Avoin matikka 1

Kirja on työn alla!

MAA1 – Funktiot ja yhtälöt

Sisältö

Esipuhe 4

1

I Lukualueet 5 2 Luonnolliset luvut 6 3 Joukko-oppia 7 Logiikkaa 8 4 Kokonaisluvut 5 6 Kokonaislukujen aritmetiikkaa 7 Jaollisuus & tekijät 8 Rationaaliluvut ja laskusäännöt 12 Potenssisäännöt & murtolausekkeiden sieventämistä 9 10 Juuret 14 Murtopotenssi 11 12 Irrationaaliluvut *16* Reaaliluvut 17 13 Kompleksiluvut 18 14 Kertaustiivistelmä 19 15 II Yhtälöt 20 Yhtälöiden teoriaa 21 16 Ensimmäisen asteen yhtälö 17 18 Yleinen potenssi ja potenssiyhtälö Kertaustiivistelmä 25 19

III Funktiot

SISÄLTÖ 3

26

20	Funktio 27
21	Erilaisia funktioita 28
IV	Lukualueet
29	
22	Luonnolliset luvut 30
23	Joukko-oppia 31
24	Logiikkaa 32
25	Kokonaisluvut 33
26	Kokonaislukujen aritmetiikkaa 34
27	Jaollisuus & tekijät 35
28	Rationaaliluvut ja laskusäännöt 36
29	Potenssisäännöt & murtolausekkeiden sieventämistä 37
30	Juuret 38
31	Murtopotenssi 39
32	Irrationaaliluvut 40
33	Reaaliluvut 41
34	Kompleksiluvut 42
35	Kertaustiivistelmä 43
V	Sovelluksia
44	
36	Verrannollisuus 45
37	Verrannollisuus: sovelluksia 46
38	Prosenttilaskentaa - perustilanteet 47
39	Prosenttiyhtälöitä ja sovelluksia 48
40	Kertaustiivistelmä 49
VI	Kortaus ja harjoituskokoita
50	Kertaus ja harjoituskokeita
50 41	Verrannollisuus 51
-T-1	VCITATITIONISUUS SI

Luku 1 Esipuhe

Lorem ipsum...

Tässä on ältsin hieno teoriaboksi. Tänne voi laittaa myös kaavoja

$$(a+b)^2 = a^2 + 2ab + b^2$$
 (1.1)

ja toimii kuin junan vessa.

Teoreema 1 (Residue Theorem). Let f be analytic in the region G except for the isolated singularities $\alpha_1, \alpha_2, \ldots, \alpha_m$. If γ is a closed rectifiable curve in G which does not pass through any of the points α_k and if $\gamma \approx 0$ in G then

$$\frac{1}{2\pi i} \int_{\gamma} f = \sum_{k=1}^{m} n(\gamma; a_k) \operatorname{Res}(f; a_k).$$

Another nice theorem from complex analysis is

Teoreema 2 (Maximum Modulus). Let G be a bounded open set in \mathbb{C} and suppose that f is a continuous function on G^- which is analytic in G. Then

$$\max\{|f(z)|: z \in G^-\} = \max\{|f(z)|: z \in \partial G\}.$$

Osa I Lukualueet

Luku 2 Luonnolliset luvut

Luku 3 Joukko-oppia

Luku 4 Logiikkaa

Luku 5 Kokonaisluvut

Luku 6 Kokonaislukujen aritmetiikkaa

Luku 7 Jaollisuus & tekijät

Luku 8 Rationaaliluvut ja laskusäännöt

Luku 9 Potenssisäännöt & murtolausekkeiden sieventämistä

Luku 10 Juuret

Luku 11 Murtopotenssi

Luku 12 Irrationaaliluvut

Luku 13 Reaaliluvut

Luku 14 Kompleksiluvut

Luku 15 Kertaustiivistelmä

Osa II Yhtälöt

Luku 16 Yhtälöiden teoriaa

Monissa käytännön tilanteissa saamme samalle asialle kaksi erilaista esitystapaa.

Esimerkki: Meillä on orsivaaka, joka on tasapainossa. (kuva!) Toisessa vaakakupissa on kahden kilon siika ja toisessa puolen kilon ahven sekä tuntematon määrä lakritsia. Kuinka paljon vaakakupissa on lakritsia? (Ratkaistaan...) (Muita esimerkkejä, vähitellen vaikeutuvia (1. asteen) yhtälöitä)

Määritelmä: Yhtälöksi kutsutaan kahden lausekkeen merkittyä yhtäsuuruutta. Siis mielivaltaisille lausekkeille A ja B merkitään A=B. (Esim. A=3x+5 ja B=7x+7). Yhtälö on tosi, jos sen molemmat puolet todella ovat yhtäsuuret. Jos yhtälö ei ole tosi, se on epätosi. Tosi ja epätosi ovat totuusarvoja.

