TMT labeling random sampling - Scheme

http://snuhcpl.asuscomm.com:2072/notebooks/Desktop/**CSM/9.Parsing_Codes**/TMT_RandomSampling_Code/ TMT_random_sampling_Code_V0.2-With_Parameters.ipynb

TMT labeling random sampling - MetaData 준비

Conditions	Sample_labe	Peptide_label	peptide_conc					
MT	MT_1	MT2	0.22					
MT	MT_2	MT3	0.26					
MT	MT_3	MT4	0.24					
MT	MT_4	MT7	0.26					
MT	MT_5	MT9	0.29					
MT	MT_6	MT10	0.31					
MT	MT_7	MT11	0.31					
MT	MT_8	MT12	0.33					
MT	MT_9	MT14	0.28					
MT	MT_10	MT16	0.27					
MT	MT_11	Mata Data T	ᅛᅥᄼᆝᄉᇬᆝᅥᅕ					
MT	MT_12	MetaData 작성 시 주의 사항						

MT_13

MT_14

MT_15

PM 1

PM₂

MT MT

MT

PM

PM

Meta_data_TMTlabel.txt 파일 내용

- 1. 컬럼의 이름이 반드시 있어야 함, <mark>컬럼 이름 안에는 **공백이 없어야** 함.</mark>
- 1번 컬럼은 반드시 샘플 컨디션에 대한 정보여야 함.
- 3. 2번 컬럼은 반드시 샘플 고유 번호여야 함
- 3번 컬럼부터 나머지는 자유롭게 사용해도 되며, 필요에 따라 다른 내용을 컬럼에 추가해도 됨

PM	PM_3		· · · · · · · · · · · · · · · · · · ·
PM	PM_4	PM6	0.26
PM	PM_5	PM7	0.27
PM	PM_6	PM8	0.27
PM	PM_7	PM9	0.26
PM	PM_8	PM10	0.27
PM	PM_9	PM12	0.27
PM	PM_10	PM13	0.26
PM	PM_11	PM14	0.29
PM	PM_12	PM16	0.3
PM	PM_13	PM17	0.28
NL	NL_1	NL2	0.28
NL	NL_2	NL3	0.29
NL	NL 3	NL5	0.28

메타데이터에 pooling 샘플 넣을거면 이렇게 추가!

pool pool_1

pool_2 pool

pool_3 pool

2

TMT labeling random sampling - 파라미터 인풋 창

TMT random groupping parsing code Ver.0.2 Beta Code update 2021.12.13 -- input parameters --In [1]: MetaData = input("\nMetaData 파일 경로와 이름을 입력해 주세요: \n예제파일 이름: Meta_data_TMTlabel.tx1 MetaData 파일 경로와 이름을 입력해 주세요: 예제파일 이름: Meta_data_TMTlabel.txt Meta_data_TMTlabel.txt In [2]: NumberOfMultiplex = int(input("\nTMT labeling개수를 입력해 주세요, ex) 6 or 10 or 11: ")) TMT labeling개수를 입력해 주세요, ex) 6 or 10 or 11: 11 ")) In [3]: NumberOfGroup = int(input("\n총 그룹의 개수는 몇개인가요? 숫자를 입력해주세요: 총 그룹의 개수는 몇개인가요? 숫자를 입력해주세요: In [4]: pooling = input("\nPooling sample을 사용하시나요? \ny 를 선택하면 pooling 샘플을 제외한 상태로 그룹핑이 됩니 Pooling sample을 사용하시나요? y 를 선택하면 pooling 샘플을 제외한 상태로 그룹핑이 됩니다. n를 선택하면 multiplex 개수를 꽉 채워서 그룹핑이 됩니다 만약 MetaData에 pooling 샘플 정보가 포함된 경우라면 n 를 선택해 주세요 Select y or n :y 3

