

Kiberfizikai rendszerek

Kajdocsi László kajdocsi.laszlo@sze.hu https://github.com/kajdocsilaszlo/kiberfizikai-rendszerek

Követelmények

Előadások: 3 találkozás

ZH: 1 db (utolsó óra)

Aláírás feltétele: >50% a ZH-n

 Vizsga: írásbeli vagy szóbeli, vagy egyénileg egyeztetett beadandó feladat

Szómagyarázat

- <u>Kibernetika</u>: Egy komplex tudományos irányzat, amely a szabályozás, vezérlés, információfeldolgozás, -továbbítás általános törvényeit kutatja. Megalkotója Norbert Wiener (1946)
- <u>Fizika</u>: Fő célja a világegyetem viselkedésének a megértése. Egyik legősibb természettudomány.
- Kiberfizikai rendszerek: ???

Mi a KFR?

- Cyber Physical Systems (CPS)
- A kiberfizikai rendszer (KFR) egy olyan mechanizmus, amely valamilyen számítógép-alapú algoritmus által van irányítva és monitorozva.
- A KFR-ben a hardver és szoftver komponensek erősen egybefonódnak, habár mindkettő külön tér- és időbeli síkon működik.

Bevezető

- Az utóbbi években az élet minden területén hatalmas változásoknak lehettünk tanúi. Számunkra elsősorban a tudomány és a technika fejlődése, és ezek "hétköznapi" alkalmazása – elsősorban az ipar területén – bír jelentőséggel.
- Míg az első három ipari forradalom között kb. 100-100 év telt el, a napjaikban zajló 4. Ipari forradalom már sokkal rövidebb idővel – mintegy 45 évvel – követi a harmadikat.
- Amíg a 3. IF meghatározója az elektronika és a számítástechnika alkalmazása az automatizálás területén, addig a 4. IF már egyértelműen az IT fejlődésére épülő intelligens rendszerek megvalósításáról szól.
- A "Kiberfizikai rendszerek" c. tantárgy feladata a hallgatók bevezetése ebbe a témába, megalapozva a későbbi szaktárgyakat.

Š

Az ipari forradalmak

Első ipari forradalom: víz és gőz meghajtású mechanikus berendezések

1784:

gépesített

szövőszék

Második ipari forradalom: elektromos meghajtású, munkameaosztáson alapuló tömeggyártás

Harmadik ipari forradalom: elektronikai és számítástechnikai megoldások a gyártás automatizálására

1969; első PLC

Neavedik ipari forradalom: Kiberfizikai rendszerek elteriedése a gyártásban és a

Az IT forradalmai

- 1.Beszéd verbális kommunikáció
- 2.Irás az információ tárolása
- 3.Könyvnyomtatás
- 4. Elektronikus hírközlés
- 5.Számítógép

. . .

A Net ... és létrejött az "információs társadalom"

. . .

Mi jön ezután?

Artificial intelligence (AI) – mesterséges intelligencia Augmented reality (AR) – kiterjesztett valóság Virtual reality (VR) – virtuális valóság

. . .

Feltételrendszer

- Gyártási rendszerek fejlődése
 - Megnövekedett információigény,
 - munkaerőproblémák,
 - automatizálás,
 - élethosszig tartó termékkövetés.
- ICT eszközök-rendszerek fejlődése.
 - · Lehetőség az megnövekedett információigény kielégítésére,
 - · Számítási kapacitás növekedése BigData, Al ...,
 - szenzorok és aktuátorok, illetve
 - kommunikációs lehetőségek fejlődése LPWAN, M2M, IoT ...
- Automatizálás igénye, lehetősége.
- · Robotok.
- Korszerű, automatizált, intelligens gyártás rendszerek megvalósítása – Industry 4.0

A Német Oktatási és Kutatási Minisztérium (BMBF) szerint:

"Az ipar a negyedik ipari forradalom küszöbén áll. Az interneten keresztül a valós és virtuális világok egyre közelebb kerülnek egymáshoz, hogy kialakítsák a tárgyak internetét. A jövőbeni ipari termelést a termékek erős individualizációja jellemzi a rendkívül rugalmas (nagy sorozatú) termelés körülményei között, az ügyfelek és az üzleti partnerek kiterjedt integrációjában az üzleti és értéknövelt folyamatokban, valamint a termelés és a magas szintű kapcsolatok összekapcsolásában. minőségi szolgáltatások, amelyek ún. hibrid termékekhez vezetnek."

