Interpretable Machine Learning

Rule-based Models

Interpretable Machine Learning Rule-based Models

DECISION TREES • Breiman et al. (1984)

Idea: Partition data into axis-aligned regions via greedy search for feature cut points (minimizing a split criterion), then predict a constant mean c_m in each leaf region \mathcal{R}_m :

$$\hat{f}(x) = \sum_{m=1}^{M} c_m \mathbb{1}_{\{x \in \mathcal{R}_m\}}$$

DECISION TREES • BREIMAN

Idea: Partition data into axis-aligned regions via greedy search for feature cut points (minimizing a split criterion), then predict a constant mean c_m in each leaf region \mathcal{R}_m :

$$\hat{f}(x) = \sum_{m=1}^{M} c_m \mathbb{1}_{\{x \in \mathcal{R}_m\}}$$

DECISION TREES > Breiman et al. (1984)

Idea: Partition data into axis-aligned regions via greedy search for feature cut points (minimizing a split criterion), then predict a constant mean c_m in each leaf region \mathcal{R}_m :

$$\hat{f}(x) = \sum_{m=1}^{M} c_m \mathbb{1}_{\{x \in \mathcal{R}_m\}}$$

- Applicable to regression and classification
- Models interactions and non-linear effects
- Handles mixed feature spaces & missing values

DECISION TREES • BREIMAN

Idea: Partition data into axis-aligned regions via greedy search for feature cut points (minimizing a split criterion), then predict a constant mean c_m in each leaf region \mathcal{R}_m :

$$\hat{f}(x) = \sum_{m=1}^{M} c_m \mathbb{1}_{\{x \in \mathcal{R}_m\}}$$

- Applicable to regression and classification
- Models interactions and non-linear effects
- Handles mixed feat, spaces & missing values

Interpretable Machine Learning - 1/6 © -1/6

INTERPRETATION OF TREE-BASED MODELS

- Interpretation via path of decision rules along tree branches
- **Feature importance** (quantifies how often and how usefully x_i is used):
 - For each split on feature x_i , record the decrease in the split criterion
 - Aggregate this over the tree: sum or average over all splits involving x_i
 - Split criterion: variance (regression), Gini index / entropy (classification)

- Each ΔVar is assigned to the splitting feature
- Feature importance = sum of all ΔVar for that feature:

$$x_i$$
: 0.18

$$x_k$$
: 0.07 + 0.10 = 0.17

INTERPRETATION OF TREE-BASED MODELS

- Interpretation via path of decision rules along tree branches
- **Feature importance** (quantifies how often and how usefully x_i is used):
- For each split on feature x_i , record the decrease in the split criterion
 - Aggregate this over the tree: sum or avg. over all splits involving x_i
 - Split criterion: variance (regression), Gini index / entropy (classif.)

- Each ΔVar is assigned to the splitting feature
- Feature importance = sum of all ΔVar for that feat.:

$$x_k$$
: 0.07 + 0.10 = 0.17

Interpretable Machine Learning - 2/6 © -2/6

DECISION TREES - EXAMPLE

- Fit decision tree with tree depth of 3 on bike data
- E.g., mean prediction for the first 105 days since 2011 is 1798 → Applies to \$\hat{\text{\tin}\text{\tetx{\text{\tetx{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\texi}\text{\text{\text{\text{\texi}\text{\text{\text{\text{\texi}\text{\text{\texi}\text{\texiclex{\text{\texit{\text{\text{\texi}\text{\text{\text{\texit{\t
- days_since_2011: highest feature importance (explains most of variance)

		<u> </u>
Feature	Importance	3414 60%
days_since_2011	79.53	days_since_2011 < 106
temp	17.55	
hum	2.92	(3934) 45%)
		[temp < 14]

- Fit decision tree with tree depth of 3 on bike data
 - E.g., mean prediction for the first 105 days since 2011 is 1798 → Applies to £15% of the data (leftmost branch)
 - days_since_2011: highest feat. importance (explains most of variance)

Feature	Importance
days_since_2011	79.53
temp	17.55
hum	2 92

Interpretable Machine Learning - 3/6 - 3/6

► Hothorn et al. (2006) ► Zeileis et al. (2008) ► Strobl et al. (2007)

Problems with CART (Classification and Regression Trees):

