PAT-NO:

JP410308467A

DOCUMENT-IDENTIFIER:

JP 10308467 A

TITLE:

UNIT PCB CARRIER FRAME FOR BALL GRID

ARRAY SEMICONDUCTOR

PACKAGE AND MANUFACTURE OF BALL GRID

ARRAY SEMICONDUCTOR

PACKAGE USING THE SAME

PUBN-DATE:

November 17, 1998

INVENTOR-INFORMATION:

NAME

SHIM, IL KWON

HEO, YOUNG WOOK

ASSIGNEE-INFORMATION:

NAME

ANAM IND CO INC

COUNTRY

N/A

APPL-NO:

JP08182799

APPL-DATE:

June 24, 1996

INT-CL (IPC): H01L023/12

ABSTRACT:

PROBLEM TO BE SOLVED: To enable a package to be less warped even if it is subjected to a following process carried out at a high temperature, by a method wherein a die pad where a unit PCB is mounted is made to function as its heat sink.

SOLUTION: A unit PCB carrier frame 20 is composed of a frame 25, die pads 21, and tie bars 22, where the die pads 21 are made to function as the heat

sink of a finished package. Each die pad 21 where a unit, PCB 13 is mounted is surrounded with long slots 23 corresponding to the shape of the unit PCB 13. By this setup, the unit PCB carrier frame can be prevented from being bent by a thermal stress in a package assembly process which is carried out at high temperatures.

COPYRIGHT: (C) 1998, JPO

L	Hits	Search Text	DB	Time stamp
Number				
1	319610	(crosspiece bar i t rod crossing) with	USPAT;	2004/04/27
		(substrate carrier board pcb cb pb)	US-PGPUB;	22:08
'			EPO; JPO;	
			DERWENT;	
			IBM_TDB	
2	30844	(semiconductor chip die ic (integrated	USPAT;	2004/04/27
	•	adj circuit)) same ((crosspiece bar i t	US-PGPUB;	22:09
		rod crossing) with (substrate carrier	EPO; JPO;	
		board pcb cb pb))	DERWENT;	·
			IBM_TDB	·
3	5416		USPAT;	2004/04/27
		((semiconductor chip die ic (integrated	US-PGPUB;	22:09
		adj circuit)) same ((crosspiece bar i t	EPO; JPO;	
		rod crossing) with (substrate carrier	DERWENT;	
	1	board pcb cb pb)))	IBM_TDB	
4	641	(package packaging packaged) same ((slot	USPAT;	2004/04/27
		slit gap opening via) same	US-PGPUB;	22:10
	1	((semiconductor chip die ic (integrated	EPO; JPO;	
		adj circuit)) same ((crosspiece bar i t	DERWENT;	·
		rod crossing) with (substrate carrier	IBM_TDB	
		board pcb cb pb))))		

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出顧公園番号

特開平10-308467

(43)公開日 平成10年(1998)11月17日

(51) Int.CL*

H01L 23/12

識別記号

ΡI

H01L 23/12

L

請求項の数11 FD (全 6 頁) 審查請求 有

(21)出顧番号

特期平8-182799

(22)出頭日

平成8年(1996)6月24日

(31)優先権主張番号 1995 P41846

(32) 優先日

1995年11月17日

(33) 優先権主張国

韓国 (KR)

(71)出版人 595173374

アナムインダストリアル株式会社

大韓民国ソウル特別市ソントン区ソンスゥ

トン二力280-8

(72)発明者 シム イル クォン

大韓民国 ソウル特別市 ノウォンク ウ

ォルゲドン 436 ドンシンアパート 3

-1108

(72)発明者 ホ ヨン ウク

大韓民国 キョンキド ソンナムシ プン

ダンク スゥネドン 55 ロッテアパート

132-1504

(74)復代理人 弁理士 斉藤 朱一 (外1名)

(54) 【発明の名称】 ボールグリッドアレイ半導体パッケージ用ユニットPCBキャリヤフレーム及びこれを用いるボ ールグリッドアレイ半導体パッケージの製造方法

(57)【要約】

【課題】 高温の組立工程を経て作業を進行しても製品 の曲がり発生を最少化し、PCBパネルからできるだけ 多くの良品のユニットPCBを作って使用し得るように して製品の歩留まりを向上する。

【解決手段】 ストリップ又はリール形態のフレーム2 5に長いスロット23により囲われて形成される複数の ダイパッド21を有し、ヒートシンクとして機能する各 々のダイパッド上にユニットPCB13をそれぞれ付着 する。

