FUSED-RING COMPOUNDS AND USE THEREOF AS DRUGS

This application is a divisional of copending U.S. Patent Application No. 09/939,374, filed August 24, 2001, which is a continuation-in-part of PCT/JP00/09181 filed on December 22, 2000.

Technical Field

10

15

20

25

30

35

The present invention relates to a novel fused ring compound and a pharmaceutically acceptable salt thereof useful as a therapeutic agent for hepatitis C, and to an intermediate compound for the synthesis thereof. The present invention also relates to a novel use of a certain fused ring compound or a pharmaceutically acceptable salt thereof as a therapeutic agent for hepatitis C. More particularly, the present invention relates to a therapeutic agent for hepatitis C, which contains a novel fused ring compound or a Pharmaceutically acceptable salt thereof, which is effective for the prophylaxis or treatment of hepatitis C and which shows anti-hepatitis C virus (HCV) activity, particularly anti-HCV activity based on an RNA-dependent RNA polymerase inhibitory activity.

Background Art

In 1989, a main causative virus of non-A non-B posttransfusion hepatitis was found and named hepatitis C virus (HCV). Since then, several types of hepatitis viruses have been found besides type A, type B and type C, wherein hepatitis caused by HCV is called hepatitis C.

The patients infected with HCV are considered to involve several percent of the world population, and the infection with HCV characteristically becomes chronic.

HCV is an envelope RNA virus, wherein the genome is a single strand plus-strand RNA, and belongs to the genus Hepacivirus of Flavivirus (from The International Committee on Taxonomy of Viruses, International Union of Microbiological Societies). Of the same hepatitis viruses, for example, hepatitis B virus (HBV), which is a DNA virus, is eliminated by the immune system and the infection with this virus ends in an acute infection except for neonates and infants having yet immature immunological competence. In contrast, HCV somehow avoids the immune system of the host due to an unknown mechanism. Once

infected with this virus, even an adult having a mature immune system frequently develops persistent infection.

When chronic hepatitis is associated with the persistent infection with HCV, it advances to cirrhosis or hepatic cancer in 5 a high rate. Enucleation of tumor by operation does not help much. because the patient often develops recurrent hepatic cancer due to the seguela inflammation in non-cancerous parts.

Thus, an effective therapeutic method of hepatitis C is desired. Apart from the symptomatic therapy to suppress 10 inflammation with an anti-inflammatory agent, the development of a therapeutic agent that reduces HCV to a low level free from inflammation and that eradicates HCV has been strongly demanded.

At present, a treatment with interferon is the only effective method known for the eradication of HCV. However, 15 interferon can eradicate the virus only in about one-third of the patient population. For the rest of the patients, it has no effect or provides only a temporary effect. Therefore, an anti-HCV drug to be used in the place of or concurrently with interferon is awaited in great expectation.

In recent years, Ribavirin $(1-\beta-D-ribofuranosyl-1H-1,2,4$ triazole-3-carboxamide) has become commercially available as a therapeutic agent for hepatitis C, which is to be used concurrently with interferon. It enhances the efficacy of interferon but only to a low efficacy rate, and a different novel 25 therapeutic agent for hepatitis C is desired.

20

Also, an attempt has been made to potentiate the immunocompetence of the patient with an interferon agonist, an interleukin-12 agonist and the like, thereby to eradicate the virus, but an effective pharmaceutical agent has not been found yet.

In addition, the inhibition of HCV growth, wherein HCVspecific protein is targeted, has been drawing attention these days.

The gene of HCV encodes a protein such as serine protease, 35 RNA helicase, RNA-dependent RNA polymerase and the like. These proteins function as a specific protein essential for the growth of HCV.

One of the specific proteins, RNA-dependent RNA polymerase (hereinafter to be also briefly referred to as an HCV polymerase), is an enzyme essential for the growth of the virus. The gene replication of HCV having a plus-strand RNA gene is considered to involve synthesis of a complementary minus-strand RNA by the use of the plus-strand RNA as a template, and, using the obtained minus-strand RNA as a template, amplifying the plus-strand RNA. The portion called NS5B of a protein precursor, that HCV codes for, has been found to show an RNA-dependent RNA polymerase activity (EMBO J., 15, 12-22, 1996), and is considered to play a central role in the HCV gene replication.

Therefore, an HCV polymerase inhibitor can be a target in the development of an anti-HCV drug, and the development thereof is eagerly awaited. However, an effective HCV polymerase inhibitor has not been developed yet, like in other attempts to develop an anti-HCV drug based on other action mechanisms. As the situation stands, no pharmaceutical agent can treat hepatitis C satisfactorily.

The following discloses known compounds relatively similar 20 to the compound of the present invention.

A known therapeutic agent for hepatitis C having a benzimidazole skeleton is disclosed in WO97/36866, Japanese Patent Application under PCT laid-open under kohyo No. 2000-511899 (EP906097) and WO99/51619.

25

WO97/36866 discloses the following compound D and the like, and HCV helicase inhibitory activity of the compounds.

Japanese Patent Application under PCT laid-open under kohyo No. 2000-511899 (EP906097) discloses the following compound E and the like, and WO99/51619 discloses the following compound F and the like, in both of which a possibility of these compounds being effective as an HCV inhibitor is mentioned.

However, these publications do not include the compound disclosed in the present specification, or a disclosure suggestive thereof.

compound E

compound F

A known anti-hepatitis virus agent having a benzimidazole skeleton is disclosed in Japanese Patent Application under PCT laid-open under kohyo No. 2000-503017 (WO97/25316) and Japanese 5 Patent Application under PCT laid-open under kohyo No. 10-505092 (WO96/7646).

W097/25316 discloses the following compound A and the like, wherein the use thereof is for a treatment of viral infection.

The target virus is a DNA virus such as hepatitis B virus and the like. However, this publication does not include the compound disclosed in the present specification or a description regarding or suggestive of HCV.

Japanese Patent Application under PCT laid-open under kohyo No. 10-505092 discloses the following compound B and the like, wherein the use thereof is for a treatment of viral infection. The target virus is a DNA virus such as herpesvirus and hepatitis B virus. However, this publication does not include the compound disclosed in the present specification or a description regarding or suggestive of HCV.

compound A

20

compound B

The benzimidazole derivatives having an antiviral activity have been disclosed in JP-A-3-31264, US3644382 and US3778504. In addition, WO98/37072 discloses, as a production inhibitor of tumor necrosis factor (TNF) and cyclic AMP, a benzimidazole

derivative for the use as an anti-human immunodeficiency virus (HIV) agent and an anti-inflammation agent. WO98/05327 discloses, as a reverse transcriptase inhibitor, a benzimidazole derivative for the use as an anti-HIV agent. J. Med. Chem. (13(4), 697-704, 1970) discloses, as a neuraminidase inhibitor, a benzimidazole derivative for the use as an anti-influenza virus agent.

However, none of these publications includes the compound of the present invention or a description regarding or suggestive of an anti-HCV effect.

10 Known benzimidazole derivatives having a pharmaceutical use other than as an antiviral agent are disclosed in JP-A-8-501318 (U.S. Patent 5,814,651) and JP-A-8-134073 (U.S. Patent 5,563,143). These publications disclose the following compound C and the like as a catechol diether compound, and the use thereof as an anti-inflammation agent. However, neither of the publications includes the compound of the present invention, and as the action mechanism, the former discloses phosphodiesterase IV and the latter discloses TNF. These publications do not include a description regarding or suggestive of an anti-HCV effect.

Japanese Patent Application under PCT laid-open under kohyo No. 2000-159749 (EP882718) discloses the following compound G and the like, and the use thereof for the treatment of bronchitis, glomerulonephritis and the like. However, this publication does not include the compound of the present invention, but discloses only a phosphodiesterase IV inhibitory and hypoglycemic action. This publication does not include a description regarding or suggestive of an anti-HCV effect.

U.S. Patent 6,211,177 discloses the following compound H and the like with their use as antitumor agents. However, this publication does not encompass the compound of the present invention, and does not disclose or suggest an anti-HCV effect.

HOOC N OME EtOOC N Compound
$$G$$

W098/50029, W098/50030 and W098/50031 disclose benzimidazole derivatives as an antitumor agent having a protein isoprenyl transferase action. While this publication discloses a wide scope of the claims, at least it does not include a compound analogous to the compound of the present invention or a description regarding or suggestive of an anti-HCV effect.

JP-A-8-109169 (EP694535) discloses the application of a tachykinin receptor antagonist to treat an inflammatory disease, and WO96/35713 discloses the application thereof as a growth hormone release promoter to treat a growth hormone-related disease such as osteoporosis and the like. However, none of these publications includes a description regarding or suggestive of an anti-HCV effect.

WO2001/21634 discloses the following compound I in a chemical library. However, this publication does not encompass the compound of the present invention. While it discloses an antimicrobial activity of certain compounds, this publication does not teach or suggest an anti-HCV effect.

20

JP-A-53-14735 discloses a benzimidazole derivative as a brightener besides its pharmaceutical use, but this publication does not include the compound of the present invention.

Summary of the Invention

Based on the findings from the preceding studies, it has been elucidated that a pharmaceutical agent having an anti-HCV activity is effective for the prophylaxis and treatment of hepatitis C, and particularly an anti-HCV agent having an inhibitory activity on RNA-dependent RNA polymerase of HCV can be 10 a prophylactic and therapeutic agent effective against hepatitis C and a prophylactic and therapeutic agent for the disease caused by hepatitis C.

Accordingly, the present invention provides a pharmaceutical agent having an anti-HCV activity, particularly a 15 pharmaceutical agent having an RNA-dependent RNA polymerase inhibitory activity.

The present inventors have made an in-depth study of compounds having an anti-HCV activity, particularly RNA-dependent RNA polymerase inhibitory activity, and completed the present invention.

Thus, the present invention provides the following (1) to (117).

(1) A therapeutic agent for hepatitis C, which comprises a fused ring compound of the following formula [I] or a pharmaceutically 25 acceptable salt thereof as an active ingredient:

$$G^{2} G^{1} G^{8} G^{7} G^{6} G^{6} G^{7} G^{6} G^{6} G^{7} G^{6} G^{6} G^{7} G^{6} G^{6} G^{7} G^{6} G^{7} G^{6} G^{7} G^{6} G^{7} G^{7$$

wherein

5

a broken line is a single bond or a double bond, G^1 is $C(-R^1)$ or a nitrogen atom, 30 G² is $C(-R^2)$ or a nitrogen atom, G^3 is $C(-R^3)$ or a nitrogen atom, G^4 is $C(-R^4)$ or a nitrogen atom,

 ${\rm G}^5$, ${\rm G}^6$, ${\rm G}^8$ and ${\rm G}^9$ are each independently a carbon atom or a nitrogen atom, G^7 is $C(-R^7)$, an oxygen atom, a sulfur atom, or a nitrogen atom optionally substituted by R8, wherein R¹, R², R³ and R⁴ are each independently, 5 (1) hydrogen atom, (2) C_{1-6} alkanoyl, (3) carboxyl, (4) cyano, 10 (5) nitro, (6) C_{1-6} alkyl optionally substituted by 1 to 3 substituent(s) selected from the following group A, group A; halogen atom, hydroxyl group, carboxyl, amino, C_{1-6} alkoxy, C_{1-6} alkoxy C_{1-6} alkoxy, C_{1-6} alkoxycarbonyl and C_{1-6} alkylamino, 15 (7) $-COOR^{al}$ wherein R^{al} is optionally substituted C_{1-6} alkyl (as defined above), C_{6-14} aryl C_{1-6} alkyl optionally substituted by 1 to 5 substituent(s) selected from the following group B or glucuronic acid residue, 20 group B; halogen atom, cyano, nitro, C1-6 alkyl, halogenated C_{1-6} alkyl, C_{1-6} alkanoyl, $-(CH_2)_r-COOR^{b1}$, $-(CH_2)_r-CONR^{b1}R^{b2}$, $-(CH_2)_r-NR^{b1}R^{b2}$, $-(CH_2)_r-NR^{b1}-COR^{b2}$, $-(CH_2)_r-NHSO_2R^{b1}$, $-(CH_2)_r-OR^{b1}$ $-(CH_2)_r-SR^{b1}$, $-(CH_2)_r-SO_2R^{b1}$ and $-(CH_2)_r-SO_2NR^{b1}R^{b2}$ 25 wherein Rb1 and Rb2 are each independently hydrogen atom or C_{1-6} alkyl and r is 0 or an integer of 1 to 6, (8) -CONR^{a2}R^{a3} wherein R^{a2} and R^{a3} are each independently hydrogen atom, 30 C_{1-6} alkoxy or optionally substituted C_{1-6} alkyl (as defined above), (9) $-C (=NR^{a4}) NH_2$ wherein R^{a4} is hydrogen atom or hydroxyl group, (10) -NHR^{a5} 35

alkylsulfonyl, (11) -OR^{a6}

wherein R^{a5} is hydrogen atom, C_{1-6} alkanoyl or C_{1-6}

wherein R^{a6} is hydrogen atom or optionally substituted C_{1-6} alkyl(as defined above),

- (12) $-SO_2R^{a7}$ wherein R^{a7} is hydroxyl group, amino, C_{1-6} alkyl or C_{1-6} alkylamino,
- (13) -P (=0) $(OR^{a31})_2$ wherein R^{a31} is hydrogen atom, optionally substituted C_{1-6} alkyl (as defined above) or C_{6-14} aryl C_{1-6} alkyl optionally substituted by 1 to 5 substituent(s) selected from the above group B

or

5

10

15

20

(14) heterocyclic group having 1 to 4 heteroatom(s) selected from an oxygen atom, a nitrogen atom and a sulfur atom, and

 ${\mbox{R}}^{7}$ and ${\mbox{R}}^{8}$ are each hydrogen atom or optionally substituted ${\mbox{C}}_{1-6}$ alkyl (as defined above),

ring Cy is

- (1) C_{3-8} cycloalkyl optionally substituted by 1 to 5 substituent(s) selected from the following group C, group C; hydroxyl group, halogen atom, C_{1-6} alkyl and C_{1-6} alkoxy,
- (2) C_{3-8} cycloalkenyl optionally substituted by 1 to 5 substituent(s) selected from the above group C, or

(3)

25

30

wherein u and v are each independently an integer of 1 to 3,

ring A

is

- (1) C_{6-14} aryl,
- (2) C_{3-8} cycloalkyl,
- (3) C_{3-8} cycloalkenyl or
- (4) heterocyclic group having 1 to 4 heteroatom(s) selected from an oxygen atom, a nitrogen atom and a sulfur atom,

are each independently (1) hydrogen atom, (2) halogen atom, (3) optionally substituted C_{1-6} alkyl (as defined above) 5 or (4) $-OR^{a8}$ wherein R^{a8} is hydrogen atom, C_{1-6} alkyl or C_{6-14} aryl C_{1-6} alkyl, and Х is (1) hydrogen atom, 10 (2) halogen atom, (3) cyano, (4) nitro, (5) amino, C_{1-6} alkanoylamino, (6) C_{1-6} alkylsulfonyl, 15 (7) optionally substituted C_{1-6} alkyl (as defined above), (8) C_{2-6} alkenyl optionally substituted by 1 to 3 substituent(s) selected from the above group A, (9) -COOR^{a9} wherein R^{a9} is hydrogen atom or C_{1-6} alkyl, 20 (10) $-CONH-(CH_2)_1-R^{a10}$ wherein R^{a10} is optionally substituted C_{1-6} alkyl (as defined above), C_{1-6} alkoxycarbonyl or C_{1-6} alkanoylamino and 1 is 0 or an integer of 1 to 6, (11) $-OR^{all}$ 25 wherein Rall is hydrogen atom or optionally substituted C_{1-6} alkyl (as defined above) or (12)30 wherein ring B is (1') C_{6-14} aryl, (2') C_{3-8} cycloalkyl or (3') heterocyclic group (as defined above), 35 each Z is independently (1') a group selected from the following group D,

(2') C_{6-14} aryl optionally substituted by 1 to 5 substituent(s) selected from the following group D,

- (3') C_{3-8} cycloalkyl optionally substituted by 1 to 5 substituent(s) selected from the following group D,
- (4') C_{6-14} aryl C_{1-6} alkyl optionally substituted by 1 to 5 substituent(s) selected from the following group D,
- (5') heterocyclic group optionally substituted by 1
 to 5 substituent(s) selected from the
 following group D,

wherein the heterocyclic group has 1 to 4 heteroatom(s) selected from an oxygen atom, a nitrogen atom and a sulfur atom, or

(6') heterocycle C_{1-6} alkyl optionally substituted by 1 to 5 substituent(s) selected from the following group D,

wherein the heterocycle C_{1-6} alkyl is C_{1-6} alkyl substituted by heterocyclic group optionally substituted by 1 to 5 substituent(s) selected from the group D, as defined above,

group D:

- (a) hydrogen atom,
- (b) halogen atom,
- (c) cyano,
- (d) nitro,
- (e) optionally substituted C_{1-6} alkyl (as defined above),
- $(f) (CH_2)_t COR^{a18}$

(hereinafter each t means independently 0 or an integer of 1 to 6),

wherein Ral8 is

- (1") optionally substituted C_{1-6} alkyl (as defined above),
- (2") C_{6-14} aryl optionally substituted by 1 to 5 substituent(s) selected from the above group B or

10

5

15

20

25

- (3") heterocyclic group optionally
 substituted by 1 to 5 substituent(s)
 selected from the above group B
 wherein the heterocyclic group has 1 to
 4 heteroatom(s) selected from an oxygen
 atom, a nitrogen atom and a sulfur atom,
- (g) $-(CH_2)_t-COOR^{a19}$ wherein R^{a19} is hydrogen atom, optionally substituted C_{1-6} alkyl (as defined above) or C_{6-14} aryl C_{1-6} alkyl optionally substituted by 1 to 5 substituent(s) selected from the above group B,
- (h) $-(CH_2)_t-CONR^{a27}R^{a28}$ wherein R^{a27} and R^{a28} are each independently, (1") hydrogen atom,
 - (2") optionally substituted C_{1-6} alkyl (as

defined above),

- (3") C_{6-14} aryl optionally substituted by 1 to 5 substituent(s) selected from the above group B,
- (4") C_{6-14} aryl C_{1-6} alkyl optionally substituted by 1 to 5 substituent(s) selected from the above group B,
- (5") heterocyclic group optionally substituted by 1 to 5 substituent(s) selected from the above group B,
- (6") heterocycle C_{1-6} alkyl optionally substituted by 1 to 5 substituent(s) selected from the above group B,

wherein the heterocycle C_{1-6} alkyl is C_{1-6} alkyl substituted by heterocyclic group optionally substituted by 1 to 5 substituent(s) selected from the above group B, as defined above,

- (7") C₃₋₈ cycloalkyl optionally substituted by 1 to 5 substituent(s) selected from the above group B,
- (8") C_{3-8} cycloalkyl C_{1-6} alkyl optionally substituted by 1 to 5 substituent(s) selected

10

15

20

25

30

* .	from the above group B,
4	9") hydroxyl group or
	10") C ₁₋₆ alkoxy,
(i)	$-(CH_2)_{t}-C(=NR^{a33})NH_2$
5	wherein R^{a33} is hydrogen atom, C_{1-6} alkyl,
	hydroxyl group or C_{1-6} alkoxy,
(j)	$-(CH_2)_t-OR^{a20}$
, v	wherein R ^{a20} is
	(1") hydrogen atom,
10	(2") optionally substituted C ₁₋₆ alkyl (as
	defined above),
	(3") optionally substituted C_{2-6} alkenyl (as
	defined above),
	(4") C_{2-6} alkynyl optionally substituted by 1
15	to 3 substituent(s) selected from the
	above group A,
	(5") C_{6-14} aryl optionally substituted by 1 to
	5 substituent(s) selected from the
	above group B,
20	(6") C_{6-14} aryl C_{1-6} alkyl optionally
	substituted by 1 to 5 substituent(s)
	selected from the above group B,
* *	(7") heterocyclic group optionally
	substituted by 1 to 5 substituent(s)
25	selected from the above group B,
	(8") heterocycle C_{1-6} alkyl optionally
* .	substituted by 1 to 5 substituent(s)
	selected from the above group B,
	(9") C_{3-8} cycloalkyl optionally substituted by
30	1 to 5 substituent(s) selected from the
	above group B, or
* * * *	(10") C_{3-8} cycloalkyl C_{1-6} alkyl optionally
	substituted by 1 to 5 substituent(s)
*	selected from the above group B,
35 (k)	$-(CH_2)_t-O-(CH_2)_p-COR^{a21}$
	wherein R^{a21} is amino, C_{1-6} alkylamino or
	heterocyclic group optionally substituted by

	1 to 3 substitute it (3) selected from the above
	group B,
	and p is 0 or an integer of 1 to 6,
(1)	$-(CH_2)_t-NR^{a22}R^{a23}$
5	wherein R ^{a22} and R ^{a23} are each independently
	(1") hydrogen atom,
	(2") optionally substituted C ₁₋₆ alkyl (as
	defined above),
	(3") C_{6-14} aryl optionally substituted by 1 to
10	5 substituent(s) selected from the
	above group B,
	(4") C_{6-14} aryl C_{1-6} alkyl optionally
	substituted by 1 to 5 substituent(s)
	selected from the above group B,
15	(5") heterocycle C_{1-6} alkyl optionally
	substituted by 1 to 5 substituent(s)
	selected from the above group B or
	(6") heterocyclic group optionally
	substituted by 1 to 5 substituent(s)
20	selected from the above group B,
(m)	-(CH2)t-NRa29CO-Ra24
	wherein R^{a29} is hydrogen atom, C_{1-6} alkyl or C_1
	alkanoyl, and
	R ^{a24} is
25	(1") amino,
	(2") C ₁₋₆ alkylamino,
	(3") optionally substituted C_{1-6} alkyl (as defined above),
	(4") C_{6-14} aryl optionally substituted by 1 to
30	5 substituent(s) selected from the
	above group B,
	(5") heterocyclic group optionally
	substituted by 1 to 5 substituent(s)
	selected from the above group B or
35	(6") heterocycle C_{1-6} alkyl optionally
	substituted by 1 to 5 substituent(s)
	selected from the above group B,
(n)	$-(CH_2)_t-NR^{a29}SO_2-R^{a25}$

wherein R^{a29} is as defined above, and R^{a25} is hydrogen atom, optionally substituted C_{1-6} alkyl (as defined above), C_{6-14} aryl optionally substituted by 1 to 5 substituent(s) selected from the above group B or heterocyclic group optionally substituted by 1 to 5 substituent(s) selected from the above group B,

- (o) $-(CH_2)_t-S(0)_q-R^{a25}$ wherein R^{a25} is as defined above, and q is 0, 1 or 2,
- (p) -(CH₂)_t-SO₂-NHR^{a26}
 wherein R^{a26} is hydrogen atom, optionally
 substituted C₁₋₆ alkyl (as defined above),
 C₆₋₁₄ aryl optionally substituted by 1 to 5
 substituent(s) selected from the above group
 B or heterocyclic group optionally
 substituted by 1 to 5 substituent(s) selected
 from the above group B,

and

- (q) heterocyclic group having 1 to 4
 heteroatom(s) selected from an oxygen atom,
 a nitrogen atom and a sulfur atom, and
 w is an integer of 1 to 3, and
 Y is
 - (1') a single bond,
 - (2') C_{1-6} alkylene,
 - (3') C_{2-6} alkenylene,
 - (4') $-(CH_2)_m-0-(CH_2)_n-$, (hereinafter m and n are each independently 0 or an integer of 1 to 6),
 - (5') -CO-,
 - (6') $-CO_2-(CH_2)_n-$,
 - (7') -CONH- $(CH_2)_n$ -NH-,
 - (8') -NHCO₂-,
 - (9') -NHCONH-,
 - (10') -O- $(CH_2)_n$ -CO-,
 - (11') -O- $(CH_2)_n$ -O-,

15

٠.

10

15

20

25 .

30

```
(12')^{-}-SO_2-,
```

- (13') $-(CH_2)_m-NR^{a12}-(CH_2)_n$ wherein R^{a12} is
 - (1") hydrogen atom,
 - (2") optionally substituted C_{1-6} alkyl (as defined above),
 - (3") C_{6-14} aryl C_{1-6} alkyl optionally substituted by 1 to 5 substituent(s) selected from the above group B,
 - (4") C_{6-14} aryl optionally substituted by 1 to 5 substituent(s) selected from the above group B,
 - (5") $-COR^{b5}$ wherein R^{b5} is hydrogen atom, optionally substituted C_{1-6} alkyl (as defined above), C_{6-14} aryl optionally substituted by 1 to 5 substituent(s) selected from the above group B or C_{6-14} aryl C_{1-6} alkyl optionally substituted by 1 to 5 substituent(s) selected from the above group B,
 - (6") $-COOR^{b5}$ (R^{b5} is as defined above) or
 - (7") $-SO_2R^{b5}$ $(R^{b5}$ is as defined above),
- (14') $-NR^{a12}CO-$ (R^{a12} is as defined above),
- (15') $-\text{CONR}^{a13} (\text{CH}_2)_n \text{wherein R}^{a13}$ is hydrogen atom, optionally substituted C_{1-6} alkyl (as defined above) or C_{6-14} aryl C_{1-6} alkyl optionally substituted by 1 to 5 substituent(s) selected from the above group B,
- (16') $-\text{CONH-CHR}^{\text{al4}}$ wherein R^{al4} is $\text{C}_{6\text{-}14}$ aryl optionally substituted by 1 to 5 substituent(s) selected from the above group B,
- (17') $-O-(CH_2)_m-CR^{a15}R^{a16}-(CH_2)_n-$ wherein R^{a15} and R^{a16} are each independently (1") hydrogen atom, (2") carboxyl,

5

15

20

25

30

(3") C_{1-6} alkyl,

 $(4") - OR^{b6}$

10

15

20

wherein R^{b6} is C_{1-6} alkyl or C_{6-14} aryl C_{1-6} alkyl, or

(5") -NHR^{b7}

wherein R^{b7} is hydrogen atom, C_{1-6} alkyl, C_{1-6} alkanoyl or C_{6-14} aryl C_{1-6} alkyloxycarbonyl, or R^{a15} is optionally

(6")

$$-(CH_2)\frac{n}{n}$$
 B' (Z') W'

wherein n', ring B', Z' and w' are the same as the above-mentioned n, ring B, Z and w, respectively, and may be the same as or different from the respective counterparts,

(18') $-(CH_2)_n-NR^{a12}-CHR^{a15}-(R^{a12})$ and R^{a15} are each as defined above),

 $(19') - NR^{a17}SO_2 -$

wherein R^{a17} is hydrogen atom or C_{1-6} alkyl, (20') $-S(O)_e - (CH_2)_m - CR^{a15}R^{a16} - (CH_2)_n - (e is 0, 1 or 2, 1)$

 R^{a15} and R^{a16} are each as defined above),

or

- (21') $-(CH_2)_m-CR^{a15}R^{a16}-(CH_2)_n-(R^{a15})$ and R^{a16} are each as defined above).
- (2) The therapeutic agent of (1) above, wherein 1 to 4 of the G^1 , 25 G^2 , G^3 , G^4 , G^5 , G^6 , G^7 , G^8 and G^9 is (are) a nitrogen atom.
 - (3) The therapeutic agent of (2) above, wherein G^2 is $C(-R^2)$ and G^6 is a carbon atom.
 - (4) The therapeutic agent of (2) or (3) above, wherein G^5 is a nitrogen atom.
- 30 (5) The therapeutic agent of (1) above, wherein, in formula [I], the moiety

is a fused ring selected from

(6) The therapeutic agent of (5) above, wherein, in formula [I], the moiety

is a fused ring selected from

(7) The therapeutic agent of (6) above, which comprises a fused ring compound of the following formula [I-1]

- 5 wherein each symbol is as defined in (1), or a pharmaceutically acceptable salt thereof as an active ingredient.
 - (8) The therapeutic agent of (6) above, which comprises a fused ring compound of the following formula [I-2]

10

wherein each symbol is as defined in (1), or a pharmaceutically acceptable salt thereof as an active ingredient.

(9) The therapeutic agent of (6) above, which comprises a fused ring compound of the following formula [I-3]

$$\begin{array}{c|c}
R^2 & & \\
\hline
 & & \\
R^3 & & \\
\hline
 & & \\
 & & \\
\hline
 &$$

wherein each symbol is as defined in (1), or a pharmaceutically acceptable salt thereof as an active ingredient.

(10) The therapeutic agent of (6) above, which comprises a fused 5 ring compound of the following formula [I-4]

wherein each symbol is as defined in (1), or a pharmaceutically acceptable salt thereof as an active ingredient.

10 (11) The therapeutic agent of any of (1) to (10) above, wherein at least one of R^1 , R^2 , R^3 and R^4 is carboxyl, $-COOR^{a1}$, $-CONR^{a2}R^{a3}$, $-SO_2R^{a7}$ (wherein R^{a1} , R^{a2} , R^{a3} and R^{a7} are as defined in (1)),

- (12) The therapeutic agent of (11) above, wherein at least one of R^1 , R^2 , R^3 and R^4 is carboxyl, $-COOR^{a1}$, $-CONR^{a2}R^{a3}$ or $-SO_2R^{a7}$ wherein R^{a1} , R^{a2} , R^{a3} and R^{a7} are as defined in (1).
 - (13) The therapeutic agent of any of (1) to (10) above, wherein at least one of R^1 , R^2 , R^3 and R^4 is $-COOR^{a1}$ wherein R^{a1} is glucuronic acid residue.
- 20 (14) The therapeutic agent of any of (1) to (10) above, wherein at least one of R^1 , R^2 , R^3 and R^4 is heterocyclic group having 1 to 4 heteroatom(s) selected from an oxygen atom, a nitrogen atom and a sulfur atom.
- (15) The therapeutic agent of any of (1) to (14) above, wherein the ring Cy is cyclopentyl, cyclohexyl, cycloheptyl, tetrahydrothiopyranyl or piperidino.
 - (16) The therapeutic agent of any of (1) to (14) above, wherein the ring Cy is

wherein each symbol is as defined in (1).

- (17) The therapeutic agent of any of (1) to (16) above, wherein the ring A is C_{6-14} aryl.
- 5 (18) The therapeutic agent of any of (1) to (17) above, wherein at least one substituent optionally substituted by group A is a substituent substituted by C_{1-6} alkoxy C_{1-6} alkoxy.
- (19) The therapeutic agent of any of (1) to (17) above, wherein the Y is $-(CH_2)_m-CR^{a15}R^{a16}-(CH_2)_n$ wherein each symbol is as defined in (1).
 - (20) The therapeutic agent of any of (1) to (19) above, wherein at least one group represented by Z is heterocycle C_{1-6} alkyl optionally substituted by 1 to 5 substituent(s) selected from the group D.
- 15 (21) The therapeutic agent of any of (1) to (19) above, wherein at least one group represented by Z is a heterocyclic group optionally substituted by 1 to 5 substituent(s) selected from the group D, wherein said heterocyclic group is selected from the following groups:

- wherein E^1 is an oxygen atom, a sulfur atom or $N(-R^{a35})$, E^2 is an oxygen atom, CH_2 or $N(-R^{a35})$, E^3 is an oxygen atom or a sulfur atom, wherein each R^{a35} is independently hydrogen atom or C_{1-6} alkyl, f is an integer of 1 to 3, and h and h' are the same or different and each is an integer of 1 to 3.
- 10 (22) The therapeutic agent of (21) above, wherein at least one group represented by Z is heterocyclic group optionally substituted by 1 to 5 substituent(s) selected from the group D

wherein said heterocyclic group is selected from the following groups:

wherein each symbol is as defined in (21).

- 5 (23) The therapeutic agent of any of (1) to (19) above, wherein at least one group represented by group D is $-(CH_2)_t-CONR^{a27}R^{a28}$ wherein each symbol is as defined in (1), and at least one of R^{a27} and R^{a28} is C_{1-6} alkoxy.
- (24) The therapeutic agent of any of (1) to (19) above, wherein at least one group represented by group D is $-(CH_2)_t-C(=NR^{a33})NH_2$ wherein each symbol is as defined in (1), and R^{a33} is hydroxyl group or C_{1-6} alkoxy.
- (25) The therapeutic agent of any of (1) to (19) above, wherein at least one group represented by group D is $-(CH_2)_t-O-(CH_2)_p-COR^{a21}$ wherein each symbol is as defined in (1), and R^{a21} is amino.
 - (26) The therapeutic agent of any of (1) to (19) above, wherein at least one group represented by group D is $-(CH_2)_t-NR^{a29}CO-R^{a24}$ wherein each symbol is as defined in (1), and R^{a24} is amino or C_{1-6} alkylamino.
- 20 (27) The therapeutic agent of any of (1) to (19) above, wherein at least one group represented by group D is $-(CH_2)_t-NR^{a22}R^{a23}$ wherein each symbol is as defined in (1), and at lease one of R^{a22} and R^{a23} is heterocyclic group optionally substituted by 1 to 5 substituent(s) selected from the group B.
- 25 (28) The therapeutic agent of any of (1) to (19) above, wherein at least one group represented by group D is heterocyclic group having 1 to 4 heteroatom(s) selected from an oxygen atom, a nitrogen atom and a sulfur atom.
- (29) The therapeutic agent of (1) above, which comprises a fused ring compound of the following formula [I] or a pharmaceutically acceptable salt thereof as an active ingredient:

wherein

a broken line is a single bond or a double bond,

 G^1 is $C(-R^1)$ or a nitrogen atom,

is $C(-R^2)$ or a nitrogen atom,

 G^3 is $C(-R^3)$ or a nitrogen atom,

 G^4 is $C(-R^4)$ or a nitrogen atom,

 G^5 , G^6 , G^8 and G^9 are each independently a carbon atom or a nitrogen atom,

is $C(-R^7)$, an oxygen atom, a sulfur atom, or a nitrogen atom optionally substituted by R^8 , wherein R^1 , R^2 , R^3 and R^4 are each independently,

- (1) hydrogen atom,
- (2) C_{1-6} alkanoyl,
- 15 (3) carboxyl,

20

25

30

- (4) cyano,
- (5) nitro,
- (6) C_{1-6} alkyl optionally substituted by 1 to 3 substituent(s) selected from the following group A, group A; halogen atom, hydroxyl group, carboxyl, amino, C_{1-6} alkoxy, C_{1-6} alkoxycarbonyl and C_{1-6} alkylamino,
- (7) -COOR^{a1}

wherein R^{a1} is optionally substituted C_{1-6} alkyl (as defined above) or C_{6-14} aryl C_{1-6} alkyl optionally substituted by 1 to 5 substituent(s) selected from the following group B,

group B; halogen atom, cyano, nitro, C_{1-6} alkyl, halogenated C_{1-6} alkyl, C_{1-6} alkanoyl, $-(CH_2)_r-COOR^{b1}, -(CH_2)_r-CONR^{b1}R^{b2}, -(CH_2)_r-NR^{b1}R^{b2}, \\ -(CH_2)_r-NR^{b1}-COR^{b2}, -(CH_2)_r-NHSO_2R^{b1}, \\ -(CH_2)_r-OR^{b1}, -(CH_2)_r-SR^{b1}, -(CH_2)_r-SO_2R^{b1} \text{ and}$

 $-(CH_2)_r-SO_2NR^{b1}R^{b2}$ wherein R^{b1} and R^{b2} are each independently hydrogen atom or C_{1-6} alkyl and r is 0 or an integer of 1 to 6,

5 (8) -CONR^{a2}R^{a3}

wherein R^{a2} and R^{a3} are each independently hydrogen atom, C_{1-6} alkoxy or optionally substituted C_{1-6} alkyl (as defined above),

- (9) $-C = NR^{a4} NH_2$ wherein R^{a4} is hydrogen atom or hydroxyl group,
- (10) $-NHR^{a5}$ wherein R^{a5} is hydrogen atom, C_{1-6} alkanoyl or C_{1-6} alkylsulfonyl,
- (11) $-OR^{a6}$ wherein R^{a6} is hydrogen atom or optionally substituted C_{1-6} alkyl(as defined above),
- (12) $-SO_2R^{a7}$ wherein R^{a7} is hydroxyl group, amino, C_{1-6} alkyl or C_{1-6} alkylamino
- 20 or

15

25

30

(13) -P (=0) $(OR^{a31})_2$ wherein R^{a31} is hydrogen atom, optionally substituted C_{1-6} alkyl (as defined above) or C_{6-14} aryl C_{1-6} alkyl optionally substituted by 1 to 5 substituent(s) selected from the above group B, and

 R^7 and R^8 are each hydrogen atom or optionally substituted C_{1-6} alkyl(as defined above),

ring Cy is

- (1) C_{3-8} cycloalkyl optionally substituted by 1 to 5 substituent(s) selected from the following group C, group C; hydroxyl group, halogen atom, C_{1-6} alkyl and C_{1-6} alkoxy,
 - (2) C_{3-8} cycloalkenyl optionally substituted by 1 to 5 substituent(s) selected from the above group C, or
- *35* (3)

wherein u and v are each independently an integer of 1 to 3,

ring A

is

- (1) C_{6-14} aryl,
- (2) C_{3-8} cycloalkyl,
- (3) C_{3-8} cycloalkenyl or
- (4) heterocyclic group having 1 to 4 heteroatom(s) selected from an oxygen atom, a nitrogen atom and a sulfur atom,

R⁵ and R⁶ are each independently

- (1) hydrogen atom,
- (2) halogen atom,
- (3) optionally substituted C_{1-6} alkyl (as defined above) or
- (4) $-OR^{a8}$ wherein R^{a8} is hydrogen atom, C_{1-6} alkyl or C_{6-14} aryl C_{1-6} alkyl, and

Х

10

15

30

is

- 20 (1) hydrogen atom,
 - (2) halogen atom,
 - (3) cyano,
 - (4) nitro,
 - (5) amino, C_{1-6} alkanoylamino,

25 (6) C₁₋₆ alkylsulfonyl,

- (7) optionally substituted C_{1-6} alkyl (as defined above),
- (8) C_{2-6} alkenyl optionally substituted by 1 to 3 substituent(s) selected from the above group A,
- (9) -COOR^{a9}

wherein R^{a9} is hydrogen atom or C_{1-6} alkyl,

(10) -CONH-(CH_2)₁- R^{a10} wherein R^{a10} is optionally substituted C_{1-6} alkyl (as defined above), C_{1-6} alkoxycarbonyl or C_{1-6}

alkanoylamino and 1 is 0 or an integer of 1 to 6, (11) $-OR^{all}$

wherein R^{all} is hydrogen atom or optionally substituted C_{1-6} alkyl (as defined above)

or

(12)

wherein

ring B is

- (1') C_{6-14} aryl,
 - (2') C_{3-8} cycloalkyl or
 - (3') heterocyclic group (as defined above),
 each Z is independently
 - (1') a group selected from the following group D,
 - (2') C_{6-14} aryl optionally substituted by 1 to 5 substituent(s) selected from the following group D,
 - (3') C_{3-8} cycloalkyl optionally substituted by 1 to 5 substituent(s) selected from the following group D,
 - (4') C_{6-14} aryl C_{1-6} alkyl optionally substituted by 1 to 5 substituent(s) selected from the following group D or
 - (5') heterocyclic group optionally substituted by 1
 to 5 substituent(s) selected from the
 following group D

wherein the heterocyclic group has 1 to 4 heteroatom(s) selected from an oxygen atom, a nitrogen atom and a sulfur atom,

group D:

- (a) hydrogen atom,
- (b) halogen atom,
- (c) cyano,
- (d) nitro,
- (e) optionally substituted C_{1-6} alkyl (as defined above),
- (f) $-(CH_2)_t-COR^{a18}$,

10

15

20

25

30

(hereinafter each t means independently 0 or an integer of 1 to 6), wherein Ral8 is (1") optionally substituted C_{1-6} alkyl (as defined above), 5 (2") C_{6-14} aryl optionally substituted by 1 to 5 substituent(s) selected from the above group B or (3") heterocyclic group optionally 10. substituted by 1 to 5 substituent(s) selected from the above group B wherein the heterocyclic group has 1 to 4 heteroatom(s) selected from an oxygen atom, a nitrogen atom and a sulfur atom, (g) $-(CH_2)_t-COOR^{a19}$ 15 wherein R^{al9} is hydrogen atom, optionally substituted C_{1-6} alkyl (as defined above) or C_{6-14} aryl C_{1-6} alkyl optionally substituted by 1 to 5 substituent(s) selected from the above group B, 20 (h) $-(CH_2)_t-CONR^{a27}R^{a28}$ wherein R^{a27} and R^{a28} are each independently, (1") hydrogen atom, (2") optionally substituted C₁₋₆ alkyl (as defined above), 25 (3") C_{6-14} aryl optionally substituted by 1 to 5 substituent(s) selected from the above group В, (4") C_{6-14} aryl C_{1-6} alkyl optionally substituted by 1 to 5 substituent(s) selected from the 30 above group B, (5") heterocyclic group optionally substituted by 1 to 5 substituent(s) selected from the above group B, (6") heterocycle C1-6 alkyl optionally 35 substituted by 1 to 5 substituent(s) selected from the above group B,

wherein the heterocycle C_{1-6} alkyl is C_{1-6}

alkyl substituted by heterocyclic group optionally substituted by 1 to 5 substituent(s) selected from the above group B, as defined above, (7") C_{3-8} cycloalkyl optionally substituted by 1 to 5 substituent(s) selected from the above group B, or (8") C_{3-8} cycloalkyl C_{1-6} alkyl optionally substituted by 1 to 5 substituent(s) selected from the above group B, (i) $-(CH_2)_t-C(=NR^{a33})NH_2$ wherein R^{a33} is hydrogen atom or C_{1-6} alkyl, (j) $-(CH_2)_t-OR^{a20}$ wherein R^{a20} is (1") hydrogen atom, (2") optionally substituted C_{1-6} alkyl (as defined above), (3") optionally substituted C_{2-6} alkenyl (as defined above), (4") C_{2-6} alkynyl optionally substituted by 1 to 3 substituent(s) selected from the above group A, (5") C_{6-14} aryl optionally substituted by 1 to 5 substituent(s) selected from the above group B, (6") C_{6-14} aryl C_{1-6} alkyl optionally substituted by 1 to 5 substituent(s) selected from the above group B, (7") heterocyclic group optionally substituted by 1 to 5 substituent(s) selected from the above group B, (8") heterocycle C_{1-6} alkyl optionally substituted by 1 to 5 substituent(s) selected from the above group B, (9") C₃₋₈ cycloalkyl optionally substituted by 1 to 5 substituent(s) selected from the above group B, or

5

10

15 .

20

25

30

35

(10") C_{3-8} cycloalkyl C_{1-6} alkyl optionally

substituted by 1 to 5 substituent(s) selected from the above group B,

- (k) -(CH₂)_t-O-(CH₂)_p-COR^{a21}
 wherein R^{a21} is C₁₋₆ alkylamino or heterocyclic group optionally substituted by 1 to 5 substituent(s) selected from the above group B, and p is 0 or an integer of 1 to 6,
- (1) $-(CH_2)_t-NR^{a22}R^{a23}$ wherein R^{a22} and R^{a23} are each independently (1") hydrogen atom,
 - (2") optionally substituted C_{1-6} alkyl (as defined above),
 - (3") C_{6-14} aryl optionally substituted by 1 to 5 substituent(s) selected from the above group B,
 - (4") C₆₋₁₄ aryl C₁₋₆ alkyl optionally
 substituted by 1 to 5 substituent(s)
 selected from the above group B or
 - (5") heterocycle C_{1-6} alkyl optionally substituted by 1 to 5 substituent(s) selected from the above group B,
- (m) $-(CH_2)_t-NR^{a29}CO-R^{a24}$ wherein R^{a29} is hydrogen atom, C_{1-6} alkyl or C_{1-6} alkanoyl, R^{a24} is optionally substituted C_{1-6} alkyl (as defined above), C_{6-14} aryl optionally substituted by 1 to 5 substituent(s) selected from the above group B or heterocyclic group optionally substituted by 1 to 5 substituent(s) selected from the above group B,
- (n) -(CH₂)_t-NHSO₂-R^{a25}
 wherein R^{a25} is hydrogen atom, optionally substituted C₁₋₆ alkyl (as defined above),
 C₆₋₁₄ aryl optionally substituted by 1 to 5 substituent(s) selected from the above group
 B or heterocyclic group optionally substituted by 1 to 5 substituted by 1 to 5 substituent(s) selected from the above group B,

10

15

20

25

. 30

(o) $-(CH_2)_t - S(O)_q - R^{a25}$ wherein R^{a25} is as defined above, and q is 0, 1 or 2, and (p) $-(CH_2)_t-SO_2-NHR^{a26}$ 5 wherein R^{a26} is hydrogen atom, optionally substituted C_{1-6} alkyl (as defined above), C_{6-14} aryl optionally substituted by 1 to 5 substituent(s) selected from the above group B or heterocyclic group optionally 10 substituted by 1 to 5 substituent(s) selected from the above group B, w is an integer of 1 to 3, and Y is (1') a single bond, 15 (2') C_{1-6} alkylene, (3') C_{2-6} alkenylene, (4') - $(CH_2)_m$ -O- $(CH_2)_n$ -, (hereinafter m and n are each independently 0 or an integer of 1 to 6), 20 (5') -CO-, (6') $-CO_2-(CH_2)_n-$, (7') -CONH- $(CH_2)_n$ -NH-, (8') -NHCO₂-, (9') -NHCONH-, 25 (10') -O- $(CH_2)_n$ -CO-, (11') -O- $(CH_2)_n$ -O-, $(12') -SO_2-,$ (13') $-(CH_2)_m - NR^{a12} - (CH_2)_n - ...$ wherein Rall is 30 (1") hydrogen atom, (2") optionally substituted C₁₋₆ alkyl (as defined above), (3") C_{6-14} aryl C_{1-6} alkyl optionally substituted by 1 to 5 substituent(s) 35 selected from the above group B, (4") C_{6-14} aryl optionally substituted by 1 to

5 substituent(s) selected from the

above group B,

(5") -COR^{b5}

wherein R^{b5} is hydrogen atom, optionally substituted C_{1-6} alkyl (as defined above), C_{6-14} aryl optionally substituted by 1 to 5 substituent(s) selected from the above group B or C_{6-14} aryl C_{1-6} alkyl optionally substituted by 1 to 5 substituent(s) selected from the above group B,

(6") -COOR^{b5} (R^{b5} is as defined above) or

(7") -SO₂R^{b5} (R^{b5} is as defined above),

(14') $-NR^{a12}CO-(R^{a12}$ is as defined above),

(15') $-\text{CONR}^{a13} - (\text{CH}_2)_n - \text{wherein R}^{a13}$ is hydrogen atom, optionally substituted C_{1-6} alkyl (as defined above) or C_{6-14} aryl C_{1-6} alkyl optionally substituted by 1 to 5 substituent(s) selected from the above group B,

(16') -CONH-CHR^{a14}wherein R^{a14} is C_{6-14} aryl optionally substituted by 1 to 5 substituent(s) selected from the above group B,

(17') $-O-(CH_2)_m-CR^{a15}R^{a16}-(CH_2)_n-$ wherein R^{a15} and R^{a16} are each independently

(1") hydrogen atom,

(2") carboxyl,

(3") C_{1-6} alkyl,

(4") -OR^{b6}:

(6")

wherein R^{b6} is C_{1-6} alkyl or C_{6-14} aryl C_{1-6} alkyl, or

(5") $-NHR^{b7}$ wherein R^{b7} is hydrogen atom, C_{1-6} alkyl, C_{1-6} alkanoyl or C_{6-14} aryl C_{1-6} alkyloxycarbonyl,

or R^{a15} is optionally

 $-(CH_2)_{n'}$ B' (Z')w'

10

15

20

25

30

wherein n', ring B', Z' and w' are the same as the above-mentioned n, ring B, Z and w, respectively, and may be the same as or different from the respective counterparts,

(18') $-(CH_2)_n-NR^{a12}-CHR^{a15}-(R^{a12})$ and R^{a15} are each as defined above),

(19') $-NR^{a17}SO_2-$ wherein R^{a17} is hydrogen atom or C_{1-6} alkyl or

(20') $-S(O)_e-(CH_2)_m-CR^{a15}R^{a16}-(CH_2)_n-$ (e is 0, 1 or 2, R^{a15} and R^{a16} are each as defined above).

- (30) The therapeutic agent of (29) above, wherein 1 to 4 of the G^1 , G^2 , G^3 , G^4 , G^5 , G^6 , G^7 , G^8 and G^9 is (are) a nitrogen atom.
- (31) The therapeutic agent of (30) above, wherein G^2 is $C(-R^2)$ and 15 G^6 is a carbon atom.
 - (32) The therapeutic agent of (30) or (31) above, wherein G^5 is a nitrogen atom.
 - (33) The therapeutic agent of (29) above, wherein, in formula [I], the moiety

20 .

10

is a fused ring selected from

(34) The therapeutic agent of (33) above, wherein, in formula [I], the moiety

5 is a fused ring selected from

(35) The therapeutic agent of (34) above, which comprises a fused ring compound of the following formula [I-1]

wherein each symbol is as defined in (29),

- or a pharmaceutically acceptable salt thereof as an active ingredient.
 - (36) The therapeutic agent of (34) above, which comprises a fused ring compound of the following formula [I-2]

$$\begin{array}{c|c}
R^2 & & & \\
\hline
R^3 & & & \\
\hline
R^4 & & \\
\hline
Cy & & \\
\end{array}$$

$$\begin{array}{c|c}
R^5 \\
\hline
R^6 & \\
\end{array}$$
[1-2]

- wherein each symbol is as defined in (29), or a pharmaceutically acceptable salt thereof as an active ingredient.
 - (37) The therapeutic agent of (34) above, which comprises a fused ring compound of the following formula [I-3]

$$\begin{array}{c|c}
R^2 & & \\
\hline
R^3 & & \\
\hline
N & & \\
N & & \\
\hline
N & & \\
N & & \\
\hline
N & & \\
N & &$$

15

wherein each symbol is as defined in (29), or a pharmaceutically acceptable salt thereof as an active ingredient.

(38) The therapeutic agent of (34) above, which comprises a fused ring compound of the following formula [I-4]

wherein each symbol is as defined in (29), or a pharmaceutically acceptable salt thereof as an active ingredient.

- 5 (39) The therapeutic agent of any of (29) to (38) above, wherein at least one of R^1 , R^2 , R^3 and R^4 is carboxyl, $-COOR^{a1}$, $-CONR^{a2}R^{a3}$ or $-SO_2R^{a7}$ wherein R^{a1} , R^{a2} , R^{a3} and R^{a7} are as defined in (29).
- (40) The therapeutic agent of any of (29) to (39) above, wherein the ring Cy is cyclopentyl, cyclohexyl, cycloheptyl or tetrahydrothiopyranyl.
 - (41) The therapeutic agent of any of (29) to (40) above, wherein the ring A is C_{6-14} aryl.
 - (42) A fused ring compound of the following formula [II]

15 wherein the moiety

is a fused ring selected from

$$R^{2}$$
 R^{3}
 R^{4}
 R^{3}
 R^{4}
 R^{3}
 R^{4}
 R^{3}
 R^{4}
 R^{4}
 R^{3}
 R^{4}
 R^{4}

wherein R^1 , R^2 , R^3 and R^4 are each independently,

- (1) hydrogen atom,
- (2) C_{1-6} alkanoyl,
- (3) carboxyl,
- (4) cyano,

5

10

15

20

25

30

- (5) nitro,
- (6) C_{1-6} alkyl optionally substituted by 1 to 3 substituent(s) selected from the following group A, group A; halogen atom, hydroxyl group, carboxyl, amino, C_{1-6} alkoxy, C_{1-6} alkoxy C_{1-6} alkoxy, C_{1-6} alkoxycarbonyl and C_{1-6} alkylamino,
- wherein R^{a1} is optionally substituted C_{1-6} alkyl (as defined above), C_{6-14} aryl C_{1-6} alkyl optionally substituted by 1 to 5 substituent(s) selected from the following group B or glucuronic acid residue, group B; halogen atom, cyano, nitro, C_{1-6} alkyl, halogenated C_{1-6} alkyl, C_{1-6} alkanoyl, $-(CH_2)_r COOR^{b1}, -(CH_2)_r CONR^{b1}R^{b2}, -(CH_2)_r NR^{b1}R^{b2}, \\ -(CH_2)_r NR^{b1} COR^{b2}, -(CH_2)_r NHSO_2R^{b1}, -(CH_2)_r OR^{b1}, \\ -(CH_2)_r SR^{b1}, -(CH_2)_r SO_2R^{b1}$ and $-(CH_2)_r SO_2NR^{b1}R^{b2}$ wherein R^{b1} and R^{b2} are each independently hydrogen atom or C_{1-6} alkyl and r is 0 or an integer of 1 to 6,
- (8) $-\text{CONR}^{a2}\text{R}^{a3}$ wherein R^{a2} and R^{a3} are each independently hydrogen atom, C_{1-6} alkoxy or optionally substituted C_{1-6} alkyl (as defined above),
 - (9) $-C = NR^{a4} NH_2$ wherein R^{a4} is hydrogen atom or hydroxyl group,
 - (10) $-NHR^{a5}$ wherein R^{a5} is hydrogen atom, C_{1-6} alkanoyl or C_{1-6} alkylsulfonyl,
 - (11) $-OR^{a6}$ wherein R^{a6} is hydrogen atom or optionally substituted C_{1-6} alkyl (as defined above),
 - (12) $-SO_2R^{a7}$ wherein R^{a7} is hydroxyl group, amino, C_{1-6} alkyl or C_{1-6}

alkylamino,

(13) $-P (=0) (OR^{a31})_2$

wherein R^{a31} is hydrogen atom, optionally substituted C_{1-6} alkyl (as defined above) or C_{6-14} aryl C_{1-6} alkyl optionally substituted by 1 to 5 substituent(s) selected from the above group B,

or

(14) heterocyclic group having 1 to 4 heteroatom(s) selected from an oxygen atom, a nitrogen atom and a sulfur atom, and

 R^7 is hydrogen atom or optionally substituted C_{1-6} alkyl (as defined above),

ring Cy' is

(1) C_{3-8} cycloalkyl optionally substituted by 1 to 5 substituent(s) selected from the following group C, group C; hydroxyl group, halogen atom, C_{1-6} alkyl and C_{1-6} alkoxy, or

(2)

20

30

35

5

10

15

wherein u and v are each independently an integer of 1 to 3,

ring A' is a group selected from a group consisting of phenyl, pyridyl, pyrazinyl, pyrimidinyl, pyridazinyl, cyclohexyl, cyclohexenyl, furyl and thienyl,

25 R⁵ and R⁶ are each independently

- (1) hydrogen atom,
- (2) halogen atom,
- (3) optionally substituted C_{1-6} alkyl (as defined above) or
- (4) hydroxyl group

ring B is

- (1) C_{6-14} aryl,
- (2) C₃₋₈ cycloalkyl or
- (3) heterocyclic group having 1 to 4 heteroatom(s) selected from an oxygen atom, a nitrogen atom and a

sulfur atom,

each Z

is independently

- (1) a group selected from the following group D,
- (2) C₆₋₁₄ aryl optionally substituted by 1 to 5 substituent(s) selected from the following group D,
- (3) C_{3-8} cycloalkyl optionally substituted by 1 to 5 substituent(s) selected from the following group D,
- (4) C_{6-14} aryl C_{1-6} alkyl optionally substituted by 1 to 5 substituent(s) selected from the following group D,
- (5) heterocyclic group optionally substituted by 1 to 5 substituent(s) selected from the following group D wherein the heterocyclic group has 1 to 4 heteroatom(s) selected from an oxygen atom, a nitrogen atom and a sulfur atom, or
- (6) heterocycle C_{1-6} alkyl optionally substituted by 1 to 5 substituent(s) selected from the following group D wherein the heterocycle C_{1-6} alkyl is C_{1-6} alkyl substituted by heterocyclic group optionally substituted by 1 to 5 substituent(s) selected from the group D, as defined above, group D:
 - (a) hydrogen atom,
 - (b) halogen atom,
 - (c) cyano,
 - (d) nitro,
 - (e) optionally substituted C_{1-6} alkyl (as defined above),
 - (f) (CH₂)_t COR^{a18},

(hereinafter each t means independently 0 or an integer of 1 to 6),

wherein Ral8 is

- (1') optionally substituted C_{1-6} alkyl (as defined above),
- (2') C₆₋₁₄ aryl optionally substituted by 1 to 5 substituent(s) selected from the above group B or
- (3') heterocyclic group optionally substituted by 1 to 5 substituent(s)

25

10

15

20

30

selected from the above group B wherein the heterocyclic group has 1 to 4 heteroatom(s) selected from an oxygen atom, a nitrogen atom and a sulfur atom,

 $(g) - (CH_2)_t - COOR^{a19}$ wherein R^{a19} is hydrogen atom, optionally substituted C_{1-6} alkyl (as defined above) or C_{6-14} aryl C_{1-6} alkyl optionally substituted by 1 to 5 substituent(s) selected from the above group B,

- (h) $-(CH_2)_t-CONR^{a27}R^{a28}$ wherein R^{a27} and R^{a28} are each independently,
 - (2") optionally substituted C_{1-6} alkyl (as defined above),

(1") hydrogen atom,

- (3") C_{6-14} aryl optionally substituted by 1 to 5 substituent(s) selected from the above group B_{\star}
- (4") C_{6-14} aryl C_{1-6} alkyl optionally substituted by 1 to 5 substituent(s) selected from the above group B,
- (5") heterocyclic group optionally substituted by
 1 to 5 substituent(s) selected from the above
 group B,
- (6") heterocycle C_{1-6} alkyl optionally substituted by 1 to 5 substituent(s) selected from the above group B,

wherein the heterocycle C_{1-6} alkyl is C_{1-6} alkyl substituted by heterocyclic group optionally substituted by 1 to 5 substituent(s) selected from the above group B, as defined above,

- (7") C_{3-8} cycloalkyl optionally substituted by 1 to 5 substituent(s) selected from the above group B,
- (8") C_{3-8} cycloalkyl C_{1-6} alkyl optionally substituted by 1 to 5 substituent(s) selected from the above group B,
- (9") hydroxyl group or

5

10

15

20

25

30

(10") C_{1-6} alkoxy,

- (i) $-(CH_2)_t-C(=NR^{a33})NH_2$ wherein R^{a33} is hydrogen atom, C_{1-6} alkyl, hydroxyl group or C_{1-6} alkoxy,
- (j) $-(CH_2)_t-OR^{a20}$ wherein R^{a20} is
 - (1') hydrogen atom,
 - (2') optionally substituted C_{1-6} alkyl (as defined above),
 - (3') optionally substituted C_{2-6} alkenyl (as defined above),
 - (4') C_{2-6} alkynyl optionally substituted by 1 to 3 substituent(s) selected from the above group A,
 - (5') C_{6-14} aryl optionally substituted by 1 to 5 substituent(s) selected from the above group B,
 - (6') C_{6-14} aryl C_{1-6} alkyl optionally substituted by 1 to 5 substituent(s) selected from the above group B,
 - (7') heterocyclic group optionally substituted
 by 1 to 5 substituent(s) selected from
 the above group B,
 - (8') heterocycle C_{1-6} alkyl optionally substituted by 1 to 5 substituent(s) selected from the above group B,
 - (9') C₃₋₈ cycloalkyl optionally substituted by 1 to 5 substituent(s) selected from the above group B, or
 - (10') C_{3-8} cycloalkyl C_{1-6} alkyl optionally substituted by 1 to 5 substituent(s) selected from the above group B,
- (k) -(CH₂)_t-O-(CH₂)_p-COR^{a21}
 wherein R^{a21} is amino, C₁₋₆ alkylamino or heterocyclic group optionally substituted by 1 to 5 substituent(s) selected from the above group B, and p is 0 or an integer of 1 to 6,

5

10

15

20

25

30

	(1)	$-(CH_2)_t-NR^{a22}R^{a23}$
		wherein R ^{a22} and R ^{a23} are each independently
		(1') hydrogen atom,
		(2') optionally substituted C_{1-6} alkyl (as
5		defined above),
	*	(3') C_{6-14} aryl optionally substituted by 1 to
		5 substituent(s) selected from the
		above group B,
	* .	(4') C_{6-14} aryl C_{1-6} alkyl optionally
10		substituted by 1 to 5 substituent(s)
		selected from the above group B,
		(5') heterocycle C ₁₋₆ alkyl optionally
		substituted by 1 to 5 substituent(s)
		selected from the above group B or
15	* **	(6') heterocyclic group optionally
		substituted by 1 to 5 substituent(s)
		selected from the above group B,
	(m)	$-(CH_2)_{t}-NR^{a29}CO-R^{a24}$
	***	wherein R^{a29} is hydrogen atom, C_{1-6} alkyl or C_{1}
20	* *	alkanoyl, and
		R^{a24} is
		(1') amino,
		(2') C ₁₋₆ alkylamino,
	\hat{y}_{i} ,	(3') optionally substituted C_{1-6}
25		alkyl (as defined above),
		(4') C_{6-14} aryl optionally substituted by 1
		to 5 substituent(s) selected from the
		above group B,
		(5') heterocyclic group optionally
30		substituted by 1 to 5 substituent(s)
		selected from the above group B, or
		(6') heterocycle C_{1-6} alkyl optionally
		substituted by 1 to 5 substituent(s)
		selected from the above group B,
<i>3</i> 5	(n)	$-(CH_2)_t-NR^{a29}SO_2-R^{a25}$
		wherein R ^{a29} is as defined above, and
		R ^{a25} is hydrogen atom, optionally
		substituted C_{1-6} alkyl (as defined above),

 C_{6-14} aryl optionally substituted by 1 to 5 substituent(s) selected from the above group B or heterocyclic group optionally substituted by 1 to 5 substituent(s) selected from the above group B,

- (o) $-(CH_2)_t-S(O)_q-R^{a25}$ wherein R^{a25} is as defined above, and q is 0, 1 or 2,
- (p) $-(CH_2)_t-SO_2-NHR^{a26}$ wherein R^{a26} is hydrogen atom, optionally substituted C_{1-6} alkyl (as defined above), C_{6-14} aryl optionally substituted by 1 to 5 substituent(s) selected from the above group B or heterocyclic group optionally substituted

by 1 to 5 substituent(s) selected from the above group B,

and

(q) heterocyclic group having 1 to 4
 heteroatom(s) selected from an oxygen atom,
 a nitrogen atom and a sulfur atom,

is an integer of 1 to 3, and

is

- (1) a single bond,
- (2) C_{1-6} alkylene,
- (3) C_{2-6} alkenylene,
- (4) $-(CH_2)_m-O-(CH_2)_n-$, (hereinafter m and n are each independently 0 or an integer of 1 to 6),
- (5) -CO-,
- (6) $-CO_2-(CH_2)_n-$,
- (7) $-CONH-(CH_2)_n-NH-$,
- (8) $-NHCO_2-$,
- (9) -NHCONH-,
- (10) $-O-(CH_2)_n-CO-$,
- (11) $-O-(CH_2)_n-O-$,
- (12) $-SO_2-$,
- (13) $-(CH_2)_m NR^{a12} (CH_2)_n -$

10

5

15

20

w Y

25

30

wherein R^{a12} is

- (1') hydrogen atom,
- (2') optionally substituted C_{1-6} alkyl (as defined above),
- (3') C_{6-14} aryl C_{1-6} alkyl optionally substituted by 1 to 5 substituent(s) selected from the above group B,
- (4') C_{6-14} aryl optionally substituted by 1 to 5 substituent(s) selected from the above group B,
- wherein R^{b5} is hydrogen atom, optionally substituted C₁₋₆ alkyl (as defined above), C₆₋₁₄ aryl optionally substituted by 1 to 5 substituent(s) selected from the above group B or C₆₋₁₄ aryl C₁₋₆ alkyl optionally substituted by 1 to 5 substituent(s) selected from the above group B,
- (6') $-COOR^{b5}$ (R^{b5} is as defined above) or
- (7') $-SO_2R^{b5}$ (R^{b5} is as defined above),
- (14) $-NR^{a12}CO-$ (R^{a12} is as defined above),
- (15) $-\text{CONR}^{a13} (\text{CH}_2)_n \text{wherein R}^{a13}$ is hydrogen atom, optionally substituted C_{1-6} alkyl (as defined above) or C_{6-14} aryl C_{1-6} alkyl optionally substituted by 1 to 5 substituent(s) selected from the above group B,
- (16) $-CONH-CHR^{al4}-$ wherein R^{al4} is C_{6-14} aryl optionally substituted by 1 to 5 substituent(s) selected from the above group B,
- (17) $-O-(CH_2)_m-CR^{a15}R^{a16}-(CH_2)_n-$ wherein R^{a15} and R^{a16} are each independently (1') hydrogen atom,
 - (2') carboxyl,
 - (3') C_{1-6} alkyl,
 - (4') $-OR^{b6}$

5

10

15

20 .

25

30

wherein R^{b6} is C_{1-6} alkyl or C_{6-14} aryl C_{1-6} alkyl, or (5') $-NHR^{b7}$

wherein R^{b7} is hydrogen atom, C_{1-6} alkyl, C_{1-6} alkanoyl or C_{6-14} aryl C_{1-6} alkyloxycarbonyl, or

R^{al5} is optionally

(6')

$$-(CH_2)_{n'} B' - (Z')_{W'}$$

10

15

wherein n', ring B', Z' and w' are the same as the above-mentioned n, ring B, Z and w, respectively, and may be the same as or different from the respective counterparts,

(18) $-(CH_2)_n-NR^{a12}-CHR^{a15}-(R^{a12} \text{ and } R^{a15} \text{ are each as defined above),}$

(19) $-NR^{a17}SO_2-$ wherein R^{a17} is hydrogen atom or C_{1-6} alkyl,

(20) $-S(0)_e-(CH_2)_m-CR^{a15}R^{a16}-(CH_2)_n-$ (e is 0, 1 or 2, R^{a15} and R^{a16} are each as defined above),

20

(21) $-(CH_2)_m-CR^{a15}R^{a16}-(CH_2)_n-(R^{a15})$ and R^{a16} are each as defined above),

or a pharmaceutically acceptable salt thereof.

(43) The fused ring compound of (42) above, which is represented 25 by the following formula [II-1]

wherein each symbol is as defined in (42), or a pharmaceutically acceptable salt thereof.

(44) The fused ring compound of (42) above, which is represented 30 by the following formula [II-2]

$$\begin{array}{c|c}
R^2 & R^1 & R^5 \\
\hline
 R^3 & R^4 & Cy'
\end{array}$$

$$\begin{array}{c|c}
R^5 & \\
\hline
 R^6 & Y
\end{array}$$

$$\begin{array}{c|c}
B & (Z) & w & [11-2]
\end{array}$$

wherein each symbol is as defined in (42), or a pharmaceutically acceptable salt thereof.

(45) The fused ring compound of (42) above, which is represented 5 by the following formula [II-3]

wherein each symbol is as defined in (42), or a pharmaceutically acceptable salt thereof.

(46) The fused ring compound of (42) above, which is represented by the following formula [II-4]

wherein each symbol is as defined in (42), or a pharmaceutically acceptable salt thereof.

(47) The fused ring compound of any of (42) to (46) above, wherein at least one of R^1 , R^2 , R^3 and R^4 is carboxyl, $-COOR^{a1}$, $-CONR^{a2}R^{a3}$, $-SO_2R^{a7}$ (wherein R^{a1} , R^{a2} , R^{a3} and R^{a7} are as defined in (42)),

or a pharmaceutically acceptable salt thereof.

- (48) The fused ring compound of (47) above, wherein at least one of R^1 , R^2 , R^3 and R^4 is carboxyl, $-COOR^{a1}$ or $-SO_2R^{a7}$ wherein R^{a1} and R^{a7} are as defined in (42), or a pharmaceutically acceptable salt thereof.
 - (49) The fused ring compound of (48) above, wherein at least one of R^1 , R^2 , R^3 and R^4 is carboxyl or $-COOR^{a1}$ wherein R^{a1} is as defined in (42), or a pharmaceutically acceptable salt thereof.
- 10 (50) The fused ring compound of (49) above, wherein \mathbb{R}^2 is carboxyl and \mathbb{R}^1 , \mathbb{R}^3 and \mathbb{R}^4 are hydrogen atoms, or a pharmaceutically acceptable salt thereof.
- (51) The fused ring compound of any of (42) to (46) above, wherein at least one of R¹, R², R³ and R⁴ is carboxyl or -COOR^{a1} wherein R^{a1} is glucuronic acid residue, or a pharmaceutically acceptable salt thereof.
- (52) The fused ring compound of any of (42) to (46) above, wherein at least one of R¹, R², R³ and R⁴ is heterocyclic group having 1 to 4 heteroatom(s) selected from an oxygen atom, a nitrogen atom and a sulfur atom, or a pharmaceutically acceptable salt thereof.
- (53) The fused ring compound of any of (42) to (52) above, wherein the ring Cy' is cyclopentyl, cyclohexyl, cycloheptyl or tetrahydrothiopyranyl, or a pharmaceutically acceptable salt thereof.
 - (54) The fused ring compound of (42) above, wherein the ring Cy' is cyclopentyl, cyclohexyl or cycloheptyl, or a pharmaceutically acceptable salt thereof.
- (55) The fused ring compound of any of (42) to (52) above, 30 wherein the ring Cy' is

$$(\langle u \rangle)_{\mathbf{v}}$$

wherein each symbol is as defined in (42), or a pharmaceutically acceptable salt thereof.

- (56) The fused ring compound of any of (42) to (55) above, wherein the ring A' is phenyl, pyridyl, pyrazinyl, pyrimidinyl or 5 pyridazinyl, or a pharmaceutically acceptable salt thereof.
 - (57) The fused ring compound of (56) above, wherein the ring A' is phenyl or pyridyl, or a pharmaceutically acceptable salt thereof.
- (58) The fused ring compound of (57) above, wherein the ring A' is phenyl, or a pharmaceutically acceptable salt thereof.
 - (59) The fused ring compound of any of (42) to (58) above, wherein at least one substituent optionally substituted by group A is a substituent substituted by C_{1-6} alkoxy C_{1-6} alkoxy, or a pharmaceutically acceptable salt thereof.
- 15 (60) The fused ring compound of any of (42) to (59) above, wherein the Y is $-(CH_2)_m-O-(CH_2)_n-$, $-NHCO_2-$, $-CONH-CHR^{a14}-$, $-(CH_2)_m-NR^{a12}-(CH_2)_n-$, $-CONR^{a13}-(CH_2)_n-$, $-O-(CH_2)_m-CR^{a15}R^{a16}-(CH_2)_n-$ or $-(CH_2)_n-NR^{a12}-CHR^{a15}-$ (wherein each symbol is as defined in (42)), or a pharmaceutically acceptable salt thereof.
- 20 (61) The fused ring compound of (42) above, wherein the Y is $-(CH_2)_m-O-(CH_2)_n-$ or $-O-(CH_2)_m-CR^{a15}R^{a16}-(CH_2)_n-$ (wherein each symbol is as defined in (42)), or a pharmaceutically acceptable salt thereof.
- (62) The fused ring compound of (61) above, wherein the Y is $-(CH_2)_m-O-(CH_2)_n-$ wherein each symbol is as defined in (42), or a pharmaceutically acceptable salt thereof.
 - (63) The fused ring compound of any of (42) to (59) above, wherein the Y is $-(CH_2)_m-CR^{a15}R^{a16}-(CH_2)_n-$ (wherein each symbol is as defined in (42)), or a pharmaceutically acceptable salt thereof.
- 30 (64) The fused ring compound of any of (42) to (63) above, wherein the R^2 is carboxyl, R^1 , R^3 and R^4 are hydrogen atoms, the ring Cy' is cyclopentyl, cyclohexyl or cycloheptyl, and the ring A' is phenyl, or a pharmaceutically acceptable salt thereof.
 - (65) The fused ring compound of any of (42) to (64) above,
- wherein at least one group represented by Z is heterocycle C_{1-6} alkyl optionally substituted by 1 to 5 substituent(s) selected from the group D, or a pharmaceutically acceptable salt thereof.
 - (66) The fused ring compound of any of (42) to (64) above,

wherein at least one group represented by Z is heterocyclic group optionally substituted by 1 to 5 substituent(s) selected from the group D, wherein said heterocyclic group is selected from the following groups:

5

wherein E^1 is an oxygen atom, a sulfur atom or $N(-R^{a35})$, E^2 is an oxygen atom, CH_2 or $N(-R^{a35})$, E^3 is an oxygen atom or a sulfur atom, wherein each R^{a35} is independently hydrogen atom or C_{1-6} alkyl, f is an integer of 1 to 3, and h and h' are the same or different

and each is an integer of 1 to 3, or a pharmaceutically acceptable salt thereof.

(67) The fused ring compound of (66) above, wherein at least one group represented by Z is heterocyclic group optionally substituted by 1 to 5 substituent(s) selected from the group D, wherein said heterocyclic group is selected from the following groups:

wherein each symbol is as defined in (66), or a pharmaceutically acceptable salt thereof.

- (68) The fused ring compound of any of (42) to (64) above, wherein at least one group represented by group D is $-(CH_2)_t$ - $CONR^{a27}R^{a28}$ wherein each symbol is as defined in (42), and at least one of R^{a27} and R^{a28} is C_{1-6} alkoxy, or a pharmaceutically acceptable salt thereof.
- (69) The fused ring compound of any of (42) to (64) above, wherein at least one group represented by group D is $-(CH_2)_t-C(=NR^{a33})NH_2$ wherein each symbol is as defined in (42), and R^{a33} is hydroxyl group or C_{1-6} alkoxy, or a pharmaceutically acceptable salt thereof.
 - (70) The fused ring compound of any of (42) to (64) above, wherein at least one group represented by group D is $-(CH_2)_t-0-(CH_2)_p-COR^{a21}$ wherein each symbol is as defined in (42), and R^{a21} is amino, or a pharmaceutically acceptable salt thereof.
- 25 (71) The fused ring compound of any of (42) to (64) above, wherein at least one group represented by group D is $-(CH_2)_t$ $NR^{a29}CO-R^{a24}$ wherein each symbol is as defined in (42), and R^{a24} is amino or

 $\ensuremath{\text{C}_{\text{1-6}}}$ alkylamino, or a pharmaceutically acceptable salt thereof.

30 (72) The fused ring compound of any of (42) to (64) above, wherein at least one group represented by group D is $-(CH_2)_t-NR^{a22}R^{a23}$ wherein each symbol is as defined in (42), and at least one of R^{a22} and R^{a23} is heterocyclic group optionally substituted

by 1 to 5 substituent(s) selected from the group B, or a pharmaceutically acceptable salt thereof.

- (73) The fused ring compound of any of (42) to (64) above, wherein at least one group represented by group D is heterocyclic 5 group having 1 to 4 heteroatom(s) selected from an oxygen atom, a nitrogen atom and a sulfur atom, or a pharmaceutically acceptable salt thereof.
 - (74) The fused ring compound of (42) above, which is represented by the following formula [II]

10

wherein the moiety

is a fused ring selected from

15

wherein R^1 , R^2 , R^3 and R^4 are each independently,

- (1) hydrogen atom,
- (2) C_{1-6} alkanoyl,
- (3) carboxyl,
- 20
- (4) cyano,
- (5) nitro,
- (6) C_{1-6} alkyl optionally substituted by 1 to 3 substituent(s) selected from the following group A, group A; halogen atom, hydroxyl group, carboxyl, amino, C_{1-6} alkoxy, C_{1-6} alkoxycarbonyl and C_{1-6}

alkylamino,

(7) $-COOR^{a1}$

TO PART OF STATE

10

15

20

25

wherein R^{a1} is optionally substituted C_{1-6} alkyl (as defined above) or C_{6-14} aryl C_{1-6} alkyl optionally substituted by 1 to 5 substituent(s) selected from the following group B,

group B; halogen atom, cyano, nitro, C1-6 alkyl, halogenated C_{1-6} alkyl, C_{1-6} alkanoyl,

- $-(CH_2)_r-COOR^{b1}$, $-(CH_2)_r-CONR^{b1}R^{b2}$, $-(CH_2)_r-NR^{b1}R^{b2}$,
- $-(CH_2)_r-NR^{b1}-COR^{b2}$, $-(CH_2)_r-NHSO_2R^{b1}$, $-(CH_2)_r-OR^{b1}$,
- $-(CH_2)_r SR^{b1}_r$, $-(CH_2)_r SO_2R^{b1}_r$ and $-(CH_2)_r SO_2NR^{b1}R^{b2}_r$ wherein R^{b1} and R^{b2} are each independently hydrogen atom or C_{1-6} alkyl and r is 0 or an integer of 1 to 6,
- (8) $-CONR^{a2}R^{a3}$ wherein Ra2 and Ra3 are each independently hydrogen atom, C_{1-6} alkoxy or optionally substituted C_{1-6} alkyl (as defined above),
- (9) $-C (=NR^{a4}) NH_2$ wherein R^{a4} is hydrogen atom or hydroxyl group,
- (10) $-NHR^{a5}$ wherein R^{a5} is hydrogen atom, C_{1-6} alkanoyl or C_{1-6} alkylsulfonyl,
- $(11) OR^{a6}$ wherein R^{ab} is hydrogen atom or optionally substituted C_{1-6} alkyl (as defined above),
- $(12) -SO_2R^{a7}$ wherein R^{a7} is hydroxyl group, amino, C_{1-6} alkyl or C_{1-6} alkylamino
- 30 or (13) $-P (=0) (OR^{a31})_2$ wherein R^{a31} is hydrogen atom, optionally substituted C_{1-6} alkyl (as defined above) or C_{6-14} aryl C_{1-6} alkyl optionally substituted by 1 to 5 substituent(s) selected from the above group B, and 35 R⁷ is hydrogen atom or optionally substituted C_{1-6} alkyl (as defined above),

ring Cy' is (1) C_{3-8} cycloalkyl optionally substituted by 1 to 5 substituent(s) selected from the following group C, group C; hydroxyl group, halogen atom, C_{1-6} alkyl and C_{1-6} alkoxy, or

5 (2)

wherein u and v are each independently an integer of 1 to 3,

ring A' is a group selected from a group consisting of phenyl, pyridyl, pyrazinyl, pyrimidinyl, pyridazinyl, cyclohexyl, cyclohexenyl, furyl and thienyl,

 $R^{5'}$ and $R^{6'}$ are each independently

- (1) hydrogen atom,
- (2) halogen atom,
- (3) optionally substituted C_{1-6} alkyl (as defined above) or
 - (4) hydroxyl group

ring B

15

20

25

30

35

is

- (1) C_{6-14} aryl,
- (2) C_{3-8} cycloalkyl or
- (3) heterocyclic group having 1 to 4 heteroatom(s)
 selected from an oxygen atom, a nitrogen atom and a sulfur atom,
 each Z is independently
 - (1) a group selected from the following group D,
 - (2) C_{6-14} aryl optionally substituted by 1 to 5 substituent(s) selected from the following group D,
 - (3) C_{3-8} cycloalkyl optionally substituted by 1 to 5 substituent(s) selected from the following group D,
 - (4) C_{6-14} aryl C_{1-6} alkyl optionally substituted by 1 to 5 substituent(s) selected from the following group D or
 - (5) heterocyclic group optionally substituted by 1 to 5 substituent(s) selected from the following group D wherein the heterocyclic group has 1 to 4 heteroatom(s) selected from an oxygen atom, a nitrogen atom and a sulfur atom,

group D:

- (a) hydrogen atom,
- (b) halogen atom,
- (c) cyano,
- (d) nitro,
- (e) optionally substituted C_{1-6} alkyl (as defined above),
- (f) $-(CH_2)_t-COR^{als}$, (hereinafter each t means independently 0 or an integer of 1 to 6), wherein R^{al8} is
 - (1') optionally substituted C_{1-6} alkyl (as defined above),
 - (2') C_{6-14} aryl optionally substituted by 1 to 5 substituent(s) selected from the above group B or
 - (3') heterocyclic group optionally
 substituted by 1 to 5 substituent(s)
 selected from the above group B
 wherein the heterocyclic group has 1 to
 4 heteroatom(s) selected from an oxygen
 atom, a nitrogen atom and a sulfur atom,
 - $(g) (CH_2)_t COOR^{a19}$ wherein R^{a19} is hydrogen atom, optionally substituted C_{1-6} alkyl (as defined above) or C_{6-14} aryl C_{1-6} alkyl optionally substituted by 1 to 5 substituent(s) selected from the above group B,
 - (h) $-(CH_2)_t-CONR^{a27}R^{a28}$ wherein R^{a27} and R^{a28} are each independently, (1") hydrogen atom,
 - (2") optionally substituted C_{1-6} alkyl (as defined above),
 - (3") C_{6-14} aryl optionally substituted by 1 to 5 substituent(s) selected from the above group B,
 - (4") C_{6-14} aryl C_{1-6} alkyl optionally substituted by 1 to 5 substituent(s) selected from the

5

10

15

20 .

25

30

above group B,

- (5") heterocyclic group optionally substituted
 by 1 to 5 substituent(s) selected from the
 above group B,
- (6") heterocycle C_{1-6} alkyl optionally substituted by 1 to 5 substituent(s) selected from the above group B,

wherein the heterocycle C_{1-6} alkyl is C_{1-6} alkyl substituted by heterocyclic group optionally substituted by 1 to 5 substituent(s) selected from the above group B, as defined above,

- (7") C_{3-8} cycloalkyl optionally substituted by 1 to 5 substituent(s) selected from the above group B, or
- (8") C_{3-8} cycloalkyl C_{1-6} alkyl optionally substituted by 1 to 5 substituent(s) selected from the above group B,
- (i) $-(CH_2)_t-C(=NR^{a33})NH_2$ wherein R^{a33} is hydrogen atom or C_{1-6} alkyl,
- (j) $-(CH_2)_t-OR^{a20}$ wherein R^{a20} is
 - (1') hydrogen atom,
 - (2') optionally substituted C_{1-6} alkyl (as defined above),
 - (3') optionally substituted C_{2-6} alkenyl (as defined above),
 - (4') C_{2-6} alkynyl optionally substituted by 1 to 3 substituent(s) selected from the above group A,
 - (5') C_{6-14} aryl optionally substituted by 1 to 5 substituent(s) selected from the above group B,
 - (6') C_{6-14} aryl C_{1-6} alkyl optionally substituted by 1 to 5 substituent(s) selected from the above group B,
 - (7') heterocyclic group optionally
 substituted by 1 to 5 substituent(s)
 selected from the above group B,

.

10

15

20

25

30

substituted by 1 to 5 substituent(s) selected from the above group B, (9') C₃₋₈ cycloalkyl optionally substituted by 1 to 5 substituent(s) selected from the 5 above group B, or (10') C_{3-8} cycloalkyl C_{1-6} alkyl optionally substituted by 1 to 5 substituent(s) selected from the above group B, (k) $-(CH_2)_t-O-(CH_2)_p-COR^{a21}$ 10 wherein R^{a21} is C_{1-6} alkylamino or heterocyclic group optionally substituted by 1 to 5 substituent(s) selected from the above group В, and p is 0 or an integer of 1 to 6, 15 (1) $-(CH_2)_{t}-NR^{a22}R^{a23}$ wherein Ra22 and Ra23 are each independently (1') hydrogen atom, (2') optionally substituted C_{1-6} alkyl (as defined above), 20 (3') C_{6-14} aryl optionally substituted by 1 to 5 substituent(s) selected from the above group B, (4') C_{6-14} aryl C_{1-6} alkyl optionally substituted by 1 to 5 substituent(s) selected from 25 'the above group B or (5') heterocycle C_{1-6} alkyl optionally substituted by 1 to 5 substituent(s) selected from the above group B, $(m) - (CH_2) + -NR^{a29}CO - R^{a24}$ 30 wherein R^{a29} is hydrogen atom, C_{1-6} alkyl or C_{1-6} alkanoyl, R^{a24} is optionally substituted C_{1-6} alkyl (as defined above), C_{6-14} aryl optionally substituted by 1 to 5 substituent(s) selected from the above group 35 B or heterocyclic group optionally

(8') heterocycle C₁₋₆ alkyl optionally

from the above group B,

substituted by 1 to 5 substituent(s) selected

(n) $-(CH_2)_t-NHSO_2-R^{a25}$ wherein R^{a25} is hydrogen atom, optionally substituted C_{1-6} alkyl (as defined above), C_{6-14} aryl optionally substituted by 1 to 5 substituent(s) selected from the above group 5 В or heterocyclic group optionally substituted by 1 to 5 substituent(s) selected from the above group B, (o) $-(CH_2)_t-S(O)_q-R^{a25}$ 10 wherein R^{a25} is as defined above, and q is 0, 1 or 2, and (p) $-(CH_2)_t - SO_2 - NHR^{a26}$ wherein R^{a26} is hydrogen atom, optionally 15 substituted C_{1-6} alkyl (as defined above), C_{6-14} aryl optionally substituted by 1 to 5 substituent(s) selected from the above group B or heterocyclic group optionally substituted by 1 to 5 substituent(s) selected 20 from the above group B, is an integer of 1 to 3, and is Y. (1) a single bond, (2) C_{1-6} alkylene, 25 (3) C_{2-6} alkenylene, (4) $-(CH_2)_m-O-(CH_2)_n-$, (hereinafter m and n are each independently 0 or an integer of 1 to 6), (5) -CO-, 30 (6) $-CO_2-(CH_2)_n-$, (7) $-CONH-(CH_2)_n-NH-$, (8) $-NHCO_2-$, (9) -NHCONH-, (10) $-O-(CH_2)_n-CO-$, 35 (11) $-O-(CH_2)_n-O-$, $(12) -SO_2-,$ (13) $-(CH_2)_m - NR^{a12} - (CH_2)_n -$

wherein Rall is

- (1') hydrogen atom,
- (2') optionally substituted C_{1-6} alkyl (as defined above),
- (3') C_{6-14} aryl C_{1-6} alkyl optionally substituted by 1 to 5 substituent(s) selected from the above group B,
- (4') C_{6-14} aryl optionally substituted by 1 to 5 substituent(s) selected from the above group B,
- (5') $-COR^{b5}$ wherein R^{b5} is hydrogen atom, optionally substituted C_{1-6} alkyl (as defined above), C_{6-14} aryl optionally substituted by 1 to 5 substituent(s) selected from the above group B or C_{6-14} aryl C_{1-6} alkyl optionally substituted by 1 to 5 substituent(s)

selected from the above group B,

- (6') $-COOR^{b5}$ (R^{b5} is as defined above) or (7') $-SO_2R^{b5}$ (R^{b5} is as defined above),
- (14) $-NR^{a12}CO-$ (R^{a12} is as defined above),
- (15) $-\text{CONR}^{\text{al3}} (\text{CH}_2)_n \text{wherein R}^{\text{al3}}$ is hydrogen atom, optionally substituted C_{1-6} alkyl (as defined above) or C_{6-14} aryl C_{1-6} alkyl optionally substituted by 1 to 5 substituent(s) selected from the above group B,
- (16) -CONH-CHR^{a14}wherein R^{a14} is C₆₋₁₄ aryl optionally substituted by 1 to 5 substituent(s) selected from the above group B,
- (17) $-O-(CH_2)_m-CR^{a15}R^{a16}-(CH_2)_n-$ wherein R^{a15} and R^{a16} are each independently (1') hydrogen atom,
 - (2') carboxyl,
 - (3') C_{1-6} alkyl,
 - (4') $-OR^{b6}$ wherein R^{b6} is C_{1-6} alkyl or C_{6-14} aryl C_{1-6}

10

15

20

25

30

alkyl,

or

(5') -NHR^{b7}

wherein R^{b7} is hydrogen atom, C_{1-6} alkyl, C_{1-6} alkanoyl or C_{6-14} aryl C_{1-6} alkyloxycarbonyl, or R^{a15} is optionally

(6')

10

15

$$-(CH_2)_{n'}$$
 B' $-(Z')w'$

wherein n', ring B', Z' and w' are the same as the above-mentioned n, ring B, Z and w, respectively, and may be the same as or different from the respective counterparts,

- (18) $-(CH_2)_n-NR^{a12}-CHR^{a15}-(R^{a12} \text{ and } R^{a15} \text{ are each as defined above),}$
- (19) $-NR^{a17}SO_2-$ wherein R^{a17} is hydrogen atom or C_{1-6} alkylor
- (20) $-S(O)_e-(CH_2)_m-CR^{a15}R^{a16}-(CH_2)_n-$ (e is 0, 1 or 2, R^{a15} and R^{a16} are each as defined above),
- 20 or a pharmaceutically acceptable salt thereof.
 - (75) The fused ring compound of (74) above, which is represented by the following formula [II-1]

wherein each symbol is as defined in (74),

- 25 or a pharmaceutically acceptable salt thereof.
 - (76) The fused ring compound of (74) above, which is represented by the following formula [II-2]

$$\begin{array}{c|c}
R^{2} & & \\
R^{3} & & \\
R^{4} & & \\
\end{array}$$

$$\begin{array}{c|c}
R^{5} \\
\hline
R^{6} & \\
\end{array}$$

$$\begin{array}{c|c}
R^{5} \\
\hline
\end{array}$$

$$\begin{array}{c|c}
R^{5} \\
\hline
\end{array}$$

$$\begin{array}{c|c}
R^{6} \\
\end{array}$$

$$\begin{array}{c|c}
R^{6} \\
\end{array}$$

wherein each symbol is as defined in (74), or a pharmaceutically acceptable salt thereof.