Part 1.

```
import random.svs
Meta = open(MetaData,"r").read().splitlines() # Data input 하여 한줄당 하나씩 리스트로 반환
plex = NumberOfMultiplex #pooling 샘플 y면 그룹당 1개씩 풀링 샘플이 들어갈거니깐 plex 개수에서 한자리 비워두기
if pooling == "v":
   plex = plex - 1
                        #컬럼 1번 정보를 빼와서 groups에 넣고, 중복 제거하여 group에 집어넣어 conditions 개수 확인
def get_groups():
   aroups=[]
   for line in Meta[1:len(Meta)]:
       groups.append(line.split()[0])
   group = list(set(groups))
    return([group,groups])
group = get groups()[0]
groups = get_groups()[1]
#중복 제거한 그룹 목록 = 0번 (set(column1)), 중복 포함된 그룹 목록 = 1번 (list(column1))
def get dict():
                          #Column2번을 Key로, Column 1번을 Value로 하는 딕셔너리 구현
   gorup dic = {}
   for line in Meta[1:len(Meta)]:
       gorup_dic[str(line.split()[1])] = str(line.split()[0])
    return gorup_dic
dic = get_dict()
# sample label : group label 로 정리된 딕셔너리 구현
def get Meta():
                    #Columne 2번을 키로, 해당 샘플의 모든 정보를 value로 하는 딕셔너리 구현 - 최종 출력에 활용
   dic = \{\}
   for line in Meta[1:len(Meta)]:
       dic[str(line.split()[1])] = line
    return dic
dic_Meta = get_Meta()
#sample label : line 으로 정리된 딕셔너리 구현
```

Parameter 값 기반으로 input file 정보 받아 입력 제어

필요한 함수 구현

if pooling parameter:y

한개의 그룹에 pooling 샘플 최소 1개는 들어가야 하니깐 한자리 미리 비워둠

Part 2.

```
samplelist_by_groups = []
for i in range(0, len(group)):
   sample set = []
   for key, value in dic.items():
       if value == group[i]:
           sample_set.append(key)
   samplelist by groups.append(sample set)
for i in range(0, len(samplelist by groups)):
   a = random.shuffle(samplelist_by_groups[i])
# 각 그룹별로 리스트 되어있고, 순서가 random으로 섞인 이중 array 구현,
num_of_TMT_set = NumberOfGroup _ # input option
random samples = []
for i in range(0, num of TMT set):
   sample set = []
   for i in range(0, len(group)):
           sample set.append(samplelist by groups[i].pop())
       except:
           pass
    random samples.append(sample set)
#TMT group 개수에 따라 각각 하나씩 집어넣은 목록 정리, 한 샘플이 한쪽에 쏠리지 않도록 구현
other samples = sum(samplelist by groups,[])
for i in range(0,10).
    random.shuffle(other_samples) # 10 time shuffling
# 남은것들 한개의 리스트로 묶어주고, 랜덤으로 셔플링 하기
for i in range(0, len(random samples)):
   while True:
       try:
           if plex > len(random_samples[i]):
               random samples[i].append(other samples.pop())
           else:
               break
       except: break
```

Metadata 정보를 컨디션 별로 쪼개기

앞에서 받은 그룹 정보로 총 몇개의 그룹으로 쪼갤지 정보를 받아서 한 그룹당 각 컨디션이 최소 1개씩 들어가도록 샘플 어레인지 그룹은 5개인데, 그중 한 컨디션에 샘플이 4개면 4개까지만 들어감

단. 각 컨디션 내 샘플 개수가 전부, 나눌 그룹 개수보다 적으면 문제 생김

그룹당 한개씩 뽑아내고 남은것들 모아서 랜덤으로 **10**번 섞어준 뒤에 각 그룹에 하나씩 채워줌

Part 3.

