BESIII Charm Meeting Measurement of CP even fraction F_+ in $D^0 \to K^+K^-\pi^+\pi^-$

Martin Tat

University of Oxford

15th March 2022

Outline

- Introduction and motivation
- 2 Strategy of strong-phase analysis
- Selection and tag modes
- 4 Determination of single and double tag yields
- **5** F_+ measurement
 - With CP tags
 - With $K_{S,L}\pi\pi$ tags
 - F₊ combination
- 6 Summary and conclusion

Introduction

- Original plan (for my PhD):
 - c_i/s_i analysis with new 20 fb⁻¹ BESIII $\psi(3770)$ dataset
 - Develop binning scheme using LHCb model JHEP 02 (2019) 126
 - ullet Perform model independent γ measurement at LHCb simultaneously
 - ullet Expected precision $\Delta\gamma pprox 12^\circ$ with LHCb Run 1+2

- (a) Fit of $B^{\pm} \rightarrow [K^+K^-\pi^+\pi^-]_D\pi^{\pm}$
- **(b)** Binning scheme for $D^0 o K^+K^-\pi^+\pi^-$

Motivation

- \bullet F_+ describes the CP content of a self-conjugate multi-body decay
 - $F_+ = 1$ (0) for CP even (odd) final states
- F_+ can be measured with current $3 \, \text{fb}^{-1}$ dataset
 - First model independent measurement of $F_{+}^{KK\pi\pi}!$
 - ullet Useful to test agreement with LHCb model prediction: $F_+=0.73$
- ullet Important input to quasi-GLW analysis of the CKM angle γ
 - Current GLW modes: KK, $\pi\pi$, $\pi\pi\pi\pi$
 - ullet Minimal effort to include $KK\pi\pi$ in GLW analyses \Longrightarrow More statistics
- Other F_+ measurements:
 - $D^0 \to \pi^+\pi^-\pi^+\pi^-$ JHEP 01 (2018) 144
 - $D^0 o K_S \pi^+ \pi^- \pi^0$ JHEP 01 (2018) 82
 - Both measurements are from CLEO-c, BESIII analyses ongoing

Strategy for strong-phase analysis

- **9** Select double tags of $KK\pi\pi$ vs flavour, CP and self-conjugate tags
- Measure flavour tag yields K_i
- **1** Measure c_i with CP tags:
- **4** Measure $c_i + s_i$ with self-conjugate tags

c_i/s_i analysis

CP:
$$M_i \propto (K_i + K_{-i} - 2c_i \sqrt{K_i K_{-i}} (2F_+^{\text{tag}} - 1))$$

Self-conjugate: $M_{ij} \propto (K_i K'_{-j} + K_{-i} K'_j - 2\sqrt{K_i K_{-i} K'_j K'_{-j}} (c_i c'_j + s_i s'_{-j})$

• Sum over all $KK\pi\pi$ bins to measure $F_+^{KK\pi\pi}$:

F_+ analysis

CP:
$$M \propto \left(1 - 2(2F_{+}^{KK\pi\pi} - 1)(2F_{+}^{\text{tag}} - 1)\right)$$

Self-conjugate: $M_{j} \propto \left(K'_{j} + K'_{-j} - 2c'_{j}\sqrt{K'_{j}K'_{-j}}(2F_{+}^{KK\pi\pi} - 1)\right)$

Selection

- Selection of charged and neutral particles follow standard track and shower requirements
- Require flight significance > 2 for K_S
- K_S veto for $KK\pi\pi$ and $\pi\pi\pi^0$ tags
- ΔE cut of 3σ
- ullet ΔE fit for 4-body modes allow a non-smooth background at $\Delta E=0$

Figure 2: Double Gaussian signal and Chebychev polynomial background

Tag modes

- Flavour tags:
 - Κπ, Κππ⁰, Κπππ, <u>Κεν</u>
- CP even tags:
 - KK, $\pi\pi$, $\pi\pi\pi^{0*}$, $K_S\pi^0\pi^0$, $K_L\pi^0$, $K_L\omega$
- CP odd tags:
 - $K_S\pi^0$, $K_S\eta$, $K_S\omega$, $K_S\eta'_{\pi\pi\eta}$, $K_S\eta'_{\rho\gamma}$, $\underline{K_L\pi^0\pi^0}$
- Self-conjugate tags:
 - K_Sππ, K_Lππ

