Notice du Projet 3

Frédéric La Rosa

Nettoyer la base de donnée

Utilisation d'Excel et de Kutools

Supprimer toutes les colonnes vides avec un en-tête

Renommer la feuille « Tableau »

ALT + F11 dans Excel pour ouvrir VBA

Cliquer Insérer > Module

Coller code VBA:

```
Sub deleteblankcolwithheader()
 updateby Extendoffice
    Dim xEndCol As Long
    Dim I As Long
    Dim xDel As Boolean
    On Error Resume Next
    xEndCol = Cells.Find("*", SearchOrder:=xlByColumns,
SearchDirection:=xlPrevious).Column
    If xEndCol = 0 Then
        MsgBox "There is no data on """ & ActiveSheet.Name & """ .", vbExclamation,
"Kutools for Excel"
        Exit Sub
    End If
    Application.ScreenUpdating = False
    For I = xEndCol To 1 Step -1
        If Application.WorksheetFunction.CountA(Columns(I)) <= 1 Then</pre>
            Columns(I).Delete
            xDel = True
        End If
    Next
    If xDel Then
MsgBox "All blank column(s) with only a header row have been deleted.", vbInformation, "Kutools for Excel"
    Else
        MsgBox "There are no Columns to delete as each one has more data (rows) than just
a header.", vbExclamation, "Kutools for Excel"
    Application.ScreenUpdating = True
End Sub
```

Exécuter le code (F5), valider boîte de dialogue qui rappelle la commande Cliquer sur **OK**

Ajouter le préfixe « 0 » pour toutes les valeurs Code département < ou = 9

Mettre les valeurs de la colonne Code département au format Texte

Filtrer colonne Code département de 1 à 9 hormis 2a et 2b

Onglet Kutools > Texte > Ajouter Texte

Ajouter « 0 » avant le premier caractère

Retirer le filtre de la colonne

Importer les données « nom_département »

Télécharger fichier departements-france.csv sur data.gouv.fr

https://static.data.gouv.fr/resources/departements-de-france/20200425-135513/departements-france.csv

Créer le dictionnaire des données

Utilisation d'Excel

Numéro	Code propriété	Signification	Туре	Observation
1	num_disp	Num disposition	Numérique	SMALLINT NOT NULL
2	date_mut	Date mutation	Date	jj-mm-aaaa NOT NULL
3	val_fonciere	Valeur fonciere	Monétaire	DECIMAL(11,2) NULL
4	num_voie	Numéro de voie	Numérique	SMALLINT NULL
5	compl	B/T/Q	Texte	CHAR(1) NULL

Modéliser la base de donnée

Utilisation de **SQL Power Architect**

Respecter les règles de normalisation :

1FN: Données atomiques

2FN: Les attributs non clés ne doivent pas dépendre que d'une partie de la clé

3FN: les attributs non clés doivent dépendre de la clé primaire, si certains ne dépendent pas QUE de la clé primaire => on crée une table

Indiquer les cardinalités :

Exemple: un local se situe dans 1 et 1 seule cadastre; un cadastre peut contenir 1 ou plusieurs (n) local

Répartir les données en tables et fichiers CSV

Utilisation d'Excel

Retirer les doublons avec la fonction RechercheV

(ATTENTION jointure sur la gauche)

Copier > coller les colonnes correspondant aux tables « Mutation », « Local », « Cadastre », « Commune », « Departement » dans des feuilles séparées

Pour chaque table, une feuille « nom_table_doublon » traiter les doublons de la base de donnée

Insérer une nouvelle colonne « Identifiant » en A1 pour chaque table

Insérer une fonction CONCATENER en A2 reprenant les attributs de la table

Insérer un Tableau croisé dynamique avec « identifiant » en Lignes et Valeurs

Copier la colonne « Etiquettes de lignes » > coller dans une nouvelle feuille « nom_table »

Dans la feuille « nom_table » insérer à la suite les attributs composants l'identifiant

En B1 placer la colonne « table_id » ou insérer une colonne « id » si clé artificielle (incrémenter la colonne)

