EE210: HW-5 Solution

Date: 05.02.2019

Fig. 1

Unless stated otherwise, the BJT in the problems given below has the following characteristics $I_S = 2.03*10^{-15}A$; $\beta_F = 100$; $\beta_R = 1$; $V_A = 100$; $r_{bb} = 200\Omega$; $V_T = 26mV$; $C_{je0} = 1pF$; $C_{ic0} = 0.5pF$; $C_{js0} = 3pF$; m = 0.5; $V_{bi} = 0.85$; $\tau_F = 1ns$

Q.1 Design the amplifier shown in Fig.1 such that open circuit voltage gain is 100. What happens to the bias point if V_{BB} increases by 10%?

Sol.:

$$A_V = -\frac{r_{\pi}}{R_B + r_{\pi}} * g_m R_C = -100$$
$$-(r_{\pi} * g_m) * \frac{R_C}{R_B + r_{\pi}} = -100$$

Given, $r_{\pi} * g_m = \beta = 100$ Thus,

$$R_B + r_\pi = R_C$$

$$R_B + \frac{V_T}{I_{BQ}} = R_B + \frac{V_T}{I_{CQ}} * \beta = R_B + \frac{2.6}{I_{CQ}} = 1k\Omega$$

From this relation, I_{CO} must be larger than 2.6mA.

Also,

$$V_{CEQ} = V_{CC} - I_{CQ} * R_C = 5 - I_{CQ} * 1k\Omega \ge 0.2V$$

From this relation, I_{CQ} must be less than ~5mA to avoid BJT going into saturation. Let $I_{CQ} = 3.5\text{mA} \Rightarrow R_B = 257\Omega$.

$$V_{BB} = R_B I_B + V_{BE} = 0.009 + V_{BE}$$

We can not simply assume that $V_{BE} \sim 0.7$ due to the almost negligible value of term $I_B R_B$.

$$V_{BE} = V_T * \ln \left(1 + \frac{I_{CQ}}{I_S} \right) = 0.733 \Rightarrow V_{BB} = 0.742V$$

Q.2 Design the amplifier shown in Fig. 2 such that open circuit voltage gain is also 100. What happens to the bias point if V_{CC} increases by 10%? What would be the impact on the amplifier's characteristics if β were to become 200?

Sol.:

$$A_{V} = -g_{m}R_{C} = -\frac{I_{CQ}}{V_{T}}R_{C} = -100$$

$$I_{CQ} = 2.6mA$$

$$R_{B} = \frac{V_{CC} - 0.7}{I_{BQ}} = \frac{V_{CC} - 0.7}{I_{CQ}} * \beta = 165k\Omega$$
Fig. 2

Once design is fixed:

$$I_{CQ} = \beta * I_{BQ} = \beta * \frac{V_{CC} - 0.7}{R_R}$$

Change in bias point due to 10% increase in $V_{\rm CC}$,

$$\frac{\Delta I_C}{I_C} = \frac{I_{CQ2} - I_{CQ1}}{I_{CQ1}} = \frac{\Delta V_{CC}}{V_{CC} - 0.7} = \frac{0.5}{5 - 0.7} = 11.6\%$$

If β were doubled, then I_{CQ} would tend to double as well, but that would force the transistor into saturation.

Q.3 Two alternative bias schemes are shown below. Design these amplifiers also for an open circuit voltage gain of 100 and check their sensitivity to β . Also try to evaluate your design using circuit simulation.

Fig. 3

Fig. 4

Sol.:

DC analysis of Fig. 3.

Fig. 3.
$$\frac{V_{CC} - V_C}{R_C} = I_E = I_B + I_C = \frac{1 + \beta}{\beta} I_C$$

$$\frac{V_C - 0.7}{R_B} = I_B = \frac{I_C}{\beta}$$

$$I_C = \left(\frac{V_{CC} - 0.7}{R_C}\right) * \left(\frac{\beta}{1 + \beta + R_B/R_C}\right)$$

$$V_{CEQ} = V_{CC} - I_{EQ}R_C = V_{CC} \left(\frac{R_B/R_C}{1 + \beta + R_B/R_C}\right) + 0.7 \left(\frac{1 + \beta}{1 + \beta + R_B/R_C}\right)$$

Small-signal analysis of Fig. 3.

$$v_{be} = v_{s} - \frac{v_{0}}{R_{C}} = g_{m}v_{be} + \left(\frac{v_{0} - v_{be}}{R_{B}}\right)$$

$$v_{0} = -\left(\frac{g_{m} - \frac{1}{R_{B}}}{\frac{1}{R_{B}} + \frac{1}{R_{C}}}\right)v_{be}$$

$$A_{V} = -\left(\frac{g_{m} - \frac{1}{R_{B}}}{1 + \frac{R_{C}}{R_{B}}}\right)R_{C} = -\left(\frac{g_{m}}{1 + \frac{R_{C}}{R_{B}}}\right)R_{C} + \left(\frac{\frac{1}{R_{B}}}{1 + \frac{R_{C}}{R_{B}}}\right)R_{C}$$

$$A_{V} = -\frac{1}{V_{T}} * \left(\frac{V_{CC} - 0.7}{1 + R_{C}/R_{B}}\right) * \left(\frac{\beta}{1 + \beta + R_{B}/R_{C}}\right) + \left(\frac{R_{C}/R_{B}}{1 + R_{C}/R_{B}}\right)$$

Gain (A_V) depends on the ratio R_B/R_C .

