Examination Control Division 2076 Chaitra

Exam.		Regular	
Level	BE	Full Marks	80
Programme	All except BAR	Pass Marks	32
Year / Part	I/I	Time	3 hrs.

Subject: - Engineering mathematics I (SH 401)

- ✓ Candidates are required to give their answers in their own words as far as practicable.
- ✓ Attempt All questions.
- ✓ <u>All</u> questions carry equal marks.
- Assume suitable data if necessary.
- 1. If y=acos(log x) + b sin(log x) prove that:

 - (i) $x^2y_2+xy_1+y=0$ (ii) $x^2y_{n+2}+(2n+1)xy_{n+1}+(n^2+1)y_n=0$
- 2. State and prove Lagrange's mean value theorem.
- 3. State L' Hospital's Rule and hence evaluate $\lim_{x\to 0} (\cot x)^{\sin 2x}$
- 4. Find the asymptote of $(x+y)^2(x+2y+2) = x+9y-2$
- 5. Find the radius of curvature of the curve $r = a(1 \cos\theta)$.

Find the pedal equation of $y^2=4a(x+a)$

- 6. Evaluate $\int_{0}^{\pi/2} \frac{x \sin x \cos x}{\cos^4 x + \sin^4 x} dx$
- 7. Using the rule of differentiation under the integral sign, evaluate $\int_{0}^{\infty} \frac{\log(1+a^2x^2)}{1+b^2x^2} dx$
- 8. Obtain the reduction formula for $\int_{0}^{\pi/2} \cos^{n} x dx$ and hence evaluate $\int_{0}^{\pi/2} \cos^{10} x dx$.
- 9. Obtain the area of a loop of the curve $y^2(a^2+x^2)=x^2(a^2-x^2)$

Find the volume of the solid formed by the revolution of the cycloid $x=a(\theta+\sin\theta)$

- 10. Solve the differential equation: $\frac{dy}{dx} = \frac{y}{x} + \tan \frac{y}{x}$
- 11. Find the general solution of $y=Px+x^4p^2$
- 12. Solve $(D^2-2D+5)y = e^{2x}\sin x$
- 13. Solve $x^2 \frac{d^2y}{dx^2} 2x \frac{dy}{dx} 4y = x^4$

A radio active material has an initial mass 100mg. After two years, it is left to 75mg. Find the amount of the material at any time t.

- 14. What does the equation $3x^2+3y^2+2xy=2$ become when the axes are turned through an angle 45° with the original axes.
- 15. Obtain the equation of hyperbola in standard form.
- 16. Find the center for the conic $3x^2+8xy-3y^2-40x-20y+50=0$.

Examination Control Division 2075 Chaitra

Exam.	Regul	ır/Back	4
Level	BE	Full Marks	80
Programme	All (Except BAE)	Pass Marks	32
Year / Part	I/I	Time	3 hrs.

Subject: - Engineering Mathematics I (SH 401)

- ✓ Candidates are required to give their answers in their own words as far as practicable.
- ✓ Attempt <u>All</u> questions.
- ✓ All questions carry equal marks.
- ✓ Assume suitable data if necessary.
- 1. If $y = e^{a \sin^{-1} x}$, then prove that $(1 x^2) y_{n+2} (2n+1) x y_{n+1} (n^2 + a^2) y_n = 0$
- 2. Assuming the validity of expansion, find the expansion of $log(1+e^x)$ by using Machlaurin's Theorem.
- 3. Evaluate: $x \to 0$ $\left(\frac{\sin x}{x}\right)^{1/x}$
- 4. Find the asymptotes of the curve:

$$y^2 = \frac{(a-x)^2}{a^2 + x^2} x^2$$

- 5. Show that for the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, the radius of curvature at the extremity of major axis is equal to half of the latus rectum.
- 6. Show that $\int_0^1 \cot^{-1}(1-x+x^2)dx = \frac{\pi}{2} \log 2$.
- 7. Evaluate by using the rule of differentiation under the sign of integration

$$\int_{0}^{\pi} \frac{\log(1 + a\cos x)}{\cos x} dx$$

- 8. Prove that: $\int_0^\infty \sqrt{y} e^{-y^2} dy \times \int_0^\infty \frac{e^{-y^2}}{\sqrt{y}} dy = \frac{\Pi}{2\sqrt{2}}$
- 9. Find the surface area of solid generated by revolution of cycloid. $x = a(\theta + \sin \theta), y = a(1 + \cos \theta)$ about its axis.
- 10. Solve the differential equation:

$$\frac{dy}{dx} + \frac{1}{x}\sin 2y = x^3\cos^2 y$$

- 11. If p denotes $\frac{dy}{dx}$, then solve $p^3 4xyp + 8y^2 = 0$.
- 12. Solve: $\frac{d^2y}{dx^2} 2\frac{dy}{dx} + y = x^2e^{3x}$
- 13. Solve: $x^2 \frac{d^2 y}{dx^2} x \frac{dy}{dx} + y = \log x$
- 14. Derive the standard equation of an ellipse.
- 15. Find the condition that the line $x\cos\alpha + y\sin\alpha = p$ to touch hyperbola $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$ and also find point of contact.
- 16. Find the centre, length of axes and eccentricity of conic $9x^2 + 4xy + 6y^2 22x 16y + 9 = 0$.

OR

Describe and sketch the graph of polar equation: $r = \frac{4}{1 + 3\cos\theta}$

Examination Control Division 2076 Ashwin

Exam.	Back		
Level	BE	Full Marks	80
Programme	All (Except BAR)	Pass Marks	32
Year / Part	I/I	Time	3 hrs.

Subject: - Engineering Mathematics I (SH 401)

- ✓ Candidates are required to give their answers in their own words as far as practicable.
- ✓ Attempt All questions.
- ✓ The figures in the margin indicate Full Marks.
- ✓ Assume suitable data if necessary.
- 1. If $y = \sin(m\sin^{-1}x)$, show that $(1-x^2)y_{n+2} (2n+1)xy_{n+1} + (m^2 n^2)y_n = 0$, where suffices of y denote the respective order of derivatives of y. [5]
- 2. State Lagrange's mean value theorem. Verify it for the function $y = \sin x$ on $\left[-\frac{\pi}{2}, \frac{\pi}{2} \right]$. Is this theorem valid for the function $y = \tan x$ on $[0, \pi]$?
- 3. Evaluate $x \to 0$ $\left(\frac{\tan x}{x}\right)^{1/x}$ [5]
- 4. Find the asymptotes of the curve $(x+y)^2(x+2y+2)=x+9y-2$. [5]
- 5. Find the pedal equation of the curve $y^2 = 4a(x+a)$. [5]
- 6. Evaluate, if possible $\int_0^e \ln x dx$. [5]
- 7. Apply differentiation under integral sign to evaluate $\int_0^\infty \frac{e^{-ax} \sin x}{x} dx$ and then show that

$$\int_0^\infty \frac{\sin x}{x} dx = \frac{\pi}{2}.$$
 [4+1]

