PROJEKTOWANIE EFEKTYWNYCH ALGORYTMÓW ZADANIE PROJEKTOWE NR.3

IMPLEMENTACJA I ANALIZA EFEKTYWNOŚCI ALGORYTMU GENETYCZNEGO

Autor.		

Alicja Myśliwiec 248867

Termin zajęć:

Poniedziałek 15.15 – 16.55

Prowadzący:

Dr inż. Jarosław Mierzwa

SPIS TREŚCI

1 WSTEP TEORETYCZNY	4
2 OPIS IMPLEMENTACJI ALGORYTMU	4
2.1 SELEKCJA	4
2.2 Krzyżowanie	4
2.2.1 OX – ORDERED CROSSOVER	4
2.2.2 PMX – PARTIALLY MAPPED CROSSOVER	5
2.3 MUTACJA	6
2.3.1 SCRAMBLE	6
2.3.2 Inversion	6
3 PLAN PROJEKTU	7
4 ANALIZA WYNIKÓW	8
4.1 PLIK FTV47.ATSP	8
4.1.1 ANALIZA LICZEBNOŚCI POPULACJI	8
4.1.2 ANALIZA WSPÓŁCZYNNIKA MUTACJI	10
4.1.3 ANALIZA WSPÓŁCZYNNIKA KRZYŻOWANIA	12
4.2 PLIK FTV170.ATSP	14
4.2.1 ANALIZA LICZEBNOŚCI POPULACJI	14
4.2.2 ANALIZA WSPÓŁCZYNNIKA MUTACJI	16
4.2.3 ANALIZA WSPÓŁCZYNNIKA KRZYŻOWANIA	18
4.3 PLIK RBG403.ATSP	20
4.3.1 ANALIZA LICZEBNOŚCI POPULACJI	20
4.3.2 ANALIZA WSPÓŁCZYNNIKA MUTACJI	22
4.3.3 ANALIZA WSPÓŁCZYNNIKA KRZYŻOWANIA	24
4.4 PORÓWNANIE Z TABU SEARCH	26
5 WNIOSKI	27
6 RIRI IOCRAFIA	28

SPIS TABEL:

Tabela 1: Analiza liczebności populacji – plik ftv47.atsp	8
Tabela 2: Analiza współczynnika mutacji – plik ftv47.atsp	10
Tabela 3: Analiza współczynnika krzyżowania – plik ftv47.atsp	12
Tabela 4: Analiza liczebności populacji – plik ftv170.atsp	
Tabela 5: Analiza współczynnika mutacji – plik ftv170.atsp	16
Tabela 6: Analiza współczynnika krzyżowania – plik ftv170.atsp	
Tabela 7: Analiza liczebności populacji – plik rbg403.atsp	
Tabela 8: Analiza współczynnika mutacji – plik rbg403.atsp	
Tabela 9: Analiza współczynnika krzyżowania – plik rbg403.atsp	
Tabela 10: Porównanie z Tabu Search.	
SPIS WYKRESÓW:	
Wykres 1: Analiza liczebności populacji – plik ftv47.atsp	
Wykres 1: Analiza liczebności populacji – plik ftv47.atsp	11
Wykres 1: Analiza liczebności populacji – plik ftv47.atsp	
Wykres 1: Analiza liczebności populacji – plik ftv47.atsp	11 13
Wykres 1: Analiza liczebności populacji – plik ftv47.atsp	11 13 15
Wykres 1: Analiza liczebności populacji – plik ftv47.atsp Wykres 2: Analiza współczynnika mutacji – plik ftv47.atsp Wykres 3: Analiza współczynnika krzyżowania – plik ftv47.atsp Wykres 4: Analiza liczebności populacji – plik ftv170.atsp Wykres 5: Analiza współczynnika mutacji – plik ftv170.atsp Wykres 6: Analiza współczynnika krzyżowania – plik ftv170.atsp	
Wykres 1: Analiza liczebności populacji – plik ftv47.atsp	
Wykres 1: Analiza liczebności populacji – plik ftv47.atsp Wykres 2: Analiza współczynnika mutacji – plik ftv47.atsp Wykres 3: Analiza współczynnika krzyżowania – plik ftv47.atsp Wykres 4: Analiza liczebności populacji – plik ftv170.atsp Wykres 5: Analiza współczynnika mutacji – plik ftv170.atsp Wykres 6: Analiza współczynnika krzyżowania – plik ftv170.atsp	

