The Emergence of Consonant-Vowel Metathesis in Karuk

Andrew Garrett & Tyler Lau

University of California, Berkeley garrett@berkeley.edu tylerlau@berkeley.edu

Society for the Study of the Indigenous Languages of the Americas (SSILA) 2018 Salt Lake City, UT, USA

January 6, 2018

Acknowledgements

Many thanks to the following:

- Karuk master speakers Sonny Davis and the late Lucille Albers, Charlie Thom, and especially Vina Smith;
- research collaborators LuLu Alexander, Tamara Alexander, Crystal Richardson, and Florrine Super (in Yreka) and Erik H. Maier, Line Mikkelsen, and Clare Sandy (at Berkeley); and
- Susan Lin and the audience at UC Berkeley's Phonetics and Phonology Forum for insightful comments and suggestions.

Data in this talk is drawn from *Ararahi'urípih*, a Karuk dictionary and text corpus (http://linguistics.berkeley.edu/~karuk).

Overview

- Karuk V_1CV_2 sequences show much coarticulation of V_1 into V_2 $/uCi/ \rightarrow [uC^wi], /iCa/ \rightarrow [iC^ja], /iCu/ \rightarrow [iC^ju]$ (all high V_1)
- We argue that this coarticulation is a source of CV metathesis along lines that are phonologized in other languages.
- · Goals
 - · To figure out the environments in which this process occurs
 - To test the hypothesis that coarticulation along with perceptual enhancement is the driving force behind CV metathesis (rather than pure perceptual reanalysis, as per some previous research)

Overview

- Karuk V_1CV_2 sequences show much coarticulation of V_1 into V_2 $/uCi/ \rightarrow [uC^wi], /iCa/ \rightarrow [iC^ja], /iCu/ \rightarrow [iC^ju]$ (all high V_1)
- We argue that this coarticulation is a source of CV metathesis along lines that are phonologized in other languages.
- · Goals
 - To figure out the environments in which this process occurs
 - To test the hypothesis that coarticulation along with perceptual enhancement is the driving force behind CV metathesis (rather than pure perceptual reanalysis, as per some previous research)

Overview

- Karuk V_1CV_2 sequences show much coarticulation of V_1 into V_2 $/uCi/ \rightarrow [uC^wi], /iCa/ \rightarrow [iC^ja], /iCu/ \rightarrow [iC^ju]$ (all high V_1)
- We argue that this coarticulation is a source of CV metathesis along lines that are phonologized in other languages.
- Goals
 - To figure out the environments in which this process occurs
 - To test the hypothesis that coarticulation along with *perceptual enhancement* is the driving force behind CV metathesis (rather than pure perceptual reanalysis, as per some previous research)

- Aghem: *ú- prefix causes labialization of following consonant
- Noni: *ú- is lost and class is marked only by labialization
- Proposed pathway of VC > CV metathesis

- Aghem: *ú- prefix causes labialization of following consonant
- Noni: *ú- is lost and class is marked only by labialization
- Proposed pathway of VC > CV metathesis

- Aghem: *ú- prefix causes labialization of following consonant
- Noni: \dot{u} is lost and class is marked only by labialization
- Proposed pathway of VC > CV metathesis

- Aghem: *ú- prefix causes labialization of following consonant
- Noni: \dot{u} is lost and class is marked only by labialization
- Proposed pathway of VC > CV metathesis

Coarticulation into Metathesis: Misperception Approaches

- Selected literature: Blevins and Garrett (1998, 2004); Hume (1998, 2004); Steriade (2001); Buckley (2011)
- Misperception (listener-driven): automatic coarticulation is misperceived as being underlying rather than phonetic
 - /uCV/ [uC^wV] is misperceived as /uC^wV/
 - Can be misperceived as /C^wV/ if initial /u/ weakened

Prediction: categorical presence vs. absence of offglide

Coarticulation into Metathesis: Misperception Approaches

- Selected literature: Blevins and Garrett (1998, 2004); Hume (1998, 2004); Steriade (2001); Buckley (2011)
- Misperception (listener-driven): automatic coarticulation is misperceived as being underlying rather than phonetic
 - /uCV/ [uC^wV] is misperceived as /uC^wV/
 - Can be misperceived as /CWV/ if initial /u/ weakened

