

introducao-a-fisica

aprova total

Exercício 1

(Uem 2020) As recorrentes discussões sobre a importância do uso racional da água doce levam à reflexão sobre a quantidade de água disponível em nosso planeta. O quadro a seguir apresenta uma estimativa de distribuição média da água na Terra, em km³.

Oceanos	1,3457125 bilhões
Geleiras	27 milhões
Águas subterrâneas	14 milhões
Lagos	228 mil
Umidade do solo	51 mil
Atmosfera	13 mil
Rios	1,5 mil
Organismos	1 mil

Adaptado de: SPERLING, E. von, Afinal, quanta água temos no planeta? Revista Brasileira de Recursos Hídricos, v. 11, n. 4, 2006, p. 189-199.

Com base nos dados do quadro, assinale o que for correto.

- 01) O volume de água nos oceanos é de $13.457.125 \times 10^{11} \text{ m}^3$.
- 02) O volume de água nas geleiras é igual ao volume de um cubo de lado medindo 3.000 km.
- 04) O volume da água dos rios é de 15×10^{14} L.
- 08) O volume de águas subterrâneas é superior a mil vezes o volume de água na atmosfera.
- 16) O volume de água concentrado na umidade do solo e na $20\sqrt[3]{2} \ km$. atmosfera cabe em uma esfera de raio

Exercício 2

(ESPM 2016) A expressão numérica

$$2 \cdot 81^3 + 3 \cdot 9^6 + 4 \cdot 27^4$$

equivale a:

- a) 3¹⁵
- b) 9^7
- c) 27⁴
- $d) 3^{21}$
- e) 9^{12}

Exercício 3

(ESPM 2018) Sabendo-se que
$$x=\frac{1}{2}$$
 e y = -4, o valor da expressão $\frac{x^{-y}-(-y)^{-x}}{x^{-y}-(-y)^{-x}}$

- a) x^3
- b) y⁻²
- c) 2y
- d) x². y
- e) $\frac{x}{u}$

Exercício 4

Qual o resultado da operação 0,452 cm x 2671 cm?

- a) 1210 cm²
- b) 1207,292 cm²
- c) 1207,3 cm²
- d) 1,21 x 10³ cm²
- e) 1207,29 cm²

Exercício 5

(Upe 2015 - Adaptada) Em uma partida típica de futebol, um jogador perde, em média, 3,0 litros de líquido pelo suor. Sabendo que 10⁻³ litros equivale ao volume de 10 gotas de suor, qual é a ordem de grandeza do somatório de gotas que todos os jogadores transpiraram em todos os 64 jogos da Copa do Mundo 2014, no Brasil?

Considere que cada jogo contou com 22 atletas em campo, sem substituições.

- a) 10⁴
- b) 10⁵
- c) 10^6
- d) 10⁷
- e) 10⁸

Exercício 6

(UFRGS 2015) A expressão

$$(0,125)^{15}$$

é equivalente a:

- a) 5^{45}
- b) 5^{-45} .
- c) 2^{45}
- d) 2⁻⁴⁵
- $e^{(-2)^{45}}$.

Exercício 7

(Fac. Albert Einstein 2016) A tabela seguinte permite exprimir os valores de certas grandezas em relação a um valor determinado da mesma grandeza tomado como referência. Os múltiplos e submúltiplos decimais das unidades do Sistema Internacional de Unidades (SI) podem ser obtidos direta ou

indiretamente dos valores apresentados e têm seus nomes formados pelo emprego dos prefixos indicados.

NOME	SÌMBOLO	FATOR PELO QUAL A UNIDADE É MULTIPLICADA
tera	Т	$10^{12} = 1000000000000$
giga	G	10 ⁹ = 1000 000 000
mega	М	10 ⁶ = 1000 000
quilo	К	10 ³ = 1000
hecto	h	10 ² = 100
deca	da	10 = 10
deci	d	$10^{-1} = 0,1$
centi 🔻	С	10 ⁻² = 0,01
mili	m	$10^{-3} = 0,001$
micro	μ	10 ⁻⁶ = 0,000 001
nano	n	10 ⁻⁹ = 0,000 000 001
pico	р	10 ⁻¹² = 0,000 000 000 001

(Fonte: Quadro geral de Unidades de Medida, 2a ed. - INMETRO, Brasília, 2000)

Por exemplo, se a unidade de referência fosse o ampère (A), teríamos: $152000~\mu A=152000\cdot 10^{-6}~A=\frac{152\cdot 10^3}{10^6}~A=0,152~A$

Se o grama (g) for a unidade de referência e $X=\frac{(12500\cdot 10^9\,Gg)\cdot (0,0006\,ng)}{0,000012\,Tg}$, então o valor de X, em gramas, é tal que:

a) X < 500

b) 500 < X < 1000

c) 1000 < X < 1500

d) X > 1500

Exercício 8

(PUCRJ 2002) O volume do tanque de combustível de um Boeing 767 é de 90.000 L. Sabemos que a queima de 1 litro deste combustível de aviação libera 35,0 MJ da energia (um Mega Joule equivale a um milhão de Joules). Por outro lado, a explosão de um kiloton de dinamite (mil toneladas de TNT) libera 4,2 x 10^{12} J de energia. Se o tanque de combustível do Boeing, por um terrível acidente, explodisse, equivaleria a quantos kilotons de TNT?

a) 1,34

b) 0,75

c) 7.5×10^2

d) $1,34 \times 10^3$

e) $1,08 \times 10^7$

Exercício 9

Qual o resultado da operação 127,36 g – 68,297 g?

a) 59,063 g

b) 59 g

c) 59,06 g

d) 59,1 g

e) 59,07 g

Exercício 10

A força de atração gravitacional que atua sobre dois corpos é inversamente proporcional ao quadrado da distância entre esses corpos.