- 8. Define Beta and Gamma function and use it to show that, $\int_{0}^{\pi/6} \cos^4 3\theta \sin^2 6\theta \ d\theta = \frac{5\pi}{192} \ .$ [5]
- 9. Find the volume of the solid formed by the revolution of the cardioid $r = a(1 + \cos \theta)$ about the initial line. [5]
- 10. Solve the differential equation $\frac{dy}{dx} + y \cot x = 2\cos x$. [5]
- 11. If p stands for $\frac{dy}{dx}$, then solve the differential equation $y 2px + ayp^2 = 0$. [5]
- 12. Solve the differential equation $(D^2 2D + 5) y = e^{2x} \sin x$. [5]
- 13. Solve the differential equation $(x^2D^2 + xD + 1)y = \sin(\log x^2)$ [5]
- 14. Define ellipse and obtain the equation of ellipse in standard form. [5]

[5]

- 15. Prove that the locus of a point which moves in such a way that the difference of its distances from the point (5, 0) and (-5, 0) is 2 is a hyperbola.
- 16. Describe and sketch the graph of the conic $r = \frac{10}{3 + 2\sin\theta}$ [5]

Examination Control Division 2074 Chaitra

Exam.	Reg	ilai	
Level	BE	Full Marks	80
Programme	ALL (Except B. Arch)	Pass Marks	32
Year / Part	I/I	Time	3 hrs.

[5]

Subject: - Engineering Mathematics I (SH401)

- ✓ Candidates are required to give their answers in their own words as far as practicable.
- ✓ Attempt All questions.
- ✓ The figures in the margin indicate Full Marks.
- ✓ Assume suitable data if necessary.
- 1. State Leibnitz theorem. If $\log y = \tan^{-1} x$, then show that $(1+x^2)y_{n+2} + (2nx+2x-1)y_{n+1} + (n^2+n)y_n = 0$ [1+4]
- 2. State Rolle's theorem. Is the theorem true when the function is not continuous at the end points? Justify your answer. Verify Rolle's theorem for $f(x) = x^2 5x + 6$ on [2,3]. [1+2+2]
- 3. State L-Hospital's rule. Evaluate $x \to 1(2-x)^{\tan(\frac{\pi x}{2})}$ [1+4]
- 4. Find the asymptotes of the curve $(x+y)^2(x+2y+2) = x+9y-2$ [5]
- 5. Find the pedal equation of the ellipse $\frac{x^2}{b^2} + \frac{y^2}{a^2} = 1$. [5]
- 6. Evaluate the integral $\int_{-1}^{1} \frac{1}{x^2} dx$ [5]
 - 7. Apply the rule of differentiation under integral sign to evaluate $\int_0^\infty \frac{e^{-ax} \sin x}{x} dx$ and hence deduce that $\int_0^\infty \frac{\sin x}{x} dx = \frac{\pi}{2}$ [5]
 - 8. Define Beta function. Apply Beta and Gamma function to evaluate $\int_0^{2a} x^5 \sqrt{2ax x^2} dx$ [5]
 - 9. Find the area common to the circle r = a and the cordioid $r = a(1+\cos\theta)$ [5]
 - 10. Through what angle should the axes be rotated to reduce the equation $3x^2 + 2xy + 3y^2 \sqrt{2x} = 0$ into one with the xy term missing? Also obtain the transformed equation. [2+3]
 - 11. Derive the equation of an ellipse in standard form. [5]
 - 12. Find the product of semi-axis of the conic $x^2 4xy + 5y^2 = 2$

OR

Describe and sketch the graph of conic $r = \frac{12}{3 + 2\cos\theta}$

- 13. Solve the differentiate equation of $(x^2 y^2)dx + 2xydy = 0$ [5]
- 14. Solve: $y = yp^2 + 2px$ where $p = \frac{dy}{dx}$ [5]
- 15. Solve $(D^2 6D + 9)y = x^2 e^{2x}$ [5]
- 16. Solve the differential equation of $x^2 \frac{d^2y}{dx^2} 2x \frac{dy}{dx} + 2y = 4x^3$ [5]

Examination Control Division 2075 Ashwin

Exam.	\mathbf{B}_{2}	reke (j. 1860. av k	
Level	BE	Full Marks	80
Programme	ALL (Except B. Arch)	Pass Marks	32
Year / Part	I/I	Time	3 hrs.

[5]

Subject: - Engineering Mathematics I (SH401)

- ✓ Candidates are required to give their answers in their own words as far as practicable.
- ✓ Attempt All questions.
- ✓ The figures in the margin indicate Full Marks.
- ✓ Assume suitable data if necessary.

1. State Leibnitz's theorem. If
$$y^{\frac{1}{m}} + y^{\frac{-1}{m}} = 2x$$
, show that $(x^2 - 1)y_2 + xy_1 - m^2y = 0$ and hence prove that $(x^2 - 1)y_{n+2} + (2n+1)xy_{n+1} + (n^2 - m^2)y_n = 0$. [2+3]

- 2. State Roller's theorem. Does the theorem hold when the function is not continuous at the end points? Justify your answer. Verify the theorem for $f(x) = x^2 4x + 3$ on [1,3]. [5]
- 3. State L-Hospital's theorem and evaluate $x \to 0 \left(\frac{\sin x}{x}\right)^{\frac{1}{x^2}}$ [5]
- 4. Find the asymptotes of curve $4x^3 3xy^2 y^3 + 2x^2 xy y^2 1 = 0$ [5]
- 5. Find the pedal equation of the curve $y^2 = 4c(x+c)$ [5]
- 6. Show that $\int_0^{\frac{\pi}{2}} \frac{\sin^2 x}{\sin x + \cos x} dx = \frac{1}{\sqrt{2}} \log(\sqrt{2} + 1)$ [5]
- 7. Evaluate, by using differentiation under the sign of integration $\int_0^\infty \frac{\log(1+a^2x^2)}{1+b^2x^2} dx$ [5]
- 8. Define Beta-Gamma function and use it to evaluate $\int_0^{\frac{\pi}{6}} \cos^4 3\theta \cdot \sin^2 6\theta \cdot d\theta$ [5]
- 9. Find the surface area of the solid generated by the revolution of the cardioids $r = a(1 + \cos\theta)$ about the initial line. [5]
- 10. Transform the equation $12x^2 10xy + 2y^2 + 11x 5y + 2 = 0$ by translating the axes into an equation with linear term missing.
- 11. Derive the standard equation of hyperbola. [5]
- 12. Find the centre, Length of axes and eccentricity of the conic [5]

$$9x^2 + 4xy + 6y^2 - 22x - 16y + 9 = 0$$

OR

Describe and sketch the graph of the equation $r = \frac{12\sec\theta}{2 + 3\sec\theta}$

13. Solve
$$\frac{dy}{dx} + \frac{\sin 2y}{x} = x^3 \cos^2 y$$
 [5]

14. Solve the differential equation of
$$xp^2 - 2yp + ax = 0$$
 [5]

15. Solve
$$(\overline{D}^2 - 1)y = \sinh(x)$$
 [5]

16.
$$(x^2D^2 + xD + 1)y = \sin(\log x^2)$$
 [5]

Examination Control Division 2074 Ashwin

Exam.	$^{\mathrm{B}}$	ack ,	
Level	BE	Full Marks	80
Programme	All (Except B.Arch.)	Pass Marks	32
Year / Part	I/I	Time	3 hrs.

