CS 458 – Fall 2024

Introduction To Information Security Assignment #4

1 SHA-256 programming

a)

PS C:\Users\lenin\iit_archive\cs\cs458\Assignment4> & C:\Users/lenin/AppData/Local/Programs/Python/Python312/python.exe c:\Users/lenin/iit_archive\cs\cs458 8/Assignment4/a.py SHA-256 hash value of the name 'Shree Ramachandran Muthukumaran' in hexadecimal: 73d9a284482abdc1b7fe9c9eb19a730d21af809cf1ee85c6cf6f489ad73e6e76 PS C:\Users\lenin\iit_archive\cs\cs458\Assignment4>

b) Histogram Data:

- 1-bit count: 107, Frequency: 1
- 1-bit count: 109, Frequency: 1
- 1-bit count: 110, Frequency: 1
- 1-bit count: 111, Frequency: 3
- 1-bit count: 112, Frequency: 10
- 1-bit count: 113, Frequency: 10
- 1-bit count: 114, Frequency: 12
- 1-bit count: 115, Frequency: 15
- 1-bit count: 116, Frequency: 12
- 1-bit count: 117, Frequency: 23
- 1 of count. 117, 1 requestey. 25
- 1-bit count: 118, Frequency: 21 1-bit count: 119, Frequency: 21
- 1-bit count: 120, Frequency: 45
- 1-011 count. 120, 1 requency. 43
- 1-bit count: 121, Frequency: 31
- 1-bit count: 122, Frequency: 39
- 1-bit count: 123, Frequency: 37
- 1-bit count: 124, Frequency: 43
- 1-bit count: 125, Frequency: 34
- 1-bit count: 126, Frequency: 53
- 1-bit count: 127, Frequency: 55
- 1-bit count: 128, Frequency: 60
- 1-bit count: 129, Frequency: 45
- 1-bit count: 130, Frequency: 47
- 1-bit count: 131, Frequency: 50
- 1-bit count: 132, Frequency: 46
- 1-bit count: 133, Frequency: 44
- 1-bit count: 134, Frequency: 35
- 1-bit count: 135, Frequency: 28
- 1-bit count: 136, Frequency: 33

1-bit count: 137, Frequency: 19
1-bit count: 138, Frequency: 27
1-bit count: 139, Frequency: 21
1-bit count: 140, Frequency: 13
1-bit count: 141, Frequency: 12
1-bit count: 142, Frequency: 14
1-bit count: 143, Frequency: 9
1-bit count: 144, Frequency: 6
1-bit count: 145, Frequency: 8
1-bit count: 146, Frequency: 6
1-bit count: 147, Frequency: 5
1-bit count: 148, Frequency: 2
1-bit count: 149, Frequency: 1
1-bit count: 150, Frequency: 1

Histogram Plot:

c)

```
PS C:\Users\lenin\iit_archive\cs\cs458\Assignment4> & C:\Users\lenin\AppData\Local\Programs\Python\Python312\python.exe c:\Users\lenin\iit_archive\cs\cs458\Assignment4\c.py
Elapsed time for 1000 hashes: 0.004813 seconds
Hashes per second: 207762.23
Time to compute 2^128 hashes: 5.19e+25 years
Time to compute 2^256 hashes: 1.77e+64 years
PS C:\Users\lenin\iit_archive\cs\cs458\Assignment4\circ
PS C:\Users\lenin\iit_archive\cs\cs458\Assignment4\circ
```

d) Mathematica output of Binomial[256,128] / 2²⁵⁶:

Mathematica output of Binomial[256,100] / 2²⁵⁶:

Output of my python program:

```
PS C:\Users\lenin\iit archive\cs\cs458\Assignment4> & C:\Users\lenin\AppData/Local/Programs/Python/Python312/python.exe c:\Users\lenin\iit_archive\cs\cs458\Assignment4\d.py
Probability of exactly 128 bits set to one: 4.982e-02
Probability of exactly 100 bits set to one: 1.063e-04
```

2 RSA public-key cryptosystem

Bob's Public Key:

• $N = 143 = p \cdot q = 11 \cdot 13$

• e = 7.

Message: M = 3

Alice's Public Key:

• $N = 39 = p \cdot q = 3 \cdot 13$

 \bullet e = 5

Bob Signs the Message:

To sign the message, Bob uses his private key (d_{Bob}) .

The private key d_{Bob} is computed using the relation: $d_{Bob} \cdot e_{Bob} \equiv 1 \pmod{\phi(N_{Bob})}$,

where $\phi(N_{Bob}) = (p-1)(q-1)$

For $N_{Bob} = 143$, $\phi(N_{Bob}) = (11 - 1)(13 - 1) = 120$

 $d_{Bob} \cdot 7 \equiv 1 \pmod{120}$

 $d_{Bob} = 103$.

Signature $S = M^d \pmod{N_{Bob}}$

 $S = 3^{103} \pmod{143}$

S = 16

Bob Encrypts the Signature:

The encrypted value $E = S^{eAlice} \pmod{N_{Alice}}$

 $E = 16^5 \pmod{39}$

E = 22

Alice Decrypts the Encrypted Signature:

Alice decrypts E using her private key (d_{Alice}) . The private key is computed similarly:

 $d_{Alice} \, \cdot \, e_{Alice} \equiv 1 \; (mod \; \phi(N_{Alice}))$

For $N_{Alice} = 39$, $\phi(N_{Alice}) = (3-1)(13-1) = 24$

 $d_{Alice} \cdot 5 \equiv 1 \pmod{24}$

 $d_{Alice} = 5$.

 $S' = E^{\text{dAlice}} \text{ (mod } N_{\text{Alice}})$

 $S' = 22^5 \pmod{39}$

S' = 16

Alice Verifies the Signature:

To verify the signature, Alice has to check if : $M = S'^{eBob} \pmod{N_{Bob}}$

 $M = 16^7 \pmod{143}$

M = 3

Since M is the expected value, we can conclude that the signature is valid, proving both the integrity of the message and Bob's identity as the signer.