Typechecking a Simplified MIL

June 2, 2021

authors: Chris Stone, Perry Cheng, Bob Harper
git clone https://github.com/RobertHarper/TILT-Compiler
cd ./TILT-Compiler
cd ./Doc
lualatex miltheory.tex
code.sty is at ../Apps/Twelf/tex/code.sty

1 Simplified MIL

1.1 Abstract Syntax

$$A ::= T \qquad \text{kind of types} \\ \mid S(M) \qquad \text{singleton kind} \\ \mid \Pi x : A_1 . A_2 \qquad \text{function kind} \\ \mid \Sigma x : A_1 . A_2 \qquad \text{dependent pair kind} \\ M ::= b \qquad \qquad \text{base type} \\ \mid x \qquad \qquad \text{constructor variable} \\ \mid \lambda x : A . M \qquad \text{constructor function} \\ \mid M M' \qquad \text{constructor application} \\ \mid \langle M, M' \rangle \qquad \text{constructor pair} \\ \mid \pi_i M \qquad \text{constructor projection} \\ \end{cases}$$

1.2 Static Semantics

Well-Formed Context

 $\Gamma \vdash \mathbf{ok}$ (1)

 $\bullet \vdash ok$ (1

$$\frac{\Gamma \vdash A \qquad x \notin BV(\Gamma)}{\bullet, x: A \vdash ok}$$
 (2)

Well-Formed Kind $\Gamma \vdash A$

$$\frac{\Gamma \vdash \text{ok}}{\Gamma \vdash T} \tag{3}$$

$$\frac{\Gamma \vdash M : T}{\Gamma \vdash S(M)} \tag{4}$$

$$\frac{\Gamma \vdash A_1 \qquad \Gamma, x : A_1 \vdash A_2}{\Gamma \vdash \Pi x : A_1 \cdot A_2} \tag{5}$$

$$\frac{\Gamma \vdash A_1 \qquad \Gamma, x : A_1 \vdash A_2}{\Gamma \vdash \Sigma x : A_1 \cdot A_2} \tag{6}$$

Subkinding
$$\Gamma \vdash A \preceq A'$$

$$\frac{\Gamma \vdash \text{ok}}{\Gamma \vdash T \prec T} \tag{7}$$

$$\frac{\Gamma \vdash M_1 \equiv M_2 : T}{\Gamma \vdash S(M_1) \preceq S(M_2)} \tag{8}$$

$$\frac{\Gamma \vdash S(M)}{\Gamma \vdash S(M) \preceq T} \tag{9}$$

$$\frac{\Gamma \vdash A_1' \preceq A_1 \qquad \Gamma, x: A_1' \vdash A_2 \preceq A_2'}{\Gamma \vdash \Pi x: A_1. A_2 \preceq \Pi x: A_1'. A_2'} \tag{10}$$

$$\frac{\Gamma \vdash A_1 \preceq A_1' \quad \Gamma, x: A_1 \vdash A_2 \preceq A_2'}{\Gamma \vdash \Sigma x: A_1.A_2 \preceq \Sigma x: A_1'.A_2'} \tag{11}$$

Well-Formed Constructor $\Gamma \vdash M : A$

$$\frac{\Gamma \vdash \text{ok}}{\Gamma \vdash b : T} \tag{12}$$

$$\frac{\Gamma \vdash \text{ok}}{\Gamma \vdash x : \Gamma(x)} \tag{13}$$

$$\frac{\Gamma \vdash A_1 \qquad \Gamma, x: A_1 \vdash M: A_2}{\Gamma \vdash \lambda x: A_1.M: \Pi x: A_1.A_2} \tag{14}$$

$$\frac{\Gamma \vdash M : \Pi x : A_1 . A_2 \qquad \Gamma \vdash M_1 : A_1}{\Gamma \vdash M M_1 : \{x \mapsto M_1\} A_2} \tag{15}$$

$$\frac{\Gamma \vdash M : \Sigma x : A_1 . A_2}{\Gamma \vdash \pi_1 M : A_1} \tag{16}$$

$$\frac{\Gamma \vdash M : \Sigma x : A_1 . A_2}{\Gamma \vdash \pi_2 M : \{x \mapsto \pi_1 M\} A_2} \tag{17}$$

$$\frac{\Gamma \vdash M_1 : A_1 \qquad \Gamma, x : A_1 \vdash A_2 \qquad \Gamma \vdash M_2 : \{x \mapsto M_1\} A_2}{\Gamma \vdash \langle M_1, M_2 \rangle : \Sigma x : A_1 . A_2}$$

$$(18)$$

$$\frac{\Gamma \vdash M : T}{\Gamma \vdash M : S(M)} \tag{19}$$

$$\frac{\Gamma \vdash M : \Sigma x : A_1 . A_2 \qquad \Gamma \vdash \pi_1 M : A_1'}{\Gamma \vdash M : \Sigma x : A_1' . A_2} \tag{20}$$

$$\frac{\Gamma \vdash M : \Sigma x : A_1 . A_2 \qquad \Gamma \vdash \pi_2 M : A_2'}{\Gamma \vdash M : \Sigma x : A_1 . A_2'} \tag{21}$$

$$\frac{\Gamma \vdash M : \Pi x : A_1 . A_2 \qquad \Gamma, x : A_1 \vdash M x : A_2'}{\Gamma \vdash M : \Pi x : A_1 . A_2'}$$

$$(22)$$

$$\frac{\Gamma \vdash M : A \qquad \Gamma \vdash A \leq A'}{\Gamma \vdash M : A'} \tag{23}$$

Constructor Equivalence

 $\Gamma \vdash M \equiv M' : A$

$$\frac{\Gamma \vdash M : A}{\Gamma \vdash M \equiv M : A} \tag{24}$$

$$\frac{\Gamma \vdash M' \equiv M : A}{\Gamma \vdash M \equiv M' : A} \tag{25}$$

$$\frac{\Gamma \vdash M \equiv M' : A \qquad \Gamma \vdash M' \equiv M'' : A}{\Gamma \vdash M \equiv M'' : A}$$
(26)

$$\frac{\Gamma \vdash M : S(M')}{\Gamma \vdash M \equiv M' : T} \tag{27}$$

$$\frac{\Gamma \vdash A_1 \equiv A_1' \qquad \Gamma, x: A_1 \vdash M \equiv M': A_2}{\Gamma \vdash \lambda x: A_1.M \equiv \lambda x: A_1'.M': \Pi x: A_1.A_2}$$
(28)

$$\frac{\Gamma \vdash M \equiv M' : \Sigma x : A_1 . A_2}{\Gamma \vdash \pi_1 M \equiv \pi_1 M' : A_1}$$
(29)

$$\frac{\Gamma \vdash M \equiv M' : \Sigma x : A_1 . A_2}{\Gamma \vdash \pi_2 M \equiv \pi_2 M' : \{x \mapsto \pi_1 M\} A_2}$$
(30)

$$\frac{\Gamma \vdash M_1 \equiv M_1' : A_1 \qquad \Gamma, x : A_1 \vdash A_2 \qquad \Gamma \vdash M_2 \equiv M_2' : \{x \mapsto M_1\} A_2}{\Gamma \vdash \langle M_1, M_2 \rangle \equiv \langle M_1', M_2' \rangle : \Sigma x : A_1 \cdot A_2}$$
(31)

$$\frac{\Gamma \vdash M \equiv M' : \Pi x : A_1 . A_2 \qquad \Gamma \vdash M_1 \equiv M'_1 : A_1}{\Gamma \vdash M M_1 \equiv M' M'_1 : \{x \mapsto M_1\} A_2}$$

