SCORECARD VARIABLE GROUPING AND SELECTION

Dr. Aric LaBarr
Institute for Advanced Analytics

Process Flow

Data Collection

- Variable Selection
- Sample Size
- Sample / Performance Window

Data Cleaning

- Eliminate Duplicates
- Examine / Remove Outliers

Variable Grouping and Selection

- Weights of Evidence (WOE)
- Information Value (IV)
- Gini Criterion

Initial Scorecard Creation

- Logistic Regression
- Accuracy
- Threshold
- Assessment

Reject Inference

 Remove bias resulting from exclusion of rejects

Final Scorecard Creation

 Final Model Assessment

VARIABLE GROUPING

Variable Grouping and Selection

- Scorecards end up with only just groups within a variable.
- Objectives:
 - Eliminate weak characteristics (variables) or those that do not conform to good business logic.
 - Group the strongest characteristics' attribute levels in order to produce a model in scorecard format.
- Function/package "scorecard" or "smbinning" in R.
- Package "scorecard" or "OptBinning" in Python.

Variable	Level		
MISS	<i>x</i> < 24		
MISS	$24 \le x < 36$		
MISS	$36 \le x < 48$		
MISS	$x \ge 48$		
HOME	OWN		
HOME	RENT		

Why Grouping (Binning)?

- Goal is to help simplify analysis through grouping:
 - Useful for understanding relationships no worries about explaining coefficients.
 - Modeling nonlinearities similar to decision trees.
 (NO MORE LOGISTIC REGRESSION LINEARITY ASSUMPTION!)
 - Dealing with outliers contained in the smallest / largest group.
 - Missing values typically in own group.

- Need a starting point for the grouping / binning.
 - Quantiles are most popular technique.
- Pre-bin the interval variables into a number of user-specified quantiles / buckets for fine detailed groupings.
- Aggregate the fine detailed groupings into a smaller number to produce coarse groupings.
 - Chi-squared tests to combine groups.

Initial Characteristic Analysis – Tree-based

- Another approach to binning is through tree-based methods like decision trees or conditional inference trees.
- Conditional Inference Trees (CIT):
 - CART methods potentially have inherent bias variables with more levels → more likely to be split on if split on Gini and Entropy.
 - CIT method adds extra statistical step before splits occur statistical tests of significance.
 - What is MOST significant variable? → What is the best split (Chi-square) on THIS variable? → REPEAT.

- Cut-offs may be rough from decision tree combining.
- Optional to override
 automatically generated groups
 to conform to business rules.
- Overrides may make groups suboptimal.

Group Definition

Missing

< \$35,200

\$35,200 - \$60,000

\$60,000 - \$85,000

\$85,000 - \$110,000

\$110,000 - \$142,530

> \$142,530

- Cut-offs may be rough from decision tree combining.
- Optional to override automatically generated groups to conform to business rules.
- Overrides may make groups suboptimal.

Group Definition	Override	
Missing	Missing	
< \$35,200	< \$35,000	
\$35,200 - \$60,000	\$35,000 - \$60,000	
\$60,000 - \$85,000	\$60,000 - \$85,000	
\$85,000 - \$110,000	\$85,000 - \$110,000	
\$110,000 - \$142,530	\$110,000 - \$140,000	
> \$142,530	> \$140,000	

- Cut-offs may be rough from decision tree combining.
- Optional to override
 automatically generated groups
 to conform to business rules.
- Overrides may make groups suboptimal.

Group Definition	Override	
Missing	Missing	
< \$35,200	< \$35,000	
\$35,200 - \$60,000	\$35,000 - \$60,000	
\$60,000 - \$85,000	\$60,000 - \$85,000	
\$85,000 - \$110,000	\$85,000 - \$110,000	
\$110,000 - \$142,530	\$110,000 - \$140,000	
> \$142,530	> \$140,000	

- Calculate and examine the key assessment metrics:
 - Weight of Evidence (WOE) how well attributes discriminate for each given characteristic
 - Information Value (IV) evaluate a characteristic's overall predictive power
 - Gini Statistic alternate to IV for selecting characteristics for final model.

