Inteligência Artificial – ACH2016 Aula 16 – Regra de Bayes e Redes Bayesianas

Norton Trevisan Roman (norton@usp.br)

12 de maio de 2019

$$\begin{array}{l} P(a \wedge b) = P(a|b)P(b) \\ P(a \wedge b) = P(b|a)P(a) \end{array} \rightarrow P(b|a) = \frac{P(a|b)P(b)}{P(a)}$$

$$P(a \wedge b \wedge c) = P(a|b \wedge c) P(b|c) P(c)$$

$$P(a \wedge b \wedge c) = P(b|a \wedge c) P(a|c) P(c)$$

$$P(b|a \wedge c) = \frac{P(a|b \wedge c) P(b|c)}{P(a|c)}$$

Exemplo

Considere o seguinte problema:

- Considere o seguinte problema:
 - 1% das mulheres na idade de 40 anos que fazem exames de rotina têm câncer de mama.

- Considere o seguinte problema:
 - 1% das mulheres na idade de 40 anos que fazem exames de rotina têm câncer de mama.
 - 80% das mulheres com câncer de mama terão mamogramas positivos para câncer

- Considere o seguinte problema:
 - 1% das mulheres na idade de 40 anos que fazem exames de rotina têm câncer de mama.
 - 80% das mulheres com câncer de mama terão mamogramas positivos para câncer
 - 9,6% das mulheres sem câncer de mama também terão mamogramas positivos

- Considere o seguinte problema:
 - 1% das mulheres na idade de 40 anos que fazem exames de rotina têm câncer de mama.
 - 80% das mulheres com câncer de mama terão mamogramas positivos para câncer
 - 9,6% das mulheres sem câncer de mama também terão mamogramas positivos
 - Uma mulher de 40 anos teve um mamograma positivo em um exame de rotina. Qual a probabilidade dela efetivamente ter câncer de mama?

Exemplo

Exemplo

$$P(c\hat{a}ncer|positivo) = \frac{P(positivo|c\hat{a}ncer)P(c\hat{a}ncer)}{P(positivo)}$$

Exemplo

$$P(c\hat{a}ncer|positivo) = \frac{P(positivo|c\hat{a}ncer)P(c\hat{a}ncer)}{P(positivo)}$$

$$P(positivo|c\hat{a}ncer) = \frac{80}{100} = 0,8$$

Exemplo

$$P(c\^{a}ncer|positivo) = \frac{P(positivo|c\^{a}ncer)P(c\^{a}ncer)}{P(positivo)}$$

$$P(positivo|c\hat{a}ncer) = \frac{80}{100} = 0.8$$

$$P(\hat{cancer}) = \frac{1}{100} = 0,01$$

Exemplo

$$P(c\^{a}ncer|positivo) = rac{P(positivo|c\^{a}ncer)P(c\^{a}ncer)}{P(positivo)}$$
 $P(positivo|c\^{a}ncer) = rac{80}{100} = 0,8$
 $P(c\^{a}ncer) = rac{1}{100} = 0,01$
 $P(positivo) = ?$

Exemplo

 Lembre que a probabilidade de um efeito é obtida somando-se as probabilidades de sua ocorrência em conjunto com todas suas causas

- Lembre que a probabilidade de um efeito é obtida somando-se as probabilidades de sua ocorrência em conjunto com todas suas causas
 - Efeito: mamograma positivo

- Lembre que a probabilidade de um efeito é obtida somando-se as probabilidades de sua ocorrência em conjunto com todas suas causas
 - Efeito: mamograma positivo
 - Causa: ter (ou não) câncer

- Lembre que a probabilidade de um efeito é obtida somando-se as probabilidades de sua ocorrência em conjunto com todas suas causas
 - Efeito: mamograma positivo
 - Causa: ter (ou não) câncer

```
P(positivo) = P(positivo \land c\^{a}ncer) + P(positivo \land \neg c\^{a}ncer)]
```

- Lembre que a probabilidade de um efeito é obtida somando-se as probabilidades de sua ocorrência em conjunto com todas suas causas
 - Efeito: mamograma positivo
 - Causa: ter (ou não) câncer

```
P(positivo) = P(positivo \land câncer) + P(positivo \land \neg câncer)

P(positivo \land câncer) = P(positivo | câncer) P(câncer)
```

- Lembre que a probabilidade de um efeito é obtida somando-se as probabilidades de sua ocorrência em conjunto com todas suas causas
 - Efeito: mamograma positivo
 - Causa: ter (ou não) câncer

```
P(positivo) = P(positivo \land c\^{a}ncer) + P(positivo \land \neg c\^{a}ncer)]

P(positivo \land c\^{a}ncer) = P(positivo | c\^{a}ncer)P(c\^{a}ncer)

P(positivo \land c\^{a}ncer) = 0,8 \times 0,01 = 0,008
```

- Lembre que a probabilidade de um efeito é obtida somando-se as probabilidades de sua ocorrência em conjunto com todas suas causas
 - Efeito: mamograma positivo
 - Causa: ter (ou não) câncer

```
P(positivo) = P(positivo \land cancer) + P(positivo \land \neg cancer)]

P(positivo \land cancer) = P(positivo | cancer)P(cancer)

P(positivo \land cancer) = 0,8 \times 0,01 = 0,008

P(positivo \land \neg cancer) = P(positivo | \neg cancer)(1 - P(cancer))
```

- Lembre que a probabilidade de um efeito é obtida somando-se as probabilidades de sua ocorrência em conjunto com todas suas causas
 - Efeito: mamograma positivo
 - Causa: ter (ou não) câncer

$$P(positivo) = P(positivo \land c\^ancer) + P(positivo \land \neg c\^ancer)]$$

$$P(positivo \land c\^ancer) = P(positivo | c\^ancer) P(c\^ancer)$$

$$P(positivo \land c\^ancer) = 0,8 \times 0,01 = 0,008$$

$$P(positivo \land \neg c\^ancer) = P(positivo | \neg c\^ancer)(1 - P(c\^ancer))$$

$$P(positivo \land \neg c\^ancer) = \frac{9,6}{100} \times (1-0,01) = 0,09504$$

Exemplo

Exemplo

$$P(c\hat{a}ncer|positivo) = \frac{P(positivo|c\hat{a}ncer)P(c\hat{a}ncer)}{P(positivo)}$$

Exemplo

$$P(c\^{a}ncer|positivo) = rac{P(positivo|c\^{a}ncer)P(c\^{a}ncer)}{P(positivo)}$$
 $P(positivo|c\^{a}ncer) = rac{80}{100} = 0.8$

Exemplo

$$P(c\^{a}ncer|positivo) = rac{P(positivo|c\^{a}ncer)P(c\^{a}ncer)}{P(positivo)}$$
 $P(positivo|c\^{a}ncer) = rac{80}{100} = 0,8$
 $P(c\^{a}ncer) = rac{1}{100} = 0,01$

