New directions in word representations

Носов Степан НИУ ВШЭ

Векторные представления слов

- Вход коллекция текстов
- Выход представление каждого слова из словаря вектором небольшой фиксированной размерности
- Цель похожие семантически и синтаксически слова должны находить близко друг к другу

Векторные представления слов: зачем?

- Тэгирование частей речи
- Машинный перевод
- Ранжирование и кластеризация документов
- Анализ тональности текста

word2vec

- Инструмент для векторного представления слов
- Представлен в 2013 году
- Два основных алгоритма: CBOW(предсказывает слово по контексту) и Skipgram(предсказывает контекст по слову)

CBOW

$$P(w_o|w_c) = rac{e^{s(w_o,w_c)}}{\sum_{w_i \in V} e^{s(w_i,w_c)}}$$

- S функция, считающая расстояние между векторами.
- Оптимизируем отрицательный логарифм правдоподобия
- Проблема знаменатель посчитать сложно
- Negative Sampling: оптимизируем формулу $NegS(w_o) = \sum_{i=1,x_i \sim D}^{i=k} -log(1+e^{s(x_i,w_o)}) + \sum_{j=1,x_j \sim D'}^{j=l} -log(1+e^{-s(x_j,w_o)})$
- Здесь D распределение встречаемости слов с исходным в одном контексте, D' распределение «невстречаемости» слов из словаря с исходным, на практике берется как равномерное по всем словам

ELMo; Deep Contextualised Word Representations

- Проблема традиционного подхода он не учитывает, что слово может иметь разные значения в зависимости от контекста, так как получает одно представление для каждого слова
- Вместо того, чтобы хранить словарь векторов для каждого слова, ELMo создает векторы «на лету», в зависимости от текста
- Использует двухслойная bi-directional LSTM.

ELMo

$$\sum_{k=1}^{N} (\log p(t_k \mid t_1, \dots, t_{k-1}; \Theta_x, \overrightarrow{\Theta}_{LSTM}, \Theta_s) + \log p(t_k \mid t_{k+1}, \dots, t_N; \Theta_x, \overleftarrow{\Theta}_{LSTM}, \Theta_s)).$$

- Для каждого токена строится множество представлений
- Для дальнейшего использования в других моделях они объединяются в один вектор

$$R_k = \{\mathbf{x}_k^{LM}, \overrightarrow{\mathbf{h}}_{k,j}^{LM}, \overleftarrow{\mathbf{h}}_{k,j}^{LM} \mid j = 1, \dots, L\}$$
$$= \{\mathbf{h}_{k,j}^{LM} \mid j = 0, \dots, L\},$$

$$\mathbf{ELMo}_{k}^{task} = E(R_{k}; \Theta^{task}) = \gamma^{task} \sum_{j=0}^{L} s_{j}^{task} \mathbf{h}_{k,j}^{LM}.$$

ELMo

TASK	PREVIOUS SOTA		OUR BASELINE	ELMO + E BASELINE	INCREASE (ABSOLUTE/ RELATIVE)
SQuAD	Liu et al. (2017)	84.4	81.1	85.8	4.7 / 24.9%
SNLI	Chen et al. (2017)	88.6	88.0	88.7 ± 0.17	0.7 / 5.8%
SRL	He et al. (2017)	81.7	81.4	84.6	3.2 / 17.2%
Coref	Lee et al. (2017)	67.2	67.2	70.4	3.2 / 9.8%
NER	Peters et al. (2017)	91.93 ± 0.19	90.15	92.22 ± 0.10	2.06 / 21%
SST-5	McCann et al. (2017)	53.7	51.4	54.7 ± 0.5	3.3 / 6.8%

Improving Language Understanding by Generative Pre-Training

- Подход состоит из двух стадий обучение известной модели на больших корпусах текстов, а затем тонкая адаптация к задаче с помощью помеченных данных.
- Ha 1 этапе(Unsupervised pre-training) максимизируем правдоподобие какой либо известной моделью.

