



GRADO EN ELECTRÓNICA INDUSTRIAL Y AUTOMÁTICA  ${\it TRABAJO} \ {\it FIN} \ {\it DE} \ {\it GRADO}$ 

# Plantilla La para elaborar Trabajos Fin de Grado



- 0. Índice general
- 1. Memoria
- 2. Medidas y cálculos
- 3. Anexos
- 4. Pliego de condiciones
- 5. Presupuesto
- 6. Bibliografía

#### DATOS DEL ALUMNO

Zorion Gamboa Puente zgamboa001@ikasle.ehu.eus 72406709-H

#### DATOS DEI DIRECTOR

Joseba A. Sáinz de Murieta Mangado joseba.sainzdemurieta@ehu.eus Ingeniería de Sistemas y Automática

FDO.:

FECHA: 5 de junio de 2015





GRADO EN ELECTRÓNICA INDUSTRIAL Y AUTOMÁTICA  ${\it TRABAJO} \ {\it FIN} \ {\it DE} \ {\it GRADO}$ 

# Documento 0: Índice general

#### DATOS DEL ALUMNO

Zorion Gamboa Puente zgamboa001@ikasle.ehu.eus 72406709-H

#### DATOS DEI DIRECTOR

Joseba A. Sáinz de Murieta Mangado joseba.sainzdemurieta@ehu.eus Ingeniería de Sistemas y Automática

FDO.:

FECHA: 5 de junio de 2015

# Índice general

| 0.        | Índice general                                | 0    |  |  |  |  |
|-----------|-----------------------------------------------|------|--|--|--|--|
|           | Índice general                                | I    |  |  |  |  |
|           | Índice de figuras                             | II   |  |  |  |  |
|           | Índice de tablas                              | III  |  |  |  |  |
| 1.        | Memoria                                       | 1-0  |  |  |  |  |
|           | Índice general                                | 1-2  |  |  |  |  |
|           | Índice de figuras                             | 1-3  |  |  |  |  |
|           | 1.1. Sarrera                                  | 1-4  |  |  |  |  |
|           | 1.2. Lizentziak eta aitorpenak                | 1-6  |  |  |  |  |
|           | 1.3. Teknikaren egoera eta ebatzien azterketa | 1-8  |  |  |  |  |
|           | 1.4. Atal bat                                 | 1-9  |  |  |  |  |
|           | 1.5. Beste atal bat                           | 1-1( |  |  |  |  |
| 2.        | Medidas y cálculos                            | 2-0  |  |  |  |  |
|           | 2.1. Korronte zuzeneko motorra                | 2-1  |  |  |  |  |
| 3.        | Anexos                                        | 3-0  |  |  |  |  |
|           | 3.1. Txantiloia osatzen duten fitxategiak     | 3-1  |  |  |  |  |
|           | 3.2. Txantiloiaren oinarrizko erabilera       | 3-4  |  |  |  |  |
|           | 3.3. Beste eranskin bat                       | 3-9  |  |  |  |  |
| 4.        | Pliego de condiciones                         | 4-0  |  |  |  |  |
| <b>5.</b> | 5. Presupuesto                                |      |  |  |  |  |
| 6         | 3. Ribliografía                               |      |  |  |  |  |

# Índice de figuras

| 1.1. | Gajski-Kuhn Y-grafikoan proiektuaren abstrakzio maila | 1-5 |
|------|-------------------------------------------------------|-----|
| 1.2. | Oinarrizko berrelikatutako kontrol sistema.           | 1-9 |
| 1.3. | Modeloa: jarraitua (kontroladorea)                    | 1-9 |
| 1 4  | LCD kudeatzailea                                      | 1_9 |

### Índice de tablas

# Índice general





GRADO EN ELECTRÓNICA INDUSTRIAL Y AUTOMÁTICA  ${\it TRABAJO} \ {\it FIN} \ {\it DE} \ {\it GRADO}$ 

# Documento 1: Memoria

#### DATOS DEL ALUMNO

Zorion Gamboa Puente zgamboa001@ikasle.ehu.eus 72406709-H DATOS DEI DIRECTOR

Joseba A. Sáinz de Murieta Mangado joseba.sainzdemurieta@ehu.eus Ingeniería de Sistemas y Automática

FDO.:

FECHA: 5 de junio de 2015

"...hor egongo da begira.

Tú no nos diste el euskera, pero nos diste la vida. Nos llevaste a la ikastola, aprendimos enseguida. Ya es hora de que entiendas el canto que nos motiva. Esta txapela es tuya, ay nire amatxu querida."

Xabier Paya 2006ko Bizkaiko Bertsolari Txapelketa

# Índice general

| Índic | ce general                                 | -2 |
|-------|--------------------------------------------|----|
| Índic | ce de figuras                              | -3 |
| 1.1.  | Sarrera                                    | -4 |
| 1.2.  | Lizentziak eta aitorpenak                  | -6 |
| 1.3.  | Teknikaren egoera eta ebatzien azterketa 1 | -8 |
| 1.4.  | Atal bat                                   | -9 |
| 1.5   | Beste atal hat                             | 10 |

# Índice de figuras

| 1.1. | Gajski-Kuhn Y-grafikoan proiektuaren abstrakzio maila | 1-5 |
|------|-------------------------------------------------------|-----|
| 1.2. | Oinarrizko berrelikatutako kontrol sistema.           | 1-9 |
| 1.3. | Modeloa: jarraitua (kontroladorea)                    | 1-9 |
| 1.4. | LCD kudeatzailea.                                     | 1-9 |

#### Sarrera

2007 urtean zehar *Iñaki Silanes*ek, Universidad del País Vasco / Euskal Herriko Unibertsitateko<sup>1</sup> ITSAS<sup>2</sup> Software Libre Taldeko kideak, L<sup>A</sup>T<sub>E</sub>X<sup>3</sup> eta *OpenDocument*<sup>4</sup> formatuetan Unibertsitatean gazteleraz, euskaraz zein ingelesez Karrera Amaierako Proiektuak zein Doktorego Tesiak aurkezteko txantiloiak eskaintzeko helburuarekin *Plantillas para Proyecto de Fin de Carrera* lan taldea<sup>5</sup> osatu zuen.

