Basic Pollard Rho Algorithm Implementation On CUDA Device

Martin Beránek

Faculty of Information Technology - Czech Technical University in Prague

May 3, 2017

1 Introduction

Factorisation problem of a huge number resolved into massive parallel solutions. Large number of algorithms are currently state-of-art and are continuously developed into better forms. This short article is focused on implementation of Pollard-Rho algorithm on CUDA device. In first part there is a definition of algorithm. Next the article focuses on options of parallelism on CUDA device. Results are measured in multiple instances and compared in graphs.

2 Definition of the algorithm

The ρ algorithm (named after the shape of curves symbolising two functions trying to reach themselves in projective space) is based on finding cycle. In t random numbers of x_1, x_2, \ldots, x_t in range [1, n] will contain repetition with probability of P > 0.5 if $t > 1.777n^{\frac{1}{2}}$

The ρ algorithm uses g(x) for modulo n as a generator for pseudo-random sequence. In this article function $x^2 + k$; $k \in \mathbb{N}$. We are assuming that $n = p \cdot q$ that also mean $p < \sqrt{n}$ and $q < \sqrt{n}$. Algorithm actually generates sequence of $x_1 = g(2), x_2 = g(g(2)), \ldots$ in two separated sequences running in same time. One sequence is generated as $x_1 = g(x_0) \mod n$ and second as $x_1 = g(g(x_0)) \mod n$. Since we know that $p < \sqrt{n}$ the faster sequence is likely to cycle faster then the sequence generated just in in application of a g function. The repetition of the g will be detected with g which will divide g without residue [1].

```
 \begin{array}{l} x{=}2; \; y{=}2; \; d{=}1 \\ while \; d \; is \; 1: \\ & x = g(x) \\ & y = g(g(y)) \\ & d = gcd\left(\left| x - y \right|, \; n\right) \\ if \; d = n: \\ & return \; \; failure \\ else: \\ & return \; \; d \\ \end{array}
```

Figure 1: Sequential pseudo-code of algorithm

3 CUDA Solution

- 3.1 First solution with explicit barrier
- 3.2 Second solution with independent runners

4 Conclusion

References

[1] Wikipedia. Pollard's Rho algorithm. 2016. Available from: https://en.wikipedia.org/wiki/Pollard's_rho_algorithm