COEN242 PA2 - Top K words in a big dataset

Hui-yu Liu, Ching-Yueh Huang

I. Introduction

In the previous work, we used python to find top K words in a big dataset, including 300MB, 2.5GB and 16GB. This report is another way using Hadoop MapReduce to implement it. The goal is to find the Top 100 frequent words and the words having more than 6 characters using MapReduce. In addition, we will be utilizing the nlargest function from Python's heapq module to efficiently analyze large datasets and gain insights into the most commonly used words in a given text corpus.

This report aims to introduce the method we utilized in our function and setting files. We will first provide a detailed explanation of the method and how it was implemented. In addition, we will discuss some observations and optimization techniques that we adopted during the testing phases to improve the performance of our method. Furthermore, we will summarize the results obtained from our experiments and provide insights into the effectiveness of our approach. Finally, we will conclude our work by discussing the implications of our findings and potential future improvements.

II. Methods

To perform word count using Hadoop MapReduce, we began by creating a mapper to split each line of text into individual words and convert them to lowercase. This was done because all the stopwords provided were in lowercase. By converting all the words to lowercase, we made it easier to identify the stopwords. The output of the mapper was a set of key-value pairs where the word was the key and the value was set to 1. To optimize performance, we also implemented a combiner to aggregate the intermediate results for each key before they were sent to the reducer.

To meet the requirement of retrieving the top 100 words with each word having more than 6 characters, we wrote another mapper program. Here, we also converted each word to lowercase and counted the number of occurrences of each word using counters. After aggregating the results, we passed them to the reducer

for further processing of the data. In the reducer program, we created a dictionary to store the key-value pairs. Moreover, we implemented 'heapq' module with 'nlargest' function, which is used to return the n largest elements from the key-value dataset. The algorithm of heap queue works by maintaining the the heap size, and iterating over the collection, adding each element to the heap and then popping the smallest element off if the heap size exceeds the given number. This algorithm has the time complexity of O(log n), proving that it is an efficient way to maintain a heap in memory. In terms of space efficiency, since only a small portion fo the input data needs to be stored in memory at any given time, the heap queue is space efficient. To get the top k element from the input data, we customized our heapq algorithm with 'nlargest' function, which allowed us to sort the data based on a specified key and handle any ties between elements. This approach proved to be the effective solution for sorting and filtering data in Python.

Next, we used Hadoop Streaming to run the MapReduce job on a Hadoop cluster. We specified the number of reducers and partitioned the data based on the first two characters of each word. And end up writing a reducer function to sum up the value of each key to get the total count for each word. In addition, we changed some variables in mapred-site.xml to optimize the whole process. For example, we increase the 'mapreduce.task.io.sort.mb' parameter which results in improved performance with more memory available for the map output buffer and reduced amount of data that needs to be spilled to disk during the sort and shuffle phase. It also reduced disk I/O. With more memory available for the map output buffer, the amount of data that needs to be spilled to disk during the sort and shuffle phase is reduced. This resulted in faster job completion times. Plus, the setting parameter increased parallelism with more memory available for sorting. This improved overall job throughput by allowing more tasks executing in parallel. However, we were aware of the tradeoffs involved in increasing this parameter, such as requiring more memory, which could be problematic if the cluster had limited resources., which can be a problem if the cluster has limited resources. So we carefully monitored the test result and adjusted the the parameter by calculating the most suitable requirements based on our resources and the efficiency of MapReduce tasks accordingly.

III. Analysis

A. MapReduce Optimization

When Map starts generating output, it does not simply write the data to disk, as frequent disk operations can cause severe performance degradation. It is more complex in that the data is first written to a buffer in memory and some pre-sorting is done to improve efficiency.

Each Map task has a circular memory buffer used to write the output data. The default size of this buffer is 100MB, and the exact size can be set via the io.sort.mb property. When the amount of data in the buffer reaches a specific threshold (io.sort.mb * io.sort.spill.percentage, where io.sort.spill.percentage is 0.80 by default), a background thread is started to spill the contents of the buffer to disk. During the spill process, the output of Map will continue to be written to the buffer, but if the buffer is full, Map will be blocked until the spill is complete. spill thread will do a second quick sort on the buffer before writing it to disk, first sorting by the partition the data belongs to, and then sorting by Key in each partition. in each partition. The output consists of an index file and a data file.

