

Introducción al Aprendizaje Profundo

"Viendo" el progreso del aprendizaje profundo a lo largo de los años.

Goodfeiów et al.

Karras, laine, Aila

Mit intro to Dwp Learning

> 3 months ago

That is easily the cleanest visual deepfake I've ever seen. It must have taken ages to render, because it just looks flawless.

2020

...crear este video de 2 minutos requería...

2 horas de audio profesional
50 horas de video en HD
Guion estático y predefinido
Más de \$1.5K USD en cómputo

2020

...crear este video de 2
minutos requería...

2 horas de audio profesional

50 horas de video en HD

Guion estático y predefinido

Más de \$1.5K USD en cómputo

2025

...avanzando unos años...

¿Qué es aprendizaje profundo?

Enseñar a las computadoras cómo aprender una tarea directamente a partir de datos en bruto.

¿Por qué Aprendizaje Profundo y por qué ahora?

¿Por qué Aprendizaje Profundo?

Las características diseñadas manualmente consumen mucho tiempo, son frágiles y no escalables en la práctica.

¿Podemos aprender las características subyacentes directamente desde los datos?

Características de bajo nivel

Características de nivel medio

Características de Alto Nivel

Líneas y bordes

Ojos, nariz y orejas

Estructura facial

¿Por qué no?

Las redes neuronales existen desde hace décadas, entonces ¿por qué su dominio actual?

1952

1958

Descenso de Gradiente Estocástico

Perceptrón

• Pesos aprendibles

Retropropagación

• Perceptrón multicapa

Redes Neuronales Convolucionales Profundas

• Reconocimiento de dígitos

1. Big Data

- Conjuntos de datos más grandes
- Recopilación y almacenamiento más fáciles

2. Hardware

- Unidades de procesamiento gráfico (GPUs)
- Altamente paralelizables

3. Software

- Técnicas mejoradas
- Nuevos modelos
- Herramientas y bibliotecas (Toolboxes)

El Perceptrón El bloque estructural fundamental del aprendizaje profundo

El Perceptrón: Propagación Hacia Adelante

Escuela de Ciencias Aplicadas e Ingeniería

Inputs Weights Sum Non-Linearity Output

El Perceptrón: Propagación Hacia Adelante

Escuela de Ciencias Aplicadas e Ingeniería

Inputs Weights Sum Non-Linearity Output

El Perceptrón: Propagación Hacia Adelante

Escuela de Ciencias Aplicadas e Ingeniería

$$\hat{y} = g \left(w_0 + \sum_{i=1}^{n} x_i w_i \right)$$

$$\hat{y} = g \left(w_0 + X^T W \right)$$
where: $X = \begin{bmatrix} x_1 \\ \vdots \\ x_m \end{bmatrix}$ and $W = \begin{bmatrix} w_1 \\ \vdots \\ w_m \end{bmatrix}$

Escuela de Ciencias Aplicadas e Ingeniería

Activation Functions

$$\hat{y} = \mathbf{g} (w_0 + \mathbf{X}^T \mathbf{W})$$

· Example: sigmoid function

$$g(z) = \sigma(z) = \frac{1}{1 + e^{-z}}$$

Funciones de Activación Comunes

Escuela de **Ciencias Aplicadas** e Ingeniería

$$g(z) = \frac{1}{1 + e^{-z}}$$

$$g'(z) = g(z)(1 - g(z))$$

$$g(z) = \frac{e^{z} - e^{-z}}{e^{z} + e^{-z}}$$

$$g'(z) = 1 - g(z)^2$$

$$g(z) = \max(0, z)$$

$$g'(z) = \begin{cases} 1, & z > 0 \\ 0, & \text{otherwise} \end{cases}$$

torch nn.ReLU(z)

Importancia de las Funciones de Activación

El propósito de las funciones de activación es **introducir no linealidades** en la red

¿Qué pasaría si quisiéramos construir una red neuronal para distinguir los puntos verdes de los rojos?

Importancia de las Funciones de Activación

El propósito de las funciones de activación es introducir no linealidades en la red

Las funciones de activación lineales producen decisiones lineales sin importar el tamaño de la red.

Importancia de las Funciones de Activación

Escuela de Ciencias Aplicadas e Ingeniería

El propósito de las funciones de activación es introducir no linealidades en la red

Las funciones de activación lineales producen decisiones lineales sin importar el tamaño de la red.

Las no linealidades nos permiten aproximar funciones arbitrariamente complejas.

We have:
$$w_0 = 1$$
 and $W = \begin{bmatrix} 3 \\ -2 \end{bmatrix}$

$$\hat{y} = g(w_0 + X^T W)$$

$$= g\left(1 + \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}^T \begin{bmatrix} 3 \\ -2 \end{bmatrix}\right)$$

$$\hat{y} = g(1 + 3x_1 - 2x_2)$$

This is just a line in 2D!

