításrutin egy speciális programrész
- Lényegében egy szubrutin, de nem tartozik hozzá hívó utasítás
 - Aktiválása a IRQ elfogadáson keresztül történik (Visszatérés pedig az RTI-vel lehetséges)
 - Nincsenek bemeneti paraméterei → Nem hívjuk, jön!
 - Nincsenek visszatérési értékek → Kinek, miért?
 - Természetesen a regiszterértékekhez, globális változókhoz, memóriához, perifériákhoz hozzáférhet, azokat használhatja, módosíthatja, ha kell
 - Sok esetben assembly szintű programrészlet a hatékony, gyors végrehajtás érdekében

Programszervezési alternatívák

- A megszakításrendszer tervezése a programszervezésre is hatással lehet
 - A programok feladatai megoszlanak a főprogram és a periféria kiszolgálást végző ISR között.
 - Ennek szintjei a következők:
 - Az ISR csak a legszükségesebb perifériaműveleteket hajtja végre. Minden más a főprogramban történik.
 - Az ISR a minimális aktivitáson túl általános feladatokat is elvégez, a perifériához kapcsolódóan.
 - Az ISR tartalmazza az összes szükséges feladatot, a főprogram szinte egy aktivitás nélküli várakozó hurok.
 - "A rendszer üresjárati folyamata"

Digitális technika 12. EA vége