Master Autonomes Fahren - Mathematik Zusammenfassung

Marcel Wagner

5. Oktober 2020

Inhaltsverzeichnis

1	Mat	hematische Symbole 1
	1.1	Mengen
2	Stat	istik 1
	2.1	Arithmetisches Mittel
	2.2	Mittlerer Abstand
	2.3	Varianz
	2.4	Standartabweichung
	2.5	Kovarianz
	2.6	Korrelationskoeffizient
	2.7	Regressionsgerade
	2.8	Bestimmtheitsmaß
3	Wał	arscheinlichkeitsrechnung 2
	3.1	Fakultät
	3.2	Binomialkoeffizient
	3.3	Kugeln Ziehen
	3.4	Menge
	3.5	Gleichheit
	3.6	Teilmenge
	3.7	Potenzmenge
	3.8	Mächtigkeit
	3.9	Vereinigung
	3.10	
	3.11	Differenz
		Komplement
		Kartesisches Produkt
		Zufallsexperiment
		Ereignis
		Disjunkte Ereignisse
		σ -Algebra
		Axiome der Wahrscheinlichkeitsrechnung

5	Anh	nang	\mathbf{A}
	4.3	Differentialgleichungen	9
	4.2	Partielle Integration	9
	4.1	Integration	9
4	Zus	\mathbf{atz}	9
	3.37	Grenzwertsatz von Zufallsvariablen	8
		Varianz einer Zufallsvariable	8
	3.35	Transformationen von Zufallsvariablen	8
		Erwartungswert einer Zufallsvariable	8
		Totale Wahrscheinlichkeit	8
	3.32	Rand-Verteilungsfunktion	7
		Mehrdimensionale Verteilungsfunktion	7
		Symmetrische Zufallsvariable	7
		Quantil	7
		Stetige Zufallsvariable	6
		Verteilungsfunktion diskreter Zufallsvariablen	6
		Wahrscheinlichkeitsfunktion	6
		Zufallsvariablen	6
		Satz von Bayes	5
	3.22	Multiplikationssatz	5 5
		Bedingte Wahrscheinlichkeit	5 5
		Unabhängige Ereignisse	5 5
		Laplace Experiment	4
	9.10	I l E	1

Abbildungsverzeichnis

Formelverzeichnis

1 Mathematische Symbole

1.1 Mengen

Symbol	Verwendung	Bedeutung
\in	$\omega \in \Omega$	Element (ω ist in Ω enthalten)
\cap	$A \cap B$	Disjunkt (Kein Teil von A ist ein Teil von B)
U	$A \cup B$	Kunjunktion (Ein Teil von A ist ein Teil von B)
\subseteq	$A \subseteq B$	Teilmenge (A ist eine Teilmenge von B)
$\stackrel{ackslash}{\mathrm{C}}$	$A \setminus B$	Differenz (Differenz der mengen A und B)
C	A^{C}	Komplement (Differenz des Universums (kann eine
		größere Menge sein) und der Teilmenge)
\mathbb{N}	Natürliche Zahlen	Positive Ganze Zahlen ohne Null (1,2,3,)
$\mathbb Z$	Ganze Zahlen	Ganze Zahlen (,-2,-1,0,1,2,)
\mathbb{Q}	Rationale Zahlen	$z \cdot \frac{1}{x} $ mit $z, x \in \mathbb{Z}$
\mathbb{R}	Reelle Zahlen	Erweiterung der Rationalen Zahlen durch diejenigen
		Zahlen welche sich nicht durch Brüche darstellen
		lassen $(z.B.\sqrt{2},\pi)$
\mathbb{C}	Komplexe Zahlen	$a + bi \text{ mit } a, b \in \mathbb{R} \text{ und } i^2 = -1$

2 Statistik

2.1 Arithmetisches Mittel

$$\overline{x} := \frac{x_1 + \dots + x_n}{n} = \frac{1}{n} \sum_{i=1}^n x_i \tag{1}$$

2.2 Mittlerer Abstand

Der mittlere Abstand wird nicht sehr häufig verwendet, da das Rechnen mit Beträgen sehr mühsam ist. Die Varianz (durchschnittliche quadratische Abweichung) eignet sich besser.

