STA 674

Regression Analysis And Design Of Experiments

Experiments with Multiple Factors – Lecture 1

STA 674, RA Design Of Experiments: Experiments with Multiple Factors

- Where does it fit in?
- What is it?
- Where next?

Experiments with Multiple Factors

Simple example

- Suppose that we are designing paper planes and we wish to consider two factors:
- Design of plane:
- 1. Type I
- 2. Type II
- Body Modification:
- 1. No flaps
- 2. With flaps

Experiments with Multiple Factors

Factorial Treatment Design

- A **factorial treatment design** (or factorial experiment) is one in which every possible treatment created from combining the levels of several factors is assigned to at least one experimental unit.
- A 2 × 2 (or 2^2 , or 2^K in general for a K-factor experiment where each of the factors has two levels) factorial design includes 2 factors with 2 levels for a total of 4 treatments

Experiments with Multiple Factors

Objectives

- Study the effect of multiple factors on a response.
- Study how the effect of one factor (or more) depends on the conditions determined by the remaining factors.

Experiments with Multiple Factors

Experiments with Multiple Factors

Cell Means Model

• The cell means model for the 2×2 factorial design is:

$$y_{ijk} = \mu_{ij} + e_{ijk}$$

where

- μ_{ij} is the mean response units treated with level i of factor 1 and level j of factor 2
- e_{ijk} is the error for the k^{th} unit treated with level i of factor 1 and level j of factor 2, that is $e_{ijk} = y_{ijk} \mu_{ij}$
- y_{ijk} is the response from the k^{th} unit treated with level i of factor 1 and level j of factor 2

Experiments with a Single Factor

Experiments with Multiple Factors

Cell Means Model

• The cell means model for the 2×2 factorial design is:

$$y_{ijk} = \mu_{ij} + e_{ijk}$$

	Factor 2	
Factor 1	Level 1	Level 2
Level 1	μ_{11}	μ_{12}
Level 2	μ_{21}	μ_{22}

Experiments with a Single Factor

Experiments with Multiple Factors

Cell Means Model

• The cell means model for the 2×2 factorial design is:

$$y_{ijk} = \mu_{ij} + e_{ijk}$$

	Factor 2	
Factor 1	Level 1	Level 2
Level 1	μ_{11}	μ_{12}
Level 2	μ_{21}	μ_{22}

Experiments with a Single Factor

Experiments with Multiple Factors

Simple Effects

• **Simple effects** are the differences in the mean response between two levels of one factor while the other factors remain fixed.

Examples:

The difference in mean flying distance:

- between Type I planes thrown with or without flaps,
- between Type I planes and Type II planes thrown with flaps.

Experiments with Multiple Factors

Experiments with Multiple Factors

Simple Effects

• Simple effects are differences between two means in the same row or the same column of

the table of means.

• Simple effect of Factor 1 for Level 1 of Factor 2:

	Factor 2	
Factor 1	Level 1	Level 2
Level 1	μ_{11}	μ_{12}
Level 2	μ_{21}	μ_{22}

 $\mu_{21} - \mu_{11}$

Experiments with Multiple Factors

10

Experiments with Multiple Factors

Simple Effects

• Simple effects are differences between two means in the same row or the same column of

the table of means.

• Simple effect of Factor 1 for Level 2 of Factor 2:

	Factor 2	
Factor 1	Level 1	Level 2
Level 1	μ_{11}	μ_{12}
Level 2	μ_{21}	μ_{22}

 $\mu_{22} - \mu_{12}$

Response

Experiments with Multiple Factors

Main Effects

• Main effects are the differences in the mean response between two levels of one factor averaged over all levels of the other factor(s.)

Examples:

The difference in mean flying distance for:

- planes of Type I and planes of Type II,
- planes without flaps and planes with flaps.

Experiments with Multiple Factors

Main Effects

- Main effect are differences between the overall means of two columns or the overall means of two rows.
- Main effect of Factor 1:

Factor 2	
Level 1	Level 2
μ_{11}	μ_{12}
μ_{21}	μ_{22}
	Level 1

$$\frac{\mu_{21}+\mu_{22}}{2}-\frac{\mu_{11}+\mu_{12}}{2}$$

