Homework 1

Problem 1. Illustrate the operation of *InsertionSort* on the array $\langle 32, 41, 58, 24, 40, 47 \rangle$ (show the array after each iteration of the algorithm).

Problem 2. Express the functions $n^2/31 + 2n^3 - 5$ and $n \lg n + n^2/100$ in terms of Θ -notation.

Problem 3. How many times line 4 of ALG1 is executed for each *i*? In total? Give an asymptotic analysis of the running time using big-Oh (or big-Theta which would be technically more precise).

$$ALG1(n)$$

$$1 \quad s = 0$$

$$2 \quad \text{for } i = 1 \text{ to } n$$

$$3 \quad \text{for } j = 1 \text{ to } i$$

$$4 \quad s + = j * j$$

Problem 4. Prove or disprove

(a)
$$3^{n+2} = O(3^n)$$
,

(b)
$$3^{2n} = O(3^n)$$
.

Problem 5. a. Rank the following functions by order of growth; that is, find an arrangement g_1, g_2, \ldots of the functions satisfying $g_1 = \Omega(g_2), g_2 = \Omega(g_3), \ldots$ Partition your list into equivalence classes such that f(n) and g(n) are in the same class if and only if $f(n) = \Theta(g(n))$.

$$(\sqrt{2})^{\lg n}$$
 n^2 $n!$ $\ln n$ $(\frac{3}{2})^n$ n^3 $\lg^2 n$ $\lg(n!)$ 2^{2^n} $n\lg n$ $\lg\lg n$ $n\cdot 2^n$ $4^{\lg n}$ $(n+1)!$ n 2^n $2^{\lg n}$ e^n

b. Give an example of a single non-negative function f(n) such that for all functions $g_i(n)$ in part (a), f(n) is neither $O(g_i(n))$ nor $\Omega(g_i(n))$.

Problem 6. Let S[..] be an array of n distinct numbers. If i < j and S[i] > S[j], then the pair (i, j) is called an inversion of A.

- a. Find all inversions of the array (3, 4, 9, 7, 1).
- **b**. What array with elements from the set $\{1, 2, \dots, n\}$ has the most inversions? How many inversions does it have?
- c. Let t be the number of shifts (by one) done by *InsertionSort* on a given sequence and let I be the number of its inversions. Find t and I for a sequence (3, 4, 9, 7, 1). What is the relationship between the running time of insertion sort and the number of inversions in the array? Justify your answer.