

Leveraging register data to estimate causal effects of policy interventions Workshop ODISSEI

Oisín Ryan & Erik-Jan van Kesteren

About us

Erik-Jan van Kesteren

- Background in statistics / social science
- Assistant professor @ methodology & statistics UU
- Social Data Science team lead @ ODISSEI (consortium of universities)

Some stuff I work on:

Latent variables, high-dimensional data, optimization, regularization, visualisation, Bayesian statistics, multilevel models, spatial data, generalized linear models, privacy, synthetic data, high-performance computing, software development, open science & reproducibility

About us

Erik-Jan van Kesteren

- Background in statistics / social science
- Assistant professor @ methodology & statistics UU
- Social Data Science team lead @ ODISSEI (consortium of universities)

Some stuff I work on:

Latent variables, high-dimensional data, optimization, regularization, visualisation, Bayesian statistics, multilevel models, spatial data, generalized linear models, privacy, synthetic data, high-performance computing, software development, open science & reproducibility

github.com/sodascience/workshop _causal_impact_assessment

Today's plan: morning

- Introduction (60 minutes)
 - Policy Interventions and Causal Inference
 - Pre-Post Analyses and Difference-in-Difference
- Practical (30 minutes)
- Break (15 minutes)
- Interrupted Time Series (45 minutes)
- Practical (30 minutes)
- Lunch around 12:00; re-start at 13:00

Today's plan: afternoon

- Synthetic Control Methods (45 minutes)
- Practical (45 minutes)
- Break (15 minutes)
- CausalImpact (45 minutes)
- Practical (45 minutes)
- Break (15 minutes)
- Discussion session (30 minutes)
- Finish around 17:00

Context: "Policy Evaluations"

Many social science **research questions** concern evaluating what **the effect** of implementing a particular **policy** or **intervention** was on some outcome of interest

Examples:

- What was the effect of raising the maximum speed limit on road deaths?
- What effect did introducing students loans have on post-graduation debt levels?
- Did introducing an after-school programme in disadvantaged neighbourhoods lead to improved educational outcomes in children from that neighbourhood?

Context: "Policy Evaluations"

Sometimes referred to as "policy evaluation" research or "comparative case studies"

Basic Structure:

- We have some unit which we observe before and after some intervention or action
- Did the intervention produces changes in the outcome for that unit?

Methods for Policy Evaluation

Many different methods have been developed to answer these types of research questions

These methods differ in terms of:

- The **amount** and **type** of information they use
 - Amount of time-points and amount of potential "control" units
- The specific **statistical approach** they take
- The types of **assumptions** they make

Today we aim to give you a brief introduction to many of these different methods!

Big Table of Methods

Causal Inference: A primer

Potential Outcomes

Causal Inference is (broadly) concerned with using data to estimate what the effect is of **intervening** on a particular variable.

Using the **potential outcomes** framework, we can define causal inference as a missing data problem

Potential Outcomes

Let Y_i represent your headache level, and let A_i be whether you take aspirin or not (A =1 you take it, A = 0 you don't)

You only want to take an aspirin if your headache levels **after taking aspirin** would be lower than your headache level **without taking aspirin**

There are two possible versions of the outcome variable

- Y_i^1 your headache level **if you would take aspirin**
- Y_i^0 your headache level **if you would take aspirin**

Causal Effects

We can define the **causal effect** of taking aspirin on your headache levels as the difference in potential outcomes

$$CE_i = Y_i^1 - Y_i^0$$

The fundamental problem of causal inference: You only ever observe one of the potential outcomes!

ID	Y	A
1	7	0
2	9	0
3	6	0
4	5	0
5	6	0
6	2	1
7	3	1
8	1	1
I	2	1

ID	Y	A
1	7	0
2	9	0
3	6	0
4	5	0
5	6	0
6	2	1
7	3	1
8	1	1
I	2	1

ID	Y	A	Y^0	Y^1
1	7	0	7	NA
2	9	0	9	NA
3	6	0	6	NA
4	5	0	5	NA
5	6	0	6	NA
6	2	1	NA	2
7	3	1	NA	3
8	1	1	NA	1
I	2	1	NA	2

ID	Y	\boldsymbol{A}	<i>Y</i> ⁰	<i>Y</i> ¹
1	7	0	7	NA
2	9	0	9	NA
3	6	0	6	NA
4	5	0	5	NA
5	6	0	6	NA
6	2	1	NA	2
7	3	1	NA	3
8	1	1	NA	1
I	2	1	NA	2

