5 Manifolds

From Guillemin and Haine (2018).

Chapter 4

5/22: **4.1.i.** Show that the set of solutions to the system of equations

$$x_1^2 + \dots + x_n^2 = 1$$
$$x_1 + \dots + x_n = 0$$

is an (n-2)-dimensional submanifold of \mathbb{R}^n .

Proof. Let $f: \mathbb{R}^n \to \mathbb{R}^2$ be defined by

$$\begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} \mapsto \begin{bmatrix} x_1^2 + \dots + x_n^2 - 1 \\ x_1 + \dots + x_n \end{bmatrix}$$

Then the set of solutions to the given system of equations is equal to $f^{-1}(0)$, where $0 \in \mathbb{R}^2$.

The task now becomes a problem of proving that that $f^{-1}(0)$ is an (n-2)-dimensional submanifold of \mathbb{R}^n . To do so, Theorem 4.1.7 tells us that it will suffice to show that 0 is a regular value of f. Suppose for the sake of contradiction that 0 is not a regular value of f. Then there exists $p \in f^{-1}(0)$ such that f is not a submersion at p. It follows that $Df(p) : \mathbb{R}^n \to \mathbb{R}^2$ is not surjective. Thus, the rank of the matrix of Df(p) must be less than two. Consequently, all columns in the matrix

$$\mathcal{M}(Df(p)) = \begin{bmatrix} 2p_1 & \cdots & 2p_n \\ 1 & \cdots & 1 \end{bmatrix}$$

where $p = (p_1, \ldots, p_n)$ must be equal. It follows that $p_1 = \cdots = p_n$. This combined with the fact that $p_1 + \cdots + p_n = 0$ means that $p_i = 0$ for all $i = 1, \ldots, n$. But then $p_1^2 + \cdots + p_n^2 - 1 = -1 \neq 0$, a contradiction.

4.1.ii. Let $S^{n-1} \subset \mathbb{R}^n$ be the (n-1)-sphere and let

$$X_a = \{x \in S^{n-1} \mid x_1 + \dots + x_n = a\}$$

For what values of a is X_a an (n-2)-dimensional submanifold of S^{n-1} ?

Proof. We first determine which values of a yield a nonempty X_a . Then, we determine which of these X_a describe (n-2)-dimensional submanifolds of S^{n-1} .

For the first part, suppose $x \in S^{n-1}$. Then $x_1^2 + \cdots + x_n^2 = 1$. It follows by the Cauchy-Schwarz inequality that

$$|a| = |x_1 + \dots + x_n|$$

$$= |x_1 \cdot 1 + \dots + x_n \cdot 1|$$

$$\leq \sqrt{x_1^2 + \dots + x_n^2} \cdot \sqrt{1^2 + \dots + 1^2}$$

$$= \sqrt{1} \cdot \sqrt{n}$$

$$= \sqrt{n}$$

Now for the second part. Let $f_a: \mathbb{R}^n \to \mathbb{R}^2$ be defined by

$$\begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} \mapsto \begin{bmatrix} x_1^2 + \dots + x_n^2 - 1 \\ x_1 + \dots + x_n - a \end{bmatrix}$$

Then $X_a = f_a^{-1}(0)$. Thus, we want to find the set of all a such that 0 is a regular value of f. Suppose a is not in this set. Then 0 is not a regular value of f_a . It follows by a similar argument to that used in Exercise 4.1.i that $x_1 = \cdots = x_n$. This combined with the fact that $a = x_1 + \cdots + x_n = nx_i$ implies that $x_i = a/n$ for $i = 1, \ldots, n$. And this result combined with the fact that $x_1^2 + \cdots + x_n^2 = 1$ implies that

$$1 = x_1^2 + \dots + x_n^2$$
$$= nx_i^2$$
$$= a^2/n$$
$$a = \pm \sqrt{n}$$

Therefore, if $|a| \leq \sqrt{n}$ and $|a| \neq \sqrt{n}$, we know that

$$|a| < \sqrt{n}$$

4.1.iii. Show that if X_i is an n_i -dimensional submanifold of \mathbb{R}^{N_i} for i=1,2, then

$$X_1 \times X_2 \subset \mathbb{R}^{N_1} \times \mathbb{R}^{N_2}$$

is an $(n_1 + n_2)$ -dimensional submanifold of $\mathbb{R}^{N_1} \times \mathbb{R}^{N_2}$.

