

CHEMISTRY Chapter 8

ÓXIDOS

1. FUNCIÓN QUÍMICA

CONCEPTO: Una función química es el conjunto de compuestos químicos con propiedades químicas semejantes y con el mismo grupo funcional.

En química inorgánica existen cinco funciones.

2. FUNCIÓN ÓXIDO:

Los óxidos son compuestos binarios formados por un elemento químico y oxígeno

A. Óxidos básicos o metálicos

Metal + oxígeno

$$Al^{+3} + O^{-2} \rightarrow Al_2O_3$$

Fórmula general

Elemento (metal o no metal)

No metal + oxígeno

$$\text{Cl}^{+5} + \text{O}^{-2} \rightarrow \text{Cl}_2\text{O}_5$$

Número de oxidación:

«x»(elemento)

3. NOMENCLATURA SISTEMATICA

CONCEPTO: Esta nomenclatura es recomendada por la IUPAC o UNIÓN INTERNACIONAL DE QUIMICA PURA Y APLICADA (International Union of Pure and Applied Chemestry).

Se utilizan **prefijos** multiplicativos mono, **di**, tri, tetra, penta, hexa, etc. Para indicar que una determinada especie está presente 1, 2, 3, 4,5,6, 7, etc. Veces respectivamente

EJEMPLOS:

trióxido de dihierro

EJEMPLOS:

Pb⁴⁺
$$O^{2^{-}} \rightarrow Pb_{2}O_{4} \rightarrow PbO_{2}$$
1 plomo 2 oxígenos
(--) (di)
dióxido de plomo

heptaóxido de dicloro

4. NOMENCLATURA STOCK

En esta nomenclatura se escribe: óxido de luego el nombre del elemento y finalmente el número de oxidación (N.O.) entre paréntesis con números romanos.

Si el elemento tiene un solo N.O. ahora ya no se indica el estado de

oxidación.

EJEMPLOS:

$$Sn^{4+}$$
 \longrightarrow Sn_2O_4 \longrightarrow SnO_2 $Oxido de estaño (IV)$

EJEMPLOS:

4.NOMENCLATURA TRADICIONAL O CLÁSICA

- >Se debe conocer todos los números de oxidación (N.O.) del elemento a usarse.
- ➤Para los óxidos básicos; dependiendo del N.O., se usan los sufijos OSO o ICO, según sea la MENOR o la MAYOR respectivamente.
- ≻Por ejemplo en el caso del hierro (2+,3+), se tienen dos N.O.:

>En el caso del platino (2+, 4+), también se tienen dos N.O.

EJEMPLO:

$$(N.O. mayor)$$

$$Pt^{2+} + O^{2-} \rightarrow Pt_2O_2 \rightarrow PtO$$
Oxido platinoso

EJEMPLO:

Pt⁴⁺
$$\rightarrow$$
 Pt₂ \rightarrow PtO₂

Óxido platínico

≻El calcio (2+), tiene un solo N.O.. En este caso se considera como mayor.

(único N.O.)
$$Ca^{2+} + O^{2-} \rightarrow Ca_2O_2 \rightarrow CaO$$
Óxido cálcico

➤ Para los óxidos ácidos o anhídridos; dependiendo del N.O., se usan los prefijos HIPO o PER y los sufijos OSO o ICO, dependiendo del N.O. según el siguiente cuadro.

Aumenta el

Anhídrido	Total N.O.				N.O.	Anhídrido	Número de				
Hipo oso			X	X	_			ОХ	idac	ión	
OSO		Х	X	X		Hipo oso			+1	+2	+]
	V	V	X	V		oso		+2	+3	+4	+3
ico	Х	^	^	X	+	ico	+3	+4	+5	+6	+5
Per ico				X		Per ico					+7

>Parea el manganeso : (+4) manganoso, (+6) mangánico, (+7 permangánico.

