Математический анализ

Храбров Александр Игоревич

21 марта 2023 г.

Содержание

1. Teo	рия меры	1
1.1	Система множеств	2
1.2	Объем и мера	6
1.3	Продолжение мер	9
1.4	Мера Лебега	13
2. Инт	геграл Лебега	19
2.1	Измеримые функции	20
2.2	Последовательности измеримых функций	23
2.3	Определение интеграла	26
2.4	Суммируемые функции	29
2.5	Предельный переход под знаком интеграла	34
2.6	Произведение мер	36
2.7	Замена переменной	42
3. Инт	гегралы с параметром и криволинейные интегралы	46
3.1	Собственные интегралы с параметрами	47
3.2	Несобственные интегралы с параметрами	49
3.3	В- и Г-функции Эйлера	54
3.4	Криволинейные интегралы	57
3.5	Точные и замкнутые формы	64
4. ТФ	КП	70
4.1	Голоморфные функции	71
4.2	Теоремы единственности	78
4.3	Аналитическое продолжение	81
4.4	Ряды Лорана	84
4.5	Вычеты	90
4.6		
	Конфорные отображения	100

1. Теория меры

1.1. Система множеств

Полезные обозначения: $A \sqcup B$ - объединение A и B, такие что $A \cap B = \emptyset$

Определение 1.1. Набор мн-в дизъюнктный, если мн-ва попарно не пересекаются: $\bigsqcup_{\alpha \in I} A_{\alpha}$

Определение 1.2. E – мн-во; если $E = \bigsqcup_{\alpha \in I} E_{\alpha}$ – разбиение мн-ва E.

Напоминание:

$$X \setminus \bigcup_{\alpha \in I} A_{\alpha} = \bigcap X \setminus A_{\alpha}$$

$$X \setminus \bigcap_{\alpha \in I} A_{\alpha} = \bigcup X \setminus A_{\alpha}$$

Определение 1.3. \mathcal{A} – система подмн-в X: $A \subset 2^X$

- 1. (δ_0) : если $\forall A, B \in \mathcal{A} \implies A \cap B \in \mathcal{A}$
- 2. (σ_0) : если $\forall A, B \in \mathcal{A} \implies A \cup B \in \mathcal{A}$
- 3. (δ) : если $A_n \in \mathcal{A}, \ \forall n \implies \bigcap_{n=1}^{\infty} A_n \in \mathcal{A}$
- 4. (σ): если $A_n \in \mathcal{A}, \ \forall n \implies \bigcup_{n=1}^{\infty} A_n \in \mathcal{A}$

Определение 1.4. \mathcal{A} – симметрическая система мн-в, если $\forall A \in \mathcal{A} \implies X \setminus A \in \mathcal{A}$.

Утверждение 1.1. Если \mathcal{A} – симм., то $(\delta_0) \Leftrightarrow (\sigma_0)$ и $(\delta) \Leftrightarrow (\sigma)$.

Доказательство.
$$A_{\alpha \in I} \mathcal{A} \Leftrightarrow X \setminus A_{\alpha} \in \mathcal{A} \implies \bigcup_{\alpha \in I} A_{\alpha} = \bigcap_{\alpha \in I} X \setminus A_{\alpha} \in \mathcal{A}$$

Определение 1.5. \mathcal{A} – алгебра мн-в, если \mathcal{A} – симметр., $\emptyset \in \mathcal{A}$ и $\forall A, B \in \mathcal{A} : A \cup B \in \mathcal{A}$ (по утв. 1.1 $(\delta_0) \Leftrightarrow (\sigma_0)$; смотри опр. алгебры).

Свойства. алгебры мн-в:

- 1. $\varnothing, X \in \mathcal{A}$
- 2. Если $A_1, \ldots, A_n \in \mathcal{A}$, то $\bigcup_{k=1}^n A_k \in \mathcal{A} \wedge \bigcap_{k=1}^n A_k \in \mathcal{A}$
- 3. Если $A,B\in\mathcal{A},$ то $A\cap(X\setminus B)=A\setminus B\in\mathcal{A}$

Определение 1.6. \mathcal{A} - σ -алгебра мн-в, если \mathcal{A} - симм., $\emptyset \in \mathcal{A}$ и свойство (σ) выполнено (т.е. есть замкнутость по объединению любого числа множетсв; в силу симметричности по утв. 1.1 получаем (σ) \Leftrightarrow (δ)).

Замечание. σ -алгебра \Longrightarrow алгебра.

Пример. 1. 2^X - σ -алгебра.

- 2. $X = \mathbb{R}^2$, \mathcal{A} всевозможные огр. подмн-ва. \mathbb{R}^2 и их дополнения. (\mathcal{A} алгебра, но не σ -алгебра). **Rem**: огр. множество в метрич. пр-ве это множетсво ограниченного диаметра (d(x, y) := ||x y||), т.е. $\sup\{d(x, y) | x, y \in X\}$ ограничен.
- 3. \mathcal{A} алгебра (σ -алгебра) подмн-в X и $Y \subset X$. $\mathcal{A}_Y := \{A \cap Y : A \in \mathcal{A}\}$ индуцированная алгебра (σ -алгебра).

- 4. Пусть \mathcal{A}_{α} алгебры (σ -алгебры), тогда $\bigcap_{\alpha \in I} \mathcal{A}_{\alpha}$ алгебра (σ -алгебра).
- 5. $A,B\subset X$ ниже перечислено, что есть в алгебре, содержащей A,B: $\varnothing,X,A,B,A\cup B,A\cap B,A\setminus B,B\setminus A,X\setminus A,X\setminus B,X\setminus (A\cup B),X\setminus (A\cap B),A\bigtriangleup B,X\setminus (A\bigtriangleup B),X\setminus (A\setminus B),X\setminus (B\setminus A).$

Теорема 1.2. Пусть ϵ – семейство подмн-в в X, тогда существует наименьшая по включению σ -алгебра (алгебра) \mathcal{A} , такая что $\epsilon \subset \mathcal{A}$.

Доказательство. \mathcal{A}_{α} – всевозможные σ -алгебры $\supset \epsilon$. Такие есть, так как 2^X подходит.

 $\mathcal{A} := \bigcap_{\alpha \in I} \mathcal{A}_{\alpha} \supset \epsilon$. Теперь проверим, что \mathcal{A} – наим. по вкл. $\mathcal{A} \subset A_{\alpha} \ \forall \alpha \in I$.

Определение 1.7. 1. Такая σ -алгебра – борелевская оболочка ϵ – ($\mathcal{B}(\epsilon)$).

2. $X = \mathbb{R}^n$; такая σ -алгебра, натянутая на все открытые мн-ва – борелевская σ -алгебра (\mathcal{B}^n).

Замечание. $\mathcal{B}^n \neq 2^{\mathbb{R}^n}$ больше континуального

Определение 1.8. R – кольцо, если $\forall A, B \in R \implies A \cup B, A \cap B, A \setminus B \in R$.

Замечание. Кольцо $+ (X \in R) \implies$ алгебра.

Определение 1.9. *P* – полукольцо, если

- 1. $\varnothing \in P$
- $2. \ \forall A, B \in P \implies A \cap B \in P$
- 3. $\forall A, B \in P \implies \exists Q_1, Q_2, \dots, Q_n \in P$, такие что $A \setminus B = \bigsqcup_{k=1}^n Q_k$.

Пример. $X = \mathbb{R}, P = \{(a, b] : a, b \in X\}$ – полукольцо.

Clorato 2;

$$\frac{A \cap g}{(mm)} \Rightarrow A \cap G \in S$$

$$(3 = : A (3 = : B)$$

Closoch 3:

$$(a;d)=:A$$
 $(a;b]=Q_1$
 $(b;c]=:B$ $(e;d]=Q_2$

Лемма.
$$\bigcup_{n=1}^{N} A_n = \bigsqcup_{n=1}^{N} A_n \setminus \left(\bigcup_{k=1}^{n-1} A_k\right).$$

Доказательство. \supset : Дизъюнктивность $B_n \subset A_n$ и при m > n $B_m \cap A_n = \emptyset \implies B_n \cap B_m = \emptyset$. \subset : Пусть $x \in \bigcup_{n=1}^N A_n$. Возьмем наим. m, такой что $x \in A_m \implies x \in B_m \implies x \in \bigcup_{n=1}^N B_n$. \square

Теорема 1.3. $P, P_1, P_2, \dots \in \mathcal{P}$. Тогда

1.
$$P \setminus \bigcup_{k=1}^n P_k = \bigcup_{j=1}^m Q_j$$
, где $Q_j \in \mathcal{P}$ – полукольцо.

2.
$$\bigcup_{k=1}^{n} P_k = \bigcup_{k=1}^{n} \bigcup_{j=1}^{m_k} Q_{kj}$$
, где $Q_{kj} \in \mathcal{P}$ и $Q_{kj} \subset P_k$.

Доказательство. 1. индукция по п. База – опр. полукольца. Переход $(n \to n+1)$:

$$P \setminus \bigcup_{k=1}^{n+1} P_k = (P \setminus \bigcup_{k=1}^n P_k) \setminus P_{k+1} = \bigsqcup_{j=1}^m \left(\underbrace{Q_j \setminus P_{n+1}}_{\bigcup_{i=1}^{l_j} Q_{ji}} \right)$$

2.
$$\bigcup_{k=1}^{n} P_k = \bigsqcup_{k=1}^{n} \left(\underbrace{P_k \setminus \bigcup_{j=1}^{k-1} P_j}_{Q_{kj}} \right)$$

Замечание. В (2) можно писать $n=\infty$.

Определение 1.10. \mathcal{P} – полукольцо подмн-ва X.

 \mathcal{Q} — полукольцо подмн-ва Y.

 $\mathcal{P} \times \mathcal{Q} := \{P \times Q : P \in \mathcal{P}, Q \in \mathcal{Q}\}$ – декартово произведение полуколец.

Теорема 1.4. Декартово произведение полуколец – полукольцо.

Доказательство.

$$(P\times Q)\cap (P'\times Q')=(P\cap P')\times (Q\cap Q')$$

$$(P \times Q) \setminus (P' \times Q') = (P \setminus P') \times Q \sqcup (P \cap P') \times (Q \setminus Q')$$

Замечание. Остальные структуры не сохр. при декартовом произведении: $2^X \times 2^Y$ — полукольцо.

Определение 1.11. Замкнутый параллелепипед $a,b \in \mathbb{R}^m$.

$$[a, b] = [a_1, b_1] \times [a_2, b_2] \times \cdots \times [a_m, b_m]$$

Открытый параллелепипед:

$$(a,b) = (a_1,b_1) \times (a_2,b_2) \times \cdots \times (a_m,b_m)$$

Ячейка:

$$(a, b] = (a_1, b_1] \times (a_2, b_2] \times \cdots \times (a_m, b_m]$$

Теорема 1.5. Непустая ячейка – пересечение убыв. посл. открытых паралл. / объединение возраст. послед. замкн.

Доказательство. $P_n := (a_1, b_1 + \frac{1}{n}) \times \cdots \times (a_m, b_m + \frac{1}{n})$

$$P_n \supset P_{n+1}$$
 и $\bigcap_{n=1}^{\infty} P_n = (a, b]$

$$Q_n := \left[a_1 + \frac{1}{n}, b_1\right] \times \cdots \times \left[a_m + \frac{1}{n}, b_m\right]$$

$$Q_n \subset Q_{n+1}$$
 и $\bigcup_{n=1}^{\infty} Q_n = (a, b]$

Обозначения: \mathcal{P}^m – сем-во ячеек из \mathbb{R}^m .

 $\mathcal{P}^m_{\mathbb{Q}}$ – сем-во ячеек из \mathbb{R}^m с рациональными координатами вершин.

Теорема 1.6. $\mathcal{P}^m, \mathcal{P}^m_{\mathbb{Q}}$ – полукольца.

Доказательство. $\mathcal{P}^m = \mathcal{P}^{m-1} \times \mathcal{P}^1$

$$\mathcal{P}^m_{\mathbb{Q}} = \mathcal{P}^{m-1}_{\mathbb{Q}} imes \mathcal{P}^1_{\mathbb{Q}}$$

Теорема 1.7. $G \neq \emptyset$ – открытое множество в \mathbb{R}^m . Тогда его можно представить как не более чем счетное дизъюнктивное объелинение ячеек, замыкание каждой из которых содержится в G (можно считать, что ячейки с рациональными координатными вершинами).

Доказательство. R_x – ячейка, $\underbrace{Cl(R_x)}_{\text{замыкание ячейки}} \subset G$, $x \in R_x$, получаем, что $G = \bigcup_{x \in G} R_x$.

Выкинем повторы: $G = \bigcup_{n=1}^{\infty} R_{x_n} = \bigsqcup_{n=1}^{\infty} \bigsqcup_{j=1}^{m_n} Q_{nj}$

Следствие. $\mathcal{B}(\mathcal{P}^m_{\mathbb{Q}}) = \mathcal{B}^m$.

Доказательство. 1. $\mathcal{P}^m\supset\mathcal{P}^m_{\mathbb{Q}}\implies\mathcal{B}(\mathcal{P}^m)\supset\mathcal{B}(\mathcal{P}^m_{\mathbb{Q}})$

$$(a,b] \in \mathcal{B}^m \implies \mathcal{P}^m \subset \mathcal{B}^m \implies \mathcal{B}(\mathcal{P}^m) \subset \mathcal{B}^m$$
 G – открытое $\implies G \in \mathcal{B}(\mathcal{P}^m_{\mathbb{Q}}) \implies \mathcal{B}(\mathcal{P}^m_{\mathbb{Q}}) \supset \mathcal{B}^m$

1.2. Объем и мера

Определение 1.12. \mathcal{P} – полукольцо. $\mu:\mathcal{P}\to [0,+\infty]$. μ – объем, если

- 1. $\mu(\emptyset) = 0$
- 2. Если $P_1, P_2, \dots, P_n \in \mathcal{P}$ и $\bigsqcup_{k=1}^n P_k \in \mathcal{P}$, то $\mu(\bigsqcup_{k=1}^n P_k) = \sum_{k=1}^n \mu P_k$

Определение 1.13. μ – мера, если

- 1. $\mu(\emptyset) = 0$
- 2. Если $P_1, P_2, \dots \in \mathcal{P}$ и $\bigsqcup_{k=1}^{\infty} P_k \in \mathcal{P}$, то μ $\left(\bigsqcup_{k=1}^{\infty} P_k\right) = \sum_{k=1}^{\infty} \mu P_k$

Упражнение. μ – мера. Если $\mu \not\equiv +\infty$, то условия $\mu\varnothing = 0$ выполнено автоматически.

Пример. 1. \mathcal{P}^1 , $\mu(a,b] := b - a$ – длина (упр. доказать, что объем и мера).

- 2. $g: \mathbb{R} \to \mathbb{R}$ нестрого монотонная
 - (a) $\mu_q(a,b] := g(b) g(a)$ (упр. доказать, что объем).
- 3. \mathcal{P}^m (m-мерные ячейки), $\mu(a,b]:=(b_1-a_1)(b_2-a_2)\dots(b_m-a_m),\ a:=(a_1,\ ...,\ a_m),\ b:=(b_1,\ ...,\ b_m)$ классический объем.
- 4. $\mathcal{P} = 2^X$, $x_0 \in X$, $a \ge 0$

$$\mu A := \begin{cases} a, & if \ x_0 \in A \\ 0, & otherwise \end{cases}$$
 (1)

 μ - mepa.

5. P – огр. мн-ва и их дополнения.

$$\mu A := \begin{cases} 1, & \text{if } x_0 \in A \\ 0, & \text{otherwise} \end{cases}$$
 (2)

 μ - объем, но не мера.

Теорема 1.8. μ - объем на полукольце \mathcal{P}

- 1. Монотонность: $\mathcal{P} \ni P \subset \tilde{P} \in \mathcal{P} \implies \mu P \leq \mu \tilde{P}$
- 2. (a) Усиленная монотонность: $P_1, P_2, \dots P_n, P \in \mathcal{P}$. $\bigsqcup_{k=1}^n P_k \subset P \implies \sum_{k=1}^n \mu P_k \leq \mu P$
 - (b) Пункт (a), но $n = \infty$

3. Полуаддитивность: $P, P_1, P_2, \dots P_n \in \mathcal{P}$ и $P \subset \bigcup_{k=1}^n P_k$, тогда $\mu P \leq \sum_{k=1}^n \mu P_k$

Доказательство. 1. Очев типо.

2. (a)
$$P \setminus \bigsqcup_{k=1}^{n} \mu P_k = \bigsqcup_{j=1}^{m} Q_j \implies P = \bigsqcup_{k=1}^{n} P_k \sqcup \bigsqcup_{j=1}^{m} Q_j \implies \mu P = \sum_{k=1}^{n} \mu P_k + \sum_{j=1}^{m} \mu Q_j \geq \sum_{k=1}^{n} \mu P_k$$

(b)
$$\bigsqcup_{k=1}^{\infty} P_k \subset P \implies \bigsqcup_{k=1}^{n} P_k \subset P \implies \sum_{k=1}^{n} \mu P_k \to \sum_{k=1}^{\infty} \mu P_k \leq \mu P$$

3.
$$P_k' := P \cap P_k \in \mathcal{P} \ (\mathcal{P} \text{ - полукольцо}), \quad P = \bigcup_{k=1}^n P_k' = \bigsqcup_{k=1}^n \bigsqcup_{j=1}^{m_k} Q_{kj} \implies \sum_{k=1}^n Q_{kj} \in \mathcal{P}_k'$$

$$\implies \mu P = \sum_{k=1}^{n} \sum_{j=1}^{m_k} \mu Q_{kj} \leq \sum_{k=1}^{n} \mu P_k$$

$$\leq \mu P_k' \leq \mu P_k \text{ (CBOЙCTBO 2(a))}$$

Замечание. 1. Если \mathcal{P} – кольцо и $A, B \ (B \subset A) \in \mathcal{P}$, то $A \setminus B \in \mathcal{P}$

$$\mu(A \setminus B) + \mu B = \mu A$$

Если
$$\mu B \neq +\infty$$
, то $\mu(A \setminus B) = \mu A - \mu B$

Теорема 1.9. \mathcal{P} – полукольцо подмн-в X, μ – объем на \mathcal{P}

 $\mathcal Q$ – полукольцо подмн-в $Y,\, \nu$ – объем на $\mathcal Q$

$$\lambda(P \times Q) := \mu P \cdot \nu Q$$
, где $0 \cdot +\infty = +\infty \cdot 0 = 0$

Тогда λ – объем на $P \times Q$.

Следствие. Классический объем на ячейках – действительно объем.

Доказательство. Простой случай. $P = \bigsqcup_{k=1}^n P_k, Q = \bigsqcup_{j=1}^m Q_j,$ тогда:

$$P \times Q = \bigsqcup_{k=1}^n \bigsqcup_{j=1}^m P_k \times Q_j$$
, докажем, что
$$\underbrace{\lambda(P \times Q)}_{\sum_{k=1}^n \mu P_k \cdot \sum_{j=1}^m \nu Q_j = \mu P \cdot \nu Q} = \sum_{k=1}^n \sum_{j=1}^m \underbrace{\lambda(P_k \times Q_j)}_{\mu P_k \cdot \nu Q_j}$$

Общий случай.

$$P \times Q = \bigsqcup_{k=1}^{n} P_k \times Q_k$$

$$P = \bigcup_{k=1}^{n} P_k = \bigsqcup_{k=1}^{N} P'_k$$

$$Q = \bigcup_{j=1}^{m} Q_j = \bigsqcup_{j=1}^{M} Q'_j$$

Пример. 1. Классический объем на ячейках λ_m – мера

2. $g: \mathbb{R} \to \mathbb{R}$ нестрого монотонная возрастающая и непрерывна слева во всех точках, тогда $\nu_g(a,b] := g(b) - g(a)$ – мера.

(Rem: $\lim_{x\to a^-} f(x) = f(a)$ – непрерывность слева).

- 3. Считающаяся мера: $\mu A := \# A$ кол-во элементов.
- 4. $T = \{t_1, t_2, \dots\}$ не более чем счетное множетсво, $w_1, w_2, \dots \ge 0$, $\mu A := \sum_{k: t_k \in A} w_k \to \mu$ мера.

Доказательство. 4. $A = \bigsqcup_{n=1}^{\infty} A_n \implies \mu A = \sum_{n=1}^{\infty} \mu A_n$

Обозначения:

- 1. $\sum_{n=1}^{N} \sum_{k: t_k \in A_n} w_k (*)$.
- 2. $\sum_{k: t_k \in A} w_k (**).$
- 3. $\sum_{n=1}^{\infty} \sum_{k: t_k \in A_n} w_k \ (***).$
- 1. $\mu A = \sum_{k: \ t_k \in A} w_k \ (**) \ge \sum_{n=1}^N \sum_{k: \ t_k \in A_n} w_k \ (*) \text{т.к.} \ A_i \cap A_j = \varnothing \ (\forall i, \ j: \ i \ne j),$ то каждое слагаемое w_k не более 1 раза попадет в (*) и $A = \bigsqcup_{n=1}^\infty A_n$.
- 2. $\sum_{n=1}^{\infty} \mu A_n = \sum_{n=1}^{\infty} \sum_{k: t_k \in A_n} w_k \ (***) \ge \sum_{k: t_k \in A}$ нер-во верно, так как мы можем к каждому w_k из (**) найти этот же w_k в (***).

Итого имеем равенство:

$$(**)=(***): \sum_{k:\ t_k\in A} w_k=\sum_{n=1}^\infty \sum_{k:\ t_k\in A_n} w_k \implies \mu A=\sum_{n=1}^\infty \mu A_n,$$
 чтд.

(<u>От автора</u>: если у кого-то лучше расписано данное док-во, сделайте, пожалуйста, PR).

Теорема 1.10. (О счетной аддитивности меры).

 μ – объем на полукольце \mathcal{P} . Тогда μ -мера \Leftrightarrow если $P \subset \bigcup_{n=1}^{\infty} P_n \ P, P_n \in \mathcal{P}$, то $\mu \cdot P \leq \sum_{n=1}^{\infty} \mu \cdot P_n$ (счетная полуаддитивность).

Доказательство. " \Leftarrow ": Пусть $P = \bigsqcup_{n=1}^{\infty} P_n$, тогда нажо д-ть, что $\mu P = \sum_{n=1}^{\infty} \mu P_n$: для " \leq " – счетная полуаддитивность, для " \geq " – усиленная монот. объема.

"⇒":
$$P'_n:=P\cap P_n\implies P=\bigcup_{n=1}^\infty P'_n\implies P=\bigcup_{n=1}^\infty\bigcup_{k=1}^\infty Q_{nk},$$
 где $Q_{nk}\subset P'_n\implies \mu P=\sum_{n=1}^\infty\sum_{k=1}^\infty\mu Q_{nk}$ – усиленная монот. объема. $\bigcup_{k=1}^{m_k}Q_{nk}\subset P'_n\subset P_n.$

Следствие. Если μ – мера на σ -алгебре, то счетное объединение мн-в ненулевой меры – мн-во нулевой меры.

Доказательство.
$$\mu A_n = 0 \implies \mu\left(\bigcup_{n=1}^{\infty}\right) \le \sum_{n=1}^{\infty} \mu A_n = 0.$$

Теорема 1.11. (О непрерывности меры снизу).

 μ – объем на σ -алгебре \mathcal{A} . Тогда μ – мера \Leftrightarrow если $\mathcal{A} \ni A_n \subset A_{n+1}$, то $\mu\left(\bigcup_{n=1}^{\infty} A_n\right) = \lim_{n \to \infty} \mu A_n$ – непр. меры снизу.

Доказательство. " \Rightarrow ": $A \ni B_n := A_n \setminus A_{n-1}, \ A_0 = \emptyset$.

$$B_n$$
 – дизъюнктны: $\bigsqcup_{n=1}^{\infty} B_n = \bigcup_{n=1}^{\infty} A_n$.

$$\mu\left(\bigcup A_n\right) = \mu \bigsqcup B_n = \sum_{n=1}^{\infty} \mu B_n = \lim_{n \to \infty} \sum_{k=1}^n \mu B_k = \lim \mu A_n.$$

"
$$\Leftarrow$$
": Пусть $C = \bigsqcup_{n=1}^{\infty} C_n$, надо д-ть, что $\mu C = \sum_{n=1}^{\infty} \mu C_n$.

$$A_n := \bigsqcup_{k=1}^n C_k, \ A_n \subset A_{n+1}, \ \bigcup_{n=1}^\infty A_n = \bigsqcup_{n=1}^\infty C_n$$

$$\underbrace{\mu\left(\bigcup_{n=1}^{\infty} A_n\right)}_{=\mu(|\square_{n-1}^{\infty} C_n)} = \lim \mu A_n = \lim \mu\left(\bigcup_{k=1}^{n} C_k\right) = \lim \sum_{k=1}^{n} \mu C_k = \sum_{n=1}^{\infty} \mu C_n \qquad \Box$$

Теорема 1.12. (О непрерывности меры сверху).

 μ – объем на σ -алгебре \mathcal{A} и $\mu X < +\infty$.

Тогда равносильны:

- 1. μ мера
- 2. если $A_n \supset A_{n+1}$, то $\mu\left(\bigcap_{n=1}^{\infty} A_n\right) = \lim \mu A_n$
- 3. если $A_n \supset A_{n+1}$ и $\bigcap_{n=1}^{\infty} A_n = \emptyset$, то $\lim \mu A_n = 0$.

Доказательство. (1) \Longrightarrow (2): $A_n \supset A_{n+1} \Longrightarrow B_n := X \setminus A_n \subset X \setminus A_{n+1} =: B_{n+1}$. $\bigcup_{n=1}^{\infty} B_n = X \setminus \bigcap_{n=1}^{\infty} A_n$.

$$\implies \underbrace{\mu\left(\bigcup_{n=1}^{\infty} B_n\right)}_{\mu(X\setminus\bigcap_{n=1}^{\infty} A_n)} = \lim \mu B_n = \lim \mu(X\setminus A_n) = \lim(\mu X - \mu A_n)$$

(3) \Longrightarrow (1): $C = \bigsqcup_{n=1}^{\infty} C_n$, надо д-ть, что $\mu C = \sum_{n=1}^{\infty} \mu C_n$.

$$A_n:=\bigsqcup_{k=n+1}^\infty C_k,\ A_n\supset A_{n+1}$$
 и $\bigcap_{n=1}^\infty A_n=\varnothing,$ тогда $\lim\mu A_n=0.$

$$C = \bigsqcup_{k=1}^{n} C_k \sqcup A_n \implies \mu C = \sum_{k=1}^{n} \mu C_k + \mu A_n.$$

Следствие. Если μ – мера, $A_n \supset A_{n+1}$ и существует m, такое что $\mu A_m < +\infty$, тогда $\mu(\bigcap_{n=1}^{\infty} A_n) = \lim_{n \to \infty} \mu A_n$.

Доказательство. Просто берем $X := A_m$ и пользуемся теоремой о непрерывности меры сверху.

Упражнение. Придумать объем, не являющийся мерой, обладающей св-вом из следствия.

1.3. Продолжение мер

Определение 1.14. $\nu: 2^X \to [0; +\infty]$ – субмера, если

- 1. $\nu\varnothing=0$
- 2. монотонность: если $A \subset B$, $\nu A \leq \nu B$
- 3. счетная полуаддитивность: если $A \subset \bigcup_{n=1}^{\infty} A_n$, то $\nu A \leq \sum_{n=1}^{\infty} \nu A_n$

Замечание. 1. счетная полуаддитивность \implies конечная.

2. монотонность (следует из счетной полуаддитивности) $A \subset B, n = 1$.

Определение 1.15. μ – полная мера на σ -алгебре \mathcal{A} , если $A \subset B \in \mathcal{A}$ и $\mu B = 0 \implies A \in \mathcal{A}$.

Замечание. это означает, что $\mu A = 0$.

Определение 1.16. ν – субмера, назовем $E\subset X$ ν -измеримым, если $\forall A\subset X$ $\nu A=\nu(A\cap E)+\nu(A\setminus E)$

Замечание. Достаточен знак ">" (следует из счетной полуаддитивности).

Теорема 1.13. Каратеодори.

Пусть ν – субмера. Тогда все ν -измеримые мн-ва образуют σ -алгебру и сужение ν на эту σ -алгебру – это полная мера.

Доказательство. Обозначим через $A \nu$ -измеримые мн-ва.

1. Если
$$E = 0$$
, то $E \in \mathcal{A}$.

$$\forall A \subset X, \ \nu A \underbrace{\geq}_{?} \nu(A \cap E) + \nu(A \setminus E)$$

$$A\cap E\subset E,\ \nu(A\cap E)\leq \nu E=0\implies \nu(A\cap E)=0,$$
 тогда доказали вопросик сверху.

2. A – симметричное семейство мн-в.

$$E \in \mathcal{A} \implies X \setminus E \in \mathcal{A}$$

$$A \cap E = A \setminus (X \setminus X)$$

$$A \setminus E = A \cap (X \setminus E)$$

3. Если E и $F \in \mathcal{A}$, то $E \cup F \in \mathcal{A}$

$$\nu A = \nu(A \cap E) + \nu(A \setminus E) = \underbrace{\nu(A \cap E) + \nu((A \setminus E) \cap F)}_{\geq \nu(A \cap (E \cup F))} + \underbrace{\nu((A \setminus E) \setminus F)}_{\nu(A \setminus (E \cup F))} \geq \nu(A \cap (E \cup F)) + \underbrace{\nu(A \cap (E \cup F))}_{\nu(A \setminus (E \cup F))}$$

4. A – алгебра.

5.
$$E = \bigsqcup_{n=1}^{\infty} E_n$$
, где $E_n \in \mathcal{A} \underset{?}{\underbrace{\Longrightarrow}} E \in \mathcal{A}$.

$$\nu A = \nu(A \cap \bigsqcup_{k=1}^{n} E_k) + \nu(A \setminus \bigsqcup_{k=1}^{n} E_k) \ge \underbrace{\nu(A \cap \bigsqcup_{k=1}^{n} E_k)}_{\nu(A \cap E_n) + \nu(A \cap \bigsqcup_{k=1}^{n-1} E_k)} + \nu(A \setminus E) \implies$$

$$\implies \nu A \ge \sum_{\substack{k=1 \ \geq \nu(\bigcup_{k=1}^{\infty} (A \cap E_k)) = \nu(A \cap E)}}^{\infty} + \nu(A \setminus E) \ge \nu(A \cap E) + \nu(A \setminus E).$$

- 6. Если $E_n \in \mathcal{A}$ и $E = \bigcup_{n=1}^{\infty} E_n$, то $E \in \mathcal{A}$.
- 7. $A \sigma$ -алгебра.
- 8. ν мера на \mathcal{A} .

$$E = \bigsqcup_{n=1}^{\infty} E_n \underset{?}{\Longrightarrow} \nu E = \sum_{n=1}^{\infty} \nu E_n.$$

Докажем, что $\nu E \ge \sum_{k=1}^n \nu E_k$ (т. к. \le уже есть из определения субмеры). Знаем, что $\nu E \ge \nu(\bigsqcup_{k=1}^n E_k) = \sum_{k=1}^n \nu E_k$

Определение 1.17. μ – мера на полукольце $\mathcal{P}, A \subset X$.

$$\mu^* A := \inf \left\{ \sum_{k=1}^{\infty} \mu P_k : P_k \in \mathcal{P} \land A \subset \bigcup_{k=1}^{\infty} P_k \right\}$$

если покрытия нет, то $+\infty$.

внешняя мера, порожд. μ.

Замечание. 1. Можно считать, что P_k – дизъюнктны

$$A \subset \bigcup_{n=1}^{\infty} P_n = \bigsqcup_{n=1}^{\infty} \bigsqcup_{k=1}^{m_k} Q_{nk}, \ \sum_{n=1}^{\infty} \sum_{k=1}^{n=m_k} \mu Q_{nk} \le \sum_{n=1}^{\infty} \mu P_n$$

2. Если μ задана на σ -алгебре \mathcal{A} , то $\mu^*A = \inf \{ \mu B : B \in \mathcal{A} \land A \subset B \}$

Теорема 1.14. Пусть μ – мера на полукольце \mathcal{P} . Тогда μ^* – субмера, совпадающая с мерой μ на полукольце \mathcal{P} .

Доказательство. 1. $A \in \mathcal{P}$, хотим доказать, что $\mu A = \mu^* A$.

"≥": очевидно, так как множество покрывает само себя.
$$\mu^*A = \inf \{ \sum_{k=1}^\infty \mu P_k : \bigcup_{k=1}^\infty P_k \supset A \}$$
 "≤": $A \subset \bigcup_{k=1}^\infty P_k$ $\Longrightarrow \mu A \leq \inf = \mu^*A$

2. μ^* – субмера, т.е. нужна счетная полуаддитивность.

$$A \subset \bigcup_{n=1}^{\infty} A_n \underset{\gamma}{\Longrightarrow} \mu^* A \le \sum_{n=1}^{\infty} \mu^* A + \epsilon$$

$$\mu^*A_n=\inf$$
 ..., берем покрытие $A_n\subset\bigcup_{k=1}^\infty P_{nk}$ т.ч. $\sum_{k=1}^\infty \mu P_{nk}<\mu^*A_n+\frac{\epsilon}{2^n}$ $\mu^*A\leq\sum_{n=1}^\infty\sum_{k=1}^\infty \mu P_{nk}<\sum_{n=1}^\infty \mu^*A_n+\epsilon$ и $A\subset\bigcup_{n=1}^\infty A_n\subset\bigcup_{n=1}^\infty\bigcup_{k=1}^\infty P_{nk}$ – устремляем ϵ к нулю.

Определение **1.18.** Стандартное продолжение меры – конструкция, полученная следующими действиями:

- 1. Берем меру μ_0 на полукольце \mathcal{P} .
- 2. Берем μ_0^* внешняя мера.
- 3. Сужаем полученную внешнюю меру на множество всех μ_0^* -измеримых множеств.

Получилась полная мера μ на σ -алгебре $\mathcal{A} \supset \mathcal{P}$ и $\mu P = \mu_0 P$ для $P \in \mathcal{P}$.

Множества, содержащиеся в A, назовем μ -измеримыми.

Теорема 1.15. Это действительно продолжение, то есть $\mathcal{A} \supset \mathcal{P}$.

Доказательство. Надо доказать, что $E \in \mathcal{P} \ \land \ A \subset X, \ \mu_0^*A \ge \mu_0^*(A \setminus E) + \mu_0^*(A \cap E).$

Рассмотрим случаи:

1. $A \in \mathcal{P}$.

$$\mu_0^* A = \mu_0 A, \ \mu_0^* (A \cap E) = \mu_0 (A \cap E)$$
$$A \setminus E = \bigsqcup_{k=1}^n Q_k, \ Q_k \in \mathcal{P}$$

$$A = (A \cap E) \sqcup \bigsqcup_{k=1}^{n} Q_k \implies \mu_0^* A = \mu_0 A = \underbrace{\sum_{k=1}^{n} \mu_0 Q_k}_{\geq \mu_0^*(A \setminus E)} + \underbrace{\mu_0(A \cap E)}_{\mu_0^*(A \cap E)}$$

2. $A \notin \mathcal{P}$.

Если $\mu_0^* A = +\infty$, то все очевидно, поэтому считаем, что оно конечно.

Считаем, что $\mu_0^*A < +\infty$. Возьмем $P_k \in \mathcal{P}$, такое что $A \subset \bigcup_{k=1}^{\infty} P_k$ и $\sum_{k=1}^{\infty} \mu_0 P_k < \mu_0^*A + \epsilon$.

Знаем, что $\mu_0^* P_k \ge \mu_0^* (P_k \setminus E) + \mu_0^* (P_k \cap E)$

$$\mu_0^* A + \epsilon > \sum_{k=1}^{\infty} \mu_0 P_k \ge \sum_{k=1}^{\infty} \mu_0^* (P_k \setminus E) + \sum_{k=1}^{\infty} \mu_0^* (P_k \cap E)$$

$$\ge \mu_0^* (\bigcup_{k=1}^{\infty} (P_k \setminus E)) \ge \mu_0^* (A \setminus E) + \sum_{k=1}^{\infty} \mu_0^* (P_k \cap E) \ge \mu_0^* (A \cap E)$$

Замечание. 1. Дальше меру и ее продолжение обозначаем как μ .

Если $A-\mu$ -измеримое множество, то $\mu A=\inf\{\sum_{k=1}^\infty \mu P_k : A\subset \bigcup_{k=1}^\infty P_k \wedge P_k\in \mathcal{P}\}$

2. Стандартное продолжение, примененое к стандартному продолжению, не дает ничего нового.

Упражнение. Указание. Проверить, что стандартное продолжение порождает ту же врешнюю меру, что и μ .

3. Можно ли распространить меру на более широкую σ -алгебру.

4.

Определение 1.19. ν – σ -конечная мера на полукольце \mathcal{P} , если $X = \bigcup_{n=1}^{\infty} P_n, \ P_n \in \mathcal{P} \wedge \mu P_n < +\infty.$

Можно ли по-другому продолжить на σ -алгебру μ -измерим. мн-в?

Если $\mu - \sigma$ -конечная мера, то нельзя.

5. Обязательно ли полная мера будет задана на μ -измеримых множествах.

Если $\mu - \sigma$ -конечная мера, то обязательно.

Теорема 1.16. μ – стандартное продолжение меры с полукольца \mathcal{P} , μ^* – соответствующая внешняя мера, $A \subset X$, $\mu^*A < +\infty$. Тогда $\exists B_{nk} \in \mathcal{P}$, такие что $C_n := \bigcup_{k=1}^{\infty} B_{nk}, \ C := \bigcap_{n=1}^{\infty} C_n, \ C \supset A \land \mu^*A = \mu C$.

Доказательство. $\mu^*A = \inf\{\sum_{k=1}^\infty \mu P_k : A \subset \bigcup_{k=1}^\infty P_k \land P_k \in \mathcal{P}\}$, берем покрытие с суммой $<\mu^*A+\frac{1}{n}$.

$$\mu C_n \le \sum_{k=1}^{\infty} \mu B_{nk} < \mu^* A + \frac{1}{n}, \ C_n = \bigcup_{k=1}^{\infty} B_{nk} \supset A \implies C = \bigcap_{n=1}^{\infty} C_n \supset A.$$

$$\mu^* A \le (\mu^* C = \mu C) \le \mu C_n < \mu^* A + \frac{1}{n}$$

Следствие. μ – стандартное продолжение с полукольца \mathcal{P} . A – μ -измеримое мн-во и $\mu A < +\infty$. Тогда $A = B \sqcup e$, где $B \in \mathcal{B}(\mathcal{P})$ и $\mu e = 0$.

Доказательство. Берем C $\in \mathcal{B}(\mathcal{P})$ из теоремы. $A \subset C$, и $\mu A = \mu C$.

 $e_1 := C \setminus A, \ \mu e_1 = 0$, теперь подставляем e_1 в теорему:

найдется $e_2: e_2 \in \mathcal{B}(\mathcal{P}) \land e_2 \supset e_1 \land \mu e_2 = \mu e_1 = 0 \implies B := C \setminus e_2 \in \mathcal{B}(\mathcal{P}) \implies B \subset A.$

 $C \setminus e_2 \subset B \subset C, \ \mu C = \mu C - \mu e_2 \le \nu B \le \mu C \implies \mu B = \mu A. \ e = A \setminus B \implies \mu e = 0$

Автор: Дмитрий Артюхов

Теорема 1.17. (Единственность продолжения).

 μ – стандартное продолжение с полукольца \mathcal{P} на σ -алгебру \mathcal{A} .

 ν – другая мера на \mathcal{A} , совпадающая с μ на \mathcal{P} . Если μ – σ -конечная, то $\mu = \nu$.

Доказательство. Если $A\subset\bigcup_{n=1}^\infty P_n,\ P_n\in\mathcal{P},\ \mathrm{To}\ \sum_{n=1}^\infty \mu P_n=\sum_{n=1}^\infty \nu P_n\geq \nu A$ (пользуемся счетной полуаддитивностью).

$$\mu A = \inf \{ \sum \mu P_n \} \ge \nu A.$$

Возьмем
$$P \in \mathcal{P}, A \in \mathcal{A}$$
: $\mu P = \nu P \implies \nu(P \cap A) + \nu(P \setminus A) \le \mu(P \cap A) + \mu(P \setminus A) = \mu P$

Если $\mu P < +\infty$, то равенство вместо неравенства.

$$\implies \mu(P \cap A) = \nu(P \cap A)$$

$$X=igsqcup_{k=1}^\infty P_k$$
, т.ч. $\mu P_k<+\infty\implies \mu(P_k\cap A)=
u(P_k\cap A)$

$$\mu A = \sum_{k=1}^{\infty} \mu(P_k \cap A) = \sum_{k=1}^{\infty} \nu(P_k \cap A) = \nu A$$

1.4. Мера Лебега

Теорема 1.18. Классический объем λ_m на полукольце ячеек \mathcal{P}^m – мера.

Доказательство. Так как λ_m – объем, то нам необходимо проверить счетную полуаддитивность, то есть следующую стрелочку:

$$(a;b] = \bigsqcup_{n=1}^{\infty} (a^{(n)};b^{(n)}] \Longrightarrow_{\gamma} \lambda(a;b] \le \sum_{n=1}^{\infty} \lambda(a^{(n)};b^{(n)}].$$

Берем $\epsilon > 0$.

Затем возьмем:

1.
$$[a,b'] \subset [a,b)$$
 и $\lambda_m[a,b) < \lambda_m[a,b') + \epsilon$.

2.
$$(\tilde{a}^{(n)}, b^{(n)}) \supset [a^{(n)}, b^{(n)})$$
 и $\lambda_m[\tilde{a}^{(n)}, b^{(n)}) < \lambda_m[a^{(n)}, b^{(n)}) + \frac{\epsilon}{2^n}$.

Тогда получаем, что $\underbrace{[a,b']}_{\text{компакт}}\subset\bigcup_{n=1}^{\infty}\underbrace{(\tilde{a}^{(n)},b^{(n)})}_{\text{открытое мн-во}}\implies$ существует конечное подпокрытие, то

есть $[a, b'] \subset \bigcup_{n=1}^{N} (\tilde{a}^{(n)}, b^{(n)}).$

Далее можно написать ячейки и вложенность сохранится:

$$[a, b') \subset \bigcup_{n=1}^{N} [\tilde{a}^{(n)}, b^{(n)}).$$

Теперь давайте запишем конечную полуаддитивность для объема:

Теперь давайте запишем конечную полуаддитивность для объема:
$$\lambda_m[a,b') \underbrace{\leq}_{\text{кон. полуаддитивность}} \sum_{n=1}^N \lambda_m[\tilde{a}^{(n)},b^{(n)}) \leq \sum_{n=1}^\infty \lambda_m[\tilde{a}^{(n)},b^{(n)}) < \sum_{n=1}^\infty \left(\lambda_m[a^{(n)},b^{(n)}) + \frac{\epsilon}{2^n}\right) = 0$$

$$\sum_{n=1}^{\infty} \lambda_m[a^{(n)}, b^{(n)}) + \epsilon.$$

Теперь поймем, что у нас есть нер-во в другую сторону и мы можем зажать $\lambda_m[a,b')$ с двух сторон:

$$\lambda_m[a,b) - \epsilon < \lambda_m[a,b') < \sum_{n=1}^{\infty} \lambda_m[a^{(n)},b^{(n)}) + \epsilon.$$

Переносим ϵ в другую сторону и устремляем к 0:

$$\lambda_m[a,b) < \sum_{n=1}^{\infty} \lambda_m[a^{(n)},b^{(n)}) + 2\epsilon$$

$$\lambda_m[a,b) \leq \sum_{n=1}^{\infty} \lambda_m[a^{(n)},b^{(n)})$$
 – получили, что хотели.

Определение 1.20. Мера Лебега в \mathbb{R}^m (обозначение λ_m) – стандартное продолжение классического объема с \mathcal{P}^m .

 σ -алгебра, на которую все продолжилось, лебегевская σ -алгебра (\mathscr{L}^m).

Замечание. $\lambda_m A = \inf\{\sum_{k=1}^\infty \lambda_m P_k : P_k - \text{ ячейки и } \bigcup_{k=1}^\infty P_k \supset A\}.$

Можно вместо $P_k \in \mathcal{P}^m$ писать $P_k \in \mathcal{P}_Q^m$.

Свойства. Свойства меры Лебега:

1. Открытое мн-во измеримо и мера непустого открытого > 0.

Доказательство. Пусть G - открытое, $x \in G$, B - шар, накрывающий x и $B \subset G$, вписываем ячейку в шар.

2. Замкнутое мн-во измеримо и мера одноточечного мн-ва = 0.

Доказательство. Берем точку и ячейку, которая ее накрывает (стороны по ϵ), тогда $\lambda_m E_{\epsilon} = \epsilon^m \implies \inf = 0.$

3. Мера ограниченного мн-ва конечна.

Доказательство. Есть множество, его можно положить в шар, а шар в кубик.

4. Всякое измеримое мн-во – объединение мн-в конечной меры.

Доказательство. Берем все \mathbb{R}^m и нарежем его на ячейки по целочисленной сетке, тогда $\mathbb{R}^m = \bigsqcup_{k=1}^{\infty} \underbrace{P_k}_{\text{ячейки по сетке } \mathbb{Z}}$, тогда $E = \bigsqcup_{k=1}^{\infty} \underbrace{(P_k \cap E)}_{\text{ограничено и измеримо}}$.

5. Пусть $E \subset \mathbb{R}^m$, такое что $\forall \epsilon > 0$: $\exists A_{\epsilon}, B_{\epsilon} \in \mathcal{L}^m$.

 $A_{\epsilon} \subset E \subset B_{\epsilon}$ и $\lambda_m(B_{\epsilon} \setminus A_{\epsilon}) < \epsilon$, тогда $E \in \mathscr{L}^m$

Доказательство. $A:=\bigcup_{n=1}^\infty A_{\frac{1}{n}}\in \mathscr{L}^m$ и $B:=\bigcap_{n=1}^\infty B_{\frac{1}{n}}\in \mathscr{L}^m.$

 $A \subset E \subset B, B \setminus A \subset B_{\underline{1}} \setminus A_{\underline{1}}.$

 $\lambda_m(B \setminus A) \leq \lambda_m(B_{\frac{1}{n}} \setminus A_{\frac{1}{n}}) < \frac{1}{n} \implies \lambda_m(B \setminus A) = 0.$

 $E \setminus A \subset B \setminus A \implies E \setminus A \in \mathscr{L}^m \implies E = E \setminus A \sqcup A \in \mathscr{L}^m.$

6. Пусть $E \subset \mathbb{R}^m$, такое что $\forall \epsilon > 0$: $\exists B_{\epsilon} \in \mathscr{L}^m$, такое что $\lambda_m B_{\epsilon} < \epsilon$ и $E \subset B_{\epsilon}$.

Тогда $E \in \mathscr{L}^m$ и $\lambda_m E = 0$.

Доказательство. $A_{\epsilon} := \varnothing \underset{\text{свойство (5)}}{\Longrightarrow} E$ – измеримое.

 $\lambda E < \lambda B_{\epsilon} < \epsilon \implies \lambda E = 0.$

- 7. Счетное объединение мн-в нулевой меры мн-во нулевой меры.
- 8. Счетное мн-во имеет меру 0.

9. Мн-во нулевой меры не имеет внутренних точек.

Доказательство. Пусть
$$x \in IntE \implies \underbrace{B_r(x)}_{\text{непустое и открытое}} \subset E \implies 0 < \lambda B_r(x) \leq \lambda E.$$

10. Если $\lambda e=0$, то существуют кубические ячейки Q_j , такие что $\bigcup_{j=1}^\infty Q_j\supset e$ и $\sum_{j=1}^\infty \lambda Q_j<\epsilon$.