$$(32)$$

$$\frac{\Gamma \vdash M : \Pi x : A_1 . A_2}{\Gamma \vdash \lambda x : A_1 . (M x) \equiv M : \Pi x : A_1 . A_2}$$
(33)

$$\frac{\Gamma \vdash \lambda x : A_2 . M : \Pi x : A_2 . A \qquad \Gamma \vdash M_2 : A_2}{\Gamma \vdash (\lambda x : A_2 . M) M_2 \equiv \{x \mapsto M_2\} M : \{x \mapsto M_2\} A}$$

$$(34)$$

$$\frac{\Gamma \vdash \langle M_1, M_2 \rangle : \Sigma x : A_1 . A_2}{\Gamma \vdash \pi_1 \langle M_1, M_2 \rangle \equiv M_1 : A_1}$$
(35)

$$\frac{\Gamma, x: A_1 \vdash A_2 \qquad \Gamma \vdash \langle M_1, M_2 \rangle : \Sigma x: A_1.A_2}{\Gamma \vdash \pi_2 \langle M_1, M_2 \rangle \equiv M_2 : \{x \mapsto M_1\} A_2}$$

$$(36)$$

$$\frac{\Gamma \vdash M : \Sigma x : A_1 . A_2}{\Gamma \vdash M \equiv \langle \pi_1 M, \pi_2 M \rangle : \Sigma x : A_1 . A_2}$$
(37)

$$\frac{\Gamma \vdash M_1 \equiv M_2 : A \qquad \Gamma \vdash A \preceq A'}{\Gamma \vdash M_1 \equiv M_2 : A'}$$
(38)

2 Algorithm for Constructor Equivalence

2.1 Elimination Contexts

$$E ::= \bullet$$

$$\mid EM$$

$$\mid \pi_1 E$$

$$\mid \pi_2 E$$

2.2 Equivalence algorithm

```
\Gamma \vdash E[(\lambda x : A.M) M'] \Downarrow V
                                                               if \Gamma \vdash E[\{x \mapsto M'\}M] \Downarrow V
\Gamma \vdash E[\pi_1\langle M_1, M_2\rangle] \Downarrow V
                                                               if \Gamma \vdash E[M_1] \Downarrow V
\Gamma \vdash E[\pi_2\langle M_1, M_2\rangle] \Downarrow V
                                                               if \Gamma \vdash E[M_2] \Downarrow V
\Gamma \vdash E[x] \Downarrow V
                                                               if \Gamma \vdash E[x] \uparrow S(M) and \Gamma \vdash M \downarrow V
\Gamma \vdash V \Downarrow V
\Gamma \vdash x \uparrow \Gamma(x)
\Gamma \vdash \pi_1 E[x] \uparrow A_1
                                                               if \Gamma \vdash E[x] \uparrow \Sigma y: A_1.A_2
\Gamma \vdash \pi_2 E[x] \uparrow \{y \mapsto \pi_1 E[x]\} A_2
                                                               if \Gamma \vdash E[x] \uparrow \Sigma y: A_1.A_2
\Gamma \vdash E[x] M \uparrow \{y \mapsto M\} A_2
                                                               if \Gamma \vdash E[x] \uparrow \Pi y: A_1.A_2
\Gamma \vdash M \iff M' : T
                                                               if \Gamma \vdash M \Downarrow V, \Gamma \vdash M' \Downarrow V', and \Gamma \vdash V : T \sim V' : T
\Gamma \vdash M \iff M' : S(M'')
                                                               always
\Gamma \vdash M \iff M' : \Pi x : A . A'
                                                               if \Gamma, x:A \vdash Mx \iff M'x:A'
\Gamma \vdash M \iff M' : \Sigma x : A_1 . A_2
                                                               if \Gamma \vdash \pi_1 M \iff \pi_1 M' : A_1, \Gamma \vdash \pi_2 M \iff \pi_2 M' : \{x \mapsto \pi_1 M\} A_2,
                                                               and \Gamma \vdash \pi_2 M \iff \pi_2 M' : \{x \mapsto \pi_1 M'\} A_2
\Gamma \vdash b: T \sim b: T
\Gamma \vdash y : \Gamma(y) \sim y : \Gamma(y)
\Gamma \vdash (E[y]) M : A \sim (E'[y]) M' : A'
                                                              if \Gamma \vdash E[y] : \Pi x : A_1 . A_2 \sim E'[y] : \Pi x : A'_1 . A'_2, and also A = \{x \mapsto M\}A_2,
                                                               A' = \{x \mapsto M'\}A'_2, \ \Gamma \vdash M_1 \iff M_2 : A_1, \text{ and } \Gamma \vdash M_1 \iff M_2 : A'_1.
                                                               if \Gamma \vdash E[y] : \Sigma x : A_1 . A_2 \sim E'[y] : \Sigma x : A'_1 . A'_2, and A = A_1 and A' = A'_1
\Gamma \vdash \pi_1(E[y]) : A \sim \pi_1(E[y]) : A'
                                                               if \Gamma \vdash E[y] : \Sigma x : A_1 . A_2 \sim E'[y] : \Sigma x : A_1' . A_2', A = \{x \mapsto \pi_1(E[y])\}A_2,
\Gamma \vdash \pi_2(E[y]) : A \sim \pi_2(E'[y]) : A'
                                                               and A' = \{x \mapsto \pi_1(E'[y])\}A'_2
\Gamma \vdash T \iff T
                                                               always
\Gamma \vdash S(M_1) \iff S(M_2)
                                                               if \Gamma \vdash M_1 \iff M_2 : T
\Gamma \vdash \Pi x : A_1 . B_1 \iff \Pi x : A_2 . B_2
                                                               if \Gamma \vdash A_1 \iff A_2 \text{ and } \Gamma, x:A_1 \vdash B_1 \iff B_2
\Gamma \vdash \Sigma x : A_1 . B_1 \iff \Sigma x : A_2 . B_2
                                                               if \Gamma \vdash A_1 \iff A_2 \text{ and } \Gamma, x:A_1 \vdash B_1 \iff B_2
\Gamma \vdash A \text{ norm}
                                                               if \Gamma \vdash A and \Gamma \vdash A \iff A
\Gamma \vdash M \text{ norm } A
                                                               if \Gamma \vdash M : A and \Gamma \vdash M \iff M : A
\Gamma \vdash M \text{ norm}^* A
                                                               if \Gamma \vdash M : A \sim M : A
```