WEIGHT OF EVIDENCE

- WOE measures the strength of the attributes of a characteristic in separating good and bad accounts.
- WOE is based on comparing the proportion of goods to bads at each attribute level (levels of the predictor variable).

$$WOE_i = \log\left(\frac{Dist.Good_i}{Dist.Bad_i}\right)$$

- WOE measures the strength of the attributes of a characteristic in separating good and bad accounts.
- WOE is based on comparing the proportion of goods to bads at each attribute level (levels of the predictor variable).

$$WOE_i = log \left(egin{aligned} Dist.Good_i \ Dist.Bad_i \ \end{array}
ight)$$
 $Dist.Good_i = rac{Number\ Good\ in\ group\ i}{Total\ Number\ Good}$

- WOE measures the strength of the attributes of a characteristic in separating good and bad accounts.
- WOE is based on comparing the proportion of goods to bads at each attribute level (levels of the predictor variable).

$$WOE_i = log \left(\frac{Dist.Good_i}{Dist.Bad_i} \right)$$

$$Dist.Bad_i = \frac{Number\ Bad\ in\ group\ i}{Total\ Number\ Bad}$$

- What are we looking for?
 - Looking for "big" differences in WOE between groups.
 - Monotonic changes within an attribute for interval variables (not always required).
- Why monotonic increases?
 - Oscillation back and forth of positive to negative values of WOE typically sign of variable that has trouble separating good vs. bad.
 - Not always required if makes business sense credit card utilization for example.

WOE for Bureau Score				
Group	Values	Event Count	Non-event Count	WOE
1	< 607	129	127	
2	607 – 640	181	285	
3	641 – 653	103	215	
4	654 – 667	86	262	
12	> 786	5	219	
	MISSING	89	155	
Total		900	3,477	

WOE for Bureau Score				
Group	Values	Event Count	Non-event Count	WOE
1	< 607	129	127	
2	607 – 640	181	285	
3	641 – 653	103	215	
4	654 – 667	86	262	
	•••	•••		•••
12	> 786	5	219	
	MISSING	89	155	
Total		900	3,477	

$$Dist.Good_1 = \frac{127}{3477}$$

= 0.0365

WOE for Bureau Score				
Group	Values	Event Count	Non-event Count	WOE
1	< 607	129	127	
2	607 – 640	181	285	
3	641 – 653	103	215	
4	654 – 667	86	262	
•••	•••	•••		
12	> 786	5	219	
	MISSING	89	155	
Total		900	3,477	

$$Dist.Good_{1} = \frac{127}{3477}$$

$$= 0.0365$$

$$Dist.Bad_{1} = \frac{129}{900}$$

$$= 0.1433$$

WOE for Bureau Score				
Group	Values	Event Count	Non-event Count	WOE
1	< 607	129	127	-1.367
2	607 – 640	181	285	
3	641 – 653	103	215	
4	654 – 667	86	262	
•••	•••		•••	•••
12	> 786	5	219	
	MISSING	89	155	
Total		900	3,477	

$$Dist.Good_{1} = \frac{127}{3477}$$

$$= 0.0365$$

$$Dist.Bad_{1} = \frac{129}{900}$$

$$= 0.1433$$

$$WOE_{1} = \log\left(\frac{0.0365}{0.1433}\right)$$

=-1.367

WOE for Bureau Score				
Group	Values	Event Count	Non-event Count	WOE
1	< 607	129	127	-1.367
2	607 – 640	181	285	-0.898
3	641 – 653	103	215	-0.616
4	654 – 667	86	262	-0.238
	•••	•••	•••	•••
12	> 786	5	219	2.428
	MISSING	89	155	-0.797
Total		900	3,477	

Weight of Evidence (WOE)

 WOE measures the strength of the attributes of a characteristic in separating good and bad accounts.

$$WOE_i = \log\left(\frac{Dist.Good_i}{Dist.Bad_i}\right)$$

WOE approximately zero implies what?

