DIGITAL LOGIC SYSTEMS: ASSIGNMENT 6

 $\begin{array}{c} {\rm AAKASH\ JOG}\\ {\rm ID}: 989323563\\ \&\\ {\rm DUSTIN\ CHALCHINSKY}\\ {\rm ID}: 209741891\\ \&\\ \end{array}$

PAUL MIERAU ID: 932384233

Exercise 1.

Prove that every output bit of a decoder depends on all the inputs.

Solution 1.

If possible, let an output bit of a decoder, DECODER(n), be independent of one of the inputs.

Therefore, WLG, let the k^{th} bit of the output be independent of the l^{th} bit of the input.

Let the input be i[1:n] and the output be $o[1:2^n]$.

Therefore, o[k] is unchanged by $flip_l(i)$.

Let o_1 be the output of DECODER(n) for some i_1 , such that $o_1[k] = 1$.

Therefore, $o_1[k] = 1$ for $flip_l(i_1)$.

Therefore, either $wt(o_1) \neq 1$, or the output of DECODER(n) is the same for i_1 and $flip_l(i_1)$.

If wt(o), it contradicts the definition of the decoder.

If the outputs for i_1 and $flip_l(i_1)$ are the same, it contradicts the fact that any decoder is one-to-one.

Hence, every output bit of $\mathtt{DECODER}(n)$ must be dependent on all the input bits.

Exercise 2.

Prove that the logical connective that corresponds to a MUX-gate is complete. (Hint: Implement a complete set of connectives using only a MUX and constants.)

Solution 2.

Let D[0], D[1], and S be the inputs of a MUX-gate. Let Y be the output of the MUX-gate.

Therefore,

D[0]	D[1]	$S = X_1$	Y
1	0	0	1
1	0	1	0

Therefore, if D[0] = 1, D[1] = 0, $S = X_1$, $Y = \neg X_1$.

Date: Tuesday 26th May, 2015.

D[0]	$D[1] = X_1$	$S = X_2$	Y
0	0	0	0
0	0	1 1	0
0	1	0	0
0	1	1	1

Therefore, if D[0] = 1, $D[1] = X_1$, $S = X_2$, $Y = X_1 \wedge X_2$.

,	LJ	/ []	
$D[0] = X_1$	D[1]	$S = X_2$	Y
0	1	0	0
0	1	1	1
1	1	0	1
1	1	1 1	1

Therefore, if $D[0] = X_1$, D[1] = 1, $S = X_2$, $Y = X_1 \vee X_2$.

Therefore, as the complete set of connectives { NOT , AND , OR } can be constructed using a MUX-gate only, it is a complete set of connectives.

Exercise 3.

Design a combinational circuit JO(n) (just one) specified as follows:

Input $x \in \{0,1\}^n$ Output $y, z \in \{0,1\}$

Functionality $z = 1 \iff x = 0^n, y = 1 \iff wt(x) = 1$

- (1) Prove the correctness of your design.
- (2) Analyze the asymptotic cost of your design.
- (3) Analyze the asymptotic propagation delay of your design.
- (4) Prove asymptotic lower bounds on the cost and propagation delay of JO(n).

Solution 3.

Where AND $_n$ is AND of n bits, implemented using an optimized AND tree, OR $_n$ is OR of n bits, implemented using an optimized OR . NOT $_n$ and $flip_i$ are implemented as shown.

Figure 2. Not n

FIGURE 3. $flip_i(x)$

(1)

$$y = \bigoplus_{i=0}^{n-1} \overline{x[0]} \wedge \dots \wedge x[i] \wedge \dots \wedge \overline{x[n-1]}$$
$$z = \bigwedge_{i=0}^{n-1} \overline{x[i]}$$

If
$$n = 1$$
,

$$y = x[0] \oplus \overline{x[1]}$$
$$z = \overline{x[0]} \wedge \overline{x[1]}$$

Therefore,

)					
x[0]	x[1]	y	z		
0	0	0	1		
0	1	1	0		
1	0	1	0		
1	1	0	0		

Therefore, the circuit JO(2) works as intended.

If possible let JO(n) work as intended.

