

POLYMER, PRODUCTION OF THE POLYMER AND CURABLE COMPOSITION PRODUCED BY USING THE POLYMER

Publication number: JP2000044626

Publication date: 2000-02-15

Inventor: NAKAGAWA YOSHIKI; KITANO KENICHI; FUJITA MASAYUKI; FUJITA SUNAO

Applicant: KANEKA FUCHI CHEMICAL IND

Classification:

- international: C08L83/05; C08F8/00; C08G18/40; C08G59/20; C08L83/00; C08F8/00; C08G18/00; C08G59/00; (IPC1-7): C08F8/00; C08G18/40; C08G59/20; C08L83/05

- european:

Application number: JP19980268675 19980922

Priority number(s): JP19980268675 19980922; JP19970256606 19970922; JP19980143235 19980525

[Report a data error here](#)

Abstract of JP2000044626

PROBLEM TO BE SOLVED: To obtain an easily producible vinyl polymer having high stability, exhibiting a narrow molecular weight distribution and useful as a component of a curable composition, etc., by bonding a specific functional group to a terminal of main chain through a carbon-carbon bond. **SOLUTION:** The objective vinyl polymer [e.g. a (meth)acrylate polymer or an acrylic acid ester polymer having a number-average molecular weight (Mn) of 500-100,000 and an Mw/Mn ratio (Mw is weight-average molecular weight) of <1.8] has a group of formula I [R3 is OH, amino, epoxy, carboxylic acid group, group of formula II (R4 is H or methyl) or the like; R1 is a bivalent 1-20C hydrocarbon group or a group of formula III (R5 is O, a 1-20C organic group or the like; R6 is R4); R2 is R4; X is a halogen, nitroxide group, sulfide group or cobalt porphyrin complex] introduced to the molecular chain terminal of the polymer.

Data supplied from the **esp@cenet** database - Worldwide

(19)日本国特許庁 (JP)

(12) 公開特許公報 (A)

(11)特許出願公開番号

特開2000-44626

(P2000-44626A)

(43)公開日 平成12年2月15日 (2000.2.15)

(51)Int.Cl.⁷
C 08 F 8/00
C 08 G 18/40
59/20
C 08 L 83/05

識別記号

F I
C 08 F 8/00
C 08 G 18/40
59/20
C 08 L 83/05

テマコード(参考)
4 J 0 0 2
4 J 0 3 4
4 J 0 3 6
4 J 1 0 0

審査請求 未請求 請求項の数35 OL (全 23 頁)

(21)出願番号 特願平10-268675
(22)出願日 平成10年9月22日(1998.9.22)
(31)優先権主張番号 特願平9-256606
(32)優先日 平成9年9月22日(1997.9.22)
(33)優先権主張国 日本 (JP)
(31)優先権主張番号 特願平10-143235
(32)優先日 平成10年5月25日(1998.5.25)
(33)優先権主張国 日本 (JP)

(71)出願人 000000941
鐘淵化学工業株式会社
大阪府大阪市北区中之島3丁目2番4号
(72)発明者 中川 佳樹
兵庫県神戸市兵庫区吉田町1丁目2番80号
鐘淵化学工業株式会社総合研究所神戸研究所内
(72)発明者 北野 健一
兵庫県神戸市兵庫区吉田町1丁目2番30号
鐘淵化学工業株式会社総合研究所神戸研究所内
(74)代理人 100086586
弁理士 安富 康男 (外2名)

最終頁に続く

(54)【発明の名称】 重合体、該重合体の製造方法、ならびに該重合体を用いた硬化性組成物

(57)【要約】

【課題】 末端に官能基を有するビニル系重合体、該重合体の製造方法、並びに該重合体の製造方法を提供する。

【解決手段】 分子鎖末端に一般式1で表される構造を有するビニル系重合体(式中、R³は、水酸基、アミノ基、エポキシ基、カルボン酸基、エステル基、エーテル基、アミド基、シリル基、重合性の低いアルケニル基、又は重合性のオレフィンを含まない炭素数1~20の有機基を表し、Xは、ハロゲン基、ニトロキシド基、スルフィド基あるいはコバルトポルフィリン錯体を表す)。該重合体は、リビングラジカル重合において、重合中あるいは重合終了後に、官能基を有する重合性の低いオレフィン化合物を添加することにより製造される。

【化1】

【特許請求の範囲】

【請求項1】 分子鎖末端に一般式1：

【化1】

(上の式中、R³は、水酸基、アミノ基、エポキシ基、カルボン酸基、エステル基、エーテル基、アミド基、シリル基、一般式2：

【化2】

(R⁴は水素原子あるいはメチル基を表す)で表される基、あるいは重合性のオレフィンを含まない炭素数1～20の有機基であり、R¹は炭素数1～20の2価の炭化水素基、あるいは一般式3：

【化3】

(上の式中、R⁵は酸素原子、窒素原子あるいは炭素数1～20の有機基であり、R⁶は水素原子あるいはメチル基であり同じでも異なっていてもよい)の構造を持つ基であり、且つ、R²は水素原子あるいはメチル基であり、Xはハロゲン基、ニトロキシド基、スルフィド基あるいはコバルトルボルフィリン錯体である}の構造を持つビニル系重合体。

【請求項2】 一般式1においてR³は、水酸基、アミノ基、エポキシ基、カルボン酸基、エステル基、エーテル基、アミド基、シリル基から選ばれる基である請求項1記載の重合体。

【請求項3】 一般式1においてR³は、一般式2で表される請求項1記載の重合体。

【請求項4】 一般式1においてXはハロゲン基である請求項1～3のいずれか一項に記載の重合体。

【請求項5】 一般式1においてR²は水素原子である請求項1～4のいずれか一項に記載の重合体。

【請求項6】 ビニル系重合体が(メタ)アクリル系重合体である請求項1～5のいずれか一項に記載の重合体。

【請求項7】 ビニル系重合体がアクリル酸エステル系重合体である請求項1～6のいずれか一項に記載の重合体。

【請求項8】 ビニル系重合体がアクリル酸ブチル系重

合体である請求項1～7のいずれか一項に記載の重合体。

【請求項9】 一般式1で示される末端基を分子内に2つ以上持つ請求項1～8のいずれか一項に記載の重合体。

【請求項10】 数平均分子量が500～100000である請求項1～9のいずれか一項に記載の重合体。

【請求項11】 ゲルバー・ミエーションクロマトグラフィーで測定した重量平均分子量(M_w)と数平均分子量(M_n)の比(M_w/M_n)の値が1.8未満である請求項1～10のいずれか一項に記載の重合体。

【請求項12】 リビングラジカル重合において、重合中あるいは重合終了後に、官能基を有する重合性の低いオレフィン化合物を添加することにより、請求項1～11のいずれか一項に記載されている末端に官能基を有するビニル系重合体を製造する方法。

【請求項13】 官能基を有する重合性の低いオレフィン化合物が、一般式4：

【化4】

(上の式中、R³は、水酸基、アミノ基、エポキシ基、カルボン酸基、エステル基、エーテル基、アミド基、シリル基、一般式2：

【化5】

(R⁴は水素原子あるいはメチル基を表す)で表される基、あるいは重合性のオレフィンを含まない炭素数1～20の有機基であり、R¹は炭素数1～20の2価の炭化水素基あるいは一般式3：

【化6】

(上の式中、R⁵は酸素原子、窒素原子あるいは炭素数1～20の有機基であり、R⁶は水素原子あるいはメチル基であり同じでも異なっていてもよい)の構造を持つ基であり、且つ、R²は水素原子あるいはメチル基である}で示される化合物であることを特徴とする請求項1～2記載の方法。

【請求項14】 一般式4で示される化合物が、一般式5：

【化7】

(上の式中、R¹ は炭素数1～20の2価の炭化水素基あるいは一般式3：

【化8】

(上の式中、R⁵ は酸素原子、窒素原子あるいは炭素数1～20の有機基であり、R⁶ は水素原子あるいはメチル基であり同じでも異なっていてもよい)の構造を持つ基であり、且つ、R²、R⁴ は水素原子あるいはメチル基であり同じでも異なっていてもよい)で示される化合物であり、この化合物を重合成長末端に対し過剰量添加することを特徴とする請求項13記載の方法。

【請求項15】 一般式5で示される化合物が、一般式6：

【化9】

(nは1～20の整数)で示される化合物である請求項14記載の方法。

【請求項16】 一般式6で示される化合物が、1, 5-ヘキサジエン、1, 7-オクタジエンあるいは1, 9-デカジエンである請求項15記載の方法。

【請求項17】 一般式4において、R³ が水酸基、アミノ基、エポキシ基、カルボン酸基、エステル基、エーテル基、アミド基、シリル基から選ばれる基である請求項13記載の方法。

【請求項18】 一般式4、5において、R³ が水素原子である請求項13～17記載のいずれか一項に記載の方法。

【請求項19】 官能基を有する重合性の低いオレフィン化合物が、アルケニルアルコール又はアルケニルアミンである請求項12、13、17、18のいずれか一項に記載の方法。

【請求項20】 リビングラジカル重合が、原子移動ラジカル重合である請求項12～19のいずれか一項に記載の方法。

【請求項21】 触媒とする金属錯体が、銅、ニッケル、ルテニウム又は鉄の錯体である請求項20記載の重合体を製造する方法。

【請求項22】 触媒とする金属錯体が銅錯体である請求項21記載の方法。

【請求項23】 開始剤が、官能基を持つ有機ハロゲン

10
20
30
40

化物、あるいは、官能基を持つハロゲン化スルホニル化合物である請求項20～22のいずれか一項に記載の方法。

【請求項24】 開始剤が、2つ以上の開始点を持つ開始剤である請求項20～23のいずれか一項に記載の方法。

【請求項25】 各請求項において製造された水酸基を末端に有する重合体に対し、アリルハロゲン化物を反応させて製造された末端にアリル基を持つ重合体。

【請求項26】 各請求項において製造されたアルケニル基を末端に有する重合体に対し、架橋性シリル基を持つヒドロシリル化合物を反応させて製造された末端に架橋性シリル基を持つ重合体。

【請求項27】 各請求項において製造される水酸基あるいはアミノ基を末端に有する重合体に、水酸基あるいはアミノ基と反応する官能基と架橋性シリル基を併せ持つ化合物を反応させることにより製造された架橋性シリル基を末端に持つ重合体。

【請求項28】 請求項12に記載の方法において(メタ)アリルアルコールを反応させて得られた重合体から製造されたエポキシ基を末端に持つ重合体。

【請求項29】 (メタ)アリルアルコールを反応させて得られた重合体に、アルカリ性化合物を反応させて製造された請求項28記載の重合体。

【請求項30】 各請求項において製造される水酸基を末端に有する重合体にエピクロロヒドリンを反応させて製造されたエポキシ基を末端に持つ重合体。

【請求項31】 (A) 各請求項において製造されるアルケニル基を末端に有する重合体、(B) ヒドロシリル基を少なくとも2個有する化合物、を必須成分とする硬化性組成物。

【請求項32】 (A) 各請求項において製造される水酸基あるいはアミノ基を末端に有する重合体、(B) 水酸基あるいはアミノ基と反応しうる官能基を少なくとも2個有する化合物、を必須成分とする硬化性組成物。

【請求項33】 (B) 成分が多価イソシアネートである請求項32記載の硬化性組成物。

【請求項34】 各請求項において製造された架橋性シリル基を末端に有する重合体を主成分とする硬化性組成物。

【請求項35】 各請求項において製造されるエポキシ基を末端に有する重合体、(B) エポキシ樹脂用硬化剤、を必須成分とする硬化性組成物。

【発明の詳細な説明】

【0001】

【発明の属する技術分野】 本発明は、末端に官能基を持つビニル系重合体、その製造方法および該重合体からなる硬化性組成物に関する。

【0002】

【従来の技術】 末端に官能基を有する重合体は、そのも

50

の単独、あるいは適當な硬化剤と組み合わせることによって架橋し、耐熱性、耐久性等の優れた硬化物を与えることが知られている。中でも末端にアルケニル基、水酸基あるいは架橋性シリル基を有する重合体はそれらの代表例である。末端にアルケニル基を有する重合体はヒドロシリル基含有化合物を硬化剤として用いることにより、あるいは光反応を利用することにより架橋硬化する。水酸基を末端に有する重合体はポリイソシアネートと反応することによりウレタン架橋を形成し硬化する。また、架橋性シリル基を末端に有する重合体は、適當な縮合触媒の存在下、湿分を吸収することにより硬化物を与える。

【0003】このような、アルケニル基、水酸基あるいは架橋性シリル基を末端に有する重合体の主鎖骨格としては、ポリエチレンオキシドやポリプロピレンオキシド、ポリテトラメチレンオキシド等のポリエーテル系重合体；ポリブタジエン、ポリイソブレン、ポリクロロブレン、ポリイソブチレンあるいはそれらの水素添加物等の炭化水素系重合体；ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリカプロラクトン等のポリエステル系重合体等が例示され、主鎖骨格と架橋形式に基づき、様々な用途に用いられている。

【0004】上に例示した、イオン重合や縮重合で得られる重合体の一方で、ラジカル重合で得られるビニル系の重合体で末端に官能基を有するものは、まだほとんど実用化されていない。ビニル系重合体の中でも、(メタ)アクリル系重合体は、高い耐候性、透明性等、上記のポリエーテル系重合体や炭化水素系重合体、あるいはポリエステル系重合体では得られない特性を有しており、アルケニル基や架橋性シリル基を側鎖に有するものは高耐候性の塗料等に利用されている。その一方で、ビニル系重合体の重合制御は、その副反応のために容易でなく、末端への官能基の導入などは非常に困難である。

【0005】アルケニル基を分子鎖末端に有するビニル系重合体を簡便な方法で得ることができれば、側鎖にアルケニル基を有するものと比較して硬化物物性の優れた硬化物を得ることができる。従って、これまで多くの研究者によって、その製造法が検討されてきたが、それらを工業的に製造することは容易ではない。

【0006】特開平5-255415号には、連鎖移動剤としてアルケニル基含有ジスルフィドを用いる、両末端にアルケニル基を有する(メタ)アクリル系重合体の合成法が、また、特開平5-262808号には、水酸基を有するジスルフィドを用いて、両末端に水酸基を有する(メタ)アクリル系重合体を合成し、さらに水酸基の反応性を利用して両末端にアルケニル基を有する(メタ)アクリル系重合体の合成法が開示されているが、これらの方法で両末端に確実にアルケニル基を導入することは容易ではない。また、末端に確実に官能基を導入するためには、連鎖移動剤を大量に使用しなければなら

