Medios de transmisión

Álvaro González Sotillo

20 de enero de 2022

Índice

1.	Introducción	1
2.	Medios guiados	2
3.	Cables de pares trenzados	2
4.	Estándares	6
5.	Coaxial	8
3.	Fibra óptica	9
7.	Medios no guiados	11
3.	Referencias	13

1. Introducción

Los medios de transmisión son el medio físico que facilita el transporte de la información. La calidad de la transmisión dependerá de sus características.

- Medios guiados
 - Cable de pares trenzados
 - Cable coaxial
 - Fibra óptica
- \blacksquare Medios no guiados
 - Ondas de radio
 - Microondas
 - Infrarrojos
 - Ondas de luz

2. Medios guiados

- Transmiten impulsos eléctricos o lumínicos. Los bits se "transforman" en la tarjeta de red. Ésta los convierte en señales eléctricas o lumínicas respetando ciertos criterios definidos por el protocolo usado en esa red.
- Cada cable tiene unas características propias:
 - Velocidad de transmisión
 - Alcance
 - Calidad (ausencia de ruido/interferencias)
 - Tipo de transmisión (digital, analógica)

3. Cables de pares trenzados

- El trenzado se comporta como un apantallamiento (la interferencia se anula a sí misma en la siguiente vuelta)
- El más común consta de 8 hilos trenzados dos a dos identificados por colores.
- Fabricados en cobre.
- Transmiten la información en modo de impulsos eléctricos.
- Se clasifican en categorías, por el número de trenzas por unidad de longitud.
 - A mayor trenzado, menos interferencias y mayor velocidad de transferencia.
- Afectado por la atenuación
 - Para aumentar ésta, se hace uso de repetidores.

3.1. Cables de pares trenzados

- UTP (Unshielded Twisted Pair):
 - Pares trenzados sin apantallar
 - Más barato
 - Más fáciles de instalar
- STP (Shielded Twisted Pair):
 - Apantallamiento cada par de hilos.
 - Mayor calidad, resistencia a interferencias
 - Mayor grosor
- FTP (Foiled Twisted Pair):
 - Pantalla común a todos los pares

3.1.1. UTP

- Cuatro pares de alambres codificados por color que han sido trenzados y cubiertos por un revestimiento de plástico flexible.
- Se utiliza en las LAN Ethernet.
- Barato y fácil de instalar.

3.1.2. TIA/EIA-568A y TIA/EIA-568B

- Definen características del cableado LAN:
 - Tipos de cables
 - Longitudes del cable
 - Conectores
 - Terminación de los cables
 - $\bullet\,$ Métodos para realizar pruebas de cable
- UTP Categoria 6

- 1. Cubierta
- 2. Par trenzado
- 3. Separador de pares en forma de cruz.
- FTP Categoría 5

- 1. Cubierta exterior
- 2. Pantalla de protección ext.
- 3. Hilo de drenaje.

- 4. Pantalla de aluminio ext.
- 5. Hilos, incluye aislante con código de color.
- \blacksquare STP Categoría 6

- 1. Cubierta exterior
- 2. Pantalla de aluminio (1 por cada par)
- 3. Hilo de drenaje
- 4. Hilos, incluye aislante con código de color.

3.2. Conectores típicos

3.2.1. RJ11

■ Típico de conexiones telefónicas

3.2.2. RJ45

- Ethernet
- El conector RJ11 es compatible con puertos RJ45

3.2.3. DB9

■ Típico de puerto serie

3.2.4. DB25

■ Puerto paralelo (antes, el de impresora)

3.3. RJ45

- Conector RJ45 Usada para conectar redes de cableado estructurado, (categorías 4, 5, 5e, 6 y 6a).
- RJ es un acrónimo inglés de "Registered Jack".
- Posee ocho "pines.º conexiones eléctricas, que normalmente se usan como extremos de cables de par trenzado.
- La especificación EIA-TIA 568, describe los códigos de color de los cables para colocar pines a las asignaciones (diagrama de pines o contactos) para
 - Cable directo de Ethernet
 - Cable de conexión cruzada.

3.3.1. Cable recto

• Se utiliza para conectar equipos de nivel 3 con equipos de nivel 1-2

Fuente: bignewsoftware

https://es.wikipedia.org/wiki/TIA-568B

3.3.2. Cable cruzado

• Se utiliza para conectar equipos de niveles equivalentes (3 con 3, 2 con 2)

3.3.3. Cable PoE

■ Power over Ehternet

3.3.4. ¿Se necesitan todos estos cables?