Subject: - Engineering Mathematics I (SH401)

- ✓ Candidates are required to give their answers in their own words as far as practicable.
- ✓ Attempt <u>All</u> questions.
- ✓ <u>All</u> questions carry equal marks.
- ✓ Assume suitable data if necessary.
- 1. State Leibnitz's theorem on heigher order derivative. If $y = e^{a \tan^{-1} x}$, prove that $(1+x^2)y_{n+2} + (2nx + 2x a)y_{n+1} + n(n+1)y_n = 0$
- 2. State difference between Roll's Theorem and Lagrange's Mean value theorem. Verify Lagrange's mean value theorem for f(x) = x(x-1)(x-2) when $x \in \left[0, \frac{1}{2}\right]$.
- 3. Define inderminate form of a function. Evaluate

$$x \xrightarrow{\lim} 0 \left(\frac{\tan x}{x}\right)^{1/x^2}$$

- 4. Define asymptote to a curve. Find the asymptotes of curve $y^3 + 2xy^2 + x^2y y + 1 = 0$.
- 5. Find radius of curvature of the curve $x^3 + y^3 = 3axy$ at origin.

OR

Find the pedal equation of the polar curve $r^m = a^m \cos m\theta$.

- 6. Integrate: $\int_0^{\pi/2} \frac{\cos x \, dx}{(1+\sin x)(2+\sin x)}$
- 7. Apply differentiation under integral sign to evaluate $\int_0^\infty \frac{e^{-ax} \sin x}{x} dx$.
- 8. Define Beta and Gamma function. Use them to evaluate $\int_0^{2a} x^5 \sqrt{2ax x^2} dx$.
- 9. Show that the area of the curve $x^{2/3} + y^{2/3} = a^{2/3}$ is $\frac{3}{8}\pi a^2$.

OR

Find the volume of the solid formed by the revolution of the cardoid $r = a(1 + \cos\theta)$ about the initial line.

10. Solve:
$$(1 + y^2) dx = (\tan^{-1} y - x) dy$$

11. Solve:
$$y = px - \sqrt{m^2 + p^2}$$
 where $p = \frac{dy}{dx}$.

12. Solve: $(D^2 + 2D + 1)y = e^x + x^2$.

13. Solve: Solve: $x^2 \frac{d^2 y}{dx^2} - 2x \frac{dy}{dx} - 4y = x^4$.

OR

A resistance of 100 ohms, an inductance of 0.5 Henry are connected in series with a battery of 20 volts. Find the current in the circuit as a function of time.

- 14. What does the equation of lines $7x^2 + 4xy + 4y^2 = 0$ become when the axes are the bisectors of the angles between them?
- 15. Derive the equation of hyperbola in standard form.
- 16. Find the foci and eccentricity of the conic $x^2 + 4xy + y^2 2x + 2y 6 = 0$.

OR

Describe and sketch the graph of the conic $r = \frac{12}{6 + 2\sin\theta}$.

Examination Control Division 2073 Chaitra

Exam.	Reg	ular	
Level	BE	Full Marks	80
Programme	All (Except B.Arch.)	Pass Marks	32
Year / Part	1/1	Time	3 hrs.

Subject: - Engineering Mathematics I (SH401)

- ✓ Candidates are required to give their answers in their own words as far as practicable.
- ✓ Attempt <u>All</u> questions.
- ✓ <u>All</u> questions carry equal marks.
- ✓ Assume suitable data if necessary.
- 1. State Leibnitz theorem. If $y = e^{x^2}$, then show that $y_{n+1} 2xy_n 2ny_{n-1} = 0$.
- 2. Expand e^xlog_e(1+x) in ascending powers of x upto the term containing x⁴ in Maclaurin's series.
- 3. State L-hospital's rule. Evaluate,

$$x \to 0 \left(\frac{1}{x^2}\right)^{\tan x}$$

- 4. State the types of asymptotes to a curve. Find the asymptotes of the curve $(x^2 y^2)(x + 2y + 1) + x + y + 1 = 0$.
- 5. Find the chord of curvature through the pole for the curve $r = a(1+\cos\theta)$.
- 6. Show that $\int_0^\infty \frac{\log(1+x^2)}{1+x^2} dx = \pi \log 2$
- 7. Apply the method of differentiation under integral sign to prove

$$\int_0^{\pi/2} \frac{dx}{(a^2 \sin^2 x + b^2 \cos^2 x)^2} = \frac{\pi (a^2 + b^2)}{4a^3 b^3}$$

8. Using Beta -Gamma Function, show that

$$\int_0^{\pi/4} \sin^4 x \cdot \cos^2 x \, dx = \frac{3\pi - 4}{192}$$

9. Find the area included between an arc of cycloid $x = a (\theta - \sin \theta)$, $y = a (1 - \cos \theta)$ and its base.

OR

Find the volume of the solid formed by the revolution of the cardoid $r = a (1+\cos\theta)$ about the initial base.

- 10. What does the equation $x^2 + 2\sqrt{3}xy y^2 = 2a^2$ become when the axes are turned through an angle 30° to the original axes?
- 11. Derive the equation of an ellipse in the standard form.

12. Find the eccentricity of the conic,

$$x^2 + 4xy + y^2 - 2x + 2y - 6 = 0$$

OR

Describe and sketch the conic

$$r = \frac{10 \csc\theta}{2 \csc\theta + 3}$$

13. Solve:
$$\frac{dy}{dx} = \frac{x + 2y - 3}{2x + y - 3}$$

14. Solve:
$$\frac{dy}{dx} + y \tan x = \sec x$$

15. Solve:
$$y = 2px + p^3y^2$$
; where $p = \frac{dy}{dx}$

16. Solve:
$$x^2 \frac{d^2 y}{dx^2} - 2 x \frac{dy}{dx} + 2y = \frac{1}{x}$$

Examination Control Division 2074 Ashwin

Exam.	and the fourth	ack	
Level	BE	Full Marks	80
Programme	All (Except B.Arch.)	Pass Marks	32
Year / Part	I/I	Time	3 hrs.

Subject: - Engineering Mathematics I (SH401)

- ✓ Candidates are required to give their answers in their own words as far as practicable.
- ✓ Attempt All questions.
- ✓ <u>All</u> questions carry equal marks.
- ✓ Assume suitable data if necessary.
- 1. State Leibnitz's theorem on heigher order derivative. If $y = e^{a \tan^{-1} x}$, prove that $(1+x^2)y_{n+2} + (2nx+2x-a)y_{n+1} + n(n+1)y_n = 0$
- 2. State difference between Roll's Theorem and Lagrange's Mean value theorem. Verify Lagrange's mean value theorem for f(x) = x(x-1)(x-2) when $x \in \left[0, \frac{1}{2}\right]$.
- 3. Define inderminate form of a function. Evaluate

$$x \xrightarrow{lim} 0 \left(\frac{tanx}{x}\right)^{1/x^2}$$

- 4. Define asymptote to a curve. Find the asymptotes of curve $y^3 + 2xy^2 + x^2y y + 1 = 0$.
- 5. Find radius of curvature of the curve $x^3 + y^3 = 3axy$ at origin.

