Operációs rendszerek

ELTE IK.

Dr. Illés Zoltán

zoltan.illes@elte.hu

Mi történt a múlt héten...

- Operációs rendszerek kialakulása
 - Sz.gép Op.rendszer generációk
- Op. Rendszer fogalma
- Fogalmak:
 - Fájlok, könyvtárak, processzek
- Rendszerhívások
- Rendszer struktúrák
 - Ma: Vegyes, tipikus kliens-szerver modell, rétegelt jellemzőkkel

Mi következik ma...

- Háttértárak
- Fájlok
 - Fájltípusok
- Könyvtárak
 - Könyvtárszerkezetek
- Fájlrendszerek
- Fájlrendszer kérés ütemezések
- Biztonsági rendszerek

...

Háttértár típusok ma

- Mágneses elvű
 - Mágnesszalagok
 - Mágneslemezek
 - Merevlemez
 - Floppy
- Optikai elvű
 - CD, DVD, Blu-Ray, lézer elv, kb. 5xDVD a kapacitás
- Félvezető
 - USB, memóriakártya
 - SSD(Solid State Drive/Disk) diszk

Háttértár típusok holnap

- Holografikus
 - GE 2011 bejelentés, 500GB, hologramok a bitek
- Biológiai
- Nano felépítésű
- **)**
- Moore törvény, …"1-2 évenként duplázódik az integrált áramkörök összetettsége …", nem kifejezetten a lemezekre vonatkozik, de…

Mágnesszalagok fizikai felépítése

- Mágnesszalagok sorrendi, lineáris felépítés
 - 9 bites keret (8 bit + paritás)
 - Keretek rekordokba szerveződnek
 - Rekordok között: rekord elválasztó (record gap)
 - Egymás utáni rekordok után, fájl elválasztó (file gap)
 - Szalag elején a könyvtárszerkezet
- Jellemző használat
 - Biztonsági mentés
 - Nagy mennyiségű adattárolásra
- Nem igazán olcsó
- ▶ Jellemző méret: DLT (Digital Linear Tape), LTO (Linear Tape-Open) 4 Ultrium 800/1600 GB, LTO5 1.5TB/3TB

Mágneslemezek felépítése I.

- FDD Floppy Disk Drive
 - Jellemzően egy lemez
- HDD Hard Disk Drive
 - Jellemzően több lemez
- Kör alakú lemez sávos felosztás
- Sávok szektorokra oszthatók blokk
 - Klaszter több blokk
- Több lemez egymás alatti sávok : cilinder
- Logikailag egy folytonos blokksorozat
- A fizikai működést a meghajtó (firmware) eltakarja.

Mágneslemez felépítése II.

- A: sáv
- B: szektor
- C: blokk, 512 byte
- D: klaszter, a
 fájlrendszer által
 megválasztott logikai
 tárolási egység. D=n x
 C, ahol n=1.. 128.
- Cilinder: Az egymás alatti sávok (pirossal)

Mágneslemez felépítése példa

- CHS címzés (Cilinder- Head- Sector)
 - Példa: 1.44 MB FD
 - Sávok száma: 80 (0–79)
 - Fejek(cilinder) száma: 2 (0-1)
 - Szektorok száma egy sávon: 18 (1–18)
 - Össz. Méret: 80*2*18=2880 szektor * 512byte
- LBA címzés (Logical Block Addressing)
 - Korábban 28 bites, kb 137GB-ig jó.
 - Jelenleg 48 bites, 144 PB (Petabájt), (144 000 000 GB)

$$A = (c \cdot N_{\text{heads}} \cdot N_{\text{sectors}}) + (h \cdot N_{\text{sectors}}) + s - 1$$

Optikai tárolók

- Tipikusan 8 vagy 12 cm átmérőjű optikai lemezek
 - CD Compact Disc, DVD -Digital Versatile Disc
 - Méret: 650MB 17 GB között
 - Sebesség: 1x = 150 KB/sec
- Működési elv: Fény visszaverődés idő különbség alapján.
 - Belső résztől spirális "hegyek völgyek" (pit-land) sorozata
 - Írható lemezek: Írás a lemezfelület mágnesességét, fény törésmutatóját változtatja meg, így más lesz a fény terjedési sebessége.

