Algorithmique et structures de données Induction

Gaël Mahé

slides : Elise Bonzon et Gaël Mahé Université Paris Descartes Licence 2

- Relations d'ordre
- 2 Ensembles bien fondés

3 Principes d'induction et définitions inductives

Induction

- Relations d'ordre
- Ensembles bien fondés
- 3 Principes d'induction et définitions inductives

Quelques définitions liées aux relations d'ordre

- Elément x appartenant à un ensemble $E: x \in E$
- Ensemble n'ayant aucun élément, appelé l'ensemble vide : Ø
- A sous-ensemble de B, ou A inclus dans $B:A\subseteq B$
- $\mathcal{P}(E)$: ensemble des **parties** de l'ensemble E
 - Les éléments de $\mathcal{P}(E)$ sont des ensembles
 - $\mathcal{P}(E)$ contient toujours E et \emptyset
 - Exemple : $E = \{0, 1\}, \mathcal{P}(E) = \{\{0\}, \{1\}, E, \emptyset\}.$
- **Produit cartésien** de deux ensembles A et B, noté $A \times B$: ensemble des couples (a, b) tels que $a \in A$ et $b \in B$. Généralisation à une famille finie d'ensembles : $A_1 \times A_2 \times ... \times A_p$

Quelques définitions liées aux relations d'ordre

- Une relation binaire \mathcal{R} sur E est une partie de $E \times E$ ou une application de $E \times E \rightarrow \{vrai, faux\}$
- Propriétés des relations binaires :
 - réflexive si $\forall x \in E$ on a $x \mathcal{R} x$
 - irréflexive si $\forall x, y \in E, x \mathcal{R} y \Rightarrow x \neq y$
 - symétrique si $\forall x, y \in E$, $x \mathcal{R} y \Rightarrow y \mathcal{R} x$
 - antisymétrique si $\forall x, y \in E$, $x \mathcal{R} y$ et $y \mathcal{R} x \Rightarrow x = y$
 - asymétrique si $\forall x, y \in E, x \mathcal{R} y \Rightarrow \text{not}(y \mathcal{R} x)$
 - transitive si $\forall x, y, z \in E$, $x \mathcal{R} y$ et $y \mathcal{R} z \Rightarrow x \mathcal{R} z$
- Exemples :
 - E = mots, $\mathcal{R} = "a$ le même nombre de lettres que"
 - $E = \mathbb{R}$, $\mathcal{R} = \leq$ ou A un ensemble, $E = \mathcal{P}(A)$, $\mathcal{R} = \subseteq$
 - $E = \mathbb{R}$, $\mathcal{R} = <$ ou A un ensemble, $E = \mathcal{P}(A)$, $\mathcal{R} = <$

Quelques définitions liées aux relations d'ordre

- Une relation d'équivalence est réflexive, symétrique et transitive Fx:
- Une relation d'ordre large est réflexive, antisymétrique et transitive Ex:
- Une relation d'ordre strict est irréflexive, asymétrique et transitive Fx:
- L'ordre est total lorsque deux éléments quelconques de l'ensemble sont comparables par la relation, sinon, on dit que l'ordre est partiel
 - L'ordre habituel sur les réels est total
 - L'ordre de divisibilité sur les entiers est partiel : $a\mathcal{R}_{div}b$ si et seulement si $\exists c$ tel que b=ac
- Plusieurs ordres peuvent être définis sur un même ensemble

Quelques définitions liées aux relations d'ordre

Soit E' une partie d'un ensemble ordonné (E, \leq)

- $x \in E$ est un **majorant** de E' si $\forall y \in E'$, $y \le x$
- Un élément y ∈ E' qui n'a aucun majorant dans E' est dit élément maximal
- Maj(E') est l'ensemble des majorants de E'
- $Maj(E') \cap E'$ a au plus un élément
- ullet Si $\mathit{Maj}(E') \cap E'$ n'est pas vide, son unique élément est appelé **maximum**
- On définit de manière similaire un minorant, un élément minimal, le minimum et Min(E)

Induction

- Relations d'ordre
- 2 Ensembles bien fondés
- 3 Principes d'induction et définitions inductives

Ensemble bien fondé

Définition

Un ensemble ordonné (E, \leq) est **bien fondé** (on dit aussi : la relation d'ordre \leq sur E est **bien fondée**) si l'une des deux conditions suivantes est vérifiée :

- Il n'y a pas de suite infinie strictement décroissante d'éléments de E
- Toute partie de E admet au moins un élément minimal.

