Лекция 14 Непрерывность функции одной действительной переменной

14.1 Определения непрерывности

Пусть x_0 - предельная точка множества E .

М14.1.1 Определение. Функция f \P называется непрерывной в точке x_0 , если $\lim_{x\to x_0} f$ \P = f \P 0.

Замечание 1. Приведенное определение непрерывности подразумевает, вообще говоря, три допущения: 1) функция f определена в точке x_0 ; б) существует конечный предел $\lim_{x\to x_0} f$; в) значение предела $\lim_{x\to x_0} f$ совпадает со значением функции f в точке x_0 .

Замечание 2. Из определения М14.1.1 видно, что при вычислении предела от непрерывной функции достаточно подставить предельное значение x_0 в функцию, находящуюся под знаком предела.

Развернутое определение непрерывности на языке $\varepsilon - \delta$ (определение непрерывности по Коши) выглядит так (просто расшифровано понятие предела из определения M14.1.1):

М14.1.2 Определение. Функция f \P называется непрерывной в точке x_0 , если для $\forall \varepsilon > 0 \ \exists \delta > 0 \ |x - x_0| < \delta \Rightarrow |f \P - f \P_0| < \varepsilon$.

Замечание. Если в определении M14.1.1 значок предела заменить на значок правого (левого) предела, то получится определение правой (левой) непрерывности функции в точке.

М14.1.3 Определение (непрерывность по Гейне) Функция y = f *такой, что* $\lim_{n \to \infty} x_n = x_0$ выполняется равенство $\lim_{n \to \infty} f$ *такой,* $\lim_{n \to \infty} f$

М14.1.4 Теорема Определения непрерывности по Коши и предела по Гейне равносильны.

Доказательство. Достаточно повторить доказательство теоремы 13.4.2, заменив в нем A на $f \in \mathbb{Q}_0$.

М14.1.5 Определение. Пусть Δx - некоторое число, которое будем называть приращением переменной x . Если разность $\Delta f = f \, \P_0 + \Delta x \, f \, \P_0 \, meet$ смысл, то она называется приращением функции $y = f \, \P_0 \, meet$ в точке x_0 , соответствующим приращению Δx .

М14.1.6 Теорема (непрерывность в терминах приращений). Функция y = f тогда и только тогда непрерывна в точке x_0 , когда из $\Delta x \to 0$ следует $\Delta f = f$ $C_0 + \Delta x \to 0$.

Доказательство. Заменив в определении M14.1.2 переменную x на $x_0 + \Delta x$, сразу получим требуемое.

М14.1.7 Определение. Функция называется *непрерывной на множестве* E, если она непрерывна в любой точке этого множества. Множество всех функций, непрерывных на множестве E будем обозначать C^0 \mathbf{E} .

14.2 Непрерывность элементарных функций

М14.2.1 Теорема (Непрерывность и арифметические операции) 1) Если функции f $\$ и g $\$ определены в некоторой окрестности точки x_0 и обе функции непрерывны в этой точке, то функции f $\$ и g $\$ определены в некоторой окрестности точки x_0 , обе функции непрерывны в этой точке и g $\$ определены в некоторой окрестности точки x_0 , обе функции непрерывны в этой точке и g $\$ от функции $\$ также непрерывна в точке x_0 .

Доказательство. Сразу же следует из определения непрерывности M14.1.1 и теоремы о пределе и арифметических операциях M13.6.1.

Примеры непрерывных элементарных функций:

M14.2.2 Постоянная функция $f \leftarrow C$ непрерывна в любой точке числовой прямой (следует из определения M14.1.1).

M14.2.3 Функция $f \longrightarrow x$ непрерывна в любой точке числовой прямой (следует из определения M14.1.4).

M14.2.4 Функция $f \longrightarrow x^n$ при любом $n \in N$ непрерывна в любой точке числовой прямой (следует из M14.2.3 и теоремы M14.2.1).

M14.2.5 Любой многочлен $f extbf{Q} = \sum_{k=0}^n a_k x^k$ непрерывен в любой точке числовой прямой (следует из M14.2.4, M14.2.2 и M14.2.1).

М14.2.6 Любая дробно-рациональная функция $f = \sum_{k=0}^{n} a_k x^k$ непрерывна в любой точке

числовой прямой, кроме корней многочлена $p = \sum_{k=0}^{m} b_k x^k$ (следует из M14.2.5 и M14.2.1).