Prediction: categorical presence vs. absence of offglide

- *Perceptual enhancement* (speaker-driven): metathesis occurs to optimize the perception of a weakened cue
 - Along with initial coarticulation, a weakened [u] is accompanied by strengthening of the coarticulated gesture [w]
 - The strengthening of the coarticulation compensates for the weakened gesture, leading to eventual metathesis
- Parallel example in process of vowel nasalization (VNC > VC) (Beddor, 2009)

- *Perceptual enhancement* (speaker-driven): metathesis occurs to optimize the perception of a weakened cue
 - Along with initial coarticulation, a weakened [u] is accompanied by strengthening of the coarticulated gesture [w]
 - The strengthening of the coarticulation compensates for the weakened gesture, leading to eventual metathesis
- Parallel example in process of vowel nasalization (VNC > \tilde{V} C) (Beddor, 2009)

- *Perceptual enhancement* (speaker-driven): metathesis occurs to optimize the perception of a weakened cue
 - Along with initial coarticulation, a weakened [u] is accompanied by strengthening of the coarticulated gesture [w]
 - The strengthening of the coarticulation compensates for the weakened gesture, leading to eventual metathesis
- Parallel example in process of vowel nasalization (VNC > VC) (Beddor, 2009)

- *Perceptual enhancement* (speaker-driven): metathesis occurs to optimize the perception of a weakened cue
 - Along with initial coarticulation, a weakened [u] is accompanied by strengthening of the coarticulated gesture [w]
 - The strengthening of the coarticulation compensates for the weakened gesture, leading to eventual metathesis
- Parallel example in process of vowel nasalization (VNC > VC) (Beddor, 2009)

- *Perceptual enhancement* (speaker-driven): metathesis occurs to optimize the perception of a weakened cue
 - Along with initial coarticulation, a weakened [u] is accompanied by strengthening of the coarticulated gesture [w]
 - The strengthening of the coarticulation compensates for the weakened gesture, leading to eventual metathesis
- Parallel example in process of vowel nasalization (VNC > \tilde{V} C) (Beddor, 2009)

- *Perceptual enhancement* (speaker-driven): metathesis occurs to optimize the perception of a weakened cue
 - Along with initial coarticulation, a weakened [u] is accompanied by strengthening of the coarticulated gesture [w]
 - The strengthening of the coarticulation compensates for the weakened gesture, leading to eventual metathesis
- Parallel example in process of vowel nasalization (VNC > VC) (Beddor, 2009)

Karuk language background

Karuk (káruk 'upriver')

- · 'Hokan' isolate
- Spoken along the mid-Klamath River in northern California (and diasporically)

Map by Hannah Haynie and Maziar Toosarvandani (http://linguistics.berkeley.edu/Survey/), colored by a Wikipedia user

Karuk language background

Karuk (káruk 'upriver')

- · 'Hokan' isolate
- Spoken along the mid-Klamath River in northern California (and diasporically)

Map by Hannah Haynie and Maziar Toosarvandani (http://linguistics.berkeley.edu/Survey/), colored by a Wikipedia user

Karuk language background

- Karuk language vitality
 - In 1950: ∼100 speakers (Bright, 1957)
 - In 2018: $<\sim$ 6 first-language elder speakers
 - · Very active language revitalization
- Extensive language preservation work by Karuk speakers
 - beginning in the 19th century
 - especially in collaboration with A.L. Kroeber, J.P. Harrington,
 William Bright, Monica Macaulay, current Berkeley researchers
- · Data in this talk
 - drawn from Ararahi'urípih, a Karuk dictionary and text corpus (http://linguistics.berkeley.edu/~karuk)
 - opportunistic (not elicited for this purpose), partly from legacy recordings

