

Video 2.1a Vijay Kumar and Ani Hsieh

Introduction to Lagrangian Mechanics

Vijay Kumar and Ani Hsieh University of Pennsylvania

Analytical Mechanics

- Aristotle
- Galileo
- Bernoulli

- Euler
- Lagrange
- D'Alembert

- 1. Principle of Virtual Work: Static equilibrium of a particle, system of N particles, rigid bodies, system of rigid bodies
- 2. D'Alembert's Principle: Incorporate inertial forces for dynamic analysis
 - 3. Lagrange's Equations of Motion

Generalized Coordinate(s)

A minimal set of coordinates required to describe the configuration of a system

No. of generalized coordinates = no. of degrees of freedom

Virtual Displacements

Virtual displacements are small displacements consistent with the constraints

A particle of mass *m* constrained to move vertically

generalized

coordinate y

Virtual Displacements

Virtual displacements are small displacements consistent with the constraints

The slider crank mechanism: a single degree of freedom linkage

Virtual Displacements

Virtual displacements are small displacements consistent with the constraints

The pendulum: a single degree of freedom linkage

generalized coordinate θ

Virtual Work

The work done by applied (external) forces through the virtual displacement, δW

A particle of mass *m* constrained to move vertically

$$\delta W = -mg\delta y$$

Virtual Work

The work done by applied (external) forces through the virtual displacement, δW

The slider crank mechanism: a single degree of freedom linkage

$$\delta W = F \delta x$$

Video 2.1b Vijay Kumar and Ani Hsieh

Virtual Work

The work done by applied (external) forces through the virtual displacement, δW

The pendulum: a single degree of freedom linkage

The Principle of Virtual Work

The virtual work done by all applied (external) forces through any virtual displacement is zero

The system is in equilibrium

Static Equilibrium

$$\delta W = 0$$

$$\delta W = -mg\delta y = 0$$

Static Equilibrium

$$\delta W = 0$$

$$\delta W = F \delta x = 0$$

Static Equilibrium

$$\delta W = -mgl\sin\theta\delta\theta = 0$$

D'Alembert's Principle

The virtual work done by all applied (external) forces through any virtual displacement is zero

include inertial forces

The system is in *static* equilibrium Equations of motion for the system inertial force = - mass x acceleration

D'Alembert's Principle

acceleration

$$\mathbf{a} = \ddot{y}\mathbf{e}_2$$

inertial force

$$-m\ddot{y}\mathbf{e}_2$$

D'Alembert's Principle

acceleration

$$\mathbf{a} = l(\ddot{\theta}\mathbf{e}_{\theta} - \dot{\theta}^2\mathbf{e}_r)$$

inertial force

$$-ml(\ddot{\theta}\mathbf{e}_{\theta} - \dot{\theta}^2\mathbf{e}_r)$$

equation of motion

$$\ddot{\theta} + \frac{g}{l}\sin\theta = 0$$

$$\delta W = (-ml^2\ddot{\theta} - mgl\sin\theta)\delta\theta = 0$$

D'Alembert's principle with generalized coordinates

generalized coordinate $\delta W = (Q + Q^*)\delta q = 0$ contribution contribution from from inertial external force(s) force(s)

Particle in the vertical plane

$$\delta W = -(mg + m\ddot{y})\delta y = 0$$

Simple pendulum

$$\delta W = (-ml^2\ddot{\theta} - mgl\sin\theta)\delta\theta = 0$$

The Key Idea

The contribution from the inertial forces can be expressed as a function of the kinetic energy and its derivatives

$$Q^{\star} = -\left[\frac{d}{dt}\left(\frac{\partial \mathcal{K}}{\partial \dot{q}}\right) - \frac{\partial \mathcal{K}}{\partial q}\right]$$

Lagrange's Equation of Motion

$$\left[\frac{d}{dt} \left(\frac{\partial \mathcal{K}}{\partial \dot{q}} \right) - \frac{\partial \mathcal{K}}{\partial q} \right] = Q$$

Particle in the vertical plane

$$\mathcal{K} = \frac{1}{2}m\dot{y}^2 \quad Q^* = -m\ddot{y} \quad Q = -mg$$

Simple pendulum

$$Q^{\star} = -ml^2 \ddot{\theta}$$

Lagrange's Equation of Motion for a **Conservative System**

Conservative System

There exists a scalar function such that all applied forces are given by the gradient of the potential function

