Diferencialne enačbe v kompleksnem

Reševanje linearne diferencialne enačbe 2. reda s potenčnimi vrstami

Dana je diferencialna enačba:

$$y'' + py' + qy = 0 \qquad (*)$$

kjer sta p, q ustrezni funkciji. Ce sta p, q konstantni, potem rešimo karakteristični polinom in napišemo splošno rešitev. Ce p, q nista konstanti imamo težave z določitvijo katerekoli rešitve. Ce bi poznali eno rešitev, potem drugo neodvisno, lahko dobimo s pomočjo Liouvilleove formule oz. determinanto Wrońskega. Vsekakor je prostor rešitev, če sta p, q zvezni, dvorazsežen.

Enačbo (*) rešujemo s pomočjo razvoja v vrsto. Namesto realne spremenljivke opazujemo kompleksno spremenljivko. Naj bosta p, q holomorfni funkciji na neki okolici točke 0:

$$p(z) = \sum_{k=0}^{\infty} p_k z^k \qquad q(z) = \sum_{k=0}^{\infty} q_k z^k; \ p_k, q_k \in \mathbb{C} \ \forall k \in \mathbb{N}_0$$

Recimo, da ima enačba (*) rešitev, katero razvijemo v potenčno vrsto:

$$y = \sum_{k=0}^{\infty} c_k z^k$$

kjer so $c_k \in \mathbb{C}$ neznani koeficienti $\forall k \in \mathbb{N}_0$. To vrsto lahko odvajamo in dobimo:

$$y' = \sum_{k=1}^{\infty} k c_k z^{k-1} = \sum_{j=0}^{\infty} (j+1) c_{j+1} z^j; \quad (j=k-1)$$
$$y'' = \sum_{k=2}^{\infty} k (k-1) c_k z^{k-2} = \sum_{j=0}^{\infty} (j+1) (j+2) c_{j+2} z^j; \quad (j=k-2)$$

Te vrste sedaj lahko vstavimo v enačbo (*):

$$\sum_{k=0}^{\infty} (k+2)(k+1)c_{k+2}z^k + \sum_{i=0}^{\infty} p_i z^i \sum_{j=0}^{\infty} (j+1)c_{j+1}z^j + \sum_{i=0}^{\infty} q_i z^i \sum_{j=0}^{\infty} c_j z^j = 0$$

Te vrste lahko preuredimo oz. zmnožimo in seštejemo, ker če dve posamični vrsti konvergirata absolutno potem je njun produkt neodvisen od vrstnega reda seštevanja. Dodatno če imajo y, p, q konvergencni radij r > 0, ga imajo tudi y, y', y'', p, q. Dobimo:

$$\sum_{k=0}^{\infty} \left((k+2)(k+1)c_{k+2} + \sum_{j=0}^{k} \left((j+1)c_{j+1}p_{k-j} + q_{k-j}c_j \right) \right) z^k = 0$$

Ker ta vrsta konvergira na D(0,r) so vsi koeficienti pri z^k ničelni:

$$(k+2)(k+1)c_{k+2} + \sum_{k=0}^{k} \left((j+1)c_{j+1}p_{k-j} + q_{k-j}c_j \right) = 0; \quad \forall k \in \mathbb{N}_0$$

Izrazimo $\forall k \in \mathbb{N}_0$:

$$c_{k+2} = -\frac{\sum_{j=0}^{k} \left((j+1)c_{j+1}p_{k-j} + q_{k-j}c_j \right)}{(k+2)(k+1)}$$

Ta formula nam pove, da če poznamo koeficiente c_0 , ... c_{k+1} potem lahko določimo c_{k+2} . To pomeni v praksi, da izberemo c_0 in c_1 in potem dobimo vse ostale koeficiente.

Izrek

Ce sta p in q holomorfni funkciji na krogu $D(\alpha,R)$, potem za poljubni kompleksni setevili c_0 in c_1 obstaja natanko ena rešitev p diferencialne enačbe:

$$y'' + py' + qy = 0$$

ki je holomorfna na krogu $D(\alpha, R)$ in zadošča pogojema $y(\alpha) = c_0$ in $y'(\alpha) = c_1$.

Regularna in pravilna singularna točka

Točka α je **regularna** točka diferencialne enačbe:

$$y'' + py' + qy = 0$$

če sta p in q holomorfni na neki okolici točke α . Ce α ni regularna je singularna. Točka je **pravilna singularna točka** enačbe, če sta p in q holomorfni funkciji na kaki punktirani okolici tocke α (torej holomorfni na okolici α razen morda v α), v α ima p pol reda najvec 1, q pa pol reda največ 2.

[Primeri v zvezku za Legendrvo, Besslovo in Gaussovo Hipergeometrijsko]

Karakteristični eksponent

Rešimo enačbo y'' + py' + qy = 0 v okolici **pravilne singularne točke** α . Brez škode za splošnost lahko privzamemo $\alpha = 0$. Zato sta funkciji $z \mapsto zp(z)$ in $z \mapsto z^2q(z)$ holomorfni v $\alpha = 0$.

$$z \cdot p(z) = \sum_{k=0}^{\infty} p_k z^k \qquad z^2 q(z) = \sum_{k=0}^{\infty} q_k z^k$$

Naj konvergirata na D(0,R). Rešitev diferencialne enačbe iščemo v obliki:

$$y = z^{\mu} \sum_{k=0}^{\infty} c_k z^k = \sum_{k=0}^{\infty} c_k z^{\mu+k}$$

Pripravimo nastavke odvodov:

$$y' = \sum_{k=0}^{\infty} (\mu + k) c_k z^{\mu+k-1}$$
 $y'' = \sum_{k=0}^{\infty} (\mu + k) (\mu + k - 1) c_k z^{\mu+k-2}$

