What is claimed is:

1	1(currently amended). A pull-out guide for drawers, with		
2	comprising:		
3	1.1 a carcass rail (2) ,		
4	1.2 a pull-out rail (5) ,		
5	1.3 a central rail (3), and also with		
6	1.4 a control roller (6) which 1.4.1 is mounted rotatably about an axis		
7	on the central rail (3) and $1.4.2$ is in engagement with the carcass rail (2)		
8	and the pull-out rail (5) .		
1	2(currently amended). The pull-out guide as claimed in claim 1		
2	wherein the control roller (6) comprises a bearing part in the form of		
3	comprising a hard body (17) and a soft body (20) which, and wherein the		
4	soft body at least in part projects in a the radial direction in relation to the		
5	latter relative to the hard body.		
1	3(currently amended). The pull-out guide as claimed in claim 2		
2	wherein the soft body (20) projects over only part of the an axial extent of		
3	the hard body (17) .		
1	4(currently amended). The pull-out guide as claimed in claim 2		
2	er 3, wherein the soft body (20) is arranged in the a region of the an axial		
3	end side of the control roller (6) .		
1	5(currently amended). The pull-out guide as claimed in ene of		
2	the preceding claims claim 1, wherein the control roller (6) is designed as		
3	comprises a two-component construction.		
1	6(currently amended). The pull-out guide as claimed in claim 2		
2	ene of claims 2 to 5, wherein the hard body (17) and the soft body (20) are		
3	comprise two separate components which are assembled before mounting		
4	of the control roller (6) .		

7(currently amended).	The pull-out guide as claimed claim 2		
ene of claims 2 to 6, wherein the soft body (20) is arranged between a			
shoulder (19) of the hard body (17) and a bearing plate (10,30) of the			
control roller (6) .			

8(currently amended). The pull-out guide as claimed in <u>claim 2</u> ene of claims 2 to 7, wherein the soft body (20) is fixed between a shoulder (19) of the hard body (17) and a retaining washer (25).

9(currently amended). The pull-out guide as claimed in ene of the preceding claims claim 1, wherein the spindle (13, 23) on which the control roller (6) is mounted on a spindle having has a cross section that which differs from circular with a by having a relatively larger diameter in a the pull-out direction of the pull-out guide.

10(currently amended). The pull-out guide as claimed in claim 9, wherein the cross section of the spindle (13, 23) is designed to be roughly elliptical with <u>a</u> the major axis <u>extending</u> in the <u>pull-out</u> pulling-out direction.

11(currently amended). The pull-out guide as claimed in one of the preceding claims claim 1, wherein the spindle on which the control roller (6) is mounted on a spindle and the spindle is mounted is designed, preferably 20 in one piece, on a holding device (10, 30) which can be connected snap-connected to the central rail (3) by snapping or the like.

12(currently amended). The pull-out guide as claimed in ene of the preceding claims claim 1, wherein the control roller (6) can be fixed on its is snapped onto a bearing spindle (13, 23) by snapping or the like.

* * *