If a Combiner is set up, it will run on top of the sorted output, which is a Mini Reducer that runs on the node itself performing the Map task, first doing a simple Reduce on the Map output, making the Map output more compact, with less data being written to disk and transferred to the Reducer.

The spill file is stored in the directory specified by mapred.local.dir and deleted after the Map task is completed.

A new spill file is created every time the data in memory reaches the spill threshold, so there may be multiple spill files by the time the Map task finishes writing its last output record. Before the Map task finishes, all spill files will be merged and sorted into one index file and one data file. This is a multi-way merge process, and the maximum number of merges is controlled by io.sort.factor (default is 10). If Combiner is set and the number of spill files is at least 3 (controlled by the min.num.spills.for.combine property), then Combiner will be run to compress the data before the output files are written to disk.

Compressing the data written to disk is usually a good way to do this, as it makes the data write to disk faster, saves disk space, and reduces the amount of data that needs to be transferred to the Reducer. The default output is not compressed, but it can be enabled by simply setting mapred.compress.map.output to true. The library used for compression is set by mapred.map.output.compression.codec.

When the spill files are consolidated, Map will delete all temporary spill files and tell TaskTracker that the task is complete. The number of threads used to transfer the partitions data is controlled by tasktracker.http.threads, which is set for each TaskTracker, not a single Map, and defaults to 40.

For Intermediate data, this is always a good idea to use LZO compression. Every Hadoop job that generates a non-negligible amount of map output will benefit from intermediate data compression with LZO. Although LZO adds a little bit of overhead to the CPU, it saves time by reducing the amount of disk IO during the shuffle.

Name	Default	Changed
mapreduce.task.io.sort.mb	100	220
mapreduce.task.io.sort.factor	10	100
mapreduce.map.sort.spill.percent	0.8	0.9
mapred.map.child.java.opts	-Xmx200m	-Xmx1024m
mapred.reduce.child.java.opts	-Xmx1024m	-Xmx1024m
mapreduce.reduce.input.buffer.percent	0.0	0.2
mapred.job.shuffle.merge.percent	0.66	0.8
min.num.spills.for.combine	3	5

Data changed in mapred-site.xml

B. Cases of experiment

In Hadoop, the input data is divided into blocks, typically 64MB or 128MB in size. For a 16GB input, assuming a block size of 128MB, you

would have approximately 110 blocks. Each block will be processed by a mapper. We will give some cases below to check how different cases work.

1) Case 1

When setting only one reducer and allowing the number of mappers to be defined by the data size, the system will automatically determine the optimal number of mappers based on the input data. hadoop jar

```
$HADOOP_HOME/share/hadoop/tools/lib/hadoop-streaming-3.3.5.ja
r \
-file <path_to_mapper.py> \
-mapper <path_to_mapper.py> \
-file <path_to_reducer.py> \
-reducer <path_to_reducer.py> \
-file <path_to_stopword.txt> \
-input <hadoop_path_to_data_16GB.txt> \
-output /output/16gb/case1
```

							Job Overview
		Job Name:	streamjob5080	89171612	7857877		
		User Name:				,	
Queue:			,				
		State:	SUCCEEDED				
		Uberized:	false				
		Submitted:	Fri May 12 21:	02:59 PDT	2023		
		Started:	Fri May 12 21:	03:05 PDT	2023		
		Finished:	Fri May 12 21:	50:25 PDT	2023		
		Elapsed:	47mins, 19sec				
Diagnostics:							
	Aver	age Map Time					
	Average	e Shuffle Time					
	Averaç	ge Merge Time					
	Average	Reduce Time					
Ap	pplicationMaster						
	Attempt Number		Start Time			Node	Logs
		Fri May 12 21:0	03:01 PDT 2023		172.	31.94.170:8042	logs
	Task Type		Total			Complete	
	Map		115		115	·	
	Reduce		1		1		
	Attempt Type		Failed	Kill	led	Succes	sful
	Maps	0		1		115	
	Reduces	0		0		1	

As you can see, for Case 1, there are 115 mappers and one reducer, we spend most of the time in shuffle and reduce. The total time of it is about 47min. We can also check the MapReduce FrameWork in Counter, the spilled records of mapper is more than 2,900,000,000. Each map spill for about 28MB, so that's why we tried to change mapreduce.task.io.sort.mb from default 100 to 200.

