18.S096 January 2017: Memory and Matrices

Steven G. Johnson, MIT Applied Math

performance experiments (circa 2008):

Hardware: 2.66GHz Intel Core 2 Duo

64-bit mode, double precision, gcc 4.1.2

optimized BLAS dgemm: ATLAS 3.6.0 http://math-atlas.sourceforge.net/

A trivial problem?

$$C = A B_{m \times p} = A \times n \times p$$

the "obvious" C code (rows · columns):

```
for i = 1 to m

for j = 1 to p

C_{ij} = \sum_{k=1}^{n} A_{ik} B_{kj}
```

```
2mnp flops
(adds+mults)

"floating-point operations"
```

just three loops, how complicated can it get?

flops/time is not constant!

(square matrices, m=n=p)

Speed is limited by access to the memory hierarchy [not to scale!]

All flops are not created equal

Things to remember

- We often cannot understand performance without understanding memory efficiency (caches).
 - often ~10 times more important than arithmetic count when working with lots of data
- Computers are more complicated than you think.
- Even a trivial algorithm is nontrivial to implement *well*.
 - matrix multiplication: 10 lines of code \rightarrow 130,000+ (ATLAS)
 - getting the last factor of 2 in speed often requires wizardry
 (and is usually not worth it)
 - but factors of 10 are often worthwhile and not too hard...

Ideal Cache Model

[Frigo, Leiserson, Prokop, and Ramachandran (1999)]

simplified model of cache to help us understand/design algorithms

when CPU needs an item, either:

- cache hit: already in cache (fast)
- cache miss: load into cache (slow)

goal: analyze # of cache misses

Simplification: cache is "ideal"

- fully associative: any item in memory can replace any item in cache
- optimal replacement: cache miss replaces "best" item

(= item not needed for longest time in the future)

... within a ~constant factor of more realistic caches

Cache complexity: for problem with n items, cache size Z, want # misses for large n in "big O" or "big Θ " notation (ignoring constant factors), e.g. $\Theta(n/Z)$

Strategy for efficient cache utilization: Maximize temporal locality

Once we read an item from memory, we want as much computation as possible before reading the next item...

Re-arrange our algorithm so that computations on the same data occur at close to the same time.

(optimal) Blocked Matrix Multiply

divide matrices into $b \times b$ blocks of $b = \sqrt{Z/3}$ numbers load 3 $b \times b$ blocks into cache and multiply blocks in-cache

(provably optimal) cache misses: $\Theta(n^3/b^3) \times \Theta(b^2) = \Theta(n^3/\sqrt{Z})$ # block × block # cache misses multiplications per block

Challenges with blocking

- Programmer/code needs to know the size Z of the cache different code for every CPU?
- Multiple levels of cache = nested blocking
- Many complications to get near-optimal "constant factor" in Θ
 - optimal block size is non-square to balance load/ store cost.
 - lowest level (cache=registers) requires unrolling,
 SIMD optimizations, lots of tricks...

(optimal) Cache-Oblivious Matrix Multiply

divide and conquer:

divide *C* into 4 blocks compute block multiply recursively

achieves optimal $\Theta(n^3/\sqrt{Z})$ cache complexity without knowing the Z, works for nested caches too

