MAT361 - DM1

Danilo Marinho Fernandes

24/05/2021

1. (a) On définit la suite $(x_n)_{n\geq 0}$ avec $x_0=x$ et $x_{n+1}=f(x_n), n\geq 0$. $(y_n)_{n\geq 0}$ est définie de façon similaire. $(x_n)_{n\geq 0}$ est dans un compact et donc admet une sous-suite convergente $(x_{\phi_1(n)})_{n\geq 0}$ ($\phi_1:\mathbb{N}\to\mathbb{N}$ croissante). La suite $(y_{\phi_1(n)})_{n\geq 0}$ admet aussi une sous-suite convergente $(y_{\phi_2(\phi_1(n))})_{n\geq 0}$. On fixe $\epsilon>0$ et on pose $\psi:\mathbb{N}\to\mathbb{N}, \ \psi(n)=\phi_2(\phi_1(n)),$ de façon que $(x_{\psi(n)})_{n\geq 0}$ et $(y_{\psi(n)})_{n\geq 0}$ convergent. Ce sont donc de suites de Cauchy, d'où on a $N_1,N_2\in\mathbb{N}$ tels que

$$n \ge N_1 \Rightarrow d(x_{\psi(n+1)}, x_{\psi(n)}) < \epsilon/2$$

$$n \ge N_2 \Rightarrow d(y_{\psi(n+1)}, y_{\psi(n)}) < \epsilon/2$$

Posons $N = max(N_1, N_2)$. Par l'énoncé, $d(x, y) \leq d(f(x), f(y))$ pour tous $x, y \in K$, et donc par induction finie

$$d(f(x), f(y)) = d(x_1, y_1) \le d(x_k, y_k), \ k = \psi(N+1) - \psi(N) \ge 1$$

Par l'inégalité triangulaire,

$$d(x_k, y_k) \le d(x_k, x) + d(x, y) + d(y_k, y)$$

Enfin, par la rélation $f_{\psi(N)}(x_k) = x_{k+\psi(N)} = x_{\psi(N+1)}$ (aussi vérifiée pour y_k), on a

$$d(x_k, x) + d(x, y) + d(y_k, y) \le d(x_{\psi(n+1)}, x_{\psi(n)}) + d(x, y) + d(y_{\psi(n+1)}, y_{\psi(n)}) \le d(x, y) + \epsilon$$

D'où

$$d(f(x), f(y)) \le d(x, y) + \epsilon$$

Ce qui donne le résultat désiré.

(b) Par la limite avec $\epsilon \to 0$, on a

$$d(f(x), f(y)) \le d(x, y) \ \forall x, y \in K$$

Donc

$$d(x,y) \le d(f(x), f(y)) \le d(x,y) \Rightarrow d(f(x), f(y)) = d(x,y) \ \forall x, y \in K$$

C'est à dire, f est une isométrie.

2. (a) On définit les vecteurs $z_1(t) = \begin{bmatrix} x_1(t) \\ x_1'(t) \end{bmatrix}$ et $z_2(t) = \begin{bmatrix} x_2(t) \\ x_2'(t) \end{bmatrix}$ dans \mathbb{R}^2 , qui satisfont l'équation différentielle

$$z'(t) = f(t, z(t)), \ f: \mathbb{R} \times \mathbb{R}^2 \to \mathbb{R}^2, \ f(t, z(t)) = \begin{bmatrix} 0 & 1 \\ -q(t) & 0 \end{bmatrix} z(t) \ (I)$$

avec conditions initialles $z_1(0) = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$, $z_2(0) = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$.

f est de classe C^1 vu qu'elle est linéaire en z et q(t), x(t), x'(t) sont de classe C^1 . Alors, $x_1(t)$ et $x_2(t)$ munis des conditions initiales données définissent des solutions uniques par le théoreme de Cauchy-Lipschitz. De plus, on voit que

$$||f(t,z(t))||_1 = |x'(t)| + |-q(t)x(t)| \le |x'(t)| + |-q(t)x'(t)| + |x(t)| + |-q(t)x(t)| = (1 + |q(t)|)||z(t)||_1$$

La fonction p(t) = 1 + |q(t)| est continue et positive. Donc, par le critère analytique d'existence globale, toute solution maximale est globale. En particulier, $x_1(t)$ et $x_2(t)$ sont des solutions globales du problème initial.

