Tema 8: Inducción Magnética

Fundamentos Físicos y Electrónicos de la Informática

Introducción

- •Las cargas eléctricas no son las únicas fuentes de dicho campo, variaciones del campo magnético también pueden serlo.
- •Hasta ahora para hacer fluir una corriente en un circuito se requería una fem, producida por una batería. En este tema veremos como la variación de ϕ_m inducir una fem: **inducción magnética**
- •La inducción electromagnética es descrita por la ley de Faraday.
- •En este tema, un nuevo componente: el inductor y estudiaremos un circuito simple que lo incluye.

- Faraday descubrió que al mover un imán cerca de una espira genera una corriente. en la espira
- •Si el imán está quieto no se induce corriente y el amperímetro marca cero.
- Al acercar el imán la espira aparece una corriente positiva.
- Si alejamos el imán de la espira, aparece una corriente negativa.
- De hecho, se comprueba que la corriente en cualquier caso existe mientras haya campo magnético que este cambiando.

¿ Qué es lo que está pasando? Se establece una corriente a pesar de que no existe una batería

- •A dicha corriente se le conoce como *corriente inducida*, que es debida a su vez a una *fem inducida*.
- •Faraday demostró que los cambios del flujo magnético, ϕ_B , a través de un circuito inducían la fem en dicho circuito, y por tanto la corriente.

Ley de Faraday

La fem inducida en una espira cerrada es igual a menos la derivada del flujo magnético a través de la espira con respecto al tiempo

$$\mathcal{E} = -\frac{d\phi_B}{dt}$$

$$\Phi_B = \int_S \mathbf{B} \cdot d\mathbf{S}$$

 $C \equiv$ la espira o circuito; $S \equiv$ el área del circuito.

Ley de Faraday

$$\mathcal{E} = -\frac{d\phi_I}{dt}$$

- •El signo menos está relacionado con la dirección de la fem
- ulletSe induce una fem si el flujo magnético varía en el tiempo, y ϕ_B puede cambiar si
 - Varía la magnitud del campo magnético
 - Varía el área encerrada por el circuito
 - Varía la orientación entre B y la normal de la superficie

Ejemplo 1: Una espira de alambre que encierra un área A se coloca en una región donde existe un campo magnético uniforme perpendicular al plano de la espira. La magnitud del campo magnético varía con el tiempo con la expresión $B(t) = B_{max}e^{-at}$ siendo a un numero real positivo. Determine la fem inducida en la espira como función del tiempo.

Sol.
$$\mathcal{E}(t) = AaB_{max}e^{-at}$$

ulletEl área que hace mención la ley de Faraday es la que encierra el circuito, así si un flujo magnético variable atraviesa un solenoide con N vueltas, la fem inducida es la suma de la contribución de las N fem que se producen en cada espira

$$\mathcal{E} = -N \frac{d\phi_B}{dt}$$

Ley de Lenz

Ley de Lenz

La fem y corriente inducidas se oponen a la variación del flujo magnético que la produce

- •Un imán al acercase \Rightarrow aumenta $\phi_B \Rightarrow$ induce corriente, I, en la espira.
- La dirección de *I* será tal que se oponga a quien la crea (aumento de líneas de campo hacia dentro)
 ⇒ *I* producirá un campo magnético hacia afuera de la espira
- •Si el imán se aleja $\Rightarrow \phi_B$ disminuye $\Rightarrow I$ genera un segundo campo magnético que se opone al cambio del flujo.

Ley de Lenz

Ejemplo 2: Dos raíles conductores paralelos separados de 40 cm, y una barra también conductora que se desplaza sobre ellos con una velocidad constante de v=0.2~m/s alejándose del extremo origen que está cerrado por una resistencia de 5 Ω . Se considera que tanto los raíles y la barra son conductores ideales que carecen de resistencia. Bajo los raíles existe un campo magnético uniforme de 0.5~T perpendicular y saliente del plano del papel. Calcular la fem y corrientes inducidas en el circuito.

Sol. $\varepsilon = -0.04$ V; I = -8 mA.

