-A684 790 RUTGERS - THE STATE UNIV NEW BRUNSWICK N J DEPT OF --ETC F/6 21/5 CALCULATION OF HIGH SPEED INLET FLOWS USING THE NAVIER-STOKES E--ETC(U) FEB 80 D D KNIGHT UNCLASSIFIED AFFDL-TR-79-3138-VOL-2 NL 1002 084790

AFFDL-TR-79-3138 Volume II

CALCULATION OF HIGH SPEED INLET FLOWS USING THE NAVIER-STOKES EQUATIONS

Volume II: User's and Programmer's Guide

DOYLE D. KNIGHT

DEPARTMENT OF MECHANICAL, INDUSTRIAL AND
AEROSPACE ENGINEERING
RUTGERS UNIVERSITY THE STATE UNIVERSITY OF NEW JERSEY
NEW BRUNSWICK, NEW JERSEY 08903

FEBRUARY 1980

TECHNICAL REPORT AFFDL-TR-79-3138
Final Report for period April 1978 — September 1979

FILE COPY

Approved for public release; distribution unlimited.

AIR FORCE FLIGHT DYNAMICS LABORATORY AIR FORCE WRIGHT AERONAUTICAL LABORATORIES AIR FORCE SYSTEMS COMMAND WRIGHT-PATTERSON AIR FORCE BASE, OHIO 45433

80 5 27 U77

NOTICE

When Government drawings, specifications, or other data are used for any purpose other than in connection with a definitely related Government procurement operation, the United States Government thereby incurs no responsibility nor any obligation whatsoever; and the fact that the government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

This report has been reviewed by the Information Office (OI) and is releasable to the National Technical Information Service (NTIS). At NTIS, it will be available to the general public, including foreign nations.

This technical report has been reviewed and is approved for publication.

onald Stave

LOWELL C. KEEL, MAJOR, USAF

Chief, Aerodynamics & Airframe Br.

Aeromechanics Division

FOR THE COMMANDER

KEWICZ, Colonel, US Chief, Accomechanics Division

"If your address has changed, if you wish to be removed from our mailing list, or if the addressee is no longer employed by your organization please notify AFWAL/FIMM ,W-PAFB, OH 45433 to help us maintain a current mailing list".

Copies of this report should not be returned unless return is required by security considerations, contractual obligations, or notice on a specific document.

AIR FORCE/56780/13 May 1980 - 130

	SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)				
	(19 REPORT DOCUMENTATION PAGE		READ INSTRUCTIONS BEFORE COMPLETING FORM		
	REPORT NUMBER	2. GOVT ACCESSION NO.	3- RECIPIENT'S CATALOG NUMBER		
	AFFDL TR-79-3138 - VOL. 7	AD-A084790	(9)		
┨	4. TITLE (and Subirite)	'	TYPE OF REPORT & PERIOD COVERED		
4	CALCULATION OF HIGH SPEED INLET FL		Final Report		
Į	NAVIER-STOKES EQUATIONS. VOLUME I	I. USER'S AND	Apr 78-Sept 1979,		
	ROGRAMMER'S GUIDE		6. PERFORMING ORG. REPORT NUMBER		
	7. AUTHOR(a)		B CONTRACT OR GRANT NUMBER(4)		
	Doyle D. Knight	(15)	/ F33615-78-C-3008		
ı			10. PROGRAM ELEMENT PROJECT, TASK		
ı	9. PERFORMING ORGANIZATION NAME AND ADDRESS		AREA & WORK UNIT NUMBERS		
١	Department of Mechanical, Industri	ar and Aerospace	Program Element 61102F		
1	Engineering	N I 0000	Work Unit No. 2307N415		
Į	Rutgers University, New Brunswick,	New Jersey 0890.			
Į	11. CONTROLLING OFFICE NAME AND ADDRESS		12. REPORT DATE		
	Air Force Flight Dynamics Laborato	ry (FXM)	Feb 11 80		
-	Wright-Patterson AFB, Ohio 45433	·	136		
١	14. MONITORING AGENCY NAME & ADDRESS(If differen	nt Irom Controlling Office)	15. SECURITY CLASS. (of this report)		
ı	THE MONITORING AGENCY NAME & ADDRESS(IT differen	nt from comro.img cirics)			
ı			Unclassified		
	· · · · · · · · · · · · · · · · · · ·	1-11-	15. DECLASSIFICATION/DOWNGRADING SCHEDULE		
Į	16. DISTRIBUTION STATEMENT (of this Report)	Contraction of the Contraction o			
1					
١	Approved for public release; distr	ibution unlimited	d		
ı					
l	1. 15:37 (17) NO.				
ł	17. DISTRIBUTION STATEMENT (of the abstract entered	I in Block 20, if different from	m Report)		
l					
ı					
1					
ı					
ł	18. SUPPLEMENTARY NOTES				
ı					
ı					
۱					
1			,		
ł	19 KEY WORDS (Continue on reverse side !! necessary a	nd identify by block number)			
I	High Speed Inlets		aver Interaction		
	High Speed Inlets Shock-Boundary Layer Interaction Computational Fluid Dynamics Surface-Oriented Coordinates				
	Navier-Stokes Equations	Jarrace Oriented	Cooldinates		
1					
ſ	20 ABSTRACT (Continue on reverse side if necessary ar				
ł	A set of computer programs has	s been developed	to calculate the flowfield		
l	in two-dimensional mixed-compression high speed inlets. The full mean				
ı	compressible Navier-Stokes equations are utilized, with turbulence represented by an algebraic eddy viscosity model which incorporates a relaxation correction.				
ı					
	A curvilinear body-oriented coordinate system is employed to allow handling of				
	arbitrary inlet contours. Boundary layer bleed is incorporated.				

DD 1 FORM 1473 EDITION OF 1 NOV 65 IS OBSOLETE 5 'N 3102-LF-014-6601

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

450001

Jun-

The numerical algorithm of MacCormack is employed to solve the Navier-Stokes equations. A variety of techniques are incorporated to improve code efficiency, including time-splitting of the finite-difference operators, automatic mesh-splitting, and a separate algorithm for the treatment of the viscous sublayer portion of the turbulent boundary layers.

The numerical codes have been successfully applied to the calculation of a variety of flows including shock-boundary layer interaction on a flat plate (including both unseparated and separated cases), and three different simulated high speed inlet configurations. In all cases, good agreement was obtained with the experimental data.

The numerical codes represent a substantial improvement in computational efficiency. For a Mach 3.5 inlet at a Reynolds number of 13 million, the typical computer time on the CYBER 175 is two to four hours, depending on the amount of internal compression. This represents a decrease of approximately an order of magnitude compared to the author's previous work.

FOREWORD

This report describes the principles and operation of a set of four computer programs that are used to compute the flowfield in two-dimensional mixed-compression high speed aircraft inlets. The programs are written in Fortran IV, and have been successfully operated on the CYBER 74 and CYBER 175 computers at the ASD Computing Center, Wright-Patterson AFB, Ohio, and the IBM 370/168 computer at Rutgers University. It is assumed that the prospective user is familiar with the operating system of the computer to be utilized and the use of permanent or magnetic tape files.

This report was prepared by Prof. Doyle D. Knight, Department of Mechanical Engineering, Rutgers University, New Brunswick, New Jersey, for the Air Force Flight Dynamics Laboratory, Air Force Systems Command, Wright-Patterson Air Force Base, Ohio. The study was performed under Air Force Contract F33615-78-C-3008, "Analytical Investigation of Inlet Internal Flow." The work was performed from April 1978 through September 1979, with Mr. Don Stava (AFFDL/FXM) of the Air Force Flight Dynamics Laboratory as Project Engineer. The report was submitted in September 1979.

PRECEDING PAGE BLANK-NOT FILMED

TABLE OF CONTENTS

SECTION		PAGE
I	GENI	ERAL DESCRIPTION
	Α.	Overview
	В.	Description of Physical Problem
	c.	Description of Mathematical Model
		1. Coordinate Transformation
		3. Computational Sublayer
II	NUMI	ERICAL ALGORITHMS
	Α.	Coordinate Transformation
	в.	Navier-Stokes Equations
		1. MacCormack's Method
		3. Mesh Overlapping
		4. Boundary Conditions
		5. Numerical Damping
		6. Convergence of Flowfield to Steady State
		7. Computational Sublayer
	с.	Overall Description of Programs
III	GENI	ERATION OF COORDINATE TRANSFORMATION
	Α.	Preliminary Analysis
		1. Streamwise Mesh Spacing
		2. Boundary Layer Mesh Spacing
		3. Example: Upstream Inlet Region for MCAIR Case 35 41
	В.	Determination of Mesh Spacing on Upstream and Downstream Boundaries Using Program BNDRY
		1. Introduction
		2. Description of Input Variables 45
		3. Source Code Notation
		MCAIR Case 35
	С.	Generation of Coordinate Transformation Using Program COORD
		1. Introduction
		2. Description of Input Variables 48

TABLE OF CONTENTS--CONTINUED

SECTION		PAGI
		3. Flow Chart
		MCAIR Case 35
		MCAIR Case 35
		MCAIR Case 35
IV	CAL	CULATION OF INIET FLOWFIELD
	Α.	Introduction
	В.	Description of Input Variables
	С.	Flow Charts
		1. Overall Program
	D.	Source Code Notation
	Ε.	File Structure
	F.	Sample Calculation: Upstream Inlet Region for MCAIR Case 35
	G.	Sample Output: Upstream Inlet Region for MCAIR Case 35
	н.	Interpolating Flow Variables at Mesh Overlap Using Program UPSTRM
		1. Introduction. 96 2. Description of Input Variables 98 3. Flow Chart: Program UPSTRM 100 4. Source Code Notation 101 5. File Structure 103 6. Output 103
DEFERENC	יניפ	10.4

LIST OF FIGURES

FIGURE		PAGE
1	Characteristics of Mixed Compression High Speed Inlet	107
2	Coordinate Transformation	108
3	Details of Mesh Distribution	109
4	Mesh Splitting	110
5	Mesh Overlapping	111
6	Boundary Conditions	112
7	Computational Sublayer Geometry	113
8	Mesh Overlapping Employed for MCAIR Inlet	114
9	Upstream Region of MCAIR InletCase 35	115
10	Sample Output: Program BNDRY	116
11a	Coordinate Transformation for MCAIR Inlet (Upstream)Case 35	117
11b	Coordinate Transformation for MCAIR Inlet (Downstream) Case 35	118
11b 12a		118 119
	Case 35	
12a	Case 35	119
12a 12b	Case 35	119 120
12a 12b 12c	Case 35	119 120 121
12a 12b 12c 12d	Case 35	119 120 121 122
12a 12b 12c 12d 12e	Case 35	119 120 121 122 123
12a 12b 12c 12d 12e 13a	Case 35	119 120 121 122 123 124
12a 12b 12c 12d 12e 13a 13b	Case 35	119 120 121 122 123 124 125
12a 12b 12c 12d 12e 13a 13b	Sample Output: Program COORD	119 120 121 122 123 124 125 126

LIST OF TABLES

TABLE	PAGE
1	Resources Required - Program BNDRY
2	Input Data - Program BNDRY
3	Resources Required - Program COORD
4	Input Data - Program COORD
5	Guidelines for Input Data - Program COORD
6	Input Data - Coordinate System for MCAIR Case 35 (Upstream Region) 63
7	Input Data - Coordinate System for MCAIR Case 35 (Downstream Region)
8	Resources Required - Program INLET
9	Input Data - Program INLET
10	Guidelines for Input Data - Program INLET
11	Input Data - Flowfield Calculation for MCAIR Case 35 (Upstream Region)
12	Resources Required - Program UPSTRM
13	Input Data - Program UPSTIM 9

SECTION I

GENERAL DESCRIPTION

A. Overview

The purpose of this report is to document a series of four computer programs that are used to compute the flowfield within a two-dimensional mixed-compression high speed aircraft inlet. In Section I, a brief description is presented of the physical problem and the mathematical model. The numerical methods are discussed in Section II, and the limitations of the approach are indicated. A brief summary of the four programs is presented, together with the general sequence of application. In Section III, the coordinate system programs are discussed in detail, with emphasis on the pertinent criteria for successful implementation. In Section IV, the details of the Navier-Stokes code employed for solution of the inlet flowfield are presented. In addition, the details of a simple utility program used to interpolate flowfield data are discussed. In each section, examples of calculations performed on the CYBER 74 and 175 computers at WPAFB are presented to illustrate application of the numerical codes.

B. Description of Physical Problem

The basic problem is the computation of the steady flowfield within a two-dimensional high speed inlet. As indicated in Figure 1, the incoming supersonic flow is deflected by a pattern of oblique shock waves formed by the general curvilinear shape of the ramp and cowl surfaces. The boundary layers are turbulent over nearly the entire length of the inlet, owing to the typically high Reynolds numbers. Boundary layer bleed is distributed along the walls in order to prevent flow separation at the interaction of

the shock waves and the boundary layers on the ramp and cowl. A terminal shock may be positioned near the inlet throat.

The computer programs described herein determine the flowfield within the inlet, including both inviscid and viscous regions, by integration of the full mean compressible Navier-Stokes equations. Turbulence is represented by an algebraic turbulent eddy viscosity.

C. Description of Mathematical Model

1. Coordinate Transformation

In order to handle the general curvilinear inlet geometry, a numerical coordinate transformation is employed. The purpose of the transformation is to provide a set of curvilinear coordinates $\zeta(x,y)$ and $\eta(x,y)$ that are contoured to the inlet shape. As indicated schematically in Figure 2, the cowl and ramp surfaces are taken to be coincident with portions of the contours $\eta(x,y) = 0$ and $\eta(x,y) = 1$, respectively. The upstream and downstream boundaries are defined by the lines $\zeta(x,y) = 0$ and $\zeta(x,y) = 1$, respectively. The n coordinate increases in a general cross-stream direction across the inlet, while the ζ coordinate increases basically in the streamwise direction. The clear advantages of a general coordinate transformation of this type are the simplicity of application of the fluid dynamical boundary conditions (e.g., adiabatic wall, no slip, mass bleed) for the ramp and cowl and the inherent accuracy of a surface-oriented coordinate system in the boundary layers. By construction, the coordinate transformation maps the desired domain of the inlet flowfield in the physical or x-y plane into the unit square in the transformed or $\zeta-\eta$ plane. For example, the portion of the $\eta = 0$ line that corresponds to the cowl surface is mapped into a segment of the lower boundary of the

unit square in the transformed plane, where application of the appropriate boundary conditions is facilitated.

The coordinates $\zeta(x,y)$ and $\eta(x,y)$ are obtained using the basic approach of Thompson. They are taken to satisfy the following equations:

$$\nabla^{2} \zeta = 0$$

$$\nabla^{2} \eta = T(\zeta, \eta) \left[\left(\frac{\partial \eta}{\partial x} \right)^{2} + \left(\frac{\partial \eta}{\partial y} \right)^{2} \right]$$
(1)

where V^2 is the Laplacean operator $a^2/ax^2 + a^2/ay^2$. The coordinates $\xi(x,y)$ and $\eta(x,y)$ are subject to Dirichlet boundary conditions as illustrated in Figure 2 (e.g., $\zeta=0$ on the upstream boundary). The coordinate transformation is generally non-orthogonal. The source terms on the right-hand side of (2) are employed to control the mesh spacing in the η -direction in order to provide accurate resolution within the boundary layers on the ramp and cowl. The expression employed for $T(\zeta,\eta)$ is

$$T(\zeta,\eta) = \begin{cases} -c_1/\eta_1 & 0 \le \eta < \eta_1 \\ 0 & \eta_1 \le \eta \le \eta_2 \\ +c_2/(1-\eta_2) & \eta_2 < \eta < 1 \end{cases}$$
 (2)

where C_1 , C_2 , n_1 and n_2 are slowly varying functions of the streamwise variable ζ . As discussed later in Section III, these quantities are determined by the requirements of accurate resolution of the boundary layers and controllable mesh spacing near the walls. The particularly simple form of the source term in (2) provides for substantial automation of the coordinate generation process. A different formulation for the

source terms has been employed by Thompson utilizing a series of exponential functions. Although possessing greater generality than the present technique, its operation typically requires a trial-and-error procedure in order to generate a suitable coordinate system. In contrast, the present technique permits direct generation of a suitable coordinate transformation satisfying the necessary requirements of accurate resolution and controllable mesh spacing within the boundary layers.

The governing fluid dynamic equations are solved in the transformed $\zeta-\eta \ \text{plane.} \ \text{From knowledge of the inverse transformation } x(\zeta,\eta) \ \text{and}$ $y(\zeta,\eta), \ \text{the flowfield within the inlet in the physical plane is obtained.}$

2. Navier-Stokes Equations

The governing equations are the full mean compressible Navier-Stokes equations utilizing mass-averaged variables 2 for two-dimensional turbulent flow. Written in strong conservation form utilizing the transformed coordinates $\zeta(x,y)$ and $\eta(x,y)$, the equations are $^3,^4$

$$\frac{\partial U}{\partial t} + \frac{\partial F}{\partial \zeta} + \frac{\partial G}{\partial \eta} = 0 \tag{3}$$

where

$$U = \frac{1}{J} \begin{cases} \rho \\ \rho u \\ \rho v \\ \rho e \end{cases}$$
 (4)

$$F = \frac{1}{J} \left\{ \begin{array}{l} \rho U \\ \rho uU + \zeta_{x}(p - \tau_{xx}) - \zeta_{y}\tau_{xy} \\ \rho vU + \zeta_{y}(p - \tau_{yy}) - \zeta_{x}\tau_{xy} \\ (\rho e + p)U + \zeta_{x}\beta_{x} + \zeta_{y}\beta_{y} \end{array} \right\}$$
 (5)

$$G = \frac{1}{J} \left\{ \begin{array}{l} \rho V \\ \rho uV + \eta_{\mathbf{x}} (p - \tau_{\mathbf{x}\mathbf{x}}) - \eta_{\mathbf{y}} \tau_{\mathbf{x}\mathbf{y}} \\ \rho vV + \eta_{\mathbf{y}} (p - \tau_{\mathbf{y}\mathbf{y}}) - \eta_{\mathbf{x}} \tau_{\mathbf{x}\mathbf{y}} \\ (\rho e + p)V + \eta_{\mathbf{x}} \beta_{\mathbf{x}} + \eta_{\mathbf{y}} \beta_{\mathbf{y}} \end{array} \right\}$$

$$(6)$$

where $\zeta_{\rm X}$ denotes $\partial \zeta/\partial x$, etc. The cartesian x- and y-velocity components are denoted by u and v, respectively. The density is indicated by r and the pressure by p. The gas is assumed to be calorically and thermally perfect with the equation of state p = ρ RT, where T is the absolute temperature and R is the gas constant. The total energy per unit mass e is given by e = e_i + $(1/2)(u^2 + v^2)$, where e_i is the internal energy per unit mass and is equal to c_v T, with c_v denoting the specific heat at constant volume. The fluid is assumed to be air, with c_v = 4290 ft²/sec²-°R and R = 1716 ft²/sec²-°R, where °R denotes degrees Rankine. The contravariant velocity components U, V and Jacobian J are

$$U = \zeta_{x}u + \zeta_{y}v$$

$$V = \eta_{x}u + \eta_{y}v$$

$$J = \zeta_{x}\eta_{y} - \zeta_{y}\eta_{x}$$
(7)

The components of the cartesian stress tensor are

$$\tau_{xx} = \lambda_{T} \operatorname{div} \overrightarrow{v} + 2(\mu + \varepsilon) \frac{\partial u}{\partial x}$$

$$\tau_{xy} = (\mu + \varepsilon) \left(\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} \right)$$

$$\tau_{yy} = \lambda_{T} \operatorname{div} \overrightarrow{v} + 2(\mu + \varepsilon) \frac{\partial v}{\partial y}$$
(8)

where u is the molecular dynamic viscosity given by Sutherland's relation,

 ϵ is the turbulent eddy viscosity, $\lambda_T = -(2/3)(\mu + \epsilon)$ and $\text{div } \vec{v} = \partial u/\partial x + \partial v/\partial y$. The partial derivatives in (8) are replaced by derivatives with respect to the transformed variables ζ and η by means of the chain rule (e.g., $\partial u/\partial x = \zeta_X(\partial u/\partial \zeta) + \eta_X(\partial u/\partial \eta)$). The quantities β_X and β_Y in (5) and (6) are

$$\beta_{x} = Q_{x} - u\tau_{xx} - v\tau_{xy}$$

$$\beta_{y} = Q_{y} - u\tau_{xy} - v\tau_{yy}$$
(9)

where $\mathbf{Q}_{\mathbf{x}}$, $\mathbf{Q}_{\mathbf{v}}$ are components of the heat flux given by

$$Q_{x} = -\gamma \left(\frac{\mu}{Pr} + \frac{\varepsilon}{Pr} \right) \frac{\partial e_{i}}{\partial x}$$

$$Q_{y} = -\gamma \left(\frac{\mu}{Pr} + \frac{\varepsilon}{Pr} \right) \frac{\partial e_{i}}{\partial y}$$
(10)

where $\gamma = c_p/c_v$ is the ratio of specific heats (taken to be 1.4) and Pr and Pr are the molecular and turbulent Prandtl numbers, respectively, with values of 0.72 and 0.90. Although Pr is, in general, a function of position within the boundary layer, numerical computations of high speed turbulent boundary layers have shown only a weak dependence on Pr variations. 5

The turbulent eddy viscosity ϵ is given by the two-layer equilibrium eddy viscosity model of Cebeci-Smith $^{6-8}$ (except as noted later) with the transition model of Dhawan and Narasimha. 9 Within the inner region, the equilibrium eddy viscosity ϵ_{eq_i} is given by

$$\varepsilon_{\text{eq}_{s}} = \rho(\kappa n D)^{2} \left| \frac{\partial u}{\partial n} \right| \Gamma(s)$$
 (11)

while in the outer region

$$\varepsilon_{\text{eq}_{0}} = \rho k_{2} U_{\text{ref}} \delta_{i}^{*} \Gamma(s)$$
 (12)

where n = distance normal to surface

s = distance along surface from leading edge

 $\kappa = 0.40$ (von Karman's constant)

 $k_2 = 0.0168$

 $\Gamma(s) = transition factor$

 V_{ref} = mean velocity outside boundary layer

u = component of velocity parallel to the surface

$$\delta_{i}^{\star} = \int_{0}^{\delta} (1 - u/v_{ref}) dn$$

 δ = local boundary layer thickness

and D is the modified Van Driest damping factor given by

$$D = 1 - \exp(-\frac{n \sqrt{|\tau_w| \rho_w}}{26 \mu_w} N)$$
 (13)

where N . \Rightarrow a modification due to mass bleed:

$$N = \exp\left[5.9 \frac{\mu_{W}^{m}}{\mu \sqrt{|\tau_{W}|\rho_{W}}}\right]$$
 (14)

In the above, the subscript w implies evaluation at the wall, with τ_{w} denoting the wall shear stress, and \dot{m} is the normal mass flux at the surface (i.e., $\dot{m} = \rho \dot{\vec{v}} \cdot \hat{n}$, where \hat{n} is the outward normal at the wall, pointing into the fluid). The above expression for the Van Driest damping factor D differs from that of Cebeci-Smith in two respects. First, the density and dynamic viscosity in the Van Driest damping factor

D in (13) are evaluated at the wall, rather than locally, in agreement with most studies of strong shock-boundary layer interaction. ¹⁰⁻¹³ Second, the pressure gradient correction to N has been omitted. Previous investigations of flows with strong shock-boundary layer interaction have been performed both with and without ¹⁰⁻¹² a pressure gradient correction. The present code, however, employs the eddy viscosity relaxation model of Shang and Hankey (discussed below), which has been developed without inclusion of a pressure gradient correction, and for this reason the pressure gradient correction has been omitted.

The transition from the inner equilibrium eddy viscosity ϵ_{eq_i} to the outer eddy viscosity ϵ_{eq_o} occurs at a distance \mathbf{n}_{m} at which $\epsilon_{eq_i} = \epsilon_{eq_o}$. Thus, the full form of the equilibrium eddy viscosity is

$$\varepsilon_{\text{eq}} = \begin{cases} \varepsilon_{\text{eq}_{1}} & n \leq n_{\text{m}} \\ \varepsilon_{\text{eq}_{0}} & n > n_{\text{m}} \end{cases}$$

$$(15)$$

The transition factor $\Gamma(s)$, employed to allow a smooth development of the eddy viscosity in the region of transition from laminar to turbulent flow, is given by

$$\Gamma(s) = 1 - \exp(-0.412s^{-2})$$

 $\frac{1}{s} = (s - s_i)/\Lambda, \quad s_i \le s \le s_f$
(16)

where $\mathbf{s}_{\mathbf{i}}$ and $\mathbf{s}_{\mathbf{f}}$ denote initial and final locations of the transition zone with

$$\Lambda = s|_{\Gamma=3/4} - s|_{\Gamma=1/4}$$

As applied in the numerical code, the transition model requires only the specification of s_i and s_f . These values may be obtained by the method of Deem and Murphy 14 and the generally accepted criterion that the Reynolds number based on the distance from the leading edge approximately doubles across the transition region. 9

In the vicinity of the interaction of a shock wave with a turbulent boundary layer, a modification of the eddy viscosity is required in order to incorporate the experimental observation that the turbulent shear stress does not immediately react to an abrupt change in the flow. This effect is modeled by the approach of Shang and Hankey, which employs the following relaxation model for the eddy viscosity:

$$\varepsilon(s,n) = \varepsilon_{eq}(s_0,n) + [\varepsilon_{eq}(s,n) - \varepsilon_{eq}(s_0,n)][1 - \exp(-(s - s_0)/\lambda)]$$
 (17)

where $\mathbf{s}_{_{0}}$ is a location approximately seven boundary layer thicknesses upstream of the intersection of the shock wave and the wall, $\boldsymbol{\varepsilon}_{_{\mathbf{eq}}}$ is the equilibrium eddy viscosity given by (11) to (15) and $\boldsymbol{\lambda}$ is typically twenty times the boundary layer thickness $\boldsymbol{\delta}_{_{\mathbf{0}}}$ at $\mathbf{s}_{_{\mathbf{0}}}$. In the above, \mathbf{s} is the distance along the surface from the leading edge, and \mathbf{n} is the distance normal to the surface. The above expression is employed for $\mathbf{s} > \mathbf{s}_{_{\mathbf{0}}}$, and provides for a relaxation of $\boldsymbol{\varepsilon}$ across the shock-boundary layer interaction region, ultimately approaching the equilibrium expression given by (11) to (15) for $\mathbf{s} - \mathbf{s}_{_{\mathbf{0}}}$ much greater than 20 $\boldsymbol{\delta}_{_{\mathbf{0}}}$.

