ÉCOLE D'INGÉNIEURS CESI

UNE ÉCOLE, DES CHOIX, VOTRE AVENIR.

Automatique SAM 2

Plan

- Introduction à la régulation
- Asservissements linéaires
- Performances des systèmes linéaires
- Correction des systèmes linéaires asservis
- Analyse fréquentielle

Quelques définitions

- Automatique: (adjectif) qui fonctionne seul ou sans intervention humaine.
- <u>Automatique</u> : (nom commun), science et techniques de l'automatisation, qui permettent à des systèmes d'évoluer sans intervention humaine.
- <u>Régulation</u>: Regroupe l'ensemble des techniques utilisées visant à contrôler et stabiliser les évolutions d'une grandeur physique d'un système (La sortie). Ex : régulation de niveau
- Asservissement : Evolution d'un système contraint par l'extérieur. Ex : asservissement de la température d'un four à un cycle de chauffe (Asservissement de la consigne de température)

Exemple de système asservi

- Les progrès de l'automatique permettent aujourd'hui à ce Drone de voler
- Directions et vitesses sont asservies à des commandes pilotées du sol.
- Ces grandeurs sont régulées à bord en contrôlant la vitesse des moteurs d'hélices
- Gyroscopes et accéléromètre (Capteurs) permettent d'observer les paramètres de vol

Les premiers régulateurs

Au 18ème siècle apparaît le régulateur à boules de Watt schématisé ci-après. Il s'agit de stabiliser la vitesse de rotation d'une turbine à vapeur. Watt est présenté par les anglo-saxons comme le père des automatismes.

Notion de système

En Automatique, la notion de système est incontournable. La définition qu'en donne l'automaticien se rapproche de celle classique empruntée à la physique.

<u>Système</u>: dispositif qui fonctionne en interaction avec son environnement générant un ensemble de phénomènes.

Sorties = Grandeurs qu'on désire réguler

Entrées = Grandeurs influentes sur la sortie

Perturbations = grandeurs influentes sur la sortie mais qu'on ne peut pas contrôler

Les différents éléments d'une boucle d'asservissement

Pour réguler un système physique, il faut :

- Mesurer la grandeur réglée avec un capteur.
- Réfléchir sur l'attitude à suivre : c'est la fonction du régulateur. Le régulateur compare la sortie avec la consigne et élabore le signal de commande.
- Agir sur la grandeur réglante par l'intermédiaire d'un actionneur

Inconvénients de la commande en boucle ouverte

- Boucle ouverte:
 - Modèle prédictif
 - On ne peut pas prévoir ni modéliser l'imprévisible

Schéma bloc

- Schéma bloc d'un système régulé
- E(p) entrée
- S(p) sortie
- ε(p) erreur
- F(p) FT chaîne directe
- R(p) FT chaîne de retour

Fonctions de transfert en boucle ouverte et en boucle fermée

• Fonctions de transfert en boucle ouverte :

FTBO :
$$H(p) = \frac{U(p)}{E(p)} = F(p).R(p)$$

Chaine directe :
$$H(p) = \frac{S(p)}{E(p)} = F(p)$$

• Fonction de transfert en boucle fermée :

FTBF:
$$H(p) = \frac{S(p)}{E(p)} = \frac{F(p)}{1 + F(p)R(p)}$$

Exemple radiateur électrique

- T=10°C
- Objectif régulation température T=20°C
- Capteur : signal de mesure en tension $v=k\theta$ avec $k=1V/^{\circ}C$
- Consigne : échelon de tension 0/20V
- Radiateur = organe de chauffe
- Ex de perturbations :
 - Température extérieure
 - Ouverture de portes ou de fenêtres...

Exemple radiateur électrique

- Le système est mis en route : le capteur mesure la température 10°C et délivre une tension de 10V
- L'écart est maximal donc le signal de commande aussi donc la puissance de chauffe est importante
- L'air de la pièce va se réchauffer, la température mesurée par le capteur augmente
- L'écart diminue,
- Plus la température mesurée se rapproche de la consigne, plus le signal de commande diminue.
- Quand la mesure est égale à 20°C, l'écart est nul. Le système de chauffage s'arrête.

