고재현_HW2_report

```
  1. 전체 구조

  모델

  전처리, 데이터셋 사용 방법

  2. 모델의 구조 및 전처리 방법에 따른 학습 효과 변화

  2.1 dropout, learning rate, batch size에 따른 학습 속도 변화

  2.1.1 Dropout

  2.1.2 learning rate

  2.1.3 batch size
```

2.Batch normalization에 따른 학습 형태 변화3. Train의 전처리에 image processing 방법들을 적용할 경우

1. 전체 구조

모델

기본적으로 문제에서 주어진 조건을 만족하도록 구현하였다. 각각의 레이어에 dropout을 추가하여 overfitting을 방지하였다. batch normalization을 추가하여 학습 속도를 증가시켰다.

최종 모델의 학습 결과는 약 69%의 정확도를 보였다.

전처리, 데이터셋 사용 방법

CIFAR10 data의 distribution을 계산하여 normalize에 사용하였다.

```
def calc distribution():
train_data = torchvision.datasets.CIFAR10('./data', train=True, download=True)
# use np.concatenate to stick all the images together to form a 1600000 X 32 X 3 array
x = np.concatenate([np.asarray(train_data[i][0]) for i in range(len(train_data))])
print(x.shape)
train_mean = np.mean(x, axis=(0, 1))
train_std = np.std(x, axis=(0, 1))
print(train_mean / 255, train_std / 255)
```

train dataset의 일부를 validation set으로 사용하였다.

2. 모델의 구조 및 전처리 방법에 따른 학습 효과 변화

2.1 dropout, learning rate, batch size에 따른 학습 속도 변화

고재현_HW2_report 1

2.1.1 Dropout

dropout=0.2로 적용했을 때 가장 효과적이었다.

2.1.2 learning rate

learning rate가 너무 작을 때는 학습 효과가 너무 낮았다. 20~30 epoch 기준으로 learning rate는 1e-03 일 때 가장 효율적이었다.

2.1.3 batch size

batch size는 캐싱 효율을 위해 2^n 꼴인 32,64,128,256으로 테스트하였다. dropout=0.2, epoch=30에서 128이 학습 속도 및 학습 결과면에서 가장 효과적이었다.

2.Batch normalization에 따른 학습 형태 변화

고재현_HW2_report 2

batch normalization을 적용한 경우(아래) 가 accuracy 면에서 적게 진동하였다.

3. Train의 전처리에 image processing 방법들을 적용할 경우

너무 큰 transform 값을 사용할 경우 학습 효율이 떨어졌다.

이외에도 다양한 transform을 적용하였으나 학습 효율 면에서 크게 효과적이지 않았다. 적절한 transform parameter 값을 찾기는 어려웠다. transform을 적용할 경우 더 많은 epoch이 필요할 듯하다.

고재현_HW2_report

3