Analiza porównawcza algorytmów ML w kontekście predykcji klasy emisyjności CO2 pojazdów

Paweł Nowak, Wydział Matematyki, Politechnika Wrocławska

Opis zagadnienia

- Staramy się sklasyfikować pojazd mechaniczny do jednej z kilku klas emisyjności dwutlenku węgla na podstawie wybranych jego cech (typ spalanego paliwa, klasa pojazdu, spalanie itp.), korzystając z metod uczenia maszynowego.
- Informacje opisujące pojazdy zostały pobrane z platformy kaggle, która pobrała te dane z oficjalnej strony rządu kanadyjskiego.

W jakim celu wykonujemy tę analizę?

- Powyższą analizę wykonujemy w celu predykcji klasy emisyjności. Ponadto analiza pomoże nam odpowiedzieć na następujące pytania badawcze:
 - Jak dobór modelu wpływa na skuteczność klasyfikacji?
 - Który model dokonuje najdokładniejszych predykcji?
 - Jak różne strategie uczenia kształtują wydajność modeli klasyfikacyjnych?
 - Czy większa liczba klas docelowych obniża dokładność predykcji algorytmu?
 - Czy modele bardziej skomplikowane dokonują klasyfikacji z większą dokładnością niż modele proste?

Po co prognozować klasę emisyjności?

- Aby na własną rękę oszacować rzeczywistą emisyjność pojazdu. Niektórzy producenci pojazdów manipulowali faktyczną emisyjnością pojazdów (afera Volkswage). To z kolei umożliwi nam:
 - Oszacowanie podatku od pojazdów (Vehicle Tax), który planują wprowadzić rządy niektórych państw (np. Wielkiej Brytanii).
 - Zakupienie niskoemisyjnego pojazdu, który będzie przyjazny dla środowiska naturalnego.

Jak przewidywać klasę emisyjności pojazdu?

- Mamy trzy klasy emisyjności ("mała", "średnia", "wysoka"). Dany pojazd przypiszemy do jednej z trzech klas emisyjności, korzystając z poniższych metod klasyfikacyjnych.
 - Drzewo decyzyjne (Decision Tree)

Las losowy (RandomForest)

Modele zaawansowane

- K-Najbliższych sąsiadów (KNN)
- Regresja Logistyczna (logistic regression)

Regresja Liniowa (linear regression)

Modele proste

Jakie strategie uczenia modeli zostaną zastosowane?

- Aby zapewnić obiektywność analizy, dogłębnie analizując modele, zastosowano cztery różne strategii trenowania:
 - Brak optymalizacji hiperparametrów i brak wyboru cech (noFS_untuned)
 - 2. Optymalizacja hiperparametrów bez wyboru cech (noFS_tuned)
 - Automatyczny wybór cech bez strojenia (FS_untuned)
 - 4. Optymalizacja hiperparametrów z automatycznym wyborem cech (FS_tuned)

Jak będziemy oceniać skuteczność modeli? – metryki dokładności.

- W celu zbadania dokładności klasyfikacji modeli, zastosowane zostaną trzy wybrane metryki dokładności:
 - Confusion matrix
 - accuracy
 - ▶ F1

Analiza opisowa danych – zmienne jakościowe

Rozkład częstotliwości kategorii zmiennych **Make** oraz **Vehicle Class**

Rozkład częstotliwości kategorii zmiennych **Make** oraz **Vehicle Class**

Pierwsze wnioski o cechach jakościowych.

Pierwsze wnioski o zdolnościach dyskryminacyjnych.

- Prawie wszystkie cechy jakościowe cechują się dosyć zbalansowanym rozkładem kategorii.
- Wyjątek stanowi cecha Fuel Type, dla której ponadto istnieje klasa występująca dokładnie raz. Z tego powodu ta jedna obserwacja nie będzie uwzględniania w dalszej analizie (kategoria jest niedoreprezentowana).
- Zmienna model, z uwagi na dużą liczbę unikatowych kategorii , nie będzie brana pod uwagę w dalszej analizie.
- W celu redukcji kardynalności zmiennych ilościowych, zastosowano metodę kodowania klas rzadkich (z ang. rare category encoding)

Analiza opisowa danych – zmienne Ilościowe

Wykresy skrzypcowe dla zmiennych ciągłych

Wykresy skrzypcowe dla zmiennych ciągłych cd.

Wnioski o rozkładach cech ilościowych

Wstępne wnioski o zdolnościach dyskryminacyjnych cech ilościowych.

- Większość wykresów gęstości przypomina tzw. krzywą Gaussa która charakteryzuje rozkład normalny.
- Na tle krzywych Gaussowskich wyróżnia się gęstość zmiennej Fuel Size, która jest gęstością wielomodalną.
- Wykresy gęstości pokazują, że wariancje użytych zmiennych ciągłych są wysokie, co jest pożądaną właściwością.

Jak silnie skorelowane są ze sobą zmienne ciągłe?

Macierz korelacji dla zmiennych numerycznych.

F

Dyskretyzacja zmiennej celu

Jak dyskretyzować zmienną?