1 Wstęp teoretyczny

Celem trzeciego zadania projektowego była implementacja i analiza efektywności algorytmu genetycznego. Jest to algorytm heurystyczny, zatem nie mamy gwarancji uzyskania optymalnego i dokładnego rozwiązania. Zasada działania algorytmu opiera się na biologicznym procesie ewolucji, w którym osobniki pewnej populacji krzyżując się ze sobą tworzą potomstwo przekazując mu pewne swoje cechy. W ten sposób powstają nowe osobniki, często lepsze od poprzednich. W przypadku problemu komiwojażera osobnikiem jest ścieżka. Odwzorowanie procesu ewolucji polega na następujących czynnościach:

- 1. **Wygenerowanie populacji początkowej** należy określić liczebność populacji i losowo wygenerować zbiór osobników (ścieżek)
- 2. **Ocena osobników** na tym etapie oceniamy stopień dopasowania osobników (z ang. fitness). Dla problemu komiwojażera oceną osobnika jest długość ścieżki (im krótsza, tym lepsza)
- 3. **Selekcja** wybieramy osobniki najlepiej przystosowane, które znajdą się w następnej populacji. Wyróżniamy różnego rodzaju selekcje m.in. ruletkowa, turniejowa, wyspowa
- 4. **Krzyżowanie** proces polegający na łączeniu ze sobą osobników w celu wytworzenia potomków. Sposoby krzyżowania są różne od wyboru takiego sposobu niekiedy zależy efektywność algorytmu
- 5. **Mutowanie** jest to losowa modyfikacja potomka w celu wspomagania eksploracji rozwiązań
- 6. **Sprawdzenie warunku stopu** jeśli czas wyznaczony na wykonanie algorytmu dobiegł końca, ewolucja się kończy i zwracamy najlepszego osobnika. Warunkiem stopu może być również nie znalezienie przez dłuższy czas lepszego rozwiązania lub ilość iteracji.

2 Opis implementacji algorytmu

2.1 Selekcja

W projekcie została wykorzystana metoda selekcji turniejowej. Do turnieju wybieramy kilka osobników – co najmniej dwóch i wyłaniamy spośród nich zwycięzcę. Zwycięzcą jest osobnik najlepiej przystosowany, czyli o najkrótszej długości ścieżki. Proces selekcji kończy się, gdy ze zwycięskich osobników utworzymy nową populację.

2.2 Krzyżowanie

2.2.1 OX – Ordered crossover

Metoda krzyżowania OX polega na utworzeniu potomków składających się z odpowiadających sobie losowej długości fragmentów rodziców, a następnie uzupełnianiu ich brakującymi elementami w takiej samej kolejności, w jakiej występują one u drugiego rodzica.

• Wybór osobników do krzyżowania

• Wylosowanie fragmentu wspólnego

• Utworzenie potomków z basowych fragmentów

• Uzupełnienie potomków o brakujące elementy w kolejności odpowiadającej drugiemu rodzicowi

$$POTOMEK1 = (128456793)$$

$$POTOMEK2 = (356287491)$$

2.2.2 PMX – Partially Mapped Crossover

Metoda krzyżowania PMX polega na utworzeniu potomków składających się z odpowiadających sobie losowej długości fragmentów rodziców, a następnie uzupełnianiu ich brakującymi elementami w następujący sposób:

• Wybór osobników do krzyżowania

• Wylosowanie fragmentu wspólnego i utworzenie tablicy odwzorowań

$$RODZIC1 = (123456789)$$

$$RODZIC2 = (3 1 6 2 8 7 4 5 9)$$

Tablica odwzorowań dla pierwszego potomka: [4=>2, 5=>8, 6=>7, 7=>4]

Tablica odwzorowań dla drugiego potomka: [2=>4, 8=>5, 7=>6, 4=>7]

Utworzenie potomków z basowych fragmentów

- Uzupełnienie potomków o brakujące elementy, które nie powodują konfliktów z drugiego rodzica.
 W przypadku wystąpienia konfliktu korzystamy z tablicy odwzorowań.
 - o 5 przechodzi na 8: POTOMEK1 = (_ _ 4 5 6 7 <mark>8</mark>_)
 - o 9 nie powoduje konfliktu: POTOMEK1 = $(_ _ 456789)$
 - \circ 3 nie powoduje konfliktu: POTOMEK1 = (3 _ 4 5 6 7 8 9)
 - o 1 nie powoduje konfliktu: POTOMEK1 = $(3 \ 1 \ 4 \ 5 \ 6 \ 7 \ 8 \ 9)$
 - o 6 przechodzi na 7, 7 przechodzi na 4, 4 przechodzi na 2: (3 1 2 4 5 6 7 8 9)
 - 8 przechodzi na 5: POTOMEK2 = (_ _ 2 8 7 4 5 _)
 - \circ 9 nie powoduje konfliktu: POTOMEK2 = $(_ 2 87459)$
 - o 1 nie powoduje konfliktu: POTOMEK2 = $(\frac{1}{2} 287459)$
 - o 2 przechodzi na 4, 4 przechodzi na 7, 7 przechodzi na 6: POTOMEK2 = (1 6 _ 2 8 7 4 5 9)
 - o 3 nie powoduje konfliktu: POTOMEK2 = $(1 6 \frac{3}{2} 2 8 7 4 5 9)$

