

Machine Learning Course - CS-433

Text Representation Learning

Dec 6, 2023

Martin Jaggi

Last updated on: December 3, 2023

Motivation

Finding numerical representations for words is fundamental for all machine learning methods dealing with text data. $\vec{W}_i = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \in \text{position } i$ $0 \in \mathbb{R}^k$ $0 \in \mathbb{R}^k$

Goal: For each word, find mapping

(embedding)

weakley: 1000

 $w_i \mapsto \mathbf{w}_i \in \mathbb{R}^K$

Representation should capture semantics of the word.

Constructing good feature representations (= representation learning) benefits all ML applications.

The Co-Occurence Matrix

A big corpus of un-labeled text can be represented as the co-occurrence counts

 $n_{ij} := \# \text{contexts where word } w_i \text{ occurs together with word } w_j.$

		160	d j		J			
	4	1	1		0		95	1.9% Zeros
			3		D		K	
		1			0			
wordi		2		1				1
-)	1				1			T
			1			2	M	+ + K
		1		1	1	- 1		
Needs	defin	nition	n of			,7		word vector

- Context e.g. document, paragraph, sentence, window
- Vocabulary $\mathcal{V}:=\{w_1,\ldots,w_D\}$ e.g. $|\mathcal{V}|=100k$

For words $w_d = 1, 2, ..., D$ and context words $w_n = 1, 2, ..., N$, the co-occurrence counts n_{ij} form a very sparse $D \times N$ matrix.

P=N reclistically

Learning Word-Representations (Using Matrix Factorization)

a factorization of the occurence matrix! Typically uses log of the actual counts, i.e. $x_{dn} := \log(n_{dn})$.

1013 • Word 2 VCC • Glove 2014

We will aim to find \mathbf{W}, \mathbf{Z} s.t.

The inner product of the squard loss \mathbf{W}_{d} : \mathbf{W}_{d} : \mathbf{Z}_{n} : $\min_{\mathbf{W},\mathbf{Z}} \mathcal{L}(\mathbf{W},\mathbf{Z}) := \frac{1}{2} \sum_{(d,n) \in \Omega} f_{dy} [x_{dn} - (\mathbf{W}\mathbf{Z}^{\mathsf{T}})_{dn}]^{2}$ where $\mathbf{W} \in \mathbb{R}^{D \times K}$ and $\mathbf{Z} \in \mathbb{R}^{N \times K}$ re tall matrices, having on! \mathbf{W}_{d} , \mathbf{W}_{d} and \mathbf{W}_{d} is the set \mathbf{W}_{d} .

Squard (or)
$$Z^{T})_{dn}$$

The set $\Omega \subseteq [D] \times [N]$ collects the indices of non-zeros of the count matrix X.

Each row of those matrices forms a representation of a word (W) or a context word (\mathbf{Z}) respectively.

GloVe

This model is called GloVe, and is a variant of word2vec.

Henristic Glove

Weights f_{dn} : Give "importance" of each entry. Choosing $f_{dn} := 1$ is ok. GloVe weight function:

$$f_{dn} := \min \{1, (n_{dn}/n_{\max})^{\alpha}\}, \quad \alpha \in [0; 1] \text{ e.g. } \alpha = \frac{3}{4}$$

Choosing K

K e.g. 50, 100, 500

Word Analogies

Male-Female	Verb tense	Country-Capital

Newspapers									
New York	New York Times	Baltimore	Baltimore Sun						
San Jose	San Jose Mercury News	Cincinnati	Cincinnati Enquirer						
NHL Teams									
Boston	Boston Bruins	Montreal	Montreal Canadiens						
Phoenix	Phoenix Coyotes	Nashville	Nashville Predators						
NBA Teams									
Detroit	Detroit Pistons	Toronto	Toronto Raptors						
Oakland	Golden State Warriors	Memphis	Memphis Grizzlies						
Airlines									
Austria	Austrian Airlines	Spain	Spainair						
Belgium	Brussels Airlines	Greece	Aegean Airlines						
Company executives									
Steve Ballmer	Microsoft	Larry Page	Google						
Samuel J. Palmisano IBM		Werner Vogels	Amazon						

Training

- Stochastic Gradient Descent (SGD)
- O(K) per skp
- Alternating Least-Squares
 (ALS)

see lab

Open questions:

- Parallel and distributed training
- Does regularization help?

