DATA MINING CLASSIFICATION

Classification

Basic Concepts

Decision Trees

Dr. Mostafa Elmasry

Catching tax-evasion

Tid	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Tax-return data for year 2011

A new tax return for 2012 Is this a cheating tax return?

Refund		Taxable Income	Cheat	
No	Married	80K	?	

An instance of the classification problem: learn a method for discriminating between records of different classes (cheaters vs non-cheaters)

What is classification?

 Classification is the task of learning a target function f that maps attribute set x to one of the predefined class labels y

categorical continuous

Tid	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

One of the attributes is the class attribute In this case: Cheat

Two class labels (or classes): Yes (1), No (0)

Figure 4.2. Classification as the task of mapping an input attribute set x into its class label y.

Why classification?

The target function f is known as a classification model

 Descriptive modeling: Explanatory tool to distinguish between objects of different classes (e.g., understand why people cheat on their taxes)

 Predictive modeling: Predict a class of a previously unseen record

Examples of Classification Tasks

- Predicting tumor cells as benign or malignant
- Classifying credit card transactions as legitimate or fraudulent
- Categorizing news stories as finance, weather, entertainment, sports, etc
- Identifying spam email, spam web pages, adult content
- Understanding if a web query has commercial intent or not

General approach to classification

- Training set consists of records with known class labels
- Training set is used to build a classification model
- A labeled test set of previously unseen data records is used to evaluate the quality of the model.
- The classification model is applied to new records with unknown class labels

Illustrating Classification Task

Training Set

Tic	Attrib1	Attrib2	Attrib3	Class
11	No	Small	55K	?
12	Yes	Medium	80K	?
13	Yes	Large	110K	?
14	No	Small	95K	?
15	No	Large	67K	?

Test Set

Evaluation of classification models

- Counts of test records that are correctly (or incorrectly) predicted by the classification model
- Confusion matrix

Predicted Class

lass		Class = 1	Class = 0
<u>င</u>	Class = 1 Class = 0	f ₁₁	f ₁₀
ctus	Class = 0	f ₀₁	f ₀₀
Ă			

Accuracy =
$$\frac{\text{\# correct predictions}}{\text{total \# of predictions}} = \frac{f_{11} + f_{00}}{f_{11} + f_{10} + f_{01} + f_{00}}$$

Error rate =
$$\frac{\text{# wrong predictions}}{\text{total # of predictions}} = \frac{f_{10} + f_{01}}{f_{11} + f_{10} + f_{01} + f_{00}}$$

Classification Techniques

- Decision Tree based Methods
- Rule-based Methods
- Memory based reasoning
- Neural Networks
- Naïve Bayes and Bayesian Belief Networks
- Support Vector Machines

Classification Techniques

- Decision Tree based Methods
- Rule-based Methods
- Memory based reasoning
- Neural Networks
- Naïve Bayes and Bayesian Belief Networks
- Support Vector Machines

Decision Trees

- Decision tree
 - A flow-chart-like tree structure
 - Internal node denotes a test on an attribute
 - Branch represents an outcome of the test
 - Leaf nodes represent class labels or class distribution

Example of a Decision Tree

categorical continuous

Tid	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Training Data

Model: Decision Tree

Another Example of Decision Tree

categorical continuous

Tid	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

There could be more than one tree that fits the same data!

Decision Tree Classification Task

Training Set

Tid	Attrib1	Attrib2	Attrib3	Class
11	No	Small	55K	?
12	Yes	Medium	80K	?
13	Yes	Large	110K	?
14	No	Small	95K	?
15	No	Large	67K	?

Test Set

Start from the root of tree.

Test Data

Refund	Marital Status	Taxable Income	Cheat
No	Married	80K	?

Decision Tree Classification Task

Training Set

Tid	Attrib1	Attrib2	Attrib3	Class
11	No	Small	55K	?
12	Yes	Medium	80K	?
13	Yes	Large	110K	?
14	No	Small	95K	?
15	No	Large	67K	?

Test Set

General Structure of Hunt's Algorithm

- Let D_t be the set of training records that reach a node t
- General Procedure:
 - If D_t contains records that belong the same class y_t, then t is a leaf node labeled as y_t
 - If D_t contains records with the same attribute values, then t is a leaf node labeled with the majority class y_t
 - If D_t contains records that belong to more than one class, use an attribute test to split the data into smaller subsets.
 - Recursively apply the procedure to each subset.

Tid	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Hunt's Algorithm

Tid	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
4	Yes	Married	120K	No
7	Yes	Divorced	220K	No
2	No	Married	100K	No
6	No	Married	60K	No
9	No	Married	75K	No
3	No	Single	70K	No
5	No	Divorced	95K	Yes
8	No	Single	85K	Yes
10	No	Single	90K	Yes

Tree Induction

- Issues
 - How to Classify a leaf node
 - Assign the majority class
 - If leaf is empty, assign the default class the class that has the highest popularity.
 - Determine how to split the records
 - How to specify the attribute test condition?
 - How to determine the best split?
 - Determine when to stop splitting

How to Specify Test Condition?

