Chapter 2 (Part 1): Bayesian Decision Theory (Sections 2.1-2.2)

Introduction

 Bayesian Decision Theory—Continuous Features

Introduction

- The sea bass/salmon example
- State of nature, prior

- State of nature is a random variable
- The catch of salmon and sea bass is equiprobable

$$-P(\omega_1) = P(\omega_2)$$
 (uniform priors)

$$-P(\omega_1) + P(\omega_2) = 1$$
 (exclusivity and exhaustivity)

- Decision rule with only the prior information
 - Decide ω_1 if $P(\omega_1) > P(\omega_2)$
 - otherwise decide ω_2

Pattern Classification Chapter2(part 1) Use More Information: the class – conditional information

• $p(x \mid \omega_1)$ and $p(x \mid \omega_2)$ describe the difference in lightness between populations of sea and salmon

FIGURE 2.1. Hypothetical class-conditional probability density functions show the probability density of measuring a particular feature value x given the pattern is in category ω_i . If x represents the lightness of a fish, the two curves might describe the difference in lightness of populations of two types of fish. Density functions are normalized, and thus the area under each curve is 1.0. From: Richard O. Duda, Peter E. Hart, and David G. Stork, *Pattern Classification*. Copyright © 2001 by John Wiley & Sons, Inc.

• Posterior, likelihood, evidence

$$-P(\omega_j \mid x) = p(x \mid \omega_j) \cdot P(\omega_j) / p(x)$$

Where in case of two categories

$$p(x) = \sum_{j=1}^{j=2} p(x \mid \omega_j) P(\omega_j)$$

- Posterior = (Likelihood. Prior) / Evidence
- Evidence can be viewed as a scale factor

FIGURE 2.2. Posterior probabilities for the particular priors $P(\omega_1) = 2/3$ and $P(\omega_2) = 1/3$ for the class-conditional probability densities shown in Fig. 2.1. Thus in this case, given that a pattern is measured to have feature value x = 14, the probability it is in category ω_2 is roughly 0.08, and that it is in ω_1 is 0.92. At every x, the posteriors sum to 1.0. From: Richard O. Duda, Peter E. Hart, and David G. Stork, *Pattern Classification*. Copyright © 2001 by John Wiley & Sons, Inc.

Posterior is a modification of prior

 The modification is caused by the likelihood

Decision region

Decision given the posterior probabilities
 X is an observation for which:

if
$$P(\omega_1 \mid x) > P(\omega_2 \mid x)$$
 True state of nature = ω_1 if $P(\omega_1 \mid x) < P(\omega_2 \mid x)$ True state of nature = ω_2

Multi-class?

Therefore,

whenever we observe a particular x, the probability of error is:

$$P(error \mid x) = P(\omega_1 \mid x)$$
 if we decide ω_2
 $P(error \mid x) = P(\omega_2 \mid x)$ if we decide ω_1

$$P(error \mid x) = min(P(\omega_1 \mid x), P(\omega_2 \mid x))$$

FIGURE 2.2. Posterior probabilities for the particular priors $P(\omega_1) = 2/3$ and $P(\omega_2) = 1/3$ for the class-conditional probability densities shown in Fig. 2.1. Thus in this case, given that a pattern is measured to have feature value x = 14, the probability it is in category ω_2 is roughly 0.08, and that it is in ω_1 is 0.92. At every x, the posteriors sum to 1.0. From: Richard O. Duda, Peter E. Hart, and David G. Stork, *Pattern Classification*. Copyright © 2001 by John Wiley & Sons, Inc.

Multi-class

if $P(\omega_j \mid x) > P(\omega_i \mid x)$ Then the true state of nature = ω_j

- Minimizing the probability of error
- Decide ω_1 if $P(\omega_1 \mid x) > P(\omega_2 \mid x)$; otherwise decide ω_2

Therefore:

$$P(error \mid x) = min [P(\omega_1 \mid x), P(\omega_2 \mid x)]$$
(Bayes decision)
$$Decide \ \omega_1 \ if \ p(x \mid \omega_1) \ P(\omega_1) > p(x \mid \omega_2) \ P(\omega_2)$$

