Statistical modelling for biological data with R

Day 2-3: Linear model with R

Marie-Pierre Etienne

https://marieetienne.github.io

Novembre 2019

- 1 Si besoin : Rappel sur la notion de statistique inférentielle
- 2 Des Exemples de problème

- 3 Le modèle linéaire
- 4 Estimation des paramètres
- 5 Des exemples à nouveau

- 1 Si besoin : Rappel sur la notion de statistique inférentielle
- 2 Des Exemples de problème

- 3 Le modèle linéaire
- 4 Estimation des paramètres
- **5** Des exemples à nouveau

Les notions clés de la statistique paramétrique

- paramètres
- estimateurs
- estimations

Si besoin Rappel

- Si besoin : Rappel sur la notion de statistique inférentielle
- 2 Des Exemples de problème

- 3 Le modèle linéaire
- 4 Estimation des paramètres
- **5** Des exemples à nouveau

2 Des Exemples de problème

Les Manchots empereur

Etude de l'alimentation des manchots empereurs

Etude de l'effet de la diversité agricole sur le rendement des prairies

2 Des Exemples de problème

Les Manchots empereur

Etude de l'alimentation des manchots empereurs

Etude de l'effet de la diversité agricole sur le rendement des prairies

Contexte

- Les manchots élèvent leurs petits en couple et s'alimentent alternativement en haute mer (voyage d' une dizaine de jours)
- Une étude pour identifier les facteurs de variation dans l'efficacité de leur alimentation.
- Débute après la naissance des petits et se poursuit jusqu'au départ des petits.

Dispositif:

Pour identifier les déplacements des manchots, on équipe certains individus de transmetteurs GPS, pesant 450g et ayant une surface frontale de $14~cm^2$, ce qui représente 2.4% de la section d'un oiseau de 24kg. Est ce un désavantage competitif ?

Variables mesurées :

- poids initial,
- poids au retour
- GPS (oui ou non)
- Période de suivi (3 périodes).

Présentation des données

44 C 1

```
manchots <- read.table('.../.../Datasets/Manchots.csv',</pre>
                     header=T, sep = ";")
manchots %>% mutate(GPS = as.factor(GPS),
                  Saison = as.factor(Saison),
                  gain = PoidsFinal - PoidsInit) -> manchots
manchots %>% group_by(GPS, Saison) %>%
 summarize(n = n())
## # A tibble: 6 x 3
## # Groups: GPS [2]
## GPS Saison
## <fct> <fct> <int>
## 1 0 1
               27
## 2 0 2
                13
## 3 0 3
                 19
## 4 1 1
## 5 1 2
```

9 / 84

Des représentation graphiques

manchots %>% ggplot() + geom_boxplot(aes(x= Saison, y=gain))

Des représentation graphiques

```
manchots %>% ggplot() + geom_boxplot(aes(x= GPS, y=gain))
## Warning: Continuous x aesthetic -- did you forget aes(group=...)
 5 -
                                                    0.75
                  0.25
                                   GPS
```

Des représentation graphiques

```
manchots %>% ggplot() +
  geom_boxplot(aes(x= GPS, y=gain, fill = Saison)) +
  scale_fill_viridis_d()
```


2 Des Exemples de problème

Les Manchots empereur

Etude de l'alimentation des manchots empereurs

Etude de l'effet de la diversité agricole sur le rendement des prairies

Contexte

Les prairies exploitées de manière intensive constituent des écosystèmes très fréquents

Kirwan Laura et al. (2014) examine l'effet d'une diversification expérimentale des cultures sur le rendement des prairies.

Données

- six sites différents COUNTRY
- Sur chaque site 48 parcelles (PLOT) on été ensemencées avec un mélange de graines.
- Proportion en herbes (G) et en légumineuses (L).
- Sur chaque parcelle,un indice de diversité (indice de Shannon), Il variant entre 1 et 4
- Expérience menée entre 2003 et 2006
- Mesure de rendement HARV_YIELD