만들어둔 그룹 당 N-plex 개수까지 채워 넣었는데도 샘플이 남으면

코드 중지 & N 개의 샘플이 남았는데, 총 샘플 개수와 TMT-Xplex, 그룹 개수를 다시 보고, 몇개로 설정할지 파라미터를 다시 설정해야 함

```
if len(other_samples) != 0:
   sys.exit("포함되지 않는 샘플이 " + str(len(other_samples)) +"개 있습니다. 총 샘플 개수와 TMT-Xplex, 그룹 개수를 다시 확인해 주세요
```

Metadata에 48개의 샘플이 있는데, 6-plex, 2 group, pooling=n 옵션 선택했을때, 36개가 남는 경우 아래의 에러 출력 & 코드 멈춤

```
An exception has occurred, use %tb to see the full traceback.
```

SystemExit: 포함되지 않는 샘플이 36개 있습니다. 총 샘플 개수와 TMT-Xplex, 그룹 개수를 다시 확인해 주세요

C:\ProgramData\Anaconda3\lib\site-packages\IPython\core\interactiveshell.py:3445: UserWarning: To exit: use 'exit', 'quit', or Ctrl-D.

warn("To exit: use 'exit', 'quit', or Ctrl-D.", stacklevel=1)

48샘플 11-plex 5개 그룹

Part 4.

```
pooling y or n 에 따라 결과 값에 pooling 샘플 추가 ---#
#pooling == y 이면, NumOfPlex * NumOfGroup - 총 샘플 개수 = pooling 샘플 개수
if pooling == "v":
   numof_pooling_sample = (NumberOfMultiplex*NumberOfGroup) - len(groups)
    pool = list(range(1,numof pooling sample+1))
    pool.reverse()
    for i in range(0, len(random_samples)):
        print("TMT group_",i+1,sep="")
        print(Meta[0])
        for j in range(len(random_samples[i])):
            print(dic Meta[random samples[i][j]])
        for p in range(NumberOfMultiplex - len(random_samples[i])):
            pool num = pool.pop()
            print(f"Pool {pool num}\tpooling\tpool {pool num}")
        print('\n')
else:
    for i in range(0, len(random_samples)):
        print("TMT group ",i+1,sep="")
        print(Meta[0])
        for j in range(len(random samples[i])):
            print(dic_Meta[random_samples[i][j]])
        print('\n')
```

출력 제어

```
TMT group 1
Group
        Sample label
                         Peptide label
                                          peptide conc
        PM_5
                 PM7
                         0.27
        NL 1
                NL2
                         0.28
        MT_7
                MT11
                         0.31
        RM 3
                 RM8
                         0.33
        PT_2
                         0.28
                 PT3
                                     11sample
        PM 11
                 PM14
                         0.29
MΤ
        MT 14
                MT20
                         0.29
                                     per groups
        PT_3
                 PT4
                         0.28
        PM 9
                 PM12
                         0.27
                         0.31
PT
                 PT1
        PT 1
QC
        pooling pool 1
TMT group 5
Group
        Sample_label
                         Peptide label
                                          peptide_conc
PM
        PM 1
                PM3
                         0.27
NL
        NL 4
                NL6
                         0.29
                         0.26
MΤ
        MT 4
                MT7
PT
        PT 9
                PT12
                         0.25
PT
                PT18
                         0.26
        PT 11
MT
        MT 3
                         0.24
                MT4
        PM 12
                PM16
                         0.30
PM
PM
        PM 3
                 PM5
                         0.26
QC
        pooling pool 5
        pooling pool_6
QC
QC
        pooling pool_7
```

```
TMT group 4
Group
         Sample_label
                            Peptide_label
                                              peptide_conc
         PM_10
                  PM13
                            0.26
         NL<sub>2</sub>
                  NL3
                            0.29
NL
         MT 7
                  MT11
                            0.31
MT
         RM<sub>2</sub>
                  RM4
                            0.29
PT
         PT_4
                  PT5
                            0.26
MT
         MT_13
                  MT19
                           0.24
PT
         PT<sub>2</sub>
                  PT3
                            0.28
MT
         MT_11
                  MT17
                           0.27
MΤ
         MT_10
                  MT16
                            0.27
         PM_1
                  PM3
                            0.27
                  PM4
         PM 2
                            0.24
TMT group 5
Group
         Sample label
                            Peptide_label
                                              peptide_conc
         PM 8
                  PM10
                            0.27
         NL_3
NL
                  NL5
                            0.28
                  MT21
                            0.27
MT
         MT 15
         PT 3
                  PT4
                            0.28
```