Доказательство. $0 = \lambda_m e = \inf\{\sum_{j=1}^{\infty} \lambda P_j : P_j \in \mathcal{P}_{\mathbb{Q}^m} \land \bigcup_{j=1}^{\infty} P_j \supset e\}$, нарезаем P_j на кубические ячейки.

11. Если $m \geq 2$, то гиперплоскость $H_k(c) := \{x \in \mathbb{R}^m : x_k = c\}$ имеет нулевую меру.

Доказательство. $E_n := H_k(c) \cap (-n, n]^m, \ H_k(c) = \bigcup_{n=1}^{\infty} E_n.$ Достаточно доказать, что $\lambda E_n = 0.$ $E_n \subset Y := (-n, n] \times \ldots (-n, n] \times (c - \epsilon, c] \times (-n, n] \times \ldots$

$$\lambda E_n \leq \lambda Y = (2n)^{m-1} \cdot \epsilon$$
, так как n фиксированное, а ϵ – произвольное $\implies \lambda E_n = 0$.

Любое мн-во, содержащееся в не более чем счетном объединение таких гиперплоскостей, имеет нулевую меру.

12. $\lambda(a,b] = \lambda[a,b] = \lambda(a,b)$ – по предыдущему свойству.

Замечание. Свойства (5) и (6) – справедливы для любой полной меры.

1. Существуют несчетные множества нулевой меры. Замечание.

Если $m \ge 2$, то пример это гиперплоскость $H_1(c)$ подходит.

Если m = 1, то подходит Канторого множество.

$$\lambda K = \underbrace{\lambda[0,1] - \sum_{k=1}^{\infty} \lambda I_k}_{1 - \frac{1}{3} - 2 \cdot \frac{1}{9} - 4 \cdot \frac{1}{27} \cdots = 1 - \sum_{k=1}^{\infty} \frac{2^{k-1}}{3^k} = 1 - \frac{1}{3} \cdot \frac{1}{1 - \frac{2}{7}} = 0$$

K – несчетно, $K = \{x \in [0,1] :$ в троичной записи нет цифр $1\}$, а у таких чисел есть биекция между [0,1], просто троичную переводим в двоичную, где просто все двойки заменяем на единички.

2. Существует неизмеримые мн-ва. Более того, любое мн-во положительной меры содержит неизмеримые подмножества.

Теорема 1.19. (Регулярность меры Лебега).

Если E – измеримое, то найдется G – открытое, такое что оно накрывает E и мера зазора $<\epsilon$, то есть $E\subset G \land \lambda(G\setminus E)<\epsilon$.

Доказательство. $\lambda E = \inf\{\sum_{j=1}^{\infty} \lambda P_j : P_j - \text{ячейка и } E \subset \bigcup_{j=1}^{\infty} P_j\}.$

(1): Пусть $\lambda E < +\infty$. Возьмем покрытие, для которого $\sum \lambda P_i < \lambda E + \epsilon$.

 $(a_j, b_j] \subset (a_j, b'_j)$, хотим $\lambda(a_j, b'_j) < \lambda(a_j, b_j] + \frac{\epsilon}{2^j}$.

Тогда $G := \bigcup_{j=1}^{\infty} (a_j, b'_j)$ – открытое и $E \subset G$.

 $\lambda G \leq \sum_{j=1}^{\infty} \lambda(a_j, b_j') < \sum_{j=1}^{\infty} \left(\lambda(a_j, b_j] + \frac{\epsilon}{2^j} \right) = \epsilon + \sum_{j=1}^{\infty} \lambda(a_j, b_j] < \lambda E + 2\epsilon \implies \lambda(G \setminus E) < 2\epsilon$

(2): Пусть $\lambda E = +\infty$. $E = \bigsqcup_{n=1}^{\infty} E_n$, такие что $\lambda E_n < +\infty$.

Возьмем G_n – открытое $\supset E_n$, такое что $\lambda(G_n \setminus E_n) < \frac{\epsilon}{2^n}$.

$$G := \bigcup_{n=1}^{\infty} G_n$$
 – открытое $G \supset E$.
$$G \setminus E \subset \bigcup_{n=1}^{\infty} G_n \setminus E_n \implies \lambda(G \setminus E) \le \sum \lambda(G_n \setminus E_n) < \underbrace{\sum \frac{\epsilon}{2^n}}.$$

1. Если E – измеримо, то найдется $F \subset E$ – замкнутое, такое что $\lambda(E \setminus F) < \epsilon$. Следствие.

Доказательство. $G \supset \mathbb{R}^m \setminus E$, такое что $\lambda \underbrace{(G \setminus (\mathbb{R}^m \setminus E))}_{=E \setminus (\mathbb{R}^m \setminus G) = E \setminus F} < \epsilon$, где $F := \mathbb{R}^m \setminus G$ – замкнутое

и $F \subset E$.

2. Если E – измеримо, то

 $\lambda E = \inf \{ \lambda G : G - \text{ открытое и } G \supset E \}.$

 $\lambda E = \sup \{ \lambda F : F - \text{замкнуто и } F \subset E \}$

 $\lambda E = \sup \{ \lambda K : K - \text{компакт и } K \subset E \}$

Доказательство. $\lambda(G \setminus E) < \epsilon \implies \lambda E < \lambda G < \lambda E + \epsilon$

$$\lambda(E \setminus F) < \epsilon \implies \lambda E \ge \lambda F > \lambda E - \epsilon$$

Возьмем F – замкнутое из второго вывода и $K_n := [-n, n]^m \cap F$ – компакт. $\bigcup_{n=1}^\infty K_n = F$ и $K_n \subset K_{n+1} \implies \lambda F = \lim \lambda K_n$

Если $\lambda F = +\infty$, то есть K_n со сколь угодно большой мерой.

Если $\lambda F < +\infty$, то есть K_n , такие что $\lambda F < \lambda K_n + \epsilon$

3. Если E – измеримо, то сузествует последовательность компактов K_n , такая что компакты $K_n \subset K_{n+1}$ и $E = \bigcup_{n=1}^{\infty} K_n \cup e$, где $\lambda e = 0$.

Доказательство. (1) Пусть $\lambda E < +\infty$. Возьмем $\tilde{K_n} \subset E \wedge \lambda E < \lambda \tilde{K_n} + \frac{1}{n}$

$$K_n := \bigcup_{j=1}^n \tilde{K}_j \subset E, \ \lambda E < \lambda \tilde{K}_n + \frac{1}{n} \le \lambda K_n + \frac{1}{n}.$$

$$e := E \setminus \bigcup_{n=1}^{\infty} K_n, \ \lambda e = \lambda E - \lambda \left(\bigcup_{n=1}^{\infty} K_n \right) < \lambda E - \lambda K_n < \frac{1}{n} \implies \lambda e = 0.$$

(2) Пусть $\lambda E = +\infty$. Берем $E = \bigsqcup_{j=1}^{\infty} E_j : \lambda E_j < +\infty$.

$$E_j = \bigcup_{n=1}^{\infty} \underbrace{K_{jn}}_{\text{компакт}} \cup e_j \ (\lambda e_j = 0) \implies E = \bigcup_{j=1}^{\infty} \bigcup_{n=1}^{\infty} K_{jn} \cup e,$$
где $e = \bigcup_{j=1}^{\infty} e_j \land \lambda e = 0.$

Нам не хватает вложенности, давайте просто пообъединяем их и получим новые компакты (вроде так, поправьте, если нет).

Упражнение. E – измеримое. Д-ть, что $\exists G_n$ – открытое $\supset E,\ G_n\supset G_{n+1},\ \text{т.ч.}\ E=\bigcap_{n=1}^\infty G_n\setminus e,$ где $\lambda e = 0$.

Теорема 1.20. При сдвиге мн-ва на верктор \vec{v} измеримость сохраняется и мера не изменяется.

Доказательство. $\mu E := \lambda(E + \vec{v}), \, \mu, \, \lambda$ заданы на ячейках и на них совпадают $\implies \mu = \lambda$ по елдинственности продолжения.

Теорема 1.21. μ -мера на \mathscr{L}^m , т.ч.

- 1. μ инвариантна относительно сдвигов.
- 2. μ конечна на ячейках = μ конечна на огр. измер. мн-вах.

Тогда $\exists k \in [0; +\infty)$, т.ч. $\mu = k \cdot \lambda$ (т.е. $\mu E = k\lambda E \ \forall E \in \mathscr{L}^m$)

Доказательство. $Q := (0,1]^m, \ k := \mu Q, \ k \in [0,+\infty)$

Рассмотрим случаи:

1. k=1. Надо доказать, что $\mu=\lambda$, достаточно доказать, что $\mu=\lambda$ на $\mathcal{P}^m_{\mathbb{O}}$ \Longrightarrow достаточно доказать на $(0,\frac{1}{n}]^m$.

Q можно сложить из n^m сдвигов $(0,\frac{1}{n}]^m$.

$$\mu(0, \frac{1}{n}]^m = \frac{1}{n^m} \mu Q = \frac{1}{n^m} \lambda Q = \lambda(0, \frac{1}{n}]^m.$$

- 2. k > 0. $\nu E := \frac{1}{k} \mu E$. Тогда $\nu Q = \lambda Q \implies \nu = \lambda$.
- 3. k=0. Покажем, что $\mu\equiv 0$. $\mu Q = 0, \ \mathbb{R}^m$ – счетное объединение сдвигов $Q \implies \mu \mathbb{R}^m = 0.$

Теорема 1.22. $G \subset \mathbb{R}^m$ – открытое, $\Phi : G \to \mathbb{R}^m$ непрерыно дифференцируема. Тогда

- 1. Если $e \subset G$, т.ч. $\lambda e = 0$, то $\Phi(e)$ мн-во нулевой меры.
- 2. Если E измеримое, то $\Phi(E)$ измеримое.

Замечание. Для Φ – непрер. или даже дифф. это неверно.

Доказательство. Пункт (1):

Случаи:

1. $e \subset P \subset CLP \subset G, P$ – ячейка $\Longrightarrow ||\Phi'||$ непрерывно на $G \supset Cl\ P$ – компакт $\Longrightarrow ||\Phi'|| \le M$ на $Cl\ P$ (норма ограничена на замыкании P).

$$||\Phi(x) - \Phi(y)|| \leq ||\Phi'(c)|| \cdot ||x - y||, \ \text{где} \ x, y \in P; \ c \in P \implies ||\Phi(x) - \Phi(y)|| \leq M||x - y||$$

Существуют кубические ячейки, такие что Q_j , т.ч. $e \subset \bigcup_{i=1}^{\infty} Q_j$ и $\sum_{j=1}^{\infty} \lambda Q_j < \epsilon$

Рассмотрим $\Phi(Q_i)$

Пусть a_i – стороная кубика Q_i . $x, y \in Q_i \implies ||x-y|| < \sqrt{m} \cdot a_i$ (расстояние между точками меньше, чем главная диагональ, так как у нас ячейка) $\implies ||\Phi(x) - \Phi(y)|| \le M\sqrt{m}a_i$.

Зафиксируем x и меняем $y \implies \Phi(Q_i)$ содержится в шаре с центром в $\Phi(x)$ и радиусом $M\sqrt{m}a_j \implies \Phi(Q_j)$ содержатся в ячейке R_j со стороной $2M\sqrt{m}a_j$.

$$\Phi(Q_j) \subset R_j \implies \Phi(e) \subset \bigcup_{j=1}^{\infty} R_j$$

 $\sum_{j=1}^\infty \lambda R_j = \sum_{j=1}^\infty (2M\sqrt{m})^m a_j^m = (2M\sqrt{m})^m \sum_{j=1}^\infty \lambda Q_j < (2M\sqrt{m})^m \cdot \epsilon \implies \Phi(e)$ измеримо и $\lambda(\Phi(e)) = 0.$

2. e – произвольное $\subset G$, $\lambda e=0$. Представим G как $\bigsqcup_{j=1}^{\infty} P_j$, где P_j – ячейка $Cl\ P_j\subset G$. $e=igsqcup_{j=1}^\infty(e\cap P_j)\implies \Phi(e)=igcup_{j=1}^\infty\Phi(e\cap P_j)$ – м
н-ва нулевой меры $\implies \lambda(\Phi(e))=0.$

 Π ункт (2):

$$E$$
 – измеримое $\Longrightarrow E = \bigcup_{n=1}^{\infty} K_n \cup e, \ \lambda e = 0, \ K_n$ – компакт $\Longrightarrow \Phi(E) = \bigcup_{n=1}^{\infty} \Phi(K_n) \cup \Phi(e).$ $\lambda(\Phi(e)) = 0$ и $\Phi(K_n)$ – компакт \Longrightarrow измеримое.

Глава #1

Теорема 1.23. λ – инвариантна относительно движения.

Доказательство. Движение – это сдвиг и поворот.

Про сдвиг уже знаем, что λ не меняется. Проверим поворот:

пусть $U: \mathbb{R}^m \to \mathbb{R}^m$ (считаем, что крутим относительно нуля, так как можно в ноль сдвинуть).

$$\mu E := \lambda$$
 (UE) , μ, λ – заданы на \mathscr{L}^m .

 μ – инварианта относительно сдвига. $\mu(E+\vec{v}) = \lambda(U(E+\vec{v})) = \lambda(UE+U\vec{v}) = \lambda(UE) = \mu E$. μ конечна на ограниченных измеримых мн-вах. Тогда $\mu = k\lambda$.

Хотим показать, что k=1. Но на единичном шаре $B, \lambda B=\mu B \implies k=1 \implies \mu=\lambda \implies$ $\lambda E = \lambda(UE).$

Теорема 1.24. (Об изменении меры Лебега при линейном отображении).

 $T:\mathbb{R}^m \to \mathbb{R}^m$ – линейное, E – измеримое. Тогда $\lambda(TE) = |detT| \cdot \lambda E$

Доказательство. $\mu E := \lambda$, μ инвариантно относительно сдвига и измеримое, так как ${
m T}$ – лин. отображ. конечно на огр. мн-вах. $\Longrightarrow \mu k \cdot \lambda$, где $k=\lambda(T[0,1]^m)=|det T|$

Пример. неизмеримое мн-во в \mathbb{R} .

 $x \sim y$ если $(x - y) \in \mathbb{Q}$ – отношение эквивалентности.

Разобьем \mathbb{R} на классы эквивалентности и в каждом классе выберем своего представителя, сдвинем их всех в ячейку (0,1].

A – получившееся мн-во. Докажем, что A не может быть измеримым.

От противного. Если $\lambda A=0,$ то $(0,1]\subset\bigcup_{r\in\mathbb{Q}}(A+r)=\mathbb{R}.$ Но тогда $\lambda A=0\implies\lambda(A+r)=$ $0 \implies \lambda \mathbb{R} = 0$ – противоречие.

Если $\lambda A>0$. $\bigsqcup_{r\in\mathbb{Q},\ 0\leq r\leq 1}\subset(0,2]\Longrightarrow\sum_{r\in\mathbb{Q},\ 0\leq r\leq 1}\lambda(A+r)\leq 2\Longrightarrow$ противоречие (так как сумма, на самом деле, должна быть бесконечна и никак не меньше 2).

То есть мы построили пример неизмеримого множества.

2. Интеграл Лебега

2.1. Измеримые функции

Определение 2.1. $f: E \to \bar{\mathbb{R}}$, лебеговы мн-ва функции f:

$$E\{f \le a\} := \{x \in E : f(x) \le a\} = f^{-1}([-\infty, a])$$

$$E\{f < a\} := \{x \in E : f(x) < a\} = f^{-1}([-\infty, a))$$

$$E\{f \ge a\} := \{x \in E : f(x) \ge a\}$$

$$E\{f > a\} := \{x \in E : f(x) > a\}$$

Теорема 2.1. E – измеримое, $f: E \to \bar{\mathbb{R}}$, тогда равносильны:

- 1. $E\{f \leq a\}$ измеримы $\forall a \in \mathbb{R}$
- 2. $E\{f < a\}$ измеримы $\forall a \in \mathbb{R}$
- 3. $E\{f \geq a\}$ измеримы $\forall a \in \mathbb{R}$
- 4. $E\{f>a\}$ измеримы $\forall a\in\mathbb{R}$

Доказательство. 1. $(1) \Leftrightarrow (4) : E\{f > a\} = E \setminus E\{f \le a\}$

- 2. $(2) \Leftrightarrow (3) : E\{f < a\} = E \setminus E\{f \ge a\}$
- 3. $(1) \Rightarrow (2) : E\{f < a\} = \bigcup_{n=1}^{\infty} E\{f \le a \frac{1}{n}\}$
- 4. (3) \Rightarrow (4) : $E\{f > a\} = \bigcup_{n=1}^{\infty} E\{f \ge a + \frac{1}{n}\}$

Определение 2.2. $f: E \to \bar{\mathbb{R}}$ – измеримая $\forall a \in \mathbb{R}$ все ее лебеговы мн-ва измер.

Замечание. E – должно быть измеримое и достаточно измеримости любого множества одного типа.

Пример. 1. f = const, лебеговы множества: \varnothing , X.

- 2. $E \subset X$ измеримое, $f = \mathbb{1}_E(x) = 1$, если $x \in E$, иначе 0. Лебеговы множества: $\emptyset, X, E, X \setminus E$.
- 3. \mathscr{L}^m лебеговская σ -алгебра на \mathbb{R}^m $f\in C(\mathbb{R}^m)$ измеримая. $f^{-1}(\underbrace{(-\infty,a)})$ открытое \implies измеримое.

Свойства. 1. $f: E \to \bar{\mathbb{R}}$ – измеримая $\implies E$ – измеримое.

2. Если $f:E \to \bar{\mathbb{R}}$ измеримая и $E_0 \subset E \implies g:=f|_{E_0}$ – измеримое.

Доказательство.
$$E_0\{g \le c\} = E\{\underbrace{f \le c}_{\text{измеримое}}\} \cap \underbrace{E_0}_{\text{измеримое}}.$$

3. Если f – измеримая, то прообраз любого промежутка – измеримое мн-во.

Доказательство.
$$E\{a \leq f \leq b\} = E\{\underbrace{a \leq f}\} \cap E\{\underbrace{f \leq b}\}.$$

4. Если f – измеримая, то прообраз любого открытого мн-ва – измеримое.

Доказательство.
$$U \subset \mathbb{R}$$
 — открытое мн-во $\Longrightarrow U = \bigcup_{n=1}^{\infty} (a_n, b_n] \Longrightarrow f^{-1}(U) = \bigcup_{n=1}^{\infty} f^{-1} \underbrace{(a_n, b_n]}_{\text{измеримое}}.$

5. Если f – измеримая, то |f| и -f – измеримы.

Доказательство.
$$E\{-f \le c\} = E\{f \ge -c\}, \ E\{|f| \le c\} = E\{-c \le f \le c\}.$$

6. Если $f,g:E\to \bar{\mathbb{R}}$ измеримы, то $max\{f,g\}$ и $min\{f,g\}$ – измеримы. В частности, $f_+=max\{f,0\}$ и $f_-=max\{-f,0\}$ – измеримы.

Доказательство.
$$E\{max\{f,g\} \le c\} = E\{f \le c\} \cap E\{g \le c\}$$

7. Если $E = \bigcup_{n=1}^{\infty} E_n, \ f|_{E_n}$ – измерима $\forall n \implies f$ – измеримая. $f: E \to \bar{\mathbb{R}}.$

Доказательство.
$$E\{f \leq c\} = \bigcup_{n=1}^{\infty} E_n\{f \leq c\}.$$

8. Если $f:E \to \bar{\mathbb{R}}$ измерима, то найдется $g:X \to \bar{\mathbb{R}}$ – измеримая, такая что $f=g|_E$

Доказательство.
$$g(x) := 0$$
, если $x \notin E$, $f(x)$, иначе.

Теорема 2.2. Пусть $f_n: E \to \bar{\mathbb{R}}$ – последовательность измеримых функций. Тогда:

- 1. $\sup f_n$, $\inf f_n$ измеримые.
- 2. $\underline{\lim} f_n$ и $\overline{\lim} f_n$ измеримые.
- 3. Если существуют $\lim f_n$, то он измеримый.

Доказательство. 1. $E\{\sup f_n \le c\} = \bigcap_{n=1}^{\infty} E\{f_n \le c\}$

- 2. $\underline{\lim} f_n = \sup_n \inf_{k \geq n} f_k$ и $\overline{\lim} f_n = \inf_n \sup_{k \geq n} f_k$
- 3. Если существует $\lim f_n$, то $\lim f_n = \underline{\lim} f_n$.

Теорема 2.3. Пусть $f_1, \ldots, f_m: E \to H \subset \mathbb{R}$ – измеримые, $\phi \in C(H)$, тогда $g: E \to \mathbb{R}, \ g(x) := \phi(f_1(x), \ldots, f_m(x))$ – измеримая.

Доказательство.
$$E\{g < c\} = g^{-1}(-\infty,c) = \vec{f}^{-1}(U) = \vec{f}^{-1}(G)$$
 $U := \phi^{-1}(-\infty,c)$ — открытое в $H \implies \exists G$ — открытое в \mathbb{R}^m , т.ч. $U = H \cap G$ $\implies G = \bigcup_{n=1}^{\infty} \underbrace{(a_n,b_n]}_{\text{ячейки в }\mathbb{R}^m}$

Достаточно понять для ячейки $(\alpha, \beta]$, что $\vec{f}^{-1}(\alpha, \beta]$ – измерима, $\bigcup_{k=1}^n E\{\alpha_k < f_k \le \beta_k\}$

 ${\it Cnedcmeue.}$ Если в теореме ϕ – поточечный предел непрерывных, то g – измерима.

Доказательство. $\phi = \lim \phi_n, \ \phi_n \vec{f}$ – измер. и поточечно стремится к $\phi_0 \vec{f}$

Арифметические операции в \mathbb{R} :

- 1. Если $x \in \mathbb{R}$, то $x + (+\infty) = +\infty$, $x + (-\infty) = -\infty$ и т.д.
- 2. $(+\infty) + (-\infty) = 0$, $(+\infty) (+\infty) = 0$, $(-\infty) (-\infty) = 0$
- 3. Если $0 \neq x \in \mathbb{R}$, то $x \cdot (\pm \infty) = \pm \infty$, где знак $\pm : \pm = +, \pm : \mp = -$
- 4. $0 \cdot \pm \infty = 0$ и $\frac{x}{\pm \infty} = 0$, $\forall x \in \mathbb{R}$, т.е. $\frac{\pm \infty}{\pm \infty} = 0$.
- 5. Делить на 0 не умеем.

Теорема 2.4. 1. Произведение и сумма измеримых функций – измеримая.

- 2. Если $f: E \to \mathbb{R}$ измеримая и $\phi \in C(\mathbb{R})$, то $\phi \circ f$ измеримая.
- 3. Если $f \ge 0$ измеримая, то $f^p \ (p > 0)$ измеримая, $(+\infty)^p = +\infty$
- 4. Если $f:E o ar{\mathbb{R}}$ измеримая, $\tilde{E}:=E\{f
 eq 0\}$, то $\frac{1}{f}$ измерима на $\tilde{E}.$

Доказательство. 1. f + g. Для каждой функции рассмотрим три множества:

$$E\{f \neq \pm \infty\}, E\{f = +\infty\}, E\{f = -\infty\}$$

 $E\{g \neq \pm \infty\}, \underbrace{E\{g = +\infty\}}_{=\bigcup_{n=1}^{\infty} E\{g \ge n\}}, E\{g = -\infty\}$

Для конечного случая $(E\{f \neq \pm \infty\} \cap E\{g \neq \pm \infty\})$ можем сослаться на предыдущую теорему, взяв в качестве непрерывной $\phi(f,g) = f + g$.

На остальных случаях тоже рассматриваем f + g: измеримость будет, т.к. f + g = const.

- 2. Частный случай предыдущей теоремы.
- 3. $E\{f^p \le c\} = E\{f \le c^{\frac{1}{p}}\}$
- 4. $f|_{\tilde{E}}$ измерима и $\neq 0$

$$\tilde{E}\left\{\frac{1}{f} \le c\right\} = \begin{cases} \tilde{E}\{f \ge \frac{1}{c}\} \cup \tilde{E}\{f < 0\}, \text{ при } c > 0\\ \tilde{E}\{f < 0\}, \text{ при } c = 0\\ \tilde{E}\{f \ge \frac{1}{c}\} \cap \tilde{E}\{f < 0\}, \text{ при } c < 0 \end{cases}$$
(3)

Следствие. 1. Произведение конечного числа измер. – измер.

- 2. Натуральная степень измер. функции измер.
- 3. Линейная комбинация измер. функций измер.

Теорема 2.5. $E \subset \mathbb{R}^m$ – измеримое, $f \in C(E)$. Тогда f – измер. относительно меры Лебега.

Доказательство.
$$U:=f^{-1}(-\infty,c)$$
 — открытое мн-во в $E \implies \exists G \subset \mathbb{R}^m$ — открытое, т.ч. $U=\underbrace{G}_{\text{измер.}} \cap \underbrace{E}_{\text{измер.}} (E$ измеримо по условию, а G измеримо в σ -алгебре)

Oпределение **2.3.** Измеримая функция – простая, если она принимает лишь конечное число значений.

Допустимое разбиение X – разбиение X на конечное число измеримых множеств, таких что на каждом множестве простая функция константна.

Следствие. 1. Если X разбито на конечное число измер. мн-в и f постоянна (то есть сужение на каждом кусочке X это какая-та константа) на каждом из них, то f – простая.

2. Если f и g – простые функции, то у них существует общее допустимое разбиение.

Доказательство.
$$X = \bigsqcup_{k=1}^m A_k = \bigsqcup_{j=1}^n B_j \implies X = \bigsqcup_{k=1}^m \bigsqcup_{j=1}^n (A_k \cap B_j)$$
 – допустимое для f и g .

- 3. Сумма и произведение простых функций простая функция.
- 4. Линейная комбинация простых функций простая функция.
- 5. тах и тах

Теорема 2.6. (О приближении измеримых функций простыми)

 $f: X \to \mathbb{R}$ – неотрицательная измеримая функция, тогда \exists последовательность простых функций $\phi_1, \phi_2 \dots$, такие что $\phi_i \leq \phi_{i+1} : \forall i$ в каждой точке и $\lim \phi_n = f$. Более того, если f – ограничена сверху, то можно выбрать ϕ_n так, что $\phi_n \rightrightarrows f$ на X.

Доказательство.
$$\Delta_k^{(n)} := [\frac{k}{n}, \frac{k+1}{n})$$
 при $k = 0, \dots, (n^2 - 1)$ и $\Delta_{n^2}^{(n)} := [n, +\infty]$.
$$[0, +\infty) = \bigsqcup_{k=0}^{n^2} \Delta_k, \ A_k^{(n)} := f^{-1}(\Delta_k^{(n)}) - \text{измер. мн-во.}$$

$$\phi_n \text{ на } A_k \text{ равно } \frac{k}{n} \implies 0 \le \phi_n(x) \le f(x) \ \forall x \text{ и } f(x) \le \phi_n(x) + \frac{1}{n} \text{ при } x \notin A_{n^2}.$$

$$\phi_n(x) \to f(x):$$

- 1. если $f(x)=+\infty$, то $x\in A_{n^2}^{(n)}\ \forall n\implies \phi_n(x)=n\to +\infty=f(x)$
- 2. если $f(x) \neq +\infty$, то $x \notin A_{n^2}^{(n)}$ при больших $n \implies f(x) \frac{1}{n} \leq \phi_n(x) \leq f(x)$

Для добавления монотонности берем не каждое n, а только степени двойки, тогда нам нужно взять $\psi_n = \max\{\phi_1, \phi_2, \dots, \phi_n\}$ (тут должна быть картинка)

Равномерность: если f ограничена, начиная c некоторого момента A_{n^2} пусто \Longrightarrow все $x \notin A_{n^2} \Longrightarrow \forall x \in E \ f(x) - \frac{1}{n} < \phi_n(x) \leqslant f(x) \Longrightarrow |\phi_n(x) - f(x)| < \frac{1}{n} \Longrightarrow$ есть равномерная сходимость.

2.2. Последовательности измеримых функций

Напоминание. $f_n, f: E \to \mathbb{R}$.

Поточечная сходимость: $f_n \to f$, $\forall x \in E : f_n(x) \to f(x)$

Равномерная сходимость: $f_n \rightrightarrows f$ на E, $\sup_{x \in E} |f_n(x) - f(x)| \to 0$

Определение 2.4. $f_n, f: E \to \mathbb{R}$ – измеримые.

 f_n сходится к f почти везде, если $\exists e \subset E, \ \mu e = 0, \text{ т.ч. } \forall x \in E \setminus e, \ f_n(x) \to f(x)$

Замечание. Обозначение: $\mathscr{L}(E,\mu)=\{f:E o\overline{\mathbb{R}}-\$ измеримые, $\mu E\{f=\pm\infty\}=0\}$

Пусть $f_n, f \in \mathcal{L}(E, \mu), f_n$ сходится к f почти везде.

$$\exists e \subset E, \ \mu e = 0, \text{ T.q. } \forall x \in E \setminus x, \ f_n(x) \to f(x)$$

Определение 2.5. $f_n, f \in \mathcal{L}(E, \mu), f_n$ сходится по мере μ к f, если $\forall \varepsilon > 0$, $\mu E\{|f_n - f| > \varepsilon\} \rightarrow_{n \to \infty} 0, f_n \Rightarrow_{\mu} f$

Замечание. Зависимость: равномерная \implies (поточечная \implies почти везде) | (сходимость по мере).

Равномерная ⇒ поточечная – знаем.

Поточечная \implies почти везде – у нас уже есть сходимость во всех точках, поэтому для "почти везде" ничего не надо выкидывать.

Равномерная \implies сходимость по мере – начиная с некоторого момента $E\{|f_n - f| > \varepsilon\}$ будет пустым множеством по определению равномерной сходимости.

Утверждение 2.7. 1. Если f_n сходится к f п.в. (почти везде) и f_n сходится к g п.в., то f=g (за исключением мн-ва нулевой меры)

2. Если $f_n \Rightarrow_{\mu} f$ и $f_n \Rightarrow_{\mu} g$, то f = g за исключением мн-ва нулевой меры.

Доказательство. 1. Берем $e \subset E$, $\mu e = 0$ и $\lim f_n(x) = f(x)$, $\forall x \in E \setminus e$

$$\tilde{e} \subset E, \mu \tilde{e} = 0$$
 и $\lim f_n(x) = g(x), \forall x \in E \setminus \tilde{e}$

Тогда на $E \setminus (e \cup \tilde{e}) \lim f_n(x) = g(x)$ и $\lim f_n(x) = f(x) \implies f(x) = g(x) \forall x \in E \setminus (e \cup \tilde{e})$

2.
$$\mu E\{f \neq g\} = 0, E\{f \neq g\} = \bigcup_{k=1}^{\infty} E\{|f - g| > \frac{1}{k}\}.$$

Достаточно доказать, что $\mu E\{|f-q| > \epsilon\} = 0.$

$$E\{|f-g| \ge \epsilon\} \subset E\{|f_n-f| \ge \frac{\epsilon}{2}\} \cup E\{|f_n-g| \ge \frac{\epsilon}{2}\}$$

$$E\{|f-g| \ge \epsilon\} \subset \bigcap_{n=1}^{\infty} E\{|f_n - f| \ge \frac{\epsilon}{2}\} \cup \bigcap_{n=1}^{\infty} E\{|f_n - g| \ge \frac{\epsilon}{2}\}$$

Знаем, что $\mu E\{|f_n - f| \ge \frac{\epsilon}{2}\} \to 0$

 $\bigcap_{n=1}^N E\{|f_n-f|\geq \frac{\epsilon}{2}\}$ вложены по убыванию

$$\implies \bigcap_{n=1}^{\infty} \dots = \lim_{N} \left(\mu \bigcap_{n=1}^{N} E\{ |f_n - f| \ge \frac{\epsilon}{2} \} \right) \le \lim_{N} \left(\mu E\{ |f_N - f| \ge \frac{\epsilon}{2} \} \right) = 0$$

Теорема 2.8. Лебега.

$$f_n, f \in \mathcal{L}(E, \mu)$$

Пусть $\mu E < +\infty$ и f_n сходится к f почти везде.

Тогда f_n сходится к f по мере μ .

Доказательство. Найдется $e \subset E$, $\mu e = 0$, т.ч. $\forall x \in \subset E \setminus e$, $f_n(x) \to f(x)$.

Выкинем e и будем говорить про поточечную сходимость.

Надо доказать, что $A_n := E\{|f_n - f| > \epsilon\}, \ \mu A_n \to 0.$

1. Частный случай $(f_n \searrow 0)$: $A_n = E\{f_n > \epsilon\} \supset A_{n+1}$.

$$\lim \mu A_n = \mu \bigcap_{n=1}^{\infty} A_n = \mu \varnothing = 0.$$

Пусть $x \in \bigcap_{n=1}^{\infty} A_n \implies 0 \leftarrow f_n(x) > \epsilon \ \forall n \in \mathbb{N} \implies$ таких x не существует.

2. Общий случай: $g_n(x) := \sup_{k \ge n} \{ |f_k(x) - f(x)| \}$. $g_n(x) \searrow$, т.к. множество уменьшается.

$$\lim g_n(x) = \lim_n \sup_{k \ge n} \{\dots\} = \overline{\lim_n |f_n(x) - f(x)|} = \lim |f_n - f| = 0$$

$$\Longrightarrow \underbrace{\mu E\{g_n > \epsilon\}}_{\to 0} \ge \mu E\{|f_n - f| > \epsilon\}$$

$$E\{g_n > \epsilon\} \supset E\{|f_n - f| > \epsilon\}$$

Замечание. 1. Условие $\mu E < +\infty$ существенно.

$$E = \mathbb{R}, \ \mu = \lambda, \ f_n = \mathbb{1}_{[n, +\infty)} \underbrace{\longrightarrow}_{\text{поточечно}} f \equiv 0$$

$$\lambda E\{f_n > \epsilon\} = +\infty \not\to 0.$$

2. Обратное неверно. Более того, может быть сходимость по мере и расходимость во всех точках вообще: $E = [0, 1), \ \mu = \lambda$

$$\mathbbm{1}_{[0,1)}\,\mathbbm{1}_{[0,\frac{1}{2})}\,\mathbbm{1}_{[\frac{1}{2},1)}\,\mathbbm{1}_{[0,\frac{1}{3})}\,\mathbbm{1}_{[\frac{1}{3},\frac{2}{3})}\,\mathbbm{1}_{[\frac{2}{3},1)}$$
 – ни для какого аргумента нет предела: $[0,\frac{1}{n})\,[\frac{1}{n},\frac{2}{n})\dots[\frac{n-1}{n},1)$

Теорема 2.9. Рисса.

 $f, f_n \in \mathscr{L}(E, \mu)$. Если $f_n \Rightarrow_{\mu} f$, то существует подпоследовательность f_{n_k} , т.ч. f_{n_k} сходится к f почти везде.

Доказательство. $\mu E\{|f_n-f|>\frac{1}{k}\}\underbrace{\longrightarrow}_{n\to\infty}0$

Выберем n_k так, что $n_k > n_{k-1}$, и $\mu \underbrace{E\{|f_{n_k} - f| > \frac{1}{k}\}}_{=:A_k} < \frac{1}{2^k}$

$$B_n := \bigcup_{k=n}^{\infty} A_k, \ \mu B_n \le \sum_{k=n}^{\infty} \mu A_k < \sum_{k=n}^{\infty} \frac{1}{2^k} = \frac{1}{2^{n-1}} \to 0$$

 $B_1\supset B_2\supset\cdots\implies\underbrace{\mu B}_{\mu B_n\to 0}=0$, проверим, что если $x\notin B$, то $f_{n_k}(x)\to f(x)$, где $B:=\bigcap_{n=1}^\infty B_n$

$$x \notin B \implies \exists m, \text{ T.q. } x \notin B_m = \bigcup_{k=m}^{\infty} A_k$$

$$\implies x \notin A_k \ \forall k \ge m \implies \forall k \ge m \ \underbrace{|f_{n_k}(x) - f(x)|}_{\Rightarrow_{k \to 0} 0} \le \frac{1}{k}$$

Следствие. Если $f_n \leq g$ и $f_n \Rightarrow_{\mu} f$, то $f \leq g$ за исключением мн-ва нулевой меры.

Доказательство. Выберем f_{n_k} сходится к f почти везде. Пусть e – исключ. мн-во $\mu e = 0$.

$$\lim_{\leq g(x)} f_{n_k} = f(x): \ \forall x \in E \setminus e \implies f(x) \leq g(x) \ \text{при} \ x \in E \setminus e$$

Теорема 2.10. Фреше.

Если $f:\mathbb{R}^m\to\mathbb{R}$ измерима относительно λ_m (мера Лебега), то $\exists f_n\in C(\mathbb{R}^m)$, т.ч. f_n сходится к f почти везде.

Теорема 2.11. Егорова.

Пусть $\mu E < +\infty$, $f_n, f \in \mathcal{L}(E, \mu)$. Если f_n сходится к f почти везде, то найдется $e \subset E$, $\mu e < \epsilon$, т.ч. $f_n \Rightarrow f$ на $E \setminus e$.

Теорема 2.12. Лузина.

 $E \subset \mathbb{R}^m$ — измеримо, $f: E \to \mathbb{R}$ — измерима (относительно λ_m — мера Лебега). Тогда найдется $e \subset E, \ \mu e < \epsilon,$ т.ч. $f|_{E \setminus e}$ — непрерывна.

 Φ реше + Егоров \implies Лузин:

$$f: \mathbb{R}^m \to \mathbb{R}$$
 – измеримое $\underset{\Phi_{\mathrm{peine}}}{\Longrightarrow} \exists f_n \in C(\mathbb{R}^m), \ f_n \ \mathrm{cxoдитcs} \ \mathrm{k} \ f$ почти везде $\underset{\mathrm{Eropob}}{\Longrightarrow} \exists e: \ \lambda_m e < \epsilon,$

т.ч. $f_n \underset{\mathbb{R}^m \setminus e}{\longrightarrow} f$, равномерный предел непрерывной функции – непрерывная функция.

2.3. Определение интеграла

Лемма. Пусть $f \ge 0$ простая функция A_1, \dots, A_n и B_1, \dots, B_m – допустимые разбиения.

 a_1,\ldots,a_n и b_1,\ldots,b_m значения f на соответственных мн-вах.

Тогда
$$\sum_{k=1}^{n} a_k \mu(E \cap A_k) = \sum_{j=1}^{m} b_j \mu(E \cap B_j).$$

Доказательство.
$$\sum_{k=1}^{n} a_k \mu(E \cap A_k) = \sum_{k=1}^{n} \sum_{j=1}^{m} a_k \mu(E \cap A_k \cap B_j) = (1)$$

$$\sum_{j=1}^{m} b_{j} \mu(E \cap B_{j}) = \sum_{j=1}^{m} \sum_{k=1}^{n} b_{j} \mu(E \cap B_{j} \cap A_{k}) = (2)$$

$$(1) \underbrace{=}_{?} (2)$$

$$a_k \mu(E \cap A_k \cap B_j) = b_j \mu(E \cap A_k \cap B_j)$$

если
$$A_k \cap B_j \neq \emptyset$$
, то $a_k = b_j$, если $A_k \cap B_j = \emptyset$, то $\mu(\dots) = 0$.

Условие $f \geq 0$ важно, т.к. в ином случае могли бы получится ∞ разных знаков и равенство зависело бы от порядка сложения.

Определение 2.6. $f \ge 0$ простая, $\int_E f d\mu := \sum_{k=1}^n a_k \mu(E \cap A_k)$, где A_1, \dots, A_n – допустимые разбиения $(\bigsqcup_{k=1}^n A_k = X), a_1, \dots, a_n$ – соответст. значения.

Свойства. 1. $\int_E cd\mu = c\mu E, \ c \geq 0$

- 2. Если f,g простые и $0 \le f \le g$, то $\int_E f d\mu \le \int_E g d\mu$
- 3. Если $f,g \geq 0$ простые, то $\int_E (f+g) d\mu = \int_E f d\mu + \int_E g d\mu$
- 4. Если $c \geq 0$ и $f \geq 0$ простая, то $\int_E cfd\mu = c \cdot \int_E fd\mu$

Доказательство. $\bigsqcup_{k=1}^{n} A_k = X$ – общее допустимиое разбиение, a_k, b_k – значения на A_k .

3.
$$\int_{E} (f+g)d\mu = \sum (a_k + b_k)\mu(E \cap A_k) = \sum a_k \mu(A_k \cap E) + \sum b_k \mu(A_k \cap E) = \int_{E} df \mu + \int_{E} g d\mu$$

2.
$$\int_E f d\mu = \sum a_k \mu(A_k \cap E) \le \sum b_k \mu(A_k \cap E) = \int_E g d\mu$$

Определение 2.7. Интеграл от неотриц. измеримой ф-ции $f:E o \overline{R}, f\geq 0.$

$$\int_E f d\mu := \sup\{\int_E \phi d\mu : \phi - \text{простая и } 0 \le \phi \le f\}$$

Определение 2.8. Интеграл от измеримой функции

$$\int_E f d\mu := \int_E f_+ d\mu - \int_E f_- d\mu$$
 (если тут $+\infty - (+\infty)$, то интеграл не определен)

Замечание. Новое определение на простых функциях совпадает со старым.

Доказательство. $f \ge 0$ – простая \implies

(1): $\phi = f$ подходит (новое \geq старое, т.к. берем супремум).

(2):
$$\phi \leq f \implies \int_{E} \phi d\mu \leq \int_{E} f d\mu$$
 (sup \leq старое, т.к. задали $\phi : 0 \leqslant \phi \leqslant f$).

(3): В определении для произвольных измеримых:
$$\int_{E} (f)_{-} d\mu = 0$$

 $extbf{\emph{Ceoйcmea.}} \hspace{0.5cm} 1. \hspace{0.5cm} ext{Если} \hspace{0.1cm} 0 \leq f \leq g \implies \int_{E} f d\mu \leq \int_{E} g d\mu$

2. Если
$$\mu E = 0 \implies \int_E f d\mu = 0$$

3.
$$f$$
 – измеримая $\implies \int_E f d\mu = \int_X \mathbb{1}_E f d\mu$

Доказательство. Проверим для f_{\pm} :

$$\int_E f_+ d\mu = \sup\{\int_E \phi d\mu : \phi$$
 – простая $0 \le \phi \le f_+\} = \sup\{\int_X \phi d\mu : \phi$ – простая $0 \le \phi \le \mathbb{1}_E f_+\} = \int_X \mathbb{1}_E f_+ d\mu$ (в одном случае сужаем ϕ на множество E , в другом – дополняем нулями на $X \setminus E$)

4. Если $f \ge 0$ – измеримая, $A \subset B$, то $\int_A f d\mu \le \int_B f d\mu$.

Доказательство.
$$\int_A f d\mu = \int_X \mathbb{1}_A f d\mu \underbrace{\leq}_{\mathfrak{I}_B f} \int_X \mathbb{1}_B f d\mu = \int_B f d\mu.$$

Упражнение. Доказать, что $\int_{[1:+\infty)} \frac{\sin x}{x} d\lambda_1$ не определен.

Теорема 2.13. Беппо Леви.

Пусть $f_n \ge 0$ – измеримые функции, $f_n : E \to \overline{R}$, последовательность поточечно возрастающая $f_0 \le f_1 \le f_2 \le \dots$ $f(x) := \lim f_n(x)$ – поточечный предел.

Тогда $\int_E f d\mu = \lim \int_E f_n d\mu$.

Доказательство. (1): $f_n \leq f \implies \int_E f_n d\mu \leq \int_E f d\mu$

(2):
$$f_n \le f_{n+1} \implies \int_E f_n d\mu \le \int_E f_{n+1} d\mu$$

(1) и (2)
$$\implies \exists L := \lim \int_E f_n d\mu \le \int_E f d\mu$$

Осталось проверить, что $L \geq \int_E f d\mu$ (можно считать, что $L < +\infty$ т.е. конечна, иначе утверждение очевидно).

$$\int_E f d\mu = \sup \{ \int_E \phi d\mu : \ 0 \le \phi \le f, \ \phi - \text{простая} \}$$

Достаточно доказать, что $L \ge \int_E \phi d\mu$ для ϕ – простая и $0 \le \phi \le f$.

Возьмем $0 < \theta < 1$ и докажем, что $L \ge \int_E \theta \phi d\mu$:

$$E_n:=E\{f_n\geq \theta\phi\}, f_n\nearrow \Longrightarrow E_n\subset E_{n+1}.$$
 Покажем, что $E=\bigcup_{n=1}^\infty E_n.$

Пусть $x \in E$:

1. если
$$\phi(x) = 0$$
, то $\forall n : x \in E_n$

2. если
$$\phi(x) > 0$$
, то $\lim f_n(x) = f(x) \ge \phi(x) > \theta \phi(x)$ $\underset{\text{при больших } n}{\Longrightarrow} f_n(x) > \theta \phi(x)$ $\underset{\text{при больших } n}{\Longrightarrow} x \in E_n$

Посмотрим на
$$\underbrace{\int_E f_n d\mu}_{(*)} \ge \int_{E_n} f_n d\mu \ge \underbrace{\int_{E_n} \theta \phi d\mu}_{(**)}.$$

Переходим к пределу
$$n \to \infty$$
 : L $\geq \int_E \theta \phi d\mu$ это нужно понять для (**)

Осталось понять, что
$$\underbrace{\int_{E_n} \phi d\mu}_{\sum_{k=1}^m a_k \mu(E_n \cap A_k)} \to \underbrace{\int_{E} \phi d\mu}_{\sum_{k=1}^m \mu(E \cap A_k)}.$$

Поймем, что $\mu(E_n \cap A_k) \to \mu(E \cap A_k)$ – непрерывность меры снизу, $E_n \cap A_k \subset E_{n+1} \cap A_k$ и $\bigcup_{k=1}^{\infty} (E_n \cap A_k) = E \cap A_k$.

Свойства. Продолжаем писать свойства:

5.
$$f, g \ge 0$$
 – измеримые $\implies \int_{E} (f+g) d\mu = \int_{E} f d\mu + \int_{E} g d\mu$ – аддитивность.

6.
$$f \geq 0, \alpha \geq 0 \implies \int_E \alpha f d\mu = \alpha \int_E f d\mu$$
 – однородность.

7.
$$\alpha, \beta \geq 0, \ f,g \geq 0$$
 — измеримые, тогда $\int_E (\alpha f + \beta g) d\mu = \alpha \int_E f d\mu + \beta \int_E g d\mu$

Доказательство. 5. $f \ge 0$ измеримая $\implies \exists 0 \le \phi_1 \le \phi_2 \le \dots$ – простые, причем $\phi_n \to f$ поточечно.

 $g \geq 0$ измеримая $\implies \exists 0 \leq \psi_1 \leq \psi_2 \leq \dots$ – причем $\psi_n \to g$ поточечно.

$$\implies 0 \le \phi_1 + \psi_1 \le \dots$$
 простые и $\phi_n + \psi_n \to f + g$.

$$\underbrace{\int_{E} (\phi_n + \psi_n) d\mu}_{\to \int_{E} (f+g) d\mu} = \underbrace{\int_{E} \phi_n d\mu}_{\to \int_{E} d\mu} + \underbrace{\int_{E} \psi_n d\mu}_{\to \int_{E} g d\mu}$$

Свойства. Продолжаем свойства.

