

Network Security

802.11 Security

Phillip Mak pmak@nyu.edu

Objectives

- Overview of Wireless 802.11
- Describe how WEP is flawed and work out various methods to attack it
- Understand how WPA and WPA2 improves upon WEP
- Describe methods to attack any wireless network
- Understand Wi-Fi-Protected Setup

IEEE 802.11 Wireless LAN

- •802.11b (Wi-Fi 1)
- •2.4-2.495 GHz unlicensed radio spectrum
- •up to 11 Mbps
- •direct sequence spread spectrum (DSSS) in physical layer: all hosts use
- same chipping code
- Deprecated in 2004
- •802.11a (Wi-Fi 2)
- •5 GHz range (4915-5815MHz)
- •up to 54 Mbps
- •Physical layer: orthogonal frequency
- division multiplexing (OFDM)
 - •Used for encoding data on multiple frequencies
- •802.11g (Wi-Fi 3)
- •2.4-2.495 GHz range
- up to 54 Mbps

- •802.11n (Wi-Fi 4)
- •2.4-2.495 GHz & 4.915-5.825 GHz
- 4x40 MHz channel size
- •up to 600 Mbps
- •802.11ac (Wi-Fi 5)
- •4.915-5.825 GHz
- *8x160 MHz channel size
- •up to 3.5 Gbps
- •802.11ax (Wi-Fi 6)
- •2.4-2.495 GHz & 4.915-5.825 GHz
- •up to 9.6 Gbps
- •WPA3
- •802.11ax (Wi-Fi 6E)
- •With 6GHz (5.925–7.125 GHz)
- •Next: 802.11be (Wi-Fi 7)
- All have collusion avoidance using CSMA/CA
- All have base-station and ad-hoc versions
- All allow for reducing bit rate for longer range

802.11 LAN architecture

- wireless host communicates with base station
 - Access Point (AP) = base station
 - Basic Service Set (BSS) is the set of AP and STAs communicating with each other
 - All AP/BSS are named by their BSSID, or MAC Address
- Infrastructure mode contains:
 - Stations (STA): Hosts
 - Access Points (AP): Base Stations
- ad hoc mode
 - Hosts only
 - No AP

Channels, beacon frames & association

- 802.11b/g/n
 - 2.4GHz-2.495GHz spectrum divided into 13 channels (14 in Japan) at different frequencies; 3 non-overlapping (4 in Japan)
 - AP admin chooses frequency for AP
 - Interference possible: channel can be same as that chosen by neighboring AP! 2.4 GHz is also popular for other appliances such as wireless telephones and microwaves
- AP regularly sends beacon frame
 - Includes SSID (Network Name), BSSID (AP MAC), beacon interval (often 0.1 sec)
- host: must associate with an AP
 - scans channels, listening for beacon frames or sends a probe request
 - selects AP to authenticate and associate with
 - Authentication may be Open, WEP, WPA, WPA2
 - Association is to join the network
 - After joining, host will typically run DHCP to get IP address in SSID or Network subnet
 - Host will keep IP if it travels from one AP to another within the same SSID/Network

802.11 frame: addressing

Address 2: Source. MAC address of wireless host or AP transmitting this frame

802.11 frame: addressing to STA

7

802.11 frame: addressing to AP

٥

802.11 frame (more)

frame:

2 Bytes	2	6	6	6	2	6	0 - 2312	4
frame	duration	address	address	address	seq	address	pavload	CRC
control	uuralion	1	2	3	control	4	payloau	CKC

2 Bits	2	4	1	1	1	1	1	1	1	1	
Protocol version	Туре	Subtype	To AP	From AP	More frag	Retry	Power mgt	More data	WEP	Rsvd	

frame control field expanded

- Protocol version: Always zero
- ☐ Type/subtype distinguishes beacon, association, ACK, RTS, CTS, etc frames.
- To/From AP defines meaning of address fields
- □ 802.11 allows for fragmentation at the link □ layer but is almost only ever used during an attack since 802.3 (Ethernet) frames

are smaller

- Retry identifies retransmitted frames (e.g., when ACK lost)
- 802.11 allows stations to enter sleep mode
- WEP = 1 if WEP encryption is used

802.11 Sniffing

- Requires wireless card that supports raw monitoring mode (rfmon)
 - Grabs all frames including management frames
- Tools:
 - •There are many. Dump packets into Wireshark; interfaces with GPS devices, storing physical location
- Access control lists based on MAC addresses
 - •Do they work?
 - Attacker sniffs channel, obtains valid MAC address
 - Attacker modifies its MAC address to valid address
- DEFCON Wi-Fi Shootout
 - Read Wi-Fi traffic from 125 miles away
 - They had to adjust for the curvature of the earth
 - •FCC max allowable transmit powers are 1watt indoors, 4 watt outside

Sniffing Encrypted 802.11 traffic

Suppose:

- Traffic encrypted with symmetric crypto
- •Attacker can sniff but can't break crypto

<u>Information is still leaked:</u>

- SSID, Mac addresses
- Manufacturers of cards from MAC addrs
- Count # of devices
- Management frames are sent in the clear
- •802.11w protects management frames, but is not widely implemented

- Traffic analysis reveals:
- -Size of packets
- -Timing of messages
- -Determine apps being used
- But cannot see anything really useful
- •Attacker needs the keys!