ず、製造工程上問題がある。

【0007】我々は、別に、ビニル系重合体の重合後に、重合性のアルケニル基と重合性の低いアルケニル基を併せ持つ化合物を添加し、重合性のアルケニル基を重合体末端と反応させることにより、重合体末端にオレフィンを導入する方法を発明している。しかし、この方法では、重合がリビング的であっても、確実に末端に一つだけオレフィンを導入することは容易でなく、特に、重合性单量体がまだ残っている段階で添加するとランダム共重合することになり、構造はより制御しにくい。

【0008】

【発明が解決しようとする課題】従って、本発明においては、末端に官能基を有するビニル系重合体、その製造方法、ならびに該重合体を含む硬化性組成物を提供することを課題とする。ラジカル重合では、通常、 α -オレフィンのような活性化されていないオレフィンは重合しないことが知られている。これは、最近盛んに研究が行われているリビングラジカル重合でも同様である。

【0009】我々は鋭意研究した結果、リビングラジカル重合系に活性化されていない(重合性の低い)オレフィンを添加すると、その成長末端にはほぼ1つだけ付加することを見出し、これを利用することにより、末端に様々な官能基を有する重合体を製造する方法を発明した。

【0010】

【課題を解決するための手段】本特許の第一の発明は、分子鎖末端に一般式1で示される構造を有するビニル系重合体である。

【0011】

【化10】

【0012】(上の式中、 R^3 は、水酸基、アミノ基、エポキシ基、カルボン酸基、エステル基、エーテル基、アミド基、シリル基、一般式2：

【0013】

【化11】

【0014】(R^4 は水素原子あるいはメチル基を表す)で表される基、あるいは重合性のオレフィンを含まない炭素数1~20の有機基であり、 R^1 は炭素数1~20の2価の炭化水素基、あるいは一般式3：

【0015】

【化12】

【0016】(上の式中、R⁵ は酸素原子、窒素原子あるいは炭素数1～20の有機基であり、R⁶ は水素原子あるいはメチル基であり同じでも異なっていてもよい)の構造を持つ基であり、且つ、R² は水素原子あるいはメチル基であり、Xはハロゲン基、ニトロキシド基、スルフィド基あるいはコバルトボルフィリン錯体である}

【0017】本発明の末端に官能基を持つビニル系重合体は、リビングラジカル重合において、重合中あるいは重合終了後に、官能基を有する重合性の低いオレフィン化合物を添加することにより、製造することができる。官能基を有する重合性の低いオレフィン化合物としては、一般式4：

【0018】
【化13】

【0019】(上の式中、R³ は、水酸基、アミノ基、エポキシ基、カルボン酸基、エステル基、エーテル基、アミド基、シリル基、一般式2：

【0020】
【化14】

【0021】(R⁴ は水素原子あるいはメチル基を表す)で表される基、あるいは重合性のオレフィンを含まない炭素数1～20の有機基であり、R¹ は炭素数1～20の2価の炭化水素基あるいは一般式3：

【0022】
【化15】

【0023】(上の式中、R⁵ は酸素原子、窒素原子あるいは炭素数1～20の有機基であり、R⁶ は水素原子あるいはメチル基であり同じでも異なっていてもよい)の構造を持つ基であり、且つ、R² は水素原子あるいはメチル基である}で示される化合物が挙げられる。

【0024】また、本発明で得られる末端に官能基を持つビニル系重合体は、分子量分布が狭いという特徴も有

する。本発明の末端に官能基を有するビニル系重合体は、必要に応じて硬化剤を添加することにより、これを含有する硬化性組成物とすることができます。

【0025】

【発明の実施の形態】末端に官能基を有するビニル系重合体

一般式1で示される末端構造を有するビニル系重合体は、ヘテロ原子を介すことなく、直接、炭素～炭素結合のみにより、末端基が重合体の末端一つにつきほぼ一つ結合していることを特徴とする。

【0026】

【化16】

【0027】(上の式中、R³ は、水酸基、アミノ基、エポキシ基、カルボン酸基、エステル基、エーテル基、アミド基、シリル基、一般式2：

【0028】

【化17】

【0029】(R¹ は水素原子あるいはメチル基を表す)で表される基、あるいは重合性のオレフィンを含まない炭素数1～20の有機基であり、R¹ は炭素数1～20の2価の炭化水素基、あるいは一般式3：

【0030】

【化18】

【0031】(上の式中、R⁵ は酸素原子、窒素原子あるいは炭素数1～20の有機基であり、R⁶ は水素原子あるいはメチル基であり同じでも異なっていてもよい)の構造を持つ基であり、且つ、R² は水素原子あるいはメチル基であり、Xはハロゲン基、ニトロキシド基、スルフィド基あるいはコバルトボルフィリン錯体である}

【0032】一般式1において、R¹ の具体例としては、-(CH₂)_n (nは1～20の整数)、-CH(CH₃)₂、-CH(CH₃)CH₂、-CH₂CH(CH₃)₂、-C(CH₃)₃、-C(CH₃)CH₂CH₃、-CH₂CH₂CH(CH₃)₂、-CH₂CH₂CH₂CH(CH₃)₂、-O-CH₂CH₂CH₂CH(CH₃)₂、-O-CH₂CH₂CH₂CH₂CH(CH₃)₂、-CH₂CH₂CH₂CH₂CH(CH₃)₂、-O-CH₂CH₂CH₂CH₂CH₂CH(CH₃)₂、-CH₂CH₂CH₂CH₂CH₂CH₂CH(CH₃)₂、-O-CH₂CH₂CH₂CH₂CH₂CH₂CH(CH₃)₂、-CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH(CH₃)₂、-O-CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH(CH₃)₂、-CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH(CH₃)₂、-O-CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH(CH₃)₂、-CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH(CH₃)₂、-O-CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH(CH₃)₂、-CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH(CH₃)₂、-O-CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH(CH₃)₂、-CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH(CH₃)₂、-O-CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH(CH₃)₂、-CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH(CH₃)₂、-O-CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH(CH₃)₂、-CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH(CH₃)₂、-O-CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH(CH₃)₂、-CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH(CH₃)₂、-O-CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH(CH₃)₂、-CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH(CH₃)₂、-O-CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH(CH₃)₂、-CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH(CH₃)₂、-O-CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH(CH₃)₂、-CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH(CH₃)₂、-O-CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH(CH₃)₂、-CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH(CH₃)₂、-O-CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH(CH₃)₂、-CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH(CH₃)₂、-O-CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH(CH₃)₂、-CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH(CH₃)₂、-O-CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH(CH₃)₂、-CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH(CH₃)₂、-O-CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH(CH₃)₂、-CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH(CH₃)₂、-O-CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH(CH₃)₂、-CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH(CH₃)₂、-O-CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH(CH₃)₂、-CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH(CH₃)₂、-O-CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH(CH₃)₂、-CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH(CH₃)₂、-O-CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH(CH₃)₂、-CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH(CH₃)₂、-O-CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH(CH₃)₂、-CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH(CH₃)₂、-O-CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH(CH₃)₂、-CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH(CH₃)₂、-O-CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH(CH₃)₂、-CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH(CH₃)₂、-O-CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH(CH₃)₂、-CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH(CH₃)₂、-O-CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH(CH₃)₂、-CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH(CH₃)₂、-O-CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH(CH₃)₂、-CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH(CH₃)₂、-O-CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH(CH₃)₂、-CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH(CH₃)₂、-O-CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH(CH₃)₂、-CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH(CH₃)₂、-O-CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH(CH₃)₂、-CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH(CH₃)₂、-O-CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH(CH₃)₂、-CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH(CH₃)₂、-O-CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH(CH₃)₂、-CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH(CH₃)₂、-O-CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH(CH₃)₂、-CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH(CH₃)₂、-O-CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH(CH₃)₂、-CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH(CH₃)₂、-O-CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH(CH₃)₂、-CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH(CH₃)₂、-O-CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH(CH₃)₂、-CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH(CH₃)₂、-O-CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH(CH₃)₂、-CH₂CH₂CH₂CH<

9
 $-O-CH_2-$ 、 $-C(CH_3)_2-O-CH_2$
 $-C(CH_3)(CH_2CH_3)-O-CH_2-$ 、
 $-C(CH_2CH_3)_2-O-CH_2-$ 、 $-(CH_2)_n-O-(CH_2)_m$ (m, nは1~19の整数、ただし $2 \leq m+n \leq 20$)、 $-(CH_2)_n-C(O)O-(CH_2)_m$ (m, nは1~19の整数、ただし $2 \leq m+n \leq 20$)、 $-(CH_2)_n-OC(O)-(CH_2)_m$ 、 $-C(O)O-(CH_2)_n$ (nは0~18の整数、m, nは1~17の整数、ただし $2 \leq 1+m+n \leq 18$)、 $-(CH_2)_n-o-$ 、 $m-$ 、 $p-C_6H_5-$
 $-C(CH_2)_n-o-$ 、 $m-$ 、 $p-C_6H_4-$
 $(CH_2)_n$ (mは0~13の整数、nは1~14の整数、ただし $1 \leq m+n \leq 14$)、 $-(CH_2)_n-o-$ 、 $m-$ 、 $p-C_6H_4-$
 $o-$ 、 $m-$ 、 $p-C_6H_4-O-(CH_2)_n$ (mは0~13の整数、nは1~14の整数、ただし $1 \leq m+n \leq 14$)、 $-(CH_2)_n-o-$ 、 $m-$ 、 $p-C_6H_4-$
 $-O-CH(CH_3)$ (nは1~12の整数)、 $-(CH_2)_n-o-$ 、 $m-$ 、 $p-C_6H_4-O-CH(CH_3)_2$ (nは1~11の整数)、 $-(CH_2)_n-o-$ 、 $m-$ 、 $p-C_6H_4-C(O)O-(CH_2)_m$ (m, nは1~12の整数、ただし $2 \leq m+n \leq 13$)、 $-(CH_2)_n-OC(O)-o-$ 、 $m-$ 、 $p-C_6H_4-C(O)O-(CH_2)_m$ (m, nは1~11の整数、ただし $2 \leq m+n \leq 12$)、 $-(CH_2)_n-o-$ 、 $m-$ 、 $p-C_6H_4-OC(O)-(CH_2)_m$ (m, nは1~12の整数、ただし $2 \leq m+n \leq 13$)、 $-(CH_2)_n-C(O)O-o-$ 、 $m-$ 、 $p-C_6H_4-(CH_2)_n$ (m, nは1~11の整数、ただし $2 \leq m+n \leq 12$)、等が挙げられる。

【0033】一般式1において、R²については水素原子あるいはメチル基であるが、水素原子が好ましい。また、Xについては、ハロゲン基、ニトロキシド基、スルフィド基あるいはコバルトボルフィリン錯体であるが、製造の容易さからハロゲン基が、そして特にプロモ基が好ましい。

【0034】一般式1において、R³としては、以下のような基が例示される。

【0035】

【化19】

【0036】〔式中、R⁷は炭素数1~20の炭化水素基である。R⁹、R¹⁰は、いずれも炭素数1~20のアルキル基、炭素数6~20のアリール基、炭素数7~20のアラルキル基、または(R')_b、SiO-(R'は炭素数1~20の1価の炭化水素基であって、3個のR'は同一であってもよく、異なっていてもよい)で示されるトリオルガノシロキシ基を示し、R⁹またはR¹⁰が2個以上存在するとき、それらは同一であってもよく、異なっていてもよい。Yは水酸基または加水分解性基を示し、Yが2個以上存在するときそれらは同一であってもよく、異なっていてもよい。aは0、1、2、または3を、また、bは0、1、または2を示す。mは0~19の整数である。ただし、a+m b ≥ 1であることを満足するものとする。〕

【0037】R⁷としては、具体的には以下のようない基が例示される。 $-(CH_2)_n-CH_3$ 、 $-CH(CH_3)_2$ 、 $-(CH_2)_n-CH_3$ 、 $-CH(CH_2CH_3)_2$ 、 $-(CH_2)_n-CH_3$ 、 $-CH(CH_2CH_3)_2$ 、 $-C(CH_3)_2$ 、 $-(CH_2)_n-CH_3$ 、 $-C(CH_3)_2$ 、 $-(CH_2)_n-CH_3$ 、 $-C_6H_5$ 、 $-C_6H_5$ 、 $(CH_3)_2$ 、 $-C_6H_5$ 、 $-C_6H_5$ 、 $-(CH_2)_n-C_6H_5$ 、 $-(CH_2)_n-C_6H_5$ 、 $(CH_3)_2$ (nは0以上の整数で、各基の合計炭素数は20以下)

【0038】また、Yで示される加水分解性基としては、特に限定されず、従来公知のものを用いることができ、具体的には、水素、ハロゲン原子、アルコキシ基、アシルオキシ基、ケトキシメート基、アミノ基、アミド基、酸アミド基、アミノオキシ基、メルカブト基、アルケニルオキシ基等が挙げられ、加水分解性がマイルドで取り扱いやすいという点から、アルコキシ基が特に好ましい。該加水分解性基や水酸基は1個のケイ素原子に1

～3個の範囲で結合することができ、 $a + m b$ 、すなわち、加水分解性基の総和は、1～5の範囲が好ましい。加水分解性基や水酸基がこのシリル基中に2個以上結合するときは、それらは同一であっても、異なっていててもよい。このシリル基を構成するケイ素原子は、1個でもよく、2個以上であってもよいが、シロキサン結合により連結されたケイ素原子の場合には20個程度まであってよい。

【0039】R³の構造としては、上で例示したものに限定されず、様々な構造のものであってよいが、水酸基、アミノ基、エポキシ基、カルボン酸基、エステル基、エーテル基、アミド基、シリル基が好ましく、また、一般式2で表されるアルケニル基も好ましい。なかでも、アルケニル基、水酸基が特に好ましい。アルケニル基については、その製造方法から、ラジカル重合活性がないものに限定される。それ以外は特に限定されない。また、本発明のシリル基とはケイ素原子を有する基を表し、好ましいものとして、例えば架橋性シリル基や、一般に保護基として用いられるシリル基を挙げることができる。

