CHURN PREDICTION IN TELECOM INDUSTRY

PRESENTED TO:
MR. ARUN SINGH PUNDIR

PRESENTED BY:-NIKHIL TANEJA(102103529) BHUVAN VERMA(102103530)

What is Churn?

- <u>Churn</u>: The phenomenon of customers discontinuing their services with a telecom provider.
- <u>Churn prediction</u>: The use of data and analytics to identify customers at risk of leaving a telecom service.
- Goal: Reduce churn by targeting at-risk customers with retention strategies.
- Understanding and predicting churn is crucial for reducing customer attrition rates and improving business performance.

Importance of Churn Prediction

- Churn prediction helps telecom companies minimize revenue loss by identifying customers who are likely to churn.
- <u>Customer-Satisfaction</u>: Implementing proactive retention strategies, companies can improve customer satisfaction and retain valuable subscribers.
- Revenue Retention: Reducing churn means retaining revenue and increasing profitability.
- <u>Data-Driven Decision Making: Telecom companies can make</u> data-driven decisions to improve services.

Traditional Methods vs Machine Learning

- Traditional methods for churn prediction, such as rule-based systems and statistical models have limitations in handling large datasets and complex patterns.
- Machine learning offers better accuracy and scalability, enabling deeper analysis of customer behavior.
- Along with this Machine learning algorithms provide automation, real-time analysis and personalized predictions.
- However, the choice between these approaches depends on factors like data availability, company resources, and specific business needs.

<u>Machine Learning Algorithms used in our Project</u>

Decision Tree

- Versatile and easy to interpret.
- They can handle both numerical and categorical data, making them suitable for churn prediction.

Random Forest

- Combines multiple decision trees to improve prediction accuracy.
- It handles high-dimensional feature spaces and provides feature importance rankings.

Logistic Regression

- Models the probability of churn based on independent variables.
- It provides insights into the impact of each predictor on churn probability.

Support Vector Machines

- Classify customers into churn or nonchurn groups by maximizing the margin b/w decision boundaries.
- They work well with complex data patterns

Evaluation and Performance Metrics

Confusion Matrix:-

• A confusion matrix shows the performance of a churn prediction model by comparing predicted and actual churn status.

 These metrics assess the model's overall performance, precision in identifying churners, recall in capturing all churners, and their harmonic mean.

Evaluation and Performance Metrics

- This image consists of our Evaluation
 Parameters and corresponding result
 with respect to these parameters after
 using Random Forest Classifier
 technique
- After performing resampling we are getting an accuracy of <u>94.2%</u> approximately.

```
model rf smote.fit(xr train1,yr train1)
                               RandomForestClassifier
     RandomForestClassifier(max depth=6, min samples leaf=8, random state=42)
[ ] yr predict1 = model rf smote.predict(xr test1)
    model score r1 = model rf smote.score(xr test1, yr test1)
    print(model score r1)
    print(metrics.classification report(yr test1, yr predict1))
    0.941722972972973
                  precision
                               recall f1-score
                                                  support
                       0.95
                                 0.91
                                           0.93
                                                       528
                       0.93
                                 0.96
                                           0.95
                                                      656
                                           0.94
        accuracy
                                                      1184
                       0.94
                                 0.94
                                           0.94
                                                      1184
       macro avg
    weighted avg
                       0.94
                                 0.94
                                           0.94
                                                     1184
    print(metrics.confusion matrix(yr test1, yr predict1))
     [[482 46]
       23 63311
```

Case Study: Churn Prediction

Feature Selection

• Identify relevant features using techniques like correlation analysis, feature importance, and step-wise selection.

Model Evaluation and Performance Analysis

Assess the model's accuracy, precision, recall,
 F1-score to determine its effectiveness in predicting churn.

 Prepare the telecom dataset by handling missing values, encoding categorical variables, and scaling numerical features.

Model Development and Training

 Build and train a machine learning model, such as a random forest or logistic regression, using labeled churn data.

Integrating and deployment

 Model Trained is saved and connected with the HTML webpage made which is further deployed.