Gravitational force is conservative Scalar function is the potential energy

Standard Form of Lagrange's Equation of Motion

$$\left[\frac{d}{dt}\left(\frac{\partial \mathcal{K}}{\partial \dot{q}}\right) - \frac{\partial \mathcal{K}}{\partial q}\right] = Q \qquad Q = -\frac{d}{dq}\mathcal{P}$$

The Lagrangian

$$\mathcal{L} = \mathcal{K} - \mathcal{P}$$

$$\left[\frac{d}{dt} \left(\frac{\partial \mathcal{L}}{\partial \dot{q}} \right) - \frac{\partial \mathcal{L}}{\partial q} \right] = 0$$

Lagrange's Equation of Motion

$$\left[\frac{d}{dt} \left(\frac{\partial \mathcal{L}}{\partial \dot{q}} \right) - \frac{\partial \mathcal{L}}{\partial q} \right] = 0$$

Particle in the vertical plane

$$\mathcal{L} = \frac{1}{2}m\dot{y}^2 - mgy$$

Simple pendulum

Video 2.2 Vijay Kumar and Ani Hsieh

Newton Euler Equations

Vijay Kumar and Ani Hsieh University of Pennsylvania

Analytical Mechanics

- Principle of Virtual Work: Static equilibrium of a particle, system of N particles, rigid bodies, system of rigid bodies
- 2. D'Alembert's Principle: Incorporate inertial forces for dynamic analysis
 - 3. Lagrange's Equations of Motion

$$\left[\frac{d}{dt} \left(\frac{\partial \mathcal{K}}{\partial \dot{q}} \right) - \frac{\partial \mathcal{K}}{\partial q} \right] = Q$$

Newton Euler Equations

Recall Newton's 2nd law of motion

$$\mathbf{F} = m\mathbf{a}$$

net external force = inertia x acceleration

Newton Euler Equations

Newton's equations of motion for a translating rigid body

Euler's equations of motion for a rotating rigid body

Motion of Systems of Particles

Center of Mass

$$\mathbf{r}_C = \frac{1}{m} \sum_{i=1}^k m_i \mathbf{r}_{OP_i}$$

Newton's equations of motion

$$\mathbf{F} = \sum_{i=1}^{k} \mathbf{f}_i = \mathbf{m} \mathbf{a}_C$$

net external force = total mass x

acceleration, of center of mass

Newton's Second Law for a System of Particles

The center of mass for a system of particles, S, accelerates in an inertial frame, A, as if it were a single particle with mass m (equal to the total mass of the system) acted upon by a force equal to the net external force.

$$\mathbf{F} = m \frac{d\mathbf{v}_C}{dt}$$

Linear momentum

$$\mathbf{L} = m\mathbf{v}_C$$

$$\mathbf{F} = rac{d\mathbf{L}}{dt}$$

Rate of change of linear momentum in an inertial frame is equal to the net external force acting on the system.

Equations of Motion for a Rotating Rigid Body

Rigid body with a point O fixed in an inertial frame

Equations of Motion for a Rotating Rigid Body

- Rigid body with a point O fixed in an inertial frame
- Rigid body with the center of mass C

The rate of change of angular momentum of a rigid body (or a system of rigidly connected particles) in an inertial frame with O or C as an origin is equal to the net external moment acting (with the same origin) on the body.

$$\frac{d\mathbf{H}_O}{dt} = \frac{d(I_O\omega)}{dt} = \mathbf{M}_O$$

$$\frac{d\mathbf{H}_C}{dt} = \frac{d(I_C\omega)}{dt} = \mathbf{M}_C$$

Example

$$\frac{d\mathbf{H}_O}{dt} = \frac{d(I_O\omega)}{dt} = \mathbf{M}_O$$

$$\ddot{\theta} + \frac{g}{l}\sin\theta = 0$$

Moment of Inertia of Planar Objects

$$I_O = \sum_i m_i ||\mathbf{r}_{OP_i}||^2$$
$$8m(a^2 + b^2)$$

$$I_C = \sum_i m_i \|\mathbf{r}_{PC_i}\|^2$$

$$4m(a^2+b^2)$$

Moment of Inertia of Planar Objects

Video 2.3 Vijay Kumar and Ani Hsieh

Dynamics and Control

Acceleration Analysis: Revisited

Vijay Kumar and Ani Hsieh University of Pennsylvania

Position Vectors

- Reference frame A
 - Origin ()
 - Basis vectors $\{\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3\}$
- Position Vectors
 - Position vectors for P and Q in A \mathbf{r}_{OP} \mathbf{r}_{OQ}
 - Position vector of Q in B \mathbf{r}_{PQ}