2.3 Mutacja

2.3.1 Scramble

Ten rodzaj mutacji losowo wybiera z chromosomu 2 wierzchołki i zamienia je miejscami. Możemy wybierać więcej wierzchołków i je mieszać.

$$(1\ 2\ 3\ 4\ 5\ 6\ 7\ 8\ 9) => (1\ 2\ 3\ 8\ 5\ 6\ 7\ 4\ 9)$$

2.3.2 Inversion

Mutacja poprzez inwersję wybiera losowo dwie pozycje w chromosomie i odwraca kolejność wierzchołków pomiędzy nimi.

$$(123456789) \Rightarrow (123876549)$$

3 Plan projektu

Projekt został napisany w języku C++. Zadanie polegało na obliczeniu błędów względnych w funkcji czasu ich wykonania dla trzech instancji problemu komiwojażera. Dla każdej instancji problemu, kryterium stopu zostało ustawione na 6 minut. Badane wielkości populacji to: 200, 1000 i 5000. Początkowo współczynnik krzyżowania został ustawiony na 0.8, a współczynnik mutacji na 0.01. Dla każdego pliku została wyłoniona najlepsza wielkość populacji i dla tej wielkości został zbadany wpływ współczynnika krzyżowania oraz mutacji. Wybrane współczynniki krzyżowania: 0.5, 0.7, 0.9. Wybrane współczynniki mutacji: 0.01, 0.05, 0.10. Najważniejsze klasy w projekcie:

- **Graf** ta klasa reprezentuje miasta i odległości między nimi. Ma funkcję pozwalającą wczytać graf z pliku oraz wyświetlenie grafu.
- **Menu** dzięki tej klasie widzimy menu startowe projektu. Mamy możliwość wczytania danych z pliku, wyświetlenie grafu, ustawienia parametrów i wywołania algorytmu.
- **Genetyczny** klasa odpowiadająca za algorytm genetyczny. Posiada metody krzyżowania, mutacji oraz sposób selekcji.

4 Analiza wyników

4.1 Plik ftv47.atsp

4.1.1 Analiza liczebności populacji

Tabela 1: Analiza liczebności populacji – plik ftv47.atsp

		•	wanie: OX a: Scramble				
Liczebność populacji	200	wittacja	1000			5000	
Czas[s]	Rozwiązanie	Błąd[%]	Rozwiązanie	Błąd[%]	Rozwiązanie	Błąd[%]	
60	2066	16,33	1987	11,88	2369	33,39	
120	2066	16,33	1987	11,88	1903	7,15	
180	2066	16,33	1987	11,88	1902	7,09	
240	2066	16,33	1987	11,88	1902	7,09	
300	2066	16,33	1987	11,88	1902	7,09	
360	2066	16,33	1987	11,88	1902	7,09	
			wanie: PMX			,	
		•	a: Scramble				
Liczebność populacji	200		1000		5000		
Czas[s]	Rozwiązanie	Błąd[%]	Rozwiązanie	Błąd[%]	Rozwiązanie	Błąd[%]	
60	2628	47,97	2586	45,61	2549	43,52	
120	2628	47,97	2506	41,10	2504	40,99	
180	2628	47,97	2506	41,10	2504	40,99	
240	2628	47,97	2506	41,10	2504	40,99	
300	2628	47,97	2506	41,10	2504	40,99	
360	2628	47,97	2506	41,10	2504	40,99	
		Krzyżo	wanie: OX	<u> </u>			
		Mutacja	a: Inversion				
Liczebność populacji	200		1000		5000		
Czas[s]	Rozwiązanie	Błąd[%]	Rozwiązanie	Błąd[%]	Rozwiązanie	Błąd[%]	
60	2031	14,36	2057	15,82	2180	22,75	
120	2031	14,36	1998	12,50	1885	6,14	
180	2031	14,36	1998	12,50	1885	6,14	
240	2031	14,36	1998	12,50	1885	6,14	
300	2031	14,36	1998	12,50	1885	6,14	
360	2031	14,36	1998	12,50	1885	6,14	
		Krzyżov	vanie: PMX				
		Mutacja	a: Inversion				
Liczebność populacji	200		1000		5000		
Czas[s]	Rozwiązanie	Błąd[%]	Rozwiązanie	Błąd[%]	Rozwiązanie	Błąd[%]	
60	3616	103,60	2806	58,00	2419	36,20	
120	3616	103,60	2806	58,00	2340	31,76	
180	3616	103,60	2806	58,00	2340	31,76	
240	3616	103,60	2806	58,00	2340	31,76	
300	3616	103,60	2806	58,00	2340	31,76	
360	3616	103,60	2806	58,00	2340	31,76	