Exemple radiateur électrique

- Dès que la température de la pièce commencera à diminuer, le capteur délivrera un signal inférieur à 20V, le radiateur recommencera à chauffer pour maintenir la température voulue.
- Si on ouvre brutalement a fenêtre, la température peut chuter : écart important entre la mesure et la consigne.
- La puissance de chauffe sera importante : le système réagit de sorte qu'on revienne rapidement à 20°C

Propriétés

- Tout système bouclé peut se ramener à une fonction de transfert en boucle fermée à retour unitaire.
- La FTBF d'un système à retour unitaire s'écrit : $FTBF = \frac{FTBO}{1 + FTBO}$
- La BF permet d'améliorer les performances du système

Problème de stabilité

- Stabilité : un système est dit stable si, excité par une impulsion de Dirac ou un échelon, il revient à sa position de repos ou se stabilise.
- Le signal de sortie converge-t-il effectivement vers une valeur finie ou estil susceptible de diverger ou osciller ?
- Problème général de la commande des systèmes

Cahier des charges d'un asservissement

- En règle générale, le cahier des charges d'une boucle de régulation impose des performances au système :
 - La précision
 - La rapidité
 - La stabilité

Précision d'un système asservi

- Grandeurs utilisées :
 - Erreur statique ou erreur de position d'un système stable

$$\varepsilon = \lim_{t \to +\infty} \varepsilon(t)$$
 lorsque $e(t) = u(t)$, échelon unitaire

Permet d'évaluer l'aptitude d'un système à se conformer à une consigne constante

Rapidité

- Grandeur utilisée :
 - Tr : temps de réponse à 5% : temps mis pour atteindre la valeur finale de la sortie à 5% près

Stabilité

- Un réglage du système peut le rendre instable
- Condition mathématique de stabilité : Un système asservi est stable si et seulement si sa fonction de transfert en boucle fermée ne possède aucun pôle à partie réelle positive
- Grandeurs utilisées : Marges de stabilité

Dilemme Stabilité Précision

Principe général de la régulation

- Introduction dans la chaîne directe, en amont du système A(p), un dispositif de fonction de transfert C(p) appelée correcteur
- Objectif : modifier les performances du système initial

Correcteur proportionnel

- C(p) = K
- Modifie le gain statique initial du système
- Performances si K<1
 - Amélioration stabilité du système
 - Diminution du dépassement en BF
 - Dégradation de la rapidité
 - Dégradation de la précision
- Performances si K>1
 - Amélioration rapidité du système
 - Amélioration précision en BF
 - Diminution de la stabilité
 - Augmentation du dépassement

Correcteur proportionnel

• Exemple :
$$A(p) = \frac{8}{p^2 + 5p + 6}$$

• Réponse à un échelon unitaire en BO: E(p)=1 pour t>=0

K=0,01

E(p)

K

La sortie ne peut pas atteindre la consigne

A(p)

S(p)

Correcteur proportionnel

• Exemple :
$$A(p) = \frac{8}{p^2 + 5p + 6}$$

• K=10

Réponse à un échelon unitaire en BO

$$K = 100$$

Correcteur intégral

•
$$C(p) = \frac{1}{p}$$

- Ajout d'un pôle nul à la fonction de transfert en BO
- Amélioration précision du système (La sortie peut atteindre la consigne)
- Dégradation rapidité du système
- Diminution stabilité du système

Correcteur proportionnel intégral

•
$$C(p) = K(1 + \frac{1}{T_i p})$$

- Avantage de l'action intégrale sans les inconvénients
- Amélioration de la précision du système

Méthodologie

Pour concevoir un système asservi, on pourra opérer de la manière suivante :

- 1. Modéliser le système : Dans la majorité des cas, il est très difficile de modéliser par des « équations physiques », aussi on passe souvent par des essais qui permettent d'y parvenir, on appelle cela l'identification.
- 2. Choisir le correcteur adéquat : Dans cette étape, il convient de choisir le meilleur correcteur afin de parvenir aux performances (rapidité, stabilité, précision,...) voulues par le cahier des charges.
- 3. Essais: Les résultats expérimentaux valideront ou pas les choix précédents.

Si ces choix ne sont pas les bons, il faudra revoir les réglages, voire le modèle utilisé.

Diagramme de Bode

On pose $p = j\omega$ on obtient $S(j\omega) = G(j\omega)E(j\omega)$

Comportement fréquentiel (ω = 2 π f, f fréquence en hz, ω en rad/s)

 $G(j\omega)$: fonction de transfert en fréquence

- Le module $|G(j\omega)|$ représente le gain réel
- l'argument $\arg G(j\omega)$ représente le déphasage

Diagramme de Bode

• 2 Diagrammes : Gain réel et déphasage. Echelle logarithmique en abscisse Cas particulier pour le gain, on trace $G_{dB}=20Log~|G(j\omega)|$

Axe des ordonnées gradué en décibels

- Gain réel $|G(j\omega)| > 1$ donc $G_{dB} > 0$
- Gain réel $|G(j\omega)| < 1$ donc $G_{dB} < 0$
- $20 \log |G(j\omega)| = 0 dB \operatorname{pour}|G(j\omega)| = 1$

Axe des abscisses pour les deux diagrammes

- Valeurs de ω en respectant l'échelle logarithmique
- $\omega = 1$ origine de l'axe (correspond à $\log(\omega) = 0$)
- $\omega = 0$ correspond à « moins l'infini »

Exemple : diagramme de Bode d'un système d'ordre 1

• FT :
$$H(p) = \frac{K}{1+\tau p}$$
 K : gain statique, τ : constante de temps

•
$$H(j\omega) = \frac{K}{1+\tau j\omega}$$

•
$$|H(j\omega)| = \frac{K}{\sqrt{1+\tau^2\omega^2}}$$

- $\varphi(\omega) = -\arctan(\tau\omega)$
- Etudions ces fonctions

Exemple : diagramme de Bode d'un système d'ordre 1

- Etude de $H(\omega)$ $pour\ \omega \to 0$, $on\ a\ G(\omega) \to 20 \log K$ asymptote horizontale $pour\ \omega \to +\infty$, $on\ a\ G(\omega) \approx \frac{K}{T\omega}$ droite car échelle des abscisses logarithmique
- La droite coupe l'asymptote au point d'abscisse $\omega = \frac{1}{\tau}$ et l'abscisse au point
- Pente : -20dB/décade (le gain chute de 20dB quand la pulsation est multipliée par 10)
- Courbe réelle longtemps proche des asymptotes

Etude de $\varphi(\omega)$

- Fonction arctangente
 - pour $\omega \to 0$, on a $\varphi(\omega) \to 0$
 - pour $\omega \to +\infty$, on a $\varphi(\omega) \to -\frac{\pi}{2}$
 - $\varphi\left(\frac{1}{T}\right) \to -\frac{\pi}{4}$

Marges de stabilité

- Est-on proche de l'instabilité ?
- Marge de gain : $\Delta G = -20 log G(\omega_{\pi})$
- Localisation sur le diagramme de Bode :
 - Repérer sur le diagramme de phase la pulsation correspondant au déphasage égal à $-\pi$.
 - Dans le diagramme de gain, à cette pulsation, mesurer ΔG , directement en décibel
- Système stable : $0 < \Delta G < +\infty$
- Plus ΔG est grand, plus le système est stable

Marges de stabilité

- Une marge de gain importante ne garantit pas obligatoirement une excellente stabilité.
- Marge de phase : $\Delta \varphi = \pi + \varphi(\omega_{c0})$
- Localisation sur le diagramme de Bode :
 - Repérer grâce au diagramme de gain la pulsation de coupure à 0dB.
 - Dans le diagramme de phase à cette pulsation mesurer la marge de phase comme l'écart entre $-\pi$ et le déphasage correspondant
- Bonne stabilité : $\Delta \phi > 45^\circ$