General Approach to Analyzing Multi-Body System

Position Analysis

$$\mathbf{r}_{OQ} = \mathbf{r}_{OP} + \mathbf{r}_{PQ}$$

$$q_1 \mathbf{a}_1 + q_2 \mathbf{a}_2 + q_3 \mathbf{a}_3$$

= $p_1 \mathbf{a}_1 + p_2 \mathbf{a}_2 + p_3 \mathbf{a}_3$
+ $q'_1 \mathbf{b}_1 + q'_2 \mathbf{b}_2 + q'_3 \mathbf{b}_3$

$$\begin{bmatrix} q_1 \\ q_2 \\ q_3 \end{bmatrix} = \begin{bmatrix} p_1 \\ p_2 \\ p_3 \end{bmatrix} + \mathbf{R}_{AB} \begin{bmatrix} q_1' \\ q_2' \\ q_3' \end{bmatrix}$$

Velocity Analysis

$$\mathbf{r}_{OQ} = \mathbf{r}_{OP} + \mathbf{r}_{PQ}$$

$$egin{bmatrix} \dot{q}_1 \ \dot{q}_2 \ \dot{q}_3 \end{bmatrix} = egin{bmatrix} \dot{p}_1 \ \dot{p}_2 \ \dot{p}_3 \end{bmatrix} + \mathbf{\dot{R}}_{AB} \mathbf{R}_{AB}^T egin{bmatrix} q_1 - p_1 \ q_2 - p_2 \ q_3 - p_3 \end{bmatrix}$$

3x3 skew symmetric

$$\hat{\omega}_{AB} \begin{bmatrix} q_1 - p_1 \\ q_2 - p_2 \\ q_3 - p_3 \end{bmatrix} = \omega_{AB} \times \mathbf{r}_{PQ}$$

$$\mathbf{v}_Q = \mathbf{v}_P + \omega_{AB} \times \mathbf{r}_{PQ}$$

Acceleration Analysis

Acceleration of P and Q in A

$$\mathbf{a}_P = \ddot{p}_1 \mathbf{a}_1 + \ddot{p}_2 \mathbf{a}_2 + \ddot{p}_3 \mathbf{a}_3$$

$$\begin{bmatrix} \ddot{p}_1 \\ \ddot{p}_2 \\ \ddot{p}_3 \end{bmatrix}$$

$$\mathbf{a}_Q = \ddot{q}_1 \mathbf{a}_1 + \ddot{q}_2 \mathbf{a}_2 + \ddot{q}_3 \mathbf{a}_3$$

$$\begin{bmatrix} \ddot{q}_1 \\ \ddot{q}_2 \\ \ddot{q}_3 \end{bmatrix}$$

Angular Acceleration

The angular acceleration of B in A, is defined as the derivative of the angular velocity of *B* in *A*:

$$\alpha_{AB} = \frac{d\omega_{AB}}{dt}$$

$$\hat{\omega}_{AB} = \dot{\mathbf{R}}_{AB} \mathbf{R}_{AB}^T$$

$$\hat{\alpha}_{AB} = \ddot{\mathbf{R}}_{AB} \mathbf{R}_{AB}^T + \dot{\mathbf{R}}_{AB} \dot{\mathbf{R}}_{AB}^T$$

Acceleration Analysis

$$\mathbf{v}_Q = \mathbf{v}_P + \omega_{AB} \times \mathbf{r}_{PQ}$$

$$\mathbf{a}_Q = \mathbf{a}_P + \dot{\omega}_{AB} \times \mathbf{r}_{PQ} + \omega_{AB} \times \dot{\mathbf{r}}_{PQ}$$

$$\mathbf{a}_{Q} = \mathbf{a}_{P} + \dot{\omega}_{AB} \times \mathbf{r}_{PQ}$$
 $+ \omega_{AB} \times (\omega_{AB} \times \mathbf{r}_{PQ})$