The relaxation model is important at shock-boundary layer interactions when flow separation occurs. 10,16 The model has not been thoroughly investigated for boundary layers subject to repeated shock impingement (particularly for those cases where the distance between shock impingement

The second contract of the second contract of

is less than the relaxation length λ), and has therefore been incorporated in the numerical code for use at one shock-boundary layer interaction each on the ramp and cowl.

3. Computational Sublayer

A major factor governing the efficiency of the numerical algorithm employed in the code to solve the Navier-Stokes equations is the requirement of resolving all pertinent scales within the turbulent boundary layers on the ramp and cowl. The exceedingly fine mesh spacing required to resolve the viscous sublayer portion of the turbulent boundary layers would ordinarily severely impair the efficiency of the numerical code. In order to alleviate this difficulty, a separate and efficient treatment of the region containing the viscous sublayer and transition portion of the boundary layer is employed. Within this region, an approximate form of the full equations of motion is utilized in agreement with previous studies of turbulent boundary layers. 7,17 The governing equations are

$$\dot{m} \frac{\partial \mathbf{u'}}{\partial \mathbf{y'}} = -\frac{\partial \mathbf{p}}{\partial \mathbf{x'}} + \frac{\partial \tau_{\mathbf{x'y'}}}{\partial \mathbf{y'}}$$
 (18)

$$\frac{\partial}{\partial y'} \left[\dot{m} \left(c_p T + \frac{1}{2} u'^2\right) - c_p \left(\frac{\mu}{Pr} + \frac{\varepsilon}{Pr}\right) \frac{\partial T}{\partial y'} - u'\tau_{x'y'}\right] = 0$$
 (19)

$$\tau_{\mathbf{x'y'}} = (\mu + \varepsilon) \frac{\partial u'}{\partial y'} \tag{20}$$

where, in this case, x' and y' are local cartesian coordinates parallel and normal to the surface, respectively; $\tau_{x'y}$, is the shear stress parallel to

^{*} This region is defined by $0 \le n \le 50 \nu_w/u_\star$, where $\nu_w = \mu_w/\rho_w$ and $u_\star = \sqrt{\tau_w/\rho_w}$. In this context, the expression "transition region" refers to the approximate domain $10\nu_w/u_\star \le n \le 50\nu_w/u_\star$ and is not to be confused with the "transition zone" discussed in reference to (16).

the wall; and u' is the velocity component parallel to the wall. The equations are applied within a narrow region $0 \le y' \le y''_m$ adjacent to the walls denoted as the "computational sublayer." The applicability of the above expressions (18) and (19) imposes an upper limit on the value of y''_m , which has been found to be roughly $60v'_w/u_*$. The achievement of maximum code efficiency implies that the value of y''_m should be as large as possible within the above limit. In practice, the value of y''_m is determined by the mesh obtained from the coordinate transformation program and the nature of the flowfield (e.g., v'_w , τ'_w), as discussed in a later section. Precise control of y''_m at every location is not afforded by the numerical codes. However, proper operation can limit the typical range of y''_m from approximately $20v'_w/u_*$ to $60v'_w/u_*$, thereby achieving an efficient and accurate solution of the flow.

SECTION II

NUMERICAL ALGORITHMS

A. Coordinate Transformation

The function of the coordinate transformation program is to provide a distributed mesh of points that can be used to accurately resolve all pertinent features of the flow. The basic concept is indicated in Figure 3. The unit square in the transformed plane is covered by a uniform mesh of points (ζ_i, η_i) where

$$\zeta_{\mathbf{i}} = (\mathbf{i} - 1) \Delta \zeta, \qquad \mathbf{i} = 1, \cdots, \text{ IL}$$

$$\eta_{\mathbf{i}} = (\mathbf{j} - 1) \Delta \eta, \qquad \mathbf{j} = 1, \cdots, \text{ JL}$$
(21)

where IL and JL are the number of points in the ζ - and η -directions, respectively. By definition, $\Delta \zeta = 1/(IL-1)$ and $\Delta \eta = 1/(JL-1)$. The values of $\Delta \zeta$ and $\Delta \eta$ are constant, although not necessarily equal. The image of the points (ζ_i, η_j) in the physical plane, obtained from equations (1) and (2), is a general curvilinear mesh of points with corresponding cartesian components $(x_{i,j}, y_{i,j})$. The distribution of points $(x_{i,j}, y_{i,j})$ is highly non-uniform in order to accurately resolve the features of the flow. The governing fluid dynamic equations are solved in the transformed plane, and the flowfield within the inlet is obtained directly from the knowledge of the coordinate transformation.

In order to facilitate determination of the coordinate transformation, the governing equations (1) and (2) are inverted. 1 The resultant equations are

$$\alpha \frac{\partial^{2} \mathbf{x}}{\partial \zeta^{2}} - 2\beta \frac{\partial^{2} \mathbf{x}}{\partial \zeta \partial \eta} + \gamma \frac{\partial^{2} \mathbf{x}}{\partial \eta^{2}} + \delta \frac{\partial \mathbf{x}}{\partial \eta} = 0$$

$$\alpha \frac{\partial^{2} \mathbf{y}}{\partial \zeta^{2}} - 2\beta \frac{\partial^{2} \mathbf{y}}{\partial \zeta \partial \eta} + \gamma \frac{\partial^{2} \mathbf{y}}{\partial \eta^{2}} + \delta \frac{\partial \mathbf{y}}{\partial \eta} = 0$$
(22)

where

$$\alpha = \left(\frac{\partial \mathbf{x}}{\partial \eta}\right)^{2} + \left(\frac{\partial \mathbf{y}}{\partial \eta}\right)^{2}$$

$$\beta = \frac{\partial \mathbf{x}}{\partial \zeta} \frac{\partial \mathbf{x}}{\partial \eta} + \frac{\partial \mathbf{y}}{\partial \zeta} \frac{\partial \mathbf{y}}{\partial \eta}$$

$$\gamma = \left(\frac{\partial \mathbf{x}}{\partial \zeta}\right)^{2} + \left(\frac{\partial \mathbf{y}}{\partial \zeta}\right)^{2}$$

$$\delta = T(\zeta, \eta) \gamma$$
(23)

where $T(\zeta,\eta)$ is given in (2).* Equations (22) and (23) are solved in the unit square in the transformed plane. The coordinates $x(\zeta,\eta)$ and $y(\zeta,\eta)$ are subject to Dirichlet boundary conditions on the boundaries of the unit square, i.e.,

$$x = f_{1}(\zeta)$$

$$y = g_{1}(\zeta)$$

$$x = f_{2}(\zeta)$$

$$y = g_{2}(\zeta)$$

$$x = f_{3}(\eta)$$

$$y = g_{3}(\eta)$$
on $\eta = 0$

$$0$$

$$0$$

$$0$$

$$0$$

$$0$$

$$0$$

^{*} The symbols α , β , γ and δ in (23) are used to represent different quantities in sections other than the present (II.A).

$$x = f_4(\eta)$$

$$y = g_4(\eta)$$
on $\zeta = 1$

The above boundary conditions can be clearly interpreted as specifying the location of the mesh points on the entire boundary of the computational domain in the physical plane (e.g., the ramp, cowl, upstream and downstream boundaries). As shall be discussed later, the specification of the boundary mesh point distribution requires careful consideration of the nature of the flowfield to be computed.

Equations (22) are solved numerically using an Accelerated Gauss-Seidel Method. Beginning with an initial estimate $(x_{i,j}^1, y_{i,j}^1)$, an iterative sequence of values $(x_{i,j}^n, y_{i,j}^n)$, $n = 2,3, \cdots$ is obtained from

$$x_{i,j}^{n+1} = x_{i,j}^{n} + \omega_{i,j}(\tilde{x}_{i,j} - x_{i,j}^{n})$$

$$y_{i,j}^{n+1} = y_{i,j}^{n} + \omega_{i,j}(\tilde{y}_{i,j} - y_{i,j}^{n})$$

$$n = 1,2,3, \cdots$$
(24)

where

$$\tilde{\mathbf{x}}_{\mathbf{i},\mathbf{j}} = \mathbf{x}_{\mathbf{i},\mathbf{j}}^{\mathbf{n}} + \alpha_{\mathbf{i},\mathbf{j}} (\mathbf{x}_{\mathbf{i}+1,\mathbf{j}}^{\mathbf{n}} + \mathbf{x}_{\mathbf{i}-1,\mathbf{j}}^{\mathbf{n}+1} - 2\mathbf{x}_{\mathbf{i},\mathbf{j}}^{\mathbf{n}}) / \Delta \zeta^{2}$$

$$-2\beta_{\mathbf{i},\mathbf{j}} (\mathbf{x}_{\mathbf{i}+1,\mathbf{j}+1}^{\mathbf{n}} - \mathbf{x}_{\mathbf{i}-1,\mathbf{j}+1}^{\mathbf{n}} - \mathbf{x}_{\mathbf{i}+1,\mathbf{j}-1}^{\mathbf{n}+1} + \mathbf{x}_{\mathbf{i}-1,\mathbf{j}-1}^{\mathbf{n}+1}) / 4 \Delta \zeta \Delta \eta$$

$$+ \gamma_{\mathbf{i},\mathbf{j}} (\mathbf{x}_{\mathbf{i},\mathbf{j}+1}^{\mathbf{n}} + \mathbf{x}_{\mathbf{i},\mathbf{j}-1}^{\mathbf{n}+1} - 2\mathbf{x}_{\mathbf{i},\mathbf{j}}^{\mathbf{n}}) / \Delta \eta^{2}$$

$$+ \delta_{\mathbf{i},\mathbf{j}} (\mathbf{x}_{\mathbf{i},\mathbf{j}+1}^{\mathbf{n}} - \mathbf{x}_{\mathbf{i},\mathbf{j}-1}^{\mathbf{n}+1}) / 2 \Delta \eta$$

$$(25)$$

and a similar expression is employed for $\tilde{y}_{i,j}$.

The coefficients $\alpha_{i,j}$, $\beta_{i,j}$, $\gamma_{i,j}$ and $\delta_{i,j}$ are obtained by straightforward second-order accurate finite-difference expressions for the terms in (23), e.g.,

$$\alpha_{i,j} = [(x_{i,j+1}^n - x_{i,j-1}^{n+1})^2 + (y_{i,j+1}^n - y_{i,j-1}^{n+1})^2]/4 \Lambda \eta^2$$

The algorithm (24) is used to update the coordinates along lines of constant η (i.e., constant j) in the direction of increasing ζ (i.e., increasing i). Thus, in forming $\tilde{x}_{i,j}$ and $\tilde{y}_{i,j}$, the most recent values of x and y on the j-1 line (e.g., $x_{i,j-1}^{n+1}$, $y_{i,j-1}^{n+1}$) are employed to facilitate convergence and reduce computer storage requirements.

The acceleration parameter $\omega_{i,j}$ is employed to speed convergence of the iteration sequence. Since equations (22) are non-linear, an optimum value for ω at each point cannot be found. A linearized stability analysis of the highest-order terms yields the following criterion for stability of the algorithm:

$$0 < \omega_{i,j} < \frac{\Delta \zeta^2 \Delta \eta^2}{\Delta \eta^2 \alpha_{i,j} + \Delta \zeta^2 \gamma_{i,j}}$$

Based on experience with the code, the following criterion is employed:

$$\omega_{i,j} = 0.95 \frac{\Delta \zeta^2 \Delta \eta^2}{\Delta \eta^2 \alpha_{i,j} + \Delta \zeta^2 \gamma_{i,j}}$$
(26)

The convergence of sequence (24) is monitored by computing the following ratios at all interior points at selected values of n:

$$r_{x_{i,j}} = |x_{i,j}^{n+1} - x_{i,j}^{n}|/(1 + |x_{i,j}^{n+1}|)$$

$$r_{y_{i,j}} = |y_{i,j}^{n+1} - y_{i,j}^{n}|/(1 + |y_{i,j}^{n+1}|)$$
(27)

These quantities essentially represent the absolute relative change in the values of $(x_{i,j}, y_{i,j})$ during the previous iteration, with an additional additive unitary term in the denominator to prevent an undefined operation when $x_{i,j}$ or $y_{i,j}$ is zero. Iteration sequence (24) is considered to have converged when

$$\max_{i,j} r + \max_{i,j} r < CONVER$$

$$i,j i,j i,j i,j$$
(28)

where, for example, $\max_{i,j} r_{x_{i,j}}$ is the maximum value of $r_{x_{i,j}}$ over all interior points and CONVER is a small quantity, typically 10^{-6} or smaller. Further guidelines for the choice of CONVER are given in Section III.C. (Table 5).

The function of the source term $T(\zeta,\eta)$ in (1) is to provide stretching of the mesh in the η -direction within the boundary layers on the ramp and cowl and approximately uniform spacing in between the boundary layers. The effect of this term can be seen by considering an arbitrary streamwise location given by $\zeta = \zeta_{\hat{\mathbf{i}}}$ within the inlet. For typical inlet configurations, the second equation in (22) may be approximated to lowest order by

$$\frac{\partial^2 y}{\partial \eta^2} + T(\zeta, \eta) \frac{\partial y}{\partial \eta} = 0$$
 (29)

The solution to this equation can be written in the following form, noting that $n_j = (j-1)/(JL-1)$:

$$\mathbf{y_{i,j}} = \begin{cases} y_{i,1} + a_1[\exp(C_1 \eta_j / \eta_1) - 1], & 0 \le \eta_j \le \eta_1 \\ y_{i,1} + a_1[\exp(C_1) - 1] + a_2(\eta - \eta_1), & \eta_1 \le \eta \le \eta_2 \end{cases}$$
(30)
$$\mathbf{y_{i,JL}} - a_3[\exp(a_4(1 - \eta_j)) - 1], & \eta_2 \le \eta_j \le 1$$
(32)

where

$$a_{0} = \frac{y_{i,JL} - y_{i,1}}{\eta_{1}[\exp(C_{1}) - 1]/C_{1} + \exp(C_{1})[\eta_{2} - \eta_{1} + (1 - \eta_{2})(1 - \exp(-C_{2}))/C_{2}]}$$

$$a_{1} = a_{0}\eta_{1}/C_{1}$$

$$a_{2} = a_{0} \exp(C_{1})$$

$$a_{3} = a_{0}(\exp(C_{1} - C_{2}))(1 - \eta_{2})/C_{2}$$

$$a_{4} = C_{2}/(1 - \eta_{2})$$
(33)

Noting that the expressions a_0 , a_1 , a_2 , a_3 , a_4 and terms C_1 , C_2 , η_1 and η_2 are not functions of η , it is evident that the above approximate solution for $y_{i,j}$ is characterized by an exponentially stretched mesh between $\eta = 0$ and $\eta = \eta_1$, a uniformly distributed mesh between $\eta = \eta_1$ and $\eta = \eta_2$, and an exponentially stretched mesh between $\eta = 1$ and $\eta = \eta_2 < 1$.

The application of the source term $T(\zeta,\eta)$ requires specification of the quantities C_1 , C_2 , η_1 and η_2 at each value of ζ_i , $i=1,2,\cdots,$ IL. In practice, this is accomplished in the following fashion. First, values for η_1 and η_2 are chosen that reflect the desired number of points to be stretched in the vicinity of the upper and lower surfaces. By definition, $\eta_1=(j_0-1)/(JL-1)$, where j_0 is the number of exponentially stretched points near the lower boundary (including the point on the boundary), and $\eta_2=(j_1-1)/(JL-1)$, where the number of exponentially stretched points

near the upper boundary is $JL - j_1 + 1$. In conjunction with a separate program (called BNDRY), which is discussed in a subsequent section, the values of j_0 and j_1 are chosen in order to provide a sufficient number of points within the boundary layers on the ramp and cowl. Although the coordinate transformation program permits j_0 and j_1 to vary with ζ , satisfactory results have been obtained with judiciously chosen constant values for j_0 and j_1 .

Secondly, the values of $C_1(\zeta)$ and $C_2(\zeta)$ are determined by the requirement that the height above the wall of the first row of points adjacent to the upper and lower surfaces (i.e., $\eta = \Delta \eta$ and $\eta = 1 - \Delta \eta$, which correspond to j = 2 and j = JL - 1, respectively) remains within the limits indicated by the computational sublayer model (see Section III.A) at all streamwise locations ζ . This is accomplished automatically by the coordinate transformation code, using information specified by the user that relates the approximate desired height of the rows $\eta = \Delta \eta$ and $\eta = 1 - \Delta \eta$ from the lower and upper surfaces, respectively, as a function of streamwise position ζ (see Section III). From (30) the approximate height of the first row of points above the lower surface is the following:

$$y_{i,2} - y_{i,1} = a_1[\exp(C_1 \Delta \eta / \eta_1) - 1]$$
 (34)

while the height of the row of points adjacent to the upper boundary is

$$y_{i,JL} - y_{i,J2} = a_3[\exp(a_4 \Delta \eta) - 1]$$
 (35)

The above expressions are non-linear equations for \mathbf{C}_1 and $\mathbf{C}_2,$ and are solved by Newton's method. 19

In solving the governing fluid dynamic equations (3) to (6), the coordinate transformation derivatives ζ_x , ζ_y , η_x , η_y are required. They may be expressed as

$$\frac{\partial \zeta}{\partial x} = \frac{1}{J'} \frac{\partial y}{\partial \eta}$$

$$\frac{\partial \zeta}{\partial y} = -\frac{1}{J'} \frac{\partial x}{\partial \eta}$$

$$\frac{\partial \eta}{\partial x} = -\frac{1}{J'} \frac{\partial y}{\partial \zeta}$$

$$\frac{\partial \eta}{\partial y} = \frac{1}{J'} \frac{\partial x}{\partial \zeta}$$
(36)

where $J' = (\partial x/\partial \zeta)(\partial y/\partial \eta) - (\partial x/\partial \eta)(\partial y/\partial \zeta)$. At all interior points, the derivatives on the right-hand side of (36) are obtained using second-order central differences, while on the boundaries of the domain second-order one-sided differences are employed as required. In addition, the coordinate transformation code permits the recognition of a finite number of discontinuities in the slope of the upper and lower surfaces between $\zeta = 0$ and $\zeta = 1$, introducing additional second-order one-sided differences to account for them.

B. Navier-Stokes Code

MacCormack's Method

The inlet flowfield is obtained by numerical integration of the Navier-Stokes equations (3) in time from an assumed initial condition until a steady-state solution is obtained. The numerical algorithm employed is MacCormack's method, ^{20,21} which is an alternating-direction explicit technique of Lax-Wendroff type. It has been applied to the solution of a wide variety of problems in high speed flow involving strong viscous-inviscid

interactions. A representative sample of applications is indicated in References 10, 16 and 20 through 30.

The numerical algorithm is applied on the finite-difference mesh in the (ζ,η) transformed plane indicated in Figure 3. Denoting a sequence of time levels $t^n = n \Delta t$, $n = 1,2,3, \cdots$, where Δt is the time step, the vector of dependent variables $\mathcal{U}_{\mathbf{i},\mathbf{j}}^n$ at position $(\zeta_{\mathbf{i}},\eta_{\mathbf{j}})$ and time t^n is updated to time t^{n+1} by the following expression:

$$U_{i,j}^{n+1} = L(\Delta t)U_{i,j}^{n}$$
(37)

where $L(\Delta t)$ is a symmetric sequence (discussed below) of time-split one-dimensional difference operators $L_{\zeta}(\Delta t_{\zeta})$ and $L_{\eta}(\Delta t_{\eta})$. The operator $L_{\zeta}(\Delta t_{\zeta})$ is a second-order accurate finite-difference algorithm for the one-dimensional equation

$$\frac{\partial \mathcal{U}}{\partial t} + \frac{\partial F}{\partial \zeta} = 0$$

Using the dummy time indices $\overset{\star}{}$ and $\overset{\star\star}{}$ with

$$u_{\mathbf{i},\mathbf{j}}^{**} \equiv L_{\mathbf{z}}(\Delta \mathbf{t}_{\mathbf{z}})u_{\mathbf{i},\mathbf{j}}^{*} \tag{38}$$

the \boldsymbol{L}_{ζ} operator is given by the following two-step predictor-corrector method:

Predictor Step:
$$u_{i,j}^{**} = u_{i,j}^* - \frac{\Delta t_{\zeta}}{\Delta \zeta} (F_{i,j}^* - F_{i-1,j}^*)$$

Corrector Step:
$$u_{i,j}^{**} = \frac{1}{2} \left[u_{i,j}^{*} + u_{i,j}^{\overline{**}} - \frac{\Delta t_{\zeta}}{\Delta \zeta} (F_{i+1,j}^{\overline{**}} - F_{i,j}^{\overline{**}}) \right]$$

where $\mathbf{F}_{\mathbf{i},\mathbf{j}}^{\star}$ implies that the flux terms are evaluated using $u_{\mathbf{i},\mathbf{j}}^{\star}$ and so forth. Further information regarding the differencing of the stress terms

in F is given in References 21 and 25. The operator $L_{\eta}(\Lambda t_{\eta})$ is a second-order finite-difference algorithm for the one-dimensional equation

$$\frac{\partial U}{\partial t} + \frac{\partial G}{\partial p} = 0$$

Using a similar dummy index notation as in (38), the L_{η} operator is given by the following two-step predictor-corrector method:

Predictor Step:
$$u_{i,j}^{**} = u_{i,j}^* - \frac{\Delta t_{\eta}}{\Delta \eta} (G_{i,j}^* - G_{i,j-1}^*)$$

Corrector Step:
$$u_{\mathbf{i},\mathbf{j}}^{**} = \frac{1}{2} \left[u_{\mathbf{i},\mathbf{j}}^{*} + u_{\mathbf{i},\mathbf{j}}^{**} - \frac{\Delta t_{\eta}}{\Delta \eta} (G_{\mathbf{i},\mathbf{j}+1}^{***} - G_{\mathbf{i},\mathbf{j}}^{***}) \right]$$

where, for example, $G_{i,j}^{\frac{*}{**}}$ implies that the flux term is evaluated using $U_{i,j}^{\frac{*}{**}}$, etc.

The operator $L(\Delta t)$ in (37) is constructed from a symmetric sequence of the operators $L_{\zeta}(\Delta t_{\zeta})$ and $L_{\eta}(\Delta t_{\eta})$. In the numerical code, two particular forms are employed, specifically

$$L(\Delta t) = L_{p}(\Delta t/2)L_{r}(\Delta t)L_{p}(\Delta t/2)$$
(40)

and

$$L(\Delta t) = L_{\zeta}(\Delta t/2)L_{\eta}(\Delta t)L_{\zeta}(\Delta t/2)$$
 (41)

where the operators on the right-hand side are applied to $\mathcal{U}_{i,j}$ sequentially from right to left. Both sequences (40) and (41) provide a spatially and temporally second-order accurate integration of the full Navier-Stokes equations (3). The time step size indicated by the argument of each operator L_{ζ} and L_{η} must not exceed the maximum allowed for that operator. An approximate linearized stability analysis yields the following:

$$\Delta t_{\zeta} = \min_{i,j} \Delta t_{1,j}$$
 (42)

$$\Delta t_{\eta} = \min_{i,j} \Delta t_{2i,j}$$
 (43)

where

$$\Delta t_{1,j} = \frac{\Delta s_{\zeta}}{\left[\left[u_{\zeta} \right] + c + \left[\frac{2\theta_{1}}{\Delta s_{\zeta}} + \frac{\theta_{2}}{\Delta s_{\eta}} \right] / \rho \right]} \Big|_{i,j}$$
(44)

$$\Delta t_{2_{i,j}} = \frac{\Delta s_{\eta}}{\left[\left| u_{\eta} \right| + c + \left[\frac{2\theta_{1}}{\Delta s_{\eta}} + \frac{\theta_{2}}{\Delta s_{\zeta}} \right] / \rho \right]}$$

$$i,j$$
(45)

where min denotes the minimum value of the right-hand side evaluated at i,j all points (τ_i, η_i) within a given region of the flow, and

$$\Delta s_{\chi} = \Delta \zeta / \sqrt{\zeta_{x}^{2} + \zeta_{y}^{2}}$$

$$\Delta s_{\eta} = \Delta \eta / \sqrt{\eta_{x}^{2} + \eta_{y}^{2}}$$

$$u_{\zeta} = (u\zeta_{x} + v\zeta_{y}) / \sqrt{\zeta_{x}^{2} + \zeta_{y}^{2}}$$

$$u_{\eta} = (u\eta_{x} + v\eta_{y}) / \sqrt{\eta_{x}^{2} + \eta_{y}^{2}}$$

$$c = \sqrt{\gamma RT}, \qquad R = c_{p} - c_{v} = \text{gas constant}$$

$$\theta_{1} = \max \left[|2(\mu + \varepsilon) + \lambda_{T}|, \qquad \gamma \left(\frac{\mu}{Pr} + \frac{\varepsilon}{Pr_{t}} \right) \right]$$

$$\theta_{2} = \sqrt{|(\mu + \varepsilon)\lambda_{T}|}$$

In practice, the quantities (44), (45) are multiplied by a factor (denoted as CFL) that is slightly less than one.