【0040】アルケニル基が末端に導入されている場合、一般式1の構造に制約はないが、好ましいものとして以下のものが例示される。

【0041】

【化20】

【0042】nは1～20の整数であるが、原料入手の容易さから、2、4、6のものが好ましい。

【0043】本発明のビニル系重合体1分子中に含まれる末端基の数には特に制約はないが、硬化性組成物などに用いられる場合には、2つ以上含まれることが好ましい。

【0044】このビニル系重合体の主鎖を構成するラジカル重合性オレフィン単量体としては特に制約はなく、各種のものを用いることができる。例示するならば、(メタ)アクリル酸、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸-n-プロピル、(メタ)アクリル酸イソプロピル、(メタ)アクリル酸-n-ブチル、(メタ)アクリル酸イソブチル、(メタ)アクリル酸-t e r t -ブチル、(メタ)アクリル酸-n-ベンチル、(メタ)アクリル酸-n-ヘキシル、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸-n-ヘプチル、(メタ)アクリル酸-n-オクチル、(メタ)アクリル酸-2-エチルヘキシル、(メタ)アクリル酸ノニル、(メタ)アクリル酸デシル、(メタ)アクリル酸ドデシル、(メタ)アクリル酸

フェニル、(メタ)アクリル酸トルイル、(メタ)アクリル酸ベンジル、(メタ)アクリル酸-2-メトキシエチル、(メタ)アクリル酸-3-メトキシプロピル、(メタ)アクリル酸-2-ヒドロキシエチル、(メタ)アクリル酸-2-ヒドロキシプロピル、(メタ)アクリル酸ステアリル、(メタ)アクリル酸グリシジル、(メタ)アクリル酸-2-アミノエチル、γ-(メタクリロイルオキシプロピル)トリメトキシシラン、(メタ)アクリル酸のエチレンオキサイド付加物、(メタ)アクリル酸トリフルオロメチルメチル、(メタ)アクリル酸-2-トリフルオロメチルエチル、(メタ)アクリル酸-2-バーフルオロエチルエチル、(メタ)アクリル酸-2-バーフルオロエチル-2-バーフルオロブチルエチル、(メタ)アクリル酸-2-バーフルオロエチル、(メタ)アクリル酸バーフルオロメチル、(メタ)アクリル酸ジバーフルオロメチルメチル、(メタ)アクリル酸-2-バーフルオロメチル-2-バーフルオロエチルメチル、(メタ)アクリル酸-2-バーフルオロヘキシルエチル、(メタ)アクリル酸-2-バーフルオロデシルエチル、(メタ)アクリル酸-2-バーフルオロヘキサデシルエチル等の(メタ)アクリル酸系モノマー；スチレン、ビニルトルエン、α-メチルスチレン、クロルスチレン、スチレンスルホン酸及び塩等のスチレン系モノマー；バーフルオロエチレン、バーフルオロプロピレン、フッ化ビニリデン等のフッ素含有ビニルモノマー；ビニルトリメトキシシラン、ビニルトリエトキシシラン等のケイ素含有ビニル系モノマー；無水マレイン酸、マレイン酸、マレイン酸のモノアルキルエステル及びジアルキルエステル；フマル酸、フマル酸のモノアルキルエステル及びジアルキルエチル；マレイミド、メチルマレイミド、エチルマレイミド、プロピルマレイミド、ブチルマレイミド、ヘキシルマレイミド、オクチルマレイミド、デシルマレイミド、ステアリルマレイミド、フェニルマレイミド、シクロヘキシルマレイミド等のマレイミド系モノマー；アクリロニトリル、メタクリロニトリル等のニトリル基含有ビニル系モノマー；アクリルアミド、メタクリルアミド等のアミド基含有ビニル系モノマー；酢酸ビニル、プロピオン酸ビニル、ビバリン酸ビニル、安息香酸ビニル、桂皮酸ビニルなどのビニルエステル類；エチレン、プロピレンなどのアルケン類；ブタジエン、イソブレンなどの共役ジエン類；塩化ビニル、塩化ビニリデン、塩化アリル、アリルアルコールなどが挙げられ、これらは単独で用いても良いし、複数を共重合させても構わない。これらの内では、生成物の物性等から、スチレン系モノマー及び(メタ)アクリル系モノマーが好ましく、更に本発明の官能基導入反応の反応性の高さやガラス転移点の低さなどからアクリル酸エステル系モノマーが好ましく、特にアクリル酸ブチルが好ましい。

【0045】本発明のビニル系重合体は、分子量分布、

すなわち、ゲルバーミエーションクロマトグラフィーで測定した重量平均分子量(M_w)と数平均分子量(M_n)の比(M_w/M_n)の値が好ましくは1.8未満であり、さらに好ましくは1.6以下であり、最も好ましくは1.3以下である。

【0046】本発明のビニル系重合体の数平均分子量は500~100000の範囲が好ましく、3000~40000がさらに好ましい。分子量が500以下であると、ビニル系重合体の本来の特性が発現されにくく、また、100000以上であると、ハンドリングが困難になる。

【0047】末端に官能基を有するビニル系重合体の製造方法

本発明の製造方法は、リビングラジカル重合において、重合中あるいは重合終了後に、官能基を有する重合性の低いオレフィン化合物を添加することにより、末端に官能基を持つビニル系重合体を製造することからなる。

【0048】「リビングラジカル重合法」は、重合速度が高く、ラジカル同士のカップリングなどによる停止反応が起こりやすいため制御の難しいとされるラジカル重合でありながら、停止反応が起こりにくく、分子量分布の狭い(M_w/M_n が1.1~1.5程度)重合体が得られるとともに、モノマーと開始剤の仕込み比によって分子量は自由にコントロールすることができる。

【0049】従って「リビングラジカル重合法」は、分子量分布が狭く、粘度が低い重合体を得ることができる上に、特定の官能基を有するモノマーを重合体のほぼ任意の位置に導入することができるため、上記特定の官能基を有するビニル系重合体の製造方法としてはより好ましいものである。

【0050】なお、リビング重合とは狭義においては、末端が常に活性を持ち続けて分子鎖が生長していく重合のことをいうが、一般には、末端が不活性化されたものと活性化されたものが平衡状態にありながら生長していく擬リビング重合も含まれる。本発明における定義も後者である。

【0051】「リビングラジカル重合法」は近年様々なグループで積極的に研究がなされている。その例としては、たとえばジャーナル・オブ・アメリカン・ケミカル・ソサエティ (J. Am. Chem. Soc.)、1994年、116巻、7943頁に示されるようなコバルトポルフィリン錯体を用いるもの、マクロモレキュールズ (Macromolecules)、1994年、27巻、7228頁に示されるようなニトロキシド化合物などのラジカル捕捉剤を用いるもの、有機ハロゲン化物等を開始剤とし遷移金属錯体を触媒とする「原子移動ラジカル重合」(Atom Transfer Radical Polymerization: ATRP)などがあげられる。

【0052】「リビングラジカル重合法」の中でも、有

機ハロゲン化物あるいはハロゲン化スルホニル化合物等を開始剤とし、遷移金属錯体を触媒としてビニル系モノマーを重合する「原子移動ラジカル重合法」は、上記の「リビングラジカル重合法」の特徴に加えて、官能基変換反応に比較的有利なハロゲン等を末端に有し、開始剤や触媒の設計の自由度が大きいことから、本発明の製造方法においてはさらに好ましい。この原子移動ラジカル重合法については例えば、Matyjaszewskiら、ジャーナル・オブ・アメリカン・ケミカル・ソサエティ (J. Am. Chem. Soc.) 1995年、117巻、5614頁、マクロモレキュールズ (Macromolecules) 1995年、28巻、7901頁、サイエンス (Science) 1996年、272巻、866頁、WO96/30421号公報、WO97/18247号公報あるいは Sawamotoら、マクロモレキュールズ (Macromolecules) 1995年、28巻、1721頁などに記載されている。

【0053】本発明の製造方法において、これらのうちどの方法を使用するかは特に制約はないが、制御の容易さなどから原子移動ラジカル重合法が好ましい。

【0054】これらのリビングラジカル重合のうちで、まず、ニトロキシド化合物などのラジカル捕捉剤を用いる方法について説明する。この重合では一般に安定なニトロキシフリーラジカル (=N-O[·]) をラジカルキャッピング剤として用いる。このような化合物類としては、限定はされないが、2, 2, 6, 6-置換-1-ビペリジニルオキシラジカルや2, 2, 5, 5-置換-1-ビロリジニルオキシラジカル等、環状ヒドロキシアミンからのニトロキシフリーラジカルが好ましい。置換基としてはメチル基やエチル基等の炭素数4以下のアルキル基が適当である。

具体的なニトロキシフリーラジカル化合物としては、限定はされないが、2, 2, 6, 6-テトラメチル-1-ビペリジニルオキシラジカル (TEMPO)、2, 2, 6, 6-テトラエチル-1-ビペリジニルオキシラジカル、2, 2, 6, 6-テトラメチル-4-オキソ-1-ビペリジニルオキシラジカル、2, 2, 5, 5-テトラメチル-1-ビロリジニルオキシラジカル、1, 1, 3, 3-テトラメチル-2-イソインドリニルオキシラジカル、N, N-ジ-t-ブチルアミノオキシラジカル等が挙げられる。ニトロキシフリーラジカルの代わりに、ガルビノキシル (galvinoxyl) フリーラジカル等の安定なフリーラジカルを用いても構わない。

【0055】上記ラジカルキャッピング剤はラジカル発生剤と併用される。ラジカルキャッピング剤とラジカル発生剤との反応生成物が重合開始剤となって付加重合性モノマーの重合が進行すると考えられる。両者の併用割合は特に限定されるものではないが、ラジカルキャッピング剤1モルに対し、ラジカル発生剤0.1~10モルが適当である。

【0056】ラジカル発生剤としては、種々の化合物を使用することができるが、重合温度条件下で、ラジカルを発生しうるバーオキシドが好ましい。このバーオキシドとしては、限定はされないが、ベンゾイルバーオキシド、ラウロイルバーオキシド等のジアシルバーオキシド類；ジクミルバーオキシド、ジ-*t*-ブチルバーオキシド等のジアルキルバーオキシド類；ジイソプロピルバーオキシジカーボネート、ビス(4-*t*-ブチルシクロヘキシル)バーオキシジカーボネート等のバーオキシカーボネート類；*t*-ブチルバーオキシオクトエート、*t*-ブチルバーオキシベンゾエート等のアルキルバーエステル類等がある。特にベンゾイルバーオキシドが好ましい。さらに、バーオキシドの代わりにアゾビスイソブチロニトリルのようなラジカル発生性アゾ化合物等のラジカル発生剤も使用しうる。

【0057】マクロモレキュールズ (Macromolecules)、1995年、28巻、2993頁で報告されているように、ラジカルキャッピング剤とラジカル発生剤を併用する代わりに、下図のようなアルコキシアミン化合物を開始剤として用いても構わない。

【0058】

【化21】

【0059】アルコキシアミン化合物を開始剤として用いる場合、それが上図で示されているような水酸基等の官能基を有するものを用いると、末端に官能基を有する重合体が得られる。

【0060】上記のニトロキシド化合物などのラジカル捕捉剤を用いる重合で用いられるモノマー、溶媒、重合温度等の重合条件は、限定されないが、次に説明する原子移動ラジカル重合について用いるものと同様で構わない。

【0061】次に、本発明のリビングラジカル重合としてより好ましい原子移動ラジカル重合法について説明する。この原子移動ラジカル重合では、有機ハロゲン化物、特に、反応性の高い炭素-ハロゲン結合を有する有機ハロゲン化物（例えば、 α 位にハロゲンを有するエステル化合物や、ベンジル位にハロゲンを有する化合物）、あるいはハロゲン化スルホニル化合物が開始剤と*

（式中、 R^{13} は水素、またはメチル基、 R^{14} 、 R^{15} は水素、または、炭素数1～20の1価のアルキル基、アリール基、またはアラルキル、または R^{14} と R^{15} が他端に

*して用いられる。

【0062】触媒としては、周期律表第7族、8族、9族、10族、または11族元素を中心金属とする金属錯体が用いられる。金属種としては銅、ニッケル、ルテニウム、鉄が好ましく、特に1価の銅、2価のルテニウム、2価の鉄が好適である。なかでも銅が好ましい。具体的に例示するならば、塩化第一銅、臭化第一銅、ヨウ化第一銅、シアン化第一銅、酸化第一銅、酢酸第一銅、過塩素酸第一銅等である。銅化合物を用いる場合、触媒活性を高めるために2,2'-ビビリジル、およびその誘導体、1,10-フェナントロリン、およびその誘導体、トリブチルアミン等のアルキルアミン、テトラメチルエチレンジアミン、ベンタメチルジエチレントリアミン、ヘキサメチルトリエチレンテトラアミン等のポリアミン、等の配位子が添加される。また、二価の塩化ルテニウムのトリスリフェニルホスフィン錯体 ($RuCl_2(PPh_3)_3$) も触媒として好適である。この触媒を使用するときは、その活性を高めるためにトリアルコキシアルミニウム等のアルミニウム化合物が添加される。さらに、二価の塩化鉄のトリスリフェニルホスフィン錯体 ($FeCl_2(PPh_3)_3$) も触媒として好適である。

【0063】この重合法においては有機ハロゲン化物、またはハロゲン化スルホニル化合物が開始剤として用いられる。具体的に例示するならば、 $C_6H_5 - CH_2X$ 、 $C_6H_5 - C(X)CH_3$ 、 $C_6H_5 - C(X)(CH_3)_2$ 、（ただし、上の化学式中、 C_6H_5 はフェニル基、Xは塩素、臭素、またはヨウ素） $R^{11} - C(H)(X) - CO_2$ 、 $R^{12} - R^{11} - C(CH_3)$ 、 $(X) - CO_2$ 、 $R^{11} - C(H)(X) - C(O)R^{12}$ 、（式中、 R^{11} 及び R^{12} は、水素原子または炭素数1～20のアルキル基、アリール基、またはアラルキル基、Xは塩素、臭素、またはヨウ素） $R^{11} - C_6H_4 - SO_2X$ 、（上記の各式において、 R^{11} は水素原子または炭素数1～20のアルキル基、アリール基、またはアラルキル基、Xは塩素、臭素、またはヨウ素）等が挙げられる。

【0064】また、重合を開始するもの以外に官能基を持つ有機ハロゲン化物、またはハロゲン化スルホニル化合物を用いると、容易に末端に官能基が導入された重合体が得られる。このような官能基としては、アルケニル基、水酸基、エポキシ基、アミノ基、アミド基、シリル基等が挙げられる。

【0065】アルケニル基を有する有機ハロゲン化物としては特に制限はないが、例えば、一般式7に示す構造を有するものが例示される。

において相互に連結したもの、 R^{16} は、 $-C(O)O-$ （エステル基）、 $-C(O)-$ （ケト基）、または $O-$ 、 $m-$ 、 $p-$ フェニレン基、 R^{17} は直接結合、または

