Exercises

For Exercises 1-4 complete proofs using the strategies listed, then state which approach is easiest for you.

1. Given: \overline{AC} is the perpendicular bisector of \overline{BD} .

Prove: AD = AB and CD = CB.

a. Use a synthetic proof.

b. Use a reflection.

c. Use a coordinate proof.

2. Given: O is the midpoint of $\overline{AA'}$, $\overline{BB'}$, and $\overline{CC'}$.

Prove: $\triangle ABC \cong \triangle A'B'C'$

a. Use a synthetic proof.

b. Use a 180° rotation.

3. Equilateral triangles ABX and BCY are constructed on two sides of $\triangle ABC$ as shown. Prove that AY = XC.

a. Use a synthetic proof.

b. Find the image of \overline{AY} under the rotation $\mathcal{R}_{B,-60}$.

4. A', B', and C' are the midpoints of the sides of $\triangle ABC$. Find the ratio of the areas of $\triangle ABC$ and $\triangle A'B'C'$.

a. Use a synthetic argument.

b. Use a dilation to map $\triangle ABC$ to $\triangle A'B'C'$. Where is the center of the dilation? What is the scale factor?

For Exercises 5-20 choose the approach that you feel is best suited to each problem.

5. What kind of figure do you get if you join the midpoints of successive sides of a square? Prove your conjecture.

6. What kind of figure do you get if you join the midpoints of successive sides of a rhombus? Prove your conjecture.

7. The successive midpoints of the sides of quadrilateral ABCD are P, Q, R, and S. Prove that \overline{PR} and \overline{OS} bisect each other.

8. You are given the points A(-4, 1), B(2, 3), C(4, 9), and D(-2, 7).

a. Show that ABCD is a parallelogram with perpendicular diagonals.

b. What special name is given to ABCD?