

Description

Features

- -20V, -7A
 - $R_{DS(ON)}$ <24.5m Ω @ V_{GS} = -4.5V $R_{DS(ON)} < 32 \text{m}\Omega$ @ $V_{GS} = -2.5V$
- Advanced Trench Technology
- Provide Excellent R_{DS(ON)} and Low Gate Charge
- Lead free product is acquired

Application

- Load Switch
- PWM Application
- Power management

Schematic Diagram

Package Marking and Ordering Information

Device Marking	Device	OUTLINE	Device Package	Reel Size	Reel (PCS)	Per Carton (PCS)
VSM210P02A-S2	VSM210P02A	TAPING	SOT-23-3	7inch	3000	180000

Absolute Maximum Ratings (T_A=25°C unless otherwise specified)

Symbol	Parameter		Max.	Units
V _{DSS}	Drain-Source Voltage		-20	V
V _{GSS}	Gate-Source Voltage		±12	V
ID	Continuous Drain Current	T _A = 25℃	-7	Α
		T _A = 100°C	-4.6	Α
I _{DM}	Pulsed Drain Current note1		-28	Α
P _D	Power Dissipation	T _A = 25°C	2	W
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient		62.5	°C/W
T _J , T _{STG}	Operating and Storage Temperature Range		-55 to +150	$^{\circ}\!\mathbb{C}$

Electrical Characteristics (T_J=25°C unless otherwise specified)

Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Units		
Off Characteristic								
V _{(BR)DSS}	Drain-Source Breakdown Voltage	V _{GS} =0V, I _D = -250μA	-20	-	-	V		
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} = -20V, V _{GS} =0V,	-	-	-1	μA		
I _{GSS}	Gate to Body Leakage Current	V _{DS} =0V, V _{GS} = ±12V	-	-	±100	nA		
On Charac	cteristics							
$V_{GS(th)}$	Gate Threshold Voltage	V _{DS} =V _{GS} , I _D = -250μA	-0.4	-0.7	-1.0	V		
_	Static Drain-Source on-Resistance	V _{GS} = -4.5V, I _D = -7A	-	18.7	24.5	m0		
$R_{DS(on)}$	note2	V _{GS} = -2.5V, I _D = -5A	-	22.7	32	mΩ		
Dynamic (Characteristics							
C _{iss}	Input Capacitance	10)///	-	2000	-	pF		
Coss	Output Capacitance	$V_{DS} = -10V, V_{GS} = 0V,$	-	242	-	pF		
C _{rss}	Reverse Transfer Capacitance	f=1.0MHz	-	231	-	pF		
Qg	Total Gate Charge	V = 40V I = 2A	-	15.3	-	nC		
Q _{gs}	Gate-Source Charge	V_{DS} = -10V, I_D = -3A, V_{GS} = -4.5V	-	2.2	-	nC		
Q_{gd}	Gate-Drain("Miller") Charge	V _{GS} 4.5V	-	4.4	-	nC		
Switching	Characteristics							
t _{d(on)}	Turn-on Delay Time	101/1 74	-	10	-	ns		
t _r	Turn-on Rise Time	$V_{DD} = -10V, I_{D} = -7A,$	-	31	-	ns		
t _{d(off)}	Turn-off Delay Time	$V_{GS} = -4.5V$,	-	28	-	ns		
t _f	Turn-off Fall Time	$-$ R _{GEN} =2.5 Ω	-	8	-	ns		
Drain-Sou	rce Diode Characteristics and Maxin	num Ratings						
I.	Maximum Continuous Drain to Source Diode Forward Current				-7	Α		
Is			_	_	-/	A		
I _{SM}	Maximum Pulsed Drain to Source Diode Forward Current			-	-28	Α		
V_{SD}	Drain to Source Diode Forward Voltage	V _{GS} =0V, I _S = -7A	-	-0.8	-1.2	V		

Notes:1. Repetitive Rating: Pulse Width Limited by Maximum Junction Temperature

^{2.} Pulse Test: Pulse Width≤300µs, Duty Cycle≤2%

Typical Performance Characteristics

Figure1: Output Characteristics

Figure 3:On-resistance vs. Drain Current

Figure 5: Gate Charge Characteristics

Figure 2: Typical Transfer Characteristics

Figure 4: Body Diode Characteristics

Figure 6: Capacitance Characteristics

Figure 7: Normalized Breakdown Voltage vs. Junction Temperature

Figure 9: Maximum Safe Operating Area

Figure.11: Maximum Effective Transient Thermal Impedance, Junction-to-Ambient

Figure 8: Normalized on Resistance vs. Junction Temperature

Figure 10: Maximum Continuous Drain Current vs. Ambient Temperature

Test Circuit

Gate Charge Test Circuit & Waveform

Resistive Switching Test Circuit & Waveforms

Unclamped Inductive Switching (UIS) Test Circuit & Waveforms

Diode Recovery Test Circuit & Waveforms

