Lecture two: Basic Plotting

1. Creating Simple Plots

The basic MATLAB graphing procedure, for example in 2D, is to take a vector of x-coordinates, $\mathbf{x} = (\mathbf{x_1}; ...; \mathbf{x_N})$, and a vector of y-coordinates.y = $(\mathbf{y_1}; ...; \mathbf{y_N})$. Locate the points $(\mathbf{x_i}; \mathbf{y_i})$, with $\mathbf{i} = \mathbf{1}; \mathbf{2}; ...; \mathbf{n}$ and then join them by straight lines. You need to prepare x and y in an identical array form; namely, x and y are both row arrays and column arrays of the same length.

The MATLAB command to plot a graph is plot(x,y). The vectors $\mathbf{x} = (1; 2; 3; 4; 5; 6)$ and $\mathbf{y} = (3;-1; 2; 4; 5; 1)$ produce the picture shown in Figure 1.

```
>> x=[1 2 3 4 5 6];
y=[3 -1 2 4 5 1];
plot(x,y)
>>
```

Note: The plot function has different forms depending on the input arguments. If y is a vector plot(y) produces a piecewise linear graph of the elements of y versus the index of the elements of y. If we specify two vectors, as mentioned above, plot(x,y) produces a graph of y versus x.

For example, to plot the function $\sin(x)$ on the interval $[0; 2\pi]$, we first create a vector of x values ranging from 0 to 2π , then compute the sine of these values, and finally plot the result:

Lecture two: Basic Plotting

Figure 1: Plot for the vectors x and y

```
>> x=0:pi/100:2*pi;
>> y=sin(x);
>> plot(x,y)
fx >> |
```


Figure 2:plot x,y

Notes:

0:pi/100:2*pi yields a vector that : starts at 0, takes steps (or increments) of $\pi/100$, stops when 2π is reached.

If you omit the increment, MATLAB automatically increments by 1.

2. Adding Titles, Axis Labels, and Annotations

MATLAB enables you to add axis labels and titles. For example, using the graph from the previous example, add x- and y-axis labels.

Now label the axes and add a title. The character π creates the symbol π . An example of 2D plot is shown in Figure 3.

```
>> xlabel (x = 0:2\pi')
>> ylabel ('Sine of x')
>> title ('Plot of the Sine function')
```


Figure 3: Plot of the Sine Function

3. Multiple data sets in one plot

Multiple (x; y) pairs arguments create multiple graphs with a single call to plot. For example, these statements plot three related functions of x:

```
y1 = 2 \cos(x), y2 = \cos(x), and y3 = 0.5 * \cos(x), in the interval 0 \le x \le 2\pi.
```

```
>> x = 0:pi/100:2*pi;

>> y1 = 2*cos(x);

>> y2 = cos(x);

>> y3 = 0.5*cos(x);

>> plot(x,y1,'--',x,y2,'-',x,y3,':')

>> xlabel('0 \leq x \leq 2\pi')

>> ylabel('Cosine functions')

>> legend('2*cos(x)','cos(x)','0.5*cos(x)')

>> title('Typical example of multiple plots')

>> axis([0 2*pi -3 3])
```

The result of multiple data sets in one graph plot is shown in Figure 4.

Figure 4: Typical example of multiple plots

Lecture two: Basic Plotting by Ali Falih

4. Specifying line styles and colors

It is possible to specify line styles, colors, and markers (e.g., circles, plus signs . . .) using the plot command:

Plot(x,y,'style_color_marker') where style_color_marker is a triplet of values.

Table 2: Attributes for plot

Symbol	Color	Symbol	Line style	Symbol	Marker
k	Black	-	Solid	+	Plus sign
r	Red		Dashed	0	Circle
b	Blue		Dotted	*	Asterisk
g	Green		Dash-dot		Point
С	Cyan	none	Non line	X	Cross
m	Magenta			S	Square
У	Yellow			D	Diamond