or no equations associated with each bus. The corrections are left in memory for the variable updating routine. Note that as control variables hit limits, the control may be relaxed and afterward reinstated.

NEWVAR

This function updates the independent variables (voltage magnitude and angle) by applying the corrections calculated by the solution subroutine. The corrected variables are then used to build the next iteration's Jacobian matrix and calculate the new mismatch vector.

6.15 EXAMPLE 6A: AC POWER FLOW CASE

The six-bus network shown in Figure 6.18 will be used to demonstrate several aspects of power flows here and in other chapters of this book.

FIGURE 6.18 Six-bus sample system.

This example has a "base case" of 300 MW and 45 MVAR total load. The imped ance values and other data for this system are shown here:

Bus Data

Bus	Tima	p	$Q_{ m load}$	$G_{\rm s}$	B_{s}	Area	$V_{ m mag}$	θ	baseKV	Zone	V	v
Number	Type	Pload	Pload		0	1	1	0	230	1	1 oc	V min
1	3	0	0	0	0	î	1	0	230	1	1.07	0.95
2	2	0	0	0	0	î	1	0	230	1	1.07 1.07	0.95
3	2	0	0	0	0	1	1	0	230	1	1.07	0.95
4	1	100	15	0	0	1	1	0	230	1	1.07	0.95
5	1	100	15	0	0	1	1	0	230	1	1.07	0.95
6	1	100	15								1.07	0.95

Type 3 =swing bus, type 2 =generator bus, type 1 =load bus

Generator Data

00110						449 5000 0000000			
Bus	P	0	Q_{max}	Q_{min}	$V_{ m gen}$	MVABase	Status	P_{max}	P_{\min}
200	gen	2 gen	Illax			100			
1	110	Λ	150	-100	1.07	100	1	200	50
1	110	U			1.05	100	1	150	
2	50	0	150	-100	1.05	100	1	150	37.5
2	50	U		100	1.05	100	1	180	
3	50	0	120	-100	1.05	100	1	100	45
5									

Branch Data

Dianon D					20					
Frombus	Tobus	r	x	b	rateA	rateB	rateC	Ratio	Angle	Status
1	2	0.1	0.2	0.04	100	0	0	0	0	1
1	4	0.05	0.2	0.04	100	0	0	0	0	1
1	5	0.08	0.3	0.06	100	0	0	0	0	1
2	3	0.05	0.25	0.06	60	0	0	0	0	1
2	4	0.05	0.1	0.02	60	0	0	0	0	1
2	5	0.1	0.3	0.04	60	0	0	0	0	1
2	6	0.07	0.2	0.05	60	0	0	0	0	1
3	5	0.12	0.26	0.05	60	0	0	0	0	1
3	6	0.02	0.1	0.02	60	0	0	0	0	1
4	5	0.2	0.4	0.08	60	0	0	0	0	1
5	6	0.1	0.3	0.06	60	0	0	0	0	

Generator Cost Function Data

CostCurveType	StartUp	ShutDown	NumCoeff	С	b	a
2 2	0	0	3	0.00533 0.00889	11.669 10.333	213.l 200
2	0	0	3	0.00741	10.833	<u> 240</u>

Power Flow Execution Results

Voltages are all within their limits of 0.95–1.07 pu; the reference bus is scheduled at 1.07 pu and is therefore labeled as UL for upper limit.

271

All reactive power limits are being met and all line flows are within their MW limits. All loads are at the base case value of 100 MW and 15 MVAR.

The real and reactive power losses are small.

-																	
		on Conve	rgence	Steps				VI20									
-	on Raphs	MAXDI	bus M	QUXA				im N	mVli	m							
New	MAXDP		6 0.6	18486	6		0	1	L								
Iter	0.8258	95	2 0.1	42304	5		0		L								
1	- A071	11	2 0.0	02313	5		0	1	ι								
2	0.0012	65	_														
3	•																
	TOW R	ESULTS															
PONE	R FLOW R		328.	58 MW	1	Total	Octen		=		67.74		_				
	n pren		300.				Qload		=			MVA					
TO	tal PLoa	d =	28.				QLoss		_		45.00	MVA					
TO	tal PLos	ses =	28.	30 Pm		rocar	Quoss	es	_		22.74	MVA	R.				
TO	tal				_	^	_										
	Pmin	Pgen	Pmax	Qmi		Qgen		ax	Plo				Vmin	Vbus		Vbus	Vma
Bus	MW	MN	MM	MVA		MVAR		AR	MW		M/	AR	pu	pu		kV	pu
	50.0	228.6	450.0	-100.		32.2		0.0	0	.0		.0	0.95	1.07	VL	246.1	1.0
1		50.0	150.0	-100.		75.7	15	0.0	0	.0		.0	0.95	1.05		241.5	1.0
2	37.5	50.0	180.0	-100.	0	24.2	12	0.0	0	.0		.0	0.95	1.05		241.5	1.0
3	45.0	50.							100	.0	15	.0	0.95	0.99		228.0	1.0
4									100		15	. 0	0.95	1.01		233.3	1.0
5									100	.0	15	.0	0.95	1.02		235.4	1.0
6											7.			1.02		233.4	1.0
			. Po	gen	Qger		Pload	014	bad	To	Bug	D1	ine	Qline			
Bus	Vmag	angle		W	MVAF		MW	М			243	м		_		Max	
D	kV	deg			32.18		0.00		.00					MVAR		Plow	MW
1	246.1	0.00	220.	30	32.10	•	0.00	v	.00						1		
-	77										2	123		-35.59	UL	100	
											5	105	.01	3.42	UL.	100	
2	241.5	-14.40	50.	.00	75.71		0.00	U	.00								
2											1	-109		59.71	VL	100	
											3		. 35	-5.42		60	
											4	93	.09	17.20	UL	60	
											5	15	. 60	5.30		60	
											6	39	.22	-1.07		60	1
_	044 E	-15.99	50.	.00	24.20)	0.00	0	.00								1
3	241.5										2	-11.	.29	-0.89		60	1
											5	8.	. 92	7.52		60	
											6	52	.37	17.57		60	
_	000 0	-19.00	1			10	0.00	15	.00								
4	228.0	-13.00	•			-					2	-89	.01	-11.12	UL	60	
											5	-10		-3.88	F	60	
			,			10	0.00	15	.00		-						
5	233.3	-16.5	1			10		10			1	-97	27	19.08		100	
											2	-15		-8.74		60	
											3		.72	-12.41		60	
											4		.23	-3.68		60	
														-9.24		60	
											6	10.	.08	-5.24			
6	235.4	-18.58	3			10	0.00	15	.00		_		25	_1 =1		60	
											2	-38.		-1.51		60	
											3	-51		-16.91		60	
											5	-9.	. 95	3.42		60	
limi	its indi	cator															
		en	Oc	gen.	Vo	en.											
1	-	.58	-32.	-0.00 St 50		0700	VI.										
2		.00	75.			0500											
3		.00	24.			0500											
3	30	. 50	£4.	20													
						-	_										

Symbols: UL = Upper Limit Reached or exceeded pu = per unit

6.16 THE DECOUPLED POWER FLOW

The Newton power flow is the most robust power flow algorithm used in practice. However, one drawback to its use is the fact that the terms in the Jacobian matrix must be recalculated each iteration and then the entire set of linear equations in Equation 6.27 must also be resolved each iteration.

Since thousands of complete power flows are often run for a planning or operations study, ways to speed up this process were sought. One way to speed up the calculation is to use a technique known as the "fast decoupled power flow" (it is often referred to as the "Stott decoupled power flow," in reference to its first author).