Теоријске основе информатике 1

Hенад Стојановић nenad.s@kg.ac.rs

Институт за математику и информатику
Природно-математички факултет
Универзитет у Крагујевцу

Крагујевац, 12.12.2018.

Претпоставимо да формула A од везника има везнике $\neg, \wedge, \vee, \Rightarrow, \Leftrightarrow$. Поштујући следеће кораке формулу A можемо елементарно еквивалентно трансформисати у формулу која је у КНФ или ДНФ.

Претпоставимо да формула A од везника има везнике $\neg, \wedge, \vee, \Rightarrow, \Leftrightarrow$. Поштујући следеће кораке формулу A можемо елементарно еквивалентно трансформисати у формулу која је у КНФ или ДНФ.

1. Елиминишемо \Leftrightarrow користећи: $p \Leftrightarrow q \equiv (p \Rightarrow q) \land (q \Rightarrow p)$.

Претпоставимо да формула A од везника има везнике $\neg, \wedge, \vee, \Rightarrow, \Leftrightarrow$. Поштујући следеће кораке формулу A можемо елементарно еквивалентно трансформисати у формулу која је у КНФ или ДНФ.

- **1**. Елиминишемо \Leftrightarrow користећи: $p \Leftrightarrow q \equiv (p \Rightarrow q) \land (q \Rightarrow p)$.
- **2**. Елиминишемо \Rightarrow користећи: $p \Rightarrow q \equiv \neg p \lor q$.

Претпоставимо да формула A од везника има везнике $\neg, \wedge, \vee, \Rightarrow, \Leftrightarrow$. Поштујући следеће кораке формулу A можемо елементарно еквивалентно трансформисати у формулу која је у КНФ или ДНФ.

- **1.** Елиминишемо \Leftrightarrow користећи: $p \Leftrightarrow q \equiv (p \Rightarrow q) \land (q \Rightarrow p)$.
- **2**. Елиминишемо \Rightarrow користећи: $p \Rightarrow q \equiv \neg p \lor q$.
- 3. Убацујемо ¬ у заграде користећи: $\neg(p \land q) \equiv \neg p \lor \neg q$ и $\neg(p \lor q) \equiv \neg p \land \neg q$.

Претпоставимо да формула A од везника има везнике $\neg, \wedge, \vee, \Rightarrow, \Leftrightarrow$. Поштујући следеће кораке формулу A можемо елементарно еквивалентно трансформисати у формулу која је у КНФ или ДНФ.

- **1**. Елиминишемо \Leftrightarrow користећи: $p \Leftrightarrow q \equiv (p \Rightarrow q) \land (q \Rightarrow p)$.
- **2**. Елиминишемо \Rightarrow користећи: $p \Rightarrow q \equiv \neg p \lor q$.
- 3. Убацујемо ¬ у заграде користећи: $\neg(p \land q) \equiv \neg p \lor \neg q$ и $\neg(p \lor q) \equiv \neg p \land \neg q$.
- **4.** Елиминишемо дупле негације користећи: $\neg \neg p \equiv p$.

Претпоставимо да формула A од везника има везнике $\neg, \wedge, \vee, \Rightarrow, \Leftrightarrow$. Поштујући следеће кораке формулу A можемо елементарно еквивалентно трансформисати у формулу која је у КНФ или ДНФ.

- **1**. Елиминишемо \Leftrightarrow користећи: $p \Leftrightarrow q \equiv (p \Rightarrow q) \land (q \Rightarrow p)$.
- **2**. Елиминишемо \Rightarrow користећи: $p \Rightarrow q \equiv \neg p \lor q$.
- 3. Убацујемо ¬ у заграде користећи: ¬ $(p \land q) \equiv \neg p \lor \neg q$ и ¬ $(p \lor q) \equiv \neg p \land \neg q$.
- **4**. Елиминишемо дупле негације користећи: $\neg \neg p \equiv p$.
- **5.** Подешавамо тако да добијемо КНФ или ДНФ користећи: $p \wedge (q \vee r) \equiv (p \wedge q) \vee (p \wedge r), \, p \vee (q \wedge r) \equiv (p \vee q) \wedge (p \vee r)$ и њихова уопштења

Претпоставимо да формула A од везника има везнике $\neg, \wedge, \vee, \Rightarrow, \Leftrightarrow$. Поштујући следеће кораке формулу A можемо елементарно еквивалентно трансформисати у формулу која је у КНФ или ДНФ.

