Diszkrét modellek alkalmazásai 10. és 12. gyakorlat

2020. 11. 16.; 2020. 11. 30.

1 A gyakorlatok anyaga

Ezen a két gyakorlaton - különböző példákon keresztül - a polinomokkal fogunk foglalkozni. Osztunk polinomot maradékosan. racionális gyököket keresünk, valamint megoldunk paraméteres feladatot is, végül egy maradékosztással kapcsolatos példára is sort kerítünk.

1.1 polinom

Legyen $a_0, a_1, ..., a_n \in A$ és $x \in B$ (ahol A és B olyan tetszőleges számhalmaz, amelyen az összeadás és a szorzás - a megszokott tulajdonságokkal együtt - értelmezett)! Ekkor az A feletti egyváltozós polinom a $p = a_n * x^n + a_{n-1} * x^{n-1} + ... + a_1 * x^1 + a_0 * x^0$, ahol $a_n \neq 0$.

Az a_i -t i-edik együtthatónak, az x_i -t a polinom i-edik változójának, az a_0 -t szabad tagnak, míg az a_n -t főegyütthatónak nevezzük. Ennek a p polinomnak a foka: deg(p) = n. Az A[x] jelölés az A feletti x-változós polinomok halmazára utal.

Pl.: $p \in Z[x]$, $p(x) = x^3 - 15x^2 + 84x - 170$.

1.2 helyettesítési érték, gyök

Egy $p \in A[x]$, $c \in B$ helyen vett helyettesítési értéke: $p(c) = a_n * c^n + a_{n-1} * c^{n-1} + ... + a_1 * c^1 + a_0 * c^0$. Ekkor a c szám gyöke a p-nek, ha p(c) = 0.

Pl.:
$$p(x) = x^3 - 15x^2 + 84x - 170$$
; $deg(p) = 3$, $p(2) = 2^3 - 15 * 2^2 + 84 * 2 - 170 \neq 0$; $p(25 = 5^3 - 15 * 5^2 + 84 * 5 - 170 = 0 => x_1 = 5$ gyöke p-nek.

1.3 algebra alaptétele

Legyen $p \in C[x]$ és deg(p) = n! Ekkor p-nek pontosan n darab gyöke van a komplex számok halmazán. Pl.: $x^2 - 4x - 12 = (x - 6) * (x + 2)$; a gyökök: 6 és -2; a polinom foka 2 (mert a főegyütthatós ismeretlen kitevője 2).

1.4 gyöktényezős alak

A $p \in C[x]$ gyöktényezős alakja: $a_n * (x - x_1) * (x - x_2) * ... * (x - x_n)$, ahol $x_1, x_2, ..., x_n$ a polinom összes gyöke.

1.5 polinom-maradék tétel

Legyen $f, g \in C[x]$! Ekkor egyértelműen létezik (pontosan egy) olyan $q, r \in C[x]$, amelyre: f = g * q + r, ahol deg(r) < deg(q).

1.6 többszörös gyök

Legyen $f \in C[x]$ és $(x - \alpha)^k | f(x)$ (ahol $k \ge 2$)! Ekkor α többszörös gyök. Ha α k-szoros gyöke f-nek, akkor $f(x) = (x - \alpha)^k * f_1(x)$, ahol $f_1(x) \ne 0$.

1.7 racionális gyökteszt

Legyen u/v hányados, ahol lnko(u,v)=1 és f(u/v)=0! Ekkor $v|a_n$ és $u|a_0$.

1.8 többszörös gyök meghatározása deriválás segítségével (tétel)

Az $f \in C[x]$ polinom α gyökének multiplicitása egyenértékű a legkisebb olyan k nemnegatív egész számmal, amelyre $f^{(k)}(\alpha) \neq 0$, azaz α akkor és csak akkor k-szoros gyök, ha $f(\alpha) = f^1(\alpha) = \dots$ $= f^{(k-1)}(\alpha) = 0$, de $f^k(\alpha) \neq 0$.

1.9 Horner-elrendezés

A Horner-elrendezés a matematikában egy módszer, ami leegyszerűsíti a behelyettesítést a polinomokba. Használható a polinom értékének meghatározására vagy gyökök közelítésére.

