

2021 Programming Bootcamp

Machine Learning in Natural Hazard Engineering

Chaofeng Wang
University of California, Berkeley

Slides:

https://github.com/NHERI-SimCenter/SimCenterAl_Workshop2021/blob/master/presentations/day1/Part1-2.pdf

Demos:

https://github.com/charlesxwang/SimCenterAl_Workshop2021/tree/master/notebooks/day1

Outline

Part 1 Conventional Machine Learning

Introduction to machine learning

Applications in Natural Hazard Engineering

Algorithms in Conventional Machine Learning

Software and Platforms

Demos & Exercises

Part 2 Deep Learning

Deep neural networks

CNN and Image Classification

Demos & Exercises

Part 1 Conventional Machine Learning

Supervised Learning

- Classification
- Regression

Unsupervised Learning

- Clustering
- Dimension reduction

Reinforcement Learning

- Decisions
- Robotics
- •

Image from ironhack

Fit a function: y=f(x)

Supervised Learning:

- Classification
- Regression

Algorithms:

Regressions
Decision trees
Support Vector Machines
Linear discriminant analysis
K-nearest neighbor algorithm
Multilayer perceptron

•	•	•	

x1	x2	x3	x4	x5	У
0.21	0.20	0.65	0.87	0.29	0.22
0.83	0.47	0.14	0.77	0.43	0.63
0.42	0.31	0.41	0.43	0.11	0.92
0.83	0.49	0.52	0.01	0.94	0.17
0.99	0.05	0.47	0.72	0.01	0.60
0.31	0.31	0.74	0.41	0.93	0.13
0.29	0.03	0.32	0.16	0.24	0.35
0.91	0.91	0.24	0.23	0.51	0.23
0.47	0.04	0.17	0.77	0.34	0.08
0.10	0.10	0.73	0.82	0.32	0.23
0.09	0.66	0.10	0.98	0.21	0.66
0.00	0.35	0.38	0.18	0.89	0.02

Unsupervised Learning

- Clustering
- Dimension reduction

Algorithms:

K-means Principal component analysis Autoencoder Generative adversarial networks

Classification

Trained with labeled data

Can predict the class name

Clustering

Trained with unlabeled data

Similar data points are grouped together

Group A

Group B

x1

Reinforcement Learning

- Decisions
- Robotics
- •

Algorithms:

Q-learning SARSA DQN

• • •

Applications in Natural Hazard Engineering

Physics-based simulation

Statistical method (ML)

Image from Gautam Kumar

Popular Algorithms in **Supervised Machine Learning** that are used in natural hazard engineering

Regression
Decision tree / Random forest
K-nearest neighbor
Support vector machines
Multilayer perceptron (Neural network)

•••

Keywords:

Data Model Training

Basic frame:

Use data to set the parameters of a model to fit the labels.

Linear Regression

Fit the relation by a **linear function**:

$$y = X\beta + \epsilon$$

Math:

Find coefficient β and error ϵ for

$$y = X\beta + \epsilon$$

that minimize the residual:

$$\mathcal{R} = \sum_{i=1}^{n} r_i^2$$

Logistic Regression

Fit the relation by a **logistic function**:

$$P(y = 1|x) = \frac{1}{1 + e^{-(\beta_0 + \beta_1 x)}}$$

Math:

Find coefficient β for

$$P(y = 1|x) = \frac{1}{1 + e^{-(\beta_0 + \beta_1 x)}}$$

that minimize the residual between the prediction and the ground truth

Decision Tree

x and y are called features, each data point can be represented by features:

(x, y)

<u>(x, y)</u>

Decision Tree

Decision Tree

Random Forest

K-nearest neighbor

Support vector machines: Kernel Trick

Support vector machines: Kernel Trick

Support vector machines: Kernel Trick

A visualization: https://www.youtube.com/watch?v=3liCbRZPrZA

A visualization: https://www.youtube.com/watch?v=3liCbRZPrZA

What is a good model?

underfit optimal overfit

26

Demos

Will do demos in Jupyter notebooks

Part 2 Deep Learning

Gradient Descent Learning rate

- 1. Compute the slope (gradient) at the current step
- 2. Make a move in the direction opposite to the slope

Too small Good Overshoot

A 24x24 image can be expanded as a vector $[x_1, x_2, ... x_{576}]$

Image from
The Asimov Institute

Image from
The Asimov Institute

Convolutional neural network

A 2D convolution operation

Popular deep CNN architectures

Example: Inception v3

The first few layers of CNN detect general features: Edges, Corners, Circles, Blobs colors, ...

As it goes deeper into the CNN, it starts to detect more concrete things such as eyes, faces, and full objects.

More concrete things ...

The weights in a pretrained neural network is the leaned knowledge.

So a deep CNN trained on a large dataset contains knowledge (weights) that can be used to understand basic features in any given new image. This is the concept of transfer learning.

To do transfer learning, we

- Freeze the first layers of the pretrained neural network. These are the layers that detect general features that are common across all domains.
- Then we finetune the deeper layers with our own training data and add new layers to classify new categories included in our training dataset.

Transfer Learning: Fine tuning

Take a pre-trained model (with learned weights) as base model

Add a header and train with the base model's weights frozen

Unfreeze the base model and train

Demo: Roof shape classification

Will do this demo in a Jupyter notebook.

Gabled

Hipped

Softmax

$$S(y_i) = rac{e^{y_i}}{\sum_j e^{y_i}}$$

Probabilities, sum is 1.0

Software and Platforms

scikit-learn (conventional ML)

Tensorflow (deep neural networks)

PyTorch (deep neural networks)

• • •

Exercise

Train a soft-story building classifier.

Data: http://doi.org/10.5281/zenodo.4092974

Soft-story collapse

Failure mechanism