(77) The fused ring compound of (74) above, which is represented by the following formula [II-3]

$$\begin{array}{c|c}
R^{2} & & \\
\hline
 & & \\
R^{3} & & \\
\hline
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\$$

wherein each symbol is as defined in (74), or a pharmaceutically acceptable salt thereof.

(78) The fused ring compound of (74) above, which is represented by the following formula [II-4]

$$\begin{array}{c|c}
R^{2} & & \\
R^{3} & & \\
R^{3} & & \\
\end{array}$$

$$\begin{array}{c|c}
R^{5'} & \\
R^{6'} & \\
\end{array}$$

$$\begin{array}{c|c}
R^{5'} & \\
R^{6'} & \\
\end{array}$$

$$\begin{array}{c|c}
R^{5'} & \\
\end{array}$$

$$\begin{array}{c|c}
R^{5'} & \\
\end{array}$$

wherein each symbol is as defined in (74), or a pharmaceutically acceptable salt thereof.

(79) The fused ring compound of any of (74) to (78) above, wherein at least one of R^1 , R^2 , R^3 and R^4 is carboxyl, $-COOR^{a1}$ or $-SO_2R^{a7}$ wherein R^{a1} and R^{a7} are as defined in (74), or a pharmaceutically acceptable salt thereof.

(80) The fused ring compound of (79) above, wherein at least one of R¹, R², R³ and R⁴ is carboxyl or -COOR^{a1} wherein R^{a1} is as defined in (74), or a pharmaceutically acceptable salt thereof.

- (81) The fused ring compound of (80) above, wherein R^2 is carboxyl and R^1 , R^3 and R^4 are hydrogen atoms, or a pharmaceutically acceptable salt thereof.
- (82) The fused ring compound of any of (74) to (81) above,
 5 wherein the ring Cy' is cyclopentyl, cyclohexyl, cycloheptyl or tetrahydrothiopyranyl, or a pharmaceutically acceptable salt thereof.
- (83) The fused ring compound of (82) above, wherein the ring Cy' is cyclopentyl, cyclohexyl or cycloheptyl, or a pharmaceutically acceptable salt thereof.
 - (84) The fused ring compound of any of (74) to (83) above, wherein the ring A' is phenyl, pyridyl, pyrazinyl, pyrimidinyl or pyridazinyl, or a pharmaceutically acceptable salt thereof.
- (85) The fused ring compound of (84) above, wherein the ring A' is phenyl or pyridyl, or a pharmaceutically acceptable salt thereof.
 - (86) The fused ring compound of (85) above, wherein the ring A' is phenyl, or a pharmaceutically acceptable salt thereof.
- (87) The fused ring compound of any of (74) to (86) above, wherein the Y is $-(CH_2)_m-O-(CH_2)_n-$, $-NHCO_2-$, $-CONH-CHR^{a14}-$, $-(CH_2)_m-NR^{a12}-(CH_2)_n-$, $-CONR^{a13}-(CH_2)_n-$, $-O-(CH_2)_m-CR^{a15}R^{a16}-(CH_2)_n-$ or $-(CH_2)_n-NR^{a12}-CHR^{a15}-$ (wherein each symbol is as defined in (74)), or a pharmaceutically acceptable salt thereof.
- (88) The fused ring compound of (87) above, wherein the Y is $-(CH_2)_m-O-(CH_2)_n-$ or $-O-(CH_2)_m-CR^{a15}R^{a16}-(CH_2)_n-$ (wherein each symbol is as defined in (74)), or a pharmaceutically acceptable salt thereof.
- (89) The fused ring compound of (88) above, wherein the Y is $-(CH_2)_m-O-(CH_2)_n-$ wherein each symbol is as defined in (74), or a pharmaceutically acceptable salt thereof.
 - (90) The fused ring compound of any of (74) to (89) above, wherein the R^2 is carboxyl, R^1 , R^3 and R^4 are hydrogen atoms, the ring Cy' is cyclopentyl, cyclohexyl or cycloheptyl, and the ring A' is phenyl, or a pharmaceutically acceptable salt thereof.
- 35 (91) The fused ring compound of the formula [I] or a pharmaceutically acceptable salt thereof, which is selected from the group consisting of

```
ethyl 2-[4-(3-bromophenoxy)phenyl]-1-cyclohexylbenzimidazole-5-
   carboxylate (Example 1),
    2-[4-(3-bromophenoxy) phenyl]-1-cyclohexylbenzimidazole-5-
   carboxylic acid (Example 2),
 5 ethyl 1-cyclohexyl-2-(4-hydroxyphenyl)benzimidazole-5-
   carboxylate (Example 3),
    ethyl 2-[4-(2-bromo-5-chlorobenzyloxy) phenyl]-1-
   cyclohexylbenzimidazole-5-carboxylate (Example 4),
    ethyl 2-\{4-[2-(4-\text{chlorophenyl})-5-\text{chlorobenzyloxy}] \text{ phenyl}\}-1-
10 cyclohexylbenzimidazole-5-carboxylate (Example 5),
    2-\frac{4-[2-(4-chlorophenyl)-5-chlorobenzyloxy]phenyl}{-1-}
   cyclohexylbenzimidazole-5-carboxylic acid (Example 6),
    ethyl 2-[4-(2-bromo-5-methoxybenzyloxy)phenyl]-1-
   cyclohexylbenzimidazole-5-carboxylate (Example 7),
    ethyl 2-\frac{4-[2-(4-\text{chlorophenyl})-5-\text{methoxybenzyloxy}]}{-1-}
   cyclohexylbenzimidazole-5-carboxylate (Example 8),
    2-\frac{4-[2-(4-chlorophenyl)-5-methoxybenzyloxy]phenyl}{-1-}
   cyclohexylbenzimidazole-5-carboxylic acid (Example 9),
    ethyl 1-cyclohexyl-2-{4-[(E)-2-phenylvinyl]phenylbenzimidazole-
20 5-carboxylate (Example 10),
    1-cyclohexyl-2-{4-[(E)-2-phenylvinyl]phenylbenzimidazole-5-
   carboxylic acid (Example 11),
    2-(4-benzyloxyphenyl)-1-cyclopentylbenzimidazole-5-carboxylic
   acid (Example 12),
    2-(4-benzyloxyphenyl)-1-cyclopentylbenzimidazole-5-carboxamide
   (Example 13),
    2-(4-benzyloxyphenyl)-5-cyano-1-cyclopentylbenzimidazole
   (Example 14),
    2-(4-benzyloxyphenyl)-1-cyclopentylbenzimidazole-5-carboxamide
30 oxime (Example 15),
    ethyl 1-cyclohexyl-2-\{4-[\{4-(4-fluorophenyl)-2-methyl-5-
   thiazolyl methoxy | phenyl benzimidazole-5-carboxy late (Example 16),
    1-\text{cyclohexyl}-2-\{4-[\{4-(4-\text{fluorophenyl})-2-\text{methyl}-5-\text{thiazolyl}\}-
   methoxy]phenyl benzimidazole-5-carboxylic acid (Example 17),
35 ethyl 1-cyclohexyl-2-(2-fluoro-4-hydroxyphenyl)benzimidazole-5-
   carboxylate (Example 18),
    ethyl 2-{4-[bis(3-fluorophenyl)methoxy]-2-fluorophenyl}-1-
   cyclohexylbenzimidazole-5-carboxylate (Example 19),
```

```
2-{4-[bis(3-fluorophenyl)methoxy]-2-fluorophenyl}-1-
   cyclohexylbenzimidazole-5-carboxylic acid (Example 20),
    ethyl 1-cyclopentyl-2-(4-nitrophenyl)benzimidazole-5-carboxylate
   (Example 21),
    ethyl 2-(4-aminophenyl)-1-cyclopentylbenzimidazole-5-carboxylate
   (Example 22),
    ethyl 2-(4-benzoylaminophenyl)-1-cyclopentylbenzimidazole-5-
   carboxylate (Example 23),
    2-(4-benzoylaminophenyl)-1-cyclopentylbenzimidazole-5-carboxylic
10 acid (Example 24),
    ethyl 2-\{4-[3-(3-chlorophenyl) phenoxy] phenyl\}-1-
   cyclohexylbenzimidazole-5-carboxylate (Example 25),
    2-\{4-[3-(3-chlorophenyl)] phenoxy phenyl \{-1-(3-chlorophenyl)\}
   cyclohexylbenzimidazole-5-carboxylic acid (Example 26),
    ethyl 2-[4-(3-acetoxyphenyloxy)phenyl]-1-
   cyclohexylbenzimidazole-5-carboxylate (Example 27),
    ethyl 1-cyclohexyl-2-[4-(3-hydroxyphenyloxy)phenyl]-
   benzimidazole-5-carboxylate (Example 28),
    ethyl 1-cyclohexyl-2-{4-[3-(4-pyridylmethoxy)phenyloxy]phenyl}-
20 benzimidazole-5-carboxylate (Example 29),
    1-cyclohexyl-2-{4-[3-(4-pyridylmethoxy)phenyloxy]phenyl}-
   benzimidazole-5-carboxylic acid (Example 30),
    2-(4-benzyloxyphenyl)-1-cyclopentylbenzimidazole (Example 31),
    ethyl 2-(4-benzyloxyphenyl)-1-cyclopentylbenzimidazole-5-
25 carboxylate (Example 32),
    2-(4-benzyloxyphenyl)-1-cyclopentyl-N, N-dimethylbenzimidazole-5-
   carboxamide (Example 33),
    2-(4-benzyloxyphenyl)-1-cyclopentyl-N-methoxy-N-
   methylbenzimidazole-5-carboxamide (Example 34),
   2-(4-benzyloxyphenyl)-1-cyclopentyl-5-(1-hydroxy-1-
   methylethyl) benzimidazole (Example 35),
    5-acetyl-2-(4-benzyloxyphenyl)-1-cyclopentylbenzimidazole
   (Example 36),
    2-(4-benzyloxyphenyl)-1-cyclopentyl-N-(2-dimethylaminoethyl)-
35 benzimidazole-5-carboxamide dihydrochloride (Example 37),
    2-(4-benzyloxyphenyl)-1-cyclopentyl-5-nitrobenzimidazole
   (Example 38),
```

```
5-amino-2-(4-benzyloxyphenyl)-1-cyclopentylbenzimidazole hydrochloride (Example 39),
```

5-acetylamino-2-(4-benzyloxyphenyl)-1-cyclopentylbenzimidazole (Example 40),

- 5 2-(4-benzyloxyphenyl)-1-cyclopentyl-5-methanesulfonyl-aminobenzimidazole (Example 41),
 - 5-sulfamoyl-2-(4-benzyloxyphenyl)-1-cyclopentylbenzimidazole (Example 42),
- 2-[4-(4-tert-butylbenzyloxy)phenyl]-1-cyclopentylbenzimidazole10 5-carboxylic acid (Example 43),
 - 2-[4-(4-carboxybenzyloxy)phenyl]-1-cyclopentylbenzimidazole-5-carboxylic acid (Example 44),
 - 2-[4-(4-chlorobenzyloxy)phenyl]-1-cyclopentylbenzimidazole-5-carboxylic acid (Example 45),
- 2-{4-[(2-chloro-5-thienyl)methoxy]phenyl}-1cyclopentylbenzimidazole-5-carboxylic acid (Example 46),
 1-cyclopentyl-2-[4-(4-trifluoromethylbenzyloxy)phenyl]benzimidazole-5-carboxylic acid (Example 47),
- 1-cyclopentyl-2-[4-(4-methoxybenzyloxy)phenyl]benzimidazole-520 carboxylic acid (Example 48),
 - 1-cyclopentyl-2-[4-(4-pyridylmethoxy)phenyl]benzimidazole-5-carboxylic acid hydrochloride (Example 49),
 - 1-cyclopentyl-2-[4-(4-methylbenzyloxy)phenyl]benzimidazole-5-carboxylic acid (Example 50),
- 25 1-cyclopentyl-2-{4-[(3,5-dimethyl-4-isoxazolyl)methoxy]phenyl}-benzimidazole-5-carboxylic acid (Example 51),
 - 1-cyclopentyl-2-(4-hydroxyphenyl)benzimidazole-5-carboxylic acid (Example 52),
 - [2-(4-benzyloxyphenyl)-1-cyclopentylbenzimidazol-5-yl]-
- 30 carbonylaminoacetic acid (Example 53),
 - 2-[4-(2-chlorobenzyloxy)phenyl]-1-cyclopentylbenzimidazole-5-carboxylic acid (Example 54),
 - 2-[4-(3-chlorobenzyloxy)phenyl]-1-cyclopentylbenzimidazole-5-carboxylic acid (Example 55),
- 2-(4-benzyloxyphenyl)-3-cyclopentylbenzimidazole-5-carboxylic acid (Example 56),
 - 2-[4-(benzenesulfonylamino)phenyl]-1-cyclopentylbenzimidazole-5-carboxylic acid (Example 57),

```
1-cyclopentyl-2-[4-(3,5-dichlorophenylcarbonylamino)phenyl]-
   benzimidazole-5-carboxylic acid (Example 58),
    2-{4-[(4-chlorophenyl)carbonylamino]phenyl}-1-
   cyclopentylbenzimidazole-5-carboxylic acid (Example 59),
 5 2-{4-[(4-tert-butylphenyl)carbonylamino]phenyl}-1-
   cyclopentylbenzimidazole-5-carboxylic acid (Example 60),
   2-{4-[(4-benzyloxyphenyl)carbonylamino]phenyl}-1-
   cyclopentylbenzimidazole-5-carboxylic acid (Example 61),
    trans-4-[2-(4-benzyloxyphenyl)-5-carboxybenzimidazol-1-
10 yl]cyclohexan-1-ol (Example 62),
    trans-1-[2-(4-benzyloxyphenyl)-5-carboxybenzimidazol-1-yl]-4-
   methoxycyclohexane (Example 63),
    2-(4-benzyloxyphenyl)-5-carboxymethyl-1-cyclopentylbenzimidazole
   (Example 64),
15 2-[1-benzyloxycarbonyl-4-piperidyl]-1-cyclopentylbenzimidazole-
   5-carboxylic acid (Example 65),
    2-[(4-cyclohexylphenyl)carbonylamino]-1-
   cyclopentylbenzimidazole-5-carboxylic acid (Example 66),
    1-cyclopentyl-2-[4-(3,5-dichlorobenzyloxy)phenyl]benzimidazole-
20 5-carboxylic acid (Example 67),
    1-cyclopentyl-2-[4-(3,4-dichlorobenzyloxy)phenyl]benzimidazole-
   5-carboxylic acid (Example 68),
    1-cyclopentyl-2-[4-(phenylcarbamoylamino)phenyl]benzimidazole-5-
   carboxylic acid (Example 69),
25 1-cyclopentyl-2-[4-(diphenylmethoxy)phenyl]benzimidazole-5-
   carboxylic acid (Example 70),
    1-cyclopentyl-2-(4-phenethyloxyphenyl)benzimidazole-5-carboxylic
   acid (Example 71),
   trans-1-[2-(4-benzyloxyphenyl)-5-carboxybenzimidazol-1-yl]-4-
30 tert-butylcyclohexane (Example 72),
    2-(4-benzyloxyphenyl)-5-carboxymethoxy-1-
   cyclopentylbenzimidazole (Example 73),
    2-(4-benzylaminophenyl)-1-cyclopentylbenzimidazole-5-carboxylic
   acid (Example 74),
35 2-[4-(N-benzenesulfonyl-N-methylamino) phenyl]-1-
   cyclopentylbenzimidazole-5-carboxylic acid (Example 75),
    2-[4-(N-benzyl-N-methylamino)phenyl]-1-cyclopentylbenzimidazole-
   5-carboxylic acid (Example 76),
```

```
1-cyclohexyl-2-(4-phenethylphenyl)benzimidazole-5-carboxylic
   acid (Example 77),
    2-(1-benzyl-4-piperidyl)-1-cyclopentylbenzimidazole-5-carboxylic
   acid (Example 78),
 5 2-(1-benzoyl-4-piperidyl)-1-cyclopentylbenzimidazole-5-
   carboxylic acid (Example 79),
    1-cyclopentyl-2-[1-(p-toluenesulfonyl)-4-piperidyl]-
   benzimidazole-5-carboxylic acid (Example 80),
    1-cyclohexyl-2-[4-(3,5-dichlorobenzyloxy)phenyl]benzimidazole-5-
10 carboxylic acid (Example 81),
    1-cyclohexyl-2-[4-(diphenylmethoxy) phenyl]benzimidazole-5-
   carboxylic acid (Example 82),
    1-cyclohexyl-2-[4-(3,5-di-tert-butylbenzyloxy)phenyl]-
   benzimidazole-5-carboxylic acid (Example 83),
15 2-(4-benzyloxyphenyl)-1-(4-methylcyclohexyl)benzimidazole-5-
   carboxylic acid (Example 84),
    1-cyclohexyl-2-{4-[2-(2-naphthyl)ethoxy]phenyl}benzimidazole-5-
   carboxylic acid (Example 85),
    1-cyclohexyl-2-[4-(1-naphthyl)methoxyphenyl]benzimidazole-5-
20 carboxylic acid (Example 86),
    1-cyclohexyl-2-[4-(dibenzylamino)phenyl]benzimidazole-5-
   carboxylic acid (Example 87),
    2-[4-(2-biphenylylmethoxy)phenyl]-1-cyclohexylbenzimidazole-5-
   carboxylic acid (Example 88),
25 2-(4-benzyloxyphenyl)-1-cyclohexylbenzimidazole-5-carboxylic
   acid (Example 89),
    1-cyclohexyl-2-[4-(dibenzylmethoxy)phenyl]benzimidazole-5-
   carboxylic acid (Example 90),
    2-(4-benzoylmethoxyphenyl)-1-cyclohexylbenzimidazole-5-
30 carboxylic acid (Example 91),
    2-(4-benzyl-1-piperazinyl)-1-cyclohexylbenzimidazole-5-
   carboxylic acid dihydrochloride (Example 92),
    1-cyclohexyl-2-[4-(3,3-diphenylpropyloxy)phenyl]benzimidazole-5-
   carboxylic acid (Example 93),
  2-[4-(3-chloro-6-phenylbenzyloxy)phenyl]-1-
   cyclohexylbenzimidazole-5-carboxylic acid (Example 94),
    2-(4-benzyloxypiperidino)-1-cyclohexylbenzimidazole-5-carboxylic
   acid (Example 95),
```

```
1-cyclohexyl-2-{4-[2-(phenoxy) ethoxy]phenyl}benzimidazole-5-
   carboxylic acid (Example 96),
    1-cyclohexyl-2-[4-(3-phenylpropyloxy)phenyl]benzimidazole-5-
   carboxylic acid (Example 97),
   1-cyclohexyl-2-[4-(5-phenylpentyloxy)phenyl]benzimidazole-5-
   carboxylic acid (Example 98),
    2-(3-benzyloxy-5-isoxazolyl)-1-cyclohexylbenzimidazole-5-
   carboxylic acid (Example 99),
    2-(2-benzyloxy-5-pyridyl)-1-cyclohexylbenzimidazole-5-carboxylic
10 acid (Example 100),
  1-\text{cyclohexyl}-2-\left\{4-\left[2-\left(3,4,5-\text{trimethoxyphenyl}\right)\text{ethoxy}\right]\text{phenyl}\right\}
   benzimidazole-5-carboxylic acid (Example 101),
    2-(4-benzyloxyphenyl)-1-(4,4-dimethylcyclohexyl)benzimidazole-5-
   carboxylic acid (Example 102),
    1-cyclohexyl-2-{4-[2-(1-naphthyl)ethoxy]phenyl}benzimidazole-5-
   carboxylic acid (Example 103),
    2-[4-(2-benzyloxyphenoxy)phenyl]-1-cyclohexylbenzimidazole-5-
   carboxylic acid (Example 104),
    2-[4-(3-benzyloxyphenoxy) phenyl]-1-cyclohexylbenzimidazole-5-
20 carboxylic acid (Example 105),
    1-cyclohexyl-2-[4-(2-hydroxyphenoxy)phenyl]benzimidazole-5-
   carboxylic acid (Example 106),
    1-cyclohexyl-2-[4-(3-hydroxyphenoxy)phenyl]benzimidazole-5-
   carboxylic acid (Example 107),
25 1-cyclohexyl-2-[4-(2-methoxyphenoxy)phenyl]benzimidazole-5-
   carboxylic acid (Example 108),
    1-cyclohexyl-2-[4-(3-methoxyphenoxy)phenyl]benzimidazole-5-
   carboxylic acid (Example 109),
    1-cyclohexyl-2-[4-(2-propoxyphenoxy)phenyl]benzimidazole-5-
30 carboxylic acid (Example 110),
    1-cyclohexyl-2-[4-(3-propoxyphenoxy)phenyl]benzimidazole-5-
   carboxylic acid (Example 111),
    1-cyclohexyl-2-\frac{4-[2-(3-methyl-2-butenyloxy)phenoxy]phenyl\frac{1}{2}-
   benzimidazole-5-carboxylic acid (Example 112),
35 1-cyclohexyl-2-\{4-[3-(3-methyl-2-butenyloxy) phenoxy] phenyl<math>\}-
   benzimidazole-5-carboxylic acid (Example 113),
    1-cyclohexyl-2-[4-(2-isopentyloxyphenoxy)phenyl]benzimidazole-5-
```

carboxylic acid (Example 114),

```
1-cyclohexyl-2-[4-(3-isopentyloxyphenoxy)phenyl]benzimidazole-5-
   carboxylic acid (Example 115),
    1-\text{cyclohexyl}-2-\left\{4-\left[2-\left(10,11-\text{dihydro}-5\text{H-dibenzo}\left[b,f\right]\right]\right\}\right\}
   yl)ethoxy]phenyl}benzimidazole-5-carboxylic acid (Example 116),
    1-cyclohexyl-2-{4-[2-(4-trifluoromethylphenyl)benzyloxy]-
   phenyl benzimidazole-5-carboxylic acid (Example 117),
    2-{4-[bis(4-chlorophenyl)methoxy]phenyl}-1-
   cyclohexylbenzimidazole-5-carboxylic acid (Example 118),
    1-\text{cyclohexyl}-2-\{4-[2-(4-\text{methoxyphenyl}) \text{ ethoxy}] \text{ phenyl}\}-
10 benzimidazole-5-carboxylic acid (Example 119),
    1-cyclohexyl-2-{4-[2-(2-methoxyphenyl)ethoxy]phenyl}-
   benzimidazole-5-carboxylic acid (Example 120),
    1-cyclohexyl-2-{4-[2-(3-methoxyphenyl)ethoxy]phenyl}-
   benzimidazole-5-carboxylic acid (Example 121),
2-(4-benzyloxyphenyl)-1-cycloheptylbenzimidazole-5-carboxylic
   acid (Example 122),
    1-cyclohexyl-2-[4-(2-phenethyloxyphenoxy)phenyl]benzimidazole-5-
   carboxylic acid (Example 123),
    1-cyclohexyl-2-[4-(3-phenethyloxyphenoxy)phenyl]benzimidazole-5-
20 carboxylic acid (Example 124),
    1-cyclohexyl-2-[4-(2,2-diphenylethoxy)phenyl]benzimidazole-5-
   carboxylic acid (Example 125),
    2-(4-benzyloxyphenyl)-1-(3-cyclohexenyl)benzimidazole-5-
   carboxylic acid (Example 126),
25 cis-1-[2-(4-benzyloxyphenyl)-5-carboxybenzimidazol-1-yl]-4-
   fluorocyclohexane (Example 127),
    1-cyclohexyl-2-[4-(2-phenoxyphenoxy)phenyl]benzimidazole-5-
  carboxylic acid (Example 128),
    1-cyclohexyl-2-[4-(3-phenoxyphenoxy)phenyl]benzimidazole-5-
30 carboxylic acid (Example 129),
    2-\(\frac{4-[(2R)-2-benzyloxycarbonylamino-2-phenylethoxy]phenyl\)-1-
   cyclohexylbenzimidazole-5-carboxylic acid (Example 130),
    1-cyclohexyl-2-{2-fluoro-4-[2-(4-trifluoromethylphenyl)-
   benzyloxy]phenyl benzimidazole-5-carboxylic acid (Example 131),
    2-[4-(4-benzyloxyphenoxy)phenyl]-1-cyclohexylbenzimidazole-5-
   carboxylic acid (Example 132),
    2-{4-[bis(4-methylphenyl)methoxy]phenyl}-1-
   cyclohexylbenzimidazole-5-carboxylic acid (Example 133),
```

```
2-{4-[bis(4-fluorophenyl)methoxy]phenyl}-1-
   cyclohexylbenzimidazole-5-carboxylic acid (Example 134),
    1-cyclohexyl-6-methoxy-2-[4-(3-phenylpropoxy)phenyl]-
   benzimidazole-5-carboxylic acid (Example 135),
    1-cyclohexyl-6-hydroxy-2-[4-(3-phenylpropoxy)phenyl]-
   benzimidazole-5-carboxylic acid (Example 136),
    1-cyclohexyl-6-methyl-2-[4-(3-phenylpropoxy)phenyl]-
   benzimidazole-5-carboxylic acid (Example 137),
    2-\{4-[2-(2-benzyloxyphenyl) ethoxy]phenyl\}-1-
10 cyclohexylbenzimidazole-5-carboxylic acid (Example 138),
    2-\{4-[2-(3-benzyloxyphenyl) ethoxy]phenyl\}-1-
   cyclohexylbenzimidazole-5-carboxylic acid (Example 139),
    2-[4-(2-carboxymethyloxyphenoxy)phenyl]-1-
   cyclohexylbenzimidazole-5-carboxylic acid (Example 140),
15 2-[4-(3-carboxymethyloxyphenoxy)phenyl]-1-
   cyclohexylbenzimidazole-5-carboxylic acid (Example 141),
    2-{4-[3-chloro-6-(4-methylphenyl)benzyloxy]phenyl}-1-
   cyclohexylbenzimidazole-5-carboxylic acid (Example 142),
    2-\{4-[3-chloro-6-(4-methoxyphenyl)benzyloxy]phenyl\}-1-
20 cyclohexylbenzimidazole-5-carboxylic acid (Example 143),
    1-cyclohexyl-2-{2-methyl-4-[2-(4-trifluoromethylphenyl)-
   benzyloxy]phenyl benzimidazole-5-carboxylic acid (Example 144),
    2-{4-[2-(4-tert-butylphenyl)-5-chlorobenzyloxy]phenyl}-1-
   cyclohexylbenzimidazole-5-carboxylic acid (Example 145),
    2-{4-(3-chloro-6-phenylbenzyloxy)-2-fluorophenyl}-1-
   cyclohexylbenzimidazole-5-carboxylic acid (Example 146),
    2-{4-[3-chloro-6-(3,5-dichlorophenyl)benzyloxy]phenyl}-1-
   cyclohexylbenzimidazole-5-carboxylic acid (Example 147),
    2-{4-[bis(4-fluorophenyl)methoxy]-2-fluorophenyl}-1-
30 cyclohexylbenzimidazole-5-carboxylic acid (Example 148),
   2-\{4-(4-benzyloxyphenoxy)-2-chlorophenyl\}-1-
   cyclohexylbenzimidazole-5-carboxylic acid (Example 149),
    2-\frac{4-(4-benzyloxyphenoxy)-2-trifluoromethylphenyl\frac{1-1-1}{-1-1}
   cyclohexylbenzimidazole-5-carboxylic acid (Example 150),
   2-{4-[3-chloro-6-(2-trifluoromethylphenyl)benzyloxy]phenyl}-1-
   cyclohexylbenzimidazole-5-carboxylic acid (Example 151),
    2-\{4-[(2R)-2-amino-2-phenylethoxy]phenyl\}-1-
   cyclohexylbenzimidazole-5-carboxylic acid (Example 152),
```

```
2-[4-(2-biphenylyloxy)phenyl]-1-cyclohexylbenzimidazole-5-
   carboxylic acid (Example 153),
    2-[4-(3-biphenylyloxy)phenyl]-1-cyclohexylbenzimidazole-5-
   carboxylic acid (Example 154),
    2-{4-[2-{(1-tert-butoxycarbonyl-4-piperidyl)methoxyphenoxy]-
   phenyl \-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 155),
    2-{4-[3-{(1-tert-butoxycarbonyl-4-piperidyl)methoxy}phenoxy]-
   phenyl \-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 156),
    2-\frac{4-[3-chloro-6-(3,4,5-trimethoxyphenyl)benzyloxy]phenyl}{-1-}
10 cyclohexylbenzimidazole-5-carboxylic acid (Example 157),
    2-{4-[2-(2-biphenylyl)ethoxy]phenyl}-1-cyclohexylbenzimidazole-5-
   carboxylic acid (Example 158),
    2-[4-(2-biphenylylmethoxy)phenyl]-1-cyclohexylbenzimidazole-5-
   carboxylic acid (Example 159),
    1-cyclohexyl-2-{4-[2-(4-piperidylmethoxy)phenoxy]phenyl}-
   benzimidazole-5-carboxylic acid hydrochloride (Example 160),
    1-cyclohexyl-2-{4-[3-(4-piperidylmethoxy)phenoxy]phenyl}-
   benzimidazole-5-carboxylic acid hydrochloride (Example 161),
    2-4-[(2R)-2-acetylamino-2-phenylethoxy]phenyl}-1-
20 cyclohexylbenzimidazole-5-carboxylic acid (Example 162),
    1-cyclohexyl-2-{4-[3-(4-methyl-3-pentenyloxy)phenoxy]phenyl}-
   benzimidazole-5-carboxylic acid (Example 163),
    1-\text{cyclohexyl}-2-\{4-[3-(3-\text{methyl}-3-\text{butenyloxy})\text{ phenoxy}]\text{ phenyl}\}-
   benzimidazole-5-carboxylic acid (Example 164),
    2-{4-[{(2S)-1-benzyl-2-pyrrolidinyl}methoxy]phenyl}-1-cyclohexyl-
   benzimidazole-5-carboxylic acid hydrochloride (Example 165),
    2-{4-[3-chloro-6-(4-methylthiophenyl)benzyloxy]phenyl}-1-
   cyclohexylbenzimidazole-5-carboxylic acid (Example 166),
    2-\d-[3-chloro-6-(4-methanesulfonylphenyl)benzyloxy]phenyl\-1-
30 cyclohexylbenzimidazole-5-carboxylic acid (Example 167),
    2-\{4-[3-chloro-6-(2-thienyl)benzyloxy]phenyl\}-1-
   cyclohexylbenzimidazole-5-carboxylic acid (Example 168),
    2-{4-[3-chloro-6-(3-chlorophenyl)benzyloxy]phenyl}-1-
   cyclohexylbenzimidazole-5-carboxylic acid (Example 169),
35 2-\{4-[3-chloro-6-(3-pyridyl) benzyloxy] phenyl\-1-
   cyclohexylbenzimidazole-5-carboxylic acid (Example 170),
    2-{4-[3-chloro-6-(4-fluorophenyl)benzyloxy]phenyl}-1-
   cyclohexylbenzimidazole-5-carboxylic acid (Example 171),
```

```
2-[4-(4-benzyloxyphenoxy)-3-fluorophenyl]-1-
   cyclohexylbenzimidazole-5-carboxylic acid (Example 172),
    2-[4-(2-bromo-5-chlorobenzyloxy)phenyl]-1-
   cyclohexylbenzimidazole-5-carboxylic acid (Example 173),
    2-\frac{4-3-\text{chloro}-6-(4-\text{chlorophenyl})\text{benzyloxy}}{2-1}
   cyclohexylbenzimidazole-5-carboxylic acid (Example 174),
    2-{4-[2-{(1-acetyl-4-piperidyl)methoxyphenoxy]phenyl}-1-
   cyclohexylbenzimidazole-5-carboxylic acid (Example 175),
    2-{4-[3-{(1-acetyl-4-piperidyl)methoxyphenoxy]phenyl}-1-
10 cyclohexylbenzimidazole-5-carboxylic acid (Example 176),
    1-cyclohexyl-2-{4-[3-(2-propynyloxy)phenoxy]phenyl}benzimidazole-
   5-carboxylic acid (Example 177),
    1-cyclohexyl-2-{4-[3-(3-pyridylmethoxy)phenoxy]phenyl}-
   benzimidazole-5-carboxylic acid (Example 178),
    2-(4-benzyloxy-2-methoxyphenyl)-1-cyclohexylbenzimidazole-5-
   carboxylic acid (Example 179),
    2-[4-(2-bromo-5-methoxybenzyloxy)phenyl]-1-
   cyclohexylbenzimidazole-5-carboxylic acid (Example 180),
    2-[4-(carboxydiphenylmethoxy)phenyl]-1-cyclohexylbenzimidazole-
20 5-carboxylic acid (Example 181),
    2-\frac{4-[2-(4-chlorophenyl)-5-nitrobenzyloxy]phenyl}{-1-}
   cyclohexylbenzimidazole-5-carboxylic acid (Example 182),
    2-{4-[3-acetylamino-6-(4-chlorophenyl)benzyloxy]phenyl}-1-
   cyclohexylbenzimidazole-5-carboxylic acid (Example 183),
25 2-4-[2-(4-carboxyphenyl)-5-chlorobenzyloxy]phenyl<math>-1-
   cyclohexylbenzimidazole-5-carboxylic acid (Example 184),
    2-{4-[{(2S)-1-benzyloxycarbonyl-2-pyrrolidinyl methoxy]phenyl}-1-
   cyclohexylbenzimidazole-5-carboxylic acid (Example 185),
    2-{2-chloro-4-[2-(4-trifluoromethylphenyl)benzyloxy]phenyl}-1-
30 cyclohexylbenzimidazole-5-carboxylic acid (Example 186),
    1-cyclohexyl-2-{4-[3-(2-pyridylmethoxy)phenoxy]phenyl}-
   benzimidazole-5-carboxylic acid (Example 187),
    2-\frac{4-[2-(4-chlorophenyl)-5-fluorobenzyloxy]phenyl}{-1-}
   cyclohexylbenzimidazole-5-carboxylic acid (Example 188),
    2-{4-[3-carboxy-6-(4-chlorophenyl)benzyloxy]phenyl}-1-
   cyclohexylbenzimidazole-5-carboxylic acid (Example 189),
    2-{4-[3-carbamoy1-6-(4-chlorophenyl)benzyloxy]phenyl}-1-
   cyclohexylbenzimidazole-5-carboxylic acid (Example 190),
```

```
1-cyclohexyl-2-{4-[2-(dimethylcarbamoylmethoxy)phenoxy]-
   phenyl benzimidazole-5-carboxylic acid (Example 191),
    1-cyclohexyl-2-{4-[2-(piperidinocarbonylmethoxy)phenoxy]-
   phenyl benzimidazole-5-carboxylic acid (Example 192),
    2-{4-[{(2S)-1-benzenesulfonyl-2-pyrrolidinyl)methoxy]phenyl}-1-
   cyclohexylbenzimidazole-5-carboxylic acid (Example 193),
    2-{4-[{(2S)-1-benzoyl-2-pyrrolidinyl methoxy]phenyl}-1-
   cyclohexylbenzimidazole-5-carboxylic acid (Example 194),
    2-\{4-[2-(4-carbamoylphenyl)-5-chlorobenzyloxy]phenyl\}-1-
10 cyclohexylbenzimidazole-5-carboxylic acid (Example 195),
    1-cyclohexyl-2-{4-[3-(dimethylcarbamoylmethoxy)phenoxy]-
   phenyl benzimidazole-5-carboxylic acid (Example 196),
    1-cyclohexyl-2-{4-[3-(piperidinocarbonylmethoxy)phenoxy]-
   phenyl benzimidazole-5-carboxylic acid (Example 197),
    1-cyclohexyl-2-{4-[3-{(1-methanesulfonyl-4-piperidyl)methoxy}-
   phenoxy]phenyl benzimidazole-5-carboxylic acid (Example 198),
    1-cyclohexyl-2-\left\{4-\left[\left\{2-methyl-5-\left(4-chlorophenyl\right)-4-oxazolyl\right\}-\right.\right.
   methoxy]phenyl benzimidazole-5-carboxylic acid (Example 199),
    2-\{4-[3-(3-chlorobenzyloxy)] phenoxy[phenyl\}-1-
20 cyclohexylbenzimidazole-5-carboxylic acid (Example 200),
    2-\{4-[3-(4-chlorobenzyloxy)] phenoxy] phenyl \}-1-
   cyclohexylbenzimidazole-5-carboxylic acid (Example 201),
    1-cyclohexyl-2-{4-[3-(4-fluorobenzyloxy)phenoxy]phenyl}-
   benzimidazole-5-carboxylic acid (Example 202),
25 1-cyclohexyl-2-\{4-[\{(2S)-1-(4-nitrophenyl)-2-pyrrolidinyl\}-
   methoxylphenylbenzimidazole-5-carboxylic acid (Example 203),
    1-cyclohexyl-2-{4-[{(2S)-1-phenyl-2-pyrrolidinyl}methoxy]-
   phenyl benzimidazole-5-carboxylic acid hydrochloride (Example
   204),
2-\frac{1}{4}-\frac{1}{2} (2S) -1-\frac{4-\text{acetylaminophenyl}}{2}-\frac{1}{2} -2-\frac{1}{2} -2-\frac{1}{2} -2-\frac{1}{2}
   phenyl \-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 205),
    2-\frac{4-[5-(4-\text{chlorophenyl})-2-\text{methyl}-4-\text{thiazolyl}}{\text{methoxy}}
   cyclohexylbenzimidazole-5-carboxylic acid (Example 206),
    2-{4-[bis(3-fluorophenyl)methoxy]phenyl}-1-
35 cyclohexylbenzimidazole-5-carboxylic acid (Example 207),
    1-cyclohexyl-2-{4-[2-(4-chlorophenyl)-3-nitrobenzyloxy]phenyl}-
   benzimidazole-5-carboxylic acid (Example 208),
```

```
1-\text{cyclohexyl-}2-\{4-[3-(4-\text{tetrahydropyranyloxy}) \text{ phenoxy}] \text{ phenyl}\}-
   benzimidazole-5-carboxylic acid (Example 209),
    1-cyclohexyl-2-{4-[3-(4-trifluoromethylbenzyloxy)phenoxy]phenyl}-
   benzimidazole-5-carboxylic acid (Example 210),
 5 1-cyclohexyl-2-{4-[3-{(1-methyl-4-piperidyl)methoxy}phenoxy]-
   phenyl benzimidazole-5-carboxylic acid (Example 211),
    2-\frac{4-[3-(4-tert-butylbenzyloxy)]}{2-1}
   cyclohexylbenzimidazole-5-carboxylic acid (Example 212),
    2-\{4-[3-(2-chlorobenzyloxy)] phenoxy] phenyl\{-1-
10 cyclohexylbenzimidazole-5-carboxylic acid (Example 213),
    1-cyclohexyl-2-{4-[3-(3-pyridyl)phenoxy]phenyl}benzimidazole-5-
   carboxylic acid (Example 214),
    2-\{4-[3-(4-chlorophenyl) phenoxy] phenyl\}-1-
   cyclohexylbenzimidazole-5-carboxylic acid (Example 215),
15 1-\text{cyclohexyl}-2-\{4-[3-(4-\text{methoxyphenyl}) \text{ phenoxy}] \text{ phenyl}\}-
   benzimidazole-5-carboxylic acid (Example 216),
    1-\text{cyclohexyl}-2-\left\{4-\left[\left\{4-\left(4-\text{methanesulfonylphenyl}\right)-2-\text{methyl}-5-\right\}\right]
   thiazolyl methoxylphenyl benzimidazole-5-carboxylic acid (Example
   217),
20 2-\left\{4-\left[\left(4-\left(4-\text{chlorophenyl}\right)-2-\text{methyl}-5-\text{thiazolyl}\right)\right\}\right\}
   cyclohexylbenzimidazole-5-carboxylic acid (Example 218),
    2-\{4-[1-(4-chlorobenzyl)-3-piperidyloxy]phenyl\}-1-
   cyclohexylbenzimidazole-5-carboxylic acid (Example 219),
    1-cyclohexyl-2-{4-[3-{(2-methyl-4-thiazolyl)methoxy}phenoxy]-
25 phenyl benzimidazole-5-carboxylic acid (Example 220),
    1-cyclohexyl-2-{4-[3-{(2,4-dimethyl-5-thiazolyl)methoxy}phenoxy]-
   phenyl benzimidazole-5-carboxylic acid (Example 221),
    1-cyclohexyl-2-{4-[3-(3,5-dichlorophenyl)phenoxy]phenyl}-
   benzimidazole-5-carboxylic acid (Example 222),
    2-{4-[1-(4-chlorobenzyl)-4-piperidyloxy]phenyl}-1-
   cyclohexylbenzimidazole-5-carboxylic acid (Example 223),
    2-{4-[3-(4-chlorobenzyloxy)piperidino]phenyl}-1-
   cyclohexylbenzimidazole-5-carboxylic acid (Example 224),
    2-{4-[4-carbamoyl-2-(4-chlorophenyl)benzyloxy]phenyl}-1-
35 cyclohexylbenzimidazole-5-carboxylic acid (Example 225),
    2-{4-[4-(4-chlorobenzyloxy)piperidino]phenyl}-1-
   cyclohexylbenzimidazole-5-carboxylic acid (Example 226),
```

```
2-{4-[3-{(2-chloro-4-pyridyl)methoxy}phenoxy]phenyl}-1-
    cyclohexylbenzimidazole-5-carboxylic acid (Example 227),
     2-4-[(2S)-1-(4-dimethylcarbamoylphenyl)-2-pyrrolidinyl}
    methoxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid
 5 (Example 228),
    2-\frac{4-[2-(4-\text{chlorophenyl})-5-\text{ethoxycarbonylbenzyloxy}]}{-1-}
    cyclohexylbenzimidazole-5-carboxylic acid (Example 229),
    1-cyclohexyl-2-[4-(3-trifluoromethylphenoxy)phenyl]-
   benzimidazole-5-carboxylic acid (Example 230),
    1-\text{cyclohexyl}-2-\frac{4-\frac{4-4-4-4}{4-4-4-4}}{4-\frac{4-4-4-4}{4-4-4-4}}
   thiazolyl methoxy | phenyl benzimidazole-5-carboxylic acid (Example
    231),
    2-\frac{1}{4}-\frac{1}{2}-\frac{4-(4-chlorophenyl)-5-dimethylcarbamoylbenzyloxy]phenyl}{-1-}
   cyclohexylbenzimidazole-5-carboxylic acid (Example 232),
    2-\frac{4-[\frac{4-(4-chlorophenyl)-2-methyl-5-pyrimidinyl\methoxy]phenyl\right}-
   1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride
    (Example 233),
    2-\frac{4-[{2-(4-chlorophenyl)-3-pyridyl}\methoxy]phenyl}{-1-}
   cyclohexylbenzimidazole-5-carboxylic acid dihydrochloride
20 (Example 234),
    2-{4-[{3-(4-chlorophenyl)-2-pyridyl}methoxy]phenyl}-1-
   cyclohexylbenzimidazole-5-carboxylic acid (Example 235),
    2-4-[2-(3-chlorophenyl)-4-methylamino-1,3,5-triazin-6-
   yloxy|phenyl \-1-cyclohexylbenzimidazole-5-carboxylic acid
25 trifluoroacetate (Example 236),
    2-\frac{4-[2-(4-\text{chlorophenyl})-4-(5-\text{tetrazolyl})\text{benzyloxy}]\text{phenyl}}{-1}
   cyclohexylbenzimidazole-5-carboxylic acid (Example 237),
    2-[4-(4-benzyloxy-6-pyrimidinyloxy)phenyl]-1-
   cyclohexylbenzimidazole-5-carboxylic acid (Example 238),
    1-cyclohexyl-2-{4-[4-(4-pyridylmethoxy)-6-pyrimidinyloxy]phenyl}-
   benzimidazole-5-carboxylic acid (Example 239),
    2-\{4-[4-(3-chlorophenyl)-6-pyrimidinyloxy]phenyl\}-1-
   cyclohexylbenzimidazole-5-carboxylic acid (Example 240),
    methyl 2-{4-[2-(4-chlorophenyl)-5-methoxybenzyloxy]phenyl}-1-
35 cyclohexylbenzimidazole-5-carboxylate (Example 241),
    2-\frac{4-[2-(4-chlorophenyl)-5-methoxybenzyloxy]phenyl\frac{2-1-cyclohexyl-
   benzimidazole-5-carboxylic acid hydrochloride (Example 242),
```

```
ethyl 2-{4-[3-(4-chlorophenyl)pyridin-2-ylmethoxy]phenyl}-1-
         cyclohexylbenzimidazole-5-carboxylate (Example 243),
           methyl 2-[4-(2-bromo-5-tert-butoxycarbonylbenzyloxy)phenyl]-1-
         cyclohexylbenzimidazole-5-carboxylate (Example 244),
        methyl 2-{4-[5-tert-butoxycarbonyl-2-(4-chlorophenyl)benzyloxy]-
        phenyl \-1-cyclohexylbenzimidazole-5-carboxylate (Example 245),
           methyl 2-{4-[5-carboxy-2-(4-chlorophenyl)benzyloxy]phenyl}-1-
         cyclohexylbenzimidazole-5-carboxylate hydrochloride (Example 246),
          methyl 2-{4-[2-(4-chlorophenyl)-5-methylcarbamoylbenzyloxy]-
10 phenyl \-1-cyclohexylbenzimidazole-5-carboxylate (Example 247),
           2-\frac{4-[2-(4-chlorophenyl)-5-methylcarbamoylbenzyloxy]phenyl\frac{1-1-1}{2-1}
        cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example
        248),
           2-{4-[3-(tert-butylsulfamoyl)-6-(4-chlorophenyl)benzyloxy]-
15 phenyl \-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 249),
           2-\{4-[2-(4-\text{chlorophenyl})-5-\text{sulfamoylbenzyloxy}] \text{ phenyl}\}-1-
        cyclohexylbenzimidazole-5-carboxylic acid trifluoroacetate
         (Example 250),
           2-(4-benzyloxycyclohexyl)-1-cyclohexylbenzimidazole-5-carboxylic
20 acid hydrochloride (Example 251),
           2-[2-(2-biphenylyloxymethyl)-5-thienyl]-1-
        cyclohexylbenzimidazole-5-carboxylic acid (Example 252),
           2-[2-(2-biphenylyloxymethyl)-5-furyl]-1-cyclohexylbenzimidazole-
        5-carboxylic acid (Example 253),
          1-\text{cyclohexyl}-2-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{
        thiazolyl methoxy | phenyl benzimidazole-5-carboxylic acid (Example
        254),
          1-\text{cyclohexyl}-2-\left\{4-\left[\left\{4-\left(4-\text{carboxyphenyl}\right)-2-\text{methyl}-5-\text{thiazolyl}\right\}-\right]\right\}
        methoxy]phenyl benzimidazole-5-carboxylic acid hydrochloride
30 (Example 255),
          1-cyclohexyl-2-{2-fluoro-4-[4-fluoro-2-(3-fluorobenzoyl)-
        benzyloxy|phenyl|benzimidazole-5-carboxylic acid (Example 256),
          2-\frac{4-[2-(4-chlorophenyl)-5-methoxybenzyloxy]phenyl}{-1-}
        cyclohexylbenzimidazole-5-sulfonic acid (Example 257),
2-4-[2-(4-chlorophenyl)-5-methoxybenzyloxy]phenyl}-3-
        cyclohexylbenzimidazole-4-carboxylic acid (Example 258),
```

- 1-cyclohexyl-2-{4-[3-dimethylcarbamoyl-5-(4-pyridylmethoxy)-phenoxy]phenyl benzimidazole-5-carboxylic acid dihydrochloride (Example 259),
- 1-cyclohexyl-2-{4-[3-carboxy-5-(4-pyridylmethoxy)phenoxy]5 phenyl benzimidazole-5-carboxylic acid dihydrochloride (Example 260),
 - $2-\frac{4-[2-(4-\text{chlorophenyl})-5-\text{methoxybenzyloxy}]\text{ phenyl}-1-}{\text{cyclohexylbenzimidazole}-4-\text{carboxylic acid (Example 261),}}$
 - $2-\frac{4-[3-carbamoyl-6-(4-chlorophenyl)benzyloxy]phenyl}{-1-}$
- 10 cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example 262),
 - 2-\langle4-[\langle2-(4-carboxyphenyl)-3-pyridyl\methoxy]phenyl\rangle-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 263),
 - 2-4-[2-(4-chlorophenyl)-5-methoxybenzyloxy]phenyl-1-(4-chlorophenyl)
- 15 tetrahydrothiopyranyl)benzimidazole-5-carboxylic acid (Example
 264),
 - $2-\frac{4-[2-(4-\text{chlorophenyl})-5-\text{dimethylcarbamoylbenzyloxy}] \text{ phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example 265),$
- 1-cyclohexyl-2-{4-[3-dimethylcarbamoyl-6-(4trifluoromethylphenyl)benzyloxy]phenyl}benzimidazole-5-carboxylic
 acid hydrochloride (Example 266),
- 1-cyclohexyl-2-{4-[3-dimethylcarbamoyl-6-(4-methylthiophenyl)-benzyloxy]phenyl benzimidazole-5-carboxylic acid hydrochloride (Example 267),
 - 2-\delta-[2-(4-chlorophenyl)-5-methylcarbamoylbenzyloxy]-2-fluorophenyl\delta-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example 268),
 - 2-4-[2-(4-chlorophenyl)-5-dimethylcarbamoylbenzyloxy]-2-
- fluorophenyl \rangle -1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example 269),
 - 2-{4-[3-carbamoyl-6-(4-chlorophenyl)benzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example 270),
- 2-{4-[3-dimethylcarbamoyl-6-(4-methanesulfonylphenyl)benzyloxy]-phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example 271),

- 2-{4-[3-dimethylcarbamoyl-6-(3-pyridyl)benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid dihydrochloride (Example 272),
- 2-{4-[3-dimethylcarbamoyl-6-(4-dimethylcarbamoylphenyl)-
- 5 benzyloxy]phenyl \rangle -1-cyclohexylbenzimidazole-5-carboxylic acid
 (Example 273),
 - 2-4-[2-(4-chlorophenyl)-5-methoxybenzyloxy]phenyl-1-(1-oxo-4-tetrahydrothiopyranyl)benzimidazole-5-carboxylic acid (Example 274),
- 2- $\{4-[2-(4-chlorophenyl)-5-methoxybenzyloxy]phenyl\}-1-(1,1-dioxo-4-tetrahydrothiopyranyl)benzimidazole-5-carboxylic acid (Example 275),$
- 2-{4-[2-(4-chlorophenyl)-5-methoxybenzyloxy]-2-fluorophenyl}-1- (4-tetrahydrothiopyranyl)benzimidazole-5-carboxylic acid (Example 276),
 - 2-\delta-[2-(4-chlorophenyl)-5-methoxybenzyloxy]-2-fluorophenyl\delta-1-(1-oxo-4-tetrahydrothiopyranyl)benzimidazole-5-carboxylic acid (Example 277),
- 2-\langle4-[2-(4-chlorophenyl)-5-methoxybenzyloxy]-2-fluorophenyl\rangle-120 (1,1-dioxo-4-tetrahydrothiopyranyl)benzimidazole-5-carboxylic
 acid (Example 278),
 - 2-\delta-[2-(4-chlorophenyl)-5-dimethylsulfamoylbenzyloxy]phenyl\delta-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example 279).
- 25 2-{4-[2-(4-chlorophenyl)-5-methanesulfonylbenzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example 280),
- methyl 2-{4-[5-carboxy-2-(4-chlorophenyl)benzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylate hydrochloride (Example 281),
 - 2-\delta-[2-(4-chlorophenyl)-5-dimethylaminobenzyloxy]phenyl\delta-1-cyclohexylbenzimidazole-5-carboxylic acid dihydrochloride (Example 282),
- 2-{4-[2-(4-chlorophenyl)-5-methanesulfonylaminobenzyloxy]phenyl}35 1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride
 (Example 283),

- 2-\delta-[2-(4-chlorophenyl)-5-diethylcarbamoylbenzyloxy]-2-fluorophenyl\delta-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example 284),
- 2-\frac{4-[2-(4-chlorophenyl)-5-isopropylcarbamoylbenzyloxy]-2-
- fluorophenyl \rangle -1-cyclohexylbenzimidazole-5-carboxylic acid
 hydrochloride (Example 285),
 - 2-{4-[2-(4-chlorophenyl)-5-piperidinocarbonylbenzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example 286),
- 10 2-{4-[2-(4-chlorophenyl)-5-(1-pyrrolidinyl) carbonylbenzyloxy]-2fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid
 hydrochloride (Example 287),
- 2-\delta-[2-(4-chlorophenyl)-5-(2-hydroxyethyl) carbamoylbenzyloxy]-2-fluorophenyl\delta-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example 288),
 - 2-\delta-[2-(4-chlorophenyl)-5-(4-hydroxypiperidino)carbonylbenzyloxy]-2-fluorophenyl\delta-1-cyclohexylbenzimidazole-5carboxylic acid hydrochloride (Example 289),
 - $2-\sqrt{4-[2-(4-\text{chlorophenyl})-5-\text{morpholinocarbonylbenzyloxy}]-2-$
- 20 fluorophenyl \-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example 290),
 - $2-4-[2-(4-chlorophenyl)-5-thiomorpholinocarbonylbenzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example 291),$
- 25 2-{4-[3-(carboxymethylcarbamoyl)-6-(4-chlorophenyl)benzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example 292),
 - 2-\langle4-[2-\langle4-(2-carboxyethyl)phenyl\rangle-5-chlorobenzyloxy]phenyl\rangle-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 293),
- 2-{4-[3-chloro-6-(4-hydroxymethylphenyl)benzyloxy]phenyl}-1cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example
 294),
- 2-{4-[3-chloro-6-(4-methoxymethylphenyl)benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example 295).
 - 2-\(\frac{4-[2-(3-carboxyphenyl)-5-chlorobenzyloxy]phenyl\}-1-\)
 cyclohexylbenzimidazole-5-carboxylic acid (Example 296),

```
2-\frac{4-[2-(4-chlorophenyl)-5-methylthiobenzyloxy]phenyl}{-1-}
   cyclohexylbenzimidazole-5-carboxylic acid (Example 297),
    2-\frac{4-[2-(4-chlorophenyl)-5-methylsulfinylbenzyloxy]phenyl}{-1-}
   cyclohexylbenzimidazole-5-carboxylic acid (Example 298),
    2-{4-[2-(4-chlorophenyl)-5-cyanobenzyloxy]phenyl}-1-cyclohexvl-
   benzimidazole-5-carboxylic acid hydrochloride (Example 299),
    2-{4-[bis(3-pyridyl)methoxy]-2-fluorophenyl}-1-
   cyclohexylbenzimidazole-5-carboxylic acid (Example 300),
    2-{4-[bis(4-dimethylcarbamoylphenyl)methoxy]-2-fluorophenyl}-1-
10 cyclohexylbenzimidazole-5-carboxylic acid (Example 301),
    sodium 2-{4-[2-thienyl-3-thienylmethoxy]-2-fluorophenyl}-1-
   cyclohexylbenzimidazole-5-carboxylate (Example 302),
    methyl 2-{4-[2-(4-chlorophenyl)-5-(dimethylcarbamoyl)benzyloxy]-
   2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylate (Example
15 303),
    sodium 2-\{4-[2-(4-\text{chlorophenyl})-5-(\text{dimethylcarbamoyl}) \text{ benzyloxy}\}-
   2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylate (Example
   304).,
    2-{4-[5-carboxy-2-(4-chlorophenyl)benzyloxy]-2-fluorophenyl}-1-
20 cyclohexylbenzimidazole-5-carboxylic acid (Example 305),
    2-\frac{4-[2-(4-carboxyphenyl)-5-methoxybenzyloxy]phenyl}{-1-}
   cyclohexylbenzimidazole-5-carboxylic acid (Example 306),
    2-4-[2-(4-carbamoylphenyl)-5-(dimethylcarbamoyl)benzyloxy]-
  phenyl \-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 307),
    2-{4-[5-amino-2-(4-chlorophenyl)benzyloxy]phenyl}-1-
   cyclohexylbenzimidazole-5-carboxylic acid (Example 308),
    2-4-5-4-5-4-5-4-5-10 2-methoxybenzylsulfinyl]phenyl-1-6
   cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example
   309),
2-\left\{4-\left[5-\left(4-\text{chlorophenyl}\right)-2-\text{methoxybenzylsulfonyl}\right]\right\}-1-
   cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example
   310),
    2-\{4-[2-(4-chlorophenyl)-5-methoxybenzylthio]phenyl\}-1-
   cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example
35 311),
    2-{4-[bis(4-carboxyphenyl)methoxy]-2-fluorophenyl}-1-
   cyclohexylbenzimidazole-5-carboxylic acid (Example 312),
```

```
2-[4-(phenyl-3-pyridylmethoxy)-2-fluorophenyl]-1-
    cyclohexylbenzimidazole-5-carboxylic acid (Example 313),
     methyl 2-\frac{1}{4}-[2-(4-\text{chlorophenyl})-5-(\text{methylcarbamoyl}) \text{ benzyloxy}]-2-
    fluorophenyl \-1-cyclohexylbenzimidazole-5-carboxylate (Example
  5 314),
     2-{4-[5-chloro-2-(4-pyridyl)benzyloxy]-2-fluorophenyl}-1-
    cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example
    315),
     2-14-[2-(4-chlorophenyl)-5-(benzylcarbamoyl)benzyloxy]-2-
10 fluorophenyl \-1-cyclohexylbenzimidazole-5-carboxylic acid
    hydrochloride (Example 316),
     2-4-[2-(4-chlorophenyl)-5-(cyclohexylmethylcarbamoyl)benzyloxyl-
    2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid
    hydrochloride (Example 317),
 2-4-[2-(4-chlorophenyl)-5-(4-pyridylmethylcarbamoyl)benzyloxy]-
    2-fluorophenyl \-1-cyclohexylbenzimidazole-5-carboxylic acid
    dihydrochloride (Example 318),
     2-4-[2-(4-chlorophenyl)-5-(N-benzyl-N-methylcarbamoyl)-
    benzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic
 20 acid hydrochloride (Example 319),
     methyl 2-\frac{4-[2-(4-chlorophenyl)-5-methoxybenzyloxy]phenyl}{-1-}
    cyclohexyl-1H-indole-5-carboxylate (Example 501),
     2-\frac{4-[2-(4-chlorophenyl)-5-methoxybenzyloxy]phenyl}{-1-cyclohexyl-}
    1H-indole-5-carboxylic acid (Example 502),
     2-(4-benzyloxyphenyl)-1-cyclopentyl-1H-indole-5-carboxylic acid
    (Example 503),
     ethyl 2-(4-benzyloxyphenyl)-3-cyclohexylimidazo[1,2-a]pyridine-
    7-carboxylate (Example 601),
     2-(4-benzyloxyphenyl)-3-cyclohexylimidazo[1,2-a]pyridine-7-
 30 carboxylic acid (Example 602), and
     2-{4-[2-(4-chlorophenyl)-5-methoxybenzyloxy]phenyl}-3-cyclohexyl-
    3H-imidazo[4,5-b]pyridine-6-carboxylic acid (Example 701).
    (92) The fused ring compound of the formula [I] or a
    pharmaceutically acceptable salt thereof, which is selected from
 35 the group consisting of
     2-\\\ 4-[5-dimethylaminocarbonyl-2-(4-pyridyl)benzyloxy]phenyl\\\ -1-
    cyclohexylbenzimidazole-5-carboxylic acid dihydrochloride (Example
    320),
```

```
2-\delta-[2-(4-chlorophenyl)-5-(4-methylpiperazin-1-ylcarbonyl)benzyloxy]phenyl\delta-1-cyclohexylbenzimidazole-5-carboxylic acid dihydrochloride (Example 321),
```

- $2-4-[2-(4-chlorophenyl)-5-N-(3-pyridylmethyl) carbamoyl}-$
- 5 benzyloxy]phenyl \rangle -1-cyclohexylbenzimidazole-5-carboxylic acid
 dihydrochloride (Example 322),
 - $2-\{4-[2-(4-\text{chlorophenyl})-5-\{N-(2-\text{pyridylmethyl}) \text{ carbamoyl}\}-benzyloxy]$ phenyl $\{-1-\text{cyclohexylbenzimidazole}-5-\text{carboxylic acid dihydrochloride (Example 323),}$
- 2-{4-[2-(4-chlorophenyl)-5-(cyclohexylcarbamoyl)benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride
 (Example 324),
- 2-\delta-[2-(4-chlorophenyl)-5-(2-pyridin-4-ylethylcarbamoyl)benzyloxy]phenyl\delta-1-cyclohexylbenzimidazole-5-carboxylic acid dihydrochloride (Example 325),
 - $2-\frac{4-[(4-fluorophenyl)]}{4-(dimethylaminocarbonyl)phenyl}methoxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 326),$
- 2-\delta-[(4-fluorophenyl)(4-carboxyphenyl)methoxy]-2-fluorophenyl\delta20 1-cyclohexylbenzimidazole-5-carboxylic acid (Example 327),
 - 2-\delta-[2-(4-chlorophenyl)-5-(4-oxopiperidinocarbonyl)-benzyloxy]phenyl\delta-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example 328),
 - 2-{4-[2-(4-chlorophenyl)-5-hydroxybenzyloxy]phenyl}-1-
- 25 cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example 329),
 - 2-{4-[2-(4-chlorophenyl)-5-(isopropylcarbamoyl)benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example 330),
- 2-\delta-[2-(4-chlorophenyl)-5-(N-isopropyl-N-methylcarbamoyl)-benzyloxy]phenyl\delta-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example 331),
- 2-\langle4-[2-(4-chlorophenyl)-5-(phenylcarbamoyl)benzyloxy]phenyl\rangle-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example 35 332),
 - 2-\delta-[2-(4-chlorophenyl)-5-(4-methoxypiperidinocarbonyl)-benzyloxy]phenyl\delta-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example 333),

- 2-\delta-[2-(4-chlorophenyl)-5-(3-hydroxypropyloxy)benzyloxy]phenyl\delta-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 334), and 2-\delta-[2-(4-chlorophenyl)-5-(2-hydroxyethoxy)benzyloxy]phenyl\delta-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example 335).
 - (93) The fused ring compound of the formula [I] or a pharmaceutically acceptable salt thereof, which is selected from the group consisting of

methyl 2-[4-(2-bromo-5-nitrobenzyloxy)-2-fluorophenyl]-1-

- cyclohexylbenzimidazole-5-carboxylate (Example 336),
 methyl 2-[4-{2-(4-chlorophenyl)-5-nitrobenzyloxy}-2fluorophenyl]-1-cyclohexylbenzimidazole-5-carboxylate (Example 337),
 - methyl 2-[4-\{5-amino-2-(4-chlorophenyl)benzyloxy\}-2-
- 15 fluorophenyl]-1-cyclohexylbenzimidazole-5-carboxylate (Example 338),
 - methyl 2-[4-\frac{2-(4-chlorophenyl)-5-(2-oxopyrrolidin-1-yl)benzyloxy\frac{2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylate (Example 339),
- 20 2-[4-{2-(4-chlorophenyl)-5-(2-oxopyrrolidin-1-yl)benzyloxy}-2-fluorophenyl]-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example 340),
 - 2-\delta-[2-(4-chlorophenyl)-5-(4-methylpiperidin-1-ylcarbonyl)benzyloxy]phenyl\delta-1-cyclohexylbenzimidazole-5-

25 carboxylic acid hydrochloride (Example 341),

- 2-{4-[5-acetyl-2-(4-chlorophenyl)benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example 342).
- 2-\darkarrow{4-[2-(4-chlorophenyl)-5-\darkarrow{(4-hydroxypiperidin-1-ylcarbonyl)-}
 30 methoxy\benzyloxy]phenyl\darkarrow{-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 343),
 - $2-\frac{4-[2-(4-chlorophenyl)-5-(2-methoxyethoxy)benzyloxy]phenyl}{-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example 344),$
- 2-{4-[2-(4-chlorophenyl)-5-{2-(2-methoxyethoxy)ethoxy}-benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example 345),

```
2-\frac{4-[2-(4-chlorophenyl)-5-(isobutylcarbonyl)benzyloxy]phenyl}{-1-}
         cyclohexylbenzimidazole-5-carboxylic acid (Example 346),
           2-4-[2-(4-chlorophenyl)-5-(2-methylthiazol-4-yl)benzyloxy]-
         phenyl \-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 347),
           2-4-[2-(4-chlorophenyl)-5-(3,4-dihydroxypiperidin-1-
         vlcarbonvl)benzyloxy|phenyl \-1-cyclohexylbenzimidazole-5-
         carboxylic acid hydrochloride (Example 348),
           2-4-[2-(4-chlorophenyl)-5-(3-methyl-1,2,4-oxadiazol-5-
         yl)benzyloxy|phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid
10 hydrochloride (Example 349),
           2-{4-[2-(4-chlorophenyl)-4-(isopropylcarbamoyl)benzyloxy]phenyl}-
         1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example
         350),
           2-{4-[2-(4-chlorophenyl)-4-(piperidinocarbonyl)benzyloxy]phenyl}
15 1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example
         351),
           2-\frac{4-[2-(4-chlorophenyl)-5-{(1-hydroxy-2-methylpropan-2-
         yl)carbamoyl benzyloxy phenyl -1-cyclohexylbenzimidazole-5-
         carboxylic acid hydrochloride (Example 352),
20 \quad 2-4-[2-(4-\text{chlorophenyl})-5-(4,4-\text{dimethyl}-2-\text{oxazolin}-2-
         yl) benzyloxy phenyl -1-cyclohexy benzimidazole-5-carboxylic acid
         dihydrochloride (Example 353),
           2-\frac{1}{4}-\frac{1}{2}-\frac{1}{4}-\frac{1}{2}-\frac{1}{4}-\frac{1}{2}-\frac{1}{4}-\frac{1}{2}-\frac{1}{4}-\frac{1}{2}-\frac{1}{4}-\frac{1}{2}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{
        ylcarbonyl)benzyloxy]phenyl \-1-cyclohexylbenzimidazole-5-
25 carboxylic acid hydrochloride (Example 354),
           2-\frac{4-[2-(4-chlorophenyl)-4-{(2-hydroxyethyl) carbamoyl}-
         benzyloxylphenyl \-1-cyclohexylbenzimidazole-5-carboxylic acid
        hydrochloride (Example 355),
           2-\frac{4-[2-(4-\text{chlorophenyl})-4-\{(4-\text{pyridylmethyl}) \text{ carbamoyl}\}-
30 benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid
          (Example 356),
           2-{4-[2-(4-chlorophenyl)-4-(dimethylcarbamoyl)benzyloxy]phenyl}-
         1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example
         357),
2-4-[5-(2-aminothiazol-4-yl)-2-(4-chlorophenyl)benzyloxy]-
```

phenyl \-1-cyclohexylbenzimidazole-5-carboxylic acid

dihydrochloride (Example 358),

- 2-{4-[2-(4-chlorophenyl)-5-(4-hydroxypiperidin-1-ylsulfonyl)benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example 359),
- $2-\{4-[5-(dimethylcarbamoy1)-2-(4-fluorophenyl)benzyloxy]phenyl\}-$
- 5 1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example 360),
 - 2-{4-[5-(dimethylcarbamoyl)-2-(3-fluorophenyl)benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example 361),
- 2-{4-[2-(5-chlorothiophen-2-yl)-5-(dimethylcarbamoyl)benzyloxy]-phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example 362),
- 2-{4-[2-bromo-5-(5-methyloxazol-2-yl)benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example 363),
 - 2-{4-[2-bromo-5-(5-methylthiazol-2-yl)benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example 364),
- 2-{4-[2-(4-chlorophenyl)-5-(5-methyloxazol-2-yl)benzyloxy]20 phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride
 (Example 365),
 - 2-{4-[2-(4-chlorophenyl)-5-(5-methylthiazol-2-yl)benzyloxy]-phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example 366),
- 25 2-{4-[2-(4-chlorophenyl)-5-tetrazol-5-ylbenzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example 367),
- 2-{4-[5-chloro-2-(4-cyanophenyl)benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example 30 368),
 - 2-{4-[5-chloro-2-(4-tetrazol-5-ylphenyl)benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example 369),
 - 2-4-[2-(4-chlorophenyl)-5-2-(4-hydroxypiperidin-1-
- 35 yl)ethoxy{benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example 370),

```
2-\sqrt{4-[2-(4-chlorophenyl)-5-(2-oxopiperidin-1-yl)benzyloxy]-2-
    fluorophenyl \-1-cyclohexylbenzimidazole-5-carboxylic acid
   hydrochloride (Example 371),
    2-\frac{1}{4}-[3-(4-\text{chlorophenyl})-5-(\text{dimethylcarbamoyl}) \text{ benzyloxy}]-2-
 5 fluorophenyl \( -1 - \text{cyclohexylbenzimidazole} -5 - \text{carboxylic acid} \)
   hydrochloride (Example 372),
     2-\frac{4-[2-(4-chlorophenyl)-5-(N-hydroxyamidino)benzyloxy]-2-
   fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid
   dihydrochloride (Example 373),
2-4-[2-(4-chlorophenyl)-5-(2,5-dihydro-5-oxo-4H-1,2,4-oxadiazol-
   3-yl) benzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-
   carboxylic acid hydrochloride (Example 374),
    2-4-[2-(4-chlorophenyl)-5-(2-oxo-3H-1,2,3,5-oxathiadiazol-4-
   yl)benzyloxyl-2-fluorophenyl\-1-cyclohexylbenzimidazole-5-
15 carboxylic acid hydrochloride (Example 375),
    2-\frac{4-[2-(4-chlorophenyl)-5-(2,5-dihydro-5-oxo-4H-1,2,4-
   thiadiazol-3-yl)benzyloxy]-2-fluorophenyl}-1-
   cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example
   376),
    2-\frac{4-[2-(4-chlorophenyl)-5-(cyclopropylcarbamoyl) benzyloxy]-2-
   fluorophenyl \-1-cyclohexylbenzimidazole-5-carboxylic acid
   hydrochloride (Example 377),
    2-4-[2-(4-chlorophenyl)-5-(cyclobutylcarbamoyl)benzyloxy]-2-
   fluorophenyl \-1-cyclohexylbenzimidazole-5-carboxylic acid
25 hydrochloride (Example 378),
    2-\frac{4-[2-(4-\text{chlorophenyl})-5-(\text{tert-butylcarbamoyl})\text{benzyloxy}]-2-
   fluorophenyl \-1-cyclohexylbenzimidazole-5-carboxylic acid
   hydrochloride (Example 379),
    2-\frac{4-[2-(4-chlorophenyl)-5-(isobutylcarbamoyl)benzyloxy]-2-
30 fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid
   hydrochloride (Example 380),
    2-\frac{1}{4}-\frac{2-(4-\text{chlorophenyl})-5-(1-\text{hydroxypropan}-2-\text{yl})}{2-\frac{1}{4}-\frac{2-(4-\text{chlorophenyl})-5-(1-\text{hydroxypropan}-2-\text{yl})}}
   benzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic
   acid hydrochloride (Example 381),
    2-\frac{4-[2-(4-chlorophenyl)-5-(methoxycarbamoyl)benzyloxy]-2-
```

fluorophenyl \-1-cyclohexylbenzimidazole-5-carboxylic acid

hydrochloride (Example 382),

- 2-{4-[2-(4-chlorophenyl)-5-{(2,3-dihydroxypropyl)carbamoyl}-benzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example 383),
- $2-\sqrt{4-[2-(4-\text{chlorophenyl})-5-(N-\text{ethyl-N-methylcarbamoyl})}$ benzyloxy]-
- 5 2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example 384),
 - 2-\delta-[2-(4-chlorophenyl)-5-(N-methyl-N-propylcarbamoyl)-benzyloxy]-2-fluorophenyl\delta-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example 385),
- 2-{4-[2-(4-chlorophenyl)-5-(N-isopropyl-N-methylcarbamoyl)-benzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example 386),
- 2-\delta-[2-(4-chlorophenyl)-5-(2,6-dimethylpiperidin-1-ylcarbonyl)-benzyloxy]-2-fluorophenyl\delta-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example 387),
 - 2-{4-[5-(butylcarbamoyl)-2-(4-chlorophenyl)benzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example 388),
 - 2-4-[2-(4-chlorophenyl)-5-(propylcarbamoyl)benzyloxy]-2-
- 20 fluorophenyl \(\)-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example 389),
 - 2-{4-[2-(4-chlorophenyl)-5-(ethylcarbamoyl)benzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example 390),
- 25 2-{4-[2-(4-chlorophenyl)-5-{ (dimethylcarbamoyl) amino benzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example 391),
- 2-{4-[2-(4-chlorophenyl)-5-{ (morpholinocarbonyl) amino benzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example 392),
 - 2-{4-[2-(4-chlorophenyl)-5-ureidobenzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example 393),
- 2-{4-[2-(4-chlorophenyl)-5-{ (ethylcarbamoyl) amino benzyloxy]-2-35 fluorophenyl -1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example 394),

- 2-{4-[2-(4-chlorophenyl)-5-{(isopropylcarbamoyl)amino}benzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example 395),
- 2-4-[2-(3,4-difluorophenyl)-5-(isopropylcarbamoyl)benzyloxy]-2-
- 5 fluorophenyl \rangle -1-cyclohexylbenzimidazole-5-carboxylic acid (Example
 396),
 - 2-{4-[2-(2,4-difluorophenyl)-5-(isopropylcarbamoyl)benzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example 397),
- 2-\delta-[2-(3,5-dichlorophenyl)-5-(isopropylcarbamoyl)benzyloxy]-2-fluorophenyl\delta-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example 398),
- 2-\darkarrow{4-[2-(3-chloro-4-fluorophenyl)-5-(isopropylcarbamoyl)-benzyloxy]-2-fluorophenyl\darkarrow{-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example 399),
 - 2-{4-[2-(3,4-dichlorophenyl)-5-(isopropylcarbamoyl)benzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example 400),
 - 2-\d-[2-(4-chloro-2-fluorophenyl)-5-(isopropylcarbamoyl)-
- 20 benzyloxy]-2-fluorophenyl \rangle -1-cyclohexylbenzimidazole-5-carboxylic
 acid hydrochloride (Example 401),
 - 2-{4-[2-(4-chloro-2-fluorophenyl)-5-(pyrrolidin-1-ylcarbonyl)-benzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example 402),
- 25 2-{4-[2-(4-chloro-3-fluorophenyl)-5-(pyrrolidin-1-ylcarbonyl)-benzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example 403),
- 2-{4-[2-(4-chloro-3-fluorophenyl)-5-(isopropylcarbamoyl)-benzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example 404),
 - 2-{4-[2-{4-(methylthio)phenyl}-5-(2-oxopyrrolidin-1-yl)benzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example 405),
- 2-\langle4-[2-\langle4-(methylthio)phenyl\rangle-5-(isopropylcarbamoyl)benzyloxy]-235 fluorophenyl\rangle-1-cyclohexylbenzimidazole-5-carboxylic acid
 hydrochloride (Example 406),

```
2-\frac{4-[4-chloro-2-(4-chlorophenyl)-5-(1,1-dioxoisothiazolidin-2-
   yl) benzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-
   carboxylic acid hydrochloride (Example 407),
    2-\sqrt{4-(4-chloro-2-(4-chlorophenyl)-5-(2-oxopyrrolidin-1-
 5 yl)benzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-
   carboxylic acid hydrochloride (Example 408),
    2-\sqrt{4-[2-(4-chlorophenyl)-5-(isopropylaminosulfonyl)benzyloxy]-2-
   fluorophenyl \-1-cyclohexylbenzimidazole-5-carboxylic acid
   hydrochloride (Example 409),
   2-4-[2-(4-chlorophenyl)-5-(dimethylcarbamoyl)benzyloxy]-2-
   fluorophenyl \-1-cyclopentylbenzimidazole-5-carboxylic acid
   hydrochloride (Example 410),
    2-\frac{4-[2-(4-chlorophenyl)-5-(4-hydroxypiperidin-1-ylcarbonyl)-
   benzyloxy]-2-fluorophenyl}-1-cyclopentylbenzimidazole-5-carboxylic
15 acid hydrochloride (Example 411),
    2-\sqrt{4-[2-(4-\text{chlorophenyl})-5-(\text{isopropylcarbamoyl})\text{benzyloxy}]-2-
   fluorophenyl \-1-cyclopentylbenzimidazole-5-carboxylic acid
   hydrochloride (Example 412),
    2-{4-[2-(4-chlorophenyl)-5-(isopropylcarbamoyl)benzyloxy]phenyl}-
20 1-cyclopentylbenzimidazole-5-carboxylic acid hydrochloride
   (Example 413),
    2-{4-[2-(4-chlorophenyl)-5-(dimethylcarbamoyl)benzyloxy]phenyl}-
   1-cyclopentylbenzimidazole-5-carboxylic acid hydrochloride
   (Example 414),
  2-4-[2-(4-chlorophenyl)-5-(4-hydroxypiperidin-1-
   ylcarbonyl) benzyloxy] phenyl \ -1-cyclopentylbenzimidazole-5-
   carboxylic acid hydrochloride (Example 415),
    2-\{4-[2-(4-chlorophenyl)-5-(isopropylcarbamoyl)benzyloxy]phenyl\}-
   1-(tetrahydrothiopyran-4-yl)benzimidazole-5-carboxylic acid
30 hydrochloride (Example 416),
    2-{4-[2-(4-chlorophenyl)-5-(pyrrolidin-1-ylcarbonyl)benzyloxy]-
   phenyl \-1-(tetrahydrothiopyran-4-yl) benzimidazole-5-carboxylic
   acid hydrochloride (Example 417),
    2-4-[2-(4-chlorophenyl)-5-(isopropylcarbamoyl)benzyloxy]-2-
35 fluorophenyl \-1-(tetrahydrothiopyran-4-yl)benzimidazole-5-
```

carboxylic acid hydrochloride (Example 418),

```
2-\delta-[2-(4-chlorophenyl)-5-(2-oxopyrrolidin-1-yl)benzyloxy]-2-fluorophenyl\delta-1-(tetrahydrothiopyran-4-yl)benzimidazole-5-carboxylic acid hydrochloride (Example 419),
2-\delta-[2-(4-chlorophenyl)-5-(isopropylcarbamoyl)benzyloxy]-2-
5 fluorophenyl\delta-1-piperidinobenzimidazole-5-carboxylic acid
```

- fluorophenyl?-1-piperidinobenzimidazole-5-carboxylic acid hydrochloride (Example 420),
 - $2-4-[2-(4-chlorophenyl)-5-(pyrrolidin-1-ylcarbonyl)benzyloxy]-2-fluorophenyl}-1-piperidinobenzimidazole-5-carboxylic acid (Example 421),$
- 2-\delta-[2-(4-chlorophenyl)-5-(2-imidazolin-2-yl)benzyloxy]-2-fluorophenyl\delta-1-cyclohexylbenzimidazole-5-carboxylic acid dihydrochloride (Example 422),
- 2-\darkarray(4-[2-(4-chlorophenyl)-5-(2-oxooxazolidin-3-yl)benzyloxy]-2-fluorophenyl\darkarray(2-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example 423),
 - $2-4-[2-(4-chlorophenyl)-5-(2-oxoimidazolidin-1-yl)benzyloxy]-2-fluorophenyl \ -1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example 424),$
 - 2-\darkarrow{4-[2-(4-chlorophenyl)-5-(2-oxazolin-2-ylamino)benzyloxy]-2fluorophenyl\darkarrow{-1-cyclohexylbenzimidazole-5-carboxylic acid
 - dihydrochloride (Example 425),

 2-{4-[{2-[{(dimethylcarbamoyl)methoxy|methyl]-4-(4fluorophenyl)thiazol-5-yl|methoxy|phenyl}-1
 cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example
- 25 426),
 - 2-\frac{4-[\frac{4-(4-fluorophenyl)-2-(4-hydroxypiperidin-1-ylmethyl) thiazol-5-yl\methoxy]phenyl\frac{1-cyclohexylbenzimidazole-5-carboxylic acid dihydrochloride (Example 427),
- 2-\darka-[\darka-(4-fluorophenyl)-2-[(carbamoylmethoxy)methyl]thiazol-5yl\methoxy]phenyl\darka-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example 428),
 - $2-\sqrt{4-[\sqrt{4-(4-fluoropheny1)-2-(methylcarbamoy1)}}\ thiazol-5-yl\ methoxy]-2-fluorophenyl\ -1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example 429),$
- 2-{4-[{4-(4-fluorophenyl)-2-{(2-hydroxyethyl)carbamoyl}thiazol-5-yl\methoxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example 430),

```
2-\frac{4-\frac{4-1}{2}-4-\text{fluorophenyl}}{5-(\text{dimethylcarbamoyl})} thiophen-3-
                    yl methoxy | -2-fluoropheny | -1-cyclohexy | benzimidazole -5-carboxy | ic
                    acid hydrochloride (Example 431),
                         2-\frac{1}{4}-\frac{1}{2}-\frac{1}{4}-\frac{1}{2}-\frac{1}{4}-\frac{1}{2}-\frac{1}{4}-\frac{1}{2}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{
      5 yl/methoxy1-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic
                     acid hydrochloride (Example 432),
                         2-\frac{1}{4}-\frac{1}{2}-\frac{1}{4}-\frac{1}{2}-\frac{1}{4}-\frac{1}{2}-\frac{1}{4}-\frac{1}{2}-\frac{1}{4}-\frac{1}{2}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{
                    ylcarbonyl) thiophen-3-yl methoxyl-2-fluorophenyl \-1-
                    cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example
  10 433),
                        2-\frac{1}{4}-\frac{1}{2}-\frac{1}{4}-\frac{1}{2}-\frac{1}{4}-\frac{1}{2}-\frac{1}{4}-\frac{1}{2}-\frac{1}{4}-\frac{1}{2}-\frac{1}{4}-\frac{1}{2}-\frac{1}{4}-\frac{1}{2}-\frac{1}{4}-\frac{1}{2}-\frac{1}{4}-\frac{1}{2}-\frac{1}{4}-\frac{1}{2}-\frac{1}{4}-\frac{1}{2}-\frac{1}{4}-\frac{1}{2}-\frac{1}{4}-\frac{1}{2}-\frac{1}{4}-\frac{1}{2}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{
                    fluorophenyl}-1-cyclohexyl-5-tetrazol-5-ylbenzimidazole (Example
                    434),
                        2-\frac{4-[2-(4-carboxyphenyl)-5-chlorobenzyloxy]-2-fluorophenyl}{-1-}
15 cyclohexyl-5-tetrazol-5-ylbenzimidazole hydrochloride (Example
                    435),
                        2-\frac{1}{4}-[2-(4-\text{chlorophenyl})-5-(\text{isopropylcarbamoyl}) \text{benzyloxy}]-2-
                    fluorophenyl \-1-cyclohexyl-5-(2,5-dihydro-5-oxo-4H-1,2,4-
                    oxadiazol-3-yl)benzimidazole hydrochloride (Example 436),
                       2-{4-[5-carboxy-2-(4-chlorophenyl)benzyloxy]-2-fluorophenyl}-5-
                    cyano-1-cyclohexylbenzimidazole (Example 437),
                        2-4-[2-(4-chlorophenyl)-5-(dimethylcarbamoyl) benzyloxy]-2-
                    fluorophenyl \}-5-cyano-1-cyclohexylbenzimidazole (Example 438),
                       2-\frac{4-[N-(4-dimethylcarbamoyl)-N-(4-fluorophenyl) amino}{-}
25 methyl]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid
                     (Example 439),
                        2-{5-[bis(3-fluorophenyl)methyl]-2-fluoro-4-hydroxyphenyl}-1-
                    cyclohexylbenzimidazole-5-carboxylic acid (Example 440),
                        2-{3-[bis(3-fluorophenyl)methyl]-2-fluoro-4-hydroxyphenyl}-1-
30 cyclohexylbenzimidazole-5-carboxylic acid (Example 441),
                        2-{4-[(3-dimethylcarbamoylphenyl)(4-fluorophenyl)methoxy]-2-
                   fluorophenyl \-1-cyclohexylbenzimidazole-5-carboxylic acid
                   hydrochloride (Example 442),
                       2-{4-[{3-(4-hydroxypiperidyl-1-ylcarbonyl)phenyl}(4-
35 fluorophenyl)methoxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-
                  carboxylic acid hydrochloride (Example 443),
```

- $1-\{[2-\{4-([4-(4-fluorophenyl)-2-methylthiazol-5-yl]nethoxy), phenyl\}-1-cyclohexylbenzimidazol-5-yl]carbonyl\}-\beta-D-glucuronic acid (Example 444),$
- {[2-{4-[bis(3-fluorophenyl)methoxy]-2-fluorophenyl}-1-
- 5 cyclohexylbenzimidazol-5-yl]carbonyl β - β -D-glucuronic acid (Example 445),
 - 2-\delta-[2-(4-chlorophenyl)-5-(1,1-dioxoisothiazolidin-2-yl)benzyloxy]-2-fluorophenyl\delta-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example 446),
- 2-\delta-[2-(4-chlorophenyl)-5-(isopropylcarbamoyl)benzyloxy]phenyl\-3-cyclohexyl-3H-dimidazo[4,5-b]pyridine-6-carboxylic acid hydrochloride (Example 702), and
- 2-\darkarrow{4-[2-(4-chlorophenyl)-5-(pyrrolidin-1-ylcarbonyl)benzyloxy]-phenyl\darkarrow{-3-cyclohexyl-3H-imidazo[4,5-b]pyridine-6-carboxylic acid hydrochloride (Example 703).
 - (94) A pharmaceutical composition comprising a fused ring compound of any of (42) to (93) above, or a pharmaceutically acceptable salt thereof, and a pharmaceutically acceptable carrier.
- 20 (95) A hepatitis C virus polymerase inhibitor comprising a fused ring compound of any of (1) to (93) above, or a pharmaceutically acceptable salt thereof, and a pharmaceutically acceptable carrier.
- (96) An anti-hepatitis C virus agent comprising a fused ring compound of any of (1) to (93) above, or a pharmaceutically acceptable salt thereof, and a pharmaceutically acceptable carrier.
- (97) A therapeutic agent for hepatitis C comprising a fused ring compound of any of (42) to (93) above, or a pharmaceutically acceptable salt thereof, and a pharmaceutically acceptable carrier.
- (98) An anti-hepatitis C virus agent comprising (a) the anti-hepatitis C virus agent of (96) above and (b) at least one agent selected from the group consisting of a different antiviral agent, an antiinflammatory agent and an immunostimulant.
 - (99) An anti-hepatitis C virus agent comprising (a) the anti-hepatitis C virus agent of (96) above and (b) interferon.