- La mayoría de equipos modernos detectan automáticamente al otro equipo
- Se cruzan ellos mismos si es necesario
- Hay algunas excepciones, como Cisco

3.3.5. Construcción de cables

- Conector (macho): https://www.youtube.com/watch?v=Wywi_J6NUeg
- Roseta (hembra): https://www.youtube.com/watch?v=0gxNZoPcnP4

4. Estándares

- TIA/EIA 568B
 - ullet Define características del cableado completo (junto con rosetas, conectores,...)
- ISO/IEC 11801
 - Define características del cable (MHz soportados e impedancia)
- Ethernet
 - Define características del cableado, aplicadas a un protocolo físico y de enlace concretos (distancias máximas, retardos máximos,...)

TIA/EIA 568B	$ISO/IEC\ 11801$	Maximum Data Rate
	Class A	100 khz
Cat 1	Class B	Up to 1 Mbps (1Mhz)
Cat 2		4 Mbps
Cat 3	Class C	16 Mbps
Cat 4		20 Mbps
Cat 5	Class D	100 Mbps (100 Mhz)
Cat 5e		1000 Mbps (100 Mhz)
	Class E	200 Mhz
Cat 6		Up to $250\text{-}400~\mathrm{Mhz}$
Cat 6e		Up to 625 Mhz
Cat 7	Class F	Up to $600-700~\mathrm{Mhz}$
Cat 8		Up to 2 GHz

4.1. Categorías IEEE

- De acuerdo a su rendimiento (velocidades / uso)
 - Categoría 1 (1 Mhz). Hilo telefónico para voz.
 - Categoría 2 (4 Mhz). Par trenzado sin apantallar de cobre.
 - Categoría 3 (16 Mhz 10 Mbps).
 - Categoría 4 (20 Mhz 20 Mbps).
 - Categoría 5 (100 Mhz 100 Mbps).
 - Categoría 6 (250 Mhz 1 Gbps).
 - Categoría 7 (600 Mhz -10 Gbps).
 - Categoría 8 (en desarrollo)

4.2. Ethernet

Tecnología	Velocidad de transmisión	Tipo de cable	Distancia máxima	Topología
10Base2	10 Mbps	Coaxial	185 m	Bus (Conector 7
10 BaseT	10 Mbps	Par Trenzado	100 m	Estrella (Hub o
10 Base F	10 Mbps	Fibra óptica	$2000 \mathrm{\ m}$	Estrella (Hub o
100 Base T4	100 Mbps	Par Trenzado (categoría 3UTP)	100 m	Estrella. Half D
100 BaseTX	100 Mbps	Par Trenzado (categoría 5UTP)	100 m	Estrella. Half D
100 Base FX	100 Mbps	Fibra óptica	$2000 \mathrm{\ m}$	No permite el u
1000 Base T	$1000 \mathrm{Mbps}$	4 pares trenzado (categoría 5e ó 6UTP)	$100 \mathrm{m}$	Estrella. Full Di
1000 Base SX	$1000 \mathrm{Mbps}$	Fibra óptica (multimodo)	550 m	Estrella. Full Di
1000 BaseLX	$1000 \mathrm{Mbps}$	Fibra óptica (monomodo)	$5000 \mathrm{m}$	Estrella. Full Di

4.3. Categoría vs Clase

- La categoría es un estándar de la calidad del cable
- La clase es un estándar de la calidad de la red completa
 - Cable

- Rosetas/conectores
- Equipos de interconexión
- Lo interesante es conseguir una buena clase
 - Para lo que es necesario usar materiales de una buena categoría

Name	Туре	Mbps	Often used by
Category 1	UTP	1	Modem
Category 2	UTP	4	Token Ring-4
Category 3	UTP	10	10Base-T Ethernet
Category 4	STP	16	Token Ring-16
Category 5	UTP	100	100Base-T Ethernet
Category 5	STP	100	100Base-T Ethernet
Category 5e	UTP	100	1000Base-T Ethernet
Category 6	UTP	200	1000Base-T Ethernet
Category 7	STP	600	100GBase-T Ethernet

4.4. Certificación del cable

- Tras la instalación de componentes de cierta categoría, es necesario certificar la red
 - Para comprobar su clase
- Un analizador de cable mide los problemas que pueden producirse en el cable
 - $\bullet \ https://en.wikipedia.org/wiki/Copper_{cable certification}$
- La clase de la red se determina por el peor cable instalado.