MAC Address Randomization

- As MAC Addresses are sent in the clear, MAC Address Randomization is used as protection from tracking
- Supported by most operating systems
 - -iOS 14, Windows 10, Android 10
 - -Not MacOS

- Network service considerations
 - -Wi-Fi ACL using MAC Addresses
 - -DHCP Leases
 - -Network logs

Client Association

Source: Ruckus Wireless1

Client Association

- In WPA (1/2/3), there are two ways to associate:
 - -Personal Mode (Pre-shared Key)
 - WPA1/WPA2 pre-shared keys susceptible to brute force attacks
 - WPA3 cannot perform an offline brute-force attack
 - -Enterprise Mode (various methods)

Client Association – 802.1x (Enterprise)

Wireless Security Protocols

- WEP
- WPA
- WPA2
- WPA3

Attacks on Pre-Shared Keys (PSK)

- Attacker can get keys from disgruntled employee or sloppy administration.
- Possible solution: put key in hardware or software & don't make key visible to humans.
- •Problems:
- Attacker gets access to equipment with key
- ·With good technical skills, attacker can extract key
- •Ex: large corporation puts key in flash memory of all its devices
- •Someone clever extracts key, publishes it on Web, destroying corporate security solution

WEP Design Goals

- Symmetric key crypto
 - Confidentiality
 - Station authorization
 - Data integrity
- Self synchronizing: each packet separately encrypted
 - Given encrypted packet and key, can decrypt; can continue to decrypt packets when preceding packet was lost
 - Unlike Cipher Block Chaining (CBC) in block ciphers
- Efficient
 - Can be implemented in hardware or software
 - Older APs implemented WEP in hardware

WEP is flawed. Summary of flaws

One common shared key

- If any device is stolen or compromised, must change shared key in all devices
- No key distribution mechanism
- Infeasible for large organization as approach doesn't scale

Crypto is flawed

- Early 2001: Integrity and authentication attacks published
- August 2001 (weak-key attack): can deduce RC4 key after observing several million packets
- AirSnort application allows casual user to decrypt WEP traffic

Crypto problems

- •24 bit IV to short
- Same key for encryption and message integrity
- •ICV flawed, does not prevent adversarial modification of intercepted packets
- Cryptanalytic attack allows eavesdroppers to learn key after observing several millions of packets

IEEE 802.11i draft - WPA

- Much stronger encryption
 - TKIP (temporal key integrity protocol)
 - Intended for compatibility with existing WEP Hardware
 - Still uses RC4 stream cipher
 - Depreciated in 2012
- Extensible set of authentication mechanisms
 - Employs 802.1X authentication
- Key distribution mechanism
 - Typically public key cryptography
 - RADIUS authentication server
 - distributes different keys to each user
 - also there's a less secure pre-shared key mode
- WPA: Wi-Fi Protected Access
 - Pre-standard subset of 802.11i

IEEE 802.11i WPA2

- Non-draft version of 802.11i is called WPA2
- Strongest encryption to date
- Uses AES, strong block cipher
- Longer key, 4-way handshake between STA and AP
 - Both AP and STA are authenticated
- No known weaknesses with the algorithm
 - Aside from bruteforcing passwords
- Pre-Shared Key is still vulnerable to weak passphrase dictionary attacks and stolen client

IEEE 802.11w – Protected Management Frames (PMF)

- Management frames were still unencrypted after WPA2 in 2004
- 802.11w ratified in 2009
- •2014: Implemented in Linux and BSD drivers used by some wireless cards. Also implemented in Windows 8. Compatibility issues can exist with older clients (Windows 7, older APs)
- Mitigates an attacker from injecting malformed management frames into the network and causing a self-DOS
- Protects:
 - Deauthentcation, Disassociation
 - Authentication handshake frames
 - •QoS (802.11e) frames

Securing 802.11

- Use WPA2-AES with a strong passphrase
 - Better yet, use a RADIUS server
- Disable backwards compatibility with WEP and TKIP
- Protect the physical network
- Implement a robust PKI and EAP implementation
 - TTLS, PEAP-EAP-TLS, EAP-FAST
- Update client trusted certificates, do not use OS defaults
- Run latest vendor firmware

WPA3 Security Improvements

- Perfect Forward Secrecy
- Protect Managements Frames
- No more offline dictionary attacks on passphase
- "Wi-Fi" Easy Connect improved Wi-Fi Protected Setup