# Lecture 4

#### Frank

February 2, 2022

# 1 General (Turing) Reductions

## 1.1 Definition of Reduction

• P (Turing)-reduces to Q:

 $\exists$  algo for P that uses algo for Q as a "black box"

Black box can also be interpreted as a subroutine

Represented by  $P \leq_T Q$  (Turing) reduction

• Formalizing reduction (no need to worry about):

TM with oracle for Q:

- 2-tape TM
- States  $q_?, q_Y, q_N$

Enter  $q_?$  upon call to Q, then immediate returns  $q_Y$  if the current input string is a string in the language of the TM, and  $q_N$  otherwise, this is our oracle.

# 2 Halting Problem

### 2.1 Halting Problem (Language)

- $H = \{\langle M, x \rangle : \text{TM } M \text{ halts on input } x\}$
- Thm 4.1: H is a) recognizable, but b) not decidable

Proof a)

Use  $M_u$  to simulate H on input x, if  $M_u$  halts, then H recognizes x

Proof b) Show that  $U \leq H$ 

Given H-decider TM  $M_1$ , construct U-decider TM  $M_2$ 

 $M_2 = \text{on input } \langle M, x \rangle$ 

- 1. Run  $M_1$  on  $\langle M, x \rangle$
- 2. If  $M_1$  accepts (M halts on x), then run  $M_u$  on  $\langle M, x \rangle$ . If  $M_u$  accepts, accept Else reject
- 3. Else (M doesn't halt on x) reject

Thus,  $M_2$  decides U, but by Thm 3.x, U is not decidable, thus  $M_2$  does not exist, but  $M_2$ 's existence depends on  $M_1 \implies M_1$  does not exist

 $\therefore H$  is undecidable

### Example of $M_2$



Figure 1: l41

# 2.2 Different reduction of b) (Alt. proof)

• Given H-decider  $M_3$ , construct a U-decider  $M_4$ .

 $M_4 = \text{ on input } \langle M, x \rangle.$ 

1. Modify M to M' by changing every transition of M to the reject state into an inf. loop.



Figure 2: 142

- 2. Run  $M_3$  on  $\langle M', x \rangle$
- 3. If  $M_3$  accepts, then accept
- 4. Else reject

 $M_4$  is a decider for U, because  $M_4$  accepts  $\langle M, x \rangle \iff M_3$  accepts  $\langle M', x \rangle \iff M'$  halts on x [ $M_3$  is H-decider]  $\iff M$  accepts x (M' will loop if not accept)

Then  $M_4$  is a U-recognizer that will always halt

- $\therefore M_4$  is a U-decider
- $\implies$  contradiction.

# Example of $M_4$



Figure 3: 143

# 2.3 Digression

- $\bullet$  Can also show  $H \leq U$  similarly (similar to the second reduction)
- Given input  $\langle M, x \rangle$  to H, construct input  $\langle M', x \rangle$  to U as follows



Figure 4: 144

We can also correctly show that  $H \leq U$ .

 $\bullet$  However, this does not prove that H is undecidable (wrong direction!)



Figure 5: 145

## 2.4 Cor 4.2

• Cor 4.2:  $\bar{H} = \{\langle M, x \rangle : M \text{ does not halt on } x\}$  is unrecognizable, this is by the fact that H is recognizable but not decidable.

# 3 Mapping Reductions

# 3.1 Definition

• Let  $P,Q \subseteq \Sigma^*$  be languages. P is mapping reducible to  $Q, P \leq_m Q$ , iff  $\exists$  computable function  $f: \Sigma^* \to \Sigma^*$  s.t.  $x \in P \iff f(x) \in Q$ 

Example:



Figure 6: 146

#### • Important:

- $-\ f$  must be computable (theres a TM that can compute it). Describe an algorithm that computes f
- f maps yes-instances of P to yes-instances of Q and no-instances of P to no-instances of Q
- -f need not be (and usually is <u>not</u>) onto.