М14.2.7 Несколько сложнее доказываются следующие непрерывности:

- функции $f + \sin x$ и $f + \cos x$ непрерывны на всей числовой прямой;
- функция f + tgx непрерывна на всей числовой прямой, кроме точек вида $x = \frac{\pi}{2} + \pi k, \ k \in \mathbb{Z}$;
- функция f = ctgx непрерывна на всей числовой прямой, кроме точек вида $x = \pi k, \ k \in Z$;

-функция $f \bigoplus \log_a x$ непрерывна в любой точке интервала (x, ∞) ;

14.3 Разрывы функций

М14.3.1 Определение. Если функция не является непрерывной в некоторой точке множества E (области определения функции), то такая точка называется *точкой разрыва* функции.

M14.3.2 Замечание. На языке $\varepsilon - \delta$ разрывность функции в точке x_0 записывается так:

$$\exists \varepsilon > 0 \ \forall \delta > 0 \ \exists x \in E \ |x - x_0| < \delta \land |f \land f - f \land f | < \varepsilon.$$

Допустим, функция $f \blacktriangleleft$ определена в точке x_0 .Тогда для непрерывности функции $f \blacktriangleleft$ в точке x_0 необходимо и достаточно, чтобы в этой точке существовали оба односторонних предела, оба были конечны и совпадали со значением функции в этой точке. Значит, для разрывности функции в точке x_0 достаточно нарушения хотя бы одного из перечисленных условий. В связи с этим различают три вида точек разрыва:

М14.3.3 Определение (Классификация разрывов)

- точка x_0 называется *точкой устранимого разрыва* функции $f \P$, если $\lim_{x \to x_0 = 0} f \P = \lim_{x \to x_0 + 0} f \P \neq f \P_0$;
- точка x_0 называется *точкой разрыва первого рода* функции $f \blacktriangleleft$, если $\lim_{x \to x_0 0} f \blacktriangleleft = A < \infty, \ \lim_{x \to x_0 + 0} f \blacktriangleleft = B < \infty, \ A \neq B \,;$
- точка разрыва x_0 называется *точкой разрыва второго рода* функции f во всех остальных случаях.
- **M14.3.4** Замечание. В определении точек разрыва первого и второго рода вообще не фигурирует значение функции f (). Значит, в этих случаях не важно, определена функция f () в точке x_0 или нет. Если же в точке x_0 функция f () не определена, но при этом $\lim_{x \to x_0 + 0} f$ () то можно говорить об устранимом разрыве функции в этой точке.
- **М14.3.5 Пример.** Функция $f = e^{-\frac{1}{x^2}}$ имеет в точке $x_0 = 0$ устранимый разрыв, функции $f = \operatorname{sgn} x$ и $f = \operatorname{arctg} \frac{1}{x}$ имеют в точке $x_0 = 0$ разрывы первого рода, функции $f = \frac{1}{x}$, $f = 2^{\frac{1}{x}}$ и $f = \sin \frac{1}{x}$ имеют в точке $x_0 = 0$ разрывы второго рода.

Примеры разрывов функции в точке 0

М14.3.6 Пример (функция Дирихле) Функция Дирихле $\chi_{\mathcal{Q}} \blacktriangleleft = \begin{cases} 1 & npu & x \in \mathcal{Q} \\ 0 & npu & x \notin \mathcal{Q} \end{cases}$ разрывна во всех точках и все точки разрыва – второго рода.

$$R \blacktriangleleft \Rightarrow \begin{cases} \frac{1}{n} \ npu \ x = \frac{m}{n} \in Q \left(\frac{m}{n} - \text{несократимая дробь} \right) \text{ разрывна во всех рациональных точках и} \\ 0 \ npu \ x \notin Q \end{cases}$$

непрерывна в иррациональных точках.

14.4 Монотонные функции

М14.4.1 Теорема (Разрывы монотонной функции) Если монотонная функция, определенная на некотором промежутке, имеет разрывы, то это разрывы первого рода.