50

炭素数1～20の2価の有機基で1個以上のエーテル結合を含んでいても良い、Xは塩素、臭素、またはヨウ素)

これらの化合物は、ハロゲンが結合している炭素がカルボニル基あるいはフェニル基等と結合しており、炭素-ハロゲン結合が活性化されて重合が開始する。

【0066】置換基R¹⁴、R¹⁵の具体例としては、水素、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、ベンチル基、ヘキシル基等が挙げられる。R¹⁴とR¹⁵は他端において連結して環状骨格を形成していてもよく、そのような場合、-R¹⁴-R¹⁵-は例えば、-CH₂CH₂-、-CH₂CH₂CH₂-、-CH₂CH₂CH₂CH₂-、-CH₂CH₂CH₂CH₂CH₂C₆H₅CH₂CH₂CH₂-等が例示される。

〔0067〕一般式7で示される、アルケニル基を有する有機ハロゲン化物の具体例としては、 $XCH_2C(O)O(CH_2)_nCH=CH_2$ 、 $H_3CC(H)(X)C(O)O(CH_2)_nCH=CH_2$ 、 $(H_3C)_2C(X)C(O)O(CH_2)_nCH=CH_2$ 、 $CH_3CH_2C(H)(X)C(O)O(CH_2)_nCH=CH_2$ 、 $H_3C=CH_2$ 。

• [0068]

【化22】

〔0069〕(上記の各式において、Xは塩素、臭素、またはヨウ素、nは0~20の整数) $XCH_2C(O)O(CH_2)_nO(CH_2)_mCH=CH_2$ 、 $H_3CC(H)(X)C(O)O(CH_2)_nO(CH_2)_mC(H)=CH_2$ 、 $(H_3C)_2C(X)C(O)O(CH_2)_nO(CH_2)_mCH=CH_2$ 、 $CH_3CH_2C(H)(X)C(O)O(CH_2)_nO(CH_2)_mCH=CH_2$

10070

(式中、R¹³、R¹⁴、R¹⁵、R¹⁷、Xは上記と同じ、R¹⁸は、直接結合、-C(O)O-（エステル基）、-C(O)-（ケト基）、または、o-、m-、p-フェニレン基を表す)

【0073】 R^{17} は直接結合、または炭素数1～20の2価の有機基（1個以上のエーテル結合を含んでいても良い）であるが、直接結合である場合は、ハロゲンの結合している炭素にビニル基が結合しており、ハロゲン化アリル化合物である。この場合は、隣接ビニル基によって炭素-ハロゲン結合が活性化されているので、 R^{18} としてC(O)O基やフェニレン基等を有する必要は必ずしもなく、直接結合であってもよい。 R^{17} が直接結合でな

* [化23]

〔0071〕(上記の各式において、Xは塩素、臭素、またはヨウ素、nは1～20の整数、mは0～20の整数) o, m, p-XCH₂-C_nH₂- (CH₂)_p-

10 $\text{CH}=\text{CH}_2$ 、 o, m, p-CH₃, C(H) (X) - C₆H₄ - (CH₂)_n - CH=CH₂ 、 o, m, p-C₆H₅, CH₂, C(H) (X) - C₆H₄ - (CH₂)_n - CH=CH₂ 、 (上記の各式において、Xは塩素、臭素、またはヨウ素、nは0~20の整数) o, m, p-XCH₂ - C₆H₄ - (CH₂)_n - O- (CH₂)_n - CH=CH₂ 、 o, m, p-CH₃, C(H) (X) - C₆H₄ - (CH₂)_n - O- (CH₂)_n - CH=CH₂ 、 o, m, p-CH₃, CH₂, C(H) (X) - C₆H₄ - (CH₂)_n - O- (CH₂)_n CH=CH₂ 、

20 (上記の各式において、Xは塩素、臭素、またはヨウ素、nは1~20の整数、mは0~20の整数) o, m, p-XCH₂ - C₆H₄ - O- (CH₂)_n - CH=CH₂ 、 o, m, p-CH₃, C(H) (X) - C₆H₄ - O- (CH₂)_n - CH=CH₂ 、 o, m, p-CH₃, CH₂, C(H) (X) - C₆H₄ - O- (CH₂)_n - CH=CH₂ 、 (上記の各式において、Xは塩素、臭素、またはヨウ素、nは0~20の整数) o, m, p-XCH₂ - C₆H₄ - O- (CH₂)_n - O- (CH₂)_n - CH=CH₂ 、 o, m, p-CH₃, C(H) (X) - C₆H₄ - O- (CH₂)_n - O- (CH₂)_n - CH=CH₂ 、 (上記の各式において、Xは塩素、臭素、またはヨウ素、nは1~20の整数、mは0~20の整数)

30 (X) - C₆H₄ - O- (CH₂)_n - O- (CH₂)_n - CH=CH₂ 、 o, m, p-CH₃, CH₂, C(H) (X) - C₆H₄ - O- (CH₂)_n - O- (CH₂)_n - CH=CH₂ 、 (上記の各式において、Xは塩素、臭素、またはヨウ素、nは1~20の整数、mは0~20の整数)

* 【0072】アルケニル基を有する有機ハロゲン化物としてはさらに一般式8で示される化合物が挙げられる。

い場合は、炭素-ハロゲン結合を活性化するために、R₄₀ ¹⁸としてはC(O)O基、C(O)基、フェニレン基が好ましい。

〔074〕一般式8の化合物を具体的に例示するならば、 $\text{CH}_2 = \text{CHCH}_2 \text{X}$ 、 $\text{CH}_2 = \text{C}(\text{CH}_3)_2 \text{CH}_2 \text{X}$ 、 $\text{CH}_2 = \text{CHC}(\text{H})(\text{X})\text{CH}_3$ 、 $\text{CH}_2 = \text{C}(\text{CH}_3)_2 \text{C}(\text{H})(\text{X})\text{CH}_3$ 、 $\text{CH}_2 = \text{CHC}(\text{X})(\text{CH}_3)_2$ 、 $\text{CH}_2 = \text{CHC}(\text{H})(\text{X})\text{C}_2\text{H}_5$ 、 $\text{CH}_2 = \text{CHC}(\text{H})(\text{X})\text{CH}(\text{CH}_3)_2$ 、 $\text{CH}_2 = \text{CHC}(\text{H})(\text{X})\text{C}_6\text{H}_5$ 、 $\text{CH}_2 = \text{CHC}(\text{H})(\text{X})\text{CH}_2\text{C}_6\text{H}_5$ 、 $\text{CH}_2 = \text{CHCH}_2 \text{C}(\text{H})(\text{X})\text{CO}_2 \text{R}$ 、 $\text{CH}_2 = \text{CH}(\text{CH}_2)_2 \text{C}(\text{H})(\text{X})\text{CO}_2 \text{R}$

(H) (X) -CO₂ R, CH₂ =CH (CH₂)_n C
 (H) (X) -CO₂ R, CH₂ =CH (CH₂)_n C
 (H) (X) -CO₂ R, CH₂ =CHCH₂ C (H)
 (X) -C₆H₅, CH₂ =CH (CH₂)_n C (H)
 (X) -C₆H₅, CH₂ =CH (CH₂)_n C (H)
 (X) -C₆H₅, (上記の各式において、Xは塩素、臭素、またはヨウ素、Rは炭素数1~20のアルキル基、アリール基、アラルキル基)等を挙げができる。

【0075】アルケニル基を有するハロゲン化スルホニル化合物の具体例を挙げるならば、o-, m-, p-C₆H₅ =CH- (CH₂)_n -C₆H₄ -SO₂ X, o *

(式中、R⁹、R¹⁰、R¹³、R¹⁴、R¹⁵、R¹⁶、R¹⁷、a、b、m、X、Yは上記に同じ)

【0078】一般式9の化合物を具体的に例示するならば、XCH₂ C (O) O (CH₂)_n Si (OCH₃)₃、CH₃ C (H) (X) C (O) O (CH₂)_n Si (OCH₃)₃、(CH₃)₂ C (X) C (O) O (C H₂)_n Si (OCH₃)₃、XCH₂ C (O) O (C H₂)_n Si (CH₃) (OCH₃)₂、CH₃ C (H) (X) C (O) O (CH₂)_n Si (CH₃) (OCH₃)₂、(CH₃)₂ C (X) C (O) O (C H₂)_n Si (CH₃) (OCH₃)₂、(上記の各式において、Xは塩素、臭素、ヨウ素、nは0~20の整数) XCH₂ C (O) O (CH₂)_n O (CH₂)_n Si (OCH₃)₃、H₃CC (H) (X) C (O) O (CH₂)_n O (CH₂)_n Si (OCH₃)₃、(H₃C)₂ C (X) C (O) O (CH₂)_n O (CH₂)_n Si (OCH₃)₃、CH₃ CH₂ C (H) (X) C (O) O (CH₂)_n O (CH₂)_n Si (OCH₃)₃、XCH₂ C (O) O (CH₂)_n O (CH₂)_n Si (CH₃) (OCH₃)₂、H₃CC (H) (X) C (O) O (CH₂)_n O (CH₂)_n -Si (CH₃) (OCH₃)₂、(H₃C)₂ C (X) C (O) O (C H₂)_n O (CH₂)_n -Si (CH₃) (OCH₃)₂、CH₃ CH₂ C (H) (X) C (O) O (CH₂)_n O (CH₂)_n -Si (CH₃) (OCH₃)₂、(上記の各式において、Xは塩素、臭素、ヨウ素、nは1~20の整数、mは0~20の整数) o, m, p-X CH₂ -C₆H₄ - (CH₂)_n Si (OCH₃)₃、o, m, p-CH₃ C (H) (X) -C₆H₄ - (CH₂)_n *

(式中、R⁹、R¹⁰、R¹³、R¹⁴、R¹⁵、R¹⁷、R¹⁸、a、b、m、X、Yは上記に同じ)

【0080】このような化合物を具体的に例示するならば、(CH₃ O)₃ Si CH₂ CH₂ C (H) (X) C₆H₅、(CH₃ O)₃ Si CH₂ CH₂ C (H) (X) C

*-, m-, p-CH₂ =CH- (CH₂)_n -O-C₆H₄ -SO₂ X、(上記の各式において、Xは塩素、臭素、またはヨウ素、nは0~20の整数)等である。

【0076】アルケニル基を持つ開始剤の場合、その開始剤のオレフィンも重合末端と反応する可能性があるため、重合条件および添加するオレフィン化合物との反応条件には注意が必要である。具体的な例としては、重合の早い段階でオレフィン化合物を添加することがあげられる。

