0.1 Riemann 引理

引理 0.1 (Riemann 引理)

设 $E \subset \mathbb{R}$ 是区间且 f 在 E 上绝对可积. g 是定义在 \mathbb{R} 的周期 T>0 函数, 且在任何有界闭区间上 Riemann 可积, 则我们有

$$\lim_{x \to +\infty} \int_{E} f(y)g(xy)dy = \frac{1}{T} \int_{E} f(y)dy \int_{0}^{T} g(y)dy.$$
 (1)

 $\mathbf{i} f$ 在 \mathbf{E} 上绝对可积包含 \mathbf{f} 为反常积分的情况 (即反常积分绝对收敛).

考试中,Riemann 引理不能直接使用,需要我们根据具体问题给出证明.具体可见例题 0.1.

Ŷ 笔记

(1) 不妨设 $E = \mathbb{R}$ 的原因: 若 (1.1) 式在 $E = \mathbb{R}$ 时已得证明, 则当 $E \subseteq \mathbb{R}$ 时, 令 $\widetilde{f}(y) = f(y) \cdot X_E, y \in \mathbb{R}$, 则由 f(y) 在 E 上绝对可积, 可得 $\widetilde{f}(y)$ 在 \mathbb{R} 上也绝对可积. 从而由假设可知

$$\lim_{x\to +\infty} \int_{\mathbb{R}} \widetilde{f}(y) g(xy) \mathrm{d}y = \frac{1}{T} \int_{\mathbb{R}} \widetilde{f}(y) \mathrm{d}y \int_{0}^{T} g(y) \mathrm{d}y.$$

于是

$$\lim_{x \to +\infty} \int_{E} f(y)g(xy) dy = \lim_{x \to +\infty} \int_{\mathbb{R}} \widetilde{f}(y)g(xy) dy = \frac{1}{T} \int_{\mathbb{R}} \widetilde{f}(y) dy \int_{0}^{T} g(y) dy = \frac{1}{T} \int_{E} f(y) dy \int_{0}^{T} g(y) dy$$

$$\frac{1}{\sqrt{3}} \int_{\mathbb{R}} \widetilde{f}(y) dy \int_{0}^{T} g(y) dy = \frac{1}{T} \int_{\mathbb{R}} f(y) dy \int_{0}^{T} g(y) dy = \frac{1}{T} \int_{E} f(y) dy \int_{0}^{T} g(y) dy$$

- (2) 不妨设 $\sup_{\mathbb{R}} |g| > 0$ 的原因: 若 $\sup_{\mathbb{R}} |g| = 0$, 则 $g(x) \equiv 0$, 此时结论显然成立. 因此我们只需要考虑当 $\sup_{\mathbb{R}} |g| > 0$ 时的情况.
- (3) 不妨设T = 1的原因: 若(1) 式在T = 1时已得证明,则当 $T \neq 1$ 时,有

$$\frac{1}{T} \int_{E} f(y) dy \int_{0}^{T} g(y) dy \xrightarrow{\frac{c}{2}y = Tx} \int_{E} f(y) dy \int_{0}^{1} g(Tx) dx = \int_{E} f(y) dy \int_{0}^{1} g(Ty) dy. \tag{2}$$

由于 g(y) 是 \mathbb{R} 上周期为 $T \neq 1$ 的函数, 因此 g(Ty) 就是 \mathbb{R} 上周期为 1 的函数. 从而由假设可知

$$\lim_{x \to +\infty} \int_{E} f(y)g(Txy)dy = \int_{E} f(y)dy \int_{0}^{1} g(Ty)dy.$$
 (3)

又由(2) 式及T > 0 可得

$$\int_{E} f(y) dy \int_{0}^{1} g(Ty) dy = \frac{1}{T} \int_{E} f(y) dy \int_{0}^{T} g(y) dy$$

$$\lim_{x \to +\infty} \int_{E} f(y) g(Txy) dy \xrightarrow{\frac{c}{T}} \lim_{t \to +\infty} \int_{E} f(y) g(ty) dy = \lim_{x \to +\infty} \int_{E} f(y) g(xy) dy$$

再结合(3)式可得 $\lim_{x\to +\infty}\int_E f(y)g(xy)\mathrm{d}y = \frac{1}{T}\int_E f(y)\mathrm{d}y\int_0^T g(y)\mathrm{d}y$. 故可以不妨设 T=1.

