# Searches for cLFV at Current and Future Colliders

Michael A. Schmidt

17 June 2019

@ CLFV2019, Fukuoka, Japan



#### The Standard Model is very successful...

... but incomplete

In particular neutrinos are massive

- ightarrow Flavour changing processes are a sensitive probe
  - ullet in SM $+m_
    u$  suppressed by unitarity,  ${\cal A}\sim G_F m_
    u^2\simeq 10^{-26}$
  - many neutrino mass models have large charged LFV
     due to non-unitarity or new contributions,
     a single-constant radiative mass models.
  - e.g. inverse seesaw, radiative mass models
  - could be completely unrelated to neutrino mass, e.g. SUSY

The Standard Model is very successful...

... but incomplete

In particular neutrinos are massive

- → Flavour changing processes are a sensitive probe
  - ullet in SM+ $m_
    u$  suppressed by unitarity,  ${\cal A}\sim G_F m_
    u^2\simeq 10^{-20}$
  - many neutrino mass models have large charged LFV due to non-unitarity or new contributions,
     e.g. inverse seesaw radiative mass models
  - could be completely unrelated to neutrino mass, e.g. SUSY

The Standard Model is very successful...

... but incomplete

In particular neutrinos are massive

- → Flavour changing processes are a sensitive probe
  - ullet in SM+ $m_
    u$  suppressed by unitarity,  ${\cal A}\sim G_F m_
    u^2\simeq 10^{-26}$
  - many neutrino mass models have large charged LFV due to non-unitarity or new contributions,
     e.g. inverse seesaw, radiative mass models
  - could be completely unrelated to neutrino mass, e.g. SUSY

The Standard Model is very successful...

#### ... but incomplete

In particular neutrinos are massive

- → Flavour changing processes are a sensitive probe
  - ullet in SM+ $m_
    u$  suppressed by unitarity,  ${\cal A}\sim G_F m_
    u^2\simeq 10^{-26}$
  - many neutrino mass models have large charged LFV due to non-unitarity or new contributions,
     e.g. inverse seesaw, radiative mass models
  - could be completely unrelated to neutrino mass, e.g. SUSY



Can high-energy colliders compete with the intensity frontier?



Can high-energy colliders compete with the intensity frontier?

#### **Overview**

Z boson decays

Higgs boson decay

Top-quark decay

Heavy resonance decay

Scattering at the LHC

Scattering at future lepton colliders

Conclusions

#### **Colliders**



# Z boson decays

#### cLFV Z boson decays



 $Z o e\mu$ : ATLAS 1408.5774, CMS EXO-13-005  $Z o \ell au$ : DELPHI  $(\mu au)$ , OPAL (e au) ATLAS, 13 TeV, 36.1 fb $^{-1}$  1804.09568 almost same sensitivity for  $\mu au$ 

No tree-level FCNC in SM induced at 1 loop in SM  $+m_{\nu}$ 

$$Z \sim V \qquad \ell_2^+ \propto \frac{G_F m_\nu^2}{16\pi^2} \simeq 10^{-28}$$

Observation clear sign of new physics e.g. due to a leptoquark

$$Z \longrightarrow \begin{cases} q' & \ell_2^+ \\ \phi & \ell_1^- \end{cases}$$

today typically less stringent as low-energy precision experiments

but will be more interesting with new Z boson factory

or if there is a signal to disentangle physics

#### cLFV Z boson decays



 $Z o e\mu$ : ATLAS 1408.5774, CMS EXO-13-005  $Z o \ell au$ : DELPHI  $(\mu au)$ , OPAL (e au) ATLAS, 13 TeV, 36.1 fb $^{-1}$  1804.09568 almost same sensitivity for  $\mu au$ 

No tree-level FCNC in SM induced at 1 loop in SM  $+m_{
u}$ 



Observation clear sign of new physics e.g. due to a leptoquark

$$Z \sim \begin{cases} q' & \ell_2^+ \\ \phi & \ell_1^- \end{cases}$$

today typically less stringent as low-energy precision experiments

but will be more interesting with new  $\ensuremath{\mathcal{Z}}$  boson factory

of there is a signal to disentaligie physic

#### cLFV Z boson decays



 $Z o e\mu$ : ATLAS 1408.5774, CMS EXO-13-005  $Z o \ell au$ : DELPHI  $(\mu au)$ , OPAL (e au) ATLAS, 13 TeV, 36.1 fb $^{-1}$  1804.09568 almost same sensitivity for  $\mu au$ 

No tree-level FCNC in SM induced at 1 loop in SM  $+m_{
u}$ 



Observation clear sign of new physics e.g. due to a leptoquark



today typically less stringent as low-energy precision experiments

but will be more interesting with new Z boson factory or if there is a signal to disentangle physics

# Higgs boson decay

#### cLFV Higgs decay

Dimension-6 SMEFT operators Grzadkowski et al 1008.4884

$$\mathcal{L} = \left[ Y_{ij} + \frac{c_{ij}}{\Lambda^2} \left( H^{\dagger} H \right) \right] \ \bar{L}_i P_R \ell_j H + h.c. \rightarrow \left[ \frac{m_{ij}}{v} + \frac{c_{ij}}{\sqrt{2}} \frac{v^2}{\Lambda^2} \right] h \bar{\ell}_i P_R \ell_j + h.c.$$





 $BR(h \rightarrow \mu \tau) < 0.25\%$ 

CMS 1712.07173

# cLFV Higgs decay cont.



### General (type-III) 2 Higgs doublet model

#### **EFT**

$$\mathcal{L} = \left[\frac{m_i}{v}\delta_{ij} + \frac{c_{ij}}{\sqrt{2}}\frac{v^2}{\Lambda^2}\right]h\bar{\ell}_i P_R \ell_j$$

two neutral CP even Higgs

$$\Phi_i = (v_i + \phi_i)/\sqrt{2} \qquad \frac{v_2}{v_1} = t_\beta$$

SM Higgs:  $h=-s_{\alpha}\phi_{1}+c_{\alpha}\phi_{2}$  with Yukawa couplings

$$Y_{ij} = -\frac{s_{\alpha}}{c_{\beta}} \frac{m_i}{v} \delta_{ij} + \frac{\cos(\beta - \alpha)}{c_{\beta}} \frac{\sqrt{m_i m_j}}{v} \chi_{ij}^{\ell}$$

Not suppressed by  $v^2/\Lambda^2 \rightarrow \text{large contribution}$ 

$$BR(h o \mu au) \propto \left(\left|\chi_{23}^\ell\right|^2 + \left|\chi_{32}^\ell\right|^2\right) \cos^2(eta - lpha) (1 + an^2eta)$$





# Example: Zee model

- Non-zero neutrino masses
- generated at loop level Zee 1980
- Simplest model with 2 Higgs doublets and charged singlet scalar h<sup>+</sup>





[see Herrero-Garcia et al 1605.06091 for Higgs cLFV in other neutrino mass models]

#### Future lepton collider



LHC cMs-PAS-HIG-16-005, CMS 1607.03561 ILC  $\sqrt{s}=250$  GeV, 4 polarizations,  $\mathcal{L}=2$  ab  $^{-1}$  CEPC  $\sqrt{s}=240$  GeV,  $\mathcal{L}=5$  ab  $^{-1}$ 

#### Future lepton collider



LHC CMS-PAS-HIG-16-005, CMS 1607.03561 ILC  $\sqrt{s}=250$  GeV, 4 polarizations,  $\mathcal{L}=2$  ab $^{-1}$  CEPC  $\sqrt{s}=240$  GeV,  $\mathcal{L}=5$  ab $^{-1}$ 



# Top-quark decay

#### cLFV top-quark [Davidson et al 1507.07163]

described by D6 operators with 1 top quark and 2 charged leptons

$$\mathcal{L} = 2\sqrt{2} G_F \sum_i \epsilon_i \mathcal{O}_i$$

e.g. 
$$\mathcal{O}_{LL,RR,LR,RL}^{AV} = (\bar{\ell}_i \gamma^{\alpha} P_X \ell_j) (\bar{u}_q \gamma_{\alpha} P_Y t)$$





- HERA  $\sigma(e^{\pm}p \rightarrow e^{\pm}t + X) \leq 0.3pb$
- $\bullet \ \ \textit{K} \rightarrow \textit{e}\mu \textrm{, } \mu \rightarrow \textit{e}\gamma$
- radiative corrections

$$e\mu$$
 op's: most  $|\epsilon|\lesssim O(10^{-3}-10^{-2})$ , some  $O(1)$   $au\ell$  op's  $O(1-100)$   $|\epsilon^{ut}_{S+P,L}|\leq$  0.03

