- Scrivere subito nome e cognome e matricola sul foglio risposte e preparare il libretto sul banco per il controllo.
- Tempo 30 minuti. Durante la prova non si può uscire dall'aula.
- Non si possono consultare libri, manuali, solo il foglio A4 di appunti.
- Non si possono usare calcolatrici, computer di ogni genere o telefoni cellulari.
- Consegnare solo il foglio risposte.
- Le risposte valide sono SOLO quelle segnate sul foglio che si consegna.
- Ogni domanda ha una e una sola risposta giusta.
- N.A. significa "nessuna delle altre", mentre N.E. significa "non esiste"
- Non usare matite e/o penne rosse sul foglio risposte.
- Indicare la risposta nell'apposita maschera con una "X".
- Per effettuare correzioni, barrare tutta la linea e scrivere CHIARAMENTE e INEQUIVOCABILMENTE la risposta corretta a destra della linea stessa.

14 febbraio 2023

			(Co	gnor	ne)						(No	me)			(N:	ume	ro di	ma	trice	ola)

1	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
2	0	0	0	0	\bigcirc	
3	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
4	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
5	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
6	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
7	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
8	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
9	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
10						

1. La funzione
$$f(x) = \begin{cases} \sin(\pi x/e) & \text{per } x < e \\ \log(\log(x)) & \text{per } x \ge e \end{cases}$$

A: è derivabile, ma non continua. B: non è né continua né derivabile. C: è continua, ma non derivabile. D: è continua e derivabile. E: N.A.

2. La retta tangente al grafico di $y(x) = \sin(2x)$ nel punto $x_0 = \pi/4$ vale

A: N.A. B: $1 + x + x^2$ C: 1 D: $1 + 2x - \frac{\pi}{2}$ E: $1 + \sin(2x)(x - \pi/4)$

3. L'insieme di convergenza della serie a termini non-negativi

$$\sum_{n=1}^{\infty} \frac{n^2 + n + 1}{\arctan(n)} \log \left(1 + \frac{1}{n^{\alpha}}\right)$$

è dato da

A: N.A. B: $\alpha > 1$ C: $2 < \alpha < \pi$ D: $\alpha > 0$ E: $\alpha > 3$

- 4. Tutte le soluzioni dell'equazione differenziale x''(t) 2x'(t) + x(t) = 0 sono A: limitate superiormente B: limitate inferiormente C: non negative D: Derivabili con continuità al massimo 2 volte E: N.A.
- 5. Il numero di soluzioni dell'equazione complessa $z^2 + 2\overline{z} + 1 = 0$ è

A: 1 B: 4 C: 0 D: N.A. E: 3

6. Il limite

$$\lim_{x \to +\infty} \frac{\log(x^3 + \cos(x))}{3\log(x)}$$

vale

A: N.E. B: 0 C: N.A. D: 1 E: $+\infty$

7. Data $f(x) = 3(\log(3x))$. Allora f'(e) è uguale a

A: $\frac{3}{e}$ B: e^3 C: N.A. D: π E: $\log(3e)$

8. L'integrale

$$\int_{1/e}^{e} |\log(x)| \, dx$$

vale

A: N.A. B:
$$\frac{2}{e}$$
 C: $\frac{2(e-1)}{e}$ D: N.E. E: 0

9. La funzione $f: \mathbb{R} \to \mathbb{R}$ definita da $f(x) = |x^2 - 1|(x - 1)$ è

A: N.A. B: surgettiva C: monotona crescente D: derivabile ovunque E: iniettiva

10. Inf, min, sup e max dell'insieme

$$A = \{x \in [0, 2\pi] : \sin(2x) \ge 0\}$$

valgono

A: N.A. B: $\{-\infty, N.E., +\infty, N.E.\}$ C: $\{0, 0, \pi/2, \pi/2\}$ D: $\{-\infty, N.E., 2\pi, 2\pi\}$ E $\{0, 0, \pi, \pi\}$