Proof. Taking the hint from Guillemin and Haine (2018, p. 98), we approach this problem from the perspective of the definition of an n-manifold, as opposed that of Theorem 4.1.7. Additionally, note that any time "i" appears for the remainder of this proof, it is a stand-in for 1, 2.

To prove that $X_1 \times X_2 \subset \mathbb{R}^{N_1} \times \mathbb{R}^{N_2}$ is an (n_1+n_2) -manifold, it will suffice to show that for every $p \in X_1 \times X_2$, there exists a neighborhood $V \subset \mathbb{R}^{N_1+N_2}$ of p, an open subset $U \subset \mathbb{R}^{n_1+n_2}$, and a diffeomorphism $\phi: U \to (X_1 \times X_2) \cap V$. Let $p \in X_1 \times X_2$ be arbitrary. Suppose $p = (p_1, p_2)$, where p_i is an n_i -tuple. It follows that $p_i \in X_i$. Therefore, since X_i is an n_i -manifold, there exists a neighborhood $V_i \subset \mathbb{R}^{N_i}$ of p_i , an open subset $U_i \subset \mathbb{R}^{n_i}$, and a diffeomorphism $\phi_i: U_i \to X_i \cap V_i$. Let $V = V_1 \times V_2$, $U = U_1 \times U_2$, and $\phi(x_1, x_2) = (\phi_1(x_1), \phi_2(x_2))$. Naturally, $V \subset \mathbb{R}^{N_1+N_2}$ and $U \subset \mathbb{R}^{n_1+n_2}$. Additionally, endowing $\mathbb{R}^{N_1+N_2} = \mathbb{R}^{N_1} \times \mathbb{R}^{N_2}$ with the product topology ensures that V is a neighborhood of p and endowing $\mathbb{R}^{n_1+n_2} = \mathbb{R}^{n_1} \times \mathbb{R}^{n_2}$ with the product topology ensures that U is open. Lastly, defining ϕ as the "product" of two diffeomorphisms guarantees that ϕ , itself, is also a diffeomorphism.

4.1.v. Let $g: \mathbb{R}^n \to \mathbb{R}^k$ be a C^{∞} map and let $X = \Gamma_g$ be the graph of g. Prove directly that X is an n-manifold by proving that the map $\gamma_g: \mathbb{R}^n \to X$ defined by

$$x \mapsto (x, g(x))$$

is a diffeomorphism.

Proof. It's clear that γ_g is a C^{∞} map since each of its components are C^{∞} . It is a diffeomorphism since it's inverse is the map $\pi: \gamma_g \to \mathbb{R}^n$ given by $\pi(x, g(x)) = x$, which is also clearly C^{∞} .

- **4.1.vi.** Prove that the orthogonal group O(n) is an n(n-1)/2-manifold. *Hints*:
 - ▶ Let $f: \mathcal{M}_n \to \mathcal{S}_n$ be the map

$$f(A) = A^{\mathsf{T}}A - \mathrm{id}_n$$

show that $O(n) = f^{-1}(0)$.

▶ Show that

$$f(A + \varepsilon B) = A^{\mathsf{T}}A + \varepsilon(A^{\mathsf{T}}B + B^{\mathsf{T}}A) + \varepsilon^2 B^{\mathsf{T}}B - \mathrm{id}_n$$

 \blacktriangleright Conclude that the derivative of f at A is the map given by

$$B \mapsto A^{\mathsf{T}}B + B^{\mathsf{T}}A$$

- ▶ Let $A \in O(n)$. Show that if $C \in \mathcal{S}_n$ and B = AC/2, then Df(A)(B) = C.
- \blacktriangleright Conclude that the derivative of f is surjective at A.
- \triangleright Conclude that 0 is a regular value of the mapping f.