### 3.2 Example

• Consider  $\bar{D} = \{ \langle M \rangle : M \text{ accepts } \langle M \rangle \}$ 

We actually did  $\bar{D} \leq_m U$ 

$$f: \langle M \rangle \to \langle M, \langle M \rangle \rangle$$

• The second reduction we did for  $U \leq H$  is actually  $U \leq_m H$ 

Given  $\langle M, x \rangle$ , constructed  $\langle M', x \rangle$  s.t. M accepts  $x \iff M'$  halts on x.

$$f: \langle M, x \rangle \in U \to \langle M', x \rangle \in H$$

• Note that turing reduction is a more general form of reduction, so the first reduction we did was a turing reduction, but not a mapping reduction.

### 3.3 Aside

• Mapping reduction is sometimes called many-to-one reduction

# 3.4 Properties of Mapping Reductions

• Thm 4.3: Suppose  $P \leq_m Q$ 

If Q is decidable, then P is decidable

 $\iff$ 

If P is undecidable, then Q is undecidable  $(\star)$ 

- Proof:
  - Assume that  $P \leq_m Q$  and P is undecidable.
  - Suppose for contra, Q is decidable.

Let  $D_Q$  be a decider for Q

Since  $P \leq_m Q$ ,  $\exists$  computable f s.t.  $x \in P \iff f(x) \in Q$ 

Then the following algorithm is a decider for P

 $D_P = \text{On input } x \text{ do:}$ 

- 1. Compute f(x)
- 2. Run  $D_Q$  on f(x)

If  $D_Q$  accepts, then accept

Else reject

Note that  $D_P$  halts on all inputs  $\implies$  it's a decider

 $D_P$  accepts  $x \iff D_Q$  accepts  $f(x) \iff f(x) \in Q$  [ $D_Q$  is Q-decider]  $\iff x \in P$  [because f is a mapping reduction of P to Q]  $\iff D_P$  is P-decider

Which contradicts the fact that P is undecidable

 $\therefore Q$  is undecidable

• Thm 4.4: Suppose  $P \leq_m Q$ 

If Q is recognizable, then P is recognizable

 $\iff$ 

If P is unrecognizable, then Q is unrecognizable

The proof is very similar to the decidability proof, except that  $D_Q$  is now  $R_Q$ , a recognizer, which might loop. However, this is not a problem because we are building a recognizer, so  $R_Q$  will get stuck on the inputs that  $R_P$  will get stuck on.

• Thm 4.5: If  $P \leq_m Q$  then  $\bar{P} \leq_m \bar{Q}$ 

Proof is very simple, f is the mapping function here again:



Figure 7: 147

• Thm 4.6 If  $P \leq_m Q$  and  $Q \leq_m R$ , then  $P \leq_m R$ 

Proof: Exercise (on tb too)

# 4 Examples

# 4.1 Proving undecidability

• To prove P is undecidable (unrecognizable), it <u>suffices</u> to prove  $U \leq_m P : U$  undecidable  $(\bar{U} \leq_m P : \bar{U} \text{ unrecognizable})$  By thm 4.3 and 4.4.

## 4.2 Ex 1

- Define  $E = \{\langle M \rangle : L(M) = \emptyset\}$
- Thm 4.7: E is unrecognizable

Proof:

– It suffices to prove that  $\bar{U} \leq_m E$ 

Given  $\langle M, x \rangle$  [input to  $\bar{U}$ ], construct  $\langle M' \rangle$  [input to E] s.t. M does not accept x  $(\langle M, x \rangle \in \bar{U}) \iff L(M') = \emptyset \ (\langle M' \rangle \in E)$ 

Build M' s.t. if M doesn't accept x, M' accepts nothing, and if M accepts x, M' accepts everything

 $- f = \text{on input } \langle M, x \rangle$ :

```
f = on input (M,x):

f1.  M' = "on input y

M'1. Run M on x.

M'2. If Maccepts then accept

M'3. else reject"

f2. return (M')
```

