INDIAN INSTITUTE OF TECHNOLOGY, KHARAGPUR

Date	FN/AN, ′	Time : 2 Hrs., Full M	larks _30_, Deptt.	Mathematics
				2012-13
				sis
		M.ScPh.D./ 4 th yr (
Instruction : At	ttempt All questic	ons. Each question c	arries 5 marks.	
1. Establish the	following Inequa	alities:		
(a) For p ≥	$1, \ (\sum_{k=1}^n a_k)^p$	$\leq n^{p-1} \sum_{k=1}^{n} a_k ^p$		
(b) Let $p \ge$	$1, a_{1,} a_{2,,} a_{n} \ge 0$	0 and $b_{1,}b_{2,,}b_{n} \ge 0$), then	
	$(\sum_{k=1}^{n} (a_k + b_k)^2$	$p)^{1/p} \le \left(\sum_{k=1}^n a_k^p\right)^1$	$^{/p} + \left(\sum_{k=1}^{n} b_k^p\right)^{1/p}$	
2(a). Discuss wl		$\left \lim_{n}(x_{n}-y_{n})\right $ is	a metric on the set o	f all convergent
$set X = X_1$	$_1 \times X_2$. Define α	netric spaces and let $d(x, y) = max\{d_1(x)\}$ sustify your answer.		(y_1, y_2) be in the product
		$C(R)$ convergent sequence $x = (x_i), y = (y_i)$	uences of real numberin C is complete.	ers, with
		t sequence in a metri Justify your answer.	c space is a Cauchy	Sequence but converse
				norm, and \bar{d} is defined not be obtained from

- (b) Prove that every finite dimensional Normed space is complete.
- 5(a) Let X and Y be metric spaces and $T: X \to Y$ a continuous mapping. Prove that the image of a compact subset M of X under T is compact.
- (b) Let X and Y be metric spaces, X compact and $T: X \to Y$ bijective and continuous. Show that T is a homomorphism.
- 6(a) Show that an Integral operator $T = C[0,1] \to C[0,1]$ by y = Tx where $y(t) = \int_0^1 k(t,\tau)x(\tau)d\tau \text{ is a bounded linear operator under maximum norm where } k(t,\tau),$ kernel of T, is assumed to be continuous on $[0,1] \times [0,1]$.
- (b) Show that the range R(T) of a bounded linear operator $T = (X, ||.||) \rightarrow (Y, ||.||)$ need not be closed.