In cross-sectional settings, we typically aim to make inferences about the **average causal effect.** This is known as a **causal estimand**:

$$ACE = E[Y^1] - E[Y^0]$$

In a **Randomized Controlled Trial**, we often use the (sample) difference in treated and untreated groups as an **estimator** of this causal effect:

$$\widehat{ACE} = E[Y | A = 1] - E[Y | A = 0]$$

In cross-sectional settings, we typically aim to make inferences about the **average causal effect.** This is known as a **causal estimand**:

$$ACE = E[Y^1] - E[Y^0]$$

In a **Randomized Control Trial,** we often use the (sample) difference in treated and untreated groups as an **estimator** of this causal effect:

$$\widehat{ACE} = E[Y | A = 1] - E[Y | A = 0]$$

ID	Y	A	Y^0	Y^1
1	7	0	7	NA
2	9	0	9	NA
3	6	0	6	NA
4	5	0	5	NA
5	6	0	6	NA
6	2	1	NA	2
7	3	1	NA	3
8	1	1	NA	1
I	2	1	NA	2

In cross-sectional settings, we typically aim to make inferences about the **average causal effect.** This is known as a **causal estimand**:

$$ACE = E[Y^1] - E[Y^0]$$

In a **Randomized Control Trial,** we often use the (sample) difference in treated and untreated groups as an **estimator** of this causal effect:

$$\widehat{ACE} = E[Y | A = 1] - E[Y | A = 0]$$

ID	Y	A	Y^0	Y^1
1	7	0	7	NA
2	9	0	9	NA
3	6	0	6	NA
4	5	0	5	NA
5	6	0	6	NA
6	2	1	NA	2
7	3	1	NA	3
8	1	1	NA	1
I	2	1	NA	2

Causal Inference Assumptions

This type of **inference** about causal effects from **observed data** is only possible under certain **conditions** or **assumptions**

Exchangeability

- Essentially relates to the absence of (unaccounted for) confounder variables
- If we were to reverse treatment assignment we would observe the same group differences. Information is exchangeable between groups
- RCTs are powerful because randomization ensures exchangeability
- In practice we need conditional exchangeability; to control for confounders!

Causal Inference Assumptions

This type of **inference** about causal effects from **observed data** is only possible under certain **conditions** or **assumptions**

Stable Unit Treatment Value (also known as SUTVA)

- **No Interference:** The potential outcomes of one unit does not depend on the treatment assigned to another unit. E.g.: My taking an aspirin does not influence your headache levels if you do or do not take one
- **Consistency:** Only one version of treatment, treatment is unambiguously defined.
- I can directly observe one of the potential outcomes.
- If person I takes aspirin, then $Y_i = Y_i^1$

Causal Inference Assumptions

These two generic assumptions essentially always appear in causal inference problems, and as we will see, we will have to deal with concerns around **confounders** and **no interference** repeatedly today

Other assumptions or conditions may also be needed depending on the specific design and analytic approach you take

Causal Inference and Policy Evaluations

Todays Topic

Policy evaluation is a special case of causal inference

We have **one unit** observed repeatedly over time

At some point in time an **intervention** takes place

Time	Y_t	A_t
1	7	0
2	9	0
3	6	0
4	5	0
5	6	0
6	2	1
7	3	1
8	1	1
I	2	1

Todays Topic

Policy evaluation is a special case of causal inference

We have **one unit** observed repeatedly over time

At some point in time an **intervention** takes place

Pre-intervention we observe Y_t^0 and **post-intervention** Y_t^1

Time	Y_t	A_t	Y_t^0	Y_t^1
1	7	0	7	NA
2	9	0	9	NA
3	6	0	6	NA
4	5	0	5	NA
5	6	0	6	NA
6	2	1	NA	2
7	3	1	NA	3
8	1	1	NA	1
I	2	1	NA	2

In cross-sectional settings, we typically aim to make inferences about the **average causal effect.** This is known as a **causal estimand:**

$$ACE = E[Y^1] - E[Y^0]$$

In a **Randomized Control Trial**, we often use the (sample) difference in treated and untreated groups as an **estimator**

$$\widehat{ACE} = E[Y | A = 1] - E[Y | A = 0]$$

We can define the **causal effect** of taking aspirin on your headache levels as the difference in potential outcomes

$$CE_i = Y_i^1 - Y_i^0$$

The fundamental problem of causal inference: You only ever observe one of the potential outcomes!

Data visualisation with ggplot2

https://r4ds.had.co.nz/data-visualisation.html

Raw data maps to:

- Aesthetics: data-bound properties of the picture (position, shape, colour, ...)
- Geometric objects, or geom: visual objects on the plot (points, lines, bars, polygons ...)
- Scales: how data values map to aesthetic values (continuous or discrete)
- Facets: subplots / small multiples

Additionally, can apply:

- Statistical transformations: transform data before mapping
- Alternative coordinate system (cartesian, polar, ...)