El Perceptron: Ejemplo

Assume we have input: $X = \begin{bmatrix} -1 \\ 2 \end{bmatrix}$

$$\hat{y} = g (1 + (3*-1) - (2*2))$$

= $g (-6) \approx 0.002$

Construyendo Redes Neuronales con Perceptrones

$$\hat{y} = g\left(w_0 + X^T W\right)$$

1

 w_0
 x_1
 w_2
 x_2
 w_m

Inputs Weights Sum Non-Linearity Output

El Perceptrón: Simplificado

$$z = w_0 + \sum_{j=1}^m x_j w_j$$

Perceptrón de Salida Múltiple

Debido a que todas las entradas están densamente conectadas con todas las salidas, estas capas se denominan capas densas.

$$z_{i} = w_{0,i} + \sum_{j=1}^{m} x_{j} w_{j,i}$$


```
class MyDenseLayer(tf.keras.layers.Layer):
   def __init__(self, input_dim, output_dim):
       super(MyDenseLayer, self).__init__()
       self.W = self.add_weight([input_dim, output_dim])
       self.b = self.add_weight([1, output_dim])
   def call(self, inputs):
       z = tf.matmul(inputs, self.W) + self.b
       output = tf.math.sigmoid(z)
       return output
```


Escuela de Ciencias Aplicadas e Ingeniería

```
import tensorflow as tf
layer = tf.keras.layers.Dense(units=2)
```


Perceptrón de Salida Múltiple

Debido a que todas las entradas están densamente conectadas con todas las salidas, estas capas se denominan capas densas

Escuela de Ciencias Aplicadas e Ingeniería

Red Neuronal de Una Sola Capa

Perceptrón de Salida Múltiple


```
tensorflow as
        tf keras Sequential([
    tf keras layers Dense(n),
    tf keras layers Dense (2)
1)
                                                       Z_1
from torch import nn
                               x_1
model =
        nn Sequential (
                                                       z_2
    nn Linear (m, n),
    nn ReLU(),
                               x_2
    nn Linear(n, 2)
                               x_m
                                                       z_n
                                                     Hidden
                                                                            Output
                              Inputs
```


Red Neuronal Profunda


```
import tensorflow as tf

model = tf keras Sequential([
   tf keras layers Dense(n1),
   tf keras layers Dense(n2),

tf keras layers Dense(2)

}
```

```
from torch import nn

model = nn.Sequential(
    nn.Linear(m, n1),
    nn.ReLU(),

inn.ReLU(),
    nn.Linear(nK, 2)
)
```


Deep learning - Lego blocks

Escuela de Ciencias Aplicadas e Ingeniería

No linealidades

Escuela de Ciencias Aplicadas e Ingeniería

Input Layer ∈ ℝ²

Hidden Layer ∈ ℝ²

Hidden Layer **∈** ℝ²

Output Layer ∈ ℝ¹

$$\mathbf{W} = \begin{bmatrix} -1 & 1 \\ 1 & -1 \end{bmatrix} \quad \mathbf{b} = \begin{bmatrix} -4 \\ -4 \end{bmatrix}$$

Las capas ocultas hacen transformaciones no-lineales en los datos de tal forma que una capa lineal al final pueda resolver el problema de clasificación

Aplicando Redes Neuronales

Problema de Ejemplo

¿Aprobaré esta clase?

Comencemos con un modelo simple de dos características:

 x_1 = Número de clases a las que asistes

 x_2 = Horas dedicadas al proyecto final

Cuantificando la Pérdida

La pérdida de nuestra red mide el costo incurrido por predicciones incorrectas.

Pérdida Empírica

La pérdida empírica mide la pérdida total sobre todo nuestro conjunto de datos.

Pérdida por Entropía Cruzada Binaria

La pérdida por entropía cruzada puede utilizarse con modelos que generan una probabilidad entre 0 y 1.

Pérdida de Error Cuadrático Medio (Mean Squared Error Loss)

Escuela de Ciencias Aplicadas e Ingeniería

La pérdida por error cuadrático medio puede utilizarse con modelos de regresión que generan números reales continuos

Entrenando Redes Neuronales

Optimización de la Pérdida

Queremos encontrar los pesos de la red que logren la menor pérdida posible

$$W^* = \underset{W}{\operatorname{argmin}} \frac{1}{n} \sum_{i=1}^{n} \mathcal{L}(f(x^{(i)}; W), y^{(i)})$$
$$W^* = \underset{W}{\operatorname{argmin}} J(W)$$

