FREQUENTLY USED FORMULAS

n = sample size N = population size f = frequency

Chapter 2

Class width = $\frac{\text{high} - \text{low}}{\text{number of classes}}$ (increase to next integer)

Class midpoint =
$$\frac{\text{upper limit + lower limit}}{2}$$

Lower boundary = lower boundary of previous class + class width

Chapter 3

Sample mean $\bar{x} = \frac{\sum x}{n}$

Population mean $\mu = \frac{\sum x}{N}$

Weighted average = $\frac{\sum xw}{\sum w}$

Range = largest data value - smallest data value

Sample standard deviation $s = \sqrt{\frac{\sum (x - \overline{x})^2}{n - 1}}$

Computation formula $s = \sqrt{\frac{\sum x^2 - (\sum x)^2/n}{n-1}}$

Population standard deviation $\sigma = \sqrt{\frac{\sum (x - \mu)^2}{N}}$

Sample variance s^2

Population variance σ^2

Sample coefficient of variation $CV = \frac{s}{x} \cdot 100$

Sample mean for grouped data $\bar{x} = \frac{\sum xf}{n}$

Sample standard deviation for grouped data

$$s = \sqrt{\frac{\sum (x - \overline{x})^2 f}{n - 1}} = \sqrt{\frac{\sum x^2 f - (\sum x f)^2 / n}{n - 1}}$$

Chapter 4

Probability of the complement of event A $P(A^c) = 1 - P(A)$

Multiplication rule for independent events $P(A \text{ and } B) = P(A) \cdot P(B)$

General multiplication rules

 $P(A \text{ and } B) = P(A) \cdot P(B|A)$

 $P(A \text{ and } B) = P(B) \cdot P(A|B)$

Addition rule for mutually exclusive events P(A or B) = P(A) + P(B)

General addition rule

P(A or B) = P(A) + P(B) - P(A and B)

Permutation rule $P_{n, r} = \frac{n!}{(n - r)!}$

Combination rule $C_{n, r} = \frac{n!}{r!(n-r)!}$

Chapter 5

Mean of a discrete probability distribution $\mu = \sum x P(x)$ Standard deviation of a discrete probability distribution

$$\sigma = \sqrt{\sum (x - \mu)^2 P(x)}$$

Given L = a + bx

$$\mu_L = a + b\mu$$

$$\sigma_L = |b|\sigma$$

Given $W = ax_1 + bx_2$ (x_1 and x_2 independent)

$$\mu_{W} = a\mu_1 + b\mu_2$$

$$\sigma_{\rm W} = \sqrt{a^2 \sigma_1^2 + b^2 \sigma_2^2}$$

For Binomial Distributions

r = number of successes; p = probability of success;

$$q = 1 - p$$

Binomial probability distribution $P(r) = C_{n,r} p^r q^{n-r}$

Mean
$$\mu = np$$

Standard deviation $\sigma = \sqrt{npq}$

Geometric Probability Distribution

n = number of trial on which first success occurs

$$P(n) = p(1-p)^{n-1}$$

Poisson Probability Distribution

r = number of successes

 λ = mean number of successes over given interval

$$P(r) = \frac{e^{-\lambda} \lambda^r}{r!}$$

Chapter 6

Raw score $x = z\sigma + \mu$ Standard score $z = \frac{x - \mu}{\sigma}$

Mean of \bar{x} distribution $\mu_{\bar{x}} = \mu$

Standard deviation of \overline{x} distribution $\sigma_{\overline{x}} = \frac{\sigma}{\sqrt{n}}$

Standard score for \overline{x} $z = \frac{\overline{x} - \mu}{\sigma / \sqrt{\pi}}$

Mean of \hat{p} distribution $\mu_{\hat{p}} = p$

Standard deviation of \hat{p} distribution $\sigma_{\hat{p}} = \sqrt{\frac{pq}{n}}$; q = 1 - p