2) Case 2

To enhance the efficiency of the data processing workflow, we conducted an analysis to identify areas for improvement. In Case1, where no combiner was employed, the execution time for the Reduce phase was significant. In an effort to mitigate this, we introduced a combiner, which operates as an intermediate step between the mapper and reducer stages.

```
hadoop jar
$HADOOP_HOME/share/hadoop/tools/lib/hadoop-streaming-3.3.5.ja
r \
-file <path_to_mapper.py> \
-mapper <path_to_mapper.py> \
-file <path_to_reducer.py> \
-reducer <path_to_reducer.py> \
-file <path_to_combiner.py> \
-combiner <path_to_combiner.py> \
-file <path_to_combiner.py> \
-file <path_to_stopword.txt> \
-input <hadoop_path_to_data_16GB.txt> \
-output /output/16gb/case2
```

					Job	Overview
	Job Name:	streamjob261	13114076	02392802	26.jar	
	sandy					
	Queue:	default				
	State:	: SUCCEEDED				
	Uberized:	d: false				
	Submitted:	ed: Sat May 13 09:52:06 PDT 2023				
	Started:	Sat May 13 0	9:52:13 F	DT 2023		
	Finished:	Finished: Sat May 13 10:20:42 PDT 2023				
	Elapsed:	28mins, 29se	c			
	Diagnostics:					
Avera	1mins, 14sec	;				
Average	22mins, 18se	c				
Averag	5sec					
Average	Reduce Time	12sec				
ApplicationMaster						
Attempt Number		Start Time			Node	Logs
1	Sat May 13 09	9:52:08 PDT 20)23	172.2	0.205.169:8042	<u>logs</u>
Task Type		Total			Complete	
Map		115		115		
Reduce		1		1		
Attempt Type		Failed	Kil	led	Successfi	ul
Maps	<u>0</u>		1		115	
Reduces	0		0		1	
			_		_	

By incorporating the combiner, we observed a remarkable reduction in overall execution time, with a decrease of approximately 40% compared to Case1. This improvement can be

attributed to the combiner's ability to locally aggregate and compress the intermediate key-value pairs generated by the mapper, reducing the data volume transferred over the network and optimizing the reducer's workload. The utilization of a combiner not only minimizes network congestion and data transfer, but also optimizes the reducer's workload by performing an initial aggregation step locally.

3) Case 3

For Case3, our objective was to evaluate the impact of employing multiple reducers on reducing the execution time of the data processing task. By distributing the workload across multiple reducers, we aimed to parallelize the computation and potentially achieve a faster overall processing time. In this experiment, we increased the number of reducers and monitored the execution time to assess the effectiveness of this approach. By dividing the data into multiple partitions and assigning each partition to a separate reducer, we expected to leverage parallel processing capabilities and potentially achieve a significant reduction in execution time. hadoop jar

```
$HADOOP_HOME/share/hadoop/tools/lib/hadoop-streaming-3.3.5.ja
-D mapred.reduce.tasks=50 \
-file mapper.py \
-mapper mapper.py \
-file reducer.py \
-reducer reducer.py \
-file combiner.py \
-combiner combiner.py \
-file stopword.txt \
-input /wordcount/input/data_16GB.txt \
-output /wordcount/output/16gb/case3-temp \
8&\
hadoop jar
$HADOOP_HOME/share/hadoop/tools/lib/hadoop-streaming-3.3.5.ja
r \
-file sort_map.py \
-mapper sort_map.py \
-file sort_reduce.py \
-reducer sort_reduce.py \
```

```
-file combiner.py \
-combiner combiner.py \
-input /wordcount/output/16gb/case3b-temp \
-output /wordcount/output/16gb/case3b
```

