Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики.

Лабораторная работа №6 по информатике 1972 год, 1 номер | Вариант 21 1970 год, 1 номер | Вариант 1

Берелехис Светлана Группа Р3112

Преподователь: Рудникова Тамара Владимировна

Санкт-Петербург 2021 уравнений: сначала решается уравнение (4), корнями которого являются суммы $\epsilon_1 + \epsilon_4$ и $\epsilon_2 + \epsilon_3$ симметричных (см. рис. 6!) корней уравнения (3), а затем из уравнений (5) находятся и сами корни уравнения (3). Именно таким путем Гауссу удалось осуществить построение правильного 17-угольника: здесь тоже выделяются группы корней, суммы которых находятся последовательно из квадратных уравнений. Но как искать эти "хорошие"группы? Гаусс находит удивительный путь ответить на этот вопрос...

Построение правильного 17-угольника

30 марта 1796 года наступает для него (Гаусса) день творческого крещения... Гаусс уже занимался с некоторого времени группировкой корней из еденицы на основании своей теории "первообразных "корней. И вот однажды утром, проснувшись, он внезапно ясно и отчетливо осознал, что из его теории вытекает построение семнадцатиугольника... Это событие явилось поворотным пунктом жизни Гаусса. Он принимает решение посвятить себя не филологии, а исключительно математике.

 Φ . Клейн

Чтобы выявить найденные Гауссом скрытые "симметрии"в множестве корней 17-й степени из еденицы и, пользуясь ими, разбить корни на нужные группы, введем новую нумерацию корней. Будем возводить 3 в последовательные степени $0, 1, 2, \dots$ и каждый раз брать остаток от деления полученного числа на 17. Избавим читателя от проведения этих выкладок и в таблице приведем окончательные результаты. В первой строке стоят показатели k, а под ними остатки от деления 3^k на 17. Обратите внимание, что в нижней строке содержатся все числа от 1 до

Рис. 7. Старые номера корней даны черным цветом, новые - красным.

16; затем 3^16 дает остаток 1 и далее остатки повторяются (докажите!) Закономерность, подмеченная Гауссом, является частным случем следующей теоремы: всякого простого р существует такое число l, называемое первообразным корнем, что среди остатков от деления l^k встерчаются числа 1, 2, ..., p-1. Этот факт впервые отметил Эйлер (1707-1783), но смог доказать лишь Лежандр (1752-1833); другое доказательство получил Гаусс, но, вероятно, в 1796 году он еще не обладал теоремой, а обраружил приведенный факт эмпиричиски, проводя вычисления для конкретных чисел. Это очень важное обстоятельство, не учитывая которого, трудно правильно понять природу ранних работ Гаусса. Присвоим корню $\epsilon_k, k = 3^k$, новый номер, а именно l, который мы

Таблица

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
1	3	9	10	13	5	15	11	16	14	8	7	4	12	2	6	1

Используя неравенство $xy \leq \frac{1}{2}(x^2 + y^2)$, напишем следующую цепочку нера-

венств:
$$\frac{\sum\limits_{i=1}^{n}a_{i}b_{i}}{AB}=\sum\limits_{i=1}^{n}\left(\frac{a_{i}}{A}\cdot\frac{b_{i}}{B}\right)\leq$$

$$\leq \sum_{i=1}^{n} \frac{1}{2} \left[\left(\frac{a_i}{A} \right)^2 + \left(\frac{b_i}{B} \right)^2 \right] = \frac{1}{2} \left(\frac{1}{A^2} \sum_{i=1}^{n} a_i^2 + \frac{1}{B^2} \sum_{i=1}^{n} b_i^2 \right) = 1$$

Отсюда следует неравенство (*). Как известно, равенство в нем достигается при

$$\frac{a_1}{A} = \frac{b_1}{B}, \frac{a_2}{A} = \frac{b_2}{B}, \dots, \frac{a_n}{A} = \frac{b_n}{B}$$

то есть при

$$\frac{a_1}{b_1} = \frac{a_2}{b_2} = \ldots = \frac{a_n}{b_n}.$$

Покажем теперь, как применяется неравенство (*).