Pour voir que x_1 est paire, on regarde la fonction $y_1(t) = x_1(t) - x_1(-t)$. On voit que

$$\frac{dy_1(t)}{dt^2} + q(t)y_1(t) = \left(\frac{dx_1(t)}{dt^2} + q(t)x_1(t)\right) - \left(\frac{dx_1(-t)}{dt^2} + q(-t)x_1(-t)\right) = 0 - 0 = 0$$

Où on a utilisé que q(t) = q(-t). $y_1(t)$ est donc une solution du problème initial avec conditions initiales $y_1(0) = 0$, $y'_1(0) = 0$. On vérifie facilement que y(x) = 0 est une solution du problème et, par l'unicité des solutions étant donée la condition initiale, $y_1(t) = 0$. On a donc

$$x_1(t) - x_1(-t) = 0 \Rightarrow x_1(t) = x_1(-t) \ \forall t \in \mathbb{R}$$

C'est à dire, x_1 est paire. Pour voir que x_2 est impaire, on utilise la fonction $y_2(t) = x_2(t) + x_2(-t)$, qui satisfait aussi l'équation différentielle et a les conditions initiales $y_2(0) = 0$, $y'_2(0) = 0$. Par le même argument,

$$x_2(t) + x_2(-t) = 0 \Rightarrow x_2(t) = -x_2(-t) \ \forall t \in \mathbb{R}$$

C'est à dire, x_2 est impaire.

(b) Soit $g: \mathbb{R} \to \mathbb{R}$, $g(t) = x_1(t)x_2'(t) - x_2(t)x_1'(t)$ de classe C^1 . On voit que g(0) = 1 et

$$q'(t) = x_1(t)x_2''(t) - x_2(t)x_1''(t) = -q(t)x_1(t)x_2(t) + q(t)x_1(t)x_2(t) = 0$$

D'où g(t) = 1. En particulier, $g(\pi) = det(M) = 1$.

(c) On voit d'abord que

$$\begin{bmatrix} x(0) \\ x'(0) \end{bmatrix} = x(0) \begin{bmatrix} 1 \\ 0 \end{bmatrix} + x'(0) \begin{bmatrix} 0 \\ 1 \end{bmatrix} = x(0) \begin{bmatrix} x_1(0) \\ x'_1(0) \end{bmatrix} + x'(0) \begin{bmatrix} x_2(0) \\ x'_2(0) \end{bmatrix}$$

Par l'unicité des solutions et vu que $x(0)\begin{bmatrix} x_1(t) \\ x_1'(t) \end{bmatrix} + x'(0)\begin{bmatrix} x_2(t) \\ x_2'(t) \end{bmatrix}$ est une solution de (I) avec la condition initiale $\begin{bmatrix} x(0) \\ x'(0) \end{bmatrix}$, on a

$$\begin{bmatrix} x(t) \\ x'(t) \end{bmatrix} = x(0) \begin{bmatrix} x_1(t) \\ x'_1(t) \end{bmatrix} + x'(0) \begin{bmatrix} x_2(t) \\ x'_2(t) \end{bmatrix}$$

On définit
$$M(t) = \begin{bmatrix} x_1(t) & x_2(t) \\ x_1'(t) & x_2'(t) \end{bmatrix}$$
, d'où

$$\begin{bmatrix} x(t) \\ x'(t) \end{bmatrix} = M(t) \begin{bmatrix} x(0) \\ x'(0) \end{bmatrix}$$