$$L_1(\mathcal{U}) = \sum_{i} \log P(u_i|u_{i-k}, \dots, u_{i-1}; \Theta)$$

Improving Language Understanding by Generative Pre-Training

- Второй этап(Supervised fine-tuning) заключается в добавлении линейного выходного слоя для предсказания целевой переменной. $L_2(\mathcal{C}) = \sum_{(x,y)} \log P(y|x^1,\ldots,x^m)$.
- Оптимизация комбинированной функции правдоподобия улучшает обобщающую способность и ускоряет сходимость

$$L_3(\mathcal{C}) = L_2(\mathcal{C}) + \lambda * L_1(\mathcal{C})$$

• Для некоторых задач(textual entailment, similarity...) перед второй частью данные предобрабатывают

Method	MNLI-m	MNLI-mm	SNLI	SciTail	QNLI	RTE
ESIM + ELMo [44] (5x)	-	-	89.3	-	-	-
CAFE [58] (5x)	80.2	79.0	89.3	-	-	-
Stochastic Answer Network [35] (3x)	<u>80.6</u>	<u>80.1</u>	-	-	-	-
CAFE [58]	78.7	77.9	88.5	83.3		
GenSen [64]	71.4	71.3	-	-	82.3	59.2
Multi-task BiLSTM + Attn [64]	72.2	72.1	-	-	82.1	61.7
Finetuned Transformer LM (ours)	82.1	81.4	89.9	88.3	88.1	56.0

BERT

- Bidirectional Encoder Representations from Transoformers
- Существует два подхода для pre-trained language representations: feature-based(ELMo), fine-tuning(Generative Pre-trained Transformer)
- Первый подход использовать уникальные архитектуры для разных языковых задач, а полученное представление считать еще одним признаком.
- Второй подход использовать общую архитектуру, в которой настраивать параметры для соответствующих задач
- В отличие от описанных выше подходов левый и правый контекст анализируются совместно в BERT

Masked LM

- Помечаем [MASK] некоторые случайно выбранные(в исследовании брали 15%) токены, затем предсказываем только их
- Проблема модель может плохо строить представления непомеченных слов
- Решение в 80% случаев заменяем на [MASK], в 10% на рандомное слово, в 10% не меняем

Next Sentence Prediction

- Некоторые важные задачи требуют понимания взаимоотношения между двумя предложениями
- Тренируем бинарную модель, которая отвечает является ли одно предложение следующим для другого

Pre-training

- Для генерации каждой входной последовательности данных берем два отрезка текста и называем их «предложениями». В половине случаев они действительно последовательны, в половине второе выбирается случайно.
- Максимизируем сумму правдоподобий masked LM и Next Sentence Prediction

Fine-tuning

 Для задач классификации используем тонкую настройку параметров - преобразовываем размеченные данные, забирая представления, полученные на последнем скрытом слое и подавая их на вход аналогичной модели с дополнительным классифицирующем слоем в конце. Обучаем, максимизируя log-probability классов.

System	MNLI-(m/mm)	QQP	QNLI	SST-2	CoLA	STS-B	MRPC	RTE	Average
	392k	363k	108k	67k	8.5k	5.7k	3.5k	2.5k	_
Pre-OpenAI SOTA	80.6/80.1	66.1	82.3	93.2	35.0	81.0	86.0	61.7	74.0
BiLSTM+ELMo+Attn	76.4/76.1	64.8	79.9	90.4	36.0	73.3	84.9	56.8	71.0
OpenAI GPT	82.1/81.4	70.3	88.1	91.3	45.4	80.0	82.3	56.0	75.2
BERT _{BASE}	84.6/83.4	71.2	90.1	93.5	52.1	85.8	88.9	66.4	79.6
$BERT_{LARGE}$	86.7/85.9	72.1	91.1	94.9	60.5	86.5	89.3	70.1	81.9