

LINFO1123

CALCULABILITÉ, LOGIQUE ET COMPLEXITÉ

YVES DEVILLE

FORMULAIRE

Dylan Goffinet

2021-2022

Table des matières

1	Con	Concepts								
	1.1									
	1.2	Enum	érable							
		1.2.1	Diagonalisation de Cantor							
2	Rés		fondamentaux 2							
	2.1 Fonction calculable									
		2.1.1	Ensemble récursif							
		2.1.2	Ensemble récursivement énumérable							
		2.1.3	Propriétés							
		2.1.4	Numérotation							
	2.2	Calcul	labilité							
		2.2.1	Problème de l'arrêt							
		2.2.2	Hoare-Allison							
		2.2.3	Rice							
		2.2.4	Paramétrisation							
		2.2.5	Point fixe							
_										
3		dèles	wa							
	3.1									
	3.2		écursif							
		3.2.1	ND-Récursif énumérable							
		3.2.2	Propriétés							
4	Réd	luction	$_{ m is}$							
	4.1	1 Réduction algorithmique (calculabilité)								
		4.1.1	Propriétés							
	4.2	Réduc	tion fonctionnelle (complexité)							
	4.3		tion polynomiale							
	4.4	es de complexité								
	4.5		ons entre classes de complexité							
		4.5.1	Déterministe VS non déterministe							
		4.5.2	Time VS Space							
	4.6		dismes de calculabilité							
	1.0	4.6.1	Caractéristiques de formalisme							
		4.6.2	Propriétés							
_	_									
5			pplémentaire 9							
	5.1	L'ense	emble des fonctions totales n'est pas énumérable							

1 | Concepts

1.1 Fonction

Soit $f: A \to B$:

- Domaine de $f : dom(f) = \{a \in A \mid f(a) \neq \bot\}$
- Image de $f = im(f) = \{b \in B \mid \exists a \in A : b = f(a)\}\$
- f est fonction totale ssi dom $(f) = A (\nexists a \in A : f(a) = \bot)$
- f est fonction partielle ssi $dom(f) \subseteq A$ (f totale est partielle mais f partielle n'est pas forcément totale)
- f est surjective ssi im(f) = B (tout y a au moins un x)
- f est injective ssi $\forall a, a' \in A : a \neq a' \rightarrow f(a) \neq f(a')$ (tout x a un y différent)
- f est bijective ssi f est totale, injective et surjective (tout y a un et un seul x)

1.2 Enumérable

Un ensemble est énumérable s'il est soit fini ou s'il a le même cardinal que \mathbb{N}^1 (si on peut le mettre en bijection avec \mathbb{N}). En informatique, un programme est une chaîne finie de caractères \rightarrow énumérable.

1.2.1 Diagonalisation de Cantor

Soit $E = \{x \in \mathbb{R} \mid 0 < x \le 1\}$. E est non énumérable ²

Preuve:

1. Supposons E énumérable. Il existe donc une énumération des éléments de $E: x_0, ..., x_k, ...$

	1 digit	2 digit	3 digit	• • •	k+1 digit	• • •
x_0	x_{00}	x_{01}	x_{02}		x_{0k}	
x_1	x_{10}	x_{11}	x_{12}	• • •	x_{1k}	• • •
x_2	x_{20}	x_{21}	x_{22}	• • •	x_{2k}	• • •
÷	:	:	÷	٠.	:	
x_k	x_{k0}	x_{k1}	x_{k2}	• • •	x_{kk}	• • •
÷	:	÷	:	÷	:	٠٠.

FIGURE 1.1: Construire une table t.q. le nombre $x_k = 0, x_{k0}x_{k1}x_{k2}\dots x_{kk}\dots$

- 2. Prendre la diagonale $(d = 0, x_{00}x_{11}x_{22}...x_{kk}...)$
- 3. Modifier la diagonale t.q.

$$x'_{ii} = \begin{cases} 5 & \text{si } x_{ii} \neq 5 \\ 6 & \text{sinon} \end{cases}$$