$$\frac{1}{n}\sum_{i=1}^{n}|x_i-\overline{x}|\tag{2}$$

2.3 Varianz

$$s_x^2 = \frac{1}{n-1} \sum_{i=1}^n (x_i - \overline{x})^2$$
 (3)

2.4 Standartabweichung

$$s_x = \sqrt{s_x^2} \tag{4}$$

2.5 Kovarianz

$$y_{xy} := \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})$$

$$\tag{5}$$

2.6 Korrelationskoeffizient

$$r_{xy} := \frac{s_{xy}}{s_x \cdot s_y} \tag{6}$$

2.7 Regressionsgerade

$$y = a + bx \tag{7}$$

$$b = \frac{s_{xy}}{s_x^2} \tag{8}$$

$$a = \overline{y} - b\overline{x} \tag{9}$$

2.8 Bestimmtheitsmaß

$$R^{2} = \frac{\sum_{i=1}^{n} (\hat{y}_{i} - \overline{y})^{2}}{\sum_{i=1}^{n} (y_{i} - \overline{y})^{2}} = \frac{\sum_{i=1}^{n} (y_{i} - \hat{y}_{i})^{2}}{\sum_{i=1}^{n} (y_{i} - \overline{y})^{2}}$$
(10)

mit Arithmetischem Mittel \overline{y} und

TODO: Beschreibung von y dach und y quer

$$R^2 = r_{xy}^2 \tag{11}$$

3 Wahrscheinlichkeitsrechnung

3.1 Fakultät

$$n! = n \cdot (n-1) \cdot \ldots \cdot 2 \cdot 1 \tag{12}$$

3.2 Binomialkoeffizient

$$\binom{n}{k} = \frac{n!}{k! \cdot (n-k)!} \tag{13}$$

3.3 Kugeln Ziehen

	mit Reihenfolge	ohne Reihenfolge
mit Zurücklegen	n^k	$\binom{n+k-1}{k}$
ohne Zurücklegen	$\frac{n!}{(n-k)!}$	$\binom{n}{k}$

3.4 Menge

Unter einer Menge verstehen wir die Zusammenfassung unterscheidbarer Elemente zu einer Gesamtheit.

3.5 Gleichheit

 $A = B : \Leftrightarrow A$ und B besitzen die gleichen Elemente.

3.6 Teilmenge

 $A \subset B :\Leftrightarrow$ wenn alle Elemente von A auch in B sind, dann ist A eine Teilmenge von B oder auch B die Obermenge von A.

Jede Menge ist Teilmenge von sich selbst.

3.7 Potenzmenge

Die Potenzmenge $\mathcal{P}(X)$ ist eine Menge welche aus allen Teilmengen von $U \subseteq X$ besteht.

3.8 Mächtigkeit

|A| := Zahl der Elemente von A.

3.9 Vereinigung

 $A \cup B :=$ Menge aus allen Elementen welche in A oder in B oder in beiden enthalten sind.

3.10 Schnitt

 $A \cap B :=$ Menge aus allen Elementen welche in A und in B enthalten sind.

3.11 Differenz

 $A \setminus B :=$ Menge aus allen Elementen welche zu A aber **nicht** zu B gehören.

3.12 Komplement

 $A^C :=$ Menge aus allen Elementen welche **nicht** zu A gehören.

3.13 Kartesisches Produkt

$$A \times B := (a, b) : a \in A, b \in B \tag{14}$$

3.14 Zufallsexperiment

- Genau festgelegte Bedingungen
- Zufälliger Ausgang
- Beliebig oft wiederholbar
- Ein Versuch bezeichnet einen Vorgang bei dem mehrere Ergebnisse (Elementarereignis) eintreten können
- Menge aller Elementarereignisse wird als Ergebnismenge (Ergebnisraum) Ω bezeichnet

3.15 Ereignis

- Eine Teilmenge $A \subset \Omega$ heißt Ereignis
- $A = \emptyset$ unmögliches Ereignis
- $A = \Omega$ sicheres Ereignis

3.16 Disjunkte Ereignisse

Zwei ereignisse sind disjunkt (unvereinbar) wenn deren Schnitt gleich der leeren Menge ist $A \cap B = \emptyset$.