Weight of Evidence (WOE)

 WOE measures the strength of the attributes of a characteristic in separating good and bad accounts.

$$WOE_i = \log\left(\frac{Dist.Good_i}{Dist.Bad_i}\right)$$

 WOE approximately zero implies % good approximately equal to % bad so group doesn't separate good vs. bad well.

Weight of Evidence (WOE)

 WOE measures the strength of the attributes of a characteristic in separating good and bad accounts.

$$WOE_i = \log\left(\frac{Dist.Good_i}{Dist.Bad_i}\right)$$

- WOE approximately zero implies % good approximately equal to % bad so group doesn't separate good vs. bad well.
- WOE positive implies group identifies people who are good.
- WOE negative implies group identifies people who are bad.

WOE – Example

WOE – Example


```
import numpy as np
from optbinning import OptimalBinning
X = train["bureau_score"]
y = train["bad"]
optbin = OptimalBinning(name = "bureau_score", dtype = "numerical")
optbin.fit(X, y)
optbin.splits
array([606.5, 640.5, 653.5, 667.5, 689.5, 699.5, 708.5, 717.5, 739.5, 757.5, 786
.5])
```

```
iv_table = optbin.binning_table
iv_table.build()
```

```
Bin
                          Count
                                  Count (%)
                                                        WoE
                                                                    IV
                                                                               JS
         (-inf, 606.50)
                            256
                                   0.058488
                                              ... -1.367156
                                                              0.146023
                                                                        0.016952
                                   0.106466
1
       [606.50, 640.50)
                            466
                                              ... -0.897538
                                                              0.106936
                                                                        0.012936
2
        [640.50, 653.50)
                                   0.072653
                                                  -0.615621
                                                              0.032388
                                                                        0.003986
                            318
3
        [653.50, 667.50)
                                                              0.004799
                            348
                                   0.079507
                                                  -0.237533
                                                                        0.000598
4
        [667.50, 689.50)
                            616
                                   0.140736
                                                   0.046984
                                                              0.000306
                                                                        0.000038
5
        [689.50, 699.50)
                            234
                                   0.053461
                                                   0.168295
                                                              0.001439
                                                                        0.000180
                                              . . .
6
        [699.50, 708.50)
                                   0.059630
                                                   0.387585
                                                              0.007951
                                                                        0.000988
                            261
       [708.50, 717.50)
                            224
                                   0.051177
                                                   0.477173
                                                              0.010051
                                                                        0.001245
                                                   1.004845
8
       [717.50, 739.50)
                            439
                                   0.100297
                                                              0.073461
                                                                        0.008815
9
       [739.50, 757.50)
                            326
                                   0.074480
                                                   1.376322
                                                              0.090541
                                                                        0.010501
                                              . . .
10
       [757.50, 786.50)
                                   0.096185
                                                              0.194873
                                                                        0.021120
                            421
                                                   1.946773
11
          [786.50, inf)
                            224
                                   0.051177
                                                   2.428103
                                                              0.139445
                                                                        0.014113
12
                 Special
                              0
                                   0.000000
                                                        0.0
                                                              0.000000
                                                                        0.000000
                Missing
13
                                   0.055746
                                                              0.043271
                             244
                                                  -0.796742
                                                                        0.005270
Totals
                           4377
                                   1.000000
                                                   0.851485
                                                              0.096741
[15 rows x 9 columns]
```

iv_table.plot(metric = "woe")


```
X = train["purpose"]
y = train["bad"]
optbin = OptimalBinning(name = "purpose", dtype = "categorical")
optbin.fit(X, y)
iv_table = optbin.binning_table
iv_table.build()
                                                WoE
            Bin
                 Count
                         Count (%)
                                                            IV
                                                                       JS
       [LEASE]
                  1458
                          0.333105
                                          0.050268
                                                     0.000829
                                                                0.000104
1
        [LOAN]
                  2919
                          0.666895
                                         -0.024559
                                                     0.000405
                                                                0.000051
2
       Special
                          0.000000
                                                0.0
                                                     0.000000
                                                                0.000000
3
       Missing
                     0
                          0.000000
                                                0.0
                                                     0.000000
                                                                0.000000
Totals
                  4377
                          1.000000
                                          0.001234
                                                     0.000154
[5 rows x 9 columns]
```

