A Formal Proofs

Here, we present the proofs of our formal results.

A.1 Proofs of Section 4 (Benaloh According to Nash)

Lemma 1. If $s_V = [p_1^V, \cdots, p_{n_{max}}^V]$ and $s_D = [p_1^D, \cdots, p_{n_{max}}^D]$ form a Nash equilibrium, then for all i = V, D and $n = 1, \ldots, n_{max}$ we have $p_n^i > 0$.

Proof. Suppose that (s_V, s_D) is a Nash equilibrium, and that $p_n^V = 0$ for some n (i.e., the voter always audits in round n). Take the smallest such n. Then, $s_D = n$ is the unique best response of D, i.e., the device must cheat for the first time in that round. We consider two cases now: (i) n = 1: in that case, the voter is better off playing $s_V = 1$, i.e., casting deterministically at the first round. (ii) n > 1: in that case, the voter is better off by swapping p_{n-1}^V and p_n^V , i.e., postponing the action planned for round n - 1 until round n. In both cases, we get that (s_V, s_D) is not a Nash equilibrium, which is a contradiction. Hence, we get that $p_n^V > 0$ for all n. [*]

get that $p_n^V > 0$ for all n. [*]

Suppose now that $p_n^D = 0$ for some n (i.e., the device never cheats in round n). Take the smallest such n. If n = 1, then V's best response is $s_V = 1$, which contradicts [*]. If n > 1, then V's best response includes $p_{n-1}^V = 0$, i.e., V postpones casting at n - 1 until the next round, which also contradicts [*]. Hence, also $p_n^D > 0$ for all n.

Lemma 2. If $s_V = [p_1^V, \cdots, p_{n_{max}}^V]$ is a part of Nash equilibrium then $p_{n+1}^V = \frac{Succ_D}{Succ_D + Fail_D} p_n^V$ for every $n \in \{1, \dots, n_{max} - 1\}$.

Proof. Recall Condition (2), saying that:

$$\forall n_{cheat}, n'_{cheat} \in \{1, \dots, n_{max}\} \ . \ u_D(s_V, n_{cheat}) = u_D(s_V, n'_{cheat}).$$

It is equivalent to:

$$\forall n \in \{1, \dots, n_{max} - 1\} \ . \ u_D(s_V, n + 1) - u_D(s_V, n) = 0$$
 [*]

Notice that:

$$u_D(s_V, n) = \sum_{i=1}^{n_{max}} p_i^V \cdot u_D(i, n) =$$

$$= \sum_{i=1}^{n-1} p_i^V \cdot 0 + p_n^V \cdot Succ_D + \sum_{i=n+1}^{n_{max}} p_i^V \cdot (-Fail_V)$$

$$= Succ_D \cdot p_n^V - Fail_D \cdot \sum_{i=n+1}^{n_{max}} p_i^V$$

Similarly,

$$u_{D}(s_{V}, n+1) = \sum_{i=1}^{n_{max}} p_{i}^{V} \cdot u_{V}(i, n+1) =$$

$$= Succ_{D} \cdot p_{n+1}^{V} - Fail_{D} \cdot \sum_{i=n+2}^{n_{max}} p_{i}^{V}$$

By this and [*], we get that:

$$Succ_D \cdot p_{n+1}^V - Succ_D \cdot p_n^V + Fail_D \cdot p_{n+1}^V = 0$$

In consequence,

$$p_{n+1}^{V} = \frac{Succ_{D}}{Succ_{D} + Fail_{D}} p_{n}^{V}$$

which completes the proof.

Theorem 1 The mixed voting strategy $s_V = [p_1^V, \dots, p_{n_{max}}^V]$ is a part of Nash equilibrium iff, for every $n \in \{1, \dots, n_{max}\}$:

$$p_n^V = \frac{(1-R)R^{n-1}}{1-R^{n_{max}}}, \quad where \ R = \frac{Succ_D}{Succ_D + Fail_D}.$$

Proof. If s_V is a part of Nash equilibrium then $p_n^V>0$ for all $n=1,\ldots,n_{max}$ (by Lemma 1). Moreover, by Lemma 2, the probabilities $p_1^V,\ldots,p_{n_{max}}^V$ form a geometric sequence with ratio $R=\frac{Succ_D}{Succ_D+Fail_D}$. Thus, $\sum_{n=1}^{n_{max}}p_n^V=p_1^V\cdot\frac{1-R^{n_{max}}}{1-R}$ must be equal to 1. In consequence, $p_1^V=\frac{1-R}{1-R^{n_{max}}}$, and hence $p_n^V=\frac{(1-R)R^{n-1}}{1-R^{n_{max}}}$. Notice that the above probability distribution is the only admissible solution,