【特許請求の範囲】

【請求項1】 熱伝導性材料からなるフレームと、該フ レームに穿設された長いスロットと、該長いスロットに 囲われて形成されるダイパッドと、前記長いスロットに 隣接して前記ダイパッドとその周囲のフレームとを連結 支持するタイバーとから構成され、

前記ダイパッドがこの上に接着されるユニットPCBの ヒートシンクとして機能することを特徴とするボールグ リッドアレイ半導体パッケージ用ユニットPCBキャリ ヤフレーム。

【請求項2】 隣り合う一対のダイパッドの間に前記長 いスロットが一対配置されており、この一対の長いスロ ットの間に第2のスロットが穿設されていることを特徴 とする請求項1に記載のボールグリッドアレイ半導体パ ッケージ用ユニットPCBキャリヤフレーム。

【請求項3】 前記フレームが銅、銅合金、アルミニウ ム及びステンレスでなる群から選択される何れか一つの 金属材料で形成されることを特徴とする請求項1又は2 に記載のボールグリッドアレイ半導体パッケージ用ユニ ットPCBキャリヤフレーム。

【請求項4】 前記ダイバッドの大きさがこの上に接着 されるユニットPCBの大きさの±2mm以内に形成さ れることを特徴とする請求項1、2又は3に記載のボー ルグリッドアレイ半導体パッケージ用ユニットPCBキ ャリヤフレーム。

【請求項5】 前記ダイパッドが銅または銅合金で形成 され、このダイパッド上にCu2OまたはCuOの薄膜 を形成させてユニットPCBとの接着強度を増大させた ことを特徴とする請求項1,2又は4に記載のボールグ リッドアレイ半導体パッケージ用ユニットPCBキャリ 30 ヤフレーム。

【請求項6】 前記ダイパッドがアルミニウムで形成さ れ、このダイパッド上に酸化皮膜処理による薄膜を形成 させたことを特徴とする請求項1,2又は4に記載のボ ールグリッドアレイ半導体パッケージ用ユニットPCB キャリヤフレーム。

【請求項7】 前記ダイパッドの底面がニッケル又はソ ルダ鍍金されて表面保護処理されたことを特徴とする請 求項1乃至5のいずれか一つに記載のボールグリッドア レイ半導体パッケージ用ユニットPCBキャリヤフレー 40 **L**.

【請求項8】 前記フレームがストリップ又はフープ状 に形成されることを特徴とする請求項1乃至7のいずれ か一つに記載のボールグリッドアレイ半導体パッケージ 用ユニットPCBキャリヤフレーム。

【請求項9】 PCBパネル上に所定のパターン及びキ ャピティを形成する段階と、

パターンが形成されたPCBパネルを複数のユニットP CBに切断する段階と、

され、且つ、細いタイバーで周囲のフレームと連結され た複数のダイパッドの各々に、前記ユニットPCBと前 記キャビティに配置した半導体チップとを接着する段階

その後の半導体バッケージの組立工程完了後、前記タイ バーを切断する段階とを包含することを特徴とするユニ ットPCBキャリヤフレームを用いるボールグリッドア レイ半導体パッケージの製造方法。

【讃求項10】 PCBパネルをユニットPCBに切断 10 する段階で、ユニットPCB上の半導体チップが実装さ れる部分に一つのキャビティが包含されるように切断す ることを特徴とする請求項9記載のユニットPCBキャ リヤフレームを用いるボールグリッドアレイ半導体パッ ケージの製造方法。

【請求項11】 ダイパッド上にユニットPCBを接着 する段階で、接着がエポキシ系又はポリイミド系の接着 フィルムを用いた高温、高圧のプレスによる接着である ことを特徴とする請求項9または10記載のユニットP CBキャリヤフレームを用いるボールグリッドアレイ半 20 導体パッケージの製造方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明はヒートシンク付着型 ボールグリッドアレイ (Ball Grid Arra y:BGA)半導体パッケージの製作時に使用されるユ =yPCB(Printed Circuit Bo ard) キャリヤフレームに関するもので、より詳しく はストリップ又はフーブ状のフレームに長いスロットに より囲われて形成された複数のダイバッド上にユニット PCBを搭載して組立工程を遂行し、ダイパッドがヒー トシンクとして使用されるボールグリッドアレイ半導体 パッケージユニットPCBキャリヤフレーム及びそれを 用いたボールグリッドアレイ半導体バッケージの製造方 法に関するものである。

[0002]