Figure 8: 148

Note that M''s input y is ignored, and M''s outcome is solely dependent on whether M accepts x

If M does not accept x, then  $L(M') = \emptyset$ 

If M accepts x, then  $L(M') = \Sigma^*$ 

- Claim: f is a mapping reduction of  $\bar{U}$  to EVerify that  $\langle M, x \rangle \in \bar{U} \iff \langle M' \rangle \in E$
- (  $\Longrightarrow$  )  $\langle M,x\rangle\in \bar{U}\implies M \text{ does not accept } x\implies M' \text{ accepts no input } \Longrightarrow L(M')=\emptyset$   $\Longrightarrow \langle M'\rangle\in E$

#### 4.3 Ex 2

• Thm 4.8:  $\bar{E} = \{\langle M \rangle : L(M) \neq \emptyset\}$  is a) undecidable, but b) recognizable Proof a)

Suppose for contra, that  $\bar{E}$  is decidable.

- $\implies \bar{\bar{E}} = E$  is decidable. (Thm 3.3)
- $\implies E$  is recognizable, contradicting Thm 4.7

### Proof b)

Idea: dovetail through all pairs (i,j), until we find an input that M accepts, at which point,  $\langle M \rangle$  belongs to  $\bar{E}$ 



Figure 9: 149

Note we don't care about going on forever, we want recognizability (being able to accept)

Proof b) (non-determinism)

A NTM recognizes  $\bar{E}$  as follows:

On input  $\langle M \rangle$ 

- 1. nondeterministically "guess" a string x
- 2. Use universal TM to run M on x
- 3. If M accepts x, then accept



Figure 10: 1410

#### 4.4 Ex 3

- Let  $REG = \{\langle M \rangle : L(M) \text{ is regular}\}$
- Thm 4.9: REG is undecidable

Proof: Suffices to show  $U \leq_m REG$ 

Given  $\langle M, x \rangle$  [input to U]

Construct  $\langle M' \rangle$  [input to REG] s.t. M accepts  $x \iff L(M')$  is regular

Or  $\langle M, x \rangle \in U \Longleftrightarrow \langle M' \rangle \in REG$ 

```
- M accepts x \Longrightarrow M' accepts reg language.
```

ex. 
$$L(M') = \Sigma^*$$
 (regular)

-M does not accept  $x \implies M'$  accept a non-reg language.

ex. 
$$\{0^n 1^n : n \in \mathbb{N}\}$$
 (not regular)

- f =on input  $\langle M, x \rangle$ :



Figure 11: 1411

Verify  $\langle M, x \rangle \in U \Longleftrightarrow \langle M' \rangle \in REG$ 

$$(\Longrightarrow) \langle M, x \rangle \in U$$

 $\implies M \text{ accepts } x$ 

 $\implies M'$  accepts all inputs y [in line M'1, if  $y = 0^n 1^n$ ; or in line M'3 o.w.]

$$\implies L(M') = \Sigma^*$$

 $\implies \langle M' \rangle \in REG$ 

# $(\Leftarrow ) \langle M, x \rangle \notin U$

 $\implies M$  does not accept x

 $\implies M'$  accepts all and only strings of the form  $0^n1^n$ 

 $\implies L(M')$  is not regular

 $\implies \langle M' \rangle \not\in REG$ 

### 4.5 Exercise

• Ex: Show  $U \leq_m R\bar{E}G$ , where  $R\bar{E}G = \{\langle M \rangle : L(M) \text{ is not regular } \}$ 

• Note  $U \leq_m REG$  (Thm 4.9)  $\Longrightarrow \bar{U} \leq_m R\bar{E}G$  (Thm 4.5)

 $\implies R\bar{E}G$  is unrecognizable

By exercise:  $U \leq_m R\bar{E}G$ 

$$\implies \bar{U} \leq_m REG$$

 $\implies REG$  is unrecognizable