10 【0077】架橋性シリル基を有する有機ハロゲン化物としては特に制限はないが、例えば一般式9に示す構造を有するものが例示される。

(H) (R¹³)CH₂ -

$$[Si(R^9)_{2-n}(Y)_nO]_n -Si(R^{10})_{3-n}(Y)_n (9)$$

※₂ , Si (OCH₃)₃ , o, m, p-CH₃ CH₂ C (H) (X) -C₆H₄ - (CH₂)_n Si (OCH₃)₃ , o, m, p-XCH₂ -C₆H₄ - (CH₂)_n Si (OCH₃)₃ , o, m, p-CH₃ C (H) (X) -C₆H₄ - (CH₂)_n Si (OCH₃)₃ , o, m, p-XCH₂ -C₆H₄ - (CH₂)_n -O- (CH₂)_n Si (OCH₃)₃ , o, m, p-CH₃ C (H) (X) -C₆H₄ - (CH₂)_n -O- (CH₂)_n Si (OCH₃)₃ , o, m, p-XCH₂ -C₆H₄ -O- (CH₂)_n Si (OCH₃)₃ , o, m, p-CH₃ C (H) (X) -C₆H₄ - (CH₂)_n -O- (CH₂)_n Si (OCH₃)₃ , o, m, p-XCH₂ -C₆H₄ -O- (CH₂)_n Si (OCH₃)₃ , o, m, p-CH₃ C (H) (X) -C₆H₄ - (CH₂)_n -O- (CH₂)_n Si (OCH₃)₃ , o, m, p-CH₃ C (H) (X) -C₆H₄ - (CH₂)_n -O- (CH₂)_n Si (OCH₃)₃ , o, m, p-XCH₂ -C₆H₄ -O- (CH₂)_n Si (OCH₃)₃ , o, m, p-CH₃ C (H) (X) -C₆H₄ - (CH₂)_n -O- (CH₂)_n Si (OCH₃)₃ , o, m, p-XCH₂ -C₆H₄ -O- (CH₂)_n Si (OCH₃)₃ , o, m, p-CH₃ C (H) (X) -C₆H₄ - (CH₂)_n -O- (CH₂)_n Si (OCH₃)₃ , o, m, p-XCH₂ -C₆H₄ -O- (CH₂)_n Si (OCH₃)₃ , o, m, p-CH₃ C (H) (X) -C₆H₄ - (CH₂)_n -O- (CH₂)_n Si (OCH₃)₃ , o, m, p-XCH₂ -C₆H₄ -O- (CH₂)_n Si (OCH₃)₃ , o, m, p-CH₃ C (H) (X) -C₆H₄ - (CH₂)_n -O- (CH₂)_n Si (OCH₃)₃ , o, m, p-XCH₂ -C₆H₄ -O- (CH₂)_n Si (OCH₃)₃ , o, m, p-CH₃ C (H) (X) -C₆H₄ - (CH₂)_n -O- (CH₂)_n Si (OCH₃)₃ , o, m, p-XCH₂ -C₆H₄ -O- (CH₂)_n Si (OCH₃)₃ , o, m, p-CH₃ C (H) (X) -C₆H₄ - (CH₂)_n -O- (CH₂)_n Si (OCH₃)₃ , o, m, p-XCH₂ -C₆H₄ -O- (CH₂)_n Si (OCH₃)₃ , o, m, p-CH₃ C (H) (X) -C₆H₄ - (CH₂)_n -O- (CH₂)_n Si (OCH₃)₃ , o, m, p-XCH₂ -C₆H₄ -O- (CH₂)_n Si (OCH₃)₃ , o, m, p-CH₃ C (H) (X) -C₆H₄ - (CH₂)_n -O- (CH₂)_n Si (OCH₃)₃ , o, m, p-XCH₂ -C₆H₄ -O- (CH₂)_n Si (OCH₃)₃ , o, m, p-CH₃ C (H) (X) -C₆H₄ - (CH₂)_n -O- (CH₂)_n Si (OCH₃)₃ , o, m, p-XCH₂ -C₆H₄ -O- (CH₂)_n Si (OCH₃)₃ , o, m, p-CH₃ C (H) (X) -C₆H₄ - (CH₂)_n -O- (CH₂)_n Si (OCH₃)₃ , o, m, p-XCH₂ -C₆H₄ -O- (CH₂)_n Si (OCH₃)₃ , o, m, p-CH₃ C (H) (X) -C₆H₄ - (CH₂)_n -O- (CH₂)_n Si (OCH₃)₃ , o, m, p-XCH₂ -C₆H₄ -O- (CH₂)_n Si (OCH₃)₃ , o, m, p-CH₃ C (H) (X) -C₆H₄ - (CH₂)_n -O- (CH₂)_n Si (OCH₃)₃ , o, m, p-XCH₂ -C₆H₄ -O- (CH₂)_n Si (OCH₃)₃ , o, m, p-CH₃ C (H) (X) -C₆H₄ - (CH₂)_n -O- (CH₂)_n Si (OCH₃)₃ , o, m, p-XCH₂ -C₆H₄ -O- (CH₂)_n Si (OCH₃)₃ , o, m, p-CH₃ C (H) (X) -C₆H₄ - (CH₂)_n -O- (CH₂)_n Si (OCH₃)₃ , o, m, p-XCH₂ -C₆H₄ -O- (CH₂)_n Si (OCH₃)₃ , o, m, p-CH₃ C (H) (X) -C₆H₄ - (CH₂)_n -O- (CH₂)_n Si (OCH₃)₃ , o, m, p-XCH₂ -C₆H₄ -O- (CH₂)_n Si (OCH₃)₃ , o, m, p-CH₃ C (H) (X) -C₆H₄ - (CH₂)_n -O- (CH₂)_n Si (OCH₃)₃ , o, m, p-XCH₂ -C₆H₄ -O- (CH₂)_n Si (OCH₃)₃ , o, m, p-CH₃ C (H) (X) -C₆H₄ - (CH₂)_n -O- (CH₂)_n Si (OCH₃)₃ , o, m, p-XCH₂ -C₆H₄ -O- (CH₂)_n Si (OCH₃)₃ , o, m, p-CH₃ C (H) (X) -C₆H₄ - (CH₂)_n -O- (CH₂)_n Si (OCH₃)₃ , o, m, p-XCH₂ -C₆H₄ -O- (CH₂)_n Si (OCH₃)₃ , o, m, p-CH₃ C (H) (X) -C₆H₄ - (CH₂)_n -O- (CH₂)_n Si (OCH₃)₃ , o, m, p-XCH₂ -C₆H₄ -O- (CH₂)_n Si (OCH₃)₃ , o, m, p-CH₃ C (H) (X) -C₆H₄ - (CH₂)_n -O- (CH₂)_n Si (OCH₃)₃ , o, m, p-XCH₂ -C₆H₄ -O- (CH₂)_n Si (OCH₃)₃ , o, m, p-CH₃ C (H) (X) -C₆H₄ - (CH₂)_n -O- (CH₂)_n Si (OCH₃)₃ , o, m, p-XCH₂ -C₆H₄ -O- (CH₂)_n Si (OCH₃)₃ , o, m, p-CH₃ C (H) (X) -C₆H₄ - (CH₂)_n -O- (CH₂)_n Si (OCH₃)₃ , o, m, p-XCH₂ -C₆H₄ -O- (CH₂)_n Si (OCH₃)₃ , o, m, p-CH₃ C (H) (X) -C₆H₄ - (CH₂)_n -O- (CH₂)_n Si (OCH₃)₃ , o, m, p-XCH₂ -C₆H₄ -O- (CH₂)_n Si (OCH₃)₃ , o, m, p-CH₃ C (H) (X) -C₆H₄ - (CH₂)_n -O- (CH₂)_n Si (OCH₃)₃ , o, m, p-XCH₂ -C₆H₄ -O- (CH₂)_n Si (OCH₃)₃ , o, m, p-CH₃ C (H) (X) -C₆H₄ - (CH₂)_n -O- (CH₂)_n Si (OCH₃)₃ , o, m, p-XCH₂ -C₆H₄ -O- (CH₂)_n Si (OCH₃)₃ , o, m, p-CH₃ C (H) (X) -C₆H₄ - (CH₂)_n -O- (CH₂)_n Si (OCH₃)₃ , o, m, p-XCH₂ -C₆H₄ -O- (CH₂)_n Si (OCH₃)₃ , o, m, p-CH₃ C (H) (X) -C₆H₄ - (CH₂)_n -O- (CH₂)_n Si (OCH₃)₃ , o, m, p-XCH₂ -C₆H₄ -O- (CH₂)_n Si (OCH₃)₃ , o, m, p-CH₃ C (H) (X) -C₆H₄ - (CH₂)_n -O- (CH₂)_n Si (OCH₃)₃ , o, m, p-XCH₂ -C₆H₄ -O- (CH₂)_n Si (OCH₃)₃ , o, m, p-CH₃ C (H) (X) -C₆H₄ - (CH₂)_n -O- (CH₂)_n Si (OCH₃)₃ , o, m, p-XCH₂ -C₆H₄ -O- (CH₂)_n Si (OCH₃)₃ , o, m, p-CH₃ C (H) (X) -C₆H₄ - (CH₂)_n -O- (CH₂)_n Si (OCH₃)₃ , o, m, p-XCH₂ -C₆H₄ -O- (CH₂)_n Si (OCH₃)₃ , o, m, p-CH₃ C (H) (X) -C₆H₄ - (CH₂)_n -O- (CH₂)_n Si (OCH₃)₃ , o, m, p-XCH₂ -C₆H₄ -O- (CH₂)_n Si (OCH₃)₃ , o, m, p-CH₃ C (H) (X) -C₆H₄ - (CH₂)_n -O- (CH₂)_n Si (OCH₃)₃ , o, m, p-XCH₂ -C₆H₄ -O- (CH₂)_n Si (OCH₃)₃ , o, m, p-CH₃ C (H) (X) -C₆H₄ - (CH₂)_n -O- (CH₂)_n Si (OCH₃)₃ , o, m, p-XCH₂ -C₆H₄ -O- (CH₂)_n Si (OCH₃)₃ , o, m, p-CH₃ C (H) (X) -C₆H₄ - (CH₂)_n -O- (CH₂)_n Si (OCH₃)₃ , o, m, p-XCH₂ -C₆H₄ -O- (CH₂)_n Si (OCH₃)₃ , o, m, p-CH₃ C (H) (X) -C₆H₄ - (CH₂)_n -O- (CH₂)_n Si (OCH₃)₃ , o, m, p-XCH₂ -C₆H₄ -O- (CH₂)_n Si (OCH₃)₃ , o, m, p-CH₃ C (H) (X) -C₆H₄ - (CH₂)_n -O- (CH₂)_n Si (OCH₃)₃ , o, m, p-XCH₂ -C₆H₄ -O- (CH₂)_n Si (OCH₃)₃ , o, m, p-CH₃ C (H) (X) -C₆H₄ - (CH₂)_n -O- (CH₂)_n Si (OCH₃)₃ , o, m, p-XCH₂ -C₆H₄ -O- (CH₂)_n Si (OCH₃)₃ , o, m, p-CH₃ C (H) (X) -C₆H₄ - (CH₂)_n -O- (CH₂)_n Si (OCH₃)₃ , o, m, p-XCH₂ -C₆H₄ -O- (CH₂)_n Si (OCH₃)₃ , o, m, p-CH₃ C (H) (X) -C₆H₄ - (CH₂)_n -O- (CH₂)_n Si (OCH₃)₃ , o, m, p-XCH₂ -C₆H₄ -O- (CH₂)_n Si (OCH₃)₃ , o, m, p-CH₃ C (H) (X) -C₆H₄ - (CH₂)_n -O- (CH₂)_n Si (OCH₃)₃ , o, m, p-XCH₂ -C₆H₄ -O- (CH₂)_n Si (OCH₃)₃ , o, m, p-CH₃ C (H) (X) -C₆H₄ - (CH₂)_n -O- (CH₂)_n Si (OCH₃)₃ , o, m, p-XCH₂ -C₆H₄ -O- (CH₂)_n Si (OCH₃)₃ , o, m, p-CH₃ C (H) (X) -C₆H₄ - (CH₂)_n -O- (CH₂)_n Si (OCH₃)₃ , o, m, p-XCH₂ -C₆H₄ -O- (CH₂)_n Si (OCH₃)₃ , o, m, p-CH₃ C (H) (X) -C₆H₄ - (CH₂)_n -O- (CH₂)_n Si (OCH₃)₃ , o, m, p-XCH₂ -C₆H₄ -O- (CH₂)_n Si (OCH₃)₃ , o, m, p-CH₃ C (H) (X) -C₆H₄ - (CH₂)_n -O- (CH₂)_n Si (OCH₃)₃ , o, m, p-XCH₂ -C₆H₄ -O- (CH₂)_n Si (OCH₃)₃ , o, m, p-CH₃ C (H) (X) -C₆H₄ - (CH₂)_n -O- (CH₂)_n Si (OCH₃)₃ , o, m, p-XCH₂ -C₆H₄ -O- (CH₂)_n Si (OCH₃)₃ , o, m, p-CH₃ C (H) (X) -C₆H₄ - (CH₂)_n -O- (CH₂)_n Si (OCH₃)₃ , o, m, p-XCH₂ -C₆H₄ -O- (CH₂)_n Si (OCH₃)₃ , o, m, p-CH₃ C (H) (X) -C₆H₄ - (CH₂)_n -O- (CH₂)_n Si (OCH₃)₃ , o, m, p-XCH₂ -C₆H₄ -O- (CH₂)_n Si (OCH₃)₃ , o, m, p-CH₃ C (H) (X) -C₆H₄ - (CH₂)_n -O- (CH₂)_n Si (OCH₃)₃ , o, m, p-XCH₂ -C₆H₄ -O- (CH₂)_n Si (OCH₃)₃ , o, m, p-CH₃ C (H) (X) -C₆H₄ - (CH₂)_n -O- (CH₂)_n Si (OCH₃)₃ , o, m, p-XCH₂ -C₆H₄ -O- (CH₂

【0089】(上記各式中、C₆H₄はフェニレン基であり、Xは塩素、臭素、またはヨウ素であり、Rは炭素数1~20のアルキル基、アリール基、またはアラルキル基であり、nは0~20の整数)等が挙げられる。

【0090】この重合において用いられるラジカル重合性オレフィン単量体としては特に制約はなく、既に述べた各種のものを用いることができる。また、ここに示されている重合系はリビング重合であるため、重合性単量体の逐次添加によりブロック共重合体を製造することも可能である。

【0091】重合は無溶剤または各種の溶剤中で行うことができる。これらは特に限定されないが、例示するならば、ベンゼン、トルエン等の炭化水素系溶媒；ジエチルエーテル、テトラヒドロフラン等のエーテル系溶媒；塩化メチレン、クロロホルム等のハロゲン化炭化水素系溶媒；アセトン、メチルエチルケトン、メチルイソブチルケトン等のケトン系溶媒；メタノール、エタノール、プロパノール、イソプロパノール、n-ブチルアルコ

ル、t e r t -ブチルアルコール等のアルコール系溶媒；アセトニトリル、プロピオニトリル、ベンゾニトリル等のニトリル系溶媒；酢酸エチル、酢酸ブチル等のエステル系溶媒；エチレンカーボネート、プロピレンカーボネート等のカーボネート系溶媒等が挙げられ、単独又は2種以上を混合して用いることができる。また、重合は室温~200°Cの範囲で行うことができ、好ましくは50~150°Cである。

40

【0092】このようなリビングラジカル重合の最中および終点において、官能基を有する重合性の低いオレフィン化合物を添加すると、末端にほぼ1つづつ付加し、その結果として、このオレフィン化合物の有する官能基が重合体の末端に導入される。重合の終点とは、単量体の好ましくは80%以上が反応した時点、さらに好ましくは90%以上、特に好ましくは95%以上、特別に好ましくは99%以上が反応した時点である。

50

【0093】官能基を有する重合性の低いオレフィン化合物としては一般式4に示される化合物から選ばれる。

[0094]

【化27】

【0095】(上の式中、R³ は、水酸基、アミノ基、エポキシ基、カルボン酸基、エステル基、エーテル基、アミド基、シリル基、一般式2:

[0096]

【化28】

【0097】(R¹ は水素原子あるいはメチル基を表す)で表される基、あるいは重合性のオレフィンを含まない炭素数1~20の有機基であり、R¹ は炭素数1~20の2価の炭化水素基あるいは一般式3:

[0098]

〔化29〕

【0099】(上の式中、R⁵ は酸素原子、窒素原子あるいは炭素数1～20の有機基であり、R⁶ は水素原子あるいはメチル基であり同じでも異なっていてもよい)の構造を持つ基であり、且つ、R² は水素原子あるいはメチル基である}

【0100】一般式4において、R¹ の具体例としては、-(CH₂)_n-(nは1~20の整数)、-CH(CH₃)-、-CH(CH₂CH₃)-、-C(CH₃)₂、-C(CH₃)(CH₂CH₃)-、-CH₂CH(CH₃)-、-(CH₂)_n-O-CH₂-(nは1~19の整数)、-CH(CH₃)-O-CH₂、-CH(CH₂CH₃)-O-CH₂、-C(CH₃)₂-O-CH₂、-C(CH₃)(CH₂CH₃)-O-CH₂、-C(CH₂CH₃)₂-O-CH₂-(m、nは1~19の整数、ただし2≤m+n≤20)、-(CH₂)_n-C(O)O-(CH₂)_n-(m、nは1~19の整数、ただし2≤m+n≤20)、-(CH₂)_n-OC(O)-CH₂-(1は0~18の整数、m、nは1~17の整数、ただし2≤1+m+n≤18)、-(CH₂)_n-O-、m-, p-C₆H₅、-(CH₂)_n-O-、m-, p-C₆H₄-(CH₂)_n-(mは0~13の整数、nは1~14の