- (100) A therapeutic agent for hepatitis C comprising (a) the hepatitis C virus polymerase inhibitor of (95) above and (b) at least one agent selected from the group consisting of a different antiviral agent, an antiinflammatory agent and an immunostimulant.
- 5 (101) A therapeutic agent for hepatitis C comprising (a) the hepatitis C virus polymerase inhibitor of (95) above and (b) interferon.
 - (102) A benzimidazole compound of the following formula [III]

$$R^{a36}0 \xrightarrow{N} R^{a38} OH \qquad [III]$$

- wherein R^{a36} is hydrogen atom or carboxyl-protecting group, R^{a37} is cyclopentyl or cyclohexyl, and R^{a38} is hydrogen atom or fluorine atom, or a salt thereof.
 - (103) A thiazole compound selected from the group consisting of 4-(4-fluorophenyl)-5-hydroxymethyl-2-methylthiazole and 4-(4-
- 15 fluorophenyl)-5-chloromethyl-2-methylthiazole, or a pharmaceutically acceptable salt thereof.
 - (104) A pharmaceutical composition comprising (a) the fused compound of the formula [I] of (1) above or a pharmaceutically acceptable salt thereof and (b) at least one agent selected from
- the group consisting of an antiviral agent other than the compound of (1) above, an antiinflammatory agent and an immunostimulant.
- (105) A pharmaceutical composition comprising (a) the fused compound of the formula [I] of (1) above or a pharmaceutically acceptable salt thereof and (b) interferon.
 - (106) A method for treating hepatitis C, which comprises administering an effective amount of a fused ring compound of the formula [I] of (1) above, or a pharmaceutically acceptable salt thereof.
- 30 (107) The method of (106) above, further comprising administering an effective amount of at least one agent selected from the group consisting of an antiviral agent other than the compound of (1) above, an antiinflammatory agent and an immunostimulant.

- (108) The method of (106) above, further comprising administering an effective amount of interferon.
- (109) A method for inhibiting hepatitis C virus polymerase, which comprises administering an effective amount of a fused ring
- 5 compound of the formula [I] of (1) above, or a pharmaceutically acceptable salt thereof.
 - (110) The method of (109) above, further comprising administering an effective amount of at least one agent selected from the group consisting of an antiviral agent other than the compound of (1)
- 10 above, an antiinflammatory agent and an immunostimulant.
 - (111) The method of (109) above, further comprising administering an effective amount of interferon.
 - (112) Use of a fused ring compound of the above-mentioned formula
 - [I] or a pharmaceutically acceptable salt thereof for the
- 15 production of a pharmaceutical agent for treating hepatitis C.
 - (113) Use of a fused ring compound of the above-mentioned formula
 - [I] or a pharmaceutically acceptable salt thereof for the production of a hepatitis C virus polymerase inhibitor.
 - (114) A pharmaceutical composition for the treatment of hepatitis
- 20 C, which comprises a fused ring compound of the above-mentioned formula [I] or a pharmaceutically acceptable salt thereof, and a pharmaceutically acceptable carrier.
 - (115) A pharmaceutical composition for inhibiting hepatitis C virus polymerase, which comprises a fused ring compound of the
- 25 above-mentioned formula [I] or a pharmaceutically acceptable salt thereof, and a pharmaceutically acceptable carrier.
- (116) A commercial package comprising a pharmaceutical composition of (114) above and a written matter associated therewith, the written matter stating that the pharmaceutical composition can or should be used for treating hepatitis C.
 - (117) A commercial package comprising a pharmaceutical composition of (115) above and a written matter associated therewith, the written matter stating that the pharmaceutical composition can or should be used for inhibiting hepatitis C

35 virus polymerase.

Detailed Description of the Invention

The definitions of respective substituents and moieties used in the present specification are as follows.

The halogen atom is a fluorine atom, chlorine atom, bromine atom or iodine atom, preferably fluorine atom, chlorine atom or bromine atom.

Particularly preferably, the halogen atom is fluorine atom 5 at R⁵, R⁵, R⁶, R⁶, group A and group C, and fluorine atom or chlorine atom at X, Z, Z', group B and group D.

The C_{1-6} alkyl is straight chain or branched chain alkyl having 1 to 6 carbon atoms, and is exemplified by methyl, ethyl, propyl, isopropyl, butyl, isobutyl, sec-butyl, tert-butyl, pentyl, isopentyl, tert-pentyl, hexyl and the like.

Preferably, it is straight chain or branched chain alkyl having 1 to 4 carbon atoms, and is particularly preferably methyl at R^{a7} , R^{a8} , R^{a9} , R^{a15} , R^{a16} , R^{a17} , R^{a29} , R^{a33} , R^{a35} , R^{b6} and R^{b7} and methyl or tert-butyl at R^{b1} , R^{b2} , group B and group C.

The halogenated C_{1-6} alkyl is the above-defined C_{1-6} alkyl except that it is substituted by the above-defined halogen atom. Preferably, it is halogenated alkyl wherein the alkyl moiety thereof is straight chain or branched chain alkyl having 1 to 4 carbon atoms. Examples thereof include fluoromethyl,

difluoromethyl, trifluoromethyl, bromomethyl, chloromethyl, 1,2-dichloromethyl, 2,2-dichloromethyl, 2,2,2-trifluoroethyl and the like.

The halogenated C_{1-6} alkyl is particularly preferably trifluoromethyl at group B.

The C_{1-6} alkylene is straight chain alkylene having 1 to 6 carbon atoms, and is exemplified by methylene, ethylene, trimethylene, tetramethylene, pentamethylene or hexamethylene.

The C_{1-6} alkylene is preferably methylene or ethylene at Y.

The C_{2-6} alkenylene is straight chain alkenylene having 2 to 6 carbon atoms, and is exemplified by vinylene, propenylene, 1-butenylene, 1,3-butadienylene and the like.

The C_{2-6} alkenylene is preferably vinylene at Y.

The C_{1-6} alkoxy is alkyloxy wherein the alkyl moiety thereof is the above-defined C_{1-6} alkyl. Preferably, it is alkoxy wherein the alkyl moiety thereof is straight chain or branched chain alkyl having 1 to 4 carbon atoms. Examples thereof include methoxy, ethoxy, propoxy, isopropyloxy, butoxy, isobutyloxy, tert-butyloxy, pentyloxy, hexyloxy and the like.

The C_{1-6} alkoxy is particularly preferably methoxy at R^{a2} , R^{a3} , R^{a27} , R^{a28} , R^{a33} , group A and group C.

The C_{1-6} alkoxy C_{1-6} alkoxy is that wherein C_{1-6} alkoxy in the above definition is substituted by C_{1-6} alkoxy defined above and is preferably that wherein the alkyl moiety thereof is straight chain or branched chain alkyl having 1 to 4 carbon atoms. Specific examples include methoxymethyl, ethoxymethyl, methoxyethoxy, methoxypropoxy, isopropyloxyethoxy and the like.

The group A is particularly preferably methoxyethoxy.

The C_{1-6} alkanoyl is alkylcarbonyl wherein the alkyl moiety thereof is the above-defined C_{1-6} alkyl. Preferably, it is alkanoyl wherein the alkyl moiety thereof is straight chain or branched chain alkyl having 1 to 4 carbon atoms. Examples thereof include acetyl, propionyl, butyryl, isobutyryl, pivaloyl and the like.

The C_{1-6} alkanoyl is particularly preferably acetyl at R^1 , R^2 , R^3 , R^4 , R^{a5} , R^{a29} , R^{b7} and group B.

The C_{1-6} alkoxycarbonyl is alkyloxycarbonyl wherein the alkoxy moiety thereof is the above-defined C_{1-6} alkoxy. Preferably, it is alkoxycarbonyl wherein the alkyl moiety thereof is straight chain or branched chain alkyl having 1 to 4 carbon atoms. Examples thereof include methoxycarbonyl, ethoxycarbonyl, propoxycarbonyl, isopropyloxycarbonyl, butoxycarbonyl, isobutyloxycarbonyl, tert-butyloxycarbonyl, pentyloxycarbonyl, hexyloxycarbonyl and the like.

The C_{1-6} alkoxycarbonyl is particularly preferably methoxycarbonyl or ethoxycarbonyl at R^{a10} and group A.

The C_{1-6} alkylamino is alkylamino or dialkylamino wherein the alkyl moiety thereof is the above-defined C_{1-6} alkyl.

Preferably, it is alkylamino or dialkylamino wherein the alkyl moiety thereof is straight chain or branched chain alkyl having 1 to 4 carbon atoms. Examples thereof include methylamino, ethylamino, propylamino, isopropylamino, butylamino, isobutylamino, tert-butylamino, pentylamino, hexylamino, diethylamino, methylamino, N-isopropylamino, N-isopropylam

35 dimethylamino, diethylamino, methylethylamino, N-isopropyl-N-isobutylamino and the like.

The C_{1-6} alkylamino is particularly preferably methylamino at R^{a7} , and particularly preferably dimethylamino at R^{a21} and group

A, and particularly preferably dimethylamino, ethylamino or isopropylamino at R^{a24} .

The C_{1-6} alkanoylamino is alkylcarbonylamino wherein the alkanoyl moiety thereof is the above-defined C_{1-6} alkanoyl.

- 5 Preferably, it is alkylcarbonylamino wherein the alkyl moiety thereof is straight chain or branched chain alkyl having 1 to 4 carbon atoms. Examples thereof include acetylamino, propionylamino, butyrylamino, isobutyrylamino, pivaloylamino and the like.
- The C_{1-6} alkanoylamino is particularly preferably acetylamino at X and R^{a10} .

The C_{1-6} alkylsulfonyl is alkylsulfonyl wherein the alkyl moiety thereof is the above-defined C_{1-6} alkyl. Preferably, it is alkylsulfonyl wherein the alkyl moiety thereof is straight chain or branched chain alkyl having 1 to 4 carbon atoms. Examples thereof include methylsulfonyl, ethylsulfonyl, propylsulfonyl, isopropylsulfonyl, butylsulfonyl, isobutylsulfonyl, tertbutylsulfonyl, pentylsulfonyl, hexylsulfonyl and the like.

The C_{1-6} alkylsulfonyl is particularly preferably 20 methylsulfonyl at X and $R^{a5}\,.$

The C_{6-14} aryl is aromatic hydrocarbon having 6 to 14 carbon atoms. Examples thereof include phenyl, naphthyl, anthryl, indenyl, azulenyl, fluorenyl, phenanthryl and the like.

The C_{6-14} aryl is preferably phenyl or naphthyl, 25 particularly preferably phenyl at the ring A, ring A', ring B and ring B'.

The C_{3-8} cycloalkyl is saturated cycloalkyl having 3 to 8, preferably 5 to 7, carbon atoms. Examples thereof include cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl and 30 cycloctyl.

The C_{3-8} cycloalkyl is particularly preferably cyclohexyl at the ring A, ring A', ring B and ring B'.

The C₃₋₈ cycloalkenyl is cycloalkenyl having 3 to 8, preferably 5 to 7, carbon atoms and has at least 1, preferably 1 or 2, double bond(s). Examples thereof include cyclopropenyl, cyclobutenyl, cyclopentenyl, cyclopentadienyl, cyclohexenyl, 2,4-cyclohexadien-1-yl, 2,5-cyclohexadien-1-yl, cycloheptenyl and

cyclooctenyl and the like, but do not include aryl (e.g., phenyl) or completely saturated cycloalkyl.

The C_{3-8} cycloalkenyl is preferably cyclohexenyl at the ring A and ring A'.

The heterocyclic group has, as an atom constituting the ring, 1 to 4 heteroatom(s) selected from an oxygen atom, a nitrogen atom and a sulfur atom, besides a carbon atom, and includes saturated ring and unsaturated ring, monocyclic ring and fused ring having the number of ring atom constituting the ring of 3 to 14.

The heterocyclic group as a monocyclic ring includes, for example, pyridyl, pyrazinyl, pyrimidinyl, pyridazinyl, 1,3,5-triazinyl, pyrrolyl, pyrazolyl, imidazolyl, 1,2,4-triazolyl, tetrazolyl, thienyl, furyl, oxazolyl, isoxazolyl, thiazolyl, isothiazolyl, thiadiazolyl, pyrrolinyl, pyrrolidinyl, imidazolidinyl, piperidyl, piperazinyl, morpholinyl, thiomorpholinyl, tetrahydropyranyl and the like.

The heterocyclic group includes the groups of the following formulas.

20

wherein E^1 is an oxygen atom, a sulfur atom or $N(-R^{a35})$, E^2 is an oxygen atom, CH_2 or $N(-R^{a35})$, E^3 is an oxygen atom or a sulfur atom, wherein R^{a35} is independently hydrogen atom or C_{1-6} alkyl, f is an integer of 1 to 3, and h and h' are the same or different and each is an integer of 1 to 3.

Specific examples of the heterocyclic group include

10

and the like.

Examples of the heterocyclic group as a fused ring include quinolyl, isoquinolyl, quinazolinyl, quinoxalyl, phthalazinyl, cinnolinyl, naphthyridinyl, 5,6,7,8-tetrahydroquinolyl, indolyl, benzimidazolyl, 2,3-dihydrobenzimidazolyl, 2,3-dihydro-2-

oxobenzimidazolyl, indolinyl, benzofuranyl, benzothienyl, benzoxazolyl, benzothiazolyl and the like.

Preferably, it is a heterocyclic group which is a 5membered or a 6-membered monocyclic group. Examples thereof

include pyridyl, pyrazinyl, pyrimidinyl, pyridazinyl, 1,3,5triazinyl, pyrrolyl, pyrazolyl, imidazolyl, 1,2,4-triazolyl,
tetrazolyl, thienyl, furyl, oxazolyl, isoxazolyl, thiazolyl,
isothiazolyl, thiadiazolyl, pyrrolidinyl, piperidyl, piperazinyl

and the like.

At R^1 , R^2 , R^3 , R^4 , Z and group D, tetrazolyl and 5-oxo- Δ^2 -5 1,2,4-oxadiazolin-3-yl are particularly preferable.

The heterocyclic group is preferably pyridyl, pyrazinyl, pyrimidinyl or pyridazinyl which is an aromatic group, and particularly preferably pyridyl at the ring A and ring A'.

The heterocyclic group is particularly preferably pyridyl, pyrazinyl, pyrimidinyl, pyridazinyl, 1,3,5-triazinyl, pyrrolyl, pyrazolyl, imidazolyl, 1,2,4-triazolyl, tetrazolyl, thienyl, furyl, oxazolyl, isoxazolyl, thiazolyl, isothiazolyl or thiadiazolyl, which is an aromatic group, at the ring B and ring B'. More preferably it is pyridyl or thiazolyl, most preferably thiazolyl.

The C_{6-14} aryl C_{1-6} alkyl is arylalkyl wherein the alkyl moiety thereof is the above-defined C_{1-6} alkyl and the aryl moiety is the above-defined C_{6-14} aryl. Preferably, it is arylalkyl wherein the alkyl moiety thereof is straight chain alkyl having 1 to 4 carbon atoms and the aryl moiety is phenyl. Examples thereof include benzyl, phenethyl, 3-phenylpropyl, 2-phenylpropyl, 4-phenylbutyl and the like.

The C_{6-14} aryl C_{1-6} alkyl is particularly preferably benzyl at R^{a8} and $R^{b6}\,.$

25 The glucuronic acid residue is glucuronic acid less any hydroxyl group, preferably β -D-glucuronic acid substituted at 1-position.

The C_{6-14} aryl C_{1-6} alkyloxycarbonyl is arylalkyloxycarbonyl wherein the C_{6-14} aryl C_{1-6} alkyl moiety thereof is the above-defined C_{6-14} aryl C_{1-6} alkyl. Preferably, it is arylalkyloxycarbonyl wherein the alkyl moiety thereof is straight chain alkyl having 1 to 4 carbon atoms and the aryl moiety is phenyl. Examples thereof include benzyloxycarbonyl,

phenethyloxycarbonyl, 3-phenylpropyloxycarbonyl, 2-phenylpropyloxycarbonyl, 4-phenylbutyloxycarbonyl and the like.

The C_{6-14} aryl C_{1-6} alkyloxycarbonyl is particularly preferably benzyloxycarbonyl at R^{b7} .

The optionally substituted C_{1-6} alkyl is the above-defined 5 C_{1-6} alkyl, preferably that wherein straight chain or branched chain alkyl having 1 to 4 carbon atoms is optionally substituted with 1 to 3 substituent(s), and includes unsubstituted alkyl. The substituent(s) is (are) selected from the above-defined halogen 10 atom, hydroxyl group, carboxyl, amino, the above-defined C_{1-6} alkoxy, the above-defined C_{1-6} alkoxy C_{1-6} alkoxy, the abovedefined C_{1-6} alkoxycarbonyl and the above-defined C_{1-6} alkylamino. Examples of optionally substituted C_{1-6} alkyl include methyl, ethyl, propyl, isopropyl, butyl, isobutyl, sec-butyl, tert-butyl, 15 pentyl, isopentyl, tert-pentyl, neopentyl, 1-ethylpropyl, hexyl, trifluoromethyl, hydroxymethyl, 2-hydroxyethyl, 3-hydroxypropyl, 4-hydroxybutyl, 1-hydroxy-1-methylethyl, 1-hydroxypropan-2-yl, 1,3-dihydroxypropan-2-yl, 1-hydroxy-2-methylpropan-2-yl, carboxylmethyl, 2-carboxylethyl, methoxymethyl, methoxyethyl, methoxyethoxyethyl, ethoxycarbonylmethyl, 2-ethoxycarbonylethyl, 2-dimethylaminoethyl and the like.

Preferably, the optionally substituted C_{1-6} alkyl is methyl, 1-hydroxy-1-methylethyl, carboxylmethyl or 2-dimethylaminoethyl at R^1 , R^2 , R^3 and R^4 , methyl or trifluoromethyl at R^5 , R^5 , R^6 and 25 R⁶, methyl at R⁷, R⁸, R^{a25}, R^{a31} and R^{b5}, methyl, ethyl or isopropyl at R^{a24} , methyl or isopropyl at R^{a18} , methyl or ethyl at R^{a1} and R^{a19} , methyl, carboxylmethyl or 2-dimethylaminoethyl at R^{a2} and R^{a3}, methyl or carboxylmethyl at R^{a6}, methyl, ethyl, isopropyl, butyl or trifluoromethyl at X, methyl, ethyl, isopropyl, butyl, 30 isobutyl, tert-butyl, isopentyl, neopentyl, 1-ethylpropyl or carboxylmethyl at R^{al0}, methyl, ethyl, propyl, isopropyl, butyl, isobutyl, trifluoromethyl, 2-hydroxyethyl or carboxylmethyl at Rall, methyl or 4-hydroxybutyl at Rall, methyl, ethyl, isopropyl, butyl, 2-hydroxyethyl, 4-hydroxybutyl, ethoxycarbonylmethyl, 2-(ethoxycarbonyl)ethyl or 2-dimethylaminoethyl at R^{al3}, methyl, propyl, butyl, isopentyl, trifluoromethyl, hydroxymethyl, 2hydroxyethyl, 3-hydroxypropyl, methoxyethyl, methoxyethoxyethyl or carboxymethyl at R^{a20}, methyl or ethyl at R^{a22} and R^{a23}, methyl

isopropyl or tert-butyl at R^{a26} , methyl, ethyl, propyl, isopropyl, butyl, tert-butyl, isobutyl, 2-hydroxyethyl 1-hydroxypropan-2-yl, 1-hydroxy-2-methylpropan-2-yl or carboxylmethyl at R^{a27} and R^{a28} , and methyl, ethyl, propyl, isopropyl, tert-butyl, trifluoromethyl, hydroxymethyl, 2-hydroxyethyl, 2-carboxylethyl, methoxymethyl or ethoxycarbonylmethyl at Z, Z' and group D.

It is particularly preferably, trifluoromethyl at R^5 , R^5 , R^6 and R^6 , methyl or tert-butyl at R^{a26} , methyl, tert-butyl, trifluoromethyl or hydroxymethyl at Z, Z' and group D, and methyl at other substituents.

The optionally substituted C₂₋₆ alkenyl is that wherein straight chain or branched chain alkenyl having 2 to 6 carbon atoms is optionally substituted by 1 to 3 substituent(s), and includes unsubstituted alkenyl. The substituent(s) is(are)

15 selected from the above-defined halogen atom, hydroxyl group, carboxyl, amino, the above-defined C₁₋₆ alkoxy, the above-defined C₁₋₆ alkoxy carbonyl and the above-defined C₁₋₆ alkoxy, the above-defined C₁₋₆ alkoxycarbonyl and the above-defined C₁₋₆ alkylamino. Examples of optionally substituted C₂₋₆ alkenyl include vinyl, allyl, 1-propenyl, isopropenyl, 1-butenyl, 2-butenyl, 1,3-butadienyl, 2-isopentenyl, 3-isohexenyl, 4-methyl-3-pentenyl, 2-carboxylethenyl and the like.

The optionally substituted C_{2-6} alkenyl is preferably 2-carboxylethenyl at X, and preferably 2-isopentenyl, 3-isohexenyl or 4-methyl-3-pentenyl at R^{a20} .

25 The optionally substituted C₂₋₆ alkynyl is that wherein straight chain or branched chain alkynyl having 2 to 6 carbon atoms is optionally substituted by 1 to 3 substituent(s), and includes unsubstituted alkynyl. The substituent(s) is (are) selected from the above-defined halogen atom, hydroxyl group, 20 carboxyl, amino, the above-defined C₁₋₆ alkoxy, the above-defined C₁₋₆ alkoxycarbonyl and the above-defined C₁₋₆ alkylamino. Examples thereof include ethynyl, 1-propynyl, 2-propynyl, 3-butynyl and the like.

The optionally substituted $C_{2\text{--}6}$ alkynyl is preferably 2- $_{35}$ propynyl at $R^{a20}\,.$

The C_{6-14} aryl optionally substituted by 1 to 5 substituent(s) selected from group B is that wherein the above-defined C_{6-14} aryl is optionally substituted by 1 to 5

substituent(s), and includes unsubstituted aryl. The substituent(s) is (are) selected from the above-defined halogen atom, cyano, nitro, the above-defined C_{1-6} alkyl, the above-defined halogenated C_{1-6} alkyl, the above-defined C_{1-6} alkanoyl, $-(CH_2)_r - COOR^{b1}, -(CH_2)_r - CONR^{b1}R^{b2}, -(CH_2)_r - NR^{b1}R^{b2}, -(CH_2)_r - NR^{b1} - COR^{b2}, \\ -(CH_2)_r - NHSO_2R^{b1}, -(CH_2)_r - OR^{b1}, -(CH_2)_r - SR^{b1}, -(CH_2)_r - SO_2R^{b1}$ and $-(CH_2)_r - SO_2NR^{b1}R^{b2}$ (wherein R^{b1} and R^{b2} are each independently hydrogen atom or the above-defined C_{1-6} alkyl and r is 0 or an integer of 1 to 6).

indenyl, azulenyl, fluorenyl, phenanthryl, 3-fluorophenyl, 4fluorophenyl, 3-chlorophenyl, 4-chlorophenyl, 2,4-dichlorophenyl,
3,5-dichlorophenyl, pentafluorophenyl, 4-methylphenyl, 4-tertbutylphenyl, 2-trifluoromethylphenyl, 4-trifluoromethylphenyl, 4introphenyl, 4-cyanophenyl, 4-acetylphenyl, 4-carboxylphenyl, 4carbamoylphenyl, 4-aminophenyl, 4-dimethylaminophenyl, 4acetylaminophenyl, 4-(methylsulfonylamino)phenyl, 4-methoxyphenyl,
3,4,5-trimethoxyphenyl, 4-methylthiophenyl, 4methylsulfonylphenyl, 4-aminosulfonylphenyl, 3-nitro-4methoxyphenyl and 4-nitro-3-methoxyphenyl.

The aryl moiety is preferably phenyl, the group B here is preferably the above-defined halogen atom, nitro, the above-defined C_{1-6} alkyl, the above-defined halogenated C_{1-6} alkyl or $-(CH_2)_r-OR^{bl}$. Examples of group B include fluorine atom, chlorine atom, nitro, methyl, tert-butyl, trifluoromethyl and methoxy. Particularly preferably, it is fluorine atom or chlorine atom.

With regard to "C₆₋₁₄ aryl optionally substituted by 1 to 5 substituent(s) selected from group B", it is preferably phenyl, 4-tert-butylphenyl, 4-fluorophenyl, 3-chlorophenyl, 4
30 chlorophenyl, 4-methoxyphenyl or 4-trifluoromethylphenyl at R^{a12}, R^{a27} and R^{a28}, phenyl at R^{a14}, R^{a22}, R^{a23}, R^{a26} and R^{b5}, phenyl or 3-fluorophenyl at R^{a18}, phenyl or 2,4-dichlorophenyl at R^{a20}, phenyl, 4-chlorophenyl, 4-trifluoromethylphenyl, 3,5-dichlorophenyl, 3-nitro-4-methoxyphenyl or 4-nitro-3-methoxyphenyl at R^{a24}, and phenyl or 4-methylphenyl at R^{a25}.

It is particularly preferably phenyl at other substituents. The C_{6-14} aryl optionally substituted by 1 to 5 substituent(s) selected from group D is that wherein the above-

defined C_{6-14} aryl is optionally substituted by 1 to 5 substituent(s), and includes unsubstituted aryl. The substituent(s) is(are) selected from the above-mentioned group D (substituents shown under (a) to (q)).

Examples of group D here include fluorine atom, chlorine atom, bromine atom, nitro, cyano, methyl, ethyl, propyl, isopropyl, tert-butyl, trifluoromethyl, hydroxymethyl, 2hydroxyethyl, methoxymethyl, 2-carboxylethyl, methoxycarbonylmethyl, ethoxycarbonylmethyl, acetyl, carboxyl, 10 methoxycarbonyl, ethoxycarbonyl, carbamoyl, methylaminocarbonyl, isopropylaminocarbonyl, dimethylaminocarbonyl, diethylaminocarbonyl, (2-hydroxyethyl)aminocarbonyl, (carboxylmethyl) aminocarbonyl, hydroxyl group, methoxy, ethoxy, propyloxy, isopropyloxy, isopentyloxy, 2-isopentenyloxy, 3-15 isohexenyloxy, 4-methyl-3-pentenyloxy, 2-propynyloxy, hydroxymethyloxy, carboxylmethyloxy, (dimethylaminocarbonyl) methyloxy, amino, methylamino, dimethylamino, diethylamino, acetylamino, methylsulfonylamino, methylthio, methylsulfonyl, methylsulfinyl, aminosulfonyl, 20 methylaminosulfonyl, dimethylaminosulfonyl and tetrazolyl.

Examples of C₆₋₁₄ aryl optionally substituted by 1 to 5 substituent(s) selected from group D include phenyl, naphthyl, anthryl, indenyl, azulenyl, fluorenyl, phenanthryl, 3-fluorophenyl, 4-fluorophenyl, 3-chlorophenyl, 4-chlorophenyl, 2,4-dichlorophenyl, 3,5-dichlorophenyl, 4-bromophenyl, 4-nitrophenyl, pentafluorophenyl, 4-methylphenyl, 4-tert-butylphenyl, 2-trifluoromethylphenyl, 4-trifluoromethylphenyl, 4-(hydroxymethyl)phenyl, 4-(methoxymethyl)phenyl, 4-(2-carboxylethyl)phenyl, 3-carboxylphenyl, 4-carboxylphenyl, 430 methoxyphenyl, 3,4,5-trimethoxyphenyl, 4-carbomylphenyl, 4-methylthiophenyl, 4-(dimethylaminocarbonyl)phenyl, 4-methylsulfonylphenyl, 4-acetylaminophenyl, 4-cyanophenyl, 4-acetylphenyl, 4-aminophenyl, 4-dimethylaminophenyl, 4-(methylsulfonylamino)phenyl, 4-methylsulfinylphenyl, 4-

At Z and Z', the aryl moiety is preferably phenyl, and group D here is preferably the above-defined halogen atom, nitro,

35 aminosulfonylphenyl and 3-nitro-4-methoxyphenyl, 4-nitro-3-

methoxyphenyl and 4-tetrazol-5-ylphenyl.

the above-defined optionally substituted C_{1-6} alkyl, $-(CH_2)_t-COOR^{a19}_t$, $-(CH_2)_t-CONR^{a27}R^{a28}$, $-(CH_2)_t-OR^{a20}$, $-(CH_2)_t-NR^{a29}CO-R^{a24}$, $-(CH_2)_t-S(O)_q-R^{a25}$ or $-(CH_2)_t-SO_2-NHR^{a26}$.

Examples of C_{6-14} aryl optionally substituted by 1 to 5

substituent(s) selected from group D preferably include phenyl,

3-fluorophenyl, 4-fluorophenyl, 3-chlorophenyl, 4-chlorophenyl,

3,5-dichlorophenyl, 4-bromophenyl, 4-nitrophenyl, 4-methylphenyl,

4-tert-butylphenyl, 2-trifluoromethylphenyl, 4
trifluoromethylphenyl, 4-(hydroxymethyl)phenyl, 4
(methoxymethyl)phenyl, 4-(2-carboxylethyl)phenyl, 3
carboxylphenyl, 4-carboxylphenyl, 4-methoxyphenyl, 3,4,5
trimethoxyphenyl, 4-carbamoylphenyl, 4-methylthiophenyl, 4
(dimethylaminocarbonyl)phenyl, 4-methylsulfonylphenyl, 4
acetylaminophenyl, 4-methylsulfinylphenyl, 4-aminosulfonylphenyl,

4-cyanophenyl and 4-tetrazolylphenyl.

Particularly preferably, it is the above-defined halogen atom, the above-defined optionally substituted C₁₋₆ alkyl, $-(CH_2)_t-COOR^{a19}, -(CH_2)_t-CONR^{a27}R^{a28}, -(CH_2)_t-OR^{a20} \text{ or } -(CH_2)_t-S(O)_q-R^{a25}, \\ \text{which is specifically fluorine atom, chlorine atom, bromine atom,} \\ \text{nitro, methyl, tert-butyl, carboxyl, trifluoromethyl,} \\ \text{hydroxymethyl, methoxymethyl, 2-carboxylethyl, methoxy, carbamoyl,} \\ \text{methylthio, dimethylaminocarbonyl, methylsulfonyl or acetylamino.} \\ \text{More preferably, it is fluorine atom, chlorine atom, methyl,} \\ \text{tert-butyl, carboxyl, methoxy, carbamoyl, methylthio,} \\ \text{25 dimethylaminocarbonyl, methylsulfonyl or acetylamino, most} \\ \text{preferably fluorine atom or chlorine atom.} \\ \end{array}$

The heterocyclic group optionally substituted by 1 to 5 substituent(s) selected from group B is that wherein the above-defined heterocyclic group is optionally substituted by 1 to 5 substituent(s), and includes unsubstituted heterocyclic group. The substituent(s) is(are) selected from the above-defined halogen atom, cyano, nitro, the above-defined C_{1-6} alkyl, the above-defined halogenated C_{1-6} alkyl, the above-defined C_{1-6} alkanoyl,

35 $-(CH_2)_r - COOR^{b1}$, $-(CH_2)_r - CONR^{b1}R^{b2}$, $-(CH_2)_r - NR^{b1}R^{b2}$, $-(CH_2)_r - NR^{b1} - COR^{b2}$, $-(CH_2)_r - NHSO_2R^{b1}$, $-(CH_2)_r - OR^{b1}$, $-(CH_2)_r - SR^{b1}$, $-(CH_2)_r - SO_2R^{b1}$ and

 $-(CH_2)_r-SO_2NR^{b1}R^{b2}$ wherein R^{b1} and R^{b2} are each independently hydrogen atom or the above-defined C_{1-6} alkyl and r is 0 or an integer of 1 to 6.

Examples thereof include 2-pyridyl, 3-pyridyl, 4-pyridyl, 5 3-fluoropyridin-4-yl, 3-chloropyridin-4-yl, 4-chloropyridin-3-yl, pyrazinyl, pyrimidinyl, pyridazinyl, 1,3,5-triazinyl, pyrrolyl, pyrazolyl, imidazolyl, 1,2,4-triazolyl, tetrazolyl, 2-thienyl, 3thienyl, furyl, oxazolyl, 2-methyloxazol-4-yl, isoxazolyl, thiazolyl, 2-methylthiazol-4-yl, 2,5-dimethylthiazol-4-yl, 2,4-10 dimethylthiazol-5-yl, isothiazolyl, thiadiazolyl, pyrrolinyl, pyrrolidinyl, 3-hydroxypyrrolidinyl, imidazolidinyl, azetidinyl, piperidyl, 3-hydroxypiperidino, 4-hydroxypiperidino, 3,4dihydroxypiperidino, 4-methoxypiperidino, 4-carboxypiperidino, 4-(hydroxymethyl) piperidino, 2-oxopiperidino, 4-oxopiperidino, 2,2,6,6-tetramethylpiperidino, 2,2,6,6-tetramethyl-4hydroxypiperidino, N-methylpiperidin-4-yl, N-(tertbutoxycarbonyl)piperidin-4-yl, N-acetylpiperidin-4-yl, Nmethylsulfonylpiperidin-4-yl, piperazinyl, 4-methylpiperazinyl, 4-methylsulfonylpiperazinyl, morpholinyl, thiomorpholinyl, 1-20 oxothiomorpholin-4-yl, 1,1-dioxothiomorpholin-4-yl, tetrahydropyranyl, quinolyl, isoquinolyl, quinazolinyl, quinoxalyl, phthalazinyl, cinnolinyl, naphthyridinyl, 5,6,7,8tetrahydroquinolyl, indolyl, benzimidazolyl, indolinyl, benzofuranyl, benzothienyl, benzoxazolyl, benzothiazolyl,

25

and the like.

The heterocyclic moiety is preferably a heterocyclic group which is a 5-membered or a 6-membered monocyclic group. Examples thereof include pyridyl, pyrazinyl, pyrimidinyl, pyridazinyl, 1,3,5-triazinyl, pyrrolyl, pyrazolyl, imidazolyl, 1,2,4-triazolyl,

tetrazolyl, thienyl, furyl, oxazolyl, isoxazolyl, thiazolyl, isothiazolyl, thiadiazolyl, pyrrolidinyl, piperidyl, piperazinyl, morpholinyl, thiomorpholinyl and tetrahydropyranyl, and the group B here is preferably the above-defined halogen atom, the above-defined C_{1-6} alkyl, the above-defined halogenated C_{1-6} alkyl, the above-defined C_{1-6} alkanoyl, $-(CH_2)_r-COOR^{b1}$, $-(CH_2)_r-CONR^{b1}R^{b2}$ or $-(CH_2)_r-OR^{b1}$.

Examples of heterocyclic group optionally substituted by 1 to 5 substituent(s) selected from group B preferably include piperidino, 4-methylpiperidino, 2,6-dimethylpiperidino, 4
10 hydroxypiperidino, 1-piperazinyl, 1-(methylsulfonyl)piperidin-4yl, 1-pyrrolidinyl, morpholino, 4-thiomorpholinyl,
tetrahydropyranyl, pyridyl, thiazolyl,

Particularly preferably, it is piperidino, 4-methylpiperidino, 2,6-dimethylpiperidino, 4-hydroxypiperidino, 1-piperazinyl, 1-pyrrolidinyl, morpholino or 4-thiomorpholinyl at Rall, tetrahydropyranyl or 4-hydroxypiperidino at Rall, piperidino, 4-hydroxypiperidino or 3,4-dihydroxypiperidino at Rall, pyridyl or morpholino at Rall, pyridyl or 4-hydroxypiperidino at Rall, pyridyl

or thiazolyl at R^{a26} and at R^{a27} and R^{a28}, it is 1-(methylsulfonyl)piperidin-4-yl, 3-hydroxypyrrolidinyl, 3hydroxypiperidino, 4-hydroxypiperidino, 3,4-dihydroxypiperidino, 4-methoxypiperidino, 4-carboxypiperidino, 4-

5 (hydroxymethyl)piperidino, 2-oxopiperidino, 4-oxopiperidino, 2,2,6,6-tetramethylpiperidino, 2,2,6,6-tetramethyl-4-hydroxypiperidino, 4-methylsulfonylpiperazinyl, 1-oxothiomorpholin-4-yl or 1,1-dioxothiomorpholin-4-yl, and 2-oxazolin-2-yl at R^{a22} and R^{a23}.

The heterocyclic group optionally substituted by 1 to 5 substituent(s) selected from group D is that wherein the above-defined heterocyclic group is optionally substituted by 1 to 5 substituent(s), and includes unsubstituted heterocyclic group.

The substituent(s) is (are) selected from the substituent(s) of the above-mentioned group D (substituents shown under (a) to (q)).

Examples of the group D here include the substituent(s) exemplified for C_{6-14} aryl optionally substituted by 1 to 5 substituent(s) selected from group D.

Examples of heterocyclic group optionally substituted by 1 to 5 substituent(s) selected from group D include 2-pyridyl, 3-pyridyl, 4-pyridyl, 3-fluoropyridin-4-yl, 3-chloropyridin-4-yl, 4-chloropyridin-3-yl, pyrazinyl, pyrimidinyl, pyridazinyl, 1,3,5-triazinyl, pyrrolyl, pyrazolyl, imidazolyl, 1,2,4-triazolyl, tetrazolyl, 2-thienyl, 3-thienyl, furyl, oxazolyl, 2-methylthiazol-4-yl, isoxazolyl, thiazolyl, 2-methylthiazol-4-yl,

methyloxazol-4-yl, isoxazolyl, thiazolyl, 2-methylthiazol-4-yl, 2,5-dimethylthiazol-4-yl, 2,4-dimethylthiazol-5-yl, isothiazolyl, thiadiazolyl, pyrrolinyl, pyrrolidinyl, imidazolidinyl, piperidyl, N-methylpiperidin-4-yl, N-(tert-butoxycarbonyl)piperidin-4-yl, N-acetylpiperidin-4-yl, N-methylsulfonylpiperidin-4-yl, piperazinyl,

morpholinyl, thiomorpholinyl, tetrahydropyranyl, quinolyl, isoquinolyl, quinazolinyl, quinoxalyl, phthalazinyl, cinnolinyl, naphthyridinyl, 5,6,7,8-tetrahydroquinolyl, indolinyl, benzimidazolyl, indolinyl, benzofuranyl, benzothienyl, benzoxazolyl, benzothiazolyl

$$-N \longrightarrow 0 \qquad -N \longrightarrow S = 0 \qquad -N \longrightarrow S = 0$$

$$-N \longrightarrow 0 \longrightarrow N \longrightarrow Me \qquad N \longrightarrow N \longrightarrow N \longrightarrow N$$

$$-N \longrightarrow Me \longrightarrow N \longrightarrow Me \longrightarrow N \longrightarrow Me \longrightarrow N \longrightarrow Me$$

$$-N \longrightarrow Me \longrightarrow N \longrightarrow Me \longrightarrow N \longrightarrow Me \longrightarrow N \longrightarrow Me$$

$$-N \longrightarrow Me \longrightarrow N \longrightarrow Me \longrightarrow N \longrightarrow Me$$

$$-N \longrightarrow Me \longrightarrow N \longrightarrow Me \longrightarrow N \longrightarrow Me$$

$$-N \longrightarrow Me$$

5 and the like.

In addition, the heterocyclic group may be substituted at the 3-, 4-, 5- or 6-position of 2-pyridyl, at the 2-, 4-, 5- or 6-position of 3-pyridyl, at the 2-, 3-, 5- or 6-position of 4-pyridinyl, at the 3-, 4- or 5-position of 2-thienyl, or at the 2-, 4- or 5-position of 3-thienyl, by fluorine atom, chlorine atom, bromine atom, nitro, methyl, tert-butyl, carboxyl, trifluoromethyl, hydroxymethyl, methoxymethyl, 2-carboxylethyl, methoxy, carbamoyl, methylthio, dimethylaminocarbonyl, methylsulfonyl, amino or acetylamino.

At Z and Z', the heterocyclic moiety is preferably a heterocyclic group which is a 5-membered or 6-membered monocyclic group. Examples thereof include pyridyl, pyrazinyl, pyrimidinyl, pyridazinyl, 1,3,5-triazinyl, pyrrolyl, 2-oxopyrrolidinyl, 2-oxopiperidyl, pyrazolyl, imidazolyl, 2-imidazolinyl, 2-oxopiperidyl, pyrazolyl, imidazolyl, 2-imidazolinyl, 2-oxozolyl, tetrazolyl, thienyl, furyl, oxazolyl, isoxazolyl, 2-oxazolinyl, thiazolyl, isothiazolyl, 1,1-dioxoisothiazolidinyl, thiadiazolyl, pyrrolidinyl, piperidyl,

piperazinyl, morpholinyl, thiomorpholinyl, tetrahydropyranyl, Δ^2 -1,2,4-oxadiazolyl, 5-oxo- Δ^2 -1,2,4-oxadiazolyl, 5-oxo- Δ^2 -1,2,4thiadiazolinyl and 2-oxo-3H-1,2,3,5-oxathiadiazolinyl. The group D here is preferably the above-defined halogen atom, nitro, the above-defined optionally substituted C₁₋₆ alkyl, $-(CH_2)_t-COOR^{a19}$, $-(CH_2)_t-CONR^{a27}R^{a28}$, $-(CH_2)_t-OR^{a20}$, $-(CH_2)_t-NR^{a29}CO-R^{a24}$, $-(CH_2)_t-S(O)_g-R^{a25}$ or $-(CH_2)_t-SO_2-NHR^{a26}$.

Examples of heterocyclic group optionally substituted by 1 to 5 substituent(s) selected from group D preferably include 10 piperidino, 4-hydroxypiperidino, 2-oxopiperidin-1-yl, 1piperazinyl, 1-pyrrolidinyl, 2-oxopyrrolidin-1-yl, morpholino, 4thiomorpholinyl, 4-tetrahydropyranyl, 3-pyridyl, 2-pyrimidinyl, 2-imidazolin-2-yl, 2-oxoimidazolidin-1-yl, 2-oxooxazolidin-1-yl, 5-tetrazolyl, 2-thiazolyl, 4-thiazolyl, 5-thiazolyl, 2-15 methylthiazol-4-yl, 5-methylthiazol-2-yl, 2-aminothiazol-4-yl, 3methyl-1,2,4-oxadiazol-5-yl, 1,1-dioxoisothiazolidin-2-yl, 4,4dimethyl- Δ^2 -oxazolin-2-yl, 2-thienyl, 5-chlorothiophen-2-yl, 5methyloxazol-2-yl, 5-oxo- Δ^2 -1,2,4-oxadiazolin-3-yl, 5-oxo- Δ^2 -1,2,4-thiadiazolin-3-yl and 2-oxo-3H-1,2,3,5-oxathiazolin-4-yl.

Particularly preferably, it is pyridyl, pyrimidinyl, 20 tetrazolyl, thienyl, piperidyl, 2-oxopiperidin-1-yl, 2oxopyrrolidin-1-yl, 2-imidazolin-2-yl, 2-oxoimidazolidin-1-yl, 2oxooxazolidin-1-yl, 2-methylthiazol-4-yl, 5-methylthiazol-2-yl, 2-aminothiazol-4-yl, 3-methyl-1,2,4-oxadiazol-5-yl, 1,1-25 dioxoisothiazolidin-2-yl, 4,4-dimethyl- Δ^2 -oxazolin-2-yl, 5chlorothiophen-2-yl, 5-methyloxazol-2-yl, 5-oxo- Δ^2 -1,2,4oxadiazolin-3-yl, 5-oxo- Δ^2 -1,2,4-thiadiazolin-3-yl or 2-oxo-3H-1,2,3,5-oxathiadiazolin-4-yl, more preferably 2-oxopyrrolidin-1yl.

The C_{3-8} cycloalkyl optionally substituted by 1 to 5 substituent(s) selected from group C is that wherein the abovedefined C_{3-8} cycloalkyl is optionally substituted by the 1 to 5 substituent(s) selected from hydroxyl group, the above-defined halogen atom, the above-defined C_{1-6} alkyl and the above-defined C_{1-6} alkoxy, which may be unsubstituted. Examples thereof include cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, 4fluorocyclohexyl, 2-methylcyclopentyl, 3-methylcyclohexyl, 4methylcyclohexyl, 4,4-dimethylcyclohexyl, 3,5-dimethylcyclohexyl,

30

4-tert-butylcyclohexyl, 4-hydroxycyclohexyl, 4-methoxycyclohexyl and 2,3,4,5,6-pentafluorocyclohexyl.

The cycloalkyl moiety is preferably cyclopentyl or cyclohexyl, particularly preferably cyclohexyl.

At the ring Cy and ring Cy', the C₃₋₈ cycloalkyl optionally substituted by 1 to 5 substituent(s) selected from group C is preferably cyclopentyl, cyclohexyl, 4-fluorocyclohexyl, 4-methylcyclohexyl, 4,4-dimethylcyclohexyl, 4-tert-butylcyclohexyl, 4-hydroxycyclohexyl or 4-methoxycyclohexyl, more preferably cyclopentyl or cyclohexyl, particularly preferably cyclohexyl.

The C_{3-8} cycloalkyl optionally substituted by 1 to 5 substituent(s) selected from the above group B is that wherein the above-defined C_{3-8} cycloalkyl is optionally substituted by 1 to 5 substituent(s), and includes unsubstituted cycloalkyl. The substituents are selected from the above group B.

Specific examples thereof include cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, 4-fluorocyclohexyl, 2-methylcyclopentyl, 3-methylcyclohexyl, 4-methylcyclohexyl, 4,4-dimethylcyclohexyl, 3,5-dimethylcyclohexyl, 4-tert-butylcyclohexyl, 4-hydroxycyclohexyl, 4-methoxycyclohexyl and 2,3,4,5,6-pentafluorocyclohexyl.

Also exemplified are those wherein cyclopentyl or cyclohexyl is substituted by fluorine atom, chlorine atom, bromine atom, nitro, methyl, tert-butyl, carboxyl, trifluoromethyl, hydroxymethyl, methoxymethyl, 2-carboxylethyl, methoxy, carbamoyl, methylthio, dimethylaminocarbonyl, methylsulfonyl or acetylamino.

At cycloalkyl moiety, it is preferably cyclopropyl, cyclobutyl, cyclopentyl or cyclohexyl. As the C₃₋₈ cycloalkyl optionally substituted by 1 to 5 substituent(s) selected from the above group B, it is particularly preferably cyclopropyl, cyclobutyl, cyclohexyl or 4-hydroxycyclohexyl at R^{a27} and R^{a28}.

The C_{3-8} cycloalkyl optionally substituted by 1 to 5 substituent(s) selected from group D is that wherein the above- defined C_{3-8} cycloalkyl is optionally substituted by 1 to 5 substituent(s), and includes unsubstituted cycloalkyl. The substituent(s) is (are) selected from the substituent(s) of the above-mentioned group D (substituents shown under (a) to (q)).

The group D here includes the substituents recited with regard to C_{6-14} aryl optionally substituted by 1 to 5 substituent(s) selected from group D.

Examples thereof include cyclopropyl, cyclobutyl,

5 cyclopentyl, cyclohexyl, cycloheptyl, 4-fluorocyclohexyl, 2methylcyclopentyl, 3-methylcyclohexyl, 4-methylcyclohexyl, 4,4dimethylcyclohexyl, 3,5-dimethylcyclohexyl, 4-tertbutylcyclohexyl, 4-hydroxycyclohexyl, 4-methoxycyclohexyl and
2,3,4,5,6-pentafluorocyclohexyl.

The group D may be, for example, cyclopentyl or cyclohexyl substituted by fluorine atom, chlorine atom, bromine atom, nitro, methyl, tert-butyl, carboxyl, trifluoromethyl, hydroxymethyl, methoxymethyl, 2-carboxylethyl, methoxy, carbamoyl, methylthio, dimethylaminocarbonyl, methylsulfonyl or acetylamino.

The cycloalkyl moiety is preferably cyclopentyl or cyclohexyl, and at Z and Z', it is particularly preferably cyclohexyl.

15

The optionally substituted C₃₋₈ cycloalkenyl is that wherein the above-defined C₃₋₈ cycloalkenyl is optionally substituted by substituent(s) selected from hydroxyl group, the above-defined halogen atom, the above-defined C₁₋₆ alkyl and the above-defined C₁₋₆ alkoxy, which may be unsubstituted. Examples thereof include cyclopropenyl, cyclobutenyl, cyclopentenyl, cyclopentadienyl, cyclohexenyl, 4-fluoro-2-cyclohexenyl, 4-methyl-3-cyclohexenyl, 2,4-cyclohexadien-1-yl, 2,5-cyclohexadien-1-yl, cycloheptenyl and cyclooctenyl and the like, but do not include aryl (e.g., phenyl) or completely saturated cycloalkyl.

The optionally substituted C_{3-8} cycloalkenyl is particularly preferably cyclohexenyl at the ring Cy.

The C_{6-14} aryl C_{1-6} alkyl optionally substituted by 1 to 5 substituent(s) selected from group B is that wherein the above-defined C_{6-14} aryl C_{1-6} alkyl is optionally substituted by 1 to 5 substituent(s), and includes unsubstituted arylalkyl. The substituent(s) is (are) selected from the above-mentioned group B.

Examples thereof include benzyl, 1-naphthylmethyl, 2-naphthylmethyl, phenethyl, 3-phenylpropyl, 2-phenylpropyl, 3-fluorobenzyl, 4-fluorobenzyl, 3-chlorobenzyl, 4-chlorobenzyl,

2,4-dichlorobenzyl, 3,5-dichlorobenzyl, pentafluorobenzyl, 4-methylbenzyl, 4-tert-butylbenzyl, 2-trifluoromethylbenzyl, 4-trifluoromethylbenzyl, 4-nitrobenzyl, 4-cyanobenzyl, 4-acetylbenzyl, 4-carboxylbenzyl, 4-carbamoylbenzyl, 4-aminobenzyl, 4-dimethylaminobenzyl, 4-acetylaminobenzyl, 4- (methylsulfonylamino)benzyl, 4-methoxybenzyl, 3,4,5-trimethoxybenzyl, 4-methylthiobenzyl, 4-methylsulfonylbenzyl, 4-aminosulfonylbenzyl, 3-nitro-4-methoxybenzyl and 4-nitro-3-methoxybenzyl.

The C_{6-14} aryl C_{1-6} alkyl moiety is preferably benzyl or phenethyl, particularly preferably benzyl. The group B is preferably the above-defined halogen atom, nitro, the above-defined C_{1-6} alkyl, the above-defined halogenated C_{1-6} alkyl or $-(CH_2)_r-OR^{b1}$. Examples thereof include fluorine atom, chlorine atom, nitro, methyl, tert-butyl, trifluoromethyl, methoxy or trifluoromethyloxy, particularly preferably fluorine atom or chlorine atom.

The specific C₆₋₁₄ aryl C₁₋₆ alkyl optionally substituted by 1 to 5 substituent(s) selected from group B at R^{a12} and R^{a13} is 20 preferably benzyl, phenethyl, 3-chlorobenzyl, 4-chlorobenzyl, 4-tert-butylbenzyl or 3-trifluoromethylbenzyl, it is preferably benzyl at R^{a1}, R^{a19}, R^{a27}, R^{a28}, R^{a31} and R^{b5}, it is preferably benzyl, phenethyl, 4-fluorobenzyl, 2-chlorobenzyl, 3-chlorobenzyl, 4-chlorobenzyl, 4-tert-butylbenzyl or 4-trifluoromethylbenzyl at R^{a20}, and 4-chlorobenzyl, 3,5-dichlorobenzyl or 4-trifluoromethylbenzyl at R^{a22} and R^{a23}.

It is particularly preferably benzyl at other substituents.

The C_{6-14} aryl C_{1-6} alkyl optionally substituted by 1 to 5 substituent(s) selected from group D is that wherein the above-defined C_{6-14} aryl C_{1-6} alkyl is optionally substituted by 1 to 5 substituent(s), and includes unsubstituted aryl. The substituent(s) is (are) selected from the substituent(s) of the above-mentioned group D (substituents shown under (a) to (q)).

Examples of group D include fluorine atom, chlorine atom, spropyl, bromine atom, nitro, cyano, methyl, ethyl, propyl, isopropyl, tert-butyl, trifluoromethyl, hydroxymethyl, 2-hydroxyethyl, methoxymethyl, 2-carboxylethyl, methoxycarbonylmethyl, ethoxycarbonylmethyl, acetyl, carboxyl, methoxycarbonyl,

ethoxycarbonyl, carbamoyl, methylaminocarbonyl,
isopropylaminocarbonyl, dimethylaminocarbonyl,
diethylaminocarbonyl, (2-hydroxyethyl)aminocarbonyl,
(carboxylmethyl)aminocarbonyl, hydroxyl group, methoxy, ethoxy,
isopropyloxy, hydroxymethyloxy, carboxylmethyloxy,
(dimethylaminocarbonyl)methyloxy, amino, methylamino,
dimethylamino, diethylamino, acetylamino, methylsulfonylamino,
methylthio, methylsulfonyl, methylsulfinyl, aminosulfonyl,
methylaminosulfonyl and dimethylaminosulfonyl.

Examples of C_{6-14} aryl C_{1-6} alkyl-optionally substituted by 1 10 to 5 substituent(s) selected from group D include benzyl, 1naphthylmethyl, 2-naphthylmethyl, phenethyl, 3-phenylpropyl, 2phenylpropyl, 3-fluorobenzyl, 4-fluorobenzyl, 3-chlorobenzyl, 4chlorobenzyl, 2,4-dichlorobenzyl, 3,5-dichlorobenzyl, 4-15 bromobenzyl, 4-nitrobenzyl, pentafluorobenzyl, 4-methylbenzyl, 4tert-butylbenzyl, 2-trifluoromethylbenzyl, 4trifluoromethylbenzyl, 4-(hydroxymethyl)benzyl, 4-(methoxymethyl) benzyl, 4-(2-carboxylethyl) benzyl, 3carboxylbenzyl, 4-carboxylbenzyl, 4-methoxybenzyl, 3,4,5-20 trimethoxybenzyl, 4-carbamoylbenzyl, 4-methylthiobenzyl, 4-(dimethylaminocarbonyl)benzyl, 4-methylsulfonylbenzyl, 4-(acetylamino) benzyl, 4-cyanobenzyl, 4-acetylbenzyl, 4-aminobenzyl, 4-dimethylaminobenzyl, 4-(methylsulfonylamino)benzyl, 4methylsulfinylbenzyl, 4-aminosulfonylbenzyl, (3-nitro-4-25 methoxyphenyl) methyl and (4-nitro-3-methoxyphenyl) methyl.

At Z and Z', the C_{6-14} aryl C_{1-6} alkyl moiety is preferably benzyl or phenethyl, and the group D here is preferably the above-defined halogen atom, nitro, the above-defined optionally substituted C_{1-6} alkyl, $-(CH_2)_t-COOR^{a19}$, $-(CH_2)_t-CONR^{a27}R^{a28}$, $-(CH_2)_t-OR^{a20}$, $-(CH_2)_t-NR^{a29}CO-R^{a24}$, $-(CH_2)_t-S(0)_q-R^{a25}$ or $-(CH_2)_t-SO_2-NHR^{a26}$.

The C₆₋₁₄ aryl C₁₋₆ alkyl optionally substituted by 1 to 5 substituent(s) selected from group D is preferably benzyl, 3-fluorobenzyl, 4-fluorobenzyl, 3-chlorobenzyl, 4-chlorobenzyl, 3,5-dichlorobenzyl, 4-bromobenzyl, 4-nitrobenzyl, 4-methylbenzyl, 4-tert-butylbenzyl, 2-trifluoromethylbenzyl, 4-trifluoromethylbenzyl, 4-(hydroxymethyl)benzyl, 4-(methoxymethyl)benzyl, 4-(2-carboxylethyl)benzyl, 3-

carboxylbenzyl, 4-carboxylbenzyl, 4-methoxybenzyl, 3,4,5-trimethoxybenzyl, 4-carbamoylbenzyl, 4-methylthiobenzyl, 4-(dimethylaminocarbonyl)benzyl, 4-methylsulfonylbenzyl, 4-acetylaminobenzyl, 4-methylsulfinylbenzyl or 4-saminosulfonylbenzyl.

It is particularly preferably the above-defined halogen atom, the above-defined optionally substituted C_{1-6} alkyl, $-(CH_2)_t-COOR^{a19}$, $-(CH_2)_t-CONR^{a27}R^{a28}$, $-(CH_2)_t-OR^{a20}$ or $-(CH_2)_t-S(O)_q-R^{a25}$. Examples thereof include fluorine atom, chlorine atom, bromine atom, nitro, methyl, tert-butyl, carboxyl, trifluoromethyl, hydroxymethyl, methoxymethyl, 2-carboxylethyl, methoxy, carbamoyl, methylthio, dimethylaminocarbonyl, methylsulfonyl and acetylamino. It is more preferably fluorine atom, chlorine atom, methyl, tert-butyl, carboxyl, methoxy, carbamoyl, methylthio, dimethylaminocarbonyl or methylsulfonyl, most preferably fluorine atom or chlorine atom.

The heterocycle C_{1-6} alkyl optionally substituted by 1 to 5 substituent(s) selected from group B is that wherein the above-defined heterocycle C_{1-6} alkyl is optionally substituted by 1 to 5 substituent(s), and includes unsubstituted heterocycle C_{1-6} alkyl. The substituent(s) is(are) selected from the above-mentioned group B.

Examples thereof include 2-pyridylmethyl, 3-pyridylmethyl, 2-chloropyridin-4-ylmethyl, 4-pyridylmethyl, pyrrolylmethyl, 2-furylmethyl, imidazolylmethyl, 2-thienylmethyl, 3-thienylmethyl, 2-furylmethyl, 2-oxazolylmethyl, 5-isothiazolylmethyl, 2-methyloxazol-4-ylmethyl, 2-thiazolylmethyl, 4-thiazolylmethyl, 5-thiazolylmethyl, 2-methylthiazol-4-ylmethyl, 2-methylthiazol-5-ylmethyl, 2,5-dimethylthiazol-4-ylmethyl, 4-methylthiazol-2-ylmethyl, 2,4-dimethylthiazol-5-ylmethyl, 2-isothiazolylmethyl, 2-pyrrolinylmethyl, pyrrolidinylmethyl, piperidylmethyl, 4-piperidylmethyl, 1-methylpiperidin-4-ylmethyl, 4-hydroxypiperidinomethyl, 3-hydroxypyrrolidinylmethyl, 2-(4-hydroxypiperidino)ethyl, 1-(tert-butoxycarbonyl)piperidin-4-ylmethyl, 1-methylsulfonylpiperidin-4-ylmethyl, piperazinylmethyl, morpholinomethyl, thiomorpholinylmethyl, 1-

tetrahydropyranylmethyl, 2-quinolylmethyl, 1-isoquinolylmethyl and the like.

The heterocyclic moiety is preferably a heterocyclic group which is a 5-membered or 6-membered monocyclic group. Examples thereof include pyridyl, pyrazinyl, pyrimidinyl, pyridazinyl, 1,3,5-triazinyl, pyrrolyl, pyrazolyl, imidazolyl, 1,2,4-triazolyl, tetrazolyl, thienyl, furyl, oxazolyl, isoxazolyl, thiazolyl, isothiazolyl, thiadiazolyl, pyrrolidinyl, piperidyl, piperazinyl, morpholinyl, thiomorpholinyl and tetrahydropyranyl, and the alkyl moiety thereof is preferably straight chain alkyl having 1 to 4 carbon atoms. The group B here is preferably the above-defined halogen atom, the above-defined C₁₋₆ alkyl, the above-defined halogenated C₁₋₆ alkyl, the above-defined C₁₋₆ alkanoyl, -(CH₂)_r-COOR^{b1}, -(CH₂)_r-CONR^{b1}R^{b2} or -(CH₂)_r-OR^{b1}.

Examples of heterocycle C_{1-6} alkyl optionally substituted 15 by 1 to 5 substituent(s) selected from group B preferably include 2-pyridylmethyl, 3-pyridylmethyl, 2-chloropyridin-4-ylmethyl, 4pyridylmethyl, piperidin-4-ylmethyl, 1-methylpiperidin-4-ylmethyl, 2-(4-hydroxypiperidino)ethyl, 1-acetylpiperidin-4-ylmethyl, 1-20 (tert-butoxycarbonyl)piperidin-4-ylmethyl, 1-(methylsulfonyl)piperidin-4-ylmethyl, 2-thiazolylmethyl, 4-thiazolylmethyl, 2methylthiazolin-4-ylmethyl, 2,4-dimethylthiazolin-5-ylmethyl and 4-methylthiazol-2-ylmethyl. Particularly preferably, it is 2pyridylmethyl, 3-pyridylmethyl, 2-chloropyridin-4-ylmethyl, 4-25 pyridylmethyl, piperidin-4-ylmethyl, 1-methylpiperidin-4-ylmethyl, 2-(4-hydroxypiperidino)ethyl, 1-acetylpiperidin-4-ylmethyl, 1-(tert-butoxycarbonyl)piperidin-4-ylmethyl, 1-(methylsulfonyl)piperidin-4-ylmethyl, 2-methylthiazolin-4ylmethyl, 2,4-dimethylthiazolin-5-ylmethyl or 4-methylthiazol-2-30 ylmethyl at R^{a20}, 2-pyridylmethyl at R^{a22} and R^{a23}, and 4pyridylmethyl or 4-methylthiazol-2-ylmethyl at Ra27 and Ra28.

The heterocycle C_{1-6} alkyl optionally substituted by 1 to 5 substituent(s) selected from group D is that wherein the above-defined heterocycle C_{1-6} alkyl is optionally substituted by 1 to 5 substituent(s), and includes unsubstituted heterocycle C_{1-6} alkyl. The substituent(s) is (are) selected from the above-mentioned group D (substituents shown under (a) to (q)).

Examples of group D here include fluorine atom, chlorine atom, bromine atom, nitro, cyano, methyl, ethyl, propyl, isopropyl, tert-butyl, trifluoromethyl, hydroxymethyl, 2-hydroxyethyl, methoxymethyl, 2-carboxylethyl,

5 methoxycarbonylmethyl, ethoxycarbonylmethyl, acetyl, carboxyl, methoxycarbonyl, ethoxycarbonyl, carbamoyl, methylaminocarbonyl, isopropylaminocarbonyl, dimethylaminocarbonyl, diethylaminocarbonyl, (2-hydroxyethyl)aminocarbonyl, (carboxylmethyl)aminocarbonyl, hydroxyl group, methoxy, ethoxy, isopropyloxy, hydroxymethyloxy, carboxylmethyloxy, (dimethylaminocarbonyl)methyloxy, amino, methylamino, diethylamino, acetylamino, methylsulfonylamino, methylthio, methylsulfonyl, methylsulfinyl, aminosulfonyl,

methylaminosulfonyl and dimethylaminosulfonyl. Examples of heterocycle C_{1-6} alkyl optionally substituted by 15 1 to 5 substituent(s) selected from group D include 2pyridylmethyl, 3-pyridylmethyl, 2-chloropyridin-4-ylmethyl, 4pyridylmethyl, pyrrolylmethyl, imidazolylmethyl, 2-thienylmethyl, 3-thienylmethyl, 2-furylmethyl, 2-oxazolylmethyl, 5-20 isothiazolylmethyl, 2-methyloxazol-4-ylmethyl, 2-thiazolylmethyl, 4-thiazolylmethyl, 5-thiazolylmethyl, 2-methylthiazol-4-ylmethyl, 2-methylthiazol-5-ylmethyl, 2,5-dimethylthiazol-4-ylmethyl, 4methylthiazol-2-ylmethyl, 2,4-dimethylthiazol-5-ylmethyl, 2isothiazolylmethyl, 2-pyrrolinylmethyl, pyrrolidinylmethyl, 25 piperidylmethyl, 4-piperidylmethyl, 1-methylpiperidin-4-ylmethyl, 4-hydroxypiperidinomethyl, 2-(4-hydroxypiperidino)ethyl, 1-(tertbutoxycarbonyl)piperidin-4-ylmethyl, 1-acetylpiperidin-4-ylmethyl, 1-methylsulfonylpiperidin-4-ylmethyl, piperazinylmethyl, morpholinomethyl, thiomorpholinylmethyl, 1-30 tetrahydropyranylmethyl, 2-quinolylmethyl, 1-isoquinolylmethyl, and the like.

Preferable heterocyclic moiety at Z and Z' is heterocylic group which is 5-membered or 6-membered monocyclic group.

Examples of the heterocyclic moiety include pyridyl, pyrazinyl,

pyrimidinyl, pyridazinyl, 1,3,5-triazinyl, pyrrolyl, pyrazolyl,

imidazolyl, 1,2,4-triazolyl, tetrazolyl, thienyl, furyl, oxazolyl,

isooxazolyl, thiazolyl, isothiazolyl, thiadiazolyl, pyrrolidinyl,

piperidyl, piperazinyl, morpholinyl, thiomorpholinyl and

tetrahydropyranyl, and the alkyl moiety is preferably straight chain alkyl having 1 to 4 carbon atoms, particularly methyl (i.e., methylene).

Preferable group D is the above-defined halogen atom, nitro, the above-defined optionally substituted C_{1-6} alkyl, - $(CH_2)_t$ - $COOR^{a19}$, - $(CH_2)_t$ - $CONR^{a27}R^{a28}$, - $(CH_2)_t$ - OR^{a20} , - $(CH_2)_t$ - $NR^{a29}CO-R^{a24}$, - $(CH_2)_t$ - $S(0)_g$ - R^{a25} or - $(CH_2)_t$ - SO_2 - NHR^{a26} .

Preferable examples of heterocycle C₁₋₆ alkyl optionally substituted by 1 to 5 substituent(s) selected from group D include 2-pyridylmethyl, 3-pyridylmethyl, 2-chloropyridin-4-ylmethyl, 4-pyridylmethyl, piperidin-4-ylmethyl, 1-methylpiperidin-4-ylmethyl, 4-hydroxypiperidinomethyl, 2-(4-hydroxypiperidino)ethyl, 1-acetylpiperidin-4-ylmethyl, 1-(tert-butoxycarbonyl)piperidin-4-ylmethyl, 1-(methylsulfonyl)piperidin-4-ylmethyl, 2-thiazolylmethyl, 4-thiazolylmethyl, 2-methylthiazolin-4-ylmethyl, 2,4-dimethylthiazolin-5-ylmethyl and 4-methylthiazol-2-ylmethyl.

Particularly preferred is 4-hydroxypiperidinomethyl.

The C_{3-8} cycloalkyl C_{1-6} alkyl optionally substituted by 1 to 5 substituent(s) selected from the above group B is that wherein the above-defined C_{3-8} cycloalkyl C_{1-6} alkyl is optionally substituted by 1 to 5 substituent(s), and includes unsubstituted cycloalkylalkyl. The substituents are selected from the above group B.

Specific examples thereof include cyclopropylmethyl, cyclobutylmethyl, cyclopentylmethyl, cyclohexylmethyl, 2- (cyclopentyl) ethyl, 2-(cyclohexyl) ethyl, cycloheptylmethyl, 4- fluorocyclohexylmethyl, 2-methylcyclopentylmethyl, 3- methylcyclohexylmethyl, 4-methylcyclohexylmethyl, 4,4- dimethylcyclohexylmethyl, 3,5-dimethylcyclohexylmethyl, 4-tert- butylcyclohexylmethyl, 4-hydroxycyclohexylmethyl, 4- methoxycyclohexylmethyl, and 2,3,4,5,6-pentafluorocyclohexylmethyl.

Also exemplified are those wherein cyclopentylmethyl or cyclohexylmethyl is substituted by fluorine atom, chlorine atom, so bromine atom, nito, methyl, tert-butyl, carboxyl, trifluoromethyl, hydroxymethyl, methoxymethyl, 2-carboxylethyl, methoxy, carbamoyl, methylthio, dimethylaminocarbonyl, methylsulfonyl or acetylamino.

At cycloalkyl moiety, it is preferably cyclopentylmethyl

or cyclohexylmethyl, and at R^{a20} , R^{a27} and R^{a28} , it is particularly preferably cyclohexylmethyl.

The carboxyl-protecting group only needs to be suitable for reaction conditions, and is capable of protecting and 5 deprotecting and may be, for example, methyl; substituted methyl group such as methoxymethyl, methylthiomethyl, 2-tetrahydropyranyl, methoxyethoxymethyl, benzyloxymethyl, phenacyl, diacylmethyl, phthalimidomethyl etc.; ethyl; substituted ethyl group such as 2,2,2-trichloroethyl, 2-chloroethyl, 2-(p-toluenesulfonyl)ethyl, 2-methylthioethyl, 2-(p-toluenesulfonyl)ethyl, t-butyl etc.; benzyl; substituted benzyl group such as diphenylmethyl, triphenylmethyl, p-nitrobenzyl, 4-picolyl, p-methoxybenzyl, 2-(9,10-dioxo)anthrylmethyl etc.; silyl group such as trimethylsilyl, t-butyldimethylsilyl, phenyldimethylsilyl etc.; and the like.

Preferred are industrially effective protecting groups and specifically preferred as R^{a36} are methyl and ethyl.

In formula [I], X is preferably

20

wherein each symbol is as defined above.

 G^1 , G^2 , G^3 and G^4 are each preferably $(C-R^1)$, $(C-R^2)$, $(C-R^3)$ and $(C-R^4)$, G^5 is preferably a nitrogen atom, and G^6 , G^8 and G^9 are preferably a carbon atom. G^7 is preferably $C(-R^7)$ or unsubstituted nitrogen atom, wherein R^7 is preferably hydrogen atom.

A preferable combination is G^2 of $(C-R^2)$ and G^6 of a carbon atom, particularly preferably G^2 of $(C-R^2)$, G^6 of a carbon atom and G^5 of a nitrogen atom, most preferably G^2 of $(C-R^2)$, G^6 of a carbon atom, G^5 of a nitrogen atom and G^7 of unsubstituted nitrogen atom.

In formulas [I] and [II], 1 to 4 of G^1 to G^9 in the moiety

is(are) preferably a nitrogen atom, specifically preferably

particularly preferably

more preferably

$$R^2$$
 R^3
 R^4
 R^7
 R^7
 R^3
 R^4
 R^3
 R^4

most preferably

$$R^2$$
 R^3
 R^4
 R^3

It is also a preferable embodiment wherein the

15

20

moiety is aromatic ring.

R¹ and R⁴ are preferably hydrogen atom. R² is preferably carboxyl, -COOR^{a1}, -CONR^{a2}R^{a3}, -SO₂R^{a7} (each symbol is as defined above) or heterocyclic group having 1 to 4 heteroatom(s) selected from an oxygen atom, a nitrogen atom and a sulfur atom, particularly preferably carboxyl, -COOR^{a1} or -SO₂R^{a7}, more preferably carboxyl or -COOR^{a1}, most preferably carboxyl. R³ is preferably hydrogen atom or -OR^{a6} (R^{a6} is as defined above), particularly preferably hydrogen atom.

 R^{al} is preferably optionally substituted C_{1-6} alkyl.

When R^2 is carboxyl or $-\text{COOR}^{a1}$, at least one of R^1 , R^3 and R^4 is preferably hydroxyl group, halogen atom (particularly fluorine atom, chlorine atom) or $-\text{OR}^{a6}$ (wherein R^{a6} is preferably hydrogen atom or methyl).

The ring Cy and ring Cy' are preferably cyclopentyl, cyclohexyl, cycloheptyl, tetrahydrothiopyranyl or piperidino, particularly preferably cyclopentyl, cyclohexyl or cycloheptyl, more preferably cyclohexyl.

The ring A and ring A' are preferably phenyl, pyridyl,

25 pyrazinyl, pyrimidinyl, pyridazinyl, cyclohexyl, cyclohexenyl,
furyl or thienyl, particularly preferably phenyl, pyridyl,

pyrazinyl, pyrimidinyl or pyridazinyl, more preferably phenyl or pyridyl, and most preferably phenyl.

The ring B and ring B' are preferably C₁₋₆ aryl or heterocyclic group, specifically preferably, phenyl, pyridyl, 5 pyrazinyl, pyrimidinyl, pyridazinyl, 1,3,5-triazinyl, pyrrolyl, pyrazolyl, imidazolyl, 1,2,4-triazolyl, tetrazolyl, thienyl, furyl, oxazolyl, isoxazolyl, thiazolyl, isothiazolyl or thiadiazolyl, particularly preferably phenyl, pyridyl, pyrimidinyl, 1,3,5-triazinyl or thiazolyl, more preferably, phenyl, pyridyl or thiazolyl, and most preferably phenyl or thiazolyl.

With regard to R⁵ and R⁶, one of them is preferably hydrogen atom and the other is halogen atom, particularly fluorine atom. Alternatively, the both arepreferably hydrogen atoms. When ring A is phenyl, R⁵ and R⁶ preferably are present at an ortho position from G⁶. The same applies to R⁵ and R⁶.

Y is preferably $-(CH_2)_m-O-(CH_2)_n-$, $-NHCO_2-$, $-CONH-CHR^{a14}-$, $-(CH_2)_m-NR^{a12}-(CH_2)_n-$, $-CONR^{a13}-(CH_2)_n-$, $-O-(CH_2)_m-CR^{a15}R^{a16}-(CH_2)_n-$ or $-(CH_2)_n-NR^{a12}-CHR^{a15}-$ (each symbol is as defined above), more preferably, $-(CH_2)_m-O-(CH_2)_n-$ or $-O-(CH_2)_m-CR^{a15}R^{a16}-(CH_2)_n-$, most preferably $-O-(CH_2)_m-CR^{a15}R^{a16}-(CH_2)_n-$.

The 1, m and n are preferably 0 or an integer of 1 to 4, particularly preferably 0, 1 or 2, at Y. In $-(CH_2)_m-O-(CH_2)_n-$, m=n=0 or m=0 and n=1 is more preferable, most preferably m=n=0. In $-O-(CH_2)_m-CR^{a15}R^{a16}-(CH_2)_n-$, m=n=0, m=0 and n=1, m=1 and n=0 or m=1 and n=1 is more preferable, most preferably m=n=0.

When Y is $-O-(CH_2)_m-CR^{a15}R^{a16}-(CH_2)_n-$, R^{a16} is preferably hydrogen atom, R^{a15} is preferably

30

wherein the

moiety is preferably symmetric. The preferable mode of n, ring B, Z and w and the preferable mode of n', ring B', Z' and w' are the same.

When ring A is phenyl, X or Y is preferably present at the para-position relative to G⁶. When ring B and ring B' are phenyl, Z is preferably present at the ortho or meta-position relative to Y. It is preferable that the 3-position on phenyl have one substituent or the 2-position and the 5-position on phenyl each have one substituent.

When ring B is thiazolyl, Y is preferably substituted at the 5-position, and Z is preferably substituted at the 2-position, the 4-position or the 2-position and the 4-position. Similarly, when ring B' is thiazolyl, $(CH_2)_n$ is also preferably substituted at the 5-position, and Z' is preferably substituted at the 2-position, the 4-position or the 2-position and the 4-position.

Z and Z' are preferably group D, " C_{6-14} aryl optionally substituted by 1 to 5 substituent(s) selected from group D" or "heterocyclic group optionally substituted by 1 to 5 substituent(s) selected from group D", particularly preferably group D or " C_{6-14} aryl optionally substituted by 1 to 5 substituent(s) selected from group D".

More preferably, they are the above-defined halogen atom, nitro, the above-defined optionally substituted C_{1-6} alkyl, $-(CH_2)_t - COOR^{a19}, -(CH_2)_t - CONR^{a27}R^{a28}, -(CH_2)_t - OR^{a20}, -(CH_2)_t - NR^{a29}CO - R^{a24}, -(CH_2)_t - S(0)_q - R^{a25} \text{ or } -(CH_2)_t - SO_2 - NHR^{a26}, \text{ or } C_{6-14} \text{ aryl or heterocyclic group optionally substituted by these.}$

With regard to Z and Z', the preferable mode of group D that directly substitutes each ring B and ring B' and the preferable mode of group D that substitutes C_{6-14} aryl, C_{3-8} cycloalkyl, C_{6-14} aryl C_{1-6} alkyl or heterocyclic group are the

same, wherein they may be the same with or different from each other.

Specific examples of the substituent preferably include fluorine atom, chlorine atom, bromine atom, nitro, cyano, methyl, 5 ethyl, propyl, isopropyl, tert-butyl, trifluoromethyl, hydroxymethyl, 2-hydroxyethyl, methoxymethyl, 2-carboxylethyl, methoxycarbonylmethyl, ethoxycarbonylmethyl, carbamoylmethoxymethyl, (dimethylaminocarbonyl) methoxymethyl. acetyl, isovaleryl, carboxyl, methoxycarbonyl, ethoxycarbonyl, 10 carbamoyl, methylaminocarbonyl, hydroxyaminocarbonyl, ethylaminocarbonyl, propylaminocarbonyl, isopropylaminocarbonyl, butylaminocarbonyl, isobutylaminocarbonyl, tertbutylaminocarbonyl, (4-hydroxybutyl) aminocarbonyl, (1hydroxypropan-2-yl) aminocarbonyl, (2,3-dihydroxypropyl) -15 aminocarbonyl, (1,3-dihydroxypropan-2-yl)aminocarbonyl, methoxyaminocarbonyl, {2-[2-(methoxy)ethoxy]ethyl}aminocarbonyl, N-ethyl-N-methylaminocarbonyl, N-methyl-N-propylaminocarbonyl, Nisopropyl-N-methylaminocarbonyl, dimethylaminocarbonyl, diethylaminocarbonyl, (2-hydroxyethyl)aminocarbonyl, (2-hydroxy-20 2-methylpropan-2-yl)aminocarbonyl, (carboxylmethyl)aminocarbonyl, hydroxyl group, methoxy, ethoxy, propyloxy, isopropyloxy, butyloxy, isopentyloxy, 2-isopentenyloxy, 3-isohexenyloxy, 4methyl-3-pentenyloxy, 2-propynyloxy, trifluoromethyloxy, hydroxymethyloxy, carboxylmethyloxy, (dimethylaminocarbonyl) -25 methyloxy, amino, methylamino, dimethylamino, diethylamino, acetylamino, N-acetyl-N-methylamino, ureido, isopropylcarbonylamino, isobutylcarbonylamino, tertbutylcarbonylamino, (ethylamino) carbonylamino, (isopropylamino) carbonylamino, (dimethylamino) carbonylamino, (4-30 hydroxypiperidino) carbonylamino, [(4-hydroxypiperidino) methyl]carbonylamino, [(3-hydroxypyrrolidinyl)methyl]carbonylamino, methylsulfonylamino, isopropylsulfonylamino, N-(isopropylsulfonyl) -N-methylamino, methylthio, methylsulfonyl, isopropylsulfonyl, isobutylsulfonyl, methylsulfinyl, 35 isopropylsulfinyl, aminosulfonyl, methylaminosulfonyl, dimethylaminosulfonyl, isopropylaminosulfonyl, tert-butylaminosulfonyl, hydroxyamidino, phenyl, 3-fluorophenyl, 4-fluorophenyl,

3-chlorophenyl, 4-chlorophenyl, 2,4-difluorophenyl, 3,4-

```
difluorophenyl, 3,4-dichlorophenyl, 3,5-dichlorophenyl, 4-chloro-
   3-fluorophenyl, 4-chloro-2-fluorophenyl, 4-bromophenyl, 4-
   nitrophenyl, 4-cyanophenyl, 4-methylphenyl, 4-ethylphenyl, 4-
   propylphenyl, 4-isopropylphenyl, 4-tert-butylphenyl, 2-
 5 trifluoromethylphenyl, 4-trifluoromethylphenyl, 4-
   (hydroxymethyl) phenyl, 4-(2-hydroxyethyl) phenyl, 4-
   (methoxymethyl) phenyl, 4-(2-carboxylethyl) phenyl, 4-
   (methoxycarbonylmethyl) phenyl, 4-(ethoxycarbonylmethyl) phenyl, 4-
   acetylphenyl, 3-carboxylphenyl, 4-carboxylphenyl, 4-
10 (methoxycarbonyl) phenyl, 4-(ethoxycarbonyl) phenyl, 4-
   carbamoylphenyl, 4-(methylaminocarbonyl)phenyl, 4-
   (isopropylaminocarbonyl) phenyl, 4-(dimethylaminocarbonyl) phenyl,
   4-(diethylaminocarbonyl)phenyl, 4-[(2-hydroxyethyl)-
   aminocarbonyl]phenyl, 4-[(carboxylmethyl)aminocarbonyl]phenyl, 4-
15 hydroxyphenyl, 4-methoxyphenyl, 3,4,5-trimethoxyphenyl, 4-
   ethoxyphenyl, 4-propyloxyphenyl, 4-isopropyloxyphenyl, 4-
   butyloxyphenyl, 4-isopentyloxyphenyl, 4-(2-isopentenyloxy)phenyl,
   4-(3-isohexenyloxy) phenyl, 4-(4-methyl-3-pentenyloxy) phenyl, 4-
   (2-propynyloxy) phenyl, 4-(trifluoromethyloxy) phenyl, 4-
20 (hydroxymethyloxy) phenyl, 4-(carboxylmethyloxy) phenyl, 4-
   [(dimethylaminocarbonyl)methyloxy]phenyl, 4-aminophenyl, 4-
   (methylamino) phenyl, 4-(dimethylaminophenyl), 4-(diethylamino)-
   phenyl, 4-(acetylamino) phenyl, 4-(methylsulfonylamino) phenyl, 4-
   (methylthio) phenyl, 4-(methylsulfonyl) phenyl, 4-
25 (methylsulfinyl)phenyl, 4-(aminosulfonyl)phenyl, 4-
   (methylaminosulfonyl) phenyl, 4-(dimethylaminosulfonyl) phenyl, 4-
   (tert-butylaminosulfonyl) phenyl, tetrazol-5-ylphenyl, cyclohexyl,
   benzyl, 4-chlorobenzyl, phenethyl, benzyloxy, 4-fluorobenzyloxy,
   2-chlorobenzyloxy, 3-chlorobenzyloxy, 4-chlorobenzyloxy, 4-tert-
30 butylbenzyloxy, 4-trifluoromethylbenzyloxy, phenethyloxy, 2-
   thienyl, 2-thiazolyl, 2-pyridyl, 3-pyridyl, 4-pyridyl, 6-
   fluoropyridin-3-yl, 5-fluoropyridin-2-yl, 6-chloropyridin-3-yl,
   6-methylpyridin-3-yl, 2-pyrimidinyl, 5-tetrazolyl, piperidino, 2-
   oxopiperidin-1-yl, 2-oxopyrrolidin-1-yl, 2-imidazolin-2-yl, 2-
35 oxoimidazolidin-1-yl, 2-oxooxazolidin-1-yl, 2-methylthiazol-4-yl,
   5-methylthiazol-2-yl, 2-aminothiazol-4-yl, 3-methyl-1,2,4-
   oxadiazol-5-yl, 1,1-dioxoisothiazolidin-2-yl, 4,4-dimethyl-\Delta^2-
   oxazolin-2-yl, 5-chlorothiophen-2-yl, 5-methyloxazol-2-yl, 5-oxo-
```

```
\Delta^2-1,2,4-oxadiazolin-3-yl, 5-oxo-\Delta^2-1,2,4-thiadiazolin-3-yl, 2-
   oxo-3H-1,2,3,5-oxathiadiazolin-4-yl, 4-hydroxypiperidinomethyl,
   piperidinocarbonyl, 4-hydroxypiperidinocarbonyl, 3,4-
   dihydroxypiperidinocarbonyl, 1-piperazinylcarbonyl, 1-
 5 pyrrolidinylcarbonyl, morpholinocarbonyl, 4-
   thiomorpholinylcarbonyl, phenoxy, 2,4-dichlorophenoxy,
   tetrahydropyranyloxy, 2-pyridylmethyloxy, 3-pyridylmethyloxy, 2-
   chloropyridin-4-ylmethyloxy, 4-pyridylmethyloxy, 2-
   piperidylmethyloxy, 3-piperidylmethyloxy, 4-piperidylmethyloxy,
10 1-methylpiperidin-4-ylmethyloxy, 1-acetylpiperidin-4-ylmethyloxy,
   1-(tert-butoxycarbonyl)piperidin-4-ylmethyloxy, 1-
   (methylsulfonyl)piperidin-4-ylmethyloxy, 2-methylthiazolin-4-
   yloxy, 2,4-dimethylthiazolin-5-yloxy, dimethylaminocarbonyl-
   methyloxy, piperidinocarbonylmethyloxy, 4-hydroxypiperidino-
15 carbonylmethyloxy, 2-methylthiazol-4-yl, (2-methylthiazol-4-
   yl)methyloxy, (2,4-dimethylthiazol-5-yl)methyloxy, benzoyl, 3-
   fluorobenzoyl, 4-chlorobenzylamino, 3,5-dichlorobenzylamino, 4-
   trifluoromethylbenzylamino, 2-pyridylmethylamino, benzoylamino,
   4-chlorobenzoylamino, 4-trifluoromethylbenzoylamino, 3,5-
20 dichlorobenzoylamino, 3-nitro-4-methoxybenzoylamino, 4-nitro-3-
   methoxybenzoylamino, 3-pyridylcarbonylamino, morpholinocarbonyl-
   amino, 2-oxazolinylamino, 4-hydroxypiperidinosulfony, 4-
   methylphenylsulfonylamino, 2-thiazolylaminosulfonyl, 2-
   pyridylaminosulfonyl, benzylaminocarbonyl, N-benzyl-N-
25 methylaminocarbonyl, (4-pyridylmethyl)aminocarbonyl or
   (cyclohexylmethyl) aminocarbonyl, 2-hydroxyethyloxy, 3-
   hydroxypropyloxy, 2-methoxyethoxy, 2-(2-methoxyethoxy)ethoxy,
   azetidinylcarbonyl, 3-hydroxypyrrolidinylcarbonyl, 3-
   hydroxypiperidinocarbonyl, 4-hydroxypiperidinocarbonyl, 3,4-
30 dihydroxypiperidinocarbonyl, 4-methoxypiperidinocarbonyl, 4-
   carboxypiperidinocarbonyl, 4-(hydroxymethyl)piperidinocarbonyl,
   2-oxopiperidinocarbonyl, 4-oxopiperidinocarbonyl, 2,6-
   dimethylpiperidinocarbonyl, 2,2,6,6-tetramethylpiperidinocarbonyl,
   2,2,6,6-tetramethyl-4-hydroxypiperidinocarbonyl, 1-
35 oxothiomorpholin-4-ylcarbonyl, 1,1-dioxothiomorpholin-4-
   ylcarbonyl, 1-(methylsulfonyl)piperidin-4-ylaminocarbonyl, 4-
   methylsulfonylpiperazinylcarbonyl, 4-methylpiperazinylcarbonyl,
   N, N-bis (2-hydroxyethyl) aminocarbonyl, phenylaminocarbonyl,
```

cyclopropylaminocarbonyl, cyclobutylaminocarbonyl, cyclohexylaminocarbonyl, 4-hydroxycyclohexylaminocarbonyl, 4-methylthiazol-2-ylmethylaminocarbonyl, 2-(4-hydroxypiperidino)-ethyloxy, 2-pyridylmethylaminocarbonyl, 3-pyridylmethylamino-carbonyl, N-methyl-N-(4-pyridylmethyl)aminocarbonyl, cyclohexylmethyloxy, 4-hydroxypiperidinocarbonylmethyloxy and 4-methylthiazol-2-ylmethyloxy.

Particularly preferable examples of the substituent include fluorine atom, chlorine atom, bromine atom, nitro, cyano, 10 methyl, hydroxymethyl, carboxyl, carbamoyl, methylaminocarbonyl, isopropylaminocarbonyl, dimethylaminocarbonyl, diethylaminocarbonyl, (2-hydroxylethyl) aminocarbonyl, (carboxymethyl) aminocarbonyl, methoxy, 2-isopentenyloxy, 2-propynyloxy, methylthio, methylamino, dimethylamino, acetylamino, 15 methylsulfonylamino, methylsulfonyl, aminosulfonyl, dimethylaminosulfonyl, tert-butylaminosulfonyl, phenyl, 3fluorophenyl, 4-fluorophenyl, 3-chlorophenyl, 4-chlorophenyl, 3,5-dichlorophenyl, 4-nitrophenyl, 4-methylphenyl, 4-tertbutylphenyl, 4-trifluoromethylphenyl, 4-(methoxymethyl)phenyl, 4-20 (2-hydroxylethyl) phenyl, 3-carboxylphenyl, 4-carboxylphenyl, 4methoxyphenyl, 4-carbamoylphenyl, 4-methylthiophenyl, 4-(dimethylaminocarbonyl) phenyl, 4-methylsulfonylphenyl, benzyl, phenethyl, benzyloxy, 4-fluorobenzyloxy, 4-chlorobenzyloxy, 2thiazolyl, 3-pyridyl, 4-pyridyl, 4-pyridylmethyloxy, 2-25 piperidylmethyloxy, 3-piperidylmethyloxy, 4-piperidylmethyloxy, 1-methylpiperidin-4-ylmethyloxy, 1-acetylpiperidin-4-ylmethyloxy, 2-chloropiperidin-4-ylmethyloxy, 1-(methylsulfonyl)piperidin-4ylmethyloxy, 2-methylthiazol-4-yl, (2-methylthiazol-4yl)methyloxy, (2,4-dimethylthiazol-5-yl)methyloxy, 5-tetrazolyl, 30 3-fluorobenzoyl, piperidinocarbonyl, 4-hydroxylpiperidinocarbonyl, 1-pyrrolidinylcarbonyl, morpholinocarbonyl, 4thiomorpholinylcarbonyl, benzylaminocarbonyl, N-benzyl-Nmethylaminocarbonyl, (4-pyridylmethyl)aminocarbonyl and (cyclohexylmethyl) aminocarbonyl.

