Project 9: Exploratory factor analysis

DA 410

Marjorie Blanco

- 13.7 Use the words data of Table 5.9.
 - (a) Obtain principal component loadings for two factors.

```
fa <- principal(data, nfactors = 2, rotate = 'none', covar = FALSE)</pre>
## Principal Components Analysis
## Call: principal(r = data, nfactors = 2, rotate = "none", covar = FALSE)
## Standardized loadings (pattern matrix) based upon correlation matrix
                   PC1
                        PC2
                              h2
                                    u2 com
## Informal words 0.80 -0.54 0.93 0.070 1.7
## Informal verbs 0.86 -0.33 0.84 0.161 1.3
## Formal words 0.88 0.27 0.85 0.147 1.2
## Formal verbs 0.71 0.66 0.94 0.057 2.0
##
                         PC1 PC2
                        2.67 0.90
## SS loadings
## Proportion Var
                        0.67 0.22
## Cumulative Var
                        0.67 0.89
## Proportion Explained 0.75 0.25
## Cumulative Proportion 0.75 1.00
## Mean item complexity = 1.6
## Test of the hypothesis that 2 components are sufficient.
##
## The root mean square of the residuals (RMSR) is 0.07
## with the empirical chi square 0.95 with prob < NA
## Fit based upon off diagonal values = 0.98
```

fa.diagram(fa)

Components Analysis

plot(fa, labels=names(data), cex=.7, ylim=c(-.65,.7), xlim=c(.7,.9)) # add variable names

Principal Component Analysis

Informal words, Informal words, Formal words all have high factor loadings around 0.8 on the first factor (PC1). The first two factors account for 89.13% of the total sample variance.

```
parallel <- fa.parallel(data, fm = 'minres', fa = 'fa')</pre>
```

Parallel Analysis Scree Plots

Parallel analysis suggests that the number of factors = 1 and the number of components = NA