Chapter 7

Confidence Interval

For
$$\mu$$

$$\overline{x} - E < \mu < \overline{x} + E$$
where $E = z_c \frac{\sigma}{\sqrt{n}}$ when σ is known
$$E = t_c \frac{s}{\sqrt{n}}$$
 when σ is unknown
with $d.f. = n - 1$

for
$$p (np > 5 \text{ and } n(1 - p) > 5)$$

 $\hat{p} - E$

where
$$E = z_c \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$$
 $\hat{p} = \frac{r}{n}$

for
$$\mu_1 - \mu_2$$
 (independent samples)
 $(\overline{x}_1 - \overline{x}_2) - E < \mu_1 - \mu_2 < (\overline{x}_1 - \overline{x}_2) + E$

$$(\overline{x}_1 - \overline{x}_2) - E < \mu_1 - \mu_2 < (\overline{x}_1 - \overline{x}_2) + E$$

where
$$E = z_c \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}$$
 when σ_1 and σ_2 are known
$$E = t_c \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}$$
 when σ_1 or σ_2 is unknown with $d.f. = \text{smaller of } n_1 - 1$ and $n_2 - 1$

(Note: Software uses Satterthwaite's approximation for degrees of freedom *d.f.*)

for difference of proportions
$$p_1 - p_2$$

 $(\hat{p}_1 - \hat{p}_2) - E < p_1 - p_2 < (\hat{p}_1 - \hat{p}_2) + E$
where $E = z_c \sqrt{\frac{\hat{p}_1 \hat{q}_1}{n_1} + \frac{\hat{p}_2 \hat{q}_2}{n_2}}$
 $\hat{p}_1 = r_1/n_1; \, \hat{p}_2 = r_2/n_2$
 $\hat{q}_1 = 1 - \hat{p}_1; \, \hat{q}_2 = 1 - \hat{p}_2$

Sample Size for Estimating

means
$$n = \left(\frac{z_c \sigma}{E}\right)^2$$

proportions

$$n = p(1 - p) \left(\frac{z_c}{E}\right)^2$$
 with preliminary estimate for p

$$n = \frac{1}{4} \left(\frac{z_c}{E}\right)^2$$
 without preliminary estimate for p

Chapter 8

Sample Test Statistics for Tests of Hypotheses

for
$$\mu$$
 (σ known) $z = \frac{\overline{x} - \mu}{\sigma / \sqrt{n}}$

for
$$\mu$$
 (σ unknown) $t = \frac{\overline{x} - \mu}{s/\sqrt{n}}$; $d.f. = n - 1$

for
$$p (np > 5 \text{ and } nq > 5)$$
 $z = \frac{\hat{p} - p}{\sqrt{pq/n}}$

where
$$q = 1 - p$$
; $\hat{p} = r/n$

for paired differences
$$d = t = \frac{\overline{d} - \mu_d}{s_d / \sqrt{n}}$$
; $d.f. = n - 1$

for difference of means, σ_1 and σ_2 known

$$z = \frac{\overline{x}_1 - \overline{x}_2}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}}$$

for difference of means, σ_1 or σ_2 unknown

$$t = \frac{\overline{x}_1 - \overline{x}_2}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$$

$$d.f. = \text{smaller of } n_1 - 1 \text{ and } n_2 - 1$$

(Note: Software uses Satterthwaite's approximation for degrees of freedom d.f.)

for difference of proportions

$$z = \frac{\hat{p}_1 - \hat{p}_2}{\sqrt{\frac{\overline{p}}{n_1}} + \frac{\overline{p}}{n_2}}$$
where $\overline{p} = \frac{r_1 + r_2}{n_1 + n_2}$ and $\overline{q} = 1 - \overline{p}$

$$\hat{p}_1 = r_1/n_1; \, \hat{p}_2 = r_2/n_2$$

Chapter 9

Regression and Correlation

Pearson product-moment correlation coefficient

$$r = \frac{n \sum xy - (\sum x)(\sum y)}{\sqrt{n \sum x^2 - (\sum x)^2} \sqrt{n \sum y^2 - (\sum y)^2}}$$

