SAMB for "D4h1"

Generated on 2023-05-24 22:51 by MultiPie 1.1.1

- Associated point group: No. 15 D_{4h} 4/mmm [tetragonal]
- Generation condition
 - model type: tight_binding
 - time-reversal type: electric
 - irrep: [A1g]
 - spinful
- Unit cell:

$$a=1.0,\ b=1.0,\ c=1.5,\ \alpha=90.0,\ \beta=90.0,\ \gamma=90.0$$

- Lattice vectors:
 - $\boldsymbol{a}_1 = \begin{pmatrix} 1.0 & 0 & 0 \end{pmatrix}$
 - $\boldsymbol{a}_2 = \begin{pmatrix} 0 & 1.0 & 0 \end{pmatrix}$
 - $\boldsymbol{a}_3 = \begin{pmatrix} 0 & 0 & 1.5 \end{pmatrix}$

Table 1: High-symmetry line: Γ -X.

symbol	position	n	symbol	pc	sitio	on
Γ	$\begin{pmatrix} 0 & 0 \end{pmatrix}$	0)	X	$\left(\frac{1}{2}\right)$	0	0)

• Kets: dimension = 8

Table 2: Hilbert space for full matrix.

No.	ket	No.	ket	No.	ket	No.	ket	No.	ket
 1	(s,\uparrow) @A ₁	2	(s,\downarrow) @A ₁	3	(p_x,\uparrow) @A ₁	4	(p_x,\downarrow) @A ₁	5	(p_y,\uparrow) @A ₁
6	(p_y,\downarrow) @A ₁	7	(p_z,\uparrow) @A ₁	8	(p_z,\downarrow) @A ₁				

• Sites in (primitive) unit cell:

Table 3: Site-clusters.

	site	position	mapping
S_1	A_1	$\begin{pmatrix} 0 & 0 & 0 \end{pmatrix}$	[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16]

• Bonds in (primitive) unit cell:

Table 4: Bond-clusters.

	bond	tail	head	n	#	$oldsymbol{b@c}$ mapping
B_1	b_1	A_1	A_1	1	1	$\begin{pmatrix} 0 & 1 & 0 \end{pmatrix} @ \begin{pmatrix} 0 & \frac{1}{2} & 0 \end{pmatrix} \qquad [1,-2,-3,4,-9,10,11,-12]$
	b_2	A_1	A_1	1	1	$\begin{pmatrix} 1 & 0 & 0 \end{pmatrix} @ \begin{pmatrix} \frac{1}{2} & 0 & 0 \end{pmatrix} \qquad \begin{bmatrix} 5,-6,-7,8,-13,14,15,-16 \end{bmatrix}$
B_2	b_3	A_1	A_1	2	1	$\begin{pmatrix} 1 & 1 & 0 \end{pmatrix} @ \begin{pmatrix} \frac{1}{2} & \frac{1}{2} & 0 \end{pmatrix} $ $\begin{bmatrix} 1,-2,5,-6,-9,10,-13,14 \end{bmatrix}$
	b_4	A_1	A_1	2	1	$\begin{pmatrix} 1 & -1 & 0 \end{pmatrix}$ @ $\begin{pmatrix} \frac{1}{2} & \frac{1}{2} & 0 \end{pmatrix}$ $\begin{bmatrix} 3,-4,-7,8,-11,12,15,-16 \end{bmatrix}$
B_3	b_5	A_1	A_1	3	1	
B_4	b_6	A_1	A_1	4	1	$\begin{pmatrix} 0 & 1 & 1 \end{pmatrix} @ \begin{pmatrix} 0 & \frac{1}{2} & \frac{1}{2} \end{pmatrix} \qquad [1, -3, -9, 11]$
	b_7	A_1	A_1	4	1	$\begin{pmatrix} 0 & 1 & -1 \end{pmatrix}$ @ $\begin{pmatrix} 0 & \frac{1}{2} & \frac{1}{2} \end{pmatrix}$ $\begin{vmatrix} -2,4,10,-12 \end{vmatrix}$
	b_8	A_1	A_1	4	1	$\begin{pmatrix} 1 & 0 & -1 \end{pmatrix}$ @ $\begin{pmatrix} \frac{1}{2} & 0 & \frac{1}{2} \end{pmatrix}$ [5,-7,-13,15]
	b_9	A_1	A_1	4	1	$\begin{pmatrix} 1 & 0 & 1 \end{pmatrix} @ \begin{pmatrix} \frac{1}{2} & 0 & \frac{1}{2} \end{pmatrix} $ [-6,8,14,-16]

• SAMB:

No. 1
$$\hat{\mathbb{Q}}_0^{(A_{1g})}$$
 [M₁, S₁]

$$\hat{\mathbb{Z}}_1 = \mathbb{X}_1[\mathbb{Q}_0^{(a,A_{1g})}] \otimes \mathbb{Y}_1[\mathbb{Q}_0^{(s,A_{1g})}]$$

$$\hat{\mathbb{Z}}_1(\boldsymbol{k}) = \mathbb{X}_1[\mathbb{Q}_0^{(a,A_{1g})}] \otimes \mathbb{U}_1[\mathbb{Q}_0^{(s,A_{1g})}]$$

No. 2
$$\hat{\mathbb{Q}}_0^{(A_{1g})}$$
 [M₃, S₁]

$$\hat{\mathbb{Z}}_2 = \mathbb{X}_5[\mathbb{Q}_0^{(a,A_{1g})}] \otimes \mathbb{Y}_1[\mathbb{Q}_0^{(s,A_{1g})}]$$

$$\hat{\mathbb{Z}}_2(\boldsymbol{k}) = \mathbb{X}_5[\mathbb{Q}_0^{(a,A_{1g})}] \otimes \mathbb{U}_1[\mathbb{Q}_0^{(s,A_{1g})}]$$

No. 3
$$\hat{\mathbb{Q}}_{2}^{(A_{1g})}$$
 [M₃, S₁]

$$\hat{\mathbb{Z}}_3 = \mathbb{X}_6[\mathbb{Q}_2^{(a,A_{1g})}] \otimes \mathbb{Y}_1[\mathbb{Q}_0^{(s,A_{1g})}]$$

$$\hat{\mathbb{Z}}_3(\mathbf{k}) = \mathbb{X}_6[\mathbb{Q}_2^{(a,A_{1g})}] \otimes \mathbb{U}_1[\mathbb{Q}_0^{(s,A_{1g})}]$$

No. 4
$$\hat{\mathbb{Q}}_0^{(A_{1g})}(1,1)$$
 [M₃, S₁]

$$\hat{\mathbb{Z}}_4 = \mathbb{X}_7[\mathbb{Q}_0^{(a, A_{1g})}(1, 1)] \otimes \mathbb{Y}_1[\mathbb{Q}_0^{(s, A_{1g})}]$$

$$\hat{\mathbb{Z}}_4(\boldsymbol{k}) = \mathbb{X}_7[\mathbb{Q}_0^{(a,A_{1g})}(1,1)] \otimes \mathbb{U}_1[\mathbb{Q}_0^{(s,A_{1g})}]$$

No. 5
$$\hat{\mathbb{Q}}_2^{(A_{1g})}(1,-1)$$
 [M₃,S₁]

$$\hat{\mathbb{Z}}_5 = \mathbb{X}_8[\mathbb{Q}_2^{(a,A_{1g})}(1,-1)] \otimes \mathbb{Y}_1[\mathbb{Q}_0^{(s,A_{1g})}]$$

$$\hat{\mathbb{Z}}_5(\boldsymbol{k}) = \mathbb{X}_8[\mathbb{Q}_2^{(a,A_{1g})}(1,-1)] \otimes \mathbb{U}_1[\mathbb{Q}_0^{(s,A_{1g})}]$$

No. 6
$$\hat{\mathbb{Q}}_0^{(A_{1g})}$$
 [M₁, B₁]

$$\hat{\mathbb{Z}}_6 = \mathbb{X}_1[\mathbb{Q}_0^{(a,A_{1g})}] \otimes \mathbb{Y}_2[\mathbb{Q}_0^{(b,A_{1g})}]$$

$$\hat{\mathbb{Z}}_6(\textbf{\textit{k}}) = \mathbb{X}_1[\mathbb{Q}_0^{(a,A_{1g})}] \otimes \mathbb{U}_1[\mathbb{Q}_0^{(s,A_{1g})}] \otimes \mathbb{F}_1[\mathbb{Q}_0^{(k,A_{1g})}]$$

No. 7
$$\hat{\mathbb{Q}}_{2}^{(A_{1g})}(1,-1)$$
 [M₂, B₁]

$$\hat{\mathbb{Z}}_7 = -\frac{\sqrt{2}\mathbb{X}_2[\mathbb{M}_{2,0}^{(a,E_u)}(1,-1)]\otimes\mathbb{Y}_4[\mathbb{T}_{1,0}^{(b,E_u)}]}{2} + \frac{\sqrt{2}\mathbb{X}_3[\mathbb{M}_{2,1}^{(a,E_u)}(1,-1)]\otimes\mathbb{Y}_5[\mathbb{T}_{1,1}^{(b,E_u)}]}{2}$$

$$\hat{\mathbb{Z}}_{7}(\boldsymbol{k}) = -\frac{\sqrt{2}\mathbb{X}_{2}[\mathbb{M}_{2,0}^{(a,E_{u})}(1,-1)] \otimes \mathbb{U}_{1}[\mathbb{Q}_{0}^{(s,A_{1g})}] \otimes \mathbb{F}_{3}[\mathbb{T}_{1,0}^{(k,E_{u})}]}{2} + \frac{\sqrt{2}\mathbb{X}_{3}[\mathbb{M}_{2,1}^{(a,E_{u})}(1,-1)] \otimes \mathbb{U}_{1}[\mathbb{Q}_{0}^{(s,A_{1g})}] \otimes \mathbb{F}_{4}[\mathbb{T}_{1,1}^{(k,E_{u})}]}{2}$$

No. 8
$$\hat{\mathbb{Q}}_0^{(A_{1g})}$$
 [M₃, B₁]

$$\hat{\mathbb{Z}}_8 = \mathbb{X}_5[\mathbb{Q}_0^{(a,A_{1g})}] \otimes \mathbb{Y}_2[\mathbb{Q}_0^{(b,A_{1g})}]$$

$$\hat{\mathbb{Z}}_8(\boldsymbol{k}) = \mathbb{X}_5[\mathbb{Q}_0^{(a,A_{1g})}] \otimes \mathbb{U}_1[\mathbb{Q}_0^{(s,A_{1g})}] \otimes \mathbb{F}_1[\mathbb{Q}_0^{(k,A_{1g})}]$$