#### cLFV top-quark [Davidson et al 1507.07163]

described by D6 operators with 1 top quark and 2 charged leptons

$$\mathcal{L}=2\sqrt{2}\textit{G}_{\textit{F}}\sum_{i}\epsilon_{i}\mathcal{O}_{i}$$

e.g. 
$$\mathcal{O}_{LL,RR,LR,RL}^{AV} = (\bar{\ell}_i \gamma^{\alpha} P_X \ell_j) (\bar{u}_q \gamma_{\alpha} P_Y t)$$





- HERA  $\sigma(e^{\pm}p \rightarrow e^{\pm}t + X) \leq 0.3pb$
- $K \rightarrow e\mu$ ,  $\mu \rightarrow e\gamma$
- · radiative corrections

 $e\mu$  op's: most  $|\epsilon|\lesssim O(10^{-3}-10^{-2})$ , some O(1)  $au\ell$  op's O(1-100)  $|\epsilon^{ut}_{S+P,L}|\leq$  0.03



#### cLFV top-quark [Davidson et al 1507.07163]

described by D6 operators with 1 top quark and 2 charged leptons

$$\mathcal{L} = 2\sqrt{2}G_F \sum_i \epsilon_i \mathcal{O}_i$$

e.g. 
$$\mathcal{O}^{AV}_{LL,RR,LR,RL} = (\bar{\ell}_i \gamma^{\alpha} P_X \ell_j) (\bar{u}_q \gamma_{\alpha} P_Y t)$$





Davidson et al 1507.07163

single top quark production (more diag's)

- HERA  $\sigma(e^{\pm}p \rightarrow e^{\pm}t + X) \leq 0.3pb$
- $\bullet \ \ \textit{K} \rightarrow \textit{e}\mu \textrm{, } \mu \rightarrow \textit{e}\gamma$
- radiative corrections

 $e\mu$  op's: most  $|\epsilon|\lesssim O(10^{-3}-10^{-2})$ , some O(1)  $au\ell$  op's O(1-100)  $|\epsilon^{ut}_{S+P,L}|\leq$  0.03



#### cLFV top quark decay: top-quark pair production



Main backgrounds:

- ullet  $tar{t}$  with non-prompt lepton
- *Z*+ jets

Multi-variate analysis w/ 14 var's using BDT observed [expected] limit

$$BR(t \to \ell \ell' q) < 1.86[1.36^{+0.61}_{-0.37}] \times 10^{-5}$$
  
 $BR(t \to e\mu q) < 6.6[4.8^{+2.1}_{-1.4}] \times 10^{-5}$ 

 $\rightarrow |\epsilon| \lesssim 0.1$ , more stringent for  $t \rightarrow \tau + X$  low-energy lim's stronger for most  $e\mu$  op's:  $\epsilon_{LL,RL}$ ,  $\epsilon_{S\pm P,R}$ ,  $\epsilon_{T,R}$ 





# Heavy resonance decay

# Heavy resonance: Z', RPV SUSY $\tilde{\nu}_{\tau}$ , quantum black hole



$$Z'$$
 $Q_{ij} = \frac{g_{ij}}{g_{Z,SM}}$ 

 $\begin{aligned} & \mathsf{RPV} \; \mathsf{SUSY} \; \tilde{\nu}_{\tau} \\ & W = \frac{1}{2} \lambda_{ijk} L_i L_j E_k^c \\ & + \lambda'_{ijk} L_i Q_j D_k^c \end{aligned}$ 

QBH
ADD (universal ED)
RS (warped ED)
n number of ED

ATLAS 1807.06573

# Heavy resonance: Z', RPV SUSY $\tilde{\nu}_{\tau}$ cont.



# Scattering at the LHC

#### Relevant effective operators [Cai, MS 1510.02486]

#### D6 Operators with 2 Quarks and 2 Leptons

Buchmüller, Wyler NPB268(1986)621; Grzadkowski et al 1008.4884; Carpentier, Davidson 1008.0280; Petrov, Zhuridov 1308.6561

#### Vector

$$\begin{aligned} \mathcal{Q}_{lq}^{(1)} &= (\bar{L}\gamma_{\mu}L)(\bar{Q}\gamma^{\mu}Q) & \mathcal{Q}_{lq}^{(3)} &= (\bar{L}\gamma_{\mu}\tau^{I}L)(\bar{Q}\gamma^{\mu}\tau^{I}Q) \\ \mathcal{Q}_{eu} &= (\bar{\ell}\gamma_{\mu}\ell)(\bar{u}\gamma^{\mu}u) & \mathcal{Q}_{ed} &= (\bar{\ell}\gamma_{\mu}\ell)(\bar{d}\gamma^{\mu}d) \\ \mathcal{Q}_{lu} &= (\bar{L}\gamma_{\mu}L)(\bar{u}\gamma^{\mu}u) & \mathcal{Q}_{ld} &= (\bar{L}\gamma_{\mu}L)(\bar{d}\gamma^{\mu}d) \\ \mathcal{Q}_{qe} &= (\bar{Q}\gamma_{\mu}Q)(\bar{\ell}\gamma^{\mu}\ell) & \end{aligned}$$

$$\mathcal{Q}_{ledq} = (\bar{L}^{lpha}\ell)(\bar{d}Q^{lpha})$$

$$\mathcal{Q}_{lequ}^{(1)} = (\bar{L}^{\alpha}\ell)\epsilon_{\alpha\beta}(\bar{Q}^{\beta}u)$$

with same-flavour quark

$$\mathcal{Q}_{lequ}^{(3)} = (\bar{L}^{lpha} \sigma_{\mu
u} \ell) \epsilon_{lphaeta} (\bar{Q}^{eta} \sigma^{\mu
u} u)$$

#### D8 Operators with 2 Gluons and 2 Leptons

$$\mathcal{O}_{X}^{ij} = \alpha_{s} G_{\mu\nu}^{a} G^{a\mu\nu} \left( \bar{e}_{Ri} L_{j} \cdot \phi^{*} + h.c. \right) \qquad \mathcal{O}_{X}^{\prime ij} = i \alpha_{s} G_{\mu\nu}^{a} \tilde{G}^{a\mu\nu} \left( \bar{e}_{Ri} L_{j} \cdot \phi^{*} - h.c. \right)$$

$$\bar{\mathcal{O}}_{X}^{ij} = i \alpha_{s} G_{\mu\nu}^{a} G^{a\mu\nu} \left( \bar{e}_{Ri} L_{j} \cdot \phi^{*} - h.c. \right) \qquad \bar{\mathcal{O}}_{X}^{\prime ij} = \alpha_{s} G_{\mu\nu}^{a} \tilde{G}^{a\mu\nu} \left( \bar{e}_{Ri} L_{j} \cdot \phi^{*} + h.c. \right)$$

$$\mathcal{O}_{Y}^{ij} = i \alpha_{s} G_{\mu\nu}^{a} G_{\sigma\nu}^{a} \eta^{\rho\sigma} \bar{e}_{Ri} \gamma^{\mu} D^{\nu} L_{i} \qquad \mathcal{O}_{Z}^{ij} = i \alpha_{s} G_{\mu\nu}^{a} G_{\sigma\nu}^{a} \eta^{\rho\sigma} \bar{e}_{Ri} \gamma^{\mu} D^{\nu} e_{Ri}$$

#### Relevant effective operators [Cai, MS 1510.02486]

#### D6 Operators with 2 Quarks and 2 Leptons

Buchmüller, Wyler NPB268(1986)621; Grzadkowski et al 1008.4884; Carpentier, Davidson 1008.0280; Petrov, Zhuridov 1308.6561

Vector

$$\begin{aligned} \mathcal{Q}_{lq}^{(1)} &= (\bar{L}\gamma_{\mu}L)(\bar{Q}\gamma^{\mu}Q) & \mathcal{Q}_{lq}^{(3)} &= (\bar{L}\gamma_{\mu}\tau^{I}L)(\bar{Q}\gamma^{\mu}\tau^{I}Q) \\ \mathcal{Q}_{eu} &= (\bar{\ell}\gamma_{\mu}\ell)(\bar{u}\gamma^{\mu}u) & \mathcal{Q}_{ed} &= (\bar{\ell}\gamma_{\mu}\ell)(\bar{d}\gamma^{\mu}d) \\ \mathcal{Q}_{lu} &= (\bar{L}\gamma_{\mu}L)(\bar{u}\gamma^{\mu}u) & \mathcal{Q}_{ld} &= (\bar{L}\gamma_{\mu}L)(\bar{d}\gamma^{\mu}d) \\ \mathcal{Q}_{qe} &= (\bar{Q}\gamma_{\mu}Q)(\bar{\ell}\gamma^{\mu}\ell) & \end{aligned}$$