1.10 a Lagrange-interpoláció tétele és a Lagrange-interpolációs alappolinom

Legyen R egy test, $c_0, c_1, ..., c_n \in R$ különbözőek, továbbá $d_0, d_1, ..., d_n \in R$ tetszőlegesek. Ekkor létezik egy olyan legfeljebb n-ed fokú polinom, amelyre $f(c_j) = d_j$, ha j = 0, 1, ..., n.

A j-edik Lagrange-interpolációs alappolinom:
$$l_j(x) = \frac{\prod_{i \neq j} (x - c_i)}{\prod_{i \neq j} (c_j - c_i)}$$
, és legyen $f(x) = \sum_{j=0}^n d_j * l_j(x)$.

2 Feladatok és megoldásaik - Polinomok

2.1 Ossza maradékosan az alábbi $x^5+x^4-15x^3+25x^2+2x-3\in \mathbf{Z}[\mathbf{x}]$ polinomot az $x^2+4x-5\in \mathbf{Z}[\mathbf{x}]$ polinommal!

$$(x^5 + x^4 - 15x^3 + 25x^2 + 2x - 3) \div (x^2 + 4x - 5) = -1.$$
 kör-

Vegyük az osztó polinóm legnagyobb tagját, és nézzük meg, milyen szorzószám kell az egész osztópolinomhoz, hogy a szorzatpolinom legnagyobb kitevőjű tagjából az osztandó polinom legnagyobb tagja legyen! Láthatjuk, hogy az x^2 taghoz egy x^3 szorzó kéne az x^5 tag megszerzéséhez. Szorozzuk be így x^3 -nal az osztópolinomot: $x^3 * (x^2 + 4x - 5) = x^5 + 4x^4 - 5x^3$

Így most már tudjuk, hogy a megoldáspolinom egyik tagja az x^3 :

$$(x^5 + x^4 - 15x^3 + 25x^2 + 2x - 3) \div (x^2 + 4x - 5) = x^3 + \dots$$

Vonjuk most ki az osztandó polinomból a fent kapott szorzatpolinomot:

$$(x^5 + x^4 - 15x^3 + 25x^2 + 2x - 3) - (x^5 + 4x^4 - 5x^3) = -3x^4 - 10x^3 + 25x^2 + 2x - 3 =$$
: t

A következőekben a fenti lépések ismétlődnek, de most már ehhez a t polinomhoz viszonítjuk az első tagokat, nem pedig az osztandó polinomhoz.

Vegyük az osztó polinóm legnagyobb tagját, és nézzük meg, milyen szorzószám kell az egész osztópolinomhoz, hogy a t polinom legnagyobb kitevőjű tagjából az osztandó polinom legnagyobb tagja legyen! Láthatjuk, hogy az x^2 taghoz egy $-3x^2$ szorzó kéne az $-3x^4$ tag megszerzéséhez. Szorozzuk be így $-3x^2$ -nel az osztópolinomot: $-3x^2 * (x^2 + 4x - 5) = -3x^4 - 12x^3 + 15x^2$

Így most már tudjuk, hogy a megoldáspolinom egyik újabb tagja az $-3x^2$:

$$(x^5 + x^4 - 15x^3 + 25x^2 + 2x - 3) \div (x^2 + 4x - 5) = x^3 - 3x^2 + \dots$$

Vonjuk most ki a t polinomból a fent kapott szorzatpolinomot:

$$(-3x^4 - 10x^3 + 25x^2 + 2x - 3) - (-3x^4 - 12x^3 + 15x^2) = 2x^3 + 10x^2 + 2x - 3 =: t$$

A következőekben a fenti lépések ismétlődnek, de most már ehhez a t polinomhoz viszonítjuk az első tagokat.

-3. kör-

Vegyük az osztó polinóm legnagyobb tagját, és nézzük meg, milyen szorzószám kell az egész osztópolinomhoz, hogy a t polinom legnagyobb kitevőjű tagjából az osztandó polinom legnagyobb tagja legyen! Láthatjuk, hogy az x^2 taghoz egy 2x szorzó kéne az $2x^3$ tag megszerzéséhez. Szorozzuk be így 2x-szel az osztópolinomot: $2x * (x^2 + 4x - 5) = 2x^3 + 8x^2 - 10x$

Így most már tudjuk, hogy a megoldáspolinom egyik újabb tagja az 2x:

$$(x^5 + x^4 - 15x^3 + 25x^2 + 2x - 3) \div (x^2 + 4x - 5) = x^3 - 3x^2 + 2x + \dots$$

Vonjuk most ki a t polinomból a fent kapott szorzatpolinomot:

$$(2x^3 + 10x^2 + 2x - 3) - (2x^3 + 8x^2 - 10x) = 2x^2 + 12x - 3 =: t$$

A következőekben a fenti lépések ismétlődnek, de most már ehhez a t polinomhoz viszonítjuk az első tagokat, nem pedig az osztandó polinomhoz.