(4) 不妨设 $\int_0^1 g(y) dy = 0$ 的原因: 若 (1) 式在 $\int_0^1 g(y) dy = 0$ 时已得证明, 则当 $\int_0^1 g(y) dy \neq 0$ 时, 令 $G(y) = g(y) - \int_0^1 g(t) dt$, 则 G(y) 是 \mathbb{R} 上周期为 1 的函数, 并且 $\int_0^1 G(y) dy = 0$. 于是由假设可知

$$\lim_{x \to +\infty} \int_{E} f(y)G(xy) dy = \int_{E} f(y) dy \int_{0}^{1} G(y) dy$$

$$\Leftrightarrow \lim_{x \to +\infty} \int_{E} f(y) \left[g(xy) - \int_{0}^{1} g(t) dt \right] dy = \int_{E} f(y) dy \int_{0}^{1} \left[g(y) - \int_{0}^{1} g(t) dt \right] dy$$

$$\Leftrightarrow \lim_{x \to +\infty} \left(\int_{E} f(y)g(xy) dy - \int_{E} f(y) \int_{0}^{1} g(t) dt dy \right) = \int_{E} f(y) dy \int_{0}^{1} g(y) dy - \int_{E} f(y) dy \int_{0}^{1} g(t) dt = 0$$

$$\Leftrightarrow \lim_{x \to +\infty} \int_{E} f(y)g(xy) dy = \int_{E} f(y) \int_{0}^{1} g(t) dt dy$$

1

再结合(2)可知, 此时原结论成立. 故可以不妨设 $\int_0^1 g(y) dy = 0$.

证明 不妨设 $E = \mathbb{R}$, $\sup_{\mathbb{R}} |g| > 0$, T = 1, 再不妨设 $\int_0^1 g(y) dy = 0$. 因此只需证 $\lim_{x \to +\infty} \int_{\mathbb{R}} f(y) g(xy) dy = 0$. 由 g 的周期为 1 及 $\int_0^1 g(y) dy = 0$ 可得, 对 $\forall n \in \mathbb{N}$, 都有

$$\int_{-n}^{0} g(t)dt \xrightarrow{\frac{-x_{-t+n}}{2}} \int_{0}^{n} g(x-n)dx \xrightarrow{\underline{g} \text{ in } \exists \exists \exists j \in \mathbb{N}} \int_{0}^{n} g(x)dx = \int_{0}^{n} g(t)dt$$

$$= \sum_{k=0}^{n-1} \int_{k}^{k+1} g(t)dt \xrightarrow{\frac{-x_{-t+n}}{2}} \sum_{k=0}^{n-1} \int_{0}^{1} g(y+k)dy \xrightarrow{\underline{g} \text{ in } \exists \exists \exists j \in \mathbb{N}} \sum_{k=0}^{n-1} \int_{0}^{1} g(y)dy$$

$$= (n-1) \cdot 0 = 0.$$

从而对 $\forall \beta > \alpha > 0$, 我们有

$$\left| \int_{\alpha}^{\beta} g(t) dt \right| = \left| \int_{0}^{\beta} g(t) dt - \int_{0}^{\alpha} g(t) dt \right| = \left| \int_{-[\beta]}^{\beta - [\beta]} g(t + [\beta]) dt - \int_{-[\alpha]}^{\alpha - [\alpha]} g(t + [\alpha]) dt \right|$$

$$= \left| \int_{-[\beta]}^{\beta - [\beta]} g(t) dt - \int_{-[\alpha]}^{\alpha - [\alpha]} g(t) dt \right| = \left| \int_{0}^{\beta - [\beta]} g(t) dt - \int_{0}^{\alpha - [\alpha]} g(t) dt \right|$$

$$= \left| \int_{\alpha - [\alpha]}^{\beta - [\beta]} g(t) dt \right| \leqslant \sup_{\mathbb{R}} |g|.$$

故

$$\left| \int_{\alpha}^{\beta} g(xy) dy \right| \xrightarrow{\frac{4}{2}t = xy} \frac{1}{x} \left| \int_{x\alpha}^{x\beta} g(t) dt \right| \leqslant \frac{\sup|g|}{x}, \quad \forall x > 0, \forall \beta > \alpha > 0.$$
 (4)

因为 f 在 \mathbb{R} 上绝对可积, 所以由 Cauchy 收敛准则可知, 对 $\forall \varepsilon > 0$, 存在 $N \in \mathbb{N}$, 使得

$$\left| \int_{|y| > N} f(y) \mathrm{d}y \right| < \frac{\varepsilon}{3 \sup_{\mathbb{R}} |g|}. \tag{5}$$

由于 f 在 \mathbb{R} 上绝对可积, 从而 f 在 \mathbb{R} 上也 Riemann 可积, 因此由可积的充要条件可知, 存在划分

$$-N = t_0 < t_1 < t_2 < \cdots < t_n = N$$
,

使得

$$\sum_{i=1}^{n} \left(\sup_{[t_{i-1},t_i]} f - \inf_{[t_{i-1},t_i]} f \right) (t_i - t_{i-1}) \leqslant \frac{\varepsilon}{3 \sup_{m} |g|}.$$
 (6)

于是当
$$x > \frac{3\sum\limits_{j=1}^{n}|\inf_{[t_{j-1},t_{j}]}f|\cdot\sup_{\mathbb{R}}|g|}{\varepsilon}$$
 时,结合(4)(5)(6)可得

$$\left| \int_{-\infty}^{+\infty} f(y)g(xy) dy \right| \leq \left| \int_{-N}^{N} f(y)g(xy) dy \right| + \left| \int_{|y|>N} f(y)g(xy) dy \right| \leq \left| \sum_{j=1}^{n} \int_{t_{j-1}}^{t_{j}} f(y)g(xy) dy \right| + \frac{\varepsilon}{3 \sup_{\mathbb{R}} |g|} \cdot \sup_{\mathbb{R}} |g|$$

$$\leq \sum_{j=1}^{n} \left| \int_{t_{j-1}}^{t_{j}} [f(y) - \inf_{[t_{j-1}, t_{j}]} f]g(xy) dy \right| + \sum_{j=1}^{n} \left| \int_{t_{j-1}}^{t_{j}} \inf_{[t_{j-1}, t_{j}]} f \cdot g(xy) dy \right| + \frac{\varepsilon}{3}$$

$$\stackrel{\text{(4)}}{\leq} \sum_{j=1}^{n} \int_{t_{j-1}}^{t_{j}} [f(y) - \inf_{[t_{j-1}, t_{j}]} f] dy \cdot \sup_{\mathbb{R}} |g| + \frac{\sup_{\mathbb{R}} |g|}{x} \sum_{j=1}^{n} \int_{t_{j-1}}^{t_{j}} |\inf_{[t_{j-1}, t_{j}]} f| dy + \frac{\varepsilon}{3}$$

$$\leq \sum_{j=1}^{n} \int_{t_{j-1}}^{t_{j}} (\sup_{[t_{j-1}, t_{j}]} f - \inf_{[t_{j-1}, t_{j}]} f) dy \cdot \sup_{\mathbb{R}} |g| + \frac{\sup_{\mathbb{R}} |g|}{x} \sum_{j=1}^{n} \int_{t_{j-1}}^{t_{j}} |\inf_{[t_{j-1}, t_{j}]} f| dy + \frac{\varepsilon}{3}$$

$$= \sum_{j=1}^{n} \left(\sup_{[t_{i-1},t_i]} f - \inf_{[t_{j-1},t_j]} f\right)(t_j - t_{j-1}) \cdot \sup_{\mathbb{R}} |g| + \frac{\sup_{\mathbb{R}} |g|}{x} \sum_{j=1}^{n} \int_{t_{j-1}}^{t_j} |\inf_{[t_{j-1},t_j]} f| dy + \frac{\varepsilon}{3}$$

$$\stackrel{(6)}{<} \frac{\varepsilon}{3 \sup_{\mathbb{R}} |g|} \cdot \sup_{\mathbb{R}} |g| + \frac{\sup_{\mathbb{R}} |g|}{x} \sum_{j=1}^{n} \int_{t_{j-1}}^{t_j} |\inf_{[t_{j-1},t_j]} f| dy + \frac{\varepsilon}{3}$$

$$\stackrel{x \neq h}{>} \frac{\varepsilon}{3} + \frac{\varepsilon}{3} + \frac{\varepsilon}{3} = \varepsilon$$

因此 $\lim_{x\to+\infty}\int_{\mathbb{R}}f(y)g(xy)\mathrm{d}y=0$. 结论得证. **例题 0.1** 设 $f\in R[0,2\pi]$, 不直接使用Riemann 引理计算

$$\lim_{n\to\infty} \int_0^{2\pi} f(x) |\sin(nx)| dx.$$

证明 对 $\forall n \in \mathbb{N}_+$, 固定 n. 将 $[0, 2\pi]$ 等分成 2n 段, 记这个划分为

$$T: 0 = t_0 < t_1 < \cdots < t_{2n} = 2\pi,$$

其中 $t_i = \frac{i\pi}{n}, i = 0, 1, \dots, n$. 此时我们有

$$\int_{t_{i-1}}^{t_i} |\sin(nx)| dx = \int_{\frac{(i-1)\pi}{n}}^{\frac{i\pi}{n}} |\sin(nx)| dx = \frac{1}{n} \int_{(i-1)\pi}^{i\pi} |\sin x| dx = \frac{2}{n}.$$
 (7)

