Lösung 8

1. a)

c (H ⁺)	c (OH¯)	рН	рОН	Sauer / basisch?
$7.5 \cdot 10^{-3} \mathrm{M}$	$1.3 \cdot 10^{-12} \mathrm{M}$	2.12	11.88	sauer
5.0 · 10 ⁻⁹ M	2.0 · 10 ⁻⁶ M	8.30	5.70	basisch

b)
$$c(H^{+}) = c(OH^{-}) = \sqrt{1.2 \cdot 10^{-15}} M = 3.5 \cdot 10^{-8} M$$

c) $c (H^+)$ ändert sich jeweils um den Faktor $10^{\Delta pH}$, also um $10^2 = 100$ bzw. um $10^{0.5} = 3.2$.

d) i)
$$c (H^+) = 8.5 \cdot 10^{-3} M$$
 pH = 2.07

ii) in der Mischung gilt:
$$c ext{ (H}^+)$$
 aus HBr = 0.033 M $c ext{ (H}^+)$ aus HCl = 0.133 M

Die Addition ergibt: $c (H^+) = 0.166 M$ pH = 0.78

2.

$$\square$$
 Co(NO₃)₂; sauer

KClO ist aus einer schwachen Säure und einer starken Base abgeleitet. Es bildet daher basische Lösungen.

3. Die Abbildung zeigt die Titrationskurve von 10 ml Oxalsäure HOOC-COOH (0.1 M) gegen Natronlauge (0.1 M).

$$pK_{a2}(H_2C_2O_4):$$
 4.2 (bei 15 ml)

pH (NaHC
$$_2$$
O $_4$): 3 (bei 10 ml)

pH
$$(Na_2C_2O_4)$$
: 8.3 (bei 20 ml)

- 4.
- i) pKa = 7.5 (Wendepunkt der Pufferkurve)
- ii) V = 0.75 mL (Äquivalenzpunkt liegt am pH-Sprung der Kurve)
- iii) Beim Äquivalenzpunkt gilt: $n_{\text{NaOH}} = n_{\text{HCIO}}$. Daher gilt ebenso:

$$c_{\text{NaOH}} \cdot V_{\text{NaOH}} = c_{\text{HCIO}} \cdot V_{\text{HCIO}}$$
.

$$c_{\text{NaOH}} = \frac{c_{\text{HCIO}} \cdot V_{\text{HCIO}}}{V_{\text{NaOH}}} = \frac{0.03 \, \text{mol dm}^{-3} \cdot 0.05 \, \text{dm}^{3}}{0.75 \cdot 10^{-3} \, \text{dm}^{3}} = 2 \, \text{mol dm}^{-3}$$

5. a)
$$CH_3COOH: pK_a = 4.75$$
 \Rightarrow $CH_3COONa: pK_b = 9.25$

i) 0.15 M CH₃COOH (aq)
$$pH = \frac{1}{2} (pKa - \log c) = \frac{1}{2} (4.75 + 0.82) = 2.78$$

ii) 0.15 M CH₃COONa (aq)

$$pH = 14 - \frac{1}{2}(pKb - \log c) = 14 - \frac{1}{2}(9.25 + 0.82) = 8.96$$

iii) Eine wässrige Lösung, die bezüglich CH₃COOH (aq) 0.10 M und bezüglich CH₃COONa (aq) 0.20 M ist.

$$pH = pKa + log \frac{[NaOAc]}{[HOAc]} = 4.75 + log \frac{0.2}{0.1} = 5.05$$

b)
$$NH_{3} + H_{3}O^{+} \implies NH_{4}^{+} + H_{2}O \quad (I)$$

$$PH_{3} + H_{3}O^{+} \implies PH_{4}^{+} + H_{2}O \quad (II)$$

$$NH_{4}^{+}: pK_{a} = 9.25; PH_{4}^{+}: pK_{a} = -12; H_{3}O^{+}: pK_{a} = 0$$

	links	rechts
Gleichgewicht I		X
Gleichgewicht II	Х	

$$Mg(OH)_2 \longrightarrow Mg^{2+} + 2OH^ L = 5.6 \cdot 10^{-12}$$

$$[Mg^{2+}] \cdot [OH^{-}]^2 = 10^{-3} \cdot (10^{-5})^2 = 10^{-13} < L$$

Das Löslichkeitsprodukt ist unterschritten. Eine Fällung von Mg(OH)₂ wird nicht beobachtet.

6. a)

i)

$$pH = -\log c_0 = -\log 0.175 = 0.757$$

ii)
$$pH = 7$$

iii)

$$n(HBr) = c \cdot V = 0.175 \text{ mol } L^{-1} \cdot 0.035 L = 0.00612 \text{ mol}$$

$$n(KOH) = c \cdot V = 0.200 \text{ mol } L^{-1} \cdot 0.010 L = 0.002 \text{ mol}$$

Nach 10 mL KOH: n(HBr) = 0.00412 mol

$$c(HBr) = \frac{n}{V} = \frac{0.00412 \text{ mol}}{0.045 \text{ L}} = 0.091 \text{ mol L}^{-1}$$

$$pH = -\log c_0 = -\log 0.091 = 1.038$$

Am Äquivalenzpunkt gilt n(KOH) = n(HBr) = 0.00612 mol iv)

$$V(\text{KOH}) = \frac{n}{c} = \frac{0.00612 \text{ mol}}{0.200 \text{ mol L}^{-1}} = 0.0306 \text{ L} = 30.6 \text{ mL}$$