Les deux conditions sont équivalentes.

- C'est le cadre d'application du raisonnement par récurrence
- Induction: généralisation de la récurrence aux ordres bien fondés

Exemples d'ordres bien fondés ou non

- ullet < est un ordre bien fondé sur $\mathbb N$, pas sur $\mathbb Z$
- Sur un ensemble de mots, la relation "être une sous-chaîne de" est un ordre bien fondé
- Si $<_1$ et $<_2$ sont des ordres bien fondés sur E_1 et E_2 respectivement, alors l'ordre lexicographique $<_{1,2}$ est bien fondé sur $E_1 \times E_2$

```
Ordre lexicographique : Soient a, b \in E_1 et c, d \in E_2 (a, c) <_{1,2} (b, d) si a <_1 b ou (a = b \operatorname{et} c <_2 d).
```


Induction

- Relations d'ordre
- Ensembles bien fondés
- 3 Principes d'induction et définitions inductives

🔏 Premier principe d'induction sur IN

= principe de récurrence

Théorème

Soit P(n) un prédicat dépendant de l'entier n Si les deux conditions suivantes sont satisfaites :

- (B) P(0) est vrai
 - (I) $\forall n \in \mathbb{N}, P(n) \Rightarrow P(n+1)$

Alors $\forall n \in \mathbb{N}, P(n)$ est vrai

(B) est la base de la récurrence, (I) l'hypothèse d'induction

Premier principe d'induction sur IN

= principe de récurrence

Théorème

Soit P(n) un prédicat dépendant de l'entier n

Si les deux conditions suivantes sont satisfaites :

- (B) P(0) est vrai
- (I) $\forall n \in \mathbb{N}, P(n) \Rightarrow P(n+1)$

Alors $\forall n \in \mathbb{N}, P(n)$ est vrai

(B) est la base de la récurrence, (I) l'hypothèse d'induction

Démonstration :

- Soit $X = \{k \in \mathbb{N}/P(k) \text{ faux}\}.$
- Si X non vide, comme il est bien fondé, il admet un plus petit élément n_0 .
- D'après (B), $n_0 \neq 0$.
- Donc $n_0 1$ est un entier et $P(n_0 1)$ est vrai.
- Par (I), on déduit que $P(n_0)$ est vrai, ce qui est contradictoire.
- Donc X est vide.

Autre forme du premier principe d'induction sur IN

Proposition

Soit n_0 un entier positif ou nul

Si les deux conditions suivantes sont satisfaites :

$$(\mathsf{B}_{n_0})\ P(n_0)$$
 est vrai
 $(\mathsf{I}_{n_0})\ \forall n\geq n_0,\ P(n)\Rightarrow P(n+1)$

Alors $\forall n \geq n_0$, P(n) est vrai

Deuxième principe d'induction sur IN

Théorème

Soit P(n) un prédicat dépendant de l'entier nSi la propriété (l') suivante est satisfaite :

$$\forall n \in \mathbb{N}, ((\forall k_{\in \mathbb{N}} < n, P(k)) \Rightarrow P(n))$$

Alors $\forall n \in \mathbb{N}, P(n)$ est vrai

Deuxième principe d'induction sur IN

Théorème

Soit P(n) un prédicat dépendant de l'entier n Si la propriété (l') suivante est satisfaite :

$$\forall n \in \mathbb{N}, ((\forall k_{\in \mathbb{N}} < n, P(k)) \Rightarrow P(n))$$

Alors $\forall n \in \mathbb{N}, P(n)$ est vrai

Et l'hypothèse de base (B) ?

- (I') pour $n = 0 : ((\forall k < 0, P(k)) \Rightarrow P(0))$
- Comme il n'y a pas d'entier naturel < 0, $(\forall k < 0, P(k)) = Vrai$
- Donc (I') pour n = 0 : P(0)
- Conclusion : (I') inclut (B) et il faut toujours vérifier P(0)

Sur IN, les deux principes sont équivalents.

