Statistisches Data Mining (StDM) Woche 10

Oliver Dürr

Institut für Datenanalyse und Prozessdesign Zürcher Hochschule für Angewandte Wissenschaften

oliver.duerr@zhaw.ch
Winterthur, 22 November 2016

No laptops, no phones, no problems

Multitasking senkt Lerneffizienz:

 Keine Laptops im Theorie-Unterricht Deckel zu oder fast zu (Sleep modus)

Overview of classification (until the end to the semester)

Classifiers

K-Nearest-Neighbors (KNN) Logistic Regression

Linear discriminant analysis Support Vector Machine (SVM)

Classification Trees
Neural networks NN
Deep Neural Networks (e.g. CNN, RNN)

. . .

Evaluation

Cross validation
Performance measures
ROC Analysis / Lift Charts

Theoretical Guidance / General Ideas

Bayes Classifier
Bias Variance Trade
off (Overfitting)

Combining classifiers

Bagging Boosting Random Forest

Feature Engineering

Feature Extraction
Feature Selection

SVM Chapter 9 in ILSR

Note on notation in ISLR

- In ISLR they make an unusual distinction between Support Vector Classifier and Support Vector Machine (SVM).
- Here we call everything a SVM
 - Linear Separable Case
 - SVM with Penalty allowing misclassifications
 - SVM with Kernels

Support Vector Machine (SVM) - Basics

- Each observation ⇔ vector of values (p-Dimensional)
- SVM constructs a hyperplane to separate class members.

Welche Ebene?

Zeichnen Sie eine Linie, die die beiden Klassen möglichst gut trennt.

Begründen Sie Ihre Wahl

Support Vector Machine - Hyperplanes

- Each column vector can be viewed as a point in an p-dimensional space (p = number of features).
- A linear binary classifier constructs a hyperplane separating class members from non-members in this space.

Support Vector Machine - Maximum Margin Hyperplane

- SVM choose a specific hyperplane among the many that can separate the data, namely the *maximum margin hyperplane*, which maximizes the distance from the hyperplane to the closest training point.
- The maximum margin hyperplane can be represented as a linear combination of (some) training points.

SVM - Support Vectors

- Training examples that lie far away from the hyperplane do not participate in its specification.
- Training examples that lie closest to the decision boundary between the two classes determine the hyperplane.
- These training examples are called the support vectors, since removing them
 would change the location of the separating hyperplane. They determine the
 classifier.

Mathematical Definition and Optimization (just sketch)

Formal:: Definition of a hyperplane

We assume that classes are separable

$$\beta_0 + \beta_1 X_1 + \beta_2 X_2 + \ldots + \beta_p X_p = 0$$
 Definition of Hyperplane

Separating hyperplane for classes coded as y=±1

$$\beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \ldots + \beta_p x_{ip} > 0 \text{ if } y_i = 1,$$

$$\beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \ldots + \beta_p x_{ip} < 0 \text{ if } y_i = -1.$$

Combining

$$y_i(\beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \ldots + \beta_p x_{ip}) > 0$$

Note that this is only up to a constant (multiplication does not change anything) → Fix beta for components 1 to p:

$$\sum_{j=1}^{p} \beta_j^2 = 1, \quad \beta \text{ (for j=1,...,p) is a normal vector)}$$

Formal:: Definition of optimization problem

Intuitive Optimization

$$\max_{\beta_0,\beta_1,...,\beta_p} M$$

subject to
$$\sum_{j=1}^{p} \beta_j^2 = 1$$
,

All vectors have at least distance M. Support Vectors have = M.

$$y_i(\beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \ldots + \beta_p x_{ip}) \ge M \ \forall i = 1, \ldots, n.$$

Formal:: Reformulating the optimization problem

 $\max_{\beta_0,\beta_1,...,\beta_p} M$

Intuitive Optimization

subject to
$$\sum_{j=1}^p \beta_j^2 = 1$$
,
$$y_i(\beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \ldots + \beta_p x_{ip}) \ge M \ \forall i = 1, \ldots, n.$$

Can be reformulated using Lagrange multipliers to

$$L_D = \sum_{i=1}^N lpha_i - rac{1}{2} \sum_{i=1}^N \sum_{k=1}^N lpha_i lpha_k y_i y_k x_i^T x_k$$

Technical Optimization

subject to $\alpha_i \geq 0$ and $\sum_{i=1}^{N} \alpha_i y_i = 0$.

once we have calculated the α 's we can calculate β (1,..,p) via

$$eta = \sum_{i=1}^N lpha_i y_i x_i$$

Only the inner product between the vectors of observations enters.