En particulier,

$$\begin{bmatrix} x(\pi) \\ x'(\pi) \end{bmatrix} = M(\pi) \begin{bmatrix} a \\ b \end{bmatrix}$$

(d) Posons $y(t) = x(t - \pi)$, qui vérifie

$$\frac{dy(t)}{dt^2} + q(t)y(t) = \frac{dx(t-\pi)}{dt^2} + q(t-\pi)x(t-\pi) = 0$$

Où on a utilisé que q(t) est π -périodique. y(t) est donc une solution telle que

$$\begin{bmatrix} y(\pi) \\ y'(\pi) \end{bmatrix} = \begin{bmatrix} x(0) \\ x'(0) \end{bmatrix}$$

Et donc

$$M(\pi) \begin{bmatrix} y(0) \\ y'(0) \end{bmatrix} = M(\pi) \begin{bmatrix} x(-\pi) \\ x'(-\pi) \end{bmatrix} = \begin{bmatrix} x(0) \\ x'(0) \end{bmatrix} \Rightarrow \begin{bmatrix} x(-\pi) \\ x'(-\pi) \end{bmatrix} = M(\pi)^{-1} \begin{bmatrix} x(0) \\ x'(0) \end{bmatrix}$$

On a trouvé que $M(\pi)^{-1}=M(-\pi).$ Par calcul de l'inverse, on a

$$\begin{bmatrix} x_2'(\pi) & -x_2(\pi) \\ -x_1'(\pi) & x_1(\pi) \end{bmatrix} = \begin{bmatrix} x_1(-\pi) & x_2(-\pi) \\ x_1'(-\pi) & x_2'(-\pi) \end{bmatrix}$$

Puisque x_1 est paire, on a enfin

$$x_1(-\pi) = x_1(\pi) = x_2'(\pi)$$

(e) On va d'abord montrer que, pour tout $t \in \mathbb{R}$ et pout toute solution $\begin{bmatrix} y(t) \\ y'(t) \end{bmatrix}$ de (I), $\begin{bmatrix} y(t+\pi) \\ y'(t+\pi) \end{bmatrix} = M(\pi) \begin{bmatrix} x(t) \\ x'(t) \end{bmatrix}$. Pour cela, on considère l'application linéaire $\phi: E \to E$, $\phi(\begin{bmatrix} y(t) \\ y'(t) \end{bmatrix}) = \begin{bmatrix} y(t+\pi) \\ y'(t+\pi) \end{bmatrix}$, où E est l'espace de solutions de (I). ϕ est un endomorphisme puisque, si $\begin{bmatrix} y(t) \\ y'(t) \end{bmatrix}$ est une solution de (I), $\begin{bmatrix} y(t+\pi) \\ y'(t+\pi) \end{bmatrix}$ est aussi une solution. De plus, l'image des fonctions $\begin{bmatrix} x_1(t-\pi) \\ x_1'(t-\pi) \end{bmatrix}$ et $\begin{bmatrix} x_2(t-\pi) \\ x_2'(t-\pi) \end{bmatrix}$ par ϕ forme une base de E.

On note A la matrice de ϕ dans cette base. Ainsi, si $x(t) = ax_1(t) + bx_2(t)$, $a, b \in \mathbb{R}$, il existe $c, d \in \mathbb{R}$ tel que $x(t+\pi) = cx_1(t) + dx_2(t)$, avec $\begin{bmatrix} c \\ d \end{bmatrix} = A \begin{bmatrix} a \\ b \end{bmatrix}$

Pour t = 0, on vérifie $x(\pi) = cx_1(\pi) + dx_2(\pi)$. Par (c), $\begin{bmatrix} c \\ d \end{bmatrix} = M(\pi) \begin{bmatrix} a \\ b \end{bmatrix}$

Donc pour tout $\begin{bmatrix} a \\ b \end{bmatrix} \in \mathbb{R}^2$, $A \begin{bmatrix} a \\ b \end{bmatrix} = M(\pi) \begin{bmatrix} a \\ b \end{bmatrix}$, ce qui donne $A = M(\pi)$. Cela démontre la propriété proposée.