Prvotno enačbo množimo z z^2 in vstavimo nastavke:

$$z^{2}y'' + z^{2}p(z)y' + z^{2}q(z)y = 0$$

$$\sum_{i=0}^{\infty} (\mu + k)(\mu + k - 1)c_{k}z^{\mu + k} + \sum_{i=0}^{\infty} p_{i}z^{i}\sum_{i=0}^{\infty} (\mu + j)c_{j}z^{\mu + j} + \sum_{i=0}^{\infty} q_{i}z^{i}\sum_{i=0}^{\infty} c_{j}z^{\mu + j} = 0$$

Poglejmo koeficient pred $z^{\mu+k}$, ki mora biti enak 0:

$$(\mu + k)(\mu + k - 1)c_k + \sum_{j=0}^k \left((\mu + j)c_j p_{k-j} + c_j q_{k-j} \right) = 0$$

$$\Rightarrow [(\mu + k)(\mu + k - 1 + p_0) + q_0]c_k = -\sum_{j=0}^{k-1} \left((\mu + j)p_{k-j} + q_{k-j} \right)c_j; \quad \forall k \in \mathbb{N}$$

Dobili smo rekurzivno zvezo za koeficiente c_k . Tako lahko zopet določimo $c_0 \Rightarrow c_1 \Rightarrow c_2 \Rightarrow \cdots$. Problem je, da moramo določiti se μ . Tega določimo pri členu z^{μ} :

$$\mu(\mu - 1)c_0 + p_0\mu c_0 + q_0c_0 = 0 \Rightarrow c_0(\mu(\mu - 1 + p_0) + q_0) = 0$$

Ce je slučajno $c_0=0 \Rightarrow y=\sum_{k=1}^\infty c_k z^{\mu+k}$ potem »podtaknemo z k z^μ «, da bomo dobili neničelni koeficient. Na ta način čez čas dosežemo $c_0\neq 0$. Tako dobimo **Določilno zvezo za koeficient** μ :

$$\mu(\mu - 1 + p_0) + q_0 = \mu^2 + \mu(p_0 - 1) + q_0 = 0$$

Rešitvi enačbe pa imenujemo karakteristična eksponenta. Uredimo ju tako, da je:

$$\operatorname{Re} \mu_1 \geq \operatorname{Re} \mu_2$$

Dobljeni polinom je 2. stopnje in ima ničli μ_1 in μ_2 . Oznacimo:

$$f(\mu) = \mu(\mu - 1 + p_0) + q_0 = (\mu - \mu_1)(\mu - \mu_2)$$

Spomnimo se rekurzivne zveze (*). Na levi strani prepoznamo $f(\mu + k)$:

$$\Rightarrow [(\mu + k - \mu_1)(\mu + k - \mu_2)]c_k = -\sum_{j=0}^{k-1} [(\mu + j)p_{k-j} + q_{k-j}]c_j; \quad \forall k = 1,2,3 \dots$$

Vstavimo najprej v to zvezo μ_1 :

$$k(k + \mu_1 - \mu_2)c_k = -\sum_{j=0}^{k-1} [(\mu_1 + j)p_{k-j} + q_{k-j}]c_j$$

Ker je Re $\mu_1 \ge \text{Re } \mu_2$ je $(k + \mu_1 - \mu_2) \ne 0$, torej lahko delimo in dobimo:

$$c_k = -\frac{1}{k(k+\mu_1-\mu_2)} \sum_{j=0}^{k-1} [(\mu_1+j)p_{k-j} + q_{k-j}]c_j$$

Vstavimo se μ_2 :

$$k(\mu_2 - \mu_1 + k)c_k = -\sum_{j=0}^{k-1} [(\mu_2 + j)p_{k-j} + q_{k-j}]c_j$$

Zgodi se lahko, da je $(\mu_1 - \mu_2) \in \mathbb{N}$. Ce je $(\mu_1 - \mu_2) = m \in \mathbb{N}$, potem dobimo:

$$k(-m+k)c_k = -\sum_{j=0}^{k-1} [(\mu_2 + j)p_{k-j} + q_{k-j}]c_j$$

Ko je k=m je leva stran enaka 0. V tem primeru postavimo $c_0=c_1=\cdots=c_{m-1}=0$. Sedaj so enačbe izpolnjene za vse do k=m. Izberemo $c_m\neq 0$ in izracunamo po rekurzivni zvezi za μ_2 nadaljnje koeficiente c_{m+1},c_{m+2},\ldots .Ker smo preskocili nekaj potenc v razvoju za $\mu=\mu_2$, ta postopek morda da linearno odvisno rešitev od rešitve, ko naredimo postopek za μ_1 .

Izrek

Ce je α pravilna singularna točka enačbe:

$$y^{\prime\prime} + py^{\prime} + qy = 0$$

in sta funkciji $z \mapsto (z - \alpha)p(z)$ in $z \mapsto (z - \alpha)^2q(z)$ holomorfni na $D(\alpha, R)$ potem obstaja vsaj ena rešitev oblike:

$$y = (z - \alpha)^{\mu_1} \sum_{k=0}^{\infty} c_k (z - \alpha)^k$$

kjer vrsta konvergira na $D(\alpha, R)$. Ce je razlika $\mu_1 - \mu_2 \notin \mathbb{N}$, kjer je $\operatorname{Re} \mu_1 \ge \operatorname{Re} \mu_2$, potem drugo linearno neodvisno rešitev dobimo z nastavkom:

$$y = (z - \alpha)^{\mu_2} \sum_{k=0}^{\infty} c_k (z - \alpha)^k$$

kjer tudi ta vrsta konvergira na $D(\alpha, R)$.

