

THAT WHICH IS CLAIMED IS:

1. A method of producing a biocompatible intraluminal prosthesis, comprising:

providing an intraluminal prosthesis having a portion thereof formed from polymeric material, wherein
5 the polymeric material contains one or more toxic materials;

immersing the polymeric material in a densified carbon dioxide composition such that the toxic materials are absorbed by the densified carbon dioxide composition;

10 and

removing the densified carbon dioxide composition containing the toxic materials from the polymeric material.

15 2. The method of Claim 1, wherein the one or more toxic materials are selected from the group consisting of organic solvents (polar or non-polar), unpolymerized monomers, polymerization catalysts, oligomers, and polymerization initiators.

20

3. The method of Claim 1, wherein the densified carbon dioxide composition is a liquid composition, and wherein the immersing and removing steps are carried out in an enclosed chamber.

25

4. The method of Claim 1, wherein the immersing step comprises adjusting the pressure and/or temperature of the densified carbon dioxide composition to selectively absorb toxic materials from the polymeric
30 material.

5. The method of Claim 1, further comprising:
lowering the density of the removed densified
carbon dioxide composition such that the toxic materials
entrained therein become separated therefrom; and
5 removing the separated toxic materials.

6. The method of Claim 5, wherein the step of
lowering the density comprises reducing pressure and/or
increasing temperature of the densified carbon dioxide
10 composition.

7. The method of Claim 1, wherein carbon
dioxide in the densified carbon dioxide composition is
present in a supercritical state.

15 8. The method of Claim 1, wherein the carbon
dioxide contains one or more of a co-solvent, a
surfactant, and a co-surfactant.

20 9. The method of Claim 1, wherein the
intraluminal prosthesis is a stent.

25 10. The method of Claim 1, further comprising
masking one or more portions of the polymeric material
prior to immersing the polymeric material in a densified
carbon dioxide composition.

11. The method of Claim 1, wherein the
polymeric material is erodible.

30 12. The method of Claim 1, wherein the
polymeric material is non-erodible.

13. The method of Claim 1, wherein the polymeric material is a coating on one or more portions of the intraluminal prosthesis.

5 14. The method of Claim 11, wherein the erodible polymeric material is selected from the group consisting of, surgical gut, silk, cotton, liposomes, poly(hydroxybutyrate), polycarbonate, polyacrylate, polyanhydride, polyethylene glycol, poly(ortho esters),
10 poly(phosphoesters), polyesters, polyamides, polyphosphazenes, poly(p-dioxane), poly(amino acid), polyglactin, erodible hydrogels, collagen, chitosan, poly(lactic acid), poly(L-lactic acid), poly(D,L-lactic acid), poly(glycolic acid), poly(D-lactic-co-glycolic acid), poly(L-lactic-co-glycolic acid), poly (D,L-lactic-co-glycolic acid), poly(ϵ -caprolactone), poly(valerolactone), poly(hydroxy butyrate), poly(hydrovalerate), polydioxanone, poly(propylene fumarate), poly(ethyleneoxide)-
20 poly(butylenetetraphthalate), poly(lactic acid-co-lysine), poly(L-lactic acid) and poly(ϵ -caprolactone) copolymers.

15. A method of producing a biocompatible
25 intraluminal prosthesis, comprising:

 providing an intraluminal prosthesis having a portion thereof formed from polymeric material, wherein the polymeric material contains one or more toxic materials;

30 immersing the polymeric material in a densified carbon dioxide composition such that the toxic materials are absorbed by the densified carbon dioxide composition, wherein pressure and/or temperature of the densified carbon dioxide composition is adjusted to selectively

absorb toxic materials from the polymeric material;
removing the densified carbon dioxide
composition containing the toxic materials from the
polymeric material;

5 lowering the density of the removed densified
carbon dioxide composition such that the toxic materials
entrained therein become separated therefrom; and
removing the separated toxic materials.

10 16. The method of Claim 15, wherein the one or
more toxic materials are selected from the group
consisting of organic solvents (polar or non-polar),
unpolymerized monomers, polymerization catalysts,
oligomers, and polymerization initiators.

15 17. The method of Claim 15, wherein the
densified carbon dioxide composition is a liquid
composition, and wherein the immersing and removing steps
are carried out in an enclosed chamber.

20 18. The method of Claim 15, wherein the step
of lowering the density comprises reducing pressure
and/or increasing temperature of the densified carbon
dioxide composition.

25 19. The method of Claim 15, wherein carbon
dioxide in the densified carbon dioxide composition is
present in a supercritical state.

30 20. The method of Claim 15, wherein the
intraluminal prosthesis is a stent.

 21. The method of Claim 15, further comprising
masking one or more portions of the polymeric material

prior to immersing the polymeric material in a densified carbon dioxide composition.

22. The method of Claim 15, wherein the
5 polymeric material is erodible.

23. The method of Claim 15, wherein the
polymeric material is non-erodible.

10 24. The method of Claim 15, wherein the carbon
dioxide contains one or more of a co-solvent, a
surfactant, and a co-surfactant.

15 25. The method of Claim 15, wherein the
polymeric material is a coating on one or more portions
of the intraluminal prosthesis.

26. The method of Claim 22, wherein the
erodible polymeric material is selected from the group
20 consisting of, surgical gut, silk, cotton, liposomes,
poly(hydroxybutyrate), polycarbonate, polyacrylate,
polyanhydride, polyethylene glycol, poly(ortho esters),
poly(phosphoesters), polyesters, polyamides,
polyphosphazenes, poly(*p*-dioxane), poly(amino acid),
25 polyglactin, erodible hydrogels, collagen, chitosan,
poly(lactic acid), poly(L-lactic acid), poly(D,L-lactic
acid), poly(glycolic acid), poly(D-lactic-co-glycolic
acid), poly(L-lactic-co-glycolic acid), poly (D,L-lactic-
co-glycolic acid), poly(ϵ -caprolactone),
30 poly(valerolactone), poly(hydroxy butyrate),
poly(hydrovalerate), polydioxanone, poly(propylene
fumarate), poly(ethyleneoxide)-
poly(butylene tetraphthalate), poly(lactic acid-co-

lysine), poly(L-lactic acid) and poly(ϵ -caprolactone) copolymers.