TMT labeling random sampling - Excel processing

Option	입력창			숫자 꼭	써주세요											
Amount of Peptide(ug) =					20											
Final peptide volume (ul, include OV))	120											
That peptide volume (di, include Ov)																
Original OV conc. 0.26 ug /ul						Step 2.										
시원이자 레가지지 마시크 내 그 내				· 사 그브												
Table 설명표	-		시 크리고 3	rebat -	10 1 4	사용할	peptide 8	양 및 최	종 volu	ime 정5	보만 정히	ㅐ주면				
Copy fro	m pythor	scripts					/	1								
Adding y	our tube	- step 1						\								
Adding y								\								
<u> </u>			ام مانیم)			10 =====	/ !! .! .		- -	□		rOF 7JI	ᄔᆜᅐ			
Final volu	ıme (At.	sample P	ooling)			샘글닝	peptide	volum	10세산 :	및 Addi	ng buti	ter양 계	산해쑴			
							/		\							
						/			\							
									\							
TMT group_1						· · · · · ·			—							
	Camanda Jahal	Dontido Johal	nontido cono			Peptide_Volume	OV+Buffer	Final	Add buffer			Final Total	ACN %	0 1:		
Group	Sample_label	Peptide_label	[peptide_conc]						/ taa barrer	ACNI (I)	TNAT (l)	rinai rotai	ACN 70	Quanching		Total mixed
•				Mass Tag	Plex_number	(ul)		Volume (ul)	(ul)	ACN (ul)	TMT (ul)	volume	25 ~ 30%	solution (ul)		volume (ul)
PM	PM_8	PM10	0.27	TMT10-126	Plex_number 1	74.1	10	Volume (ul) 120	(ul) 35.9	30	20	volume 170	25 ~ 30% 29.41	solution (ul) 10.2	180.2	
PM MT	MT_2	MT3	0.27 0.26	TMT10-126 TMT10-127N	Plex_number 1 2	74.1 76.9	10 10	Volume (ul) 120 120	(ul) 35.9 33.1	30 30	20	volume 170 170	25 ~ 30% 29.41 29.41	solution (ul) 10.2 10.2	180.2	volume (ul)
PM	MT_2 NL_5	MT3 NL7	0.27 0.26 0.3	TMT10-126 TMT10-127N TMT10-127C	Plex_number	74.1 76.9 66.7	10 10 10	Volume (ul) 120 120 120	(ul) 35.9 33.1 43.3	30 30 30	20 20 20	volume 170 170 170	25 ~ 30% 29.41 29.41 29.41	solution (ul) 10.2 10.2 10.2	180.2 180.2	volume (ul)
PM MT NL	MT_2	MT3	0.27 0.26 0.3 0.19	TMT10-126 TMT10-127N	Plex_number 1 2 3 4 5 5	74.1 76.9	10 10	Volume (ul) 120 120	(ul) 35.9 33.1	30 30	20	volume 170 170	25 ~ 30% 29.41 29.41	solution (ul) 10.2 10.2	180.2	volume (ul)
PM MT NL PT	MT_2 NL_5 PT_7	MT3 NL7 PT10	0.27 0.26 0.3 0.19 0.27	TMT10-126 TMT10-127N TMT10-127C TMT10-128N	Plex_number	74.1 76.9 66.7 105.3	10 10 10 10	Volume (ul) 120 120 120 120	(ul) 35.9 33.1 43.3 4.7	30 30 30 30	20 20 20 20	volume 170 170 170 170	25 ~ 30% 29.41 29.41 29.41 29.41	solution (ul) 10.2 10.2 10.2 10.2	180.2 180.2 180.2	volume (ul)
PM MT NL PT RM	MT_2 NL_5 PT_7 RM_1	MT3 NL7 PT10 RM2	0.27 0.26 0.3 0.19 0.27 0.25	TMT10-126 TMT10-127N TMT10-127C TMT10-128N TMT10-128C	Plex_number 1 2 3 4 5 6 7	74.1 76.9 66.7 105.3 74.1	10 10 10 10 10	Volume (ul) 120 120 120 120 120 120	(ul) 35.9 33.1 43.3 4.7 35.9	30 30 30 30 30 30	20 20 20 20 20	volume 170 170 170 170 170	25 ~ 30% 29.41 29.41 29.41 29.41 29.41	solution (ul) 10.2 10.2 10.2 10.2 10.2 10.2	180.2 180.2 180.2 180.2	volume (ul)
