Homework 1 Solutions

• **Problem 1.** Let X be a discrete RV. Show that the entropy of a function of X is less than or equal to the entropy of X.

Solution

Let y = g(x). Then

$$p(y) = \sum_{x: y = g(x)} p(x).$$

Consider any set of x's that map onto a single y. For this set

$$\sum_{x:\,y=g(x)} p(x)\log p(x) \leq \sum_{x:\,y=g(x)} p(x)\log p(y) = p(y)\log p(y),$$

since \log is a monotone increasing function and $p(x) \leq \sum_{x:y=g(x)} p(x) = p(y)$. Extending this argument to the entire range of X (and Y), we obtain

$$H(X) = -\sum_{x} p(x) \log p(x)$$

$$= -\sum_{y} \sum_{x: y=g(x)} p(x) \log p(x)$$

$$\geq -\sum_{y} p(y) \log p(y)$$

$$= H(Y),$$

with equality iff g is one-to-one with probability one.

• **Problem 2.** A function $f: 2^{\Omega} \to \mathbb{R}$ is said to be submodular if $\forall S \subseteq S' \subseteq \Omega$ and $\forall z \notin S'$, one has

$$f(S \cup \{z\}) - f(S) \ge f(S' \cup \{z\}) - f(S').$$

1. Show that entropy and mutual information are submodular functions.

Solution

In this case Ω is a set of random variables. We use capital letters to denote sets of random variables (i.e. $X \subset \Omega$) and lower case letters to denote individual random variables $x \in \Omega$. Note that this contrasts with the usual notation of using capital letters for random variables and lower case letters for realizations of a random variable.

To show that $H: 2^{\Omega} \to [0, \infty)$ is submodular consider:

$$\underbrace{H(X,z) - H(X)}_{\text{emb}} \ge \underbrace{H(Y,z) - H(Y)}_{\text{cond.entropy}} = \underbrace{H(z|Y)}_{\text{cond.entropy}}$$
(3.2)

where $H(z|Y) = H(z|X \cup (Y \setminus X)) \le H(z|X)$, since conditioning cannot increase entropy.

 $I(X,\Omega) = H(X) - H(X|\Omega) = H(X)$, which is therefore submodular (as function of X)

 $I(X,\Omega\setminus X)=H(X)+H(\Omega\setminus X)-H(\Omega)$ is submodular (as function of X). In fact we have:

$$A_X \equiv I(X \cup \{z\}, \Omega \setminus (X \cup \{z\})) - I(X, \Omega \setminus X)$$

= $H(X \cup \{z\}) + H(\Omega \setminus (X \cup \{z\})) - H(X) - H(\Omega \setminus X)$
= $[H(X \cup \{z\}) - H(X)] + [H(\Omega \setminus (X \cup \{z\})) - H(\Omega \setminus X)]$

and similarly for A_Y . By submodularity of entropy, we have

$$H(X \cup \{z\}) - H(X) \ge H(Y \cup \{z\}) - H(Y)$$

and

$$H(\Omega \setminus Y) - H(\Omega \setminus (Y \cup \{z\})) \ge H(\Omega \setminus X) - H(\Omega \setminus (X \cup \{z\}))$$

since $\Omega \setminus (Y \cup \{z\}) \subseteq \Omega \setminus (X \cup \{z\})$. Therefore $A_X \ge A_Y$.

• **Problem 3.** Suppose that one has n coins, among which there may or may not be one counterfeit coin. If there is a counterfeit coin, it may be either heavier or lighter than the other coins. The coins are to be weighed by a balance. Find an upper bound on the number of coins n so that k weighings will find the counterfeit coin (if any) and correctly declare it to be heavier/lighter. Try to use information-theoretic arguments.

Solution

- a) For n coins, there are 2n+1 possible situations or "states".
 - \bullet One of the n coins is heavier.
 - One of the n coins is lighter.
 - · They are all of equal weight.

Each weighing has three possible outcomes - equal, left pan heavier or right pan heavier. Hence with k weighings, there are 3^k possible outcomes and hence we can distinguish between at most 3^k different "states". Hence $2n+1 \le 3^k$ or $n \le (3^k-1)/2$.

Looking at it from an information theoretic viewpoint, each weighing gives at most $\log_2 3$ bits of information. There are 2n+1 possible "states", with a maximum entropy of $\log_2(2n+1)$ bits. Hence in this situation, one would require at least $\log_2(2n+1)/\log_2 3$ weighings to extract enough information for determination of the odd coin, which gives the same result as above.

