Curso de Sistemas Digitales.

Instructor: Dr.Ing. Sergio A. Abreo C.

Escuela de Ingenierías Eléctrica, Electrónica y de Telecomunicaciones

Universidad Industrial de Santander

Semana: 2

Sesión 2

- Sesión 2
 - Sistemas Numéricos
- 2 Consulta
- Agradecimientos
- Referencias

Sesión 2

Discusión

• ¿Por qué estudiar sistemas numéricos?

Introducción.

Sesión 2

Introducción.

Sesión 2

Introducción.

Discusión

• ¿Cuales sistemas numéricos conoce?

Bases más usadas.

Nombre	Base	Símbolos
Decimal	10	0,1,2,3,4,5,6,7,8,9
Binario	2	0,1
Octal	8	0,1,2,3,4,5,6,7
Hexadecimal	16	0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F

- ¿Cómo se define una base?
- ¡Por qué usar varias bases?

Bases más usadas.

Nombre	Base	Símbolos
Decimal	10	0,1,2,3,4,5,6,7,8,9
Binario	2	0,1
Octal	8	0,1,2,3,4,5,6,7
Hexadecimal	16	0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F

Discusión

- ¿Cómo se define una base?
- ¿Por qué usar varias bases?

Características

- Tienen una base (b).
- Tienen "b" símbolos.
- "i" representa el peso.
- Con "x" digitos se pueden tener bx números diferentes.

$$\sum_{i=-n}^{m} d_{i} \times b^{i} = d_{m}b^{m} + d_{m-1}b^{m-1} + \dots + d_{1}b^{1} + d_{0}b^{0} + d_{-1}b^{-1} + d_{-2}b^{-2} + \dots + d_{-n}b^{-n}$$

$$(1)$$

Discusión

• ¡Por qué es importante hacer conversión entre bases?

- Binario -> División.
- Octal -> División.

Discusión

• ¡Por qué es importante hacer conversión entre bases?

Conversión de Decimal a:

- Binario -> División.
- Octal -> División.
- Hexa -> División.

- Hexa -> Sustitución.
- Decimal -> Suma ponderada.

Discusión

• ¡Por qué es importante hacer conversión entre bases?

Conversión de Decimal a:

- Binario -> División.
- Octal -> División.
- Hexa -> División.

Conversión de Octal a:

- Binario -> Sustitución.
- Hexa -> Sustitución.
- Decimal -> Suma ponderada.

Discusión

Sesión 2

• ¿Por qué es importante hacer conversión entre bases?

Conversión de Binario a:

- Octal -> Sustitución.
- Hexa -> Sustitución.
- Decimal -> Suma ponderada.

Conversión de Hexadecimal a:

- Binario -> Sustitución.
- Octal -> Sustitución.
- Decimal -> Suma ponderada.

Discusión

Sesión 2

• ¿Por qué es importante hacer conversión entre bases?

Conversión de Binario a:

- Octal -> Sustitución.
- Hexa -> Sustitución.
- Decimal -> Suma ponderada.

Conversión de Hexadecimal a:

- Binario -> Sustitución.
- Octal -> Sustitución.
- Decimal -> Suma ponderada.

Sistemas Numéricos: Suma ponderada—>Decimal.

Ejemplo: Base 10 (Decimal)

Símbolos.

$$4391 = 4 \times 10^3 + 3 \times 10^2 + 9 \times 10^1 + 1 \times 10^0$$

Ejemplo: Base 10 (Decimal)

Base.

$$4391 = 4 \times 10^3 + 3 \times 10^2 + 9 \times 10^1 + 1 \times 10^0$$

Ejemplo: Base 10 (Decimal)

$$4391 = 4 \times 10^3 + 3 \times 10^2 + 9 \times 10^1 + 1 \times 10^0$$

Sistemas Numéricos: Suma ponderada—>Decimal.

Ejemplo: Base 10 (Decimal)

Símbolos.

$$\textbf{291,2} = 2 \times 10^2 + 9 \times 10^1 + 1 \times 10^0 + 2 \times 10^{-1}$$

Ejemplo: Base 10 (Decimal)

Base.

$$291,2 = 2 \times 10^2 + 9 \times 10^1 + 1 \times 10^0 + 2 \times 10^{-1}$$

Ejemplo: Base 10 (Decimal)

$$291,2 = 2 \times 10^2 + 9 \times 10^1 + 1 \times 10^0 + 2 \times 10^{-1}$$

Sistemas Numéricos: Suma ponderada—>Decimal.

Ejemplo: Base 8 (Octal)

Símbolos.