No. 9
$$\hat{\mathbb{Q}}_2^{(A_{1g})}$$
 [M₃, B₁]

$$\hat{\mathbb{Z}}_9 = \mathbb{X}_6[\mathbb{Q}_2^{(a,A_{1g})}] \otimes \mathbb{Y}_2[\mathbb{Q}_0^{(b,A_{1g})}]$$

$$\hat{\mathbb{Z}}_9(\textbf{\textit{k}}) = \mathbb{X}_6[\mathbb{Q}_2^{(a,A_{1g})}] \otimes \mathbb{U}_1[\mathbb{Q}_0^{(s,A_{1g})}] \otimes \mathbb{F}_1[\mathbb{Q}_0^{(k,A_{1g})}]$$

No. 10
$$\hat{\mathbb{Q}}_0^{(A_{1g})}$$
 [M₃, B₁]

$$\hat{\mathbb{Z}}_{10} = \mathbb{X}_9[\mathbb{Q}_2^{(a,B_{1g})}] \otimes \mathbb{Y}_3[\mathbb{Q}_2^{(b,B_{1g})}]$$

$$\hat{\mathbb{Z}}_{10}(\pmb{k}) = \mathbb{X}_9[\mathbb{Q}_2^{(a,B_{1g})}] \otimes \mathbb{U}_1[\mathbb{Q}_0^{(s,A_{1g})}] \otimes \mathbb{F}_2[\mathbb{Q}_2^{(k,B_{1g})}]$$

No. 11
$$\hat{\mathbb{Q}}_0^{(A_{1g})}(1,1)$$
 [M₃, B₁]

$$\hat{\mathbb{Z}}_{11} = \mathbb{X}_7[\mathbb{Q}_0^{(a, A_{1g})}(1, 1)] \otimes \mathbb{Y}_2[\mathbb{Q}_0^{(b, A_{1g})}]$$

$$\hat{\mathbb{Z}}_{11}(\boldsymbol{k}) = \mathbb{X}_7[\mathbb{Q}_0^{(a,A_{1g})}(1,1)] \otimes \mathbb{U}_1[\mathbb{Q}_0^{(s,A_{1g})}] \otimes \mathbb{F}_1[\mathbb{Q}_0^{(k,A_{1g})}]$$

No. 12
$$\hat{\mathbb{Q}}_2^{(A_{1g})}(1,-1)$$
 [M₃, B₁]

$$\hat{\mathbb{Z}}_{12} = \mathbb{X}_{8}[\mathbb{Q}_{2}^{(a,A_{1g})}(1,-1)] \otimes \mathbb{Y}_{2}[\mathbb{Q}_{0}^{(b,A_{1g})}]$$

$$\hat{\mathbb{Z}}_{12}(\textbf{\textit{k}}) = \mathbb{X}_{8}[\mathbb{Q}_{2}^{(a,A_{1g})}(1,-1)] \otimes \mathbb{U}_{1}[\mathbb{Q}_{0}^{(s,A_{1g})}] \otimes \mathbb{F}_{1}[\mathbb{Q}_{0}^{(k,A_{1g})}]$$

No. 13
$$\hat{\mathbb{Q}}_0^{(A_{1g})}(1,-1)$$
 [M₃, B₁]

$$\hat{\mathbb{Z}}_{13} = \mathbb{X}_{13}[\mathbb{Q}_2^{(a,B_{1g})}(1,-1)] \otimes \mathbb{Y}_3[\mathbb{Q}_2^{(b,B_{1g})}]$$

$$\hat{\mathbb{Z}}_{13}(\pmb{k}) = \mathbb{X}_{13}[\mathbb{Q}_2^{(a,B_{1g})}(1,-1)] \otimes \mathbb{U}_1[\mathbb{Q}_0^{(s,A_{1g})}] \otimes \mathbb{F}_2[\mathbb{Q}_2^{(k,B_{1g})}]$$

No. 14
$$\hat{\mathbb{Q}}_0^{(A_{1g})}$$
 [M₁, B₂]

$$\hat{\mathbb{Z}}_{14} = \mathbb{X}_1[\mathbb{Q}_0^{(a,A_{1g})}] \otimes \mathbb{Y}_6[\mathbb{Q}_0^{(b,A_{1g})}]$$

$$\hat{\mathbb{Z}}_{14}(\mathbf{k}) = \mathbb{X}_1[\mathbb{Q}_0^{(a,A_{1g})}] \otimes \mathbb{U}_1[\mathbb{Q}_0^{(s,A_{1g})}] \otimes \mathbb{F}_5[\mathbb{Q}_0^{(k,A_{1g})}]$$

No. 15
$$\hat{\mathbb{Q}}_2^{(A_{1g})}(1,-1)$$
 [M₂, B₂]

$$\hat{\mathbb{Z}}_{15} = -\frac{\sqrt{2}\mathbb{X}_2[\mathbb{M}_{2,0}^{(a,E_u)}(1,-1)]\otimes\mathbb{Y}_8[\mathbb{T}_{1,0}^{(b,E_u)}]}{2} + \frac{\sqrt{2}\mathbb{X}_3[\mathbb{M}_{2,1}^{(a,E_u)}(1,-1)]\otimes\mathbb{Y}_9[\mathbb{T}_{1,1}^{(b,E_u)}]}{2}$$

$$\hat{\mathbb{Z}}_{15}(\boldsymbol{k}) = -\frac{\sqrt{2}\mathbb{X}_{2}[\mathbb{M}_{2,0}^{(a,E_{u})}(1,-1)] \otimes \mathbb{U}_{1}[\mathbb{Q}_{0}^{(s,A_{1g})}] \otimes \mathbb{F}_{7}[\mathbb{T}_{1,0}^{(k,E_{u})}]}{2} + \frac{\sqrt{2}\mathbb{X}_{3}[\mathbb{M}_{2,1}^{(a,E_{u})}(1,-1)] \otimes \mathbb{U}_{1}[\mathbb{Q}_{0}^{(s,A_{1g})}] \otimes \mathbb{F}_{8}[\mathbb{T}_{1,1}^{(k,E_{u})}]}{2}$$

No. 16
$$\hat{\mathbb{Q}}_0^{(A_{1g})}$$
 [M₃, B₂]

$$\hat{\mathbb{Z}}_{16} = \mathbb{X}_{5}[\mathbb{Q}_{0}^{(a,A_{1g})}] \otimes \mathbb{Y}_{6}[\mathbb{Q}_{0}^{(b,A_{1g})}]$$

$$\hat{\mathbb{Z}}_{16}(\mathbf{k}) = \mathbb{X}_{5}[\mathbb{Q}_{0}^{(a,A_{1g})}] \otimes \mathbb{U}_{1}[\mathbb{Q}_{0}^{(s,A_{1g})}] \otimes \mathbb{F}_{5}[\mathbb{Q}_{0}^{(k,A_{1g})}]$$

No. 17
$$\hat{\mathbb{Q}}_{2}^{(A_{1g})}$$
 [M₃, B₂]

$$\hat{\mathbb{Z}}_{17} = \mathbb{X}_6[\mathbb{Q}_2^{(a,A_{1g})}] \otimes \mathbb{Y}_6[\mathbb{Q}_0^{(b,A_{1g})}]$$

$$\hat{\mathbb{Z}}_{17}(\boldsymbol{k}) = \mathbb{X}_{6}[\mathbb{Q}_{2}^{(a,A_{1g})}] \otimes \mathbb{U}_{1}[\mathbb{Q}_{0}^{(s,A_{1g})}] \otimes \mathbb{F}_{5}[\mathbb{Q}_{0}^{(k,A_{1g})}]$$

No. 18
$$\hat{\mathbb{Q}}_0^{(A_{1g})}$$
 [M₃, B₂]

$$\hat{\mathbb{Z}}_{18} = \mathbb{X}_{10}[\mathbb{Q}_2^{(a,B_{2g})}] \otimes \mathbb{Y}_7[\mathbb{Q}_2^{(b,B_{2g})}]$$

$$\hat{\mathbb{Z}}_{18}(\boldsymbol{k}) = \mathbb{X}_{10}[\mathbb{Q}_2^{(a,B_{2g})}] \otimes \mathbb{U}_1[\mathbb{Q}_0^{(s,A_{1g})}] \otimes \mathbb{F}_6[\mathbb{Q}_2^{(k,B_{2g})}]$$

No. 19
$$\hat{\mathbb{Q}}_0^{(A_{1g})}(1,1)$$
 [M₃, B₂]

$$\hat{\mathbb{Z}}_{19} = \mathbb{X}_7[\mathbb{Q}_0^{(a,A_{1g})}(1,1)] \otimes \mathbb{Y}_6[\mathbb{Q}_0^{(b,A_{1g})}]$$

$$\hat{\mathbb{Z}}_{19}(\textbf{k}) = \mathbb{X}_{7}[\mathbb{Q}_{0}^{(a,A_{1g})}(1,1)] \otimes \mathbb{U}_{1}[\mathbb{Q}_{0}^{(s,A_{1g})}] \otimes \mathbb{F}_{5}[\mathbb{Q}_{0}^{(k,A_{1g})}]$$

No. 20
$$\hat{\mathbb{Q}}_2^{(A_{1g})}(1,-1)$$
 [M₃, B₂]

$$\hat{\mathbb{Z}}_{20} = \mathbb{X}_{8}[\mathbb{Q}_{2}^{(a,A_{1g})}(1,-1)] \otimes \mathbb{Y}_{6}[\mathbb{Q}_{0}^{(b,A_{1g})}]$$

$$\hat{\mathbb{Z}}_{20}(\pmb{k}) = \mathbb{X}_{8}[\mathbb{Q}_{2}^{(a,A_{1g})}(1,-1)] \otimes \mathbb{U}_{1}[\mathbb{Q}_{0}^{(s,A_{1g})}] \otimes \mathbb{F}_{5}[\mathbb{Q}_{0}^{(k,A_{1g})}]$$

No. 21
$$\hat{\mathbb{Q}}_0^{(A_{1g})}(1,-1)$$
 [M₃, B₂]

$$\hat{\mathbb{Z}}_{21} = \mathbb{X}_{14}[\mathbb{Q}_2^{(a,B_{2g})}(1,-1)] \otimes \mathbb{Y}_7[\mathbb{Q}_2^{(b,B_{2g})}]$$

$$\hat{\mathbb{Z}}_{21}(\pmb{k}) = \mathbb{X}_{14}[\mathbb{Q}_2^{(a,B_{2g})}(1,-1)] \otimes \mathbb{U}_1[\mathbb{Q}_0^{(s,A_{1g})}] \otimes \mathbb{F}_6[\mathbb{Q}_2^{(k,B_{2g})}]$$

