Math239 Lecture 19

Graham Cooper

June 22md, 2015

Topics:

- 1. Cycles
- 2. Connectedness

Cycles

Hamilton Cycle

<u>Definition:</u> A hamilton cycle is a cycle that contains every vertex of the graph

Peterson Graph, no hamilton cycle:

Traveling salesman problem: Given a list of cities and the distances between each pair of cities, what is the shortest possible route that visits each city exactly once and returns to the origin city?

Finding a Ham cycle of the shortest length

Theorem: For $n \ge 2$ the n-cube has a Ham cycle

Find a hamilton cycle for the smaller n-cube then link the two new sections together.

Proof: By induction on n.

For n = 2 it is obviously a ham cycle. as we are just going in a square around the edges. Assume (n-1)-cube has a Ham cycle. The n-cube is built from 2 copies of the (n-1) cube. Take the same Ham-cycle of the (n-1)-cube for both copies. Suppose st is an edge of the Ham cycle for the (n-1)-cube. Then Os, Ot and ls, lt are edges in the n-cube. Remove these two edges and add 0s, ls and ot, lt to get a Ham cycle in the n-cube.

Connectedness

<u>Definition:</u> A graph G is connected if there is a u,v-path for every pair of vertices $u,v \in V(G)$

Theorem: If there exists a vertex $u \in V(G)$ such that a u,v-path exist for all $v \in V(G)$ then G is connected.

Proof:

Let x,y be any two vertices in G. By assumption, there exists an x,u-path and a u,y-path. By tansitivity, there is an x.y-path so G is connected Theorem:: The n-cube is connected

Proof: Let v_0 be the string of n 0's and let x be any string of length n. Suppose x has k 1's, located at positions $i_1, i_2...i_k$. We produce $v_1, v_2, ...v_k$ by letting v_j be the string with exactly j 1's, at positions $i_1, i_2, ...i_j$. notce that for $j \geq 0$ v_j and v_{j+1} differe in one bit at position i_{j+1} so $v_j v_{j+1}$ is an edge. Hence, $v_0, v_1, v_2...v_k = x$ is a v_0, x -path. Therefore the n-cube is connected

Components and Cuts

<u>Definition</u>: A subgraph H of G has vertex set $V(H) \subseteq V(G)$ and $E(H) \subseteq E(G)$ where each edge in E(H) joins two vertices in V(H)

Example:

