Electrical Engineering Technology

Series R-C Circuit Analysis (ICP)

- 1. What is the source voltage, V1 in phasor form?
- 2. Write an equation for the capacitive reactance, Xc1
- 3. Write an $\underline{\textbf{equation}}$ for the total impedance magnitude $|Z_{T}|$
- 4. Write an **equation** for the total impedance phase ΘT
- 5. Draw the impedance diagram for the circuit at 1 kHz.
- 6. Write an equation for the series current I
- 7. Find the corner frequency, f1

- 8. Write an **equation** for **V**c
- 9. Using your results, check the values in the table below AND complete it:

Table 1: Calculated Values for the Series RC Circuit

Table 1. Calculated values for the belies ito circuit						
f(Hz)	$m{X}_{m{C}}(\Omega)$	$oldsymbol{Z_T}(\Omega)$		$V_C(V ext{pk})$		
		$ Z_T $	θ_T °	$ V_C $	θ_C °	
10	$1.59 \cdot 10^6$	$1.59 \cdot 10^6$	-89.5	10	-0.54	
1000						
10,000						
20,000	795.8	15,021	-3.04	0.53	-87.0	

Electrical Engineering Technology

Series R-C Circuit Analysis (ICP)

3. Write an **equation** for the total impedance magnitude |ZT|

1. What is the source voltage, **V1** in phasor form?

4. Write an **equation** for the total impedance phase Ozt

$$X_{C_i} = \frac{1}{2\pi f C_i} (\Omega)$$
 (EQ1)

Ŋ

Electrical Engineering Technology

Series R-C Circuit Analysis (ICP)

5. Draw the impedance diagram for the circuit at 1 kHz.

6. Write an equation for the series current I

7. Find the corner frequency, f1

E

Electrical Engineering Technology

Series R-C Circuit Analysis (ICP)

9. Using your results, check the values in the table below AND complete it:

Table 1: Calculated Values for the Series RC Circuit

	f(Hz)	$oldsymbol{X_C}(\Omega)$	$oxed{Z_{T}(\Omega)}$		$V_C(V exttt{pk})$	
			$ Z_T $	$ heta_T$ $^{\circ}$	$ V_C $	θ_C °
	10	$1.59 \cdot 10^{6}$	$1.59 \cdot 10^{6}$	-89.5	10	-0.54
	1000					
	10,000					
	20,000	795.8	15,021	-3.04	0.53	-87.0

8. Write an equation for Vc

$$\vec{\nabla}_{c} = \vec{I} \cdot \vec{Z}_{c}$$

$$= \left(\frac{10 \text{ Vpk } \cancel{\checkmark} 0^{\circ}}{\vec{Z}_{T}}\right) \left(\vec{Z}_{c_{1}}\right), \quad SAME \quad AS \quad VOLTAGE \quad DIVIDER$$

$$|\overrightarrow{V_c}| = \frac{(10V_{ph})(\chi_{ci})}{\sqrt{R_i^2 + \chi_{ci}^2}}$$
 (EQ4)

$$4 \overrightarrow{V}_{c} = -90^{\circ} - \Theta_{ZT}$$
 (EQ5)

	EQ1	EQ2,3	EQ4,5
+ HZ)	Xc(n)	Zī	V _c
10	1.592×106	1.592×10 2 4-89.5°	10.0Vph X-0.54°
1,000	15,915	21,8702 4-46.7°	7.28Vph \$-43.3'
10,000	1,592	15,0842 \$ -6.06°	1.06 Vpt 4-83.9°
20,000	795.8	15,021-14-3.04°	0.530 Vph 4-87.0°