

Discrete Mathematics MH1812

Topic 2 - Propositional Logic Summary

Logical Operators: Three Basic Operators

Equivalent Expressions: The Statements

These three statements are equivalent:

$$\neg h \land \neg b \equiv \neg b \land \neg h \equiv \neg (b \lor h)$$

has sume truth table

b h	¬ь	\neg_h	b V h	$\neg h \land \neg b$	$\neg b \land \neg h$	$\neg (b \lor h)$
TT	F	F	Т	F	F	F
ΤF	F	Т	Т	F	F	F
FT	Т	F	Т	F	F	F
FF	Т	Т	F	Т	Т	Т

Operator Precedence: High to Low

Prove or disprove the following statement:

$$p \rightarrow q \equiv \neg p \land q$$
.

Disproof

Set
$$\rho = T$$
 & $g = T$

Usen LHS \neq RHS

 (T) (F)

Avoid this approach! conversion thin Disproof
LHS = P > 2 = 7p/vg $\frac{1}{7} \gamma \rho (N) = RHS$ Justification is incomplete.

Prove of disprove the following statement:

$$(p \lor r) \rightarrow (p \land q) \equiv (p \rightarrow q) \land (r \rightarrow q).$$

Try
$$P$$
 2 or PVC PVC

Prove or disprove the following statement:

V not equivalent

$$(p \lor r) \rightarrow (p \land q) \equiv (p \rightarrow q) \land (r \rightarrow q).$$

P	9	_	PVC	P12	$(P \wedge r) \rightarrow (P \wedge 2)$	P > q	r-> 1	$(P \rightarrow 2) \wedge (r \rightarrow 2)$
		THEFATE	一			TT C C T T T T	TT F T T F T	TTCT

Arguments: Valid Argument

An argument is a sequence of statements. The last statement is called the conclusion. All the previous statements are called premises (or assumptions/hypotheses).

A valid argument is an argument where the conclusion is true if the premises are all true.

A critical row with a false conclusion is a counterexample.

Arguments: Valid Argument Template

- Critical rows are rows with all premises true.
- If in all critical rows the conclusion is true, then the argument is valid (otherwise it is invalid).

p	q	$p \rightarrow q$	$(p \rightarrow q) \land p$	$((p \to q) \land p) \to q$
Т	Т	Т	Т	Т
T	F	F	F	to calculate T
F	Т	Т	F	to calcut
F	F	Т	Nother	Т

pecide whether or not the following argument is valid:

roll
$$p \leftrightarrow q$$
; then f or a counterexample be $q \rightarrow r$; $r \lor s$;

Inference Rules: Definition

A rule of inference is a logical construct which takes premises, analyses their syntax and returns a conclusion.

We already saw...

$$p \rightarrow q;$$
 $p;$
 $\therefore q$

Modus Ponens(Method of Affirming)

$$p \rightarrow q;$$
 $\neg q;$
 $\therefore \neg p$

Modus Tollens
(Method of Denying)

Inference Rules: More Inference Rules

Conjunctive Simplification (Particularising)

```
p∧q;
∴ p
```

Disjunctive Syllogism (Case Elimination)

```
p ∨ q;
¬p;
∴ q
```

Conjunctive Addition (Specialising)

Rule of Contradiction

$$\neg p \rightarrow C;$$

$$\therefore p$$

Disjunctive Addition (Generalisation)

Alternative Rule of Contradiction

$$\neg p \rightarrow F;$$
 $\therefore p$

Decide whether or not the following argument is valid:

$$\begin{array}{c}
(p \lor q) \to \neg r; \\
\neg r \to s; \\
p; \\
\vdots & s
\end{array}$$

```
(Generalisation of 3.)
(Modus ponens
```