PM MT NL PT RM PT PT MT	MT_2 NL_5 PT_7 RM_1 PT_9 PT_5 MT_8	MT3 NL7 PT10 RM2 PT12 PT6 MT12	0.27 0.26 0.3 0.19 0.27 0.25 0.28	TMT10-126 TMT10-127N TMT10-127C TMT10-128N TMT10-128C TMT10-129N	Plex_number	74.1 76.9 66.7 105.3 74.1 80.0 71.4 60.6	10 10 10 10 10 10 10 10	Volume (ul) 120 120 120 120 120 120 120 12	(ul) 35.9 33.1 43.3 4.7 35.9 30.0 38.6 49.4	30 30 30 30 30 30 30 30 30	20 20 20 20 20 20 20 20	volume 170 170 170 170 170 170 170 170 170 170	25 ~ 30% 29.41 29.41 29.41 29.41 29.41 29.41 29.41	solution (ul) 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2	180.2 180.2 180.2 180.2 180.2 180.2 180.2	volume (ul)
PM MT NL PT RM PT PT MT PH	MT_2 NL_5 PT_7 RM_1 PT_9 PT_5 MT_8 PM_3	MT3 NL7 PT10 RM2 PT12 PT6 MT12 PM5	0.27 0.26 0.3 0.19 0.27 0.25 0.28 0.33	TMT10-126 TMT10-127N TMT10-127C TMT10-128N TMT10-128C TMT10-129N TMT10-129C TMT10-130N TMT10-130N	1 2 3 4 5 6 7 8 9	74.1 76.9 66.7 105.3 74.1 80.0 71.4 60.6 76.9	10 10 10 10 10 10 10 10	Volume (ul) 120 120 120 120 120 120 120 12	(ul) 35.9 33.1 43.3 4.7 35.9 30.0 38.6 49.4 33.1	30 30 30 30 30 30 30 30 30	20 20 20 20 20 20 20 20 20	volume 170 170 170 170 170 170 170 170 170 170	25 ~ 30% 29.41 29.41 29.41 29.41 29.41 29.41 29.41 29.41	solution (ul) 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2	180.2 180.2 180.2 180.2 180.2 180.2 180.2 180.2	volume (ul) 1982.2
PM MT NL PT RM PT PT MT PM PM	MT_2 NL_5 PT_7 RM_1 PT_9 PT_5 MT_8 PM_3	MT3 NL7 PT10 RM2 PT12 PT6 MT12	0.27 0.26 0.3 0.19 0.27 0.25 0.28 0.33 0.26 0.27	TMT10-126 TMT10-127N TMT10-127C TMT10-128C TMT10-128C TMT10-129N TMT10-129C TMT10-130N TMT10-130C TMT10-131	1 2 3 4 5 6 7 8 9	74.1 76.9 66.7 105.3 74.1 80.0 71.4 60.6 76.9	10 10 10 10 10 10 10 10 10	Volume (ul) 120 120 120 120 120 120 120 120 120 120	(ul) 35.9 33.1 43.3 4.7 35.9 30.0 38.6 49.4 33.1 35.9	30 30 30 30 30 30 30 30 30 30	20 20 20 20 20 20 20 20 20 20	volume 170 170 170 170 170 170 170 170 170 170	25 ~ 30% 29.41 29.41 29.41 29.41 29.41 29.41 29.41 29.41 29.41	solution (ul) 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2	180.2 180.2 180.2 180.2 180.2 180.2 180.2 180.2 180.2	volume (ul) 1982.2
