Complexe Analyse

Luc Veldhuis

24 April 2018

Definitie

Zij $z_0 \in \mathbb{C}$ een geïsoleerde singulariteit van f, dus

$$f(z) = \sum_{n=-\infty}^{\infty} a_n (z - z_0)^n \text{ voor } 0 < |z - z_0| < \epsilon.$$

De singulariteit heet ophefbaar als $a_n = 0 \ \forall n < 0$.

De singulariteit heet een pool van orde $m \in \mathbb{N}$ als $a_n = 0 \ \forall n < -m$

De singulariteit heet essentieel als $\forall m$, $\exists n < m$, $a_n \neq 0$.

Opmerking

Een singulariteit is altijd een van de drie.

Definitie

Zij f analytisch in $z=z_0\in\mathbb{C}$ met Taylorreeks ontwikkeling $f(z)=\sum_{n=0}^\infty a_n(z-z_0)^n$. Dan heet z_0 de nul van orde $m\in\mathbb{N}$ als $a_n=0\ \forall n\leq m$.

Stelling

De volgende beweringen zijn equivalent

- f heeft een nul van orde m in z_0
- 2 $f(z_0) = f'(z_0) = \cdots = f^{(m-1)}(z_0) = 0$
- **3** Er bestaat een analytische functie g met $f(z) = (z z_0)^m g(z)$, $0 < |z z_0| < \epsilon$ waarbij $g(z_0) \neq 0$

Bewijs

 $1 \Leftrightarrow 2$, per definitie.

$$2 \Leftrightarrow 3$$
, $f(z) = \sum_{n=m}^{\infty} a_n (z - z_0)^n = (z - z_0)^m (\sum_{n=m+1}^{\infty} a_n (z - z_n)^n) = (z - z_0)^m g(z)$ met $g(z) = \sum_{n=m+1}^{\infty} a_n (z - z_n)^n$

Voorbeeld

 $f(z) = (z - z_0)^m$ heeft een nul van orde m in z_0 .

Stelling

Stel dat f in z_0 een pool heeft van orde m. Dan bestaat een analytische functie g met $f(z) = \frac{g(z)}{(z-z_0)^m}$ en verder geldt

$$Res_{z=z_0} f(z) = \frac{g^{(m-1)}(z_0)}{(m-1)!}$$

Bewijs

$$f(z) = \sum_{n=-m}^{\infty} a_n (z - z_0)^n = \frac{1}{(z - z_0)^m} \sum_{n=0}^{\infty} a_{n-m} (z - z_0)^n \text{ en}$$

$$a_{-1} = b_{m-1} = \frac{g^{(m-1)}}{(m-1)!} \text{ met } g(z) = \sum_{n=0}^{\infty} a_{n-m} (z - z_0)^n.$$

Voorbeeld

- $f(z) = \frac{z^3 + 2z}{(z-i)^3}$, $z_0 = i$ is een pool van orde 3, omdat $g(z) = z^3 + 2z = i^3 + 2i = i$ als z = i, dus $g(i) \neq 0$ en g is analytisch in z = i en $Res_{z=i}f(z) = \frac{g''(i)}{2} = \frac{(3z^2 + 2)'}{2} = 3z = 3i$
- $f(z) = \frac{\cos(z)}{z^3}$ heeft pool van orde 3 in $z_0 = 0$ en $Res_{z=0}f(z) = \frac{\cos''(z)}{2!} = -\frac{1}{2}$.

Stelling

Stel dat $f=\frac{p}{q}$ met analytische functies p,q in $z=z_0$. Als $p(z_0)\neq 0$ en q een nul heeft van orde m in z_0 , dan heeft $f=\frac{p}{q}$ een pool van orde m. Verder, als m=1, dan geldt $Res_{z=z_0}\frac{p(z)}{q(z)}=\frac{p(z_0)}{q'(z_0)}$.

Bewijs

Als q een nul van order m in z_0 heeft, dan $q(z)=g(z)(z-z_0)^m$, dus $f(z)=\frac{p(z)}{g(z)}\frac{1}{(z-z_0)^m}$. Omdat $\frac{p}{g}$ analytisch is en $\frac{p}{g}(z_0)\neq 0$, is z_0 dis een pool. Verder als m=1, dan $Res_{z=z_0}f(z)=\frac{p(0)}{g(z_0)}(z_0)=\frac{p(z_0)}{g(z_0)}$ met $g(z_0)=q'(z_0)$.