3 Correctness

- $A \text{ type } [\Delta] \text{ iff } A \text{ sub } A [\Delta].$
- $A \operatorname{sub} A' [\Delta] \text{ iff}$
 - 1. $\Delta \vdash A \preceq A'$
 - 2. -A = T and A' = T
 - Or, A' = S(M) and A' = T and $\Delta \vdash M$ norm T
 - Or, A = S(M) and A' = S(M') and $\Delta \vdash M \iff M' : T$
 - Or, $A = \Pi x : A_1 . A_2$ and $A' = \Pi x : A'_1 . A'_2$ and A'_1 sub $A_1 [\Delta]$ and $\forall \Delta' \supseteq \Delta$ if N_1 is N_2 in $A'_1 [\Delta']$ then $\{x \mapsto N_1\} A_2$ sub $\{x \mapsto N_2\} A'_2 [\Delta']$.
 - Or, $A = \Sigma x : A_1 . A_2$ and $A' = \Sigma x : A'_1 . A'_2$ and A_1 sub A'_1 [Δ] and $\forall \Delta' \supseteq \Delta$ if N_1 is N_2 in A_1 [Δ'] then $\{x \mapsto N_1\}A_2$ sub $\{x \mapsto N_2\}A'_2$ [Δ'].
- A_1 is A_2 [Δ] iff A_1 sub A_2 [Δ] and A_2 sub A_1 [Δ].
- M in A [Δ] iff M is M in A [Δ].
- M_1 is M_2 in A [Δ] iff
 - 1. A type $[\Delta]$
 - 2. $\Delta \vdash M_1 \equiv M_2 : A$
 - 3. -A = T and $\Delta \vdash M_1 \iff M_2 : T$.
 - Or, A = S(N), $\Delta \vdash M_1 \iff N : T$, and $\Delta \vdash M_2 \iff N : T$.
 - Or, $A = \Pi x: A_1.A_2$ and $\forall \Delta' \supseteq \Delta$ if M_1' is M_2' in A_1 [Δ'] then $M_1 M_1'$ is $M_2 M_2'$ in $\{x \mapsto M_1'\}A_2$ [Δ'].
 - Or, $A = \Sigma x : A_1 . A_2$ and $\pi_1 M_1$ is $\pi_1 M_2$ in A_1 [Δ] and $\pi_2 M_1$ is $\pi_2 M_2$ in $\{x \mapsto \pi_1 M_1\} A_2$ [Δ] (and hence $\pi_2 M_1$ is $\pi_2 M_2$ in $\{x \mapsto \pi_1 M_2\} A_2$ [Δ]).
- γ_1 is γ_2 in Γ $[\Delta]$ if
 - 1. $\Gamma \vdash ok$
 - 2. $\forall x \in \text{dom } \Gamma$. $\gamma_1 x$ is $\gamma_2 x$ in $\hat{\gamma_1}(\Gamma x)$ $[\Delta]$ and $\forall x \in \text{dom } \Gamma$. $\gamma_1 x$ is $\gamma_2 x$ in $\hat{\gamma_2}(\Gamma x)$ $[\Delta]$.
- γ in γ [Δ] Γ if γ is γ in Γ [Δ].

4 Proofs

Lemma 1

- 1. If $\Gamma \vdash A$ then $\Gamma \vdash \bot \iff \bot : A$ is a partial equivalence relation on well-formed terms of type A.
- 2. $\Delta \vdash \bot \iff \bot$ is a partial equivalence relation on well-formed types.
- 3. If $\Gamma \vdash M : A \sim M' : A'$ then $\Gamma \vdash M' : A' \sim M : A$ and $\Gamma \vdash M$ norm* A. If $\Gamma \vdash M : A \sim M' : A'$ and $\Gamma \vdash M' : A' \sim M'' : A''$ then $\Gamma \vdash M : A \sim M'' : A''$.
- 4. If A type $[\Delta]$ then $\underline{\ }$ is $\underline{\ }$ in A $[\Delta]$ is a partial equivalence relation on well-formed terms of type A.
- 5. If $\Delta \vdash$ ok then _ sub _ $[\Delta]$ is a (reflexive) partial order on well-formed types.
- 6. If $\Gamma \vdash ok$ and $\Delta \vdash ok$ then _ is _ in Γ [Δ] is a partial equivalence relation on environments.

Proof: Straightforward induction.

QED

Lemma 2 (Semantic Subtyping)

If A' sub A $[\Delta]$ and M_1 is M_2 in A' $[\Delta]$ then M_1 is M_2 in A $[\Delta]$.

Proof: By induction on A'.

QED

Lemma 3

If $\Gamma \vdash M : A \sim M' : A'$ then $\Gamma \vdash M \uparrow A$ and $\Gamma \vdash M' \uparrow A'$.

Lemma 4

If $\Gamma \vdash M \uparrow A$ then $\Gamma \vdash M : A$.

Lemma 5 (Correctness)

- 1. If $\Gamma \vdash M_1 : A$, $\Gamma \vdash M_2 : A$, and $\Gamma \vdash M_1 \iff M_2 : A$ then $\Gamma \vdash M_1 \equiv M_2 : A$.
- 2. If $\Gamma \vdash ok$ and $\Gamma \vdash M : A \sim M' : A'$ then $\Gamma \vdash A \equiv A'$ and $\Gamma \vdash M \equiv M : A$.

Theorem 1

If $\Delta \vdash A$ and A type $[\Delta]$ then

- 1. $\Delta \vdash A$ norm
- 2. If $\Delta \vdash E[y] : A \sim E'[y] : A'$ and A is $A' [\Delta]$, then E[y] is E'[y] in $A [\Delta]$.
- 3. If M_1 is M_2 in $A [\Delta]$ then $\Delta \vdash M_1 \iff M_2 : A$.

Proof: By induction on A.

Assume $\Delta \vdash A$ and A type $[\Delta]$.

- Case: A = T.
 - 1. $\Delta \vdash T$ norm by definition.
 - 2. By inversion, A' = T. Then $\Delta \vdash E[y] \Downarrow E[y]$ because $\Delta \vdash E[y] \Uparrow T$ and similarly, $\Delta \vdash E'[y] \Downarrow E'[y]$. Thus $\Delta \vdash E[y] : T \sim E'[y] : T$ implies $\Delta \vdash E[y] \iff E'[y] : T$. By Lemma 5 we have $\Delta \vdash E[y] \equiv E[y] : T$. Therefore E[y] is E'[y] in $T[\Delta]$.
 - 3. Follows directly from the definition of M_1 is M_2 in T [Δ].
- Case: A = S(N).
 - 1. Because S(N) type $[\Delta]$ we have $\Delta \vdash N$ norm T and therefore $\Delta \vdash S(N)$ norm.
 - 2. By inversion, A' = S(N') with $\Delta \vdash N \iff N' : T$, so by Lemma 1 $\Delta \vdash N$ norm T and $\Delta \vdash N'$ norm T.

By Lemma 3, E[y] is a head expansion of N and E'[y] is a head expansion of N'; since algorithmic equivalence is clearly closed under head expansion of normalizing expressions, we have $\Delta \vdash E[y] \iff N : T$ and $\Delta \vdash E'[y] \iff N' : T$.

Finally, by Lemma 5 we have $\Delta \vdash N \equiv N' : S(N)$. Therefore, E[y] is E'[y] in S(N) $[\Delta]$.

- 3. Follows from the definition of M_1 is M_2 in S(N) [Δ] and Lemma 1.
- Case: $A = \Pi x : A_1 . A_2$.
 - 1. $\Pi x: A_1.A_2$ type $[\Delta]$ implies A_1 type $[\Delta]$. This further implies that $\Delta \vdash A_1$, and by IH(1) that $\Delta \vdash A_1$ norm. By Lemma 1 and IH(2) we have x in A_1 $[\Delta, x:A_1]$, so that A_2 type $[\Delta, x:A_1]$. By IH(1), $\Delta, x:A_1 \vdash A_2$ norm; therefore $\Delta \vdash \Pi x:A_1.A_2$ norm.