Izrek

Naj bo 0 pravilna singularna točka enačbe y''+py'+qy=0. Naj bosta μ_1 in μ_2 karakteristična eksponenta, urejena tako, da je $\operatorname{Re}\mu_1\geq\operatorname{Re}\mu_2$. Naj bo $(\mu_1-\mu_2)\in\mathbb{N}$. Naj enačba <u>nima</u> dveh linearno neodvisnih rešitev oblike kot v prejšnjem izreku. Potem je ena rešitev oblike (kot prej):

$$y_1 = z^{\mu_1} \sum_{k=0}^{\infty} c_k z^k$$

druga pa je oblike:

$$y_2 = y_1 \ln z + z^{\mu_2} f(z)$$

kjer je f holomorfna funkcija v okolici tocke 0 in velja $f(0) \neq 0$.

Besselova enačba in Besselove funkcije

Besselova diferencialna enačba je enačba oblike:

$$z^2y'' + zy' + (z^2 - v^2)y = 0; \quad (v \ge 0)$$

Ker je $y'' + \frac{y'}{z} + \left(1 - \frac{v^2}{z^2}\right)y = 0$ je p(z) = 1/z in $q(z) = 1 - v^2/z^2$ in zato je 0 pravilna singularna točka Besselove enačbe.

$$z \cdot p(z) = 1 \Rightarrow p_0 = 1$$

 $z^2 \cdot q(z) = z^2 - v^2 \Rightarrow q_0 = -v^2$

To vstavimo v določilno zvezo za karakteristične eksponente:

$$\mu(\mu - 1 + p_0) + q_0 = \mu(\mu - 1 + 1) - \nu^2 = 0$$

$$\Rightarrow \mu^2 - \nu^2 = 0 \Rightarrow \mu_1 = \nu \ \mu_2 = -\nu$$

Primer $\mu = \nu$

Ker je Re $\mu_1 \ge \text{Re } \mu_2$, dobimo eno rešitev z nastavkom:

$$y = \sum_{k=0}^{\infty} c_k z^{k+\nu} \quad y' = \sum_{k=0}^{\infty} (k+\nu)c_k z^{k+\nu-1} \quad y'' = \sum_{k=0}^{\infty} (k+\nu)(k+\nu-1)c_k z^{k+\nu-2}$$

$$\Rightarrow \sum_{k=0}^{\infty} ((k+\nu)(k+\nu-1) + (k+\nu) - \nu^2)c_k z^{k+\nu} + \sum_{k=0}^{\infty} c_k z^{k+\nu+2} = 0$$

Poglejmo koeficient pri $z^{k+\nu}$:

$$((k+\nu)(k+\nu-1)+(k+\nu)-\nu^2)c_k+c_{k-2}=0; \quad \forall k=2,3,...$$

$$c_k=-\frac{c_{k-2}}{k(k+2\nu)}; k=2,3,...$$

Poglejmo sedaj koeficient pri $z^{1+\nu}$:

$$[(1+\nu)\nu + 1 + \nu - \nu^2]c_1 = 0 \Rightarrow (1+2\nu)c_1 = 0 \Rightarrow c_1 = 0; \ (\nu \ge 0)$$

Iz tega podatka izvemo, da so vsi lihi $c_1=c_3=c_5=\cdots=0$. Ostanejo le se sodi:

$$c_2 = -\frac{c_0}{2(2+2\nu)}; \ c_4 = -\frac{c_2}{4(4+2\nu)} = +\frac{c_0}{4(4+2\nu) \cdot 2(2+2\nu)}$$
$$\Rightarrow c_{2n} = \frac{(-1)^n c_0}{2 \cdot 4 \cdot \dots \cdot 2n(2+2\nu)(4+2\nu) \dots (2n+2\nu)}$$

Za c_0 izberemo:

$$c_0 = \frac{1}{2^{\nu} \nu!}; \quad \nu! = \Gamma(\nu + 1)$$

Kjer vzamemo gama funkcijo če $\nu \notin \mathbb{N}$. S tako izbiro zagotovimo $J_{\nu}(0) = 1$.

Tako dobimo predpis za sode koeficiente:

$$c_{2n} = \frac{(-1)^n}{2^{\nu+2n} n! \ \Gamma(\nu+n+1)}$$

in tako dobimo tudi predpis za Besselovo funkcijo reda v:

$$J_{\nu}(z) = \sum_{n=0}^{\infty} \frac{(-1)^n}{2^{\nu+2n} n! \Gamma(\nu+n+1)} z^{\nu+2n}$$

To konvergira povsod na \mathbb{R} . Razlog lezi v tem, da je zp(z)=1 in $z^2q(z)=z^2-\nu^2$, ki sta holomorfni na \mathbb{C} . Zato po množenju in izreku dobimo rešitev na $\mathbb{C}\setminus\{0\}$. V z=0 pa vrsta konvergira.