Question

Impact de la biodiversité sur le rendement

Présentation des données

```
biomass <- read.table(file = 'https://marieetienne.github.io/datase
                  sep = ', ',
                  header = TRUE)
biomass %>% mutate(Hfact = as.factor(biomass$H)) -> biomass
biomass \%\% as tibble \%\% print(n = 4)
## # A tibble: 864 x 8
## COUNTRY YEAR PLOT G L HARV_YIELD H Hfact
## <fct> <int> <int> <dbl> <dbl> <dbl> <dbl> <fct>
## 1 Belgium 2003 12 1
                                 2.69 1 1
## 2 Iceland_a 2003 12 1 0 2.82 1 1
## 3 Sweden_a 2003 12 1 0 2.61 1 1
                              0 3.44 1.1
## 4 Belgium 2004 12
## # ... with 860 more rows
```

Représentation des données

biomass %>% ggplot() + facet_wrap(~COUNTRY) + geom_point(aes(x=H,

- Si besoin : Rappel sur la notion de statistique inférentielle
- 2 Des Exemples de problème

- 3 Le modèle linéaire
- 4 Estimation des paramètres
- **5** Des exemples à nouveau

3 Le modèle linéaire

Le modèle d'analyse de variance à 1 facteur

Le modèle d'analyse de variance à 2 facteurs

Le modèle de régression simple

Le modèle de régression multiple

Le modèle d'analyse de la covariance

Version mathématique

Le modèle d'analyse de variance à 1 facteur s'écrit :

$$Y_{ik} = \mu + \alpha_i + E_{ik}$$

avec
$$E_{ik} \stackrel{i.i.d}{\sim} \mathcal{N}(0, \sigma^2)$$
 et $cov(E_{ik}, E_{i'k'}) = 0 \quad \forall \ (i, k) \neq (i', k')$

- μ effet de référence
- α_i effet différentiel du niveau i du premier facteur

Objectif de l'analyse de variance : étudier si Y varie selon les modalités du fateur

Version matricielle

Le modèle d'analyse de variance à 2 facteurs s'écrit :

$$Y = X\theta + E$$

$$\boldsymbol{E} \sim (0, \sigma^2 I_n)$$

Version graphique

`stat_bin()` using `bins = 30`. Pick better value with `binwidth

3 Le modèle linéaire

Le modèle d'analyse de variance à 1 facteur

Le modèle d'analyse de variance à 2 facteurs

Le modèle de régression simple

Le modèle de régression multiple

Le modèle d'analyse de la covariance

Version mathématique

Le modèle d'analyse de variance à 2 facteurs s'écrit :

$$Y_{ijk} = \mu + \alpha_i + \beta_j + (\alpha\beta)_{ij} + E_{ijk}$$

avec
$$E_{ijk} \overset{i.i.d}{\sim} \mathcal{N}(0, \sigma^2)$$
 et $cov(E_{ijk}, E_{i'j'k'}) = 0 \quad \forall \ (i, j, k) \neq (i', j', k')$

- μ effet de référence
- α_i effet différentiel du niveau i du premier facteur
- ullet eta_i effet différentiel du niveau j du second facteur
- $(\alpha\beta)_{ij}$ effet différentiel de l'interaction des niveaux i et j

Objectif de l'analyse de variance : étudier parmi ces effets ceux qui influent sur Y

Version matricielle

Le modèle d'analyse de variance à 2 facteurs s'écrit :

$$Y = X\theta + E$$

$$\boldsymbol{E} \sim (0, \sigma^2 I_n)$$

Version graphique

3 Le modèle linéaire

Le modele d'analyse de variance à 1 facteur

Le modèle de régression simple

l e modèle de régression multiple

Le modèle d'analyse de la covariance

Version mathématique

$$Y_k = \mu + \beta x_k + E_k$$

avec $E_k \overset{i.i.d}{\sim} \mathcal{N}(0, \sigma^2)$

- μ effet de référence
- β effet de la variable x_k

Objectif de la régression simple : Quantifier l'effet de x sur Y, prédire Y

Version matricielle

Le modèle de régression simple s'écrit:

$$Y = X\theta + E$$

$$\boldsymbol{E} \sim (0, \sigma^2 I_n)$$

Modèle vision graphique

3 Le modèle linéaire

Le modèle d'analyse de variance à 1 facteur

Le modèle d'analyse de variance à 2 facteurs

Le modèle de régression simple

Le modèle de régression multiple

Le modèle d'analyse de la covariance

Version mathématique

$$Y_k = \mu + \beta_1 x_k^{(1)} + \beta_2 x_k^{(2)} + \dots + \beta_p x_k^{(p)} + E_k$$

avec $E_k \overset{i.i.d}{\sim} \mathcal{N}(0, \sigma^2)$

- μ effet de référence
- β_1 effet de la variable $x_h^{(1)}$
- •
- β_p effet de la variable $x_k^{(p)}$