8. Аддитивность по мн-ву. Если
$$A\cap B=\varnothing,\ f\geq 0$$
 измеримая, то
$$\underbrace{\int_{A\cup B}fd\mu}_{(*)}=\underbrace{\int_{A}fd\mu}_{(***)}+\underbrace{\int_{B}fd\mu}_{(***)}$$

Доказательство. $(*) = \int_X \mathbbm{1}_{A \cup B} f d\mu$

$$(**) = \int_X \mathbb{1}_A f d\mu$$

$$(***) = \int_X \mathbb{1}_B f d\mu$$

$$\mathbb{1}_{A\cup B}f = \mathbb{1}_Af + \mathbb{1}_Bf$$

9. Если $\mu E>0$ и f>0 измери., то $\int_E f d\mu>0$.

Доказательство. $E_n := E\{f \geq \frac{1}{n}\}, \ E_n \subset E_{n+1}, \ E = \bigcup_{n=1}^{\infty} E_n$

$$\implies \lim \mu E_n = \mu E > 0 \implies \mu E_n > 0$$
 для больших n

$$\implies \int_E f d\mu \ge \int_{E_n} f d\mu \ge \int_{E_n} \frac{1}{n} d\mu = \frac{1}{n} \cdot \mu E_n > 0.$$

Пример. $T = \{t_1, t_2, \dots\}$ - не более чем счетное, $w_1, w_2, \dots \ge 0$.

$$\mu A := \sum_{k: t_k \in A} w_k - \text{Mepa.}$$

$$\int_E f d\mu = \sum_{k: \ t_k \in E} w_k = (*).$$

Пусть
$$f=\mathbbm{1}_A$$
, тогда $\int_E f d\mu = \int_E \mathbbm{1}_A d\mu = \mu(E\cap A) = \sum_{k:\ t_k \in E\cap A} = \sum_{k:\ t_k \in E} \mathbbm{1}(t_k) w_k = (*).$

⇒ равенство есть и на простых функциях

Пусть
$$f \ge 0$$
 измерим. $\phi_n = f \cdot \mathbb{1}_{\{t_1, t_2, \dots, \phi_n\}}, \ 0 \le \phi_1 \le \dots \le f$.

$$\underbrace{\lim \int_E \phi_n d\mu}_{=\lim \sum_{k < n: \ t_k \in E} f(t_k) w_k = \sum_{k: \ t_k \in E} f(t_k) w_k} = \int_E \underbrace{\lim \phi_n}_{\leq f} d\mu \leq \int_E f d\mu$$

$$\text{Проверим, что} \underbrace{\int_{E} f d\mu}_{\sup\{\dots\}} \leq \sum_{f(t_k)w_k} \text{Берем } 0 \leq \underbrace{\phi}_{\text{простая}} \leq f \text{ и проверяем, что} \underbrace{\int_{E} \phi d\mu}_{\sum_{k:\ t_k \in E} \phi(t_k)w_k} \leq \underbrace{\phi}_{\text{простая}} \leq f \text{ и проверяем, что} \underbrace{\int_{E} \phi d\mu}_{\sum_{k:\ t_k \in E} \phi(t_k)w_k} \leq \underbrace{\phi}_{\text{простая}} \leq f \text{ и проверяем, что} \underbrace{\int_{E} \phi d\mu}_{\sum_{k:\ t_k \in E} \phi(t_k)w_k} \leq \underbrace{\phi}_{\text{простая}} \leq f \text{ и проверяем}$$

 $\sum_{k:\ t_k \in E} f(t_k) w_k$

Замечание. $T=\mathbb{N},\ w_n\equiv 1.$

$$\mu A = \#\{A \cap \mathbb{N}\}\$$
$$\int_{\mathbb{N}} f d\mu = \sum_{n=1}^{\infty} f(n)$$

Определение 2.9. P(x) – св-во, зависящее от точки. P(x) выполняется **почти везде**, если на E (для **почти всех** точек из E), если $\exists e \subset E, \ \mu e = 0$ и P(x) выполнено $\forall x \in E \setminus e$.

Замечание. P_1, P_2, \ldots последовательность св-в, каждое из котороых верно почти везде на E, то они все вместе верны почти везде на E.

Теорема 2.14. (Неравенство Чебышева).

$$f\geq 0$$
 измер., $t,p>0$. Тогда $\mu E\{f\geq t\}\leq \frac{1}{t^p}\cdot \int_E f^p d\mu$.

Доказательство.
$$\int_E f^p d\mu \ge \int_{E\{f \ge t\}} f^p d\mu \ge \int_{E\{f \ge t\}} t^p d\mu = t^p \cdot \mu E\{f \ge t\}.$$

Свойства. Свойства интеграла, связанные с понятием "почти везде".

- 1. Если $\int_E |f| d\mu < +\infty$, то f почти везде конечна.
- 2. Если $\int_{E} |f| d\mu = 0$, то f = 0 почти везде.
- 3. Если $A\subset B$ и $\mu(B\setminus A)=0$, то $\int_A f d\mu$ и $\int_B f d\mu$ либо определены, либо нет одновременно. И если определены, то равны.
- 4. Если f=g почти везде на E, тогда $\int_E f$ и $\int_E g$ либо определены, либо нет одновременно. И если определены, то равны.

Доказательство. 1. $E\{|f|=+\infty\}\subset E\{|f|\geq t\}$

$$\mu E\{|f| = +\infty\} \le \mu E\{|f| \ge t\} \le \frac{\int_E |f| d\mu}{t} \underbrace{\longrightarrow}_{t \to +\infty} 0$$

- 2. Если $\mu E\{f>0\}>0$, то $\int_E f d\mu = \int_{E\{f>0\}} f d\mu > 0$ (св-во. 9 из уже доказанных выше).
- 3. $\int_B f_{\pm} d\mu = \int_{B \setminus A} f_{\pm} d\mu + \int_A f_{\pm} d\mu = \int_A f_{\pm} d\mu$
- 4. $A:=E\{f=g\}, \mu(E\setminus A)=0$ $\int_E f d\mu=\int_A f d\mu=\int_A g d\mu=\int_E g d\mu$

2.4. Суммируемые функции

Определение 2.10. f – суммируема на мн-ве E, если f измерима и $\int_E f_{\pm} d\mu < +\infty$.

Замечание. В этом случае $\int_E f d\mu$ конечен.

Свойства. 1. f – суммируема на $E \Leftrightarrow \int_E |f| d\mu < +\infty$ и f – измерима.

В этом случае $|\int_E f d\mu| \le \int_E |f| d\mu$

Доказательство. $0 \le f_{\pm} \le |f| = f_{+} + f_{-}$

"
$$\Rightarrow$$
": $\int_E |f| d\mu = \int_E f_+ d\mu + \int_E f_- d\mu < +\infty$

"\\equiv :
$$\int_E f_{\pm} d\mu \le \int_E |f| d\mu < +\infty$$

Нер-во:
$$-\int_{E} |f| d\mu = -\int_{E} f_{+} d\mu - \int_{E} f_{-} d\mu \leq \underbrace{\int_{E} f_{+} d\mu - \int_{E} f_{-} d\mu}_{\int_{E} f d\mu} \leq \int_{E} f_{+} d\mu + \int_{E} f_{-} d\mu = \int_{E} |f| d\mu$$

- 2. f суммируема на $E \implies f$ почти везде конечна на E.
- 3. Если $A \subset B$ и f суммируема на B, то f суммируема на A.

Доказательство.
$$\int_A |f| d\mu \le \int_B |f| d\mu < +\infty$$

4. Ограниченная функция суммируема на мн-ве конечной меры.

Доказательство.
$$|f| \leq M \implies \int_E |f| d\mu \leq \int_E M d\mu = M \cdot \mu E < +\infty$$

5. Если f и g суммируемы и $f \leq g$, то $\int_E f d\mu \leq \int_E g d\mu$

Доказательство.
$$f_+ - f_- = f \le g = g_+ - g_- \implies 0 \le f_+ + g_- \le f_- + g_+ \implies \int_E f_+ d\mu + \int_E g_- d\mu \le \int_E f_- d\mu + \int_E g_+ d\mu$$
 — переносим слагаемые в нужные стороны и чтд.

6. f и g – суммируемы $\implies f+g$ суммируема и $\int_E (f+g) d\mu = \int_E f d\mu + \int_E g d\mu$

Доказательство. $|f+g| \le |f| = |g| \implies f+g$ суммируема.

$$h := f + g, \ h_+ - h_- = f_+ - f_- + g_+ - g_-$$

$$\implies h_+ + f_- + g_- = f_+ + g_+ + h_- \ge 0$$

$$\implies \int_E h_+ d\mu + \int_E f_- d\mu + \int_E g_- d\mu = \int_E f_+ d\mu + \int_E g_+ d\mu + \int_E h_- d\mu$$
 – далее просто переносим нужные слогаемые через равно.

7. f – суммируема, $\alpha \in \mathbb{R} \implies \alpha f$ суммируема и $\int_E \alpha f d\mu = \alpha \int_E f d\mu$

Доказательство. $|\alpha f| = |\alpha| \cdot |f| \implies |\alpha f|$ – суммируема.

Если
$$\alpha>0$$
, то $(\alpha f)_+=\alpha\cdot f_+$ и $(\alpha f)_-=\alpha\cdot f_-$ и $\int_E (\alpha f)_\pm d\mu=\alpha\cdot \int_E f_\pm d\mu$ Если $\alpha=-1$, то $(-f)_+=f_-$ и $(-f)_-=f_+\implies \int_E (-f)d\mu=\int_E f_--\int_E f_+=-\int_E f d\mu$

8. Линейность.

Если f,g – суммируемы, $\alpha,\beta\in\mathbb{R}$, то $\alpha f+\beta g$ – суммируема и $\int_E (\alpha f+\beta g)d\mu=\alpha\int_E fd\mu+\beta\int_E gd\mu$.

9. Пусть $E = \bigcup_{k=1}^{n} E_k$. Тогда f – суммируема на $E \Leftrightarrow f$ – суммируема на E_k : $\forall k = 1, \dots, n$. А если f суммируема на $E = \bigcup_{k=1}^{n} E_k$, то $\int_E f d\mu = \sum_{k=1}^{n} \int_{E_k} f d\mu$

Доказательство. $\mathbb{1}_{E_k}|f| \leq \mathbb{1}_{E}|f| \leq \sum_{k=1}^{n} \mathbb{1}_{E_k}|f| \implies \int_{E_k}|f|d\mu \leq \sum_{k=1}^{n} \int_{E_k}|f|d\mu$. Если $E = \bigsqcup_{k=1}^{n} E_k$, то $\mathbb{1}_{E} = \sum_{k=1}^{n} \mathbb{1}_{E_k} \implies \mathbb{1}_{E} f_{\pm} = \sum_{k=1}^{n} \mathbb{1}_{E_k} f_{\pm} \implies \int_{E} f_{\pm} d\mu = \sum_{k=1}^{n} \int_{E_k} f_{\pm} d\mu$

10. Интегрирование по сумме мер. Пусть μ_1 и μ_2 – меры, заданные на одной σ -алгебре, $\mu:=\mu_1+\mu_2$.

Если $f \ge 0$ измерима, то $\int_E f d\mu = \int_E f d\mu_1 + \int_E f d\mu_2(*)$.

f — суммируема относительно $\mu \Leftrightarrow f$ — суммируема относительно μ_1 и μ_2 и в этом случае есть равенство (*).

Доказательство. (*) для $f \ge 0$:

(*) есть для простых
$$\phi \ge 0$$
, $\int_E \phi d\mu = \sum_{k=1}^n a_k \underbrace{\mu(E \cap A_k)}_{\mu_1(E \cap A_k) + \mu_2(E \cap A_k)} = \int_E \phi d\mu_1 + \int_E \phi d\mu_2$.

 $f \ge 0$ – измеримая \implies возьмем $0 \le \phi \le \cdots \le \phi_n$ – простые, $\phi_n \to f$.

$$\int_E \phi_n d\mu = \int_E \phi_n d\mu_1 + \int_E \phi_n d\mu_2$$
 по т. Леви получаем (предельнй переход) $\int_E f d\mu = \int_E f d\mu_1 + \int_E f d\mu_2$

Определение 2.11. Интеграл от комплекснозначной функции $f: E \to \mathbb{C}$.

Re(f) и Im(f) – измеримые функции.

$$\int_E f d\mu := \int_E Re(f) d\mu + i \cdot \int_E Im(f) d\mu$$

Замечание. Все св-ва, связанные с равенствами, сохраняются:

Доказательство.
$$Re(if) = -Im(f), \ Im(if) = Re(f)$$

$$\int_E if d\mu = i \int_E f d\mu$$

Замечание. $\left|\int_{E}fd\mu\right|\leq\int_{E}|f|d\mu$

Доказательство.
$$\left|\int_E f d\mu\right| = e^{i\alpha} \cdot \int_E f d\mu = \int_E e^{i\alpha} f d\mu = \int_E Re(e^{i\alpha}f) d\mu + i \cdot \int_E Im(e^{i\alpha}f) d\mu = \int_E Re(e^{i\alpha}f) d\mu \le \int_E \left|Re(e^{i\alpha}f) d\mu\right| \le \int_E \left|R$$

 $\int_{E} |f| d\mu$.

$$|Re(f)|, |Im(f)| \le |f|$$

 $|f| \le |Re(f)| + |Im(f)|$

Теорема 2.15. (О счетной аддитивности интеграла).

Пусть
$$f \ge 0$$
 – измеримая и $E = \bigsqcup_{n=1}^{\infty} E_n$.

Тогда
$$\int_E f d\mu = \sum_{n=1}^{\infty} \int_{E_n} f d\mu$$

Доказательство.
$$\sum_{n=1}^{\infty} \int_{E_n} f d\mu = \lim \sum_{k=1}^n \int_{E_k} f d\mu = \lim \int_{\bigsqcup_{k=1}^n E_k} f d\mu = \lim \int_E \left(\underbrace{\mathbb{1}_{\bigsqcup_{k=1}^n E_k} f}_{:=g_n} d\mu\right) = 0$$

$$\lim \int_E g_n d\mu \underbrace{=}_{\text{T. } \Pi_{\text{PBM}}} \int_E f d\mu$$

$$0 \le g_1 \le g_2 \le \dots$$
, $\lim g_n = f$, $g_n(x) = f(x)$ если $x \in \bigsqcup_{k=1}^n E_k$.

Следствие. 1. Если $f \geq 0$ — измеримая, то $\nu E := \int_E f d\mu$ — мера, заданная на той же σ -алгебре, что и μ .

- 2. Если $f \geq 0$ и $E_1 \subset E_2 \subset \ldots$, $E = \bigcup_{n=1}^{\infty} E_n$, то $\int_E f d\mu = \lim \int_{E_n} f d\mu$
- 3. Если f суммируема и $E_1\supset E_2\supset\dots,\ E=\bigcap_{n=1}^\infty E_n,$ то $\int_E f d\mu=\lim\int_{E_n} f d\mu$
- 4. Если f суммируема на $E,\ \epsilon>0,$ то $\exists A\subset E:\ \mu A<+\infty \land \int_{E\backslash A}|f|d\mu<\epsilon$

Доказательство. 1. $\nu\varnothing = \int_{\varnothing} f d\mu = 0 + \text{счетная аддитивность из теоремы: } \int_{E} f_{\pm} d\mu = \sum_{n=1}^{\infty} \int_{E_{n}} f_{\pm} d\mu$ все конечно, поэтому можно вычитать.

2. $\nu A := \int_A f d\mu$ – мера $\implies \nu A$ непрерывна снизу.

$$\underbrace{\nu E}_{\int_E f d\mu} = \underbrace{\lim \nu E_n}_{\lim \int_{E_n} f d\mu}$$

- 3. $\nu_{\pm}A:=\int_A f_{\pm}d\mu$, $\nu_{\pm}A$ конечные меры $\Longrightarrow \nu_{\pm}$ непрерывна сверху. $\Longrightarrow \int_E f_{\pm}d\mu=\nu_{\pm}E=\lim\nu_{\pm}E_n=\lim\int_{E_n} f_{\pm}d\mu$
- 4. $E_n := E\{|f| \le \frac{1}{n}\} \implies E_n \supset E_{n+1}$ $\bigcap_{n=1}^{\infty} E_n = E\{f = 0\} \implies \lim_{n \to \infty} \int_{E_n} |f| d\mu = \int_{E\{f = 0\}} |f| d\mu = 0 \implies \exists n : \epsilon > \int_{E_n} |f| d\mu \ge \left| \int_{E_n} f d\mu \right|$

$$A := E \setminus E_n = E\{|f| > \frac{1}{n}\}$$

$$\mu A \underbrace{\leq}_{\text{Uofurnor}} \frac{\int_E |f| d\mu}{\frac{1}{n}} < +\infty$$

Теорема 2.16. (Абсолютная непрерывность интеграла).

f – суммируема на E, тогда $\forall \epsilon: \ \exists \delta>0,$ т.ч. $\forall e$ – измер. $\mu e<\delta \implies |\int_e f d\mu|<\epsilon$

Доказательство. $\int_E |f| d\mu < +\infty \implies \exists \underbrace{\phi}_{\leq f}$ – неотрицательная простая, т.ч.

 $\int_{E} |f| d\mu < \int_{E} \phi d\mu + \epsilon.$

Пусть C – наибольшее значение ϕ . Возьмем $\delta = \frac{\epsilon}{C}$.

Если $\mu e < \delta$, то $\int_e |f| d\mu < \underbrace{\int_e \phi d\mu + \epsilon}_{\leq \int_e C d\mu + \epsilon \leq \epsilon + \epsilon}$ – это следует из того, что $|f| - \phi \geq 0$,

$$\int_{e}(|f|-\phi)d\mu \leq \int_{E}(|f|-\phi)d\mu < \epsilon.$$

Следствие. Если f суммируема на E и $\mu A_n \to 0, \ A_n \subset E, \ {
m To} \ \int_{A_n} f d\mu \to 0.$

Доказательство. Берем $\epsilon>0$ и $\delta>0$ для него из теоремы, тогда если $\mu A_n<\delta,$ то $|\int_{A_n}fd\mu|<\epsilon$

Определение 2.12. Пусть μ и ν меры на одной σ -алгебре \mathcal{A} . Если существует измеримая функция $w \geq 0$, т.ч. $\forall A \in \mathcal{A}, \ \nu A = \int_A w d\mu$.

Тогда w плотность меры ν относительно меры μ .

Замечание. Если w существует, то ν обладает свойством: если $\mu e = 0$, то $\nu e = 0$.

Теорема 2.17. Пусть f,g – суммируемые функции. Если $\forall A$ – измерим. $\int_A f d\mu = \int_A g d\mu$, то f=g почти везде.

Доказательство. $h := f - g, \ E_+ := E\{f \ge g\}, \ E_- := E\{f < g\}$

$$\int_E |h| d\mu = \underbrace{\int_{E_+} h d\mu}_{=0} - \underbrace{\int_{E_-} h d\mu}_{=0} = 0 \implies h = 0 \text{ почти везде.}$$

Теорема 2.18. (Единственность плотности).

Если ν – σ -конечная мера (на σ -алгебре \mathcal{A}) и w – плотность ν относительно μ , то w – единственна с точностью до **почти везде**.

Доказательство. Так как наша мера – σ -конечна, то все пространство представляется как $X = \bigsqcup_{n=1}^{\infty} X_n$, т.ч. $\nu X_n < +\infty \implies$ т.к. w – плотность $\nu|_{X_n}$ относительно $\mu|_{X_n} \implies w$ – суммируема на X_n .

Пусть w_1, w_2 – плотности ν относительно μ на сужении одного кусочка, тогда по определению плотности верно, что $\forall A \in \mathcal{A} : \nu A = \int_A w_1 d\mu = \int_A w_2 d\mu$ \Longrightarrow $w_1 = w_2$ почти везде.

Ну если две плотности на каждом из кусочков отличаются на множество нулевой меры, тогда и на объединении кусочков тоже будут отличаться на множество нулевой меры, тогда плотность единственна почти везде и на всей σ -алгебре.

Определение 2.13. ν, μ – меры, заданные на одной σ -алгебре. ν абсолютно непрерывна относительно μ , если $\forall e$ – измер., т.ч. $\mu e = 0 \implies \nu e = 0$.

Обозначение $\nu \prec \mu$ или $\nu \ll \mu$.

Теорема 2.19. (Радона-Никодима).

Пусть меры μ и ν заданы на одной σ -алгебре. Тогда $\nu \prec \mu \Leftrightarrow$ существует плотность меры ν относительно μ .

Теорема 2.20. w – плотность ν относительно μ . Тогда

- 1. Если $f \geq 0$, то $\int_E f d\nu = \int_E f w d\mu : (*)$
- 2. fw суммируема, относительно $\mu\Leftrightarrow f$ суммируема относительно ν , и в этом случае есть формула (*)

Доказательство. 1. Пусть $f = \mathbb{1}_A$, тогда $\int_E f d\nu = \nu(A \cap E) = \int_{A \cap E} w d\mu = \int_E \mathbb{1}_A w d\mu$. По линейности (*) верна для неотрицательный простых.

Пусть $f \ge 0$ — измер. Тогда найдутся простые $0 \le \phi_1 \le \phi_2 \le \dots$ $(0 \le w\phi_1 \le w\phi_2 \le \dots)$ и $\phi_n \to f$ поточечно. $\underbrace{\int_E \phi_n d\nu}_{\to \int_E f d\nu} = \underbrace{\int_E \phi_n w d\mu}_{\to \int_E f w d\mu}$ — по т. Леви.

2. $\int_E |f| d\nu = \int_E |f| w d\mu \implies f$ – суммируема относительно $\nu \Leftrightarrow fw$ суммируема относительно μ $\int_E f_\pm d\nu = \int_E f_\pm w d\mu$ и вычитаем.

Свойства. Неравенство Гельдера.

Пусть
$$p,q>1$$
 и $\frac{1}{p}+\frac{1}{q}=1$. Тогда $\int_{E}|fg|d\mu\leq \left(\int_{E}|f|^{p}d\mu\right)^{\frac{1}{p}}\cdot \left(\int_{E}|g|^{q}d\mu\right)^{\frac{1}{q}}=A\cdot B$

Доказательство. Пусть $f,g \ge 0$ (просто чтобы не писать модули), $A^p := \int_E f^p d\mu, \ B^q := \int_E g^q d\mu.$

Случай $A=0. \implies f^p=0$ почти везде $\implies f=0$ почти везде $\implies fg=0$ почти везде $\implies \int_E fg d\mu=0.$

Можно считать, что A, B > 0.

Случай $A = +\infty$. Очевидно.

Можно считать $0 < A, B < +\infty$.

$$u := \frac{f}{A}, \ v := \frac{g}{B}$$

 $\int_E u^p d\mu = 1 = \int_E v^q d\mu$, $uv \leq \frac{u^p}{p} + \frac{v^q}{q}$ верно (Упражнение, ну конечно. Фиксируем одну из переменных как параметр и исследуем нер-во по второй переменной).

Интегрируем полученное нер-во:
$$\frac{1}{AB} \int_E fg d\mu = \int_E uv d\mu \le \frac{1}{p} \underbrace{\int_E u^p d\mu}_{=1} + \frac{1}{q} \underbrace{\int_E v^q d\mu}_{=1} = \frac{1}{p} + \frac{1}{q} = 1$$

Свойства. Неравенство Минковского.

$$p \geq 1$$
, тогда $\left(\int_{E} |f+g|^{p} d\mu\right)^{\frac{1}{p}} \leq \left(|f|^{p} d\mu\right)^{\frac{1}{p}} + \left(|g|^{p} d\mu\right)^{\frac{1}{p}}$

Доказательство. Можно считать, что $f, g \ge 0$, также можно считать, что $\int_E f^p d\mu$ и $\int_E g^p d\mu < +\infty$.

Проверим, что $\int_E (f+g)^p d\mu < +\infty$:

$$f + g \le 2 \max\{f, g\} \implies (f + g)^p \le 2^p \max\{f^p, g^p\} \le 2^p (f^p + g^p)$$

$$\underbrace{\int_{E} (f+g)^{p} d\mu}_{=:C^{p}} \leq 2^{p} \left(\int_{E} f^{p} d\mu + \int_{E} g^{p} d\mu \right) < +\infty - \text{показали, что левая часть конечна.}$$

Можем считать, что $0 < C < +\infty$:

$$C^p = \int_E (f+g)^p d\mu = \int_E (f+g)(f+g)^{p-1} d\mu = \int_E f(f+g)^{p-1} d\mu + \int_E g(f+g)^{p-1} d\mu$$

Пусть $\frac{1}{p} + \frac{1}{q} = 1$, $q = \frac{p}{p-1}$, (p-1)q = p, тогда:

$$\int_{E} f \cdot (f+g)^{p-1} d\mu \underbrace{\leq}_{\text{нер-во Гельдера}} \left(\int_{E} f^{p} d\mu \right)^{\frac{1}{p}} \cdot \left(\int_{E} ((f+g)^{p-1})^{q} d\mu \right)^{\frac{1}{q}} = \left(\int_{E} f^{p} d\mu \right)^{\frac{1}{p}} \cdot \underbrace{\left(C^{p} \right)^{\frac{1}{q}}}_{=C^{p-1}} \leq \left(\int_{E} f^{p} d\mu \right)^{\frac{1}{p}} C^{p-1} + \underbrace{\left(\int_{E} f^{p} d\mu \right)^{\frac{1}{p}}}_{=C^{p-1}} \cdot \underbrace{\left(\int_{E} f^{p} d\mu \right)^{\frac{1}{p}}}_{=C^{p}}_{=C^{p-1}} \cdot \underbrace{\left(\int_{E} f^{p} d\mu \right)^{\frac{1}{p}}}_{=C^{p}$$

$$\left(\int_E g^p d\mu\right)^{\frac{1}{p}} \cdot C^{p-1}$$
 – сокращаем на C^{p-1} .

2.5. Предельный переход под знаком интеграла

Теорема 2.21. Леви.

$$0 \leq f_1 \leq f_2 \leq \dots$$
 и $f = \lim f_n$, тогда $\lim \int_E f_n d\mu = \int_E f d\mu$.

Следствие. Пусть $u_n \ge 0$. Тогда $\int_E \sum_{n=1}^\infty u_n d\mu = \sum_{n=1}^\infty \int_E u_n d\mu$

Доказательство.
$$s_n := \sum_{k=1}^n u_k, \ 0 \le s_1 \le s_2 \le \dots$$
 и $s_n \to s := \sum_{n=1}^\infty u_n.$
$$\int_E s d\mu = \lim \int_E s_n d\mu = \lim \int_E \sum_{k=1}^n u_k d\mu = \lim \sum_{k=1}^n \int_E u_k d\mu = \sum_{k=1}^\infty \int_E u_k d\mu$$

Следствие. Если $\sum_{n=1}^{\infty} \int_{E} |f_n| d\mu < +\infty$, то $\sum_{n=1}^{\infty} f_n(x)$ сходится при почти всех $x \in E$.

Доказательство.
$$+\infty > \sum_{n=1}^{\infty} \int_{E} |f_{n}| d\mu = \int_{E} \sum_{n=1}^{\infty} |f_{n}| d\mu \implies \sum_{n=1}^{\infty} |f_{n}| - \text{суммир.}$$

 $\Longrightarrow \sum_{n=1}^{\infty} |f_n|$ почти везде конечна $\Longrightarrow \sum_{n=1}^{\infty} f_n(x)$ абс. сходится при почти всех $x \in E$ \Longrightarrow сходится при почти всех $x \in E$.

Лемма. Фату.

Если
$$f_n \ge 0$$
, то $\int_E \underline{\lim} f_n d\mu \le \underline{\lim} \int_E f_n d\mu$.

Доказательство.
$$\underline{\lim} f_n = \lim \underbrace{\inf \{f_n, f_{n+1}, \dots\}}_{=:q_n}$$

$$0 \le g_1 \le g_2 \le \dots$$
 и $g_n \to \underline{\lim} f_n$

$$\underset{\text{теорема Леви}}{\Longrightarrow} \lim_{\substack{\int_E g_n d\mu \\ = \underline{\lim} \int_E g_n d\mu \leq \underline{\lim} \int_E f_n d\mu}} = \int_E \underline{\lim} f_n d\mu$$

$$g_n \le f_n \implies \int_E g_n d\mu \le \int_E f_n d\mu \implies \underline{\lim} \int_E g_n d\mu \le \underline{\lim} \int_E f_n d\mu$$

Замечание. Равенства может и не быть:

$$\mu=\lambda,\; E=\mathbb{R},\; f_n=\mathbb{1}_{[n,+\infty)}$$
 $\int_E f_n d\mu=+\infty,\; \mathrm{Ho}\; f_n o 0$

Из этих двух условие следует, что $\int_E \underline{\lim} f_n d\mu = \int_E 0 d\mu = 0$

Следствие. (Усиленный вариант теоремы Леви).

Пусть $0 \le f_n \le f$ и $f = \lim f_n$. Тогда $\lim \int_E f_n d\mu = \int_E f d\mu$

Доказательство. $f_n \leq f \implies \int_E f_n d\mu \leq \int_E f d\mu \implies \int_E f d\mu = \int_E \underline{\lim} f_n d\mu \leq \underline{\lim} \int_E f_n d\mu \leq \underline{\lim} f_n d\mu$ $\overline{\lim} \int_{E} f_n d\mu \leq \int_{E} f d\mu$

$$\implies \underline{\lim} = \overline{\lim} = \int_E f d\mu \implies \lim \int_E f_n d\mu = \int_E f d\mu$$

Теорема 2.22. Лебега о предельном переходе (о мажорируемой сходимости).

Пусть
$$f = \lim f_n$$
 и $|f_n| \le \underbrace{F}_{\text{суммируемая мажоранта}} - \text{суммируема на } E.$

Тогда $\lim_{E} \int_{E} f_n d\mu = \int_{E} f d\mu$, более того $\lim_{E} \int_{E} |f_n - f| d\mu = 0$

Доказательство. $g_n := 2F - |f_n - f| \le 2F$ и $g_n \to 2F$.

$$g_n \ge 2F - |f_n| - |f| \ge 0.$$

Тогда предел $\lim \int_E g_n d\mu = 2 \int_E F d\mu$

$$\int_{E} g_n d\mu = \int_{E} 2F d\mu - \int_{E} |f_n - f| d\mu$$

Из двух строчек выше делаем вывод, что
$$\underbrace{\int_E |f_n - f| d\mu}_{> |f|} \to 0$$

Замечание. 1. Без суммир. мажоранты неверно:

$$f_n = n \cdot \mathbb{1}_{[0,\frac{1}{n}]} \to f = \begin{cases} +\infty, & \text{в точке } 0\\ 0, otherwise \end{cases}$$

$$\tag{4}$$

$$\int_{[0,1]} f d\lambda = 0$$
, $\int_{[0,1]} f_n d\lambda = 1$, $F := \sup f_n$, $F(x) = n$ при $\frac{1}{n+1} < x \le \frac{1}{n}$

2. Поточечную сходимость можно заменить на сходимость почти везде, можно заменить и на сходимость по мере.

Теорема 2.23. Пусть $f \in C[a,b]$. Тогда $\int_a^b f = \int_{[a,b]} f d\lambda$.

Доказательство. $a = x_0$

$$b = x_n$$
 $S_* := \sum_{k=1}^n \min_{t \in [x_{k-1}, x_k]} f(t) \cdot (x_k - x_{k-1})$
 $S^* := \sum_{k=1}^n \max_{t \in [x_{k-1}, x_k]} f(t) \cdot (x_k - x_{k-1})$
Если мелкость дробления $\to 0$, то $S_*, S^* \to \int_a^b f$.

 $g_*(x) := \min_{t \in [x_{k-1}, x_k]} f(t)$ при $x \in [x_{k-1}, x_k]$
 $g^*(x) := \max_{t \in [x_{k-1}, x_k]} f(t)$ при $x \in [x_{k-1}, x_k]$
 $\int_{[a,b]} g_* d\lambda = S_*, \ \int_{[a,b]} g^* d\lambda = S^*$
 $g_* \le f \le g^*$ почти везде.

 $S_* = \int_{[a,b]} g_* d\lambda \le \int_{[a,b]} f d\lambda \le \int_{[a,b]} g^* d\lambda = S^* \Longrightarrow \int_{[a,b]} f d\lambda = \int_a^b f$

Замечание. На самом деле это верно для любой функции, интегрир. по Риману на [a,b].

Теорема 2.24. (Критерий Лебега интегрированности по Риману).

 $f:[a,b] \to \mathbb{R}$, тогда f – интегрируема по Риману \Leftrightarrow множество точек разрыва f имеет нулевую меру Лебега.

Пример. Возьмем $f:[0,1] \to \mathbb{R}, \ f=\mathbb{1}_{[0,1]\cap \mathbb{Q}}.$ f=0 почти везде $\Longrightarrow \int_{[0,1]} f d\lambda = 0$, но точки разрыва – весь отрезок [0,1].

2.6. Произведение мер

Определение 2.14. (X, \mathcal{A}, μ) и (Y, \mathcal{B}, ν) – простариства с σ -конечными мерами.

$$\mathcal{P}=\{A\times B:\ A\in\mathcal{A},\ B\in\mathcal{B},\ \mu A<+\infty\ \land\ \nu B<+\infty\}$$
 $m_0(A\times B)=\mu A\cdot \nu B<+\infty,\ A\times B$ — измеримый прямоугольник.

Теорема 2.25. \mathcal{P} – полукольцо, а m_0 – σ -конечная мера на нем.

Доказательство. $\{A \in \mathcal{A} : \mu A < +\infty\}$ и $\{B \in \mathcal{B} : \nu B < +\infty\}$ – полукольца (проверяем определение полукольца для обоих множеств).

 \mathcal{P} – декартово произведение полуколец, то есть тоже полукольцо (эта по теореме, которая была выше).

Проверяем, что m_0 – мера. Пусть $A \times B = \bigsqcup_{k=1}^{\infty} A_k \times B_k$. $\mathbb{1}_A(x) \times \mathbb{1}_B(y) = \mathbb{1}_{A \times B}(x,y) = \sum_{k=1}^{\infty} \mathbb{1}_{A_k \times B_k}(x,y) = \sum_{k=1}^{\infty} \mathbb{1}_{A_k}(x) \times \mathbb{1}_{B_k}(y)$ $\int_Y \mathbb{1}_A(x) \cdot \mathbb{1}_B(Y) d\nu(y) = \sum_{k=1}^{\infty} \int_Y \mathbb{1}_{A_k}(x) \cdot \mathbb{1}_{B_k}(y) d\nu(y) = \sum_{k=1}^{\infty} \mathbb{1}_{A_k}(x) \cdot \nu B_k$ $\int_X \mathbb{1}_A(x) \nu B d\mu(x) = \sum_{k=1}^{\infty} \int_X \mathbb{1}_{A_k}(x) \cdot \nu B_k d\mu(x) = \sum_{k=1}^{\infty} \mu A_k \cdot \nu B_k = \sum_{k=1}^{\infty} m_0(A_k \times B_k)$ σ -конечность m_0 : $X = \bigsqcup_{j=1}^{\infty} X_j, Y = \bigsqcup_{j=1}^{\infty} Y_j, \mu X_j < +\infty, \nu Y_k < +\infty$ $X \times Y = \bigsqcup_{k,j=1}^{\infty} X_j \times Y_k$ $m_0(X_j \times Y_k) < +\infty.$

Определение 2.15. (X, \mathcal{A}, μ) и (Y, \mathcal{B}, ν) – пространства с σ -конечными мерами. Произведения мер μ и ν – стандратное продолжение меры m_0 .

Обозначение: $\mu \times \nu$, $\mathcal{A} \otimes \mathcal{B} - \sigma$ -алгебра, на которую продолжили. $(X \times Y, \mathcal{A} \otimes \mathcal{B}, \mu \times \nu)$

Свойства. 1. Декартово произвдедение измер мн-в – измеримо.

2. Если $\mu e = 0$, то $(\mu \times \nu)(e \times Y) = 0$.

Доказательство. 1.
$$A \in \mathcal{A} \implies A = \bigcup_{n=1}^{\infty} A_n, \ \mu A_n < +\infty$$
 $B \in \mathcal{B} \implies B = \bigcup_{n=1}^{\infty} B_n, \ \nu B_n < +\infty$ $A \times B = \bigcup_{k,n=1}^{\infty} \underbrace{A_k \times B_k}_{\in \mathcal{D}}$ – измер.

2.
$$Y = \bigsqcup_{k=1}^{\infty} Y_k, \ \nu Y_k < +\infty$$

 $e \times Y = \bigsqcup_{k=1}^{\infty} e \times Y_k, \ (\mu \times \nu)(e \times Y_k) = \mu e \cdot \nu Y_k = 0$

Замечание. Обозначения: $C \subset X \times Y, x \in X$.

$$C_x := \{ y \in Y : (x, y) \in C \}$$
 – сечения мн-ва C .
 $C^y := \{ x \in X : (x, y) \in C \}$

Cnedembue. 1.
$$\left(\bigcup_{\alpha\in I} C_{\alpha}\right)_{x} = \bigcup_{\alpha\in I} (C_{\alpha})_{x}$$

2.
$$\left(\bigcap_{\alpha \in I} C_{\alpha}\right)_{x} = \bigcap_{\alpha \in I} (C_{\alpha})_{x}$$

Определение 2.16. Пусть функция f задана на мн-ве E, за исключением некоторого мн-ва e, $\mu e = 0$. Если f измерима на $E \setminus e$, то f измерима на E в **широком смысле**.

Определение 2.17. Система множеств - монотонный класс, если

1.
$$E_1 \subset E_2 \subset E_3 \subset \dots$$
, $E_n \in \epsilon \implies \bigcup_{n=1}^{\infty} E_n \in \epsilon$

2.
$$E_1 \supset E_2 \supset E_3 \supset \dots, E_n \in \epsilon \implies \bigcap_{n=1}^{\infty} E_n \in \epsilon$$

Теорема 2.26. Если монотонный класс содержит алгебру \mathcal{A} , то он содержит и $\mathcal{B}(\mathcal{A})$.

Доказательство. Докажем, что минимальный монотонный класс \mathcal{M} , содержащий $\mathcal{A}-\sigma$ -алгебра.

Рассмотрим $A \in \mathcal{A}$, $\mathcal{M}_A := \{B \in \mathcal{M}: A \cap B \in \mathcal{M} \land A \cap (X \setminus B) \in \mathcal{M}\}$ – монотонный класс, содержащий \mathcal{A} .

Если
$$B \in \mathcal{A}$$
, то $B \cap A \in \mathcal{A} \subset \mathcal{M}$ и $A \cap (X \setminus B) \in \mathcal{A} \subset \mathcal{M} \implies \mathcal{M}_A \supset \mathcal{A}$

$$E_1 \subset E_2 \subset \dots, E_n \in \mathcal{M}_A \implies E_n \cap A \in \mathcal{M} \implies \bigcup_{E_n} \cap A = \bigcup (E_n \cap A) \in \mathcal{M}$$

Следовательно
$$\mathcal{M}_A = \mathcal{M} \implies \forall B \in \mathcal{M}, \ A \cap B \in \mathcal{M} \land A \setminus B \in \mathcal{M}$$

 $\implies \mathcal{M}$ – симметричная структура.

Рассмотрим $B \in \mathcal{M}$: $\mathcal{N}_B := \{C \in \mathcal{M} : B \cap C \in \mathcal{M}\}$ – монотонный класс, содержащий \mathcal{A} (проверка по аналогии с предыдщуим случаем).

$$\implies \mathcal{N}_B = \mathcal{M} \implies \forall C \in \mathcal{M}, \ B \cap C \in \mathcal{M} \implies \mathcal{M}$$
 – алгебра.

$$A = \bigcup_{n=1}^{\infty} A_n, \ E_n = \bigcup_{k=1}^n A_k \in \mathcal{M}, \ E_1 \subset E_2 \subset \dots$$

$$\Longrightarrow \bigcup_{i=1}^{n-1} E_n \in \mathcal{M}$$
, так как \mathcal{M} – монотонный класс.

Теорема 2.27. Принцип Кавальери.

 $(X, A, \mu), (Y, B, \nu)$ - пространства с полными σ -конечными мерами.

$$C \in \mathcal{A} \otimes \mathcal{B}, \ m = \mu \times \nu.$$
 Тогда

- 1. $C_x \in \mathcal{B}$ при почти всех $x \in X$.
- 2. $\phi(x) := \nu C_x$ измеримая в широком смысле.

3.
$$mC = \int_{Y} \nu C_x d\mu(x)$$

Доказательство. Меры конечны и $C \in$

$$\mathscr{B}$$
 $(\mathcal{A} \times \mathcal{B}).$

борелевская оболочка (см. определение 1.7)

 \mathcal{E} – система мн-в, в $\mathscr{B}(\mathcal{A} \times \mathcal{B})$, такая что, если $E \in \mathcal{E}$, то $E_x \in \mathcal{B} \ \forall x \in X$ и $\phi(x) = \nu E_x$ – измеримая функция.

Шаг 1.
$$\mathcal{E} = \mathcal{B}(\mathcal{A} \times \mathcal{B})$$

 \mathbf{a} . \mathcal{E} – измеримая система.

$$(X \times Y \setminus E)_x = Y \setminus E_x \in \mathcal{B}, \ \nu(Y \setminus E_x) = \nu Y - \phi(x)$$
 – измеримая.

б. $E_1 \subset E_2 \subset E_3 \subset \dots$ из $\mathcal{E} \implies \bigcup E_n \in \mathcal{E}$.

$$\left(\bigcup_{n=1}^{\infty} E_n\right)_x = \bigcup_{n=1}^{\infty} \underbrace{\left(E_n\right)_x}_{\in \mathcal{B}}$$

 $\nu\left(\bigcup_{n=1}^{\infty}(E_n)_x\right)=\lim \nu(E_n)_x$ – измеримая функция.

в. $E_1 \supset E_2 \supset E_3 \supset \dots$ из $\mathcal{E} \implies \bigcap_{n=1}^{\infty} E_n \in \mathcal{E}$ (можно переходить к дополнениям).

 \mathbf{r} . (б) + (в) $\Longrightarrow \mathcal{E}$ - монотонный класс.

д.
$$\mathcal{E} \supset$$
 измеримый прямоугольник $E = \mathcal{A} \times \mathcal{B} \implies E_x = \begin{cases} B, \text{ если } x \in \mathcal{A} \\ \varnothing, \text{ иначе} \end{cases}$,

$$u E_x = \begin{cases} 0 \\ \nu \mathcal{B} \end{cases}$$
 – измеримая функция.

е. Если E и $\tilde{E} \in \mathcal{E}$, то $E \sqcup \tilde{E} \in \mathcal{E}$.

$$(E \sqcup \tilde{E})_x = \underbrace{E_x}_{\in \mathcal{B}} \sqcup \underbrace{\tilde{E}_x}_{\in \mathcal{B}} \in \mathcal{B}$$

$$u\left((E\sqcup \tilde{E})_x\right)=\nu E_x+\nu \tilde{E}_x$$
 – сумма измеримых функций.

ж. \mathcal{E} содержит дизъюнктивное объединение всевозможных изм. прямоугольников $\implies \mathcal{E}$ содержит кольцо $\implies \mathcal{E}$ содержит алгебру $\implies \mathcal{E} \supset \mathscr{B}(\mathcal{A} \times \mathcal{B}).$

по т. о монотонном классе

Мы сейчас проверили, что если $C \in \mathcal{B}(\mathcal{A} \times \mathcal{B})$, то первые два пункта теоремы выполнены. Давайте для этой эе упрощенной ситуации проверять 3-ий пункт.

Шаг 2. Формула (3) для $C \in \mathcal{B}(\mathcal{A} \times \mathcal{B})$.

Рассмотрим $\int_X \nu E_x d\mu(x) =: \tilde{m}E$ – хотим сказать, что это мера на $\mathscr{B}(\mathcal{A} \times \mathcal{B})$.

Пусть E_n – дизъюнктны \Longrightarrow $\tilde{m}(\bigsqcup E_n) = \int_X \nu\left(\bigsqcup(E_n)_x\right) d\mu(x) = \int_X \sum_{n=1}^\infty \nu(E_n)_x d\mu(x) = \sum_{n=1}^\infty \int_X \nu(E_n)_x d\mu(x) = \sum_{n=1}^\infty \tilde{m} E_n.$

 $m=\tilde{m}$ на измеримых прямоугольниках \implies они совпадают. Получили, что хотели.

Шаг 3.
$$mC=0,\ C\in\mathcal{A}\otimes\mathcal{B}\implies$$
 найдется $\tilde{C}\in\mathscr{B}(\mathcal{A}\times\mathcal{B}),$ т.ч. $C\subset\tilde{C}$ и $m\tilde{C}=0.$

$$0 = m\tilde{C} = \int_{X} \nu \tilde{C}_{x} d\mu(x) \implies \nu \tilde{C}_{x} = 0$$
 при почти всех $x \in X$.

 $C_x \subset \tilde{C}_x \implies C_x \in \mathcal{B}$ при почти всех $x \in X$ и $\nu C_x = 0$ при потчи всех $x \in X$.

$$mC = 0 = \int_X \nu C_x d\mu(x).$$

Шаг 4. $C \in \mathcal{A} \otimes \mathcal{B} \implies C = \tilde{C} \sqcup e, \ \tilde{C} \in \mathcal{B}(\mathcal{A} \times \mathcal{B}), \ me = 0.$

$$C_x = \underbrace{\tilde{C}_x}_{\text{изм. } \forall x \in X} \sqcup \underbrace{e_x}_{\text{изм. при почти всех } x}, \ \nu C_x = \nu \tilde{C}_x + \nu e_x = \nu \tilde{C}_x.$$

$$mC = m\tilde{C} + me = m\tilde{C} = \int_X \nu \tilde{C}_x d\mu(x) = \int_X \nu C_x d\mu(x).$$

IIIar 5.
$$X = \bigsqcup_{n=1}^{\infty} X_n, Y = \bigsqcup_{k=1}^{\infty} Y_k, \mu X_n < +\infty.$$

$$X \times Y = \bigsqcup_{n,k=1}^{\infty} X_n \times Y_k$$

 $C \in \mathcal{A} \otimes \mathcal{B}, C_{nk} = C \cap X_n \times Y_k \implies C_{nk}$ удовлетворяет теореме.

$$C_x = \bigsqcup_{n,k=1}^{\infty} (C_{nk})_x$$

$$mC = \sum_{n,k=1}^{\infty} mC_{nk} = \sum_{n,k=1}^{\infty} \int_{X} \nu(C_{nk})_x d\mu(x) = \int \sum \dots = \int_{X} \nu C_x d\mu.$$

Замечание. 1. Нужна лишь полнота ν .

2. Измеримость всех C_x не гарантирует измеримость C.

Доказательство.
$$\mathbb{R}^2$$
, $E \subset \mathbb{R}$ – неизмеримое, $E \times [0,1]$

3. Среди C_x могут попадаться неизмеримые.

Доказательство.
$$\mathbb{R}^2$$
, $E \subset \mathbb{R}$ – неизмеримые, $\{0\} \times E$

4. Хочется интегрировать не по X, а по проекции, то есть $P := \{x \in X : C_x \neq \emptyset\}$. Но P может быть неизмеримо.

Доказательство. $E \subset \mathbb{R}$ — неизмеримое, решение проблемы, это взять $\tilde{P} := \{x \in X : \nu C_x > 0\}$ — измеримое.

Определение 2.18. (X, \mathcal{A}, μ) – пр-во с σ -конечной мерой.

$$f:X o \overline{\mathbb{R}},\ f\geq 0,\ E\in\mathcal{A},\ m=\mu imes$$
одномерная мера Лебега

График функции над мн-вом E:

$$\Gamma_f(E) := \{(x, y) \in E \times \mathbb{R} : y = f(x)\}$$

Подграфик функции над мн-вом E:

$$\mathcal{P}_f(E) := \{ (x, y) \in E \times \mathbb{R} : 0 \le y \le f(x) \}$$

Лемма. (Лемма 1).