Salz	Besser löslich in HNO ₃ als in Wasser	Nicht besser löslich
BaCO ₃	X	
AgCl		X
PbI_2		X
CuS	X	

Gegeben sind folgende p K_a -Werte:

$$HC1: -6 \quad HI: -9 \quad HS^-: 17 \quad HCO_3^-: 10.3 \quad HNO_3: -1.3$$

7. a)
$$c(\text{CrO}_4^{2^-}) = 7.8 \cdot 10^{-5} \,\text{M}$$

$$c(\text{Ag}^+) = 2 \cdot c(\text{CrO}_4^{2^-}) = 2 \cdot 7.8 \cdot 10^{-5} \,\text{M}$$

$$K_{s0} = c^{-2} \,(\text{Ag}^+) \cdot c^{-6} \,(\text{CrO}_4^{2^-}) = 7.8 \cdot 10^{-5} \cdot (2 \cdot 7.8 \cdot 10^{-5})^2 = 1.9 \cdot 10^{-12}$$

b)

In NaBr-Lösung ist die Konzentration der Bromidionen durch das leicht lösliche Natriumbromid vorgegeben. Der Zusatz von schwer löslichem Silberbromid hat kaum einen Einfluss. Die Löslichkeit von AgBr entspricht daher der Silberionen-Konzentration.

$$K_{s0} = c^{\bullet} (Ag^{+}) \cdot c^{\bullet} (Br^{-})$$

$$4.0 \cdot 10^{-13} = c^{\bullet} (Ag^{+}) \cdot 0.10$$

$$c^{\bullet}(Ag^{+}) = \frac{4.0 \cdot 10^{-13}}{0.10} = 4.0 \cdot 10^{-12}$$

$$c \text{ (AgBr(aq))} = c \text{ (Ag}^+\text{)} = 4.0 \cdot 10^{-12} \text{ M}$$

8. AgI (s)
$$\implies$$
 Ag⁺ (aq) + I (aq) $L = 8.3 \cdot 10^{-17}$

PbI₂ (s)
$$\rightarrow$$
 Pb²⁺ (aq) + 2 Γ (aq) $L = 7.9 \cdot 10^{-9}$

Niederschläge fallen aus, wenn das Ionenprodukt der Salzlösung den Wert des Löslichkeitsproduktes überschreitet.

$$8.3 \cdot 10^{-17} = c^{\bullet}_{Ag^{+}} \cdot c^{\bullet}_{I^{-}} = 2.0 \cdot 10^{-4} \cdot c^{\bullet}_{I^{-}}$$

$$c^{\bullet}_{I^{-}} = \frac{8.3 \cdot 10^{-17}}{2.0 \cdot 10^{-4}} = 4.2 \cdot 10^{-13}$$

$$c^{\bullet}_{Ph^{2+}} \cdot c^{\bullet 2}_{I^{-}} = 1.5 \cdot 10^{-3} \cdot c^{\bullet 2}_{I^{-}} = 7.9 \cdot 10^{-9}$$

$$c^{\bullet 2}_{I^{-}} = \frac{7.9 \cdot 10^{-9}}{1.5 \cdot 10^{-3}} = 5.3 \cdot 10^{-6}$$

$$c^{\bullet}_{I^{-}} = \sqrt{5.3 \cdot 10^{-6}} = 2.4 \cdot 10^{-3}$$

Der Ausfall von Silberiodid beginnt bei einer Konzentration von c (Γ) = 4.2 · 10^{-13} mol/L, der Ausfall des Bleiiodids erst bei c (Γ) = 2.4 · 10^{-3} mol/L. AgI fällt folglich zuerst aus.

9.
$$L \text{ (NiS)} = 3 \cdot 10^{-21} \text{ ; } L \text{ (CoS)} = 5 \cdot 10^{-22} \text{ ; } L \text{ (CdS)} = 1 \cdot 10^{-28} \text{ ; } H_2\text{S: pK}_{a1} = 7 \text{ ; pK}_{a2} = 14$$

$$\frac{c^2(H^+) \cdot c(S^{2-})}{c(H_2S)} = \frac{c^2(H^+) \cdot c(S^{2-})}{0.1} = 10^{-21}$$

$$c(S^{2-}) = \frac{10^{-22}}{c^2(H^+)} = \frac{10^{-22}}{(10^{-0.5})^2} = 10^{-21}$$

$$c(Ni^{2+}) \cdot c(S^{2-}) = 1.5 \cdot 10^{-1} \cdot 10^{-21} = 1.5 \cdot 10^{-22} < L(NiS)$$

$$c(Co^{2+}) \cdot c(S^{2-}) = 1.0 \cdot 10^{-1} \cdot 10^{-21} = 1.0 \cdot 10^{-22} < L(CoS)$$

$$c(Cd^{2+}) \cdot c(S^{2-}) = 5.0 \cdot 10^{-1} \cdot 10^{-21} = 5.0 \cdot 10^{-22} > L(CdS)$$

CdS fällt aus, die anderen Sulfide nicht.