

Project Report for J component on Topic:

Approach to Improve Diffie—Hellman Key Agreement algorithm for providing high security to clients with limited Computational Resources

Network and Information Security - Embedded Project ITE4001

Under the Guidance of
Prof. ASWANI KUMAR CHERUKURI

SLOT:F2+TF2
Fall semester2020-2021

By

Aman Chawla 18BIT0055

Pranav Bansal 18BIT0244

Lakhan Nad 18BIT0182

Shaurya Gupta 18BIT0068

Problem Definition:

The modular exponentiation computation of Diffie-Hellman key Exchange Protocol puts a heavy load on the clients with limited Computation resources like Radio Frequency Identification (RFID), NFC, Arduino, Other Embedded Systems, where either the **computational capacity** or the **battery is limited** and precious and cannot be intensively used for Security Computations which would hinder the required performance of the system.

There-fore, many standards and implementations of these thin clients opt out key agreement schemes to meet computational efficiency requirements thereby accepting some security risks, but with increase in the usage of these embedded systems, It is important to have them more secure and efficient algorithm that does not hinder the actual performance and application of the device.

Precise problem statement reflecting your project:

Our proposed project aims to Implement, Test Validity, Feasibility and Practical Application of a Proposed Key Sharing Algorithm based on Diffie-Hellman Key Exchange Algorithm for Thin clients with resource constraints.

The Proposed Algorithm in the Research paper is Computationally Modified form the Existing Algorithm

Some Important facts:

- The modified Computational Diffie—Hellman Problem and prove its security being equivalent to the Computational Diffie—Hellman Problem along with keeping the fact in mind that the algorithm needs to be having very limited computational overhead as it has to be implemented in devices with limited computational capabilities ,but they require high security.
- Our project work and research work is inspired by a research paper titled, A Generic Approach to Improving Diffie—Hellman Key Agreement Efficiency for Thin Clients, form The Computer Journal Advance Access published November 2, 2015.

List of Objectives:

- 1. To **find a solution** for implementing a improved Diffie-Hellman Key Agreement algorithm to improve the security of Embedded Systems and IoT devices with limited computational resources by reducing computational cost at client side.
- 2. To **Implement** the computationally modified Diffie-Helman Algorithm measure both Qualitative and Quantitative properties, and look for any unexpected anomalies that may occur and hinder the performance or the application of the system.
- 3. **Testing the results** which include:

Testing the Efficiency of the implemented algorithm, test it for different environments and compare the modified DH algorithm with existing algorithm for its application in thin clients with limited resources in terms of time required to execute and memory required for execution and establishment of a shared key.

<u>Techniques to be Used & Experimental Setup:</u> <u>Identify the techniques & experimental setup (S/W & H/W) you wish to use to address the list of objectives.</u>

Techniques:

- Diffie-Hellman algorithm for key exchange
- Number Theory involving exponents and Modular arithmetic
- Bitwise operations
- Linux socket programming which can be used for secure key exchange between two computers provided we know the IP addresses of both the computers

Experimental Setup:

- The configuration of the system would be Intel Core i3-4005U, 64-bit Windows 10 OS,1.7GHz, 8 GB RAM for testing the results.
- Virtual environment client for linux socket programming
- EDH-SC protocol in C language
- The devices should have computational capability to perform DHKEP and have an input/output interface

Research gap:

We found the research gaps that affects the way we proceed for implementation of the project objectives:-

- 1) The implementation and analysis results of key exchange approach using modular arithmetic in multiparty key exchange algorithm, is not found.
- 2) The implementation and analysis results of key exchange approach using modular arithmetic in embedded systems is not discussed.
- 3) The Implementation of modular arithmetic based key exchange algorithm with string based authentication is not found, which results in need for a statistical analysis to be carried out for observing the ratio of time reduction/optimization in Diffie-Hellman key exchange algorithm
- 4) The application of string based authentication mechanisms in the multiparty key exchange algorithm, because, authentication mechanism has a prominent effect over the time complexity of mechanism, and that when over an iterative approach algorithm, increases the time complexity to a great extent.

In the given literature, these results of execution of string based authentication mechanism and their analysis are not covered, which further makes it difficult to observe the influence of this authentication mechanism over a 2-party key exchange algorithm.

5) In Arazi's approach of replacing the message in the Digital Signature algorithm with Diffie-Hellamn key exchange algorithm, there are certain vulnerabilities which include a dynamic problem of, if one of the session keys are exposed in public, all the other secret session keys are compromised with it, there were many solution towards this problem, but none of them till our research scope were able to produce secret session keys which are modular in nature and independent of each other. We take this as opportunity to take our research to help make independent keys, this could be further done making the changes in the mathematical approach that standard Diffie-Hellman key exchange protocol follows.

Literature Survey:

Referenc	Title of the	Technolog	Brief Description	Parameters	Advantages of	Limitations of
_	Paper	y Used	about the	influencing the	the	the
e			model/system	performance of	model/system	model/system
Number				the model/system		
[1]	Research on Diffie- Hellman Key Exchange Protocol	during key exchange in Diffie-Hellman	Comparing the efficiency of Hashing algorithms(MD5,SHA-256), symmetric key encryption algorithms(DES, AES) and public key encryption algorithms(RSA, ECC) on the basis of computations and time taken. Applying the most efficient algorithm(Hashing algorithm) on Diffie Hellman Key Exchange protocol to provide entity authentication so that participating parties are authenticated and their communication channel is secure.	the most efficieint ones. Then comes symmetric key encryption algorithm at the least performance in terms of time taken is by the use of public key encryption algorithm. All these authentication algorithms are used over Diffie hellman key echange protocol. So the efficiency does not	impersonation attacks	vulnerable to clogging attack. The advancement in computation power
[2]	A study on Diffic	Andhantiantal	Tutus du sti su .	depends upon the protocol	1 Diffic Hallman's	1. The master of con-
[2]	A study on Diffie- Hellman Key Exchange Protocol	Authenticated Key establishment Protocols along with One-Pass Protocols are used	Introduction: The purpose of Diffie-Hellman protocol is to enable two parties to securely exchange a session key which can then be used for next	Performance of the system is influenced by the choice of authenticated key protocols.	1. Diffie-Hellman's effectiveness comes from the difficulty of calculating discrete logarithms	1. The protocol can only be used for exchanging secret data without authenticating two
		to improve security of Diffie Hellman Key	symmetric encryption of messages. The idea of Diffie-Hellman protocol is to calculate a session key by the	Considering the key exchange or	2. Using authenticated key mechanism with asymmetric techniques	parties. This is the reason why Diffie-

	Ti .					T
		Exchange		establishment protocols	, we can reduce the	against man-in-the-
		Protocol during	public parameters that are shared in	A A	scope of Key	middle attack.
		key exchange mechanism.	1 21	cost/efficiency and	compromise	
		mechanisin .	protocol is called key agreement	security are primary	impersonation (KCI) attack and Ephemeral	2. Drawbacks of
		In addition to that	protocol.	parameters influencing	key compromise	one-pass protocols
		, to prevent from		the performance. Cost	(EKC) attack.	include not
			Details:	includes both	(EIIC) attack.	supporting perfect
			Station-to-station (STS) protocol	processing and	3.	forward secrecy
		be avoided with	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	communication costs.	Biggest advantage of	(PFS), lack of key control and pruning
		the use of	exchange occurs, the legitimate	communication costs.	One-pass key	to key compromise
		authentication	parties can compute a secret key using Diffie-Hellman and then	Also, Redundancy in	exchange protocols is	impersonation
		mechanisms such as digital	using Diffic-fichinan and tich	communication affects	that they are authenticated	(KCI) attacks.
		signatures and	authenticating each other by	the performance of	implicitly, hence, no	
		public- key		system.	one else can learn this	
		certificates.	secrecy by using short-term keys		value except the	
			for subsequent sessions		communicating parties	
			_		<i>C</i> 1	
[3]				Selection of managing	It will reduce the the	Theoritically, this
					time to manage the	method consumes
	Protocol Based on Diffie-		1	*	binary tree	more time when
		dispatch	1 2 /	system. Node with the	significantly, thus	dealing with
		information of		*	becoming a better	dynamic addition
		generating group		capability should be	option in case of	and deletion.
		key, therefore	redundant operations while dealing	selected, and if they are	dealing with	The protocol is
		_		of same capabilities, then the one with the	paroxysmal needs for	The protocol is vulnerable to
		complexity for dealing with	\mathcal{O}	then the one with the lower IP address should	group key among	improved man in the
			of times of sending data packages to		mutti noucs.	middle attack in
		for group key	minimum. Managing node selects		It can effectively	which the MITM
		among multi	necessary part of information from		reduce overlapping	hijack all the
		nodes to O(N).	complete binary tree to each non-		computing, decrease	communicating path
		(2.7).	managing node.		the packages sending	between managing
					times.	and non-managing
						nodes
					It can prevent	
					traditional man in the	
					middle attack	

