Оптимизация количества атомов тулия в магнито-оптической ловушке

Хоружий Кирилл

группа «Квантовые симуляторы и интегрированная фотоника»

Научный руководитель: Акимов А. В. Научный консультант: Цыганок В. В.

27 июня 2023 г.

Ультрахолодные газы

Квантовые приборы:

- гравиметры
- часы
- транспортиры
- ..
- .

Квантовые симуляторы:

- реализация моделей ферми-хаббарда и бозе-хаббарда
- переход от БКШ к БЭК
- формирование вихрей в БЭК
- ...

Общая схема охлаждения

Рис. 1: Принципиальная схема установки

Рис. 2: Используемые в эксперименте атомные переходы

Общая схема охлаждения

Рис. 1: Принципиальная схема установки

 $t_{
m life}$ – время непрерывной работы установки

Ограничения на t_{life} :

- заканчиваются атомы
- напыление на зеркало перед замедлителем

Рис. 2: Используемые в эксперименте атомные переходы

Задача:

увеличить $t_{\rm life}$, сохранив $\Phi_{\rm load}$

Общая схема охлаждения

Рис. 1: Принципиальная схема установки

Рис. 2: Используемые в эксперименте атомные переходы

Задача:

увеличить $t_{\mathrm{life}},$ сохранив Φ_{load}

$$t_{
m life} \propto 1/\Phi_{
m tot}(T)$$

 $\Phi_{
m sol} \propto \Phi_{
m tot}$
 $\Phi_{
m load} = \eta \, \Phi_{
m sol}$

 η – эффективность ЗЗ

Дальнейшие действия:

- \blacksquare понижение T
- \blacksquare повышение η

Зеемановский замедлитель І

Рис. 3: Зависимость магнитного поля внутри зеемановского замедлителя от координаты z. Ток маленькой катушки $I_{\rm small}=17~{\rm A},$ ток большой катушки $I_{\rm big}=35~{\rm A}.$

Тормозящая сила:

$$F = \frac{\hbar k \Gamma}{2} \frac{s}{1 + s + 4(\delta + kv)^2/\Gamma^2}$$

Эффект Доплера:

 $1\,\mathrm{m/c}\sim 2\,\mathrm{M}\Gamma$ ц

При этом:

 $\Gamma \sim 10\,\mathrm{M}\Gamma$ ц

Замедление

от $150\,\mathrm{m/c}$ до $v_\mathrm{slow}\sim30\,\mathrm{m/c}$

Необходима подстройка резонанса магнитным полем:

$$\delta \to \delta + \mu B/\hbar$$

Зеемановский замедлитель II

Рис. 4: а) Зависимость скорости атомов от координаты в зеемановском замедлителе для различных начальных скоростей. б) Характерное преобразование распределения атомов по скоростям после замедления.

Тормозящая сила:

$$F = \frac{\hbar k \Gamma}{2} \frac{s}{1 + s + 4(\delta + kv)^2/\Gamma^2}$$

Уравнение движения:

$$\frac{dv}{dt} = \frac{F}{m}, \overset{v \ dt = \ dz}{\Leftrightarrow} \frac{dv}{dz} = \frac{F(v,z)}{m \ v(z)}$$

Зеемановский замедлитель III

Рис. 5: Зависимость эффективности работы замедлителя η от отстройки луча 33 δ , параметра насыщения s для двух различных значений амплитуды магнитного поля в 33

Загрузка в МОЛ: $v < v_{\rm cap}$

$$\eta = \frac{\Phi_{\mathrm{load}}}{\Phi_{\mathrm{sol}}} - \mathrm{эффективность}\ 33$$

Рис. 6: Преобразование распределения атомов по скоростям после 33

Магнито-оптическая ловушка (МОЛ)

Сила в МОЛ:

$$\boldsymbol{F} = \frac{\hbar \boldsymbol{k} \Gamma}{2} \left(\frac{s}{1 + s + 4 \left(\frac{2\pi \delta - \boldsymbol{k} \boldsymbol{v}}{\Gamma} \right)^2} - \frac{s}{1 + s + 4 \left(\frac{2\pi \delta + \boldsymbol{k} \boldsymbol{v}}{\Gamma} \right)^2} \right)$$

$$\boldsymbol{a}(\boldsymbol{v}), \, \mathbf{m/mc^2}$$

Рис. 8: Схема лучей МОЛ

Рис. 7: Зависимость ускорения от силы светового давления, действующей на движущийся атом от его скорости

Магнито-оптическая ловушка (МОЛ)

Сила в МОЛ:

$$\mathbf{F} = \frac{\hbar \mathbf{k} \Gamma}{2} \left(\frac{s}{1 + s + 4 \left(\frac{2\pi \delta - \mathbf{k} \mathbf{v}}{\Gamma} \right)^2} - \frac{s}{1 + s + 4 \left(\frac{2\pi \delta + \mathbf{k} \mathbf{v}}{\Gamma} \right)^2} \right)$$

Магнитное поле ⇒ эффект Зеемана:

$$\mathbf{B} = \beta(-x, -y, 2z)^{\mathrm{T}}/2, \qquad \Delta E = -\mathbf{B}\boldsymbol{\mu}, \quad \delta \to \delta + \Delta E/\hbar$$

