## INTELIGÊNCIA ARTIFICIAL E MACHINE LEARNING: O GUIA COMPLETO





Teoria (Q-Learning)

Ambiente Gym para simulação de aprendizagem por

reforço

Estudo de caso do táxi























#### **Movimentos**

Cima
Baixo
Esquerda
Direita
Pegar o passageiro
Deixar o passageiro

#### Recompensas

-10: buscar o passageiro no lugar errado

-10: deixar o passageiro no lugar errado

-1: andar no ambiente (living penalty)

20: buscar e deixar o passageiro no local correto









## APRENDIZAGEM POR REFORÇO – EQUAÇÃO DE BELLMAN



$$V(s) = \max_{a} (R(s, a) + \gamma V(s'))$$

$$\gamma = 0.9$$



# APRENDIZAGEM POR REFORÇO – MARKOV DECISION PROCESS (MDP)





## APRENDIZAGEM POR REFORÇO – Q-LEARNING







### APRENDIZAGEM POR REFORÇO – DIFERENÇA TEMPORAL



$$V(s) = \max_{a} (R(s, a) + \gamma V(s'))$$

$$Q_t(s,a) = Q_{t-1}(s,a) + \alpha(R(s,a) + \gamma V(s'))$$

$$Q_t(s, a) = Q_{t-1}(s, a) + \alpha T D_t(a, s)$$



#### PROCESSAMENTO DE LINGUAGEM NATURAL







Neural Machine Translation (NMT)



Chatbots



Q&A



**Text Summarization** 



**Image Captioning** 



Video Captioning



## VISÃO COMPUTACIONAL

















#### **CLASSIFICADOR CASCADE**





Não faces

**Faces** 

Treinamento com AdaBoost

Seleção das características























Aplica para cada subjanela



#### **CLASSIFICADOR CASCADE**

Soma pixels brancos – soma pixels pretos

Mais de 160.000 combinações em uma imagem 24 x 24!





23568921



## **CLASSIFICADOR CASCADE**





## LBPH (LOCAL BINARY PATTERNS HISTOGRAMS)

| 12 | 15 | 18 |
|----|----|----|
| 5  | 8  | 3  |
| 8  | 1  | 2  |

Se >= 8 então 1 Se < 8 então 0



| 42 | 55 | 48 |
|----|----|----|
| 35 | 38 | 33 |
| 38 | 30 | 32 |

Binário = 11100010

Binário = 11100010

0

0

Decimal = 226



## LBPH (LOCAL BINARY PATTERNS HISTOGRAMS)





Fonte: https://bytefish.de/blog/local\_binary\_patterns/





#### **RASTREAMENTO DE OBJETOS**

- Mais rápidos que os algoritmos de detecção
- Algoritmo de detecção sempre "começa do zero"
- Rastreamento usa a informação anterior







# ALGORITMO CSRT (DISCRIMINATIVE CORRELATION FILTER WITH CHANNEL AND SPATIAL RELIABILITY)

- 1. Da esquerda para a direita: patch de treinamento com a caixa delimitadora do objeto a ser rastreado
- 2. HOG para extrair informação útil da imagem
- 3. Probabilidade de objeto posterior após o teste aleatório de Markov
- 4. Patch de treinamento mascarado com o mapa final de confiabilidade
- Artigo: <a href="https://www.arxiv-vanity.com/papers/1611.08461/">https://www.arxiv-vanity.com/papers/1611.08461/</a>