2. Mesh Splitting

Due to the non-uniformity of the mesh spacing in the physical plane, the values of $\Delta t_{1,j}$ and $\Delta t_{2,j}$ vary substantially within the flow. Specifically, the small mesh spacing in the η -direction within the boundary layers (which implies large values of η_y and consequently small values of Δs_η) results in particularly small values of $\Delta t_{2,j}$. On the other hand, the larger values of Δs_η occurring outside the boundary layer imply larger values of $\Delta t_{2,j}$. If the min in (43) were taken over all points in the flow, the value of Δt_η would be controlled by the values of $\Delta t_{2,j}$ in the boundary layer, and hence for a large number of points outside the boundary layers the L_η operator in (40) or (41) would be applied using a value of Δt_η that is smaller than the maximum allowed locally by (45). This implies that the algorithm is not being optimally applied.

A substantial improvement is realized by incorporation of the split mesh technique. ²¹ As utilized in the numerical code, the computational domain is divided in the η -direction into five regions (see Figure 4) given by

Region	Extent
1	1 <u><</u> j <u><</u> JI1
2	$JI1 + 1 \le j \le JI2$
3	$JI2 + 1 \le j \le JI3$
4	$JI3 + 1 \le j \le JI4$
5	JI4 + 1 < j < JL

where 1 < JI1 < JI2 < JI3 < JI4 < JL. Within each region the operator sequence is

Regions 1, 2, 4 and 5: $L(\Delta t) = [L_{\eta}(\Delta t/2m_{\ell})L_{\zeta}(\Delta t/m_{\ell})L_{\eta}(\Delta t/2m_{\ell})]^{m_{\ell}}$, $\ell = 1, 2, 4, 5$ (47)

Region 3:
$$L(\Delta t) = L_{\zeta}(\Delta t/2)L_{\eta}(\Delta t)L_{\zeta}(\Delta t/2)$$
 (48)

where m_{ℓ} , ℓ = 1, 2, 4, 5 are integers, and the exponent m_{ℓ} implies that the operator sequence within the brackets is applied m_{ℓ} times. The application of the stability requirements (42) to (45) within each region yields the following:

Regions 1, 2, 4, 5:
$$\Delta t/m_{\chi} \leq \min_{\chi} (\Delta t_{1,j}, 2\Delta t_{2,j})$$
 (49)

Region 3:
$$\Delta t \leq \min_{3} (2\Delta t_{1,j}, \Delta t_{2,j})$$
 (50)

where $\min_{\ell} (\Delta t_{1,j}, 2\Delta t_{2,j})$ implies the minimum value of $\Delta t_{1,j}$ and $2\Delta t_{2,j}$ within the ℓ^{th} region. A further requirement is that the ratios m_1/m_2 and m_5/m_4 be integers, in order that adjacent regions may be updated in time in a near-simultaneous fashion.

An automatic optimization algorithm is utilized in order to determine the most efficient splitting of the five regions. At each time step, the following ratio is computed for every set of values of JI1, JI2, JI3 and JI4:

$$\frac{\Delta \mathbf{t}}{5} \qquad (51)$$

$$\sum_{\ell=1}^{\Sigma} P_{\ell}^{\mathsf{m}_{\ell}}$$

where P_{ℓ} is the number of rows in region ℓ (e.g., P_{2} = JI2 - JI1) and m_{ℓ} is defined in (47) with m_{3} = 1. This quantity is essentially

proportional to the ratio of the time step Δt to the computer time required to update the flowfield by the amount Δt , and hence is a direct measure of the relative efficiency of a particular mesh splitting. The set of values of JI1, JI2, JI3 and JI4 that yields the largest value of the ratio (51) while having integer values for m_1/m_2 and m_5/m_4 is then employed in updating the solution by the amount Δt . The process is continually repeated, thereby achieving maximum code efficiency at all times. To the author's knowledge, this represents the first incorporation of a completely automatic mesh-splitting algorithm with MacCormack's method.

Special consideration is required at the intermesh boundaries between the five regions in order to conserve mass, momentum and energy. Details of the intermesh conservation relations are given in Reference 21.

3. Mesh Overlapping

Due to limitations in computer core memory, it is often not feasible to compute the entire flowfield of a high speed inlet using a single mesh. In such cases, the technique of mesh overlapping is useful. The basic concept is illustrated in Figure 5. The entire inlet flowfield is divided into two or more overlapping regions denoted by A, B, etc. A steady-state solution is obtained first in region A (defined by the boundary abcd). The values of the flowfield variables at station a'd' are then used as the upstream profile for region B (defined by the boundary a'b'c'd'). The equations of motion are then integrated in time in region B until a steady-state solution is achieved. Further downstream regions can be computed in the same fashion.

The application of the mesh overlapping technique requires that two conditions be satisfied. First, within each overlapping zone (e.g.,

a'b c d'), the flowfield outside the boundary layers must be supersonic in order that there be no downstream influence on the flow in this area. Secondly, within the vicinity of the restart station (curve a'd'), the boundary layers on the ramp and cowl must be developing smoothly. In particular, the restart station must not coincide with any strong viscous-inviscid interaction (e.g., shock-boundary layer interaction) or abrupt change in conditions in the boundary layer (e.g., an abrupt change in the bleed mass flux). This condition implies that the behavior of the flow in the boundary layer in the vicinity of the restart station is essentially governed by the boundary layer equations with no strong viscous-inviscid coupling, and hence mathematically there is no downstream influence on the flow in the boundary layers near the restart station.

The technique of overlapping mesh regions has been widely used in high speed flow calculations, including inlet flows. 10,16,21,25,26 It has been tested and proven in the present numerical code.

4. Boundary Conditions

The boundary conditions for the Navier-Stokes equations can be categorized into four major types (see Figure 6a)—upstream, downstream, wall and no reflection. On the upstream boundary, the flow variables are held fixed at the appropriate freestream values. In the case of mesh overlap, the variables at the restart station (a'd' in Figure 5) are held fixed at their steady-state values. At the downstream boundary, the conventional zero-gradient boundary condition is applied, i.e.,

$$\frac{\partial U}{\partial \zeta} = 0 \tag{52}$$

On the ramp and inlet surfaces, the following boundary conditions are used:

$$\vec{v} \cdot \vec{s} = 0$$
 (Zero tangential velocity

 $\vec{v} \cdot \vec{n} = v_{\vec{w}}$ (Boundary layer bleed)

$$\frac{\partial T}{\partial n} = 0$$
 (Adiabatic wall)

$$\frac{\partial P}{\partial n} = 0$$
 (Approximate derived boundary condition for pressure)

where \vec{s} and \vec{n} are tangential and normal unit vectors, respectively, at the wall that can be expressed in terms of η_x and η_y . Also, ν_w is the normal velocity at the wall, obtained from the specified mass flux along the boundaries. The approximate derived boundary condition for the pressure has been successfully employed in a variety of flows exhibiting strong viscous-inviscid interaction. 23,28,31 The fourth category of boundary conditions refers to curves AB and DE of Figure 6a. As the name suggests, these contours are assumed to be no-reflection boundaries. The boundary conditions are 30

$$\frac{\partial \mathbf{u}}{\partial \xi} = 0$$

$$\frac{\partial \mathbf{v}}{\partial \xi} = 0$$

$$\frac{\partial \mathbf{T}}{\partial \xi} = 0$$

$$\frac{\partial \mathbf{p}}{\partial \xi} = 0$$
(54a)

where the derivative $\partial/\partial\xi$ is taken along the outwards running characteristic at the boundary, which is oriented at the Mach angle $\mu = \sin^{-1}(1/M)$ with respect to the velocity vector \vec{v} as illustrated in Figure 6b. The velocity \vec{v} may, in general, be pointing in or out of the computational domain at either

boundary. The utilization of the no-reflection boundary condition requires that the following conditions be satisfied:

- a) The local Mach number $M = |\overrightarrow{v}|/c$, where c is the local speed of sound, must be greater than one.
- b) The local normal Mach number $|\stackrel{\rightarrow}{\mathbf{v}} \cdot \stackrel{\rightarrow}{\mathbf{n}}|/c$ must be less than one. The first requirement implies that the characteristics exist (i.e., the flow is locally supersonic), and the second requirement insures that there is a single outwards running characteristic. The no-reflection boundary condition permits the angle of attack of the inlet to be varied by constructing the contours AB and DE to be parallel to the incoming flow, with the cartesian x-axis aligned with AB and DE. In those instances where the shock wave emanating from the ramp leading edge E intersects the lower surface upstream of the cowl leading edge B, the contour between the intersection point and B may have to be roughly aligned with the local flow direction in order to satisfy condition b) above. If either condition a) or b) is not satisfied locally, the numerical code assigns freestream values to the flow variables according to

$$u = U_{\infty}$$

$$\overrightarrow{v} \cdot \overrightarrow{n} = 0$$

$$p = p_{\infty}$$

$$T = T_{\infty}$$
(54b)

and prints a warning message. Since the boundary conditions (54b) may not be physically realistic under such circumstances, the user must take appropriate steps to remedy the situation if the warning messages persist throughout the calculation. If condition a) is being violated (e.g., a

terminal shock is located upstream of the cowl lip, as occurs in fully external compression inlets), it should be recognized that the boundary conditions (54) are inappropriate and the flowfield cannot be computed unless proper modifications are made to the boundary condition subroutine. If condition b) is not satisfied (e.g., the ramp shock intersects the curve AB upstream of the cowl leading edge, and the normal Mach number on the segment between the intersection point and cowl leading edge is greater than one), the user can realign the appropriate segment of the boundary as discussed previously.

The boundary conditions are implemented in the numerical code using second-order accurate finite-difference approximations in general. The zero normal derivative boundary condition on the pressure in (53) is incorporated using first-order accurate differencing.

5. Numerical Damping

The algorithm of MacCormack is a "shock-capturing" type in which shock waves are effectively broadened or "smeared" over several mesh points, rather than appearing as sharp discontinuities in the flow. In the vicinity of strong shock waves, the numerical truncation error associated with the shock broadening can lead to numerical instability. Although this difficulty can, in principle, be avoided by refining the mesh sufficiently in the vicinity of the shock to resolve its physical structure (i.e., by employing mesh spacing normal to the shock of the order of the mean free path of the gas), the cost would be prohibitive. Alternately, a fourth-order "pressure damping" term is employed, 21 which is of significance only in the vicinity of pressure oscillations where the solution has been adversely affected by truncation error anyway. In the L_r operator in (40) and (41), the following

expression is added to the flux $f_{i,j}^*$ in the predictor step:

$$-\alpha(|u_{i,j}| + |\vec{\nabla}\zeta|c_{i,j}) \frac{|p_{i+1,j} - 2p_{i,j} + p_{i-1,j}|}{(p_{i+1,j} + 2p_{i,j} + p_{i-1,j})} (u_{i+1,j} - u_{i,j})$$
 (55)

where the expression is evaluated using * level quantities, α is a damping constant (typical values range from 0.5 to 5.0 depending on the flow), $|\vec{\nabla}\zeta| = \sqrt{\zeta_x^2 + \zeta_y^2}$, and c is the speed of sound. Similarly, the following term is added to the flux $F_{i,j}$:

$$-\alpha(|U_{i,j}| + |\vec{\nabla}\zeta|c_{i,j}) \frac{|p_{i+1,j} - 2p_{i,j} + p_{i-1,j}|}{(p_{i+1,j} + 2p_{i,j} + p_{i-1,j})} (u_{i,j} - u_{i-1,j})$$
 (56)

where the expression is evaluated using ** level quantities. Corresponding expressions are used for the L_{η} operator. The numerical code permits the user to omit the pressure damping terms for the purpose of increased efficiency when computing flows with no shock waves.

An additional form of damping is incorporated into the numerical code in order to control any destabilizing oscillations that may result from initial flow transients. The technique consists of multiplying the viscosity $\lambda_T = -(2/3)(\mu + \epsilon)$ by a large negative constant β during the early stages of the calculation, resetting λ_T to $-(2/3)(\mu + \epsilon)$ (i.e., $\beta = +1$) and then converging the flow. In all calculations with the numerical code, it was not found necessary to utilize this damping.

Finally, the convective damping technique of MacCormack 16,20 is incorporated into the L operator in order to prevent occurrence of a non-linear instability in regions of separated flow.

6. Convergence of Flowfield to Steady State

Since the steady-state flowfield is obtained by integration in time from an assumed initial condition, a criterion for convergence must be stipulated. Appealing to the physics of the flow, it is evident that the physical time (referring to the time t in equation (3)) necessary for achievement of a steady-state solution is a multiple of the characteristic time $\mathbf{t}_{\mathbf{c}}$ required for a fluid particle to travel from the upstream to the downstream boundaries of the computational domain. Denoting an approximate value of the velocity in the inviscid region by $\mathbf{U}_{\mathbf{e}}$ and the length of a given region by $\mathbf{L}_{\mathbf{e}}$

$$t_{c} = L/U_{e} \tag{57}$$

Experience has shown that a total physical time of approximately $3t_c$ is sufficient to guarantee achievement of a steady-state solution provided there is no flow separation. ²⁶ For cases with flow separation, a somewhat larger physical time of $5t_c$ to $6t_c$ is required. The above criteria are general guidelines. In application, a prudent strategy is to check the change in the flow variables (e.g., surface pressure, skin friction) between two physical time levels that are separated by approximately $1t_c$ (e.g., $t \approx 2t_c$ and $t \approx 3t_c$). Provided that the changes are typically one to two percent or less, the flowfield may be considered converged.

7. Computational Sublayer

The geometry associated with the computational sublayer calculation is illustrated in Figure 7 for the n=0 and n=1 surfaces. The "ordinary mesh" obtained from the coordinate generation $\text{pro}_{\mathcal{L}}$ am is indicated by the open symbols. The algorithm of MacCormack is employed on the ordinary

mesh. The region between the wall and the first row of adjacent ordinary mesh points is denoted as the "computational sublayer." Within this region, a locally orthogonal coordinate system (x',y') is employed. The approximate governing equations (18) to (20) are solved on a finite-difference mesh, indicated by the closed symbols.

As indicated previously, the achievement of maximum code efficiency implies that the distance $\boldsymbol{y}_{m}^{\, \bullet}$ of the first row of ordinary points should be as large as possible within the upper limit of roughly $60 \, v_{\star} / u_{\star}$. Since this height is substantially greater than the viscous sublayer, accurate values for the stress components and heat transfer vector cannot be obtained at the matching points by ordinary finite differences involving the velocity components at the wall and the matching points. The purpose of the computational sublayer technique is to provide values of the stress components and heat transfer vector at the wall and at the matching points for use in application of MacCormack's method at the matching points. The cartesian stress components τ_{xx} , τ_{xy} , τ_{yy} are obtained from the sublayer solution by a simple coordinate transformation, under the reasonable assumption that the normal stresses in the x'-y' coordinate system (i.e., $\tau_{x'x'}$, $\tau_{y'y'}$) are negligible compared to $\tau_{x'y'}$. Similarly, the heat transfer components Q_x , Q_v are obtained by coordinate transformation from the sublayer solution under the reasonable assumption that Q_x , $<< Q_y$, in the sublayer.

The computational sublayer region is solved after each updating of the adjacent region of the ordinary mesh. Denoting $\tau_{x'y'}$, as τ , with subscripts w and m implying the wall and matching point, respectively, the sequence of solution is as follows. First, the shear stress components

are found from

$$\tau_{w} = \frac{\left[\alpha_{m} - \frac{\partial p}{\partial x}, \int_{0}^{y'_{m}} \frac{f(y')y' dy'}{(\mu + \varepsilon)}\right]}{\int_{0}^{y'_{m}} \frac{f(y') dy'}{(\mu + \varepsilon)}}$$

$$\tau_{m} = \tau_{w} + \frac{\partial p}{\partial x}, y'_{m} + \dot{m}\alpha_{m}$$
(58)

where $u_{\underline{m}}$ is the component of the velocity at the matching point parallel to the surface and

$$f(y') = \exp \int_{y'}^{y'_m} \frac{m \, dy'}{(\mu + \varepsilon)}$$
 (59)

Expression (58) is obtained by integrating (18) twice. The velocity in the sublayer is then obtained by integrating

$$\frac{\partial \mathbf{u'}}{\partial \mathbf{y'}} - \frac{\dot{\mathbf{m}}}{(\mu + \varepsilon)} \mathbf{u'} = \frac{(\tau_{\mathbf{w}} + \frac{\partial \mathbf{p}}{\partial \mathbf{x'}}, \mathbf{y'})}{(1 + \varepsilon)}$$
(60)

The temperature field is then determined by (19), and the heat transfer vectors computed. Further details are given in Reference 18.

C. Overall Description of Programs

There are, in general, a total of four separate computer programs that are employed to compute the flowfield in a high speed inlet. The purposes of the programs are as follows:

a) Coordinate Generation Program (COORD)

This program is employed to generate the sequence of overlapping mesh systems that are utilized by the Navier-Stokes code.

b) Upstream/Downstream Boundary Mesh Distribution Program (BNDRY)

The purpose of this code is to determine the appropriate distribution of mesh points in general for the upstream and downstream boundaries of each mesh system. It is utilized in conjunction with the coordinate generation program.

c) Navier-Stokes Program (INLET)

This program solves for the steady-state flowfield within each mesh system.

d) Upstream Boundary Interpolation Program (UPSTRM)

The purpose of this short program is to permit interpolation of flow data at the restart station of two overlapped meshes where the height of the two mesh systems is not identical. This procedure is employed in the calculation of the simulated high speed inlets developed by McDonnell Aircraft Company (MCAIR) 33 and is illustrated in Figure 8.

For the MCAIR inlet configuration, the calculation proceeds in two basic stages. In the first stage, the boundary layer development on the ramp (i.e., the lower surface in Figure 8) is computed. This procedure is accomplished in the following steps.

- a) Using program BNDRY, the desired mesh spacing on the upstream and downstream boundaries of mesh A is determined.
- b) Using the information from a) above, the coordinate system of mesh A is computed using program COORD.
- c) Using the coordinate transformation computed in b), the steady-state flow in region A is computed using program INLET.

In the event that the entire ramp boundary layer development upstream of the inlet entrance cannot be computed with a single mesh system, a second overlapping mesh system is generated using COORD and the flowfield is determined using INLET. This procedure is repeated until the ramp boundary layer has been computed up to the vicinity of the inlet entrance.

In the second stage, the flowfield within the inlet is computed.

This procedure requires the following steps:

- a) Using program BNDRY, the desired mesh spacing on the upstream and downstream boundaries of mesh B is determined. See also step c) immediately below.
- b) Using this information, the coordinate system of mesh B is determined using program COORD.
- c) Because the vertical distributions of points in meshes A and B at the restart station are not identical, the program IPSTRM is used to interpolate the flow variables onto the upstream boundary of mesh B. There are certain restrictions on the use of program UPSTRM (see Section IV.H.1) that must be satisfied in determining the mesh distribution on the upstream boundary of mesh B.
- d) The steady-state flowfield is obtained using program INLET.

 For all subsequent regions, the following steps are taken:
 - a) The program BNDRY is used to determine the desired mesh spacing on the downstream boundary on the next mesh region.
 - b) The coordinate transformation is obtained using COORD.
 - c) The steady-state flowfield is obtained using INLET.

In those cases where a variety of inlet configurations are to be tested at the same entrance conditions, the first stage need only be accomplished once.

SECTION III

GENERATION OF COORDINATE TRANSFORMATION

A. Preliminary Analysis

The basic requirement for a finite-difference mesh is to provide accurate resolution of all pertinent features in the flow. The mesh point distribution, therefore, is dependent on the particular flowfield to be computed, and requires preliminary analysis in two major areas, as discussed below.

1. Streamwise Mesh Spacing

In general, the controlling influence on streamwise mesh spacing for high speed inlet calculations is the necessity of accurately resolving the boundary layer development. Unfortunately, there does not exist precise criteria for the determination of the appropriate streamwise mesh spacing, except an exhaustive (and usually infeasible) truncation error study in each case. An oft-quoted guideline in computational fluid mechanics is that a streamwise mesh spacing with cell Reynolds number less than two is sufficient to resolve all characteristic streamwise features within the boundary layer. ³⁴ However, this criterion is based on a truncation error analysis for the particular case in which first-order upwind differencing is employed for the convective terms of the governing equations, and does not specifically apply to MacCormack's method. Furthermore, experience in strong viscous-inviscid interacting boundary layer flows has shown this criterion to be unnecessarily severe. ^{21,35}

A generally successful guideline for determining streamwise mesh spacing is based on the ratio $\Delta x/\delta$, where Δx is the streamwise mesh spacing (typically evaluated on the upper and lower boundaries) and δ is a reference boundary layer thickness. In those regions in which the boundary is

approximately in equilibrium (e.g., mesh A of Figure 8), a mesh spacing of $\Delta x/\delta_0 \approx 1$ to 2 is satisfactory, where δ_0 is the boundary layer thickness at, say, the downstream boundary of the mesh region. For regions of strong viscous-inviscid interaction, such as occur within the inlet, the value of $\Delta x/\delta_0$ (where δ_0 is the boundary layer thickness immediately upstream of the shock-boundary layer interaction) is generally taken to be less than one. Typical values of $\Delta x/\delta_0$ for shock-turbulent boundary layer interactions are 0.17 in Reference 16, 0.45 in Reference 10 and 1.0 in Reference 36. The presence of flow separation has an important influence on $\Delta x/\delta_0$, requiring it to be less than 0.5 in general. Experience with the numerical code $\Delta x/\delta_0$ in computing inlet flows that do not exhibit flow separation has shown that the criterion $\Delta x/\delta_0 \approx 1$ is generally sufficient.

The coordinate transformation program can be used with either uniform or arbitrary mesh spacing in the x-direction. For uniform mesh spacing, the procedure is to estimate the values of δ_{0} as discussed above, using either experimental data or approximate techniques, and to choose a value of Δx that insures that the criterion on $\Delta x/\delta_{0}$ is met at all streamwise locations.

Boundary Layer Mesh Spacing

The mesh spacing in the boundary layer or n-direction is influenced by three major factors. First, there must be sufficient resolution of the boundary layer by the computational sublayer mesh and ordinary mesh combined. Typically, a total of 10 to 15 ordinary mesh points should be within each boundary layer on the ramp and cowl at all streamwise locations. Of course, since the entire flowfield is not known a priori, this achievement of this criterion can only be determined a posteriori. The practical impact of

this criterion for the purpose of preliminary analysis is to assist in determining the appropriate distribution of mesh points on the upstream and downstream boundaries, using program BNDRY. Past results in calculation of high speed inlet flows 18 have shown that the satisfaction of the requirement of 10 to 15 ordinary mesh points within each boundary layer at the upstream and downstream boundary generally insures achievement of the requirement at all streamwise locations. Insofar as the computational sublayer mesh is concerned, a sufficient number of points are required in order that the viscous sublayer be adequately resolved. This implies 36 , 37 that 4 y $_{SL}$ 4 5 at all streamwise locations, where 4 y $_{SL}$ 4 6 4 9 4

The second factor influencing mesh spacing in the boundary layer direction is the requirements of efficiency and accuracy imposed by the use of the computational sublayer technique. As discussed in Section I.C.3, this implies (see Figure 7)

$$20 \frac{v_{\mathbf{w}}}{u_{\mathbf{x}}} \leq y_{\mathbf{m}}^{\dagger} \leq 60 \frac{v_{\mathbf{w}}}{u_{\mathbf{x}}} \tag{61}$$

Assuming $\partial p/\partial n$ $\stackrel{>}{\scriptstyle \sim}$ 0 in the boundary layer, the length scale $\nu_{_{\!W}}/u_{_{\!R}}$ is given by

$$\frac{v_{\mathbf{w}}}{u_{\mathbf{x}}} = \frac{\mu_{\mathbf{w}}}{p_{\mathbf{w}}} \frac{RT_{\mathbf{w}}}{v_{\mathbf{e}}} \sqrt{\frac{2}{c_{\mathbf{f}}}} \frac{T_{\mathbf{e}}}{T_{\mathbf{w}}}$$
(62)

where $c_f = \tau_w/[(1/2)(\rho_e U_e^2)]$ and the subscript e refers to conditions at the edge of the boundary layer. The utilization of this expression requires

estimates for M_e (the Mach number at the boundary layer edge) and the wall pressure p_w , obtained either from experimental data or a simplified inviscid analysis. The value of T_w (and hence μ_w) can then be estimated (for adiabatic walls) from

$$T_{w} = (1 + \frac{(\gamma - 1)}{2} Pr_{t} M_{e}^{2}) T_{e}$$
 (63)

where T_{ρ} is approximated by

$$T_e = T_{t_m} / [1 + \frac{(\gamma - 1)}{2} M_e^2]$$
 (64)

where $T_{t_{\infty}}$ is the freestream stagnation temperature. The value of U_{e} may be obtained from $U_{e} = M_{e} \sqrt{\gamma R T_{e}}$. The value of c_{f} may be estimated by a variety of engineering techniques. 38 It is important to note that c_{f} can be increased substantially by boundary bleed. Experience in computing high speed inlets 18 indicates that typical values of c_{f} in bleed regions can be as large as 0.01 depending on the bleed mass flux.

In practice, it is generally only necessary to estimate an appropriate value of y_m^* from (61) at a few points. These points are typically taken to be upstream and downstream of each shock-boundary layer interaction, since the value of v_w/u_\star varies inversely with the wall pressure. The above expression (62) can also be used to determine the number of points required in the sublayer in order to satisfy the requirement $\Delta y_{SL}^+ \le 5$ discussed above.

