

Instituto Federal de Educação, Ciência e Tecnologia do Ceará PPGER — PPGCC

Aula 9: Extração de atributos

Visão Computacional

Prof. Dr. Pedro Pedrosa

pedrosarf@ifce.edu.br

professorpedrosa.com

Apresentação

- Após separar os objetos da imagem, tem-se um conjunto de pixels para cada objeto.
- Para de descrever objetos, pode-se utilizar:
 - Características externas (sua fronteira)
 - Utilizada quando o foco são as características da forma
 - Características internas (pixels da região)
 - Utilizada quando o foco são informações regionais, como cor e textura
- Bons descritores são invariantes à tamanho, translação e rotação.

- São esquemas de compactação das regiões segmentadas, para facilitar o cálculo dos descritores:
- Principais:
 - Seguidores de fronteira
 - Códigos de cadeia
 - Aproximação poligonais
 - Assinatura
 - Segmentos de fronteira
 - Esqueletos

Seguidores de fronteiras (Moore, 1968)

- Considere uma imagem binária R (1-objeto, 0-fundo)
- 2. Ache o ponto mais alto e mais à esquerda do objeto (b_0)
- 3. Analise os 8 vizinhos no sentido horário buscando encontrar o primeiro elemento que faz parte do objeto (b_1)
 - Comece do pixel à esquerda, conforme c_0 na figura abaixo.
 - Cada novo elemento encontrado recebe um índice que é o anterior+1, sendo o primeiro b_0 , o segundo b_1 , o terceiro b_2 , e assim até b_n .
- 4. Repettir o tópico 3 até encontrar b_0 novamente, fechando o ciclo e o objeto.

Obs: para extrair os buracos dos objetos, basta inverter a busca de 1 para 0.

Figura 11.1 Ilustração dos primeiros passos do algoritmo seguidor de fronteira. O ponto a ser processado a seguir é indicado em preto, os pontos que ainda serão processados são cinza e os pontos encontrados pelo algoritmo são indicados como quadrados cinza.

Códigos de cadeia

- Considera-se a fronteira obtida por Moore(1968)
- Utiliza a codificação da fronteira a partir da direção encontrada na análise dos vizinhos 4-conectados e 8-conectados.

Problemas:

- 1. Ruídos causam alteração no código
- 2. Geração de cadeias muito grandes

Figura 11.3 Números de direção para (a) código da cadeia de quatro direções; e (b) código da cadeia de oito direções.

Figura 11.4 (a) Fronteira digital com a grade de reamostragem sobreposta. (b) Resultado da reamostragem. (c) Fronteira codificada utilizando código da cadeia de oito direções.

Códigos de cadeia

- Solução dos Problemas:
- Ruídos causam alteração no código
- 2. Geração de cadeias muito grandes

Figura 11.4 (a) Fronteira digital com a grade de reamostragem sobreposta. (b) Resultado da reamostragem. (c) Fronteira codificada utilizando código da cadeia de oito direções.

Códigos de cadeia - Exemplo

Figura 11.5 (a) Imagem ruidosa. (b) Imagem suavizada com uma máscara de média 9 × 9. (c) Imagem suavizada após a limiarização utilizando o método de Otsu. (d) Borda maior externa de (c). (e) Fronteira subamostrada (os pontos são mostrados ampliados para maior clareza). (f) Pontos conectados a partir de (e).

Aproximação poligonal

Figura 11.6 (a) Fronteira de um objeto (curva preta). (b) Fronteira cercada por células (em cinza). (c) Polígono de perímetro mínimo obtido quando é permitido que a fronteira se encolha. Os vértices do polígono são criados pelos cantos das paredes internas e externas da região cinza.

