Valuation Theory: Stochastic Discount Factor

Economic Foundations for Computational Finance MSCF, 45-905

Chris Telmer

Tepper School of Business, Carnegie Mellon University

Spring 2007

Spring 2007 SDF - p. 1/29

Stochastic Discount Factor

- SDFSimplest Example
- Recursive Representation
- Recursive Representation
 Interpretation
- Returns
- Excess Returns
- Risk-Free Return
- Summary

Risk Premiums

Joint Lognormality

Lognormal Bond Pricing

Stochastic Discount Factor

 Spring 2007
 SDF - p. 2/29

SDF

Stochastic Discount Factor

- Simplest Example
- Interpretation
- Returns
- Excess Returns
- Risk-Free Return
- Summary

Risk Premiums

Joint Lognormality

Lognormal Bond Pricing

- Valuation theory: value cash flows, stochastic processes which assets are a claim to.
- $\{\delta_t\}_{t=1}^T \equiv cash flow or dividend$
- $\blacksquare q_t \equiv \text{time } t$, ex-dividend price of δ_t
- $m_{t,t+\tau} \equiv$ stochastic discount factor (SDF): a random variable that satisfies, for all t,

$$q_t = E_t \sum_{\tau=1}^{T-t} m_{t,t+\tau} \delta_{t+\tau} ,$$
 (1)

and $m_{t,t+\tau} > 0$. Conditional expectation is E_t .

Existence of m_t is guaranteed by no-arbitrage.

Spring 2007

SDF - p. 3/29

Simplest Example

Discounting with constant interest rates:

■ Suppose that $\delta_t = \delta$ for all t. Then, from intro finance:

$$q_t = \sum_{\tau=1}^{T-t} \frac{\delta}{(1+r)^{\tau}}$$
$$= \delta \left(\frac{1}{r} - \frac{1}{r(1+r)^{T-t}}\right)$$

For $T \to \infty$, $q_t = \delta/r$, the 'dividend discount model.'

What is the SDF for this case?

$$m_{t,t+\tau} = (1+r)^{-\tau}$$
.

lacktriangle We'll see that when the SDF, $m_{t,t+ au}$, is constant for each maturity $t + \tau$, investors are *risk neutral*.

Stochastic Discount Factor

Recursive Representation

- Returns
- Excess Returns
- Risk-Free Return

Risk Premiums

Joint Lognormality

Recursive Representation

Stochastic Discount Factor

- SDF
- Simplest Example

- Interpretation
- Returns
- Excess Returns
- Risk-Free Return
- Summary

Risk Premiums

Joint Lognormality

Lognormal Bond Pricing

By no-arbitrage (as we will see),

$$m_{t,t+2} = m_{t,t+1} m_{t+1,t+2}$$
,

More generally,

$$m_{t,t+\tau} = \prod_{k=1}^{\tau} m_{t+k-1,t+k}$$
.

■ Therefore, by iterated expectations, equation (1) can be written recursively (show as an exercise):

$$q_t = E_t m_{t+1} (q_{t+1} + \delta_{t+1})$$
 , (2)

where we denote $m_{t+1} \equiv m_{t,t+1}$.

Spring 2007

SDF - p. 5/29

Interpretation

Summarizing the two characterizations:

$$q_t = E_t \sum_{\tau=1}^{T-t} m_{t,t+\tau} \delta_{t+\tau}$$
 (3)

$$= E_t m_{t+1} (q_{t+1} + \delta_{t+1}) \tag{4}$$

Stochastic Discount Factor

- Simplest Example

• Recursive Representation

- Returns
- Excess Returns
- Risk-Free Return

Risk Premiums

Joint Lognormality

Lognormal Bond Pricing

Interpretation:

- *m* is a "stochastic discount factor" (SDF).
 - Equation (3): it 'discounts' multiperiod-ahead cash flows
 - Equation (4): synonymously, it discounts one-period-ahead payoffs.

Returns

Repeating the recursive representation, equation (4):

- Stochastic Discount Factor SDF
- Simplest Example Recursive Representation
- Interpretation

- Excess Returns
- Risk-Free Return
- Summary

Risk Premiums

Joint Lognormality

Lognormal Bond Pricing

$$q_t = E_t m_{t+1} (q_{t+1} + \delta_{t+1})$$
 (5)

- We call $(q_{t+1} + \delta_{t+1})$ a payoff
- We call $(q_{t+1} + \delta_{t+1})/q_t$ a *return*. Dividing (5) by q_t :

$$1 = E_t m_{t+1} \frac{q_{t+1} + \delta_{t+1}}{q_t} \tag{6}$$

$$1 = E_t m_{t+1} (1 + r_{t+1}) (7)$$

■ m, therefore, also 'discounts returns.' Returns are simply payoffs to unit-value portfolios (e.g., the payoff on $1/q_t$ shares of stock *is* the return).