由 $f \in R[0,2\pi]$ 可知, f 在 $[0,2\pi]$ 上有界也内闭有界. 从而利用(7)式可知, 对 $\forall n \in \mathbb{N}_+$, 一方面, 我们有

$$\int_{0}^{2\pi} f(x) |\sin(nx)| dx = \sum_{i=1}^{2n} \int_{t_{i-1}}^{t_{i}} f(x) |\sin(nx)| dx \leq \sum_{i=1}^{2n} \int_{t_{i-1}}^{t_{i}} \sup_{[t_{i-1}, t_{i}]} f \cdot |\sin(nx)| dx \xrightarrow{\underline{(7) \pm 1}} \frac{2}{n} \sum_{i=1}^{2n} \sup_{[t_{i-1}, t_{i}]} f$$

$$= \frac{2}{n} \sum_{i=1}^{2n} \sup_{[t_{i-1}, t_{i}]} f = \frac{2}{\pi} \sum_{i=1}^{2n} \sup_{[t_{i-1}, t_{i}]} f \cdot \frac{\pi}{n} = \frac{2}{\pi} \sum_{i=1}^{2n} \sup_{[t_{i-1}, t_{i}]} f \cdot (t_{i} - t_{i-1}). \tag{8}$$

另一方面, 我们有

$$\int_{0}^{2\pi} f(x) |\sin(nx)| dx = \sum_{i=1}^{2n} \int_{t_{i-1}}^{t_{i}} f(x) |\sin(nx)| dx \geqslant \sum_{i=1}^{2n} \int_{t_{i-1}}^{t_{i}} \inf_{[t_{i-1}, t_{i}]} f \cdot |\sin(nx)| dx \xrightarrow{\underline{(7)} \stackrel{?}{\Rightarrow}} \frac{2}{n} \sum_{i=1}^{2n} \inf_{[t_{i-1}, t_{i}]} f$$

$$= \frac{2}{\pi} \sum_{i=1}^{2n} \inf_{[t_{i-1}, t_{i}]} f \cdot \frac{\pi}{n} = \frac{2}{\pi} \sum_{i=1}^{2n} \inf_{[t_{i-1}, t_{i}]} f \cdot (t_{i} - t_{i-1}). \tag{9}$$

由 $f \in R[0, 2\pi]$ 和 Riemann 可积的充要条件可知

$$\int_0^{2\pi} f(x) dx = \lim_{n \to \infty} \sum_{i=1}^{2n} \sup_{[t_{i-1}, t_i]} f \cdot (t_i - t_{i-1}) = \lim_{n \to \infty} \sum_{i=1}^{2n} \inf_{[t_{i-1}, t_i]} f \cdot (t_i - t_{i-1}).$$

于是对(8)(9)式两边同时令 $n \to \infty$, 得

$$\lim_{n \to \infty} \int_0^{2\pi} f(x) |\sin(nx)| dx = \frac{2}{\pi} \int_0^{2\pi} f(x) dx.$$

例题 0.2 设 f 是 \mathbb{R} 上周期 2π 函数且在 $[-\pi,\pi]$ 上 Riemann 可积, 设

$$S_n(x) = \frac{1}{\pi} \int_{-\pi}^{\pi} \frac{f(x+t)}{2\sin\frac{t}{2}} \sin\left(\frac{2n+1}{2}t\right) dt, n = 1, 2, \cdots$$

若 x_0 ∈ $(-\pi, \pi)$ 是 f 在 $[-\pi, \pi]$ 唯一间断点且存在下述极限

$$A = \lim_{x \to x_0^+} f(x), B = \lim_{x \to x_0^-} f(x), \lim_{x \to x_0^+} \frac{f(x) - A}{x - x_0}, \lim_{x \to x_0^-} \frac{f(x) - B}{x - x_0}.$$

证明:

$$\lim_{n \to \infty} S_n(x_0) = \frac{\lim_{x \to x_0^+} f(x) + \lim_{x \to x_0^-} f(x)}{2}.$$

Ŷ 笔记

(1) 计算 $I_1=\frac{1}{\pi}\int_0^\pi \frac{f(x_0+t)}{2\sin\frac{t}{2}}\sin\left(\frac{2n+1}{2}t\right)\mathrm{d}t$ 的思路: 由于 $\frac{f(x_0+t)}{2\sin\frac{t}{2}}$ 在 $[0,\pi]$ 上只可能有奇点 t=0,因此 $\frac{f(x_0+t)}{2\sin\frac{t}{2}}$ 在 $[0,\pi]$ 上不一定绝对可积. 从而不能直接利用 Riemann 引理. 于是我们需要将 $\frac{f(x_0+t)}{2\sin\frac{t}{2}}$ 转化为在 $[0,\pi]$ 上无奇点的函数 (排除 t=0 这个奇点,即证明 t=0 不再是奇点),只要被积函数在积分区间上无奇点 且 Riemann 可积,就一定绝对可积. 进而满足 Riemann 引理的条件,再利用 Riemann 引理就能求解出 I_1 . 具体处理方式见下述证明.

体处理方式见下述证明. 计算 $I_2=\frac{1}{\pi}\int_0^\pi \frac{f(x_0-t)}{2\sin\frac{t}{2}}\sin\left(\frac{2n+1}{2}t\right)\mathrm{d}t$ 的思路同理, 也是要排除 t=0 这个可能的奇点, 再利用 Riemann 引理进行求解. 具体计算方式见下述证明.

