Dassault Mirage 2000-5 Aerodynamic data built from vspaero; CG (8.56, 0, 0.5)M, 2019-10-04 04:55

Richard Harrison, rjh@zaretto.com, ZDAT/AED/2017/09-08.

Copyright (C) 2017 Richard Harrison, All rights reserved

AeroDetail=Full, Gear, Flaps, WakeIterations=2

Model summary

Dependent variable	Independent variables	Axis	Description
CFXB	alpha	DRAG	BASIC DRAG
CFXDED1L	alpha,beta,DED1L	DRAG	DRAG DUE TO ELEVON 1L
CFXDED1R	alpha,beta,DED1R	DRAG	DRAG DUE TO ELEVON 1R
CFXDED2L	alpha,beta,DED2L	DRAG	DRAG DUE TO ELEVON 2L
CFXDED2R	alpha,beta,DED2R	DRAG	DRAG DUE TO ELEVON 2R
CFXDSD1L	alpha	DRAG	DRAG DUE TO LE SLAT 1L
CFXDSD1R	alpha	DRAG	DRAG DUE TO LE SLAT 1R
CFXDSD2L	alpha	DRAG	DRAG DUE TO LE SLAT 2L
CFXDSD2R	alpha	DRAG	DRAG DUE TO LE SLAT 2R
CFXDSBL	alpha	DRAG	DRAG DUE TO LOWER SPEEDBRAKE DEFLECTION
CFXDSBU	alpha	DRAG	DRAG DUE TO UPPER SPEEDBRAKE DEFLECTION
CFXGEAR	alpha	DRAG	DRAG INCREMENT DUE TO GEAR
CFZB	alpha	LIFT	BASIC LIFT
CFZDED1L	alpha,beta,DED1L	LIFT	LIFT DUE TO ELEVON 1L
CFZDED1R	alpha,beta,DED1R	LIFT	LIFT DUE TO ELEVON 1R
CFZDSD1L	alpha	LIFT	LIFT DUE TO LE SLAT 1L
CFZDSD1R	alpha	LIFT	LIFT DUE TO LE SLAT 1R
CFZDE2L	alpha	LIFT	LIFT DUE TO LE SLAT 2L
CFZDE2R	alpha	LIFT	LIFT DUE TO LE SLAT 2R
CFZDEL	alpha	LIFT	LIFT DUE TO LOWER SPEEDBRAKE DEFLECTION
CFZDSBU	alpha	LIFT	LIFT DUE TO UPPER SPEEDBRAKE DEFLECTION
CFZGEAR	alpha	LIFT	LIFT INCREMENT DUE TO GEAR
CMM1	alpha	РІТСН	BASIC PITCHING MOMENT
CMMQ	alpha	PITCH	PITCH DAMPING DERIVATIVE
CMMDED1L	alpha,beta,DED1L	PITCH	PITCH MOMENT DUE TO ELEVON 1L
CMMDED1R	alpha,beta,DED1R	PITCH	PITCH MOMENT DUE TO ELEVON 1R
CMMDED2L	alpha,beta,DED2L	PITCH	PITCH MOMENT DUE TO ELEVON 2L
CMMDED2R	alpha,beta,DED2R	PITCH	PITCH MOMENT DUE TO ELEVON 2R
CMMDSD1L	alpha	РІТСН	PITCH MOMENT DUE TO LE SLAT 1L
CMMDSD1R	alpha	PITCH	PITCH MOMENT DUE TO LE SLAT 1R

