Modern Algebra II: Problem Set 7

Nilay Kumar

Last updated: March 11, 2013

Problem 1

Let $E=\mathbb{Q}(\sqrt{5},\sqrt{7})$ and let $\alpha=2\sqrt{5}-\sqrt{7}\in E$. We know that $\mathbb{Q}(\sqrt{5},\sqrt{7})=\mathbb{Q}(\sqrt{5})(\sqrt{7})$. Since $\sqrt{5}$ and $\sqrt{7}$ are obviously algebraic over \mathbb{Q} and $\mathbb{Q}(\sqrt{5})$ respectively, E is a finite extension over \mathbb{Q} by the theorem proved in class (of course, we should check that $\sqrt{5}\notin\mathbb{Q}$ and $\sqrt{7}\notin\mathbb{Q}(\sqrt{5})$ but this obviously holds via the usual divisibility arguments). Furthermore, since $\deg\operatorname{irr}(\sqrt{5},\mathbb{Q},x)=\deg x^2-5=2$ and $\deg\operatorname{irr}(\sqrt{7},\mathbb{Q}(\sqrt{5}),x)=\deg x^2-7=2$, we have, $[E:\mathbb{Q}]=[E:\mathbb{Q}(\sqrt{5})][\mathbb{Q}(\sqrt{5}):\mathbb{Q}]=2\cdot 2=4$. We can write a basis for E, then, to be $\{1,\sqrt{5},\sqrt{7},\sqrt{35}\}$.

Let us now show that $E = \mathbb{Q}(\alpha)$. It is obvious that $\mathbb{Q}(\alpha) \subset E$ – let us show that $E \subset \mathbb{Q}(\alpha)$. First note that $\sqrt{35} \in \mathbb{Q}(\alpha)$, as

$$\alpha^2 = (2\sqrt{5} - \sqrt{7})^2 = 27 - 4\sqrt{35}.$$

Then we have $\alpha\sqrt{35} = 10\sqrt{7} - 7\sqrt{5}$. We can use this to show that

$$13\sqrt{5} = \alpha\sqrt{35} + 10\alpha$$
$$27/2 \cdot \sqrt{2} = \alpha\sqrt{35} - 7/2 \cdot \alpha,$$

i.e. $\sqrt{5}$ and $\sqrt{7}$ are in $\mathbb{Q}(\alpha)$. Thus, $E = \mathbb{Q}(\alpha)$. We then know that $\deg \operatorname{irr}(\alpha, \mathbb{Q}, x) = 4$. Then, with some computation, we find

$$\alpha^{2} = 27 - 4\sqrt{35}$$

$$\alpha^{4} = 1289 - 216\sqrt{35}$$

$$0 = \alpha^{4} - 54\alpha^{2} + 169$$

i.e. $\operatorname{irr}(\alpha, \mathbb{Q}, x) = x^4 - 54x^2 + 169$. Finally, since we know that $[\mathbb{Q}(\alpha) = E : \mathbb{Q}] = 4$, $\{1, \alpha, \alpha^2, \alpha^3\}$ must be another basis for E.

Problem 2

First note that $\mathbb{Q}(i)$ is a 2-dimensional finite extension of \mathbb{Q} , as i is algebraic over \mathbb{Q} and deg $\operatorname{irr}(i,\mathbb{Q},x)=\deg x^2+1=2$. Furthermore, $\mathbb{Q}(i,\sqrt[4]{2})$ is a 4-dimensional finite extension of $\mathbb{Q}(i)$, as $\sqrt[4]{2}$ is clearly algebraic over (and not in) $\mathbb{Q}(i)$ and $\operatorname{deg}\operatorname{irr}(\sqrt[4]{2},\mathbb{Q}(i),x)=\operatorname{deg} x^2-4=4$. Then, $[\mathbb{Q}(i,\sqrt[4]{2}):\mathbb{Q}]=[\mathbb{Q}(i,\sqrt[4]{2}):\mathbb{Q}(i)][\mathbb{Q}(i):\mathbb{Q}]=4\cdot 2=8$. Note that $\{1,i\}$ forms a \mathbb{Q} -basis for $\mathbb{Q}(i)$ and that $\{1,\sqrt[4]{2},\sqrt[4]{2}^2,\sqrt[4]{2}^3\}$ forms a $\mathbb{Q}(i)$ basis for $\mathbb{Q}(i,\sqrt[4]{2})$. It follows, then, that $\{1,i,\sqrt[4]{2},\sqrt[4]{2}^2,\sqrt[4]{2}^3,i\sqrt[4]{2},i\sqrt[4]{2}^3\}$ forms a \mathbb{Q} -basis for $\mathbb{Q}(i,\sqrt[4]{2})$.

If $\alpha = i + \sqrt[4]{2}$, we can compute

$$0 = (\alpha - i)^4 - 2$$

$$0 = \alpha^4 - 4i\alpha^3 - 6\alpha^2 + 4\alpha - 1$$

Squaring this yields on the right-hand side the eighth order irreducible polynomial for α .

Problem 3

Let F be a field of characteristic not equal to 2. Suppose that E is a finite extension field of F and that [E:F]=2. Thus, E is a 2-dimensional F-vector space. This implies the existence of an α not in F, because otherwise, E would be 1-dimensional, as E would equal F. Since $\alpha^2 \in E$, we can write $\alpha^2 - d\alpha - c = 0$ for some $c, d \in F$. Completing the square, we find $(\alpha - d/2)^2 - d^2/4 - c = 0$, which yields

$$(\alpha - d/2)^2 = d^2/4 - c.$$

If we define $\beta = \alpha - d/2$ and $a = d^2/4 - c$, then, we have found a $\beta \notin F$ that satisfies $\beta^2 = a$.