引理进行求解. 具体计算方式见下述证明. (2) 计算 $\lim_{n\to\infty}\int_0^\pi \frac{1}{2\sin\frac{t}{2}}\sin\left(\frac{2n+1}{2}t\right)\mathrm{d}t$ 的思路: 注意由于 $\frac{1}{2\sin\frac{t}{2}}$ 在 $[0,\pi]$ 上有一个奇点 t=0,并且对 $\forall t\in(0,\pi]$,都有

$$\left|\frac{1}{2\sin\frac{t}{2}}\right| \geqslant \left|\frac{1}{2\cdot\frac{2}{\pi}\cdot\frac{t}{2}}\right| = \frac{\pi}{2t} > 0.$$

而 $\int_0^\pi \frac{\pi}{2t} dt$ 是发散的, 故 $\int_0^\pi \left| \frac{1}{2\sin\frac{t}{2}} \right| dt$ 也发散. 因此 $\frac{1}{2\sin\frac{t}{2}}$ 在 $[0,\pi]$ 上一定不是绝对可积的, 从而不能利用 Riemann 引理计算 $\lim_{n\to\infty} \int_0^\pi \frac{1}{2\sin\frac{t}{2}} \sin\left(\frac{2n+1}{2}t\right) dt$. 真正能计算 $\lim_{n\to\infty} \int_0^\pi \frac{1}{2\sin\frac{t}{2}} \sin\left(\frac{2n+1}{2}t\right) dt$ 的方法有多种, 下述证明利用的是强行替换/拟合法.

证明 注意到

$$S_{n}(x_{0}) = \frac{1}{\pi} \int_{-\pi}^{\pi} \frac{f(x_{0} + t)}{2\sin\frac{t}{2}} \sin\left(\frac{2n+1}{2}t\right) dt$$

$$= \frac{1}{\pi} \int_{0}^{\pi} \frac{f(x_{0} + t)}{2\sin\frac{t}{2}} \sin\left(\frac{2n+1}{2}t\right) dt + \frac{1}{\pi} \int_{-\pi}^{0} \frac{f(x_{0} + t)}{2\sin\frac{t}{2}} \sin\left(\frac{2n+1}{2}t\right) dt$$

$$= \frac{4\pi}{\pi} \int_{0}^{\pi} \frac{f(x_{0} + t)}{2\sin\frac{t}{2}} \sin\left(\frac{2n+1}{2}t\right) dt + \frac{1}{\pi} \int_{0}^{\pi} \frac{f(x_{0} - t)}{2\sin\frac{t}{2}} \sin\left(\frac{2n+1}{2}t\right) dt$$

$$(10)$$

记 $I_1 = \frac{1}{\pi} \int_0^{\pi} \frac{f(x_0 + t)}{2 \sin \frac{t}{2}} \sin \left(\frac{2n + 1}{2} t \right) dt, I_2 = \frac{1}{\pi} \int_0^{\pi} \frac{f(x_0 - t)}{2 \sin \frac{t}{2}} \sin \left(\frac{2n + 1}{2} t \right) dt$,则由(10)式可得

$$\lim_{n \to \infty} S_n(x_0) = \lim_{n \to \infty} (I_1 + I_2). \tag{11}$$

于是

$$I_{1} = \frac{1}{\pi} \int_{0}^{\pi} \frac{f(x_{0} + t) - A}{2\sin\frac{t}{2}} \sin\left(\frac{2n + 1}{2}t\right) dt + \frac{A}{\pi} \int_{0}^{\pi} \frac{1}{2\sin\frac{t}{2}} \sin\left(\frac{2n + 1}{2}t\right) dt, \tag{12}$$

$$I_2 = \frac{1}{\pi} \int_0^{\pi} \frac{f(x_0 - t) - B}{2\sin\frac{t}{2}} \sin\left(\frac{2n + 1}{2}t\right) dt + \frac{B}{\pi} \int_0^{\pi} \frac{1}{2\sin\frac{t}{2}} \sin\left(\frac{2n + 1}{2}t\right) dt.$$
 (13)

由条件可知 $\lim_{t\to 0^+} \frac{f(x_0+t)-A}{2\sin\frac{t}{2}} = \lim_{t\to 0^+} \frac{f(x_0+t)-A}{t} = \lim_{x\to x_0^+} \frac{f(x)-A}{x-x_0}$ 存在, $\lim_{t\to 0^-} \frac{f(x_0-t)-B}{2\sin\frac{t}{2}} = \lim_{t\to 0^-} \frac{f(x_0-t)-B}{t} = \lim_{t\to 0^+} \frac{f(x_0-t)-B}{t} = \lim_{t\to$