Assuma que, por algum evento astronômico, dois planetas perdidos no espaço estão se afastando cada vez mais. O gráfico abaixo mostra a relação entre a força de atração gravitacional (F) existente e a distância (d) entre eles:

Com base nessas informações, quais são os valores de A, B e C respectivamente?

a) 36, 8 e 350.

b) 32, 8 e 300.

c) 36, 9 e 350.

d) 32, 9 e 300.

e) 36, 9 e 300.

Exercício 11

(IFSUL 2016) Em matemática, potências são valores que representam uma multiplicação sucessiva de um número. Usando as propriedades de potenciação, qual dos números a seguir é o maior?

a) 3^{45}

b) 9^{21}

c) 243⁸

d) 81¹²

Exercício 12

(FATEC 2016) Um atossegundo é uma unidade de tempo que representa um bilionésimo de um bilionésimo de segundo. Um femtossegundo é também uma unidade de tempo que representa um milionésimo de um bilionésimo de segundo. Sabe-se que o processo que permite a visão depende da interação da luz com pigmentos da retina e leva cerca de 200 femtossegundos para ocorrer. Fonte dos dados: http://tinyurl.com/ov3ur4z

Acesso em: 17.09.2015. Adaptado.

Dessa forma, o tempo em que a luz interage com os pigmentos da retina, em atossegundos, é igual a

a) 2.000.

b) 20.000

c) 200.000.

d) 2.000.000.

e) 20.000.000.

Exercício 13

(UFRGS 2015) Por qual potência de 10 deve ser multiplicado o número 10^{-3} . 10^{-3} . 10^{-3} . 10^{-3} gara que esse produto seja igual a 10?

a) 10^{9.}

b) 10¹⁰.

c) 10¹¹.

d) 10¹².

e) 10¹³.

Exercício 14

Qual o resultado da operação 0,451 : 2001?

a) 0,0002253873

b) 0,000225

c) 0,0002254

d) 0,00022

e) 0,00023

Exercício 15

(IFCE 2014) Calculando-se o valor da expressão

$$\frac{18^n \cdot 4}{2 \left(6^n \cdot 3^n\right)},$$

encontra-se:

a) 2n.

b) 6n.

c) 8.

c) 8. d) 4.

e) 2.

Exercício 16

(CFTMG 2015) Sendo

$$y = \frac{4^{10} \cdot 8^{-3} \cdot 16^{-2}}{32},$$

a metade do valor de

У

vale:

a) 2^{-3}

b) 2⁻⁴

c) 2^{-5}

d) 2^{-6}

Exercício 17

Qual o resultado da operação 11,45 s + 93,1 s + 0,333 s?

a) 104,883s

b) 104,9s

c) 104,8s

d) 104,88s e) 104,885s **Exercício 18**

Qual é a área de um triângulo de base b = 3,10 cm e altura h = 2,50 cm, se a área é A = b.h/2?

a) 3,8750 cm²

b) 3,9 cm²

c) 3,88 cm²

d) 3,87 cm²

Exercício 19

Ao arredondar $539,\underline{50}$ cal, qual o resultado obtido?

a) 540 cal

b) 539 cal

c) 539,5 cal

d) 539,6 cal

e) 539,51 cal

Exercício 20

A densidade de um corpo nos diz o quão "compacto", ou "concentrado", ele é. A relação entre a densidade (d), a massa (m) do corpo e o seu volume (V) é dada por:

$$d=\frac{m}{V}$$

Quando um corpo é aquecido, o seu volume pode aumentar (o corpo pode dilatar) sem que a sua massa aumente. Esse processo altera também a sua densidade.

Sabendo disso, qual dos gráficos abaixo melhor representa o comportamento dessas grandezas do corpo durante o aquecimento?

(ENEM 2015) As exportações de soja do Brasil totalizaram 4,129 milhões de toneladas no mês de julho de 2012, e registraram um aumento em relação ao mês de julho de 2011, embora tenha havido uma baixa em relação ao mês de maio de 2012.

Disponível em: www.noticiasagricolas.com.br.

Acesso em: 2 ago. 2012.

A quantidade, em quilogramas, de soja exportada pelo Brasil no mês de julho de 2012 foi de:

a) $4,129 \times 10^3$

b) 4,129 x 10⁶

c) $4,129 \times 10^9$

d) 4.129 x 10¹²

e) 4,129 x 10¹⁵

Exercício 22

(UEPB 2014) A velocidade da luz, que é de trezentos mil quilômetros por segundo, expressa em centímetros por segundo, será igual a:

a) $3.0 \times 10^9 \text{ cm/s}$

b) $3.0 \times 10^8 \text{ cm/s}$

c) $3.0 \times 10^{10} \text{ cm/s}$

d) $3.0 \times 10^{11} \text{ cm/s}$

Exercício 23

(FATEC 2017) Leia o texto.

A polonesa Marie Skłodowska Curie (1867–1934) é considerada a "mãe da Física Moderna" e a "patrona da Química". Madame Curie, como é conhecida, é famosa por sua pesquisa inovadora sobre a radioatividade e pela descoberta dos elementos polônio e rádio. Ela teve influência na trajetória de muitas outras mulheres ao redor do mundo, que enfrentavam uma época repleta de preconceitos e dificuldades profissionais.

