ADVANCED OPERATING SYSTEMS

CSEN383

PROJECT-2 (Process Scheduling)

Group - 3

-Aman Jain, Amarnath S Kaushik, Daryl Ho, Meghana Kale, Sai Kiran Jasti

Structs:

- 1. Process
- 2. Seeds
- 3. PriorityQueue

Functions:

1. void generateProcesses(Process processes[], int count, int seed)

This function takes an array of processes (Struct Process), their count and a seed generated by the nest function. This function updates the process details like arrival time, run time in the Process struct.

2. void sortProcesses(Process processes[], int count)

This function sorts the generated processes based on their arrival time.

3. void seedGenerator(Seeds bestSeeds[])

This function is responsible for choosing the best seeds in the range 1 to 10000, which leads to minimum CPU idle time and maximum job overlapping. This function gives us a list of 5 such seeds for our workloads.

Workloads:

Run #1:				Run #4:			
Process ID Arri	val Time Ru 0	n Time Pr	iority 3	Process ID Ar	rival Time 0	Run Time 5	Priority 3
B C A H D E G F	9 12 20 24 25 28 33 40	8 1 2 6 8 9 9	1 4 3 3 2 1 4 3	F G B D I A E C	6 19 21 25 34 43 47 53	6 7 4 9 8 7 6 1	2 1 1 1 2 2 1
Total No. of Proc	esses : 10			Total No. of Pr)	

Run #2:				Run #5:			
Process ID	Arrival Time R	tun Time P	riority	Process ID Arriva	al Time Ru	n Time Pr	iority
В	3	4	4	D	1	7	2
F	14	8	3	C	7	8	4
I	17	9	1	G	9	6	2
Εİ	23	4	1	Εİ	15	2	2
Αİ	26	6	3	F	21	8	2
H į	27	9	4	В	21	5	3
Эį	32	7 j	3	υj	29	9	4
c j	38	7	3	I	38	2	3
G	45	6	3	н	45	6	4
D į	48	7	3	Α	51	7	3
Total No. of Processes : 10		Total No. of Proces	ses : 10				

Run #3:				
Process ID	Arrival Time	Run Time	Priority	
Α	2	6	3	
В	7	j 9	4	
Ιİ	10	10	1	
НÍ	14	5	1	
c j	21	j 7	1	
D	25	10	4	
G	26	4	3	
Jί	30	5	2	
Εĺ	34	6	3	
F	47	j 2	4	
Total No. of Processes : 10				

Algorithm's Averaged Output After 5 Runs:

1. First Come First Served

Average Quantity	Quanta
Turn-Around Time	14.44
Waiting Time	8.18
Response Time	8.18

2. Shorted Job First

Average Quantity	Quanta
Turn-Around Time	12.90
Waiting Time	6.64
Response Time	6.64

3. Shortest Remaining Time:

Average Quantity	Quanta
Turn-Around Time	12.30
Waiting Time	6.04
Response Time	11.60

4. Round Robin:

Average Quantity	Quanta
Turn-Around Time	18.84
Waiting Time	12.58
Response Time	2.04

5. High Priority First Preemptive:

Average Quantity	Quanta
Turn-Around Time	16.06
Waiting Time	9.80
Response Time	4.06

6. High Priority First Non-Preemptive:

Average Quantity	Quanta
Turn-Around Time	13.13
Waiting Time	7.04
Response Time	7.19

Conclusion:

The results from the project demonstrate the varying efficiencies of different process scheduling algorithms. Among the algorithms analyzed, **Round Robin** stands out as the most effective for real-time and multitasking scenarios. Its lower response time (2.04) ensures that all processes receive CPU attention quickly, which is particularly important in time-sharing systems. While its turn-around time (18.84) and waiting time (12.58) are slightly higher than other algorithms, this trade-off is acceptable for systems prioritizing fairness and responsiveness.

In contrast, algorithms like **Shortest Job First (SJF)** and **Shortest Remaining Time (SRT)** exhibit better turn-around and waiting times due to their focus on shorter processes. However, they lack the fairness and responsiveness required for diverse workloads. Similarly, **First Come First Served (FCFS)** is simple to implement but suffers from significant waiting time due to the "convoy effect."

The preemptive and non-preemptive variants of **High Priority First (HPF)** offer balanced performance but can lead to starvation for low-priority processes, making them less favorable for systems requiring equal process treatment.

In conclusion, the **Round Robin scheduling algorithm** strikes an optimal balance between fairness and responsiveness, making it an ideal choice for environments where equitable process handling and minimal response times are critical.