- Scrivere subito nome e cognome e matricola sul foglio risposte e preparare il libretto sul banco per il controllo.
- Tempo 30 minuti. Durante la prova non si può uscire dall'aula.
- Non si possono consultare libri, manuali, solo il foglio A4 di appunti.
- Non si possono usare calcolatrici, computer di ogni genere o telefoni cellulari.
- Consegnare solo il foglio risposte.
- Le risposte valide sono SOLO quelle segnate sul foglio che si consegna.
- Ogni domanda ha una e una sola risposta giusta.
- N.A. significa "nessuna delle altre", mentre N.E. significa "non esiste"
- Non usare matite e/o penne rosse sul foglio risposte.
- Indicare la risposta nell'apposita maschera con una "X".
- Per effettuare correzioni, barrare tutta la linea e scrivere CHIARAMENTE e INEQUIVOCABILMENTE la risposta corretta a destra della linea stessa.

14 febbraio 2023

(Cognome)	(Nome)	(Numero di matricola)

1	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
2	0	0	0	0	\bigcirc	
3	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
4	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
5	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
6	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
7	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
8	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
9	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
10						

1. L'insieme di convergenza della serie a termini non-negativi

$$\sum_{n=1}^{\infty} \frac{n^2 + n + 1}{\arctan(n)} \log \left(1 + \frac{1}{n^{\alpha}}\right)$$

è dato da

A: $2 < \alpha < \pi$ B: $\alpha > 3$ C: $\alpha > 0$ D: $\alpha > 1$ E: N.A.

2. Data $f(x)=3(\log(3x))$. Allora f'(e) è uguale a A: $\log(3e)$ B: π C: e^3 D: N.A. E: $\frac{3}{e}$

3. Il limite

$$\lim_{x\to +\infty} \frac{\log(x^3+\cos(x))}{3\log(x)}$$

vale

 $A: +\infty$ B: N.E. C: 1 D: N.A. E: 0

- 4. La funzione $f: \mathbb{R} \to \mathbb{R}$ definita da $f(x) = |x^2 1|(x 1)$ è

 A: iniettiva B: N.A. C: derivabile ovunque D: surgettiva E: monotona crescente
- 5. Inf, min, sup e max dell'insieme

$$A = \{x \in [0, 2\pi] : \sin(2x) \ge 0\}$$

valgono

A:
$$\{-\infty, N.E., 2\pi, 2\pi\}$$
 B: $\{0, 0, \pi/2, \pi/2\}$ C: N.A. D: $\{0, 0, \pi, \pi\}$ E: $\{-\infty, N.E., +\infty, N.E.\}$

6. L'integrale

$$\int_{1/e}^{e} |\log(x)| \, dx$$

vale

A:
$$\frac{2}{e}$$
 B: N.A. C: N.E. D: 0 E: $\frac{2(e-1)}{e}$

7. Il numero di soluzioni dell'equazione complessa $z^2 + 2\overline{z} + 1 = 0$ è

A: 1 B: 4 C: 0 D: 3 E: N.A.

8. La funzione
$$f(x) = \begin{cases} \sin(\pi x/e) & \text{per } x < e \\ \log(\log(x)) & \text{per } x \ge e \end{cases}$$

A: è continua e derivabile. B: è continua, ma non derivabile. C: N.A. D: è derivabile, ma non continua. E: non è né continua né derivabile.

- 9. Tutte le soluzioni dell'equazione differenziale x''(t) 2x'(t) + x(t) = 0 sono A: limitate superiormente B: non negative C: limitate inferiormente D: Derivabili con continuità al massimo 2 volte E: N.A.
- 10. La retta tangente al grafico di $y(x) = \sin(2x)$ nel punto $x_0 = \pi/4$ vale

A:
$$1 + \sin(2x)(x - \pi/4)$$
 B: N.A. C: $1 + 2x - \frac{\pi}{2}$ D: $1 + x + x^2$ E: 1

- Scrivere subito nome e cognome e matricola sul foglio risposte e preparare il libretto sul banco per il controllo.
- Tempo 30 minuti. Durante la prova non si può uscire dall'aula.
- Non si possono consultare libri, manuali, solo il foglio A4 di appunti.
- Non si possono usare calcolatrici, computer di ogni genere o telefoni cellulari.
- Consegnare solo il foglio risposte.
- Le risposte valide sono SOLO quelle segnate sul foglio che si consegna.
- Ogni domanda ha una e una sola risposta giusta.
- N.A. significa "nessuna delle altre", mentre N.E. significa "non esiste"
- Non usare matite e/o penne rosse sul foglio risposte.
- Indicare la risposta nell'apposita maschera con una "X".
- Per effettuare correzioni, barrare tutta la linea e scrivere CHIARAMENTE e INEQUIVOCABILMENTE la risposta corretta a destra della linea stessa.