No Brasil, na primeira metade do século XX, tivemos pelo menos três representantes de destaque na área da Física. Yolande Monteux (1910-1998), primeira mulher formada em Física pela USP no Brasil (1938), trabalhou em pesquisas sobre raios cósmicos, tornando-se uma das pioneiras na área. Logo depois, em 1942, duas outras pesquisadoras seguiram os passos dela, graduando-se, também, em Física. Uma delas, Elisa Frota-Pessoa (1921-), graduada pela UFRJ, trabalhou com Física Experimental. Dentre sua obra, destaca-se o artigo intitulado "Sobre a desintegração do méson pesado positivo". A outra foi Sonja Ashauer (1923–1948), também graduada pela USP, e que se tornou a primeira mulher brasileira a concluir um Doutorado em Física, na Universidade de Cambridge (Inglaterra), com uma tese sobre elétrons e radiações eletromagnéticas.

Podemos afirmar que algumas áreas da Física contempladas pelos estudos citados no texto são

- a) Termologia e Radioatividade, por estudarem a temperatura dos raios cósmicos e suas radiações.
- b) Magnetismo e Físico-Química, por terem pesquisado partículas atômicas e novos elementos.
- c) Acústica e Gases, pela descoberta do rádio e do polônio, que são gases à temperatura e pressão ambiente.
- d) Astrofísica e Física de Partículas, pelo estudo dos raios cósmicos, radioatividade e partículas subatômicas.
- e) Óptica Geométrica e Eletromagnetismo, pela observação astronômica realizada das radiações eletromagnéticas.

Exercício 24

(Ufu 2018 - Adaptada) Em 2014, um importante trabalho publicado revelou novos dados sobre a estrutura em larga escala do universo, indicando que nossa galáxia faz parte de um superaglomerado chamado Laniakea, com massa de cerca de 10^{17} estrelas como o sol, que tem 2×10^{30} kg de massa, aproximadamente. Em 2015, o Prêmio Nobel de Física foi concedido a cientistas que descobriram uma das menores massas, 4×10^{-36} kg, a de um neutrino, um tipo de partícula elementar.

Em ciência, uma maneira de se trabalhar com valores muito grandes ou muito pequenos é a ordem de grandeza. Com base nas duas descobertas apontadas, quantas vezes a ordem de grandeza da massa de Laniakea é maior do que a de um neutrino?

a) 10⁸²

b) 10⁷⁹

c) 10⁴⁹.

d) 10⁶².

Exercício 25

Ao arredondar 6,9305 s qual o resultado obtido?

a) 7 s

b) 6,9 s

c) 6,93 s

d) 6,931 s

e) 6,930 s

Exercício 26

(UFSC 2018) Sobrevivendo com a Física

Pedro, Tiago e João vão para casa conversando sobre a aula do novo professor de Física, que possui conhecimento sólido e consistente sobre Física e a produção do conhecimento em Física.

- Até hoje eu pensava que a Física era coisa de um gênio que faz tudo sozinho, comenta Tiago.
- Não é bem assim!, fala João. O professor disse que a Física é construída coletivamente, com a contribuição de várias pessoas que buscam explicar os fenômenos físicos usando os conhecimentos acumulados historicamente.
 Pedro pensa na aula e completa:
- Além disso, as explicações vão se modificando com o tempo, permitindo compreensão mais profunda dos fenômenos físicos.

Então Tiago fala em tom de brincadeira:

– Vocês prestaram bastante atenção na aula de hoje!

João, empurrando levemente o colega, diz:

- Quando o assunto é interessante, milagres acontecem!
 Devolvendo o empurrão, Tiago responde:
- É mesmo. Lembrei que o professor disse que para a produção do conhecimento em Física interesse é fundamental.

Rompendo seu breve silêncio, Pedro fala:

– Eu gosto de Física, mas às vezes tem muitos cálculos... e não sabemos qual a utilidade dela. O que mais me encanta é ver a Física no mundo, explicando as coisas, como o rádio, a televisão, os furacões, até os esportes.

Tiago fala euforicamente:

– Lembra que o professor disse que podemos encontrar a Física em tudo, basta procurar?

No mesmo instante. João diz:

- Tive uma ideia!
- Qual?, perguntam em uníssono Tiago e Pedro.
- Podíamos usar o que sabemos de Física para reproduzir as situações daqueles programas de sobrevivência que sempre assistimos na casa do Pedro.
 Pedro concorda:
- Boa ideia! Vamos montar um acampamento no sítio do meu avô em Santo Amaro da Imperatriz.

Podemos gravar o nosso *reality* e postar no Youtube para todos curtirem. Interrompendo Pedro, João decide:

- O nome vai ser Sobrevivendo com a Física!

Todos riem e vão para casa encher as mochilas com cordas, elásticos, garrafas, sacos, fios, *hand spinner*, *Gravity Ligh*t e outros apetrechos úteis para a aventura.

Com base no texto "Sobrevivendo com a Física" e na visão atual sobre a produção do conhecimento em Física, é correto afirmar que:

01) Pedro gosta de Física principalmente porque pode fazer muitos cálculos.
02) o trecho "a Física era coisa de um gênio que faz tudo sozinho" (ref. 1) é inconsistente com a visão atual sobre a produção do conhecimento em Física.
04) o trecho "as explicações vão se modificando com o tempo" (ref. 2) significa que o conhecimento produzido na Física tem pouca validade, pois muda constantemente.

08) o trecho "compreensão mais profunda dos fenômenos físicos" (ref. 3) significa que o conhecimento produzido na Física é verdadeiro e imutável.

16) o trecho "para a produção do conhecimento em Física interesse é fundamental" (ref. 4) significa que um dos motores fundamentais da produção do conhecimento em Física é o interesse do pesquisador em explicar determinado fenômeno físico.