The third factor influencing mesh spacing in the boundary layer direction is given by the requirement of numerical stability in the computational sublayer in the presence of bleed. The condition is that the bleed cell Reynolds number $\operatorname{Re}_{\mathfrak{m}}$ defined by

$$Re_{m}^{\cdot} = \frac{\left| \stackrel{\circ}{m} \right| \wedge y_{SL}}{2(\mu + \varepsilon)}$$
 (65)

be everywhere less than approximately 0.25 within the computational sublayer. Noting that the maximum value of Re $_{\rm m}^{\star}$ generally occurs on the wall, this condition can be approximated by

$$\frac{\left|\dot{\mathbf{m}}\right| \Delta y_{\mathbf{SL}}}{2\mu_{\mathbf{W}}} \lesssim 0.25 \tag{66}$$

at all streamwise locations. Since the values of \dot{m} are known, and $\mu_{_{\bf W}} \mbox{ is a function of } T_{_{\bf W}} \approx T_{_{\bf t_{\infty}}} \mbox{ for adiabatic walls, this condition can be directly evaluated at all locations.}$

In some instances, there is a boundary layer on the lower surface only (e.g., mesh A in Figure 8). The upper boundary $\eta=1$ must therefore be placed at a sufficiently large distance from the lower surface in order that the freestream boundary conditions are applicable. This distance is typically taken to be approximately 58, where 8 is the boundary layer thickness at the downstream end of the mesh. The use of equations (30) to (32) will cause a decrease in mesh spacing near the upper boundary. This decrease will not seriously affect code performance, and has surprisingly yielded an improved solution for a flat plate turbulent boundary layer.

In particular, calculations for a fully turbulent flat plate boundary layer have been performed using a rectangular computational domain whose spacing in y is symmetrical about the line midway between the lower and upper boundaries. This type of coordinate system can easily be obtained by choosing JL to be odd, DYØ = DY1 and η_1 = η_2 = 0.5 (i.e., JØØ=JØ1=J1Ø=J11=(JL+1)/2; see Sections 11.B and 11.C). It has been found that with this type of coordinate system, there is no characteristic "hump" in δ_1^{\star} immediately downstream of the leading edge. This hump had been observed with the code for fully turbulent flat plate boundary layer calculations with mesh spacing in y consisting of a uniform stretching within the boundary layer followed by a constant mesh spacing.

3. Example: Upstream Inlet Region for MCAIR Case 35

In Figure 9, a portion of the flowfield of a simulated high speed inlet is illustrated. The configuration corresponds to the upstream inlet portion of Case 35 of the MCAIR study. The freestream Mach number M_{∞} is 3.51, and the freestream total temperature $T_{t_{\infty}}$ and total pressure $p_{t_{\infty}}$ are 576°R and 7,099 lbf/ft², respectively. The freestream static pressure and temperature are 91.8 lbf/ft² and 166°R. A fully developed turbulent boundary on the ramp enters a converging duct formed by two plates. The shock wave formed by the cowl surface deflection intersects the ramp at x = 20 in. The values of the boundary layer bleed mass flux on the ramp and cowl are indicated.

First, the appropriate streamwise mesh spacing Δx is determined. Due to the presence of substantial boundary layer bleed on the ramp in the vicinity of the shock-boundary layer interaction, it is unlikely that flow separation will occur, and hence the criterion $\Delta x/\delta_0^{-2}$ 1 is satisfactory on the ramp. The experimental values of δ on the ramp vary from 0.25 in. at x=19.2 in. to 0.20 in. at x=24 in. as indicated in Figure 9, and thus a value $\Delta x=0.25$ in. is sufficient. Since the maximum allowable value of IL is 40, this places the downstream boundary at x=23.63 in. upstream of the reflected shock intersection on the cowl. Thus the cowl boundary layer is not subject to any strong viscous-inviscid interaction within this computational domain. Based on the experimental value of $\delta = 0.10$ in. at x=25 in., this yields $\Delta x/\delta = 2.5$ on the cowl, which is satisfactory for this region.

Secondly, the requirement of resolution of the boundary layers is considered. Based on the experimental values of the boundary layer

thickness on the ramp and cowl, the following criteria are established.

Boundary	Surface	Criterion*
Upstream	Ramp Cowl	10 to 15 points below $y = 0.25$ in. 10 to 15 points above $y = 2.09$ in.
Downstream	Ramp Cowl	10 to 15 points below $y = 0.20$ in. 10 to 15 points above $y = 0.88$ in.

^{*}Ordinary mesh points.

These criteria are directly utilized in determining the boundary mesh distribution using program BNDRY.

Next, the computational sublayer requirement (61) is considered. Considering the ramp, it is evident that the major changes to the boundary layer arise due to the shock-boundary layer interaction and mass bleed. It is sufficient, then, to consider the ramp at two locations, e.g., x = 13.88 in. (upstream boundary) and x = 21.8 in. At the first location, T_e = 166°R and T_w ~ 534°R from (63). Using an estimate of c_f = 1.7 \times 10⁻³ (typical for M = 3.5 adiabatic flat plate boundary layer at these Reynolds numbers), and noting that $p_{_{\bf W}} \approx p_{_{\! o s}},$ the estimated value of $v_{_{\bf W}}/u_{_{\! o s}}$ is 3.3 x 10^{-5} ft. From (61), the desired range of y_m^* at x = 13.88 in. is approximately 6.5 x 10^{-4} to 2.0 x 10^{-3} ft. At the second location, the experimental Mach number M_{e} is 2.5 (this could also be estimated from a simple inviscid analysis, knowing the cowl surface deflection) and the wall pressure $p_{W} \approx 5 p_{\infty}$. From (63) and (64), $T_{C} \approx 256 \,^{\circ} R$ and $T_{W} \simeq 544 \,^{\circ} R$. Since boundary layer bleed is present at x = 21.8 in., an estimate of 8 x 10^{-3} is used for c_f (based on experience), yielding $\sqrt{u_{\star}} \approx 4.4 \times 10^{-6}$ ft, indicating a desired range of 8.7 x 10^{-5} ft to 2.6 x 10^{-4} ft for y_m^* at x = 21.8 in.

On the basis of this information, it was decided to use $y_m^* = 5 \times 10^{-2}$ from x = 13.875 in. to approximately x = 19 in., decreasing to $y_m^* = 2.5 \times 10^{-2}$ at x = 20 in. and constant thereafter. Although the upstream value of y_m^* is slightly below the range indicated, it nonetheless does not impact the code efficiency because of the smaller values of y_m^* for $x \ge 20$ in. The values of y_m^* are thus expected to vary from 15 at x = 13.88 in. to 57 at x = 23.63 in.

The number of mesh points in the computational sublayer on the resolution determined by the requirement that $\Delta y_{SL}^+ \leq 5$ everywhere. Since the sublication is extremely rapid, the maximum allowable number of points (i.e., 20) may be employed. For 20 points in the sublayer, it is evident that Δy_{SL}^+ varies from 0.79 to 3.0 on the ramp, which is entirely satisfact

Finally, it is necessary to check that the condition (60) is satisfied everywhere in the ramp boundary layer. In bleed zone 1, \dot{n} = +3.85 x 11 slugs/ft 2 -sec and the maximum value of $\Delta y_{\rm SL}$ is 5.0 x 10^{-9} ft/19 or 2.6 x 10^{-5} ft, yielding a value $|\dot{m}| \Delta y_{\rm SL}/2\,\nu_{\rm w} \approx 0.13$. In bleed zone 0, the maximum value of $\Delta y_{\rm SL}$ is 1.3 x 10^{-5} ft, and $|\dot{m}| \langle v_{\rm SL}/2 \rangle_{\rm w} \approx 0.14$. Devalues are within the limit indicated by (66).

An analysis similar to the above is also required for the lowl. The results indicate that $y_{i,JL} = y_{i,JL-1}$ should behave similar to $y_{i,2} = y_{i,1}.$

B. Determination of Mesh Spacing on Upstream and Downstream Boundaries Using Program BNDRY

1. Introduction

The program BNDRY is employe' to determine the distribution of mesh points in general on the upstream and downstream boundaries. These boundaries are assumed to be vertical lines, with a mesh point distribution given by equations (30) to (32). The purpose of the program is to determine the values of the parameters C_1 , C_2 , η_1 and η_2 that yield the desired mesh distribution on the boundaries. This information is then utilized by the coordinate generation program in determining the entire mesh.

As discussed in Section III.A, the following information is required for each boundary: (1) the desired height of the first ordinary mesh point above the lower and upper boundaries, i.e., $y_{i,2} = y_{i,1}$ and $y_{i,JL} = y_{i,JL-1}$, respectively (where i = 1 or IL), (2) the boundary layer thickness on the lower and upper boundaries, (3) the height of the boundary $y_{i,JL} = y_{i,1}$. All dimensions in the program are in feet. The user chooses a range of values of η_1 and η_2 to be investigated. For each value of η_1 and η_2 , the program computes by Newton's method the values of C_1 and C_2 from (34) and (35) that yield the specified values of $y_{i,2} = y_{i,1}$ and $y_{i,JL} = y_{i,JL-1}$, and prints the entire mesh distribution on the boundary $y_{i,j}$, j = 1, JL (where i = 1 or IL). The user then chooses the particular set of values for η_1 and η_2 that yield the desired number of ordinary mesh points in each boundary layer (e.g., 10 to 15).

The following table provides information on the resources required to execute program BNDRY on the CYBER 175.

TABLE 1. RESOURCES REQUIRED FOR EXECUTION OF PROGRAM BNDRY

Resource	Details
Computer time	<pre>< 5 seconds (typical)</pre>
Input/Output time	< 2 seconds (typical)
Core Memory	< 60,000 words (octal)
Files required	INPUT, OUTPUT

2. Description of Input Variables

The input to program BNDRY consists of two cards (card "images" or lines in the case of batch input from a terminal). The definition and format of the input data is indicated in Table 2. For all source code variable names, the symbol Ø implies zero, and the symbol O implies the letter O.

If the estimates for C_1 and C_2 are too far off, the program may deriverge to $C_1 = C_2 = 0$ (and possibly display an error message indicating the underflow and/or overflow has eccurred). Since C_1 and C_2 must be possible program should then be rerun with alternate choices for C_1 and C_2 . With some experience, this difficulty will be avoided.

TABLE 2. INPUT DATA FOR PROGRAM BNDRY

1						1
	Line 1:	DY∅,	DY1,	RH,Y∅,	CEST1,	CEST 2

(Format 6F10.4)

Fortran	<u>Definition</u>	Range or Value
DYØ	y _{i,2} - y _{i,1}	Units: feet
DY 1	y _{i,JL} - Y _{i,JL-1}	Units: feet
RH	y _{i,JL} - Y _{i,1}	Units: feet
ΥØ	y _{i,1}	Units: feet
CEST1	Rough estimate for Cl	Typically between 1 and 10
CEST 2	Rough estimate for C2	Typically between 1 and 10

Line 2: JL, JØSTAR, JØEND, J1STAR, J1END

(Format 5**T**5)

Fortran	Definition	Range or Value
Л	Number of points in n-direction	<u>\$48</u>
JØSTAR, JØEND	Define smallest and largest values of η_1 to be investigated, i.e., $(JØSTAR-1)/(JL-1) \le \eta_1 \le (JØEND-1)/(JL-1)$	25JØSTAR JØSTAR-JØEND JØENDSJL-2
JISTAR, JIEND	Same as above but for \mathfrak{n}_2	Similar to above

Source Code Notation

The definition of the pertinent source code variables is given below. For any array, the index J is equivalent to the subscript j (e.g., ETA(J) is equivalent to η_j).

Fortran	<u>Definition</u>	Range or Value
DETA	$\Delta \eta = 1/(JL-1)$	
DY	$DY(J) = y_{i,j} - y_{i,j-1}$ (i = 1 or iL)	Units: feet
ETA1	η ₁	
ETA2	η_2	
YY	$YY(J) = y_{i,j} (i = 1 \text{ or } 1L)$	Units: feet

4. Sample of Output: Upstream Inlet Region for MCAIR Case 35

A portion of the sample output of program \$EDEG for the consist of the upstream inlet region of the MCAIR inlet discussed in Section 1910, is indicated in Figure 10. This calculation was performed as low the insparameters presented in the example in the previous section. As indicated earlier, the requirements for the upstream boundary of the anatogram indicated region are the following:

Requirement	Criterion
Resolution of ramp boundary layer	 a. 10 to 15 ordinary points 5. y = 0.25 in. b. y_{1,2} = y₁₋₁ = 5.0 x 10⁻⁵
Resolution of cowl boundary layer	 a. 10 to 15 ordinary marks at y = 2.00 in. b. y₁, a. = y₁, a₁₋₁ = 5.0 g ³

It is evident from Figure 10 that values of $v_1 \approx (4M-1)/(4M-1) = 17$. and $v_2 = (J1-1)/(JL-1) = 27/47$ are satisfactory. The extremolating values of v_1 and v_2 are 2.98068 and 2.87725, respectively. The four parameter of v_1 , v_2 are utilized in the coordinate generation program.

C. Generation of Coordinate Transformation Using Program COORD

1. Introduction

本を記するというというというできます。

The program COORD is employed to calculate the coordinate transformation. Prior to the execution of this program the desired streamwise and boundary layer mesh spacing must be determined by a preliminary analysis as discussed in Section III.A.

In the present form, the COORD program incorporates the general category of inlet shapes employed by the MCAIR study, ³³ including, of course, the flat plate portion of the ramp upstream of the inlet entrance, using uniform streamwise mesh spacing. The program can be simply modified to handle arbitrary inlet geometries, as detailed in subroutine INIT of the program.

The following table provides information on the resources required to execute program COORD on the CYBER 175. Care must be taken to insure that sufficient computer time is requested in order to complete the number of iterations specified. The program permits restarting and continuation of the calculation if convergence is not achieved within the requested number of iterations.

TABLE 3. RESOURCES REQUIRED FOR EXECUTION OF PROGRAM COORD

Resource	Details
Computer time	<60 seconds (typical)
Input/Output time	<10 seconds (typical)
Core Memory	150,000 words (octal)
Files Peguired	INPUT, OUTPUT, XY,
·	OVRLAP, RSTART
	(See Section III.C.5)

2. Description of Input Variables

The input to program COORD consists of a variable number of cards.

The definition and format of the input data is indicated in the required

order in Table 4. In those cases where the definition of an input variable is lengthy, the reader is referred to Section III.C.4. Line numbers are not assigned since the total number of input lines is variable. Additional information is given in Section III.C.4. Useful guidelines for the selection of certain input parameters are provided in Table 5.

TABLE 4. INPUT DATA FOR PROGRAM COURD

Line: M, N, MAXITR, IRDZET, IOVLP, IRETRY

(Format 615)

Fortran	Definition	Range or Value
М	Number of points in ζ -direction (i.e., IL)	<u><40</u>
N	Number of points in η -direction (i.e., JL)	<u>≼</u> 48
MAXITR	Maximum number of iterations of equation (24)	≥1
IRDZET	See Section III.C.4	0 or 1
IOVLP	See Section III.C.4	T<10ATb< W
IRETRY	See Section III.C.4	0 or 1

Line: JØØ, JØ1, J1Ø, J11, IREF1, IREF2

(Format 615)

Fortran	Definition	Range or Value
JØØ	Defines η_1 at $\zeta = 0$	2< 100<.110
JØl	Defines η_1 at $t=1$	2<301<311
J1 Ø	Defines η_2 at $\zeta = 0$	JØØ-JIØ-JI.
J11	Defines η_2 at $\zeta = 1$	J1 V 5371531.
IREF1	See Section III.C.4	I: HGFI:M
IREF2	See Section III.C.4	1+18H02+M

TABLE 4. CONT'D

<u> </u>		
Li	ne: JREF, IDSCNT	
(Format 215)		
Fortran	Definition	Range or Value
JREF	See Section III.C.4	1 <jref<n< td=""></jref<n<>
IDSCNT	See Section III.C.4	OSIDSCNTS20
* Line: (Format 1615)	ID(1), ID(2),, ID(16	as required
* Line:	ID(17),, ID(20)	
(Format 415)		J
Fortran	Definition	Range or Value
ID(K),	See Section III.C.4	1 <id(k)<m< td=""></id(k)<m<>
K=1,, 20		K=1,, 20
* Line:	JD(1), JD(2),, JD(16	<u> </u>
(Format 1615)		as required
* Line:	JD(17),, JD(20)	
(Format 415))
Fortran	Definition	Range or Value
JD(K)	See Section III.C.4	JD(K) = 1 or N
K=1,, 20		K=1,, 20

 $^{^{4}}$ If IDSCNT = 0, these lines are omitted

TABLE 4. CONT'D

Line:	DYΦΦ,	DYØ1,	DY1Ø,	DY 1 1
-------	-------	-------	-------	--------

(Format 4F10.4)

Fortran	Definition	Range or Value
DYØØ	y _{1,2} - y _{1,1}	Units: feet
DY Ø 1	y _{IL,2} - y _{IL,1}	Units: feet
DY1Ø	y _{1,JL} - y _{1,JL-1}	Units: feet
DY11	y _{IL,JL} - Y _{IL,JL-1}	Units: feet

ļ	Line:	CC1(1),	CC2(1),	CC1(M),	CC2(H)	ļ
4		(-/,	(/)			

(Format 4F10.4)

<u>Fortran</u>	Definition	<u>Range or Value</u>
CC1(1)	Value of C1 at $\zeta = 0$	
CC2(1)	Value of C2 at $\zeta = 0$	From Program
CC1(M)	Value of Cl at $\zeta = 1$	Program BNDRY
CC2(M)	Value of $C2$ at $0 = 1$)

Line:	SCALE1,	SCALE2,	SCALE3,	SCALE4
<u> </u>				

(Format 4F10.4)

Fortran	Definition	Range or Value
SCALE1	Provides smooth transition for $T(\zeta,\eta)$ between three regions in equation (2).	0.374
SCALE2	Same as above	0.374
SCALE 3	See Section III.C.4	
SCALE4	See Section III.C.4	

TABLE 4. CONT'D

Line:	SØ(1),	S1(1),	CONVER

(Format 3F10.4)

Fortr	an	Definition	Range or Value
SØ(1)		See Section III.C.4	Units: feet
S1(1)		See Section III.C.4	Units: feet
CONVE	lR	Convergence Criteria (See (28))	See Table 5
**	Line:	XØ, DX, XH1, DELTAC	

(Format: 4F10.4)

Fortran	Definition	Range or Value
ΧØ	Value of X at upstream boundary of mesh region	Units: feet
DX	Mesh spacing in X-direction	Units: feet
XH1	Height of inlet throat	Units: feet
DELTAC	Cowl angle	Units: Degrees

Note that X = 0 at the ramp leading edge for the MCAIR inlet.

^{**}This applies to MCAIR inlet (Reference 33)

TABLE 5. GUIDELINES FOR INPUT DATA FOR PROGRAM COORD

Parameter(s)	Guideline
J øø, J Ø 1	Use same value for both, in general, for all overlapping mesh regions (e.g., meshes B and C in Fig. 8)
Jlø, Jll	Same as above
IREF1	Care must be taken that \$1REF corresponds to same physical location when overlapping mesh regions
IREF2	Same as above
JREF	Same value required for all overlapping mesh regions
IDSCNT, ID(K), JD(K)	Care must be taken to insure that each surface slope discontinuity is always referred to its proper physical location when everlapping mesh regions
DYØØ, DY1Ø	When overlapping mesh regions, the values of DY $\emptyset\emptyset$ and DY11 can be obtained from the coordinates of the upstream mesh of the restart station
DYØ1, DY11	These values are always obtained from program BNDRY
CC1(1), CC2(1)	When overlapping mesh regions, these values can be obtained from the output of the upstream mesh at the restart station
SØ(1), S1(1)	These values represent the arc distance along the lower and upper surfaces from the leading edges on the respective surfaces, even though the leading edge does not lie in that particular mesh region.
CONVER	Usual values are 10^{-t} or less. Typically, CONVER is 100 to 1000 times smaller than the smallest mesh spacing in feet in either ζ or η direction.

3. Flow Chart

The flow chart for program COORD is indicated below. The names of the subroutines called are shown by capital letters in parentheses.

4. Source Code Notation

The definition of the pertinent source code variables is given below. For any array, the index I is equivalent to the subscript i (e.g., the Fortran variable ZETA(I) is equivalent to ζ_i in that ZETA(1) = ζ_1 , ZETA(2) = ζ_2 , etc.) and the index J refers to the subscript j.

Fortran	Definition
CC1(I)	Value of C $_1$ at $\zeta_{f i}$ (see (2) and Note 1^*)
CC2(I)	Value of C $_2$ at $\zeta_{ extbf{i}}$ (see (2) and Note 1)
CONVER	Convergence criteria (see (28))
DELTAC	Cowl angle for MCAIR inlet (in degrees)
DX	Mesh spacing in x-direction (in feet)
dyøø	Value of $y_{1,2} - y_{1,1}$ (in feet)
DY Ø 1	Value of y _{IL,2} - y _{IL,1} (in feet)
DY1Ø	Value of $y_{1,JL} - y_{1,JL-1}$ (in feet)
DY11	Value of $y_{IL,JL} - y_{IL,JL-1}$ (in feet)
EDA(J)	n _j
Н	Δζ
нн	$(\Delta \zeta)^2$
ID(K),JD(K)	Denote locations on the lower and upper boundaries where surface slope is discontinuous. Denoting ID(K) by ℓ and JD(K) by m, the Kth discontinuity lies between ζ_{ℓ} and $\zeta_{\ell+1}$ on the line η_m . A maximum of 20 discontinuities is allowed. The discontinuities may be listed in any order. See Note 2.
IDSCNT	Total number of discontinuities in surface slope on lower and upper boundaries (maximum: 20). Corners are not included. If there are no discontinuities, set IDSCNT = 0.

IOVLP	Used in generating overlapping mesh regions, such as regions B and C in Figure 8. The curve $\zeta = \zeta_{\text{IOVLP}}$ of the upstream mesh is taken to represent the $\zeta = 0$ boundary of the downstream mesh.
IREF1	In conjunction with the quantity SCALE3, this term defines the streamwise extent over which the height of the first row of ordinary mesh points above the lower surface (i.e., $y_{i,2} - y_{i,1}$) changes from DY $\emptyset\emptyset$ to DY $\emptyset1$. See Note 3.
IREF2	In conjunction with the quantity SCALE4, this term defines the streamwise extent over which the distance of the first row of ordinary mesh points below the upper surface (i.e., y_i , $J_L = y_i$, $J_L=1$) changes from DY10 to DY11. See Note 3.
IRDZET	Used in generating overlapping mesh regions. If IRDZET equals 1, the upstream mesh is read in order to define the 4 = 0 boundary of the downstream mesh. If mesh overlapping is not to be performed. set IRDZET equal to 0.
IRETRY	Used to continue iterating a mesh that did not converge in the previously specified number of iterations. If IRETRY equals 1, the last results are read and the iteration continued. If this restart feature is not desired, set IRETRY equal to 0.
ITER	Denotes iteration number during the course of the calculation.
JREF	Used in defining array $\mathrm{NN}(1,J)$ (see below). For $J \leq J\mathrm{REF}$, the quantity $\mathrm{NN}(1,J)$ is the normal distance of the point $(\mathrm{Ni}_{1,j},y_{1,j})$ above $\eta=0$. For $J \geq J\mathrm{REF}$, the quantity $\mathrm{NN}(1,J)$ is the normal distance of $(\mathrm{Ni}_{1,j},y_{1,j})$ from $\eta=1$. Note: In utilizing program INLET, it is imperative that the following be observed: $\frac{J\mathrm{REF}}{J\mathrm{REF}} = J\mathrm{REF}$
	where JREFØ and PPIF1 are variables defined in program INLET.
JØØ	Defines value of γ_1 at 0 (see (2)) through $\eta_1 = (J\emptyset\emptyset-I)/(JI-I)$
JØ1	Defines η_1 at $\gamma = 1$

 ${\tt Defines} +_2 {\tt at} + - +$

J1Ø

J11

Defines γ_2 at $\gamma = 0$ through $\gamma_2 = (M\emptyset-1)/(JL-1)$

K	Δη
KK	$(\Delta_{\eta})^2$
М	Number of points in $\zeta\text{-direction}$ (i.e., IL). Maximum: 40
M1	M - 1
MAXITR	Maximum number of iterations of algorithm (24). See IRETRY.
N	Number of points in η -direction (i.e., JL). Maximum: 48
N1	N - 1
SØ(I)	Distance of i th point on $n=0$ from leading edge of lower surface (in feet). Negative values imply points ahead of leading edge. The distance is measured along the $n=0$ curve (not necessarily the x-direction). Note that the value of $SO(1)$ is positive if the $\zeta=0$ boundary of a particular mesh region lies downstream of the leading edge of the lower surface.
S1(I)	Same as above, except refers to the upper surface.
SCALE1, SCALE2	Provides smooth transition for $T(\xi,\eta)$ between the three regions in equation (2). Typical value is 0.374 for each.
SCALE3, SCALE4	See IREF1, IREF2 and Note 2
T(I,J)	$T(\zeta_i, \eta_j)$ (see (2))
TRAN(I,J,1)	$\zeta_{x_{i,j}}$ (ZETAX(I,J); units: (t^{-1})
TRAN(I,J,2)	$\zeta_{y_{i,j}}$ (ZETAY(I,J); units: ft^{-1})
TRAN(I,J,3)	$\eta_{x_{i,j}}$ (ETAX(I,J); units: ft^{-1})
TRAN(1,J,4)	$\eta_{y_{i,j}}$ (ETAY(I,J); units: ft^{-1})
VARY	Maximum value of $r_{x_{i,j}}$ (see (27))
VARZ	Maximum value of $r_{v_{i,j}}$ (see (27))
X(I,J)	x _{i,j} (in feet)

XH1

Height of throat in MCAIR innet (in feet)

XN(I,J)

See JREF. Units: feet

ΧØ

Value of x at upstream boundary of mesh region (MCAIR inlet) (in feet). The distance X is measured from the ramp leading edge.