Separation Issues Remain

Quasi-complete separation still a problem:

	Non- Event	Event	WOE
Α	28	7	-0.032
В	16	0	∞
С	94	11	0.728
D	23	21	-1.327
Total	161	39	

Adjusted WOE

Adjust the WOE calculation to account for possible quasi-complete separation:

$$Adjusted\ WOE_i = \log\left(\frac{Dist.Good_i + \eta_1}{Dist.Bad_i + \eta_2}\right)$$

- The η_1 and η_2 parameters are smoothing parameters that correct for potential overfitting and also protect against quasi-complete separation.
- Most software just sets $\eta_1 = \eta_2$ and has one parameter.

Adjusted WOE ($\eta_1 = \eta_2 = 0.005$)

Quasi-complete separation no longer a problem:

	Non- Event	Event	WOE
Α	28	7	-0.031
В	16	0	3.039
С	94	11	0.719
D	23	21	-1.302
Total	161	39	

Smoothed WOE (SWOE)

 SAS has recently proposed a slightly different smoothed version of the WOE calculation to account for possible quasi-complete separation:

$$SWOE_i = \log \left(\frac{\#Bad_i + (Overall\ Prop.Bad) \times c}{\#Good_i + (Overall\ Prop.Good) \times c} \right)$$

- This is just a smoothing parameter put in a slightly different place in the WOE calculation based on more Bayesian inference techniques.
- Haven't seen it really used elsewhere.

INFORMATION VALUE

- How big is a "big" difference when looking across groups for WOE?
- IV measures the ability of the characteristic to separate goods vs. bads.

$$IV = \sum_{i=1}^{L} (Dist.Good_i - Dist.Bad_i) \times \log \left(\frac{Dist.Good_i}{Dist.Bad_i} \right)$$

- How big is a "big" difference when looking across groups for WOE?
- IV measures the ability of the characteristic to separate goods vs. bads.

$$IV = \sum_{i=1}^{L} (Dist.Good_i - Dist.Bad_i) \times \log \left(\frac{Dist.Good_i}{Dist.Bad_i}\right)$$

Weight of Evidence!

- How big is a "big" difference when looking across groups for WOE?
- IV measures the ability of the characteristic to separate goods vs. bads.

$$IV = \sum_{i=1}^{L} (Dist.Good_i - Dist.Bad_i) \times \log \left(\frac{Dist.Good_i}{Dist.Bad_i} \right)$$

Used to select characteristics with strong predictive value.

- Characteristics of IV:
 - $IV \geq 0$
 - Bigger is Better!
- Rules of Thumb:
 - IV < 0.02 Not predictive
 - 0.02 < IV < 0.1 Weak predictor
 - 0.1 < IV < 0.25 Medium predictor
 - 0.25 < IV Strong predictor

```
from optbinning import BinningProcess
colnames = list(train.columns[0:20])
X = train[colnames]
selection_criteria = {"iv": {"min": 0.1, "max": 1}}
bin_proc = BinningProcess(colnames,
                          selection_criteria = selection_criteria,
                          categorical_variables = ["bankruptcy",
                                                   "purpose",
                                                   "used ind"])
iv_all = bin_proc.fit(X, y).summary()
iv_all[iv_all.columns[0:6]].sort_values(by = ["iv"], ascending = False)
```

