Université de Strasbourg

RAPPORT DE STAGE

Modélisation 2D de l'équation du transfert radiatif et reconstruction de la densité par un réseau de neurones

Auteur : Roussel Desmond NZOYEM

Maitres de stage : Emmanuel FRANCK Laurent NAVORET Vincent VIGON

Enseignant référent : Christophe PRUD'HOMME

Stage realise dans le cadre du Master CSMI du 15 juin 2020 au 15 aout 2020 au sein de l'equipe MOCO a l'UFR de mathématiques et d'informatique

Annee academique 2020 - 2021

Table des matières

1	Introduction	1
2	Présentation de l'IRMA	2
	2.1 Structure de l'organisation	2
	2.2 L'équipe MOCO	2
3	Résolution de l'EDP en 2D	3
	3.1 Schéma de splitting	3
	3.2 Implémentation	3
	3.2.1 Configuration d'une simulation	3
	3.2.2 Sauvegarde des données	3
	3.3 Résultats	3
4	Apprentissage	4
	4.1 Les couches utilisées	4
	4.2 Configuration de l'entrainement	4
	4.3 Différents Modèles	4
	4.3.1 Régression	4
	4.3.1.1 en 1D	4
	4.3.1.2 en 2D	4
	4.3.2 Classification	4
5	Bilan du stage	5
	5.1 Ressources utilisées	5
	5.2 Journal de bord	5
	5.3 Difficultés rencontrées et solutions apportées	5
	5.4 Les apports du stage	5
6	Conclusion	6
A	Comment reproduire les resultats?	7
	A.1 Execution du code 1D/2D	7
	A.2 Sauvegarde des resulats	7
	A.3 Execution des notebook et apprentissage	

Liste des abbreviations

ETR Equation (du) Transfert RadiatifETL Equilibre Thermique Local

Liste des symboles

ρ	densite du milieu	$kg m^{-3}$
σ_a	opacite d'absorption	m^{-1}
σ_c	opacite de diffusion (de scattering)	m^{-1}
С	vitesse de la lumiere	${\rm ms^{-1}}$

Introduction

Le domaine du Machine Leaning a connu des developpements fulgurants ces dernieres annees grace a l'avenement des ¹()(DNN). Ce progres a conduit a l'amelioration de nombreux secteurs dans le domaine indutriel et academique et du divertissement.

Du 15 juin au 15 aout 2020,

^{1.} reseaux de neuronnes profond

Présentation de l'IRMA

2.1 Structure de l'organisation

(ORGANIGRAMME)

2.2 L'équipe MOCO

Résolution de l'EDP en 2D

- 3.1 Schéma de splitting
- 3.2 Implémentation
- 3.2.1 Configuration d'une simulation
- 3.2.2 Sauvegarde des données
- 3.3 Résultats

Apprentissage

- 4.1 Les couches utilisées
- 4.2 Configuration de l'entrainement
- 4.3 Différents Modèles
- 4.3.1 Régression
- 4.3.1.1 en 1D
- 4.3.1.2 en 2D
- 4.3.2 Classification

Bilan du stage

- 5.1 Ressources utilisées
- 5.2 Journal de bord
- 5.3 Difficultés rencontrées et solutions apportées
- 5.4 Les apports du stage

Conclusion

Annexe A

Comment reproduire les resultats?

A.1 Execution du code 1D/2D

Pour compiler le code de resolution de l'EDP, on a deux options :

- Utiliser Cmake
- Utiliser Docker

A.2 Sauvegarde des resulats

A.3 Execution des notebook et apprentissage