Lista 2 Zadanie 6

Dominik Budzki, nr. indeksu 314625

October 19, 2020

Załózmy, ze x, y sa liczbami maszynowymi. Podaj przykład pokazujacy, ze przy obliczaniu wartości d:= $\sqrt{x^2 + y^2}$ algorytmem postaci

u := x * x

 $\mathbf{u} := u + y * y$

d := sqrt(u)

moze wystapic zjawisko nadmiaru, mimo tego, ze szukana wielkość d należy do zbioru X_{fl} . Nastepnie zaproponuj algorytm wyznaczania d pozwalający unikac zjawiska nadmiaru, jesli $\sqrt{2} \max(|x|,|y|) \in X_{fl}$. Na koniec podaj skuteczna metode wyznaczania długosci euklidesowej wektora $v \in \mathbb{R}^n$.

Rozwiazanie:

Zalozmy ze najwieksza wartosc X_{fl} to 2^{32} i wezmy takie x i y, że:

 $x = y = 2^{30}$ $u = 2^{60}$

 $u = 2^{60} + 2^{60}(*)$

 $d = 2^{30}\sqrt{2}$

Przy rownaniu oznaczonym gwiazdka widac ze wykonujemy obliczenia na liczbie spoza X_{fl} , wiec wystepuje nadmiar mimo ze $2^{30}\sqrt{2} \in X_{fl}$

Mozna przeksztalcie rownanie d w taki sposob:

$$d = \sqrt{x^2 + y^2} = \sqrt{x^2(1 + \frac{y^2}{x^2})} = |x|\sqrt{1 + \frac{y^2}{x^2}}$$
gdy $x \ge y$ to $\sqrt{1 + \frac{y^2}{x^2}} \le \sqrt{2}$

x i y mozna traktowac zamiennie, wylaczamy wieksza z nich. Wtedy mamy $\sqrt{2}$ $\max(|x|,|y|) \in X_{fl}$ i nie wystepuje zjawisko nadmiaru.

Wyznaczanie dlugosci euklidesowej wektora $v \in \mathbb{R}^n$.

$$v = (x_1, x_2, ..., x_n)$$

 $v=(x_1,x_2,...,x_n)$ $||v||=\sqrt{\Sigma_{i=1}^n x_i^2}$ teraz podobnie jak wyzej z wartoscia d wylaczamy przed nawias najwieksze x_k

$$\begin{split} &\sqrt{x_1^2 + x_2^2 + \ldots + x_n^2} = \sqrt{x_k^2 (\frac{x_1^2}{x_k^2} + \frac{x_2^2}{x_k^2} + \ldots + \frac{x_n^2}{x_k^2})} = |x_k| \sqrt{(\frac{x_1^2}{x_k^2} + \frac{x_2^2}{x_k^2} + \ldots + \frac{x_n^2}{x_k^2})} \approx \\ &\approx |x_k| \sqrt{n} \end{split}$$

$$v = \max(x_1, x_2, ..., x_n) \sqrt{n}$$