	name	dtype	status	selected	n_bins	iv
10	bureau_score	numerical	OPTIMAL	True	12	0.851485
8	tot_rev_line	numerical	OPTIMAL	True	10	0.512358
9.	rev_util	numerical	OPTIMAL	True	10	0.363525
4	age_oldest_tr	numerical	OPTIMAL	True	10	0.322788
2	tot_derog	numerical	OPTIMAL	True	6	0.244956
17	ltv	numerical	OPTIMAL	True	7	0.193863
3	tot_tr	numerical	OPTIMAL	True	8	0.187039
7	tot_rev_debt	numerical	OPTIMAL	True	5	0.114815
13	down_pyt	numerical	OPTIMAL	True	5	0.113488
18	tot_income	numerical	OPTIMAL	True	9	0.108861
6	tot_rev_tr	numerical	OPTIMAL	True	6	0.1028
12	msrp	numerical	OPTIMAL	False	8	0.060786
1 5	loan_term	numerical	OPTIMAL	False	5	0.059987
11	purch_price	numerical	OPTIMAL	False	6	0.046384
5	tot_open_tr	numerical	OPTIMAL	False	5	0.040953
1	app_id	numerical	OPTIMAL	False	6	0.029569
19	used_ind	categorical	OPTIMAL	False	2	0.019464
16	loan_amt	numerical	OPTIMAL	False	4	0.014432
0	bankruptcy	categorical	OPTIMAL	False	2	0.001872
14	purpose	categorical	OPTIMAL	False.	2	0.001234

	name	dtype	status	selected	n_bins	iv
10	bureau_score	numerical	OPTIMAL	True	12	0.851485
8	tot_rev_line	numerical	OPTIMAL	True	10	0.512358
9.	rev_util	numerical	OPTIMAL	True	10	0.363525
4	age_oldest_tr	numerical	OPTIMAL	True	10	0.322788
2	tot_derog	numerical	OPTIMAL	True	6	0.244956
17	ltv	numerical	OPTIMAL	True	7	0.193863
3	tot_tr	numerical	OPTIMAL	True	8	0.187039
7	tot_rev_debt	numerical	OPTIMAL	True	5	0.114815
13	down_pyt	numerical	OPTIMAL	True	5	0.113488
18	tot_income	numerical	OPTIMAL	True	9	0.108861
6	tot_rev_tr	numerical	OPTIMAL	True	6	0.1028
12	msrp	numerical	OPTIMAL	False	8	0.060786
15	loan_term	numerical	OPTIMAL	False	5	0.059987
11	purch_price	numerical	OPTIMAL	False	6	0.046384
5	tot_open_tr	numerical	OPTIMAL	False	5	0.040953
1	app_id	numerical	OPTIMAL	False	6	0.029569
19	used_ind	categorical	OPTIMAL	False	2	0.019464
16	loan_amt	numerical	OPTIMAL	False	4	0.014432
0	bankruptcy	categorical	OPTIMAL	False	2	0.001872
14	purpose	categorical	OPTIMAL	False.	2	0.001234

	name	dtype	status	selected	n_bins	iv
10	bureau_score	numerical	OPTIMAL	True	12	0.851485
8	tot_rev_line	numerical	OPTIMAL	True	10	0.512358
9.	rev_util	numerical	OPTIMAL	True	10	0.363525
4	age_oldest_tr	numerical	OPTIMAL	True	10	0.322788
2	tot_derog	numerical	OPTIMAL	True	6	0.244956
17	ltv	numerical	OPTIMAL	True	7	0.193863
3	tot_tr	numerical	OPTIMAL	True	8	0.187039
7	tot_rev_debt	numerical	OPTIMAL	True	5	0.114815
13	down_pyt	numerical	OPTIMAL	True	5	0.113488
18	tot_income	numerical	OPTIMAL	True	9	0.108861
6	tot rev tr	numerical	OPTIMAL	True	6	0.1028
12	msrp	numerical	OPTIMAL	False	8	0.060786
15	loan_term	numerical	OPTIMAL	False	5	0.059987
11	purch_price	numerical	OPTIMAL	False	6	0.046384
5	tot_open_tr	numerical	OPTIMAL	False	5	0.040953
1	app_id	numerical	OPTIMAL	False	6	0.029569
19	used_ind	categorical	OPTIMAL	False	2	0.019464
16	loan_amt	numerical	OPTIMAL	False	4	0.014432
0	bankruptcy	categorical	OPTIMAL	False	2	0.001872
14	purpose	categorical	OPTIMAL	False.	2	0.001234