- Depends on attribute types
 - Nominal
 - Ordinal
 - Continuous
 - More about data attributes type
- Depends on number of ways to split
 - 2-way split
 - Multi-way split

Splitting Based on Nominal Attributes

Multi-way split: Use as many partitions as distinct values.

Binary split: Divides values into two subsets.
 Need to find optimal partitioning.

Splitting Based on Ordinal Attributes

Multi-way split: Use as many partitions as distinct values.

 Binary split: Divides values into two subsets – respects the order. Need to find optimal partitioning.

What about this split?

Splitting Based on Continuous Attributes

- Different ways of handling
 - Discretization to form an ordinal categorical attribute
 - Static discretize once at the beginning
 - Dynamic ranges can be found by equal interval bucketing, equal frequency bucketing (percentiles), or clustering.
 - Binary Decision: (A < v) or (A ≥ v)
 - consider all possible splits and finds the best cut
 - can be more compute intensive

Splitting Based on Continuous Attributes

(i) Binary split

(ii) Multi-way split

Decision Tree Based Classification

- Advantages:
 - Inexpensive to construct
 - Extremely fast at classifying unknown records
 - Easy to interpret for small-sized trees
 - Accuracy is comparable to other classification techniques for many simple data sets

Model Evaluation

- Metrics for Performance Evaluation
 - How to evaluate the performance of a model?
- Methods for Performance Evaluation
 - How to obtain reliable estimates?

Model Evaluation

- Metrics for Performance Evaluation
 - How to evaluate the performance of a model?
- Methods for Performance Evaluation
 - How to obtain reliable estimates?
- Methods for Model Comparison
 - How to compare the relative performance among competing models?

Metrics for Performance Evaluation

- Focus on the predictive capability of a model
 - Rather than how fast it takes to classify or build models, scalability, etc.
- Confusion Matrix:

	PREDICTED CLASS				
ACTUAL CLASS		Class=Yes	Class=No		
	Class=Yes	a	b		
	Class=No	C	d		

a: TP (true positive)

b: FN (false negative)

c: FP (false positive)

d: TN (true negative)

Metrics for Performance Evaluation...

	PREDICTED CLASS				
ACTUAL CLASS		Class=Yes	Class=No		
	Class=Yes	a (TP)	b (FN)		
	Class=No	c (FP)	d (TN)		

Most widely-used metric:

Accuracy =
$$\frac{a+d}{a+b+c+d} = \frac{TP+TN}{TP+TN+FP+FN}$$

Limitation of Accuracy

- Consider a 2-class problem
 - Number of Class 0 examples = 9990
 - Number of Class 1 examples = 10
- If model predicts everything to be class 0, accuracy is 9990/10000 = 99.9 %
 - Accuracy is misleading because model does not detect any class 1 example

Precision-Recall

Precision (p) =
$$\frac{a}{a+c} = \frac{TP}{TP+FP}$$

Recall (r) =
$$\frac{a}{a+b} = \frac{TP}{TP + FN}$$

(1)	a+b	TP + FN			
F-measure (e (E) –	1	_ 2rp	2 <i>a</i>	2 <i>TP</i>
F-measure (F) =		(1/r+1/p)	$-\frac{1}{r+p}$	$-\frac{1}{2a+b+c}$	2TP + FP + FN

Count

ACTUAL

CLASS

PREDICTED CLASS

Class=Yes

a

C

Class=Yes

Class=No

Class=No

b

- Precision is biased towards C(Yes Yes) & C(Yes No)
- Recall is biased towards C(Yes Yes) & C(No Yes)
- F-measure is biased towards all except C(No|No)

More about Precision and Recall

Precision-Recall plot

 Usually for parameterized models, it controls the precision/recall tradeoff

Model Evaluation

- Metrics for Performance Evaluation
 - How to evaluate the performance of a model?
- Methods for Performance Evaluation
 - How to obtain reliable estimates?

Methods for Performance Evaluation

 How to obtain a reliable estimate of performance?

- Performance of a model may depend on other factors besides the learning algorithm:
 - Class distribution
 - Cost of misclassification
 - Size of training and test sets

Methods of Estimation

Holdout

- Reserve 2/3 for training and 1/3 for testing
- Random subsampling
 - One sample may be biased -- Repeated holdout

Cross validation

- Partition data into k disjoint subsets
- k-fold: train on k-1 partitions, test on the remaining one
- Leave-one-out: k=n
- Guarantees that each record is used the same number of times for training and testing

Bootstrap

- Sampling with replacement
- ~63% of records used for training, ~27% for testing