

Convert (6) = 6 (& your coro or 6 ca 1 state in mon) CONG FURNOS CONERTE Che CononT(6): 61 LA CYMISCUTE A G LA LISMO AL LETTORG Calcolabilità 10 Points • Sia $ALL_{NFA} = \{\langle N \rangle : N$ è un NFA e $L(N) = \Sigma^* \}$. Mostrare che ALL_{NFA} è decidibi-• Dimostrare che per ogni macchina di Turing non-deterministica ne esiste una deterministica equivalente. nearing => 3 ETM Oc. (E)=fa 60 No RURNO CHO M ung M De Fun PROMO cons - mpor LN 7 cm Noum _ 704550 mo N In D (DEA E QUINCENZO) - (50000 D' con un une saro 40 e acco 40-) 90 - ESE GUO E SU LD, D') SE ACCOTA ACROTA ACROTA

=> LW) = L(D) = L(N') = Z => W> EALENEA

(=

CN> & AUNER C=5 CD, N'; & LCE)

=> 2W = LW) + L(D') = \(\sum_{=}^{2} \) \(\text{D} \) \(\text{AUNER} \)

2)		Ca	^	UNA	ΛĿ	-DVI &	Le		Dh	6	0 %	,	57	אוני ניאא	2င	a	4 /	V	ท	N	1			
		SA		Μι	A '	m	Ď	:Jam	10	c	on e	র)–(4	ب ر										
					аН	-	ک	NA	STR															
				_	1°	_ 4	ST RU	ıça	O1		WPU7)												
				_	- 2	_	Aru	ДLO	C	ωF.	<i>I</i>	G	جج	5 CO7	uoro									
				_	3	-	Pos)ZIC	ne	N c	en'	ALF	3C	20										
	L	(D)	5/2	é	- (100	CLA	Ω	n	₩.	6V4 €	ε	w	A	Duc	RCA		M	<i>9</i> ⋈1	يو جاد	PA			
	Su	വു,	۸	DANO	0	الى	ÐL	BEI)0	מ		CO1 PA	574	2 60,	5	DI	N							
						,	C 1 1 2	\			1						1,	1		ſ				
			=))	ω	t L	-(M) Z) (١.٦	
									W	\	(e)	ر آ	r	งาโอ	1	17	9	کوریت	p L	<i>⊃</i> 2	WE	, L (N)	

- ulletSia Lun linguaggio PSPACE-completo. Mostrare che se $L\in \ensuremath{\mathsf{NP}}$, allora $\ensuremath{\mathsf{NP}}=$
- \bullet Definire la classe di complessità coNP ed il problema UNSAT. Dimostrare che
- UNSAT è coNP-completo.

2) CONP: ELONE I ENPS

UN CATE FAT

SE CHE SOTE NP-COMPLETO

SATE COUP S

LG NP Sache LER SAT SLA

I E CAP

CNP-conce to

 \mathcal{D}