Exercício 27

A termologia é a área da física que estuda os fenômenos térmicos. Um dos conceitos mais importantes dessa área é o calor: a transferência de energia térmica entre os corpos. A subárea que se concentra em entender essa transferência e suas consequências é a:

- a) Calorimetria
- b) Dilatometria
- c) Termometria
- d) Transmissão de Calor
- e) Termodinâmica

Exercício 28

(Uespi 2012 - Adaptada) Estima-se que o planeta Terra tenha se formado há cerca de 4,5 bilhões de anos. Qual é a ordem de grandeza da idade da Terra em horas?

Lembre-se: 1 ano tem 365 dias e 1 dia tem 24 horas.

- a) 10¹¹
- b) 10¹⁴
- c) 10¹⁵ d) 10¹⁷
- e) 10¹⁹

Exercício 29

Ao arredondar 787, 672 cm qual o resultado obtido?

- a) 787.6 cm
- b) 787.67 cm
- c) 787,673 cm
- d) 787,7 cm
- e) 787,68 cm

Exercício 30

Ao arredondar 24, 9287 g qual o resultado obtido?

- a) 24,93 g
- b) 24,9 g
- c) 24,92 g
- d) 24,928 g
- e) 24,923 g

Exercício 31

(IFSP 2017) Leia o trecho adaptado abaixo para responder à questão.

"A perereca-macaco-de-cera, encontrada na América do Sul e Central, é capaz de aguentar mais tempo no sol forte do que outras espécies de anfíbios, devido à secreção de cera que reduz a perda de água por evaporação, protegendo sua pele."

Fonte: http://biologiavida-oficial.blogspot.com.br/2014/04/phyllomedusasauvagii.html.

A área territorial da América Central é de, aproximadamente,

523.000 km².

Assinale a alternativa que apresenta a área em potência de base

10.

- a) 523×10^2 .
- b) 52.3×10^4 .
- c) 5.23×10^2 .
- d) 523×10^4 .

 $e) 5.23 \times 10^3$

Exercício 32

(UEMA 2015) Os planetas do sistema solar, do qual nosso planeta Terra faz parte, realizam órbitas em torno do sol, mantendo determinada distância, conforme mostra a figura a seguir.

Fonte: Disponível em:http://webciencia.com. Acesso em: 27 ago. 2014. (adaptado)

O valor, em metros, da distância da Terra ao Sol em potência é:

a) $14,96 \times 10^{-11}$

b) 1.496×10^{10}

c) 14.96×10^{-10}

d) 1.496×10^{11}

 $e)14.96 \times 10^{11}$

Exercício 33

(UFPE 2001) O fluxo total de sangue na grande circulação, também chamado de débito cardíaco, faz com que o coração de um homem adulto seja responsável pelo bombeamento, em média, de 20 litros por minuto. Qual a ordem de grandeza do volume de sangue, em litros, bombeado pelo coração em um dia?

a) 10^2

b) 10³

c) 10⁴ d) 10⁵

e) 10⁶

Exercício 34

Qual é o volume, em cm³, de uma esfera cujo o diâmetro vale 4,00 cm? Dados: Volume de uma esfera: $V = 4/3 \ \pi r^3$

Considere $\pi = 3,14$

a) 33,5

b) 33,5103

c) 33,510

d) 33,510321

Exercício 35

(IFPE 2017) No passado, Pernambuco participou ativamente da formação cultural, étnica, social e, até mesmo, quantitativa da população brasileira. No período colonial, e com a chegada dos portugueses à região, em 1501, o território foi explorado por Gaspar de Lemos, que teria criado feitorias ao longo da costa da colônia, possivelmente na atual localidade de Igarassu. A partir daí,

a população da província só cresceu, porém, mesmo na época da ocupação holandesa (1630-1654), os colonos contavam entre 10 e 20 mil pessoas (não mencionamos aqui o grande quantitativo e mesmo pouco conhecido de indígenas que habitavam toda a província). Hoje, o Brasil possui cerca de 200 milhões de habitantes.

Na Física, expressamos a ordem de grandeza como o valor mais próximo de uma medida em potência de 10. Em uma estimativa aproximada, podemos dizer que a ordem de grandeza do quantitativo de habitantes em nosso país, na atualidade, e de colonos, no período holandês, são, respectivamente,

a) 10^3 e 10^6 .

b) 10^6 e 10^3 .

c) 10^8 e 10^4 .

d) 10^8 e 10^5 .

e) 10¹⁰ e 10⁶.

Exercício 36

Newton é, sem sombra de dúvidas, uma das personalidades mais famosas da Física. No contexto do ensino médio, suas principais contribuições foram:

- I As leis de Newton para o movimento. Elas descrevem as principais propriedades das forças e nos auxiliam a entender o que está por trás do movimento dos corpos.
- II A lei da gravitação universal. Ela define matematicamente as propriedades da atração gravitacional mútua que ocorre entre dois corpos que possuem massa

As leis I e II, respectivamente, fazem parte das seguintes subáreas da Mecânica:

- a) Cinemática e Gravitação
- b) Estática e Gravitação
- c) Dinâmica e Gravitação
- d) Cinemática e Dinâmica
- e) Dinâmica e Quântica

Exercício 37

(ENEM 2017) Uma das principais provas de velocidade do atletismo é a prova dos 400 metros rasos. No Campeonato Mundial de Sevilha, em 1999, o atleta Michael Johnson venceu essa prova, com a marca de 43,18 segundos.

Esse tempo, em segundo, escrito em notação científica é:

a) 0,4318 x 10²

b) 4,318 x 10¹

c) 43,18 x 10⁰

d) 431,8 x 10⁻¹

e) 4.318 x 10⁻²

Exercício 38

(UCS 2012 - Adaptada) A nanotecnologia é um dos ramos mais promissores para o progresso tecnológico humano. Essa área se baseia na manipulação de estruturas em escala de comprimento, segundo o que é indicado no próprio nome, de:

a) 0,001 m.

b) 0,000.1 m.

c) 0,000.001 m.

d) 0,000.000.001 m.

e) 0,000.000.000.000.001 m.

