FIT2086 Lecture 7 Classification, Naïve Bayes and logistic regression

Daniel F. Schmidt

Faculty of Information Technology, Monash University

September 3, 2018

Outline

- Classifiers
 - Naïve Bayes Classifiers
 - Logistic Regression
- Assessing Classifiers
 - How good is a classifier?

Revision from last week (1)

Linear regression

$$\mathbb{E}\left[Y_{i}\right] = \beta_{0} + \beta_{1}x_{i,1} + \beta_{2}x_{i,2} + \dots + \beta_{p}x_{i,p}$$

- ullet eta_0 is the intercept (value of $\mathbb{E}\left[Y_i
 ight]$ when all predictors are zero)
- β_j is a coefficient (change in $\mathbb{E}\left[Y_i\right]$ per unit change in $x_{j,i}$)
- Residuals (errors)

$$e_i = y_i - \beta_0 - \beta_1 x_{i,1} - \beta_2 x_{i,2} - \dots - \beta_p x_{i,p}$$

Residual sum-of-squares

$$RSS(\beta_0, \beta_1, \dots, \beta_p) = \sum_{i=1}^n e_i^2$$

• Least-squares estimates linear model by finding $\beta_0,\beta_1,\dots,\beta_p$ that minimise the RSS

Revision from last week (2)

• R^2 goodness-of-fit

$$R^2 = 1 - \frac{\text{RSS}}{\text{TSS}}$$

where TSS is the sum of squared errors for the mean model

- Model fitting:
 - Overfitting = including unimportant predictors
 - Underfitting = excluding important predictors
- Hypothesis testing to determine if variable is important
 - Test $H_0: \beta_j = 0$ vs $H_A: \beta_j \neq 0$
 - ullet The smaller the p-value the stronger predictor j is associated with the target
- Model selection methods:
 - · Add complexity penalty to the negative log-likelihood
- Finding good models all subsets selection, stepwise selection

Outline

- Classifiers
 - Naïve Bayes Classifiers
 - Logistic Regression
- 2 Assessing Classifiers
 - How good is a classifier?

Supervised Learning – recap (1)

- Imagine we have measured p+1 variables on n individuals (people, objects, things)
- ullet We would like to predict one of the variables using the remaining p variables
- If the variable we are predicting is categorical, we are performing classification
 - Example: predicting if someone has diabetes from medical measurements.
- If the variable we are predicting is numerical, we are performing regression
 - Example: Predicting the quality of a wine from chemical and seasonal information.

- Imagine we have measured p+1 variables on n individuals (people, objects, things)
- ullet We would like to predict one of the variables using the remaining p variables
- If the variable we are predicting is categorical, we are performing classification
 - Example: predicting if someone has diabetes from medical measurements.
- If the variable we are predicting is numerical, we are performing regression
 - Example: Predicting the quality of a wine from chemical and seasonal information.

Supervised Learning – recap (2)

- The variable we are predicting is designated the "y" variable
 - We have (y_1, \ldots, y_n)
- This variable is often called the:
 - target;
 - response;
 - outcome.
- The other variables are usually designated "X" variables
 - We have $(x_{i,1}, ..., x_{i,p})$ for i = 1, ..., n
- These variables are often called the
 - explanatory variables;
 - predictors;
 - covariates;
 - features;
 - exposures.
- Usually we assume the targets are random variables and the predictors are known without error

Supervised Learning – recap (2)

- The variable we are predicting is designated the "y" variable
 - We have (y_1,\ldots,y_n)
- This variable is often called the:
 - target;
 - response;
 - outcome.
- The other variables are usually designated "X" variables
 - We have $(x_{i,1},\ldots,x_{i,p})$ for $i=1,\ldots,n$
- These variables are often called the
 - explanatory variables;
 - predictors;
 - covariates;
 - features;
 - exposures.
- Usually we assume the targets are random variables and the predictors are known without error

Classifiers

Probabilistic classifiers

Classification – Key Slide

- We begin by defining a classifier in terms of probability
- ullet Imagine we have a categorical outcome variable Y
- We also have p predictor variables X_1, \ldots, X_p \Rightarrow often called features in classification literature
- We can build a classifier for Y using our predictors, i.e., we want to find

$$\mathbb{P}(Y = y \mid X_1 = x_1, X_2 = x_2, \dots, X_p = x_p)$$

- This is the conditional probability of Y given X_1, \ldots, X_p .
- Gives us the probability of an individual being in class Y=y, given the values of their predictors x_1,\ldots,x_p

Classifiers (1)

- Let us now specialise our problem
- Assume that all the predictors are also categorical
- The formula for conditional probability is:

$$\mathbb{P}(Y = y \mid X_1 = x_1, \dots, X_p = x_p) = \frac{\mathbb{P}(Y = y, X_1 = x_1, \dots, X_p = x_p)}{\mathbb{P}(X_1 = x_1, \dots, X_p = x_p)}$$

where

- the numerator is the joint probability of $(Y = y, X_1 = x_1, \dots, X_n = x_n);$
- the denominator is the marginal probability of $(X_1 = x_1, \dots, X_p = x_p)$.

- So if we have the joint probability we can build a classifier
- Consider the following example:

	No Heart Disease $(H=0)$	Heart Disease $(H=1)$
No Mutation $(M=0)$	0.35	0.30
Mutation $(M=1)$	0.10	0.25

Population joint probabilities of heart disease/LDLR mutation.

Then we have

$$P(H = 1 | M = 0) = \frac{P(H = 1, M = 0)}{P(M = 0)} = 0.4615$$

 $P(H = 1 | M = 1) = \frac{P(H = 1, M = 1)}{P(M = 1)} = 0.7143$

Classifiers (3)

- In our example we got told the population joint probabilities
- But in reality we don't know these we just have data
- We can try and estimate them from the data
- For our example:
 - our target is heart disease, $H \in \{0, 1\}$,
 - \bullet predictor is LDLR mutation, $M \in \{0,1\}$

Classifiers (4)

- Imagine we had n realisations of this random variables, $\mathbf{m} = (m_1, \dots, m_n)$ and $\mathbf{h} = (h_1, \dots, h_n)$
- We could estimate joint probability by proportions

$$F(H = h, M = m) = \frac{1}{n} \sum_{i=1}^{n} I(h_i = h \text{ and } m_i = m)$$

 \bullet Weak law of large numbers guarantees this will converge on population proportions for large enough n

Classifiers (5)

- Example, imagine we had
 - $\mathbf{m} = (1, 1, 0, 1, 1, 1, 0, 0)$ and
 - $\mathbf{h} = (1, 0, 1, 1, 0, 0, 1, 0)$
- Then estimated joint probabilities are

	No Heart Disease $(H=0)$	Heart Disease $(H=1)$
No Mutation $(M = 0)$	1/8	2/8
Mutation $(M = 1)$	3/8	2/8

Estimated joint probabilities of heart disease/LDLR mutation

 \bullet Now we can estimate $\mathbb{P}(H=h\,|\,M=m)$ using

$$\frac{F(H = h, M = m)}{F(H = 0, M = m) + F(H = 1, M = m)}$$

 For large n the proportions will be close to population probabilities

Classifiers (6)

- Simple enough but there is a problem
- For our simple problem H and M were binary \Rightarrow only need to estimate $2 \times 2 = 4$ joint probabilities
- What if we had two binary genetic mutations, M_1 and M_2 ?
- Now have $2 \times 2 \times 2 = 8$ probabilities to estimate
- For p predictors, there are 2^{p+1} probabilities to estimate \Rightarrow exponential growth in p
- ullet This rapidly outstrips our sample size n no matter how big n is

Classifiers (7)

- We need to constrain the problem
- Two simple approaches popular in literature
- Naïve Bayes classifiers
 - Make simplifying assumptions about joint probabilities
 - Easily handle categorical predictors
 - Easily handles multi-class targets
 - Popular in text mining and classification
- Logistic regression
 - Adaptation of the linear model, widely used
 - Directly estimates conditional probabilities
 - Handles categorical and continuous predictors
 - More difficult to handle multi-class targets

Naïve Bayes Classifiers (1) - Key Slide

- The Naïve Bayes solves the problem of too many probabilities to estimate by making a very strong assumption
- Let X_1, \ldots, X_p be p categorical predictors (features) \Rightarrow do not have to be binary
- Use the shorthand notation $\mathbb{P}(Y=y,X=x) \equiv P(y,x)$
- Naïve Bayes assumes predictors are conditionally independent, given the value of the target

$$P(x_1, ..., x_p | y) = \prod_{j=1}^p P(x_j | y)$$

This assumption lets us write joint probability as

$$P(y, x_1, \dots, x_p) = P(x_1, \dots, x_p | y)P(y)$$
$$= \prod_{j=1}^p P(x_j | y)P(y)$$

Using this joint probability we can write

$$P(y \mid x_1, \dots, x_p) = \frac{\prod_{j=1}^p P(x_j \mid y) P(y)}{P(x_1, \dots, x_p)}$$

where we note $P(x_1, \ldots, x_p)$ does not depend on y \Rightarrow constant for given values of predictors

Naïve Bayes Classifiers (3) - Key Slide

The formula

$$P(y \mid x_1, \dots, x_p) = \frac{\prod_{j=1}^p P(x_j \mid y) P(y)}{P(x_1, \dots, x_p)}$$

is a statement of Bayes' theorem.

- You can think of it this way:
 - $P(x_j | y)$ is the probability of seeing a value for predictor, given that the target has a particular value (likelihood of x_j given y)
 - P(y) is the probability of the target having a particular value in our population (prior probability of seeing y before observing x_1,\ldots,x_p)
- Bayes' rule takes the prior probability of seeing Y=y, and updates this probability to take into account the fact that we have also observed the features x_1, \ldots, x_p .
- The resulting probability is called the posterior probability.

Naïve Bayes Classifiers (3) - Key Slide

The formula

$$P(y \mid x_1, \dots, x_p) = \frac{\prod_{j=1}^p P(x_j \mid y) P(y)}{P(x_1, \dots, x_p)}$$

is a statement of Bayes' theorem.

- You can think of it this way:
 - $P(x_j | y)$ is the probability of seeing a value for predictor, given that the target has a particular value (likelihood of x_j given y)
 - P(y) is the probability of the target having a particular value in our population (prior probability of seeing y before observing x_1,\ldots,x_p)
- Bayes' rule takes the prior probability of seeing Y=y, and updates this probability to take into account the fact that we have also observed the features x_1, \ldots, x_p .
- The resulting probability is called the posterior probability.

Bayes' Rule Example

- A woman attends a GP clinic regarding a breast lump
 - The population frequency of breast cancer $(C=1)\ 0.0066$ (our prior probability)
 - The probability of developing a breast lump (L=1) if :
 - a woman has breast cancer (C=1) is 60%
 - ullet if a woman does not have breast cancer (C=0) is 5%
- What is the probability the woman has breast cancer?

$$\mathbb{P}(C=1 \mid L=1) = \frac{\mathbb{P}(L=1 \mid C=1) \mathbb{P}(C=1)}{\mathbb{P}(L=1 \mid C=0) + \mathbb{P}(L=1 \mid C=1)}$$
$$= \frac{0.6 \cdot 0.0066}{0.05 \cdot (1 - 0.0066) + 0.6 \cdot 0.0066}$$
$$= 0.0738$$

• So before seeing lump, $\mathbb{P}(C=1)$ was 0.0066; after seeing

Bayes' Rule Example

- A woman attends a GP clinic regarding a breast lump
 - The population frequency of breast cancer $\left(C=1\right)~0.0066$ (our prior probability)
 - ullet The probability of developing a breast lump (L=1) if :
 - \bullet a woman has breast cancer (C=1) is 60%
 - \bullet if a woman does not have breast cancer (C=0) is 5%
- What is the probability the woman has breast cancer?

$$\mathbb{P}(C=1 \mid L=1) = \frac{\mathbb{P}(L=1 \mid C=1) \mathbb{P}(C=1)}{\mathbb{P}(L=1 \mid C=0) + \mathbb{P}(L=1 \mid C=1)}$$
$$= \frac{0.6 \cdot 0.0066}{0.05 \cdot (1 - 0.0066) + 0.6 \cdot 0.0066}$$
$$= 0.0738$$

• So before seeing lump, $\mathbb{P}(C=1)$ was 0.0066; after seeing lump the revised probability is 0.0738

- Reduced number of probabilities we need to estimate
 - Let predictor j be categorical with K_i categories
 - ullet Let target Y be categorical with K_y categories
- Conditional independence means we need only estimate

$$\mathbb{P}(X_j=x\,|\,Y=y),\;x\in\{1,\ldots,K_j\},\;y\in\{1,\ldots,K_y\}$$
 for $j=1,\ldots,p$, and

Naïve Bayes Classifiers (5)