Primer $\mu = -\nu$

1.Primer $\nu \notin \mathbb{N}$

Ce je $\nu \notin \mathbb{N} \Leftrightarrow 2\nu$ je liho število. V enačbi za $k=2\nu$ dobimo $c_{k-2}=0$. Ce postavimo $c_{2j-1}=0$ potem je enačba izpolnjena za lihe indekse. Tako smo definirali $c_{2n-1}=0$. Poglejmo se sode:

$$c_{2n} = -\frac{c_{2n-2}}{2n(2n-2\nu)}$$

Tako dobimo predpis za drugo rešitev Besselove enačbe podobno kot za prvo rešitev:

$$J_{-\nu}(z) = \sum_{n=0}^{\infty} \frac{(-1)^n \left(\frac{z}{2}\right)^{2n-\nu}}{n! \, \Gamma(n-\nu+1)}$$

2.Primer $\nu \in \mathbb{N}$

Postavimo v = m. Ena od resitev je:

$$J_m(z) = \sum_{n=0}^{\infty} \frac{(-1)^n}{n! \, \Gamma(n+m+1)} \left(\frac{z}{2}\right)^{2n+m}$$

Ce ponovimo postopek kot v 1. primeru, da bi dobili 2. rešitev dobimo linearno odvisno rešitev:

$$J_{-m} = \sum_{n=0}^{\infty} \frac{(-1)^n}{n! \, \Gamma(n-m+1)} \left(\frac{z}{2}\right)^{2n-m} =$$

tu uvedemo k = n - m in prepoznamo $(-k!) = \Gamma(-k+1) = \infty; k = 1,2,3...$

$$=\sum_{k=0}^{\infty} \frac{(-1)^{m+k}}{k! (m+k)!} \left(\frac{z}{2}\right)^{m+2k} = (-1)^m \sum_{k=0}^{\infty} \frac{(-1)^k}{k! \Gamma(m+k+1)} \left(\frac{z}{2}\right)^{2k+m} = (-1)^m J_m(z)$$

V tem primeru iščemo neodvisno rešitev z nastavkom:

$$I_m \ln z + z^{-m} f(z)$$

kjer je f holomorfna funkija okoli izhodišča in $f(0) \neq 0$.

Posledica

Za vsak $m \in \mathbb{N}$ so edine resitve Besselove enacbe $z^2y'' + zy' + (z^2 - m^2)y = 0$, ki so omejene v kaki okolici izhodišča oblike:

$$C \cdot J_m$$

kjer je C = konst.

Dokaz [Posledice]

Splošna rešitev je oblike:

$$CJ_m + d(J_m \ln z + z^{-m} f(z))$$

kjer je $f(0) \neq 0$ holomorfna okoli izhodisca. z^{-m} bo neomejen ko $m \to 0$, zato morabiti d=0 za omejene rešitve.

Splošna rešitev Besselove enačbe

Funkciji J_{ν} in $J_{-\nu}$ sta rešitvi Besselove enačbe. Ker je pri n=0 clen od funkcije $J_{-\nu}$ enak $\frac{\left(\frac{z}{2}\right)^{-\nu}}{(-\nu)!}$ neomejen okoli izhodisca, clen od J_{ν} pa $\frac{\left(\frac{z}{2}\right)^{\nu}}{\Gamma(\nu)}$ omejen, sta J_{ν} in $J_{-\nu}$ linearno neodvisni.

Za $\nu \notin \mathbb{N}$ je splošna rešitev Besselove enačbe:

$$y = c_1 J_{\nu} + c_2 J_{-\nu}$$

Lastnosti Besselovih funkcij

Trditev:

Velja:

$$\frac{d}{dz}(z^{\nu}\cdot J_{\nu}(z)) = z^{\nu}J_{\nu-1}(z) \qquad \frac{d}{dz}(z^{-\nu}\cdot J_{\nu}(z)) = z^{-\nu}J_{\nu+1}(z)$$

Dokaz

Dokaz za prvo in drugo je analogen

$$\begin{split} z^{\nu}J_{\nu}(z) &= \sum_{n=0}^{\infty} \frac{(-1)^n}{n! \, \Gamma(\nu+n+1)} \frac{z^{2n+2\nu}}{2^{2n+\nu}} \\ \Rightarrow \left(z^{\nu}J_{\nu}(z)\right)' &= \sum_{n=0}^{\infty} \frac{(-1)^n (2n+2\nu)}{n! \, \Gamma(\nu+n+1)} \frac{z^{2n+2\nu-1}}{2^{2n+\nu}} = \sum_{n=0}^{\infty} \frac{(-1)^n}{n! \, \Gamma((\nu-1)+n-1)} \frac{z^{2n+2\nu-1}}{2^{2n+(\nu-1)}} = z^{\nu}J_{\nu-1}(z) \quad \blacksquare \end{split}$$

Trditev

Velja:

$$J'_{\nu}(z) + \frac{\nu}{z} J_{\nu}(z) = J_{\nu-1}(z) \quad J'_{\nu}(z) - \frac{\nu}{z} J_{\nu}(z) = -J_{\nu+1}(z)$$

$$\frac{2\nu}{z} J_{\nu}(z) = J_{\nu-1}(z) + J_{\nu+1}(z) \qquad 2J'_{\nu}(z) = J_{\nu-1}(z) - J_{\nu+1}(z)$$

Dokaz

Zadnji dve formuli sledita iz prvih dveh (seštejemo/odštejemo). Za dokaz prve formule uporabimo zvezo iz prejšnje trditve:

$$\frac{d}{dz}(z^{\nu}J_{\nu}) = \nu z^{\nu-1}J_{\nu} + z^{\nu}J'_{\nu} = z^{\nu}J_{n-1} \mid : z^{n}$$
$$\Rightarrow J'_{z} + \frac{\nu}{z}J_{\nu} = J_{\nu-1}$$

Podobno drugo formula dokažemo z uporabo druge zveze iz prejšnje trditve ■.

