Problem Set 1 sz CS 229

Q1 Newton's method for computing least squares

Prove that if we use Newton's method to solve the least squares optimization problem, then we only need one iteration to converge to θ^* .

a. Find the Hessian of the cost function $J(\theta) = \frac{1}{2} \sum_{i=1}^{m} (\theta^T x^{(i)} - y^{(i)})^2$.

We know that

$$\theta^T = \begin{bmatrix} \theta_0 & \theta_1 & \cdots & \theta_d \end{bmatrix} \qquad x = \begin{bmatrix} x_0^{(i)} \\ x_1^{(i)} \\ \vdots \\ x_d^{(i)} \end{bmatrix} \text{ where } \forall i, \quad x_0^i = 1$$

Then each entry at index i, j of the Hessian is:

$$H_{ij}(J(\theta)) = \frac{\partial}{\partial \theta_i \partial \theta_j} \frac{1}{2} \sum_{k=1}^m (\theta^T x^{(k)} - y^{(k)})^2$$

$$= \frac{\partial}{\partial \theta_j} \sum_{k=1}^m (\theta^T x^{(k)} - y^{(k)}) x_i^{(k)}$$

$$= \frac{\partial}{\partial \theta_j} \sum_{k=1}^m (\theta_0^{(k)} x_0^{(k)} x_i^{(k)} + \dots + \theta_d^{(k)} x_d^{(k)} x_i^{(k)} - y^{(k)} x_i^{(k)})$$

$$= \sum_{k=1}^m (x_i^{(k)} x_j^{(k)})$$

Thus

$$H = \begin{bmatrix} \sum_{k=1}^{m} x_0^{(k)} x_0^{(k)} & \sum_{k=1}^{m} x_0^{(k)} x_1^{(k)} & \cdots & \sum_{k=1}^{m} x_0^{(k)} x_d^{(k)} \\ \sum_{k=1}^{m} x_1^{(k)} x_0^{(k)} & \sum_{k=1}^{m} x_1^{(k)} x_1^{(k)} & \cdots & \sum_{k=1}^{m} x_1^{(k)} x_d^{(k)} \\ \vdots & \vdots & \ddots & \vdots \\ \sum_{k=1}^{m} x_d^{(k)} x_0^{(k)} & \sum_{k=1}^{m} x_d^{(k)} x_1^{(k)} & \cdots & \sum_{k=1}^{m} x_d^{(k)} x_d^{(k)} \end{bmatrix} = X^T X$$

where

$$X = \begin{bmatrix} \vec{x}^{(1)} \\ \vec{x}^{(2)} \\ \vdots \\ \vec{x}^{(m)} \end{bmatrix}$$

b. Show that the first iteration of Newton's method gives us the optimal solution to least squares problem.

Newton's method: $\theta := \theta - H^{-1}\nabla_{\theta}J(\theta)$

It is known that
$$\nabla_{\theta} J(\theta) = X^T X \theta - X^T \vec{y}$$
, then,

$$\theta - H^{-1} \nabla_{\theta} J(\theta) = \theta - (X^{T} X)^{-1} (X^{T} X \theta - X^{T} \vec{y})$$

$$= \theta - (X^{T} X)^{-1} X^{T} X \theta + (X^{T} X)^{-1} X^{T} \vec{y}$$

$$= \theta - \theta + (X^{T} X)^{-1} X^{T} \vec{y}$$

$$= (X^{T} X)^{-1} X^{T} \vec{y}$$

which is the optimal solution to the least squares problem.

Q2 Locally-weighted Logistic regression

Implement the Newton-Raphson algorithm for optimizing $\ell(\theta)$, where $\ell(\theta)$ is cost function for locally weighted logistic regression, for a new query point x, and use this to predict the class of x.

Figure 1: Results when varying the resolution

Figure 2: Varying $\tau = 0.01, 0.05, 0.1, 0.5, 1, 5$

As we increase the bandwidth parameter τ , the decision boundary approaches a straight line. As $\tau \to \infty$, the model approaches an unweighted logistic regression model.