14 febbraio 2023

															L				
			(Co	gnor	me)						(No	me)				ume		trice	ola)

1	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc
2	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc
3	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc
4	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc
5	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc
6	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc
7	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc
8	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc
9	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc
10					\bigcirc

1. Il limite

$$\lim_{x \to +\infty} \frac{\log(x^3 + \cos(x))}{3\log(x)}$$

vale

A: $+\infty$ B: N.A. C: 0 D: N.E. E: 1

2. Tutte le soluzioni dell'equazione differenziale x''(t) - 2x'(t) + x(t) = 0 sono A: N.A. B: limitate superiormente C: non negative D: Derivabili con continuità al massimo 2 volte E: limitate inferiormente

3. La retta tangente al grafico di $y(x)=\sin(2x)$ nel punto $x_0=\pi/4$ vale

A: N.A. B:
$$1 + 2x - \frac{\pi}{2}$$
 C: $1 + \sin(2x)(x - \pi/4)$ D: 1 E: $1 + x + x^2$

4. Data $f(x) = 3(\log(3x)).$ Allora $f'(\mathbf{e})$ è uguale a

A: N.A. B:
$$\log(3e)$$
 C: π D: $\frac{3}{e}$ E: e^3

5. L'integrale

$$\int_{1/e}^{e} |\log(x)| \, dx$$

vale

A:
$$\frac{2}{e}$$
 B: N.A. C: N.E. D: 0 E: $\frac{2(e-1)}{e}$

6. Inf, min, sup e max dell'insieme

$$A = \{x \in [0, 2\pi] : \sin(2x) \ge 0\}$$

valgono

A:
$$\{0, 0, \pi, \pi\}$$
 B: N.A. C: $\{-\infty, N.E., +\infty, N.E.\}$ D: $\{-\infty, N.E., 2\pi, 2\pi\}$ E: $\{0, 0, \pi/2, \pi/2\}$

7. Il numero di soluzioni dell'equazione complessa $z^2 + 2\overline{z} + 1 = 0$ è

8. La funzione $f(x) = \begin{cases} \sin(\pi x/e) & \text{per } x < e \\ \log(\log(x)) & \text{per } x \ge e \end{cases}$

A: N.A. B: è continua, ma non derivabile. C: è derivabile, ma non continua. D: è continua e derivabile. E: non è né continua né derivabile.

9. L'insieme di convergenza della serie a termini non-negativi

$$\sum_{n=1}^{\infty} \frac{n^2 + n + 1}{\arctan(n)} \log \left(1 + \frac{1}{n^{\alpha}}\right)$$

è dato da

A:
$$2 < \alpha < \pi$$
 B: $\alpha > 3$ C: $\alpha > 1$ D: $\alpha > 0$ E: N.A.

10. La funzione $f: \mathbb{R} \to \mathbb{R}$ definita da $f(x) = |x^2 - 1|(x - 1)$ è

A: monotona crescente B: surgettiva C: iniettiva D: N.A. E: derivabile ovunque

- Scrivere subito nome e cognome e matricola sul foglio risposte e preparare il libretto sul banco per il controllo.
- Tempo 30 minuti. Durante la prova non si può uscire dall'aula.
- Non si possono consultare libri, manuali, solo il foglio A4 di appunti.
- Non si possono usare calcolatrici, computer di ogni genere o telefoni cellulari.
- Consegnare solo il foglio risposte.
- Le risposte valide sono SOLO quelle segnate sul foglio che si consegna.
- Ogni domanda ha una e una sola risposta giusta.
- N.A. significa "nessuna delle altre", mentre N.E. significa "non esiste"
- Non usare matite e/o penne rosse sul foglio risposte.
- Indicare la risposta nell'apposita maschera con una "X".
- Per effettuare correzioni, barrare tutta la linea e scrivere CHIARAMENTE e INEQUIVOCABILMENTE la risposta corretta a destra della linea stessa.