整数、ただし $1 \leq m+n \leq 14$) 、 $-(CH_2)_n - o -$, $m-$, $p-C_6H_4-O-(CH_2)_n -$ (m は 0 ~ 1 3 の整数、 n は 1 ~ 1 4 の整数、ただし $1 \leq m+n \leq 14$) 、 $-(CH_2)_n - o -$, $m-$, $p-C_6H_4-O-CH(CH_3)_n -$ (n は 1 ~ 1 2 の整数) 、 $-(CH_2)_n - o -$, $m-$, $p-C_6H_4-O-CH(CH_3)_2 -$ (n は 1 ~ 1 1 の整数) 、 $-(CH_2)_n - o -$, $m-$, $p-C_6H_4-C(O)O-(CH_2)_n -$ (m , n は 1 ~ 1 2 の整数、ただし $2 \leq m+n \leq 13$) 、 $-(CH_2)_n - OC(O) - o -$, $m-$, $p-C_6H_4-C(O)O-(CH_2)_n -$ (m , n は 1 ~ 1 1 の整数、ただし $2 \leq m+n \leq 12$) 、 $-(CH_2)_n - o -$, $m-$, $p-C_6H_4-OC(O)-(CH_2)_n -$ (m , n は 1 ~ 1 2 の整数、ただし $2 \leq m+n \leq 13$) 、 $-(CH_2)_n - C(O)O - o -$, $m-$, $p-C_6H_4-(CH_2)_n -$ (m , n は 1 ~ 1 1 の整数、ただし $2 \leq m+n \leq 12$) 、 等が挙げられる。

【0101】一般式4において、 R^2 については水素原子あるいはメチル基であるが、水素原子が好ましい。一般式4において、 R^3 としては、以下のような基が例示される。

[0102]

〔化30〕

〔0103〕〔式中、R' は炭素数1～20の炭化水素基である。R⁹、R¹⁰は、いずれも炭素数1～20のアルキル基、炭素数6～20のアリール基、炭素数7～20のアラルキル基、または(R')₃SiO-(R')は炭素数1～20の1価の炭化水素基であって、3個のR'は同一であってもよく、異なっていてもよい〕で示されるトリオルガノシロキシ基を示し、R⁹またはR¹⁰が2個以上存在するとき、それらは同一であってもよく、異なっていてもよい。Yは水酸基または加水分解性基を示し、Yが2個以上存在するときそれらは同一であ

ってもよく、異なっていてもよい。aは0, 1, 2, または3を、また、bは0, 1, または2を示す。mは0～19の整数である。ただし、 $a + mb \geq 1$ であることを満足するものとする。】

【0104】R'としては、具体的には以下のような基が例示される。 $-(CH_2)_n-CH_3$ 、 $-CH(CH_3)_2-(CH_2)_n-CH_3$ 、 $-CH(CH_2CH_3)_2-(CH_2)_n-CH_3$ 、 $-C(CH_3)_2-(CH_2)_n-CH_3$ 、 $-C(CH_3)_2(CH_2CH_3)-(CH_2)_n-CH_3$ 、 $-C_6H_5-CH_3$ 、 $-(CH_2)_n-C_6H_5$ 、 $-(CH_2)_n-C_6H_5(CH_3)_2$ 、 $-(CH_2)_n-C_6H_5(CH_3)_2$ （nは0以上の整数で、各基の合計炭素数は20以下）

【0105】また、Yで示される加水分解性基としては、特に限定されず、従来公知のものを用いることができ、具体的には、水素、ハロゲン原子、アルコキシ基、アシルオキシ基、ケトキシメート基、アミノ基、アミド基、酸アミド基、アミノオキシ基、メルカブト基、アルケニルオキシ基等が挙げられ、加水分解性がマイルドで取り扱いやすいという点から、アルコキシ基が特に好ましい。該加水分解性基や水酸基は1個のケイ素原子に1～3個の範囲で結合することができ、 $a + mb$ 、すなわち、加水分解性基の総和は、1～5の範囲が好ましい。加水分解性基や水酸基がこのシリル基中に2個以上結合するときは、それらは同一であっても、異なっていてもよい。このシリル基を構成するケイ素原子は、1個でもよく、2個以上であってもよいが、シロキサン結合により連結されたケイ素原子の場合には20個程度まであってもよい。

【0106】その内、アルケニル基を導入するために用いられる、重合性の低いアルケニル基を2つ持つ化合物としては一般式5に示される化合物から選ばれる。

【0107】

【化31】

【0108】（上の式中、R¹は上述と同じ基であり、R²及びR⁴は水素原子あるいはメチル基であり同じでも異なっていてもよい）

【0109】一般式5の化合物に特に制約はないが、なかでも、R¹が炭素数1～20の2価の炭化水素基である場合、好ましいものとして、以下のものが例示される。

【0110】

H-[Si(R¹⁰)_{2-b}(Y)_bO]_a-Si(R²⁰)_{2-a}(Y)_a (11)

〔式中、R¹⁰、R²⁰は、いずれも炭素数1～20のアルキル基、炭素数6～20のアリール基、炭素数7～20

*【化32】

【0111】nは1～20の整数であるが、原料入手の容易さから、nは2、4、6のものが好ましい。すなわち、1, 5-ヘキサジエン、1, 7-オクタジエン、1, 9-デカジエンが好ましい。

【0112】この他に、官能基を有する重合性の低いオレフィン化合物としては、アルケニルアルコール又はアルケニルアミンが好ましい。重合性の低いオレフィン化合物が有するシリル基としては特に限定されないが、上記式においてm=0のものが好ましい。

【0113】アミノ基、水酸基あるいはカルボン酸基を持つ重合性の低いオレフィン化合物を重合末端に反応させる場合には、そのまま反応させても構わないが、それらの基が、重合末端あるいは触媒に影響を与える場合があるので、その場合には保護基をつけた化合物を用いても構わない。保護基としては、アセチル基、シリル基、アルコキシ基などが挙げられる。

【0114】これらの官能基を導入するためには用いられる重合性の低いオレフィン化合物を添加する量は、特に限定されない。これらの化合物はアルケニル基の反応性があまり高くないため、反応速度を高めるためには添加量を増やすことが好ましく、一方、コストを低減するためには添加量は成長末端に対して等量に近い方が好ましく、状況により適正化する必要がある。

【0115】また、末端にアルケニル基を導入する場合、重合性の低いアルケニル基を2つ以上持つ化合物を添加する量は、重合成長末端に対して過剰量であることが好ましい。等量あるいは末端より少量の場合、2つのアルケニル基の両方ともが反応し、重合末端をカッピングしてしまう可能性がある。2つのアルケニル基の反応性が等しい化合物の場合、カッピングの起こる確率は、過剰に添加する量に応じて統計的に決まってくる。よって、好ましくは1.5倍以上、さらに好ましくは3倍以上、特に好ましくは5倍以上である。

【0116】本発明において製造された重合体は、その導入された官能基をそのまま利用するか、あるいは更なる変換反応を行って別の官能基にして利用される。具体的には、アルケニル基は、架橋性シリル基を持つヒドロシラン化合物とのヒドロシリル化反応により、架橋性シリル基に変換される。末端にアルケニル基を有するビニル系重合体としては、既に説明した方法により得られるものをすべて好適に用いることができる。

【0117】架橋性シリル基を持つヒドロシラン化合物としては特に制限はないが、代表的なものを示すと、一般式11

* 一般式11

H-[Si(R¹⁰)_{2-b}(Y)_bO]_a-Si(R²⁰)_{2-a}(Y)_a (11)

〔式中、R¹⁰、R²⁰は、いずれも炭素数1～20のアルキル基、炭素数6～20のアリール基、炭素数7～20

のアラルキル基、または (R') 、 $\text{SiO}-(R')$ は炭素数1~20の1価の炭化水素基であって、3個の R' は同一であってもよく、異なっていてもよい)で示されるトリオルガノシロキシ基を示し、 R^{19} または R^{20} が2個以上存在するとき、それらは同一であってもよく、異なっていてもよい。Yは水酸基または加水分解性基を示し、Yが2個以上存在するときそれらは同一であってもよく、異なっていてもよい。aは0、1、2、または3を、また、bは0、1、または2を示す。mは0~19の整数である。ただし、 $a+m b \geq 1$ であることを満足するものとする]で表される化合物が例示される。

【0118】上記Yで示される加水分解性基としては、特に限定されず、従来公知のものを用いることができ、具体的には、水素、ハロゲン原子、アルコキシ基、アシリオキシ基、ケトキシメート基、アミノ基、アミド基、酸アミド基、アミノオキシ基、メルカブト基、アルケニルオキシ基等が挙げられ、加水分解性がマイルドで取り扱いやすいという点から、アルコキシ基が特に好ましい。該加水分解性基や水酸基は1個のケイ素原子に1~3個の範囲で結合することができ、 $a+m b$ 、すなわち、加水分解性基の総和は、1~5の範囲が好ましい。加水分解性基や水酸基が架橋性シリル基中に2個以上結合するときは、それらは同一であっても、異なっていてもよい。このヒドロシラン化合物を構成するケイ素原子は、1個でもよく、2個以上であってもよいが、シロキサン結合により連結されたケイ素原子の場合には20個程度まであってもよい。

【0119】一般式11における R^{19} 、 R^{20} の具体例としては、例えば、メチル基やエチル基などのアルキル基；シクロヘキシル基等のシクロアルキル基；フェニル基などのアリール基；ベンジル基などのアラルキル基； R' がメチル基やフェニル基等である (R') 、 $\text{SiO}-(R')$ で示されるトリオルガノシリル基等が挙げられる。

【0120】これらヒドロシラン化合物の中でも、特に一般式12

(式中、 R^{20} 、Y、aは前記と同じ。)で表されるヒドロシラン化合物が、入手容易な点から好ましい。

【0121】一般式11または12で示される、架橋性シリル基を有するヒドロシラン化合物の具体例としては、 HSiCl_3 、 $\text{HSi}(\text{CH}_3)_2\text{Cl}_2$ 、 $\text{HSi}(\text{CH}_3)_2\text{Cl}$ 、 $\text{HSi}(\text{OCH}_3)_2$ 、 $\text{HSi}(\text{CH}_3)_2\text{OCH}_3$ 、 $\text{HSi}(\text{OC}_2\text{H}_5)_2$ 、 $\text{HSi}(\text{CH}_3)_2(\text{OC}_2\text{H}_5)_2$ 、 $\text{HSi}(\text{CH}_3)_2\text{OC}_2\text{H}_5$ 、 $\text{HSi}(\text{OC}_2\text{H}_5)_2$ 、 $\text{HSi}(\text{C}_2\text{H}_5)_2(\text{OCH}_3)_2$ 、 $\text{HSi}(\text{C}_2\text{H}_5)_2\text{OCH}_3$ 、 $\text{HSi}(\text{C}_6\text{H}_5)_2(\text{OC}_2\text{H}_5)_2$ 、 $\text{HSi}(\text{CH}_3)_2(\text{OC}(\text{O})\text{CH}_3)_2$ 、 $\text{HSi}(\text{CH}_3)_2\text{O}-[\text{Si}(\text{CH}_3)_2\text{O}]_2-\text{Si}(\text{CH}_3)_2(\text{OC}$

$\text{H}_3)_2$ 、 $\text{HSi}(\text{CH}_3)_2[\text{O}-\text{N}=\text{C}(\text{CH}_3)_2]_2$ (ただし、上記化学式中、 C_6H_5 はフェニル基を示す)等が挙げられる。

【0122】このような架橋性シリル基を有するヒドロシラン化合物を、末端にアルケニル基を有するビニル系重合体に付加させる際には、ヒドロシリル化触媒が使用される。このようなヒドロシリル化触媒としては、有機過酸化物やアゾ化合物等のラジカル開始剤、および遷移金属触媒が挙げられる。

【0123】ラジカル開始剤としては特に制限はなく各種のものを用いることができる。例示するならば、ジ-t-ブチルペルオキシド、2, 5-ジメチル-2, 5-ジ(t-ブチルペルオキシ)ヘキサン、2, 5-ジメチル-2, 5-ジ(t-ブチルペルオキシ)-3-ヘキシン、ジクミルペルオキシド、t-ブチルクミルペルオキシド、 α 、 α' -ビス(t-ブチルペルオキシ)イソブロビルベンゼンのようなジアルキルペルオキシド；ベンゾイルペルオキシド、p-クロロベンゾイルペルオキシド、m-クロロベンゾイルペルオキシド、2, 4-ジクロロベンゾイルペルオキシド、ラウロイルペルオキシドのようなジアシルペルオキシド；過安息香酸-t-ブチルのような過酸エステル；過ジ炭酸ジソブロビル、過ジ炭酸ジ-2-エチルヘキシルのようなペルオキシジカーボネート；1, 1-ジ(t-ブチルペルオキシ)シクロヘキサン、1, 1-ジ(t-ブチルペルオキシ)-3, 3, 5-トリメチルシクロヘキサンのようなペルオキシケタール等が挙げられる。

【0124】また、遷移金属触媒としては、例えば、白金単体；アルミナ、シリカ、カーボンブラック等の担体に白金固体を分散させたもの；塩化白金酸；塩化白金酸とアルコール、アルデヒド、ケトン等との錯体；白金-オレフィン錯体、白金(0)-ジビニルテトラメチルジシロキサン錯体が挙げられる。白金化合物以外の触媒の例としては、 $\text{RhCl}(\text{PPh}_3)_3$ 、 RhCl_3 、 RuCl_3 、 IrCl_3 、 FeCl_3 、 AlCl_3 、 $\text{PdCl}_2 \cdot \text{H}_2\text{O}$ 、 NiCl_2 、 TiCl_4 等が挙げられる。これらの触媒は単独で用いてもよく、2種類以上を併用してもかまわない。

【0125】触媒量としては特に制限はないが、ビニル系重合体のアルケニル基1molに対し、 $10^{-1} \sim 10^{-8}$ molの範囲で用いるのが良く、好ましくは $10^{-3} \sim 10^{-6}$ molの範囲で用いるのがよい。 10^{-8} molより少ないと硬化が十分に進行しない。またヒドロシリル化触媒は高価であるので 10^{-1} mol以上用いないのが好ましい。

【0126】官能基を有する重合性の低いオレフィン化合物として、アリルアルコールあるいはメタリルアルコールを重合末端に反応させた場合、ハロゲン基などの活性基と水酸基が隣り合わせた炭素原子上にある末端が生成する。この末端は、環化させてエポキシ基に変換する

ことができる。この環化反応を行う方法は特に限定されないが、アルカリ性化合物を反応させるのが好ましい。アルカリ性化合物としては、特に限定されないが、KOH、NaOH、Ca(OH)₂や、アンモニア、各種アミン類などが挙げられる。

【0127】更に、重合体末端の水酸基は、アルカリ性化合物を用いた、アリルクロライドやアリルブロマイド等のアリルハロゲン化合物との縮合反応によりアリル基に変換される。また、エピクロロヒドリンを用いた同様の反応によりエポキシ基に変換される。