CMMDSD2L	alpha	РІТСН	PITCH MOMENT DUE TO LE SLAT 2L
CMMDSD2R	alpha	PITCH	PITCH MOMENT DUE TO LE SLAT 2R
CMMDSBL	alpha	PITCH	PITCH MOMENT DUE TO LOWER SPEEDBRAKE DEFLECTION
CMMDSBU	alpha	PITCH	PITCH MOMENT DUE TO UPPER SPEEDBRAKE DEFLECTION
CMMGEAR	alpha	PITCH	PITCHING MOMENT INCREMENT DUE TO GEAR
CML1	alpha,beta	ROLL	BASIC ROLLING MOMENT
CMLP	alpha	ROLL	ROLL DAMPING DERIVATIVE
CMLDED1L	alpha,beta,DED1L	ROLL	ROLLING MOMENT DUE TO ELEVON 1L DEFLECTION
CMLDED1R	alpha,beta,DED1R	ROLL	ROLLING MOMENT DUE TO ELEVON 1R DEFLECTION
CMLDED2L	alpha,beta,DED2L	ROLL	ROLLING MOMENT DUE TO ELEVON 2L DEFLECTION
CMLDED2R	alpha,beta,DED2R	ROLL	ROLLING MOMENT DUE TO ELEVON 2R DEFLECTION
CMLDSD1L	alpha	ROLL	ROLLING MOMENT DUE TO LE SLAT 1L DEFLECTION
CMLDSD1R	alpha	ROLL	ROLLING MOMENT DUE TO LE SLAT 1R DEFLECTION
CMLDSD2L	alpha	ROLL	ROLLING MOMENT DUE TO LE SLAT 2L DEFLECTION
CMLDSD2R	alpha	ROLL	ROLLING MOMENT DUE TO LE SLAT 2R DEFLECTION
CMLDRD	alpha,beta,DRD	ROLL	ROLLING MOMENT DUE TO RUDDER DEFLECTION
CMLR	alpha	ROLL	ROLLING MOMENT DUE TO YAW RATE
CMLGEAR	alpha	ROLL	ROLLING MOMENT INCREMENT DUE TO GEAR
CFYB	alpha,beta	SIDE	BASIC SIDE FORCE
CFYDED1L	alpha,beta,DED1L	SIDE	SIDE FORCE DUE TO ELEVON 1L DEFLECTION
CFYDED1R	alpha,beta,DED1R	SIDE	SIDE FORCE DUE TO ELEVON 1R DEFLECTION
CFYDED2L	alpha,beta,DED2L	SIDE	SIDE FORCE DUE TO ELEVON 2L DEFLECTION
CFYDED2R	alpha,beta,DED2R	SIDE	SIDE FORCE DUE TO ELEVON 2R DEFLECTION
CFYDSD1L	alpha	SIDE	SIDE FORCE DUE TO LE SLAT 1L DEFLECTION
CFYDSD1R	alpha	SIDE	SIDE FORCE DUE TO LE SLAT 1R DEFLECTION
CFYDSD2L	alpha	SIDE	SIDE FORCE DUE TO LE SLAT 2L DEFLECTION
CFYDSD2R	alpha	SIDE	SIDE FORCE DUE TO LE SLAT 2R DEFLECTION
CFYP	alpha	SIDE	SIDE FORCE DUE TO ROLL RATE
CFYDRD	alpha,beta,DRD	SIDE	SIDE FORCE DUE TO RUDDER DEFLECTION
CFYR	alpha	SIDE	SIDE FORCE DUE TO YAW RATE
CFYGEAR	alpha	SIDE	SIDE FORCE INCREMENT DUE TO GEAR
CMN1	alpha,beta	YAW	BASIC YAW ING MOMENT
CMNR	alpha	YAW	YAW DAMPING DERIVATIVE
CMNDED1L	alpha,beta,DED1L	YAW	YAW MOMENT DUE TO ELEVON 1L
CMNDED1R	alpha,beta,DED1R	YAW	YAW MOMENT DUE TO ELEVON 1R
CMNDED2L	alpha,beta,DED2L	YAW	YAW MOMENT DUE TO ELEVON 2L
CMNDED2R	alpha,beta,DED2R	YAW	YAW MOMENT DUE TO ELEVON 2R
CMNDSD1L	alpha	YAW	YAW MOMENT DUE TO LE SLAT 1L