- **1.** Елиминишемо \Leftrightarrow користећи: $p \Leftrightarrow q \equiv (p \Rightarrow q) \land (q \Rightarrow p)$.
- **2**. Елиминишемо \Rightarrow користећи: $p \Rightarrow q \equiv \neg p \lor q$.
- 3. Убацујемо ¬ у заграде користећи: $\neg(p \land q) \equiv \neg p \lor \neg q$ и $\neg(p \lor q) \equiv \neg p \land \neg q$.
- **4**. Елиминишемо дупле негације користећи: $\neg \neg p \equiv p$.
- 5. Подешавамо тако да добијемо КНФ или ДНФ користећи:

$$p\wedge (q\vee r)\equiv (p\wedge q)\vee (p\wedge r),$$
 $p\vee (q\wedge r)\equiv (p\vee q)\wedge (p\vee r)$ и њихова уопштења

- 6. Козметичка подешавања:
- $p \wedge p \equiv p, \ p \vee p \equiv p, \ q \wedge \top \equiv q, \ q \vee \top \equiv \top, \ q \wedge \bot \equiv \bot, \ q \vee \bot \equiv q.$

4. Одредити КНФ и ДНФ следеће формуле

$$p \Leftrightarrow (q \land \neg p).$$

4. Одредити КНФ и ДНФ следеће формуле

$$p \Leftrightarrow (q \land \neg p).$$

5. Доказати да су следеће формуле таутологије:

(a)
$$(p \land (p \Rightarrow q)) \Rightarrow q$$
;

4. Одредити КНФ и ДНФ следеће формуле

$$p \Leftrightarrow (q \land \neg p).$$

5. Доказати да су следеће формуле таутологије:

- (a) $(p \land (p \Rightarrow q)) \Rightarrow q$;
- (6) $(\neg p \Rightarrow (q \land \neg q)) \Rightarrow p$;

4. Одредити КНФ и ДНФ следеће формуле

$$p \Leftrightarrow (q \land \neg p).$$

5. Доказати да су следеће формуле таутологије:

- (a) $(p \land (p \Rightarrow q)) \Rightarrow q$;
- (6) $(\neg p \Rightarrow (q \land \neg q)) \Rightarrow p;$
- (B) $((p \Rightarrow q) \land \neg q) \Rightarrow \neg p$;

4. Одредити КНФ и ДНФ следеће формуле

$$p \Leftrightarrow (q \land \neg p).$$

5. Доказати да су следеће формуле таутологије:

- (a) $(p \land (p \Rightarrow q)) \Rightarrow q$;
- (6) $(\neg p \Rightarrow (q \land \neg q)) \Rightarrow p$;
- (B) $((p \Rightarrow q) \land \neg q) \Rightarrow \neg p;$
- $(r) ((p_1 \Rightarrow p_2) \Rightarrow p_3) \Rightarrow ((p_3 \Rightarrow p_1) \Rightarrow (p_4 \Rightarrow p_1)).$

Литерал. Литерал је исказно слово или негација исказног слова.

Литерал. Литерал је исказно слово или негација исказног слова.

Клауза. Клауза је дисјункција литерала. Клаузе ћемо записивати као скупове: тј. клаузу $L_1 \vee L_2 \vee \ldots \vee L_n$, где су L_i литерали, пишемо као $\{L_1, L_2, \ldots, L_n\}$.

Литерал. Литерал је исказно слово или негација исказног слова.

Клауза. Клауза је дисјункција литерала. Клаузе ћемо записивати као скупове: тј. клаузу $L_1 \vee L_2 \vee \ldots \vee L_n$, где су L_i литерали, пишемо као $\{L_1, L_2, \ldots, L_n\}$.

КНФ. КНФ је конјункција клауза.

Литерал. Литерал је исказно слово или негација исказног слова.

Клауза. Клауза је дисјункција литерала. Клаузе ћемо записивати као скупове: тј. клаузу $L_1 \vee L_2 \vee \ldots \vee L_n$, где су L_i литерали, пишемо као $\{L_1, L_2, \ldots, L_n\}$.

КНФ. КНФ је конјункција клауза.