Most preferable substituents are fluorine atom, chlorine atom, methyl, hydroxymethyl, carboxyl, carbamoyl, methylaminocarbonyl, dimethylaminocarbonyl, methoxy, methylamino, acetylamino, aminosulfonyl, dimethylaminosulfonyl, tert-

35

butylaminosulfonyl, phenyl, 3-fluorophenyl, 4-fluorophenyl, 3-chlorophenyl, 4-chlorophenyl, 3,5-dichlorophenyl, 4-methylphenyl, 4-tert-butylphenyl, 4-trifluoromethylphenyl, 4-carboxylphenyl, 4-methylphenyl, 4-methylthiophenyl, 4- (dimethylaminocarbonyl)phenyl, 4-methylsulfonylphenyl and 2-oxopyrrolidin-1-yl.

The w is preferably 1 or 2, r and t are preferably 0, 1 or 2, particularly preferably 0 or 1, more preferably 0, p is preferably 1, and q is preferably 0 or 2.

In formula [I], when X is

wherein each symbol is as defined above and w is 2 or above, one of Z is preferably C_{6-14} aryl optionally substituted by 1 to 5 substituent(s) selected from group D or heterocyclic group optionally substituted by 1 to 5 substituent(s) selected from group D, particularly preferably C_{6-14} aryl optionally substituted by 1 to 5 substituent(s) selected from group D.

The pharmaceutically acceptable salt may be any as long as it forms a non-toxic salt with a compound of the above-mentioned 20 formula [I] or [II]. Such salt can be obtained by reacting the compound with an inorganic acid, such as hydrochloric acid, sulfuric acid, phosphoric acid, hydrobromic acid and the like, or an organic acid, such as oxalic acid, malonic acid, citric acid, fumaric acid, lactic acid, malic acid, succinic acid, tartaric 25 acid, acetic acid, trifluoroacetic acid, gluconic acid, ascorbic acid, methylsulfonic acid, benzylsulfonic acid and the like, or an inorganic base, such as sodium hydroxide, potassium hydroxide, calcium hydroxide, magnesium hydroxide, ammonium hydroxide and the like, or an organic base, such as methylamine, diethylamine, 30 triethylamine, triethanolamine, ethylenediamine, tris(hydroxymethyl)methylamine, guanidine, choline, cinchonine and the like, with an amino acid, such as lysine, arginine, alanine and the like. The present invention encompasses waterretaining product, hydrate and solvate of each compound.

The compounds of the above-mentioned formula [I] or [II] have various isomers. For example, E compound and Z compound are present as geometric isomers, and when the compound has an

asymmetric carbon, an enantiomer and a diastereomer are present due to the asymmetric carbon. A tautomer may be also present. The present invention encompasses all of these isomers and mixtures thereof.

The present invention also encompasses prodrug and metabolite of each compound.

A prodrug means a derivative of the compound of the present invention, which is capable of chemical or metabolic decomposition, which shows inherent efficacy by reverting to the original compound after administration to a body, and which includes salts and complexes without a covalent bond.

When the inventive compound is used as a pharmaceutical preparation, the inventive compound is generally admixed with pharmaceutically acceptable carriers, excipients, diluents, binders, disintegrators, stabilizers, preservatives, buffers, emulsifiers, aromatics, coloring agents, sweeteners, thickeners, correctives, solubilizers, and other additives such as water, vegetable oil, alcohol such as ethanol, benzyl alcohol and the like, polyethylene glycol, glycerol triacetate, gelatin, lactose, carbohydrate such as starch and the like, magnesium stearate, talc, lanolin, petrolatum and the like, and prepared into a dosage form of tablets, pills, powders, granules, suppositories, injections, eye drops, liquids, capsules, troches, aerosols, elixirs, suspensions, emulsions, syrups and the like, which can be administered systemically or topically and orally or parenterally.

While the dose varies depending on the age, body weight, general condition, treatment effect, administration route and the like, it is from 0.1 mg to 1 g for an adult per dose, which is given one to several times a day.

The prophylaxis of hepatitis C means, for example, administration of a pharmaceutical agent to an individual found to carry an HCV by a test and the like but without a symptom of hepatitis C, or to an individual who shows an improved disease state of hepatitis after a treatment of hepatitis C, but who still carries an HCV and is associated with a risk of recurrence of hepatitis.

Inasmuch as HCV is known to be a virus associated with many genetic mutations, a compound effective for many genotypes is one of the preferable modes. If a compound ensures high blood concentration when administered as a pharmaceutical agent to an animal infected with HCV, it is also one of the preferable modes. From these aspects, a compound having high inhibitory activity on both HCV type 1a and type 1b and high blood concentration, such as 2-{4-[2-(4-chlorophenyl)-5-(2-oxopyrrolidin-1-yl)benzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride, is particularly preferable.

The fused ring compound of the formula [I] or [II] of the present invention can be administered to mammals inclusive of human for the purpose of prevention or treatment of hepatitis C or inhibition of hepatitis C virus polymerase. The fused ring 15 compound of the present invention can be also administered to mammals inclusive of human along with at least one pharmaceutical agent (hereinafter combination drug) selected from an antiviral agent other than the compound of the formula [I], an antiinflammatory agent and an immunostimulant for the purpose of 20 prevention or treatment of hepatitis C or inhibition of hepatitis C virus polymerase. In the case of combined administration, the compound of the present invention can be administered simultaneously with the combination drug or administered at certain time intervals. In the case of combined administration, a 25 pharmaceutical composition containing the compound of the present invention and a combination drug can be administered. Alternatively, a pharmaceutical composition containing the compound of the present invention and a pharmaceutical composition containing a combination drug may be administered (30 separately. The administration route may be the same or different.

In the case of a combined administration, the compound of the present invention can be administered once a day or several times a day in a single dose of 0.1 mg to 1 g, or may be administered in a smaller dose. The combination drug can be administered in a dose generally used for the prevention or treatment of hepatitis C or in a smaller dose.

Examples of other antiviral agent include interferons (interferon α , interferon β , interferon γ etc.), Ribavirin (1- β -D-ribofuranosyl-1H-1,2,4-triazole-3-carboxamide) and the like.

Examples of the production method of the compound to be used for the practice of the present invention are given in the following. However, the production method of the compound of the present invention is not limited to these examples.

Even if no directly corresponding disclosure is found in the following Production Methods, the steps may be modified for 10 efficient production of the compound, such as introduction of a protecting group into a functional group with deprotection in a subsequent step, and changing the order of Production Methods and steps.

The treatment after reaction in each step may be

conventional ones, for which typical methods, such as isolation
and purification, crystallization, recrystallization, silica gel
chromatography, preparative HPLC and the like, can be
appropriately selected and combined.

Production Method 1

20

In this Production Method, a benzimidazole compound is formed from a nitrobenzene compound.

Production Method 1-1

Step 3

$$R^2$$
 R^3
 R^4
 R^5
 R^6
 R^6
 R^6
 R^6
 R^6
 R^7
 R^8
 R^8

wherein Hal is halogen atom, such as chlorine atom, bromine atom and the like, R^{c1} is halogen atom, such as chlorine atom, bromine

atom and the like, or hydroxyl group, and other symbols are as defined above.

Step 1

A compound [1] obtained by a conventional method or a commercially available compound [1] is reacted with amine compound [2] in a solvent such as N,N-dimethylformamide (DMF), acetonitrile, tetrahydrofuran (THF), toluene and the like in the presence or absence of a base such as potassium carbonate, triethylamine, potassium t-butoxide and the like at room temperature or with heating to give compound [3].

Step 2

The compound [3] is hydrogenated in a solvent such as methanol, ethanol, THF, ethyl acetate, acetic acid, water and the like in the presence of a catalyst such as palladium carbon,

palladium hydroxide, platinum oxide, Raney nickel and the like at room temperature or with heating to give compound [4]. In addition, compound [3] is reduced with a reducing agent such as zinc, iron, tin(II) chloride, sodium sulfite and the like, or reacted with hydrazine in the presence of iron(III) chloride to give compound [4].

Step 3

The compound [4] is condensed with carboxylic acid compound [5] in a solvent such as DMF, acetonitrile, THF, chloroform, ethyl acetate, methylene chloride, toluene and the like using a 25 condensing agent such as dicyclohexylcarbodiimide, 1-ethyl-3-(3dimethylaminopropyl) carbodiimide hydrochloride, diphenylphosphoryl azide and the like and, where necessary, adding N-hydroxysuccinimide, 1-hydroxybenzotriazole and the like to give amide compound [6]. Alternatively, amide compound [6] can 30 be obtained from compound [5] as follows. The carboxylic acid compound [5] is converted to an acid halide derived with thionyl chloride, oxalyl chloride and the like, or an active ester (e.g., mixed acid anhydride derived with ethyl chlorocarbonate and the like), which is then reacted in the presence of a base, such as 35 triethylamine, potassium carbonate, pyridine and the like, or in an amine solvent, such as pyridine and the like, to give amide compound [6].

Step 4

The compound [6] is heated in a solvent such as ethanol, methanol, toluene, DMF, chloroform and the like or without a solvent in the presence of an acid such as acetic acid, formic acid, hydrochloric acid, dilute sulfuric acid, phosphoric acid, polyphosphoric acid, p-toluenesulfonic acid and the like, a halogenating agent such as zinc chloride, phosphorus oxychloride, thionyl chloride and the like or acid anhydride such as acetic anhydride and the like, to allow cyclization to give compound [I-2].

10 Production Method 1-2.

This Production Method is an alternative method for producing compound [I-2].

Step 3

$$R^2$$
 R^3
 R^4
 R^5
 R^6

wherein each symbol is as defined above.

15 Step 1

The compound [3] obtained in the same manner as in Step 1 of Production Method 1-1 is subjected to amide condensation with compound [5] in the same manner as in Step 3 of Production Method 1-1 to give compound [7].

20 Step 2

The compound [7] is reduced in the same manner as in Step 2 of Production Method 1-1 to give compound [8].

Step 3

The compound [8] is subjected to cyclization in the same 25 manner as in Step 4 of Production Method 1-1 to give compound [I-2].

Production Method 1-3

wherein R^{c2} is alkyl such as methyl, ethyl and the like, and other symbols are as defined above.

The compound [4] is reacted with imidate compound [9] in a solvent such as methanol, ethanol, acetic acid, DMF, THF, chloroform and the like at room temperature or with heating to give compound [I-2].

In addition, compound [4] may be reacted with aldehyde compound [10] in a solvent such as acetic acid, formic acid, acetonitrile, DMF, nitrobenzene, toluene and the like in the presence or absence of an oxidizing agent such as benzofuroxan, manganese dioxide, 2,3-dichloro-5,6-dicyano-p-benzoquinone, iodine, potassium ferricyanide and the like with heating to give compound [1-2].

Alternatively, compound [4] and carboxylic acid compound [11] may be heated to allow reaction in the presence of polyphosphoric acid, phosphoric acid, phosphorus oxychloride, hydrochloric acid and the like to give compound [I-2].

Production Method 2

15

20

In this Production Method, conversion of the substituents (R^1, R^2, R^3, R^4) on the benzene ring of benzimidazole is shown. While a method of converting R^2 when R^1 , R^3 and R^4 are hydrogen atoms is shown, this Production Method is applicable irrespective of the position of substitution.

Production Method 2-1

Conversion of carboxylic acid ester moiety to amide

$$R^{c3}00C-E$$

$$R^{c3}00C-E$$

$$R^{c4}R^{c5}$$

$$R^{c4}R^{c5}$$

$$R^{c4}R^{c5}$$

$$R^{c4}R^{c5}$$

$$R^{c5}$$

$$R^{c5}$$

$$R^{c5}$$

$$R^{c5}$$

$$R^{c5}$$

$$R^{c5}$$

$$R^{c5}$$

$$R^{c5}$$

wherein E is a single bond, $-(CH_2)_s-$, $-O-(CH_2)_s-$ or $-NH-(CH_2)_s-$ 5 (wherein s is an integer of 1 to 6), R^{c3} , R^{c4} and R^{c5} are C_{1-6} alkyl, and other symbols are as defined above.

Step 1

The compound [I-2-1] obtained in the same manner as in the above-mentioned Production Method is subjected to hydrolysis in a solvent such as methanol, ethanol, THF, dioxane and the like, or in a mixed solvent of these solvents and water under basic conditions with sodium hydroxide, potassium hydroxide, potassium carbonate, lithium hydroxide and the like or under acidic conditions with hydrochloric acid, sulfuric acid and the like to give compound [I-2-2].

Step 2

The compound [I-2-2] is reacted with compound [12] in the same manner as in Step 3 of Production Method 1-1 to give compound [I-2-3].

20 Production Method 2-2

Conversion of cyano group to substituted amidino group

wherein each symbol is as defined above.

The compound [I-2-4] obtained in the same manner as in the above-mentioned Production Method is reacted with hydroxylamine in a solvent such as water, methanol, ethanol, THF, DMF and the like to give compound [I-2-5]. When a salt of hydroxylamine such

as hydrochloride and the like is used, the reaction is carried out in the presence of a base such as sodium hydrogencarbonate, sodium hydroxide, triethylamine and the like.

Production Method 2-3

5 Conversion of sulfonic acid ester moiety to sulfonic acid

wherein R^{c6} is C_{1-6} alkyl, and other symbols are as defined above.

The compound [I-2-6] obtained in the same manner as in the above-mentioned Production Method is reacted with iodide salt such as sodium iodide, lithium iodide and the like, bromide salt such as sodium bromide, trimethylammonium bromide and the like, amine such as pyridine, trimethylamine, triazole and the like, phosphine such as triphenylphosphine and the like in a solvent such as DMF, dimethyl sulfoxide (DMSO), acetonitrile, methanol, ethanol, water and the like with heating to give compound [I-2-7].

This Production Method relates to convertion of the substituent(s) on phenyl group at the 2-position of benzimidazole.

20 This Production Method can be used even when phenyl is a different ring.

Production Method 3-1

Production Method 3

Conversion of hydroxyl group to ether

$$R^{2}$$
 R^{1}
 R^{3}
 R^{4}
 R^{6}
 R^{6}

wherein R^{c7} is optionally substituted alkyl corresponding to R^{a11} , G^1 is a single bond, *-(CH_2)_n-, *-(CH_2)_n-O-, *-(CH_2)_n-CO- or *-(CH_2)_m- $CR^{a15}R^{a16}$)-(CH_2)_n-, wherein * show the side to be bonded to R^{c1} , and other symbols are as defined above.

When R^{c1} of compound [13] is halogen atom, compound [I-2-8] obtained in the same manner as in the above-mentioned Production Method is reacted with compound [13] in a solvent such as DMF, DMSO, acetonitrile, ethanol, THF and the like in the presence of a base such as sodium hydride, sodium hydroxide, potassium hydroxide, potassium carbonate, sodium ethoxide, potassium thutoxide and the like at room temperature or with heating to give compound [II-2-1].

When R^{cl} of compound [13] is hydroxyl group, the hydroxyl group of compound [13] is converted to halogen atom with thionyl chloride, phosphorus tribromide, carbon tetrabromide — triphenylphosphine and the like and reacted with compound [I-2-8] by the aforementioned method to give compound [II-2-1]. In this case, compound [I-2-8] may be subjected to Mitsunobu reaction with compound [13] in a solvent such as DMF, acetonitrile, THF and the like using triphenylphosphine — diethyl azodicarboxylate and the like to give compound [II-2-1].

The compound [I-2-9] can be obtained in the same manner from compound [I-2-8] and compound [14].

25 Production Method 3-2

Conversion of nitro to substituted amino group

Step 1

$$R^{2}$$
 R^{4}
 R^{6}
 $R^$

wherein R^{c8} is C_{1-6} alkyl, G^2 is *-(CH₂)_n- or *-CHR^{a15}, G^3 is -CO-, *-CO₂-, *-CONH- or -SO₂-, and other symbols are as defined above. Step 1

The nitro compound [I-2-10] obtained in the same manner as in the above-mentioned Production Method is reacted in the same manner as in Step 2 of Production Method 1-1 to give compound [I-2-11].

Step 2

The compound [I-2-11] is alkylated with compound [15] in the same manner as in Production Method 3-1 to give compound [II-2-2]. Step 3

When G^3 of compound [16] is $-CO_-$, $-CO_2-$ or $-CONH_-$, compound [I-2-11] is acylated with compound [16] in the same manner as in Step 3 of Production Method 1-1 to give compound [II-2-3].

When G^3 of compound [16] is $-SO_2-$, sulfonylation is conducted using sulfonyl halide instead of acid halide used in Step 3 of Production Method 1-1 to give compound [II-2-3].

The compound [I-2-11] is acylated with compound [17] in the same manner as above to give compound [I-2-12].

This Production Method is applied in the same manner as above to give disubstituted compounds (tertiary amine) of compound [II-2-2], compound [II-2-3] and compound [I-2-12].

Production Method 3-3

5 Conversion of carboxylic acid ester moiety to amide

wherein R^{c9} is C_{1-6} alkyl, G^4 is $\#-(CH_2)_n-$, $\#-(CH_2)_n-NH-$ or $\#-CHR^{a14}-$ wherein # shows the side that is bounded to amine and other symbols are as defined above.

Step 1

The compound [I-2-13] obtained in the same manner as in the above-mentioned Production Method is reacted in the same manner as in Step 1 of Production Method 2-1 to give compound [I-15 2-14].

Step 2

20

The compound [I-2-14] is reacted with compound [18] in the same manner as in Step 2 of Production Method 2-1 to give compound [II-2-4].

The compound [I-2-15] is obtained from compound [I-2-14] and compound [19] in the same manner as above.

Production Method 4

In this Production Method, additional substituent(s) is (are) introduced into ring B on phenyl group that substitutes the 225 position of benzimidazole. This Production Method is applicable even when phenyl is a different ring.

Production Method 4-1

Direct bonding of ring Z" to ring B

$$R^{2}$$
 R^{3}
 R^{4}
 R^{6}
 R^{6}
 R^{6}
 R^{6}
 R^{6}
 R^{7}
 R^{1}
 R^{2}
 R^{1}
 R^{2}
 R^{3}
 R^{4}
 R^{4}
 R^{5}
 R^{5

wherein ring Z"-M is aryl metal compound, ring Z" moiety is optionally substituted C_{6-14} aryl or optionally substituted 5 heterocyclic group corresponding to substituent Z, and the metal moiety contains boron, zinc, tin, magnesium and the like, such as phenylboronic acid, w" is 0, 1 or 2, and other symbols are as defined above.

The compound [II-2-5] obtained in the same manner as in the
above-mentioned Production Method is reacted with aryl metal
compound [20] in a solvent such as DMF, acetonitrile, 1,2dimethoxyethane, THF, toluene, water and the like in the presence
of a palladium catalyst such as tetrakis(triphenylphosphine)palladium, bis(triphenylphosphine)palladium(II) dichloride,

palladium acetate - triphenylphosphine and the like, a nickel
catalyst such as nickel chloride, [1,3-bis(diphenylphosphino)propane]nickel(II) chloride and the like, and a base such as
potassium carbonate, potassium hydrogencarbonate, sodium hydrogencarbonate, potassium phosphate, triethylamine and the like at room
temperature or with heating, to give compound [II-2-6].

Production Method 4-2

Conversion of hydroxyl group to ether

wherein R^{c10} is $-R^{a20}$ or $-(CH_2)_p-COR^{a21}$ corresponding to substituent 25 Z, and other symbols are as defined above.

The compound [II-2-7] obtained in the same manner as in the above-mentioned Production Method is reacted with compound [21]

in the same manner as in Production Method 3-1 to give compound [II-2-8].

Production Method 4-3

Synthesis in advance of ring B part such as compound [13] in 5 Production Method 3-1

Step 3

Hal

$$R^{c12}$$
 R^{c12}
 R^{c12}

wherein R^{c11} is leaving group such as bromine atom, iodine atom, trifluoromethanesulfonyloxy and the like, R^{c12} is formyl, carboxyl or carboxylic acid ester such as methoxycarbonyl, ethoxycarbonyl, tert-butoxycarbonyl and the like, and other symbols are as defined above.

Step 1

Commercially available compound [22] or compound [22] obtained by a conventional method is reacted with aryl metal compound [20] in the same manner as in Production Method 4-1 to give compound [23].

Step 2

The compound [23] obtained in the same manner as in the above-mentioned Production Method is reduced according to a conventional method to give compound [24].

For example, compound [23] is reacted with in a solvent such as methanol, ethanol, THF and the like in the presence of a reducing agent such as lithium aluminum hydride, sodium

borohydride and the like under cooling to heating to give compound [24].

Step 3

The compound [24] obtained in the same manner as in the

above-mentioned Production Method is reacted in a solvent such as

1,4-dioxane, diethyl ether, THF, dichloromethane, chloroform,

toluene and the like with a halogenating agent, such as

phosphorus pentachloride, phosphorus tribromide, thionyl chloride

and the like, in the presence of a tertiary amine such as

pyridine and the like to give compound [25].

Step 4

The compound [24] or [25] obtained in the same manner as in the above-mentioned Production Method is reacted with compound [I-2-8] in the same manner as in Production Method 3-1 to give compound [II-2-9].

Production Method 4-4

[44]

wherein M' is a metal such as magnesium, lithium, zinc and the like, and other symbols are as defined above.

[45]

20 Step 1

Commercially available compound [41] or compound [41] obtained by a conventional method is converted to aryl metal reagent by a conventional method to give compound [42].

For example, when M' is magnesium, magnesium is reacted with compound [41] in a solvent such as THF, diethyl ether, benzene, toluene and the like, preferably THF, from cooling to heating preferably at -100°C to 100°C to give compound [42].

Step 2

The compound [42] obtained in the same manner as in the above-mentioned Production Method is reacted with compound [43] to give compound [44].

The compound [42] is reacted in a solvent such as diethyl ether, benzene, toluene, THF and the like, preferably THF, from cooling to room temperature, preferably at -100°C to 30°C to give compound [44].

Step 3

The compound [44] obtained in the same manner as in the above-mentioned Production Method is halogenated in the same manner as in Step 3 of Production Method 4-3 to give compound [45].

The compound [44] is reacted with thionyl chloride and pyridine preferably in toluene solvent to give compound [45].

When compound [45] is symmetric, namely, when the ring B-(Z)w moiety and the ring B'-(Z')w' moiety are the same, compound [42] is reacted with formate such as methyl formate, ethyl formate and the like, preferably ethyl formate, in a solvent such as diethyl ether, benzene, toluene, THF and the like, preferably THF, from cooling to room temperature, preferably at -100°C to 30°C, to give compound [45].

Production Method 4-5

Method including steps to introduce a protecting group into a functional group

wherein R^{c13} is carboxylic acid protecting group such as tertbutyl and the like, R^{c14} is carboxylic acid protecting group such as methyl and the like and other symbols are as defined above. Step 1

Commercially available compound [26] or compound [26] obtained by a conventional method is protected by a conventional method to give compound [27].

For example, when R^{c13} is tert-butyl, compound [26] is converted to acid halide with thionyl chloride, oxalyl chloride and the like in a solvent such as THF, chloroform, dichloromethane, toluene and the like, and reacted with potassium tert-butoxide to give compound [27].

As used herein, R^{c13} may be a different protecting group as long as it is not removed during the Step 2 or Step 3 but removed in Step 4 without affecting $-CO_2R^{c14}$.

Step 2

15

The methyl group of compound [27] obtained in the same 20 manner as in the above-mentioned Production Method is converted

to bromomethyl with N-bromosuccinimide and N,N'-azobisisobutyronitrile and reacted with compound [I-2-16] in the same manner as in Production Method 3-1 to give compound [II-2-10].

5 Step 3

The compound [II-2-10] obtained in the same manner as in the above-mentioned Production Method is reacted with aryl metal compound [20] in the same manner as in Production Method 4-1 to give compound [II-2-11].

10 Step 4

The R^{c13} of the compound [II-2-11] obtained in the same manner as in the above-mentioned Production Method is removed by a conventional method to give compound [II-2-12].

The protecting group of carboxylic acid can be removed by a conventional deprotection method according to the protecting group. In this Step, the conditions free from reaction of R^{c14} are preferable. For example, when R^{c13} is tert-butyl, compound [II-2-11] is treated with trifluoroacetic acid in a solvent such as dichloromethane, chloroform and the like to give compound [II-2-12].

Step 5

The compound [II-2-12] obtained in the same manner as in the above-mentioned Production Method is subjected to amide condensation with compound [28] in the same manner as in Step 3 of Production Method 1-1 to give compound [II-2-13].

Step 6

The compound [II-2-13] obtained in the same manner as in the above-mentioned Production Method is deprotected in the same manner as in Step 1 of Production Method 2-1 to give compound [II-2-14].

As used herein, R^{c14} is preferably a protecting group that does not react during the Step 1 through Step 5 but removed in this Step.

For example, when R^{c14} is methyl, compound [II-2-13] is
reacted in an alcohol solvent such as methanol, ethanol, npropanol, isopropanol and the like or a mixed solvent of alcohol
solvent and water in the presence of a base such as potassium
carbonate, sodium carbonate, lithium hydroxide, sodium hydroxide,

potassium hydroxide and the like from cooling to heating for deprotection, followed by acidifying the reaction solution to give compound [II-2-14].

Production Method 4-6

wherein g is an integer of 1 to 5, and other sumbols are as defined above.

Step 1

The compound [I-2-16] obtained by the above-mentioned

10 Production Method is reacted with toluene derivative [41] in the

same manner as in Step 2 of Production Method 4-5 to give

compound [II-2-17].

Step 2

The compound [II-2-17] obtained by the above-mentioned

15 Production Method is reacted with aryl metal compound [20] in the same manner as in Production Method 4-1 to give compound [II-2-18].

Step 3

The compound [II-2-18] obtained by the above-mentioned Production Method is reduced in the same manner as in Step 2 of Production Method 1-1 to give compound [II-2-19].

Step 4

The compound [II-2-19] obtained by the above-mentioned Production Method is amide condensed with compound [42] in the same manner as in Step 3 of Production Method 1-1 and subjected to cyclization in the same manner as in Step 1 of Production Method 1-1 to give compound [II-2-20].

10 Step 5

The compound [II-2-20] obtained by the above-mentioned Production Method is hydrolyzed in the same manner as in Step 1 of Production Method 2-1 to give compound [II-2-21].

Production Method 5

15 Formation of indole ring

wherein R^{C15} is protecting group such as trimethylsilyl, tert-butyldimethylsilyl, tert-butyldiphenylsilyl and the like, and other symbols are as defined above.

20 Step 1

[32]

The compound [29] obtained in the same manner as in the above-mentioned Production Method or conventional method is reacted with compound [30] in a solvent such as DMF, acetonitrile, 1,2-dimethoxyethane, THF, toluene, water and the like using a palladium catalyst such as tetrakis(triphenylphosphine)palladium,

bis (triphenylphosphine) palladium (II) dichloride, palladium acetate - triphenylphosphine and the like, a copper catalyst such as copper(I) iodide and the like or a mixture thereof, and in the presence of a base such as potassium carbonate, potassium hydrogencarbonate, sodium hydrogencarbonate, potassium phosphate, triethylamine and the like to give compound [31].

The compound [31] obtained in the same manner as in the above-mentioned Production Method is reacted in an alcohol

solvent such as methanol, ethanol and the like or a mixed solvent of an alcohol solvent and a solvent such as DMF, acetonitrile, THF, chloroform, dichloromethane, ethyl acetate, methylene chloride, toluene and the like in the presence of a base such as potassium carbonate, sodium carbonate, lithium hydroxide, sodium hydroxide, potassium hydroxide, lithium hydride, sodium hydride, potassium hydride and the like at room temperature or with heating for deprotection, and reacted with compound [32] obtained in the same manner as in Step 1 of Production Method 1-1 in the same manner as in Step 1 of Production Method 5 to give compound [33].

Step 3

Step 2

The compound [33] obtained in the same manner as in the above-mentioned Production Method was subjected to cyclization in a solvent such as DMF, acetonitrile, THF, chloroform,

25 dichloromethane, ethyl acetate, methylene chloride, toluene and the like in the presence of a copper catalyst such as copper(I) iodide and the like or a palladium catalyst such as palladium(II) chloride and the like at room temperature or with heating to give compound [II-2-15].

30 Production Method 6

Formation of imidazo[1,2-a]pyridine ring

wherein R^{c16} and R^{c17} are each independently alkyl, such as methyl, ethyl and the like, and other symbols are as defined above.

Step 1

The compound [34] obtained by the above-mentioned Production Method or a conventional method is subjected to amide condensation with compound [35] in the same manner as in Step 3 of Production Method 1-1 to give compound [36].

Step 2

10

The compound [36] obtained by the above-mentioned Production Method is reacted with Grignard reagent [37] obtained by a conventional method to give compound [38].

Alternatively, an acid halide of compound [34] may be used instead of compound [36].

15 Step 3

The compound [38] obtained by the above-mentioned Production Method is subjected to halogenation by a conventional method to give compound [39].

For example, when Hal is a bromine atom, compound [38] is 20 reacted with bromine under cooling or at room temperature in a solvent such as DMF, acetonitrile, THF, chloroform, dichloromethane, ethyl acetate, toluene and the like to give compound [39].

Alternatively, a halogenating agent such as hypohalite (e.g., hypochlorite and the like), N-bromosuccinimide and the like may be used instead of bromine for halogenation.

Step 4

The compound [39] obtained by the above-mentioned Production Method is subjected to cyclization with compound [40] obtained by a conventional or known method (JP-A-8-48651) in the presence of a base such as potassium carbonate, sodium carbonate, lithium hydroxide, sodium hydroxide, potassium hydroxide, lithium hydride, sodium hydride, potassium hydride and the like in a solvent or without a solvent at room temperature or with heating to give compound [II-2-16]:

In the compounds of the formulas [I] and [II], a desired heterocyclic group can be formed according to a method similar to the methods disclosed in known publications. Examples of such heterocyclic group and reference publications are recited in the following.

5-oxo- Δ^2 -1,2,4-oxadiazolin-3-yl (or 2,5-dihydro-5-oxo-4H-1,2,4-oxadiazol-3-yl), 5-oxo- Δ^2 -1,2,4-thiadiazolin-3-yl (or 2,5-dihydro-5-oxo-4H-1,2,4-thiadiazol-3-yl), 2-oxo- Δ^3 -1,2,3,5-oxathiadiazolin-4-yl (or 2-oxo- Δ^3 -1,2,4-oxathiadiazol-4-yl): Journal of Medicinal Chemistry, 39(26), 5228-35, 1996,

25 5- ∞ o- Δ^2 -1,2,4-triazolin-3-yl: J Org Chem, 61(24), 8397-8401, 1996,

 $1-\infty$ o $-\Delta^3-1$,2,3,5-thiatriazolin-4-yl: Liebigs Ann Chem, 1376, 1980, $3-\infty$ o $-\Delta^4-1$,2,4-oxadiazolin-5-yl: EP145095,

 $5-\cos(-\Delta^2-1)$, 3, 4-oxadiazolin-2-yl: J Org Chem, 20, 412, 1955,

 $5-0x0-\Delta^{3}-1,2,4-dioxazolin-3-yl$: J Prakt Chem, 314, 145, 1972,

 $3-\cos(-\Delta^4-1)$, 2, 4-thiadiazolin-5-yl: JP-A-61-275271,

 $5-\infty$ o $-\Delta^3-1$,2,4-dithiazolin-3-yl: J Org Chem, 61(19), 6639-6645, 1996,

 $2-oxo-\Delta^4-1,3,4-dioxazolin-5-yl: J Org Chem, 39, 2472, 1974,$

35 2-oxo- Δ^4 -1,3,4-oxathiazolin-5-yl: J Med Chem, 35(20), 3691-98, 1992,

 $5-\infty$ o $-\Delta^2-1$, 3, 4-thiadiazolin-2-yl: J Prakt Chem, 332(1), 55, 1990, $5-\infty$ o $-\Delta^2-1$, 4, 2-oxathiazolin-3-yl: J Org Chem, 31, 2417, 1966,

 $2-\infty$ o $-\Delta^4-1$,3,4-dithiazolin-5-yl: Tetrahedron Lett, 23, 5453, 1982, $2-\infty$ o $-\Delta^4-1$,3,2,4-dioxathiazolin-5-yl: Tetrahedron Lett, 319, 1968, 3,5-dioxoisooxazolidin-4-yl: Helv-Chim Acta, 1973, 48, 1965, 2,5-dioxoimidazolidin-4-yl: Heterocycles, 43(1), 49-52, 1996, 5-oxo-2-thioxoimidazolidin-4-yl: Heterocycles, 5, 391, 1983, 2,4-dioxooxazolidin-5-yl: J Am Chem Soc, 73, 4752, 1951, 4-oxo-2-thioxooxazolidin-5-yl: Chem Ber, 91, 300, 1958, 2,4-dioxothiazolidin-5-yl: JP-A-57-123175,

4-oxo-2-thioxothiazolidin-5-yl: Chem Pharm Bull, 30, 3563, 1982,

The Production Methods shown in the above-mentioned Production Methods 2 to 4 can be used for the synthesis of compounds other than benzimidazole of the formulas [I] and [II], such as compounds [II-2-15] and [II-2-16].

The compounds of the formulas [I], [II] and [III], 4-(4-15] fluorophenyl)-5-hydroxymethyl-2-methylthiazole and 4-(4-15] fluorophenyl)-5-chloromethyl-2-methylthiazole and production methods thereof of the present invention are explained in detail in the following by way of Examples. It is needless to say that the present invention is not limited by these Examples.

20 Example 1

Production of ethyl 2-[4-(3-bromophenoxy)phenyl]-1-cyclohexylbenzimidazole-5-carboxylate

Step 1: Production of ethyl 4-chloro-3-nitrobenzoate

4-Chloro-3-nitrobenzoic acid (300 g) was dissolved in ethyl alcohol (1500 ml) and concentrated sulfuric acid (100 ml) was added with ice-cooling. The mixture was refluxed under heating for 7 hr. The reaction mixture was poured into ice-cold water and the precipitated crystals were collected by filtration to give the title compound (332 g, yield 97%).

¹H-NMR (300MHz, CDCl₃): 8.50(1H, d, J=2.1Hz), 8.16(1H, dd, J=8.4, 2.1Hz), 7.63(1H, d, J=8.4Hz), 4.43(2H, q, J=7.5Hz), 1.42(3H, t, J=7.5Hz)

Step 2: Production of ethyl 4-cyclohexylamino-3-nitrobenzoate

Ethyl 4-chloro-3-nitrobenzoate (330 g) obtained in the

previous step was dissolved in acetonitrile (1500 ml), and

cyclohexylamine (220 g) and triethylamine (195 g) were added. The

mixture was refluxed under heating overnight. The reaction

mixture was poured into ice-cold water and the precipitated

crystals were collected by filtration to give the title compound (400 g, yield 94%).

¹H-NMR (300MHz, CDCl₃): 8.87(1H, d, J=2.1Hz), 8.35-8.46(1H, m), 8.02(1H, dd, J=9.1, 2.1Hz), 6.87(1H, d, J=9.1Hz), 4.35(2H, q, J=7.1Hz), 3.65-3.50(1H, m), 2.14-1.29(10H, m), 1.38(3H, t, J=7.1Hz)

Step 3: Production of ethyl 3-amino-4-cyclohexylaminobenzoate

Ethyl 4-cyclohexylamino-3-nitrobenzoate (400 g) obtained in the previous step was dissolved in ethyl acetate (1500 ml) and ethyl alcohol (500 ml), and 7.5% palladium carbon (50% wet, 40 g) was added. The mixture was hydrogenated for 7 hr at atmospheric pressure. The catalyst was filtered off and the filtrate was concentrated under reduced pressure. Diisopropyl ether was added to the residue and the precipitated crystals were collected by filtration to give the title compound (289 g, yield 80%).

14-NMR (300MHz, CDCl₃): 7.57(1H, dd, J=8.4, 1.9Hz), 7.41(1H, d, J=1.9Hz), 6.59(1H, d, J=8.4Hz), 4.30(2H, q, J=7.1Hz), 3.40-3.30(1H, m), 2.18-2.02(2H, m), 1.88-1.15(8H, m), 1.35(3H, t, J=7.1Hz)

20 **Step 4:** Production of ethyl 3-[4-(3-bromophenoxy)benzoyl]amino-4-cyclohexylaminobenzoate

4-(3-Bromophenoxy) benzoic acid (74 g) was dissolved in chloroform (500 ml), and oxalyl chloride (33 ml) and dimethylformamide (catalytic amount) were added. The mixture was 25 stirred for 4 hr at room temperature. The reaction mixture was concentrated under reduced pressure and dissolved in dichloromethane (150 ml). The resulting solution was added dropwise to a solution of ethyl 3-amino-4-cyclohexylaminobenzoate (66 g) obtained in the previous step in dichloromethane (500 ml) 30 and triethylamine (71 ml), and the mixture was stirred for 1 hr at room temperature. The reaction mixture was poured into water and extracted with dichloromethane. The organic layer was washed with saturated brine, dried over anhydrous magnesium sulfate, and concentrated under reduced pressure. Diethyl ether was added to 35 the residue for crystallization and the crystals were collected by filtration to give the title compound (129 g, yield 95%). 1 H-NMR (300MHz, CDCl₃): 8.00-7.78(4H, m), 7.66(1H, brs), 7.37-7.18(3H, m), 7.13-6.59(3H, m), 6.72(1H, d, J=8.7Hz), 4.50(1H, d)

brs), 4.29(2H, q, J=7.2Hz), 3.36(1H, m), 2.12-1.96(2H, m), 1, 83-1.56(3H, m), 1.47-1.12(5H, m), 1.37(3H, t, J=7.2Hz)

Step 5: Production of ethyl 2-[4-(3-bromophenoxy)phenyl]-1-cyclohexylbenzimidazole-5-carboxylate

Ethyl 3-[4-(3-bromophenoxy) benzoyl]amino-4cyclohexylaminobenzoate (129 g) obtained in the previous step was
suspended in acetic acid (600 ml) and the resulting suspension
was refluxed under heating for 3 hr. The reaction mixture was
concentrated under reduced pressure. Water was added to the
residue and the precipitated crystals were collected by
filtration to give the title compound (124 g, yield 99%).

1H-NMR (300MHz, CDCl₃): 8.51(1H, d, J=1.5Hz), 8.00(1H, dd, J=8.4,
1.5Hz), 7.67(1H, d, J=8.4Hz), 7.63(2H, d, J=8.7Hz), 7.35-7.21(3H,
m), 7.17(2H, d, J=8.7Hz), 7.14(1H, m), 4.42(2H, q, J=7.2Hz),
15 4.38(1H, m), 2.43-2.22(2H, m), 2.07-1.87(4H, m), 1.80(1H, m),
1.42(3H, t, J=7.2Hz), 1.40-1.27(3H, m)

Example 2

Production of 2-[4-(3-bromophenoxy)phenyl]-1-cyclohexylbenzimidazole-5-carboxylic acid

20 Ethyl 2-[4-(3-bromophenoxy)phenyl]-1-cyclohexylbenzimidazole-5-carboxylate (1.0 g) obtained in Example 1 was
dissolved in tetrahydrofuran (10 ml) and ethyl alcohol (10 ml),
and 4N sodium hydroxide (10 ml) was added. The mixture was
refluxed under heating for 1 hr. The reaction mixture was
25 concentrated under reduced pressure and water was added to the
residue. The mixture was acidified with 6N hydrochloric acid and
the precipitated crystals were collected by filtration to give
the title compound (0.9 g, yield 96%).

melting point: 255-256°C

30 FAB-Ms: 491 (MH+)

¹H-NMR (300MHz, DMSO-d₆): (12.75(1H, brs), 8.24(1H, s), 7.96(1H, d, J=8.7Hz), 7.86(1H, d, J=8.7Hz), 7.71(2H, d, J=8.6Hz), 7.47-7.34(3H, m), 7.24(2H, d, J=8.6Hz), 7.20(1H, m), 4.31(1H, m), 2.38-2.18(2H, m), 2.02-1.79(4H, m), 1.65(1H, m), 1.44-1.20(3H, m)

35 Example 3

Production of ethyl 1-cyclohexyl-2-(4-hydroxyphenyl)benzimidazole-5-carboxylate

Ethyl 3-amino-4-cyclohexylaminobenzoate (130 g) obtained in Example 1, Step 3, and methyl 4-hydroxybenzimidate hydrochloride (139 g) were added to methyl alcohol (1500 ml), and the mixture was refluxed under heating for 4 hr. The reaction mixture was allowed to cool and the precipitated crystals were collected by filtration to give the title compound (131 g, yield 72%).

1H-NMR (300MHz, CDCl₃): 10.02(1H, brs), 8.21(1H, d, J=1.4Hz), 7.93(1H, d, J=8.6Hz), 7.83(1H, dd, J=8.6, 1.4Hz), 7.48(2H, d, J=8.6Hz), 6.95(2H, d, J=8.6Hz), 4.39-4.25(1H, m), 4.33(1H, q, J=7.0Hz), 2.35-2.18(2H, m), 1.98-1.79(4H, m), 1.70-1.60(1H, m), 1.46-1.19(3H, m), 1.35(3H, t, J=7.0Hz)

Example 4

Production of ethyl 2-[4-(2-bromo-5-chlorobenzyloxy)phenyl]-1-cyclohexylbenzimidazole-5-carboxylate

- 2-Bromo-5-chlorobenzyl bromide prepared from 2-bromo-5-chlorotoluene (50 g), N-bromosuccinimide and N,N'-azobisisobutyronitrile, and ethyl 1-cyclohexyl-2-(4-hydroxyphenyl)benzimidazole-5-carboxylate (50 g) obtained in Example 3 were suspended in dimethylformamide (300 ml). Potassium carbonate (38 g) was added and the mixture was stirred for 1 hr at 80°C with heating. The reaction mixture was allowed to cool and then added to a mixed solvent of water-ethyl acetate. The precipitated crystals were collected by filtration to give the title compound (50 g, yield 64%).
- ¹H-NMR (300MHz, CDCl₃): 8.50(1H, d, J=1.4Hz), 7.97(1H, dd, J=8.6, 1.4Hz), 7.70-7.57(5H, m), 7.20(1H, dd, J=8.4, 2.5Hz), 7.14(2H, d, J=8.7Hz), 5.17(2H, s), 4.46-4.30(1H, m), 4.41(2H, q, J=7.1Hz), 2.40-2.20(2H, m), 2.02-1.21(8H, m), 1.42(3H, t, J=7.1Hz)

Example 5

Production of ethyl 2-{4-[2-(4-chlorophenyl)-5-chlorobenzyloxy]-phenyl}-1-cyclohexylbenzimidazole-5-carboxylate

Ethyl 2-[4-(2-bromo-5-chlorobenzyloxy)phenyl]-1-cyclohexylbenzimidazole-5-carboxylate (49 g) obtained in Example 4, 4-chlorophenylboronic acid (18 g) and tetrakis-

dimethoxyethane (600 ml). Saturated aqueous sodium hydrogencarbonate solution (300 ml) was added and the mixture was refluxed under heating for 2 hr. Chloroform was added to the

reaction mixture. The organic layer was washed successively with saturated aqueous sodium hydrogencarbonate solution, water and saturated brine, dried over anhydrous magnesium sulfate, and concentrated under reduced pressure. The residue was purified by silica gel flash chromatography (developing solvent, chloroform:ethyl acetate = 97:3). Ethyl acetate and diisopropyl ether were added to the resulting oil for crystallization and the resulting crystals were collected by filtration to give the title compound (44 g, yield 85%).

Example 6

15 Production of 2-{4-[2-(4-chlorophenyl)-5-chlorobenzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid

Ethyl 2-{4-[2-(4-chlorophenyl)-5-chlorobenzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylate (43 g) obtained in Example 5 was treated in the same manner as in Example 2 to give the title compound (33 g, yield 76%).

melting point: 243-244°C

FAB-Ms: 571 (MH+)

 $^{1}\text{H-NMR} \ (300\text{MHz}, \ \text{DMSO-d}_{6}): \ 8.32 \ (1\text{H}, \ \text{s}) \ , \ 8.28 \ (1\text{H}, \ \text{d}, \ \text{J=8.9Hz}) \ , \\ 8.05 \ (1\text{H}, \ \text{d}, \ \text{J=8.8Hz}) \ , \ 7.76-7.72 \ (3\text{H}, \ \text{m}) \ , \ 7.58-7.46 \ (5\text{H}, \ \text{m}) \ , \ 7.40 \ (1\text{H}, \ \text{d}, \ \text{J=8.3Hz}) \ , \ 7.24 \ (2\text{H}, \ \text{d}, \ \text{J=8.9Hz}) \ , \ 5.11 \ (2\text{H}, \ \text{s}) \ , \ 4.36 \ (1\text{H}, \ \text{m}) \ , \\ 2.40-2.15 \ (2\text{H}, \ \text{m}) \ , \ 2.15-1.95 \ (2\text{H}, \ \text{m}) \ , \ 1.95-1.75 \ (2\text{H}, \ \text{m}) \ , \ 1.75-1.55 \ (1\text{H}, \ \text{m}) \ , \ 1.55-1.15 \ (3\text{H}, \ \text{m}) \ .$

Example 7

Production of ethyl 2-[4-(2-bromo-5-methoxybenzyloxy)phenyl]-130 cyclohexylbenzimidazole-5-carboxylate

Ethyl 1-cyclohexyl-2-(4-hydroxyphenyl)benzimidazole-5-carboxylate obtained in Example 3 and 2-bromo-5-methoxybenzyl bromide were treated in the same manner as in Example 4 to give the title compound (59 g).

35 Example 8

Production of ethyl 2-{4-[2-(4-chlorophenyl)-5-methoxybenzyloxy]-phenyl}-1-cyclohexylbenzimidazole-5-carboxylate

Ethyl 2-[4-(2-bromo-5-methoxybenzyloxy)phenyl]-1-cyclohexylbenzimidazole-5-carboxylate obtained in Example 7 was treated in the same manner as in Example 5 to give the title compound (48 g, yield 77%).

5 ¹H-NMR (300MHz, CDCl₃): 8.49(1H, d, J=1.4Hz), 7.97(1H, dd, J=8.6, 1.4Hz), 7.64(1H, d, J=8.6Hz), 7.54(2H, d, J=8.7Hz), 7.37(2H, d, J=8.6Hz), 7.31(2H, d, J=8.6Hz), 7.25(1H, d, J=8.4Hz), 7.19(1H, d, J=2.7Hz), 7.00(2H, d, J=8.7Hz), 6.97(1H, dd, J=8.4, 2.7Hz), 4.98(2H, s), 4.41(2H, q, J=7.1Hz), 4.42-4.29(1H, m), 3.88(3H, s), 2.40-2.20(2H, m), 2.01-1.88(4H, m), 1.83-1.73(1H, m), 1.42(3H, t, J=7.1Hz), 1.41-1.25(3H, m)

Example 9

Production of 2-{4-[2-(4-chlorophenyl)-5-methoxybenzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid

Ethyl $2-\{4-[2-(4-\text{chlorophenyl})-5-\text{methoxybenzyloxy}]\text{ phenyl}\}-1-\text{cyclohexylbenzimidazole}-5-\text{carboxylate (52 g) obtained in Example 8 was treated in the same manner as in Example 2 to give the title compound (44 g, yield 89%).$

melting point: 248-249°C

20 FAB-Ms: 568 (MH+)

¹H-NMR (300MHz, DMSO-d₆): 8.20(1H, s), 7.88(1H, d, J=8.7Hz), 7.85(1H, d, J=8.7Hz), 7.57(d, 2H, J=8.6Hz), 7.46(2H, d, J=8.6Hz), 7.44(2H, d, J=8.6Hz), 7.29(1H, d, J=8.5Hz), 7.24(1H, d, J=2.6Hz), 7.11(2H, d, J=8.6Hz), 7.06(1H, dd, J=8.5, 2.6Hz), 5.04(2H, s),

25 4.26(1H, m), 3.83(3H, s), 2.38-2.29(2H, m)

Example 10

Production of ethyl 1-cyclohexyl-2-{4-[(E)-2-phenylvinyl]phenyl}-benzimidazole-5-carboxylate

Ethyl 3-amino-4-cyclohexylaminobenzoate (500 mg) obtained in

Example 1, Step 3, was dissolved in methyl alcohol (6 ml) and
trans-4-stilbenecarbaldehyde (397 mg) was added under ice-cooling.

The mixture was stirred overnight at room temperature. The
reaction mixture was ice-cooled and benzofuroxan (259 mg)
dissolved in acetonitrile (2 ml) was added. The mixture was

stirred for 7 hr at 50°C. The reaction mixture was ice-cooled.

After 1N sodium hydroxide was added, ethyl acetate was added and
the mixture was extracted. The organic layer was washed with
water and saturated brine, dried over anhydrous magnesium sulfate,

and concentrated under reduced pressure. The residue was purified by silica gel flash chromatography (developing solvent, n-hexane:ethyl acetate = 4:1) to give the title compound (540 mg, yield 63%).

5 ¹H-NMR (300MHz, DMSO-d₆): 8.28(1H, d, J=1.4Hz), 8.01(1H, d, J=8.7Hz), 7.90-7.80(3H, m), 7.75-7.65(4H, m), 7.50-7.25(5H, m), 4.35(2H, q, J=7.0Hz), 4.31(1H, m), 2.40-2.20(2H, m), 2.00-1.80(4H, m), 1.63(1H, m), 1.40-1.20(3H, m), 1.36(3H, t, J=7.0Hz)

Example 11

10 Production of 1-cyclohexyl-2-{4-[(E)-2-phenylvinyl]phenyl}-benzimidazole-5-carboxylic acid

Ethyl 1-cyclohexyl-2-{4-[(E)-2-phenylvinyl]phenyl}benzimidazole-5-carboxylate (127 mg) obtained in Example 10 was
treated in the same manner as in Example 2 to give the title
compound (116 mg, yield 97%).

melting point: not lower than 300°C

FAB-Ms: 423 (MH+)

¹H-NMR (300MHz, DMSO-d₆): 8.25(1H, s), 7.96-7.29(13H, m), 4.33(1H, brt), 2.41-2.23(2H, m), 2.03-1.78(4H, m), 1.71-1.59(1H, m), 1.49-20 1.20(3H, m)

Example 12

Production of 2-(4-benzyloxyphenyl)-1-cyclopentylbenzimidazole-5-carboxylic acid

In the same manner as in Examples 1 and 2, the title 25 compound (700 mg) was obtained.

FAB-Ms: 413 (MH+)

¹H-NMR (300MHz, CDCl₃): 8.60(1H, s), 8.04(1H, d, J=9.0Hz), 7.63(2H, d, J=8.4Hz), 7.51-7.32(6H, m), 7.14(2H, d, J=9.0Hz), 5.16(2H, s), 5.03-4.89(1H, m), 2.41-1.63(8H, m)

30 Example 13

Production of 2-(4-benzyloxyphenyl)-1-cyclopentylbenzimidazole-5-carboxamide

2-(4-Benzyloxyphenyl)-1-cyclopentylbenzimidazole-5-carboxylic acid (700 mg) obtained in Example 12 was dissolved in dimethylformamide (10 ml), and ammonium chloride (108 mg), 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (390 mg), 1-hydroxybenzotriazole (275 mg) and triethylamine (0.3 ml) were added. The mixture was stirred overnight at room temperature.

Water was added to the reaction mixture and the mixture was extracted with ethyl acetate. The organic layer was washed successively with saturated aqueous sodium hydrogencarbonate, water and saturated brine, dried over anhydrous magnesium sulfate, and concentrated under reduced pressure. Ethyl acetate and diisopropyl ether were added to the residue for crystallization and the crystals were collected by filtration to give the title compound (571 mg, yield 81%).

melting point: 232-233°C

10 FAB-Ms: 412 (MH+)

¹H-NMR (300MHz, CDCl₃): 8.23(1H, d, =1.5Hz), 7.86(1H, dd, J=8.5, 1.5Hz), 7.65-7.30(8H, m), 7.13(2H, d, J=8.8Hz), 5.16(2H, s), 4.93(1H, quint, J=8.8Hz), 2.40-1.60(8H, m)

Example 14

15 Production of 2-(4-benzyloxyphenyl)-5-cyano-1cyclopentylbenzimidazole

In the same manner as in Example 1, the title compound (400 mg) was obtained.

FAB-Ms: 394 (MH+)

¹H-NMR (300MHz, CDCl₃): 8.11(1H, s), 7.68-7.30(9H, m), 7.13(2H, s), 5.16(2H, s), 4.94(1H, quint, J=8.9Hz), 2.35-1.60(8H, m)

Example 15

Production of 2-(4-benzyloxyphenyl)-1-cyclopentylbenzimidazole-5-carboxamide oxime

2-(4-Benzyloxyphenyl)-5-cyano-1-cyclopentylbenzimidazole
(400 mg) obtained in Example 14 was suspended in ethyl alcohol (3
ml) and water (1.5 ml), and hydroxylamine hydrochloride (141 mg)
and sodium hydrogencarbonate (170 mg) were added. The mixture was
refluxed under heating overnight. The reaction mixture was
allowed to cool and the precipitated crystals were collected by
filtration to give the title compound (312 mg, yield 71%).

melting point: 225-226°C

FAB-Ms: 456 (MH+)

 1 H-NMR (300MHz, DMSO-d₆): 8.20(1H, s), 7.50-7.31(9H, m), 7.12(2H, 35 d, J=8.7Hz), 5.15(2H, s), 4.94(1H, quint, J=8.7Hz), 3.61(3H, s), 3.40(3H, s), 2.41-1.42(8H, m)

Example 16

Production of ethyl 1-cyclohexyl-2- $\{4-[\{4-(4-\text{fluorophenyl})-2-\text{methyl-5-thiazolyl}\}$ methoxy]phenyl $\}$ benzimidazole-5-carboxylate **Step 1**: Production of 4-(4-fluorophenyl)-5-hydroxymethyl-2-methylthiazole

g) prepared by a known method (Chem. Pharm. Bull., 43(6), 947, 1995) was dissolved in tetrahydrofuran (700 ml). Lithium aluminum hydride (13 g) was added under ice-cooling and the mixture was stirred for 30 min. Water (13 ml), 15% sodium hydroxide (13 ml) and water (39 ml) were added successively to the reaction mixture, and the precipitated insoluble materials were filtered off. The filtrate was concentrated under reduced pressure to give the title compound (37 g, yield 71%).

¹H-NMR (300MHz, CDCl₃): 7.60(2H, dd, J=8.7, 6.6Hz), 7.11(2H, t, 15 J=8.7Hz), 4.80(2H, s), 2.70(3H, s)

Step 2: Production of 5-chloromethyl-4-(4-fluorophenyl)-2-methylthiazole

4-(4-Fluorophenyl)-5-hydroxymethyl-2-methylthiazole (37 g) obtained in the previous step was dissolved in chloroform (500 20 ml), and thionyl chloride (24 ml) and pyridine (2 ml) were added. The mixture was stirred for 3 hr at room temperature. The reaction mixture was poured into ice-cold water. The mixture was extracted with chloroform, and washed with water and saturated brine. The organic layer was dried over sodium sulfate, and concentrated under reduced pressure to give the title compound (29 g, yield 76%).

¹H-NMR (300MHz, CDCl₃): 7.67(2H, dd, J=8.8, 5.4Hz), 7.16(2H, t, J=8.7Hz), 4.79(2H, s), 2.73(3H, s)

Step 3: Production of ethyl 1-cyclohexyl-2-{4-[{4-(4-30 fluorophenyl)-2-methyl-5-thiazolyl/methoxy]phenyl/benzimidazole-5-carboxylate

5-Chloromethyl-4-(4-fluorophenyl)-2-methylthiazole (28 g) obtained in the previous step and ethyl 1-cyclohexyl-2-(4-hydroxyphenyl)benzimidazole-5-carboxylate (36 g) obtained in Example 3 were treated in the same manner as in Example 4 to give the title compound (61 g, yield 100%).

APCI-Ms: 570 (MH+)

¹H-NMR (300MHz, DMSO-d₆): 8.25(1H, d, J=1.5Hz), 7.97(1H, d, J=8.7Hz), 7.86(1H, dd, J=8.6, 1.6Hz), 7.74(2H, dd, J=8.8, 5.5Hz), 7.62(2H, d, J=8.7Hz), 7.33(2H, t, J=8.9Hz), 7.22(2H, t, J=8.9Hz), 5.41(2H, s), 4.34(2H, q, J=7.1Hz), 4.31(1H, m), 2.71(3H, s), 5.40-2.15(2H, m), 2.05-1.75(4H, m), 1.55-1.15(3H, m), 1.36(3H, t, J=7.1Hz)

Example 17

10

Production of 1-cyclohexyl-2-\(\frac{4-(4-(4-fluorophenyl)-2-methyl-5-thiazolyl\) methoxy] phenyl\) benzimidazole-5-carboxylic acid

Ethyl 1-cyclohexyl-2- $\{4-[\{4-(4-fluorophenyl)-2-methyl-5-thiazolyl\}methoxy]$ phenyl $\{benzimidazole-5-carboxylate (60 g) obtained in Example 16 was treated in the same manner as in Example 2 to give the title compound (39g, yield 69%).$

melting point: 196-198°C

15 FAB-Ms: 542 (MH+)

 1 H-NMR (300MHz, DMSO-d₆): 13.1(1H, brs), 8.34(1H, s), 8.29(1H, d, J=8.8Hz), 8.06(1H, d, J=8.7Hz), 7.80-7.72(4H, m), 7.36-7.31(4H, m), 5.46(2H, s), 4.38(1H, m), 2.72(3H, s), 2.45-2.15(2H, m), 2.15-1.95(2H, m), 1.95-1.75(2H, m), 1.75-1.55(1H, m), 1.55-20 1.20(3H, m)

Example 18

Production of ethyl 1-cyclohexyl-2-(2-fluoro-4-hydroxyphenyl)-benzimidazole-5-carboxylate

In the same manner as in Example 3, the title compound (50 g) was obtained.

Example 19

Production of ethyl 2-{4-[bis(3-fluorophenyl)methoxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylate

Step 1: Production of 3,3'-difluorobenzhydrol

To a stirred solution of magnesium strip (35.4 g) in THF (200 ml), iodine strip was added and the mixture was heated with stirring under nitrogen stream until most of color of iodine was disappeared. A solution of 3-fluoro-bromobenzene (250.0 g) in THF (1000 ml) was added dropwise over 2.5 hr while the temperature of the solution was maintained at 60°C. After the completion of the addition of the solution, the resulting mixture was refluxed for 1 hr with heating. The resulting Grignard solution was ice-cooled and a solution of ethyl formate (63.2 g) in THF (200 ml) was

added dropwise over 1 hr. After a stirring of the reaction solution for an additional 30 min, saturated aqueous ammonium chloride solution (700 ml) was added dropwise with ice-cooling and water (300 ml) was added. The mixture was stirred for 10 min.

5 The organic layer and water layer were separated. Water layer was extracted with ethyl acetate, and the combined organic layer was washed with 2N hydrochloric acid, saturated aqueous sodium hydrogencarbonate and saturated brine. The organic layer was dried over anhydrous magnesium sulfate, filtered, and the solvent 10 was evaporated off under reduced pressure to give the title compound (156.2 g, yield 99%).

 $^{1}H-NMR$ (300MHz, CDCl₃): 7.31(2H, td, J=7.9, 5.8Hz), 7.15-7.80(4H, m), 6.97-6.94 (2H, m), 5.82 (1H, d, J=3.3Hz), 2.30 (1H, d, J=3.3Hz) Step 2: Production of 3,3'-difluorobenzhydryl chloride

To a solution of 3,3'-difluorobenzhydrol (150.0 g) obtained in the previous step in toluene (400 ml), pyridine (539 mg) was added at room temperature. To the solution, thionyl chloride (89.1 g) was added dropwise over 1 hr at room temperature and the resulting solution was stirred for an additional 2 hr. The 20 solution was heated so that the temperature of the solution was at 40°C, and then stirred for an additional 1.5 hr. Thionyl chloride (8.1 g) was added again and the mixture was stirred for 30 min. To the reaction mixture, water was added. The organic layer was separated, and washed with water, saturated aqueous 25 sodium hydrogencarbonate and saturated brine. The organic layer was dried over anhydrous magnesium sulfate, filtered, the solvent was evaporated off under reduced pressure to give the title

 $^{1}H-NMR$ (300MHz, CDCl₃): 7.32(2H, td, J=8.0, 5.9Hz), 7.18-7.10(4H, m), 7.01(2H, tdd, J=8.2, 2.5, 1.2Hz), 6.05(1H, s)

Step 3: Production of ethyl 2-{4-[bis(3-fluorophenyl)methoxy]-2fluorophenyl \-1-cyclohexylbenzimidazole-5-carboxylate

Ethyl 1-cyclohexyl-2-(2-fluoro-4-hydroxyphenyl)benzimidazole-5-carboxylate (50 g) obtained in Example 18 and 35 3,3'-difluorobenzhydryl chloride (34 g) obtained in the previous step were treated in the same manner as in Example 4 to give the title compound (76 g, yield 99%).

FAB-Ms: 585 (MH+)

compound (158.2 g, yield 97%).

15

¹H-NMR (300MHz, DMSO-d₆): 8.24(1H, d, J=1.4Hz), 7.98(1H, d, J=8.7Hz), 7.88(1H, d, J=8.7Hz), 7.56(1H, t, J=8.6Hz), 7.50-7.40(6H, m), 6.82(1H, s), 4.34(2H, q, J=7.1Hz), 3.95(1H, m), 2.20-2.10(2H, m), 1.90-1.80(4H, m), 1.6(1H, m), 1.35(3H, t, J=7.2Hz), 1.30-1.20(3H, mz)

Example 20

Production of 2-{4-(bis[3-fluorophenyl]methoxy)-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid

Ethyl 2-{4-[bis(3-fluorophenyl)methoxy]-2-fluorophenyl}-1cyclohexylbenzimidazole-5-carboxylate (75 g) obtained in Example
19 was treated in the same manner as in Example 2 to give the
title compound (48 g, yield 62%).

melting point: 242-243°C

FAB-Ms: 557 (MH+)

20 Example 21

Production of ethyl 1-cyclopentyl-2-(4-nitrophenyl)benzimidazole-5-carboxylate

In the same manner as in Example 1, the title compound (12 g) was obtained.

25 Example 22

Production of ethyl 2-(4-aminophenyl)-1-cyclopentylbenzimidazole-5-carboxylate

Ethyl 1-cyclopentyl-2-(4-nitrophenyl)benzimidazole-5-carboxylate (12 g) obtained in Example 21 was dissolved in tetrahydrofuran (200 ml) and ethyl alcohol (50 ml), 7.5% palladium carbon (50% wet, 1 g) was added. The mixture was hydrogenated for 1 hr at atmospheric pressure. The catalyst was filtered off and the filtrate was concentrated under reduced pressure. Tetrahydrofuran was added to the residue to allow crystallization and the crystals were collected by filtration to give the title compound (11 g, yield 98%).

1-NMR (300MHz, CDCl₃): 8.49(1H, d, J=1.3Hz), 7.95(1H, dd, J=8.5, 1.3Hz), 7.50-7.40(3H, m), 6.79(2H, d, J=4.6Hz), 4.97(1H, quint,

J=8.9Hz), 4.40(2H, q; J=7.1Hz), 3.74(2H, brs), 2.40-1.60(8H, m), 1.41(3H, t, J=7.1Hz)

Example 23

Production of ethyl 2-(4-benzoylaminophenyl)-1-

5 cyclopentylbenzimidazole-5-carboxylate

Ethyl 1-cyclopentyl-2-(4-aminophenyl)benzimidazole-5-carboxylate (300 mg) obtained in Example 22 was dissolved in pyridine (3 ml) and chloroform (3 ml), and benzoyl chloride (127 mg) was added. The mixture was stirred for 30 min at room temperature. The reaction mixture was concentrated under reduced pressure and water was added to the residue to allow

pressure and water was added to the residue to allow crystallization. The crystals were collected by filtration to give the title compound (403 mg, yield 100%).

¹H-NMR (300MHz, CDCl₃): 8.58(1H, s), 8.00(1H, d, J=9.0Hz), 7.84(2H, d, J=7.5Hz), 7.60-7.40(6H, m), 7.14(2H, d, J=7.5Hz), 4.84(1H, quint, J=8.7Hz), 4.41(2H, q, J=7.5Hz), 2.20-1.30(8H, m), 1.41(3H, t, J=7.5Hz)

Example 24

Production of 2-(4-benzoylaminophenyl)-1-

20 cyclopentylbenzimidazole-5-carboxylic acid

Ethyl 2-(4-benzoylaminophenyl)-1-cyclopentylbenzimidazole-5-carboxylate (200 mg) obtained in Example 23 was treated in the same manner as in Example 2 to give the title compound (131 mg, yield 70%).

melting point: not lower than 300°C
FAB-Ms: 426 (MH+)

 1 H-NMR (300MHz, DMSO-d₆): 10.75(1H, s), 8.35(1H, s), 8.15and7.85(4H, ABq, J=8.9Hz), 8.10-7.98(4H, m), 7.70-7.55(3H, m), 5.02(1H, quint, J=8.7Hz), 2.36-2.15(4H, m), 2.14-1.95(2H, m),

30 1.80-1.62 (2H, m)

Example 25

Production of ethyl 2-{4-[3-(3-chlorophenyl)phenoxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylate

Ethyl 2-[4-(3-bromophenoxy)phenyl]-1-

cyclohexylbenzimidazole-5-carboxylate (65 g) obtained in Example 1 and 3-chlorophenylboronic acid (23 g) were treated in the same manner as in Example 5 to give the title compound (59 g, yield 85%).

¹H-NMR (300MHz, CDCl₃): 8.51(1H, d, J=1.8Hz), 7.99(1H, dd, J=8.7, 1.8Hz), 7.71-7.55(4H, m), 7.51-7.43(2H, m), 7.43-7.27(4H, m), 7.19(1H, d, J=8.4Hz), 7.12(1H, m), 4.41(2H, q, J=7.2Hz), 4.39(1H, m), 2.42-2.22(2H, m), 2.03-1.87(4H, m), 1.79(1H, m), 1.42(3H, t, J=7.2Hz), 1.39-1.29(3H, m)

Example 26

Production of 2-\(\frac{4-[3-(3-chlorophenyl)phenoxy]phenyl\}-1-\)
cyclohexylbenzimidazole-5-carboxylic acid

Ethyl 2-{4-[3-(3-chlorophenyl)phenoxy]phenyl}-1
cyclohexylbenzimidazole-5-carboxylate (59 g) obtained in Example

25 was treated in the same manner as in Example 2 to give the

title compound (43 g, yield 76%).

melting point: $253-254^{\circ}C$

FAB-Ms: 523 (MH+)

20 Example 27

Production of ethyl 2-[4-(3-acetoxyphenyloxy)phenyl]-1-cyclohexylbenzimidazole-5-carboxylate

In the same manner as in Example 1, the title compound (87 g) was obtained.

25 Example 28

Production of ethyl 1-cyclohexyl-2-[4-(3-hydroxyphenyloxy)-phenyl]benzimidazole-5-carboxylate

Ethyl 2-[4-(3-acetoxyphenyloxy)phenyl]-1cyclohexylbenzimidazole-5-carboxylate (87 g) obtained in Example
30 27 was dissolved in methyl alcohol (250 ml) and tetrahydrofuran
(250 ml), and potassium carbonate (31 g) was added. The mixture
was stirred for 30 min at room temperature. The insoluble
materials were filtered off and the filtrate was concentrated
under reduced pressure. Water was added to the residue and the
35 mixture was neutralized with 2N hydrochloric acid. The
precipitated crystals were collected by filtration to give the
title compound (78 g, yield 97%).

¹H-NMR (300MHz, DMSO-d₆): 9.71(1H, s), 7.98(1H, d, J=8.7Hz), 7.87(1H, d, J=8.7Hz), 7.68(2H, d, J=8.6Hz), 7.24(1H, t, J=8.1Hz), 7.18(2H, d, J=8.6Hz), 6.63(1H, d, J=8.1Hz), 6.57(1H, d, J=8.1Hz), 6.51(1H, s), 4.38-4.23(1H, m), 4.35(2H, q, J=6.9Hz), 2.36-2.18(2H, m), 1.99-1.78(4H, m), 1.71-1.59(1H, m), 1.45-1.20(3H, m), 1.36(3H, t, J=6.9Hz)

Example 29

Production of ethyl 1-cyclohexyl-2-{4-[3-(4-pyridylmethoxy)-phenyloxy]phenyl}benzimidazole-5-carboxylate

Ethyl 1-cyclohexyl-2-[4-(3-hydroxyphenyloxy)phenyl]-10 benzimidazole-5-carboxylate (78 g) obtained in Example 28 was suspended in dimethylformamide (800 ml), and sodium hydride (60% oil, 14 q) was added under ice-cooling. The mixture was stirred for 1 hr at room temperature. After the reaction mixture was ice-15 cooled, 4-chloromethylpyridine hydrochloride (29 g) was added and the mixture was stirred for 30 min. The mixture was then stirred overnight at room temperature. Water was added to the reaction mixture and the precipitated crystals were collected by filtration. The resulting crystals were recrystallized from ethyl 20 alcohol to give the title compound (77 g, yield 82%). $^{1}H-NMR$ (300MHz, CDCl₃): 8.63(2H, d, J=6.0Hz), 8.51(1H, s), 7.99(1H, d, J=8.7Hz), 7.66(2H, d, J=8.7Hz), 7.62(2H, d, J=8.7Hz), 7.36(2H, d, J=8.7Hz), 7.31(1H, t, J=8.2Hz), 7.26(1H, s), 7.16(2H, d, J=8.7Hz), 6.79-6.70(3H, m), 5.09(2H, s), 4.47-4.31(1H, m), 25 4.42 (2H, q, J=7.0Hz), 2.42-2.22 (2H, m), 2.04-1.71 (5H, m), 1.45-1.25(3H, m), 1.42(3H, t, J=7.0Hz)

Example 30

Production of 1-cyclohexyl-2-{4-[3-(4-pyridylmethoxy)phenyloxy]-phenylbenzimidazole-5-carboxylic acid

Ethyl 1-cyclohexyl-2-\delta-[3-(4-pyridylmethoxy)phenyloxy]phenyl\benzimidazole-5-carboxylate (60 g) obtained in Example 29
was treated in the same manner as in Example 2 to give the title
compound (54 g, yield 75%).

melting point: 235-237°C

35 FAB-Ms: 520 (MH+)

¹H-NMR (300MHz, DMSO-d₆): 8.58(2H, d, J=6.0Hz), 8.23(1H, s), 7.96 and 7.86(2H, ABq, J=8.7Hz), 7.68 and 7.17(4H, A'B'q, J=8.7Hz), 7.44(2H, d, J=8.7Hz), 7.39(1H, t, J=8.3Hz), 6.90(1H, d, J=8.1Hz),

6.84(1H, s), 6.75(1H, d, J=8.1Hz), 5.22(2H, s), 4.40-4.22(1H, m), 2.40-2.19(2H, m), 2.00-1.80(4H, m)

Example 241

Production of methyl $2-\frac{1}{4}-[2-(4-\text{chlorophenyl})-5-$

5 methoxybenzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylate

Step 1: Production of 2-bromo-5-methoxybenzaldehyde

3-Methoxybenzaldehyde (15 g) was dissolved in acetic acid (75 ml), and a solution of bromine (5.7 ml) dissolved in acetic acid (15 ml) was added dropwise. The mixture was stirred

overnight at room temperature and water (150 ml) was added to the reaction mixture. The precipitated crystals were collected by filtration, washed with water and dried under reduced pressure to give the title compound (21 g, yield 88%).

 $^{1}H-NMR$ (300MHz, CDCl₃): 10.31(1H, s), 7.52(1H, d, J=8.8Hz),

15 7.41 (1H, d, J=3.3Hz), 7.03 (1H, dd, J=8.8, 3.3Hz), 3.48 (3H, s)

Step 2: Production of 2-(4-chlorophenyl)-5-methoxybenzaldehyde

2-Bromo-5-methoxybenzaldehyde (10 g) obtained in the previous step was treated in the same method as in Example 5 to give the title compound (11 g, yield 96%).

¹H-NMR (300MHz, CDCl₃): 9.92(1H, s), 7.50(1H, d, J=2.6Hz), 7.48-7.14(6H, m), 3.90(3H, s)

Step 3: Production of 2-(4-chlorophenyl)-5-methoxybenzyl alcohol 2-(4-Chlorophenyl)-5-methoxybenzaldehyde (10 g) obtained in

the previous step was dissolved in tetrahydrofuran (30 ml). The solution was added dropwise to a suspension of sodium borohydride (620 mg) in isopropyl alcohol (50 ml) and the mixture was stirred for 1 hr. The solvent was evaporated under reduced pressure and water was added to the residue. The precipitated crystals were collected by filtration and dried under reduced pressure. The

resulting crystals were recrystallized from a mixture of methanol and water to give the title compound (9.2 g, yield 91%).

¹H-NMR (300MHz, CDCl₃): 7.37(2H, d, J=8.6Hz), 7.27(2H, d, J=8.6Hz), 7.17(1H, d, J=8.6Hz), 7.11(1H, d, J=2.6Hz), 6.89(1H, dd, J=8.6, 2.6Hz), 4.57(2H, s), 3.86(3H, s)

35 Step 4: Production of 2-(4-chlorophenyl)-5-methoxybenzyl chloride 2-(4-Chlorophenyl)-5-methoxybenzyl alcohol (20 g) obtained in the previous step was dissolved in ethyl acetate (100 ml) and pyridine (0.5 ml), and thionyl chloride (11 ml) was added

dropwise. The mixture was stirred for 1 hr. Water was added to the reaction mixture and the mixture was extracted with ethyl acetate. The organic layer was washed with water, saturated aqueous sodium hydrogencarbonate, water and saturated brine,

- oried over anhydrous magnesium sulfate, and concentrated under reduced pressure. Isopropyl alcohol was added to the residue to allow crystallization. The resulting crystals were collected by filtration and dried under reduced pressure to give the title compound (16 g, yield 74%).

2-(4-Chlorophenyl)-5-methoxybenzyl chloride (4.0 g) obtained in the previous step and methyl 1-cyclohexyl-2-(4-hydroxyphenyl)-benzimidazole-5-carboxylate (5.0 g) obtained in the same manner as in Example 3 were treated in the same manner as in Example 4 to give the title compound (6.0 g, yield 72%).

¹H-NMR (300MHz, CDCl₃): 8.48(1H, s), 8.00-7.93(1H, m), 7.68-20 7.62(1H, m), 7.54(2H, d, J=9.0Hz), 7.41-7.16(6H, m), 7.04-6.93(3H, m), 4.97(2H, s), 4.36(1H, m), 3.94(3H, s), 3.87(3H, s), 2.39-2.21(2H, m), 2.02-1.88(4H, m), 1.85-1.45(4H, m)

Example 242

Production of 2-\\\ 4-[2-(4-chlorophenyl)-5-methoxybenzyloxy]phenyl\\\-25 1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride

Methyl 2-{4-[2-(4-chlorophenyl)-5-methoxybenzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylate (5.0 g) obtained in Example 241 was treated in the same manner as in Example 2 to give the title compound (5.1 g, yield 98%).

30 APCI-Ms: 568 (MH+)

 $^{1}\text{H-NMR} \ (300\text{MHz}, \ \text{DMSO-d}_{6}): \ 8.30 \ (1\text{H}, \ \text{d}, \ \text{J=1.4Hz}) \ , \ 8.24 \ (1\text{H}, \ \text{d}, \ \text{J=8.7Hz}) \ , \ 8.03 \ (1\text{H}, \ \text{d}, \ \text{J=8.7Hz}) \ , \ 7.72 \ (2\text{H}, \ \text{d}, \ \text{J=8.7Hz}) \ , \ 7.51-7.39 \ (4\text{H}, \ \text{m}) \ , \ 7.34-7.18 \ (4\text{H}, \ \text{m}) \ , \ 7.11-7.03 \ (1\text{H}, \ \text{m}) \ , \ 5.08 \ (2\text{H}, \ \text{s}) \ , \ 4.35 \ (1\text{H}, \ \text{m}) \ , \ 3.83 \ (3\text{H}, \ \text{m}) \ , \ 2.40-2.18 \ (2\text{H}, \ \text{m}) \ , \ 2.10-1.96 \ (2\text{H}, \ \text{m}) \ , \ .$

35 1.93-1.78 (2Hm), 1.72-1.18 (4H, m)

Example 243

Production of ethyl 2-{4-[3-(4-chlorophenyl)pyridin-2-ylmethoxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylate

Step 1: Production of methyl 3-hydroxypicolinate

3-Hydroxypicolinic acid (1.0 g) was suspended in methanol (10 ml) and concentrated sulfuric acid (1.0 ml) was added. The mixture was refluxed under heating for 5 hr. The reaction mixture 5 was ice-cooled, neutralized with saturated aqueous sodium hydrogencarbonate, and extracted with chloroform. The organic layer was washed with water and saturated brine, and dried over anhydrous magnesium sulfate. The solvent was evaporated under reduced pressure to give the title compound (711 mg, yield 64%).

10 1H-NMR (300MHz, CDCl₃): 10.63(1H, s), 8.28(1H, dd, J=3.7, 1.8Hz), 7.47-7.35(2H, m), 4.06(3H, s)

Step 2: Production of methyl 3-(trifluoromethylsulfonyloxy)-pyridine-2-carboxylate

Methyl 3-hydroxypicolinate (710 mg) obtained in the previous step and triethylamine (0.77 ml) were dissolved in dichloromethane (7 ml), and trifluoromethanesulfonic anhydride (0.86 ml) was added under ice-cooling. The reaction mixture was allowed to warm to room temperature and the mixture was stirred for 2 hr. Water was added to the reaction mixture and the mixture was extracted with ethyl acetate. The organic layer was washed with saturated brine and dried over anhydrous magnesium sulfate. The solvent was evaporated under reduced pressure to give the title compound (1.2 g, yield 90%).

¹H-NMR (300MHz, CDCl₃): 8.80-8.73(1H, m), 7.75-7.70(1H, m), 25 7.63(1H, dd, J=8.2, 4.5Hz), 4.05(3H, s)

Step 3: Production of methyl 3-(4-chlorophenyl)pyridine-2-carboxylate

Methyl 3-(trifluoromethylsulfonyloxy)pyridine-2-carboxylate (1.2 g) obtained in the previous step was treated in the same 30 manner as in Example 5 to give the title compound (728 mg, yield 69%).

¹H-NMR (300MHz, CDCl₃): 8.73-8.66(1H, m), 7.77-7.68(1H, m), 7.49(1H, dd, J=7.8, 4.5Hz), 7.46-7.37(2H, m), 7.32-7.23(2H, m), 3.80(3H, s)

35 Step 4: Production of [3-(4-chlorophenyl)pyridin-2-yl]methanol Methyl 3-(4-chlorophenyl)pyridine-2-carboxylate (720 mg) obtained in the previous step was dissolved in tetrahydrofuran (10 ml) and the solution was ice-cooled. Lithium aluminum hydride (160 mg) was added to the solution and the mixture was stirred for 1 hr. To the reaction mixture were added successively water (1.6 ml), 15% sodium hydroxide (1.6 ml) and water (4.8 ml). The insoluble materials were filtered off and the filtrate was concentrated under reduced pressure. The residue was purified by silica gel flash chromatography (developing solvent, n-hexane:ethyl acetate = 1:1) to give the title compound (208 mg,

¹H-NMR (300MHz, CDCl₃): 8.60(1H, dd, J=4.8, 1.5Hz), 7.60-7.55(1H, m), 7.40-7.48(2H, m), 7.29-7.36(1H, m), 7.27-7.20(3H, m), 4.63(2H, s)

Step 5: Production of ethyl 2-{4-[3-(4-chlorophenyl)pyridin-2-ylmethoxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylate

[3-(4-Chlorophenyl)pyridin-2-yl]methanol (200 mg) obtained in the previous step was dissolved in chloroform (3 ml), and thionyl chloride (0.13 ml) and pyridine (catalytic amount) were added. The mixture was stirred for 1 hr at room temperature and concentrated under reduced pressure. The residue was dissolved in dimethylformamide (3 ml), and ethyl 1-cyclohexyl-2-(4-

- 20 hydroxyphenyl)benzimidazole-5-carboxylate (232 mg) obtained in the same manner as in Example 3 and potassium carbonate (250 mg) were added. The mixture was stirred for 3 hr with heating at 80°C. The reaction mixture was then allowed to cool. Water was added and the mixture was extracted with ethyl acetate. The organic
- layer was washed with water and saturated brine, dried over anhydrous magnesium sulfate and concentrated under reduced pressure. The residue was purified by silica gel flash chromatography (developing solvent, n-hexane:ethyl acetate = 1:2) to give the title compound (246 mg, yield 68%).
- 30 ¹H-NMR (300MHz, CDCl₃): 8.71 (1H, dd, J=4.7, 1.4Hz), 8.49 (1H, d, J=2.1Hz), 7.96 (1H, d, J=10.2Hz), 7.71-7.62 (2H, m), 7.53 (2H, d, J=8.7Hz), 7.45-7.34 (5H, m), 7.04 (2H, d, J=8.7Hz), 5.14 (2H, s), 4.48-4.29 (3H, m), 2.38-2.19 (2H, m), 2.02-1.22 (11H, m)

Example 244

yield 32%).

35 Production of methyl 2-[4-(2-bromo-5-tert-butoxycarbonyl-benzyloxy)phenyl]-1-cyclohexylbenzimidazole-5-carboxylate

Step 1: Production of tert-butyl 4-bromo-3-methylbenzoate

4-Bromo-3-methylbenzoic acid (25 g), was suspended in dichloromethane (200 ml), and oxalyl chloride (12 ml) and dimethylformamide (catalytic amount) were added. The mixture was stirred for 2 hr at room temperature and the solvent was

- 5 evaporated under reduced pressure. The residue was dissolved in tetrahydrofuran (200 ml) and the solution was ice-cooled. To the solution was added dropwise a solution of potassium tert-butoxide dissolved in tetrahydrofuran (150 ml) and the mixture was stirred for 30 min. Water was added to the reaction mixture and the
- mixture was extracted with ethyl acetate. The organic layer was washed with water and saturated brine, and dried over anhydrous magnesium sulfate. The solvent was evaporated under reduced pressure to give the title compound (27 g, yield 85%).

 1 H-NMR (300MHz, CDCl₃): 7.83(1H, d, J=2.2Hz), 7.67-7.53(2H, m),

15 2.43 (3H, s), 1.58 (9H, s)

Step 2: Production of methyl 2-[4-(2-bromo-5-tert-butoxycarbonylbenzyloxy)phenyl]-1-cyclohexylbenzimidazole-5-carboxylate

tert-Butyl 4-bromo-3-methylbenzoate (7.0 g) obtained in the previous step and methyl 1-cyclohexyl-2-(4-hydroxyphenyl) - benzimidazole-5-carboxylate (6.3 g) obtained in the same manner as in Example 3 were treated in the same manner as in Example 4 to give the title compound (8.8 g, yield 77%).

1H-NMR (300MHz, CDCl₃): 8.49(1H, d, J=1.5Hz), 8.21(1H, d, J=2.1Hz),

7.97(1H, d, J=10.2Hz), 7.82(1H, d, J=10.2Hz), 7.71-7.58(4H, m),
7.16(2H, d, J=8.7Hz), 5.23(2H, s), 4.38(1H, m), 3.95(3H, s),
2.40-2.23(2H, m), 2.04-1.90(4H, m), 1.84-1.73(1H, m), 1.59(9H, s),
1.44-1.27(3H, m)

Example 245

Production of methyl 2-{4-[5-tert-butoxycarbonyl-2-(4-chlorophenyl)benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylate

Methyl 2-[4-(2-bromo-5-tert-butoxycarbonylbenzyloxy)phenyl]1-cyclohexylbenzimidazole-5-carboxylate (4.5 g) obtained in

35 Example 244 was treated in the same manner as in Example 5 to give the title compound (3.6 g, yield 76%).

1H-NMR (300MHz, CDCl₃): 8.48(1H, s), 8.27(1H, d, J=1.8Hz), 8.04(1H, dd, J=7.9, 1.5Hz), 7.96(1H, dd, J=7.0, 1.5Hz), 7.65(1H, d,

J=8.6Hz) , 7.55 (2H, d, J=8.6Hz) , 7.43-7.32 (5H, m) , 7.01 (2H, d, J=8.6Hz) , 4.99 (2H, s) , 4.43-4.29 (1H, m) , 3.95 (3H, s) , 2.41-2.21 (2H, m) , 2.02-1.89 (4H, m) , 1.82-1.73 (1H, m) , 1.62 (9H, s) , 1.46-1.28 (3H, m)

5 Example 246

Production of methyl 2-{4-[5-carboxy-2-(4-chlorophenyl)-benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylate hydrochloride

Methyl 2-{4-[5-tert-butoxycarbonyl-2-(4-chlorophenyl)
benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylate (3.5 g)

obtained in Example 245 was dissolved in dichloromethane (35 ml),

and trifluoroacetic acid (35 ml) was added. The mixture was

stirred for 1 hr at room temperature and the reaction mixture was

concentrated under reduced pressure. The residue was dissolved in

ethyl acetate, and 4N hydrochloric acid-ethyl acetate was added.

The precipitated crystals were collected by filtration and dried

under reduced pressure to give the title compound (3.3 g, yield

97%).

¹H-NMR (300MHz, DMSO-d₆): 8.33(1H, d, J=1.5Hz), 8.29(1H, s),
20 8.24(1H, d, J=1.8Hz), 8.09-8.00(2H, m), 7.74(2H, d, J=8.6Hz),
7.61-7.44(5H, m), 7.24(2H, d, J=8.6Hz), 5.19(2H, s), 4.36(1H, m),
3.93(3H, s), 2.37-1.21(10H, m)

Example 247

Production of methyl 2-{4-[2-(4-chlorophenyl)-5-methylcarbamoyl
benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylate

Methyl 2-{4-[5-carboxy-2-(4-chlorophenyl)benzyloxy]phenyl}-

1-cyclohexylbenzimidazole-5-carboxylate hydrochloride (400 mg) obtained in Example 246 was suspended in dichloromethane (5 ml), and oxalyl chloride (0.08 ml) and dimethylformamide (catalytic amount) were added. The mixture was stirred for 2 hr at room temperature. The reaction mixture was concentrated under reduced pressure and the residue was dissolved in dichloromethane (5 ml). The resulting solution was added dropwise to a mixed solution of 40% aqueous methylamine solution (5 ml) and tetrahydrofuran (5 ml) under ice-cooling. The reaction mixture was stirred for 1 hr and concentrated under reduced pressure. Water was added to the residue and the mixture was extracted with ethyl acetate. The organic layer was washed with water, saturated aqueous sodium

hydrogencarbonate and saturated brine, and dried over anhydrous magnesium sulfate. The solvent was evaporated under reduced pressure and the residue was crystallized from ethyl acetate and disopropyl ether. The crystals were collected by filtration and dried under reduced pressure to give the title compound (335 mg, yield 86%).