−4. kör−

Vegyük az osztó polinóm legnagyobb tagját, és nézzük meg, milyen szorzószám kell az egész osztópolinomhoz, hogy a t polinom legnagyobb kitevőjű tagjából az osztandó polinom legnagyobb tagja legyen! Láthatjuk, hogy az x^2 taghoz egy 2 szorzó kéne az $2x^2$ tag megszerzéséhez. Szorozzuk be így 2-vel az osztópolinomot: $2*(x^2+4x-5)=2x^2+8x-10$

Így most már tudjuk, hogy a megoldáspolinom egyik újabb tagja az 2:

$$(x^5 + x^4 - 15x^3 + 25x^2 + 2x - 3) \div (x^2 + 4x - 5) = x^3 - 3x^2 + 2x + 2 + \dots$$

Vonjuk most ki a t polinomból a fent kapott szorzatpolinomot:

$$(2x^2 + 12x - 3) - (2x^2 + 8x - 10) = 4x + 7 =: t$$

Most folytatódna az ötödik körrel az eljárás, de azt vesszük észre, hogy a t polinom legnagyobb ismeretlenjének kitevője kisebb, mint az osztópolinom legnagyobb ismeretlenjének a kitevője, így az eljárás leáll.

Amit kaptunk most t-ra, esetünkben a 4x + 7, az lesz a maradék r polinom, a maradékosztás eredménye pedig a q polinom:

$$(x^5 + x^4 - 15x^3 + 25x^2 + 2x - 3) \div (x^2 + 4x - 5) = x^3 - 3x^2 + 2x + 2 =: q$$

2.2 Határozza meg a p paraméter értékét úgy, hogy $x-2 \mid x^3+4x^2+3x+p$ teljesüljön!

−1. kör−

Vegyük az osztó polinóm legnagyobb tagját, és nézzük meg, milyen szorzószám kell az egész osztópolinomhoz, hogy a szorzatpolinom legnagyobb kitevőjű tagjából az osztandó polinom legnagyobb tagja legyen! Láthatjuk, hogy az x taghoz egy x^2 szorzó kéne az x^3 tag megszerzéséhez. Szorozzuk be így x^2 -tel az osztópolinomot: $x^2 * (x-2) = x^3 - 2x^2$

Így most már tudjuk, hogy a megoldáspolinom egyik tagja az x^2 :

$$(x^3 + 4x^2 + 3x + p) \div (x - 2) = x^2 + \dots$$

Vonjuk most ki az osztandó polinomból a fent kapott szorzatpolinomot:

$$(x^3 + 4x^2 + 3x + p) - (x^3 - 2x^2) = 6x^2 + 3x + p =: t$$

A következőekben a fenti lépések ismétlődnek, de most már ehhez a t polinomhoz viszonítjuk az első tagokat, nem pedig az osztandó polinomhoz.

−2. kör−

Vegyük az osztó polinóm legnagyobb tagját, és nézzük meg, milyen szorzószám kell az egész osztópolinomhoz, hogy a t polinom legnagyobb kitevőjű tagjából az osztandó polinom legnagyobb tagja legyen!

Láthatjuk, hogy az x taghoz egy 6x szorzó kéne az $-3x^4$ tag megszerzéséhez. Szorozzuk be így $6x^2$ -nel az osztópolinomot: $6x * (x - 2) = 6x^2 - 12x$

Így most már tudjuk, hogy a megoldáspolinom egyik újabb tagja a 6x:

$$(x^3 + 4x^2 + 3x + p) \div (x - 2) = x^2 + 6x + \dots$$

Vonjuk most ki a t polinomból a fent kapott szorzatpolinomot:

$$(6x^2 + 3x + p) - (6x^2 - 12x) = 15x + p =: t$$

A következőekben a fenti lépések ismétlődnek, de most már ehhez a t polinomhoz viszonítjuk az első tagokat.