CMNDSD1R	alpha	YAW YAW MON	MENT DUE TO LE SLAT 1R
CMNDSD2L	alpha	YAW YAW MON	MENT DUE TO LE SLAT 2L
CMNDSD2R	alpha	YAW YAW MON	MENT DUE TO LE SLAT 2R
CMNP	alpha	YAW YAW ING I	MOMENT DUE TO ROLL RATE
CMNDRDr	alpha,beta,DRD	YAW YAW ING I	MOMENT DUE TO RUDDER DEFLECTION
CMNGEAR	alpha	YAW YAW ING I	MOMENT INCREMENT DUE TO GEAR

Coefficient Buildup

Axis	Buildup
DRAG	CFXDSD1L*DSD1L + CFXDSD1R*DSD1R + CFXDSD2L*DSD2L + CFXDSD2R*DSD2R + CFXDSBU*DSBU + CFXDSBL*DSBL + CFXGEAR*gear + CFXB + CFXDED1L + CFXDED1R + CFXDED2L + CFXDED2R
SIDE	CFYDSD1L*DSD1L + CFYDSD1R*DSD1R + CFYDSD2L*DSD2L + CFYDSD2R*DSD2R + CFYGEAR*gear + CFYB + CFYDED1L + CFYDED1R + CFYDED2L + CFYDED2R + CFYDRD + CFYP*PB + CFYR*RB
LIFT	CFZDSD1L*DSD1L + CFZDSD1R*DSD1R + CFZDE2L*DSD2L + CFZDE2R*DSD2R + CFZDSBU*DSBU + CFZDEL*DSBL + CFZGEAR*gear + CFZB + CFZDED1L + CFZDED1R + CFZDE2L + CFZDE2R
ROLL	CMLDSD1L*DSD1L + CMLDSD1R*DSD1R + CMLDSD2L*DSD2L + CMLDSD2R*DSD2R + CMLGEAR*gear + CML1 + CMLDED1L + CMLDED1R + CMLDED2L + CMLDED2R + CMLDRD + CMLP*PB + CMLR*RB + (DLNB*BETA)
РІТСН	CMMDSD1L*DSD1L + CMMDSD1R*DSD1R + CMMDSD2L*DSD2L + CMMDSD2R*DSD2R + CMMDSBU*DSBU + CMMDSBL*DSBL + CMMGEAR*gear + CMM1 + CMMQ*QB + CMMDED1L + CMMDED1R + CMMDED2L + CMMDED2R
YAW	CMNDSD1L*DSD1L + CMNDSD1R*DSD1R + CMNDSD2L*DSD2L + CMNDSD2R*DSD2R + CMNGEAR*gear + CMN1 + CMNDED1L + CMNDED1R + CMNDED1R + CMNDED2R + CMNDED1R + CMNDED2R + CMNDED1R + CMNDED2R + CMNDED2R + CMNDRDR + CMNP*PB + CMNR*RB + (DCNB*BETA)

LIFT

CFZDED1L (alpha,beta,DED1L=-16) 0.098 0.071 0.045 0.019 -0.007 -0.033 -0.059 -0.085 -0.111 -0.138 -10 -5 0 5 10 15 20 25 30 35 40 45 50 55 60 vsp beta -7 vsp beta -2 vsp beta 2 vsp beta 5

LIFT DUE TO ELEVON 1L

LIFT DUE TO ELEVON 1L

LIFT DUE TO ELEVON 1L

CFZDED1L (alpha,beta,DED1L=0)

CFZDED1L (alpha,beta,DED1L=25)

LIFT DUE TO ELEVON 1R

LIFT DUE TO ELEVON 1R

LIFT DUE TO ELEVON 1R

CFZDED1R (alpha,beta,DED1R=25)

LIFT DUE TO LE SLAT 2L

CFZDE2L(alpha)

CFZDE2L*DSD2L

LIFT DUE TO LE SLAT 2R

CFZDE2R(alpha)

CFZDE2R*DSD2R

LIFT DUE TO LE SLAT 1L

CFZDSD1L(alpha)

LIFT DUE TO LE SLAT 1R

LIFT DUE TO UPPER SPEEDBRAKE DEFLECTION

CFZDSD1R(alpha)

CFZDSBU(alpha)

