

Agenda

- Business Problem
- Methodology
- Dataset Overview
- Exploratory Analysis
- Object Detection Approaches
- Classification Approaches
- Ensemble Approaches
- Findings & Conclusions
- Limitations
- Proposed Implementation
- Model Operations

Business Problem

- In the age of digital marketing, vehicle manufacturers could greatly benefit from more localized market information.
- By training a model to (a) identify vehicles from cameras traffic cameras or dashcams and (b) classify them by body type, we can glean valuable statistics about the vehicle "installed base" in a particular market.
- This approach could be easily adapted to a wide array of alternative classification tasks, such as:
 - Vehicle model identification (vehicle OEMs)
 - Vehicle age classification (auto insurers)
 - Accident trends (regulatory bodies)
 - Route optimization (commercial trucking)

Methodology: Analyze Performance of Two Competing Approaches

Transfer Learning Approach

- Use car image dataset to fine tune pre-trained CNN to identify body type.
- Utilize region-based CNN (Faster R-CNN) to detect vehicles in traffic camera / dashcam footage.
- Apply transfer learning to classify car images extracted from Faster R-CNN model.

YOLO Approach

- Use YOLO to detect vehicles in traffic camera / dashcam footage.
- Manually labeled vehicles using Roboflow.
- Train YOLO to classify body type from manually labeled images.

We use 2 Kaggle Datasets to train and test our models

CUHK Comp Cars for Classification

- Featuring images based on brand, type, model, and year
- Images are front, left, right, and rear of cars including top angles
- 17 GB of 130K images randomly sampled down to 9.6K images balanced by class

Lyft 3D Objection Detection for Autonomous Vehicles

- Featuring dashcam images taken from various angles of cars
- 100+ GB of 640K randomly
 sampled down to 700 images
- Other LIDAR data was available but not used for this problem

Further Overview of Images Car Classification Lyft Dataset

Came with labels

Unlabeled

Exploratory Analysis – Cars

- 1,716 distinct models with 13 assigned car type classes
- "Unknown" type assigned to 748 models that would be predicted as other classes were removed, leaving over **97K** images remaining
- Consolidated 12 remaining classes into eight classes due to some classes containing similar or overlapping vehicles
- Ended with a balanced sample of 9,600 images, 1,200 per class (about 10% of data)

Images from original classes now within "sports_convertible"

Hardtop Convertible

Convertible

Exploratory Analysis – Lyft

- Images provided in "samples" of 7 cameras on top of a vehicle
 - o 6 images around the car and 1 image from higher above
- Photos are mostly from the US, whereas cars are more global

Left: labeled example
Above: elevated image
Right: 6 images 360 degrees around

Exploratory Analysis – Lyft

- 89% of labeled objects were "car" (84%) or "other vehicle" (5%)
- On average, 4 objects per image and 28 per sample
- "car" objects present in every class
- Took 100 random samples (700 images) for labeling and evaluation
 - Labels provided on the "sample" and not image-level

To evaluate the Lyft data, we used Roboflow to add bounding boxes and car classifications

Added bounding box labels + car class labels

- Used Roboflow to label our Lyft dataset so that we had context to test our model's predictions
- ~700 images labeled using the new AutoFlow feature in Roboflow automatically detected car bounding boxes in our Lyft images to test our object detection models
- Hand labeled ~70 images with bounding boxes and class to test our classification models

Object Detection Approaches

Overview

- Generates region proposals, extracts features with a CNN, and classifies each region with SVMs.
- High accuracy for detecting objects in complex scenes.
- Pros: Accurate and handles overlapping objects well.
- Cons: Slow and computationally expensive.

Model Evaluation

- Adept at generalizing to unseen data.
- Often detected larger vehicles (RVs, buses, etc.) despite not being labeled in training data; otherwise, <u>surprisingly few false positives</u>.

YOLO Object Detection

Overview

- Trained YOLO on ~700
 RoboFlow labeled Lyft images
 to detect cars on the road
- Pros: Fast, real-time performance and easier to train.
- Cons: Lower accuracy for small or overlapping objects vs. region-based CNNs.

