Physics 462 Midterm I

Name:

You may use your homework portfolio as a reference with this exam.

Question	Points	Score
1	25	
2	25	
3	25	
4	25	
Total:	100	

1	Expectation	Voluce
1.	Expectation	varues

(a) (9 points) Compute $\langle T \rangle$ (Kinetic energy; transmission coefficient wouldn't make sense in this context) for the second excited state of the infinite square well.

(b) (9 points) Compute $\langle T \rangle$ for the second excited state of the harmonic oscillator.

(c) (7 points) Draw a potential for which $\langle x \rangle \neq 0$.

- 2. **Downward step potential** Consider the downward step potential (as in problem 2.35).
 - (a) (5 points) Compute the reflectance coefficient R for an energy just slightly above the top of the step. That is, $E=\epsilon$, where ϵ is some very small number, and the step goes from V=0 on the left down to $V=-V_0$ on the right.

(b) (7 points) Give a physical justification for your answer in part (a).

(c) (5 points) Compute the reflectance coefficient R for $E \gg V_0$.

(d) (8 points) Give a physical justification for your answer in part (c).

- 3. **Triple delta function potential** Note that in this problem I am not asking you to perform an entirely new calculation; rather, I would like you to generalize a result you obtained in homework.
 - (a) (15 points) Based on your results for the double delta function potential, sketch the wave functions for the bound states of the triple delta function potential $V = -\alpha \left(\delta(x+a) + \delta(x) + \delta(x-a)\right)$.

(b) (5 points) Which of these is the ground state, and why?

(c) (5 points) Explain the parity (evenness or oddness) of these solutions.

4. **Linear combination** A particle in a harmonic oscillator potential has as its initial wave function a mixture of the first two stationary states:

$$\Psi(x,0) = A [\psi_0(x) + \psi_1(x)]$$

(a) (8 points) Normalize $\Psi(x,0)$.

(b) (8 points) Find $\Psi(x,t)$ and $|\Psi(x,t)|^2$.

(c) (9 points) Compute $\langle x \rangle$. (Remember that there is a trick to make this easy)