

# **Apontamentos Práticos**

```
Aula P 21/10/2021
   Pilha TCP/IP
Aula T 29/10/2021
   Interface Tracking
       Como fazer?
      No R1
      No R2
Aula P 04/11/2021
   VRRP (Virtual Redundacy Protocol)
       Balanciamento de carga
   GLBP (Gateway Load Balancing Protocol)
       Funcionamento
      Prioridade
      Como é feito o balanceamento de carga?
Aula 11/11/2021
   GLBP
   Referências
Aula 02/12/2021
   Experiência da aula
Aula 06/01/2022
   Topologia MultiAttachment
       Problema 1
       Solução do problema 1
       Problema 2
```

# Aula P 21/10/2021

Solução do problema 2

- Temos de calcular a disponibilidade como sendo
  - Disponibilidade = Tempo de prestação efetiva do serviço / Tempo de prestação efetiva do serviço + downtime
- Quando queremos alterar alguma coisa na rede temos sempre de pensar em alterar a rede em si de modo a nunca ter de fazer alterações nos terminais

### Pilha TCP/IP

Stateful NAT



# Aula T 29/10/2021

- Nesta aula tivemos a ver o HSRP e a fazer algumas experimentações que estão no PowerPoint de Redundância
- Falamos tambem sobre o interface tracking

# **Interface Tracking**



 Se a interface F0/1 do R1 for abaixo, não faz sentido o mesmo ser AR na Rede A, então o que vamos fazer é criar uma regra que diga ao HSRP "se por ventura este interface tiver problemas, não anuncias como AR na outra rede, nem se quer entras no grupo"

- Se isto for feito, tudo se passa como se a outra interface do R1 tivesse em baixo tambem tornando assim o R2 o AR em ambas as redes fazendo com que o encaminhamento passe de assimétrico para simétrico
  - Recorrendo à propriedade de interface tracking
  - Como funciona?
    - Os routers envolvidos (R1, R2) devem ser ambos configurados para actuar de forma preemptiva
    - Os routers envolvidos devem estar configurados para vigiar interfaces relevantes
    - Os routers envolvidos devem possuir preferências próximas dentro do grupo. Quando o protocolo associado à interface vigiada ficar down a prioridade do router é diminuída automaticamente
- Atenção que isto só resulta se a preempeção estiver ativa

#### Como fazer?

#### No R1

```
R1(config)#track ?

<1-500> Tracked object
resolution Tracking resolution parameters
timer Polling interval timers

R1(config)#track 1 ?
application Application
interface Select an interface to track
ip IP protocol
list Group objects in a list
rtr Response Time Reporter (RTR) entry
stub-object Stub tracking object
```

```
R1(config)#track 1 interface f0/1?

ip IP parameters
line-protocol Track interface line-protocol

R1(config)#track 1 interface f0/1 line-protocol

R1(config-track)#?

Tracking instance configuration commands:
    carrier-delay Report state change only after interface carrier-delay timer
    expires
    default Set a command to its defaults
    delay Tracking delay
    exit Exit from tracking configuration mode
    no Negate a command or set its defaults

R1(config-track)#exit
```

- Depois fazemos tambem track 2 interface fo/0 line-protocol para vigiar tambem a outra interface do R1
- Depois vamos à f0/0 e fazemos o track à interface f0/1

```
standby 1 track 1
```

Depois vamos à f0/1 e fazemos o track à interface f0/0

```
standby 1 track 2
```

#### No R2

• É fazer exatamente o mesmo que foi feito no R1

# Aula P 04/11/2021

# **VRRP (Virtual Redundacy Protocol)**

- É um protocolo normalizado pelo IETF que resolve alguns problemas do HSRP
- No VRRP é possível usar um IP atribuido a uma interface
  - o A prioridade do router torna-se máxima no grupo
  - No entanto n\u00e3o \u00e9 poss\u00edvel, neste caso especifico, mudar de forma din\u00e4mica a prioridade do router no grupo com o mecanismo sofisticado de object tracking
- No VRRP, tal como no HSRP, é possível diminuir e forma dinâmica a prioridade em resposta à mudança de estado de uma rota ou interface (object tracking)