2010 urtean Digna González eta Unai Martinezek lan talde berrian<sup>6</sup> Iñaki Silanesen lana LATEX erabiltzeko hainbat argibide, erreferentzia, aurkezpen eta abarrekin bateratu zuten eta material bera baliatuz zenbait ikastaro eman.

Idazleak, **Bi**lboko Industria Ingeniaritza **T**eknikoko Unibertsitate **E**skolan<sup>7</sup> Karrera Amaierako Proiektua euskaraz idazteko orduan eskuragarri zeuden txantiloiek premia<sup>8</sup> guztiak asetzen ez zituztenez, aipatutako lan taldeetan bildutakoak oinarri, eskuartean duzun txantiloi berria egin du. 1.1 taulak  $I\tilde{n}aki$  Silanesek eskainitakoekiko ezberdintasun nagusiak biltzen ditu.

|               | Hizkuntza   | Formatua                       | Klasea           |                                |
|---------------|-------------|--------------------------------|------------------|--------------------------------|
| Iñaki Silanes | EU<br>ES EN | Ľ⁴T <u>E</u> X<br>OpenDocument | $itsas\_pfc.cls$ | book oinarri                   |
| Unai Martinez | EU          | IAT <sub>E</sub> X             | report           | config fitxategietan moldatuta |

Tabla 1.1: Iñaki Silanesen txantiloiekin konparaketa.

Horietaz gain, hurrengo berrikuntzak ditu honek:

- Kapitulu, atal, azpiatal, azpiatal, irudi eta taulak zenbakitu eta izendatzean zenbakia azaltzen da lehenengo, puntu ordinala ondoren eta hitza azkenik.
- ullet babelek basque aukeratzean ezatzen duen data komandoaren ordez gaur sortu da.
- Kapituluen izen gisa Dokumentu ezarri da.
- BI-IITUEko web gunean soilik DOC formatuan eskuragarri dauden txantiloiak erabili dira *Kapitu-lu/Dokumentu*en portadak diseinatzeko.
- Atalen goiburuak aldatu dira.
- Ikurren Zerrenda gehitu da.
- BI-IITUEko arautegiak eskatu bezala, UNE 157001-2002 araua erreferentzia izanik banatu da edukia. Hala ere, txantiloi honek ez du araua betetzen. Karrera Amaierako Proiektuen helburu nagusia hezkuntza eta ikastea izanik, edukia aurkitzea eta dokumentuen banakako azterketa errazteko diseinuan zenbait erabaki ezberdin hartu dira:
  - Dokumentuen ordena aldatu da eta zenbait ezabatu.
  - Portadak ez daude zenbakituta.
  - Orrialde, irudi, taula eta ekuazioen zenbakitzea kapitulu bakoitzean berrabiatzen da.
  - Zenbakitzea 0an hasten da.
  - Aurkibideen orrialdeak zenbaki erromatarrez daude adierazita.
  - Eranskinen dokumentuan atalak alfabetoz izendatzen dira.

<sup>1</sup> www.ehu.es
2 itsas.ehu.es
3 en.wikipedia.org/wiki/LaTeX
4 en.wikipedia.org/wiki/OpenDocument
5 itsas.ehu.es/workgroups/plantillas\_proyecto\_fin\_de\_carrera
6 itsas.ehu.es/workgroups/latex
7 www.industria-ingeniaritza-tekniko-bilbao.ehu.es
8 www.industria-ingeniaritza-tekniko-bilbao.ehu.es/p229-content/eu/contenidos/normativa/euiti\_bi\_pfc/eu\_nor\_gral/normativa\_gral\_fin\_carrera.html

• Goiburu eta orri oinen edukiak tokiz aldatuta daude eta dokumentu, atal zein azpiatalen arabera berritzen dira.

Hau dela eta, araua betetzeko *config* karpetako fitxategietan moldaketak egin behar ditu txantiloiaren erabiltzaileak.

Txantiloia erabiltzeko argibideak (fitxategien antolaketa, moldaketen izaera, etab.) 3.1 eranskinean eta 3.2 eranskinean aurkitu daitezke.

Edozein kasutan, emaitza zuzena izan dadin hainbat aldiz konpilatu behar da lana, hurrengo ordena jarraituz:

#### PDFLaTeX + BibTeX + PDFLaTeX + PDFLaTeX

Atal eta azpiataletan aldaketa asko egitean, tarte fitxategiak edo fitxategi laguntzaileak (.aux, .mtc, .mlf, .mlt, etab.) ezabatzea komeni da, aurreko katea exekutatu baino lehen.