No. 22
$$\hat{\mathbb{Q}}_0^{(A_{1g})}$$
 [M₁, B₃]

$$\hat{\mathbb{Z}}_{22} = \mathbb{X}_1[\mathbb{Q}_0^{(a,A_{1g})}] \otimes \mathbb{Y}_{10}[\mathbb{Q}_0^{(b,A_{1g})}]$$

$$\hat{\mathbb{Z}}_{22}(\textbf{\textit{k}}) = \mathbb{X}_{1}[\mathbb{Q}_{0}^{(a,A_{1g})}] \otimes \mathbb{U}_{1}[\mathbb{Q}_{0}^{(s,A_{1g})}] \otimes \mathbb{F}_{9}[\mathbb{Q}_{0}^{(k,A_{1g})}]$$

No. 23
$$\hat{\mathbb{Q}}_0^{(A_{1g})}$$
 [M₃, B₃]

$$\hat{\mathbb{Z}}_{23} = \mathbb{X}_{5}[\mathbb{Q}_{0}^{(a,A_{1g})}] \otimes \mathbb{Y}_{10}[\mathbb{Q}_{0}^{(b,A_{1g})}]$$

$$\hat{\mathbb{Z}}_{23}(\boldsymbol{k}) = \mathbb{X}_{5}[\mathbb{Q}_{0}^{(a,A_{1g})}] \otimes \mathbb{U}_{1}[\mathbb{Q}_{0}^{(s,A_{1g})}] \otimes \mathbb{F}_{9}[\mathbb{Q}_{0}^{(k,A_{1g})}]$$

No. 24
$$\hat{\mathbb{Q}}_{2}^{(A_{1g})}$$
 [M₃, B₃]

$$\hat{\mathbb{Z}}_{24} = \mathbb{X}_{6}[\mathbb{Q}_{2}^{(a,A_{1g})}] \otimes \mathbb{Y}_{10}[\mathbb{Q}_{0}^{(b,A_{1g})}]$$

$$\hat{\mathbb{Z}}_{24}(\boldsymbol{k}) = \mathbb{X}_{6}[\mathbb{Q}_{2}^{(a,A_{1g})}] \otimes \mathbb{U}_{1}[\mathbb{Q}_{0}^{(s,A_{1g})}] \otimes \mathbb{F}_{9}[\mathbb{Q}_{0}^{(k,A_{1g})}]$$

No. 25
$$\hat{\mathbb{Q}}_0^{(A_{1g})}(1,1)$$
 [M₃, B₃]

$$\hat{\mathbb{Z}}_{25} = \mathbb{X}_7[\mathbb{Q}_0^{(a,A_{1g})}(1,1)] \otimes \mathbb{Y}_{10}[\mathbb{Q}_0^{(b,A_{1g})}]$$

$$\hat{\mathbb{Z}}_{25}(\textbf{\textit{k}}) = \mathbb{X}_{7}[\mathbb{Q}_{0}^{(a,A_{1g})}(1,1)] \otimes \mathbb{U}_{1}[\mathbb{Q}_{0}^{(s,A_{1g})}] \otimes \mathbb{F}_{9}[\mathbb{Q}_{0}^{(k,A_{1g})}]$$

No. 26
$$\hat{\mathbb{Q}}_2^{(A_{1g})}(1,-1)$$
 [M₃, B₃]

$$\hat{\mathbb{Z}}_{26} = \mathbb{X}_{8}[\mathbb{Q}_{2}^{(a,A_{1g})}(1,-1)] \otimes \mathbb{Y}_{10}[\mathbb{Q}_{0}^{(b,A_{1g})}]$$

$$\hat{\mathbb{Z}}_{26}(\textbf{\textit{k}}) = \mathbb{X}_{8}[\mathbb{Q}_{2}^{(a,A_{1g})}(1,-1)] \otimes \mathbb{U}_{1}[\mathbb{Q}_{0}^{(s,A_{1g})}] \otimes \mathbb{F}_{9}[\mathbb{Q}_{0}^{(k,A_{1g})}]$$

No. 27
$$\hat{\mathbb{Q}}_0^{(A_{1g})}$$
 [M₁, B₄]

$$\hat{\mathbb{Z}}_{27} = \mathbb{X}_1[\mathbb{Q}_0^{(a,A_{1g})}] \otimes \mathbb{Y}_{11}[\mathbb{Q}_0^{(b,A_{1g})}]$$

$$\hat{\mathbb{Z}}_{27}(\pmb{k}) = \mathbb{X}_1[\mathbb{Q}_0^{(a,A_{1g})}] \otimes \mathbb{U}_1[\mathbb{Q}_0^{(s,A_{1g})}] \otimes \mathbb{F}_{10}[\mathbb{Q}_0^{(k,A_{1g})}]$$

No. 28
$$\hat{\mathbb{Q}}_2^{(A_{1g})}(1,-1)$$
 [M₂, B₄]

$$\hat{\mathbb{Z}}_{28} = -\frac{\sqrt{2}\mathbb{X}_2[\mathbb{M}_{2,0}^{(a,E_u)}(1,-1)]\otimes\mathbb{Y}_{15}[\mathbb{T}_{1,0}^{(b,E_u)}]}{2} + \frac{\sqrt{2}\mathbb{X}_3[\mathbb{M}_{2,1}^{(a,E_u)}(1,-1)]\otimes\mathbb{Y}_{16}[\mathbb{T}_{1,1}^{(b,E_u)}]}{2}$$

$$\hat{\mathbb{Z}}_{28}(\boldsymbol{k}) = -\frac{\sqrt{2}\mathbb{X}_{2}[\mathbb{M}_{2,0}^{(a,E_{u})}(1,-1)] \otimes \mathbb{U}_{1}[\mathbb{Q}_{0}^{(s,A_{1g})}] \otimes \mathbb{F}_{14}[\mathbb{T}_{1,0}^{(k,E_{u})}]}{2} + \frac{\sqrt{2}\mathbb{X}_{3}[\mathbb{M}_{2,1}^{(a,E_{u})}(1,-1)] \otimes \mathbb{U}_{1}[\mathbb{Q}_{0}^{(s,A_{1g})}] \otimes \mathbb{F}_{15}[\mathbb{T}_{1,1}^{(k,E_{u})}]}{2}$$

No. 29
$$\hat{\mathbb{Q}}_2^{(A_{1g})}(1,-1)$$
 [M₂, B₄]

$$\hat{\mathbb{Z}}_{29} = -\mathbb{X}_4[\mathbb{M}_2^{(a,B_{2u})}(1,-1)] \otimes \mathbb{Y}_{17}[\mathbb{T}_3^{(b,B_{2u})}]$$

$$\hat{\mathbb{Z}}_{29}(\pmb{k}) = -\mathbb{X}_4[\mathbb{M}_2^{(a,B_{2u})}(1,-1)] \otimes \mathbb{U}_1[\mathbb{Q}_0^{(s,A_{1g})}] \otimes \mathbb{F}_{16}[\mathbb{T}_3^{(k,B_{2u})}]$$

No. 30
$$\hat{\mathbb{Q}}_0^{(A_{1g})}$$
 [M₃, B₄]

$$\hat{\mathbb{Z}}_{30} = \mathbb{X}_{5}[\mathbb{Q}_{0}^{(a,A_{1g})}] \otimes \mathbb{Y}_{11}[\mathbb{Q}_{0}^{(b,A_{1g})}]$$

$$\hat{\mathbb{Z}}_{30}(\boldsymbol{k}) = \mathbb{X}_{5}[\mathbb{Q}_{0}^{(a,A_{1g})}] \otimes \mathbb{U}_{1}[\mathbb{Q}_{0}^{(s,A_{1g})}] \otimes \mathbb{F}_{10}[\mathbb{Q}_{0}^{(k,A_{1g})}]$$

No. 31
$$\hat{\mathbb{Q}}_{2}^{(A_{1g})}$$
 [M₃, B₄]

$$\hat{\mathbb{Z}}_{31} = \mathbb{X}_{6}[\mathbb{Q}_{2}^{(a,A_{1g})}] \otimes \mathbb{Y}_{11}[\mathbb{Q}_{0}^{(b,A_{1g})}]$$

$$\hat{\mathbb{Z}}_{31}(\boldsymbol{k}) = \mathbb{X}_{6}[\mathbb{Q}_{2}^{(a,A_{1g})}] \otimes \mathbb{U}_{1}[\mathbb{Q}_{0}^{(s,A_{1g})}] \otimes \mathbb{F}_{10}[\mathbb{Q}_{0}^{(k,A_{1g})}]$$

No. 32
$$\hat{\mathbb{Q}}_0^{(A_{1g})}$$
 [M₃, B₄]

$$\hat{\mathbb{Z}}_{32} = \frac{\sqrt{3}\mathbb{X}_{11}[\mathbb{Q}_{2,0}^{(a,E_g)}] \otimes \mathbb{Y}_{13}[\mathbb{Q}_{2,0}^{(b,E_g)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{12}[\mathbb{Q}_{2,1}^{(a,E_g)}] \otimes \mathbb{Y}_{14}[\mathbb{Q}_{2,1}^{(b,E_g)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{9}[\mathbb{Q}_{2}^{(a,B_{1g})}] \otimes \mathbb{Y}_{12}[\mathbb{Q}_{2}^{(b,B_{1g})}]}{3} + \frac{\sqrt{3}\mathbb{X}_{9}[\mathbb{Q}_{2}^{(b,B_{1g})}]}{3} + \frac{\sqrt{3}\mathbb{X}_{9}[\mathbb{Q}_{2}^{(b,$$

