Exercise 8D

Pure Mathematics 1

1 a
$$y = 2x^2 - 6x + 3$$

$$\frac{dy}{dx} = 2(2x) - 6(1) + 0 = 4x - 6$$

b
$$y = \frac{1}{2}x^2 + 12x$$

 $\frac{dy}{dx} = \frac{1}{2}(2x) + 12(1) = x + 12$

$$c \quad y = 4x^2 - 6$$
$$\frac{dy}{dx} = 4(2x) - 0 = 8x$$

d
$$y = 8x^2 + 7x + 12$$

 $\frac{dy}{dx} = 8(2x) + 7(1) + 0 = 16x + 7$

e
$$y=5+4x-5x^2$$

$$\frac{dy}{dx} = 0+4(1)-5(2x) = 4-10x$$

2 a
$$y = 3x^2$$

$$\frac{dy}{dx} = 6x$$
At the point (2, 12), $x = 2$
Substituting $x = 2$ into $\frac{dy}{dx} = 6x$ gives:
Gradient = $6 \times 2 = 12$

b
$$y = x^2 + 4x$$

$$\frac{dy}{dx} = 2x + 4$$
At the point (1, 5), $x = 1$
Substituting $x = 1$ into $\frac{dy}{dx} = 2x + 4$ gives:
Gradient = $2 \times 1 + 4 = 6$

c
$$y = 2x^2 - x - 1$$

$$\frac{dy}{dx} = 4x - 1$$
At the point (2, 5), $x = 2$
Substituting $x = 2$ into $\frac{dy}{dx} = 4x - 1$ gives:
Gradient = $4 \times 2 - 1 = 7$

2 d
$$y = \frac{1}{2}x^2 + \frac{3}{2}x$$

$$\frac{dy}{dx} = x + \frac{3}{2}$$
At the point $(1, 2), x = 1$
Substituting $x = 1$ into $\frac{dy}{dx} = x + \frac{3}{2}$ gives:
Gradient $= 1 + \frac{3}{2} = 2\frac{1}{2}$

e
$$y=3-x^2$$

$$\frac{dy}{dx} = -2x$$
At the point (1, 2), $x = 1$
Substituting $x = 1$ into $\frac{dy}{dx} = -2x$ gives:
Gradient = $-2 \times 1 = -2$

f
$$y=4-2x^2$$

$$\frac{dy}{dx} = -4x$$
At the point $(-1, 2), x = -1$
Substituting $x = -1$ into $\frac{dy}{dx} = -4x$ gives:
Gradient $= -4 \times -1 = 4$

$$\Rightarrow y = 4 \text{ when } x = 1$$

$$\frac{dy}{dx} = 2 - 2x$$
When $x = 1$, $\frac{dy}{dx} = 2 - 2$

$$\Rightarrow \frac{dy}{dx} = 0 \text{ when } x = 1$$

When x = 1, y = 3 + 2 - 1

 $v = 3 + 2x - x^2$

3

Therefore, the *y*-coordinate is 4 and the gradient is 0 when the *x*-coordinate is 1 on the given curve.

$$4 y = x^{2} + 5x - 4$$

$$\frac{dy}{dx} = 2x + 5$$

$$2x + 5 = 3$$

$$2x = -2$$

$$x = -1$$

Pure Mathematics 1

Solution Bank

Substituting x = -1 into $y = x^2 + 5x - 4$: $y = (-1)^2 + 5(-1) - 4 = 1 - 5 - 4 = -8$ So (-1, -8) is the point where the gradient is 3.

The curve $y = x^2 - 5x + 10$ meets the line y = 4 when: $x^2 - 5x + 10 = 4$ $x^2 - 5x + 6 = 0$ (x - 3)(x - 2) = 0

Gradient of curve =
$$\frac{dy}{dx} = 2x - 5$$

x = 3 or x = 2

When x = 3, $\frac{dy}{dx} = 2 \times 3 - 5 = 1$

When
$$x = 2$$
, $\frac{dy}{dx} = 2 \times 2 - 5 = -1$

So the gradient is -1 at (2, 4) and 1 at (3, 4).

6 The curve $y = 2x^2$ meets the line y = x + 3 when:

$$2x^{2} = x + 3$$
$$2x^{2} - x - 3 = 0$$
$$(2x - 3)(x + 1) = 0$$
$$x = 1.5 \text{ or } -1$$

Gradient of curve = $\frac{dy}{dx} = 4x$

When
$$x = -1$$
, $\frac{dy}{dx} = 4 \times -1 = -4$

When
$$x = 1.5$$
, $\frac{dy}{dx} = 4 \times 1.5 = 6$

So the gradient is -4 at (-1, 2) and 6 at (1.5, 4.5).

7 **a** $y = f(x) = x^2 - 2x - 8$ As a = 1 is positive, the graph has a \bigvee shape and a minimum point.

When x = 0, y = -8, so the graph crosses the y-axis at (0, -8).

When
$$y = 0$$
,
 $x^2 - 2x - 8 = 0$

$$(x+2)(x-4)=0$$

x = -2 or x = 4, so the graph crosses the x-axis at (-2, 0) and (4, 0).

Completing the square:

$$x^{2}-2x-8 = (x-1)^{2}-1-8$$
$$= (x-1)^{2}-9$$

So the minimum point has coordinates (1, -9).

7 a The sketch of the graph is:

b
$$f'(x) = 2x - 2 + 0 = 2x - 2$$

c At the turning point the gradient of y = f(x) is zero, i.e. f'(x) = 0.