Scalar 
$$\mathcal{Q}_{ledq} = (\bar{L}^{\alpha}\ell)(\bar{d}Q^{\alpha})$$
  $\mathcal{Q}_{lequ}^{(1)} = (\bar{L}^{\alpha}\ell)\epsilon_{\alpha\beta}(\bar{Q}^{\beta}u)$  with same-flavour quark

Tensor 
$$\mathcal{Q}_{lequ}^{(3)} = (\bar{L}^{\alpha}\sigma_{\mu\nu}\ell)\epsilon_{\alpha\beta}(\bar{Q}^{\beta}\sigma^{\mu\nu}u)$$

#### D8 Operators with 2 Gluons and 2 Leptons

$$\mathcal{O}_{X}^{ij} = \alpha_{s} G_{\mu\nu}^{a} G^{a\mu\nu} \left( \bar{\mathbf{e}}_{Ri} L_{j} \cdot \phi^{*} + h.c. \right) \qquad \mathcal{O}_{X}^{\prime ij} = i \, \alpha_{s} G_{\mu\nu}^{a} \tilde{G}^{a\mu\nu} \left( \bar{\mathbf{e}}_{Ri} L_{j} \cdot \phi^{*} - h.c. \right)$$

$$\bar{\mathcal{O}}_{X}^{ij} = i \, \alpha_{s} G_{\mu\nu}^{a} G^{a\mu\nu} \left( \bar{\mathbf{e}}_{Ri} L_{j} \cdot \phi^{*} - h.c. \right) \qquad \bar{\mathcal{O}}_{X}^{\prime ij} = \alpha_{s} G_{\mu\nu}^{a} \tilde{G}^{a\mu\nu} \left( \bar{\mathbf{e}}_{Ri} L_{j} \cdot \phi^{*} + h.c. \right)$$

$$\mathcal{O}_{Y}^{ij} = i \, \alpha_{s} G_{\mu\nu}^{a} G_{\sigma\nu}^{a} \eta^{\rho\sigma} \bar{\mathbf{e}}_{Ri} \gamma^{\mu} D^{\nu} L_{j} \qquad \mathcal{O}_{Z}^{ij} = i \, \alpha_{s} G_{\mu\nu}^{a} G_{\sigma\nu}^{a} \eta^{\rho\sigma} \bar{\mathbf{e}}_{Ri} \gamma^{\mu} D^{\nu} \mathbf{e}_{Rj}$$

#### Relevant effective operators [Cai, MS 1510.02486]

#### D6 Operators with 2 Quarks and 2 Leptons

Buchmüller, Wyler NPB268(1986)621; Grzadkowski et al 1008.4884; Carpentier, Davidson 1008.0280; Petrov, Zhuridov 1308.6561

Vector

$$\mathcal{Q}_{lq}^{(1)} = (\bar{L}\gamma_{\mu}L)(\bar{Q}\gamma^{\mu}Q) \qquad \qquad \mathcal{Q}_{lq}^{(3)} = (\bar{L}\gamma_{\mu}\tau^{l}L)(\bar{Q}\gamma^{\mu}\tau^{l}Q) \\
\mathcal{Q}_{eu} = (\bar{\ell}\gamma_{\mu}\ell)(\bar{u}\gamma^{\mu}u) \qquad \qquad \mathcal{Q}_{ed} = (\bar{\ell}\gamma_{\mu}\ell)(\bar{d}\gamma^{\mu}d) \\
\mathcal{Q}_{lu} = (\bar{L}\gamma_{\mu}L)(\bar{u}\gamma^{\mu}u) \qquad \qquad \mathcal{Q}_{ld} = (\bar{L}\gamma_{\mu}L)(\bar{d}\gamma^{\mu}d) \\
\mathcal{Q}_{qe} = (\bar{Q}\gamma_{\mu}Q)(\bar{\ell}\gamma^{\mu}\ell)$$

Scalar 
$$\mathcal{Q}_{ledq} = (\bar{L}^{\alpha}\ell)(\bar{d}Q^{\alpha})$$
  $\mathcal{Q}_{lequ}^{(1)} = (\bar{L}^{\alpha}\ell)\epsilon_{\alpha\beta}(\bar{Q}^{\beta}u)$  with same-flavour quark

Tensor 
$$\mathcal{Q}_{lequ}^{(3)} = (\bar{L}^{\alpha}\sigma_{\mu\nu}\ell)\epsilon_{\alpha\beta}(\bar{Q}^{\beta}\sigma^{\mu\nu}u)$$

#### D8 Operators with 2 Gluons and 2 Leptons

$$\begin{split} \mathcal{O}_{X}^{ij} &= \alpha_{s} G_{\mu\nu}^{a} G^{a\mu\nu} \left( \bar{e}_{Ri} L_{j} \cdot \phi^{*} + h.c. \right) & \mathcal{O}_{X}^{\prime ij} &= i \, \alpha_{s} G_{\mu\nu}^{a} \, \tilde{G}^{a\mu\nu} \left( \bar{e}_{Ri} L_{j} \cdot \phi^{*} - h.c. \right) \\ \bar{\mathcal{O}}_{X}^{ij} &= i \, \alpha_{s} G_{\mu\nu}^{a} G^{a\mu\nu} \left( \bar{e}_{Ri} L_{j} \cdot \phi^{*} - h.c. \right) & \bar{\mathcal{O}}_{X}^{\prime ij} &= \alpha_{s} G_{\mu\nu}^{a} \, \tilde{G}^{a\mu\nu} \left( \bar{e}_{Ri} L_{j} \cdot \phi^{*} + h.c. \right) \\ \mathcal{O}_{Y}^{ij} &= i \, \alpha_{s} G_{\mu\rho}^{a} G_{\sigma\nu}^{a} \eta^{\rho\sigma} \bar{L}_{i} \gamma^{\mu} D^{\nu} L_{j} & \mathcal{O}_{Z}^{ij} &= i \, \alpha_{s} G_{\mu\rho}^{a} G_{\sigma\nu}^{a} \eta^{\rho\sigma} \bar{e}_{Ri} \gamma^{\mu} D^{\nu} e_{Rj} \end{split}$$

#### Precision Experiments [Cai, MS 1510.02486]





# cLFV at the Large Hadron Collider (LHC) [Cai, MS 1510.02486]



# Signal: opposite-sign different flavour pair of leptons

#### Several existing searches:

- ullet ATLAS 7 TeV: LFV heavy neutral particle decay to  $e\mu$  ATLAS 1103.5559
- ullet CMS 8 TeV: LFV heavy neutral particle decay to  $e\mu$  CMS-PAS-EXO-13-002
- ATLAS 7 TeV: LFV in eμ continuum in R SUSY<sub>ATLAS</sub> 1205.0725
- ATLAS 8 TeV: LFV heavy neutral particle decayatlas 1503.04430
- ullet CMS 8 TeV: LFV heavy neutral particle decay to  $e\mu$  cms 1604.05239
- ATLAS 13 TeV, 3.2 fb<sup>-1</sup>: LFV heavy neutral particle decay ATLAS 1607.08079
- ATLAS 13 TeV, 36.1 fb<sup>-1</sup> atlas 1807.06573

#### Interesting ATLAS searches [Cai, MS 1510.02486]

#### Recast limits of most sensitive previous searches

| ATLAS 1503.04430                   | ATLAS 1205.0725             |
|------------------------------------|-----------------------------|
| 8 TeV                              | 7 TeV                       |
| $20.3~{ m fb}^{-1}$                | $2.1 \; { m fb}^{-1}$       |
| $e\mu$ , $e	au$ , $\mu	au$         | e $\mu$                     |
| inclusive                          | exclusive                   |
| including arbitrary number of jets | separated by number of jets |

#### Projection to 14 TeV

- Assuming 300 fb<sup>-1</sup>
- Follow searching strategy of exclusive 7 TeV search

#### Interesting ATLAS searches [Cai, MS 1510.02486]

#### Recast limits of most sensitive previous searches

| ATLAS 1503.04430                   | ATLAS 1205.0725             |
|------------------------------------|-----------------------------|
| 8 TeV                              | 7 TeV                       |
| $20.3~{ m fb}^{-1}$                | $2.1 \; { m fb}^{-1}$       |
| e $\mu$ , e $	au$ , $\mu	au$       | $e\mu$                      |
| inclusive                          | exclusive                   |
| including arbitrary number of jets | separated by number of jets |

#### Projection to 14 TeV

- Assuming 300 fb<sup>-1</sup>
- Follow searching strategy of exclusive 7 TeV search