coefficients of E DV will also add the conventional parameters for the E-passport like name, country, age, gender

[5]	Use of Digital Signature with Diffie Hellman Key Exchange and AES Encryption Algorithm to Enhance Data Security in Cloud Computing	various protocols are used to ensure security and privacy of data downloaded or uploaded to the cloud. This paper uses Diffie Hellman key exchange along with AES encryption and digital signatures and proposes one such way of data security in cloud based services and platforms.	Using this method we can incorporate three data security control mechanisms like security encryption and verification in a stand alone system. It is a three ways protection scheme wherein digital signature provides authentication, encryption algorithm provides session encryption key and is used to encrypt user data file as well, which is to be saved in cloud and lastly trusted computing to verify integrity of user data. When a user wants to upload a file to the cloud server, first key are exchanged using Diffie Hellman key exchange at the time of login, then the client is authenticated using digital signature. Finally user's data file is encrypted using AES and only then it is uploaded to another (cloud) Storage server.	influence the performance of the system. The size of file is one such factor. If size is too large then encryption/decryption of data as well as upload or download would take a lot of time and since our data is first made available to trusted server then to us this time can play a major role in deciding	read by encrypting the data and hence the user's data is safe and cannot be tampered. Another benefit of using this method is safe communication between server and user because of Diffie Hellman key exchange all the communication	requirement of two servers for processing this can increase hardware cost. Since the data is first uploaded/download ed to trusted server for encryption it takes twice as much as time to complete job than it would
-----	--	---	--	--	---	--

	1	1		T	T	
[6]			The first algorithm generated the	The only factor that can		The only limitation
	of Diffie-Hellman (DH)		keys of length k where k is log2(n)	affect the performance	1	of this algorithm is
	Key Distribution		and if the resultant random number			that this algorithm
	Algorithm in		is less than n then the algorithm is	the speed of generation		
	Pool-Based	True Random	terminated or else continued.		the speed in generation	
	Cryptographic Systems	Numbers Pool		random number	of keys.	actually ensure that
		while using the	The second algorithm generated firs			bits are not wasted.
		L .	x significant bits such that they are	speed by which the		On test performed
		Hellman		pool of bits is	algorithm cut short the	
		generation	such bits were not found the	consumed. Though the		was found that this
		algorithm. The	algorithm continued. Remaining bits			system also had
		_	needed to be generated only once	efficiently uses the	achieving the efficient	
		had same goal	and it was ensured that overall	generated random	use of pool of TRNs.	1.69% of random
		generation of x	random number is less than n.	numbers with minimal		bits but was
		and y random		wastage of random bits.	The proposed	significant
			In third algorithm one limitation of			improvement over
			the second algorithm was addressed.	that bits are not wasted.	11 1 2	more traditional
			Due to implementation of second		numbers with less	way in which the
		Diffie Hellman	algorithm it was ensured that the		wastage.	waste was around
		key exchange.	resulting no is never equal to n. But			20%.
			third algorithm first generated x			
			significant bits keeping all other bits			
			zero and ensuring that resultant no is			
			less than n and remaining bits were			
			generated randomly and if the result			
			was greater than n then process			
			repeated.			

[7]	A Parallel Key Generation Algorithm for Efficient Diffie-Hellman Key Agreement		modular exponentiation over finite field p into s portions where each portion is bounded with k. The algorithm consists of three stages. In first stage we create a residue table in advance. Then we compute s portions simultaneously. At last we multiply all s portion to	The parameters influencing the calculation is k i.e. chunks in which the original exponent is divided by choosing suitable value of k the speed of algorithm and hence overall efficiency of proposed method can be increased.	computational power which is required for serial key computation. One another benefit	
[8]		group communications. This algorithm proposes a way to generate a common key for group meeting which changes with change in membership of meeting. That means a new key is generated when meeting starts and whenever someone leaves or when new or old	down flow. As in any other DH key exchange two numbers are chosen one prime prime no and other primitive root of chosen prime. A set is maintained X={Y,Z} where Y itself is a set of numbers. The up flow starts from User1 and flows to other users until it reaches to end user. When a set reaches a user he exponents each element in Y with its private key and then concatenate Z with Y to form new	the DH calculation is already time consuming Other factors are dynamics of membership. As new members join or existing members leave	among group. Because new keys are generated whenever group constituents changes it maintains forward and backward secrecy.	drawback of this system is that key generation is time consuming since it hops from one user to other it almost takes n steps for secret key

	I					1	
			extracts a element that doesn't				
			contains only his private key				
			counterpart and makes the secret				
			key.				
		backward secrecy.					
[9]	Hybrid Technique of	In this proposed	We will discuss, in this paper about	1.Selection: In this	1)Genetic algorithm	1.	Lack of
[2]			· 1 1	process, a population of			authentication
	\mathcal{C}	· · · · · · · · · · · · · · · · · · ·	algorithm and extension of Diffie	individuals is created.	Hellman algorithm		procedure.
			Hellman algorithm try to get an idea			2.	
	Algorithm used for Intrusion Detection in				path for data	۷.	Algorithm can
				of best group is been made for the further.	transmission in		be used only
	Cloud						for symmetric
					insecure network by		key exchange.
				crossover process, from			
					before it disrupts the		
			and may affect the whole	two chromosomes are	transmission or data.		
			transmission or ma affect the data in		2) D : 41 :		
			between the transmission.	to generate a new	2) By using this		
		network. Without			algorithm it do not		
		getting interrupted			allow any intruders to		
		by any intruders it		1 1	make the server busy.		
		may gives an		mutation is performed			
		optimized path		to the new individual	3) In future scope it		
		without data		by changing any value	can have an enhanced		
		damaged or		of it so that it seems to	implementation of our		
		without getting		be different from other	current proposed		
		server busy		individuals.	model with other		
		transmission may		4. Fitness Function:	algorithms.		
		continuous and		Fitness function is			
		secure. In		check to see whether			
		following steps:		the obtained individual			
				is up to our desired goal			
				or not			
[10]	Modification of Diffie-	In this paper zero-	There are networks and entity	The Diffie-Hellman	1)The proposed	1. Enc	cryption of
	Hellman Key Exchange	knowledge proof,	groupings that require entity	algorithm is susceptible	protocol is a	infor	mation cannot
	Algorithm for Zero	Fiat-Shamir ZKP	authentication while preserving the	to two attacks; the	deterministic	be pe	erformed with
	Knowledge Proof					the h	elp of this
			9			algor	ithm.
		algorithm has	proof (ZKP) plays an important role	the-middle attack . A	probabilistic), hence	2. A s	it is
					has no soundness error		outationally
		and criticized.	secret information. Diffie-Hellman	attack An interceptor			sive, it is