Example dataset: cars

```
A tibble: 234 × 11
                                                                                       class
   manufacturer model
                             displ
                                            cyl trans
                                                                            hwy fl
                                     year
                                                            drv
                                                                     ctv
                             <dbl> <int> <int> <chr>
                                                             <chr> <int> <int> <chr>
   <chr>
                 <chr>
                                                                                       <chr>
 1 audi
                                    1999
                                              4 auto(15)
                                                                      18
                 a4
                               1.8
                                                                             29 p
                                                                                       compact
 2 audi
                                    <u>1</u>999
                                              4 manual(m5) f
                               1.8
                                                                      21
                                                                             29 p
                                                                                       compact
 3 audi
                                     2008
                                              4 manual(m6) f
                                                                      20
                                                                             31 p
                                                                                       compact
                                              4 auto(av)
 4 audi
                                     2008
                                                                      21
                                                                             30 p
                                                                                       compact
 5 audi
                                              6 auto(15)
                                                                             26 p
                               2.8
                                    1999
                                                                      16
                                                                                       compact
 6 audi
                                              6 manual(m5)
                                    <u>1</u>999
                                                                      18
                                                                             26 p
                                                                                       compact
 7 audi
                                    2008
                                              6 auto(av)
                                                                      18
                 a4
                               3.1
                                                                                       compact
 8 audi
                               1.8
                                    1999
                                              4 manual(m5) 4
                 a4 quattro
                                                                      18
                                                                             26 p
                                                                                       compact
 9 audi
                 a4 quattro
                               1.8
                                    1999
                                              4 auto(15)
                                                                      16
                                                                             25 p
                                                                                       compact
10 audi
                 a4 quattro
                                              4 manual(m6) 4
                                     2008
                                                                      20
                                                                             28 p
                                                                                       compact
  ... with 224 more rows
   Use print(n = ...) to see more rows
```

Data wrangling with dplyr

Which are the most efficient (combined city-highway) cars after 2000 in terms of litres / 100km?

```
library(tidyverse)
    l100k ←
     mpg 🗅
     filter(year > 2000) >
     select(manufacturer, model, year, displ, cty, hwy, class) >
     mutate(
        mpg_combined = .55*cty + .45*hwy,
       l_per_100km = 378.5411784 / (1.609344 * mpg_combined)
10
     select(-cty, -hwy, -mpg_combined) ▷
      arrange(l_per_100km)
12
13
```

Data wrangling with dplyr

```
# A tibble: 117 × 6
  manufacturer model
                              year displ class l per 100km
   <chr>
                <chr>
                             <int> <dbl> <chr>
                                                          <dbl>
                corolla
1 toyota
                              2008
                                     1.8 compact
                                                           7.34
                corolla
2 toyota
                              2008
                                     1.8 compact
                                                           7.83
               civic
3 honda
                              2008
                                     1.8 subcompact
                                                           7.85
               civic
                                     1.8 subcompact
 4 honda
                              2008
                                                           7.95
               civic
                                     1.8 subcompact
 5 honda
                              <u>2</u>008
                                                           8.00
                altima
                                     2.5 midsize
 6 nissan
                              2008
                                                           8.70
               altima
                                     2.5 midsize
 7 nissan
                              2008
                                                           8.84
                camry solara
8 toyota
                              2008
                                     2.4 compact
                                                           9.03
                                     2.4 midsize
9 chevrolet
                malibu
                              2008
                                                           9.19
10 hyundai
                                     2.4 midsize
                sonata
                              2008
                                                           9.22
# ... with 107 more rows
# i Use `print(n = ...)` to see more rows
```

Data visualisation with ggplot2

https://r4ds.had.co.nz/data-visualisation.html

Raw data maps to:

- Aesthetics: data-bound properties of the picture (position, shape, colour, ...)
- Geometric objects, or geom: visual objects on the plot (points, lines, bars, polygons ...)
- Scales: how data values map to aesthetic values (continuous or discrete)
- Facets: subplots / small multiples

Additionally, can apply:

- Statistical transformations: transform data before mapping
- Alternative coordinate system (cartesian, polar, ...)