OR

Find the pedal equation of the polar curve $r^m = a^m \cos m\theta$.

6. Integrate:
$$\int_0^{\pi/2} \frac{\cos x \, dx}{(1+\sin x)(2+\sin x)}$$

- 7. Apply differentiation under integral sign to evaluate $\int_0^\infty \frac{e^{-ax} \sin x}{x} dx$.
- 8. Define Beta and Gamma function. Use them to evaluate $\int_0^{2a} x^5 \sqrt{2ax x^2} dx$.
- 9. Show that the area of the curve $x^{2/3} + y^{2/3} = a^{2/3}$ is $\frac{3}{8}\pi a^2$.

OR

Find the volume of the solid formed by the revolution of the cardoid $r = a(1 + \cos\theta)$ about the initial line.

10. Solve:
$$(1 + y^2) dx = (\tan^{-1} y - x) dy$$

11. Solve:
$$y = px - \sqrt{m^2 + p^2}$$
 where $p = \frac{dy}{dx}$.

12. Solve: $(D^2 + 2D + 1)y = e^x + x^2$.

13. Solve: Solve: $x^2 \frac{d^2y}{dx^2} - 2x \frac{dy}{dx} - 4y = x^4$.

OR

A resistance of 100 ohms, an inductance of 0.5 Henry are connected in series with a battery of 20 volts. Find the current in the circuit as a function of time.

- 14. What does the equation of lines $7x^2 + 4xy + 4y^2 = 0$ become when the axes are the bisectors of the angles between them?
- 15. Derive the equation of hyperbola in standard form.
- 16. Find the foci and eccentricity of the conic $x^2 + 4xy + y^2 2x + 2y 6 = 0$.

OR

Describe and sketch the graph of the conic $r = \frac{12}{6 + 2\sin\theta}$.

Examination Control Division 2073 Shrawan

Exam.	New Back (2066 & Later Batch)		
Level	BE	Full Marks	80
Programme	ALL (Except B.Arch)	Pass Marks	32
Year / Part	1/I	Time	3 hrs.

Subject: - Engineering Mathematics I (SH401)

- ✓ Candidates are required to give their answers in their own words as far as practicable.
- ✓ Attempt All questions.
- ✓ *All* questions carry equal marks.
- ✓ Assume suitable data if necessary.
- 1. State Leibnitz's theorem. If $y = (\sin^{-1} x)^2$, show that $(1-x^2)y_{n+2} - (2n+1)xy_{n+1} - n^2y_n = 0$
- 2. Verify Rolle's Theorem for $f(x) = \log \frac{x^2 + ab}{(a+b)x}$; xe [a, b]. How does Rolle's Theorem differ from Lagrange's mean value theorem.
- 3. Evaluate $\stackrel{\lim}{x} \to 0^+ \left(\frac{\sin x}{x}\right)^{\frac{1}{x}}$
- Find the asymptotes to the curve $y^3 + 2xy^2 + x^2y y + 1 = 0$
- 5. Find the radius of curvature at origin for the curve $x^3 + y^3 = 3axy$.
- 6. Show that $\int_{1}^{1} x \log(\sin x) dx = \frac{\pi^2}{2} \log \frac{1}{2}$
- 7. Apply the rule of differentiation under integral sign to evaluate $\int_{0}^{\infty} \frac{e^{-ax} \sin x}{x} dx$ and hence deduce that $\int_{-\infty}^{\infty} \frac{\sin x}{x} dx = \frac{\pi}{2}$
- Define Beta function. Apply Beta and Gamma function to evaluate $\int_{0}^{2a} x^{5} \sqrt{2ax-x^{2}} dx$
- 9. Find the volume generated by revolution of astroid $x^{2/3} + y^{2/3} = a^{2/3}$ about x-axis.
- 10. What does the equation $3x^2 + 3y^2 + 2xy = 2$ becomes when the axes are turned through an angle of 45° to the original axes?
- 11. Find center, length of axes, eccentricity and directrices of the conic

$$3x^2 + 8xy - 3y^2 - 40x - 20y + 50 = 0$$

Describe and sketch the conic $r = \frac{12}{2-6\cos\theta}$

- 12. Deduce standard equation of ellipse.
- 13. Solve the differential equation: $(1+y^2)+(x-e^{\tan^{-1}y})\frac{dy}{dy}=0$
- 14. Solve: $xp^2 2yp + ax = 0$ where $p = \frac{dy}{dx}$
- 15. Solve: $\frac{d^2y}{dx^2} + 3\frac{dy}{dx} + 2y = e^{2x} \cdot \sin x$
- 16. Resistance of 100 ohms, an inductance of 0.5 Henry are connected in series with battery 20 volts. Find the current in the circuit as a function of time.

Examination Control Division 2072 Chaitra

Exam.	Reg	and the second s	*10.11
Level	BE	Full Marks	80
Programme	ALL (Except B. Arch)	Pass Marks	32
Year / Part	I/I	Time	3 hrs.

Subject: - Engineering Mathematics I (SH401)

- ✓ Candidates are required to give their answers in their own words as far as practicable.
- ✓ Attempt All questions.
- ✓ All questions carry equal marks.
- ✓ Assume suitable data if necessary.
- 1. State Leibnitz's theorem. If $y = (x^2 1)^n$, then prove that

$$(x^2-1)y_{n+2} + 2xy_{n+1} - n(n-1)y_n = 0$$

- 2. Assuming the validity of expansion, expand log(1+sinx) by Maclaurin's therom.
- 3. Evaluate $x \xrightarrow{\lim} 0 \frac{(1+x)^{1/x} e}{x}$
- 4. Find the asymptotes of the curve: $x(x-y)^2 3(x^2 y^2) + 8y = 0$
- 5. Find the radius of curvature at any point (r,θ) for the curve $a^2 = r^2 \cos 2\theta$
- 6. Show that: $\int_0^{\pi} \frac{x \sin x}{1 + \cos^2 x} dx = \frac{\pi^2}{4}$
- 7. Apply differentiation under integral sign to evaluate $\int_0^{\pi/2} \log \frac{a + b \sin x}{a b \sin x} \frac{dx}{\sin x}$
 - 8. Define Gamma function. Apply Beta and Gamma function to evaluate:

$$\int_0^{\pi/6} \cos^2 6\theta \cdot \sin^4 3\theta = \frac{7\pi}{192}$$

- 9. Find the area inclosed by $y^2(a-x) = x^3$ and its asymptotes.
- 10. If the axes be turned through and angle of $tan^{-1}2$, what does the equation $4xy-3x^2-a^2=0$ become?
- 11. Find the center, length of axes, eccentricity and directrices of the conic.

$$2x^2 + 3y^2 - 4x - 12y + 13 = 0$$

OK

Describe and sketch the graph of the conic $r = \frac{10}{3 + 2\cos\theta}$

- 12. Deduce standard equation of hyperbola.
- 13. Solve the differential equation: $x \log x \frac{dy}{dx} + y = 2 \log x$

14. Solve:
$$(x-a)p^2 + (x-y)p - y = 0$$
: where $p = \frac{dy}{dx}$

- 15. Solve: $(D^2 D 2)y = e^x + \sin 2x$
- 16. Find a current i(t) in the RLC circuit assuming zero initial current and charge q, if R = 80 ohms, L = 20 Henry, C = 0.01 Fardays and E = 100 volts.