						Job Overview	
	Job Name:	streamjob9167	743722421	4791307.	ar		
	User Name:	sandy					
Queue:		default					
	State:						
	Uberized:	false					
	Submitted:	Sun May 14 1:	2:08:21 PD	T 2023			
	Started:	Sun May 14 1:	2:08:30 PD	T 2023			
	Finished:	Sun May 14 1:	2:58:08 PD	T 2023			
	49mins, 37sec	;					
Aver	55sec						
Average Shuffle Time		45sec					
Averag	Average Merge Time		Osec				
Average	Reduce Time	1sec					
ApplicationMaster							
Attempt Number		Start Time			Node	Logs	
1	Sun May 14 12	:08:26 PDT 202	3	100.7	6.111.243:8042	<u>logs</u>	
Task Type		Total			Complete		
<u>Map</u>		115		115			
Reduce		50		50			
Attempt Type		Failed	Kill	ed	Succes	sful	
Maps	0		0		115		
Reduces	0		0		50		

However, upon analyzing the results, we found that the expected improvement in execution time was not realized. Despite using multiple reducers, the overall processing time did not demonstrate a substantial reduction compared to previous cases.

This outcome suggests that the specific characteristics of the data, the nature of the computation, or other factors may have limited the benefits of employing multiple reducers in this particular scenario. Further analysis is required to understand the underlying reasons for the lack of performance improvement and to identify potential optimizations that could enhance the efficiency of the data processing task.

Based on the results of our experimentation, it can be concluded that Case 2, which involved the utilization of a combiner in the data processing pipeline, exhibited better performance compared to Case 3, which employed multiple reducers.

In Case 2, the introduction of the combiner allowed for partial aggregation of intermediate key-value pairs within the mapper phase itself. This reduced the amount of data transferred between the mappers and reducers, leading to a more efficient data processing workflow. As a result, the overall execution time was significantly reduced by approximately 40% compared to Case 1.

IV. Conclusion

The primary objective of this project was to efficiently process a large dataset using the Hadoop Data Processing Framework - MapReduce, and extract the top 100 words in parallel across clusters. To achieve this, we implemented nlargest and heapq algorithms, along with the sort_mapper and sort_reducer files, which helped streamline the sorting process and identify the most frequently occurring words.

After running several test cases, we identified areas for improvement in our program, including adding a combiner function, making parameter changes in the .xml files, and setting up the Hadoop LZO environment to enhance performance further. We were able to achieve significant reductions in processing time by optimizing hardware and software performance. For instance, in case one from part three, we increased the amount of data that can be spilled to disk during the sort and shuffle phase, reducing processing time from over an hour to just 47 minutes. In case two, by adding a combiner function and strictly coding it, we were able to achieve a 40% reduction in processing time.

This project demonstrates the power of MapReduce in processing large datasets and the various techniques that can be employed to optimize performance. Throughout this project, we have gained insights into how MapReduce processes large volumes of data in a parallel and scalable manner, while also simplifying complex computations through effective management of Mappers and Reducers. By constantly evaluating and improving our methods, we can continue to refine our approach and tackle even more complex big data challenges in the future.