Proof. As per Guillemin and Haine (2018, p. 100), the set \mathcal{M}_n of all $n \times n$ matrices is isomorphic to \mathbb{R}^{n^2} (one degree of freedom for each matrix element), and the set \mathcal{S}_n of all symmetric $n \times n$ matrices is isomorphic to $\mathbb{R}^{n(n+1)/2}$ (one degree of freedom for each matrix element in the upper triangle). Additionally,

$$n^{2} - \frac{n(n+1)}{2} = n^{2} - \frac{1}{2}n^{2} - \frac{1}{2}n$$
$$= \frac{1}{2}n^{2} - \frac{1}{2}n$$
$$= \frac{n(n-1)}{2}$$

To prove that O(n) is an n(n-1)/2-manifold, Theorem 4.1.7 tells us that it will suffice to find a function $f: \mathcal{M}_n \to \mathcal{S}_n$ with regular value 0 such that $O(n) = f^{-1}(0)$.

We first define a function f that we will prove fits all of the above requirements. Let f be described by the relation

$$A \mapsto A^{\mathsf{T}}A - \mathrm{id}_n$$

By the properties of matrix multiplication, $A^{\mathsf{T}}A \in \mathcal{S}_n$ regardless of whether or not A is. Since \mathcal{S}_n is a vector space, subtracting $\mathrm{id}_n \in \mathcal{S}_n$ will not take the difference out of \mathcal{S}_n . Thus, f does map arbitrary $n \times n$ matrices to symmetric $n \times n$ matrices, as desired. Moreover, if $A \in O(n)$, then $A^{\mathsf{T}}A = \mathrm{id}_n$. It follows that

$$f(A) = A^{\mathsf{T}} A - \mathrm{id}_n$$
$$= \mathrm{id}_n - \mathrm{id}_n$$
$$= 0$$

 $A \notin O(n)$ implies a similar result. Therefore, $O(n) = f^{-1}(0)$.

We now build up to proving that 0 is a regular value of f. To prove this, we will need to check that f is a submersion at all $A \in O(n) = f^{-1}(0)$, i.e., that Df(A) is surjective for all such A. To confirm this, we will calculate Df(A) for an arbitrary $A \in O(n)$ and show directly that for all $C \in \mathcal{S}_n$, there exists $B \in \mathcal{M}_n$ such that Df(A)(B) = C. Let's begin.

We have from first principles that

$$0 = \lim_{H \to 0} \frac{|f(A+H) - f(A) - Df(A)(H)|}{|H|}$$

where we take $|\cdot|$ to be any matrix norm (e.g., the operator norm or the Frobenius norm). If we take $H = \varepsilon B$, where $\varepsilon \in \mathbb{R}_{>0}$, then we can work with the limit definition of the derivative more easily. First off, we can determine that

$$f(A + \varepsilon B) = (A + \varepsilon B)^{\mathsf{T}} (A + \varepsilon B) - \mathrm{id}_n$$

= $A^{\mathsf{T}} A + A^{\mathsf{T}} (\varepsilon B) + (\varepsilon B)^{\mathsf{T}} A + (\varepsilon B)^{\mathsf{T}} (\varepsilon B) - \mathrm{id}_n$
= $A^{\mathsf{T}} A + \varepsilon (A^{\mathsf{T}} B + B^{\mathsf{T}} A) + \varepsilon^2 B^{\mathsf{T}} B - \mathrm{id}_n$