Exemplo

$$P(c \hat{a}ncer|positivo) = \frac{P(positivo|c \hat{a}ncer)P(c \hat{a}ncer)}{P(positivo)}$$
 $P(positivo|c \hat{a}ncer) = \frac{80}{100} = 0,8$
 $P(c \hat{a}ncer) = \frac{1}{100} = 0,01$
 $P(positivo) = 0,008 + 0,09504 = 0,10304$

Exemplo

$$P(c\^{a}ncer|positivo) = \frac{P(positivo|c\^{a}ncer)P(c\^{a}ncer)}{P(positivo)}$$

$$P(positivo|c\^{a}ncer) = \frac{80}{100} = 0,8$$

$$P(c\^{a}ncer) = \frac{1}{100} = 0,01$$

$$P(positivo) = 0,008 + 0,09504 = 0,10304$$

$$P(c\^{a}ncer|positivo) = \frac{0,8 \times 0,01}{0,10304} \approx 0,0776 = 7,76\%$$

• Trata-se de uma estrutura de dados

- Trata-se de uma estrutura de dados
 - Representa a distribuição conjunta de probabilidade para um conjunto de variáveis

- Trata-se de uma estrutura de dados
 - Representa a distribuição conjunta de probabilidade para um conjunto de variáveis
 - Representa dependências entre variáveis

- Trata-se de uma estrutura de dados
 - Representa a distribuição conjunta de probabilidade para um conjunto de variáveis
 - Representa dependências entre variáveis
- Grafo dirigido acíclico

- Trata-se de uma estrutura de dados
 - Representa a distribuição conjunta de probabilidade para um conjunto de variáveis
 - Representa dependências entre variáveis
- Grafo dirigido acíclico
 - Nós: variáveis aleatórias (discretas ou contínuas)

- Trata-se de uma estrutura de dados
 - Representa a distribuição conjunta de probabilidade para um conjunto de variáveis
 - Representa dependências entre variáveis
- Grafo dirigido acíclico
 - Nós: variáveis aleatórias (discretas ou contínuas)
 - Cada nó tem uma tabela de distribuição de probabilidade que quantifica a influência dos pais nesse nó

- Trata-se de uma estrutura de dados
 - Representa a distribuição conjunta de probabilidade para um conjunto de variáveis
 - Representa dependências entre variáveis
- Grafo dirigido acíclico
 - Nós: variáveis aleatórias (discretas ou contínuas)
 - Cada nó tem uma tabela de distribuição de probabilidade que quantifica a influência dos pais nesse nó
 - $P(X_i|pais(X_i))$

- Trata-se de uma estrutura de dados
 - Representa a distribuição conjunta de probabilidade para um conjunto de variáveis
 - Representa dependências entre variáveis
- Grafo dirigido acíclico
 - Nós: variáveis aleatórias (discretas ou contínuas)
 - Cada nó tem uma tabela de distribuição de probabilidade que quantifica a influência dos pais nesse nó
 - $P(X_i|pais(X_i))$
 - Arestas: unem variáveis interdependentes

Topologia

Topologia

 A topologia da rede especifica as relações de independência condicional existentes:

Topologia

 A topologia da rede especifica as relações de independência condicional existentes:

Topologia

 A topologia da rede especifica as relações de independência condicional existentes:

Fonte: Adaptado de AIMA. Russell & Norvig.

• Clima é independente das demais variáveis

Topologia

 A topologia da rede especifica as relações de independência condicional existentes:

Fonte: Adaptado de AIMA. Russell & Norvig.

- Clima é independente das demais variáveis
- Broca e Dor são condicionalmente independentes, dada Cárie

Exemplo

Você está no trabalho...

- Você está no trabalho...
 - Seu vizinho, João, liga dizendo que o alarme da sua casa disparou

- Você está no trabalho...
 - Seu vizinho, João, liga dizendo que o alarme da sua casa disparou
 - Contudo, a vizinha, Maria, não ligou

- Você está no trabalho...
 - Seu vizinho, João, liga dizendo que o alarme da sua casa disparou
 - Contudo, a vizinha, Maria, não ligou
 - Algumas vezes o alarme dispara por conta de pequenos tremores

- Você está no trabalho...
 - Seu vizinho, João, liga dizendo que o alarme da sua casa disparou
 - Contudo, a vizinha, Maria, não ligou
 - Algumas vezes o alarme dispara por conta de pequenos tremores
 - Há um ladrão?

- Você está no trabalho...
 - Seu vizinho, João, liga dizendo que o alarme da sua casa disparou
 - Contudo, a vizinha, Maria, não ligou
 - Algumas vezes o alarme dispara por conta de pequenos tremores
 - Há um ladrão?
- Variáveis:

- Você está no trabalho...
 - Seu vizinho, João, liga dizendo que o alarme da sua casa disparou
 - Contudo, a vizinha, Maria, não ligou
 - Algumas vezes o alarme dispara por conta de pequenos tremores
 - Há um ladrão?
- Variáveis:
 - Ladrão, Terremoto, Alarme, JoãoLiga, MariaLiga

Exemplo - Relações causais (i.e., regras)

• Um ladrão pode disparar o alarme

- Um ladrão pode disparar o alarme
- Um terremoto pode disparar o alarme

- Um ladrão pode disparar o alarme
- Um terremoto pode disparar o alarme
- O alarme pode fazer com que Maria ligue

- Um ladrão pode disparar o alarme
- Um terremoto pode disparar o alarme
- O alarme pode fazer com que Maria ligue
 - Embora ela nem sempre o escute

- Um ladrão pode disparar o alarme
- Um terremoto pode disparar o alarme
- O alarme pode fazer com que Maria ligue
 - Embora ela nem sempre o escute
- O alarme pode fazer com que João ligue

- Um ladrão pode disparar o alarme
- Um terremoto pode disparar o alarme
- O alarme pode fazer com que Maria ligue
 - Embora ela nem sempre o escute
- O alarme pode fazer com que João ligue
 - Embora algumas vezes ele confunda o telefone com o alarme

Exemplo

Exemplo

Exemplo

Exemplo

Fonte: Adaptado de AIMA. Russell & Norvig.

Probabilidades resumem um conjunto potencialmente infinito de causas, ao definirem valores para algo não acontecer (como o alarme não soar), sem se preocupar em definir suas causas.

