Université d'Ottawa Faculté de génie

École de science d'informatique et de génie électrique

University of Ottawa Faculty of Engineering

School of Electrical Engineering and Computer Science

Assignment 4 CSI2120 Programming Paradigms

Winter 2017

Due on March 22nd, 2017 before 11:00 pm in Virtual Campus

[5 marks in total]

Question 1. Happy Numbers Series [5 marks]

Consider the digits d_k , d_{k-1} , ..., d_1 , d_0 of a positive integer number. The squares of the digits are then d_k^2 , d_{k-1}^2 , ..., d_1^2 , d_0^2 and we name the sum of these squares s. We can create a recursive series of the squares of the digits of positive integers. This series will be s_0 , s_1 , s_2 , s_3 , ... where s_0 is the sum of squares of the original number, s_1 the sum of the squares of the digits of s_0 , s_2 the sum of the squares of the digits of s_1 , and so on. For example:

$$120 \rightarrow 1^2 + 2^2 = 5 \rightarrow 5^2 = 25 \rightarrow 2^2 + 5^2 = 29 \rightarrow ...$$

a) Create a function sosd that calculates the sum of square digits. Example:

It has been shown that for any starting number, the series described will always reach one of the following numbers: 0,1,4,16,20,37,42,58,89,145 (OEIS A039943; Porges 1945). In the following I call these numbers stop numbers. If the series reaches the number 1 for a starting number H, then the number H is called a 'happy number'.

b) Write a function stop? that is true if the argument is one of the stop numbers in the above list.

c) Create a function ssod_series that returns a list containing all the sum of square digits calculated until (and including) a stop number is reached.

```
(sspd_series 120)

⇒ (5 25 29 85 89)
```

CSI 2120 page 2

d) Create a function happy? that returns true if the function ssod_series ends in a 1. Example: