CS 2601 Linear and Convex Optimization 8. Proximal gradient descent

Bo Jiang

John Hopcroft Center for Computer Science Shanghai Jiao Tong University

Fall 2022

Outline

Algorithm and examples

Convergence analysis

1

Composite functions

Consider

$$F(\mathbf{x}) = f(\mathbf{x}) + h(\mathbf{x})$$

where

- f is convex and smooth
- h is convex but not necessarily smooth

Example. Model with ℓ_1 regularization to promote sparsity,

$$F(\mathbf{x}) = f(\mathbf{x}) + \lambda \|\mathbf{x}\|_1$$

A more concrete example is Lasso in penalized form,

$$F(\mathbf{w}) = \frac{1}{2} \|\mathbf{y} - \mathbf{X}\mathbf{w}\|_{2}^{2} + \lambda \|\mathbf{w}\|_{1}$$

2

Proximal gradient descent

Recall for differentiable F, the update rule for gradient descent is

$$\begin{aligned} \mathbf{x}_{k+1} &= \operatorname*{argmin}_{\mathbf{x}} \left\{ \underbrace{F(\mathbf{x}_k) + \nabla F(\mathbf{x}_k)^T (\mathbf{x} - \mathbf{x}_k) + \frac{1}{2t_k} \|\mathbf{x} - \mathbf{x}_k\|_2^2}_{\hat{F}(\mathbf{x})} \right\} \\ &= \operatorname*{argmin}_{\mathbf{x}} \ \frac{1}{2t_k} \|\mathbf{x} - (\mathbf{x}_k - t_k \nabla F(\mathbf{x}_k))\|_2^2 \end{aligned}$$

Proximal gradient descent uses a similar approximation, but only for the smooth part f,

$$\mathbf{x}_{k+1} = \underset{\mathbf{x}}{\operatorname{argmin}} \left\{ \underbrace{f(\mathbf{x}_k) + \nabla f(\mathbf{x}_k)^T (\mathbf{x} - \mathbf{x}_k) + \frac{1}{2t_k} \|\mathbf{x} - \mathbf{x}_k\|_2^2}_{\hat{f}(\mathbf{x})} + h(\mathbf{x}) \right\}$$

$$= \underset{\boldsymbol{x}}{\operatorname{argmin}} \left\{ \frac{1}{2} \| \boldsymbol{x} - (\boldsymbol{x}_k - t_k \nabla f(\boldsymbol{x}_k)) \|_2^2 + t_k h(\boldsymbol{x}) \right\}$$
近邻梯度下降

"Proximal" means we try to make x_{k+1} stay close to $x_k - t_k \nabla f(x_k)$.

Proximal gradient descent (cont'd)

Define the proximal mapping or proximal operator,

$$\operatorname{prox}_h(\mathbf{y}) = \underset{\mathbf{x}}{\operatorname{argmin}} \left\{ \frac{1}{2} \|\mathbf{x} - \mathbf{y}\|_2^2 + h(\mathbf{x}) \right\}$$

SO

$$\mathbf{x}_{k+1} = \operatorname{prox}_{t_k h}(\mathbf{x}_k - t_k \nabla f(\mathbf{x}_k))$$

Proximal gradient descent with constant step size

- 1: initialization $x \leftarrow x_0 \in \mathbb{R}^n$
- 2: while stopping criterion not satisfied do
- 3: $\mathbf{x} \leftarrow \operatorname{prox}_{th}(\mathbf{x} t\nabla f(\mathbf{x}))$
- 4: end while
- 5: **return** *x*

Note. The proximal operator involves another optimization problem! Fortunately, it depends only on h not on f, and we can compute it in closed form for many important h, e.g. ℓ_1 regularization.

Proximal operator for ℓ_2 regularization

When $h(x) = \frac{\lambda}{2} ||x||_2^2$, the proximal operator is

$$\operatorname{prox}_h(\boldsymbol{y}) = \operatorname*{argmin}_{\boldsymbol{x}} \left\{ \frac{1}{2} \|\boldsymbol{x} - \boldsymbol{y}\|_2^2 + \frac{\lambda}{2} \|\boldsymbol{x}\|_2^2 \right\} = \frac{\boldsymbol{y}}{1 + \lambda}$$

Note. ℓ_2 regularization does not promote sparsity.

For ℓ_2 regularization, proximal gradient descent turns out to be nothing but gradient descent.

The proximal gradient step with step size t is

$$\mathbf{x}_{k+1} = \frac{\mathbf{x}_k - t\nabla f(\mathbf{x}_k)}{1 + \lambda t} = \mathbf{x}_k - \frac{t}{1 + \lambda t}(\nabla f(\mathbf{x}_k) + \lambda \mathbf{x}_k) = \mathbf{x}_k - \frac{t}{1 + \lambda t}\nabla F(\mathbf{x}_k)$$

exactly the gradient step for F(x) = f(x) + h(x) with step size $\frac{1}{1+\lambda t}$!

Proximal operator for ℓ_1 regularization

First consider the 1D case, $h(x) = \lambda |x|$ with $\lambda \ge 0$. Need to solve

$$\min_{x} \quad \frac{1}{2}(x-y)^2 + \lambda |x|$$

The proximal operator is given by the soft-thresholding operator $S_{\lambda}(y)$,

$$\operatorname{prox}_{\lambda|\cdot|}(y) = S_{\lambda}(y) = \operatorname{sgn}(y)(|y| - \lambda)^{+} = \begin{cases} y - \lambda, & \text{if } y > \lambda \\ 0, & \text{if } -\lambda \le y \le \lambda \\ y + \lambda, & \text{if } y < -\lambda \end{cases}$$

Proximal operator for ℓ_1 regularization (cont'd)

Proof. Let $x^* = \text{prox}_h(y)$ to be the minimum of $\frac{1}{2}(x-y)^2 + \lambda |x|$. Then

$$\frac{1}{2}(x^* - y)^2 + \lambda |x^*| \le \frac{1}{2}(-x^* - y)^2 + \lambda |-x^*| \implies yx^* \ge 0$$

i.e. x^* must have the same sign as y. If $y \ge 0$, then $x^* \ge 0$, so

$$x^* = \operatorname*{argmin}_{x \ge 0} \left\{ \frac{1}{2} (x - y)^2 + \lambda x \right\} = \begin{cases} y - \lambda, & \text{if } y > \lambda \\ 0, & \text{if } 0 \le y \le \lambda \end{cases}$$

Similarly, if $y \le 0$, then $x^* \le 0$, so

$$x^* = \operatorname*{argmin}_{x \le 0} \left\{ \frac{1}{2} (x - y)^2 - \lambda x \right\} = \begin{cases} y + \lambda, & \text{if } y < -\lambda \\ 0, & \text{if } -\lambda \le y \le 0 \end{cases}$$

Combining the two cases completes the proof.

7

Proximal operator for ℓ_1 regularization (cont'd)

When $h(x) = \lambda ||x||_1$, the minimization in the proximal operator can be decomposed into n 1D problems, one for each component,

$$\frac{1}{2}\|\mathbf{x} - \mathbf{y}\|_{2}^{2} + \lambda \|\mathbf{x}\|_{1} = \sum_{i=1}^{n} \left\{ \frac{1}{2} (x_{i} - y_{i})^{2} + \lambda |x_{i}| \right\}$$

The proximal operator simply applies the soft-thresholding operator to each component of y,

$$\left[\operatorname{prox}_{\lambda\|\cdot\|_{1}}(\boldsymbol{y})\right]_{i} = [S_{\lambda}(\boldsymbol{y})]_{i} = S_{\lambda}(y_{i}) = \begin{cases} y_{i} - \lambda, & \text{if } y_{i} > \lambda \\ 0, & \text{if } |y_{i}| \leq \lambda \\ y_{i} + \lambda, & \text{if } y_{i} < -\lambda \end{cases}$$

Note. The soft-thresholding operation gives us some intuition about how ℓ_1 regularization promotes sparsity: small components are set to zero during the optimization process.

Lasso and ISTA

For Lasso in the penalized form,

$$\min_{\mathbf{w}} F(\mathbf{w}) = \frac{1}{2} \| \mathbf{X} \mathbf{w} - \mathbf{y} \|_{2}^{2} + \lambda \| \mathbf{w} \|_{1}$$

the smooth part $f(\mathbf{w}) = \frac{1}{2} ||\mathbf{X}\mathbf{w} - \mathbf{y}||_2^2$ has gradient

$$\nabla f(\mathbf{w}) = \mathbf{X}^T (\mathbf{X}\mathbf{w} - \mathbf{y})$$

so the proximal gradient step is

$$\mathbf{w}_{k+1} = S_{\lambda t}(\mathbf{w}_k - t\mathbf{X}^T(\mathbf{X}\mathbf{w}_k - \mathbf{y}))$$

Known as the iterative soft-thresholding algorithm (ISTA).