Semântica Global

 Define a distribuição conjunta total como sendo o produto das distribuições condicionais locais

$$P(X_1 = x_1, ..., X_n = x_n) = P(x_1, ..., x_n) = \prod_{i=1} P(x_i | pais(X_i))$$

• $pais(X_i)$ – valores das variáveis pais de X_i na rede

Semântica Global

 Define a distribuição conjunta total como sendo o produto das distribuições condicionais locais

$$P(X_1 = x_1, ..., X_n = x_n) = P(x_1, ..., x_n) = \prod_{i=1} P(x_i | pais(X_i))$$

- $pais(X_i)$ valores das variáveis pais de X_i na rede
- Exemplo:
 - João e Maria ligam porque o alarme soou, mas não há nem terremoto, nem ladrão

Semântica Global

 Define a distribuição conjunta total como sendo o produto das distribuições condicionais locais

$$P(X_1 = x_1, ..., X_n = x_n) = P(x_1, ..., x_n) = \prod_{i=1}^n P(x_i | pais(X_i))$$

- $pais(X_i)$ valores das variáveis pais de X_i na rede
- Exemplo:
 - João e Maria ligam porque o alarme soou, mas não há nem terremoto, nem ladrão

$$P(j \land m \land a \land \neg r \land \neg t)$$

$$= P(j|a) P(m|a) P(a|\neg r \land \neg t) P(\neg r) P(\neg t)$$

$$= 0.90 \times 0.70 \times 0.001 \times 0.999 \times 0.998 \approx 0.00063$$

Fonte: Slides de AIMA. Russell & Norvig.

Construção de Redes Bayesianas

• Considere a regra da cadeia:

$$P(x_1,\ldots,x_n)=\prod_{i=1}^n P(x_i|x_{i-1},\ldots,x_1)$$
 Verdadeira para todo conjunto de variáveis

Construção de Redes Bayesianas

• Considere a regra da cadeia:

$$P(x_1,\ldots,x_n)=\prod_{i=1}^n P(x_i|x_{i-1},\ldots,x_1)$$
 Verdadeira para todo conjunto de variáveis

 Compare-a com a interpretação semântica de uma rede bayesiana:

$$P(x_1,\ldots,x_n)=\prod_{i=1}^n P(x_i|pais(x_i))$$

Construção de Redes Bayesianas

• Considere a regra da cadeia:

$$P(x_1,\ldots,x_n)=\prod_{i=1}^n P(x_i|x_{i-1},\ldots,x_1)$$
 Verdadeira para todo conjunto de variáveis

 Compare-a com a interpretação semântica de uma rede bayesiana:

$$P(x_1,\ldots,x_n)=\prod_{i=1}^n P(x_i|pais(x_i))$$

• $P(x_i|x_{i-1},...,x_1) = P(x_i|pais(x_i))$, se $pais(x_i) \subseteq \{x_{i-1},...,x_1\}$

Construção de Redes Bayesianas

• Considere a regra da cadeia:

$$P(x_1,\ldots,x_n)=\prod_{i=1}^n P(x_i|x_{i-1},\ldots,x_1)$$
 Verdadeira para todo conjunto de variáveis

 Compare-a com a interpretação semântica de uma rede bayesiana:

$$P(x_1,\ldots,x_n)=\prod_{i=1}^n P(x_i|pais(x_i))$$

- $P(x_i|x_{i-1},...,x_1) = P(x_i|pais(x_i))$, se $pais(x_i) \subseteq \{x_{i-1},...,x_1\}$
 - Condição satisfeita se rotularmos os nós em uma ordem consistente com a ordem parcial implícita no grafo

•
$$P(X_i|X_{i-1},...,X_1) = P(X_i|pais(X_i))$$

- $P(X_i|X_{i-1},...,X_1) = P(X_i|pais(X_i))$
 - Redes bayesianas são representações corretas do domínio somente se cada nó for condicionalmente independente de seus predecessores na ordenação, dados seus pais

- $P(X_i|X_{i-1},...,X_1) = P(X_i|pais(X_i))$
 - Redes bayesianas são representações corretas do domínio somente se cada nó for condicionalmente independente de seus predecessores na ordenação, dados seus pais
- Método:

- $P(X_i|X_{i-1},...,X_1) = P(X_i|pais(X_i))$
 - Redes bayesianas são representações corretas do domínio somente se cada nó for condicionalmente independente de seus predecessores na ordenação, dados seus pais
- Método:
 - Escolha uma ordem para as variáveis X_n, \ldots, X_1

- $P(X_i|X_{i-1},...,X_1) = P(X_i|pais(X_i))$
 - Redes bayesianas são representações corretas do domínio somente se cada nó for condicionalmente independente de seus predecessores na ordenação, dados seus pais
- Método:
 - Escolha uma ordem para as variáveis X_n, \ldots, X_1
 - Para i = 1 até n:

- $P(X_i|X_{i-1},...,X_1) = P(X_i|pais(X_i))$
 - Redes bayesianas são representações corretas do domínio somente se cada nó for condicionalmente independente de seus predecessores na ordenação, dados seus pais
- Método:
 - Escolha uma ordem para as variáveis X_n, \ldots, X_1
 - Para i = 1 até n:
 - Adicione X_i à rede

- $P(X_i|X_{i-1},...,X_1) = P(X_i|pais(X_i))$
 - Redes bayesianas são representações corretas do domínio somente se cada nó for condicionalmente independente de seus predecessores na ordenação, dados seus pais
- Método:
 - ullet Escolha uma ordem para as variáveis X_n,\ldots,X_1
 - Para i = 1 até n:
 - Adicione X_i à rede
 - Selecione pais de X_1, \ldots, X_{i-1} tais que $P(X_i|pais(X_i)) = P(X_i|X_{i-1}, \ldots, X_1)$

Construção de Redes Bayesianas

Exemplo de teste para os pais:

- Exemplo de teste para os pais:
 - Ordem: R, T, A, J, M

- Exemplo de teste para os pais:
 - Ordem: R, T, A, J, M
 - Maria ligar (M) é influenciada pelo fato de ter um ladrão (R) ou terremoto (T)

- Exemplo de teste para os pais:
 - Ordem: R, T, A, J, M
 - Maria ligar (M) é influenciada pelo fato de ter um ladrão (R) ou terremoto (T)
 - Não diretamente, apenas por meio do alarme (A)

- Exemplo de teste para os pais:
 - Ordem: R, T, A, J, M
 - Maria ligar (M) é influenciada pelo fato de ter um ladrão (R) ou terremoto (T)
 - Não diretamente, apenas por meio do alarme (A)
 - Dado o estado do alarme, João ligar (J) não influencia o fato de Maria ligar ou não

- Exemplo de teste para os pais:
 - Ordem: R, T, A, J, M
 - Maria ligar (M) é influenciada pelo fato de ter um ladrão (R) ou terremoto (T)
 - Não diretamente, apenas por meio do alarme (A)
 - Dado o estado do alarme, João ligar (J) não influencia o fato de Maria ligar ou não
 - Com base nessas crenças, podemos dizer que

$$P(M|J, A, T, R) = P(M|A)$$

Construção de Redes Bayesianas

- Exemplo de teste para os pais:
 - Ordem: R, T, A, J, M
 - Maria ligar (M) é influenciada pelo fato de ter um ladrão (R) ou terremoto (T)
 - Não diretamente, apenas por meio do alarme (A)
 - Dado o estado do alarme, João ligar (J) não influencia o fato de Maria ligar ou não
 - Com base nessas crenças, podemos dizer que

$$P(M|J, A, T, R) = P(M|A)$$

• E nossa escolha foi correta, para mariaLigar

Construção de Redes Bayesianas

• Qual então é a ordem correta de nós?