		1	m : :		(m) : -:	1	
					(Eve) can intercept R1	computation cost. C.	expensive in terms
					and R2 and Find x	(A) (TE) 1	of resources and
			^		from $(R1 = g \times mod p)$;		CPU performance
			presented; the first		Find y from $(R2 = g y)$	protocol fulfills the	time.
			one was built		1 / 1	ZKP properties and	
			around the basic		calculate ($K = gxy \mod$		
			D-H key		p). The secret key is not		3.
			exchange		secret anymore.	attack and man-in-the	
			algorithm, which		To make Diffie-	middle attack.	
			is vulnerable to		Hellman safe from the		
			man-in-		discrete logarithm	3) The proposed	
			themiddle-attack.		attack, the following	algorithm serves as	
			The second		are recommended:	key exchange	
			proposed version				
			solves the		must be very large	addition to	
			problem of the		(more than 300 digits).	authentication	
			mentioned attack.		2) The generator g must	services.	
					be chosen from the		
					group.		
					3) The numbers x and y		
					must be large random		
					numbers of at least 100		
					digits long, and used		
					only once (destroyed		
					after being used). Still,		
					no algorithm for the		
					discrete logarithm		
					problem exists with		
					computational		
					complexity $O(x r)$ for		
					any r; all are infeasible.		
[1	.1]	Security Analysis and	Kerberos	This paper analyses the process of	Diffile-Hellman	1) It mainly proposes	1) The replay attack:
		Improvement for		Kerberos authentication protocol,	algorithm is one of the	some improved	In order to avoid
		Kerberos Based on	system is a	and finds the existing security	key security exchange	methods to solve the	replay attacks, the
		Dynamic Password and		problems of the protocol referring to		problems of the	protocol uses the
		Diffile-Hellman	widely applied in	some Kerberos improvement	ensure that keys need to	dictionary attacks, the	time stamp
		Algorithm	the authentication	projects proposed in some papers at	exchange would be	efficiency of	mechanism in the
						encryption and	tickets and the
				the thoughts and methods using	unsafe network	decryption and the	authentication
					environment. The	cost of key storage.	operator.
			environment, and	encryption security during the	security of its origin is		2) Dictionary attack:

it makes the process of interaction between the that its mathematical 2) It put forward aim to In step (2), the client and Kerberos key distribution model is known as a bigguarantee the security unsafe factor. message sent from problem in mathematic of users key under the AS to C is which exists in center, and makes passwords the authentication securely exchanged by using field. The object of premise of maintaining encrypted by users Diffile-Hellman key algorithm. mathematics model is private key which is effective, and to process, transfer from the calculation of discrete reduce the produced with user distributed logarithm in finite password, and the maintenance cost of users private key is workstations to domain, and this keys storage the centralized calculation is more dealt with user difficult than exponent password by using authentication server, providing one-way Hash calculation. Its identity mathematical function. 3) Key storage authentication for calculation process problem: Traditional the two main could be described as bodies in the open follows: (1)A chooses Kerberos uses random number x, and network symmetric environment and calculates ax mod p, cryptosystem, so the and sends the results to shared keys between encrypting each session using B: (2)B chooses customers and session key random number y, and KDC, between distributed by the calculates ay mod p, application server and sends the results to and KDC, between authentication **KDC** and distant A: (3)A calculates K1 = center (ay) x mod p, B KDC have to be calculates K2 = (ax) yestablished and mod p. Through the maintained process of these three steps, K1 and K2 both equal the result of caculation axy mod p. Because the eavesdropper can only sniff the value of a, p, ax mod p and ay mod p, they can't calculate the value of K1 and the value of K2, unless they can calculate discrete logarithm to resume the x and y

[12]		Analysis of	One of the most important issue for	In order to provide	1)Establishing a	1.As there is no
[12]	Group Key Exchange	Tseng's protocol	-	security, working with	common shared key	authentication
	Group Key Exchange	(YM. TSENG,		big numbers is needed	for all members of the	
	Protocol Based on Diffie-			thus the parameter q	ad-hoc network or	vulnerable to man-
	Protocol Based on Diffie-	INFORMATICA	We show that Tseng's protocol fails		Wireless Sensor	in-the-middle attack
	Hallman Taahnigua in	2010, 21, 2, 247-	to establish a common key when the			2.Digital
	Hellman Technique in	259) is done.		prime number and the	safety critical and	signature cannot be
	Ad-Hoc Network	The Tseng's		1	needs low	signed using Diffie-
	Ad-Hoc Network	modified protocol		is a 50 digit number.	computationally	Hellman algorithm
		is implemented		Moreover, a secret key	complicated protocols	
		and tested for ad-		Xa used in the	because of power and	
		hoc WLAN with		exponent of the Diffie	memory restrictions	
		3, 4, and 5 nodes.		Hellman method is a	2)Tseng's protocol is	
		5, 1, and 5 nodes.		50- digit number.	modified so it is	
					guaranteed it's correct	
					output, and the output	
					producing takes at	
					least three times less	
					time for the controller	
					part versus the original	
					one.	
					3)The Tseng's	
					modified protocol	
					preserves security	
					features of the original	
					one.	
[13]	Secure Key Exchange	A variant of		With the increase in the	_	-
	\mathcal{C}	Diffie -Hellman		number of bits(k) and	vulnerabilities	attacker can launch
		Key exchange	securely agree on a secret key with a		identified in the trivial	
	on String Comparison	^		execution time	Diffie-Hellman	maximum, where k
		string		increases andit	Protocol. It uses a	and I are length of
		comparisons that		increases drastically at.	combination of	the USER_ID and
		addresses the	The protocol is divided into three		commitment scheme	the random string
		trivial	phases: initialization ,exchange,	As the security of	and authentication	respectively, used
		vulnerabilities in		protocol improves on	strings towithstand	for mutual
		Diffie Hellman		large value of p and k,		authentication
		Protocol of		so there is a trade off	attack and can be used	
			9	between security and	in both-wired as well	
		users in the	strings.	cost of computation.	as wireless networks	
		communication	If the strings CA and CD match there	For langth of Mal > 00	nnohohility that an	
			If the strings SA and SB match, then	For lengthor Na ≥80,	probability that an	

	1	1	1			
			•	authentication message		
			other's DH-parameters	contains mostly 0 sand		
				1 s.	maximum, where k	
					and I are length of the	
					USER_ID and the	
					random string	
					respectively, used for	
					mutual authentication	
[14]	Experimental Study of	This paper gives	Diffie-Hellman based cryptography	Diffie Hellman works	This paper is based on	The work involves
	Diffie-Hellman Key	an insight into	implementation on two embedded	efficiently for Arduino	implementation of	a pre assigned port
	Exchange Algorithm on	deployment of	devices communicating with each	and Raspberry when	Diffie-hellman key	number (telnet port
	Embedded Devices	diffie-Hellman	other over Ethernet.	parameters selected are	exchange algorithm	23), over which a
		Algorithms in		within in a definite	that helps to share the	server listens to;
		Embedded	During the attack the attacker uses	range if direct method	private key between 2	hence there is a
		Systems like	buffer overflow problem to	of calculation is	systems.	possibility of data
		Audrino, RPI etc.	overwrite the program address	applied.		overriding by a third
			stored and run the malicious code.		This Implementation	party which will be
				To enable diffie	lets iot and embedded	using that port
				Hellman algorithm for	systems communicate	number within the
				large values and secure	the keys securely for	same network.
				key generation, we	further	
				need to simplify the	communication.	Usually the value of
				algorithm calculation.		q and p is taken
					This introduces more	large to ensure
				we simplify it to make	abstraction in an	better security and
				it memory efficient and		
				faster. Therefore we go		
				ahead with an approach		algorithm
				called fast modular	exchanging data.	calculation would
				exponentiation.	onemanging data.	result in values out
				емронении.		of the memory
						limits of Arduino
						and Raspberry pi
						and Raspoerry pr
[15]	Efficient Extended	The proposed key	The proposed group key agreement	We have considered	It can be easily derived	The algorithm is
	Diffie-Hellman Key	exchange	protocol is designed to provide the	three parameters like	that the increase in	proposed with slight
	Exchange Protocol	algorithm uses	key agreement among the group	exponentiation,	time in the case of the	
		modular	members the divide and conquer	multiplication, and	Diffie-Hellman is	and but can be very
		multiplication	strategy is used for reducing the	number of steps for	more as compared to	helpful for systems
		instead of	computation cost. If there are n	comparing the proposed	-	
		exponential	members in the group then total	algorithm and the Diffie		configuration.
		exponential	members in the group their total	aigorniiii and the Diffie	case of the proposed	comiguration.