- 2. By Lemma 5, $\Delta \vdash E[y] \equiv E'[y] : A$.
 - Let $\Delta' \supseteq \Delta$ be a well-formed context, and assume that M_1 is M'_1 in A_1 [Δ']. By MONOTONICITY and inversion, $A' = \Pi x : A'_1 . A'_2$ where A_1 is A'_1 [Δ'] and $\{x \mapsto M_1\}A_2$ is $\{x \mapsto M'_1\}A'_2$ [Δ']. Thus M_1 is M'_1 in A'_1 [Δ']. By IH(3), $\Delta' \vdash M_1 \iff M'_1 : A_1$ and $\Delta' \vdash M_1 \iff M'_1 : A'_1$; hence $\Delta' \vdash (E[y]) M_1 : \{x \mapsto M_1\}A_2 \sim (E'[y]) M'_1 : \{x \mapsto M'_1\}A'_2$. By IH(2), $(E[y]) M_1$ is $(E'[y]) M'_1$ in $\{x \mapsto M_1\}A_2$ [Δ']. Therefore, E[y] is E'[y] in $\Pi x : A_1 . A_2$ [Δ'].
- 3. Assume M_1 is M_2 in $\Pi x: A_1.A_2$ [Δ]. Since A_1 type [Δ], by IH(2) we have x in A_1 [$\Delta, x: A_1$]. Then $M_1 x$ is $M_2 x$ in A_2 [$\Delta, x: A_1$]. By IH(3), $\Delta, x: A_1 \vdash M_1 x \iff M_2 x: A_2$. Therefore, $\Delta \vdash M_1 \iff M_2: \Pi x: A_1.A_2$.
- Case: $A = \Sigma x : A_1 . A_2$.
 - 1. If A type $[\Delta]$ then A_1 type $[\Delta]$, so by IH(1) we have $\Delta \vdash A_1$ norm. By IH(2) we know that x in A_1 $[\Delta, x:A_1]$ and hence A_2 type $[\Delta, x:A_1]$. Again by IH(1) we have $\Delta, x:A_1 \vdash A_2$ norm. Therefore $\Delta \vdash A$ norm.
 - 2. By Lemma 5, $\Delta \vdash E[y] \equiv E'[y] : A$. By inversion we must have $A' = \Sigma x : A'_1 . A'_2$ with A_1 is $A'_1 [\Delta]$ and $\{x \mapsto M_1\} A_2$ is $\{x \mapsto M'_1\} A'_2 [\Delta]$ whenever M_1 is M'_1 in $A_1 [\Delta]$.

First, by IH(3) $\Delta \vdash \pi_1 E[y] : A_1 \sim \pi_1 E'[y] : A'_1$ and A_1 is $A'_1[\Delta]$ imply $\pi_1 E[y]$ is $\pi_1 E'[y]$ in $A_1[\Delta]$.

Then $\Delta \vdash \pi_2 E[y] : \{x \mapsto \pi_1 E[y]\} A_2 \sim \pi_2 E'[y] : \{x \mapsto \pi_1 E'[y]\} A_2'$ and $\{x \mapsto M_1\} A_2$ is $\{x \mapsto M_1'\} A_2'$ [Δ]. Thus by IH(3) again, we have $\pi_2 E[y]$ is $\pi_2 E'[y]$ in $\{x \mapsto \pi_1 E[y]\} A_2$ [Δ].

Therefore, E[y] is E'[y] in $A[\Delta]$.

3. Assume M_1 is M_2 in $\Sigma x: A_1.A_2$ [Δ]. By IH(3) $\pi_1 M_1$ is $\pi_2 M_2$ in A_1 [Δ] implies $\Delta \vdash \pi_1 M_1 \iff \pi_1 M_2 : A_1$. Similarly, $\pi_2 M_1$ is $\pi_2 M_2$ in $\{x \mapsto \pi_1 M_1\} A_2$ [Δ] implies $\Delta \vdash \pi_2 M_1 \iff \pi_2 M_2 : \{x \mapsto \pi_1 M\} A_2$. Therefore, $\Delta \vdash M_1 \iff M_2 : A$.

QED

We define $M_1 \simeq M_2$ as the symmetric relation generated by:

- $E[\{x \mapsto M_1\}M] \simeq E[(\lambda x: A_1.M) M_1]$
- $E[M_1] \simeq E[\pi_1\langle M_1, M_2\rangle]$
- $E[M_2] \simeq E[\pi_2\langle M_1, M_2\rangle]$

Theorem 2

If $M_1 \simeq M_2$, M_1 in $A [\Delta]$, and $\Delta \vdash M_2 : A$ then M_1 is M_2 in $A [\Delta]$.

Proof: By induction on A.

Assume $M_1 \simeq M_2$, M_1 in A [Δ], and $\Delta \vdash M_2 : A$. By LEMMA, $\Delta \vdash M_1 \equiv M_2 : A$.

• Case: A = T.

By Theorem 1, we have $\Delta \vdash M_1$ norm T. Thus $\Delta \vdash M_1 \Downarrow V$ and $\Delta \vdash V$ norm T. But clearly $\Delta \vdash M_2 \Downarrow V$ as well. Hence $\Delta \vdash M_1 \iff M_2 : T$ and therefore M_1 is M_2 in T [Δ].

• Case: A = S(N).

First, M_1 in A [Δ] implies $\Delta \vdash M_1 \iff N : T$. Exactly as in the previous case, $\Delta \vdash M_1 \iff M_2 : T$. By Lemma 1, $\Delta \vdash M_2 \iff N : T$, and therefore, M_1 is M_2 in S(N) [Δ].

• Case: $T = \Pi x: A'.A''$.

Let $\Delta' \supseteq \Delta$ be a valid context and assume M'_1 is M'_2 in A' [Δ']. Then $M_1 M'_1 \simeq M_2 M'_2$ so by IH, $M_1 M'_1$ is $M_2 M'_2$ in $\{x \mapsto M'_1\}A''$ [Δ].

Therefore, M_1 is M_2 in $\Pi x: A'.A''$ $[\Delta]$.

• Case: $A = \Sigma x : A' . A''$.

First, $\pi_1 M_1$ in A' [Δ] and $\pi_2 M_1$ in $\{x \mapsto \pi_1 M_1\} A'$ [Δ]. By IH, $\pi_1 M_1$ is $\pi_1 M_2$ in A' [Δ] and $\pi_2 M_1$ is $\pi_2 M_2$ in $\{x \mapsto \pi_1 M_1\} A'$ [Δ].

Therefore, M_1 is M_2 in $\Sigma x{:}A'.A''$ $[\Delta]$

QED

Theorem 3

Assume that $\Delta \vdash ok$ and that γ_1 is γ_2 in Γ $[\Delta]$.

- 1. If $\Gamma \vdash A$ then $\hat{\gamma_1}A$ sub $\hat{\gamma_2}A$ $[\Delta]$ (hence $\hat{\gamma_1}A$ is $\hat{\gamma_2}A$ $[\Delta]$).
- 2. If $\Gamma \vdash A_1 \leq A_2$ then $\hat{\gamma_1}A_1$ sub $\hat{\gamma_1}A_2$ $[\Delta]$.
- 3. If $\Gamma \vdash M : A$ then $\hat{\gamma_1}M$ is $\hat{\gamma_2}M$ in $\hat{\gamma_1}A$ $[\Delta]$ (hence $\hat{\gamma_1}M$ is $\hat{\gamma_2}M$ in $\hat{\gamma_2}A$ $[\Delta]$).
- 4. If $\Gamma \vdash M_1 \equiv M_2 : A$ then $\hat{\gamma_1} M_1$ is $\hat{\gamma_1} M_2$ in $\hat{\gamma_1} A$ $[\Delta]$.