Eszközmeghajtó-Device driver

- Az a program, amely a közvetlen kommunikációt végzi.
- A kernelnek, az operációs rendszer magjának része.
- A lemezek írása-olvasása során jellemzően DMA-t használnak (nagy adatmennyiség).
 - Megszakítás üzenet, tipikusan azt jelzi ha befejeződött az írás-olvasás művelet.
 - I/O portokon az írás, olvasási paraméterek beállítását végzik.
- Réteges felépítés

Mágneslemez formázása

- Sávos-szektoros rendszer kialakítása
- Jellemzően egy szektor 512 byte
- Gyárilag a lemezek "elő vannak készítve"
- Quick format Normal format
 - A normál hibás szektorokat (bad sector) keres
- Szektor = Szektorfej+adatblokk+lábléc
 - Szektorfej: sáv száma, fej száma, szektor száma
 - Lábléc: hibajavító blokk
- A szektorok kialakítását alacsonyszintű formázásnak nevezzük.

Logikai formázás

- Partíciók kialakítása
 - Egy lemezen PC-s rendszeren maximum 4 logikai lemezrész kialakítható.
- ▶ 0. szektor- MBR (Master Boot Record)
 - 2 részből áll, mérete: 512 bájt
 - Rendszerindító kód (bootloader, 446 bájt)
 - Max. 4 partíció adatai (4x 16 bájt=64 bájt)
 - 2 bájt, mindig: 0x55 0xAA
 - Elsődleges partíció- erről tölthető be operációs rendszer
 - Kiterjesztett partíció- több logikai meghajtó lehet
 - Swap partíció
- A partíción a szükséges adatszerkezet (fájlrendszer) kialakítása

Az MBR szerkezete

MBR szerkezet										
	Cím		Leírás	Méret						
Hex	Oct	Dec	Lenas	(bájt)						
0000	0000	0	Betöltő programkód	440 (max. 446)						
01B8	0670	440	Opcionális Disk kód	4						
01BC	0674	444	Tipikusan: 0x0000	2						
01BE	0676	446	Elsődleges partíciós tábla adatok (4 db 16-bájtos rész, IBN Partició Tábla séma)	_И 64						
01FE	0776	510	55h MBR zárás:							
01FF	0777	511	AAh 0xAA55	2						
MBR, teljes méret: 446 + 64 + 2 =										

Partíciós tábla bejegyzés

- ▶ 1. bájt: Partíció státusa (80=aktív, 0=nem boot)
- 2-3-4. bájt : Partíció kezdőblokk CHS címe
 - ∘ 0-5. bit: fej száma
 - ∘ 6–15. bit: cilinder száma
 - 16–23. bit: szektor száma
- 5. bájt: Partíció típusa
- ▶ 6-7-8. bájt : Partíció befejező szektor CHS címe
- ▶ 9-10-11-12. bájt: Partíció kezdőszektor LBA címe
- ▶ 13-14-15-16. bájt: Szektorok száma
 - 4 bájt: 4 GB *512= 2 TB

Boot folyamat

- ROM-BIOS megvizsgálja, lehet-e operációs rendszert betölteni, ha igen betölti a lemez MBR programját a 7c00h címre.
- Egy elsődleges partíció lehet aktív, az MBR programja megvizsgálja melyik az.
- Az aktív partíció boot szektorát (1. szektor) betölti a memóriába.
- Ez már a partícióra installált operációs rendszer betöltő programja Pl. LILO, NTFS boot
- A boot program tudja, hogy a partíció melyik fájljait kell a memóriába tölteni, majd elindít egy "rendszerstartot"
- Többszintű folyamat, rendszerfüggő.

Címszámítás

- Blokkok sorszámainak meghatározása
 - Kell a fejek száma, szektorok száma
 - Tegyük fel adott 4 fej (2 vagy 4 lemez)
 - Egy sáv legyen felosztva 7 szektorra
- Lemezek forgási sebessége miatt a blokkok nem feltétlenül szomszédosak (interleave)
 - 1:2 interleave, párosával "szomszédosak"

	1 szektor	2 szektor	3 szektor	4 szektor	5 szektor	6 szektor	7 szektor
1 fej.	1	17	5	21	9	25	13
2 fej.	2	18	6	22	10	26	14
3 fej.	3	19	7	23	11	27	15
4 fej.	4	20	8	24	12	28	16