Plugging this back into the limit definition, we have that

$$0 = \lim_{H \to 0} \frac{|f(A+H) - f(A) - Df(A)(H)|}{|H|}$$

$$= \lim_{\varepsilon \to 0} \frac{|[A^{\mathsf{T}}A + \varepsilon(A^{\mathsf{T}}B + B^{\mathsf{T}}A) + \varepsilon^2 B^{\mathsf{T}}B - \mathrm{id}_n] - [A^{\mathsf{T}}A - \mathrm{id}_n] - Df(A)(\varepsilon B)|}{|\varepsilon B|}$$

$$= \lim_{\varepsilon \to 0} \frac{|[\varepsilon(A^{\mathsf{T}}B + B^{\mathsf{T}}A) + \varepsilon^2 B^{\mathsf{T}}B] - Df(A)(\varepsilon B)|}{|\varepsilon B|}$$

$$= \lim_{\varepsilon \to 0} \frac{\varepsilon|(A^{\mathsf{T}}B + B^{\mathsf{T}}A) + \varepsilon B^{\mathsf{T}}B - Df(A)(B)|}{\varepsilon|B|}$$

$$= \lim_{\varepsilon \to 0} \frac{|(A^{\mathsf{T}}B + B^{\mathsf{T}}A) + \varepsilon B^{\mathsf{T}}B - Df(A)(B)|}{|B|}$$

From here, it is easy to see that if we let Df(A) send

$$B \mapsto A^{\mathsf{T}}B + B^{\mathsf{T}}A$$

then the above limit evaluates to 0, as desired.

Let $A \in O(n)$ be arbitrary, and let $C \in \mathcal{S}_n$ be arbitrary. We want to find $B \in \mathcal{M}_n$ such that Df(A)(B) = C. Choose B = AC/2. Then

$$Df(A)(B) = A^{\mathsf{T}}B + B^{\mathsf{T}}A$$

$$= \frac{1}{2}[A^{\mathsf{T}}AC + (AC)^{\mathsf{T}}A]$$

$$= \frac{1}{2}[A^{\mathsf{T}}AC + C^{\mathsf{T}}A^{\mathsf{T}}A]$$

$$= \frac{1}{2}[\mathrm{id}_n C + C \mathrm{id}_n]$$

$$= C$$

as desired. \Box

4.2.i. What is the tangent space to the quadric

$$Q = \{(x_1, \dots, x_n) \in \mathbb{R}^n \mid x_n = x_1^2 + \dots + x_{n-1}^2\}$$

at the point (1, 0, ..., 0, 1)?

Proof. Let $f: \mathbb{R}^{n-1} \to \mathbb{R}$ be defined by

$$(x_1, \dots, x_{n-1}) \mapsto x_1^2 + \dots + x_{n-1}^2$$

From here, elementary set theory can demonstrate that $Q = \Gamma_f$. It follows by Example 4.1.4(1) that Q is an (n-1)-manifold in \mathbb{R}^n , and $\phi : \mathbb{R}^{n-1} \to \mathbb{R}^n$ defined by $x \mapsto (x, f(x))$ is a parametrization of Q at p for all $p \in Q$.

We can calculate that

$$D\phi(x) = \begin{bmatrix} \frac{\partial \phi_1}{\partial x_1} & \frac{\partial \phi_1}{\partial x_2} & \cdots & \frac{\partial \phi_1}{\partial x_{n-1}} \\ \frac{\partial \phi_2}{\partial x_1} & \frac{\partial \phi_2}{\partial x_2} & \cdots & \frac{\partial \phi_2}{\partial x_{n-1}} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial \phi_{n-1}}{\partial x_1} & \frac{\partial \phi_{n-1}}{\partial x_2} & \cdots & \frac{\partial \phi_{n-1}}{\partial x_{n-1}} \\ \frac{\partial \phi_n}{\partial x_1} & \frac{\partial \phi_n}{\partial x_2} & \cdots & \frac{\partial \phi_n}{\partial x_{n-1}} \end{bmatrix} = \begin{bmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \\ 2x_1 & 2x_2 & \cdots & 2x_{n-1} \end{bmatrix}$$

