Presentation notes

- Collatz Conjecture, Syracuse Problem, Hasse's Algorithm, Kakutani's Problem, Ulam's Problem
- function
 - Collatz function C(x)
 - -3x + 1 function
- what is the conjecture
 - that natural numbers will eventually reach 1 or the one cycle
 - number theory study of integers and integer valued functions
 - the mathematical way
 - is there a divergent trajectory?
 - negative numbers give you three different cycles: -1, -5, -17
 - are there other cycles?
- what other things we can define about the function
 - forward orbits
 - height h(m)
- has been verified up to $17 \times 2^{58} > 4.899 \times 10^{18}$, all go to 1
- history:
 - first published about in Klamkin 1963
 - Collatz said he started thinking about this in the 1930s, informally in a lecture by him in 1950 at the International Math. Congress in Cambridge Mass.
 - really took off with journals starting in 1970
 - continues on to this day
- examples of some sequences
 - a couple easy ones for the board
 - some to put into the presentation
- see how easy this is? But now prove it
 - several incomplete proofs
 - Yamada 1981 mathematically faulty
 - Cadogan 2006 incorrect indices in a function
 - Bruckman 2008 would prove that the starting cycle at 1 does not exist
- what is interesting about it?
 - super simple yet not solved
 - maybe new areas of mathematics will be needed to prove this and thus advance mathematics as a whole
 - prime factorization and how it changes if you add 1
- one person wrote that it might be unverifiable
- references
 - Lagarias, J. C. (2011). The 3x + 1 Problem: An Annotated Bibliography (1963-1999)
 - Lagarias, J. C. (2012). The 3x + 1 Problem: An Annotated Bibliograhpy, II (2000-2009)