Can you do better than cap-weighted equity benchmarks?

Guy Yollin
Principal Consultant, r-programming.org
Visiting Lecturer, University of Washington

Krishna Kumar Financial Consultant

Legal Disclaimer

- This presentation is for informational purposes
- This presentation should not be construed as a solicitation or offering of investment services
- The presentation does not intend to provide investment advice
- The information in this presentation should not be construed as an offer to buy or sell, or the solicitation of an offer to buy or sell any security, or as a recommendation or advice about the purchase or sale of any security
- The presenter(s) shall not shall be liable for any errors or inaccuracies in the information presented
- There are no warranties, expressed or implied, as to accuracy, completeness, or results obtained from any information presented

INVESTING ALWAYS INVOLVES RISK

Outline

- Introduction to efficient indexes
- Overview of modeling
- Analysis of results
- Wrap-Up

Outline

- Introduction to efficient indexes
- Overview of modeling
- 3 Analysis of results
- 4 Wrap-Up

The tangency portfolio

Efficient Frontier

The tangency portfolio

Efficient Frontier

Is Your Index Fund Broken?

The efficient market inefficiency of capitalization-weighted stock portfolios

"Matching the market is an inefficient investment strategy."

Robert A. Haugen and Nardin L. Baker

Motivation for research

Efficient Indexation

• maximize Sharpe ratio

$$w^* = \arg\max_w \frac{w'\mu}{\sqrt{w'\Sigma w}}$$

- covariance matrix
 - derived from principal component analysis (PCA)
- expected returns
 - form deciles by downside risk
 - expected return equals mean of each decile

An EDHEC-Risk Institute Publication

Efficient Indexation: An Alternative to Cap-Weighted Indices

January 2010

Amenc, Goltz, Martellini, "Efficient Indexation: An Alternative to Cap-Weighted Indices", January 2010

Research project

- Goal
 - Compare performance of alternative index constructions using S&P 500 constituents
- Methodology
 - use a rolling 2-year window of current constituent returns and re-balance at the start of each month
 - generate 48-months of out-of-sample index returns (Jan-2007 to Dec-2010)
 - S&P 500 returns were calculated using constituent weights (apples-to-apples comparisons without factoring in transaction costs)
- Constraint
 - positive weights (max of 25%)
- Focus of research
 - minimum risk (minimum variance and minimum CVaR) portfolios

Outline

- Introduction to efficient indexes
- Overview of modeling
- 3 Analysis of results
- 4 Wrap-Up

Global minimum variance portfolio

Efficient Frontier

M-V optimization and Quadratic Programming

general QP problem

$$min_b = \frac{1}{2} \mathbf{b}^\mathsf{T} \mathbf{D} \mathbf{b} - \mathbf{b}^\mathsf{T} \mathbf{d}$$

s.t.
$$\mathbf{A}^{\mathsf{T}}\mathbf{b} \geq \mathbf{b}_{0}$$
 $\mathbf{b} \geq 0$

mean-variance portfolio optimization

$$min_b \qquad \omega^T \mathbf{\Sigma} \omega$$

s.t.
$$\boldsymbol{\omega}^T \boldsymbol{\mu} = \mu_p$$
 $\boldsymbol{\omega}^T \mathbf{1} = 1$

 $\omega_{min} \ge \omega_i \ge \omega_{max}$

R Code: the solve.QP function

- > library(quadprog)
- > args(solve.QP)

function (Dmat, dvec, Amat, bvec, meq = 0, factorized = FALSE) $\tt NULL$

objective function assignments: $2\mathbf{\Sigma} \to \mathbf{D} \quad \omega \to \mathbf{b} \quad \mathbf{0} \to \mathbf{d}$

Factor models for asset returns

The general form of a factor model for asset returns is:

$$R_{j,t} = \beta_{0,j} + \beta_{1,j}F_{1,t} + \dots + \beta_{p,j}F_{p,t} + \epsilon_{j,t}$$

where

 $R_{j,t}$ is either return or excess return on the jth asset at time t

 $F_{1,t},\ldots,F_{p,t}$ are factors (aka risk factors) at time t

 $\epsilon_{1,t},\ldots,\epsilon_{n,t}$ are uncorrelated, mean-zero, unique risks

The factor model in matrix form is:

$$\mathbf{R_t} = \boldsymbol{\beta}_0 + \boldsymbol{\beta}^T \mathbf{F_t} + \boldsymbol{\epsilon}_t$$

Returns covariance matrix

Given the following covariance matrices:

$$\mathbf{\Sigma}_{\epsilon} = egin{pmatrix} \sigma_{\epsilon,1}^2 & \cdots & 0 \ dots & \sigma_{\epsilon,j}^2 & dots \ 0 & \cdots & \sigma_{\epsilon,n}^2 \end{pmatrix}$$

$$\Sigma_F = p \times p$$
 covariance matrix of (F_t)

The returns covariance matrix is:

$$\mathbf{\Sigma}_{R} = \boldsymbol{\beta}^{T} \mathbf{\Sigma}_{F} \boldsymbol{\beta} + \mathbf{\Sigma}_{\epsilon}$$

