K. N. Toosi University of Technology

Faculty of Mathematics

Problems 3 - Calculus II

A. R. Moghaddamfar

1. کار انجام شده توسط تابع نیروی $\vec{\mathbf{F}}(x,y)=(2x+e^{-y})$ $\vec{\mathbf{i}}+(4y-xe^{-y})$ را در امتداد منحنی معرفی شده در زیر، پیدا کنید.

2. تابع پتانسیل میدان نیروی زیر بیابید:

$$\vec{\mathbf{F}}(x, y, z) = (2xy^2 + 3xz^2) \, \vec{\mathbf{i}} + (2x^2y + 2y) \, \vec{\mathbf{j}} + (3x^2z - 2z) \, \vec{\mathbf{k}} \, .$$

را براى ميدان نيروى
$$\int_C \overrightarrow{\mathbf{F}} \cdot d \overrightarrow{r}$$
 انتگرال منحنى الخط

$$\overrightarrow{\mathbf{F}}(x, y, z) = 3x^2z \overrightarrow{\mathbf{i}} + z^2 \overrightarrow{\mathbf{j}} + (x^3 + 2yz) \overrightarrow{\mathbf{k}},$$

در امتداد منحنی پارامتری شده زیر بیابید

$$\vec{r}(t) = \left\langle \frac{\ln t}{\ln 2}, t^{\frac{3}{2}}, t \cos(\pi t) \right\rangle, \ 1 \leqslant t \leqslant 4.$$

$$\vec{r}(t) = \langle \cos t, \sin t, \frac{t}{2\pi} \rangle$$
 و $\vec{F}(x,y,z) = -y$ $\vec{i} + x$ $\vec{j} + \vec{k}$ فرض کنید .4 فرض کنید .4 $\vec{F} \cdot d\vec{r}$ باشد. انتگرال منحنی الخط $\int_C \vec{F} \cdot d\vec{r}$ را محاسبه کنید .

$$\vec{r}(t) = \langle t, t^2, t^3 \rangle$$
 و $\vec{\mathbf{F}}(x, y, z) = \langle xy, yz, zx \rangle$ را که در آن $\int_C \vec{\mathbf{F}} \cdot d\vec{r}$ و $\vec{\mathbf{F}} \cdot d\vec{r}$.5

محاسبه کنید.
$$\overrightarrow{\mathbf{F}}(x,y,z)=\langle x^2y,xyz,-x^2y^2\rangle$$
 محاسبه کنید. 6. دیورژانس

را بيابيد.
$$f(x, y, z) = x^2y^2z + 2xz$$
 را بيابيد.

- 8. اگر $\nabla imes \nabla f imes$ را محاسبه کنید.
- 9. معادله خط حاصل از فصل مشترک صفحات x + y + z = 1 و x + 2y + 2z = 1 را بیابید.
 - 10. معادله خط مماس بر منحنی زیر را

C:
$$\begin{cases} x^2 - 3xy + z^2 = 1, \\ 2x \tan^{-1}(xz) + 2y^2 - z = 1, \end{cases}$$

در نقطه (0,1,1) بیابید.

- (0,1,3) و گذرنده از نقطه $\overrightarrow{v}=\langle 0,-1,2\rangle$ و $\overrightarrow{u}=\langle 1,1,4\rangle$ و گذرنده از نقطه (0,1,3) معادله خط عمود بر بردارهای را بیابید.
 - .12 مساحت مثلث با راسهای C=(0,0,2) هB=(3,1,0) ، A=(1,0,2) را بیابید.
 - .13 را در نظر گرفته و نقاط بحرانی آن را مشخص نمایید. $f(x,y)=x^3+3xy+y^3$
- . طول قوس منحنی پارامتری شده $0\leqslant t\leqslant \ln 2$ را در بازه $ec{r}(t)=\langle e^t,e^{-t},\sqrt{2}\ t
 angle$ بیابید.
 - ال در صورت وجود بیابید. $\lim_{(x,y)\to(0,0)} \frac{x^4-4y^2}{2x^4+y^2}$ حد .15
 - .16 معادله صفحه مماس بر رویه $xyz \ln z = 0$ را در نقطه (0,1,1) بیابید.
- را بر کل صفحه پیدا و نوع اَنها را مشخص $f(x,y)=2x^2+y^4-4xy$ را بر کل صفحه پیدا و نوع اَنها را مشخص کنید (مینیمم، ماکزیمم یا زینی).
 - 18. برای دو بردار مفروض $\overrightarrow{v}=\langle 1,0,1\rangle=\overrightarrow{u}=\langle 1,-1,0\rangle$ و زاویه بین آنها را مشخص کنید. همچنین مساحت متوازی الاضلاع ساخته شده توسط این دو بردار را محاسبه کنید.
- 19. نقاط بحرانی تابع $f(x,y) = x^2y 2xy 5x^2 + 10x$ را مشخص نموده و با استفاده از آزمون مشتق دوم نوع آنها را مشخص کنید (مینیمم، ماکزیمم یا زینی).
- را در $f(x,y)=3x^2+4y^2-2$ را در نظر بگیرید. مشتق سویی (جهتدار) تابع $f(x,y)=3x^2+4y^2-2$ را در نور تابع $\overrightarrow{u}=\langle \frac{1}{2},\frac{\sqrt{3}}{2}\rangle$ را در راستای بردار $\overrightarrow{u}=\langle \frac{1}{2},\frac{\sqrt{3}}{2}\rangle$