$$\hat{\mathbb{Z}}_{32}(\boldsymbol{k}) = \frac{\sqrt{3}\mathbb{X}_{11}[\mathbb{Q}_{2,0}^{(a,E_g)}] \otimes \mathbb{U}_1[\mathbb{Q}_0^{(s,A_{1g})}] \otimes \mathbb{F}_{12}[\mathbb{Q}_{2,0}^{(k,E_g)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{12}[\mathbb{Q}_{2,1}^{(a,E_g)}] \otimes \mathbb{U}_1[\mathbb{Q}_0^{(s,A_{1g})}] \otimes \mathbb{F}_{13}[\mathbb{Q}_{2,1}^{(k,E_g)}]}{3} + \frac{\sqrt{3}\mathbb{X}_9[\mathbb{Q}_2^{(a,E_{1g})}] \otimes \mathbb{U}_1[\mathbb{Q}_0^{(s,A_{1g})}] \otimes \mathbb{F}_{11}[\mathbb{Q}_2^{(k,E_{1g})}]}{3} + \frac{\sqrt{3}\mathbb{X}_9[\mathbb{Q}_{2,1}^{(a,E_{1g})}] \otimes \mathbb{U}_1[\mathbb{Q}_0^{(s,A_{1g})}] \otimes \mathbb{F}_{11}[\mathbb{Q}_2^{(k,E_{1g})}]}{3} + \frac{\sqrt{3}\mathbb{X}_9[\mathbb{Q}_{2,1}^{(a,E_{1g})}] \otimes \mathbb{U}_1[\mathbb{Q}_0^{(s,A_{1g})}] \otimes \mathbb{E}_{11}[\mathbb{Q}_2^{(k,E_{1g})}]}{3} + \frac{\sqrt{3}\mathbb{X}_9[\mathbb{Q}_2^{(a,E_{1g})}] \otimes \mathbb{U}_1[\mathbb{Q}_2^{(s,A_{1g})}] \otimes \mathbb{E}_{11}[\mathbb{Q}_2^{(s,A_{1g})}]}{3} + \frac{\sqrt{3}\mathbb{X}_9[\mathbb{Q}_2^{(s,A_{1g})}] \otimes \mathbb{E}_{11}[\mathbb{Q}_2^{(s,A_{1g})}]}{3} + \frac{\sqrt{3}\mathbb{Z}_9[\mathbb{Q}_2^{(s,A_{1g})}] \otimes \mathbb{E}_{11}[\mathbb{Q}_2^{(s,A_{1g})}]}{3} + \frac{\sqrt{3}\mathbb{Z}_9[\mathbb{Q}_2^{(s,A_{1g})}] \otimes \mathbb{E}_{11}[\mathbb{Q}_2^{(s,A_{1g})}]}{3} + \frac{\sqrt{3}\mathbb{Z}_9[\mathbb{Q}_2^{(s,A_{1g})}] \otimes \mathbb{E}_{11}[\mathbb{Q}_2^{(s,A_{1g})}]}{3} + \frac{\sqrt{3}\mathbb{Z}_9[\mathbb{Q}_2^{(s,A_{1g})}]}{3} + \frac{\sqrt{3$$

No. 33
$$\hat{\mathbb{Q}}_{2}^{(A_{1g})}$$
 [M₃, B₄]

$$\hat{\mathbb{Z}}_{33} = \frac{\sqrt{6}\mathbb{X}_{11}[\mathbb{Q}_{2,0}^{(a,E_g)}] \otimes \mathbb{Y}_{13}[\mathbb{Q}_{2,0}^{(b,E_g)}]}{6} + \frac{\sqrt{6}\mathbb{X}_{12}[\mathbb{Q}_{2,1}^{(a,E_g)}] \otimes \mathbb{Y}_{14}[\mathbb{Q}_{2,1}^{(b,E_g)}]}{6} - \frac{\sqrt{6}\mathbb{X}_{9}[\mathbb{Q}_{2}^{(a,B_{1g})}] \otimes \mathbb{Y}_{12}[\mathbb{Q}_{2}^{(b,B_{1g})}]}{3}$$

$$\hat{\mathbb{Z}}_{33}(\boldsymbol{k}) = \frac{\sqrt{6}\mathbb{X}_{11}[\mathbb{Q}_{2,0}^{(a,E_g)}] \otimes \mathbb{U}_1[\mathbb{Q}_0^{(s,A_{1g})}] \otimes \mathbb{F}_{12}[\mathbb{Q}_{2,0}^{(k,E_g)}]}{6} + \frac{\sqrt{6}\mathbb{X}_{12}[\mathbb{Q}_{2,1}^{(a,E_g)}] \otimes \mathbb{U}_1[\mathbb{Q}_0^{(s,A_{1g})}] \otimes \mathbb{F}_{13}[\mathbb{Q}_{2,1}^{(k,E_g)}]}{6} - \frac{\sqrt{6}\mathbb{X}_9[\mathbb{Q}_2^{(a,B_{1g})}] \otimes \mathbb{U}_1[\mathbb{Q}_0^{(s,A_{1g})}] \otimes \mathbb{F}_{11}[\mathbb{Q}_2^{(k,B_{1g})}]}{3} \otimes \mathbb{F}_{11}[\mathbb{Q}_2^{(s,B_{1g})}] \otimes \mathbb{F}_{12}[\mathbb{Q}_2^{(s,B_{1g})}] \otimes \mathbb{F}_{13}[\mathbb{Q}_2^{(s,B_{1g})}] \otimes \mathbb{Q}_2^{(s,B_{1g})} \otimes \mathbb{Q}_2^{(s,B_{1g})} \otimes \mathbb{Q}_2^{(s$$

No. 34
$$\hat{\mathbb{Q}}_0^{(A_{1g})}(1,1)$$
 [M₃, B₄]

$$\hat{\mathbb{Z}}_{34} = \mathbb{X}_7[\mathbb{Q}_0^{(a,A_{1g})}(1,1)] \otimes \mathbb{Y}_{11}[\mathbb{Q}_0^{(b,A_{1g})}]$$

$$\hat{\mathbb{Z}}_{34}(\pmb{k}) = \mathbb{X}_7[\mathbb{Q}_0^{(a,A_{1g})}(1,1)] \otimes \mathbb{U}_1[\mathbb{Q}_0^{(s,A_{1g})}] \otimes \mathbb{F}_{10}[\mathbb{Q}_0^{(k,A_{1g})}]$$

No. 35
$$\hat{\mathbb{Q}}_2^{(A_{1g})}(1,-1)$$
 [M₃, B₄]

$$\hat{\mathbb{Z}}_{35} = \mathbb{X}_{8}[\mathbb{Q}_{2}^{(a,A_{1g})}(1,-1)] \otimes \mathbb{Y}_{11}[\mathbb{Q}_{0}^{(b,A_{1g})}]$$

$$\hat{\mathbb{Z}}_{35}(\mathbf{k}) = \mathbb{X}_{8}[\mathbb{Q}_{2}^{(a,A_{1g})}(1,-1)] \otimes \mathbb{U}_{1}[\mathbb{Q}_{0}^{(s,A_{1g})}] \otimes \mathbb{F}_{10}[\mathbb{Q}_{0}^{(k,A_{1g})}]$$

No. 36
$$\hat{\mathbb{Q}}_0^{(A_{1g})}(1,-1)$$
 [M₃, B₄]

$$\hat{\mathbb{Z}}_{36} = \frac{\sqrt{3}\mathbb{X}_{13}[\mathbb{Q}_{2}^{(a,B_{1g})}(1,-1)]\otimes\mathbb{Y}_{12}[\mathbb{Q}_{2}^{(b,B_{1g})}]}{3} + \frac{\sqrt{3}\mathbb{X}_{15}[\mathbb{Q}_{2,0}^{(a,E_{g})}(1,-1)]\otimes\mathbb{Y}_{13}[\mathbb{Q}_{2,0}^{(b,E_{g})}]}{3} + \frac{\sqrt{3}\mathbb{X}_{16}[\mathbb{Q}_{2,1}^{(a,E_{g})}(1,-1)]\otimes\mathbb{Y}_{14}[\mathbb{Q}_{2,1}^{(b,E_{g})}]}{3} + \frac{\sqrt{3}\mathbb{X}_{16}[\mathbb{Q}_{2,1}^{(a,E_{g})}(1,-1)]\otimes\mathbb{Y}_{14}[\mathbb{Q}_{2,1}^{(b,E_{g})}(1,-1)]\otimes\mathbb{Y}_{14}[\mathbb{Q}_{2,1}^{(b,E_{g})}]}{3} + \frac{\sqrt{3}\mathbb{X}_{16}[\mathbb{Q}_{2,1}^{(b,E_{g})}(1,-1)]\otimes\mathbb{Y}_{14}[\mathbb{Q}_{2,1}^{(b,E_{g})}(1,-1)]\otimes\mathbb{Y}_{14}[\mathbb{Q}_{2,1}^{(b,E_{g})}(1,-1)]\otimes\mathbb{Y}_{14}[\mathbb{Q}_{2,1}^{(b,E_{g})}(1,-1)]\otimes\mathbb{Y}_{14}[\mathbb{Q}_{2,1}^{(b,E_{g})}(1,-1)]\otimes\mathbb{Y}_{14}[\mathbb{Q}_{2,1}^{(b,E_{g})}(1,-1)]\otimes\mathbb{Y}_{14}[\mathbb{Q}_{2,1}^{(b,E_{g})}(1,-1)]\otimes\mathbb{Y}_{14}[\mathbb{Q}_{2,1}^{(b,E_{g})}(1,-1)]\otimes\mathbb{Y}_{14}[\mathbb{Q}_{2,1}^{(b,E_{g})}(1,-1)]\otimes\mathbb{Y}_{14}[\mathbb{Q}_{2,1}^{(b,E_{g})}(1,-1)]\otimes\mathbb{Y}_{14}[\mathbb{Q}_{2,1}^{(b,E_{g})}(1,-1)]\otimes\mathbb{Y}_{14}[\mathbb{Q}_{2,1}^{(b,E_{g})}(1,-1)]\otimes\mathbb{Y}_{14}[\mathbb{Q}_{2,1}^{(b,E_{g})}(1,-1)]\otimes\mathbb{Y}_{14}[\mathbb{Q}_{2,1}^{(b,E_{g})}(1,-1)]\otimes\mathbb{Y}_{14}[\mathbb{Q}_{2,1}^{(b,E_{g})}(1,-1)]\otimes\mathbb{Y}_{14}$$

$$\begin{split} \hat{\mathbb{Z}}_{36}(\boldsymbol{k}) &= \frac{\sqrt{3}\mathbb{X}_{13}[\mathbb{Q}_{2}^{(a,B_{1g})}(1,-1)] \otimes \mathbb{U}_{1}[\mathbb{Q}_{0}^{(s,A_{1g})}] \otimes \mathbb{F}_{11}[\mathbb{Q}_{2}^{(k,B_{1g})}]}{3} + \frac{\sqrt{3}\mathbb{X}_{15}[\mathbb{Q}_{2,0}^{(a,E_{g})}(1,-1)] \otimes \mathbb{U}_{1}[\mathbb{Q}_{0}^{(s,A_{1g})}] \otimes \mathbb{F}_{12}[\mathbb{Q}_{2,0}^{(k,E_{g})}]}{3} \\ &+ \frac{\sqrt{3}\mathbb{X}_{16}[\mathbb{Q}_{2,1}^{(a,E_{g})}(1,-1)] \otimes \mathbb{U}_{1}[\mathbb{Q}_{0}^{(s,A_{1g})}] \otimes \mathbb{F}_{13}[\mathbb{Q}_{2,1}^{(k,E_{g})}]}{2} \end{split}$$