 \mathbf{b}_2

Serial Chain of Rigid Bodies

$$\mathbf{r}_{O_AO_C} = \mathbf{r}_{O_AO_B} + \mathbf{r}_{O_BO_C}$$

$$\mathbf{v}_{O_C} = \mathbf{v}_{O_B} + \omega_{AB} \times \mathbf{r}_{O_B O_C}$$

$$\mathbf{a}_{O_C} = \mathbf{a}_{O_B} + \dot{\omega}_{AB} \times \mathbf{r}_{O_B O_C} + \omega_{AB} \times (\omega_{AB} \times \mathbf{r}_{O_B O_C})$$

Serial Chain of Rigid Bodies

$$\mathbf{r}_{O_A O_D} = \mathbf{r}_{O_A O_C} + \mathbf{r}_{O_C O_D}$$

$$\mathbf{v}_{O_D} = \mathbf{v}_{O_C} + \omega_{AC} \times \mathbf{r}_{O_C O_D}$$

$$\mathbf{a}_{O_D} = \mathbf{a}_{O_C} + \dot{\omega}_{AC} \times \mathbf{r}_{O_C O_D} + \omega_{AC} \times (\omega_{AC} \times \mathbf{r}_{O_C O_D})$$

Video 2.4 Vijay Kumar and Ani Hsieh

Newton Euler Equations (continued)

Vijay Kumar and Ani Hsieh University of Pennsylvania

Newton Euler Equations

Newton's equations of motion

A rigid body B accelerates in an inertial frame A as if it were a single particle with the same mass m (equal to the total mass of the system) acted upon by a force equal to the net external force.

$$\mathbf{F} = m \frac{d\mathbf{v}_C}{dt}$$

Euler's equations of motion

The rate of change of angular momentum of the rigid body B with the center of mass C as the origin in A is equal to the resultant moment of all external forces acting on the body with C as the origin

$$\mathbf{M}_C = rac{\mathbf{I}_C \omega}{dt}$$
Property of Penn Engineering, Vijay Kumar and Ani Hsieh

Moment of Inertia of 3-D Objects?

Inertia Tensor of 3-D Objects

Inertia Dyadic

Principal Moments of Inertia

Example: Rectangular Plate Rotating about Axis through Center of Mass

$$\begin{bmatrix} \int (y^2 + z^2) dm & \int -xy dm & \int -xz dm \\ \int -xy dm & \int (x^2 + z^2) dm & \int -yz dm \\ \int -xz dm & \int -yz dm & \int (x^2 + y^2) dm \end{bmatrix}$$

Is the angular momentum parallel to the

Example: Rectangular Plate Rotating about Axis through Center of Mass

$$\begin{bmatrix} I_{xx} & \times & \times \\ \times & I_{yy} & \times \\ \times & \times & I_{zz} \end{bmatrix} \qquad \begin{bmatrix} I_{xx} & 0 & 0 \\ 0 & I_{yy} & 0 \\ 0 & 0 & I_{zz} \end{bmatrix}$$

Is the angular momentum parallel to the

Principal Axes and Principal Moments

Principal axis

- u is a unit vector along a principal axis if I u is parallel to
 u
- There are 3 independent principal axes!

Principal moment of inertia

The moment of inertia with respect to a principal axis, u^T
 I u, is called a principal moment of inertia.