Deuxième principe d'induction sur IN : démonstration

Théorème

Soit P(n) un prédicat dépendant de l'entier nSi la propriété (l') suivante est satisfaite :

$$\forall n \in \mathbb{N}, ((\forall k_{\in \mathbb{N}} < n, P(k)) \Rightarrow P(n))$$

Alors $\forall n \in \mathbb{N}, P(n)$ est vrai

Deuxième principe d'induction sur IN : démonstration

Théorème

Soit P(n) un prédicat dépendant de l'entier n Si la propriété (l') suivante est satisfaite :

$$\forall n \in \mathbb{N}, ((\forall k_{\in \mathbb{N}} < n, P(k)) \Rightarrow P(n))$$

Alors $\forall n \in \mathbb{N}, P(n)$ est vrai

Démonstration Soit $X = \{k \in \mathbb{N} / P(k) \text{ faux}\}.$

Si X n'est pas vide, il admet un élément minimal k_{min} (ordre bien fondé).

Donc $\forall k < k_{min}, k \notin X$, donc P(k) est vraie.

D'après (I'), $P(k_{min})$ est donc vraie : contradiction avec $k_{min} \in X$.

Donc X est vide. Donc, $\forall n \in \mathbb{N}$, P(n).

Généralisation : principe d'induction sur les ordres bien fondés

Théorème

Soit \leq un ordre large bien fondé sur E, < l'ordre strict correspondant, et P une proposition dépendant d'un élément $x \in E$.

Si la propriété suivante (l') est vérifiée :

$$\forall x \in E, ((\forall y_{\in E} < x, P(y)) \Rightarrow P(x))$$

Alors $\forall x \in E, P(x)$

Généralisation: principe d'induction sur les ordres bien fondés

Théorème

Soit \leq un ordre large bien fondé sur $E_{\star} < 1$ 'ordre strict correspondant, et P une proposition dépendant d'un élément $x \in E$.

Si la propriété suivante (l') est vérifiée :

$$\forall x \in E, ((\forall y_{\in E} < x, P(y)) \Rightarrow P(x))$$

Alors $\forall x \in E, P(x)$

Et l'hypothèse de base (B) ?

- (I') pour tout x_{min} élément minimal : $((\forall y < x_{min}, P(y)) \Rightarrow P(x_{min}))$
- Comme il n'y a pas d'élément de $E < x_{min}$ $(\forall v < x_{min}, P(v)) = Vrai$
- Donc (I') pour $x = x_{min} : P(x_{min})$
- Conclusion : (I') inclut (B) et il faut toujours vérifier $P(x_{min})$ pour tous les éléments minimaux x_{min}

Principe d'induction sur les ordres bien fondés: démonstration

Théorème

Soit \leq un ordre large bien fondé sur $E_{\perp} < 1$ 'ordre strict correspondant, et P une proposition dépendant d'un élément $x \in E$.

Si la propriété suivante (l') est vérifiée :

$$\forall x \in E, ((\forall y_{\in E} < x, P(y)) \Rightarrow P(x))$$

Alors $\forall x \in E, P(x)$

Principe d'induction sur les ordres bien fondés: démonstration

Théorème

Soit \leq un ordre large bien fondé sur E, < l'ordre strict correspondant, et P une proposition dépendant d'un élément $x \in E$.

Si la propriété suivante (l') est vérifiée :

$$\forall x \in E, ((\forall y_{\in E} < x, P(y)) \Rightarrow P(x))$$

Alors $\forall x \in E, P(x)$

Démonstration :

Soit $X = \{x \in E/P(x) \text{ faux}\}.$

Si X n'est pas vide, il admet un élément minimal x_{min} (ordre bien fondé).

Donc $\forall y < x_{min}, y \notin X$, donc P(y) est vraie.

D'après (l'), $P(x_{min})$ est donc vraie : contradiction avec $x_{min} \in X$.

Donc X est vide. Donc, $\forall x \in E$, P(x) est vraie

Exemple de raisonnement par induction

Soit P(n) la propriété "n décomposable en produit de nombre premiers". Démontrons par induction : $\forall n \geq 2$, P(n)

- 1 S'assurer que l'ensemble ordonné est bien fondé
 - $\mathbb N$ est bien fondé, donc ses sous-ensembles aussi, dont $[2;\infty]$.
- 2 Démontrer (B), c'est-à-dire (l') pour tous les éléments minimaux
 - $[2; \infty]$ a un élément minimal, 2, et P(2) est vraie.
- Oémontrer (l') pour tout élément non minimal
 - (I') = $\forall n \in \mathbb{N} \ge 2$, $((\forall k < n, P(k)) \Rightarrow P(n))$
 - Soit *n* > 2
 - Supposons que $\forall k \in \{2, ..., n-1\}$, P(k) est vrai. (hypothèse d'induction)
 - Si n est premier, P(n)
 - Si n n'est pas premier,

il existe a et b deux entiers entre 2 et n-1 tels que n=a*b. Comme $a,b\in\{2,\ldots,n-1\}$, P(a) et P(b) par l'hypothèse d'induction. n est donc décomposable en produit de nombres premiers