14 febbraio 2023

(Cognome)	(Nome)	(Numero di matricola)

0	\bigcirc	\bigcirc	\bigcirc	\bigcirc
0	\bigcirc	\bigcirc	\bigcirc	0
0	0	\bigcirc	0	\bigcirc
0	\bigcirc	\bigcirc	\bigcirc	\bigcirc
0	\bigcirc	\bigcirc	\bigcirc	\bigcirc
0	\bigcirc	\bigcirc	\bigcirc	\bigcirc
0	\bigcirc	\bigcirc	\bigcirc	\bigcirc
0	\bigcirc	\bigcirc	\bigcirc	\bigcirc
0	0	\bigcirc	0	\bigcirc
0	\bigcirc	\bigcirc	\bigcirc	\bigcirc
			000	0000

1. Inf, min, sup e max dell'insieme

$$A = \{x \in [0, 2\pi] : \sin(2x) \ge 0\}$$

valgono

A: N.A. B:
$$\{-\infty, N.E., 2\pi, 2\pi\}$$
 C: $\{0, 0, \pi, \pi\}$ D: $\{-\infty, N.E., +\infty, N.E.\}$ E: $\{0, 0, \pi/2, \pi/2\}$

2. Il numero di soluzioni dell'equazione complessa $z^2 + 2\overline{z} + 1 = 0$ è

A: 3 B: 1 C: 0 D: N.A. E: 4

3. La funzione $f(x) = \begin{cases} \sin(\pi x/e) & \text{per } x < e \\ \log(\log(x)) & \text{per } x \ge e \end{cases}$

A: non è né continua né derivabile. B: è continua e derivabile. C: N.A. D: è derivabile, ma non continua. E: è continua, ma non derivabile.

4. L'insieme di convergenza della serie a termini non-negativi

$$\sum_{n=1}^{\infty} \frac{n^2 + n + 1}{\arctan(n)} \log \left(1 + \frac{1}{n^{\alpha}}\right)$$

è dato da

A:
$$2 < \alpha < \pi$$
 B: $\alpha > 1$ C: N.A. D: $\alpha > 3$ E: $\alpha > 0$

5. Data $f(x) = 3(\log(3x))$. Allora f'(e) è uguale a

A:
$$e^3$$
 B: $\frac{3}{e}$ C: π D: $\log(3e)$ E: N.A.

6. La retta tangente al grafico di $y(x) = \sin(2x)$ nel punto $x_0 = \pi/4$ vale

A:
$$1 + \sin(2x)(x - \pi/4)$$
 B: N.A. C: $1 + x + x^2$ D: 1 E: $1 + 2x - \frac{\pi}{2}$

7. Tutte le soluzioni dell'equazione differenziale x''(t) - 2x'(t) + x(t) = 0 sono

A: Derivabili con continuità al massimo 2 volte B: N.A. C: limitate superiormente D: limitate inferiormente E: non negative

8. La funzione $f: \mathbb{R} \to \mathbb{R}$ definita da $f(x) = |x^2 - 1|(x - 1)$ è

A: surgettiva B: derivabile ovunque C: monotona crescente D: iniettiva E: N.A.