Karuk phonology

Karuk Vowels

· Karuk Consonants

Karuk Coarticulation

- Earlier sources note labialization of /x/ after back V and palatalization of /k m x/ after front V, even across word boundary [?if kjârrim] 'truly badly' (Harrington, 1930, 1932b,a; Bright, 1957)
- In our data
 - Labialization: /uCi/ → [uC^wi]
 - Palatalization: /iCa/, /iCu/ → [iCⁱa], [iCⁱu]

Karuk Coarticulation

- Earlier sources note labialization of /x/ after back V and palatalization of /k m x/ after front V, even across word boundary [?íf k^jâːrim] 'truly badly' (Harrington, 1930, 1932b,a; Bright, 1957)
- In our data
 - Labialization: $/uCi/ \rightarrow [uC^wi]$
 - Palatalization: iCa/, $iCu/ \rightarrow [iC^{\dagger}a]$, $[iC^{\dagger}u]$

Karuk Coarticulation

- Earlier sources note labialization of /x/ after back V and palatalization of /k m x/ after front V, even across word boundary [?if kjârrim] 'truly badly' (Harrington, 1930, 1932b,a; Bright, 1957)
- · In our data
 - Labialization: /uCi/ → [uC^wi]
 - Palatalization: /iCa/, $/iCu/ \rightarrow [iC^{j}a]$, $[iC^{j}u]$

Karuk: coarticulation, metathesis, and variation

- Examples of "completed" metathesis (u-'3sg', piip 'say')
 - xás upíip "pa'íshaha itárivramnihaak . . . "

 'And she said, "When you pour the water in . . . "

xás upíip

 and he said'

[upixp

- · There is interspeaker variation on the rate of this process
- All examples in this presentation are from one female speaker (more data will be incorporated in future work)

Karuk: coarticulation, metathesis, and variation

- Examples of "completed" metathesis (u-'3sg', piip 'say')
 - xás upíip "pa'íshaha itárivramnihaak . . . " [upixp 'And she said, "When you pour the water in ..."

 xás upíip 'and he said'

- There is interspeaker variation on the rate of this process

Karuk: coarticulation, metathesis, and variation

- Examples of "completed" metathesis (u- '3sg', piip 'say')
 - xás upíip "pa'íshaha itárivramnihaak . . . " [upiːp 'And she said, "When you pour the water in . . . "'

xás upíip

 and he said'

 "xas vúra maath káru" upiip "and it was heavy", he said"

- There is interspeaker variation on the rate of this process
- All examples in this presentation are from one female speaker (more data will be incorporated in future work)

Palatalization

Labialization

- Extracted sentences and tokens from Ararahi'urípih corpus
- Force-aligned using faseAlign (Wilbanks, 2017), designed for Latin American Spanish data—some differences:
 - /h/ treated as /x/
 - β (<v>) treated as β (Spanish has [β] allophone of β)
 - $\theta \int \text{treated as /s/ (} \theta \text{ often [s] in Karuk, [} \text{ similar to [s])}$
- Target words had two possible representations
 - Ex. $puxich = [puxit] \sim [pux^wit]$
 - Best representation chosen probabilistically by aligner
 - All tokens hand-checked
- Formants taken at 7 equally spaced intervals via ifcformant

- Extracted sentences and tokens from Ararahi'urípih corpus
- Force-aligned using faseAlign (Wilbanks, 2017), designed for Latin American Spanish data—some differences:
 - /h/ treated as /x/
 - $/\beta/$ (<v>) treated as /b/ (Spanish has $[\beta]$ allophone of /b/)
 - $/\theta \int / \text{ treated as /s/ (/θ/ often [s] in Karuk, []] similar to [s])}$
- Target words had two possible representations
 - Ex. $puxich = [puxit] \sim [pux^wit]$
 - · Best representation chosen probabilistically by aligner
 - All tokens hand-checked
- Formants taken at 7 equally spaced intervals via ifcformant

- Extracted sentences and tokens from Ararahi'urípih corpus
- Force-aligned using faseAlign (Wilbanks, 2017), designed for Latin American Spanish data—some differences:
 - /h/ treated as /x/
 - $/\beta/$ (<v>) treated as /b/ (Spanish has $[\beta]$ allophone of /b/)
 - $/\theta \int / \text{ treated as /s/ (/θ/ often [s] in Karuk, []] similar to [s])}$
- Target words had two possible representations
 - Ex. $puxich = [puxit] \sim [pux^wit]$
 - · Best representation chosen probabilistically by aligner
 - · All tokens hand-checked
- Formants taken at 7 equally spaced intervals via ifcformant