Lemez elérés fizikai jellemzői

- Forgási sebesség (ma tipikusan 5400,7200,10000 vagy 15000 percenként)
 - Egy sávon (cilinderen) belül mekkorát kell fordulni
- Fej mozgási sebesség
 - Egy cilinderen belül nem kell mozgatni a fejet.
- Az írás-olvasás ütemezés feladata a megfelelő (gyors, hatékony) kiszolgálási sorrend megválasztása
 - Hozzáférési idő csökkentése
 - Átviteli sávszélesség növelése

Írás-Olvasás műveletek

- Alacsonyszintű hívás során az alábbi adatok szükségesek:
 - Beolvasandó (kiírandó) blokk(ok) sorszáma
 - Memóriaterület címe, ahova be kell olvasni.
 - Bájtok száma
- Több folyamat használja
 - Melyiket hajtsuk végre először?

Írás-Olvasási műveletek ütemezése

- Alacsonyszintű (kernel) feladat paraméterek
 - Kérés típusa (írás-olvasás)
 - A blokk kezdőcíme, (sáv, szektor, fej száma)
 - DMA memóriacím
 - Mozgatandó bájtok száma
- Több folyamat is használná a lemezt
 - Kit szolgáljunk ki először.
 - Fejmozgás figyelembevétele (olvasandó blokk adataiból következik)

Sorrendi ütemezés (FCFS)

- First Come First Service
- Legegyszerűbb "stratégia", ahogy jönnek a kérések, úgy sorban kiszolgáljuk azokat.
- Biztosan minden kérés kiszolgálásra kerül.
 - Nincs kiéheztetés.
- Nem törődik a fej aktuális helyzetével.
- Nem igazán hatékony.
- Kicsi az adatátviteli sávszélesség.
- Átlagos kiszolgálási idő, kis szórással.

SSTF ütemezés

- Shortest Seek Time First SSTF, leghamarabb elérhetőt először
- A legkisebb fejmozgást részesíti előnyben.
- Átlagos várakozási idő kicsi.
 - A várakozási idő szórása nagy
- Átviteli sávszélesség nagy
- Fennáll a kiéheztetés veszélye

Pásztázó ütemezés

- SCAN (LOOK) módszer
- A fej állandó mozgásban van, és a mozgás útjába eső kéréseket kielégíti.
- A fej mozgás megfordul ha a mozgás irányában nincs kérés, vagy a fej szélső pozíciót ért el.
- Rossz ütemben érkező kérések kiszolgálása csak oda-vissza mozgás(irás-olvasás) után kerül kiszolgálásra.
 - Várakozási idő közepes, Szórás nagy
- Középső sávok elérés szórása kicsi

Egyirányú pásztázás

- Circural SCAN, C-SCAN
- A SCAN javítása, írás-olvasás, csak a fej egyik irányú mozgásakor történik.
- Gyorsabb fejmozgás
- Nagyobb sávszélesség
- Az átlagos várakozási idő hasonló mint a SCAN esetén, viszont a szórás kicsi.
 - Nem fordulhat elő igazán rossz ütemű kérés

Ütemezés javítások

- FCFS módszernél, ha az aktuális sorrendi kérés kiszolgálás helyén van egy másik kérés blokkja (mozgás nélkül elérhető), akkor szolgáljuk ki azt is. (Pick up)
- Egy folyamat adatai jellemzően egymás után vannak, így egy kérés kiszolgálásnál "picit" várva, a folyamat az adatainak további részét is kéri a folyamat.
 - Előlegező ütemezésnek is nevezzük
- A lemez közepe általában hatékonyan elérhető.

Ütemezés javítása memória használattal

- A DMA maga is memória
- Memória puffer (átmeneti tár) használat
 - Kettős körszerű használat
 - Olvasás: Ütemező tölti, felhasználói folyamat üríti
 - Írás: Felhasználó folyamat tölti, ütemező üríti
- Disc cache Lemez gyorsitótár
 - Előre dolgozik az ütemező, a memóriába tölti a kért adatok "környéki" lemezterületet is.
 - Operációs rendszernek jelent plusz feladatot
 - PL: Smartdrive

Milyen ütemezést válasszunk?

- A fenti algoritmusok csak a fejmozgás idejét vették figyelembe, az elfordulást nem.
- A sorrendi ütemezést tipikusan egy felhasználós rendszernél használt.
- SSTF, kiéheztetés veszélye nagy
- C-Scan, nagy IO átvitel, nincs kiéheztetés
- Beépített ütemező: PL. SCSI vezérlők
 - OS ömlesztve adja a kéréseket.