Now let p = (1, 0, ..., 0, 1), and let $q = \phi^{-1}(p) = (1, 0, ..., 0)$. Then

$$D\phi(q) = \begin{bmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \\ 2 & 0 & \cdots & 0 \end{bmatrix}$$

so that if $v = (v_1, \dots, v_{n-1}) \in \mathbb{R}^{n-1}$ is arbitrary, then

$$D\phi(q)(v) = \begin{bmatrix} v_1 \\ \vdots \\ v_{n-1} \\ 2v_1 \end{bmatrix}$$

This combined with the fact that $d\phi_q: T_q\mathbb{R}^{n-1} \to T_p\mathbb{R}^n$ is defined by $(q, v) \mapsto (p, Df(q)(v))$ shows that

$$T_p Q = \operatorname{im}(\mathrm{d}\phi_q)$$

$$T_p Q = \operatorname{span}\left\{ \left(p, \begin{bmatrix} v_1 \\ \vdots \\ v_{n-1} \\ 2v_1 \end{bmatrix} \right) \right\}$$

over all $(v_1, \ldots, v_{n-1}) \in \mathbb{R}^{n-1}$. This should also make intuitive sense. At $(1, 0, \ldots, 0)$, the quadric is changing, but only in the x_1 -direction, and its slope there in that direction should be $2q_1 = 2$. The slope is not changing in any of the other directions, so those components of the tangent vector should be mapped by the identity function, as they are.

4.2.ii. Show that the tangent space to the (n-1)-sphere S^{n-1} at p is the space of vectors $(p,v) \in T_p \mathbb{R}^n$ satisfying $p \cdot v = 0$.

Proof. Let $p = (p_1, \ldots, p_n) \in S^{n-1}$ be arbitrary. We first define the requisite diffeomorphism.

Adapting Example 4.1.4(6) from Guillemin and Haine (2018, p. 98), we know that we can easily define a diffeomorphism ϕ (see below for details) from a subset of \mathbb{R}^{n-1} to the portion of S^{n-1} lying in the positive half-space above the hyperplane $x_n=0$. But what if p lies outside this positive half-space? Well, we are helped by the fact that if $p \in S^{n-1}$, some p_i is nonzero. Thus, we can take p to lie in the region of S^{n-1} either above or below the hyperplane $x_i=0$, and a simple isomorphism of \mathbb{R}^n that, in particular, sends this region of S^{n-1} to the region of S^{n-1} above the hyperplane $x_n=0$ is, if p lies above $x_i=0$, the coordinate exchange function $f_{\sigma}:\mathbb{R}^n\to\mathbb{R}^n$ defined by

$$(x_1,\ldots,x_n)\mapsto(x_{\sigma(1)},\ldots,x_{\sigma(n)})$$

where $\sigma = \tau_{i,n}$ and, if p lies below $x_i = 0$, the coordinate exchange function $-f_{\sigma}$. Thus, for p arbitrary, our complete diffeomorphism is $\pm f_{\sigma} \circ \phi$.

We now define ϕ . Let U be the open unit ball centered at the origin in \mathbb{R}^{n-1} . Let V be the half-space of \mathbb{R}^n above the hyperplane $x_n = 0$ (i.e., all points $(x_1, \ldots, x_n) \in \mathbb{R}^n$ such that $x_n > 0$). Then, as described above, $S^{n-1} \cap V$ is the portion of S^{n-1} lying above the hyperplane $x_n = 0$. The diffeomorphism $\phi: U \to S^{n-1} \cap V$ which projects each point in U "up" onto the surface of the hypersphere is given by

$$(x_1, \dots, x_{n-1}) \mapsto \left(x_1, \dots, x_{n-1}, \sqrt{1 - \left(x_1^2 + \dots + x_{n-1}^2\right)}\right)$$

We now divide into two cases (the needed diffeomorphism is $f_{\sigma} \circ \phi$, and the needed diffeomorphism is $-f_{\sigma} \circ \phi$). Note that the proof of the second case is entirely symmetric to that of the first case, and thus will not be discussed further.

