02 January 2023 15:50

In this shoot note, we define the notion of sets of MEASURE ZERO in R, R, R, R, specifically, and see their relevance in the theory of Riemann integration.

DEFINITION: Sup. KER. K is a set of 1-dimensione (MEASURE ZERD, or 1-MEASURE ZERD if there exist open intervals (ai, bi) s.t

- $K \subseteq \bigcup (a_i,b_i)$
- Σ(b,-a;) < ε

for any given E>0.

The collection of open intervals {(ai, bi)} can be finite or countably infinite.

DEFINITION: Sup. $K \subseteq \mathbb{R}^2$. K is a set of 2-dimensional MEASURE ZERO or 2-MEASURE ZERO if: Given E>0, there exist (open) intervals $R:=(a:,b:)\times(c:,di)$ s.t

- · K ≤ UR:
- · Σ Area (R;) < ε.

We leave the definition of 3-MEASURE ZERD sets as an exercise.

A set of Measure Zero is, intuitively speaking, a very sparse set. Loosely speaking, any meaningful assignment of "content of the set" (Length, Area, Volume) must be ZERO.

Proof Sketch: If $K = \{a_1, a_2, \dots\}$ then for a given $\epsilon > 0$ find open cets (intervals, vectangles, cuboid, as the case may be) V_i set $a_i \in V_i$ and $a(V_i) < \frac{\epsilon}{2^{i+3}}$, where $a(V_i)$ is the length or area, or volume accordingly as $K \subseteq R$, R^2 or R^3 . Then, clearly, $K \subseteq UV_i$ and $\sum_{i \ge 1}^{\infty} a_i(V_i) < \sum_{i \ge 1}^{\infty} \frac{\epsilon}{2^{i+3}} < \epsilon$.

The main theorem concerning Riemann-integrability in the following:

THEOREM: Sup. $f: [a, b] \rightarrow \mathbb{R}$ is bounded. Then f is Riemann integrable iff the set of discontinuities of f is a set of f-Measure Zero.

Sup $f: [a,b] \times [c,d] \rightarrow \mathbb{R}$ is bounded. Then f is Riemann integrable iff the set of discontinuities of f in a set of 2-Measure Zero.

• $f: [a,b] \times [c,d] \times [e,f] \rightarrow \mathbb{R}$ is Riemann integrable (f is bounded) iff

Proof: DMITTED. You can see it in any text on Real Analysis. In the example in the lecture, $f(x,y) = X^2+Y^2$ on the domain $0 \le X+Y \le I$ if we set $R = [0,1] \times [0,1]$, then $f^{(x)}(x,y) = X^2+Y^2$ if $0 \le X+Y \le I$ if we set $D = \{(I-X,X): X \in [0,1]\}$ on the cet of discontinuities. It is easy to see that this is a set of 2-Measure Zero. Indeed, for the vectorization induced by the pertition $X:=\frac{1}{12} \cdot (i=0,-,u=1)$, and $Y:=\frac{1}{12} \cdot (i=0,-,u=1)$, and $Y:=\frac{1}{12} \cdot (i=0,-,u=1)$. And the that (i=0,1,-,u=1) area of the block vectorization equals $x:=\frac{1}{12} \cdot (i=0,-,u=1)$. And the that (i=0,1,-,u=1) area of the block vectorization equals $x:=\frac{1}{12} \cdot (i=0,-,u=1)$. And the that (i=0,1,-,u=1) area of the block vectorization equals $x:=\frac{1}{12} \cdot (i=0,-,u=1)$. And $x:=\frac{1}{12} \cdot (i=0,1,-,u=1)$ and $x:=\frac{1}{12} \cdot (i=0,1,-,u=1)$. And $x:=\frac{1}{12} \cdot (i=0,1,-,u=1)$ and $x:=\frac{1}{12} \cdot (i=0,1,-,u=1)$. And $x:=\frac{1}{12} \cdot (i=0,1,-,u=1)$ and $x:=\frac{1}{12} \cdot (i=0,1,-,u=1)$. And $x:=\frac{1}{12} \cdot (i=0,1,-,u=1)$ and $x:=\frac{1}{12} \cdot (i=0,1,-,u=1)$. And $x:=\frac{1}{12} \cdot (i=0,1,-,u=1)$ and $x:=\frac{1}{12} \cdot (i=0,1,-,u=1)$. And $x:=\frac{1}{12} \cdot (i=0,1,-,u=1)$ and $x:=\frac{1}{12} \cdot (i=0,-,u=1)$. And $x:=\frac{1}{12} \cdot (i=0,-,u=1)$ and $x:=\frac{1}{12} \cdot (i=0,-,u=1)$. And $x:=\frac{1}{12} \cdot (i=0,-,u=1)$ and $x:=\frac{1}{12} \cdot (i=0,-,u=1)$. And $x:=\frac{1}{12} \cdot (i=0,-,u=1)$ and $x:=\frac{1}{12} \cdot (i=0,-,u=1)$. And $x:=\frac{1}{12} \cdot (i=0,-,u=1)$ and $x:=\frac{1}{12} \cdot (i=0,-,u=1)$. And $x:=\frac{1}{12} \cdot (i=0,-,u=1)$ and $x:=\frac{1}{12} \cdot (i=0,-,u=1)$. And $x:=\frac{1}{12} \cdot (i=0,-,u=1)$ and $x:=\frac{1}{1$