Adibide den txosten honetan zehar, garapenean zehar erabilitako zenbait baliabide tartekatuko dira, ideiak hartzeko balioko dutelako itxaropenez. 1.1 irudiak adierazten duen grafikoa, esaterako. Irudi guztien kodea txantiloien iturrietan dago,  $TikZ/PGF^9$  paketeak baliatuz egin baitira.



Figura 1.1: Gajski-Kuhn Y-grafikoan proiektuaren abstrakzio maila.

Memoria 1-5 EUITIBI - UPV/EHU

 $<sup>^9 {\</sup>tt texample.net/tikz/examples}$ 

Txantiloi hau hurrengo lizentziaren arabera eskaintzen da:

# Creative Commons Attribution-ShareAlike 3.0 (CC BY-SA 3.0)

• Egin ditzakezunak:

Banatzea Kopiatu, banatu eta hedatzea Moldatzea Lana egokitzea eta eratorriak egitea lana merkataritza helburuekin erabiltzea

Hurrengoak bete bitartean:

Aitortzea Lanaren iturria aitortu behar da, *Unai Martinez Corral* eta *ITSAS*i erreferentzia eginez, eta itsas.ehu.es/workgroups/latex orrialdea aipatuz (baina lan eratorriek edo lanaren erabilerek hauen babesa dutela adierazi barik).

Berdin partekatzea Lan hau moldatu edo egokituz gero, edo lan eratorririk sortzekotan, egindakoa banatzeko honetan erabilitako lizentzia berdina erabili behar da.

creativecommons.org/licenses/by-sa/3.0/es/legalcode.eu

Aipatutako ITSASen lan taldeetako baliabideez gain, jarraian zerrendatutakoak erabili dira:

- TeXmaker (xm1math.net/texmaker) Pascal Brachet
- BibTeX (bibtex.org) Oren Patashnik, Leslie Lamport, Oren Patashnik
- LATEX paketeak (ctan.org/pkg/):

import Donald Arseneau

inputenc Alan Jeffrey, Frank Mittelbach babel Javier Bezos, Johannes L. Braams

 ${\bf geometry} \ \textit{Hideo Umeki}$ 

graphicx David Carlisle

natbib Patrick W. Daly, Arthur Ogawa

caption Axel Sommerfeldt indentfirst Davis Carlisle

multirow Piet van Oostrum, Jerry Leichter amsmath The American Mathematical Society

eurofont Rowland McDonnell

xcolor Uwe Kern

listings Brooks Moses, Carsten Heinz

tikz,pgfplots Till Tantau, Christian Feuersänger

tikz-timing Martin Scharrer

url Donald Arseneau

hyperref Heiko Oberdiek, Sebastian Rahtz

etoolbox Philipp Lehman

minitoc Jean-Pierre Drucbert
eso-pic Rolf Niepraschk
fancyhdr Piet van Oostrum

- $\blacksquare \ \mathbf{QtikZ} \ (\mathtt{hackenberger.at/blog/ktikz-editor-for-the-tikz-language}) \ \mathit{Florian} \ \mathit{Hackenberger} \\$
- TikZ irudiak (texample.net/tikz/examples/):

Gajski-Kuhn Y-chart Ivan Griffin
Control system principles Kjell Magne Fauske
Timing diagram with the tikz-timing package Martin Scharrer

Figura 1.2: Oinarrizko berrelikatutako kontrol sistema.

Ohiko berrelikatutako kontrol sistema 1.2 irudian agertzen da adierazita.

$$\frac{0,94}{0,116s+1} \tag{1.1}$$

Posizio kontrola egiteko xedez, plantaren transferentzia funtzioari irabazia (K = 0.83) eta integrazio funtzioa ( $\frac{1}{s}$ ) biderkatu zaizkio, (1.2) erabili da planta gisa.

$$\frac{0,94}{0,116s+1} \cdot 0,83 \cdot \frac{1}{s} = \frac{0,7802}{s(0,116s+1)} \tag{1.2}$$

#### Proportzionala

Kontroladorearen sarrera den erreferentzia (r) eta plantaren irteeraren (y) arteko errore seinalea (e) handitu egiten du irteeran (u).

$$u(t) = K_p \cdot e(t)$$
 
$$\frac{U(s)}{E(s)} = K_d$$

#### Integratzailea

Errore seinalea integratu eta konstante batez biderkatzen du.  $Automatic\ reset$  ere esaten zaio funtzio honi.

$$u(t) = K_i \int_0^t e(\tau)d\tau$$
 
$$\frac{U(s)}{E(s)} = \frac{K_i}{s}$$

#### Deribatzailea

Errore seinalea deribatzen du eta konstante batez biderkatu.  $Anticipatory\ control,\ rate\ action$  edo pre-act adierazpideak ditu.

$$u(t) = K_d \frac{de(t)}{dt}$$
 
$$\frac{U(s)}{E(s)} = K_d \cdot s$$

Figura 1.3: Azterketarako erabilitako PID kontroladorearen modelo jarraitua.

Figura 1.4: LCD kudeatzailea.