PM MT NL PT RM PT PT MT PH	MT_2 NL_5 PT_7 RM_1 PT_9 PT_5 MT_8 PM_3	MT3 NL7 PT10 RM2 PT12 PT6 MT12 PM5	0.27 0.26 0.3 0.19 0.27 0.25 0.28 0.33 0.26 0.27	TMT10-126 TMT10-127N TMT10-127C TMT10-128N TMT10-128C TMT10-129N TMT10-129C TMT10-130N TMT10-130N	1 2 3 4 5 6 7 8 9	74.1 76.9 66.7 105.3 74.1 80.0 71.4 60.6 76.9	10 10 10 10 10 10 10 10	Volume (ul) 120 120 120 120 120 120 120 120 120 120	(ul) 35.9 33.1 43.3 4.7 35.9 30.0 38.6 49.4 33.1	30 30 30 30 30 30 30 30 30	20 20 20 20 20 20 20 20 20	volume 170 170 170 170 170 170 170 170 170 170	25 ~ 30% 29.41 29.41 29.41 29.41 29.41 29.41 29.41 29.41	solution (ul) 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2	180.2 180.2 180.2 180.2 180.2 180.2 180.2 180.2	volume (ul) 1982.2
PM MT NL PT RM PT PT MT PM PM	MT_2 NL_5 PT_7 RM_1 PT_9 PT_5 MT_8 PM_3	MT3 NL7 PT10 RM2 PT12 PT6 MT12 PM5	0.27 0.26 0.3 0.19 0.27 0.25 0.28 0.33 0.26 0.27	TMT10-126 TMT10-127N TMT10-127C TMT10-128C TMT10-128C TMT10-129N TMT10-129C TMT10-130N TMT10-130C TMT10-131	1 2 3 4 5 6 7 8 9	74.1 76.9 66.7 105.3 74.1 80.0 71.4 60.6 76.9	10 10 10 10 10 10 10 10 10	Volume (ul) 120 120 120 120 120 120 120 120 120 120	(ul) 35.9 33.1 43.3 4.7 35.9 30.0 38.6 49.4 33.1 35.9	30 30 30 30 30 30 30 30 30 30	20 20 20 20 20 20 20 20 20 20	volume 170 170 170 170 170 170 170 170 170 170	25 ~ 30% 29.41 29.41 29.41 29.41 29.41 29.41 29.41 29.41 29.41	solution (ul) 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2	180.2 180.2 180.2 180.2 180.2 180.2 180.2 180.2 180.2	volume (ul) 1982.2
PM MT NL PT RM PT PT MT PM PM	MT_2 NL_5 PT_7 RM_1 PT_9 PT_5 MT_8 PM_3	MT3 NL7 PT10 RM2 PT12 PT6 MT12 PM5	0.27 0.26 0.3 0.19 0.27 0.25 0.28 0.33 0.26 0.27	TMT10-126 TMT10-127N TMT10-127C TMT10-128C TMT10-128C TMT10-129N TMT10-129C TMT10-130N TMT10-130C TMT10-131	1 2 3 4 5 6 7 8 9	74.1 76.9 66.7 105.3 74.1 80.0 71.4 60.6 76.9	10 10 10 10 10 10 10 10 10	Volume (ul) 120 120 120 120 120 120 120 120 120 120	(ul) 35.9 33.1 43.3 4.7 35.9 30.0 38.6 49.4 33.1 35.9	30 30 30 30 30 30 30 30 30 30	20 20 20 20 20 20 20 20 20 20	volume 170 170 170 170 170 170 170 170 170 170	25 ~ 30% 29.41 29.41 29.41 29.41 29.41 29.41 29.41 29.41 29.41	solution (ul) 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2	180.2 180.2 180.2 180.2 180.2 180.2 180.2 180.2 180.2	volume (ul) 1982.2
PM MT NL PT RM PT PT MT PM PM	MT_2 NL_5 PT_7 RM_1 PT_9 PT_5 MT_8 PM_3	MT3 NL7 PT10 RM2 PT12 PT6 MT12 PM5	0.27 0.26 0.3 0.19 0.27 0.25 0.28 0.33 0.26 0.27	TMT10-126 TMT10-127N TMT10-127C TMT10-128C TMT10-128C TMT10-129N TMT10-129C TMT10-130N TMT10-130C TMT10-131	1 2 3 4 5 6 7 8 9	74.1 76.9 66.7 105.3 74.1 80.0 71.4 60.6 76.9	10 10 10 10 10 10 10 10 10	Volume (ul) 120 120 120 120 120 120 120 120 120 120	(ul) 35.9 33.1 43.3 4.7 35.9 30.0 38.6 49.4 33.1 35.9	30 30 30 30 30 30 30 30 30 30	20 20 20 20 20 20 20 20 20 20	volume 170 170 170 170 170 170 170 170 170 170	25 ~ 30% 29.41 29.41 29.41 29.41 29.41 29.41 29.41 29.41 29.41	solution (ul) 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2	180.2 180.2 180.2 180.2 180.2 180.2 180.2 180.2 180.2	volume (ul) 1982.2