Ütemezés kulcsfeladata

- Gyorsan (minél gyorsabban) kiszolgálni a kéréseket.
- Ezt mi is (OS is) elősegíthetjük.
 - Összetartozó adatok együtt legyenek (töredezettség)
 - Sávszélesség a lemez közepén a legnagyobb.
 - Leggyorsabban a lemez közepét érjük el (virtuális memória)
 - Lemez gyorsító tár a memóriában.
 - Esetleg adattömörítés (nagyobb CPU terhelés)

Lemezek megbízhatósága

- Jelentése: Az adatok redundáns tárolása, hogy lemezsérülés esetén se legyen adatvesztés
- Operációs rendszer szolgáltatás
 - Dinamikus kötet- több lemezre helyez egy logikai meghajtót. Méret összeadódik.
 - Tükrözés- két lemezre helyez egy meghajtót.
 Mérete az egyik (kisebb) lemez mérete lesz.
 - Nagy(obb) CPU igény.
- Hardware szolgáltatás
 - Intelligens meghajtó szolgáltatás
 - Az SCSI eszköz világban jelent meg először (RAID)

Megbízható lemezmeghajtók

- RAID Redundant Array of Inexpensive Disks
- SCSI lemezegységeknél jelent meg először
 - Nem scsí…©
 - Small Computer System Interface
 - Számítógépek és perifériák közti adatcsere egy ma is népszerű szabvány együttese.
 - Leggyakrabban lemezek körében használt, szerver gépek használják (ták)
 - Ennek egy újabb változata: SAS csatoló (Serial Attached SCSI

RAID

- Ha operációs rendszer nyújtja, gyakran SoftRaid-nek nevezik.
- Ha intelligens (külső) vezérlőegység nyújtja, gyakran Hardver Raid-nek, vagy csak Raid diszkrendszernek nevezik.
- Bár nevében olcsó (Inexpensive), valójában inkább nem az.
- Több lemezt fog össze, és egy logikai egységként látja az operációs rendszer.
- ▶ Többféle "összefogási" elv létezik:RAID 0-6

RAID 0(striping)

- Ez az a Raid, ami nem is redundáns...
- Több lemez logikai összefűzésével egy meghajtót kapunk.
- A lemezkapacitások összege adja az új meghajtó kapacitását.
- A logikai meghajtó blokkjait szétrakja a lemezekre (striping), ezáltal egy fájl írása több lemezre kerül.
- Gyorsabb I/O műveletek.
- Nincs meghibásodás elleni védelem.

RAID 1 (tükrözés)

- Két független lemezből készít egy logikai egységet.
- Minden adatot párhuzamosan kiír mindkét lemezre.(Tükrözés, mirror)
- Tárolókapacitás felére csökken.
- Drága megoldás.
- Jelentős hibatűrő képesség.
 - Mindkét lemez egyszerre történő meghibásodása okoz adatvesztést.

RAID 1+0, RAID 0+1

- RAID 1+0: Tükrös diszkekből vonjunk össze többet.
- RAID 0+1: Raid 0 összevont lemezcsoportból vegyünk kettőt.
- A vezérlők gyakran nyújtják egyiket, másikat, mivel így is, úgy is tükrözés van, azaz drága, így ritkán használt.

RAID 2,3,4

- RAID 2: Adatbitek mellett hibajavító biteket is tartalmaz. (ECC-Error Correction Code)
 Pl. 4 diszkhez 3 javító diszk
- RAID 3: Elég egy plusz "paritásdiszk", n+1 diszk, Σ n a kapacitás
- RAID 4: RAIDO kiegészítése paritásdiszkkel.
- Ma ezen megoldások nem gyakran használatosak.

RAID 5

- Nincs paritásdiszk, ez el van osztva a tömb összes elemére.(stripe set)
- Adatok is elosztva kerülnek tárolásra.
- Intenzív CPU igény (vezérlő CPU!!!)
- Redundáns tárolás, 1 lemez meghibásodása nem okoz adatvesztést.
 - 2 lemez egyidejű meghibásodása már igen
 - Hogy működik? (A paritásbitből meg a többiből az egy eltűnt kiszámítható!)
- N lemez RAID 5 tömbben(N>=3), n−1 lemez méretű logikai meghajtót ad.