Algorítimo MPP
Polígono de perímetro mínimo

Figura 11.7 (a) Região (cinza-escura) resultante após englobar a fronteira original com as células (veja a Figura 11.6). (b) Vértices convexos (pontos brancos) e côncavos (pontos pretos) obtidos seguindo a fronteira da região cinza-escura no sentido anti-horário. (c) Vértices côncavos (pontos pretos) deslocados para suas localizações diagonais em espelho na parede externa da região delimitada; os vértices convexos não foram alterados. O MPP (fronteira preta) é sobreposto como referência.

8

Aproximação poligonal – Aplicando o algorítimo MPP

Figura 11.8 (a) Imagem binária de 566 × 566. (b) Fronteira 8-conectada. (c) a (i), MPPs obtidos com células quadradas de tamanhos 2, 3, 4, 6, 8, 16 e 32, respectivamente (os vértices foram unidos por linhas retas para exibição). O número de pontos da fronteira em (b) é 1.900. O número de vértices de (c) a (i) são 206, 160, 127, 92, 66, 32 e 13, respectivamente.

Assinatura

- Representação 1D de uma fronteira e pode ser gerada de várias maneiras
- A representação mais simples é a distância do centroide para a fronteira do objeto considerando um ângulo θ entre as medidas, conforme a Figura 11.10.

Figura 11.10 Assinaturas de distância em função do ângulo. Em (a), $r(\theta)$ é constante. Em (b), a assinatura consiste de repetições do padrão $r(\theta) = A \sec \theta \text{ para } 0 < \theta < \pi/4 \text{ e } r(\theta) = A \operatorname{cossec} \theta \text{ para } \pi/4 < \theta < \pi/2.$ ria

10

Assinatura

- Representação 1D
- Distância do centroide para a fronteira.

Figura 11.11 Duas regiões binárias, suas fronteiras externas e suas assinaturas $r(\theta)$ correspondentes. Os eixos horizontais em (e) e (f) correspondem a ângulos de 0° a 360°, com incrementos de 1°. ria

11

Assinatura

- Representação 1D
- Distância do centroide para a fronteira.

Exemplo do Gonzales

Figura 12.7 Conjunto de fontes de caracteres "American Banker's E-13B" e as formas de onda correspondentes. ria 12

Segmentos de fronteira

Convex Hull – Morfologia

Figura 11.12 (a) Uma região, S, e sua deficiência convexa (sombreada). (b) Fronteira fragmentada.

Esqueleto

Esqueletonização - Morfologia

Osso da perna humana e o esqueleto sobreposto da região.

Aula 12: Representação e Descrição de objetos

Básicos

- 1. Comprimento
- 2. Diâmetro (medida de distância)
- Excentricidade
 - Eixo maior/ Eixo menor
- 4. Curvatura
 - Mudança de ângulo local
 - côncavo convexo
 - Algoritmo MPP gera bons valores de curvatura (média de pontos)

Descritores de Fourier

- Sequência de coordenadas s(k)=[x(k), y(k)]
- Pode-se trata cada elemento s como um número complexo s(k) = x(k) + j y(k) para k=0,1,2,...,N-1
- A transformada de Fourier de s(k) é definida como

$$a(u) = \frac{1}{N} \sum_{k=0}^{N-1} s(k) \exp\left(\frac{-j2 \prod uk}{N}\right)$$

 Os coeficientes complexos de a(u) são chamados Descritores de Fourier

Descritores de Fourier

Suponha que apenas os M primeiros coeficientes sejam utilizados.
 Isto é equivalente a zerar todos os valores de a(u) para u > M-1.

$$s*(k) = \sum_{u=0}^{M-1} a(u) \exp\left(\frac{j2 \prod uk}{N}\right)$$

As baixas freqüências guardam informações de forma, enquanto as altas freqüências representam os detalhes finos.

Descritores de Fourier

 Suponha que apenas os M primeiros coeficientes sejam utilizados. Isto é equivalente a zerar todos os valores de a(u) para u > M-1.