Note. The threshold is λt , not λ .

Lasso and ISTA (cont'd)

Example.

$$X = \begin{bmatrix} 2 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix}, \quad y = \begin{bmatrix} 3 \\ 2 \\ 2 \end{bmatrix}, \quad \lambda = 2$$

Step size t = 0.1, $\mathbf{w}_0 = (0.5, 0.5)^T$, $\mathbf{w}^* = (1, 0)^T$.

Outline

Algorithm and examples

Convergence analysis

Lower bound for strongly convex functions

Lemma. If $\varphi: X \to \mathbb{R}$ is μ -strongly convex with a minimum x^* , then

$$\varphi(\mathbf{x}) \ge \varphi(\mathbf{x}^*) + \frac{\mu}{2} ||\mathbf{x} - \mathbf{x}^*||_2^2, \quad \forall \mathbf{x} \in X$$

Note. For φ is differentiable, this will follow from the quadratic lower bound $\varphi(x) \geq \varphi(y) + \nabla \varphi(y)^T (x-y) + \frac{\mu}{2} \|x-y\|_2^2$ and the optimality condition $\nabla \varphi(x^*)^T (x-x^*) \geq 0$. 如果连续可以直接用

Proof. Since φ is μ -strongly convex, there exists a convex $\tilde{\varphi}(x)$ s.t.

$$\varphi(\mathbf{x}) = \tilde{\varphi}(\mathbf{x}) + \frac{\mu}{2} \|\mathbf{x} - \mathbf{x}^*\|^2$$
 后项展开,不会影响 convexity

Fix x and let $x_t = tx + \bar{t}x^* = x^* + t(x - x^*)$, $t \in [0, 1]$. By convexity of $\tilde{\varphi}$,

$$\varphi(\boldsymbol{x}^*) \leq \varphi(\boldsymbol{x}_t) = \tilde{\varphi}(\boldsymbol{x}_t) + \frac{\mu}{2} \|\boldsymbol{x}_t - \boldsymbol{x}^*\|_2^2 \leq t\tilde{\varphi}(\boldsymbol{x}) + \bar{t}\tilde{\varphi}(\boldsymbol{x}^*) + \frac{\mu t^2}{2} \|\boldsymbol{x} - \boldsymbol{x}^*\|_2^2$$

Since $\tilde{\varphi}(\mathbf{x}^*) = \varphi(\mathbf{x}^*)$,

$$\tilde{\varphi}(\mathbf{x}) \ge \varphi(\mathbf{x}^*) - \frac{\mu t}{2} \|\mathbf{x} - \mathbf{x}^*\|_2^2, \ \forall t \in [0, 1] \implies \tilde{\varphi}(\mathbf{x}) \ge \varphi(\mathbf{x}^*)$$

Convergence analysis

Theorem. Let F(x) = f(x) + h(x), where h is convex, f is L-smooth and m-strongly convex with $m \geq 0$. Let x^* be the minimum of F. The sequence $\{x_k\}$ produced by proximal gradient descent with constant step size $t = \frac{1}{L}$ has the following properties.

1. $F(x_{k+1}) \leq F(x_k)$ and

$$F(\mathbf{x}_k) - F(\mathbf{x}^*) \le \frac{L}{2k} \|\mathbf{x}^* - \mathbf{x}_0\|_2^2$$

2. $||x_{k+1} - x^*||_2^2 \le (1 - \frac{m}{L})||x_k - x^*||_2^2$, and hence

$$\|\mathbf{x}_k - \mathbf{x}^*\|_2^2 \le (1 - \frac{m}{L})^k \|\mathbf{x}_0 - \mathbf{x}^*\|_2^2$$

Note. If $t \in (0, \frac{1}{L}]$, then the conclusions hold with L replaced by $\frac{1}{t}$, since an L-smooth function is also $\frac{1}{t}$ -smooth.

Note. 2 implies $F(\mathbf{x}_k) - F(\mathbf{x}^*) \le C(1 - \frac{m}{L})^{\frac{k}{2}} \|\mathbf{x}^* - \mathbf{x}_0\|_2$ for *C*-Lipschitz continuous *F*.

