# Sprint 2 - Endurance Design Document April 11, 2024

## Sprint 2 - Endurance Design Document

# **Table of Contents**

| 1. | EXE        | CUTIVE SUMMARY                               | 3   |
|----|------------|----------------------------------------------|-----|
| -  | 1.1        | Project Overview                             | 3   |
| 2  | 1.2        | Purpose and Scope of this Specification      | 3   |
| 2. | PRO        | DDUCT/SERVICE DESCRIPTION                    | 3   |
| 2  | 2.1        | Product Context                              | 3   |
| 2  | 2.2        | User Characteristics                         |     |
| 2  | 2.3        | Assumptions                                  | 3   |
| 2  | 2.4        | Constraints                                  | 3   |
| 2  | 2.5        | DEPENDENCIES                                 | 3   |
| 3. | RFO        | QUIREMENTS                                   | Δ   |
|    |            |                                              |     |
|    | 3.1        | FUNCTIONAL REQUIREMENTS                      |     |
| 3  | 3.2        | Security                                     |     |
|    | 3.2.       |                                              |     |
|    | 3.2        |                                              |     |
| 3  | 3.3        | PORTABILITY                                  | . 4 |
| 4. | REQ        | QUIREMENTS CONFIRMATION/STAKEHOLDER SIGN-OFF | 5   |
| 5. |            | TEM DESIGN                                   |     |
|    | 5.1        | ALGORITHM                                    |     |
|    | 5.1<br>5.2 | System Flow                                  |     |
|    | 5.2<br>5.3 | SOFTWARE                                     |     |
|    | 5.3<br>5.4 | HARDWARE                                     |     |
|    | 5.4<br>5.5 | TEST PLAN                                    |     |
|    | 5.6        | Task List/Gantt Chart                        |     |
|    | 5.0<br>5.7 | STAFFING PLAN                                |     |
|    | J./        | JIAFFING FLAN                                | . o |

## 1. Executive Summary

### 1.1 Project Overview

This project consists of evaluating the accuracy and reliability of a Sphero Bolt Robot's performance while it performs a figure-eight pattern five times. The main goal shared with the class and professor, is to program the robot to move accurately along the figure-eight path while staying on course, using specialized software and block coding techniques.

### 1.2 Purpose and Scope of this Specification

The purpose of this specification is to have students program a robot to perform several different sprints accurately and efficiently.

#### In scope

This document addresses requirements related to phase 2 of the Robot Project:

Program the robot to successfully perform a figure 8 course 5 times in room HH 208.

#### **Out of Scope**

The following items of The Robot Project are out of scope:

- Sprint 1: Program the robot to circumnavigate a rectangular track.
- Sprint 3: Program the robot to run an obstacle course.

## 2. Product/Service Description

#### **Product Context**

Along with the Sphero Sprk and Sphero Sprk+, this robot is a member of the Sphero Bolt Robot series. The Sphero Edu program allows block code control of the Sphero Bolt Robot utilized in this project. In addition to speaking and rolling to certain places at predetermined speeds and directions, the robot can also change colors. User CharacteristicsUniversity Students

First Year CS/SE Major

Entry Level Programming Knowledge

### **User Characteristics**

- University Students
- Entry level Computer Science knowledge

#### **Assumptions**

- Assumes the Sphero Edu software is installed on device
- Assumes that the robot has been calibrated to face the initial direction of movement before commencing the program.

#### **Constraints**

- Size of classroom HH208
- Limited time available in HH208

### **Dependencies**

This requirement necessitates the use of the latest version of the Sphero EDU software.

Requires up to date version of Sphero EDU software

Page 3 of 8

## Requirements

### 2.1 Functional Requirements

| Req#                                             | Requirement                 | Comments                                                                   | Priority      | Date<br>Rvwd | SME<br>Reviewed /<br>Approved  |
|--------------------------------------------------|-----------------------------|----------------------------------------------------------------------------|---------------|--------------|--------------------------------|
| ENDUR_01                                         | Run figure 8 course 5 times | Robot must successfully travel around the figure 8 course 5 times          | Priority<br>1 | 4/8/24       | Trey H,<br>Flavia D,<br>Trey P |
| ENDUR_02                                         | Stay's on figure 8 path     | Robot must stay on the figure 8 path while doing the course                | Priority<br>1 | 4/8/24       | Trey H,<br>Flavia D,<br>Trey P |
| ENDUR_03                                         | Start in provided square    | Robot must be in the provided square before starting the figure 8 course   | Priority<br>1 | 4/8/24       | Trey H,<br>Flavia D,<br>Trey P |
| ENDUR_04                                         | Finish in provided square   | Robot must finish in the provided square after running the figure 8 course | Priority<br>1 | 4/8/24       | Trey H,<br>Flavia D,<br>Trey P |
| ENDUR_05                                         | Speak "I'm the winner"      | Robot must speak "I'm the winner" at the finish of the course              | Priority<br>1 | 4/8/24       | Trey H,<br>Flavia D,<br>Trey P |
| ENDUR_06 Flash multicolored lights for 5 seconds |                             | Robot must flash<br>multicolored lights for 5<br>seconds at the finish     | Priority<br>1 | 4/8/24       | Trey H,<br>Flavia D,<br>Trey P |

### 2.2 Security

### 2.2.1 Protection

The primary safeguard preventing accidental access to the system is the Bluetooth connection established with a specific device. Access to the robot requires establishing a Bluetooth connection, with only one user able to connect at any given time.