En C2, (D2), (E2) ... Rechercher les valeurs pour chaque attribut et donner une condition de retour de valeur « » si case vide

Exemple: Feuille « mutation »

=SI(RECHERCHEV(A2; mutation_doublon!A:D;2; FAUX)=0; ""; RECHERCHEV(A2; mutation_doublon!A:D;2; FAUX))

Si une clé artificielle doit être créer dans une table

Insérer une colonne temporaire « **Colonne_x** » suivi d'une colonne « **table_id** » avant les attributs de la table dans la feuille « **Tableau** »

Insérer fonction **CONCATENER** reprenant les attributs de la table

Exemple:

=CONCATENER([@voie]&"_"&[@[type_voie]]&"_"&[@compl]&"_"&[@[num_voie]])

Insérer fonction **RechercheV** dans la ligne de « **table_id** » ou « **nom_attribut_manquant** » pour joindre la valeur manquante

=RECHERCHEV([@Colonne1];cadastre!	A:F;2;FAUX)							
G			Н		1	J	K	
Colonne1	*	cadastre_id		*	num_voie 💌	compl -	type_voie	voie
,00 CENTRALE_RUE_A_190				26539	190	А	RUE	CENTRALE
0,00 DU CHATEAU_RUE347				22903	347		RUE	DU CHATEAU

Nettoyer les « table doublon » et les colonnes « identifiant »

ATTENTION faire un **copie**r > **collage spécial** de toutes les colonnes à conserver sinon la valeur des attributs sera perdue dans le nettoyage

Enregistrer « Tableau » et « noms tables » dans x fichiers CSV pour x table

Solution alternative: utilisation de Power Query

Créer et insérer des colonnes index représentant les clés étrangères

Pour chaque table, sélectionner les colonnes utiles

Exporter le résultat dans une nouvelle feuille

Copier-coller la table dans un nouveau classeur et l'enregistrer sous fichier CSV

Création de la database et des tables avec un SGDB-R

Utilisation de l'extension MySQL dans l'éditeur Visual Studio Code

Création de la database « laplace_immo »

```
CREATE DATABASE laplace_immo CHARACTER SET 'utf8';
```