5. Coaxial

- Conductor de cobre rodeado de una capa de aislante flexible,
- Sobre este material aislante hay una malla de cobre que actúa como
 - segundo alambre del circuito
 - apantallamiento para el conductor interno
- La envoltura del cable recubre el blindaje

- Hoy en día ha caído en desuso en la redes de área local.
- Aún se usa en televisión

• Tiene un gran ancho de banda con muy pocas interferencias

■ Tipos

• Thicknet: original

• Thinnet: más barato y manejable

6. Fibra óptica

• La información se transmite en forma de pulsos de luz.

• En cada instante se hay presencia o ausencia de señal luminosa.

• Se pueden usar diferentes colores para una multiplexación por fecuencia

■ En un extremo se coloca un LED emisor de luz o un láser

■ En el extremo opuesto se sitúa un detector de luz.

6.1. Ventajas de la fibra óptica

- Gran ancho de banda.
- La atenuación es mínima.
- No hay interferencias, no se producen campos magnéticos.
- Longitud del cable, capacidad y velocidad son muy altas.
- Seguridad de datos: sólo se puede acceder (pinchar) el cable por medios destructivos.
- Seguridad frente a accidentes: no hay corriente eléctrica alguna, no es peligroso.

6.2. Inconvenientes de la fibra óptica

- \blacksquare Las fibras son frágiles
- Los transmisores y receptores son caros.
- Empalmar un cable es difícil.
- Necesitan un conversor eléctrico para conectar al ordenador
 - No hay chips ópticos.

6.3. Principio físico

- Consiste en dos cilindros coaxiales de vidrios transparentes y de diámetros muy pequeños.
- El cilindro interior se llama núcleo y el exterior envoltura.
- El índice de refracción del núcleo es mayor que el de la envoltura
- En el límite entre núcleo y envoltura se produce una reflexión total de la luz,
 - Como consecuencia la luz no puede escapar del núcleo, quedando guiada dentro de él.

6.4. Tipos

- Multimodo
 - El diámetro del núcleo es muy superior a la longitud de onda de la luz:
 - De índice escalonado: el índice de refracción es constante en el núcleo.
 - De índice gradual: el índice de refracción varía dentro del núcleo hasta igualar al del revestimiento.
- Monomodo:
 - El diámetro del núcleo es poco mayor que la longitud de onda.
 - Únicamente se propaga un rayo de luz.
 - Necesita un diodo láser de elevado coste.

6.5. Conectores

6.6. Cables de fibra óptica

Fuente

Fuente

7. Medios no guiados

- Las señales no viajan por un canal cerrado
- Ventajas
 - Bajo coste
 - Comodidad
- Desventajas

7.1. Espectro electromagnético

7.2. Bluetooth

- IEEE 802.15
- Baja velocidad
- Bajo gasto de energía
- Corto alcance (PAN)

7.3. Wimax

- IEEE 802.16
- Worldwide Interoperability for Microwave Access
- Utiliza ondas de radio en las frecuencias de 2,5 a 3,5 Ghz.
- Se usa en zonas de difícil acceso para medios guiados (por terreno o por número de usuarios).

7.4. Wifi

- IEEE 802.11
- Destinada a LAN
- Microondas y radiofrecencia

Estándar	Frecuencia	Velocidad	Alcance
IEEE 802.11a	$5\mathrm{GHz}$	54 mbps	50 metros
IEEE $802.11b$	$2.4 \mathrm{GHz}$	$11 \mathrm{mbsp}$	100 metros
IEEE $802.11g$	$2.4 \mathrm{GHz}$	54 mbps	
IEEE $802.11n$	$2.4\mathrm{GHz}$ y $5\mathrm{GHz}$	$600 \mathrm{mbps}$	70 metros
IEEE $802.11ac$	$5\mathrm{GHz}$	$1.3 \mathrm{Gbs}$	
IEEE $802.11ad$	60Gz	$4.6 \mathrm{GBs}$	

7.5. Canales wifi

8. Referencias

- Formatos:
 - Transparencias
 - PDF
 - EPUB
- \blacksquare Creado con:
 - Emacs
 - org-re-reveal
 - Latex
- Alojado en Github