- Without assumptions we estimate $K_y \prod_{i=1}^p K_i$ probabilities
- With assumptions we only estimate

$$K_y \times (K_y \times K_1) + (K_y \times K_2) + \ldots + (K_y \times K_p)$$

probabilities, and

$$K_y \sum_{j=1}^p K_j \ll K_y \prod_{j=1}^p K_j$$

ullet So Naïve Bayes assumptions reduce problem size to linear in p

Naïve Bayes Classifiers (6)

- Given n samples of target-predictor pairs
 - $\mathbf{y} = (y_1, \dots, y_n)$
 - $\mathbf{x}_j = (x_{1,j}, \dots, x_{n,j}), \ j = 1, \dots, p$

we can learn a Naïve Bayes model from the proportions:

$$F(X_j = x \mid Y = y) = \frac{\sum_{i=1}^n I(x_{i,j} = x \text{ and } y_i = y)}{\sum_{i=1}^n I(y_i = y)}$$

and

$$F(Y = y) = \frac{1}{n} \sum_{i=1}^{n} I(y_i = y)$$

ullet Learning a Naïve Bayes classifer is linear time complexity in the sample size n.

Naïve Bayes Classifiers (7)

• Given the proportions we can classify a new set of predictor values x_1', \dots, x_p' using

$$P(y \mid x'_1, \dots, x'_p) = \frac{\prod_{j=1}^p F(X_j = x'_j \mid Y = y) F(Y = y)}{\sum_{y \in \{1, \dots, K_y\}} \prod_{j=1}^p F(X_j = x'_j \mid Y = y) F(Y = y)}$$

which is linear in the feature size p.

- So Naïve Bayes is efficient, but only by being quite restrictive
- No real reason to think that predictors should be conditionally independent in real life
- However, often works sufficiently well in practice

Naïve Bayes Classifiers (8)

- What if we want to guess which class an individual is in? \Rightarrow Find the value of y which maximises $P(y | x'_1, \dots, x'_p)$
- ullet Given predictor values x_1',\ldots,x_p'

$$P(y | x'_1, ..., x'_p) \propto \prod_{j=1}^p F(X_j = x'_j | Y = y) F(Y = y)$$

as denominator on right-hand-side is constant in y (as we sum over y).

Naïve Bayes Classifiers (9)

- So far assumed categorical predictors
- How to handle continuous predictors?
- There are two approaches:
 - We assume parametric distributions for each predictor, i.e.,

$$p(x_j \mid y) \equiv p(x_j \mid \boldsymbol{\theta}_{j,y})$$

- and estimate $\hat{m{ heta}}_{j,y}$ from the data using maximum likelihood
- We discretize the predictor into categories, i.e., use histogram
- We do not examine this further in this subject

Logistic Regression (1)

- The Naïve Bayes approach made assumptions about the features to simplify estimation of the joint probabilities
- It then used the joint probabilities to find the conditional probability of the targets using Bayes rule.
- This is a round-about way of solving problem
- Logistic regression <u>directly</u> models the conditional probabilities
 extends the <u>linear regression</u> model to binary data

• Given predictors $x_{i,1}, \ldots, x_{i,p}$ multiple linear regression predicts the target as

$$\mathbb{E}\left[Y_i\right] = \eta_i = \beta_0 + \sum_{j=1}^p \beta_j x_{i,j}$$

where η_i is shorthand for our linear predictor for individual i

- We find $\beta_0, \beta_1, \dots, \beta_j$ by least-squares
- If our target is binary, we could fit a linear model using least-squares and approximate

$$\mathbb{P}(Y_i = 1 \mid x_{i,1}, \dots, x_{i,p}) \approx \eta_i$$

• Serious problem: our predicted value η_i could be less than zero, or greater than one, for certain values of the features!

Logistic Regression (3)

- One solution is to bound η_i to (0,1)
- ullet There exist a lot of ways of bounding η_i
- Logistic regression chooses to use the logistic function

$$\mathbb{P}(Y_i = 1 \mid x_{i,1}, \dots, x_{i,p}) = \frac{1}{1 + \exp(-\eta_i)}$$

- This function smoothly
 - tends to 0 as $\eta_i \equiv \beta_0 + \sum_{j=1}^p \beta_j x_{i,j} \to -\infty$;
 - tends to 1 as $\eta_i \equiv \beta_0 + \sum_{j=1}^p \beta_j x_{i,j} \to \infty$.