A little C implementation (~25 lines)

```
/* C = C + AB, where A is m x n, B is n x p, and C is m x p, in
  row-major order. Actually, the physical size of A, B, and C
  are m x fdA, n x fdB, and m x fdC, but only the first n/p/p
  columns are used, respectively. */
void add matmul rec(const double *A, const double *B, double *C,
                          int m, int n, int p, int fdA, int fdB, int fdC)
    if (m+n+p \le 48) \{ /* \le 16x16 \text{ matrices "on average" } */
                                                                     note: base case is \sim 16 \times 16
              int i, j, k;
              for (i = 0; i < m; ++i)
                                                                          recursing down to 1 \times 1
                   for (k = 0; k < p; ++k) {
                             double sum = 0;
                                                                           would kill performance
                             for (j = 0; j < n; ++j)
                                       sum += A[i*fdA + j] * B[j*fdB + k];
                                                                           (1 function call per element,
                             C[i*fdC + k] += sum;
                                                                                 no register re-use)
    else { /* divide and conquer */
              int m2 = m/2, n2 = n/2, p2 = p/2;
                                                                                            dividing C into 4
              add matmul rec(A, B, C, m2, n2, p2, fdA, fdB, fdC);
               add matmul rec(A+n2, B+n2*fdB, C, m2, n-n2, p2, fdA, fdB, fdC);
                                                                                            — note that, instead, for
              add_matmul_rec(A, B+p2, C+p2, m2, n2, p-p2, fdA, fdB, fdC);
                                                                                            very non-square matrices,
              add matmul rec(A+n2, B+p2+n2*fdB, C+p2, m2, n-n2, p-p2, fdA, fdB, fdC);
                                                                                            we might want to divide
              add matmul rec(A+m2*fdA, B, C+m2*fdC, m-m2, n2, p2, fdA, fdB, fdC);
              add matmul rec(A+m2*fdA+n2, B+n2*fdB, C+m2*fdC, m-m2, n-n2, p2, fdA, fdB, fdC);
                                                                                            C in 2 along longest axis
              add matmul rec(A+m2*fdA, B+p2, C+m2*fdC+p2, m-m2, n2, p-p2, fdA, fdB, fdC);
              add matmul rec(A+m2*fdA+n2, B+p2+n2*fdB, C+m2*fdC+p2, m-m2, n-n2, p-p2, fdA, fdB, fdC);
void matmul rec(const double *A, const double *B, double *C,
                         int m, int n, int p)
{
    memset(C, 0, sizeof(double) * m*p);
    add matmul rec(A, B, C, m, n, p, n, p, p);
}
```

No Cache-based Performance Drops!

...but absolute performance still sucks

Registers == Cache

- The registers (~100) form a very small, almost ideal cache
 - Three nested loops is not the right way to use this "cache" for the same reason as with other caches
- Need long blocks of unrolled code: load blocks of matrix into local variables (= registers), do matrix multiply, write results
 - Loop-free blocks = many optimized hard-coded base cases of recursion for different-sized blocks ... often automatically generated (ATLAS)
 - Unrolled $n \times n$ multiply has $(n^3)!$ possible code orderings compiler cannot find optimal schedule (NP hard) cache-oblivious scheduling can help (c.f. FFTW), but ultimately requires some experimentation/wizardry (automated in ATLAS)
 - Optimal blocks are non-square to balance load/store cost, and details (e.g. scheduling) turn out to depend on the CPU.

No data re-use = no possibility of temporal locality ... what then?

Suppose we are computing the dot product $\mathbf{x}^*\mathbf{y}$ of two vectors:

$$x^*y = \sum_{i=1}^n \overline{x_i} y_i$$

Each element of x and y is used exactly once.

Does this mean we get no benefit from the caches?

Cache lines and spatial locality

To speed up algorithms with little or no data re-use, caches exploit the fact that memory access is often consecutive by reading in a whole cache line of L items on a miss

Cache-optimization strategy:

when you access data in memory, try to access *nearby data* soon afterwards ... maximize "spatial locality"

Example: Matrix addition

two possible algorithms:

for
$$i = 1$$
 to m
for $j = 1$ to n
for $j = 1$ to m
 $C_{ij} = A_{ij} + B_{ij}$
or
for $i = 1$ to m
 $C_{ij} = A_{ij} + B_{ij}$

which one to use? depends on how matrices are stored!

Column-major storage

used by Fortran, Matlab, Julia, ...

= store columns of A consecutively in memory

0	5	10
1	6	11
2	7	12
3	8	13
4	9	14

A 5×3

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

access rows consecutively:

for
$$i = 1$$
 to m
for $j = 1$ to n
 $C_{ij} = A_{ij} + B_{ij}$
 $= \Theta(mn)$ misses

access columns consecutively:

for
$$j = 1$$
 to n
for $i = 1$ to m
 $C_{ij} = A_{ij} + B_{ij}$
 $= \Theta(mn/L)$ misses