LIFT DUE TO LOWER SPEEDBRAKE DEFLECTION

LIFT INCREMENT DUE TO GEAR

CFZDEL(alpha)

CFZGEAR(alpha)

DRAG

BASIC DRAG

CFXB(alpha)

2.5

1.5

1.0

0.5

0.0 -10

10 15 20 25 30 35 40 45 50 55 60

DRAG DUE TO ELEVON 1L

— CFXB

DRAG DUE TO ELEVON 1L

CFXDED1L (alpha,beta,DED1L=0)

DRAG DUE TO ELEVON 1L

CFXDED1L (alpha,beta,DED1L=25)

DRAG DUE TO ELEVON 1R

DRAG DUE TO ELEVON 1R

CFXDED1R (alpha,beta,DED1R=-16)

DRAG DUE TO ELEVON 1R

DRAG DUE TO ELEVON 2L

DRAG DUE TO ELEVON 2L

DRAG DUE TO ELEVON 2L

CFXDED2L (alpha,beta,DED2L=0)

CFXDED2L (alpha,beta,DED2L=25)

DRAG DUE TO ELEVON 2R

DRAG DUE TO ELEVON 2R

CFXDED2R (alpha,beta,DED2R=-16)

DRAG DUE TO ELEVON 2R

CFXDED2R (alpha,beta,DED2R=25)

DRAG DUE TO LE SLAT 1L

CFXDSD1L(alpha)

DRAG DUE TO LE SLAT 1R

CFXDSD1R(alpha)

DRAG DUE TO LE SLAT 2L

CFXDSD2L(alpha)

DRAG DUE TO LE SLAT 2R

DRAG DUE TO UPPER SPEEDBRAKE DEFLECTION

CFXDSD2R(alpha)

DRAG DUE TO LOWER SPEEDBRAKE DEFLECTION

DRAG INCREMENT DUE TO GEAR

CFXGEAR(alpha)

SIDE

BASIC SIDE FORCE

SIDE FORCE DUE TO ROLL RATE

CFYB(alpha,beta)

CFYP(alpha)

SIDE FORCE DUE TO YAW RATE

SIDE FORCE DUE TO ELEVON 1L DEFLECTION

CFYR(alpha)

SIDE FORCE DUE TO ELEVON 1L DEFLECTION

SIDE FORCE DUE TO ELEVON 1L DEFLECTION

SIDE FORCE DUE TO ELEVON 1R DEFLECTION

SIDE FORCE DUE TO ELEVON 1R DEFLECTION

CFYDED1R (alpha,beta,DED1R=0)

SIDE FORCE DUE TO ELEVON 1R DEFLECTION

CFYDED1R (alpha,beta,DED1R=25)

SIDE FORCE DUE TO ELEVON 2L DEFLECTION

CFYDED2L (alpha,beta,DED2L=-16)

SIDE FORCE DUE TO ELEVON 2L DEFLECTION

CFYDED2L (alpha,beta,DED2L=0)

SIDE FORCE DUE TO ELEVON 2L DEFLECTION

CFYDED2L (alpha,beta,DED2L=25)

SIDE FORCE DUE TO ELEVON 2R DEFLECTION

SIDE FORCE DUE TO ELEVON 2R DEFLECTION

CFYDED2R (alpha,beta,DED2R=-16)

SIDE FORCE DUE TO ELEVON 2R DEFLECTION

SIDE FORCE DUE TO RUDDER DEFLECTION

CFYDED2R (alpha, beta, DED2R=25)

SIDE FORCE DUE TO LE SLAT 1L DEFLECTION

SIDE FORCE DUE TO LE SLAT 1R DEFLECTION

CFYDSD1L(alpha)

CFYDSD1R(alpha)

SIDE FORCE DUE TO LE SLAT 2L DEFLECTION

SIDE FORCE DUE TO LE SLAT 2R DEFLECTION

CFYDSD2L(alpha)

CFYDSD2R(alpha)

SIDE FORCE INCREMENT DUE TO GEAR

CFYGEAR(alpha)

