Qualifying Exam: Geometry and Topology

August 23, 2011

Examiners: Prof. Ricardo Castaño-Bernard and Prof. David Yetter

Name:			
mame:			

Instructions: Do all eight problems. Start each problem on a separate page and clearly indicate the problem number. Problems that are completely solved and thoroughly justified will be given more credit than scattered attempts leading to partial answers.

- 1. (a) Define what it means for a topological space to be compact.
 - (b) A compactification of a non-compact topological space X is a compact topological space Y equipped with a continuous inclusion $\iota: X \to Y$ such that $\iota(X)$ is dense in Y. Show that if X is any non-compact topological space, there is a topology on $X \coprod \{*\}$ such that the obvious inclusion $i_X: X \to X \coprod \{*\}$ is a compactification of X.
 - (c) Show that if $\iota: X \to Y$ is any compactification of X, there is a unique continuous map $\phi: Y \to X \coprod \{*\}$ such that $\phi(\iota) = i_X$, when $X \coprod \{*\}$ has the topology from part (b).

(Note: Some authors include Hausdorffness in the definition of compactness. This question assumes you will follow the convention which does not.)

- 2. Let $z, z' \in \mathbb{C}^{n+1} \{0\}$ and define the equivalence relation: $z \sim z'$ if and only if $z = \lambda z'$ for some $\lambda \in \mathbb{C}$, $\lambda \neq 0$. The *complex projective space* is defined to be the quotient, $\mathbb{CP}^n := \mathbb{C}^{n+1} \{0\} / \sim$.
 - (a) Define local coordinates for \mathbb{CP}^n , and use them to prove it is a C^{∞} manifold.
 - (b) Show that on the unit sphere $S^3 \subset \mathbb{C}^2$ there is an S^1 -action such that

$$S^3/S^1 = \mathbb{CP}^1.$$

- (c) Use the map $H: \mathbb{C}^2 \to \mathbb{C} \times \mathbb{R}$, $H(z_0, z_1) = (2z_0\bar{z}_1, |z_0|^2 |z_1|^2)$ to show that \mathbb{CP}^1 is diffeomorphic to S^2 .
- 3. (a) State the Universal Coefficient Theorem for Homology
 - (b) Suppose X is a space such that

$$H_0(X) \cong \mathbb{Z}, \ H_1(X) \cong \mathbb{Z}/4\mathbb{Z}, \ H_2(X) \cong \mathbb{Z}/2\mathbb{Z}, \ and H_3(X) \cong \mathbb{Z}$$

with all other integral homology groups being zero.

Use the Universal Coefficient Theorem to find $H_*(X,\mathbb{Z}/4\mathbb{Z})$.

- 4. (a) Give the definition of the derivative $f_*(p)$ of a smooth map between manifolds $f: M \to N$ at $p \in M$. Show that if p is a regular point there is a neighborhood U of p such that every $p' \in U$ is regular.
 - (b) Compute the derivative of the map $f: A \mapsto AA^t$ where A is a square matrix. Use this to show that the orthogonal group, O(n), is a smooth submanifold of $GL(n, \mathbb{R})$.
 - (c) Consider the map $\mu: \mathbb{C}^2 \to \mathbb{R}^2$, $\mu(z_1, z_2) = (|z_1|^2, |z_2|^2)$. For each $z \in \mathbb{C}^2$, compute the derivative $\mu_*(z)$ and indicate its rank. Describe the set of critical points, $Crit(\mu) \subset \mathbb{C}$. Find the values $b \in \mu(\mathbb{C})$, for which the fibre $\mu^{-1}(b)$ is a smooth submanifold of \mathbb{C}^2 and give an explicit description of each fibre.
- 5. (a) Give an explicit construction of a 2-dimensional CW complex X whose fundamental group is the dihedral group $D_5 = \langle a, b | a^2, b^5 \ abab \rangle$.
 - (b) Compute the homology (with integer coefficients) of your space X from part (a).
 - (c) State the Hurewicz Theorem relating π_1 and H_1 and illustrate explicitly that it holds for your space X.
- 6. (a) Let α be a k-form on M. Show that if $\int_C \alpha = 0$ for every C diffeomorphic to S^k then $d\alpha = 0$.
 - (b) Show that $\omega = \frac{xdy ydx}{x^2 + y^2}$ represents a non-trivial class $[\omega] \in H^1_{dR}(\mathbb{R}^2 (0,0))$. Use this to compute $H^*_{dR}(S^1)$.
- 7. (a) State the Künneth Theorem (Formula) for Cohomology.
 - (b) Use the Künneth Theorem and the well-known cohomology groups of spheres to compute $H^*(S^3 \times S^2)$.
 - (c) Explicitly describe the multiplication on the cohomology ring of $S^3 \times S^2$.
- 8. Let $\mathbb{C}[z]$ be the ring of polynomials in one variable with complex coefficients and let S be a subset of $\mathbb{C}[z]$. Define

$$V(S) = \{ p \in \mathbb{C} \mid f(p) = 0, \text{ for all } f \in S \}.$$

The Zariski topology on \mathbb{C} is the topology \mathcal{Z} , whose closed sets are V(S) for all S.

- (a) Show that $V(S) = V(\langle S \rangle)$, where $\langle S \rangle$ is the ideal generated by S.
- (b) Let X be an arbitrary subset of \mathbb{C} . Show that the closure of X is $V(S_X)$, where

$$S_X = \{ f \in \mathbb{C}[z] \mid f(X) = 0 \}.$$

Hint: Show that $V(S) \cap V(T) = V(S \cup T)$.

- (c) Is $S^1 \subset \mathbb{C}$ closed in the Zariski topology? If not, what is its closure?
- (d) Prove that the topological space (\mathbb{C},\mathcal{Z}) is not Hausdorff.