Движение в МОЛ \sim затухающий осциллятор:

$$F(r, v) = -\alpha v - \varkappa r$$

с коэффициентами

$$\varkappa = \frac{-\delta}{\Gamma/2\pi} \frac{8\mu_{\rm B}\beta ks}{\left(1+s+4\left(\frac{2\pi\delta}{\Gamma}\right)^2\right)^2}, \qquad \alpha = \frac{-\delta}{\Gamma} \frac{8\hbar k^2 s}{\left(1+s+4\left(\frac{2\pi\delta}{\Gamma}\right)^2\right)^2},$$

Рис. 7: Схема лучей МОЛ

Фотографирование атомов

Закон Бугера-Ламберта-Бера:

$$\frac{dI}{dz} = -\sigma nI,$$
 $\sigma = \frac{\sigma_0}{1 + I/I_s + 4(\delta/\Gamma)^2},$

Распределение интенсивности:

$$f_{\mathrm{exp}} = \ln\left(rac{I_{\scriptscriptstyle \mathrm{D}}}{I_{0}}
ight) + rac{I_{\scriptscriptstyle \mathrm{D}} - I_{0}}{I_{s}} = \sigma_{0} \int n(x,y,z) \, dz.$$

Рис. 8: Схема детектирования атомов

 $I_{\scriptscriptstyle \rm D}$ — фотография без атомов I_0 — фотография с атомами $I_{\rm s}$ — интенсивность насыщения

Рис. 9: Фото распределения

Количество атомов в МОЛ

Аппроксимация распределения:

$$f_{\rm fit}(x,y) = B + A \exp\left(-\left(\frac{\tilde{x}}{\sigma_1}\right)^2 - \left(\frac{\tilde{y}}{\sigma_2}\right)^2\right)$$

Полное число атомов:

$$N = \pi A \sigma_1 \sigma_2$$

Рис. 10: Экспериментально сфотографированное распределение атомов $f_{\rm exp}$, аппроксимация распределения атомов гауссовой функцией $f_{\rm fit}$ и остатки аппроксимации $|f_{\rm exp}-f_{\rm fit}|$

Загрузка МОЛ: оптимизация отстройки лучей МОЛ

Динамика количества атомов в МОЛ:

$$\frac{dN}{dt} = \Phi_{\text{load}} - \gamma \mathcal{N} - \beta N^2 \quad \Rightarrow \quad N(t) = \sqrt{\frac{\Phi_{\text{load}}}{\beta}} \left(1 - e^{-t\sqrt{\beta \Phi_{\text{load}}}} \right)$$

Рис. 11: Динамика загрузки МОЛ для различных значений отстройки δ лучей МОЛ

Рис. 12: Зависимость максимального числа атомов в МОЛ от величины отстройки δ лучей МОЛ

Загрузка МОЛ: оптимизация токов зеемановского замедлителя

Рис. 13: а) Зависимость количества загруженных за 5с в МОЛ атомов от величины токов малой и большой катушки 33. Зависимость снята при оптимальной отстройке лучей ОП $\delta_{\rm OI}$. б) Зависимость количества загруженных за 5с при оптимальной отстройке лучей ОП в МОЛ атомов от величины токов малой и большой катушки 33. Зависимость снята при $\delta_{\rm OII}$ большей и меньшей оптимального значения в $\delta_{\rm OII}=9.4\Gamma$.

2D-МОЛ

Рис. 14: Принципиальная схема лучей 2D-МОЛ

Рис. 15: Зависимость скорости захвата 2D-МОЛ для различных мощностей от отстройки δ лучей 2D-МОЛ и размера D пучков

Загрузка МОЛ:

$$\Phi_{
m load} \propto \Phi_{
m sol} \left(rac{v_{
m cap}}{lpha}
ight)^4$$

Скорости захвата:

$$m \int_{v_{\text{cap}}}^{0} \frac{v}{F(v)} \, dv = D$$

Критическое расстояние:

$$l_{
m kput} \sim \sqrt{rac{h_{
m kput} v_{
m cap}^2}{g}} \sim 1 \, {
m M}$$

При $T \sim 700$ °C: $\Phi_{\rm load}(v_{\rm cap} = 40 \,{\rm m/c}) \sim 10^8 \,{\rm c}^{-1}$

Заключение

- Построена модель 33. Моделированием методом Монте-Карло определена зависимость системы от параметров.
- Оптимизацией работы 33, ОП и МОЛ удалось уменьшить температуру с 730 °C до 680 °C, сохранив загрузку МОЛ $\Phi_{\rm load}$ на исходном уровне. Это увеличило время непрерывной работы установки в 5 раз: с 2 месяцев до 10 месяцев.
- Подготовлена альтернатива 33: 2D-МОЛ. Произведены основные оценки необходимые для работы 2D-МОЛ. После 2D-МОЛ мы можем получить загрузку МОЛ Φ_{load} на исходном уровне, таким образом 2D-МОЛ является компактной перспективной заменой 33.

Спасибо за внимание!