Stelling

Stel dat f analytisch is in z_0 met $f(z_0)=0$. Als f niet gelijk is aan 0 in een open omgeving van z_0 , dan bestaat er een $\epsilon>0$ zodat $f(z)\neq 0$ als $0<|z-z_0|<\epsilon$. Dus elke nul is geïsoleerd.

Bewijs

Als $f \neq 0$, dan is tenminste een coëfficiënt in de Taylorreeks ontwikkeling van f niet gelijk aan 0. Maar dan $f(z) = g(z)(z-z_0)^m$ met $g(z_0) \neq 0$. Als $\epsilon > 0$ volgeode klein is, geldt $g(z) \neq 0$ als $|z-z_0| < \epsilon$, dus $f(z) \neq 0$ als $0 < |z-z_0| < \epsilon$.

Corrollary

Stel, dat $z_n \to_{n\to\infty} z_0$ en $f(z_n) = g(z_n)$ voor alle $n \in \mathbb{N}$, dan $f \equiv g$.

Bewijs

Het geldt $(f-g)(z_n)=0$, dus ook $(f-g)(z_0)=\lim_{n\to\infty}(f-g)(z_n)=0$, maar z_0 is niet geïsoleerd, daarom $f-g\equiv 0$.

Stelling van Riemann

Neem aan dat f analytisch is op $\{z \in \mathbb{C} | 0 < |z - z_0| < \epsilon\}$ en begrensd, dus er bestaat M > 0 met $|f(z)| \leq M$. Dan heeft f een ophefbare singulariteit in z_0 dus f is analytisch ook in z_0 .

Bewijs

We willen bewijzen dat $a_n = 0$ als n < 0.

$$a_n = \frac{1}{2\pi i} \int_{|z|=\rho} \frac{f(z)}{(z-z_0)^{n+1}} dz \text{ met } 0 < \rho < \epsilon.$$

$$|a_n| \leq \frac{1}{2\pi} \int_{|z|=\rho} \frac{|f(z)|}{\rho^{n+1}} dz \leq \frac{M}{\rho^n}$$
 (al eerder gezien). Dus als $n < 0$ en $\rho \to 0$ dan $\frac{M}{\rho^n} \to 0$.

Voorbeeld

$$f(z) = \frac{\sin(z)}{z} = \frac{1}{z}(\frac{z}{1} - \frac{z^3}{3!} + \frac{z^5}{5!} + \dots) = 1 - \frac{z^2}{3!} + \dots$$
 heeft een ophefbare singulariteit in $z = 0$.

Stelling

Als z_0 een pool van orde $m \in \mathbb{N}$ is, dan $\lim_{z \to z_0} f(z) = \infty$.

Bewijs

Omdat
$$f(z) = \frac{g(z)}{(z-z_0)^m}$$
, geldt $\lim_{z\to z_0} \frac{1}{f(z)} = \lim_{z\to z_0} (z-z_0)^m \lim_{z\to z_0} \frac{1}{g(z)} = \lim_{z\to z_0} (z-z_0)^m \frac{1}{g(z_0)} = 0$ want $g(z_0) \neq 0$.

Stelling van Casorati-Weierstraß

Neem aan dat $z_0 \in \mathbb{C}$ een essentiële singulariteit is. Kies een willekeurig $w_0 \in \mathbb{C}$ en $\epsilon > 0$. Dan bestaat er voor elke $\delta > 0$ een $z \in \mathbb{C}$ met $|z - z_0| < \delta$ zodat $|f(z) - w_0| < \epsilon$

Opmerking

f is compleet 'gek' in de buurt van z_0 .

Voorbeeld

 $f(z) = e^{\frac{1}{z}}$ heeft een essentiële singulariteit in z = 0.

Bewijs

Door tegenspraak: Stel dat er $\delta > 0$ en $\epsilon > 0$ bestaat met $|f(z) - w_0| \ge \epsilon \ \forall z \in \{z \in \mathbb{C} | 0 < |z - z_0| < \delta\}$. Dan is $g(z) = \frac{1}{f(z) - w_0}$ analytisch en ook begrensd op $\{z \in \mathbb{C} | 0 < |z - z_0| < \delta\}$ dus g heeft een ophefbare singulariteit. Maar daarmee $f(z) = \frac{1}{g(z)} + w_0$. Als $g(z_0) \ne 0$, dan heeft f een ophefbare singulariteit en $f(z_0) = \frac{1}{g(z_0)} + w_0$.

Als $g(z_0) = 0$, dan is $z = z_0$ een nul van orde m van g, dus een pool van orde m van f.