18

Descritores de Fourier - Exemplo

Figura 11.20 (a) Fronteira de um cromossomo humano (2.868 pontos). (b) a (h) Fronteiras reconstruídas usando 1.434, 286, 144, 72, 36, 18 e 8 descritores de Fourier, respectivamente. Estes números são aproximadamente 50%, 10%, 5%, 2,5%, 1,25%, 0,63% e 0,28% de 2.868, respectivamente.

Momentos

- Representa-se o segmento de uma fronteira como uma função unidimensional g(r) de uma variável aleatória r.
- Trata-se a amplitude de g(r) como uma variável aleatória v, e forma-se um histograma de amplitude p(vi), i=1,2,...K, sendo que K é o número de incrementos discretos de amplitude.

Figura 11.21 (a) Segmento de fronteira. (b) Representação como uma função 1-D.

Momentos

Figura 11.21 (a) Segmento de fronteira. (b) Representação como uma função 1-D.

• n-ésimo momento de v em torno de sua média é:

$$\mu_n(v) = \sum_{i=1}^K (v_i - m)^n p(v_i) \qquad m = \sum_{i=1}^K v_i p(v_i)$$

- Invariantes a rotação.
- Escala: mudança do intervalo de r.

Momentos

- Abordagem alternativa: normalizar g(r) para ficar com área unitária
 - g(r) é agora a probabilidade de ocorrência
 - r passa a ser a variavél aleatória de análise

$$\mu_n(r) = \sum_{i=0}^{k-1} (r_i - m)^n g(r_i)$$
 $m = \sum_{i=0}^{k-1} r_i g(r_i)$

- K é o número de pontos da fronteira
- μ_n(r) está diretamente ligado à forma de g(r)
 - $\mu_2(r)$ mede o espelhamento da curva em torno da média de r
 - μ₃(r) mede a sua simetria em relação à média

Aula 12: Representação e Descrição de objetos

Descritores simples

- 1. Compacidade
 - (perímetro)²/área
- Razão de circularidade
 - $R_{c} = (4\pi A) / P^{2}$
 - 1 para uma região circular
 - π/4 para uma região quadrada
- 3. Média da intensidade
- 4. Mediana da intensidade
- 5. Mínimo/Máximo da intensidade
- 6. Número de pixels acima da média
- 7. Número de pixels abaixo da média

Descritores topológicos

Estudo das propriedades que não se alteram por deformações Úteis para descrição global de regiões.

- Número de buracos (H)
- 2. Número de componentes convexos (C)
- 3. Número de Euler

$$E = C - H$$

- V Q + F = C H
- V Vertices
- Q Arestas
- F faces

Figura 11.24

Figura 11.26 Uma região contendo uma rede poligonal.

Região com três componentes conexos.

Textura

Existem 3 abordagens para análise de textura

1. Estatística

Produzem características como suave, rugosa, granulada, etc.

Estrutural

 Lidam com arranjos de primitivas da imagem, como linhas paralelas igualmente espaçadas, objetos reptidos, etc.

3. Espectral

- Baseados nas propriedades do espectro de Fourier
- Utilizados principalmente para detectar a periodicidade global em uma imagem pela identificação de picos de alta energia no espectro.

Descritores regionais

- Uma das abordagens mais simples é através dos momentos do histograma:
 - Seja z uma v.a. que denote a intensidade dos níveis de cinza de uma região e seja $p(z_i)$, i = 0, 1, 2, ..., L-1.
 - O n-ésimo momento de z em torno da média é dado por:

$$\mu_n(z) = \sum_{i=0}^{L} (z_i - m)^n p(z_i)$$

 O segundo momento, também chamado variância é uma medida de contraste, que pode ser usado para descrever suavidade relativa.

$$R = 1 - \frac{1}{1 + \sigma^2(z)}$$

- R se aproxima de 0 (zero) quando há pouca variação dos tons de cinza, e de 1 (um) no caso contrário.
- O problema de medidas baseadas no histograma é que as mesmas não levam em conta a posição relativa dos pixels em relação uns aos outros.