- Appliquer le principe d'induction
 - On a montré que $\forall n \in \mathbb{N} \geq 2, ((\forall k < n, P(k)) \Rightarrow P(n))$
 - D'après le principe d'induction, $\forall n \geq 2$, P(n)

Raisonnement erroné par induction

- \bullet Ensemble \mathbb{R}
- Ordre \leq usuel
- Propriété P(x): x > 0
- Appliquons le principe d'induction : la propriété

$$\forall x \in \mathbb{R}, ((\forall y < x, P(y)) \Rightarrow P(x))$$

est vérifiée.

Raisonnement erroné par induction

- ullet Ensemble ${\mathbb R}$
- Ordre ≤ usuel
- Propriété P(x): x > 0
- Appliquons le principe d'induction : la propriété

$$\forall x \in \mathbb{R}, ((\forall y < x, P(y)) \Rightarrow P(x))$$

est vérifiée.

Donc $\forall x \in \mathbb{R}, \quad x > 0.$

Application à la programmation

Le principe d'induction permet :

- de démontrer l'efficience et la terminaison d'algorithmes récursifs ;
- de démontrer les propriétés de structures définies par induction.

Exemple: fonction modulo récursive

• Soient $a, b \in \mathbb{N}$. On cherche r tel que :

$$\exists q \in \mathbb{N} \mid a = bq + r, \quad \text{avec } 0 \le r < b$$

- Fonction : mod(a,b) = if a < b then a else mod(a-b,b)</pre>
- Preuve de la terminaison :
 - ullet Ordre bien fondé : ordre usuel \leq sur $\mathbb N$
 - Si $a \ge b$, $a b \in \mathbb{N}$ et a b < a (car $b \ne 0$)
 - → La suite des arguments des appels récursifs successifs est strictement décroissante dans un ensemble bien ordonné, donc est finie.
- Preuve de l'efficience :
 - Sur l'ensemble constitué de la suite des arguments, application du principe d'induction avec
 P(a) = "mod(a,b) renvoie bien a modulo b"


```
mod(a,b) = if a < b then a else <math>mod(a-b,b)

P(a) = "mod(a,b) renvoie bien a modulo b"

P(a) = (\exists q \mid a = bq + mod(a,b)) et 0 \le mod(a,b) < b)

Démontrons que pour tout élément a' de l'ensemble E des arguments des appels récursifs successifs, P(a')
```

- ① L'ordre ≤ sur N est bien fondé
- ② (B) E a un élément minimal $a_0 < b$. Dans ce cas, $mod(a_0, b) = a_0$ et c'est bien le modulo
- Oémontrons (l')
 - Soit a' élément non minimal de E, donc tel que $a' \geq b$.
 - mod(a', b) = mod(a' b, b)
 - Supposons que $\forall x \in E < a', P(x)$
 - Comme a' b < a' (rappel : $b \neq 0$)

$$\exists q \mid a'-b=bq+mod(a'-b,b) \text{ et } 0 \leq mod(a'-b,b) < b$$

- o Donc $\exists q \mid a' = b(q+1) + mod(a', b)$ et $0 \le mod(a', b) < b$ o Donc P(a')
- On a montré que $\forall a' \in E$, $((\forall x < a', P(x)) \Rightarrow P(a'))$ D'après le principe d'induction. $\forall a' \in E$. P(a').

$$mod(a,b) = if a < b then a else $mod(a-b,b)$
 $P(a) = "mod(a,b)$ renvoie bien a modulo b"
 $P(a) = (\exists \ q \mid a = bq + mod(a,b))$ et $0 \le mod(a,b) < b)$
Démontrons que pour tout élément a' de l'ensemble E des arguments des appels récursifs successifs, $P(a')$$$