No. 37
$$\hat{\mathbb{Q}}_2^{(A_{1g})}(1,-1)$$
 [M₃, B₄]

$$\hat{\mathbb{Z}}_{37} = -\frac{\sqrt{6}\mathbb{X}_{13}[\mathbb{Q}_{2}^{(a,B_{1g})}(1,-1)]\otimes\mathbb{Y}_{12}[\mathbb{Q}_{2}^{(b,B_{1g})}]}{3} + \frac{\sqrt{6}\mathbb{X}_{15}[\mathbb{Q}_{2,0}^{(a,E_g)}(1,-1)]\otimes\mathbb{Y}_{13}[\mathbb{Q}_{2,0}^{(b,E_g)}]}{6} + \frac{\sqrt{6}\mathbb{X}_{16}[\mathbb{Q}_{2,1}^{(a,E_g)}(1,-1)]\otimes\mathbb{Y}_{14}[\mathbb{Q}_{2,1}^{(b,E_g)}]}{6} + \frac{\sqrt{6}\mathbb{X}_{16}[\mathbb{Q}_{2,1}^{(a,E_g)}(1,-1)]\otimes\mathbb{Y}_{14}[\mathbb{Q}_{2,1}^{(b,E_g)}(1,-1)]}{6} + \frac{\sqrt{6}\mathbb{X}_{16}[\mathbb{Q}_{2,1}^{(a,E_g)}(1,-1)]\otimes\mathbb{Y}_{14}[\mathbb{Q}_{2,1}^{(b,E_g)}(1,-1)]}{6} + \frac{\sqrt{6}\mathbb{X}_{16}[\mathbb{Q}_{2,1}^{(a,E_g)}(1,-1)]\otimes\mathbb{Y}_{14}[\mathbb{Q}_{2,1}^{(b,E_g)}(1,-1)]}{6} + \frac{\sqrt{6}\mathbb{X}_{16}[\mathbb{Q}_{2,1}^{(a,E_g)}(1,-1)]\otimes\mathbb{Y}_{14}[\mathbb{Q}_{2,1}^{(b,E_g)}(1,-1)]}{6} + \frac{\sqrt{6}\mathbb{X}_{16}[\mathbb{Q}_{2,1}^{(a,E_g)}(1,-1)]\otimes\mathbb{Y}_{14}[\mathbb{Q}_{2,1}^{(b,E_g)}(1,-1)]}{6} + \frac{\sqrt{6}\mathbb{X}_{16}[\mathbb{Q}_{2,1}^{(a,E_g)}(1,-1)]\otimes\mathbb{Y}_{14}[\mathbb{Q}_{2,1}^{(b,E_g)}(1,-1)]}{6} + \frac{\sqrt{6}\mathbb{X}_{16}[\mathbb{Q}_{2,1}^{(a,E_g)}(1,-1)]\otimes\mathbb{Y}_{14}[\mathbb{Q}_{2,1}^{(a,E_g)}(1,-1)]}{6} + \frac{\sqrt{6}\mathbb{X}_{16}[$$

$$\begin{split} \hat{\mathbb{Z}}_{37}(\boldsymbol{k}) &= -\frac{\sqrt{6}\mathbb{X}_{13}[\mathbb{Q}_{2}^{(a,B_{1g})}(1,-1)] \otimes \mathbb{U}_{1}[\mathbb{Q}_{0}^{(s,A_{1g})}] \otimes \mathbb{F}_{11}[\mathbb{Q}_{2}^{(k,B_{1g})}]}{3} + \frac{\sqrt{6}\mathbb{X}_{15}[\mathbb{Q}_{2,0}^{(a,E_{g})}(1,-1)] \otimes \mathbb{U}_{1}[\mathbb{Q}_{0}^{(s,A_{1g})}] \otimes \mathbb{F}_{12}[\mathbb{Q}_{2,0}^{(k,E_{g})}]}{6} \\ &+ \frac{\sqrt{6}\mathbb{X}_{16}[\mathbb{Q}_{2,1}^{(a,E_{g})}(1,-1)] \otimes \mathbb{U}_{1}[\mathbb{Q}_{0}^{(s,A_{1g})}] \otimes \mathbb{F}_{13}[\mathbb{Q}_{2,1}^{(k,E_{g})}]}{6} \end{split}$$

No. 38
$$\hat{\mathbb{Q}}_2^{(A_{1g})}(1,0)$$
 [M₃, B₄]

$$\hat{\mathbb{Z}}_{38} = \frac{\sqrt{2}\mathbb{X}_{17}[\mathbb{G}_{1,0}^{(a,E_g)}(1,0)] \otimes \mathbb{Y}_{13}[\mathbb{Q}_{2,0}^{(b,E_g)}]}{2} - \frac{\sqrt{2}\mathbb{X}_{18}[\mathbb{G}_{1,1}^{(a,E_g)}(1,0)] \otimes \mathbb{Y}_{14}[\mathbb{Q}_{2,1}^{(b,E_g)}]}{2}$$

$$\hat{\mathbb{Z}}_{38}(\textbf{\textit{k}}) = \frac{\sqrt{2}\mathbb{X}_{17}[\mathbb{G}_{1,0}^{(a,E_g)}(1,0)] \otimes \mathbb{U}_1[\mathbb{Q}_0^{(s,A_{1g})}] \otimes \mathbb{F}_{12}[\mathbb{Q}_{2,0}^{(k,E_g)}]}{2} - \frac{\sqrt{2}\mathbb{X}_{18}[\mathbb{G}_{1,1}^{(a,E_g)}(1,0)] \otimes \mathbb{U}_1[\mathbb{Q}_0^{(s,A_{1g})}] \otimes \mathbb{F}_{13}[\mathbb{Q}_{2,1}^{(k,E_g)}]}{2}$$

Table 5: Atomic SAMB group.

group	bra	ket
M_1	$(s,\uparrow),(s,\downarrow)$	$(s,\uparrow),(s,\downarrow)$
M_2	$(s,\uparrow),(s,\downarrow)$	$(p_x,\uparrow),(p_x,\downarrow),(p_y,\uparrow),(p_y,\downarrow),(p_z,\uparrow),(p_z,\downarrow)$
M_3	$(p_x,\uparrow),(p_x,\downarrow),(p_y,\uparrow),(p_y,\downarrow),(p_z,\uparrow),(p_z,\downarrow)$	$(p_x,\uparrow),(p_x,\downarrow),(p_y,\uparrow),(p_y,\downarrow),(p_z,\uparrow),(p_z,\downarrow)$

Table 6: Atomic SAMB.

symbol	type	group	form
\mathbb{X}_1	$\mathbb{Q}_0^{(a,A_{1g})}$	M_1	$\begin{pmatrix} \frac{\sqrt{2}}{2} & 0\\ 0 & \frac{\sqrt{2}}{2} \end{pmatrix}$
\mathbb{X}_2	$\mathbb{M}_{2,0}^{(a,E_u)}(1,-1)$	M_2	$\begin{pmatrix} 0 & 0 & \frac{1}{2} & 0 & 0 & -\frac{i}{2} \\ 0 & 0 & 0 & -\frac{1}{2} & \frac{i}{2} & 0 \end{pmatrix}$
\mathbb{X}_3	$\mathbb{M}_{2,1}^{(a,E_u)}(1,-1)$	M_2	$\begin{pmatrix} \frac{1}{2} & 0 & 0 & 0 & 0 & \frac{1}{2} \\ 0 & -\frac{1}{2} & 0 & 0 & \frac{1}{2} & 0 \end{pmatrix}$
\mathbb{X}_4	$\mathbb{M}_{2}^{(a,B_{2u})}(1,-1)$	M_2	
\mathbb{X}_5	$\mathbb{Q}_0^{(a,A_{1g})}$	$ m M_3$	$ \begin{pmatrix} \frac{\sqrt{6}}{6} & 0 & 0 & 0 & 0 & 0 \\ 0 & \frac{\sqrt{6}}{6} & 0 & 0 & 0 & 0 \\ 0 & 0 & \frac{\sqrt{6}}{6} & 0 & 0 & 0 \\ 0 & 0 & 0 & \frac{\sqrt{6}}{6} & 0 & 0 \\ 0 & 0 & 0 & 0 & \frac{\sqrt{6}}{6} & 0 \\ 0 & 0 & 0 & 0 & 0 & \frac{\sqrt{6}}{6} \end{pmatrix} $
\mathbb{X}_6	$\mathbb{Q}_2^{(a,A_{1g})}$	$ m M_3$	$\begin{pmatrix} -\frac{\sqrt{3}}{6} & 0 & 0 & 0 & 0 & 0 \\ 0 & -\frac{\sqrt{3}}{6} & 0 & 0 & 0 & 0 \\ 0 & 0 & -\frac{\sqrt{3}}{6} & 0 & 0 & 0 \\ 0 & 0 & 0 & -\frac{\sqrt{3}}{6} & 0 & 0 \\ 0 & 0 & 0 & 0 & \frac{\sqrt{3}}{3} & 0 \\ 0 & 0 & 0 & 0 & 0 & \frac{\sqrt{3}}{3} \end{pmatrix}$

Table 6

symbol	type	group	form
\mathbb{X}_7	$\mathbb{Q}_0^{(a,A_{1g})}(1,1)$	M_3	$ \begin{pmatrix} 0 & 0 & -\frac{\sqrt{3}i}{6} & 0 & 0 & \frac{\sqrt{3}}{6} \\ 0 & 0 & 0 & \frac{\sqrt{3}i}{6} & -\frac{\sqrt{3}}{6} & 0 \\ \frac{\sqrt{3}i}{6} & 0 & 0 & 0 & 0 & -\frac{\sqrt{3}i}{6} \\ 0 & -\frac{\sqrt{3}i}{6} & 0 & 0 & -\frac{\sqrt{3}i}{6} & 0 \\ 0 & -\frac{\sqrt{3}}{6} & 0 & \frac{\sqrt{3}i}{6} & 0 & 0 \\ \frac{\sqrt{3}}{6} & 0 & \frac{\sqrt{3}i}{6} & 0 & 0 & 0 \end{pmatrix} $
\mathbb{X}_8	$\mathbb{Q}_2^{(a,A_{1g})}(1,-1)$	$ m M_3$	$\begin{bmatrix} 0 & 0 & -\frac{\sqrt{6}i}{6} & 0 & 0 & -\frac{\sqrt{6}}{12} \\ 0 & 0 & 0 & \frac{\sqrt{6}i}{6} & \frac{\sqrt{6}}{12} & 0 \\ \frac{\sqrt{6}i}{6} & 0 & 0 & 0 & 0 & \frac{\sqrt{6}i}{12} \\ 0 & -\frac{\sqrt{6}i}{6} & 0 & 0 & \frac{\sqrt{6}i}{12} & 0 \\ 0 & \frac{\sqrt{6}}{12} & 0 & -\frac{\sqrt{6}i}{12} & 0 & 0 \\ -\frac{\sqrt{6}}{12} & 0 & -\frac{\sqrt{6}i}{12} & 0 & 0 & 0 \end{bmatrix}$
\mathbb{X}_9	$\mathbb{Q}_2^{(a,B_{1g})}$	$ m M_3$	$\begin{pmatrix} \frac{1}{2} & 0 & 0 & 0 & 0 & 0 \\ 0 & \frac{1}{2} & 0 & 0 & 0 & 0 \\ 0 & 0 & -\frac{1}{2} & 0 & 0 & 0 \\ 0 & 0 & 0 & -\frac{1}{2} & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 &$
\mathbb{X}_{10}	$\mathbb{Q}_2^{(a,B_{2g})}$	$ m M_3$	$\begin{pmatrix} 0 & 0 & \frac{1}{2} & 0 & 0 & 0 \\ 0 & 0 & 0 & \frac{1}{2} & 0 & 0 \\ \frac{1}{2} & 0 & 0 & 0 & 0 & 0 \\ 0 & \frac{1}{2} & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0$
\mathbb{X}_{11}	$\mathbb{Q}_{2,0}^{(a,E_g)}$	$ m M_3$	$\begin{pmatrix} 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 &$