Если f – измеримая, то $m\Gamma_f = 0$.

Доказательство. Пусть $\mu X < +\infty$. Возьмем $\epsilon > 0$ и $A_n := X\{\epsilon \cdot n \le f < \epsilon \cdot (n+1)\}$

$$\Gamma_f \subset \bigsqcup_{n \in \mathbb{Z}} (A_n \times [\epsilon \cdot n, \epsilon \cdot (n+1)]) =: A.$$

$$mA = \sum_{n \in \mathbb{Z}} m \left(A_n \times [\epsilon \cdot n, \epsilon \cdot (n+1)] \right) = \epsilon \cdot \sum_{n \in \mathbb{Z}} \mu A_n = \epsilon \cdot \mu X$$
 – сколь угодно маленькое.

Пусть μ – σ -конечна. $X = \bigsqcup_{n=1}^{\infty} X_n, \ \mu X_n < +\infty,$

$$\Gamma_f = \bigsqcup_{n=1}^{\infty} \Gamma_f(X_n)$$
 – нулевой меры.

Лемма. (Лемма 2).

 $f \geq 0$ – измерима в широком смысле $\implies \mathcal{P}_f$ – измеримое мн-во.

Доказательство. 1. Пусть f – простая $\Longrightarrow f = \sum_{k=1}^n a_k \mathbb{1}_{A_k} \Longrightarrow \mathcal{P}_f = \bigsqcup_{k=1}^n A_k \times [0, a_k]$ – измеримое.

2. Пусть f – измеримая $\implies 0 \le \phi_1 \le \phi_2 \le \cdots \le \phi_n \to f$ – простые $\phi_i, \mathcal{P}_{\phi_n} \subset \mathcal{P}_f$.

$$\mathcal{P}_f \setminus \Gamma_f \subset \bigcup_{n=1}^{\infty} \mathcal{P}_{\phi_n} \subset \mathcal{P}_f.$$

Берем $x \in X$.

Если

(a) $f(x) = +\infty$, то $\phi_n(x) \to +\infty$, над точкой x, $[0, \phi_n(x)]$ их объединие будет луч.

(b)
$$f(x) < +\infty$$
, to $\phi_n(x) \to f(x)$, $\bigcup [0, \phi_n(x)] \supset [0, f(x)]$

Теорема 2.28. (О мере подграфика).

 (X,\mathcal{A},μ) – пространство с σ -конечной мерой, $f\geq 0,\ f:X\to\overline{\mathbb{R}},\ m=\mu\times\lambda_1.$

Тогда f – измеримая в широком смыслке $\Leftrightarrow \mathcal{P}_f$ – измер. и в этом случае $\int_X f d\mu = m \mathcal{P}_f$.

Доказательство. "⇒": Лемма 2.

" \Leftarrow ": принцип Кавальери для \mathcal{P}_f :

$$(\mathcal{P}_f)_x = \begin{cases} [0, +\infty), \text{ при } f(x) = +\infty\\ [0, f(x)), \text{ при } f(x) < +\infty \end{cases}$$
 (5)

$$\phi(x) := \lambda_1(\mathcal{P}_f)_x = \underbrace{f(x)}_{}$$

$$\phi(x):=\lambda_1(\mathcal{P}_f)_x=\underbrace{f(x)}_{ ext{измеримая в широком смысле}}$$
 $m\mathcal{P}_f=\int_X \underbrace{\lambda\left((\mathcal{P}_f)_x\right)}_{=f(x)} d\mu(x)$ — получили, что хотели.

Теорема 2.29. Тонелли.

 $(X, A, \mu), (Y, B, \nu)$ – пространства с полными σ -конечными мерами.

 $f: X \times Y \to \overline{\mathbb{R}} \geq 0$, измеримая, $m = \mu \times \nu$.

Тогда:

- 1. $f_x(y) := f(x,y)$ измерима, относительно ν в широком смысле при почти всех $x \in X$.
- 2. $\phi(x) := \int_{V} f(x,y) d\nu(y)$ измерима относительно ν .
- 3. $\int_{X \times Y} f dm = \int_{Y} \phi d\mu = \int_{Y} \left(\int_{Y} f(x, y) d\nu(y) \right) d\mu(x)$

Доказательство. 1. Пусть $f = \mathbb{1}_C$ (характеристическая функция мн-ва C), тогда $f_x(y) =$ $\mathbb{1}_{C_{r}}(y)$.

$$\int_Y f_x(y) d\nu(y) = \int_Y \mathbb{1}_{C_x}(y) d\nu(y) = \nu C_x$$

$$\int_{X\times Y} f dm = \int_{X\times Y} \mathbb{1}_C dm = mC = \int_X \nu C_x d\mu(x) = \int_X \phi d\mu.$$

- 2. Пусть $f \ge 0$ простая, тогда $f = \sum_{k=1}^{n} a_k \mathbb{1}_{A_k}$
- 3. Пусть $f \ge 0$ измеримая, тогда берем последовательность простых функций $0 \le f_1 \le f_2 \le$ \dots , $\lim f_n = f$.

 $(f_n)_x(y)$ – измерим. при почти всех x.

 $(f_n)_x \nearrow f_x$ – измерим. при почти всех x.

$$\phi_n(x) = \int_Y f_n(x,y) d\nu(y)$$
 – измерим. и $0 \le \phi_1 \le \phi_2 \le \dots$

$$\lim \phi_n(x) = \int_Y \lim f_n(x,y) d\nu(y) = \int_Y f(x,y) d\nu(y) = \phi(x) - \text{измерим.}$$

$$\int_{X \times Y} f dm \underset{\text{т. Леви}}{\longleftarrow} \int_{X \times Y} f_n dm = \int_X \phi_n d\mu \to \int_X \phi d\mu.$$

Теорема 2.30. Фубини.

 $(X, A, \mu), (Y, B, \nu)$ – пространства с полными σ -конечными мерами.

 $f: X \times Y \to \overline{\mathbb{R}} \ge 0$, суммируема, $m = \mu \times \nu$.

Тогда:

- 1. $f_x(y) := f(x,y)$ суммируема, относительно ν в широком смысле при почти всех $x \in X$.
- 2. $\phi(x) := \int_{V} f(x,y) d\nu(y)$ суммируема относительно ν .
- 3. $\int_{X\times Y} fdm = \int_X \phi d\mu = \int_X \left(\int_Y f(x,y) d\nu(y) \right) d\mu(x)$

Доказательство. (*) : $\int_{X \times Y} |f| dm < +\infty$ – следует из суммируемости f.

$$(*) \underbrace{=}_{\text{т. Тонелли}} = \int_X \underbrace{\int_Y |f(x,y)| d\nu(y)}_{:=\alpha(x)} d\mu(x)$$

$$lpha(x) = \underbrace{\int_Y |f(x,y)| d
u(y)}_{\Rightarrow f_x - \text{суммируема при почти всех } x \in X.$$

$$\int_X |\phi| d\mu = \int_X \left| \int_Y f(x,y) d\nu(y) \right| d\mu(x) \le \int_X \int_Y |f(x,y)| d\nu(y) d\mu(x) = \int_{X \times Y} |f| dm < +\infty$$
 $\Longrightarrow \phi$ — суммируема.

$$\int_{X\times Y} f_{\pm} dm = \int_{X} \left(\int_{Y} f_{\pm}(x,y) d\nu(y) \right) d\mu(x) \text{ и вычтем } f = f_{+} - f_{-}.$$

Следствие. Если $f \ge 0$ и измеримая или f – суммируемая, то

(**):
$$\int_X \left(\int_Y f(x,y) d\nu(y) \right) d\mu(x) = \int_Y \left(\int_X f(x,y) d\mu(x) \right) d\nu(y).$$

Следствие. $(X, \mathcal{A}, \mu), (Y, \mathcal{B}, \nu)$ – пространства с полными σ -конечными мерами.

 $f: X \to \overline{\mathbb{R}}$ – суммируема по $\mu, q: Y \to \overline{\mathbb{R}}$ – суммируема по ν .

Тогда $h(x,y)=f(x)\cdot g(y)$ суммируема по $m=\mu\times \nu$ и $\int_{X\times Y}hdm=\int_Xfd\mu\cdot\int_Ygd\nu.$

Доказательство.
$$\int_{X \times Y} |h| dm = \int_{T. \text{ Тонелли}} = \int_{X} \left(\int_{Y} |f(x)| |g(y)| d\nu(x) \right) d\mu(x) = \int_{X} \int_{X} \left(\int_{Y} |f(x)| |g(y)| d\nu(x) \right) d\mu(x) = \int_{X} \int_{X} \left(\int_{Y} |f(x)| |g(y)| d\nu(x) \right) d\mu(x) = \int_{X} \int_{X} \left(\int_{Y} |f(x)| |g(y)| d\nu(x) \right) d\mu(x) = \int_{X} \int_{X} \left(\int_{Y} |f(x)| |g(y)| d\nu(x) \right) d\mu(x) = \int_{X} \int_{X} \left(\int_{Y} |f(x)| |g(y)| d\nu(x) \right) d\mu(x) = \int_{X} \int_{X} \left(\int_{Y} |f(x)| |g(y)| d\nu(x) \right) d\mu(x) = \int_{X} \int_{X} \left(\int_{Y} |f(x)| |g(y)| d\nu(x) \right) d\mu(x) = \int_{X} \int_{X} \left(\int_{Y} |f(x)| |g(y)| d\nu(x) \right) d\mu(x) = \int_{X} \int_{X} \left(\int_{Y} |f(x)| |g(y)| d\nu(x) \right) d\mu(x) = \int_{X} \int_{X} \left(\int_{Y} |f(x)| |g(y)| d\nu(x) \right) d\mu(x) = \int_{X} \int_{X} \left(\int_{Y} |f(x)| |g(y)| d\nu(x) \right) d\mu(x) = \int_{X} \int_{X} \left(\int_{Y} |f(x)| |g(y)| d\nu(x) \right) d\mu(x) = \int_{X} \int_{X} \left(\int_{Y} |f(x)| |g(y)| d\nu(x) \right) d\mu(x) = \int_{X} \int_{X} \left(\int_{Y} |f(x)| |g(y)| d\nu(x) \right) d\mu(x) = \int_{X} \int_{X} \left(\int_{Y} |f(x)| |g(y)| d\nu(x) \right) d\mu(x) = \int_{X} \int_{X} \left(\int_{Y} |f(x)| |g(y)| d\nu(x) \right) d\mu(x) = \int_{X} \int_{X} \left(\int_{Y} |f(x)| d\mu(x) \right) d\mu(x) d\mu(x) = \int_{X} \int_{X} \left(\int_{Y} |f(x)| d\mu(x) \right) d\mu(x) d\mu(x) d\mu(x) d\mu(x) d\mu(x) = \int_{X} \int_{X} \left(\int_{Y} |f(x)| d\mu(x) d$$

$$=\int_X |f(x)|\cdot \int_Y |g(y)| d\nu(y) d\mu(x) = \int_Y |g| d\nu \cdot \int_X |f| d\mu < +\infty \implies h$$
 – суммируема.

По Фубини пишем все без модулей.

- 1. Суммируемости $f_x(y) = f(x,y), \ f^y(x) = f(x,y), \ \phi(x) = \int_X f_x d\nu, \ \psi(y) = \int_X f^y d\mu$ не хватает для суммируемости f по мере m.
 - 2. Без суммируемости f по m равенства (**) может не быть.

Пример.
$$\mathbb{R}^2$$
, $f(x,y) = \frac{x^2 - y^2}{(x^2 + y^2)^2}$, $g(x,y) = \frac{2xy}{(x^2 + y^2)^2}$

Первообразные:

1.
$$\int f(x,y)dx = -\frac{x}{x^2+y^2}$$

2.
$$\int g(x,y)dx = -\frac{y}{x^2+y^2}$$

Подставляем:

1.
$$\int_{[-1,1]} f(x,y) dx = -\frac{x}{x^2 + y^2} \Big|_{x=-1}^{x=1} = \frac{-2}{y^2 + 1}$$

$$\int_{[-1,1]} \int_{[-1,1]} f(x,y) dx dy = -2 \int_{[-1,1]} \frac{dy}{y^2 + 1} = -2 \cdot \arctan(y)|_{-1}^1 = -\pi$$

 $\int_{[-1,1]} \int_{[-1,1]} f(x,y) dy dx = \pi$ – не совпали из-за отсутствия суммируемости.

2.
$$\int_{[-1,1]} g(x,y)dx = -\frac{y}{x^2+y^2}\Big|_{x=-1}^{x=1} = 0$$

Теорема 2.31. (X, \mathcal{A}, μ) – пространство с σ -конечной мерой, $f: X \to \overline{\mathbb{R}}$ – измерим.

 $\int_X |f| d\mu = \int_0^{+\infty} \mu X\{|f| \ge t\} dt$ (в скобках записана функция распределения).

Доказательство. $m = \mu \times \lambda_1$.

$$\int_{X} |f| d\mu = m \mathcal{P}_{|f|} = \int_{[0,+\infty]} \left(\int_{X} \underbrace{\mathbb{1}_{\mathcal{P}_{|f|}}(x,t)}_{=1 \Leftrightarrow |f(x)| \ge t} d\mu(x) \right) d\lambda_{1}(t) = \int_{[0,+\infty]} \mu X\{|f| \ge t\} d\lambda_{1}(t).$$

1. В условии теоремы $\int_{X} |f| d\mu = \int_{0}^{+\infty} \mu X\{|f| > t\} dt$ Следствие.

Доказательство. $g(t) := \mu X\{|f| \ge t\}$ – монотонно возраст., не более чем счтеное число точек разрыва.

$$\mu X\{|f|>t\}=\lim \mu X\{|f|\geq t+\frac{1}{n}\}=\lim_{n\to\infty}g(t+\frac{1}{n})=\lim_{s\to t+}g(s)=g(t)$$
 при почти всех $t.$
$$X\{|f|>t\}=\bigcup_{n=1}^{\infty}X\{|f|\geq t+\frac{1}{n}\}$$

2.
$$\int_X |f|^p d\mu = \int_0^{+\infty} pt^{p-1} \mu X\{|f| \ge t\} dt$$
 при $p > 0$.

Доказательство. $\int_X |f|^p d\mu = \int_0^{+\infty} \mu X\{|f|^p \ge t\} dt = \int_0^{+\infty} \mu X\{|f| \ge t^{\frac{1}{p}}\} dt = \int_0^{+\infty} g(t^{\frac{1}{p}}) dt = \int_0^{+\infty} p s^{p-1} g(s) ds$

Гле
$$t = s^p$$
, $s = t^{\frac{1}{p}}$, $dt = ps^{p-1}ds$.

2.7. Замена переменной

Oпределение 2.19. Ω и $\tilde{\Omega} \subset \mathbb{R}^m$ – открытые.

$$\Phi:\Omega\to\tilde{\Omega}.$$

Ф – диффеоморфизм, если

- 1. Ф − биекция.
- 2. Ф − непр. дифф.
- 3. Φ^{-1} непр. дифф.

Замечание. $Id = \Phi^{-1} \circ \Phi \implies x = (\Phi(x)^{-1})' \cdot (\Phi(x)) \cdot \Phi'(x) \implies 1 = det(\Phi^{-1})'(\Phi(x)) \cdot det(\Phi'(x)).$

Замечание. Обозначение.

$$J_{\Phi} := det\Phi'$$

якобиан = определитель матрицы Якоби.

Теорема 2.32. (о замене переменной).

 $\Phi:\Omega\to \tilde{\Omega}$ диффеоморфизм. $\Omega,\tilde{\Omega}\subset \mathbb{R}^m$ откр., $f:\tilde{\Omega}\to \tilde{\mathbb{R}},\ f\geq 0$ измеримая. Тогда

$$\int_{\tilde{\Omega}} f d\lambda_m = \int_{\Omega} f(\Phi(x)) |J_{\Phi}(x)| d\lambda_m.$$

Такая же формула есть и для суммир. функций f.

Частные случаи:

1. Сдвиг: $\Phi(x) = x + a, \ a \in \mathbb{R}^m$.

$$\int_{\mathbb{R}^m} f d\lambda_m = \int_{\mathbb{R}^m} f(x+a) d\lambda_m(x)$$

2. $L: \mathbb{R}^m \to \mathbb{R}^m$ обратимое линейное отображение.

$$\int_{\mathbb{R}^m} f d\lambda_m = \int_{\mathbb{R}^m} f(Lx) |det L| d\lambda_m(x)$$

3. Гомотетия: $Lx = c \cdot x, c \in \mathbb{R}, c > 0$.

$$\int_{\mathbb{R}^m} f d\lambda_m = c^m \cdot \int_{\mathbb{R}^m} f(c \cdot x) d\lambda_m(x).$$

Лемма. (о расщеплении).

 $\Phi: \Omega \to \tilde{\Omega}$ – диффеоморфизм, $\Omega, \tilde{\Omega} \subset \mathbb{R}^m$ – открытые, $a \in \Omega, 1 \leq k \leq m-1$.

Тогда существует U_a и $\Phi_2: U_a \to \mathbb{R}_m$, $\Phi_1: \Phi_2(U_a) \to \mathbb{R}^m$, т.ч. $\Phi = \Phi_1 \circ \Phi_2$.

 Φ_1 – осталяет на месте k координат, а Φ_2 – оставляет на месте m-k координат.

Доказательство.
$$x, u \in \mathbb{R}^m, \ y, v \in \mathbb{R}^{m-k}, \ \Phi(x,y) = \left(\underbrace{\phi(x,y)}_{\in \mathbb{R}^k}, \ \underbrace{\psi(x,y)}_{\in \mathbb{R}^{m-k}}\right).$$

$$\Phi_1(x,y) = (x, \underbrace{f(x,y)}_{\in \mathbb{R}^{m-k}})$$

$$\Phi_2(x,y) = (\underbrace{g(x,y)}_{\in \mathbb{R}^k}, y)$$

$$\Phi_1(\Phi_2(x,y)) = (*)$$

$$(*) = \Phi_1(g(x,y), y) = (g(x,y), f(g(x,y), y))$$

$$(*) = (\phi(x,y), \psi(x,y)) \implies g(x,y) := \phi(x,y)$$

$$\implies f(u,v) = \psi(\Phi_2^{-1}(u,v))$$

$$f(\phi_2(x,y)) = f(\phi(x,y),y) = \psi(x,y)$$

Нужна локальная обратимость Φ_2 , а для этого нужна обратимость $\Phi_2'(a)$, то есть $det(\Phi_2'(a)) \neq 0$.

$$\Phi_2(x,y) = (\phi(x,y), y), \ \Phi'_2(x,y) = \begin{pmatrix} \phi'_x & \phi'_y \\ 0 & E \end{pmatrix}, \ det(\Phi'_2) = det(\Phi_x).$$

$$\Phi(x,y) = (\phi(x,y), \ \psi(x,y))$$

$$\Phi' = \begin{pmatrix} \phi_x' & \phi_y' \\ \psi_x' & \psi_y' \end{pmatrix}$$

блок $k \times k$, ненулевой минор найдется.

Следствие. $\Phi: \Omega \to \tilde{\Omega}$ – диффеоморфизм, $a \in \Omega, \ \Omega, \tilde{\Omega} \subset \mathbb{R}^m$ – открытые.

Тогда существует U_a , т.ч. $\Phi|_{U_a} = \Phi_1 \circ \Phi_2 \circ \dots \Phi_m$, где Φ_j – диффеоморфизм, оставляющие на месте все координаты, кроме одной (но их перенумерующие).

Доказательство. Индукция + предыдущая лемма.

Теорема 2.33. Линделефа.

 $A \subset \mathbb{R}^m$, A – покрыто открытыми мн-вами.

Тогда из него можно выделить не более чем счетное подпокрытие.

Доказательство.
$$A\subset \bigcup_{\alpha\in I}\left(\underbrace{G_{\alpha}}_{\text{открытое}}\right)$$
.

Берем $a \in A$, рисуем картинку, которую кто-нибудь *обязательно* добавит.

Пусть U_a – шарик с рациональным центром и рациональным радиусом. $a \in U_a$ и U_a содержатся в каком-то элементе покрытия. Очевидно, что $a \in U_a \subset G_{\alpha_i}$, тогда выкинем все лишние G_{α} , а остальных останется не более чем счетное кол-во (так как U_a с рацинальным центром и радиусом, а таких счетное кол-во), при этом они покрывают A.

Теорема 2.34. (об изменении меры множества при диффеоморфизме).

$$\Phi:\Omega\to\tilde{\Omega}$$
 – диффеоморфизм, $\Omega,\tilde{\Omega}\subset\mathbb{R}^m$ – открытые, $A\subset\Omega$ – измеримое.

Тогда
$$\lambda_m \Phi(A) = \int_A |J_{\Phi}| d\lambda_m$$
.

Замечание. Если теорема верна для конкретного Φ и произвольного A, то для того же Φ верна формула замена переменной.

Формула замены переменной:

$$\int_{\tilde{\Omega}} f d\lambda_m = \int_{\Omega} f \circ \Phi |J_{\Phi}| d\lambda_m.$$

Доказательство. Замечания.

$$f = \mathbb{1}_{\Phi(A)}, \ A \subset \Omega.$$

$$\int_{\tilde{\Omega}} f d\lambda_m = \int_{\tilde{\Omega}} \mathbb{1}_{\Phi(A)} d\lambda_m = \Phi(A) = \int_A |J_{\Phi}| d\lambda_m = \int_{\Omega} \mathbb{1}_A |J_{\Phi}| d\lambda_m.$$

$$\mathbb{1}_{\Phi(A)}(\Phi(x)) = \mathbb{1}_A.$$

Нужно проверить для простых, а дальше для измеримых, в общем, все раскручивается (так говорил Храбров...). \Box

Доказательство. Теоремы.

Шаг 1. Пусть $\Omega \subset \bigcup_{\alpha \in I} G_{\alpha}$. Если т. верна для каждого G_{α} , то она верна и для Ω .

Выбираем нбчс подпокрытие $\Omega \subset \bigcup_{k=1}^{\infty} G_k$.

$$\lambda_m \Phi\left(A \cap G_k\right) = \int_{A \cap G_k} |J_{\Phi}| d\lambda_m$$
 и просуммируем $A \cap \left(G_k \setminus \bigcup_{j=1}^{k-1} G_j\right)$.

Шаг 2. Если т. верна для диффеоморфизмов Φ и Ψ , то она верна и для $\Psi \circ \Phi$.

$$\lambda_m \Psi(\Phi(A)) = \int_{\Phi(A)} |J_{\Psi}| d\lambda_m = \int_{\tilde{\Omega}} \underbrace{\mathbb{1}_{\Phi(A)} \cdot |J_{\Psi}|}_{=: f} d\lambda_m =$$

$$= \int_{\Omega} \underbrace{\mathbb{1}_{\Phi(A)} \circ \Phi}_{-1} \cdot |J_{\Psi} \circ \Phi| \cdot |J_{\Phi}| d\lambda_m =$$

$$= \int_{A} |J_{\Psi}(\Phi(x))| |J_{\Phi}(x)| d\lambda_{m}(x).$$

$$\det(\Psi'(\Phi(x))) \cdot \det(\Phi'(x)) = \det\left(\Psi'(\Phi(x)) \cdot \Phi'(x)\right) = \det(\Psi \circ \Phi)' = J_{\Psi \circ \Phi}.$$

Шаг 3. m=1. $\Phi(x)$ – строго монот. и непр. дифф.

$$\nu A := \lambda_1(\phi(A)) - \text{mepa.}$$

$$\mu A := \int_A |\phi'| d\lambda_1 - \text{Mepa.}$$

Хотим проверить, что $\nu = \mu$, тогда проверим, что они совпадают на ячейках (a, b] (а по единственности продолжения получим, что нужно).

$$\lambda(\phi(a,b]) = \int_{(a,b]} |\phi'| d\lambda.$$

Эти значения стремятся к тем, что выше, соответственно. $\lambda(\phi[a+\frac{1}{n},b])=\int_{[a+\frac{1}{n},b]}|\phi'|d\lambda$

Эти равны тем, что выше, соответственно. $\phi(b) - \phi(a + \frac{1}{n}) = \int_{a + \frac{1}{n}}^{b} \phi' d\lambda$, если ϕ – возрастает, $\phi[a + \frac{1}{n}, b] = [\phi(a + \frac{1}{n}), \phi(b)]$

Шаг 4. Φ оставляет на месте m-1 коорд. $x=(\underbrace{y}_{\in \mathbb{R}^{m-1}},\underbrace{t}_{\in \mathbb{R}}).$

$$\Phi(y,t) = (y,\phi(y,t)).$$

$$\lambda_m \Phi(A) = \int_{\mathbb{R}^{m-1}} (\lambda_1 \Phi(A))_y \, d\lambda_{m-1}(y) = \int_{\mathbb{R}^{m-1}} \lambda_1 \left(\phi(y, A_y) \right) \, d\lambda_{m-1}(y) \underbrace{=}_{(*)}.$$

$$\underbrace{t \in (\Phi(A))_y}_{t' \in A_y} \Leftrightarrow (y,t) \in \Phi(A) \Leftrightarrow \exists (y',t') \in A, \text{ т.ч. } (y,t) = \Phi(y',t') = (y',\phi(y',t')) \Leftrightarrow \exists t' : \underbrace{(y,t') \in A}_{t' \in A_y} \text{ и} \underbrace{(y,t) = (y,\phi(y,t'))}_{t=\phi(y,t')} \Leftrightarrow t \in \phi(y,A_y).$$

$$\underbrace{=}_{(*)} \int_{\mathbb{R}^{m-1}} \left(\int_{A_y} |\phi'(y,t)| d\lambda_1(t) d\lambda_{m-1}(y) \right) = \int_A |J_{\Phi}| \lambda_m.$$

$$\Phi' = \begin{pmatrix} E & 0 \\ \phi_y' & \phi_t' \end{pmatrix}$$

Дальше были какие-то умные слова. Я не успел записать...

Пример. Полярная замена. \mathbb{R}^2 .

$$(r,\phi) \to (r\cos(\phi), r\sin(\phi))$$

$$r \in (0, +\infty)$$

$$\phi \in (0, 2\pi)$$

$$\int_{\mathbb{R}^2} f(x, y) d\lambda_2 = \int_{[0, 2\pi] \times [0, +\infty)} \left(f(r \cos(\phi), r \sin(\phi)) \cdot r \right) dr d\phi.$$

$$\Phi' = \begin{pmatrix} \frac{dx}{dr} & \frac{dx}{d\phi} \\ \frac{dy}{dr} & \frac{dy}{d\phi} \end{pmatrix} = \begin{pmatrix} \cos(\phi) & -r\sin(\phi) \\ \sin(\phi) & r\cos(\phi) \end{pmatrix}$$

$$det = r$$

$$\int_{\mathbb{R}} e^{-x^2} dx, \ f(x,y) = e^{-x^2 - y^2}$$

$$\int_{\mathbb{R}^2} e^{-x^2 - y^2} dx dy = \int_{\mathbb{R}} e^{-x^2} dx \cdot \int_{\mathbb{R}} e^{-y^2} dy = \left(\int_{\mathbb{R}} e^{-x^2} dx \right)^2.$$

Полярная замена:

$$\int_0^{+\infty} \int_0^{2\pi} e^{-r^2} r d\phi dr = 2\pi \int_0^{+\infty} e^{-r^2} r dr = \pi \int_0^{+\infty} e^{-t} dt = \pi \cdot (-e^{-t})|_0^{+\infty} = \pi.$$

$$t = r^2, df = 2r dr$$

3. Интегралы с параметром и криволинейные интегралы

3.1. Собственные интегралы с параметрами

Утверждение 3.1. (X, \mathcal{A}, μ) – пр-во с мерой, T – метрическое пр-во, $f: X \times T \to \tilde{\mathbb{R}}, \ \forall t \in T, \ E_t \in \mathcal{A}, \ f(\cdot, t)$ – измеримая.

$$F(t) := \int_{E_t} f(x, t) d\mu(x).$$

1. t_0 – предельная точка.

$$\forall x \ f(x,t) \underbrace{\longrightarrow}_{t \to t_0} \dots \underbrace{\Longrightarrow}_{?} F(t) \underbrace{\longrightarrow}_{t \to t_0}$$

- 2. f(x,t) непрер. в точке t_0 , $\forall x \Longrightarrow_{\gamma} F$ непрер. в t_0 .
- 3. f(x,t) дифф. по $t, \ \forall x \Longrightarrow_{x} F$ дифф., какая формула для производной?
- 4. Если ν мера на T. $\int_T F(t) d\nu(t) = \int_T \int_{E_t} f(x,t) d\mu(x) d\nu(t) = \int_T \int_X \mathbbm{1}_{E_t}(x) \cdot f(x,t) d\mu(x) d\nu(t)$

Теорема 3.2. t_0 – предельная точка T. $f(\cdot,t)$ – суммируема $\forall t \in T, g(x) := \lim_{t \to t_0} f(x,t)$.

Локальное условие Лебега:

Пусть найдется окр-ть U_{t_0} и суммир. ф-я $\Phi: X \to \overline{\mathbb{R}}$, т.ч. $|f(x,t)| \le \Phi(x) \ \forall t \in U_{t_0}$.

Тогда $\lim_{t\to t_0} \left(\int_X f(x,t) d\mu(x) \right) = \int_X g(x) d\mu(x).$

Доказательство. Проверяем по Гейне. Берем $t_n \to t_0$, $f_n(x) := f(x, t_n)$, $\Phi(x) \ge |f(x, t_n)| = |f_n(x)|$ при больших n.

$$\underset{\text{т. Лебега}}{\Longrightarrow} \lim_{n \to \infty} \int_X f_n(x) d\mu(x) = \int_X \underbrace{\lim_{n \to \infty} f_n(x)}_{=g(x)} d\mu(x)$$

Определение 3.1. $f: X \times T \to \mathbb{R}, \ g: X \to \mathbb{R}, \ t_0$ – предельная точка $T, \ f(x,t) \underset{t \to t_0}{\Longrightarrow} g(x),$ если

 $\forall \epsilon > 0 \ \exists \delta > 0, \ \forall t \in T: \ \rho_T(t, t_0) < \delta, \ \forall x \in X: \ |f(x, t) - g(x)| < \epsilon.$

Замечание.
$$f(x,t) \underset{t \to t_0}{\Longrightarrow} g(x) \Leftrightarrow \sup_{x \in X} |f(x,t) - g(x)| \underset{t \to t_0}{\longrightarrow} 0$$

Следствие. Если $\mu X<+\infty,\ f(x,t)\underset{t\to t_0}{\Longrightarrow}g(x),\ \text{то}\ \int_X f(x,t)d\mu(x)\underset{t\to t_0}{\longrightarrow}\int_X gd\mu$ и g – суммируемая ф-я.

Доказательство. При t близких к t_0 : $|f(x,t) - g(x)| \le 1 \implies$ берем t_1 , для которого верно $|f(x,t_1) - g(x)| \le 1 \implies |g(x)| \le 1 + |f(x,t_1)| - \text{суммируема} \implies$ при t близких к $t_0 : |f(x,t)| \le 1 + |g(x)| - \text{суммир}$.

Замечание. Условие $\mu X < +\infty$ существенно.

$$X = [0, +\infty), \ \mu = \lambda_1, \ f_n(x) = \frac{1}{n} \mathbb{1}_{[0,n]}(x) \Longrightarrow 0,$$

 $\int_{[0, +\infty)} f_n d\lambda_1 = 1.$

Следствие. f(x,t) непрер. в точке $t_0, \forall x \in X$ и существует суммир. $\Phi(x),$ т.ч. $|f(x,t)| \leq \Phi(x)$ при t близких к $t_0, \forall x \in X$.

Тогда $F(t) = \int_X f(x,t) d\mu(x)$ непрер. в точке t_0 .

Доказательство. $\lim_{t\to t_0} f(x,t) = f(x,t_0)$ и подставляем в теорему.

Лемма. Декартово произведение компактов – компакт.

 $(X, \rho), (Y, d)$ – метрические про-ва. $A \subset X, B \subset Y$ – компакты.

Тогда $A \times B$ – компакт в $(X \times Y, r), r((x, y), (x', y')) = \rho(x, x') + d(y, y')$

Доказательство. Проверяем секвенциальную компактность.

$$x_n \in A, \ y_n \in B, \ (x_n, y_n)$$

хотим выбрать сх-ся подпосл. Выбираем x_{n_k} , т.ч. она сходится, а затем из y_{n_k} подпосл $y_{n_{k_j}}$, которая сх-ся.

Тогда $(x_{n_{k_i}}, y_{n_{k_i}})$ сх-ся покоординатно \implies сх-ся по метрике r.

Теорема 3.3. $\mu X < +\infty, X$ и T – компакты, $f \in C(X \times T)$. Тогда $F(t) = \int_X f(x,t) d\mu(x) \in C(T)$.

Доказательство. f – непр-на на компакте \implies ограничена \implies $|f(x,t)| \leq M$ – суммир. мажоранта.

Следствие. Если $\mu X < +\infty$, X – компакт, $\Omega \subset \mathbb{R}^m$ открытое, $f \in C(X \times \Omega)$.

Тогда $F(t) = \int_X f(x,t) d\mu(x) \in C(\Omega)$.

Доказательство. Берем $a \in \Omega$. Хотим проверить непрер. в точке a.

Возьмем $\overline{B}_r(a) \subset \Omega$ – компакт $\implies f \in C(X \times \overline{B}_r(a))$

$$\implies F \in C(\overline{B}_r(a)) \implies F$$
 непрер. в точке a .

Теорема 3.4. $T \subset \mathbb{R}$ промежуток, $f: X \times T \to \mathbb{R}, \ f'_t(x,t)$ существ. $\forall x \in X, \ \forall t \in T$ и $f'_t(x,t)$ удовлетворяет локальным условиям Лебега в точке t_0 .

Тогда F – дифф. в точке t_0 и $F'(t_0) = \int_X f'_t(x,t_0) d\mu(x)$.

Доказательство. $\frac{F(t_0+h)-F(t_0)}{h} = \int_X \underbrace{\frac{f(x,t_0+h)-f(x,t_0)}{h}}_{=:g(x,h)} d\mu(x).$

Нужно локальное условие Лебега для g(x, h).

$$f(x, t_0 + h) - f(x, t_0) = h \cdot f'_t(x, t_0 + \theta_h \cdot h)$$

$$g(x,h) = f'_t(x, t_0 + \theta_h \cdot h)$$

Знаем, что $\exists U_{t_0}$, т.ч. $|f'_t(x,t)| \leq \Phi(x)$ – суммир. $\forall x, \forall t \in U_{t_0}$.

Рассмотрим $||h||<\epsilon,$ т.ч. $t_0+h\in U_{t_0}$

 $\implies t_0 + \theta_h \cdot h \in U_{t_0} \implies |f'_t(x, t_0 + \theta_h h)| = |g(x, h)| \le \Phi(x) \implies$ можно переходить к пределу под знаком интеграла, а предел $\lim_{h\to 0} g(x, h) = f'_t(x, t_0)$.

Следствие. $T \subset \mathbb{R}$ – отрезок, X – компакт, $\mu X < +\infty, f, f_t' \in C(X \times T)$.

Тогда $F \in C^1(T)$ и $F'(t) = \int_Y f'_t(x,t) d\mu(x)$.

Доказательство. f_t' – непр. на компакте \implies ограничена $\implies |f_t'(x,t)| \leq M$ – сумм. мажоранта.

Теорема 3.5. Формула Лейбница.

$$f: \underbrace{[a,b]}_{r} imes \underbrace{[c,d]}_{t} o \mathbb{R}, \, f, f_t' \in C([a,b] imes [c,d]), \,\, \phi, \psi: [c,d] o [a,b]$$
 непр. дифф.

$$F(t) := \int_{\phi(t)}^{\psi(t)} f(x, t) dx.$$

Тогда
$$F$$
 – дифф. и $F'(t) = \int_{\phi(t)}^{\psi(t)} f_t'(x,t) dx + f(\psi(t),t) \cdot \psi'(t) - f(\phi(t),t) \cdot \phi'(t)$.

Доказательство. $\Phi(\alpha, \beta, t) = \int_{\alpha}^{\beta} f(x, t) dx$.

$$\frac{d\Phi}{d\beta}=f(\beta,t)$$
 – непр. по условию

$$\frac{d\Phi}{d\alpha} = -f(\alpha, t)$$
 – непр.

$$\frac{d\Phi}{dt} = \int_{\alpha}^{\beta} f_t'(x,t) dx$$
 – непр.

Так как все частные производные непр., то Φ – дифф.

$$F(t) = \Phi(\phi(t), \psi(t), t) \implies F'(t) = \frac{d\Phi}{d\alpha}\phi'(t) + \frac{d\Phi}{d\beta}\psi'(t) + \frac{d\Phi}{dt}.$$

Пример.
$$F(t) := \int_0^{+\infty} e^{-x^2} \cdot \cos(tx) dx$$

Так как есть локальное условие Лебега (на самом деле $\int_0^{+\infty} x e^{-x^2} dx < +\infty$):

$$F'(t) = -\int_0^{+\infty} e^{-x^2} \sin(tx) \cdot x dx = \frac{1}{2} \cdot \int_0^{+\infty} \sin(tx) \cdot d(e^{-x^2}) =$$
$$= \frac{1}{2} \cdot e^{-x^2} \sin(tx) \Big|_0^{+\infty} - \frac{1}{2} \cdot \int_0^{+\infty} t \cos tx e^{-x^2} dx.$$

$$F'(t) = -\frac{1}{2}tF(t).$$

$$\underbrace{\frac{F'}{F}}_{=(\ln F)'} = -\frac{t}{2} \implies \ln F = -\frac{t^2}{4} + C_0 \implies F(t) = C \cdot e^{\frac{-t^2}{4}}.$$

$$F(t)e^{\frac{t^2}{4}} = C.$$

Более строго:

$$\left(F(t)e^{\frac{t^2}{4}}\right)' = F'e^{\frac{t^2}{4}} + F \cdot \frac{t}{2}e^{\frac{t^2}{4}} = e^{\frac{t^2}{4}} \cdot \underbrace{\left(F' + \frac{t}{2} \cdot F\right)}_{=0} = 0.$$

Хотим узнать константу:

$$F(0) = \int_0^{+\infty} e^{-x^2} dx = \frac{\sqrt{\pi}}{2}$$

$$F(t) = \frac{\sqrt{\pi}}{2} \cdot e^{\frac{-t^2}{4}}.$$

3.2. Несобственные интегралы с параметрами

$$F(t) := \int_{0}^{+\infty} f(x,t) dx$$
: $\forall t \in T$ интеграл сх-ся.

Определение 3.2. $\int_a^{+\infty} f(x,t)dx$ – равномерно сх-ся, если $\forall \epsilon > 0 \ \exists B \ \forall b > B \ \forall t \in T : \ |\int_b^{+\infty} f(x,t)dx| < \epsilon$

Замечание. $F_b(t) := \int_a^b f(x,t) dx$.

$$\int_a^{+\infty} \dots$$
 – равном сх-ся $\Leftrightarrow F_b \underset{b \to +\infty}{\Longrightarrow} F$ равном. по $t \in T$.

Доказательство.
$$\forall \epsilon > 0 \; \exists B \; \forall b > B \; \forall t \in T : \; \underbrace{\left|F_b(t) - F(t)\right|}_{= -\int_b^{+\infty} f(x,t) dx} < \epsilon$$

Пример.
$$\int_0^{+\infty} e^{-tx} dx$$
, $t > 0$

$$\int_b^{+\infty} e^{-tx} dx = -\frac{e^{-tx}}{t} \Big|_{x=b}^{x=+\infty} = \frac{e^{-bt}}{t}.$$

1.
$$t \ge t_0 > 0$$
:
$$\frac{e^{-bt}}{t} \le \frac{e^{-bt_0}}{t_0} < \epsilon$$

2. t > 0:

$$\frac{e^{-bt}}{t} \underbrace{\longrightarrow}_{t \to 0+} + \infty \implies$$
 нет равномерной сх-ти.

Теорема 3.6. Критерий Коши.

$$\int_a^{+\infty} f(x,t) dx$$
равн. сх-ся $\Leftrightarrow \forall \epsilon > 0 \ \exists B \ \forall b,c > B \ \forall t \in T : \ |\int_b^c f(x,t) dx| < \epsilon.$

Доказательство. $\int_{a}^{+\infty} f(x,t)dx$ равн. сх-ся \Leftrightarrow

$$\Leftrightarrow F_b \rightrightarrows F$$
 (где $F_b(t) = \int_a^b f(x,t)dx, \ F(t) = \int_a^{+\infty} f(x,t)dx$) $\Leftrightarrow \forall \epsilon > 0 \ \exists B \ \forall b,c > B \ \forall t \in T : \ \underbrace{|F_b(t) - F_c(t)|}_{\int_b^c f(x,t)dx} < \epsilon.$

Следствие. $f:[a,+\infty)\times[c,d]\to\mathbb{R}$ непрерывная.

$$F(t)=\int_a^{+\infty}f(x,t)dx$$
 сх-ся $\forall t\in(c,d)$ и расх-ся при $t=c$ или $t=d.$

Тогда сходимость неравномерная.

Доказательство. Пусть $\int_a^{+\infty}$ сх-ся равномерно \implies :

по Критерию Коши и тому, что f непр. на $[b,b'] \times [c,d]$:

$$\forall \epsilon > 0 \; \exists B > a \; \forall b, b' > B \; \forall t \in (c, d) :$$

$$\underbrace{\int_b^{b'} f(x, t) dx}_{\rightarrow \int_b^{b'} f(x, c) dx, \; \text{при } t \rightarrow c} < \epsilon \implies$$

$$\Longrightarrow \forall \epsilon>0 \; \exists B>a \; \forall b,b'>B \; \left|\int_b^{b'}f(x,c)dx\right|\leq \epsilon \underset{\text{критерий Коши}}{\Longrightarrow} \int_a^{+\infty}f(x,c)dx \; \text{сх-ся} \; \Longrightarrow \; \text{противоречие.}$$

Пример. $\int_0^{+\infty} e^{-tx^2} dx$, t > 0 сх-ся неравномерно, так как при t = 0 расходится.

Теорема 3.7. Признак Вейерштрасса.

$$f,g:[a,+\infty) imes T o \mathbb{R}$$
 и $|f(x,t)|\leq g(x,t):\ \forall x\geq a,\ \forall t\in T.$

Если $\int_a^{+\infty} g(x,t)dx$ равном. сх-ся, то $\int_a^{+\infty} f(x,t)dx$ равн. сх-ся.

Доказательство. Пишем критерий Коши для $\int_a^{+\infty} g(x,t)dx$:

$$\forall \epsilon > 0 \; \exists B \; \forall b, c > B : \underbrace{\int_b^c g(x, t) dx}_{\leq \epsilon} \ge \int_b^c |f(x, t)| dx \ge \left| \int_b^c f(x, t) dx \right| \qquad \Box$$

Следствие. Если $|f(x,t)| \le g(x) \ \forall x \ge a, \ \forall t \in T$ и $\int_a^{+\infty} g(x) dx$ сх-ся, то $\int_a^{+\infty} f(x,t) dx$ сх-ся равномерно.

Пример. $\int_0^{+\infty} \frac{\cos(xt)}{x^2+1} dx$ равн. сх-ся при $t \in \mathbb{R}$.

$$\left| \frac{\cos(xt)}{x^2+1} \right| \le \frac{1}{x^2+1} \text{ M } \int_0^{+\infty} \frac{dx}{x^2+1} < +\infty.$$

Теорема 3.8. Признак Дирихле.

$$\int_{a}^{+\infty} f(x,t)g(x,t)dx.$$

Пусть

- 1. $\exists M: \ \forall b > a, \ \forall t \in T: \ \left| \int_a^b f(x,t) dx \right| \le M$
- 2. g монотонна по $x: \forall t \in T$.
- 3. $g \underset{x \to +\infty}{\Longrightarrow} 0$

Тогда $\int_a^{+\infty} f(x,t)g(x,t)dx$ равномерно сх-ся.

Доказательство. Для дифф. ф-й g:

$$F(y,t) = \int_a^y f(x,t)dx.$$

$$(1) \Rightarrow |F(y,t)| \le M : \forall y, \forall t.$$

$$\int_{a}^{y} f(x,t)g(x,t)dx = \underbrace{F(x,t)g(x,t)|_{x=a}^{x=y}}_{=F(y,t)g(y,t)} - \int_{a}^{y} F(x,t)g'_{x}(x,t)dx$$

$$|F(y,t)g(y,t)| \le M|g(y,t)| \underset{y \to +\infty}{\Longrightarrow} 0$$

$$\int_a^{+\infty} F(x,t)g_x'(x,t)dx$$
 – равном. сх-ся.

$$|F(x,t)g_x'(x,t)| \le M|g_x'(x,t)|.$$

Надо доказать, что $\int_a^{+\infty} |g_x'(x,t)| dx$ равн. сх-ся.

Падо доказать, по
$$\int_a^y |g_x(x,t)| dx$$
 разы. Сх см.
$$\int_a^y |g_x'(x,t)| dx = \left| \int_a^y g_x'(x,t) dx \right| = |g(x,t)|_{x=a}^{x=y} = |\underbrace{g(y,t)}_{\exists 0 \text{ по усл.}} -g(a,t)| \implies |g(a,t)|.$$

Теорема 3.9. Признак Абеля.

$$\int_a^{+\infty} f(x,t)g(x,t)dx$$
. Пусть

- 1. $\int_a^{+\infty} f(x,t)dx$ равн. сх-ся.
- 2. g монотонна по $x: \forall t \in T$.
- 3. $|g(x,t)| \leq M, \ \forall x \geq a, \ \forall t \in T$

Тогда $\int_a^{+\infty} f(x,t)g(x,t)dx$ равном. сх-ся.

Доказательство. Для дифф. ф-й g:

$$F_b(y,t) = \int_b^y f(x,t)dx$$

$$\int_{b}^{c} f(x,t)g(x,t)dx = \underbrace{F_{b}(x,t)g(x,t)|_{x=b}^{x=c}}_{=F_{b}(c,t)g(c,t)} - \int_{b}^{c} F_{b}(x,t)g'_{x}(x,t)dx$$

Применим крит. Коши для $\int_a^{+\infty} f(x,t) dx$:

$$\exists B: \ \forall y,b>B \ \forall t\in T: \ |F_b(y,t)|<\epsilon, \, \text{смотрим на } b>B \implies |F_b(x,t)|<\epsilon.$$

$$|F_b(c,t)g(c,t)| < \epsilon \cdot M.$$

$$\left| \int_{b}^{c} F_{b}(x,t) g'_{x}(x,t) dx \right| \leq \int_{b}^{c} \underbrace{\left| F_{b}(x,t) \right|}_{<\epsilon} |g'_{x}(x,t)| dx < \epsilon \cdot \int_{b}^{c} g'_{x}(x,t) dx = \epsilon \left| \int_{b}^{c} g'_{x}(x,t) dx \right| = \epsilon \left| g(x,t) \right|_{x=b}^{x=c} \leq \epsilon \cdot 2M.$$

Получается, что оценили $\int_b^c f(x,t)g(x,t)dx < 3\epsilon M$, то есть проверили критерий Коши для исходного интеграла.

Пример. $\int_1^{+\infty} \frac{\sin(x)}{x^t} dx$, t > 0.

1. $t \ge t_0 > 0$. Дирихле: $f(x,t) = \sin(x), \ g(x,t) = \frac{1}{x^t}$ – вторая монотонно убывает.

$$\left| \int_{1}^{b} \sin(x) dx \right| \le 2.$$

$$g(x,t) \Rightarrow 0: |g(x,t)| = \frac{1}{x^t} \le \frac{1}{x^{t_0}} \underbrace{\longrightarrow}_{x \to +\infty} 0.$$

Есть равн. сх-ть.

