

0.4

0.26

cleaned_img[c_ancho-20:, :] = 0
cleaned_img[:,c_largo-50:]=0
#bordes_S = canny(vol_S)
cleaned_img[:40,:]=0

cleaned_img[:,c_largo-50:]=0
 #bordes_S = canny(vol_S)
 cleaned_img[:40,:]=0
kernel_e =
 cv.getStructuringElement(cv.MORPH
 _RECT, (3, 3))
kernel_d =
 cv.getStructuringElement(cv.MORPH
 _ELLIPSE, (3, 3))

cleaned_img[c_ancho-50:, :] = 0


```
cleaned_img[c_ancho-39:, :] = 0
cleaned_img[:,c_largo-77:]=0
#bordes_S = canny(vol_S)
cleaned_img[:60,:]=0
```



```
cleaned_img[c_ancho-39:, :] = 0
cleaned_img[:,c_largo-77:]=0
#bordes_S = canny(vol_S)
cleaned_img[:60,:]=0
```



```
cleaned_img[c_ancho-39:, :] = 0
cleaned_img[:,c_largo-70:]=0
#bordes_S = canny(vol_S)
cleaned_img[:60,:]=0
```

```
rabel_img_s = measure.label(bordes_S)
cleaned_img_s = morphology.remove_small_objects(label_img_s, min_size=100)
```



```
vol_Nasion[c_ancho-155:, :] = 0
vol_Nasion[:, :c_largo*2+10] = 0
vol_Nasion[:50, :] = 0
```



```
vol_Nasion[c_ancho-155:, :] = 0
vol_Nasion[:, :c_largo*2+10] = 0
vol_Nasion[:60, :] = 0
```



```
vol_Nasion[c_ancho-147:, :] = 0
vol_Nasion[:, :c_largo*2+10] = 0
vol_Nasion[:50, :] = 0
```


cuencas =slices_coronales[:,:, 100: cx//2-30]
mip_coronal_roll = np.rot90(np.max(cuencas,axis=2))

cuencas =slices_coronales[:,:, 100: cx//2-22]
mip_coronal_roll = np.rot90(np.max(cuencas,axis=2))

cuencas =slices_coronales[:,:, 100: cx//2-30]
mip_coronal_roll = np.rot90(np.max(cuencas,axis=2))

Frontal, vista inferior, Porcion horizontal u orbitoriasal

lmagen original afz

Imagen original afz

= volumen_org[:,:, cy-80:cy-48]
-np.fliplr(np.rot90(np.rot90(np.max(MIP_axial,axis-2)))))

Fig. 1

Sketch of the reference points S, N and A, the SNA-angle and the horizontal angle ω . For illustration purposes, here SN in the left image is ideally orientated parallel to the horizontal plane, hence the ω = σ in this case