Exercício 39

(UFC 2004) O sistema internacional de unidades e medidas utiliza vários prefixos associados à unidade-base. Esses prefixos indicam os múltiplos decimais que são maiores ou menores do que a unidade-base.

Assinale a alternativa que contém a representação numérica dos prefixos: micro, nano, deci, centi e mili, nessa mesma ordem de apresentação.

a) 10⁻⁹, 10⁻¹², 10⁻¹, 10⁻², 10⁻³ b) 10⁶, 10⁻⁹, 10, 10², 10³ c) 10⁻⁶, 10⁻¹², 10⁻¹, 10⁻², 10⁻³ d) 10⁻³, 10⁻¹², 10⁻¹, 10⁻², 10⁻⁶ e) 10⁻⁶, 10⁻⁹, 10⁻¹, 10⁻², 10⁻³

Exercício 40

A densidade de um corpo nos diz o quão "compacto", ou "concentrado", ele é. A relação entre a densidade (d), a massa (m) do corpo e o seu volume (V) é dada por:

$$d = \frac{m}{V}$$

Quando um corpo é aquecido, o seu volume pode aumentar (o corpo pode dilatar) sem que a sua massa aumente. Esse processo altera também a sua densidade.

Se um corpo que tinha uma densidade de 6 kg/L for aquecido e, ao longo da dilatação, o seu volume aumentar de 5 L pra 15 L, quanto valerá a sua densidade final?

Obs: L (litro) e kg/L (quilograma por litro) são unidades de volume e densidade respectivamente. Não se preocupe com as unidades por enquanto, você as estudará em breve. Foque apenas nos valores.

a) 1 kg/L

b) 2 kg/L

c) 3 kg/L

d) 5 kg/L

e) 6 kg/L

Exercício 41

(Ufrrj 2001) O censo populacional realizado em 1970 constatou que a população do Brasil era de 90 milhões de habitantes. Hoje, o censo estima uma população de 150 milhões de habitantes. A ordem de grandeza que melhor expressa o aumento populacional é

a) 10^6 .

b) 10⁷.

c) 10⁸.

d) 10⁹.

e) 10¹⁰.

Exercício 42

Em uma aula de biologia, Pedro aprendeu que o animal mais rápido do mundo é o guepardo, capaz de atingir a impressionante velocidade de 115 km/h. Na aula seguinte, Pedro aprendeu em física a converter unidades de velocidade e decidiu juntar os dois conhecimentos, convertendo a velocidade do guepardo para m/s. Qual é, aproximadamente, a velocidade do guepardo obtida por Pedro?

Dado: 1 m/s = 3.6 km/h.

a) 414 m/s.

b) 32 m/s.

c) 320 m/s.

d) 4.140 m/s.

e) 3,2 m/s.

iplos nicro. O eletromagnetismo estuda os fenômenos elétricos, magnéticos e a relação entre eles. Essa área da física costuma ser dividida em 3 partes:

I - A ___ estuda as cargas elétricas em repouso, a força elétrica entre elas e os processos de eletrização.

II - A ___ estuda as cargas elétricas em movimento, ou seja, a corrente elétrica. É nessa subárea que aprendemos a resolver circuitos elétricos.

III - O ___ estuda os fenômenos magnéticos e como eles se relacionam com os fenômenos elétricos estudados nas subáreas I e II.

As palavras que completam as lacunas são, respectivamente:

a) Eletrostática, Eletricidade e Magnetismo

b) Eletricidade, Eletrodinâmica e Magnetismo

c) Eletrostática, Eletrodinâmica e Magnetismo

d) Eletrodinâmica, Eletrostática e Magnetismo

e) Eletrostática, Eletricidade e Imantologia

Exercício 44

Para um automóvel que se move com velocidade constante, a relação entre o seu deslocamento (Δ s), a sua velocidade (v) e o período de tempo (t) decorrido é dada por:

$$\Delta s = v \cdot t$$

Sabendo disso, é possível afirmar que quanto maior for o período de tempo decorrido

a) menor será o deslocamento do automóvel.

b) maior será o deslocamento do automóvel.

c) maior será a velocidade do automóvel.

d) menor será a velocidade do automóvel.

Exercício 45

Todo corpo em movimento possui um tipo de energia chamado de energia cinética. Para um mesmo corpo de massa m, essa energia (E) é sempre proporcional ao quadrado da velocidade (v) do corpo. Sabendo disso, qual das equações abaixo melhor representa a relação entre essas grandezas?

a)
$$E = \frac{m}{v}$$

b) $E = \frac{m}{v^2}$

c)
$$E=m\cdot v$$

d)
$$E = m \cdot v^2$$

Exercício 46

A Física é a ciência que estuda a matéria, seu movimento e seu comportamento ao longo do espaço e do tempo, utilizando grandezas como força e energia. Ela costuma ser dividida em 6 grandes áreas, quais são elas?

a) Mecânica, Ondulatória, Geologia, Eletromagnetismo, Óptica e Astronomia.

b) Mecânica, Ondulatória, Botânica, Eletromagnetismo, Genética e Física Moderna.

c) Mecânica, Ondulatória, Termoquímica, Eletroquímica, Óptica e Física Moderna.

d) Mecânica, Ondulatória, Termologia, Eletromagnetismo, Óptica e Física Moderna.

e) Mecânica, Ondulatória, Termologia, Eletricidade, Óptica e Física Quântica.