Y(I,J)

y_{i,j} (in feet)

ZETA(I)

- Note 1: The values of CC1(1), CC1(M), CC2(1) and CC2(M) are required for date input. They are found from program BNORY and from output from upstream mesh in the case of overlapped mesh regions.
- As an example, consider the following empression for the lower boundary:

 $0 \le x \le 1$: y = 0

1 < x < 2: $y = (x - 1) \sin 30^{\circ}$

2 < x < 3: y = 0.5

Assume mesh points were distributed on the lewer surface at $x = (n - 1) \Delta x$, $n = 1, 2, \dots$, where $\exists x = 0, 3$. Then, the following values would represent the discontinuous an x = 1 and x = 2:

ID(1) = 4, JD(1) = 1

ID(2) = 7, JD(2) = 1

Note 3: The height of the first row of ordinary mesh prines above the lower surface (i.e., $y_{i,2} - y_{i,1}$) is specified by

$$y_{i,2} - y_{i,1} = 0.5(DY \phi \phi + DY \phi 1) + 0.5(DY \phi 1 - DY \phi \phi) \tanh(t_{i} - t_{DW h}) / Cor #SCALE 3)$$

Thus, the height changes from DY $\emptyset\emptyset$ to DY \emptyset 1 over the approximate range

$$-2.65 \Delta \zeta * SCALE3 \leq \zeta - \zeta_{1REFI} + 2.65 \Delta \zeta * SCALE3$$

For example, a typical value of SCALES is 1.7%, which causes the height to change from DY $\phi\phi$ to DY ϕ 1 over eight resh points. The physical extent over which the variation occurs is determined by the value of IREF1 and the known relation between (x_{i+1}, y_{i+1}) and ζ_i on the lower boundary.

A similar expression holds for the upper surface, i.e.,

$$y_{i,\pi} = y_{i,\pi L-i} = 0.5(\text{DYIM} + \text{DYII}) + 0.5(\text{DYII} + \text{DEIM})_{\text{Tensor}} = \frac{1}{10.5} \frac{1}{10.5} \frac{1}{10.5}$$

5. File Structure

The program employs, in general, three files in addition to the conventional files INPUT and OUTPUT. The descriptions are indicated below.

File	Description	Data Structure
XY	Output file for coordinate transformation results	 a) Convergence achieved: X, Y, ZETAX, ZETAY, ETAX, ETAY, XN, SØ, S1 b) Convergence not achieved: X, Y
OVRLAP	Input file for coordinate transformation for upstream region. Used in generating overlapping meshes	Same as a) above
RSTART	Input file for non-converged results	Х, Ү

The data are written unformatted in the sequence indicated, with all variables except $S\emptyset$ and S1 having array size 40 by 48. The arrays $S\emptyset$ and S1 are each of size 40. The data sequence for file XY is thus $X(1,1), X(2,1), \cdots, X(40,1), X(1,2), X(2,2), \cdots, X(40,2), \cdots, Y(1,1), Y(1,2), \cdots$, etc. The utilization of the files is as follows:

File	Type	Utilized
XY	Output	Required for every code execution
OVRLAP	Input	Required only if IRDZET = 1
RSTART	Input	Required only if IRETRY = 1

6. Sample Calculation: Upstream Inlet Region for MCAIR Case 35

In Figure 11a, the coordinate system for the upstream inlet region of MCAIR Case 35 is shown (only odd-numbered η -lines are shown). The configuration is also indicated in Figure 9. The input data is indicated in Table 6 and the input variables are explained in Table 4 and Section III.C.4.

It is instructive to note how the preliminary analysis for the upstream inlet region is used in the input to program COORD, recalling the discussion of Section III.A. The two major areas of the preliminary analysis are discussed below:

a) Streamwise mesh spacing

The chosen value of $\Delta_{\rm X}$ = 0.25 in. = .0208 ft, and appears as DX in line 10.

b) Boundary Layer mesh spacing

The results of the analysis and program BNDNY indicate 10^{-10} , 31 = 28

The preliminary analysis also indicates that $y_{\parallel}^{\dagger} = 5 \times 10^{-4}$ ft at the upstream boundary on the ramp and cowl (i.e., DYØØ = DYIØ = .0005) and $y_{\parallel}^{\dagger} = 2.5 \times 10^{-4}$ ft at the downstream boundary on the ramp and cowl (i.e., DYIØ = DYII = .00025). This appears on line 6.

As discussed in note 3 of Section III.C.7, a value of 1.51 for SCALE3 and SCALE4 is typical (line 8). As indicated in Section III.A.3, it is desired for y_m^* to decrease from 5.0 × 10^{-2} to 2.5 × 10^{-2} ft in the vicinity of X = 19.5 inch on both the ray and real.

TABLE 6. INPUT DATA FOR COORDINATE SYSTEM OF UPSTREAM INLET REGION (MCAIR CASE 35)

Line 1 (Format 615)	M 40	N 1	MAXITR 1000	IRDZET O	IOVLP 0	IRETRY O
Line 2 (Format 615)	Ј ØØ 18	J Ø 1 18	J1 ∮ 28	J11 28	IREF1 23	IREF2
Line 3 (Format 2I5)	JREF 28		IDSCNT			
Line 4 (Format 1615)	ID(1) 5					
Line 5 (Format 16I5)	JD(1) 48					
Line 6 (Format 4F10.4)		DΥØØ .0005	DY .00	Ø1 025	DY 10 .0005	DY11 .00025
Line 7 (Format 4F10.4)		CC1(1) 2.89068	CC2 8 2.87		CC1(M) 2.75649	CC2(M) 2,74370
Line 8 (Format 4F10.4)		SCALE1 0.374	SCAL		SCALE3	SCALE4
Line 9 (Format 3F10.4)		SØ(1) 1.156	S1(1)		CONVER 000001	
Line 10 (Format 4F10.4)		х ø 1.156	DX .02083	3 .	XH1 06650	DELTAC

Noting that the upstream boundary is at x=13.88 inch (Figure 9) and the streamwise mesh spacing is 0.25 inch, we conclude that the station x=19.5 inch is midway between the stations J=23 and J=24. Thus, we take IREF1 = IREF2 = 23 (line 2).

In the following, each of the data input lines in Table 6 is described.

a) Line 1

A mesh of 40 points by 48 points (M = 40, N = 48) is chosen. The maximum number of iterations permitted is MAXITR = 1000. The upstream boundary is at the inlet entrance, and thus there is no need to read a prior coordinate system (IRDZET = 0, IOVLP = 0). This job represents the initial attempt to solve equations (22), and thus IRETRY = 0 (the equations (24) will converge in this case is less than 1000 iterations).

b) Line 2

The choice of the values for the variables in this line were discussed previously.

c) Line 3

The value of JREF is chosen to insure that $v_{i,JREF}$ ($i=1,\ldots,M$) always lies between the ramp and cowl boundary layers. Based on Figures 9 and 10, we choose JREF = 28. We also note from Figure 11a that there is only one discontinuity on the lower and upper boundary, namely at the cowl leading edge; thus 1DSCNT = 1.

d) Lines 4 and 5

From Figure 9 and the chosen value of $\Delta x = 0.25$ inch, we note that the cowl leading edge discontinuity lies on the upper surface (j = N = 48) between the fifth and sixth vertical coordinate line (i.e., between j = 5 and i = 6). Therefore, we choose ID(1) = 5 and JD(1) = 48.

e) Lines 6, 7 and 8

The choice of the values for the variables in these lines were discussed previously.

f) Line 9

As indicated in Figure 9, the mesh point (i,j) = (1,1) is located at 13.88 inch (1.156 ft) from ramp leading edge; thus SO(1) = 1.156. Similarly, the cowl leading edge is 1.12 inch (.093 ft) downstream of the mesh point (i,j) = (1,48) and thus SI(1) = -.093. As indicated in equation (28) and Table 5, we choose CONVER = .000001.

g) Line 10

As indicated in Figure 9, XØ is 1.156 ft. Furthermore, $\Delta x = .25 \text{ inch (.020833 ft), thus } DX = .020833.$ The throat height of the inlet is .798 inch (.0665 ft), thus XH1 = .0665. The cowlangle δ_c is 7.97 degrees, thus DELTAC = 7.97.

7. Sample Calculation: Downstream Inlet Region for MCAIR Case 35

In Figure 11b, the coordinate system for the downstream inlet region of MCAI κ Case 35 is shown (only odd-numbered η -lines are shown). The upstream boundary of this region corresponds to the i=31 station of Figure 11a. The input data is indicated in Table 7, and is explained below:

a) Line 1

A mesh of 40 points by 48 points (M = 40, N = 48) is chosen. The maximum number of iterations permitted is MAXITR = 1000. Since the downstream region overlaps the upstream region (with i = 1 in the downstream region chosen to be coincident with i = 31 of the upstream region, i.e., IOVLP = 31), the upstream coordinate transformation data must be read from file OVRLAP and thus IRDZET = 1. This

TABLE 7. INPUT DATA FOR COORDINATE SYSTEM OF DOWNSTREAM INLET REGION (MCAIR CASE 35)

Line 1 (Format 615)	м 40	N 48	MAXITR 1000	IRDZET	IOVLP 31	1RETRY 0
Line 2 (Format 6I5)	J øø 18	J Ø 1 18	J1 ø 28	J11 28	IREF1 20	IREF2 20
Line 3 (Format 2I5)		JREF 28	IDSCI	NT		
Line 4 (Format 1615)		ID(1) 36		D(2) 15	ID(3)	
Line 5 (Format 1615)		JD(1) 1	J	D(2) 48	JD(3) 48	
Line 6 (Format 4F10.	4.	DY ØØ .0002476		Y Ø 1 0025	DY1 Ø .0002532	DY11 .00025
Line 7 (Format 4F10.	4)	3.101		C2(1) 3.984	CCI (M) 2.83529	CC2(M) 2.82212
Line 8 (Format 4F10.	4)	SCALE1		CALE2 .374	SCALE 3	SCALE4
Line 9 (Format 3F10.	4)	SØ(1) 1.78125		1(1) 5 705	CONVER .000001	
Line 10 (Format 4F10.	4)	xø 1.78125	.(DX 0 20 8 3 3	XH1 .06650	DELTAC 7.97

job is the initial attempt to solve equations (22) in the downstream region, and thus IRETRY = 0 (the equations (24) will converge in this case in less than 1000 iteration).

b) Line 2

The values of JØØ and J1Ø (defining η_1 and η_2 at i=1) are chosen identiacl to the values used in the upstream region (JØØ = 18, J1Ø = 28). A preliminary analysis (not contained in this report), similar to that described in Section III.A.3, together with program BNDRY indicates that J1Ø = 18 and J11 = 28. Furthermore, this analysis indicates DYØ1 = DY11 = .00025 ft, which implies that y_m' is essentially unchanged on the ramp and cowl (see line 6). Thus, the values of IREF1 and IREF2 are irrelevant. They are arbitrarily chosen to be equal to 20.

c) Line 3

The value JREF = 28 is again found to be satisfactory. There are three discontinuities (see Figure 11b), and thus IDSCNT = 3.

d) Lines 4, 5

The discontinuities are located immediately downstream of the following points: (i,j) = (36,1), (i,j) = (15,48), and (i,j) = (33,48). Thus, ID(1) = 36, JD(1) = 1, ID(2) = 15, JD(2) = 48, ID(3) = 33 and JD(3) = 48.

e) Line 6

The value of DY \emptyset 0 is equal to $Y_{31,2} - Y_{31,1}$ in the upstream region. From the output from the upstream region (see Figure 12b), we note that $Y_{31,2} - Y_{31,1} = .0002478$. Similarly, DY \emptyset 1 is equal to $Y_{31,48} - Y_{31,47}$ which from the output is equal to .00025. A

preliminary analysis (not contained in this report) indicates $y_m^* = 2.5 \times 10^{-4}$ ft. is satisfactory at i = 40, and thus DY10 = DY11 = .00025.

f) Line 7

The values of CC1(1) and CC2(1) correspond to the values of C1 and C2 at i = 31 in the upstream region. From the output (see Figure 12a), CC1(1) = 3.101 and CC2(1) = 3.084. An analysis of the downstream boundary using BNDRY (not contained in this report) indicates CC1(M) = 2.83529 and CC2(M) = 2.82212.

g) Line 8

The values of SCALE1 and SCALE2 are chosen as before. Since y_m^{t} is essentially uncharged on the ramp and cowl, SCALE3 and SCALE4 are irrelevant and are arbitrarily taken to be equal to 1.5.

h) Line 9

The upstream boundary (coincident with i = 31 of the upstream region) is located at x = 21.38 inch = 1.78125 ft., thus SØ(1) = 1.78125. At the upstream boundary on the ramp, the mesh point (i,j) = (1,48) is a distance of 6.44 inch = .53705 ft. along the cowl from the cowl leading edge and thus S1(1) = .53705. The value of CONVER is same as previously used.

i) Line 10

The upstream boundary is located at 21.38 inch = 1.78125 ft. from the ramp leading edge, thus $X \not p = 1.78125$. The remaining variables are identical to their previous values. A preliminary analysis indicates $\Delta x = .25$ inch = .020833 ft. is satisfactory, and thus DX = .020833.

8. Sample Output: Upstream Inlet Region for MCAIR Case 35

The output from the program is illustrated in Figures 12a through 12e, where sample of each major section of output for the upstream inlet region of MCAIR Case 35 are given. In Figure 12a, the values of the input data are printed, together with the computed values of CC1(I), $I = 1, \ldots, M$ and CC2(I), I = 1, ..., M, where the index I increases from left to right alone each row of output. In Figure 12b, a portion of the computed values of the coordinates x_{ij} , $y_{i,j}$ are shown. The values of the coordinate pair $(x_{i,j}, v_{i,j})$ in feet are given at each value of η (i.e., at each value of j) in a sequential manner. For each value of η , the index i increases from left to right alone each row of output. The coordinate transformation derivatives appear next, as illustrated in Figure 12c, where the results for $\zeta_{x,j}$ are shown. Again, for each value of η , the quantity $\zeta_{x_{i,j}}$ is listed, with the index i increasing from left to right along each row of output. Similarly, the results for $\zeta_{i,j}$, η_x and η_y are printed. In Figure 12d, the results for XN(I,J) are shown for $J \le JREF$ in the same manner. These are followed by XN(I,J) for J > JREF (to t shown). Finally, the distance along the lower and upper boundaries (ie.e., SØ and S1) are displayed as in Figure 12e.

In calculations involving overlapping, the message "RM ERROR 0142 on Latt OVRLAP" will appear in the dayfile. This message is of no significance, and may be ignored.

SECTION IV

CALCULATION OF INLET FLOWFIELD

A. Introduction

The program INLET is employed to compute the inlet flowfield.

Prior to execution of this program, the coordinate transformation must be calculated as discussed in Section III.

The following table provides information on the resources required to execute program INLET on the CYBER 175.

TABLE 8. RESOURCES REQUIRED FOR EXECUTION

OF PROGRAM INLET

Resource

Computer time
Input/Output time
Core Memory
Files required

Details

See discussion below < 60 seconds (typical) 225,000 words (octal) INPUT, OUTPUT, RSTART, STORE, XY (See Section IV.F)

Because the total execution time required to obtain a converged solution within a given mesh region is typically tens of minutes to an hour, the most efficient approach is to submit a sequence of computer jobs. Each job reads in the most recent results for the flow variables, integrates the equations of motion for a number of time steps (see ITER) and then stores the results on file. This procedure is repeated until a converged solution is obtained. Due to the nature of the code, the computer time per time step may vary considerably for a given mesh during the course of a calculation. Typical values are 10 to 20 seconds per time step on the CYBER 175 for a high speed inlet with a 40 by 48 grid. The code incorporates a timer, which automatically determines at each time step whether the remaining computer time is sufficient for continued execution. If sufficient time does not remain, the integration

is terminated and the results written on file for continued execution by the next job. Thus, no job can run out of computer time.

B. Description of Input Variables

The input to program INLET consists of a variable number of cards.

The definition and format of the input data is indicated in the required order in Table 9. Additional information is provided in Section IV.D. Useful guidelines for the selection of certain input parameters are provided in Table 10.

TABLE 9. INPUT DATA FOR PROGRAM INLET

Line 1: UINF, PINF, XMINF, CFL, ALPHA, BETA, TMAX	ľ							
		Line 1:	UINF, PINF,	XMINF,	CFL,	ALPHA,	BETA,	TMAX

(Format 7F10.8)

Fortran	Definition	Range or Value
UNIF	U_{∞}	Units: ft/sec
PINF	P_{∞}	Units: lbf/ft ²
XMINF	$_{\infty}^{M}$	
CFL	Courant-Freidrichs- Lewy number	0 <cfl<1< td=""></cfl<1<>
ALPHA	α	0 <u><</u> 4×5
BETA	β	See Section IV.D
TMAX	CP time requested on job card	Units: seconds

Line 2: XLMBDA(1), XLMBDA(2), PDOWN, SREF(1), SREF(2)

(Format: 5F10.8)

Fortran	Definition	Range or Value
XLMBDA(1)	λ on $\eta = 0$	Units: feet
XLMBDA(2)	λ on $\eta = 1$	Units: feet
PDOWN	static pressure at $\zeta = 1$	Units: lbf/ft°
SREF(1)	s for η = 0 boundary layer (see (17))	Units: Teet
SREF(2)	s for n = 1 boundary layer (see (17))	Units: feet

TABLE 9. CONT'D

Line 3: IL, JL, ITER, ILE(1), ILE(2), JSLØ, JSL1

(Format 715)

Fortran	Definition	Range or Value
IL	Number of points in ζ-direction	<u><40</u>
JI.	Number of points in η-direction	<u><</u> 48
ITER	Number of time steps	₹0
ILE(1)	Value of i at leading edge on $\eta = 0$	l <u><</u> ILE(1) <u><</u> IL
ILE(2)	Same as above for $\eta = 1$	Same as above
JSLØ	Number of points in CSL on $\eta = 0$	3≤JSL Ø ≤20
JSL1	Same as above for $\eta = 1$	3 <u>≤</u> ISL1 <u>≤</u> 20

Line 4: JREFØ, JREF1, IDAMP1, IDAMP2, ISTART, IPRINT

(Format 615)

Fortran	Definition	Range or Value
JREFØ	See Section IV.D	
JREF1	See Section IV.D	
IDAMP1	See Section IV.D	0 or 1
IDAMP2	See Section IV.D	0 or 1
ISTART	See Section IV.D	0, 1 or 2
IPRINT	Flow data printed every IPRINT steps	21

TABLE 9. CONT'D

Line 5:	ITNS(1),	ITNS(2),	ITNE(1),	ITNE(2),	IOVLP,	IPDOWN

(Format 61)

Fortran	Definition	Range or Value
ITNS(1)	Value of i at start of transition on $\eta = 0$	$1 \le 1 \text{TNS}(1) \le \text{IL}$
ITNS(2)	Same as above for $\eta = 1$	Same as above
ITNE(1)	Value of i at end of transition on $\eta = 0$	Same as above
ITNE(2)	Same as above for $\eta = 1$	Same as abowe
IOVLP	See Section IV.D	
IPDOWN	See Section IV.D	0 or 1

Lines:	XMDOT(1,1),, XMDOT(7.1)
	(as required)

(Format 7F10.8)

Lines:	XMDOT(1,2),, XMDOT(7,2)
	(as required)

(Format 7F10.8)

Fortran	Detinition	Kange of Value
XMDOT(I,1),	\hat{m} on $n = 0$	Units: slugs/ft2-sec
$I = 1, \dots, IL$		
XMDOT(I,2),	$\hat{\mathbf{m}}$ on $\eta = 1$	Same in above
$I = 1, \ldots, IL$		

TABLE 10. GUIDELINES FOR INPUT DATA FOR PROGRAM IMLET

Parameter(s)	Guideline
UINF, PINF, XMINF	These quantities are the freestream values ahead of the inlet entrance.
CFL .	Typically, a value of 0.9 is satisfactory. Occurrence of numerical instability (manifested by arithmetic overflow error messages) can often be cured by restarting the calculation and using a smaller value of CFL, although code efficiency is thereby decreased.
АГРНА	The pressure-damping term (55), (56) prevents numerical instability in the presence of shock waves and eliminates unphysical "wiggles" in the pressure therein. A value of $\alpha = 5.0$ is typical. Too high a value of α can cause numerical instability.
ВЕТА	Must be used only to control transients if necessary. Over at least several t_c (see (57)), β must equal 1.
XLMBDA(1), XLMBDA(2)	When experimental values for $\delta_{\rm O}$ in (17) are not available, the calculation can be run awhile with no relaxation until a good estimate for $\delta_{\rm O}$ is obtained. If relaxation is not used, set both parameters equal to 1.
PDOWN	See Note 5 in Section IV.D. If IPDOWN = 0, set PDOWN = 0.
SREF(1), SREF(2)	For no relaxation, set SREF(1) and SREF(2) equal to anything greater than S(IL,1) and S(IL,2), respectively (e.g., 999). For relaxation, set SREF equal to arc distance at which relaxation begins.
ILE(K)	See Note 1 in Section IV.D.
JSLØ, JSL1	See Note 4 in Section IV.D.
JREFØ, JREF1	See Note 3 in Section IV.D.
ITNS(K), ITNE(K)	See Note 2 in Section IV.D.
IOVLP	If not overlapping, set IOVLP = 0.
IPDOWN	See Note 5 in Section IV.D.
XMDOT(I,K)	See Note 7 in Section IV.D.

C. Flow Charts

1. Overall Program

The pertinent features of the overall program INLET are indicated below. The names of the subroutines called are indicated in capital letters in parentheses. CSL refers to computational sublayer.

2. L_{ζ} Operator (subroutine LZETA)

For each region, the L_{ζ} operator is applied to a domain defined by $2 \le i \le IL - 1 = I2$, JS $\le j \le JE$. The pertinent features are indicated below.

3. L_{η} Operator for Regions 1 and 2 (subroutine LETA1)

The L_{η} operator is applied to a domain given by $2 \le i \le IL - 1 = I2$, $JS \le j \le JE$. The pertinent features of the L_{η} operator for Regions 1 and 2 are indicated below. The L_{η} operator for the other regions is very similar and consequently is not detailed separately.

D. Source Code Notation

The definition of the pertinent source code variables is given below. For any array, the index I is equivalent to the subscript i, and the index J is equivalent to the subscript j. The index K assumes values of 1 or 2, with K = 1 referring to the η = 0 boundary layer and K = 2 referring to the η = 1 boundary layer. The abbreviation CSL refers to the computational sublayer, and OM refers to ordinary mesh.

Fortran	Definition	Range or Value	Reference
ALPHA	α (pressure damping)	$0 \le \alpha \le 5$	(55) , (56) [*]
ВЕТА	β	<pre>β < 0 (transients</pre>	II.B.5**
CAPGAM(1), CAPGAMØ	Λ for $\eta = 0$	Units: feet	(16)
CAPGAM(2), CAPGAM1	Λ for $\eta = 1$	Units: feet	(16)
CF	$c_f = \tau_w / \frac{1}{2} \rho_\infty U_\infty^2$		
CFL	Courant-Friedrichs- Lewy number	0 < CFL < 1	(44), (45) 11.B.1
CV	c _v (air)	4290 ft ² /sec ² -°R	1.C.2
DETA	Δη		(21)
DT1, DT2, DT3, DT4, DT5	Quantities employed in determining proper tim step in each region		
DT	Λt	Units: seconds	(37)
DUDN	∂u/∂n		(11)
DY PLUS***	y 'u*/>*		(61)
DYSL PLUS***	$^{\Delta y}$ SL u * $^{N/v}$ w		(14), III.A.2

^{*}I.e., equations (55) and (56). **I.e., Section II.B.5.

^{***}Appear on program output.

Fortran DZETA	Definition Δζ	Range or Value	Reference (21)
EFFIC	Measure of efficiency		(51)
EI(I,J)	of code e_i at (x_i,j,y_i,j)	Units: ft ² /sec ²	I.C.2
EINF	e _w	Units: ft ² /sec ²	I.C.2
EIINF	$e_{\mathbf{i}_{\infty}}$	Units: ft ² /sec ²	1.C.2
EPSLN(I,J)	$\epsilon_{ ext{i,i}}$ in OM	Units: lbf sec/ft	² (15), (17)
EPSLNI	€eq _i	Units: lbf sec/ft	2 (11)
EPSLNO	[€] eq _o	Units: lbf sec/ft	2 (12)
EPSLSL(I,J,K)	$\epsilon_{\mathbf{i},\mathbf{j}}$ in CSL	Units: 1bf sec/ft	2 (15), (17)
EREF(J)	$\epsilon_{\text{eq}}(s_0,n)$ in OM	Units: 1bf sec/ft	2 (17)
ESLREF(J,K)	$\varepsilon_{\text{eq}}(s_0,n)$ in CSL	Units: 1bf sec/ft	2 (17)
ETAX(I,J)	ⁿ x _{i,j}	Units: ft ⁻¹	I.C.2
ETAY(I,J)	η _{y_i,j}	Units: ft ⁻¹	I.C.2
FAC(I,K)	√τ _w ρ _w /26μ _w	Units: ft ⁻¹	
GAM(I,K)	Γ		(16)
GAMMA	Υ	1.4 (air)	(10)
IDAMP1	$ \begin{cases} 0: & \text{no pressure} \\ & \text{damping for } L_{\zeta} \\ 1: & \text{pressure} \\ & \text{damping for } L_{\zeta} \end{cases} $		(55), (56)
IDAMP2	Same as above for L_{η}		
tL	Number of points in G-direction	<u><</u> 40	
12	IL - 1		
ILE(1), ILEØ	Value of i at leading edge on n = 0	1 ≤ ILEØ ≤ IL	Note 1*
ILE(2), ILE1	Same as above for $\eta = 1$	1 < ILE1 < IL	Note 1
IOVLP	Value of i in upstream region that defines restart station	1 < IOVLP < IL - 5	11.8.3

^{*}Notes are listed at end of this section.