- Qual então é a ordem correta de nós?
 - Uma dica é começar com quem influencia outros nós, mas não sofre influência de ninguém

- Qual então é a ordem correta de nós?
 - Uma dica é começar com quem influencia outros nós, mas não sofre influência de ninguém
 - A ordem correta de inclusão de nós é, então:

- Qual então é a ordem correta de nós?
 - Uma dica é começar com quem influencia outros nós, mas não sofre influência de ninguém
 - A ordem correta de inclusão de nós é, então:
 - Primeiro adicione as "causas principais"

- Qual então é a ordem correta de nós?
 - Uma dica é começar com quem influencia outros nós, mas não sofre influência de ninguém
 - A ordem correta de inclusão de nós é, então:
 - Primeiro adicione as "causas principais"
 - Em seguida, as variáveis que elas influenciam

- Qual então é a ordem correta de nós?
 - Uma dica é começar com quem influencia outros nós, mas não sofre influência de ninguém
 - A ordem correta de inclusão de nós é, então:
 - Primeiro adicione as "causas principais"
 - Em seguida, as variáveis que elas influenciam
 - Repita, até atingir as folhas variáveis que não influenciam ninguém

- Qual então é a ordem correta de nós?
 - Uma dica é começar com quem influencia outros nós, mas não sofre influência de ninguém
 - A ordem correta de inclusão de nós é, então:
 - Primeiro adicione as "causas principais"
 - Em seguida, as variáveis que elas influenciam
 - Repita, até atingir as folhas variáveis que não influenciam ninguém
- E se escolhermos a ordem errada?

- Qual então é a ordem correta de nós?
 - Uma dica é começar com quem influencia outros nós, mas não sofre influência de ninguém
 - A ordem correta de inclusão de nós é, então:
 - Primeiro adicione as "causas principais"
 - Em seguida, as variáveis que elas influenciam
 - Repita, até atingir as folhas variáveis que não influenciam ninguém
- E se escolhermos a ordem errada?
 - Suponha que escolhemos a ordem: M,J,A,R,T

Consequências da Ordem Errada

Consequências da Ordem Errada

Consequências da Ordem Errada

Devemos incluir na ordem definida: M,J,A,R,T

JoãoLiga

Consequências da Ordem Errada

Devemos incluir na ordem definida: M,J,A,R,T

JoãoLiga

$$P(J|M) = P(J)$$
?

Consequências da Ordem Errada

Devemos incluir na ordem definida: M,J,A,R,T

JoãoLiga

P(J|M) = P(J)? Não. Se Maria ligar, provavelmente o alarme disparou, o que aumenta a probabilidade de João ligar

Consequências da Ordem Errada

Devemos incluir na ordem definida: M,J,A,R,T

P(J|M) = P(J)? Não. Se Maria ligar, provavelmente o alarme disparou, o que aumenta a probabilidade de João ligar

Consequências da Ordem Errada

Devemos incluir na ordem definida: M,J,A,R,T

Note que os candidatos a pai de X_i têm que estar entre os X_{i-1} anteriores

P(J|M)=P(J)? Não. Se Maria ligar, provavelmente o alarme disparou, o que aumenta a probabilidade de João ligar

Consequências da Ordem Errada

Consequências da Ordem Errada

$$P(A|J, M) = P(A|J)?$$

 $P(A|J, M) = P(A|M)?$
 $P(A|J, M) = P(A)?$

Consequências da Ordem Errada

Devemos incluir na ordem definida: M,J,A,R,T

$$P(A|J, M) = P(A|J)?$$

$$P(A|J, M) = P(A|M)?$$

$$P(A|J, M) = P(A)?$$

Não. Se ambos ligarem, as chances do alarme ter disparado são maiores do que se apenas um ligar, ou se nenhum ligar

Consequências da Ordem Errada

Devemos incluir na ordem definida: M,J,A,R,T

$$P(A|J,M) = P(A|J)?$$

$$P(A|J,M) = P(A|M)?$$

$$P(A|J,M) = P(A)?$$

Não. Se ambos ligarem, as chances do alarme ter disparado são maiores do que se apenas um ligar, ou se nenhum ligar

Consequências da Ordem Errada

Consequências da Ordem Errada

$$P(R|M,J,A) = P(R)$$
?

Consequências da Ordem Errada

Devemos incluir na ordem definida: M,J,A,R,T

P(R|M, J, A) = P(R)? Não. Não é independente das demais

Consequências da Ordem Errada

$$P(R|M, J, A) = P(R)$$
? Não. Não é independente das demais $P(R|M, J, A) = P(R|A)$?

Consequências da Ordem Errada

Devemos incluir na ordem definida: M,J,A,R,T

P(R|M,J,A)=P(R)? Não. Não é independente das demais P(R|M,J,A)=P(R|A)? Sim. Se sabemos o estado do alarme, não importa se João ou Maria ligam

Consequências da Ordem Errada

Devemos incluir na ordem definida: M,J,A,R,T

P(R|M,J,A)=P(R)? Não. Não é independente das demais P(R|M,J,A)=P(R|A)? Sim. Se sabemos o estado do alarme, não importa se João ou Maria ligam

Consequências da Ordem Errada

Consequências da Ordem Errada

$$P(T|R, A, J, M) = P(T)$$
?

Consequências da Ordem Errada

Devemos incluir na ordem definida: M,J,A,R,T

P(T|R, A, J, M) = P(T)? Não. Não é independente das demais

Consequências da Ordem Errada

Devemos incluir na ordem definida: M,J,A,R,T

$$P(T|R, A, J, M) = P(T)$$
? Não. Não é independente das demais $P(T|R, A, J, M) = P(T|A)$?

Consequências da Ordem Errada

Devemos incluir na ordem definida: M,J,A,R,T

$$P(T|R,A,J,M) = P(T)$$
? Não. Não é independente das demais $P(T|R,A,J,M) = P(T|A)$? Não

Consequências da Ordem Errada

Devemos incluir na ordem definida: M,J,A,R,T

$$P(T|R,A,J,M) = P(T)$$
? Não. Não é independente das demais $P(T|R,A,J,M) = P(T|A)$? Não $P(T|R,A,J,M) = P(T|R,A)$?