Table 6

	T		
symbol	type	group	form
\mathbb{X}_{12}	$\mathbb{Q}_{2,1}^{(a,E_g)}$	$ m M_3$	$\begin{pmatrix} 0 & 0 & 0 & 0 & \frac{1}{2} & 0 \\ 0 & 0 & 0 & 0 & 0 & \frac{1}{2} \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0$
\mathbb{X}_{13}	$\mathbb{Q}_2^{(a,B_{1g})}(1,-1)$	$ m M_3$	$\begin{pmatrix} 0 & 0 & 0 & 0 & 0 & -\frac{\sqrt{2}}{4} \\ 0 & 0 & 0 & 0 & \frac{\sqrt{2}}{4} & 0 \\ 0 & 0 & 0 & 0 & 0 & -\frac{\sqrt{2}i}{4} \\ 0 & 0 & 0 & 0 & -\frac{\sqrt{2}i}{4} & 0 \\ 0 & \frac{\sqrt{2}}{4} & 0 & \frac{\sqrt{2}i}{4} & 0 & 0 \\ -\frac{\sqrt{2}}{4} & 0 & \frac{\sqrt{2}i}{4} & 0 & 0 \end{pmatrix}$
\mathbb{X}_{14}	$\mathbb{Q}_2^{(a,B_{2g})}(1,-1)$	$ m M_3$	$\begin{bmatrix} 0 & 0 & 0 & 0 & 0 & \frac{\sqrt{2}i}{4} \\ 0 & 0 & 0 & 0 & \frac{\sqrt{2}i}{4} & 0 \\ 0 & 0 & 0 & 0 & 0 & -\frac{\sqrt{2}}{4} \\ 0 & 0 & 0 & 0 & \frac{\sqrt{2}}{4} & 0 \end{bmatrix}$
\mathbb{X}_{15}	$\mathbb{Q}_{2,0}^{(a,E_g)}(1,-1)$	$ m M_3$	$ \begin{bmatrix} 0 & -\frac{\sqrt{2}i}{4} & 0 & \frac{\sqrt{2}}{4} & 0 & 0 \\ -\frac{\sqrt{2}i}{4} & 0 & -\frac{\sqrt{2}}{4} & 0 & 0 & 0 \end{bmatrix} $ $ \begin{bmatrix} 0 & 0 & 0 & -\frac{\sqrt{2}}{4} & \frac{\sqrt{2}i}{4} & 0 \\ 0 & 0 & \frac{\sqrt{2}}{4} & 0 & 0 & -\frac{\sqrt{2}i}{4} \\ 0 & \frac{\sqrt{2}}{4} & 0 & 0 & 0 & 0 \\ -\frac{\sqrt{2}}{4} & 0 & 0 & 0 & 0 & 0 \\ -\frac{\sqrt{2}i}{4} & 0 & 0 & 0 & 0 & 0 \\ 0 & \frac{\sqrt{2}i}{4} & 0 & 0 & 0 & 0 & 0 \end{bmatrix} $ $ \begin{bmatrix} 0 & 0 & 0 & -\frac{\sqrt{2}i}{4} & 0 & 0 \\ 0 & 0 & 0 & \frac{\sqrt{2}i}{4} & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix} $
X ₁₆	$\mathbb{Q}_{2,1}^{(a,E_g)}(1,-1)$	$ m M_3$	$ \begin{pmatrix} 0 & 0 & 0 & -\frac{\sqrt{2}i}{4} & 0 & 0\\ 0 & 0 & -\frac{\sqrt{2}i}{4} & 0 & 0 & 0\\ 0 & \frac{\sqrt{2}i}{4} & 0 & 0 & -\frac{\sqrt{2}i}{4} & 0\\ \frac{\sqrt{2}i}{4} & 0 & 0 & 0 & 0 & \frac{\sqrt{2}i}{4}\\ 0 & 0 & \frac{\sqrt{2}i}{4} & 0 & 0 & 0\\ 0 & 0 & 0 & -\frac{\sqrt{2}i}{4} & 0 & 0 \end{pmatrix} $

Table 6

symbol	type	group	form	
\mathbb{X}_{17}	$\mathbb{G}_{1,0}^{(a,E_g)}(1,0)$	$ m M_3$	$\begin{pmatrix} 0 & 0 & 0 & -\frac{\sqrt{2}}{4} \\ 0 & 0 & \frac{\sqrt{2}}{4} & 0 \\ 0 & \frac{\sqrt{2}}{4} & 0 & 0 \\ -\frac{\sqrt{2}}{4} & 0 & 0 & 0 \\ \frac{\sqrt{2}i}{4} & 0 & 0 & 0 \\ 0 & -\frac{\sqrt{2}i}{4} & 0 & 0 \end{pmatrix}$	$ \begin{array}{cccc} -\frac{\sqrt{2}i}{4} & 0 \\ 0 & \frac{\sqrt{2}i}{4} \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{array} $
X ₁₈	$\mathbb{G}_{1,1}^{(a,E_g)}(1,0)$	$ m M_3$	$\begin{pmatrix} 0 & 0 & 0 & \frac{\sqrt{2}i}{4} \\ 0 & 0 & \frac{\sqrt{2}i}{4} & 0 \\ 0 & -\frac{\sqrt{2}i}{4} & 0 & 0 \\ -\frac{\sqrt{2}i}{4} & 0 & 0 & 0 \\ 0 & 0 & \frac{\sqrt{2}i}{4} & 0 \\ 0 & 0 & 0 & -\frac{\sqrt{2}i}{4} \end{pmatrix}$	$ \begin{array}{cccc} 0 & 0 \\ 0 & 0 \\ -\frac{\sqrt{2}i}{4} & 0 \\ 0 & \frac{\sqrt{2}i}{4} \\ 0 & 0 \end{array} $

Table 7: Cluster SAMB.

symbol	type	cluster	form
\mathbb{Y}_1	$\mathbb{Q}_0^{(s,A_{1g})}$	S_1	(1)
\mathbb{Y}_2	$\mathbb{Q}_0^{(b,A_{1g})}$	B_1	$\begin{pmatrix} \sqrt{2} & \sqrt{2} \\ 2 & 2 \end{pmatrix}$
\mathbb{Y}_3	$\mathbb{Q}_2^{(b,B_{1g})}$	B_1	$\begin{pmatrix} \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \\ \left(\frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} \right) \end{pmatrix}$
\mathbb{Y}_4	$\mathbb{T}_{1,0}^{(b,E_u)}$	B_1	$\begin{pmatrix} 0 & i \end{pmatrix}$
\mathbb{Y}_5	$\mathbb{T}_{1,1}^{(b,E_u)}$	B_1	$\begin{pmatrix} i & 0 \end{pmatrix}$
\mathbb{Y}_6	$\mathbb{Q}_0^{(b,A_{1g})}$	B_2	$\begin{pmatrix} \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \end{pmatrix}$
\mathbb{Y}_7	$\mathbb{Q}_2^{(b,B_{2g})}$	B_2	$\left(\begin{array}{cc} \sqrt{2} & -\frac{\sqrt{2}}{2} \end{array}\right)$
\mathbb{Y}_8	$\mathbb{T}_{1,0}^{(b,E_u)}$	B_2	$\left(\begin{array}{cc} \sqrt{2}i & \sqrt{2}i \\ 2 & 2 \end{array}\right)$
\mathbb{Y}_9	$\mathbb{T}_{1}^{(b,E_u)}$	B_2	$\begin{pmatrix} \sqrt{2} & -\sqrt{2} \\ \sqrt{2} & -\sqrt{2} \\ \sqrt{2}i & \sqrt{2}i \\ 2 & -\sqrt{2}i \\ \sqrt{2}i & -\sqrt{2}i \end{pmatrix}$
\mathbb{Y}_{10}	$\mathbb{Q}_0^{(b,A_{1g})}$	B_3	(1)
\mathbb{Y}_{11}	$\mathbb{Q}_0^{(b,A_{1g})}$	B_4	$\begin{pmatrix} \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \end{pmatrix}$

Table 7

symbol	type	cluster	form
\mathbb{Y}_{12}	$\mathbb{Q}_2^{(b,B_{1g})}$	B_4	$\begin{array}{ c cccccccccccccccccccccccccccccccccc$
\mathbb{Y}_{13}	$\mathbb{Q}_{2,0}^{(b,E_g)}$	B_4	$\left(\begin{array}{ccc} \sqrt{2} & -\frac{\sqrt{2}}{2} & 0 & 0 \end{array}\right)$
\mathbb{Y}_{14}	$\mathbb{Q}_{2,1}^{(b,E_g)}$	B_4	$\left(\begin{array}{cccc} 0 & 0 & -\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \end{array}\right)$
\mathbb{Y}_{15}	$\mathbb{T}_{1,0}^{(b,E_u)}$	B_4	$\left(\begin{array}{cccc} 0 & 0 & \frac{\sqrt{2}i}{2} & \frac{\sqrt{2}i}{2} \end{array}\right)$
\mathbb{Y}_{16}	$\mathbb{T}_{1,1}^{(b,E_u)}$	B_4	$\left(\begin{array}{ccc} \sqrt{2}i & \sqrt{2}i & 0 \end{array}\right)$
\mathbb{Y}_{17}	$\mathbb{T}_3^{(b,B_{2u})}$	B_4	$\left[\begin{array}{cccc} \left(\frac{i}{2} & -\frac{i}{2} & \frac{i}{2} & -\frac{i}{2} \right) \end{array}\right]$

Table 8: Uniform SAMB.

symbol	type	cluster	form
\mathbb{U}_1	$\mathbb{Q}_0^{(s,A_{1g})}$	S_1	(1)

Table 9: Structure SAMB.