Spring 2007

SDF - p. 7/29

Excess Returns

■ Suppose there are J assets, j = 1, 2, ..., J. The recursive, return representation for asset *i*:

$$E_t m_{t+1} (1 + r_{j,t+1}) = 1 (8)$$

Subtract the expression for asset k from asset j:

$$E_t m_{t+1} (r_{i,t+1} - r_{k,t+1}) = 0$$

- This says that excess returns must be orthogonal to the SDF.
- Special case: risk-free return is r_t (known at t):

$$E_t m_{t+1} (r_{j,t+1} - r_t) = 0$$

The excess return over the risk-free rate on asset j must also be orthogonal to the SDF.

Stochastic Discount Factor

- Simplest Example Recursive Representation
- Interpretation Returns
- Risk-Free Return

Risk Premiums

Joint Lognormality

Risk-Free Return

Stochastic Discount Factor

- SDF
- Simplest Example
- Recursive Representation
- Interpretation
- Returns
- Excess Returns

Risk-Free Return

Summary

Risk Premiums

Joint Lognormality

Lognormal Bond Pricing

Suppose that $\delta_{t+\tau}=1$ for $\tau=1$ and 0 otherwise. This is called a *one-period riskless bond*. Denote the bond's price as b_t^1 . Apply the SDF valuation formula:

$$b_t^1 = E_t m_{t+1}$$

KEY: the conditional mean of the SDF *is* the one-period riskless bond price.

■ The risk-free rate is defined as

$$(1+r_t) \equiv 1/b_t^1$$

■ Therefore,

$$\frac{1}{1+r_t} = E_t m_{t+1}$$

■ Similarly, if $\delta_{t+\tau} = 1$ for $\tau = n$ and 0 otherwise, this is an *n-period zero coupon bond*. It's price, b_t^n must satisfy:

$$b_t^n = E_t m_{t,t+\tau}$$

Spring 2007

SDF - p. 9/29

Stochastic Discount Factor

Summary

The equation which the SDF must satisfy (by no-arbitrage) gets called the "fundamental pricing equation." It is helpful to remember that it can be written in (at least) 3 ways:

1. Payoffs:

2. Returns:

3. Excess Returns:

SDF Simplest Example Recursive Representation Interpretation Returns Excess Returns Risk-Free Return Summary Risk Premiums Joint Lognormality

Stochastic Discount Factor

Risk Premiums

- RISK Premiums
- Covariance Risk
- Risk-Adjusted PDV
- Unconditional Risk
- Time Varying Riskless Rate

Joint Lognormality

Lognormal Bond Pricing

Risk Premiums

Spring 2007 SDF - p. 11/29

Stochastic Discount Factor

Risk Premiums

Covariance Risk

- Risk-Adjusted PDV
- Unconditional Risk
- Time Varying Riskless Rate

Joint Lognormality

Lognormal Bond Pricing

Risk Premiums

Define the risk premium on asset j as the expected excess return over the risk-free rate:

Risk Premium_t =
$$E_t(r_{j,t+1} - r_t)$$

■ This is the *conditional* risk premium. The *unconditional* risk premium is (by iterated expectations):

Risk Premium =
$$E(E_t(r_{j,t+1} - r_t)) = E(r_{j,t+1} - r_t)$$

For j=S&P500, this is the object that one can estimate with:

Stochastic Discount Factor

Risk Premiums

Risk Premiums

- Risk-Adjusted PDV
- Unconditional Risk
- Time Varying Riskless Rate
- ⊕ -representation (CAPM)
- Risk: price and quantity

Joint Lognormality

Lognormal Bond Pricing

Covariance Risk

Which assets will pay risk premiums? Those with returns which covary negatively with the SDF:

$$E_{t}(m_{t+1}(r_{j,t+1} - r_{t})) = 0$$

$$\Longrightarrow E_{t}m_{t+1}E_{t}(r_{j,t+1} - r_{t}) = -\mathbf{Cov}_{t}(m_{t+1}, r_{j,t+1})$$

If the covariance = 0, then $E_t r_{j,t+1} = r_t$, so that the conditional risk premium is zero. By iterated expectations, so is the *unconditional* risk premium: $E r_{i,t+1} = r_t$.

- Assets with returns which covary positively with the SDF will pay a *negative* risk premium.
- Constant SDF is a special case. If m_{t+1} is a constant, then, trivially, the covariance = 0. Then the risk premium = 0. We say that constant SDF implies that investors are risk neutral.

