

CS 6334 Virtual Reality
Professor Yu Xiang
The University of Texas at Dallas

Some slides of this lecture are courtesy Gordon Wetzstein

Review of VR Systems

10/4/2021

Tracking in VR

- Tracking the user's sense organs
 - E.g., Head and eye
 - Render stimulus accordingly
- Tracking user's other body parts
 - E.g., human body and hands
 - Locomotion and manipulation
- Tracking the rest of the environment
 - Augmented reality
 - Obstacle avoidance in the real world

Head Tracking

- Track orientation of the head
- Orientation is the rotation of the device w.r.t. world or inertial frame
- Euler angle representation: yaw, pitch, roll

Head Tracking

- Determine the viewpoint of the user
- In visual rendering

rotation translation

$$M_{view} = \overset{\downarrow}{R} \cdot T(-eye)$$

$$R = R_z \left(-\theta_z \right) \cdot R_x \left(-\theta_x \right) \cdot R_y \left(-\theta_y \right)$$

Inertial Measurement Unit (IMU)

ullet Gyroscope measures angular velocity ω in degrees/second

• Accelerometer measures linear acceleration $\,a\,$ in m/s²

• Magnetometer measures magnetic field strength \widehat{m} in uT (micro Tesla) or Gauss, 1 Gauss = 100 uT

All measurements taken in sensory/body coordinates

Gyroscopes

Measure angular velocity

https://robotacademy.net.au/lesson/how-gyroscopes-work/

Gyroscopic Effects: Vector Aspects of Angular Momentum

Angular velocity Angular momentum

https://courses.lumenlearning.com/physics/chapter/10-7-gyroscopic-effects-vector-aspects-of-angular-momentum/ https://www.youtube.com/watch?v=8H98BgRzpOM

Gyroscopes

3DOF: 3-axis gyro that measures 3 orthogonal axes

Gyroscopes

- From gyro measurement to orientation
 - Taylor expansion

$$\theta(t + \Delta t) \approx \theta(t) + \frac{\partial}{\partial t}\theta(t)\Delta t + \varepsilon, \varepsilon \sim O(\Delta t^2)$$

Angle at current time step

Angle at previous time step

Gyro measurement (angular velocity)

Approximation error

Time step

• Linear motion, no noise, no bias

• Linear motion, noise, no bias

12

• Linear motion, no noise, bias

Nonlinear motion, no noise, no bias

Due to approximation error in Taylor expansion for nonlinear motion

Nonlinear motion, noise, bias

15

- Works well for linear motion, no noise, no bias (unrealistic)
- Integration drift
 - Errors in measured angular velocity result in errors in orientation
 - Errors accumulate in time
- Gyro integration is accurate in short time, but not reliable in long term due to drift

• Bias/noise variance can be estimated, other sensor measurements can be used to correct drift, e.g., vision, accelerometer

16

Accelerometers

Measure linear acceleration

Think about the force of the table pushing the device upwards

Accelerometers

Pros

- Points up on average with magnitude of 1g
- Accurate in long term because there is no drift

• Cons

- Noisy measurements
- Unreliable in short run due to motion and noise

18

- Complementary to gyro measurements
- Fusing gyro and accelerometer data: 6DOF sensor fusion

• Track angle heta in 2D space

- Sensors
 - 1 gyro
 - 2 accelerometers

Goal: understand sensor fusion

Gyro integration

$$\boldsymbol{\theta}_{gyro}^{(t)} = \boldsymbol{\theta}_{gyro}^{(t-1)} + \tilde{\boldsymbol{\omega}} \Delta t$$

$$\boldsymbol{\theta}_{gyro}^{(0)} = 0$$

Problem: Drift

- Angle from accelerometers
 - Measurements in body $\, ilde{a} = (ilde{a}_x, ilde{a}_y) \,$
 - Corresponds to gravity in world

$$\theta_{acc} = \tan^{-1} \left(\frac{\tilde{a}_x}{\tilde{a}_y} \right)$$

Problem: noises

- Sensor fusion
 - Combine gyro and accelerometer measurements

$$\theta^{(t)} = \alpha \left(\theta^{(t-1)} + \tilde{\omega} \Delta t \right) + (1 - \alpha) \operatorname{atan2} \left(\tilde{a}_x, \tilde{a}_y \right)$$

complementary filter

Magnetometers

Compass

10/4/2021 Yu Xiang 23

Magnetometers

Measure earth's magnetic field in Gauss or uT (micro Tesla)

- 3 orthogonal axes
 - Vector pointing along the magnetic field
- Actual direction depends on latitude and longitude

Distortions due to metal or electronics objects in room or in HMD

Magnetometers

- Pros
 - Complementary to accelerometers
- Cons
 - Affected by metal, distortions of magnetic field
 - Need to know location even when calibrated (e.g., GPS)
- Together with gyros and accelerometers, 9 DOF sensor fusion

Oculus Rift

STMicroelectronics 32F103C8 ARM Cortex-M3 microcontroller

• 3-axis gyro, 3-axis accelerometer, 3-axis magnetometer all on one chip

S. LaValle, A. Yershova, M. Katsev, M. Antonov. Head Tracking for the Oculus Rift. ICRA'14

Head Orientation Tracking in Oculus Rift

- Gyro integration
 - Problem: drift
- Accelerometers for tilt correction
 - All drift errors except for rotation about the vertical axis
- Magnetometers for yaw correction
 - Rotation about the vertical axis

Fig. 7. Effect of correction methods on the overall drift.

S. LaValle, A. Yershova, M. Katsev, M. Antonov. Head Tracking for the Oculus Rift. ICRA'14

Head Position Tracking in Oculus Rift

$$p = f(q) = q * (0, \ell_n, 0) * q^{-1}$$

Use quaternion to rotate a vector

S. LaValle, A. Yershova, M. Katsev, M. Antonov. Head Tracking for the Oculus Rift. ICRA'14

Further Reading

• Sections 9.1, 9.2 in Virtual Reality, Steven LaValle

- Stanford EE 267 course note on 3DOF orientation tracking and IMUs
 - https://stanford.edu/class/ee267/notes/ee267 notes imu.pdf
- Head Tracking for the Oculus Rift
 - http://msl.cs.illinois.edu/~lavalle/papers/LavYerKatAnt14.pdf