COMP 7180 Quantitative Methods for Data Analytics and Artificial Intelligence

Exercise 6

- 1. Are the following sets convex? Give a brief justification for each of the following cases:
 - (a) $C = \{x \in \mathbb{R}^n | \mathbf{a}^T \mathbf{x} \ge \mathbf{b} \text{ or } ||\mathbf{x} \mathbf{a}|| \le \varepsilon \}$
 - (b) C = $\left\{ \mathbf{x} \in \mathbb{R}^n | \mathbf{x}^T \mathbf{y} \ge 1 \text{ for all } \mathbf{y} \in S \right\}$
 - (c) C = $\{(x, y) \in \mathbb{R}^2 | y \ge x^2 \}$
- 2. Prove that any locally minimum point of a convex function is globally minimum.
- 3. Consider whether the following functions are convex function:
 - (a) f(x) = ax + b, where $a, b \in \mathbf{R}$
 - (b) $f(x) = x^p$, where x > 0, and $p \ge 1$ or $p \le 0$
 - (c) $f(x) = x^p$, where x > 0, and 0 .
 - (d) $f(x) = x \log x$, for x > 0.
 - (e) $f(x) = \log x$, for x > 0.