Objectif de la régression multiple : identifier les variables x liées à Y, prédireY

Version matricielle

Le modèle de régression multiple s'écrit:

$$Y = X\theta + E$$

$$\boldsymbol{E} \sim (0, \sigma^2 I_n)$$

3 Le modèle linéaire

Le modèle d'analyse de variance à 1 facteur

Le modèle d'analyse de variance à 2 facteurs

Le modèle de régression simple

Le modèle de régression multiple

Le modèle d'analyse de la covariance

Version mathématique

$$Y_{ik} = \mu + \alpha_i + \beta x_k + \gamma_i x_k + E_k$$

avec $E_k \overset{i.i.d}{\sim} \mathcal{N}(0, \sigma^2)$

- ullet μ effet de référence
- α_i effet différentiel du niveau i du facteur
- β effet de la variable x_k
- γ_i effet différentiel du niveau i sur le lien entre x et Y.

Objectif de l'analyse de la covariance : comparer des droites de régression

Version matricielle

Le modèle d'analyse de la covariance s'écrit:

$$Y = X\theta + E$$

$$\boldsymbol{E} \sim (0, \sigma^2 I_n)$$

Vision graphique

```
ggplot(data = dta, aes(x=x, y=y, col = i)) +
  geom_point( alpha = 0.5) +
  geom_smooth(data = dta, method = 'lm', formula = y ~ x, se = FALS
  scale_fill_manual(values = anova_colour) +
  scale_colour_manual(values = anova_colour)
```


Plan

- Si besoin : Rappel sur la notion de statistique inférentielle
- 2 Des Exemples de problème

- Le modèle linéaire
- 4 Estimation des paramètres
- **5** Des exemples à nouveau

Estimation par maximum de vraisemblance

Si (X'X) est inversible

$$\hat{\theta} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{Y}$$

- Attention dans le cas de l'analyse de la variance
- Attention dans le cas de variable colinéaires

Plan

4 Estimation des paramètres

Tests

Test sur les paramètres

Vers la décomposition de la variance

Test de modèles emboîtés

Table de décomposition de la variance

Sélection automatique de variables

Diagnostics

Plan

- Si besoin : Rappel sur la notion de statistique inférentielle
- 2 Des Exemples de problème

- Le modèle linéaire
- 4 Estimation des paramètres
- **5** Des exemples à nouveau

Plan

5 Des exemples à nouveau

Le test de comparaison de deux moyennes

La régression multiple

L'analyse de variance

Test de comparaison de 2 moyennes

Question : Les poids des poulpes mâles et femelles sont-ils égaux ?
Importons et visualisons les données:

```
poulpe <- read.table("https://r-stat-sc-donnees.github.io/poulpe.cs
summary(poulpe)
```

```
## Poids Sexe
## Min. : 300 Femelle:13
## 1st Qu.:1480 Male :15
## Median :1800
## Mean :2099
## 3rd Qu.:2750
## Max. :5400
```

Visualisation des données

```
library(ggplot2)
poulpe %>% ggplot() + aes(x=Sexe,y=Poids) + geom_boxplot(fill=c("pi
```


Pour un graphe interactif en html:

```
library(plotly)
poulpe %% ggplot() + aes(x=Sexe,y=Poids) + geom_boxplot(fill=c("pi
ggplotly()
```

Avec les lignes de code R:

```
boxplot(Poids ~ Sexe, col=c("pink","lightblue"), data=poulpe)
```

Comparaison de 2 moyennes: test de la normalité

```
A-t-on bien la normalité des poids pour les mâles et femelles ?
by(poulpe$Poids, poulpe$Sexe, shapiro.test)
## poulpe$Sexe: Femelle
##
##
    Shapiro-Wilk normality test
##
## data: dd[x.]
## W = 0.97109, p-value = 0.9069
##
## poulpe$Sexe: Male
##
    Shapiro-Wilk normality test
##
##
## data: dd[x.]
## W = 0.93501, p-value = 0.3238
```

On accepte l'hypothèse de normalité des poids pour les femelles, et pour les mâles

Comparaison de 2 moyennes : test d'égalite des variances

```
Quel test utiliser? Celui avec variances égales ou inégales?
var.test(Poids ~ Sexe, conf.level=.95, data=poulpe)
##
##
    F test to compare two variances
##
## data: Poids by Sexe
## F = 0.28833, num df = 12, denom df = 14, p-value = 0.03713
## alternative hypothesis: true ratio of variances is not equal to
## 95 percent confidence interval:
    0.09452959 0.92444666
## sample estimates:
## ratio of variances
            0.2883299
##
```

On rejette l'hypothèse d'égalité des variances \Longrightarrow on considère que les variances ne sont pas égales

Test de comparaison de 2 moyennes (suite et fin)

```
res <- t.test(Poids~Sexe, alternative="two.sided", conf.level=.95,
              var.equal=FALSE, data=poulpe)
res
##
##
   Welch Two Sample t-test
##
## data: Poids by Sexe
## t = -3.7496, df = 22.021, p-value = 0.001107
## alternative hypothesis: true difference in means is not equal to
## 95 percent confidence interval:
## -2010.624 -578.607
## sample estimates:
## mean in group Femelle mean in group Male
                1405.385
                                      2700,000
##
```

On considère que les poids moyennes des mâles et femelles sont différents

Les mâles sont plus lourds (2700) que les femelles (1405.4)

Plan

6 Des exemples à nouveau

Le test de comparaison de deux moyennes

La régression multiple

L'analyse de variance

Problématique et données

Question : Peut-on prévoir le maximum d'ozone en fonction de données climatiques (température, nébulosité, vitesse du vent, max d'ozone de la veille) ?

Importons et visualisons les données:

```
ozone <- read.table("https://r-stat-sc-donnees.github.io/ozone.txt"
library(tidyverse)
ozone.m <- ozone %>% select(1:11)
ozone.m %>% select(1:4) %>% summary()
```

```
max03
                         Т9
                                       T12
                                                      T15
##
##
   Min.
          : 42.00
                   Min. :11.30
                                  Min. :14.00
                                                 Min.
                                                        :14.90
                                                  1st Qu.:19.27
##
   1st Qu.: 70.75
                   1st Qu.:16.20
                                  1st Qu.:18.60
```

Median: 81.50 Median: 17.80 Median: 20.55 Median: 22.05 ## Mean: 90.30 Mean: 18.36 Mean: 21.53 Mean: 22.63 ## 3rd Qu: 106.00 3rd Qu: 19.93 3rd Qu: 23.55 3rd Qu: 25.40

Max. :33.50

Max.

:35.50

Max. :27.00

Max. :166.00 Avec les lignes de code R:

ozone <- read.table("https://r-stat-sc-donnees.github.io/ozone.txt"

Visualisation des liaisons par paires de variables

```
library(GGally)
## Registered S3 method overwritten by 'GGally':
    method from
##
##
   +.gg ggplot2
##
## Attaching package: 'GGally'
## The following object is masked from 'package:dplyr':
##
##
       nasa
ozone.m %>% select(1:3) %>% ggpairs()
```


Construction du modèle complet

```
reg.mul <- lm(max03~., data=ozone.m)
summary(reg.mul)
## Call:
## lm(formula = max03 ~ ., data = ozone.m)
##
## Coefficients:
##
             Estimate Std. Error t value Pr(>|t|)
## (Intercept) 12.24442 13.47190 0.909 0.3656
## T9
            -0.01901 1.12515 -0.017 0.9866
## T12
              2.22115 1.43294 1.550 0.1243
## T15
              0.55853 1.14464 0.488 0.6266
## Ne9
            -2.18909 0.93824 -2.333 0.0216 *
## Ne12
            -0.42102 1.36766 -0.308
                                       0.7588
## Ne15
            0.18373 1.00279 0.183 0.8550
## Vx9
              0.94791
                       0.91228 1.039
                                       0.3013
## Vx12
              0.03120
                        1.05523 0.030 0.9765
            0.41859 0.91568 0.457 0.6486
## Vx15
## maxO3v
           0.35198
                       0.06289 5.597 1.88e-07 ***
```