Soit $\chi(x) = x^2 - Tx + 1$ le polynôme caractéristique de $M(\pi)$, d'où on calcule les valeurs propres

$$\lambda_{1,2} = \frac{T \pm i\sqrt{4 - T^2}}{2}$$

Si |T| < 2, ce sont des complexes conjugués avec $|\lambda_1| = |\lambda_2| = 1$.

Si $t \in [0, \pi]$, $k \in \mathbb{N}$, $\begin{bmatrix} x(t+k\pi) \\ x'(t+k\pi) \end{bmatrix} = M(\pi)^k \begin{bmatrix} x(t) \\ x'(t) \end{bmatrix}$. $[0, \pi]$ étant compact, $|| \begin{bmatrix} x(t) \\ x'(t) \end{bmatrix} ||_1$ (la norme 1 dans la base caractérisée par x_1, x_2) est bornée car x(t) et x'(t) sont continues.

Si on définit $||M(\pi)||_{\infty} = \sup_{z \in E \setminus \{0\}} \frac{||M(\pi)z||_1}{||z||_1}$, alors por tout $z = av_1 + bv_2 \neq 0$ (v_1, v_2 vecteurs propres de M) on a

$$||M(\pi)||_{\infty} > = \frac{|\lambda_1 a| + |\lambda_2 b|}{|a| + |b|}$$

D'où

$$||M(\pi)||_{\infty} = max(|\lambda_1|, |\lambda_2|) = 1$$

Enfin, pour r > 0 quelconque, si on écrit $r = t + k\pi$ avec $t \in [0, \pi], k \in \mathbb{N}$, on a

$$\left\| \begin{bmatrix} x(t+k\pi) \\ x'(t+k\pi) \end{bmatrix} \right\|_{1} \le \left\| M(\pi) \right\|_{\infty}^{k} \begin{bmatrix} x(t) \\ x'(t) \end{bmatrix} \le \sup_{t \in [0,\pi]} \begin{bmatrix} x(t) \\ x'(t) \end{bmatrix}$$

D'où x(t) est bornée en \mathbb{R}^+ . En particulier, $x_1(t)$ et $x_2(t)$ sont bornées en \mathbb{R}^+ , et donc en \mathbb{R} vu qu'elles sont paire/impaire. Comme toute solution est une combinaison linéaire de ces solutions, toute solution est bornée en \mathbb{R} .

(f) Si |T| > 2, on a les valeur propres réelles

$$\lambda_{+,-} = \frac{T \pm \sqrt{T^2 - 4}}{2} \neq 0$$

Alors
$$M(\pi) \sim \begin{bmatrix} \lambda_+ & 0 \\ 0 & \lambda_- \end{bmatrix}$$
, $M(-\pi) \sim \begin{bmatrix} \lambda_+^{-1} & 0 \\ 0 & \lambda_-^{-1} \end{bmatrix}$
D'où $\lim_{k \to \infty} M(\pi)^k = \begin{bmatrix} \infty & 0 \\ 0 & 0 \end{bmatrix}$, $\lim_{k \to -\infty} M(-\pi)^k = \begin{bmatrix} 0 & 0 \\ 0 & \infty \end{bmatrix}$
Alors, si une solution n'est pas nulle, on peut l'écrire dans la base de vecteurs propres de $M(\pi)$ comme

Alors, si une solution n'est pas nulle, on peut l'écrire dans la base de vecteurs propres de $M(\pi)$ comme $\begin{bmatrix} x(t) \\ x'(t) \end{bmatrix} = av_1 + bv_2 \neq 0$. Si $a \neq 0$, $\lim_{k \to \infty} x(k\pi) = \infty$. Si $b \neq 0$, $\lim_{k \to -\infty} x(k\pi) = \infty$. Cela termine la démonstration.