Exercício 47

Qual das alternativas abaixo possui apenas unidades de uma mesma grandeza?

a) m/s^2 , m/s, m^3 , cm/s^2 .

b) cm³, mm², m³, km³.

c) mm, cm, dm, m.

d) cm^2 , m^2 , km^2 , m/s^2 .

e) mm², mm/s², mm, mm³.

(G1 - IFSP 2014) Leia as notícias:

"A NGC 4151 está localizada a cerca de **43 milhões** de anos-luz da Terra e se enquadra entre as galáxias jovens que possui um buraco negro em intensa atividade. Mas ela não é só lembrada por esses quesitos. A NGC 4151 é conhecida por astrônomos como o 'olho de Sauron', uma referência ao vilão do filme 'O Senhor dos Anéis'".

(http://www1.folha.uol.com.br/ciencia/887260-galaxia-herda-nome-de-vilao-do-filme-o-senhor-dos-aneis.shtml Acesso em: 27.10.2013.)

"Cientistas britânicos conseguiram fazer com que um microscópio ótico conseguisse enxergar objetos de cerca de **0,00000005** m, oferecendo um olhar inédito sobre o mundo 'nanoscópico'".

(http://noticias.uol.com.br/ultnot/cienciaesaude/ultimasnoticias/bbc/2011/03/02/com-metodo-inovador-cientistas-criam-microscopiomais-potente-do-mundo.jhtm Acesso em: 27.10.2013. Adaptado)

Assinale a alternativa que apresenta os números em destaque no texto, escritos em notação científica.

a) 4.3×10^7 e 5.0×10^8 .

b) 4,3 x 10⁷ e 5,0 x 10⁻⁸.

c) $4,3 \times 10^{-7} \text{ e } 5,0 \times 10^{8}$.

d) $4.3 \times 10^6 \text{ e } 5.0 \times 10^7$.

e) 4,3 x 10⁻⁶ e 5,0 x 10⁻⁷.

Exercício 49

A constante de Avogadro é definida como o número de átomos ou moléculas por mol de uma determinada substância. O seu valor é de aproximadamente 6,02 x 10²³ mol⁻¹. Qual a ordem de grandeza dessa constante?

a) 10²¹

b) 10²²

c) 10^{23}

d) 10²⁴

e) 10²⁵

Exercício 50

A mecânica é a área da física que se concentra em estudar o movimento e o repouso de corpos materiais. A subárea ___ estuda como ocorrem os movimentos sem se preocupar com suas causas. Já a subárea ___ explica as causas desses movimentos utilizando o conceito de força. As palavras que completam as lacunas são, respectivamente:

- a) Estática e Dinâmica
- b) Cinemática e Dinâmica
- c) Estática e Cinética
- d) Cinemática e Movimento Harmônico Simples
- e) Cinética e Dinâmica

Exercício 51

Em uma região no litoral do Brasil, a pressão ao nível do mar é de 1 atm. Uma mergulhadora decidiu conhecer as belezas subaquáticas do local e mergulhou até uma profundidade onde mediu uma pressão de 2,5 atm. Qual foi o valor da pressão medida, em pascal?

Dado: $1~atm \simeq 10^5~Pa$

- a) 25 Pa.
- b) 250 Pa.
- c) 2.500 Pa.
- d) 25.000 Pa.
- e) 250.000 Pa.

Exercício 52

Denis chegou nos Estados Unidos em um dia quente de verão. Ao sair na rua, viu que um termômetro indicava uma temperatura de 98,6 °F. Como não estava familiarizado com essa unidade de medida, Denis decidiu converter o valor para Celsius, unidade em que estava mais acostumado. Qual foi o valor obtido por Denis?

Dado:
$$\frac{T_C}{5} = \frac{T_F - 32}{9}$$

- a) 34 °C.
- b) 35 °C.
- c) 36 °C.
- d) 37 °C.
- e) 38 °C.

Exercício 53

(Ufrrj 2005 - Adaptada) Uma determinada marca de automóvel possui um tanque de gasolina com volume igual a 54 litros. O manual de apresentação do veículo informa que ele pode percorrer 12 km com 1 litro. Supondo-se que as informações do fabricante sejam verdadeiras, a ordem de grandeza da distância, medida em km, que o automóvel pode percorrer, após ter o tanque completamente cheio, sem precisar reabastecer, é de

- a) 10^{-3}
- b) 10⁻¹.
- c) 10⁰.
- d) 10².
- e) 10³.

Exercício 54

(ENEM 2012) A Agência Espacial Norte Americana (NASA) informou que o asteroide YU 55 cruzou o espaço entre a Terra e a Lua no mês de novembro de 2011. A ilustração a seguir sugere que o asteroide percorreu sua trajetória no mesmo plano que contém a órbita descrita pela Lua em torno da Terra. Na figura, está indicada a proximidade do asteroide em relação à Terra, ou seja, a menor distância que ele passou da superfície terrestre.

Disponível em: http://noticias.terra.com.br (adaptado).

Com base nessas informações, a menor distância que o asteroide YU 55 passou da superfície da Terra é igual a:

- a) $3,25 \times 10^2 \text{km}$.
- b) 3.25×10^3 km.
- c) 3.25×10^4 km.
- d) 3.25×10^5 km.

Ao se consultar com seu nutricionista, um estudante de física foi instruído a seguir uma dieta de 1.500 calorias diárias. Durante as aulas, o estudante havia aprendido recentemente que caloria é uma unidade de energia, assim como o joule. Ao lembrar disso, decidiu calcular quanto deveria consumir, em joules, seguindo a dieta indicada por seu nutricionista. Qual valor o estudante obteve?