Sesión 2

$$256,32_8 = 2 \times 8^2 + 5 \times 8^1 + 6 \times 8^0 + 3 \times 8^{-1} + 2 \times 8^{-2}$$

Ejemplo: Base 8 (Octal)

Base.

$$256,32_8 = 2 \times 8^2 + 5 \times 8^1 + 6 \times 8^0 + 3 \times 8^{-1} + 2 \times 8^{-2}$$

Ejemplo: Base 8 (Octal)

$$256,32_8 = 2 \times 8^2 + 5 \times 8^1 + 6 \times 8^0 + 3 \times 8^{-1} + 2 \times 8^{-2}$$

Ejemplo: Base 2 (Binario)

Símbolos.

Sesión 2

$$1001, 1_2 = 1 \times 2^3 + 0 \times 2^2 + 0 \times 2^1 + 1 \times 2^0 + 1 \times 2^{-1}$$

Ejemplo: Base 2 (Binario)

Base.

$$1001, 1_2 = 1 \times 2^3 + 0 \times 2^2 + 0 \times 2^1 + 1 \times 2^0 + 1 \times 2^{-1}$$

Ejemplo: Base 2 (Binario)

$$1001, 1_2 = 1 \times 2^3 + 0 \times 2^2 + 0 \times 2^1 + 1 \times 2^0 + 1 \times 2^{-1}$$

Sistemas Numéricos: Suma ponderada—>Decimal.

Ejemplo: Base 16 (Hexadecimal)

Símbolos.

$$A9F7\text{,}2_{16} = 10 \times 16^3 + 9 \times 16^2 + 15 \times 16^1 + 7 \times 16^0 + 2 \times 16^{-1}$$

Ejemplo: Base 16 (Hexadecimal)

Base.

$$A9F7, 2_{16} = 10 \times 16^3 + 9 \times 16^2 + 15 \times 16^1 + 7 \times 16^0 + 2 \times 16^{-1}$$

Ejemplo: Base 16 (Hexadecimal)

$$A9F7, 2_{16} = 10 \times 16^3 + 9 \times 16^2 + 15 \times 16^1 + 7 \times 16^0 + 2 \times 16^{-1}$$

Sistemas Numéricos: Sustitución.

Hexadecimal » Binario » Octal

 $3D5C_{16} >> 0011 1101 0101 1100_2$

Sesión 2

Sistemas Numéricos: Sustitución.

Hexadecimal » Binario » Octal

```
3D5C_{16} >> 0011 1101 0101 1100_2
            >>000 011 110 101 011 1008
            >>0 3 6 5 3 4<sub>8</sub>
            >>365348
```

Sistemas Numéricos: Sustitución.

Hexadecimal » Binario » Octal

 $0.851_{16} >> 0.1011 1000 0101 0001_{2}$

Sesión 2

Sistemas Numéricos: Sustitución.

Hexadecimal » Binario » Octal

```
0.8851_{16} >> 0.1011 \ 1000 \ 0101 \ 0001_{2}
              >>0.101 110 000 101 000 1008
              >>0.5605048
              >>0.560504_8
```

Sistemas Numéricos: Sustitución.

Octal » Binario » Hexadecimal

 $674_8 >> 110 \ 111 \ 100_2$

Sesión 2

Octal » Binario » Hexadecimal

$$\begin{array}{l} 674_8 >> 110\ 111\ 100_2 \\ >> 0001\ 1011\ 1100_{16} \\ >> 1\ B\ C_{16} \\ >> 1BC_{16} \end{array}$$

Sistemas Numéricos: Sustitución.

Octal » Binario » Hexadecimal

 $0.726_8 >> 0.111 \ 010 \ 110_2$

Sistemas Numéricos: Sustitución.

Octal » Binario » Hexadecimal

```
0.726_{8}>>0.111\ 010\ 110_{2}
             >>0.1110 1011 0000<sub>16</sub>
             >>0. E B 0_{16}
             >>0.EB_{16}
```

Sistemas Numéricos: División.

Decimal » Binario: 18₁₀

La parte entera se obtiene por divisiones sucesivas.

	cociente	residuo	
18/2=	9	0	
9/2=	4	1	
4/2=	2	0	
2/2=	1	0	
1/2=	0	1	→10010 =1001 0

Figura 3 : Conversión de Decimal a Binario.

Sistemas Numéricos: División.

Decimal » Octal: 461₁₀

La parte entera se obtiene por divisiones sucesivas.

	cociente	residuo
461/8=	57	5
57/8=	7	1
7/8=	0	7

Figura 4 : Conversión de Decimal a Octal.

Sistemas Numéricos: Multiplicación.

Decimal » Binario: 0.25₁₀

$$0.25_{10} >> 0.25 \times 2 = 0.5$$

Sistemas Numéricos: Multiplicación.