56 / 84

Sélection de variables

```
library(FactoMineR)
select <- RegBest(ozone.m$max03, ozone.m[,2:11])</pre>
select$summary ; select$best
##
                                  R.2
                                           Pvalue
## Model with 1 variable 0.6150674 1.512025e-24
## Model with 2 variables
                           0.7012408 2.541031e-29
## Model with 3 variables 0.7519764 1.457692e-32
## Model with 4 variables
                           0.7622198 1.763434e-32
## Model with 5 variables
                           0.7630603 1.449905e-31
## Model with 6 variables
                           0.7635768 1.130263e-30
## Model with 7 variables
                           0.7637610 8.556709e-30
## Model with 8 variables
                           0.7638390 6.076804e-29
## Model with 9 variables 0.7638407 4.066941e-28
## Model with 10 variables 0.7638413 2.545665e-27
##
## Coefficients:
##
               Estimate Std. Error t value Pr(>|t|)
## (Intercept) 9.76225 11.10038
                                     0.879
```

Construction du modèle final

```
reg.fin <- lm(max03~T12+Ne9+Vx9+max03v, data=ozone.m)
summary(reg.fin)
##
## Call:
## lm(formula = max03 \sim T12 + Ne9 + Vx9 + max03v, data = ozone.m)
##
## Residuals:
     Min 10 Median 30
##
                             Max
## -52.396 -8.377 -1.086 7.951 40.933
##
## Coefficients:
##
           Estimate Std. Error t value Pr(>|t|)
## (Intercept) 12.63131 11.00088 1.148 0.253443
## T12
       2.76409 0.47450 5.825 6.07e-08 ***
## Ne9
         -2.51540 0.67585 -3.722 0.000317 ***
## Vx9
          1.29286 0.60218 2.147 0.034055 *
## maxO3v
       ## ---
57/84
```

Analyser les résidus

library(ggfortify)
autoplot(reg.fin)

Analyser les résidus (suite)

```
residutib <- tibble(jour = 1:112, residu = rstudent(reg.fin))
residutib %>% ggplot() + aes(x=jour, y=residu) + geom_point() +
  labs(x="Jour", y="Résidu", title = "Graphe des résidus studentisé
  geom_abline(slope=0, intercept=c(-2,0,2), linetype=c(2,1,2)) +
  geom_rect(aes(xmin=0, xmax=113, ymin=-2, ymax=2), alpha=0.002,fil
  geom_point(data = residutib %>% filter(abs(residu)>2), cex=2, col
```

Graphe des résidus studentisés

Avec les lignes de code R :

Prévoir une nouvelle valeur

Et comment prédire le maximum d'ozone pour de nouvelles valeurs ?

```
xnew <- matrix(c(19,8,2.05,70),nrow=1)
colnames(xnew) <- c("T12","Ne9","Vx9","max03v")
xnew <- as.data.frame(xnew)
predict(reg.fin,xnew,interval="pred")

## fit lwr upr
## 1 72.51437 43.80638 101.2224</pre>
```

Plan

5 Des exemples à nouveau

Le test de comparaison de deux moyennes

La régression multiple

L'analyse de variance

Problématique et données

Question : Y a-t-il un effet de la pluie et du vent sur le maximum d'ozone ? Y a-t-il un effet de l'interaction de ces deux facteurs ?

Importation des données:

```
ozone <- read.table("https://r-stat-sc-donnees.github.io/ozone.txt"
summary(ozone[,c("max03","vent","pluie")])</pre>
```

```
##
      max03
                              pluie
                     vent
   Min. : 42.00 Est :10 Pluie:43
##
   1st Qu.: 70.75 Nord :31 Sec :69
##
   Median: 81.50 Ouest:50
##
   Mean : 90.30
                  Sud :21
##
##
   3rd Qu.:106.00
##
   Max. :166.00
```

Le modèle d'analyse de variance

library('tidyverse')

Le modèle d'analyse de variance à 2 facteurs s'écrit :

$$Y_{ijk} = \mu + \alpha_i + \beta_j + (\alpha\beta)_{ij} + \varepsilon_{ijk}$$

avec
$$\varepsilon_{ijk} \overset{i.i.d}{\sim} \mathcal{N}(0, \sigma^2)$$
 et $cov(\varepsilon_{ijk}, \varepsilon_{i'j'k'}) = 0 \quad \forall \ (i, j, k) \neq (i', j', k')$

- μ effet de référence
- α_i effet différentiel du niveau i du premier facteur
- ullet eta_i effet différentiel du niveau j du second facteur
- $(\alpha\beta)_{ij}$ effet différentiel de l'interaction des niveaux i et j