Vegyük az osztó polinóm legnagyobb tagját, és nézzük meg, milyen szorzószám kell az egész osztópolinomhoz, hogy a t polinom legnagyobb kitevőjű tagjából az osztandó polinom legnagyobb tagja legyen! Láthatjuk, hogy az x taghoz egy 15 szorzó kéne az 15x tag megszerzéséhez. Szorozzuk be így 15-tel az osztópolinomot: 15 * (x - 2) = 15x - 30

Így most már tudjuk, hogy a megoldáspolinom egyik újabb tagja a 15:

$$(x^3 + 4x^2 + 3x + p) \div (x - 2) = x^2 + 6x + 15 + \dots$$

Vonjuk most ki a t polinomból a fent kapott szorzatpolinomot:

$$(15x + p) - (15x - 30) = p + 30 =: t$$

Most folytatódna az ötödik körrel az eljárás, de azt vesszük észre, hogy a t polinom legnagyobb ismeretlenjének kitevője kisebb, mint az osztópolinom legnagyobb ismeretlenjének a kitevője, így az eljárás leáll.

Amit kaptunk most t-ra, esetünkben a p+30, az lesz a maradék r polinom, a maradékosztás eredménye pedig a q polinom:

$$(x^3 + 4x^2 + 3x + p) \div (x - 2) = x^2 + 6x + 15 =: q$$

Mivel tudjuk, hogy az x-2 maradék nélkül osztja az x^3+4x^2+3x+p polinomot, így a maradékpolinom értéke 0 kell, hogy legyen, azaz p+30=0. Ebből pedig az következik, hogy p=-30.

Ellenőrzésképp, nézzük meg, hogy jól emeltünk-e ki! Ha az $x^3 + 4x^2 + 3x + p$ polinomot osztja az x - 2, akkor x = 2 gyöke az $x^3 + 4x^2 + 3x + p$ polinomnak. Behelyettesítéssel látható, hogy $x^3 + 4x^2 + 3x + p$ = $2^3 + 4 * 2^2 + 3 * 2 + p = 8 + 16 + 6 + p = 30 + p = 0$ akkor és csak akkor, ha p = -30.

2.3 Legyen $f(x) = x^4 - 3x^3 + x + 6 \in \mathbb{R}[x]!$ Határozza meg a f(3), f(1), f(2), f(2) helyettesítési értékeket!

Ezt a feladatot kétféleképpen lehet megoldani: hagyományos úton és Horner-elrendezéssel. Hagyományos úton azt értjük, hogy egyszerűen behelyettesítjük az x helyére a megfelelő számokat:

$$f(3) = 3^4 - 3 * 3^3 + 3 + 6 = 81 - 3 * 27 + 9 = 81 - 81 + 9 = 9$$

$$f(-1) = (-1)^4 - 3 * (-1)x^3 + (-1) + 6 = 1 + 3 - 1 + 6 = 10 - 1 = 9$$

$$f(2) = 2^4 - 3 * 2^3 + 2 + 6 = 16 - 24 + 2 + 6 = 24 - 24 = 0$$

$$f(-2) = (-2)^4 - 3 * (-2)^3 + (-2) + 6 = 16 + 24 - 2 + 6 = 40 + 4 = 44$$

Ez alapján látható, hogy az x=2 gyöke az f polinomnak. Most a Horner-táblázat segítségével fogjuk meghatározni ugyanezen számok helyettesítési értékét:

Table 1:
$$f(x) = x^4 - 3x^3 + x + 6$$

A táblázat legelső sora az egyes ismeretlenek előtti szorzószám. A legelső 1-es az x^4 előtti szorzószámot jelöli, a -3-as az x^3 együtthatója, a 0-as jelzi, hogy nincs a polinomban x^2 tag, az utána levő 1-es az x^1 szorzószáma, míg a 6-os az x^0 együtthatóját hivatott képviselni.