RAID 6

- A RAID 5 paritásblokkhoz, hibajavító kód kerül tárolásra.(+1 diszk)
- Még intenzívebb CPU igény.
- Két diszk egyidejű kiesése sem okoz adatvesztést!
- Relatív drága
- N diszk RAID 6-os tömbjének kapacitása, N-2 diszk kapacitással azonos.
- Elvileg általánosítható a módszer (3 diszk kiesése…)

RAID összegzés

- Ma leggyakrabban a RAID 1,5 verziókat használják.
- A RAID 6 vezérlők az utóbbi 1-2 évben jelentek meg.
 - Bár olcsó diszkekről szól a RAID, de valójában ezek nem mindig olcsók!
 - Itt már 2 lemez kiesik, így ez még inkább drága.
- Hot-Swap(forró csere) RAID vezérlő: működés közben a meghibásodott lemezt egyszerűen kicseréljük.

Adattárolás összefoglalása

- Adatok biztonságos tárolását biztosítja.
- ▶ Több szintű:
 - 1. Fizikai lemezek (HDD)
 - 2. Hardver RAID
 - 3. Partíciók
 - 4. Szoftver RAID
 - 5. Volume Manager az operációs rendszerben.
- Nem minden ellen véd
 - PL: Tápellátás elhal, emberi tévedés, stb.
 - Szoftveres támadások, vírusok.
- Hogy szerveződnek adataink a "volume"-on?

Fájlrendszer

- Fájl: adatok egy logikai csoportja, névvel egyéb paraméterekkel ellátva.
- Könyvtár: fájlok (könyvtárak) logikai csoportosítása.
- Fájlrendszer: módszer, a fizikai lemezünkön, kötetünkön a fájlok és könyvtárak elhelyezés rendszerének kialakítására.

Fájlok

- A fájl az információtárolás egysége.
- Névvel hivatkozunk rá.
- Jellemzően egy lemezen helyezkedik el.
 - De általánosan az adathalmaz, adatfolyam akár képernyőhöz, billentyűzethez is köthető.
- A lemezen általában 3 féle fájl, állomány található:
 - Rendes felhasználói állomány.
 - Ideiglenes állomány
 - Adminisztratív állomány. Ez a működéshez szükséges, általában rejtett.

Fájl jellemzők

- Fájlnév: Karaktersorozat
 - Operációs rendszer függvénye, hogy milyen a szerkezete(hossza, megengedett karakterek, kisnagybetű különbözőség)
- Egyéb attribútumok (információ)
 - Mérete, tulajdonosa, utolsó módosítás ideje, rejtett (hidden) fájl-e, rendszer fájl-e, hozzáférési jogosítványok, tulajdonos,...
- Fizikai elhelyezkedés
 - Valódi fájl, link (hard), link (soft)

Könyvtárak

- Valójában egy speciális bejegyzésű állomány, tartalma a fájlok nevét tartalmazó rekordok listája.
- Könyvtár szerkezetek
 - Katalógus nélküli rendszer, szalagos egység
 - Egyszintű, kétszintű katalógus rendszer
 - Nem igazán használt
 - Többszintű, hierarchikus katalógus rendszer
 - · Fa struktúra
 - Hatékony keresés
 - Ma ez a tipikusan használt.
- Abszolút, relatív hivatkozás
 - PATH környezeti változó

Hozzáférési jogok

- Nincs általános jogosítvány rendszer
- Jellemző jogosítványok:
 - Olvasás
 - Írás, létrehozás, törlés
 - Végrehajtás
 - Módosítás
 - Full control
- Jogok nyilvántartása
 - Attribútumként
 - ACL

Fájlok elhelyezése

- A partíció elején, az un. Szuperblokk (pl. FAT esetén a 0. blokk) leírja a rendszer jellemzőit.
- Általában következik a helynyilvántartás (FAT, láncolt listás nyilvántartás)
- Ezután a könyvtárszerkezet (inode), a könyvtár bejegyzésekkel, fájl adatokkal. (FAT16-nál a könyvtár előbb van, majd utána a fájl adatok.)
- Hova kerüljön az új fájl?
- Milyen módszert válasszunk?