Optimización de la Pérdida

Queremos encontrar los pesos de la red que logren la menor pérdida posible

Optimización de la Pérdida

Selecciona aleatoriamente un punto (w_0, w_1) inicial

Da un pequeño paso en la dirección opuesta al gradiente

Algoritmo

- 1. Inicializar los pesos aleatoriamente $\sim \mathcal{N}(0, \sigma^2)$
- 2. Repetir hasta la convergencia:
- 3. Calcular el gradiente, $\frac{\partial J(W)}{\partial W}$
- 4. Actualizar los pesos, $W \leftarrow W \eta \frac{\partial J(W)}{\partial W}$
- 5. Devolver los pesos

Derivadas parciales

Descenso por Gradiente

Algoritmo

- 1. Inicializar los pesos aleatoriamente $\sim \mathcal{N}(0,\sigma^2)$
- 2. Repetir hasta la convergencia:
- 3. Calcular el gradiente, $\frac{\partial J(W)}{\partial W}$
- 4. Actualizar los pesos, $W \leftarrow W \eta \frac{\partial J(W)}{\partial W}$
- 5. Devolver los pesos

Descenso por Gradiente

Algoritmo

- 1. Inicializar los pesos aleatoriamente $\sim \mathcal{N}(0,\sigma^2)$
- 2. Repetir hasta la convergencia:
- 3. Calcular el gradiente, $\frac{\partial J(W)}{\partial W}$
- 4. Actualizar los pesos, $W \leftarrow W \eta \frac{\partial J(W)}{\partial W}$
- 5. Devolver los pesos

¿Cómo afecta un pequeño cambio en un peso (ej. W_2) a la pérdida final J(W)?

$$\frac{\partial J(\mathbf{W})}{\partial \mathbf{w_2}} =$$

¡Usemos la regla de la cadena!

$$\frac{\partial J(\mathbf{W})}{\partial w_2} = \frac{\partial J(\mathbf{W})}{\partial \hat{y}} * \frac{\partial \hat{y}}{\partial w_2}$$

¡Usemos la regla de la cadena!

¡Usemos la regla de la cadena!

$$\frac{\partial J(\mathbf{W})}{\partial w_1} = \frac{\partial J(\mathbf{W})}{\partial \hat{y}} * \frac{\partial \hat{y}}{\partial z_1} * \frac{\partial z_1}{\partial w_1}$$

Repite esto para cada peso en la red usando gradientes de las capas posteriores

Redes Neuronales en la Práctica: Optimización

Escuela de Ciencias Aplicadas e Ingeniería

Recuerda:

Optimización mediante descenso por gradiente

$$W \leftarrow W - \eta \frac{\partial J(W)}{\partial W}$$

Escuela de Ciencias Aplicadas e Ingeniería

Recuerda:

Optimización mediante descenso por gradiente

$$W \leftarrow W - \frac{\partial J(W)}{\partial W}$$
How can we set the learning rate?

Estableciendo la tasa de aprendizaje

Una tasa de aprendizaje pequeña converge lentamente y queda atrapada en mínimos locales falsos

Estableciendo la tasa de aprendizaje

Tasas de aprendizaje grandes se exceden, se vuelven inestables y divergen.

Estableciendo la tasa de aprendizaje

Las tasas de aprendizaje estables convergen suavemente y evitan mínimos locales

¿Cómo lidiar con esto?

Idea 1:

Probar muchas tasas de aprendizaje diferentes y ver cuál funciona "justo bien"

Idea 2:

¡Haz algo más inteligente!

Diseña una tasa de aprendizaje adaptativa que se "adapte" al paisaje

Tasas de aprendizaje adaptativas

- Las tasas de aprendizaje ya no son fijas
- Pueden hacerse más grandes o más pequeñas dependiendo de:
- qué tan grande es el gradiente
- qué tan rápido está ocurriendo el aprendizaje
- el tamaño de ciertos pesos
- etc...

Algoritmos de descenso por gradiente

TF Implementation Torch Implementation Algorithm Reference tf keras optimizers SGD torch optim SGD Kiefer & Wolfowitz, 1952. SGD Kingma et al., 2014. tf keras optimizers Adam torch optim Adam Adam Adadelta tf.keras.optimizers.Adadelta torch optim Adadelta Zeiler et al., 2012. Adagrad tf.keras.optimizers.Adagrad torch optim Adagrad Duchi et al., 2011. RMSProp tf keras optimizers RMSProp torch optim RMSProp

Detalles adicionales: http://ruder.io/optimizing-gradient-descent/


```
import tensorflow as tf
model = tf keras Sequential([ ])
                                                                    Can replace with
                                                                    any TensorFlow
optimizer = tf.keras.optimizer.SGD()
                                                                      optimizer!
while True: # loop forever
    prediction = model(x)
    with tf GradientTape() as tape:
        loss = compute loss(y, prediction)
    grads = tape.gradient(loss, model.trainable variables)
    optimizer apply gradients(zip(grads, model trainable variables)))
```