A SZTAKI a kiberfizikai rendszerekről

- Az informatikai fejlődés egyik legjelentősebb irányzatát az ún. kiberfizikai rendszerek (cyberphysical systems, CPS) képviselik, mely elnevezés alatt az informatikai (virtuális) és a valós világ újabb, az eddigieknél lényegesen magasabb fokú és egyben mélyebb interakcióját, integrálását értik.
- E rendszerek olyan számítási struktúrák, melyek intenzív kapcsolatban állnak a környező fizikai világgal, a fizikai folyamatokkal, egyúttal kiszolgálják és hasznosítják az interneten elérhető adatelérési és adatfeldolgozási szolgáltatásokat.

A kiberfizikai rendszer

Fontosabb fogalmak

- IoT Internet of Things a "dolgok internete" (1999!)
- CPS Cyber-Physical Systems Kiberfizikai rendszer (2006!)
- RFID Radio Frequency Identification rádiófrekvenciás azonosítás (1936!)
- Big Data Nagy tömegű, komplex adatállományok feldolgozása
- Cloud felhő
- Smart City, Home, Factory, Logistic, Transport ...
- Industry 4.0 Ipar 4.0 (4. ipari forradalom)
- M2M gép-gép kapcsolat
- CPPS Cyber-Physical Production Systems
- CPSoc Cyber-Physical society
- QoS Quality of Service a szolgáltatás minősége
- Al Artificial Intelligence mesterséges intelligencia
- CI Computational Intelligence számítási intelligencia
- WMN Wireless Mesh Network vezetéknélküli mesh-hálózatok

Alkalmazási területek

- autonóm járművek,
- intelligens épületek,
- intelligens közmű hálózat,
- intelligens település,
- intelligens közlekedési rendszer,
- intelligens gyártás,
- intelligens egészségügy,
- robotok segítségével végzett műtétek,

• . . .

Ipar 4.0

Digitalizáció - 4. Ipari forradalom

Fejlett kíber-fizikai rendszerek: MI, 3D, robotika

Adatelemzés, hatékonyság-növekedés, új üzleti modellek

Mindenre kiterjedő érzékelés és vezérlés

IoT – a teljes gyártási folyamat átlátható

Példátlan adatmennyiség – megnövekedett számítási kapacitás

Adat és információ

Adat:

- Rendezetlen tények, melyeket fel kell dolgozni
- Önmagában hasztalan, amíg fel nem dolgozzák

Információ:

- Feldolgozott és rendezett adatok halmaza
- Értelmezhető értéke van, új tudást eredményez

Adatfeldolgozás folyamata

- Gyűjtés
- Előkészítés
- Bevitel
- Feldolgozás
- Kimenet és felhasználás
- Tárolás

Adatok a KFR-ben

- objektumok és jellemzőik azonosítása,
- a folyamatokban keletkező adatok azonnali rendszerbe juttatása,
- objektumok közötti kapcsolat és kommunikáció,
- feldolgozás, elemzés, irányítás,
- gép-gép kapcsolat minden szinten,
- automatizálás.

Az adatfelvétel és rögzítés automatikus!

Az információ érzékelése

- Szenzorok: fizikai, kémiai ... jellemzők mérése
 - hőmérséklet,
 - távolság,
 - gyorsulás ...
- Optikai érzékelők:
 - kamerák,
 - optikai szkennerek
- Lézerszkennerek
 - optikai olvasók,
 - lidar (Light detection and ranging lézer alapú távérzékelés)
- Rádiófrekvenciás rendszerek
 - RFID (Radio frequency identification rádió frekvenciás azonosítás)
 - radar (Radio detection and ranging rádióérzékelés és távmérés)

Optikai adatátvitel

- Optikai olvasás:
 - speciális formájú jelek,
 - "írott" szöveg.
- Képfelismerés:
 - szimbólumok, speciális jelek,
 - alakfelismerés.
- Vonalkódok

Rádiófrekvenciás adatátvitel

- Kontaktusmentes írás/olvasás.
- Általában azonosítás.
- Széleskörű alkalmazhatóság.
- Ma még drága, de a használat terjedése csökkenti az árakat.
- Nem alternatívája a vonalkódnak!

A vonalkód

Nem tipikusan KFR-eszköz, de azért nem árt, ha ismerjük!

- vékony és vastag vonalak
- vonalkód olvasó a vonalak relatív szélességét és a vonalak közti helyeket méri
- fotóérzékelővel a kódot elektromos jellé változtatja

1D és 2D kódok

- Vonalkód
- PDF-417
- DataMatrix
- QR Code

1234

RFID

Rádiófrekvenciás azonosítás

RFID működése

- Rádiófrekvenciás azonosítás
- Elektromágneses terek
- Címke (tag) és olvasó

Titkosítás és authentikáció (OTA)

RFID cimkék

Passzív:

- Nincs saját energiaforrás
- Az olvasó jele indukál az antennában kellő energiát a válaszhoz
- Hatótáv: 2mm néhány méter