Proof

skipped

Let

$$\widehat{F}(\mathbf{x}) = f(\mathbf{x}_k) + \nabla f(\mathbf{x}_k)^T (\mathbf{x} - \mathbf{x}_k) + \frac{L}{2} ||\mathbf{x} - \mathbf{x}_k||_2^2 + h(\mathbf{x})$$

Since f is L-smooth and m-strongly convex,

$$\frac{m}{2} \|\mathbf{x} - \mathbf{x}_k\|_2^2 \le f(\mathbf{x}) - f(\mathbf{x}_k) - \nabla f(\mathbf{x}_k)^T (\mathbf{x} - \mathbf{x}_k) \le \frac{L}{2} \|\mathbf{x} - \mathbf{x}_k\|_2^2$$

Plugging into $\widehat{F}(x)$ yields

$$F(\mathbf{x}) \leq \widehat{F}(\mathbf{x}) \leq F(\mathbf{x}) + \frac{L-m}{2} \|\mathbf{x} - \mathbf{x}_k\|_2^2$$

Note $\widehat{F}(x)$ is L-strongly convex, and $x_{k+1} = \operatorname{argmin} \widehat{F}(x)$ when $t = \frac{1}{L}$.

$$F(\mathbf{x}_{k+1}) \leq \widehat{F}(\mathbf{x}_{k+1}) \stackrel{(\star)}{\leq} \widehat{F}(\mathbf{x}) - \frac{L}{2} \|\mathbf{x} - \mathbf{x}_{k+1}\|_{2}^{2}$$
$$\leq F(\mathbf{x}) + \frac{L - m}{2} \|\mathbf{x} - \mathbf{x}_{k}\|_{2}^{2} - \frac{L}{2} \|\mathbf{x} - \mathbf{x}_{k+1}\|_{2}^{2}$$

where (\star) uses the previous lemma.

Proof (cont'd)

The previous slide shows

$$F(\mathbf{x}_{k+1}) \le F(\mathbf{x}) + \frac{L-m}{2} \|\mathbf{x} - \mathbf{x}_k\|_2^2 - \frac{L}{2} \|\mathbf{x} - \mathbf{x}_{k+1}\|_2^2$$

1. Setting $x = x_k$ shows

$$F(\mathbf{x}_{k+1}) \le F(\mathbf{x}_k) - \frac{L}{2} ||\mathbf{x}_k - \mathbf{x}_{k+1}||_2^2 \le F(\mathbf{x}_k)$$

Since $m \ge 0$, setting $x = x^*$ shows

$$F(\mathbf{x}_{i+1}) - F(\mathbf{x}^*) \le \frac{L}{2} \|\mathbf{x}^* - \mathbf{x}_i\|_2^2 - \frac{L}{2} \|\mathbf{x}^* - \mathbf{x}_{i+1}\|_2^2$$

Since $F(x_{i+1}) \leq F(x_i)$ by part 1, summing over i from 0 to k-1,

$$F(\mathbf{x}_k) - F(\mathbf{x}^*) \le \frac{1}{k} \sum_{i=0}^{k-1} [F(\mathbf{x}_i) - F(\mathbf{x}^*)]$$

$$\le \frac{L}{2k} \|\mathbf{x}^* - \mathbf{x}_0\|_2^2 - \frac{L}{2k} \|\mathbf{x}^* - \mathbf{x}_k\|_2^2 \le \frac{L}{2k} \|\mathbf{x}^* - \mathbf{x}_0\|_2^2$$

Proof (cont'd)

2. Setting $x = x^*$ shows

$$\|\mathbf{x}^* - \mathbf{x}_{k+1}\|_{2}^{2} \le (1 - \frac{m}{L}) \|\mathbf{x}^* - \mathbf{x}_{k}\|_{2}^{2} - \frac{2}{L} \underbrace{[F(\mathbf{x}_{k+1}) - F(\mathbf{x}^*)]}_{\ge 0}$$

$$\le (1 - \frac{m}{L}) \|\mathbf{x}^* - \mathbf{x}_{k}\|_{2}^{2}$$

SO

$$\|\mathbf{x}^* - \mathbf{x}_k\|_2^2 \le (1 - \frac{m}{L})^k \|\mathbf{x}^* - \mathbf{x}_0\|_2^2$$