Dado: 1 cal = 4,2 J

a) 6.3 J.

b) 63 J.

c) 630 J.

d) 6.300 J.

e) 63.000 J.

Exercício 56

Um fabricante, ao calcular o volume de uma caixa, obteve o valor 5.000 cm³. No entanto, ao informar a capacidade da caixa em suas vendas, ele desejou utilizar litros ao invés de centímetros cúbicos. Qual valor o fabricante deverá informar aos compradores?

Dado: $1 \text{ cm}^3 = 0.001 \text{ L}$

a) 0,005 L.

b) 0,05 L.

c) 0,5 L.

d) 5 L.

e) 50 L.

Exercício 57

A revolução industrial que aconteceu na Europa nos séculos XVIII e XIX foi caracterizada pela substituição do trabalho artesanal pelo uso de máquinas, principalmente máquinas térmicas. A subárea da termologia que estuda as máquinas térmicas e sua capacidade de transformar calor em trabalho é a:

- a) Calorimetria
- b) Dilatometria
- c) Termometria
- d) Transmissão de Calor
- e) Termodinâmica

Exercício 58

Qual dos seguintes prefixos indica que um valor no Sistema Internacional deve ser multiplicado pelo fator 10^{-3} ?

- a) mili.
- b) quilo.
- c) mega.
- d) micro.
- e) centi.

Exercício 59

Hugo, José e Luiz apostaram uma corrida. Ao final do percurso, eles terminaram com as seguintes velocidades médias:

Hugo: 7 km/h. José: 2,3 m/s.

Luiz: 7,5 km/h.

a) José, Luiz, Hugo.

b) Luiz, Hugo, José.

c) Luiz, José, Hugo.

d) Hugo, José, Luiz.

e) Hugo, Luiz, José.

Exercício 60

Sobre todo corpo que possui massa, atua uma força peso. É essa força que nos puxa em direção à Terra. Sabendo que a relação entre o peso (P) de um corpo, a sua massa (m) e a gravidade (g) local é dada por:

$$P = m \cdot g$$

Se um corpo pesa 50 N na Terra, onde a gravidade vale aproximadamente 10 m/s², quanto esse corpo pesaria em Júpiter, onde a gravidade vale aproximadamente 25 m/s²?

Obs: N (newton) e m/s² (metro por segundo ao quadrado) são unidades de força e aceleração respectivamente. Não se preocupe com as unidades por enquanto, você as estudará em breve. Foque apenas nos valores.

a) 20 N

b) 50 N

c) 100 N

d) 125 N

e) 200 N

Exercício 61

Quando comprimimos ou estendemos uma mola, ela tentará voltar para a sua posição inicial. Para isso, ela exerce uma força chamada de força elástica.

Sabendo que, para uma mesma mola, a força elástica (F) é sempre diretamente proporcional ao deslocamento (x) da sua posição inicial, qual das equações abaixo melhor representa a relação entre essas grandezas?

Considere k uma constante de proporcionalidade.

a) $F = k \cdot x$

b) $F = k \cdot x^2$

c) $F = \frac{k}{x}$

 $F = \frac{k}{x^2}$

Exercício 62

Para um automóvel que se move com velocidade constante, a relação entre o seu deslocamento (Δ s), a sua velocidade (v) e o período de tempo (t) decorrido é dada por:

 $\Delta s = v \cdot t$

Essa relação está representada no gráfico abaixo, onde o deslocamento é dado em metros e o tempo em segundos:

Com base no gráfico, podemos afirmar que, caso a velocidade (v) do automóvel continue constante, após 24 segundos, ele terá se deslocado

- a) 120 m.
- b) 180 m.
- c) 240 m.
- d) 360 m.
- e) 400 m.

Exercício 63

Sempre que uma força atua sobre um corpo, o corpo sofre uma pressão externa que depende da área de aplicação dessa força. Sabendo que a relação entre a pressão (p), a força (F) aplicada e a área (A) de aplicação é dada por:

$$p = \frac{F}{A}$$

Se uma mesma força for aplicada sobre duas áreas diferentes, é possível afirmar que

- a) a pressão será idêntica em ambos os casos.
- b) a pressão será maior na maior área.
- c) a pressão será maior na menor área.
- d) a pressão será nula em ambos os casos.

Exercício 64

 A força resultante (F) que atua sobre um corpo de massa m é sempre diretamente proporcional à aceleração (a) que esse corpo adquire. Essa relação é conhecida como a segunda lei de Newton:

$$F = m \cdot a$$

Sabendo disso, qual dos gráficos abaixo melhor representa essa relação?

Existem duas áreas da física que estudam as ondas e os fenômenos relacionados à elas. A ___ estuda as ondas de forma geral, suas classificações e principais fenômenos. A ___ estuda as especificidades das ondas eletromagnéticas, principalmente dos raios de luz. As palavras que completam as lacunas são, respectivamente:

- a) Ondulatória e Acústica
- b) Ondulatória e Cromodinâmica
- c) Ondulatória e Óptica
- d) Movimento Harmônico Simples e Cromodinâmica
- e) Movimento Harmônico Simples e Óptica

Exercício 66

Chamamos de carga elétrica fundamental o valor absoluto da carga elétrica de um elétron ou de um próton, que são idênticos, porém com sinal contrário. Esse valor é de aproximadamente 1,6 x 10^{-19} C. Qual a ordem de grandeza dessa constante?