Model Evaluation

- Extremely quick and efficient predictions due to only looking once
- Missed many cars in the grainier images solved with better imaging and more training data/time

Model Comparison

Faster R-CNN

Precision-Recall Curve 0.98 0.96 D.94 0.90 0.86 precision @ 0.88 1.0 0.86 0.4 0.0 0.2 0.6 0.8 1.0 Recall

YOLO Object Detection

• Faster R-CNN object detection appears to outperform YOLO, particularly due to its impressive avoidance of false positives.

Classification Approaches

YOLO Car Classification

Overview

Model Evaluation

- Trained YOLOv8n on Cars dataset that came with class labels
- Transfer learned classes to YOLO's pre-trained class detection capabilities
- Train-test split the Cars classification dataset – tested model's ability to classify single car images in dataset

- YOLO was very successful at classifying cars in the single-image Cars Dataset not too much in the photo other than the cars
- Particularly good at classifying more "identifiable" cars like minibuses and pickups, but still performed well with more "common" cars like SUV/Crossovers (83%) and sedans (77%)

EfficientNet (Pre-Trained CNN)

Overview

- Our model builds on EfficientNetV2L, adding custom layers and using finetuning for car classification
- Employ 5-fold cross-validation for robustness and create an ensemble of models to maximize accuracy.
- Pros: High classification accuracy and more generalizable.
- Cons: Longer training time and more complex implementation.

Model Evaluation

• F1 Score: 0.84

• Accuracy: 0.92

• Recall: 0.83

Classification Repo	rt (Averaging precision		e): f1-score	support
hatchback	0.70	0.69	0.69	240
mini van	0.72	0.80	0.76	240
minibus	0.96	0.87	0.91	240
pickup	0.96	0.95	0.96	240
sedan	0.79	0.80	0.79	240
sports_convertible	0.89	0.87	0.88	240
station_wagon	0.90	0.91	0.91	240
suv_crossover	0. 78	0.80	0.79	240

- Performed well on classes where body type is unique such as pickup vans
- Was not as accurate when it came to classes that looked similar, such as SUV and hatchback

Model Comparison

EfficientNet Car Classification

Model Accuracy Across All Folds 0.9 0.8 0.7 Fold 1 Training Fold 1 Validation Fold 2 Training Fold 2 Validation Fold 3 Training 0.5 Fold 3 Validation Fold 4 Training Fold 4 Validation 0.4 Fold 5 Training Fold 5 Validation Average Training Average Validation 10 20 30 Epoch

YOLO Car Classification

- The EfficientNet's accuracy in classifying models reached an excellent accuracy when ensembled
- YOLO performed extremely well across classes in terms of precision vs confidence, showing a robust ability to classify cars when just the car image was trained and tested

Ensemble Approaches

YOLO Classification + Object Detection

Overview

- Simplifies workflow by combing detection and classification into one model.
- Trained on Cars dataset to detect custom classes and objects
- Used to predict classes (car make) and object detect Lyft dashcam data
- Used RoboFlow to label classes and objects as a validation sets

Model Evaluation

- The combined YOLO model was efficient and quick at detecting all of the cars in a frame
- This model worked well on some classes (such as SUVs and station wagons) while struggling with rarer car types (minibus, sports convertible, etc)
- Car classifications could be improved with better labeled images via Roboflow

Faster R-CNN + EfficientNet

Overview

- EfficientNet provides optimized feature extraction, Faster R-CNN delivers accurate object detection and localization
- Reduced computational cost compared to heavier models
- Flexible architecture allows finetuning for specific applications

Model Evaluation

- This model had a tough time with car classes because of training set vs. Prediction set
- Car Classification data is all front-facing, clear car only images whereas Lyft data can be grainy images with many different angles of cars