## Interesting ATLAS searches [Cai, MS 1510.02486]

#### Recast limits of most sensitive previous searches

| ATLAS 1205.0725             |
|-----------------------------|
| 7 TeV                       |
| $2.1 \; { m fb}^{-1}$       |
| e $\mu$                     |
| exclusive                   |
| separated by number of jets |
|                             |

## Projection to 14 TeV

- $\bullet$  Assuming 300 fb $^{-1}$
- Follow searching strategy of exclusive 7 TeV search

## ATLAS Searches [Cai, MS 1510.02486]



#### ATLAS 7TeV 1205.0725







## cLFV at hadron colliders: quarks



LHC more interesting for vector operators with right-handed quark currents due to weaker constraints from intensity frontier

$$[\bar{q}\gamma_{\mu}P_{R}q][\bar{\ell}\gamma_{\mu}P_{R,L}\ell$$

## cLFV at hadron colliders: quarks



$$\mathcal{Q}_{ledq} = (\bar{L}^{\alpha}\ell)(\bar{d}Q^{\alpha}) \;, \qquad \quad \mathcal{Q}_{lequ}^{(1)} = (\bar{L}^{\alpha}\ell)\epsilon_{\alpha\beta}(\bar{Q}^{\beta}u)$$

LHC more interesting for vector operators with right-handed quark currents due to weaker constraints from intensity frontier

$$[\bar{q}\gamma_{\mu}P_{R}q][\bar{\ell}\gamma_{\mu}P_{R,L}\ell]$$

#### cLFV at the Large Hadron Collider (LHC): gluons [Cai, MS, Valencia 1802.09822]

Processes at LHC:

$$pp \to \ell_i \ell_j$$



## Signal:

opposite-sign different flavour pair of leptons

#### Most sensitive searches

ATLAS 1607.08079 CMS-PAS-EXO-16-058 1802.01122

13 TeV 13 TeV 3.2 fb<sup>-1</sup> 35.9 fb<sup>-1</sup>

 $e\mu$ ,  $e\tau$ ,  $\mu\tau$   $e\mu$  inclusive inclusive

newer ATLAS search: 13 TeV, 36.1 fb<sup>-1</sup> 1807.06573

EFT scattering amplitudes

$$\mathcal{A}(s) \simeq \frac{s}{\Lambda^2} \stackrel{s \to \infty}{\longrightarrow} \infty$$

 $\Rightarrow$   $\mathsf{Violation}$  of  $\mathsf{perturbative}$   $\mathsf{unitarity}$ 

#### Solutions

- UV-complete models/simplified models
- apply unitarization procedure, e.g.

Wigner 1964; Wigner, Eisenbud 1947; Gupta 1950

Recent application to monojets: Bell, Busoni, Kobakhidze, Long, MS 1606.027

ullet couplings o form factor

Baur, Zeppenfeld hep-ph/9309227

$$C 
ightarrow rac{C}{1 + rac{\hat{s}}{\Lambda^2}}$$

#### cLFV at the Large Hadron Collider (LHC): gluons [Cai, MS, Valencia 1802.09822]

Processes at LHC:

$$pp \to \ell_i \ell_j$$



Signal:

opposite-sign different flavour pair of leptons

#### Most sensitive searches

ATLAS 1607.08079 CMS-PAS-EXO-16-058 1802.01122

13 TeV 13 3.2 fb<sup>-1</sup> 35.9

 $e\mu$ ,  $e\tau$ ,  $\mu\tau$  inclusive

13 TeV 35.9 fb<sup>-1</sup>

 $e\mu$  inclusive

newer ATLAS search: 13 TeV, 36.1 fb<sup>-1</sup> 1807.06573

#### EFT scattering amplitudes

$$\mathcal{A}(s) \simeq rac{s}{\Lambda^2} \stackrel{s o \infty}{\longrightarrow} \infty$$

⇒ Violation of perturbative unitarity

#### Solutions

- UV-complete models/simplified models
- apply unitarization procedure, e.g.

Wigner 1964; Wigner, Eisenbud 1947; Gupta 1950

Recent application to monojets: Bell, Busoni, Kobakhidze, Long, MS 1606.027

#### couplings → form factor

Baur, Zeppenfeld hep-ph/9309227

$$C 
ightarrow rac{C}{1 + rac{\hat{s}}{\Lambda^2}}$$

## cLFV at the Large Hadron Collider (LHC): gluons [Cai, MS, Valencia 1802.09822]

Processes at LHC:

$$pp o \ell_i \ell_j$$



## Signal:

opposite-sign different flavour pair of leptons

#### Most sensitive searches

Solutions:

| ATLAS 1607.08079           | CMS-PAS-EXO-16-058 1802.01122 |
|----------------------------|-------------------------------|
| 13 TeV                     | 13 TeV                        |
| $3.2~{ m fb^{-1}}$         | $35.9~{ m fb}^{-1}$           |
| $e\mu$ , $e	au$ , $\mu	au$ | $e\mu$                        |
| inclusive                  | inclusive                     |

- UV-complete models/simplified models
- apply unitarization procedure, e.g.
   K-matrix unitarization

Wigner 1964; Wigner, Eisenbud 1947; Gupta 1950

Recent application to monojets: Bell, Busoni, Kobakhidze, Long, MS 1606.02722

newer ATLAS search: 13 TeV, 36.1 fb<sup>-1</sup> 1807.06573

EFT scattering amplitudes

$$\mathcal{A}(s) \simeq rac{s}{\Lambda^2} \stackrel{s o \infty}{\longrightarrow} \infty$$

⇒ Violation of perturbative unitarity

ullet couplings o form factor

Baur, Zeppenfeld hep-ph/9309227

$$C o rac{C}{1 + rac{\hat{s}}{\Lambda^2}}$$

## cLFV at hadron colliders: gluons



See also Bhattacharya et al 1802.06082 for a related analysis

Scattering at future lepton colliders

## Bileptons - seven simplified models [Li,MS 1809.07924]

$$\Delta L = 0$$
 complex scalar  $H_2 \sim (2, \frac{1}{2})$ 

$$\mathcal{L} = y_2^{ij} \frac{\mathsf{H}_2}{\mathsf{L}_i} P_R \ell_j + h.c.$$

LH singlet vector  $H_1 \sim (1,0)$ 

$$\mathcal{L}=y_1^{ij} \textcolor{red}{H_{1\mu}} \bar{L}_i \gamma^\mu P_L L_j$$

LH triplet vector  $H_3 \sim (3,0)$ 

$$\mathcal{L} = y_3^{ij} \bar{L}_i \gamma^\mu \vec{\sigma} \cdot {\color{black} H_{3\mu}} P_L L_j$$

right-handed vector  $H_1' \sim (1,0)$ 

$$\mathcal{L} = y_1^{\prime ij} \mathbf{H}_{1\mu}^{\prime} \bar{\ell}_i \gamma^{\mu} P_R \ell_j$$

$$\Delta L=2$$
 right-handed scalar  $\Delta_1 \sim (1,2)$ 

$$\mathcal{L} = \lambda_1^{ij} \Delta_1 \ell_i^T C P_R \ell_j + h.c.$$

left-handed scalar  $\Delta_3 \sim (3,1)$ 

$$\mathcal{L} = -rac{\lambda_3^{ij}}{\sqrt{2}} L_i^\mathsf{T} \mathsf{C} i \sigma_2 \vec{\sigma} \cdot \vec{\Delta}_3 P_L L_j + h.c.$$

vector  $\Delta_2 \sim (2, \frac{3}{2}$ 

$$\mathcal{L} = \lambda_2^{ij} \Delta_{2\mu\alpha} L_{i\beta}^{\mathsf{T}} \gamma^{\mu} P_{\mathsf{R}} \ell_j \epsilon_{\alpha\beta} + \text{h.c.}$$

assumption: real and symmetric Yukawa coupling matrices

related work: Dev, Mohapatra, Zhang 1711.08430, also 1712.03642, 1803.11167

## Bileptons - seven simplified models [Li,MS 1809.07924]

$$\Delta L = 0$$
 complex scalar  $H_2 \sim (2, \frac{1}{2})$ 

$$\mathcal{L} = y_2^{ij} \frac{H_2}{L_i} P_R \ell_j + h.c.$$

LH singlet vector  $H_1 \sim (1,0)$ 

$$\mathcal{L} = y_1^{ij} \mathbf{H_{1\mu}} \bar{L}_i \gamma^{\mu} P_L L_j$$

LH triplet vector  $H_3 \sim (3,0)$ 

$$\mathcal{L} = y_3^{ij} \bar{L}_i \gamma^\mu \vec{\sigma} \cdot \mathbf{H}_{3\mu} P_L L_j$$

right-handed vector  $H_1' \sim (1,0)$ 

$$\mathcal{L} = y_1^{\prime ij} H_{1\mu}^{\prime} \bar{\ell}_i \gamma^{\mu} P_R \ell_j$$