3.17 σ -Algebra

Eine Teilmenge einer Potenzmenge (Menge von Teilmengen, $\mathcal{A} \subseteq \mathcal{P}(\Omega)$) heißt σ -Algebra wenn sie folgende Bedingungen erfüllt:

- Die Teilmenge \mathcal{A} der Potenzmenge $\mathcal{P}(\Omega)$ enthält die Grundmenge Ω .
- Das Komplement $A^{\mathbb{C}}$ eines Elements der Teilmenge $A \in \mathcal{A}$ ist gleich der Differenz aus Grundmenge und Element $A^{\mathbb{C}} := \Omega \setminus A$. Stabilität des Komplements.
- Sind die Mengen in der Teilmenge der Potenzmenge $A_1, A_2, A_3, ... \in \mathcal{A}$ enthalten, so ist auch die Vereinigung aller Mengen in der Teilmenge der Potenzmenge enthalten $\bigcup_{n \in \mathbb{N}} A_n \in \mathcal{A}$
- Alle vorangegangenen Mengenoperationen können auf die Teilmengen angewendet werden.

3.18 Axiome der Wahrscheinlichkeitsrechnung

Die Funktion P ordnet jedem Ereignis A eine Wahrscheinlichkeit P(A) zu.

- (I) Für jedes Ereignis $A\subset\Omega$ gilt $0\leq P(A)\leq 1$
- (I') Für das unmögliche Ereignis gilt $P(\emptyset) = 0$
- (II) Für das sichere Ereignis Ω gilt $P(\Omega)=1$
- (II') Für ein Ereignis $A \subset \Omega$ gilt $P(A^C) = 1 P(A)$
- (III) Für disjunkte Ereignisse A und B gilt $P(A \cup B) = P(A) + P(B)$
- (III') Für zwei Ereignisse $A, B \subset \Omega$ gilt $P(A \cup B) = P(A) + P(B) P(A \cap B)$

3.19 Laplace Experiment

Endlich viele Elementarereignisse welche alle gleich wahrscheinlich sind. Satz von Laplace:

$$P(A) = \frac{|A|}{|\Omega|} = \frac{\text{Anzahl der Elementarereignisse in } A}{\text{Anzahl aller möglichen Elementarereignisse}}$$
(15)

3.20 Unabhängige Ereignisse

Zwei Ereignisse heißen unabhängig wenn gilt:

$$P(A \cap B) = P(A) \cdot P(B) \tag{16}$$

Sie heißen abhängig wenn sie nicht unabhängig sind.

Für unabhängige Ereignisse gilt:

$$P(A) = \frac{P(A \cap B)}{P(B)} \quad \text{bzw.} \quad P(B) = \frac{P(A \cap B)}{P(A)}$$
 (17)

3.21 Bedingte Wahrscheinlichkeit

"Wahrscheinlichkeit von A gegeben B".

$$P(A|B) := \frac{P(A \cap B)}{P(B)} \tag{18}$$

Sind $A, B \subset \Omega$ unabhängige Ereignisse gilt:

$$P(A|B) = P(A) \tag{19}$$

Sind $A, B \subset \Omega$ abhängige Ereignisse gilt:

$$P(A|B) \neq P(A) \tag{20}$$

3.22 Multiplikationssatz

$$P(A \cap B) = P(A) \cdot P(B|A) = P(B) \cdot P(A|B) \tag{21}$$

3.23 Satz der totalen Wahrscheinlichkeit

Der Ergebnisraum ist gegeben durch $\Omega=\bigcup_{j=1}^\infty B_j$ mit $P(B_j)>0$ und alle j sind paarweise Disjunkt $B_i\cap B_j=\emptyset$ für $i\neq j$

$$P(A) = \sum_{j=1}^{\infty} P(A|B_j) \cdot P(B_j)$$
(22)

Für den Spezialfall $\Omega = B \cup B^C$ gilt:

$$P(A) = P(B) \cdot P(A|B) + P(B^C) \cdot P(A|B^C)$$
(23)