### 2.2.2 Authorization and Authentication

To grant authorization for robot usage, users are required to authenticate the robot by providing its name through the Sphero Edu Software

### 2.3 Portability

High environmental independence Compatible with iOS, Android, Windows, and MacOS.

April 11, 2024 Page 4 o f 8

### Sprint 2 - Endurance Design Document

# 3. Requirements Confirmation/Stakeholder sign-off

| Me  | eting Date | Attendees (name and role)    | Comments                   |
|-----|------------|------------------------------|----------------------------|
| 4/8 | 3/24       | Trey H, Flavia D, and Trey P | Confirmed all requirements |

## 4. System Design

### 4.1 Algorithm

- Start
- Step 1: Set speed to 63.
- Step 2: Spin -360 degrees for 11 seconds.
- Step 3: Set speed to 63.
- Step 4: Spin 360 degrees for 11 seconds.
- Step 5: Loop Steps 1 to 4, 5 times.
- · Step 6: Stop.
- Step 7: Speak "I'm the winner!" and wait.
- Step 8: Fade from (80,71,255) to (255,60,73) for 1 second.
- Step 9: Fade from (255,60,73) to (75, 255,141) for 1 second.
- Step 10: Fade from (75, 255,141) to (255, 253, 68) for 1 second
- Step 11: Fade from (255, 253, 68) to (243, 47, 255) for 1 second.
- Step 12: Fade from (243, 47, 255) to (81, 255, 242) for 1 second.
- Done.

April 11, 2024 Page 5 o f 8

### 4.2 System Flow



Sprint 2 - Endurance Design Document

### Software

The software used for this project was block code in the Sphero Edu application.



### 4.3 Hardware

Hardware platforms used:

- Apple MacBook Air
- Samsung.
- Sphero Bolt

### 4.4 Test Plan

| Reason for Test<br>Case                                                                      | Test<br>Date | Expected Output                                                     | Observed Output                                               | Staff<br>Name            | Pass/Fail |
|----------------------------------------------------------------------------------------------|--------------|---------------------------------------------------------------------|---------------------------------------------------------------|--------------------------|-----------|
| Test if the robot successfully spins around in a full circle                                 | 4/8/24       | The robot goes around in the complete circle                        | Robot completed the full circle                               | Trey,<br>Flavia,<br>Trey | Pass      |
| Test if the robot successfully spins around the full first circle and the full second circle | 4/8/24       | The robot goes around in the first and second circle completely     | Robot completed both full circles                             | Trey,<br>Flavia,<br>Trey | Pass      |
| Test if the robot completes both full circles 5 times in a row                               | 4/8/24       | The robot makes both full circles 5 times in a row without stopping | The robot did not make it around the circles 5 times in a row | Trey,<br>Flavia,<br>Trey | Fail      |

Sprint 2 - Endurance Design Document

| Reason for Test<br>Case                                                                  | Test<br>Date | Expected Output                                                      | Observed Output                                                        | Staff<br>Name            | Pass/Fail |
|------------------------------------------------------------------------------------------|--------------|----------------------------------------------------------------------|------------------------------------------------------------------------|--------------------------|-----------|
| Test if the completes both full circles 5 times in a row                                 | 4/8/24       | The robot makes both full circles 5 times in a row without stopping  | The robot made it around the circles 5 times in a row without stopping | Trey,<br>Flavia,<br>Trey | Pass      |
| Test if robot speaks "I'm the winner" when reaches the end of making the circles 5 times | 4/8/24       | The robot will speak "I'm the winner" after the 5 circles being made | Robot successfully spoke "I'm the winner" at the end of the circles    | Trey,<br>Flavia,<br>Trey | Pass      |
| Test if the robot flashes multicolored lights for 5 seconds                              | 4/8/24       | The robot flashes multicolored lights for 5 seconds                  | Robot successfully flashed multicolored lights for 5 seconds           | Trey,<br>Flavia,<br>Trey | Pass      |

### Task List/Gantt Chart



### 4.5 Staffing Plan

| Name     | Role         | Responsibility                                | Reports To             |
|----------|--------------|-----------------------------------------------|------------------------|
| Trey H   | Group Member | Algorithm, robot video, system design doc     | Flavia D and Trey<br>P |
| Flavia D | Group Member | Fow chart, System design doc                  | Trey H and Trey P      |
| Trey P   | Group Member | GitHub Repository owner,<br>System design doc | Trey H and Flavia<br>D |