OPERATORI UNIVERSALI

NAND E NOR SONO OPERATORI UNIVERSALI.

(1)

(1)

(1)

(2)

Somma Logico: (+)=(x) = OR;

Prodotto Logico: (+) = (^) = AND;

• In ogni caso, si può effettuare una doppia negazione e sfruttare il teorema di De Morgan

SE 10 HO UNA SOKHA di TERHINI, POSSO NEGARE SINGOLORMINTE QUELLI TERMINI, C TRASSORMOTO LO SOMMO IN PRODUTO.

$$X + Yz + \overline{X}\overline{z} = \overline{X} + \overline{Y}z + \overline{X}\overline{z} = x \cdot yz \cdot \overline{X}\overline{z}$$

NAND

•
$$a \cdot a = \bar{a}$$

• $\bar{a} \cdot \bar{b} = a + b = (a \cdot a) \cdot (b \cdot b)$
• $a \cdot b = a + b = (a \cdot a) \cdot (b \cdot b)$
• $a \cdot b = a + b = (a \cdot a) + (a \cdot b) = a \cdot b$
• $a \cdot b = (a \cdot b) + (a \cdot b) = a \cdot b$
• $a \cdot b = (a \cdot b) + (a \cdot b) = a \cdot b$
• $a \cdot b = (a \cdot b) + (a \cdot b) = a \cdot b$
• $a \cdot b = (a \cdot b) + (a \cdot b) = a \cdot b$
• $a \cdot b = (a \cdot b) + (a \cdot b) = a \cdot b$
• $a \cdot b = (a \cdot b) + (a \cdot b) = a \cdot b$
• $a \cdot b = (a \cdot b) + (a \cdot b) = a \cdot b$
• $a \cdot b = (a \cdot b) + (a \cdot b) = a \cdot b$
• $a \cdot b = (a \cdot b) + (a \cdot b) = a \cdot b$
• $a \cdot b = (a \cdot b) + (a \cdot b) = a \cdot b$
• $a \cdot b = (a \cdot b) + (a \cdot b) = a \cdot b$
• $a \cdot b = (a \cdot b) + (a \cdot b) = a \cdot b$
• $a \cdot b = (a \cdot b) + (a \cdot b) = a \cdot b$
• $a \cdot b = (a \cdot b) + (a \cdot b) = a \cdot b$
• $a \cdot b = (a \cdot b) + (a \cdot b) = a \cdot b$
• $a \cdot b = (a \cdot b) + (a \cdot b) = a \cdot b$
• $a \cdot b = (a \cdot b) + (a \cdot b) = a \cdot b$
• $a \cdot b = (a \cdot b) + (a \cdot b) = a \cdot b$
• $a \cdot b = (a \cdot b) + (a \cdot b) = a \cdot b$
• $a \cdot b = (a \cdot b) + (a \cdot b) = a \cdot b$
• $a \cdot b = (a \cdot b) + (a \cdot b) = a \cdot b$
• $a \cdot b = (a \cdot b) + (a \cdot b) = (a \cdot b$

- L'operatore NOR è stato definito come duale dell'operatore NAND, quindi anch'esso deve essere universale. Infatt:
 - $a \downarrow a = \overline{a}$
 - $a \downarrow a = a$ $(a \downarrow a) \downarrow (b \downarrow b) = \overline{a + \overline{b}} = a \cdot b$
 - $(a \downarrow b) \downarrow (a \downarrow b) = \overline{(a+b)} = a+b$
 - $a \downarrow (a \downarrow a) = 0$
 - $(a \downarrow (a \downarrow a)) \downarrow (a \downarrow (a \downarrow a)) = 1$
 - L'operatore NAND permette, da solo, di esprimere tutta l'algebra booleana (operatore universale).
 - Infatti:
 - $a|a = \overline{a}$
 - $(a|a)|(b|b) = \overline{a} \cdot \overline{b} = a + b$
 - $(a|b)|(a|b) = \overline{(a \cdot b)} \ \overline{(a \cdot b)} = (a \cdot b) + (a \cdot b) = a \cdot b$ $a|(a|a) = \overline{a \cdot \overline{a}} = a + \overline{a} = 1$

 - (a|(a|a))|(a|(a|a)) = 1|1 = 0
 - È quindi possibile esprimere tutte le costanti e gli operatori fondamentali dell'algebra booleana sfruttando solo ed esclusivamente l'operatore NAND