➤En el caso del cloro (1+,3+,5+,7+), se tienen cuatro valores de N.O.:

Anhídrido	Número de oxidación		
Hipo oso	+1		
oso	+3		
ico	+5		
Per ico	+7		

anhídrido hipocloroso

⇒ (N.O. intermedia menor)

EJEMPLO: Cl_3^{3+} + O^{2-} \rightarrow Cl_2O_3

anhídrido cloroso

(N.O. intermedia mayor)

 Cl^{5+} \rightarrow Cl_2O_5

anhídrido clórico

EJEMPLO:

 Cl^{7+} $O^{2-} \rightarrow Cl_2O_7$

anhídrido perclórico

Respecto a la nomenclatura química inorgánica, indique verdadero (V) o falso (F) según corresponda.

> Nos enseña a nombrar los compuestos y escribir la fórmula de un compuesto dado conociendo su nombre.

> Según la nomenclatura tipo Stock al nombrar un compuesto, se debe especificar el número de oxidación de los elementos, expresados en números romanos, encerrados en paréntesis.

> La nomenclatura a utilizar para nombrar compuestos binarios puede ser: sistemática, común o clásica y stock.

Determine cuántos óxidos son básicos (enumérelos).

CaO

II. Br_2O_5

 Al_2O_3

FeO

V. CO₂

RESOLUCIÓN:

metal + oxígeno → óxido básico

Son óxidos

básicos:

- I. CaO
- III. Al₂O₃
- IV. FeO

Usando la nomenclatura IUPAC, nombre el siguiente óxido: Cl_2O_5

RESOLUCIÓN:

Pentaóxido de dicloro

Mediante la nomenclatura de Stock, nombre el siguiente óxido:

PbO₂

RESOLUCIÓN:

NOMENCLATURA DE STOCK

Óxido de plomo (IV)

Usando la nomenclatura tradicional (clásica), nombre los siguientes óxidos:

b. SO₃

$$(S: +2, +4, +6)$$

RESOLUCIÓN:

Anhídrido	Br	S
hipooso	7	+2
oso	+3	+4
ico	+5	(<mark>6</mark>
perico	+7	

NOMENCLATURA TRADICIONAL

Br₂O₃

Anhídrido bromoso

O₃

Anhídrido sulfúrico

Para obtener información acerca de una sustancia dada, es necesario conocer su fórmula química y su nombre. Los nombres y las fórmulas de los compuestos son parte del vocabulario fundamental de la química. Formule los siguientes óxidos.

I. Anhídrido hiposulfuroso

II. Óxido auroso

III. Óxido de plomo (IV)

RESOLUCIÓN:

I. Anhidrido hiposulfuroso

II. Óxido auroso

III. Óxido de plomo (IV)

$$Pb^{4+}$$
 + O^{2-} \rightarrow Au_2O_4 \rightarrow Pb_2O

Los óxidos son compuestos binarios presentes en la naturaleza y forman partes de diversos minerales: el óxido de aluminio ($Al_2 O_3$) en el corindón, el óxido de calcio (CaO) en la cal viva y el óxido de plomo (II) en el litargirio.

De las proposiciones dadas

- I. Se mencionan 3 óxidos básicos.
- II. Todos los óxidos tienen la misma atomicidad.
- III. Dos de ellos tienen atomicidad 2 Indique aquella(s) que sea(n) correcta(s):

RESOLUCIÓN:

- \Rightarrow óxido de plomo (II) (Pb; +2), +4) \Rightarrow \Rightarrow \Rightarrow \Rightarrow Pb0
- I. Se mencionan 3 óxidos básicos (V)
- II. Todos los óxidos tienen la misma atomicidad (F)

$$Al_2 O_3 \rightarrow 2+3=5$$
 $CaO \rightarrow 1+1=2$
 $PbO \rightarrow 1+1=2$

III. Dos de ellos tienen atomicidad 2 (\vee)

Rpta: I y III