

Aula 4: Aquisição de Conhecimento

Universidade do Minho

OBJECTIVOS:

 Identificar como se processa a Aquisição de Conhecimento

INTRODUÇÃO

Sistema Baseado em Conhecimento

Um SBC é um Sistema Inteligente em que existe um modelo simbólico (representação explícita, que representa o mundo) que permite explicar o raciocínio por trás de cada uma das suas decisões.

Importância dos Conhecimentos e Experiências Acumuladas

- Estão na base das capacidades das organizações e da sua competitividade
- Normalmente residem nas pessoas e em documentos
- ■Potencia a Tomada de Decisão
- Os próprios processos de decisão passam a figurar na base de conhecimento

OBSTÁCULOS À CONSTRUÇÃO DE SBC:

- Problemas são Complexos (os que motivam a aplicação da IA)
- Como representar o conhecimento?
- •Aquisição do conhecimento (para criar a base de conhecimento) é um desafio!

AQUISIÇÃO DE CONHECIMENTO

Definição (mais antiga)

TRANSFERÊNCIA E TRANSFORMAÇÃO do CONHECIMENTO ESPECIALIZADO com POTENCIAL para a RESOLUÇÃO DE PROBLEMAS de uma FONTE de CONHECIMENTO para um PROGRAMA.

Definição (mais actual)

PROCESSO de MODELAÇÃO (criação de uma TEORIA) de PROBLEMAS e SOLUÇÕES pertinentes para um domínio específico.

Engenheiro de Conhecimento

OBSERVA e INTERPRETA CONHECIMENTO sobre:

- o DOMÍNIO
- •o PROBLEMA
- ■as ESTRATÉGIAS DE RESOLUÇÃO

Q1: Como se pode adquirir conhecimento sobre um dado domínio?

(In-Class Teams)

- -Juntem-se em grupos de 3 elementos
- -Descubram quem nasceu mais perto → Representante
- -Escrevam o mais rapidamente que puderem sugestões (2 min)
- -Pensar em quantidade (maior número de sugestões)

AQUISIÇÃO DE CONHECIMENTO

(fase 2 da metodologia de desenvolvimento de um SBC)

1 Planeamento

Identificação do
Domínio do
Conhecimento
Selecção da
Equipa de
Desenvolvimento
Selecção da
Ferramenta de
Desenv.

2 Aquisição de Conhecimento

Identificação Conceptualização Formalização

3 Implementação Representar o Conhecimento na Ferramenta Implementar o Interface

Documentar o SBC

4 Testes e Refinamento

Validação e verificação Refinamento do SBC

ETAPAS DO PROCESSO DE AQUISIÇÃO

Universidade do Minho

IDENTIFICAÇÃO

Objectivo

Assemelha-se à **Análise de Requisitos** em Engenharia de Software. Objectivo - procurar elementos do domínio que permitam identificar:

- 1. A classe do problema que o SBC deverá resolver
- 2. Dados sobre os quais irá operar
- 3. Critérios para classificar as soluções nos contextos de funcionamento
- 4. Forma como o problema deve ser resolvido

Metodologia

Solicitar bibliografia sobre o domínio aos **especialistas** (métodos para resolver os problemas)

Entrevistas não-estruturadas (brainstorming) com os especialistas para apurar: Necessidades; Complexidade da tarefa; Terminologia utilizada; e Capacidade de cada especialista em tornar explicito o conhecimento do domínio.

Entrevistas com utilizadores para formular o modelo de interacção utilizador-sistema

CONCEPTUALIZAÇÃO

Objectivo

- Formulação dos conceitos importantes do problema e as relações (causa-efeito, espaço-tempo, ...) entre esses conceitos
- Elaborar uma ONTOLOGIA de forma informal, i.e. Conjunto de termos que designam conceitos e relações, juntamente com as suas definições

Metodologia

- Entrevistas estruturadas (com um guião, perguntas já definidas) a partir do material recolhido anteriormente
- Seleccionar casos concretos para modelação e teste do SBC
- Observar o especialista no trabalho

FORMALIZAÇÃO

Objectivo

- Modelação computacional do problema.
- Formalização da ONTOLOGIA através de uma linguagem formal como a LÓGICA de primeira ordem e suas extensões, regras de produção, frames, redes semânticas, ...

Metodologia

- Definir o modelo de tarefa a ser adoptado
- Escolher a linguagem de representação para modelar o sistema
- Definir o espaço de procura do problema
- Definir o espaço de soluções do problema
- Definir os métodos de procura de soluções
- Identificar as limitações do sistema

Fase 3 e 4 (Implementação e Testes)

IMPLEMENTAÇÃO

Objectivo

Modelação computacional do problema.

