Python Pandas

What is Pandas?

Pandas is a Python library used for working with data sets.

It has functions for analyzing, cleaning, exploring, and manipulating data.

The name "Pandas" has a reference to both "Panel Data", and "Python Data Analysis" and was created by Wes McKinney in 2008.

Installing Pandas

First, you need to install Pandas. You can do this using pip:

pip install pandas

Importing Pandas

To use Pandas in your script, you need to import it:

import pandas as pd

Data Structures in Pandas

Series:- A Series is a one-dimensional array-like object that can hold any data type.

```
import pandas as pd

# Creating a Series from a list
data = [1, 2, 3, 4, 5]
s = pd.Series(data)
print(s)

# Creating a Series with custom index
data = [1, 2, 3, 4, 5]
index = ['a', 'b', 'c', 'd', 'e']
s = pd.Series(data, index=index)
print(s)
```

DataFrame

A DataFrame is a two-dimensional, size-mutable, and potentially heterogeneous tabular data structure with labeled axes (rows and columns).

```
# Creating a DataFrame from a dictionary
data = {
  'name': ['Alice', 'Bob', 'Charlie'],
  'age': [25, 30, 35],
  'city': ['New York', 'Los Angeles',
  'Chicago']
```

```
}
df = pd.DataFrame(data)
print(df)
```

Reading and Writing Data

Reading Data

Pandas can read data from various file formats, including CSV, Excel, and SQL.

Reading a CSV file

```
# Reading a CSV file
df = pd.read_csv('data.csv')
print(df)
```

Reading an Excel file

```
# Reading an Excel file
df = pd.read_excel('data.xlsx')
print(df)
```

Writing Data

Pandas can also write data to various file formats.

Writing to a CSV file

```
# Writing to a CSV file
df.to_csv('output.csv', index=False)
```

Writing to an Excel file

```
# Writing to an Excel file
df.to_excel('output.xlsx', index=False)
```

DataFrame Operations

Viewing Data

```
# Display the first few rows of the
DataFrame
print(df.head())

# Display the last few rows of the
DataFrame
print(df.tail())

# Display the DataFrame's information
print(df.info())

# Display the summary statistics of the
DataFrame
```

```
print(df.describe())
```

Selecting Data

Selecting Columns

```
# Selecting a single column
print(df['name'])

# Selecting multiple columns
print(df[['name', 'age']])
```

Selecting Rows

```
# Selecting a single row by index
print(df.iloc[0])

# Selecting multiple rows by index
print(df.iloc[0:2])

# Selecting rows based on a condition
```

print(df[df['age'] > 30])

Adding and Dropping Data

```
# Adding a new column
df['salary'] = [50000, 60000, 70000]
```

```
print(df)
# Dropping a column
df = df.drop('salary', axis=1)
print(df)
# Dropping a row
df = df.drop(0, axis=0)
print(df)
Modifying Data
# Modifying a column
df['age'] = df['age'] + 1
print(df)
# Modifying a row
df.loc[1] = ['Bob', 31, 'San Francisco']
print(df)
Handling Missing Data
# Creating a DataFrame with missing values
data = {
 'name': ['Alice', 'Bob', 'Charlie'],
 'age': [25, None, 35],
```

```
'city': ['New York', None, 'Chicago']
}
df = pd.DataFrame(data)
print(df)
# Checking for missing values
print(df.isnull())
# Dropping missing values
df = df.dropna()
print(df)
# Filling missing values
df = df.fillna({'age': 30, 'city':
'Unknown' })
print(df)
```

Grouping and Aggregating Data

```
# Creating a DataFrame
data = {
  'name': ['Alice', 'Bob', 'Charlie',
'Alice', 'Bob'],
  'age': [25, 30, 35, 25, 30],
```

```
'city': ['New York', 'Los Angeles',
'Chicago', 'New York', 'Los Angeles'],
 'salary': [50000, 60000, 70000, 55000,
650001
}
df = pd.DataFrame(data)
# Grouping data by a column and calculating
the mean
grouped = df.groupby('name').mean()
print(grouped)
# Grouping data by multiple columns and
calculating the sum
grouped = df.groupby(['name', 'city']).sum()
print(grouped)
```

Merging and Joining DataFrames

```
# Creating two DataFrames
left = pd.DataFrame({
  'key': ['A', 'B', 'C'],
  'value_left': [1, 2, 3]
})
```

```
right = pd.DataFrame({
 'key': ['A', 'B', 'D'],
 'value_right': [4, 5, 6]
})
# Merging DataFrames on a key column
merged = pd.merge(left, right, on='key',
how='inner')
print(merged)
Applying Functions
Using apply
# Applying a function to each column
df['salary'] = df['salary'].apply(lambda x:
x * 1.1
print(df)
```

Using applymap for Element-wise Operations

Applying a function to each row

print(df)

df['combined'] = df.apply(lambda row:

f"{row['name']} ({row['city']})", axis=1)

```
# Applying a function to each element
df = df.applymap(lambda x: str(x).upper())
print(df)
```

Conclusion

Pandas is an essential library for data analysis in Python, providing powerful tools to manipulate, analyze, and visualize data.