Uma maneira de introduzir este tipo de informação é:

Seja P um operador de posição e A uma matriz k X k, cujo elemento a_{ij} é o número de vezes que o nível de cinza z_i ocorre (na posição determinada por P) relativamente a pontos com nível de cinza z_i, sendo 1 ≤ z_i, z_i ≤ k.

- A imagem acima tem níveis de cinza 0, 1 e 2.
- O elemento a₀₀ é o número de vezes que um pixel com nível de cinza 0 aparece abaixo e à direita de outro com nível de cinza 0.
- O elemento a_{02} é o número de vezes que um pixel com nível de cinza O aparece abaixo e à direita de outro com nível de cinza 2.


```
0 0 0 1 2
1 1 0 1 1 4 2 1
2 2 1 0 0 A = 2 3 2
1 1 0 2 0 0 2 0
```

Também conhecido como Matriz de Co-ocorrência

- Seja n o número total de pares de pontos que satisfaçam P.
- Seja C = A ./ n
- Então, c_{ij} será uma estimativa da probabilidade de dor pontos quaisquer satisfazerem P com os níveis de cinza z_i e z_i .
- O operador P é usado para detectar a presença de uma determinada textura. Por exemplo, o operador P usado no exemplo é sensível a bandas de intensidade constante inclinadas a –45°.
- Note que o maior valor em A é 4 (a_{00}) , por causa de uma faixa de pontos de intensidade 0 (zero).

Figura 11.29 Como gerar uma matriz de co-ocorrência.

- A matriz C é usada para categorizar a textura de uma região. Alguns descritores úteis para isso são:
 - max(cij)
 - momento de diferença de elementos de ordem k

$$\sum_{i}\sum_{j}(i-j)^{k}c_{ij}$$

– momento inverso de diferença de elementos de ordem k $\sum_{i} \sum_{i} \frac{c_{ij}}{(i-i)^k}$

$$\sum_{i} \sum_{j} \frac{c_{ij}}{(i-j)^k}$$

– Entropia –
$$\sum_{i} \sum_{j} c_{ij} \log c_{ij}$$

– Uniformidade
$$\sum_i \sum_j c_{_{ij}}^2$$

Figura 11.28 Os quadrados brancos marcam, da esquerda para a direita, texturas suaves, rugosas e regulares.

Textura	Média	Desvio padrão	R (normalizado)	Terceiro momento	Uniformidade	Entropia
Suave	82,64	11,79	0,002	-0,105	0,026	5,434
Rugosa	143,56	74,63	0,079	-0,151	0,005	7,783
Regular	99,72	33,73	0,017	0,750	0,013	6,674

Haralick (1973)

- Apesar de antigo, o artigo define um conjunto de 14 propriedades que definiriam uma textura
- Ainda aceito até hoje
- Variações apenas quanto a forma de calcular essas medidas
- Uso de GLCM (GrayLevel Co-Occurrence Matrix – Matriz de Co-Ocorrência de Tons de Cinza)

Propriedades de Haralick

- Segundo Momento Angular
- Contraste
- Correlação
- Variância
- Momento de Diferença Inverso
- Média da Soma
- Variância da Soma
- Entropia da Soma
- Entropia
- Variância da Diferença
- Entropia da Diferença
- Medidas de Informação da Correlação (2 propriedades)
- Coeficiente de Correlação Máximo

Propriedades de Haralick

Dessas, Baraldi e Parmiggiani mostraram que apenas seis eram mais relevantes: Segundo momento angular, entropia, contraste, variância, correlação e homogeneidade

Haralick (1973)

