

Amendments to the Claims:

This listing of claims will replace all prior versions, and listings of claims in the application:

Listing of Claims:

Claim 1 (Currently Amended): A system comprising:

an execution pipeline;

a power delivery unit to provide power to the execution pipeline at a specified operating point, wherein the power delivery unit includes a clock gating circuit to control power delivery to one or more units of the execution pipeline;

a digital throttle to estimate a power state, responsive to activity of the execution pipeline and the specified operating point, and to trigger a change in the operating point [[state]], responsive to the estimated power state reaching a first threshold.

Claim 2 (Cancelled)

Claim 3 (Previously Presented): The system of claim 1, wherein the digital throttle comprises an activity monitor to estimate an activity level responsive to a signal from the clock gating circuit, the activity monitor including a scaling unit to adjust the estimated activity level, responsive to the current operating point.

Claim 4 (Original): The system of claim 3, wherein the scaling unit includes:

a look-up table to store scaling factors for a plurality of operating points; and

a multiplier to multiply the estimated activity level by the scaling factor associated with the current operating point.

Claim 5 (Original): The system of claim 3, wherein the monitor unit further comprises:

a plurality of weight units, each weight unit being associated with one of the units of the execution pipeline; and

an adder to receive a first or second value from each weight unit, responsive to the signal from the clock gating circuit.

Claim 6 (Cancelled)

Claim 7 (Currently Amended): The system of claim 3 [[1]], wherein the activity monitor includes:

- a look-up table to store scaling factors corresponding to a plurality of operating points; and
- a scaling unit to adjust the activity level according to a scaling factor appropriate for the specified operating point.

Claim 8 (Original): The system of claim 7, further comprising a conversion circuit to determine a power state from the adjusted activity level.

Claim 9 (Original): The system of claim 8, wherein the conversion circuit compares the adjusted activity level with a threshold level and stores the difference in an accumulator.

Claim 10 (Original): The system of claim 9, wherein the conversion unit scales the threshold level responsive to the current operating point.

Claim 11 (Original): A processor comprising:

- an execution pipeline;
- a clock gating circuit to control power delivery to one or more units of the execution pipeline;
- a monitor unit to estimate an activity level of the execution pipeline, responsive to a status signal from the clock gating circuit;
- a scaling unit to adjust the estimated activity level, responsive to an operating point of the processor; and
- a threshold comparator to determine if the scaled, estimated activity level meets a first threshold level.

Claim 12 (Original): The processor of claim 11, wherein the scaling unit includes a look-up table and a multiplier, the look-up table to provide a scale factor to the multiplier, responsive to the operating point of the processor.

Claim 13 (Original): The processor of claim 12, wherein the operating point of the processor is specified by a voltage and a frequency.

Claim 14 (Original): The processor of claim 11, further comprising an accumulator to increment a stored value by a difference between the scaled, estimated activity and the first threshold if the scaled activity exceeds the first threshold.

Claim 15 (Original): The processor of claim 14, further comprising a comparator to compare the stored value with a second threshold and to assert a power-reduction signal if the stored value reaches the second threshold value.

Claim 16 (Original): The processor of claim 11, wherein the activity monitor includes an adder having one or more weighted inputs, each input associated with the one or more pipeline units, respectively.

Claim 17 (Original): The processor of claim 16, wherein the status signal comprises one or more status signals associated with the one or more pipeline units, respectively.

Claim 18 (Original): The processor of claim 17, wherein the adder sums a first or a second value from each of the weighted inputs, responsive to a state of the associated status signal.

Claim 19 (Previously Presented): A method for controlling power consumption in a processor comprising:

monitoring activity states for pipeline units of the processor, wherein each gate unit controls a clock signal to activate its associated pipeline unit as it is needed; estimating a power state for the processor using the monitored activity states and an operating point of the processor; comparing the estimated power state with a threshold value; and adjusting the operating point of the processor if the estimated power state exceeds the threshold value.

Claim 20 (Original): The method of claim 19, wherein estimating the power state comprises:
determining an activity level from the monitored activity states;
scaling the activity level according to the operating point;
normalizing the scaled activity level relative to a first threshold; and
accumulating the normalized, scaled activity level for a series of clock intervals.

Claim 21 (Original): The method of claim 19, wherein monitoring activity states comprises monitoring status signals provided by gate units associated with the pipeline units of the processor.

Claim 22 (Cancelled)

Claim 23 (Currently Amended): The method of claim 19 [[23]], wherein adjusting the operating point of the processor comprises adjusting a frequency of the clock signal.

Claim 24 (Original): The method of claim 23, wherein adjusting the operating point further comprises adjusting a voltage of the clock signal.

Claim 25 (Original): The method of claim 19, wherein estimating the activity level comprises:
adding a first or a second weight value to a sum, responsive to a pipeline unit
being in a first or a second activity state, respectively; and
scaling the sum by a factor associated with the current operating point.

Claim 26 (Previously Presented): The method of claim 25, wherein estimating the activity level further comprises adding a weight to the sum to represent pipeline units that operate in a single activity state.

Claim 27 (Currently Amended): A computer system comprising:
a memory system to store instructions for execution;
an instruction execution pipeline including a plurality of units to execute the
instructions;

a power delivery ~~deliver~~ system to deliver power to the execution pipeline at a current operating point, the power delivery system includes plural gate units to control power delivery to one or more units of the execution pipeline ~~power deliver~~ systems;

an activity monitor to estimate an activity level for the execution pipeline at the current operating point; and

a throttle circuit to adjust the current operating point, responsive to a power state determined from the activity level falling outside a specified range.

Claim 28 (Currently Amended): The computer system of claim 27, wherein each gate unit indicates to indicate a first or second activity state for a unit of the execution pipeline, according to the unit's being active ~~activate~~ or inactive in a clock interval.

Claim 29 (Original): The computer system of claim 28, wherein activity monitor includes an adder to add a first or a second weight to the activity level, responsive to the gate unit indicating a first or second state for its associated pipeline unit in the clock interval.

Claim 30 (Original): The system of claim 29, wherein the activity monitor further includes a scale unit to scale the activity level for the clock interval according to the current operating point of the processor.