Special Case:

$$p(x \mid \omega_1) = p(x \mid \omega_2)$$

$$P(\omega_1) = P(\omega_2)$$

Interesting video

 http://weike.enetedu.com/play.asp?vodid= 148661

 http://weike.enetedu.com/play.asp?vodid= 141126

One example

By Conditional Probability Rule,

$$p(X/A) = \frac{p(X \& A)}{p(A)}$$

$$= \frac{.248}{.330} = 0.7515$$

$$p(X/\sim A) = \frac{p(X \& \sim A)}{p(\sim A)}$$

$$= \frac{.168}{.670} = 0.2507$$

By Bayes Rule,
$$P(A/X) = \frac{P(X/A)P(A)}{P(X)}$$

$$= \frac{P(X/A)P(A)}{P(X \& A) + P(X \& \sim A)}$$

$$= \frac{P(X/A)P(A)}{P(X/A)P(A) + P(X/\sim A)P(\sim A)}$$

$$= \frac{0.75 \times 0.33}{0.75 \times 0.33 + 0.25 \times 0.67}$$

$$= \frac{.2475}{.2475 + .1675} = \frac{.2475}{.415} = 0.596_{2}$$

Exercise

Problem:

• A patient takes a lab test and the result is positive. The test returns a correct positive result in 98% of the cases in which the cancer disease is actually present, and a correct negative result in 97% of the cases in which the disease is not present. Furthermore, 0.8% of the entire population have this cancer disease. Does the patient suffers from the cancer?

Solution:

Given: P(+|cancer)=0.98P(-|no cancer)=0.97

我不想话了~

P(cancer)=0.008

P(-cancer)=0.992

– Compute:

P(no cancer | +), P(cancer | +),

- P(cancer | +)=P(+|cancer)* P(cancer)/p(+)

- P(cancer |+)=0.98X0.008/p (+)

- P(cancer |+)= 0.00784 /p(+)

P(no cancer|+)=P(+|no cancer)*P(no cancer)/P(+)

$$P(\text{no cancer}|+)=(1-0.97)*(1-0.008)/ P(+)$$

- P(no cancer|+)=0.02976 / P(+)
- Since P(no cancer | +) > P(cancer | +), we decide that the patient does not have cancer
- (Bayesian decision rule)

Exercise

Another Problem:

• A person takes a lab test of nuclear radiation and the result is positive. The test returns a correct positive result in 99% of the cases in which the nuclear radiation is actually present, and a correct negative result in 95% of the cases in which the nuclear radiation is not present. Furthermore, 30% of the entire population are radioactively contaminated. Is this person contaminated?

Bayesian Decision Theory – Continuous Features

- Generalization of the preceding ideas
 - Use of more than one feature
 - Use more than two states of nature
 - Allowing actions and not only decide on the state of nature
 - Introduce a loss of function which is more general than the probability of error

Shortcoming of simple Bayesian decision

It have to let

$$X \rightarrow \omega_i$$

- Allowing actions other than classification primarily allows the possibility of rejection
- Refusing to make a decision in close or bad cases!

The loss function states how costly each action taken is

Examples of classification with rejection

Consequence of no rejection: if a person (the user) is not one of the registered users, he will be also erroneously recognized as a registered user!

Consequently this user will be erroneously allowed to pass the system!!

Personal identification & rejection

Face recognition flowchart

Let $\{\omega_1, \omega_2, \ldots, \omega_c\}$ be the set of c states of nature (or "categories")

Let $\{\alpha_1, \alpha_2, ..., \alpha_a\}$ be the set of possible actions

Let $\lambda(\alpha_i \mid \omega_i)$ be the loss incurred for taking

action α_i when the state of nature is ω_i

A simple case

 \bullet $\omega_1, \, \omega_2, \ldots, \, \omega_c$: C classes \bullet $\alpha_1, \alpha_2, \ldots, \alpha_{c:}$

 α_{c+1} : do not assign the sample into any class--- reject

C actions

Overall risk

$$R = Sum \ of \ all \ R(\alpha_i \mid x) \ for \ i = 1,...,a$$

Conditional risk

Minimizing R \longleftrightarrow Minimizing $R(\alpha_i \mid x)$ for i = 1,..., a

$$R(\alpha_i \mid x) = \sum_{j=1}^{j=c} \lambda(\alpha_i \mid \omega_j) P(\omega_j \mid x)$$

for
$$i = 1,...,a$$

Pattern Classification Chapter2(part 1)

Fail to declare and error declaration

Select the action α_i for which $R(\alpha_i \mid x)$ is minimum

R is minimum and R in this case is called the Bayes risk = best reasonable result that can be achieved!