	I	I -	_
symbol	type	cluster	form
\mathbb{F}_1	$\mathbb{Q}_0^{(k,A_{1g})}$	B_1	$c_{001} + c_{002}$
\mathbb{F}_2	$\mathbb{Q}_2^{(k,B_{1g})}$	B_1	$c_{001} - c_{002}$
\mathbb{F}_3	$\mathbb{T}_{1,0}^{(k,E_u)}$	B_1	$\sqrt{2}s_{002}$
\mathbb{F}_4	$\mathbb{T}_{1,1}^{(k,E_u)}$	B_1	$\sqrt{2}s_{001}$
\mathbb{F}_5	$\mathbb{Q}_0^{(k,A_{1g})}$	B_2	$c_{003} + c_{004}$
\mathbb{F}_6	$\mathbb{Q}_2^{(k,B_{2g})}$	B_2	$c_{003} - c_{004}$
\mathbb{F}_7	$\mathbb{T}_{1,0}^{(k,E_u)}$ $\mathbb{T}_{1,1}^{(k,E_u)}$	B_2	$s_{003} + s_{004}$
\mathbb{F}_8		B_2	$s_{003} - s_{004}$
\mathbb{F}_9	$\mathbb{Q}_0^{(k,A_{1g})}$	B_3	$\sqrt{2}c_{005}$

Table 9

			-				
symbol	type	cluster	form				
\mathbb{F}_{10}	$\mathbb{Q}_0^{(k,A_{1g})}$	B_4	$\frac{\sqrt{2}c_{006}}{2} + \frac{\sqrt{2}c_{007}}{2} + \frac{\sqrt{2}c_{008}}{2} + \frac{\sqrt{2}c_{009}}{2}$				
\mathbb{F}_{11}	$\mathbb{Q}_2^{(k,B_{1g})}$	B_4	$\frac{\sqrt{2}c_{006}}{2} + \frac{\sqrt{2}c_{007}}{2} - \frac{\sqrt{2}c_{008}}{2} - \frac{\sqrt{2}c_{009}}{2}$				
\mathbb{F}_{12}	$\mathbb{Q}_{2,0}^{(k,E_g)}$	$_{ m B_4}$	$c_{006}-c_{007}$				
\mathbb{F}_{13}	$\mathbb{Q}_{2,1}^{(k,E_g)}$	B_4	$-c_{008} + c_{009}$				
\mathbb{F}_{14}	$\mathbb{T}_{1,0}^{(k,E_u)}$	$_{\mathrm{B}_{4}}$	$s_{008} + s_{009}$				
\mathbb{F}_{15}	$\mathbb{T}_{1,1}^{(k,E_u)}$	B_4	$s_{006} + s_{007}$				
\mathbb{F}_{16}	$\mathbb{T}_3^{(k,B_{2u})}$	$_{\mathrm{B}_{4}}$	$\frac{\sqrt{2}s_{006}}{2} - \frac{\sqrt{2}s_{007}}{2} + \frac{\sqrt{2}s_{008}}{2} - \frac{\sqrt{2}s_{009}}{2}$				

Table 10: Polar harmonics.

No.	symbol	rank	irrep.	mul.	comp.	form
1	$\mathbb{Q}_0^{(A_{1g})}$	0	A_{1g}	_	_	1
2	$\mathbb{Q}_{1,0}^{(E_u)}$	1	E_u	_	0	x
3	$\mathbb{Q}_{1,1}^{(E_u)}$	1	E_u	_	1	y
4	$\mathbb{Q}_2^{(A_{1g})}$	2	A_{1g}	_	_	$-\frac{x^2}{2} - \frac{y^2}{2} + z^2$
5	$\mathbb{Q}_2^{(B_{1g})}$	2	B_{1g}	_	_	$\frac{\sqrt{3}(x-y)(x+y)}{2}$
6	$\mathbb{Q}_2^{(B_{2g})}$	2	B_{2g}	_	_	$\sqrt{3}xy$
7	$\mathbb{Q}_{2,0}^{(E_g)}$	2	E_g	_	0	$\sqrt{3}yz$
8	$\mathbb{Q}_{2,1}^{\overline{(E_g)}}$	2	E_g	_	1	$\sqrt{3}xz$
9	$\mathbb{Q}_3^{(B_{2u})}$	3	B_{2u}	_	_	$\frac{\sqrt{15}z(x-y)(x+y)}{2}$

Table 11: Axial harmonics.

No.	symbol	rank	irrep.	mul.	comp.	form
1	$\mathbb{G}_{1,0}^{(E_g)}$	1	E_g	_	0	X
2	$\mathbb{G}_{1,1}^{(E_g)}$	1	E_g	_	1	Y
3	$\mathbb{G}_2^{(B_{2u})}$	2	B_{2u}	_	_	$\sqrt{3}XY$
4	$\mathbb{G}_{2,0}^{(E_u)}$	2	E_u	_	0	$\sqrt{3}YZ$
5	$\mathbb{G}_{2,1}^{(E_u)}$	2	E_u	_	1	$\sqrt{3}XZ$

 \bullet Group info.: Generator = {2001|0}, {4 $^{+}_{001}|0},$ {2010|0}, {-1|0}

Table 12: Conjugacy class (point-group part).

rep. SO	symmetry operations
{1 0}	{1 0}
$\{2_{001} 0\}$	{2 ₀₀₁ 0}
$\{2_{100} 0\}$	$\{2_{100} 0\}, \{2_{010} 0\}$
$\{2_{110} 0\}$	${2_{110} 0}, {2_{1-10} 0}$
$\{4^{+}_{001} 0\}$	$\{4^{+}_{001} 0\}, \{4^{-}_{001} 0\}$
$\{-1 0\}$	{-1 0}
$\{m_{001} 0\}$	$\{m_{001} 0\}$
$\{m_{100} 0\}$	$\{m_{100} 0\}, \{m_{010} 0\}$
$\{m_{110} 0\}$	$\{m_{110} 0\}, \{m_{1-10} 0\}$
$\{-4^{+}_{001} 0\}$	$\{-4^{+}_{001} 0\}, \{-4^{-}_{001} 0\}$

Table 13: Symmetry operations.

No.	SO	No.	SO	No.	SO	No.	SO	No.	SO
 1	$\{1 0\}$	2	$\{2_{001} 0\}$	3	$\{2_{100} 0\}$	4	$\{2_{010} 0\}$	5	$\{2_{110} 0\}$
6	$\{2_{1-10} 0\}$	7	$\{4^{+}_{001} 0\}$	8	$\{4^{-}_{001} 0\}$	9	$\{-1 0\}$	10	$\{m_{001} 0\}$
11	$\{m_{100} 0\}$	12	$\{m_{010} 0\}$	13	$\{m_{110} 0\}$	14	$\{m_{1-10} 0\}$	15	$\{-4^{+}_{001} 0\}$
16	$\{-4^{-}_{001} 0\}$								

Table 14: Character table (point-group part).

	1	2001	2100	2110	4 ⁺ ₀₀₁	-1	m ₀₀₁	m ₁₀₀	m ₁₁₀	-4^{+}_{001}
A_{1g}	1	1	1	1	1	1	1	1	1	1
A_{2g}	1	1	-1	-1	1	1	1	-1	-1	1
B_{1g}	1	1	1	-1	-1	1	1	1	-1	-1
B_{2g}	1	1	-1	1	-1	1	1	-1	1	-1
E_g	2	-2	0	0	0	2	-2	0	0	0
A_{1u}	1	1	1	1	1	-1	-1	-1	-1	-1
A_{2u}	1	1	-1	-1	1	-1	-1	1	1	-1
B_{1u}	1	1	1	-1	-1	-1	-1	-1	1	1
B_{2u}	1	1	-1	1	-1	-1	-1	1	-1	1
E_u	2	-2	0	0	0	-2	2	0	0	0

Table 15: Parity conversion.

\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow
$A_{1g} (A_{1u})$	B_{1g} (B_{1u})	$E_g (E_u)$	$A_{2g} (A_{2u})$	$B_{2g} (B_{2u})$
$A_{1u} (A_{1g})$	B_{1u} (B_{1g})	$E_u (E_g)$	$A_{2u} (A_{2g})$	$B_{2u} (B_{2g})$

Table 16: Symmetric product, $[\Gamma \otimes \Gamma']_+$.

	A_{1g}	A_{2g}	B_{1g}	B_{2g}	E_g	A_{1u}	A_{2u}	B_{1u}	B_{2u}	E_u
A_{1g}	A_{1g}	A_{2g}	B_{1g}	B_{2g}	E_g	A_{1u}	A_{2u}	B_{1u}	B_{2u}	E_u
A_{2g}		A_{1g}	B_{2g}	B_{1g}	E_{g}	A_{2u}	A_{1u}	B_{2u}	B_{1u}	E_u
B_{1g}			A_{1g}	A_{2g}	E_g	B_{1u}	B_{2u}	A_{1u}	A_{2u}	E_u
B_{2g}				A_{1g}	E_g	B_{2u}	B_{1u}	A_{2u}	A_{1u}	E_u
E_g					$A_{1g} + B_{1g} + B_{2g}$	E_u	E_u	E_u	E_u	$A_{1u} + A_{2u} + B_{1u} + B_{2u}$
A_{1u}						A_{1g}	A_{2g}	B_{1g}	B_{2g}	E_g
A_{2u}							A_{1g}	B_{2g}	B_{1g}	E_{g}
B_{1u}								A_{1g}	A_{2g}	E_g
B_{2u}									A_{1g}	E_{g}
$\underline{E_u}$										$A_{1g} + B_{1g} + B_{2g}$

Table 17: Anti-symmetric product, $[\Gamma \otimes \Gamma]_-$.

$\overline{A_{1g}}$	A_{2g}	B_{1g}	B_{2g}	E_g	A_{1u}	A_{2u}	B_{1u}	B_{2u}	E_u
_	_	_	_	A_{2g}	_	_	_	_	A_{2g}

Table 18: Virtual-cluster sites.