9. L'integrale

$$\int_{1/e}^{e} |\log(x)| \, dx$$

vale

A: N.E. B:
$$\frac{2(e-1)}{e}$$
 C: N.A. D: $\frac{2}{e}$ E: 0

10. Il limite

$$\lim_{x \to +\infty} \frac{\log(x^3 + \cos(x))}{3\log(x)}$$

vale

A: N.E. B: 1 C:
$$+\infty$$
 D: N.A. E: 0

- Scrivere subito nome e cognome e matricola sul foglio risposte e preparare il libretto sul banco per il controllo.
- Tempo 30 minuti. Durante la prova non si può uscire dall'aula.
- Non si possono consultare libri, manuali, solo il foglio A4 di appunti.
- Non si possono usare calcolatrici, computer di ogni genere o telefoni cellulari.
- Consegnare solo il foglio risposte.
- Le risposte valide sono SOLO quelle segnate sul foglio che si consegna.
- Ogni domanda ha una e una sola risposta giusta.
- N.A. significa "nessuna delle altre", mentre N.E. significa "non esiste"
- Non usare matite e/o penne rosse sul foglio risposte.
- Indicare la risposta nell'apposita maschera con una "X".
- Per effettuare correzioni, barrare tutta la linea e scrivere CHIARAMENTE e INEQUIVOCABILMENTE la risposta corretta a destra della linea stessa.

14 febbraio 2023

(Cognome)	(Nome)	(Numero di matricola)

1	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
2	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
3	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
4	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
5	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
6	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
7	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
8	0	0	0	0	0	
9	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
10						

1. La funzione $f: \mathbb{R} \to \mathbb{R}$ definita da $f(x) = |x^2 - 1|(x - 1)$ è

A: N.A. B: surgettiva C: derivabile ovunque D: monotona crescente E: iniettiva

2. L'integrale

$$\int_{1/e}^{e} |\log(x)| \, dx$$

vale

A: N.A. B:
$$\frac{2}{e}$$
 C: $\frac{2(e-1)}{e}$ D: N.E. E: 0

3. Il numero di soluzioni dell'equazione complessa $z^2+2\overline{z}+1=0$ è

4. La funzione $f(x) = \begin{cases} \sin(\pi x/e) & \text{per } x < e \\ \log(\log(x)) & \text{per } x \ge e \end{cases}$

A: non è né continua né derivabile. B: N.A. C: è continua e derivabile. D: è continua, ma non derivabile. E: è derivabile, ma non continua.

5. La retta tangente al grafico di $y(x) = \sin(2x)$ nel punto $x_0 = \pi/4$ vale

A:
$$1 + 2x - \frac{\pi}{2}$$
 B: $1 + \sin(2x)(x - \pi/4)$ C: $1 + x + x^2$ D: 1 E: N.A.

6. Tutte le soluzioni dell'equazione differenziale x''(t) - 2x'(t) + x(t) = 0 sono

A: limitate inferiormente B: limitate superiormente C: non negative D: N.A. E: Derivabili con continuità al massimo 2 volte

7. Il limite

$$\lim_{x \to +\infty} \frac{\log(x^3 + \cos(x))}{3\log(x)}$$

vale

A: N.A. B: 0 C: 1 D:
$$+\infty$$
 E: N.E.

8. Inf, min, sup e max dell'insieme

$$A = \{x \in [0, 2\pi] : \sin(2x) > 0\}$$

valgono

A:
$$\{-\infty, N.E., +\infty, N.E.\}$$
 B: $\{-\infty, N.E., 2\pi, 2\pi\}$ C: $\{0, 0, \pi, \pi\}$ D: $\{0, 0, \pi/2, \pi/2\}$ E: N.A.

9. L'insieme di convergenza della serie a termini non-negativi

$$\sum_{n=1}^{\infty} \frac{n^2 + n + 1}{\arctan(n)} \log \left(1 + \frac{1}{n^{\alpha}}\right)$$

è dato da

A:
$$\alpha > 0$$
 B: $2 < \alpha < \pi$ C: $\alpha > 3$ D: N.A. E: $\alpha > 1$

10. Data $f(x) = 3(\log(3x))$. Allora f'(e) è uguale a

A:
$$\pi$$
 B: e^3 C: N.A. D: $\log(3e)$ E: $\frac{3}{e}$

14 febbraio 2023

(Cognome)	(Nome)	(Numero di matricola)