- ① L'ordre \leq sur \mathbb{N} est bien fondé.
- ② (B) E a un élément minimal $a_0 < b$. Dans ce cas, $mod(a_0, b) = a_0$ et c'est bien le modulo
- Oémontrons (l')
 - Soit a' élément non minimal de E, donc tel que $a' \geq b$.
 - $\mod(a',b) = \mod(a'-b,b)$
 - Supposons que $\forall x \in E < a', P(x)$
 - Comme a' b < a' (rappel : $b \neq 0$)

$$\exists q \mid a' - b = bq + mod(a' - b, b) \quad \text{et} \quad 0 \le mod(a' - b, b) < b$$

- o Donc $\exists q \mid a' = b(q+1) + mod(a', b)$ et $0 \le mod(a', b) < b$ o Donc P(a')
- On a montré que $\forall a' \in E$, $((\forall x < a', P(x)) \Rightarrow P(a'))$ D'après le principe d'induction. $\forall a' \in E$. P(a').


```
mod(a,b) = if a < b then a else <math>mod(a-b,b)

P(a) = "mod(a,b) renvoie bien a modulo b"

P(a) = (\exists q \mid a = bq + mod(a,b)) et 0 \le mod(a,b) < b)

Démontrons que pour tout élément a' de l'ensemble E des arguments des appels récursifs successifs, P(a')
```

- ① L'ordre \leq sur \mathbb{N} est bien fondé.
- ② (B) E a un élément minimal $a_0 < b$. Dans ce cas, $mod(a_0, b) = a_0$ et c'est bien le modulo.
- Oémontrons (I')
 - Soit a' élément non minimal de E, donc tel que $a' \geq b$.
 - $\mod(a',b) = \mod(a'-b,b)$
 - Supposons que $\forall x \in E < a', P(x)$
 - Comme a' b < a' (rappel : $b \neq 0$),
 - $\exists q \mid a'-b=bq+mod(a'-b,b) \text{ et } 0 \leq mod(a'-b,b) < b$
 - o Donc $\exists q \mid a' = b(q+1) + mod(a', b)$ et $0 \le mod(a', b) < b$
- On a montré que $\forall a' \in E$, $((\forall x < a', P(x)) \Rightarrow P(a'))$ D'après le principe d'induction, $\forall a' \in E$, P(a').

$$mod(a,b) = if a < b then a else $mod(a-b,b)$$$

$$P(a) = \text{"mod(a,b)}$$
 renvoie bien a modulo b"

$$P(a) = (\exists q \mid a = bq + mod(a, b) \text{ et } 0 \le mod(a, b) < b)$$

Démontrons que pour tout élément a' de l'ensemble E des arguments des appels récursifs successifs, P(a')

- **1** L'ordre \leq sur \mathbb{N} est bien fondé.
- ② (B) E a un élément minimal $a_0 < b$. Dans ce cas, $mod(a_0, b) = a_0$ et c'est bien le modulo.
- Oémontrons (I')
 - Soit a' élément non minimal de E, donc tel que $a' \geq b$.
 - mod(a', b) = mod(a' b, b)
 - Supposons que $\forall x_{\in E} < a', P(x)$.
 - Comme a' b < a' (rappel : $b \neq 0$), $\exists \ q \mid a' - b = bq + mod(a' - b, b)$ et 0 < mod(a' - b, b) < b
 - Donc $\exists q \mid a' = b(q+1) + mod(a',b)$ et $0 \le mod(a',b) < b$
 - Donc P(a')
 - On a montré que $\forall a' \in E$, $((\forall x < a', P(x)) \Rightarrow P(a'))$ D'après le principe d'induction, $\forall a' \in E$, P(a')

$$mod(a,b) = if a < b then a else $mod(a-b,b)$$$

$$P(a) = \text{"mod(a,b)}$$
 renvoie bien a modulo b"

$$P(a) = (\exists q \mid a = bq + mod(a, b) \text{ et } 0 \le mod(a, b) < b)$$

Démontrons que pour tout élément a' de l'ensemble E des arguments des appels récursifs successifs, P(a')

- ① L'ordre \leq sur \mathbb{N} est bien fondé.
- ② (B) E a un élément minimal $a_0 < b$. Dans ce cas, $mod(a_0, b) = a_0$ et c'est bien le modulo.
- Oémontrons (I')
 - Soit a' élément non minimal de E, donc tel que a' > b.
 - mod(a', b) = mod(a' b, b)
 - Supposons que $\forall x_{\in F} < a', P(x)$.
 - Comme a' b < a' (rappel : $b \neq 0$),

$$\exists q \mid a'-b=bq+mod(a'-b,b) \text{ et } 0 \leq mod(a'-b,b) < b$$

- Donc $\exists q \mid a' = b(q+1) + mod(a', b)$ et 0 < mod(a', b) < b
- Donc P(a')
- ① On a montré que $\forall a' \in E, ((\forall x < a', P(x)) \Rightarrow P(a'))$ D'après le principe d'induction, $\forall a' \in E$, P(a').