2. t > 0. Нет равн. сх-ти, так как расх-ся при t = 0.

Теорема 3.10. $f:[a,+\infty)\times T\to\mathbb{R},\ t_0$ – предельная точка T.

Если

- 1. $\int_a^{+\infty} f(x,t)dx$ равномерно сх-ся (по $t \in T$).
- 2. $f(x,t) \underset{t \to t_0}{\Longrightarrow} \phi(x)$ равномер. по x на любом конечном отрезке.

Тогда $\lim_{t\to t_0}\int_a^{+\infty}f(x,t)dx=\int_a^{+\infty}\phi(x)dx$ и второй интеграл сх-ся.

Доказательство. (1)
$$\Longrightarrow_{\text{кр. Коши для }f} \forall \epsilon > 0 \; \exists B \; \forall b,c > B \; \forall t \in T : \; \bigcup_{b}^{c} f(x,t) dx | < \epsilon.$$

$$\left| \int_{a}^{+\infty} f(x,t) dx - \int_{a}^{+\infty} \phi(x) dx \right| \leq \underbrace{\left| \int_{b}^{+\infty} f(x,t) dx \right|}_{<\epsilon} + \underbrace{\left| \int_{b}^{+\infty} \phi(x) dx \right|}_{<\epsilon} + \underbrace{\left| \int_{a}^{+\infty} \phi(x) dx \right|}_{<\epsilon} + \underbrace{\left| \int_{a}^{b} \phi($$

$$(1) \Rightarrow \exists B_1 \ \forall b > B_1 \ \mathsf{u} \ \forall t \in T : |\int_b^{+\infty} f(x,t) dx| < \epsilon.$$

$$\int_a^{+\infty} \phi(x) dx - \text{сх-ся} \Rightarrow \exists B_2 \ \forall b > B_2 : \ |\int_b^{+\infty} \phi(x) dx| < \epsilon.$$

Фиксируем $b \ge \max\{B_1, B_2\}$.

$$|\int_a^b \left(f(x,t) - \phi(x)\right) dx| \le (b-a) \underbrace{\sup_{x \in [a,b]} \{|f(x,t) - \phi(x)|\}}_{\to 0} < \epsilon \text{ при } t \text{ близких к } t_0.$$

Замечание. Равн. сх-ть интеграла существенна:

$$f(x,t) = \begin{cases} \frac{1}{t}, & \text{при } 0 \le x \le t \\ 0, & \text{иначе} \end{cases}$$
$$f(x,t) \underset{t \to +\infty}{\Longrightarrow} 0$$
$$\int_{0}^{+\infty} f(x,t) dx = \int_{0}^{t} \frac{1}{t} dx = 1 \not\to 0.$$

Теорема 3.11. $f \in C([a, +\infty) \times [c, d]), \ F(t) := \int_a^{+\infty} f(x, t) dx$ равном. сх-ся. Тогда $F \in C[c, d]$.

Доказательство. $F_b(t) := \int_a^b f(x,t) dx \xrightarrow{\Longrightarrow} F(t).$

Достаточно понять, что $F_b \in C[c,d]$, а это знаем.

Замечание. Без равном. сх-ти неверно.

$$f(x,t) = te^{-t^2x}, \ t \in \mathbb{R}.$$

$$F(t) := \int_0^{+\infty} t e^{-t^2 x} dx$$
 – сх-ся.

$$F(0) = 0$$

 $F(t) = \frac{1}{t}$ при $t \neq 0$ нет непрер.

Теорема 3.12. (Интегральный аналог теоремы Абеля для степенных рядов).

Пусть
$$\int_a^{+\infty} f(x)dx$$
 сходится и $f \in C[a,+\infty)$. Тогда $F(t) := \int_a^{+\infty} f(x)e^{-tx}dx \in C[0,+\infty)$

Доказательство. Признак Абеля.

 $g(x,t)=e^{-tx}$: монотонно убывает при фиксированном t.

$$|g(x,t)| \leq 1$$
: равномерно ограничена.

Пример. $\int_0^{+\infty} \frac{\sin(x)}{x} dx$ – сх-ся $\implies F(t) := \int_0^{+\infty} e^{-tx} \frac{\sin(x)}{x} dx$ непрер. при $t \ge 0$.

Теорема 3.13. $f'_t, f \in C([a, +\infty) \times [c, d])$

- 1. $\Phi(t) := \int_a^{+\infty} f_t'(x,t) dx$ равномерно сх-ся.
- 2. $F(t) := \int_a^{+\infty} f(x,t) dx$ сх-ся при $t = t_0$.

Тогда F равномерно сх-ся, $F \in C^1[c,d]$ и $F' = \Phi$.

Доказательство. $F_b(t) := \int_a^b f(x,t) dx \implies F_b'(t) = \int_a^b f_t'(x,t) dx \xrightarrow{\Longrightarrow} \Phi(t).$

$$F_b(t) = \left(\underbrace{\int_{t_0}^t F_b'(u)du}_{\exists \int_{t_0}^t \Phi(u)du}\right) + \underbrace{F_b(t_0)}_{\to F(t_0)} \implies \underbrace{F_b(t)}_{\to F(t)} \rightrightarrows \int_{t_0}^t \Phi(u)du + F(t_0)$$

$$\Longrightarrow$$
 равномерная сх-ть и $F(t) = F(t_0) + \int_{t_0}^t \underbrace{\Phi(u)}_{\text{непр. } \Phi\text{-}\mathrm{s}} du \implies F \in C^1[c,d]$ и $F'(t) = \Phi(t)$.

Пример. $F(t):=\int_0^{+\infty}e^{-tx}\cdot \frac{\sin(x)}{x}dx$. Знаем, что $F\in C[0,+\infty)$

$$\Phi(t) := \int_0^{+\infty} \frac{\sin(x)}{x} \cdot e^{-tx} \cdot (-x) dx = \underbrace{-\int_0^{+\infty} \sin(x) \cdot e^{-tx} dx}_{=-\frac{1}{1+t^2}$$
 два раза инт. по частям

$$\implies F'(t) = \Phi(t) \implies F(t) = C - \arctan(t).$$

$$\lim_{t \to +\infty} F(t) = \lim_{t \to +\infty} \int_0^{+\infty} e^{-tx} \cdot \frac{\sin(x)}{x} dx \qquad \qquad = \qquad \qquad \int_0^{+\infty} \lim_{t \to +\infty} e^{-tx} \cdot \frac{\sin(x)}{x} dx = 0.$$

$$\left|e^{-tx}\cdot\frac{\sin(x)}{x}\right|\leq e^{-x}\cdot\frac{|\sin(x)|}{x}\leq e^{-x}$$
 – суммируемая мажоранта.

 $\lim_{t\to +\infty} C - \arctan(t) = \lim_{t\to +\infty} F(t) = 0 \implies C = \frac{\pi}{2} \implies C[0,+\infty) \ni F(t) = \frac{\pi}{2} - \arctan(t) \in C[0,+\infty)$ при t>0

$$\Longrightarrow F(t) = \frac{\pi}{2} - \arctan(t)$$
 при $t \ge 0 \Longrightarrow F(0) = \frac{\pi}{2}$, то есть $\int_0^{+\infty} \frac{\sin(x)}{x} dx = \frac{\pi}{2}$

3.3. В- и Г-функции Эйлера

Определение 3.3. $\Gamma(p) := \int_0^{+\infty} x^{p-1} e^{-x} dx, \ p > 0$ – гамма-функция.

$$B(p,q):=\int_0^1 x^{p-1}(1-x)^{q-1}dx,\ p,q>0$$
 – бета-функция.

Свойства. Г-фикции.

1. Интеграл сходится в нуле эквивалентно тому, что $\frac{1}{r^{1-p}}$ сх-ся в $+\infty$

Доказательство.
$$x^{p-1} \le e^{\frac{x}{2}}$$
 при больших $x, x^{p-1} \cdot e^{-x} \le e^{-\frac{x}{2}} \implies$ сх-ся.

2. $\Gamma(p+1) = p\Gamma(p)$.

Доказательство.
$$\Gamma(p+1) = \int_0^{+\infty} x^p e^{-x} dx = -\int_0^{+\infty} x^p d(e^{-x}) =$$

= $-x^p e^{-x}|_0^{+\infty} + \int_0^{+\infty} p x^{p-1} e^{-x} dx = p\Gamma(p)$.

3. $\Gamma(n+1) = n!$

Доказательство.
$$\Gamma(1) = \int_0^{+\infty} e^{-x} dx = 1$$

4. $\Gamma(\frac{1}{2}) = \sqrt{\pi}$

Доказательство.
$$\Gamma(\frac{1}{2}) = \int_0^{+\infty} \frac{1}{\sqrt{x}} \cdot e^{-x} dx = \int_0^{+\infty} e^{-y^2} \cdot \frac{1}{y} \cdot 2y dy = 2 \cdot \int_0^{+\infty} e^{-y^2} dy = \sqrt{\pi}$$
, где $y^2 = x$, $dx = 2y dy$.

5. $\Gamma(n+\frac{1}{2}) = \frac{(2n-1)!!}{2^n} \sqrt{\pi}$.

Доказательство.
$$\Gamma(n+\frac{1}{2})=(n-\frac{1}{2})\Gamma(n-\frac{1}{2})=\cdots=(n-\frac{1}{2})\cdot(n-\frac{3}{2})\cdot\frac{1}{2}\Gamma(\frac{1}{2})$$
 – получилось ровно то, что хотели.

6. Γ бесконечно дифф. ф-я и $\Gamma^{(n)}(p) = \int_0^{+\infty} x^{p-1} (\ln(x))^n e^{-x} dx$

Доказательство. Надо обосновать дифф. под знаком интеграла. Для этого надо потребовать равномерную сх-ть полученного интеграла.

$$0 < a \le p \le b < +\infty$$

- (a) $0 \le x \le 1$: $x^{a-1} |\ln(x)|^n e^{-x}$
- (b) $1 \le x$: $x^{b-1} |\ln(x)|^n e^{-x} \le x^{n+b} e^{-x}$

7. Γ – строго выпуклая.

Доказательство.
$$\Gamma''(p) = \int_0^{+\infty} x^{p-1} (\ln(x))^2 e^{-x} dx > 0$$

Свойства. В-функции.

- 1. Интеграл сх-ся
 - (a) В нуле $\Leftrightarrow \frac{1}{r^{1-p}}$ сх-ся.
 - (b) В единице $\Leftrightarrow \frac{1}{(1-x)^{1-q}}$ сх-ся.
- 2. B(p,q) = B(q,p).

Доказательство.
$$B(p,q) = \int_0^1 x^{p-1} (1-x)^{q-1} dx = -\int_1^0 (1-y)^{p-1} y^{q-1} dy = B(q,p)$$
, где $y = 1-x$, $dy = -dx$.

3. $B(p,q) = \int_0^{+\infty} \frac{x^{p-1}}{(1+x)^{p+q}} dx$.

Доказательство.
$$B(p,q)=\int_0^1 y_{p-1}(1-y)^{q-1}dy=\int_0^{+\infty}\left(\frac{x}{1+x}\right)^{p-1}\cdot\left(\frac{x}{1+x}\right)^{q-1}\cdot\frac{1}{(1+x)^2}dx$$
, где $y=\frac{x}{1+x},\ y=1-\frac{1}{1+x},\ dy=\frac{dx}{(1+x)^2}$.

Теорема 3.14. $B(p,q) = \frac{\Gamma(p) \cdot \Gamma(q)}{\Gamma(p+q)}$

Доказательство.
$$\Gamma(p) \cdot \Gamma(q) = \int_0^{+\infty} x^{p-1} e^{-x} dx \cdot \int_0^{+\infty} y^{q-1} e^{-y} dy = \int_0^{+\infty} \int_0^{+\infty} x^{p-1} y^{q-1} e^{-x-y} dx dy = \int_0^{+\infty} \int_0^u x^{p-1} (u-x)^{q-1} e^{-u} dx du = \int_0^{+\infty} \int_0^u x^{p-1} dx du = \int_0^{+\infty} \int_0^u x^{p-$$

$$= \int_0^{+\infty} u^{p+q-1} e^{-u} \cdot \underbrace{\int_0^1 v^{p-1} (1-v)^{q-1} dv}_{=B(p,q)} du = B(p,q) \Gamma(p+q).$$

Следствие. (формула дополнения)

$$\Gamma(p)\Gamma(1-p) = \frac{\pi}{\sin(\pi p)}, \ p \in (0,1).$$

Доказательство.
$$\Gamma(p)\Gamma(1-p) = \Gamma(1)B(p,1-p) = \int_0^{+\infty} \frac{x^{p-1}}{1+x} dx$$
 $=$ просто верим в это $\frac{\pi}{\sin(\pi p)}$.

Следствие. (формула удвоения)

$$\Gamma(p)\Gamma(p+\frac{1}{2}) = \frac{\sqrt{\pi}}{2^{2p-1}}\Gamma(2p)$$

Доказательство.
$$\frac{\Gamma(p)\Gamma(p)}{\Gamma(2p)} = B(p,p) = \int_0^1 x^{p-1} (1-x)^{p-1} dx = 2 \cdot \int_0^{\frac{1}{2}} x^{p-1} (1-x)^{p-1} dx = 2 \cdot \int_0^{\frac{1}{2}} (\frac{1}{4} - t^2)^{p-1} d(-t) = 2 \cdot \int_0^{\frac{1}{2}} \left(\frac{1}{4} - t^2\right)^{p-1} dt = 2 \cdot \int_0^{\frac{1}{2}} \left(\frac{1}{4} - t^2\right)^{p-1}$$

Теорема 3.15. $\Gamma(t+a) \sim t^a \Gamma(t)$ при $t \to +\infty$

Доказательство. $\frac{\Gamma(t)}{\Gamma(t+a)}$ при больших t

$$\frac{\Gamma(t+1)\Gamma(a)}{\Gamma(t+1+a)} = B(t+1,a) = \int_0^1 (1-x)^t x^{a-1} dx$$

$$t^{a} \int_{0}^{1} (1-x)^{t} x^{a-1} dx \underbrace{=}_{y=xt} t^{a} \int_{0}^{t} \left(\frac{y}{t}\right)^{a-1} \underbrace{\left(1-\frac{y}{t}\right)^{t}}_{=e^{-y}} \frac{1}{t} dy \to \int_{0}^{+\infty} y^{a-1} e^{-y} dy = \Gamma(a)$$

На самом деле интегрируем $\mathbb{1}_{[0,t]}y^{a-1}(1-\frac{y}{t})^t \leq y^{a-1}e^{-y}$ – это суммируемая мажоранта, поэтому можем перейти к пределу по т. Лебега.

 ${\it Cnedcmeue.} \; {\rm При} \; a = {1\over 2} \; {\rm это} \; {\rm формула} \; {\rm Валлиса.}$

Доказательство.
$$\Gamma(n+\frac{1}{2}) \sim n^{\frac{1}{2}}\Gamma(n)$$

Теорема 3.16. формула Эйлера-Гаусса

$$\Gamma(p) = \lim_{n \to +\infty} n^p \cdot \frac{n!}{p(p+1)(p+2)\dots(p+n)}$$

Доказательство.
$$\Gamma(n+p) = (p+n-1)\cdot (p+n-2)\cdot \cdots \cdot (p+1)\cdot p\cdot \Gamma(p)$$

$$n^{p} \cdot \frac{n!}{p(p+1)\dots(p+n)} = \frac{n^{p}}{p+n} \cdot \frac{n! \cdot \Gamma(p)}{\Gamma(n+p)} = \underbrace{\frac{n}{p+n}}_{\rightarrow 1, \text{ при } n \rightarrow +\infty} \cdot \underbrace{\left(n^{p} \cdot \frac{\Gamma(n)}{\Gamma(n+p)}\right)}_{\rightarrow 1, \text{ при } n \rightarrow +\infty} \cdot \Gamma(p)$$

Пример.
$$1 \cdot 6 \cdot 11 \cdot 16 \cdot \dots \cdot (5n+1) = 5^n \cdot \frac{1}{5} \cdot (\frac{1}{5}+1) \cdot (\frac{1}{5}+2) \dots (\frac{1}{5}+n) \sim 5^{n+1} \frac{n^{\frac{1}{5}} n!}{\Gamma(\frac{1}{5})}$$

Пример. 1.
$$\int_0^{+\infty} e^{-t^p} dt = \Gamma\left(\frac{1}{p} + 1\right)$$
 при $p > 0$.

Док-во:
$$\int_0^{+\infty} e^{-t^p} dt = \int_0^{+\infty} \int_0^{+\infty} e^{-x} \cdot \frac{1}{p} \cdot x^{\frac{1}{p}-1} dx = \frac{1}{p} \cdot \int_0^{+\infty} x^{\frac{1}{p}-1} e^{-x} dx = \frac{1}{p} \cdot \Gamma\left(\frac{1}{p}\right) = \Gamma\left(\frac{1}{p}+1\right).$$

2.
$$\int_0^{\frac{\pi}{2}} \sin^{p-1}(\phi) \cdot \cos^{q-1}(\phi) d\phi = \frac{1}{2} \cdot B\left(\frac{p}{2}, \frac{q}{2}\right).$$

В частности,
$$\int_0^{\frac{\pi}{2}} \sin^{p-1}(\phi) d\phi = \int_0^{\frac{\pi}{2}} \cos^{p-1}(\phi) d\phi = \frac{1}{2} \cdot B\left(\frac{p}{2}, \frac{1}{2}\right) = \frac{\sqrt{\pi}}{2} \cdot \frac{\Gamma(\frac{p}{2})}{\Gamma(\frac{p+1}{2})}$$
.

Док-во:
$$\int_0^{\frac{\pi}{2}} \sin^{p-1}(\phi) \cdot \cos^{q-1}(\phi) d\phi = \frac{1}{2} \cdot \int_0^{\frac{\pi}{2}} \left(\sin^2(\phi) \right)^{\frac{p-2}{2}} \cdot \left(\cos^2(\phi) \right)^{\frac{q-2}{2}} \cdot 2 \sin(\phi) \cos(\phi) d\phi = \underbrace{\frac{1}{2} \cdot \int_0^{\frac{\pi}{2}} \left(\sin^2(\phi) \right)^{\frac{p-2}{2}} \cdot \left(\cos^2(\phi) \right)^{\frac{q-2}{2}} \cdot 2 \sin(\phi) \cos(\phi) d\phi}_{t=\sin^2(\phi)}$$

$$= \frac{1}{2} \cdot \int_0^1 t^{\frac{p}{2}-1} (1-t)^{\frac{q}{2}-1} dt = \frac{1}{2} B\left(\frac{p}{2}, \frac{q}{2}\right).$$

3. Объем n-мерного шара $V_n(r) = C_n \cdot r^n$, где $C_n = V_n(1)$ – объем n-мерного шара, радиуса 1.

$$\begin{split} V_n(1) &= \int_{-1}^1 V_{n-1} \left(\sqrt{1-x^2} \right) dx = 2 \cdot \int_0^1 V_{n-1} \left(\sqrt{1-x^2} \right) dx = 2 \cdot \int_0^1 \left(1-x^2 \right)^{\frac{n-1}{2}} \cdot C_{n-1} dx \underbrace{\sum_{x=\sin(\phi)}^{n-1} \left(\cos^2(\phi) \right)^{\frac{n-1}{2}} \cdot \cos(\phi) d\phi}_{x=2 \cdot C_{n-1} \cdot \int_0^{\frac{\pi}{2}} \cos^n(\phi) d\phi = 2C_{n-1} \cdot \int_0^{\frac{\pi}{2}} \cos^n(\phi) d\phi = 2C_{n-1} \cdot \frac{1}{2} \cdot \frac{\Gamma\left(\frac{n+1}{2}\right)}{\Gamma\left(\frac{n+2}{2}\right)} \cdot \sqrt{\pi}. \end{split}$$
 Получили, что $C_n = C_{n-1} \cdot \frac{\Gamma\left(\frac{n+1}{2}\right)}{\Gamma\left(\frac{n+2}{2}\right)} \cdot \sqrt{\pi}.$
$$C_n = \frac{\Gamma\left(\frac{n+1}{2}\right)}{\Gamma\left(\frac{n+2}{2}\right)} \cdot \sqrt{\pi} \cdot C_{n-1} = \frac{\sqrt{\pi} \cdot \Gamma\left(\frac{n+1}{2}\right)}{\Gamma\left(\frac{n+2}{2}\right)} \cdot \frac{\sqrt{\pi} \cdot \Gamma\left(\frac{n}{2}\right)}{\Gamma\left(\frac{n+1}{2}\right)} \dots \underbrace{\frac{\sqrt{\pi} \cdot \Gamma\left(\frac{3}{2}\right)}{\Gamma\left(\frac{4}{2}\right)}}_{\Gamma\left(\frac{n+1}{2}\right)} C_1 = 2 \cdot \frac{(\sqrt{\pi})^{n-1} \cdot \Gamma\left(\frac{3}{2}\right)}{\Gamma\left(\frac{n}{2}+1\right)} = \frac{\pi^{\frac{n-1}{2}} \Gamma\left(\frac{1}{2}\right)}{\Gamma\left(\frac{n}{2}+1\right)}. \end{split}$$

3.4. Криволинейные интегралы

 ${\it Onpedenehue}$ 3.4. $\gamma:[a,b] o \mathbb{R}^n$ – гладкая кривая

f – функция, заданная на $\gamma([a,b]) \to \mathbb{R}$

Криволинейный интеграл (I рода (интеграл по длине дуги)):

$$\int_{\gamma} f ds := \int_{a}^{b} f(\gamma(t)) \cdot ||\gamma'(t)|| dt, \text{ где } ||\gamma'(t)|| = ||\begin{pmatrix} \gamma'_{1}(t) \\ \gamma'_{2}(t) \\ \vdots \\ \gamma'_{n}(t) \end{pmatrix} || = \sqrt{(\gamma'_{1}(t))^{2} + \cdots + (\gamma'_{n}(t))^{2}}$$

Теорема 3.17. 1. Не зависит от параметризации кривой

- 2. Не зависит от направления
- 3. $\int_{\gamma} ds = l(\gamma)$ длина кривой
- 4. Линейность по функции
- 5. Аддитивность по кривой: если $\gamma=\gamma_1\sqcup\gamma_2$, то $\int_\gamma fds=\int_{\gamma_1}fds+\int_{\gamma_2}fds$
- 6. Если $f \leq g$, то $\int_{\gamma} f \leq \int_{\gamma} g$
- 7. $\left| \int_{\gamma} f ds \right| \le \int_{\gamma} |f| ds$
- 8. $\int_{\gamma} f ds \leq \max f \cdot l(\gamma)$

Доказательство. 1-2 $\tilde{\gamma}$ – другая параметризация. $\tilde{\gamma}=\gamma\circ\tau,$ где $\tau:[c,d]\to[a,b]$ – гладкая строго монотонная биекция

$$\int_{\tilde{\gamma}} f ds = \int_{c}^{d} f(\gamma(\tau(u))) ||\tilde{\gamma'}(u)|| du$$

$$\tilde{\gamma'}(u) = \begin{pmatrix} \tilde{\gamma'_1}(u) \\ \vdots \end{pmatrix}$$

$$\tilde{\gamma_1} = \gamma_1 \circ \tau, \tilde{\gamma_1}'(u) = \gamma_1'(\tau(u))\tau'(u)$$

 $||\tilde{\gamma}'(u)|| = |\tau'(u)| \cdot ||\gamma'(\tau(u))||$ – если бы не было модуля, могли бы просто сделать замену переменной, но надо что-то умнее

Если
$$\tau \uparrow$$
, тогда $\int_a^b f(\gamma(t)) \cdot ||\gamma'(t)|| dt = \int_{\gamma} f ds$, где $t = \tau(u)$

A если $\tau\downarrow$, то лишний минус появится, когда поменяем местами концы

В итоге не зависим от убывания/возрастания

3 Формула для длины кривой

$$4 \int_{\gamma} (\alpha f + \beta g) ds = \int_{a}^{b} (\alpha f(\gamma(t))) + \beta g(\gamma(t)) ||\gamma'(t)|| dt = \alpha \int_{a}^{b} f(\gamma(t)) ||\gamma'(t)|| dt + \dots = \alpha \int_{\gamma} f ds + \beta \int_{\gamma} g ds$$

$$5 \ \gamma: [a,b] \to \mathbb{R}, \ c \in (a,b), \ \gamma_1 = \gamma|_{[a,c]}, \gamma_2 = \gamma|_{[c,b]}$$
 и по аналогии

6
$$\int_{\gamma} f ds = \int_a^b f(\gamma(t)) ||\gamma'(t)|| dt$$
 и если заменим на g , станем только больше

$$7 | \int_{\gamma} f ds | = | \int_{a}^{b} f(\gamma(t)) ||\gamma'(t)|| dt | = \int_{a}^{b} |f(\gamma(t))| \cdot ||\gamma'(t)|| dt = \int_{\gamma} |f| ds$$

8
$$f \leq \max f \implies \int_{\gamma} f ds \leq \int_{\gamma} \max f ds = l(\gamma) \cdot \max f$$

Замечание. Можно определить $\int_{\gamma} f ds$ для кусочно-гладких γ . Содержательная тут только проверка на корректность, но она проверятся с помощью аддитивности по кривой

Упражнение. $\int_{\gamma} f ds = \lim_{m \to \infty} \sum_{k=1}^{m} f(\gamma(\xi_k)) \cdot l(\gamma|_{[t_{k-1},t_k]})$, где $\gamma:[a,b] \to \mathbb{R}^n$, при мелкости дробления $\to 0$.

Определение 3.5. Дифференциальная форма (1-го порядка) в \mathbb{R}^n .

$$\omega = f_1 dx_1 + f_2 dx_2 + \dots + f_n dx_n$$
, где

$$f_k:\Omega\subset\mathbb{R}^n\to\mathbb{R}$$

 $\omega(x)$ – линейное отображение: $\mathbb{R}^n \to \mathbb{R}$

$$dx_k: \mathbb{R}^n \to \mathbb{R}$$
 – проекция на k -ую координату, то есть $dx_k(\underbrace{h}_{\text{вектор}=(h_1,\dots,h_n)}) = h_k.$

Пример записи: $\omega(x,h) = f_1(x)h_1 + \cdots + f_n(x)h_n$.

Автор: Дмитрий Артюхов

Определение **3.6.** Криволинейный интеграл *II* рода (интеграл от дифференциальной формы)

$$\gamma:[a,b] o\mathbb{R}^n$$
 – гладкая кривая

$$\int_{\gamma} \omega := \int_{a}^{b} (f_1(\gamma(t)) \cdot \gamma_1'(t) + \dots + f_n(\gamma(t)) \cdot \gamma_n'(t)) dt$$

Если коротко:
$$\overline{f}=egin{pmatrix} f_1\\f_2\\\vdots\\f_n \end{pmatrix}, \int_{\gamma}\omega=\int_a^b\langle\overline{f}(\gamma(t)),\gamma'(t)\rangle dt$$

Свойства. 1. Не зависит от параметризации

- 2. Смена направления меняет знак интеграла
- 3. (Связь с интегралом по длине дуги). $\int_{\gamma}\omega=\int_{\gamma}\langle\overline{f},\overline{\sigma}\rangle ds$, где $\overline{\sigma}$ единичный касательный вектор к кривой
- 4. Линейность по \overline{f}
- 5. Аддитивность по кривой
- 6. $\left| \int_{\gamma} \omega \right| \leq \int_{\gamma} \left| \left| \overline{f} \right| \right| ds \leq \max \left| \left| \overline{f} \right| \right| \cdot l(\gamma)$

Доказательство. 1. $\tilde{\gamma} = \gamma \circ \tau, \tau : [c, d] \to [a, b]$ – строго возрастает, гладкая, $\tau(c) = a, \tau(d) = b$.

$$\int_{\tilde{\gamma}} \omega = \int_{c}^{d} \sum_{k=1}^{n} f_k(\tilde{\gamma}'(u)) du = \int_{c}^{d} \sum_{k=1}^{n} f_k(\gamma(\tau(u))) \gamma_k'(\tau(u)) \tau'(u) du = (*)$$

Делаем замену
$$t= au(u):(*)=\int_a^b\sum_{k=1}^nf_k(\gamma(t))\gamma_k'(t)dt=\int_\gamma\omega$$

- 2. Доказали вместе с первым: если меняется направление, то $\tau(c)=b, \tau(d)=a, \int_b^a=-\int_\gamma\omega$
- 3. $\overline{\sigma}(\gamma(t)) = \frac{\gamma'(t)}{||\gamma'(t)||}$. Тогда $\int_{\gamma} \langle \overline{f}, \overline{\sigma} \rangle ds = \int_{a}^{b} \langle \overline{f}(\gamma(t)), \overline{\sigma}(\gamma(t)) \rangle ||\gamma'(t)|| dt =$ $= \int_{a}^{b} \langle \overline{f}(\gamma(t)), \frac{\gamma'(t)}{||\gamma'(t)||} \rangle ||\gamma'(t)|| dt = \int_{a}^{b} \langle \overline{f}(\gamma(t)), \gamma'(t) \rangle dt$
- 4, 5. следуют из 3 (по линейности интеграла I рода и линейности скалярного произведения).
 - 6. $|\int_{\gamma} \omega| = |\int_{\gamma} \langle \overline{f}, \overline{\sigma} \rangle ds| \le \int_{\gamma} |\langle \overline{f}, \overline{\sigma} \rangle| ds \le \int_{\gamma} ||\overline{f}|| \cdot \overline{\sigma}|| ds$

Упражнение. Доказать формулу: $\int_{\gamma} \omega = \lim \sum_{j=1}^m \sum_{k=1}^n f_k(\gamma(\xi_j)) (\gamma_k(t_j) - \gamma_k(t_{j-1})),$ если мелкость дробления $\to 0$

 $\gamma: [a,b] \to \mathbb{R}^n$

Определение 3.7. ω – дифференциальная форма, заданная в $\Omega \subset \mathbb{R}^n$ – открытом множестве $F:\Omega \to \mathbb{R}$ - первообразная для ω , если $dF=\omega$

$$dF=rac{\partial F}{\partial x_1}dx_1+\cdots+rac{\partial F}{\partial x_n}dx_n$$
, т.е нужно, чтобы $rac{\partial F}{\partial x_k}=f_k$ при $k=1,2,\ldots,n$

Теорема 3.18. Пусть F – первообразная, ω , γ – кривая, соединяющая точки A,BТогда $\int_{\gamma} \omega = F(B) - F(A)$

Доказательство. $\gamma:[a,b]\to\mathbb{R}^n, f_k=\frac{\partial F}{\partial x_k}$

$$\int_{\gamma} \omega = \int_{a}^{b} \sum_{k=1}^{n} f_{k}(\gamma(t)) \gamma_{k}'(t) dt = \int_{a}^{b} \underbrace{\sum_{k=1}^{n} \frac{\partial F}{\partial x_{k}}(\gamma(t)) \cdot \gamma_{k}'(t)}_{(F \circ \gamma)'(t)} dt = \int_{a}^{b} (F \circ \gamma)'(t) dt = F \circ \gamma(b) - F \circ \gamma(a) = \underbrace{\sum_{k=1}^{n} \frac{\partial F}{\partial x_{k}}(\gamma(t)) \cdot \gamma_{k}'(t)}_{(F \circ \gamma)'(t)} dt = \int_{a}^{b} (F \circ \gamma)'(t) dt = F \circ \gamma(b) - F \circ \gamma(a) = \underbrace{\sum_{k=1}^{n} \frac{\partial F}{\partial x_{k}}(\gamma(t)) \cdot \gamma_{k}'(t)}_{(F \circ \gamma)'(t)} dt = \underbrace{\sum_{k=1}^{n} \frac{\partial F}{\partial x_{k}}(\gamma(t)) \cdot \gamma_{k}'(t)}_{(F \circ \gamma)'(t)} dt = \underbrace{\sum_{k=1}^{n} \frac{\partial F}{\partial x_{k}}(\gamma(t)) \cdot \gamma_{k}'(t)}_{(F \circ \gamma)'(t)} dt = \underbrace{\sum_{k=1}^{n} \frac{\partial F}{\partial x_{k}}(\gamma(t)) \cdot \gamma_{k}'(t)}_{(F \circ \gamma)'(t)} dt = \underbrace{\sum_{k=1}^{n} \frac{\partial F}{\partial x_{k}}(\gamma(t)) \cdot \gamma_{k}'(t)}_{(F \circ \gamma)'(t)} dt = \underbrace{\sum_{k=1}^{n} \frac{\partial F}{\partial x_{k}}(\gamma(t)) \cdot \gamma_{k}'(t)}_{(F \circ \gamma)'(t)} dt = \underbrace{\sum_{k=1}^{n} \frac{\partial F}{\partial x_{k}}(\gamma(t)) \cdot \gamma_{k}'(t)}_{(F \circ \gamma)'(t)} dt = \underbrace{\sum_{k=1}^{n} \frac{\partial F}{\partial x_{k}}(\gamma(t)) \cdot \gamma_{k}'(t)}_{(F \circ \gamma)'(t)} dt = \underbrace{\sum_{k=1}^{n} \frac{\partial F}{\partial x_{k}}(\gamma(t)) \cdot \gamma_{k}'(t)}_{(F \circ \gamma)'(t)} dt = \underbrace{\sum_{k=1}^{n} \frac{\partial F}{\partial x_{k}}(\gamma(t)) \cdot \gamma_{k}'(t)}_{(F \circ \gamma)'(t)} dt = \underbrace{\sum_{k=1}^{n} \frac{\partial F}{\partial x_{k}}(\gamma(t)) \cdot \gamma_{k}'(t)}_{(F \circ \gamma)'(t)} dt = \underbrace{\sum_{k=1}^{n} \frac{\partial F}{\partial x_{k}}(\gamma(t)) \cdot \gamma_{k}'(t)}_{(F \circ \gamma)'(t)} dt = \underbrace{\sum_{k=1}^{n} \frac{\partial F}{\partial x_{k}}(\gamma(t)) \cdot \gamma_{k}'(t)}_{(F \circ \gamma)'(t)} dt = \underbrace{\sum_{k=1}^{n} \frac{\partial F}{\partial x_{k}}(\gamma(t)) \cdot \gamma_{k}'(t)}_{(F \circ \gamma)'(t)} dt = \underbrace{\sum_{k=1}^{n} \frac{\partial F}{\partial x_{k}}(\gamma(t)) \cdot \gamma_{k}'(t)}_{(F \circ \gamma)'(t)} dt = \underbrace{\sum_{k=1}^{n} \frac{\partial F}{\partial x_{k}}(\gamma(t)) \cdot \gamma_{k}'(t)}_{(F \circ \gamma)'(t)} dt = \underbrace{\sum_{k=1}^{n} \frac{\partial F}{\partial x_{k}}(\gamma(t)) \cdot \gamma_{k}'(t)}_{(F \circ \gamma)'(t)} dt = \underbrace{\sum_{k=1}^{n} \frac{\partial F}{\partial x_{k}}(\gamma(t)) \cdot \gamma_{k}'(t)}_{(F \circ \gamma)'(t)} dt = \underbrace{\sum_{k=1}^{n} \frac{\partial F}{\partial x_{k}}(\gamma(t)) \cdot \gamma_{k}'(t)}_{(F \circ \gamma)'(t)} dt = \underbrace{\sum_{k=1}^{n} \frac{\partial F}{\partial x_{k}}(\gamma(t)) \cdot \gamma_{k}'(t)}_{(F \circ \gamma)'(t)} dt = \underbrace{\sum_{k=1}^{n} \frac{\partial F}{\partial x_{k}}(\gamma(t)) \cdot \gamma_{k}'(t)}_{(F \circ \gamma)'(t)} dt = \underbrace{\sum_{k=1}^{n} \frac{\partial F}{\partial x_{k}}(\gamma(t)) \cdot \gamma_{k}'(t)}_{(F \circ \gamma)'(t)} dt = \underbrace{\sum_{k=1}^{n} \frac{\partial F}{\partial x_{k}}(\gamma(t)) \cdot \gamma_{k}'(t)}_{(F \circ \gamma)'(t)} dt = \underbrace{\sum_{k=1}^{n} \frac{\partial F}{\partial x_{k}}(\gamma(t)) \cdot \gamma_{k}'(t)}_{(F \circ \gamma)'(t)} dt = \underbrace{\sum_{k=1}^{n} \frac{\partial F}{\partial x_{k}}(\gamma(t)) \cdot \gamma_{k}'(t)}_{(F \circ \gamma)'(t)} dt = \underbrace{\sum_{k=1}^{n} \frac{\partial F}{\partial x_{k}}(\gamma(t)) \cdot \gamma_{$$

$$F(\gamma(b)) - F(\gamma(a)) = F(B) - F(A).$$

Определение 3.8. Ω – область, если Ω – открытое линейно связанное множество Линейная связность – любая пара точек может быть соединена какой-либо кривой $\in \Omega$

1. Если у ω есть первообразная, то $\int_{\gamma} \omega$ зависит только от концов кривой, но Следствие. не зависит от самой кривой

2. Если Ω – область, то все первообразные отличаются друг от друга на const

Доказательство.

2.
$$F$$
 и G – первообразные ω , возьмем точки A,B из Ω и соединим кривой $\gamma \Longrightarrow G(B) - G(A) = \int_{\gamma} \omega = F(B) - F(A) \implies G(B) = F(B) + \underbrace{G(A) - F(A)}_{=const, \text{ при фикс. } A}$ (фиксируем A и меняем B).

Лемма. Ω – область \implies между любыми двумя её точками можно провести ломанную, все звенья которой параллельны осям координат

Доказательство. $A,B\in\Omega\Longrightarrow\exists\gamma:[a,b]\to\Omega$ такая что $\gamma(a)=A,\gamma(b)=B.$ Для $t\in[a,b]$ рассмотрим шар $B_{r(t)}(\gamma(t))\in\Omega$

 $\gamma([a,b])$ – компакт \implies выберем конечное подпокрытие. Тогда можем перемещаться между центрами шариков по звеньям, параллельным осям координат

Теорема 3.19. Пусть Ω – область, $\omega = f_1 dx_1 + \dots + f_n dx_n$ – дифференциальная форма в Ω и $f_1, f_2, \dots, f_n : \Omega \to \mathbb{R}$ – непрерывные функции. Тогда следующие условия равносильны

- 1. ω имеет первообразную $F:\Omega\to\mathbb{R}$
- $2. \ \int_{\gamma} \omega = 0$ для любой замкнутой кривой γ
- 3. $\int_{\gamma}\omega=0$ для любой замкнутой ломаной γ со звеньями, параллельными осям координат

Доказательство. 1) \implies 2) \implies 3) очевидны

 $3) \implies 1)$:

Соединим c и $x \in \Omega$ ломаной со звеньями, параллельными осям координат.

 $F(x):=\int_{\gamma}\omega.$ Поймем, что результат не зависит от выбора ломаной γ

 $0 = \int_{\gamma \cup \tilde{\gamma}^{-1}} \omega = \int_{\gamma} \omega + \int_{\tilde{\gamma}^{-1}} \omega = \int_{\gamma} \omega - \int_{\tilde{\gamma}} \omega$, где $\tilde{\gamma}^{-1}$ – инвертированная по направлению вторая ломаная

Осталось проверить, что $\frac{\partial F}{\partial x_k} = f_k$

$$\frac{\partial F}{\partial x_{1}}(x) = \lim_{h \to 0} \frac{F(x_{1} + h, x_{2}, \dots, x_{n}) - F(x_{1}, \dots, x_{n})}{h} = \lim_{h \to 0} \frac{-\int_{\gamma} \omega + \int_{\gamma \sqcup [x, x + h]} \omega}{h} = \lim_{h \to 0} \frac{1}{h} \int_{[x, x + h]} \omega = \lim_{h \to 0} \frac{1}{h} \int_{0}^{h} \underbrace{f_{1}(\gamma(t))}_{x + e_{1}t} \underbrace{\gamma'_{1}(t)}_{=1} dt = \lim_{h \to 0} \frac{1}{h} \underbrace{\int_{0}^{h} f_{1}(x + e_{1}t) dt}_{=h \cdot f_{1}(x + e_{1}h \cdot \theta), \theta \in (0, 1)} = f_{1}(x), \text{ т.к. } \gamma(t) = x + e_{1} \cdot t, \gamma'_{1}(t) = 1, \gamma'_{2}(t) = \dots = \gamma'_{n}(t) = 0$$

Замечание. Для \mathbb{R}^2 3) можно заменить на 3'): $\int_{\gamma} \omega = 0$ для любого прямоугольного γ со сторонами, параллельными осям координат

Доказательство. Индукция по числу звеньев. Когда отсекаем новый прямоугольник, то по его ребру мы считаем интеграл в разные стороны, то есть с остатком фигуры значение сократится, поэтому такой индукционный переход сделать можно:

Замечание. ω в $\Omega \in \mathbb{R}^n$. В каждой точке Ω своё линейное отображение $\mathbb{R}^n \to \mathbb{R}$

$$\omega = f_1 dx_1 + f_2 dx_2 + \dots + f_n dx_n$$

$$dx_1$$
 - функция $g_1(x) = x_1$

 dg_1

 $g_1(x+h)=g_1(x)+dg_1(g)=o(h),$ поэтому dx_i в определении ω – проекции на соотв. координаты

Определение **3.9.** Живём в \mathbb{R}^2 . Назовём элементарной область в \mathbb{R}^2 , если

 $\Omega = \{(x,y): a < x < b \land \phi(x) < y < \psi(x)\} = \{(x,y): c < y < d \land \alpha(y) < x < \beta(y)\},$ причем ограничивающие функции непрерывны.

Может показаться, что такого не бывает, но вот пример:

Теорема 3.20. Формула Грина

 $\Omega \subset \mathbb{R}^2$ область, граница которой состоит из конечного числа кусочно гладких простых замкнутых кривых, ориентированных положительно.

 $P,Q:Cl(\Omega) o \mathbb{R}$ непрерывны, $rac{\partial P}{\partial y}$ и $rac{\partial Q}{\partial x}$ непрерывны.

Тогда $\int_{\gamma} P dx + Q dy = \int_{\Omega} (\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}) d\lambda_2$, где γ – граница Ω .

Заметим, что направление на кусочках границ такое, что область слева. То есть ориентация устроена так:

Область всегда по левую руку при обходе

Доказательство. Хотим доказывать это: $\int_{\Omega} \frac{\partial Q}{\partial x} d\lambda_2 = \int_{\gamma} Q dy$ и $-\int_{\Omega} \frac{\partial P}{\partial y} d\lambda_2 = \int_{\gamma} P dx$, при этом формулы никак не связаны, то есть можно и по-отдельности доказывать. Проверим вторую формулу:

1. $\Omega = \{(x,y): x \in (a,b), \ \phi(x) < y < \psi(x)\}$ – элементарная область. Левая часть: $\int_{\Omega} \frac{\partial P}{\partial y} d\lambda_2 = \int_a^b \int_{\phi(x)}^{\psi(x)} \frac{\partial P}{\partial y} dy dx = \int_a^b P(x,\psi(x)) dx - \int_a^b P(x,\phi(x)) dx$ Правая часть: $\int_{\Omega} P dx = \int_I + \int_{II} + \int_{III} + \int_{IV}$

$$x \to (x, \phi(x)) : (I) = \int_a^b P(x, \phi(x)) dx$$
$$y \to (b, y) : (II) = \int_{\phi(b)}^{\psi(b)} P(b, y) b' dy = 0$$
$$x \to (x, \psi(x)) : (III) = -\int_a^b P(x, \psi(x)) dx$$
$$y \to (a, y) : (IV) = -\int_{\phi(a)}^{\psi(x)} P(a, y) a' dy = 0$$

Записывая сумму (I) + (II) + (III) + (IV), получим ровно то, что записано в левой части со знаком минус.

2. $\Omega = \Omega_1 \cup l \cup \Omega_2$. Пусть формула верна для Ω_1 , Ω_2 , выведем ее для Ω .

$$\int_{\Omega} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) d\lambda_2 = \int_{\Omega_1} + \underbrace{\int_{l}}_{=0 \text{ T.K. Media } l \text{ and } 0} + \int_{\Omega_2} = \int_{\Omega_1} + \int_{\Omega_2} = \int_{\Omega_1} d\lambda_2 = \int_{\Omega_2} d\lambda_2 = \int_{\Omega_1} d\lambda_2 = \int_{\Omega_2} d$$

= $\int_{\gamma_1} (Pdx + Qdy) + \int_{\gamma_2} (Pdx + Qdy) = \int_{\gamma} Pdx + Qdy$ (обходя l с разных сторон, слагаемое сократится).

- 3. Формула верна для конечного объединения элементарных областей.
- 4. Формула верна для области из условия, так как та нарезается на конечное число элементарных областей (без док-ва).

Следствие. Формулы площади.

$$\lambda_2 \Omega = \int_{\gamma} x dy = -\int_{\gamma} y dx = \frac{1}{2} \int_{\gamma} x dy - y dx$$

Доказательство. Просто подставляем в формулу Грина подходящие P и Q (кто-то из них 0, а кто-то x, либо y).

3.5. Точные и замкнутые формы

Определение 3.10. Ω – область, ω – дифф. форма в Ω . ω – точная форма, если у нее существует первообразная.

Определение 3.11. ω – локально точная форма, если $\forall a \in \Omega$ найдется U_a , такая что в U_a есть первообразная ω .

Определение 3.12. $\omega = f_1 dx_1 + f_2 dx_2 + \dots + f_n dx_n$ – замкнутная, если $\forall i, j: \frac{\partial f_i}{\partial x_j} = \frac{\partial f_j}{\partial x_i}$.

Замечание. Точность \implies локальная точность (но не наоборот).

Возьмем $\omega = \frac{xdy-ydx}{x^2+y^2}$ на $\mathbb{R}^2\setminus\{(0,0)\}$ и покажем, что она замкнутая, локально точная, но не точная.

Проверим на замкнутость, то есть на равенство частных производных:

$$\frac{\partial F}{\partial x} = -\frac{\frac{1}{y}}{1 + (\frac{x}{y})^2} = \frac{y}{x^2 + y^2}$$

$$\frac{\partial F}{\partial y} = -\frac{\frac{x}{y^2}}{1 + (\frac{x}{y})^2} = \frac{x}{x^2 + y^2}$$

Проверим на локальную точность: везде, кроме оси Ox, есть первообразная $F(x,y) = -\arctan\left(\frac{x}{y}\right)$ (можно честно продифференцировать и проверить)

А теперь покажем, что точности нет: для этого нужно, чтобы интеграл любой замкнутой кривой был равен нулю. Возьмем тогда интеграл по единичной окружности с параметризацией $(x,y) \to (\cos t, \sin t)$:

$$\int_{\text{един. окр.}} \omega = \int_0^{2\pi} rac{\cos(t)(\sin(t))' - \sin(t)(\cos(t))'}{\cos^2(x) + \sin^2(x)} dt = \int_0^{2\pi} dt = 2\pi
eq 0.$$

Теорема 3.21. Если коэфф. формы f_i из C^1 , тогда локальная точность \implies замкнутость.

Доказательство. Берем $a \in \Omega$ и U_a , где есть первообразная $F \implies f_i = \frac{\partial F}{\partial x_i}$.

Лемма. Пуанкаре.

Если Ω – выпуклая область и коэфф. формы из C^1 , то замкнутость \implies точность.

Доказательство. Только для \mathbb{R}^2 .

Для существования первообр. достаточно чтобы интеграл по любому прямоугольнику со сторонами параллельными осям координат был равен 0.

$$\omega = Pdx + Qdy$$
: $\int_{\text{обход контура}} \omega = \int_{\text{заполенные прямоуг.}} \underbrace{\left(\frac{\partial Q}{\partial y} - \frac{\partial P}{\partial x}\right)}_{\text{0.5}} d\lambda_2 = 0.$

Выпукласть Ω важна, чтобы внутри заполненого прямоугольника не было дырок.

