Import Libraries

```
In [1]:
    import requests
    from bs4 import BeautifulSoup
    import re
    import numpy as np
    import pandas as pd
    import matplotlib.pyplot as plt
    import seaborn as sns
    import warnings
    warnings.filterwarnings('ignore')
    import Mymodule
```

Web Scraping

 $https://flipkart.com/search?q=laptop+under+20000\&sid=6bo\%2Cb5g\&as=on\&as-show=on\&otracker=AS_QueryStore_OrganicAutoSuggest_2_13_na_na_na\&otracker1=AS_QueryStore_OrganicAutoSuggest_2_13_na_na_na\&as-pos=2\&as-type=RECENT\&suggestionId=laptop+under+20000\%7CLaptops\&requestId=391506f8-dfb9-4bb7-8fea-8cdec70a9443\&as-searchtext=laptop+under+\&page=1$

Collecting Information about laptop under Rs. 20000 From FlipKart And Creating Dataset

```
url = f"{chage_link[:-1]}{i}"
r = requests.get(url)
soup = BeautifulSoup(r.text, 'lxml')
box = soup.find('div', class =' 1YokD2 3Mn1Gg')
product details = box.find all('div', class =' 3pLy-c row')
for detail in product details:
   name = detail.find('div', class =' 4rR01T')
    if name is not None:
        product name.append(name.text)
    else:
        product name.append('N/A')
    price = detail.find('div', class =' 30jeq3 1 WHN1')
    if price is not None:
        prices.append(price.text)
    else:
        prices.append('N/A')
   total = detail.find('div', class = 319 wc 27UcVY')
    if total is not None:
        totals.append(total.text)
    else:
        totals.append('N/A')
   off = detail.find('div', class =' 3Ay6Sb')
    if off is not None:
        off span = off.find('span')
        if off span is not None:
            offer.append(off span.text)
        else:
            offer.append('N/A')
    else:
        offer.append('N/A')
   rate = detail.find('div', class =' 3LWZ1K')
    if rate is not None:
        rating.append(rate.text)
    else:
        rating.append('N/A')
    pro = detail.find('li', class_='rgWa7D')
    if pro is not None:
        processor.append(pro.text)
```

```
else:
           processor.append('N/A')
       desc = detail.find('ul', class =' 1xgFaf')
       if desc is not None:
           description.append(desc.text)
       else:
           description.append('N/A')
if len(product name) == len(prices) == len(totals) == len(offer) == len(rating) == len(processor) == len(description):
    # convert datafram
   df = pd.DataFrame({"Product Name":product name, "Total":totals, "Selling Price":prices, "Offer, "Ratings":rating, "Processor
   # convert csv file and save file in memory
   df.to csv('laptop under 20000.csv', index=False)
    # Display Message
    print('SucessFully Created Dataset')
else:
   print('-----')
   print("Length of Product Name:", len(product name))
   print("Length of Selling Price:", len(prices))
   print("Length of Total:", len(totals))
   print("Length of Offers:", len(offer))
   print("Length of Rating:", len(rating))
   print("Length of Processor:", len(processor))
   print("Length of Description:", len(description))
```

SucessFully Created Dataset

Explore data

```
In [4]: df.head()
```

			Product_Name	Total	Selling_Price	Offer	Ratings	Processor	Description		
(0	Lenovo Slim 3 Chrome	book Touch Intel Celeron D	₹39,990	₹18,990	52% off	3.7	Intel Celeron Dual Core Processor	Intel Celeron Dual Core Processor4 GB LPDDR4 R		
	1	Infinix Y1 Plus Neo (202	23) Celeron Quad Core 1	₹29,990	₹20,990	30% off	4.1	Intel Celeron Quad Core Processor (11th Gen)	Intel Celeron Quad Core Processor (11th Gen)4		
2	2	Lenovo Athlon Dual	Core 3050U - (4 GB/256 GB S	₹35,000	₹18,999	45% off	N/A	AMD Athlon Dual Core Processor	AMD Athlon Dual Core Processor4 GB DDR4 RAMWin		
S	3	Lenovo Athlon Dual	Core 3050U - (4 GB/256 GB S	₹37,450	₹17,490	53% off	3.6	AMD Athlon Dual Core Processor	AMD Athlon Dual Core Processor4 GB DDR4 RAMDOS		
4	4	Lenovo Athlon Dual	Core - (4 GB/256 GB SSD/DOS	₹38,000	₹18,049	52% off	N/A	AMD Athlon Dual Core Processor	AMD Athlon Dual Core Processor4 GB DDR4 RAMDOS		
[5]:	df.	shape									
t[5]: ((984, 7)										
[6]:	<pre>df.info()</pre>										
< F		ass 'pandas.core.	frame.DataFran	ne'>							