Let $r = f_{\sigma}^{-1}(p)$ and let $q = (f_{\sigma} \circ \phi)^{-1}(p)$. We now define $d(f_{\sigma} \circ \phi)_q$. First off, by the chain rule,

$$d(f_{\sigma} \circ \phi)_q = d(f_{\sigma})_r \circ d\phi_q$$

Additionally, we know that in general,

$$Df_{\sigma}(x) = \begin{bmatrix} \frac{\partial(f_{\sigma})_{1}}{\partial x_{1}} & \cdots & \frac{\partial(f_{\sigma})_{1}}{\partial x_{n}} \\ \vdots & \ddots & \vdots \\ \frac{\partial(f_{\sigma})_{n}}{\partial x_{1}} & \cdots & \frac{\partial(f_{\sigma})_{n}}{\partial x_{n}} \end{bmatrix} \qquad D\phi(x) = \begin{bmatrix} \frac{\partial\phi_{1}}{\partial x_{1}} & \cdots & \frac{\partial\phi_{1}}{\partial x_{n-1}} \\ \vdots & \ddots & \vdots \\ \frac{\partial\phi_{n-1}}{\partial x_{1}} & \cdots & \frac{\partial\phi_{n-1}}{\partial x_{n-1}} \\ \frac{\partial\phi_{n}}{\partial x_{1}} & \cdots & \frac{\partial\phi_{n}}{\partial x_{n-1}} \end{bmatrix}$$

$$= P_{\sigma}$$

$$= \begin{bmatrix} 1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & 1 \\ \frac{-x_{1}}{\sqrt{1 - (x_{1}^{2} + \cdots + x_{n-1}^{2})}} & \cdots & \frac{-x_{n-1}}{\sqrt{1 - (x_{1}^{2} + \cdots + x_{n-1}^{2})}} \end{bmatrix}$$

where P_{σ} is the permutation matrix which differs from the identity in that its i^{th} and n^{th} columns are interchanged. It follows that

$$T_p S^{n-1} = \operatorname{span} \left\{ \begin{pmatrix} p, P_{\sigma} \begin{bmatrix} w_1 \\ \vdots \\ w_{n-1} \\ \frac{-q_1 w_1 - \dots - q_{n-1} w_{n-1}}{\sqrt{1 - (q_1^2 + \dots + q_{n-1}^2)}} \end{bmatrix} \right\}$$

for $(w_1, ..., w_{n-1}) \in U$.

We now use a bidirectional inclusion argument to complete the proof.

Let $(p,v) \in T_p S^{n-1}$ be arbitrary. Then some $p_i \neq 0$. It follows that

$$(f_{\sigma} \circ \phi)(q_1, \dots, q_{n-1}) = f_{\sigma}(\phi(q_1, \dots, q_{n-1}))$$

$$= f_{\sigma}\left(q_1, \dots, q_{n-1}, \sqrt{1 - (q_1^2 + \dots + q_{n-1}^2)}\right)$$

$$= \left(q_1, \dots, q_{i-1}, \sqrt{1 - (q_1^2 + \dots + q_{n-1}^2)}, q_{i+1}, \dots, q_{n-1}, q_i\right)$$

$$= (p_1, \dots, p_{i-1}, p_i, p_{i+1}, \dots, p_{n-1}, p_n)$$

$$= p$$

Thus, we have that

$$p \cdot v = p_1 v_1 + \dots + p_n v_n$$

$$= q_1 w_1 + \dots + q_{i-1} w_{i-1} + \sqrt{1 - (q_1^2 + \dots + q_{n-1}^2)} \cdot \frac{-q_1 w_1 - \dots - q_{n-1} w_{n-1}}{\sqrt{1 - (q_1^2 + \dots + q_{n-1}^2)}}$$

$$+ q_{i+1} w_{i+1} + \dots + q_{n-1} w_{n-1} + q_i w_i$$

$$= 0$$

as desired.