1	0	\bigcirc	•	\bigcirc	\bigcirc
2	0	\bigcirc	•	\bigcirc	\bigcirc
3	0	\bigcirc	\bigcirc	\bigcirc	•
4	0	\bigcirc	\bigcirc	\bigcirc	•
5	0	•	\bigcirc	\bigcirc	\bigcirc
6	0	\bigcirc	\bigcirc	•	\bigcirc
7	•	\bigcirc	\bigcirc	\bigcirc	\bigcirc
8	0	\bigcirc	•	\bigcirc	\bigcirc
9	0	•	\bigcirc	\bigcirc	\bigcirc
10	•	\bigcirc	\bigcirc	\bigcirc	\bigcirc

14 febbraio 2023

(Cognome)	(Nome)	(Numero di matricola)

1	0	•	\bigcirc	\bigcirc	\bigcirc	
2	0	\bigcirc	\bigcirc	\bigcirc		
3	0	\bigcirc		\bigcirc	\bigcirc	
4	0	\bigcirc	\bigcirc	•	\bigcirc	
5	0	\bigcirc	•	\bigcirc	\bigcirc	
6	0	0	\bigcirc	\bigcirc	•	
7	0	•	\bigcirc	0	\bigcirc	
8	0	•	\bigcirc	0	\bigcirc	
9	0	\bigcirc	\bigcirc	\bigcirc	•	
10	0	\bigcirc	\bigcirc	\bigcirc		

14 febbraio 2023

(Cognome)									(No	me)			-	(N	ume	ro d	atrico	ola)								

A B C D E

0	0	\bigcirc	\bigcirc	•	
•	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
0	\bigcirc	\bigcirc	•	\bigcirc	
0	\bigcirc	\bigcirc	•	\bigcirc	
0	\bigcirc	\bigcirc	\bigcirc	•	
0	•	\bigcirc	\bigcirc	\bigcirc	
•	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
0	•	\bigcirc	\bigcirc	\bigcirc	
0	•	0	0	0	
0	•	0	0	0	

14 febbraio 2023

(Cognome)	(Nome)	(Numero di matricola)

1	•	0	\bigcirc	\bigcirc	\bigcirc	
2	0	\bigcirc	\bigcirc	\bigcirc		
3	0	\bigcirc	\bigcirc	\bigcirc	•	
4	0	\bigcirc	\bigcirc	•	\bigcirc	
5	0	•	\bigcirc	\bigcirc	\bigcirc	
6	0	\bigcirc	\bigcirc	•	\bigcirc	
7	0	•	\bigcirc	\bigcirc	\bigcirc	
8	•	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
9	0	•	\bigcirc	\bigcirc	\bigcirc	
10						

14 febbraio 2023

(Cognome)	(Nome)	(Numero di matricola)

1	0	•	\bigcirc	\bigcirc	\bigcirc	
2	0	\bigcirc	•	\bigcirc	\bigcirc	
3	•	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
4	0	\bigcirc	\bigcirc	•	\bigcirc	
5	0	\bigcirc	\bigcirc		\bigcirc	
6	0	\bigcirc	\bigcirc		\bigcirc	
7	0	\bigcirc	•	\bigcirc	\bigcirc	
8	0	\bigcirc	\bigcirc	\bigcirc	•	
9	0	\bigcirc	•	\bigcirc	\bigcirc	
10						

14 febbraio 2023

PARTE B

1 Trovare il massimo e il minimo, se esistono per la funzione

$$f(x) = \begin{cases} e^{-1/x^2} & x > 0 \\ 0 & x \le 0 \end{cases}$$

e poi calcolare, se esistono f'(0) e f''(0).

Soluzione. La funzione f è maggiore o uguale a zero, dato che f(x) = 0 per $x \le 0$, il minimo assoluto vale 0 e i punti di minimo sono dati da tutta la semiretta $\{x \le 0\}$. Calcolando il limite agli estremi, si ha

$$\lim_{x \to +\infty} e^{-1/x^2} = 1.$$

La funzione è sicuramente derivabile per $x \neq 0$ e la derivata vale $f'(x) = \frac{2e^{-\frac{1}{x^2}}}{x^3}$, pertanto f'(x) > 0 per ogni x > 0. La funzione risulta monotona crescente per x > 0 e dunque non ci sono punti stazionari. L'estremo superiore vale quindi 1, ma il massimo assoluto non esiste.

