Annihilator Method

Exercise: Get candidate solutions by the annihilator method:

$$y^{(4)} - y^{(3)} - y'' + y' = x^2 + 4 + x \sin x.$$

$$2 y^{(4)} - 2y'' + y = x^2 e^x + e^{2x}.$$

Review Question - recap

Find the candidate solution for

$$y^{(4)} - y^{(3)} - y'' + y' = x^2 + 4 + x \sin x.$$

Note that the auxiliary/ characteristic equation is

$$m^4 - m^3 - m^2 + m = m(m-1)^2(m+1).$$

Thus a basis of Ker L is $\{1, e^x, xe^x, e^{-x}\}$.

 $A_1 = D^3$ is the annihilator of $r_1(x) = x^2 + 4$. Since

 $A_1L = D^4(D-1)^2(D+1)$, the candidate solution w.r.t. $r_1(x)$ is

$$x(ax^2+bx+c),$$

since a constant is a solution of the homogeneous DE Ly = 0.

 $A_2 = (D^2 + 1)^2$ is the annihilator of $r_2(x) = x \sin x$. Since

$$A_2L = (D^2 + 1)^2D(D - 1)^2(D + 1)$$
, the candidate solution w.r.t. $r_2(x)$ is

$$(\alpha x + \beta)\cos x + (\gamma x + \delta)\sin x.$$

So our final candidate is

$$x(ax^2 + bx + c) + (\alpha x + \beta)\cos x + (\gamma x + \delta)\sin x.$$

Review Question - recap

Find the candidate solution for

$$y^{(4)} - 2y'' + y = x^2 e^x + e^{2x}.$$

Note that the AE is

$$m^4 - 2m^2 + 1 = (m-1)^2(m+1)^2$$
.

So a basis of Ker L is $\{e^x, xe^x, e^{-x}, xe^{-x}\}$.

 $A_1 = D - 2$ is the annihilator of $r_1(x) = e^{2x}$. Since

 $A_1L = (D-2)(D-1)^2(D+1)^2$, the candidate solution w.r.t. $r_1(x)$ is

$$ae^{2x}$$
.

 $A_2 = (D-1)^3$ is the annihilator of $r_2(x) = x^2 e^x$. Since $A_2 L = (D-1)^5 (D+1)^2$, the candidate solution w.r.t. $r_2(x)$ is

$$x^2(bx^2+cx+d)e^x.$$

So final candidate would be

$$ae^{2x} + x^2(bx^2 + cx + d)e^x$$
.

Example 6

Find a particular solution of

$$Ly = y'' - 3y' - 4y = -8e^t \cos 2t.$$

Roots of the characteristic equation are -1, 4. So the form of y_p is $y_p = Ae^t \cos 2t + Be^t \sin 2t$. We will use complex functions. Let $h(t) = -4e^{(1+i2)t}$. Then $-8e^t \cos 2t = h(t) + \overline{h(t)}$. D - (1+i2) annihilates h(t). The basis for Ker L is $\{e^{-t}, e^{4t}\}$ and the basis for Ker (D - (1+i2))L is $\{e^{-t}, e^{4t}, e^{(1+2i)t}\}$. Hence the form of the particular solution to Ly = h is $Y(t) = Ae^{(1+2i)t}$.

$$Y'' - 3Y' - 4Y = (-3 + 4i)Y - 3(1 + 2i)Y - 4Y$$

$$\Rightarrow -2A(5+i)e^{(1+2i)t} = -4e^{(1+2i)t} \Rightarrow A = \frac{5}{13} - i\frac{1}{13}.$$

Our particular solution is $y_p = Y + \bar{Y} = 2Re(Y)$. Hence

$$y_p(t) = \frac{10}{13}e^t\cos 2t + \frac{2}{13}e^t\sin 2t.$$

Cauchy Euler equation-Calculus with xD

- $(xD)^k := (xD)^{k-1}(xD), k \ge 2.$
- $(xD)^2 y = (xD)(xDy) = xDy + x^2D^2y \Rightarrow x^2D^2 = (xD)^2 xD = xD(xD 1).$
- Observe that $(xD)^k(x^m) = m^k x^m, k = 1, 2, \cdots$. Hence for any polynomial $P(x), P(xD)(x^m) = P(m)x^m$.
- If α, β are the roots of the auxilliary equation m(m-1) + am + b = 0, then

$$(xD-\alpha)(xD-\beta)y = x^2D^2y + axDy + by = (xD-\beta)(xD-\alpha)y.$$

• $(xD - a)(x^a) = 0, (xD - a)(x^a \ln x) = x^a,$ $(xD - a)^2(x^a \ln x) = 0$ for $a \in \mathbb{R}$.

Cauchy Euler equation-Example 2

Solve
$$Ly = x^2y'' + 4xy' + 2y = 2 \ln x, x > 0$$

$$Ly = (x^2D^2 + 4xD + 2)y$$

= $(xD(xD - 1) + 4xD + 2)y = ((xD)^2 + 3(xD) + 2)y$
= $(xD + 1)(xD + 2)y$.

A basis of Ker L is $\{\frac{1}{x}, \frac{1}{x^2}\}$. Also, $(xD)^2$ annihilates $\ln x$ and a basis for Ker $(xD)^2L$ is $\{\frac{1}{x}, \frac{1}{x^2}, 1, \ln x\}$. The form of the particular solution is $y_D = A + B \ln \hat{x}$. Substituting y_D is the DE, we get

$$(x^2D^2 + 4xD + 2)(A + B \ln x) = 2 \ln x,$$

i.e.,
$$((xD)^2 + 3(xD) + 2)(A + B \ln x) = 2 \ln x$$

i.e.,
$$3B + 2A + 2B \ln x = 2 \ln x$$

i.e.,
$$((xD) + 3(xD) + 2)(A + B \ln x) = 2 \ln x$$

i.e., $3B + 2A + 2B \ln x = 2 \ln x$.
So, $A = -\frac{3}{2}$, $B = 1$. Therefore, $y_p(x) = -\frac{3}{2} + \ln x$.

Cauchy Euler equation-Example 3

Solve
$$Ly=x^3y'''+4x^2y''+xy'-y=x, x>0$$

Auxilliary equation is $m^3+m^2-m-1=(m-1)(m+1)^2=0$.
A basis for Ker L is $\{x,\frac{1}{x},\frac{\ln x}{x}\}$. Also, $(xD-1)$ annihilates x . So a basis for Ker $(xD-1)L$ is $\{\frac{1}{x},\frac{\ln x}{x},x,x\ln x\}$. The form of the particular solution is $y_p(x)=Ax\ln x$. Substituting y_p is the DE, we get
$$(xD-1)(xD+1)^2(Ax\ln x)=x$$

i.e.,
$$(xD+1)^2(Ax)=x$$
,
i.e., $(xD+1)(2Ax)=x$, i.e., $4Ax=x$.
So, $A=\frac{1}{4}$. Therefore, $y_p(x)=\frac{1}{4}\ln x$, $x>0$.