Création des tables

```
--- J'utilise la Database laplace immo
USE laplace_immo;
--- Je nettoie ma Database en retirant les tables si elles existent
DROP TABLE IF EXISTS mutation;
DROP TABLE IF EXISTS local;
DROP TABLE IF EXISTS cadastre;
DROP TABLE IF EXISTS commune;
DROP TABLE IF EXISTS departement;
--- Je crée mes tables en respectant mon dictionnaire de données
-- Je crée ma table departement
CREATE TABLE departement (
 id INT AUTO_INCREMENT NOT NULL,
 nom departement VARCHAR(23) NOT NULL,
 code_departement VARCHAR(3) NOT NULL,
 PRIMARY KEY (id)
);
-- Je crée ma table commune
CREATE TABLE Commune (
 id INT NOT NULL,
 nom_commune VARCHAR(45) NOT NULL,
 departement_id INT NOT NULL,
 PRIMARY KEY (id),
  FOREIGN KEY (departement_id) REFERENCES departement(id)
);
-- Je crée ma table cadastre
CREATE TABLE cadastre (
 id INT AUTO_INCREMENT NOT NULL,
 num voie SMALLINT,
 compl VARCHAR(9),
 type_voie VARCHAR(4),
 voie VARCHAR(35) NOT NULL,
 commune_id INT NOT NULL,
 PRIMARY KEY (id),
  FOREIGN KEY (commune_id) REFERENCES commune(id)
);
```

```
- Je crée ma table local
CREATE TABLE local (
  id INT AUTO INCREMENT NOT NULL,
  type_local VARCHAR(21) NOT NULL,
  surf_carre DECIMAL(6, 2) NOT NULL,
  nb piece princ INTEGER NOT NULL,
  surf terrain SMALLINT,
  nature_cult VARCHAR(2),
  nature_cult_spec VARCHAR(25),
  cadastre id INT NOT NULL,
 PRIMARY KEY (id),
  FOREIGN KEY (cadastre_id) REFERENCES cadastre(id)
);
-- Je crée ma table mutation
CREATE TABLE mutation (
 id INT AUTO INCREMENT NOT NULL,
 date_mutation DATE NOT NULL,
 valeur_fonciere DECIMAL(11, 2) NULL,
 local_id INT NOT NULL,
 PRIMARY KEY (id),
  FOREIGN KEY (local_id) REFERENCES local(id)
);
--- J'importe les data nécessaires à chacune de mes tables
-- J'importe les data departement.csv
LOAD DATA LOCAL INFILE "C:/ProgramData/MySQL/MySQL Server
8.0/Data/laplace_immo/Departement.csv" INTO TABLE departement FIELDS TERMINATED By ';'
lines terminated by '\r\n' IGNORE 1 LINES;
-- J'importe les data commune.csv
LOAD DATA LOCAL INFILE "C:/ProgramData/MySQL/MySQL Server
8.0/Data/laplace_immo/Commune.csv" INTO TABLE commune FIELDS TERMINATED By ';' lines
terminated by '\r\n' IGNORE 1 LINES;
-- J'importe les data cadastre.csv
LOAD DATA LOCAL INFILE "C:/ProgramData/MySQL/MySQL Server
8.0/Data/laplace_immo/Cadastre.csv" INTO TABLE cadastre FIELDS TERMINATED By ';' lines
terminated by '\r\n' IGNORE 1 LINES;
-- J'importe les data local.csv
LOAD DATA LOCAL INFILE "C:/ProgramData/MySQL/MySQL Server 8.0/Data/laplace_immo/Local.csv"
INTO TABLE local FIELDS TERMINATED By ';' lines terminated by '\r\n' IGNORE 1 LINES;
-- J'importe les data mutation.csv
LOAD DATA LOCAL INFILE "C:/ProgramData/MySQL/MySQL Server
8.0/Data/laplace_immo/Mutation.csv" INTO TABLE mutation FIELDS TERMINATED By ';' lines
terminated by '\r\n' IGNORE 1 LINES;
```

Exécuter les requêtes SQL

Utilisation de l'extension MySQL dans l'éditeur Visual Studio Code

1. Nombre total d'appartements vendus au 1er semestre 2020 ?

```
SELECT COUNT(type_local)
FROM local
WHERE type_local = 'Appartement'
;
-- Résultat: 31378 appartements vendus au 1er semestre 2020
```


2. Proportion des ventes d'appartements par le nombre de pièces ?

```
SELECT
    type_local ,
    nb_piece_princ,
    (COUNT(type_local) * 100 / (SELECT COUNT(*) FROM local)) AS proportion_vente
FROM local
WHERE type_local = 'Appartement'
GROUP BY nb_piece_princ
ORDER BY nb_piece_princ DESC;
-- Résultats de la proportion des ventes d'appartements,
-- ordonnés par le nbre de pièces du + grand au + petit:
-- 11 = 0.0029%; 10 = 0.0059%; 9 = 0.0234%; 8 = 0.0498%;
-- 7 = 0.1580%; 6 = 0.5970%; 5 = 3.2603%; 4 = 13.0528%;
-- 3 = 26.2402%; 2 = 28.6312%; 1 = 19.7226%; 0 = 0.0878%
```

~	0	* type_local \$	* nb_piece_princ varchar(21)	* proportion_vente decimal(6,2)
		Filter	Filter	Filter
	1	Appartement	11	0.0029
	2	Appartement	10	0.0059
	3	Appartement	9	0.0234
	4	Appartement	8	0.0498
	5	Appartement	7	0.1580
	6	Appartement	6	0.5970
	7	Appartement	5	3.2603
	8	Appartement	4	13.0528
	9	Appartement	3	26.2402
	10	Appartement	2	28.6312
	11	Appartement	1	19.7226
	12	Appartement	0	0.0878