Exploratory Data Analysis and Data Cleaning

```
In [7]: # replace 'N/A' to np.nan
         df.replace('N/A', np.nan, inplace=True)
 In [8]:
         df.isnull().sum()
         Product Name
                            0
Out[8]:
         Total
                           66
         Selling Price
                            0
         Offer
                           69
         Ratings
                          433
         Processor
         Description
         dtype: int64
In [9]: df.dropna(subset=['Total','Selling Price','Offer'], inplace=True, axis=0)
         df['Total'] = df['Total'].str.replace('₹', '').str.replace(',', '').astype('int')
In [10]:
         df['Selling Price'] = df['Selling Price'].str.replace('₹', '').str.replace(',', '').astype('int')
         df['Offer'] = df['Offer'].str.replace('off', '')
         avg rating = round(df['Ratings'].astype('float').mean(),1)
In [11]:
         df['Ratings'].fillna(avg rating, inplace=True)
         df['Ratings'] = df['Ratings'].astype('float')
In [12]:
         df['RAM'] = df['Description'].str.extract(r'(\d+\s*GB)')
In [13]: df['Product_Name'] = df['Product_Name'].str.split('-')
         df['Product Name'] = df['Product Name'].str.get(0)
In [14]: df['Brand'] = df['Product_Name'].str.split()
         df['Brand'] = df['Brand'].str.get(0)
In [15]: df['Processor Brand'] = df['Processor'].str.split()
         df['Processor Brand'] = df['Processor Brand'].str.get(0)
         df = df[['Product_Name', 'Brand', 'RAM', 'Offer', 'Ratings', 'Selling_Price', 'Total', 'Processor_Brand', 'Processor']]
In [16]:
In [17]: | df.isnull().sum()
```

```
Product Name
                            0
Out[17]:
         Brand
                            0
         RAM
                            0
         Offer
         Ratings
         Selling Price
         Total
         Processor Brand
         Processor
         dtype: int64
         df.info()
In [18]:
         <class 'pandas.core.frame.DataFrame'>
         Int64Index: 915 entries, 0 to 983
         Data columns (total 9 columns):
                              Non-Null Count Dtype
              Column
                               _____
              Product Name
                              915 non-null
                                              object
                                              object
          1
              Brand
                              915 non-null
          2
              RAM
                              915 non-null
                                              object
          3
              Offer
                              915 non-null
                                              object
                              915 non-null
                                              float64
              Ratings
              Selling Price
                              915 non-null
                                              int32
          6
              Total
                               915 non-null
                                              int32
              Processor Brand 915 non-null
                                              object
              Processor
                               915 non-null
                                              object
         dtypes: float64(1), int32(2), object(6)
         memory usage: 64.3+ KB
In [19]: # save clean dataset into csv
         df.to csv('Clean dataset laptop under 20000.csv', index=False)
In [20]: # see clean dataset
         df.head()
```