GRADO EN ELECTRÓNICA INDUSTRIAL Y AUTOMÁTICA  ${\it TRABAJO} \ {\it FIN} \ {\it DE} \ {\it GRADO}$ 

# Documento 2: Medidas y cálculos

#### DATOS DEL ALUMNO

Zorion Gamboa Puente zgamboa001@ikasle.ehu.eus 72406709-H

#### DATOS DEI DIRECTOR

Joseba A. Sáinz de Murieta Mangado joseba.sainzdemurieta@ehu.eus Ingeniería de Sistemas y Automática

FDO.:

FECHA: 5 de junio de 2015

- 2.1.1. Identifikazioa
- 2.1.2. Laginketa maiztasuna ezartzea





GRADO EN ELECTRÓNICA INDUSTRIAL Y AUTOMÁTICA  ${\it TRABAJO} \ {\it FIN} \ {\it DE} \ {\it GRADO}$ 

# Documento 3: Anexos

#### DATOS DEL ALUMNO

Zorion Gamboa Puente zgamboa001@ikasle.ehu.eus 72406709-H

#### DATOS DEI DIRECTOR

Joseba A. Sáinz de Murieta Mangado joseba.sainzdemurieta@ehu.eus Ingeniería de Sistemas y Automática

FDO.:

FECHA: 5 de junio de 2015

#### Txantiloia osatzen duten fitxategiak

Txantiloia osatzen duten fitxategien egitura azaltzen da atal honetan, kokatzeko ezinbestekoak direnak adieraziz. Azterketa zehatzagorako ikus 3.2 eranskina edo jo aitorpenetan adierazitako iturrietara.

#### main.tex

Txantiloriaren fitxategi nagusia, document deklaratu eta beste guztiak kargatzen dituena.

#### dedicatory.tex

Memoriaren portadaren hurrengo orrialde hutsean adierazten den eskaintza.

#### intro.tex

Memoriaren lehenengo atalaren edukia, Sarrera.

#### license.tex

Memoriaren bigarren atalaren edukia, Lizentzia eta aitorpenak.

#### state.tex

Memoriaren hirugarren atalaren edukia, Teknikaren egoera.

#### sty\_titlepg.tex

Portada nagusiaren edukia.

#### sty\_head.tex

Portada guztien goiburuaren diseinua.

#### sty\_who.tex

Portada guztien oinaren diseinua.

#### symbols.tex

Ikurren Zerrendaren edukia.

#### bibliography.bib

Erreferentzia bibliografikoak BibTeXen arabera.

#### images/

#### logo.png

Portada nagusian erdian agertzen den logoa.

#### ehu.png

Portaden goiburuan ezkerrean agertzen den logoa.

#### euiti.png

Portaden goiburuan eskuinean agertzen den logoa.

#### ychart.tikz

Ereduzko Y-grafikoa TikZ bitartez deskribatua.

#### config/

#### config.tex

Konfigurazio fitxategi nagusia, kargatzen denean lehena eta pakete guztiak kargatzeaz gain hainbat komando (ber)ezartzen dituena.

#### $config_basque.tex$

Nahiz eta babel paketea erabili, euskaraz hainbat gauza formatu egokian adierazi daitezen moldaketak.

#### $config_hdr.tex$

Portaden atzeko planoko diseinua (laukizuzena) eta atalaren arabera goiburu eta oinen edukia moldatzea.

#### ${\bf config\_index.tex}$

minitoc paketeak eskainitako funtzioetan oinarrituta DOtls eta DOmtls komandoak sortzea eta aurkibideen marjinak doitzea.

#### config\_titles.tex

Kapitulu, atal eta azpiatalak aldatzean izenburu berriak eskuratu eta aldagai ezagunetan gordetzea.

secta/

#### secta\_main.tex

Ereduzko atal baten fitxategi nagusia.

images/

#### ${f mod\_closedloop.tikz}$

Ereduzko irudi bat.

#### mod\_cont\_lum.tikz

Ereduzko irudia ekuazio batekin batera.

#### s3etiny\_lcd.tikz

Beste irudi bat.

sectb/

#### $sectb\_main.tex$

Ereduzko beste atal baten fitxategi nagusia

#### $sectb\_first.tex$

Atalaren lehenengo edukiak dituen fitxategia.

#### $sectb\_last.tex$

Atalaren azkeneko edukiak dituen fitxategia.

#### anie\_vhdl\_sat.vhd

listings paketea baliatuz aurkeztutako ereduzko VHDL kodea.

#### $anie\_vhdl\_pid.vhd$

listings paketea baliatuz aurkeztutako ereduzko VHDL kodea.

images/

#### mod\_box.tikz

Ereduzko irudia TikZ eta kolore ezberdinak erabilita.

#### vhdl\_sat.tikz

Beste bat.

#### anie\_pwm.tikz

Beste bat (PWM sortzailea).

#### anie\_hbridge.tikz

Beste bat (FSM).

measures/

#### measures\_main.tex

Neurketa eta kalkuluak dokumentuaren fitxategi nagusia.

att/

#### att\_main.tex

Eranskinak dokumentuaren fitxategi nagusia.

#### atta.tex

Lehenengo eranskinaren edukia.

#### attb.tex

Bigarren eranskinaren edukia.

#### attc.vhd

Hirugarren eranskinaren edukia.

m/

Hirugarren eranskinaren iturriak,  $Matlab\ script$ ak.

tune.m save\_bw.m save\_step.m save\_ts.m

#### $\operatorname{cond}/$

#### ${\bf cond\_main.tex}$

 $Baldintzen\ agiria$ dokumentuko fitxategi nagusia.

#### ${\bf cond\_adm.tex}$

Baldintza administratiboak atalaren edukia.

#### $\mathbf{cond\_tec.vhd}$

Baldintza teknikoak atalaren edukia.

#### $cond\_eco.vhd$

Baldintza ekonomikoak atalaren edukia.

#### ${\bf cond\_comp.tex}$

 $Osagaiak\ eta\ ezaugarriak\$ atalaren edukia.