 $\lim_{x \to x_0^-} \frac{f(x) - B}{x - x_0}$ 存在, 因此 $\frac{f(x_0 + t) - A}{2\sin\frac{t}{2}}$, $\frac{f(x_0 - t) - B}{2\sin\frac{t}{2}}$ 在 $[0, \pi]$ 都没有奇点且 Riemann 可积, 从而

$$\lim_{n \to \infty} \int_0^{\pi} \frac{f(x_0 + t) - A}{2 \sin \frac{t}{2}} \sin \left(\frac{2n + 1}{2}t\right) dt, \lim_{n \to \infty} \int_0^{\pi} \frac{f(x_0 - t) - B}{2 \sin \frac{t}{2}} \sin \left(\frac{2n + 1}{2}t\right) dt$$

都满足 Riemann 引理的条件. 于是由 Riemann 引理可得

$$\lim_{n \to \infty} \frac{1}{\pi} \int_0^{\pi} \frac{f(x_0 + t) - A}{2\sin\frac{t}{2}} \sin\left(\frac{2n + 1}{2}t\right) dt = 0, \quad \lim_{n \to \infty} \frac{1}{\pi} \int_0^{\pi} \frac{f(x_0 - t) - B}{2\sin\frac{t}{2}} \sin\left(\frac{2n + 1}{2}t\right) dt = 0.$$
 (14)

下面计算 $\lim_{n\to\infty} \int_0^{\pi} \frac{1}{2\sin\frac{t}{2}} \sin\left(\frac{2n+1}{2}t\right) dt$.

$$\left| \int_0^{\pi} \frac{1}{2\sin\frac{t}{2}} \sin\left(\frac{2n+1}{2}t\right) dt - \int_0^{\pi} \frac{1}{t} \sin\left(\frac{2n+1}{2}t\right) dt \right| = \left| \int_0^{\pi} \frac{t-2\sin\frac{t}{2}}{2t\sin\frac{t}{2}} \sin\left(\frac{2n+1}{2}t\right) dt \right|. \tag{15}$$

而 $\lim_{t\to 0} \frac{t-2\sin\frac{t}{2}}{2t\sin\frac{t}{2}} = \lim_{t\to 0} \frac{t-2\sin\frac{t}{2}}{t^2}$ $\frac{\text{L'Hospital'rules}}{t^2}$ $\lim_{t\to 0} \frac{1-\cos\frac{t}{2}}{2t} = 0$, 因此 $\frac{t-2\sin\frac{t}{2}}{2t\sin\frac{t}{2}}$ 在 $[0,\pi]$ 上无奇点且 Riemann 可

积, 从而由 Riemann 引理可知 $\lim_{n\to\infty}\int_0^{\pi}\frac{t-2\sin\frac{t}{2}}{2t\sin\frac{t}{2}}\sin\left(\frac{2n+1}{2}t\right)\mathrm{d}t=0$. 于是再结合 (15) 式可得

$$\lim_{n \to \infty} \int_0^{\pi} \frac{1}{2 \sin \frac{t}{2}} \sin \left(\frac{2n+1}{2} t \right) dt = \lim_{n \to \infty} \int_0^{\pi} \frac{1}{t} \sin \left(\frac{2n+1}{2} t \right) dt = \lim_{n \to \infty} \int_0^{\frac{2n+1}{2} \pi} \frac{\sin t}{t} dt = \int_0^{+\infty} \frac{\sin t}{t} dt = \frac{\pi}{2}.$$
 (16)

$$\lim_{n\to\infty}I_1=\lim_{n\to\infty}\frac{1}{\pi}\int_0^\pi\frac{f(x_0+t)-A}{2\sin\frac{t}{2}}\sin\left(\frac{2n+1}{2}t\right)\mathrm{d}t+\lim_{n\to\infty}\frac{A}{\pi}\int_0^\pi\frac{1}{2\sin\frac{t}{2}}\sin\left(\frac{2n+1}{2}t\right)\mathrm{d}t=0+\frac{A}{\pi}\cdot\frac{\pi}{2}=\frac{A}{2},$$

$$\lim_{n \to \infty} I_2 = \lim_{n \to \infty} \frac{1}{\pi} \int_0^{\pi} \frac{f(x_0 - t) - B}{2\sin\frac{t}{2}} \sin\left(\frac{2n + 1}{2}t\right) dt + \lim_{n \to \infty} \frac{B}{\pi} \int_0^{\pi} \frac{1}{2\sin\frac{t}{2}} \sin\left(\frac{2n + 1}{2}t\right) dt = 0 + \frac{B}{\pi} \cdot \frac{\pi}{2} = \frac{B}{2}.$$

再结合(11)式可得

$$\lim_{n \to \infty} S_n(x_0) = \lim_{n \to \infty} (I_1 + I_2) = \lim_{n \to \infty} I_1 + \lim_{n \to \infty} I_2 = \frac{A + B}{2}.$$

