PROBABILITY AND STATISTICS - PROBLEM SET 8

- 1. Compute the moment generating function of the discrete random variable *X* with pmf $f(x) = \frac{1}{2x}$, x = 1, 2, ...
- 2. If 0 and <math>q = 1 p, find the mgf of the random variable X with pmf $f(x) = p^{x-1}q$, x = 1, 2, ..., and hence find E[X] and V[X].
- 3. If $E[X^n] = 2^n(n+1)!$, n = 0, 1, ..., then find the mgf of X.
- 4. Let *X* be a random variable having pdf $f(x) = ae^{-a(x-b)}$, $x \ge b$, where a > 0. Using the mgf of *X*, determine its mean and variance.
- 5. If *X* is a random variable with pdf $f(x) = e^{-2|x|}$, find the mgf of *X*, and hence compute E[X] and V[X].
- 6. If $X \sim U[a,b]$, compute $E[X^n]$ using $M_X(t)$. Hence show that if $X \sim U[-a,a]$, then $E[X^{2n}] = \frac{a^{2n}}{2n+1}.$
- 7. If $M_{X_1}(t) = e^{3t+2t^2}$, $M_{X_2}(t) = e^{5t+18t^2}$, $M_{X_3}(t) = e^{4t+8t^2}$, then find the pdf of $Y = 2X_1 + 3X_2 + 4X_3$, given that X_1, X_2 , and X_3 are independent.
- 8. If $X \sim N(0,2)$, then find the moment generating function of $Y = \frac{X^2}{2}$.
- 9. Find the mean of *X*, given that its mgf is $M_X(t) = e^{2(e^t 1)}$.
- 10. Find the variance of X, given that its mgf is $M_X(t) = \left(\frac{3}{4} + \frac{e^t}{4}\right)^{20}$.
- 11. Show that if *X* and *Y* are independent Poisson variate with means λ and μ respectively, then X + Y is a Poisson variate with mean $\lambda + \mu$.
- 12. Show that if $X_i \sim N(\mu_i, \sigma_i^2)$, i = 1, ..., n are n independent normal variates, and a_i , i = 1, ..., n are constants, then $X = \sum_{i=1}^n a_i X_i \sim N(\mu, \sigma^2)$ where $\mu = \sum_{i=1}^n a_i \mu_i$ and $\sigma = \sqrt{\sum_{i=1}^n a_i^2 \sigma_i^2}$. Also determine the distribution of $\overline{X} = \frac{X}{n}$.
- 13. Show that if $Z_i \in N(0,1)$, i = 1,...,n are n independent standard normal variates, then $\sum_{i=1}^{n} Z_i^2 \sim \chi_n^2$.