#### $\Delta L = 2$

right-handed scalar  $\Delta_1 \sim (1,2)$ 

$$\mathcal{L} = \lambda_1^{ij} \Delta_1 \ell_i^T C P_R \ell_j + h.c.$$

left-handed scalar  $\Delta_3 \sim (3,1)$ 

$$\mathcal{L} = -\frac{\lambda_3^y}{\sqrt{2}} L_i^\mathsf{T} \mathsf{C} i \sigma_2 \vec{\sigma} \cdot \vec{\Delta}_3 P_L L_j + h.c.$$

vector  $\Delta_2 \sim \left(2,\frac{3}{2}\right)$ 

$$\mathcal{L} = \lambda_2^{ij} \Delta_{2\mu\alpha} L_{i\beta}^T \gamma^{\mu} P_R \ell_j \epsilon_{\alpha\beta} + h.c.$$

assumption: real and symmetric

Yukawa coupling matrices

related work: Dev, Mohapatra, Zhang 1711.08430, also 1712.03642, 1803.11167

## Bileptons - seven simplified models [Li,MS 1809.07924]

$$\Delta L = 0$$
 complex scalar  $H_2 \sim (2, \frac{1}{2})$ 

$$\mathcal{L} = y_2^{ij} \frac{H_2}{L_i} P_R \ell_j + h.c.$$

LH singlet vector  $H_1 \sim (1,0)$ 

$$\mathcal{L} = y_1^{ij} \frac{\mathbf{H}_{1\mu}}{\mathbf{L}_i} \bar{\mathbf{L}}_i \gamma^{\mu} P_L \mathbf{L}_j$$

LH triplet vector  $H_3 \sim (3,0)$ 

$$\mathcal{L} = y_3^{ij} \bar{L}_i \gamma^\mu \vec{\sigma} \cdot \mathbf{H}_{3\mu} P_L L_j$$

right-handed vector  $H_1' \sim (1,0)$ 

$$\mathcal{L}=y_1^{\prime ij} rac{H_{1\mu}^{\prime}}{l_{i\mu}} ar{\ell}_i \gamma^{\mu} P_R \ell_j$$

$$\Delta L = 2$$

right-handed scalar  $\Delta_1 \sim (1,2)$ 

$$\mathcal{L} = \lambda_1^{ij} \Delta_1 \ell_i^T C P_R \ell_i + h.c.$$

left-handed scalar  $\Delta_3 \sim (3,1)$ 

$$\mathcal{L} = -rac{\lambda_3^y}{\sqrt{2}} L_i^\mathsf{T} \mathsf{C} i \sigma_2 \vec{\sigma} \cdot \vec{\Delta}_3 \mathsf{P}_\mathsf{L} L_j + \mathsf{h.c.}$$

vector  $\Delta_2 \sim \left(2, \frac{3}{2}\right)$ 

$$\mathcal{L} = \lambda_2^{ij} \Delta_{2\mu\alpha} L_{i\beta}^T \gamma^{\mu} P_R \ell_j \epsilon_{\alpha\beta} + h.c.$$

## assumption: real and symmetric

Yukawa coupling matrices

related work: Dev, Mohapatra, Zhang 1711.08430, also 1712.03642, 1803.11167

## Existing (low-energy) precision constraints [LI,MS 1809.07924]

- $\bullet$  LFV trilepton decays,  $\ell \to \ell_1 \bar{\ell}_2 \bar{\ell}_3$
- Muonium antimuonium conversion,  $\mu^+e^-\to\mu^-e^+$
- ullet anomalous magnetic (and electric) dipole moments,  $a_\ell$
- LEP/LHC searches
- ullet lepton flavour non-universality,  $\ell o \ell' 
  u ar{
  u}$



Future sensitivity improvements at e.g. Belle 2, Mu3E, ...

## Existing (low-energy) precision constraints [LI,MS 1809.07924]

- ullet LFV trilepton decays,  $\ell o \ell_1 ar{\ell}_2 ar{\ell}_3$
- Muonium antimuonium conversion,  $\mu^+ e^- \to \mu^- e^+$
- anomalous magnetic (and electric) dipole moments,  $a_\ell$
- LEP/LHC searches
- ullet lepton flavour non-universality,  $\ell o \ell' 
  u ar{
  u}$



Future sensitivity improvements at e.g. Belle 2, Mu3E, . . .

## Existing (low-energy) precision constraints [LI,MS 1809.07924]

- $\bullet$  LFV trilepton decays,  $\ell \to \ell_1 \bar{\ell}_2 \bar{\ell}_3$
- Muonium antimuonium conversion,  $\mu^+e^-\to\mu^-e^+$
- anomalous magnetic (and electric) dipole moments, a<sub>l</sub>
- LEP/LHC searches
- ullet lepton flavour non-universality,  $\ell o \ell' 
  u ar{
  u}$



Future sensitivity improvements at e.g. Belle 2, Mu3E, ...

## Off-shell production $H_{1\mu}$ : $e^+e^- o e^\pm\mu^\mp(e^\pm au^\mp)$ [Li,MS 1809.07924]

$$\mathcal{L} = y_1^{ij} H_{1\mu} \bar{L}_i \gamma^{\mu} P_L L_j$$

$$e^+ \qquad \qquad e^- \qquad e^+ \qquad \qquad \ell^+$$

$$e^- \qquad \qquad \ell^+ \qquad \qquad e^-$$

Basic cuts:  $p_T > 10$  GeV and  $|\eta| < 2.5$ 

Four collider configurations: CEPC:  $5 \text{ ab}^{-1}$  at 240 GeV FCC-ee:  $16 \text{ ab}^{-1}$  at 240 GeV ILC500:  $4 \text{ ab}^{-1}$  at 500 GeV CLIC:  $5 \text{ ab}^{-1}$  at 3 TeV



 $\tau$  efficiency not included in figure 60%  $\tau$  eff.  $\Rightarrow$  77% sensitivity reduction for 1  $\tau$ 

## $H_{1\mu}\colon e^+e^- o \mu^\pm au^\mp$ [Li,MS 1809.07924]



rel. couplings  $|y_1^{ee}y_1^{\mu\tau}|$   $e^+$   $\mu^\pm$ 



rel. couplings 
$$|y^{e\mu}y^{e\tau}|$$

$$e^+ \biguplus \mu^+ \qquad e^+ \biguplus \tau^+ \\ e^- \biguplus \tau^- \qquad e^- \biguplus \mu^-$$

## $extcolor{H}_{1\mu}$ : $e^+e^ightarrow\mu^\pm au^\mp$ [Li,MS 1809.07924]



rel. couplings  $|y_1^{ee}y_1^{\mu\tau}|$   $e^+$   $\mu^{\pm}$ 



rel. couplings 
$$|y^{e\mu}y^{e\tau}|$$

$$e^+ \xrightarrow[H_1]{} \mu^+ \qquad e^+ \xrightarrow[H_1]{} \tau^-$$

$$e^- \xrightarrow[]{} \tau^- \qquad e^- \xrightarrow[]{} \mu^-$$

## Same-sign lepton collider - $\Delta_1$ : $e^-e^- o \ell^-\ell'^-$ [Li,MS 1809.07924]



relevant couplings  $|\lambda_1^{ee}\lambda_1^{e\ell}| \text{ and } |\lambda_1^{ee}\lambda_1^{\mu\tau}|$ 



smaller integrated luminosity  $\mathcal{L} = 500\,\mathrm{fb}^{-1}$ 

## On-shell production $H_{1\mu}$ : $e^+e^- o e^\pm\mu^\mp(e^\pm au^\mp)+H_1$ [Li,MS in preparation]

$$\begin{split} \mathcal{L} = & y_1^{ij} \mathbf{H}_{1\mu} \bar{L}_i \gamma^{\mu} P_L L_j \\ &+ y_3^{ij} \bar{L}_i \gamma^{\mu} \vec{\sigma} \cdot \mathbf{H}_{3\mu} P_L L_j \end{split}$$



Cuts:  $p_T > 10$  GeV and  $|\eta| < 2.5$ 

Five collider configurations: CEPC:  $5 \text{ ab}^{-1}$  at 240 GeV FCC-ee:  $16 \text{ ab}^{-1}$  at 240 GeV ILC (500 GeV):  $4 \text{ ab}^{-1}$  at 500 GeV ILC (1TeV):  $1 \text{ ab}^{-1}$  at 1 TeV

CLIC:  $5 \text{ ab}^{-1}$  at 3 TeV



 $\tau$  efficiency not included in figure 60%  $\tau$  eff.  $\Rightarrow$  77% sensitivity reduction for 1  $\tau$ 

## **Conclusions**

#### **Conclusions**

#### colliders complementary way to search for charged LFV

 $\mu \leftrightarrow e$  flavour: stringent limits from low-energy precision exp.

