Кривизны

1 Непрерывные поверхности и кривизны

Определение 1. Гладкая регулярная n-мерная поверхность в \mathbb{R}^N — гладкое отображение $r\colon U \to \mathbb{R}^N$, где U — некоторая открытая область в \mathbb{R}^n с координатами (u_1,\ldots,u_n) , причем во всех точках векторы $e_1=\frac{\partial r}{\partial u_1},\ldots,e_n=\frac{\partial r}{\partial u_n}$ образуют канонический базис.

Обозначения: $M = r(U) = r(u_1, \dots, u_n) = (r_1(u_1, \dots, u_n), \dots, r_N(u_1, \dots, u_n)) \subset \mathbb{R}^N$. Система $\{e_1, \dots, e_n\}$ линейно независима \Leftrightarrow ранг матрицы Якоби

$$J(r(u)) = egin{pmatrix} rac{\partial r_1}{\partial u_1} & \cdots & rac{\partial r_N}{\partial u_1} \ \cdots & \cdots & \cdots \ rac{\partial r_1}{\partial u_n} & \cdots & rac{\partial r_N}{\partial u_n} \end{pmatrix}$$

максимален (то есть равен n).

Определение 2. Пусть G — матрица Грама канонического базиса $\{e_1, \ldots, e_n\}$, то есть $g_{ij} = (e_i, e_j)$. Квадратичная форма, матрица которой в этом базисе равна G, называется первой квадратичной формой поверхности M в точке P.

Определение 3. Гиперповерхность — поверхность размерности N в \mathbb{R}^{N+1} .

Далее рассматриваем только гиперповерхности. В этом случае в каждой точке P однозначно определяется вектор нормали n(P).

Определение 4. Вектор площади: $N_V = \int_M n dA$, где dA — элемент площади, а n — вектор нормали.

Предложение 1. Верно равенство $N_V = \int_{\partial M} r \wedge dr$.

Определение 5. Пусть $b_{ij}(P) = \left(\frac{\partial^2 r}{\partial u_i \partial u_j}(P), n(P)\right) u\ B(P) = (b_{ij}(P))$. Тогда квадратичная форма, матрица которой в базисе $\{e_1,\ldots,e_N\}$ равна B(P), называется второй квадратичной формой поверхности в точке P.

Теорема 1. Существует ортонормированный базис $\{e_1', \dots, e_N'\} \in T_P M$, в котором матрица I квадр. формы равна E, а матрица II формы — $diag(\lambda_1, \dots, \lambda_N)$, причем λ_j — корни уравнения $\det(B - \lambda G) = 0$.

Определение 6. Главные направления — $e'_1, ..., e'_N$ Главные кривизны — $\lambda_1, ..., \lambda_N$.

Теорема 2. (Об экстремальных значениях нормальных кривизн) Пусть

$$k_1 = \min_{v \in T_P M} \tilde{k}(v), \quad k_2 = \max_{v \in T_P M} \tilde{k}(v),$$

 $\partial e \|v\| = 1$. Toe $\partial a k_1, k_2 \in \{\lambda_1, \dots, \lambda_N\}$.

Определение 7. (Кривизны)

- Средняя кривизна $H = \lambda_1 + \ldots + \lambda_N$.
- Гауссова кривизна $K = \lambda_1 \cdot \ldots \cdot \lambda_N$.

Итак, пусть $M = r(U) = r(u_1, \dots, u_n) = (r_1(u_1, \dots, u_n), \dots, r_N(u_1, \dots, u_n)) \subset \mathbb{R}^N$. Можно определить Лапласиан на поверхности:

$$\Delta r = (\Delta r_1, \dots, \Delta r_N).$$

Теорема 3. (Связь Лапласиана и средней кривизны)

Имеет место равенство

$$\Delta r = H \cdot n$$
.

Идея доказательства:

2 Дискретные поверхности и кривизны

Предложение 2. (Формулы площади)

- (1) Площадь сферического треугольника на единичной сфере с внутренними углами $\alpha_1, \alpha_2, \alpha_3$ равна $\sum \alpha_i \pi$.
- (2) Площадь сферического n-угольника на единичной сфере c внутренними углами $\alpha_1, \alpha_2, \ldots, \alpha_n$ равна $\sum \alpha_i + (2-n)\pi$.

Пусть $M = \{V, E, F\}$ — связная симплициальная поверхность без края. Для данной вершины v рассмотрим единичные нормали n_1, \ldots, n_k к содержащим её граням.

Определение 8. Гауссова кривизна K(v) в точке v — это площадь сферического многоугольника, натянутого на концы векторов n_1, \ldots, n_k .

Определение 9. Угловой дефект — это величина $d(v) = 2\pi - \sum_{f \in F_v} \angle_f(v)$, где F_v — это множество всех граней, содержащих вершину v, а $\angle_f(v)$ — плоский угол грани f при вершине v.

Предложение 3. Имеет место равенство d(v) = K(v) для всех вершин v.

Теорема 4. (Дискретная теорема Гаусса-Бонне)

- (1) Для произвольного выпуклого многогранника верно равенство $\sum_{v \in V} d(v) = 4\pi$.
- (2) Пусть $M=\{V,E,F\}$ связная ориентированная симплициальная поверхность без края. Докажите, что $\sum_{v\in V}d(v)=2\pi\chi(M)$, где $\chi(M)=V-E+F=2-2g$ Эйлерова характеристика симплициальной поверхности M.

Важный вопрос — **как выбирать нормаль к дискретной поверхности?** Будем выбирать так, чтобы выполнялась дискретная теорема

Теорема 5. (Связь Лапласиана и средней кривизны)

$$(\Delta r)(v) = H(v) \cdot N(v),$$

где $r: V \to \mathbb{R}^3$ — функция, дающая радиус-вектор координат вершин сетки.

Таким образом, N(v) — это нормированный вектор Лапласиана, а H(v) — его норма.