3. Liste des 10 départements où le prix du mètre carré est le plus élevé ?

```
CONCAT(nom_departement,"_", "(", code_departement, ")") AS departement,
    ROUND(AVG(valeur_fonciere / surf_carre)) AS prix_m2
FROM mutation
JOIN local
    On mutation.local_id = local.id
JOIN cadastre
    ON local.cadastre id = cadastre.id
JOIN commune
    ON cadastre.commune_id = commune.id
JOIN departement
    ON commune.departement_id = departement.id
GROUP BY code_departement
ORDER BY prix_m2 DESC
-- ordonnés par prix moyen arrondi du + cher au - cher:
-- Paris_(75) = 12 084€ ; Hauts-de-Seine_(92) = 7301€ ; Val-de-Marne_(94) = 5428€
-- Haute-Savoie_(74) = 4781€; Alpes-Maritimes_(6) = 4756€; Seine-Saint-Denis_(93) =
4386€
-- Yvelines_(78) = 4276 € ; Rhone_(69) = 4100€
```

0	* type_local	* nb_piece_princ varchar(21)	* proportion_vente decimal(6,2)
	Filter	Filter	Filter
1	Appartement	11	0.0029
2	Appartement	10	0.0059
3	Appartement	9	0.0234
4	Appartement	8	0.0498
5	Appartement	7	0.1580
6	Appartement	6	0.5970
7	Appartement	5	3.2603
8	Appartement	4	13.0528
9	Appartement	3	26.2402
10	Appartement	2	28.6312
11	Appartement	1	19.7226
12	Appartement	0	0.0878

4. Prix moyen du mètre carré d'une maison en Île-de-France?

```
type_local,
   code_departement AS ile_de_france,
   ROUND(AVG(valeur_fonciere / surf_carre)) AS prix_m2
FROM mutation
JOIN local
   On mutation.local_id = local.id
JOIN cadastre
   ON local.cadastre_id = cadastre.id
JOIN commune
   ON cadastre.commune_id = commune.id
JOIN departement
   ON commune.departement_id = departement.id
WHERE code_departement IN (75, 77, 78, 91, 92, 93, 94, 95)
AND type_local = "Maison"
-- Résultat: le prix moyen (arrondi) du mètre carré d'une maison en Île-de-France est de
3765€
```

0	departement int	* prix_m2
	Filter	Filter
1	Paris_(75)	12084
2	Hauts-de-Seine_(92)	7301
3	Val-de-Marne_(94)	5428
4	Haute-Savoie_(74)	4781
5	Alpes-Maritimes_(6)	4756
6	Seine-Saint-Denis_(93)	4386
7	Yvelines_(78)	4276
8	Rhone_(69)	4100
9	Corse-du-Sud_(2A)	4063
10	Gironde_(33)	3807

5. Liste des 10 appartements les plus chers avec le département et le nombre de mètres carrés ?

```
type_local,
   FORMAT(valeur_fonciere, "###.###.##"),
   CONCAT(nom_departement,"_", "(", code_departement, ")") AS departement,
    surf carre
FROM mutation
JOIN local
   On mutation.local_id = local.id
JOIN cadastre
   ON local.cadastre_id = cadastre.id
JOIN commune
   ON cadastre.commune_id = commune.id
JOIN departement
   ON commune.departement_id = departement.id
WHERE type_local = "Appartement"
GROUP BY valeur fonciere
ORDER BY valeur_fonciere DESC
LIMIT 10
-- Résultats: Appartement 9 000 000€ Paris_(75) 9m2 ; Appartement 8 600 000€ Essonne_(91)
-- Appartement 8 577 713€ Paris_(75) 20m2 ; Appartement 7 620 000€ Paris_(75) 42m2
-- Appartement 7 600 000€ Paris_(75) 253m2 ; Appartement 7 535 000€ Paris_(75) 139m2
-- Appartement 7 420 000€ Paris_(75) 360m2 ; Appartement 7 200 000€ Paris_(75) 595m2
-- Appartement 7 050 000€ Paris_(75) 122m2 ; Appartement 6 600 000€ Paris_(75) 79m2
```

