4086. Найти

$$\int_{a}^{A} dx \int_{c}^{B} dy \int_{c}^{C} f(x, y, z) dz,$$

если $f(x, y, z) = F_{xyz}^{"}(x, y, z)$ и a, b, c, A, B, C — постоянные.

Переходя к сферическим координатам, вычислить интегралы:

4087. $\iint_V \sqrt{x^2 + y^2 + z^2} \, dx \, dy \, dz$, где область V ограничена поверхностью $x^2 + y^2 + z^2 = z$.

4088.
$$\int_{0}^{1} dx \int_{0}^{\sqrt{1-x^{2}}} dx \int_{\sqrt{x^{2}+y^{2}}}^{\sqrt{2-x^{2}-y^{2}}} z^{2} dz.$$

4089. Перейти к сферическим координатам в интеграле

$$\iiint_V \int \int \int \int \left(\sqrt{x^2 + y^2 + z^2}\right) dx dy dz,$$

где область V ограничена поверхностями $z = x^2 + y^2$, x = y, x = 1, y = 0, z = 0.

4090. Произведя соответствующую замену переменных, вычислить тройной интеграл

$$\iiint_{U} \sqrt{1 - \frac{x^{2}}{a^{2}} - \frac{y^{3}}{b^{2}} - \frac{z^{2}}{c^{3}}} dx dy dz,$$

где V — внут ренность эллипсоида $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$.

4091. Перейдя к цилиндрическим координатам, вычислить интеграл

$$\int \int_V \int (x^2 + y^2) \, dx \, dy \, dz,$$

где область V ограничена поверхностями $x^2 + y^2 = 2z$, z = 2.

4092. Вычислить интеграл $\iint_V x^2 dx \, dy \, dz$, где область V ограничена поверхностями $z = ay^2$, $z = by^2$, y > 0 (0 < a < b), $z = \alpha x$, $z = \beta x$ (0 $< \alpha < \beta$), z = by (a < b), z = by (a < b)

4093. Найти интеграл $\int \int \int xyz \, dx \, dy \, dz$, где область V расположена в октанте x>0, y>0, z>0