Redes neuronales en la práctica: Mini-lotes

- 1. Inicializar los pesos aleatoriamente $\sim \mathcal{N}(0, \sigma^2)$
- 2. Repetir hasta la convergencia:
- 3. Calcular el gradiente, $\frac{\partial J(W)}{\partial W}$
- 4. Actualizar los pesos, $W \leftarrow W \eta \frac{\partial J(W)}{\partial W}$
- 5. Devolver los pesos

- 1. Inicializar los pesos aleatoriamente $\sim \mathcal{N}(0, \sigma^2)$
- 2. Repetir hasta la convergencia:
- 3. Calcular el gradiente, OJ(W)
- 4. Actualizar los pesos, $W \leftarrow W \eta \frac{\partial J(W)}{\partial W}$
- 5. Devolver los pesos

¡Puede ser muy costoso computacionalmente de calcular!

- 1. Inicializar los pesos aleatoriamente $\sim \mathcal{N}(0, \sigma^2)$
- 2. Repetir hasta la convergencia:
- 3. Escoger un único punto de datos i
- 4. Calcular el gradiente, $\frac{\partial J_i(W)}{\partial W}$
- 5. Actualizar los pesos, $W \leftarrow W \eta \frac{\partial J(W)}{\partial W}$
- 6. Devolver los pesos

- 1. Inicializar los pesos aleatoriamente $\sim \mathcal{N}(0, \sigma^2)$
- 2. Repetir hasta la convergencia:
- 3. Escoger un único punto de datos i
- 4. Calcular el gradiente, $\frac{\partial J_i(W)}{\partial W}$
- 5. Actualizar los pesos, $W \leftarrow W \eta \frac{\partial J(W)}{\partial W}$
- 6. Devolver los pesos

- 1. Inicializar los pesos aleatoriamente $\sim \mathcal{N}(0, \sigma^2)$
- 2. Repetir hasta la convergencia:
- 3. Seleccionar un lote de B puntos de datos
- 4. Calcular el gradiente, $\frac{\partial J(W)}{\partial W} = \frac{1}{B} \sum_{k=1}^{B} \frac{\partial J_k(W)}{\partial W}$
- 5. Actualizar los pesos, $W \leftarrow W \eta \frac{\partial J(W)}{\partial W}$
- 6. Devolver los pesos

- 1. Inicializar los pesos aleatoriamente $\sim \mathcal{N}(0,\sigma^2)$
- 2. Repetir hasta la convergencia:
- 3. Seleccionar un lote de B puntos de datos
- 4. Calcular el gradiente, $\frac{\partial J(W)}{\partial W} = \frac{1}{B} \sum_{k=1}^{B} \frac{\partial J_k(W)}{\partial W}$
- 5. Actualizar los pesos, $W \leftarrow W \eta \frac{\partial J(W)}{\partial W}$
- 6. Devolver los pesos

¡Rápido de calcular y una estimación mucho mejor del gradiente verdadero!

Escuela de Ciencias Aplicadas e Ingeniería

Estimación más precisa del gradiente

Convergencia más suave Permite tasas de aprendizaje más grandes

¡Los mini-lotes conducen a un entrenamiento más rápido!

Se puede paralelizar la computación y lograr incrementos significativos de velocidad en las GPU

Redes neuronales en la práctica: Sobreajuste

Cómo verificar tus dispositivos CUDA

Regularización

¿Qué es?

Técnica que restringe nuestro problema de optimización para desalentar modelos complejos

¿Por qué la necesitamos?

Mejorar la generalización de nuestro modelo en datos no vistos

Regularización 1: Dropout

Durante el entrenamiento, poner aleatoriamente algunas activaciones en 0

Regularización 1: Dropout

Durante el entrenamiento, poner aleatoriamente algunas activaciones en 0

- Normalmente se "eliminan" el 50% de las activaciones en la capa
- Obliga a la red a no depender de un solo nodo

Regularización 1: Dropout

Durante el entrenamiento, poner aleatoriamente algunas activaciones en 0

- Normalmente se "eliminan" el 50% de las activaciones en la capa
- Obliga a la red a no depender de un solo nodo

 Detener el entrenamiento antes de que tengamos la oportunidad de sobreajustar

Legend

Testing

Tæining

 Detener el entrenamiento antes de que tengamos la oportunidad de sobreajustar

Legend

Testing

Tæining

Revisión de Fundamentos Básicos

El perceptrón

Redes neuronales

Entrenamiento en la práctica

- Bloques estructurales de construcción
- Funciones de activación no lineales
- Apilamiento de perceptrones para formar redes neuronales
- Optimización mediante retropropagación

- Aprendizaje adaptativo
- Agrupamiento en lotes (batching)
- Regularización