<u>Fortran</u>	Definition O: no downstream	Range or Value	Reference
IPDOWN	0: no downstream pressure applied1: pressure PDOWN applied at ζ = 1		NOTE)
IPRINT	Flow data printed every IPRINT steps		
IRGN	Region in split mesh	1 to 5	II.B.2
ISTART	 O: Initialize variables to uniform flow (file RSTART not used); i.e., U∞, p∞, etc. 1: Continue calculation using data from file RSTART 2: Read upstream region from file RSTART. Set i = IOVLP as restart station of downstream region and commence calculation 	n	
ITER	Number of time steps (if ITER = 0, code simpl prints results with no integration)	у	
ITNE(1), ITNEØ	Value of i at end of transition region*	$1 \le ITNSØ < ITNEØ < IL$	Note 2
ITNE(2), ITNE1	Same as above for $\eta = 1$	1 < ITNS1 < ITNE1 < IL	Note 2
ITNS(1), ITNSØ	Value of i at begin- ning of transition region* on $\eta = 0$	See ITNEØ above	Note 2
ITNS(2), ITNS1	Same as above for $\eta = 1$	See ITNE1 above	Note 2
JI1	Upper limit for j in Region l		II.B.2

 $[\]boldsymbol{\star}$ Region of transition from laminar to turbulent flow.

Fortran JI2	Definition Upper limit for j	Range or Value	Reference
312	in Region 2		11.0.2
JI3	Upper limit for j in Region 3		II.B.2
JI4	Upper limit for j in Region 4		II.B.2
ЛL	Number of points in η -direction	9 < JL < 48	
J2	JL - 1		
JMATCH(I,1)	Value of j in OM at which ε transfers from inner to outer expression for $\eta = 0$ boundary layer	2 to JREFØ	(15)
JMATCH(I,2)	Same as above for $\eta = 1$ boundary layer	JREF1 to J2	(15)
Jrefø	For all $j \leq JREF\emptyset$, the eddy viscosity refers to the $\eta = 0$ boundary layer		Note 3
JREF1	For all $j \ge JREF1$, the eddy viscosity refers to the $n = 1$ boundary layer		Note 3
JSLØ	Number of points in CSL on $\eta = 0$	$3 \leq JSL\emptyset \leq 20$	Note 4
JSL1	Same as above for $\eta = 1$	3 < JSL1 < 20	Note 4
M(1), M1	^m 1	<u>≥</u> 1	(47)
M(2), M2	^m 2	<u>></u> 1	(47)
M(3)	^m 3	1	(47)
M(4), M4	^m 4	<u>></u> 1	(47)
M(5), M5	^m 5	<u>></u> 1	(47)
NADV	Time step number		

Fortran NI	Definition Cumulative number of time steps	Range or Value	Reference
P(I,J)	Static pressure p _{i,j}	Units: lbf/ft ²	I.C.2
PDOWN	Static pressure at $\zeta = 1$	Units: lbf/ft ²	Note 5
PINF	P_{∞}	Units: 1bf/ft ²	
PR	Pr	0.72 (air)	(10)
PRTURB	Pr _t	0.90	(10)
QYWL(I,K)	Heat transfer at wall in CSL	O (adiabatic wall)	
QY2(I,K)	Heat transfer normal to wall at matching point in CSL	Units: 1bf/ft-sec	II.B.7
REM(1)	Max Re $_{m}^{\bullet}$ in CSL on $\eta = 0$	Must be less than approximately 0.25	(65), (66)
REM(2)	Same as above for CSL on $\eta = 1$	Same	(65), (66)
RHO(I,J,L)*	ρ _{i,j}	Units: slugs/ft ³	(3) to (6)
RHOE(I,J,L)*	ρe i,j	Units: 1bf/ft ²	(3) to (c)
RHOINF	ρ_{∞}	Units: slugs/ft ³	
RHOU(I,J,L)*	ρu i,j	Units: slugs/ft ² -sec	(3) to (n)
RHOV(I,J,L)*	ρν _{i,j}	Units: slugs/ft ² -sec	(3) to (6)
RK1	κ	0.40	(11)
RK2	k ₂	0.0168	(12)
S(I,1)	Distance along $\eta = 0$ from leading edge	Units: feet	See Sp(1) in III.C.
S(I,2)	Distance along $r_i = 1$ from leading edge	Units: feet	See SI(I) in III.C.a

 $^{^{\}star}$ L = 1 represents value after corrector step, and L = 2 represents value after predictor step. For any analysis of converged solution, always use L = 1 level.

Fortran	Definition	Range o	r Value	Reference
SREF(1)		Units:	feet	(17)
SREF(2)	boundary layer Same as above for n = 1 boundary layer	Units:	feet	(17)
TAUWL(1,1)	Wall shear stress on $\eta = 0$. Positive values imply force is active in positive ζ -direction, and vice versa		i < IL lbf/ft ²	
TAUWL(I,2)	Same as above for $\eta = 1$	ITNS1 < Units:	i < IL lbf/ft ²	
TAU2(I,1)	Shear stress parallel to wall in CSL on n = 0 at matching point	Same as	TAUWL(I,1)	
TAU2(1,2)	Same as above for $\eta = 1$	Same as	TAUWL(I,2)	
TEMP	Static temperature	Degrees	Rankine	
TIME	Cumulative physical time of integration	Units:	seconds	
TMAX	CP time requested on job card	Units:	seconds	
TSL(I,J,K)	Static temperature in CSL	Units:	Degrees Rankine	
U(I,J)	u _{i,j} in OM	Units:	ft/sec	(4)
UDELTA, UREFDL	Uref 6 i	Units:	ft ² /sec	(12)
UINF	U_{∞} = magnitude of freestream velocity	Units:	ft/sec	
UREF, UREFER	U _{ref}	Units:	ft/sec	(12)
USL(I,J,1)	u in CSL on $\eta = 0$	lTNSØ · Units:		(18)
USL(1,J,2)	u in CSL on $\eta = 1$	ITNS1 < Units:		
V(I,J)	v _{i,j} in OM	Units:	ft/sec	(4)
X(I,J)	x _{i,j} in OM	Units:	feet	

Fortran	Definition	Range of	r Value	Reference
XJINV(I,J)	1/J _{i,j}	Units:	feet	(7)
XLMBDA(1), XLMBDAØ	λ on $\eta = 0$	Units:	feet	(17)
XLMBDA(2), XLMBDA1	λ on $\eta = 1$	Units:	feet	(17)
XMDOT(I,1)	$ \stackrel{\bullet}{m} $ on $\eta = 0$	Units:	slugs/ft ² -sec	Note 7
XMDOT(I,2)	\dot{m}_{i} on $\eta = 1$	Units:	slugs/ft ² -sec	Note 7
XMINF	Freestream $\operatorname{\mathbf{Mac}h}$ No. $\operatorname{\mathbf{M}}_{\infty}$			
XMUSL(I,J,1)	μ in CSL on η = 0	ITNSØ < Units: (air)	I < IL lbf sec/ft ²	(8)
XMUSL(I,J,2)	Same as above for $\eta = 1$	ITNSl < Units: (air)	I < IL lbf sec/ft ²	(8)
XN(I,J)	See XN(I,J) in III.C.4			
Y(I,J)	y _{i,j} in OM	Units:	feet	
ZETAX(I,J)	^ζ x _{i,j}	Units:	ft^{-1}	I.C.2
ZETAY(I,J)	ζy _{i,j}	Units:	ft ⁻¹	I.C.2

- Note 1: On η = 0, boundary conditions (53) for a no-slip wall are applied for $i \geq ILE(1)$. If the entire surface η = 0 is a no-slip surface, ILE(1) = 1. If the entire surface is within the freestream, set ILE(1) = IL. Similar results hold for η = 1.
- Note 2: If the entire boundary layer on η = 0 is fully turbulent, set ITNS(1) = ITNE(1) = 1. If the entire boundary layer on η = 0 is fully laminar or if there is no boundary layer, set ITNS(1) = IL and ITNE(1) = IL. Note that in mesh overlapping a restart station cannot fall within the region of transition from laminar to turbulent flow in any boundary layer. Similar results hold for η = 1.
- Note 3: In choosing JREFØ and JREF1, the following criteria must be observed: a) $1 < \text{JREFØ} \le \text{JREF} < \text{JREF1} < \text{JL}$, where JREF is defined in Section III.C.2
 - b) The contour $\eta = \eta_{JREFØ}$ must lie outside of the boundary layer on $\eta = 0$ at all stations. The contour need not be close to the actual boundary layer thickness at all. For boundary layers on the ramp and cowl of roughly equal thickness at any station, JREF is chosen such that η_{JREF} roughly bisects the inlet height at all stations. This can be estimated using the mesh distribution on $\zeta = 0$ and $\zeta = 1$.
 - c) The contour $\eta = \eta_{\mbox{JREF1}}$ must lie outside the boundary layer on $\eta = 1$.

- Note 4: The quantities JSLØ and JSLl cannot be changed during the course of any calculation, nor during overlapping. Since the CSL calculation is very fast, it is recommended to use JSLØ = JSLl = 20 in all cases.
- Note 5: The effect of a terminal shock can be achieved by specifying a desired downstream pressure PDOWN ($1\mathrm{bf/ft^2}$) and setting IPDOWN = 1. For sufficiently high downstream pressures, a terminal shock will form in the inlet throat. The necessary value of PDOWN can be approximated by a simple normal shock analysis using data at $\zeta=1$ (when solution is converged and IPDOWN = 0), but the location and stability of the terminal shock will, in general, be somewhat sensitive to the value of PDOWN, as in the experimental case.
- Note 6: For all CSL variables (e.g., USL(I,J,K)), the index I refers to the location in the ζ -direction in the same manner as all other variables (e.g., U(I,J)). The J index is defined such that J=1 is always the surface (i.e., $\eta=0$ or $\eta=1$) and $J=JSL\emptyset$ or JSL1 is the matching point.
- Note 7: The array XMDOT(I,K) (i.e., \dot{m}_i) is the bleed mass $\underline{\text{flux}}$ (in units of slugs/ft²-sec) at the station i. It is defined such that negative values always imply bleed (for either $\eta=0$ or $\eta=1$ surface), and positive values always imply blowing. The bleed mass flux is assumed uniform within each bleed zone and its value is given by

$$\dot{m} = \frac{\text{(Bleed flow rate in slugs/sec)}}{\text{Area in ft}^2}$$

with proper consideration for the sign as indicated above. Note that the Area above is the total surface area of the bleed zone, not the surface area of the bleed holes.

In executing the program, the values of \dot{m}_i may be changed as desired to investigate effects of different bleed distributions on the flow structure. Changes should be made gradually; e.g., by a sequence of computer runs in which \dot{m}_i is changed by 10% or so and then the flow is integrated for 10 steps, until the desired \dot{m}_i is achieved.

Note that all values of XMDOT(I,K), I = 1,IL, must be specified, including those positions where it is zero.

E. File Structure

The program employs, in general, three files in addition to the conventional files INPUT and OUTPUT. The descriptions are indicated below.

<u>File</u>	Description	Data Structure
RSTART	Input file with latest results for flow variables, or converged results of upstream region in the case of overlapping	RHO, RHOU, RHOV, RHOE, U, V, EI, P, EPSLN, USL, TSL, EPSLSL, XMUSL, TAUWL, TAUZ. QYWL, QY2, FAC, TIME, NI, EREF, ESLREF
STORE	Output file for flow variables	Same as above
XY	Input file for coordinate transformation data	X, Y, ZETAX, ZETAY, ETAX, ETAY, XN, S

The data are written unformatted in the sequence indicated. The following indicates the size of each array, where for example RHO is dimensioned as RHO(40,48,2).

Array	Size
RHO, RHOU, RHOV, RHOE	40 x 48 x 2
U, V, EI, P, EPSLN	40 x 48
USL, TSL, EPSLSL, XMUSL	40 x 20 x 2
TAUWL, TAU2, QYWL, QY2, FAC	40 x 2
TIME, NI	1
EREF	48
ESLREF	20 x 2

For example, the sequence in which data are written on file RSTART is (consult any Fortran IV manual)

$$RHO(1,1,1)$$
, $RHO(2,1,1)$, ..., $RHO(40,1,1)$

$$RHO(1,2,1)$$
, $RHO(2,2,1)$, ..., $RHO(40,2,1)$

.

$$RHO(1,1,2)$$
, $RHO(2,1,2)$, ..., $RHO(40,1,2)$

and so forth.

The utilization of the files is indicated as follows:

<u>File</u>	Type	Utilized
RSTART	Input	For ISTART = 1 or 2 only
STORE	Output	Required if ITER > 0
XY	Input	Required for every code execution

F. Sample Calculation: Upstream Inlet Region for MCAIR Case 35

In Figure 9, the general physical features of the upstream inlet region of MCAIR Case 35 are indicated. A coordinate system for this region was computed in the manner discussed in Section III.C.6, except that the mesh spacing Δx was taken equal to 0.125 inch and the upstream boundary at x = 13.93 inch. The downstream boundary is thus x = 18.81 inch. Within this region, therefore, the boundary layer bleed schedule is as follows (See Figure 9):

Surface	Extent	Range in i	$\dot{m}(slugs/ft^2-sec)$
Ramp	13.93 <u><</u> x <u><</u> 16.5	i = 1 to 21	0.
Ramp	16.5 <x<18.8< td=""><td>i = 22 to 40</td><td>-3.85×10^{-3}</td></x<18.8<>	i = 22 to 40	-3.85×10^{-3}
Cowl	13.93 <x<18.8< td=""><td>i = 1 to 40</td><td>0.</td></x<18.8<>	i = 1 to 40	0.

The flowfield calculation was performed by submitting a sequence of several jobs requesting 900 seconds each and having the input data indicated in Table 11. Each input line is described below.

a) Line 1

The freestream velocity U_{∞} is 2230 ft/sec (UINF = 2230),

Line 1	UINF	PINF	XMINF	CFL	ALPHA	BETA	TMAX	
(Format 7F10.8)	2230.	91.84	3.51	0.9	5.0	1.0	900.	
Line 2	XLMB DA ((1) XL	MBDA(2)	PDOW!	N SREF(1) s	REF(2)	
(Format 5F10.8)	1.0		1.0		999.		999.	
Line 3	IL 3	IL IT	ER IL	E(1)	ILE(2)	JSL	Ø JSI	.1
(Format 7I5)	40 4	48 40)	1	10	20	20)
Line 4	JREF Ø	JREF1	I DAM	P1	IDAMP2			IPRINT
(Format 615)							1	
Line 5								
(Format 615) 1 20 1 30 1 0 Lines 6 to 11 XMDOT(I,1), I = 1,, 40								
(Format 7F10.8)								
0.			0.			0.		
0.	0.		0.).	ο.	
	0.	0.	0.	0.).	U.	
	00385						00385	
003 003							0038)
00385								
Lines 12 to 17 XMDOT(I,2), $I = 1,40$								
(Format 7F10.8)								
0.	0.	0.	0.	0.	0.	0.		
0.						- 0.		
0.	•					- 0.		
0.	4	· · · · · · · · · · · · · · · · · · ·				0.		
0.	•					- 0.		
0.	•			→ 0.				

Mach number M_{∞} is 3.51 (XMINF = 3.51), and pressure p_{∞} is 91.84 lbf/ft² (PINF = 91.84). The Courant number is 0.9 (CFL = 0.9), and the damping coefficients α and β are taken to be 5.0 and 1.0. The requested computer time per job is 900 sec (TMAX = 900).

b) Line 2

As discussed in Ref. 18, the eddy viscosity relaxation model was not employed in the presence of bleed. This is accomplished by setting SREF(1) and SREF(2) to any number greater than the largest value of S(I,1) and S(I,2). In this case, SREF(1) = SREF(2) = 999. is sufficient. Since XLMBDA(1) and XLMBDA(2) are thus irrelevant, they are set equal to one. A downstream pressure is not imposed (see Line 5), thus PDOWN is irrelevant and arbitrarily set equal to zero.

c) Line 3

A mesh of 40 points by 48 points is used (IL = 40, JL = 48). A total of 40 time steps are requested in each job (ITER = 40). The leading edge of the ramp lies upstream of the upstream boundary, thus, ILE(1) = 1. The leading edge of the cowl lies at x = 15 inch. For the mesh spacing used, this point lies between i = 9 and i = 10 on the upper surface, and thus ILE(2) = 10. A total of twenty points were used in each CSL (JSLØ = JSL1 = 20).

d) Line 4

In the coordinate system generated for this case, the value JREF = 28 was used. Thus we choose JREF = 28 and JREF1 = 29 (see Note 3 of Section IV.D.). The parameters IDAMP1 = IDAMP2 = 1 indicates that pressure damping is employed due to the presence of shock waves in the flow. The parameter ISTART = 1 for all runs. For the first job,

file RSTART is the same as file FLOWDN from program UPSTRM discussed in Section IV.H. For all succeeding jobs, file RSTART is the STORE file from the previous job. We choose to print the results after forty time steps (IPFINT = 40).

e) Line 5

Since the boundary layer on the $\eta=0$ boundary is fully turbulent at the upstream boundary, ITNS(1) = ITNE(1) = 1 (see Note 2 of Section IV.D). Using the method of Deem and Murphy 14 , it is estimated that the region of transition from laminar to turbulent flow on the $\eta=1$ surface corresponds to the range i=20 to i=30, and thus ITNS(2) = 20 and ITNE(2) = 30. Since ISTART = 1, the value of TOVLP is irrelevant and thus IOVLP is arbitrarily set to one. A downstream pressure is not applied since the terminal shock is assumed to be downstream of the region, and thus IPDOWN = 0.

f) Lines 6 to 11

Using the bleed schedule indicated above, the bleed mass flux XMDOT(I,1), I = 1, ..., 40 on η = 0 is entered.

g) Lines 12 to 17

Same as above for $\eta = 1$.

G. Sample Output: Upstream Inlet Region for MCAIR Case 35

The output from the program is illustrated in Figures (3a through 13f, where samples of each major section of output for the upstream inlet region of MCAIR Case 35 are presented sequentially. The output was generated by one of the later jobs in the job sequence. For purposes of brevity, ITER and IPRINT were changed to 10.

In Figure 13a, the values of the input parameters are indicated. They

are followed by a list of variables printed at every time step. These variables are the time step number (NADV), the total elapsed physical time (sec) of calculation for the region (TIME), the time step (DT), the values of m_i in equation (47), the values of j for the upper limit of each of the first four mesh-split regions (JI1 to JI4), the time steps in each of the five mesh-split regions (DT1 to DT5) and the parameter EFFIC discussed in equation (51). As indicated previously, the time step DT may vary substantially during program execution, although the term EFFIC remains approximately constant. At the end of the specified number of iterations, the physical time in seconds (TIME) is specified, which is important to the determination of convergence as discussed previously.

In Figure 13b, the flow variables on the ordinary mesh are given at each value of i (that is, at each station) denoted by "COLUMN 1", "COLUMN 2", etc. For brevity, only those results for i=1 and i=2 are shown. At each value of i, the corresponding value of x is indicated in feet ("X EQUALS ..."). The values of the cartesian y coordinate (Y) are listed at each value of j, together with the values of the static temperature in R (TEMP), cartesian velocity components v and u (V,U) in ft/sec, static pressure (P) in lbf/ft^2 and turbulent eddy viscosity (EPSLN) in $lbf-sec/ft^2$.

In Figure 13c, the values of U_{ref} (UREFER) and U_{ref} δ_i^* (UDELTA) are listed at each station for the lower (ETA = 0) and upper (ETA = 1) boundary layers. The values of j at which the inner and outer eddy viscosity formulas are matched is also indicated (JMATCH).

In Figure 13d, the flow variables on the computational sublayer mesh adjacent to the lower boundary are given at each station. The values of the normal distance (XN) in feet of each sublayer point are shown for each value of j from 1 to $JSL\emptyset = 20$, together with the values of the static

temperature (TEMP) in ${}^{\circ}R$, sublayer velocity (USL) in ft/sec, turbulent eddy viscosity (EPSLN) in ${}^{\circ}R$ and molecular viscosity (VISCOSITY) in ${}^{\circ}R$ brevity, only those results for i=1 to 4 are shown. A similar output follows (not shown) for the flow variables on the computational sublayer mesh adjacent to the upper boundary.

In Figure 13e, the values of several useful flow variables are shown at each station on the lower and upper boundaries. These variables are p/p_{∞} (P/PINF), \dot{m} (MASS BLEED) in slug/ft²-sec, and c_{1} (CF). Stations ahead of a leading edge have c_{1} equal to zero. The values of \dot{m} are identical to those specified in the input data.

Finally, in Figure 13f the values of DY PLUS and DYSL PLUS (See Section IV.D.) are listed for the lower and upper surfaces. These values assist in determining whether the mesh distribution employed was satisfactory in regards to providing sufficient flow field resolution (Section III.A.2).

H. Interpolating Flow Variables at Mesh Overlap Using Program UPSTRM

1. Introduction

In certain instances of mesh overlapping, the heights of the two mesh systems at the restart station are not equal. This is illustrated in Figure 8, which represents a typical system of meshes employed to compute one of the MCAIR high speed inlet configurations. The flat plate portion of the ramp ahead of the inlet entrance is computed using mesh A, whose height is typically five times the boundary layer thickness of the restart station. The height of the overlapping mesh B at the restart station depends on the cowl angle, and is generally different from that of mesh A. The program UPSTRM is employed to interpolate the flow variables onto the upstream boundar.

of mesh B at the restart station. In addition, the program provides initial values for the flow variables at all other points. In this manner, a variety of different cowl angles can be considered for given freestream conditions without the need for recomputing the flow in Region A.

The program UPSTRM is employed only in the case described above. In those instances where the heights of the mesh regions at the restart station are identical (e.g., meshes B and C in Fig. 8), the program UPSTRM is not used.

The following requirements must be satisfied:

- a) The restart station is a vertical line in both the upstream and downstream meshes. In its present configuration, the program COORD insures that this requirement is satisfied.
- b) There is a boundary layer on the lower surface only in the upstream region (mesh A) as illustrated in Figure 8.
- c) The height of the first row of ordinary mesh points above the lower surface at the restart station is the same in the upstream and downstream meshes. This requirement must be met in defining the $\zeta=0$ boundary of the downstream mesh using program BNDRY. All other ordinary points may be distributed as desired on this boundary, with care taken to provide adequate resolution as discussed in Section III.A.

The following table provides information on the resources required to execute program UPSTRM on the CYBER 175.

TABLE 12. RESOURCES REQUIRED FOR EXECUTION OF PROGRAM UPSTRM

Resource	Details
Computer Time	< 5 sec (typical)
Input/Output Time	< 5 sec (typical
Core Memory	< 150,000 words (octal)
Files Required	INPUT, OUPUT, FLOWUP, FLOWDN,
•	MESHUP, MESHDN (See Section IV.H.5)

2. <u>Description of Input Variables</u>

The input to program UPSTRM consists of two cards. The definition and format of the input data are indicated in the required order in Table 13.

TABLE 13. INPUT DATA FOR PROGRAM UPSTRM

_											
	Line	1	: JS	LOLD,	JLOLD,	IL,	JL,	JSLØ,	JSL1,	JREFØ,	TOVLP

(Format 815)

Fortran	Definition	Range or Value
JSLOLD	Number of points in CSL on η = 0 in upstream mesh	3 <u>.</u> J\$L0LD <u><</u> 20
JLOLD	Number of points in n-direction in upstream mesh	9 (LOI pear
IL	Number of points in ζ -direction in downstream mesh	<40
JL	Number of points in η -direction in downstream mesh	०५मा ८३८
JSL Ø	Number of points in CSL on η = 0 on downstream mesh	3051 √ ₂ .20
JSL1	Number of points in CSL on $\eta = 1$ on downstream mesh	§ 18% (× 20)
JREFØ	Value of JREFØ in downstream mesh	See Section IV.D
IOVLP	Value of i in upstream region that defines restart station	Sec Section D.B

TABLE 13. CONT'D

Line 2: UINF, VINF, EIINF, PINF, EPSINF, DELTA

(Format 6F10.4)

Fortran	Definition	Range or Value
UINF	\mathbf{U}_{∞}	Units: ft/sec
VINF	V_{∞} (vertical velocity at edge of boundary layer at restart station)	Units: ft/sec
EIINF	$e_{i_{\infty}} = c_{v_{\infty}}^{T}$	Units: ft ² /sec ²
PINF	P_{∞}	Units: 1bf/ft ²
EPSINF	ε at edge of boundary layer at restart station	Units: lbf-sec/ft ²
DELTA	Boundary layer thickness at restart station	Units: ft

3. Flow Chart: Program UPSTRM

The pertinent features of the program UPSTRM are indicated below.

4. Source Code Notation

The definition of the pertinent source code variables is given below. The labeling conventions for the subscripts I, J and K are the same as in Section IV.D.

