

University of the Philippines, Diliman College of Engineering Department of Computer Science

Course Information

Course Number: CS 21

Course Schedule: **WFWX** W 1:00-4:00 lec, F 1:00-4:00 lab **WFUV** W 10:00 - 1:00 lec, F 10:00 - 1:00 lab

Course Title: Computer Organization and Assembly Language Pro-

gramming

Course Description: Assembly language programming. Memory organization

and architecture. Interfacing and communication. Digital

Logic Design. Microcontrollers.

Credit: 4 units
Prerequisite: CS 12 / ES 26

Methodology: In-class lectures, programming exercises and projects

Instructor: Kristofer E. delas Peñas

Consultation: M 1:00AM-6:00PM, WF 4:00-7:00PM, Rm. 307, UPAECH

Email Address: kedelaspenas@up.edu.ph

Course Goals

At the end of the course, the student should be able to:

- Understand the fundamentals and design of computers
- Identify the connection between hardware and software
- Create simple programs using assembly language
- Understand, design, and create simple digital circuits
- Program microcontrollers and design simple microcontroller-based circuits

Course Outline

1. Computer Organization

Number systems and computer arithmetic IEEE 754: representing floating point numbers History of computers

I/O devices

Memory and Storage

Assembly programming Registers and syscalls Data field, load-store Branches, conditionals, loops Bit masking and shifting, functions

Floating-point arithmetic

2. Electronic Devices and Circuits

Introduction Levels of abstraction: transistors to gates

Boolean algebra

Levels of abstraction: transistors to gates

Basic electronics
Building circuits from logic gates
Logic implementation
Using more complicated ICs

3. Processors

Basic processor Measuring CPU Performance Pipelining Amdahl's law

4. Synthesis: Future of Computing

Microcontroller

Course Requirements

Class Policies

Collaboration

Students are allowed to informally collaborate on their assignments, exercises and machine problems with other students who have taken the course previously or are currently taking the course. Submitting code copied verbatim or nearly verbatim even with proper citation is prohibited unless otherwise specified by the instructor.

Consultation

Consultation is encouraged. A student who wants to consult should inform the instructor at least a day before his/her preferred day of consultation.

Loss of Work

Students should make backup copies of all their work in this course. Loss of work due to hardware failure will not be considered as an acceptable excuse for late submission or non-submission of requirements.

• Previous Work

Students are free to use programs they have written in the past provided they follow the required format and are authorized by the instructor.

Cheating

Any instance of copying the works and/or thoughts of others and passing it as one's own is considered as plagiarism. In using course materials, students should be careful not to claim words, ideas and algorithms as one's own.

Grading System

Students will be graded according to the following scale:

General Average	Final Grade	
[92 - 100]	1.0	
[88 - 92)	1.25	
[84 - 88)	1.50	
[80 - 84)	1.75	
[76 - 80)	2.00	
[72 - 76)	2.25	
[68 - 72)	2.50	
[64 - 68)	2.75	
[60 - 64)	3.00	
[0 - 60)	5.00	

Tentative Course Schedule

Date	Day		Topic/Activity
5 August	Wednesday	Lecture	Course Introduction
7 August	Friday	Laboratory	Introduction to Assembly Language Programming
12 August	Wednesday	Lecture	Computer Organization
14 August	Friday	Laboratory	Registers
19 August	Wednesday		NO CLASS (QUEZON CITY DAY)
21 August	Friday		NO CLASS (NINOY AQUINO DAY)
26 August	Wednesday	Lecture	Computer Arithmetic
28 August	Friday	Laboratory	Load and Store Operations
2 September	Wednesday	Lecture	Representing Real Numbers
4 September	Friday	Laboratory	Bit Operations
9 September	Wednesday	Lecture	Memory
11 September	Friday	Laboratory	Conditionals and Loops
16 September	Wednesday	Lecture	Memory
18 September	Friday	Laboratory	Functions
23 September	Wednesday	Lecture	Interfaces and I/O Devices
25 September	Friday	Laboratory	Floating Point Arithmetic
26 September	Saturday		FIRST WRITTEN EXAM
1 October	Thursday		MID-SEMESTER
3 October	Saturday		HANDS-ON CODING EXAM
7 October	Wednesday	Lecture	Introduction to Electric Circuits: Laws of Electricity
9 October	Friday	Laboratory	Introduction to Electronics
14 October	Wednesday	Lecture	Network Analysis
16 October	Friday	Laboratory	Circuits and Networks

21 October	Wednesday	Lecture	Karnaugh Maps
23 October	Friday	Laboratory	Digital Logic Circuits
28 October	Wednesday	Lecture	Combinational and Sequential Logic
30 October	Friday	Laboratory	Complex ICs
			DEADLINE OF DROPPING
4 November	Wednesday	Lecture	Building a Processor
6 November	Friday	Laboratory	Sequential Logic
7 November	Saturday		CIRCUITS EXAM
11 November	Wednesday	Lecture	Pipelining
13 November	Friday	Laboratory	Introduction to Arduino
18 November	Wednesday		NO CLASSES (APEC Meeting)
20 November	Friday	Laboratory	Analog and Digital Input
25 November	Wednesday	Lecture	CPU Performance, Parallelism
27 November	Friday	Laboratory	Analog and Digital Output
28 November	Saturday		SECOND WRITTEN EXAM
1 December	Tuesday		INTEGRATION PERIOD
2-10 December			FINALS WEEK
			(ARDUINO PROJECT DEMO)

References

Patterson, David, and John Hennessy. Computer Organization and Design: The Hardware/Software Interface. 3rd. Elsevier, 2005.

Hayes, John. Introduction to Digital Logic Design. Addison-Wesley. 1994.

Hayt, William et al. Engineering Circuit Analysis. 6th. McGrawhill, 2002.

Smith, Alan. Introduction to Arduino. 2011

Lecture slides and other resources at http://kedelaspenas.github.io/CS21.