d algorithm n the ffie- gorithm and
n the ffie- gorithm and
n the ffie- gorithm and
ffie- gorithm and
gorithm and
3
nal time
fie-
gorithm.
ed
2)number
ere Diffie-
quired n^2
at the Limitations are
protocol subject to
known Qualitative reports
when the algorithm
attack and is tested heavily in
ey-share fabricated
environment
f the
et keys
), finding
ared secret
is no easier
ete
ete roblem
g the
et keysin
e equation
known key
r protocol.
secret key

	shared secret keys for directions A	is included in the
	to B and B to A respectively.	signature equation
		along with the
		message in our
		scheme. This
		arrangement prevents
		the known key attack
		and the key replay
		attack.
		three-round protocol
		achieves key
		confirmation, which
		prevents the unknown
		key-share attack.

Reference	Title of the	Technology	Brief Description	Parameters	Advantages of the	Limitations of
Name han	Paper	Used	about the	influencing the	model/system	the
Number			model/system	performance of		model/system
				the model/system		
[17]	A Generic Approach to Improving Diffie–Hellman Key Agreement Efficiency for Thin Clients	comparable to Authenticated Diffie-Hellman key (D-H key) agreement for establishing secure session keys for Security in	H keys. The proposed approach achieves the same security of conventional	The major Parameter which on which the whole topic isdependent is the limitation of computation resources either due to hardware limitation or Power limitation. Due to which it has to be kept in mind to provide high security like Algorithms with large computation overhead along with lower Time and Space Complexity and lesser Computation Overhead.	The given approach reduces one modular exponentiation for the client, but adds one more exponentiation on the server. This approach improves client efficiency at most 50% when it applies on the original D-H key agreement scheme. The improvement might seem insignificant or just a trade-off for conventional computer-to-computer interaction, but it does matter when it is applied on those thin clients where either the computing resources or the batteries are limited	

1 "		In this paper we see 3 algorithms/protocols which extend and	implementation and	The protocol will allow the entities to use multiple	The major limitation is possibility of
k c s	key exchange that can be also used to share messages, among entities.	improve the functioning of Diffie-Hellman Key Exchange Protocol. 1) Key exchange protocol 2) Protocol for encryption and decryption of the messages	design of the algorithm that heentity A or B wishes to communicate with other entity using some protocol'p'where entities are ensured as of whom they are communicating with.	generators 'x', 'y' and this protocol has major advantage when compared	Generation of weak keys which have to be specifically dealt with. But they put the whole Algorithm's reliability on risk.

				T	Τ .	1
			secret values.		number.	
			moreover the gradibility of the entire			
			moreover the credibility of the entire protocol lies on the assumption that it is			
			difficult to solve the discrete logarithm			
			problem.			
			F1001 0 1111			
[19]	Vulnerability Analysis	NFC is rooted in	In this paper, we use timestamp	1. Size, Orientation,	1. Our proposed	1. It can only works
	And Security System	radio-frequency	based Protocol where the size of the	Angle, Placement are	solution attempts to	in shorter distances
	For NFC-Enabled	identification techn	file and time at which it is sent is	the various factors	resolve the critical	which is about 10-
	Mobile Phones using	ology known as	retrieved to calculate the estimated	that affect an RFID	attacks possible during	
			time of reception which will be	technology.		2. It offers very low
			compared with actual reception time			data transfer rates
			is also proposed to prevent relay	of an RFID system has		which is about 106
			attacks. A complete study of	•	technology, to the best	or 212 or 424 Kbps.
			authentication methodologies in	the read range.		3. It is very
			NFC technology and a critical		C	expensive for the
			analysis of our proposed system		attempts to resolve the	*
			with the existing systems showing			the NFC
			how it can resist all the possible		•	enabled devices.
			attacks on the data exchanged			
			between mobile phones through			
			NFC technology.			
		authentication and	i i e teemorogj.			
		tracking.				
[20]	Authenticated Diffie-	The algorithm is	This paper proposes a new problem:	The parameters	1. we have proposed a	1 We cannot
[1			the modified elliptic curves	influencing the		improve the
	Agreement Scheme that		computational Diffie-Hellman	C		computational
	_		problem (MECDHP) and proves	of people involved.		efficiency of
			that the MECDHP is as hard as the	Since the DH	_	existent
	•	C	conventional elliptic curves	calculation is already	, ,	authenticated D-H
			computational Diffie-Hellman		client's computational	
		~	problem (ECDHP). Based on the			schemes while still
			MECDHP, we propose 2	Other factors are	2. we have proposed a	
		•	an authenticated D-H key	dynamics of		perfect forward
			agreement scheme which greatly	membership. As new		secrecy
		\mathbf{c}	improves client computational	members join or	scheme which protects	beer ce y
		•	efficiency and protects client's	existing members	client anonymity and	
			anonymity from outsiders. This new		greatly improves	
		incans a new key is	unonymity from outsiders. This new	reare the group the key	greatly improves	

		generated when	scheme is attractive to those	needs to be	client's computational	
		meeting starts and	applications where the clients need	recomputed and hence	efficiency	
			identity protection and lightweight	performance is highly		
		leaves or when	computation	dependent.		
		new or old member				
		joins the				
		meeting. This				
		ensures that				
		meeting channel is				
		secure and safe and				
		ensures both				
		forward and				
		backward secrecy				
[21]	Secure ECC-based RFID mutual authentication protocol for internet of things	The new protocol is developed by comparing it with other algorithms in terms of performance and vulnerabilities.	Implementing a light weight, backend independent, secure authentication protocol based on ECC in order to order to prevent attacks on wireless systems, IOT devices, devices using RFID authentication protocols and to make them light weight and optimal to that it could be implemented on light weight less storage and computation capacity devices. And to main and enhance availability, anonymity, mutual authentication and prevention of various prominent security attacks.		algorithm. Prevention of various attacks and compatibility with IOT	The algorithm covers various attack preventions but has not taken into the account of the vulnerabilities with some other non conventional attacks. Moreover, there is very less improvement in usage of storage space as compared with other algorithms in place

Network & Information Security Project Report

Proposed model / Algorithm / Framework

Computationally Modified Diffie-Hellman Key exchange algorithm working:

Client (Alice)

Server (Bob)

Prime number selected (p) is known to both client Prime number selected (p) is known to both client and server.

Generator selected (g) is known to both client and Generator selected (g) is known to both client and server.

Alice generates:

Private keys:

- -> t (permanent key / long term key)
- -> x (ephemeral key)

Public keys:

- -> T = (g^t) mod p (public counterpart of t)
- -> x (generated for each session and is private key of client)
- \rightarrow Calculate (x+t)%(p-1)

Already has a nonce A,

Request 1 Client->Server:

further requests.

```
Send
[A, (x+t) \% (p-1), T] --- T is required to send, only in case this is first
--- Request made since a new (t, T) is calculated

[A, (x+t)\%(p-1)] --- This can be sent in
```

Server Receives The Request

Case1:

[A, (x+t)%(p-1), T] is received In this case server calculates modInverse(T,p) and updates the hash map with values [A, modInverse(T, p)]

Case2:

[A, (x+t)%(p-1)] is received Server searches hash map for value of modInverse(T, p) of client identified by A and server finds it.