PM MT NL PT RM PT PT MT PM PM	MT_2 NL_5 PT_7 RM_1 PT_9 PT_5 MT_8 PM_3	MT3 NL7 PT10 RM2 PT12 PT6 MT12 PM5	0.27 0.26 0.3 0.19 0.27 0.25 0.28 0.33 0.26 0.27	TMT10-126 TMT10-127N TMT10-127C TMT10-128C TMT10-128C TMT10-129N TMT10-129C TMT10-130N TMT10-130C TMT10-131	1 2 3 4 5 6 7 8 9	74.1 76.9 66.7 105.3 74.1 80.0 71.4 60.6 76.9	10 10 10 10 10 10 10 10 10	Volume (ul) 120 120 120 120 120 120 120 120 120 120	(ul) 35.9 33.1 43.3 4.7 35.9 30.0 38.6 49.4 33.1 35.9	30 30 30 30 30 30 30 30 30 30	20 20 20 20 20 20 20 20 20 20	volume 170 170 170 170 170 170 170 170 170 170	25 ~ 30% 29.41 29.41 29.41 29.41 29.41 29.41 29.41 29.41 29.41	solution (ul) 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2	180.2 180.2 180.2 180.2 180.2 180.2 180.2 180.2 180.2	volume (ul) 1982.2
PM MT NL PT RM PT PT MT PM PM	MT_2 NL_5 PT_7 RM_1 PT_9 PT_5 MT_8 PM_3	MT3 NL7 PT10 RM2 PT12 PT6 MT12 PM5	0.27 0.26 0.3 0.19 0.27 0.25 0.28 0.33 0.26 0.27	TMT10-126 TMT10-127N TMT10-127C TMT10-128C TMT10-128C TMT10-129N TMT10-129C TMT10-130N TMT10-130C TMT10-131	1 2 3 4 5 6 7 8 9	74.1 76.9 66.7 105.3 74.1 80.0 71.4 60.6 76.9	10 10 10 10 10 10 10 10 10	Volume (ul) 120 120 120 120 120 120 120 120 120 120	(ul) 35.9 33.1 43.3 4.7 35.9 30.0 38.6 49.4 33.1 35.9	30 30 30 30 30 30 30 30 30 30	20 20 20 20 20 20 20 20 20 20	volume 170 170 170 170 170 170 170 170 170 170	25 ~ 30% 29.41 29.41 29.41 29.41 29.41 29.41 29.41 29.41 29.41	solution (ul) 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2	180.2 180.2 180.2 180.2 180.2 180.2 180.2 180.2 180.2	volume (ul) 1982.2
PM MT NL PT RM PT PT MT PM PM Pooling	MT_2 NL_5 PT_7 RM_1 PT_9 PT_5 MT_8 PM_3	MT3 NL7 PT10 RM2 PT12 PT6 MT12 PM5 PM7	0.27 0.26 0.3 0.19 0.27 0.25 0.28 0.33 0.26 0.27	TMT10-126 TMT10-127N TMT10-127C TMT10-128N TMT10-128C TMT10-129N TMT10-129C TMT10-130N TMT10-130C TMT10-131 TMT10-131C	1 2 3 4 5 6 7 8 9	74.1 76.9 66.7 105.3 74.1 80.0 71.4 60.6 76.9	10 10 10 10 10 10 10 10 10	Volume (ul) 120 120 120 120 120 120 120 120 120 120	(ul) 35.9 33.1 43.3 4.7 35.9 30.0 38.6 49.4 33.1 35.9	30 30 30 30 30 30 30 30 30 30	20 20 20 20 20 20 20 20 20 20	volume 170 170 170 170 170 170 170 170 170 170	25 ~ 30% 29.41 29.41 29.41 29.41 29.41 29.41 29.41 29.41 29.41	solution (ul) 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2	180.2 180.2 180.2 180.2 180.2 180.2 180.2 180.2 180.2	volume (ul) 1982.2