 $au \leftrightarrow \ell$  flavour complementary sensitivity at colliders

#### colliders test more Lorentz structures

best for operators which are difficult to constrain at low energy



## Conclusions cont.



## Conclusions cont.



## Conclusions cont.



# Backup slides

$$\mathcal{Q}_{ledq} = (\bar{L}^{\alpha}\ell)(\bar{d}Q^{\alpha})$$
  $\qquad \qquad \mathcal{Q}_{lequ}^{(1)} = (\bar{L}^{\alpha}\ell)\epsilon_{\alpha\beta}(\bar{Q}^{\beta}u)$ 

Relevant Wilson coefficients  $\Xi^{u,d}$  of SM EFT

$$-\mathcal{L} = \Xi_{ij,kk}^{d} \left( \mathcal{Q}_{ledq} \right)_{ij,kk} + \Xi_{ij,kk}^{u} \left( \mathcal{Q}_{lequ}^{(1)} \right)_{ij,kk} + \text{h.c.} .$$

Effective four fermion Lagrangian

$$\mathcal{L}_{4f} = \Xi_{ij,kl}^{Cd}(\bar{\nu}_{Li}\ell_{Rj})(\bar{d}_{Rk}u_{Ll}) + \Xi_{ij,kl}^{Nd}(\bar{\ell}_{Li}\ell_{Rj})(\bar{d}_{Rk}d_{Ll}) + \Xi_{ij,kl}^{Cu}(\bar{\nu}_{Li}\ell_{Rj})(\bar{d}_{Lk}u_{Rl}) + \Xi_{ij,kl}^{Nu}(\bar{\ell}_{Li}\ell_{Rj})(\bar{u}_{Lk}u_{Rl}).$$

We do not consider top quark because of different phenomenology

$$Q_{ledq} = (\bar{L}^{\alpha}\ell)(\bar{d}Q^{\alpha})$$
  $Q_{lequ}^{(1)} = (\bar{L}^{\alpha}\ell)\epsilon_{\alpha\beta}(\bar{Q}^{\beta}u)$ 

Relevant Wilson coefficients  $\Xi^{u,d}$  of SM EFT

$$-\mathcal{L} = \Xi_{ij,kk}^{d} \left( \mathcal{Q}_{ledq} \right)_{ij,kk} + \Xi_{ij,kk}^{u} \left( \mathcal{Q}_{lequ}^{(1)} \right)_{ii,kk} + \text{h.c.} .$$

Effective four fermion Lagrangian

$$\begin{split} \mathcal{L}_{4f} &= \Xi^{Cd}_{ij,kl}(\bar{\nu}_{Li}\ell_{Rj})(\bar{d}_{Rk}u_{Ll}) + \Xi^{Nd}_{ij,kl}(\bar{\ell}_{Li}\ell_{Rj})(\bar{d}_{Rk}d_{Ll}) \\ &+ \Xi^{Cu}_{ij,kl}(\bar{\nu}_{Li}\ell_{Rj})(\bar{d}_{Lk}u_{Rl}) + \Xi^{Nu}_{ij,kl}(\bar{\ell}_{Li}\ell_{Rj})(\bar{u}_{Lk}u_{Rl}) \;. \end{split}$$

Thus the most general four fermion coefficients are

$$\begin{split} \Xi^{Nd}_{ij,kl} &= U^{\ell*}_{ii'} \, V^d_{lk} \, \Xi^d_{ij,kk} & \Xi^{Cd}_{ij',kl} &= U^{\nu*}_{ii'} \, V^u_{lk} \, \Xi^d_{i'j,kk} \\ \Xi^{Nu}_{ij,kl} &= -U^{\ell*}_{ii'} \, V^{u*}_{kl} \, \Xi^u_{ij,ll} & \Xi^{Cu}_{ij',kl} &= U^{\nu*}_{ii'} \, V^{d*}_{kl} \, \Xi^u_{i'j,ll} \end{split}$$

In general there is quark flavour violation.

We do not consider top quark because of different phenomenology.

$$\mathcal{Q}_{ledq} = (\bar{L}^{\alpha}\ell)(\bar{d}Q^{\alpha})$$
  $\qquad \qquad \mathcal{Q}_{lequ}^{(1)} = (\bar{L}^{\alpha}\ell)\epsilon_{\alpha\beta}(\bar{Q}^{\beta}u)$ 

Relevant Wilson coefficients  $\Xi^{u,d}$  of SM EFT

$$-\mathcal{L} = \Xi_{ij,kk}^{d} \left( \mathcal{Q}_{ledq} \right)_{ij,kk} + \Xi_{ij,kk}^{u} \left( \mathcal{Q}_{lequ}^{(1)} \right)_{ii\ kk} + \text{h.c.} .$$

Effective four fermion Lagrangian

$$\mathcal{L}_{4f} = \Xi_{ij,kl}^{Cd}(\bar{\nu}_{Li}\ell_{Rj})(\bar{d}_{Rk}u_{Ll}) + \Xi_{ij,kl}^{Nd}(\bar{\ell}_{Li}\ell_{Rj})(\bar{d}_{Rk}d_{Ll}) + \Xi_{ij,kl}^{Cu}(\bar{\nu}_{Li}\ell_{Rj})(\bar{d}_{Lk}u_{Rl}) + \Xi_{ij,kl}^{Nu}(\bar{\ell}_{Li}\ell_{Rj})(\bar{u}_{Lk}u_{Rl}) .$$

Choose basis in which charged lepton mass matrix is diagonal as well as  $\Xi_{ii}^{N?}$ 

$$\Xi_{ij,kl}^{Nd} = \delta_{kl} \Xi_{ij,kk}^{d} \qquad \qquad \Xi_{ij,kl}^{Cd} = U_{ii'}^* V_{kl}^* \Xi_{i'j,kk}^{d}$$

$$\Xi_{ij,kl}^{Nu} = -\delta_{kl} \Xi_{ij,kk}^{u} \qquad \qquad \Xi_{ij,kl}^{Cu} = U_{ii'}^* V_{kl}^* \Xi_{i'j,ll}^{u}$$

⇒ No tree-level FCNC processes.

We do not consider top quark because of different phenomenology.

$$\mathcal{Q}_{ledq} = (\bar{L}^{\alpha}\ell)(\bar{d}Q^{\alpha})$$
  $\qquad \qquad \mathcal{Q}_{lequ}^{(1)} = (\bar{L}^{\alpha}\ell)\epsilon_{\alpha\beta}(\bar{Q}^{\beta}u)$ 

Relevant Wilson coefficients  $\Xi^{u,d}$  of SM EFT

$$-\mathcal{L} = \Xi_{ij,kk}^{d} \left( \mathcal{Q}_{ledq} \right)_{ij,kk} + \Xi_{ij,kk}^{u} \left( \mathcal{Q}_{lequ}^{(1)} \right)_{ii\ kk} + \text{h.c.} .$$

Effective four fermion Lagrangian

$$\mathcal{L}_{4f} = \Xi_{ij,kl}^{Cd}(\bar{\nu}_{Li}\ell_{Rj})(\bar{d}_{Rk}u_{Ll}) + \Xi_{ij,kl}^{Nd}(\bar{\ell}_{Li}\ell_{Rj})(\bar{d}_{Rk}d_{Ll}) + \Xi_{ij,kl}^{Cu}(\bar{\nu}_{Li}\ell_{Rj})(\bar{d}_{Lk}u_{Rl}) + \Xi_{ij,kl}^{Nu}(\bar{\ell}_{Li}\ell_{Rj})(\bar{u}_{Lk}u_{Rl}) .$$

Choose basis in which charged lepton mass matrix is diagonal as well as  $\Xi_{ii\;kk}^{N?}$ 

⇒ No tree-level FCNC processes.

We do not consider top quark because of different phenomenology.