Alternative: Skip-Gram Model

(Original word2vec)

Uses binary classification (logistic regression objective), to separate real word pairs (w_d, w_n) from fake word pairs. Same inner product score = matrix factorization.

Given w_d , a context word w_n is

- real = appearing together in a context window of size 5
- fake = any word $w_{n'}$ sampled randomly: Negative sampling (also: Noise Contrastive Estimation)

Contrastive

learning

Learning Representations of Sentences & Documents

Supervised: For a supervised task (e.g. predicting the emotion of a tweet), we can use matrix-factorization (below) or convolutional neural networks (see next)

 \rightarrow SemEval competition for tweet classification.

Unsupervised:

- Adding or averaging (fixed, given) word vectors
- Training word vectors such that adding/averaging works well
- Direct unsupervised training for sentences (appearing together with context sentences) instead of words

data (sn, xn) given

FastText

Matrix factorization to learn document/sentence representations (supervised). supervised

sentence (doc.)

representation

learning

Sentence

Given a sentence $s_n = (w_1, w_2, \dots, w_m)$, let $\mathbf{x}_n \in \mathbb{R}^{|\mathcal{V}|}$ be the bag-of-words representation of the sentence.

 $\min_{\mathbf{W}, \mathbf{Z}} \ \mathcal{L}(\mathbf{W}, \mathbf{Z}) := \sum_{s_n \text{ a sentence}} f(y_n \mathbf{W} \mathbf{Z}^{\top} \mathbf{x}_n)$

where $\mathbf{W} \in \mathbb{R}^{1 \times K}, \mathbf{Z} \in \mathbb{R}^{|\mathcal{V}| \times K}$ represents

are the variables, and the vector $\mathbf{x}_n \in \mathbb{R}^{|\mathcal{V}|}$ represents our *n*-th training sentence.

Here f is a linear classifier loss function, and $y_n \in \{\pm 1\}$ is the classification label for sentence \mathbf{x}_n . \mathbf{z} : Enhalding matrix

w: classifier

Language Models

Selfsupervised training:

Can a model generate text? - train classifier to predict the continuation (next word) of given text

• Multi-class:

Use soft-max loss function with a large number of classes D =vocabulary size

• Binary classification:

Predict if next word is real or fake (i.e. as in word2vec)

Impressive recent progress using large models, such as transformers

(e.g. GPT-2, GPT-3, chatGPT

https://transformer.huggingface.co/doc/gpt2-large,

https://chat.openai.com/)

Arithmetic:

Reasoning:

link: chatGPT on ML course exam

Further Pointers

1. word2vec:

code: code.google.com/p/word2vec/
paper:

"Distributed representations of words and phrases and their compositionality" - T Mikolov, I Sutskever, K Chen, GS Corrado, J Dean. NIPS 2013

2. GloVe:

code and vectors: nlp.stanford.edu/projects/glove/paper:

"GloVe: Global Vectors for Word Representation" - Pennington, J., Socher, R., Manning, C. D.. EMNLP 2014

3. FastText & sent2vec

code: github.com/facebookresearch/fastText papers:

"Bag of Tricks for Efficient Text Classification" - Joulin, A., Grave, E., Bojanowski, P., Mikolov, T. - EC-ACL, 2017.

"Enriching Word Vectors with Subword Information" - Bojanowski, P., Grave, E., Joulin, A., Mikolov, T. - TACL, 2017.

"Unsupervised Learning of Sentence Embeddings using Compositional n-Gram Features" - Pagliardini, M., Gupta, P., Jaggi, M. NAACL 2018.

4. Write with transformers:

code and demo: transformer.huggingface.co/doc/gpt2-large

5. ChatGPT

demo: chat.openai.com/