Examination Control Division 2072 Kartik

Exam.	New Back (2066 & Later Batch)		
Level	BE	Full Marks	80
Programme	All (Except B.Arch)	Pass Marks	32
Year / Part	I/I	Time	3 hrs

Subject: - Engineering Mathematics I (SH401)

- Candidates are required to give their answers in their own words as far as practicable.
- Attempt All questions.
- All questions carry equal marks.
- Assume suitable data if necessary.
- 1. If $y = (\sin^{-1} x)^2$, then show that:
 - i) $(1-x^2)y_2-xy_1-2=0$
 - ii) $(1-x^2)y_{n+2} (2n+1)xy_{n+1} n^2y_n = 0$
- 2. State Rolle's Theorem and verify the theorem for $f(x) = \frac{x(x+3)}{e^{x/2}}$; $x \in [-3,0]$
- 3. Evaluate: $x \to 0 \left(\frac{\tan x}{x}\right)^{1/x}$
- 4. Find the asymptotes of the curve: $(a+x)^2(b^2+x^2)=x^2.y^2$
- 5. Find the pedal equation of the curve $r^2 = a^2 \cos 2\theta$
- 6. Evaluate $\int_0^{\pi/4} \frac{(\sin x + \cos x)}{(9 + 16\sin 2x)} dx$
- 7. Use Beta Gamma function to evaluate $\int_{0}^{2a} x^5 \sqrt{2ax-x^2} dx$
- 8. Evaluate by using the rule of differentiation under the sign of integration.

$$\int_0^\infty \frac{e^{-x} \sin bx}{x} dx$$

Find the area of one loop of the curve $r = a \sin 3\theta$

Find-the volume of the solid formed by the revolution of the cardioid $r = a (1 + \cos \theta)$ about the initial line.

Find center and eccentricity of conic $x^2 + 4xy + y^2 - 2x + 2y - 6 = 0$

Describe and sketch the graph of the equation $r = \frac{10}{3 + 2\cos\theta}$

- 10. Find the condition that the line lx + my + n = 0 may be a normal to the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$
- 11. Show that the pair of tangents drawn from the center of a hyperbola are its asymptotes.
- 12. Solve the differential equation: $\frac{dy}{dx} = \frac{y}{x} + \tan \frac{y}{x}$
- 13. Solve: $y-2px + ayp^2 = 0$ where $p = \frac{dy}{dx}$
- 14. Solve the differential equation: $x \frac{dy}{dx} + y \log y = xy e^x$
- 15. Solve the differential equation: $x^2 \frac{d^2y}{dx^2} + x \frac{dy}{dx} 4y = x^2$

Examination Control Division 2071 Chaitra

Exam.	Regular		
Level	BE	Full Marks •	80
Programme	All (Except B.Arch)	Pass Marks	32
Year / Part	I/I	Time	3 hrs.

Subject: - Engineering Mathematics I (SH401)

- ✓ Candidates are required to give their answers in their own words as far as practicable.
- ✓ Attempt All questions.
- ✓ <u>All</u> questions carry equal marks.
- ✓ Assume suitable data if necessary.
- 1. State Leibnity's theorem on Leigher derivatives:

If
$$y = \sin(m \sin^{-1} x)$$
 then show that

$$(1-x^2) y_{n+2} - (2n+1) xy_{n+1} + (m^2-n^2)y_n = 0$$

- 2. Assuming the validity of expansion, find the expansion of the function $\frac{e^x}{1+e^x}$ by Maclaurin's theorem.
- 3. Evaluate $\lim_{x\to 0} \frac{xe^x (1+x)\log(1+x)}{x^2}$
- 4. Find the asymptotes of the curve $y^3 + 2xy^2 + x^2y y + 1 = 0$
- 5. Find the radius of curvature of the curve $y = x^2(x-3)$ at the points where the tangent is parallel to x-axis

OR

Find the pedal equation of the curve $r^2 = a^2 \cos 2\theta$

- 6. Show that $\int_0^a \frac{dx}{x + \sqrt{a^2 x^2}} = \frac{\Pi}{4}$
- 7. Apply differentiation under integral sign to evaluate $\int_0^{\pi/2} \frac{dx}{(a^2 \sin^2 x + b^2 \cos^2 x)^2}$
- 8. Use gamma function to prove that $\int_0^1 \frac{dx}{(1-x^6)^{1/6}} = \Pi/3$
- 9. Find the volume or surface area of solid generated by revolving the cycloid $x = a(\theta + \sin \theta)$, $y = a(1 + \cos \theta)$ about its base.

10. If the line lx+my+n=0 is normal to the ellipse
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$
 then show that
$$\frac{a^2}{l^2} + \frac{b^2}{m^2} = \frac{(a^2 - b^2)^2}{n^2}$$

- 11. Solve the locus of a point which moves in such a way that the difference of its distance from two fixed points is constant is Hyperbola.
- 12. Solve the differential equation $x \frac{d^2y}{dx^2} + 2 \frac{dy}{dx} = 6x$
- 13. Solve $(x^2D^2 + xD + 1)y = \sin(\log x^2)$
- 14. Solve $y = yp^2 + 2px$ where $p = \frac{dy}{dx}$
- 15. Solve: $\frac{d^2y}{dx^2} + 3\frac{dy}{dx} + 2y = e^{2x} \sin x$
- 16. Describe and sketch the graph of the equation $r = \frac{10}{2 3\sin\theta}$

OR

Show that the conic section represented by the equation

 $14x^2 - 4xy + 11y^2 - 44x - 58y + 71 = 0$ is an ellipse. Also find its center, eccentricity, latus rectums and foci

Examination Control Division

2070 Chaitra

Exam.		Regular	
Level	BE	Full Marks	80
Programme	All (Except B.Arch)	Pass Marks	32
Year / Part	I/I	Time	3 hrs.

Subject: - Engineering Mathematics I (SH401)

- ✓ Candidates are required to give their answers in their own words as far as practicable.
- ✓ Attempt <u>All</u> questions.
- ✓ <u>All</u> questions carry equal marks.
- ✓ Assume suitable data if necessary.
- 1. If $Y = Sin(m sin^{-1}x)$, then show that $(1-x^2)y_{n+2} (2n+1)xy_{n+1} + (m^2-n^2)y_n = 0$
- 2. Apply Maclaurin's series to find the expansion of $\frac{e^x}{1+e^x}$ as far as the term in x^3
- 3. Evaluate: $x \xrightarrow{\lim} a \left(2 \frac{x}{a}\right)^{\operatorname{Tan} \frac{\pi x}{2a}}$
- 4. Find the asymptotes of the curve $x(x-y)^2 3(x^2 y^2) + 8y = 0$
- 5. Find the pedal equation of the curve $x^{\frac{2}{3}} + y^{\frac{2}{3}} = a^{\frac{2}{3}}$
- 6. Apply the method of differentiation under integral sign to evaluate $\int_{0}^{\infty} \frac{\log(1+a^2x^2)}{1+b^2x^2} dx$
- 7. Show that $\int_{0}^{\infty} \frac{\log(1+x^2)}{1+x^2} dx = \pi \log 2$
- 8. Use Gamma function to prove that $\int_{0}^{1} \frac{dx}{(1-x^{6})^{\frac{1}{6}}} = \frac{\pi}{3}$
- 9. Find the area of two loops of the curve $a^2y^2 = a^2\chi^2 x^4$

OR

Find the volume of the solid formed by the revolution of the cycloid $x = a (\theta + \sin \theta)$, $y = a (1 - \cos \theta)$ about the tangent at the vertex.