Now suppose that $(p, v) \in T_p \mathbb{R}^n$ is such that $p \cdot v = 0$. Then

$$0 = p \cdot v$$

$$= p_1 v_1 + \dots + p_n v_n$$

$$= q_1 v_1 + \dots + q_{i-1} v_{i-1} + \sqrt{1 - \left(q_1^2 + \dots + q_{n-1}^2\right)} \cdot v_i + q_{i+1} v_{i+1} + \dots + q_n v_n$$

$$\sqrt{1 - \left(q_1^2 + \dots + q_{n-1}^2\right)} \cdot v_i = -q_1 v_1 - \dots - q_{i-1} v_{i-1} - q_{i+1} v_{i+1} + \dots + q_n v_n$$

$$v_i = \frac{-q_1 v_1 - \dots - q_{i-1} v_{i-1} - q_{i+1} v_{i+1} + \dots + q_n v_n}{\sqrt{1 - \left(q_1^2 + \dots + q_{n-1}^2\right)}}$$

so with some reindexing, v fits the form of the vector in the span defining T_pS^{n-1} , as desired. \square

4.2.iii. Let $f: \mathbb{R}^n \to \mathbb{R}^k$ be a C^{∞} map and let $X = \Gamma_f$. What is the tangent space to X at (a, f(a))?

Proof. As per Example 4.1.4(1), $\phi: \mathbb{R}^n \to \mathbb{R}^{n+k}$ defined by

$$x \mapsto (x, f(x))$$

is a suitable diffeomorphism for all $p \in X$. It follows that $D\phi(x)$ is an $(n+k) \times n$ matrix where the top $n \times n$ matrix is id_n and the bottom $k \times n$ matrix is Df(x). Let p = (a, f(a)). Then

$$T_{p}X = \operatorname{span} \left\{ \begin{pmatrix} v_{1} \\ \vdots \\ v_{n} \\ \sum_{i=1}^{n} \frac{\partial f_{1}}{\partial x_{i}} \Big|_{a} v_{i} \\ \vdots \\ \sum_{i=1}^{n} \frac{\partial f_{k}}{\partial x_{i}} \Big|_{a} v_{i} \end{pmatrix} \right\}$$

for $(v_1, \ldots, v_n) \in \mathbb{R}^n$.

4.2.iv. Let $\sigma: S^{n-1} \to S^{n-1}$ be the antipodal map $\sigma(x) = -x$. What is the derivative of σ at $p \in S^{n-1}$?

Proof. Let $\tilde{\sigma}: \mathbb{R}^n \to \mathbb{R}^n$ be the extension of the antipodal map to \mathbb{R}^n . Then $D\tilde{\sigma}(x) = -\operatorname{id}_n$. It follows that the derivative of σ at any $p \in S^{n-1}$ is the map $d\sigma_p: T_pS^{n-1} \to T_{-p}S^{n-1}$ defined by

$$\boxed{\mathrm{d}\sigma_p(p,v) = (-p,-v)}$$

4.2.v. Let $X_i \subset \mathbb{R}^{N_i}$ (i = 1, 2) be an n_i -manifold and let $p_i \in X_i$. Define X to be the Cartesian product

$$X_1 \times X_2 \subset \mathbb{R}^{N_1} \times \mathbb{R}^{N_2}$$

and let $p = (p_1, p_2)$. Show that $T_p X \cong T_{p_1} X_1 \oplus T_{p_2} X_2$.

Proof. Let $f: T_pX \to T_{p_1}X_1 \oplus T_{p_2}X_2$ be defined by

$$(p,v) \mapsto ((p_1,v_1),(p_2,v_2))$$

We can check componentwise that f is bijective, as desired.

Labalme 7