- Extracted sentences and tokens from Ararahi'urípih corpus
- Force-aligned using faseAlign (Wilbanks, 2017), designed for Latin American Spanish data—some differences:
 - /h/ treated as /x/
 - $/\beta/$ (<v>) treated as /b/ (Spanish has $[\beta]$ allophone of /b/)
 - $/\theta \int / \text{ treated as /s/ (/θ/ often [s] in Karuk, []] similar to [s])}$
- Target words had two possible representations
 - Ex. $puxich = [puxit] \sim [pux^wit]$
 - · Best representation chosen probabilistically by aligner
 - · All tokens hand-checked
- · Formants taken at 7 equally spaced intervals via ifcformant

Measurements

- Total duration = $V_1 + C$ + offglide + V_2
- V_1 percentage = Duration of V_1 /Total duration
- F2 difference = $F2_{t1 (V2)}$ $F2_{t1 (offglide)}$

Measurements

- Total duration = V₁ + C + offglide + V₂
- V_1 percentage = Duration of V_1 /Total duration
- F2 difference = $F2_{t1 \text{ (V2)}}$ $F2_{t1 \text{ (offglide)}}$

Measurements

- Total duration = V₁ + C + offglide + V₂
- V_1 percentage = Duration of V_1 /Total duration
- F2 difference = $F2_{t1 (V2)}$ $F2_{t1 (offglide)}$

- Total duration = $V_1 + C$ + offglide + V_2
- V_1 percentage = Duration of V_1 /Total duration
- F2 difference = $F2_{t1 (V2)}$ $F2_{t1 (offglide)}$

- Total duration = $V_1 + C$ + offglide + V_2
- V_1 percentage = Duration of V_1 /Total duration
- F2 difference = $F2_{t1 (V2)}$ $F2_{t1 (offglide)}$

- Total duration = $V_1 + C$ + offglide + V_2
- V_1 percentage = Duration of V_1 /Total duration
- F2 difference = $F2_{t1 (V2)}$ $F2_{t1 (offglide)}$

- Total duration = $V_1 + C$ + offglide + V_2
- V_1 percentage = Duration of V_1 /Total duration
- F2 difference = $F2_{t1 (V2)}$ $F2_{t1 (offglide)}$

- Total duration = $V_1 + C$ + offglide + V_2
- V_1 percentage = Duration of V_1 /Total duration
- F2 difference = $F2_{t1 (V2)}$ $F2_{t1 (offglide)}$

- Total duration = $V_1 + C$ + offglide + V_2
- V_1 percentage = Duration of V_1 /Total duration
- F2 difference = $F2_{t1 (V2)}$ $F2_{t1 (offglide)}$

Variables

- · Independent variable
 - V₁ percentage (= normalized duration)
- Dependent variables
 - Offglide percentage (= normalized duration)
 - F2 difference
- Comparison of target offglides vs. control /u/ formant means

Variables

- · Independent variable
 - V₁ percentage (= normalized duration)
- Dependent variables
 - Offglide percentage (= normalized duration)
 - · F2 difference
- Comparison of target offglides vs. control /u/ formant means

Variables

- · Independent variable
 - V₁ percentage (= normalized duration)
- Dependent variables
 - Offglide percentage (= normalized duration)
 - · F2 difference
- Comparison of target offglides vs. control /u/ formant means

Predictions

Our analysis evaluates predictions of three proposed explanations for sound change with respect to metathesis:

- Misperception
- Gestural Shift
- Perceptual Enhancement

Misperception

• Pure misperception à la Blevins and Garrett (1998, 2004) should yield categorically distinct alternants.