Two-category classification

 $lpha_{1}$: deciding ω_{1}

 α_2 : deciding ω_2

 $\lambda_{ij} = \lambda(\alpha_i \mid \omega_j)$

 λ_{ij} : loss incurred for deciding ω_i when the true state of nature is ω_i

Conditional risk:

$$R(\alpha_1 \mid x) = \lambda_{11}P(\omega_1 \mid x) + \lambda_{12}P(\omega_2 \mid x)$$

$$R(\alpha_2 \mid x) = \lambda_{21} P(\omega_1 \mid x) + \lambda_{22} P(\omega_2 \mid x)$$

Our rule is the following:

if
$$R(\alpha_1 \mid x) < R(\alpha_2 \mid x)$$

action α_1 : "decide ω_1 " is taken

This results in the equivalent rule : decide ω_1 if:

$$(\lambda_{21} - \lambda_{11}) P(\omega_1 | x) > (\lambda_{12} - \lambda_{22}) P(\omega_2 | x)$$

• and decide ω_2 otherwise

$$(\lambda_{21} - \lambda_{11}) P(\omega_1 | \mathbf{x}) > (\lambda_{12} - \lambda_{22}) P(\omega_2 | \mathbf{x})$$

is equal to

$$(\lambda_{21} - \lambda_{11}) P(x|\omega_1) P(\omega_1) > (\lambda_{12} - \lambda_{22}) P(x|\omega_2) P(\omega_2)$$

Likelihood ratio:

The preceding rule is equivalent to the following

if
$$\frac{p(x \mid \omega_1)}{p(x \mid \omega_2)} > \frac{\lambda_{12} - \lambda_{22}}{\lambda_{21} - \lambda_{11}} \cdot \frac{P(\omega_2)}{P(\omega_1)}$$

Then take action α_1 (decide ω_1). Otherwise take action α_2 (decide ω_2)

Optimal decision property

"If the likelihood ratio exceeds a threshold value independent of the input pattern x, we can take optimal actions"

Pattern Classification Chapter2(part 1)

Bayesian Decision Theory

Loss Function

- λ(α_i| ω_j): cost incurred for taking action α_i (i.e., classification or rejection) when the state of nature is ω_j
- Example
 - x: financial characteristics of firms applying for a bank loan
 - ω₀ company did not go bankrupt
 ω₁ company failed
 - $P(\omega_i|\mathbf{x})$ predicted probability of bankruptcy

· Confusion matrix:

	Algorithm: ω ₀	Algorithm: ω ₁
Truth: ω_0	TN	FP
Truth: ω ₁	FN	TP

FN are 10 times as costly as FP

$$\Rightarrow \lambda(\alpha_0 | \omega_1) = \lambda_{01} = 10 \times \lambda(\alpha_1 | \omega_0) = 10 \times \lambda_{10}$$

• Simplest λ_{ii}

•
$$\lambda_{ij}=1$$
, i<>j
• $\lambda_{ij}=0$

 Then minimum risk Bayesian decision will be equivalent to Minimum error Bayesian decision

Exercise

Select the optimal decision where:

$$= \{\omega_1, \omega_2\}$$

$$p(+ \mid \omega_1) \qquad \qquad 0.9$$

$$p(+ \mid \omega_2) \qquad \qquad 0.001$$

$$P(\omega_1) = 0.01$$

$$P(\omega_2) = 0.99$$

$$\lambda = \begin{bmatrix} 1 & 4 \\ 2 & 3 \end{bmatrix}$$

$$\lambda = \begin{bmatrix} 1 & 4 \\ 2 & 3 \end{bmatrix}$$

means $\lambda_{11}=1$, $\lambda_{12}=4$, $\lambda_{21}=2$, $\lambda_{22}=3$

Example: earthquake forecast; typhoon forecast

Example

• 例:已知正常细胞先验概率为 $P(\omega_1)=0.9$,异常为 $P(\omega_2)=0.1$,从类条件概率密度分布曲线上查的 $P(x/\omega_i)=0.2$, $P(x/\omega_i)=0.4$, $\lambda_{11}=0$, $\lambda_{12}=6$, $\lambda_{21}=1$, $\lambda_{22}=0$

由上例中计算出的后验概率: $P(\omega_1/x) = 0.818, P(\omega_2/x) = 0.182$

条件风险: $R(\alpha_1/x) = \sum_{j=1}^{2} \lambda_{1j} P(\omega_j/x) = \lambda_{12} P(\omega_2/x) = 1.092$

 $R(\alpha_2/x) = \lambda_{21}P(\omega_1/x) = 0.818$

因为 $R(\alpha_1/x) > R(\alpha_2/x)$: $x \in$ 异常细胞,因决策 ω_1 类风险大。

因礼。=6较大,决策损失起决定作用。

