A töréssel szembeni ellenállás vizsgálata

Az anyag viselkedése terhelés hatására

Az anyagok lehetnek:

- szívósak,
- képlékenyek és
- ridegek.

Szívós vagy képlékeny anyag

Az anyag törését a csúsztatófeszültségek hatására bekövetkező elnyíródás okozza. A technikai tisztaságú szerkezeti anyagokban a zárványok (szilikátok, nitridek), kiválások (karbidok) mentén üregek (kristályosodásból visszamaradt, v. diszlokációk felgyűltek) keletkeznek, amelyek fokozatosan nagyobbodnak. A több tengelyű feszültségi állapot hatására az üregek közötti ép anyagrészek (un. hidak) a helyi kontrakció következtében sorra elszakadnak (transzkrisztallin üregegyesülés). Ennek eredménye a gödrös, méhsejtszerű szerkezetű töret.

Szívós vagy képlékeny anyag

a törést jelentős nagyságú maradó alakváltozás előzi meg, ami sok energiát emészt fel. A töretfelület szakadozott, tompa fényű

Rideg, nem képlékeny törés

A rideg, nem képlékeny törés esetében a törést nagyon kicsi vagy semmi maradó alakváltozás sem előzi meg, és viszonylag kevés energiát kell befektetni az anyag eltöréséhez.

A törés folyamata

Az anyag törésének folyamata

- repedés keletkezéséből
- a repedés terjedéséből, majd
- az anyag végső szétválásából áll.

A repedésterjedés lehet

lassú, ilyen a kúszás és kifáradás, vagy

a terhelés növelése mellett bekövetkező szívós törés illetve

gyors, instabil, ami alakváltozás nélküli rideg töréshez vezet

Mitől függ egy anyag töréssel szembeni viselkedése?

függ magától az anyagtól,

 annak állapotától (összetétel, mikroszerkezet),

de jelentős mértékben függ az un. állapottényezőktől,

- a hőmérséklettől,
- a feszültségállapot jellegétől és
- az igénybevétel sebességétől

Az anyag és annak állapota

Rideg törésre rendkívül hajlamosak a

- Kovalens vagy ionos kötés, alacsony kristály szimmetria.
- A kerámiák, rideg kompozitok, nagyszilárdságú acélok, pl. edzett szerszámacélok, hexagonális rácsszerkezetű fémek, mint pl. a magnézium. Bennük a legkisebb hiba is beindíthatja a rideg törést

Az anyag és annak állapota

Szívós anyagok

- fémek lapközepes köbös szerkezettel
- pl. az alumínium vagy a réz
- a polimerek jelentős része alakváltozásra hajlamos, még nagy méretű hibák mellett is szívósan viselkednek.

Az anyag és annak állapota

 Az olyan anyagok, mint az acélok bizonyos körülmények között ridegen törhetnek. A jelenségre, hogy az acéloknál bizonyos körülmények között nem ad elegendő biztonságot a hagyományos méretezés, katasztrófák hívták fel a figyelmet.

KV ütőmunka különböző anyagoknál

Az ütőpróbatest törete

Szívós törés

Rideg töret

Szívós – rideg határ

Az állapottényezők hatása Hőmérséklet

 Az állapottényezők közül a hőmérséklet csökkenése a rideg törést segíti elő, mert akadályozza a képlékeny alakváltozást. 0,2%C acél

A hőmérséklet hatása

Az állapottényezők hatása A feszültségállapot

- háromtengelyű nyomás (hidrosztatikus állapot, mindhárom főfeszültség nyomó), még a közismerten rideg márvány esetében is eredményez egy bizonyos képlékeny alakváltozást.
- Alakíthatósági vizsgálatok

Kármán Tódor - Göttingen 1911

Az állapottényezők hatása A feszültségállapot

- Ennek ellentettje a háromtengelyű húzás, minden anyag esetében rideg törést eredményez ha mindhárom feszültség egyforma nagy és húzó, az anyag nem alakváltozhat.
- Ehhez hasonló többtengelyű feszültségi állapot jön létre a bemetszéseknél, a belső anyaghibáknál.

Az állapottényezők hatása Az igénybevétel sebessége

 Az igénybevétel sebességének növelése is a ridegséget segíti elő, hiszen az alakváltozás a diszlokációk mozgása és ahhoz idő kell.

Ridegtörési problémák

 Az olyan anyagok, mint az acélok bizonyos körülmények között ridegen törhetnek. A jelenségre, hogy az acéloknál bizonyos körülmények között nem ad elegendő biztonságot a hagyományos méretezés, katasztrófák hívták fel a figyelmet.

A katasztrófákban közös volt

- ⇒a nagyméretű szerkezetek előzetes alakváltozás nélkül törtek,
- ⇒a terhelés jóval a megengedett terhelés alatt volt,
- ⇒a repedés nagysebességgel terjedt,
- ⇒a katasztrófák minden esetben hidegben következtek be,
- \Rightarrow az anyagok a hagyományos vizsgálatoknak (R_{eH} , R_m , A, Z HB) megfeleltek.

