Natural Language Processing

Assignment 5 Type of Question: MCQ

Total Marks: $(8\times1)+(1\times2)=10$ Number of Questions: 9

Question 1: Which of the following is/are false?

(1 mark)

- a. PCFG is a better language model for English than an n-gram model.
- b. The probability of a smaller tree is greater than a larger tree.
- c. The Inside-Outside algorithm is faster compared to HMMs.
- d. In CKY algorithm, grammar must be converted to Chomsky normal form (CNF).

Answer: a, c Solution:

Question 2: Consider the CFG given below:

 $S \to aSb|D$

$$D \to Dc | \epsilon$$

How many non-terminals should be added to convert the CFG into CNF? (1 mark)

- a. 3
- b. 2
- c. 4
- d. 5

Answer: d Solution:

The final CNF is:

 $S' \to AE|AB|DC|c$

 $S \to AE|AB|DC|c$

 $E \to SB$ $D \to DC|c$

 $A \rightarrow a$

 $B \to b$ $C \to c$

For question 3 to 8 consider the following PCFG fragment:

$S \to \text{NN VP}$	0.50	$S \to \text{VP NN}$	0.50
$NP \to \text{NN PB}$	0.40	$PB \to \text{PP NN}$	0.30
$VP \to \text{VB NN}$	0.30	$VP \to \text{VB NP}$	0.20
$VP \to \text{NN VB}$	0.25	$VP \to \text{NN PB}$	0.15
$PP \rightarrow \text{with}$	0.10	$PP \rightarrow \text{without}$	0.10
$VB \to \text{play}$	0.30	$VB \to {\rm enjoy}$	0.20
$VB \to \text{watch}$	0.25	$NN \to { m childern}$	0.15
$NN \to { m cricket}$	0.15	$NN \to \text{friends}$	0.20
$NN \to \text{football}$	0.10	$NN \to \text{music}$	0.12

For a sentence $S = w_1 w_2 w_3 w_4$, assume that the cells in the table are indexed as follows:

	1	2	3	4	
w_1	11	12	13	14	1
	$\overline{w_2}$	22	23	24	2
		$\overline{w_3}$	33	34	3
			w_4	44	4

Question 3: Using CKY algorithm, find the probability score for the most probable tree for the sentence $S_1 =$ "children play cricket with friends". (1 mark)

- a. 5.06×10^{-4}
- b. 2.73×10^{-3}
- c. 1.62×10^{-6}
- d. None of the above

Answer: c Solution:

Calculate the probability using the Bottom-Up method as explained in the lecture.

Question 4: How many entries are generated while filling the parsing table with CKY algorithm in Question 3? Note: There can be multiple entries in one cell.

(1 mark)

- a. 12
- b. 13
- c. 14
- d. 15

Answer: c Solution:

Question 5: Using CKY algorithm, find the number of parse trees for the sentence $S_2 =$ children enjoy music and the probability score for the most probable tree. (2 marks)

- a. $1, 4.95 \times 10^{-3}$
- b. $2, 0.36 \times 10^{-3}$
- c. $3, 0.99 \times 10^{-3}$
- d. $2, 0.54 \times 10^{-3}$

Answer: d Solution:

There are two parse trees.

$$\begin{array}{l} S \rightarrow NN_{11} \ VP_{23} = 0.5 \times 0.15 \times (0.3 \times 0.2 \times 0.12) = 0.54 \times 10^{-3} \\ S \rightarrow VP_{12} \ NN_{33} = 0.5 \times (0.25 \times 0.15 \times 0.2) \times 0.12 = 0.45 \times 10^{-3} \end{array}$$

We get the above probabilities with CKY algorithm.

Question 6: Using the Inside Algorithm, find the probability for generating the sentence $S_2 =$ children enjoy music. (1 mark)

- a. 0.99×10^{-3}
- b. 1.10×10^{-3}
- c. 0.55×10^{-3}
- d. 0.78×10^{-3}

Answer: a

Solution: Refer to solution 5. Add the probabilities of the two trees.

Question 7: Consider the expression below:

P("children watch football enjoy music", $N_{34}|G)=\sum_j$ P("children watch football enjoy music" $|N_{34}^j,G)$

What does the L.H.S. represent?

(1 mark)

- a. Probability of the sentence "children watch football enjoy music", given a grammar G.
- b. Probability of the sentence "children watch football enjoy music", given a grammar G and some rule which derives the segment "football enjoy".
- c. Probability of the sentence "children watch football enjoy music", given a grammar G and that there is some consistent spanning of the segment "football enjoy", i.e. from word 3 to 4.
- d. None of the above

Answer: c

Solution: Refer to Inside-Outside Probabilities.

Question 8: Suppose after parsing the sentence $S_2 =$ children enjoy music with CKY algorithm, the non-terminals that appear in position 12 and 23 are NT_1 and NT_2 respectively. Compute the outside probabilities for $\alpha_{NT_1}(12)$ and $\alpha_{NT_2}(23)$.

(1 mark)

- a. 0, 0.075
- b. 0.25, 0
- c. 0.30, 0.06
- d. None of the above

Answer: d Solution:

 $\alpha_{VP}(12) = 0.5 \times 1 \times 0.12 = 0.060$

 $\alpha_{VP}(23) = 0.5 \times 1 \times 0.15 = 0.075$

Question 9: Which of the following grammars are valid CNF? (1 mark)

- 1. $A \rightarrow B$ 2. $A \rightarrow BCD$ 3. $A \rightarrow BC$
 - $\mathrm{B} \to \mathrm{CD}$
- $\mathrm{B} \to \mathrm{b}$
- $B \to \epsilon$

- $C \to c$
- $C \to c$
- $C \to c$

- $\mathrm{D} \to \mathrm{d}$
- $\mathrm{D} \to \mathrm{d}$
- a. 1.
- b. 2.
- c. 3.
- d. None of the above

Answer: d

Solution: Valid CNF form is as follows:

 $A \to BC$

 $A \to a$