Na podstawie wyników do dalszej analizy została wybrana populacja o liczebności 5000.

Wykres 1: Analiza liczebności populacji – plik ftv47.atsp

4.1.2 Analiza współczynnika mutacji

Tabela 2: Analiza współczynnika mutacji – plik ftv47.atsp

			wanie: OX a: Scramble			
Współczynnik mutacji	0.01	<u> </u>		0.10		
Czas[s]	Rozwiązanie	Błąd[%]	Rozwiązanie	Błąd[%]	Rozwiązanie	Błąd[%]
60	2104	18,47	2058	15,88	1971	10,98
120	1939	9,18	1821	2,53	1777	0,06
180	1939	9,18	1821	2,53	1777	0,06
240	1939	9,18	1821	2,53	1777	0,06
300	1939	9,18	1821	2,53	1777	0,06
360	1939	9,18	1821	2,53	1777	0,06
			vanie: PMX			_
		Mutacja	a: Scramble			
Współczynnik mutacji	0.01		0.05		0.10	
Czas[s]	Rozwiązanie	Błąd[%]	Rozwiązanie	Błąd[%]	Rozwiązanie	Błąd[%]
60	2348	32,21	2418	36,15	2547	43,41
120	2348	32,21	2392	34,68	2547	43,41
180	2348	32,21	2392	34,68	2547	43,41
240	2348	32,21	2392	34,68	2547	43,41
300	2348	32,21	2392	34,68	2547	43,41
360	2348	32,21	2392	34,68	2547	43,41
			wanie: OX			
		Mutacja	: Inversion			
Współczynnik mutacji	0.01		0.05		0.10	
Czas[s]	Rozwiązanie	Błąd[%]	Rozwiązanie	Błąd[%]	Rozwiązanie	Błąd[%]
60	1990	12,05	2026	14,08	1992	12,16
120	1850	4,17	1862	4,84	1824	2,70
180	1850	4,17	1862	4,84	1824	2,70
240	1850	4,17	1862	4,84	1824	2,70
300	1850	4,17	1862	4,84	1824	2,70
360	1850	4,17	1862	4,84	1824	2,70
			vanie: PMX n: Inversion			
Współczynnik mutacji	0.01		0.05		0.10	
Czas[s]	Rozwiązanie	Błąd[%]	Rozwiązanie	Błąd[%]	Rozwiązanie	Błąd[%]
60	3032	70,72	2602	46,51	2471	39,13
120	3032	70,72	2602	46,51	2471	39,13
180	3032	70,72	2602	46,51	2471	39,13
240	3032	70,72	2602	46,51	2471	39,13
300	3032	70,72	2602	46,51	2471	39,13
360	3032	70,72	2602	46,51	2471	39,13

