Frühjahr 13 Themennummer 2 Aufgabe 3 im Bayerischen Staatsexamen Analysis (vertieftes Lehramt)

Sei $L \in \mathbb{R}$. Wir betrachten das Anfangswertproblem

$$(1 - x2)y''(x) - 2xy'(x) + L y(x) = 0; \quad y(0) = 0, \ y'(0) = 1.$$
 (1)

- a) Zeigen Sie mittels Potenzreihenansatz $y(x) = \sum_{j=0}^{\infty} c_j x^j$, dass (1) eine Lösung $y:]-1,1[\to \mathbb{R}$ besitzt.
- b) Ist die Lösung aus (a) auf]-1,1[eindeutig bestimmt? Hinweis zu a): Bestimmen Sie zunächst durch formale Differentiation der Potenzreihe die Koeffizienten c_j . Untersuchen Sie dann den Konvergenzradius der so definierten Potenzreihe. Für welche $x \in \mathbb{R}$ ist die formale Differentiation nun gerechtfertigt?

Lösungsvorschlag:

a) Formale (gliedweise) Differentiation liefert $y'(x) = \sum_{j=0}^{\infty} (j+1)c_{j+1}x^j$ und $y''(x) = \sum_{j=0}^{\infty} (j+2)(j+1)c_{j+2}x^j$. Setzen wir dies in die Differentialgleichung ein, so folgt:

$$0 = (1 - x^{2}) \sum_{j=0}^{\infty} (j+2)(j+1)c_{j+2}x^{j} - 2x \sum_{j=0}^{\infty} (j+1)c_{j+1}x^{j} + L \sum_{j=0}^{\infty} c_{j}x^{j}$$

$$= 2c_{2} + Lc_{0} + (6c_{3} - 2c_{1} + Lc_{1})x + \sum_{j=2}^{\infty} ((j+2)(j+1)c_{j+2} - j(j-1)c_{j} - 2jc_{j} + Lc_{j})x^{j}$$

und aus der Anfangsbedingung erhalten wir $c_0=0, c_1=1$. Durch Koeffizientenvergleich folgern wir $c_2=0, c_3=\frac{2-L}{6}$ und $c_{j+2}=\frac{j(j-1)c_j+2jc_j-Lc_j}{(j+2)(j+1)}$ für $j\geq 2$. Induktiv folgt $c_{2j}=0$ für alle $j\in\mathbb{N}_0$ und durch Umformung folgt $c_{j+2}=\frac{j^2+j-L}{j^2+3j+2}c_j$ für alle $j\in\mathbb{N}_{\geq 2}$. Dies führt auf $y(x)=\sum_{j=0}^{\infty}c_{2j+1}x^{2j+1}$.

Wir müssen als Nächstes den Konvergenzradius der Potenzreihe untersuchen. Wir würden dafür gern das Quotientenkriterium verwenden; dies ist aber nicht möglich, weil jeder zweite Koeffizient verschwindet. Wir verwenden daher einen Trick: Falls es ein $j \in \mathbb{N}_0$ gibt, für das $c_{2j+1} = 0$ ist, so folgt auch $c_k = 0$ für alle $k \geq 2j+1$ per Induktion. In diesem Fall bricht die Potenzreihe ab und der Konvergenzradius ist ∞ . Dies ist genau dann der Fall, wenn es ein $j \in \mathbb{N}_{\geq 2}$ mit $j^2 + j - L = 0$ gibt. Falls $j^2 + j \neq L$ für alle $j \in \mathbb{N}$ gilt, folgt induktiv $c_{2j+1} \neq 0$ für alle $j \in \mathbb{N}_0$. Wir betrachten in diesem Fall die Potenzreihe $z(x) := \sum_{j=0}^{\infty} a_j x^j$ mit $a_j := c_{2j+1}$ und untersuchen deren Konvergenzradius mit dem Quotientenkriterium. Dies ist möglich, weil wir voraussetzen, dass keiner der Koeffizienten 0 ist. Für $j \geq 2$ folgt

$$\frac{a_j}{a_{j+1}} = \frac{c_{2j+1}}{c_{2j+1+2}} = \frac{(2j+1)^2 + 3(2j+1) + 2}{(2j+1)^2 + (2j+1) - L} = \frac{(2+\frac{1}{j})^2 + \frac{6}{j} + \frac{5}{j^2}}{(2+\frac{1}{j})^2 + \frac{2}{j} + \frac{1-L}{j^2}} \xrightarrow{j \to \infty} \frac{2^2}{2^2} = 1.$$

Beachte, dass der Nenner per Annahme nicht verschwindet und wir $c_{2j+1} \neq 0$ kürzen dürfen, nachdem wir die Rekursionsformel für c_{j+2} einsetzen $(j \geq 2 \implies 2j+1 \geq 2)$. Nach dem Quotientenkriterium beträgt der Konvergenzradius von z also 1 und für alle $x \in (-1,1)$ konvergiert diese Reihe absolut. Für diese x folgt auch $x^2 \in (-1,1)$ und daher die Konvergenz von $xz(x^2)$.

Wir rechnen nach, dass $xz(x^2) = x \sum_{j=0}^{\infty} a_j x^{2j} = \sum_{j=0}^{\infty} c_{2j+1} x^{2j+1} = y(x)$ gilt, also konvergiert y für alle $x \in (-1,1)$. Weil Potenzreihen auf ihrem Konvergenzkreis kompakt konvergieren, dürfen wir diese gliedweise differenzieren und folgern, dass $y:]-1,1[\to \mathbb{R}, y(x):=\sum_{j=0}^{\infty} c_{2j+1} x^{2j+1}$ eine Lösung des Anfangswertproblems ist.

(Statt die Potenzreihe z(x) zu betrachten, kann man auch direkt versuchen die Konvergenz von y(x) für |x| < 1 zu zeigen. Dazu kann man in etwa so vorgehen:

Weil $\frac{j^2+j-L}{j^2+3j+2}$ für $j \to \infty$ gegen 1 konvergiert, können wir für jedes K > 1 ein $j_0 \in \mathbb{N}$ finden, sodass $j \geq j_0 \implies \frac{j^2+j-L}{j^2+3j+2} < K$. Daraus folgt dann $|c_{j+2}| \leq K|c_j|$ und $|c_{j_0+2k}| \leq K^k|c_{j_0}|$. Dies kann man benutzen, um mit dem Majorantenkriterium Konvergenz für alle $x \in \mathbb{R}$ mit $|x| < \frac{1}{K}$ zu folgern. Weil K > 1 beliebig wählbar ist, kann man damit Konvergenz für alle $x \in (-1,1)$ beweisen.)

Tatsächlich divergiert die Reihe auch für |x| > 1, dies war aber nicht gefragt und ist für die Lösung der Aufgabe unerheblich, genauso das Randverhalten.

b) Ja die Lösung ist eindeutig. Wir können das Anfangswertproblem mittels $u_1 = y, u_2 = y'$ nämlich in eine explizite Differentialgleichung erster Ordnung

$$u'_1(t) = u_2(t),$$

 $u'_2(t) = \frac{2tu_2(t) - Lu_1(t)}{1 - t^2}$

mit Anfangsbedingung $u_1(0) = 0, u_2(0) = 1$ umformulieren. Die Strukturfunktion dieser Differentialgleichung ist auf (-1,1) (wegen $1-t^2 \neq 0$) stetig differenzierbar und daher lokal lipschitzstetig. Die Eindeutigkeit der Lösung auf (-1,1) folgt nun aus dem Satz von Picard-Lindelöf.

 $\mathcal{J}.\mathcal{F}.\mathcal{B}.$