Spring 2007

SDF - p. 13/29

Risk-Adjusted PDV

You can do capital budgeting if you know the SDF:

- A project pays a random amount δ_{t+1} and costs q_t . Investment return is $(1 + r_{t+1}) = \delta_{t+1}/q_t$.
- By no-arbitrage

$$E_t[m_{t+1}(r_{t+1} - r_t)] = 0$$

 $\Longrightarrow E_t(r_{t+1}) = r_t - Cov_t(m_{t+1}, r_{t+1})/E_t(m_{t+1})$

The expected return on investment is defined as $1 + E_t r_{t+1} \equiv E_t \delta_{t+1} / q_t$. Sub the above into this:

$$q_t = \frac{E_t(\delta_{t+1})}{1 + r_r - \mathsf{Cov}_t(r_{t+1}, m_{t+1}) / E_t(m_{t+1})}$$

The project is priced as the 'expected, discounted present value.' The SDF tells us what 'discounting' means in this context.

Stochastic Discount Factor

Risk Premiums

- Risk Premiums
- Covariance Risk

Unconditional Risk

- Time Varying Riskless Rate
- β-representation (CAPM)
- Risk: price and quantity

Joint Lognormality

Unconditional Risk

Stochastic Discount Factor

Risk Premiums

- Risk Premiums
- Covariance Risk
- Risk-Adjusted PDV
- Unconditional Risk
- Time Varying Riskless Rate
- ullet eta-representation (CAPM)
- Risk: price and quantity

Joint Lognormality

Lognormal Bond Pricing

- Conditional moments such as $E_t r_{t+1}$ and $Cov_t(m_{t+1}, r_{t+1})$ are hard to measure.
- In many cases it is enough to work with the unconditional moments and risk premiums. These are derived using iterated expectations. To see this, recall equation (8), for all assets, j:

$$E_{t} m_{t+1} (1 + r_{j,t+1}) = 1$$

$$\Longrightarrow E m_{t+1} (1 + r_{j,t+1}) = 1$$

$$\Longrightarrow E m_{t+1} (r_{j,t+1} - r_{t}) = 0$$

$$\Longrightarrow E (r_{j,t+1} - r_{t}) = -\frac{Cov(m_{t+1}, r_{j,t+1})}{E m_{t+1}}$$
(9)

■ The *unconditional* risk premium is the term on the right.

Spring 2007

SDF - p. 15/29

Time Varying Riskless Rate

Stochastic Discount Factor

- Risk Premiums
- Covariance Risk
- Risk-Adjusted PDV
- Unconditional Risk
- Time Varying Riskless Rat
 β-representation (CAPM)
- Risk: price and quantity

Joint Lognormality

Lognormal Bond Pricing

Recall how we solve for the one-period riskless interest rate:

$$b_t^1 = \frac{1}{1 + r_t} = E_t m_{t+1}$$

- This is the one-period *conditionally* riskless interest rate: one-period ahead we know the return, for sure: r_t .
- Unconditionally, there *can* be interest rate risk. The interest rate, r_t can vary over time. *Constant* interest rates are a special case.
- The unconditional mean and variance of the riskless rate are:

Unconditional Mean = $E(r_t)$ Unconditional Variance = $Var(r_t)$

β -representation (CAPM)

Stochastic Discount Factor

Risk Premiums

- Rick Promium
- Covariance Risk
- Risk-Adjusted PDV
- Unconditional Risk
- Time Varying Riskless Rate
- ullet eta-representation (CAP)
- Risk: price and quantity

Joint Lognormality

Lognormal Bond Pricing

- When working with unconditional moments, we don't need the time subscripts. So, we'll denote the typical risky asset return with r_j and the riskless return with r_f .
- Denote $1 + r^*$ as the return on some "benchmark" (risky) portfolio. Using equations (9),

$$\frac{E(r_j - r_f)}{E(r^* - r_f)} = \frac{\operatorname{Cov}(m, r_j)}{\operatorname{Cov}(m, r^*)} \equiv \beta_j$$

$$\Longrightarrow E(r_j - r_f) = \beta_j E(r^* - r_f) ,$$

where β_i is the ratio of the two covariances.