$$mod(a,b) = if a < b then a else $mod(a-b,b)$$$

$$P(a) = \text{"mod(a,b)}$$
 renvoie bien a modulo b"

$$P(a) = (\exists q \mid a = bq + mod(a, b) \text{ et } 0 \le mod(a, b) < b)$$

Démontrons que pour tout élément a' de l'ensemble E des arguments des appels récursifs successifs, P(a')

- ① L'ordre \leq sur \mathbb{N} est bien fondé.
- ② (B) E a un élément minimal $a_0 < b$. Dans ce cas, $mod(a_0, b) = a_0$ et c'est bien le modulo.
- Oémontrons (I')
 - Soit a' élément non minimal de E, donc tel que a' > b.
 - mod(a', b) = mod(a' b, b)
 - Supposons que $\forall x_{\in F} < a', P(x)$.
 - Comme a' b < a' (rappel : $b \neq 0$),

$$\exists q \mid a'-b=bq+mod(a'-b,b) \text{ et } 0 \leq mod(a'-b,b) < b$$

- Donc $\exists q \mid a' = b(q+1) + mod(a', b)$ et $0 \le mod(a', b) < b$
- Donc P(a')
- ① On a montré que $\forall a' \in E, ((\forall x < a', P(x)) \Rightarrow P(a'))$ D'après le principe d'induction, $\forall a' \in E$, P(a').

Et en particulier, P(a)

Application à la programmation

Le principe d'induction permet :

- de démontrer l'efficience et la terminaison d'algorithmes récursifs ;
 - ▶ Définir un ordre bien fondé sur le domaine de définition de la fonction
 - Montrer que la suite des arguments des appels récursifs successifs est strictement décroissante
 - → elle est finie, donc terminaison de l'algorithme
 - Application du principe d'induction sur la suite des arguments, avec P = "l'algorithme renvoie le résultat attendu"
 - → efficience de l'algorithme
- de démontrer les propriétés de structures définies par induction

Application à la programmation

Le principe d'induction permet :

- de démontrer l'efficience et la terminaison d'algorithmes récursifs ;
 - ▶ Définir un ordre bien fondé sur le domaine de définition de la fonction
 - Montrer que la suite des arguments des appels récursifs successifs est strictement décroissante
 - → elle est finie, donc terminaison de l'algorithme
 - Application du principe d'induction sur la suite des arguments, avec P = "l'algorithme renvoie le résultat attendu"
 - → efficience de l'algorithme
- de démontrer les propriétés de structures définies par induction.

Définitions inductives

- La définition d'un ensemble X peut être de la forme
 - (B) certains éléments de X sont donnés explicitement
- ullet Exemple : la partie X de $\mathbb N$ définie par
 - (B) l'élément $0 \in X$
 - (I) $n \in X \Rightarrow n+1 \in X$

n'est autre que IN tout entier

Définitions inductives

- La définition d'un ensemble X peut être de la forme
 - (B) certains éléments de X sont donnés explicitement
- Exemple : la partie X de IN définie par
 - (B) l'élément $0 \in X$
 - (I) $n \in X \Rightarrow n+1 \in X$

n'est autre que IN tout entier

Preuve de propriétés : exemple des mots de Dyck

- $\Delta =$ ensemble des mots sur l'alphabet $\{a, \overline{a}\}$ définis par :
 - Mot vide $\epsilon \in \Delta$
 - Si $x, y \in \Delta$, alors $ax\overline{a}y$ aussi
- Démontrons la propriété $P = (\forall x \in \Delta, x \text{ contient autant de } a \text{ que de } \overline{a}).$
 - Ordre < : est une sous-chaîne de
 - Base de l'induction : $P(\epsilon)$ est vraie
 - Soit $x \in \Delta$, $> \epsilon$
 - Supposons $\forall t \in \Delta \text{ et } < x, P(t)$
 - $\exists y, z \in \Delta \mid x = ay\overline{a}z$
 - P(y) et P(z), et on ajoute un a et un \bar{a}
 - Donc P(x)
 - Par application du principe d'induction, $P(x) \forall x$