Prediction: Misperception and V₁ duration

- Offglide duration should not continuously increase as V₁ duration decreases
- We should expect little to no correlation

Gestural Shift

Prediction: Gestural Shift and V₁ duration

- As V₁ duration decreases, offglide duration increases
- Labial/palatal gesture shifts from V₁ into following vowel

Perceptual Enhancement

- As V₁ duration decreases, offglide duration increases exponentially
- Labial gesture not only shifts from V₁ into following vowel but is also enhanced
- Duration of latter part of labial/palatalized gesture may increase
- Alternatively, greater labialization may cause lower formant values than expected for du/(2) (2)

- As V₁ duration decreases, offglide duration increases exponentially
- Labial gesture not only shifts from V₁ into following vowel but is also enhanced
- expected for au/ = > + = >

- As V₁ duration decreases, offglide duration increases exponentially
- Labial gesture not only shifts from V₁ into following vowel but is also enhanced
- Duration of latter part of labial/palatalized gesture may increase
- Alternatively, greater labialization may cause lower formant values than expected for du/(2) (2)

- As V₁ duration decreases, offglide duration increases exponentially
- Labial gesture not only shifts from V₁ into following vowel but is also enhanced
- Duration of latter part of labial/palatalized gesture may increase

Prediction: F2/F3 and Perceptual Enhancement

Offglide following longer V1

Offglide following shorter V1

- As V₁ weakens, offglide should be expected to be strengthened
- One way to strengthen could be a greater F2 (and F3) difference

Prediction: Formants and Perceptual Enhancement

- Labialization lowers formants, especially F3 (Beeley, 2015)
- Another way to strengthen would be for offglide formants to be lower than those in /u/

Prediction: Formants and Perceptual Enhancement

- Labialization lowers formants, especially F3 (Beeley, 2015)
- Another way to strengthen would be for offglide formants to be lower than those in /u/

Predictions: Summary

- Misperception
 - F2/F3 difference: no correlation with V₁ duration
 - Offglide duration: no correlation with V₁ duration
 - Offglide formants = normal vowel formants
- Gestural Shift (without perceptual enhancement)
 - F2/F3 difference: no correlation with V₁ duration
 - Offglide duration: inverse correlation with V₁ duration
 - Offglide formants = normal vowel formants
- Perceptual Enhancement
 - F2/F3 difference: inverse correlation with V₁ duration
 - Offglide duration: exponential inverse correlation with V₁ duration
 - Offglide formants < normal vowel formants

Predictions: Summary

- Misperception
 - F2/F3 difference: no correlation with V₁ duration
 - Offglide duration: no correlation with V₁ duration
 - Offglide formants = normal vowel formants
- Gestural Shift (without perceptual enhancement)
 - F2/F3 difference: no correlation with V₁ duration
 - Offglide duration: inverse correlation with V₁ duration
 - Offglide formants = normal vowel formants
- Perceptual Enhancement
 - F2/F3 difference: inverse correlation with V₁ duration
 - Offglide duration: exponential inverse correlation with V₁ duration
 - Offglide formants < normal vowel formants

Predictions: Summary

- Misperception
 - F2/F3 difference: no correlation with V₁ duration
 - Offglide duration: no correlation with V₁ duration
 - Offglide formants = normal vowel formants
- Gestural Shift (without perceptual enhancement)
 - F2/F3 difference: no correlation with V₁ duration
 - Offglide duration: inverse correlation with V₁ duration
 - Offglide formants = normal vowel formants
- Perceptual Enhancement
 - F2/F3 difference: inverse correlation with V₁ duration
 - Offglide duration: exponential inverse correlation with V₁ duration
 - Offglide formants < normal vowel formants

Data Summary

- 95 target tokens in total; 54 have an offglide
- · Of those 54
 - · 20 have palatal offglide
 - 34 have labial offglide; 3 of these have completely lost V₁
- Intervening consonant counts
 - /k/ = 20
 - /f/ = 14
 - /p/ = 11
 - /x/ = 9
- 51 control /u/ tokens for F2 comparison to labial offglides
 - /xu/ = 20
 - /fu/ = 17
 - /pu/ = 13

F2/F3 Difference

Absolute F3 Difference by V1 Duration

- As V₁ shortens, F2/F3 difference barely changes
- No significant correlation of F2 (r = -0.07, p = 0.6) or F3 (r = -0.11, p = 0.42) difference with V_1 duration