- ▶ W celu budowy modeli klasyfikacyjnych przeprowadzone zostanie przedziałowanie (z ang. binning), zmiennej ciągłej określającej poziom emisji dwutlenku węgla (w g/km).
- Parametry przedziałowania zostały dobrane tak, aby wynikowe klasy były w dobrym przybliżeniu zgodne z regulacjami kanadyjskiego prawa.
- W wyniku przedziałowania otrzymaliśmy trzy klasy:
 - Niska [0;150] (kodowane wewnętrznie jako 0)
 - średnia (150; 250] (kodowane jako 1)
 - wysoka powyżej 250 g/km (kodowane jako 2)

Wykres słupkowy klas po dyskretyzacji.

Warunkowe wykresy gęstości zmiennych.

Warunkowy wykres gęstości – zmienna Engine Size

Wnioski o zdolnościach dyskryminacyjnych

Wnioski o zdolnościach dyskryminacyjnych

- Niemal wszystkie warunkowe wykresy gęstości dobrze odseperowują klasy emisyjności – wykresy niebieski, pomarańczowy i zielony nie nachodzą na siebie w znaczącym stopniu.
- Warto zwrócić uwagę na zmienną Engine Size. Wykres gęstości dla klasy 0 (niebieski) jest całkowicie zawarty w wykresie klasy 1 (pomarańczowy), co może prowadzić do błędnej klasyfikacji większości obserwacji klasy 0 jako klasy 1.

Wstępne przekształcenia danych (z ang. Preprocessing)

Wstępne przekształcenia danych

- Niektóre algorytmy uczenia maszynowego wymagają zastosowania pewnych wstępnych przekształceń danych (z ang. Preprocessing)
- W naszej analizie wykorzystamy wstępnego:
 - Standardaryzacja (z ang. Standarization)
 - Kodowanie "na gorąco" (z ang. One hot encoder)
 - Analiza składowych głównych (z ang. Principal components analysis PCA) dla zmiennych ciągłych określających poziom spalania paliwa.

Metodologia uczenia.

- Modele są uczone na bazie zbioru danych 45 razy w czterech różnych wersjach.
- Dokonujemy podziału zbioru danych na dwa rozłączne zbiory:
 - ▶ Zbiór treningowy, który zawiera 80% wszystkich obserwacji
 - ▶ Zbiór testowy, który zawiera 20% wszystkich obserwacji
- Zbiór treningowy służy do trenowania modeli, natomiast zbiór testowy do oceny jakości predykcji modeli.
- Rozłączność zbiorów testowego i treningowego jest istotna w celu zapobieganiu tzw. problemu wycieku danych (data-leakage problem).

Ocena skuteczności modeli – macierze pomyłek

Macierze pomyłek modeli dla wersji podstawowej (bez optymalizacji i wyboru cech)

Macierze pomyłek modeli dla wersji podstawowej cd.

Pierwsze wnioski.

- Spośród wszystkich klas najmniej dokładniej klasyfikowana jest klasa 0. Model liniowej regresji niemalże zawsze klasyfikuje ją jako klasa 1 (masking class problem), co pokazuje niską nieskuteczność modelu w kontekście klasyfikacji.
- Pozostałe klasy są prognozowane z wysoką skutecznością.
- Na ten moment model prosty (LogReg) cechuje się podobną dokładnością klasyfikacji, co modele zaawansowane (DecTree, RanFor)

Analiza dokładności klasyfikacji modeli w czerech wersjach. Czy strategia uczenia wpływa na skuteczność?

Skuteczność modeli w różnych wersjach uczenia

Skuteczność modeli w różnych wersjach uczenia

Zbiorcza analiza dokładności klasyfikacji modeli.

Zbiorcze porównanie wydajności modeli

Czy większa liczba klas emisyjności pogorszy jakość klasyfikacji?

Rozkład klas "nowej" zmiennej docelowej

Ocena efektywności metod – macierze pomyłek dla wersji standardowej

Macierz pomyłek dla drzewa decyzyjnego, wersja podstawowa.

Macierz pomyłek dla drzewa decyzyjnego, wersja noFS_untuned.

2.0

3.0 4.0

Conf. Matrix, LinReg

0 0.0054 0.011 0.15 0.83

Ocena
efektywności
metod – zbiorcze
wykresy
pudełkowe

Zbiorcze porównanie modeli

Dalsze możliwe kroki badań nad efektywnością modeli.

Co można by dodać do analizy?

- Naturalnie niniejsza analiza nie uwzględnia wszystkich aspektów badania dokładności modeli.
- Badania mogłyby zostać rozszerzone poprzez uwzględnienie takich kroków jak:
 - Optymalizacja hiperparametrów algorytmu SFS (sequential feature selector).
 - Metody syntezy nowych obserwacji (np. metodą SMOTE)
 - Analiza czynnikowa dla zmiennych jakościowych i ilościowych (FAMD)
 - ▶ I wiele innych metod ...

Dziękuję za uwagę Waszą!

Pytania?

Paweł Nowak, Wydział Matematyki, Politechnika Wrocławska