Examples

$$\mathbf{H}_C = \mathbf{I}_C \omega_{AB}$$

In frame B

$$\omega_{AB} = \omega_1 \mathbf{b}_1 + \omega_2 \mathbf{b}_2 + \omega_3 \mathbf{b}_3$$

$$\begin{bmatrix} I_{11} & 0 & 0 \\ 0 & I_{22} & 0 \\ 0 & 0 & I_{33} \end{bmatrix}$$

$$\mathbf{H}_C = I_{11}\omega_1\mathbf{b}_1 + I_{22}\omega_2\mathbf{b}_2 + I_{33}\omega_3\mathbf{b}_3$$

$$\mathbf{H}_C = egin{bmatrix} I_{11}\omega_1 \ I_{22}\omega_2 \ I_{33}\omega_3 \end{bmatrix}$$

 $\mathbf{H}_C = \mathbf{I}_C \omega_{AB}$

need to differentiate in A

In frame A

$$\mathbf{H}_C = \mathbf{R}_{AB} egin{bmatrix} I_{11}\omega_1 \ I_{22}\omega_2 \ I_{33}\omega_3 \end{bmatrix}$$

$$\dot{\mathbf{H}}_C = \mathbf{R}_{AB} egin{bmatrix} I_{11}\dot{\omega}_1 \ I_{22}\dot{\omega}_2 \ I_{33}\dot{\omega}_3 \end{bmatrix} + \dot{\mathbf{R}}_{AB} egin{bmatrix} I_{11}\omega_1 \ I_{22}\omega_2 \ I_{33}\omega_3 \end{bmatrix}$$

Transform back to frame B

$$\begin{split} \dot{\mathbf{H}}_{C} = & \mathbf{R}_{AB} \begin{bmatrix} I_{11}\dot{\omega}_{1} \\ I_{22}\dot{\omega}_{2} \\ I_{33}\dot{\omega}_{3} \end{bmatrix} + \dot{\mathbf{R}}_{AB} \begin{bmatrix} I_{11}\omega_{1} \\ I_{22}\omega_{2} \\ I_{33}\omega_{3} \end{bmatrix} \\ \hat{\omega}_{AB} = & \mathbf{R}_{AB}^{T}\mathbf{R}_{AB} \\ \text{angular velocity in frame } \mathbf{B} \end{split}$$

$$\dot{\mathbf{H}}_{C} = \begin{bmatrix} I_{11}\dot{\omega}_{1} \\ I_{22}\dot{\omega}_{2} \\ I_{33}\dot{\omega}_{3} \end{bmatrix} + \begin{bmatrix} 0 & -\omega_{3} & \omega_{2} \\ \omega_{3} & 0 & -\omega_{1} \\ -\omega_{2} & \omega_{1} & 0 \end{bmatrix} \begin{bmatrix} I_{11}\omega_{1} \\ I_{22}\omega_{2} \\ I_{33}\omega_{3} \end{bmatrix}$$

1. frame $B(\mathbf{b}_i)$ along principal axes

2. center of mass as origin

3. all components along \mathbf{b}_i

$$\begin{bmatrix} I_{11}\dot{\omega}_1\\I_{22}\dot{\omega}_2\\I_{33}\dot{\omega}_3 \end{bmatrix} + \begin{bmatrix} 0 & -\omega_3 & \omega_2\\\omega_3 & 0 & -\omega_1\\-\omega_2 & \omega_1 & 0 \end{bmatrix} \begin{bmatrix} I_{11}\omega_1\\I_{22}\omega_2\\I_{33}\omega_3 \end{bmatrix} = \mathbf{M}_C$$

Quadrotor

Static Equilibrium (Hover)

Motor Torques

$$au_i = k_M \omega_i^2$$

Resultant Moment about C

 $\mathbf{M} = \mathbf{r}_1 \times \mathbf{F}_1 + \mathbf{r}_2 \times \mathbf{F}_2 + \mathbf{r}_3 \times \mathbf{F}_3 + \mathbf{r}_4 \times \mathbf{F}_4$

Newton-Euler Equations

$$\omega_{AB} = p\mathbf{b}_1 + q\mathbf{b}_2 + r\mathbf{b}_3$$

Rotation of thrust vector from
$$B$$
 to A R_{AB} R_{A

$$I\begin{bmatrix} \dot{p} \\ \dot{q} \\ \dot{r} \end{bmatrix} = \begin{bmatrix} L(F_2 - F_4) \\ L(F_3 - F_1) \\ M_1 - M_2 + M_3 - M_4 \end{bmatrix} - \begin{bmatrix} p \\ q \\ r \end{bmatrix} \times I\begin{bmatrix} p \\ q \\ r \end{bmatrix}$$

Components in the body frame along \mathbf{b}_1 , \mathbf{b}_2 , and \mathbf{b}_3 , the principal axes