Yhtälöitä voidaan muokata siten, että niiden totuusarvo ei muutu. Tällaisia sallittuja muunnoksia ovat: (A) Yhtälön molemmat puolet voidaan kertoa nollasta poikkeavalla luvulla α . Muutos tehdään aina molemmille puolille. Tällöin saadaan yhtälö $\alpha A = \alpha B$. (B) Yhtälön molemmille puolille voidaan lisätä tai molemmilta puolilta vähentää luku b. Tällöin saadaan yhtälö A + b = B + b.

Muuttujaksi kutsutaan symbolia, jonka arvoa ei ole kiinnitetty. Muuttujia merkitään usein kirjaimilla x, y ja z. Yhtälöissä muuttujaa voidaan käyttää kuvaamaan tuntematonta määrää, jolloin yhtälöä muokkaamalla ("ratkaisemalla yhtälö") saadaan selville tuntematon.

Yhtälöitä on oleellisesti kolmenlaisia:

- (1) Yhtälö, joka on aina tosi. Esimerkiksi yhtälöt 8 = 8 ja x = x.
- (2) Yhtälö, joka on joskus tosi. Esimerkiksi yhtälö x=1 on tosi jos ja vain jos x=1. Muuttujan arvoja, joilla tällainen yhtälö toteutuu, kutsutaan yhtälön ratkaisuiksi tai juuriksi.
- (3) Yhtälö, joka ei ole koskaan tosi. Esimerkiksi yhtälö 0 = 1.
 Tämän kurssin ja ylipäätään matematiikan kannalta selvästi tärkein yhtälötyyppi on (2).
 Siirrymme nyt tarkastelemaan tärkeää erikoistapausta yhtälöistä, ensimmäisen asteen

yhtälöitä.

Luku 17 Ensimmäisen asteen yhtälö

Ensimmäisen asteen yhtälö on yhtälö, joka on esitettävissä muodossa ax + b = 0, jossa $a \neq 0$.

Teoreema 3. Kaikki muotoa $\alpha x + b = cx + d$ olevat yhtälöt, joissa $\alpha \neq c$, ovat ensimmäisen asteen yhtälöitä.

Todistus.

$$ax + b = cx + d$$
 | Vähennetään molemmilta puolilta $cx+d$.
 $ax + b - (cx + d) = 0$ |

Teoreema 4. Yleinen lähemistymistapa muotoa Ax + B = Cx + D olevien yhtälöiden ratkaisuun on:

- (1) Vähennä molemmilta puolilta Cx. Saat yhtälön (A C)x + B = D.
- (2) Vähennä molemmilta puolita B. Saat yhtälön (A C)x = D B.
- (3) Jaa (A C):llä. Saat yhtälön ratkaistuun muotoon $x = \frac{D-B}{A-C}$.

Esimerkki. Yhtälön 7x + 4 = 4x + 7 ratkaisu saadaan seuraavasti:

$$7x + 4 = 4x + 7$$
 | Vähennetään molemmilta puolilta 4x.

$$3x + 4 = 7$$
 | Vähennetään molemmilta puolilta 4.

$$3x = 3$$
 | Jaetaan molemmat puolet kolmella eli kerrotaan $\frac{1}{3}$:lla.

x = 1 | Saimme yhtälön ratkaistuun muotoon. x = 1 on siis yhtälön ratkaisu.

Luku 18 Yleinen potenssi ja potenssiyhtälö

Luku 19 Kertaustiivistelmä

Osa III Funktiot

Luku 20 Funktio

Luku 21 Erilaisia funktioita

Osa IV Lukualueet

Luku 22 Luonnolliset luvut

Luku 23 Joukko-oppia

Luku 24 Logiikkaa

Luku 25 Kokonaisluvut

Luku 26 Kokonaislukujen aritmetiikkaa

Luku 27 Jaollisuus & tekijät

Luku 28 Rationaaliluvut ja laskusäännöt

Luku 29 Potenssisäännöt & murtolausekkeiden sieventämistä

Luku 30 Juuret

Luku 31 Murtopotenssi

Luku 32 Irrationaaliluvut

Luku 33 Reaaliluvut

Luku 34 Kompleksiluvut

Luku 35 Kertaustiivistelmä

Osa V Sovelluksia

Luku 36 Verrannollisuus

Luku 37 Verrannollisuus: sovelluksia

Luku 38 Prosenttilaskentaa perustilanteet

Luku 39 Prosenttiyhtälöitä ja sovelluksia

Luku 40 Kertaustiivistelmä

Osa VI Kertaus ja harjoituskokeita

Luku 41 Verrannollisuus

Kertausosio (teoria ja esimerkit) Kertaustehtäväsarjoja Harjoituskokeita "Näihin pystyt jo" -yo-tehtäviä (myös lyhyestä) "Näihin pystyt jo" -pääsykoetehtäviä (moooonilta eri aloilta! kauppatieteellinen, tradenomi (jos löytyy), kansantaloustiede, arkkitehtuuri, DI-haku, AMK tekniikan alat, fysiikka, tilastotiede, ...) Vastauksia ja ratkaisuja Suomi-ruotsienglanti-sanasto ja hakemisto symbolitaulukko