• **Problem 4.** Three squares have average area $\bar{a} = 100 \text{m}^2$. The average of the lengths of their sides is $\bar{l} = 10 \text{m}$. What can be said about the area of the larges square?

Solution

Solution: Let x be the length of the side of a square, and let the probability of x be (1/3, 1/3, 1/3) over the three lengths (l_1, l_2, l_3) . Then the information that we have is that E[x] = 10 and E[f(x)] = 100, where $f(x) = x^2$ is the function mapping lengths to areas. This is a strictly convex function. We notice that the equality E[f(x)] = f(E[x]) holds, therefore x is a constant, and the three lengths must all be equal. The area of the largest square is $100m^2$.

• **Problem 5.** The Rényi entropy of order $\alpha \ge 0$, $\alpha \ne 1$ of a discrete RV X supported on a set of cardinality M is defined as

$$H_{\alpha}(X) = \frac{1}{1-\alpha} \log \left(\sum_{i}^{M} p_{i}^{\alpha} \right).$$

- 1. Show that $H_0 \ge H_1 \ge H_2 \ge H_\infty$. Observe that the subscripts 1 and ∞ are to be taken in the sense of a limit (i.e., $\alpha \to 1$, $\alpha \to \infty$, respectively).
- 2. Show that Rényi entropy is non-negative, and that it is concave for $\alpha \leq 1$.

Solution

Proof. For $0 \le \alpha < \beta$ with $\alpha \ne 1$ and $\beta \ne 1$,

$$H_{\alpha}(X) = \frac{1}{1-\alpha} \log \sum_{x \in \mathcal{X}} P_X(x)^{\alpha}$$

$$= -\log \operatorname{E} \left[P_X(X)^{\alpha-1} \right]^{\frac{1}{\alpha-1}}$$

$$= -\log \operatorname{E} \left[P_X(X)^{\alpha-1} \right]^{\frac{\beta-1}{\alpha-1} \frac{1}{\beta-1}}$$

$$\geq -\log \operatorname{E} \left[P_X(X)^{(\alpha-1) \frac{\beta-1}{\alpha-1}} \right]^{\frac{1}{\beta-1}}$$

$$= -\log \operatorname{E} \left[P_X(X)^{\beta-1} \right]^{\frac{1}{\beta-1}}$$

$$= \frac{1}{1-\beta} \log \sum_{x \in \mathcal{X}} P_X(x)^{\beta}$$

$$= H_{\beta}(X).$$

We observe that x^c is convex- \cup for $c \ge 1$ or $c \le 0$ and convex- \cap for $0 \le c \le 1$. The inequality in the above derivation follows from the Jensen inequality in the following cases:

$$\beta > \alpha > 1$$
: $c = \frac{\beta - 1}{\alpha - 1} > 1$, x^c is convex- \cup and $\frac{1}{\beta - 1} > 0$;

$$\beta > 1 > \alpha \ge 0$$
: $c = \frac{\beta - 1}{\alpha - 1} < 0$, x^c is convex- \cup and $\frac{1}{\beta - 1} > 0$;

$$1>\beta>\alpha\geq 0$$
 : $1>c=\frac{\beta-1}{\alpha-1}>0,$ x^c is convex- \cap and $\frac{1}{\beta-1}<0.$

For $\alpha = 1$ or $\beta = 1$, the Jensen inequality can be applied directly. The conditions for equality in (2.14) follow directly from the Jensen inequality.

$$H_{\alpha}(\lambda P + (1 - \lambda)Q) = \frac{1}{1 - \alpha} \log \left[\Sigma (\lambda p_i + (1 - \lambda)q_i)^{\alpha} \right]$$
(14)
$$> \frac{1}{1 - \alpha} \log \left[\Sigma (\lambda p_i^{\alpha} + (1 - \lambda)q_i^{\alpha}) \right]$$
(15)
$$= \frac{1}{1 - \alpha} \log \left[\lambda \Sigma p_i^{\alpha} + (1 - \lambda)\Sigma q_i^{\alpha} \right].$$
(16)

Since the log function is concave, (16) is strictly greater than

$$\frac{1}{1-\alpha} \left[\lambda \log \left(\sum p_i^{\alpha} \right) + (1-\lambda) \log \left(\sum q_i^{\alpha} \right) \right]
= \lambda H_{\alpha}(P) + (1-\lambda) H_{\alpha}(Q) \quad (17)$$

(Solution Sources: TC Solution Manual, Aarti Singh Lecture notes, ECE 534 UIC notes, Renyi's entropy and probability of error, Ben-Bassat, Raviv, Cachin PhD dissertation.)