Lecture 4- Bayesian correlation

Let's recall the definition of the (Pearson) correlation coefficient.

Consider two sets of scores - to what degree are they associated?

I i.e., how do they co-vary?

X	4	$x-\overline{x}$	Y-7	(x-x)(y-y)	
6	6	2	2	4	Define: covariance
2	2	- 2	-2	4	$\sigma_{XY} = \frac{1}{N} \sum_{i} (X_i - \overline{X}) (Y_i - \overline{Y})$
5	6	ı	-2 2	2	XY N — CT
2	4	-1	O	ט	
3			- 2	0	
4	2				
	V=	4		2 = 10	$\rightarrow \sigma = \frac{1}{5} \times 10 = 2$
ox=1.41	1'	•			
X	I T	•			

From covariance, we can define the Pearson correlation:

$$\rho = \frac{\sigma_{xY}}{\sigma_{x} \cdot \sigma_{Y}}$$

So for our example,

$$e = \frac{2}{(1.41)(1.74)} = 0.79$$

Facts:
$$* -1 \le p \le 1$$

* as $p \rightarrow \pm 1$, degree of association increases

Suppose we are interested in the relationship between math anxiety and performance on a standardized assessment.

- i) only considers fit of Ho as a potential model for data
- 2) ignores fit of H,

Thus, support for H, is only indirect

Bayes factor =
$$\frac{p(data | H_0)}{p(data | H_1)}$$

- i) considers relative adequacy of both models as predictors of data.
- 2) can directly index support for either Ho or H.

Ex: BF = 8 -> "The observed date are 8 times more likely under 16,"

Jeffreys (1961):	BF	Evidence*	
$BF = \frac{1}{8}$	1-3 3-10 10-30 30-100 >100	anecdotal moderate strong very strong extreme	* these are only guidelines!

How does Bayes work?

for single model H:

$$p(H \mid data) = p(H) \times \frac{p(data \mid H)}{p(data)}$$

posterior = prior x updating factor belief in H = belief in H

for two models:

$$\frac{p(\mathcal{H}_{0} \mid data)}{p(\mathcal{H}_{1} \mid data)} = \frac{p(\mathcal{H}_{0})}{p(\mathcal{H}_{1})} \times \frac{p(data \mid \mathcal{H}_{0})}{p(data \mid \mathcal{H}_{1})}$$

posterior = prior * Bayes factor odds

Two types of "priors":

- i) priors on models
- 2) priors on parameters within a given model
- Priors on models before observing data, what is relative likelihood of competing models?
 - · common default: $p(H_0) = p(H_1) = 1/2$ b i.e., "1-1 prior odds"
 - . these prior model probabilities must add to 1 $5 p(110) + p(11) = \frac{1}{2} + \frac{1}{2} = 1$
 - . prior model probabilities are <u>updated</u> after observing data:

Posterior odds = prior odds * BF

Example:

P(H₀)

$$P(H_0)$$
 $P(H_0)$
 $P(H_0$

$$P(H_o \mid data) = \frac{posterior \cdot odds}{1 + posterior \cdot odds}$$

$$= \frac{q}{q+1} = \frac{q}{10} = 0.90$$

- 2 priors on parameters within a given model.
 - model definitions: H: e = 0 H: e ≠ 0 ← what exactly do we mean here?
 - we quantify our uncertainty about the correlation e under It, by placing a distribution on p
 - suppose we have no idea what to expect. Here, we might believe any value of p is equally thely to occur.

Is we say e is uniformly distributed on (-1,1)

+ Note - this is the "default' used in TASP.

Other priors:

Is the uniform prior is a special case of a useful class of priors called a "stretched Beta prior"

Shape of the prior is controlled by the width parameter

* width 1 -> uniform prior (JASP default)

* width 0.5 -> more prior mass at 0

6 useful if you believe the correlation

75 small

4 width 2 — more prior mass at ±]

6 useful if you believe correlation is

strong (ex: testing reliability)

Let's continue our working example. Suppose we tested

N=65 participants and observed a correlation of

r=0.37

- use JASP "Summary Statistics" module

Elements to report:

- 1. report results of hypothesis test
 - define Ho, H, and specify prior under H.

"Under the null hypothesis we expect a correlation of O between maths anxiety and performance. Thus, we define $H_0: \rho = 0$. The alternative hypothesis is two-sided, $H_1: \rho \neq 0$, and we assigned a uniform prior probability to all values of ρ between -1 and +1."

- report and interpret Bayes factor

"We found a Bayes factor of BF, = 13.93, which means that the observed data are approximately 14 times more likely under H, than Ho. This result indicates strong evidence in favor of H,"

- calculate and report posterior model probability for preferred model.
 - from earlier,

$$= \frac{13.43}{1 + 13.43} = 0.93.$$

- "Assuming prior odds of 1-1 for H, and Ho, our observed data updated these odds to 13.93-to-1 in favor of H. This is equivalent to a posterior model probability of p(H, | data) = 0.93."
- 2. report results of parameter estimation
 - only if H, is the preferred model!
 - specify parameter of interest and remind reader of prior under It,
 - "Of interest is the posterior distribution for P, the population-level correlation between mashs assisty and performance. Under H_1 , P was assigned a uniform prior over the interval from -1 to +1."

- report the 95% credible interval.

- "The posterior distribution for e had a median of 0.356, with a central 95% credible interval that ranges from 0.134 to 0.554."