F2/F3 Difference

Absolute F3 Difference by V1 Duration

- As V₁ shortens, F2/F3 difference barely changes
- No significant correlation of F2 (r = -0.07, p = 0.6) or F3 (r = -0.11, p = 0.42) difference with V₁ duration

Offglide Duration

- As V₁ shortens, offglide lengthens (r = -0.54, p < .001)
- But relationship actually looks potentially exponential
- Supports gestural shift or perceptual enhancement

Offglide Duration

- As V₁ shortens, offglide lengthens (r = -0.54, p < .001)
- But relationship actually looks potentially exponential
- Supports gestural shift or perceptual enhancement

Offglide Duration

- As V₁ shortens, offglide lengthens (r = -0.54, p < .001)
- But relationship actually looks potentially exponential
- Supports gestural shift or perceptual enhancement

- t = -3.26, p < 0.01
- t = 3.5, p < 0.001
- t = -3.76, p < 0.001
- Target vowel F1 & F3 values significantly lower than in control vowels
- F2 being higher is unsurprising because of transition to /i/
- Lower formants suggest a coarticulation with greater magnitude of labialization
 - Supports perceptual enhancement

- t = -3.26, p < 0.01
- t = 3.5, p < 0.001
- t = -3.76, p < 0.001
- Target vowel F1 & F3 values significantly lower than in control vowels
- F2 being higher is unsurprising because of transition to /i/
- Lower formants suggest a coarticulation with greater magnitude of labialization
- Supports perceptual enhancement

- t = -3.26, p < 0.01
- t = 3.5, p < 0.001
- t = -3.76, p < 0.001
- Target vowel F1 & F3 values significantly lower than in control vowels
- F2 being higher is unsurprising because of transition to /i/
- Lower formants suggest a coarticulation with greater magnitude of labialization
- Supports perceptual enhancement

- t = -3.26, p < 0.01
- t = 3.5, p < 0.001
- t = -3.76, p < 0.001
- Target vowel F1 & F3 values significantly lower than in control vowels
- F2 being higher is unsurprising because of transition to /i/
- Lower formants suggest a coarticulation with greater magnitude of labialization
- Supports perceptual enhancement

Discussion

- Data suggest that neither misperception nor gestural shift can be the whole picture for CV metathesis
- F2 does not seem to be informative
- There is a process of perceptual enhancement as shown by
 - Exponentially increasing offglide duration as V₁ duration decreases
 - Enhancement of labialization in offglides through lowering of F1 and F3

Discussion

- Data suggest that neither misperception nor gestural shift can be the whole picture for CV metathesis
- F2 does not seem to be informative
- There is a process of perceptual enhancement as shown by
 - Exponentially increasing offglide duration as V₁ duration decreases
 - Enhancement of labialization in offglides through lowering of F1 and F3

Discussion

- Data suggest that neither misperception nor gestural shift can be the whole picture for CV metathesis
- F2 does not seem to be informative
- There is a process of perceptual enhancement as shown by
 - Exponentially increasing offglide duration as V₁ duration decreases
 - Enhancement of labialization in offglides through lowering of F1 and F3

- Speaker-driven perceptual enhancement plays a significant role in the sound change of CV metathesis. In Karuk, this involves:
 - A lengthened offglide
 - A higher (= ↓ F1) offglide
 - A more labialized (= ↓ F3) offglide
- Coarticulation with weakening of V₁ and strengthening of offglide eventually leads to complete metathesis.
- Methodology: opportunistic and legacy recordings can be used to understand the phonetics of sound change.

- Speaker-driven perceptual enhancement plays a significant role in the sound change of CV metathesis. In Karuk, this involves:
 - A lengthened offglide
 - A higher (= ↓ F1) offglide
 - A more labialized (= ↓ F3) offglide
- Coarticulation with weakening of V₁ and strengthening of offglide eventually leads to complete metathesis.
- Methodology: opportunistic and legacy recordings can be used to understand the phonetics of sound change.