## **Renormalization Group Corrections**

• Main effect are QCD corrections





Following the standard discussion at NLO

Buchalla, Buras, Lautenbacher hep-ph/9512380

$$\Xi(\mu) = \Xi(\mu_0) \left( \frac{\alpha_s(\mu)}{\alpha_s(\mu_0)} \right)^{\frac{-0}{2\beta_0}}$$

with coefficients

$$\beta_0 = 11 - 2n_F/3$$
 and  $\gamma_0 = 6C_2(3) = 8$ 

- Wilson coefficients become larger at smaller scales
- ⇒ Increases reach of precision experiments

## **Renormalization Group Corrections**

• Main effect are QCD corrections



Following the standard discussion at NLO

Buchalla, Buras, Lautenbacher hep-ph/9512380

$$\Xi(\mu) = \Xi(\mu_0) \left(\frac{\alpha_s(\mu)}{\alpha_s(\mu_0)}\right)^{\frac{-0}{2\beta_0}}$$

with coefficients

$$\beta_0 = 11 - 2n_F/3$$
 and  $\gamma_0 = 6C_2(3) = 8$ 

- Wilson coefficients become larger at smaller scales.
- ⇒ Increases reach of precision experiments

## **Precision Experiments**









## $\mu - e$ Conversion

- Agnostic about mediation mechanism
- Following discussion in

Gonzalez, Gutsche, Helo, Kovalenko, Lvubovitskii, Schmidt 1303.0596



Dimensionless  $\mu - e$  conversion rate

$$R_{\mu e}^{(A,Z)} \equiv rac{\Gamma(\mu^- + (A,Z) o e^- + (A,Z))}{\Gamma(\mu^- + (A,Z) o 
u_\mu + (A,Z-1))}$$

with muon conversion rate

$$\Gamma(\mu^{-}+(A,Z)\to e^{-}+(A,Z))=\left|\Xi_{ij,kl}^{Nu,Nd}\right|^{2}\times\mathcal{F}\times\frac{p_{e}E_{e}\left(\mathcal{M}_{p}+\mathcal{M}_{n}\right)^{2}}{2\pi}$$

#### ${\mathcal F}$ depends on mediation mechanism

No dependence on phase of  $\Xi$  if there is only one operator.

Strongest limit for first generation quarks, but non-negligible for other quarks if pure direct nuclear mediation

## $\mu - e$ Conversion

- Agnostic about mediation mechanism
- Following discussion in

Gonzalez, Gutsche, Helo, Kovalenko, Lyubovitskij, Schmidt 1303.0596



|                   | <sup>48</sup> Ti    | <sup>197</sup> Au     | <sup>208</sup> Pb   |
|-------------------|---------------------|-----------------------|---------------------|
| $R_{\mu e}^{max}$ | $4.3\times10^{-11}$ | $7.0 \times 10^{-13}$ | $4.6\times10^{-11}$ |
| ūи                | 1100 [870]          | 2100 [1700]           | 760 [610]           |
| ā́d               | 1100 [930]          | 2200 [1900]           | 780 [680]           |
| <del>s</del> s    | 480 [-]             | 950 [-]               | 340 [-]             |
| ēс                | 150 [-]             | 290 [-]               | 110 [-]             |
| Бb                | 84 [-]              | 170 [-]               | 61 [-]              |

Direct nuclear mediation [Meson mediation]

but non-negligible for other quarks if pure direct nuclear mediation

## $\mu-e$ Conversion

- Agnostic about mediation mechanism
- Following discussion in

Gonzalez, Gutsche, Helo, Kovalenko, Lyubovitskij, Schmidt 1303.0596



|                   | <sup>48</sup> Ti    | <sup>197</sup> Au     | <sup>208</sup> Pb   |
|-------------------|---------------------|-----------------------|---------------------|
| $R_{\mu e}^{max}$ | $4.3\times10^{-11}$ | $7.0 \times 10^{-13}$ | $4.6\times10^{-11}$ |
| ūи                | 1100 [870]          | 2100 [1700]           | 760 [610]           |
| ā́d               | 1100 [930]          | 2200 [1900]           | 780 [680]           |
| <del>s</del> s    | 480 [-]             | 950 [-]               | 340 [-]             |
| ēс                | 150 [-]             | 290 [-]               | 110 [-]             |
| Бb                | 84 [-]              | 170 [-]               | 61 [-]              |

Direct nuclear mediation [Meson mediation]

Strongest limit for first generation quarks,

but non-negligible for other quarks if pure direct nuclear mediation

### **LFV** Semileptonic $\tau$ Decays

- Only light quarks u,d,s
- Weak dependence on phase
- $f_0$ :  $\varphi_m$  parameterises quark content
- ullet Quark FCNC parameterised by  $\lambda$

$$\Xi_{ij,kl}^u = \lambda \Xi_{ij,ll}^u V_{kl} \quad \Xi_{ij,kl}^d = \lambda \Xi_{ij,kk}^d V_{kl}$$



| decay                                    | $\mathrm{Br}_i^{max}$ | cutoff scale Λ [TeV]          |                               |                               |  |
|------------------------------------------|-----------------------|-------------------------------|-------------------------------|-------------------------------|--|
|                                          |                       | $\equiv_{ij,uu}^{u}$          | $\equiv_{ij,dd}^d$            | $\equiv_{ij,ss}^d$            |  |
| $	au^-  ightarrow e^- \pi^0$             | $8.0 	imes 10^{-8}$   | 10                            | 10                            | -                             |  |
| $	au^-  ightarrow e^- \eta$              | $9.2\times10^{-8}$    | 34                            | 34                            | 7.9                           |  |
| $	au^-  ightarrow e^- \eta'$             | $1.6\times10^{-7}$    | 42                            | 42                            | 12                            |  |
| $	au^-  ightarrow e^- K_S^0$             | $2.6 	imes 10^{-8}$   | -                             | $7.8\sqrt{\lambda}$           | $7.8\sqrt{\lambda}$           |  |
| $	au^- 	o e^-(f_0(980) 	o \pi^+\pi^-)$   | $3.2 \times 10^{-8}$  | $13\sqrt{\sin\varphi_m}$      | $13\sqrt{\sin\varphi_m}$      | $16\sqrt{\cos\varphi_m}$      |  |
| $	au^- 	o \mu^- \pi^0$                   | $1.1\times10^{-7}$    | 9.0 - 9.6                     | 9.0 - 9.6                     | -                             |  |
| $	au^- 	o \mu^- \eta$                    | $6.5\times10^{-8}$    | 36 - 38                       | 36 - 38                       | 8.4 - 8.9                     |  |
| $	au^- 	o \mu^- \eta'$                   | $1.3 	imes 10^{-7}$   | 42 - 46                       | 42 - 46                       | 12 - 13                       |  |
| $	au^-  ightarrow \mu^- K_S^0$           | $2.3\times10^{-8}$    | -                             | $(7.8 - 8.3) \sqrt{\lambda}$  | $(7.8 - 8.3) \sqrt{\lambda}$  |  |
| $	au^- 	o \mu^-(f_0(980) 	o \pi^+\pi^-)$ | $3.4 	imes 10^{-8}$   | $(12-14)\sqrt{\sin\varphi_m}$ | $(12-14)\sqrt{\sin\varphi_m}$ | $(15-16)\sqrt{\cos\varphi_m}$ |  |

# Leptonic Neutral Meson Decays $M^0 ightarrow \ell_i^+ \ell_j^-$

Quark FCNC parameterised by  $\boldsymbol{\lambda}$ 

 $\Xi^u_{ij,kl} = \lambda \Xi^u_{ij,ll} V_{kl} \qquad \Xi^d_{ij,kl} = \lambda \Xi^d_{ij,kk} V_{kl}$  For  $\lambda = 0$  only constraints from  $\pi^0, \eta^{(\prime)}$  decays

| decay                                                           | $\mathrm{Br}_i^{max}$ | cutoff scale Λ [TeV] |                      |                     |                     |                      |
|-----------------------------------------------------------------|-----------------------|----------------------|----------------------|---------------------|---------------------|----------------------|
|                                                                 |                       | $\equiv^u_{ij,uu}$   | $\equiv^d_{ij,dd}$   | $\equiv^d_{ij,ss}$  | $\equiv^u_{ij,cc}$  | $\equiv^d_{ij,bb}$   |
| $\pi^0  ightarrow \mu^+ e^-$                                    | $3.8\times10^{-10}$   | 2.2                  | 2.2                  | -                   | -                   | -                    |
| $\pi^0  ightarrow \mu^- e^+$                                    | $3.4 	imes 10^{-9}$   | 1.2                  | 1.2                  | -                   | -                   | -                    |
| $\pi^0 \rightarrow \mu^+ e^- + \mu^- e^+$                       | $3.6\times10^{-10}$   | 2.6                  | 2.6                  | -                   | -                   | -                    |
| $\eta \rightarrow \mu^+ e^- + \mu^- e^+$                        | $6 	imes 10^{-6}$     | 0.52                 | 0.52                 | 0.12                | -                   | -                    |
| $\eta' 	o e \mu$                                                | $4.7\times10^{-4}$    | 0.091                | 0.091                | 0.026               | -                   | -                    |
| $\mathcal{K}^0_{\mathcal{L}}  ightarrow \mathrm{e}^\pm \mu^\mp$ | $4.7 \times 10^{-12}$ | -                    | 86 $\sqrt{\lambda}$  | 86 $\sqrt{\lambda}$ | -                   | -                    |
| $D^{0}  ightarrow e^{\pm} \mu^{\mp}$                            | $2.6\times10^{-7}$    | $6.4\sqrt{\lambda}$  | -                    | -                   | $6.4\sqrt{\lambda}$ | -                    |
| $B^0	o e^\pm\mu^\mp$                                            | $2.8\times10^{-9}$    | -                    | $10\sqrt{\lambda}$   | -                   | -                   | $6.6\sqrt{\lambda}$  |
| $B^0	o e^\pm	au^\mp$                                            | $2.8\times10^{-5}$    | -                    | $0.97\sqrt{\lambda}$ | -                   | -                   | $0.62\sqrt{\lambda}$ |
| $B^0	o \mu^\pm	au^\mp$                                          | $2.2\times10^{-2}$    | -                    | $0.18\sqrt{\lambda}$ | -                   | -                   | $0.12\sqrt{\lambda}$ |

