Tutorial 7 Solution

Question 1

Receiver makes a decoding error if 2 or more out of the 3 bits are in error

$$P_{error} = 3p^2(1-p) + p^3 \approx 3(10^{-6})$$

Question 2

(a)

$$k-1=5$$
, $n-k=3$, $n=9$, $x^3i(x)=q(x)g(x)+r(x)$, $i(x)=x^5+x^4+x^2+x$
110110000 = 100011 x 1101 + 111
codeword = 110110111

(b)

Single errors can be detected. Because g(x) has more than 1 term.

Question 3

(a)

$$k-1=4$$
, $n-k=3$, $n=8$, $x^3i(x)=q(x)g(x)+r(x)$, $i(x)=x^4+x^3+x+1$
11011000 = 11111 x 1011 + 001
codeword = 11011001

(b)

$$10011001 = 10100 \times 1011 + 101$$

$$r(x) = 101$$