Objectif de l'analyse de variance : étudier parmi ces effets ceux qui influent sur Y

Décomposition de la variabilité

`stat_bin()` using `bins = 30`. Pick better value with `binwidth


```
## Saving 10 x 7 in image
```

Différents calculs de variances

La **variabilité totale** est définie par

$$RSS_{M0} = \sum_{i=1}^{I} \sum_{j=1}^{J} \sum_{k=1}^{n_{ij}} (y_{ijk} - y_{\bullet \bullet \bullet})^2.$$

Correspond à la variabilité résiduelle dans le modèle

$$M_0: Y_{ijk} = \mu + \varepsilon_{ijk}$$

La variabilité attribuée au facteur 1 peut être définie par

$$RSS_{M0} - RSS_{M1}$$
,

avec

$$RSS_{M1} = \sum_{i=1}^{I} \sum_{j=1}^{J} \sum_{k=1}^{n_{ij}} (y_{ijk} - y_{i \bullet \bullet})^2.$$

La variabilité attribuée au facteur 2 peut être définie par

$$RSS_{M0} - RSS_{M2}$$
,

avec

$$RSS_{M2} = \sum_{i=1}^{I} \sum_{j=1}^{J} \sum_{k=1}^{n_{ij}} (y_{ijk} - y_{\bullet j \bullet})^{2}.$$


```
Les effets sont testés grâce à l'analyse de la variabilité
anova_comp <- lm(Y ~ fact1 + fact2 + fact1:fact2, data = dta )</pre>
anova (anova comp)
## Analysis of Variance Table
##
## Response: Y
                Df Sum Sq Mean Sq F value Pr(>F)
##
                 1 72641 72641 69888.232 < 2.2e-16 ***
## fact1
## fact2
                 2 23243 11621 11181.110 < 2.2e-16 ***
                 2
## fact1:fact2
                       26
                               13
                                    12.316 4.868e-06 ***
## Residuals 1794 1865
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

Table d'analyse de la variance (anova)

Source	Mesure	H_0
Fact1	$RSS_{M_0} - RSS_{M_1}$	M_0 et M_1 sont équivalents
Fact2	$RSS_{M_1} - RSS_{M_{12}}$	M_1 et M_{12} sont équivalents
Interaction	$RSS_{M_{1}2} - RSS_{M_{comp}}$	M_{12} et M_{comp} sont équivalents

Table d'analyse de la variance (Anova)

Source	Mesure	H_0
Fact1	$RSS_{M_2}RSS_{M_{12}}$	M_2 et M_{12} sont équivalents
Fact2	$RSS_{M_1} - RSS_{M_{12}}$	M_1 et M_{12} sont équivalents
Interaction	$RSS_{M_12} - RSS_{M_{comp}}$	M_{12} et M_{comp} sont équivalents

Visualisation des données avec ggplot2

160 -

```
library(ggplot2)
ozone %>% ggplot() + aes(y=max03, x=vent) + geom_point(aes(col=plui))
```

Pluie
 Pluie
 Sec

ozone %>% ggplot() + aes(pluie, max03) + geom_boxplot(aes(fill=vent
scale_fill_manual(values=c("lightblue","orange","green","grey"))

Visualisation des données en R

boxplot(max03~vent, data = ozone)

boxplot(max03~vent*pluie, data = ozone, col=c(rep("Lightblue",4),re

Visualisation de l'interaction

```
ozone %>% ggplot() + aes(x = vent, y = max03, group = pluie) +
  geom_point(aes(color = pluie, shape=vent)) +
  stat_summary(fun.y = mean, geom = "point", size=3, shape=15,aes(color = stat_summary(fun.y = mean, geom = "line", aes(color = pluie))
```


Visualiser l'autre graphe d'interaction (une ligne brisée par direction du vent) et conserver le graphe le plus explicite

```
ozone %>% ggplot() + aes(x = pluie, y = max03, group = vent, calar
```

Graphe: visualisation de l'interaction

with(ozone,interaction.plot(vent,pluie,max03,col=1:nlevels(pluie)))
with(ozone,interaction.plot(pluie,vent,max03,col=1:nlevels(vent)))

Validité du modèle

library(ggfortify)
mod.interaction <- lm(max03 ~ vent + pluie + vent:pluie, data=ozone
autoplot(mod.interaction)</pre>

Validité du modèle