Следствие. 1. Замкнутая форма с коэфф. из C^1 в любом открытом шаре из Ω имеет первообразную.

2. Замкнутая форма с коэфф. из C^1 лок. точная.

Определение 3.13. ω – лок. точная форма в Ω .

$$\gamma: [a,b] \to \Omega$$
 путь.

 $f: [a,b] \to \mathbb{R}$ первообразная ω вдоль пути γ , если $\forall t \in [a,b]$ у $\gamma(t)$ найдется окр. $U_{\gamma(t)}$, а в ней первообразная F формы ω , т.ч. $f(\tau) = F(\gamma(\tau))$ при τ близких к t.

Теорема 3.22. Первообразная вдоль пути существует и единственная с точностью до константы.

Лемма. Локально постоянная функция (в каждой точке есть окрестность, что функция на ней постоянная) – константа.

Доказательство. Док-во теоремы.

Единственность: f_1 , f_2 – первообр. вдоль пути γ .

 $f_1 - f_2$ – лок. постоянная, покажем это:

Берем $t\in [a,b]$, есть $U_{\gamma(t)}$ и в ней первообр. F_1 и F_2 , т.ч. $f_1(\tau)=F_1(\gamma(\tau))$ и $f_2(\tau)=F_2(\gamma(\tau))$ при τ близких к t, но $F_1-F_2=const\implies f_1-f_2=const$ при τ близких к t.

Существование: берем $t \in [a, b]$, у $\gamma(t)$ есть окр-ть $U_{\gamma(t)}$, в которой существ. первообр.

 $\bigcup_{t \in [a,b]} U_{\gamma(t)}$ – покрытие $\gamma[a,b]$ – компакт.

Выберем конечные подпокрытия U_1, \ldots, U_m и F_1, \ldots, F_m – первообр. в соотвествующем U_j .

Из леммы Лебега $\exists r>0: \ \forall t\in [a,b]: \ B_r(\gamma(t))$ целиком содержится в каком-то эл-те покрытия.

Нарежем [a,b] на кусочки длины $<\delta,$ где $\delta>0$ выбрано по $\epsilon=r$ из равномерной непрерывности $\gamma.$

 $a =: t_0, t_1, \dots, t_n := b$ – нарезка.

Тогда образы маленьких отрезков целиком содержатся в своих элементах покрытия.

 $\gamma[t_{i-1},t_i]\subset U_i$, так занумеруем F_i — первообр. в U_i .

 $f|_{[t_0,t_1]} = F_1 \circ \gamma, \ f|_{[t_1,t_2]} = F_2 \circ \gamma.$

В $U_1 \cap U_2 \neq \emptyset \implies F_1, F_2$ – первообр. \implies они отличаются на $const \implies F_2 = F_1 + c$,

подменяем c так, что в $U_1 \cap U_2$ они совпали. И так далее для всех остальных кусочков. \square

Следствие. f – первообраз. ω вдоль пути $\gamma:[a,b]\to \Omega.$ Тогда $\int_{\gamma}\omega=f(b)-f(a)$

Доказательство. Смотрим на нарезку из предыдущей теоремы. Тогда $\int_{\gamma} \omega = \sum_{i=1}^{n} \int_{\gamma|_{[t_{i-1},t_i]}} \omega = \sum_{i=1}^{n} (F_i(\gamma(t_i)) - F_i(\gamma(t_{i-1}))) = F_n(\gamma(b)) - F_1(\gamma(a)) = f(b) - f(a)$.

$$F_i(\gamma(t_i)) = F_{i+1}(\gamma(t_i))$$
 так согласованы F_j .

Определение 3.14. Ω – область в \mathbb{R}^2 .

 $\gamma_0, \ \gamma_1 : [a,b] \to \Omega$ пути в Ω .

1. $\gamma_0(a) = \gamma_1(a)$ и $\gamma_0(b) = \gamma_1(b)$.

 γ_0, γ_1 - гомотопные пути с неподвижными концами, если $\exists \gamma: [a,b] \times [0,1] \to \Omega$ непрерывное, т.ч. $\forall t: \ \gamma(t,0) = \gamma_0(t), \ \gamma(t,1) = \gamma_1(t)$ и $\forall u: \ \gamma(a,u) = \gamma_0(a), \ \gamma(b,u) = \gamma_0(b)$.

 $\gamma_u(t) := \gamma(t,u)$ путь, соединяющий точки $\gamma_0(a)$ и $\gamma_0(b)$.

2. $\gamma_0(a) = \gamma_0(b), \ \gamma_1(a) = \gamma_1(b).$

 γ_0, γ_1 – гомотопно замкнутые пути, если $\exists \gamma : [a,b] \times [0,1] \to \Omega$ непрерывное, т.ч. $\forall t : \gamma(t,0) = \gamma_0(t), \ \gamma(t,1) = \gamma_1(t)$ и $\forall u : \gamma(a,u) = \gamma(b,u)$.

Определение 3.15. γ – стягиваемы замкнутый путь в Ω , если он гомотопен точке.

Определение 3.16. Ω – односвязная область, если любой замкнутый путь в ней – стягиваемый.

Пример. 1. Выпуклая область односвязна (для любых двух точке верно, что отрзок, соединяющий их лежит в области).

2. Звездная область односвязна (одна точка фиксированна и верно, что отрезок, соединяющий ее и любую другую, лежит в области)

PS. Напомним, что для обычной выпуклости нужно было, чтобы отрезок для двух произвольных точек из области целиком содержался в ней.

Доказательство. Ω – звездная, O – фикс. точка.

 $\gamma_1:[a,b] o \Omega$ – замк. путь.

$$\gamma_u(t) := u \cdot \gamma_1(t) \in \Omega.$$

$$\gamma_0(t) = 0.$$

Хз, что это доказывает, но вот оно есть :/

3. $\mathbb{R}^2 \setminus \{(0,0)\}$ не явл. односвязной.

Упражнение. Ω – односвязна, f: \mathbb{T} $\to \Omega$ непрер. отображ.

Доказать, что существует g : замк. круг. един. радиуса $\to \Omega$ – непрер.

Определение 3.17. $\gamma:[a,b]\times[c,d]\to\Omega$ непрер. отображ.

 ω – лок. точная форма в Ω .

 $f:[a,b]\times[c,d]\to\mathbb{R}$ – первообразная w относительно отображения γ , если $\forall (t,u)\in[a,b]\times[c,d]$ существует окр-ть $U_{\gamma(t,u)}$ и первообр F в этой окр-ти, т.ч. $f(\tau,\nu)=F(\gamma(\tau,\nu))$ для (τ,ν) близких к (t,u).

Теорема 3.23. Первообразная отн-но отображения существует и единственна с точностью до константы.

Доказательство. Единственность: f, g – первообразные отн-но отображения γ , то (f - g) – локально постоянная функция двух переменных $\implies (f - g) = const.$

То что (f-g) – локально постоянная следует отсюда:

Берем $(t,u)\in [a,b]\times [c,d]$, в окр-ти $U_{\gamma(t,u)}$: $\exists F_1,F_2$ – первообразные, т.ч. $f(\tau,\nu)=F_1(\gamma(\tau,\nu))$ и $g(\tau,\nu)=F_2(\gamma(\tau,\nu))$ при (τ,ν) близких к (t,u).

Знаем, что $F_1 = F_2 + const \implies f(\tau, \nu) - g(\tau, \nu) = F_1(\gamma(\tau, \nu)) - F_2(\gamma(\tau, \nu)) = const.$

Существование: берем $(t,u) \in [a,b] \times [c,d]$, у $\gamma(t,u)$ есть окр-ть $U_{\gamma(t,u)}$ в которой существует первообразная $\implies [a,b] \times [c,d] \subset \bigcup_{(t,u) \in [a,b] \times [c,d]} U_{\gamma(t,u)}$.

Выбираем конечное подпокрытие, по нему r>0 из леммы Лебега $\implies B_r(\gamma(t,u))$ целиком содержится в эл-те подпокрытия.

 $\gamma \in C\left([a,b] \times [c,d]\right) \Longrightarrow$ равном. непрер. Берем по $\epsilon=r$ такое $\delta>0$ из равн. непрерывности \Longrightarrow если (t,u) и (t',u') на расстоянии $<\delta$, то $\gamma(t,u)$ и $\gamma(t',u')$ на расстоянии < r.

 $\gamma([t_{i-1},t_i]\times [u_{j-1},u_j])\subset U_{ij}$ и F_{ij} первообразная в U_{ij} .

$$f|_{[t_0,t_1]\times[u_0,u_1]} = F_{11} \circ \gamma$$

$$f|_{[t_1,t_2]\times[u_0,u_1]} = F_{21} \circ \gamma$$

 $\gamma(\{t_1\} \times [u_0, u_1]) \subset U_{11} \cap U_{21} \leftarrow \text{тут } F_{11}, F_{21} - \text{первообраз.} \implies \text{ они отличаются на } const.$

Подправим F_{21} так, что в $U_{11} \cap U_{21}$ они совпадают.

В итоге построим $f_1:[a,b]\times[c,d]\to\mathbb{R}$ – первообр. отн-но $\gamma|_{[a,b]\times[u_0,u_1]}.$

Аналогично $f_j:[a,b]\times [u_{j-1},u_j]\to \mathbb{R}$ – первообр. онт-но $\gamma|_{[a,b]\times [u_{j-1},u_j]}.$

осталось склеить их в f.

Рассмотрим $f_1, f_2. f_1(\cdot, u_1), f_2(\cdot, u_1)$ – первообр. вдоль пути $\gamma_{u_1} \implies$ они отличаются на константу.

Подправим f_2 так, что $f_1(\cdot, u_1) = f_2(\cdot, u_1)$.

Теорема 3.24. γ_0, γ_1 – гомотопные пути с неподвижными концами в Ω . ω – локально точная форма в Ω . Тогда $\int_{\gamma_0} \omega = \int_{\gamma_1} \omega$.

Доказательство. $\gamma:[a,b]\times[0,1]\to\Omega$ гомотопия между $\gamma_0,\gamma_1.$

f — первообразная ω относительно отображения $\gamma, f(\cdot, 0), f(\cdot, 1)$ — первообразные вдоль путей $\gamma_0, \gamma_1,$ соответственно.

$$\int_{\gamma_0} \omega = f(b,0) - f(a,0).$$

$$\int_{\gamma_1} \omega = f(b, 1) - f(a, 1).$$

Докажем, что $f(a,\cdot)$ – лок. постоянная. Рассмотрим (a,u): у $\gamma(a,u)$ есть окр-ть U и в ней первообразная F, т.ч. $f(\tau,\nu)=F(\gamma(\tau,\nu))$ при (τ,ν) близких к (a,u).

 $f(a,\nu) = F(\gamma(a,\nu)) = F(\gamma_0(a))$ не зависит от ν (по аналогии делаем с другим концом, то есть доказываем, что $f(b,\cdot)$ – локальная постоянная, тогда получили, что $\int_{\gamma_0} \omega = \int_{\gamma_1} \omega$).

Теорема 3.25. $\gamma_0, \ \gamma_1$ – замкнутые гомотопные пути в Ω . ω – лок. точная форма в Ω . Тогда $\int_{\gamma_0} \omega = \int_{\gamma_1} \omega$.

Доказательство. $\gamma:[a,b]\times[0,1]\to\Omega$ – гомотопия, f – первообразная ω относительно $\gamma.$

$$\int_{\gamma_0} \omega = f(b,0) - f(a,0)$$

$$\int_{\gamma_1} \omega = f(b,1) - f(a,1)$$

Докажем, что $(f(b,\cdot) - f(a,\cdot))$ лок. постоянна.

Рассмотрим (a,u), у $\gamma(a,u)$ есть окр-ть U и в ней первообраз. F, т.ч. $f(\tau,\nu)=F(\gamma(\tau,\nu))$ при (τ,ν) близких к (a,u).

Рассмотрим (b,u), у $\gamma(b,u)$ есть окр-ть \tilde{U} и в ней первообраз. \tilde{F} , т.ч. $f(\tau,\nu)=\tilde{F}(\gamma(\tau,\nu))$ при (τ,ν) близких к (b,u).

$$\gamma(a, u) = \gamma(b, u) \in U \cap \tilde{U}$$

F и \tilde{F} – первообразные в $U\cap \tilde{U}\implies \tilde{F}=F+C$ в $U\cap \tilde{U}.$

$$f(b,\nu) - f(a,\nu) = \tilde{F}(\gamma(b,\nu)) - F(\gamma(a,\nu)) = \tilde{F}(\gamma(a,\nu)) - F(\gamma(a,\nu)) = C.$$

Следствие. Если γ_1 – стягивемый путь в $\Omega,\,\omega$ – лок. точная форма в $\Omega.$ Тогда $\int_{\gamma_1}\omega=0.$

Теорема 3.26. Если Ω – односвязна, а ω – лок. точная, то ω – точная.

Доказательство. γ_1 – замкнутая кривая $\Longrightarrow \gamma_1$ – стягиваемая $\Longrightarrow \int_{\gamma_1} \omega = 0 \Longrightarrow$ существует первообр.

Замечание. $\mathbb{R}^2 \setminus \{(0,0)\}$ не односвязна, т.к. там есть лок. точная форма, не являющаяся точной.

Математический анализ ТФКП

4. $T\Phi K\Pi$

4.1. Голоморфные функции

Если доказательство не указано, то оно повторяет то, что было в \mathbb{R} (смотреть 1 семестр).

Определение 4.1. Ω – обсласть в \mathbb{C} , $f:\Omega\to\mathbb{C}$, $z_0\in\Omega$.

f – голоморфна в точке z_0 , если существует $\lim_{z\to z_0} \frac{f(z)-f(z_0)}{z-z_0}=:f'(z_0)$.

Определение 4.2. f комплексно дифф. в точке z_0 , если $\exists k \in \mathbb{C}$:

$$f(z) = f(z_0) + k(z - z_0) + o(z - z_0)$$
 при $z \to z_0$.

Утверждение 4.1. f – голоморфна в точке $z_0 \Leftrightarrow f$ комплексно дифф. в точке z_0 и $k = f'(z_0)$.

Следствие. f и g голоморфны в точке z_0 . Тогда

- 1. $f \pm g$ голом. в точке z_0
- 2. $f \cdot q$ голом. в точке z_0
- 3. Если $g(z_0 \neq 0)$, то $\frac{f}{g}$ голом. в точке z_0 .
- 4. Если h голом. в точке $f(z_0)$, то $h \circ f$ голом. в точке z_0 .

Замечание. $f:\Omega \to \mathbb{C}$

$$z = x + iy, \ f(z) = f(x + iy) = g(x + iy) + ih(x + iy) : \ g, h : \Omega \to \mathbb{R}.$$

$$\frac{\partial f}{\partial x}(z_0) = \lim_{h \to 0, \ h \in \mathbb{R}} \frac{f(z_0 + h) - f(z_0)}{h} = f'(z_0).$$

$$\frac{\partial f}{\partial x}(z_0) = \lim_{h \to 0, \ h \in \mathbb{R}} \frac{f(z_0 + ih) - f(z_0)}{h} = \frac{f'(z_0)}{h} = i \cdot f'(z_0)$$

$$\frac{\partial f}{\partial y}(z_0) = \lim_{h \to 0, h \in \mathbb{R}} \frac{f(z_0 + ih) - f(z_0)}{h} = \frac{f'(z_0)}{i} = i \cdot f'(z_0).$$

Замечание.
$$\binom{g(x+iy)}{h(x+iy)} = \binom{g(x_0+iy_0)}{h(x_0+iy_0)} + \binom{a}{c} \binom{b}{d} \binom{x-x_0}{y-y_0} + o(||(x-x_0,y-y_0)||).$$

$$k = \alpha + i \beta$$

$$k \cdot (z - z_0) = (\alpha + i\beta)((x - x_0) + i(y - y_0)) = \alpha(x - x_0) - \beta(y - y_0) + i(\beta(x - x_0) + \alpha(y - y_0))$$

Вещественная линейность $+\binom{\alpha-\beta}{\beta}\Leftrightarrow$ комплескная линейность.

Замечание. Комплескная дифференцируемость \Leftrightarrow вещественная дифференцируемость + матрица Якоби $\begin{pmatrix} \alpha & \beta \\ -\beta & \alpha \end{pmatrix}$

Комплескная дифференцируемость \Leftrightarrow вещественная дифференцируемость + условия Коши-

Римана
$$\begin{cases} \frac{\partial Re(f)}{\partial x} = \frac{\partial Im(f)}{\partial y} \\ \frac{\partial Re(f)}{\partial y} = -\frac{\partial Im(f)}{\partial x} \end{cases}$$

Замечание.
$$f(z)=f(z_0)+\underbrace{k}_{\in\mathbb{C}}(z-z_0)+o(z-z_0)$$

$$k(z-z_0) = kw = |k| \cdot e^{i\phi} \cdot w, \ \phi = arg(k)$$

Замечание. Обозначения.

$$\frac{\partial}{\partial z} = \frac{1}{2} \cdot \left(\frac{\partial}{\partial x} - i \frac{\partial}{\partial y} \right)$$

$$\frac{\partial}{\partial \overline{z}} = \frac{1}{2} \cdot \left(\frac{\partial}{\partial x} + i \frac{\partial}{\partial y} \right)$$

$$dz = dx + idy$$

$$d\overline{z} = dx - idu$$

$$df = \frac{\partial f}{\partial x} \cdot dx + \frac{\partial f}{\partial y} dy = \frac{\partial f}{\partial z} dz + \frac{\partial f}{\partial \overline{z}} d\overline{z}$$

Теорема 4.2. Условия Коши-Римана.

$$f:\Omega\to\mathbb{C},\ a\in\Omega$$

Математический анализ

f – дифф. в точке a как функция из \mathbb{R}^2 в \mathbb{R}^2 . Следующие условия равносильны:

- 1. f голоморфна в точке a.
- 2. $d_a f$ комплексно линеен
- 3. условия Коши-Римана
- 4. $\frac{\partial f}{\partial \overline{z}}(a) = 0$

Доказательство. Мы выяснили все, кроме $(3) \Leftrightarrow (4)$:

$$\frac{\partial f}{\partial \overline{z}} = 0 \Leftrightarrow \frac{\partial f}{\partial x} + i \frac{\partial f}{\partial y} = 0 \Leftrightarrow \frac{\partial (Re(f) + iIm(f))}{\partial x} + i \cdot \frac{\partial (Re(f) + iIm(f))}{\partial y} = 0 \Leftrightarrow \begin{cases} \frac{\partial Re(f)}{\partial x} - \frac{\partial Im(f)}{\partial y} = 0 \\ \frac{\partial Im(f)}{\partial x} + \frac{\partial Re(f)}{\partial y} = 0 \end{cases} - \text{а это}$$
 и есть условия Коши-Римана.

Замечание. Обозначения.

 $f \in H(\Omega) \Leftrightarrow f : \Omega \to \mathbb{C}$ и голоморфна во всех точках из Ω .

Следствие. Ω – область, $f \in H(\Omega)$ и $Im(f) = const \implies f = const$

Доказательство.
$$\frac{\partial Im(f)}{\partial y} = 0 \implies \frac{\partial Re(f)}{\partial x} = 0$$

$$\frac{\partial Im(f)}{\partial x} = 0 \implies \frac{\partial Re(f)}{\partial y} = 0$$

$$\implies Re(f) = const$$

Теорема 4.3. Коши (ah, shit, here we go again...)

$$f \in H(\Omega) \implies$$
 форма $f(z)dz$ локально точная.

Доказательство. Будет два разных док-ва.

1. Для случая непрерывно-дифф. $\frac{\partial Re(f)}{\partial x}, \dots$ (имеются в виду все частные производные).

Тогда замкнутость \Longrightarrow локальная точность.

$$f(z)dz = f(z)(dx + idy) = (Re(f) + i \cdot Im(f)) \cdot (dx + idy) = Re(f)dx - Im(f)dy + i(Im(f)dx + Re(f)dy).$$

$$Pdx + Qdy$$
 – замкн. $\Leftrightarrow \frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}$

$$Re(f)dx - Im(f)dy$$
 – замкн. $\Leftrightarrow \frac{\partial Re(f)}{\partial y} = -\frac{\partial Im(f)}{\partial x}$

$$Im(f)dx + Re(f)dy$$
 – замкн. $\Leftrightarrow \frac{\partial Im(f)}{\partial y} = \frac{\partial Re(f)}{\partial x}$

2. Общий случай.

Надо доказать, что интеграл по любому прямоугольнику со сторонами параллельными осям координат из шарика $U \subset \Omega$, содержащего произвольную точку, равен 0.

От противного: пусть нашелся прямоугольник P, т.ч. $\alpha(P) := \int_P f(z) dz \neq 0$.

Математический анализ ТФКП

Режем прямоугольник на 4 части, индексируем как P^1, P^2, P^3, P^4 , строим обходы каждого (против часовой стрелки). Тогда $\alpha(P) = \alpha(P^1) + \alpha(P^2) + \alpha(P^3) + \alpha(P^4)$, $|\alpha(P)| \leq |\alpha(P^1)| + |\alpha(P^2)| + |\alpha(P^3)| + \alpha(P^4)$.

Хотя бы одно из слагаемых $\geq \frac{1}{4}|\alpha(P)|$, назовем такое P_1 (индекс уже снизу!). Разрежем его на 4 равные части. Пусть P_2 такой, что $|\alpha(P_2)| \geq \frac{1}{4}|\alpha(P_1)|$ и т.д. $|\alpha(P_n)| \geq \frac{1}{4^n}|\alpha(P)|$.

Берем a из P_n :

$$f(z) = f(a) + f'(a)(z-a) + o(z-a)$$

$$\alpha(P_n) = \int_{P_n} f(z)dz = \underbrace{\int_{P_n} f(a)dz}_{=0, \text{ по 1-ому док-ву}} + \underbrace{\int_{P_n} f'(a)(z-a)dz}_{=0, \text{ по 1-ому док-ву}} + \int_{P_n} o(z-a)dz$$

$$\begin{split} o(z-a) &= (z-a) \cdot \beta(z-a), \text{ где } \beta(z-a) \underbrace{\longrightarrow}_{z \to a} 0 \\ \left| \int_{P_n} (z-a) \beta(z-a) dz \right| \leq \max_{z \in P_n} |z-a| \cdot |\beta(z-a)| \cdot \underbrace{l(P_n)}_{\text{периметр}} \leq \max_{z \in P_n} |\beta(z-a)| \cdot \underbrace{\frac{l(P)}{2^n} \cdot \frac{l(P)}{2^n}}_{\text{периметр}} \Longrightarrow \\ & \Longrightarrow \frac{|\alpha(P)|}{4^n} \leq |\alpha(P_n)| \leq \frac{l(P) \cdot l(P)}{4^n} \cdot \max_{z \in P_n} |\beta(z-a)| \implies \max_{z \in P_n} |\beta(z-a)| \geq \frac{|\alpha(P)|}{l(P) \cdot l(P)} > 0 - \text{противоречие, т.к. } \beta(z) \to 0 \text{ при } z \to a. \end{split}$$

1. Если $f \in H(\Omega)$, то у каждой точки $a \in \Omega$ есть окрестность, в которой Следствие. существует ф-я F, т.ч. F' = f в этой окрестности.

Доказательство. Пусть F первообразная формы f(z)dz. Поймем, что F'=f.

$$\frac{\partial F}{\partial x} = f(z), \ \frac{\partial F}{\partial y} = i \cdot f(z) \implies \frac{\partial F}{\partial x} + i \frac{\partial F}{\partial y} = 0 \implies \frac{\partial F}{\partial \overline{z}} = 0$$

2. $f \in H(\Omega)$, γ стягиваемый в Ω путь $\Longrightarrow \int_{\gamma} f(z)dz = 0$

Теорема 4.4. $f \in C(\Omega)$, Δ – прямая параллельная оси координат.

$$f \in H(\Omega \setminus \Delta)$$

Тогда f(z)dz локально точная.

Доказательство. Надо проверять, что интеграл по довольно маленькому прямоугольнику (со стороронами паралл. осям) это 0.

Очевидно, что если прямоугольник не пересекает Δ , то там все очевидно. Хотим рассматривать только те, что задевают. Те, что пересекают Δ , можно разбить на две части (верхнюю и нижнюю). По каждой из частей будет 0, тогда и в сумме тоже будет 0. То есть нас вообще интересуют только те прямоугольники, у которых Δ это одна из сторон. Рассмотрим их:

$$\begin{split} &\int_{P_{\epsilon}} f(z)dz = 0 \to_{\epsilon \to 0} \int_{P} f(z)dz \\ &\left| \int_{P} f(z)dz - \int_{P_{\epsilon}} f(z)dz \right| \leq |\int_{1} + \int_{3} |+|\int_{2} |+|\int_{4} |+|\int_{4} |+|\int_{2} f(z)dz| \leq M \cdot (\text{длина } 2) = M\epsilon \\ &\left| \int_{1} + \int_{3} |-|\int_{a}^{b} \left(f(x+iy_{0}) - f(x+i(y_{0}+\epsilon)) \right) dx \right| \leq \int_{a}^{b} |\dots| dx = (*) \end{split}$$
 f непрер на компакте \Longrightarrow равномерно непрер

f непрер. на компакте \implies равномерно непрер.

$$\forall \gamma>0:\ \exists \epsilon>0$$
 если $ho({\rm аргумент})<\epsilon\implies |f(\dots)-f(\dots)|<\gamma,$ тогда

$$(*) \leq (b-a) \cdot \gamma$$

Cледствие. $f:\Omega\to\mathbb{C}$

 $f \in C(\Omega)$ и f голоморфна в Ω за исключением мн-ва изолированных точек, тогда форма f(z)dz все равно лок. точная.

Доказательство. Рассмотрим окр-ть, в которой ровно одна плохая точка.

Давайте проведем прямую через это точку, тогда работает теорема.

Определение 4.3. Индекс кривой отн-но точки $Ind(\gamma, z_0)$.

 γ – замкнутая кривая, не проходящая через точку z_0 .

$$Ind(\gamma,0)=rac{\phi(b)-\phi(a)}{2\pi}\in\mathbb{Z}$$
 — кол-во оборотов γ вокруг $0.$

 $\gamma:[a,b]\to\mathbb{C}$

 $\gamma(t) = r(t)e^{i\phi(t)}, \, \phi$ – непрерывна (полярная замена).

Теорема 4.5. Пусть γ – замкнутая кривая, не проходящая через 0. Тогда $\int_{\gamma} \frac{dz}{z} = 2\pi i Ind(\gamma, 0).$

Доказательство. Берем параметризацию $r, \phi: [a, b] \to \mathbb{R}$

$$z(t) = r(t)e^{i\phi(t)}, dz = (r'e^{i\phi} + ri\phi'e^{i\phi}) dt$$

$$\frac{dz}{z} = \frac{r'}{r} + i\phi'$$

$$\int_{\gamma} \frac{dz}{z} = \int_{a}^{b} \left(\frac{r'(t)}{r(t)} + i\phi'(t) \right) dt = \left(\ln(r(t)) + i\phi(t) \right) \Big|_{t=a}^{t=b} = i(\phi(b) - \phi(a)) = 2\pi i Ind(\gamma, 0)$$

$$\int_{\gamma} \frac{dz}{z-a} = 2\pi i Ind(\gamma, a).$$

Теорема 4.6. (интегральная формула Коши).

$$f \in H(\Omega)$$

 γ – стягиваемая в Ω кривая, не проходящая через $a \in \Omega$.

Тогда
$$\int_{\gamma} \frac{f(z)dz}{z-a} = 2\pi i f(a) Ind(\gamma, a)$$

Доказательство. $g(z) = \begin{cases} \frac{f(z) - f(a)}{z - a}, & \text{при } z \neq a, \\ f'(a), & \text{иначе} \end{cases}$

$$g \in C(\Omega)$$

$$q \in H(\Omega \setminus \{a\})$$

 $\implies g(z)dz$ – локально точкая форма $\implies \int_{\gamma}g(z)dz=0,$ так как γ – стягиваемая

$$\implies 0 = \int_{\gamma} \frac{f(z)dz}{z-a} - \int_{\gamma} \frac{f(a)dz}{z-a} \implies \int_{\gamma} \frac{f(z)dz}{z-a} = f(a) \cdot \int_{\gamma} \frac{dz}{z-a} = f(a) \cdot 2\pi i \cdot Ind(\gamma, a)$$

Пример. Берем круг. f – голоморфна в окр-ти этого круга.

$$\int_{\text{окр.}} \frac{f(z)}{z-a} dz = \begin{cases} 0, & \text{если } a \text{ вне круга} \\ f(a) \cdot 2\pi i, & \text{если } a \text{ внутри круга} \end{cases}$$

Замечание. Обозначение.

$$\mathbb{D} = \{|z| \leq 1\}$$
 – единичный круг.

 $\mathbb{T} = \{|z| = 1\}$ — единичная окружность, обход против часовой стрелки.

$$r\mathbb{T} + a = \{|z - a| = r\}$$

Теорема 4.7. $f \in H(r\mathbb{D}) \implies f$ аналитична (= функция раскладывается в ряд) в этом круге.

Доказательство. В нашем круге радиуса r берем еще два круга с тем же центром, но меньшими радиусами $(r > r_1 > r_2 > 0)$. Берем $z : |z| < r_2$ — точка внутри наименьшего круга. Хотим интегрировать по средней окружности.

$$f(z) = \frac{1}{2\pi i} \int_{r_1 \mathbb{T}} \frac{f(\zeta)d\zeta}{\zeta - z}$$

$$\frac{1}{\zeta - z} = \frac{1}{1 - \frac{z}{\zeta}} \cdot \frac{1}{\zeta} = \sum_{n=0}^{\infty} \frac{z^n}{\zeta^{n+1}} = (*) \text{ равномерно сх-ся, так как } \left| \frac{z}{\zeta} \right| \le \frac{r_2}{r_1} < 1$$

$$(*) = \frac{1}{2\pi i} \int_{r_1 \mathbb{T}} \sum_{n=0}^{\infty} \frac{f(\zeta)}{\zeta^{n+1}} z^n d\zeta = \frac{1}{2\pi i} \sum_{n=0}^{\infty} z^n \underbrace{\int_{r_1 \mathbb{T}} \frac{f(\zeta)}{\zeta^{n+1}} d\zeta}_{=:a_n \cdot 2\pi i} = \sum_{n=0}^{\infty} a_n z^n$$

Следствие. 1. Если $f \in H(r\mathbb{D})$ и $0 < r_1 < r$, то

$$\frac{n!}{2\pi i} \cdot \int_{r_1 \mathbb{T}} \frac{f(z)}{z^{n+1}} dz = f^{(n)}(0)$$

2.
$$f \in H(r\mathbb{D} + a), \ 0 < r_1 < r \implies \frac{n!}{2\pi i} \int_{r_1 \mathbb{T} + a} \frac{f(z)}{(z-a)^{n+1}} dz = f^{(n)}(a)$$

$$z = w + a$$

$$g(w) = f(w+a)$$

$$g^{(n)}(0) = \frac{n!}{2\pi i} \cdot \int_{r_1 \mathbb{T}} \frac{g(w)}{w^{n+1}} dw$$

3. $f:\Omega\to\mathbb{C}$

Тогда f – голоморфна в $\Omega \Leftrightarrow f$ – аналитична в Ω .

- 4. $f \in H(\Omega) \implies f$ бесконечно диффиренцируема.
- 5. $f \in H(\Omega) \implies f' \in H(\Omega)$

6.

Определение 4.4. $g: \mathbb{R}^n \to \mathbb{R}$ – гармоническая, если $\frac{\partial^2 g}{\partial x_1^2} + \frac{\partial^2 g}{\partial x_2^2} + \cdots + \frac{\partial g}{\partial x_n^2} = 0$.

Продолжаем свойство:

 $f \in H(\Omega) \implies Re(f)$ и Im(f) – гармонические функции.

Доказательство.
$$\frac{\partial^2 Re(f)}{\partial x^2} = \frac{\partial}{\partial x} \left(\frac{\partial Re(f)}{\partial x} \right) = \frac{\partial}{\partial x} \left(\frac{\partial Im(f)}{\partial y} \right) = \frac{\partial}{\partial y} \left(\frac{\partial Im(f)}{\partial x} \right) = \frac{\partial}{\partial y} \left(-\frac{\partial Re(f)}{\partial y} \right) = -\frac{\partial^2 Re(f)}{\partial y^2}$$

про Im(f) аналогично доказывается.

Замечание. Если $g:\Omega\to\mathbb{R}$ гармоническая ф-я, то существует единств. (с точностью до прибавления $const\in\mathbb{R}$) гармоническая ф-я $h:\Omega\to\mathbb{R}$, т.ч. $g+ih\in H(\Omega)$

Теорема 4.8. Мореры.

 $f \in C(\Omega)$. Если f(z)dz локально точная, то $f \in H(\Omega)$.

Доказательство. Возьмем $a \in \Omega$. Существует окр-ть a, что для f в ней есть первообразная F (т.е. F' = f в U).

Тогда $F \in H(U) \implies F' = f \in H(U)$ – это локальное свойство, поэтому на всей Ω тоже будет гомоморфность.

 $\pmb{Cnedcmeue.}\ f\in C(\Omega),\ \Delta$ – прямая, параллельная оси координат.

$$f \in H(\Omega \setminus \Delta)$$
. Тогда $f \in H(\Omega)$.

Доказательство. $f\in C(\Omega)$ и $f\in H(\Omega\setminus\Delta)$ \Longrightarrow f(z)dz локально точная в $\Omega\underset{\text{т. Мореры}}{\Longrightarrow}f\in H(\Omega).$

Теорема 4.9. (интегральная формула Коши).

$$f \in H(\Omega)$$

 $K\subset \Omega$ – компакт, граница которого – конечное число кусочно-гладких замкнутых кривых. Тогда

- 1. $\int_{\partial K} f(z)dz = 0$
- 2. Если $a \in Int(K)$, то $\int_{\partial K} \frac{f(z)}{z-a} dz = 2\pi i f(a)$.

Доказательство. 1. Пишем формулу Грина.

$$\begin{split} &\int_{\partial K} f(z) dz = \int_{\partial K} f(z) dx + i \cdot f(z) dy \underbrace{=}_{\Gamma_{\text{рин}}} \int_{K} \left(i \cdot \frac{\partial f}{\partial x} - \frac{\partial f}{\partial y} \right) dx dy = \\ &= i \cdot \int_{K} \left(\frac{\partial f}{\partial x} + i \frac{\partial f}{\partial y} \right) dx dy = 2i \int_{K} \frac{\partial f}{\partial \overline{z}} d\lambda_{2} = 0. \end{split}$$

2. Берем круг, содержащий a, не вылезающий за границу формы $B_r(a)$.

$$\tilde{K} = K \setminus B_r(a)$$
 – компакт.

$$\frac{f(z)}{z-a} \in H(\Omega \setminus \{a\}), \ \tilde{K} \subset \Omega \setminus \{a\}.$$

$$0 = \int_{\partial \tilde{K}} \frac{f(z)}{z - a} dz = \int_{\partial K} \frac{f(z)}{z - a} dz - \underbrace{\int_{r\mathbb{T} + a} \frac{f(z)}{z - a} dz}_{=2\pi i f(a)}.$$

Упражнение. $f \in H(r\mathbb{D})$ и $f \in C(Cl(r\mathbb{D}))$

 $a \in \mathbb{D}$.

Доказать, что
$$\int_{r\mathbb{T}} \frac{f(z)}{z-a} dz = 2\pi i f(a)$$

Теорема 4.10. $f \in C(\Omega)$. Следующие условия равносильны (равносильность всех утверждений, так или иначе, уже доказывалась ранее):

- 1. $f \in H(\Omega)$
- 2. f(z)dz локально точная в Ω
- 3. В окр-ти каждой точки у f есть первообразная
- 4. f аналитична в Ω
- 5. $\int f(z)dz = 0$ по любому достаточно малому прямоугольнику со сторонами параллельными осям
- 6. f(z)dz замкнутая и частн. производные по x и y непрерывны.

Теорема 4.11. Неравенство Коши.

$$f \in H(R\mathbb{D}), \ 0 < r < R.$$

$$f(z) = \sum_{n=0}^{\infty} a_n z^n$$
. Тогда $|a_n| \leq \frac{M(r)}{r^n}$, где $M(r) := \max_{|z|=r} |f(z)|$.

Теорема 4.12. $a_n = \frac{1}{2\pi i} \int_{|z|=r} \frac{f(z)}{z^{n+1}} dz$

$$|a_n| = \frac{1}{2\pi} \left| \int_{|z|=r} \frac{f(z)}{z^{n+1}} dz \right| \le \frac{1}{2\pi} \cdot \max_{|t|=r} \left| \frac{f(z)}{z^{n+1}} \right| \cdot 2\pi r = \frac{M(r)}{r^{n+1}} \cdot r = \frac{M(r)}{r^n}$$

Теорема 4.13. Луивилля.

Если $f \in H(\mathbb{C})$ и f – ограничена, то f = const.

Доказательство. f – ограничена $\implies |f| \le M$.

$$f \in H(\mathbb{C}) \implies f(z) = \sum_{n=0}^{\infty} a_n z^n$$
 и ряд сходится $\forall z \in \mathbb{C} \underset{\text{нер-во Коши}}{\Longrightarrow} |a_n| \leq \frac{M_r}{r^n} \leq \frac{M}{r^n} \underset{r \to +\infty}{\longrightarrow} 0 \implies$ $a_n = 0: \ \forall n \geq 1$

Замечание. \sin и \cos неограничены в \mathbb{C} .

Определение **4.5.** Целая функция – функция, голоморфная в \mathbb{C} .

Теорема 4.14. Основная теорема алгебры.

P – многочлен степени ≥ 1 . Тогда у P есть хотя бы один корень.

Следствие. Если degP=n, то $P(z)=c(z-z_1)(z-z_2)\dots(z-z_n)$ для некоторых $z_1,z_2,\dots z_n\in\mathbb{C}.$

Доказательство. Если
$$z_1$$
 – корень P , то $P(z)=(z-z_1)\cdot Q(z)$, где $degQ=n-1$.

Доказательство. Основной теоремы алгебры.

От противного:

пусть
$$P(z) \neq 0 \ \forall z \in \mathbb{C}$$
. Тогда $f(z) = \frac{1}{P(z)} \in H(\mathbb{C})$.

Докажем, что f – ограниченная функция.

$$P(z) = z^{n} + a_{n-1}z^{n-1} + \dots + a_{1}z + a_{0}$$

$$R := 1 + |a_{n-1}| + |a_{n-2}| + \dots + |a_1| + |a_0|. \text{ Пусть } |z| \ge R, |P(z)| \ge |z|^n - |a_{n-1}||z|^{n-1} - \dots - |a_1||z| - |a_0| \ge |z|^n - |z|^{n-1} (|a_{n-1}| + |a_{n-2}| + \dots + |a_0|) = \underbrace{|z|^{n-1}}_{\ge 1} \underbrace{(|z| - |a_0| - |a_1| - \dots - |a_{n-1}|)}_{\ge 1} \Longrightarrow |P(z)| \ge 1$$

при $|z| \ge R \implies |f(z)| \le 1$ при $|z| \ge R$.

Докажем, что при $|z| \le R$, |f(z)| – ограничена.

$$f\in H(\mathbb{C})\implies f$$
 непрер. в $\mathbb{C}\implies f$ непрер. в $\{|z|\leq R\}$ – компакт $\implies |f|$ огр. в $\{|z|\leq R\}.$

Тогда по т. Луивиля $f(z)=const\implies P(z)=\frac{1}{const},$ что противоречит условию, что P(z) — многочлен степени $\geq 1.$

4.2. Теоремы единственности

Теорема 4.15. $f \in H(\Omega), \Omega$ – область, $z_0 \in \Omega$. След. условия равносильны:

- 1. $f^{(n)}(z_0) = 0 \ \forall n = 0, 1, 2, \dots$
- 2. f = 0 в некоторой окр-ти точки z_0 .

3.
$$f \equiv 0 \text{ B } \Omega$$

Лемма. Ω – область в метрическом пространстве, $E \subset \Omega$, т.ч. $E \neq \emptyset$, E – открыто в Ω , E – замкнуто в Ω . Тогда $E = \Omega$.

Доказательство. Леммы.

Пусть $\Omega \setminus E \neq \emptyset$, берем $a \in E$ и $b \in \Omega \setminus E$. Возьмем путь γ , соединяющий эти точки.

 $\gamma: [\alpha, \beta] \to \Omega$, т.ч. $\gamma(\alpha) = a, \ \gamma(\beta) = b. \ \gamma$ – непрер. $\Longrightarrow \gamma^{-1}(E)$ – открыто, $\gamma^{-1}(\Omega \setminus E)$ – открыто $\Longrightarrow \gamma^{-1}(E)$ – открыт. и замкнут. подмн-во $[\alpha, \beta], \ \alpha \in \gamma^{-1}(E), \ \beta \not\in \gamma^{-1}(E)$.

$$s:=\sup \gamma^{-1}(E)$$
 из замкн. $s\in \gamma^{-1}(E)\implies s<\beta.$

Возьмем окр-ть s, т.ч. $(s - \delta, s + \delta) \subset \gamma^{-1}(E) \cap (\alpha, \beta) \implies в \gamma^{-1}(E)$ есть точки $> s \implies s$ не sup. Противоречие.

Доказательство. Теоремы.

- $(3) \implies (2) \implies (1)$ очевидно.
- $(1) \implies (2)$ почти очевидно:

Берем $z_0 \in \Omega$ и $B_r(z_0) \subset \Omega$, тогда в круге $|z - z_0| < r : f$ раскл. в свой ряд Тейлора \implies в нем $f \equiv 0$.

$$(2) \implies (3)$$
:

 $E:=\{z\in\Omega: \ \mathrm{B}\ \mathrm{Hekotopoh}\ \mathrm{okp-tu}\ \mathrm{touku}\ z,\ f=0\}$

 $z_0 \in E$ по условию $\Longrightarrow E \neq \emptyset$.

E – открыто. Если $w \in E$, то в круге |z - w| < r, f = 0.

 $\forall z$ из этого круга есть круг меньшего радиуса, содерж. $\{|z-w| < r\}$, в нем f=0.

E – замкнуто. Пусть z_* – предельная точка E, то есть $z_n \in E$ и $\lim z_n = z_*$. $f^{(m)}(z_n) = 0 \ \forall m, \ \forall n$ (так как есть (2) \implies (1)). По непрерывности $f^{(m)}(z_*) = \lim f^{(m)}(z_n) = 0 \underset{(1) \implies (2)}{\Longrightarrow} z_* \in E$.

Тогда по лемме
$$E=\Omega$$
.

Следствие. $f,g\in H(\mathbb{C})$, т.ч. f(z)=g(z) в окр-ти точки $z_0\in\Omega\implies f\equiv g.$

Теорема 4.16. О среднем.

 $f \in H(\Omega)$ и $a \in \Omega$, причем $\{|z-a| \le r\} \subset \Omega$, тогда $f(a) = \frac{1}{2\pi} \cdot \int_0^{2\pi} f(a+re^{i\phi})d\phi$ (т.е. среднее значение на окружности радиуса r с центром в a равно f(a)).

Доказательство.
$$f(a) = \frac{1}{2\pi i} \int_{|z-a|=r} \frac{f(z)}{z-a} dz = \frac{1}{2\pi i} \int_0^{2\pi} \frac{f(a+re^{i\phi})}{re^{i\phi}} re^{i\phi} id\phi$$
, где $z = a + re^{i\phi}$, $dz = re^{i\phi} id\phi$.

Следствие. $f \in H(\Omega), \ a \in \Omega, \ \{|z-a| \le r\} \subset \Omega.$ Тогда $f(a) = \frac{1}{\pi r^2} \int_{|z-a| \le r} f(z) d\lambda_2.$

Доказательство.
$$\int_{|z-a| \le r} f(z) d\lambda_2 = \int_0^r \int_0^{2\pi} f(a+\rho e^{i\phi}) \rho d\phi d\rho = \int_0^r 2\pi f(a) \rho \ d\rho =$$

= $2\pi f(a) \frac{r^2}{2} = \pi r^2 f(a)$.

Теорема 4.17. Принцип максимума.

 $f \in H(\mathbb{C}), \ a \in \Omega$. Если $|f(a)| \ge |f(z)| \ \forall z$ из окр-ти точки a, то $f \equiv const.$

Доказательство. Пусть |f(a)| =: M. Домножим f на $e^{i\alpha}$ так, что f(a) = M > 0.

$$|f(a)| = M = \frac{1}{2\pi} \left| \int_0^{2\pi} f(a + re^{i\phi}) d\phi \right| \le \frac{1}{2\pi} \int_0^{2\pi} |f(a + re^{i\phi})| d\phi \le \frac{1}{2\pi} \int_0^{2\pi} M \ d\phi = M.$$

Все нер-ва обращаются в равенства $\implies |f(a+re^{i\phi})| = M \ \forall \phi \ \forall$ маленьких r.

 $Re(f(a))=M=rac{1}{2\pi}\int_0^{2\pi}Re(f(a+re^{i\phi}))d\phi\leq rac{1}{2\pi}\int_0^{2\pi}|f(a+re^{i\phi})|d\phi\leq M$. Это все равенства \Longrightarrow $Re(f(a+re^{i\phi}))=|f(a+re^{i\phi})|=M\implies f(z)=M$ в окр-ти точки a \Longrightarrow $f(z)\equiv const$. \square

Следствие. $f \in H(\Omega), \ \Omega$ – огранич. область, $f \in C(Cl(\Omega))$. Тогда |f| достигает своего тах на границе Ω .

Доказательство. $Cl(\Omega)$ – компакт, |f| непрер. на компакте \implies в какой-то точке $a \in Cl(\Omega)$ достигает max.

Если $a \in \Omega$, то по принципу максимума $f \equiv const$, значит на границе то же самое значение.

Если $a \notin \Omega$, то это точка на границе.

Определение 4.6. $f \in H(\Omega), \ a \in \Omega, \ a$ – ноль функции f, если f(a) = 0.

Теорема 4.18. $f \not\equiv 0, \ f \in H(\Omega), \ a \in \Omega, \ f(a) = 0.$ Тогда существует $m \in \mathbb{N}$ и $g \in H(\Omega),$ т.ч. $g(a) \neq 0$ и $f(z) = (z-a)^m \cdot g(z).$

Доказательство. Разложим f в ряд Тейлора в окр-ти точки a.

$$f(z) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} \cdot (z-a)^n, \ m := \min\{n : \ f^{(n)}(a) \neq 0\}.$$

$$g(z) = \begin{cases} \frac{f(z)}{(z-a)^m}, & z \neq a \\ \frac{f^{(m)}(a)}{m!}, & z = a \end{cases}$$

 $g \in H(\Omega \setminus \{a\}), g$ – непрерывная в точке $a, \implies g \in H(\Omega).$

$$g(z) = \sum_{n=m}^{\infty} \frac{f^{(n)}(a)}{n!} (z - a)^{n-m} \underbrace{\to}_{z \to a} \frac{f^{(m)}(a)}{m!}$$

Следствие. 1. Если $f \in H(\Omega)$ и $a \in \Omega$ – ноль функции f, то $\exists U_a$ – кор-ть точки a, т.ч. $f(z) \neq 0 \ \forall z \in U_a^{\circ}$ (проколотая окр-ть).

Доказательство. $f(z) = (z - a)^m g(z), \ g(a) \neq 0$ из теоремы.

g – непрер. в точке $a \implies g(z) \neq 0$ в окр-ти точки $a \implies f(z) = (z-a)^m g(z) \neq 0$ в прокол. окр-ти точки a.