Therefore,

$$y_n = 1$$
 \iff $wt(x_n) = 1$ $z_n = 1$ \iff $x_n = 0^n$

Therefore,

$$y_{n+1} = \bigoplus_{i=0}^{n} \overline{x[0]} \wedge \dots \wedge x[i] \wedge \dots \wedge \overline{x[n]}$$

$$= \bigoplus_{i=0}^{n} \left(\overline{x[0]} \wedge \dots \wedge x[i] \wedge \dots \wedge \overline{x[n-1]} \right) \wedge \overline{x[n]}$$

$$= \left(\bigoplus_{i=0}^{n-1} \left(\overline{x[0]} \wedge \dots \wedge x[i] \wedge \dots \wedge \overline{x[n-1]} \right) \wedge \overline{x[n]} \right)$$

$$\oplus \left(\overline{x[0]} \wedge \dots \wedge \overline{x[n-1]} \wedge x[n] \right)$$

$$= y_n \wedge \overline{x[n]} \oplus \left(\overline{x[0]} \wedge \dots \wedge \overline{x[n-1]} \wedge x[n] \right)$$

If
$$x_{n+1}[n] = 0$$
,

$$y_{n+1} = (y_n \wedge 1) \oplus (z_n \wedge 0)$$

$$= y_1 \oplus 0$$

$$= y_1$$

$$= wt(x_n)$$

$$= wt(x_{n+1})$$

If
$$x_{n+1}[n] = 1$$
,

$$y_{n+1} = (y_n \wedge 0) \oplus (z_n \wedge 1)$$
$$= 0 \oplus z_n$$

 $x_n = 0^n$ if and only if $z_n = 1$. If and only if,

$$y_{n+1} = 0 \oplus 1$$
$$= 1$$

Therefore, $y_{n+1} = 1$ if and only if x[n] = 1 and $z_n = 1$, i.e. $x[0] = \cdots = x[n-1] = 0$.

Therefore, $wt(x_{n+1}) = 1$.

 $x_n \neq 0^n$ if and only if $z_n = 0$.

If and only if,

$$y_{n+1} = 0 \oplus 0$$
$$= 0$$

Therefore, $y_{n+1} = 0$ if and only if x[n] = 1 and $z_n = 0$, i.e. at least one of $x[0], \ldots, x[n-1]$ is 1. Therefore, $wt(x_{n+1}) > 1$. Therefore, $y_{n+1} = 1$ if and only if $wt(x_{n+1}) = 1$.

$$z_{n+1} = \bigwedge_{i=0}^{n} \overline{x_{n+1}[i]}$$

$$= \left(\bigwedge_{i=0}^{n-1} \overline{[i]}\right) \wedge \overline{x_{n+1}[n]}$$

$$= z_n \wedge \overline{x_{n+1}[n]}$$

If $x_{n+1}[n] = 0$,

$$z_{n+1} = z_n \wedge 1$$
$$= z_n$$

Therefore, $x_{n+1} = 0^{n+1}$ if and only if $x_n = 0^n$. If $x_{n+1}[n] = 1$,

$$z_{n+1} = z_n \wedge 0$$
$$= 0$$

Therefore, $x_{n+1} \neq 0^{n+1}$ if and only if $x_{n+1}[n] = 1$. Hence, by induction, JO(n) works as intended, $\forall n \geq 2$.

(2)

$$\begin{split} c(y) &= & c(\text{ NOT } n) \\ &+ n \cdot c(flip) \\ &+ n \cdot c(\text{ AND } n) \\ &+ c(\text{ OR } n) \\ &= & n \cdot c(\text{ NOT }) \\ &+ n(n-1)c(\text{ NOT }) \\ &+ n(n-1)c(\text{ AND }) \\ &+ (n-1)c(\text{ OR }) \end{split}$$

$$cost(z) = (n-1)cost(OR) + cost(NOT)$$

Therefore,

(3)

$$c(y) = O\left(n^2\right)$$
$$c(z) = O(n)$$
$$\therefore \cot = O\left(n^2\right)$$

$$d(y) = d(\text{ NOT }_n) + d(flip_i) + d(\text{ AND }_n) + d(\text{ OR }_n)$$

$$d(z) = d(\text{ NOT }_n) + d(\text{ AND }_n)$$

Therefore,

$$\begin{aligned} \operatorname{delay} &= \max \left\{ d(y), d(z) \right\} \\ &= d(\text{ not }_n) + d(flip_i) + d(\text{ and }_n) + d(\text{ or }_n) \\ &= \Theta(\log_2 n) \end{aligned}$$