Cognome: Nome: Matricola:
Prova scritta di ASM 12CFU e 15CFU - Modulo Analisi Esplorativa del $21.04.2017$
La durata della prova è di 75 minuti. Si svolgano gli esercizi 1 e 2 riportando il risultato dove indicato.
Esercizio 1 (Punti: 9)
Si consideri la seguente matrice di correlazione $R = \begin{bmatrix} 1 & 1/2 & 1/2 \\ 1/2 & 1 & 2/3 \\ 1/2 & 2/3 & 1 \end{bmatrix}$.
1.a) Riportare l'indice di variabilità relativo (<u>arrotondare al secondo decimale</u>)
=
1.b) Sapendo che $s_{11}=4,s_{22}=9$ e $s_{33}=1,$ determinare la matrice di varianze/covarianze
$S_{3\times3} = \left[\begin{array}{cccccccccccccccccccccccccccccccccccc$
1.c) Sia $\tilde{X}_{n\times 3}$ la matrice dei dati centrati a cui corrisponde la matrice di correlazione $R_{3\times 3}$ riportata nel testo
dell'esercizio. Determinare l'angolo (espresso in gradi) tra \tilde{x}_1 e \tilde{x}_2 :
=
1.d) Determinare gli autovalori λ_1 , λ_2 e λ_3 associati alla matrice di correlazione $\underset{3\times 3}{R}$ (arrotondare al secondo decimale)
$\lambda_1 = \ldots, \lambda_2 = \ldots, \lambda_3 = \ldots$
1.e) Riportare la proporzione di varianza spiegata dalle prime due componenti principali calcolate a partire dalla matrice di correlazione $R\atop 3\times 3$ (arrotondare al secondo decimale)
=
1.f) Sia $Z_{n\times 3}$ la matrice dei dati standardizzati a cui corrisponde la matrice di correlazione $R_{3\times 3}$ riportata nel testo dell'esercizio. Calcolare la correlazione tra la prima colonna \tilde{z}_1 di Z_n e i punteggi z_n della prima z_n della prima z_n della prima z_n della prima z_n
componente principale di $Z_{n\times 3}$ (arrotondare al secondo decimale):

[1] 0.39

 $= \dots \dots$

```
## [1,1] [,2] [,3]
## [1,] 4 3 1
## [2,] 3 9 2
## [3,] 1 2 1
```

[1] 60

[1] 2.12 0.55 0.33

[1] 0.89

[1] -0.78

Esercizio 2 (Punti: 7)

Si consideri la seguente matrice di distanze relativa a tre unità statistiche $a, b \in c$:

$$D_{3\times3} =$$

2.a) Se utilizziamo un algoritmo gerarchico agglomerativo, le unità (a) e (b) vengono messe assieme nel gruppo (a,b). Aggiornare la matrice delle distanze utilizzando il metodo del legame singolo:

$$\begin{array}{c|cccc} & & (a,b) & (c) \\ \hline (a,b) & 0 & & \\ (c) & \dots & 0 & \\ \end{array}$$

2.b) Aggiornare la matrice delle distanze utilizzando il metodo del legame medio:

$$\begin{array}{c|cccc} & (a,b) & (c) \\ \hline (a,b) & 0 & \\ (c) & \dots & 0 \\ \end{array}$$

Si consideri la seguente matrice dei dati relativa a 4 unità statistiche

$$X_{4\times2} = \begin{bmatrix} 2.5 & 2.5 \\ 4.5 & 8.5 \\ 6.5 & 1.5 \\ 3.5 & 3.5 \end{bmatrix}$$

2.c) Si calcoli la matrice delle distanze $\frac{D}{4\times 4}$ per la matrice $\frac{X}{4\times 2}$ riportata sopra utilizzando la metrica di Lagrange:

2.d) Data una generica matrice X con vettore delle medie \bar{x} e matrice di varianze/covarianze S, si riporti la definizione della distanza di Mahalanobis $d_M(u_i, \bar{x})$ tra l'i-sima unità statistica u_i' e il baricentro \bar{x}' .

$$egin{aligned} d_M(u_i,ar{x}) = \end{aligned}$$

Esercizio 3 (Punti: 10)

Si consideri il dataset mtcars presente nella libreria datasets, che contiene n=32 unità statistiche (automobili) relative alle seguenti 11 variabili:

- mpg Miles/(US) gallon
- cyl Number of cylinders
- disp Displacement (cu.in.)
- hp Gross horsepower
- drat Rear axle ratio
- wt Weight (1000 lbs)
- qsec 1/4 mile time
- vs V/S
- am Transmission (0 = automatic, 1 = manual)
- *qear* Number of forward gears
- carb Number of carburetors
- 3.a) Si consideri la matrice $X_{32\times 6}$ che contiene solo le seguenti 6 variabili: mpg, disp, hp, drat, wt e qsec. Per ciascuna unità statistica, si calcoli la distanza di Mahalanobis dal baricentro e si riporti il nome delle due marche di automobili con distanza di Mahalanobis superiore a 3.5:

. . .

. .

Merc 230 Maserati Bora ## 9 31

3.b) Partendo da $X_{32\times 6}$, calcolare la matrice dei dati standardizzati $Z_{32\times 6}$. Calcolare l'indice di Calinski and Harabasz (CH) per un numero di gruppi K da 2 a 8, impostando per ciascun valore di K set.seed(123) prima di eseguire l'algoritmo delle K-medie (specificando algorithm = Lloyd). Riportare per ciascun valore di K il rispettivo valore dell'indice CH (arrotondando al secondo decimale).

3.c) Sulla base di $\frac{Z}{32\times6}$, calcolare la matrice delle distanze $\frac{D}{32\times32}$ utilizzando la metrica Euclidea, ed effettuare l'analisi dei cluster gerarchica utilizzando il legame completo, ricavandone 3 gruppi. Calcolare, arrotondando al secondo decimale, il valore medio della silhouette per i tre gruppi individuati (utilizzando il comando silhouette presente nella libreria cluster).

```
## Loading required package: cluster
## 1 2 3
## 0.22 0.26 0.40
```

	Valore medio della Silhouette
Gruppo 1	
Gruppo 2	
Gruppo 3	