Opomba:

$$J_0' = J_{-1} = -J_1$$

Trditev

Vse funkcije oblike $J_{k+\frac{1}{2}}$; $k\in\mathbb{Z}$ so elementarne in se jih izračuna iz rekurzivne zveze:

$$\frac{2\nu}{z}J_{\nu}(z) = J_{n-1}(z) + J_{\nu+1}(z)$$

kjer sta:

$$J_{1/2}(z) = \sqrt{2/\pi z} \sin z$$
 $J_{-1/2} = \sqrt{2/\pi z} \cos z$

Generirajoča funkcija

Funkcija:

$$\rho^{z/2(t-t^{-1})}$$

se imenuje generirajoča funkcija Besselovih funkcij celega indeksa saj velja naslednje:

$$e^{z/2(t-t^{-1})} = \sum_{m=-\infty}^{\infty} J_m(z)t^m = J_0(z) + \sum_{m=1}^{\infty} J_m(z)(t^m + (-t)^{-m})$$

Dokaz

$$e^{z/2(t-t^{-1})} = e^{\frac{z}{2}t} \cdot e^{-\frac{z}{2t}} = \sum_{j=0}^{\infty} \frac{z^j}{j! \, 2^j} t^j \cdot \sum_{k=0}^{\infty} \frac{(-z)^k}{k! \, 2^k t^k}; \quad t \neq 0$$

Poglejmo koeficient pri t^m (spet uporabimo absolutno konvergenco, da zmnozimo clenoma):

$$\sum_{j-k=m} (-1)^k \frac{z^{j+k}}{j! \, k! \, 2^{j+k}} = \sum_{k=0}^{\infty} \frac{(-1)^k z^{2k+m}}{(k+m)! \, k! \, 2^{2k+m}} = J_m(z)$$

Druga formula pa sledi iz dejstva $J_{-m}(z)=(-1)^mJ_m(z)$ za $m\in\mathbb{N}$ \blacksquare .

Pri fiksnem z, ta zgornji razvoj za generirajoco funkcijo konvergira enakomerno po kompaktih, ki ne vsebujejo t=0.

Vsota spremenljivk v Besselovi funkciji

Za $z, w \in \mathbb{C}$ in $\forall m \in \mathbb{N}$ velja:

$$J_m(z+w) = \sum_{k=-\infty}^{\infty} J_{m-k}(z)J_k(w)$$

Dokaz

$$\sum_{m=-\infty}^{\infty} J_m(z+w)t^m = e^{\frac{z+w}{2}(t-t^{-1})} = e^{\frac{z}{2}(t-t^{-1})}e^{\frac{w}{2}(t-t^{-1})} = \sum_{j=-\infty}^{\infty} J_j(z)t^j \cdot \sum_{k=-\infty}^{\infty} J_k(w)t^k = e^{\frac{z+w}{2}(t-t^{-1})}e^{\frac{w}{2}(t-t^{-1})}e^{\frac{w}{2}(t-t^{-1})} = e^{\frac{w}{2}(t-t^{-1})}e^{\frac{w}{2}(t-t^{-1})}e^{\frac{w}{2}(t-t^{-1})} = e^{\frac{w}{2}(t-t^{-1})}e^{\frac{w}{2}(t-t^{-1})}e^{\frac{w}{2}(t-t^{-1})} = e^{\frac{w}{2}(t-t^{-1})}e^{\frac{w}{2}(t-t^{$$

tu uvedemo j = m - k da je j + k = m:

$$=\sum_{m=-\infty}^{\infty} \left(\sum_{k=-\infty}^{\infty} J_{m-k}(z)J_k(w)\right) t^m$$

Primerjamo koeficiente in dobimo:

$$J_m(z+w) = \sum_{k=-\infty}^{\infty} J_{m-k}(z)J_k(w) \blacksquare$$

Opomba

$$m = 0 \to J_0(z+w) = \sum_{k=-\infty}^{\infty} J_{-k}(z)J_k(w) = J_0(z)J_0(w) = 2\sum_{k=1}^{\infty} (-1)^k J_k(z)J_k(w)$$

Posledica

$$1 = J_0(z)^2 + 2\sum_{k=1}^{\infty} J_k(z)^2$$

Dokaz [Posledice]

$$w = -z \Rightarrow J_0(z) = J_0(z)J_0(-z) + 2\sum_{k=1}^{\infty} (-1)^k J_k(z)J_k(-z) =$$

Upoštevamo $J_0(-z)=J_0(z)$ ker je ν soda in $J_k(-z)=(-1)^kJ_k(z)$ kjer je J_k soda ko je k sod in J_k liha ko je k lih.

$$=J_0(z)^2+2\sum_{k=1}^{\infty}J_k(z)^2$$

Posledica:

$$|J_0(z)| \le 1$$
 $|J_k(z)| \le \frac{1}{\sqrt{2}}$ $\forall k = 1, 2, ...$

Integralski zapis Besselove funkcije

Za $m \in \mathbb{N}$ in $x \in \mathbb{R}$ velja:

$$J_m(x) = \frac{1}{\pi} \int_0^{\pi} \cos(m\phi - x\sin\phi) \, d\phi$$

[Dokaz v zvezku]

Alternativna možnost: Neumannova oz. Webrova funkcija

Za vsak $v \in \mathbb{R}^+ \setminus \mathbb{N}$ je **Neumannova oz. Webrova funkcija** definirana kot:

$$Y_{\nu}(z) = \frac{J_{\nu}(z)\cos(\nu\pi) - J_{-\nu}(z)}{\sin(\nu\pi)}$$

Y resi Besselovo diferencialno enacbo pri ν , saj jo resita J_{ν} in $J_{-\nu}$. Ker sta J_{ν} in $J_{-\nu}$ neodvisni rešitvi, sta tudi Y_{ν} in $Y_{-\nu}$ neodvisni.