Logistic Regression (4)

The logistic function. As $\eta_i \to -\infty$, then $\mathbb{P}(Y_i = 1 \mid \eta_i) \to 0$, and as $\eta_i \to \infty$, then $\mathbb{P}(Y_i = 1 \mid \eta_i) \to 1$.

- We can interpret the logistic model in terms of log-odds
- ullet Given $\mathbb{P}(Y=1)$ and $\mathbb{P}(Y=0)$, the odds for Y=1 are

$$\mathbb{P}(Y=1)/\mathbb{P}(Y=0)$$

- They reflect how many more times likely the event Y=1 is to occur than the event Y=0
- \bullet Example: probability of a heads from coin toss is 0.75; then
 - the odds for seeing a head are 0.75/0.25 = 3;
 - the odds for seeing a tail are 0.25/0.75 = 1/3.
- The log-odds make this symmetric:
 - the log-odds for seeing a head are $\log(0.75/0.25) = \log 3$;
 - the log-odds for seeing a tail are $\log(0.25/0.75) = -\log 3$.

- We can interpret the logistic model in terms of log-odds
- ullet Given $\mathbb{P}(Y=1)$ and $\mathbb{P}(Y=0)$, the odds for Y=1 are

$$\mathbb{P}(Y=1)/\mathbb{P}(Y=0)$$

- They reflect how many more times likely the event Y=1 is to occur than the event Y=0
- \bullet Example: probability of a heads from coin toss is 0.75; then
 - the odds for seeing a head are 0.75/0.25 = 3;
 - the odds for seeing a tail are 0.25/0.75 = 1/3.
- The log-odds make this symmetric:
 - the log-odds for seeing a head are $\log(0.75/0.25) = \log 3$;
 - the log-odds for seeing a tail are $\log(0.25/0.75) = -\log 3$.

A logistic regression models the conditional log-odds as

$$\log \left(\frac{\mathbb{P}(Y_i = 1 \mid x_{i,1}, \dots, x_{i,p})}{\mathbb{P}(Y_i = 0 \mid x_{i,1}, \dots, x_{i,p})} \right) = \beta_0 + \sum_{j=1}^p \beta_j x_{i,j} \equiv \eta_i$$

- \bullet So the log-odds of a success, given the values of the predictors, is equal to the linear predictor η_i
 - the intercept β_0 is the log-odds when all the predictors are zero, i.e., $x_{i,1} = x_{i,2} = \ldots = x_{i,p} = 0$;
 - the coefficient β_j is the increase in log-odds per unit change of predictor x_j
- The odds for Y=1 are $\exp(\eta_i)$
 - when $\eta_i > 0$, Y = 1 is more likely than Y = 0, and $e^{\eta_i} > 1$
 - when $\eta_j < 0$, Y = 0 is more likely than Y = 1, and $e^{\eta_i} < 1$

• To see that setting log-odds equal to η_i leads to logistic regression, write:

$$\log \left(\frac{\mathbb{P}(Y_i = 1 \mid x_{i,1}, \dots, x_{i,p})}{1 - \mathbb{P}(Y_i = 1 \mid x_{i,1}, \dots, x_{i,p})} \right) = \eta_i$$

Now exponentiate both sides

$$\frac{\mathbb{P}(Y_i = 1 \mid x_{i,1}, \dots, x_{i,p})}{1 - \mathbb{P}(Y_i = 1 \mid x_{i,1}, \dots, x_{i,p})} = \exp(\eta_i)$$

• Solving for $\mathbb{P}(Y_i = 1 \mid \cdots)$ yields

$$\mathbb{P}(Y_i = 1 \mid x_{i,1}, \dots, x_{i,p}) = \frac{\exp(\eta_i)}{1 + \exp(\eta_i)} = \frac{1}{1 + \exp(-\eta_j)}$$

(noting $1/e^a = e^{-a}$) which is the logistic function.