- 10. Solve the differential equation $(1+y^2) + (x e^{\tan^{-1} y}) \frac{dy}{dx} = 0$
- 11. Solve: $y 3px + ayp^2 = 0$
- 12. Solve: $(D^2 2D + 5)y = e^{2x} \cdot \sin x$
- 13. A resistance of 100 Ohms, an inductance of 0.5 Henry are connected in series with a battery 20 volts. Find the current in the circuit as a function of time.
- 14. What does the equation $3x^2 + 3y^2 + 2xy = 2$ becomes when the axes are turned through an angle 45° to the original axes.
- 15. Show that the locus of a point which moves in such a way that the differences of its distance from two fixed points is constant is a hyperbola.
- 16. Find the center, length of the axes and eccentricity of the conic $2x^2 + 3y^2 4x 12y + 13 = 0$

OR

Describe and sketch the graph of the polar equation of conic $r = \frac{10 \csc \theta}{2 \csc \theta + 3}$

47

Examination Control Division 2071 Shawan

Exam.	New Back (2066 & Later Batch)		
Level	BE	Full Marks	80
Programme	All (Except B.Arch)	Pass Marks	32
Year / Part	I/iI	Time	3 hrs.

Subject: - Engineering Mathematics I (SH401)

- ✓ Candidates are required to give their answers in their own words as far as practicable.
- ✓ Attempt All questions.
- ✓ The figures in the margin indicate Full Marks.
- ✓ Assume suitable data if necessary.

1. If
$$y = \log(x + \sqrt{a^2 + x^2})$$
, then show that $(a^2 + x^2)y_{n+2} + (2n+1)xy_{n+1} + n^2y_n = 0$ [5]

2. State and prove Logrange's Mean Value theorem. [5]

3. Evaluate:
$$x \to \prod_{i=1}^{lim} (\sin x)^{\tan x}$$
 [5]

- 4. Find the asymption of the curve $a^2y^2 + x^2y^2 a^2x^2 + 2ax^3 x^4 = 0$ [5]
- 5. Find the radius of curvature at the origin for the curve $x^3 + y^3 = 3axy$

6. Evaluate
$$\int_{0}^{a} \frac{\sqrt{x}}{\sqrt{x} + \sqrt{a - x}} dx$$
 [5]

- 7. Apply differentiation under integral sign to evaluate $\int_0^\infty \frac{e^{-ax} e^{-bx}}{x} dx$ [5]
- 8. Using Gamma function show that $\int_{0}^{\frac{\pi}{4}} \sin^4 x \cos^2 x \, dx = \frac{3\pi 4}{192}$ [5]
- 9. Find the area bounded by the curve $x^2 = 4y$ and the line x = 4y 2

OF

Find the volume of the solid generated by the revolution of the cardioid $r = a (1-\cos\theta)$ about the initial line.

10. Solve:
$$\operatorname{Sinx} \frac{\mathrm{dy}}{\mathrm{dx}} + y \cos x = x \sin x$$
 [5]

11. Solve:
$$xp^2 - 2yp + ax = 0$$
 where $p = \frac{dy}{dx}$ [5]

12. Solve:
$$\frac{d^2y}{dx^2} - 2\frac{dy}{dx} + y = x^2 e^{3x}$$
 [5]

13. Solve:
$$x^2 \frac{d^2y}{dx^2} - x \frac{dy}{dx} + y = \log x$$
 [5]

- 14. Transform the equation $x^2 2xy + y^2 + x 3y = 0$ to axes through the point (-1,0) parallel to the lines bisecting the angles between the original axes. [5]
- 15. Find the center, length of axes and the eccentricity of the ellipse $2x^2 + 3y^2 4x 12y + 13 = 0$ [5]
- 16. Find the length of axes and ecentricity of the conic [5]

$$14x^2 - 4xy + 11y^2 - 44x - 58y + 71 = 0$$

OR

Describe and sketch the conic $r = \frac{12}{2 - 6\cos\theta}$

Examination Control Division

2070 Ashad

Exam.	New Back (2066 & Later Batch)		
Level	BE	Full Marks	80
Programme	All (Except B.Arch)	Pass Marks	32
Year / Part	I/I	Time	3 hrs.

Subject: - Mathematics I (SH401)

- ✓ Candidates are required to give their answers in their own words as far as practicable.
- ✓ Attempt All questions.
- ✓ All questions carry equal marks.
- ✓ Assume suitable data if necessary.
- 1. State Leibnitz's Theorem on higher derivatives. If $y = \sin{(m \sin^{-1}x)}$ then show that $(1-x^2) y_{n+2} (2n+1) xy_{n+1} + (m^2-n^2)y_n = 0$
- 2. State Rolle's Theorem and verify it for the function $f(x) = \frac{x(x+3)}{e^{\frac{x}{2}}}$, $x \in [-3,0]$
- 3. Evaluate: $x \to 0 \left(\frac{\tan x}{x}\right)^{\frac{1}{x^2}}$
- 4. Find the asymptotes of the curve $(x^2 y^2)^2 2(x^2 + y^2) + x 1 = 0$
- 5. Show that the radius of curvature at any point (r,θ) of the curve $r^m = a^m \cos m\theta$ is $\frac{a^m}{(m+1)r^{m+1}}$
- 6. Show that $\int_0^1 \frac{\log(1+x)}{1+x^2} dx = \frac{\pi}{8} \log 2$
- 7. Evaluate by using the rule of differentiation under the sign of integration $\int_0^\infty \frac{e^{-x} \sin bx}{x} dx$
- 8. Use Gamma function to prove $\int_0^{\frac{\pi}{6}} \cos^4 3\theta \cdot \sin^2 6\theta = \frac{5\pi}{192}$
- 9. Find the area bounded by the curve $x^2y = a^2(a-y)$ and X-axis

OR

Show that the volume of the solid formed by revolving the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ about the line x = 2a is $4\pi^2 a^2 b$ cubic units.

- 10. Solve the differential equation $(1+y^2)$ dy = $(\tan^{-1} y x)$ dx
- 11. Solve the differential equation $y = yp^2 + 2px$ where $p = \frac{dy}{dx}$

- 12. Solve the differential equation $(D^2 2D + 5)y = e^{2x} \cdot \sin x$
- 13. Solve the differential equation $x^2 \frac{d^2y}{dx^2} x \frac{dy}{dx} + 2y = x \log x$

OR

Newton's law of cooling states that the temperature of an object changes at the rate proportional to the difference of temperature between the object and its surroundings. Supposing water at 100°C cools to 80°C in 10 minutes in a room temperature of 30°C find the time when the temperature of water will become 40°C?

