вариант	ф. номер	група	поток	курс	от	предишна	година?
A							
Име:							

Устен изпит по Изчислимост и сложност, 01.09.2016

- Зад. 1. Дайте определение за примитивно рекурсивна, частично рекурсивна и рекурсивна функция. Как са свързани тези три понятия? Докажете, че те са различни.
- Зад. 2. Дайте определение за операциите минимизация и ограничена минимизация. Докажете, че ограничената минимизация запазва примитивната рекурсивност, а минимизацията не.
- **Зад. 3.** а) Нека \mathfrak{F}_n е множеството на всички частични функции на n аргумента в естествените числа. Дайте определение за ефективен оператор $\Gamma:\mathfrak{F}_2\to\mathfrak{F}_1.$
- б) Докажете, че операторът $\Gamma(f)(x)\simeq \mu y[f(x,y)\simeq 0]$ е ефективен.
- Зад. 4. a) Дайте определение за разрешимост и полуразрешимост на множество от естествени числа.
- б) Докажете, че операциите обединение и сечение запазват разрешимостта и полуразрешимостта. Дали същото може да се твърди за допълнението? Обосновете се.
- в) Докажете, че за всяко непразно полуразрешимо множество A от естествени числа съществува рекурсивна функция h, такава че $A=\{h(0).h(1),\ldots\}$. Докажете още, че ако h е растяща рекурсивна функция, то A е разрешимо.

Успех! :)

Вδ	ариант	ф.	номер	група	поток	курс	от	предишна	година?
	\mathbf{A}								
	Име:						•		

Устен изпит по Изчислимост и сложност, 01.09.2016

- Зад. 1. Дайте определение за примитивно рекурсивна, частично рекурсивна и рекурсивна функция. Как са свързани тези три понятия? Докажете, че те са различни.
- Зад. 2. Дайте определение за операциите минимизация и ограничена минимизация. Докажете, че ограничената минимизация запазва примитивната рекурсивност, а минимизацията не.
- **Зад. 3.** а) Нека \mathfrak{F}_n е множеството на всички частични функции на n аргумента в естествените числа. Дайте определение за ефективен оператор $\Gamma:\mathfrak{F}_2\to\mathfrak{F}_1.$
- б) Докажете, че операторът $\Gamma(f)(x)\simeq \mu y[f(x,y)\simeq 0]$ е ефективен.
- Зад. 4. а) Дайте определение за разрешимост и полуразрешимост на множество от естествени числа.
- б) Докажете, че операциите обединение и сечение запазват разрешимостта и полуразрешимостта. Дали същото може да се твърди за допълнението? Обосновете се.
- в) Докажете, че за всяко непразно полуразрешимо множество A от естествени числа съществува рекурсивна функция h, такава че $A=\{h(0).h(1),\ldots\}$. Докажете още, че ако h е растяща рекурсивна функция, то A е разрешимо.

вариант	ф.	номер	група	поток	курс	от	предишна	година?
В								
Име:						•		

Устен изпит по Изчислимост и сложност, 01.09.2016

- **Зад. 1.** Дайте определение за примитивно рекурсивна, частично рекурсивна и рекурсивна функция. Как са свързани тези три понятия? Докажете, че те са различни.
- Зад. 2. Дайте определение за операциите минимизация и ограничена минимизация. Докажете, че ограничената минимизация запазва примитивната рекурсивност, а минимизация та не.
- **Зад. 3.** а) Нека \mathfrak{F}_n е множеството на всички частични функции на n аргумента в естествените числа. Дайте определение за ефективен оператор $\Gamma:\mathfrak{F}_2\to\mathfrak{F}_1.$
- б) Докажете, че операторът $\Gamma(f)(x)\simeq \mu y[f(x,y)\simeq 0]$ е ефективен.
- Зад. 4. а) Дайте определение за разрешимост и полуразрешимост на множество от естествени числа.
- б) Докажете, че операциите обединение и сечение запазват разрешимостта и полуразрешимостта. Дали същото може да се твърди за допълнението? Обосновете се.
- в) Докажете, че за всяко непразно полуразрешимо множество A от естествени числа съществува рекурсивна функция h, такава че $A=\{h(0).h(1),\ldots\}$. Докажете още, че ако h е растяща рекурсивна функция, то A е разрешимо.

Успех! :)

вариант	ф.	номер	група	поток	курс	от	предишна	година?
В								
Име:						•		

Устен изпит по Изчислимост и сложност, 01.09.2016

- Зад. 1. Дайте определение за примитивно рекурсивна, частично рекурсивна и рекурсивна функция. Как са свързани тези три понятия? Докажете, че те са различни.
- Зад. 2. Дайте определение за операциите минимизация и ограничена минимизация. Докажете, че ограничената минимизация запазва примитивната рекурсивност, а минимизацията не.
- **Зад. 3.** а) Нека \mathfrak{F}_n е множеството на всички частични функции на n аргумента в естествените числа. Дайте определение за ефективен оператор $\Gamma:\mathfrak{F}_2\to\mathfrak{F}_1.$
- б) Докажете, че операторът $\Gamma(f)(x)\simeq \mu y[f(x,y)\simeq 0]$ е ефективен.
- Зад. 4. а) Дайте определение за разрешимост и полуразрешимост на множество от естествени числа.
- б) Докажете, че операциите обединение и сечение запазват разрешимостта и полуразрешимостта. Дали същото може да се твърди за допълнението? Обосновете се.
- в) Докажете, че за всяко непразно полуразрешимо множество A от естествени числа съществува рекурсивна функция h, такава че $A=\{h(0).h(1),\ldots\}$. Докажете още, че ако h е растяща рекурсивна функция, то A е разрешимо.

Успех! :)