SVM et réseaux neuronaux convolutifs pour la classification de scènes urbaines

Introduction

- Stage à l'Université d'Ottawa LAGGISS: laboratoire qui étudie les quartiers d'Ottawa
- Nouvelles technologies de traitement d'images (CNNs)

Objectif: apporter la connaissance des CNNs au LAGGISS via un problème concret de classification

I – Présentation du sujet

II – Méthodes vectorielles (SVM)

III – Réseaux neuronaux

Conclusion

Le point de départ : StreetScore (2014)

Naik et al., 2014

Naik et al., 2014

Le cas étudié

 Étude du processus de gentrification sur la ville d'Ottawa

- Utilisation de la banque d'images Google
 StreetView (API) : images multi-temporelles
 - Téléchargement de nombreuses images sur toute la ville d'Ottawa

Acquisition des données d'apprentissage

Interfaces Web

Fichiers .csv

Problèmes des données

• 1^e méthode :

Gentrification : phénomène ponctuel en espace et en temps

- ⇒ grande majorité de cas négatifs
- ⇒ nécessité de réaliser l'apprentissage en plusieurs fois

• 2^e méthode :

Nécessité de trop nombreux « duels » par rapport à la durée du stage

⇒ abandon de la méthode au profit de la 1e

I – Présentation du sujet

II – Méthodes vectorielles (SVM)

III – Réseaux neuronaux

Conclusion

Extraction d'attributs

Vecteur GIST

SIFT dense (Bag of Visual Words)

Fei-Fei et al., 2005

Siagian et al., 2007

SVM (1ere méthode d'acquisition)

Résultats SVM

Utilisation du score kappa de Cohen

n itérations

κ	Interpretation	
< 0	Désaccord	
0.0 — 0.20	Accord très faible	
0.21 — 0.40	Accord faible	
0.41 — 0.60	Accord modéré	
0.61 — 0.80	Accord fort	
0.81 — 1.00	Accord presque parfait	

13/09/2017 Amaury Zarzelli

I – Présentation du sujet

II – Méthodes vectorielles (SVM)

III - Réseaux neuronaux

Conclusion

Principe des réseaux neuronaux

Phase d'apprentissage :

- Modèle initialisé aléatoirement
- Entrée dont la classe est connue mais « cachée » au modèle
- Calcul de la sortie (= classe prédite)
- Comparaison avec la classe réelle
- Ajustement des poids

Phase de prédiction :

- Modèle figé
- Entrée dont la classe est inconnue

Chekunkov, 2012

Résultats réseaux denses

Réseau dense : réseau pour lequel chaque neurone d'une couche est connecté à tous les neurones de la couche suivante

Réseaux neuronaux convolutifs (CNNs)

LeCun et al., 1998

Architecture choisie

VGGNet-19 en architecture siamoise

Méthode employée et résultats

- Première classification : beaucoup de faux positifs (changements qui ne sont pas de la gentrification)
 - Parcours manuel des résultats de classification, notant les vrais et faux positifs
 - Ajout au fichier d'apprentissage
 - Entraînement d'un nouveau modèle
- Au bout de 12 itérations : kappa = 0,82

Visualisation du modèle

Filtres

Activations

négatif

Résultats de classification

Conclusion projet

- Objectif atteint : apport des CNNs dans le LAGGISS
 - ⇒ Utilisés pour de nombreuses problématiques

- Objectif quasiment atteint : carte de la gentrification
 - Encore de nombreux faux positifs, mais carte prometteuse correspondant à la réalité

Conclusion personnelle

Autonomie pendant 3 mois...

...dans le monde de la recherche

 Manipulation de technologies « de pointe » de plus en plus courantes

Ville anglophone

Merci de votre attention!

Annexes/Questions

L'approche « Bag of Visual Words »

MATLAB documentation

Vedaldi et Zisserman, 2011

Max Pooling 2x2

2	4	0	0	8	9
7	5	1	0	9	4
1	2	5	1	5	8
3	4	1	7	4	7
3	7	1	2	3	3
2	1	7	3	4	4

7	1	9
4	7	8
7	7	4

Cartes d'activations - Construction

Cartes d'activations – positif

Cartes d'activations – négatif

Cartes d'activations – négatif 2

Cartes d'activations – faux positif

Cartes d'activations – construction

Entraînement du modèle CNN

Sur un GPU Nvidia Tesla K80

 12^{e} modèle : 500 itérations de 10 époques \Rightarrow 110 heures