Anexos 3-3 EUITIBI - UPV/EHU

#### Txantiloiaren oinarrizko erabilera

Txantiloiaren erabilera zuzena da, hau da, dauden fitxategietan edukia beste edozein LATEX dokumentutan egin bezala idaztearekin nahikoa dugu. Erabilitako paketeek ezarri litzaketen mugak izan behar ditugu kontuan, eta berriren bat kargatzekotan ordenari erreparatu behar diogu.

Bete beharreko baldintza bakarra dago: goiburuetan azpiatalak ondo adierazi daitezen title subsection erabili behar da subsection ordez<sup>1</sup>.

Kodea garbi mantendu eta itxurari dagozkionak ahal den heinean banaturik mantentzeko hainbat fitxategi daude *config* karpetan eta *main.tex* fitxategian zenbait komando berri agertzen dira. Jarraian hauek azalduko dira, kapitulu zein atalak moldatu, gehitu zein kentzeko prozedura adierazteko.

#### main.tex

\documentclass[a4paper,titlepage,10pt,oneside]{report}

report klasea dugu oinarri, alde bakarrekoa, DIN A4 formatuarekin. article erabili nahi izatekotan, minitoc paketeari dagozkion (do)minitoc, (do)minitof eta (do)minitot aginduen kudeaketa aldatu beharko litzateke (ikus config.tex eta config.index.tex), paketearen dokumentazioan adierazitakoen arabera. Pakete hori erabiltzen ez bada, aldaketa zuzena da.

Orriaren tamainari dagokionez, aldatzekotan kapitulu eta atalen orrietan distantziak berrikusi beharko lirateke (ikus *config\_titles.tex*). Letraren tamaina aldatzean ere baliteke aldaketa txikiak somatzea.

```
\usepackage{import}
\inputfrom{./config/}{config.tex}
```

Azpikarpetatan dauden fitxategiak kargatu eta hauetan kokapen erlatiboak erabili ahal izateko *import* paketea kargatu da lehenik, eta honekin *config* karpeta barruko konfigurazio fitxategi nagusia.

\begin{document}

\D0presetD0titlepg

Dokumentua hasi eta berehala *config.tex* fitxategian definituta dagoen *DOpresetDOtitlepg* komandoak euskaraz aurkezpena zuzenena izan dadin beharreko komandoak exekutatzen ditu, zenbakitzearen eta gaien aurkibidearen sakontasuna ezartzen ditu, kapituluen zenbakitzea zeroan abiarazten du, *minitoc*ek eskatutakoak exekutatzen ditu, portada aurkezten du eta orrialde berri batean hasteko prestatzen du dokumentua.

\chapter{Aurkibide orokorra} \DOtls

Lehenengo kapitulua, zerogarrena, Aurkibide orokorra dugu. config\_index.tex fitxategian definitutako DOtls komandoak orrien zenbakitzea erromatarrera aldatu eta tableofcontents, listoffigures eta listoftables exekutatzen ditu. Sekzio bezala gehitzen ditu aurkibidera, eta baten batek orri bat baino gehiago izatekotan goiburuak bat etor daitezen ezartzen ditu. Azkenik, berriz ere aldatzen du orrien zenbakitzea arabiarrera eta 1 balioa esleitzen dio.

```
\chapter{Memoria}
\pagestyle{empty}\input{dedicatory}\pagestyle{body}
\DOmtls{\DOmtoc\DOmlof\DOmlos}
```

 $<sup>^1\,</sup>GNU/Linux$ en greperabilita zuzenean egin dezagu bihurketa.

Memoriaren hasiera adierazi eta berehala, goiburu eta oinik ez dituen estiloa ezartzen da eskaintza aurkezteko,  $config\_hdr.tex$  fitxategian definitutako eta orokorrean erabiliko den body estilora bueltatu baino lehen.

DOmtls komandoak, DOtlsek egin antzera zenbakitzea eta goiburuak moldatuz, kapituluko gaien aurkibidea (DOmtoc), irudien zerrenda (DOmlof), taulen zerrenda (DOmlot) edota ikurren zerrenda (DOmlos) aurkezten ditu. Lehenengo hirurak sortzeko minitoc paketeak eskainitakoak erabiltzen diren bitartean, ikurren zerrendak zuzenean symbols.tex fitxategiko edukia kargatzen du.

```
\include{intro}
\include{license}\label{lic}
\include{state}
```

Memoriaren atalak dituzten fitxategiak zuzenean *include* edo *input* bitartez kargatzen dira. Lehenengoa *main.tex* fitxategian baino ezin daiteke erabili, beste fitxategi guztietan *input* erabiltzen da.

```
\subincludefrom{./secta/}{secta_main} \subincludefrom{./sectb/}{sectb_main}
```

Hainbat fitxategi dituzten atalak karpeta banatuetan gordetzen dira eta main.texen fitxategi bakarra kargatzen da. Honek atal aldaketa txikiak eginez horiek banatu eta bakarrik konpilatzea ahalbidetzen du, eta egitura aldatu barik hainbat atal gehitzea.

```
\chapter{Neurketak eta kalkuluak} \DOmtls{\DOmtoc}
\subincludefrom{./measures/}{measures_main}
\chapter{Eranskinak} \DOmtls{\DOmtoc}
\attref
\subincludefrom{./att/}{att_main}
\ordref
\chapter{Baldintzen agiria} \DOmtls{\DOmtoc}
\subincludefrom{./cond/}{cond_main}
\chapter{Aurrekontua}
```