|                   | VRRP                                                                                                     | HSRP                                                                                     |
|-------------------|----------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|
| Terminologia      | Master Router - apenas um<br>Backup Router - restantes                                                   | Active router - Apenas um<br>Standby router - Apenas um<br>Listening routers - Restantes |
| Grupos possíveis  | 0 a 254                                                                                                  | 0 a 255                                                                                  |
| Prioridade        | 1 a 254 (def. 100) (255 Virtual IP==IP)<br>0: serve para o master avisar que já<br>não pertence ao grupo | 0 a 255 (default 100)                                                                    |
| Virtual MAC       | 0000.5e00.01 <b>xx</b> ( <b>xx</b> = group)                                                              | 0000.0c07.ac <b>xx</b> ( <b>xx</b> = group)                                              |
| Virtual IP        | Poder ser usado o IP da interface física                                                                 | Obrigatório                                                                              |
| Avisos periódicos | 1 segundo (só o Master)                                                                                  | 3 segundos (AR e SR)                                                                     |
| Preempção         | Activo por omissão                                                                                       | Activo se configurado                                                                    |
| Object tracking   | Interfaces e rotas                                                                                       | Interfaces e rotas                                                                       |
| Grupo multicast   | 224.0.0.18<br>Protocolo IP 112                                                                           | 224.0.0.2 "all routers"<br>Recorre ao UDP                                                |
| Autenticação      | None, Clear text, IP Authentication<br>Header, MD5                                                       | None, Clear text, MD5                                                                    |
| Timers            | Milisegundo                                                                                              | Segundo (IOS Milisegundo)                                                                |
| IPv6              | Não (v1, v2) Sim (v3)                                                                                    | Sim                                                                                      |

# A possibilidade de utilizar um endereço IP existente



### Balanciamento de carga

Balanceamento de carga



· Fizemos experiências com o VRRP

### **GLBP (Gateway Load Balancing Protocol)**

- Representa uma versão HSRP melhorada
  - Suporta explicitamente load balancing sem a necessidade (e complexidade) de configurar múltiplos grupos e múltiplos DGs em clientes distintos
  - o Em vez de um, podem ser usados simultaneamente até quatro routers a desempenhar a tarefa de DG
  - o Todos partilham o mesmo endereço IP Virtual
  - Todos recorrem a um endereço MAC virtual distinto
  - o O protocolo suporta o failover dos membros como o HSRP

### **Funcionamento**

- Os membros de um grupo GLBP elegem um elemento como Active Virtual Gateway(AVG)
  - o O AVG atribui um Virtual MAC a cada membro do grupo
  - Estes tornam-se Active Virtual Forwarders(AVFs)
    - São no máximo 4 e passam a ter a responsabilidade de encaminhar tráfego endereçado para o seu Virtual MAC
  - O AVG responde aos ARP Request dirigidos ao Virtual IP
    - O balanceamento é conseguido através de diferentes respostas
  - o Os AVFs estão sempre disponíveis como backup do AVG

- Em caso de falha de um AVF
  - Um dos Secondary Virtual Forwarders (SVF) toma temporariamente a responsabilidade de PVF daquele MAC Virtual
- Durante Redirect Time o AVG continua a enviar ARP Replies para o MAC Virtual perdido
- Após esse timer expirar o AVG cessa a utilização do MAC Virtual mas o AVF substituido continua a encaminhar trafego que lhe é remetido com o "MAC Virtual perdido"
- Quando o holdtime timer expirar o "MAC Virtual perdido" volta a estar disponível para o AVG atribuir



#### **Prioridade**

- A prioridade configurada em cada router determina
  - o Quem substitui o AVG em caso de falha daquele
  - Quem suporta temporariamente os MAC Virtuais perdidos
  - o Na retoma do papel de AVG o modo preempetivo encontra-se inativo por omissão
  - Na retoma do papel de AVF o modo preempetivo encontra-se ativo mas a retoma é atrasada em 30 segundos

### Como é feito o balanceamento de carga?

#### Round-Robin

- Modo de operação por omissão
- Por cada pedido é fornecido o Virtual MAC do próximo AVF do grupo GLBP, sendo a operação rotativa.

#### Host-Dependent

 Por cada pedido é fornecido o Virtual MAC do próximo AVF do grupo GLBP se o pedido vier de um novo nó (i.e., de um MAC ainda não servido). Caso contrário é atribuído o mesmo Virtual MAC.

### Weighted

 A distribuição é feita de forma balanceada de acordo com o peso (weight) com que router está configurado. Opera em histerese: desliga/liga acima/abaixo de determinado nível crítico.

### Aula 11/11/2021

### **GLBP**

• Foi feito um ping do PC1 para o PC3 e o PC3 ficou com um mac virtual, e depois foi feito outro ping do PC1 para o PC4 e o PC4 ficou com um mac virtual diferente do que o PC3 tem no entanto com o mesmo IP virtual e é assim que é feito o loadbalancing



- O GLBP nao permite alterar dinamicamente a priority por object tracking
- O priority no GLBP apenas server para saber quem faz de Arp Replier ou seja quem é o AVG
- Num mecanismo de loadbalancing, o peso serve para saber que router vai ter mais trabalho, ou seja, se tivermos 2 routers com pesos diferentes, o router que tiver maior peso terá mais trabalho
- · Os tracking objects funcionam de maneira diferente no GLBP
- Os tracking objects aqui mexem no peso (weight) dos routers para dizermos com que peso é que o router deixa de encaminhar por exemplo
  - "Se o peso descer abaixo de 8 já não encaminhas (deixa de ser AVF), se subir acima de 10 passas a encaminhar (passa a ser AVF)"