Propriedades de Haralick

Dessas, Baraldi e Parmiggiani mostraram que apenas seis eram mais relevantes: Segundo momento angular, entropia, contraste, variância, correlação e homogeneidade

$$f_{sma} = \sum_{i=0}^{H_0} \sum_{i=0}^{H_0} p_{i,j}^2$$

$$f_{con} = \sum_{i=0}^{H_0} \sum_{i=0}^{H_0} (i-j)^2 p_{i,j}$$

$$f_{hom} = \sum_{i=0}^{H_0} \sum_{j=0}^{H_0} \frac{1}{1 + (i - j)^2} p_{i,j}$$

$$f_{ent} = -\sum_{i=0}^{H_0} \sum_{i=0}^{H_0} p_{i,j} \log(p_{i,j})$$

$$f_{var_{i}} = \sum_{i=0}^{H_{0}} \sum_{j=0}^{H_{0}} (i - \mu_{i})^{2} p_{i,j}$$

$$f_{var_{1}} = \sum_{i=0}^{H_{0}} \sum_{j=0}^{H_{0}} (j-\mu_{j})^{2} p_{i,j}$$

$$f_{corr} = \frac{1}{\sigma_x \sigma_y} \sum_{i=0}^{H_0} \sum_{j=0}^{H_0} (i - \mu_i) (j - \mu_j) p_{i,j}$$

Textura **Abordagem Estrutural**

Descritores regionais

Textura – abordagem Estrutural

- Lidam com arranjos de primitivas da imagem, como linhas paralelas igualmente espaçadas, objetos reptidos, etc.
- Conceito que define que uma primitiva básica pode gerar texturas complexas através da periodicidade componentes:
 - Objeto à esquerda
 - Objeto à direita
 - Objeto acima
 - n objetos à esquerda
 - Distância entre objetos constantes
 - Etc

Figura 11.34 (a) Textura primitiva. (b) Padrão gerado pela regra $S \rightarrow aS$. (c) Padrão 2-D de textura gerado por esta e outras regras.

Figura 11.33 Uma seção ampliada da imagem de uma placa de circuito impresso mostrando a periodicidade dos componentes.

Descritores regionais

- O espectro de Fourier é ideal para descrição da orientação de padrões periódicos.
- Padrões periódicos de textura, facilmente identificados no espectro como pontos de alta concentração de energia, tem sua detecção muito dificultada através de métodos espaciais.
- Três características úteis do espectro de Fourier:
 - Picos proeminentes no espectro indicam a direção dos padrões de textura.
 - A posição dos picos no plano de freqüência fornece o período espacial fundamental dos padrões.
 - A eliminação dos elementos periódicos da imagem deixa os elementos nãoperiódicos, os quais podem ser descritos com a abordagem estatística.

- Coordenadas polares S(r, θ)
- Para cada θ , temos $S_{\theta}(r)$, assim como, para cada r, temos $S_{r}(\theta)$.
- A análise de $S_{\theta}(r)$ fornece o comportamento ao longo de uma direção radial, enquanto a de $S_{r}(\theta)$ fornece ao longo de uma circunferência centrada na origem.
- Descrição global:

$$S(r) = \sum_{\theta=0}^{\pi} S_{\theta}(r) \qquad S(\theta) = \sum_{r=1}^{R} S_{r}(\theta)$$

 onde R é o raio de uma circunferência centrada na origem. Geralmente, para um espectro N X N, escolhe R=N/2.

Figura 11.35 (a) e (b) Imagens de objetos aleatórios e ordenados. (c) e (d) Espectros de Fourier correspondentes. Todas as imagens são de 600 × 600 pixels.

Figura 11.35 (a)

Textura Momentos Invariantes

Descritores regionais

Textura – Momentos Invariantes

O momento 2D de ordem (p+q) de uma imagem digital f(x,y) é definido por

$$m_{pq} = \sum_{x} \sum_{y} x^{p} y^{q} f(x, y)$$

• O momento central correspondente de (p+q) é definido como

$$\mu_{pq} = \sum_{x} \sum_{y} (x - \overline{x})^{p} (y - \overline{y})^{q} f(x, y) \qquad \begin{cases} \overline{y} = \frac{m_{01}}{m_{00}} \\ \overline{x} = \frac{m_{10}}{m_{00}} \end{cases}$$

Os momentos centrais normalizados (η_{pq}) são dados por

$$\eta_{pq}=rac{\mu_{pq}}{\mu_{00}^{\gamma}}$$
 , $\gamma=rac{p+q}{2}+1$ para p+q=2,3,...