Underlined tags have not been finalized yet

^{*}Mostly CP even

Single tag fits

- Fit model:
 - Signal: PDF from signal MC, convoluted with double Gaussian
 - Combinatorial background: Argus PDF

Figure 3: $KK\pi\pi$ single tag fit

Peaking backgrounds

- Strategy for fixing peaking backgrounds:
 - Generate dedicated MC sample
 - Obtain retention rate of peaking background
 - Fit background with appropriate shape (Gaussian, Crystal Ball, ...)
 - Use BFs from PDG to fix background-to-signal ratio

Figure 4: K_SKK background in $KK\pi\pi$ single tag fit, fitted with Double Gaussian

Quantum correlation in peaking backgrounds

- Strategy for peaking backgrounds with different CP:
 - Correct using $F_{\perp}^{KK\pi\pi}$ from LHCb model
- Strategy for K_SKK background in $KK\pi\pi$ $F_+^{K_SKK}=0.524\pm0.018$ from Phys. Rev. D **102**, 052008
 - Use dedicated MC to find retention in each K_SKK bin
 - K_S veto removes more $K_S \phi$ than $K_S a (980)^0 \implies$ Calculate effective F_{+} for $K_{S}KK$ to $KK\pi\pi$ background

a)
$$F_{+}^{K_SKK} = 0.726 \pm 0.030$$

(b)
$$F_{\perp}^{K_SKK} = 0.840 \pm 0.034$$

Double tag fits

- ullet Fit strategy: Only fit signal side $m_{
 m BC}$ because of low statistics
- Fit model:
 - Signal: PDF from signal MC, convoluted with single Gaussian
 - Background: Argus PDF
 - Simple sideband subtraction for correct signal but wrong tag event
- For tags with multiple bins, perform a simultaneous fit of all bins
 - Shape is floated and shared across all bins
 - Yield of signal and combinatorial background is floated in each bin

(a) $KK\pi\pi$ vs $\pi\pi\pi^0$

(b) $KK\pi\pi$ vs $K_S\pi^0$

Double tag fits

Figure 7: $KK\pi\pi$ vs $K_S\pi\pi$ simultaneous fit

Initial look at K_i for $D^0 o KK\pi\pi$

- ullet Expect fractional bin yields K_i to be well described by LHCb model
- ullet K_i are accessible at LHCb in $B o D\mu X$ processes with large statistics
- Excellent agreement between model and data!

Figure 8: K_i measurement for $KK\pi\pi$ using 2 × 4 bins

F_+ measurement with CP tags

Normalize double tag yields with single tag yields:

$$\frac{\textit{N}_{\mathrm{DT}}(\textit{KK}\pi\pi|\mathsf{tag})}{\textit{N}_{\mathrm{ST}}(\mathsf{tag})}\frac{\epsilon(\mathsf{tag})}{\epsilon(\textit{KK}\pi\pi|\mathsf{tag})} = \mathsf{BF}(\textit{KK}\pi\pi)\big(1 - 2(2\textit{F}_{+}^{\textit{KK}\pi\pi} - 1)(2\textit{F}_{+}^{\mathsf{tag}} - 1)\big)$$

ullet Fit all CP tags simultaneously with BF($KK\pi\pi$) and $F_+^{KK\pi\pi}$ floated

Mode	Single tag yield	Double tag yield
KK	56303 ± 262	26 ± 6
$\pi\pi$	19771 ± 130	4 ± 4
$\pi\pi\pi^0$	113780 ± 644	56 ± 10
$K_S\pi^0\pi^0$	25122 ± 331	8.5 ± 2.9
$K_L\pi^0$	48148 ± 463	6 ± 4
$K_S\pi^0$	68230 ± 280	48 ± 7
$K_S\eta$	9296 ± 33	8.8 ± 2.9
$K_S \eta'_{\pi\pi\eta}$	3220 ± 6	2.2 ± 1.6
$K_S \eta'_{ ho\gamma}$ $K_S \omega$	8740 ± 196	8.9 ± 3.0
$K_S\omega$	21636 ± 170	10 ± 4