- 14. If the axes be turned through an angle $\tan \theta = 2$ what does the equation $4xy 3x^2 a^2 = 0$ becomes.
- 15. Find the condition that the straight line x cos α + y sin α = p touches the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$
- 16. Find the centre, length of axes and eccentricity of the conic $9x^2 + 4xy + 6y^2 22x 16y + 9 = 0$

OR

Describe and sketch the graph of the equation $r = \frac{12}{3 + 2\cos\theta}$

INSTITUTE OF ENGINEERING

Examination Control Division 2069 Chaitra

L. Acessa	BE.	Full Marks	,80
Level	(11 (Treamt R Arch)	Pass Marks	32
Programme Year / Part	The state of the s	Time	3 hrs.

Subject: - Engineering Mathematics I (SH401)

- ✓ Candidates are required to give their answers in their own words as far as practicable.
- ✓ Attempt <u>All</u> questions.
- All questions carry equal marks.
- Assume suitable data if necessary.
- 1. If $y = \log (x + \sqrt{(a^2 + x^2)})$ show that $(a^2 + x^2)y_{n+2} + (2n+1)xy_{n+1} + n^2y_n = 0$
- 2. State and prove Lagrange's Mean Value theorem.
- 3. If $x \to 0$ $\frac{a \sin x \sin 2x}{\tan^3 x}$ is finite, find the value of a and the limit.
- 4. Find asymptotes of $(x^2-y^2)^2 2(x^2+y^2) + x-1 = 0$
- 5. Find the radius of curvature at any point (x,y) for the curve $x^{2/3}+y^{2/3}=a^{2/3}$
- 6. Prove that $\int_0^\infty \frac{\sin bx}{y} dx = \frac{\pi}{2} (b > 0)$
- Use Beta and Gamma function to evaluate $\int_0^{2a} x^5 \sqrt{2ax x^2} dx$
- 8. Evaluate $\int_0^\infty \frac{e^{-x} \sin bx}{x} dx$ by using the rule of differentiation under the sign of integration.
- 9. Find the volume of the solid formed by the revolution of the cardiod $r = a (1+\cos\theta)$ about initial line.

Find the area bounded by the curve $x^2y = a^2$ (a-y) and the x-axies

- 10. Solve the differential equation $\frac{dy}{dx} = \frac{y}{x} + \tan \frac{y}{x}$
- 11. Solve the differential equation $x \frac{dy}{dy} + y \log y = xye^x$
- 12. Solve the differential equation $\frac{d^2y}{dx^2} + 2\frac{dy}{dx} = e^x + e^{-x}$
- 13. Solve $y = px \sqrt{m^2 + p^2}$ where $p = \frac{dy}{dx}$

A resistance of 100 ohms, an inductance of 0.5 henry are connected in series with a battery of 20 volts. Find the current in the circuit as a function of time.

- 14. Solve that locus of a point which moves in such a way that the differences of it distance from two fixed point is constant is Hyperbola.
- 15. Find the equation of ellipse of the form $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ where a>b
- 16. Describe and sketch the graph of the equation $r = \frac{4 \sec \theta}{2 \sec \theta 1}$

Examination Control Division 2068 Chaitra

Exam.			
Level	BE	Full Marks	80
Programme	ALL	Pass Marks	32
Year / Part	I/I	Time	3 hrs.

Subject: - Engineering Mathmatics I (SH 401)

- Candidates are required to give their answers in their own words as far as practicable.
- ✓ Attempt All questions.
- ✓ All questions carry equal marks.
- Assume suitable data if necessary
- 1. If $y^{1/m} + y^{-1/m} = 2x$ Show that:

 - a) $(x^2-1)y_2+xy_1-m^2y=0$ b) $(x^2-1)y_{n+2}+(2n+1)xy_{n+1}+(n^2-m^2)y_n=0$
- State the Rolle's theorem and use it to prove Lagrange's mean value theorem.
- 3. Evaluate: $\lim_{x \to 0} \left(\frac{1}{x^2} \frac{1}{\sin^2 x} \right)$
- 4. Find the asymptotes of the curve $a^2b^2 + 2ab^2x + b^2x^2 + a^2x^2 + 2ax^3 + x^4 x^2v^2 = 0$
- 5. Find the pedal equation of the curve $r^m = a^m \cos m\theta$.
- 6. Show that $\int_0^{\frac{\pi}{2}} \frac{x}{(\sin x + \cos x)} dx = \frac{\pi}{2\sqrt{2}} \log(\sqrt{2} + 1)$
- 7. Apply differentiation under integral sign to evaluate $\int_{-\infty}^{\infty} \frac{e^{-x} \sin bx}{dx}$
- 8. Use Gamma function to evaluate $\int_0^1 x^6 \sqrt{1-x^2} dx$
- 9. Find the area of curve $y^2(2a x) = x^3$ and its asymptotes.

Find the volume of solid formed by the revolution of the cardiode $r = a(1 + \cos\theta)$ about the initial line.

- 10. Solve the differential equation $\frac{dy}{dx} 2y \tan x = y^2 \tan x$
- 11. Solve the differential equation $xp^2 2yp + ax = 0$ where p = dy/dx.
- 12. Solve $(D^2-2D+5)y = 10 \sin x$
- 13. Solve the differential equation $x^2 \frac{d^2y}{dx^2} + 4x \frac{dy}{dx} + 2y = e^x$
- 14. Derive the equation of an ellipse in standard form.
- 15. Prove that the normal at a point t of the rectangular Hyperbola $xy = c^2$ meets the curve again at a point t_1 such that $t^2t_1 = -1$.
- 16. Find the equation of axes and length of axes of conic $x^2 4xy 2y^2 + 10x + 4y = 0$

Describe and sketch the polar conic $r = \frac{12}{(3-2\cos\theta)}$

74 tribhuvan university INSTITUTE OF ENGINEERING Examination Control Division 2068 Baishakh

ŝ				
i,	Exam.	Reg	ular / Back	
	Level	BE	Full Marks	80
	Programme	B.Arch.	Pass Marks	32
	Year / Part	I/I	Time	3 hrs.

Subject: - Engineering Mathematics I

- ✓ Candidates are required to give their answers in their own words as far as practicable.
- ✓ Attempt All questions.
- ✓ <u>All</u> questions carry equal marks.
- ✓ Assume suitable data if necessary.
- If $y = \sin^{-1}x$, then show that $(1 x^2)y_{n+2} (n+1)xy_{n+1} n^2y_n = 0$
- 2. Apply Maclaurin's series to find the expansion of $f(x) = \frac{e^{x}}{1+e^{x}}$ as far as the term in x^3 .
- 3. Evaluate $\lim_{x \to 0} \left(\frac{\tan x}{x} \right)^{\frac{1}{x}}.$
- 4. Find the asymptotes of curve $x^3 + y^3 = 3axy$.
- 5. Find the pedal equation of curve $r^2\cos 2\theta = a^2$.

OR

Show that the radius of curvature at a point (r, 0) for the curve $r = ae^{\theta \cot \alpha}$ is resected.

