Calcolatori Elettronici Esercitazione 9

M. Sonza Reorda – M. Monetti

M. Rebaudengo – R. Ferrero

L. Sterpone – M. Grosso

Politecnico di Torino
Dipartimento di Automatica e Informatica

Sono date due matrici quadrate contenenti numeri con segno, memorizzate per righe, di DIMxDIM elementi. Si scriva una proceduraVariazione in linguaggio MIPSin grado di calcolare la variazione percentuale (troncata all'intero) tra gli elementi di indice corrispondente della *riga I* della prima matrice ([*I*, 0], [*I*, 1], [*I*, 2]...) e della *colonna I* della seconda ([0, *I*], [1, *I*], [2, *I*]...). Ad esempio, nel caso di due matrici 3x3 e con *I* = 2:

il risultato è 0, -31, 3

Esercizio 1: implementazione

La variazione percentuale è calcolata come segue:

$$Variazione = (Val2 - Val1) \cdot 100 / Val1$$

- La procedura riceve i seguenti parametri:
 - L'indirizzo della prima matrice mediante \$a0
 - L'indirizzo della seconda matrice mediante \$a1
 - L'indirizzo del vettore risultato mediante \$a2
 - La dimensione DIM tramite \$a3
 - L'indice / per mezzo dello stack.

- Si scriva una **procedura sostituisci** in grado di espandere una stringa precedentemente inizializzata sostituendo tutte le occorrenze del carattere % con un'altra stringa data. Siano date quindi le seguenti tre stringhe in memoria:
 - str_orig, corrispondente al testo compresso da espandere
 - str_sost, contenente la il testo da sostituire in str_orig al posto di %
 - str_new, che conterrà la stringa espansa (si supponga che abbia dimensione sufficiente a contenerla).
- Di seguito un esempio di funzionamento:
 - Stringa originale: "% nella citta' dolente, % nell'eterno dolore, % tra la perduta gente"
 - Stringa da sostituire: "per me si va"
 - Risultato: "per me si va nella citta' dolente, per me si va nell'eterno dolore, per me si va tra la perduta gente"

Esercizio 2 [cont.]

- La procedura riceve gli indirizzi delle 3 stringhe attraverso i registri \$a0, \$a1 e \$a2, e restituisce la lunghezza della stringa finale attraverso \$v0.
- Le stringhe sono terminate dal valore ASCII 0x00.
- Di seguito un esempio di programma chiamante:

```
.data
                 .asciiz "% nella citta' dolente, % nell'eterno dolore, % tra la
str orig:
perduta gente %"
                 .asciiz "per me si va"
str sost:
str new:
                 .space 200
                 .text
                 .globl main
                 .ent main
main:
                 [\ldots]
                 la $a0, str orig
                 la $a1, str sost
                 la $a2, str new
                 jal sostituisci
                 [\ldots]
```

- Sia data una matrice di byte, contenente numeri senza segno.
- Si scriva una procedura contaVicini in grado di calcolare (e restituire come valore di ritorno) la somma dei valori contenuti nelle celle adiacenti ad una determinata cella.
- La procedura contaVicini riceve i seguenti parametri:
 - indirizzo della matrice
 - numero progressivo della cella X, così come indicato nell'esempio a fianco
 - numero di righe della matrice
 - numero di colonne della matrice.

0	1	2	3	4
5	6	7	8	9
10	11	12	13	14
15	16	17	18	19

 La procedura deve essere conforme allo standard per quanto riguarda passaggio di parametri, valore di ritorno e registri da preservare.

Esercizio 3 [cont.]

Di seguito un esempio di programma chiamante:

```
COLONNE = 5
       .data
matrice: .byte 0, 1, 3, 6, 2, 7, 13, 20, 12, 21, 11, 22, 10, 23,
               9, 24, 8, 25, 43, 62
        .text
        .globl main
       .ent main
main: [...]
       la $a0, matrice
       li $a1, 12
       li $a2, RIGHE
       li $a3, COLONNE
       jal contaVicini
       [\ldots]
        .end main
```

RIGHE = 4

0	1	3	6	2
7	13	20	12	21
11	22	10	23	9
24	8	25	43	62

il valore restituito è 166, pari a 13 + 20 + 12 + 22 + 23 + 8 + 25 + 43

- Il gioco della vita sviluppato dal matematico John Conway si svolge su una matrice bidimensionale.
- Le celle della matrice possono essere vive o morte.
- I vicini di una cella sono le celle ad essa adiacenti.
- La matrice evolve secondo le seguenti regole:
 - una cella con meno di due vicini vivi muore (isolamento)
 - una cella con due o tre vicini vivi sopravvive alla generazione successiva
 - una cella con più di tre vicini vivi muore (sovrappopolazione)
 - una cella morta con tre vicini vivi diventa viva (riproduzione).
- L'evoluzione avviene contemporaneamente per tutte le celle.

Esercizio 4 [cont.]

- Si scriva un programma in MIPS in grado di giocare al gioco della vita.
- Il programma principale esegue un ciclo di N iterazioni; ad ogni iterazione chiama la procedura evoluzione che determina il nuovo stato delle celle nella matrice.
- La procedura **evoluzione** riceve i seguenti parametri:
 - indirizzo di una matrice di byte, le cui celle hanno solo due valori: vivo (1) e morto (0)
 - indirizzo di una seconda matrice di byte non inizializzata di pari dimensioni
 - numero di righe delle due matrici
 - numero di colonne delle due matrici.

Esercizio 4 [cont.]

- La procedura evoluzione effettua un ciclo su tutte le celle della prima matrice:
 - per ogni cella, chiama la procedura contaVicini, implementata nell'esercizio precedente, per contare il numero di vicini
 - in base allo stato della cella e al suo numero di vicini, setta lo stato futuro della corrispondente cella nella seconda matrice.
- Al termine del ciclo, la procedura evoluzione chiama la procedura stampaMatrice che visualizza a video la seconda matrice, passando i seguenti parametri:
 - indirizzo della matrice
 - numero di righe della matrice
 - numero di colonne della matrice.
- Tutte le procedure devono essere conformi allo standard.