V. Reference

Apache Hadoop 3.3.5 – MapReduce Tutorial

<u>Hadoop Streaming</u>

Pusukuri, Kishore. COEN 242 Class Slides. Santa Clara University

Hadoop LZO

Hadoop Mapreduce Client

Top100 Words for 16GB.txt

said 16983038	much 1878812	right 1336449
would 5829109	say 1866770	court 1330434
one 5827854	day 1831556	team 1329924
new 5619251	week 1829329	united 1310698
also 4618231	home 1827482	need 1307171
us 4602724	take 1785403	report 1299343
people 4302078	per 1779050	country 1295488
last 4096906	work 1770896	help 1289802
year 4011803	going 1744159	according 1281617
two 3964144	think 1670557	business 1275145
first 3839807	company 1665814	market 1267854
mr 3746747	good 1635409	life 1256423
years 3637652	dont 1629480	long 1242001
time 3635760	next 1605312	set 1232190
could 3374880	including 1594887	months 1227463
like 3058690	see 1561688	man 1226580
government 2520240	states 1543254	best 1211261
says 2417351	another 1536907	come 1208192
may 2393105	group 1521302	cent 1203960
get 2346949	go 1508945	officials 1195387
many 2344542	public 1506218	family 1186525
back 2295703	de 1499434	left 1178734
million 2255486	house 1494732	high 1177794
three 2250200	around 1482330	show 1172154
president 2193692	city 1474866	health 1163668
even 2175400	former 1461398	york 1161016
made 2130243	part 1446451	
make 2104945	second 1433375	
told 2092903	national 1415826	
since 2041708	obama 1405174	
world 2039952	know 1386991	
percent 2022481	want 1379621	
police 2014250	game 1371927	
well 1965773	four 1371032	
still 1956831	news 1368259	
state 1948101	found 1366151	
way 1936600	end 1353926	

Top100 Words(>6) for 16GB.txt

government 2520240	something	896500	despite	652919
million 2255486	military	893360	official	643514
president 2193692	several	877379	council	639609
percent 2022481	companies	869826	election	635236
company 1665814	washington	866772	announced	632756
including 1594887	members	861953	looking	630482
another 1536907	service	853089	possible	629503
national 1415826	federal	852384	thought	628703
country 1295488	campaign	820329	control	628021
according 1281617	statement	817540	current	624576
business 1275145	economy	816287	program	624140
officials 1195387	british	813789	getting	623774
american 1129214	university	806441	interest	612373
international 1116052	services	799299	outside	605728
financial 1097729	director	788859	england	599716
support 1080825	important	773502	minutes	599437
children 1072801	working	766645	spokesman	596504
however 1072387	players	755612	continue	594807
security 1058065	countries	740881	increase	588451
billion 1049368	decision	732901	private	586730
without 1039688	earlier	732872	authorities	584908
political 1018915	different	722896	meeting	578137
european 1018667	general	722268	history	576197
whether 1014215	research	716089	together	575985
yearold 981085	capital	705038	results	575269
tuesday 969122	saturday	702016	community	571257
already 960627	believe	701746	reports	565968
minister 942536	industry	700059	leaders	565284
information 927619	department	699764	problem	562464
wednesday 920376	executive	696821	hospital	559119
reported 917579	quarter	696623	process	556804
expected 916793	following	665860	markets	555948
economic 910616	although	662413		
thursday 910329	foreign	654706		

Top100 Words for 2.5GB.txt

said 2616266	home 304861	life 218625
one 949555	week 299482	national 216146
would 917212	much 296828	family 214071
new 852822	cent 294331	best 207276
also 727934	work 294328	news 206894
last 700735	le 284535	need 205295
people 688828	take 284214	help 204715
us 670794	going 283188	set 202012
mr 659562	good 278834	come 201761
year 654244	say 278437	got 201136
de 643122	dont 277780	long 200086
two 637405	think 274485	according 199469
first 616295	next 269513	business 199119
years 608882	state 264274	left 197811
time 602016	around 259091	les 196404
could 548856	see 258524	et 195339
like 484097	including 250803	months 193875
says 419576	president 250617	really 193662
government 405470	go 249882	used 193435
back 398012	another 249601	market 192509
get 397140	found 245247	percent 191929
may 372870	company 244010	im 191567
police 371212	former 239811	big 189219
per 367298	public 236849	place 188953
la 360237	part 235478	
three 360087	court 234684	
told 359229	group 234072	
many 358774	team 232873	
made 344154	man 231083	
even 335035	know 230360	
make 333551	game 230229	
well 326187	city 227040	
world 319405	house 225066	
million 318478	want 224799	
since 318416	second 223861	
way 316957	end 222602	
still 312846	right 221258	
day 305766	four 220644	

