存储器扩展技术

用已有的存储器芯片构造一个需要的存储空间

存储器扩展

存储器芯片的存储容量等于:

单元数×每单元的位数

- 用多片存储芯片构成一个需要的内存空间; 字节数存储器芯片率整个内存中占据不同的地址范围;
- 任一时刻仅有一片(或一组)被选中。

存储器扩展方法

1. 位扩展

- 构成内存的存储器芯片的字长小于内存单元要求的字长 时——需进行位扩展。
- 位扩展:每单元字长的扩展。

位扩展例

- 实例芯片: DRAM 2164A:
 - 64K×1bit
- 采用行地址和列地址来确定一个单元;
- 行列地址分射传送,共用一组 地址信号线;
 - 地址信号线的数量仅为同等容量 SRAM芯片的一半。

2164A芯片每单元仅 1位二进制码,故1片 芯片不能构成独立存 储器。

位扩展例

用8片2164A构成64KB 存储体

8片2164A必须具有 完全相同的地址,必 须同时被选中或同时

不被选**兜**通过高、低位地址分时传送行和列地址

行列地址

分时传送

8片2164A 构成64KB 存储体

位扩展例

用8片2164A芯片构成64KB存储器。

位扩展方法:

- 位扩展的连线特点:
 - 将每片的地址线、控制线并联,数据线分别引出。
- 效果:
 - 存储器的单元数不变,位数增加。

位扩展:确保所有芯片具有完全相同的地址范围

对需要位扩展的存储芯片,单独1片没有意义

2. 字扩展

- 地址空间的扩展
 - 地址空间的扩展
 - 芯片每个单元中的字长满足,但单元数不满足。

字扩展:确保所有芯片具有完全不同的地址范围

- 扩展原则:
 - 每个芯片的地址线、数据线、控制线并联。
 - 片选端分别引出,以使每个芯片有不同的地址范围。

字扩展示意图

字扩展例

- 例:
 - 用SRAM 6264芯片构成容量为32KB的存储器
 - 存储器的地址范围为:
 - 20000H~27FFFH
- 设计:
 - 由地址范围得:
 - 需4片6264芯片
 - 存储器地址范围:

对多片芯片构成存储器, 电路设计时应考虑使用专用译码器设计

▶ 高位地址

74LS138译码器

- 73LS138;
 - 3输入8输出的专用译码器
- 可以同財控制8片芯片;
- 在任一时刻,其所连接的8片芯片只有1片被选中。

74LS138译码器

主要引脚及功能

使能端	输入端	输 出 端
G ₁ #G _{2A} #G _{2B}	СВА	#Y ₀ #Y ₁ #Y ₂ #Y ₃ #Y ₄ #Y ₅ #Y ₆ #Y ₇
× 1 1 0 × × 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0	× × × × × × 0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 1 0 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1 1 0 1 1 1	1 1 1 1 1 1 0 1 1 1 1 1 1 1 0

74LS138译码器主要功能

根据输入的不同编码组合,确保 其控制的各电路(芯片)在任一 时刻只有一路(1个芯片)处于 工作状态。

字扩展例

高位地址:

A19

首: 0010 000

尾: 0010 011

■ 利用74LS138译码器设计译码电路。

A13

首地址和尾地址的高位地址有 两位状态不同,须将其接入到 138的输入端。

应确保读/写

3. 字位扩展

- 单元数及每单元字长均不满足要求
- 设计过程:
 - 根据内存容量及芯片容量确定所需存储芯片数;
 - 进行位扩展以满足字长要求;
 - 进行字扩展以满足容量要求。

字位扩展例

- 例:
 - 用32Kb芯片构成256KB的内存。
- 解:
 - 首先进行位扩展:
 - 用8片芯片构成32KB存储体
 - 利用A0~A14寻址存储体内32K个单元
 - 所有控制信号线和地址信号线并联引出
 - 再进行字扩展:
 - 用8个32KB存储体构成256KB存储器
 - 寻址8个存储体,至少需要3位高位地址信号

半导体存储器系统设计练习

利用如图所示的SRAM和ROM芯片构成32KB的程序存储器和16KB的数据存储器,要求程序存储器的地址范围为F0000H~F7FFFH,数据存储器的地址范围为E0000H~E3FFFH。请设计完成该存储器系统。

ROM	SRAM
D0-D7	D0-D7
A0-A12	A0-A12
OE	$\overline{ m WE}$
CS	ŌE
	CS

题目分析

译码地址为 高7位地址

- 由图得:
 - 两种存储器芯片容量均为8KB
 - 需4片ROM, 2片RAM
- 由题目得:
 - 程序存储器高位地址:
 - **1111(00)** --- **1111(011**
 - 数据存储器高位地址:
 - **1110**(000)---- 1110(001)