For $R_B/R_C = 1.65$, $A_V = -100$.

Let's choose $R_C = 1k\Omega$, then $R_B = 1.65k\Omega$.

For this design, $I_{CO} = 4.189$ mA and $V_{CEO} \sim 0.8$ V.

If we double β then $I_{CQ} \sim 4.244 \text{mA}$. This is a change of only 1.3%.

For $R_B/R_C = 62$, $A_V = -100$.

Let's choose $R_C = 1k\Omega$, then $R_B = 62k\Omega$.

For this design, $I_{CO} = 2.64 \text{mA}$ and $V_{CEO} \sim 2.3 \text{V}$.

If we double β then I_{CO} ~ 3.27mA, a change of 24%.

Analysis of Fig. 4.

$$A_{V} = -g_{m}R_{C} = -100$$

$$\frac{I_{CQ}}{V_{T}}R_{C} = \frac{I_{CQ}}{26mV} * 1k = 100$$

$$I_{CQ} = 2.6mA$$

$$\frac{-0.7 + 5}{R_{E}} = I_{E} = \frac{1 + \beta}{\beta}I_{C}$$

$$R_{E} = 1.64k\Omega$$

Once the design is fixed,

$$I_{CQ} = \frac{\beta}{1+\beta} * \frac{-0.7+5}{R_E}$$

If we double β then $I_{CQ} \sim 2.613$ mA, a change of only 0.5%.

Q.4 (a) Design the amplifier shown below in Fig. 5 such that: $A_{V0} = -100$; $R_{in} = 1k\Omega$.

Sol:

$$\frac{-0.7 + 5}{R_E} = I_E = \frac{1 + \beta}{\beta} I_C \Rightarrow R_E = 1.64k\Omega$$

$$V_{CEQ} = V_{CC} - I_{CQ} \times R_C - (-0.7) = 3.1V$$

(b) Determine the voltage gain and maximum voltage swing with 10% HD₂ distortion for $R_L = 2k\Omega$. Assume a saturation voltage of ~0.2V.

Sol.:

$$A_{V} = -g_{m}R_{c} \parallel R_{L} = -66.67$$

$$v_{om} = Min\left\{\underbrace{V_{CEQ} - V_{CESat}}_{2.9V}; \underbrace{I_{CQ}(R_{c} \parallel R_{L}) * \left(\frac{HD_{2}}{25}\right)}_{0.693V}\right\} = 0.69V$$

(c) Determine the value of an extra un-bypassed emitter resistance that may be required to reduce open circuit voltage gain by half. Determine the new value of $R_{\rm in}$. Simulate the circuit to determine the swing for harmonic distortion of 10%.

Sol.:

$$A_{VO} \cong -\frac{g_m R_c}{1 + g_m R_{E2}} = -50$$

$$g_m R_{E2} = 0.1 \Omega^{-1} * R_{E2} = 1 \Rightarrow R_{E2} = 10 \Omega$$

Note that extra 10Ω resistor does not disturb the bias point much.

We may split the original R_E into 2 resistors and keep only 10Ω un-bypassed.

$$R_{in} \cong r_{\pi} \times (1 + g_m R_{E2}) = 2k\Omega$$

As expected, the input resistance has doubled when gain is halved for constant output resistance.

 v_{onn} ~2.56V for THD~10%

Negative feedback reduces distortion, which allowed input voltage of 80mV p-p to be applied to obtain this swing.

Q.5 Suppose the amplifier shown in Fig. 6 is designed with same bias point (I_{CQ} and V_{CEQ}) calculated earlier in Q.4. What would be the open circuit voltage gain and input resistance for this amplifier? Will the output swing be similar?

Sol: Bias point from previous question is $I_{CQ2} = 2.6mA$, $V_{CEQ2} = 3.1V$.

$$I_{CQ2} = 2.6mA \Rightarrow I_{CQ1} = \frac{2.6mA}{\beta} = 26\mu A$$

$$\frac{-1.3 + 5}{R_E} = I_{EQ2} = \frac{1 + \beta}{\beta} I_{CQ2} \Rightarrow R_E = 1.41k\Omega$$

Although not required, note that if we assume 0.7V drop for Q_2 , then drop for Q_1 (whose collector current is 100 times lower) would be $\sim 0.1 V$ lower.

$$\begin{split} V_{CEQ2} &= V_{C2} - V_{E2} = 3.1V \\ \Rightarrow V_C &= 3.1 + (-1.3) = 1.8V \Rightarrow R_C = \frac{V_{CC} - V_C}{I_{CQ2}} = 1.23k\Omega \end{split}$$

Small signal equivalent circuit:

Note that $V_{CEQ} = V_{CEQ1} + V_{BEQ2}$. Transistor Q_1 can go into saturation but not transistor Q_2 . When Q_1 goes into saturation, distortion begins.

Note that second term is lower and thus swing is about the same.