3.24 Satz von Bayes

Besteht aus dem Multiplikationssatz & der totalen Wahrscheinlichkeit:

$$P(A|B) = \frac{P(A) \cdot P(B|A)}{P(B)} = \frac{P(A) \cdot P(B|A)}{P(A) \cdot P(B|A) + P(A^C) \cdot P(B|A^C)}$$
(24)

3.25 Zufallsvariablen

Eine Zufallsvariable ist eine Abbildung des Ergebnisraums auf den reellen Zahlenraum $\Omega \longmapsto \mathbb{R}$. Die Zufallsvariable ordnet jedem Elementarereignis eine reelle Zahl zu.

Zwei Zufallsvariablen sind **unabhängig** wenn gilt:

$$P(X \in A, Y \in B) = P(X \in A) \cdot P(Y \in B)$$
 für alle $A, B \subset \mathbb{R}$ (25)

Die Zufallsvariablen heißen abhängig wenn sie nicht unabhängig sind.

Die Zufallsvariable wird **diskret** genannt wenn sie nur endlich viele oder abzählbar unendlich viele Werte annimmt. Es gilt:

$$\sum_{i=1}^{\infty} P(X = x_i) = 1 \tag{26}$$

3.26 Wahrscheinlichkeitsfunktion

Für die diskrete Zufallsvariable X und ihre Ausprägungen lautet die Wahrscheinlichkeitsfunktion:

$$p_X(x) := \begin{cases} P(X = x_i), & \text{für } x = x_i \text{ mit Z\"{a}hlindex } i \in \mathbb{N} \\ 0, & \text{sonst} \end{cases}$$
 (27)

$$\sum_{x_i} p_X(x_i) = 1 = p(\Omega) \tag{28}$$

3.27 Verteilungsfunktion diskreter Zufallsvariablen

Für die diskrete Zufallsvariable X und ihre Ausprägungen lautet die Verteilungsfunktion:

$$F_X(x) := P(X \le x) = \sum_{x_i \le x} P(X = x_i) = \sum_{x_i \le x} p_X(x_i)$$
 (29)

3.28 Stetige Zufallsvariable

Eine zuvallsvariable wird **stetig** genannt, wenn es eine nicht-negative Funktion $f_X \geq 0$ mit

$$\int_{-\infty}^{\infty} f_X(x)dx = 1 \tag{30}$$

gibt, so dass für alle $a, b \in \mathbb{R} \cup \{-\infty, \infty\}$ mit $a \leq b$ gilt:

$$P(X \in [a, b]) = P(a \le X \le b) = \int_{a}^{b} f_X(x) dx$$
 (31)

 f_X wird als **Dichtefunktion** (Wahrscheinlichkeitsdichte) der Zufallsvariable X bezeichnet. Ihre Verteilungsfunktion F_X lautet:

$$F_X(x) := P(X \le x) = \int_{-\infty}^x f_X(u) du$$
 (32)

Außerdem gilt:

$$f_X = F_X' \tag{33}$$

Daraus folgt:

$$P(X \in [a, b]) = P(a \le X \le b) = \int_{a}^{b} f_X(x) dx = F_X(b) - F_X(a)$$
 (34)

3.29 Quantil

Bezeichnet das kleinste x mit $F_X(x) \ge p$. Spezielle Quantile sind:

- $x_{0.5}$ Median
- $x_{0.25}, x_{0.5}, x_{0.75}$ erstes, zweites und drittes Quantil
- $x_{0.01}, x_{0.02}, x_{0.03}, \dots$ erstes, zweites, drittes, ... Perzentil

3.30 Symmetrische Zufallsvariable

Eine Zufallsvariable X wird **symmetrisch** genannt, wenn es eine Symmetrieachse $c \in \mathbb{R}$ gibt, so dass für alle $d \in \mathbb{R}$ gilt:

• für diskrete Zufallsvariablen

$$P(X = c - d) = P(X = c + d)$$
(35)