Правило резолуције. Ако су C_1 и C_2 клаузе, $L_1 \in C_1$, $L_2 \in C_2$ литерали такви да $L_1 \equiv \neg L_2$ (тј. један од L_1 , L_2 је исказно слово, а други је његова негација), тада је **резолвента** од C_1 и C_2 , у односу на L_1 и L_2 , следећа клауза $Res(C_1,C_2;L_1,L_2)=(C_1\setminus\{L_1\})\cup(C_2\setminus\{L_2\})$. У овом случају правило резолуције гласи

$$Res\frac{C_1, C_2}{Res(C_1, C_2; L_1, L_2)}.$$

Теорема потпуности за резолуцију. Скуп клауза $\{C_1,C_2,\ldots,C_n\}$ је контрадикторан ако и само ако постоји доказ за \emptyset из скупа клауза $\{C_1,C_2,\ldots,C_n\}$.

Теорема потпуности за резолуцију. Скуп клауза $\{C_1,C_2,\ldots,C_n\}$ је контрадикторан ако и само ако постоји доказ за \emptyset из скупа клауза $\{C_1,C_2,\ldots,C_n\}$.

6. Методом резолуције доказати да је

$$F = (p \Rightarrow q) \Rightarrow ((q \Rightarrow r) \Rightarrow (p \Rightarrow r))$$
 таутологија.

Теорема потпуности за резолуцију. Скуп клауза $\{C_1,C_2,\ldots,C_n\}$ је контрадикторан ако и само ако постоји доказ за \emptyset из скупа клауза $\{C_1,C_2,\ldots,C_n\}$.

6. Методом резолуције доказати да је

$$F = (p \Rightarrow q) \Rightarrow ((q \Rightarrow r) \Rightarrow (p \Rightarrow r))$$
 таутологија.

7. Методом резолуције доказати да је

$$F = (r \Rightarrow p) \Rightarrow ((p \land q) \lor r \Rightarrow p \land (q \lor r))$$
 таутологија.

Дефиниција. Формула α је синтаксна последица скупа формула Γ , ако се секвент $\Gamma \vdash \alpha$ може добити применом следећих правила коначан број пута

Дефиниција. Формула α је синтаксна последица скупа формула Γ , ако се секвент $\Gamma \vdash \alpha$ може добити применом следећих правила коначан број пута

Аксиома	Слабљење
$\frac{1}{\Gamma, \varphi \vdash \varphi}(ax)$	$\frac{\Gamma \vdash \varphi}{\Gamma, \gamma \vdash \varphi}(Slab)$
Увођење конјункције	Елиминација конјункције
$\frac{\Gamma \vdash \varphi \Gamma \vdash \psi}{\Gamma \vdash \varphi \land \psi}(\land_{\mathrm{U}})$	$\frac{\Gamma \vdash \varphi \land \psi}{\Gamma \vdash \varphi}(\land_{\mathrm{E}}^{l}) \frac{\Gamma \vdash \varphi \land \psi}{\Gamma \vdash \psi}(\land_{\mathrm{E}}^{d})$
Увођење дисјункције	Елиминација дисјункције
$ \frac{\Gamma \vdash \varphi}{\Gamma \vdash \varphi \lor \psi}(\lor_{\mathbf{U}}^{l}) \ \frac{\Gamma \vdash \psi}{\Gamma \vdash \varphi \lor \psi}(\lor_{\mathbf{U}}^{d}) $	$\frac{\Gamma \vdash \varphi \lor \psi \Gamma, \varphi \vdash \theta \Gamma, \psi \vdash \theta}{\Gamma \vdash \theta} (\lor_{\mathrm{E}})$
Увођење импликације	Елиминација импликације
$\frac{\Gamma, \varphi \vdash \psi}{\Gamma \vdash \varphi \Rightarrow \psi}(\Rightarrow_{\mathbf{U}})$	$\frac{\Gamma \vdash \varphi \Rightarrow \psi \Gamma \vdash \varphi}{\Gamma \vdash \psi} (\Rightarrow_{\mathrm{E}})$