Ce qui donne $d' = 0, x'_{00}x'_{11}x'_{22} \dots x'_{kk} \dots (d' \in E)$

4. Contradiction : Comme E est énumérable, et que $d' \in E$, alors d' doit être dans l'énumération. Or, si $d' = x_p$, on a :

$$d' = 0, x_{p0}x_{p1}x_{p2}\dots x_{pp}\dots$$

= 0, $x'_{p0}x'_{p1}x'_{p2}\dots x'_{pp}\dots$

5. Conclusion : E n'est pas énumérable

^{1.} L'ensemble \mathbb{N} est l'ensemble des entiers positifs $\mathbb{N} = \{0, 1, 2, 3, \ldots\}$

^{2.} Il n'existe pas de bijection entre E et $\mathbb N$ c.à.d. qu'il y a beaucoup plus de réels entre 0 et 1 qu'il n'y a d'entiers positifs

2 | Résultats fondamentaux

2.1 Fonction calculable

Une fonction $f: \mathbb{N} \to \mathbb{N}^1$ est calculable ssi il existe un programme qui, recevant comme données n'importe quel nombre naturel x, fourni comme résultat f(x) s'il est défini, sinon \bot (s'il ne se termine pas ou erreur).

2.1.1 Ensemble récursif

On dit que l'ensemble A est récursif ssi il existe un programme qui prend en input x et qui renvoi (c.à.d un ensemble récursif est un ensemble pour lequel on est capable de dire si un élément y appartient) :

$$\begin{cases} 1 & \text{si } x \in A \\ 0 & \text{si } x \notin A \end{cases}$$

Le programme calcule donc une fonction totale. Exemple : $\{x \in \mathbb{N} \mid x \text{ pair}\}.$

2.1.2 Ensemble récursivement énumérable

On dit que l'ensemble A est récursivement énumérable ssi il existe un programme qui prend en input x et qui renvoi (tôt ou tard) :

$$\begin{cases} 1 & \text{si } x \in A \\ \text{Un autre résultat, ou ne se termine pas} & \text{si } x \not\in A \end{cases}$$

2.1.3 Propriétés

- A récursif $\Rightarrow A$ récursivement énumérable
- A récursif $\Leftrightarrow \bar{A}$ récursif ²
- A récursivement énumérable et \bar{A} récursivement énumérable $\Leftrightarrow A$ récursif
- A fini ou \bar{A} fini $\Rightarrow A$ et \bar{A} récursif

2.1.4 Numérotation

Soit P l'ensemble des programmes syntaxiquement corrects.

- P est énumérable récursif
- $P = P_0, P_1, \dots$ (sans répétition)
- P_k est le programme numéro k dans P
- φ_k est la fonction numéro k calculée par le programme P_k $(\varphi: \mathbb{N} \to \mathbb{N})$

^{1.} Se lit : "une fonction de \mathbb{N} dans \mathbb{N} ". L'ensemble $\mathbb{N} \to \mathbb{N}$ est non énumérable (l'ensemble des problèmes a un plus grand cardinal que l'ensemble des programmes), voir 5.1

^{2.} \bar{A} est le complément de A

2.2 Calculabilité

2.2.1 Problème de l'arrêt

Soit la fonction
$$halt: P \times \mathbb{N} \to \mathbb{N}$$
 t.q. $halt(n, x) = \begin{cases} 1 & \text{si } \varphi_n(x) \neq \bot \\ 0 & \text{sinon} \end{cases}$

halt n'est pas calculable.

Preuve

Supposons halt calculable.

1. Construire la table

	0	1	2		k	
P_0	halt(0,0)	halt(0,1)	halt(0,2)		halt(0,k)	
P_1	halt(1,0)	halt(1,1)	halt(1,2)		halt(1,k)	
P_2	halt(2,0)	halt(2,1)	halt(2,2)		halt(2,k)	
:	:	÷	:	٠.	:	
P_k	halt(k,0)	halt(k,1)	halt(k,2)		halt(k,k)	
÷	:	:	:	÷	:	٠.

FIGURE 2.1: Table des valeurs de la fonction halt

- 2. Prendre la diagonale : d(n) = halt(n, n)
- 3. Modifier la diagonale:

$$d'(n) = \begin{cases} 1 & \text{si } halt(n, n) = 0\\ \bot & \text{si } halt(n, n) = 1 \end{cases}$$

Si halt est calculable, alors d' est calculable. Soit P_d le programme qui calcule cette fonction.

