A Review on Keyless Signature Infrastructure over Traditional Cryptographic Techniques for Cloud Data Security

Remya chandran PhD Research Scholar Department of Computing Science Vel's University Chennai

Abstract— Keyless signatures are an alternative solution to traditional PKI signatures. Keyless signatures are not vulnerable to key compromise and hence provide a solution to the long-term validity of digital signatures. The traditional PKI signatures may be protected by timestamps, but as long as the time-stamping technology itself is PKI-based, the problem of key compromise is still not solved completely. Keyless signatures are a solution to this problem. In a keyless signature system, the functions of signer identification and of evidence integrity protection are separated and delegated to cryptographic tools suitable for those functions. Keyless Signature (KSI) is a Hash-tree based industrial scale Block chain technology that is part of data security. This technology provides real-time massive scale data integrity validation, time stamping and signature signer identification services.

Keywords—KSI,PKI, attacks, portable.

I. TRADITIONAL APPROACHES

The Cryptography or methods used for securing the information are classified into following categories:

- Symmetric Key Cryptography
- Asymmetric Key Cryptography
- Digital Signature

A. Symmetric-Key Cryptography

Symmetric-Key Cryptography is a type of encryption in which same secret key is used to encrypt and decrypt information. However, symmetric key cryptographic techniques suffer from many problems:

1. Key distribution problem

- 2. Key management problem
- 3. Inability to digitally sign a message.

B. Asymmetric Key Cryptography

The problem with secret keys is exchanging them over the Internet while preventing them from thief. Anyone who knows the secret key can decrypt the message. To overcome this, we have asymmetric encryption technique, in which there is related pair of keys. A public key is available to anyone who might want to send you a message. A second, private key is kept secret, so that only receiver knows it. Any messages that are encrypted by using the public key can only be decrypted by applying the same algorithm, but by using the matching private key. Any message that is encrypted by using the private key can only be decrypted by using the matching public key.

TABLE I ASYMMETRIC ENCRYPTION ALGORITHMS

Algorithm Family	Crypto system	Security Level(in bit)			in bit)	Advantage	Disadvantage	
		80	128	192	256			
Integer factorization	RSA	1024	307 2	7680	15360	Only intended user can read the message using their private key.	Many secret key encryption methods that is significantly faster than any current available public-key encryption.	
Discrete logarithm	DH	1024	307 2	7680	15360	The shared key (i.e the secret) is never itself transmitted over the channel.	Lack of authentication.	
Discrete logarithm	DSA	1024	307 2	7680	15360	It is used for authentication and integrity.	The security of private key depends entirely on the security of the computer.	
Discrete logarithm	ElGamal	1024	307 2	7680	15360	The same planetext gives a different ciphertext(with near certainly) each time it is encrypted.	slower speed and has long	
Elliptic Curves	ECC	160	256	384	512	Short key is faster and requires less computing power.	It is more expensive and it shortens the life time of batteries.	

SL.NO	Encryption Technique Name	Granularity (stream/block cipher)	Key size	Vulnerable to attack	Uniqueness about the techniques
1	Caesar Cipher	Block cipher	25 keys	Brute force attack	Simple substitution with alphabet
2	Playfair	Block cipher	25 Keys	Brute force attack, Frequency analysis	Use pair of letters and substitute with 5×5 matrix designed with key and remaining alphabets
3	Hill Cipher	Block cipher	25 Keys	Known plaintext attack	Based on Linear algebra, Convert plaintext into matrix based on ASCII value
4	Vigenere Cipher	Block cipher	25 keys	Frequency analysis, Kasiski examination	Arrange the letters in 26*26 matrix and perform substitution with pair of letters
5	Vernam cipher	Stream cipher	25 keys	plaintext	plaintext bits and key
6	One time pad	Stream cipher	Equal To plain text size	Key and cipher text chosen	Same as vigenere cipher but here key size must be equal to plaintext size
7	Rail Fence	-		Known cipher text, Chosen plaintext	Plaintext is written downwards on successive "rails" of an imaginary fence, then moving up when we get to the bottom.
8	Root cipher			Known cipher text, Chosen Plaintext.	Same as Rail fence but re arranging cipher text as spiral inwards, clockwise, starting from

Table III Modern symmetric encryption algorithms

	Encryption	Granularity	Key size	Vulnerable to	Uniqueness
SL.NO	Technique	(stream/block		attack	about the
	Name	cipher)			techniques
1	Camellia				16 rounds 8*8
		Block cipher	128, 192, or		S-boxes. Nested
		(128 bits)	256 bits	algebraic attack	Feistel Network
2				Linear	
				cryptanalysis	32 rounds,
		Block cipher	128, 192 or	and Rectangle	Open source
	Serpent	(128 bits)	256 bits	algebraic attack	algorithm
3					10,12,14 rounds
					(depending on
					the
					key size)
				Related Key	maximal size of
		Block cipher	128, 192 or	Attack,	the input file is
	Rijndael	(128 bits)	256 bits	Algebraic attack	2,097,152 bytes
4					32 rounds
					unbalanced
					Feistel
		Block cipher			Network
	Skipjack	(64 bits)	80 bits	Slide attack	Structure
5					Substitution-
				Known	permutation
				plaintext,	network, 10 or
		Block cipher	128, 192,	Side channel	12
	AES	(128 bits)	256 bits	attack	or 14 rounds
6				Known	
				plaintext,	
		Block cipher	128, 192,	chosen cipher	Feistel network,
	RC-6	(128 bits)	256 bits	text	20 rounds
7				Chosen	16 rounds
				plaintext,	8*8 s-boxes
		Block cipher		Known	Nested
	SEED	(128 bits)	128 bits	plaintext	Feistel Network
8					16 rounds
				Truncated	Feistel
		Block cipher		differential	Structure.
	Twofish	(128 bits)	128 256 bits	cryptanalysis	Free to use
9				Known plain	
		Block cipher	128 160 192	text and	Feistel Network
	CAST-256	(128 bits)	224 256 bits	cipher text	Structure

	Encryption	Granularity	Key size	Vulnerable to	Uniqueness
SL.NO	Technique	(stream/block		attack	about the
	Name	cipher)			techniques
10				Related key	Variable
				differential	rounds.
		Block cipher		attack,	Nested Feistel
	XTEA	(64 bits)	128 bits	chosen plaintexts	Network
11					18 rounds
					Source
				Related key	heavy Feistel
		Block cipher	8-128 bits	attack,	Network
	RC-2	(64 bits)	(64 bits)	Chosen plaintext	Structure
12				Chosen cipher	12 or 16 rounds
				text	Feistel
		Block cipher	40 to 128	and	Network
	CAST-128	(64 bits)	bits	Known plain text	Structure
13			0 to 2040		Feistel-like
		Block cipher	bits		network, 1 to
		(32,64,128	(suggested	Differential	255(suggested
	RC-5	bits)	128bits)	attack	12)
14					Variable
					rounds
				Related key	Feistel
		Block cipher		attack,	Network
	TEA	(64 bits)	128 bits	Chosen plaintext	Structure
15					16 rounds
					Feistel
					Structure.
				Second-	Free to use, key
		Block cipher		order differential	independent S-
	Blowfish	(64 bits)	32-448 bits	attack, Weak key	box
16					8.5 rounds
					Feistel
		Block cipher			Network
	IDEA	(64 bits)	128 bits	Weak keys,	Structure
17					48 rounds
					Feistel
				Theoretically	Network
				possible, Known	Structure,
		Block cipher	112 or 168	plaintext, chosen	Three different
	TDES	(64 bits)	Bits	plaintext	keys used
18					16rounds
					Feistel
				Differential &	Structure,
				Linear	Left circular
				Cryptanalysis,	shift,Substituti
		Block cipher		Brute-	on 32-bit
	DES	(64 bits)	56 bits	force attack	swap

C. Digital Signature

For authentication and non-repudiation purpose within cloud computing environment digital signature has assumed great significance. There are various digital signature algorithms which involves the generation of message digest (hash). MD5 and SHA-1 are well known digital signature generation algorithms and comparative study of these are described with the help of table:

Cl	MDS	CITA 510
Characteristics	MD5	SHA-512
Message Digest	128	512
Length		
Attack(For	2 128	2 512
original		
message From		
MD)		
Attack(find	2 64	2 ²⁵⁶
two message for		
same MD)		
Successful	Some	No such
Attacks	attempt	claims
	reported	
Speed	Faster	Slow
Software	Very easy	Easy
Implementation		

Comparision of digital signature algorithms

II. DIFFERENT ATTACKS USING TRADITIONAL CRYPTOGRAPHIC APPROACHES

a. Cipher text Attack

In this type of attack, the cryptanalyst has the cipher text of several messages and they have been encrypted using the same encryption algorithm. The job of cryptanalyst is to recover the plaintext as possible or could deduce the key(s) which is used to encrypt and decrypt the message.

b. Known-Plaintext Attack

In this type of attack, the cryptanalyst knows the encryption algorithm and cipher text to be deduced.