Covariance matrix estimation

- Estimating the covariance matrix based on a factor model is a bias-versus-variance trade-off
 - sample covariance matrix is unbiased but may have significant estimation error
 - estimating the covariance matrix via a factor model may be biased but also may significantly reduce estimation error by significantly reducing the number of estimates
- Sample covariance matrix for n-assets
 - n(n+1)/2 estimations
 - for 500 assets, 125,250 estimates are required
- Covariance matrix with n-assets and a factor model with p-factors
 - $np + n + p^2$ estimations
 - for 500 assets and 10 factors, 5,600 estimates are required

Industry factor model

Model background

• Sheikh, "Barra's Risk Models", 1995

Response

daily equity returns

Explanatory variables

company industry classification

Model details

Example 103, Zivot, "Modeling Financial Time Series with S-PLUS,
 2nd Edition", 2005
 http://faculty.washington.edu/ezivot/book/Ch15.factorExamples2ndEdition.ssc

Cross-sectional factor models

Differences between time-series factor models and cross-sectional factor models:

Model type	Assets	Time Periods	Factors	Betas
time-series	one asset at a time	all time periods	known	estimated
cross-section	all assets	one period at a time	estimated	known

Cross-sectional factor model for the jth asset at some fixed t:

$$R_j = \beta_0 + \beta_1 F_{1,j} + \dots + \beta_p F_{p,j} + \epsilon_j$$

Industry factor model

General industry factor model has the following form:

$$R_j = \beta_1 F_{1,j} + \beta_2 F_{2,j} + \dots + \beta_p F_{p,j} + \epsilon_j$$

$$\beta_i = \begin{cases} 1, & \text{if asset j in industry i} \\ 0, & \text{if asset j not in industry i} \end{cases}$$

- Factor realizations represent a weighted average return in time period t of all of the asset returns for companies operating in industry j
- S&P Sector GICS codes for 10 sectors (10 sectors):

energy materials industrial discretionary staples health financial info tech telecom utilities

Statistical factor models

Recall the general form of a factor model:

$$\mathbf{R_t} = \boldsymbol{\beta}_0 + \boldsymbol{\beta}^T \mathbf{F_t} + \boldsymbol{\epsilon}_t$$

- In statistical factor models:
 - factor realizations are not directly observable
 - no external knowledge of betas (as in cross-sectional models)
 - factor realizations and betas must be extracted from the returns data using statistical methods
- Principal component analysis eigen decomposition of covariance matrix

PCA statistical factor model

Model background

"Modeling Financial Time Series with S-PLUS, 2nd Edition", 2005

Response

daily equity returns

Explanatory variables

principal components

Model details

Example 112, Zivot, "Modeling Financial Time Series with S-PLUS,
 2nd Edition", 2005
 http://faculty.washington.edu/ezivot/book/Ch15.factorExamples2ndEdition.ssc

Conditional Value-at-Risk

Conditional Value-at-Risk

profit

CVaR Optimization via Linear Programming

It can be shown that minimizing the CVaR of a portfolio is a linear programming problem that can be carried out with a general-purpose LP solver †

```
R Code: the Rglpk_solve_LP
> library(Rglpk)
Using the GLPK callable library version 4.42
> args(Rglpk_solve_LP)
function (obj, mat, dir, rhs, types = NULL, max = FALSE, bounds = NULL, verbose = FALSE)
NULL
```


Outline

- 1 Introduction to efficient indexes
- Overview of modeling
- 3 Analysis of results
- 4 Wrap-Up

Cumulative Returns

Drawdown from Peak Equity Attained

Cumulative Returns

Drawdown from Peak Equity Attained

Summary

	SP500	minVaRSample	minVarIndustry	minVarPCA	minCVaR
Cumulative Return	-0.106	-0.086	0.055	0.032	0.025
Annualized Return	-0.028	-0.022	0.013	0.008	0.006
Annualized StdDev	0.241	0.138	0.161	0.174	0.139
Conditional VaR	-0.159	-0.105	-0.118	-0.126	-0.100
Max DrawDown	0.549	0.337	0.370	0.406	0.329

- all minimum variance portfolios and the minimum CVaR portfolio outperformed the S&P 500 Index during the testing period
 - higher annualized return
 - lower annualized volatility
 - smaller conditional value-at-risk
 - smaller maximum drawdown
- returns are difficult (impossible) to forecast and these techniques don't require them

Can you do better than cap-weighted equity benchmarks? Maybe!

Outline

- 1 Introduction to efficient indexes
- Overview of modeling
- Analysis of results
- 4 Wrap-Up

Special thanks

SunGard Financial Systems

- Historical S&P 500 constituent weights
- Historical stock prices

Special thanks

Revolution Analytics

Revolution R Enterprise and RevoScaleR

R is
Ready for
Business™
with Revolution R Enterprise

Q & A

- Questions and comments
- Contacting the Presenters
 - Guy Yollin
 - http://www.r-programming.org
 - gyollin@r-programming.org
 - Krishna Kumar
 - kk2250@gmail.com