Case3:

[A, (x+t)%(p-1)] is received Server searches has map for value of modInverse(T, p) of client identified by A and server couldn't find any such value.

In *Case3* server raises an error and key-exchange is terminated. It can also send an acknowledgement back saying that proper parameters weren't found.

In Case1 and Case2 following happens

- -> y is generated (private session key of server)
- \rightarrow Y = g^y is calculated.
- -> g^x is calculated $g^x = (g^((x+t)\%(p-1)) * modInverse(T, p).$
- $-> K = (g^x)^y$ is calculated.
- $-> K = g^{\wedge}(x*y)$
- -> nounce B is known.

Request 2 Server-> Client:

Send **[B, Y]**

Client receives [B, Y]

$$-> K = Y^x$$
 is calculated

$$-> K = (g^y)^x = g^(x^y)$$

K is our shared key know both to client and server

List of objectives achieved:-

• Implemented Computationally Modified Diffie-Hellman Key exchange algorithm in Java programming language with a Client Server architecture.

Results obtained:-

- Reduced Computation Overhead on client side
 - 1. The computation to calculate client's public key is calculated on server side.
 - 2. On the server side, algorithm uses a hash map to store the T from the client for future use or generation of a session key in the future.
 - 3. So instead of multiple calculations server can fetch the public key in very short time.
 - 4. The client does not have to calculate T value again and again.

Remaining Work:-

- 1. Comparative analysis of resources consumed by modified Diffie-Hellman key exchange algorithm and the regular Diffie-Hellman key exchange algorithm.
- 2. This is aimed to be achieved by system and process performance monitoring tool.
- 3. compare the time elapsed and memory consumed for different use cases of both modified Diffie-Hellman key exchange algorithm and Diffie Hellman Key exchange algorithm
- 4. Analyse the effect of using a hash-map on the time elapsed while execution of the code and establishment of a shared key

IMPLEMENTATION:-

Server side

```
■ DHkeyexchange
 > 🖿 ide
 > in client files
                                                              private static void handleConnection(Socket socket) {
 > server files
        ServerDHKE
    🚜 .gitignore
 Scratches and Consoles
lakhan@lakhan-nad:~/Desktop/JavaProjects/DHkeyexchange$ java -classpath out/production/DHkeyexchange/ server.ServerDHKE Server1 9001
Server Started At: 9001
```

Client side

Review-3

List of objectives given and achieved:

Found a solution for implementing a key exchange algorithm based on Diffie Hellman Key Exchange algorithm suitable for ioT ,embedded, and other resource constrained devices.

Designed caching technique for higher efficiency and lesser search times and search cycles,

Implemented new connection request method supporting the above point.

Implemented a Modified Key exchange algorithm in Java.

Analyzed the space and time constraints that may and will arise.

Tested the efficiency of caching and its result on overall algorithm time to establish a session and a shared key under different conditions.

Found a solution for implementing a key exchange algorithm based on Diffie Hellman Key Exchange algorithm suitable for ioT, embedded, and other resource constrained devices.	The solution relies on research paper proposed by Hung-Yu Chien in his paper "A Generic Approach to Improving Diffie–Hellman Key Agreement Efficiency for Thin Clients".		
Designed caching technique for higher efficiency and lesser search times and search cycles,	The server maintains a hashmap while running and a database while stop to store the modulo inverse of the public counterpart of a client's permanent keys.		
Implemented a new connection request method supporting the above point.	Used Sockets in Java to implement a client server model that before any communication makes a key exchange using the improved Diffie Hellman proposed above.		
Implemented a Modified Key exchange algorithm in Java	The Language Java was chosen keeping in mind the fact that it is most popular choice for IOT devices and works on write once run anywhere motto.		

Analyzed the space and time constraints that may and will arise.	We ran the client and server daemons in a localhost environment to test the performance improvements of this algorithm from the existing Diffie Hellman Key Exchange Algorithm. And even in localhost the improvement was significant.
Tested the efficiency of caching and its result on overall algorithm time to establish a session and a shared key.	The efficiency of caching was tested with same client sending multiple key requests to same server and server using cached value of the client for further computations.

Experimental Results achieved:

Client-execution

```
C:\Users\dell\Desktop\dh\DHKE_NIS-master\src>java -classpath . client/Client c5
Send Connection Request To Server? --Press ENTER to proceed.
Sending Connection Request To Server? (Key Request Must be Sent within Two Minutes of Connection) --Press ENTER to proceed.
Starting Key Exchange
Request for Key Exchange
Request for Key Exchange Sent to Server
Waiting for Server's Public Key
Session key: 14080202355391925065463355818951878751448171366996355511836509583771294927759141686495584683117992373954514146873888846898
04078835051796641030220023600876449596176507787357150442832453708712445556703240624452352002144872102080543101334020946252244598239925
Elapsed Time: 75
Connection with Server Closed

C:\Users\dell\Desktop\dh\DHKE_NIS-master\src>java -classpath . client/client c5
Send Connection Request To Server? --Press ENTER to proceed.
Sending Connection Request To Server? (Key Request Must be Sent within Two Minutes of Connection) --Press ENTER to proceed.
Starting Key Exchange Request To Server? (Key Request Must be Sent within Two Minutes of Connection) --Press ENTER to proceed.
Starting Key Exchange Sent to Server
Waiting for Server's Public Key
Session key: Exchange Sent to Server
Session key: Exchange Sent to Server
Waiting for Server's Public Key
Session key: Exchange Sent to Server
Session key: Exchange Sent to Server
Waiting for Server's Public Key
Session key: Exchange Sent to Server
Waiting for Server's Public Key
Session key: Exchange Sent to Server
Waiting for Server's Public Key
Session key: Exchange Sent to Server
Waiting for Server's Public Key
Session key: Exchange Sent to Server
Waiting for Server's Public Key
Session key: Exchange Sent to Server
```

Server-execution

```
C. UNDER-SIDELLI DESKTOPLON LORGE, MIS-master\srccjava - classpath . server.Server server1 9001
Server Started At: 9001
Connection request from: 1/27.0.e.1:59324
Key Exchange Request Received form: 1/27.0.e.1:59324
Session (P. 1516) 127.0.e.1.159324
Session (P. 1516) 127.0.e.1.159324
Session (P. 1516) 127.0.e.1.159325
Session (P. 1516) 127.0.e.1.159326
Session (P. 1516) 127.0.e.1.159327
Session (P. 1516) 127.0.e.1.159327
Session (P. 1516) 127.0.e.1.159327
Session (P. 1516) 127.0.e.1.159327
Session (P. 1516) 127.0.e.1.159337
Session (P.
```

Testing:

Diffie Hellman-Key Exchange Algorithm Implementation

```
ø
 :\Users\dell\Desktop\dh\DHKE_NIS-master\src>java -classpath . client/Client cl1
Send Connection Request To Server? --Press ENTER to proceed.
Sending Connection Request To Server
  end Key Exchange Request To Server? (Key Request Must be Sent within Two Minutes of Connection) --Press ENTER to proceed.
 Starting Key Exchange
 dequest for Key Exchange Sent to Server
laiting for Server's Public Key
Session key Established
Session Key:738032422237244961557497488455013805266724848064351339279947636188524912265984840929719802509285695662662196330287020855712116003598494357702551876197970772
6234639635568810864688610049273990895135839713422356634393804962262935399760014686070153272506640222621545692039584210586173204510418928049980495804155
 lapsed Time: 114
Connection with Server Closed
C:\Users\dell\Desktop\dh\DHKE_NIS-master\src>java -classpath . client/Client cl1
Send Connection Request To Server? --Press ENTER to proceed.
Sending Connection Request To Server
 end Key Exchange Request To Server? (Key Request Must be Sent within Two Minutes of Connection) --Press ENTER to proceed.
Starting Key Exchange
Request for Key Exchange Sent to Server
Waiting for Server's Public Key
Session key Established
  ession Key:466116451200234057237299617075997837059786368875371251912596310629218410966310821216034372882371920011013995796102797742579652971349828798928276938745821307
71839950293948428947113469207934936676074450075580392254656144610457749583719990118665541311826967841229900252768690791123568022451031186788562748122419
Elapsed Time: 114
  :\Users\dell\Desktop\dh\DHKE_NIS-master\src>java -classpath . client/Client cl1
  end Connection Request To Server? --Press ENTER to proceed.
 ending Connection Request To Server
 end Key Exchange Request To Server? (Key Request Must be Sent within Two Minutes of Connection) --Press ENTER to proceed.
tarting Key Exchange
 Request for Key Exchange Sent to Server
Waiting for Server's Public Key
 lession key: 793793410491276814211630593675944159986094794915893888048304082187396021084277655439394535566959522294204519788521194267575272032121221359621678140642851142
6652166733250194337269140706213880230918316192800812004778469986903109997064693166939195161571262431026050402125261916233371986827528620332881256674363
ACTIVATE WINDOWS
  onnection with Server Closed
```

```
:\Users\dell\Desktop\dh\DHKE_NIS-master\src>java -classpath . client/Client cl1
 end Connection Request To Server? -- Press ENTER to proceed.
  nding Connection Request To Server
 nd Key Exchange Request To Server? (Key Request Must be Sent within Two Minutes of Connection) --Press ENTER to proceed.
Request for Key Exchange Sent to Server
Waiting for Server's Public Key
Session key Established
 ession Key:639156110549563371744673800455446541967527335545231050411533299653438650333546753401821099630902671908089822409951465843759901647383192613391174709138245751
70614566444689180964066203704397364040221265740441702926089302260070408856228681897330897850958544671696828498239721642726425109908135774017685702589558
Elapsed Time: 94
     ection with Server Closed
 : \label{lossktopdh} \label{lossktopdh} \\ \text{Client/Client cl1} \\
end Connection Request To Server? --Press ENTER to proceed.
ending Connection Request To Server
Send Key Exchange Request To Server? (Key Request Must be Sent within Two Minutes of Connection) --Press ENTER to proceed.
Starting Key Exchange
Request for Key Exchange Sent to Server
Waiting for Server's Public Key
lession key: Established
lession key: 669669044493782631395399052290941886820612305672541718627408297153391406369071540556897954486850496550415269487575837730747347318669608619081386326246747036
l8503432484139069631874954047748927493025978180040660021818654772854615393479276513545747996782869204505917284640839970801467121647809117891519549032475
Elapsed Time: 64
 onnection with Server Closed
:\Users\dell\Desktop\dh\DHKE_NIS-master\src>java -classpath . client/Client cl1
 end Connection Request To Server? --Press ENTER to proceed.
ending Connection Request To Server
  nd Key Exchange Request To Server? (Key Request Must be Sent within Two Minutes of Connection) --Press ENTER to proceed.
Starting Key Exchange
Request for Key Exchange Sent to Server
Waiting for Server's Public Key
Session key Established
Session Key:141644697900767512346772949320796023481976575738257740775258932392428962312336762673818164082974341453382054300465323499892291433129229626656450542867141877
8045973377582269933655809023862023607913544519828730942459149343829236596268299475662961267443351351282053339923046781732358357757359165431398414014340
```

П

```
Command Prompt
                                                                                                                                                                                                                             Ð
\label{lem:c:ws} C:\Users\dell\Desktop\dh\DHKE\_NIS-master\src>java\ -classpath\ .\ client\Client\ cl1
 end Connection Request To Server? --Press ENTER to proceed.
Sending Connection Request To Server
Sending Commection Request To Server? (Key Request Must be Sent within Two Minutes of Connection) --Press ENTER to proceed. Starting Key Exchange Request To Server? (Key Request Must be Sent within Two Minutes of Connection) --Press ENTER to proceed. Starting Key Exchange Sent to Server Request for Key Exchange Sent to Server Waiting for Server's Public Key

Session key Established

Session key Established
Session Key:385504582570956427030258802868590434018814962105759400506822688233920393195500954587075036505860931427431362403574782296344791607756454593998886210966051269
 onnection with Server Closed
C:\Users\dell\Desktop\dh\DHKE_NIS-master\src>java -classpath . client/Client cl1
Send Connection Request To Server? --Press ENTER to proceed.
Sending Connection Request To Server
Send Key Exchange Request To Server? (Key Request Must be Sent within Two Minutes of Connection) --Press ENTER to proceed.
Starting Key Exchange
Request for Key Exchange Sent to Server
Waiting for Server's Public Key
Session key Established
Session Key:865815832900665037782428780286499660640971567172117084209782320900369069663588839458071002840359763380074294138584671491822300319112400954490872250766115032
 onnection with Server Closed
C:\Users\del1\Desktop\dh\DHKE_NIS-master\src>java -classpath . client/Client cl1
Send Connection Request To Server? --Press ENTER to proceed.
Sending Connection Request To Server
Send Key Exchange Request To Server? (Key Request Must be Sent within Two Minutes of Connection) --Press ENTER to proceed.
Starting Key Exchange
 kequest for Key Exchange Sent to Server
Waiting for Server's Public Key
Session key Established
 ession Kev: 298266934361799476419401119058629738466624370887430374040159782500236840348776365047801806424670694337082663539496423541573603594287017347354662846251730074
 lapsed Time: 60
onnection with Server Closed
```

C:\Users\dell\Desktop\dh\DHKE_NIS-master\src>java -classpath . client/Client cl1

Send Connection Request To Server? --Press ENTER to proceed.

Sending Connection Request To Server

Send Key Exchange Request To Server? (Key Request Must be Sent within Two Minutes of Connection) --Press ENTER to proceed.

Starting Key Exchange

Request for Key Exchange Sent to Server

Waiting for Server's Public Key

Session key Established

Session Key:3048535052931656801199926957257994750726808631189776494015606341727273010982215276376257358613986966891365634814172612518376140123599117542566186230706967527137163177271775198211871349374816241213216940145338949107582546952257731337660154528670905031482178117870331566722343463437402464316679715901759230

Elapsed Time: 58

Connection with Server Closed

Validation:

We can clearly see the reduced time elapsed

Generating the dataset:

Time elapsed in milli-	Tth phase	Average of the interval
seconds		
118	1	114ms
110		
94	2	95.3 ms
93		
100		
97		
99		
95		
98		
96		
91		
90		
94	3	86.1ms
83		
84		
81		
89		
86		
76	4	78ms
78		

77		
79		
75		
81		
61	5	61ms
63		
68		
65		
60		
70		
62		
64		
66		
67		
60		
58		
55		
59		
66		
59		
60		
55		
55		
55		
55		

Overall analysis:

Modified diffie-hellman implementation:

```
C:\Users\dell\Desktop\dh\dh_mod\src>java -classpath . client/ClientDHKE cl_op
t1
Send Connection Request To Server? --Press ENTER to proceed.
Sending Connection Request To Server
Send Key Exchange Request To Server? (Key Request Must be Sent within Two Min
utes of Connection) --Press ENTER to proceed.
Starting Key Exchange
Request for Key Exchange Sent to Server
Waiting for Server's Public Key
Session key Established
Session Key:80386574245188856502446203043304071404875974388744094590294787763
09198831396134128516815301244827200511307696754697229641601657317111993571338
12497074969109701122783169652422719690948991854577080231592011554917419083187
77193401832867748927376223607666343858553830287159103130747807232857721008639
933054072482
Elapsed Time: 116
Memory Usage: 1939824
Connection with Server Closed
```

C:\Users\dell\Desktop\dh\dh_mod\src>java -classpath . client/ClientDHKE cl_op
t1

Send Connection Request To Server? --Press ENTER to proceed..