- a) 10⁻¹⁸
- b) 10⁻¹⁹
- c) 10⁻²⁰
- d) 10⁻²¹
- e) 10⁻²²

Exercício 67

(G1 - cftce 2007) Um fumante compulsivo, aquele que consome em média cerca de 20 cigarros por dia, terá sérios problemas cardiovasculares. A ordem de grandeza do número de cigarros consumidos por este fumante durante 20 anos é de:

- a) 10^2
- b) 10^3
- c) 10^5

Gabarito

Exercício 1

- 01) O volume de água nos oceanos é de 13.457.125×10¹¹ m³.
- 04) O volume da água dos rios é de 15×10¹⁴ L.
- 08) O volume de águas subterrâneas é superior a mil vezes o volume de água na atmosfera.
- 16) O volume de água concentrado na umidade do solo e na atmosfera cabe em uma esfera de raio

 $20\sqrt[3]{2} \ km$.

Exercício 2

b)

97

Exercício 3

a) x³

Exercício 4

d) 1,21 x 10³ cm²

Exercício 5

e) 10⁸

- d) 10⁷
- e) 10⁹

Exercício 68

É muito comum comprarmos pacotes de alimentos "por quilo". Essa unidade de massa no Sistema Internacional, o quilograma (kg), indica que o grama, outra unidade de massa, está sendo multiplicado por qual fator?

- a) 10¹.
- b) 10².
- c) 10³.
- d) 10⁴.
- e) 10⁵.

Exercício 69

Leia o diálogo a seguir:

- O senhor será multado por dirigir acima do limite de velocidade da rodovia.
- Mas, Seu Guarda, eu estava a 34 metros por segundo, de acordo com o meu hodômetro!
- O limite é de 100 km/h. O senhor estava a mais de 120!

Considerando que o limite de velocidade na rodovia em questão realmente seja de 100 km/h e que o motorista falou a verdade ao afirmar que estava a 34 m/s, qual das afirmações abaixo está correta?

Dado: 1 m/s = 3.6 km/h.

- a) O motorista não deve ser multado, pois estava abaixo do limite de velocidade.
- b) O motorista deve ser multado, pois estava acima do limite de velocidade.
- c) O motorista não deve ser multado, pois estava exatamente no limite de velocidade.
- d) Não podemos analisar a situação, pois ambos citaram valores em diferentes unidades de medida.

Exercício 6

d)

 2^{-45}

Exercício 7

b) 500 < X < 1000

Exercício 8

b) 0,75

Exercício 9

c) 59,06 g

Exercício 10

e) 36, 9 e 300.

Exercício 11

d)

81¹²

c) 200.000.

Exercício 13

e) 10¹³.

Exercício 14

b) 0,000225

Exercício 15

e) 2.

Exercício 16

a)

 2^{-3}

Exercício 17

b) 104,9s

Exercício 18

c) 3,88 cm²

Exercício 19

a) 540 cal

Exercício 20

e)

Exercício 21

c) 4,129 x 10⁹

Exercício 22

c) 3,0 x 10¹⁰ cm/s

Exercício 23

d) Astrofísica e Física de Partículas, pelo estudo dos raios cósmicos, radioatividade e partículas subatômicas.

Exercício 24

a) 10⁸².

Exercício 25

b) 6,9 s

Exercício 26

02) o trecho "a Física era coisa de um gênio que faz tudo sozinho" (ref. 1) é inconsistente com a visão atual sobre a produção do conhecimento em Física.

16) o trecho "para a produção do conhecimento em Física interesse é fundamental" (ref. 4) significa que um dos motores fundamentais da produção do conhecimento em Física é o interesse do pesquisador em explicar determinado fenômeno físico.

Exercício 27

a) Calorimetria

Exercício 28

b) 10¹⁴

Exercício 29

d) 787,7 cm

Exercício 30

a) 24,93 g

Exercício 31

b)

 $52,3 \times 10^4$.

Exercício 32

d)

 $1,496 \times 10^{11}$

Exercício 33

c) 10⁴

Exercício 34

a) 33,5

Exercício 35

c) 10^8 e 10^4 .

Exercício 36

c) Dinâmica e Gravitação

Exercício 37

b) 4,318 x 10¹

Exercício 38

d) 0,000.000.001 m.

Exercício 39

e) 10⁻⁶, 10⁻⁹, 10⁻¹, 10⁻², 10⁻³

Exercício 40

b) 2 kg/L

Exercício 41

c) 10⁸.

b) 32 m/s.

Exercício 43

c) Eletrostática, Eletrodinâmica e Magnetismo

Exercício 44

b) maior será o deslocamento do automóvel.

Exercício 45

d)

$$E = m \cdot v^2$$

Exercício 46

d) Mecânica, Ondulatória, Termologia, Eletromagnetismo, Óptica e Física Moderna.

Exercício 47

c) mm, cm, dm, m.

Exercício 48

b) 4,3 x 10⁷ e 5,0 x 10⁻⁸.

Exercício 49

d) 10²⁴

Exercício 50

b) Cinemática e Dinâmica

Exercício 51

e) 250.000 Pa.

Exercício 52

d) 37 °C.

Exercício 53

e) 10³.

Exercício 54

d) 3,25

×

10⁵ km.

Exercício 55

d) 6.300 J.

Exercício 56

d) 5 L.

Exercício 57

e) Termodinâmica

Exercício 58

a) mili.

Exercício 59

a) José, Luiz, Hugo.

Exercício 60

d) 125 N

Exercício 61

a)

$$F = k \cdot x$$

Exercício 62

d) 360 m.

Exercício 63

c) a pressão será maior na menor área.

Exercício 64

c)

Exercício 65

c) Ondulatória e Óptica

Exercício 66

b) 10⁻¹⁹

Exercício 67

c) 10^5

Exercício 68

c) 10^3 .

Exercício 69

b) O motorista deve ser multado, pois estava acima do limite de velocidade.