例题 **0.3** 设 $f \in C^1[0, \frac{\pi}{2}], f(0) = 0$, 计算

 $\lim_{n\to\infty} \frac{1}{\ln n} \int_0^{\frac{\pi}{2}} \frac{\sin^2(nx)}{\sin^2 x} f(x) dx.$

注 由于 x = 0 可能是 $\frac{f(x)}{\sin^2 x}$ 在 $\left[0, \frac{\pi}{2}\right]$ 上的奇点, 因此我们需要将其转化为在 $\left[0, \frac{\pi}{2}\right]$ 上不含奇点的函数, 才能利 用Riemann 引理进行计算

证明 注意到

$$\frac{1}{\ln n} \int_0^{\frac{\pi}{2}} \frac{f(x)}{\sin^2 x} \sin^2(nx) dx = \frac{1}{\ln n} \int_0^{\frac{\pi}{2}} \frac{f(x) - f'(0)x}{\sin^2 x} \sin^2(nx) dx + \frac{1}{\ln n} \int_0^{\frac{\pi}{2}} \frac{f'(0)x}{\sin^2 x} \sin^2(nx) dx.$$
 (17)

先计算 $\lim_{n\to\infty}\frac{1}{\ln n}\int_0^{\frac{\pi}{2}}\frac{f(x)-f'(0)x}{\sin^2 x}\sin^2(nx)\mathrm{d}x$. 由 $f\in C^1\left[0,\frac{\pi}{2}\right]$ 可知, $f\in D^2\left[0,\frac{\pi}{2}\right]$. 从而由 L'Hospital 法则可知 $\lim_{x \to 0^+} \frac{f(x) - f'(0)x}{\sin^2 x} = \lim_{x \to 0^+} \frac{f'(x) - f'(0)}{2\sin x \cos x} = \frac{1}{2} \lim_{x \to 0^+} \frac{f'(x) - f'(0)}{x} = \frac{f''(0)}{2}.$

于是 $\frac{f(x)-f'(0)x}{\sin^2 x}$ 在 $\left[0,\frac{\pi}{2}\right]$ 上无奇点且 Riemann 可积, 从而绝对可积. 故由Riemann 引理可得

$$\lim_{n \to \infty} \int_0^{\frac{\pi}{2}} \frac{f(x) - f'(0)x}{\sin^2 x} \sin^2(nx) dx = \lim_{n \to \infty} \frac{1}{\pi} \int_0^{\frac{\pi}{2}} \frac{f(x) - f'(0)x}{\sin^2 x} dx \int_0^{\pi} \sin^2 x dx$$

$$= \lim_{n \to \infty} \frac{1}{2} \int_0^{\frac{\pi}{2}} \frac{f(x) - f'(0)x}{\sin^2 x} dx < \infty.$$
(18)

利用(18)式可得

$$\lim_{n \to \infty} \frac{1}{\ln n} \int_0^{\frac{\pi}{2}} \frac{f(x) - f'(0)x}{\sin^2 x} \sin^2(nx) dx = \lim_{n \to \infty} \frac{1}{\ln n} \cdot \lim_{n \to \infty} \int_0^{\frac{\pi}{2}} \frac{f(x) - f'(0)x}{\sin^2 x} \sin^2(nx) dx = 0.$$
 (19)

下面计算 $\lim_{n\to\infty} \frac{1}{\ln n} \int_0^{\frac{\pi}{2}} \frac{f'(0)x}{\sin^2 x} \sin^2(nx) dx$. 对 $\forall n \in \mathbb{N}_+$, 我们有

$$\left| \frac{1}{\ln n} \int_0^{\frac{\pi}{2}} \frac{f'(0)x}{\sin^2 x} \sin^2(nx) dx - \frac{1}{\ln n} \int_0^{\frac{\pi}{2}} \frac{f'(0)}{x} \sin^2(nx) dx \right| = \left| \frac{f'(0)}{\ln n} \int_0^{\frac{\pi}{2}} \frac{x^2 - \sin^2 x}{x \sin^2 x} \cdot \sin^2(nx) dx \right|. \tag{20}$$