Consequências da Ordem Errada

Devemos incluir na ordem definida: M,J,A,R,T

P(T|R,A,J,M)=P(T)? Não. Não é independente das demais P(T|R,A,J,M)=P(T|A)? Não P(T|R,A,J,M)=P(T|R,A)? Sim. Se o alarme estiver soando, aumenta a probabilidade de terremoto. Contudo, se soubermos que houve um roubo, isso explica o alarme, e a probabilidade do terremoto cai

Consequências da Ordem Errada

Devemos incluir na ordem definida: M,J,A,R,T

Fonte: Adaptado de AIMA. Russell & Norvig.

P(T|R, A, J, M) = P(T)? Não. Não é independente das demais P(T|R, A, J, M) = P(T|A)? Não

P(T|R,A,J,M) = P(T|R,A)? Sim. Se o alarme estiver soando, aumenta a probabilidade de terremoto. Contudo, se soubermos que houve um roubo, isso explica o alarme, e a probabilidade do terremoto cai

Consequências da Ordem Errada

Consequências da Ordem Errada

Construção Automática

 Vimos o caso em que a estrutura da rede é dada e temos os valores para todas as variáveis nos exemplos de treino

Construção Automática

- Vimos o caso em que a estrutura da rede é dada e temos os valores para todas as variáveis nos exemplos de treino
 - Estimamos as tabelas de probabilidade condicional a partir dos dados

Construção Automática

- Vimos o caso em que a estrutura da rede é dada e temos os valores para todas as variáveis nos exemplos de treino
 - Estimamos as tabelas de probabilidade condicional a partir dos dados
- Podemos aprender também a estrutura a partir dos dados. Ex:
 - K2: Cooper and Herskovits (1992)
 - TAN: Friedman et al. (1997)
 - Simulated Annealing: Bouckaert (1995)

Inferência em Redes Bayesianas

Considere a rede bayesiana:

Inferência em Redes Bayesianas

• Considere a rede bayesiana:

Inferência em Redes Bayesianas – Exemplo

Inferência em Redes Bayesianas – Exemplo

$$P(r|j,m) = \frac{P(r,j,m)}{P(j,m)}$$

Inferência em Redes Bayesianas – Exemplo

$$P(r|j, m) = \frac{P(r, j, m)}{P(j, m)}$$

 $P(r, j, m) = \sum_{T=\{v, f\}} \sum_{A=\{v, f\}} P(r, j, m, T, A)$

Inferência em Redes Bayesianas – Exemplo

• Query: P(r|j, m) = ? $P(r|j, m) = \frac{P(r, j, m)}{P(j, m)}$ Como não definimos valores para T e A, temos que fazer todas as combinações de valores possíveis $P(r, j, m) = \sum_{T = \{v, f\}} \sum_{A = \{v, f\}} P(r, j, m, T, A)$

• Query:
$$P(r|j, m) = ?$$
 $P(r|j, m) = \frac{P(r, j, m)}{P(j, m)}$

Como não definimos valores para $T \in A$, temos que fazer todas as combinações de valores possíveis

$$P(r, j, m) = \sum_{T = \{v, f\}} \sum_{A = \{v, f\}} P(r, j, m, T, A)$$

$$= \sum_{T = \{v, f\}} P(r, j, m, T, a) + P(r, j, m, T, \neg a)$$

Inferência em Redes Bayesianas – Exemplo

$$P(r|j,m) = \frac{P(r,j,m)}{P(j,m)}$$

$$P(r,j,m) = \sum_{T=\{v,f\}} \sum_{A=\{v,f\}} P(r,j,m,T,A)$$

$$= \sum_{T=\{v,f\}} P(r,j,m,T,a) + P(r,j,m,T,\neg a)$$

$$= P(r,j,m,t,a) + P(r,j,m,t,\neg a) + P(r,j,m,\neg t,\neg a)$$

• Query:
$$P(r|j, m) = ?$$
 $P(r|j, m) = \frac{P(r, j, m)}{P(j, m)}$

A query foi reescrita como uma soma de probabilidades conjuntas

$$P(r, j, m) = \sum_{T = \{v, f\}} \sum_{A = \{v, f\}} P(r, j, m, T, A)$$

$$= \sum_{T = \{v, f\}} P(r, j, m, T, a) + P(r, j, m, T, \neg a)$$

$$= P(r, j, m, t, a) + P(r, j, m, t, \neg a) + P(r, j, m, \neg t, \neg a)$$

$$P(r,j,m,t,a) = P(r)P(j,m,t,a|r)$$

$$P(r,j,m,t,a) = P(r)P(j,m,t,a|r)$$
$$= P(r)P(t)P(j,m,a|r,t)$$

Inferência em Redes Bayesianas – Exemplo

$$P(r,j,m,t,a) = P(r)P(j,m,t,a|r)$$

$$= P(r)P(t)P(j,m,a|r,t)$$
A escolha de R e

A escolha de R e T deu-se por serem raízes na árvore

$$P(r,j,m,t,a) = P(r)P(j,m,t,a|r)$$

$$= P(r)P(t)P(j,m,a|r,t)$$

$$= P(r)P(t)P(a|r,t)P(j,m|r,t,a)$$

Inferência em Redes Bayesianas – Exemplo

$$P(r,j,m,t,a) = P(r)P(j,m,t,a|r)$$

$$= P(r)P(t)P(j,m,a|r,t)$$
collido por de-
varianmento des
$$= P(r)P(t)P(a|r,t)P(j,m|r,t,a)$$

A foi escolhido por depender unicamente das variáveis já isoladas (T e R)

$$P(r,j,m,t,a) = P(r)P(j,m,t,a|r)$$

$$= P(r)P(t)P(j,m,a|r,t)$$

$$= P(r)P(t)P(a|r,t)P(j,m|r,t,a)$$

$$= P(r)P(t)P(a|r,t)P(j,m|a)$$

$$P(r, j, m, t, a) = P(r)P(j, m, t, a|r)$$

$$= P(r)P(t)P(j, m, a|r, t)$$

$$= P(r)P(t)P(a|r, t)P(j, m|r, t, a)$$

$$j \text{ não depende de } r \text{ e } t$$

$$= P(r)P(t)P(a|r, t)P(j, m|a)$$

$$P(r, j, m, t, a) = P(r)P(j, m, t, a|r)$$

$$= P(r)P(t)P(j, m, a|r, t)$$

$$= P(r)P(t)P(a|r, t)P(j, m|r, t, a)$$

$$= P(r)P(t)P(a|r, t)P(j, m|a)$$

$$= P(r)P(t)P(a|r, t)P(j|a)P(m|a)$$

$$P(r,j,m,t,a) = P(r)P(j,m,t,a|r)$$

$$= P(r)P(t)P(j,m,a|r,t)$$

$$= P(r)P(t)P(a|r,t)P(j,m|r,t,a)$$
Note que se trata de cada nó da rede
$$= P(r)P(t)P(a|r,t)P(j,m|a)$$

$$= P(r)P(t)P(a|r,t)P(j|a)P(m|a)$$

Inferência em Redes Bayesianas – Exemplo

$$P(r, j, m, t, a) = P(r)P(j, m, t, a|r)$$

$$= P(r)P(t)P(j, m, a|r, t)$$

$$= P(r)P(t)P(a|r, t)P(j, m|r, t, a)$$

$$= P(r)P(t)P(a|r, t)P(j, m|a)$$

$$= P(r)P(t)P(a|r, t)P(j|a)P(m|a)$$

Assim, derivando-se as demais de modo similar, teremos:

Inferência em Redes Bayesianas – Exemplo

$$P(r, j, m, t, a) = P(r)P(j, m, t, a|r)$$

$$= P(r)P(t)P(j, m, a|r, t)$$

$$= P(r)P(t)P(a|r, t)P(j, m|r, t, a)$$

$$= P(r)P(t)P(a|r, t)P(j, m|a)$$

$$= P(r)P(t)P(a|r, t)P(j|a)P(m|a)$$

Assim, derivando-se as demais de modo similar, teremos:

$$P(r,j,m,t,\neg a) = P(r)P(t)P(\neg a|r,t)P(j|\neg a)P(m|\neg a)$$

$$P(r,j,m,\neg t,a) = P(r)P(\neg t)P(a|r,\neg t)P(j|a)P(m|a)$$

$$P(r,j,m,\neg t,\neg a) = P(r)P(\neg t)P(\neg a|r,\neg t)P(j|\neg a)P(m|\neg a)$$

Inferência em Redes Bayesianas – Exemplo

Inferência em Redes Bayesianas – Exemplo

$$P(r,j,m,t,a) = P(r)P(t)P(a|r,t)P(j|a)P(m|a) \approx 1,197 \times 10^{-6}$$

Inferência em Redes Bayesianas – Exemplo

$$P(r,j,m,t,a) = P(r)P(t)P(a|r,t)P(j|a)P(m|a) \approx 1,197 \times 10^{-6}$$

 $P(r,j,m,t,\neg a) = P(r)P(t)P(\neg a|r,t)P(j|\neg a)P(m|\neg a) \approx 5 \times 10^{-11}$

Inferência em Redes Bayesianas – Exemplo

$$\begin{array}{lll} P(r,j,m,t,a) & = P(r)P(t)P(a|r,t)P(j|a)P(m|a) & \approx 1,197 \times 10^{-6} \\ P(r,j,m,t,\neg a) & = P(r)P(t)P(\neg a|r,t)P(j|\neg a)P(m|\neg a) & \approx 5 \times 10^{-11} \\ P(r,j,m,\neg t,a) & = P(r)P(\neg t)P(a|r,\neg t)P(j|a)P(m|a) & \approx 5,91 \times 10^{-4} \end{array}$$

Inferência em Redes Bayesianas – Exemplo

$$\begin{array}{lll} P(r,j,m,t,a) &=& P(r)P(t)P(a|r,t)P(j|a)P(m|a) &\approx& 1,197\times 10^{-6} \\ P(r,j,m,t,\neg a) &=& P(r)P(t)P(\neg a|r,t)P(j|\neg a)P(m|\neg a) &\approx& 5\times 10^{-11} \\ P(r,j,m,\neg t,a) &=& P(r)P(\neg t)P(a|r,\neg t)P(j|a)P(m|a) &\approx& 5,91\times 10^{-4} \\ P(r,j,m,\neg t,\neg a) &=& P(r)P(\neg t)P(\neg a|r,\neg t)P(j|\neg a)P(m|\neg a) &\approx& 2,994\times 10^{-6} \end{array}$$

Inferência em Redes Bayesianas – Exemplo

$$\begin{array}{lll} P(r,j,m,t,a) & = P(r)P(t)P(a|r,t)P(j|a)P(m|a) & \approx 1,197\times10^{-6} \\ P(r,j,m,t,\neg a) & = P(r)P(t)P(\neg a|r,t)P(j|\neg a)P(m|\neg a) & \approx 5\times10^{-11} \\ P(r,j,m,\neg t,a) & = P(r)P(\neg t)P(a|r,\neg t)P(j|a)P(m|a) & \approx 5,91\times10^{-4} \\ P(r,j,m,\neg t,\neg a) & = P(r)P(\neg t)P(\neg a|r,\neg t)P(j|\neg a)P(m|\neg a) & \approx 2,994\times10^{-6} \end{array}$$

$$P(r,j,m) = \sum_{T=\{v,f\}} \sum_{A=\{v,f\}} P(r,j,m,T,A) \approx 0,00059224$$

Inferência em Redes Bayesianas – Exemplo

• Lembre que queríamos $P(r|j, m) = \frac{P(r, j, m)}{P(j, m)}$

- Lembre que queríamos $P(r|j, m) = \frac{P(r, j, m)}{P(j, m)}$
 - Já calculamos P(r, j, m)

- Lembre que queríamos $P(r|j,m) = \frac{P(r,j,m)}{P(j,m)}$
 - Já calculamos P(r, j, m)
 - Falta P(j, m)

- Lembre que queríamos $P(r|j, m) = \frac{P(r, j, m)}{P(j, m)}$
 - Já calculamos P(r, j, m)
 - Falta P(j, m)
- Contudo, P(j, m) não precisa ser calculado diretamente:

- Lembre que queríamos $P(r|j, m) = \frac{P(r, j, m)}{P(j, m)}$
 - Já calculamos P(r, j, m)
 - Falta P(j, m)
- Contudo, P(j, m) não precisa ser calculado diretamente:
 - Podemos calcular $P(\neg r, j, m)$ pelo mesmo método que calculamos P(r, j, m)

- Lembre que queríamos $P(r|j, m) = \frac{P(r, j, m)}{P(j, m)}$
 - Já calculamos P(r, j, m)
 - Falta P(j, m)
- Contudo, P(j, m) não precisa ser calculado diretamente:
 - Podemos calcular $P(\neg r, j, m)$ pelo mesmo método que calculamos P(r, j, m)
 - Nesse caso teríamos $P(\neg r, j, m) \approx 0,0014919$