Opens the door to the kernel trick (see below)

SVM - Penalty (general idea)

- SVM may not be able to find any separating hyperplane at all, because the data contains untypical or mislabelled experiments.
- The problem can be addressed by using a soft margin that accepts some misclassifications of the training examples. The number of misclassifications is triggered by a penalty factor C.
- Sometimes a larger margin is worth having some misclassified observations

Low penalty: high # of misclassified experiments

High penalty:Low # of misclassified experiments

Formal:: SVM - Penalty

Introduction of slack variables ξ_i , for all observations (measured in units of M).

$$egin{array}{ll} & ext{maximize} & M \ eta_0, eta_1, ..., eta_p, \epsilon_1, ..., \epsilon_n \end{array} & ext{Intuitive Optimization} \ & ext{subject to} & \sum_{j=1}^p \beta_j^2 = 1, \ & y_i(eta_0 + eta_1 x_{i1} + eta_2 x_{i2} + \ldots + eta_p x_{ip}) \geq M(1 - \epsilon_i) \ & \epsilon_i \geq 0, & \sum_{i=1}^n \epsilon_i \leq C, \end{array}$$

Finally this leads to the following equivalent optimization of L_D with constrains on α .

Technical Optimization ("dual form")

$$L_D = \sum_{i=1}^N \alpha_i - \frac{1}{2} \sum_{i=1}^N \sum_{i'=1}^N \alpha_i \alpha_{i'} y_i y_{i'} x_i^T x_{i'} \qquad 0 \leq \alpha_i \leq C \qquad \sum_{i=1}^N \alpha_i y_i = 0$$
 From

From α , β is obtained

Again only inner product!

Source: Elements of statististical learning

Visualization of the parameter influence Linear case effect of C

SVM – From low and high penalty

Very low c, nearly no penalty for misclassifications. Big margin. Let's increase c and see what happens.

Increase of c leads to convergence to a stable solution.

Why do we want a large margin?

- The margin controls the bias and variance
- Small margin (large C)
 - We expect that the margin depends more on the details of the concrete realization of the data. Hence: large variance, small bias
- Large margin (small C)
 - The margin depends less on the details of the concrete realization. Hence small variance, large bias

"Experimental" Observations (SVM) for gene expression

- Geneexpression: p>>N
- C too low nearly no penalty for misclassification:
 - Overgeneralization ("don't care")
- C larger :
 - Converting to a stable solution.

Typical curve for gene expression Misclassification rate as a function of Log(C)

In general C is a hyper-parameter which can be optimized (beware of overfitting)

SVM in R (two classes)

```
library(e1071)
iris1 = iris[51:150,]
table(iris1$Species)
fit = svm(Species ~ ., data=iris1, kernel="linear", cost=10)
res = predict(fit, iris1)
sum(res == iris1$Species)
res tune = tune(svm, Species ~ ., data=iris1,
kernel="linear", ranges = list(cost = c(0.1,1,10))
summary(res tune)
• • •
- Detailed performance results:
  cost error dispersion
1 0.1 0.04 0.05621827
2 1.0 0.04 0.03442652
3 10.0 0.04 0.03442652
```

Kernels

SVM - Non-separable data in the input space

- Some problems involve non-separable data for which there does not exist a hyperplane.
- The solution is to map the data into a higher-dimensional space and define a separating hyperplane there.

Note that this is often not the typical case.

Variable Transformation, make non-separable case separable

- Only a single variable x.
- Not separable by a point (hyperplane in 1D)

Separable by a line (hyperplane in 2D)

Take single variable x and x^2

View again in 1D

SVM - Feature space

- This higher-dimensional space is called the *feature space* as opposed to the input space.
- With an appropriately chosen feature space of sufficient dimensionality any consistent training set can be made separable.
- Example (last slide) $x \rightarrow (x, x^2)$
- In the program, one has to calculate

Optimization:

$$L_D = \sum_{i=1}^{N} \alpha_i - \frac{1}{2} \sum_{i=1}^{N} \sum_{i'=1}^{N} \alpha_i \alpha_{i'} y_i y_{i'} x_i^T x_{i'} \qquad 0 \leq \alpha_i \leq C \qquad \sum_{i=1}^{N} \alpha_i y_i^T = 0$$

The only place where x enters

Kernel Trick

Optimization:

$$L_D = \sum_{i=1}^{N} \alpha_i - \frac{1}{2} \sum_{i=1}^{N} \sum_{i'=1}^{N} \alpha_i \alpha_{i'} y_i y_{i'} x_i^T x_{i'} \qquad 0 \le \alpha_i \le C \qquad \sum_{i=1}^{N} \alpha_i y_i^T = 0$$

The only place where x enters

$$\chi_{i}^{\intercal}\chi_{i'} = (\chi_{i,1}, \chi_{i,2}, \dots, \chi_{i,p}) \begin{pmatrix} \chi_{i,1} \\ \chi_{i,2} \\ \vdots \\ \chi_{i,p} \end{pmatrix} = \sum_{j=1}^{p} x_{ij} x_{i'j} =: K(x_{i}, x_{i'})$$

Kernel Trick:

Replace:
$$K(x_i, x_{i'}) = \sum_{i=1}^{p} x_{ij} x_{i'j}$$

With:
$$K(x_i, x_{i'}) = \sum_{j=1}^{p} x_{ij} x_{i'j} + \sum_{j=1}^{p} x_{ij}^2 x_{i'j}^2$$

Is the same as explicitly making new features. "Computed on the fly"

Hot topic in 1990's and early 2000s and still used

Kernel functions

Instead of calculating the inner product, we calculate the kernel.
 The following Kernels are commonly used:

$$K(x_i,x_{i'})=\sum_{j=1}^p x_{ij}x_{i'j},$$

Identity (just the inner product)
In R 'linear kernel'

$$K(x_i, x_{i'}) = (1 + \sum_{j=1}^{p} x_{ij} x_{i'j})^d$$

Polynomial of degree d

$$K(x_i, x_{i'}) = \exp(-\gamma \sum_{j=1}^{p} (x_{ij} - x_{i'j})^2).$$

Gaussian, aka radial basis RBF. Sometime $\gamma=1/\sigma^2$

Kernels can also be used when data is not in the vector format. E.g. string kernels on text.

Example non-separable

SVM - Gaussian

- In a space in which the members of a class form one or more clusters, an accurate classifier might place a Gaussian around each cluster, thereby separating the clusters from the remaining space of non-class members.
- This effect can be accomplished by placing a Gaussian with a width (sigma) over each support vector in the training set.

Visualization of the parameter influence Gaussian Kernel effect of sigma


```
# Non-Linear Decission Boundary
set.seed(1)
x=matrix(rnorm(200*2), ncol=2)
x[1:100,]=x[1:100,]+2
x[101:150,]=x[101:150,]-2
y=c(rep(1,150), rep(2,50))
dat=data.frame(x=x, y=as.factor(y))
require (manipulate)
manipulate({
  svmfit=svm(y ~ .,data=dat, kernel="radial",
gamma=gamma, cost = cost)
 plot(symfit , dat) #Plotting
```

 $\}$, gamma = slider(0.1,10), cost=slider(0.1,10))

SVM classification plot

Separation and dimensionality

Consider examples of 2 classes

Draw 2 points on a line. Can you always separate them?

Draw 3 points in a plane (not in a line!). Can you always separate them?

Imaging 4 points 3D, can you always separate them?

...

A word of warning

 It's quite fancy to write "I have used Gaussian Kernels". But always consider if you really need them!

• If number of features > number of examples called (p>n) you probably don't need them.

Overfitting is then the problem!

If not it is still a good idea to try a linear kernel first!

More than 2 classes

SVM - More than 2 classes (one vs rest)

- SVM is a binary classifier. It can only separate two classes
- What if there are more than 2 classes?
- N>2 classes N times 'one vs. rest'

•has the highest distance in the green case. It will be classified as green.

One vs. all classification

SVM Advanced Topics

- Custom Kernels e.g. for text
- **SVM Regression**
- Outlier Detection with one-class SVM (see below)

error train: 21/200; errors novel regular: 2/40; errors novel abnormal: 1/40

Praktikum

Bewertete Hausaufgabe

- Mitmachen an einer Data Science Challenge
- Erste Möglichkeit Otto Produkt Klassifikation (https://www.kaggle.com/c/otto-group-product-classification-challenge)

Completed • \$10,000 • 3,514 teams

otto group

Otto Group Product Classification Challenge

Tue 17 Mar 2015 - Mon 18 May 2015 (6 months ago)

- Einreichen unter:
 - http://srv-lab-t-864/submission/Otto 2016/
- Leaderboard:
 - http://srv-lab-t-864/leaderboard/Otto 2016/
- Andere Challenges von Kaggle
 - Nach Rücksprache können Sie auch an einer anderen Kaggle Challenge teilnehmen (nicht Titanic)
 - Zum Beispiel: MNIST
 - Beachten Sie, es muss ein Klassifizierungsproblem sein.
 - Username muss dann mitgeteilt werden

Bewertete Hausaufgabe

- 2er Teams OK
- Teams melden bis 9 Dezember
- Vorstellung im letzten Praktikum (20.12.2016)
 - Etwa 10-20 Minuten
- Einreichen der Lösung
- Bewertung in halben Noten
 - Performance
 - Vortrag
 - Folien
- Note zählt nur zur Verbesserung!

Code für LSG

```
X_Train = read.table("train_otto.csv", sep=';', header = TRUE, stringsAsFactors = FALSE)
X_Test = read.table("test_otto.csv", sep=';', header = TRUE, stringsAsFactors = FALSE)

# LDA
library(MASS)
fit = lda(target ~ ., data = X_Train)
res = predict(fit, X_Test)
df = data.frame(key=X_Test$id, value=res$class)
write.table(x=df, file = 'predictions lda.csv', sep=';', row.names = FALSE)
```