Logistic Regression (7)

• To see that setting log-odds equal to η_i leads to logistic regression, write:

$$\log \left(\frac{\mathbb{P}(Y_i = 1 \mid x_{i,1}, \dots, x_{i,p})}{1 - \mathbb{P}(Y_i = 1 \mid x_{i,1}, \dots, x_{i,p})} \right) = \eta_i$$

Now exponentiate both sides

$$\frac{\mathbb{P}(Y_i = 1 \mid x_{i,1}, \dots, x_{i,p})}{1 - \mathbb{P}(Y_i = 1 \mid x_{i,1}, \dots, x_{i,p})} = \exp(\eta_i)$$

• Solving for $\mathbb{P}(Y_i = 1 \mid \cdots)$ yields

$$\mathbb{P}(Y_i = 1 \mid x_{i,1}, \dots, x_{i,p}) = \frac{\exp(\eta_i)}{1 + \exp(\eta_i)} = \frac{1}{1 + \exp(-\eta_j)}$$

(noting $1/e^a=e^{-a}$) which is the logistic function

Logistic Regression (7)

• To see that setting log-odds equal to η_i leads to logistic regression, write:

$$\log \left(\frac{\mathbb{P}(Y_i = 1 \mid x_{i,1}, \dots, x_{i,p})}{1 - \mathbb{P}(Y_i = 1 \mid x_{i,1}, \dots, x_{i,p})} \right) = \eta_i$$

Now exponentiate both sides

$$\frac{\mathbb{P}(Y_i = 1 \mid x_{i,1}, \dots, x_{i,p})}{1 - \mathbb{P}(Y_i = 1 \mid x_{i,1}, \dots, x_{i,p})} = \exp(\eta_i)$$

• Solving for $\mathbb{P}(Y_i = 1 \mid \cdots)$ yields

$$\mathbb{P}(Y_i = 1 \mid x_{i,1}, \dots, x_{i,p}) = \frac{\exp(\eta_i)}{1 + \exp(\eta_i)} = \frac{1}{1 + \exp(-\eta_j)}$$

(noting $1/e^a = e^{-a}$) which is the logistic function.

Fitting Logistic Regression Models (1)

- How to estimate the regression coefficients?
- Many packages use maximum likelihood
- Let $\boldsymbol{\beta} = (\beta_1, \dots, \beta_p)$ be our regression coefficients
- Assume our targets are independent RVs;
- ullet Each Y_i is then distributed as per a Bernoulli distribution

$$Y_i \sim \operatorname{Be}(\theta_i(\beta_0, \boldsymbol{\beta}))$$

where

$$\theta_i(\beta_0, \boldsymbol{\beta}) = \frac{1}{1 + \exp\left(-\beta_0 - \sum_{j=1}^p \beta_j x_{i,j}\right)}$$

is the probability of success for individual i, given the predictors $x_{i,1}, \ldots, x_{i,p}$ and the parameters $\beta_0, \beta_1, \ldots, \beta_p$.

Fitting Logistic Regression Models (2)

• If $\mathbf{y} = (y_1, \dots, y_n)$ are binary targets, the likelihood for a logistic regression is then

$$p(\mathbf{y} \mid \beta_0, \boldsymbol{\beta}) = \prod_{i=1}^n p(y_i \mid \beta_0, \boldsymbol{\beta})$$
$$= \prod_{i=1}^n \theta_i(\beta_0, \boldsymbol{\beta})^{y_i} (1 - \theta_i(\beta_0, \boldsymbol{\beta}))^{1 - y_i}$$

from the pdf of the Bernoulli distribution.

The negative log-likelihood is then

$$L(\mathbf{y} \mid \beta_0, \boldsymbol{\beta}) = -\sum_{i=1}^{n} \left[y_i \log \theta_i(\beta_0, \boldsymbol{\beta}) + (1 - y_i) \log \left(1 - \theta_i(\beta_0, \boldsymbol{\beta}) \right) \right]$$

Fitting Logistic Regression Models (3)

The negative log-likelihood is then

$$L(\mathbf{y} \mid \beta_0, \boldsymbol{\beta}) = -\sum_{i=1}^{n} \left[y_i \log \theta_i(\beta_0, \boldsymbol{\beta}) + (1 - y_i) \log \left(1 - \theta_i(\beta_0, \boldsymbol{\beta}) \right) \right]$$

- The values $\hat{\beta}_0$, $\hat{\beta}$ of β_0 and β that minimise this quantity are the maximum likelihood estimates
- No closed form solution exists, must be found numerically
 But luckily always only a single, global minimum
- ullet Time complexity roughly cubic in number of predictors p \Longrightarrow potentially slower than Naïve Bayes
- But much more interpretable

Goodness-of-fit

The minimised negative log-likelihood

$$L(\mathbf{y} | \hat{\beta}_0, \hat{\boldsymbol{\beta}})$$

is a measure of goodness-of-fit of a model.