Доказательство. Пусть функция f розрастает на промежутке f и имеет разрыв в точке f тогда, применив к промежутку f теорему М10.5.1 о пределе монотонной ограниченной функции (ограниченность следует из возрастания f f f f), получим, что функция f имеет в точке f конечный левый предел. Из той же теоремы следует, что функция имеет конечный правый предел, поэтому, если в точке f имеет место разрыв, то это разрыв первого рода.

M14.4.2 *Следствие 1.* Если областью значений монотонной функции, заданной на промежутке $\P;b$, является некоторый промежуток $\P;d$, то эта функция непрерывна на промежутке $\P;b$.

М14.4.3 Следствие 2. Множество точек разрыва монотонной функции не более чем счетно.

14.5 Локальные свойства непрерывных функций

М14.5.1 Теорема (ограниченность непрерывной функции) Если функция f непрерывна в точке x_0 , то она ограничена в некоторой окрестности этой точки.

Доказательство. Следует из определения непрерывности М14.1.2.

М14.5.2 Теорема (сохранение знака непрерывной функции) Если функция f репрерывна в точке x_0 и f 0 то в некоторой окрестности точки x_0 значения функции f имеют тот же знак, что и f 0.

Доказательство. Следует из М14.5.1.

М14.5.3 Теорема (непрерывность композиции функций) Пусть функция g определена в промежутке $\{ (;d) \}$, а функция f $\{ (;d) \}$ в промежутке $\{ (;d) \}$ и при этом значения функции f содержатся в промежутке $\{ (;d) \}$. Если функция f $\{ (;d) \}$ непрерывна в точке $\{ (;d) \}$ а функция $\{ (;d) \}$ то функция $\{ (;d) \}$ непрерывна в точке $\{ (;d) \}$ то функция $\{ (;d) \}$ непрерывна в точке $\{ (;d) \}$ то функция $\{ (;d) \}$ непрерывна в точке $\{ (;d) \}$ то функция $\{ (;d) \}$ непрерывна в точке $\{ (;d) \}$ то функция $\{ (;d) \}$ непрерывна в точке $\{ (;d) \}$ то функция $\{ (;d) \}$ непрерывна в точке $\{ (;d) \}$ то функция $\{ (;d) \}$ непрерывна в точке $\{ (;d) \}$ то функция $\{ (;d) \}$ непрерывна в точке $\{ (;d) \}$ то функция $\{ (;d) \}$ непрерывна в точке $\{ (;d) \}$ непрерывна в

Доказательство. Пусть $\varepsilon>0$, тогда, в силу непрерывности функции g , найдется число $\xi>0$ такое, что из $|y-y_0|<\xi$ следует |g , g . В силу непрерывности функции f найдется число $\delta>0$ такое, что из $|x-x_0|<\delta$ следует |f . Значит, для числа

14.6 Теоремы Больцано-Коши

М14.6.2 *Замечание*. Теорему о нулевом значении можно использовать для приближенного решения уравнений.

М14.6.3 Пример. Найти корни уравнения $\sin 2x - \ln x = 0$.

Решение: Функция $y = \sin 2x$ - периодическая, а функция $y = \ln x$ монотонно возрастающая, поэтому графики этих функций имеют единственную точку пересечения, которой соответствует

и есть искомая точка.

Графическое решение уравнения sin2x=lnx

точках промежутка [,25; 1,5] функция имеет разные знаки, поэтому за следующее приближение корня можно принять середину отрезка [,25; 1,5], т.е. $\alpha_2 = \frac{1,25+1,5}{2} = 1,375$, точность которого равна $\Delta_1 = \frac{1,5-1,25}{2} = 0,125$.

14.7 Обратная функция. Теоремы Вейерштрасса

М14.7.1 Теорема (о существовании обратной функции) Пусть функция f определена, строго монотонна и непрерывна на некотором промежутке X (конечном или бесконечном, замкнутом, открытом или полуоткрытом). Тогда в промежутке Y значений этой функции существует однозначная обратная функция, являющаяся непрерывной и имеющая тот же характер монотонности.

Доказательство. Пусть $f \blacktriangleleft$ возрастает на промежутке X. Из теоремы 14.6.4 следует, что значения непрерывной функции $f \blacktriangleleft$ сплошь заполняют промежуток Y, а в силу монотонности для каждого числа $x_0 \in X$ найдется ровно одно число $y_0 \in Y$ такое, что $f \blacktriangleleft_0 \Rightarrow y_0$. Сопоставив каждому числу $y \in Y$ его прообраз $x \in X$, получим однозначную обратную функцию $f^{-1} \blacktriangleleft_0$.