Proof:

- Rule 3. T sub T [Δ] by definition.
- Rule 4. By IH, $\hat{\gamma_1}M$ is $\hat{\gamma_2}M$ in T [Δ]. Thus $\Delta \vdash \hat{\gamma_1}M \iff \hat{\gamma_2}M : T$ and $\Delta \vdash \hat{\gamma_1}M \equiv \hat{\gamma_2}M : T$, so $\Delta \vdash S(\hat{\gamma_1}M) \preceq S(\hat{\gamma_2}M)$. Therefore $S(\hat{\gamma_1}M)$ sub $S(\hat{\gamma_2}M)$ [Δ].
- Rule 5. By IH, $\hat{\gamma}_1 A_1$ is $\hat{\gamma}_2 A_1$ [Δ]. Let $\Delta' \supseteq \Delta$ and assume N_1 is N_2 in $\hat{\gamma}_1 A_1$ [Δ']. (Then N_1 is N_2 in $\hat{\gamma}_2 A_1$ [Δ'].) By IH, $\hat{\gamma}_1[x \mapsto N_1]A_2$ is $\hat{\gamma}_2[x \mapsto N_2]A_2$ [Δ']. That is, $\{x \mapsto N_1\}(\hat{\gamma}_1[x \mapsto x]A_2)$ is $\{x \mapsto N_2\}(\hat{\gamma}_2[x \mapsto x]A_2)$ [Δ']. Therefore, $\Pi x: \hat{\gamma}_1 A_1.(\hat{\gamma}_1[x \mapsto x]A_2)$ sub $\Pi x: \hat{\gamma}_2 A_1.(\hat{\gamma}_2[x \mapsto x]A_2)$ [Δ].
- Rule 6. By IH, $\hat{\gamma_1}A_1$ is $\hat{\gamma_2}A_1$ [Δ]. Let $\Delta' \supseteq \Delta$ and assume N_1 is N_2 in $\hat{\gamma_1}A_1$ [Δ']. (Then N_1 is N_2 in $\hat{\gamma_2}A_1$ [Δ'].) By IH, $\hat{\gamma_1}[x \mapsto N_1]A_2$ is $\hat{\gamma_2}[x \mapsto N_2]A_2$ [Δ']. That is, $\{x \mapsto N_1\}(\hat{\gamma_1}[x \mapsto x]A_2)$ is $\{x \mapsto N_2\}(\hat{\gamma_2}[x \mapsto x]A_2)$ [Δ']. Therefore, $\Sigma x: \hat{\gamma_1}A_1.(\hat{\gamma_1}[x \mapsto x]A_2)$ sub $\Sigma x: \hat{\gamma_2}A_1.(\hat{\gamma_2}[x \mapsto x]A_2)$ [Δ].
- Rule 7. T sub T [Δ] by definition.
- Rule 8. By IH, $\hat{\gamma}_1 M_1$ is $\hat{\gamma}_1 M_2$ in T [Δ]. Thus $\Delta \vdash \hat{\gamma}_1 M_1 \iff \hat{\gamma}_2 M_1 : T$ and $\Delta \vdash \hat{\gamma}_1 M_1 \equiv \hat{\gamma}_2 M : T$, so $\Delta \vdash S(\hat{\gamma}_1 M) \preceq S(\hat{\gamma}_2 M)$. Therefore $S(\hat{\gamma}_1 M)$ sub $S(\hat{\gamma}_2 M)$ [Δ].
- Rule 9. By IH, $S(\hat{\gamma}_1 M)$ type $[\Delta]$. Thus $\Delta \vdash \hat{\gamma}_1 M$ norm T and $\Delta \vdash \hat{\gamma}_1 M : T$. Therefore $\Delta \vdash S(\hat{\gamma}_1 M) \preceq T$, so $S(\hat{\gamma}_1 M)$ sub T $[\Delta]$.
- Rule 10. By IH, $\hat{\gamma_1}A_1'$ sub $\hat{\gamma_1}A_1$ [Δ]. Let $\Delta' \supseteq \Delta$ and assume M is M' in $\hat{\gamma_1}A_1'$ [Δ]. By IH, $\hat{\gamma_1}[x \mapsto M]A_2$ sub $\hat{\gamma_1}[x \mapsto M']A_2'$ [Δ']. That is, $\{x \mapsto M\}(\hat{\gamma_1}[x \mapsto x]A_2)$ sub $\{x \mapsto M'\}(\hat{\gamma_1}[x \mapsto x]A_2')$ [Δ']. Therefore, $\Pi x : \hat{\gamma_1}A_1.(\hat{\gamma_1}[x \mapsto x]A_2)$ sub $\Pi x : \hat{\gamma_1}A_1'.(\hat{\gamma_1}[x \mapsto x]A_2')$ [Δ].
- Rule 11. By IH, $\hat{\gamma}_1 A_1$ sub $\hat{\gamma}_1 A_1'$ [Δ]. Let $\Delta' \supseteq \Delta$ and assume M is M' in $\hat{\gamma}_1 A_1$ [Δ]. By IH, $\hat{\gamma}_1[x \mapsto M]A_2$ sub $\hat{\gamma}_1[x \mapsto M']A_2'$ [Δ']. That is, $\{x \mapsto M\}(\hat{\gamma}_1[x \mapsto x]A_2)$ sub $\{x \mapsto M'\}(\hat{\gamma}_1[x \mapsto x]A_2')$ [Δ']. Therefore, $\sum x : \hat{\gamma}_1 A_1.(\hat{\gamma}_1[x \mapsto x]A_2)$ sub $\sum x : \hat{\gamma}_1 A_1'.(\hat{\gamma}_1[x \mapsto x]A_2')$ [Δ].