¹H-NMR (300MHz, CDCl₃): 8.47(1H, s), 8.06(1H, d, J=1.8Hz), 7.96(1H, dd, J=8.6, 1.5Hz), 7.82(1H, dd, J=8.2, 2.2Hz), 7.64(1H, d, J=8.6Hz), 7.54(2H, d, J=9.0Hz), 7.44-7.31(5H, m), 6.99(2H, d, J=9.0Hz), 6.35-6.26(1H, m), 5.00(2H, s), 4.35(1H, m), 3.95(3H, s), 3.05(3H, d, J=4.8Hz), 2.40-1.24(10H, m)

Example 248

Production of 2-\{4-[2-(4-chlorophenyl)-5methylcarbamoylbenzyloxy]phenyl\{-1-cyclohexylbenzimidazole-5carboxylate hydrochloride

Methyl 2-{4-[2-(4-chlorophenyl)-5-methylcarbamoylbenzyloxy]-phenyl}-1-cyclohexylbenzimidazole-5-carboxylate (150 mg) obtained in Example 247 and tetrahydrofuran (2 ml) were treated in the same manner as in Example 2 to give the title compound (141 mg, yield 90%).

APCI-Ms: 594 (MH+)

¹H-NMR (300MHz, DMSO-d₆): 8.65-8.58(1H, m), 8.27(1H, d, J=1.5Hz), 8.21(1H, d, J=8.2Hz), 8.15(1H, d, J=1.5Hz), 8.05-7.90(2H, m), 7.70(2H, d, J=8.6Hz), 7.56-7.43(5H, m), 7.21(2H, d, J=8.6Hz), 2.55.14(2H, s), 4.34(1H, m), 2.81(3H, d, J=4.5Hz), 2.39-1.19(10H, m)

Example 336

Production of methyl 2-[4-(2-bromo-5-nitrobenzyloxy)-2-fluorophenyl]-1-cyclohexylbenzimidazole-5-carboxylate

dissolved in carbon tetrachloride (30 ml), and N-bromosuccinimide (2.9 g) and N,N'-azobisisobutyronitrile (228 mg) were added, which was followed by refluxing under heating overnight. The reaction mixture was allowed to cool, water was added and the mixture was extracted with chloroform. The organic layer was dried over magnesium sulfate and concentrated under reduced pressure. The residue was dissolved in dimethylformamide (30 ml) and methyl 2-(2-fluoro-4-hydroxyphenyl)-1-cyclohexylbenzimidazole-5-carboxylate (3.8 g) obtained in the

same manner as in Example 3 and potassium carbonate (3.8 g) were added, which was followed by stirring at 80°C for 1 hr. The reaction mixture was allowed to cool, water was added and the mixture was extracted with ethyl acetate. The organic layer was washed with water and saturated brine, dried over anhydrous magnesium sulfate and concentrated under reduced pressure. The residue was purified by silica gel flash chromatography (n-hexane:ethyl acetate = 1:1) to give the title compound (3.7 g, yield 61%).

Example 337

15 Production of methyl 2-[4-{2-(4-chlorophenyl)-5-nitrobenzyloxy}-2-fluorophenyl]-1-cyclohexylbenzimidazole-5-carboxylate

Methyl 2-[4-(2-bromo-5-nitrobenzyloxy)-2-fluorophenyl]-1-cyclohexylbenzimidazole-5-carboxylate (2.0 g) obtained in Example 336, 4-chlorophenylboronic acid (590 mg) and

- tetrakis(triphenylphosphine)palladium (396 mg) were suspended in dimethoxyethane (40 ml), and saturated aqueous sodium hydrogencarbonate solution (20 ml) was added, which was followed by refluxing under heating for 1 hr. The reaction mixture was allowed to cool, water was added and the mixture was extracted
- with chloroform. The organic layer was dried over anhydrous magnesium sulfate and concentrated under reduced pressure. The residue was purified by silica gel flash chromatography (n-hexane:ethyl acatate = 2:1) to give the title compound (1.9 g, yield 90%).
- ¹H-NMR (300MHz, CDCl₃): 8.55(1H, d, J=2.3Hz), 8.49(1H, d, J=1.4Hz), 8.29(1H, dd, J=8.4Hz, 2.3Hz), 7.98(1H, dd, J=8.6Hz, 1.5Hz), 7.60-7.30(6H, m), 6.85-6.70(2H, m), 5.03(2H, s), 4.02(1H, m), 3.95(3H, s), 2.35-2.10(2H, m), 2.05-1.70(5H, m), 1.40-1.20(3H, m)

Example 338

35 Production of methyl 2-[4-{5-amino-2-(4-chlorophenyl)benzyloxy}-2-fluorophenyl]-1-cyclohexylbenzimidazole-5-carboxylate

Methyl $2-[4-\{2-(4-\text{chlorophenyl})-5-\text{nitrobenzyloxy}\}-2-$ fluorophenyl]-1-cyclohexylbenzimidazole-5-carboxylate (1.9 g)

obtained in Example 337 was suspended in ethanol (40 ml), and tin(II) chloride dihydrate (3.5 g) was added, which was followed by refluxing under heating for 30 min. The reaction mixture was concentrated under reduced pressure, 4N sodium hydroxide was added and the mixture was extracted with chloroform. The organic layer was washed with 2N sodium hydroxide and water, dried over anhydrous magnesium sulfate and concentrated under reduced pressure. Diisopropyl ether was added to the residue, and the precipitated crystals were collected by filtration to give the title compound (1.5 g, yield 82%).

¹H-NMR (300MHz, CDCl₃): 8.49(1H, d, J=1.2Hz), 7.98(1H, dd, J=9.0, 1.5Hz), 7.66(1H, d, J=8.7Hz), 7.49(1H, t, J=8.4Hz), 7.40-7.20(3H, m), 7.13(1H, d, J=8.1Hz), 6.92(1H, d, J=2.7Hz), 6.85-6.65(4H, m), 4.92(2H, s), 4.03(1H, m), 3.95(3H, s), 3.82(2H, brs), 2.30-

15 2.10(2H, m), 2.05-1.80(4H, m), 1.80-1.70(1H, m), 1.40-1.10(3H, m) Example 339

Production of methyl $2-[4-\{2-(4-\text{chlorophenyl})-5-(2-\text{oxopyrrolidin-1-yl})\ \text{benzyloxy}\}-2-\text{fluorophenyl}]-1-\text{cyclohexylbenzimidazole}-5-\text{carboxylate}$

Methyl 2-[4-{5-amino-2-(4-chlorophenyl)benzyloxy}-2fluorophenyl]-1-cyclohexylbenzimidazole-5-carboxylate (500 mg)
obtained in Example 338 and triethylamine (0.14 ml) were
dissolved in chloroform (5 ml), and commercially available
chlorobutyryl chloride (0.1 ml) was added under ice-cooling,
which was followed by stirring at room temperature for 3 hr.
Water was added to the reaction mixture and the mixture was

Water was added to the reaction mixture and the mixture was extracted with ethyl acetate. The organic layer was washed with water and saturated brine, dried over anhydrous magnesium sulfate and concentrated under reduced pressure. The residue was

dissolved in dimethylformamide (6 ml) and potassium carbonate (244 mg) was added, which was followed by stirring at 80°C for 1 hr. The reaction mixture was allowed to cool, water was added and the precipitated crystals were collected by filtration to give the title compound (502 mg, yield 89%).

¹H-NMR (300MHz, CDCl₃): 4.89(1H, d, J=1.5Hz), 7.98(1H, dd, J=8.6Hz, 1.6Hz), 7.72(1H, d, J=2.2Hz), 7.75-7.65(2H, m), 7.49(1H, t, J=8.3Hz), 7.45-7.20(5H, m), 6.85-7.65(2H, m), 4.99(2H, s), 4.10-

3.85(6H, m), 2.66(2H, t, J=7.8Hz), 2.30-2.15(4H, m), 2.00-1.85(4H, m), 1.80-1.70(1H, m), 1.45-1.20(3H, m)

Example 340

Production of 2-[4-{2-(4-chlorophenyl)-5-(2-oxopyrrolidin-1-yl)benzyloxy}-2-fluorophenyl]-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride

Methyl 2-[4-{2-(4-chlorophenyl)-5-(2-oxopyrrolidin-1-yl)benzyloxy}-2-fluorophenyl]-1-cyclohexylbenzimidazole-5-carboxylate (200 mg) obtained in Example 339 was treated in the same manner as in Example 2 to give the title compound (182 mg, yield 87%).

Ms:638(M+1)

 1 H-NMR (300MHz, CDCl₃): 8.28(1H, d, J=1.3Hz), 8.10(1H, d, J=8.7Hz), 8.05-7.90(2H, m), 7.77(1H, dd, J=8.4Hz, 2.2Hz), 7.61(1H, t,

15 J=8.5Hz), 7.55-7.35(5H, m), 7.00-7.20(2H, m), 5.09(2H, s), 4.06(1H, m), 3.90(2H, t, J=6.9Hz), 2.60-2.45(2H, m), 2.30-2.00(4H, m), 1.95-1.75(4H, m), 1.70-1.55(1H, m), 1.45-1.15(3H, m)

In the same manner as in Examples 1-30, 241-248 and 336-340 and optionally using other conventional methods, where necessary, the compounds of Examples 31-240, 249-335, 341-446, 701-703 and 1001-1559 were obtained. The chemical structures and properties are shown in Table 1 to 177, 185 to 212, 219 to 221 and 225 to 260.

Example 501

aqueous citric acid solution (100 ml) and extracted with ethyl

acetate (100 ml). The organic layer was washed with water (50 ml) and saturated brine (50 ml), and dried over sodium sulfate. After filtration, the solvent was evaporated under reduced pressure and the residue was purified by silica gel flash chromatography

5 (developing solvent, n-hexane:ethyl acetate = 10:1) to give the

10 Step 2: Production of 4'-chloro-2-(4-iodophenoxymethyl)-4-methoxybiphenyl

3.38(1H, m), 2.10-2.00(2H, m), 1.90-1.20(8H, m)

4-Iodophenol (5.0 g) was dissolved in acetone (50 ml), and potassium carbonate (4.7 g) and 4'-chloro-2-chloromethyl-4-methoxybiphenyl (6.0 g) obtained in Example 241, Step 4 were added. The mixture was refluxed for 10 hr. The reaction mixture was concentrated and 4N aqueous sodium hydroxide solution (50 ml) was added. The precipitated crystals were collected by filtration, washed with water, and dried under reduced pressure to give the title compound (10.0 g, yield 98%).

¹H-NMR (300MHz, CDCl₃): 7.52(2H, d, J=8.9Hz), 7.35(2H, d, J=8.5Hz), 7.27-7.20(3H, m), 7.12(1H, s), 6.95(1H, d, J=8.5Hz), 6.62(2H, d, J=8.9Hz), 4.84(2H, s), 3.85(3H, s)

Step 3: Production of [4-(4'-chloro-4-methoxybiphenyl-2-ylmethoxy)phenylethynyl]trimethylsilane

obtained in the previous step was dissolved in acetonitrile (50 ml), and trimethylsilylacetylene (2.3 g), tetrakis—
(triphenylphosphine)palladium complex (1.8 g), copper(I) iodide
(0.6 g) and triethylamine (50 ml) were added. The mixture was
stirred overnight at room temperature and concentrated. Water (30 ml) was added and the mixture was extracted with ethyl acetate
(50 ml). The organic layer was washed with water (30 ml) and saturated brine (30 ml) and dried over sodium sulfate. After filtration, the solvent was evaporated under reduced pressure and
the residue was purified by silica gel flash chromatography (developing solvent, n-hexane:ethyl acetate = 10:1) to give the title compound (5.1 g, yield 79%).

¹H-NMR (300MHz, CDCl₃): 7.37(2H, d, J=8.9Hz), 7.34(2H, d, J=8.2Hz), 7.28-7.21(3H, m), 7.13(1H, s), 6.94(1H, d, J=8.2Hz), 6.75(2H, d, J=8.9Hz), 4.87(2H, s), 3.85(3H, s); 0.23(9H, s)

Step 4: Production of methyl 3-[4-(4'-chloro-4-methoxybiphenyl-2-ylmethoxy)phenylethynyl]-4-cyclohexylaminobenzoate

[4-(4'-Chloro-4-methoxybiphenyl-2-ylmethoxy) phenylethynyl]trimethylsilane (5.1 g) obtained in the previous step was dissolved in methanol (50 ml) and chloroform (50 ml), and potassium carbonate (2.5 g) was added. The mixture was stirred 10 for 3 hr at room temperature and concentrated. Water (30 ml) was added and the mixture was extracted with ethyl acetate (50 ml). The organic layer was washed with water (30 ml) and saturated brine (30 ml) and dried over sodium sulfate. After filtration, the solvent was evaporated under reduced pressure to give white 15 crystals (3.8 q). The white crystals (2.3 q) were dissolved in acetonitrile (10 ml), and methyl 3-bromo-4-cyclohexylaminobenzoate (1.0 g) obtained in Step 1, tetrakis(triphenylphosphine) palladium complex (0.4 g), copper(I) iodide (0.1 g) and triethylamine (10 ml) were added. The mixture was stirred 20 overnight at 100°C and concentrated under reduced pressure. Water (30 ml) was added and the mixture was extracted with ethyl acetate (50 ml). The organic layer was washed with water (30 ml) and saturated brine (30 ml), and dried over sodium sulfate. After filtration, the solvent was evaporated under reduced pressure and

the residue was purified by silica gel flash chromatography (developing solvent, n-hexane:ethyl acetate = 8:1) to give the title compound (0.9 g, yield 49%).

¹H-NMR (300MHz, CDCl₃): 8.03(1H, s), 7.84(1H, d, J=8.7Hz), 7.42-7.22(7H, m), 7.15(1H, s), 6.95(1H, d, J=8.2Hz), 6.85(2H, d, J=8.8Hz), 6.59(1H, d, J=8.8Hz), 5.07(1H, brs), 4.91(2H, s), 3.86(3H, s), 3.85(3H, s), 3.42(1H, m), 2.15-2.00(2H, m), 1.80-1.20(8H, m)

Step 5: Production of methyl 2-{4-[2-(4-chlorophenyl)-5-methoxybenzyloxy]phenyl}-1-cyclohexyl-1H-indole-5-carboxylate

Methyl 3-[4-(4'-chloro-4-methoxybiphenyl-2-ylmethoxy)phenyl-ethynyl]-4-cyclohexylaminobenzoate (0.5 g) obtained in the previous step was dissolved in N,N-dimethylformamide (5 ml), and copper(I) iodide (0.17 g) was added. The mixture was refluxed for

3 hr at 180°C. The insoluble materials were removed by filtration. Water (10 ml) was added and the mixture was extracted with ethyl acetate (30 ml). The organic layer was washed with water (10 ml) and saturated brine (10 ml), and dried over sodium sulfate. After

filtration, the solvent was evaporated under reduced pressure and the residue was purified by silica gel flash chromatography (developing solvent, n-hexane:ethyl acetate = 8:1) to give the title compound (0.27 g, yield 55%).

¹H-NMR (300MHz, CDCl₃): 8.34(1H, s), 7.85(1H, d, J=8.8Hz), 7.62(1H, d, J=8.8Hz), 7.40-7.18(8H, m), 7.00-6.94(3H, m), 6.48(1H, s), 4.95(2H, m), 4.18(1H, m), 3.93(3H, s), 3.88(3H, s), 2.45-2.25(2H, m), 1.95-1.20(8H, m)

Example 502

Production of 2-{4-[2-(4-chlorophenyl)-5-methoxybenzyloxy]phenyl}15 1-cyclohexyl-1H-indole-5-carboxylic acid

Methyl $2-\{4-[2-(4-\text{chlorophenyl})-5-\text{methoxybenzyloxy}]\text{ phenyl}\}-1-\text{cyclohexyl-1H-indole-5-carboxylate (0.27 g) obtained in Example 501 was treated in the same manner as in Example 2 to give the title compound (0.19 g, yield 71%).$

20 APCI-Ms: 566 (MH+)

 $^{1}\text{H-NMR}$ (300MHz, DMSO-d₆): 12.43(1H, brs), 8.20(1H, s), 7.79(1H, d, J=9.3Hz), 7.72(1H, d, J=9.0Hz), 7.50-7.20(8H, m), 7.07-7.03(3H, m), 6.53(1H, s), 5.01(2H, s), 4.13(1H, m), 3.83(3H, m), 2.35-2.25(2H, m), 1.85-1.10(8H, m)

In the same manner as in Examples 501 and 502, and optionally using other conventional methods where necessary, the compound of Example 503 was obtained. The chemical structure and properties are shown in Table 207.

Example 601

Production of ethyl 2-(4-benzyloxyphenyl)-3-cyclohexylimidazo-[1,2-a]pyridine-7-carboxylate

Step 1: Production of 4-benzyloxy-N-methoxy-N-methylbenzamide
4-Benzyloxybenzoic acid (5.0 g) and N,O-dimethylhydroxylamine hydrochloride (2.5 g) were suspended in

35 dimethylformamide (50 ml), and 1-(3-dimethylaminopropyl)-3ethylcarbodiimide hydrochloride (5.0 g), 1-hydroxybenzotriazole
(3.5 g) and triethylamine (3.6 ml) were added. The mixture was
stirred overnight at room temperature. Water was added to the

reaction mixture and the mixture was extracted with ethyl acetate. The organic layer was washed successively with water, saturated aqueous sodium hydrogencarbonate, water and saturated brine, and dried over anhydrous magnesium sulfate. The solvent was evaporated under reduced pressure to give the title compound (5.6)

 1 H-NMR (300MHz, CDCl₃): 7.22, 2H, d, J=8.8Hz), 7.28-7.46(5H, m), 6.97(2H, d, J=8.8Hz), 5.10(2H, s), 3.56(3H, s), 3.35(3H, s)

g, yield 94%).

Step 2: Production of 1-(4-benzyloxyphenyl)-2-cyclohexylethanone

Magnesium (470 mg) was suspended in tetrahydrofuran (2 ml) and cyclohexylmethyl bromide (3.4 g) was added dropwise at room temperature. After the addition, the reaction mixture was stirred for 30 min at 60°C. The reaction mixture was allowed to cool and diluted with tetrahydrofuran (5 ml). Separately, 4-benzyloxy-N-15 methoxy-N-methylbenzamide (3.4 g) obtained in the previous step was dissolved in tetrahydrofuran (10 ml) and the solution was added dropwise to the reaction mixture at room temperature. The mixture was stirred for 2 hr and saturated aqueous ammonium chloride solution was added to the reaction mixture. The mixture 20 was extracted with diethyl ether. The organic layer was washed with saturated brine and dried over anhydrous magnesium sulfate, and the solvent was evaporated under reduced pressure. The residue was purified by silica gel flash chromatography (developing solvent, n-hexane:ethyl acetate = 9:1) to give the 25 title compound (3.8 g, yield 66%).

¹H-NMR (300MHz, CDCl₃): 7.93(2H, d, J=8.8Hz), 7.28-7.46(5H, m), 7.00(2H, d, J=8.8Hz), 5.13(2H, s), 2.76(2H, d, J=6.8Hz), 1.95(1H, m), 0.78-1.82(10H, m)

Step 3: Production of 1-(4-benzyloxyphenyl)-2-bromo-2cyclohexylethanone

1-(4-Benzyloxyphenyl)-2-cyclohexylethanone (1.0 g) obtained in the previous step was dissolved in 1,4-dioxane (10 ml) and bromine (0.17 ml) was added. The mixture was stirred for 10 min at room temperature. Saturated aqueous sodium hydrogencarbonate was added to the reaction mixture and the mixture was extracted with diethyl ether. The organic layer was washed with water and saturated brine and dried over anhydrous magnesium sulfate, and the solvent was evaporated under reduced pressure. The residue

was purified by silica gel flash chromatography (developing solvent, n-hexane:ethyl acetate = 9:1) to give the title compound (696 mg, yield 55%).

¹H-NMR (300MHz, CDCl₃): 7.98(2H, d, J=8.9Hz), 7.28-7.48(5H, m), 5 7.02(2H, d, J=8.9Hz), 5.14(2H, s), 4.89(1H, d, J=9.3Hz), 0.86-3.30(11H, m)

Step 4: Production of ethyl 2-(4-benzyloxyphenyl)-3-cyclohexylimidazo[1,2-a]pyridine-7-carboxylate

Ethyl 2-aminopyridine-4-carboxylate (214 mg) prepared

according to JP-A-8-48651, 1-(4-benzyloxyphenyl)-2-bromo-2
cyclohexylethanone (500 mg) obtained in the previous step and

potassium carbonate (356 mg) were stirred for 5 hr with heating

at 140°C. The reaction mixture was allowed to cool and chloroform

was added. The insoluble materials were filtered off and the

filtrate was concentrated under reduced pressure. The residue was purified by silica gel flash chromatography (developing solvent, n-hexane:ethyl acetate = 1:1) to give the title compound (95 mg, yield 16%).

APCI-MS: 455 (MH+)

¹H-NMR (300MHz, CDCl₃): 8.33(1H, s), 8.21(1H, d, J=7.5Hz), 7.55(2H, d, J=8.7Hz), 7.25-7.50(6H, m), 5.13(2H, s), 4.41(2H, q, J=7.1Hz), 3.25(1H, m), 1.41(3H, t, J=7.1Hz), 1.15-2.00(10H, m)

Example 602

Production of 2-(4-benzyloxyphenyl)-3-cyclohexylimidazo[1,2-25 a]pyridine-7-carboxylic acid

Ethyl 2-(4-benzyloxyphenyl)-3-cyclohexylimidazo[1,2-a]pyridine-7-carboxylate (95 mg) obtained in the previous step was treated in the same manner as in Example 2 to give the title compound (33 mg, 37%).

30 APCI-MS: 427 (MH+)

 1 H-NMR (300MHz, DMSO-d₆): 8.67(1H, d, J=7.3Hz), 8.08(1H, s), 7.25-7.58(8H, m), 7.13(2H, d, J=8.7Hz), 5.17(2H, s), 3.23(1H, m), 1.25-2.10(10H, m)

The compounds shown in Tables 213 to 218 can be further obtained in the same manner as in Examples 1 to 701 or by other conventional method employed as necessary.

The evaluation of the HCV polymerase inhibitory activity of the compound of the present invention is explained in the

following. This polymerase is an enzyme coded for by the non-structural protein region called NS5B on the RNA gene of HCV (EMBO J., 15:12-22, 1996).

Experimental Example [I]

5 i) Preparation of enzyme (HCV polymerase)

Using, as a template, a cDNA clone corresponding to the full length RNA gene of HCV BK strain obtained from the blood of a patient with hepatitis C, a region encoding NS5B (591 amino acids; J Virol 1991 Mar, 65(3), 1105-13) was amplified by PCR.

The objective gene was prepared by adding a 6 His tag {base pair encoding 6 continuous histidine (His)} to the 5' end thereof and transformed to Escherichia coli. The Escherichia coli capable of producing the objective protein was cultured. The obtained cells were suspended in a buffer solution containing a surfactant and crushed in a microfluidizer. The supernatant was obtained by centrifugation and applied to various column chromatographys {poly[U]-Sepharose, Sephacryl S-200, mono-S (Pharmacia)}, inclusive of metal chelate chromatography, to give a standard enzyme product.

20 ii) Synthesis of substrate RNA

35

Using a synthetic primer designed based on the sequence of HCV genomic 3' untranslated region, a DNA fragment (148 bp) containing polyU and 3'X sequence was entirely synthesized and cloned into plasmid pBluescript SK II(+) (Stratagene). The cDNA encoding full length NS5B, which was prepared in i) above, was digested with restriction enzyme KpnI to give a cDNA fragment containing the nucleotide sequence of from the restriction enzyme cleavage site to the termination codon. This cDNA fragment was inserted into the upstream of 3' untranslated region of the DNA in pBluescript SK II(+) and ligated. The about 450 bp inserted DNA sequence was used as a template in the preparation of substrate RNA. This plasmid was cleaved immediately after the 3'X sequence, linearized and purified by phenol-chloroform treatment and ethanol precipitation to give DNA.

RNA was synthesized (37°C, 3 hr) by run-off method using this purified DNA as a template, a promoter of pBluescript SK II(+), MEGAscript RNA synthesis kit (Ambion) and T7 RNA polymerase. DNaseI was added and the mixture was incubated for 1

hr. The template DNA was removed by decomposition to give a crude RNA product. This product was treated with phenol-chloroform and purified by ethanol precipitation to give the objective substrate RNA.

This RNA was applied to formaldehyde denaturation agarose gel electrophoresis to confirm the quality thereof and preserved at -80°C .

iii) Assay of enzyme (HCV polymerase) inhibitory activity A test substance (compound of the present invention) and a reaction mixture (30 μ l) having the following composition were

reacted at 25°C for 90 min.

10% Trichloroacetic acid at 4°C and 1% sodium pyrophosphate solution (150 µl) were added to this reaction mixture to stop the reaction. The reaction mixture was left standing in ice for 15 min to insolubilize RNA. This RNA was trapped on a glass filter (Whatman GF/C and the like) upon filtration by suction. This filter was washed with a solution containing 1% trichloroacetic acid and 0.1% sodium pyrophosphate, washed with 90% ethanol and dried. A liquid scintillation cocktail (Packard) was added and the radioactivity of RNA synthesized by the enzyme reaction was measured on a liquid scintillation counter.

The HCV polymerase inhibitory activity (IC_{50}) of the compound of the present invention was calculated from the values of radioactivity of the enzyme reaction with and without the test substance.

The results are shown in Tables 178-184 and 222-224.

Reaction mixture: HCV polymerase (5 μ g/ml) obtained in i), substrate RNA (10 μ g/ml) obtained in ii), ATP (50 μ M), GTP (50 μ M), CTP (50 μ M), UTP (2 μ M), [5,6-3H]UTP (46 Ci/mmol (Amersham), 1.5 μ Ci) 20 mM Tris-HCl (pH 7.5), EDTA (1 mM), MgCl₂ (5 mM), NaCl (50 mM), DTT (1 mM), BSA (0.01%)

Table 1

Example No. 31	1H NMR(δ) ppm 300MHz, CDC13 7.81(2H, d, J=6.6Hz), 7.60(2H, d, J=8.8Hz), 7.51-7.21(
	8H, m), 7. 11 (2H, d, J=8. 8Hz), 5. 15 (2H, s), 4. 93 (1H, quin t, J=8. 8Hz), 2. 36-2. 32 (2H, m), 2. 09-2. 04 (3H, m), 1. 75-1. 68 (3H, m).
Purity > 90% (NMR)	
MS 369 (M+1)	

Example No. 32	1H NMR(δ) ppm
	300MHz, CDC13 8.51(1H, d, J=1.5Hz), 7.98(1H, d, J=8.4Hz), 7.61(2H, d, J=8.7Hz), 7.56-7.10(6H, m), 7.12(2H, d, J=8.7Hz), 5.15(2H, s), 4.94(1H, quint, J=9.3Hz), 4.41(2H, q, J=7.5Hz), 2.40-1.50(8H, m), 1.41(3H, t, J=7.5Hz)
Purity > 90% (NMR)	
MS 441 (M+1)	

Table 2

Example No. 34	1H NMR(δ) ppm
	300MHz, CDC13 8. 20(1H, s), 7. 50-7. 31(9H, m), 7. 12(2H, d, J=8. 7Hz), 5. 15(2H, s), 4. 94(1H, quint, J=8. 7Hz), 3. 61(3H, s), 3. 40(3H, s), 2. 41-1. 42(8H, m)
Purity >90% (NMR)	
MS 456 (M+1)	

Example No. 35	1H NMR(δ) ppm
HO L N	300MHz, CDC13 7.91(1H.s), 7.59(2H, d, J=8 .7Hz), 7.49-7.30(7H, m), 7. 11(2H, d, J=8.8Hz), 5.15(2H ,s), 4.19(1H, quint, J=8.8H z), 2.41-2.22(2H, m), 2.13- 1.49(14H, m)
Purity > 90% (NMR)	
MS 427 (M+1)	**

Table 3

Example No. 37	1H NMR(δ) ppm
ZHC1	300MHz, DMSO-d6 10.47(1H, brs,), 9.15(1H, brs), 8.40(1H, s), 8.07(1H, d, J=9.0Hz), 7.93(1H, d, J=8.7Hz), 7.77(2H, d, J=8.7Hz), 7.55-7.29(7H, m), 5.26(2H, s), 4.93(1H, quint, J=9.0Hz), 3.77-3.63(2H, m), 3.39-3.23(2H, m), 2.84(6H, d, J=4.8Hz), 2.32-1.60(8H, m)
Purity >90% (NMR)	
MS 483 (M+1)	

Example No. 38	1H NMR(δ) ppm
	300MHz, CDC13 8. 69(1H, s), 8. 19(1H, d, J=9 .0Hz), 7. 62(2H, d, J=8. 7Hz) ,7. 54(1H, d, J=9. 0Hz), 7. 48 -7. 36(5H, m), 7. 15(2H, d, J= 8. 7Hz), 5. 17(2H, s), 4. 98(1 H, quint, J=9. 0Hz), 2. 27-2. 07(6H, m), 1. 82-1. 78(2H, m)
Purity >90% (NMR)	
MS 414 (M+1)	

Example No. 39	1H NMR(δ) ppm
H ₂ N N O O O O O O O O O O O O O O O O O O	300MHz, DMSO-d6 7.84(1H, d, J=9.0Hz), 7.79(2H, d, J=8.7Hz), 7.52-7.33(8H, m), 7.26(1H, d, J=9.0Hz), 5.27(2H, s), 4.92(1H, quin t, J=9.3Hz), 2.19-1.70(8H, m).
Purity > 90% (NMR)	9 1
MS 384 (M+1)	

Example No.	40 1H NMR(δ) ppm
	300MHz, CDC13 7. 72 (1H, s), 7. 60-7. 35 (10H, m), 7. 10 (2H, d, J=8. 7Hz), 5 .14 (2H, s), 4. 90 (1H, quint, J=8. 8Hz), 2. 29-2. 19 (2H, m), 2. 19 (3H, s), 2. 19-1. 74 (6H, m).
Purity > 9 0% (NM	1R)
MS 426 (M+1)	

Example No. 43	1H NMR(δ) ppm
HO N N	300MHz, DMSO-d6 8. 33(1H, s), 8. 08(1H, d, J=9 .0Hz), 7. 99(1H, d, J=9. 0Hz) , 7. 47-7. 41(4H, m), 7. 33(2H , d, J=8. 4Hz), 5. 22(2H, s), 4 .96(1H, quint, J=9. 0Hz), 2. 25-1. 60(8H, m), 1. 30(9H, s)
Purity > 90% (NMR)	
MS 469 (M+1)	

Example No.	46	1H NMR(δ) ppm
HO NO	S_CI	300MHz, DMSO-d6 8. 33(1H, s), 8. 07(1H, d, J=8 .7Hz), 7. 98(1H, d, J=8. 7Hz) ,7. 80(2H, d, J=8. 4Hz), 7. 34 (2H, d, 8. 4Hz), 7. 19(1H, d, J =3. 6Hz), 7. 09(1H, d, J=3. 6H z), 5. 41(2H, s), 4. 95(1H, qu int, J=8. 7Hz), 2. 30-1. 60(8 H, m).
Purity > 90% (NMR)	,	E
MS 453 (M+1)		

Example	No.	47	1H NMR(δ) ppm
но	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		300MHz, DMSO-d6 8.33(1H, s), 8.07(1H, d, J=8 .4Hz), 7.98(1H, d, J=9.0Hz) , 7.82-7.72(6H, m), 7.35(2H , d, J=9.0Hz), 5.40(2H, s), 4 .95(1H, quint, J=8.7Hz), 2. 35-1.60(8H, m).
Purity	>90% (NMR)	• • •	.m
MS	481 (M+1)	,	- **

Example No. 49	1H NMR(δ) ppm 300MHz, DMSO-d6 8. 93 (2H, d, J=6.6Hz), 8. 35 1H, s), 8. 06-8. 04 (3H, m), 7. 97 (1H, d, J=8.7Hz), 7. 83 (2H, d, J=8.7Hz), 7. 38 (2H, d, J=8.7Hz), 5. 61 (2H, s), 4. 94 (H, quint, J=8.7Hz), 2. 40-1.60 (8H, m).
Purity > 90% (NMR)	
MS 414 (M+1)	

Example No. 50	1H NMR(δ) ppm
HO N	300MHz, DMSO-d6 8. 33 (1H, s), 8. 08 (1H, d, J=8 .7Hz), 7. 99 (1H, d, J=9. 0Hz) , 7. 78 (2H, d, J=8. 4Hz), 7. 39 (2H, d, J=8. 1Hz), 7. 32 (2H, d , J=8. 7Hz), 7. 23 (2H, d, J=7. 8Hz), 5. 22 (2H, s), 4. 96 (1H, quint, J=9. 0Hz), 2. 32 (3H, s), 2. 30-1. 60 (8H, m).
Purity > 90% (NMR)	(4)
MS 427 (M+1)	

Example No. 52	1H NMR(δ) ppm
HO NO	300MHz, DMSO-d6 12.7(1H, brs), 10.0(1H, s), 8.22(1H, s), 7.87(1H, d, J=8 .6Hz), 7.69(1H, d, J=8.6Hz), 7.53(2H, d, J=8.6Hz), 6.96 (2H, d, J=8.6Hz), 4.89(1H, q uint, J=9.0Hz), 2.30-1.60(8H, m).
Purity > 90% (NMR)	
MS 323 (M+1)	

Example No.	53	1H NMR(δ) ppm
HO N N N N N N N N N N N N N N N N N N N		300MHz, DMSO-d6 9. 18(1H, t, J=5.6Hz), 8. 34(1H, s), 8. 04(1H, d, J=9.6Hz), 7. 98(1H, d, J=8.7Hz), 7. 80(2H, d, J=8.7Hz), 7. 52-7. 32(7H, m), 5. 27(2H, s), 4. 95(1H, quint, J=9.0Hz), 3. 99(2H, d, J=5.7Hz), 2. 40-1. 60(8H, m).
Purity > 90% (NMR)		* .
MS 470 (M+1)	· .	

Table 9

Example No. 55	1H NMR(δ) ppm
HO N CI	300MHz, DMSO-d6 12.78(1H, br s), 8.24(1H, s), 7.88and7.7 2(2H, ABq, J=8.6Hz), 7.66an d7.23(4H, A'B'q, J=8.6Hz), 7.58(1H, s), 7.48-7.42(3H, m), 5.24(1H, s), 4.88(1H, qu int, J=8.8Hz), 2.30-1.91(6 H, m), 1.78-1.60(2H, m)
Purity >90% (NMR)	
MS 447 (M+1)	

Example No. 56	1H NMR(δ) ppm
HO N N	300MHz, DMSO 12.89(1H, broad), 8.18(1H, s), 7.87(1H, d, J=8.4Hz), 7.74(1H, d, J=9.2Hz), 7.67(2H, d, J=8.8Hz), 7.52(2H, m), 7.45(2H, m), 7.38(1H, m), 7.23(2H, d, J=8.8Hz), 5.22(2H, s), 4.94(1H, quintet, J=8.9Hz), 2.16(4H, m), 1.98(2H, m), 1.73(2H, m).
Purity > 90% (NMR)	
MS 413 (M+)	

Table 10

Example No.	58	1H NMR(δ) ppm
HO N H N	CI	300MHz, DMSO-d6 12.78(1H.s), 10.69(1H,s), 8.26-7.72(9H,m), 4.92(1H, quint, J=9.0Hz), 2.34-1.70 (6H,m), 1.75-1.61(2H,m)
Purity > 90% (NM	R)	
MS 494 (M+1)		

Example No. 59	1H NMR(δ) ppm
HO N CI	300MHz, DMSO-d6 10. 82(1H, s), 8. 34(1H, s), 8 .14and7. 84(4H, ABq, J=8. 4H z), 8. 06and7. 66(4H, A'B'q, J=8. 6Hz), 8. 06-7. 98(4H, m) ,5. 01(1H, quint, J=9. 3Hz), 2. 35-2. 15(4H, m), 2. 11-1. 9 6(2H, m), 1. 80-1. 62(2H, m)
Purity >90% (NMR)	* "
MS 460 (M+1)	

Table 11

Example No.	61 1H NMR(δ) ppm
	300MHz, DMSO-d6 10.6(1H, s), 8.34(1H, s), 8. 13(2H, d, J=8.7Hz), 8.09-7. 98(4H, m), 7.82(2H, d, J=8.7 Hz), 7.50-7.35(5H, m), 7.20 -7.17(2H, d, J=9.0Hz), 5.24 (2H, s), 5.01(1H, quint, J=9 .3Hz), 2.40-1.60(8H, m).
Purity > 90% (NMR)	
MS 532 (M+1)	* * * * * * * * * * * * * * * * * * * *

Example No. 62	1H NMR(δ) ppm
HO NO	300MHz, DMSO-d6 8. 32 (1H, s), 8. 26 (1H, d, J=8 .7Hz), 8. 04 (1H, d, J=8. 7Hz) ,7. 77 (2H, d, J=8. 4Hz), 7. 52 (2H, d, J=6. 9Hz), 7. 46-7. 39 (5H, m), 5. 28 (2H, s), 4. 38 (1 H, m), 3. 71 (1H, m), 2. 60-2. 1 5 (2H, m), 2. 04-1. 96 (4H, m), 1. 30-1. 20 (2H, m).
Purity > 90% (NMR)	
MS 443 (m+1)	

Table 12

Example No. 64	1H NMR(δ) ppm
HO N N N N N N N N N N N N N N N N N N N	300MHz, DMSO-d6 12. 25(1H, brs), 7. 70-7. 30(9H, m), 7. 20(2H, d, J=8. 7Hz), 7. 14(1H, d, J=8. 4Hz), 5. 20 (2H, s), 4. 84(1H, quint, J=6.0Hz), 3. 66(2H, s), 2. 30-1. 51(8H, m)
Purity >90% (NMR)	
MS 427 (M+1)	

Example No.	65 1H NMR(δ) ppm
HO N O N	300MHz, DMSO-d6 12.64(1H, brs), 8.13(1H, s), 7.80(1H, d, J=7.2Hz), 7.59 (1H, d, J=8.7Hz), 7.48-7.30 (5H, m), 5.11(2H, s), 5.03(1 H, quint, J=8.7Hz), 4.20-4. 05(2H, m), 3.45-3.90(3H, m), 2.15-1.60(12H, m)
Purity > 90% (NMR)	
MS 448 (M+1)	r

Example	No.	67	1H NMR (&) ppm	
но		-0 C1	7.90(1H -7.52(6H 8.6Hz),5	MSO-d6 I, brs), 8.42 I, d, J=8.5H2 I, m), 7.44(2 I.25(2H, s), J=8.8Hz), 2	z), 7.80 2H, d, J= 4.88(1
Purity	>90% (1	NMR)	* * * -		
MS	481 (M+	1)	*		

Example	No.	1H NMR(δ) p	ош
но		JH, d, J=8.6Hz J=8.6Hz), 8.8 , 7.51(1H, d, J (2H, d, J=8.8H	1.4Hz), 8.05(), 7.96(1H, d, 6-8.61(4H, m) =6.3Hz), 7.33 z), 5.28(2H, s int, J=8.8Hz)
Purity	>90% (NMR)	. (8)	·
MS	481 (M+1)		

Table 14

Example No. 70	1H NMR(δ) ppm
HO N O	300MHz, DMSO-d6 8. 27(1H, d, J=1. 2Hz), 8. 04(1H, d, J=8. 7Hz), 7. 94(1H, d, J=8. 7Hz), 7. 72(2H, d, J=8. 7Hz), 7. 60-7. 20(12H, m) 6. 74(1H, s), 4. 92(1H, quint, J=8. 9Hz), 2. 30-1. 58(8H, m)
Purity >90% (NMR)	
MS 489 (M+1)	

Example No. 71	1H NMR(δ) ppm
HO N O	300MHz, DMSO-d6 8.31(1H, s), 8.05(1H, d, J=8 .7Hz), 7.97(1H, d, J=8.7Hz) ,7.76(2H, d, J=8.6Hz), 7.44 -7.19(7H.m), 4.94(1H, quin t, J=8.8Hz), 4.35(2H, t, J=6 .7Hz), 3.10(2H, t, J=6.7Hz) ,2.32-1.60(8H, m)
Purity > 90% (NMR)	
MS 427 (M+1)	*

Example No. 73	1H NMR(δ) ppm
HO N	300MHz, DMSO-d6 7. 59 (2H, d, J=8. 4Hz), 7. 52- 7. 35 (6H, m), 7. 20 (2H, d, J=8 . 7Hz), 7. 14 (1H, d, J=2. 1Hz) , 6. 90 (1H, dd, J=9. 0, 2. 4Hz) , 5. 21 (2H, s), 4. 83 (1H, quin t, J=8. 7Hz), 4. 70 (2H, s), 2. 30-1. 90 (6H, m), 1. 75-1. 55 (2H, m).
Purity > 90% (NMR)	
MS 443 (M+1)	

Example No. 74	1H NMR(δ) ppm
HO N N	300MHz, DMSO-d6 8. 27 (1H, s), 8. 06and7. 97 (2 H, ABq, J=8. 7Hz), 7. 57and6. 86 (4H, A' B' q, J=8. 9Hz), 7. 4 2-7. 26 (5H, m), 5. 04 (1H, qui nt, J=9. 0Hz), 4. 42 (2H, s), 2 .32-1. 94 (6H, m), 1. 80-1. 62 (2H, m)
Purity >90% (NMR)	
MS 412 (M+1)	ga eta i

Table 16

Example No. 76	1H NMR(δ) ppm
HO N	300MHz, DMSO-d6 8. 29 (1H, s), 8. 07and7. 49 (2 H, ABq, J=8. 7Hz), 7. 66and7. 00 (4H, A'B'q, J=7. 7Hz), 7. 3 9-7. 24 (5H, m), 5. 05 (1H, qui nt, J=8. 8Hz), 4. 76 (2H, s), 3 .21 (3H, s), 2. 35-1. 92 (6H, m), 1. 81-1. 62 (2H, m)
Purity > 90% (NMR)	3
MS 426 (M+1)	

Example No. 77	1H NMR(δ) ppm
HO N	300MHz, DMSO-d6 8.21(1H, s), 7.87(1H, s), 7. 56and7.43(4H, ABq, J=8.1Hz), 7.34-7.16(5H, m), 4.25(1 h, brt, J=12.5Hz), 3.06-2.9 2(4H, m), 2.41-2.17(2H, m), 1.96-1.77(4H, m), 1.72-1.5 8(1H, m), 1.48-1.15(3H, m)
Purity > 90% (NMR)	
MS 425 (M+1)	

Table 17

Example No. 7	79 1H NMR(δ) ppm
HO N O	300MHz, DMSO-d6 8. 15(1H, s), 7. 81(1H, d, J=8 .4Hz), 7. 59(1H, d, J=9. 0Hz) , 7. 50-7. 38(5H, m), 5. 05(1H , quint, J=9. 0Hz), 3. 85-2. 9 5(3H, m), 2. 20-1. 65(14H, m)
Dit-r	
Purity > 90% (NMR)	
MS 418 (M+1)	

Example No. 80	1H NMR(δ) ppm
HO N N N N N N N N N N N N N N N N N N N	300MHz, DMSO-d6 8. 17(1H, m), 7. 84(1H, d, J=8 .4Hz), 7. 78-7. 62(3H, m), 7. 49(2H, d, J=8. 1Hz), 5. 05-4. 91(1H, m), 3. 80-3. 70(2H, m) , 3. 30-3. 12(1H, m), 2. 48-2. 31(5H, m), 2. 15-1. 60(12H, m)
Purity > 90% (NMR)	*
MS 468 (M+1)	

Example No.	82	1H NMR(δ) ppm
HO N O	_	300MHz, DMSO-d6 8. 27 (1H, s), 8. 22 (1H, d, J=8 .7Hz), 8. 02 (1H, d, J=8. 7Hz) , 7. 69 (2H, d, J=8. 7Hz), 7. 60 -7. 50 (4H, m), 7. 45-7. 25 (8H, m), 6. 75 (1H, s), 4. 21-4. 23 (1H, m), 2. 39-2. 18 (2H, m), 2 .10-1. 78 (4H, m), 1. 70-1. 15 (4H, m)
Purity >90% (NMR)	1	
MS 503 (M+1)		6 N

Table 19

Example No. 85	1H NMR(δ) ppm
HO N N N N N N N N N N N N N N N N N N N	300MHz, DMSO-d6 8. 25(1H, s), 8. 14-7. 83(6H, m), 7. 77-7. 44(5H, m), 7. 21(2H, d, J=7. 8Hz), 4. 44(2H, brt), 4. 31(1H, brt), 3. 56(2H, brt), 2. 20-2. 16(2H, m), 2. 00-1. 74(4H, m), 1. 70-1. 55(1H, m), 1. 45-1. 14(3H, m)
Purity > 90% (NMR)	ν.
MS 491 (M+1)	

Example No. 86	1H NMR(δ) ppm
HO N O	300MHz, DMSO-d6 12.75(1H, s), 8.23(1H, s), 8 .15(1H, d, J=7.6Hz), 8.02-7 .53(10H, m), 7.32(2H, d, J=8 .7Hz), 5.68(2H, s), 4.32(1H ,brt, J=12.2Hz), 2.41-2.20 (2H, m), 2.01-1.78(4H, m), 1 .71-1.56(1H, m), 1.50-1.16 (3H, m)
Purity > 90% (NMR)	
MS 477 (M+1)	

Example No.	88	1H NMR(δ) ppm
HO N		300MHz, DMSO-d6 8.31(1H, s), 8.26and8.06(2 H, ABq, J=8.9Hz), 7.73and7. 22(4H, A'B'q, J=8.7Hz), 7.5 0-7.36(8H, m), 5.10(2H, s), 4.37(1H, brt, J=12.2Hz), 2. 38-2.28(2H, m), 2.10-1.80(4H, m), 1.70-1.56(1H, m), 1. 50-1.20(3H, m)
Purity >90% (NMR)		e '
MS 503 (M+1)		

Table 21

Example No. 9	1H NMR(δ) ppm
HO N O O	300MHz, DMSO-d6 8. 31 (1H, s), 8. 27 (1H, d, J=8 .7Hz), 8. 08-8. 03 (3H, m), 7. 77-7. 58 (5H, m), 7. 31 (2H, d, J=8. 7Hz), 5. 81 (2H, s), 4. 40 (1H, m), 2. 50-1. 20 (10H, m).
Purity 約90% (NMR)	
MS 455 (M+1)	

Example No. 92	1H NMR(δ) ppm
HO N N N	300MHz, DMSO-d6 11.8(1H, brs), 8.07(1H, s), 7.89(1H, d, J=8.7Hz), 7.84(1H, d, J=8.4Hz), 7.69(2H, m), 7.48(3H, m), 4.42(2H, s), 4 .11(1H, m), 3.73(4H, m), 3.4 0(4H, m), 2.40-1.40(10H, m)
Purity > 90% (NMR)	*
MS 419 (M+1)	

Table 22

Example No.	94	1H NMR(δ) ppm
HO N N	= CI	300MHz, DMSO-d6 8. 32 (1H, s), 8. 27 (1H, d, J=9 .0Hz), 8. 05 (1H, d, J=8. 7Hz) ,7. 75-7. 70 (3H, m), 7. 56 (1H ,d, J=8. 4Hz), 7. 55-7. 35 (6H ,m), 7. 22 (2H, d, J=8. 7Hz), 5 .11 (2H, s), 4. 36 (1H, m), 2. 4 0-2. 15 (2H, m), 2. 15-1. 95 (2 H, m), 1. 95-1. 75 (2H, m), 1. 7 5-1. 55 (1H, m), 1. 55-1. 20 (3
Purity > 90% (NMR)		H, m).
MS 537 (M+1)		

Example No. 95	1H NMR(δ) ppm
HO N N N N N N N N N N N N N N N N N N N	300Hz, DMSO-d6 12.9(1H, brs), 8.02(1H, s), 7.82(2H, m), 7.40-7.25(5H, m), 4.58(2H, s), 4.09(1H, m), 3.71(1H, m), 3.49(2H, m), 3 .21(2H, m), 2.35-1.30(14H, m).
Purity > 90% (NMR)	
MS 434 (M+1)	*

Example No. 97	1H NMR(δ) ppm
HO N N N N N N N N N N N N N N N N N N N	300MHz, DMSO-d6 8. 32(1H, d, J=1. 3Hz), 8. 29(1H, d, J=8. 8Hz), 8. 05(1H, dd, J=8. 8, 1. 3Hz), 8. 42(2H, d, J=8. 8Hz), 7. 37-7. 16(7H, m), 4. 48-4. 30(1H, m), 4. 12(2H, t, J=6. 2Hz), 2. 83-2. 70(2H, m), 2. 40-1. 50(9H, m), 1. 59-1. 19(3H, m)
Purity >90% (NMR)	
MS 455 (M+1)	

Table 24

Example No.	100	1H NMR(δ) ppm
NaO		300MHz, DMSO-d6 8. 46 (1H, d, J=2. 1Hz), 8. 16 (1H, s), 8. 00 (1H, dd, J=8. 5, 2 .1Hz), 7. 87 (1H, d, J=8. 5Hz) , 7. 68 (1H, d, J=8. 5Hz), 7. 55 -7. 30 (5H, m), 7. 08 (1H, d, J= 8. 5Hz), 5. 45 (2H, s), 4. 25-4 .08 (1H, m), 2. 39-2. 18 (2H, m)), 2. 00-1. 75 (4H, m), 1. 70-1 .55 (1H. m), 1. 45-1. 19 (3H, m)
Purity >90% (NMF	₹))
MS 427 (M+1)		*

Table 25

Example No. 104	1H NMR(δ) ppm
HO N O O O	300MHz, DMSO-d6 12.75(1H, s), 8.23(1H, s), 7 .94and7.86(2H, ABq, J=8.6H z), 7.64and7.05(4H, A'B'q, J=8.7Hz), 7.32-7.09(9H, m) ,5.13(2H, s), 4.28(1H, brt, J=12.2Hz), 2.36-2.19(2H, m), 1.95-1.77(4H, m), 1.66-1 .56(1H, m), 1.46-1.10(3H, m
Purity > 90% (NMR)	
MS 519 (M+1)	

Example No	•	105	1H NMR(δ) ppm
но			300MHz, DMSO-d6 8. 23 (1H, s), 7. 94and7. 87 (2 H, ABq, J=8. 6Hz), 7. 68and7. 17 (4H, A'B'q, J=8. 7Hz), 7. 4 6-7. 33 (6H, m), 6. 93and6. 75 (2H, A"B"q, J=8. 2Hz), 6. 82 (1H, s), 5. 13 (2H, s), 4. 30 (1H, brt, J=12. 2Hz), 2. 39-2. 18 (2H, m), 1. 98-1. 77 (4H, m), 1 .71-1. 59 (1H, m), 1. 48-1. 20
Purity :	>90% (NMR)		(3H, m)
MS	519 (M+1)		

Table 26

Example	No.	106	1H NMR(δ) ppm
но		ОН	300MHz, DMSO-d6 12.89(1H, brs), 9.73(1H, s) ,8.24(1H, s), 8.03and7.91(2H, ABq, J=8.7Hz), 7.66and7 .04(4H, A'B'q, J=8.7Hz), 7. 16-7.03(3H, m), 6.89(2H, t, J=9.2Hz), 4.33(1H, brt, J=1 2.2Hz), 2.40-2.18(2H, m), 2 .00-1.78(4H, m), 1.70-1.58 (1H, m), 1.50-1.20(3H, m)
Purity	>90% (NMR)	
MS	429 (M+1)		

Example No. 107	1H NMR(δ) ppm
HO N OH	300MHz, DMSO-d6 12.98(1H, brs), 9.82(1H, brs), 8.27(1H, s), 8.09and7.9 4(2H, ABq, J=8.7Hz), 7.74and7.22(4H, A'B'q, J=8.7Hz), 7.28-7.22(1H, m), 6.67-6.5 4(3H, m), 4.35(1H, brt, J=12.2Hz), 2.40-2.20(2H, m), 2.05-1.80(4H, m), 1.72-1.59(1H, m), 1.50-1.21(3H, m)
Purity > 90% (NMR)	
MS 429 (M+1)	

Example No. 108	1H NMR(δ) ppm
HO N O O O	300MHz, DMSO-d6 8. 24(1H, s), 8. 01and7. 90(2 H, ABq, J=8. 7Hz), 7. 65and7. 03(4H, A'B'q, J=8. 7Hz), 7. 3 2-7. 20(3H, m), 7. 08-7. 03(1 H, m), 4. 32(1H, brt, J=12. 2H z), 3. 77(3H, s), 2. 36-2. 20(2H, m), 2. 00-1. 78(4H, m), 1. 71-1. 59(1H, m), 1. 44-1. 11(3H, m)
Purity >90% (NMR)	
MS 443 (M+1)	

Table 27

Example No.		109	1H NMR(δ) ppm
но		> _0′	300MHz, DMSO-d6 12. 75 (1H, s), 8. 24 (1H, s), 7 .96and7. 87 (2H, ABq, J=9. 0H z), 7. 69and7. 19 (4H, A'B'q, J=8. 6Hz), 7. 37 (1H, t, J=7. 1 Hz), 6. 84-6. 70 (3H, m), 4. 31 (1H, brt, J=12. 2Hz), 3. 78 (3 H, s), 2. 39-2. 20 (2H, m), 1. 9 8-1. 78 (4H, m), 1. 76-1. 60 (1 H, m), 1. 48-1. 13 (3H, m)
Purity >90% (NMR)			
MS	443 (M+1)		

Example No. 110	1H NMR(δ) ppm
HO NO O	300MHz, DMSO-d6 8. 31 (1H, s), 8. 26and8. 04 (2 H, ABq, J=8. 8Hz), 7. 75and7. 71 (4H, A'B'q, J=8. 8Hz), 7. 3 2-7. 03 (4H, m), 4. 34 (1H, brt, J=12. 2Hz), 3. 94 (2H, t, J=6. 3Hz), 2. 40-2. 19 (2H, m), 2. 11-1. 81 (4H, m), 1. 72-1. 16 (6H, m), 0. 71 (3H, t, J=7. 3Hz)
Purity >90% (NMR)	
MS 471 (M+1)	

Table 29

Example No. 115	1H NMR(δ) ppm
HO N O O	300MHz, DMSO-d6 8. 23 (1H, s), 7. 93and7. 87 (2 H, ABq, J=8. 6Hz), 7. 69and7. 19 (4H, A' B' q, J=8. 6Hz), 7. 3 5 (1H, t, J=7. 8Hz), 6. 82-6. 6 9 (3H, m), 4. 30 (1H, brt, J=12 . 2Hz), 4. 00 (2H, t, J=6. 9Hz) , 2. 38-2. 20 (2H, m), 1. 97-1. 54 (8H, m), 1. 47-1. 20 (3H, m) , 0. 93 (6H, d, J=6. 6Hz)
Purity >90% (NMR)	- 1
MS 499 (M+1)	

Table 30

Example No. 119	1H NMR(δ) ppm
Ho N N N N N N N N N N N N N N N N N N N	300MHz, DMSO-d6 8. 32-8. 30 (2H, m), 8. 07-8. 0 3 (1H, m), 7. 74and6. 90 (4H, A Bq, J=8. 7Hz), 4. 37 (1H, m), 4 .31 (2H, t, J-6. 8Hz), 3. 74 (3 H, s), 3. 04 (2H, t, J=6. 7Hz), 2. 30 (2H, m), 2. 02 (2H, m), 1. 86 (2H, m), 1. 63 (1H, m), 1. 55 -1. 15 (3H, m)
Purity > 90% (NMR)	
MS 471 (M+1)	

Table 31

Example No.	121	1H NMR(δ) ppm
HO N O CH ₃		300MHz, DMSO-d6 12. 85(1H, brs), 8. 24(1H, s), 8. 01(1H, d, J=8. 7Hz), 7. 90 (1H, d, J=8. 6Hz), 7. 62and, 7. 17(4H, ABq, J=8. 7Hz), 7. 24 (1H, m), 6. 94(2H, m), 6. 82(1H, m), 4. 32(2H, t, J=6. 7Hz), 3. 76(3H, s), 3. 07(2H, t, J=6. 7Hz), 2. 29(2H, m), 2. 00-1. 75(4H, m), 1. 70-1. 55(1H, m), 1. 50-1. 15(3H, m)
Purity >90% (NMF		
MS 471 (M+1)		

Table 32

Example No.	124	1H NMR(δ) ppm
HO NO		300MHz, DMSO-d6 13. 1 (1H, brs), 8. 29 (1H, s), 8. 17 (1H, d, J=8. 7Hz), 7. 99 (1H, d, J=8. 7Hz), 7. 77 (2H, d, J=8. 7Hz), 7. 40-7. 20 (8H, m), 6. 84 (1H, d, J=9. 3Hz), 6. 75 -6. 72 (2H, m), 4. 36 (1H, m), 4 . 22 (2H, t, J=6. 8Hz), 3. 04 (2 H, t, J=6. 7Hz), 2. 40-2. 15 (2 H, m), 2. 15-1. 95 (2H, m), 1. 9 5-1. 75 (2H, m), 1. 75-1. 55 (1 H, m), 1. 55-1. 15 (3H, m).
Purity > 90% (NMR)		
MS 533 (M+1)		* '

Table 33

Example No. 127	1H NMR(δ) ppm
HO NO	300MHz, DMSO-d6 13. 2(1H, brs), 8. 33(1H, s), 8. 12(1H, d, J=8. 7Hz), 7. 96(1H, d, J=8. 8Hz), 7. 79(2H, d, J=8. 7Hz), 7. 52-7. 32(7H, m), 5. 26(2H, s), 4. 92(1H, d, J=49. 4Hz), 4. 57(1H, m), 2. 65-2. 35(2H, m), 2. 25-1. 50(6H, m).
Purity >90% (NMR)	
MS 445 (M+1)	

Example No. 128	1H NMR(δ) ppm
HO NO	300MHz, DMSO-d6 8. 21 (1H, s), 7. 92and7. 85 (2 H, ABq, J=8. 6Hz), 7. 61and7. 06 (4H, A'B'q, J=8. 6Hz), 7. 3 6-6. 91 (9H, m), 4. 24 (1H, brt , J=12. 2Hz), 2. 35-2. 15 (2H, m), 1. 95-1. 75 (4H, m), 1. 70- 1. 58 (1H, m), 1. 48-1. 14 (3H, m)
purity > 90% (NMR)	
MS 505 (M+1)	

Table 34

Example No. 130	1H NMR(δ) ppm
HO 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	300MHz, DMSO-d6 8. 27(1H, s), 7. 69(2H, d, J=8 .6Hz), 7. 49-7. 21(11H, m), 5 .08and5. 03(2H, ABq, J=12.6 Hz), 5. 07-4. 99(1H, m), 4. 26 (2H, d, J=6.6Hz), 2. 40-2. 18 (2H, m), 2. 04-1. 77(4H, m), 1 .70-1. 58(1H, m), 1. 48-1. 15 (3H, m)
Purity >90% (NMR)	
MS 590 (M+1)	***

Example No.	131 1H NMR(δ) ppm
HO TO TO THE TOTAL PARTY OF THE	300MHz, DMSO-d6 8. 29(1H, s), 8. 11(1H, d, J=9 . 0Hz), 7. 96(1H, d, J=8. 4Hz) , 7. 80(2H, d, J=8. 1Hz), 7. 72 -7. 41(7H, m), 7. 12(1H, d, J= 12. 6Hz), 7. 01(1H, d, J=8. 4H z), 5. 12(2H, s), 4. 06(1H, m) , 2. 35-2. 10(2H, m), 2. 00-1. 75(4H, m), 1. 75-1. 55(1H, m) , 1. 60-1. 20(3H, m).
Purity > 90% (NMR)	
MS 589 (M+1)	

Table 35

Example	e No.	133	1H NMR(δ) ppm
но		_	300MHz, DMSO-d6 8. 57 (1H, s), 8. 01 (1H, d, J=8 .7Hz), 7. 66 (1H, d, J=8. 7Hz) ,7. 51 (2H, d, J=8. 7Hz), 7. 31 (4H, d, J=8. 0Hz), 7. 16 (4H, d ,J=8. 0Hz), 7. 09 (2H, d, J=8. 7Hz), 6. 26 (1H, s), 4. 37 (1H, m), 2. 41-2. 28 (2H, m), 2. 33 (6H, s), 2. 03-1. 84 (4H, m), 1. 77 (1H, m), 1. 45-1. 20 (3H, m)
Purity	ty >90% (NMR)		•
MS	531 (M+1)		* * * * * * * * * * * * * * * * * * *

Example No. 134	1H NMR(δ) ppm
HO N P	8. 59 (1H, d, J=1. 5Hz), 8. 02 (1H, dd, J=8. 7, 1. 5Hz), 7. 68 (1H, d, J=8. 7Hz), 7. 54 (2H, d, J=8. 8Hz), 7. 39 (4H, dd, J=8. 7, 5. 3Hz), 7. 08 (4H, d, J=8. 7 Hz), 7. 05 (2H, d, J=8. 8Hz), 6 .29 (1H, s), 4. 36 (1H, m), 2. 4 3-2. 19 (2H, m), 2. 04-1. 85 (4 H, m), 1. 78 (1H, m), 1. 45-1. 2 3 (3H, m).
Purity >90% (NMR)	
MS 539 (M+1)	

Example No.	135	1H NMR(δ) ppm
HO N	-0	300MHz, DMSO-d6 12. 34 (1H, brs), 7. 93 (1H, s), 7. 55 (1H, d, J=8. 6Hz), 7. 33 -7. 15 (6H, m), 7. 11 (2H, d, J=8. 6Hz), 4. 30-4. 20 (1H, m), 4. 07 (2H, t, J=6. 3Hz), 3. 93 (3H, s), 2. 78 (2H, t, J=7. 4Hz), 2. 35-2. 19 (2H, m), 2. 12-2. 00 (2H, m), 1. 91-1. 79 (4H, m), 1. 69-1. 60 (1H, m), 1. 47-1. 2
Purity >90%	(NMR)	0 (3H, m)
MS 485	(M+1)	

Table 36

Example No. 136	1H NMR(δ) ppm
HO N N N N N N N N N N N N N N N N N N N	300MHz, DMSO-d6 8. 13 (1H, s), 7. 65 (2H, d, J=8 .7Hz), 7. 63 (1H, s), 7. 35-7. 12 (7H, m), 4. 35-4. 20 (1H, m) ,4. 10 (1H, t, J=6. 3Hz), 2. 78 (2H, t, J=7. 5Hz), 2. 33-1. 78 (8H, m), 1. 70-1. 16 (4H, m)
Purity >90% (NMR)	
MS 471 (M+1)	

Example No. 137	1H NMR(δ) ppm
H ₃ C N O	300MHz, DMSO-d6 8. 24 (1H, s), 8. 11 (1H, s), 7. 76 (2H, d, J=9. 0Hz), 7. 37-7. 16 (7H, m), 4. 43-4. 30 (1H, m), 4. 13 (2H, t, J=6. 3Hz), 2. 84 -2. 68 (5H, m), 2. 42-2. 22 (2H, m), 2. 18-1. 80 (6H, m), 1. 70 -1. 20 (4H, m)
Purity > 90% (NMR)	
MS 469 (M+1)	

Table 37

Example No. 139	1H NMR(δ) ppm
HO	300MHz, DMSO-d6 12.73(1H, brs), 8.22(1H, s), 7.93(1H, d, J=8.7Hz), 7.73 (1H, m), 7.60-7.57(2H, m), 7 .47-6.90(1H, m), 5.11(2H, s), 4.33-4.28(3H, m), 3.09-3 .04(2H, t, J=6.7Hz), 2.35-2 .20(2H, m), 1.95-1.10(8H, m)
Purity >90% (NMR)	0
MS 547 (M+1)	•

Example No. 140	1H NMR(δ) ppm
HO NO O O O O O O O O O O O O O O O O O	300MHz, DMSO-d6 12.83(2H, brs), 8.22(1H, s), 7.94(1H, d, J=8.7Hz), 7.85 (1H, d, J=8.4Hz), 7.63-7.60 (2H, m), 7.26-7.03(6H, m), 4.73(2H, s), 4.30(1H, m), 2.4 0-2.15(2H, m), 2.00-1.20(8H, m)
Purity >90% (NMR)	
MS 487 (M+1)	

Example No. 1	41	1H NMR(δ) ppm
HO N N	С ОН	300MHz, DMSO-d6 12.87(1H, brs), 8.24(1H, s), 7.97(1H, d, J=9.0Hz), 7.87 (1H, d, J=8.7Hz), 7.69and7. 19(4H, ABq, J=8.7Hz), 7.36(1H, t, J=8.7Hz), 6.80-6.72(3H, m), 4.71(2H, s), 4.32(1H, m), 2.29(2H, m), 1.95-1.25(8H, m)
Purity > 90% (NMR)		
MS 487 (M+1)		

Table 38

Example No.	142	1H NMR(δ) ppm
но 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Çi	300MHz, DMSO-d6 8. 32 (1H, s), 8. 27 (1H, d, J=8 .7Hz), 8. 05 (1H, d, J=9. 0Hz) ,7. 76-7. 72 (3H, m), 7. 54 (1H ,d, J=8. 4Hz), 7. 39-7. 22 (7H ,m), 5. 11 (1H, s), 4. 36 (1H, m), 2. 35 (3H, s), 2. 35-2. 15 (2 H, m), 2. 15-1. 95 (2H, m), 1. 9 5-1. 75 (2H, m), 1. 75-1. 55 (1 H, m), 1. 55-1. 15 (3H, m).
Purity >90% (NMR)		
MS 551 (M+1)		

Example No. 14	3 1H NMR(δ) ppm
HO C:	300MHz, DMSO-d6 13.1(1H, brs), 8.30(1H, s), 8.24(1H, d, J=8.8Hz), 8.03(1H, d, J=8.7Hz), 7.74-7.71(3H, m), 7.52(1H, d, J=8.3Hz), 7.40-7.36(3H, m), 7.23(2H, d, J=8.8Hz), 7.01(2H, d, J=8.7Hz), 5.11(2H, s), 4.35(1H, m), 3.79(3H, s), 2.45-2.1 5(2H, m), 2.15-1.95(2H, m),
Purity >90% (NMR)	1.95-1.75(2H, m), 1.75-1.5 5(1H, m), 1.55-1.15(3H, m).
MS 567 (M+1)	*

Table 39

Example No. 145	1H NMR(δ) ppm
HO N C I	300MHz, DMSO-d6 8. 31 (1H, s), 8. 23 (1H, d, J=8 .8Hz), 8. 02 (1H, d, J=8. 7Hz) ,7. 73-7. 71 (3H, m), 7. 54 (1H ,d, J=8. 3Hz), 7. 48 (2H, d, J= 8. 4Hz), 7. 41-7. 37 (3H, m), 7 .22 (2H, d, J=8. 7Hz), 5. 13 (2 H, s), 4. 34 (1H, m), 2. 40-2. 2 0 (2H, m), 2. 15-1. 95 (2H, m), 1. 95-1. 75 (2H, m), 1. 70-1. 5
Purity >90% (NMR)	5(1H, m), 1.50-1.15(3H, m), 1.31(9H, s).
MS 593 (M+1)	

Table 40

Example No.	× G	148	1H NMR(δ) ppm
HO N F		_ }_F	300MHz, DMSO-d6 8. 21 (s, 1H), 7. 89 (1H, d, J=8 .7Hz), 7. 87 (1H, d, J=8. 7Hz) ,7. 63-7. 46 (5H, m), 7. 30-7. 12 (5H, m), 7. 08 (1H, d, J=11. 0Hz), 6. 81 (1H, s), 3. 92 (1H, m), 2. 15-2. 06 (2H, m), 1. 89- 172 (4H, m), 1. 61 (1H, m), 1. 4 2-1. 09 (3H, m).
Purity >90%	6 (NMR)	
MS 55	7 (M+1)		(6)

Example No.	149 1H NMR(δ) ppm
	300MHz, DMS0-d6 8. 24(1H, d, J=1.5Hz), 7. 96(1H, d, J=9.0Hz), 7. 88(1H, dd , J=9.0, 1.5Hz), 7. 58(1H, d, J=8.7Hz), 7. 50-7. 30(5H, m) , 7. 22-7. 00(6H, m), 5. 13(2H , s), 3. 98-3. 80(1H, s), 2. 36 -1. 10(10H, m)
Purity >90% (NMR)	
MS 553 (M+1)	

Table 41

Example No. 151	1H NMR(δ) ppm
HO CF ₃	300MHz, DMSO-d6 8.18(1H, s), 7.92-7.78(3H, m), 7.78-7.58(3H, m), 7.58- 7.44(4H, m), 7.29(1H, d, J=8 .2Hz), 7.01(2H, d, J=8.7Hz), 4.88(1H, d, J=11.8Hz), 4.8 0(1H, d, J=11.8Hz), 4.22(1H, m), 2.37-2.16(2H, m), 1.95 -1.75(4H, m), 1.64(1H, m), 1 .48-1.14(3H, m).
Purity > 90% (NMR)	
MS 605 (M+1)	

Example No.	152	1H NMR(δ)	ppm
HO N		m), 7.63-7. 3.98(4H, m) m).1.95-1.	0-d6 , 7. 99-7. 80 (2H, 08 (9H, m), 4. 20- , 2. 20-2. 15 (2H, 74 (4H, m), 1. 70- , 1. 44-1. 14 (3H,
Purity >90% (NMR)		
MS 456 (M	+1)		

Table 42

Example No.	154	1H NMR(δ) ppm
HO N O	→	300MHz, DMSO-d6 8.23(1H, s), 7.94and7.86(2 H, ABq, J=8.6Hz), 7.72-7.16 (13H, m), 5.25(2H, brs), 4.5 5(2H, d, J=6.6Hz), 4.31(1H, brt, J=12.2Hz), 2.37-2.18(2H, m), 1.98-1.77(4H, m), 1. 70-1.58(1H, m), 1.48-1.20(3H, m)
Purity >90% (NM)	R)	
MS 489 (M+1)		

Example No.	155	1H NMR(δ) ppm
HO N O O O O		300MHz, DMSO-d6 8. 21 (1H, s), 7. 85and7. 61 (2 H, ABq, J=8. 7Hz), 7. 61and6. 99 (4H, A'B'q, J=8. 7Hz), 7. 2 8-7. 18 (1H, m), 7. 25 (2H, d, J =7. 5Hz), 7. 07-6. 99 (1Hm), 4 .30 (1H, brt, J=12. 2Hz), 3. 8 3 (2H, d, J=6. 0Hz), 3. 82-3. 7 2 (1H, m), 2. 68-2. 49 (2H, m), 2. 39-2. 21 (2H, m), 1. 95-1. 8
Purity >90% (NM	R)	0(4H, m), 1.79-1.60(2H, m), 1,46-1.22(5H, m), 1,30(9H,
MS 626 (M+1)		s), 1.00-0.82(2H, m)

Table 43

Example No. 157	1H NMR(δ) ppm
HO N H ₃ C, O CI	300MHz, DMSO-d6 12. 78 (1H, brs), 8. 22 (1H, s), 7. 96 (1H, d, J=8. 6Hz), 7. 75 (1H, d, J=8. 2Hz), 7. 60 (2H, d, J=8. 4Hz), 7. 55 (1H, dd, J=8. 3, 2. 2Hz), 7. 48 (1H, d, J=8. 3Hz), 7. 18 (2H, d, J=8. 4Hz), 6. 73 (2H, s), 5. 08 (2H, s), 4. 23 (1H, m), 3. 68 (9H, s), 2. 37-2. 17
Purity > 90% (NMR)	(2H, m), 1.99-1.79(4H, m), 1 .65(1H, s), 1.49-1.15(3H, m
MS 627 (M+1)	-).

Example No. 158	1H NMR(δ) ppm
HO N N	300MHz, DMSO-d6 12. 75 (1H, brs), 8. 22 (1H, s), 7. 93 (2H, d, J=8. 7Hz), 7. 85 (2H, d, J=8. 5Hz), 7. 53-7. 21 (10H, m), 6. 94 (2H, d, J=8. 7Hz), 4. 30-4. 12 (3H, m), 3. 05 (2H, m), 2. 35-2. 15 (2H, m), 1. 95-1. 75 (4H, m), 1. 75-1. 55 (1H, m), 1. 50-1. 10 (3H, m)
Purity > 90% (NMR)	
MS 517 (M+1)	

Table 44

Example No.	160	1H NMR(δ) ppm
HO N N	O-N HCI H	300MHz, DMSO-d6 8.90(1H, brs), 8.59(1h, brs), 8.33(1H, s), 8.18and8.00 (2H, ABq, J=8.5Hz), 7.73and 7.10(4H, A'B'q, J=8.5Hz), 7.32-7.05(4H, m), 4.35(1H, brt, J=12.2Hz), 3.86(2H, d, J=6.3Hz), 3.25-3.08(2H, m), 2.85-2.66(2H, m), 2.40-2.28(2H, m), 2.07-1.14(15H, m)
Purity >90% ()	NMR)	
MS 526 (M+	1)	* *

Example No. 161	1H NMR(δ) ppm
HO NH HCI	300MHz, DMSO-d6 9.05(1H, brs), 8.76(1h, brs), 8.31(1H, s), 8.19and8.00 (2H, ABq, J=8.3Hz), 7.79and 7.25(4H, A'B'q, J=8.3Hz), 7.39(1H, brs), 6.86-6.74(4H, m), 4.37(1H, brt, J=12.2Hz), 3.89(2H, d, J=5.0Hz), 3.35-3.18(2H, m), 2.98-2.75(2H, m), 2.38-2.17(2H, m), 2.1
Purity >90% (NMR)	6-1. 15 (15H, m)
MS 526 (M+1)	

Table 45

Example No.	163	1H NMR(δ) ppm
HO N O	<	300MHz, DMSO-d6 8. 23 (1H, s), 7. 95and7. 86 (2 H, ABq, J=8. 6Hz), 7. 69and7. 18 (4H, A'B'q, J=8. 6Hz), 7. 3 5 (1H, t, J=8. 6Hz), 6. 80 (1H, d, J=7. 5Hz), 6. 72-6. 69 (2H, m), 5. 20 (1H, t, J=3. 7Hz), 4. 31 (1H, brt, J=12. 2Hz), 3. 95 (2H, t, J=6. 8Hz), 2. 49-2. 19 (4H, m), 1. 97-1. 76 (4H, m), 1
Purity >90% (NMR))	.68(3H, s), 1.67-1.54(1H, m), 1.61(3H, s), 1.45-1.20(3
MS 511 (M+1)	-	Н, ш)

Example	No.	164	1H NMR(δ) ppm
но	-N -0 -0 -		300MHz, DMSO-d6 8. 20 (1H, s), 7. 87 (2H, s), 7. 68and7. 18 (4H, ABq, J=8. 7Hz), 7. 35 (1H, t, J=7. 9Hz), 6. 8 1 (1H, d, J=9. 4Hz), 6. 72 (1Hs), 6. 71 (1H, d, J=6. 8Hz), 4. 8 0 (2H, s), 4. 29 (1H, brt, J=12. 2Hz), 4. 10 (1H, t, J=6. 7Hz), 2. 43 (1H, t, J=6. 7Hz), 2. 39 -2. 19 (2H, m), 1. 97-1. 78 (4H
Purity	>90% (NMF	2)	, m), 1.76(3H, s), 1.70-1.56 (1H, m), 1.43-1.19(3H, m)
MS	497 (M+1)	· ·	y

Table 46

Example	No. 166	1H NMR(δ) ppm
но	s' N O	300MHz, DMSO-d6 8. 27 (1H, s), 8. 1 . 4Hz), 7. 97 (1H, , 7. 73 (1H, d, J=1 (2H, d, J=8. 4Hz) d, J=8. 4, 2. 1Hz) (5H, m), 7. 19 (2H), 5. 10 (2H, s), 4 2. 50 (3H, s), 2. 4 m), 2. 10-1. 75 (4
Purity	>90% (NMR)	1.55(1H, m), 1.5 m).
MS	583 (M+1)	

300MHz, DMSO-d6 8.27(1H, s), 8.13(1H, d, J=8 .4Hz), 7. 97 (1H, d, J=9. 0Hz) , 7. 73 (1H, d, J=1. 8Hz), 7. 68 (2H, d, J=8.4Hz), 7.54(1H, d)d, J=8. 4, 2. 1Hz), 7. 41-7. 31 (5H, m), 7. 19 (2H, d, J=8.4Hz)),5.10(2H,s),4.32(1H,m), 2.50(3H, s), 2.40-2.15(2H, m), 2.10-1.75(4H, m), 1.75-

1. 55(1H, m), 1. 55-1. 10(3H,

Example	No.	167
но 🖰		CI CI
Purity	>90% (NM	IR)
MS	615 (M+1)	

1H NMR(δ) ppm

300MHz, DMSO-d6 8. 25 (1H, s), 8. 09 (1H, d, J=8 .4Hz), 8. 00 (2H, d, J=8. 4Hz) , 7. 94 (1H, d, J=8. 7Hz), 7. 80 (1H, d, J=2.1Hz), 7.73(2H, d), J=8. 1Hz), 7. 65 (2H, d, J=8. 7Hz), 7. 60 (1H, dd, J=8. 1, 2. 1Hz), 7. 44 (1H, d, J=8. 1Hz), 7. 16 (2H, d, J=8. 7Hz), 5. 13 (2H, s), 4. 30 (1H, m), 3. 26 (3H , s), 2.40-1.15(2H, m), 2.05 -1.75(4H, m), 1.75-1.55(1H), m), 1.55-1.15(3H, m).

1H NMR(δ) ppm

300MHz, DMSO-d6 13.1(1H, brs), 8.32(1H, s), 8. 28 (1H, d, J=8. 8Hz), 8. 05 (1H, d, J=8. 7Hz), 7. 80-7. 75(3H, m), 7.69 (1H, d, J=4.1Hz) , 7. 57 (2H, m), 7. 34-7. 29 (3H , m), 7. 20-7. 15 (1H, m), 5. 24 (2H, s), 4, 39 (1H, m), 2, 45-2 20 (2H, m), 2. 20-1. 95 (2H, m), 1. 95-1. 75 (2H, m), 1. 75-1 .55(1H, m), 1.55-1.15(3H, m).