Fortran	Definition	Range o	r Value
DELTA	Boundary layer thickness at restart station	Units:	feet
EI(I,J)	e_{i} at $(x_{i,j}, y_{i,j})$		ft ² /sec ²
EIINF	$e_{i_{\infty}} = c_{v}^{T_{\infty}}$	Units:	ft ² /sec ²
EPSINF	ϵ at edge of boundary layer	Units:	lbf-sec/ft ²
EPSLN(I,J)	$\epsilon_{ ext{i,j}}$ in OM	Units:	lbf-sec/ft ²
EPSLSL(I,J,K)	$\epsilon_{\mathbf{i},\mathbf{j}}$ in CSL	Units:	lbf-sec/ft ²
EREF(J)	$\epsilon_{\rm eq}(s_{\rm o},n)$ in OM	Units:	lbf-sec/ft ²
ESLREF(J,K)	$\epsilon_{\rm eq}(s_0,n)$ in CSL	Units:	lbf-sec/ft ²
FAC(I,K)	$\sqrt{ \tau_{\mathbf{w}} \rho_{\mathbf{w}}}/26\mu_{\mathbf{w}}$	Units:	ft^{-1}
IL	Number of points in $\zeta\text{-direction}$ in downstream mesh	<u><</u> 40	
IOVLP	Value of i in upstream region that defines restart station	See IV.	D.
JL	Number of points in $\eta\text{-direction}$ in downstream mesh	9 ≤ Љ	< 48
JLOLD	Number of points in η -direction in upstream mesh	9 <u><</u> JL	<u><</u> 48
JSLOLD	Number of points in CSL on $\eta = 0$ in upstream mesh	3 ≤ JSL	OLD < 20
JSLØ	Number of points in CSL on $\eta = 0$ in downstream mesh (need not be same as JSLOLD)	3 < JSL	Ø <u><</u> 20
JSL1	Number of points in CSL on n = 1 in downstream mesh	3 ≤ JSL	1 < 20

Fortran	Definition	Range or Value
JREFØ	Value of JREFØ in downstream mesh	See IV.D
P(I,J)	^p i,j	Units: 1bf/ft ²
PINF	P_{∞}	Units: 1bf/ft ²
QYWL(I,K)	Heat transfer at wall in CSL	0 (adiabatic wall)
QY2(I,K)	Heat transfer normal to wall at matching point	Units: 1bf/ft-sec
RHO(I,J,L)	°i,j	See IV.D
RHOE(I,J,L)	ρe _{i,j}	See IV.D
RHOU(I,J,L)	^{ρu} i,j	See IV.D
RHOV(I,J,L)	ρ v i,j	See IV.D
TAUWL(I,K)	Wall shear stress	See IV.D
TAU2(1,K)	Shear stress at matching point	See IV.D
TSL(I,J,K)	Static temperature in CSL	See IV.D
U(I,J)	u _{i,j} in OM	See IV.D
USL(I,J,K)	u in CSL	See IV.D
UINF	\mathbf{U}_{∞}	Units: ft/sec
V(I,J)	v _{i,j} in OM	Units: ft/sec
VINF	\mathbf{v}_{∞}	Units: ft/sec
XMUSL(I,J,K)	μ in CSL	See IV.D
YUP(I,J)	y _{i,j} in upstream mesh	Units: feet
YDOWN(I,J)	y _{i,j} in downstream mesh	Units: feet
YSLUP(J)	Mesh point distribution in CSL at restart station	Units: feet

5. File Structure

The program employs four files, in addition to the conventional files INPUT and OUTPUT. The descriptions are indicated below. For further information see Section IV.E.

File	Description	Data Structure
FLOWUP	Input file of flow variables in upstream region	See file RSTART
FLOWDN	Output file of flow variables in downstream region	Same as FLOWUP
MESHUP	Input file of coordinate trans- formation data for upstream region	See file XY in Section IV.D
MESHDN	Input file of coordinate trans- formation data for downstream region	Same as FLOWDN

All four files are required for each execution of the program.

6. Output

The printed output consists of (1) the interpolated flow variables u, v, e_i , p and ϵ on the ordinary mesh of the downstream region at the restart station, and (2) the interpolated flow variables T, u, ϵ and μ on the computational sublayer mesh (η = 0 boundary) of the downstream region at the restart station. The format is similar to that employed by the Navier-Stokes code (see Figures 13b and 13d). It should be noted that the messages "RM ERROR 0142 on LFN MESHUP" and "RM ERROR 0142 ON LFN MESHDN" may appear in the dayfile. These messages are of no significance, and may be ignored.

REFERENCES

- Thompson, J. F., Thames, F. C., and Mastin, C. W., "Automatic Numerical Generation of Body-Fitted Curvilinear Coordinate System for Field Containing Any Number of Arbitrary Two-Dimensional Bodies," J. Comp. Physics, 15, 1974, 299-319.
- 2. Rubesin, M. W., and Rose, W. C., "The Turbulent Mean-Flow, Reynolds-Stress, and Heat-Flux Equations in Mass Averaged Dependent Variables," NASA TMX-62248, March 1973.
- Lapidus, A., "A Detached Shock Calculation by Second-Order Finite Differences," J. Comp. Physics, 2, 1967, 154-177.
- 4. Steger, J. L., "Implicit Finite-Difference Simulation of Flow about Arbitrary Two-Dimensional Geometries," AIAA J., 16, 1978, 679-686.
- 5. Shang, J. S., "Computation of Hypersonic Turbulent Boundary Layers with Heat Transfer," AIAA Paper 73-699, AIAA 6th Fluid and Plasma Dynamics Conference, 1973; also, AIAA J., 12, 1974, 883 (Synoptic).
- Cebeci, T., Smith, A. M. O., and Mosinskis, G., "Calculations of Compressible Adiabatic Turbulent Boundary Layers," ATAA J., 8, 1970, 1974-1982.
- 7. Cebeci, T., "Calculations of Compressible Turbulent Boundary Layers with Heat and Mass Transfer," AIAA J., 9, 1971, 1091-1097.
- 8. Cebeci, T., and Smith, A. M. O., Analysis of Turbulent Boundary Layers, Academic Press, 1974.
- 9. Harris, J. E., "Numerical Solution of the Equations for Compressible Laminar, Transitional and Turbulent Boundary Layers and Comparison with Experimental Data," NASA TR T-368, 1971.
- 10. Shang, J. S., and Hankey, W. L., Jr., "Numerical Solution for Supersonic Turbulent Flow over a Compression Ramp, " AIAA J., 13, 1975, 1368-1374.
- 11. Coakley, T. J., and Bergman, M. Y., "Effects of Turbulence Model Selection on the Prediction of Complex Aerodynamic Flows," AJAA Paper 79-0070, AJAA 17th Aerospace Sciences Meeting, 1979.
- 12. Viegas, J. R., and Horstman, C. C., "Comparison of Multiequation Turbulence Models for Several Shock Separated Boundary Layer Interaction Flows," AIAA Paper 78-1165, AIAA 11th Fluid and Plasma Dynamics Conference, 1978.
- 13. Horstman, C. C., et al., "Reynolds Number Effects on Shock-Wave Turbulent Boundary Layer Interactions," AIAA J., 15, 1977, 1172-1178.
- 14. Hopkins, E. J., Jillie, D. W., and Sorensen, V. L., "Charts for Estimating Boundary layer Transition on Flat Plates," NASA TN 0-5846, June 1970.

- 15. Deissler, R. G., "Evolution of a Moderately Short Turbulent Boundary Layer in a Severe Pressure Gradient," J. Fluid Mech., 64, 1974.
- 16. Shang, J. S., Hankey, W. L., Jr., and Law, C. H., "Numerical Simulation of Shock Wave-Turbulent Boundary Layer Interaction," AIAA J., 14, 1976, 1451-1457.
- 17. Wilcox, D. C., "Numerical Study of Separated Turbulent Flows," ARL TR 74-0133, November 1974.
- 18. Knight, D. D., "Calculations of High Speed Inlet Flows Using the Navier-Stokes Equations. Vol. I: Description of Results," AFFDL-TR-79-3138.
- 19. Isaacson, E., and Keller, H., Analysis of Numerical Methods, John Wiley and Sons, Inc., 1966.
- 20. Mac Cormack, R. W., "Numerical Solution of the Interaction of a Shock Wave with a Laminar Boundary Layer," <u>Lecture Notes in Physics</u>, 8, 1971, 151-163.
- 21. MacCormack, R. W., and Baldwin, B. S., "A Numerical Method for Solving the Navier-Stokes Equations with Application to Shock-Boundary Layer Interactions," AIAA Paper 75-1, AIAA 13th Aerospace Sciences Meeting, 1975.
- 22. MacCormack, R. W., and Baldwin, B. S., "Numerical Solution of the Interaction of a Strong Shock Wave with a Hypersonic Turbulent Boundary Layer," AIAA Paper 74-558, AIAA 7th Fluid and Plasma Dynamics Conference, 1974.
- 23. Deiwert, G. S., "Numerical Simulation of High Reynolds Number Transonic Flows," AIAA J., 13, 1975, 1354-1359.
- 24. Hung, C. M., and MacCormack, R. W., "Numerical Solutions of Supersonic and Hypersonic Laminar Compression Corner Flows," AIAA J., 14, 1976, 475-481.
- 25. Knight, D. D., and Hankey, W. L., Jr., "Numerical Simulation of Non-chemically Reacting Radial Supersonic Diffusion Laser," AIAA Paper 76-60, AIAA 14th Aerospace Sciences Meeting, 1976.
- 26. Knight, D. D., "Numerical Simulation of Realistic High Speed Inlets Using the Navier-Stokes Equations," AIAA J., 15, 1977, 1583-1589.
- 27. Shang, J. S., Hankey, W. L., Jr., and Petty, J. S., "Three-Dimensional Supersonic Interacting Turbulent Flow along a Corner," AIAA Paper 78-1210, AIAA 11th Fluid and Plasma Dynamics Conference, 1978.
- 28. Rakich, J. V., Vigneron, Y. C., and Tannehill, J. C., "Navier-Stokes Calculations for Laminar and Turbulent Hypersonic Flow over Indented Nosetips," AIAA Paper 78-260, AIAA 16th Aerospace Sciences Meeting, 1978.

- 29. Shang, J. S., Buning, P. G., Hankey, W. L., Jr., and Wirth, M. C., "The Performance of a Vectorized 3-D Navier-Stokes Code on the Cray-1 Computer," AIAA Paper 79-1448, AIAA 4th Computational Fluid Dynamics Conference, 1979.
- 30. Hankey, W. L., Jr., and Shang, J. S., "The Numerical Solution to Pressure Oscillations in an Open Cavity," AIAA Paper 79-0136, AIAA 17th Aerospace Sciences Meeting, 1979.
- 31. Kutler, P., Chakravarthy, S. R., and Lombard, C. P., "Supersonic Flow over Ablated Nosetips Using an Unsteady Implicit Numerical Procedure," AIAA Paper 78-213, AIAA 16th Aerospace Sciences Meeting, 1978.
- 32. McRae, D. S., "A Numerical Study of Supersonic Viscous Cone Flow at High Angles of Attack," AIAA Paper 76-97, AIAA 14th Aerospace Sciences Meeting, 1976.
- 33. Carter, T. D., and Spong, E. D., "High Speed Inlet Investigation. Vol. I: Description of Program and Results. Vol. II: Data Summary," AFFDL-TR-77-105, November 1977.
- 34. Roache, F., Computational Fluid Dynamics, Hermosa Publishers, Albuquerque, N. M., 1972.
- 35. Rose, W. C., "Practical Aspects of Using Navier-Stokes Codes for Predicting Separated Flows," AIAA Paper 76-96, AIAA 14th Aerospace Sciences Meeting, 1976.
- 36. Horstman, C. C., and Hung, C. M., "Computation of Three-Dimensional Turbulent Separated Flows at Supersonic Speeds," AIAA Paper 79-0002, AIAA 17th Aerospace Sciences Meeting, 1979.
- 37. Baldwin, B., and Lomax, H., "Thin Layer Approximation and Algebraic Model for Separated Turbulent Flows," AIAA 19per 78-257, AIAA 16th Aerospace Sciences Meeting, 1978.
- 38. Schlichting, H., Boundary Layer Theory, Seventh Edition, McGraw-Hill Co., 1979.

Figure 1. Characteristics of Mixed Compression High Speed Inlet (from Ref. 33)

Eigure 2. Coordinate Transformation

a) Physical Plane

b) Transformed Plane

Figure 3. Details of Mesh Distribution

Figure 4. Mesh Splitting

Region A: abcd

Region B: a'b'c'd'

Figure 5. Mesh Overlapping

a) Types of Boundary Conditions

b) Orientation of Unit Vectors and Outwards Running Characteristics

Figure 6. Boundary Conditions

a) Computational Sublayer on $\eta = 0$

b) Computational Sublayer on $\eta = 1$

Figure 7. Computational Sublayer Geometry

Figure 8. Mesh Overlapping Employed for MCAIR Inlet

The second of th

Experimental Boundary Layer Thickness

Ramp: $\delta = 0.25$ in. at x = 19.2 in. $\delta = 0.20$ in. at x = 24 in. Cow1: $\delta = 0.10$ in. at x = 25 in.

Cow1: $\delta = 0.10$	in. at	15.2 040)
Boundary Layer Bleed	Schedule	m (slugs/ft ² -sec)
Boundary Layou	Extent (in.)	-3.85 × 10 -3 -8.18 × 10
Surface	$16.5 \le x < 20.5$	-8.18×10^{-3}
Ramp	20.5 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	-2.88 X 10
_	$19.5 \le x \le 23.1$	
Cow1	nos in Region	(rox.)

Experimental Surface Pressures in Region

Cow1	Desgures in Region	p/Poo (approx.)
rimental Surf	ace Pressures in Region Extent (in.)	1
Surface	x < 20	5 2
Ramp	$\frac{x}{x} > 20$ $\frac{x}{x} > 15$	2
Cow1		InletCase 35

Figure 9. Upstream Region of MCAIR Inlet--Case 35

 OYO (FEET)
 OYI (FEET)
 R4 (FEET)
 YJ (FEET)
 JL

 0.500000E+03
 0.500000E+03
 0.132642E 03 0.3
 48

**** WE SH DISTRIBUTION FOR JU = 18 AND J1 = 28 **** 10 2877252 UA 10 2600665.0 = 12 HT1#

	441	MM 1		
J	YY(J)	AA(7)-AA(7-1)	(L) YY	(1-L) 17-(L) YY
	(FEET)	(FEET)	(INCHES)	(INCHES)
1	0.0	J. J	0.0	0.0
2	0.4999595-03	3.4 39349E-03	0.59999986-05	0.599995E-02
3	0.1042675-02	J. 5 32674E-03	J.131121E-01	0.7112U9E-G2
4	0.1795205-02	0.7 02530E−03	0.2154246-01	J.643036E-02
5	0.2027956-02	J. 332741E-03	0.315353€~01	0.444598E-05
6	J. 301 504E - 02	J• 987 098E - 03	1.4333756-01	0.118452E-01
7	0.4785095-02	0.1173046-02	0.5742106-01	0 • 1 4 0 4 0 5 E - 0 1
8	0.6172025-02	J. 1 38693E-J2	U • 74 J U 4 2E - O 1	0.1664325-01
S	0.7816025-02	U. 1 6440 JE -02	0.4379226-01	0.19/2806-01
10	0.9764732-02	0.194871E-02	0.117177E 00	U•∠3384cE-01
1 1	0.1207465-01	20-2366062-05	0.144890E 00	0.2771906-01
12	J. 148127E - 01	0.273 004E-02	3.177752E 00	0.3285646-01
13	0.1805835-01	0•324558£→02	0.510533E 00	0.389470E-01
1 4	0.2190545-01	0.3 84 71 38-02	0.2623658 00	U - 401056E-01
15	0.2646565-01	0.456023E-02	0.3175:3E 00	0.547228E-01
10	J.318711E-01	0.5405466-02	U.332453E 00	0.6486555-01
1/	0.3827855-01	0.640740E-02	0.4593428 00	0 • 768887E-01
18	0.4587355-01	0.759500E-02	0.550462F 00	0.911399E-01
19	0 • 541 325E - 01	0.825900E-32	0.649590E U)	0.991080E-C1
20	0.623915E-01	0.3259042-02	0.748098E 00	0.991385E-31
21	0.7065C5E-01	0.9259006-02	0.8478366 00	0.481790E-C1
22	0.7890555-01	0. 325900E-02	0.9469146 00	0.491080E+01
23	0 • 871 5862 - 01	0• 825906E -02	0.104602E 01	0.9913876-01
24	0 • 954 2 76E - 01	J. 025 40 UE -02	0.11451 JE 01	10-3060148.0
25	0.103687E 00	V• 825 yu5 E-02	0.124424E 01	0.991087E-C1
26	0.1119462 00	0. 8259008-02	0.134335E 01	0.391080F-01
27	0.1202055 00	J. 825900E-02	0.144240E 01	0.9910878-01
28	0.128464E 00	J. a25933E-02	0.154156E 01	J.991383E-C1
29	0.1361565 00	0.7692466+02	U-153387E 01	0 .9 2 30 9 E E-01
30	0.142818E UJ	0.566155€-02	0.171361E 01	0.7993986-01
31	0.148587E 00	0.5709132-02	0.178304E 01	0.6922968-01
32	00 €د£1535 • 0	J. 4 996 JOE -02	0.1842998 01	0.5995208-01
33	0.1579105 00	0.432004E-02	0.139451E 01	0.519197E-01
34	0.1616565 30	0.3740936-02	0.1939886 01	0.4496318-01
35	0.1649012 00	0.3244826-02	0.197882€ 01	0.3893/81-01
36	0.167711E 00	0.231006E-02	0.201254E C1	0.337207E-01
37	0.170145E 00	0.2433406-02	0.204174E 01	0.2920178-01
38	0.1722525 00	U. 210744E-U2	0.206703E 01	0.2528936~01
39	0.1740775 00	30-390,281.0	0.208893E 01	0.2190116-01
40	0.175658E 00	0.158348E-02	0.210784F 01	U - 189657E-01
41	J. 177027E 00	J.136876E-02	0.212432E 01	0 - 164251E-01
42	0.1782125 00	3.118536E-02	0.213854E 01	0 - 142243E-01
43	0.179235 00	0.1026516-02	0.215086E 01	0 - 1 2 3 1 8 1 E- 0 1
44	0.1831272 00	0.88844E-03	0.210153E 01	0.1060736-01
45	U. 180857E 00	0.769d54E-03	J. 21 7077L 01	0.9238246-02
46	0.1815645 00	0.006678E-03	J.217377E 01	0.800014E-01
47	0.1821415 00	J. 577390E-03	J.218570E 01	0.6928681-02
48	0.1826425 00	U. 50001 4E-03	0.219170E CI	0.600743E-02

Figure 10. Sample Output: Program BNDRY

Figure lla. Coordinate Transformation for MCAIR Inlet (Upstream) -- Case 35

Coordinate Transformation for MCAIR Inlet (Downstream) -- Case 35

CLUBBINATE THANSFURMATION (DATA IN FEET)

LUVLP JOU JUI JIO JII IREFI LAEF LUSCNI IRETRY U 18 28 28 28 28 28 1 0	UNIO UNII CCI(I) CC2(I) CC1(M) CC2(M) U.SUUDUUL-U. 0.250JUDE-U.3 0.24990dE-U. 0.247725E U. 0.2755949E U. 0.274370E U. SCALLA SCALL4 SU(I) SI(I) CUNVER U.SUUDUE U. U.ISUUDUE U. U.II5025E U. U.93I333L-U. 0.999999E-U.	0-2019 01 0-291-01 0-2991-01 0-2091-01 0-2091E 01 0-2001E 01 0-2062L 01 0-2042E 01 0-2021E 01 0-2000E 01 0-2079L 01 0-207	01 0.2847t 01 0.2827t 01 0.2800t 01 0.2785t 01 01 0.2026t 01 0.2026t 01 0.2579t 01 0.25025t 01 0.2026t 01 0.2175t 01 0.2502t 01 0.2105t 01 0.2105t 01 0.2105t 01 0.2105t 01 0.2787t 01 0.2744t 01
28 28 23 23 24 23 28 05CN	CC1(1) E-03 0.2890cdE 01 4 Su(1) E 01 0.115c25E 01	-209E 01 0.2881E -2089E 01 0.2009E -3192E 01 0.3227E	0.2477L 01 0.2807E 01 0.2074L 01 0.2555L 01 0.3184L 01 0.3214L 01 0.2945L 01 0.29042 01
וטר טטר 13 או	0 0711 101-03 0.2503.006- 13 5CALL4 0E 01 0.1500.00E	0.109110100 0.107210100 0.30561010	0.5377c 01 0.5077c 01 0 0.727c 01 0.5077c 01 0 0.727c 01 0.5077c 01 0 0.727c 01 0.507c 01 0
	0Y00 0+5000002-03 0+2500000E-05 0+500000 05APL 5CAPL 2 5.AR 9000E 00 0+374000E 00 0+15000	0.4091 01 0.7091 01 0.4091	0.4547k 01 0.4547k 01 0.4547k 01 0.45454 01 0.4744 01 0.4754 01 0.4554 01 0.4744 01 0.4254 01 0.4554 01 0.5551k 01 0.4017k 01

Figure 12a. Sample Output: Program COORD

01.0.4986 E-03) 1.0.4926 E-03) 1.0.493 E-03) 1.0.485 [E-03) 1.0.27 [6E-03) 1.0.247 9E-03) E 01.0.1067E-023 01.0.1074E-023 01.0.1074E-023 01.0.5994E-033 01.0.5994E-033 01.0.5940E-033 E 01.6.1753E-023 01.0.1759E-023 01.0.1759E-023 01.0.1707E-023 01.0.9949E-033 01.0.8924E-033 01.0.25666-02) 1.0.2567t-02) 1.0.24674-02) 1.0.2473t-02) 1.0.1472t-02) 1.0.1316-02) 00000000 (0.1240E (0.1344E (0.1444E (0.1552E (0.1755E (0.1865E (0.1865E (0.1240E (0.1344E (0.1552E (0.1765E (0.1760E (0.1760E (0.1860E (0.1860E (0.1760E 100-11444 100-114446 100-114446 100-114446 100-114466 100-114666 100-114 00.1240E 00.1240E 00.1552E 00.1755E 00.1755E 00.1755E (0.1240E (0.1344E (0.1344E (0.1255E (0.1255E (0.1465E 01.0.4908E-031 01.0.49319E-031 01.0.4933E-033 01.0.4991E-033 01.0.299E-033 01.0.2481E-033 01.0.2481E-033 01.01.0735-02) 01.01.0735-02) 01.01.0755-02) 01.01.075-02) 01.01.0016-03) 01.01.04295-03) 01.01.34295-03) 01.00.17636-02)
01.00.17596-02)
01.00.17276-02)
01.00.17276-02)
01.00.17276-02)
01.00.17691-02)
01.00.00.00.0030 01.0.25811.021 01.0.25831.021 01.0.28931.021 01.0.28031.021 01.0.3811.021 01.0.3811.021 01.0.3811.021 ********* NG ARE THE VALUES OF (KILL). Y(1.J)) IN FE VALUE OF ETA FUR I EQUAL I TO M CONVERGENCE ACFIEVED IN 380 ITERATIONS 0 6 5 5 5 5 5 5 5555555 5575555 5555555 (0.12145 (0.1373F (0.1543F (0.1543F (0.1543F (0.1544F (0.1544F (0.1544F (0.1544F (0.1544F (0.1544F (0.1219U (0.1323E (0.1533E (0.1533E (0.1535E (0.1545E (0.1844E (0.1944E 10.11.21.95 10.11.22.10 10.11.22.70 10.11.20.70 10.11 (0.1323) (0.1323) (0.1521) (0.1531) (0.1733) (0.1733) (0.1733) (00-12-24-4 (00-12-34-4 (00-12 16. 01.0.10712.-02.0 11.0.10712.-02.0 11.0.110712.-02.0 11.0.1072.-02.0 11.0.2418.5.-03.0 10.0.2417.-03.0 10.0.2417.-03.0 10.0.2417.-02.0 10.0.2417.-02.0 10.0.2417.-02.0 10.0.2417.4.-02.0 10.0.2417.4.-02.0 10.0.347.-02.0 10.0.347.-03.0 E 01.0 .2594E-02)
01.0 .2504E-02)
01.0 .2504E-02)
01.0 .1498E-02)
01.0 .1348E-02)
01.0 .1348E-02) (0.1198E (0.1302E (0.1406E (0.1510E (0.1719E (0.1719E (0.1923E (0.1927E 10.1194 10.13026 10.13026 10.13136 10.13136 10.13236 10.13237 (0.1193E (0.1302E (0.1510E (0.1510E (0.1715E (0.1823E (0.1823E L 01.0.4 93.4 E-03)
01.0.4 93.4 E-03)
01.0.4 93.8 E-03)
01.0.4 93.5 E-03)
01.0.4 93.5 E-03)
01.0.2 97.5 E-03)
01.0.2 97.5 E-03) L 01.00.1751E-022 01.00.1753E-022 01.00.1751E-022 01.00.1741E-022 01.00.1545E-023 01.00.8742E-033 ETA = 0.0