- Rule 12. b is b in T [Δ] by definition.
- Rule 13. By assumption, $\hat{\gamma}_1 x$ is $\hat{\gamma}_2 x$ in $\hat{\gamma}_1(\Gamma x)$ $[\Delta]$.
- Rule 14. By IH, $\hat{\gamma_1}A_1$ is $\hat{\gamma_2}A_1$ [Δ]. By Theorem 1, x in $\hat{\gamma_1}A_1$ [Δ , $x:\hat{\gamma_1}A_1$], so by IH $\hat{\gamma_1}[x\mapsto x]M$ is $\hat{\gamma_2}[x\mapsto x]M$ in $\hat{\gamma_1}[x\mapsto x]M$ [Δ , $x:\hat{\gamma_1}A_1$]. Thus $\Delta \vdash \lambda x:\hat{\gamma_1}A_1.(\hat{\gamma_1}[x\mapsto x]M) \equiv \lambda x:\hat{\gamma_2}A_1.(\hat{\gamma_2}[x\mapsto x]M): \Pi x:\hat{\gamma_1}A_1.(\hat{\gamma_1}[x\mapsto x]A_2).$ Let $\Delta' \supseteq \Delta$ and M_2 is $\hat{\gamma_1}A_1$ in Δ' [M_1]. By IH, $\{x\mapsto M_1\}(\hat{\gamma_1}[x\mapsto x]M)$ is $\{x\mapsto M_2\}(\hat{\gamma_2}[x\mapsto x]M)$ in $\{x\mapsto M_1\}(\hat{\gamma_1}[x\mapsto x]A_2)$ [Δ']. By Theorem 2 and Lemma 1, $(\lambda x:\hat{\gamma_1}A_1.\hat{\gamma_1}[x\mapsto x]M)$ M_1 is $(\lambda x:\hat{\gamma_2}A_1.\hat{\gamma_2}[x\mapsto x]M)$ M_2 in $\{x\mapsto M_1\}(\hat{\gamma_1}[x\mapsto x]A_2)$ [Δ']. Therefore, $\lambda x:\hat{\gamma_1}A_1.(\hat{\gamma_1}[x\mapsto x]M)$ is $\lambda x:\hat{\gamma_2}A_1.(\hat{\gamma_2}[x\mapsto x]M)$ in $\Pi x:\hat{\gamma_1}A_1.(\hat{\gamma_1}[x\mapsto x]A_2)$ [Δ'].
- Rule 15. By IH we have $\hat{\gamma}_1 M$ is $\hat{\gamma}_2 M$ in $\Pi x: \hat{\gamma}_1 A_1. \hat{\gamma}_1 \widehat{[x \mapsto x]} A_2$ [Δ] and $\hat{\gamma}_1 M_1$ is $\hat{\gamma}_2 M_1$ in $\hat{\gamma}_1 A_1$ [Δ]. Thus $(\hat{\gamma}_1 M)$ $(\hat{\gamma}_1 M_1)$ is $(\hat{\gamma}_2 M)$ $(\hat{\gamma}_1 M_1)$ in $\hat{\gamma}_1 (\{x \mapsto M_1\} A_2)$ [Δ]. Further, since $\hat{\gamma}_2 M$ in $\Pi x: \hat{\gamma}_1 A_1. \hat{\gamma}_1 \widehat{[x \mapsto x]} A_2$ [Δ], we have $(\hat{\gamma}_2 M)$ $(\hat{\gamma}_1 M_1)$ is $(\hat{\gamma}_2 M)$ $(\hat{\gamma}_2 M_1)$ in $\hat{\gamma}_1 (\{x \mapsto M_1\} A_2)$ [Δ]. By symmetry and transivity, $(\hat{\gamma}_1 M)$ $(\hat{\gamma}_1 M_1)$ is $(\hat{\gamma}_2 M)$ $(\hat{\gamma}_2 M_1)$ in $\hat{\gamma}_1 (\{x \mapsto M_1\} A_2)$ [Δ].
- Rule 16. By IH we have $\hat{\gamma_1}M$ is $\hat{\gamma_2}M$ in $\Sigma x:\hat{\gamma_1}A_1.\hat{\gamma_1}\widehat{[x\mapsto x]}A_2$ [Δ]. Therefore, $\pi_1(\hat{\gamma_1}M)$ is $\pi_1(\hat{\gamma_2}M)$ in $\hat{\gamma_1}A_1$ [Δ].
- Rule 17. By IH we have $\hat{\gamma_1}M$ is $\hat{\gamma_2}M$ in $\Sigma x:\hat{\gamma_1}A_1.\gamma_1[x\mapsto x]A_2$ [Δ]. Therefore, $\pi_2(\hat{\gamma_1}M)$ is $\pi_2(\hat{\gamma_2}M)$ in $\{x\mapsto\hat{\gamma_1}(\pi_1M)\}(\gamma_1[x\mapsto x]A_2)$ [Δ], or equivalently $\hat{\gamma_1}(\pi_2M)$ is $\hat{\gamma_2}(\pi_2M)$ in $\hat{\gamma_1}(\{x\mapsto\pi_1M\}A_2)$ [Δ].
- Rule 18. By IH we have $\hat{\gamma}_1 M_1$ is $\hat{\gamma}_2 M_1$ in $\hat{\gamma}_1 A_1$ [Δ] and $\hat{\gamma}_1 M_2$ is well-formed. By Theorem 2, we have $\hat{\gamma}_1(\pi_1\langle M_1, M_2\rangle)$ is $\hat{\gamma}_2(\pi_1\langle M_1, M_2\rangle)$ in $\hat{\gamma}_1 A_1$ [Δ]. Again by IH we have $\hat{\gamma}_1 M_2$ is $\hat{\gamma}_2 M_2$ in $\{x \mapsto \hat{\gamma}_1 M_1\}(\gamma_1[\widehat{x} \mapsto x]A_2)$ [Δ]. Again by Theorem 2, $\hat{\gamma}_1(\pi_1\langle M_1, M_2\rangle)$ is $\hat{\gamma}_1 M_1$ in $\hat{\gamma}_1 A_1$ [Δ]. Thus, we may apply the IH to get $\hat{\gamma}_1[\widehat{x} \mapsto \hat{\gamma}_1 M_1]A_2$ sub $\hat{\gamma}_1[\widehat{x} \mapsto \hat{\gamma}_1(\widehat{\pi}_1\langle M_1, M_2\rangle)]A_2$ [Δ]. Applying Theorem 2 one last time, we have $\hat{\gamma}_1(\pi_2\langle M_1, M_2\rangle)$ is $\hat{\gamma}_2(\pi_2\langle M_1, M_2\rangle)$ in $\{x \mapsto \hat{\gamma}_1 M_1\}(\gamma_1[\widehat{x} \mapsto x]A_2)$ [Δ]. Therefore, $\hat{\gamma}_1 M_2$ is $\hat{\gamma}_2 M_2$ in $\{x \mapsto \hat{\gamma}_1(\pi_1\langle M_1, M_2\rangle)\}(\gamma_1[\widehat{x} \mapsto x]A_2)$ [Δ].
- Rule 19. By IH, $\hat{\gamma_1}M$ is $\hat{\gamma_2}M$ in T [Δ]. Thus $\Delta \vdash \hat{\gamma_1}M$ norm T, $\Delta \vdash \hat{\gamma_1}M : T$, $\Delta \vdash \hat{\gamma_1}M$, and $\Delta \vdash \hat{\gamma_1}M : S(\hat{\gamma_1}M)$, and so $\hat{\gamma_1}M$ in $S(\hat{\gamma_1}M)$ [Δ].

 Furthermore, we have $\Delta \vdash \hat{\gamma_2}M$ norm T, $\Delta \vdash \hat{\gamma_1}M \iff \hat{\gamma_2}M : T$, $\Delta \vdash \hat{\gamma_1}M \equiv \hat{\gamma_2}M : T$, $\Delta \vdash S(\hat{\gamma_1}M) \equiv S(\hat{\gamma_2}M)$, and $\Delta \vdash \hat{\gamma_2}M : S(\hat{\gamma_1}M)$. Therefore $\hat{\gamma_2}M$ in $S(\hat{\gamma_1}M)$ [Δ] and so $\hat{\gamma_1}M$ is $\hat{\gamma_2}M$ in $S(\hat{\gamma_1}M)$ [Δ].
- Rule 20. By IH $\hat{\gamma}_1 M$ is $\hat{\gamma}_2 M$ in $\Sigma x: (\hat{\gamma}_1 A_1). (\hat{\gamma}_1[\widehat{x} \mapsto x] A_2)$ [Δ] and $\hat{\gamma}_1 \pi_1 M$ is $\hat{\gamma}_2 \pi_1 M$ in $\hat{\gamma}_1 A_1'$ [Δ]. Thus $\pi_2 \hat{\gamma}_1 M$ is $\pi_2 \hat{\gamma}_2 M$ in $\{x \mapsto \pi_1 \hat{\gamma}_1 M\} A_2$ [Δ]. Therefore $\hat{\gamma}_1 M$ is $\hat{\gamma}_2 M$ in $\Sigma x: (\hat{\gamma}_1 A_1'). (\hat{\gamma}_1[\widehat{x} \mapsto x] A_2)$ [Δ] and
- Rule 21. By IH, $\hat{\gamma}_1 M$ is $\hat{\gamma}_2 M$ in $\sum x: (\hat{\gamma}_1 A_1). (\hat{\gamma}_1[x \mapsto x] A_2)$ [Δ], and so $\pi_1 \hat{\gamma}_1 M$ is $\pi_1 \hat{\gamma}_2 M$ in $\hat{\gamma}_1 A_1$ [Δ]. Again by IH, $\hat{\gamma}_1 \pi_2 M$ is $\hat{\gamma}_2 \pi_2 M$ in $\hat{\gamma}_1 \{x \mapsto \pi_1 M\} A_2'$ [Δ]. Therefore $\hat{\gamma}_1 M$ is $\hat{\gamma}_2 M$ in $\sum x: (\hat{\gamma}_1 A_1). (\hat{\gamma}_1[x \mapsto x] A_2')$ [Δ].
- Rule 22. Assume $\Delta' \supseteq \Delta$ is well-formed, and let M_1 in $\hat{\gamma_1}A_1$ [Δ']. By IH, $\hat{\gamma_1}[\widehat{x \mapsto} M_1](M\,x)$ is $\hat{\gamma_2}[\widehat{x \mapsto} M_1](M\,x)$ in $\hat{\gamma_1}[\widehat{x \mapsto} M_1]A_2'$ [Δ]. That is, $(\hat{\gamma_1}M)\,M_1$ is $(\hat{\gamma_2}M)\,M_1$ in $[\widehat{x \mapsto} M_1](\gamma_1[\widehat{x \mapsto} x]A_2')$ [Δ]. Therefore, $\hat{\gamma_1}M$ is $\hat{\gamma_2}M$ in $\Pi x:\hat{\gamma_1}A_1.(\gamma_1[\widehat{x \mapsto} x]A_2')$ [Δ].