3. Multivariate least squares

a. Simplify to matrix-vector notation:

$$J(\Theta) = \frac{1}{2} \sum_{i=1}^{m} \sum_{j=1}^{p} ((\Theta^{T} x^{(i)})_{j} - y_{j}^{(i)})^{2}$$

where
$$\Theta \in \mathbb{R}^{n \times p}$$
.
Let $X = \begin{bmatrix} x^{(1)^T} \\ x^{(2)^T} \\ \vdots \\ x^{(m)^T} \end{bmatrix}$, $x^{(i)} \in \mathbb{R}^n$, and $Y = \begin{bmatrix} y^{(1)^T} \\ y^{(2)^T} \\ \vdots \\ y^{(m)^T} \end{bmatrix}$, $y^{(i)} \in \mathbb{R}^p$.
Let $\Theta = \begin{bmatrix} \theta_1 & \theta_2 & \cdots & \theta_n \end{bmatrix}$, where $\theta_i \in \mathbb{R}^n$.

Then

$$X\Theta - Y = \begin{bmatrix} x_{(1)} \cdot \theta_1 - y_1^{(1)} & x_{(1)} \cdot \theta_2 - y_2^{(1)} & \cdots & x_{(1)} \cdot \theta_p - y_p^{(1)} \\ x_{(2)} \cdot \theta_1 - y_1^{(2)} & x_{(2)} \cdot \theta_2 - y_2^{(2)} & \cdots & x_{(2)} \cdot \theta_p - y_p^{(2)} \\ \vdots & \vdots & \ddots & \vdots \\ x_{(n)} \cdot \theta_1 - y_1^{(m)} & x_{(m)} \cdot \theta_2 - y_2^{(m)} & \cdots & x_{(m)} \cdot \theta_p - y_p^{(m)} \end{bmatrix}$$
$$= \begin{bmatrix} z_1 & z_2 & \cdots & z_p \end{bmatrix}$$

Notice that $\frac{1}{2}\sum_{i=1}^{m}\sum_{j=1}^{p}((\Theta^{T}x^{(i)})_{j}-y_{j}^{(i)})^{2}$ is equal to the sum of the square of every entry in $X\Theta-Y$. We can calculate that by taking the dot product of each column of $X\Theta-Y$ by itself, then sum them up. First.

$$(X\Theta - Y)^T (X\Theta - Y) = \begin{bmatrix} z_1 \cdot z_1 & z_1 \cdot z_2 & \cdots & z_1 \cdot z_p \\ z_2 \cdot z_1 & z_2 \cdot z_2 & \cdots & z_2 \cdot z_p \\ \vdots & \vdots & \ddots & \vdots \\ z_p \cdot z_1 & z_p \cdot z_2 & \cdots & z_p \cdot z_p \end{bmatrix}$$

Thus

$$J(\Theta) = \frac{1}{2} \operatorname{tr} \{ (X\Theta - Y)^T (X\Theta - Y) \}$$

Or

$$J(\Theta) = \frac{1}{2} \operatorname{tr} \{ (X\Theta - Y)(X\Theta - Y)^T \}$$

b. Find the closed form solution for Θ which minimizes $J(\Theta)$.

$$J(\Theta) = \frac{1}{2} \operatorname{tr}[(X\Theta - Y)(X\Theta - Y)^T]$$

$$= \frac{1}{2} \operatorname{tr}[(X\Theta - Y)(\Theta^T X^T - Y^T)]$$

$$= \frac{1}{2} \operatorname{tr}[X\Theta\Theta^T X^T - Y\Theta^T X - X\Theta Y^T + YY^T]$$

$$= \frac{1}{2} \{ \operatorname{tr}[X\Theta\Theta^T X^T - \operatorname{tr}[Y\Theta^T X^T] - \operatorname{tr}[X\Theta Y^T] + \operatorname{tr}[YY^T] \}$$