Out[20]:		Product_Name	Brand	RAM	Offer	Ratings	Selling_Price	Total	Processor_Brand	Processor
	0	Lenovo Slim 3 Chromebook Touch Intel Celeron D	Lenovo	4 GB	52%	3.7	18990	39990	Intel	Intel Celeron Dual Core Processor
	1	Infinix Y1 Plus Neo (2023) Celeron Quad Core 1	Infinix	4 GB	30%	4.1	20990	29990	Intel	Intel Celeron Quad Core Processor (11th Gen)
	2	Lenovo Athlon Dual Core 3050U	Lenovo	4 GB	45%	4.2	18999	35000	AMD	AMD Athlon Dual Core Processor
	3	Lenovo Athlon Dual Core 3050U	Lenovo	4 GB	53%	3.6	17490	37450	AMD	AMD Athlon Dual Core Processor
	4	Lenovo Athlon Dual Core	Lenovo	4 GB	52%	4.2	18049	38000	AMD	AMD Athlon Dual Core Processor

Data Analysis and Visulizations

Total Laptop

These Brand are available


```
In [24]: ram_type = df.groupby('RAM', as_index=False)['Brand'].count().sort_values(by='Brand', ascending=False).head(4)
    plt.figure(figsize=(4,3))
    ax = sns.barplot(x='RAM', y='Brand', data=ram_type)
    plt.title('These RAM Laptops are available',color='g')
    plt.ylabel('Counts')
    for bars in ax.containers:
        ax.bar_label(bars, padding=-2)
```


In [25]: top_rating_brand = df.groupby(['Brand'], as_index=False)['Ratings'].mean().round(1).sort_values(by='Ratings', ascending=False).he
Mymodule.formating_DataFrame(top_rating_brand, title='Top 10 rating Brands')

Top 10 rating Brands

Brand	Ratings
+	+
APPLE	4.5
ASUS	4.3
Infinix	4.2
SAMSUNG	4.2
Primebook	4.2
MSI	4.2
LG	4.2
realme	4.2
DELL	4.2
CHUWI	4.2

```
In [26]: top_rating_processor = df.groupby('Processor_Brand',as_index=False)['Ratings'].mean().round(1).sort_values(by='Ratings',ascending processor_brands = ['AMD', 'Intel', 'MediaTek', 'Qualcomm']
x = top_rating_processor[top_rating_processor['Processor_Brand'].isin(processor_brands)]
Mymodule.formating_DataFrame(x, title='Processor')
```

Processo	or
Processor_Brand	Ratings
AMD Intel Qualcomm MediaTek	4.3 4.2 4.0 3.9

```
In [27]: plt.figure(figsize=(4,3))
    sns.countplot(x='Processor_Brand', data=df[df['Processor_Brand'].isin(processor_brands)], palette='CMRmap')
    plt.title('Top Available Processor')
    plt.show()
```



```
In [28]: top_10_product = df.groupby('Product_Name',as_index=False)['Brand'].count().sort_values(by='Brand', ascending=False).head(10)
top_10_product['Counts'] = top_10_product['Brand']
Mymodule.formating_DataFrame(top_10_product[['Product_Name','Counts']], title='Top 10 Products Available')
```

laptop Analysis 7/15/23, 10:14 PM

Top 10 Products Available

Pr	roduct_Name	Counts
Le	enovo IdeaPad 3 Intel Core i3 11th Gen	34
Le	enovo IdeaPad Gaming 3 Intel Core i5 11th Gen	33
Le	enovo IdeaPad 3 Core i3 12th Gen	33
Le	enovo Slim 3 Chromebook Touch Intel Celeron Dual Core	32
Le	enovo IdeaPad 3 Core i3 11th Gen	31
Ir	nfinix Y1 Plus Neo (2023) Celeron Quad Core 11th Gen	29
Le	enovo Ideapad Gaming 3 AMD Ryzen 7 Octa Core 5800H	28
Ir	nfinix Y1 Plus Neo Intel Celeron Quad Core 11th Gen	26
Le	enovo IdeaPad Slim 3 Intel Core i5 11th Gen	24
Ir	nfinix INBook Y1 Plus Intel Core i3 10th Gen	14

```
In [29]: x = df[df['Selling_Price'] <= 20000]
         x = x[['Product_Name', 'Selling_Price', 'Ratings', 'Processor_Brand', 'RAM', 'Offer']].head(10)
         Mymodule.formating_DataFrame(x, title='Laptop less than 20000')
```