F_+ measurement with CP tags

Figure 9: F_+ combination of CP tags Fit result: $F_+ = 0.69 \pm 0.04$

F_+ measurement with $K_S\pi\pi$ tag

• With $K_S\pi\pi$, increase sensitivity through binning of $K_S\pi\pi$ phase space

$$M_{j} \propto \left(K_{j}^{\prime} + K_{-j}^{\prime} - 2\sqrt{K_{j}^{\prime}K_{-j}^{\prime}}c_{j}^{\prime}(2F_{+}^{KK\pi\pi-1})\right)$$

• Problem: $KK\pi\pi$ reconstruction efficiency is too low \rightarrow Low yields!

ullet Likely explanation: Softer kaons o Kaons get stuck inside tracker

F_+ measurement with $K_S\pi\pi$ tag

- Solution: Partially reconstructed $KK\pi\pi$
- Strategy:
 - **1** Reconstruct $D \to K_S \pi \pi$
 - 2 Require 3 remaining good tracks consistent with $K\pi\pi$
 - Use missing mass to reconstruct missing kaon

Mode	Inclusive yield	Double tag efficiency
$K_S\pi\pi$ (fully reconstructed)	67.2	6.63 ± 0.04
$K_S\pi\pi$ (partially reconstructed)	85.9	6.50 ± 0.03
$K_L\pi\pi$ (partially reconstructed)	176.9	$\textbf{7.29} \pm \textbf{0.04}$

Partially reconstructed $KK\pi\pi$ vs $K_S\pi\pi$

- Main challenge with partially reconstructed $KK\pi\pi$: $K\pi\pi\pi\pi^0$
- Require no π^0 candidates

Figure 10: $KK\pi\pi$ vs $K_S\pi\pi$

Binned fit with $K_{S,L}\pi\pi$ tags

Figure 11: $KK\pi\pi$ vs $K_{S,L}\pi\pi$ binned F_+ fit

F_{+} combination

Measurement of CP even fraction F_+ of $D \rightarrow KK\pi\pi$

Figure 12: Combination of F_+ measurements $F_+ = 0.702 \pm 0.034$

Summary

- Good progress has been made on the strong-phase analysis of $D^0 o KK\pi\pi$
 - K_i is very consistent with LHCb model
 - Expect sufficient statistics with 20 fb⁻¹ of $\psi(3770)$ data for a c_i/s_i measurement with 2 \times 8 bins
- F_+ has been measured using CP tags and $K_{S,L}\pi\pi$ tags
 - Central value agrees with model
 - ullet Will allow all GLW analyses to include $KK\pi\pi$ to increase statistics
- Next steps:
 - Finalise all peaking backgrounds
 - ② Include partially reconstructed $KK\pi\pi$ vs KK, $\pi\pi\pi^0$ and $K_S\pi^0$
 - Systematics studies
 - Write up MEMO

Thank you!

Backup

Backup

$K_S\omega$ CP even tag using sPlot

- $D \to K_S \omega$ is CP odd
- CP-even contamination from non-resonant $D o K_S \pi \pi \pi^0$
 - $F_+(K_S\pi\pi\pi^0) = 0.238 \pm 0.012 \pm 0.012$ from CLEO

Figure 13: $D \to K_S \pi \pi \pi^0 D$ mass (beam constrained)

$K_S\omega$ CP even tag using sPlot

- Strategy:
 - **1** From *D* mass fit, remove non- $K_S\pi\pi\pi^0$ background using sPlot
 - 2 Fit $\pi\pi\pi^0$ invariant mass to obtain $K_S\omega$ yield

Figure 14: $\pi\pi\pi^0$ invariant mass in $D \to K_S\pi\pi\pi^0$