Пусть $y_1 < y_2$ и f^{-1} $\P_1 \Rightarrow x_1$, f^{-1} $\P_2 \Rightarrow x_2$, но тогда, в силу определения обратной функции, $f \P_1 \Rightarrow y_1$, $f \P_2 \Rightarrow y_2$. Если было бы $x_1 > x_2$, то тогда, в силу возрастания функции $f \P_2$ было бы $f \P_1 \Rightarrow f \P_2$, т е. $y_1 > y_2$, что противоречит предположению $y_1 < y_2$. Значит, обратная функция также возрастающая.

Непрерывность обратной функции является очевидным следствием М14.4.2.

М14.6.2 Пример. Найдем функции, обратные к *гиперболическому синусу* $y = \frac{e^x - e^{-x}}{2}$ и *гиперболическому косинусу* $z = \frac{e^x + e^{-x}}{2}$.

Решение. Из уравнения $y=\frac{e^x-e^{-x}}{2}$ заменой $t=e^x$ получаем $2y=t-\frac{1}{t}$; $t^2-2yt-1=0$; $t=\frac{2y\pm\sqrt{4y^2+4}}{2}=y\pm\sqrt{y^2+1}$. Поскольку $t=e^x>0$, то должно быть $t=y+\sqrt{y^2+1}$. Тогда $x=\ln\left(y+\sqrt{y^2+1}\right)$. Функцию $arshx=\ln\left(x+\sqrt{x^2+1}\right)$, обратную к гиперболическому синусу, называют ареа-синус.

Аналогично находится ареа-косинус: $arcch = \ln \left(x \pm \sqrt{x^2 - 1} \right)$.

М14.6.4 Теорема Вейерштрасса (о наибольшем и наименьшем значениях) Если функция f определена и непрерывна на отрезке a; b, то она достигает на этом отрезке своих точных верхней и нижней граней.

теореме М13.2.2 ограничена: $F \blacktriangleleft \mu + \mu > 0$. Тогда $\frac{1}{M-f} \blacktriangleleft \mu + \mu + f \blacktriangleleft M - \frac{1}{\mu}$. Последнее неравенство противоречит тому, что $M = \sup_{x \in \llbracket , b \rrbracket} f \blacktriangleleft$. Аналогично можно доказать, что

достигается и точная нижняя грань.

14.7 Равномерная непрерывность

М14.7.1 Определение. Функция $f \blacktriangleleft$ называется равномерно непрерывной на промежутке X (конечном или бесконечном, замкнутом, открытом или полуоткрытом), если для любого числа $\varepsilon > 0$ найдется число $\delta > 0$ такое, что для любых точек $x_1 \in X$, $x_2 \in X$ из неравенства $|x_1 - x_2| < \delta$ следует $|f \blacktriangleleft_1 - f \blacktriangleleft_2| < \varepsilon$.

M14.7.2 Замечание 1. Если подробно расписать определение непрерывности функции на промежутке X (M14.1.8), то получим: для любого числа $\varepsilon > 0$ и любых точек $x_1 \in X$, $x_2 \in X$ найдется число $\delta > 0$ такое, что из неравенства $|x_1 - x_2| < \delta$ следует $|f \, \P_1 - f \, \P_2| < \varepsilon$.

Отличие непрерывности на промежутке от равномерной непрерывности заключается в том, что в определении М14.7.1 число $\delta > 0$ одно и то же для всех пар чисел $x_1 \in X$, $x_2 \in X$, а в определении М14.1.8 разным парам чисел $x_1 \in X$, $x_2 \in X$, вообще говоря, соответствуют разные значения $\delta > 0$.

M14.7.2 Замечание 2. Отрицание равномерной непрерывности на промежутке выглядит так: $\exists \varepsilon > 0$ такое, что $\forall \delta > 0$ найдутся точки $x_1 \in X$, $x_2 \in X$ такие, что $|x_1 - x_2| < \delta$, но т $|f \blacktriangleleft_1 - f \blacktriangleleft_2| > \varepsilon$.