4. Contradiction:

$$d'(d) = \begin{cases} 1 & \rightarrow halt(d,d) = 0 \rightarrow P_d \text{ ne se termine pas OR } d'(d) = 1 \\ \bot & \rightarrow halt(d,d) = 1 \rightarrow P_d \text{ se termine OR } d'(d) = \bot \end{cases}$$

5. Conclusion: d' n'est pas calculable, donc halt n'est pas calculable.

2.2.2 Hoare-Allison

Soit un langage Q qui a des programmes Q_k et qui ne calcule que des fonctions totales :

- La fonction φ_k' est calculée par le programme Q_k
- L'interpréteur interpret(n, x) de ce langage Q est calculable
- La fonction halt(n,x) pour ce langage Q est calculable (fonction constante qui vaut 1)
- interpret(n, x) n'est pas calculable dans Q

Preuve

Supposons interpret calculable dans Q.

1. Construire la table

	0		k	
Q_0	interpret(0,0)		interpret(0,k)	• • •
÷	:	٠.	:	
Q_k	interpret(k,0)	• • •	interpret(k,k)	• • •
÷	:	:	:	٠.

FIGURE 2.2: Table des valeurs de la fonction interpret

- 2. Prendre la diagonale : d(n) = interpret(n, n)
- 3. Modifier la diagonale : d'(n) = interpret(n, n) + 1 (calculable dans Q si interpret calculable dans Q)
- 4. Contradiction: d'(d) = interpret(d, d) + 1 OR $d'(d) = \varphi'(d) = interpret(d, d)$
- 5. Conclusion : l'interpréteur de Q n'est pas calculable dans Q

2.2.3 Rice

Deux formulations:

- 1. Soit $A \subseteq \mathbb{N}$, si A récursif, $A \neq \emptyset$ et $A \neq \mathbb{N}$ alors $\exists i \in A$ et $\exists j \in \bar{A}$ t.q. $\varphi_i = \varphi_j$
- 2. Si $\forall i \in A$ et $\forall j \in \bar{A} : \varphi_i \neq \varphi_j$ alors A non récursif ou $A = \emptyset$ ou $A = \mathbb{N}$
- → Aucun programme ne peut dire si une fonction respecte des spécifications

Si A $\neq \emptyset$ et $A \neq \mathbb{N}$, $\forall i \in A, \forall j \in \overline{A} : \varphi_i \neq \varphi_j$. Alors A non récursif.

Preuve

- 1. On suppose A récursif. On pose $P_k(x) \equiv$ while(True) (c.à.d. $\varphi_k = \bot$). Si $k \in \bar{A}$, comme $A \neq \varnothing \Rightarrow \exists m \in A$ et $\varphi_k \neq \varphi_m$
- 2. Construire halt:

$$halt(n,x) \equiv \begin{cases} \text{Construire le programme (sans l'exécuter) } P(z) \equiv P_n(x); P_m(z) \\ d = \text{numéro du programme } P(z) \\ \text{if } d \in A \text{ then } print(1) \text{ Si } P_n \text{ se termine, } \varphi_d = \varphi_m \to d \in A \\ \text{else } print(0) \text{ Si } P_n \text{ ne se termine pas, } \varphi_d = \varphi_k \to d \in \bar{A} \end{cases}$$

3. halt n'est pas calculable, donc A est non récursif

2.2.4 Paramétrisation

Si un programme P(a,b) existe, alors il existe un programme $P'_b(a)$ (où b est fixé) t.q. $P'_b(a) \equiv Exec\ P(a,b)$

Forme S-1-1

Il existe une fonction totale calculable $S_1^1: \mathbb{N}^2 \to \mathbb{N}$ t.q. $\forall k: \varphi_k(x_1, x_2) = \varphi_{S_1^1(k, x_2)}(x_1)$

Forme S-m-n

 $\forall m, n \geq 0, \exists$ une fonction totale calculable $S_n^m : \mathbb{N}^{m+1} \to \mathbb{N}$ t.q. $\forall k : \varphi_k(x_1, \dots, x_n, x_{n+1}, \dots, x_{n+m}) = \varphi_{S_1^1(k, x_{n+1}, \dots, x_{n+m})}(x_1, \dots, x_n)$

2.2.5 Point fixe

Soit f une fonction to tale calculable. Il existe k t.q. $\varphi_k = \varphi_f(k)$.