Увођење еквиваленције $\frac{\Gamma \vdash \varphi \Rightarrow \psi \Gamma \vdash \psi \Rightarrow \varphi}{\Gamma \vdash \varphi \Leftrightarrow \psi} (\Leftrightarrow_{\mathrm{U}})$	Елиминација еквиваленције $\frac{\Gamma \vdash \varphi \Leftrightarrow \psi}{\Gamma \vdash \varphi \Rightarrow \psi}(\Leftrightarrow_{\mathrm{E}}^{l}) \frac{\Gamma \vdash \varphi \Leftrightarrow \psi}{\Gamma \vdash \psi \Rightarrow \varphi}(\Leftrightarrow_{\mathrm{E}}^{d})$
Увођење негације $\dfrac{\Gamma, \varphi \vdash \bot}{\Gamma \vdash \neg \varphi}(\neg_{\mathrm{U}})$	Елиминација негације $\frac{\Gamma \vdash \varphi \Gamma \vdash \neg \varphi}{\Gamma \vdash \bot}(\neg_{E})$
Класична противречност $\frac{\Gamma, \neg \varphi \vdash \bot}{\Gamma \vdash \varphi}(\bot_c)$	

$ \begin{array}{ c c }\hline \textbf{Увођење еквиваленције} \\ \frac{\Gamma \vdash \varphi \Rightarrow \psi \Gamma \vdash \psi \Rightarrow \varphi}{\Gamma \vdash \varphi \Leftrightarrow \psi} (\Leftrightarrow_{\mathbf{U}}) \\ \hline \end{array} $	Елиминација еквиваленције $\frac{\Gamma \vdash \varphi \Leftrightarrow \psi}{\Gamma \vdash \varphi \Rightarrow \psi}(\Leftrightarrow_{\mathrm{E}}^l) \frac{\Gamma \vdash \varphi \Leftrightarrow \psi}{\Gamma \vdash \psi \Rightarrow \varphi}(\Leftrightarrow_{\mathrm{E}}^d)$
Увођење негације $\frac{\Gamma, \varphi \vdash \bot}{\Gamma \vdash \neg \varphi} (\neg_{\mathrm{U}})$	Елиминација негације $\frac{\Gamma \vdash \varphi \Gamma \vdash \neg \varphi}{\Gamma \vdash \bot}(\neg_{E})$
Класична противречност $\frac{\Gamma, \neg \varphi \vdash \bot}{\Gamma \vdash \varphi}(\bot_c)$	

Дефиниција. Формула α је доказива, тј. јесте теорема исказне логике, у ознаци $\vdash \alpha$, ако је доказив секвент $\emptyset \vdash \alpha$.

1. Доказати да је формула $\vdash (p \land q \Rightarrow r) \Rightarrow (p \Rightarrow (q \Rightarrow r))$ теорема у датом дедуктивном систему.

- **1.** Доказати да је формула $\vdash (p \land q \Rightarrow r) \Rightarrow (p \Rightarrow (q \Rightarrow r))$ теорема у датом дедуктивном систему.
- **2**. Доказати да је формула $\vdash (p \Rightarrow (q \Rightarrow r)) \Rightarrow (p \land q \Rightarrow r)$ теорема у датом дедуктивном систему.

- **1**. Доказати да је формула $\vdash (p \land q \Rightarrow r) \Rightarrow (p \Rightarrow (q \Rightarrow r))$ теорема у датом дедуктивном систему.
- **2**. Доказати да је формула $\vdash (p\Rightarrow (q\Rightarrow r))\Rightarrow (p\land q\Rightarrow r)$ теорема у датом дедуктивном систему.
- **3.** Доказати да је формула $\vdash (p \land q \Rightarrow r) \Leftrightarrow (p \Rightarrow (q \Rightarrow r))$ теорема у датом дедуктивном систему.

- **1**. Доказати да је формула $\vdash (p \land q \Rightarrow r) \Rightarrow (p \Rightarrow (q \Rightarrow r))$ теорема у датом дедуктивном систему.
- **2**. Доказати да је формула $\vdash (p\Rightarrow (q\Rightarrow r))\Rightarrow (p\land q\Rightarrow r)$ теорема у датом дедуктивном систему.
- **3**. Доказати да је формула $\vdash (p \land q \Rightarrow r) \Leftrightarrow (p \Rightarrow (q \Rightarrow r))$ теорема у датом дедуктивном систему.
- **4**. Доказати да је формула $\vdash (p\Rightarrow (q\Rightarrow r))\Leftrightarrow (q\Rightarrow (p\Rightarrow r))$ теорема у датом дедуктивном систему.