【0128】また、重合体末端の水酸基あるいはアミノ基は、水酸基あるいはアミノ基と反応する官能基と架橋性シリル基とを併せ持つ化合物との反応により、架橋性シリル基にも変換できる。水酸基あるいはアミノ基と反応する官能基としては、例えばハロゲン、カルボン酸ハライド、カルボン酸、イソシアネート基等が挙げられるが、化合物の入手容易性や、水酸基と反応させる際の反応条件がマイルドで、架橋性シリル基の分解が起こりにくい点で、イソシアネート基が好ましい。

【0129】このような、架橋性シリル基を有するイソシアネート系化合物としては特に制限はなく、公知のものを使用することができる。具体例を示すならば、(CH₃O)_nSi-(CH₂)_n-NCO、(CH₃O)_n(CH₃)Si-(CH₂)_n-NCO、(C₂H₅O)_nSi-(CH₂)_n-NCO、(C₂H₅O)_n(CH₃)Si-(CH₂)_n-NCO、(i-C₃H₇O)_nSi-(CH₂)_n-NCO、(i-C₃H₇O)_n(CH₃)Si-(CH₂)_n-NCO、(CH₃O)_nSi-(CH₂)_n-NH-(CH₂)_n-NCO、(CH₃O)_n(CH₃)Si-(CH₂)_n-NH-(CH₂)_n-NCO、(C₂H₅O)_nSi-(CH₂)_n-NH-(CH₂)_n-NCO、(C₂H₅O)_n(CH₃)Si-(CH₂)_n-NH-(CH₂)_n-NCO、R²¹SiO-[Si(R²¹)₂O]_a-[Si(R²²)(R²³)O]_b-SiR²¹、(13)

HR²¹SiO-[Si(R²¹)₂O]_a-[Si(H)(R²²)O]_b-SiR²¹H、(14)

(式中R²¹およびR²²は炭素数1~6のアルキル基、または、フェニル基、R²³は炭素数1~10のアルキル基または炭素数7~10のアラルキル基、aは0≤a≤100、bは2≤b≤100、Cは0≤C≤100の整数を示す)、一般式15で表される環状シロキサン

【0135】

【化33】

(CH₃)_nSiO-[Si(H)(CH₃)O]_a-[Si(C₂H₅)₂O]_b-Si(CH₃)_n、(16)

*₂)、-NCO、(i-C₃H₇O)_nSi-(CH₂)_n-NH-(CH₂)_n-NCO、(i-C₃H₇O)_n(CH₃)Si-(CH₂)_n-NH-(CH₂)_n-NCO、(上記式中、n、mは1~20の整数)等が挙げられる。

【0130】末端に水酸基を有するビニル系重合体と、架橋性シリル基を有するイソシアネート化合物の反応は、無溶媒、または各種の溶媒中で行うことができ、反応温度は、0℃~100℃、好ましくは、20℃~50℃である。この際、水酸基とイソシアネート基の反応を促進するために、後に例示するスズ系触媒、3級アミン系触媒を使用することができる。

【0131】硬化性組成物

これらの末端に官能基を持つ重合体は、様々な架橋反応を利用した硬化性組成物にすることができる。

【0132】本発明の末端にアルケニル基を有するビニル系重合体は、(A)末端にアルケニル基を有するビニル系重合体、(B)ヒドロシリル基を少なくとも2個有する化合物、を含有する硬化性組成物にすることができる。

【0133】(A)成分の末端にアルケニル基を有するビニル系重合体は、単独で用いても、また、2種類以上を混合して用いても良い。(A)成分の分子量としては特に制限はないが、500~100000の範囲にあるのが好ましく、3000~40000がさらに好ましい。500以下であると、ビニル系重合体の本来の特性が発現されにくく、100000以上であると、非常に高粘度あるいは溶解性が低くなり、取り扱いが困難になる。

【0134】(B)成分のヒドロシリル基を少なくとも2個有する化合物としては特に制限はなく、各種のものを用いることができる。すなわち、一般式13または14で表される鎖状ポリシロキサン

R²¹SiO-[Si(R²¹)₂O]_a-[Si(H)(R²²)O]_b-

[Si(R²²)(R²³)O]_c-SiR²¹、(13)

HR²¹SiO-[Si(R²¹)₂O]_a-[Si(H)(R²²)O]_b-

[Si(R²²)(R²³)O]_c-SiR²¹H、(14)

※【0136】(式中、R²¹およびR²²は炭素数1~6のアルキル基、または、フェニル基、R²³は炭素数1~10のアルキル基または炭素数7~10のアラルキル基、dは0≤d≤8、eは2≤e≤10、fは0≤f≤8の整数を示し、かつ3≤d+e+f≤10である)を用いることができる。

【0137】これらは単独で用いても2種以上を混合して用いてもかまわない。これらのシロキサンの中でもビニル系重合体との相溶性の観点から、フェニル基を有する、一般式16、17で示される鎖状シロキサンや、一般式18、19で示される環状シロキサンが好ましい。

※一般式18、19で示される環状シロキサンが好ましい。

33

(式中、 R^{24} は水素またはメチル基、 g は $2 \leq g \leq 10$ 、 h は $0 \leq h \leq 100$ の整数、 C_6H_5 はフェニル基を示す)

【0138】

【化34】

(18)

(19)

【0139】(式中、 R^{24} は水素、またはメチル基、 i は $2 \leq i \leq 10$ 、 j は $0 \leq j \leq 8$ 、かつ $3 \leq i + j \leq 10$ である整数、 C_6H_5 はフェニル基)

【0140】(B) 成分の少なくとも2個以上のヒドロシリル基を有する化合物としてはさらに、分子中に2個以上のアルケニル基を有する低分子化合物に対し、式13～19に示したヒドロシリル基含有化合物を、反応後*

【0143】(上記各式中、 n は2～4の整数、 m は5～10の整数)

【0144】重合体(A)と硬化剤(B)は任意の割合で混合することができるが、硬化性の面から、アルケニル基とヒドロシリル基のモル比が5～0.2の範囲にあることが好ましく、さらに、2.5～0.4であることが特に好ましい。モル比が5以上になると硬化が不十分でべとつきのある強度の小さい硬化物しか得られず、また、0.2より小さいと、硬化後も硬化物中に活性なヒ

【0141】式13～19に示した過剰量のヒドロシリル基含有化合物に対し、ヒドロシリル化触媒の存在下、上に挙げたアルケニル基含有化合物をゆっくり滴下することにより該化合物を得ることができる。このような化合物のうち、原料の入手容易性、過剰に用いたシロキサンの除去のしやすさ、さらには(A)成分の重合体への相溶性を考慮して、下記のものが好ましい。

【0142】

【化35】

ドロシリル基が大量に残るので、クラック、ボイドが発生し、均一で強度のある硬化物が得られない。

【0145】重合体(A)と硬化剤(B)との硬化反応は、2成分を混合して加熱することにより進行するが、反応をより迅速に進めるために、ヒドロシリル化触媒が添加される。このようなヒドロシリル化触媒としては、すでに述べた各種のものが用いられる。

【0146】本発明の末端に架橋性シリル基を持つビニル系重合体は、これを主成分とする硬化性組成物にする

ことができる。

【0147】末端に架橋性シリル基を有するビニル系重合体は水分と接触すると架橋反応により3次元化して硬化する。加水分解速度は温度、湿度、加水分解性基の種類により変化するので、使用条件に応じて適切な加水分解性基を選択しなければならない。

【0148】硬化反応を促進するために縮合触媒を添加してもよい。縮合触媒としてはテトラブチルチタネート、テトラプロピルチタネート等のチタン酸エステル；ジブチル錫ジラウレート、ジブチル錫マレート、ジブチル錫ジアセテート、オクチル酸錫、ナフテン酸錫等の有機錫化合物；オクチル酸鉛、ブチルアミン、オクチルアミン、ジブチルアミン、モノエタノールアミン、ジエタノールアミン、トリエタノールアミン、ジエチレントリアミン、トリエチレンテトラミン、オレイルアミン、オクチルアミン、シクロヘキシルアミン、ベンジルアミン、ジエチルアミノプロピルアミン、キシリレンジアミン、トリエチレンジアミン、グアニジン、ジフェニルグアニジン、2, 4, 6-トリス(ジメチルアミノメチル)フェノール、モルホリン、N-メチルモルホリン、1, 3-ジアザビシクロ(5, 4, 6)ウンデセン-7等のアミン系化合物あるいはそれらのカルボン酸塩；過剰のポリアミンと多塩基酸から得られる低分子量ポリアミド樹脂；過剰のポリアミンとエポキシ化合物の反応生成物；アミノ基を有するシランカップリング剤、例えば、 γ -アミノプロピルトリメトキシシラン、N-(β -アミノエチル)アミノプロピルメチルジメトキシシラン等の公知のシラノール触媒1種または2種以上を必要に応じて用いればよい。使用量は末端に架橋性シリル基を有するビニル系重合体に対し、0~10重量%で使用するのが好ましい。加水分解性基Yとしてアルコキシ基が使用される場合は、この重合体のみでは硬化速度が遅いので、縮合触媒を使用することが好ましい。

【0149】主成分である末端に架橋性シリル基を有するビニル系重合体に、必要に応じて縮合触媒を混合し硬化させれば、均一な硬化物を得ることができる。硬化条件としては特に制限はないが、一般に0~100°C、好ましくは10~50°Cで1時間~1週間程度である。硬化物の性状は用いる重合体の主鎖骨格や分子量に依存するが、ゴム状のものから樹脂状のものまで幅広く作成することができる。

【0150】本発明の末端に水酸基を有するビニル系重合体は、これを主成分とする硬化性組成物にすることができる。この硬化性組成物は以下の2成分：(A) 末端に水酸基あるいはアミノ基を有するビニル系重合体、(B) 水酸基あるいはアミノ基と反応しうる官能基を2個以上有する化合物、を必須成分とするものである。

【0151】(A)成分の末端に水酸基あるいはアミノ基を有するビニル系重合体は単独で用いても2種類以上を混合して用いてもよい。分子量としては特に制限はないが、500~100000の範囲にあるのが好ましい。500以下であるとビニル系重合体の本来の特性が発現されにくく、100000以上になると、非常に高粘度あるいは溶解性が低くなり、取り扱いが困難になる場合がある。

【0152】(B)成分の水酸基あるいはアミノ基と反応しうる官能基を2個以上有する化合物としては、特に限定はないが、例えば、1分子中に2個以上のイソシアネート基を有する多価イソシアネート化合物；メチロール化メラミンおよびそのアルキルエーテル化物または低縮合化物等のアミノプラスチック樹脂；多価カルボン酸およびそのハロゲン化物等が挙げられる。

【0153】1分子中に2個以上のイソシアネート基を有する多価イソシアネート化合物としては従来公知のものを使用することができ、例えば、2, 4-トリレンジイソシアネート、2, 6-トリレンジイソシアネート、4, 4'-ジフェニルメタンジイソシアネート、ヘキサメチレンジイソシアネート、キシリレンジイソシアネート、メタキシリレンジイソシアネート、1, 5-ナフタレンジイソシアネート、水素化ジフェニルメタンジイソシアネート、水素化トリレンジイソシアネート、水素化キシリレンジイソシアネート、イソホロンジイソシアネート、一方社油脂製B-45のごときトリイソシアネート、等のイソシアネート化合物；スマッシュルN(住友バイエルウレタン社製)のごときビュレットポリイソシアネート化合物；デスマッシュルIL、HL(バイエルA. G. 社製)、コロネットEH(日本ポリウレタン工業社製)のごときイソシアヌレート環を有するポリイソシアネート化合物；スマッシュルL(住友バイエルウレタン社製)のごときアダクトポリイソシアネート化合物；コロネットHL(日本ポリウレタン社製)のごときアダクトポリイソシアネート化合物等を挙げることができる。また、ブロックイソシアネートを使用しても構わない。これらは単独で使用しても、2種類以上を併用してもよい。

【0154】末端に水酸基あるいはアミノ基を有する重合体と2個以上のイソシアネート基を有する化合物との配合比については特に限定されないが、例えば、イソシアネート基と末端に水酸基を有するビニル系重合体の水酸基の比率(NCO/OH(モル比))が0.5~3.0であることが好ましく、0.8~2.0であることがより好ましい。

【0155】末端に水酸基を有するビニル系重合体と2個以上のイソシアネート基を有する化合物の硬化反応を促進させるために、必要に応じて、有機スズ化合物や3級アミン等の公知の触媒を添加してもよい。

【0156】有機スズ化合物の具体例としては、オクチル酸スズ、ジブチルスズジアセテート、ジブチルスズジラウレート、ジブチルスズメルカブチド、ジブチルスズチオカルボキシレート、ジブチルスズジマレート、ジ

オクチルスズチオカルボキシレート等が挙げられる。また、3級アミン系触媒としては、トリエチルアミン、N, N-ジメチルシクロヘキシルアミン、N, N, N', N' -テトラメチルエチレンジアミン、N, N, N', N' -テトラメチルプロパン-1, 3-ジアミン、N, N, N', N' -テトラメチルヘキサン-1, 6-ジアミン、N, N, N', N", N" -ペンタメチルジエチレントリアミン、N, N, N', N", N" -ペンタメチルジプロピレントリアミン、テトラメチルグアニジン、トリエチレンジアミン、N, N' -ジメチルビペラジン、N-メチルモルホリン、1, 2-ジメチルイミダゾール、ジメチルアミノエタノール、ジメチルアミノエキシエタノール、N, N, N' -トリメチルアミノエチルエタノールアミン、N-メチル-N'-(2-ヒドロキシエチル)ビペラジン、N-(2-ヒドロキシエチル)モルホリン、ビス(2-ジメチルアミノエチル)エーテル、エチレングリコールビス(3-ジメチル)アミノプロピルエーテル等が例示される。

【0157】本発明の硬化性組成物に使用されるアミノプラスチック樹脂としては特に限定はなく、メラミンとホルムアルデヒドとの付加反応物(メチロール化合物)、メラミンとホルムアルデヒドの低縮合物、それらのアルキルエーテル化物、ならびに尿素樹脂等が挙げられる。これらは単独で用いても2種以上を併用しても構わない。末端に水酸基を有する(メタ)アクリル系重合体と、アミノプラスチック樹脂の硬化反応を促進する目的で、バラトルエンスルホン酸、ベンゼンスルホン酸等の公知の触媒を添加してもよい。

【0158】本発明の硬化性組成物に用いられる、1分子中に2個以上のカルボキシル基を有する多価カルボン酸等としては特に限定されず、例えば、シュウ酸、マロン酸、コハク酸、グルタル酸、アジピン酸、フタル酸、無水フタル酸、テレフタル酸、トリメリット酸、ビロメリット酸、マレイン酸、無水マレイン酸、フマル酸、イタコン酸などの多価カルボン酸またはその無水物、および、これらのハロゲン化物等が挙げられ、これらは単独で用いても2種類以上を併用してもよい。