Preuve

On pose:

$$h(u,x) = \begin{cases} \varphi_{\varphi_u(u)}(c) & \text{si } \varphi_u(u) \neq \bot \\ \bot & \text{sinon} \end{cases}$$
 (2.1)

Où h(u, x) est calculable

$$h(u,x) = \varphi_{S(u)}(x) \tag{2.2}$$

Par application de S-1-1

$$g(x) = f(S(x)) \tag{2.3}$$

Où g est totale calculable (car f et S le sont),

et f est donné par $k': \varphi_{k'}(x) = g(x) = f(S(x))$.

On a que k' est une constante par l'équation 2.2 :

$$h(k', x) = \varphi_{S(k')}(x)$$

Par l'équation 2.1 et comme $g = \varphi_{k'}$:

$$h(k', x) = \varphi_{k'(k')}(x)$$

Par l'équation 2.3, on a que $\varphi_{k'} = g(x) = f(S(x))$, donc :

$$h(k', x) = \varphi_{f(S(x))}(x)$$

Si on pose que S(k') = k, on obtient :

$$\varphi_k(x) = \varphi_{f(k)}(x)$$

3 | Modèles

3.1 ND-Java

C'est un sous-ensemble de Java ("Non-Deterministic Java") On y ajoute fonction choose(n) renvoyant un entier aléatoire entre 0 et n. Cette fonction est non-déterministe car à un même input elle ne renvoie pas toujours le même output.

3.2 ND-Récursif

Aest ND-Récursif si \exists un programme ND-Java t.q. s'il reçoit un input $x\in\mathbb{N}$:

- $x \in A$ alors \exists une exécution qui retourne 1
- $x \not\in A$ alors pour toute exécution le résultat est 0

3.2.1 ND-Récursif énumérable

Comme ND-Récursif sauf que le cas $x \notin A$ ne se fini pas forcément.

3.2.2 Propriétés

- Récursif \Rightarrow ND-Récursif
- Récursif énumérable \Rightarrow ND-Récursif énumérable

4 Réductions

4.1 Réduction algorithmique (calculabilité)

Un ensemble A est algorithmiquement réductible à un ensemble B $(A \leq_a B)$ si en supposant B récursif, A est récursif.

Exemple:

Soit $P = \{n \mid \varphi_n \text{ renvoi un nombre pair }\}$

 $HALT \leq_a P$ (si P énumérable, HALT énumérable)

4.1.1 Propriétés

- Si $A \leq_a B$ et B récursif, alors A récursif
- Si $A \leq_a B$ et A non récursif, alors B non récursif
- $-A \leq_a \bar{A}$
- $-A \leq_a B \Leftrightarrow \bar{A} \leq_a B$
- Si A récursif, alors pour tout $B, A \leq_a B$
- Si $A \leq_a B$ et B récursivement énumérable, alors A pas nécessairement énumérable

4.2 Réduction fonctionnelle (complexité)

Un ensemble A est fonctionnellement réductible à un ensemble B $(A \leq_r B)$ ssi il existe une fonction totale calculable f t.q. :

$$a \in A \Leftrightarrow f(a) \in B$$

4.3 Réduction polynomiale

Un ensemble A est polynomialement réductible à un ensemble B $(A \leq_p B)$ ssi il existe une fonction totale calculable f de complexité temporelle polynomiale t.q. :

$$a \in A \Leftrightarrow f(a) \in B$$

Si $A \leq_p B$ et $B \in P$ alors $A \in P$.

