This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

CLAIMS:

- A conjugate comprising a support material linked to oligomers or polymers of a saccharide, which linking is via urea linkages between the saccharide moieties and the support
 material, and wherein the oligomers or polymers are also cross-linked via urea linkages.
 - 2. A conjugate according to claim 1, wherein the saccharide is glucose.
- 3. A conjugate according to claim 2, wherein the oligomer or polymer of glucose is a cyclodextrin.
 - 4. A conjugate according to claim 2, wherein the oligomer or polymer of glucose is β -cyclodextrin.
 - 5. A conjugate according to claim 2, wherein the urea linkages are to the 6-carbon atoms of the glucose moieties.
- A conjugate according to claim 1, wherein the oligomer or polymer of a saccharide is perfunctionalized by replacement of all free hydroxyl groups by a group selected from the group consisting of alkoxy groups, aryloxy groups, acyloxy groups and carbamoyloxy groups.
- 7. A conjugate according to claim 1, wherein the support material is selected from the group consisting of silica gel, Al_2O_3 , TiO_2 , ZrO_2 and, synthetic porous functional organic polymers bearing free $-NH_2$ moieties and synthetic porous functional organic polymers bearing free N_3 moieties.
- 25 8. A conjugate according to claim 7, wherein the support material is silica gel.
 - 9. A process for preparing a conjugate according to claim 1, which process comprises:

- (a) reacting an oligomer or polymer of a saccharide bearing a plurality of azide groups with an amine, a phosphine and CO_2 , the amine being on the surface of a support material; or
- bearing a plurality of azide groups with an amine, a phosphine and CO₂, wherein the amine is an alkenylamine, subsequently hydrosilylating the alkenyl moiety of the product with a hydrosilylating agent that bears one or more readily

 10 hydrolysable groups on the silicon atom and thereafter reacting with a support member; or
- (c) reacting an oligomer or polymer of a saccharide bearing a plurality of azide groups with an amine, a phosphine and CO₂, wherein the amine is present in a molecule that bears a
 silicon atom bearing at least one readily hydrolysable group, and thereafter reacting with a support member; or
- (d) reacting an oligomer or polymer of a saccharide bearing a plurality of amine groups with an azide, a phosphine and CO₂, the azide being on the surface of a support material; 20 or
- (e) reacting an oligomer or polymer of a saccharide bearing a plurality of amine groups with an azide, a phosphine and CO₂, wherein the azide is an alkenylazide, subsequently hydrosilylating the alkenyl moiety of the product with a
 25 hydrosilylating agent that bears one or more readily hydrolysable groups on the silicon atom and thereafter reacting with a support member; or
- (f) reacting an oligomer or polymer of a saccharide bearing a plurality of amine groups with an azide, a phosphine 30 and CO₂, wherein the azide is present in a molecule that bears a silicon atom bearing at least one readily hydrolysable group, and thereafter reacting with a support member.

- 10. A process according to claim 9, wherein the saccharide is glucose.
- 11. A process according to claim 9, wherein the oligomer or polymer of a saccharide is a cyclodextrin.
- 5 12. A process according to claim 9, wherein the oligomer or polymer of a saccharide is β -cyclodextrin.
- 13. A process according to claim 9, wherein the oligomer or polymer of a saccharide is a 6^A, 6^B, 6^C, 6^D, 6^E, 6^F, 6^G-heptakisazido-6^A, 6^B, 6^C, 6^D, 6^E, 6^F, 6^G-heptakisdeoxy-β 10 cyclodextrin.
- 14. A process according to claim 13, wherein the oligomer or polymer of a saccharide is 6^A, 6^B, 6^C, 6^D, 6^E, 6^F, 6^G-heptakisazido-6^A, 6^B, 6^C, 6^D, 6^E, 6^F, 6^G-heptakisdeoxy-2^A, 2^B, 2^C, 2^D, 2^E, 2^F, 2^G-O-phenylcarbamoylated-3^A, 3^B, 3^C, 3^D, 3^E, 3^F, 3^G-heptakis-O-phenylcarbamoylated-β-cyclodextrin.
- 15. A process according to claim 10, wherein the oligomer or polymer of a saccharide is perfunctionalized by replacement of all free hydroxyl groups by a functional group selected from the group consisting of alkoxy groups, aryloxy groups, acyloxy groups and carbamoyloxy groups.
 - 16. A process according to claim 10, wherein the amine is a primary amine.
 - 17. A process according to claim 10, wherein the phosphine is triphenylphosphine.
- 25 18. A process according to claim 9(b), wherein the amine is a compound of formula

NH₂ (CH₂)_nCH=CH₂

wherein n is a number in the range 2 to 20, and the hydrosilylating agent is a compound of formula

$HSiR^1R^2R^3$

wherein each R^1 , R^2 and R^3 is an alkyl group or an alkoxy group of up to 6 carbon atoms, an aryl or aryloxy wherein the aryl moiety is a phenyl or α - or β -naphthyloxy group or a halogen atom provided that at least one of R^1 , R^2 and R^3 is a readily hydrolysable group.

19. A process according to claim 9(c), wherein the amine is a compound of formula

$NH_2(CH_2)_mSiR^1R^2R^3$

- wherein m is a number from 1 to about 20 and each R^1 , R^2 and R^3 is an alkyl group or an alkoxy group of up to 6 carbon atoms, an aryl or aryloxy wherein the aryl moiety is a phenyl or α or β -naphthyloxy group or a halogen atom provided that at least one of R^1 , R^2 and R^3 is a readily hydrolysable group.
- 15 20. A process according to claim 9, wherein the support material is selected from the group consisting of silica gel, Al_2O_3 , TiO_2 , ZrO_2 and synthetic porous functional organic polymers bearing free $-NH_2$ and $-N_3$ moieties.
- 21. A process according to claim 20, wherein the support 20 material is silica gel.
 - 22. A chromatographic process wherein a conjugate according to claim 1 is used as stationary phase.
 - 23. A process according to claim 22, wherein the conjugate is used as a chiral stationary phase in enantiomeric
- 25 separation or enantiomeric analysis.
 - 24. A process according to claim 22, wherein a liquid mobile phase is used that contains 95% or more of water.