- ullet Aplicamos $\mathcal E$ a una espira conductora \Rightarrow se genera una corriente $I\Rightarrow$ que crea un campo magnético ${\bf B}$
- •La espira es atravesada por sus propias líneas de campo $\Rightarrow \exists \phi_B$
- ulletSi $I\equiv {\rm cte}\Rightarrow \phi_B\equiv {\rm cte}\Rightarrow {\rm no}$ existe inducción alguna.
- ulletSi I varía $\Rightarrow \phi_B$ varía \Rightarrow se formara una fem (autoinducida) \mathcal{E}_L , que se opone a la fem que crea la corriente original $\mathcal{E} \Leftrightarrow$ se formará una corriente autoinducida que se superpone a la principal.

La **autoinducción** de un circuito a la formación de corrientes inducidas en el circuito cuando se producen en él variaciones del propio flujo.

- •La **autoinducción** se produce en cualquier circuito que conduzca una corriente variable.
- •Es especialmente notable en bobinas.
- •La variación del propio campo magnético de un circuito induce una fem en él. Esta fem (que se suele llamar autoinducida, \mathcal{E}_L) tendrá la dirección que se oponga a la fem que originó la corriente inicial, \mathcal{E} .
- •La fem autoinducida puede ser calculado usando la ley de Faraday
 - ► En el centro de la espira es $B = \frac{\mu_0 I}{2R}$
 - $ightharpoonup B \propto I \Rightarrow \phi_B \propto I \Rightarrow \phi_B = LI$

$L \equiv$ inductancia (a veces referida como autoinducción)

La unidad SI de la inductancia es el henrio (H), donde 1H=Tm²/A

$$\mathcal{E}_L = -\frac{d\phi_B}{dt} = -\frac{d(IL)}{dt} = -L\frac{dI}{dt}$$

- •La inductancia es una medida de oposición a un cambio en la corriente, cuanto mayor sea la inductancia de un circuito mayor será la \mathcal{E}_L que se opondrá a la variación de corriente que la crea.
- $\bullet La$ autoinducción sólo se manifestará para una corriente variable en el tiempo \to usaremos letras minúsculas en las magnitudes que varíen temporalmente

Fem autoinducida

$$\mathcal{E}_L = -L \frac{di(t)}{dt}$$

Las ecuaciones

$$L = \frac{\phi_B}{I}; \qquad \mathcal{E}_L = -L \frac{di(t)}{dt}$$

son válidas para cualquier circuitos

Ejemplo: Calculo de la inductancia de un solenoide ideal de longitud l, área transversal A y con N vueltas.

$$B=I\mu_0 nl$$
 con $n=\frac{N}{l}$. $\phi_B^{espira}=BA\Rightarrow$ el flujo total en el interior de la bobina es $\phi_B=NBA=\mu_0 n^2AlI$

Inductancia de un solenoide ideal

$$L = \mu_0 n^2 A l$$

Depende de la geometría de la bobina $(A \ y \ l)$ y del número de vueltas al cuadrado (n^2) .

Ejemplo 3: a) Calcule la inductancia de un solenoide que contiene 300 vueltas y una longitud de 25 cm con una sección transversal de 4 cm². b) Calcule la fem autoinducida en el solenoide si la corriente a través de él disminuye a una proporción de 50 A/s.

Sol. a) L=0.181 mH; b) \mathcal{E}_L =+9.05 V.

- •Un inductor es cualquier elemento con inductancia, (ej. una bobina).
- •La representación de un inductor en un circuito es

•En general, un inductor en un circuito hace difícil que ocurran cambios rápidos en la corriente.

Energía en un campo magnético

- ▶ Un condensador almacena energía, $U = \frac{1}{2}QV$,
- ▶ Si existe un campo eléctrico \Rightarrow densidad de energía, $u_E = \frac{1}{2}\varepsilon_0 E^2$

Igualmente, en cualquier inductor por el que circula una corriente, una bobina por ejemplo, también se almacena energía.

