Lecture 25

A More Secure Authentication Dialogue

- Once per user logon session
 - (1) C \rightarrow AS: $ID_C | ID_{tgs}$
 - (2) AS —> C: E(K_C, Ticket_{tgs})
- Once per type of service:
 - (3) C \rightarrow TGS: $ID_C ||ID_v||$ Ticket_{tgs}
 - (4) TGS —> C: Ticket_v
- Once per service session:
 - (5) C -> V: ID_C | | Ticket_V

$$Ticket_{tgs} = \mathbb{E}(K_{tgs}, [ID_C || AD_C || ID_{tgs} || TS_1 || Lifetime_1])$$
$$Ticket_v = \mathbb{E}(K_v, [ID_C || AD_C || ID_v || TS_2 || Lifetime_2])$$

- 1. C \rightarrow AS: $ID_C ||P_C||ID_V$
- 2. AS \rightarrow C : Ticket = E(K_V, [ID_C | |AD_C | |ID_V])
- 3. C —> V: ID_C || Ticket

Advantage

- No password transmitted in plaintext
- Ticket is reusable. Timestamp is added to prevent reuse of ticket by an attacker

Secure?

no user authentication

- Ticket hijacking
 - Malicious user may steal the service ticket of another user on the same workstation and try to use it
 - Network address verification does not help
 - Servers must verify that the user who is presenting the ticket is the same user to whom the ticket was issued
- No server authentication
 - Attacker may misconfigure the network so that he receives messages addressed to a

legitimate server – man in the middle attack

- Capture private information from users and/or deny service
- Servers must prove their identity to users
- Solution: section key

- Once per user logon session
 - (1) C —>AS: ID_C | |ID_{tgs}
 - (2) AS -> C: E(K_C, Ticket_{tgs})
- Once per type of service:
 - (3) C \rightarrow TGS: $ID_C ||ID_v||$ Ticket_{tgs}
 - (4) TGS —> C: Ticket_V
- Once per service session:
 - (5) C -> V: ID_C || Ticket_V

Kerberos v4. - once per user logon session

AS

Kerberos v4. - once per type of service

Client uses Ticket_{tgs} to obtain a service ticket, Ticket_v and a short-term session key for each network service (printer, email, etc.)

$$Ticket_{tgs} = \mathbb{E}(K_{tgs}, [K_{c, tgs} || ID_C || AD_C || ID_{tgs} || TS_2 || \text{Lifetime}_2])$$

Kerberos v4. - once per service session

For each service request, client uses the short-term key, $K_{c,v}$, for that service and the ticket he received from TGS

 $Ticket_{\nu} = \mathbb{E}(K_{\nu}, [K_{c,\nu} || ID_C || AD_C || ID_{\nu} || TS_4 || \text{Lifetime}_4])$

Overview of Kerberos