又 $\lim_{x\to 0^+} \frac{x^2-\sin^2 x}{x\sin^2 x} = \lim_{x\to 0^+} \frac{x^2-\left(x-\frac{x^3}{6}+o(x^3)\right)^2}{x^3} = \lim_{x\to 0^+} \frac{-\frac{x^3}{3}+o(x^3)}{x^3} = -\frac{1}{3}$,故 $\frac{x^2-\sin^2 x}{x\sin^2 x}$ 在 $\left[0,\frac{\pi}{2}\right]$ 上无奇点且 Riemann 可积,从而绝对可积.于是由Riemann 引理可得

$$\lim_{n \to \infty} f'(0) \int_0^{\frac{\pi}{2}} \frac{x^2 - \sin^2 x}{x \sin^2 x} \cdot \sin^2(nx) dx = \frac{1}{\pi} \int_0^{\frac{\pi}{2}} \frac{x^2 - \sin^2 x}{x \sin^2 x} dx \int_0^{\pi} \sin^2 x dx = \frac{1}{2} \int_0^{\frac{\pi}{2}} \frac{x^2 - \sin^2 x}{x \sin^2 x} dx < \infty.$$
 (21)

利用(21)式可得

$$\lim_{n \to \infty} \frac{1}{\ln n} \int_0^{\frac{\pi}{2}} \frac{x^2 - \sin^2 x}{x \sin^2 x} \cdot \sin^2(nx) dx = \lim_{n \to \infty} \frac{1}{\ln n} \cdot \lim_{n \to \infty} \int_0^{\frac{\pi}{2}} \frac{x^2 - \sin^2 x}{x \sin^2 x} \cdot \sin^2(nx) dx = 0.$$
 (22)

因此, 对(20)式两边同时令 $n \to \infty$, 利用(22)式可得

$$\lim_{n \to \infty} \frac{1}{\ln n} \int_0^{\frac{\pi}{2}} \frac{f'(0)x}{\sin^2 x} \sin^2(nx) dx = \lim_{n \to \infty} \frac{1}{\ln n} \int_0^{\frac{\pi}{2}} \frac{f'(0)}{x} \sin^2(nx) dx$$

$$= \lim_{n \to \infty} \frac{f'(0)}{\ln n} \int_0^{\frac{n\pi}{2}} \frac{\sin^2 x}{x} dx = \lim_{n \to \infty} \frac{f'(0) \int_0^{\frac{n\pi}{2}} \frac{\sin^2 x}{x} dx}{\ln \frac{n\pi}{2} - \ln \frac{\pi}{2}}.$$
(23)

而由函数 Stolz 定理可知

$$\lim_{x \to \infty} \frac{f'(0) \int_0^x \frac{\sin^2 t}{t} dt}{\ln x - \ln \frac{\pi}{2}} = f'(0) \lim_{n \to \infty} \frac{\int_x^{x+\pi} \frac{\sin^2 t}{t} dt}{\ln (x+\pi) - \ln x} = \frac{f'(0)}{\pi} \lim_{n \to \infty} x \int_x^{x+\pi} \frac{\sin^2 t}{t} dt.$$
 (24)

由积分中值定理可知, 对 $\forall x > 0$, 存在 $\theta_x \in [x, x + \pi]$, 使得

$$\int_{x}^{x+\pi} \frac{\sin^2 t}{t} dt = \frac{1}{\theta_x} \int_{x}^{x+\pi} \sin^2 t dt = \frac{1}{\theta_x} \int_{0}^{\pi} \sin^2 t dt = \frac{\pi}{2\theta_x}.$$

又由 $\theta_x \in [x, x + \pi]$ 可知, $\theta_x \sim x, x \rightarrow +\infty$. 从而(24)式可化为

$$\lim_{x \to \infty} \frac{f'(0) \int_0^x \frac{\sin^2 t}{t} dt}{\ln x - \ln \frac{\pi}{2}} = \frac{f'(0)}{\pi} \lim_{n \to \infty} x \int_x^{x + \pi} \frac{\sin^2 t}{t} dt = \frac{f'(0)}{\pi} \lim_{n \to \infty} \frac{\pi x}{2\theta_x} = \frac{f'(0)}{2}.$$

于是由 Heine 归结原则可得

$$\lim_{n \to \infty} \frac{f'(0) \int_0^{\frac{n\pi}{2}} \frac{\sin^2 x}{x} dx}{\ln \frac{n\pi}{2} - \ln \frac{\pi}{2}} = \lim_{x \to \infty} \frac{f'(0) \int_0^x \frac{\sin^2 t}{t} dt}{\ln x - \ln \frac{\pi}{2}} = \frac{f'(0)}{2}.$$
 (25)

利用(19)(25)式, 对(17)式两边同时令 $n \to \infty$, 可得

$$\lim_{n \to \infty} \frac{1}{\ln n} \int_0^{\frac{\pi}{2}} \frac{f(x)}{\sin^2 x} \sin^2(nx) dx = \lim_{n \to \infty} \frac{1}{\ln n} \int_0^{\frac{\pi}{2}} \frac{f(x) - f'(0)x}{\sin^2 x} \sin^2(nx) dx + \lim_{n \to \infty} \frac{1}{\ln n} \int_0^{\frac{\pi}{2}} \frac{f'(0)x}{\sin^2 x} \sin^2(nx) dx = \frac{f'(0)}{2}.$$