Example dataset: l100k

```
# A tibble: 117 × 6
  manufacturer model
                              year displ class
                                                   l per 100km
   <chr>
                <chr>
                             <int> <dbl> <chr>
                                                          <dbl>
               corolla
1 toyota
                              2008
                                     1.8 compact
                                                           7.34
               corolla
2 toyota
                              2008
                                     1.8 compact
                                                           7.83
3 honda
               civic
                              2008
                                     1.8 subcompact
                                                           7.85
               civic
                                     1.8 subcompact
 4 honda
                              2008
                                                           7.95
               civic
                                     1.8 subcompact
 5 honda
                              <u>2</u>008
                                                           8.00
               altima
                                     2.5 midsize
 6 nissan
                              2008
                                                           8.70
 7 nissan
               altima
                                     2.5 midsize
                              2008
                                                           8.84
               camry solara
8 toyota
                             2008
                                     2.4 compact
                                                           9.03
9 chevrolet
               malibu
                                     2.4 midsize
                              2008
                                                           9.19
10 hyundai
                                     2.4 midsize
               sonata
                              2008
                                                           9.22
# ... with 107 more rows
 i Use `print(n = ...)` to see more rows
```

Data visualisation with ggplot2

Display a scatter plot with on the x axis the engine displacement and on the y-axis the efficiency. Colour the points by the car class

```
l100k ⊳
   ggplot(aes(x = displ, y = l_per_100km, colour = class)) +
   geom_point() +
   scale_y_log10() +
17
  labs(
18
   x = "Engine displacement",
19
       y = "Litres per 100km",
20
    colour = "Car class",
21
       title = "Efficiency of road cars after 2000"
22
23
     theme_minimal()
```

Data visualisation with ggplot2

More data wrangling with dplyr

group by

Registers groups by which to perform further operations (usually mutate, summarise)

summarise

Create summaries based on a function applied to each group

Example dataset: l100k

```
# A tibble: 117 × 6
  manufacturer model
                              year displ class
                                                   l per 100km
   <chr>
                <chr>
                             <int> <dbl> <chr>
                                                          <dbl>
               corolla
1 toyota
                              2008
                                     1.8 compact
                                                           7.34
               corolla
2 toyota
                              2008
                                     1.8 compact
                                                           7.83
3 honda
               civic
                              2008
                                     1.8 subcompact
                                                           7.85
               civic
                                     1.8 subcompact
 4 honda
                              2008
                                                           7.95
               civic
                                     1.8 subcompact
 5 honda
                              <u>2</u>008
                                                           8.00
               altima
                                     2.5 midsize
 6 nissan
                              2008
                                                           8.70
 7 nissan
               altima
                                     2.5 midsize
                              2008
                                                           8.84
               camry solara
8 toyota
                             2008
                                     2.4 compact
                                                           9.03
9 chevrolet
               malibu
                                     2.4 midsize
                              2008
                                                           9.19
10 hyundai
                                     2.4 midsize
               sonata
                              2008
                                                           9.22
# ... with 107 more rows
 i Use `print(n = ...)` to see more rows
```

More data wrangling with dplyr

Which type of car should I buy to be the least efficient?

More data wrangling with dplyr

What is the most efficient car within each class?

```
# A tibble: 7 \times 3
 class
            manufacturer model
  <chr> <chr>
                         <chr>
 2seater chevrolet
                         corvette
                         corolla
2 compact
           toyota
3 midsize
                         altima
            nissan
4 minivan
            dodge
                         caravan 2wd
5 pickup
            toyota
                         toyota tacoma 4wd
6 subcompact honda
                         civic
            subaru
                         forester awd
7 suv
```

pivot_longer

Combines various columns into a single "value" column with an additional "name" column to indicate where the value came from

pivot_wider

The opposite: puts rows of different categories in separate columns

Example dataset: l100k

```
# A tibble: 117 × 6
  manufacturer model
                              year displ class
                                                   l per 100km
   <chr>
                <chr>
                             <int> <dbl> <chr>
                                                          <dbl>
               corolla
1 toyota
                              2008
                                     1.8 compact
                                                           7.34
               corolla
2 toyota
                              2008
                                     1.8 compact
                                                           7.83
3 honda
               civic
                              2008
                                     1.8 subcompact
                                                           7.85
               civic
                                     1.8 subcompact
 4 honda
                              2008
                                                           7.95
               civic
                                     1.8 subcompact
 5 honda
                              <u>2</u>008
                                                           8.00
               altima
                                     2.5 midsize
 6 nissan
                              2008
                                                           8.70
 7 nissan
               altima
                                     2.5 midsize
                              2008
                                                           8.84
               camry solara
8 toyota
                             2008
                                     2.4 compact
                                                           9.03
9 chevrolet
               malibu
                                     2.4 midsize
                              2008
                                                           9.19
10 hyundai
                                     2.4 midsize
               sonata
                              2008
                                                           9.22
# ... with 107 more rows
 i Use `print(n = ...)` to see more rows
```