Azaldutako tresna berdinak erabilita kargatzen dira hurrengo kapituluak. Ikus daitekeenez hauetan gaien aurkibidea aurkezten da soilik. *Eranskinak* dokumentuaren edukia kargatu baino lehen adierazitako attref komandoak atalen zenbakitzea alfabetora aldatzen du (ikus config\_index.tex). Dokumentuaren bukaeran berriz ere bueltatzen da hasierako aurreko konfiguraziora (ordref, ikus config\_basque.tex).

```
\nocite{*}
\chapter{Bibliografia}
\bibliographystyle{ieeetr}
\fancyhead[L]{\slshape \nouppercase{\bibname}}
\bibliography{bibliography}
```

Erreferentzia guztiak (estekatutakoak eta estekatu gabekoak) aurkezteko  $nocite^*$  deitu ostean, Bibliografia kapitulua hasi, estiloa aukeratu, orrialde bat baino gehiago izatekotan itxura egokia aurkezteko goiburua moldatu eta bibligraphy.bib fitxategia kargatzen du.

\end{document}

#### config/config.tex

\usepackage[utf8]{inputenc}

Karaktereen kodeketa adierazteko.

```
\usepackage[spanish,basque]{babel}
\selectlanguage{basque}
```

Tituluak batez ere, eta beste hainbat aukera, lokalizatzeko. Gaztelera kargatzen da izen propioak erabiltzean  $\tilde{n}$  eta azentu-markekin arazorik ez izateko.

```
\usepackage[left=3.5cm, right=1.5cm, top=2.5cm, bottom=2.5cm]{geometry}
```

Normak adierazitako marjinak ezartzeko.

```
\usepackage{graphicx}
```

Irudiak txertatzeko.

#### \usepackage[numbers] {natbib}

Erreferentzia bibliografikoak testuan adieraztean [X] itxuraz adierazi daitezen.

Irudi eta taulen oinen itxura moldatzeko.

```
\usepackage{indentfirst}
```

babel paketeak gazteleraz paragrafo bakoitzaren lehenengo lerroari ezkerreko marjina handiagoa jartzen dio, baina euskaraz ez. Honek egitera bortxatzen du, baina kontuz ibili beharko dugu irudiak eta taulak erdiratzerakoan.

```
\usepackage{multirow}
```

Tauletan zutabe edo lerro anitz hartzen dituzten gelaxkak erabiltzeko.

#### \usepackage{eurofont}

€ sinboloa erabiltzeko.

```
\usepackage[usenames,dvipsnames]{xcolor}
\colorlet{urlcolor}{purple!65!black}
\colorlet{ilcolor}{violet!65!black}
```

Esteketan, irudietan eta grafikoetan koloreak definitzeko aukera ugari izateko.

```
\usepackage{listings}
\lstset{
language=VHDL,
basicstyle=\color{Blue}\footnotesize\ttfamily,
commentstyle=\color{CadetBlue},
stringstyle=,
identifierstyle=\color{Black},
backgroundcolor=\color{black!10!white},
columns=fixed,
extendedchars=true,
breaklines=true,
numbers=none
```

Lengoaia ezberdinetan idatzitako kodea dokumentuan txertatzeko. Eredu gisa erabili den VHDL kodea aurkezteko ausazko aurkezpenaren hautaketa.

```
\usepackage{tikz,pgfplots}
\usetikzlibrary{shapes,arrows}
\usepackage{tikz-timing}
```

Irudiak, grafikoak eta kronogramak egiteko.

```
\usepackage[hyphens]{url}
\usepackage[
bookmarks=true,
unicode=true,
pdftitle={Karrera Amaierako Proiektuak idazteko LaTeX txantiloia},
pdfsubject={},
pdfauthor={Unai Martinez Corral},
linktoc=all,
colorlinks=true,
linkcolor=ilcolor,
urlcolor=urlcolor,
citecolor=Blue,
plainpages=false,
]{hyperref}
```

Dokumentuko erreferentziak estekatzeko eta irteerako PDF fitxategiaren propietateak ezartzeko.

#### \parskip=2mm

Paragrafoen arteko tartea ezartzea.

```
\usepackage{amsmath}
\numberwithin{figure}{chapter}
\numberwithin{table}{chapter}
\numberwithin{equation}{chapter}
```

Irudi, taula eta ekuazioen zenbakitzea kapitulu bakoitzean berrabiatzeko.

#### \usepackage{etoolbox}

Komandoei dei egitean exekutatu baino lehen bitarteko ekintzak burutzeko.

```
\input{config_titles}
\input{config_hdr}
\input{config_basque}
\input{config_index}
```

Funtzio zehatzen konfigurazioa: portadak eta atalek goiburuak, bestelako goiburu eta oinak, euskaraz erabiltzeko hobekuntzak eta aurkibideak aurkeztea.

```
\usepackage[basque,loose]{minitoc}
%\usepackage{mtcoff}
\setcounter{minitocdepth}{4}
\setlength{\mtcindent}{0pt}
\renewcommand{\mtcfont}{\small\rm}
\renewcommand{\mtcSfont}{\small\bf}
\nomtcrule \nomlfrule \nomltrule
```

Kapitulu bakoitzean aurkibideak eta zerrendak aurkeztea ahalbidetzen duen paketea kargatzea eta hainbat parametro ezartzea. Hauen artean garrantzitsuena setcounterminitocdepth dugu, aurkibideak aurkeztuko duten sakontasuna adierazten baitu: 0-kapitulua, 1-atala, 2-azpiatala, 3-azpiazpiatala edo 4-paragrafoa. Besteek letra mota ezartzen dute eta zerrenden inguruko lerroak ezabatzen dituzte.

```
\newcommand{\DOpresetDOtitlepg}{
\ordref
\setcounter{secnumdepth}{3}
\setcounter{tocdepth}{1}
\addtocounter{chapter}{-1}
\dominitoc[e]
\dominilof[e]
\dominilot[e]
\input{sty_titlepg}
\clearpage\pagestyle{body}
}
```

Dokumentua hasi eta berehala  $config\_basque.tex$  fitxategian definitutako ordref komandoak euskaraz elementuen izenak ondo adierazi daitezen moldaketak burutzen ditu.