The difference in minimised negative log-likelihoods

$$L(\mathbf{y} \mid \hat{\beta}_0) - L(\mathbf{y} \mid \hat{\beta}_0, \hat{\boldsymbol{\beta}})$$

is a measure similar to R^2 ; (bigger differences \Rightarrow better fit)

- Relative to model with an intercept only (no predictors); equivalent to assuming P(Y=1) is same for all individuals
- Sometimes maximised log-likelihood is reported instead, or two twices (negative) log-likelihoods; depends on package

Predicting with a Logistic Regression

- Once we have found estimates $\hat{\beta}_0$, $\hat{\beta}$ it is easy to predict with a logistic regression
- ullet For some new values of features x_1',\dots,x_p' , we calculate

$$\hat{\eta} = \hat{\beta}_0 + \sum_{j=1}^p \hat{\beta}_j x_j'$$

• Then we can estimate the probability that $Y^\prime=1$ for these features:

$$\mathbb{P}(Y' = 1 \mid x_1', \dots, x_p') = \frac{1}{1 + \exp(-\hat{\eta})}$$

ullet If we need to guess at most likely class, choose value of Y' that maximises this probability

Extensions

- A strength of logistic regression is that it builds on the tools used in linear regression
- Handle categorical predictors same as linear regression
 ⇒ form new indicator variables for each category
- They can also handle non-linearities the same way as linear regressions, e.g.,
 - logarithmic transformations of predictors;
 - polynomial transformations of predictors.

Finding logistic regression models

- Same approaches as for linear models
 ⇒ try to avoid under/over-fitting
- Hypothesis testing $H_0: \beta_i = 0$ vs $H_A: \beta_i \neq 0$
 - ullet Smaller p-value \Rightarrow more likely predictor j is important
- Model selection
 - Use penalized likelihood:

$$L(\mathbf{y} | \hat{\beta}_0, \hat{\boldsymbol{\beta}}) + k\alpha_n$$

where:

- k is number of predictors in model;
- $\alpha_n = 1$ for Akaike information criterion (AIC);
- $\alpha_n = 3/2$ for Kullback information criterion (KIC);
- $\alpha_n = (1/2) \log n$ for Bayesian information criterion (BIC).
- Sometimes two times these quantities are used (e.g., in R)
- Forward/backwards selection of predictors

Logistic regressions are linear

A logistic regression seperates successes from failures by using a linear seperation surface. The line is defined by the values of the two features x_1 and x_2 that satisfy $\mathbb{P}(Y=1\,|\,x_1,x_2)=1/2$. For models with p features, this becomes a p-dimensional plane.

- Classifiers
 - Naïve Bayes Classifiers
 - Logistic Regression

- Assessing Classifiers
 - How good is a classifier?

Performance Measures for Classifiers (1)

- Imagine we have trained a classifier on some data (logistic regression, Naïve Bayes, for something else)
- We now get a new body of data and want to test how well our classifier performs
- What measures of performance exist for classification problems?
 - Classification error
 - Sensitivity and specificity
 - Area-under-the-curve (AUC)
 - Logarithmic loss

- Let y' = (y'₁,...,y'_{n'}) be a vector of new data to test on
 For simplicity, let us assume y'_i is binary
- Let $\mathbf{x}_j' = (x_{1,j}', \dots, x_{n',j}')$ be the vector for feature j
- For each of the new individuals, we can calculate our best guess at which class it belongs to using:

$$\hat{y}'_i = \underset{y \in \{0,1\}}{\operatorname{arg\,max}} \left\{ \mathbb{P}(Y'_i = y \mid x'_{i,1}, \dots, x'_{i,p}) \right\}$$

where the probabilities are estimated using the model we have learned from our training data

Classification Accuracy (1) – Key Slide

- The most straightforward measure of performance is classification accuracy
- This is given by:

CA =
$$\frac{1}{n'} \sum_{i=1}^{n'} I(y'_i = \hat{y}'_i)$$

where $I(\cdot)$ is one if the condition inside the parenthesis is met, and a zero otherwise

- The proportion of times our classifier correctly guesses the class of a new individual
- This ranges from 0 (perfectly incorrect), through to 1/2 (only as good as random guessing) to 1 (perfectly correct)
- \bullet Realistically 1/2 is worst accuracy if <1/2 we can swap our classification output

Classification Accuracy (2)

More generally, we can form a confusion matrix

$$y_i=0$$
 $y_i=1$ $\hat{y}_i=0$ True Negative (TN) False Negative (FN) $\hat{y}_i=1$ False Positive (FP) True Positive (TP)