【従来の技術】典型的なヒートシンク付着型ボールグリ ッドアレイ半導体パッケージ1は、図3に示すように、 半導体チップ40が実装されるPCB10の部分にキャ ビティ14が形成されており、PCB10の底面にはヒ ートシンク30が付着され、PCB10に形成されたキ ャビティ14内の露出されたヒートシンク30の上面に は直接半導体チップ40が付着され、半導体チップ40 に形成されたボンドバッド (図示せず) とPCB10の 上面に形成された配線パターンの端子は電気的薄電性の ボンドワイヤー43により電気的に接続され、半導体チ ップ40とボンドワイヤー43等を外部環境から保護し 半導体チップ40とPCB10間の比較的大きい熱膨張 係数差に起因する応力及び変形力を緩和させるためにエ ポキシ樹脂等のような封止剤45がキャビティ14を含 ユニットPCBフレームに長いスロットで囲われて形成 50 んだ周辺領域上にモールディングされ、PCB10の封

されたPCBパネル11をパッケージに使用される所定 の大きさに切断してユニットPCB13を形成する。各 々のユニットPCB13には半導体チップ40(図3参 照)を実装するためのキャビティ14が、この実施形態 では、一つずつ形成したが、キャビティ14を二つ以上 としてもよい。

【0012】図2 (A) は本発明のユニットPCBキャ リヤフレーム20の平面図で、フレーム25、複数のダ イパッド21及びタイパー22で構成され、ダイパッド 21は完成されたパッケージ1におけるヒートシンクと 10 して機能する。本発明のユニットPCBキャリヤフレー ム20に形成された複数のダイパッド21は、ユニット PCB13が搭載される部分で、ユニットPCB13の 形状に対応させて長いスロット23が周囲を囲むことに よって形成される。このスロット23の形状及び位置 は、この実施の形態に限定されず、多様に選択できる が、図2 (A) では同一形状及び大きさの四つのスロッ ト23によって一つのダイパッド21を形成した一例を 示し、ダイパッド21,21の間の一対のスロット23 間にはスロット23に平行に第2のスロット23'が形 20 成される。各ダイパッド21に隣接してタイバー22が あってこれによりダイパッド21がフレーム25に連結 支持される。タイバー22の形状及び形成位置はこの実 施の形態に限定されるものではなく、パッケージの組立 工程完了後にフレームから容易にダイパッド21の部分 が切断できればその形状及び位置は任意である。

【0013】本発明のユニットPCBキャリヤフレーム 20において、ダイパッド21の周囲を囲むスロット2 3と第2のスロット23′とは高温下のパッケージ組立 工程下でユニットPCBキャリヤフレーム20が熱応力 30 により湾曲されることを防止する役割をする。 ストリッ **プ状あるいはリールに巻かれるフープ状のフレーム25** には、本発明のユニットPCBキャリヤフレーム20を 移送したり正確な位置にセッティングする等の用途に使 用される所定間隔の複数の孔24が形成してある。

【0014】本発明のユニットPCBキャリヤフレーム 20の素材としては、熱伝導性に優れた銅、銅合金、ア ルミニウム又はステンレス等の金属材が好ましい。スト リップ又はリール形態のパッケージの組立完成後、タイ バー22を切断して完成される各ボールグリッドアレイ 40 半導体パッケージ1 (図3参照) でダイパッド21がヒ ートシンク30の役割をする。

【0015】本発明のユニットPCBキャリヤフレーム 20に形成された複数のダイパッド21の各々にユニッ トPCB13を接着して搭載時の接着強度を高めるため に、ダイバッド21がアルミニウムである場合は酸化皮 膜処理 (Anodizing) してAl2O3のような薄 膜を被せるか、又は銅合金材である場合はCu2O、C u O等のような酸化物による薄膜を形成させることが好 ましい。

【0016】又、ダイパッド21の底面には表面保護及 び腐蝕防止のためニッケル又はソルダ鍍金処理すること が好ましい。本発明のユニットPCBキャリヤフレーム 20に形成されるダイバッド21の大きさは接着される ユニットPCB13の大きさの±2mm以内の寸法に形

成することが工程処理上好ましい。

【0017】図2(B)は、本発明のユニットPCBキ ャリアフレーム20上に複数のユニットPCB13を搭 載した状態を示す平面図である。

図2(B)において は、銀充填エポキシ樹脂等の熱伝導性のよいエポキシ 系、ポリイミド系の樹脂類の接着剤又は接着フィルム等 を用いて、複数のダイパッド21の各々にユニットPC B13を搭載し、更に、そのキャビティ14の中央に、 図3に示した半導体チップ40を配置して、150℃以 上の高温でエポキシ樹脂類を硬化させて、これらを接着 する。接着フィルムを用いる場合は、高温、高圧のプレ スにより接着する。