Atalak zenbakitzeko erabiliko den sakontasuna adierazten da ondoren (3-azpiazpiatala), eta aurkibide nagusiak aurkeztuko duena (1-atala). Kapituluen zenbakitzea zeroan hasteko izendatuari bat kentzen zaio.

minitocek eskatutako komandoak adierazten dira, izenbururik gabe aurkezteko parametroarekin ([e]).  $config\_index.tex$  fitxategian ikus daitekeenez izenburuak banaturik sortzen dira, lan osoaren estiloa mantentzeko.

Portada aurkezten da azkenik, eta berehala orrialde huts berri batean estilo orokorra ezarri.

#### tune.m

```
P=6;
I = 0.125;
D = 0.25;
Tf = .01;
Ts = 0.011;
sat=12;
sTs=Ts/3;
save_bw.m
% sTs -> Scope Sample Time
% Min Simulation Time sTs*samples
% bw.dat
clear;
tune;
sTs=Ts/3;
samples = [325,300];
freq_range = [0.01,15];
names={'y' 'u' 'mag' 'deg' '.dat'};
models={'cont','discrete','contdfilt'};
labels=strcat('freq');
in = frest.Sinestream('Frequency',linspace(freq_range(1),freq_range(2),samples(2)),'
         FreqUnits','Hz');
towrite=0;
for n=1:3
     mdl=char(strcat('PID_', models(n)));
     sysest=0; simout=0; mag=0; phase=0; freq=0;
     [sysest, simout] = frestimate(mdl,getlinio(mdl),in);
     [mag,phase,freq]=bode(sysest);
          labels=strcat(labels,'\t',names(2+m),'_',models(n));
     end
     {\tt towrite}\,(1: {\tt samples}\,(2)\;, (2*n)\;, 1) = 20* \log 10\,({\tt mag}\,(1\;, 1\;, 1\;; {\tt samples}\,(2)\;))\;;
     towrite(1:samples(2),(2*n)+1,1)=phase(1,1,1:samples(2));
end
towrite (1: samples(2), 1) = freq(1: samples(2))/(2*pi);
filetowrite = fopen(char(strcat('bw',names(5))),'wt');
fprintf(filetowrite,char(labels));
fclose(filetowrite):
 \texttt{dlmwrite(char(strcat('bw',names(5))),towrite,'-append','delimiter','\t','precision','\%.3final(char(strcat('bw',names(5)))),towrite,'-append','delimiter','\t','precision','%.3final(char(strcat('bw',names(5)))),towrite,'-append','delimiter','\t','precision','%.3final(char(strcat('bw',names(5)))),towrite,'-append','delimiter','\t','precision','%.3final(char(strcat('bw',names(5)))),towrite,'-append',','delimiter',','\t','precision','%.3final(char(strcat(strcat(strcat(strcat(strcat(strcat(strcat(strcat(strcat(strcat(strcat(strcat(strcat(strcat(strcat(strcat(strcat(strcat(strcat(strcat(strcat(strcat(strcat(strcat(strcat(strcat(strcat(strcat(strcat(strcat(strcat(strcat(strcat(strcat(strcat(strcat(strcat(strcat(strcat(strcat(strcat(strcat(strcat(strcat(strcat(strcat(strcat(strcat(strcat(strcat(strcat(strcat(strcat(strcat(strcat(strcat(strcat(strcat(strcat(strcat(strcat(strcat(strcat(strcat(strcat(strcat(strcat(strcat(strcat(strcat(strcat(strcat(strcat(strcat(strcat(strcat(strcat(strcat(strcat(strcat(strcat(strcat(strcat(strcat(strcat(strcat(strcat(strcat(strcat(strcat(strcat(strcat(strcat(strcat(strcat(strcat(strcat(strcat(strcat(strcat(strcat(strcat(strcat(strcat(strcat(strcat(strcat(strcat(strcat(strcat(strcat(strcat(strcat(strcat(strcat(strcat(strcat(strcat(strcat(strcat(strcat(strcat(strcat(strcat(strcat(strcat(strcat(strcat(strcat(strcat(strcat(strcat(strcat(strcat(strcat(strcat(strcat(strcat(strcat(strcat(strcat(strcat(strcat(strcat(strcat(strcat(strcat(strcat(strcat(strcat(strcat(strcat(strcat(strcat(strcat(strcat(strcat(strcat(strcat(strcat(strcat(strcat(strcat(strcat(strcat(strcat(strcat(strcat(strcat(strcat(strcat(strcat(strcat(strcat(strcat(strcat(strcat(strcat(strcat(strcat(strcat(strcat(strcat(strcat(strcat(strcat(strcat(strcat(strcat(strcat(strcat(strcat(strcat(strcat(strcat(strcat(strcat(strcat(strcat(strcat(strcat(strcat(strcat(strcat(strcat(strcat(strcat(strcat(strcat(strcat(strcat(strcat(strcat(strcat(strcat(strcat(strcat(strcat(strcat(strcat(strcat(strcat(strcat(strcat(strcat(strcat(strcat(strca
           ','roffset',1);
save_ts.m
% sTs -> Scope Sample Time
% Min Simulation Time sTs*samples
% ts.dat
clear:
tune;
sTs = .01;
mdl='PID_discrete';
names={'y' 'u' 'cont'};
```

```
samples = [300];
Tp = 1.1;
mul = [2,5,10,30,50,100];
labels=strcat('t','\t','ref');
for m=1:2
  labels = \verb|strcat(labels, '\t', names(m), '_', names(3));
towrite=0;
for n=1:6
  Ts=Tp/mul(n);
  y=0; u=0; data=0;
  sim(mdl);
  data.y=y;
  data.u=u;
  for m=1:2
   labels=strcat(labels,'\t',names(m),'_',sprintf('%i',mul(n)));
  towrite(1:samples,2*n+3) = data.y.signals.values(1:samples,2);
  towrite(1:samples,2*n+4) = data.u.signals.values(1:samples);
towrite(1:samples,1) = data.y.time(1:samples);
towrite(1:samples,2) = data.y.signals.values(1:samples);
mdl=char(strcat('PID_', names(3)));
y=0; u=0; data=0;
sim(mdl):
data.y=y;
data.u=u;
towrite(1:samples,3) = data.y.signals.values(1:samples,2);
towrite(1:samples,4) = data.u.signals.values(1:samples);
filetowrite = fopen(char('ts.dat'),'wt');
fprintf(filetowrite,char(labels));
fclose(filetowrite);
dlmwrite(char('ts.dat'),towrite,'-append','delimiter','\t','precision','%.3f','roffset
    <sup>'</sup>,1);
save_step.m
% sTs -> Scope Sample Time
\% Min Simulation Time sTs*samples
% step.dat
clear;
tune;
sTs = .005;
samples = [300];
names={'y' 'u' '.dat'};
models={'cont','discrete','contdfilt','fp'};
labels=strcat('t','\t','ref');
towrite=0;
for n=1:4
  mdl=char(strcat('PID_', models(n)));
  y=0; u=0; data=0;
  sim(mdl);
  data.y=y;
  data.u=u:
    labels=strcat(labels,'\t',names(m),'_',models(n));
```