If $m = a + br^*$, then

$$\beta_j = \operatorname{Cov}(r^*, r_j) / \operatorname{Var}(r^*)$$

■ If r^* is the market portfolio return, this is the CAPM

Spring 2007

SDF - p. 17/29

Risk: price and quantity

Stochastic Discount Factor

- Risk Premiums

 Risk Premiums
- Covariance Risk
- Risk-Adjusted PDVUnconditional Risk
- Time Varying Riskless Rate
- β -representation (CAPM)

Risk: price and quantity

Joint Lognormality

Lognormal Bond Pricing

Consider the β -representation:

$$E r_j = r_f + \underbrace{\beta_j}_{quantity} \underbrace{E(r^* - r_f)}_{price}$$
,

- β_j measures the quantity of risk in asset j. It is specific to asset j. If $Cov(m, r_j) = 0$ *i.e.*, if the return is uncorrelated with the SDF then the asset is riskless.
- The excess return $E(r^* r_f)$ is the market price of risk. It applies to the whole market (all traded assets). It is a measure how much the market rewards takers of one unit of ' β -risk.'

Spring 2007

Stochastic Discount Factor

Risk Premiums

Joint Lognormality

- Simplest Example
- Solution

Lognormal Bond Pricing

Joint Lognormality

Spring 2007 SDF - p. 19/29

Simplest Example

Stochastic Discount Factor

Risk Premiums

Joint Lognormality

Simplest Example

Solution

Lognormal Bond Pricing

- A one-period asset pays off δ_{t+1} and costs q_t .
- Assume that m_{t+1} and δ_{t+1} are jointly lognormal. This can be written as

$$-\log m_{t+1} \sim \mathrm{N}(\mu_m, \lambda^2)$$

$$\log \delta_{t+1} \sim \mathrm{N}(\mu, \sigma^2)$$

$$\mathsf{Cov}(-\log m_{t+1}, \log \delta_{t+1}) = \sigma_{\delta,m} > 0$$

Equivalently,

$$-\log m_{t+1} = \mu_m + \lambda \varepsilon_{t+1}$$

$$\log \delta_{t+1} = \mu + \sigma u_{t+1}$$

$$\begin{bmatrix} \varepsilon_{t+1} \\ u_{t+1} \end{bmatrix} \sim N \begin{pmatrix} \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 & \rho \\ \rho & 1 \end{bmatrix} \end{pmatrix}$$

Spring 2007 SDF - p. 20/29

Solution

Stochastic Discount Factor

Risk Premiums

Joint Lognormality

- Simplest Example
 Solution
- Lognormal Bond Pricing

• λ is the 'price of risk.' If $\rho > 0$, then the SDF covaries negatively with the return on the asset. The asset price, by no-arbitrage, is:

$$q_t = e^{-(r+\lambda\sigma\rho)} E_t \delta_{t+1}$$
.

See the note on Blackboard which works out this solution and provides comments.

Spring 2007 SDF - p. 21/29

Stochastic Discount Factor

Risk Premiums

Joint Lognormality

Lognormal Bond Pricing

- Definitions
- SDFModel
- Short rate
- Long rates...continued
- Calibration

Lognormal Bond Pricing

Spring 2007 SDF - p. 22/29

Definitions

Stochastic Discount Factor

Joint Lognormality

Lognormal Bond Pricing

- SDF
- Model
- Short rate
- Long rates
- ...continued Calibration

Continuously compounded yield or spot interest rate:

Define b_t^n as the price of an n-period zero-coupon bond.

$$y_t^n = -n^{-1}\log b_t^n$$

Forward interest rates:

We'll use the following definitions:

$$f_t^n = \log(b_t^n / b_t^{n+1})$$

Define the *short rate* as r_t . By definition, $r_t = y_t^1 = f_t^0$. Also,

$$y_t^n = n^{-1} \sum_{i=0}^{n-1} f_t^i$$
.

Yields are averages of forward rates.

Spring 2007

SDF - p. 23/29

SDF

Recursive representation of the SDF, reproduced from equation (5).

$$q_t = E_t (m_{t+1}(\delta_{t+1} + q_{t+1}))$$

Or, in terms of returns,

$$1 = E_t \left(m_{t+1} (1 + r_{t+1}) \right) \tag{10}$$

■ The date-t, one-period holding return on an n + 1-period bond is

$$\frac{b_{t+1}^n}{b_t^{n+1}}$$

Substituting this into equation (10) gives

$$E_t m_{t+1} \frac{b_{t+1}^n}{b_t^{n+1}} = 1 (11)$$

Or equivalently the "fundamental pricing equation" for risk-free bonds:

$$b_t^{n+1} = E_t \, m_{t+1} b_{t+1}^n \tag{12}$$

Stochastic Discount Factor

Risk Premiums

Joint Lognormality

- Model
- Short rate Long rates
- ...continued
- Calibration

Model

Stochastic Discount Factor

Risk Premiums

Joint Lognormality

Lognormal Bond Pricing

Definitions

- SDF

- Short rate
- Long rates ...continued
- Calibration
- The "Vasicek SDF" is:

Repeating equation (12)

$$-\log m_{t+1} = \delta + z_t + \lambda \varepsilon_{t+1}. \tag{14}$$

where

$$z_{t+1} = (1 - \varphi)\theta + \varphi z_t + \sigma \varepsilon_{t+1} , \qquad (15)$$

with $\{\varepsilon_{t+1}\} \sim N(0,1)$.

