1.	Evaluate the integral	$\int_{\pi}^{3\pi/2}$	$99\sin^8 x \cos^3 x dx$	
----	-----------------------	-----------------------	---------------------------	--

- (a) 3
- (b) 2
- (c) 1
- (d) 0
- (e) -1
- (f) -2

2. The region in the first quadrant between the curve $y = \sqrt{16 - x^4}$, the x-axis (y = 0)and the y-axis (x = 0) is revolved around the y-axis. What is the volume of the resulting solid?

- (a) $16\pi^2$
- (b) $8\pi^2$
- (c) $6\pi^2$
- (d) $4\pi^2$
- (e) $2\pi^2$
- (f) π^2

3. Find the value of $\int_0^\infty \frac{1}{x^2 - 2x + 2} dx$.

- (a) diverges
- (b) $\frac{\pi}{2}$ (c) $\frac{\pi}{4}$
- (d) $\frac{3\pi}{4}$
- (e) π
- (f) 1

4. Find the y-coordinate of the centroid of the region bounded by the curves y = x and $y = x^2$.

- (a) $-\frac{2}{5}$
- (b) $\frac{2}{5}$
- (c) $\frac{1}{12}$
- (d) $-\frac{1}{2}$
- (e) $\frac{1}{2}$
- (f) $\frac{1}{4}$

5. Find the value of c so that the function $f(x) = c(1-x^2)$ is a probability density function on [-1,1]. What is its mean μ ?

(a) $c = \frac{3}{4}, \ \mu = 0$

(b) $c = \frac{3}{4}, \ \mu = 1$

(c) $c = \frac{1}{2}, \ \mu = 1$

(d) $c = \frac{3}{2}, \ \mu = 0$

(e) $c = \frac{3}{2}$, $\mu = 1$

(f) $c = \frac{1}{2}$, $\mu = 0$

	Find the					
(a)	$2(9+\sqrt{3})$	$\overline{3}$)	(b)	$2(9-\sqrt{3})$		(c) $\frac{8\sqrt{3}}{9}$
(d)	$\frac{2}{3}(9-\sqrt{3})$	$\sqrt{3}$)	(e)	$\frac{2}{3}(9+\sqrt{3})$		$(f) \frac{4\sqrt{2}}{3}$
7.	Determi	ne if the series	below converge	absolutely \mathcal{A} , co	onditionally \mathcal{C} , or	diverge \mathcal{D} .
		I.	$\sum_{n=2}^{\infty} \frac{1}{n \ln n}$	II. $\sum_{n=1}^{\infty} (-1)^n$	$n \frac{2^n}{n!}$	
	\mathcal{D},\mathcal{C} \mathcal{C},\mathcal{A}		(b) \mathcal{D}, \mathcal{A} (f) \mathcal{A}, \mathcal{D}	(c) C_1 (g) A_2	$,\mathcal{D}$ $,\mathcal{C}$	$\begin{array}{c} (\mathrm{d}) \ \mathcal{C}, \mathcal{C} \\ (\mathrm{h}) \ \mathcal{A}, \mathcal{A} \end{array}$
3.	Find the	e interval of con	nvergence of the	power series $\sum_{n=2}^{\infty}$	$\frac{(x-3)^n}{3^n \ln n}.$	
(a)	[0, 6)	(b) [0 6]	(.) (0. 9]	[e_0] (b)	(a) [2 0)	(f) $[-3, 6]$
. ,	[0,0)	(D) [0, 0]	(c) $(0,3]$	$(\mathbf{u})[0,5]$	(e) $[-5, 9)$	(1) $[-3,0]$
) .	Let $P_2(x)$		r polynomial of	$\frac{\text{(d) } [0,3]}{\text{degree two for } f}$		
) . Wł	Let $P_2(x)$	c) be the Taylo	r polynomial of		$f(x) = \sqrt{x}$ center	
9 . Wh	Let $P_2(x)$ at is the $\sqrt{5}$	c) be the Taylo value of $P_2(5)$ (b) $\frac{143}{64}$	r polynomial of ? (c) $\frac{73}{32}$	degree two for f	$f(x) = \sqrt{x} \text{ center}$ $(e) \frac{35}{16}$	$\text{red at } a = 4.$ $\text{(f) } \frac{9}{4}$
9 . Wh (a)	Let $P_2(x)$ and is the $\sqrt{5}$	c) be the Taylo value of $P_2(5)$ (b) $\frac{143}{64}$	r polynomial of ? (c) $\frac{73}{32}$	degree two for f (d) $\frac{71}{32}$	$f(x) = \sqrt{x} \text{ center}$ $(e) \frac{35}{16}$	$\text{red at } a = 4.$ $\text{(f) } \frac{9}{4}$
9. (a) 10. (a) tha	Let $P_2(x)$ and is the $\sqrt{5}$ Find y $\frac{9}{5}$ A tank t contains the well	be the Taylor value of $P_2(5)$ (b) $\frac{143}{64}$ (2) if y satisfies (b) $\frac{5}{6}$ a initially contains 3 lbs of salt placements $\frac{3}{6}$	r polynomial of? (c) $\frac{73}{32}$ s the initial-value (c) 2 hins 100 gallons per gallon enters	degree two for f $(d) \frac{71}{32}$ e problem $xy' =$ $(d) \frac{4}{5}$ of brine with 60 s the tank at the rate of 3 gallons	$f(x) = \sqrt{x} \text{ center}$ $(e) \frac{35}{16}$ $x^3 - 2y \text{ and } y(1)$ $(e) -1$ $(e) \text{ bls of dissolved}$ $(e) \text{ rate of 3 gallons}$	red at $a = 4$. (f) $\frac{9}{4}$ (f) $\frac{1}{6}$ I salt. Brine is per minute

12. Evaluate $\lim_{x\to 0} \frac{x^2 e^x}{\cos x - 1}$

(a) -2 (b) -1 (c) $-\frac{1}{2}$ (d) 0 (e) $\frac{1}{2}$

(f) 2

13. Compute $\int_{1}^{\infty} xe^{-2x} dx$.

(a) $\frac{1}{2e^2}$ (b) $\frac{3}{4e^2}$ (c) $\frac{2}{e^2}$ (d) $-\frac{2}{e^2}$ (e) $\frac{1}{4e^2}$ (f) The integral diverges

14. If $\frac{x^4}{(x+1)(x^2+5)} = Ax + B + \frac{C}{x+1} + \frac{Dx+E}{x^2+5}$, find the value of C

(a) 0

(b) $\frac{1}{6}$ (c) $\frac{1}{4}$ (d) $\frac{1}{2}$

(f) 4

15. For (precisely) which values of p does $\sum_{n=0}^{\infty} \frac{2^{np}}{3^n + 4^n}$ converge?

(a) p < 2

(b) p > 1 (c) $p > \frac{1}{2}$ (d) p < -1 (e) p > -2 (f) p < 0

Answers (maybe): FDDBA — DEABA — DABBA