Za $\nu=m\in\mathbb{N}$ definiramo:

$$Y_m(z) = \lim_{\nu \to m} Y_{\nu}(z)$$

Ker je $J_{-m} = (-1)^m J_m$, je L'H:

$$Y_m(z) = \lim_{\nu \to m} Y_{\nu}(z) = \lim_{\nu \to m} \frac{\frac{\partial J_{\nu}}{\partial \nu}(z) \cos(\nu \pi) - \pi J_{\nu}(z) \sin(\nu \pi) - \frac{\partial J_{-\nu}}{\partial \nu}(z)}{\pi \cos(\nu \pi)}$$

$$\Rightarrow Y_m(z) = \frac{1}{\pi} \lim_{\nu \to m} \left(\frac{\partial J_{\nu}}{\partial \nu}(z) - (-1)^m \frac{\partial J_{-\nu}}{\partial \nu}(z) \right)$$

Oz.:

$$Y_m(z) = \frac{1}{\pi} \left(\frac{\partial J_{\nu}}{\partial \nu}(z) - (-1)^m \frac{\partial J_{-\nu}}{\partial \nu}(z) \right) \Big|_{\nu=m}$$

Trditev

Funkcija Y_m resi Besselovo diferencialno enačbo $z^2y^{\prime\prime}+zy^\prime+(z^2-m^2)y=0$

Dokaz

Funkciji J_{ν} in $J_{-\nu}$ resita Besselovo enačbo $\nu \in \mathbb{N}$. Odvajajmo Besselovo enacbo parcialno po ν :

$$z^{2} \left(\frac{\partial y}{\partial \nu} \right)^{\prime \prime} + \left(\frac{\partial y}{\partial \nu} \right)^{\prime} + (z^{2} - \nu^{2}) \left(\frac{\partial y}{\partial \nu} \right) = 2\nu y$$

Sedaj vstavimo obe rešitvi:

$$z^{2} \left(\frac{\partial J_{\nu}}{\partial \nu}\right)^{\prime\prime} + \left(\frac{\partial J_{\nu}}{\partial \nu}\right)^{\prime} + (z^{2} - \nu^{2}) \left(\frac{\partial J_{\nu}}{\partial \nu}\right) = 2\nu J_{\nu}$$

$$z^{2} \left(\frac{\partial J_{-\nu}}{\partial \nu}\right)^{\prime\prime} + \left(\frac{\partial J_{-\nu}}{\partial \nu}\right)^{\prime} + (z^{2} - \nu^{2}) \left(\frac{\partial J_{-\nu}}{\partial \nu}\right) = 2\nu J_{-\nu}$$

Prvo enačbo množimo z $1/\pi$ drugo pa z $(-1)^m$ $1/\pi$, naredimo limito $\nu \to m$ in dobimo:

$$z^{2}Y_{m}^{"}+zY_{m}^{"}+(z^{2}-m^{2})Y_{m}=\frac{2m}{\pi}(J_{m}-(-1)^{m}J_{-m})=0$$

Izkaze se, da sta Y_m in J_m neodvisni (tisto z Wronskianom).

Opomba

Veljata rekurzivni zvezi:

$$2Y_{\nu}'(z) = Y_{\nu-1}(z) - Y_{\nu+1}(z) \qquad \frac{2\nu}{z} Y_{\nu}(z) = Y_{\nu-1}(z) + Y_{\nu+1}(z)$$

Legendrovi polinomi

Izhajajo iz Legendrove diferencialne enačbe:

$$(z^2 - 1)y'' + 2zy' - \nu(\nu + 1)y = 0$$

ki jo rešimo s pomočjo razvoja v potenčno vrsto. Lahko jo prepišemo v obliko:

$$y'' + \frac{2z}{z^2 - 1}y' - \frac{v(v+1)}{z^2 - 1}y = 0$$

Tako sta funkciji:

$$p(z) = \frac{2z}{z^2 - 1}$$
 $q(z) = -\frac{v(v+1)}{z^2 - 1}$

in vidimo da ima enačba pravilni singularnosti v $z=\pm 1$. Ostale točke pa so regularne. Enačbo rešimo okoli izhodišča z=0. Ker sta p,q holomorfni na D(0,1) lahko uporabimo nastavek z vrsto. Dobimo:

$$(z^{2}-1)\sum_{k=0}^{\infty}(k-1)kc_{k}z^{k-2}+2z\sum_{k=0}^{\infty}kc_{k}z^{k-1}-\nu(\nu+1)\sum_{k=0}^{\infty}c_{k}z^{k}=0$$

Pogledamo koeficient pri z^k :

$$(k-1)kc_k - (k+1)(k+2)c_{k+2} + 2kc_k - \nu(\nu+1)c_k = 0$$

$$\Rightarrow c_{k+2} = \frac{(k-\nu)(k+\nu+1)}{(k+2)(k+1)}c_k$$

$$c_2 = -\frac{\nu(\nu+1)}{2\cdot 1}c_0 \Rightarrow c_4 = \frac{(2-\nu)(2+\nu+1)}{4\cdot 3}c_2 = \frac{(-\nu)(-\nu+2)(\nu+1)(\nu+3)}{4\cdot 3\cdot 2\cdot 1}c_0$$