No.	position	No.	position	No.	position	No.	position
1	$\begin{pmatrix} 2 & 1 & 1 \end{pmatrix}$	2	$\begin{pmatrix} -2 & -1 & 1 \end{pmatrix}$	3	$\begin{pmatrix} 2 & -1 & -1 \end{pmatrix}$	4	$\begin{pmatrix} -2 & 1 & -1 \end{pmatrix}$
5	$\begin{pmatrix} 1 & 2 & -1 \end{pmatrix}$	6	$\begin{pmatrix} -1 & -2 & -1 \end{pmatrix}$	7	$\begin{pmatrix} -1 & 2 & 1 \end{pmatrix}$	8	$\begin{pmatrix} 1 & -2 & 1 \end{pmatrix}$
9	$\begin{pmatrix} -2 & -1 & -1 \end{pmatrix}$	10	$\begin{pmatrix} 2 & 1 & -1 \end{pmatrix}$	11	$\begin{pmatrix} -2 & 1 & 1 \end{pmatrix}$	12	$\begin{pmatrix} 2 & -1 & 1 \end{pmatrix}$
13	$\begin{pmatrix} -1 & -2 & 1 \end{pmatrix}$	14	$\begin{pmatrix} 1 & 2 & 1 \end{pmatrix}$	15	$\begin{pmatrix} 1 & -2 & -1 \end{pmatrix}$	16	$\begin{pmatrix} -1 & 2 & -1 \end{pmatrix}$

Table 19: Virtual-cluster basis.

symbol	1	2	3	4	5	6	7	8	9	10
$\mathbb{Q}_0^{(A_{1g})}$	$\frac{1}{4}$									
	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$				
$\mathbb{Q}_1^{(A_{2u})}$	$\frac{1}{4}$	$\frac{1}{4}$	$-\frac{1}{4}$	$-\frac{1}{4}$	$-\frac{1}{4}$	$-\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$	$-\frac{1}{4}$	$-\frac{1}{4}$
	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$	$-\frac{1}{4}$	$-\frac{1}{4}$				
$\mathbb{Q}_{1,0}^{(E_{u})}$	$\frac{\sqrt{10}}{10}$	$-\frac{\sqrt{10}}{10}$	$\frac{\sqrt{10}}{10}$	$-\frac{\sqrt{10}}{10}$	$\frac{\sqrt{10}}{20}$	$-\frac{\sqrt{10}}{20}$	$-\frac{\sqrt{10}}{20}$	$\frac{\sqrt{10}}{20}$	$-\frac{\sqrt{10}}{10}$	$\frac{\sqrt{10}}{10}$
	$-\frac{\sqrt{10}}{10}$	$\frac{\sqrt{10}}{10}$	$-\frac{\sqrt{10}}{20}$	$\frac{\sqrt{10}}{20}$	$\frac{\sqrt{10}}{20}$	$-\frac{\sqrt{10}}{20}$				
$\mathbb{Q}_{1,1}^{(E_u)}$	$\frac{\sqrt{10}}{20}$	$-\frac{\sqrt{10}}{20}$	$-\frac{\sqrt{10}}{20}$	$\frac{\sqrt{10}}{20}$	$\frac{\sqrt{10}}{10}$	$-\frac{\sqrt{10}}{10}$	$\frac{\sqrt{10}}{10}$	$-\frac{\sqrt{10}}{10}$	$-\frac{\sqrt{10}}{20}$	$\frac{\sqrt{10}}{20}$
	$\frac{\sqrt{10}}{20}$	$-\frac{\sqrt{10}}{20}$	$-\frac{\sqrt{10}}{10}$	$\frac{\sqrt{10}}{10}$	$-\frac{\sqrt{10}}{10}$	$\frac{\sqrt{10}}{10}$				
$\mathbb{Q}_2^{(B_{1g})}$	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$	$-\frac{1}{4}$	$-\frac{1}{4}$	$-\frac{1}{4}$	$-\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$
	$\frac{1}{4}$	$\frac{1}{4}$	$-\frac{1}{4}$	$-\frac{1}{4}$	$-\frac{1}{4}$	$-\frac{1}{4}$				
$\mathbb{Q}_2^{(B_{2g})}$	$\frac{1}{4}$	$\frac{1}{4}$	$-\frac{1}{4}$	$-\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$	$-\frac{1}{4}$	$-\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$
	$-\frac{1}{4}$	$-\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$	$-\frac{1}{4}$	$-\frac{1}{4}$				
$\mathbb{Q}_{2,0}^{(E_g)}$	$\frac{\sqrt{10}}{20}$	$-\frac{\sqrt{10}}{20}$	$\frac{\sqrt{10}}{20}$	$-\frac{\sqrt{10}}{20}$	$-\frac{\sqrt{10}}{10}$	$\frac{\sqrt{10}}{10}$	$\frac{\sqrt{10}}{10}$	$-\frac{\sqrt{10}}{10}$	$\frac{\sqrt{10}}{20}$	$-\frac{\sqrt{10}}{20}$
	$\frac{\sqrt{10}}{20}$	$-\frac{\sqrt{10}}{20}$	$-\frac{\sqrt{10}}{10}$	$\frac{\sqrt{10}}{10}$	$\frac{\sqrt{10}}{10}$	$-\frac{\sqrt{10}}{10}$				
$\mathbb{Q}_{2,1}^{(E_g)}$	$\frac{\sqrt{10}}{10}$	$-\frac{\sqrt{10}}{10}$	$-\frac{\sqrt{10}}{10}$	$\frac{\sqrt{10}}{10}$	$-\frac{\sqrt{10}}{20}$	$\frac{\sqrt{10}}{20}$	$-\frac{\sqrt{10}}{20}$	$\frac{\sqrt{10}}{20}$	$\frac{\sqrt{10}}{10}$	$-\frac{\sqrt{10}}{10}$
	$-\frac{\sqrt{10}}{10}$	$\frac{\sqrt{10}}{10}$	$-\frac{\sqrt{10}}{20}$	$\frac{\sqrt{10}}{20}$	$-\frac{\sqrt{10}}{20}$	$\frac{\sqrt{10}}{20}$				
$\mathbb{Q}_3^{(B_{1u})}$	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$	$-\frac{1}{4}$	$-\frac{1}{4}$	$-\frac{1}{4}$	$-\frac{1}{4}$	$-\frac{1}{4}$	$-\frac{1}{4}$
	$-\frac{1}{4}$	$-\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$				
$\mathbb{Q}_3^{(B_{2u})}$	$\frac{1}{4}$	$\frac{1}{4}$	$-\frac{1}{4}$	$-\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$	$-\frac{1}{4}$	$-\frac{1}{4}$	$-\frac{1}{4}$	$-\frac{1}{4}$
	$\frac{1}{4}$	$\frac{1}{4}$	$-\frac{1}{4}$	$-\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$				
$\mathbb{Q}_{3,0}^{(E_u,1)}$	$\frac{\sqrt{10}}{20}$	$-\frac{\sqrt{10}}{20}$	$\frac{\sqrt{10}}{20}$	$-\frac{\sqrt{10}}{20}$	$-\frac{\sqrt{10}}{10}$	$\frac{\sqrt{10}}{10}$	$\frac{\sqrt{10}}{10}$	$-\frac{\sqrt{10}}{10}$	$-\frac{\sqrt{10}}{20}$	$\frac{\sqrt{10}}{20}$
	$-\frac{\sqrt{10}}{20}$	$\frac{\sqrt{10}}{20}$	$\frac{\sqrt{10}}{10}$	$-\frac{\sqrt{10}}{10}$	$-\frac{\sqrt{10}}{10}$	$\frac{\sqrt{10}}{10}$				
$\mathbb{Q}_{3,1}^{(E_u,1)}$	$-\frac{\sqrt{10}}{10}$	$\frac{\sqrt{10}}{10}$	$\frac{\sqrt{10}}{10}$	$-\frac{\sqrt{10}}{10}$	$\frac{\sqrt{10}}{20}$	$-\frac{\sqrt{10}}{20}$	$\frac{\sqrt{10}}{20}$	$-\frac{\sqrt{10}}{20}$	$\frac{\sqrt{10}}{10}$	$-\frac{\sqrt{10}}{10}$
	$-\frac{\sqrt{10}}{10}$	$\frac{\sqrt{10}}{10}$	$-\frac{\sqrt{10}}{20}$	$\frac{\sqrt{10}}{20}$	$-\frac{\sqrt{10}}{20}$	$\frac{\sqrt{10}}{20}$				
$\mathbb{Q}_4^{(A_{2g})}$	$\frac{1}{4}$	$\frac{1}{4}$	$-\frac{1}{4}$	$-\frac{1}{4}$	$-\frac{1}{4}$	$-\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$
	$-\frac{1}{4}$	$-\frac{1}{4}$	$-\frac{1}{4}$	$-\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$				
$\mathbb{Q}_{4,0}^{(E_g,1)}$	$-\frac{\sqrt{10}}{10}$	$\frac{\sqrt{10}}{10}$	$-\frac{\sqrt{10}}{10}$	$\frac{\sqrt{10}}{10}$	$-\frac{\sqrt{10}}{20}$	$\frac{\sqrt{10}}{20}$	$\frac{\sqrt{10}}{20}$	$-\frac{\sqrt{10}}{20}$	$-\frac{\sqrt{10}}{10}$	$\frac{\sqrt{10}}{10}$
	$-\frac{\sqrt{10}}{10}$	$\frac{\sqrt{10}}{10}$	$-\frac{\sqrt{10}}{20}$	$\frac{\sqrt{10}}{20}$	$\frac{\sqrt{10}}{20}$	$-\frac{\sqrt{10}}{20}$				
$\mathbb{Q}_{4,1}^{(E_g,1)}$	$\frac{\sqrt{10}}{20}$	$-\frac{\sqrt{10}}{20}$	$-\frac{\sqrt{10}}{20}$	$\frac{\sqrt{10}}{20}$	$\frac{\sqrt{10}}{10}$	$-\frac{\sqrt{10}}{10}$	$\frac{\sqrt{10}}{10}$	$-\frac{\sqrt{10}}{10}$	$\frac{\sqrt{10}}{20}$	$-\frac{\sqrt{10}}{20}$

symbol	1	2	3	4	5	6	7	8	9	10
	$-\frac{\sqrt{10}}{20}$	$\frac{\sqrt{10}}{20}$	$\frac{\sqrt{10}}{10}$	$-\frac{\sqrt{10}}{10}$	$\frac{\sqrt{10}}{10}$	$-\frac{\sqrt{10}}{10}$				
$\mathbb{Q}_{5}^{(A_{1u})}$	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$	$-\frac{1}{4}$	$-\frac{1}{4}$
	$-\frac{1}{4}$	$-\frac{1}{4}$	$-\frac{1}{4}$	$-\frac{1}{4}$	$-\frac{1}{4}$	$-\frac{1}{4}$				