ОТВЕТЫ, УКАЗАНИЯ, РЕШЕНИЯ

- **1.** $9, 8 \cdot 10^{-7} \ \partial Hc/cM^2$
- **2.** $2, 3 \cdot 10^{-12}$ эрг $\sim 1, 5$ электронвольта. Максимум числа квантов: $1, 7 \cdot 10^{-12}$ эрг ~ 1 электрон-вольт.
- **3.** $4.4 \cdot 10^{12}$ квантов в оном кубическом сантиметре.
- **4.**Энергия кванта: 9, 6 килоэлектрон-вольта, энергия электрона: 0, 1 килоэлектрон-вольта

- 1. $\lambda = 5215, 5$.
- **2.** [0; 1, 2, 3, 4, 5].
- 3. $\frac{5777}{1875}$
 - a) $[1; 1212 \cdots],$
 - b) $[2; 444 \cdots],$
 - c) $[2; 2424 \cdots]$.

5. 6)
$$\frac{\sqrt{ab(ab-4)}-ab}{2a}*$$
).

- 1. Естественная облась определения:
- a) $x \neq 0$; 6) $x \leq -1$; $x \geq 1$
- **4.** а) 9; б) 8; в) 6.
- **5.** а) 9; б) 8; в) 9; г) 0.
- **6.** $10^7 \cdot 4^7$
- 8. n^m
- **12.** Обратимы f_1 и f_3 .
- **13** и **14.** Отображение совпадает с обратным к нему.
- **16.** a)1680; б)9240; в) $18150 = 3^9 3 \cdot 2^9 + 3$.
- **18.** $A_n^m = n(n-1)\dots(n-m+1)$, если $m \le n; \ A_n^m = 0$, если m > n.
- **20.** $\frac{28!}{(7!)^4}$
- *) Это положительный корень уравнения

$$x = \frac{1}{a + \frac{1}{b+x}} \tag{1}$$

1. Разложим силы трения, ействующие на передние колеса автомобиля, на две составляющие: F_1 , лежащие в плоскости колес, и F_2 , перпендикулярные колесам (см. рисунок). Силы F_1 заставляют колеса вращаться, а силы F_2 поворачивают автомобиль.

- 2. Если центр тяжести палки не находится посередине межу пальцами, но давление палки на кольцо различно. Различны и силы тяготения, действующие на палку со стороны пальцев. Палка смещается в ту сторону, где трение меньше.
- 3. Пока брусок не скользит по плоскости, сила трения равна по величине проекции веса бруска на наклонную плоскость $F_{TP} = P \sin \alpha$. Брусок начинает скользить, когда сила трения достигает максимальной величины трения покоя $F_{TP} = kN = kP\cos\alpha$. При этом выполняется условие $kP\cos\alpha = P\sin\alpha$. Поэтому соскальзывание бруска начинается при угле наклона плоскости к горизонту $\alpha = \arctan k$. После этого сила трения будет равна $F_{TP} = kN = kP\cos\alpha$.

Угол α = arctan k, при котором брусок начинает скользить, называют углом трения. Он имеет еще и другой геометрический смысл: если к бруску, лежащему на горизонтальной плоскости, приложить силу, составляющую с вертикалью угол меньший, чем угол трения, то брусок нельзя сдвинуть с места, сколь велика ни была бы приложенна сила. Доказать это можно так. Посадим наблюдателя на наклонную плоскость, на которой лежит бру-

$$x \to |x|$$

можно сказать, что оно является отображением R в R, но нельзя сказать, что это "отображение R на R".

С чисто логической точки зрения наиболее простым является случай, когда область определения функции конечна. Ясно, что функция, область определения которой состоит из n элементов, не может принимать более n различных значений. Таким образом, функции, определенные на конечных множествах, осуществляют отображения конечных множеств на конечные множества. Таки отображения являются одним из предметов изучения важной части математики - комбинаторики (см. задачи 8, 11, 18, 19)

 Π р и м е р $\ 4$. Рассмотрим функции, область определения которых есть множество

$$M = \{A, B\}$$

из двух букв A и B и значения которых принадлежат тому же множеству, т.е. отображения множества M в себя.

Таких функций существует всего четыре. Зададим их табличным способом:

l	X	$f_1(x)$	$f_2(x)$	$f_3(x)$	$f_4(x)$
	A	A	В	A	В
l	В	A	В	В	A

