```
In [15]: import pandas as pd
    from matplotlib import pyplot as plt
    import seaborn as sns
    import statsmodels.formula.api as smf
```

1. Importing Data

In [16]: salary_data=pd.read_csv('Salary_Data.csv')
salary_data

Out[16]:

	YearsExperience	Salary
0	1.1	39343.0
1	1.3	46205.0
2	1.5	37731.0
3	2.0	43525.0
4	2.2	39891.0
5	2.9	56642.0
6	3.0	60150.0
7	3.2	54445.0
8	3.2	64445.0
9	3.7	57189.0
10	3.9	63218.0
11	4.0	55794.0
12	4.0	56957.0
13	4.1	57081.0
14	4.5	61111.0
15	4.9	67938.0
16	5.1	66029.0
17	5.3	83088.0
18	5.9	81363.0
19	6.0	93940.0
20	6.8	91738.0
21	7.1	98273.0
22	7.9	101302.0
23	8.2	113812.0
24	8.7	109431.0
25	9.0	105582.0
26	9.5	116969.0
27	9.6	112635.0
28	10.3	122391.0
29	10.5	121872.0

```
In [17]: salary_data.shape
Out[17]: (30, 2)
In [18]:
          salary_data.head()
Out[18]:
              YearsExperience
                               Salary
           0
                          1.1
                              39343.0
           1
                          1.3 46205.0
           2
                             37731.0
                          1.5
           3
                          2.0 43525.0
                          2.2 39891.0
In [19]: | salary_data.isna().sum()
Out[19]: YearsExperience
                                0
          Salary
                                0
          dtype: int64
In [20]: | salary_data.dtypes
Out[20]: YearsExperience
                                float64
          Salary
                                float64
          dtype: object
In [21]:
          salary_data.describe()
Out[21]:
                  YearsExperience
                                         Salary
           count
                        30.000000
                                      30.000000
                         5.313333
                                   76003.000000
            mean
                         2.837888
                                   27414.429785
             std
             min
                         1.100000
                                   37731.000000
             25%
                         3.200000
                                   56720.750000
             50%
                         4.700000
                                   65237.000000
             75%
                         7.700000
                                  100544.750000
             max
                        10.500000
                                  122391.000000
```

2. Check for assumotions

1. linearity check

6 YearsExperience 8

10

 YearsExperience
 1.000000
 0.978242

 Salary
 0.978242
 1.000000

60000

40000

3. Model Building | Model Training

```
In [25]: #model training
lin_model=smf.ols(formula='Salary~YearsExperience',data=salary_data).fit()
lin_model
```

Out[25]: <statsmodels.regression.linear_model.RegressionResultsWrapper at 0x17586620d30>

4.Model Testing

```
In [26]: lin model.params
Out[26]: Intercept
                             25792.200199
         YearsExperience
                              9449.962321
         dtype: float64
In [27]: lin model.tvalues,lin model.pvalues
Out[27]: (Intercept
                              11.346940
          YearsExperience
                              24.950094
          dtype: float64,
          Intercept
                              5.511950e-12
          YearsExperience
                              1.143068e-20
          dtype: float64)
In [28]: lin_model.rsquared
Out[28]: 0.9569566641435086
In [29]: # Machine prediction
         pred_data={'YearsExperience':[2,5,7]}
         pred_data
Out[29]: {'YearsExperience': [2, 5, 7]}
In [30]: |test_data=pd.DataFrame(data=pred_data)
         test data
Out[30]:
             YearsExperience
                         2
          0
                         5
          1
          2
                         7
In [31]: lin_model.predict(test_data)
Out[31]: 0
              44692.124842
         1
              73042.011806
              91941.936449
         dtype: float64
```