1.150c 01.0.0

1.150c 01.0

1.150c 0

EACH **-**

FELT

FOLLOW

COORD Program Output: Samp1e 12b gure

*** CLUHDINATE THANSFURMATIUN DEMIVATIVES *** *** DZETA/DX ***

277	200	0 - 1	0 - 7	0 - 7	277	3-1	070
308E 38E 38E	303E 38E 38E	308E	308E 38L 38L	308E	30dE 3dt Jdt	303L 304 305 305 305	803E 13c 18c
123	123	223	123	123	123 123 123	123.	1230
233	200	200	0.01	900	001	? · · ·	000
ສຸທຸກ ດີດວ	9 H H		100 00	, o o	ยกา วิวอ	300 00	3 2 3
230 308 308	2308 308	230	230 303 308	230	2308 308	230 308 308	230 308 308
333	000	0.00	0.00	000	0.00	21.0	0.12
: ::-:::::::::::::::::::::::::::::::::	202	3.55	202	700	0 - 0 - 0	3 7 7	10
308E 08E 08E	308£ 08E 08E	30st 08E 08E	308E 08E 08E	308E 08E 08E	3 0 Br 0 8 L 0 8 C	304; 04r 08L	30aL 03E 03E
). 123 123 123), 12 123 123). 12 123 123	123	123	0.12 123 123): 1 c 1 c 3 1 c 3	21 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5
01 0.12300t 01 0.12300E 0 01 0.12300E 01 0.12300E 01 01 0.12303E 01 0.1230UE 01 0.12300E 01 0.12300E 01 0.12300E 01 0.12300E 01 0.12300E 01 0.12300E 01	. 01 0.12308t 0 0 0.12308t 01	. 01 0-12304E 01 0-12304E 01 0-12304E 01 0-12304E 01 C-12308L 01 0-12304E 01 0-12304E 01 0-12304E 01 0-12304E 01 0-12304E 01 01-12304E 01 0-12304E 01	- 01 0-12-00t 01 0-12-30WE 01 0-12-30WE 01 0-12-30WE 01 C-12-30WL 01 0-12-30WE 01 0	01 0.12308E 01 0.12308E 01 0.12308E 01 0.12308E 01 6.12308E 01 0.12308E 01 0.12308E 01 0.12308E 01 0.12308E 0 01 0.12308E 01 0.12308E 01 01 0.12308E 01	of ottatate ut ottatork of ottatore of ott	-J1 0-1.5308E of 3-12308E 01 0-12308E 31 0-12308E 01 6-12308E 01 0-12308E 01 0-12309E 0 0-12308E 0 0-12308E 0 0-12308E 0 0 0 0 0-12308E 0 0 0 0 0 0 0 0 0-12308E 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	of released at a transfer of a
99.93 90.0	0 9E 3E 0	38 F 27 D 27 D	38F. 0	P C C	E CO	9 dc. 1: 0	20.0
2005	23062	123 230 230 230 230 230 230	123 2308 2308	1230 2306 2306 2306	1230 2308 2308 2308	2230	23.00
3.5	200	377	300	300	377	37.0	333
0000	600 000 000 000	0100	3030	3000	0000	3505	3556
2308 308E 308E 508E	308E	308 308 308 308 508	330 g 30 d 30 d 30 d 50 d 50 d 50 d 50 d	23.08 20.8E 30.3E	308 108 108 108 108	308L 508L 508L	308 503 503 508 508 508 508
777	155	0.12	21.5	0.12	0.12	123	0.1.0
000	222	000	222	222	000	222	222
2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	SE S	03E 8E 0	OGE GE GE GE	OGE GE BE	0.3E 8E 0 8E 0	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	000 E 20 C 20 C 20 C 20 C
123 1230 1230 1230	1230 1230 1230 1230	123 1230 1230 1230	123 230 230 1230	123	123 230 230 230	2230 230 230 230	123 223 223 223 023 123
2000	2000	3333	2000	2000	2333	2555	3,22
320	0000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3000	3000	377	3333	1 2 2 3 3
2222	230 306 306 306 306	2000 2000 2000 2000 2000 2000	2000	130°	220 308 308 308 308	2000 3008 3008 4008	100 E
- 777	21.0	0.12	2777	277	2000		2 4 7 7
3035	3555	2170	3	333	3 3 3 3	3-2-1	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
SOGE SAFE SAFE	108L 106L 106 106 106 106 106 106 106 106 106 106	30 th	10 CF	10 8 L 13 L 13 L	13 gf	12 12 12 12 12 12 12 12 12 12 12 12 12 1	3525
1.22	12.2	12.30	1227	1222	25.5	2323	
2000	222	3622	2000	2000	3333	2;;:	: , , , ,
#	4	ಸ		₹ .	4	=	7.53
1 1 2 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2	01 0-1230 10 1-1230 10 1-1230 10 1-1230 10 1-130	2000	11 0-123 P	01 0-12308c 31 0-12308c 31 0-12308c	1 0-12 5000 1 0-12 5000 01 0-12 500 01 0-12 500 01 1-12 500	1	11 1 1 2 1 2 3 2 3 2 3 2 3 2 3 3 3 3 3 3
3011	3,33	7777	21.0	21.0	7 7 7 7		
	377	,,,,,,	01 0-123 %	, , , , , ,			1
ETA = 0.0 0.123000 01 0.12303, 01 0.123000 0.123000 01 0.123000 01 0.123000 0.123000 01 0.123000 01 1.123000 0.123000 01 0.123000 01 0.123000 ETA - 0.021277 1 2 2		1.12.10m 01 0.12.10m of 0.12.10m 1.4.2.0m 01 0.12.10m 01 0.12.10m 0.12.10m 01 0.12.10m 01 0.12.10m 1.2.2.0m 01 0.12.10m 01 0.12.10m 1.2.2.0m 01 0.12.10m 01 0.12.10m	0.12100 01 0.1250 11 0.1237 0.12100 01 0.1250 0 11 0.12508 0.12000 01 0.12508 01 0.12508 0.12000 01 0.12508 01 0.125008				, , , , ,
1111		3000 1000 1000	10.00	101	4 <u>656</u>		9.00
## # 0.0 ####3000 0 0.103000 0.103000 01 0.10000 0.103000 01 0.10000 0.103000 01 0.103000 #################################	0.12305 01 0.12303 0.12336 01 0.12336 0.12308 01 0.12338 0.12308 01 0.12338 14.2308 01 0.12338	0.12 Jose 01 0.10 C. 12 Jose 01 0.10 C. 12 Jose 01 0.10 C. 12 C. 1	0.12500 01 0.1250 0.12500 01 0.1250 0.12500 01 0.12500 0.12500 01 0.12500 0.12500 01 0.12500	0.12.3.00E 01.0.12.3.00E 0.12.3.00E 0.12.3.00E 0.12.3.00E 0.12.3.00E 0.12.3.00E 0.12.3.3.00E	1.1.1.3.3.4.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0	0.10 30 30 30 30 30 30 30 30 30 30 30 30 30	
23544	0.123030 01 0.123030 01 0.123030 01 0.123030 01	9 9 9 9	7 7 7 7			, , , , , , , , , , , , , , , , , , ,	
E 1 A E C. O 0.1 Z 3 O C C 0.1 Z 3 O C C E T A C C C C	1444	1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		0.16.3000 0.16.3000 0.16.3000 0.16.3000		0.10304 0.10307 0.10307 0.10307 0.10307	
4	222	3	2 2 2 2 3	222	,	1000	

Figure 12c. Sample Output: Program COORD

*** LISTARLE FREM LUMEN HUUNNARY (ETARO.) ***		7t-u3 u.4ysjyl-u3 0.4yvolE-u3 u.4bb10E-01 0.4b774E-03 0.4by11L-01 0.4yd6yE-01 0.4ylBbE-03 0.4ylBbE-03 0.4y26bE-01 0.4y30bE-03 0.24y18bE-03 0.4y21bE-01 0.4y26bE-03 0.2476bE-03	yc-u2 0.1078wE-u2 0.10728E-02 0.10668E-02 0.1065xL-02 0.10681E-02 0.1070wL-02 0.10727E-02 0.1073oE-02 0.1073wE-02 0.1073wE-02 0.1073wE-02 0.1073wE-02 0.1073wE-02 0.1073wE-02 0.1063wE-02 0.1063wE-02 0.1063wE-02 0.1063wE-02 0.94w13E-03 0.204w13E-03 0.204w13E-03 0.204w13E-03 0.204w13E-03 0.204w13E-03 0.204w13E-03 0.204w13E-03 0.204w13E-03 0.204w13E-03 0.204w12E-03 0.204w12E-03 0.204wE-03 0.204w12E-03 0.204w	14-02 0.17720m-02 0.17627m-02 0.17530m-02 0.17530m-02 0.17533m-02 0.17557k-07 0.17585m-02 0.17585m-02 0.17589m-02	ding? 0.29%45cmu2 0.28808cm02 0.2004fm02 0.29909cmu2 0.28644cmu2 0.28675cmu2 0.2867tmu2 0.2867tmu2 0.2867tmu2 0.2864umu3 0.2864cmu2 0.2864umu3	Union of the formation of the following control of the following the following of the foll	1. The state of the control of the c	Notes of the second of a second by the second of the secon
	ייי די	0.50002L-03 0.49587L-03 0.4938BL-03 0.49426E-03 0.49434E-03 0.49437H-03 0.37519E-03 0.20494L-03 0.27160E-03 0.247160E-03 0.2474[L-0 0.24746E-03 7.44 0.00455	3.10927E-02 0.10839c-02 0.10789E-02 0.10786c-02 0.10789c-02 0.1078E-02 0.41626E-03 0.48029c-03 0.3953E-03 0.5462FE-03 0.58210E-03 0.3953E-03	1.17×53E-02 0.17911c-02 0.17720E-02-02-02-02-02-02-02-02-02-02-02-02-02-	3 - 1712 401 - 02 - 03 - 120 - 120 - 02 - 02 - 02 - 02 - 02 -	Constitution of the consti		The second of th
	ETA = 0.0	0.50002L- 0.44526E-C 0.37519E-C 0.37519E-C	0 - 10 × 20 = 6	0.17953E- 0.17964E- 0.13415E-6 0.07955E-6	1 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -			# 450 C 100 * 10

0.11503c. 01 0.11771c. 01 0.11979c 01 0.12187E 01 0.12390E 01 0.12604c 01 0.12812E 01 0.13021E 01 0.13229E 01 0.13437E 01 0.13640c 01 0.13454E 01 0.144062c 01 0.14479c 01 0.14479c 01 0.14489cc 01 0.15104c 01 0.15312c 01 0.14571E 01 0.14479c 01 0.14489cc 01 0.15104c 01 0.15312c 01 0.15521E 01 0.15729c 01 0.15479c 01 0.15479c 01 0.17836c 01 0.17836c 01 0.17812c 01 0.18429c 01 0.18429c 01 0.18427c 01 0.18427c 01 0.18429cc 01 0.18429cc 01 0.19479c 01 0.19479c 01 0.19487c 01 TC M *** *** DISTANCE ALONG LUMER BOUNDARY (ETA=0*) FUR I EQUAL 1

Figure 12e. Sample Output: Program COORD

TMAX	000	•								EFFIC	0.38i -07	5 0-38r-07	6 0-38E-07	0.381-07	5 0.38r -07	0.38:-07	10-321-07	5 0.381-07	0 0.38E-37	70-385-07	
EF(2)	0.9990E 03							Z = 0.00		uf5	-05 0.91E-0	-05 0.91 -0	-05 0.91E-0	-05 0.VE-	0-716-0 50-	0-128.0 50-	0-336.0 60-	0-316-0 50-	- us 0.916-0s .	30-316-0 50-	
	0.9990E 03 0.9		30					X MADA1	1000E 01 0.0	513 515	50E-05 0.20E	53E - US 0.24E	50k - 05 0 28k	10-392 - CO CO - 205	35.5 •0 €0 - 50¢•	385 .0 Cu - 304	207-0-0-0-704	000 00 00 0 00 00 00 00 00 00 00 00 00	102 - 00 0. 2dl	JUL . 0 60 - 1	
				171241	10	VMCOdi			.1000E 01 0.	012	0 0.87E-06 0.29E-05 0.50E-05 0.20E-05	36 0.29E-05 0	0 0 -345-05 U	5 35 - 55.0 ac	0.4876-36 0.646-05 0.536-05	0 00-382-0 00	0 00-242-0 00	0 00-16-00 0C	40 6.876-00 0.445-00 0.262-00 0.20(-05	3 30-763-0 30	
				151 AKI				T. 2	1.1022E 04 0	113 114 CT1	30 40 0.87E-06 0.29E-	10 40 U.B7E-	30 40 U.87E-	10 40 0 87F-	-328 0 0 0 OF	30 40 0.H7L-	10 40 0 8/E-	30 0 40 D. 878-		10 40 3+87E-	TOTAL COLLEGE CALCE
				LUARPZ								C 81 15	5 51 B 3	C	ט מ 1ט	c 8 15	2	0 01 B	5 <u>7</u> £	0 a 20	7
LV INX	0.3510E 01	TER.	2	ICERCI	-4	1500	50	12 I	0.72JGE 06	Al NA MA	2 2 0	~ ~ 9	ti 2 9	.v. ~v ~v	v v	N N O	71 31 3	5 5	71 72 2	¥ 9	***************************************
きる	0. 4184E 02	4	84	14787	3·7	1 57 1	01	CAP 0.41	U. 2225101	30	03 0.50t-05	03 0.508-05	03 6.5005	_	03 0,50,-05	03 0.50 <u>0.70</u> 5	0.0 - 0.000 - 0.00	0.5 0.5 0. 10. 10.	U. 0.000, 000		
18X 4214 4710	0.2230- 04	1	34	J41F 0	87	IL C U	-	CAPONO	0.0	7017	1 J. dd6E - 03 U.	2 3.6915-	3 0.896£-	4 0.901E-03	5 0.906. c	0.0115-05	7 3.41.02	3 0.9212.03	の ドラト はくったすの オートー	80 - 0168 - 0 - 0 1	

Figure 13a. Sample Output: Program INDET

Figure 13b. Sample Output: Program INLET

1 UKEFER 2 0.223E 04 3 0.223E 04 4 0.223E 04 5 0.223E 04 6 0.223E 04 7 0.223E 04 10 0.223E 04 11 0.223E 04 11 0.223E 04 12 0.223E 04 13 0.223E 04 14 0.223E 04 15 0.223E 04 16 0.223E 04	0.604E 01 0.609E 01 0.619E 01 0.619E 01 0.629E 01 0.629E 01 0.639E 01 0.639E 01 0.648E 01 0.648E 01 0.652E 01 0.652E 01 0.652E 01 0.652E 01 0.652E 01	J M A T G D G G G G G G G G G G G G G G G G G	JWEFER	E F A = 1 J Dult A	JMATCH
19 0.223E 04 20 0.223E 04 21 0.223E 04 22 0.223E 04 23 0.223E 04 24 0.223E 04 25 0.223E 04 26 0.223E 04 27 0.223E 04 28 0.223E 04 31 0.223E 04 32 0.223E 04 33 0.224E 04 35 0.224E 04	0.049E 01 0.660E 01 0.660E 01 0.585E 01 0.553E 01 0.553E 01 0.553E 01 0.483E 01 0.443E 01 0.445E 01	60577777777788383838383	0.219E 04 0.218E 04 0.215E 04 0.215E 04 0.213E 04 0.213E 04 0.213E 04 0.213E 04 0.213E 04 0.213E 04 0.213E 04 0.213E 04 0.212E 04 0.212E 04 0.212E 04 0.212E 04 0.212E 04 0.212E 04 0.212E 04	0.3952 01 0.3492 01 0.280E 01 0.222E 01 0.191E 01 0.196E 01 0.198E 01 0.198E 01 0.178E 01 0.182E 01	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 13c. Sample Output: Program PNLET

						*	< 0.00	SUBLAYER JA ETA	11	_			
	COLUMN	-	×	E JUALS 0	1.	.11c1E 01		C3_U44	N		×	EGUALS 0.1172E	t 01
_	Ž.	1 × 1		USL		EPSLN	V ISCUS IT Y	d F. F.		USF.		EPSLN	VISCUSITY
_		0.53071				0.0	0.38056-06	0.5314E	50	0.0		0.0	0.380yE-0c
	0.20321-04	D. 0.2.07 P.			O :	V0-316.00	0.3800E-06	0.5 31 UE	٠ د د	0. do 20 c		0.3283E-10	0.3807E-06
	0.020 JUNE 04	0.0207	3 2		ŋ :	0.0204E+09	000111111111111111111111111111111111111	0.0297E	3	167710		0.01126-09	0.3800E-06
	20101010	10.00	30		3 ~		370 F-05	1446	7 ~	0.44.06		0. 75 BAR 10.0	0010101000
	0.131ct - 33	0.01	7		100	0.22435-07	0.3740E-06	0.52055	90	0. 4274E		0-17965-07	0.374BE-00
	0.1579E-05	0.514+E	50		03	0.3868E-07	0 . 371 4E-06	0.5158E	03	0.505c	0	0.35181-07	0.3722E-36
	0.18425-33	0.5091£	70		60	0.67116-07	0.36846-06	0.510bE	60	0.5874E		0.60601-07	0.36936-06
	0. 21 05: - 03	0. 5 03 3 L.	<u>~</u>	0.657JE	7	0.10165-06	0.3652E-06	0.5044E	50	0.661 UE		0.9495E-J7	0.3661E-0c
	0.2369E-03	J. 1. 2. 4. 4. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	63		٦ 0	0.14656-06	0.Jol8E-0¢	0.4434E	<u>۾</u>	0. 7252E		0-13795-06	0.3627E-06
	0.2632E - 03	0.441.3E	7		70	0.19906-00	0.3583E-06	0.492dE	9	0.7917E		0.1 890E - 06	0.35Y2E-06
	0.28 45E - 03	0.4 H52t	5		า	0.25966-06	0.3548E-06	0.4868E	03	0.8487E		0.2477E-06	0.3557E-0c
	0.3158E-03	0.4 / 32L			٦ ا	0.3281E-06	0.35136-06	0.4809E	9	0.9004E		0.3132E-06	0.35238-06
	0.34210-03	U. 4 734 L	2	0.9505	۳ 0	0.43096-00	0 - 3479E-06	0.4751E	0	0. 54 73E		0.38501-06	U.3489E-00
	0. 3684E - 03	0.40734	٠ أ		£0	0.4823E-06	0.3447E-06	0.409CH	50	0.9858E		0.46271-00	0.3457E-06
۰	•	0.4674t	3		4	0.50555-06	0.34156-06	0.4043E	60	0.1029E	*	0.5457E-0b	0.3420E-00
~	+311C+	30/000	50		40	0-38490	0.33656-00	0.45926	63	0.1064E	-	0. 6339E-06	0.3396E-06
1)	44 746-	0.4324E	50		すう	0.74916-00	0.335¢F-06	0.4544E	03	0.1050E	40	0.7272E-06	0.3307E-0c
,	ı	30044.0	5	1		5	0.3329E-06	2	03	0.1126E	Š	0.82125-06	0.3340E-00
3	€0 - ¬00 n v, •0	0.44 Joh	20	0.11620	4	.1010E-U	0.33026-06	JC C 4 4 . O	03	0.1152E	2	0. 55456 -06	0.3514E-06
	72 70 10 0		×	. 141117	-			2	•			2011.0.2.1410.3	147 3
		,	<	3 .	•		- 3		•		<	EG CALS UP1193E	
_		1		0.0		L LOC	VISUSIA	7 3		0 SP		Z N	V15 C C5 11 Y
		0.5312L	50	٠ • •		oo	0.38081-06	J. 17 C.O	63	ာ•			?
٠,	0 . 2 5 0 9E 04	0.03086	7		7	0.32076-10	0.38366-00	0.5307c	<u>ي</u>	0.45 /5L	20	0.32411-10	J. 3800E -00
~		0.52vat	3	0.17190	2	90-J00000-0	0.37¥8E-06	0.5293E	03	0.1716E	70	0.50471-09	0.37YBE-06
,	0. 78281 - 04	0.5272E	5		3	0.25924-08	0.37866-06	0.5271E	03	0.25 73E	03	0.2483108	3.37805-30
מ		O. U.4.1.1.	7		٠ ا	0.10.00.00	0.37096-06	0.524 lE	03	0.3420E	50	0.7564E-JB	0.37cs=-06
ō	0.1305; - 03	J. 56 J.2 L	ŝ			0.1/876-37	U.3747E-06	0.52025	50	0.4266E	60	0.17746-07	3.37476-36
_	0.1506c - 0.5	70.19.0	63		5	0-350026-07	0.37216-06	0.5155E	03	0.50841		0. 54 78E - U/	0-31215-00
T)	0-18278-03	3010.0	2		77	へつしょかく ロン・・	0.30% 1E-06	0.5103E	ć J	0.50050		0.02341-07	3.36316-36
Э.	0-1780	20.000	3		7	C - 140 40 - 0 /	0.16091-06	0.504 of	50	0.60016	7	0. 93936-37	3657E
<u>.</u>	Je.: 34df 03	3.4707	5		7	0.13/46-06	0.20256-06	0.4987E	50	0. 7283c		00-10001-00	,
_	0.400090-03	0.49200	.,		٠,	0.10:35-00	00-11806.0	30264.0	5.0	0. 7909E		0.18736-00	0.35416-30
'n	5/17		=			0.1400L-00	٠,	J. 4 dott	3	0. 34 74E	ر	0.24051-00	
	ı	10000	٠ ا		~	0.31.716-06	~ .	J-4 BUC_	د د	0.8997c		0. 31 USE - UE	•
4	,,,,,,	0.47431	۲.		•	0.34 171 -06	3 स छ ह	C.474 dE	7	0.9+c7E		0.34191-06	0.34dbr-00
'n	. *	3.40.43	-		~	0.40112-10	0 - 14554 - 06	0.40932	20	6.9053E			7
٠ د	3914	.0.04.0	-	3.50	4		34545	0.4040c	<u>۾</u>	0.102dt	7	5410E-	,
_	4 1 75£ -	0.40034	5	0:,48	4		F	J-45d9E	60	0.13c3t		0.62.922-06	0.3394E-06
7)	0 - 300 + + +0	1. 40 4 C	س د د	U-10yet	4		J. 13051 - Un	•	ا ن	0.10yet	3	0. 724.05-06	0.3365E-36
	01 - 350740	30.6	3	0.11.01	4 :	30-11/01/2000	0.33381-06	0.44.00	n	0.11<5E		0. 8154E-00	0.13386-06
2		•	,	75.6.1.1.0.0	4	00-20-00-0	0.13141-00	đ	ç	0.11:21		30115/45 3	0.13126-06

Figure 13e. Sample Output: Program INLET

ŧ

は他におき見なるよう

```
E T_A '= 0
       DYSL PLUS
                       DY PLUS
                      0.14d7E 02
0.14d5E 02
      0.7824E NO
  3
                      0.1435E
      0.7815E
                 00
      0.7800E
                 00
                      0.1482E 02
  5
      0.7781E
                 00
                      J.1478E
                                 02
      0.7758E
                      0-14743
                 00
                                 02
      0.7734E
                 00
                      0.1459E
                                02
      0.771 OE OU
  8
                      0 . 146 SE 02
      J. 7687E
                      3.146 LE
                 00
                                 úΖ
 10
      0.7632E
0.7637E
                 00
                      0.1+0 VE
                                02
02
                 00
                      0.145 OE
 1 1
 12
      U. 7099E
                 00
                      0.1403E
                                 02
      J. 7704E
 13
                 00
                      0.1454E
                                02
 14
                      0.1456E
      0.7717E
                 00
                                 32
      0.771 SE
                      0.1406E
                 00
                                 02
      0.7732E
0.7724E
 16
                 00
                      ひ・14590
                                 12
                 CO
                      0 • 1 4 5 3€
                                 02
      0.7747E
0.7708E
 18
                 00
                      0.1472E
                                02
 19
                      0.1455E
 20
      0.77912
                      0.143 JE 02
                 00
      0.7878E
                      0.1497E
                                 02
 21
                 OO
 22
23
      0.4852E
                 00
                      0.2639E
                                 02
      0.4976E
0.5177E
                      0.272 2E 02
                 00
                      0.2773E
0.2314E
 24
                 00
                                 02
 25
      0.5342E
                 00
                                 02
 26
      0.5474E
                 00
                      0.2847E
                                 02
 27
      0.5582E
                 00
                      3.2373E
                                 02
 28
                      0.28942
      0.56705
                 00
                                 02
                                32
02
      0.5743E
 29
                 00
                      0.291 3E
                      0.2928E
0.2942E
 30
      0.581 0E
 31
      0.5871E
                 00
                                 02
 32
      0.59202
                 00
                      0.29540
                                J2
                      0.296 BE
0.2979E
 33
      0.5981E
                 00
                                 02
      0.63262
                 00
                                 02
 3 5
                      0.2994E
      0.6085E
                 00
                                 02
 36
      0. 61 06E
                 00
                      0.300JE
                                 02
 37
      0.6159E
                 00
                      0.301 7E
                                 02
 38
      0.6163E
                 00
                      0.301 2E
                                02
 39
      0.6250E
                 00
                      0.3334E J2
 40
      0.6276E
                 00
                      0.30+7E 02
      E T A
DYSL PLUS
0.1198E 01
                 TA
                       = 1
                      JY PLUS
3.2276E 3.
0.2595E 0.
 21
                                02
 22
      0.1366E
                                02
                 01
      0.1542E
                 01
                      0.2930E
                                02
 24
      0.1061E
                 01
                      0.3155E 02
 25
      0.171 dE
                 01
                      J. 326 4E
                                 02
 26
      0.1738E
                      0.3331E 02
                 01
 27
                      0.3279E
0.3255E
      0.1726E
0.1713E
                 01
                                02
                                02
                 01
 29
      0.1703E 01
                      0.3235E
                                02
 30
      0.1698E
                 01
                      J.3226E
                                 02
                      0.3227E
0.3232E
 31
      U.1699E
 32
      0.1701E
                 01
                                 02
 33
      0.1699E
                01
                      0.322 dE
                                02
                      0.3207E
0.3175E
 34
      0.1088E
                 01
                                 02
 35
      0.1071E
                 01
                                 32
 36
      0.1658E
                 01
                      0.315 DE
                                 02
 37
      0 • 1 64 52
                 01
                      0.312 of
                                 02
 38
      0.1641E
                 01
                      0.311 7E
                                 02
 39
                 01
                      0.3075E
      0.1618E
                                 02
                      J.3064E
      0.1612E
                 01
     VALUE OF BLEED REYNGLDS NO. UN ETA= 0 IS 0.1837E 00 VALUE OF BLEED REYNGLDS NO. UN ETA= 1 IS 0.0
XAP
MAX
```

Figure 13f. Sample Output: Program INLET

į.

3

A CONTRACTOR OF THE PARTY OF TH

1