- Characteristics of IV:
 - $IV \geq 0$
 - Bigger is Better!
- Rules of Thumb:
 - IV < 0.02 Not predictive
 - 0.02 < IV < 0.1 Weak predictor
 - 0.1 < IV < 0.25 Medium predictor
 - 0.25 < IV < 0.5 Strong predictor
 - IV > 0.5 Over-predicting?

- Rules of Thumb:
 - IV < 0.02 Not predictive
 - 0.02 < IV < 0.1 Weak predictor
 - 0.1 < IV < 0.25 Medium predictor
 - 0.25 < IV < 0.5 Strong predictor
 - IV > 0.5 Over-predicting?
- Over-predicting Example:
 - All previous mortgage decisions have been made only on bureau score so of course bureau score is highly predictive – becomes only significant variable!
 - Create two models one with bureau score, one without bureau score and ensemble.

GINI STATISTIC

Gini Statistic

- Gini statistic is optional technique that tries to answer the same question as Information Value – which variables are strong enough to enter the scorecard model?
- IV is more in line with WOE calculation and used more often.
- Characteristics:
 - Range is 0 to 100.
 - Bigger is Better.

- More complicated technique for trying to evaluate how characteristics separate good from bad.
- Majority of the time Gini and IV agree but could be different on the borderline cases.
- Calculation:
 - Sort L groups of variable by descending order of the proportion of all events.

$$Gini = \left(1 - \frac{\left(2\sum_{i=2}^{L} (n_{i,E} \times \sum_{i=1}^{i-1} n_{i,NE}) + \sum_{i=1}^{L} (n_{i,E} \times n_{i,NE})\right)}{N_E \times N_{NE}}\right) \times 100$$

- More complicated technique for trying to evaluate how characteristics separate good from bad.
- Majority of the time Gini and IV agree but could be different on the borderline cases.
- Calculation:
 - Sort L groups of variable by descending order of the proportion of all events.

$$Gini = \left(1 - \frac{\left(2\sum_{i=2}^{L} (n_{i,E}) \times \sum_{i=1}^{i-1} n_{i,NE}\right) + \sum_{i=1}^{L} (n_{i,E}) \times n_{i,NE}}{N_E \times N_{NE}}\right) \times 100$$

Number of events in group i

- More complicated technique for trying to evaluate how characteristics separate good from bad.
- Majority of the time Gini and IV agree but could be different on the borderline cases.
- Calculation:
 - Sort L groups of variable by descending order of the proportion of all events.

$$Gini = \left(1 - \frac{\left(2\sum_{i=2}^{L} \left(n_{i,E} \times \sum_{i=1}^{i-1} \left(n_{i,NE}\right) + \sum_{i=1}^{L} \left(n_{i,E} \times n_{i,NE}\right)\right)}{N_E \times N_{NE}}\right) \times 100$$

Number of non-events in group i

- More complicated technique for trying to evaluate how characteristics separate good from bad.
- Majority of the time Gini and IV agree but could be different on the borderline cases.
- Calculation:
 - Sort L groups of variable by descending order of the proportion of all events.

$$Gini = \left(1 - \frac{\left(2\sum_{i=2}^{L} \left(n_{i,E} \times \sum_{i=1}^{i-1} n_{i,NE}\right) + \sum_{i=1}^{L} \left(n_{i,E} \times n_{i,NE}\right)\right)}{N_E \times N_{NE}}\right) \times 100$$

Total number of events and non-events