Elhelyezési stratégiák

- Folytonos tárkiosztás
 - First Fit
 - Best Fit
 - Worst Fit (olyan memória szakaszba tesszük, hogy a lehető legnagyobb rész maradjon szabadon)
 - Veszteséges lemezkihasználás.
- Láncolt elhelyezkedés
 - Nincs veszteség (csak a blokkméretből adódóan)
 - Fájl adatok (blokkokra bontva) láncolt lista tábla
 - Az n. blokk olvasása lassú lesz.
 - Szabad foglalt szektorok: File Allocation Table,FAT
 - Ez nagy lehet, a FAT-nak a memóriában kell lenni fájl műveletnél.
- Indextáblás elhelyezés
 - Katalógus tartalmazza a fájlhoz tartozó kis tábla (inode) címét
 - Egy inode címből elérhető a fájl.

Fájl, könyvtár műveletek

- Fájl
 - Megnyitás
 - Műveletek: Írás, olvasás, hozzáfűzés
 - Lezárás
- Adatok
 - Bináris bájt sorozat
 - Szöveges- karakter sorozat
- Elérés módja, szekvenciális, random
- Könyvtár műveletek
 - Létrehozás, tartalom listázása, állomány törlés

Fájlrendszer típusok

- Merevlemezen alkalmazott fájlrendszer
 - FAT, NTFS, EXT2FS, XFS, stb
- Szalagos rendszereken (elsősorban backup) alkalmazott fájlrendszer
 - Tartalomjegyzék, majd a tartalom szekvenciálisan
- CD, DVD, Magneto-opto Disc fájlrendszere
 - CDFS, UDF (Universal Disc Format), kompatibilitás
- RAM lemezek (ma már kevésbé használtak)
- FLASH memória meghajtó (FAT32)
- Hálózati meghajtó
 - NFS
- Egyéb pszeudó fájlrendszerek
 - Zip, tar.gz, ISO

Naplózott fájlrendszerek

- Fájlrendszer sérülés, áramszünet stb. esetén inkonzisztens állapotba kerülhet.
- Gyakran nevezik: LFS-nek (Log-structured File System) vagy JFS-nek(Journaled)
- Adatbázis kezelők mintájára: művelet + log
 - Tranzakciós alap
 - Leállás, hiba esetén a log alapján helyre lehet állítani.
 - Célszerűen a log másik lemez (másik partíció)
- Nagyobb erőforrás igény- nagyobb megbízhatóság

Fájlrendszer támogatás

- Mai operációs rendszerek "rengeteg" típust támogatnak
 - PL: Linux 2.6 kernel több mint 50-et.
- Fájlrendszer csatolása
 - Mount, eredményeképpen a fájlrendszer állományok elérhetők lesznek.
 - Automatikus csatolás (pl. USB drive)
 - Kézi csatolás (Linux, mount parancs)
- Külön névtérben való elérhetőség (Windows)
 - A,B,C,...
- Egységes névtér (UNIX)

Alkalmazás- Diszk kapcsolat

- Réteges felépítés
 - Alkalmazói szint
 - Az alkalmazás, fejlesztői könyvtárak segítségével megoldja a lemezen tárolt adatok írását-olvasását.
 - Szöveges, bináris fájlműveletek
 - Operációs rendszer szint
 - Fájlrendszer megvalósítás
 - Elérhetőség, jogosultságok
 - Kötetkezelő (Volume manager)
 - Eszközmeghajtó (device driver)
 - BIOS-ra alapozva
 - Hardver eszköz szintje
 - I/O meghajtó,IDE, SATA stb.

FAT

- File Allocation Table
 - Talán a legrégebbi, ma is élő fájlrendszer!
- A FAT tábla a lemez foglaltsági térképe, annyi eleme van, ahány blokk a lemezen
 - Pl: Fat12, FDD, Cluster méret 12 bites. Ha értéke 0, szabad, ha nem foglalt.
 - Biztonság kedvéért 2 tábla van.
- Láncolt elhelyezés
 - A katalógusban a file adatok (név stb) mellett csak az első fájl blokk sorszáma van megadva.
 - A FAT blokk azonosító mutatja a következő blokk címét.
 - Ha nincs tovább, FFF az érték.
- Rögzített bejegyzés méret, 32 bájt (max. 8.3 név)
- System, Hidden, Archive, Read only, könyvtár attribútumok
- A fájl utolsó módosítás ideje is tárolva van.