Table 2: $f(x) = x^4 - 3x^3 + x + 6$						
	1	-3	0	1	6	
3						
-1						
2						
-2						

A táblázat első oszlopaiba kerülnek az egyes helyettesítési értékek - esetünkben a 3, -1, 2 és a -2. Ideje, hogy az első sorral megkezdjük a számítást:

Table 3: $f(x) = x^4 - 3x^3 + x + 6$							
	1	-3	0	1	6		
3	1						
-1	1						
2	1						
-2	1						

A táblázat 2. oszlopába lemásoljuk a főegyütthatót, ami nálunk az 1-es. Innentől válik egy univerzális eljárássá a számítás: az aktuális (-3-as) oszlopbeli értékeket úgy kapjuk meg, hogy összeszorozzuk a soreleji helyettesítési értéket (3) az aktuális (-3-as) oszlop előtti oszlop aktuális sorával (1) és hozzáadjuk az aktuális (-3-as) oszlop legelső sorát: 3 1 + (-3) = 0. Ezután az aktuális (0-ás) oszlopbeli értékeket úgy kapjuk meg, hogy összeszorozzuk a soreleji helyettesítési értéket (3) az aktuális (0-ás) oszlop előtti oszlop aktuális sorával (0) és hozzáadjuk az aktuális (0-ás) oszlop legelső sorát: 3 0 + 0 = 0. Ezt követően az aktuális (1-es) oszlopbeli értékeket úgy kapjuk meg, hogy összeszorozzuk a soreleji helyettesítési értéket (3) az aktuális (1-es) oszlop előtti oszlop aktuális sorával (0) és hozzáadjuk az aktuális (1-es) oszlop legelső sorát: 3 0 + 1 = 1. Végül az aktuális (6-os) oszlopbeli értékeket úgy kapjuk meg, hogy összeszorozzuk a soreleji helyettesítési értéket (3) az aktuális (6-os) oszlop előtti oszlop aktuális sorával (1) és hozzáadjuk az aktuális (6-os) oszlop legelső sorát: 3 1 + 6 = 9. Ha ez az utolsó oszlopbeli cella értéke pontosan 0, akkor az adott helyettesítésí érték gyöke a polinomnak, egyébként nem. Így, ebben az esetben a 3 nem gyöke az f polinomnak:

A fent taglalt módon végezzük el a többi sorra is a számítást: Látható, hogy az x = 2 gyöke az f polinomnak, ahogy azt a hagyományos módon is megállapítottuk.

2.4 Határozza meg az $f(x) = 4x^3 + 3x^2 + 3x + 4 \in \mathbb{Z}[x]$ racionális gyökeit!

Mivel a polinomunk egy másodfokú polinomhoz képest összetettebb, így racionális gyökteszt segítségével keresünk potenciális gyököket, amelyekről Horner-elrendezéssel eldöntjük, hogy tényleges gyökök-e. A racionális gyökteszthez tartozó ismereteink értelmében, az u/v hányados lesz majd a gyökünk formája. u egy olyan számot jelöl, ami a polinom főegyütthatójának osztója, azaz u|4, így $u=\{-1,+1,-2,+2,-4,+4\}$. v pedig egy olyan számot jelöl, amely a szabad tagnak osztója, azaz v|4, így $v=\{-1,+1,-2,+2,-4,+4\}$. Ezek alapján az u/v hányados lehetséges értékei: $\{-1,+1,-2,+2,-4,+4,-0.5,+0.5,-0.25,+0.25\}$, azaz a lehetséges x gyökök is ezek. Most pedig vizsgáljuk meg ezeket a lehetséges gyököket:

Table 6: $f(x) = 4x^3 + 3x^2 + 3x + 4$						
	4	3	3	4		
-1	4				•	
11	4					
-2	4					
2	4					
-4	4					
4	4					
-0.5	4					
0.5	4					
-0.25	4					
0.25	4					

A megszokott módon a legelső oszlop a helyettesítési értékeké, az első sor a polinom egyes ismeretleneinek együtthatói, a második oszlop pedig a főegyüttható alkotta cellák oszlopa. Ezután kezdődik meg az ismert eljárás: az aktuális oszlopbeli értékeket úgy kapjuk meg, hogy összeszorozzuk a soreleji helyettesítési értéket az aktuális oszlop előtti oszlop aktuális sorával és hozzáadjuk az aktuális oszlop legelső sorát:

Table 7: $f(x) = 4x^3 + 3x^2 + 3x + 4$

	4	3	3	4
-1	4	-1	4	0
1	4	7	10	14
-2	4	-5	13	-22
2	4	11	25	54
-4	4	-13	55	-216
4	4	19	79	320
-0.5	4	1	2.5	2.75
0.5	4	5	5.5	6.75
-0.25	4	2	2.5	3.375
0.25	4	4	4	5

Látható, hogy az x = -1 az egyetlen racionális gyöke a polinomnak.