- Rule 23 By IH we have $\hat{\gamma_1}M$ is $\hat{\gamma_2}M$ in $\hat{\gamma_1}A$ [Δ] and $\hat{\gamma_1}A$ sub $\hat{\gamma_1}A'$ [Δ]. Therefore, $\hat{\gamma_1}M$ is $\hat{\gamma_2}M$ in $\hat{\gamma_1}A'$ [Δ].
- Rule 24 By IH we have $\hat{\gamma}_1 M$ is $\hat{\gamma}_1 M$ in $\hat{\gamma}_1 A$ $[\Delta]$.,
- Rule 25 By symmetry of semantic equivalence.
- Rule 26 By transitivity of semantic equivalence.
- Rule 27 By IH we have $\hat{\gamma_1}M$ in $S(\hat{\gamma_1}M')$ [Δ]. Thus $\Delta \vdash \hat{\gamma_1}M \equiv \hat{\gamma_1}M' : T$ and $\Delta \vdash \hat{\gamma_1}M \iff \hat{\gamma_1}M' : T$. Therefore $\hat{\gamma_1}M$ is $\hat{\gamma_1}M'$ in T [Δ].
- Rule 28 Let the valid world $\Delta' \supseteq \Delta$ and M_1 in $\widehat{\gamma_1}A_1$ [Δ'] be given. By IH, $\{x \mapsto M_1\}(\widehat{\gamma_1[x \mapsto x]}M)$ is $\{x \mapsto M_1\}(\widehat{\gamma_1[x \mapsto x]}M')$ in $\{x \mapsto M_1\}(\widehat{\gamma_1[x \mapsto x]}A_2)$ [Δ']. By Theorem 2, we have $(\lambda x : \widehat{\gamma_1}A_1.M)$ M_1 is $(\lambda x : \widehat{\gamma_1}A_1.M')$ M_1 in $\{x \mapsto M_1\}(\widehat{\gamma_1[x \mapsto x]}A_2)$ [Δ']. Therefore, $\lambda x : \widehat{\gamma_1}A_1.(\widehat{\gamma_1[x \mapsto x]}M)$ is $\lambda x : \widehat{\gamma_1}A_1.(\widehat{\gamma_1[x \mapsto x]}M')$ in $\Pi x : \widehat{\gamma_1}A_1.(\widehat{\gamma_1[x \mapsto x]}A_2)$ [Δ].
- Rule 29 By IH, $\hat{\gamma_1}M$ is $\hat{\gamma_1}M'$ in $\sum x:\hat{\gamma_1}A_1.(\hat{\gamma_1}\widehat{[x\mapsto x]}A_2)$ [Δ]. Therefore, $\pi_1\hat{\gamma_1}M$ is $\pi_1\hat{\gamma_1}M'$ in $\hat{\gamma_1}A_1$ [Δ].
- Rule 30 By IH, $\hat{\gamma}_1 M$ is $\hat{\gamma}_1 M'$ in $\sum x : \hat{\gamma}_1 A_1 . (\hat{\gamma}_1 \widehat{x \mapsto} x] A_2)$ [Δ]. Therefore, $\pi_2 \hat{\gamma}_1 M$ is $\pi_2 \hat{\gamma}_1 M'$ in $\{x \mapsto \pi_1 \hat{\gamma}_1 M\} (\hat{\gamma}_1 \widehat{x \mapsto} x] A_2)$ [Δ].
- Rule 31. By IH, $\hat{\gamma}_1 M_1$ is $\hat{\gamma}_1 M_1'$ in $\hat{\gamma}_1 A_1$ [Δ] and $\hat{\gamma}_1 M_2$ is $\hat{\gamma}_1 M_2'$ in $\{x \mapsto \hat{\gamma}_1 M_1\}(\hat{\gamma}_1[x \mapsto x]A_2)$ [Δ]. By Theorem 2, $\hat{\gamma}_1 \pi_1 \langle M_1, M_2 \rangle$ is $\hat{\gamma}_1 \pi_1 \langle M_1', M_2' \rangle$ in $\hat{\gamma}_1 A_1$ [Δ], $\hat{\gamma}_1 \pi_2 \langle M_1, M_2 \rangle$ is $\hat{\gamma}_1 \pi_2 \langle M_1', M_2' \rangle$ in $\{x \mapsto \hat{\gamma}_1 M_1\}(\hat{\gamma}_1[x \mapsto x]A_2)$ [Δ], and $\hat{\gamma}_1 M_1$ is $\hat{\gamma}_1 \pi_1 \langle M_1, M_2 \rangle$ in $\hat{\gamma}_1 A_1$ [Δ]. Thus by IH again $\hat{\gamma}_1[x \mapsto \hat{\gamma}_1 \pi_1 \langle M_1, M_2 \rangle]A_2$ sub $\hat{\gamma}_1[x \mapsto \hat{\gamma}_1 M_1]A_2$ [Δ] Thus $\hat{\gamma}_1 \pi_2 \langle M_1, M_2 \rangle$ is $\hat{\gamma}_1 \pi_2 \langle M_1', M_2' \rangle$ in $\{x \mapsto \hat{\gamma}_1 \pi_1 \langle M_1, M_2 \rangle\}(\hat{\gamma}_1[x \mapsto x]A_2)$ [Δ], and so $\hat{\gamma}_1 \langle M_1, M_2 \rangle$ is $\hat{\gamma}_1 \langle M_1', M_2' \rangle$ in $\sum x : \hat{\gamma}_1 A_1 . (\hat{\gamma}_1[x \mapsto x]A_2)$ [Δ].
- Rule 32. By IH, $\hat{\gamma_1}M$ is $\hat{\gamma_1}M'$ in $\Pi x: \hat{\gamma_1}A_1.(\gamma_1\widehat{[x\mapsto x]}A_2)$ [Δ] and $\hat{\gamma_1}M_1$ is $\hat{\gamma_1}M'_1$ in $\hat{\gamma_1}A_1$ [Δ]. Therefore, $(\hat{\gamma_1}M)(\hat{\gamma_1}M_1)$ is $(\hat{\gamma_1}M')(\hat{\gamma_1}M'_1)$ in $\{x\mapsto \hat{\gamma_1}M_1\}(\gamma_1\widehat{[x\mapsto x]}A_2)$ [Δ].
- Rule 33. Let the well-formed $\Delta' \supseteq \Delta$ and M_1 in $\hat{\gamma_1}A_1$ [Δ'] be given. By IH and this assumption, $\hat{\gamma_1}M M_1$ in $\{x \mapsto \hat{\gamma_1}M_1\}(\hat{\gamma_1}[x \mapsto x]A_2)$ [Δ']. But $\hat{\gamma_1}M M_1 = \{x \mapsto M_1\}(\hat{\gamma_1}M x)$, so by Theorem 2 we have $(\lambda x : \hat{\gamma_1}A_1.\hat{\gamma_1}M x) M_1$ is $\hat{\gamma_1}M M_1$ in $\{x \mapsto M_1\}(\hat{\gamma_1}[x \mapsto x]A_2)$ [Δ']. Therefore $\lambda x : \hat{\gamma_1}A_1.\hat{\gamma_1}M x$ is $\hat{\gamma_1}M$ in $\Pi x : \hat{\gamma_1}A_1.(\hat{\gamma_1}[x \mapsto x]A_2)$ [Δ].
- Rule 34. By IH, $\hat{\gamma_1}M_1$ in $\hat{\gamma_1}A_1$ [Δ]. Thus again by IH we have $\gamma_1[\widehat{x\mapsto\hat{\gamma_1}M_1}]M$ in $\gamma_1[\widehat{x\mapsto\hat{\gamma_1}M_1}]A_2$ [Δ]. By Theorem 2 we have $(\lambda x:\hat{\gamma_1}A_1.(\gamma_1[\widehat{x\mapsto x}]M))M_1$ is $\{x\mapsto\hat{\gamma_1}M_1\}(\gamma_1[\widehat{x\mapsto x}]M)$ in $\{x\mapsto\hat{\gamma_1}M_1\}(\gamma_1[\widehat{x\mapsto x}]A_2)$ [Δ].
- Rule 35. By IH, $\langle \hat{\gamma_1} M_1, \hat{\gamma_1} M_2 \rangle$ in $\sum x: \hat{\gamma_1} A_1. (\gamma_1 \widehat{[x \mapsto x]} A_2)$ [Δ]. By Theorem 2 we have $\pi_1 \langle \hat{\gamma_1} M_1, \hat{\gamma_1} M_2 \rangle$ is $\hat{\gamma_1} M_1$ in $\hat{\gamma_1} A_1$ [Δ].
- Rule 36. By IH, $\langle \hat{\gamma}_1 M_1, \hat{\gamma}_1 M_2 \rangle$ in $\sum x: \hat{\gamma}_1 A_1 \cdot (\gamma_1 \widehat{x} \mapsto x] A_2)$ [Δ]. Thus $\pi_1 \langle \hat{\gamma}_1 M_1, \hat{\gamma}_1 M_2 \rangle$ in $\hat{\gamma}_1 A_1$ [Δ] and $\pi_2 \langle \hat{\gamma}_1 M_1, \hat{\gamma}_1 M_2 \rangle$ in $\{x \mapsto \pi_1 \langle \hat{\gamma}_1 M_1, \hat{\gamma}_1 M_2 \rangle\} (\hat{\gamma}_1 \widehat{x} \mapsto x] A_2)$ [Δ]. By Theorem 2 we have $\pi_1 \langle \hat{\gamma}_1 M_1, \hat{\gamma}_1 M_2 \rangle$ is $\hat{\gamma}_1 M_1$ in $\hat{\gamma}_1 A_1$ [Δ] and $\pi_2 \langle \hat{\gamma}_1 M_1, \hat{\gamma}_1 M_2 \rangle$ is $\hat{\gamma}_1 M_2$ in $\{x \mapsto \pi_1 \langle \hat{\gamma}_1 M_1, \hat{\gamma}_1 M_2 \rangle\} (\hat{\gamma}_1 \widehat{x} \mapsto x] A_2)$ [Δ]. From the IH we get $\{x \mapsto \pi_1 \langle \hat{\gamma}_1 M_1, \hat{\gamma}_1 M_2 \rangle\} (\hat{\gamma}_1 \widehat{x} \mapsto x] A_2)$ sub $\{x \mapsto \hat{\gamma}_1 M_1\} (\hat{\gamma}_1 \widehat{x} \mapsto x] A_2)$ [Δ], and the desired conclusion follows.