Cryptanalyst's role is to deduce the key(s) used to encrypt the message or an algorithm to decrypt the new message encrypted with the same key(s).

c. Chosen-Plaintext Attack

In this type, the cryptanalyst has access not only to cipher text and associated plaintext for several data but also chooses the specific plaintext blocks to encrypt which yield more information about the key. Cryptanalyst job is to deduce the key(s) used to encrypt the messages or an algorithm to decrypt any new message encrypted with the same key(s).

d. Chosen-Cipher text Attack

In this attack, the cryptanalyst knows different cipher texts to be decrypted and has access to the decrypted plaintext. Cryptanalyst's job is to deduce the key.

e. Meet-in-the-middle attack

It is another type of known plaintext. The Meet-in-the middle attacker uses two different keys to encrypt the plaintext with a different combination of keys and decrypt the cipher text with another set of keys to get the necessary key to get the original message.

f. Man in the Middle Attack

This type of attack occurs when the secure socket layer (SSL) is not properly installed when two parties are communicating with each other then there is a possibility that all the data communication between two parties could be hacked by the middle party. Therefore countermeasures are required to be taken to protect the data from the middle attack.

g. Brute Force Attack

A brute force attack is a trial-and-error method used to obtain information such as a user password or Personal Identification Number (PIN). In a brute force attack, automated software is used to generate a large number of consecutive guesses as to the value of the desired data.

h. Dictionary Attack

In this attack, every word in the dictionary is tried as a possible password for an encrypted message. A dictionary attack is generally more efficient than brute force attack.

i. Birthday attack

It is another class of brute-force attack which uses probability theory in a set of randomly selected people. A number of permutations are applied to get information from the communication among a set of people.

j. Pre-computation attack

The attacker makes a list of possible keys and compiles a look up table in order to decrypt the cipher text. One of the values in the look up table cracks the encrypted message. It is another class of dictionary attack.

k. Denial of service

In cloud computing, hacker attack on the server by sending thousands of requests to the server that server is unable to respond to the regular clients in this way server will not work properly. Counter measure for this attack is to reduce the privileges of the user that connected to a server. This will help to reduce the DOS attack.

l. Side Channel Attack

An attacker could attempt to compromise the cloud by placing a malicious virtual machine in close proximity to a target cloud server and then launching a side channel attack. Side-channel attacks have emerged as a kind of effective security threat targeting system implementation of cryptographic algorithms. Evaluating a cryptographic system's resilience to side-channel attacks is therefore important for secure system design.

m. Network Sniffing

When the unencrypted data is send on the cloud through the network then the hacker can sniff the passwords from the data on transit.

n. Port Scanning

There may be some issues regarding port scanning that could be used by an attacker as Port 80(HTTP) is always open that is used for providing the web services to the user. Other ports such as 21(FTP) etc are not opened all the time it will open when needed therefore ports should be secured by encrypted until and unless the server software is configured properly. Counter measure for this attack is that firewall is used to secure the data from port attacks.

o. Sql Injection Attack

SQL injection attacks are the attacks where a hackers uses the special characters to return the data for example in SQL scripting the query end up with where clause that may be modified by adding more information in it.

p. Cross Site Scripting

It is a type of attack in which user enters the correct URL of a website and hacker on the other site redirects the user to its own website and gain access to its credentials. The aforementioned attacks weaken the security of encrypted data stored on cloud. Eventually, these attacks are the major barriers for a broader adoption of data outsourcing to cloud. Hence mitigating the threats, attacks and vulnerabilities is the vital factor to be considered in cloud storage in order to achieve data confidentiality.