2.5 Az $f(x) = ax^4 + bx^3 + 1 \in \mathbb{R}[x]$ polinomnak az egyik többszörös gyöke 2. Mennyi lehet az a, b paraméterek értéke?

Ha az $ax^4 + bx^3 + 1$ polinomnak többszörös gyöke 2, akkor a 2 legalább kétszeres gyök. Így, ha lederiválnánk f-et, akkor a deriváltpolinomnak is gyöke lenne legalább egyszer a 2: $f'(x) = (ax^4 + bx^3 + 1)' = (ax^4)' + (bx^3)' + (1)' = 4ax^3 + 3bx^2 + 0 = 4ax^3 + 3bx^2$ Mivel f(x)-nek és f'(x)-nek is gyöke a 2, így igaz az, hogy f(2) = 0 és f'(2) = 0, azaz: $a*2^4 + b*2^3 + 1 = 0$ és $4*a*2^3 + 3*b*2^2 = 0 => a*16 + b*8 + 1 = 0$ és 32*a + 12*b = 0 Az egyenletrendszer megoldásához a második egyenletből kifejezem b-t: b = (-32/12)*a. Ezután az első egyenletbe helyettesítem ezt vissza: a*16 + (-32/12)*a*8 + 1 = 0 => a*16 + (-64/3)*a + 1 = 0 => (-16/3)*a + 1 = 0 => (16/3)*a + 1 = 0 => (16/3)*a + 1 = 0 => (16/3)*a*a + 1 =

2.6 Határozza meg az a paraméter értékét úgy, hogy az $f(x) = x^5 - ax^2 - ax + 1 \in \mathbb{R}[x]$ polinomnak az x = -1 legalább kétszeres gyöke legyen!

Ha az x^5-ax^2-ax+1 polinomnak legalább kétszeres gyöke a -1, akkor ha a polinomot lederiváljuk, akkor az eredeti polinomnak és a deriváltpolinomnak is gyöke lesz -1, azaz f(-1)=0 és f'(-1)=0. Deriváljuk le a polinomot: $f'(x)=(x^5-ax^2-ax+1)'=(x^5)'-(ax^2)'-(ax)'+(1)'=5x^4-2ax-a+0=5x^4-2ax-a$. Most pedig végezzük el az alábbi egyenletekből álló egyenletrendszert: $((-1)^5-a*(-1)^2-a*(-1)+1=0$ és $5*(-1)^4-2*a*(-1)-a=0$, azaz ((-1)-a-(-a)+1=0 és 5-(-2a)-a=0, azaz (-1)-a=00 és a=-5.

Vagyis, ha a = -5, akkor az $x^5 - ax^2 - ax + 1$ -nek a -1 lehet legalább kétszeres gyöke.

2.7 Hogyan válasszuk meg az a, b együtthatók értékét, hogy $1+i \in \mathbb{C}$ gyöke legyen az $f(x) = x^3 + 2x^2 + ax + b \in \mathbb{C}[x]$ polinomnak?

Mivel annyit tudunk, hogy az 1+i egy gyök, így az lehet csupán egyszeres gyök, ezért most praktikusabb a Horner-elrendezéssel megvizsgálni, hogy milyen a, b együtthatókra lesz a fenti kifejezés gyök:

Table 8:
$$f(x) = x^3 + 2x^2 + ax + b$$

$$\begin{array}{c|c|c}
 & 1 & 2 & a & b \\
\hline
 & (1+i) & 1 & & & \\
\end{array}$$

Hagyományosan felírtuk a Horner-táblázat egyes celláit és most lépésről-lépésre vizsgáljuk meg a kifejezést! A soron következő üres cella értékét úgy számoljuk ki, hogy az (1+i)-t megszorozzuk 1-gyel (helyettesítési érték * aktuális cellát megelőző cella értéke) és hozzáadunk 2-t (aktuális cella feletti cella értéke): ((1+i)*1)+2=(1+i)+2=(1+i)+(2+0*i)=(3+i).