GRADO EN ELECTRÓNICA INDUSTRIAL Y AUTOMÁTICA  ${\it TRABAJO} \ {\it FIN} \ {\it DE} \ {\it GRADO}$ 

# Documento 4: Pliego de condiciones

#### DATOS DEL ALUMNO

Zorion Gamboa Puente zgamboa001@ikasle.ehu.eus 72406709-H

#### DATOS DEI DIRECTOR

Joseba A. Sáinz de Murieta Mangado joseba.sainzdemurieta@ehu.eus Ingeniería de Sistemas y Automática

FDO.:

FECHA: 5 de junio de 2015





GRADO EN ELECTRÓNICA INDUSTRIAL Y AUTOMÁTICA  ${\it TRABAJO} \ {\it FIN} \ {\it DE} \ {\it GRADO}$ 

# Documento 5: Presupuesto

#### DATOS DEL ALUMNO

Zorion Gamboa Puente zgamboa001@ikasle.ehu.eus 72406709-H

#### DATOS DEI DIRECTOR

Joseba A. Sáinz de Murieta Mangado joseba.sainzdemurieta@ehu.eus Ingeniería de Sistemas y Automática

FDO.:

FECHA: 5 de junio de 2015





GRADO EN ELECTRÓNICA INDUSTRIAL Y AUTOMÁTICA  ${\it TRABAJO} \ {\it FIN} \ {\it DE} \ {\it GRADO}$ 

# Documento 6: Bibliografía

#### DATOS DEL ALUMNO

Zorion Gamboa Puente zgamboa001@ikasle.ehu.eus 72406709-H

#### DATOS DEI DIRECTOR

Joseba A. Sáinz de Murieta Mangado joseba.sainzdemurieta@ehu.eus Ingeniería de Sistemas y Automática

FDO.:

FECHA: 5 de junio de 2015

- [06] Spartan-3e starter kit board, user guide, Xilinx, Inc., mar. de 2006.
- [MM09] U. Martinez Corral y A. Martin Uribarri, Ordenagailu-haizagailuak kontrolatu eta ikusteko sistema (ohkis), Eragingailu Logiko Programagarriak Dituzten Sistema Digitalak Bilboko IITUE UPV/EHU, jun. de 2009.
- [PG09] P. Piqtek y W. Grega, "Speed analysis of a digital controller in time critical applications", Journal of Automation, Mobile Robotics & Intelligent Systems, vol. 3, págs. 57-61, 2009.
- [SS11] M. Santina y A. R. Stubberud, "The control handbook, control system fundamentals", en, 2.a ed. CRC Press, imprint of Taylor & Francis Group, LLC, 2011, cap. 15. Sample-Rate Selection, Edited by W.S. Levine.
- [Vis06] A. Visioli, *Practical PID Control*, ép. Advances in industrial control (AIC). Springer-Verlag London Limited, 2006, Edited by M.J. Grimble and M.A. Johnson.