

Young Cho
Department of Electrical Engineering
University of Southern California

The Internet

- Computer Networks
 - Network interfaces
 - Switches
 - Routers
 - Firewalls and etc...
- Software
 - Network protocols
 - Operating System interface
 - Application level interface
- Hardware
 - Lightweight microprocessors
 - Hardware accelerators
 - Network processors

Computer Network

Computer Network Hardware

Open System Interconnection

OSI MODEL			
7		Application Layer	UPPER LAYERS
		Type of communication: E-mail, file transfer, client/server.	
6		Presentation Layer	
		Encryption, data conversion: ASCII to EBCDIC, BCD to binary, etc.	
5		Session Layer	
		Starts, stops session. Maintains order.	
1		Transport Layer	
7		Ensures delivery of entire file or message.	
3		Network Layer	RS
	7	Routes data to different LANs and WANs based on network address.	
2		Data Link (MAC) Layer	Ϋ́
		Transmits packets from node to node based on station address.	LOWER LAYERS
1		Physical Layer	
		Electrical signals and cabling.	

From computer desktop encyclopedia © 2004

Networking

- Communication
 - Between Applications on different computers
- Application Resource Needs/Demands
 - Traffic data rate
 - Traffic pattern (bursty or constant bit rate)
 - Traffic target (multipoint or single destination, mobile or fixed)
 - Delay sensitivity
 - Loss sensitivity

Back in the Old Days...

Packet Switching (Internet)

Packet Switching

- Interleave packets from different sources
- Efficient: resources used on demand
 - Statistical multiplexing
- General
 - Multiple types of applications
- Accommodates bursty traffic
 - Addition of queues

- Store and forward
 - Packets are self contained units
 - Can use alternate paths reordering
- Contention
 - Congestion
 - Delay

Internet[work]

- A collection of interconnected networks
- Host: network
 endpoints (computer,
 PDA, light switch, ...)
- Router: node that connects networks
- Internet vs. internet

Internet

- Heterogeneous Computer Networks
 - Physical connection via routers and switches
- Largest Conglomeration of Such Networks

LAN I and LAN 2 might be completely different, totally incompatible LANs (e.g., Ethernet and WiFi, 802.II*,TI-links, DSL, ...)

Internet

Maps of the Internet

- Many differences between networks
 - Address formats
 - Performance bandwidth/latency
 - Packet size
 - Loss rate/pattern/handling
 - Routing
- How to translate between various network technologies?

How To Find Nodes?

Naming

What's the IP address for www.usc.edu?

It is 128.125.253.136

Computer I

Local DNS Server

Translates human readable names to logical endpoints

Routing

- Reliability
 - Corruption
 - Lost packets
- Flow and congestion control
- Fragmentation
- In-order delivery
- Etc...

Data Corruption

Bandwidth Bottleneck

Solution: Buffering and Congestion Control

- Short bursts: buffer
- What if buffer overflows?
 - Packets dropped
 - Sender adjusts rate until load = resources → "congestion control"

Lost Packets

Large Data

Problem: Packet size

- On Ethernet, max IP packet is 1.5kbytes
- Typical web page is 10kbytes

Out of Order Packets

An Internet Connection

Lots of Functions Needed

- Link
- Multiplexing
- Routing
- Addressing/naming (locating peers)
- Reliability
- Flow control
- Fragmentation
- Etc....

What is Layering?

- Modular approach to network functionality
- Example:

Protocols

- Module in layered structure
- Set of rules governing communication
 - Applications
 - Hosts
 - Routers
- Protocols define:
 - Interface to higher layers (API)
 - Interface to peer
 - Format and order of messages
 - Actions taken on receipt of a message

Layering Characteristics

- Services
 - Each layer relies on services from layer below
 - Each layer exports services to layer above
 - Provides interface that defines interaction
- Modularity
 - Hides implementation
 - Layers can change without disturbing other layers (black box)

Layering

- Physical: how to transmit bits
- Data link: how to transmit frames
- Network: how to route packets
- Transport: how to send packets end2end
- Session: how to tie flows together
- Presentation: byte ordering, security
- Application: everything else

OSI Layers and Locations

Layer Encapsulation

Remnants of Layering

- Redundancy
 - Layer N may duplicate lower level functionality (e.g., error recovery)
 - Layers may need same info (timestamp, MTU)
- Consequences
 - For assurance and guarantee
 - May hurt performance

All About Generalization

- Many Years of the Same Thing
 - What's Left?
 - Any room for improvement?
 - We won't be able to replace it!
- Are There Any Problems????
 - Latency
 - Bandwidth
 - Performance
- 25-30 Years Ago
 - Supercomputing world
 - Huge emphasis on networking
- Since Then

Internet

- Understand Internet
 - Learn the computer network
 - Understand and manage routing tables
 - Low level network packet processing
- Building a Network Protocol
 - Application-Level Protocol
 - Handle basic control level protocol
 - Resolve communication problems on Internet
 - Modification to kernel level modules

6/13/2024 35

Laboratory I

VirtualBox on your PC

Virtualization

- Virtual Machines
 - Hypervisor Type I a layer above HW
 - Hypervisor Type 2 a layer above OS
- Containers
 - Docker Engine
 - Orchestrated with Kubernetes

Virtualization

Docker

- Developed by Docker Inc.
- Containers OS level Virtualization

Kubernetes **KUBERNETES MASTER API Server** Scheduler **Controller Manager KUBERNETES NODE** KUBERNETES NODE **Docker Kubelet** Docker Kubelet Docker Kubelet **Kubernetes Proxy Kubernetes Proxy Kubernetes Proxy** Linux Machine Linux Machine **Linux Machine**

- From Google
- Uses Containerization Technology
- Allows to run containers across several nodes
- Deployment, scaling, and management of containerized applications

Hypervisors

- Type I Single layer above bare metal
 - XEN
 - Pass-through access to CPU/Memory/NICs
 - Open source virtualization started 2004
 - Acquired by Citrix in 2007
- Type II One layer above OS
 - VMWare ESXi
 - VMware Cloud solution
 - Runs on top of vSphere
 - Hyper-V
 - Microsoft Cloud solution
 - The best solution for Windows OS
 - Kernel-based Virtual Machine KVM
 - Introduced in 2007
 - More like VirtualBox
 - Acquired and taken over by RedHat 2008
 - Due to RedHat, better for Linux OSVMs
 - Most widely deployed open source environment

Laboratory 2

AWS VM

The Future of Cloud (my take)

- Taking Back Performance
 - Low Latency
 - High Bandwidth
 - Networking and Processor
- Need Engineers to Build
 - Application Specific
 - Hardware Component Specific
 - Custom Configuration Specific
 - Hardware Accelerated
 - Minimal Overhead HW/SW
 - Low-level Software (e.g. embedded software and kernel level)

Laboratory Assignments

- Submit Archive of Laboratory Results
 - Summary PowerPoint Slides
 - Source Code and README instructions for code
 - Usually Saturday 11:59 PM
- YouTube demonstration video
 - Usually, the following Monday 11:59 PM
- Scoring
 - On-time Submissions (no exceptions)
 - Multiplied by I.0 if on-time
 - Multiplied by 0.5 if late
 - Demonstration Videos on YouTube
 - Internet Accessible Link to the Archive (ZIP) of all