ROLL

BASIC ROLLING MOMENT

CML1(alpha,beta)

ROLL DAMPING DERIVATIVE

CMLP(alpha)

ROLLING MOMENT DUE TO YAW RATE

CMLR(alpha)

CMLR*RB 0.37 0.30 0.24 0.18 0.12 0.05 -0.01 -0.07 -0.13 -0.20 10 15 20 25 30 35 40

ROLLING MOMENT DUE TO ELEVON 1L DEFLECTION

CMLDED1L (alpha,beta,DED1L=-16)

ROLLING MOMENT DUE TO ELEVON 1L DEFLECTION

--- CMLR

CMLDED1L (alpha,beta,DED1L=0)

ROLLING MOMENT DUE TO ELEVON 1L DEFLECTION

CMLDED1L (alpha,beta,DED1L=25)

ROLLING MOMENT DUE TO ELEVON 1R DEFLECTION

ROLLING MOMENT DUE TO ELEVON 1R DEFLECTION

CMLDED1R (alpha,beta,DED1R=-16)

ROLLING MOMENT DUE TO ELEVON 1R DEFLECTION

ROLLING MOMENT DUE TO ELEVON 2L DEFLECTION

ROLLING MOMENT DUE TO ELEVON 2L DEFLECTION

ROLLING MOMENT DUE TO ELEVON 2L DEFLECTION

CMLDED2L (alpha,beta,DED2L=0)

ROLLING MOMENT DUE TO ELEVON 2R DEFLECTION

ROLLING MOMENT DUE TO ELEVON 2R DEFLECTION

CMLDED2R (alpha,beta,DED2R=0)

15

20 25 30

vsp beta -7
vsp beta -2
vsp beta 2
vsp beta 7
vsp beta -2
vsp beta 5

35 40 45

ROLLING MOMENT DUE TO ELEVON 2R DEFLECTION

CMLDED2R (alpha,beta,DED2R=25)

0.047 0.035 0.023 0.011 -0.001 -0.013 -0.025 -0.037

ROLLING MOMENT DUE TO RUDDER DEFLECTION

CMLDRD (alpha,beta,DRD=-25)

ROLLING MOMENT DUE TO RUDDER DEFLECTION

-- vsp beta -7 -- vsp beta -2 -- vsp beta 2 -- vsp beta 7
-- vsp beta -5 -- vsp beta 0 -- vsp beta 5

20 25

30 35

40 45

-0.061

CMLDRD (alpha,beta,DRD=0)

ROLLING MOMENT DUE TO RUDDER DEFLECTION

CMLDRD (alpha,beta,DRD=25)

ROLLING MOMENT DUE TO LE SLAT 1L DEFLECTION

ROLLING MOMENT DUE TO LE SLAT 1R DEFLECTION

CMLDSD1L(alpha)

CMLDSD1R(alpha)

ROLLING MOMENT DUE TO LE SLAT 2L DEFLECTION

ROLLING MOMENT DUE TO LE SLAT 2R DEFLECTION CMLDSD2R(alpha)

CMLDSD2L(alpha)

15

- CMLDSD2R

ROLLING MOMENT INCREMENT DUE TO GEAR

CMLGEAR(alpha)

PITCH

BASIC PITCHING MOMENT

CMM1(alpha) 0.034 0.010 -0.014 -0.037 -0.061 -0.133 -0.156 -0.180 -0.180 -0.180 -0.180 -0.180 -0.180 -0.180 -0.180 -0.180 -0.180 -0.180 -0.180 -0.180

— смм1

PITCH DAMPING DERIVATIVE

PITCH MOMENT DUE TO ELEVON 1L

PITCH MOMENT DUE TO ELEVON 1L

CMMDED1L (alpha,beta,DED1L=-16)

CMMDED1L (alpha,beta,DED1L=0)

PITCH MOMENT DUE TO ELEVON 1L

PITCH MOMENT DUE TO ELEVON 1R

CMMDED1L (alpha,beta,DED1L=25)