Tako dobimo predpis za c_{2n} in c_{2n+1} (podobno):

$$c_{2n} = \frac{(-\nu)(-\nu+2)\dots(-\nu+2n-2)(\nu+1)(\nu+3)\dots(\nu+2n-1)}{(2n)!}c_0$$

$$c_{2n+1} = (-1)^n \frac{(\nu-1)(\nu-3)\dots(\nu-2n+1)(\nu+2)(\nu+4)\dots(\nu+2n)}{(2n+1)!}c_1$$

Rešitvi Legendrove enačbe

Najprej izberemo $c_0 = 1$ in $c_1 = 0$:

$$y_1 = \sum_{n=0}^{\infty} c_{2n} z^{2n} = 1 - \frac{\nu(\nu+1)}{2!} z^2 + \frac{\nu(\nu-2)(\nu+1)(\nu+3)}{4!} z^4 - \dots$$

Potem izberemo $c_0 = 0$ in $c_1 = 1$:

$$y_2 = \sum_{n=0}^{\infty} c_{2n+1} z^{2n+1} = z - \frac{(\nu - 1)(\nu + 2)}{3!} z^3 + \frac{(\nu - 1)(\nu - 3)(\nu + 2)(\nu + 4)}{5!} z^5 - \dots$$

To sta dve rešitvi Legendrove diferencialne enačbe. y_1 je **soda** y_2 pa je **liha** zato sta zagotovo linearno neodvisni.

Legendrov polinom

- $v=2m\in\mathbb{N}$ (sodo število) $\Rightarrow c_{2n}=0\ \forall n>m$. Torej je y_1 sodi polinom stopnje 2m
- $v=2m+1 \in \mathbb{N}$ (liho stevilo) \Rightarrow Torej je y_2 lihi polinom stopnje 2m+1.

V vsakem primeru je ena od rešitev polinom, kadar je $\nu \in \mathbb{N}$. Ce je $\nu = n \in \mathbb{N}$ ta polinom oznacimo z P_n . Ta pomnožimo s primerno konstantno, da je:

$$c_n = \frac{(2n)!}{(n!)^2 2^n}$$

$$P_n(z) = \sum_{k=0}^{\left[\frac{n}{2}\right]} (-1)^k \frac{(2n-2k)!}{2^n k! (n-k)! (n-2k)!} z^{n-2k}$$

Tako smo dobili predpis za Legendrov polinom stopnje n.

Rodriguesova formula

Upoštevamo, da so n-ti odvodi od $(z^2)^{n-k}$ enaki 0, če je $k > \left[\frac{n}{2}\right]$ in da $\forall j < k : \frac{k!}{j!} = (j+1)(j+2) - k$

$$P_n(z) = \sum_{k=0}^{\left[\frac{n}{2}\right]} \frac{(-1)^k}{2^n k! (n-k)!} \frac{d^n}{dz^n} \left(z^{2n-2k}\right) = \frac{1}{2^n n!} \frac{d^n}{dz^n} \sum_{k=0}^{\left[\frac{n}{2}\right]} (-1)^k \binom{n}{k} (z^2)^{n-k} = \frac{1}{2^n n!} \frac{d^n}{dz^n} ((z^2-1)^n)$$

Tako smo dobili Rodriguesovo formulo:

$$P_n(z) = \frac{1}{2^n n!} \frac{d^n}{dz^n} ((z^2 - 1)^n)$$

Generirajoča funkcija

Za dovolj majhne |t| je :

$$\frac{1}{\sqrt{1 - 2zt + t^2}} = \sum_{n=0}^{\infty} P_n(z)t^n$$

Funkcija spremenljivke t na levi strani se imenuje **Generirajoča funkcija za Legendrove polinome**.

Lastnosti Legendrovih polinomov

Posledica

Velja:

$$(n+1)P_{n+1}(z) = (2n+1)z P_n(z) - nP_{n-1}(z)$$

Dokaz [Posledice]

Odvajamo generirajočo funkcijo po t:

$$\frac{1}{\sqrt{1-2zt+t^2}} = \sum_{n=0}^{\infty} P_n(z)t^n \quad \to \quad \frac{z-t}{(1-2zt+t^2)^{\frac{3}{2}}} = \sum_{n=0}^{\infty} n \, P_n(z)t^{n-1}$$

Levo enakost množimo z (z-t), desno pa z $(1-2zt+t^2)$. Rekurzivno zvezo dobimo tako, da primerjamo koeficiente pri t^n .

Trditev

$$P_n(1) = 1$$
 $P_n(-1) = (-1)^{n-1}$

Dokaz

Uporabimo Rodriguesovo formulo:

$$P_n(z) = \frac{1}{2^n n!} \frac{d^n}{dz^n} [(z^2 - 1)^n] = \frac{1}{2^n n!} \frac{d^n}{dz^n} ((z - 1)^n (z + 1)^n)$$

$$= \frac{1}{2^n n!} \sum_{k=0}^n \binom{n}{k} ((z - 1)^n)^{(k)} ((z + 1)^n)^{(n-k)}$$

$$P_1(1) = \frac{1}{2^n n!} \binom{n}{n} n! (z + 1)^n \big|_{z=1} = 1; (k = 0)$$

Podobno pokažemo drugo zvezo.

