

 论
 文
 汇

 2021本周论文汇报

汇报人: 王昭丹

5 Papers

Title	Publication source	Year
Network-Clustered Multi-Modal Bug Localization	TSE	2019
Pathidea: Improving Information Retrieval-Based Bug Localization by Re-Constructing Execution Paths Using Logs	TSE	2021
Tracking Buggy Files: New Efficient Adaptive Bug Localization Algorithm	TSE	2021

Network-Clustered Multi-Modal Bug Localization — TSE 2019

Fig. 2. The proposed NetML framework.

Pathidea: Improving Information Retrieval-Based Bug Localization by Re-Constructing Execution Paths Using Logs

Logs

```
2008-01-07 21:02:13 INFO org.apache.hadoop.mapred.ReduceTask: task_r_1 done copying task_m_0
2008-01-07 21:02:13 INFO org.apache.hadoop.mapred.ReduceTask: task_r_1 Copying task_m_1
...
2008-01-07 21:02:13 WARN org.apache.hadoop.mapred.ReduceTask: java.lang.OutOfMemoryError: Java heap space
    at org.apache.hadoop.io.SequenceFile$Reader.init (SequenceFile.java:1345)
    at org.apache.hadoop.mapred.ReduceTask.run (ReduceTask.java:1311)
2008-01-07 21:02:31 ERROR org.apache.hadoop.mapred.ReduceTask: java.lang.NullPointerException: Map output copy failure
    at org.apache.hadoop.fs.InMemoryFileSystem.close (InMemoryFileSystem.java:378)
    at org.apache.hadoop.fs.FileSystem.getLength (FileSystem.java:449)
    at org.apache.hadoop.mapred.ReduceTask.run (ReduceTask.java:665)
```

Tracking Buggy Files: New Efficient Adaptive Bug Localization Algorithm

TABLE 2

Features used in ranking model - proposed by Ye et al.+ [12]. **Notation:** sim is the cosine similarity. Query dependent features relay on both the source code s and on the bug report r. We use new notation for features ϕ_2 , ϕ_3 , ϕ_5 . We propose ϕ_2^* instead of ϕ_2 , see Section 3.1.1 for rationale.

Feature	Description	Formula	Query dep?
ϕ_1	Surface lexical similarity	$\phi_1(r,s) = \max(\{sim(r,s)\} \cup \{sim(r,m) \mid m \in s\})$	Yes
ϕ_2	API-enriched lexical similarity	$\phi_2(r,s) = \max(\{sim(r,s.api)\} \cup \{sim(r,m.api) \mid m \in s\})$	Yes
ϕ_3	Collaborative filtering score	$\phi_3(r,s) = sim(r, concat(\{r.summary \mid r \in br(r,s)\}))$	Yes
ϕ_4	Class name similarity	$\phi_4(r,s) = s.main_class \cdot \mathbb{1}[s.main_class \in s.summary]$	Yes
ϕ_5	Bug-fixing recency	$\phi_5(r,s) = ((r.date - last(r,s).date).months + 1)^{-1}$	Yes (Timestamp)
ϕ_6	Bug-fixing frequency	$\phi_6(r,s) = br(r,s) $	Yes (Timestamp)
ϕ_7	Summary-class names similarity	$\phi_7(r,s) = sim(r.summary, s.class)$	Yes
ϕ_8	Summary-method names similarity	$\phi_8(r,s) = sim(r.summary, s.method)$	Yes
ϕ_9	Summary-variable names similarity	$\phi_9(r,s) = sim(r.summary, s.variable)$	Yes
ϕ_{10}	Summary-comments similarity	$\phi_{10}(r,s) = sim(r.summary, s.comment)$	Yes
ϕ_{11}	Description-class names similarity	$\phi_{11}(r,s) = sim(r.description, s.class)$	Yes
ϕ_{12}	Description-method names similarity	$\phi_{12}(r,s) = sim(r.description, s.method)$	Yes
ϕ_{13}	Description-variable names similarity	$\phi_{13}(r,s) = sim(r.description, s.variable)$	Yes
ϕ_{14}	Description-comments similarity	$\phi_{14}(r,s) = sim(r.description, s.comment)$	Yes
ϕ_{15}	In-links = $\#$ of file dependencies of s	$\phi_{15}(r,s) = s.inLinks$	No
ϕ_{16}	Out-links = $\#$ of files that depend on s	$\phi_{16}(r,s) = s.outLinks$	No
ϕ_{17}	PageRank score	$\phi_{17}(r,s) = PageRank(s)$	No
ϕ_{18}	Authority score (HITS)	$\phi_{18}(r,s) = Authority(s)$	No
ϕ_{19}	Hub score (HITS)	$\phi_{19}(r,s) = Hub(s)$	No
ϕ_2^*	full API-enriched lexical similarity	$\phi_2^*(r,s) = \max \left(\left\{ sim(r,s.api^*) \right\} \cup \left\{ sim(r,m.api^*) \mid m \in s \right\} \right)$	Yes

汇报人: 王昭丹