Energía almacenada en un inductor

$$U = \frac{1}{2}LI^2$$

- •Esta energía se almacenada mientras $\frac{dI}{dt} > 0$.
- •Si $\frac{dI}{dt}$ < 0, el inductor actúa como fuente suministrando la energía almacenada (*ej. chispa al desconectar aparato eléctrico*).

En cualquier región que exista un campo magnético, habrá una densidad de energía

$$u_B = \frac{1}{2} \frac{B^2}{\mu_0}.$$

Inductores en circuitos electrónico

•Tiene un papel análogo a los condensadores, se usan como filtros y almacenan energía entre otras aplicaciones. Veremos más características en los temas siguientes.

- •Está formado por una combinación de una resistencia y un inductor.
- •El interruptor se cierra en t = 0 s
- •Un inductor se opone a los cambios de $i \Rightarrow$ hace que el circuito sea lento en reaccionar a los cambios de voltaje
- •Sin inductor se alcanzaría instantáneamente una corriente final $I_f = \frac{\mathcal{E}}{R}$

El interruptor S_1 se cierra en t = 0.

- •Pero debido al inductor, la corriente no puede pasar de un valor cero a otro final instantáneamente ya que aparece una fem autoinducida en la bobina que se opone a este cambio.
- Aplicamos Kirchhoff

$$\mathcal{E} = v_R + v_L \Rightarrow \mathcal{E} - iR - L\frac{di}{dt} = 0$$

 La corriente no se incrementa de forma instantánea de cero a su valor final cuando se cierra el interruptor.

$$i(t) = I_f(1 - e^{-t/\tau})$$

au: constante de tiempo del circuito RL

$$au = rac{L}{R}$$

Físicamente τ representa el tiempo que tarda la corriente del circuito en alcanzar el 63% de su valor final.

- •Igualmente podríamos hacer una análisis para el caso de que, una vez alcanzada la corriente final, el circuito se desconectara del generador (apagara).
- •Si el circuito no incluyera un inductor la corriente se reduciría cero de inmediato.
- •Cuando el inductor está presenta, se opone a la variación de corriente y hace que aunque esté desconectado del generador siga habiendo corriente en el circuito.
- •La energía que se emplea para hacer circular esta corriente procede de la almacenada por el inductor.

Ejemplo 4: Tres circuitos RL (A, B y C) son idénticos salvo en el valor de su inductancia. Dichos circuitos se encienden a fuentes de voltaje idénticas en t=0, mientas que dichas fuentes se desconectan en t=10 s. La evolución de las corrientes con el tiempo es mostrada en la figura . Si se supone que la constante de tiempo de cada circuito es menor que 10 s, ¿ qué circuito tiene mayor inductancia?, b) ¿ cuál es la magnitud de la inductancia menor ?. Justifique su respuesta.

Sol.
$$L_B > L_A > L_C$$
; $L_C = 0$.

Ejemplo 5: Un circuito RL tiene los siguientes valores $R=6\Omega$, L=30 mH, y $\mathcal{E}=12$ V. a) Encuentre la constante de tiempo del circuito. b) Si se enciende en t=0 s calcule la corriente en el circuito en t=2 s.

Sol. a) 5 ms, b) 0.659 A.

Apéndice: Aplicación de Ley de Faraday

- Resonancia magnética de imagen es herramienta de diagnostico medico basada en fuertes campos magnéticos
- •Los operarios cuando se mueven dentro de la habitación ven luces, sufren espasmos nerviosos, sienten sabor metálico...
- •¿ Que está pasando?

Apéndice: Guitarra eléctrica

- Otra aplicación de la Ley de Faraday es la pastilla (o bobina fonocaptora) de la guitarra eléctrica
- •La pastilla (Pickup coil) cerca de las cuerdas de guitarra
- •Cuerdas de guitarra de material magnetizable
- •El imán dentro de la bobina magnetiza la cuerda cercana
- ◆Cuando la cuerda vibra a un frecuencia, produce un cambio de flujo en la bobina ⇒ induce un fem de la misma frecuencia que es enviada a amplificador y posteriormente a altavoces