Fél-passzív:

- tartalmaz egy kiskapacitású elemet,
- állandóan működik az IC,

Aktív:

- beépített energiaforrással rendelkeznek,
- állandóan működik az IC,
- nagyobb hatótávolság

NFC

Near Field Communicaton (az RFID egyik ága)

- Kis távolságú kommunikáció (kb. 4-5cm)
- Elektromágneses terek
- Aktív és passzív elemek
- Titkosítás és jelszóvédelem
- A-csoportú rendszer
- B-csoportú rendszer
- FeliCa rendszer

Szenzorok

- A szenzorok olyan jelátalakítók, amelyek valamilyen nem villamos mennyiséget, villamos jellé alakítanak át (egyes esetekben pneumatikussá).
- A szenzorok lehetnek fizikailag jelenlévő mérési érték felvevők, vagy tisztán szoftver szenzorok (ún. figyelők).
- A szenzorok a bemeneti változókat az információ feldolgozóhoz továbbítják, amely azután meghatározza a szükséges aktuátor beavatkozásokat.

27

Szenzorok osztályozása

Tudományág	Alcsoport	Mérési jel	
Mechanika	G eometria	Út, Távolság, Szög, Emelkedés	
	Kinematika	Sebesség, Fordulatszám, Gyorsulás, Szög- gyorsulás, Lengés, Térfogat- és tömegáram	
	Igénybevétel	Erő, Nyomás, Feszültség, Nyomaték, Nyúlás	
	Anyagtulajdonság	Tömeg, Sűrűség, Viszkozitás	
	Akusztika	Hangnyomás, Hangsebesség, Frekvencia	
Termodinamika	Hőmérséklet	Érintkezési hő, Sugárzó hő	
Villamos, Mágnes	Villamos állapot	Feszültség, Áram, Teljesítmény, Töltés	
	Paraméter	Ellenállás, Impedancia, Kapacitás, Induktivitás	
	Mező	Mágneses mező, Elektromos mező	
Kémia és Fizika	Koncentráció	pH-érték, Nedvesség, Hővezetés	
	Partikuláris jel	Lebegő anyagtartalom, Portartalom	
	Molekulartiás	Gáz- Folyadék- Merev test molekulák	
	Optika	Intenzitás, Hullámhossz, Szín	

Mérőrendszer

Szabályozó rendszer

Intelligens szenzorok

Mikroprocesszorral integrálva. Intelligens funkciók, kommunikáció a környezettel. Pl.:

- Digitális jelfeldolgozás, jeltárolás
- Hibakompenzáció
- Multiszenzor jelfeldolgozás (neurális hálózat, öntanulás)
- Önkalibráció és tesztelés
- Automatikus méréshatárváltás
- Átlag- és hibaszámítás
- Időbeli instabilitások kompenzációja
- Kommunikáció számítógéppel

IoT

Internet of Things: "a dolgok internete"

Mi az loT?

Fogjuk a világ összes kütyűjét és összekötjük őket az internet segítségével.

Fajtái:

- Adatgyűjtő és -továbbító kütyük
- Adat fogadó és beavatkozó kütyük
- Mindkettő egyben

A hálózatok szerepe a KFR-ben

Jellemzők:

- gép-gép kapcsolat (M2M),
- kis adatmennyiség,
- gyakori adatküldés,
- adatvesztés időnként elfogadható,
- többnyire időérzékeny.

Kommunikációs megoldások

- hagyományos technológiák
- LPWAN (Low Power Wide Area Network)
- WMN (Wireless Mesh Networks)

Hagyományos hálózatok

Tanultuk korábban Szg.-hálózatok tárgy keretein belül!

TCP/IP model	Protocols and services	OSI model
	HTTP, FTTP,	Application
Application	Telnet, NTP,	Presentation
	DHCP, PING	Session
Transport	TCP, UDP	Transport
Network	IP, ARP, ICMP, IGMP	Network
Network	[Data Link
Interface	Ethernet	Physical

LPWAN

Az LPWAN megoldások

- vezetéknélküli kommunikációs technológiák,
- alacsony energiafogyasztás mellett
- nagy átviteli távolságokat képesek biztosítani.
- alacsony átviteli sebességek.

Az LPWAN technológiák – szenzorok számára:

- cellás IoT technológiák licencköteles frekvenciákon működnek (LTE-M, NB-IoT)
- szabadon felhasználható frekvenciatartományok (Sigfox, LoRa)

LPWAN technológiák

- RFID
- Bluetooth
- LTE-M
- NB-IoT (Narrow-Band IoT)
- Sigfox
- LoRaWAN

WMN technológiák

- Wi-Fi
- Bluetooth
- LoRaWAN
- IQRF
- ZigBEE

To be continued...