2. Если $f,g \in H(\Omega)$ и $fg \equiv 0$, то либо $f \equiv 0$, либо $g \equiv 0$.

Доказательство. Пусть
$$f \not\equiv 0$$
. Если $f(z) \not= 0 \ \forall z$, то $g \equiv 0$. Иначе найдется $a \in \Omega$, т.ч. $f(a) = 0 \implies f(z) \not= 0, \ \forall z \in U_a^\circ \implies g(z) = 0 \ \forall z \in U_a^\circ \implies g \equiv 0$.

Теорема 4.19. Единственности.

 $f,g\in H(\Omega)$ и $z_n\in\Omega,\,z_n$ – различные, т.ч. $f(z_n)=g(z_n).$ Если $\lim z_n\in\Omega,$ то $f\equiv g.$

Следствие. $f,g \in H(\Omega), \ A := \{z \in \Omega : \ f(z) = g(z)\}$. Если какая-то предельная точка мн-ва A лежит в Ω , то $f \equiv g$.

Доказательство. Теоремы.

$$h(z)=f(z)-g(z).$$
 По условию $h\in H(\Omega)$ и $h(z_n)=0.$ $a:=\lim z_n,$ по непрерывности $h(a)=0$ \Longrightarrow $\exists U_a,$ т.ч. $h(z)\neq 0 \ \forall z\in U_a^\circ,$ но z_n начиная с некоторого места лежат в $U_a.$

Математический анализ ТФКП

Cnedcmeue. $\sin^2 z + \cos^2 z = 1$, $\forall z \in \mathbb{C}$.

4.3. Аналитическое продолжение

Определение 4.7. $f_1 \in H(\Omega_1), f_2 \in H(\Omega_2).$

 Δ – компонента связности $\Omega_1 \cap \Omega_2 \neq \varnothing$.

 f_2 непосредственное аналитическое продолжение f_1 через Δ , если $f_1(z) = f_2(z) \ \forall z \in \Delta$.

Замечание. 1. При фиксации $\Omega_1, \ \Omega_2, \Delta, f_1, \ функция <math>f_2$ определена однозначно.

Доказательство. g – непоср. аналитическое продолжение f_1 :

$$g(z) = f_1(z) = f_2(z) \ \forall z \in \Delta$$
 $g, f_2 \in H(\Omega_2)$ \Longrightarrow $f_2 \equiv g.$

2. Для другой компоненты продолжение может быть другим (тут понятнее на картинке, добавьте, плиз).

Oпределение 4.8. $f \in H(\Omega), \ \tilde{f} \in H(\tilde{\Omega}).$

 \tilde{f} – аналитическое продолжение f на цепочке областей, если $\exists \Omega_1, \dots \Omega_n$ и $f_1 \in H(\Omega_1), \dots, f_n \in H(\Omega_n)$, т.ч. f_1 – непосредственное аналитическое продолжение f, f_2 – непосредственное аналитическое продолжение f_n .

Замечание. Рассмотрим всевозможные пары (f,Ω) , т.ч. $f \in H(\Omega)$, тогда существование аналитического продолжения по цепочке областей – отношение эквивалентности на мн-ве таких пар.

Определение 4.9. Полная аналитическая функция – класс эквивалентности.

F – полная аналитическая ф-я. $M:=\bigcup_{(f,\Omega)\in F}\Omega$ – область определения (существования) F.

Утверждение 4.20. M – область.

Доказательство. Открытость: объединения открытых – открытое.

Линейная связность: $a, b \in M \implies a \in \Omega, b \in \tilde{\Omega}$. $(f, \Omega), (\tilde{f}, \tilde{\Omega})$ связана аналитическим продолжением по цепочке, будем переходить по соотвествующим областям и дойдем из a в b. \square

Определение 4.10. F – полная аналитическая функция, M – область определения $F,\,z\in M.$

$$F(z) := \{ f(z) : (f, \Omega) \in F \land z \in \Omega \}.$$

Теорема 4.21. Пуанкаре-Вольтерры.

F(z) – не более чем счетное мн-во.

Пример.
$$\underbrace{f(z)}_{\frac{1}{1-z}} = \sum_{n=0}^{\infty} z^n - \text{ряд сх-ся при } |z| < 1$$

$$\frac{1}{1-z} = \frac{1}{(1-a)-(z-a)} = \frac{1}{1-a} \cdot \frac{1}{1-\frac{z-a}{1-a}} = \frac{1}{1-a} \cdot \sum_{n=0}^{\infty} \frac{(z-a)^n}{(1-a)^n} = \sum_{n=0}^{\infty} \frac{(z-a)^n}{(1-a)^{n+1}}$$

$$\left|\frac{z-a}{1-a}\right| < 1 - \text{круг сходимости ряда.}$$

$$|z-a| < |1-a|$$

Определение 4.11. $\sum_{n=0}^{\infty} c_n \cdot (z-z_0)^n$, R – радиус сх-ти ряда.

Берем точку w на границе круга ($|w-z_0|=R$). w – правильная точка, если найдется U_w – окр-ть точки w и $g \in H(U_w)$ являющаяся непосредственным продолжением f.

Определение 4.12. Особая точка – точка, не являющаяся правильной.

Теорема 4.22. На границе круга сх-ти лежит хотя бы одна особая точка.

Доказательство. От противного.

Пусть все точки правильные |z| = R – правильные.

$$f(z) = \sum_{n=0}^{\infty} c_n z^n$$
, R – радиус сх-ти.

 $\forall w: |w|=R$ – правильная, тогда найдется $B_{r_w}(w)$ и $g\in H(B_{r_w}(w))$, т.ч. f=g на пересечении $\{|z|< R\}\cap \{|z-w|< r_w\}.$

То есть круги $B_{r_m}(w)$ покрывают окр-ть |w|=R. Это компакт, выберем конечное подпокрытие.

По лемме Лебега $\exists \epsilon > 0$: $B_{\epsilon}(w)$ целиком содержится в элементе подпокрытия.

$$h(z) := \begin{cases} f(z), & |z| < R \\ g_{w_j}(z), & |z - w_j| < r_{w_j} \end{cases} \in H(\{|z| < R + \epsilon\}).$$

 $g(z) = \sum_{n=0}^{\infty} c_n z^n$ – ряд Тейлора для g, он сх-ся в круге $|z| < R + \epsilon$.

Противоречие тому, что радиус сходимости был R.

Пример. 1. $f(z) = \sum_{n=1}^{\infty} \frac{z^n}{n^2}$ сх-ся при $|z| \le 1$.

$$f'(z) = \sum_{n=1}^{\infty} \frac{z^{n-1}}{n}$$
$$(zf'(z))' = \sum_{n=0}^{\infty} z^{n-1} = \frac{1}{1-z}$$

2. $\sum_{n=0}^{\infty} z^{2^n}$ – сх-ся при |z| < 1, все точки |z| = 1 – особые.

Начало 4-ого семестра.

Теорема 4.23. $f \in H(\Omega), \ \Omega$ – односвязная, $f \neq 0$ в Ω .

Тогда существует $g \in H(\Omega)$, т.ч. $e^{g(z)} = f(z)$ и g – единственна с точностью до аддит. константы $2\pi i k, \ k \in \mathbb{Z}$.

Доказательство. Существование:

 $\frac{f'}{f} \in H(\Omega) \implies$ есть первообразная $g \in H(\Omega)$.

Подберем константу так, что $e^{g(z_0)} = f(z_0)$ для некоторого $z_0 \in \Omega$.

Покажем, что g подходит: $h(z) := e^{-g(z)} \cdot f(z)$.

Хотим доказать, что $h \equiv 1$. Знаем, что $h(z_0) = 1$ и

$$h'(z) = f'(z)e^{-g(z)} + f(z)e^{-g(z)}(-g'(z)) = e^{-g(z)}\left(f'(z) - f(z)\frac{f'(z)}{f(z)}\right) \equiv 0.$$

Единственность:

Пусть
$$e^{g(z)} = f(z) = e^{\tilde{g}(z)} \implies e^{g(z) - \tilde{g}(z)} \equiv 1 \implies \underbrace{g(z) - \tilde{g}(z)}_{\in H(\Omega) \subset C(\Omega)} = 2\pi i k_z : k_z \in \mathbb{Z} \implies g(z) - \tilde{g}(z) = 2\pi i k_z$$

 $2\pi i k$

Следствие. Пусть $0 \notin \Omega$ – односвязна, тогда существует единственный с точностью до $+2\pi i k$ функция $g \in H(\Omega)$, т.ч. $e^{g(z)} = z$.

Замечание. $g(z) = \ln|z| + i \arg z$

Замечание. Обозначение:

$$Ln(z) = \ln|z| + iArq(z)$$

ветви логарифма

Ceoùcmea. 1. $e^{Ln(z)} = z$: $\forall z \neq 0$

2.
$$Ln(zw) = Ln(z) + Ln(w)$$

3.
$$Ln(z) = \ln |z| + iArg(z)$$
, где $Arg(z) = \{\arg z + 2\pi ik : k \in \mathbb{Z}\}$

Замечание. Св-во 2 для ветви может быть неверно.

Берем конкретную ветку и точку: $0 < \arg < 2\pi$

$$Ln(-i) = \underbrace{\ln \left| -i \right|}_{=0} + iArg(-i) = \frac{3\pi i}{2}$$

$$Ln((-i)^2) = Ln(-1) = \ln|-1| + iArg(-1) = \pi i$$

Ho
$$\pi i \neq \frac{3\pi i}{2} + \frac{3\pi i}{2}$$

Замечание. $z^p := e^{pLn(z)}$ – полная аналит. функция.

Если $p \in \mathbb{Z}$, то все однозначно, т.к. $e^{p(2\pi ik)} = 1$.

Если
$$p\in\mathbb{Q},\ p=\underbrace{\frac{m}{n}}$$
 , то $e^{\frac{m}{n}(2\pi ik)}$ – принимает n значений.

Если $p \in \mathbb{C} \setminus \mathbb{Q}$, то $e^{p(2\pi ik)}$ – принимает счетное кол-во значений.

Упражнение. 1. Найти i^i

- 2. Д-ть, что $(z^p)' = \frac{pz^p}{z}$ при $z \neq 0$
- 3. $(zw)^p = z^p w^p$ как полные аналитичные функции, но это неверно для ветвей.

4.4. Ряды Лорана

Определение 4.13. $\sum_{n=-\infty}^{+\infty} a_n (z-z_0)^n$ – ряд Лорана.

$$\sum_{n=0}^{\infty} a_n (z-z_0)^n$$
 – правильная часть.

$$\sum_{n=-\infty}^{-1} a_n (z-z_0)^n = \sum_{n=1}^{\infty} a_{-n} (z-z_0)^{-n}$$
 – главная часть.

Ряд Лорана сходится ⇔ правильная и главная части сходятся.

Ниже будем считать, что $z_0 = 0$ для простоты записи.

$$\sum_{n=0}^{\infty}a_nz^n$$
 – сх-ся в круге сх-ти $|z|< R$ – радиус сх-ти $[0,+\infty].$

$$\sum_{n=1}^{\infty}a_{-n}z^{-n}=\sum_{n=1}^{\infty}a_{-n}w^{n},$$
где $w=\frac{1}{z}$ – сх-ся в круге сх-ти $|w|<\tilde{R}\implies |z|>\frac{1}{\tilde{R}}=:r.$

То есть ряд Лорана сх-ся в кольце r < |z| < R – кольцо сх-ти ряда Лорана.

Свойства. 1. Ряд Лорана абс. сх-ся в кольце r < |z| < R, где $r, R \in [0, +\infty]$

- 2. В кольце, лежащем строго внутри кольца сх-ти, ряда Лорана сх-ся равномерно.
- 3. В кольце сх-ти ряд Лорана можно почленно дифференцировать.
- 4. Ряд Лорана в кольце сх-ти голоморфная функция.

Теорема 4.24. Пусть $f(z) = \sum_{n=-\infty}^{\infty} a_n z^n$ в кольце r < |z| < R.

Тогда
$$a_n = \frac{1}{2\pi i} \int_{|z|=\rho} \frac{f(z)}{z^{n+1}} dz$$
, где $r < \rho < R$.

Доказательство.
$$\int_{|z|=\rho} \frac{f(z)}{z^{n+1}} dz = \int_{|z|=\rho} \frac{\sum_{k=-\infty}^{+\infty} a_k z^k}{z^{n+1}} dz =$$

$$= \int_{|z|=\rho} \sum_{k=-\infty}^{+\infty} a_k z^{k-n-1} dz = \sum_{k=-\infty}^{\infty} a_k \int_{|z|=\rho} z^{k-n-1} dz = 2\pi i a_n$$

$$\int_{|z|=\rho} z^m dz = \int_0^{2\pi} \rho^m e^{imt} i \rho e^{it} dt = \rho^{m+1} i \int_0^{2\pi} e^{i(m+1)t} dt = \begin{cases} 2\pi i, & \text{при } m = -1 \\ 0, & \text{иначе} \end{cases}$$

Замечание. Нер-во Коши тут тоже выполняется:

$$|a_n| \leq \frac{M_{\rho}}{\rho^n}$$
, где $M_{\rho} = \max_{|z|=\rho} \{|f(z)|\}$.

Теорема 4.25. Пусть $f \in H(r < |z| < R)$. Тогда $f(z) = \sum_{n=-\infty}^{+\infty} a_n z^n$, для некоторых $a_n \in \mathbb{C}$.

Доказательство. $r < r_1 < r_2 < R_2 < R_1 < R$.

Берем $r_2 < |z| < R_2$: пишем для него и компакта $K = \{r_1 \le |z| \le R_2\}$ интегральную теорему Коши:

$$f(z) = \frac{1}{2\pi i} \int_{\partial K} \frac{f(\zeta)}{\zeta - z} d\zeta = \frac{1}{2\pi i} \int_{|\zeta| = R_1} \frac{f(\zeta)}{\eta - z} d\zeta - \frac{1}{2\pi i} \int_{|\zeta| = r_1} \frac{f(\zeta)}{\zeta - z} d\zeta$$

$$|\zeta| = R_1, \ |z| < R_2, \ |fracz\zeta| < \frac{R_2}{R_1} < 1$$

$$\frac{1}{\zeta - z} = \frac{1}{1 - \frac{z}{\zeta}} \cdot \frac{1}{\zeta} = \sum_{n=0}^{\infty} \frac{z^n}{\zeta^{n+1}}$$

$$\int_{|\zeta| = R_1} \frac{f(\zeta)}{\zeta - z} d\zeta = \int_{|\zeta| = R_1} \sum_{n=0}^{\infty} z^n \frac{f(\zeta)}{\zeta^{n+1}} d\zeta =$$

$$= \sum_{n=0}^{\infty} z^n \int_{|\zeta| = R_1} \frac{f(\zeta)}{\zeta^{n+1}} d\zeta$$

$$= za_n$$

$$|\zeta| = r_1, \ |z| > r_2, \ |\frac{\zeta}{z}| < \frac{r_1}{r_2} < 1, \ \frac{1}{\zeta - z} = -\frac{1}{z} \cdot \frac{1}{1 - \frac{\zeta}{z}} = -\sum_{n=0}^{\infty} \frac{\zeta^n}{z^{n+1}} - \int_{|\zeta| = r_1} \frac{f(\zeta)}{\zeta - z} d\zeta = \int_{|\zeta| = r_1} \frac{1}{z^{n+1}} f(\zeta) \zeta^n d\zeta =$$

$$= \sum_{n=0}^{\infty} \frac{1}{z^{n+1}} \underbrace{\int_{|\zeta|=r_1} f(\zeta) \zeta^n d\zeta}_{=:a_{n-1}}$$

Теорема 4.26. Пусть $f \in H(r < |z| < R)$. Тогда существует $g \in H(|z| < R)$ и $h \in H(|z| > r)$, т.ч. f(z) = g(z) + h(z). А если добавить условие: $h \to_{z \to \infty} 0$, то такое представление единственно.

Доказательство. Существование:

$$f(z) = \sum_{n=-\infty}^{\infty} a_n z^n.$$

Пусть $g(z) = \sum_{n=0}^{\infty}$ – главная часть (сх-ся в $\{|z| < R\}$), $h(z) = \sum_{n=-\infty}^{-1} a_n z^n$ – правильная часть (сх-ся в $\{|z| > r\}$).

Единственность:

Пусть
$$f(z) = g(z) + h(z), \ f(z) = g_1(z) + h_1(z) \implies g(z) - g_1(z) = h_1(z) - h(z)$$
 при $r < |z| < R$.

$$F(z) := egin{cases} g(z) - g_1(z), & \text{при } |z| < R \ h_1(z) - h(z), & \text{при } |z| > r \end{cases} \in H(\mathbb{C})$$

Поймем, что F ограничена: $\lim_{z\to\infty} F(z) = 0 \implies$

$$|F(z)| \le 1$$
 при $|z| \ge \rho$

$$|F(x)|$$
 – огр. при $|z| \leq \rho$ по т. Вейерштрасса.

Определение 4.14. $a \in \mathbb{C}$. Если f голоморфна в проколотой окрестности точки a, но не голоморфна в a, то a - изолированная особая точка.

$$f \in H(0 < |z - a| < r)$$

Определение 4.15. Если существует $\lim_{z\to a} f(z)$, то a - устранимая особая точка.

Если $\lim_{z\to a} f(z) = \infty$, то a - полюс.

Если $\lim_{z\to a}$ не существует, то a существенно особая точка.

Пример. 1. $\frac{\sin z}{z}$, $\frac{e^z-1}{z}$. z=0 - устранимая особая точка. Из Тейлора.

- 2. $\frac{1}{z}$, $\frac{1}{\sin z}$. z = 0 полюс.
- 3. $e^{\frac{1}{z}}$. z=0 существенно особая точка. Предела нет, т.к. $\frac{1}{z_n}=2\pi i n, \frac{1}{z_n}=2\pi i n+\pi$. Разные последовательности точек.

Теорема 4.27. Характеристика устранимой особой точки

$$f \in H(0 < |z - a| < r)$$

Следующие условия равносильны:

- 1. а устранимая особая точка
- $2. \ f$ ограничена в некоторой проколотой окрестности a
- 3. $\exists g \in H(|z-a| < r)$, такая, что $f(z) = g(z) \forall z \neq a$
- 4. В главной части ряда Лорана в точке a все коэффициенты 0

Доказательство. 1. $4 \Rightarrow 3$ - очевидно

- 2. $3 \Rightarrow 1$ очевидно. g непрерывна, предел g(a)
- $3. \ 1 \Rightarrow 2$ очевидно

4. Докажем $2 \Rightarrow 4$. Пусть ограничена: $f(z) \leqslant M$. $\forall \, 0 < |z-a| < r$ $f(z) = \sum_{n=-\infty}^{+\infty} c_n (z-a)^n. \ |c_n| \leqslant \frac{\max|f(z)|}{\rho^n} \ \text{при} \ |z-a| = \rho \ c_{-n} \leqslant \rho^n \max f(z) \leqslant M \rho^n \ \text{и устремим} \ \rho \ \kappa \ 0. \ M \rho^n \to 0$

Теорема 4.28. Характеристика полюса

Пусть $f \in H(0 < |z - a| < r)$

Следующие условия равносильны:

- 1. а полюс
- 2. Существует $g \in H(|z-a| < r), g(a) \neq 0$, такая, что $f(z) = \frac{g(z)}{(z-a)^m}, m \in \mathbb{N}$
- 3. В главной части ряда Лорана в точке a лишь конечное число ненулевых коэфцциентов. Но они есть.

Доказательство. 1. $2 \Rightarrow 3$. $g(z) = \sum c_n(z-a)^n, c_0 \neq 0 \Rightarrow f(z) = \sum_{n=0}^{+\infty} c_n(z-a)^{n-m}$ - разложение в ряд Лорана

- 2. $3 \Rightarrow 1$. $f(z) = \sum_{n=-m}^{\infty} b_n (z-a)^n$. Все слагаемые $o((z-a)^{-m})$, а на $b_{-m} (z-a)^{-n} \to \infty$
- 3. $1 \Rightarrow 2$. $\lim_{z \to a} f(z) = \infty$. Значит в некоторой проколотой окрестности $0 < |z a| < \varepsilon$ |f(z)| > 1. Рассмотрим $g(z) = \frac{1}{f(z)} \in H(0 < |z a| < r) \lim_{z \to a} g(z) = 0$. Доопределим g(a) = 0 и получим $g \in H(|z a| < \varepsilon)$ (предыдущая теорема (?)). a ноль функции g. Тогда $g(z) = (z a)^m h(z)$, где $h(a) \neq 0$ и $h \in H(|z a| < \varepsilon)$ $\frac{1}{f(z)} = g(z) = (z a)^m h(z)$. Тогда $f(z) = (z a)^{-m} \frac{1}{h(z)}$ и $\frac{1}{h(z)} \in H(|z a| < \varepsilon)$, потому что h не обращается в 0

Определение **4.16.** Это m называется порядком полюса.

Замечание. Это аналог кратности нуля

Замечание. f имеет в a полюс порядка $m \Longleftrightarrow \frac{1}{f}$ имеет в точке a ноль кратности m (доопределяем $\frac{1}{f}$ в a пл непрерывности)

A также
$$\iff f(z) = \sum_{n=-m}^{+\infty} c_n (z-a)^n$$
, где $c_m \neq 0$

Теорема 4.29. Характеристика существенной особой точки

$$f \in H(0 < |z - a| < r)$$

Следующие условия равносильны

- 1. a существенно особая точка
- 2. В главной части ряда Лорана в точке a бесконечное число ненулевых коэфф.

Доказательство. Доказательство очевидно следует из предыдущего.

Определение 4.17. f - мероморфная в Ω , если $f \in H(\Omega \setminus E)$ и в точках из E у неё полюсы

Пример. $f = \operatorname{ctg} \frac{1}{z}$ - мероморфная в $\mathbb{C} \setminus 0$

Полюсы в точках $z = \frac{1}{\pi k}$.

Но при этом $\operatorname{ctg} \frac{1}{z}$ не будет мероморфной в \mathbb{C} . В точке z=0 проблема. В любой окрестности 0, найдётся плохая точка, а значит она не изолированная особая.

Замечание. 1. E не имеет предельных точек в Ω .

 $2. \, E$ не более чем счётно.

Свойства. Пусть f и g мероморфные в Ω . Тогда:

1. $f\pm g, \frac{f}{g}, fg, f'$ - мероморфны в Ω и порядки полюсов у f' на 1 больше, чем у f

Док-во: fg и $\frac{f}{g}$. Если не полюсы и не нули, то голоморфность сохранится.

$$f(z) = \varphi(z)(z-a)^n, a$$
 - полюс или $0.$

$$g(z) = \Psi(z)(z-a)^m, a$$
 - полюс или 0.

Тогда
$$f(z)g(z) = \varphi(z)\Psi(z)(z-a)^{n+m}$$

Для $f \pm g$ складываем ряды Лорана в a. В главной части $f \pm g$ конечное число ненулевых.

Для
$$f'$$
. $f'(z) = \varphi'(z)(z-a)^{-n} - n\varphi(z)(z-a)^{-n-1} = (z-a)^{-n-1}(z-a) - n\varphi(z) = \Psi(z)$
 $\Psi(z) = -n\varphi(a) \neq 0$

Утверждение 4.30. Если f мероморфна в \mathbb{C} , то существует $g,h\in H(\mathbb{C})$, т.ч. $f=\frac{g}{h}$

Теорема 4.31. Сохоцкого

Пусть a - существенно особая точка функции f. Тогда $Cl\left(f(0<|z-a|<\varepsilon)\right)=\mathbb{C}\cup\{\infty\}$ Более того, $\forall b\in\mathbb{C}\cup\{\infty\}$ найдётся такая последовательность $z_n\to a$, т.ч. $f(z_n)\to b$

- **Доказательство**. 1. Случай $b=\infty$. f не ограничена в $0<|z-a|<\frac{1}{n}$. Иначе a была бы устранимой особой точкой. Значит найдётся z_n , такое что $0<|z_n-a|<\frac{1}{n}$ и $|f(z_n)|\geqslant n$. $z_n\to a$ и $f(z_n)\to\infty$
 - 2. $b \in \mathbb{C}$. Если найдётся последовательность $z_n \to a$, т.ч. $f(z_n) = b$, то всё ясно. Если не найдётся, то в некоторой проколотой окретности $0 < |z a| < \varepsilon$ $f(z) \neq b$ Тогда рассмотрим $g(z) = \frac{1}{f(z) b} \in H(0 < |z a| < \varepsilon)$. a изолированнная особая точка для g.

$$f(z) = b + \frac{1}{q(z)}$$

Если a - полюс у g, то a - устранимая особая точка f - не подходит

Если a - устранимая особая точка g, то a - устранимая особая точка f или полюс - не подходит

Значит a - существенно особая точка g. Воспользуемся уже доказанным случаем для g. Найдётся $z_n \to a$, такая, что $g(z_n) \to \infty$. А тогда $\lim f(z_n) = b$.

Теорема 4.32. Пикара

Пусть a - существенно особая точка f и $\varepsilon > 0$. Тогда $f(0 < |z-a| < \varepsilon) = \mathbb{C}$ или \mathbb{C} без одной точки.

Пример. $f(z) = e^{\frac{1}{z}}$ не обращается в ноль, хотя z = 0 - существенно особая точка.

Определение **4.18.** Бексонечные пределы. $\lim z_n = \infty \iff \lim |z_n| = +\infty$

Свойства.

Если $\lim z_n = \infty$, w_n ограничена. Тогда $\lim (z_n \pm w_n) = \infty$

$$\lim z_n = 0 \Longleftrightarrow \lim \frac{1}{z_n} = \infty$$

Если $\lim z_n = \infty$ и $|w_n| \geqslant c > 0$, то $\lim z_n w_n = \infty$

Доказательства очевидны + с первого курса

Определение 4.19. $f \in H(|z| > R)$. f голоморфна в ∞ , если там устранимая особая точка. То есть $\lim_{z\to\infty} f(z) \in \mathbb{C}$

Замечание. $g(z) = f(\frac{1}{z}) \in H(0 < |z| < \frac{1}{R})$ - перешли от бесконечности к нулю.

Замечание. $f\in H(|z|>R), g(z)=f(\frac{1}{z})\in H(0<|z|<\frac{1}{R})$

- $1. \, \infty$ устранимая особая точка $f \Longleftrightarrow 0$ устранимая особая точка q
- 2. ∞ полюс $f \Longleftrightarrow 0$ полюс g
- 3. ∞ существенно особая точка $f\Longleftrightarrow 0$ существенно особая точка g $f(z)=\sum_{n=-\infty}^{+\infty}c_nz_n, g(z)\sum_{n=-\infty}^{+\infty}$
- 4. ∞ устранимая особая точка $f \Longleftrightarrow$ коэфф. при положительных степенях 0
- 5. ∞ полюс $f \Longleftrightarrow$ при положительных степенях лишь конечное число ненулевых коэфцциентов.
- 6. ∞ существенно особая точка $f \Longleftrightarrow$ при положительных степенях беск. число ненулевых коэфф.

Теорема 4.33. Луивилля

Если $f \in H(\bar{\mathbb{C}})$, то $f \equiv const$

Доказательство. $\lim_{z\to\infty} f(z) \in \mathbb{C}$, значит при больших ограничена. $|f(z)| \leq M$ для |z| > R. С другой стороны $f \in C(|z| \leq R)$. Значит $|f(z)| \leq \bar{M}$. По теореме Лиувилля(старой), $f \equiv const$

Определение 4.20. Стереографическая проекция

Математический анализ

$$z = x + iy$$
 - плоскость. $(u, v, w) \in \mathbb{R}^3$. $u^2 + v^2 + (w - \frac{1}{2})^2 = \frac{1}{2^2}$

Или же $u^2 + v^2 + w^2 = w$ - уравнение сферы Римана.

Теорема 4.34. Связь между точкой на плоскости и точной на сфере

Точке z соответсвует точка с координатами $(\frac{x}{1+|z|^2},\frac{y}{1+|z|^2},\frac{|z|^2}{1+|z|^2})$

Замечание. Точке (u,v,w) соответсвует точка $z=x+iy=\frac{u}{1-w}+i\frac{v}{1-w}$

Доказательство. Прямая через точки (0,0,1) и (x,y,0). Параметризация луча: (xt,yt,1-t). Нас интересует точка, в которой луч пересекает сферу, то есть:

$$(xt)^{2} + (yt)^{2} + (1-t)^{2} = 1 - t.$$

$$(x^{2} + y^{2} + 1)t^{2} + 1 - 2t = 1 - t \Leftrightarrow t = \frac{1}{x^{2} + y^{2} + 1} = \frac{1}{|z|^{2} + 1}$$

Следствие. 1. Расстояние между образами z и \tilde{z} равно $\rho = \frac{|z-\tilde{z}|}{\sqrt{1+|z|^2} \cdot \sqrt{1+|\tilde{z}|^2}},$ а расстояние между z и ∞ равно $\frac{1}{\sqrt{1+|z|^2}}$

Доказательство: предложено посчитать самому, у кого есть силы добавьте, плиз.

2. Сходимость на плоскости и сходимость на сфере Римана совпадают

Доказательство:
$$z_n \to z_0 \Rightarrow \frac{|z_n - z_0|}{\sqrt{1 + |z_n|^2} \cdot \sqrt{1 + |z_0|^2}} \to 0$$

$$z_n \to \infty \Leftrightarrow \frac{1}{\sqrt{1+|z_n|^2}} \to 0$$

Пусть
$$\frac{|z_n - z_0|}{\sqrt{1 + |z_n|^2} \cdot \sqrt{1 + |z_0|^2}} \to 0$$

Тогда $\frac{|z_n-z_0|}{\sqrt{1+|z_n|^2}} \to 0$. Если z_n ограничена, то $|z_n-z_0| \to 0$

Если не ограничена, то возьмём $|z_{n_k}| \to \infty$, тогда $\frac{|z_{n_k}-z_0|}{\sqrt{1+|z_{n_k}|^2}} \to 1$

3. $\mathbb{C} \cup \{\infty\}$ - компакт.

4.5. Вычеты

Определение 4.21. a - изолированная особая точка. $f \in H(0 < |z-a| < R)$. $f(z) = \sum_{n=-\infty}^{+\infty} c_n (z-a)^n$ - сходится при 0 < |z-a| < R.

$$\operatorname{res}_{z=a} f = c_{-1}$$

Определение 4.22. $f \in H(|z| > R)$ раскладывается в $f(z) = \sum_{n=-\infty}^{+\infty} c_n z^n$

$$\operatorname{res}_{z=\infty} f(z) = -c_{-1}$$

Свойства. 1. $f \in H(0 < |z - a| < R)$ и 0 < r < R.

Tогда $\operatorname{res}_{z=a} f = \frac{1}{2\pi i} \int_{|z-a|=r} f(z) dz$ - положительный обход точки a.

Доказательство: смотреть формулу для коэффициентов ряда Лорана.

2. $f \in H(|z| > R), r > R$.

Тогда $\operatorname{res}_{z=\infty} f = -\frac{1}{2\pi i} \int_{|z|=r} f(z) \, dz = \frac{1}{2\pi i} \int_{|z|=r} f(z) \, dz$ - положительный обход для ∞

3. Если $a\in\mathbb{C}$ - полюс n-го порядка.

Тогда
$$\operatorname{res}_{z=a} f(z) = \lim_{z \to a} \frac{1}{(n-1)!} \frac{d^{n-1}}{dz^{n-1}} ((z-a)^n f(z))$$

Доказательство: Считаем, что a = 0.

$$f(z)=\sum_{k=-n}^{+\infty}c_kz^k\Rightarrow g(z)=z^nf(z)=\sum_{k=0}^{\infty}c_{k-n}z^k$$
 - формула Тейлора.

Тогда
$$c_{-1} = \frac{g^{(n-1)}(0)}{(n-1)!}$$
.

4. Если $a \in \mathbb{C}$ - полюс первого порядка.

Тогда
$$\operatorname{res}_{z=a} f(z) = \lim_{z \to a} (z - a) f(z)$$

5. Если $a \in \mathbb{C}$, g и h голоморфны в окрестности точки $a.\ h(a) = 0, h'(a) \neq 0, g(a) \neq 0.\ f(z) = \frac{g(z)}{h(z)}$

Тогда
$$\operatorname{res}_{z=a} f(z) = \frac{g(a)}{h'(a)}$$

Доказательство:
$$\operatorname{res}_{z=a} f(z) = \lim_{z \to a} (z-a) f(z) = \lim_{z \to a} \frac{z-a}{h(z)-h(a)} g(z) = \frac{g(a)}{h'(a)}$$

6. Если $\lim_{z\to\infty} f(z) = A \in \mathbb{C}$.

Тогда
$$\operatorname{res}_{z=\infty} f(z) = \lim_{z \to \infty} z(A - f(z))$$

Доказательство: $f(z) = A + \sum_{k=-\infty}^{-1} c_n z^n$, правильная часть - константа, иначе всё бы пошло на бесконечность.

7. $\operatorname{res}_{z=\infty} f(z) = -\operatorname{res}_{z=0} \frac{f(\frac{1}{z})}{z^2}$

Доказательство:
$$f(z) = \sum_{n=-\infty}^{\infty} c_n z^n$$

$$\frac{1}{z^2}f(\frac{1}{z}) = \frac{1}{z^2} \sum_{n=-\infty}^{\infty} c_n z^{-n} = \sum_{n=-\infty}^{\infty} c_n z^{-n-2}$$

Теорема 4.35. Коши о вычетах

f голоморфна в Ω , за исключением точек $a_1,\dots a_n.$ $K\subset\Omega$ - компакт и $a_1\dots a_n\in IntK$

Тогда
$$\int_{\partial K} f(z) dz = 2\pi i \sum_{k=1}^{n} \operatorname{res}_{z=a_k} f(z)$$

Доказательство. У каждой точки можем взять окрестность, чтобы они лежали внутри компакта и попарно не пересекаются. $\widetilde{K} = K \setminus \bigcup_{k=1}^n B_{\varepsilon}(a_k)$ - компакт.

A ещё
$$f \in H(\Omega \setminus \{a_1 \dots a_n\})$$

Из интегральной формулы Коши: $\int_{\partial \widetilde{K}} f(z) \, dz = 0$

Ho
$$\int_{\partial \widetilde{K}} f(z) \, dz = \int_{\partial K} f(z) \, dz - \sum_{k=1}^n \int_{|z-a_k|=\varepsilon} f(z) \, dz$$
, а под знаком суммы - вычеты.

Математический анализ ТФКП

Следствие. Если f голоморфна в $\mathbb{C}\setminus\{a_1\dots a_n\}$, то $\operatorname{res}_{z=\infty}f(z)+\sum_{k=1}^n\operatorname{res}_{z=a_k}f(z)=0$

Доказательство: возьмём круг $B_R(0)$, внутри которого содержатся все эти точки.

$$\int_{|z|=R} f(z) \, dz = 2\pi i \sum_{j=1}^{n} \operatorname{res}_{z=a_{j}} f(z).$$

Но также $\int_{|z|=R} f(z) dz = \int_{|z|=R} \sum_{k=-\infty}^{\infty} c_k z^k dz = -2\pi i \operatorname{res}_{z=\infty} f(z)$. Перекидываем и доказываем.

Пример. 1. $\int_{|z|=4} \frac{z^4}{e^z+1} dz = 2\pi i (\operatorname{res}_{z=\pi i} + \operatorname{res}_{z=-\pi i}) = -4\pi^5 i$.

Особые точки: $e^z = -1$ при $z = \pi i + 2\pi i k$.

$$\operatorname{res}_{z=\pi i} = \frac{g(\pi i)}{h'(\pi i)} = -\pi^4$$

$$g(z) = z^4, h(z) = e^z + 1.$$

$$\operatorname{res}_{z=-\pi i} = \frac{g(-\pi i)}{h'(-\pi i)} = -\pi^4$$

2.
$$\int_{-\infty}^{\infty} \frac{dx}{1+x^{2n}} = \lim_{R \to +\infty} \int_{-R}^{R} \frac{dx}{1+x^{2n}}$$
.

Контур - полукруг. $\int_{\Gamma_R} \frac{dz}{1+z^{2n}} = 2\pi i \sum \text{res}$

Но с другой стороны $\int_{\Gamma_R} = \int_{-R}^R + \int_{c_R}$

$$\left|\int_{c_R} \frac{dz}{1+z^{2n}}\right| \leqslant \underbrace{\pi R}_{\text{длина кривой}} \cdot \underbrace{\max \left| \frac{1}{1+z^{2n}} \right|}_{=\pi R \frac{1}{\min |1+z^{2n}|}} \leqslant \frac{\pi R}{R^{2n}-1} o 0$$

Оценка: $|a + b| \ge |a| - |b|$.

Значит то, что мы хотим найти - просто сумма вычетов.

Какие особые точки? $z^{2n}=-1.$ $e^{\frac{\pi i k}{2n}}$ и k нечётно. Нас интересует $k=1,3\dots 2n-1$

Тогда
$$I=2\pi i\sum_{k=1}^n\mathrm{res}_{2k-1}$$
 $\mathrm{res}_{a_k}\,f=\frac{1}{(z^{2n}+1)'}=\frac{1}{2n\cdot a_k^{2n-1}}=\frac{a_k}{2na_k^{2n}}=-\frac{a_k}{2n},$ так как a_k - полюс первого порядка.

3. Оптимизация решения из предыдущего пункта.

$$\int_{-\infty}^{+\infty} \frac{dx}{1+x^{2n}} = 2 \int_{0}^{+\infty} \frac{dx}{1+x^{2n}} = I$$

$$f(x) = \frac{1}{1+z^{2n}}. \int_{\Gamma_r} f(z) \, dz = \int_{c_R} + \int_0^R + \int_{Re^{i\alpha}}^0.$$

$$\int_{e^{i\alpha R}}^0 f(z) \, dz = -\int_0^{e^{i\alpha R}} = -\int_0^R f(e^{i\alpha}t)e^{i\alpha} \, dt \text{ - взяли параметризацию } t \to e^{i\alpha}t.$$

$$f(e^{i\alpha}t) = \frac{1}{1+e^{2\pi i\alpha}.t^{2n}} = \frac{1}{1+t^{2n}}, \ \alpha = \frac{\pi}{n}.$$

Единственная особая точка $e^{\frac{i\pi}{2n}}$ и интеграл равен $2\pi i$ res.

To ects:
$$I - e^{i\frac{\pi}{n}}I = 2\pi i \operatorname{res}_{z=e^{\frac{i\pi}{2n}}} f = 2\pi i \cdot \left(-\frac{e^{\frac{i\pi}{2n}}}{2n}\right)$$

Тогда
$$I=rac{2ie^{rac{i\pi}{2n}}}{e^{rac{i\pi}{2n}}}\cdot rac{\pi}{2n}=rac{\pi}{2n\cdot\sinrac{\pi}{2n}}$$

Лемма. Жордана

$$C_{R_n} = \{ z \in \mathbb{C} : |z| = R_n, \operatorname{Im} z \geqslant 0 \}$$

$$f: \{\operatorname{Im} z \geqslant 0\} \to \mathbb{C}. \ M_{R_n} = \lim_{n \to \infty} \sup_{z \in C_{R_n}} |f(z)| = 0$$

Тогда
$$\forall \lambda > 0$$
 : $\lim \int_{C_{R_n}} f(z)e^{i\lambda z} dz = 0$

Доказательство. Параметризация $z = R_n \cdot e^{it}$, где $t \in [0, \pi]$.

Тогда
$$dz = R_n e^{it} dt$$
. $\int_{C_{R_n}} f(z)e^{i\lambda z} dz = R_n \int_0^{\pi} f(R_n e^{it})e^{it} \cdot e^{i\lambda R_n e^{it}} dt = I_n$

$$|I_n| \le R_n \int_0^{\pi} |f(R_n e^{it}) e^{it}| \cdot |e^{i\lambda R_n e^{it}}| dt \le R_n \cdot M_{R_n} \cdot \int_0^{\pi} e^{-\lambda R_n \sin t} dt = (*)$$

То что написано под интегралом симметрично относительно $\frac{\pi}{2}.$

$$(*) = 2R_n M_{R_n} \int_0^{\frac{\pi}{2}} e^{-\lambda R_n \sin t} dt \underbrace{\leqslant}_{(**)} 2R_n M_{R_n} \int_0^{\frac{\pi}{2}} e^{-\lambda R_n \frac{2t}{\pi}} dt = 2R_n M_{R_n} \frac{e^{-\lambda R_n \cdot \frac{2t}{\pi}}}{-\lambda R_n \frac{2}{\pi}} \bigg|_{t=0}^{t=\frac{\pi}{2}} \leqslant M_{R_n} \cdot \frac{1}{\frac{\lambda}{\pi}} \to 0$$

$$(**)$$
: верно, так как при $0 \leq t \leq \frac{\pi}{2}$: $\sin(t) \geq \frac{2}{\pi}t$

Пример. $\int_0^{+\infty} \frac{\cos x}{1+x^2} dx = I.$

Можем считать на всей прямой и не исходный интеграл, а $\int_{-\infty}^{+\infty} \frac{e^{ix}}{1+x^2} = I^*$.

Тогда $\operatorname{Re} I^* = 2I$.

Пусть $f(z) = \frac{e^{iz}}{1+z^2}$. Контур - полуокружность от -R до R.

 $\int_{\Gamma_R} f(z) \, dz = \int_{-R}^R + \int_{C_R}$. Здесь $\int_{C_R} \to 0$ по лемме Жордана, где $\lambda = 1$ и $M_R = \sup_{|z|=R} \left| \frac{1}{1+z^2} \right| \leqslant \frac{1}{R^2-1} \to 0$

(написанное выше верно, так как $|1+z^2|\geqslant |z^2|-1=R^2-1)$

Тогда $\int_{\Gamma_R} f(z) dz = 2\pi i \sum \text{res} = 2\pi i \cdot \text{res}_{z=i} = (*).$

i - полюс 1 порядка, тогда $f(z) = \frac{g(z)}{h(z)}$, где $g(i) \neq 0, h(i) = 0, h'(i) \neq 0$. res $= \frac{g(i)}{h'(i)} = \frac{e^{-1}}{2i}$.

Тогда $(*) = \frac{\pi}{e}$. А значит $I = \frac{\pi}{2e}$

Лемма. О полувычете

 $f \in H(0 < |z-a| < R)$ и a - полюс первого порядка. $C_{\varepsilon} = \{z \in \mathbb{C} : |z-a| = \varepsilon, \alpha \leqslant \arg(z-a) \leqslant b\}$

Тогда $\lim_{\varepsilon\to 0+}\int_{C_{\varepsilon}}f(z)\,dz=(\beta-\alpha)i\cdot\operatorname{res}_{z=a}f$

Доказательство. Считаем, что a=0. У нас полюс 1-го порядка, тогда $f(z)=\frac{c}{z}+g(z)$, где $g\in H(|z|< R)$.

Параметризация $z=\varepsilon e^{it},$ где $t\in [\alpha,\beta].$ Тогда $dz=\varepsilon e^{it}i\,dt.$

$$\int_{C_{\varepsilon}} f(z) dz = \int_{C_{\varepsilon}} \frac{c}{z} dz + \int_{C_{\varepsilon}} g(z) dz = \int_{\alpha}^{\beta} \frac{c}{\varepsilon e^{it}} \cdot \varepsilon e^{it} i dt + \int_{C_{\varepsilon}} g(z) dz = (\beta - \alpha) \cdot i \cdot c + \int_{C_{\varepsilon}} g(z) dz$$

Оценим второй интеграл: $\int_{C_{\varepsilon}}g(z)\,dz\leqslant M\varepsilon(\beta-\alpha)$, где $M=\max_{|z|\leqslant \frac{R}{2}}|g(z)|$. и тогда $\int_{C_{\varepsilon}}g(z)\,dz\to 0$.

Определение 4.23. Главное значение интеграла $(v.p. \int)$.

 $\int_a^b f(x) \, dx$, где c - единственная особая (в этой точке нет непрерывности функции) точка, $c \in (a,b)$.

 $\int_a^{c-\varepsilon} f(x) \, dx + \int_{c+\varepsilon}^b f(x) \, dx$ и устремляем ε к нулю. Предел - главное значение интеграла.

Пример. $v.p. \int_{-1}^{1} \frac{dx}{x} = 0.$

 $\lim_{arepsilon o 0+} \int_{-1}^{-arepsilon} + \int_{arepsilon}^1 = 0$, потому что фукнция нечетная.

ΤΦΚΠ Математический анализ

$$v.p. \int_{-\infty}^{\infty} \frac{dx}{x} = 0$$

- **Свойства.** 1. Если \int сходится, то $\int = v.p. \int$
 - 2. Линейность
 - 3. Аддитивность, если резать не по особым точкам

Пример.
$$I = \int_0^{+\infty} \frac{\sin x}{x} dx$$

Функция четная, поэтому
$$2I=\int_{-\infty}^{+\infty} \frac{\sin x}{x}\,dx=v.p.\int_{-\infty}^{+\infty} \frac{\sin x}{x}\,dx$$

$$\left(\frac{e^{ix}}{x} = \frac{1}{x} + \frac{ix}{x} + \ldots\right).$$

Тогда
$$2I = \operatorname{Im} v.p. \int_{-\infty}^{+\infty} \frac{e^{ix}}{x} dx$$

$$v.p. \int_{-\infty}^{+\infty} = \lim_{\varepsilon \to 0, R \to +\infty} \int_{-R}^{-\varepsilon} + \int_{\varepsilon}^{R}$$
.

$$f(z) = \frac{e^{iz}}{z}$$

 $\int_{\Gamma_{R,\varepsilon}} f(z) \, dz = 0$, так как особая точка только 0, а он не в контуре. Но с другой стороны: $\int_{\Gamma_{R,\varepsilon}} f(z) dz = \int_{-R}^{\varepsilon} + \int_{\varepsilon}^{R} + \int_{C_R} + \int_{C_{\varepsilon}}$

$$\int_{C_R} \to 0$$
 по лемме Жордана.

$$\int_{C_{\varepsilon}} f(z) dz \to -\pi i \operatorname{res}_{z=0} f = -\pi i.$$

A значит
$$v.p. \int_{-\infty}^{\infty} \frac{e^{ix}}{x} dx = \pi i.$$
 A значит $I = \frac{1}{2} \operatorname{Im} \ldots = \frac{\pi}{2}$

Пример. $I = \int_0^{+\infty} \frac{x^{p-1}}{1+x} dx$, где 0 .

$$f(z) = \frac{e^{(p-1)Lnz}}{1+z}$$

$$\int_{\Gamma_{R,\varepsilon}} f(z) dz = \int_{\varepsilon}^{R} + \int_{Re^{2\pi i}}^{\varepsilon e^{2\pi i}} + \int_{C_{\varepsilon}} + \int_{C_{R}}.$$

Но с другой стороны $\int_{\Gamma_{R,\varepsilon}} f(z)\,dz = 2\pi i \sum {\rm res} = 2\pi i \, {\rm res}_{z=-1}$

$$\operatorname{res}_{z=-1} = e^{(p-1)Ln(-1)} = e^{(p-1)\pi i}$$

1.
$$\int_{\varepsilon}^{R} \to I$$

2.
$$\int_{Re^{2\pi i}}^{\varepsilon e^{2\pi i}} \to -e^{(p-1)\pi i} \cdot I$$

3.
$$\left| \int_{C_R} \frac{e^{(p-1)Lnz}}{1+z} \, dz \right| \leqslant \pi R \cdot \max \left| \frac{e^{(p-1)Lnz}}{1+z} \right| = \pi R \cdot \frac{R^{p-1}}{\min|1+z|} = \pi R \cdot \frac{R^{p-1}}{R-1} \to 0$$

4.
$$\left| \int_{C_{\varepsilon}} \frac{e^{(p-1)Lnz}}{1+z} \, dz \right| \leqslant \pi \varepsilon \cdot \max \left| \frac{e^{(p-1)Lnz}}{1+z} \right| = \pi \varepsilon \cdot \frac{\varepsilon^{p-1}}{\min|1+z|} = \pi \varepsilon \cdot \frac{\varepsilon^{p-1}}{1-\varepsilon} \to 0$$

Получили в итоге $I = \pi \frac{2ie^{(p-1)\pi i}}{1-e^{(p-1)2\pi i}} = \frac{\pi}{\sin \pi p}$

Теорема 4.36. Пусть f - мероморфная функция в \mathbb{C} . z_1,\ldots,z_n - полюсы. G_1,\ldots,G_n - главные части рядов Лорана в точках z_1,\ldots,z_n . ∞ - полюс или устранимая особая точка. G - правильная часть ряда Лорана в ∞

Тогда $f(z) = G(z) + \sum_{k=1}^{n} G_k(z) + C$, в частности, f - рациональная функция.