Least-squares line $\hat{y} = a + bx$

where
$$b = \frac{n\sum xy - (\sum x)(\sum y)}{n\sum x^2 - (\sum x)^2}$$

 $a = \overline{y} - b\overline{x}$

Coefficient of determination = r^2

Sample test statistic for r

$$t = \frac{r\sqrt{n-2}}{\sqrt{1-r^2}} \text{ with } d.f. = n-2$$

Standard error of estimate
$$S_e = \sqrt{\frac{\sum y^2 - a \sum y - b \sum xy}{n-2}}$$

Confidence interval for y

$$\hat{y} - E < y < \hat{y} + E$$

where
$$E = t_c S_e \sqrt{1 + \frac{1}{n} + \frac{n(x - \overline{x})^2}{n \sum x^2 - (\sum x)^2}}$$

with $d.f. = n - 2$

Useful Calculator Functions Syntax

- 1-Var Stats 1-VarStats DataList [, FreqList]
- binompdf binompdf (n, p, r)
- binomcdf binomcdf (n, p, r)
- ullet normalcdf normalcdf(lower bound, upper bound, μ , σ)
- invNorm invNorm(p, μ , σ)
- invT invT(p, degrees of freedom)
- ZInterval ZInterval(σ , \bar{x} , n, c) OR ZInterval(σ , List, Freq, c)
- TInterval TInterval (\bar{x}, s_x, n, c) OR TInterval (List, Freq, c)
- 1-PropZInt 1-PropZInt(x, n, c)
- 2-SampZInt 2-SampZInt(σ_1 , σ_2 , \bar{x}_1 , n_1 , \bar{x}_2 , n_2 , c) OR 2-SampZInt(σ_1 , σ_2 , List1, List2, Freq1, Freq2, c)
- 2-SampTInt 2-SampTInt(\bar{x}_1 , s_{x_1} , n_1 , \bar{x}_2 , s_{x_2} , n_2 , c, Pooled) OR 2-SampTInt(List1, List2, Freq1, Freq2, c, Pooled)
- 2-PropZInt 2-PropZInt(x_1 , n_1 , x_2 , n_2 , c)
- Z-Test-Z-Test(μ_0 , σ , \bar{x} , n, alternate hypothesis) \underline{OR} Z-Test(μ_0 , σ , List, Freq, alternate hypothesis)
- T-Test T-Test(μ_0 , \bar{x} , s, n, alternate hypothesis) \underline{OR} T-Test(μ_0 , List, Freq, alternate hypothesis)
- 1-PropZTest 1-PropZTest(p_0 , x, n, alternate hypothesis)
- 2-SampZTest-2-SampZTest(σ_1 , σ_2 , \bar{x}_1 , n_1 , \bar{x}_2 , n_2 , alternate hypothesis) \underline{OR} 2-SampZTest(σ_1 , σ_2 , List1, List2, Freq1, Freq2, alternate hypothesis)
- 2-SampTTest 2-SampTTest(\bar{x}_1 , s_{x_1} , n_1 , \bar{x}_2 , s_{x_2} , n_2 , alternate hypothesis, Pooled) OR 2-SampTTest(List1, List2, Freq1, Freq2, alternate hypothesis, Pooled)
- 2-PropZTest 2-PropZTest(x_1 , n_1 , x_2 , n_2 , alternate hypothesis)
- LinReg(a+bx) LinReg(a+bx) Xlist, Ylist
- LinRegTInt LinRegTInt(Xlist, Ylist, Freq, c)
- LinRegTTest LinRegTTest(Xlist, Ylist, Freq, alternate hypothesis)
- χ^2 -Test χ^2 -Test (Observed matrix, Expected matrix)
- χ^2 GOF-Test χ^2 GOF-Test (Observed list, Expected list, d.f)
- χ^2 cdf χ^2 cdf(lower bound, upper bound, d.f.)