Controlliamo inanzitutto che f sia continua in x = 0. Calcolando il limite si ha

$$\lim_{x \to 0^{-}} f(x) = 0 = f(0) = \lim_{x \to 0^{+}} f(x),$$

quindi ne deduciamo che $f \in C(\mathbb{R})$, dato che in tutti gli altri punti è composizione di funzioni continue.

Calcolando la derivata prima si ha

$$f'(x) = 0$$
, per $x < 0$ e $f'(x) = \frac{2e^{-\frac{1}{x^2}}}{x^3}$ per $x > 0$.

e quindi calcolando il limite per $x \to 0$ si ha

$$\lim_{x \to 0^{-}} f'(x) = 0 = \lim_{x \to 0^{+}} f'(x),$$

dove il secondo limite si calcola osservando che

$$\lim_{x \to 0^+} \frac{2\mathrm{e}^{-\frac{1}{x^2}}}{x^3} = \lim_{y \to +\infty} 2\frac{y^3}{\mathrm{e}^{y^2}} = 0,$$

usando i limiti notevoli. Risulta pertanto che f'(0) = 0 e $f \in C^1(\mathbb{R})$. Calcolando la derivata seconda si ha

$$f''(x) = 0$$
, per $x < 0$ e $f''(x) = \frac{4e^{-\frac{1}{x^2}}}{x^6} - \frac{6e^{-\frac{1}{x^2}}}{x^4}$

e con lo stesso ragionamento di prima si ha

$$\lim_{x \to 0^{-}} f''(x) = 0 = \lim_{x \to 0^{+}} f''(x),$$

e quindi f''(0) = 0 e la funzione risulta di classe $C^2(\mathbb{R})$.

2 Determinare per quali λ converge l'integrale

$$\int_{1}^{\infty} \frac{x^2 + 1}{x^4 + \lambda x^2 + 1} dx$$

Soluzione. La funzione si comporta come $1/x^2$ per $x \to +\infty$, quindi asintoticamente la funzione si comporta come una funzione non-negativa e integrabile in senso generalizzato. Il problema potrbbe venire dall'annullarsi del denominatore nella semiretta $[1, \infty[$. Osserviamo che se $\lambda \ge 0$, allora $x^4 + \lambda x + 1 > 0$ per ogni $x \ge 1$ e quindi l'integrale converge.

Andiamo ora studiare dove se e dove si annulla il denominatore per $\lambda < 0$. Si tratta di una bi-quadratica e ponendo $t = x^2$ dobbiamo risolvere $t^2 + \lambda t + 1 = 0$ che ha come soluzioni

$$t_{1/2} = \frac{-\lambda \pm \sqrt{\lambda^2 - 4}}{2}$$

Quindi se $\lambda^2 - 4 < 0$ non si sono soluzioni reali. Pertanto l'integrale converge anche per $-2 < \lambda < 0$ perchè per tali λ il discriminante è negativo.

Nel caso $\lambda \leq -2$ l'equazione ha soluzioni $t_{1/2}$ reali. Dato che $t=x^2$ perchè l'equazione bi-quadratica originale abbia soluzioni dobbiamo verificare se $t_{1/2}$ sono non-negative.

Osserviamo che se $\lambda < 0$, allora $t_1 = \frac{-\lambda + \sqrt{\lambda^2 - 4}}{2}$ è somma di due termini non-negativi e quindi è non-negativa. La soluzione t_2 risulta invece non-negativa se $-\lambda - \sqrt{\lambda^2 - 4} \ge 0$, cioè

$$-\lambda \ge \sqrt{\lambda^2 - 4} \quad \leftrightarrow \quad \lambda^2 \ge \lambda^2 - 4,$$

e abbiamo potuto elevare al quadrato perchè entrambi i termini sono non-negativi. Siccome la condizione è verificata sempre, si ha anche che $t_2 \ge 0$. Pertanto per $\lambda \le -2$ l'equazione

 $x^4 + \lambda x^2 + 1 = 0$ ha 4 radici reali (eventualmente con molteplicità maggiore di 1),

che sono date da $x_{1/2} = \pm \sqrt{t_1}$ e $x_{3/4} = \pm \sqrt{t_2}$. Di queste 4 radici quelle negative non ci interessano perchè sono fuori dal dominio di integrazione.