Classification accuracy is then

$$CA = \frac{TP + TN}{TP + TN + FP + FN}$$

Specificity and Sensitivity (1) - Key Slide

- Can form other useful information
- Sensitivity is the true positive rate:

$$TPR = \frac{TP}{TP + FN}$$

Specificity is the true negative rate:

$$TNR = \frac{TN}{TN + FP}$$

- Sensitivity of 1 means we correctly classify all individuals for which $y_i'=1$
- \bullet Specificity of 1 means we correctly classify all individuals for which $y_i'=0$
- High sensitivity can be achieved at expense of decreased sensitivity, and vice versa

- Set a detection threshold $T \in (0,1)$ for our classifier.
- For each of the new individuals, we say that $\hat{y}_i' = 1$ if

$$\mathbb{P}(Y_i' = 1 \mid x_{i,1}', \dots, x_{i,p}') \ge T,$$

otherwise they are in class $\hat{y}_i' = 0$.

- Classifying an individual based on which class is more likely is equivalent to using $T=1/2\,$
- ullet Varying T produces different values of sensitivity, specificity
- Let $\mathrm{TPR}(T)$, $\mathrm{TNR}(T)$ be the sensitivity, specificity for threshold T
 - Small $T \Rightarrow$ increased sensitivity;
 - Large $T \Rightarrow$ increased specificity

Area-under-the-curve (AUC) (1)

- If we vary T from 0 to 1 we get a range of different classification rules
 - \Longrightarrow each will yield a different TPR and TPN
- We can plot these different values to get a "reciever operating curve"
- The area under this curve is called the AUC
- The bigger the area, the better the classifier

Area-under-the-curve (AUC) (2)

- AUC is always between 0 and 1
 - AUC of 1 means we can achieve perfect classification;
 - \bullet AUC of 0 means we can achieve perfect misclassification;
 - \bullet AUC of 1/2 means we do no better than a random guess.
- How to interpret AUC?
- An AUC of p means that if we randomly sampled an individual i from our test group for whom $y_i'=1$, and randomly sampled an individual k from our test group for whom $y_k'=0$ then

$$\mathbb{P}\left[\mathbb{P}(Y_i' = 1 \mid x_{i,1}', \dots, x_{i,p}') > \mathbb{P}(Y_k' = 1 \mid x_{k,1}', \dots, x_{k,p}')\right] = p$$

that is, it is the probability that a random individual i sampled from class 1 will be rated more likely to be in class 1 than random individual k sampled from class 0.

Logarithmic Loss (1) - Key Slide

- The final performance measure we consider is logarithmic loss
- For each sample i in our test group, we score

$$L(y_i') = \begin{cases} -\log \mathbb{P}(Y_i' = 1 \mid x_{i,1}', \dots, x_{i,p}') & \text{for } y_i' = 1 \\ -\log \mathbb{P}(Y_i' = 0 \mid x_{i,1}', \dots, x_{i,p}') & \text{for } y_i' = 0 \end{cases}.$$

This is the negative-log-probability of the test data point y_i' under our classification model

The total logarithmic loss is then

$$L(\mathbf{y}') = \sum_{i=1}^{n} L(y_i')$$

- ⇒ the negative-log-likelihood of this new, future data
- Smaller the score, the better our classifier predicts this data
- Log-loss measures how well the model predicts the probabilities of an individual being in a class

- Classification accuracy measures how good our guesses at the most likely class are
- Log-loss measures how well the model predicts the probabilities of an individual being in a class
- Why is this important?
- It tells you how confident you should be in your predicted class
- Example: Both $P(Y=1\,|\,x_1,\ldots,x_p)=0.501$ and $P(Y=1\,|\,x_1,\ldots,x_p)=0.99$ would predict the most likely class for Y to be Y=1.
 - \implies we are much more confident about latter than the former
- Estimating conditional probabilities well lets us get better idea of how confident we should we in our predicted classes

Reading/Terms to Revise

- Reading for this week: Chapter 9 of Ross.
- Terms you should know:
 - Conditional independence
 - Bayes rule, Naïve Bayes classifier
 - Odds, log-odds
 - Logistic regression
 - Classification accuracy
 - Specificity, sensitivity
 - Area-under-the-curve (AUC)
 - Logarithmic loss
- Next week we will be examined some more recent developments in fitting and estimating linear and logistic regression models.