III. PROPERTIES OF KEYLESS SIGNATURE INFRASTRUCTURE (KSI)

• Massive Scale

The massive scale of the KSI enables signing and verification of billions of data items every second. The KSI signatures can be generated at Exabyte-scale.

• Portability

The properties of the signed data can be verified even after that data has crossed geographic or organizational boundaries and service providers.

• Quantum Immunity

The cryptography behind the KSI signatures ensures that they never expire and remain quantum-immune i.e. secure even after the realization of quantum computation.

• Independent Verification

The properties of the signed data (time: when was the data signed, integrity: the underlying data has not changed, and order: which data was signed in which order) can be verified without reliance or need for a trusted authority.

• Data Privacy

KSI system is based on one-way cryptographic hash functions that result in hash values uniquely representing the data, but are irreversible such that one cannot start with the hash value and reconstruct the data - data privacy is guaranteed at all times.

• Active Integrity

The process of continuously verifying the integrity of electronic data for:

- 1) Detection whether data has not been manipulated,
- 2) Alerting in the event of detection,
- 3) Mitigation, either manual or automated in the event of an alert.

Attributable Network

On an attributable network, every action can be traced back to an original source so that every user is legally responsible for their actions (non-repudiation). Attributable networks can be achieved using the TTL (Tag, Track, Locate) functionality of KSI by signing all digital asset ,so that they can be audited, independently from service providers and network administrators, based on forensically strong proof.

• Clean State Proof

The mathematical proof provided by KSI that a network is in a clean state and free of compromise. Once this state has been achieved it then becomes possible to

continuously verify that the network remains in a clean state and act when a compromise is detected.

• Forensic Audit ability

The ability to conduct an audit that produces forensically sound and legally admissible evidence. The evidence is legally acceptable, and can be verified independently by a court or other third party.

• Independent Verification

It means that digital evidence can be verified without reliance on chain of custody, security of keys or any trusted human.

• Information Assurance

Information assurance includes protection of the integrity, availability, authenticity, non-repudiation and confidentiality of user data.

• Mutual Audit ability

Mutual Audit ability means that in a networked environment it is possible for an administrator to prove to a user, in the event of a dispute, that their actions were their own and not the administrator's.

• Portability of Evidence

Evidence portability means that data can be independently authenticated, no matter where it travels.

IV. CONCLUSION

Keyless Signature Infrastructure is designed to provide digital signature based authentication for data, traditional approaches that depend on public cryptography or asymmetric key cryptography, KSI uses only hash-function cryptography, allowing verification to rely on the security of hash-functions. The proposed Keyless Signature Infrastructure (KSI) technology invokes one-way hashes that cannot be broken, even under attack from the theoretical capabilities of quantum computers. KSI uses formal mathematical methods to independently authenticate any type of electronic data, at scale, in real time, without the need of trusted keys,

cryptographic secrets, or credentials that can be compromised. Privacy is assured. With KSI, digital assets acquire immutable properties with forensic proof for provenance, security and integrity.

V. REFERENCES

- [1] "Enhancing Cloud Data Security Using Elliptical Curve Cryptography" Ms. Nikita N Chintawar , Ms. Sonali J Gajare , Ms. Shruti V Fatak , Ms. Sayali S Shinde , Prof. Gauri Virkar, IJARCCE, Vol. 5, Issue 3, March 2016.
- [2] "An investigation on the Techniques used for encryption and authentication for Data Security in Cloud computing", Tamilarasi Rajamani, PrabuSevugan, Swarnalatha Purushotham, ISSN: 0976-3104
- [3] "Security Issues and Use of Cryptography in Cloud Computing", Jashanpreet Pal Kaur, Rajbhupinder Kaur, Volume 4, Issue 7, July 2014 ISSN: 2277 128X
- [4] "Security Attacks and Cryptography Solutions for Data Stored in Public Cloud Storage", Dr. S. S. Manikandasaran, IRACST -International Journal of Computer Science and Information Technology & Security (IJCSITS), ISSN: 2249-9555 Vol.6, No1, Jan-Feb 2016
- [5] "Secure Attribute Based Partitioning Technique for Cloud Structural Storage Data- A Review", Miss. Snehal Asare1, Prof. Fazeel Zama, IJCSMC, Vol. 4, Issue. 12, December 2015.

I.