- **1**. Доказати да је формула $\vdash (p \land q \Rightarrow r) \Rightarrow (p \Rightarrow (q \Rightarrow r))$ теорема у датом дедуктивном систему.
- **2**. Доказати да је формула $\vdash (p\Rightarrow (q\Rightarrow r))\Rightarrow (p\land q\Rightarrow r)$ теорема у датом дедуктивном систему.
- **3.** Доказати да је формула $\vdash (p \land q \Rightarrow r) \Leftrightarrow (p \Rightarrow (q \Rightarrow r))$ теорема у датом дедуктивном систему.
- **4**. Доказати да је формула $\vdash (p\Rightarrow (q\Rightarrow r))\Leftrightarrow (q\Rightarrow (p\Rightarrow r))$ теорема у датом дедуктивном систему.
- **5**. Доказати да је формула $\vdash (\neg p \Rightarrow \neg q) \Rightarrow (q \Rightarrow p)$ теорема у датом дедуктивном систему.

- **1**. Доказати да је формула $\vdash (p \land q \Rightarrow r) \Rightarrow (p \Rightarrow (q \Rightarrow r))$ теорема у датом дедуктивном систему.
- **2**. Доказати да је формула $\vdash (p\Rightarrow (q\Rightarrow r))\Rightarrow (p\land q\Rightarrow r)$ теорема у датом дедуктивном систему.
- **3**. Доказати да је формула $\vdash (p \land q \Rightarrow r) \Leftrightarrow (p \Rightarrow (q \Rightarrow r))$ теорема у датом дедуктивном систему.
- **4**. Доказати да је формула $\vdash (p\Rightarrow (q\Rightarrow r))\Leftrightarrow (q\Rightarrow (p\Rightarrow r))$ теорема у датом дедуктивном систему.
- **5**. Доказати да је формула $\vdash (\neg p \Rightarrow \neg q) \Rightarrow (q \Rightarrow p)$ теорема у датом дедуктивном систему.
- **6.** Доказати да је формула $\vdash (p \land q \Rightarrow r) \Leftrightarrow (p \land \neg r \Rightarrow \neg q)$ теорема у датом дедуктивном систему.

7. Доказати да је формула $\vdash (p\Rightarrow q\land r)\Rightarrow (p\Rightarrow q)\land (p\Rightarrow r)$ теорема у датом дедуктивном систему.

- 7. Доказати да је формула $\vdash (p\Rightarrow q\wedge r)\Rightarrow (p\Rightarrow q)\wedge (p\Rightarrow r)$ теорема у датом дедуктивном систему.
- **8.** Доказати да је формула $\vdash (p \Rightarrow r) \land (q \Rightarrow r) \Leftrightarrow (p \lor q \Rightarrow r)$ теорема у датом дедуктивном систему.

- 7. Доказати да је формула $\vdash (p\Rightarrow q\wedge r)\Rightarrow (p\Rightarrow q)\wedge (p\Rightarrow r)$ теорема у датом дедуктивном систему.
- **8.** Доказати да је формула $\vdash (p \Rightarrow r) \land (q \Rightarrow r) \Leftrightarrow (p \lor q \Rightarrow r)$ теорема у датом дедуктивном систему.
- **9.** Доказати да је формула $\vdash ((p\Rightarrow q)\Rightarrow \neg p)\Rightarrow (p\Rightarrow \neg (p\land q))$ теорема у датом дедуктивном систему.

- 7. Доказати да је формула $\vdash (p\Rightarrow q\wedge r)\Rightarrow (p\Rightarrow q)\wedge (p\Rightarrow r)$ теорема у датом дедуктивном систему.
- **8.** Доказати да је формула $\vdash (p \Rightarrow r) \land (q \Rightarrow r) \Leftrightarrow (p \lor q \Rightarrow r)$ теорема у датом дедуктивном систему.
- **9.** Доказати да је формула $\vdash ((p\Rightarrow q)\Rightarrow \lnot p)\Rightarrow (p\Rightarrow \lnot (p\land q))$ теорема у датом дедуктивном систему.
- **10**. Доказати да је формула $\vdash (p\Rightarrow \neg(p\land q))\Rightarrow ((p\Rightarrow q)\Rightarrow \neg p)$ теорема у датом дедуктивном систему.