Siddhardhan

Entropy, Information Gain & Gini Impurity

Decision Tree - Terminologies

Decision Tree

Problem Statement: Build a Decision Tree to determine whether a person will **get a Job or not** based on their **Degree** & **Years of Experience**.

Degree	Experience in Years	Placed / Not Placed
Masters	2	Placed
Bachelors	0	Not Placed
Masters	3	Placed
Masters	1	Not Placed
Bachelors	2	Placed
Masters	3	Placed
Bachelors	0	Not Placed
Bachelors	1	Not Placed

Decision Tree

SIDDHARDHAN

Entropy: High

Information Gain: Low

Gini Impurity: High

Entropy: Low

Information Gain: High

Gini Impurity: Low

Entropy

Entropy:

In Machine Learning, Entropy is the quantitative measure of the randomness of the information being processed.

A **high value of Entropy** means that the **randomness** in the system is **high** and thus making accurate predictions is tough.

A **low value of Entropy** means that the **randomness** in the system is **low** and thus making accurate predictions is easier.

Entropy
$$= \sum_{i=1}^{c} -p_i \log_2 p_i$$

c --> number of classes

p_i --> Probability of ith class

Information Gain

Information Gain is the measure of how much information a feature provides about a class. Low entropy leads to increased Information Gain and high entropy leads to low Information Gain.

Information gain computes the difference between **entropy before split** and average entropy **after split** of the dataset based on a given feature.

Information gain (T, F) = Entropy (T)
$$-\sum_{v \in F} \frac{|T_v|}{T}$$
. Entropy (T)

Gini Impurity

The split made in a Decision Tree is said to be pure if all the data points are accurately separated into different classes.

Gini Impurity measures the likelihood that a randomly selected data point would be incorrectly classified by a specific node.

$$G = \sum_{i=1}^C p(i)*(1-p(i))$$

Decision Tree

SIDDHARDHAN

Entropy: High

Information Gain: Low

Gini Impurity: High

Entropy: Low

Information Gain: High

Gini Impurity: Low