М14.7.3 *Замечание 3*. Очевидно, что любая равномерно непрерывная на промежутке функция непрерывна на этом промежутке. Существуют непрерывные функции, не являющиеся равномерно непрерывными.

- 2) Функция $f \blacktriangleleft \sqrt{x}$ равномерно непрерывна на промежутке $\blacktriangleleft \infty; \infty$. Заметим, что для любых действительных чисел a и b , не равных одновременно нулю, выполняется неравенство $\sqrt{a+b} \le \sqrt{a} + \sqrt{b}$ (проверяется возведением в квадрат). Тогда, обозначив $a = x_1, \ a+b = x_2$, получим $\sqrt{x_2} \sqrt{x_1} \le \sqrt{x_2 x_1}$. Пусть $\varepsilon > 0$, тогда можно взять $\delta = \varepsilon^2$ (при $\varepsilon < 1$). Действительно, $|f \blacktriangleleft_2| + f \blacktriangleleft_1| = |\sqrt{x_2} \sqrt{x_1}| \le \sqrt{x_2 x_1} < \sqrt{\varepsilon^2} = \varepsilon$.
- 3) Функция $y=x^2$ не является равномерно непрерывной на промежутке $\P \infty; \infty$. Пусть $\varepsilon=0.9$ рассмотрим последовательности точек $x_{n1}=\sqrt{n+1}$, $x_{n2}=\sqrt{n}$, тогда $\lim_{n\to\infty} |x_1-x_2|=0$, но $|f\P_1-f\P_2|=1$. Значит, для $\varepsilon=0.9$ как бы близко ни были выбраны точки $x_{n1}=\sqrt{n+1}$, $x_{n2}=\sqrt{n}$ (это возможно в силу равенства $\lim_{n\to\infty} |x_1-x_2|=0$), будет $|f\P_1-f\P_2|=1<0.9$.
- 4) Функция $y = \sin x^2$ не является равномерно непрерывной на промежутке $-\infty$; ∞ . Аналогично предыдущему примеру можно рассмотреть последовательности точек $x_{n1} = \sqrt{\frac{\pi (+1)}{2}}, \ x_{n2} = \sqrt{\frac{\pi n}{2}}$.

Примеры функций, не являющихся равномерно непрерывными

- 5) Функция $y = \sin \frac{1}{x}$ не является равномерно непрерывной на любом промежутке $\Phi; a$. Действительно, в любой окрестности точки $x_0 = 0$ есть значения функции, равные 1 и -1. Значит, если взять $\varepsilon < 2$, то условие равномерной непрерывности не выполнится.
- 6) Если непрерывная функция определена на открытом промежутке (b) и неограничена в любой окрестности точки a (или b), то функция не является равномерно непрерывной на этом промежутке.

М14.7.5 Теорема Кантора (о равномерной непрерывности на отрезке) Если функция равномерно непрерывна на отрезке r;b, то она равномерно непрерывна на нем.

Контрольные вопросы:

- 1. Дайте определение непрерывной в точке функции через определение предела. Дайте определение непрерывной в точке функции на языке $\varepsilon \delta$.
- 2. Дайте определение непрерывной в точке функции через понятие приращения. Дайте определение непрерывной в точке функции на языке последовательностей. Дайте определение функции, непрерывной на множестве.
- 3. Сформулируйте теорему о непрерывности и арифметических операциях. Приведите примеры непрерывных элементарных функций.
- 4. Что называется точкой разрыва функции? Дайте определение устранимого разрыва, разрыва первого рода, разрыва второго рода.
- 5. Сформулируйте теорему о разрывах монотонной функции. Сформулируйте теорему об ограниченности непрерывной функции.
- 6. Сформулируйте теорему о сохранении знака непрерывной функции. Сформулируйте теорему о непрерывности композиции функций.
- 7. Сформулируйте теорему Больцано-Коши о нулевом значении. Сформулируйте теорему Больцано-Коши о промежуточном значении.
- 8. Сформулируйте алгоритм приближенного решения уравнений.

- 9. Сформулируйте теорему о существовании обратной функции. Сформулируйте теорему вейерштрасса об ограниченности непрерывной функции. Сформулируйте теорему Вейерштрасса о наибольшем и наименьшем значениях.
- 10. Дайте определение равномерной непрерывности. Сформулируйте теорему Кантора.