4번째 컬럼만 peptide conc. 정보면 됨

TMT labeling random sampling - Excel processing

http://snuhcpl.asuscomm.com:2072/notebooks/Desktop/CSM/9.Parsing_Codes/TMT_RandomSampling_Code

Option 입력창	숫자 꼭 써주세요
Amount of Peptide(ug) =	20
Final peptide volume (ul, include OV)	100

만약 peptide 농도가 낮아서 최종 볼륨을 초과해 버리면?

Red color labeling

											·						
TMT group_1							·										
Group S	Sample_label	Peptide_label	pontido cons			Peptide_Volume	OV+Buffer	Final	Add buffer	ACN (ul)	TMT (ul)	Final Total	ACN %	Quanching		Total mixed	
			peptide_conc	Mass Tag	Plex_number	(ul)	(1:9 mix) ul	Volume (ul)	(ul)	ACN (ul)	TIVIT (ui)	volume	25 ~ 30%	solution (ul)		volume (ul)	
PM	PM_8	PM10	0.27	TMT10-126	1	74.1	10	100	15.9	30	20	150	33.33	9	159	1749	
MT	MT_2	MT3	0.26	TMT10-127N	2	76.9	10	100	13.1	30	20	150	33.33	9	159		
NL	NL_5	NL7	0.3	TMT10-127C	3	66.7	10	100	23.3	30	20	150	33.33	9	159		
PT	PT_7	PT10	0.19	TMT10-128N	4	105.3	10	100	-15.3	30	20	150	33.33	9	159		
RM	RM_1	RM2	0.27	TMT10-128C	5	74.1	10	100	15.9	30	20	150	33.33	9	159		
PT	PT_9	PT12	0.25	TMT10-129N	6	80.0	10	100	10.0	30	20	150	33.33	9	159		
PT	PT_5	PT6	0.28	TMT10-129C	7	71.4	10	100	18.6	30	20	150	33.33	9	159		
MT	MT_8	MT12	0.33	TMT10-130N	8	60.6	10	100	29.4	30	20	150	33.33	9	159		
PM	PM_3	PM5	0.26	TMT10-130C	9	76.9	10	100	13.1	30	20	150	33.33	9	159		
PM	PM_5	PM7	0.27	TMT10-131	10	74.1	10	100	15.9	30	20	150	33.33	9	159		
Pooling				TMT10-131C	11	#DIV/0!	10	100	#DIV/0!	30	20	150	33.33	9	159		
	•	•				·	·				•		•	•			