PITCH MOMENT DUE TO ELEVON 1R

PITCH MOMENT DUE TO ELEVON 1R

CMMDED1R (alpha,beta,DED1R=0)

CMMDED1R (alpha,beta,DED1R=25)

PITCH MOMENT DUE TO ELEVON 2L

PITCH MOMENT DUE TO ELEVON 2L

CMMDED2L (alpha,beta,DED2L=-16)

PITCH MOMENT DUE TO ELEVON 2L

CMMDED2L (alpha,beta,DED2L=25)

PITCH MOMENT DUE TO ELEVON 2R

CMMDED2R (alpha,beta,DED2R=-16)

PITCH MOMENT DUE TO ELEVON 2R

CMMDED2R (alpha,beta,DED2R=0)

PITCH MOMENT DUE TO ELEVON 2R

CMMDED2R (alpha,beta,DED2R=25)

PITCH MOMENT DUE TO LE SLAT 1L

PITCH MOMENT DUE TO LE SLAT 1R

CMMDSD1L(alpha)

CMMDSD1R(alpha)

PITCH MOMENT DUE TO LE SLAT 2L

- CMMDSD1L

CMMDSD2L(alpha)

CMMDSD2R(alpha)

PITCH MOMENT DUE TO LE SLAT 2R

PITCH MOMENT DUE TO UPPER SPEEDBRAKE DEFLECTION

PITCH MOMENT DUE TO LOWER SPEEDBRAKE DEFLECTION

CMMDSBU(alpha)

0.000191

0.000163

0.000135

0.000107 -

0.000079

0.000052

0.000024

-0.000004

-0.000032

-0.000060 -10

30 35 40 45

CMMDSBL(alpha)

PITCHING MOMENT INCREMENT DUE TO GEAR

--- CMMDSBU

CMMGEAR(alpha)

YAW

BASIC YAWING MOMENT

YAW MOMENT DUE TO ELEVON 1L

CMN1(alpha,beta)

YAW MOMENT DUE TO ELEVON 1L

YAW MOMENT DUE TO ELEVON 1L

YAW MOMENT DUE TO ELEVON 1R

YAW MOMENT DUE TO ELEVON 1R

CMNDED1R (alpha,beta,DED1R=-16)

CMNDED1R (alpha,beta,DED1R=0)

YAW MOMENT DUE TO ELEVON 1R

YAW MOMENT DUE TO ELEVON 2L

CMNDED1R (alpha,beta,DED1R=25)

YAW MOMENT DUE TO ELEVON 2L

YAW MOMENT DUE TO ELEVON 2L

CMNDED2L (alpha,beta,DED2L=0)

CMNDED2L (alpha,beta,DED2L=25)

YAW MOMENT DUE TO ELEVON 2R

YAW MOMENT DUE TO ELEVON 2R

CMNDED2R (alpha,beta,DED2R=-16)

YAW MOMENT DUE TO ELEVON 2R

CMNDED2R (alpha,beta,DED2R=25)

YAW MOMENT DUE TO LE SLAT 1L

CMNDSD1L(alpha)

CMNDSD1L*DSD1L

YAW MOMENT DUE TO LE SLAT 1R

CMNDSD1R(alpha)

YAW MOMENT DUE TO LE SLAT 2L

CMNDSD2L(alpha)

YAW MOMENT DUE TO LE SLAT 2R

YAWING MOMENT INCREMENT DUE TO GEAR

CMNDSD2R(alpha)

CMNGEAR(alpha)

YAWING MOMENT DUE TO RUDDER DEFLECTION

YAWING MOMENT DUE TO RUDDER DEFLECTION

YAWING MOMENT DUE TO RUDDER DEFLECTION

YAWING MOMENT DUE TO ROLL RATE

CMNDRDr (alpha,beta,DRD=25)

CMNP(alpha)

YAW DAMPING DERIVATIVE

CMNR(alpha)