Top100 Words(>6) for 2.5GB.txt

government 405470	tuesday	126216	european	96292
million 318478	members	126102	general	96204
including 250803	federal	125761	campaign	94970
president 250617	director	125292	started	94334
another 249601	companies	123237	foreign	93788
company 244010	statement	123219	together	93721
national 216146	military	122988	continue	93269
according 199469	thursday	122559	morning	92841
business 199119	different	122406	interest	92423
percent 191929	research	121958	michael	92310
children 186405	wednesday	121808	announced	92247
country 185323	services	120953	history	91906
yearold 174923	earlier	120110	playing	90794
however 171875	decision	120034	council	90489
minister 171512	following	118936	evidence	90275
support 160054	important	116119	forward	89655
without 159819	reported	113628	community	89601
whether 157119	executive	112042	official	89275
international 155251	despite	112028	current	89202
something 150041	hospital	111788	spokesman	87907
already 147866	thought	111391	building	87419
players 147136	economic	108564	private	87286
officials 145338	looking	108465	released	86908
security 143445	industry	108024	countries	86402
expected 142353	economy	107246	parents	86343
american 140006	department	105927	election	85852
billion 139672	england	105272		
financial 135819	saturday	104744		
british 134480	getting	103814		
political 133593	believe	103005		
information 133546	although	102923		
australia 133494	minutes	102270		
australian 133022	outside	99852		
university 132830	washington	99784		
service 132019	possible	97903		
several 127788	capital	97281		
working 126900	control	96887		

Top100 Words for 300MB.txt

european 318743	many 53998	international 40222
mr 210690	social 53696	country 39653
would 181912	way 53401	directive 39575
also 180118	believe 52845	said 39528
commission 172783	development 52466	state 39025
must 156856	commissioner 51201	within 38778
president 152134	say 50620	already 38700
union 130344	proposal 50250	much 38680
states 130270	market 49889	cooperation 38527
member 126301	fact 48978	good 38321
parliament 122059	debate 48595	common 38316
report 119173	human 48400	vote 38217
like 111176	group 46352	world 38038
council 107720	question 45847	part 37862
one 102551	think 45818	clear 37847
europe 95645	agreement 45493	members 37768
countries 93490	years 45489	mrs 37471
us 91379	even 45344	may 37147
eu 86935	issue 44464	still 36947
need 84622	citizens 44331	year 36773
policy 82662	point 44227	particular 36433
important 81684	future 43162	use 36111
new 81139	order 43091	know 36086
people 78712	situation 42969	see 35543
time 78348	public 42716	system 34983
rights 69717	financial 42361	energy 34781
therefore 68313	well 42255	
support 68006	right 42231	
however 65871	measures 42147	
take 64840	two 42045	
make 64650	cannot 42028	
work 62135	could 41419	
economic 60152	possible 41337	
committee 59456	community 41307	
political 56396	want 41292	
made 55424	today 40822	
first 54666	national 40257	

Top100 Words(>6) for 300MB.txt

european 318743	protection 31263	concerned 21513
commission 172783	problem 30630	another 21287
president 152134	example 30564	towards 21233
parliament 122059	gentlemen 30454	welcome 21101
council 107720	amendments 30308	research 20969
countries 93490	problems 29849	something 20907
important 81684	government 29573	approach 20826
therefore 68313	rapporteur 29433	environment 20733
support 68006	particularly 29247	commissions 20637
however 65871	programme 29047	current 20384
economic 60152	necessary 28937	forward 20348
committee 59456	resolution 28790	resources 20189
political 56396	position 27628	conditions 20158
believe 52845	respect 27523	clearly 20086
development 52466	whether 26696	finally 20040
commissioner 51201	framework 26478	together 20040
proposal 50250	presidency 26427	including 20030
question 45847	services 25850	industry 20024
agreement 45493	regulation 25611	principle 20000
citizens 44331	proposals 25403	procedure 19964
situation 42969	amendment 25115	fundamental 19823
financial 42361	certain 24890	authorities 19651
measures 42147	adopted 24128	importance 19645
possible 41337	legislation 23702	proposed 19548
community 41307	different 23433	specific 19452
national 40257	strategy 22929	policies 19429
international 40222	institutions 22850	
country 39653	decision 22848	
directive 39575	present 22830	
already 38700	progress 22575	
cooperation 38527	subject 22475	
members 37768	continue 22407	
particular 36433	opinion 22225	
security 33259	employment 22066	
information 32899	transport 21805	
without 32726	working 21633	
process 32647	general 21518	
-	_	