### Referências

• <a href="https://www.cisco.com/c/en/us/td/docs/ios-xml/ios/ipapp\_fhrp/configuration/xe-3s/fhp-xe-3s-book/fhp-glbp.html#GUID-FFA459B3-479D-4749-8BB6-C2D64EF7E6B7">https://www.cisco.com/c/en/us/td/docs/ios-xml/ios/ipapp\_fhrp/configuration/xe-3s/fhp-xe-3s-book/fhp-glbp.html#GUID-FFA459B3-479D-4749-8BB6-C2D64EF7E6B7</a>

## Aula 02/12/2021

# Experiência da aula

• Colocamos uma ACL no R2 para deixarmos apenas sairem IPs públicos permitidos na empresa

```
conf t
ip access-list standard PUBLIC_ADDR_SPACE
permit 194.65.52.0 0.0.0.7 log
deny any log
int e0/1
ip access-group PUBLIC_ADDR_SPACE out
```

• Instalamos uma *discard route* no R2 para o espaço de endereçamento da empresa para que caso o R2 receba trafego de fora para aquela rede, ele envia para null0

```
conf t
ip route 194.65.52.0 255.255.248 null0
```

• No R2 criamos uma ACL para depois configurarmos o PAT

```
ip access-list 1 permit 192.168.100.0 255.255.255.0
ip access-list 2 permit 192.168.200.0 255.255.255.0

ip nat inside source list 1 pool NATPOOL_NETA overload
ip nat inside source list 2 pool NATPOOL_NETA overload
int e0/0
ip nat inside
```

https://moodle.isec.pt/moodle/pluginfile.php/333633/mod\_resource/content/6/04\_DD\_Multihoming\_1.12.pdf

### Aula 06/01/2022

### Topologia MultiAttachment

• O comando redistribute static redistribui tudo o que são rotas estáticas

#### Problema 1

- No inicio temos um serviço stateful por isso é que se pingassemos de dentro da empresa para fora funcionava, mas quando voltava ia para o R2 e o R2 nao tem a entrada NAT para receber o Reply (pag.113)
  - o As coisas falham porque o caminho é assimétrico (a saida é um caminho e a entrada é outro caminho)
- Se estamos a usar um serviço com estado e queremos aumentar a redundância do mesmo temos de sincronizar os estados

### Solução do problema 1

- Identificação do problema
  - Caminhos assimétricos servidos por entradas dinâmicas na tabela de translações impossibilitam a realização de sessões
- Soluções?
  - A: Dentro da nossa rede poderíamos criar determinismo sobre o router de saída que seria usado.
    - Não seria suficiente porque o ISP é autónomo na escolha do caminho de retorno do tráfego.
  - B: Colocar um único dispositivo a fazer as translações
    - · Traria complexidade acrescida e um single-point-of-failure à rede
  - C: Sincronizar as tabelas de translação entre R2 e R3
    - SNAT Stateful NAT: solução preconizada pela Cisco
- Na pagina 120 tem uma experiencia com o HSRP mas isso nao funciona porque o RIP nao trabalha com o Virtual IP

#### Problema 2

• Se quisermos chegar à Internet pelo R2 mas a interface do RISP esteja em baixo, nós queremos que o R2 saiba que nao pode anunciar a sua rota 0.0.0.0 e isso pode ser feito com o object tracking

### Solução do problema 2

- Criamos uma sonda no R2 para confirmarmos que o caminho para o exterior a partir do R2 é ou não operacional
  - o Temos de usar o source-interface sendo este a interface que liga diretamente ao ISP

- o Depois criamos um tracking object que é o element que vai viajar a sonda
- o Depois reescrevemos a rota estatica com o tracking object criado
- No R2

```
conf t
sla 1
icmp-echo 1.1.1.1 source-interface e0/1
frequency 10
timeout 5000
exit
exit
ip sla schedule 1 life forever start-time now
track 3 ip sla 1 reachability
ip route 0.0.0.0 0.0.0.0 194.65.52.9 track 3
```

- sh ip sla statistics Mostra as estatisticas da sonda criada
- Mas depois de fazer isto, temos um problema de dependencia circular em que a sonda precisa do 0.0.0.0 e o 0.0.0.0 precisa da sonda
- Então eu posso criar no router uma rota especial para o destino **e0/1** e esta entrada vai sempre ser usada antes da entrada dos 0.0.0.0
- No R2(corrigindo a dependencia circular)

```
conf t
ip route 1.1.1.1 255.255.255 194.65.52.9
```

- A partir deste momento fico com o pequeno problema na mesma em que o 1.1.1.1 não está protegido pelo tracking object
- Foi feita a mesma configuração mas no R3

### Stateful NAT

Protocolo usado para sincronizar tabelas de NAT