Decimal » Binario: 0.25₁₀

$$\begin{array}{c} 0.25_{10} >> 0.25 \times 2 = 0.5 \\ >> 0.5 \times 2 = 1.0 \\ >> 0.01_2 \end{array}$$

Decimal » Octal: 0.25₁₀

Sesión 2

$$0.25_{10} >> 0.25 \times 8 = 2.0$$

Sistemas Numéricos: Multiplicación.

Decimal » Octal: 0.25₁₀

$$0.25_{10} >> 0.25 \times 8 = 2.0 \\ >> 0.2_8$$

Representación en Punto Flotante

Procedimiento

- Se toma el número de su base inicial y se lleva a base dos (binario).
- Se aplica notación científica.
- Se extrae el exponente, bit de signo y mantisa.
- Al exponente se le suma el sesgo (127 o 1023).
- Se organiza la información en formato IEEE 754.

Representación en Punto Flotante

```
Ejemplo
   -59.1875<sub>10</sub>
       59<sub>10</sub> » 111011<sub>2</sub>
                                                                   0.1875_{10} \gg 0.0011_2
                                                                     0.1875 \times 2 = 0.375
   LSB ⇒ 1 29 2
                                                                      0.375 \times 2 = 0.75
                                                                       0.75 \times 2 = 1.5
                                                                         0.5 \times 2 = 1.0
                     MSB ⇒I
                                                  111011 . 0011
         111011.0011_2 = 1.110110011_2 \times 2^5
         Mantisa
                          110110011
         Exponente 5 + 127 = 132_{10} \times 10000100_2
          1 10000100 11011001100000000000000 » C26CC000<sub>FLOAT</sub>
```

Sesión 2

Estándar IEEE 754

Sesión 2

Formato	Total	Signo	Exponente	Mantisa	Sesgo
Sencillo	32 bits	1 bit	8 bits	23 bits	127
Doble	64 bits	1 bit	11 bits	52 bits	1023

Valores Definidos

Signo	Exponente	Mantisa	Valor
0	E=todos 1	M=0	$+\infty$
1	E=todos 1	M=0	$-\infty$
0-1	E=todos 1	$M \neq 0$	NaN
0-1	E=todos 0	M=0	0
0-1	E=todos 0	$M \neq 0$	$(-1)^s \cdot 0, M \cdot 2^{1-sesgo}$

Representación Entera y Flotante

Niveles Lógicos

La electrónica digital involucra circuitos en los cuales existen únicamente dos posibles estados: ALTO o BAJO.

Códigos Digitales: Código Gray.

- No tiene pesos asignados a las posiciones
- Solo varía un bit de una palabra a la siguiente

Conversiones:

⋙ Gray a Binario

Código Gray de tres bits

Decimal	Binario	Gray
0	000	000
1	001	001
2	010	011
3	011	010
4	100	110
5	101	111
6	110	101
7	111	100

Fuente: Thomas L. Floud - Digital Fundamentals, Eleventh Edition

Códigos Digitales: Código ASCII.

Desarrollado originalmente para 7 bits (ASCII estándar) y luego se amplió a 8 bits (ASCII extendido).

```
>>> Códigos 0 al 31: caracteres de control
```

- >>> Códigos 48 al 57: números 0 al 9
- >>> Códigos 65 al 90: letras mayúsculas
- >>> Códigos 97 al 122: letras minúsculas

Eiemplo:

Decodificar el siguiente mensaje codificado en ASCII: 100 0001 110 0101 110 0011 110 0001 010 0000 011 0101

> е а espacio Mensaie = Beca 5

Códigos de algunos caracteres

coulgos de algunos caracteres					
Símbolo	DEC	HEX	BIN		
ESPACIO	32	20	010 0000		
0	48	30	011 0000		
1	49	31	011 0001		
:	58	3A	011 1010		
@	64	40	100 0000		
Α	65	41	100 0001		
В	66	42	100 0010		
С	67	43	100 0011		
а	97	61	110 0001		
b	98	62	110 0010		
C	99	63	110 0011		

¿Donde Puedo Aprender Más?

<u>Texto</u>s de Referencia.

- Capítulos iniciales [Tocci and Widmer, 2003].
- Capítulos iniciales [Harris and Harris, 2010].
- Google.

Agradecimientos

Grupo CPS: Línea Sistemas Digitales.

La información presentada en estas diapositivas intenta recopilar los elementos pedagógicos desarrollados por los profesores Carlos Fajardo y Carlos Angulo en sus cursos de Sistemas Digitales I durante los últimos años de trabajo en esta línea.

Sesión 2

Harris, D. and Harris, S. (2010).

Digital design and computer architecture.

Morgan Kaufmann.

Oppenheim, A. V., Willsky, A. S., and Nawab, S. H. (1998).

Señales y sistemas.

Pearson Educación.

Tocci, R. J. and Widmer, N. S. (2003).

Sistemas digitales: principios y aplicaciones.

Pearson Educación.