Part A:

1. Create a resource group in your Azure portal and deploy three resources. Azure Data Factory, Azure SQL DB and Blob storage account.

2. Now create a pipeline in Azure Data Factory and copy gender_jobs_data.csv file from the Blob storage account to Azure SQL DB. (First copy this file from your local machine to Blob Storage).

3. Explain the different types of triggers available in ADF. Now create a schedule trigger and run your pipeline every 3 minutes. Show 5 successful runs.

Trigger Options: Used to schedule a Data pipeline run without any interventions.

- Schedule: Can run a Data pipeline according to a predetermined schedule with different scheduling intervals. Can choose the start and end dates, and on specific future calendar dates.
- Tumbling Window: Executes Data pipelines at a specified time slice or predetermined periodic time interval. The tumbling window sends the start and end times for each time window in the Database, returning all data between those periods.
- Storage Event-based: Triggers occurs in response to blob-related events such as generating or deleting a blob event in an Azure blob storage. These are also compatible with Azure Data Lakes.

4. A client needs to replicate objects from ADLS Gen 2 in Canada Central to ADLS Gen 2 in West Europe. Let's say they want to do this in a bi-directional way. How can you set this up? [Hint: This probably can be done using Azure Data Factory and Event Triggers. For eg; every time there is a new Blob on one side, it needs to be replicated on the other one]

The process will be described on how to implement this but will not be shown.

Cross regional replication provides data recovery in cases of failure, allows staggered times for updates which will minimize downtimes, and reduce the chances of regional disaster network outage. Azure storage account are used to deploy storage resources such as blob containers, file shares, tables, or queues.

We want Geo-redundancy Storage (GRS) or Geo-Zone-redundant storage (GZRS), replication between different regions. Can change the replication setting using the portal "Storage -> Data Management -> Redundancy -> Update settings to Geo-redundant storage and choose "West Europe"".

Need to perform a manual migration, which allows us to move a storage account to another region, although this may have downtime in which a conversion option is a in-place migration with no downtime. However, with the GRS or GZRS options, the data in the secondary region isn't available for read/write access.

Using Azure portal will need to export the storage account template (resources -> automation - > export template), modify the template with the new storage account name and location in the JSON file, move/deploy the storage account to create a new storage in the target location. Configure the new storage account, copy the data, there are many tools to copy data such as AzCopy. To copy the data, the

ADLS Gen 2 Canada Central will be used as a source type and the ADLS Gen 2 West Europe will be used as a sink type.

Need to make sure that the storage in West Europe supports the desired replication settings (Also Georedundancy). Azure storage redundancy becomes more expensive when moving to geo-redundancy since it's a more sophisticated redundancy level.

Bi-directional sync is ideal for complex scenarios that involves many pipelines and dependencies. Need to create replication rules that determine the directory in the file system that will be replicated and the Zones that will be used in that replication. Without replication rules defined, each Zone's file system operates independently of the other. A tool such as WANdisco Fusion allows users control over how data is replicated between file systems and object stores.

Need to set up event triggers such that if there's a new blob in one Zone, it will replicate objects from ADLS Gen 2 Canada Central to ADLS Gen 2 in West Europe using the steps shown above. Another event trigger such that if there's a new blob in one Zone, will be used to replicate object from ADLS Gen 2 West Europe to ADLS Gen 2 in Canada Central using the steps shown above.

Part B:

- 1. In the gender_jobs_data table Filter all the OCCUPATIONS in MAJOR_CATEGORY of Computer, Engineering, and Science for the YEAR 2013
 - See Part B-1.csv for output

occupation					
Web developers					
Computer support s	pecialists				
Database administra	tors				
Network and compu	ter system	s adminis	trators		
Computer network a	rchitects				
Computer, all other					
Actuaries					
Mathematicians					
Operations research	analysts				
Statisticians					
Miscellaneous math	ematical s	cience			
Architects, except na	aval				
Surveyors, cartograp	hers, and	photogran	nmetrists		
Aerospace engineer	S				
Agricultural enginee	rs				
Biomedical enginee	rs				
Chemical engineers					
Civil engineers					
Computer hardware	engineers	i			
Electrical and electro	onics engir	neers			
Environmental engir	neers				
Economists					
Computer and inforr	nation res	earch scie	ntists		
Computer systems a	nalysts				
Information security	analysts				
Computer programn	ners				
Software developer:	s, applicati	ions and sy	stems soft	ware	
Industrial engineers	, including	health an	d safety		
Marine engineers an	d naval ar	chitects			
Materials engineers					
Mechanical enginee					
Mining and geologic	al enginee	rs, includi	ng mining s	safety engi	neers
Nuclear engineers					
Petroleum engineer	S				
Engineers, all other					
Drafters					
Engineering technici	ans, excep	ot drafters			

Computer systems and	lysts				
Information security a	nalysts				
Computer programme					
Software developers,	applicatio	ns and sy	stems soft	ware	
Industrial engineers, i	ncluding h	ealth and	safety		
Marine engineers and	naval arch	itects			
Materials engineers					
Mechanical engineers					
Mining and geological	engineers	, includir	g mining s	afety engi	neers
Nuclear engineers					
Petroleum engineers					
Engineers, all other					
Drafters					
Engineering techniciar	ıs, except	drafters			
Surveying and mappin	g technicia	ans			
Agricultural and food s	cientists				
Biological scientists					
Conservation scientist	s and fore	sters			
Medical scientists					
Life scientists, all othe	r				
Astronomers and phys	icists				
Atmospheric and space	e scientist	S			
Chemists and material	s scientist	:S			
Environmental scienti	sts and ge	oscientist	:S		
Physical scientists, all	other				
Survey researchers					
Psychologists					
Urban and regional pla					
Miscellaneous social s			d workers	including	sociologists
Agricultural and food s	cience tec	chnicians			
Biological technicians					
Chemical technicians					
Geological and petrole	um techn	icians			
Nuclear technicians					
Social science research					
Miscellaneous life, ph	ysical, and	social sc	ience tech	nicians	

2. In the gender_jobs_data table - How many OCCUPATIONS exist in the MINOR_CATEGORY of Business and Financial Operations overall?

If asking for unique occupations:

- 3. In the gender_jobs_data table Get all relevant information for bus drivers across all years
 - See Part B-1.csv for output

4. In the gender_jobs_data table - Summarize the total number of WORKERS_FEMALE in the MAJOR_CATEGORY of Management, Business, and Financial by each year

5. In the gender_jobs_data table - What were the total earnings of male (TOTAL_EARNINGS_MALE) employees in the Service MAJOR CATEGORY for the year 2015?

6. In the gender_jobs_data table - How many female workers were in management roles in the year 2015?

- 7. In the gender_jobs_data table Compare the TOTAL_EARNINGS_MALE and TOTAL_EARNINGS_FEMALE earnings irrespective of occupation by each year
 - Filter out NA values as 0's

- 8. In the gender_jobs_data table How much money (TOTAL_EARNINGS_FEMALE) did female workers make as engineers in 2016?
 - Included every occupation that included the word 'Engineer', and summed up the total earnings

- 9. What is the total number of full-time and part-time female workers versus male workers year over year?
- Divide by 100 since the numbers given are in percentages