Sending Connection Request To Server

Send Key Exchange Request To Server? (Key Request Must be Sent within Two Min utes of Connection) --Press ENTER to proceed.

Starting Key Exchange

Request for Key Exchange Sent to Server

Waiting for Server's Public Key

Session key Established

Session Key:37793354811543204282192657225133695331146457585246721419637017973 53909272148676538517823434311116468669857364050034757720382799354952230063833 95078175400737026507131933866230952258855555399393130538023947653779593623906 16990871790225686828987511463508825141917934729713505810029195916806235101018 228299470003

Elapsed Time: 59 Memory Usage: 1940744

Connection with Server Closed

C:\Users\dell\Desktop\dh\dh_mod\src>java -classpath . client/ClientDHKE cl_op
t1

Send Connection Request To Server? -- Press ENTER to proceed.

Sending Connection Request To Server

Send Key Exchange Request To Server? (Key Request Must be Sent within Two Min utes of Connection) --Press ENTER to proceed.

Starting Key Exchange

Request for Key Exchange Sent to Server

Waiting for Server's Public Key

Session key Established

Session Key:98424045805748037244817067589347992807341939316237574255701255521 94268765379554940544799879597566634684349211958910363601408513256830058791799 87072546339199437212714418654649171644632862844748990777536707641076183744699 61700032701763791184634039687893920745258239363101024943855579610253795366912 05439483934

Elapsed Time: <mark>51</mark> Memory Usage: 1931688

Connection with Server Closed

C:\Users\dell\Desktop\dh\dh_mod\src>java -classpath . client/ClientDHKE cl_op
t1

Send Connection Request To Server? --Press ENTER to proceed...

Sending Connection Request To Server

Send Key Exchange Request To Server? (Key Request Must be Sent within Two Min utes of Connection) --Press ENTER to proceed.

Starting Key Exchange

Request for Key Exchange Sent to Server

Waiting for Server's Public Key

Session key Established

Session Key:96605527015013831494893518264611572293027825072389347575806942330 21383698691248646137091329121096781040225189103355049684414508412718030200683 42447968446836309334535776120656970610316530334784496005958020946298825887705 39296990982127657534069221891551839214746256171716500241767926103002386734120 04480153955

Elapsed Time: <mark>50</mark> Memory Usage: 1931688

Connection with Server Closed

Time elapsed in milli-	Tth phase	Average of the interval
seconds		
116	1	109ms
115		
117		
110		
105		
100		
106		
60	2	59.11ms
61		
55		
69		
59		
59		
59		
54		
56		
50		51.9ms

50	3	
49 55 56 58 49		
56		
58		
49		
51		
51		
50		

Overall analysis:

Case of multiple request handling:

NORMAL DHKE

	Time(ms)	Memory(Bytes)
1 Key Request		
Client 1	132	1950520
Client 2	112	1950520
3 Key Request		
Client 1	216	1950520
Client 2	181	1950520
5 Key Request		
Client 1	304	2600504
Client 2	185	2600944
10 Key Request		
Client 1	354	2600632
Client 2	248	2600632

Modified Diffie Hellman

	Time(ms)	Memory(Bytes)
1 Key Request		
Client 1	82	1950500
Client 2	102	1950500
3 Key Request		
Client 1	195	1950464
Client 2	147	1950448
5 Key Request		
Client 1	249	2600188
Client 2	204	2600672
10 Key Request		
Client 1	314	2600784
Client 2	242	2600896

Inference:

The Buffering system using Hashmap resulted in a decrease of atleast 30% in elapsed times.

Along with shifting the Majority of the possible Arithmatic computations to the server side.

Diffie Hellman Key Exchange Algorithm

Phase:	Average reduction in time	Average reduction in
	Elapsed wrt previous	time Elapsed %
	phase:	
1	0%	0%
2	16.43%	16.43%
3	9.47%	24.56%
4	9.3%	31.57%
5	13.65%	46.49%

• The change can be explained in Existin Diffie Hellman approach as a result of the systems internal caching mechanisms and internal memory queing mechanisms

Modified Diffie-Hellman Key exchange Algorithm

Phase:	Average reduction in time Elapsed wrt previous phase:	Average reduction in time Elapsed %
1	0%	0%
2	45.8%	45.8%
3	11.86%	53.2%

- Here in this mechanism a reduced Elapsed time can be due to internal memory queing mechanisms and caching algorithms but a Significant drop in elapsed time can be observed.
- This can be explained due to the Hashmap which when a device contacts the server fior the first time it saves that clients's essentials,
- So when next time before calculations the essential values can can be quicky searched.
- This makes the reason for a steep reduction in elapsed time percentage.
- Note: we have tested the algorithm by repeatedly making connection requests to the client for the shared key to generate the test data and the following results

.

Comparative study:

Comparison with Regular Diffie-Hellman key exchange algorithm:

Figure .1

- Our major aim of the project was to implement the (b) part of the Figure.1 which is computationally modified Diffie-Hellman key exchange Algorithm for shifting the computations to the server side in order to minimize the computations at the client side.
- The part (a) in the given Figure 1 is the visual approach for Regular Diffie-Hellman Key Exchange Algorithm, and the Part b of the above given Figure 1(a) is the Visualization of Computationally modified Diffie-Hellman Key Exchange Algorithm.

Diffie Hellman:

- In this algorithm client and server model is not followed
- Both the parties are assumed to have enough computational resources and execute almost the same number of instructions
- Both parties have to calculate a random secret key
- Then calculate the public key
- Then send the public key to each other
- Then finally calculate the shared key
- We can see multiple multiplication cycles are involved at instruction level along with use of extensive modular arithmetic using large size prime integers
- This further adds up to the computation cost
- This algorithm is not feasible for the resource constrained devices.

Modified DH Algorithm:

- In our approach we work for the thin clients
- In multiple use cases thin clients ignore secure key exchange process on then fact that its computation is not possible during runtime.
- Our algorithm tries to transfer maximum possible computations to the server side
- It has a pre calculated private and public key saved
- And it also chooses a random key
- Now it sends nonce ,private key combined with random key and the public key to the server
- The server calculates the session key and then sends(server's) public key to the client(Thin client)
- Where the thin client calculates the session key with minimal computations.

Time and space Complexiety analysis:

Analyzing time and space

A constant time and space(memory) requirement for permanent key

Calculation of public key (T), raising generator to the power long term key, using modular function. This will be dependent upon the number of bits selected for permanent key, which will be further dependent upon the computational ability and availability device to be used

Calculation of empharel key for each session(time and space variant based on size)

Generating session key requires us to generate a random number, so we used random number generation fuction in java, complexity of which will not depend much upon the length of session key.

Java provides three ways to generate random numbers using some built-in methods and classes as listed below:

java.util.Random class: For using this class to generate random numbers, we have to first create an instance of this class and then invoke methods such as nextInt(), nextDouble(), nextLong() etc using that instance.

Math.random method : Can Generate Random Numbers of double type.

ThreadLocalRandom class: This class is introduced in java 1.7 to generate random numbers of type integers, doubles, booleans etc

Here we have generated random numbers of long data type using java.util.Random class. Which can be seen in session.java file. The time complexity of the random number generator is O(1). The time it takes does not increase as you have more random numbers. The randomness of java.util.Random could be an issue. It uses a seed of 2^48 so it will repeat itself after this many values. This means nextLong()

does not generate every possible value. If this is an issue you can use SecureRandom which is slower but the point it repeats is much higher.