References

1. Richard Harrison, rjh@zaretto.com: Mirage 2000-5 Aerodynamic data built from vspaero; AeroRP (8.56, 0, 0.5)M, ZDAT/AED/2017/09-08, September, 2017: http://www.zaretto.com/sites/zaretto.com/files/Mirage2000-data-data/rjh-zaretto-Mirage2000-aerodynamic-data-vspaero.pdf

Aircraft Metrics

Element	X	Υ	Z	Unit
Aerodynamic Reference Point (CoP)	8.56	0.00	0.50	М
Aircraft CG	8.56	0.00	0.50	М

Element		Unit
Wingspan	7.87	М
Wing Area	28.17	M2
CIMax	-1.00	ND

Mass and balance

Element					Unit	
Empty Weight			28000.00		LBS	
IXX			6262.00		KG*M2	
IYY			75686.00		KG*M2	
IZZ			78802.00		KG*M2	
IXZ			2141.00		KG*M2	
Element	X	Υ	Z	Unit	Weight	

Ground Reactions

Element	X	Υ	Z	Unit	Index
NOSE_LG	4.01	0.00	-2.73	М	0
LEFT_MLG	8.96	-1.80	-2.65	М	1
RIGHT_MLG	8.96	1.80	-2.65	М	2
LEFT_WING_TIP	11.71	-4.53	-0.25	М	3
RIGHT_WING_TIP	11.71	4.53	-0.25	М	4
CANOPY	4.27	0.00	1.46	М	5
REAR_CANOPY	5.05	0.00	1.58	М	6
RADOME_FRONT	0.00	0.00	0.00	М	7
VERTICAL_TAIL_FRONT	13.06	0.00	3.63	М	8
VERTICAL_TAIL_REAR	13.72	0.00	3.54	М	9
REAR_BODY_LEFT	13.63	-0.50	0.53	М	10
REAR_BODY_RIGHT	13.63	0.50	0.53	М	11
LOWER_REAR_BODY	13.63	0.00	0.03	М	12
LOWER_MID_REAR_BODY	11.56	0.00	-0.32	М	13
REFUEL_PROBE	1.53	0.55	1.17	М	14
LEFT_STRAKE	5.21	-1.13	0.64	М	15
RIGHT_STRAKE	5.21	1.13	0.64	М	16
FRONT_LOWER_ANTENNA	2.35	0.00	-0.39	М	17
VSTAB_FRONT_ANTENNA	11.98	0.00	3.06	М	18
VSTAB_REAR_ANTENNA	13.74	0.00	2.98	М	19
CHUTE	13.83	0.00	1.21	М	20

Propulsion

Element	X	Y	Z	Unit	Feed
SNECMA_M53-P2	18.11	0.00	0.50	М	Feed line [0],External Tank [1],Right Wing Tank [2],Left Wing Tank [3],Main Tank [4]

Tanks

Element	X	Υ	Z	Unit	Capacity	Id	Priority	Standpipe
Feed line	8.56	0.00	0.50	М	10 LBS	0	1	
External Tank	8.56	0.00	0.01	М	1200 KG	1	2	50 KG
Right Wing Tank	8.56	4.00	0.10	М	385 LBS	2	3	100 LBS
Left Wing Tank	8.56	-4.00	0.10	М	385 LBS	3	3	100 LBS
Main Tank	8.56	0.00	0.50	М	2128 KG	4	4	50 KG

Systems

Name

Mirage-2000-hydraulics
Mirage-2000-electrics
Mirage-2000-avionics
Mirage-2000-ecs
Mirage-2000-fadec
Mirage-2000-engines-Snecma-M53

Mirage-2000-fcs

Independent variables

machemacht	variables
Name	

aero/alpha-deg
aero/pb
aero/pb
aero/pb
aero/rb
fcs/airbrake-lower
fcs/airbrake-upper
fcs/elevon-1L-pos-deg
fcs/elevon-2L-pos-deg
fcs/elevon-2R-pos-deg
fcs/rudder-pos-deg
fcs/rudder-pos-deg
fcs/rudder-pos-deg
fcs/slat-1R-pos-deg

fcs/slat-2L-pos-deg

fcs/slat-2R-pos-deg

gear/gear-pos-norm