A soron következő üres cella értékét úgy számoljuk ki, hogy az (1+i)-t megszorozzuk (3+i)-vel (helyettesítési érték * aktuális cellát megelőző cella értéke) és hozzáadunk a-t (aktuális cella feletti cella értéke): $((1+i)*(3+i)) + a = (3+i+3i+i^2) + a = (3+4i+i^2) + a = (2+a) + 4i$.

A soron következő üres cella értékét úgy számoljuk ki, hogy az (1+i)-t megszorozzuk ((2+a)+4i)-vel (helyettesítési érték * aktuális cellát megelőző cella értéke) és hozzáadunk b-t (aktuális cella feletti cella értéke): $((1+i)*((2+a)+4i))+b=(2+a+4i+2i+ai+4i^2)+b=(i*(4+2+a)+2+a-4)+b=i*(6+a)+(2a-2+b)=0$.

Kaptunk egy 2 egyenletből álló egyenletrendszert. Tudjuk, hogy 1+i gyöke a polinomnak, így 0-nak kell lennie a helyettesítési értéknek, azaz:

$$1 = 2a + b - 2$$
 és $1 = 6 + a = 2a + b = 3$ és $a = -5 = -10 + b = 3 = b = 13$.

Adjunk meg olyan $f \in \mathbf{R}[\mathbf{x}]$ polinomot, amelyre f(0) = 3, f(1) = 3, f(4) = 7 és f(-1) = 0!

A definíciók és a feladat szövege alapján:

$$c_0 = 0, c_1 = 1, c_2 = 4, c_3 = -1; d_0 = 3, d_1 = 3, d_2 = 7, d_3 = 0.$$

Ezekkel az értékekkel alkalmazzuk a Lagrange-interpolációt:

Ezekkel az értékekkel alkalmazzuk a Lagrange-interpolácie
$$l_0(x) = \frac{(x-1)(x-4)(x+1)}{(0-1)(0-4)(0+1)} = \frac{1}{4}x^3 - x^2 - \frac{1}{4}x + 1$$

$$l_1(x) = \frac{(x-0)(x-4)(x+1)}{(1-0)(1-4)(1+1)} = -\frac{1}{6}x^3 + \frac{1}{2}x^2 + \frac{2}{3}x$$

$$l_2(x) = \frac{(x-0)(x-1)(x+1)}{(4-0)(4-1)(4+1)} = \frac{1}{60}x^3 - \frac{1}{60}x$$

$$l_3(x) = \frac{(x-0)(x-1)(x-4)}{(-1-0)(-1-1)(-1-4)} = -\frac{1}{10}x^3 + \frac{1}{2}x^2 - \frac{2}{5}x$$

$$f(x) = d_0 * l_0(x) + d_1 * l_1(x) + d_2 * l_2(x) + d_3 * l_3(x) = 3 * (\frac{1}{4}x^3 - x^2 - \frac{1}{4}x + 1) + 3 * (-\frac{1}{6}x^3 + \frac{1}{2}x^2 + \frac{2}{3}x) + 7 * (\frac{1}{60}x^3 - \frac{1}{60}x) + 0 * (-\frac{1}{10}x^3 + \frac{1}{2}x^2 - \frac{2}{5}x) = \frac{22}{60}x^3 - \frac{3}{2}x^2 + \frac{68}{60}x + 3$$

	$\frac{22}{60}$	$-\frac{3}{2}$	$\frac{68}{60}$	3
0	$\frac{22}{60}$	$-\frac{3}{2}$	$\frac{68}{60}$	3
1	$\frac{22}{60}$	$-\frac{68}{60}$	0	3
4	$\frac{22}{60}$	$-\frac{2}{60}$	1	7
-1	$\frac{22}{60}$	$-\frac{112}{60}$	3	0