【0159】本発明の硬化性組成物の2成分(A)、(B)、および必要に応じて硬化触媒を混合し硬化させれば、深部硬化性に優れた均一な硬化物が得られる。硬化条件については特に制限はないが、一般に0°C~100°C、好ましくは20°C~80°Cである。

【0160】硬化物の性状は、用いる(A)成分の重合体および(B)成分の硬化剤の主鎖骨格や分子量に依存するが、ゴム状のものから樹脂状のものまで幅広く作成することができる。

【0161】本発明の末端にエポキシ基を持つビニル系重合体は、(A)末端にエポキシ基を持つビニル系重合体、(B)硬化剤、を含有する硬化性組成物にできる。

(B)硬化剤としては、各種のものが使用できる。例示

するならば、脂肪族アミン類、芳香族アミン類、酸無水物、ユリア、メラミン、フェノール樹脂である。

【0162】以上のような本発明の硬化性組成物より得られる硬化物の具体的な用途を挙げるならば、シーリング材、接着剤、粘着材、弹性接着剤、塗料、粉体塗料、発泡体、電気電子用ポッティング材、フィルム、成形材料、人工大理石等である。

【0163】

【実施例】以下に、この発明の具体的な実施例を示すが、この発明は、下記実施例に限定されるものではない。

【0164】実施例1

30mLのガラス反応容器に、アクリル酸ブチル(10.0mL、8.94g、69.75mmol)、臭化第一銅(250mg、1.74mmol)、ペンタメチルジエチレントリアミン(0.364mL、302mg、1.74mmol)、およびトルエン(1mL)を仕込み、冷却後減圧脱気したのち窒素ガスで置換した。よく攪拌した後、2-ブロモプロピオン酸メチル(0.195mL、291mg、1.74mmol)を添加し、70°Cで加熱攪拌した。30分後に1,9-デカジエン(1.61mL、1.21g、8.72mmol)を添加し、70°Cで加熱攪拌を9時間継続した。混合物を活性アルミナで処理した後、過剰の1,9-デカジエン(沸点169°C)を減圧下加熱して留去した。生成した重合体の数平均分子量はGPC測定(ポリスチレン換算)により5300、分子量分布は1.41であった。開始剤基準のオレフィン官能基導入率は0.95であった。

【0165】実施例2

30mLのガラス反応容器に、アクリル酸ブチル(10.0mL、8.94g、69.75mmol)、臭化第一銅(250mg、1.74mmol)、ペンタメチルジエチレントリアミン(0.364mL、302mg、1.74mmol)、およびトルエン(1mL)を仕込み、冷却後減圧脱気したのち窒素ガスで置換した。よく攪拌した後、2-ブロモプロピオン酸メチル(0.195mL、291mg、1.74mmol)を添加し、70°Cで加熱攪拌した。45分後に1,5-ヘキサジエン(1.01mL、0.70g、8.72mmol)を添加し、70°Cで加熱攪拌を8時間継続した。混合物を活性アルミナで処理した後、過剰の1,5-ヘキサジエンを減圧下加熱して留去した。生成した重合体の数平均分子量はGPC測定(ポリスチレン換算)により4800、分子量分布は1.33であった。開始剤基準のオレフィン官能基導入率は0.71であった。

【0166】実施例3

100mLのガラス反応容器に、アクリル酸ブチル(50.0mL、44.7g、0.349mol)、臭化第一銅(1.25g、8.72mmol)、ペンタメチル

ジエチレントリアミン (1. 82 mL, 1. 51 g, 8. 72 mmol)、およびアセトニトリル (5 mL) を仕込み、冷却後減圧脱気したのち窒素ガスで置換した。よく攪拌した後、ジエチル-2, 5-ジブロモアジベート (1. 57 g, 4. 36 mmol) を添加し、70 °Cで加熱攪拌した。60分後に1, 7-オクタジエン (6. 44 mL, 4. 80 g, 43. 6 mmol) を添加し、70 °Cで加熱攪拌を2時間継続した。混合物を活性アルミナで処理した後、揮発分を減圧下加熱して留去した。生成物を酢酸エチルに溶解させ、2%塩酸、ブラインで洗浄した。有機層をNa₂SO₄で乾燥し、揮発分を減圧下加熱して留去することにより、末端にアルケニル基を有する重合体を得た。得られた重合体の数平均分子量はGPC測定（ポリスチレン換算）により13100、分子量分布は1. 22であった。数平均分子量基準のオレフィン官能基導入率は2. 01であった。

【0167】実施例4

実施例3で得られた、末端にアルケニル基を有するポリ（アクリル酸-n-ブチル）（30. 5 g）、重合体と等重量の珪酸アルミ（協和化学製：キヨーワード700PEL）とをトルエンに混合し、100 °Cで攪拌した。4時間後、珪酸アルミを濾過し、濾液の揮発分を減圧下加熱して留去することによって重合体を精製した。20. 0 mLの耐圧ガラス反応容器に、上記重合体（23. 3 g）、ジメトキシメチルヒドロシラン（2. 55 mL, 20. 7 mmol）、オルトキ酸ジメチル（0. 38 mL, 3. 45 mmol）、および白金触媒を仕込んだ。ただし、白金触媒の使用量は、重合体のアルケニル基に対して、モル比で2×10⁻⁴当量とした。反応混合物を100 °Cで3時間加熱した。混合物の揮発分を減圧留去することにより、末端に架橋性シリル基を有するポリ（アクリル酸-n-ブチル）を得た。オリゴマー1分子当たりに導入されたシリル基は、¹H NMR分析により、1. 41個であった。

【0168】実施例5

実施例4で得られた、末端にシリル基を有するポリ（アクリル酸ブチル）、ジブチルスズジメトキシド、および水をよく混合した。スズ触媒、および水の使用量は、それぞれ重合体に対して1重量部とした。このようにして得られた組成物を型枠に流し込んで、減圧脱気し、50 °Cで20時間加熱硬化させ、ゴム弾性を有するシート状硬化物を得た。硬化物をトルエンに24時間浸漬し、前後の重量変化からそのゲル分率を測定すると、8.5%であった。シート状硬化物から2(1/3)号形ダンベル試験片を打ち抜き、島津製オートグラフを用いて引っ張り試験を行った（測定条件：23 °C、200 mm/mi

n）。破断強度は0. 34 MPa、破断伸びは8.6%であった。

【0169】実施例6

還流管付き500 mL三つ口フラスコで、触媒として臭化第一銅（1. 50 g, 10. 5 mmol）、配位子としてペンタメチルジエチレントリアミン（1. 65 mL）、開始剤としてジエチル-2, 5-ジブロモアジベート（9. 42 g, 26. 2 mol）、溶媒としてアセトニトリル（30 mL）を用いて、アクリル酸-n-ブチル（300 mL）を窒素雰囲気下70 °Cで重合し、アクリル酸-n-ブチルの重合率が9.3%の時点で、1, 7-オクタジエン（38. 6 mL, 0. 261 mol）を添加し、同温度で加熱した。反応混合物を酢酸エチルで希釈し、活性アルミナのカラムを通して触媒を除き、揮発分を減圧留去することにより、末端にアルケニル基を有する重合体を得た。重合体の数平均分子量はGPC測定（ポリスチレン換算）により13800、分子量分布は1. 28であった。オリゴマー1分子当たりに導入されたアルケニル基は、¹H NMR分析より、1. 84個であった。

【0170】実施例7～9 硬化物の作成

製造例6で得られた末端にアルケニル基を有する重合体を珪酸アルミ（協和化学製、キヨーワード700PEL）で処理し、重合体中の微量不純物を除去した。次に、精製されたポリ（アクリル酸エステル）と、多価ハイドロジェンシリコン化合物、および、0価白金の1, 1, 3, 3-テトラメチル-1, 3-ジビニルジシロキサン錯体（8. 3×10⁻³ mol/L キシレン溶液：アルケニル基に対し7. 0×10⁻³モル当量）をよく混合した。多価ハイドロジェンシリコン化合物として、下記に示す化合物S-1（SiH価7. 72 mmol/g）（実施例7）、S-2（SiH価9. 81 mmol/g）（実施例8）、もしくはα-メチルスチレンで一部変性したメチルハイドロジェンシリコンS-3（SiH価7. 69 mmol/g）（実施例9）を用いた。多価ハイドロジェンシリコン化合物の使用量は、重合体のアルケニル基とハイドロジェンシリコン化合物のSiH基がモル比で1/1. 2～1/1. 5となる量とした。このようにして得られた組成物の一部を130 °Cのホットプレート上にて硬化試験を行い、ゲル化時間を測定した。また、残りの組成物を減圧下に脱気し、型枠に流し込んで加熱硬化させ、100 °Cに加熱し、ゴム状の硬化物を得た。実施例7は15秒、実施例8は21秒、実施例9は26秒でそれぞれ硬化した。

【0171】

【化36】

【0172】実施例10 ペンテノール添加による水酸基導入

100mLのガラス反応容器に窒素雰囲気下、臭化第一銅(0.500g、3.49mmol)、アセトニトリル(5mL)、アクリル酸ブチル(50.0mL、44.7g、0.349mol)、ジエチル2,5-ジブロモアジペート(1.57g、4.36mmol)およびペンタメチルジエチレントリアミン(0.103mL、0.0855g、0.493mmol)を加えて70°Cで150分攪拌した。この時GC測定よりアクリル酸ブチルの消費率は98%であった。ただちに4-ペンテノール(2.70mL、2.25g、0.0261mol)を添加し、さらに70°Cで270分攪拌を続けた。混合物を活性アルミナで処理した後、揮発分を減圧下加熱して留去することで末端に水酸基を有する重合体を得た。得られた重合体の数平均分子量はGPC測定(ボリスチレン換算)により11300、分子量分布は1.22であった。数平均分子量基準の水酸基導入率は1.3であった。

【0173】実施例11 アリルアルコール添加によるエポキシ基導入

100mLのガラス反応容器に窒素雰囲気下、臭化第一銅(0.500g、3.49mmol)、アセトニトリル(5mL)、アクリル酸ブチル(50.0mL、44.7g、0.349mol)、ジエチル2,5-ジブロモアジペート(1.57g、4.36mmol)およびペンタメチルジエチレントリアミン(0.0910mL、0.0755g、0.436mmol)を添加して70°Cで180分攪拌した。この時GC測定よりアクリル酸ブチルの消費率は94%であった。ただちにアリルアルコール(1.78mL、1.52g、0.0262mol)を添加し、さらに70°Cで300分攪拌を続けた。混合物を活性アルミナで処理した後、揮発分を減圧

下加熱して留去した。得られた重合体の数平均分子量はGPC測定(ボリスチレン換算)により11300、分子量分布は1.2であった。これをビリジン中で還流した後、揮発分を減圧下加熱して留去して得られたオリゴマーは¹H-NMR分析よりエポキシ基の導入が確認された。

【0174】実施例12 オクテニルシラン添加によるシリル基導入

100mLのガラス反応容器に窒素雰囲気下、臭化第一銅(1.00g、6.98mmol)、アセトニトリル(5mL)、(50.0mL、44.7g、0.349mol)、ジエチル2,5-ジブロモアジペート(1.57g、4.36mmol)およびペンタメチルジエチレントリアミン(0.0910mL、0.0755g、0.436mmol)を添加して70°Cで180分攪拌した。この時GC測定よりアクリル酸ブチルの消費率は87%であった。ただちに8-ジメトキシメチルシリル-1-オクテン(9.43g、0.0436mol)、ペンタメチルジエチレントリアミン(0.273mL、0.226g、1.31mmol)を添加し、さらに70°Cで390分攪拌を続けた。混合物を活性アルミナで処理した後、揮発分を減圧下加熱して留去することで末端にシリル基を有する重合体を得た。得られた重合体の数平均分子量はGPC測定(ボリスチレン換算)により14700、分子量分布は1.35であった。¹H-NMR測定より、末端シリル基は定量的かつ安定に導入されていることが分かった。

【0175】実施例13 縮合型硬化

実施例12で得られた、末端にシリル基を有するポリ(アクリル酸ブチル)、ジブチルスズジメトキシドおよび水をよく混合した。スズ触媒、水の使用量はそれぞれ重合体に対して1重量部とした。このようにして得られた組成物を減圧脱気し、50°Cで加熱硬化させ、ゴム弾

性を有する硬化物を得た。硬化物をトルエンに浸漬し、前後の重量比からゲル分率を算出すると、99%であった。

【0176】

【発明の効果】本発明の末端に官能基を持つビニル系重合体は、末端基が主鎖に炭素-炭素結合で繋がっているため安定であり、末端の構造は官能基がよく制御されて*

*導入されているため、硬化性組成物などへの利用に有用である。また、本発明の製造方法によれば、様々なビニル系単量体の重合系に、本発明で示された重合性の低いオレフィンと様々な官能基を併せ持つ化合物を添加することにより容易に上述した末端に様々な官能基を持つ重合体を製造することができる。

フロントページの続き

(72)発明者 藤田 雅幸

兵庫県神戸市兵庫区吉田町1丁目2番80号
鐘淵化学工業株式会社総合研究所神戸研究所内

(72)発明者 藤田 直

兵庫県神戸市兵庫区吉田町1丁目2番80号
鐘淵化学工業株式会社総合研究所神戸研究所内

F ターム(参考) 4J002 BB201 BC031 BD041 BD101
BD121 BF031 BG011 BG031
BG071 BG131 CD171 CP042
ER006 EX036 FD142 FD146
FD200 GH01 GJ01 GJ02
GL02
4J034 DA01 DA03 DM02 DM12 DP12
DP13 DP15 DP17 DP18 DP19
DP20 HA04 HC05 HC06 KB02
KC17 QA05 RA07 RA08 RA10
4J036 AK08 BA01 DA01 FB09 FB10
FB16 GA28
4J100 AA02P AA03P AB02P AB04P
AB08P AC03P AC24P AC26P
AG04P AG06P AJ02P AJ09P
AK32P AL03P AL04P AL05P
AL08P AL09P AL10P AL11P
AM02P AM15P AM43P AM47P
AM48P AS02P BA03H BA03P
BA04H BA04P BA08P BA20H
BA29H BA29P BA30H BA31H
BA34H BA75H BA77P BB11P
BB17P BC04P BC43P BC54H
DA01 DA04 HA48 HA62