- 6. Evaluate: $\int_0^{\frac{\pi}{4}} \frac{(\sin x + \cos x) dx}{(9 + 16 \sin 2x)}$
- 7. Show that $\int_0^{\pi/2} \frac{\sin^2 x}{\sin x + \cos x} dx = \frac{1}{\sqrt{2}} \log(\sqrt{2} + 1)$.
- 8. Obtain the reduction formula for \[\cot^n x \, dx \] and hence integrate \[\cot^7 x \, dx. \]
- 9. Prove that $\int_0^\infty \sqrt{y} e^{-y^2} dy \times \int_0^\infty \frac{e^{-y^2}}{\sqrt{y}} dy = \frac{\pi}{2\sqrt{2}}$
- 10. Show that the area of loop of curve $ay^2 = x^2(a x)$ is $\frac{8}{15}a^2$.

OR

Find the surface area of solid generated by revolving the cycloid $x = a(\theta + \sin \theta)$, $y = a(1 + \cos \theta)$.

- 1 L What does the equation $3x^2 4xy + 25y^2 = 0$ becomes when the axes are turned through an angle $\tan^{-1}2$.
- 12 Establish the equation of ellipse in standard form.

13.8how that the eccentricity of hyperbola whose transverse axis is 2a and passes through (h, k) is $\sqrt{\frac{h^2+k^2-a^2}{h^2-a^2}}$

OR

Identify, sketch and describe the polar equation of conic $r=\frac{10}{3+2\cos\theta}$

- 14. Solve $(x^2 y^2)dx + 2xy dx = 0$
- 15. Solve the differential equation: $\frac{dy}{dx} + y \cot x = 2 \cos x$
- 16. Solve the differential equation: $P^3 + 3xP^2 y^3P^2 3xy^3P = 0$

Solve the differential equation: $(D^2 + 16)y = \cos 4x$

Examination Control Division 2068 Chaitra

Exam.	Supermental transportation of the supermental supermen	KELENCE	
Level	BE	Full Marks	80
Programme	ALL	Pass Marks	32
Year / Part	I/I	Time	3 hrs.

Subject: - Engineering Mathmatics I (SH 401)

- Candidates are required to give their answers in their own words as far as practicable.
- ✓ Attempt All questions.
- All questions carry equal marks.
- Assume suitable data if necessary.
- 1. If $y^{1/m} + y^{-1/m} = 2x$ Show that:

 - a) $(x^2-1)y_2+xy_1-m^2y=0$ b) $(x^2-1)y_{n+2}+(2n+1)xy_{n+1}+(n^2-m^2)y_n=0$
- State the Rolle's theorem and use it to prove Lagrange's mean value theorem.
- 3. Evaluate: $\lim_{x \to 0} \left(\frac{1}{x^2} \frac{1}{\sin^2 x} \right)$
- 4. Find the asymptotes of the curve $a^2b^2 + 2ab^2x + b^2x^2 + a^2x^2 + 2ax^3 + x^4 x^2y^2 = 0$
- 5. Find the pedal equation of the curve $r^m = a^m \cos m\theta$
- 6. Show that $\int_0^{\frac{\pi}{2}} \frac{x}{(\sin x + \cos x)} dx = \frac{\pi}{2\sqrt{2}} \log(\sqrt{2} + 1)$
- Apply differentiation under integral sign to evaluate $\int \frac{e^{-x} \sin bx}{x} dx$
- 8. Use Gamma function to evaluate $\int_0^1 x^6 \sqrt{1-x^2} dx$
- Find the area of curve $y^2(2a x) = x^3$ and its asymptotes.

Find the volume of solid formed by the revolution of the cardiode $r = a(1 + \cos\theta)$ about the initial line.

- 10. Solve the differential equation $\frac{dy}{dx} 2y \tan x = y^2 \tan x$
- 11. Solve the differential equation $xp^2 2yp + ax = 0$ where p = dy/dx.
- 12. Solve $(D^2-2D+5)y = 10 \sin x$
- 13. Solve the differential equation $x^2 \frac{d^2y}{dx^2} + 4x \frac{dy}{dx} + 2y = e^x$
- 14. Derive the equation of an ellipse in standard form.
- 15. Prove that the normal at a point t of the rectangular Hyperbola $xy = c^2$ meets the curve again at a point t_1 such that $t't_1 = -1$.
- 16. Find the equation of axes and length of axes of conic $x^2 4xy 2y^2 + 10x + 4y = 0$

Describe and sketch the polar conic $r = \frac{12}{(3-2\cos\theta)}$

INSTITUTE OF ENGINEERING

Examination Control Division 2069 Chaitra

W. J. W. C. F. H. H. H. B.				i
Level	BE	Full Marks	₹80	
	()	Pass Marks	32	
Year / Part	I/I	Time	3 hrs.	

Subject: - Engineering Mathematics I (SH401)

- ✓ Candidates are required to give their answers in their own words as far as practicable.
- ✓ Attempt <u>All</u> questions.
- ✓ <u>All</u> questions carry equal marks.
- ✓ Assume suitable data if necessary.

1. If
$$y = \log (x + \sqrt{(a^2 + x^2)})$$
 show that $(a^2 + x^2)y_{n+2} + (2n+1)xy_{n+1} + n^2y_n = 0$

- 2. State and prove Lagrange's Mean Value theorem.
- 3. If $x \to 0$ $\frac{a \sin x \sin 2x}{\tan^3 x}$ is finite, find the value of a and the limit.
- 4. Find asymptotes of $(x^2-y^2)^2 2(x^2+y^2) + x-1 = 0$
- 5. Find the radius of curvature at any point (x,y) for the curve $x^{2/3}+y^{2/3}=a^{2/3}$
- 6. Prove that $\int_0^\infty \frac{\sin bx}{x} dx = \frac{\pi}{2} (b > 0)$
- 7. Use Beta and Gamma function to evaluate $\int_0^{2a} x^5 \sqrt{2ax x^2} dx$
- 8. Evaluate $\int_0^\infty \frac{e^{-x} \sin bx}{x} dx$ by using the rule of differentiation under the sign of integration.
- 9. Find the volume of the solid formed by the revolution of the cardiod $r = a (1+\cos\theta)$ about initial line.

OR

Find the area bounded by the curve $x^2y = a^2$ (a-y) and the x-axies

- 10. Solve the differential equation $\frac{dy}{dx} = \frac{y}{x} + \tan \frac{y}{x}$
- 11. Solve the differential equation $x \frac{dy}{dx} + y \log y = xye^x$
- 12. Solve the differential equation $\frac{d^2y}{dx^2} + 2\frac{dy}{dx} = e^x + e^{-x}$
- 13. Solve $y = px \sqrt{m^2 + p^2}$ where $p = \frac{dy}{dx}$

OR

A resistance of 100 ohms, an inductance of 0.5 henry are connected in series with a battery of 20 volts. Find the current in the circuit as a function of time.

- 14. Solve that locus of a point which moves in such a way that the differences of it distance from two fixed point is constant is Hyperbola.
- 15. Find the equation of ellipse of the form $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ where a>b
- 16. Describe and sketch the graph of the equation $r = \frac{4 \sec \theta}{2 \sec \theta 1}$