Inferência em Redes Bayesianas – Exemplo

• Lembre que $P(\neg r|j, m) + P(r|j, m) = 1$

Inferência em Redes Bayesianas - Exemplo

- Lembre que $P(\neg r|j, m) + P(r|j, m) = 1$
- Assim:

$$P(r|j,m) + P(\neg r|j,m) = \frac{P(r,j,m)}{P(j,m)} + \frac{P(\neg r,j,m)}{P(j,m)}$$
$$= \alpha \times [P(r,j,m) + P(\neg r,j,m)]$$

com $\alpha = \frac{1}{P(j, m)}$ sendo a **constante de normalização**

Inferência em Redes Bayesianas – Exemplo

• Como $P(\neg r|j, m) + P(r|j, m) = 1$, temos que

$$\alpha \times [P(r,j,m) + P(\neg r,j,m)] = 1$$

$$\Rightarrow \alpha \times [0,00059224 + 0,0014919] = 1$$

$$\Rightarrow \alpha = \frac{1}{P(j,m)} \approx 479,81$$

Inferência em Redes Bayesianas – Exemplo

• Como $P(\neg r|j,m) + P(r|j,m) = 1$, temos que

$$\alpha \times [P(r,j,m) + P(\neg r,j,m)] = 1$$

$$\Rightarrow \alpha \times [0,00059224 + 0,0014919] = 1$$

$$\Rightarrow \alpha = \frac{1}{P(j,m)} \approx 479,81$$

Levando a

$$P(r|j, m) = \alpha \times P(r, j, m) \approx 0,284 = 28,4\%$$

 $P(\neg r|j, m) = \alpha \times P(\neg r, j, m) \approx 0,716 = 71,6\%$

Inferência em Redes Bayesianas - Em Suma

• Para calcular qualquer combinação de valores:

Inferência em Redes Bayesianas – Em Suma

- Para calcular qualquer combinação de valores:
 - Identifique que variáveis estão na rede e não receberam valor

Inferência em Redes Bayesianas – Em Suma

- Para calcular qualquer combinação de valores:
 - Identifique que variáveis estão na rede e não receberam valor
 - Faça todas as combinações de valores com essas variáveis + os valores fixos definidos no problema, somando-as

Inferência em Redes Bayesianas – Em Suma

- Para calcular qualquer combinação de valores:
 - Identifique que variáveis estão na rede e não receberam valor
 - Faça todas as combinações de valores com essas variáveis + os valores fixos definidos no problema, somando-as
 - Cada combinação é calculada multiplicando-se as probabilidades de cada nó na rede, para os valores definidos pela combinação

Inferência em Redes Bayesianas

• Problemas:

- Problemas:
 - Método bastante trabalhoso

- Problemas:
 - Método bastante trabalhoso
 - No pior caso, intratável (NP-difícil)

- Problemas:
 - Método bastante trabalhoso
 - No pior caso, intratável (NP-difícil)
- Solução:

- Problemas:
 - Método bastante trabalhoso
 - No pior caso, intratável (NP-difícil)
- Solução:
 - Usar métodos para inferência aproximada

- Problemas:
 - Método bastante trabalhoso
 - No pior caso, intratável (NP-difícil)
- Solução:
 - Usar métodos para inferência aproximada
 - Amostragem direta

- Problemas:
 - Método bastante trabalhoso
 - No pior caso, intratável (NP-difícil)
- Solução:
 - Usar métodos para inferência aproximada
 - Amostragem direta
 - Algoritmos do tipo Markov Chain Monte Carlo (MCMC), como simulated annealing e Gibbs sampling

- Problemas:
 - Método bastante trabalhoso
 - No pior caso, intratável (NP-difícil)
- Solução:
 - Usar métodos para inferência aproximada
 - Amostragem direta
 - Algoritmos do tipo Markov Chain Monte Carlo (MCMC), como simulated annealing e Gibbs sampling
 - Mesmo esses podem ser NP-difíceis, embora em muitos casos úteis

Variáveis Contínuas

Duas abordagens:

- Duas abordagens:
 - Discretização

- Duas abordagens:
 - Discretização
 - Separe os valores contínuos em intervalos discretos

- Duas abordagens:
 - Discretização
 - Separe os valores contínuos em intervalos discretos
 - Há perda de precisão

- Duas abordagens:
 - Discretização
 - Separe os valores contínuos em intervalos discretos
 - Há perda de precisão
 - Pode resultar em grande número de valores

- Duas abordagens:
 - Discretização
 - Separe os valores contínuos em intervalos discretos
 - Há perda de precisão
 - Pode resultar em grande número de valores
 - Use uma função de densidade de probabilidade como aproximação para P(A|B). Ex:

Variáveis Contínuas

- Duas abordagens:
 - Discretização
 - Separe os valores contínuos em intervalos discretos
 - Há perda de precisão
 - Pode resultar em grande número de valores
 - Use uma função de densidade de probabilidade como aproximação para P(A|B). Ex:

Fonte: https://coloneltedcampbell.blog/2016/ 02/13/the-800-pound-gorillas/normal67/

$$P(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$
$$= N(\mu, \sigma^2)$$

Usando uma função de densidade:

Usando uma função de densidade:

 Suponha que queremos modelar a medição de temperatura em uma determinada sala, usando um termômetro

Usando uma função de densidade:

 Suponha que queremos modelar a medição de temperatura em uma determinada sala, usando um termômetro

Usando uma função de densidade:

 Suponha que queremos modelar a medição de temperatura em uma determinada sala, usando um termômetro

• O termômetro (sensor), contudo, não é perfeito

Usando uma função de densidade:

 Suponha que queremos modelar a medição de temperatura em uma determinada sala, usando um termômetro

- O termômetro (sensor), contudo, não é perfeito
 - Mede em torno da temperatura real, mas não exatamente

Usando uma função de densidade:

 Suponha que queremos modelar a medição de temperatura em uma determinada sala, usando um termômetro

- O termômetro (sensor), contudo, não é perfeito
 - Mede em torno da temperatura real, mas não exatamente
 - $S \approx N(t; \sigma_S^2) \rightarrow$ normal centrada em t, com desvio padrão σ_S

Usando uma função de densidade:

 Agora imagine que queremos poder inferir como estará a temperatura na sala daqui a alguns instantes

Usando uma função de densidade:

- Agora imagine que queremos poder inferir como estará a temperatura na sala daqui a alguns instantes
 - Essa depende, no entanto, da temperatura atual e da temperatura externa, dado que sempre há uma troca de calor com o exterior

Usando uma função de densidade:

- Agora imagine que queremos poder inferir como estará a temperatura na sala daqui a alguns instantes
 - Essa depende, no entanto, da temperatura atual e da temperatura externa, dado que sempre há uma troca de calor com o exterior
 - Temos então:

Usando uma função de densidade:

ullet Um possível modelo para T_f seria

 $T_f \approx N(\alpha T + (1-\alpha)T_e, \sigma_{T_f}^2)$

Usando uma função de densidade:

• Um possível modelo para T_f seria

Fonte: Coursera (Cont. Variables). Koller.

$$T_f pprox N(\alpha T + (1-\alpha) T_e, \sigma_{T_f}^2)$$
 centrada na média ponderada das temperaturas no momento atual (T) e externa (T_e)

Usando uma função de densidade:

ullet Um possível modelo para T_f seria

$$T_f \approx N(\alpha T + (1-\alpha)T_e, \sigma_{T_f}^2)$$
 centrada na média ponderada das temperaturas no momento atual (T) e externa (T_e)

Modelo Linear Gaussiano

Mistura Discretas + Contínuas - Exemplo

 Alguém vai comprar frutas, dependendo do preço

Mistura Discretas + Contínuas - Exemplo

- Alguém vai comprar frutas, dependendo do preço
 - O preço depende do tamanho da colheita e do fato do governo ter dado ou não subsídios

Mistura Discretas + Contínuas - Exemplo

- Alguém vai comprar frutas, dependendo do preço
 - O preço depende do tamanho da colheita e do fato do governo ter dado ou não subsídios
- Variáveis contínuas

Mistura Discretas + Contínuas - Exemplo

- Alguém vai comprar frutas, dependendo do preço
 - O preço depende do tamanho da colheita e do fato do governo ter dado ou não subsídios
- Variáveis contínuas
 - Custo e Colheita

Mistura Discretas + Contínuas - Exemplo

- Alguém vai comprar frutas, dependendo do preço
 - O preço depende do tamanho da colheita e do fato do governo ter dado ou não subsídios
- Variáveis contínuas
 - Custo e Colheita
- Variáveis discretas

Mistura Discretas + Contínuas - Exemplo

- Alguém vai comprar frutas, dependendo do preço
 - O preço depende do tamanho da colheita e do fato do governo ter dado ou não subsídios
- Variáveis contínuas
 - Custo e Colheita
- Variáveis discretas
 - Subsídio (Sim ou não)

Fonte: Slides de AIMA. Russell & Norvig.

Mistura Discretas + Contínuas - Exemplo

- Alguém vai comprar frutas, dependendo do preço
 - O preço depende do tamanho da colheita e do fato do governo ter dado ou não subsídios
- Variáveis contínuas
 - Custo e Colheita
- Variáveis discretas
 - Subsídio (Sim ou não)
 - Compra (Sim ou não)

Fonte: Slides de AIMA. Russell & Norvig.

Variáveis contínuas com pais mistos

 Modelamos uma dependência contínua-contínua com um dos pais, para cada valor discreto do outro pai

Fonte: Slides de AIMA. Russell & Norvig.

Variáveis contínuas com pais mistos

- Modelamos uma dependência contínua-contínua com um dos pais, para cada valor discreto do outro pai
 - $P(Custo|Colheita, subsídio) = \frac{1}{\sigma_v \sqrt{2\pi}} e^{\frac{-(Custo-(a_v \times Colheita+b_v))^2}{2\sigma_v^2}}$

Variáveis contínuas com pais mistos

- Modelamos uma dependência contínua-contínua com um dos pais, para cada valor discreto do outro pai
 - $P(Custo | Colheita, subsídio) = \frac{1}{\sigma_v \sqrt{2\pi}} e^{\frac{-(Custo (a_v \times Colheita + b_v))^2}{2\sigma_v^2}}$
 - $P(Custo|Colheita, \neg subsídio) =$

$$\frac{1}{\sigma_f \sqrt{2\pi}} e^{\frac{-\left(\text{Custo}-\left(a_f imes \text{Colheita}+b_f
ight)
ight)^2}{2\sigma_f^2}}$$

Variáveis contínuas com pais discretos

Variáveis discretas com pais contínuos:

Variáveis discretas com pais contínuos:

A distribuição deve seguir um degrau suave

Variáveis discretas com pais contínuos:

- A distribuição deve seguir um degrau suave
- Espera-se que o cliente compre se o custo for baixo e não compre se for alto, sendo que a probabilidade entre esses valores varia suavemente

Fonte: Slides de AIMA. Russell & Norvig.

Variáveis discretas com pais contínuos:

- A distribuição deve seguir um degrau suave
- Espera-se que o cliente compre se o custo for baixo e não compre se for alto, sendo que a probabilidade entre esses valores varia suavemente

Fonte: Slides de AIMA. Russell & Norvig.

 Um meio de fazer tais degraus é usar a integral da distribuição normal

Variáveis discretas com pais contínuos:

$$\Phi(x) = \int_{-\infty}^{x} N(0,1)(x) dx$$

Fonte: Slides de AIMA. Russell & Norvig.

$$P(comprar | Custo = c) = \Phi(\frac{-c + \mu}{\sigma})$$

O degrau vai ocorrer ao redor de μ

Redes Bayesianas

Justificativa para a Gaussiana

 Pode ser vista como um degrau normal, cuja localização precisa está sujeita a ruído aleatório normalmente distribuído:

Redes Bayesianas

Alternativa à Integral da Gaussiana

• Usar uma função sigmoide:

$$P(comprar | Custo = c) = \frac{1}{1 + e^{-2\frac{-c+\mu}{\sigma}}}$$

Fonte: Slides de AIMA. Russell & Norvig.

Similar à integral da Gaussiana, porém mais alongada

Referências

- Russell, S.; Norvig P. (2010): Artificial Intelligence: A Modern Approach.
 Prentice Hall. 3a ed.
 - Slides do livro: aima.eecs.berkeley.edu/slides-pdf/
- Mitchell, T.M.: Machine Learning. McGraw-Hill. 1997.
- Murphy, K. P.: <u>Machine Learning: A Probabilistic Perspective</u>. MIT Press. 2012.
- Cover, T.M.; Thomas, J.A.: Elements of Information Theory. 2 ed. Wiley. 2006.
- Alpaydın, E.: Introduction to Machine Learning. 2 ed. MIT Press. 2010.

Referências

- Bouckaert, R.R.: Bayesian Belief Networks: from Construction to Inference. Ph.D. thesis. University of Utrecht. 1995.
- Cheng, J.; Greiner, R.: Comparing bayesian network classifiers. Proceedings UAI, 101–107. 1999.
- Cooper, G.; Herskovits, E.: A Bayesian method for the induction of probabilistic networks from data. Machine Learning, 9: 309–347. 1992.
- Duda, R.O.: Hart, P.E.: Stork, D.G.: <u>Pattern Classification</u>. 2 ed. Wiley. 2001.
- Friedman, N.; Geiger, D.; Goldszmidt, M.: Bayesian Network Classifiers.
 Machine Learning, 29: 131–163. 1997.
- Koller, D.: https://pt.coursera.org/lecture/ probabilistic-graphical-models/continuous-variables-wkNvM