Доказательство. $g(z) = f(z) - G(z) - \sum_{k=1}^{n} G_k(z)$. У этой функции z_1, \dots, z_n, ∞ - устранимые особые точки, а во всех остальных точках есть голоморфность.

Тогда по теореме Луивилля $g \equiv const.$

Теорема 4.37. Пусть f мероморфная функция в \mathbb{C} , $z_1, z_2 \ldots$ – полюсы, R_1, R_2, \ldots – последовательность радиусов, $M_{R_n} = \max_{|z|=R_n} |f(z)| \to 0$.

Тогда
$$f(z) = \lim_{n \to \infty} \sum_{k:|z_k| < R_n} G_k(z)$$
.

Доказательство.
$$I_n(z) := \frac{1}{2\pi i} \int_{|\zeta| = R_n} \underbrace{\frac{f(\zeta)}{\zeta - z}}_{=:g(\zeta)} d\zeta = \sum res \ g = res_{\zeta=z} \ g(\zeta) + \sum_{k: \ |z_k| < R_n} res_{\zeta=z_k} \ g(\zeta)$$

1. $res_{\zeta=z} \ g = \frac{f(\zeta)}{(\zeta-z)'}|_{\zeta=z} = f(z)$ — формула для полюса 1-ого порядка.

2.
$$res_{\zeta=z_k}$$
 $g=\underbrace{res_{\zeta=z_k}}_{\text{голоморфна в окр. }z_k,..0} + res_{\zeta=z_k}\underbrace{\frac{G_k(\zeta)}{\zeta-z}}_{\zeta-z}$

Рассмотрим окр. радиуса R и запишем интеграл $\frac{1}{2\pi i}\int_{|\zeta|=R} \frac{G_k(\zeta)}{\zeta-z} d\zeta = res_{\zeta=z} \frac{G_k(\zeta)}{\zeta-z} + res_{\zeta=z_k} \frac{G_k(\zeta)}{\zeta-z}$ — так как все особые точки для подъинтегрального выражения это z и z_k .

 $res_{\zeta=z} \frac{G_k(\zeta)}{\zeta-z} = G_k(z)$, а второе слагаемое равно тому, что мы хотим найти.

$$\left| \int_{|\zeta|=R} \frac{G_k(\zeta)}{\zeta-z} d\zeta \right| \le 2\pi R \cdot \frac{O(\frac{1}{R})}{R-|z|} \to 0$$
, где $G_k = \frac{c_{-1}}{\zeta-z_k} + \frac{c_{-2}}{(\zeta-z_k)^2} + \ldots = O(\frac{1}{R})$.

Из стремления к нулю, мы поняли, что $res_{\zeta=z_k} \frac{G_k(\zeta)}{\zeta-z} = -G_k(z).$

Теперь мы имеем, что $I_n(z) = f(z) - \sum_{k: |z_k| < R_n} G_k(z)$, осталось доказать, что $\lim_{n \to \infty} I_n(z) = 0$. $|I_n(z)| \le \frac{1}{2\pi} \cdot 2\pi R_n \cdot \max_{|\zeta| = R_n} \left| \frac{f(\zeta)}{\zeta - z} \right| \le R_n \cdot \frac{M_{R_n}}{R_n - |z|} \to 0.$

Пример. $\operatorname{ctg}(z) = \frac{1}{z} + \sum_{k=1}^{\infty} \frac{2z}{z^2 - \pi^2 k^2}$

Лемма. Существует M, такая что, $|\operatorname{ctg} z| \leqslant M$ на окружностях $|z| = \pi(n + \frac{1}{2})$, где $n \in \mathbb{N}$.

Доказательство. Леммы.

Наблюдения про $\operatorname{ctg} z$:

- 1. π -периодическая функция \implies все значения содержатся в полосе $0 \le Re(z) \le \pi$, можно все окружности сдвинуть по периоду.
- 2. нечетная функция \implies можем интересоваться только половиной картинки (давайте смотреть на $Re(z) \geq 0$).

Мы получаем полосу, за некоторым исключением (так как есть определенные точки, которые точно не получаются):

$$\{0 \leq Re(z) \leq \pi\} \setminus \{|z| < \tfrac{\pi}{2}\} \cup \{|z-\pi| < \tfrac{\pi}{2}\}.$$

Получаем следующее мн-во:

Хотим понять, что ctg ограничен на заштриховоном мн-ве.

$$z = x + iy$$

1. Зона 1 ($y \ge 1$ или $y \le -1$, в силу нечетности ctg):

$$|\operatorname{ctg} z| = \left| \frac{\cos z}{\sin z} \right| = \left| \frac{e^{iz} + e^{-iz}}{e^{iz} - e^{-iz}} \right| = \left| \frac{1 + e^{2iz}}{1 - e^{2iz}} \right| \le \frac{1 + |e^{2iz}|}{|1 - e^{2iz}|} = (*)$$

Пусть z = x + iy и пока что $y \ge 1$:

$$|e^{2iz}|=|e^{2ix}\cdot e^{-2y}|=e^{-2y}$$
, тогда $(*)=\frac{1+e^{-2y}}{|1-e^{2iz}|}\leq \frac{1+e^{-2y}}{1-e^{-2y}}\leq \frac{2}{1-e^{-2}}$

2. Зона 2:

Очевидно, что эта зона это компакт, а ctg на ней непрерывен ⇒ ctg − ограничен на этом компакте.

Доказательство. Примера.

 $f(z)=rac{\operatorname{ctg} z}{z},$ из леммы: $\operatorname{ctg} z\leq M$ при $|z|=\pi(n+rac{1}{2}).$

Берем радиусы $R_n = \pi(n + \frac{1}{2}) \implies M_{R_n} \le \frac{M}{\pi(n + \frac{1}{2})} \to 0.$

Особые точки f(z): z=0 – полюс 2-ого порядка, $z=\pi k$ – полюсы 1-ого порядка при $k\neq 0$.

 G_k – главная часть ряда Лорана в πk , $k \neq 0 \implies G_k(z) = \frac{res_{z=\pi k} \operatorname{ctg}(z)}{z-\pi k} = \frac{1}{\pi k(z-\pi k)}$, где $res_{z=\pi k} \operatorname{ctg}(z) = \frac{\cos(z)}{\sin(z)}|_{z=\pi k} = \frac{1}{\pi k}$.

 $G_0(z) = \frac{A}{z^2} + \frac{res_{z=0} \ f(z)}{z} = \frac{A}{z^2}$, вычет занулился, так как f(z) – четная функция и все коэффициенты перед нечетными степенями в ряде Лорана равны 0.

 $G_0(z)=rac{A}{z^2}=rac{1}{z^2},$ так как $rac{ ext{ctg}(z)}{z}=rac{\cos(z)}{z\sin(z)}\simrac{1}{z^2}$ при z близких к нулю.

То есть
$$\frac{\operatorname{ctg}(z)}{z} = G_0(z) + \sum_{k=1}^{\infty} \left(G_k(z) + G_{-k}(z) \right) =$$

$$= \frac{1}{z^2} + \sum_{k=1}^{\infty} \left(\frac{1}{\pi k(z - \pi k)} + \frac{1}{\pi (-k)(z + \pi k)} \right) = \frac{1}{z^2} + \sum_{k=1}^{\infty} \frac{2}{z^2 - \pi^2 k^2}.$$

Пример. $(\ln \sin z)' = \operatorname{ctg} z$

$$\left(\ln \frac{\sin z}{z}\right)' = \operatorname{ctg} z - \frac{1}{z}.$$

 $\ln \frac{\sin z}{z} = \int_0^z (\operatorname{ctg} w - \frac{1}{w}) \, dw = \int_0^z \sum_{k=1}^\infty \frac{2w}{w^2 - \pi^2 k^2} \, dw = \sum_{k=1}^\infty \int_0^z \frac{2w}{w^2 - \pi^2 k^2} dw$ (можем переставлять, потому что есть равномерная сходимость).

$$\sum_{k=1}^{\infty} \int_0^z \left(\frac{1}{w - \pi k} + \frac{1}{w + \pi k} \right) =$$

$$= \sum_{k=1}^{\infty} \ln(w - \pi k) + \ln(w + \pi k) \Big|_{0}^{z} = \sum_{k=1}^{\infty} \ln\left(\frac{z^{2} - \pi^{2} k^{2}}{-\pi^{2} k^{2}}\right) = \sum_{k=1}^{\infty} \ln\left(1 - \frac{z^{2}}{\pi^{2} k^{2}}\right).$$

Тогда
$$\frac{\sin z}{z} = \prod_{k=1}^{\infty} \left(1 - \frac{z^2}{\pi^2 k^2}\right)$$
.

Либо
$$\sin z = z \prod_{k=1}^{\infty} \left(1 - \frac{z^2}{\pi^2 k^2}\right)$$
.

Пример. $\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$

 $f(z) = \frac{1}{z^2}$. Посмотрим на $f(z) \cdot \operatorname{ctg}(\pi z)$. Тогда $\operatorname{res}_{z=k} f(z) \cdot \operatorname{ctg}(\pi z) = \frac{f(k)}{\pi}$.

 $g(z) = \frac{\operatorname{ctg} \pi z}{z^2}$ и проинтегрируем.

$$\frac{1}{2\pi i} \int_{|z|=n+\frac{1}{2}} \frac{\operatorname{ctg} \pi z}{z^2} \, dz = \sum_{k=-n, k \neq 0}^n \frac{1}{\pi k^2} + \operatorname{res}_{z=0} \frac{\operatorname{ctg} \pi z}{z^2}.$$

При этом есть такая оценка: $\left| \frac{1}{2\pi i} \int_{|z|=n+\frac{1}{2}} \frac{\operatorname{ctg} \pi z}{z^2} \, dz \right| \leqslant (n+\frac{1}{2}) \cdot \frac{M}{(n+\frac{1}{2})^2} \to 0$

Значит, $\sum_{k=1}^{\infty} \frac{1}{k^2} = -\frac{\pi}{2} \cdot \text{res}_{z=0} \frac{\cot \pi z}{z^2}$.

Такой вычет не очень приятно считать – раскладываем в ряд.

Найдем коэффициент перед z^1 : в разложении $\operatorname{ctg} \pi z = \frac{\cos \pi z}{\sin \pi z} = \frac{1 - \frac{\pi^2 z^2}{2} + \mathcal{O}(z^4)}{\pi z (1 - \frac{\pi^2 z^2}{z} + \mathcal{O}(z^4))} =$

$$= \frac{(1 - \frac{\pi^2 z^2}{2} + \mathcal{O}(z^4))(1 + \frac{\pi^2 z^2}{6} + \mathcal{O}(z^4))}{\pi z} = \frac{1}{\pi z} - \frac{1}{3}\pi z + \mathcal{O}(z^3).$$

To есть этот коэффициент равен: $-\frac{\pi}{3}$.

Тогда
$$\sum_{k=1}^{\infty} \frac{1}{k^2} = -\frac{\pi}{2} \cdot \left(-\frac{\pi}{3}\right) = \frac{\pi^2}{6}$$
.

Теорема 4.38. (О числе нулей и полюсов).

Пусть f мероморфна в Ω, γ - простая замкнутая кривая в $\Omega,$ не проходящая через нули и полюсы f.

Тогда
$$\frac{1}{2\pi i} \int_{\gamma} \frac{f'(z)}{f(z)} dz = \mathcal{N}_f - \mathcal{P}_f$$

 \mathcal{N}_f - количество нулей f с учетом кратности в контуре $\gamma.$

 \mathcal{P}_f - количество полюсов f с учетом кратности (порядка) в контуре $\gamma.$

Следствие. Если $f \in H(\Omega)$, γ - простая замкнутая кривая, не проходящая через нули f, тогда $\frac{1}{2\pi i} \int_{\gamma} \frac{f'(z)}{f(z)} dz = \mathcal{N}_f$

Доказательство. Теоремы.

Если a - ноль или полюс f, то $f(z)=(z-a)^mg(z)$, где $g(a)\neq 0$ и g голоморфна в окрестности a.

- 1. Если a ноль, то m кратность нуля
- 2. Если a полюс, то m порядок полюса.

$$f'(z) = m(z - a)^{m-1}g(z) + (z - a)^m g'(z)$$

 $\frac{f'(z)}{f(z)} = \frac{m}{z-a} + \frac{g'(z)}{g(z)}$, второе слагаемое голоморфно в окрестности a. Значит, a - полюс первого порядка $\frac{f'}{f}$, а m - вычет.

Следствие. Принцип аргумента

Пусть $f \in H(\Omega)$, γ - простая замкнутая кривая в Ω , не проходящая через нули f.

Тогда $\mathcal{N}_f = \frac{1}{2\pi} \Delta_\gamma \arg f(z)$, где Δ_γ - изменение аргумента при движении по кривой.

Доказательство. $\mathcal{N}_f = \frac{1}{2\pi i} \int_{\gamma} \frac{f'(z)}{f(z)} dz$. Но $\frac{f'}{f} = (Lnf)'$. Если рассмотрим Ln на кривой γ , то это будет первообразная вдоль пути γ для $\frac{f'}{f}$.

$$\mathcal{N}_f = \frac{1}{2\pi i} \Delta_{\gamma}(Lnf(z)) = \frac{1}{2\pi i} (\Delta_{\gamma}(\ln|f(z)| + i\arg f(z))) = \frac{1}{2\pi} \Delta_{\gamma} \arg f(z)$$

Теорема 4.39. Руше

 $f,g \in H(\Omega), \gamma$ - простой замкнутая кривая в Ω и |f| > |g| на γ .

Тогда f+g и f внутри γ имеют одинаковое число нулей с учетом кратности.

Доказательство. $\mathcal{N}_{f+g} = \frac{1}{2\pi} \Delta_{\gamma} \arg(f+g)$. $|f+g| \geqslant |f| - |g| > 0$ на γ , поэтому в ноль обращения нет и можно использовать принцип аргумента.

$$\mathcal{N}_{f+g} = \frac{1}{2\pi} \Delta_{\gamma} \arg(f \cdot (1 + \frac{g}{f})) = \frac{1}{2\pi} \Delta_{\gamma} \arg f + \frac{1}{2\pi} \Delta_{\gamma} \arg(1 + \frac{g}{f}).$$

Значит надо доказать, что $\Delta_{\gamma} \arg(1 + \frac{g}{f}) = 0$.

Значения $1+\frac{g}{f}$ на γ лежат в круге |z-1|<1, потому что $\frac{|g|}{|f|}<1$. А значит вокруг нуля обойти не можем и изменения аргумента нет.

Пример. $z - e^{-z} = \lambda > 1$. Хотим понять, что в правой полуплоскости есть ровно 1 корень.

Возьмём окружность большого радиуса и по ней обход по контуру γ .

Возьмём $f(z) = z - \lambda$ и $g(z) = -e^{-z}$. Хотим подставить в т. Руше, тогда необходимо чтобы |f| > |g|, проверим это:

- 1. На вертикальном отрезке: $|f(z)| = |iy \lambda| = \sqrt{y^2 + \lambda^2} \geqslant \lambda > 1$, а $|g(z)| = |-e^{-iy}| = 1$, значит всё выполняется.
- 2. На полуокружности: $|f(z)| = |z \lambda| \geqslant |z| \lambda = R \lambda$, а $|g(z)| = |-e^{-x-iy}| = e^{-x} \leqslant 1$. То есть если $R > \lambda + 1$, то |f| > |g| на γ .

Тогда
$$\mathcal{N}_{f+g} = \mathcal{N}_f = 1$$

Математический анализ ТФКП

4.6. Конфорные отображения

Определение 4.24. Ω и $\tilde{\Omega},$ тогда $f:\Omega\to \tilde{\Omega}$ - конфорное отображение, если f биекция и $f\in H(\Omega)$

Теорема 4.40. Пусть $f \in H(\Omega), a \in \Omega$, такая, что $f'(a) \neq 0$.

Тогда f сохраняет углы между кривыми, проходящими через точку a.

Доказательство. $\gamma:[0,1]\to\Omega$ и $\gamma(0)=a$ (можно так считать).

$$\tilde{\gamma}:[0,1]\to\Omega$$
 и $\tilde{\gamma}(0)=a$.

 $\arg \gamma'(0) - \arg \tilde{\gamma}'(0)$ - угол между кривым в Ω .

$$\arg(f \circ \gamma)'(0) - \arg(f \circ \tilde{\gamma})'(0) = \arg f'(a)\gamma'(0) - \arg f'(a)\tilde{\gamma}'(0) = \arg \tilde{\gamma}'(0) - \arg \tilde{\gamma}'(0) = \arg \tilde{\gamma}'(0) - \arg \tilde{\gamma}'(0)$$

Определение 4.25. $f:\Omega\to\mathbb{C}$ - однолистная, если $f\in H(\Omega)$ и инъекция.

Теорема 4.41. Если $f \in H(\Omega)$ и $f \neq const$, то $f(\Omega)$ - область.

Доказательство. 1. Линейная связность остаётся

2. Нужно проверить, что $f(\Omega)$ - открытое множество. Возьмём точку в образе и докажем, что она там лежит с некоторым шариком.

$$b \in f(\Omega) \Rightarrow \exists a \in \Omega : f(a) = b.$$

Найдётся окружность $|z-a| < \varepsilon$, что $|f(z)-b| \neq 0$. Если на окружности радиуса $\frac{1}{n}$ нашлась точка z_n , такая, что $f(z_n) = b$, то $f \equiv b$ по теореме единственности.

 $r = \min_{|z-a|=\varepsilon} |f(z)-b| > 0$. Посмотрим на f(z)-w. Хотим понять, что такое уравнение имеет решение при w близких к b. Это и будет значить, что близкие к b точки попадают в образ.

Подставим всё в теорему Руше. f(z) - w = (f(z) - b) + (b - w). Нужно, чтобы |f(z) - b| > |b - w|. Возьмём |b - w| < r и всё выполнится.

Получили, что $\{|w-b| < r\} \subset f(\Omega) \Rightarrow f(\Omega)$ открытое.

Следствие. Если f однолистна, то f конформное отображние Ω на $f(\Omega)$.

Теорема 4.42. $f: \Omega \to \mathbb{C}$ однолистна. Тогда $f'(z) \neq 0 \, \forall \, z \in \Omega$.

Доказательство. Пусть $f'(a)=0,\ b=f(a)$. Возьмём ε так, что $f(z)-b\neq 0$ при $|z-a|=\varepsilon$ и $r=\min_{|z-a|=\varepsilon}|f(z)-b|>0$.

Автор: Дмитрий Артюхов

Математический анализ ТФКП

Смотрим на уравнение f(z) - w = f(z) - b + b - w. Мы выяснили, что $\mathcal{N}_{f-w} = \mathcal{N}_{f-b} \geqslant 2$, потому что a - корень кратности $\geqslant 2$. Тогда f(z) = w имеет хотя бы 2 решения. Но у нас инъекция, поэтому все решения с кратностью 2. Хотим показать, что тогда найдётся последовательность нулей производных, стремящаяся к точке a и получить противоречие.

Берём радиус $\frac{r}{2}$. $\{|w-b| \leqslant \frac{r}{2}\} \subset f(\Omega)$. Берём w_1, w_2, \ldots из этого круга. Значит $\exists z_1, \ldots$ из $|z-a| < \varepsilon$, $f(z_k) = w_k$ и $f'(z_k) = 0 \Rightarrow$ в $|z-a| \leqslant \varepsilon$ бесконечно много нулей f'. Значит у них есть предельная точка и тогда $f' \equiv 0 \Rightarrow f \equiv const$.

Замечание. Обратное неверно. $f(z) = e^z, f'(z) = e^z \neq 0$, но нет однолистности.

Следствие. 1. Конформное отображение сохраняет углы между кривыми Доказательство: оно инъективно, а значит производная в ноль не обращается.

2. Если $f(z) = c_0 + \frac{c_1}{z} + \frac{c_2}{z^2} + \dots$ однолистна в окрестности ∞ , то $c_1 \neq 0$. Доказательство: $g(z) = f(\frac{1}{z})$ однолистна в проколотой окрестности нуля, в нуле можем доопределить, чтобы была голоморфность.

g однолистна в меньшей не проколотой окрестности $\Rightarrow c_1 = g'(0) \neq 0$

3. f имеет полюс в точке a и однолистна в проколотой окрестности точки a, тогда это полюс первого порядка.

Доказательство: пусть $g(z) = \frac{1}{f(z)}$ - однолистна в проколотой окрестности точки a. Можем доопределить нулём в точке a и тогда будет голоморфность, g(a) = 0.

Тогда g однолистна в окрестности точки a, а значит $g'(a) \neq 0$, тогда a - ноль первого порядка у g, а значит и ноль первого порядка у f.

Определение 4.26. Ω и $\tilde{\Omega}$ конформно эквивалентны, если $\exists\, f:\Omega\to \tilde{\Omega}$ - конформное отображение.

Замечание. Это отношение эквивалентности.

Теорема 4.43. \mathbb{C} и \mathbb{D} не конформно эквивалентны.

Доказательство. От противного. Пусть $f: \mathbb{C} \to \mathbb{D}$ - конформное отображение.

Тогда $f \in H(\mathbb{C}), |f| \leq 1$. Тогда f константа по теореме Луивилля. А это не биекция

Лемма. Шварца

 $f: \mathbb{D} \to \mathbb{D}$ голомофриая, f(0) = 0. Тогда:

- 1. $|f(z)| \leq |z| \forall z \in \mathbb{D}$
- 2. Если для какого-то $a, |f(a)| = |a|, \text{ то } f(z) = e^{i\phi}z, \text{ где } \phi \in \mathbb{R}$

Доказательство. 1. Пусть $g(z)=\frac{f(z)}{z}$, в нуле устранимая особая точка, устраним - получим голоморфную в круге функцию. Согласно принципу максимума, в круге $|g(z)|\leqslant \max_{|z|=r}|g(z)|\leqslant \frac{1}{r}\to_{r\to 1-}1$. И тогда $\frac{|f(z)|}{|z|}\leqslant 1$

2. Знаем, что $|g(z)| \le 1$ в \mathbb{D} . Если |g(a)| = 1, для $a \in \mathbb{D}$, то a локальный максимум модуля и тогла, по принципу максимума, $g \equiv const \Rightarrow g(z) = e^{i\phi}$

Теорема 4.44. Римана о конфорных отображениях

 Ω и $\tilde{\Omega}$ - односвязные области в $\bar{\mathbb{C}}$, причём их граница состоит больше, чем из одной точки (есть хотя бы какая-то кривая). Есть точка $z_0 \in \Omega, \tilde{z_0} \in \tilde{\Omega}$ и $\alpha \in \mathbb{R}$.

Тогда существует единственное конформное отображение $f:\Omega\to \tilde{\Omega},$ такое, что $f(z_0)=\tilde{z_0}$ и $\arg f'(z_0)=\alpha.$

Доказательство. Единственность

1. $\Omega = \tilde{\Omega} = \mathbb{D}, z_0 = \tilde{z_0} = 0.$

Пусть $f: \mathbb{D} \to \mathbb{D}, \ f(0) = 0$ и $\arg f'(0) = \alpha.$ По лемме Шварца для f получаем, что $|f(z)| \leqslant |z| \, \forall z \in \mathbb{D}.$

С другой стороны, $f^{-1}: \mathbb{D} \to \mathbb{D}$ тоже конфорное, $f^{-1}(0) = 0$, значит для неё тоже можно применить лемму Шварца. $|f^{-1}(z)| \leq |z| \Rightarrow |z| \leq |f(z)|$.

Значит $|f(z)| = |z| \, \forall z \in \mathbb{D}$, тогда по лемме Шварца это поворот, то есть $f(z) = e^{i\phi}z$.

Также мы знаем, что $f'(z)=e^{i\phi}$ и $\arg f'(0)=0 \implies e^{i\phi}=1.$

2. Ω и $\tilde{\Omega}$ проивзольные. Пусть $f_1, f_2: \Omega \to \tilde{\Omega}$ - конфорное. $f_i(z_0) = \tilde{z_0}$ и $\arg f_i'(z_0) = \alpha$, где $i \in \{1, 2\}$.

Воспользуемся существованием:

- (a) $\exists \phi : \mathbb{D} \to \Omega$ конформное, $\phi(0) = z_0$ и $\phi'(0) > 0$ (то есть, что $\arg \phi'(0) = 0$).
- (b) $\exists \psi : \tilde{\Omega} \to \mathbb{D}$ конформное, $\psi(\tilde{z_0}) = 0$ и $\arg \psi'(\tilde{z_0}) = -\alpha$.

Посмотрим на $g_i = \psi \circ f_i \circ \phi : \mathbb{D} \to \mathbb{D}$:

- (a) $g_i(0) = 0$
- (b) $g'_i(0) = \psi'(f_i(\phi(0))) \cdot f'_i(\phi(0)) \cdot \phi'(0) = \psi'(\tilde{z_0}) \cdot f'_i(z_0) \cdot \phi'(0)$ arg $g'_i(0) = -\alpha + \alpha + 0 = 0$ сумма аргументов множителей.

То есть мы получили, что g_1 и g_2 – два комфорных отображения из круга в круг, переводящие ноль в ноль, и производную в нуле имеют с нулевым аргументом \Longrightarrow по пункту $(1)g_1=g_2=z$.

Тогда восстановим f_i и поймем, что они равны:

 $f_i(\phi(z))=\psi^{-1}(g_i(z))\implies f_i(z)=\psi^{-1}(g_i(\phi^{-1}(z)))\implies$ т.к. $g_1=g_2$, то по полученной формуле $f_1=f_2$.

Следствие. Обобщенная теорема Лиувилля

 $f \in H(\mathbb{C})$ и f не принимает значения на некоторой кривой γ . Тогда $f \equiv const$

Доказательство. $\bar{\mathbb{C}} \setminus \gamma$ - односвязная область, с границей, состоящей из более чем одной точки.

Тогда по теореме Римана о комформных отображениях существует $g: \bar{\mathbb{C}} \setminus \gamma \to \mathbb{D} \Rightarrow g \circ f \in H(\mathbb{C})$ и $g \circ f \subset \mathbb{D}$, то есть это ограниченная функция.

Тогда по теореме Лиувилля (стандартной), $g \circ f$ - константа, значит $f(z) = g^{-1}(const) = const.$

Замечание. Малая теорема Пикара

Если $f \in H(\mathbb{C})$ не принимает 2 каких-то значения, то $f \equiv const.$

Пример. $f(z) = e^z \neq 0$ - одно значение целая функция может не принимать.

Следствие. Если f мероморфна в $\mathbb C$ и не принимает 3 значения, то $f \equiv const$

Доказательство. Пусть нет значений a,b,c. Сделаем из меромофрной - голоморфную, которая не принимает 2 значения. Пусть $c \neq \infty$, тогда $g(z) = \frac{1}{f(z)-c} \in H(\mathbb{C})$, но она не принимает значения $\frac{1}{a-c}$ и $\frac{1}{b-c}$, а тогда по малой теореме Пикара получаем, что $f \equiv const$.

Пример. $f(z) = \operatorname{tg} z \neq \pm i$ - пример мероморфной функции, не принимающей 2 значения.

Определение 4.27. $f(z) = \frac{az+b}{cz+d}$ - дробно-линейное отображение, $ad-bc \neq 0$.

Теорема 4.45. Если $f \in H(\bar{\mathbb{C}} \setminus \{z_0\})$ и однолистна, то f дробно-линейное отображение.

Доказательство. 1. z_0 – существенная особая точка. Тогда по теореме Сохоцкого $Cl\ f\{0 < |z-z_0| < \varepsilon\} = \mathbb{C}$.

Возьмём b = f(a). Тогда f(|z - a| < r) - открытое множество (т.к. $\{|z - a| < r\}$ - открытое и f - однолистная).

Более того, $f(|z-a| < r) \cap f(0 < |z-z_0| < \varepsilon) = \emptyset$ из однолистности.

То же самое верно, если дописать замыкание: $f(|z-a| < r) \cap Cl \ f(0 < |z-z_0| < \varepsilon) = \varnothing$ противоречие (т.к. замыкание это все $\mathbb C$).

- 2. $z_0 \neq \infty$ полюс. Тогда из однолистности это полюс первого порядка. А тогда $g(z)=f(z)-\frac{c}{z-z_0}\in H(\bar{\mathbb{C}})\Rightarrow g(z)=const\Rightarrow f(z)=\frac{c}{z-z_0}+const$
- 3. $z_0 = \infty$ полюс, тогда $g(z) = f(z) cz \in H(\bar{\mathbb{C}}) \Rightarrow g(z) = const \Rightarrow f(z) = cz + const.$
- 4. z_0 устранимая особая точка $\Longrightarrow f \in H(\bar{\mathbb{C}}) \Longrightarrow f \equiv const \Longrightarrow$ нет однолистности f противоречие.

Следствие. Если функция $f \in H(\mathbb{C})$ и однолистная, то f линейная.

Доказательство. $z_0 = \infty$ в теореме.

4.7. Производящие функции

Определение 4.28. Есть последовательность a_0, a_1, \dots Производящая функция последовательности $\mathcal{A}(z) = \sum_{n=0}^{\infty} a_n z^n$.

Мы хотим, чтобы ряд сходился при |z| < R для какого-то R > 0

Пример. Задача о размене

Есть монетки 1, 2, 5, 10 рублей. Интересуемся, каким количеством способов мы можем разменять n рублей, если запас монет не ограничен.

$$\mathcal{A}(z)=(1+z+z^2+\ldots)(1+z^2+\ldots)(1+z^5+z^{10}+\ldots)(1+z^{10}+z^{20}+\ldots)$$
 и раскроем все скобки.

Коэффициент при $z^n=z^a\cdot z^{2b}\cdot z^{5c}\cdot z^{10d}$, где a+2b+5c+10d=n. Тогда коэффициент - число решений уравнения a+2b+5c+10d=n в неотрицательных целых числах.

$$\mathcal{A}(z) = \frac{1}{1-z} \cdot \frac{1}{1-z^2} \cdot \frac{1}{1-z^5} \cdot \frac{1}{1-z^{10}}.$$

Определение 4.29. $H \subset \mathbb{N}$. p(n, H) - количество способов представить n в виде суммы слагаемых из H.

$$\mathcal{F}_H(z) = \prod_{k \in H} \frac{1}{1 - z^k}$$

Если каждое слагаемое можно брать $\leqslant m$, то $\prod \frac{1-z^{(m+1)k}}{1-z^k}$

Определение 4.30. Число разбиений n на натуральные слагаемые $p(n) = p(n, \mathbb{N})$.

Теорема 4.46. $f(z) = \sum_{n=0}^{\infty} p(n) z^n = \prod_{k=1}^{\infty} \frac{1}{1-z^k}$ - сходится при |z| < 1 и $p(n) = \frac{1}{2\pi i} \int_{|z|=r} \frac{f(z)}{z^{n+1}} \, dz$ при 0 < r < 1.

Доказательство.
$$\ln \left(\prod_{k=1}^{\infty} \left| \frac{1}{1-z^k} \right| \right) = \sum_{k=1}^{\infty} -\ln |1-z^k|$$
 - ряд сходится.

$$\ln(1+t)\geqslant t-t^2 \text{ при } |t|<1. \ \ln(1-|z|^k)\geqslant |z|^k-|z|^{2k} \text{ и } 0\leqslant -\ln|1-z^k|\leqslant |z|^k+|z|^{2k}.$$

$$\arg\left(\frac{1}{1-z^k}\right)=-\arg(1-z^k). \ |\arg(1-z^k)|\leqslant \arcsin|z|^k\leqslant 2|z|^k. \ \text{Значит всё сходится.} \qquad \square$$

Замечание. Теорема Харди-Рамануджана

$$p(n) \sim \frac{1}{4n\sqrt{3}}e^{\pi\sqrt{\frac{2}{3}}\sqrt{n}}$$

Теорема 4.47. Эйлера

Количество разбиений n на нечётные слагаемые равно количеству разбиений n на различные слагаемые

Доказательство. Для различных слагаемых $\prod_{k=1}^{\infty} (1+z^k)$

Для нечётных слагаемых $\prod_{k=1}^{\infty} (\frac{1}{1-z^{2k-1}})$.

Хотим понять, что это одно и то же. $\prod_{k=1}^{\infty} \left(\frac{1}{1-z^{2k-1}}\right) = \frac{\prod_{n=1}^{\infty} \frac{1}{1-z^n}}{\prod_{k=1}^{\infty} \frac{1}{1-z^{2k}}} = \prod_{n=1}^{\infty} \frac{1-z^{2n}}{z-z^n} = \prod_{n=1}^{\infty} (1+z^n) \quad \Box$

Пример. $b_1b_2...b_kb_{k+1}...b_{2k}$ счастливый билет, если сумма первых k равна сумме последних k.

Пусть a_n - количество k-значных чисел с суммой цифр n. То есть количество счастливых билетов $a_0^2 + a_1^2 + \ldots + a_{9k}^2$.

Пусть
$$\mathcal{A}(z) = \sum_{n=0}^{\infty} a_n z^n = (1 + z + z^2 + \ldots + z^9)^k$$

$$\mathcal{A}(z)\cdot\mathcal{A}(rac{1}{z})$$
 - здесь коэффициент перед z^0 - это $a_0^2+a_1^2+\ldots$

 $\frac{1}{2\pi i}\int_{|z|=r}\frac{\mathcal{A}(z)\mathcal{A}^{\frac{1}{z}}}{z}\,dz$ - количество счастливых билетов.

Пример. Диагонализация степенных рядов

$$f(w,z)=\sum_{n,k=0}^{\infty}a_{nk}w^nz^k.$$
 Хотим найти $g(z)=\sum_{n=0}^{\infty}a_{nn}z^n.$

$$f(\frac{w}{z},z) = \sum_{n,k=0}^{\infty} a_{nk} \frac{w^n}{z^n} z^k$$
, нужен коэффициент перед z_0 . То есть $g(w) = \frac{1}{2\pi i} \int_{|z|=r} \frac{f(\frac{w}{z},z)}{z} dz = \frac{1}{2\pi i} \int_{|z|=r} \sum_{n,k=0}^{\infty} a_{nk} \frac{w^n}{z^n} z^{k-1} dz = \frac{1}{2\pi i} \sum_{n,k=0}^{\infty} w^n a_{nk} \int_{|z|=r} z^{k-n-1} dz = \frac{1}{2\pi i} \sum_{n=0}^{\infty} w^n a_{nn} 2\pi i = g(w)$

Почему можно было переставить интеграл и сумму? Нужна равномерная сходимость. Нужно попасть строго внутрь круга сходимости. $\sum |a_{nk}| r^{k-1} \left| \frac{w}{z} \right|^n$. Нужно $\left| \frac{w}{z} \right| < \rho$. Берём радиус сходимости для z, для w, всё половиним, ещё на что-то умножаем.

Например, если
$$f(w,z) = \sum_{n,k=0}^{\infty} {n+k \choose k} w^n z^k = \sum_{m=0}^{\infty} \sum_{k=0}^{m} {m \choose k} w^{m-k} z^k = \sum_{m=0}^{\infty} (w+z)^m = \frac{1}{1-w-z}$$

$$\frac{1}{2\pi i} \int_{|z|=r} \frac{f(\frac{w}{z},z)}{z} dz = \frac{1}{2\pi i} \int_{|z|=r} \frac{dz}{z(1-\frac{w}{z}-z)} = -\frac{1}{2\pi i} \int_{|z|=r} \frac{dz}{z^2-z+w} = (*).$$

Особые точки: $\frac{1\pm\sqrt{1-4w}}{2}$. В контуре $\frac{1-\sqrt{1-4w}}{2}$, второй корень близок к 1, а этот к нулю.

$$(*) = -\operatorname{res} = -\frac{1}{2z-1} \Big|_{z=\frac{1-\sqrt{1-4w}}{2}} = \frac{1}{\sqrt{1-4w}}$$

Определение 4.31. Произведение Адамара

$$\mathcal{A}(z) = \sum_{n=0}^{\infty} a_n z^n, \mathcal{B}(z) = \sum_{n=0}^{\infty} b_n z^n, \mathcal{A} \circ \mathcal{B}(z) = \sum_{n=0}^{\infty} a_n b_n z^n$$

Пример. Как находить произведение Адамара.

$$f(w,z)=\mathcal{A}(z)\mathcal{B}(w)=\sum_{n,k=0}^{\infty}a_nb_kz^nw^k$$
. Нас интересует диагональ этой штуки.

Теорема 4.48. Произведение Адамара рациональных функций - рациональная функция

Определение 4.32. Последовательность a_n - квазимногочлен, если $a_n = p_1(n)q_1^n + p_2(n)q_2^n + \ldots + p_k(n)q_k^n$, где $q_1, \ldots, q_k \in \mathbb{C}$, а p_1, \ldots, p_k - многочлены с комплексными коэффициентами.

Лемма. $\mathcal{A}(z) = \sum_{n=0}^{\infty} a_n z^n$ - рациональная фукнция \Leftrightarrow при больших $n-a_n-$ квазимногочлен.

Доказательство. 1. \Rightarrow . Разложим рациональную функцию на простейшие. $\frac{1}{(1-qz)^m}$ - одна из простейших.

$$\frac{1}{(1-z)^m} = \sum_{n=0}^{\infty} \binom{n+m-1}{m-1} z^n$$

Тогда
$$\frac{1}{(1-qz)^m} = \sum_{n=0}^{\infty} \frac{(n+m-1)...(n+1)}{(m-1)!} q^n z^n$$

2. \Leftarrow . Достаточно понять, что $a_n = p(n)q^n$ имеет рациональную производящую функцию. Индукция по степени многочлена. Для $\deg = 0$, $a_n = q^n$ производящая функция $\frac{1}{1-az}$.

Переход: $d-1 \to d$. Возьмём конкретный многочлен степени $\tilde{P}(n) = \frac{(n+d)(n+d-1)...(n+1)}{d!}$ - многочлен степени d. И для $b_n = \tilde{P}(n)q^n$ производящая функция $\frac{1}{(1-qz)^{d+1}}$.

Вычтем из P(n) $c\tilde{P}(n)$ так, что степень уменьшится.

Пример. Метод Дарбу

 $f(z)=\sum_{n=0}^\infty a_n z^n$ сходится в круге |z|< R. Тогда при |z|< R ряд $\sum_{n=0}^\infty a_n r^n$ - сходится и $a_n r^n \to 0 \Rightarrow a_n = o(r^{-n})$

Пусть R - радиус сходимости $f(z) = \sum_{n=0}^{\infty} a_n z^n$, мы знаем, что на границе круга сходимости есть особая точка. Если особых точек конечное число и это полюсы(для простоты будем считать, что одна), то тогда возьмём эту точку и напишем главную часть ряда Лорана.

h(z)= главная часть ряда Лорана для функции f в точке a. Тогда g(z)=f(z)-h(z) голоморфна в точке a. И тогда скорее всего её радиус сходимости $\tilde{R}>R$.

 $g(z) = \sum_{n=0}^{\infty} b_n z^n \Rightarrow b_n = o((\tilde{R} - \varepsilon)^{-n})$. А $h(z) = \frac{c_1}{z-a} + \frac{c_2}{(z-a)^2} + \ldots + \frac{c_r}{(z-a)^r}$, где r -порядок полюса, а у неё можно явно выписать коэффициенты.

 $\frac{1}{(z-a)^r} = \frac{1}{a^r(\frac{z}{a}-1)^r} = \frac{(-1)^r}{a^r} \sum_{n=0}^{\infty} \binom{n+r-1}{r-1} \left(\frac{z}{a}\right)^n.$ Тогда $a_n \sim c_r \frac{n^{r-1}}{(r-1)!}$ (там просто расписали бином и сказали, что $\frac{c_r}{(z-a)^r}$ - самое большое слагаемое).

Теорема 4.49. Пусть $f \in H(|z| < R)$, где |R| > 1 и $f(1) \neq 0$. Пусть $\frac{f(z)}{(1-z)^{\alpha}} = \sum_{n=0}^{\infty} b_n z^n$, $\alpha \in \mathbb{R}$, $\alpha \neq 0, -1, -2 \dots$

Тогда $b_n \sim f(1)\binom{n+\alpha-1}{n} \sim f(1)\frac{n^{\alpha-1}}{\Gamma(\alpha)}$

Доказательство. Возьмём 1 < r < R и разложим $f(z) = \sum_{n=0}^{\infty} a_n z^n$. Мы знаем, что ряд сходится в точке $z = r \Rightarrow a_n = o(r^{-n})$.

$$\frac{1}{(1-z)^{\alpha}} = \sum_{n=0}^{\infty} \binom{n+\alpha-1}{n} z^n.$$

Тогда $\frac{f(z)}{(1-z)^{\alpha}} = \sum a_n z^n \cdot \sum \binom{n+\alpha-1}{n} z^n$ и $b_n = a_n \binom{\alpha-1}{0} + a_{n-1} \binom{\alpha}{1} + \ldots + a_0 \binom{n+\alpha-1}{n} = \binom{n+\alpha-1}{n} (a_0 + a_{n-1}) + a_{n-1} a_1 + \frac{n(n-1)}{(n+\alpha-1)(n+\alpha-2)} a_2 + \ldots + (\ldots) \cdot a_n$). Мы знаем, что все коэффициенты при a_i стремятся к 1. Хотим сказать, что это всё $\sim \binom{n+\alpha-1}{n} (a_0 + a_1 + \ldots + a_n) \sim \binom{n+\alpha-1}{n} f(1) = \frac{\alpha(\alpha-1)\ldots(\alpha+n-1)}{n!} f(1) \to \frac{n^{\alpha-1}}{\Gamma(\alpha)}$ - последний переход из формулы Эйлера-Гаусса

Осталось понять, что $(a_0 + \frac{n}{n+\alpha-1}a_1 + \frac{n(n-1)}{(n+\alpha-1)(n+\alpha-2)}a_2 + \ldots + (\ldots) \cdot a_n) - (a_0 + a_1 + \ldots + a_n) \to 0$. Мы знаем, что $a_n = \mathcal{O}(r^{-n}) \Rightarrow |a_n| \leqslant \frac{C}{r^n}$. Тогда $|\Delta_n| \leqslant |a_1| |\frac{n}{n+\alpha-1} - 1| + \ldots + |\ldots - 1| |a_n| + \frac{C}{r^{m+1}} + \frac{C}{r^{m+2}} + \ldots$ Подберём так m чтобы $\sum \frac{C}{r^{m+i}} \leqslant \varepsilon$. И тогда всё выполнилось при больших n

Пример. 1. $f(z) = \frac{\sqrt{2-z}}{(1-z)^2}$. Здесь круг сходимости |z| < 1, особая точка z=1 - полюс второго порядка. Главная часть ряда Лорана $\frac{a}{1-z} + \frac{b}{(1-z)^2}$. Здесь $b = \sqrt{2-1} = 1$, $a = \operatorname{res}_{z=1} = ((1-z)^2 f(z))' \Big|_{z=1} = (\sqrt{2-z})' \Big|_{z=1} = -\frac{1}{2}$. Тогда главная часть равна $\frac{1}{2} \cdot \frac{1}{1-z} + \frac{1}{(1-z)^2}$

 $g(z) = f(z) - \frac{1}{(1-z)^2} + \frac{1}{2} \cdot \frac{1}{1-z}$ голоморфна в z=1. Значит $g \in H(|z| < 2).$

Если
$$f(z) = \sum a_n z^n, g(z) = \sum b_n z^n.$$
 $b_n = o\left(\frac{1}{(2-\varepsilon)^n}\right)$

$$a_n = b_n - \frac{1}{2} + n + 1 = n + \frac{1}{2} + o\left(\frac{1}{(2-\varepsilon)^n}\right)$$

2. $f(z) = \frac{e^z}{\sqrt{1-z}} = \sum_{n=0}^{\infty} a_n z^n$, кргу сходимости |z| < 1, но z=1 не полюс, а точка ветвления.

$$g(z)=rac{e^z}{\sqrt{1-z}}-rac{e}{\sqrt{1-z}}=rac{e}{\sqrt{1-z}}(e^{z-1}-1)=rac{e}{\sqrt{1-z}}(1-z)$$
 $rac{e^{z-1}}{1-z}$ $=e\sqrt{1-z}h(z)$, где $h(z)\in H(\mathbb{C})$. $g(z)=\sum b_n z^n$. Из теоремы $b_n=h(1)rac{n^{-\frac{3}{2}}}{\Gamma(\frac{1}{2})}=-rac{1}{\sqrt{\pi}n\sqrt{n}}$ $e\sqrt{1-z}=e\sum c_n z^n$. Тогда $a_n=ec_n+b_n$. $\sqrt{1-4z}=\sum_{n=0}^{\infty}{2n\choose n}z^n$. Тогда $\sqrt{1-z}=\sum {2n\choose n}rac{z^n}{4^n}$. И тогда $a_n=rac{2n\choose n}e+b_n=rac{e(2n\choose n)}{4^n}+\mathcal{O}(rac{1}{n^{\frac{3}{2}}})$

Пример. Метод Лапласа

Есть 2k-значный номер, интересуемся количеством таких номеров, что сумма первых k знаков равна сумме последних k.

Пусть a_k = количество 2k значных счастливых билетов.

$$a_k = \frac{1}{2\pi i} \int_{|z|=1} \mathcal{A}(z) \mathcal{A}(\frac{1}{z}) \frac{dz}{z}. \quad \mathcal{A}(z) = (1+z+z^2+\ldots+z^9)^k = \left(\frac{1-z^{10}}{1-z}\right)^k.$$
To ectb $\frac{1}{2\pi i} \int_{|z|=1} \left(\frac{(1-z^{10})(1-z^{-10})}{(1-z)(1-\frac{1}{z})}\right)^k \frac{dz}{z} = \frac{1}{2\pi i} \int_{|z|=1} \left(\frac{2-z^{10}-z^{-10}}{2-z-\frac{1}{z}}\right)^k \frac{dz}{z} = \frac{1}{2\pi i} \int_0^{2\pi} \left(\frac{2-e^{10it}-e^{-10it}}{2-e^{it}-e^{-it}}\right)^k \frac{ie^{it}}{e^{it}} dt = \frac{1}{2\pi} \int_0^{2\pi} \left(\frac{2-2\cos(10t)}{2-2\cos t}\right)^k dt = \frac{1}{2\pi} \int_0^{2\pi} \left(\frac{2\sin^2(st)}{2\sin^2\frac{t}{2}}\right)^k dt = \frac{1}{2\pi} \int_0^{\pi} 2\left(\frac{\sin(10s)}{\sin s}\right)^{2k} ds = \frac{2}{\pi} \int_0^{\pi} \left(\frac{\sin(10s)}{\sin x}\right)^{2k}$

Тут пропущено 30 минут лекции.