4.4 Classes de complexité

- DTIME(f): Ensemble récursif décidé par un programme en complexité temporelle $\mathcal{O}(f)$
- DSPACE(f): Ensemble récursif décidé par un programme en complexité spatiale $\mathcal{O}(f)$
- NTIME(f) : Ensemble ND-récursif décidé par un programme en complexité temporelle $\mathcal{O}(f)$ (sur toutes les branches)
- NSPACE(f): Ensemble ND-récursif décidé par un programme en complexité spatiale $\mathcal{O}(f)$ (sur toutes les branches)
- Classe P (Polynomiale) : $P = \bigcup_{i \geq 0} DTIME(n^i)$
- Classe NP (Non-Polynomiale) : $P = \bigcup_{i \geq 0} NTIME(n^i)$

4.5 Relations entre classes de complexité

4.5.1 Déterministe VS non déterministe

- Si $A \in NTIME(f)$ alors $A \in DTIME(c^f)$
- Si $A \in NSPACE(f)$ alors $A \in DSPACE(f^2)$
- --NPACE(f) = DSPACE(f)

4.5.2 Time VS Space

- Si $A \in NTIME(f)alorsA \in NSPACE(f)$
- Si $A \in DTIME(f)alorsA \in DSPACE(f)$
- Si $A \in NSPACE(f)alorsA \in NTIME(c^f)$
- Si $A \in DSPACE(f)alorsA \in DTIME(c^f)$

4.6 Formalismes de calculabilité

Soit D un nouveau formalisme de calculabilité :

4.6.1 Caractéristiques de formalisme

- SD (Soudness des Descriptions) : toute fonction D-calculable est calculable
- CD (Complétude des Définitions) : toute fonction calculable est D-calculable
- SA (Soudness Algorithmique) : l'interpréteur de D est calculable
- CA (Complétude Algorithmique) : si $p \in L$ (L est par exemple Java), que $p' \in D$ et que $p \equiv p'$ (calculent la même fonction), alors équivalence des formalismes
- U (Description Universelle) : l'interpréteur de D est D-calculable
- $S(S-m-n \text{ Affaiblie}): \forall d \in S \exists S: d(x,y) = [S(x)](y)$

4.6.2 Propriétés

- $-SA \Rightarrow SD$
- $-CA \Rightarrow CD$
- $-SD \text{ et } U \Rightarrow SA$
- CD et $S \Rightarrow CA$
- $-SA \text{ et } CD \Rightarrow U$
- $-CA \text{ et } SD \Rightarrow S$
- $-S \text{ et } U \Rightarrow S-m-n$
- -SA et $CA \Leftrightarrow SD$ et CD et U et S
- -SA et CD et $S \Leftrightarrow CA$ et SD et U

5 | Preuve supplémentaire

5.1 L'ensemble des fonctions totales n'est pas énumérable

Soit F l'ensemble des fonctions totales telles que $f: \mathbb{N} \to \mathbb{N}$.

 ${\cal F}$ est non énumérable.

Preuve

Supposons F énumérable. Il existe donc une énumération des éléments de $F: f_0(0), f_1(0), \ldots$

1. Construire la table

	1	1	2		k	
$\overline{f_0}$	$f_0(0)$	$f_0(1)$	$f_0(2)$		$f_0(k)$	• • • •
f_1	$f_1(0)$	$f_1(1)$	$f_1(2)$	• • •	$f_1(k)$	
f_2	$f_2(0)$	$f_2(1)$	$f_2(2)$	• • •	$f_2(k)$	• • •
:	:	:	÷	٠	:	
f_k	$f_k(0)$	$f_k(1)$	$f_k(2)$	• • •	$f_k(k)$	
÷	:	:	:	:	:	٠.

FIGURE 5.1: Table des résultats de la fonction f

- 2. Prendre la diagonale d qui est aussi une fonction de $\mathbb{N} \to \mathbb{N}$ $(d \in F)$
- 3. Modifier la diagonale pour obtenir d' t.q. :

$$f_i'(j) = \begin{cases} 5 & \text{si } f_i(j) \neq 5 \\ 6 & \text{sinon} \end{cases}$$

Où $f_i(j)$ est le résultat de la fonction f avec le numéro i pour la donnée j.

4. Contradiction:

Comme F est énumérable et que $d' \in F$, alors d' doit être dans l'énumération. Or si d' a le numéro p on a :

$$d' = f_p(0), f_p(1), f_p(2), \dots, f_p(p), \dots$$

= $f'_p(0), f'_p(1), f'_p(2), \dots, f'_p(p), \dots$

Si $f_p(0)$ vaut 5, on a $(f_p(0) = 5) \neq (f'_p(0) = 6)$.

5. Conclusion:

 ${\cal F}$ n'est pas énumérable.