A function MRI mind-reading game

Charles Zheng and Yuval Benjamini

Stanford University

March 28, 2015

Section 1

Introduction

Functional MRI

Functional MRI

Stimuli x	Response y
$ \begin{pmatrix} 1.0 \\ 0 \\ 3.0 \\ 0 \\ -1.2 \end{pmatrix} $	$\begin{pmatrix} 1.2 \\ 0 \\ -1.8 \\ -1.2 \end{pmatrix}$
$\begin{pmatrix} 0 \\ -2.2 \\ -3.1 \\ 4.5 \\ 0 \end{pmatrix}$	$\begin{pmatrix} -1.2 \\ -1.9 \\ 0.5 \\ 0.6 \end{pmatrix}$

Encoding vs Decoding

- Encoding: predict y from x.
- Decoding: reconstruct x from y (mind-reading).

A mind-reading game: Classification

A mind-reading game: Classification

A mind-reading game: Identification

Test Data (new images!)

Statistical formulation I

Training data.

- Given training classes $S_{\text{train}} = \{ \text{train}:1, \dots, \text{train}:k \}$ where each class train: i has features $x_{\text{train}:i}$.
- For $t = 1, ..., T_{train}$, choose class label $z_{train:t} \in S_{train}$; generate

$$y_{\mathsf{train}:t} = f(x_{z_{\mathsf{train}:t}}) + \epsilon_t$$

where f is an unknown function, and ϵ_t is i.i.d. from a known or unknown distribution.

Test data.

- Given test stimuli $S_{\text{test}} = \{\text{test:}1, \dots, \text{test:}\ell\}$ with features $\{x_{\text{test:}1}, \dots, x_{\text{test:}\ell}\}$
- Task: for $t = 1, ..., T_{\mathsf{test}}$, predict $\hat{z}_{\mathsf{test}:t} \in \mathcal{S}_{\mathsf{train}}$ from $y_{\mathsf{test}:t}$; try to minimize misclassification rate

Statistical formulation II

- f is an unknown function
- P is a known or unknown distribution over image features
- Training data. Draw $x_{\text{train}:i} \sim P$ for i = 1 hdots, k.
- Test data. Draw $x_{\text{train}:i} \sim P$ for $i = 1 \text{ hdots}, \ell$.
- Theoretical question: Analyze average misclassification rate when classes are generated this way

Toy example I

Model.

- Features x are one-dimensional real numbers, as are responses y. Parameter β is also a real number.
- ullet Suppose we estimated \hat{eta} from training data.

Test data.

- Generate features $x_{\text{test}:1}, \ldots, x_{\text{test}:\ell}$ iid $N(0, \sigma_x^2)$.
- Hidden labels $z_{\text{test}:t}$ are iid uniform from S_{train} . Generate $y_{\text{test}:t} \sim N(\beta x_{z_{\text{test}:t}}, \sigma_{\epsilon}^2)$
- Estimate $\hat{z}_{\text{test:}t}$ by maximum likelihood assuming $\hat{\beta}$ is correct. Thus:

$$\hat{z}_{\text{test}:t} = \operatorname{argmin}_{z} (\hat{\beta} x_{z} - y_{\text{test}:t})^{2}$$