Notice that the above probability distribution is the only admissible solution, i.e., no other s_V can be a part of Nash equilibrium. By Nash's theorem, the finite Benaloh game must have at least one equilibrium; hence, it is the unique one. \Box

Theorem 2 The behavioral voting strategy $b_V = [b_1^V, \dots, b_{n_{max}}^V]$ is a part of Nash equilibrium iff, for every $n \in \{1, \dots, n_{max}\}$:

$$b_n^V = \frac{1 - R}{1 - R^{n_{max} - n + 1}}, \quad where \ R = \frac{Succ_D}{Succ_D + Fail_D}.$$

Proof. We claim that the above behavioral strategy implements the unique Nash equilibrium strategy $s_V = [p_1^V, \dots, p_{n_{max}}^V]$ of Theorem 1. To prove this, it suffices to verify that $p_n^V = (1 - b_1^V) \cdot \dots \cdot (1 - b_{n-1}^V) \cdot b_n^V$ for all $n = 1, \dots, n_{max}$. That is, casting at round n indeed corresponds to unsuccessful Bernoulli trials in the first n-1 rounds, and a successful trial in round n. The check is technical but straightforward.

Theorem 3 If $\frac{Succ_D}{Fail_D} \to 0$, then the equilibrium strategy b_V of the voter converges to the following behavioral strategy:

$$\widehat{b_n^V} = \begin{cases} \frac{Fail_D}{Succ_D + Fail_D} & for \ n < n_{max} \\ 1 & for \ n = n_{max} \end{cases}$$

Proof. Take the behavioral NE strategy b_V in Theorem 2. For $\frac{Succ_D}{Fail_D} \to 0$, we get $R \to 0$. Hence, $1 - R^{n_{max} - n + 1}$ for $n < n_{max}$ converges to 1 much faster than 1 - R, and thus $b_n^V = \frac{1 - R}{1 - R^{n_{max} - n + 1}}$ gets arbitrarily close to $1 - R = \frac{Fail_D}{Succ_D + Fail_D}$.

Theorem 4 For $n_{max} = 2$, the behavioral NE strategy of the voter is:

$$b_1^V \ = \ \frac{Succ_D + Fail_D}{2Succ_D + Fail_D}, \qquad \qquad b_2^V \ = \ 1.$$

Proof. Fix $n_{max}=2$. By Theorem 2, we get $b_1^V=\frac{1-R}{1-R^2}=\frac{1}{1+R}=\frac{Succ_D+Fail_D}{2Succ_D+Fail_D}$. Similarly, $b_2^V=\frac{1-R}{1-R}=1$.

A.2 Proofs of Section 5 (Benaloh According to Stackelberg)

Lemma 3. The best response of the device to any fixed strategy of the voter is

$$BR_{D}(p^{V}) = \begin{cases} 0 & for \ p^{V} < p_{_{NE}}^{V} \\ 1 & for \ p^{V} > p_{_{NE}}^{V} \\ any \ p^{D} \in [0, 1] & for \ p^{V} = p_{_{NE}}^{V} \end{cases}$$

where $p_{NE}^V = \frac{Succ_D + Fail_D}{2Succ_D + Fail_D}$ is the NE probability of casting in round 1.

Proof. Given a strategy profile represented by (p^V, p^D) , the expected payoff of the device is:

$$Eu_D(p^V, p^D) = p^V p^D Succ_D - (1 - p^V)p^D Fail_D + (1 - p^V)(1 - p^D)Succ_D$$
$$= (2p^V Succ_D + p^V Fail_D - Succ_D - Fail_D)p^D + (1 - p^V)Succ_D.$$

Therefore, the derivative of $Eu_D(p^V, p^D)$ is

$$\frac{dEu_D(p^V, p^D)}{dp^D} = 2p^V Succ_D + p^V Fail_D - Succ_D - Fail_D,$$

which is negative for $p^V < \frac{Succ_D + Fail_D}{2Succ_D + Fail_D}$ and positive for $p^V > \frac{Succ_D + Fail_D}{2Succ_D + Fail_D}$. We recall from Theorem 4 that $p^V_{NE} = \frac{Succ_D + Fail_D}{2Succ_D + Fail_D}$ is the Nash equilibrium

probability that the voter casts in the first round.⁴ Thus, $Eu_D(p^V, p^D)$ is decreasing for $p^D \in [0, p_{NE}^V)$, and hence reaches its maximum at $p^D = 0$. Similarly, $Eu_D(p^V, p^D)$ is increasing for $p^D \in (p_{NE}^V, 1]$, and has its maximum at $p^D = 1$.