6

# Leptonic Charged Meson Decays $M^+ \rightarrow \ell_i^+ \nu$

- $R_M = \frac{\operatorname{Br}(M^+ \to e^+ \nu)}{\operatorname{Br}(M^+ \to \mu^+ \nu)}$
- Theoretical error for  $R_{\pi}$  ( $R_{K}$ ) about 5%
- Improvement by factor 20 (2) possible
- indicates constraints
- ullet Second index of  $\Lambda$  corresponds to charged lepton





### **SM** Background





- Main backgrounds:  $t\bar{t}$ , WW,  $Z/\gamma^* \to \tau\tau$  also W/Z plus jets, WZ/ZZ, single top and  $W/Z+\gamma$
- ATLAS 8TeV 1503.04430
- $\Rightarrow$  Efficiently reduced in exclusive 7 TeV analysis by rejecting jets and  $E_T^{miss} < 20 \text{ GeV}$ 
  - Modelling of main background agrees with ATLAS
  - Fake background estimated from data
- ⇒ Use background from ATLAS publications

### **SM** Background





- Main backgrounds:  $t\bar{t}$ , WW,  $Z/\gamma^* \to \tau\tau$  also W/Z plus jets, WZ/ZZ, single top and  $W/Z+\gamma$
- ATLAS 8TeV 1503.04430
- $\Rightarrow$  Efficiently reduced in exclusive 7 TeV analysis by rejecting jets and  $E_T^{miss} < 20 \text{ GeV}$ 
  - Modelling of main background agrees with ATLAS
  - Fake background estimated from data
- ⇒ Use background from ATLAS publications

#### Selection Criteria

#### Same selection criteria as in ATLAS 7 and 8 TeV analyses.

- oppositely charged leptons
- Electrons:  $E_T > 25$  GeV,  $|\eta| < 1.37$  or  $1.52 < |\eta| < 2.47$ , tight identification criteria
- Muons:  $p_T > 25$  GeV,  $|\eta| < 2.4$
- Tau:  $E_T > 25$  GeV,  $0.03 < |\eta| < 2.47$
- Lepton isolation: scalar sum of lepton  $p_T$  within cone of  $\Delta R = 0.2(0.4)$  is less than 10% (6%) of lepton  $p_T$  for 7 (8) TeV search
- Jets reconstructed anti- $k_T$  algorithm with radius parameter 0.4
- 7 TeV analysis: jets rejected if  $p_T > 30$  GeV or  $E_T^{miss} < 25$  GeV
- Invariant mass of lepton pair: > 100(200) GeV in 7(8) TeV analysis
- azimuthal angle difference  $\Delta \phi >$  3(2.7) in 7 (8) TeV analysis

#### 14 TeV projection

Same as 7 TeV exclusive analysis and  $p_T(\ell) > 300$  GeV and  $E_T^{miss} < 20$  GeV

#### Limits from LHC on Cutoff Scale in TeV

| $ar{ar{\ell}_i\ell_j}$ | $ar{e}\mu$ |       |        | $ar{e}	au$ | $ar{\mu}	au$ |
|------------------------|------------|-------|--------|------------|--------------|
|                        | 7 TeV      | 8 TeV | 14 TeV | 8 TeV      | 8 TeV        |
| ūи                     | 2.6        | 2.9   | 8.9    | 2.4        | 2.2          |
| $\bar{d}d$             | 2.3        | 2.3   | 8.0    | 2.1        | 1.9          |
| <del>s</del> s         | 1.1        | 1.4   | 4.0    | 0.95       | 0.88         |
| ōс                     | 0.97       | 1.3   | 3.6    | 0.82       | 0.78         |
| $ar{b}b$               | 0.74       | 1.0   | 2.7    | 0.63       | 0.61         |

- 8 TeV analysis gives only a slight improvement compared to 7 TeV despite 10 times more data because of large background
- e au and  $\mu au$  limits weaker than  $e\mu$  because of low au-tagging rate and higher fake background
- 14 TeV projection: same search strategy as 7 TeV exclusive search

# cLFV D8 operator with 2 gluons and 2 leptons

| process                                                   | exp. limit              | operator                                | Λ [TeV] |  |  |
|-----------------------------------------------------------|-------------------------|-----------------------------------------|---------|--|--|
|                                                           | $e\mu$                  |                                         |         |  |  |
| $Br(\mu^{-\frac{48}{22}Ti} \to e^{-\frac{48}{22}Ti})$     | $< 4.3 \times 10^{-12}$ | $O_X, \bar{O}_X$                        | 2.11    |  |  |
| ${\sf Br}(\mu^{-197}_{79}{ m Au}	o e^{-197}_{79}{ m Au})$ | $<7\times10^{-13}$      | $\mathcal{O}_X$ , $\bar{\mathcal{O}}_X$ | 2.54    |  |  |
| ет                                                        |                         |                                         |         |  |  |
| $Br(	au^+	o e^+\pi^+\pi^-)$                               | $< 2.3 \times 10^{-8}$  | $O_X, \bar{O}_X$                        | 0.42    |  |  |
| ${\sf Br}(	au^-	o e^-{\sf K}^+{\sf K}^-)$                 | $< 3.4 	imes 10^{-8}$   | $\mathcal{O}_X$ , $\bar{\mathcal{O}}_X$ | 0.37    |  |  |
| $Br(	au^-	o e^-\eta)$                                     | $<9.2\times10^{-8}$     | $\mathcal{O}_X',\bar{\mathcal{O}}_X'$   | 0.40    |  |  |
| $Br(\tau^- \to e^- \eta')$                                | $<1.6\times10^{-7}$     | $O'_X, \bar{O}'_X$                      | 0.44    |  |  |
| μτ                                                        |                         |                                         |         |  |  |
| $Br(\tau^- 	o \mu^- \pi^+ \pi^-)$                         | $<2.1\times10^{-8}$     | $O_X, \bar{O}_X$                        | 0.43    |  |  |
| $\mathrm{Br}(	au^- 	o \mu^- K^+ K^-)$                     | $<4.4\times10^{-8}$     | $\mathcal{O}_X$ , $\bar{\mathcal{O}}_X$ | 0.36    |  |  |
| $Br(	au^- 	o \mu^- \eta)$                                 | $<6.5\times10^{-8}$     | $\mathcal{O}_X',\bar{\mathcal{O}}_X'$   | 0.42    |  |  |
| $Br(\tau^- \to \mu^- \eta')$                              | $< 1.3 \times 10^{-7}$  | $O_X', \bar{O}_X'$                      | 0.46    |  |  |

# $H_{1\mu}$ : $e^+e^ightarrow e^\pm\mu^\mp(e^\pm au^\mp)$





au efficiency not included in figure 60% au eff.  $\Rightarrow$  77% (60%) sensitivity reduction for 1 (2) au leptons

# $H_2$ : $e^+e^- \to e^{\pm}\mu^{\mp}(e^{\pm}\tau^{\mp})$









# $H_{1\mu}, H_2$ : $e^+e^- \to \mu^{\pm}\tau^{\mp}$



# $\Delta_1$ , $\Delta_{2\mu}$ : $e^+e^ightarrow \ell^+\ell'^-$







# $H_{1\mu}$ , $H_2$ : $e^-e^- ightarrow \ell^-\ell'^-$







# $\Delta_1$ , $\Delta_{2\mu}$ : $e^-e^ightarrow \ell^-\ell'^-$