【0018】接着剤の硬化後、Auワイヤー43を用い て半導体チップ40上のボンドパッド(図示せず)から PCB10 (ユニットPCB20) 上のリードフィンガ ー (図示せず) を互いに連結、接続し、液状の封止用樹 脂を用いてキャビティ14を包含した周辺領域を封止し (45)、高温で硬化する。次いで、ソルダボール50 の溶着を容易にするため、樹脂系のフラックス又は水溶 性のフラックスをソルダボール50の溶着部分に塗布し た後、ソルダボール50を置き、220℃以上の高温に 維持された炉内を通過させて溶着させる(図3参照)。 その後、半水溶性又は水溶性洗剤等を用いてパッケージ 製品に残留するフラックス等をすっかり除去する。

【0019】以上の半導体パッケージの組立工程は、キ ャリヤフレーム20をその長手方向に順次送りながら連 続的に進めて行われる。ユニットPCBキャリヤフレー ム20上で半導体パッケージを組み立てた後、その先の 作業ステーションにおいてダイバーを切断して半導体パ ッケージ1とフレーム25とを分離する。

【0020】ユニットPCB13が複数のダイパッド2 1の各々に接着された本発明のユニットPCBキャリヤ フレーム20は、ボールグリッドアレイ半導体パッケー ジ1を製造する従来の組立工程にそのまま適用できると ともに、従来の生産設備をそのまま利用することができ るので、製造原価を節減し得る利点がある。又、半導体 パッケージの組立工程時、ユニットPCB13が本発明 のキャリヤフレーム20に搭載される部分はダイバッド 21のみに限定されるので、互に異なる材質のユニット PCB13とヒートシンク30(即ち、本発明のユニッ トPCBキャリヤフレーム20のダイパッド21)を接 着して使用しても、熱膨張の差により湾曲される程度が 非常に少なく、高温度で処理される後続工程を経由して も溶着ソルダボール50先端面を同一平面上に正確に維

50 持することができる。

7

【0021】ストリップ又はフーブ状のPCBキャリヤフレーム20上で順次連続的に組立てられ、完成されたボールグリッドアレイ半導体パッケージ1は、タイバー22を切断することにより、フレーム25から切り離されて、個々の独立したボールグリッドアレイ半導体パッケージとなる。本発明のユニットPCBキャリヤフレーム20は、既存の半導体パッケージ製造設備及び工程をそのまま適用し得るように、既存のリードフレームに類似した形態のストリップ形態に構成されることが好ましいが、連続工程処理を遂行し得るようにフープ形態に構りれていませなすることも好ましい。

[0022]

【発明の効果】以上、詳細に説明したように、本発明によるユニットPCBキャリヤフレーム20を用いてヒートシンク付着型ボールグリッドアレイ半導体パッケージ1を製造すると、熱伝達が良好なユニットPCBキャリヤフレーム20に形成された複数のダイパッド21の各々にユニットPCB13を接着させるので、高温で処理される後続工程を経由してもパッケージの湾曲発生が非常に少なくなる。又、PCBパネル11から多くのユニ20ットPCB13を作ることができるので、生産性を向上させることができる効果がある。

【図面の簡単な説明】

【図1】本発明によるユニットPCBの製作説明図である。

【図2】(A)は、本発明のユニットPCBキャリヤフレームの平面図、(B)は、複数のユニットPCBが搭載された状態の本発明のユニットPCBキャリヤフレームの平面図である。

【図3】一般的なヒートシンク付着型ボールグリッドアレイ半導体パッケージの断面図である。

【図4】従来のヒートシンク付着PCBストリップの製作説明図である。

【符号の説明】

- 1 ヒートシンク付着型ボールグリッドアレイ半導体 パッケージ
 - 10 PCB
 - 11 PCBパネル
 - 13 ユニットPCB
 - 14 キャピティ
 - 20 ユニットPCBキャリヤフレーム
 - 21 ダイパッド
 - 22 タイバー
- 23 スロット
-)24 孔
 - 25 フレーム
 - 30 ヒートシンク
 - 40 半導体チップ
 - 50 ソルダボール
 - 60 ユニットPCB搭載キャリヤフレーム

【図1】

【図3】

【図2】

