Computing optimal behavioural strategies in 2-person zero-sum sequential games with imperfect information (Get rich, *Or die Tryin'*)

DOHMATOB Elvis

Abstract

In 1951 (during his thesis!), Nash stated and proved that any finite game admits at least one equilibrium (now known as a Nash Equilibrium). An optimal way to play any finite game is thus to compute a NE (s_i, s_{-i}) offline, and then play one's part of the deal s_i online. By construction, one shouldn't do any worst than the value of the game. For games with imperfect information like Poker, the problem of effectively computing such Nash equilibria remains a computational challenge (for example, a solution technique using the normal form of the game will scale exponentially with the game size which can be worth billions of nodes for 'simple' games). I'll sketch the sequence-form representation which was developed by D. Koller, Benhard von Stengel, and co-workers, in the 90's and illustrate some solution techniques from convex optimization, which are applicable to this representation. As proof of concept, I'll present a simple bot which optimally plays Kuhn's poker.

Index Terms

Game Theory; non-cooperative game; 2-person zero-sum sequential game; imperfect information; Nash equilibrium; behavioural strategy; optimality; normal-form representation; sequence-form representation; convex analysis