Model Comparison

- Faster R-CNN + EfficientNet was not able to predict all classes, it was biased towards sedan and sports_convertible
- The transfer-learned YOLO outperformed our custom combination method in classifying objects and car classes in the Lyft dataset.
- Our dataset is biased towards American cars (mostly pickups, station wagons, etc.) A more balanced dataset may reduce bias

Findings & Conclusions

- Both object detection approaches (YOLO + region-based CNNs) are highly effective, even with moderately-sized training datasets; however, YOLO is less prone to false positives.
- Transfer learning can be very difficult in the context of image classification as subtle differences in image composition can meaningfully alter results (e.g., blurred-out license plates):
 - Model did not generalize well to different camera angles.
 - Model struggled with partial photos (e.g., front half of a car).
- YOLO is effective out of the box, but can still be challenging to successfully fine-tune in for highly-discerning classification tasks.

Limitations of Transfer Learning Approach

- The two datasets have some key differences:
 - Car images often in profile but dash cam footage shows cars from front and back with fewer profile shots.
 - EfficientNet was trained on a balanced sample of eight classes, but that may not reflect crossover-heavy US dash cam footage.
 - Training data included many Chinese and non-US cars that may never appear in footage.
- Classification: Tested a variety of pre-trained CNNs before landing on an EfficientNet ensemble. Much slower "trial and error" approach vs. simply relying on YOLO built-in detection capabilities.

Proposed Implementation

- To best identify vehicle types from Lyft dash cams, we propose leveraging a **YOLO Classification + Object Detection** model to collect this market-level data going forward because:
 - Difficult Object Detection: Cars along the road (parked or in driveways)
 may be close together and require more precise detection Faster R-CNN
 + EfficientNet struggled with
 - o Identifying Multiple Objects: YOLO Performed better in tagging all the vehicles in the Lyft Images, Faster R-CNN + EfficientNet did not detect all
 - Customizable: The car data could be leveraged to classify makes and models, which could provide additional value to users
 - Future Work: We used the YOLOv8n due to compute and time restrictions, if we use a more advanced model such as YOLOv8l, we might be able to improve this further

Tools like MLFlow can help us deploy the model; Evidently Al would provide robust model monitoring

- Our pipeline uses AWS S3 for efficient storage and management of Lyft dashcam data, enabling seamless access for model training and evaluation.
- MLFlow allows us to log parameters, track model metrics, and artifact model versions while automating the training process
 - Continuously track and manage model versions iterate through our modeling pipeline to make better object detection and car class predictions
 - Deploy models as REST API's or with Docker containers to integrate cloud services
- Evidently Al allows us to track model performance and schedule retrains to ensure better performance as we get more Lyft dashcam data
 - Track any distribution shifts that may occur in the test data that could change model performance

References

- Yolo: https://arxiv.org/pdf/1506.02640
- Ultralytics: https://docs.ultralytics.com/usage/python/
- EfficientNet: https://arxiv.org/pdf/2104.00298
- Faster RCNN: https://arxiv.org/pdf/1506.01497
- EfficientNet Fine Tuning:

 https://keras.io/examples/vision/image_classification_efficientnet_fine_tuning/
- RoboFlow: https://docs.roboflow.com/

Questions?

For any follow-ups, please email:

Apoorv Anand – apanand@uchicago.edu

Sivaram Mandava - sivaramm@uchicago.edu

Dylan Versprille - dversprille@uchicago.edu

Austen Steinberg - austens@uchicago.edu

Michael Becker - mbbecker33@uchicago.edu

Appendix

Abstract

- Problem:
 - Vehicle manufacturers can gain localized market insights through Aldriven vehicle identification and classification.
- Approach:
 - Fine-tune CNN models for vehicle body type identification.
 - Use Faster R-CNN and YOLO for vehicle detection and classification.
 - Train YOLO with manually labeled images for improved accuracy.
- Findings:
 - Both YOLO and region-based CNNs are effective for vehicle detection.
 - YOLO offers fewer false positives and performs well even with smaller datasets.
 - Transfer learning struggles with varying camera angles and partial images.
 - Overall YOLO performs better for the final Business Problem