Finally, by Lemma 1 and the necessary Nash condition (2), any response of D to strategy represented by p_{NE}^{V} must obtain the same expected payoff for D, hence each is a best response.

Lemma 4. The voter's expected utility against best response is:

$$Eu_V(p^V, BR_D(p^V)) = \begin{cases} p^V Succ_V - (1 - p^V)(c_{audit} + Fail_V) & for \ p^V < p_{NE}^V \\ -p^V Fail_V - (1 - p^V)c_{audit} & for \ p^V \ge p_{NE}^V \end{cases}$$

Proof. For $p^V < p_{NE}^V$, we have $Eu_V(p^V, BR_D(p^V)) = Eu_v(p^V, 0) = p^V Succ_V - (1-p^V)(c_{audit} + Fail_V)$. Similarly, for $p^V > p_{NE}^V$, we have $Eu_V(p^V, BR_D(p^V)) = Eu_v(p^V, 1) = -p^V Fail_V - (1-p^V)c_{audit}$. For $p^V = p_{NE}^V$, any $p^D \in [0,1]$ is a best response. Since $Eu_V(p_{NE}^V, p^D)$ is a linear function w.r.t. p^D , it reaches its minimum for either $p^D = 0$ or $p^D = 1$. Observe that $Eu_V(p_{NE}^V, 0) - Eu_V(p_{NE}^V, 1) = (2Fail_V + Succ_V)p_{NE}^V - Fail_V > 0$ because $p_{NE}^V = \frac{Succ_D + Fail_D}{2Succ_D + Fail_D} > \frac{1}{2} > \frac{Fail_V}{2Fail_V + Succ_V}$. Thus, $Eu_V(p_{NE}^V, 0) > Eu_V(p_{NE}^V, 1)$, and V's lowest payoff against best response at p_{NE}^V is $Eu_V(p_{NE}^V, 1)$. □

Theorem 5 The following properties hold for the Benaloh game with $n_{max} = 2$:

- 1. There is no Stackelberg equilibrium for V in randomized strategies.
- 2. The Stackelberg value of the game is $SVal_V = \frac{Succ_D(Succ_V Fail_V c_{audit}) + Fail_D Succ_V}{2Succ_D + Fail_D}$
- 3. $SVal_V > Eu_V(p_{NE}^V, p_{NE}^D)$, where (p_{NE}^V, p_{NE}^D) is the Nash equilibrium. 4. If $Fail_D \gg Succ_D$ and $Succ_V \ge aFail_V$ for a fixed a > 0, then $SVal_V > 0$.

Proof. Ad. 1 & 2: Consider $f(p^v) = Eu_V(p^V, BR_D(p^V))$, established in Lemma 4. The function is increasing for $p^V \in [0, p_{NE}^V)$ and decreasing for $p^V \in [p_{NE}^V, 1]$. Moreover, $\lim_{p^V \to (p_{NE}^V)^-} f(p^V) = Eu_V(p_{NE}^V, 0) > Eu_V(p_{NE}^V, 1) = f(p_{NE}^V)$. Thus, $SVal_V = \sup_{p^V \in [0,1]} f(p^V) = Eu_V(p^V_{NE},0) = p^V_{NE} Succ_V - (1-p^V_{NE})(c_{audit} + Fail_V) = \frac{(Succ_D + Fail_D)(Succ_V + Fail_V + c_{audit})}{2Succ_D + Fail_D}$, and the value is not reached by any p^V .

Ad. 3: By Lemma 1, $p_{\scriptscriptstyle NE}^D>0$. Moreover, $Eu_V(p_{\scriptscriptstyle NE}^V,p^D)$ is linear w.r.t. p^D , and we already know that $Eu_V(p_{\scriptscriptstyle NE}^V,0)>Eu_V(p_{\scriptscriptstyle NE}^V,1)$, thus it must be strictly decreasing. In consequence, $SVal_V=Eu_V(p_{\scriptscriptstyle NE}^V,0)>Eu_V(p_{\scriptscriptstyle NE}^V,p_{\scriptscriptstyle NE}^D)$.

⁴ Note that, for $n_{max} = 2$, mixed and behavioral strategies coincide and can be used interchangeably.