- Selection bias towards high-cardinal/continuous features
- ② Splits on any improvement, regardless of significance → prone to overfitting

UNBIASED RECURSIVE PARTITIONING

► Hothorn 2006 ► Zeileis 2008 ► Strobl 2007

Problems with CART (Classification and Regression Trees):

- Selection bias towards high-cardinal/continuous features
- Splits on any improvement, regardless of significance → prone to overfitting

Interpretable Machine Learning - 4/6

- 4/6

► Hothorn et al. (2006) ► Zeileis et al. (2008) ► Strobl et al. (2007)

Problems with CART (Classification and Regression Trees):

- Selection bias towards high-cardinal/continuous features
- Splits on any improvement, regardless of significance → prone to overfitting

Unbiased recursive partitioning via conditional inference trees (ctree) or model-based recursive partitioning (mob):

- Separate selection of feature used for splitting and split point
- A Hypothesis test as stopping criteria

UNBIASED RECURSIVE PARTITIONING

Problems with CART (Classification and Regression Trees):

- Selection bias towards high-cardinal/continuous features
- Splits on any improvement, regardless of significance → prone to overfitting

Unbiased recursive partitioning via conditional inference trees (ctree) or model-based recursive partitioning (mob):

- Separate selection of feature used for splitting and split point
- A Hypothesis test as stopping criteria

Interpretable Machine Learning - 4/6 - 4/6

Problems with CART (Classification and Regression Trees):

- Selection bias towards high-cardinal/continuous features
- ② Splits on any improvement, regardless of significance → prone to overfitting

Unbiased recursive partitioning via conditional inference trees (ctree) or model-based recursive partitioning (mob):

- Separate selection of feature used for splitting and split point
- 2 Hypothesis test as stopping criteria

Example (selection bias):

Simulate data (n = 200) with $Y \sim N(0, 1)$ and 3 features of different cardinality independent from *Y* (repeat 500 times):

- $X_1 \sim Binom(n, \frac{1}{2})$
- $X_2 \sim M(n, (\frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}))$
- $X_3 \sim M(n, (\frac{1}{8}, \frac{1}{8}, \frac{1}{8}, \frac{1}{8}, \frac{1}{8}, \frac{1}{8}, \frac{1}{8}, \frac{1}{8}))$

UNBIASED RECURSIVE PARTITIONING

▶ Hothorn 2006
▶ Zeileis 2008
▶ Strobl 2007

Problems with CART (Classification and Regression Trees):

- Selection bias towards high-cardinal/continuous features
- Splits on any improvement, regardless of significance → prone to overfitting

Unbiased recursive partitioning via conditional inference trees (ctree) or model-based recursive partitioning (mob):

- Separate selection of feature used for splitting and split point
- A Hypothesis test as stopping criteria

Example (selection bias):

Simulate data (n = 200), $Y \sim N(0, 1)$ and 3 features of different cardinality indep. from *Y* (repeat 500 times):

•
$$X_2 \sim M(n, (\frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}))$$

•
$$X_3 \sim M(n, (\frac{1}{8}, \frac{1}{8}, \frac{1}{8}, \frac{1}{8}, \frac{1}{8}, \frac{1}{8}, \frac{1}{8}, \frac{1}{8}, \frac{1}{8}))$$

Interpretable Machine Learning - 4/6 - 4/6

Differences to CART:

- Two-step approach (1. find most significant split feature, 2. find best split point)
- Parametric model (e.g. LM instead of constant) can be fitted in leave nodes
- Significance of split (p-value) given in each node
- ctree and mob differ in hypothesis test used for selecting the split feature (independence test vs. fluctuation test) and how to find the best split point

UNBIASED RECURSIVE PARTITIONING

Differences to CART:

- Two-step approach (finds 1. most significant split feat., 2. best split point)
- Parametric model (e.g. LM instead of constant) can be fitted in leaf nodes
- Significance of split (p-value) given in each node
- ctree and mob differ in hypothesis test used for selecting the split feature (independence test vs. fluctuation test) and how to find the best split point

Interpretable Machine Learning - 5 / 6

- 5/6

Differences to CART:

- Two-step approach (1. find most significant split feature, 2. find best split point)
- Parametric model (e.g. LM instead of constant) can be fitted in leave nodes
- Significance of split (p-value) given in each node
- ctree and mob differ in hypothesis test used for selecting the split feature (independence test vs. fluctuation test) and how to find the best split point