• für stetige Zufallsvariablen

$$f_X(c-d) = f_X(c+d) \tag{36}$$

3.31 Mehrdimensionale Verteilungsfunktion

Die Verteilungsfunktion einer zweidimensionalen Zufallsveriablen $Z = (X_1, ..., X_n)$ wird definiert durch:

$$F_Z(x_1, ..., y) = P(X_1 \le x_1, ..., X_n \le x_n). \tag{37}$$

3.32 Rand-Verteilungsfunktion

Als Rand-Verteilungsfunktion einer mehrdimensionalen Zufallsvariablen $Z = (X_1, ..., X_n)$ wird diejenige Funktion bezeichnet welche lediglich eine dimension betrachtet.

$$F_{X_i}(x_i) = F_Z(\infty, ..., \infty, x_i, \infty, ..., \infty)$$
(38)

Für die zweidimensionale Rand-Verteilungsfunktion $(Z = (X, Y), F_Z(x, y))$ gilt:

$$F_X(x) = F_Z(x, \infty)$$
 sowie $F_Y(y) = F_Z(\infty, y)$ (39)

3.33 Totale Wahrscheinlichkeit

$$f_X(x) = \int f_{X,Y}(x,y)dy = \int f_Y(y) \cdot f_X(x|Y=y)dy \tag{40}$$

Mit dieser Formel lässt sich eine Rand-Dichte aus einer gemeinsamen Dichte bestimmen, dies wird als **Marginalisierung** bezeichnet.

3.34 Erwartungswert einer Zufallsvariable

Für eine diskrete Zufallsvariable mit $(x_i)_{i\in\mathbb{N}}$ Ausprägungen und Wahrscheinlichkeitsfunktion p_X lautet der **Erwartungswert**:

$$E(X) := \sum_{i=1}^{\infty} x_i \cdot p_X(x_i) \tag{41}$$

Für eine stetige Zufallsvariable mit Dichte f_X lautet der Erwartungswert:

$$E(X) := \int_{-\infty}^{\infty} x \cdot f_X(x) dx \tag{42}$$

3.35 Transformationen von Zufallsvariablen

• Linearität:

$$E(a \cdot X + b \cdot Y) = a \cdot E(X) + b \cdot E(Y) \tag{43}$$

• Multiplikation:

$$E(X \cdot Y) = E(X) \cdot E(Y) \tag{44}$$

3.36 Varianz einer Zufallsvariable

Eine Zufallsvariable mit Erwartungswert $\mu = E(X)$ hat die Varianz:

$$\sigma^{2}(X) := E[(X - \mu)^{2}] = E(X^{2}) - \mu^{2}$$
(45)

Die Standartabweichung lautet:

$$\sigma(X) = \sqrt{\sigma^2(X)} \tag{46}$$

3.37 Grenzwertsatz von Zufallsvariablen

Für $X_1, ..., X_n$ unabhängige und identisch verteilte Zufallsvariablen mit $E(X_i) = \mu$, $\sigma(X_i) = \sigma$ und $\overline{X} := \frac{1}{n}(X_1 + ... + X_n)$ gilt:

$$E(\overline{X}) = \mu \tag{47}$$

$$\sigma^2(\overline{X}) = \frac{\sigma^2}{n} \tag{48}$$

$$\sigma(X) = \frac{\sigma}{\sqrt{n}} \tag{49}$$

Zusatz 4

Integration 4.1

$$\int_{a}^{b} f(x)dx = [F(x)]_{a}^{b} = F(b) - F(a)$$
(50)

$$\int_{a}^{b} f(x)dx = [F(x)]_{a}^{b} = F(b) - F(a)$$

$$\int_{a}^{b} f(x) + g(x)dx = \int_{a}^{b} f(x)dx + \int_{a}^{b} g(x)dx$$
(51)

$$\int_{a}^{b} c \cdot f(x) dx = c \cdot \int_{a}^{b} f(x) dx \tag{52}$$

4.2 Partielle Integration

$$u(x) \cdot v(x) = \int u'(x) \cdot v(x) dx + \int u(x) \cdot v'(x) dx \tag{53}$$

TODO: Basics Integration

Differentialgleichungen 4.3

TODO: Basics DGL Lösungen

5 Anhang