Quindi dobbiamo capire, per $\lambda \leq -2$, quando sono soddisfatte le seguenti condizioni $\sqrt{t_{1/2}} \geq 1$, cioè quando $\sqrt{\frac{-\lambda \pm \sqrt{\lambda^2 - 4}}{2}} \geq 1$

Osserviamo che possiamo quadrare e quindi cercare eventuali soluzioni delle due equazioni

$$\frac{-\lambda \pm \sqrt{\lambda^2 - 4}}{2} \ge 1.$$

Ora la "prima" (cioè quella col segno +) diventa

$$-\lambda + \sqrt{\lambda^2 - 4} \ge 2,$$

che è equivalente a

$$\sqrt{\lambda^2 - 4} > 2 + \lambda$$

e osserviamo che è sempre vera per $\lambda \leq -2$ dato che il termine a sinistra è non-negativo, mentre quello a destra dell'uguale è minore o uguale a zero.

Dato che almeno la prima è sempre risolubile significa per $\lambda \leq -2$ il denominatore si annulla almeno una volta sulla semiretta $[1, +\infty[$ e quindi non è necessario risolvere la seconda equazione $\frac{-\lambda - \sqrt{\lambda^2 - 4}}{2} \geq 1$.

Nei punti dove si annulla denominatore, dato che il numeratore non si annulla mai, la funzione |f| si comporta almeno come $1/|x-x_1|$ che non è integrabile in senso generalizzato.

3 Sia data la serie

$$\sum_{k=0}^{\infty} x^{2k},$$

determinare per quali x converge e per tali x, chiamata $\phi(x)$ tale somma calcolare (se esiste)

$$\int_{2}^{4} \sum_{k=0}^{\infty} x^{2k} \, dx = \int_{2}^{4} \phi(x) \, dx.$$

Soluzione. Si tratta di una progressione geometrica, di ragione x^2 che converge se $|x^2| < 1$ e quindi per $x \in]-1,1[$. In tale intervallo si ha

$$\sum_{k=0}^{\infty} x^{2k} = \frac{1}{1-x^2} \qquad x \in]-1,1[.$$

L'integrazione per serie

$$\int_2^4 \sum_{k=0}^\infty x^{2k} \, dx,$$

non si può fare perchè nell'intervallo [2,4] la serie non è convergente. Nonostante questo

$$\int_{2}^{4} \phi(x) \, dx = \int_{2}^{4} \frac{1}{1 - x^{2}} \, dx = \frac{1}{2} \log \left(\frac{1 + x}{1 - x} \right) \Big|_{2}^{4} = -\frac{1}{2} \log(9/5).$$

4 Sia $f:\mathbb{R}\to\mathbb{R}$ una funzione limitata. Definiamo la seguente funzione

$$g(t) := \sup_{s > t} f(s)$$

Dimostrare che g(t) è decrescente e caratterizzare $\lim_{t\to+\infty} g(t)$.

Soluzione. Se fissiamo $t_1 < t_2$ si ha che

$$g(t_1) = \sup_{s>t_1} f(s) \ge g(t_2) = \sup_{s>t_2} f(s),$$

questo perchè nel calcolare $g(t_1)$ l'estremo superiore è calcolato su $[t_1, \infty[\supset [t_2, \infty[$ e quindi essendo un insieme che contiene il secondo l'estremo superiore risulta maggiore o uguale. Inoltre osserviamo che dal fatto che f è limitata, cioè

$$\exists K \geq 0: |f(t)| \leq K \quad \forall t \in \mathbb{R},$$

ne segue anche che

$$|q(t)| < K \quad \forall t \in \mathbb{R}.$$

Pertanto g è limitata e decrescente e quindi ammette limite per $x \to +\infty$ che vale

$$\lim_{t \to +\infty} g(t) = \inf_{t \in \mathbb{R}} g(t) \ge -K > -\infty.$$