Let's generate predictions for efficiency using two models: a linear regression and a regression tree

```
# fit
fit_linear \( \to \text{lm(l_per_100km } \times \text{displ + class, l100k)}
fit_tree \( \times \text{rpart(l_per_100km } \times \text{displ + class, l100k)}

# predict \( \tilde \text{ add to data} \)
1100k$pred_linear \( \times \text{ predict(fit_linear)} \)
1100k$pred_tree \( \times \text{ predict(fit_tree)} \)
```

```
# A tibble: 117 × 8
                                                        l_per_100km pred_linear pred_...¹
   manufacturer model
                                year displ class
                               <int> <dbl> <chr>
                                                              <dbl>
                                                                           <dbl>
   <chr>
                 <chr>
                                                                                    <dbl>
 1 toyota
                 corolla
                                2008
                                                               7.34
                                                                                     9.37
                                       1.8 compact
                                                                            8.98
                 corolla
                                                                                     9.37
 2 toyota
                                <u>2</u>008
                                       1.8 compact
                                                               7.83
                                                                            8.98
                 civic
                                       1.8 subcompact
 3 honda
                                <u>2</u>008
                                                               7.85
                                                                            9.00
                                                                                     9.37
                 civic
                                2008
                                       1.8 subcompact
                                                               7.95
 4 honda
                                                                            9.00
                                                                                     9.37
 5 honda
                 civic
                                2008
                                       1.8 subcompact
                                                               8.00
                                                                                     9.37
                                                                            9.00
 6 nissan
                 altima
                                2008
                                       2.5 midsize
                                                               8.70
                                                                            9.28
                                                                                     9.37
                 altima
                                2008
                                       2.5 midsize
 7 nissan
                                                               8.84
                                                                            9.28
                                                                                     9.37
                 camry solara
 8 toyota
                                <u>2</u>008
                                       2.4 compact
                                                               9.03
                                                                            9.88
                                                                                     9.37
 9 chevrolet
                 malibu
                                       2.4 midsize
                                                                            9.13
                                                                                     9.37
                                2008
                                                               9.19
10 hyundai
                                       2.4 midsize
                 sonata
                                <u>2</u>008
                                                               9.22
                                                                            9.13
                                                                                     9.37
# ... with 107 more rows, and abbreviated variable name 'pred_tree
 i Use `print(n = ...)` to see more rows
```

Let's plot these predictions with the following mapped aesthetics:

x: engine size

y: predicted efficiency

colour: model type

???

ggplot wants tidy data. Let's pivot our data so that model type becomes a column.

```
100k_long \(
1100k \rightarrow
1100k \right
```

# A Tipple: 234	× 8						
manufacturer	model	year	displ	class	l_per_100km	<pre>model_type</pre>	prediction
<chr></chr>	<chr></chr>	<int></int>	<dbl></dbl>	<chr></chr>	<dbl></dbl>	<chr></chr>	<dbl></dbl>
1 toyota	corolla	<u>2</u> 008	1.8	compact	7 . 34	linear	8.98
2 toyota	corolla	<u>2</u> 008	1.8	compact	7 . 34	tree	9.37
3 toyota	corolla	<u>2</u> 008	1.8	compact	7.83	linear	8.98
4 toyota	corolla	<u>2</u> 008	1.8	compact	7.83	tree	9.37
5 honda	civic	<u>2</u> 008	1.8	subcompact	7.85	linear	9.00
6 honda	civic	<u>2</u> 008	1.8	subcompact	7.85	tree	9.37
7 honda	civic	<u>2</u> 008	1.8	subcompact	7.95	linear	9.00
8 honda	civic	<u>2</u> 008	1.8	subcompact	7.95	tree	9.37
9 honda	civic	<u>2</u> 008	1.8	subcompact	8.00	linear	9.00
10 honda	civic	<u>2</u> 008	1.8	subcompact	8.00	tree	9.37
# with 224 mon	re rows						
# i Use `print(n	=)`	to se	e more	rows			

Let's plot these predictions!

```
l100k_long ▷
   ggplot(aes(x = displ, y = prediction, colour = model_type)) +
60
    geom_point() +
61
    scale_y_log10() +
62
   labs(
63
   x = "Engine displacement",
64
       v = "Predicted efficiency (l/100km)",
65
    colour = "Model type",
66
67
       title = "Predicted efficiency of road cars after 2000"
68
     facet_wrap(vars(model_type)) +
69
     theme_minimal() +
70
     theme(legend.position = "none")
71
```

Predicted efficiency of road cars after 2000

Practical: dplyr, ggplot, tidyr

Work in your groups! Take a break from 10:30 to 10:40

Break

Break