9	* type_local	* FORMAT(valeur_fond \$ varchar(21)	* departement decimal(6,2)	* surf_carre \$
	Filter	Filter	Filter	Filter
1	Appartement	9,000,000	Paris_(75)	9.00
2	Appartement	8,600,000	Essonne_(91)	64.00
3	Appartement	8,577,713	Paris_(75)	20.00
4	Appartement	7,620,000	Paris_(75)	42.00
5	Appartement	7,600,000	Paris_(75)	253.00
6	Appartement	7,535,000	Paris_(75)	139.00
7	Appartement	7,420,000	Paris_(75)	360.00
8	Appartement	7,200,000	Paris_(75)	595.00
9	Appartement	7,050,000	Paris_(75)	122.00
10	Appartement	6,600,000	Paris_(75)	79.00

6. Taux d'évolution du nombre de ventes entre le premier et le second trimestre de 2020 ?

```
WITH
1er_trimestre AS (
        COUNT(id) AS 1er_trim_ventes
    FROM mutation
    WHERE date_mutation BETWEEN '2020-01-01' AND '2020-03-31'),
2nd_trimestre AS (
        COUNT(id) AS 2nd_trim_ventes
    FROM mutation
    WHERE date_mutation BETWEEN '2020-04-01' AND '2020-06-30')
    ROUND(((2nd_trim_ventes - 1er_trim_ventes) / 1er_trim_ventes * 100),2) AS
taux_evolution
FROM 1er_trimestre, 2nd_trimestre
TH
table1 AS (
    SELECT COUNT(id) AS 1er_trim_ventes
    FROM mutation
    WHERE date_mutation BETWEEN '2020-01-01' AND '2020-03-31'),
table2 AS (
    SELECT COUNT(id) AS 2nd_trim_ventes
    FROM mutation
    WHERE date mutation BETWEEN '2020-04-01' AND '2020-06-30')
SELECT ROUND(((2nd_trim_ventes - 1er_trim_ventes) / 1er_trim_ventes * 100),2) AS
taux_evolution
FROM table1, table2
2020
```


7. Liste des communes où le nombre de ventes a augmenté d'au moins 20% entre le premier et le second trimestre de 2020 ?

```
WITH
1er_trimestre AS (
       COUNT(mutation.id) AS 1er_trim_ventes,
       nom commune
   FROM mutation
    JOIN local
       On mutation.local_id = local.id
   JOIN cadastre
       ON local.cadastre id = cadastre.id
   JOIN commune
       ON cadastre.commune_id = commune.id
   WHERE date mutation BETWEEN '2020-01-01' AND '2020-03-31'
   GROUP BY nom_commune),
2nd trimestre AS (
       COUNT(mutation.id) AS 2nd_trim_ventes,
       nom commune
   FROM mutation
   JOIN local
       On mutation.local_id = local.id
   JOIN cadastre
       ON local.cadastre_id = cadastre.id
   JOIN commune
       ON cadastre.commune id = commune.id
   WHERE date_mutation BETWEEN '2020-04-01' AND '2020-06-30'
   GROUP BY nom_commune)
   nom_commune,
    ROUND(((2nd trim ventes - 1er trim ventes) / 1er trim ventes * 100),2)
       AS taux evolution
FROM 1er_trimestre
LEFT JOIN 2nd trimestre USING(nom commune)
vHERE ROUND(((2nd_trim_ventes - 1er_trim_ventes) / 1er_trim_ventes * 100),2) >= 20
ORDER BY taux evolution DESC
-- Résultats: les communes qui ont eu un taux d'évolution >= 20 % entre le 1er et le 2nd
trimestre
-- LE DEVOLUY = 1000 % ; MORLAIX = 1000 % ; ... 574 communes au total
```