Laptop less than 20000

Product_Name	Selling_Price	Ratings	Processor_Brand	RAM	Offer
Lenovo Slim 3 Chromebook Touch Intel Celeron Dual Core	18990	3.7	Intel	4 GB	52%
Lenovo Athlon Dual Core 3050U	18999	4.2	AMD	4 GB	45%
Lenovo Athlon Dual Core 3050U	17490	3.6	AMD	4 GB	53%
Lenovo Athlon Dual Core	18049	4.2	AMD	4 GB	52%
HP Chromebook x360 Intel Celeron Dual Core	17990	4.2	Intel	4 GB	44%
Avita SATUS S111 Celeron Dual Core	16490	3.7	Intel	4 GB	45%
HP Chromebook MediaTek Kompanio 500	16990	3.8	MediaTek	4 GB	33%
HP Chromebook x360 Intel Celeron Quad Core	17990	3.7	Intel	4 GB	44%
Lenovo IdeaPad 3 Chromebook Intel Celeron Dual Core	12990	3.5	Intel	4 GB	57%
Avita SATUS S111 Celeron Dual Core	16490	3.7	Intel	4 GB	45%

```
In [30]: # Remove '%' character from the 'Offer' column
        df['Offer'] = df['Offer'].str.replace('%', '')
         # Convert 'Offer' column to integers
         df['Offer'] = df['Offer'].astype(int)
         # Find the row with the minimum offer
         min offer row = df[df['Offer'] == df['Offer'].min()]
In [31]:
        # Print the result
        Mymodule formating DataFrame(min offer row[['Product Name', 'RAM', 'Offer', 'Selling Price', 'Processor']], title='Minimun Offers of
                                            Minimun Offers of product the product
                                             | RAM | Offer | Selling Price | Processor
          Product Name
                                                             Acer Predator (2023) Core i9 13th Gen | 16 GB | 3
          ASUS ExpertBook P2 Core i7 10th Gen | 8 GB | 3
In [32]: # Find the row with the maximum offer
         max offer row = df[df['Offer'] == df['Offer'].max()]
         # Print the result
        Mymodule.formating DataFrame(max offer row[['Product Name','RAM','Offer','Selling Price']], title='Maximum Offers of the product
                                    Maximum Offers of the product
                                                        | RAM | Offer | Selling Price
          Product Name
          Lenovo IdeaPad 3 Chromebook Intel Celeron Dual Core | 4 GB | 57 | 12990
        min price laptop = df.groupby('Product Name', as index=False)['Selling Price'].min().sort values(by='Selling Price', ascending=Ti
In [33]:
         Mymodule.formating DataFrame(min price laptop, title='Minimun price of Laptops')
```

Minimun price of Laptops

In [34]: min_price_laptop = df.groupby('Product_Name', as_index=False)['Selling_Price'].max().sort_values(by='Selling_Price', ascending=False)['Selling_Price'].max().sort_values(by='Selling_Price', ascending=False)['Selling_Price', ascending

Maximum price of Laptops

Doodust Nama	Colling Drice
Product_Name	Selling_Price
MSI Core i9 13th Gen	489990
MSI GT77 Titan Core i9 12th Gen	450000
ASUS ROG Zephyrus Duo 16 with 90WHr Battery Ryzen 9 16 Core 7945HX	429990
ASUS ROG Strix Scar 17 SE (2022) with 90Whr Battery Core i9 12th Gen	399990
ASUS ROG Zephyrus Duo 16 (2022) Dual Screen Laptop with 90Whr Battery Ryzen 9 Octa Core 6900HX	391990
DELL Alienware Core i9 12th Gen	334990
ASUS Zenbook 17 Fold OLED Intel EVO Core i7 12th Gen	329990
ALIENWARE Core i9 10th Gen	325990
APPLE 2021 Macbook Pro M1 Max	309490
ASUS ROG Zephyrus M16 (2023) with 90WHr Battery Intel H	299990
+	+

In [35]: Mymodule.greeting('Neeraj Pandit')

Hello Neeraj Pandit have a good day.