Table 47

Example No. 169	1H NMR(δ) ppm
HO CI	300MHz, DMSO-d6 8.31(1H, s), 8.26(1H, d, J=8.7Hz), 8.05(1H, d, J=8.7Hz), 7.78-7.71(3H, m), 7.59-7.41(6H, m), 7.23(2H, d, J=9.0Hz), 5.11(2H, s), 4.35(1H, m), 2.40-2.15(2H, m), 2.15-1.95(2H, m), 1.75-1.55(1H, m), 1.55-1.15(3H, m).
Purity >90% (NMR)	
MS 571 (M+1)	en de

Example No. 170	1H NMR(δ) ppm
HO NO CI	300MHz, DMSO-d6 12.7(1H, brs), 8.66(1H, s), 8.61(1H, m), 8.21(1H, s), 7. 92-7.79(4H, m), 7.61-7.56(3H, m), 7.50-7.43(2H, m), 7. 10(2H, d, J=8.7Hz), 5.09(2H, s), 4.26(1H, m), 2.40-2.15 (2H, m), 2.00-1.75(4H, m), 1.75-1.55(1H, m), 1.50-1.15 (3H, m).
Purity > 90% (NMR)	× ×
MS 538 (M+1)	

Example No. 17	2 1H NMR(δ) ppm
HO N N N N N N N N N N N N N N N N N N N	300MHz, DMSO-d6 8. 24(1H, s), 7. 99(1H, d, J=8 . 7Hz), 7. 88(1H, d, J=10. 5Hz), 7. 70(1H, dd, J=11. 4, 1. 8H z), 7. 48-7. 32(6H, m), 7. 17- 7. 09(5H, m), 5. 12(2H, s), 4. 30(1H, m), 2. 40-2. 15(2H, m) , 2. 05-1. 75(4H, m), 1. 75-1. 55(1H, m), 1. 55-1. 20(3H, m)
Purity >90% (NMR)	
MS 537 (M+1)	

Example	No.	* * 0	173	1H NMR(δ) ppm
но)—o	dr CI	300MHz, DMSO-d6 8. 33 (1H, s), 8. 29 (1H, d, J=8 .7Hz), 8. 06 (1H, d, J=8. 7Hz) ,7. 82-7. 74 (4H, m), 7. 45 (1H ,dd, J=8. 4, 3. 0Hz), 7. 39 (2H ,d, J=8. 7Hz), 5. 28 (2H, s), 4 .40 (1H, m), 2. 40-2. 15 (2H, m), 2. 15-1. 95 (2H, m), 1. 95-1 .75 (2H, m), 1. 75-1. 55 (1H, m), 1. 55-1. 15 (3H, m).
Purity	>90%	(NMR	3)	
MS	540 (M+1)		

Example No. 175	1H NMR(δ) ppm
HO N O O O N O O N O O O O O O O O O O O	300MHz, DMSO-d6 12. 75 (1H, s), 8. 21 (1H, s), 7. 94and7. 85 (2H, ABq, J=8. 7Hz), 7. 61and7. 00 (4H, A' B' q, J=8. 5Hz), 7. 31-6. 91 (2H, m), 7. 25 (2H, d, J=7. 7Hz), 5. 41 (2H, brs), 4. 54 (2H, d, J=6. 6Hz), 4. 35-4. 14 (2H, m), 2. 49-2. 15 (3H, m), 1. 95-1. 55 (5H, m), 1. 50-1. 13 (5H, m), 1. 10-0. 77 (2H, m)
Purity >90% (NMR)	-0.77(2H, m)
MS 568 (M+1)	

Example N	0.	178	1H NMR(δ) ppm
HO N		√	300MHz, DMSO-d6 12.85(1H, s), 8.75(1H, s), 8 .63(2H, d, J=3.8Hz), 8.25(1 H, s), 8.04-8.01(2H, m), 8.0 2and7.90(2H, ABq, J=8.6Hz) , 7.72and7.20(4H, A'B'q, J= 8.6Hz), 7.57(2H, dd, J=7.8, 5.0Hz), 7.40(1H, t, J=8.2Hz) , 6.93(1H, d, J=8.2Hz), 6.8 7(1H, s), 6.77(1H, d, J=8.2Hz)
Purity	>90% (NMR)		z), 5. 23 (2H, s), 4. 33 (1H, br t, J=12. 2Hz), 2. 40-2. 18 (2H
MS	520 (M+1)		, m), 2.00-1.55 (5H, m), 1.50 -1 15 (3H m)

	· · · · · · · · · · · · · · · · · · ·
Example No. 179	1H NMR(δ) ppm
HO N N	300MHz, DMSO-d6 8. 32(1H, s), 8. 29(1H, d, J=9 .0Hz), 8. 06(1H, d, J=8. 7Hz) ,7. 61(1H, d, J=8. 4Hz), 7. 58 -7. 32(5H, m), 6. 98(1H, d, J= 2. 1Hz), 6. 93(1H, dd, J=8. 7, 2. 1Hz), 5. 27(2H, s), 4. 16-4 .00(1H, m), 3. 87(3H, s), 2. 2 0-2. 12(2H, m), 2. 02-1. 98(4 H, m), 1. 70-1. 60(1H, m), 1. 5
Purity >90% (NMR)	2-1. 10 (3H, m)
MS 457 (M+1)	

Example No. 1	81 1H NMR(δ) ppm
HO N O HO	300MHz, DMSO-d6 8. 19(1H, s), 7. 95(1H, d, J=8 .7Hz), 7. 86(1H, d, J=8. 7Hz) , 7. 65(4H, d, J=7. 4Hz), 7. 47 (2H, d, J=8. 7Hz), 7. 44-7. 27 (6H, m), 6. 99(2H, d, J=8. 7Hz), 4. 20(1H, m), 2. 34-2. 12(2 H, m), 1. 98-1. 75(4H, m), 1. 6 4(1H, m), 1. 46-1. 13(3H, m).
Purity > 90% (NMR)	
MS 547 (M+1)	

Example No. 182	1H NMR(δ) ppm
HO NO.	300MHz, DMSO-d6 8.55(1H, d, J=2.1Hz), 8.32(1H, m), 8.21(1H, s), 7.95(1H, d, J=8.4Hz), 7.86(1H, d, J=7.8Hz), 7.68-7.56(7H, m), 7.14(2H, d, J=8.7Hz), 5.21(1H, s), 4.26(1H, m), 2.35-2.15(2H, m), 2.00-1.75(4H, m), 1.74-1.55(1H, m), 1.50-1.15(3H, m)
Purity > 90% (NMR)	
MS 582 (M+)	

Example No.	184	1H NMR(δ) ppm
HO N O C		300MHz, DMSO-d6 13. 2(2H, brs), 8. 30(1H, s), 8. 26(1H, d, J=8. 8Hz), 8. 04(1H, d, J=8. 8Hz), 8. 00(2H, d, J=8. 2Hz), 7. 79(1H, s), 7. 73 (2H, d, J=8. 7Hz), 7. 61-7. 56 (3H, m), 7. 44(1H, d, J=8. 3Hz), 7. 23(2H, d, J=8. 8Hz), 5. 1 3(2H, s), 4. 35(1H, m), 2. 45- 2. 15(2H, m), 2. 15-1. 95(2H,
Purity > 90% (NMR)		m), 1.95-1.75(1H, m), 1.75- 1.15(3H, m).
MS 581 (M+1)		
		•

Table 53

Example No.	187	1H NMR(δ) ppm
HO LANGE OF THE PARTY OF THE PA		300MHz, DMSO-d6 12.76(1H, s), 8.57(1H, d, J= 4.4Hz), 8.23(1H, s), 7.96an d7.86(2H, ABq, J=8.2Hz), 7. 87-7.82(1H, m), 7.68and7.1 2(4H, A'B'q, J=8.6Hz), 7.53 (2H, d, J=7.8Hz), 7.37(1H, t, J=8.3Hz), 7.36-7.33(1H, m), 6.90(1H, d, J=8.3Hz), 6.8 3(1H, s), 6.74(1H, d, J=8.0Hz)
Purity >90% (NMR)	z), 5. 20 (2H, s), 4. 31 (1H, br t, J=12. 2Hz), 2. 35-2. 19 (2H
MS 520 (M+1)		, m), 1. 99-1. 57 (5H, m), 1. 45 -1 эп (зн м)

Exa	mple No.	188	1H NMR(δ) ppm
			300MHz, DMSO-d6 12. 77 (1H, brs), 8. 21 (1H, d, J=1, 4Hz), 7. 92 (1H, d, J=8. 7 Hz), 7. 88 (1H, dd, J=8. 7, 1. 4 Hz), 7. 57 (2H, d, J=8. 7Hz), 7. 57-7. 27 (7H, m), 7. 11 (2H, d, J=8. 7Hz), 5. 07 (2H, s), 4. 26 (1H, m), 2. 36-2. 16 (2H, m), 1. 98-1. 75 (4H, m), 1. 64 (1H, m), 1. 49-1. 17 (3H, m).
Pui	eity >90% (N	MR)	
MS.	555 (M+1)	, , , , , , , , , , , , , , , , , , ,

Table 54

Example No.	190	1H NMR(δ) ppm
HO CI	→NH ₂	300MHz, DMSO-d6 8.36-7.90(5H, m), 7.74(2H, d, J=8.6Hz), 7.60-7.40(5H, m), 7.25(2H, d, J=8.7Hz), 5.14(2H, s), 4.45-4.28(1H, m), 2.40-2.15(4H, m), 1.75-1.55(1H, m), 1.55-1.20(3H, m)
Purity > 90% (NMR)		
MS 580 (M+1)		

Example No. 191	1H NMR(δ) ppm
HO CH3	300MHz, DMSO-d6 8. 22(1H, s), 7. 94(1H, d, J=8 .4Hz), 7. 85(1H, d, J=8. 7Hz) ,7. 61(2H, d, J=8. 7Hz), 7. 25 -7. 00(6H, m), 4. 86(2H, s), 4 .30(1H, m), 2. 89(3H, s), 2. 8 0(3H, s), 2. 29(2H, m), 2. 00- 1. 75(4H, m), 1. 70-1. 55(1H, m), 1. 50-1. 15(3H, m)
Purity > 90% (NMR)	
MS 514 (M+1)	

[Example No.	192	1H NMR(δ) ppm
	но	<u></u> \$-\	300MHz, DMSO-d6 8. 22 (1H, s), 7. 94 (1H, d, J=8 .4Hz), 7. 85 (1H, d, J=8. 7Hz) , 7. 61 (2H, d, J=8. 7Hz), 7. 26 -7. 01 (6H, m), 4. 84 (2H, s), 4 .31 (1H, m), 3. 36 (4H, m), 2. 2 9 (2H, m), 2. 00-1. 75 (4H, m), 1. 75-1. 15 (10H, m)
	Purity > 90% (NN	AR)	
	MS 554 (M+1)		

Example No.	193 1H NMR(δ) ppm
HO NO	300MHz, DMSO-d6 13.00(1H, brs), 8.29(1H, d, J=1.4Hz), 8.15(1H, d, J=8.8 Hz), 7.97(1H, dd, J=1.4Hz, 8.8Hz), 7.89(2H, d, J=8.8Hz), 7.80-7.60(5H, m) 7.25(2H, d, J=8.8Hz), 4.47-3.90(4H, m), 3.20-3.10(2H, m), 2.41-1.22(14H, m)
Purity >90% (NMR)	
MS 560 (M+1)	1.4

Example No. 196	1H NMR(δ) ppm
HO NO H ₃ C N-CH ₃	300MHz, DMSO-d6 8. 22(1H, s), 7. 95(1H, d, J=8 .4Hz), 7. 86(1H, d, J=8. 4Hz) , 7. 69and7. 18(4H, ABq, J=8. 7Hz), 7. 34(1H, t, J=8. 0Hz), 6. 80-6. 69(3H, m), 4. 83(2H, s), 4. 31(1H, m), 2. 98(3H, s) , 2. 84(3H, s), 2. 29(2H, m), 2 .00-1. 75(4H, m), 1. 70-1. 55 (1H, m), 1. 50-1. 15(3H, m)
Purity > 90% (NMR)	
MS 514 (M+1)	,

Example No. 197	1H NMR(δ) ppm
HO. L. N.	300MHz, DMSO-d6 8. 23 (1H, s), 7. 95 (1H, d, J=8 .4Hz), 7. 86 (1H, d, J=8. 7Hz) , 7. 69and7. 18 (4H, ABq, J=8. 7Hz), 7. 35 (1H, t, J=8. 4Hz), 6. 80-6. 70 (3H, m), 4. 82 (2H, s), 4. 31 (1H, m), 3. 40 (4H, m) , 2. 29 (2H, m), 2. 00-1. 75 (4H , m), 1. 70-1. 15 (10H, m)
Purity > 90% (NMR)	
MS 554 (M+1)	

Example No. 198	1H NMR(δ) ppm
HO N S - CH,	300MHz, DMSO-d6 12.75(1H, s), 8.23(1H, d, J= 4.4Hz), 7.95and7.86(2H, AB q, J=8.6Hz), 7.69and7.19(4 H, A'B'q, J=8.6Hz), 7.36(1H , t, J=7.8Hz), 6.82(1H, d, J= 9.3Hz), 6.73(1H, s), 6.71(1 H, d, J=7.2Hz), 4.30(1H, brt , J=12.2Hz), 3.89(2H, d, J=6 , 0Hz), 3.59(2H, d, J=11.7Hz
Purity > 90% (NMR)), 2. 85 (3H, s), 2. 73 (2H, t, J =10. 5Hz), 2. 41-2. 20 (2H, m)
MS 604 (M+1)	, 1.98-1.59(8H, m), 1.46-1. 18(5H m)

Table 57

Example No.	199	1H NMR(δ) ppm
HO CI		300MHz, DMSO-d6 8. 33(1H, s), 8. 30(1H, d, J=8 .9Hz), 8. 06(1H, d, J=8. 7Hz) ,7. 79(2H, d, J=8. 7Hz), 7. 70 (2H, d, J=8. 7Hz), 7. 61(2H, d , J=8. 7Hz), 7. 39(2H, d, J=8. 8Hz), 5. 28(2H, s), 4. 39(1H, m), 2. 50-2. 15(2H, m), 2. 15- 1. 95(2H, m), 1. 95-1. 75(2H, m), 1. 75-1. 55(1H, m), 1. 55-
Purity > 90% (NM	R)	1.15(3H, m).
MS 542 (M+1)		*

Example No.	200	1H NMR(δ) ppm
HO NO	-{Sci	(DMSO-d6) δ:8.23(1H, s), 7.96(1H, d, J=8.6Hz), 7.86(1H, d, J=8.6Hz), 7.69(2H, d, J=8.4Hz), 7.52(1H, s), 7.50-7.30(4H, m), 7.18(2H, d, J=8.4Hz), 6.90(1H, d, J=8.3Hz), 6.84(1H, s), 6.74(1H, d, J=8.3Hz), 5.15(2H, s), 4.39-4.21(1H, m), 2.39-2.18(2H, m), 1.99-1.80(4H, m), 1.71-1
Purity >90% (NMR)	.59(1H, m), 1.50-1.20(3H, m
MS 553 (M+1)		

Table 58

ſ	Example No.	202	1H NMR(δ) ppm
	но	F	(DMSO-d6) δ :12.81(1H, brs), 8.24(1H, s), 7.99(1H, d, J=8.7Hz), 7.87(1H, d, J=8.7Hz), 7.69(2H, d, J=8.6Hz), 7.53-7.47(2H, m), 7.38(1H, t, J=8.2Hz), 7.26-7.16(4H, m), 6.89(1H, d, J=8.2Hz), 6.82(1H, s), 6.73(1H, d, J=8.2Hz), 5.11(2H, s), 4.40-4.21(1H, m), 2.40-2.17(2H, m), 2.0
Ī	Purity >90% (N	MR)	1-1.77(4H, m), 1.71-1.59(1 H, m), 1.50-1.20(3H, m)
	MS 537 (M+1)	

Example No.	203	1H NMR(δ) ppm
но	NO ₂	300MHz, DMSO-d6 12.74(1H, brs), 8.21(1H, s), 8.08(2H, d, J=9.0Hz), 7.93 (1H, d, J=8.7Hz), 7.85(2h, d, J=8.7Hz), 7.58(2H, d, J=8.7Hz), 7.13(2H, d, J=8.7Hz), 6.83(2H, d, J=9.0Hz), 4.50-4.08(4H, m), 3.68-3.30(2H, m), 2.40-1.23(14H, m)
Purity >90%	(NMR)	*
MS 541 (M+1)	

Table 59

Example No.	205	1H NMR(δ) ppm
HO I NO O) } *	300MHz, DMSO-d6 9.59(1H, brs), 8.23(1H, s), 8.04(1H, d, J=8.4Hz), 7.90(1H, d, J=8.4Hz), 7.62(2H, d, J=8.7Hz), 7.39(2H, 2H, d, J= 8.7Hz)7.18(2H, d, J=8.7Hz), 6.63(2H, d, J=8.7Hz), 3.95 -3.37(4H, m), 3.51-3.40(1H, m), 3.17-3.02(1H. m), 2.39 -1.18(17H, m)
Purity > 90% (NM	R)	*
MS 553 (M+1)		*

Example No. 206	1H NMR(δ) ppm
HO N S S	300MHz, DMSO-d6 13.1(1H, brs), 8.33(1H, s), 8.29(1H, d, J=8.8Hz), 8.06(1H, d, J=8.7Hz), 7.77(2H, d, J=8.7Hz), 7.59-7.52(4H, m) , 7.35(2H, d, J=8.8Hz), 5.19 (2H, s), 4.39(1H, m), 2.71(3 H, s), 2.45-2.20(2H, m), 2.2 0-1.95(2H, m), 1.95-1.75(2 H, m), 1.75-1.55(1H, m), 1.5
Purity > 90% (NMR)	5-1.15(3H, m).
MS 558 (M+1)	

Example No) .		207	1H NMR(δ) ppm
но	N C		F	300MHz, DMSO-d6 8. 29 (1H, s), 8. 26 (1H, d, J=8 .8Hz), 8. 04 (1H, d, J=8. 7Hz) ,7. 73 (2H, d, J=8. 8Hz), 7. 50 -7. 41 (6H, m), 7. 36 (2H, d, J= 8. 8Hz), 7. 18-7. 13 (2H, m), 6 .84 (1H, s), 4. 33 (1H, m), 2. 4 0-2. 15 (2H, m), 2. 15-1. 95 (2 H, m), 1. 95-1. 75 (2H, m), 1. 7 5-1. 55 (1H, m), 1. 55-1. 15 (3
Purity >	> 9 0 %	(NMR)] H, m).
MS	539	(M+1)		

Example No.	208	1H NMR(δ) ppm
HO 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	NO ₂	300MHz, DMSO-d6 8. 32 (1H, s), 8. 27 (1H, d, J=9 .0Hz), 8. 07-8. 00 (3H, m), 7. 79-7. 70 (3H, m), 7. 51 (2H, d, J=8. 1Hz), 7. 40 (2H, d, J=8. 4 Hz), 7. 18 (2H, d, J=8. 7Hz), 4 .99 (2H, s), 4. 34 (1H, m), 2. 4 0-2. 15 (2H, m), 2. 15-1. 95 (2 H, m), 1. 95-1. 75 (2H, m), 1. 7 5-1. 55 (1H, m), 1. 55-1. 15 (3
Purity > 90% (N	IMR)	H, m).
MS 582 (M+	1)	

Example No. 209	1H NMR(δ) ppm
HO N O O	300MHz, DMSO-d6 8. 24(1H, d, J=4. 4Hz), 7. 98a nd7. 88(2H, ABq, J=8. 6Hz), 7 . 70and7. 19(4H, A'B'q, J=8. 4Hz), 7. 35(1H, t, J=8. 4Hz), 6. 86(1H, d, J=8. 1Hz), 6. 79(1H, s), 6. 71(1H, d, J=8. 1Hz) , 4. 65-4. 53(1H, m), 4. 31(1H, brt, J=12. 2Hz), 3. 88-3. 78 (2H, m), 3. 48(2H, t, J=9. 0Hz), 2. 39-2. 19(2H, m), 1. 02-1
Purity > 90% (NMR)	.71 (6H, m), 1.70-1.50 (3H, m
MS 513 (M+1)), 1.46-1.19(3H, m)

Table 61

Example	No.	211	1H NMR(δ) ppm
но		HCI	300MHz, DMSO-d6 8. 29 (1H, s), 8. 15and7. 47 (2 H, ABq, J=9. 0Hz), 7. 77and7. 24 (4H, ABq, J=8. 9Hz), 7. 39 (1H, t, J=7. 8Hz), 6. 84 (1H, d, J=9. 3Hz), 6. 76 (1H, s), 6. 75 (1H, d, J=9. 5Hz), 4. 36 (1H, b rt, J=12. 2Hz), 3. 89 (2H, d, J =6. 0Hz), 3. 42 (2H, d, J=10. 8 Hz), 3. 04-2. 88 (2H, m), 2. 78
Purity >90% (NMR)		-2.60(1H, m), 2.71(2H, d, J= 4.8Hz), 2.38-2.20(2H, m), 2	
MS	540 (M+1)	* .	.07-1.80(7H,m),1.70-1.20 (би m)

Table 62

Example	No.	214
но		
Purity	>90% (NMR)	. *
MS	490 (M+1)	٠,=

1H NMR(δ) ppm 300MHz, DMSO-d6 8. 94 (1H, d, J=2. 1Hz), 8. 60 (1H, dd, J=4. 8, 1. 5Hz), 8. 23 (1H, d, J=1. 5Hz), 8. 12 (1H, dt, J=8. 1, 2. 1Hz), 7. 93 (1H, d, J=8. 7Hz), 7. 87 (1H, dd, J=8. 7, 1. 5Hz), 7. 70 (1H, d, J=8. 7Hz), 7. 67-7. 54 (3H, m), 7. 50 (1H, dd, J=8. 1, 4. 8Hz), 7. 25 (2H, d, J=8. 7Hz), 7. 21 (1H, m), 4. 31 (1H, m), 2. 38-2. 19 (2H, m), 2. 00-1. 78 (4H, m), 1. 6 5 (1H, m), 1. 48-1. 22 (3H, m).

Example	No.	215
но		CI
Purity	>90%	(NMR)
MS	523 (M	(+1)

1H NMR(δ) ppm 300MHz, DMSO-d6 12. 75 (1H, brs), 8. 23 (1H, s), 7. 95 (1H, d, J=8. 7Hz), 7. 86 (1H, d, J=8. 7Hz), 7. 73 (2H, d, J=8. 4Hz), 7. 63-7. 39 (2H, m), 7. 5 2 (2H, d, J=8. 4Hz), 7. 24 (2H, d, J=8. 4Hz), 7. 18 (1H, m), 4. 31 (1H, m), 2. 39-2. 20 (2H, m), 2. 00-1. 76 (4H, m), 1. 65 (1H, m), 1. 49-1. 18 (3H, m).

Example	No.	216
но		\ \^
Purity	>90% (N	MR)
MS	519 (M+1)

1H NMR(δ) ppm

300MHz, DMSO-d6
12.77(1H, s), 8.23(1H, d, J=
1.4Hz), 7.95(1H, d, J=8.6Hz), 7.86(1H, dd, J=8.6, 1.4Hz), 7.70(2H, d, J=8.7Hz), 7.6
4(2H, d, J=8.8Hz), 7.56-7.4
8(2H, m), 7.40(1H, s), 7.23(2H, d, J=8.7Hz), 7.10(1H, m), 7.03(2H, d, J=8.8Hz), 4.31(1H, m), 3.80(3H, s), 2.48-2.20(2H, m), 2.00-1.88(4H, m), 1.66(1H, m), 1.50-1.21(3H, m).

Example No.	217	1H NMR(δ) ppm
HO NO		(DMSO-d6) δ:12.80(1H, brs), 8.23(1H, s), 8.04(1H, d, J) = 8.6Hz), 7.96(3H, d, J=8.6Hz), 7.86(1H, d, J=8.7Hz), 7.63(2H, d, J=8.6Hz), 7.25(2H, d, J=8.6Hz), 5.50(2H, s), 4.36-4.21(1H, m), 3.27(3H, s), 2.74(3H, s), 2.40-2.19(2H, m), 1.99-1.79(4H, m), 1.71-1.60(1H, m), 1.49-1.19(3
Purity > 90% (NMR)		H, m)
MS 602 (M+1)	.,	Yo

Example No. 218	1H NMR(δ) ppm
	300MHz, DMSO-d6 12.9(1H, brs), 8.25(1H, s), 8.04(1H, d, J=8.7Hz), 7.91(1H, d, J=8.6Hz), 7.72(2H, d, J=8.5Hz), 7.67(2H, d, J=8.7 Hz), 7.56(2H, d, J=8.5Hz), 7 .26(2H, d, J=8.7Hz), 5.45(2 H, s), 4.31(1H, m), 2.71(3H, s), 2.40-2.15(2H, m), 2.05- 1.80(4H, m), 1.75-1.55(1H,
Purity > 90% (NMR)	m), 1.55-1.15(3H, m).
MS 558 (M+1)	

Table 64

Example	No.	220	1H NMR(δ) ppm
но		S S	300MHz, DMSO-d6 12.76(1H, s), 8.23(1H, s), 7 .96and7.87(2H, ABq, J=8.9H z), 7.69and7.19(4H, A'B'q, J=8.6Hz), 7.55(1H, s), 7.37 (1H, t, J=8.1Hz), 6.91(1H, d, J=7.8Hz), 6.85(1H, s), 6.7 4(1H, d, J=7.5Hz), 5.13(2H, s), 4.31(1H, brt, J=12.2Hz), 2.65(3H, s), 2.41-2.20(2H
Purity	>90% (NM	R)	, m), 2.00-1.74(4H, m), 1.70 -1.59(1H, m), 1.58-1.20(3H
MS	540 (M+1)		, m)

Example No. 221	IH NMR(δ) ppm
HO TO ST	300MHz, DMSO-d6 8. 23 (1H, s), 7. 96and7. 86 (2 H, ABq, J=8. 6Hz), 7. 69and7. 18 (4H, A'B'q, J=8. 7Hz), 7. 3 7 (1H, t, J=8. 2Hz), 6. 87 (1H, d, J=8. 2Hz), 6. 82 (1H, s), 6. 75 (1H, d, J=8. 0Hz), 5. 24 (2H s), 4. 32 (1H, brt, J=12. 2Hz), 2. 58 (3H, s), 2. 38-2. 20 (2 H, m), 2. 30 (3H, s), 2. 00-1. 7
Purity > 90% (NMR)	9(4H, m), 1.70-1.59(1H, m), 1.44-1.20(3H, m)
MS 554 (M+1)	

Table 65

Example No.	223	1H NMR(δ) ppm
HO N N	 cı	300MHz, DMSO-d6 10.96(1H, brs), 8.21(1H, d, J=1.4Hz), 7.93(1H, d, J=8.7 Hz), 7.84(1H, dd, J=8.7, 1.4 Hz), 7.76-7.40(7H, m), 7.18 (2H, d, J=8.0Hz), 4.24-4.16 (2H, m), 2.40-1.12(18H, m)
Purity >90% (NMR	2)	
MS 544 (M+1)	:	* * * * . •

Example No. 224	1H NMR(δ) ppm
HO N CI	(DMSO-d6) δ:8.22(1H, s), 8 .07(1H, d, J=8.4Hz), 7.92(1 H, d, J=8.4Hz), 7.54(2H, d, J =8.7Hz), 7.40(2H, d, J=8.4H z), 7.30(2H, d, J=8.4Hz), 7. 14(2H, d, J=8.7Hz), 4.61(2H ,s), 4.48-4.32(1H, m), 3.82 (1H, brd, J=12.3Hz), 3.65-3 .47(2H, m), 3.10(brdd, J=8. 4,12.3Hz), 2.40-2.20(2H, m
Purity > 90% (NMR)), 2.09-1.76(6H, m), 1.71-1 .16(6H, m)
MS 544 (M+1)	

Example No.	225	lH NMR(δ) ppm
HO N N	NH ₂	(DMSO-d6) δ:12.83(1H, brs), 8.21(1H, s), 8.10(1H, brs), 7.01-7.91(2H, m), 7.89-7.82(2H, m), 7.75(1H, d, J=8.0Hz), 7.59(2H, d, J=8.7Hz), 7.53(4H, s), 7.46(1H, brs), 7.12(2H, d, J=8.7Hz), 7.23(2H, s), 4.35-4.17(1H, m), 2.38-2.20(2H, m), 1.99-1.79(4H, m), 1.71-1.59(1H, m), 1.
Purity >90% (N	MR)	48-1.18 (3H, m)
MS 580 (M+1)	

Example	No.	226	1H NMR(8
но С		P—(□)—cı	300MHz, E 8. 33and8 Hz), 8. 31 26(4H, A' 2and7. 39 z), 4. 57(t, J=12. 2 , m), 3. 28 -2. 23(2H , m), 1. 72
Purity	>90% (NM	1R)	. · ·
MS	544 (M+1)		

1H NMR(δ) ppm 300MHz, DMSO-d6 8. 33and8. 08(2H, ABq, J=8. 7 Hz), 8. 31(1H, m), 7. 66and7. 26(4H, A'B'q, J=9. 2Hz), 7. 4 2and7. 39(4H, A"B"q, J=8. 7H z), 4. 57(2H, s), 4. 50(1H, br t, J=12. 2Hz), 3. 85-3. 62(3H ,m), 3. 28-3. 16(2H, m), 2. 42 -2. 23(2H, m), 2. 14-1. 81(6H ,m), 1. 72-1. 25(6H, m)

Example No.	227
HO NO	CI N
Purity >90% (NM)	R)
MS 554 (M+1)	

1H NMR(δ) ppm
300MHz, DMSO-d6
8. 43 (1H, d, J=5. 0Hz), 8. 23 (
1H, s), 7. 96and7. 86 (2H, ABq, J=8. 6Hz), 7. 69and7. 18 (4H, A'B'q, J=8. 6Hz), 7. 57 (1H, s), 7. 47 (1H, d, J=5. 0Hz), 7.
40 (2H, t, J=8. 2Hz), 6. 91 (1H, d, J=8. 3Hz), 6. 85 (1H, s), 6.
77 (1H, d, J=7. 9Hz), 5. 25 (2H, s), 4. 31 (1H, brt, J=12. 2Hz), 2. 40-2. 19 (2H, m), 1. 99-1. 75 (4H, m), 1. 73-1. 57 (1H, m), 1. 49-1. 19 (3H, m)

	Example No.		228	1H NMR(δ) ppm
3	HO LING			300MHz, DMSO-d6 12.80(1H, brs), 8.22(1H, s), 7.94(1H, d, J=8.6Hz), 7.87 (1H, d, J=8.6Hz), 7.60(2H, d, J=8.7Hz), 7.32(2H, d, J=8.7Hz), 6.70(2H, d, J=8.7Hz), 4.35-3.97(4H, m), 3.62-3.11(2H, m), 2.96(6H, s), 2.39-1.12(14H, m)
Ī	Purity >90% (NMR)		
	MS 567 (M	+1)		

Table 67

Example No.	229	1H NMR(δ) ppm
HO		300MHz, DMSO-d6 8. 25(1H, s), 8. 20(1H, s), 8. 04(1H, dd, J=8. 1, 1. 8Hz), 7. 92(1H, d, J=8. 1Hz), 7. 84(1H, d, J=9. 9Hz), 7. 62-7. 50(7H, m), 7. 12(2H, d, J=8. 7Hz), 5 . 14(2H, s), 4. 36(2H, q, J=6. 9Hz), 4. 30-4. 20(1H, m), 2. 3 8-2. 18(2H, m), 1. 98-1. 18(8 H, m), 1. 35(3H, t, J=6. 9Hz)
Purity > 90% (NM	(R)	*
MS 608 (M+1)		

Example No.	230	IH NMR(δ) ppm
HO N	CF ₃	300MHz, DMSO-d6 8. 35(1H, s), 8. 27(1H, d, J=8 .7Hz), 8. 05(1H, d, J=9. 0Hz) ,7. 87(2H, d, J=8. 7Hz), 7. 74 (1H, t, J=8. 1Hz), 7. 64(1H, d ,J=7. 8Hz), 7. 59-7. 50(2H, m),7. 36(2H, d, J=8. 7Hz), 4. 3 9(1H, m), 2. 40-2. 15(2H, m), 2. 15-1. 95(2H, m), 1. 95-1. 7 5(2H, m), 1. 75-1. 55(1H, m),
Purity about90% (NMR)		1.55-1.20(3H, m).
MS 481 (M+1)		

Table 68

Example	No.		232	1H NMR(δ) ppm
но		CI CI	-~	300MHz, DMSO-d6 12.8(1H, brs), 8.22(1H, s), 7.96(1H, d, J=8.7Hz), 7.86(1H, d, J=8.6Hz), 7.70(1H, s), 7.59(2H, d, J=8.7Hz), 7.53 -7.50(5H, m), 7.42(1H, d, J= 7.9Hz), 7.12(2H, d, J=8.7Hz), 5.11(2H, s), 4.27(1H, m), 3.01(3H, brs), 2.97(3H, brs), 2.40-2.15(2H, m), 2.00-1
Purity	>90%	(NMR)		.75(4H, m), 1.75-1.55(1H, m), 1.50-1.15(3H, m).
MS	608	(M+1)	(C)	10-

Table 69

Example No. 2	35 1H NMR(δ) ppm
HO N CI	300MHz, DMSO-d6 12. 74(1H, brs), 8. 67(1H, dd, J=3. 1, 1. 6Hz), 8. 21(1H, d, J=1. 6Hz), 7. 93(1H, dJ=8. 6Hz), 7. 90-7. 80(2H, m), 7. 60-7. 50(7H, m), 7. 09(2H, d, J=8. 7Hz), 5. 16(2H, s), 4. 26(1H, m), 2. 40-2. 20(2H, m), 2. 00-1. 60(5H, m), 1. 50-1. 20(3H, m)
Purity >90% (NMR)	
MS APCI-Ms 538 (M+1)	

Example No. 236	1H NMR(δ) ppm
HO N CF3CQ2H	300MHz, DMSO-d-6 8. 40-7. 40 (11H, m), 2. 95, 2. 81 (3H, each d, J=4. 7Hz), 2. 40-2. 20 (2H, m), 2. 10-1. 80 (4H, m), 1. 70- 1. 60 (1H, m), 1. 50-1. 20 (3H, m)
Purity >90% (NMR)	*
MS APCI-Ms 555 (M+1)	

	Example No. 237	1H NMR(δ) ppm
	HO I N	300MHz, DMSO-d6 8. 21 (1H, s), 8. 15 (1H, d, J=9 .5Hz), 8. 02 (1H, s), 8. 00-7. 80 (3H, m), 7. 70-7. 50 (6H, m) , 7. 12 (2H, d, J=8. 7Hz), 5. 16 (2H, s), 4. 28 (1H, m), 2. 40-2 . 20 (2H, m), 2. 00-1. 80 (4H, m), 1. 65 (1H, m), 1. 50-1. 20 (3 H, m)
-	Purity > 90% (NMR)	
	MS FAB-Ms 605 (M+1)	*

Example No. 238	1H NMR(δ) ppm
HCI N N N N N N N N N N N N N N N N N N N	300MHz, DMSO-d6 12.80(1H, brs), 8.54(1H, s), 8.25(1H, s), 7.98and7.88(2H, Abq, J=8.6Hz), 7.76(2H, d, J=8.6Hz), 7.53-7.31(3H, m), 6.61(1H, s), 5.46(2H, s), 4.32(1H, brt), 2.40-2.20(2H, m), 2.02-1.79(4H, m), 1.69-1.59(1H, m), 1.48-1.19(3H, m)
Purity > 90% (NMR)	
MS APCI-Ms 521(M+1)	*

Example No.	239	1H NMR(δ) ppm
HO NO	~ N	300MHz, DMSO-d6 12. 79(1H, brs), 8. 60(2H, d, J=1. 5Hz), 8. 53(1H, s), 8. 25 (1H, s), 7. 98and7. 85(2H, AB q, J=9. 4Hz), 7. 76(2H, d, J=9. 0Hz), 7. 44(4H, d, J=6. 5Hz), 6. 69(1H, s), 5. 53(2H, s), 4. 32(1H, brt), 2. 40-2. 19(2H, m), 2. 03-1. 82(4H, m), 1. 72-1. 61(1H, m),
Purity > 90% (NMR)	÷	1.42-1.22(3H, m)
MS APCI-Ms 522 (M+1)		

Table 71

		MS
Ex. No.	Formula	MS
1001	0	364 (M+H) .
-	N P	
	H ₂ N	
	H³c,	*
	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
		×2
1002	/─\	454 (M+H)
	H ₂ N H ₃ C CH ₃	
		0.
+ ,		
	* ***	398 (M+H)
1003	O .	390 (MTH)
	H ₂ N N	9
*		
- *		
		357 (M+H)
1004	9 /=\	337 (1111)
	H ₂ N N	
	, N	
		= .
		* * *
·	J	222 (141 11)
1005		322 (M+H)
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		
	H ₂ N OH	
	N S	
		28.0
1006		385 (M+H)
1006	O NO ₂	
	H ₂ N CI	

Table 72

	-	Tubic 72	
	Ex. No.	Formula	MS
	1007		357 (M+H)
	* .	H ₂ N N	(4)
_			
-	1008		416 (M+H)
		H ₂ N CH ₃	*
			*
	1009	Q	310 (M+H)
		H ₂ N H ₂ N N	
	. *	H ₃ C	
	1010		390 (M+H)
	0	H ₂ N OF	
v	* .,		
	1011		395 (M+H)
		NO ₂	
	*	T ₂ N O	
-			
	1012	H_2N N O	366 (M+H)
	*	ОН	, = *

Table 73

Ex. No.	Formula	MS
1013	H ₂ N F	374 (M+H)
1014		382 (M+H)
1014	H ₂ N N	
v.		
1015	H ₂ N OH	350 (M+H)
ńą		
1016	H ₂ N F	402 (M+H)
	Br	
1017	H ₂ N N O	414 (M+H)
, ,	Br CH ₃	
1018	H ₂ N N	340 (M+H)
	CI	

Table 74

	Table 74	
Ex. No.	Formula	MS
1019	H₃C _	350 (M+H)
	H ₂ N O	(a) y
1020	0	380 (M+H)
* * * * * * * * * * * * * * * * * * *	H_2N O O	
	ОН	
1021	ОН	366 (M+H)
	H ₂ N O	
1022	Q.	378 (M+H)
	H ₂ N O	*
	СН,	
1023	O Br	402 (M+H)
	H ₂ N Br	ŧ

Table 75

Ex. No.	Formula	MS
1024		518 (M+H)
	H_2N	
1025	O CI	408 (M+H)
	H ₂ N N	. S
٠,	F F	
1026	CH ₃	336 (M+H)
	H ₂ N OH	- X -
1027	H ₂ N N	408 (M+H)
*		
1028	ОOH	366 (M+H)
	H ₂ N OH	
*		
1029	H ₂ N N	362 (M+H)
	H ₃ C CH ₃	
1		Ϋ́

Table 76

	Table 70	
Ex. No.	Formula	MS
1030		473 (M+H)
	H ₂ N N	
- 7		
1031	он он	338 (M+H)
* * 44	N, /	
	1121	
	N C	1
1032		307 (M+H)
1002		(*****/
	H ₂ N N	9 9
	N LN	
0.00		
1033		406 (M+H)
	l [
-	H ₂ N	- *
*	CI	
		-
	**	*
1034		466 (M+H)
	0	
	H ₂ N F	
	Ý F	*
	*	
1035		412 (M+H)
		*
	\\rangle	
	0	
	H ₂ N N	
*	N N	
		*
**		
L		

Table 77

Ex. No.	Formula	MS
	<u> </u>	412 (M+H)
1036	о — Сн,	412 (11:11)
	H ₂ N N	
	, N	
+		

1037		428 (M+H)
	CH,	
	H ₂ N	
, and the second		* '.
1038		466 (M+H)
		2.5
	H ₂ N CI	
Ψ		-
, i		
1039		406 (M+H)
1035		*
	H ₂ N N	0
· ·		
		· ·
1010		417 (M+H)
1040	n l	
	H ₂ N NO ₂	
		ŀ
ļ. 1		
		AAO (MEU)
1041		440 (M+H)
100	H ₂ N N O F	
X	N F F	

Table 78

Ex. No.	Formula	MS
EX. NO.	Tormara	
1042	NO ₂	417 (M+H)
	N O	
	H ₂ N	
	N	
		4.40 (24) (1)
1043	F F	440 (M+H)
	H ₂ N N	
, ,	N V	
1044	0	312 (M+H)
. *	H ₂ N N	
(4)	11211	
(1)		* (*)
0		·
		423 (M+H)
1045		423 (E) 11)
		· .
8	H ₂ N N	
	H ₃ C	*
	\	*
		**. 52
1046	О ОН	352 (M+H)
	H ₂ N N	
	, CH ³	
	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
		307 (M+H)
1047		30, (11, 11,
	H ₂ N	*
	W W	*
* "		
÷		

Table 79

Ex. No.	Formula	MS
1048	H ₂ N F F	374 (M+H)
1049	H ₂ N O	398 (M+H)
1050	H ₂ N S CH ₃	326 (M+H)
1051	H ₂ N O O O O O O O O O O O O O O O O O O O	442 (M+H)
1052	H ₂ N N	518 (M+H)

Table 80

	Table 00	MC
Ex. No.	Formula	MS
1053		442 (M+H)
1000		*
	0	
		-46
+	H ₂ N	
÷	N CH3	
*		
1054	g	376 (M+H)
	H ₂ N OH	*
	H ₂ N OH	
		/ 0.
		.*
		440 (24) (1)
1055		442 (M+H)
, ,	H ₂ N N	
	N	
	H ₃ C	
1056	CH ₃	352 (M+H)
,		
	H ₂ N OH	
1057	Q .	367 (M+H)
	N A	
	H ₂ N — OH	
	NO ₂	
. 0		
*		0.67 (14 17)
1058	O NO ₂	367 (M+H)
	H N N >	
* -	OH OH	3
· Ý:		<u> </u>

Table 81

Ex. No.	Formula	MS
1059	0	364 (M+H)
1000	H_2N	0 3 0
, -	CH ₃	0
1060	0	324 (M+H)
1000	H ₂ N N	
* *	N F	
5.1		* *
1061	Q	352 (M+H)
	H ₂ N OH	
	H,c	*
		357 (M+H)
1062	H ₂ N S NO ₂	
		*
1063	O F F	360 (M+H)
	H ₂ N F	
* 1		
1064	Q	351 (M+H)
	H ₂ N NO ₂	4 (*)
* *		
1		

Table 82

Ex. No.	Formula	MS
1065	0	351 (M+H)
	H ₂ N N	.*
	NO ₂	
., .		
1066		366 (M+H)
	H ₂ N O	
	N CH ₃	* : .*
* 010	H ₃ C	0
1067	0	367 (M+H)
	H ₂ N NO ₂	
, , , , , , , , , , , , , , , , , , ,	OH	
Œ		-
1068	0	364 (M+H)
*	H ₂ N N	·
	H ₃ C CH ₃	*
		v 4 *
1069	O T	350 (M+H)
	H ₂ N N	
.•	ОН	
*		*
1070	Q.	306 (M+H)
	H ₂ N N	
, ÷		77

Table 83

Ex. No.	Formula	MS
1071	0	365 (M+H)
	HO NO H ₃ C	*
1072	HO N H ₃ C CH ₃	455 (M+H)
1072		399 (M+H)
1073	HO NO	
1074	HO N N	358 (M+H)
1075	HO CH ₃	337 (M+H)
		8
1076	HO NO ₂	386 (M+H)
·		

Table 84

Ex. No.	Formula	MS
1077	но	358 (M+H)
		-
1078	HO N CH ₃	417 (M+H)
	H³¢	
1079	HO NH	311 (M+H)
1080	HO N O F F	391 (M+H)
1081	HO NO ₂	396 (M+H)
1082	но	367 (M+H)

Table 85

Ex. No.	Formula	MS
1083	- F - F	375 (M+H)
2	HO F	*
		*
1084	о)—он	351 (M+H)
	HO	
1085	0	383 (M+H)
	HO N	, in .
1086	0 F _\	403 (M+H)
·	HO	
	Br	
1087	O .	415 (M+H)
	HO CH ₃	* ***
	Br	en.
1088	HO N CI	341 (M+H)
* (c		

Table 86

· · · · · · · · · · · · · · · · · · ·		MC
Ex. No.	Formula	MS
1089	H ₃ C ₂ -	351 (M+H)
	0	00 ;
	HO N >	
*		
		*
1090	0 -	381 (M+H)
	HO N OH	
*) v	*
		34 T
1091	он	367 (M+H)
	9	- 1 m
	HON	
+ , =		
1		*
1092	0	379 (M+H)
)	но	
	—сн _з	
		402 (M II)
1093	O Br	403 (M+H)
	но труби	
* (

Table 87

Ex. No.	Formula	MS
1094		519 (M+H)
*	o	. 3
	HO	*
* *		
1095	G ~ C	409 (M+H)
3 ° '	HO	
90 990	F F	*
1096		337 (M+H)
	но	
÷	, CH²	
1097	0	409 (M+H)
	HO	
H		-
1098	о о о	367 (M+H)
	но	
.0. *		× *
1099		363 (M+H)
100	HO CH,	2 .
	н,с	

Table 88

Ex. No.	Formula	MS
1100		474 (M+H)
***	HO	
1101	HO N OH	339 (M+H)
1.0	но рон	
1102	HON	308 (M+H)
1103	0 0—	467 (M+H)
*	HO F F	
		, - × - , ,
1104	9 9—	413 (M+H)
(C) 1	HO NO	
1105		413 (M+H)
1105	HO -CH ₃	-
*		
***		, ,

Table 89

Ex. No.	Formula	MS
1106	HO CH ₃	429 (M+H)
1107	HO CI	467 (M+H)
1108	HO NO CI	
1109	HO NO ₂	
1110	HO F F	441 (M+H)
1111	HO NO ₂	418 (M+H)

Table 90

Ex. No.	Formula	MS
1112	но	313 (M+H)
)		
		308 (M+H)
1113	HO N	300 (M111)
1114	HO F F	375 (M+H)
1115	HO NO	399 (M+H)
1116	HO S CH ₃	327 (M+H)
		142 (M+H)
1117		443 (M+H)
Œ	HO O O-CH ₃	

Table 91

Ex. No.	Formula	MS
1118	HO	519 (M+H)
1119	HO N CH ₃	443 (M+H)
1120		377 (M+H)
1120	HO NOH	
1121	HO NO-CH ₃	443 (M+H)
1122	HO CH ₃	353 (M+H)

Table 92

Ex. No.	Formula	MS
1123	NO ₂	368 (M+H)
	но	1.0
		7
1124	HO NO ₂	368 (M+H)
	он	
1125	но	365 (M+H)
	СН	
1126	HO N F	325 (M+H)
1127	HO NO-CH ₃	353 (M+H)
1128	HO N S NO ₂	358 (M+H)

Table 93

Ex. No.	Formula	MS
1129	O , F F	361 (M+H)
00	HO	i a t
		- (34
1130	HO NO NO	352 (M+H)
	HO NO ₂	
1131		352 (M+H)
· , · . (HO	*
) (*)	NO ₂	
1132		367 (M+H)
	HO CH ₃	
*	Н³с,	×
1133		368 (M+H)
*	HO NO ₂	*
, v) ОН	7 % %
1134	O II	365 (M+H)
	HO CH3	x_{α}
	н,с	*

Table 94

	77 7	MC
Ex. No.	Formula	MS
1135	Q	351 (M+H)
·	HO N / O	* .
	ОН	
		207 (M) 11)
1136		307 (M+H)
	но	
1137	Q	385 (M+H)
	HO N O	
	HO N O CH ₃	
*		
1120		365 (M+H)
1138		303 (211)
. *	но	. (3)
	N N	
. *		
1139	ÇI	467 (M+H)
	م م	*
	N C	* .
	CI CI	
x		*
		x · X
1140	0	387 (M+H)
	N O	, -
	HO CH,	. *
	, N	· *
• "		

Table 95

Ex. No.	Formula	MS
1141	о сн,	322 (M+H)
	HO N N=	
1142	0	364 (M+H)
: :	HO CH ₃	: * * () : •
, , , , , , , , , , , , , , , , , , ,		
1143	О ОН	323 (M+H)
	HO N	**
1144	Q	363 (M+H)
	HO CH,	
	н,с сн,	**************************************
1145	0 0,	484 (M+H)
1145	HO CH,) (
		. 7
1146	Q	385 (M+H)
	HO NO	
e:		

Table 96

Ex. No.	Formula	MS
1147	0	427 (M+H)
	HO N	
1148	O LL /CH3	420 (M+H)
	HO CH ₃	
	N No	
2		500 (141 11)
1149	CI	508 (M+H)
	HO CI	
		*
1150		458 (M+H)
- 22 -	но	÷ 0
\$ a.		
-		
1151	0 H	458 (M+H)
a.	но	
	No No	
*		

Table 97

Ex. No.	Formula	MS
EX. NO.		
1152		474 (M+H)
		*
	но	*
•		
		9 9 8
		450 (14 17)
1153	F	458 (M+H)
0 0	HO TO	
	N N N	
		130
A 10		508 (M+H)
1154	F, F	308 (H+H)
·		
		20 *
- (X) - (но	*
	N W O	
		, **
1155	CH.	454 (M+H)
	CH ₃	+
	HO	8 %
	N O	
. =		
Į.		_1

Table 98

Ex. No.	Formula	MS
1156	OMe	470 (M+H)
*		
	HO),
		<u>, </u>
1157	H ₃ C CH ₃ CH ₃	496 (M+H)
*-		
		* -
	HO	an .
* * *		·
1158		482 (M+H)
1120		
***	но	- "
* .	N N N	
1159	N — N—ch,	448 (M+H)
	HO	
		*
		488 (M+H)
1160		100 (11/11)
	но	
,		
		Ĭ.

Table 99

Ex. No.	Formula	MS
1161	-	468 (M+H)
	но	
1162	CH ₃	447 (M+H)
1102	HO N	
		*
1163		466 (M+H)
	HOLLING	
		4 - 1
1164	OMe ————————————————————————————————————	526 (M+H)
	HO N	* *
1165	HO	420 (M+H)
*		, j

Table 100

Ex. No.	Formula	MS
1166		490 (M+H)
	0	**
* ÷		
	HO	
1167	0) (1)	435 (M+H)
	О — И	
	HO	
	N	
		*
*		426 (14) 11)
1168	OCH,	436 (M+H)
=*	HO N /= N	*
	N	, 6 . c.
		, , , , , , ,
1169	о-сн,	436 (M+H)
+ 100	HO NO	
. *		*
1170		404 (M+H)
, ye		
	HO	
		*
		(w)
1171	н,с	406 (M+H)
	СН3	
	но	
	N O	

Table 101

Ex. No.	Formula	MS
	Tolinata	
1172	HO CH ₃	392 (M+H)
1172		420 (M/H)
1173	HO H ₃ C CH ₃	420 (M+H)
1174	сн	406 (M+H)
	но	
1175	HO CH ₃	420 (M+H)
1176	HO NO	523 (M+H)
1177	HO CH ₃ CH ₃	406 (M+H)

Table 102

	Table 102	
Ex. No.	Formula	MS
1178	- CH ₃	447 (M+H)
	HO	
		·** (
311		
1179	CH ₃	433 (M+H)
*	HO N	,
-		
1180		509 (M+H)
1100		
. =:(HO	
		E12 (MIII)
1181	, F	513 (M+H)

	HO	*
~) o	
*		9

Table 103

Ex. No.	Formula	MS
1182		497 (M+H)
		(4)
	HO	ė
		406 (M+11)
1183		496 (M+H)
	N N	
,	HO N	*
÷		-
1184		418 (M+H)
	HO N	
		,
1185		508 (M+H)
*	N A	
	HO	
1106	O, /-CH ₃	490 (M+H)
1186		
-		
	HO	

Table 104

Ex. No.	Formula	MS
1187	- (_ N	441 (M+H)
	HO	
) , , ,	
1188	0	455 (M+H)
		*
	HO TO	
00		÷)
1189	N=\	455 (M+H)
	1	
* 19	но	* * * * * * * * * * * * * * * * * * * *
	N O	**************************************
		*
1190	OMe	513 (M+H)
1190		020 (11/11)
	HO NO	
,		, ,
	r ch,	
		50448411
1191	O ,	504 (M+H)
	HO N N	1
÷ Ye		
Y		·
1192	F F	494 (M+H)
4-	HO	
	W W W	

Table 105

٠,-		Formula	MS
	Ex. No.		
	1193	O CH ₃	512 (M+H)
		HO N /	*
١	÷		8 (1)
ļ	*		10
ļ	*		
\mathbf{l}	1194	9 /=\	504 (M+H)
		HO N Br	
			A
١	* * * * * * * * * * * * * * * * * * * *		() () () () () () () () () ()
ŀ	1195		516 (M+H)
	1173		
		HO	, ,
			,
	*		,
			497 (M+H)
	1196	O N CH ₃	
		HO CH3	* *
	:		0
			*
	1197	0	456 (M+H)
	1197	O Me	*
	-	HO	
	7		, ,
	7100		509 (M+H)
	1198		
	, .	HO	
	4		*
•	·		

Table 106

Ex. No.	Formula	MS
1199	0,	483 (M+H)
	HO HO CH ₃	*
9		
1200	HO NO	427 (M+H)
1201	HO NO	427 (M+H)
1202	HO NO	477 (M+H)
41 -		
1203	HO S O CH ₃	519 (M+H)
1204		440 (M+H)
1204	HO NO	
		\$ R

Table 107

Ex. No.	Formula	MS
, , , , , , , , ,		
1205		454 (M+H)
	HO N	
	₩ <u></u> _ 0	· .
*		
]		
1206	0	325 (M+H)
	HO	
5		***
1207	. 0	341 (M+H)
	<u> </u>	
	но	*
		13,0
1208	0 >	385 (M+H)
		* * *
	HO Br	
		•
× .		
1209	O _{II}	363 (M+H)
_ <u>,,, , , , , , , , , , , , , , , , , ,</u>		- "
	но	
		0
	сң	*
	* .	5c (
		*
1210	Q	332 (M+H)
	HO CN	1
8		
* *		
. e		
120		<u> </u>

Table 108

Ex. No.	Formula	MS
1211	O II	351 (M+H)
*	HO CH ₃	
1212	HO CH ₃	335 (M+H)
1213	HO CH ₃	349 (M+H)
1214	но Сн,	321 (M+H)
1215	HO N F F	375 (M+H)
1216	но	367 (M+H)

Table 109

Ex. No.	Formula	MS
1217	O II	433 (M+H)
9	HO	* *
	o-(-)-a	* * * * * * * * * * * * * * * * * * *
1218	HO N	391 (M+H)
	O F F F	
		227 (24.11)
1219	HO N	337 (M+H)
	0-сн,	
1220	0	385 (M+H)
	HO	
	Br	
1221	HON	341 (M+H)
	CI CI	
*		
1222	HO	332 (M+H)
	CN	*

Table 110

:		340
Ex. No.	Formula	MS
		395 (M+H)
1223	0	030 (11111)
	но — — — — — — — — — — — — — — — — — — —	1
	N CH,	
*		
	CH₃	
-		
		375 (M+H)
1224		
· ·	HON	
4.1	HU	
-		
) a	
		* .
1225	0	351 (M+H)
1223		
	HO	
	CH ₃	
	CH ₃	
		321 (M+H)
1226	Q	321 (11.11)
7 y s	N (=)	
*	HO TO	, , , , , ,
,	N W	
	CH,	
39		,.0
1227		426 (M+H)
122/		
	HO	. ()(-s
· †		
bet *		*
		460 (M111)
1228	9	460 (M+H)
		0.4
	HO	
100		
.000000		
		- 1
		4.
		- L

Table 111

	10010 111	
Ex. No.	Formula	MS
1229	но	442 (M+H)
		* '
1230	HO CH ₃	468 (M+H)
1231	но	456 (M+H)
1232	HO N A A	494 (M+H)
1233	HO NO CN	451 (M+H)
*		
1234	но н	468 (M+H)
)		

Table 112

	E18	MS
Ex. No.	Formula	HIS.
1235	HO CH ₃	498 (M+H)
1236	HO	476 (M+H)
*		502 (M+H)
1237	HO N N	302 (H111)
		**
1238	HO N S NH2	505 (M+H)
1239		469 (M+H)
	HO NH2	

Table 113

·	Famula	MS
Ex. No.	Formula	110
1240		483 (M+H)
1240		
	но	*
ļ		
	*	
		*
0.5		
1241	Q,	408 (M+H)
1211	о н Уон	
E	HON	
		**
*		* 1
1242	,cı	460 (M+H)
1242	n	
-	HO	
4		* 00
		8
÷.		
		, °.
1243	9 4 /=>	468 (M+H)
1245		10
-	HO CH,	
	N N	
		. 1
		100 405 170
1244	0 F	494 (M+H)
İ	HO F F	
	N N N	
) * + *

	нс	454 (M+H)
1245	O H ₃ C	
	но	
-	N N N	.00
		*

Table 114

Ex. No.	Formula	MS
1246	H ₃ C	468 (M+H)
*	HO NO	*
		0 (0
1247	HO N N N N N N N N N N N N N N N N N N N	498 (M+H)
	СН,	*
1248	HO H ₃ C CH ₃	482 (M+H)
1249	н ₃ с —сн ₃	468 (M+H)
	HO	
with the second	N No	
1250	o, C	460 (M+H)
	HO N	

Table 115

Ex. No.	Formula	MS
1251	ОН	442 (M+H)
-00		*
*		*
	но	
		Sec
1252	о)—сн,	468 (M+H)
	HO N H	
*		
1253		456 (M+H)
* * * * * * * * * * * * * * * * * * *	о <u> </u>	*, *.
	HO N	
- 2	N	,
		- 10
1254	Ça Ça	494 (M+H)
	α	
	HO	*
		*

Table 116

	Formula	MS
Ex. No.	rotmuta	
1255	CN	451 (M+H)
	0	
- *		* "
	HO N	· (X)
	N	
-0		9.0
1256	,0	468 (M+H)
	_\\	0.0
* *	O	
-	HO N /	
v. *		2
0		
1257	O, /-CH ₃	498 (M+H)
1237	\	
*		** *
	o, >=/	
	HO	*
+ +		A Company
		470 ()(:::)
1258	ОН	470 (M+H)
,		* *
	Q N	* * *
	HO N A	***
**		
0		
		- X-
1		1

Table 117

	Table III	
Ex. No.	Formula	MS
1259	HO N	476 (M+H)
1000		502 (M+H)
1260		JUZ (HVII)
	HO	*
1261	O NH ₂ O S O	505 (M+H)
1262	HO NH ₂	469 (M+H)

Table 118

Ex. No.	Formula	MS
1263		483 (M+H)
	но	
1264	· ~	408 (M+H)
	но Но ОН	
1. ×		
1265	HO H	460 (M+H)
1266	HO N	468 (M+H)

Table 119

E	Ex. No.	Formula	MS
	1267	F	494 (M+H)
		o o	,
	,	HO N	
			*
	1268	CH ₃	454 (M+H)
		O CH,	* *
		HO T	
	1269	O CH,	468 (M+H)
		HO TO	
-1	1270	OCH3	498 (M+H)
-		HO N N	*
*			

Table 120

	——————————————————————————————————————	MS
Ex. No.	Formula	110
1271	- ң,с	482 (M+H)
12/1	CH ₃	
	√ Ch₃	
*		
* .	0	do:
2	HO N H	
		0.75
		* * *
į		
1272	CH ₃	468 (M+H)
	O, CH ₃	*
	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	
200	HO	(%)
		-
1273	c C	494 (M+H)
	0,	
) h	
* *	$A \rightarrow A \rightarrow$	-
*	HO T	
1		
		9
		4.04 (24 (1))
1274	О-СН,	484 (M+H)
		3 8
		* . *
	HO	

Table 121

Ex. No.	Formula	MS
1275	s O CH ₃	519 (M+H)
		, ,
)	
*	HO	*
· · · · · · · · ·		
* *(X)		0 8
1276	N	427 (M+H)
	0, 5=/	
		* ((6)
	но	
* *		,
÷		
1277	O-CH ₃	456 (M+H)
*		
	HON	
1278		516 (M+H)
*		
i k) h	
	HO	-
. (0	N N	

Table 122

HO N	MS 36 (M+H) 26 (M+H)
1280 A	
1280 A	26 (M+H)
1280 4	26 (M+H)
1280 4	26 (M+H)
1280 4	26 (M+H)
1	1
HO \ \ \ \ \	
	(X)
N N	. ~
	40 (M/ 77)
1281	40 (M+H)
HO N	
	=
	* *
1282	154 (M+H)
	•
	-
HO N H	
	\$
	· ·
1202	168 (M+H)
1283	3
	•
HO TO	*
	• .

Table 123

Ex. No.	Formula	MS
1284		482 (M+H)
1201		*
		*
. 2	HO N H	* x
*	∠ CH₃	406 (M+H)
1285	o,	100 (1111)
		* * 7
	HO T	
		÷
1286	H ₃ C _V CH ₃	420 (M+H)
1	O CH ₃	
	HON	
(X)		0
	CI,	508 (M+H)
1287	\rightarrow	
		,
	HO N	
* 4		
1		* 1
1000		508 (M+H)
1288		
*		· · · · · · · · · · · · · · · · · · ·
ν.	HO	
*		* *
		*
		<u> </u>

Table 124

Ex. No. Formula MS 1289 1290 1291 HO HO HO HO HO HO HO HO HO H	·	Parrilla.	MC
1290 HO HO HO HO HO HO HO HO HO H	Ex. No.	rormula	
1290 HO N 455 (M+H) 1291 HO N HO HO	1289		509 (M+H)
1290 HO N 455 (M+H) 1291 HO N HO HO	30 V	N	
1290 HO N 455 (M+H) 1291 HO N HO HO			
1290 HO N 455 (M+H) 1291 HO N HO HO		, <u>~</u>	·
1290 HO HO HO HO HO HO HO HO HO H			*
1291 HO N HO HO		A ∧ N ← →	
1291 HO N HO HO			
1291	÷		
1291 HO N HO HO	*		
1291 HO N HO HO	1290		455 (M+H)
1291 HO N HO N HO N HO N HO N HO N H 494 (M+H) 418 (M+H))	***
1291 HO N HO N HO N HO N HO N HO N H 494 (M+H) 418 (M+H)		0	
1291 HO N HO N HO 1292 Q 418 (M+H)	* .		
1292 O A 418 (M+H)			
1292 O A 418 (M+H)			*
1292 O A 418 (M+H)			*
1292 O A 418 (M+H)	1291	/ F	494 (M+H)
1292 O A 418 (M+H)	7	0 = F F	
1292 O 418 (M+H)	14		, , , , , , , , , , , , , , , , , , ,
		1	*
			410 ()(11)
	1292	9	418 (M+H)
	*		
			`
	. ,		

Table 125

			MS
I	Ex. No.	Formula	MS
L			490 (M+H)
	1293		490 (MTH)
١	. 1		1-
			* 4
			¥
Ī		HO N	
1			9
	į	N	
	191		***
1			
T	1294	CH₃	496 (M+H)
		0, / /	* .
1	- :	N H,c CH,	
1			
1		HO TO	
		N V	* * * * * * * * * * * * * * * * * * * *
1			17.7
<u>'</u> -	1295		477 (M+H)
1	377		
١	•	0, >=⟨ ⟩N	,
			,
		но по	
	()		
1		N V	
١			
1			
			500 (24111)
r	1296	/=\	508 (M+H)
İ			
1) A FF	
-		HO N	
١			ŀ
		N W	
	· ·		
- [
Í	· · · · · · · · · · · · · · · · · · ·		470 (MIII)
ı	1297	∠CH₁	470 (M+H)
١	•	Q / / / / / O	
-			
		N /= ("	
		HO TO	+
• 22		N N	
į			
			*

Table 126

Ex. No.	Formula	MS
	. , , сн,	435 (M+H)
1298	\tag{\pi_{\curr}}	133 (11)
9		
	Ĭ , n , ŢĦ	
	HO T	
		*
1299	,a	488 (M+H)
1233		* 1
		<u> </u>
		,
	HO TO	,
1300		454 (M+H)
	OCH ₃	
7.4	N AN	-90-
	но	
	N S	
1201		504 (M+H)
1301	BrBr	
	0	
	HO N H	
		Ē
:		

Table 127

Ex. No.	Formula	MS
EX. NO.	*	ā
1302	H ₃ C ==0	513 (M+H)
*	HN	·
*		
	о Н о-сң,	
	HO N	
1303	0	399 (M+H)
	HO TO TO	
	N S	-
0		530 (M+H)
1304		
) - /	
**	HO TIME	
	N 0 (
		3.5
		504 (M+H)
1305	H ₃ C	
	но	Ø
1306	0 н.с. /=	440 (M+H)
	HO N	*
:		
		1

Table 128

Ex. No.	Formula	MS
1307	, a	494 (M+H)
	HONN	·
	N	
*		oĉ
1 200	a	E00 (M171)
1308	, C	508 (M+H)
0	⊘ —a	
		(in
0	но	
	N	*
W 1		
* -		
1309		518 (M+H)
1505		
	н /= \>=/	
	HO N	
	N	7 **
		*
		* *
1310		532 (M+H)
1310		002 (1111)
	HO NO	9
* (\$)		÷
*		
		4 -
1211		522 (M+H)
1311	C	322 (MTN)
00	n	* *
,	HO NO	
		*
*		,

Table 129

Ex. No.	Formula	MS
1312	CH ₃	546 (M+H)
	HO	
		404 ()6: 11)
1313	НО	484 (M+H)
(4)	HO	φ €, *
*		* , * , * ,
1314	HO NO	517 (M+H)
1315	HO N	488 (M+H)
1316		481 (M+H)
	HO	

Table 130

1	Ex. No.	Formula	MS
	EX. NO.	rormara	
	1317	0 	413 (M+H)
	. 707	HO	
1			
			4
	0		,
	1318	O	423 (M+H)
		HO	
	140		
	* (1)		
	·		50445
	1319		504 (M+H)
		но	
2.40	÷		
•			
	*		
	1320	0	510 (M+H)
	~ ~ ~ ~ ~		
		HO T	
	*	ңс) сң ңс	
	1321	0	522 (M+H)
	1361	N \subset 0	
			*
	. *	M H d	
٠	13. 1 4		
	1300	à	522 (M+H)
	1322		J42 (PTI)
	* ,	но	*
1		M M	
		F—F	
		F	

Table 131

		·	
	Ex. No.	Formula	MS
.	1323	9	484 (M+H)
	Œ.	HO TO THE STATE OF	
	*		
	. *	о—сн ₃	
	1324		449 (M+H)
	: * •	HO N	*
		Н Д	7 15 (2)
		o"	502 (M+H)
	1325	HO N	302 (1111)
i		H — — a	
	. 1		
	1326		491 (M+H)
	- 95	HO THO	, >
	1227	H,C	496 (M+H)
	1327	CH ₃	
	, (C)	но	

Table 132

Γ	Ex. No.	Formula	MS
			497 (M+H)
	1328		137 (11111)
	<i>y</i>	HO S	
		M H N	
			·
	*		
r	1329	Ŷ	470 (M+H)
		HO	490
			- ,
1	i	но	-
-	1330	9	530 (M+H)
		HO	
1		N N N N N N N N N N N N N N N N N N N	
١			* * * * * * * * * * * * * * * * * * * *
100			*
-	1331	a	502 (M+H)
	,		*
		\	* * *
			-
		N A	
	0.0	но	
1			
	1222	0	522 (M+H)
	1332		
		HO []	
		() () a	
		a	
	·		

Table 133

Ex. No.	Formula	MS
1333		491 (M+H)
	HO	
		. Č
1334	O II	536 (M+H)
	HO CI CI CI CI CI CI CI CI CI CI CI CI CI	

1335	0	547 (M+H)
	HO N	
0	N N N N N N N N N N N N N N N N N N N	
	" __\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	
1336		484 (M+H)
	HO N N	
	он	
1337	Q I	484 (M+H)
	HO N	i*
	CH,	
1338	Q .	498 (M+H)
	но	
		,

Table 134

·		1 1/0
Ex. No.	Formula	MS
1339	но	528 (M+H)
*	Сн,	
	о ң,с	400 (M/H)
1340	HO N	498 (M+H)
1341	ų c ų c	514 (M+H)
	HO NO	
	H CH ₃	
	ó́ сң	[51.2 (M/ II)
1342	HO NO	513 (M+H)
	NO ₂	*
1343	N P O	488 (M+H)
	HO CI) (*) (*)
		E00 (M I II)
1344	HO N CI	502 (M+H)
*		
3 ,		

Table 135

Ex. No.	Formula	MS
-		400 (MIII)
1345	0	488 (M+H)
	HO N /	
		-
* **	T Z	
:		***
		÷+-
1346	0	502 (M+H)
1240		P
	HO A C	
		?
		0.
1347	Q	499 (M+H)
	HO N	*
		()
	NO ₂	
	\	
1348	0	480 (M+H)
1240		
e	HO	,
*		
3 1		· -
		500 (14:11)
1349	O II	522 (M+H)
	HO N	
	N H	
*		
	F F	*
1350	0	546 (M+H)
1330		*
	HO	-
;;	N N N	
141	H Br	
,		
		<u></u>

Table 136

77	Formula	MS
Ex. No.	ronmara	
1351	0	482 (M+H)
	HO CH ₃	*
1250		484 (M+H)
1352	HO H ₃ C CH ₃	
1353	0	609 (M+H)
2555	HO HO HO SO	
	CH ₃	
1354	9	532 (M+H)
	HO N O O	
1355	O A	480 (M+H)
	HO NH	
1356	Q -	566 (M+H)
*	HO TO	

Table 137

Ex. No.	Formula	MS
1357	HO N / O	602 (M+H)
. *		,
1358	9	596 (M+H)
*	HO TO SOLVE	
1359	Q ·	491 (M+H)
),),	HO NO	
0		
1360	O II	491 (M+H)
	HO N N N N N N N N N N N N N N N N N N N	- X
*		*
1361	O	491 (M+H)
	HO NO	
->		
1362	O O	496 (M+H)
	HO NO	
		0
	CH ₃	*

Table 138

Ex. No.	Formula	MS
EX. NO.		
1363	O I	512 (M+H)
	HO	
	CH,	X-
1364	O II	494 (M+H)
	HO N O	
		* * .
, jo		
v. =	() ңс	
1365	0	488 (M+H)
	HO N	3.0
	N N C	*
*	H,c′ L	
		* *
		401 (M+U)
1366		481 (M+H)
	HO N N	* *
)	N N NH	
	Н 📗	*
	7	524 (M+H)
1367		
*	но	
	l H y a	
		. *
1368	0	497 (M+H)
1300	N / O S	
	HO TO TO THE TOTAL THE TOT	
i v	I WAY WAY	
. [
		<u></u>

Table 139

Ex. No.	Formula	MS
1369	0	472 (M+H)
	HO	
	N-T	** **
	N N	****
1370	0	469 (M+H)
*	HON	
		÷ "
1271		470 (M+H)
1371	N = 0	470 (11111)
	HO	
	сң	460 (14)
1372		469 (M+H)
	HO	(
*	N N N N N N N N N N N N N N N N N N N	
1373	Q	494 (M+H)
	HO	
	H H	
1374	0	458 (M+H)
13/1	HON	
- E		*
	NH NH	T. 1
* =		* - * * * * * * *

Table 140

Ex. No.	Formula	MS
1375		612 (M+H)
	HO N C	-
- 3	N	
* 1	a	
1376	0	554 (M+H)
13/0	N / O /O	, , , , , , , , , , , , , , , , , , , ,
*	но	
	Сн,	
		* * *
1377	Q	542 (M+H)
*	HO NO O-CH	
	N O-CH ₃	
*	н,с ———	.*
		e'
1378	O II	526 (M+H)
	HO N /	
1		±
1270	Но	496 (M+H)
1379		150 (11.11)
	HO N	¥ X
	N N	*
	н _с с-(
	`сн, <>	- 12 · 12
1200		510 (M+H)
1380		
	HO N	
	N N	
	СН,	
	Ury Ury	L

Table 141

	Formula	MS
Ex. No.	Formula	3
1381	0	540 (M+H)
1	HO N O O CH ₃	
, , , , , , , , , , , , , , , , , , ,		
1382	Q	525 (M+H)
	HO CH ₃	
		550 (44.11)
1383	HO N	558 (M+H)
		*
1384	Q	523 (M+H)
	HO N N N N N N N N N N N N N N N N N N N	
	H-N G	
1385	0	539 (M+H)
*	HO N N N N N N N N N N N N N N N N N N N	* * * * * * * * * * * * * * * * * * * *
* _	H \ F	*
. ,	O—, F F	

Table 142

			MS
1	Ex. No.	Formula	
H	1386	O .	533 (M+H)
		HO N N CH	0
		H-N CH,	
		н,с-0	
\vdash	1387	Q	500 (M+H)
	***	HO H	Ŷ
	*	N H N	
	·		
		NO ₂	*
-	1388	Q	485 (M+H)
		HO N O	
		The state of the s	
		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	*
1			
1		h,c	
		n,c	523 (M+H)
	1389		323 (11,11)
		HO TO THE	
		H-H a	
	•	a—(*)	
	. * -		512 (M+H)
	1390		312 (M+H)
		HO TO NOTE OF THE PARTY OF THE	
		s s	
	1		

Table 143

	77	340
Ex. No.	Formula	MS
1391	O I	540 (M+H)
	HO N O	
,	N H-N	*
	- CI	
	-N	* -
1392	0	527 (M+H)
	HO N /	
·	H Land	
. *	N N >-s	· · · · · · · · · · · · · · · · · · ·
	N	
1393		525 (M+H)
	HO N /	
, , , , , , , , , , , , , , , , , , ,		a. A.
	N N F	
	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	*
	Ŭ FF	
1394	0	507 (M+H)
9	HO N /	, *
	H H	
·	N H N	
	N—	
1395	9	491 (M+H)
	HON	
	J. J. J. M.	9
· · ·		
	C C	. +
1396	0	506 (M+H)
1330		,
. 3	но	
	H-N	* **
***		* * * * * * * * * * * * * * * * * * * *
°0		

Table 144

	Formula	MS
Ex. No.	Polinula	0.0
1397	9	522 (M+H)
*	HO N O	
		*
	α	,
1200	u	538 (M+H)
1398		*
	HO TO TO THE TOTAL THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TO	. *
. 0	M M	
		
	\/ \	
	F	500 (14.11)
1399		522 (M+H)
* **	HO N	
	J Ja	*
		*.
,	ci′	
1400		530 (M+H)
0 .	но по	
(,		
	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
1407		600 (M+H)
1401		
*	HO	*
	a— <u>{_</u> }	0
	a	
1402	0	504 (M+H)
	CH ₃	
1	HO CH ₃	
* *	N N CH3	
*		

Table 145

	Formula	MS
Ex. No.	ronmuta	
1403	HO N O O-CH ₃ H ₃ C-O	534 (M+H)
		475 (24.52)
1404	HO N CI	475 (M+H)
* 4		
1405	HO	472 (M+H)
1406	HO N	455 (M+H)
1407	HO N N	469 (M+H)
1408	HO N O N O NH ₂	547 (M+H)

Table 146

Ex. No.	Formula	MS
1409	9	529 (M+H)
	HO NO ₂	
0 .		
1410	HO N-CH,	435 (M+H)
3	H ₃ C	
1411	0 0 1	504 (M+H)
~	HO N	
1412	но	469 (M+H)
		*.
1413		522 (M+H)
***************************************	HO CI	
1414	HO CI	488 (M+H)
		2

Table 147

_		Formula	MS
·E	x. No.	FOLIMITA	
	1415	9	502 (M+H)
		HO CI	**
Ŀ	1416	0, 4	488 (M+H)
	1410	HO	
	* * *	CI CI	
	1417	9	502 (M+H)
-	Ē	HO N	
		CI	
	1418		455 (M+H)
		HO	
			1.55 (1.17)
	1419		455 (M+H)
		HO	×
			÷
			502/11/11
	1420		522 (M+H)
		HO CI	
	*		-
٠			

Table 148

	•*		MC
	Ex. No.	Formula	MS
	1421	0 7	469 (M+H)
		N	
		но	
1		N=	
l			
L		0	536 (M+H)
	1422	<u> </u>	330 (1711)
		HO CI	*
3			E * 1
١			
-	1423	O CH.	510 (M+H)
-	*		
		H ₃ C CH ₃	* * :
1	-		
		0	494 (M+H)
	1424		*
		HO	92
١		HO IN THE STATE OF	* * .
ł	1425	9	458 (M+H)
		N C	
		HO	
	•		
			**

Table 149

Ex. No.	Formula	MS
1426	Cl	612 (M+H)
		*
	HO N /	*
	CI	
*		0 *
1427	он	526 (M+H)
7		
	HO N /	*
8		*
÷		
1428	9 0 1	480 (M+H)
	HO N	
) in the second	
1429	0	441 (M+H)
	HO	:
		* * * *
1430	o _#	511 (M+H)
		*
	HO TO	
	N-	3
ų.	CH ₃	0
l		L

Table 150

Ex. No.	Formula	MS
1431		530 (M+H)
	HO TO TO	
		ė ė
1432	9 >	497 (M+H)
	HO S	
9		
1433	o % H	441 (M+H)
	HO	
1434		491 (M+H)
	HO N	. *
1435		491 (M+H)
	HO N	
*	N=	
1436	0	491 (M+H)
*	HO N	
3		*

Table 151

Eur No	Formula	MS
Ex. No.	FOLIIIUIA	*
1437	o _H	524 (M+H)
*	HO	
1	N V	
	à	
		. ,
1438	0.	508 (M+H)
1436		
	HO N	*
	a	
1439	0	474 (M+H)
		110
	HO CI	140
	N	, *
		·Y
1440	0\ H	490 (M+H)
,		-
	но	9 7
	N L	
1441	0,	508 (M+H)
. 1441	n)—H	
**	HO	,
+ ') a	
		474 (24)
1442	o	474 (M+H)
*	N A	
, ,	HO TO	
L		

Table 152

		1 2 1 1 1 1 1 1 1
Ex. No.	Formula	MS
1443	الــــــــــــــــــــــــــــــــــــ	516 (M+H)
) in (HO N	
,		*
1444	CI CI	600 (M+H)
-	HO HO CI	
1 (4)		Э ЭКС
Ş.,		ē
1445	0	504 (M+H)
	HO N S CH ₃ CH ₃	*
1446	HO N O-CH ₃	534 (M+H)
1447	9 × 1	475 (M+H)
. 1.5.	HO CI	

Table 153

Ex. No.	Formula	MS
1448		530 (M+H)
	HO	
		* ***
1449	HON	440 (M+H)
(i) .		*
1450	Q.	490 (M+H)
*	HO N	2.8
1451		474 (M+H)
	HO	
1452	HO	441 (M+H)
9		
1453		508 (M+H)
	HO	
	C C	
	ĊI	1

Table 154

- T	Pa12	MO
Ex. No.	Formula	MS
1454	0	455 (M+H)
	HO N	
		-2-
1		
1455	Q	522 (M+H)
·	HO N	, v
2		
* .		
	CI [′]	
1456	Q	496 (M+H)
	HO	
		7 (
		"
*	H₃C → CH₃ H₃C	
×	H ₃ C	
1457		516 (M+H)
	HO N / N	
		0 0
	H H	* .1
·		
1458	O I	426 (M+H)
	HO N	*
		1
		n (e
1459	O II	482 (M+H)
		. *
-7-	HO CH3	
	H ₃ C CH ₃	
	13° 3'3	
* *		
L	L	L

Table 155

	Ex. No.	Formula	MS
r	1460	0	486 (M+H)
		HO N O-CH ₃	=
	. 0		
	1461	HO N	516 (M+H)
	1462	но	427 (M+H)
	1463		476 (M+H)
	*	HO THO	n 2, ⁰
			1.
	1464	HON	460 (M+H)
		N CI	(i) *
	1465		502 (M+H)
	3.80	HO	+
	÷		

Table 156

	To1 0	MC
Ex. No.	Formula	MS
1466	, Co	586 (M+H)
	<i>,</i> —√	. 4
, d	cı—()	
	\/	. "
	N S	
*	HO	
	N N N	
1	Н	*
Ē		
1467	0	518 (M+H)
1467	_ / _ \	310 (11/11)
9	HO N O	
*		
*		* *
1 4 4 4		ar e
		1 1
1468	9	530 (M+H)
		*
	HO TO	
	N N	9
		*
1469	9 (-)	598 (M+H)
	HO Y	
* .	√ √ √ C I	
		·
1470	9	512 (M+H)
	— — — —	
	но	. "
		€
		4 4
,		
1471	0	544 (M+H)
1471		544 (M+H)
1471	HO N	544 (M+H)
1471	HO N	544 (M+H)
1471		544 (M+H)
1471	HO N	544 (M+H)
1471	HO N	544 (M+H)
1471	HO N	544 (M+H)

Table 157

Ex. No.	Formula	MS
1472	O -H -	440 (M+H)
. 14/2		-
	HO T	·
1470	Н	490 (M+H)
1473		(H)
	но	1
		w.y.
		474/MIII
1474		474 (M+H)
7	но	
	à	
		441 (84) (7)
1475		441 (M+H)
	но	
	N W	
		500 (M+U)
1476	CI CI	508 (M+H)
	HO Y Y	j. e
* *	ici vi	
		455 (M+H)
1477		300 (11111)
	но	·
		,
*		
* "		

Table 158

	7 1	140
Ex. No.	Formula	MS
1478	HO CI	522 (M+H)
	CI	
1.50)	40.5 (24.44)
1479	HO H ₃ C CH ₃	496 (M+H)
*		
		-
1480	/=\	516 (M+H)
	0	* *
*.	HO HO	. * **
1481		426 (M+H)
-	но	· (*)
38-		
. 00		
1482	H ₃ C CH ₃	482 (M+H)
*	CH ₃	* *
	HO N	*
		*
* .*.		

Table 159

Ex. No.	Formula	MS
1483	- О-СН ₃	486 (M+H)
· .	CH ₃	
	HO	
1484		516 (M+H)
	но	
		*
		,
1485		427 (M+H)
	HO N M	
1486		476 (M+H)
		-
10	HO TIN	

Table 160

Ex. No.	Formula	MS
1487	CI	460 (M+H)
£		X.
- 2	HO	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
*		e 8
1488		502 (M+H)
	HO N	* * * * * * * * * * * * * * * * * * * *
)
1489		586 (M+H)
	HO CI	÷ .
		7
1490		518 (M+H)
		19
	HO	*
1 - H-		

Table 161

	Parmula.	140
Ex. No.	Formula	MS
1491		530 (M+H)
*	но	*
1492	CI—	598 (М+Н)
* 3.	HO N	
1493		512 (M+H)
	но	*
1404		544 (M+H)
1494		
	HO	

Table 162

T	Formula	MS
Ex. No.	FOLIMITA	
1495	0	580 (M+H)
¢).	но	0
	N N	
	CH ₃	
-		.00
		*
	CI CI	
1496	0	550 (M+H)
	HO	
		18.
		+ **
1		= "
* **	cı'	
1497	0	606 (M+H)
	HO CH ₃	
	N N N N N N N N N N N N N N N N N N N	
	H ₃ C CH ₃	
1	\	*
1	CI [′]	×.
1498	о-сн,	580 (M+H)
		**
	>= /	, , , ,
	HO	
	CI	
1499		550 (M+H)
	\ <u>_</u>	
*	HO N /	
	CI	
-		

Table 163

T1 - 37 -	Formula	MS
Ex. No.	rofiliuta	
1500	H ₃ C CH ₃	606 (M+H)
		* *
<u> </u>	HO	, , ,
		620 (44.11)
1501	HO NO	630 (M+H)
0.8	CH ₃	* ,
1502	0 0	600 (M+H)
*	HO	
1503	0	656 (M+H)
	HO CH ₃	
,	H ₃ ¢ CH ₃	

Table 164

Ex. No.	Formula	MS
1504	O-CH ₃	630 (M+H)
	HO NOF	
1505		600 (M+H)
	HO NO F	
		*
1506	H ₃ C CH ₃ CH ₃	656 (M+H)
	HO NO F	
4		
1507	HO N	580 (M+H)
	N CH ₃	
*) "	ČI	

Table 165

Ex. No.	Formula	MS
1508	0	550 (M+H)
	HO	*
,		
		*
	ĊI	606 (M+H)
1509		000 (PITI)
	HO CH ₃	
*	H ₃ C CH ₃	
(3)	CI	
1510	0-сн3	580 (M+H)
		*
*	HO N CI	
		*
		*
		550 (M+H)
1511		330 (11/11)
		0
	HO N CI	
(3)		
		546 (M+H)
1512	N /	
	HO NO	- W
	CH ₃	*
		<u> </u>

Table 166

Ex. No.	Formula	MS
		516 (M+H)
1513	HO	
÷ ,		
1514		572 (M+H)
	HO CH ₃	*-
1515	O-CH ₃	546 (M+H)
- "		*
	HO N	*
		***/
1516		516 (M+H)
	HO NO	7
		*
1517	H ₃ C CH ₃	572 (M+H)
	CH ₃	
*		
	HO	*

Table 167

Ex. No.	Formula	MS
		600 ()(-1)
1518	0	602 (M+H)
·.	HO N	
	N N N N N N N N N N N N N N N N N N N	v va
	Сн,	÷
1.5		-30
	H-C	
	H ₃ C — CH ₃ H ₃ C	
1519	Q	572 (M+H)
	HON	4.2
	H C CH ₃	
	н.с — СН ₃ Н ₃ С	-
1520	0	628 (M+H)
		**
- *	HO CH ₃	
*	H ₃ C CH ₃	
	<u> </u>	*
	H.C. CH ₃	
+	н.с-) сн, н,с	**************************************
1521	Q	606 (M+H)
	HO	
1		
**		* *
	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
v	H.C.—CH ₃	*
· · · · · · · · · · · · · · · · · · ·	H ₃ C — CH ₃	*
L		<u> </u>

Table 168

Ex. No.	Formula	MS
		573 (M+H)
1522	HO NO	, 75 (E(11))
	H ₃ C CH ₃	. i i
1523	H ₃ C CH ₃	606 (M+H)
1524	H ₃ C	602 (M+H)
	HO N H ₃ C CH ₃	
1525	HO N CH ₃	572 (M+H)
		Z

Table 169

	Formula	MS
Ex. No.	rotmuta	113
1526	H ₃ C CH ₃ CH ₃	628 (M+H)
	HO N CH ₃	
		606 (W-H)
1527	HO CH CH3	606 (M+H)
	HO H ₃ c CH ₃	
1528	CI	606 (M+H)
*	HO N CH ₃	
1520		614 (M+H)
1529	HO NO	
la e	CH ₃	

Table 170

Ex. No.	Formula	MS
1530	HO N N F F	584 (M+H)
1531	HO CH ₃ F F	640 (M+H)
1532	HO N CI	618 (M+H)
1533	O-CH ₃	614 (M+H)
1534	HO N F F	584 (M+H)

Table 171

Ex. No.	Formula	MS
1535	- н,с	640 (M+H)
	CH ₃	
		1
	HO F F	* .
1536	,CI	627 (M+H)
, ,	cı—〈〉	
		,
* * * * * * * * * * * * * * * * * * * *	O HN	* * *
	но	* .
	N O	
* 17:		
1537	F F	627 (M+H)
		* *
*	HN	*
	N S	
	HO	

Table 172

	Formula	MS
Ex. No.	rormura	
1538	- (=N	560 (M+H)
, (, : X :		
	HN	*
	HO	0
* * *		
		(24/14/11)
1539	H ₃ C-O NO ₂	634 (M+H)
4		
	HN.	* * *
		* *
	HO	*
* *		
1540	,cı	593 (M+H)
*		
		*
	HO	
		7 7
1541	С	627 (M+H)
C.		3
,	HO	
. :		0
40.1		

Table 173

		MS
Ex. No.	Formula	* *
1542	F F	627 (M+H)
	F	7
÷		
-		
	/ W	
do.	HO	*
	N O	÷.
		* *
*-		
		560 (M+H)
1543	/ N	300 (11.11)
)	H >=/	
* 3		
*		
:	HO	
(),)	N N N	
		*
,		
1544	NO ₂	634 (M+H)
1311		
χ.)	" , Сн³	. *
	,	
	но	
	N N N	
,		100 (31-31)
1545		593 (M+H)
3 1	, S=\ 0	
	n	
	HO N	
	CI	
*		<u> </u>

Table 174

	Table 1/4	
Ex. No.	Formula	MS
1546		627 (M+H)
	HO N N N N N N N N N N N N N N N N N N N	* *
*	CI /	*
1547		627 (M+H)
	HO TIN	* ()
	F F	* *
1548		560 (M+H)
*		
	HO N	. 4
		ş. ()
1549		634 (M+H)
		Å.
*	HO NO ₂	*
**	о—сн	,

Table 175

Ex. No.	Formula	MS
1550	, ci	627 (M+H)
1330	° /=<	
	\sim	
	o	
)	N P	45
*	HO	
		a '
1551	0, /=	560 (M+H)
	HO N	
**		
1552		532 (M+H)
	N. C.	
*	HN	*
	но	
-	, c	1 565 (M+H)
1553		. 503 (11.11)
	J	
	HO	* *

Table 176

	Tam-1-	MS
Ex. No.	Formula	
1554	- CI	599 (M+H)
Ť	a c	0 0
	<u> </u>	
	, 	* .
	HO	
	N L	* 3
		2
140		
	F F	599 (M+H)
1555		333 (1111)
e for any or	*	·
	<u> </u>	
	N —∕	y
	H /=<	
	HO	
* .	N L	
0.0		
e		
1550		532 (M+H)
1556		
ή.		
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
	HO TO	
		1
ļ		- 50
1557		532 (M+H)
	}/ H	
		v *
	HO	
·)(-		
		<u> </u>

Table 177

Ex. No.	Formula	MS
1558	F—F	584 (M+H)
	HO N N	
1559	F—F	570 (M+H)
	HO N	
		* *

Table 178

Ex.	HCV polymerase inhibitory activity IC50 [µM]	Ex. No.	HCV polymerase inhibitory activity IC ₅₀ [μM]
2	0.079	67	0. 26
6	0. 034	68	0. 28
9	0.019	70	0. 19
11	0. 53	71	0. 62
12	0.60	77	0. 51
17	0.047	81	0. 18
20	0.042	82	0.097
26	0.033	83	0. 52
30	0. 052	85	0. 17
43	0. 58	86	0. 13
44	0. 95	87	0.80
45	0.40	88	0. 092
46	0. 47	89	0.34
47	0.54	90	0, 20
48	0.44	91	0, 53
49	0.94	93	0. 16
50	0. 54	94	0. 084
51	1.0	96	0. 25
54	0. 56	97	0. 16
55	0.36	98	0.30

Table 179

Ex.	HCV polymerase	Ex.	HCV polymerase
No.	inhibitory activity IC ₅₀ [µM]	No.	inhibitory activity IC ₅₀ [μM]
99	0. 53	120	0. 16
100	0.78	121	0. 19
101	0. 14	122	0. 51
103	0. 17	123	0. 10
104	0.073	124	0.091
105	0.076	125	0. 12
106	0.40	128	0.14
107	0.11	129	0. 12
108	0. 21	130	0. 16
109	0.11	131	0. 046
110	0. 24	132	0. 055
111	0. 14	133	0. 12
112	0.11	134	0. 071
113	0.071	139	0. 26
114	0. 56	140	0. 11
115	0.17	141	0. 43
116	0. 37	142	0. 055
117	0.075	143	0.053
118	0. 14	144	0.19
119	0.13	145	0.088

Table 180

			
Ex.	HCV polymerase inhibitory activity IC ₅₀ [µM]	Ex. No.	HCV polymerase inhibitory activity IC50 [µM]
146	0.043	167	0. 033
147	0.31	168	0. 078
148	0. 038	169	0. 15
149	0. 15	170	0.048
150	0. 24	171	0.050
151	0. 20	172	0.10
153	0. 19	173	0.14
154	0.076	174	0.030
155	0. 53	175	0. 29
156	0. 23	176	0. 053
157	0.16	177	0.077
158	0. 11	178	0.052
159	0. 13	179	0. 63
160	0. 24	180	0.11
161	0.062	181	0.71
162	0. 43	182	0.021
163	0. 15	183	0. 017
164	0.16	184	0.018
165	0. 58	185	0.11
166	0.055	186	0.37

Table 181

Ex.	HCV polymerase inhibitory activity IC ₅₀ [µM]	Ex.	HCV polymerase inhibitory activity IC ₅₀ [μM]
187	0.056	207	0. 081
188	0.038	208	0.039
189	0.017	209	0. 12
190	0.020	210	0.31
191	0. 43	211	0. 059
192	0. 22	212	0. 23
193	0.13	213	0. 10
194	0. 52	214	0.059
195	0. 023	215	0.078
196	0.20	216	0.084
197	0.11	217	0. 058
198	0.044	218	0. 033
199	0. 11	219	0. 13
200	0. 10	220	0. 073
201	0. 14	221	0. 058
202	0.095	222	0. 041
203	0.063	223	0. 21
204	0. 16	225	0.014
205	0.077	227	0.045
206	0.05	228	0. 18

Table 182

Ex.	HCV polymerase inhibitory activity IC ₅₀ [μΜ]	Ex.	HCV polymerase inhibitory activity IC ₅₀ [μM]
229	0. 022	257	0.074
230	0.17	259	0.10
231	0.073	260	0. 27
232	0. 015	262	0.013
233	0.028	263	0. 035
234	0.022	264	<0.01
235	0. 036	265	0.014
236	0. 075	266	0.018
237	0. 015	267	0.014
238	0. 19	268	0. 012
239	0. 17	269	0. 013
240	0. 055	270	0. 012
248	0. 012	271	0. 024
249	0. 022	272	0.066
250	0.018	273	0. 041
252	0. 32	276	0. 023
253	0.65	279	0. 017
254	0. 038	280	0. 016
255	0.038	281	0. 052
256	0.079	282	0. 019

Table 183

Ex.	HCV polymerase	Ex.	HCV polymerase
No.	inhibitory activity	No.	inhibitory activity
	IC ₅₀ [μM]		IC ₅₀ [μM]
283	0.014	300	0. 045
284	0.014	301	0. 017
285	0.012	303	0.10
286	0.014	304	0. 017
287	0.012	305	0.01
288	0.013	306	0.013
289	<0.01	307	0. 022
290	0.012	308	0. 023
291	0.016	311	0. 16
292	0.015	312	0. 023
293	0.034	313	0. 025
294	0. 032	314	0. 097
295	0.045	315	0. 028
296	0.034	316	0. 022
297	0. 022	317	0. 032
298	0.011	318	0.012
299	0.018	319	0.030

Table 184

Ex.	HCV polymerase inhibitory activity IC50 [µM]	Ex.	HCV polymerase inhibitory activity IC50 [µM]
320	0.036	328	0.015
321	0. 015	329	0.047
322	0.016	330	0.011
323	0. 018	331	0.017
324	0. 027	332	0. 023
325	0. 019	333	0.016
326	0. 018	334	0. 016
327	0.019	335	0.013

Table 185

Example No. 249	1H NMR(δ) ppm
HO N O S S - N O S - N	300MHz, DMSO-d6 8. 02 (1H, d, J=1.5Hz), 8. 11 (1H, d, J=1.8Hz), 7.96-7.81 (3H, m), 7.67 (1H, s), 7.61-7. 49 (6H, m), 7.08 (2H, d, J=8.6 Hz), 5.19 (2H, s), 4.25 (1H, m), 2.38-2.17 (2H, m), 1.96-1.78 (4H, m), 1.70-1.56 (1H, m), 1.46-1.16 (3H, m), 1.11 (9 H, s)
Purity >90% (NMR)	
MS 672 (M+1)	

Example	No.	250	lH NMR(δ) ppm
но		- NHL	300MHz, DMSO-d6 8. 25 (1H, d, J=1. 5Hz), 8. 16- 8. 08 (2H, m), 7. 99-7. 88 (2H, m), 7. 66 (2H, d, J=8. 6Hz), 7. 60-7. 48 (5H, m), 7. 19 (2H, d, J=8. 6Hz), 5. 17 (2H, s), 4. 31 (1H, m), 2. 39-2. 20 (2H, m), 2 .04-1. 79 (4H, m), 1. 72-1. 60 (1H, m), 1. 50-1. 18 (3H, m)
Purity	>90% (NMR)	, , , , , , , , , , , , , , , , , , , ,
MS	616 (M+1)		

Example No. 252	1H NMR(δ) ppm
HO N S O	300MHz, DMSO-d6 8. 20 (1H, d, J=1.5Hz), 7. 96 (1H, d, J=8.6Hz), 7. 84 (1H, dd , J=8.6, 1.5Hz), 7. 54 (2H, d, J=6.9Hz), 7. 48-7. 26 (8H, m) , 7. 09 (1H, t, J=7.3Hz), 5. 43 (2H, s), 4. 06 (1H, m), 2. 40-2 . 20 (2H, m), 2. 01-1. 80 (4H, m), 1. 75-1. 64 (1H, m), 1. 51-1 . 28 (3H, m)
Purity > 90% (NMR)	
MS 509 (M+1)	

Example No.	253	1H NMR(δ) ppm
HO NO O		300MHz, DMSO-d6 8. 21 (1H, d, J=1. 5Hz), 7. 93 (1H, d, J=8. 7Hz), 7. 85 (1H, dd , J=8. 4, 1. 5Hz), 7. 54-7. 47 (2H, m), 7. 40-7. 24 (6H, m), 7. 15 (1H, d, J=3. 6Hz), 7. 11-7. 05 (1H, m), 6. 81 (1H, d, J=3. 6 Hz), 5. 26 (2H, s), 4. 96 (1H, m), 2. 32-2. 13 (2H, m), 1. 95-1 .72 (4H, m), 1. 68-1. 55 (1H, m
Purity >90% (NMR)), 1. 43-1. 18 (3H, m)
MS 493	(M+1)	*