Metodologia

Selecção de linguagem de programação (e.g., LISP, PROLOG),

ferramenta (e.g., ART, ProKappa) ou Shell (e.g. Corvid, Clips)

Programação (por programadores)

Prototipação

Validação pelo(s) especialista(s)

TESTES E REFINAMENTO

Objectivo

Submeter o sistema a um conjunto representativo de casos de teste.

Manutenção da Base de Conhecimento

Metodologia

- Utilizar o SBC no ambiente real
- Permitir a experimentação durante um período de tempo

LINGUAGENS PARA AQUISIÇÃO DE CONHECIMENTO

Linguagem Natural

Fase de **IDENTIFICAÇÃO**Facilidade de comunicação e registo **Ambiguidade** de interpretação (semântica) **Grande número de vocábulos** (combinação explosiva)

LINGUAGENS PARA AQUISIÇÃO DE CONHECIMENTO

Linguagens Diagramáticas

Fase de CONCEPTUALIZAÇÃO

Gestos, imagens, figuras, esquemas e diagramas

Exemplo de relações do mundo:

- Composição (como os objectos são compostos)
- Descrição (descrição de uma entidade e.g., pacote de e-mail)
- Consequência (causa efeito, e.g., regra)
- Generalização (relação isa, classes vs subclasses)
- Fluxo de **estados** do Mundo (caminho/plano através de estados)
- Dependência (variáveis dependentes e independentes numa

LINGUAGENS PARA AQUISIÇÃO DE CONHECIMENTO

Linguagens Semiformais

Fase de **FORMALIZAÇÃO**

Combinação de notações formais com representação informal como a linguagem natural: HTML, XML

Linguagens Formais

Fase de **FORMALIZAÇÃO**

Expressam conhecimento de uma forma precisa, consistente e nãoambígua:

Lógica – Conjunto de fórmulas (asserções) em lógica de predicados, difusa e modal. Os mecanismos de inferência correspondem aos métodos dedutivos dos sistemas lógicos.

Sistemas de Produção -

Regras do tipo **SE condição ENTÃO acção**.

Inferência por encadeamento para a frente (forward chaining) ou para trás (backward chaining).

Estruturados – Grafos onde os nodos e arcos possuem semântica fixa (*frames* e objectos) ou variada (redes semânticas).

TÉCNICAS PARA AQUISIÇÃO DE CONHECIMENTO

Manuais:

Baseadas em Descrições – Análise de documentos, textos e referências bibliográficas

Baseadas em Entrevistas

Não-Estruturadas

Estruturadas

Acompanhamento de Casos (para preenchimento de lacunas)

Baseadas em Acompanhamento – Acompanhar o processo de raciocínio do especialista

Baseadas em Modelos – formulação de um modelo geral do conhecimento baseada em descrições estruturadas/componentes reutilizáveis (PROTÉGÉ, KADS).

TÉCNICAS PARA AQUISIÇÃO DE CONHECIMENTO

Semi-automáticas:

Baseadas na Reutilização da Representação e dos Mecanismos de Inferência – Uso de representações existentes noutros domínios (e.g., EMYCIN – diagonóstico médico)

Baseadas na Reutilização do Conhecimento do Domínio –

Desenvolvidas para domínios especificados (e.g., OPAL para planear terapia para o cancro) aliviam a carga de aquisição de todo conhecimento (possui já conhecimento sobre medicamentos e química do sangue)

Baseadas em Técnicas Oriundas da Psicologia – e.g., – Análise de Matrizes de Relatórios, baseado na "teoria de construção pessoal" (cada pessoa é vista como um cientista que constrói as sua teorias)

Baseadas em Ontologias Reutilizáveis – Linguagens para ontologias e.g., Ontolingua, OCML.

. . .

TÉCNICAS PARA AQUISIÇÃO DE CONHECIMENTO

Automáticas

Baseadas na Aprendizagem Automática e *Data Mining* (ou seja, o conhecimento é extraído a partir de dados em bruto)

Q2: Sumário da Aula?

In-Class Teams

- -Fechar/Guardar os anotamentos. Caneta+1 folha papel
- -Juntem-se em grupos de 3 elementos
- -Descubram quem fica em último lugar em termos do nome segundo a ordem alfabética → Representante
- -Escrevam todos os conceitos que aprenderam hoje (2min)
- -Pensar em quantidade

Para saber mais...

Universidade do Minho

Consultar o Capítulo 3, SI – [Resende,

2003]: Rezende, Solange A., Sistemas Inteligentes Fundamentos e Aplicações – RECOP-IA – Rede Cooperativa de Pesquisa em Inteligência Artificial, Editora Manole Ltda, Brasil, 2003.