```
library(ggfortify)
ozone %>% mutate(log_max03 = log(max03)) -> ozone
mod.interaction <- lm(log_max03 ~ vent + pluie + vent:pluie, data=o
autoplot(mod.interaction)</pre>
```


Test du modèle complet

```
mod.interaction <- lm(log_max03 ~ vent + pluie + vent:pluie, data=o
mod.0 <- lm(log_max03 ~ 1, data=ozone)</pre>
anova(mod.0, mod.interaction)
## Analysis of Variance Table
##
## Model 1: \log \max 03 ~ 1
## Model 2: log max03 ~ vent + pluie + vent:pluie
    Res.Df RSS Df Sum of Sq F Pr(>F)
##
## 1 111 9.5368
## 2 104 6.4740 7 3.0629 7.029 7.355e-07 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

On rejette l'hypothèse qu'il n'existe aucun effet car la probabilité critique (0) est inférieure à 5%

Construction du modèle avec interaction

```
library(car)
## Loading required package: carData
##
## Attaching package: 'car'
## The following object is masked from 'package:dplyr':
##
       recode
##
## The following object is masked from 'package:purrr':
##
##
       some
anova(mod.interaction)
## Analysis of Variance Table
##
## Response: log_max03
               Df Sum Sq Mean Sq F value Pr(>F)
##
                3 0 9599 0 29626 4 5095 0 004603 **
## 170n+
```

78 / 84

Choix d'un sous-modèle

```
modele_12 <- lm(log_max03 ~ vent + pluie, data = ozone)
anova(modele 12)
## Analysis of Variance Table
##
## Response: log_max03
             Df Sum Sq Mean Sq F value Pr(>F)
##
## vent 3 0.8588 0.28626 4.5994 0.004555 **
## pluie 1 2.0187 2.01866 32.4346 1.094e-07 ***
## Residuals 107 6.6594 0.06224
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
Anova (modele 12)
## Anova Table (Type II tests)
##
## Response: log max03
##
            Sum Sq Df F value Pr(>F)
```

vent 0.3982 3 2.1329 0.1004

Qu'est ce que l'effet du vent ??

Visualisation des différences de vent après ajustement à la pluie

Qu'est ce que l'effet du vent ??

Visualisation des différences de vent après ajustement à la pluie

```
ozone %>% ggplot() + facet_wrap(~pluie) +
  geom_point( mapping = aes(x=vent, y=log_max03, col = pluie)) +
  geom_boxplot( mapping = aes(x=vent, y=log_max03, fill = pluie), a
```


Estimation des coefficients

```
Attention à l'interprétation
```

Dans le modèle complet

Coefficients:

summary(mod.interaction)

```
##
## Call:
## lm(formula = log_max03 ~ vent + pluie + vent:pluie, data = ozone
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.4873 -0.1727 -0.0230 0.1097 0.5699
##
```

Estimate Std. Error t value Pr(>|t|)
(Intercept) 4.18551 0.17642 23.724 < 2e-16 ***
ventNord 0.02239 0.19326 0.116 0.90797

ventOuest 0.07636 0.18308 0.417 0.67749 ## ventSud 0.29073 0.20875 1.393 0.16667

Comparaison de moyennes ajustées

```
library('emmeans')
##
## Attaching package: 'emmeans'
## The following object is masked from 'package:GGally':
##
##
     pigs
emmeans(modele_12,pairwise~pluie,adjust="hochberg")
## $emmeans
  pluie emmean SE df lower.CL upper.CL
##
## Pluie 4.31 0.0441 107 4.22 4.40
##
   Sec 4.60 0.0322 107 4.53 4.66
##
## Results are averaged over the levels of: vent
## Confidence level used: 0.95
##
## $contrasts
```

Références

Daudin, J.-J. (2015). Le modèle linéaire et ses extensions - Modèle linéaire général, modèle linéaire généralisé, modèle mixte, plans d'expériences (Niveau C) (p. 336 p.). Edition Ellipses.

Faraway, J. J. (2016). Extending the linear model with r: Generalized linear, mixed effects and nonparametric regression models. Chapman; Hall/CRC.

Kirwan Laura, Connolly John, Brophy Caroline, Baadshaug Ole, Belanger Gilles, Black Alistair, . . . Finn John. (2014). The Agrodiversity Experiment: three years of data from a multisite study in intensively managed grasslands. *Ecology*, *95*, 2680.