■ For reasons soon to be clear, we'll set $\delta = \lambda^2/2$

 $b_t^{n+1} = E_t \, m_{t+1} b_{t+1}^n$

Spring 2007

SDF - p. 25/29

(13)

Short rate

■ Short rate is defined as $r_t = -\log b_t^1$. From (13)

$$b_t^1 = E_t \, m_{t+1}$$

 \blacksquare m_{t+1} is conditionally lognormal with,

$$E_t(\log m_{t+1}) = -(\delta + z_t)$$

 $Var_t(\log m_{t+1}) = \lambda^2$

■ Therefore,

$$E_t m_{t+1} = \exp(-\delta - z_t + \lambda^2/2) = b_t^1$$

and, since $r_t \equiv -\log b_t^1$ and $\delta = \lambda^2/2$,

$$r_t = z_t$$

Stochastic Discount Factor

Risk Premiums

Joint Lognormality

Lognormal Bond Pricing

Definitions

Long rates ...continued

Calibration

Long rates

Stochastic Discount Factor

Risk Premiums

Joint Lognormality

Lognormal Bond Pricing

- Definitions SDF
- Model
- Short rate
- ...continued
- Calibration

Guess that the solution is:

$$-\log b_t^n = A_n + B_n z_t \tag{16}$$

for some maturity-dependent coefficients, A_n, B_n .

- Since $b_t^0 = 1$ we know $A_0 = B_0 = 0$. Further, the short-rate solution gives us $A_1 = 0$ and $B_1 = 1$.
- We use valuation equation (13) to find b_t^{n+1} . The RHS involves,

$$\log m_{t+1} + \log b_{t+1}^n = -\delta - z_t - \lambda \varepsilon_{t+1} - A_n - B_n z_{t+1}$$
$$= -[A_n + \delta + B_n (1 - \varphi)\theta] - (1 + B_n \varphi) z_t - (\lambda + B_n \sigma) \varepsilon_{t+1},$$

The conditional moments are

$$E_t(\log m_{t+1} + \log b_{t+1}^n) = -[A_n + \delta + B_n(1 - \varphi)\theta] - (1 + B_n\varphi)z_t$$

and

$$Var_t(\log m_{t+1} + \log b_t^n) = (\lambda + B_n \sigma)^2.$$

Spring 2007

SDF - p. 27/29

...continued

The implied bond price is therefore

$$-\log b_t^{n+1} = A_n + \delta + B_n (1 - \varphi)\theta - (\lambda + B_n \sigma)^2 / 2 + (1 + B_n \varphi) z_t.$$

Lining up coefficients with (16) gives us the recursions

$$A_{n+1} = A_n + \delta + B_n(1 - \varphi)\theta - (\lambda + B_n\sigma)^2/2$$
 (17)

$$B_{n+1} = 1 + B_n \varphi. \tag{18}$$

■ These equations look complicated, but given values for $(\theta, \varphi, \sigma, \lambda)$, we can easily evaluate them on a spreadsheet. They are a closed-form solution to the model, in the sense of being computable with a finite number of elementary operations.

Stochastic Discount Factor

Risk Premiums

Joint Lognormality

Lognormal Bond Pricing

Definitions

- Model Short rate
- Long rates
- Calibration

Spring 2007

Calibration

The model:

Stochastic Discount Factor

Risk Premiums

Joint Lognormality

Lognormal Bond Pricing

- Definitions
- SDF
- Model
- Short rate
- Long rates

...continued

$$r_{t} = z_{t}$$

$$z_{t+1} = (1 - \varphi)\theta + \varphi z_{t} + \sigma \varepsilon_{t+1}$$

$$ny_{t}^{n} = A_{n} + B_{n}z_{t}$$

$$A_{n+1} = A_{n} + \delta + B_{n}(1 - \varphi)\theta - (\lambda + B_{n}\sigma)^{2}/2$$

$$B_{n+1} = 1 + B_{n}\varphi$$

Calibration (or estimation):

- Choose θ , φ and σ to match the mean, variance and autocorrelation of the short rate
- Choose λ to match the *average* slope of the yield curve.
- Note that λ has the interpretation of the *price of risk*. If it is zero the yield curve is flat.

Spring 2007

SDF - p. 29/29