3 Feladatok és megoldásaik - Maradékosztás

3.1 Legyen adott egy olyan számítógép-architektúra, ahol a gépi szó 4 bites, tehát a számítógépünk az $I_1 = [0; 2^4 - 1] = [0; 15]$ intervallum egészeivel képes gyors egész aritmetikát végezni! Erre az aritmetikára építve valósítsunk meg az architektúránkon olyan egész aritmetikát (összeadás, kivonás, szorzás), amellyel az $I_2 = [0; 1100]$ intervallumban is tudunk számolni! Abrázoljuk ebben az aritmetikában az egészeket I_1 -beli modulo 7, 11 és 15 maradékainak rendszereként, majd végezzük el ebben az aritmetikában a 16 + 52, 52 - 16, $16 \cdot 52$ műveleteket! Mennyi lesz c értéke a tízes számrendszerben, ha ezen interpretáción így ábrázoljuk: c = (5, 2, 8)?

```
Az első feladatunk az, hogy a 16 és 53 számot ábrázoljuk ezen az architechtúrán: - a = \{(a_1, a_2, a_3) | a_1, a_2, a_3 \in I_1\} => a = (16 \mod 7, 16 \mod 11, 16 \mod 15) = (2, 5, 1)
```

- b =
$$\{(b_1, b_2, b_3) | b_1, b_2, b_3 \in I_1\} = b = (52 \mod 7, 52 \mod 11, 52 \mod 15) = (3, 8, 7)$$

Most pedig ábrázoljuk az összegüket, különbségüket és szorzatukat is:

- a + b =
$$\{(a_1 + b_1, a_2 + b_2, a_3 + b_3) | a_1 + b_1, a_2 + b_2, a_3 + b_3 \in I_1\} =$$
 a + b = $(5 \mod 7, 13 \mod 11, 8 \mod 15) = (5, 2, 8)$

- b - a =
$$\{(b_1 - a_1, b_2 - a_2, b_3 - a_3)|b_1 - a_1, b_2 - a_2, b_3 - a_3 \in I_1\} = b$$
 - a = $(1 \mod 7, 3 \mod 11, -6 \mod 15) = (1, 3, 9)$

- a * b =
$$\{(a_1 * b_1, a_2 * b_2, a_3 * b_3) | a_1 * b_1, a_2 * b_2, a_3 * b_3 \in I_1\} =>$$
 a * b = (6 mod 7, 40 mod 11, 7 mod 15) = (6, 7, 7)

Bár azt nem tudjuk, hogyan fest 10-es számrendszerben c
, azt tudjuk, hogyan fest ezen az architechtúrán: c = $(5, 2, 8) = (5 \mod 7, 2 \mod 11, 8 \mod 15)$

Ahogy azt láthatjuk, c egyes komponenseit felfoghatjuk maradékosztásokként is, azaz:

```
c_1 = 5 \mod 7, c_2 = 2 \mod 11, c_3 = 8 \mod 15.
```

Innen pedig úgy kezeljük ezt az egyenletrendszert, mint egy kongruenciarendszert és így is oldjuk meg: $c_1 \equiv 5$ (7)

```
c_2 \equiv 2 \quad (11)
```

 $c_2 \equiv 2$ (11) $c_3 \equiv 8$ (15)

lnko(7,11) = lnko(11,15) = lnko(7,15) = 1 => a kínai maradéktétel alapján létezik megoldás:

 $M = 7*11*15=1155, M_1 = 165, M_2 = 105, M_3 = 77$

$$165y \equiv 1 \quad (7) => 165y \equiv 15 \quad (7) => 55y \equiv 5 \quad (7) => 11y \equiv 1 \quad (7) => 11y \equiv 22 \quad (7) => y \equiv 2 \quad (7)$$

$$105y \equiv 1$$
 (11) => $105y \equiv 12$ (11) => $35y \equiv 4$ (11) => $35y \equiv 15$ (11) => $7y \equiv 3$ (11) => $7y \equiv 14$ (11) => $y \equiv 2$ (11)

$$77y \equiv 1 \quad (15) = 77y \equiv -14 \quad (15) = 11y \equiv -2 \quad (15) = 11y \equiv 13 \quad (15) = 11y \equiv 88 \quad (15) = 11y \equiv 11y$$

$$c \equiv c_1 * M_1 * y_1 + c_2 * M_2 * y_2 + c_3 * M_3 * y_3 \quad (M) => c \equiv 5 * 165 * 2 + 2 * 105 * 2 + 8 * 77 * 8 \quad (1155) => c \equiv 1650 + 420 + 4928 \quad (1155) => c \equiv 6998 \quad (1155) => c \equiv 68 \quad (1155) => c = 68 = (5, 2, 8).$$