An attempt to give the most abstract possible definition of a blockchain.

1 BlockChain

Definition. We call Validated Rules a function noted V:

$$V: (\Sigma^*)^{\times} \to \mathscr{P}(\Sigma^*)$$

Remark. Intuitively V is a function taking a list of block in input and returning the set of block which are valid.

Definition. We call (G, V) validated chain,where $G \in (\Sigma^*)^{\times}$, noted $log_{G, V}$ a function

$$log_{G,V}: \mathbb{N} \to \Sigma^*$$

such that:

$$G(0) \in V(\emptyset)$$

$$\forall i \in [0; |G|], log(i) = G(i)$$

$$\forall i \in \mathbb{N}^+, log(i) \in V(log_{G,V}(0), ,, log_{G,V}(i-1))$$

Remark. G is the list of genesis block to startup the system. $log_{G,V}$ would be an infinite chain that is valid regarding V.

Notation.

$$\forall i, log_{G,V}(i)^- = (log_{G,V}(0), , , log_{G,V}(i))$$
$$LOG_{G,V} = \{f | f \text{ is a } (G,V) \text{ validated chain} \}$$

Remark. We introduce $LOG_{G,V}$ which really complicated but is actually necessary to deal with fork and consensus later.

Definition. A set of validated chain $LOG_{G,V}$ is said to be infinite if:

$$\forall log_{G,V} \in LOG_{G,V}, \forall i \in \mathbb{N}, \forall b \in V(log_{G,V}(i)-), V(log_{G,V}(i)-,b) \neq \emptyset$$

Remark. Infinite here is used in a sense that whatever instance of a G, V validated-chain we are dealing with we will always be able to complete it.

Definition. A set of validated chain $LOG_{G,V}$ is said secured if:

$$\forall log_{G,V} \in LOG_{G,V}, \forall i \in \mathbb{N}^+, \forall b, b' \in \Sigma, b \neq b' \implies V(log_{G,V}(i)^-, b) \cap V(log_{G,V}(i)^-, b') = \emptyset$$

Remark. Intuitively in order to be secured V(,,b) should depend on b as bitcoin include previous hash block.

Definition. We call player's knowledge a tuple (P, K_T) where P is a set of player and K_T a function:

$$K_T: P \times [0;T] \times \mathbb{R}^+ \to \mathscr{P}(\Sigma^* \times]0;1])$$

such that:

$$\forall p \in P, \forall t \in [0; T], (b, \alpha) \in K_T(t, 0, p) \implies \alpha = 1$$

$$\forall p \in P, \forall t, t' \in [0; T], t' \geq t \implies K_T(t', 0, p) \subseteq K(t, 0, p)$$

$$\forall p \in P, \forall t \in [0; T], \forall \delta \in \mathbb{R}^+, K_T(t, 0, p) \subseteq K_T(t, \delta, p)$$

$$\forall p \in P, \forall t \in [0; T], \forall \delta, \delta' \in \mathbb{R}^+, \delta' \geq \delta \implies \forall (b, \alpha) \in K_T(p, t, \delta), \exists (b, \alpha') \in K_T(p, t, \delta'), \alpha' \geq \alpha$$

Notation. $\forall p \in P, \forall t \in [0; T]$ we denote $\{b|(b, 1) \in K_T(p, t, 0)\}$: $K_T(p, t)$

Definition. Let $T, T' \in \mathbb{R}^+$ such that T > T' we say that $K'_{T'}$ extend K_T if $\forall p, K_T(p, T) = K'_{T'}(p, T)$

Definition. A block chain protocol is a function noted $P_{G,V}$:

$$P_{G,V}: (LOG_{G,V} \times \mathbb{N}) \times (LOG_{G,V} \times \mathbb{N}) \times T \rightarrow (LOG_{G,V} \times \mathbb{N})$$

such that:

$$\forall log_{G,V}, log_{G,V}' \in LOG_{G,V}, \forall n, n' \in \mathbb{N}, \forall t \in T; P_{G,V}(log_{G,V}, n, log_{G,V}', n', t) = (log_{G,V}, n) \lor (log_{G,V}, n')$$

Remark. $P_{G,V}$ can be seen as the rule in case of fork and new block. Have to be improve to impose that there is no cycle (an order?)

Definition. Considering an validated chain $LOG_{G,V}$, a player's knowledge (P, K_T) and a block chain protocol $P_{G,V}$. We denote $S_{t,p}$ where $t \in [0,T]$ and $p \in P$ the set of tuple :

$$S_{t,p} = \{log_{G,V}(N)^- | log_{G,V} \in LOG_{G,V} \land log_{G,V}(N)^- \subseteq K_T(p,t)\}$$

We call BlockChain at time $t \in [0,T]$ for user $p \in P$ noted $BC_{t,p}$ the tuple:

$$BC_{t,p} \in S_{t,p}$$

 $\forall log \in S_{t,p}, P_{G,V}((log, |log|), (BC_{t,p}, |BC_{t,p}|), t) = (BC_{t,p}, |BC_{t,p}|)$

Remark. Intuitively the blockchain for a user p at a time t is the best chain he fully knows regarding the protocol function and the validity at time t (time-stamping).

Definition. We denote α^* the function

$$\mathbb{R}^+ \times LOG_{GV} \times N \times P \rightarrow [0,1]$$

such that:

$$\alpha^*(\delta, log_{G,V}, N, p) = max\{\alpha | \exists b; (b, \alpha) \in K_T(p, T, \delta) \cap V(log_{G,V}(N)^-)\}$$

We said that a $LOG_{G,V}$ is alive regarding (P, K_T) iff:

$$\exists p, \exists log_{G,V}, \exists N, log_{G,V}(N)^- \in K_T(p,T) \land V(log_{G,V}(N)^-) \cap K_T(p,T) = \emptyset \land lim_{\delta \to \infty} \alpha^*(\delta, log_{G,V}, N, p) = 1$$

2 Draft

Definition. We call an alive set of validated chain a tuple $(LOG_{G,V}, P, K_P)$ where $LOG_{G,V}$ is an set of infinite validated chain and P, K_P an alive set of player.

Proposition. Let $(LOG_{G,V}, P, K_P)$ an alive set of validated chain then:

$$\forall log_{G,V} \in LOG_{G,V}, \forall i \in \mathbb{N}, \exists p \in P, \exists t \in T, V(log_{G,V}(i)^{-}) \cap K_{P}(p,t) \neq \emptyset$$

Remark. To be honest i am not sure as we are dealing with infinite number. I may have to trick things here. I want to ensure the fact that the chain will eventually move forward.