FAT jellemzők

- FAT16, 16 bites cluster leíró, 4 bájt (2x2) írja le a fájl kezdőblokkját
 - Max. 4 GB partíciós méret (64kb blokk méretnél), jellemzően 2 GB.
 - Fájl méret maximum is a 4 (2) GB.
 - Külön könyvtári terület (FDD-n ez a 0. sáv)
 - FDD-n 512 könyvtári bejegyzés
 - HDD-n 32736 könyvtári bejegyzés (16 bit előjelesen)
- FAT32 (1996-tól elérhető)
 - 28 bites cluster leíró
 - 2 TB partíciós méret (alap szektor mérettel)
- 32MB-ig, 1 blokk = 1 szektor(512bájt)
 - 64 MB, 1 blokk=1KB (2 szektor), 128MB, 1 blokk=2KB
 - 1 blokk max. 64 KB lehet.
- Támogatták már a hosszú fájl neveket is
 - Többszörös 8.3 részre fenntartott bejegyzésekkel.
 - Töredezettség mentesítés szükséges.

UNIX könyvtárszerkezet

- Indextáblás megoldás
- Boot blokk után a partíció szuperblokkja (fájlrendszer paraméterek)
- Ezt követi a szabad terület leíró rész.
- i-node tábla, majd gyökérkönyvtár bejegyzéssel)
- Moduláris elhelyezés, gyorsan elérhető az információ, sok kicsi táblázat, ez alkotja a katalógust.
- Egy fájlt egy i-node ír le!
 - 15 rekeszből áll, első 12 a fájl blokkokra mutat.
 - Ha kevés,a 13. rekesz újabb i-node-ra, ami +15 rekesz.
 - Ha ez is kevés, a 14. rekesz újabb i-node-ra ami az első mintáját ismétli.

i-node láncolás példa

NTFS

- New Technology File System
 - FAT-NTFS hatékonysági határ: kb. 400 MB.
- 255 karakteres fájl név, 8+3 másodlagos név
- Kifinomult biztonsági beállítások
- Ahogy a FAT esetén, itt is szükséges a töredezettség mentesítés.
- Titkosított fájlrendszer támogatása, naplózás
- POSIX támogatás
 - Hard link (fsutil parancs), időbélyegek, kis-nagybetűk különböznek
- Tömörített fájl, mappa, felhasználói kvóta kezelés
- Az NTFS csak klasztereket tart nyilván, szektort (512bájt) nem

NTFS partíció felépítése

- A Master File Table egy táblázat.
- A Files System Data szintén

NTFS Master File Master File Boot Sector File Table System Data Table Copy

NTFS partíció Boot szektor

- Boot sector
 - JMP +0x52 (EB 52)
 - OEMID (8 byte, MSWINx.y)
 - BPB (Bios Paraméter Blokk)
 - Bytes per sector (512)
 - Sectors per cluster (8)
 - Extended BPB
 - Total Sector number (8 byte-on tárolva)
 - LCN Logical Cluster Number for MFT
 - Volume serial number
 - Betöltő kód (betölti az ntldr.dll-t, majd tovább az ntfs.sys,ntoskrnl.exe)
 - Sector end(0xAA55)

MFT

- NTFS partíció az MFT (Master File Table) táblázattal kezdődik
 - 16 attribútum ad egy fájl bejegyzést.
 - Minden attribútum max. 1kb. Ha ez nem elég akkor egy attribútum mutat a folytatásra.
 - Az adat is egyfajta attribútum, így egy bejegyzés több adatsort tartalmazhat. (PL: Betekintő kép)
 - Elvi fájlméret 2^64 bájt lehet
 - Ha a fájl < 1kb, belefér az attribútumba, közvetlen fájl.
 - Nincs fájl méret maximum.

Az NTFS partíció felépítése

0	\$Mft – Master File Table
1	\$MftMirr – MFT Mirror
2	\$LogFile – Naplófájl
3	\$Volume – Kötetfájl
4	\$AttrDef – Attribútum definíciók
5	\ – Gyökérkönyvtár
6	\$BitMap – Cluster foglaltság
7	\$Boot – Bootszektor
8	\$BadClus – Hibás clusterek
9	\$Secure – Biztonsági leírók
10	\$UpCase – Unicode karaktertábla
11	\$Extend – Egyéb metadata
12	Nem használt
15	Nem használt
16	Felhasználói fájlok és mappák

Köszönöm a figyelmet!

zoltan.illes@elte.hu