- Rule 37. By IH we have $\widehat{\gamma_1}M$ in $\Pi x: \widehat{\gamma_1}A_1.(\widehat{\gamma_1[x\mapsto x]}A_2)$ [Δ]. Thus $\pi_1\widehat{\gamma_1}M$ in $\widehat{\gamma_1}A_1$ [Δ] and $\pi_2\widehat{\gamma_1}M$ in $\{x\mapsto \pi_1\widehat{\gamma_1}M\}(\widehat{\gamma_1[x\mapsto x]}A_2)$ [Δ]. By Theorem 2, $\pi_1\widehat{\gamma_1}M$ is $\pi_1\langle \pi_1\widehat{\gamma_1}M, \pi_2\widehat{\gamma_1}M\rangle$ in $\widehat{\gamma_1}A_1$ [Δ] and $\pi_2\widehat{\gamma_1}M$ is $\pi_2\langle \pi_2\widehat{\gamma_1}M, \pi_2\widehat{\gamma_1}M\rangle$ in $\{x\mapsto \pi_1\widehat{\gamma_1}M\}(\widehat{\gamma_1[x\mapsto x]}A_2)$ [Δ]. Therefore, $\widehat{\gamma_1}M$ is $\widehat{\gamma_1}\langle \pi_1\widehat{\gamma_1}M, \pi_2\widehat{\gamma_1}M\rangle$ in $\widehat{\gamma_1}(\Pi x: A_1.A_2)$ [Δ].
- Rule 38. By IH we have $\hat{\gamma_1}M_1$ is $\hat{\gamma_1}M_2$ in $\hat{\gamma_1}A$ [Δ] and $\hat{\gamma_1}A$ sub $\hat{\gamma_1}A'$ [Δ]. By Lemma 2, $\hat{\gamma_1}M_1$ is $\hat{\gamma_1}M_2$ in $\hat{\gamma_1}A'$ [Δ]

QED

Corollary 1

- 1. If $\Gamma \vdash A$ then A type $[\Gamma]$.
- 2. If $\Gamma \vdash A \leq A'$ then A sub A' $[\Gamma]$.
- 3. If $\Gamma \vdash M : A$ then M in A $[\Gamma]$.
- 4. If $\Gamma \vdash M \equiv M' : A$ then M is M' in $A [\Gamma]$.

Theorem 4

- 1. If $\vdash \Gamma_1 \equiv \Gamma_2$, $\Gamma_1 \vdash M_1$ norm A_1 , $\Gamma_2 \vdash M_2$ norm A_2 , and $\Gamma_1 \vdash A_1 \equiv A_2$, then $\Gamma \vdash M \iff M_2 : A_1$ is decidable.
- 2. If $\vdash \Gamma_1 \equiv \Gamma_2$, $\Gamma_1 \vdash M$ norm* A, and $\Gamma_2 \vdash M'$ norm* A', then $\Gamma \vdash M : A \sim M' : A'$ is decidable.

Proof: By induction on the proof that $\Gamma_1 \vdash M_1$ norm A_1 or $\Gamma_1 \vdash M_1$ norm* A_1 respectively. Note that for there to be any chance for the algorithmic equivalence to hold, the corresponding proofs for $\Gamma_2 \vdash M_2$ norm A_2 and $\Gamma_2 \vdash M_2$ norm* A_2 must use the same final step. QED