Г		OF I	\ (C \
1	Example No.	254	IH NMR(δ) ppm
	NO LONG TO THE PARTY OF THE PAR	O N OH	300MHz, DMSO-d6 8. 25 (1H, s), 8. 02 (1H, d, J=8 .7Hz), 7. 90 (1H, dd, J=8. 4, 1 .4Hz), 7. 80-7. 71 (2H, m), 7. 67 (2H, d, J=8. 7Hz), 7. 33 (2H ,t, J=8. 7Hz), 7. 26 (2H, d, J= 8. 7Hz), 5. 46 (2H, s), 4. 78 (2 H, s), 4. 31 (1H, m), 2. 39-2. 1 9 (2H, m), 2. 03-1. 79 (4H, m), 1. 71-1. 59 (1H, m), 1. 50-1. 1
	Purity >90%	(NMR)	7 (3H, m)
	MS 558 (M+1)	

Table 187

Example No. 255	1H NMR(δ) ppm
O HCI NO S	300MHz, DMSO-d6 8. 34(1H, s), 8. 32(1H, d, J=8 .8Hz), 8. 09-8. 03(3H, m), 7. 83(2H, d, J=8. 3Hz), 7. 79(2H , d, J=8. 8Hz), 7. 36(2H, d, J= 8. 8Hz), 5. 54(2H, s), 4. 38(1 H, m), 2. 74(3H, s), 2. 40-2. 1 8(2H, m), 2. 13-1. 96(2H, m), 1. 93-1. 78(2H, m), 1. 73-1. 5 7(1H, m), 1. 55-1. 15(3H, m)
Purity >90% (NMR)	
MS 568 (M+1)	

Example No. 256	1H NMR(δ) ppm
HO N F S S S S S S S S S S S S S S S S S S	300MHz, DMSO-d6 12.67(1H, brs), 8.23(1H, s), 7.94and7.87(2H, ABq, J=8.6Hz), 7.79(1H, dd, J=8.7, 5.4Hz), 7.62-7.41(7H, m), 6.80(1H, dd, J=11.9, 2.3Hz), 6.69(1H, dd, J=8.1, 2.1Hz), 5.20(2H, s), 3.93(1H, brt, J=15.3Hz), 2.30-2.11(2H, brm) 1.88-1.74(4H, brm), 1.64-1
Purity >90% (NMR)	.58(1H, brm), 1.41-1.14(3H , brm)
MS 585 (M+1)	

Example No.		258	1H NMR(δ) ppm
HO O			300MHz, DMSO-d6 7. 79 (1H, d, J=6. 7Hz), 7. 56 (1H, d, J=7. 5Hz), 7. 49 (2H, d, J=8. 6Hz), 7. 42 (4H, s), 7. 32 -7. 23 (3H, m), 7. 09-7. 03 (3H, m), 5. 02 (2H, s), 4. 46 (1H, m), 3. 82 (3H, s), 1. 95-1. 83 (2H, m), 1. 75-1. 44 (5H, m), 1. 3 0-1. 10 (2H, m), 0. 89-0. 71 (1H, m)
Purity >	90% (NMR)	H	
MS	567 (M+1)		

Example No. 259	1H NMR(δ) ppm
HO 2 HCI NO 2 H	300MHz, DMSO-d6 8. 93 (2H, d, J=6. 6Hz), 8. 36 (1H, s), 8. 28 (1H, d, J=8. 7Hz), 8. 10-8. 03 (3H, m), 7. 85 (2H, d, J=8. 7Hz), 7. 33 (2H, d, J=8. 7Hz), 7. 23 (1H, s), 7. 23 (1H, s), 6. 81 (1H, s), 5. 56 (2H, s), 4. 39 (1H, m), 2. 97, 2. 92 (6H, s), 2. 40-2. 18 (2H, m), 2. 16-1. 95 (2H, m), 1. 90-1. 75 (2H, m), 1. 70-1. 55 (1H, m), 1.
Purity > 90% (NMR)	50-1. 15 (3H, m)
MS 591 (M+1)	

Example No.	261	1H NMR(δ) ppm
HO O CI		300MHz, DMSO-d6 8. 22 (1H, d, J=7. 8Hz), 7. 85 (1H, d, J=6. 7Hz), 7. 63 (2H, d, J=9. 0H), 7. 51-7. 38 (5H, m), 7. 29 (1H, d, J=8. 3Hz), 7. 23 (1H, d, J=3. 0Hz), 7. 06 (2H, d, J=9. 0Hz), 7. 06 (1H, dd, J=8. 6, 3. 0Hz), 5. 05 (2H, s), 4. 41 -4. 25 (1H, m), 3. 83 (3H, s), 2 .40-2. 20 (2H, m), 2. 03-1. 78
Purity > 90% (NMR)	(4H, m), 1.72-1.57(1H, m), 1 .50-1.18(3H, m)
MS 567 (M-	+1)	

Example No. 262	1H NMR(δ) ppm
HO NH ₂	300MHz, DMSO-d6 8. 29 (1H, d, J=1. 5Hz), 8. 26 (1H, d, J=9. 0Hz), 8. 19 (1H, d, J=1. 8Hz), 8. 13 (1H, brs), 8. 08-7. 96 (2H, m), 7. 73 (2H, d, J=9. 0Hz), 7. 57-7. 43 (6H, m), 7. 24 (2H, d, J=9. 0Hz), 5. 14 (2H, s), 4. 36 (1H, m), 2. 38-2 .18 (2H, m), 2. 12-1. 97 (2H, m), 1. 93-1. 80 (2H, m), 1. 73-1
Purity >90% (NMR)	.58(1H, m), 1.52-1.20(3H, m)
MS 580 (M+1)	

Example No. 264	1H NMR(δ) ppm
HO N CI	300MHz, DMSO-d6 8. 23 (1H, d, J=1. 0Hz), 7. 92 (1H, dd, J=8. 7, 1. 0Hz), 7. 87 (1H, d, J=8. 7Hz), 7. 60 (2H, d, J=8. 6Hz), 7. 47 (2H, d, J=8. 7 Hz), 7. 44 (2H, d, J=8. 7Hz), 7. 30 (1H, d, J=8. 3Hz), 7. 23 (1 H, d, J=2. 6Hz), 7. 11 (2H, d, J=8. 7Hz), 7. 06 (1H, dd, J=8. 7, 2. 6Hz), 5. 04 (2H, s), 4. 36 (
Purity > 90% (NMR)	1H, m), 3. 83 (3H, s), 2. 80-2. 70 (4H, m), 2. 60-2. 40 (2H, m)
MS 586, 588 (M+1)	, 2. 30-2. 20 (2H, m)

Exa	mple No.	267	1H NMR(δ) ppm
*	HO N N N N N N N N N N N N N N N N N N N) 	300MHz, DMSO-d6 8. 34 (2H, m), 8. 03 (1H, d, J=8 .3Hz), 7. 77-7. 68 (3H, m), 7. 54-7. 40 (4H, m), 7. 33 (2H, d, J=8. 6Hz), 7. 24 (2H, d, J=9. 0 Hz), 5. 16 (2H, s), 4. 36 (1H, m), 3. 01 (3H, s), 2. 97 (3H, s), 2. 40-2. 20 (2H, m), 2. 11-1. 9 7 (2H, m), 1. 93-1. 81 (2H, m), 1. 71-1. 60 (1H, m), 1. 50-1. 2
Pur	>90% (NM	R)	1 (3H, m)
MS	620 (M+1)		

Table 192

Example No.	270	1H NMR(δ) ppm
HO HCI F	CI NH ₂	300MHz, DMSO-d6 8. 24(1H, d, J=1. 4Hz), 8. 19(1H, d, J=1. 8Hz), 8. 11(1H, brs), 8. 02-7. 85(3H, m), 7. 60-7. 44(7H, m), 7. 10(1H, dd, J=12. 0, 2. 1Hz), 6. 98(1H, dd, J=8. 4, 2. 1Hz), 5. 11(2H, s), 3. 98(1H, m), 2. 30-2. 12(2H, m), 1. 91-1. 73(4H, m), 1. 71-1. 58(1H, m), 1. 45-1. 15(3H, m)
Purity > 90%	(NMR))
MS 598 (M+1)	

	
Example No. 271	1H NMR(δ) ppm
HCI N N N N N N N N N N N N N	300MHz, DMSO-d6 8. 29 (1H, d, J=1.5Hz), 8. 24 (1H, d, J=8.7Hz), 8. 07-7.98 (3H, m), 7. 80-7. 68 (5H, m), 7. 56 (1H, dd, J=8.0, 1.8Hz), 7. 47 (1H, d, J=8.0Hz), 7. 21 (2H, d, J=8.4Hz), 5. 18 (2H, s), 4. .34 (1H, m), 3. 27 (3H, s), 3. 0 2 (3H, s), 2. 98 (3H, s), 2. 38- 2. 18 (2H, m), 2. 10-1. 95 (2H, s), 4.
Purity > 90% (NMR)	m), 1.93-1.79(2H, m), 1.72- 1.59(1H, m), 1.50-1.19(3H,
MS 652 (M+1)	m)

Example No.	272	1H NMR(δ) ppm
HO CIH	HCI	300MHz, DMSO-d6 8. 97 (1H, d, J=1. 8Hz), 8. 85 (1H, d, J=4. 7Hz), 8. 46 (1H, d, J=8. 0Hz), 8. 39-8. 26 (2H, m) , 8. 06 (1H, d, J=8. 7Hz), 7. 99 -7. 64 (6H, m), 7. 24 (2H, d, J= 8. 7Hz), 5. 25 (2H, s), 4. 36 (1 H, m), 3. 03 (3H, s), 2. 97 (3H, s), 2. 39-2. 19 (2H, m), 2. 14- 1. 96 (2H, m), 1. 94-1. 78 (2H,
Purity > 90% (NM)	ર)	m), 1.73-1.60(1H, m), 1.21- 1.55(3H, m)
MS 575 (M+1)		

Table 193

Example No. 273	1H NMR(δ) ppm
HO N O N	300MHz, DMSO-d6 8. 30 (1H, s), 8. 27 (1H, d, J=8 .7Hz), 8. 05 (1H, d, J=8.7Hz) ,7.77-7.67 (3H, m).7.58-7. 48 (6H, m), 7. 22 (2H, d, J=8.4 Hz), 5. 18 (2H, s), 4. 35 (1H, b rt, J=9.8Hz), 3. 06-2.88 (12 H, brm), 2. 38-2. 20 (2H, brm) ,2. 08-1.96 (2H, brm), 1.90- 1.80 (2H, brm), 1.70-1.60 (1
Purity >90% (NMR)	H, brm), 1.49-1.22(3H, brm)
MS 645 (M+1)	T 10

Example No.		274	1H NMR(δ) ppm
HO. I	CI		300MHz, DMSO-d6 mixture of cis and trans 8. 35, 8. 34 (1H, s), 8. 15-8. 1 0 (2H, m), 7. 79-7. 70 (3H, m), 7. 49 (2H, d, J=8. 7Hz), 7. 44 (2H, d, J=8. 7Hz), 7. 31 (1H, d, J=8. 4Hz), 7. 25-7. 19 (2H, m), 7. 07 (1H, d, J=8. 5Hz), 5. 08 (2H, s), 4. 75 (1H, m), 3. 83 (3 H, s), 3. 70-1. 90 (8H, m)
Purity about 8 0	% (NMR))	, * , * , * , * , * , * , * , * , * , *
MS 6	01(M+1)		

Example No.	276	1H NMR(δ) ppm
HO N F O		300MHz, DMSO-d6 8. 25 (1H, s), 7. 93and7.87 (2 H, ABq, J=9.1Hz), 7. 55 (1H, t , J=8.6Hz), 7. 48and7.42 (4H , A'B'q, J=8.6Hz), 7. 31 (1H, d, J=8.5Hz), 7. 24 (1H, d, J=2 .6Hz), 7. 09-6.95 (3H, m), 5. 05 (2H, s), 4. 11 (1H, brt, J=1 4.0Hz), 3. 84 (3H, s), 2. 83-2 .67 (4H, brm), 2. 50-2. 32 (2H
Purity > 90% (N	MR)	, brm), 2. 21-2. 10 (2H, brm)
MS 603 (M+1)	

Example	No.	277	1H NMR(δ) ppm
но			300MHz, DMSO-d6 cis and trans mixture 8.28and8.24(total 1H, each s), 7.94-7.87(1H, m), 7.60- 7.41(5H, m), 7.31(1H, d, J=8 .5Hz), 7.23-7.21(1H, m), 7. 12-7.05(2H, m), 7.00-6.95(1H, m), 5.06and5.05(total 2H, each
Purity	>90% (NMR)		s), 4. 47and4. 34(total 1H, each
MS	619 (M+1)		brs), 3.83(3H,s), 3.12-1.7 6(8H,m)

Example No.	278	1H NMR(δ) ppm
HO I I I I I I I I I I I I I I I I I I I	\	300MHz, DMSO-d6 12. 9 (1H, brs), 8. 27 (1H, s), 7. 97and7. 74 (2H, ABq, J=8. 6 Hz), 7. 58 (1H, t, J=8. 6Hz), 7 . 49and7. 43 (4H, A'B'q, J=8. 5Hz), 7. 31 (1H, d, J=8. 5Hz), 7. 22 (1H, d, J=2. 6Hz), 7. 13- 6. 92 (3H, m), 5. 05 (2H, s), 4. 67 (1H, brt, J=14. 2Hz), 3. 57 -3. 40 (2H, brm), 3. 20-3. 05 (
Purity > 90% (N)	MR)	2H, brm), 2. 91-2. 70 (2H, brm), 2. 28-2. 11 (2H, brm)
MS 635 (M+1))	

Example	No. 279	
но	HCI N O S O O O O O O O O O O O	i
Purity	>90% (NMR)	- 8
MS	644 (M+1)	

1H NMR(δ) ppm

300MHz, DMSO-d6
8. 30(1H, s), 8. 23(1H, d, J=8.7Hz), 8. 06-8. 00(2H, m), 7.
83(1H, dd, J=8. 0, 1. 8Hz), 7.
71(2H, d, J=8. 4Hz), 7. 64(1H, d, J=8. 0Hz), 7. 59-7. 54(4H, m), 7. 22(2H, d, J=8. 4Hz), 5. 25(2H, s), 4. 33(1H, m), 2. 66(3H, s), 2. 37-2. 19(2H, m), 1. 93-1. 80(2H, m), 1. 70-1. 59(1H, m), 1. 47-1. 21(3H, m)

Example No.	280
HGI HGI	
Purity >90% (NI	MR)
MS 615 (M+1)	

1H NMR(δ) ppm

300MHz, DMSO-d6

8.32-8.23(3H, m), 8.08-8.0
1(2H, m), 7.73(2H, d, J=8.6H z), 7.65(1H, d, J=8.2Hz), 7.59-7.51(4H, m), 7.25(2H, d, J=8.6Hz), 5.21(2H, s), 4.34(1H, m), 3.32(3H, s), 2.37-2.19(2H, m), 2.10-1.98(2H, m), 1.93-1.80(2H, m), 1.71-1.60(1H, m), 1.51-1.21(3H, m)
)

	Example	No.	281	1H NMR(δ
	ر ا	HCI F	ОН	300MHz, Di 8. 30(1H, 1H, s), 8. , 8. 07-7. , t, J=8. 6i , m), 7. 16 2Hz), 7. 03 2Hz), 5. 13 m), 3. 90(3 2H, m), 1.
	Purity	>90% (NM)	R)	71-1.59() 3H, m)
-	MS	315		

1H NMR(δ) ppm 300MHz, DMSO-d6 8. 30(1H, d, J=1.5Hz), 8. 24(1H, s), 8. 14(1H, d, J=8.6Hz), 8. 07-7.95(2H, m), 7. 63(1H, t, J=8.6Hz), 7. 57-7.47(5H, m), 7. 16(1H, dd, J=12.0, 2.2Hz), 7. 03(1H, dd, J=8.6, 2.2Hz), 5. 17(2H, s), 4. 06(1H, m), 3. 90(3H, s), 2. 31-2.11(2H, m), 1. 97-1.78(4H, m), 1. 71-1.59(1H, m), 1. 43-1.22(3H, m)

Example No.	282	1H NMR(δ) ppm
HO HGI	CI N—CIH	300MHz, DMSO-d6 8. 36 (1H, s), 8. 35 (1H, d, J=9 .3Hz), 8. 09 (1H, d, J=9. 3Hz) ,7. 78 (2H, d, J=8. 7Hz), 7. 48 -7. 25 (9H, m), 5. 09 (2H, s), 4 .39 (1H, m), 3. 04 (6H, s), 2. 4 0-2. 15 (2H, m), 2. 10-1. 95 (2 H, m), 1. 90-1. 75 (2H, m), 1. 7 0-1. 55 (1H, m), 1. 50-1. 20 (3 H, m)
Purity >90%	(NMR)	0.31
MS 580	O(M+1)	*

Example No.	283	1H NMR(δ) ppm
HGI N N	O N - S = O	300MHz, DMSO-d6 10.03(1H, s), 8.33(1H, s), 8 .29(1H, d, J=8.7Hz), 8.06(1 H, d, J=9.0Hz), 7.74(2H, d, J =9.0Hz), 7.51-7.42(5H, m), 7.37-7.30(2H, m), 7.22(2H, d, J=8.7Hz), 5.10(2H, s), 4. 37(1H, m), 3.06(3H, s), 2.40 -2.18(2H, m), 2.15-1.95(2H, m), 1.90-1.80(2H, m), 1.75
Purity >90%	(NMR)	-1.55(1H, m), 1.50-1.20(3H , m)
MS 630	(M+1)	

Table 197

Example No.	285	1H NMR(δ) ppm
HO HCI F	H H	300MHz, DMSO-d6 8. 37 (1H, d, J=7. 3Hz), 8. 30 (1H, s), 8. 19-8. 12 (2H, m), 8. 02-7. 95 (2H, m), 7. 65 (1H, t, J=8. 4Hz), 7. 56-7. 43 (5H, m), 7. 18 (1H, dd, J=12. 0, 1. 8Hz), 7. 06 (1H, dd, J=8. 4, 2. 1Hz), 5. 13 (2H, s), 4. 22-4. 03 (2H, m), 2. 34-2. 13 (2H, m), 1. 9 9-1. 78 (4H, m), 1. 72-1. 57 (1
Purity >90% (N	IMR)	H, m), 1.44-1.14(3H, m), 1.2 0, 1.18(6H, each s)
MS 640 (M+	1)	

Example No. 286	1H NMR(δ) ppm
O HCI F O N O N O N O N O O N O O N O O O O O	300MHz, DMSO-d6 8. 29 (1H, s), 8. 13 (1H, d, J=8 .7Hz), 7. 97 (1H, dd, J=8. 7, 1 .4Hz), 7. 69-7. 40 (8H, m), 7. 16 (1H, dd, J=12. 0, 2. 2Hz), 7 .02 (1H, dd, J=8. 4, 2. 2Hz), 5 .15 (2H, s), 4. 07 (1H, m), 3. 7 1-3. 23 (2H, m), 1. 98-1. 71 (4 H, m), 1. 71-1. 18 (10H, m)
Purity > 90% (NMR)	* * *
MS 666 (M+1)	

Table 198

Example No.	288	1H NMR(δ) ppm
HO HCI F) H OH	300MHz, DMSO-d6 8.62(1N, m), 8.31(1H, s), 8. 22-8.14(2H, m), 8.99(2H, d, J=8.7Hz), 7.66(1H, t, J=7.7 Hz), 7.58-7.44(5H, m), 7.19 (1H, dd, J=8.7, 2.2Hz), 5.14 (2H, s), 4.11(1H, m), 3.67-3 .49(2H, m), 3.45-3.30(2H, m), 2.37-2.12(2H, m), 2.00-1 .76(4H, m), 1.70-1.58(1H, m
Purity >90% (1	VMR)), 1.48-1.17(3H, m)
MS 642 (M+	-1)	

Example No. 289	1H NMR(δ) ppm
HO HCI F	400MHz, DMSO-d6 8. 28(1H, s), 8. 11(1H, d, J=8 .9Hz), 7. 96(1H, d, J=8. 9Hz) , 7. 68(1H, s), 7. 62(1H, t, J= 8. 2Hz), 7. 55-7. 41(6H, m), 7 .15(1H, d, J=11. 7Hz), 7. 02(1H, d, J=8. 4Hz), 5. 14(2H, s) , 4. 12-3. 13(6H, m), 2. 30-1. 19(13H, m)
Purity > 90% (NMR)	
MS 682 (M+1)	

- [Example No.		290	1H NMR(δ) ppm
	HO HCI F	CI O	,	400MHz, DMSO-d6 8. 29 (1H, s), 8. 15 (1H, d, J=8 .6Hz), 7. 98 (1H, d, J=8. 8Hz) ,7. 72 (1H, s), 7. 64 (1H, t, J= 8. 8Hz), 7. 57-7. 43 (6H, m), 7 .18 (1H, dd, J=12. 1, 2. 1Hz), 7. 03 (1H, d, J=10. 7Hz), 5. 12 (2H, s), 4. 15-4. 01 (1H, m), 3 .75-3. 33 (8H, m), 2. 31-2. 14 (2H, m), 1. 96-1. 78 (4H, m), 1
ſ	Purity >90	% (NMR)		.70-1.58 (1H, m), 1.47-1.21 (3H, m)
	MS 6	68 (M+1)		

Table 199

Example No.	291	1H NMR(δ) ppm
HO HOI F	⟩ }—Ns	400MHz, DMSO-d6 8. 29 (1H, s), 8. 14 (1H, d, J=8 .9Hz), 7. 97 (1H, d, J=8. 6Hz) , 7. 71 (1H, s), 7. 63 (1H, t, J= 8. 2Hz), 7. 56-7. 42 (6H, m), 7 .17 (1H, d, J=12. 3Hz), 7. 03 (1H, d, J=10. 7Hz), 5. 14 (2H, s), 4. 07 (1H, m), 3. 96-3. 52 (4 H, m), 2. 79-2. 56 (4H, m), 2. 3 2-2. 14 (2H, m), 1. 97-1. 79 (4
Purity > 90% (NM	R)	H, m), 1.71-1.58(1H, m), 1.5 1-1.19(3H, m)
MS 684 (M+1)		1

Example No.	292 1H NMR(δ) ppm
HO HCI F O HCI N H N N N N N N N N N N N N N N N N N	300MHz, DMSO-d6 9.07-8.99(1H, m), 8.30(1H, s), 8.23-8.12(2H, m), 8.04-7.95(2H, m), 7.65(1H, t, J=8.2Hz), 7.60-7.45(5H, m), 7.19(1H, dd, J=12.0, 2.6Hz), 7.06(1H, dd, J=8.6, 2.2Hz), 5.16(2H, s), 4.18-4.02(1H, m), 3.97(2H, d, J=6.0Hz), 2.33-2.14(2H, m), 1.99-1.79(4.45)
Purity > 90% (NMR)	H, m), 1.72-1.59(1H, m), 1.4 5-1.19(3H, m)
MS 656 (M+1)	

Example No. 294	1H NMR(δ) ppm
HCI NOT CI	300MHz, DMSO-d6 8.30(1H, s), 8.25and8.03(2 H, ABq, J=8.9Hz), 7.73(1H, s), 7.73(2H, d, J=8.6Hz), 7.5 5(1H, dd, J=8.0, 2.3Hz), 7.4 0(4H, s), 7.39(1H, d, J=8.0Hz), 7.23(2H, d, J=8.6Hz), 5. 11(2H, s), 4.55(2H, s), 4.36 (1H, brt, J=14.8Hz), 2.37-2 .19(2H, brm), 2.09-1.96(2H
Purity > 90% (NMR)	, brm), 1.91-1.79(2H, brm), 1.71-1.59(1H, brm), 1.50-1
MS 567 (M+1)	. 20 (3H, brm)

Example No. 295	1H NMR(δ) ppm
HCI NO CI	300MHz, DMSO-d6 8.30(1H, s), 8.25and8.04(2 H, ABq, J=8.7Hz), 7.74(1H, s), 7.72(2H, d, J=8.7Hz), 7.5 6(1H, d, J=8.7Hz), 7.48-7.3 5(5H, m), 7.22(2H, d, J=8.7Hz), 5.11(2H, s), 4.46(2H, s), 4.35(1H, brt, J=14.8Hz), 3.31(3H, s), 2.37-2.17(2H, brm), 2.07-1.95(2H, brm), 1.
Purity > 90% (NMR)	92-1.79 (2H, brm), 1.73-1.5 6 (1H, brm), 1.52-1.20 (3H, b
MS 581 (M+1)	rm)

Table 201

Example	No.	297	1H NMR(δ) ppm
но			300MHz, DMSO-d6 12.7(1H, brs), 8.21(1H, s), 7.94and7.85(2H, ABq, J=8.6 Hz), 7.60-7.55(3H, m), 7.49 and7.45(4H, A'B'q, J=8.3Hz), 7.12(2H, d, J=8.7Hz), 5.0 5(2H, s), 4.26(1H, brt, J=13.0Hz), 2.54(3H, s), 2.38-2. 20(2H, brm), 1.97-1.80(4H, brm), 1.71-1.59(1H, brm), 1
Purity	>90% (NMR)	.47-1.20(3H, brm)
MS	583 (M	+1)	

Example No.	298	1H NMR(δ) ppm	
C1 NO S=0		300MHz, DMSO-d6 8. 22(1H, s), 8. 01(1H, s), 7. 95and7. 86(2H, ABq, J=8. 6Hz), 7. 79(1H, d, J=7. 8Hz), 7. 5 8(3H, t, J=7. 5Hz), 7. 53(4H, s), 7. 13(2H, d, 8. 7Hz), 5. 15 (2H, s), 4. 26(1H, brt, J=13. 8Hz), 2. 83(3H, s), 2. 37-2. 1 8(2H, brm), 1. 95-1. 78(4H, brm), 1. 70-1. 59(1H, brm), 1. 47-1. 17(3H, brm)	
Purity > 90% (NM	IR)	47-1.17(3H, brm)	
MS 599 (M+1)			

Example No.	299	IH NMR(δ) ppm
HGI HGI		300MHz, DMSO-d6 8. 43-8. 16 (3H, m), 8. 07-7. 9 4 (2H, m), 7. 72 (2H, d, J=8. 6H z), 7. 62-7. 49 (5H, m), 7. 23 (2H, d, J=8. 6Hz), 5. 16 (2H, s) , 4. 34 (1H, m), 2. 39-2. 20 (2H , m), 2. 10-1. 96 (2H, m), 1. 93 -1. 80 (2H, m), 1. 71-1. 58 (1H , m), 1. 49-1. 19 (3H, m)
Purity >90% (N	MR)	
MS 562 (M+1)	

Example	No.	300
но		
Purity	>90% (NM	IR)
MS	523 (M+1)	*

1H NMR(δ) ppm

300MHz, DMSO-d6:2.77(1H, b rs), 8.83(2H, d, J=1.9Hz), 8.56(2H, dd, J=4.9, 1.9Hz), 8.22(1H, d, J=1.5Hz), 7.97(2 H, dt, J=7.9, 1.9Hz), 7.95(1 H, d, J=8.6Hz), 7.87(1H, dd, J=8.6, 1.5Hz), 7.57(1H, t, J=8.7Hz), 7.26(1H, dd, J=7.9, 4.9Hz), 7.26(1H, dd, J=12.0, 4.9Hz), 7.14(1H, dd, J=8.8, 2.3Hz), 6.99(2H, s), 3.94(1H, brt), 2.26-2.09(2H, m), 1.87-1.73(4H, m), 1.67-1.57(1H m), 1.42-1.12(3H m)

Example	e No.	301	1H NM
но) N—	300MH 8. 22 (. 7Hz) , 9. 0H z), 7. 44 (4H , dd,] (1H, cd 86 (1H
Purity	>90% (NM	R)	H, m), 5-1.5
MS	663 (M+1)		H, m)

1H NMR(δ) ppm

300MHz, DMSO-d6

8. 22 (1H, s), 7. 95 (1H, d, J=8. 7Hz), 7. 87 (1H, dd, J=1. 5Hz, 9. 0Hz), 7. 62 (4H, d, J=8. 4Hz), 7. 55 (1H, t, J=9. 0Hz), 7. 44 (4H, d, J=8. 1Hz), 7. 20 (1H, dd, J=2. 1Hz, 12. 0Hz), 7. 11 (1H, dd, J=2. 1Hz, 8. 7Hz), 6. 86 (1H, s), 3. 94 (1H, m), 2. 96, 2. 88 (12H, s), 2. 35-2. 00 (2H, m), 1. 95-1. 70 (4H, m), 1. 65-1. 50 (1H, m), 1. 45-1. 10 (3H, m)

Example N	10.	302	1H NMR(δ) ppm
Na O	F N S	\$	300MHz, DMSO-d6 8. 14 (1H, s), 7. 88 (1H, d, J=8 .4Hz), 7. 68 (1H, d, J=8. 7Hz) ,7. 64-7. 55 (3H, m), 7. 50 (1H ,t, J=8. 7Hz), 7. 22-7. 17 (3H ,m), 7. 11 (1H, s), 7. 08-7. 00 (2H, m), 3. 90 (1H, m), 2. 15-2 .00 (2H, m), 1. 95-1. 50 (5H, m), 1. 45-1. 00 (3H, m)
Purity	>90% (NMR)		
MS	532 (M+1)		

Example	No.	30	3	1H NMR(δ) ppm
		CI ON N	*	300MHz, CDC13 8. 49(1H, s), 7. 98(1H, dd, J= 8. 6, 1. 5Hz), 7. 71(1H, d, J=1 .8Hz), 7. 66(1H, d, J=8. 6Hz) ,7. 55-7. 29(7H, m), 6. 80(1H, dd, J=8. 2, 2. 2Hz), 6. 69(1H, dd, J=11. 2, 2. 2Hz), 4. 99(2H, s), 4. 10-3. 92(1H, m), 3. 95(3H, s), 3. 15(3H, s), 3. 06(3H, s), 2. 31-2. 14(2H, m), 2.
Purity	> 9 0 %	(NMR)		04-1.86(4H, m), 1.81-1.71(1H, m), 1.41-1.21(3H, m)
MS	640	(M+1)		

Example No.	304	1H NMR(δ) ppm	
Q Na GI	= }_N(300MHz, DMSO-d6 8. 21 (1H, s), 7. 94 (1H, d, J= .7Hz), 7. 84 (1H, d, J=9. 1Hz ,7. 70 (1H, s), 7. 26-7. 39 (9 ,m), 7. 11 (2H, d, J=8. 4Hz), .11 (2H, s), 4. 26 (1H, m), 3. 1 (3H, s), 2. 97 (3H, s), 2. 38 2. 19 (2H, m), 1. 97-1. 78 (4H m), 1. 72-1. 57 (1H, m), 1. 48 1. 17 (3H, m)	
Purity > 90% (NM)	R)		
MS 608 (M+1)			

Example No.	306	1H NMR(δ) ppm
HO N N		300MHz, DMSO-d6 12.84(1H, brs), 8.21(1H, s) ,7.98-7.84(5H, m), 7.58(2H, d, J=8.7Hz), 7.54(2H, d, J=7.8Hz), 7.34(1H, d, J=8.7Hz), 7.26(1H, d, J=2.4Hz), 7.13-7.06(3H, m), 5.06(2H, s) ,4.26(1H, brt, J=12.7Hz), 3.84(3H, s), 2.36-2.17(2H, brm), 1.99-1.80(4H, brm), 1.
Purity > 90%	(NMR)	73-1.59(1H, brm), 1.47-1.1 7(3H, brm)
MS 577 (M+1)	

Example 1	No.	307	1H NMR(δ) ppm
но	H ₂ N — O		300MHz, DMSO-d6 8. 22 (1H, s), 8. 04 (1H, s), 7. 96 (2H, d, J=8. 1Hz), 7. 87 (2H, s), 7. 72 (1H, d, J=1. 2Hz), 7. 59-7. 41 (7H, m), 5. 12 (2H, s), 4. 25 (1H, brt, J=11. 8Hz), 3. 02 (3H, brs), 2. 98 (3H, brs), 2. 38-2. 15 (2H, brm), 1. 93 -1. 76 (4H, brm), 1. 71-1. 59 (1H, brm), 1. 46-1. 16 (3H, brm)
Purity	>90% (NN	MR))
MS	617 (M+1)		

Example No.	309	1H NMR(δ) ppm
HO HOI NO S' S' S'	CI CI	300MHz, DMSO-d6 8. 33 (1H, s), 8. 15and7. 99 (2 H, ABq, J=8. 9Hz), 7. 84and7. 59 (4H, A'B'q, J=8. 3Hz), 7. 4 6 (2H, d, J=8. 4Hz), 7. 22-7. 1 6 (3H, m), 7. 01-6. 98 (2H, m), 4. 27and4. 23 (2H, A"B"q, J=1 2. 9Hz), 3. 78 (3H, s), 2. 39-2 .21 (2H, brm), 2. 07-1. 95 (2H, brm), https://dx.display.com/sin/sin/sin/sin/sin/sin/sin/sin/sin/sin
Purity > 90% (NM)	ર)	1.72-1.59(1H, brm), 1.49-1 .17(3H, brm)
MS		

Example No. 310	1H NMR(δ) ppm
HO HCI N 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	300MHz, DMSO-d6 8. 33 (1H, s), 8. 09and7. 95 (2 H, ABq, J=8. 7Hz), 7. 87and7. 71 (4H, A'B'q, J=8. 0Hz), 7. 4 3 (2H, d, J=7. 8Hz), 7. 15 (1H, d, J=8. 7Hz), 7. 07-7. 02 (4H, m), 4. 66 (2H, s), 4. 23 (1H, br t, J=11. 8Hz), 3. 76 (3H, s), 2 . 38-2. 20 (2H, brm), 2. 04-1. 93 (2H, brm), 1. 89-1. 79 (2H,
Purity >90% (NMR)	brm), 1.70-1.59(1H, brm), 1 .49-1.18(3H, brm)
MS 615 (M+1)	

Table 206

Example No. 312	1H NMR(δ) ppm
HO N F OH	300MHz, DMSO-d6 8. 22 (1H, s), 8. 12 (1H, d, J=8 . 4Hz), 8. 00-7. 84 (5H, m), 7. 70 (4H, d, J=8. 4Hz), 7. 56 (1H , t, J=8. 6Hz), 7. 23 (1H, d, J= 12. 0Hz), 7. 13 (1H, d, J=8. 6H z), 6. 97 (1H, s), 3. 92 (1H, m) , 2. 35-2. 00 (2H, m), 1. 95-1. 70 (4H, m), 1. 65-1. 55 (1H, m) , 1. 50-1. 05 (3H, m)
Purity > 90% (NMR)	
MS 609 (M+1)	*

Example No. 313	1H NMR(δ) ppm
HO N F N N N N N N N N N N N N N N N N N	300MHz, DMSO-d6 8.89(1H, brs), 8.63(1H, brs), 8.24(1H, s), 8.11(1H, d, J) =7.8Hz), 7.99(1H, d, J=8.8Hz), 7.89(1H, d, J=9.9Hz), 7.61-7.55(4H, m), 7.43(2H, t, J=7.7Hz), 7.34(1H, t, J=7.2Hz), 7.24(1H, d, J=12.0Hz), 7.14(1H, d, J=8.6Hz), 6.95(1H, s), 3.96(1H, m), 2.35-2.
Purity >90% (NMR)	05(2H, m), 2.00-1.50(5H, m), 1.45-1.10(3H, m)
MS 522 (M+1)	

Table 207

Example No. 503	1H NMR(δ) ppm
HO NO	300MHz, DMSO-d6 8.23(1H, s), 7.76(1H, d, J=8 .7Hz), 7.58(1H, d, J=8.8Hz) ,7.51-7.32(7H, m), 7.17(2H ,d, J=8.7Hz), 6.55(1H, s), 5 .18(2H, s), 4.75(1H, m), 2.3 5-2.12(2H, m), 2.10-1.85(4 H, m), 1.80-1.50(2H, m)
Purity >90% (NMR)	* * *
MS 412 (M+1)	

Example No. 701	1H NMR(δ) ppm
HO N N O O O	300MHz, DMSO-d6 8. 96(1H, s), 8. 50(1H, s), 7. 77(2H, d, J=8. 7Hz), 7. 50-7. 40(4H, m), 7. 30(1H, d, J=8. 4 Hz), 7. 24(1H, d, J=2. 4Hz), 7. 16(2H, d, J=8. 4Hz), 7. 06(1 H, dd, J=2. 4Hz, 8. 1Hz), 5. 06 (2H, s), 4. 31(1H, s), 3. 83(3 H, s), 2. 80-2. 55(2H, m), 2. 0 0-1. 80(4H, m), 1. 70-1. 55(1
Purity >90% (NMR)	H, m), 1. 40-1. 15 (3H, m)
MS 568 (M+1)	* **

Table 208

Example No. 315	1H NMR(δ) ppm
HCI N CI	300MHz, DMSO-d6 8. 84(2H, d, J=6. 3Hz), 8. 28(1H, s), 8. 17and7. 99(2H, ABq, J=8. 7Hz), 7. 87-7. 85(3H, m), 7. 70 -7. 50(3H, m), 7. 52(1H, d, J=8. 3Hz), 7. 18(2H, d, J=8. 7Hz), 5. 22(2H, s) 4. 31(1H, br t, J=12. 5Hz), 2. 36-2. 18(2H, m), 2. 03-1. 78(4H, m), 1. 70-1. 5 8(1H, m), 1. 50-1. 23(3H, m)
Purity >90% (NMR)	
MS 538 (M+1)	19 ·

Example No. 316	1H NMR(δ) ppm
HO HOI CI	300MHz, DMS0-d6 9. 23 (1H, t, J=6. 3Hz), 8. 29 (1H, s), 8. 25-8. 22 (2H, m), 8. 03 (2H, d, J=7. 9Hz), 7. 55-7. 48 (5H, m) 7. 34 (4H, d, J=4. 4Hz), 7. 28-7. 22 (3H, m), 5. 15 (2H, s), 4. 52 (2H, d, J=5. 9Hz), 4. 35 (1H, br t, J=12. 1Hz), 2. 37-2. 18 (2H, m), 2. 08-1. 95 (2H, m), 1. 91-1. 79 (2H, m), 1. 72-1. 59 (1H, m), 1. 47-1. 19 (3H, m)
Purity > 90% (NMR)	m)
MS 670 (M+1)	

	Example No.	ē	318	-9-	1H NMR(δ) ppm
	2HGI N O N N	_		-	300MHz, DMSO-d6 9 (1H, t, J=4.8Hz), 8 4H, ABq, J=6.6Hz), 8.27 (1H, s), 8.23a'B'q, J=8.8Hz), 8. H, A"B"q, J=8.1Hz) 4 (4H, A" B"'q, J=8 nd7.52 (4H, A""B""5.16 (2H, s) 4.78 (21), 4.35 (1H, br t, J=11.0Hz), 2.39
	Purity > 90% (NM	R)			, 2.07-1.96(2H, m) 2H, m), 1.70-1.57(.19(3H, m)
- 1	MS 671 (M+1)		1.5		. 1.5 (Oti, m).

Hz, DMSO-d6 9. 63 t, J=4. 8Hz), 8. 86and7. 97 (Bq, J=6. 6Hz), 8. 30 (1H, s), (1H, s), 8. 23and8. 03 (2H, A , J=8. 8Hz), 8. 09and7. 54 (2 B"q, J=8. 1Hz), 7. 73and7. 2 , A" B" q, J=8. 8Hz), 7. 54a 52 (4H, A""B""q, J=8. 8Hz), (2H, s) 4. 78 (2H, d, J=5. 6Hz) 35 (1H, br (2h, s) 4. 76 (2h, u, j-5. onz 35 (1H, br 11. 0Hz), 2. 39-2. 19 (2H, m) 7-1. 96 (2H, m), 1. 91-1. 78 (1. 1. 70-1. 57 (1H, m) 1. 50-1 H, m)

Example No. 319	1H NMR(δ) ppm
HCI HCI N N N N N N N N N N N N N N N N N N N	300MHz, DMSO-d6 8. 28(1H, s), 8. 24and8. 03(2H, A Bq, J=9. 0Hz), 7. 77(1H, s), 7. 70 (2H, d, J=8. 4Hz), 7. 64-7. 10(13 H, m), 5. 16(2H, s), 4. 74and4. 57 (total 2H, each br s), 4. 34(1H, br t, J=11. 7Hz), 2. 90(3H, s), 2. 35 -2. 17(2H, m), 2. 07-1. 93(2H, m) , 1. 93-1. 78(2H, m), 1. 71-1. 57(1H, m), 1. 51-1. 19(3H, m)
Purity > 90% (NMR)	
MS 684 (M+1)	

lo.	320	1H NMR(δ) ppm
2HCI		300MHz, DMSO-d6 8. 94and8. 06 (4H, ABq, J=6. 8Hz) ,8. 33 (1H, s), 8. 28and8. 05 (2H, A'B'q, J=8. 7Hz), 7. 80 (1H, s), 7 .73and7. 22 (4H, A"B"q, J=8. 7Hz), 7. 63and7. 57 (2H, A"'B"'q, J= 7. 9Hz), 5. 30 (2H, s), 4. 34 (1H, b r t, J=12. 1Hz), 3. 04 (3H, s), 2. 97 (3H, s), 2. 38-2. 18 (2H, m), 2. 10 -1. 96 (2H, m), 1. 93-1. 80 (2H, m) ,1. 72-1. 58 (1H, m), 1. 52-1. 08 (
>90%	(NMR)	3H, m)
575	(M+1)	
	> 90%	N=\

Example	No.	321
но	2HCI CC	N
Purity	>90% (NMR)	• : .
MS	663 (M+1)	- "

1H NMR(δ) ppm

300MHz, DMSO-d6
11. 19 (1H, br
s), 8. 31 (1H, s), 8. 23 and 8. 02 (2
H, ABq, J=9. OHz), 7. 77 (1H, s), 7
.72 and 7. 23 (4H, A'B'q, J=8. 7Hz
), 7. 59 and 7. 48 (2H, A'B'q, J=7.
9Hz), 7. 53 and 7. 51 (4H, A''B''q, J=9. OHz), 5. 16 (2H, s), 4. 72-2
.97 (8H, br m), 4. 34 (1H, br
t, J=12. 1Hz), 2. 79 (3H, s), 2. 38
-2. 17 (2H, m), 2. 07-1. 93 (2H, m)
,1. 93-1. 78 (2H, m), 1. 69-1. 58 (1H, m), 1. 50-1. 10 (3H, m)

Example	No.	322
но	2HCI	
Purity	> 9 0 % (1	NMR)
MS	671 (M-	1)
		

1H NMR(δ) ppm

300MHz, DMSO-d6
9. 54 (1H, t, J=5. 7Hz), 8. 91 (1H, s), 8. 81 (1H, d, J=4. 9Hz), 8. 48 (
1H, d, J=7. 9Hz), 8. 32 (1H, s), 8.
27 (1H, d, J=9. 0Hz), 8. 25 (1H, s), 8. 07-7. 97 (3H, m), 7. 74and7. 2
5 (4H, ABq, J=8. 9Hz), 7. 56-7. 49 (5H, m), 5. 16 (2H, s), 4. 69 (2H, d, J=5. 6Hz), 4. 36 (1H, br t, J=12. 4Hz), 2. 37-2. 20 (2H, m), 2. 09-1. 97 (2H, m), 1. 91-1. 78 (2H, m), 1. 70-1. 57 (1H, m), 1. 50-1. 17 (3H, m)

Example N	lo.	323
но Т	2HCI) }_ttv=>
Purity	>90% (N)	MR)
MS	671 (M+1))

1H NMR(δ) ppm

300MHz, DMSO-d6
9. 52 (1H, t, J=6. OHz), 8. 72 (1H, d, J=5. 3Hz), 8. 30-8. 19 (4H, m), 8. 08 (1H, d, J=7. 9Hz), 8. 02 (1H, d, J=7. 6HZ), 7. 77-7. 64 (4H, m), 7. 57-7. 49 (5H, m), 7. 24 (2H, d, J=8. 7Hz), 5. 16 (2H, s), 4. 77 (2H, d, J=5. 6Hz), 4. 34 (1H, t, J=12. 8 Hz), 2. 36-2. 19 (2H, m), 2. 07-1. 95 (2H, m), 1. 91-1. 78 (2H, m), 1. 69-1. 59 (1H, m), 1. 45-1. 20 (3H, m)

	Example No.	324	IH NMR(δ) ppm	
*	HO HO CI	-#_	300MHz, DMSO-d6 8. 36 (1H, d, J=7. 9Hz), 8. 30 (1H, s), 8. 28and8. 05 (2H, ABq, J=8. 8 Hz), 8. 16 (1H, s), 7. 79and7. 46 (2H, A'B'q, J=8. 3Hz), 7. 74and7. 25 (4H, A'B''q, J=8. 9Hz), 7. 52an d7. 50 (4H, A''' B'''q, J=8. 7Hz), 5. 14 (2H, s), 4. 36 (1H, br t, J=12. 1Hz), 3. 80 (1H, br s), 2. 39-2. 18 (2H, m), 2. 10-1. 9 8 (2H, m), 1. 93-1. 57 (8H, m), 1. 4 9-1. 04 (8H, m)	
	Purity > 90% (NM	R)	9-1.04(8H, m)	
	MS 662 (M+1)			

Example	No.	326	1H NMR(δ) ppm
но		~ / / /	300MHz, DMSO-d6 12.80(1H, brs), 8.23(1H, s), 7. 90(1H, d, J=8.7Hz), 7.83(1H, d, J=8.7Hz), 7.60-7.50(5H, m), 7. 39(2H, d, J=7.8Hz), 7.23-7.10(3H, m), 7.05(1H, d, J=7.8Hz), 6. 85(1H, s), 3.94(1H, s), 2.97, 2. 88(6H, s), 2.30-2.10(2H, m), 1. 90-1.50(5H, m), 1.40-1.00(3H, m)
Purity	>90% (NMF	()	*
MS	610 (M+1)	· · · · · · · · · · · · · · · · · · ·	

Table 212

Example No.	327	1H NMR(δ) ppm
HO N F	○ ОН	300MHz, DMSO-d6 13. 20-12. 60 (2H, brs), 8. 23 (1H, s), 7. 98 (2H, d, J=6.6Hz), 7. 95 (1H, d, J=8.7Hz), 7. 87 (1H, d, J=8.7Hz), 7. 70-7. 50 (5H, m), 7. 27 -7. 20 (3H, m), 7. 08 (1H, d, J=7.8 Hz), 6. 90 (1H, s), 3. 93 (1H, s), 2 .51-2. 05 (2H, m), 1. 90-1. 70 (4H, m), 1. 65-1. 55 (1H, m), 1. 40-1. 10 (3H, m)
Purity > 90% (NM	/R)	
MS 583 (M+1)		

Table 213

	HO ₂ C N	R' 3 5 2 6 1 2 3 1 4 6 5
		R
Ex.No.	R	R'
2001	-Н	4-(-Me)
2002	-Н	3-(-CF ₃)
2003	5-(-F)	-Н
2004	3-(-F)	2-(-F)
2005	3-(-F)	3-(-F)
2006	3-(-F)	4-(-F)
2007	4-(-F)	4-(-F)
2008	5-(-F)	4-(-F)
2009	6-(-F)	4-(-F)
2010	4-(-F)	4-(-Cl)
2011	5-(-F)	4-(-Me)
2012	5-(-F)	4-(-CF ₃)
2013	5-(-F)	4-(-CO ₂ H)
2014	5-(-F)	4-(-CO ₂ Me)
2015	5-(-F)	4- (- N)
2016	5-(-F)	4-(-CONH ₂)
2017	5-(-F)	4-{-CON (Me) ₂ }
2018	5-(-F)	4-(-OMe)
2019	5-(-F)	4-(-SMe)
2020	5-(-F)	0 4 — (— s — ме)
2021	5-(-F)	4 — (— Š — Me)
2022	4-(-Cl)	-Н

	•	
2023	4-(-Cl)	4-(-F)
2024	4-(-Cl)	4-(-C1)
2025	4-(-Cl)	4-(-Me)
2026	5-(-C1)	4-(-CF ₃)
2027	4-(-C1)	4-(-CO ₂ H)
2028	5-(-Cl)	4-(-CO ₂ Me)
2029	5-(-Cl)	4- (- N)
2030	4-(-Cl)	4-(-CONH2)
2031	5-(-C1)	4-{-CON (Me) ₂ }
2032	5-(-C1)	3-(-OMe)
2033	4-(-Cl)	4-(-SMe)
2034	5-(-Cl)	$4-\begin{pmatrix}0\\-\ddot{s}-M_{\Theta}\end{pmatrix}$
2035	4-(-Cl)	$\left(\begin{array}{c} 0 \\ -\ddot{S} - Me \end{array} \right)$
2036	5- (-CN)	4-(-F)
2037	4-(-CN)	4-(-C1)
2038	5-(-NO ₂)	4-(-F)
2039	4-(-NO ₂)	4-(-Cl)
2040	5- (-Me)	4-(-CO ₂ H)
2041	5-(-Me)	4-(-CO ₂ Me)
2042	5-(-Me)	4- (- N)
2043	5-(-CF ₃)	4-(-CO ₂ H)
2044	5-(-CF ₃)	4-(-CO ₂ Me)
2045	5-(-CF ₃)	4- (-N)
2046	5- (-CO ₂ H)	4-(-F)
2047	4-(-CO ₂ H)	4-(-C1)
2048	5- (-CO₂Me)	4-(-F)
2049	5-(-CO ₂ Me)	4-(-Cl)
2050	5-(-Ac)	4-(-F)
	L	

2051	5-(-Ac)	4-(-Cl)
2052	5-(-1-1-1-)	-н
2053	5- (- <u> </u> N)	4-(-F)
2054	5- (<u>l</u> N)	4-(-Cl)
2055	5-(-1-10)	4-(-cn)
2056	5- (N)	4-(-NO ₂)
2057	5- (N_)	4-(-Me)
2058	5- (N)	4-(-CF ₃)
2059	5- (-Î-N○)	4-(-Ac)
2060	5- (N)	4-(-CO ₂ H)
2061	5- (<u>l</u> N)	4-(-CO ₂ Me)
2062	5- (- N)	$4-\left(\begin{array}{c} 0\\ -1\\ -1 \end{array}\right)$
2063	5-(-1-10)	4-(-CONH ₂)
2064	5-(-1-1	4-{-CON (Me) 2}
2065	5-(-1-10)	$4 - \{-C (=NH) NH_2\}$
2066	5-()	4-(-OMe)
2067	5- (<u>l</u> v)	$4-\left(-0-CH_{2}^{0}-N\right)$
2068	5-()	4-(-NHMe)
2069	5-(<u></u> -_)	4-(-NHAc)
2070	5-()	0 4 - (-N-Ş-Me)

	· · · · · · · · · · · · · · · · · · ·	
2071	5- (_ N)	4-(-SMe)
2072	5- (-N)	$4-\begin{pmatrix}0\\-\dot{s}-\dot{m}_{\theta}\end{pmatrix}$
2073	5- (N)	$4-\begin{pmatrix}0\\-\ddot{\$}-Me\\0\end{pmatrix}$
2074	5- (N)	4 – (
2075	5- (- N)	$4-\left\{ egin{array}{c} 0 \\ -\ddot{\ddot{s}} - N \left(Me\right)_{2} \end{array} \right\}$
2076	5-(-CONH ₂)	-н
2077	5-(-CONH ₂)	4-(-F)
2078	5-(-CONH ₂)	2,3,4,5,6-penta-(-F)
2079	5-(-CONH ₂)	2-(-C1)
2080	5-(-CONH ₂)	3-(-C1)
2081	3-(-CONH ₂)	2-(-C1)
2082	3-(-CONH ₂)	3-(-C1)
2083	3-(-CONH ₂)	4-(-C1)
2084	4-(-CONH ₂)	2-(-C1)
2085	4-(-CONH ₂)	3-(-Cl)
2086	4-(-CONH ₂)	4-(-Cl)
2087	6-(-CONH ₂)	2-(-Cl)
2088	6-(-CONH ₂)	3-(-Cl)
2089	6-(-CONH ₂)	4-(-Cl)
2090	5-(-CONH ₂)	3,5-di-(-Cl)
2091	5-(-CONH ₂)	4-(-CN)
2092	5-(-CONH ₂)	4-(-NO ₂)
2093	5-(-CONH ₂)	4-(-Me)
2094	5-(-CONH ₂)	2,6-di-(-Me)
2095	5-(-CONH ₂)	4-(-CF ₃)
2096	5-(-CONH ₂)	4-(-Ac)
2097	5-(-CONH ₂)	4-(-CO ₂ H)
2098	5-(-CONH ₂)	4-(-CO ₂ Me)
!	<u></u>	·

2099	5-(-CONH ₂)	4- (- N)
2100	5-(-CONH ₂)	4-(-CONH ₂)
2101	5-(-CONH ₂)	3,5-di-(-CONH ₂)
2102	5-(-CONH ₂)	4-{-CON (Me) ₂ }
2103	5- (-CONH ₂)	4-{-C (=NH) NH ₂ }
2104	5-(-CONH ₂)	4-(-OMe)
2105	5-(-CONH ₂)	3,4,5-tri-(-OMe)
2106	5-(-CONH ₂)	$4-\left(-0-CH_{2}^{0}-N\right)$
2107	5-(-CONH ₂)	4-(-NHMe)
2108	5- (-CONH ₂)	4-(-NHAc)
2109	5-(-CONH ₂)	$4 - \begin{pmatrix} 0 & 0 \\ -N - S - Me \\ H & 0 \end{pmatrix}$
2110	5-(-CONH ₂)	4-(-SMe)
2111	5-(-CONH ₂)	$4-\begin{pmatrix}0\\-\dot{s}-M_{\theta}\end{pmatrix}$
2112	5-(-CONH ₂)	$4-\begin{pmatrix}0\\-\ddot{s}-Ma\end{pmatrix}$
2113	5- (-CONH ₂)	$4 - \begin{pmatrix} -\ddot{s} - NH_2 \\ \ddot{0} \end{pmatrix}$
2114	5-(-CONH ₂)	$4 - \left\{ \begin{array}{c} 0 \\ -\ddot{s} - N \left(M_{\theta}\right)_{2} \end{array} \right\}$
2115	5-{-CON (Me) ₂ }	-Н
2116	5-(-CON (Me) ₂)	4-(-F)
2117	4-(-CON (Me) ₂ }	4-(-Cl)
2118	5-{-CON (Me) ₂ }	4-(-CN)
2119	5-(-CON (Me) ₂ }	4-(-NO ₂)
2120	5-{-CON (Me) ₂ }	4-(-Me)
2121	4-{-CON (Me) ₂ }	4-(-CF ₃)
2122	5-{-CON (Me) ₂ }	4-(-Ac)
2123	5-(-CON (Me) ₂)	4-(-CO ₂ H)
2124	5-{-CON (Me) ₂ }	4-(-CO ₂ Me)
ļ	5-{-CON (Me) ₂ }	4-(-CO ₂ Me)

2125	5-{-CON (Me) ₂ }	4- (- N)
2126	5-{-CON (Me) ₂ }	3-(-CONH ₂)
2127	4-{-CON (Me) ₂ }	4-{-CON (Me) ₂ }
2128	5-{-CON (Me) ₂ }	$4-\{-C (=NH) NH_2 \}$
2129	5-{-CON (Me) ₂ }	4-(-OMe)
2130	5-{-CON (Me) ₂ }	$4-\left(-0-CH_{2} -N\right)$
2131	5-{-CON (Me) ₂ }	4-(-NHMe)
2132	5-{-CON (Me) ₂ }	4-(-NHAc)
2133	5-{-CON (Me) ₂ }	4- (-N-S-Me)
2134	4-{-CON (Me) ₂ }	4-(-SMe)
2135	5-{-CON (Me) ₂ }	$4 - \begin{pmatrix} 0 \\ -\ddot{s} - Me \end{pmatrix}$
2136	4-(-CON (Me) ₂ }	4 — (
2137	5-{-CON (Me) ₂ }	$4 - \begin{pmatrix} 0 \\ -\ddot{s} - NH_2 \end{pmatrix}$
2138	5-{-CON (Me) ₂ }	$4-\left\{ egin{array}{c} 0 \\ -\ddot{s}-N\left(Me ight)_{2} \end{array} ight\}$
2139	5-(-OMe)	-Н
2140	5-(-OMe)	4-(-F)
2141	3-(-OMe)	4-(-Cl)
2142	4-(-OMe)	4-(-Cl)
2143	5-(-OMe)	2-(-Cl)
2144	5-(-OMe)	3-(-C1)
2145	6-(-OMe)	4-(-Cl)
2146	5-(-OMe)	4-(-CN)
2147	5-(-0Me)	4-(-NO ₂)
2148	5-(-OMe)	4-(-Me)
2149	5-(-OMe)	4-(-CF ₃)
2150	5-(-OMe)	4-(-Ac)
		•

2151	4-(-OMe)	4-(-CO ₂ H)
2152	4,5-di-(-OMe)	$4-(-\dot{C}O_2H)$
2153	5- (-OMe)	4-(-CO ₂ Me)
2154	5-(-OMe)	4- (- N)
2155	5-(-OMe)	4-(-CONH ₂)
2156	5-(-OMe)	4-{-CON (Me) ₂ }
2157	5-(-OMe)	$4-\{-C (=NH) NH2\}$
2158	5-(-OMe)	4-(-OMe)
2159	5-(-OMe)	$4-\left(-0-CH_{\frac{1}{2}}^{0}N\right)$
2160	5-(-OMe)	4-(-NHMe)
2161	5-(-OMe)	4-(-NHAc)
2162	5-(-OMe)	$4-\left(egin{matrix} 0 & 0 & 0 & 0 & 0 \\ -N-S-Me & 0 & 0 & 0 & 0 \\ H & 0 & 0 & 0 & 0 \\ \end{array} ight)$
2163	5-(-OMe)	4-(-SMe)
2164	5-(-OMe)	$4-\begin{pmatrix}0\\-\dot{s}-M_{\Theta}\end{pmatrix}$
2165	5-(-OMe)	$egin{pmatrix} 0 \\ -\ddot{\ddot{s}} - \mathtt{Me} \end{pmatrix}$
2166	5-(-OMe)	$4 - \begin{pmatrix} 0 \\ -\ddot{s} - NH_2 \end{pmatrix}$
2167	5- (-OMe)	$4 - \left\{ \begin{array}{c} 0 \\ -\ddot{\ddot{s}} - N \text{ (Me)}_{2} \end{array} \right\}$
2168	5-(-NHMe)	4-(-F)
2169	5-(-NHMe)	4-(-C1)
2170	5-(-NHAc)	4-(-F)
2171	5-(-NHAc)	4-(-Cl)
2172	5-(-NHAc)	4-(-Ac)
2173	5-(-NHAc)	4-(-CONH ₂)
2174	5-(-NHAc)	4-{-CON (Me) ₂ }
2175	0 (-N-S-Me) 5- 0	4-(-F)

2176	4 — (—N-S-Me)	4-(-Cl)
2177	(-N-S-Me) 5-	4-(-Me)
2178	(-N-S-Me) 5- H 0	4-(-CF ₃)
2179	(—N-S-Me) 5-	4-(-CO ₂ H)
2180	(-N-S-Me) 5- H 0	4-(-CO ₂ Me)
2181	(-N-S-Me) 5-	4- (- N)
2182	(-N-S-Me) 5-	4-(-SMe)
2183	(-N-S-Me)	4 - (- S-Me)
2184	5- (-N-S-Me)	4— (— Š-Ma)
2185	5-(-SMe)	4-(-F)
2186	4-(-SMe)	4-(-C1)
2187	5-(-SMe)	4-(-Me)
2188	5-(-SMe)	4-(-CF ₃)
2189	5-(-SMe)	4-(-Ac)
2190	5-(-SMe)	4-(-CONH ₂)
2191	5-(-SMe)	4-{-CON(Me) ₂ }
2192	5- (-s-Me)	4-(-F)
2193	$4-\begin{pmatrix}0\\-\ddot{s}-Me\end{pmatrix}$	4-(-Cl)
2194	О 5— (—s-ме)	4-(-Me)
2195	9 5- (-š-ме)	4-(-CF ₃)
2196	0 5− (−\$−Me)	4-(-Ac)
2197	(-\$-₩e) 5-	4-(-CONH ₂)

2198	5- (-s-Me)	4-{-CON (Me) 2}
2199	(-s-Me) 5-	4-(-F)
2200	4- (4-(-Cl)
2201	0 (-s-Me) 5- 0	4-(-Me)
2202	(-s-Me) 5- 0	4-(-CF ₃)
2203	(4-(-Ac)
2204	5 — (-\$-Me)	4-(-CONH ₂)
2205	(-\$-Ma) 5-	4-{-CON (Me) ₂ }
2206	(-\$-NH ₂)	4-(-F)
2207	4- (-s-NH ₂)	4-(-Cl)
2208	$4 - \begin{pmatrix} 0 \\ -\ddot{s} - NH_2 \end{pmatrix}$	2,4-di-(-Cl)
2209	0 (4-(-Me)
2210	0 NH ₂) 5- 0	3-(-CF ₃)
2211	5- (4-(-CF ₃)
2212	5- (-\$-NH ₂)	4-(-CONH ₂)
2213	5- (-\$-NH ₂)	4-{-CON (Me) ₂ }
2214	0 NH ₂) 5- 0	4-(-SMe)
2215	5- (-\$-NH ₂)	4— (— S-Ме)
2216	5- (-\$-NH ₂)	4 - (

	the state of the s	
2217	$5 - \left\{ \begin{array}{c} 0 \\ -\ddot{s} - N \text{ (Me)}_{2} \end{array} \right\}$	4-(-F)
2218	$\left\{ egin{array}{c} 0 \\ -\ddot{\ddot{s}} - N \left(Me ight)_2 \end{array} ight\}$	4-(-Cl)
2219	$\left\{ egin{array}{c} 0 \\ -\ddot{\ddot{s}} - N \left(\mathrm{Me} ight)_{2} \end{array} ight\}$	4-(-Me)
2220	$ \left\{ \begin{array}{c} 0 \\ -\ddot{s} - N \left(Me \right)_{2} \end{array} \right\} $	4-(-CF ₃)
2221	$\left\{ egin{array}{c} 0 \\ -\ddot{\ddot{s}} - N \left(Me ight)_{2} \end{array} ight\}$	4-(-CONH ₂)
2222	$5 - \left\{ \begin{array}{c} 0 \\ -\ddot{s} - N \text{ (Me)}_{2} \end{array} \right\}$	4-{-CON (Me) ₂ }
2223	$5 - \left\{ \begin{array}{c} 0 \\ -\ddot{s} - N \left(Me \right)_{2} \end{array} \right\}$	4-(-SMe)
2224	$ \left\{ -\overset{0}{\overset{\circ}{\overset{\circ}{\overset{\circ}{\overset{\circ}{\overset{\circ}{\overset{\circ}{\overset{\circ}{$	4- (-S-Me)
2225	$ \left\{ \begin{array}{c} 0 \\ -S-N \text{ (Me)}_2 \end{array} \right\} $ 5-	$4-\begin{pmatrix}0\\-\ddot{s}-Me\end{pmatrix}$
2226	5-(-O-(CH ₂) ₂ -OH)	4-(-Cl)
2227	5-{-O-(CH ₂) ₃ -OH}	4-(-Cl)
2228	5- (-0^)	4-(-Cl)
2229	5- (-0)	4-(-Cl)
2230	5- (-0 N-Me)	4-(-Cl)
2231	5- (-0 N)	4-(-Cl)
2232	5- (-0 N OH)	4-(-Cl)
2233	5- (N OH)	4-(-C1)
2234	5- (N OH)	4-(-C1)
2235	5- (N OH)	4-(-Cl)

		*
2236	5- (N OH)	4-(-Cl)
2237	5- (N CO ₂ H)	4-(-Cl)
2238	O Me Me (N) Me Me	4-(-Cl)
2239	O Me Me O Me Me OH OH	4-(-Cl)
2240	5- (N) OMe	4-(-Cl)
2241	5-(1000)	4-(-Cl)
2242	5-(1))	4-(-Cl)
2243	5- (N N S Ma)	4-(-Cl)
2244	5- (N S)	4-(-Cl)
2245	(N S=0)	4-(-Cl)
2246	5- (NOH)	4-(-Cl)
2247	5- (Ly)	4-(-Cl)
2248	4-(1,0)	4-(-Cl)
2249	5- (NH)	4-(-Cl)

2250	() N S N O)	4-(-Cl)
2251	4- ()	4-(-Cl)
2252	4- (N)	4-(-Cl)
2253	5- (N)	4-(-C1)
2254		4-(-Cl)

Table 214

		R' 3
	HO ₂ C N	$ \begin{array}{c c} 5 & 1 \\ & 1 \\ & 2 \end{array} $
·		1 4
		R
Ex.	R	R'
2255	-Н	-Н
2256	-н	4-(-Me)
2257	-Н	3-(-CF ₃)
2258	5-(-F)	-н
2259	5-(-F)	4-(-F)
2260	5-(-F)	4-(-C1)
2261	5-(-F)	4-(-Me)
2262	5-(-F)	4-(-CF ₃)
2263	5-(-F)	4-(-CO ₂ H)
2264	5-(-F)	4-(-CO ₂ Me)
2265	5-(-F)	4- (-N)
2266	5-(-F)	4-(-CONH ₂)
2267	5-(-F)	4-{-CON (Me) ₂ }
2268	5-(-F)	4-(-OMe)
2269	5-(-F)	4-(-SMe)
2270	5-(-F)	4 – (– s – Me)
2271	5-(~F)	$4 - \begin{pmatrix} 0 \\ -\ddot{5} - Ma \\ \ddot{0} \end{pmatrix}$
2272	4-(-Cl)	-н
2273	5-(-Cl)	4-(-F)
2274	4-(-C1)	4-(-Cl)
2275	5-(-Cl)	4-(-Me)
2276	5-(-Cl)	4-(-CF ₃)
L	<u> </u>	L

		• '
2277	5-(-Cl)	4-(-CO ₂ H)
2278	5-(-Cl)	4-(-CO₂Me)
2279	5-(-C1)	4- (- N)
2280	5-(-Cl)	4-(-CONH2)
2281	5-(-C1)	4-{-CON (Me) ₂ }
2282	5-(-Cl)	4-(-OMe)
2283	5-(-Cl)	4-(-SMe)
2284	5-(-C1)	$4-\begin{pmatrix}0\\-\dot{s}-M_{\Theta}\end{pmatrix}$
2285	5-(-Cl)	$4-\begin{pmatrix}0\\-\ddot{s}-M_0\\\ddot{0}\end{pmatrix}$
2286	5-(-CN)	4-(-F)
2287	5-(-CN)	4-(-C1)
2288	5-(-NO ₂)	4-(-F)
2289	5-(-NO ₂)	4-(-C1)
2290	5-(-Me)	4-(-CO ₂ H)
2291	5-(-Me)	4-(-CO ₂ Me)
2292	5-(-Me)	4- (- N)
2293	5-(-CF ₃)	4-(-CO ₂ H)
2294	5-(-CF ₃)	4-(-CO₂Me)
2295	5-(-CF ₃)	4-(-1-1-1)
2296	5-(-CO ₂ H)	4- (-F)
2297	4-(-CO ₂ H)	4-(-C1)
2298	5- (-CO ₂ Me)	4-(-F)
2299	5- (-CO₂Me)	4-(-Cl)
2300	5-(-Ac)	4-(-F)
2301	5-(-Ac)	4-(-Cl)
2302	5-(-1-N-)	-Н
2303	5-(-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	4-(-F)

$\begin{array}{cccccccccccccccccccccccccccccccccccc$		· · · · · · · · · · · · · · · · · · ·	
2306 $\begin{array}{cccccccccccccccccccccccccccccccccccc$	2304	4-(4-(-Cl)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2305	5-(-1)	4-(-CN)
2308 $\begin{array}{cccccccccccccccccccccccccccccccccccc$	2306	5- (N)	4-(-NO ₂)
2309	2307	5-(-1-1)	4-(-Me)
2310 $\begin{array}{cccccccccccccccccccccccccccccccccccc$	2308	5- (N)	4-(-CF ₃)
2311 $5 - ($	2309	5- (° N)	4-(-Ac)
2312 $5 - (\begin{array}{c} 0 \\ - 1 \\ - $	2310	5-(-1-1-)	4-(-CO ₂ H)
2313	2311	5-(-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	4-(-CO ₂ Me)
2314 $5 - ($	2312	5- (N)	4- (- N)
2315 $5 - ($	2313	5-(-1-1-)	4-(-CONH ₂)
2316	2314	5-(-1-1)	4-{-CON (Me) ₂ }
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2315	5-(4-{-C (=NH) NH ₂ }
2318 $\begin{pmatrix} 0 & 0 & 0 & 0 \\ 5 & 0 & 0 & 0 & 0 \\ 5 & 0 & 0 & 0 & 0 \\ 2319 & 0 & 0 & 0 & 0 & 0 \\ 5 & 0 & 0 & 0 & 0 & 0 \\ 2320 & 0 & 0 & 0 & 0 & 0 \\ 5 & 0 & 0 & 0 & 0 & 0 \\ 2321 & 0 & 0 & 0 & 0 & 0 \\ 2321 & 0 & 0 & 0 & 0 & 0 \\ 2322 & 0 & 0 & 0 & 0 & 0 & 0 \\ 2323 & 0 & 0 & 0 & 0 & 0 & 0 \\ 2323 & 0 & 0 & 0 & 0 & 0 & 0 \\ 2323 & 0 & 0 & 0 & 0 & 0 & 0 \\ 2323 & 0 & 0 & 0 & 0 & 0 & 0 \\ 2323 & 0 & 0 & 0 & 0 & 0 & 0 \\ 2323 & 0 & 0 & 0 & 0 & 0 & 0 \\ 2323 & 0 & 0 & 0 & 0 & 0 & 0 \\ 2323 & 0 & 0 & 0 & 0 & 0 & 0 \\ 2323 & 0 & 0 & 0 & 0 & 0 & 0 \\ 2323 & 0 & 0 & 0 & 0 & 0 & 0 \\ 2323 & 0 & 0 & 0 & 0 & 0 & 0 \\ 2323 & 0 & 0 & 0 & 0 & 0 & 0 \\ 2323 & 0 & 0 & 0 & 0 & 0 & 0 \\ 2323 & 0 & 0 & 0 & 0 & 0 & 0 \\ 2324 & 0 & 0 & 0 & 0 & 0 & 0 \\ 2325 & 0 & 0 & 0 & 0 & 0 & 0 \\ 2326 & 0 & 0 & 0 & 0 & 0 & 0 \\ 2327 & 0 & 0 & 0 & 0 & 0 & 0 \\ 2328 & 0 & 0 & 0 & 0 & 0 & 0 \\ 2328 & 0 & 0 & 0 & 0 & 0 & 0 \\ 2328 & 0 & 0 & 0 & 0 & 0 & 0 \\ 2328 & 0 & 0 & 0 & 0 & 0 & 0 \\ 2328 & 0 & 0 & 0 & 0 & 0 & 0 \\ 2328 & 0 & 0 & 0 & 0 & 0 & 0 \\ 2328 & 0 & 0 & 0 & 0 & 0 & 0 \\ 2328 & 0 & 0 & 0 & 0 & 0 & 0 \\ 2328 & 0 & 0 & 0 & 0 & 0 & 0 \\ 2328 & 0 & 0 & 0 & 0 & 0 & 0 \\ 2328 & 0 & 0 & 0 & 0 & 0 & 0 \\ 2328 & 0 & 0 & 0 & 0 & 0 & 0 \\ 2328 & 0 & 0 & 0 & 0 & 0 & 0 \\ 2328 & 0 & 0 & 0 & 0 & 0 \\ 2328 & 0 & 0 & 0 & 0 & 0 & 0 \\ 2328 & 0 & 0 & 0 & $	2316	5-(-1-1-)	4-(-OMe)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2317	5- (- ¹ -√)	$4-\left(-0-CH_{2}^{0}-N\right)$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2318	N //	4-(-NHMe)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2319	5-(-1/10)	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2320	5- (N)	4- (-N-S-Me)
$\begin{array}{c c} 2322 & \begin{pmatrix} 0 & & \\ -1 & N \end{pmatrix} \end{pmatrix} \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad$	2321	5- (-N)	4-(-SMe)
	2322	5-(-N-)	4- (-S-Me)

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$).
$ \begin{array}{c c} 2324 & $	
$ \begin{array}{c c} 2325 & $, }
2326 5-(-CONH ₂) -H	- 1 7
2327 $5-(-CONH_2)$ $4-(-F)$	¥ ¥
2328 4-(-CONH ₂) 4-(-C1)	
2329 $5-(-CONH_2)$ 4-(-CN)	
2330 $5-(-CONH_2)$ $4-(-NO_2)$)
2331 5-(-CONH ₂) 4-(-Me)	
2332 5-(-CONH ₂) 4-(-CF ₃)
2333 $5-(-CONH_2)$ $4-(-Ac)$	
2334 5-(-CONH ₂) 4-(-CO ₂ H	I)
2335 $5-(-CONH_2)$ $4-(-CO_2M)$	e)
2336 5-(-CONH ₂) 4-())
2337 5-(-CONH ₂) 4-(-CONH	(2)
2338 5-(-CONH ₂) 4-{-CON (Mo	e) ₂ }
2339 $5-(-CONH_2)$ $4-(-C(=NH))$	NH ₂ }
2340 5-(-CONH ₂) 4-(-OMe)
2341 $5-(-CONH_2)$ $4-(-0-CH_2-N)$	○)
2342 5-(-CONH ₂) 4-(-NHMe	e)
2343 5-(-CONH ₂) 4-(-NHA)	2)
2344 5-(-CONH ₂) $4-\begin{pmatrix} 0 \\ -N-S-Me \\ 0 \end{pmatrix}$)
2345 5-(-CONH ₂) 4-(-SMe)
2346 $5-(-CONH_2)$ $4-\begin{pmatrix} 0 \\ -S-Me \end{pmatrix}$	
2347 $5-(-CONH_2)$ $4-\begin{pmatrix} 0\\ -\ddot{S}-Me \\ \ddot{0} \end{pmatrix}$)

2348	5-(-CONH ₂)	4 — (
2349	5-(-CONH ₂)	$4-\left\{ egin{array}{c} 0 \\ -\ddot{s}-{\sf N}\left({\sf Me} ight)_2 \end{array} ight\}$
2350	5-{-CON (Me) ₂ }	-Н
2351	5-{-CON (Me) ₂ }	4-(-F)
2352	4-{-CON (Me) ₂ }	4-(-C1)
2353	5-{-CON (Me) ₂ }	4-(-CN)
2354	5-{-CON (Me) ₂ }	4-(-NO ₂)
2355	5-{-CON (Me) ₂ }	4-(-Me)
2356	5-{-CON (Me) ₂ }	4-(-CF ₃)
2357	5-{-CON (Me) ₂ }	4-(-Ac)
2358	5-{-CON (Me) ₂ }	4-(-CO ₂ H)
2359	5-(-CON (Me) ₂)	4-(-CO ₂ Me)
2360	5-{-CON (Me) ₂ }	4- (-\frac{1}{N} \rightarrow)
2361	5-{-CON (Me) ₂ }	$4-(-CONH_2)$
2362	5-{-CON (Me) ₂ }	4-(-CON (Me) ₂)
2363	5-{-CON (Me) ₂ }	4-{-C (=NH) NH ₂ }
2364	5-{-CON (Me) ₂ }	4-(-OMe)
2365	5-{-CON (Me) ₂ }	$4-\left(-0-CH_{2}^{0}-N\right)$
2366	5-{-CON (Me) ₂ }	4-(-NHMe)
2367	5-{-CON (Me) ₂ }	4-(-NHAc)
2368	5-{-CON (Me) ₂ }	4 — (—N-S-Ma)
2369	5-{-CON (Me) ₂ }	4-(-SMe)
2370	5-{-CON (Me) ₂ }	4 - (- Š-Me)
2371	5-{-CON (Me) ₂ }	$4-\begin{pmatrix}0\\-\ddot{s}-Me\\\ddot{0}\end{pmatrix}$
2372	5-{-CON (Me) ₂ }	4- (
L	1	· · · · · · · · · · · · · · · · · · ·

2373	5-{-CON (Me) ₂ }	$4 - \left\{ -\overset{0}{\overset{\circ}{\overset{\circ}{\overset{\circ}{\circ}}}} - N \left(Me \right)_{2} \right\}$
2374	5-(-OMe)	-Н
2375	5-(-OMe)	4-(-F)
2376	5-(-OMe)	4-(-C1)
2377	5-(-OMe)	4-(-CN)
2378	5-(-OMe)	4-(-NO ₂)
2379	5-(-OMe)	4-(-Me)
2380	5-(-OMe)	4-(-CF ₃)
2381	5-(-OMe)	4-(-Ac)
2382	5-(-OMe)	4-(-CO ₂ H)
2383	5-(-OMe)	4-(-CO ₂ Me)
2384	5-(-OMe)	4- (- N)
2385	5-(-OMe)	4-(-CONH ₂)
2386	5-(-OMe)	$4-\{-CON(Me)_2\}$
2387	5-(-OMe)	$4 - \{-C (=NH) NH_2\}$
2388	5-(-OMe)	4-(-OMe)
2389	5-(-OMe)	4-(-0-CH2-N)
2390	5-(-OMe)	4-(-NHMe)
2391	5-(-OMe)	4-(-NHAc)
2392	5-(-OMe)	4- (-N-S-Me)
2393	5-(-OMe)	4-(-SMe)
2394	5-(-OMe)	4 – (– Š – Me)
2395	5-(-OMe)	$4-egin{pmatrix} 0 \\ -\ddot{\ddot{5}} - \mathrm{Me} \end{pmatrix}$
2396	5-(-OMe)	4- (-\$-NH ₂)
2397	5-(-OMe)	$4-\left\{egin{array}{c} 0\\ -\ddot{\ddot{s}}-N\left(\mathrm{Me} ight)_{z} \end{array} ight\}$
2398	5-(-NHMe)	4-(-F)
	· · · · · · · · · · · · · · · · · · ·	

		4 / 61)
2399	5-(-NHMe)	4-(-C1)
2400	5-(-NHAc)	4-(-F)
2401	5- (-NHAc)	4-(-C1)
2402	5- (-NHAC)	4-(-Ac)
2403	5- (-NHAc)	4-(-CONH ₂)
2404	5- (-NHAc)	4-(-CON (Me) ₂)
2405	5- (-N-S-Me)	4-(-F)
2406	О — М-Ё-Ма Н 0	4-(-C1)
2407	5- (-N-S-Me)	4-(-Me)
2408	5- (-N-S-Me)	4-(-CF ₃)
2409	(-N-S-Me) 5-	4-(-CO ₂ H)
2410	0 - N-S-Me H 0	4-(-CO ₂ Me)
2411	5 — (—N-Š-Ma)	$4-\left(\begin{array}{c} 0\\ -1\\ -1\\ \end{array}\right)$
2412	(-N-S-Me)	4-(-SMe)
2413	(-N-S-Ma) 5- (-N-S-Ma)	$4-\begin{pmatrix}0\\-S-Me\end{pmatrix}$
2414	0 - N-S-Ma 5 - H 0	4- (-s-Me)
2415	5-(-SMe)	4-(-F)
2416	5-(-SMe)	4-(-C1)
2417	5- (-SMe)	4-(-Me)
2418	5- (-SMe)	4-(-CF ₃)
2419	5-(-SMe)	4-(-Ac)
2420	5-(-SMe)	4-(-CONH ₂)
2421	5-(-SMe)	4-(-CON (Me) ₂)
2422	5- (-\$-Ma)	4-(-F)

. 7
-
,

5- (-s-NH ₂)	4-(-SMe)
0 NH ₂) 5 - 0	4 - (-š-He)
(- s - NH ₂) 5 - 0	4 — (
	4-(-F)
$5 - \left\{ \begin{array}{c} 0 \\ -\ddot{\ddot{s}} - N \text{ (Me)}_2 \end{array} \right\}$	4-(-Cl)
$5 - \left\{ \begin{array}{c} 0 \\ -\ddot{\ddot{s}} - N \left(Ma\right)_{2} \end{array} \right\}$	4-(-Me)
$\left\{ \begin{array}{c} 0 \\ -\ddot{s} - N \left(Me \right)_{z} \end{array} \right\}$	4-(-CF ₃)
	4-(-CONH ₂)
	4-{-CON (Me) ₂ }
$5 - \left\{ \begin{array}{c} 0 \\ -\ddot{s} - N \left(Me \right)_{2} \end{array} \right\}$	4-(-SMe)
	$4-\begin{pmatrix}0\\-\ddot{s}-M_{\Theta}\end{pmatrix}$
$ \begin{cases} -\frac{0}{5} - N \text{ (Me)}_{2} \end{cases} $	$4-\left(egin{matrix} 0 & -1 & -1 & -1 & -1 & -1 & -1 & -1 & $
	$ \begin{array}{c} \begin{pmatrix} O_{-S}^{0} - NH_{2} \\ O_{-S}^{0} - NH_{2} \end{pmatrix} \\ 5 - O_{-S}^{0} - N(Me)_{2} $

Table 215

	HO ₂ C	0 2 3 6 1 1 R'
	5	4 3 R
Ex.N	R	R'
2454	2-(-F)	2-(-F)
2455	2-(-F)	3-(-F)
2456	2-(-F)	4-(-F)
2457	3-(-C1)	3-(-Cl)
2458	3,5-di-(-Cl)	3,5-di-(-Cl)
2459	3-(-CN)	3-(-CN)
2460	3-(-NO ₂)	3-(-NO ₂)
2461	3-(-Me)	3-(-Me)
2462	3-(-CF ₃)	3-(-CF ₃)
2463	3-(-Ac)	3-(-Ac)
2464	3-(-CO ₂ H)	3-(-CO ₂ H)
2465	3-(-CO ₂ Me)	3-(-CO ₂ Me)
2466	3-(-1-1-1-)	3- (♣ N)
2467	3-(-CONH ₂)	3-(-CONH ₂)
2468	3-(-CONH ₂)	3-(-F)
2469	3-(-CONH ₂)	3-(-Cl)
2470	3-(-CON (Me) ₂ }	3-{-CON (Me) ₂ }
2471	3-(-CON (Me) ₂ }	3-(-F)
2472	3-(-CON (Me) ₂ }	3-(-Cl)
2473	$3-\{-C (=NH) NH_2\}$	3-{-C(=NH)NH ₂ }
2474	3-(-OMe)	3-(-OMe)
2475	$3-\left(-0-CH_{2}^{0}-N\right)$	3-(-0-cH ₂ -N)
2476	3-(-NHMe)	3-(-NHMe)

2477	3-(-NHAc)	3-(-NHAc)
2478	3- (-N-S-Me)	3- (-N-\$-Me)
2479	3-(-SMe)	3-(-SMe)
2480	3- (-s-Me)	3- (-s-Me)
2481	(3- (
2482	3- 0 (-s-NH ₂) 3- 0	$3 - \begin{pmatrix} 0 \\ -\ddot{s} - NH_2 \end{pmatrix}$
2483	$ \left\{ \begin{array}{c} 0 \\ -\ddot{s} - N \text{ (Me)}_{2} \end{array} \right\} $	3- { - " - N (Me) 2 }
2484	3-(-F)	4-(-F)
2485	3-(-C1)	4-(-C1)
2486	4-(-CN)	4-(-CN)
2487	4-(-NO ₂)	4-(-NO ₂)
2488	3-(-Me)	4-(-Me)
2489	4-(-Me)	2,6-di-(-Me)
2490	4-(-CF ₃)	4-(-CF ₃)
2491	4-(-Ac)	4-(-Ac)
2492	4-(-CO ₂ H)	4-(-CO ₂ H)
2493	4-(-CO ₂ Me)	4-(-CO ₂ Me)
2494	4- (-N)	4- (- N)
2495	4-(-CONH ₂)	4-(-CONH ₂)
2496	4-(-CONH ₂)	4-(-F)
2497	4-(-CONH ₂)	2,3,4,5,6-penta-(-F)
2498	4-(-CONH ₂)	4-(-Cl)
2499	4-{-CON (Me) ₂ }	4-{-CON (Me) ₂ }
2500	4-{-CON (Me) ₂ }	4-(-F)
2501	4-{-CON (Me) ₂ }	4-(-Cl)
2502	4-{-CON (Me) ₂ }	3,5-di-(-Cl)
2503	4-{-C (=NH) NH ₂ }	4-{-C (=NH) NH ₂ }
L.,	L	·

-		
2504	4-(-OMe)	4-(-OMe)
2505	4-(-OMe)	3,4,5-tri-(-OMe)
2506	$4-\left(-0-CH_{2}^{0}-N\right)$	$4-\left(-0-CH_{2}^{\frac{0}{11}}N\right)$
2507	4-(-NHMe)	4-(-NHMe)
2508	4-(-NHAc)	4-(-NHAc)
2509	4 — (—N-S-Ha)	4 — (—N-S-Me)
2510	4-(-SMe)	4-(-SMe)
2511	4 — (— S-Me)	$4-\begin{pmatrix} 0\\ -8-Me \end{pmatrix}$
2512	$4-\begin{pmatrix} 0\\ -\ddot{s}-Me \end{pmatrix}$	$4-\left(egin{matrix} 0\\ -\overset{\circ}{\overset{\circ}{\overset{\circ}{\overset{\circ}{\circ}}}}-\overset{\circ}{\overset{\circ}{\circ$
2513	4- (4- (-\$-NH ₂)
2514	$4 - \left\{ \begin{array}{c} 0 \\ -\ddot{s} - N \left(Me \right)_{2} \end{array} \right\}$	$4 - \begin{cases} -\overset{0}{\overset{\circ}{\overset{\circ}{\circ}}} - N \left(Me \right)_{2} \\ \overset{\circ}{\overset{\circ}{\overset{\circ}{\circ}}} \end{cases}$

Table 216

$\begin{array}{c c} & & & & & & \\ & & & & & \\ & & & & \\ & & & &$			
Ex.N	R	* R'	
o. 2515	-Н	– Н	
2516	2-(-F)	3-(-F)	
2517	3-(-C1)	3-(-C1)	
2518	3-(-CN)	3-(-CN)	
2519	3-(-NO ₂)	3-(-NO ₂)	
2520	3-(-Me)	3-(-Me)	
2521	3-(-CF ₃)	3-(-CF ₃)	
2522	3-(-Ac)	3-(-Ac)	
2523	3-(-CO ₂ H)	3-(-CO ₂ H)	
2524	3-(-CO ₂ Me)	3-(-CO ₂ Me)	
2525	3-(-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	3-(-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	
2526	3-(-CONH ₂)	3-(-CONH ₂)	
2527	3-(-CONH ₂)	3-(-F)	
2528	3-(-CONH ₂)	3-(-C1)	
2529	3-{-CON (Me) ₂ }	3-(-CON (Me) ₂)	
2530	3-{-CON (Me) ₂ }	3-(-F)	
2531	3-{-CON (Me) ₂ }	3-(-C1)	
2532	$3-\{-C (=NH) NH_2\}$	3-(-C (=NH) NH ₂ }	
2533	3-(-OMe)	3-(-OMe)	
2534	$3-\left(-0-CH_{2}^{2}-N\right)$	$3-\left(-0-CH_{2}^{\frac{0}{2}-N}\right)$	
2535	3-(-NHMe)	3-(-NHMe)	
2536	3-(-NHAc)	3-(-NHAC)	