Finally, let us show that $E = F(\beta)$; i.e. that every $c + d\alpha$ can be written as $e + f\beta$ for some $e, f \in F$ (and vice versa):

$$c + d\alpha = c + d(\beta + d/2) = cd/2 + d\beta$$

$$e + f\beta = e + f(\alpha - d/2) = -ed/2 + f\alpha$$

and we are done.

Problem 4

Let F be a field and suppose that F is a subring of an integral domain R. Thus R is a vector space over F. Suppose further that R is a finite, d-dimensional vector space over F. Then, if we consider the set of vectors $\{1,r,r^2,\cdots\}$, there must be some non-trivial linear combination that yields zero, as they cannot all be linearly independent. Take $\sum_{i=0}^n a_i r^i = 0$, with $a_i \in F$ not identically zero and $n \geq d$. Let m be the smallest i such that $a_i \neq 0$. Then the sum becomes $\sum_{i=m}^n a_i r^i = r^m \sum_{i=m}^n a_i r^{i-m} = 0$. Since R is an integral domain, we can cancel the factor out front, and we get $\sum_{i=m}^n a_i r^{i-m} = 0$. Note that m cannot equal n (otherwise we'd only have one term, and that too, trivial, with $a_n = 0$), so

$$a_m + a_{m+1}r + \dots + a_n r^{n-m} = 0,$$

and dividing through by $-a_m$ and factoring out an r shows that r times some element of R is equal to 1, i.e. that r has an inverse. This implies that R is a field, as r was arbitrary, and we are done.

Problem 5

Let E be a finite extension of a field F, and suppose that the degree [E:F]=t is a prime number. Take some $\alpha\in E$ that is not in F. It should be clear that $F\leq F(\alpha)\leq E$, as $F(\alpha)$ is the smallest field containing F and α . Then we have

$$[E:F] = [E:F(\alpha)][F(\alpha):F]$$

$$t = [E:F(\alpha)][F(\alpha):F].$$

Since t is prime, and $F(\alpha) \neq F$ (by construction) and so $[F(\alpha) : F] \neq 1$, we must have that $[F(\alpha) : F] = t$ and $[E : F(\alpha)] = 1$. Consequently, $E = F(\alpha)$ for all such α , and E must be a simple extension of F.

Problem 6

Let F be a field and let $E = F(\alpha)$ be a finite extension field of F with $\alpha \notin F$ such that $[E:F] = \deg_F \alpha = 2n+1, n \in \mathbb{N}$. It should be clear that $\alpha^2 \notin F$, as otherwise [E:F] would be 2, which is a contradiction. Furthermore, $F(\alpha^2) \leq F(\alpha)$, as $\alpha^2 \in F(\alpha)$. Then we can write

$$[F(\alpha) : F] = 2n + 1 = [F(\alpha) : F(\alpha^2)][F(\alpha^2) : F]$$

Consider $[F(\alpha):F(\alpha^2)]=\deg_{F(\alpha^2)}\alpha=\deg\operatorname{irr}(\alpha,F(\alpha^2),x)$. Since this irreducible polynomial must divide $x^2-\alpha^2$, either $[F(\alpha):F(\alpha^2)]$ is one or two. It cannot be two, however, as this would contradict the above product (since an odd is always the product of two odds). Consequently, $[F(\alpha):F(\alpha^2)]=1$, i.e $F(\alpha)=F(\alpha^2)$.

Problem 7

Let F be a field and E an extension field of F. Suppose that $\alpha, \beta \in E$ are both algebraic over F, and that $\deg_F \alpha = n, \deg_F \beta = m$. If we construct $F(\alpha)$, it should be clear that β is algebraic over $F(\alpha)$, as the polynomial in F[x] whose solution is β is also in $F(\alpha)[x]$. For precisely this reason, $\deg_{F(\alpha)} \beta$ cannot be greater than m, i.e. $\deg_{F(\alpha)} = [F(\alpha, \beta) : F(\alpha)] \leq m$. Then, using

$$[F(\alpha,\beta):F] = [F(\alpha,\beta):F(\alpha)]n,$$

we have that $[F(\alpha, \beta) : F] \leq mn$. Hence, since $F(\alpha + \beta)$ and $F(\alpha\beta)$ are in $F(\alpha, \beta)$, the degrees of the irreducible polynomials must divide $[F(\alpha, \beta) : F]$, similar to above, and so we must have $\deg_F(\alpha + \beta) \leq mn$ and $\deg_F(\alpha\beta) \leq mn$.

Problem 8

Let F be a field and E an extension field of F. Suppose that $\alpha \in E$ and $\beta \in E$ are both algebraic over F, and that $\deg_F \alpha = n, \deg_F \beta = m$, with n and m relatively prime. We can compute

$$[F(\alpha, \beta) : F] = [F(\alpha, \beta) : F(\alpha)]n$$

and

$$[F(\alpha, \beta) : F] = [F(\alpha, \beta) : F(\beta)]m.$$

Both n, m divide $[F(\alpha, \beta) : F]$, and since n, m are relatively prime, this degree must be a multiple of mn. By the last problem, however, we know that the degree must be less than or equal to mn, and thus the degree of $F(\alpha, \beta)$ over F is nm.

We can use this result to compute

$$[\mathbb{Q}(\sqrt{2}, \sqrt[3]{2}) : \mathbb{Q}] = 2 \times 3 = 6$$

because $[\mathbb{Q}(\sqrt{2}):\mathbb{Q}]=2$ and $[\mathbb{Q}(\sqrt[3]{2}):\mathbb{Q}]=3$ are relatively prime.