- 1. Докажем, что бинарная операция: То есть, для любых m и $n, m \circ n \in \mathbb{R} \setminus \{-1\}$. $m \circ n = 2mn + 2m + 2n 1$ $n \in \mathbb{R}, m \in \mathbb{R} \Rightarrow n \circ m \in \mathbb{R} \Rightarrow \text{требуется доказать, что } n \circ m \neq -1$ Пусть от противного $n \circ m = -1 \Rightarrow mn + m + n = -1 \Rightarrow m(n+1) = -(n+1)$ $n \in \mathbb{R} \setminus \{-1\} \Rightarrow (n+1) \neq 0 \Rightarrow \text{поделим на } (n+1) \Rightarrow m = -1, \text{ но } m \in \mathbb{R} \setminus \{-1\} \Rightarrow m \neq -1 \Rightarrow \text{получили противоречие} \Rightarrow m \circ n \in \mathbb{R} \setminus \{-1\} \forall m, n,$ что и требовалось доказать.
 - Докажем, что $(\mathbb{R}\setminus\{-1\},\circ)$ группа.
 - а) $\forall a,b,c \in \mathbb{R} \setminus \{-1\} \Rightarrow (a \circ b) \circ c = (2ab + 2a + 2b + 1) \circ c = = 4abc + 4ac + 4bc + 2c + 4ab + 4b + 4a + 2 + 2c + 1 = = 2a(2bc + 2c + 2b + 1) + 2a + 2(2bc + 2c + 2b + 1) + 1 = a \circ (b \circ c) \Rightarrow$ ассоциативность выполняется.
 - b) $\forall m \in \mathbb{R} \setminus \{-1\} \Rightarrow m \circ e = m \Rightarrow 2me + 2e + 2m + 1 = m \Rightarrow 2me + 2e + m + 1 = 0 \Rightarrow 2e(m+1) + (m+1) = 0$ $m \in \mathbb{R} \setminus \{-1\} \Rightarrow (m+1) \neq 0 \Rightarrow$ поделим на $(m+1) \Rightarrow 2e + 1 = 0 \Rightarrow e = -\frac{1}{2} \Rightarrow e$ существует. Проверим, что этот элемент действительно нейтральный: $m \circ e = -m 1 + 2m + 1 = m$

$$m \circ e = -m - 1 + 2m + 1 = m$$

 $e \circ m = -m - 1 + 2m + 1 = m$

- \Rightarrow найденый элемент e действительно нейтральный и существует.
- с) Заметим, что наша операция \circ на самом деле коммутативна (т.к. $a \circ b = 2ab + 2a + 2b + 1 = 2ab + 2b + 2a + 1 = b \circ a) \Rightarrow$ можем использовать это в доказательстве далее:

$$\forall m \in \mathbb{R} \backslash \{-1\} \Rightarrow m \circ m^{-1} = e \Rightarrow m \circ m^{-1} = -\frac{1}{2} \Rightarrow$$

$$2mm^{-1} + 2m + 2m^{-1} + 1 = -\frac{1}{2} \Rightarrow 2m^{-1}(m+1) = -\frac{3}{2} - 2m \Rightarrow m^{-1} =$$

$$\frac{-\frac{3}{4} - m}{m+1} \Rightarrow \text{обратный существует } \forall m \in \mathbb{R} \backslash \{-1\}$$

В силу коммутативности, упомянутой выше: $m \circ m^{-1} = m^{-1} \circ m = e$ $a,b,c \Rightarrow (\mathbb{R} \setminus \{-1\},\circ)$ - группа.

2. Требуется найти все такие a, что 6a = 48n, где $n \in \mathbb{N} \cup \{0\}$ и $a < 48 \Rightarrow 8n < 48 \Rightarrow n < 6$, и $a, 2a, 3a, 4a, 5a \neq 0 \pmod{48}$ $a = 8n, n < 6 \Rightarrow$ проверим предполагаемые ответы (0, 8, 16, 24, 32, 40) на второе условие $(a, 2a, 3a, 4a, 5a \neq 0 \pmod{48})$ $0 = 0 \pmod{48}, 16 \cdot 3 = 0 \pmod{48}, 24 \cdot 2 = 0 \pmod{48}, 32 \cdot 3 = 0 \pmod{48} \Rightarrow$ подходят только a = 8 и a = 40

 \Rightarrow **Ответ**: 8, 40.

- 3. $H = \{id, (243), (234)\}$, т.к. (243)(243) = (234), (234)(243) = id Левые смежные классы:
 - 1) idH, (243)H, (234)H = H
 - 2) $(12)(34)H, (123)H, (124)H = \{(12)(34), (124), (123)\}$
 - 3) (132)H, (134)H, $(13)(24)H = \{(134), (132), (13)(24)\}$
 - 4) $(14)(23)H, (142)H, (143)H = \{(14)(23), (142), (143)\}$

Правые смежные классы:

- 1) Hid, H(243), H(234) = H
- 2) $H(12)(34), H(132), H(142) = \{(12)(34), (132), (142)\}$
- 3) $H(124), H(134), H(14)(23) = \{(124), (134), (14)(23)\}$
- 4) $H(13)(24), H(123), H(143) = \{(13)(24), (123), (143)\}$
- 4. Пусть $G = \langle g \rangle := \{g^n | n \in \mathbb{Z}\}$ циклическая группа, а $H \subseteq G, H := \{g^k | k \in \{k_0, ...k_i, ...\} \subseteq \mathbb{Z}\}$ подгруппа группы G. Рассмотрим два случая:
 - $H = \{e\} \Rightarrow H = \langle e \rangle$ циклическая, что и требовалось доказать.
 - $H \neq \{e\} \Rightarrow$ в $H \exists$ минимальный элемент, который больше нейтрального элемента g^k . Докажем, что $H = \langle g^k \rangle$:
 - H подгруппа $\Rightarrow \forall a, b \in H \Rightarrow ab \in H \Rightarrow \langle g^k \rangle \subseteq H$
 - Выберем произвольный $g^m \in H$. Пусть m = kq + r, где $0 \leqslant r \leqslant k 1 \Rightarrow g^m = g^{kq+r} = g^{kq}g^r = (g^k)^q g^r$ $g^m \in H, g^k \in H \Rightarrow (g^k)^q \in H \Rightarrow g^r \in H$, но $r < k \Rightarrow g^r < g^k$, но g^k минимальный элемент, который больше нейтрального элемента в $H \Rightarrow g^r = e \Rightarrow r = 0 \Rightarrow g^m = g^k \Rightarrow H \subseteq \langle g^k \rangle$
 - $\Rightarrow H = \langle g^k \rangle$ циклическая, что и требовалось доказать.