2537	3- (-N-S-Me)	$3-\begin{pmatrix} -N-\overset{\circ}{s}-Me \end{pmatrix}$	
2538	3-(-SMe)	3-(-SMe)	
2539	3- (\$-Me)	3- (-g-We)	
2540	3- (-ÿ-Me) 3- Ö	(-s-Ma) 3- 0	
2541	3- (-s-NH ₂)	3 - (-\$-NH ₂)	
2542	3- { - S-N (Me) ₂ }		
2543	3-(-F)	4-(-F)	
2544	4-(-C1)	4-(-C1)	
2545	4-(-CN)	4-(-CN)	
2546	4-(-NO ₂)	4-(-NO ₂)	
2547	4-(-Me)	4-(-Me)	
2548	4-(-CF ₃)	4-(-CF ₃)	
2549	4-(-Ac)	4- (-Ac)	
2550	3- (-CO ₂ H)	4-(-CO ₂ H)	
2551	4-(-CO ₂ Me)	4-(-CO ₂ Me)	
2552	4- (- N)	$_{4-}\left(\stackrel{0}{}\mathbb{N}_{\bigcirc}\right)$	
2553	4-(-CONH ₂)	4-(-CONH ₂)	
2554	4-(-CONH ₂)	4-(-F)	
2555	4-(-CONH ₂)	4-(-C1)	
2556	3-{-CON (Me) ₂ }	4-{-CON (Me) ₂ }	
2557	3-{-CON (Me) ₂ }	4-(-F)	
2558	4-{-CON (Me) ₂ }	4-(-Cl)	
2559	$4-\{-C (=NH) NH_2\}$	4-(-C(=NH)NH ₂)	
2560	4-(-OMe)	4-(-OMe)	
2561	4-(-0-CH ₂ N)	4-(-0-CH ₂ -N)	
2562	4-(-NHMe)	4-(-NHMe)	
2563	4-(-NHAc)	4-(-NHAc)	
L	<u>. </u>		

2564	4 — (—N-S-Ma)	4 — (— N — Š — Me)
2565	4-(-SMe)	4-(-SMe)
2566	$4-\begin{pmatrix} 0\\ -\ddot{s}-Me \end{pmatrix}$	0 4— ^(—s-Ме)
2567	$4-\begin{pmatrix} 0\\ -\ddot{\ddot{s}}-Ha\\ 0\end{pmatrix}$	$4-\begin{pmatrix}0\\-\frac{9}{5}-\text{Me}\\0\end{pmatrix}$
2568	$4 - \begin{pmatrix} 0 \\ -\ddot{s} - NH_2 \end{pmatrix}$	$4-\begin{pmatrix}0\\-\ddot{s}-NH_2\end{pmatrix}$
2569	$\left\{ egin{array}{c} 0 \\ -\ddot{\ddot{s}} - N \left(\mathrm{Me} \right)_{2} \end{array} \right\}$	4- { - S-N (Me) , }

Table 217

$\begin{array}{c c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\$							
	Py : pyridyl group						
Ex.N	Ру	R'					
2570	3-Py	-Н					
2571	3-Ру	3-(-F)					
2572	3-Py	3-(-Cl)					
2573	3-Py	3-(-Me)					
2574	3-Ру	3-(-CF ₃)					
2575	3-Py	3-(-Ac)					
2576	3-Py	3-(-CO ₂ H)					
2577	3-Py	3-(-CO ₂ Me)					
2578	3-Ру	3- (- N)					
2579	3-Ру	3-(-CONH ₂)					
2580	3-Ру	3-{-CON (Me) ₂ }					
2581	3-Ру	4-(-F)					
2582	3-Ру	4-(-C1)					
2583	3-Py	4-(-Me)					
2584	3-Ру	4-(-CF ₃)					
2585	3-Ру	4-(-Ac)					
2586	2-Py	4-(-CO ₂ H)					
2587	3-Py	4-(-CO ₂ Me)					
2588	3-Ру	4- (- N)					
2589	4-Py	4-(-CONH ₂)					
2590	3-Ру	4-{-CON (Me) ₂ }					

Table 218

	HO_2C N O				
			Py 6 5 'R'	Py : pyridyl group	
Ex.	N	Ру		R'	
259	1	3-Py		-н	
259	2	3-Py		3-(-F)	
259	3	3-Py		3-(-C1)	
259	4	3-Py		3-(-Me)	
259	5	3-Py		3-(-CF ₃)	
259	6	3-Py		3-(-Ac)	
259	7	3-Py		3-(-CO ₂ H)	
259	8	3-Py		3-(-CO ₂ Me)	
259	9	3-Ру	. (4)	3- (- N)	
260	0	3-Py		3-(-CONH ₂)	
260	1	3-Ру		3-{-CON (Me) ₂ }	
260	2	3-Py		4-(-F)	
260	3	3-Ру		4-(-C1)	
260	4	3-Py		4-(-Me)	
260	5	3-Py		4-(-CF ₃)	
260	6	3-Py	: :' ;	4-(-Ac)	
260	7	3-Ру		4-(-CO ₂ H)	
260	8	3-Py		4-(-CO ₂ Me)	
260	9	3-Ру		4- (—N)	
261	0	3-Py		4-(-CONH ₂)	
261	1	3-Py		4-{-CON (Me) ₂ }	

Table 219

×	Example No. 328	1H NMR(δ) ppm
	HCI HCI NO NO NO NO NO NO NO NO NO NO NO NO NO	300MHz, DMSO-d6 8. 29 (1H, s), 8. 23 (1H, d, J=9. 0 Hz), 8. 02 (1H, d, J=8. 4Hz), 7. 8 0 (1H, s), 7. 71 (2H, d, J=8. 4Hz) , 7. 61 (1H, d, J=9. 3Hz), 7. 55-7 . 45 (3H, m), 7. 46 (2H, d, J=8. 1Hz), 7. 22 (2H, d, J=8. 7Hz), 5. 16 (2H, s,), 4. 34 (1H, m), 4. 20-3. 40 (4H, m), 2. 60-2. 15 (6H, m), 2 . 10-1. 90 (2H, m), 1. 85-1. 70 (2 H, m), 1. 65-1. 55 (1H, m), 1. 50-
	Purity > 90% (NMR)	1. 10 (3H, m)
	MS 662 (M+1)	

Example No. 331	1H NMR(δ) ppm
HCI CI 300MHz, DMSO-d6 8. 31 (1H, s), 8. 27 (1H, d, J=8. 7Hz), 8. 05 (1H, d, J=8. 7Hz), 7. 75-7. 41 (9H, m), 7. 23 (2H, d, J=8. 7Hz), 4. 36 (1H, m), 4. 00-3. 90 (1H, m), 2. 84 (3H, brs), 2. 40-2. 15 (2H, m), 2. 10-2. 00 (2H, m), 1. 95-1. 75 (2H, m), 1. 70-1. 55 (1H, m), 1. 50-1. 00 (7H, m)	
Purity > 90% (NMR)	
MS 636 (M+1)	

Table 221

Example No. 3	34	1H NMR(δ) ppm
HO CI	ОН	300MHz, DMSO-d6 8. 22(1H, d, J=1.5Hz), 8. 01(1H, d, J=9.0Hz), 7. 89(1H, dd, J=8.6, 1.5Hz), 7. 61(2H, d, J=8.6Hz), 7. 50-7. 39(4H, m), 7. 27(1H, d, J=8.6Hz), 7. 13(2H, d, J=8.6Hz), 7. 04(1H, dd, J=8.2, 2.6Hz), 5. 04(2H, s), 4. 28(1H, m), 4. 11(2H, t, J=6.3Hz), 3. 57(2H, t, J=6.3Hz), 2. 38-2. 17(2H, m), 2. 00-1. 79(6H, m),
Purity > 90% (NMR)		1.70-1.59(1H, m), 1.52-1.16(3 H, m)
MS 611 (M+1)		

Table 222

Ex.	HCV polymerase	Ex.	HCV polymerase
No.	inhibitory activity	No.	inhibitory activity
	IC ₅₀ [µM]		IC ₅₀ [μM]
340	340 0.017		0.014
341	0. 025	361	0. 028
342	0.015	362	0. 020
343	0. 017	363	0. 11
344	0.016	364	0. 12
345	0. 012	365	0. 020
346	0. 025	366	0. 024
347	0. 022	367	0. 011
348	0. 013	368	0. 024
349	0. 021	369	0. 022
350	0. 020	370	0. 017
351	0. 019	371	0.015
352	0. 013	372	0. 033
353	0. 023	373	0. 013
354	0.013	374	0. 013
355	0. 015	375	0. 012
356	0. 016	376	0.014
357	0.019	377	0. 012
358	0.017	378	0. 018
359	0.015	379	0. 021

Table 223

Ex.	HCV polymerase	Ex.	HCV polymerase
No.	inhibitory activity	No.	inhibitory activity
	IC ₅₀ [μM]		IC ₅₀ [μM]
380	0. 023	409	0. 020
381	0.011	410	0. 018
382	0.015	411	0. 015
383	0.013	412	0.019
384	0.016	413	0. 026
385	0. 019	414	0.024
386	0.018	415	0.019
387	0. 025	416	0. 024
388	0. 020	417	0.029
389	0.012	418	0.016
390	0.014	419	0. 021
391	0.017	420	0. 015
392	0. 014	421	0. 017
393	0. 011	422	0. 017
394	0. 019	423	0.017
395	0.016	424	0. 020
396	0. 025	425	0. 026
397	0. 037	426	0. 053
398	0.077	427	0. 020
399	0. 032	428	0. 026

Table 224

Ex. No.	HCV polymerase inhibitory activity IC_{50} [μM]	Ex. No.	HCV polymerase inhibitory activity IC ₅₀ [μM]
429	0. 017	442	0. 024
430	0.017	443	0. 030
431	0.015	445	0. 33
432	0. 022	446	0. 016
433	0.014	502	0.024
434	0. 011	503	0. 196
435	0.012	601	0. 32
436	0.026	701	0. 052
440	0. 070		

Example N	10.	341
но	HCI CI	= } _ 0
Purity	>90% (N	MR)
MS	662 (M+1)

1H NMR(δ) ppm

300MHz, DMSO-d6
8. 29 (1H, d, J=1. 5Hz), 8. 25 (1H, d, J=8. 7Hz), 8. 03 (1H, dd, J=8. 7Hz), 7. 72and7. 22 (4H, Abq, J=8. 8Hz), 7. 67 (1H, d, J=1. 5Hz), 7. 52 (4H, s), 7. 49 (1H, dd, J=7. 91. 5Hz), 7. 43 (1H, d, J=7. 9Hz), 4. 46 (1H, brs), 4. 35 (1H, brt, J=12. 4Hz), 3. 62 (1H, brs), 3. 06 (1H, brs), 2. 79 (1H, brs), 2. 38-2. 20 (2H, brm), 2. 08-1. 81 (4H, brm), 1. 77-1. 52 (4H, brm), 1. 46-1. 20 (3H, brm), 1. 19-1. 00 (2H, brm), 0. 94and0. 92 (tota13H, each s)

Example No. 342	1H NMR(δ) ppm
Ho Ho Ho I	300Mz, DMSO-d6 8. 28 (1H, d, J=1. 5Hz), 8. 26 (1H, d, J=1. 8Hz), 8. 19 (1H, d, J=8. 8Hz), 8. 07 (1H, dd, J=7. 7, 1. 8Hz), 8. 00 (1H, dd, J=8. 8, 1. 5Hz), 7. 70 and 7. 22 (4H, Abq, J=8. 8Hz), 7. 56-7. 50 (1H, m), 7. 56 (4H, s), 5. 17 (2H, s), 4. 33 (1H, brt, J=12. 5Hz), 2. 05 (3H, s), 2. 37-2. 20 (2H, brm), 2. 06-1. 80 (4H, brm), 1. 70-1. 60 (1H, brm), 1. 50-1. 20 (3H
Purity > 9 0 % (NMR)	, brm)
MS 679 (M+1)	

Example No. 344	1H NMR(δ) ppm
HO HCI	300MHz, DMSO-d6 8. 30 (1H, s), 8. 23 (1H, d, J=8. 7H z), 8. 02 (1H, d, J=8. 4Hz), 7. 71 (2H, d, J=8. 7Hz), 7. 55-7. 15 (8H, m), 7. 07 (1H, dd, J=8. 4Hz, 3. 0Hz), 5. 07 (2H, s), 4. 35 (1H, m), 4. 1 7 (2H, t, J=4. 5Hz), 3. 69 (2H, t, J =4. 5Hz), 3. 32 (3H, s), 2. 40-2. 1 5 (2H, m), 2. 10-1. 80 (4H, m), 1. 7 5-1. 60 (1H, m), 1. 50-1. 20 (3H, m)
Purity > 90% (NMR)	
MS 611 (M+1)	

Example No. 345	1H NMR(δ) ppm
HCI CI 300MHz, DMSO-d6 8. 29 (1H, d, J=1.5Hz), 8. 22 (1H, d, J=8.7Hz), 8. 01 (1H, d, J=8.7Hz), 7. 50-7. 15 (8H, m), 7. 07 (1H, dd, J=8.4 Hz, 2.4Hz), 5. 07 (2H, s), 4. 35 (1 H, m), 4. 17 (2H, t, J=4.2Hz), 3. 76 (2H, t, J=4.5Hz), 3. 65-3. 40 (4 H, m), 3. 25 (3H, s), 2. 40-2. 20 (2 H, m), 2. 10-1. 80 (4H, m), 1. 75-1. 65 (1H, m), 1. 65-1. 20 (3H, m)	
Purity > 90% (NMR)	× 2 * 8
MS 655 (M+1)	

Example No.	346 1H NMR(δ) ppm
HO 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	300Mz, DMSO-d6 8. 26 (1H, d, J=1. 9Hz), 8. 23 (1H, d, J=1. 5Hz), 8. 08-8. 02 (2H, m), 7. 91 (1H, dd, J=8. 7, 1. 5Hz), 7. 6 3and7. 16 (4H, Abq, J=8. 9Hz), 7. 56-7. 51 (5H, m), 5. 15 (2H, s), 4. 29 (1H, brt, J=11. 7Hz), 2. 96 (2H, d, J=6. 9Hz), 2. 37-2. 12 (3H, m), 2. 00-1. 79 (4H, brm), 1. 71-1. 6 0 (1H, brm) 1. 49-1. 19 (3H, brm), 0. 97and0. 95 (total6H, each s)
Purity > 90% (NMR)	¥ v
MS 621 (M+1)	

Example No.	347
но 11 11 11 11 11 11 11 11 11 11 11 11 11	
Purity > 90%	(NMR)
MS 634 (M+1)

300Mz, DMSO-d6 8. 26(1H, s), 8. 22(1H, s), 8. 06(1H, s), 8. 05(1H, d, J=8. 0Hz), 7. 94and7. 85(2H, ABq, J=8. 8Hz), 7. 59and7. 15(4H, A'B'q, J=8. 6Hz), 7. 52(4H, s), 7. 44(1H, d, J=8. 0Hz), 5. 12(2H, s), 4. 27(1H, brt, J=11. 4Hz), 2. 38-2. 18(2H, brm), 1. 97-1. 77(4H, brm), 1. 70-1. 59(1H, brm), 1. 49-1. 17(3H, brm)

Example No. 348	1H NMR(δ) ppm
HCI CI OH OH	300MHz, DMSO-d6 8. 32(1H, s), 8. 29(1H, d, J=9. 0Hz), 8. 06(1H, d, J=8. 7Hz), 7. 74(2H, d, J=9. 0Hz), 7. 72(1H, brs), 7. 60-7. 45(5H, m), 7. 42(1H, d, J=7. 8Hz), 7. 24(2H, d, J=8. 7Hz), 5. 15(2H, s), 4. 37(1H, m), 4. 00-3. 10(6H, m), 2. 40-2. 18(2H, m), 2. 15-1. 95(2H, m), 1. 90-1. 80(2H, m), 1. 75-1. 20(6H, m)
Purity > 90% (NMR)	
MS 680 (M+1)	

Example No.	350	1H NMR(δ) ppm
HGI HGI	CI O N H	300MHz, DMSO-d6 8. 36 (1H, d, J=7. 7Hz), 8. 29 (1H, s), 8. 23 (1H, d, J=8. 8Hz), 8. 02 (1H, d, J=8. 6Hz), 7. 94 (1H, d, J=7. 9Hz), 7. 84 (1H, d, J=1. 6Hz), 7. 80-7. 65 (3H, m), 7. 53 (4H, s), 5. 15 (2H, s), 4. 34 (1H, m), 4. 12 (1H, m), 2. 35-2. 20 (2H, m), 2. 10-1. 60 (5H, m), 1. 50-1. 20 (3H, m), 1. 17 (6H, d, J=6. 5Hz)
Purity > 9 0 9	% (NMR)	
MS 62	2 (M+1)	

Example No. 351	1H NMR(δ) ppm
HCI NO NO NO NO NO NO NO NO NO NO NO NO NO	300MHz, DMSO-d6 8. 29(1H, s), 8. 24(1H, d, J=8. 8H z), 8. 02(1H, d, J=8. 6Hz), 7. 80- 7. 65(3H, m), 7. 55-7. 45(5H, m), 7. 32(1H, d, J=1. 5Hz), 7. 22(2H, d, J=8. 8Hz), 5. 13(2H, s), 4. 35(1H, m), 3. 60(2H, m), 3. 33(2H, m), 2. 40-2. 15(2H, m), 2. 10-1. 15(14H, m)
Purity > 90% (NMR)	* *
MS 648 (M+1)	

*	Example No. 353	1H NMR(δ) ppm
	2HG1	300MHz, DMSO-d6 8. 41 (1H, s), 8. 33-8. 29 (2H, m), 8. 16 (1H, d, J=8. 2Hz), 8. 07 (1H, d, J=8. 6Hz), 7. 77 (2H, d, J=8. 7H z), 7. 62 (1H, d, J=8. 0Hz), 7. 59- 7. 51 (4H, m), 7. 28 (2H, d, J=8. 8H z), 5. 21 (2H, s), 4. 56 (2H, s), 4. 37 (1H, m), 2. 40-2. 18 (2H, m), 2. 15-1. 95 (2H, m), 1. 90-1. 80 (2H, m), 1. 75-1. 55 (1H, m), 1. 50-1. 2 0 (9H, m)
	Purity 約90% (NMR)	
	MS 634 (M+1)	

Example No. 354	1H NMR(δ) ppm
HCI CI NO OH	300MHz, DMSO-d6 8. 31 (1H, s), 8. 25 (1H, d, J=9. 0H z), 8. 03 (1H, d, J=8. 7Hz), 7. 76- 7. 71 (3H, m), 7. 51-7. 47 (5H, m), 7. 33 (1H, s), 7. 23 (2H, d, J=9. 0H z), 5. 14 (2H, s), 4. 36 (1H, m), 4. 02 (1H, m), 3. 75 (1H, m), 3. 56 (1H , m), 3. 22 (2H, m), 2. 40-2. 18 (2H , m), 2. 15-1. 95 (2H, m), 1. 90-1. 55 (5H, m), 1. 50-1. 20 (5H, m)
Purity > 90% (NMR)	
MS 664 (M+1)	

Example No. 356

Purity > 90% (NMR)

MS 671(M+1)

1H NMR(δ) ppm

300Mz, DMSO-d6 9. 30 (1H, t, J=5. 9Hz), 8. 54 (2H, d, J=5. 9Hz), 8. 22 (1H, s), 8. 02-7. 79 (5H, m), 7. 59 and 7. 12 (4H, A Bq, J=8. 6Hz), 7. 55 (4H, s), 7. 37 (2H, d, J=5. 9Hz), 5. 15 (2H, s), 4. 54 (2H, d, J=5. 7Hz), 4. 26 (1H, b rt, J=12. 8Hz), 2. 36-2. 18 (2H, b rm), 1. 97-1. 78 (4H, brm), 1. 70-1. 60 (1H, brm), 1. 47-1. 17 (3H, b rm)

Example No. 357

Purity > 90% (NMR)

MS 608(M+1)

1H NMR(δ) ppm

300Mz, DMSO-d6 8. 31 (1H, d, J=1.5Hz), 8. 43 (1H, d, J=8.4Hz), 8. 03 (1H, dd, J=8.4, 1.5Hz), 7. 74 (1H, d, J=8.1Hz), 7. 73 and 7. 23 (4H, ABq, J=9.0Hz), 7. 54-7.51 (5H, m), 7. 37 (1H, d, J=1.8Hz), 5. 14 (2H, s), 4. 36 (1H, brt, J=12.1Hz), 2. 98 (6H, brs), 2. 37-2. 20 (2H, brm), 2. 08-1. 8 1 (4H, brm), 1. 70-1. 60 (1H, brm), 1. 50-1. 21 (3H, brm)

1H NMR(δ) ppm

300MHz, DMSO-d6 8. 33 (1H, s), 8. 31 (1H, d, J=8. 7H z), 8. 14 (1H, s), 8. 07 (1H, d, J=8 .7Hz), 7. 92 (1H, d, J=8. 0Hz), 7. 76 (2H, d, J=8. 7Hz), 7. 52-7. 40 (5H, m), 7. 31-7. 26 (3H, m), 5. 15 (2H, s), 4. 37 (1H, m), 2. 40-2. 18 (2H, m), 2. 15-1. 95 (2H, m), 1. 90-1. 80 (2H, m), 1. 75-1. 55 (1H, m), 1. 50-1. 20 (3H, m)

Example No. 359	IH NMR(δ) ppm
HO HCI N O S N O O O O O O O O O O O O	300MHz, DMSO-d6 8. 31 (1H, s), 8. 25 (1H, d, J=8. 7H z), 8. 10-7. 90 (2H, m), 7. 82 (1H, dd, J=7. 8Hz, 1. 8Hz), 7. 72 (2H, d, J=9. 0Hz), 7. 63 (1H, d, J=8. 1Hz), 7. 23 (2H, d, J=9. 0Hz), 5. 25 (2H, s), 4. 34 (1H, m), 3. 65-3. 50 (1H, m), 3. 20-3. 05 (2H, m), 2. 90-2. 75 (2H, m), 2. 40-2. 15 (2H, m), 2. 10-1. 10 (12H. m)
Purity > 90% (NMR)	**
MS 700 (M+1)	*

Example 1	No.	360	1H NMR(δ) ppm
но	HGI N N		300MHz, DMSO-d6 8. 33 (1H, s), 8. 30 (1H, d, J=8. 5H z), 8. 06 (1H, d, J=10. 1Hz), 8. 80 -8. 65 (3H, m), 8. 60-8. 45 (3H, m), 7. 42 (1H, d, J=7. 8Hz), 7. 35-7. 15 (4H, m), 5. 15 (2H, s), 4. 36 (1H, m), 3. 01, 2. 97 (6H, s), 2. 40-2. 15 (2H, m), 2. 10-1. 75 (4H, m), 1. 70-1. 55 (1H, m), 1. 50-1. 20 (3H, m)
Purity	>90% (NM	R)	
MS	592 (M+1)		

Example No. 361	1H NMR(δ) ppm
HO HCI	300MHz, DMSO-d6 8. 35-8. 20(2H, m), 8. 05(1H, d, J =8. 7Hz), 8. 80-8. 65(3H, m), 7. 6 0-7. 40(3H, m), 7. 40-7. 30(5H, m), 5. 17(2H, s), 4. 35(1H, m), 3. 0 1, 2. 97(6H, s), 2. 40-2. 15(2H, m), 2. 10-1. 80(4H, m), 1. 70-1. 20 (4H, m)
Purity > 9 0 % (NMR)	
MS 592 (M+1)	X

Example No. 362	1H NMR(δ) ppm
HO HCI S O O O O O O O O O O O O O O O O O O	300MHz, DMSO-d6 8. 33(1H, s), 8. 29(1H, d, J=8. 7Hz), 8. 06(1H, d, J=8. 7Hz), 7. 79(2H, d, J=9. 0Hz), 7. 76(1H, d, J=9. 0Hz), 7. 60(1H, d, J=8. 1Hz), 7. 53(1H, dd, J=1. 7Hz, 8. 0Hz), 7. 3 5(2H, d, J=8. 7Hz), 6. 85-6. 80(2H, m), 5. 29(2H, s), 4. 38(1H, m), 3. 01, 2. 96(6H, s), 2. 40-2. 18(2H, m), 2. 15-1. 95(2H, m), 1. 90-1. 80(2H, m), 1. 75-1. 55(1H, m), 1
Purity > 90% (NMR)	. 50-1. 20 (3H, m)
MS 614 (M+1)	

Example No. 365	1H NMR(δ) ppm
HO HCI	300MHz, DMSO-d6 8. 28(1H, s), 8. 23(1H, s), 8. 17(1H, d, J=8. 7Hz), 8. 00(2H, t, J=6 .9Hz), 7. 69(2H, d, J=8. 4Hz), 7. 60-7. 45(5H, m), 7. 21(2H, d, J=8 .4Hz), 7. 05(1H, s)5. 19(2H, s), 4. 33(1H, m), 2. 41(3H, s), 2. 40- 2. 20(2H, m), 2. 10-1. 80(4H, m), 1. 70-1. 60(1H, m), 1. 50-1. 20(3 H, m)
Purity > 90% (NMR)	
MS 618 (M+1)	

Example N	Jo. 36	8
но	HCI NO CI	
Purity	>90% (NMR)	E
MS	562 (M+1)	

300Mz, DMSO-d6
8. 30 (1H, d, J=1. 5Hz), 8. 25 (1H, d, J=8. 6Hz), 8. 04 (1H, dd, J=8. 6, 1. 5Hz), 7. 93 and 7. 67 (4H, ABq, J=8. 1Hz), 7. 80 (1H, d, J=2. 2Hz), 7. 72 and 7. 21 (4H, A'B'q, J=8. 6Hz), 7. 60 (1H, dd, J=8. 1, 2. 2Hz), 7. 44 (1H, d, J=8. 1Hz), 5. 13 (2H, s), 4. 34 (1H, brt, J=11. 7Hz), 2. 37-2. 19 (2H, brm), 2. 09-1. 80 (4H, brm), 1. 72-1. 60 (1H, brm), 1. 50-1. 21 (3H, brm)

Example No.	369
HOI NO	H GI
Purity >90% (1	NMR)
MS 605 (M+	1)

1H NMR(δ) ppm

300Mz, DMSO-d6 8. 30 (1H, d, J=1. 5Hz), 8. 25 (1H, d, J=8. 6Hz), 8. 16and7. 72 (4H, A Bq, J=8. 4Hz), 8. 13 (1H, dd, J=8. 6, 1. 5Hz), 7. 80 (1Hd, J=2. 2Hz), 7. 70and7. 24 (4H, A'B'q, J=8. 8Hz), 7. 61 (1H, dd, J=8. 1, 2. 2Hz), 7. 48 (1H, d, J=8. 1Hz), 5. 17 (2H, s), 4. 33 (1H, brt, J=12. 1Hz), 2. 36-2. 18 (2H, brm), 2. 08-1. 77 (4H, brm), 1. 69-1. 57 (1H, brm), 1. 49-1. 17 (3H, brm)

1H NMR(δ) ppm

300MHz, DMSO-d6 10.94(1H, brs), 8.33(1H, s), 8. 27(1H, d, J=8.7Hz), 8.04(1H, d, J=8.7Hz), 7.74(2H, d, J=8.4Hz), 7.56-7.29(6H, m), 7.23(2H, d, J=8.7Hz), 7.13(1H, d, J=8.7Hz), 5.08(2H, s), 4.51(2H, brs), 4. 36(1H, m), 3.94(1H, brs), 3.75-3.00(6H, m), 3.20-1.20(14H, m)

Example N	٠o.		371	
Ho	HCI F	CI CI		
Purity	> 9	0% (N	MR)	=.
MS		652 (M+1)	ì

300MHz, DMSO-d6
8. 31 (1H, d, J=1.5Hz), 8. 17 (1H, d, J=9.0Hz), 7. 99 (1H, dd, J=8.7 Hz, 1.4Hz), 7. 70-7. 55 (2H, m), 7. 50-7. 30 (6H, m), 7. 19 (1H, dd, J=12.0Hz, 2.2Hz), 7. 06 (1H, dd, J=8.6Hz, 2.2Hz), 5. 08 (2H, 4. 10 (1H, m), 3. 68 (2H, brt, J=5.2), 2. 50 (2H, brt, J=1.8Hz), 2. 30-2. 10 (2H, m), 2. 00-1. 75 (8H, m), 1. 70-1. 55 (1H, m), 1. 50-1. 20 (3H, m)

Example 1	No.	372
H0 1	HCI F	01
Purity	>90% (NMR)
MS	626 (M	+1)

1H NMR(δ) ppm

300Mz, DMSO-d6 8. 29 (1H, d, J=1.5Hz), 8. 11 (1H, d, J=8.6Hz), 7. 96 (1H, dd, J=8.6, 1.5Hz), 7. 89 (1H, s), 7. 78 and 7. 56 (4H, ABq, J=8.4Hz), 7. 69 (1H, s), 7. 66 (1H, t, J=8.8Hz), 7. 31 (1H, dd, J=12.1, 2.2Hz), 7. 18 (1H, dd, J=8.8, 2.2Hz), 5. 37 (2H, s), 4. 08 (1H, brt, J=11.0Hz), 3. 0 2 (3H, s), 2. 96 (3H, s), 2. 31-2. 1 4 (2H, brm), 1. 95-1. 77 (4H, brm, 1. 69-1. 59 (31H, brm), 1. 46-1. 18 (3H, brm)

1H NMR(δ) ppm

300MHz, DMSO-d6
11. 40(1H, brs), 9. 25(2H, brs),
8. 29(1H, d, J=1. 3Hz), 8. 12-8. 0
9(2H, m), 7. 96(1H, d, J=8. 7Hz),
7. 88(1H, dd, J=1. 8Hz, 8. 1Hz), 7
.67-7. 63(2H, m), 7. 56(2H, d, J=
8. 7Hz), 7. 51(2H, d, J=8. 7Hz), 7
.17(1H, d, J=12. 0Hz), 7. 05(1H, d, J=8. 6Hz), 5. 16(2H, s), 4. 05(1H, m), 2. 40-2. 10(2H, m), 2. 001. 75(4H, m), 1. 70-1. 55(1H, m),
1. 50-1. 20(3H, m)

MS	639 (M+1)	-
Purity	>90% (NMR)	
но	HC1 F O H	> 0
Example	No.	374

300MHz, DMSO-d6
13. 21 (1H, brs), 8. 31 (1H, d, J=1.4Hz), 8. 18-8. 15 (2H, m), 7. 99 (1H, d, J=8. 7Hz), 7. 94 (1H, dd, J=1.8Hz, 8. 0Hz), 7. 70-7. 53 (6H, m), 7. 17 (1H, d, J=12. 0Hz), 7. 05 (1H, d, J=8. 6Hz), 5. 20 (2H, s), 4. 09 (1H, m), 2. 40-2. 10 (2H, m), 2. 00-1. 75 (4H, m), 1. 70-1. 55 (1H, m), 1. 50-1. 20 (3H, m)

1H NMR(δ) ppm

300MHz, DMSO-d6 8. 32 (1H, d, J=1. 5Hz), 8. 23 (1H, d, J=1. 5Hz), 8. 19 (1H, d, J=9. 0Hz), 8. 03-7. 98 (2H, m), 7. 68 (1H, t, J=8. 4Hz), 7. 60 (1H, d, J=8. 1Hz), 7. 56 (2H, d, J=9. 3Hz), 7. 53 (2H, d, J=9. 0Hz), 7. 22 (1H, dd, J=2. 1Hz, 12. 0Hz), 7. 09 (1H, dd, J=2. 1Hz, 8. 4Hz), 5. 21 (2H, s), 4. 12 (1H, m), 2. 40-2. 10 (2H, m), 2. 00-1. 75 (4H, m), 1. 70-1. 55 (1H, m), 1. 50-1. 20 (3H, m)

Example N	io.	376
но	HCI F O	H _z s o
Purity	> 9 0 %	(NMR)
MS	655 (N	(+1)

1H NMR(δ) ppm

300MHz, DMSO-d6
13. 61 (1H, brs), 8. 34-8. 30 (2H, m), 8. 21 (1H, d, J=8. 7Hz), 8. 07 (1H, dd, J=1. 8Hz, 8. 1Hz), 8. 02 (1H, dd, J=1. 5Hz, 8. 7Hz), 7. 69 (1H, t, J=8. 4Hz), 7. 57-7. 49 (5H, m), 7. 22 (1H, dd, J=2. 7Hz, 12. 0Hz), 7. 09 (1H, dd, J=2. 4Hz, 9. 0Hz), 5. 19 (2H, s), 4. 12 (1H, m), 2. 40-2. 10 (2H, m), 2. 00-1. 75 (4H, m), 1. 70-1. 55 (1H, m), 1. 50-1. 20 (3H, m)

Example	No.	٠ نر	377
**		CI	
0	HCI F		
но	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		
a- *-			H .
he .		0"	
	. *		
Purity	> 9 0 %	6 (NMR)
MS	638	8 (M+1)	

300Mz, DMSO-d6 8. 60 (IH, d, J=4. 5Hz), 8. 29 (IH, d, J=1. 5Hz), 8. 14 (1H, d, J=8. 9Hz), 8. 13 (1H, d, J=1. 5Hz), 7. 98 (1H, dd, J=8. 9, 1. 5Hz), 7. 94 (1H, dd, J=8. 1, 1. 5Hz), 7. 64 (IH, t, J=8. 7Hz), 7. 52 and 7. 49 (4H, ABq, J=9. 0Hz), 7. 46 (1H, d, J=8. 1Hz), 7. 18 (1H, dd, J=12. 1, 2. 3Hz), 7. 05 (1H, dd, J=8. 7, 2. 3Hz), 5. 13 (2H, s), 4. 08 (1H, brt, J=12. 1H), 2. 95-2. 84 (1H, m), 2. 31-2. 14 (2H, brm), 1. 97-1. 78 (4H, brm), 1. 72-1. 59 (1H, brm), 1. 47-1. 21 (3H, brm), 0. 76-0. 58 (4H, m)

Example 1	No.	378
но	HCI F O H	ם
Purity	>90% (NMR))
MS	652 (M+1)	*

1H NMR(δ) ppm

300Mz, DMSO-d6
8. 77 (1H, d, J=1. 4Hz), 8. 30 (1H, d, J=1. 4Hz), 8. 16 (1H, d, J=1. 8Hz), 8. 13 (1H, d, J=8. 4Hz), 7. 98 (2H, dd, J=8. 4, 1. 8Hz), 7. 65 (1H, t, J=8. 4Hz), 7. 53 and 7. 49 (4H, A Bq, J=8. 8Hz), 7. 47 (1H, d, J=7. 7 Hz), 7. 18 (1H, dd, J=12. 1, 2. 2Hz), 7. 05 (1H, dd, J=8. 4, 2. 2Hz), 5. 13 (2H, s), 4. 53-4. 40 (1H, m), 4. 09 (1H, brt, J=12. 8Hz), 2. 31-2. 02 (6H, brm,), 1. 96-1. 80 (4H, brm), 1. 78-1. 60 (3H, brm), 1. 47-1. 21 (3H, brm)

Example	No.	379
ной	HCI F O	
Purity	>90% (NN	лR)
MS	654 (M+1)	

1H NMR(δ) ppm

300Mz, DMSO-d6 8. 29 (1H, d, J=1. 1Hz), 8. 11 (1H, d, J=1. 5Hz), 8. 11 (1H, d, J=8. 8Hz), 7. 98-7. 91 (2H, m), 7. 89 (1H, s), 7. 63 (1H, t, J=8. 8Hz), 7. 52a nd7. 48 (4H, ABq, J=8. 6Hz), 7. 44 (1H, d, J=8. 1Hz), 7. 17 (1H, dd, J=12. 1, 2. 2Hz), 7. 04 (1H, dd, J=8. 8, 2. 2Hz), 5. 12 (2H, s), 4. 07 (1H, brt, J=12. 4Hz), 2. 33-2. 14 (2H, brm), 1. 96-1. 79 (4H, brm), 1. 70-1. 60 (1H, brm), 1. 48-1. 21 (3H, brm), 1. 41 (9H, s)

Example	No.	380
HO	HCI F O H	≺
Purity	>90% (NMR)	
MS	654 (M+1)	

300Mz, DMSO-d6 8. 62 (1H, t, J=5. 5Hz), 8. 30 (1H, d, J=1. 5Hz), 8. 17 (1H, d, J=1. 8Hz), 8. 14 (1H, d, J=8. 8Hz), 7. 98 (1H, dd, J=8. 1, 1. 8Hz), 7. 64 (1H, t, J=8. 8Hz), 7. 52 and 7. 50 (4H, A Bq, J=8. 8Hz), 7. 48 (1H, d, J=8. 1 Hz), 7. 18 (1H, dd, J=12. 1, 2. 2Hz), 7. 05 (1H, dd, J=8. 8, 2. 2Hz), 5. 14 (2H, s), 4. 08 (1H, brt, J=12. 1Hz), 3. 13 (1H, t, J=6. 2Hz), 2. 3 1-2. 14 (2H, brm), 1. 97-1. 78 (5H, brm), 1. 70-1. 60 (1H, brm), 1. 47-1. 21 (3H, brm), 0. 92 (3H, s), 0. 90 (3H, s)

Purity > 90% (NMR) MS 656(M+1)	Example	No.	381
	HO)	
MS 656 (M+1)	Purity	1) %000	NMR)
	MS	656 (M+	1)

1H NMR(δ) ppm

300Mz, DMSO-d6
8. 29(1H, d, J=1. 5Hz), 8. 27(1H, d, J=8. 3Hz), 8. 18(1H, d, J=1. 9Hz), 8. 13(1H, d, J=8. 7Hz), 8. 01-7. 96(2H, m), 7. 64(1H, t, J=8. 7Hz), 7. 52and7. 49(1H, ABq, J=8. 8Hz), 7. 49(1H, d, J=7. 9Hz), 7. 18(1H, dd, J=12. 1, 2. 3Hz), 7. 05(1H, dd, J=8. 7, 2. 3Hz), 5. 13(2H, s), 4. 12-4. 00(2H, m), 3. 52-3. 34(2H, m), 2. 31-2. 14(2H, brm), 1. 97-1. 79(4H, brm), 1. 71-1. 60(1H, brm), 1. 48-1. 21(3H, m), 1. 17 and1. 15(total3H, each s)

1H NMR(δ) ppm

300Mz, DMSO-d6 8. 30(1H, d, J=1.5Hz), 8. 13(1H, d, J=8.8Hz), 8. 09(1H, d, J=1.5Hz), 7. 98(1H, dd, J=8.8, 1.5Hz), 7. 86(1H, dd, J=8.1, 1.5Hz), 7. 6 4(1H, J=8.8Hz), 7. 55-7. 47(5H, m), 7. 17(1H, dd, J=12.1, 2.2Hz), 7. 05(1H, dd, J=8.8, 2.2Hz), 5. 14(2H, s), 4. 08(1H, brt, J=12.8 Hz), 3. 75(3H, s), 2. 32-2. 14(2H, brm), 1. 96-1. 78(4H, brm), 1. 70-1. 59(1H, brm), 1. 47-1. 21(3H, brm)

300Mz, DMSO-d6 8. 57 (1H, t, J=5. 5Hz), 8. 29 (1H, d, J=1. 4Hz), 8. 19 (1H, d, J=1. 5Hz), 8. 12 (1H, d, J=9. 2Hz), 8. 01-7. 95 (2H, m), 7. 64 (1H, t, J=8. 8Hz), 7. 53 and 7. 50 (4H, ABq, J=8. 8Hz), 7. 48 (1H, d, J=7. 7Hz), 7. 17 (1H, dd, J=12. 1, 2. 2Hz), 7. 04 (1H, dd, J=8. 8, 2. 2Hz), 5. 14 (2H, s), 4. 08 (1H, brt, J=13. 9Hz), 3. 7 0-3. 66 (1H, m), 3. 48-3. 36 (3H, m), 3. 28-3. 20 (1H, m), 2. 32-2. 13 (2H, brm), 1. 96-1. 79 (4H, brm), 1. 71-1. 60 (1H, brm), 1. 47-1. 19 (3H, brm)

Example No.	384
HCI F	
Purity > 90% (NM	R)
MS 640 (M+1)	

1H NMR(δ) ppm

300Mz, DMSO-d6
8. 30(1H, d, J=1.5Hz), 8. 14(1H, d, J=8.4Hz), 7. 98(1H, dd, J=8.4, 1.5Hz), 7. 68(1H, brs), 7. 63(1H, t, J=8.4Hz), 7. 51(5H, s), 7. 43(1H, d, J=8.1Hz), 7. 17(1H, dd, J=12.5, 1.8Hz), 7. 03(1H, brt, J=11.4Hz), 3. 50and3. 30(total2H, each brs), 2. 97(3H, brs), 2. 33-2. 13(2H, brm), 1. 96-1. 79(4H, brm), 1. 70-1. 59(1H, brm), 1. 47-1. 03(6H, brm),

Example No		385
но		
Purity	> 9 0 %	(NMR)
MS	654 (N	(+1)

1H NMR(δ) ppm

300Mz, DMSO-d6
8. 29(1H, d, J=1. 5Hz), 8. 12(1H, d, J=8. 8Hz), 7. 97(1H, dd, J=8. 8, 1. 5Hz), 7. 72-7. 60(2H, m), 7. 55-7. 42(6H, m), 7. 16(1H, d, J=11. 7Hz), 7. 03(1H, d, J=8. 4Hz), 5. 15(2H, s), 4. 07(1H, brt, J=12. 5Hz), 3. 44and3. 22(total2H, each s), 2. 97(3H, brs), 2. 32-2. 13(2H, brm), 1. 72-1. 50(3H, brm), 1. 47-1. 23(3H, brm), 0. 93and0. 72(total3H, each brs)

Example	No.	386
но	HCI F O	' —
Purity	>90% (NMR)	
MS	654 (M+1)	

1H NMR(δ) ppm

300Mz, DMSO-d6 8. 29 (1H, d, J=1.5Hz), 8. 12 (1H, d, J=8.7Hz), 7. 97 (1H, dd, J=8.7, 1.5Hz) 7. 74-7. 60 (2H, m), 7. 54-7. 42 (6H, m), 7. 17 (1H, dd, J=12.1, 2.2Hz), 7. 02 (1H, dd, J=8.3, 2.2Hz), 5. 15 (2H, s), 4. 06 (1H, brt, J=12.8Hz), 3. 92 (1H, brs), 2. 85 (3H, brs), 2. 32-2. 14 (2H, brm), 1. 96-1. 79 (4H, brm), 1. 70-1. 59 (1H, brm), 1. 46-1. 07 (3H, brm), 1. 15 (6H, brs)

Example	No.	387
но	HCI F CI	
Purity	>90% (NM	IR)
MS	694 (M+1)	

1H NMR(δ) ppm

300Mz, DMSO-d6 8. 29(1H, s), 8. 14and7. 97(2H, A Bq, J=8. 7Hz), 7. 63(1H, s), 7. 63 (1H, t, J=8. 7Hz), 7. 51-7. 41(6H, m), 7. 16(1H, dd, J=12. 1, 1. 9Hz), 7. 02(1H, dd, J=8. 7, 1. 9Hz), 5. 16(2H, s), 4. 26(2H, brs), 4. 07 (1H, brt, J=12. 1Hz), 2. 32-2. 14 (2H, brm), 1. 97-1. 78(5H, brm) 1. 70-1. 15(9H, brm), 1. 24(3H, s), 1. 21(3H, s)

1H NMR(δ) ppm

300MHz, DMSO-d6 8. 58 (1H, m), 8. 29 (1H, s), 8. 20-8. 10 (2H, m), 8. 05-7. 90 (2H, m), 7. 64 (1H<t, J=8. 4Hz), 7. 60-7. 4 0 (5H, m), 7. 15 (1H, d, J=12. 3Hz), 7. 04 (1H, d, J=8. 4Hz), 5. 13 (2H, s), 4. 08 (1H, m), 3. 40-3. 20 (2H, m), 2. 35-2. 10 (2H, m), 2. 00-1. 20 (12H, m), 0. 91 (3H, t, J=6. 9Hz)

Example No.	389
HO HCI F	B
Purity > 90% (NM)	R)
MS 640 (M+1)	

300MHz, DMSO-d6 8. 60 (1H, m), 8. 29 (1H, s), 8. 20-7. 90 (4H, m), 7. 64 (1H, t, J=9. 0Hz), 7. 60-7. 40 (5H, m), 7. 17 (1H, d, J=12. 0Hz), 7. 04 (1H, d, J=8. 7Hz), 5. 13 (2H, s), 4. 80 (1H, m), 3. 35-3. 15 (2H, m), 2. 30-2. 05 (2H, m), 2. 00-1. 10 (10H, m), 0. 91 (3H, t, J=7. 5Hz)

Example 1	7o.		390	1H NM
ю	HCI F			300MH 8.62(8.10(7.65(0(5H, ,7.05 ,s),4 ,m),2 80(4H 45-1. .2Hz)
Purity	>90%	6 (NMR	.)	
MS	626	6(M+1)		

1H NMR(δ) ppm

300MHz, DMSO-d6 8. 62 (1H, m), 8, 30 (1H, s), 8. 20-8. 10 (2H, m), 8. 05-7. 90 (2H, m), 7. 65 (1H, t, J=8. 4Hz), 7. 60-7. 4 0 (5H, m), 7. 18 (1H, d, J=12. 0Hz), 7. 05 (1H, d, J=8. 4Hz), 5. 14 (2H, s), 4. 09 (1H, m), 3. 40-3. 20 (2H, m), 2. 35-2. 10 (2H, m), 2. 00-1. 80 (4H, m), 1. 75-1. 60 (1H, m), 1. 45-1. 20 (3H, m), 1. 15 (3H, t, J=7. 2Hz)

1H NMR(δ) ppm

400NHz, DMSO-d6 8. 54 (1H, s), 8. 31 (1H, s), 8. 19 (
1H, d, J=8. 6Hz), 8. 01 (1H, d, J=8
.6Hz), 7. 81 (1H, d, J=2. 1Hz), 7.
64 (1H, t, J=8. 4Hz), 7. 61 (1H, dd
, J=2. 3Hz, 8. 4Hz), 7. 47 (2H, d, J
=8. 6Hz), 7. 43 (2H, d, J=8. 8Hz),
7. 25 (1H, d, J=8. 4Hz), 7. 17 (1H,
dd, J=2. 3Hz, 12. 1Hz), 7. 05 (1H,
dd, J=2. 3Hz, 8. 6Hz), 5. 05 (2H, s
), 4. 12 (1H, m), 2. 96 (6H, s), 2. 4
0-2. 10 (2H, m), 2. 00-1. 75 (4H, m
), 1. 70-1. 55 (1H, m), 1. 50-1. 20
(3H, m)

Example	o. 392
но	HGI CI
Purity	>90% (NMR)
MS	683 (M+1)

1H NMR(δ) ppm 300Mz, DMSO-d6 8.79(1H, s), 8.29(1H, d, J=1.5H)z), 8. 13 (1H, d, J=8. 8Hz), 7. 98 (1H, dd, J=8. 8, 1. 5Hz), 7. 80 (1H, d, J=2. 2Hz), 7. 63 (1H, t, J=8. 4H z), 7. 61 (1H, dd, J=8. 2, 2. 2Hz), 7. 47 and 7. 43 (4H, ABq, J=8. 8Hz) , 7. 26 (1H, d, J=8. 2Hz), 7. 14 (1H , dd, J=12. 1, 2. 2Hz), 7. 02 (1H, d d, J=8. 4, 2. 2Hz), 5. 05 (2H, s), 4

.08(1H, brt, J=12.1Hz), 3.64-3.61(2H, m), 3.48-3.45(2H, m), 2. 32-2. 13 (2H, brm), 1. 96-1. 78 (4H, brm), 1.70-1.66(1H, brm), 1

. 44-1. 19 (3H, brm)

393 1H NMR(δ) ppm Example No. Purity >90% (NMR) , m) MS 613(M+1)

400MHz, DMSO-d6 8.94(1H, s), 8.31(1H, d, J=1.0H)z), 8. 18(1H, d, J=8.6Hz), 8.00(1H, dd, J=1.4Hz, 8.8Hz), 7.71(1 H, d, J=2.2Hz), 7. 66 (1H, t, J=8. 6Hz), 7. 52 (1H, dd, J=2. 4Hz, 8. 6 Hz), 7. 46 (2H, d, J=8. 6Hz), 7. 42 (2H, d, J=8. 2Hz), 7. 24(1H, d, J=8. 4Hz), 7. 16 (1H, d, J=12. 1Hz), 7. 04 (1H, dd, J=2. 4Hz, 8. 8Hz), 5 .05(2H, s), 4.13(1H, m), 2.40-2.10(2H, m), 2.00-1.75(4H, m), 1. 70-1. 55 (1H, m), 1. 50-1. 20 (3H

Example 1	No.	394
HO	HGI CI	Q NH
Purity	>90% (NMI	₹)
MS	641 (M+1)	81,

1H NMR(δ) ppm

300MHz, DMS0-d6 8. 93 (1H, s), 8. 31 (1H, d, J=1.4Hz), 8. 19(1H, d, J=8. 8Hz), 8. 01(1H, d, J=8. 7Hz), 7. 71 (1H, d, J=2 . 2Hz), 7. 66 (1H, t, J=8. 5Hz), 7. 51 (1H, dd, J=2. 2Hz, 8.4Hz), 7.46(2H, d, J=8. 6Hz), 7. 41(2H, d, J =8. 7Hz), 7. 23 (1H, d, J=8. 4Hz), 7. 16(1H, d, J=12.2Hz), 7. 05(1H), d, J=8. 7Hz), 5. 05(2H, s), 4. 13 (1H, m), 3. 12 (2H, q, J=7. 2Hz), 2 . 40-2. 10 (2H, m), 2. 00-1. 75 (4H , m), 1.70-1.60(1H, m), 1.55-1. 20(3H, m), 1.06(3H, t, J=7.2Hz)

Example N	To.	395	4	:
HO	HCI F N N N N N N N N N N N N N N N N N N	;-<		3
Purity	>90% (NMR)			
MS	655 (M+1)		7.]

300MHz, DMSO-d6 8. 83 (1H, s), 8. 32 (1H, d, J=1. 4H z), 8. 21 (1H, d, J=8. 8Hz), 8. 02 (1H, dd, J=1. 4Hz, 8. 7Hz), 7. 71 (1 H, d, J=2. 1Hz), 7. 68 (1H, t, J=8. 6Hz), 7. 49 (1H, dd, J=2. 2Hz, 8. 4 Hz), 7. 46 (2H, d, J=8. 4Hz), 7. 41 (2H, d, J=8. 6Hz), 7. 23 (1H, d, J= 8. 4Hz), 7. 17 (1H, d, J=12. 2Hz), 7. 06 (1H, d, J=8. 7Hz), 6. 30 (1H, brs), 5. 05 (2H, s), 4. 14 (1H, m), 3. 77 (1H, sept, J=6. 5Hz), 2. 40-2. 10 (2H, m), 2. 00-1. 75 (4H, m), 1. 70-1. 55 (1H, m), 1. 50-1. 20 (3 H, m), 1. 11 (6H, d, J=6. 5Hz)

1H NMR(δ) ppm

300MHz, DMSO-d6 8. 37 (1H, d, J=7. 3Hz), 8. 25 (1H, s), 8. 15 (1H, s), 7. 97 (2H, d, J=8. 8Hz), 7. 88 (1H, d, J=8. 8Hz), 7. 58-7. 47 (4H, m), 7. 31 (1H, m), 7. 11 (1H, dd, J=8. 4, 2. 2Hz), 6. 98 (1H, dd, J=8. 4, 2. 2), 5. 13 (2H, s), 4. 13 (1H, q, J=6. 6Hz), 3. 98 (1H, m), 2. 19 (2H, m), 1. 86 (4H, m) 1. 62 (1H, m) 1. 31 (3H, m), 1. 20 (6H, d, J=6. 6Hz)

Example N	0.	397
но Н		-F -N -N -N -N -N -N -N -N -N -N -N -N -N
Purity	>90% (NN	AR)
MS	642 (M+1)	

1H NMR(δ) ppm

300MHz, DMSO-d6 8. 40 (1H, d, J=7. 9Hz), 8. 28 (1H, d, J=1. 9Hz), 8. 15 (1H, d, J=1. 9Hz), 8. 11 (1H, d, J=8. 7Hz), 7. 96 (2H, m), 7. 56 (1H, t, J=8. 7Hz), 7. 45 (3H, m), 7. 18 (1H, m), 7. 08 (1H, dd, J=12. 1, 1. 9Hz), 6. 96 (1H, dd, J=8. 3, 2. 3Hz), 5. 09 (2H, s), 4. 14 (1H, m), 4. 04 (1H, m), 2. 23 (2H, m), 1. 86 (3H, m), 1. 62 (1H, m), 1. 33 (3H, m), 1. 20 (6H, d, J=6. 4Hz)

1H NMR(δ) ppm

8. 41 (1H, d, J=8. 1Hz), 8. 29 (1H, d, J=1. 5Hz), 8. 17 (1H, d, J=1. 8Hz), 8. 12 (1H, d, J=8. 4Hz), 8. 01-7. 95 (2H, m), 7. 67-7. 62 (2H, m), 7. 55-7. 51 (3H, m), 7. 19 (1H, dd, J=12. 1, 2. 2Hz), 7. 05 (1H, dd, J=8. 8, 2. 2Hz), 5. 13 (2H, s), 4. 10-4. 00 (2H, m), 2. 32-2. 13 (4H, m), 1. 71-1. 60 (1H, m), 1. 49-1. 14 (3H, m), 1. 21 (3H, s), 1. 19 (3H, s)

1H NMR(δ) ppm

300Mz, DMSO-d6 8. 39(1H, d, J=7. 7Hz), 8. 29(1H, d, J=1. 5Hz), 8. 16(1H, d, J=1. 8Hz), 8. 11(1H, d, J=8. 8Hz), 8. 00-7. 95(2H, m), 7. 69-7. 61(2H, m), 7. 54-7. 46(3H, m), 7. 18(1H, dd, J=12. 1, 2. 2Hz), 7. 04(1H, dd, J=8. 8, 2. 2Hz), 5. 13(2H, s), 4. 20-4. 02(2H, m), 2. 33-2. 13(2H, brm), 1. 97-1. 80(4H, m), 1. 72-1. 61(1H, m), 1. 44-1. 13(3H, m), 1. 21(3H, s), 1. 19(3H, s)

Example No. 400

HO ROY SOLUTION AND SOLUTIO

1H NMR(δ) ppm

300MHz, DMSO-d6 8. 39(1H, d, J=7.7Hz), 8. 29(1H, s), 8. 17(1H, d, J=1.5Hz), 8. 11(1H, d, J=8.8Hz), 7. 98(2H, m), 7. 73(2H, m), 7. 64(1H, t, J=8.4Hz), 7. 52(1H, d, J=8.0Hz), 7. 46(1H, dd, J=8.4, 1.8Hz), 7. 18(1H, dd, J=11.9, 2.0Hz), 7. 05(1H, dd, J=8.6, 2.4Hz), 5. 14(2H, s), 4. 13(2H, m), 2. 22(2H, m), 1. 88(4H, m) 1. 64(1H, m), 1. 34(3H, m), 1. 20(6H, d, J=6.6Hz)

Example No. 401	1H NMR(δ) ppm
HCI F F H	300MHz, DMSO-d6 8. 38(1H, d, J=7.8Hz), 8. 28(1H, s), 8. 20-8. 05(2H, m), 8. 00-7. 9 0(2H, m), 7. 65-7. 30(5H, m), 7. 0 9(1H, d, J=12. 3Hz), 6. 97(1H, d, J=10. 2Hz), 5. 09(2H, s), 4. 20-4 .00(2H, m), 2. 30-2. 10(2H, m), 2 .00-1. 80(4H, m), 1. 70-1. 60(1H, m), 1. 40-1. 10(3H, m), 1. 19(6H, d, J=6.6Hz)
Purity > 90% (NMR)	
MS 658 (M+1)	

Example No.	404	1H NMR(δ) pp
HO HCI F		400MHz, DMSO-d0 8. 41 (1H, d, J=7. d, J=1. 5Hz), 8. 2), 8. 17 (1H, d, 1H, dt, J=8. 8Hz, 64 (2H, m), 7. 54 Hz, 1. 9Hz), 7. 32 z, 1. 9Hz), 7. 22 z, 2. 3Hz), 7. 08), 2. 3Hz), 5. 17 , m), 2. 31-2. 14
Purity > 90% (NMR)	70 (4H, m), 1.70- 46-1.20 (3H, m),
MS 658 (M	+1)	.6Hz)

1H NMR (δ) ppm

400MHz, DMSO-d6
8. 41 (1H, d, J=7. 6Hz), 8. 32 (1H, d, J=1. 5Hz), 8. 20 (1H, d, J=8. 6Hz), 8. 17 (1H, d, J=1. 7Hz), 8. 00 (1H, dt, J=8. 8Hz, 1. 5Hz), 7. 71-7.64 (2H, m), 7. 54 (1H, dd, J=10. 3Hz, 1. 9Hz), 7. 32 (1H, dd, J=8. 2Hz, 1. 9Hz), 7. 22 (1H, dd, J=12. 1Hz, 2. 3Hz), 7. 08 (1H, dd, J=8. 6Hz), 2. 3Hz), 5. 17 (2H, s), 4. 15 (1Hz, m), 2. 31-2. 14 (2H, m), 1. 99-1.70 (4H, m), 1. 70-1. 60 (1H, m), 1. 46-1. 20 (3H, m), 1. 19 (6H, d, J=6. 6Hz)

Example 1	No.		405	1H NMR(δ) ppm
но	HCI F		°	300MHz, DMSO-d6 8. 32 (1H, s), 8. 19 (1H, d, J=9. 0H z), 8. 03-7. 98 (2H, m), 7. 75 (1H, dd, J=2. 1Hz, 8. 4Hz), 7. 67 (1H, t, J=8. 6Hz), 7. 40-7. 36 (3H, m), 7. 32 (2H, d, J=8. 4Hz), 7. 19 (1H, dd, J=2. 1Hz, 12. 3Hz), 7. 07 (1H, dd, J=2. 1Hz, 8. 7Hz), 5. 11 (2H, s), 4. 12 (1H, m), 4. 12 (1H, m), 3. 90 (2H, t, J=6. 9Hz), 2. 54 (2H, t, J=8. 1Hz), 2. 50 (3H, s), 2. 40-2. 05
Purity	> 9 0 %	(NMR)		(4H, m), 2.00-1.75(4H, m), 1.70 -1.55(1H, m), 1.50-1.20(3H, m)
MS	650	(M+1)		

Example No.	407	1H
HCI F	CI 0==0	40 8. d, Hz H, 5- .3 .2 (1
Purity > 90% (1	NMR)	, 1
MS 708 (M+	1)	

1H NMR(δ) ppm

400MHz, DMSO-d6
8. 32 (1H, d, J=1. 4Hz), 8. 20 (1H, d, J=8. 8Hz), 8. 01 (1H, dd, J=1. 6 Hz, 8. 8Hz), 7. 90 (1H, s), 7. 67 (1 H, t, J=8. 4Hz), 7. 61 (1H, s), 7. 5 5-7. 50 (4H, m), 7. 21 (1H, dd, J=2. 3Hz, 12. 0Hz), 7. 06 (1H, dd, J=2. 2Hz, 8. 7Hz), 5. 10 (2H, s), 4. 11 (1H, m), 3. 78 (2H, t, J=6. 7Hz), 3. 47 (2H, t, J=7. 4Hz), 2. 54-2. 48 (2H, m), 2. 40-2. 10 (2H, m), 2. 00 -1. 80 (4H, m), 1. 75-1. 55 (1H, m), 1. 50-1. 20 (3H, m)

Example No. 408	1H NMR(δ) ppm
HCI F CI CI CI CI CI CI CI CI CI CI CI CI CI	400MHz, DMSO-d6 8. 32 (1H, d, J=1. 6Hz), 8. 21 (1H, d, J=8. 8Hz), 8. 02 (1H, dd, J=1. 6 Hz, 8. 8Hz), 7. 76 (1H, s), 7. 68 (1 H, t, J=8. 5Hz), 7. 59 (1H, s), 7. 5 4-7. 51 (4H, m), 7. 21 (1H, dd, J=2. 4Hz, 12. 1Hz), 7. 07 (1H, dd, J=2. 4Hz, 8. 8Hz), 5. 08 (2H, s), 4. 11 (1H, m), 3. 77 (2H, t, J=6. 9Hz), 2. 47 (2H, t, J=8. 0Hz), 2. 40-2. 10 (4H, m), 2. 00-1. 80 (4H, m), 1. 70
Purity > 90% (NMR)	-1.60(1H, m), 1.45-1.20(3H, m)
MS 672 (M+1)	

Example No. 409	1H NMR(δ) ppm
0 HCI F 0 SS-N 0 SS-N 0 SS-N	300MHz, DMSO-d68. 28 (1H, d, J=1 .5Hz), 8. 20-8. 85 (4H, m), 7. 75 (1H, d, J=6. 9Hz), 7. 70-7. 45 (6H, m), 7. 13 (1H, dd, J=12. OHz, 2. 1Hz), 7. 00 (1H, dd, J=8. 7Hz), 2. 1Hz), 5. 22 (2H, s), 4. 05 (1H, m), 3. 40-3. 20 (1H, m), 2. 30-2. 10 (2H, m), 2. 00-1. 55 (5H, m), 1. 45-1. 10 (3H, m), 1. 00 (6H, d, J=6. 6Hz)
Purity > 90% (NMR)	
MS 676 (M+1)	

Example No.	410
Ho HCI F	C1
Purity >90%	(NMR)
MS 612	(M+1)

300MHz, DMSO-d6 8. 31 (1H, s), 8. 00 (1H, d, J=8. 7Hz), 7. 88 (1H, d, J=8. 7Hz), 7. 70 (1H, s), 7. 65 (1H, t, J=8. 4Hz), 7. 53 (2H, d, J=8. 4Hz), 7. 49 (2H, d, J=8. 7Hz), 7. 45-7. 41 (2H, m), 7. 16 (1H, d, J=12. 0Hz), 7. 04 (1H, d, J=8. 7Hz), 5. 14 (2H, s), 4. 68 (1H, quint, J=8. 4Hz), 3. 02, 2. 98 (6H, s), 2. 30-1. 85 (6H, m), 1. 80-1. 50 (2H, m)

Example No.		411
HCI F		-N
Purity >9	0% (NM	R)
MS	668 (M+1)	

1H NMR(δ) ppm

300MHz, DMSO-d6 8. 30(1H, s), 7. 99(1H, d, J=9. 0H z), 7. 87(1H, d, J=8. 7Hz), 7. 67(1H, s), 7. 64(1H, t, J=8. 7Hz), 7. 53(2H, d, J=8. 7Hz), 7. 49(2H, d, J=7. 5Hz), 7. 45-7. 41(2H, m), 7. 15(1H, d, J=12. 3Hz), 7. 02(1H, d, J=8. 4Hz), 5. 15(2H, s), 4. 67(1 H, quint, J=8. 7Hz), 4. 02(1H, m), 3. 76(1H, m), 3. 55(1H, m), 3. 22 (2H, m), 2. 40-1. 20(12H, m)

1H NMR(δ) ppm

300MHz, DMSO-d6
8. 38 (1H, d, J=7. 5Hz), 8. 33 (1H, s), 8. 16 (1H, s), 8. 02 (1H, d, J=8. 7Hz), 7. 98 (1H, d, J=9. 0Hz), 7. 91 (1H, d, J=8. 4Hz), 7. 67 (1H, t, J=8. 4Hz), 7. 53 (2H, d, J=8. 7Hz), 7. 48 (2H, d, J=8. 7Hz), 7. 46 (1H, d, J=8. 1Hz), 7. 18 (1H, d, J=11. 7Hz), 7. 06 (1H, d, J=8. 7Hz), 5. 13 (2H, s), 4. 70 (1H, quint, J=8. 4Hz), 4. 13 (1H, sept, J=6. 6Hz), 2. 30-1. 85 (6H, m), 1. 80-1. 50 (2H, m), 1. 16 (6H, d, J=6. 3Hz)

Purity > 90% (NMR) MS 608(M+1)	Example N	lo.	413
	но		
MS 608 (M+1)	Purity	>90% (N	MR)
	MS	608 (M+1)

300Mz, DMSO-d6 8. 39 (1H, d, J=7. 5Hz), 8. 31 (1H, d, J=1. 5Hz), 8. 16 (1H, d, J=1. 9Hz), 8. 06 (1H, dd, J=8. 8, 1. 5Hz), 7. 99-7. 95 (2H, m), 7. 76 and 7. 24 (4H, ABq, J=8. 9Hz), 7. 53 and 7. 5 0 (4H, A'B'q, J=9. 1Hz), 7. 46 (1H, d, J=8. 3Hz), 5. 14 (2H, s), 4. 94 (1H, quint, J=9. 0Hz), 4. 19-4. 0 8 (1H, m), 2. 32-2. 11 (4H, brm), 2. 10-1. 95 (2H, brm), 1. 78-1. 62 (2H, brm), 1. 26 (3H, s), 1. 18 (3H, s)

Example No. 414 HCI HCI N Purity > 90% (NMR) MS 594(M+1)

1H NMR(δ) ppm

300Mz, DMSO-d6 8. 31 (1H, d, J=1.5Hz), 8. 06 (1H, dd, J=8.7, 1.5Hz), 7. 97 (1H, d, J=8.7Hz), 7. 75 and 7. 22 (4H, ABq, J=8.9Hz), 7. 70 (1H, d, J=1.9Hz), 7. 53 (1H, dd, J=7.9, 1.9Hz), 7. 52 (4H, s), 7. 43 (1H, d, J=7.9Hz), 5. 15 (2H, s), 4. 93 (1H, quint, J=8.9Hz), 3. 01 (3H, s), 2. 97 (3H, s), 2. 32-2. 11 (4H, brm), 2. 09-1. 94 (2H, brm), 1. 77-1. 62 (2H, brm)

1H NMR(δ) ppm

300Mz, DMSO-d6 8. 31 (1H, d, J=1.5Hz), 8.06 (1H, dd, J=8.7, 1.5Hz), 7.98 (1H, d, J=8.7Hz), 7.75 and 7.22 (4H, ABq, J=8.9Hz), 7.67 (1H, d, J=1.5Hz), 7.52 (4H, s), 7.49 (1H, dd, J=7.9, 1.5Hz), 7.43 (1H, d, J=8.9Hz), 5.16 (2H, s), 4.93 (1H, quint, J=8.9Hz), 3.76 (1H, brs), 3.55 (2H, brs), 3.22 (2H, brs), 2.31-2.11 (4H, brm), 2.16-1.95 (2H, brm), 1.88-1.62 (4H, brm), 1.48-1.28 (2H, brm)

Example No.		416	1H NMR(δ) ppm
HO HCI	CI CI	:	300MHz, DMSO-d6 8. 38 (1H, d, J=7. 7Hz), 8. 30 (1H, s), 8. 20-7. 90 (4H, m), 7. 72 (2H, d, J=8. 7Hz), 7. 60-7. 40 (5H, m), 7. 22 (2H, d, J=8. 7Hz), 5. 13 (2H, s), 4. 47 (1H, m), 4. 15 (1H, m), 2. 90-2. 70 (4H, m), 2. 60-2. 30 (4H, m), 1. 19 (6H, d, J=6. 5Hz)
Purity > 9 0 9	% (NMR)	Ť,	* * * * * * * * * * * * * * * * * * * *
MS 64	10 (M+1)		***

Example No. 417	IH NMR(δ) ppm
HO HCI N S O N O N O N O N O N O N O N O N O N	400MHz, DMSO-d6 8. 33 (1H, s), 8. 17 (1H, d, J=8. 6Hz), 7. 82 (1H, d, J=1. 4Hz), 7. 74 (2H, d, J=8. 7Hz), 7. 64 (1H, dd, J=8. 0Hz, 1. 7Hz), 7. 55-7. 50 (4H, m), 7. 43 (1H, d, J=7. 8Hz), 7. 24 (1H, d, J=8. 7Hz), 5. 16 (2H, s), 4. 49 (1H, m), 3. 60-3. 40 (4H, m), 2. 90-2. 70 (4H, m), 2. 60-2. 30 (4H, m), 2. 20-1. 80 (4H, m)
Purity > 90% (NMR)	
MS 652 (M+1)	*

Example No. 418	1H NMR(δ) ppm
HO HOI F	400MHz, DMSO-d6 8. 34 (1H, d, J=7.6Hz), 8. 25 (1H, s), 8. 11 (1H, d, J=1.3Hz), 7. 90- 8. 00 (3H, m), 7. 59 (1H, t, J=8.6H z), 7. 40-7. 55 (5H, m), 7. 12 (1H, d, J=11.9Hz), 7. 00 (1H, d, J=8.6 Hz), 5. 08 (2H, s), 4. 30-4. 10 (2H, m), 2. 80-2. 65 (4H, m), 2. 45-2. 30 (2H, m), 1. 15 (6H, d, J=4.8Hz)
Purity > 9 0 % (NMR)	300
MS 658 (M+1)	

400MHz, DMSO-d6 8. 30(1H, s), 8. 05-7. 95(3H, m), 7. 80-7. 75(1H, m), 7. 63(1H, t, J =8. 6Hz), 7. 55-7. 35(5H, m), 7. 1 5(1H, dd, J=12. 1Hz, 2. 1Hz), 7. 0 3(1H, dd, J=8. 7Hz, 2. 3Hz), 5. 10 (2H, s), 4. 23(1H, m), 3. 90(2H, t , J=7. 0Hz), 2. 95-2. 70(4H, m), 2 .60-2. 35(4H, m), 2. 30-2. 00(4H, m)

Purity > 90% (NMR) MS 641(M+1)	Example N	No.		420
	HO.	HCI F		}
MS 641 (M+1)	Purity	> 9 0	% (NM	R)
	MS	6	41 (M+1)	

1H NMR(δ) ppm

300Mz, DMSO-d6 8. 37 (1H, d, J=7. 5Hz), 8. 28 (1H, d, J=1. 5Hz), 8. 17 (1H, d, J=1. 5Hz), 8. 13 (1H, d, J=8. 7Hz), 7. 97 (1H, dd, J=8. 1, 1. 5Hz), 7. 94 (1H, dd, J=8. 7, 1. 5Hz), 7. 61 (1H, t, J=8. 7Hz), 7. 51and7. 49 (4H, ABq, J=8. 9Hz), 7. 46 (1H, d, J=8. 1Hz), 7. 08 (1H, dd, J=12. 4, 2. 3Hz), 6. 97 (1H, dd, J=8. 7, 2. 3Hz), 5. 10 (2H, s), 4. 20-4. 08 (1H, m), 3. 62 -3. 56 (2H, brm), 3. 13-3. 10 (2H, brm), 1. 79-1. 60 (3H, brm), 1. 54 -1. 34 (3H, brm), 1. 21 (3H, s), 1. 18 (3H, s)

1H NMR(δ) ppm

300Mz, DMSO-d6 8. 24 (1H, d, J=1. 5Hz), 8. 02 (1H, d, J=8. 7Hz), 7. 88 (1H, dd, J=8. 7, 1. 5Hz), 7. 82 (1H, d, J=1. 9Hz), 7. 63 (1H, dd, J=7. 9, 1. 9Hz), 7. 54 (1H, t, J=8. 7Hz), 7. 50 (4H, s), 7. 42 (1H, d, J=7. 9Hz), 7. 01 (1H, dd, J=12. 0, 2. 3Hz), 6. 91 (1H, dd, J=8. 7, 2. 3Hz), 5. 11 (2H, s), 3. 63-3. 41 (6H, m), 3. 07-3. 04 (2H, brm), 1. 95-1. 79 (4H, brm), 1. 77-1. 57 (3H, brm), 1. 50-1. 32 (3H, brm)

Example No. 423	1H NMR(δ) ppm
HCI F O N O	300MHz, DMSO-d6 8. 27 (1H, s), 8. 05 (1H, d, J=8. 7Hz), 7. 93 (1H, d, J=8. 7Hz), 7. 90 (1H, s), 7. 70 (1H, d, J=8. 4Hz), 7. 59 (1H, t, J=8. 4Hz), 7. 50 (2H, d, J=9. 0Hz), 7. 45 (2H, d, J=8. 7Hz), 7. 41 (1H, d, J=8. 4Hz), 7. 12 (1H, d, J=12. 0Hz), 7. 00 (1H, d, J=8. 7Hz), 5. 10 (2H, s), 4. 49 (2H, t, J=7. 8Hz), 4. 14 (2H, t, J=8. 0Hz), 4. 04 (1H, m), 2. 40-2. 10 (2H, m),
Purity > 90% (NMR)	2.00-1.50(5H, m), 1.45-1.20(3 H, m)
MS 640 (M+1)	

300MHz, DMSO-d6 9. 05(1H, s), 8. 30(1H, s), 8. 16(1H, d, J=8. 8Hz), 7. 99(1H, d, J=8 .6Hz), 7. 72(1H, s), 7. 64(1H, t, J=8. 6Hz), 7. 52(1H, d, J=8, 4Hz)

1H NMR(δ) ppm

J=8. 6Hz), 7. 52 (1H, d, J=8. 4Hz), 7. 47 (2H, d, J=8. 7Hz), 7. 42 (2H, d, J=8. 6Hz), 7. 25 (1H, d, J=8. 4Hz), 7. 15 (1H, d, J=12. 2Hz), 7. 04 (1H, d, J=8. 6Hz), 6. 60 (1H, brs), 5. 05 (2H, s), 4. 10 (1H, m), 3. 68 (2H, t, J=6. 1Hz), 3. 45 (2H, t, J=6. 1Hz), 2. 40-2. 10 (2H, m), 2. 00-1. 55 (5H, m), 1. 50-1. 20 (3H, m)

1H NMR(δ) ppm

300MHz, DMSO-d6 8. 32(1H, s), 8. 24(1H, d, J=8.7Hz), 8. 03(1H, d, J=8.7Hz), 7. 78-7. 73(4H, m), 7. 38-7. 32(4H, m), 5. 52(2H, s), 4. 88(2H, s), 4. 40(2H, s), 4. 37(1H, m), 2. 92, 2. 84(6H, s), 2. 40-2. 18(2H, m), 2. 15-1. 95(2H, m), 1. 90-1. 80(2H, m), 1. 75-1. 55(1H, m), 1. 50-1. 20(3H, m)

1H NMR(δ) ppm

300MHz, DMSO-d6 11. 26(1H, brs), 8. 35(1H, s), 8. 27(1H, d, J=9. 0Hz), 8. 05(1H, d, J=8. 4Hz), 7. 83-7. 78(4H, m), 7. 42-7. 35(4H, m), 5. 57(2H, s), 4. 77, 4. 73(2H, s), 4. 37(1H, m), 3. 95(1H, s), 3. 70-3. 00(4H, m), 2. 40-1. 00(14H, m)

Example No.	428	1H NMR(δ) ppm
HO HCI	S NO NH2	300MHz, DMSO-d6 8. 31 (1H, s), 8. 26 (1H, d, J=9. 0H z), 8. 04 (1H, d, J=8. 7Hz), 7. 79-7. 73 (4H, m), 7. 38-7. 31 (6H, m), 5. 53 (2H, s), 4. 90 (2H, s), 4. 37 (1H, m), 4. 05 (2H, s), 2. 40-2. 18 (2H, m), 2. 15-1. 95 (2H, m), 1. 90-1. 80 (2H, m), 1. 75-1. 55 (1H, m), 1. 50-1. 20 (3H, m)
Purity > 90%	(NMR)	
MS 615 ()	(+1)	

Purity > 90% (NMR) MS 616(M+1)	Example	No.	431
	Ho	HCI F S	, N
MS 616(M+1)	Purity	>90% (NMR)	. (
	MS	616 (M+1)	

300MHz, DMSO-d6 8. 31 (1H, s), 8. 16 (1H, d, J=8. 8H z), 7. 99 (1H, d, J=8. 7Hz), 7. 74-7. 60 (4H, m), 7. 37 (2H, t, J=8. 8H z), 7. 28 (1H, dd, J=2. 2Hz, 12. 2H z), 7. 14 (1H, dd, J=2. 2Hz, 8. 6Hz), 5. 17 (2H, s), 4. 10 (1H, m), 3. 1 5 (6H, brs), 2. 40-2. 10 (2H, m), 2. 00-1. 75 (4H, m), 1. 70-1. 55 (1H, m), 1. 50-1. 15 (3H, m)

Example N	No.	432
HO 10H	101 F 0 1	
Purity	>90% (NMR)
MS	630 (M-	+1)

1H NMR(δ) ppm

300MHz, DMSO-d6 8. 45 (1H, d, J=7. 7Hz), 8. 32 (1H, s), 8. 19 (1H, d, J=8. 8Hz), 8. 02-7. 99 (2H, m), 7. 70 (1H, t, J=8. 6Hz), 7. 60 (2H, dd, J=5. 4Hz, 8. 7Hz), 7. 37 (2H, t, J=8. 8Hz), 7. 27 (1H, dd, J=2. 3Hz, 12. 2Hz), 7. 14 (1H, dd, J=2. 2Hz, 8. 7Hz), 5. 16 (2H, s), 4. 20-4. 00 (2H, m), 2. 40-2. 10 (2H, m), 2. 00-1. 75 (4H, m), 1. 70-1. 55 (1H, m), 1. 50-1. 20 (3H, m), 1. 18 (6H, d, J=6. 6Hz)

1H NMR(δ) ppm

300MHz, DMSO-d6 8. 31 (1H, d, J=1. 4Hz), 8. 15 (1H, d, J=8. 8Hz), 7. 98 (1H, dd, J=1. 4 Hz, 8. 7Hz), 7. 68-7. 60 (4H, m), 7. 36 (2H, t, J=8. 8Hz), 7. 28 (1H, dd, J=2. 2Hz, 12. 2Hz), 7. 15 (1H, dd, J=2. 2Hz, 8. 6Hz), 5. 17 (2H, s), 4. 10 (1H, m), 4. 05-3. 90 (2H, m), 3. 85-3. 70 (1H, m), 3. 55-3. 25 (2H, m), 2. 40-2. 10 (2H, m), 2. 00-1. 75 (6H, m), 1. 70-1. 55 (1H, m), 1. 50-1. 20 (5H, m)

Example	No.	434
N 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
Purity	>90% (1	MR)
MS	650 (M+	1)

1H NMR(δ) ppm

300Mz, DMSO-d6 8. 45 (1H, d, J=1.5Hz), 8. 26 (1H, d, J=8.8Hz), 8. 10 (1H, dd, J=8.8, 1.5Hz), 7. 72 (1H, d, J=1.5Hz), 7. 64 (1H, t, J=8.6Hz), 7. 56-7. 48 (5H, m), 7. 44 (1H, d, J=J=7.7Hz), 7. 18 (1H, dd, J=12.3, 2.4Hz), 7. 04 (1H, dd, J=8.6, 2.4Hz), 5. 15 (2H, s), 4. 08 (1H, brt, J=11.7Hz), 3. 02 (3H, s), 2. 99 (3H, s), 2. 34-2. 17 (2H, brm), 1. 97-1. 81 (4H, brm), 1. 70-1. 60 (1H, brm), 1. 49-1. 21 (3H, brm)

1H NMR(δ) ppm

300Mz, DMSO-d6 8. 42 (1H, d, J=1.5Hz), 8. 24 (1H, d, J=8.8Hz), 8. 08 (1H, dd, J=8.8, 1.5Hz), 8. 00 (2H, d, J=8.8Hz), 7. 79 (1H, d, J=7.8Hz), 7. 62 (1H, t, J=8.4Hz), 7. 61-7.55 (3H, m), 7. 44 (1H, d, J=8.1Hz), 7. 16 (1H, dd, J=12.1, 2.6Hz), 7. 02 (1H, dd, J=8.4, 2.6Hz), 5. 12 (2H, s), 4. 07 (1H, brt, J=12.5Hz), 2. 33 (2H, brm), 1. 96-1. 79 (4H, brm), 1. 71-1. 61 (1H, brm), 1. 49-1. 21 (3H, brm)

1H NMR(δ) ppm

300MHz, DMSO-d6 8. 41 (1H, d, J=7.7Hz), 8. 30-8. 2 6 (2H, m), 8. 18 (1H, d, J=1.4Hz), 7. 99 (1H, dd, J=1.7Hz, 8. 0Hz), 7. 89 (1H, d, J=10.1Hz), 7. 67 (1H, t, J=8.8Hz), 7. 55-7. 45 (5H, m), 7. 20 (1H, d, J=12.2Hz), 7. 07 (1H, dd, J=2.1Hz, 8.7Hz), 5. 14 (2H, s), 4. 18-4. 11 (2H, m), 2. 40-2. 1 0 (2H, m), 2. 00-1. 75 (4H, m), 1. 7 0-1. 55 (1H, m), 1. 50-1. 20 (3H, m), 1. 20 (6H, d, J=6.6Hz)

Table 257

Example No. 437	1H NMR(δ) ppm
CI N N N OH	
Purity > 90% (NMR)	
MS 580 (M+1)	

Example No. 438	1H NMR(δ) ppm
Purity > 90% (NMR)	
MS 607 (M+1)	

Example No	o.		439	1H NMR(δ) ppm
HO			(° 	300MHz, CDC13 8. 60 (1H, d, J=1. 5Hz), 8. 05 (1H, dd, J=1. 6Hz, 8. 7Hz), 7. 70 (1H, d, J=8. 7Hz), 7. 62 (2H, d, J=8. 2Hz), 7. 49 (2H, d, J=8. 2Hz), 7. 31 (2H, d, J=8. 8Hz), 7. 27-7. 23 (2H, m), 7. 06 (2H, t, J=8. 6Hz), 6. 80 (2H, d, J=8. 8Hz), 5. 05 (2H, s), 4. 38 (1H, m), 3. 06 (6H, s), 2. 45-2. 20 (2H, m), 2. 10-1. 70 (5H, m), 1. 50-1. 20 (3H, m)
Purity '	>90% (NMR)	(* * * * * * * * * * * * * * * * * * * *
MS	591 (M	+1)		28.3

Example No. 4	40 1H NMR(δ) ppm
HO N CH F	300MHz, DMSO-d6 8. 20(1H, s), 7. 86(2H, m), 7. 39(1H, d, J=7.9Hz), 7. 34(1H, d, J=7.9Hz), 7. 34(1H, d, J=7.9Hz), 7. 07(2H, dt, J=2. 3Hz, 8.6Hz), 6. 98-6. 88(5H, m), 6. 83(1H, d, J=8. 3Hz), 5. 91(1H, s), 3. 96(1H, m), 2. 30-1. 95(2H, m), 1. 90-1. 50(4H, m), 1. 40-1. 10(3H, m)
Purity > 90% (NMR)	
MS 557 (M+1)	

Example	No.	443	1H NMR(
HO 1		〉 —∩—∩H	300Mz, DM3 8. 23(1H, 18 Bq, J=8.81), 6.86(11 rm), 3.72 s), 3.18(1), 2.31-2. 54(7H, brid)
Purity	> 90% (NM	IR)	
MS	666 (M+1)	*	

δ) ppm (SO-d6 s), 7. 98and 7. 89 (2H, A 3Hz), 7. 62-7. 06 (11H, m 1H, s), 4. 12-3. 77 (2H, b 2 (1H, brs), 3. 69 (1H, br (1H, brs), 3. 05 (1H, br .08(2H, brm), 1.90-1. m), 1.48-1.13(5H, brm

1H NMR(δ) ppm 300MHz, DMSO-d6 8. 36 (1H, s), 8. 00 (1H, d, J=8. 7H z), 7. 90 (1H, d, J=9. 3Hz), 7. 80-7. 70 (2H, m), 7. 63 (2H, d, J=8. 4H z), 7. 32 (2H, t, J=8. 7Hz), 7. 22 (2H, d, J=8. 4Hz), 5. 62 (1H, d, J=7. 5Hz), 5. 57 (1H, brd, J=4. 8Hz) .5Hz), 5.57(1H, brd, J=4.8Hz), 5.41(2H, s), 5.31(1H, m), 4.29(1H, m), 3. 84 (1H, d, J=9. 0Hz), 3. 50-3. 20 (3H, m), 2. 71 (3H, s), 2. 40-2. 20 (2H, m), 1. 75-1. 60 (1H, m), 1.50-1.20(3H, m)

Example No. 44	5 1H NMR(δ) ppm
HO TO HO OH OH	300MHz, DMSO-d6 8. 36(1H, s), 8. 00(1H, d, J=8. 7H z), 7. 92(1H, d, J=9. 3Hz), 7. 57(1H, t, J=8. 4Hz), 7. 50-7. 35(6H, m), 7. 25-7. 05(4H, m), 6. 82(1H, s), 5. 62(1H, d, J=7. 2Hz), 5. 56(1H, m), 5. 28(1H, brs), 3. 95(1H, m), 3. 82(1H, d, J=8. 7Hz), 3. 50- 3. 20(3H, m), 2. 30-2. 05(2H, m), 1. 90-1. 55(5H, m), 1. 40-1. 10(3 H, m)
Purity > 90% (NMR)	
MS 733 (M+1)	W.

Example No. 446	1H NMR(δ) ppm
HO HCI F O O O O O O O O O O O O O O O O O O	300MHz, DMSO-d6 8. 29 (1H, s), 8. 13 (1H, d, J=9. 0H z), 7. 97 (1H, d, J=9. 0Hz), 7. 63 (1H, t, J=8. 6Hz), 7. 51-7. 32 (7H, m), 7. 15 (1H, d, J=12. 0Hz), 7. 03 (1H, d, J=9. 0Hz), 5. 10 (2H, s), 4. 09 (1H, m), 3. 82 (2H, t, J=6. 3Hz), 3. 56 (2H, t, J=7. 4Hz), 2. 45 (2H, m), 2. 40-2. 10 (2H, m), 2. 00-1. 55 (5H, m), 1. 50-1. 20 (3H, m)
Purity > 90% (NMR)	
MS 674 (M+1)	

Example No. 702	1H NMR(δ) ppm
HCI F	300MHz, DMSO-d6 8. 97 (1H, d, J=1.8Hz), 8. 52 (1H, d, J=2.4Hz), 8. 36 (1H, d, J=7.8Hz), 8. 16 (1H, s), 7. 96 (!H, d, J=8.1Hz), 7. 55-7. 40 (5H, m), 7. 14 (1H, d, J=12.6Hz), 7. 01 (1H, dd, J=8.4Hz, 1.8Hz), 5. 11 (2H, s), 4. 20-3. 95 (2H, m), 2. 65-2. 45 (2H, m), 1. 95-1. 80 (5H, m), 1. 20-1. 10 (3H, m)
Purity > 90% (NMR)	9
MS 641 (M+1)	9

	Example No.	703	1H NMR(δ) ppm
*	HO HGI F	<u></u>	300MHz, DMSO-d6 8. 97 (1H, d, J=1.8Hz), 8. 52 (1H, d, J=1.8Hz), 7. 82 (1H, s), 7. 70-7. 35 (7H, m), 7. 13 (1H, d, J=12.3 Hz), 7. 00 (1H, d, J=11.1Hz), 5. 14 (2H, s), 3. 60-3. 35 (4H, m), 2. 65-2. 40 (2H, m), 2. 00-2. 55 (9H, m), 1. 40-1. 10 (3H, m)
	Purity > 90% (NM	R)	
	MS 653 (M+1)		

Formulation Example is given in the following. This example is merely for the purpose of exemplification and does not limit the invention.

Formulation Example

5	(a)	compound of Example 1	10	g
	(b)	lactose	50	g
	(c)	corn starch	15	g
	(d)	sodium carboxymethylcellulose	44	g
	(e)	magnesium stearate	' \ \ \ \ 1	g

The entire amounts of (a), (b) and (c) and 30 g of (d) are kneaded with water, dried in vacuo and granulated. The obtained granules are mixed with 14 g of (d) and 1 g of (e) and processed into tablets with a tableting machine to give 1000 tablets each containing 10 mg of (a).

15

Industrial Applicability

As is evident from the above-mentioned results, the compound of the present invention shows a high inhibitory activity against HCV polymerase.

Therefore, the compound of the present invention can provide a pharmaceutical agent effective for the prophylaxis or treatment of hepatitis C, based on the anti-HCV effect afforded by the HCV polymerase inhibitory activity. When used concurrently with a different anti-HCV agent, such as interferon, and/or an anti-inflammatory agent and the like, it can provide a pharmaceutical agent more effective for the prophylaxis or treatment of hepatitis C. Its high inhibitory activity specific to HCV polymerase suggests the possibility of the compound being a pharmaceutical agent with slight side effects, which can be used safely for humans.

This application is based on patent application Nos. 369008/1999, 391904/2000 and 193786/2001 filed in Japan, and international application No. PCT/JP00/09181, the contents of which are hereby incorporated by reference.