Ortogonalnost Legendrovih polinomov

Izrek pravi, da so polinomi pravokotni, če $m \neq n$:

$$\int_{-1}^{1} P_m(x) \cdot P_n(x) dx = \delta_{m,n} \frac{2}{2n+1}$$

V primeru m = n dobimo:

$$||P_m||^2 = \frac{2}{2m+1}$$

pri čemer je skalarni produkt definiran z:

$$\langle f, g \rangle = \int_{-1}^{1} f(x)g(x)dx$$

na Hilbertovem prostoru $L^2(-1,1)$, kar je napolnitev prostora zveznih funkcij C[-1,1] glede na zgornji skalarni produkt.

Pomembnost Legendrovih polinomov

Po Weierstrassovem izreku so polinomi gosti v C[-1,1] v supremum normi. To pomeni, da za vsako $f \in C[-1,1]$ obstaja zaporedje polinomov $(q_n)_{n \in \mathbb{N}}$, ki konvergira proti f glede na $\|\cdot\|_{\infty}$ oz. d_{∞} :

$$\int_{-1}^{1} |f(x) - g(x)|^2 dx < \epsilon^2 \int_{-1}^{1} ||f - q_n||_{\infty}^2$$
$$\Rightarrow ||f - q_n||_2 < \epsilon ||f - q_n||_{\infty} \cdot \sqrt{2}$$

 $\Rightarrow q_n \to f$ tudi v $L^2(-1,1)$. Ker je stopnja od P_n enaka n, je vsak polinom linearna kombinacija Legendrovih polinomov, kar pomeni, da je linearna ogrinjaca od $(P_n)_{n\in\mathbb{N}}$ gosta v $\mathcal{C}[-1,1]$ oz. $L^2(-1,1)$.

Zaradi pravokotnosti tvorijo <u>Ortonormirano bazo</u> $L^2(-1,1)$. To pomeni, da se vsak $f \in L^2(-1,1)$ lahko zapise kot:

$$f = \sum_{n=0}^{\infty} a_n P_n$$

kjer je konvergenca mišljena v prostoru $L^2(-1,1)$, torej glede na $\|\cdot\|_2$. Koeficienti so:

$$\langle f, P_m \rangle = a_m \langle P_m, P_m \rangle = a_m \frac{2}{2m+1}$$

$$\Rightarrow a_m = \frac{2m+1}{2} \langle f, P_m \rangle = \frac{2m+1}{2} \int_{-1}^1 f(x) P_m(x) dx$$

Pridružene Legendrove Funkcije

Naj bo P_n n-ti Legendrov polinom. Definirajmo **pridruženo Legendrovo funkcijo** $\boldsymbol{P_n^m}$:

$$P_n^m(z) = (1 - z^2)^{m/2} \frac{d^m}{dz^m} P_n(z); \quad m = 0, 1, 2, ..., m$$

Da se dokazati (preko zvitega računa), da P_n^m resi diferencialno enačbo:

$$((1-z^2)y')' - \frac{m^2}{1-z^2}y = -n(n+1)y$$
 $Ty = \lambda y$

Rešitve nove enačbe P_n^m so lastne funkcije nekega diferencialnega operatorja.

- m=0: $P_n^0=P_n\to m=0$ so vsi $(P_n)_{n\in\mathbb{N}}$ pravokotni
- m>0: $P_n^m(1)=P_n^m(-1)=0$ (lepi oz. ustrezni robni pogoji)

Pri danemu m za n=m,m+1,... so P_n^m lastne funkcije, ki pripadajo različnim lastnim vrednostim. Po splošni teoriji bo veljalo, da so $(P_n^m)_{n\geq m}$ paroma pravokotni.

Ortogonalna baza Hilbertovega prostora $L^2(-1,1)$

Pri vsakem fiksnem $m \in \mathbb{N}_0$ je $(P_n^m)_{n=m}^\infty$ ortogonalna baza Hilbertovega prostora $L^2(-1,1)$ in velja:

$$||P_n^m||_2^2 = \frac{2}{2n+1} \frac{(n+m)!}{(n-m)!}$$

Hermitovi polinomi

Rešujemo diferencialno enačbo:

$$y'' - 2zy' + 2\nu y = 0$$

z nastavkom tako kot prej \Rightarrow $(k+2)(k+1)c_{k+2}=2(k-\nu)c_k$. Tako dobimo dve rešitvi:

$$y_1 = 1 - \frac{2\nu}{2!}z^2 + \frac{2^2\nu(\nu - 2)}{4!}z^4 - \cdots$$

$$y_2 = z - \frac{2(\nu - 1)}{3!}z^3 + \frac{2^2(\nu - 1)(\nu - 3)}{5!}z^5 - \cdots$$

Ce je $n \in \mathbb{N}_0$, je ena od y_1, y_2 polinom stopnje n. Ta polinom popravimo tako, da ima vodilni koeficient (tisti pri z^n) enak z^n . Označimo ga z H_n in ga imenujemo $\underline{n\text{-ti Hermitov polinom}}$:

$$H_n(z) = (-1)^n e^{z^2} \frac{d^n}{dz^n} e^{-z^2}$$

Generirajoča funkcija

Funkcija e^{2zt-t^2} je generirajoča funkcija za H_n :

$$e^{2zt-t^2} = \sum_{n=0}^{\infty} \frac{H_n(z)}{n!} t^n$$

Rekurzivne zveze

Veljajo:

$$H_n(z) = 2zH_{n-1}(z) - H'_{n-1}(z) \quad H'_n(z) = 2nH_{n-1}(z)$$

$$H_n(z) = 2zH_{n-1}(z) - 2(n-1)H_{n-2}(z)$$