1.) Consider f = tr[AXB]

$$f = \sum_{i} [AXB]_{ii} = \sum_{i} \sum_{j} A_{ij} [XB]_{ji}$$

$$= \sum_{i} \sum_{j} A_{ij} \sum_{k} X_{jk} B_{ki}$$

$$= \sum_{i} \sum_{j} \sum_{k} A_{ij} X_{jk} B_{ki}$$

$$\therefore \frac{\partial f}{\partial X_{jk}} = \sum_{i} A_{ij} B_{ki} = \sum_{i} B_{ki} A_{ij} = [BA]_{kj}$$

$$\therefore \frac{\partial \operatorname{tr}[AXB]}{\partial X} = (BA)^{\mathrm{T}} = A^{\mathrm{T}} B^{\mathrm{T}}$$

$$(1)$$

2.) Consider $f = \operatorname{tr}[AX^{\mathrm{T}}B]$

$$f = \sum_{i} \sum_{j} \sum_{k} A_{ij} X_{kj} B_{ki}$$

$$\frac{\partial f}{\partial X_{kj}} = \sum_{i} A_{ij} B_{ki} = [BA]_{kj}$$

$$\therefore \frac{\partial \operatorname{tr}[AX^{\mathrm{T}}B]}{\partial X} = BA \tag{2}$$

Now taking the partial derivatives with respect to X in each term of $J(\Theta)$,

$$\frac{\partial \operatorname{tr}[X \Theta \Theta^{\mathrm{T}} X^{\mathrm{T}}]}{\partial \Theta} = \frac{\partial \operatorname{tr}[X \Theta A]}{\partial \Theta} + \frac{\partial \operatorname{tr}[B \Theta^{\mathrm{T}} X^{\mathrm{T}}]}{\partial X}$$

where $A = \Theta^T X^T$ and Θ is constant, and $B = X\Theta$ where Θ is constant.

$$= (AX)^{\mathrm{T}} + X^{\mathrm{T}}B$$
 by (1) and (2)
$$= X^{\mathrm{T}}X\Theta + X^{\mathrm{T}}X\Theta$$

$$=2X^{\mathrm{T}}X\Theta$$

$$\frac{\partial \operatorname{tr}[Y\Theta^{\mathrm{T}}X^{\mathrm{T}}]}{\partial \Theta} = X^{\mathrm{T}}Y$$
 by (2)

$$\frac{\partial \operatorname{tr}[X\Theta Y^{\mathrm{T}}]}{\partial \Theta} = (Y^{\mathrm{T}}X)^{\mathrm{T}} = X^{\mathrm{T}}Y \qquad \text{by (1)}$$

$$\frac{\partial \operatorname{tr}[YY^{\mathrm{T}}]}{\partial \Theta} = 0$$

$$\therefore \frac{\partial J(\Theta)}{\partial \Theta} = \frac{1}{2} \{2X^{\mathrm{T}}X\Theta - X^{\mathrm{T}}Y - X^{\mathrm{T}}Y + 0\}$$

Setting $J(\Theta) = 0$, then we have

$$\Theta = (X^{\mathrm{T}}X)^{-1}X^{\mathrm{T}}Y$$

which looks like the solution for regular least squares:

 $= X^{\mathrm{T}}X\Theta - X^{\mathrm{T}}Y$

$$\theta = (X^{\mathrm{T}}X)^{-1}X^{\mathrm{T}}\vec{y}$$

c. Suppose instead of considering the multivariate vectors $y^{(i)}$ all at once we instead compute each variable $y_j^{(i)}$ separately for each $j=1,\ldots,p$. In this case we have p individual linear models of the form

$$y_i^{(i)} = \theta_i^{\mathrm{T}} x^{(i)}, j = 1, \dots, p.$$

How do the parameters from these p independent least squares problem compare to the multivariate solution?

The optimum solutions from each independent linear model from j = 1, ..., p will be column vectors from the multivariate solution Θ .

 $\mathbf{Q5}$ Exponential family and the geometric distribution