Example (ctree): Bike data (constant model in final nodes)

UNBIASED RECURSIVE PARTITIONING

Differences to CART:

- Two-step approach (finds 1. most significant split feat., 2. best split point)
- Parametric model (e.g. LM instead of constant) can be fitted in leaf nodes
- Significance of split (p-value) given in each node
- ctree and mob differ in hypothesis test used for selecting the split feature (independence test vs. fluctuation test) and how to find the best split point

Example (ctree): Bike data (constant model in final nodes)

Interpretable Machine Learning - 5/6

Differences to CART:

- Two-step approach (1. find most significant split feature, 2. find best split point)
- Parametric model (e.g. LM instead of constant) can be fitted in leave nodes
- Significance of split (p-value) given in each node
- ctree and mob differ in hypothesis test used for selecting the split feature (independence test vs. fluctuation test) and how to find the best split point

Example (mob): Bike data (linear model with temp in final nodes)

Train error (MSE): 758.844.0 (ctree)

Differences to CART:

- Two-step approach (finds 1. most significant split feat., 2. best split point)
- Parametric model (e.g. LM instead of constant) can be fitted in leaf nodes
- Significance of split (p-value) given in each node
- ctree and mob differ in hypothesis test used for selecting the split feature (independence test vs. fluctuation test) and how to find the best split point

Example (mob): Bike data (linear model with temp in final nodes)

Train MSE: 758.844 (ctree) 742,244 (mob)

- 5/6

Interpretable Machine Learning - 5 / 6

OTHER RULE-BASED MODELS

Decision Rules Holte 1993

- Flat list of simple "if then" statements

 ∴ very intuitive and easy-to-interpret
- Mainly devised for classification (support for regression is limited)
- Numeric features are typically discretised

OTHER RULE-BASED MODELS

Decision Rules Holte 1993

Flat list of simple "if – then" statements
 → very intuitive and easy-to-interpret

Mainly devised for classification

(support for regression is limited)

$$\begin{aligned} &\text{IF } x_1 \leq 2.3 \text{ AND } x_4 = \text{``A''} & \text{THEN} & \text{y} = 1 \\ &\text{ELSE IF } x_2 > 5.0 & \text{THEN} & \text{y} = 2 \\ &\text{ELSE} & \text{y} = 3 \end{aligned}$$

- 6/6

• Numeric features are typically discretised

Interpretable Machine Learning - 6 / 6

OTHER RULE-BASED MODELS

Decision Rules Holte 1993

- Flat list of simple "if then" statements → very intuitive and easy-to-interpret
- Mainly devised for classification (support for regression is limited)
- Numeric features are typically discretised

RuleFit Friedman & Popescu 2008

- Extract binary rules $r_m(\mathbf{x}) \in \{0, 1\}$ from many shallow trees (one per root-to-leaf path)
- Fit an L₁-regularized LM $\hat{f}(\mathbf{x}) = \beta_0 + \sum_m \beta_m r_m(\mathbf{x}) + \sum_i \gamma_i x_i$
- Regularization retains only a few rules ⇒ sparse, non-linear, interaction-aware
- Coefficients relate to rule/feature importance

ELSE IF $x_2 > 5.0$

ELSE

OTHER RULE-BASED MODELS

Decision Rules → Holte 1993

- Flat list of simple "if then" statements → very intuitive and easy-to-interpret
- IF $x_1 < 2.3 \text{ AND } x_4 = \text{`A''}$ THEN y = 1THEN y = 2ELSE IF $x_2 > 5.0$ Mainly devised for classification ELSE

Molnar 2022

- (support for regression is limited)
- Numeric features are typically discretised

RuleFit Friedman and Popescu 2008

- Extract binary rules $r_m(\mathbf{x}) \in \{0, 1\}$ from many shallow trees (one per root-to-leaf path)
- Fit an L₁-regularized LM $\hat{f}(\mathbf{x}) = \beta_0 + \sum_m \beta_m r_m(\mathbf{x}) + \sum_j \gamma_j x_j$
- Regularization retains only a few rules ⇒ sparse, non-linear, interaction-aware
- Coefficients relate to rule/feature importance

Interpretable Machine Learning - 6 / 6 - 6/6