0	* nom_commune	* taux_evolution varchar(45)
	Filter	Filter
1	PAU	2500.00
2	CAVAILLON	1600.00
3	L ISLE SUR LA SORGUE	1200.00
4	LE DEVOLUY	1000.00
5	MORLAIX	1000.00
6	LYON 8EME	960.00
7	RONCHIN	800.00
8	LYON 7EME	800.00
9	CHALON-SUR-SAONE	766.67
10	ROUEN	716.67
11	LUCE	700.00
12	LYON 3EME	609.09
13	RETHEL	600.00
14	LAMBALLE-ARMOR	600.00
15	LAMORLAYE	600.00
16	LONS	600.00
17	MACON	600.00
18	PERRAY-EN-YVELINES (LE	600.00
19	ORANGE	600.00
20	BELLEVILLE-EN-BEAUJOL#	500.00
21	VETRAZ-MONTHOUX	500.00
22	ORCIERES	400.00
23	VERNON	400.00
24	NOGENT-LE-ROI	400.00
25	PONT ST ESPRIT	400.00
26	SAINT CYR SUR LOIRE	400.00
27	VOREPPE	400.00

8. Différence en pourcentage du prix au mètre carré entre un appartement de 2 pièces et un appartement de 3 pièces ?

```
WITH
2_pieces AS (
        ROUND(AVG(valeur_fonciere / surf_carre)) AS prix_m2_appart_2_pieces
    FROM mutation
    JOIN local
        On mutation.local id = local.id
    JOIN cadastre
        ON local.cadastre id = cadastre.id
    JOIN commune
        ON cadastre.commune id = commune.id
    WHERE nb_piece_princ = 2 AND type_local = 'appartement'
3_pieces AS (
        ROUND(AVG(valeur_fonciere / surf_carre)) AS prix_m2_appart_3_pieces
    FROM mutation
    JOIN local
        On mutation.local id = local.id
    JOIN cadastre
        ON local.cadastre_id = cadastre.id
    JOIN commune
        ON cadastre.commune_id = commune.id
    WHERE nb_piece_princ = 3 AND type_local = 'appartement'
    )
    ROUND(AVG((prix_m2_appart_2_pieces - prix_m2_appart_3_pieces) /
prix_m2_appart_3_pieces * 100),2)
        AS pourcentage_difference
FROM 2_pieces, 3_pieces
-- Résultat: il y a 14.51 % de différence entre le prix d'un appartement 2 pièces et d'un
```



```
## 9. Les moyennes de valeurs foncières pour le top 3 des communes des départements 6, 13, 33, 59 et 69 ?
```

```
WITH
valeur_moyenne_par_ville AS (
        code departement,
        nom_departement,
        nom commune,
        AVG(mutation.valeur fonciere) AS valeur fonciere
    FROM mutation
    JOIN local
        On mutation.local id = local.id
    JOIN cadastre
            ON local.cadastre_id = cadastre.id
    JOIN commune
            ON cadastre.commune id = commune.id
    JOIN departement
            ON commune.departement_id = departement.id
    WHERE code departement IN (6,13,33,59,69)
    GROUP BY code_departement, nom_commune)
        CONCAT(nom_departement,"_", "(", code_departement, ")") AS departement,
        nom commune AS commune,
        FORMAT(ROUND(valeur_fonciere), '###.###') AS prix_moyen
FROM (
            code_departement,
            nom departement,
            nom commune,
            valeur fonciere,
            RANK() OVER (PARTITION BY code departement ORDER BY valeur fonciere DESC) AS
rang
        FROM valeur_moyenne_par_ville) AS resultat_top_trois
        WHERE rang <= 3
-- Alpes-Maritimes (6) :
-- 1) SAINT-JEAN-CAP-FERRAT = 968 750 € - 2) EZE = 655 000 € - 3) MOUANS-SARTOUX = 476
898 €
-- 1) GIGNAC-LA-NERTHE = 330 000 € - 2) SAINT SAVOURNIN = 314 425 € - 3) CASSIS = 313 417
-- Gironde (33) :
-- 1) LEGE-CAP-FERRET = 549 501 € - 2) VAYRES = 335 000 € - 3) ARCACHON = 307 436 €
-- 1) BERSEE = 433 202 € - 2) CYSOING = 408 550 € - 3) HALLUIN = 322 250 €
```