A megfigyelésekből leszűrhető volt

hogy a nagy méretű, hidegben üzemelő, dinamikusan igénybevett szerkezetek esetében a hagyományos méretezés nem nyújt elegendő biztonságot.

A ridegtöréssel szembeni ellenállás vizsgálata

- A rideg töréssel szembeni biztonság vizsgálata, tehát azt jelenti, hogy meghatározzuk, hogy adott anyag és szerkezet, milyen feltételek esetén fog szívósan illetve ridegen viselkedni.
- A probléma több oldalról is megközelíthető.
 - ⇒a szívósság ellenőrzése az átmeneti hőmérséklet alapján,
 - ⇒a szívósság ellenőrzése a határhőmérséklet elv alapján,
 - ±örésmechanika.

A szívósság ellenőrzése az átmeneti hőmérséklet alapján

Charpy féle ütővizsgálat

Az ütve hajlító vizsgálat (MSZ EN 10045-1) célja az anyag dinamikus igénybevétellel szembeni ellenállásának meghatározása. A dinamikus igénybevétellel szembeni ellenállás a szívósság.

Charpy vizsgálat

 A próbatest 10x10x55 mm méretű és 2 mm mély V vagy U alakú bemetszéssel van ellátva

Charpy vizsgálat

Charpy vizsgálat

A kísérlet során a próbatestben elnyelt munka az ütőmunka

$$\mathbf{K} = \mathbf{G_r}(\mathbf{h_o} - \mathbf{h_1}) [\mathbf{J}]$$

Mitől függ az ütőmunka?

 Az ütőmunkát V alakú bemetszéssel ellátott próbatesten KV-vel illetve U alakú bemetszéssel ellátott próbatesten KU-val jelöljük.

KV < KU illetve KCV < KCU

Mitől függ az ütőmunka?

A hőmérséklet

függvényében felvett ütőmunka görbék lehetővé teszik a szívós és a rideg állapot közötti átmenet hőmérsékletének kijelölését.

Mit jelent a törés?

 A törés a szilárd test makroszkópos értelemben vett szétválása, ami a teherbíróképesség megszűnéséhez vezet. Minden anyag esetében létezik, egy elméleti törési feszültség:

- ahol: E a rugalmassági modulus
- $-\gamma$ a felületi energia
- b az atomok közötti távolság

$$\sigma_{th} = \left(\frac{E.\gamma}{b}\right)^{1/2}$$

• Az elméleti törési feszültséget pontosan számítani nehéz, értéke az atomok közötti kötési erők alapján kb. E/10.

• Tudjuk azonban, hogy a szerkezeti anyagok lényegesen kisebb terhelések (tízszer, ezerszer kisebb) hatására is károsodnak, törnek. Az eltérések oka, hogy a reális anyagok kristályhibákat, anyaghibákat, repedéseket stb. tartalmaznak.

Törésmechanika

 A törésmechnika feltételezi, hogy a gyakorlatban előforduló anyagok minden esetben tartalmaznak hibákat és azt vizsgálja, hogy milyen feltételek esetén kezdenek el ezek a hibák instabil vagy katasztrofális módon terjedni.

A megválaszolandó kérdés tehát az, hogy:

- ⇒adott feszültségi állapotban mekkora lehet a hiba,
- ⇒adott hiba, milyen feszültségi állapotban kezd el instabilan terjedni.

Mitől függ a darab viselkedése?

A darab viselkedése a repedés csúcsában kialakuló feszültségektől függ.

A repedés instabil terjedése elérhető:

- **=**a feszültség, σ növelésével
- =a repedés méretének, a növelésével

Az instabil repedésterjedés megindulásához tartozó feszültségintenzitási tényező a kritikus feszültségintenzitási tényező:

K_c. Mértékegysége: MPa m^{1/2}

Az instabil repedés terjedés feltétele:

$$K = K_c$$

Az instabil repedésterjedés megindulásakor

$$K_{lc} = \sigma \sqrt{\pi a_c} = \sqrt{G_c E}$$

Törésmechanikai mérőszámok

G_{IC} és K_{IC}

• 1. Kontinuummechanikai repedésmodellekkel leírni a valóságos szerkezeti elemek alakváltozását, feszültségeloszlását (számítással vagy kísérletileg)

igénybevétel jellemzése

• 2. Fémfizikai alapokon meghatározott törési kritériumok alapján mérőszámokat definiálni, amelyek segítségével - a terhelés módjától, az anyag állapotától függően meg lehet határozni a kritikus állapotot

igénybevehetőség vagy terhelhetőség jellemzése

• 3. A terhelés és a terhelhetőség egybevetéséből a törési biztonság és az üzemidő megadása

A törési biztonság megítélése a LRTM alapján

A szerkezetre ható igénybevétel alapján meghatározható a K_{szerk}.

(A szerkezetben meghatározott hibákat ellipszissel vagy fél ellipszissel helyettesítjük.)

$$K_{szerk} \leq K_{Ic}$$

Ennek alapján

⇒vagy a kritikus feszültséget

=vagy a kritikus repedéshosszúságot keressük

a tényezők között figyelembe kell venni a valószínűséget is!

