Problem Set 7 – MATH392

Theodore Dounias 3/25/2018

9.4

If I consider -5Y to be an rv of its own, I can apply the following identity:

$$Var[2X - 5Y] = Var[2X] + Var[-5Y] + 2Cov[2X, -5Y]$$

To find the covariance, I will use the following:

$$Cov[2X, -5Y] = E[-10XY] - E[2X]E[-5Y] = -10(E[XY] - E[X]E[Y]) = -10Cov[X, Y] = -20$$

Plugging in to the first equation I have:

$$Var[2X - 5Y] = 12 + 150 - 20 = 142$$

9.7

Α.

```
cor(data$X, data$Y)
```

[1] 0.4996089

В.

```
data <- data %>%
  group_by(Z) %>%
  summarize(xbar = mean(X), ybar = mean(Y))

data %>%
  kable() %>%
  kable_styling()
```

\mathbf{Z}	xbar	ybar
A	4.875843	9.906436
В	8.029427	13.240133
\mathbf{C}	2.056802	6.892129
D	10.635826	14.678636

C.

```
ggplot(data, aes(x = xbar, y = ybar)) +
geom_text(aes(label = Z)) +
geom_line(alpha = .5, col = "skyblue")
```


9.9

I will use the fact that $\beta_1 = \bar{y} - \beta_2 \bar{x}$ and $\hat{y} = \beta_1 + \beta_2 x$:

$$\sum_{i=1}^{n} (\hat{y} - y_i) = \sum_{i=1}^{n} (y_i - (\beta_1 + \beta_2 x_i)) = -\beta_1 n + \sum_{i=1}^{n} (y_i - \beta_2 x_i) = -\beta_1 n + n \sum_{i=1}^{n} (\frac{y_i}{n} - \beta_2 \frac{x_i}{n})$$

By using the aforementioned equations I have:

$$\sum_{i=1}^{n} (\hat{y} - y_i) = -n(\bar{y} - \beta_2 \bar{x}) + n(\bar{y} - \beta_2 \bar{x}) = 0$$

9.14

A.

```
ggplot(data, aes(y = Illit, x = Births)) +
  geom_point() +
  geom_smooth(alpha = .02)
```

`geom_smooth()` using method = 'loess'

The relationship appears to be linear; higher birth rates and higher illiteracy increase simultaneously.

В.

```
lm1 <- lm(data = data, Illit ~ Births)

tidy(lm1)

## term estimate std.error statistic p.value
## 1 (Intercept) -8.239759 3.7508638 -2.196763 3.054992e-02
## 2 Births 10.836417 0.9401581 11.526165 1.502910e-19
glance(lm1)[1]</pre>
```

r.squared ## 1 0.5908428

The slope coefficient is statistically significant, positive, and equal to 10.83; this means that for an increase of one birth, there is approximatelly a 10.83 increase in illiteracy rates. The residual sum of squares is about .6, which signifies the error rate that the output line has in predicting the data.

C.

plot(lm1)

If we consider these diagnostic plots, it is obvious that the residuals present an increase in variance as the values of illiteracy themselves increase. This might suggest that using a log value for the response variable might be appropriate, but the linear model is a fine approximation.

D. Not necessarily. To consider policy solutions we would have to run a wider array of models that include other variables. What we are seeing in this simple model might be an example of collinearity, a relationship that exists due to an underlying cause. In that case, we should try to find the true root of the issue.