IE-411 2018 Fall

Lecture 2: The Simplex Method

Instructor: Xin Chen Scribe: Yutong Dai Last Modified: 2018-10-15

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications, and they may contain factual and/or typographic errors.

2.1 The optimality of extreme points

Consider the following linear programming problem

$$\min_{x} c^{T}x$$

$$s.t \quad x \in P = \{x | Ax = b, x \ge 0\},$$

$$(2.1)$$

where P is non-empty.

By the **representation theorem**, we know that for a $x^* \in P$, we can write x^* as $\sum_{i=1}^k \lambda_i x_i + \sum_{j=1}^l \mu_j d_j$, where $x_1, ..., x_k$ are the extreme points and extreme directions of P $\sum_i \lambda_i = 1, \lambda_i \geq 0, \mu_j \geq 0$.

Consider

$$c^{T}x_{0} = \sum_{i=1}^{k} \lambda_{i}(c^{T}x_{i}) + \sum_{i=1}^{l} \mu_{j}(c^{T}d_{j}).$$

If $\exists i \text{ s.t } c^T d_j < 0$, then we can set u_j to arbitray large. As a result, 2.1 is unbounded, hence no optimal solution.

If there doesn't exist such a j, we can set $u_j = 0, \forall j$. So the optimal value of 2.1 attains at one of the extreme points, which is $x_i = \arg\min_{i=1,2,...,k} c^T x_i$.

The above discussion can be generalized to the following theorem.

Theorem 2.1 For linear programming problem, it either has a optimal value or is unbounded.

2.2 Simplex Method

2.2.1 Algebra

The simplex method, the "one non-basic in , one basic out" process guarantees there are still n active linear active constraints, that is, you move from one basic feasible solution to another. (See p109 of BHS.)