Zestaw 8

```
 \begin{aligned} \textbf{Zadanie 1.} & \textit{Oblicz} \\ & - \mathbb{P}(W_s < W_t), \\ & - \mathbb{P}(0 < W_2 < W_3) \\ & - \mathbb{E}W_1W_2^2 \\ & - \mathbb{E}\left(W_2^2(W_3 - W_1)\right). \end{aligned}
```

Zadanie 2. Niech W będzie procesem Winera z wariancją 9. Oblicz

```
\begin{split} & - \mathbb{P}(W_2 \leq 15), \\ & - Var(3W_2 - 2W_5), \\ & - \mathbb{P}(W_2 - 2W_3 \leq 4), \\ & - \mathbb{P}(|W_4 - W_2| > 10), \\ & - Var(3 + W_4 - 2W_2 + W_3), \end{split}
```

 $-Cov(3+W_4-2W_2,5-W_3),$

Zadanie 3. Niech W będzie procesem Wienera. Pokaż, że:

$$- \mathbb{E}(W_s W_t) = \min(s, t),$$

$$- \mathbb{E}(|W_t - W_s|^2) = |t - s|,$$

$$- \mathbb{E}W_t^4.$$

Zadanie 4. Niech W będzie procesem Wienera na odcinku [0,T] i niech proces X będzie określony jako $X_t = tW_t - \int_0^t W_s ds$. Czy proces X jest martyngałem względem filtracji naturalnej procesu Wienera?

Zadanie 5. Określmy następujący proces (most Browna)

$$B_t = W_t - tW_1, \ t \in [0, 1].$$

Sprawdź, czy jest on martyngałem względem swojej filtracji naturalnej i znajdź jego funkcję kowariancji.

Zadanie 6. Niech $W=(W^1,W^2)$ będzie dwuwymiarowym procesem Wienera. Oblicz prawdopodobieństwo, że $|W_t| < R$ dla pewnego R > 0, gdzie |x| jest normą euklidesową.

Zadanie 7. Procesem Wienera z dryftem μ i wariancją σ^2 nazywamy proces $X_t = \mu t + \sigma W(t)$.

- Wykaż, że proces X ma niezależne i stacjonarne przyrosty.
- Znajdź rozkład X(t).
- Sprawdź, czy proces X jest martyngałem.

Zadanie 8. Pokaż, że proces określony jako $Z_t = \sqrt{t}N(0,1)$ nie jest procesem Wienera.

Zadanie 9. Sprawdź, czy następujące procesy są procesami Wienera:

```
\begin{split} & - - W_t, \\ & - c^{-1/2} W_{ct}, \ c > 0, \\ & - Y_t = t W_{1/t}, \ t > 0 \ i \ Y_0 = 0, \\ & - W_{T+t} - W_T, \ T > 0. \end{split}
```

Zadanie 10. Niech $(W_t)_{\{t\geq 0\}}$ będzie procesem Winera, $(B_t)_{t\in [0,1]}$ będzie mostem Browna i niech Z będzie zmienną losową o standardowym rozkładzie normalnym. Udowodnij

- $X_t = B_t + tZ$ jest procesem Winera na odcinku [0,1],
- $X_t = (t+1)B_{t/(t+1)}$ jest procesem Wienera na odcinku $[0,\infty)$,

Zadanie 11. Niech W będzie procesem Winera. Znajdź postać funkcji gęstości zmiennej losowej $X=W(a)+W(b),\ gdzie\ 0\leq a< b.$