Power function: another function which will be used multiple times for calculation of various important parameters for the session. We have used math.pow() function for this, which is briefed below:

The java.lang.Math.pow() is used to calculate a number raise to the power of some other number. This function accepts two parameters and returns the value of first parameter raised to the second parameter. There are some special cases as listed below:

- If the second parameter is positive or negative zero then the result will be 1.0.
- If the second parameter is 1.0 then the result will be same as that of the first parameter.
- If the second parameter is NaN then the result will also be NaN

Apart from that, we have used BigInteger data types in our code in order to have strong parameters, which cannot be figured out easily by attackers. But using this data type for calculations requires more space and time as compared to the primary data types. The main variation will come into picture in excecuting modular and exponential functions only, in order to have a more time and space efficient algorithm, various calculations are reduced on the client side provided its limited computational and storage abilities.

Result:

The following objectives have been achieved which were initially proposed to be completed:

- 1. To **find a solution** for implementing a improved Diffie-Hellman Key Agreement algorithm to improve the security of Embedded Systems and IoT devices with limited computational resources.
- 2. To **Implement** the computationally modified Diffie-Hellman Algorithm in Java.
- 3. **Testing the results** which include: Testing the Efficiency of the implemented algorithm along with comparison with existing diffie-Hellman Key exchange algorithm and obtain Quantitative and Qualitative measures to prove the feasibility of the given implementation

Some other results and key highlights:

- 1. **Designed** caching technique for higher efficiency and lesser search times and search cycles. *[discussed on pg. 27]*, which resulted in decreased time for overall computations in the long term application of DH Algorithm which require repetitive connection and disconnection cycles.
- 2. **Implemented** new connection request method supporting the above point.[*Discussed on pg* .28]

Conclusion:

Our Study and concludes that the use of computationally modified Diffie Hellman Key exchange Algorithm allows the computationally constrained clients to use a secure key exchange mechanism as stated in [17] " many thin clients do not use any security mechanism for saving computational resources".

Our study provides the evidence of the given approach in [17] is **implementable** and also introduced 2 **new design methods** to make the implementation of Modified Diffie-Hellman key exchange mechanism to be easier, these methods as mentioned above in "Some other results and key highlights" section..

References:

- [1] Nan Li, "Research on Diffie-Hellman key exchange protocol," 2010 2nd International Conference on Computer Engineering and Technology, Chengdu, 2010, pp. V4-634-V4-637, doi:10.1109/ICCET.2010.5485276.
- [2] Mishra, Manoj & Kar, Jayaprakash. (2017). A study on diffie-hellman key exchange protocols. International Journal of Pure and Apllied Mathematics. 114. 10.12732/ijpam.v114i2.2.
- [3] G. Yang, J. Chen, Y. Lu and D. Ma, "An efficient improved group key agreement protocol based on Diffie-Hellman key exchange," 2010 2nd International Conference on Advanced Computer Control, Shenyang, 2010, pp. 303-306, doi: 10.1109/ICACC.2010.5486666.
- [4] M. Abid and H. Afifi, "Secure E-Passport Protocol Using Elliptic Curve Diffie-Hellman Key Agreement Protocol," 2008 The Fourth International Conference on Information Assurance and Security, Naples, 2008, pp. 99-102, doi:10.1109/IAS.2008.22.
- [5] Himanshi Chaudhary, Awadesh Kumar(2020) Sharma Hybrid Technique of Genetic Algorithm and Extended Diffie-Hellman Algorithm used for Intrusion Detection in Cloud 2020 International Conference on Electrical and Electronics Engineering (ICE3- 2020) Computing DOI: 10.1109/CSNT.2013.97 (Pages)
- [6] Mahmood Khalel Ibrahem(2012) Modification of Diffie-Hellman Key Exchange Algorithm for Zero Knowledge Proof 2012 International Conference on Future Communication Networks Computing DOI: 10.1109/ICFCN.2012.6206859(Pages)
- [7] Chundong Wang, Chaoran Feng(2013) Security Analysis and Improvement for Kerberos Based on Dynamic Password and Diffile-Hellman Algorithm2013 Fourth International Conference on Emerging Intelligent Data and Web Technologies Computing DOI: 10.1109/EIDWT.2013.49 (Pages)
- [8] Mustafa Toyran, R Lavanya, Arjun Singh Group Key Exchange Protocol Based on Diffie-Hellman Technique in Ad-Hoc Network

Computing DOI: 10.1145/2659651.2659725(Pages)

- [9] Prashant Rewagad; Yogita Pawar (2013) Use of Digital Signature with Diffie Hellman Key Exchange and AES Encryption Algorithm to Enhance Data Security in Cloud Computing DOI: 10.1109/CSNT.2013.97(Pages)
- [10] Mustafa Toyran; Savaş Berber (2009) Efficient implementation of Diffie-Hellman (DH) key distribution algorithm in pool- based cryptographic systems (PBCSs)DOI: 10.1109/ELECO.2009.5355353 (Pages)
- [11] Yun Chen; Xin Chen; Yi Mu (2006) A Parallel Key Generation Algorithm for Efficient Diffie-Hellman Key Agreement DOI: 10.1109/ICCIAS.2006.295289 (Pages)
- [12] S V Sathyanarayan; R Lavanya (2017) Group diffie hellman key exchange algorithm based secure group communication DOI: 10.1109/ICATCCT.2017.8389149 (Pages)
- [13] Ankit Taparia, Saroj Kumar Panigrahy, Sanjay Kumar Jena (22 February 2018) Secure Key Exchange Using Enhanced Diffie-Hellman Protocol Based on String Comparison DOI: 10.1109/WiSPNET.2017.8299856 (Pages)
- [14] Pratima Deshpande; S Santhanalakshmi; P Lakshmi; Amrita Vishwa (Aug. 2017) Experimental study of Diffie-Hellman key exchange algorithm on embedded devices. DOI: 10.1109/ICECDS.2017.8389808(Pages)
- [15] Arjun Singh Rawat; Maroti Deshmukh (September, 2018) Efficient Extended Diffie-Hellman Key Exchange Protocol DOI: 8940607 (Pages)
- [16] Lein Harn, Manish Mehta (March, 2004) Integrating Diffie-Hellman Key Exchange into the Digital Signature Algorithm DOI: 10.1109/LCOMM.2004.825705 (Pages)

- [17] Hung-Yu Chien, A Generic Approach to ImprovingDiffie–Hellman Key AgreementEfficiency for Thin Clients, The Computer Journal Advance Access published November 2, 2015, from the British Computer Society, doi:10.1093/comjnl/bxv094
- [18] Swapnil Paliwal and Ch. Aswani Kumar, A Novel Multi-party Key Exchange Protocol, Springer International Publishing AG, part of Springer Nature 2018A. Abraham et al. (Eds.): ISDA 2017, AISC 736, pp. 597–607, 2018.https://doi.org/10.1007/978- 3- 319-76348-4_58
 [19]
- [20] S.Kavya, K.Pavithra, Sujitha Rajaram, M.Vahini, N Harini, Vulnerability Analysis And Security System For NFC-Enabled Mobile Phones using Diffie Hellman, INTERNATIONAL JOURNAL OF SCIENTIFIC & TECHNOLOGY RESEARCH VOLUME 3, ISSUE 6, JUNE 2014, DOI:- 10.1109/EIDWT.2013.49
- [21] Mustafa Toyran, R Lavanya, Arjun Singh Authenticated Diffie-Hellman Key Agreement Scheme that Protects

Client Anonymity and Achieves Half-Forward Secrecy DOI: 10.1145/2659651.2659725(Pages)

[22] Amjad Ali Alamr · Firdous Kausar · Jongsung Kim · Changho, A secure ECC-based RFID mutual authentication protocol for internet of things, Springer Science+Business Media New York 2016, DOI 10.1007/s11227-016-1861-1