Definition 3.21. A linear map $f: E \to F$ is an *isomorphism* iff there is a linear map $g: F \to E$, such that

$$g \circ f = \mathrm{id}_E$$
 and $f \circ g = \mathrm{id}_F$. (*)

The map g in Definition 3.21 is unique. This is because if g and h both satisfy $g \circ f = \mathrm{id}_E$, $f \circ g = \mathrm{id}_F$, $h \circ f = \mathrm{id}_E$, and $f \circ h = \mathrm{id}_F$, then

$$g = g \circ id_F = g \circ (f \circ h) = (g \circ f) \circ h = id_E \circ h = h.$$

The map g satisfying (*) above is called the *inverse* of f and it is also denoted by f^{-1} .

Observe that Proposition 3.18 shows that if $F = \mathbb{R}^n$, then we get an isomorphism between any vector space E of dimension |J| = n and \mathbb{R}^n . Proposition 3.18 also implies that if E and F are two vector spaces, $(u_i)_{i \in I}$ is a basis of E, and $f: E \to F$ is a linear map which is an isomorphism, then the family $(f(u_i))_{i \in I}$ is a basis of F.

One can verify that if $f: E \to F$ is a bijective linear map, then its inverse $f^{-1}: F \to E$, as a function, is also a linear map, and thus f is an isomorphism.

Another useful corollary of Proposition 3.18 is this:

Proposition 3.21. Let E be a vector space of finite dimension $n \ge 1$ and let $f: E \to E$ be any linear map. The following properties hold:

- (1) If f has a left inverse g, that is, if g is a linear map such that $g \circ f = id$, then f is an isomorphism and $f^{-1} = g$.
- (2) If f has a right inverse h, that is, if h is a linear map such that $f \circ h = id$, then f is an isomorphism and $f^{-1} = h$.

Proof. (1) The equation $g \circ f = \text{id}$ implies that f is injective; this is a standard result about functions (if f(x) = f(y), then g(f(x)) = g(f(y)), which implies that x = y since $g \circ f = \text{id}$). Let (u_1, \ldots, u_n) be any basis of E. By Proposition 3.18, since f is injective, $(f(u_1), \ldots, f(u_n))$ is linearly independent, and since E has dimension n, it is a basis of E (if $(f(u_1), \ldots, f(u_n))$ doesn't span E, then it can be extended to a basis of dimension strictly greater than n, contradicting Theorem 3.11). Then f is bijective, and by a previous observation its inverse is a linear map. We also have

$$g=g\circ \mathrm{id}=g\circ (f\circ f^{-1})=(g\circ f)\circ f^{-1}=\mathrm{id}\circ f^{-1}=f^{-1}.$$

(2) The equation $f \circ h = \text{id}$ implies that f is surjective; this is a standard result about functions (for any $y \in E$, we have f(h(y)) = y). Let (u_1, \ldots, u_n) be any basis of E. By Proposition 3.18, since f is surjective, $(f(u_1), \ldots, f(u_n))$ spans E, and since E has dimension n, it is a basis of E (if $(f(u_1), \ldots, f(u_n))$) is not linearly independent, then because it spans E, it contains a basis of dimension strictly smaller than n, contradicting Theorem 3.11). Then f is bijective, and by a previous observation its inverse is a linear map. We also have

$$h=\operatorname{id}\circ h=(f^{-1}\circ f)\circ h=f^{-1}\circ (f\circ h)=f^{-1}\circ \operatorname{id}=f^{-1}.$$

This completes the proof.