Momentos Invariantes

 Através dos momentos, pode-se calcular a inclinação de um objeto.

$$\theta = \frac{1}{2} \tan^{-1} \left[\frac{2\mu_{11}}{\mu_{20} - \mu_{02}} \right]$$

 Um conjunto de sete momentos invariantes pode ser obtido a partir do segundo e terceiro momentos, e podem ser encontrados no livro. Sejam eles φ1, φ2, φ3, φ4, φ5, φ6, φ7.

$$\begin{split} \phi_1 &= \eta_{20} + \eta_{02} \\ \phi_2 &= (\eta_{20} - \eta_{02})^2 + 4\eta_{11}^2 \\ \phi_3 &= (\eta_{30} - 3\eta_{12})^2 + (3\eta_{21} - \eta_{03})^2 \\ \phi_4 &= (\eta_{30} + \eta_{12})^2 + (\eta_{21} - \eta_{03})^2 \\ \phi_5 &= (\eta_{30} - 3\eta_{12})(\eta_{30} + \eta_{12})[(\eta_{30} + \eta_{12})^2 \\ &- 3(\eta_{21} + \eta_{03})^2] + (3\eta_{21} - \eta_{03})(\eta_{21} + \eta_{03}) \\ &[3(\eta_{30} + \eta_{12})^2 - (\eta_{21} + \eta_{03})^2] \\ \phi_6 &= (\eta_{20} - \eta_{02})[(\eta_{30} + \eta_{12})^2 - (\eta_{21} + \eta_{03})^2] \\ &+ 4\eta_{11}(\eta_{30} + \eta_{12})(\eta_{21} + \eta_{03}) \\ \phi_7 &= (3\eta_{21} - \eta_{03})(\eta_{30} + \eta_{12})[(\eta_{30} + \eta_{12})^2] \end{split}$$

$$\phi_{7} = (3\eta_{21} - \eta_{03})(\eta_{30} + \eta_{12})[(\eta_{30} + \eta_{12})^{2}$$

$$-3(\eta_{21} + \eta_{03})^{2}] + (3\eta_{12} - \eta_{30})(\eta_{21} + \eta_{03})$$

$$[3(\eta_{30} + \eta_{12})^{2} - (\eta_{21} + \eta_{03})^{2}]$$
⁴⁶

Textura – Momentos Invariantes

Figura 11.37 (a) Imagem original. (b) a (f) Imagens transladada, redimensionada por 0,5, espelhada, rotacionada em 45° e rotacionada em 90°, respectivamente.

Textura – Momentos Invariantes

Tabela 11.5 Momentos invariantes para as imagens da Figura 11.37.

Momento invariante	Imagem original	Transladada	Redimensio- nada por 0,5	Espelhada	Rotacionada em 45°	Rotacionada em 90°
ϕ_1	2,8662	2,8662	2,8664	2,8662	2,8661	2,8662
ϕ_2	7,1265	7,1265	7,1257	7,1265	7,1266	7,1265
ϕ_3	10,4109	10,4109	10,4047	10,4109	10,4115	10,4109
ϕ_4	10,3742	10,3742	10,3719	10,3742	10,3742	10,3742
$\phi_{\scriptscriptstyle 5}$	21,3674	21,3674	21,3924	21,3674	21,3663	21,3674
ϕ_6	13,9417	13,9417	13,9383	13,9417	13,9417	13,9417
ϕ_7	-20,7809	-20,7809	-20,7724	20,7809	-20,7813	-20,7809

Encaminhamentos

- Dúvidas?
- Próximo assunto
 - Reconhecimento de Objetos