- Speaker-driven perceptual enhancement plays a significant role in the sound change of CV metathesis. In Karuk, this involves:
 - A lengthened offglide
 - A higher (= \downarrow F1) offglide
 - A more labialized (= ↓ F3) offglide
- Coarticulation with weakening of V₁ and strengthening of offglide eventually leads to complete metathesis.
- Methodology: opportunistic and legacy recordings can be used to understand the phonetics of sound change.

- Speaker-driven perceptual enhancement plays a significant role in the sound change of CV metathesis. In Karuk, this involves:
 - A lengthened offglide
 - A higher (= ↓ F1) offglide
 - A more labialized (= ↓ F3) offglide
- Coarticulation with weakening of V₁ and strengthening of offglide eventually leads to complete metathesis.
- Methodology: opportunistic and legacy recordings can be used to understand the phonetics of sound change.

- Speaker-driven perceptual enhancement plays a significant role in the sound change of CV metathesis. In Karuk, this involves:
 - A lengthened offglide
 - A higher (= \downarrow F1) offglide
 - A more labialized (= ↓ F3) offglide
- Coarticulation with weakening of V₁ and strengthening of offglide eventually leads to complete metathesis.
- Methodology: opportunistic and legacy recordings can be used to understand the phonetics of sound change.

- Speaker-driven perceptual enhancement plays a significant role in the sound change of CV metathesis. In Karuk, this involves:
 - A lengthened offglide
 - A higher (= \downarrow F1) offglide
 - A more labialized (= ↓ F3) offglide
- Coarticulation with weakening of V₁ and strengthening of offglide eventually leads to complete metathesis.
- Methodology: opportunistic and legacy recordings can be used to understand the phonetics of sound change.

Yôotva! Thank you!

References I

- Beddor, P. S. (2009). A coarticulatory path to sound change. Language, 85(4):785-821.
- Beeley, H. (2015). British English [kw], [k], and [w] distinction in back round vowel contexts. In *Proceedings of the 18th International Congress of Phonetic Sciences*, page Paper number 357. The University of Glasgow, Glasgow, UK.
- Blevins, J. and Garrett, A. (1998). The Origins of Consonant-Vowel Metathesis. *Language*, 74(3):508–556.
- Blevins, J. and Garrett, A. (2004). The evolution of metathesis. In Hayes, B., Kirchner, R., and Steriade, D., editors, *Phonetically based phonology*, pages 117–56. Cambridge University Press.
- Bright, W. (1957). *The Karok Language*, volume (University of California Publications in Linguistics, 13). University of California Press, Berkeley.
- Buckley, E. (2011). Metathesis. In Oostendorp, M. v., Ewen, C. J., Hume, E. V., and Rice, K., editors, *The Blackwell companion to phonology 3: Phonological Processes*, volume 3, pages 1380–1470. Wiley-Blackwell.
- Harrington, J. P. (1930). Karuk texts. International Journal of American Linguistics, 6(2):121–161.
- Harrington, J. P. (1932a). Karuk Indian Myths, volume 107. US Government Printing Office.

References II

- Harrington, J. P. (1932b). *Tobacco among the Karuk Indians of California*, volume 94. US Government Printing Office.
- Hume, E. (1998). The role of perceptibility in Consonant/Consonant metathesis. In WCCFL XVII Proceedings, pages 293–307. Stanford: CSLI.
- Hume, E. V. (2004). The indeterminacy/attestation model of metathesis. *Language*, 80(2):203–237.
- Hyman, L. M. (1979). Aghem grammatical structure. Southern California Occasional Papers in Linguistics, 7.
- Hyman, L. M. (1981). Noni grammatical structure: With special reference to verb morphology. *Southern California Occasional Papers in Linguistics*, 9.
- Steriade, D. (2001). Directional asymmetries in place assimilation: a perceptual account. In Hume, E. and Johnson, K., editors, *The role of speech perception in phonology*, pages 219–50. Brill Academic Pub.
- Wilbanks, E. (2017). faseAlign (Version 0.1.1) [Computer software]. Retrieved Nov 10, 2017 from https://github.com/EricWilbanks/faseAlign.