Wykres 2: Analiza współczynnika mutacji – plik ftv47.atsp

4.1.3 Analiza współczynnika krzyżowania

Tabela 3: Analiza współczynnika krzyżowania – plik ftv47.atsp

			wanie: OX a: Scramble			
Współczynnik krzyżowania	, , , , , , , , , , , , , , , , , , ,		0.9			
Czas[s]	Rozwiązanie	Błąd[%]	Rozwiązanie	Błąd[%]	Rozwiązanie	Błąd[%]
60	2067	16,39	2002	12,73	1881	5,91
120	1995	12,33	2002	12,73	1840	3,60
180	1995	12,33	2002	12,73	1840	3,60
240	1995	12,33	1976	11,26	1840	3,60
300	1995	12,33	1976	11,26	1840	3,60
360	1995	12,33	1976	11,26	1840	3,60
		Krzyżov	vanie: PMX	'		•
		Mutacja	a: Scramble			
Współczynnik krzyżowania	0.5		0.7		0.9	
Czas[s]	Rozwiązanie	Błąd[%]	Rozwiązanie	Błąd[%]	Rozwiązanie	Błąd[%]
60	2380	34,00	2326	30,97	2413	35,87
120	2380	34,00	2326	30,97	2290	28,94
180	2380	34,00	2326	30,97	2290	28,94
240	2380	34,00	2326	30,97	2290	28,94
300	2380	34,00	2326	30,97	2290	28,94
360	2380	34,00	2326	30,97	2290	28,94
		Krzyżo	wanie: OX	-		-
		Mutacja	a: Inversion			
Współczynnik krzyżowania	0.5		0.7		0.9	
Czas[s]	Rozwiązanie	Błąd[%]	Rozwiązanie	Błąd[%]	Rozwiązanie	Błąd[%]
60	2004	12,84	1917	7,94	1877	5,69
120	2004	12,84	1887	6,25	1812	2,03
180	2004	12,84	1887	6,25	1812	2,03
240	2004	12,84	1887	6,25	1812	2,03
300	2004	12,84	1887	6,25	1812	2,03
360	2004	12,84	1887	6,25	1812	2,03
			vanie: PMX			
		Mutacja	a: Inversion			
Współczynnik krzyżowania	0.5		0.7		0.9	
Czas[s]	Rozwiązanie	Błąd[%]	Rozwiązanie	Błąd[%]	Rozwiązanie	Błąd[%]
60	2818	58,67	2807	58,05	2758	55,29
120	2818	58,67	2807	58,05	2758	55,29
180	2818	58,67	2807	58,05	2758	55,29
240	2818	58,67	2807	58,05	2758	55,29
300	2818	58,67	2807	58,05	2758	55,29
360	2818	58,67	2807	58,05	2758	55,29

Wykres 3: Analiza współczynnika krzyżowania – plik ftv47.atsp

4.2 Plik ftv170.atsp

4.2.1 Analiza liczebności populacji

Tabela 4: Analiza liczebności populacji – plik ftv170.atsp

			wanie: OX a: Scramble			
Liczebność populacji	200	1/10/00/je	1000		5000	
Czas[s]	Rozwiązanie	Błąd[%]	Rozwiązanie	Błąd[%]	Rozwiązanie	Błąd[%]
60	9727	253,07	14701	433,61	19903	622,43
120	7616	176,44	11632	322,21	18492	571,22
180	7278	164,17	9482	244,17	17251	526,17
240	7228	162,36	7768	181,96	15952	479,02
300	7134	158,95	6455	134,30	14466	425,08
360	7028	155,10	5776	109,66	13047	373,58
		Krzyżov	vanie: PMX			
		Mutacja	a: Scramble			
Liczebność populacji	200		1000		5000	
Czas[s]	Rozwiązanie	Błąd[%]	Rozwiązanie	Błąd[%]	Rozwiązanie	Błąd[%]
60	13542	391,54	13757	399,35	20143	631,14
120	12191	342,50	11949	333,72	17680	541,74
180	11318	310,82	10575	283,85	15189	451,32
240	10734	289,62	9912	259,78	13601	393,68
300	10356	275,90	9599	248,42	12139	340,62
360	9923	260,18	9019	227,37	11416	314,37
		Krzyżo	wanie: OX			
		Mutacja	a: Inversion			
Liczebność populacji	200		1000		5000	
Czas[s]	Rozwiązanie	Błąd[%]	Rozwiązanie	Błąd[%]	Rozwiązanie	Błąd[%]
60	8136	195,32	14747	435,28	19828	619,71
120	7688	179,06	10485	280,58	17729	543,52
180	7688	179,06	8047	192,09	16827	510,78
240	7688	179,06	6524	136,81	15415	459,53
300	7688	179,06	5755	108,89	13984	407,59
360	7688	179,06	5209	89,07	13094	375,28
		Krzyżov	vanie: PMX	-		
		Mutacja	a: Inversion			
Liczebność populacji	200		1000		5000	
Czas[s]	Rozwiązanie	Błąd[%]	Rozwiązanie	Błąd[%]	Rozwiązanie	Błąd[%]
60	15393	458,73	14419	423,38	20426	641,42
120	14539	427,73	13465	388,75	18247	562,32
180	14023	409,00	12519	354,41	15664	468,57
240	13056	373,90	12282	345,81	13694	397,06
300	12931	369,36	12080	338,48	12212	343,27
360	12842	366,13	11910	332,30	11571	320,00

Na podstawie wyników do dalszej analizy została wybrana populacja o liczebności 1000.

Wykres 4: Analiza liczebności populacji – plik ftv170.atsp

4.2.2 Analiza współczynnika mutacji

Tabela 5: Analiza współczynnika mutacji – plik ftv170.atsp

			wanie: OX a: Scramble				
Współczynnik mutacji	0.01	J.	0.05		0.10		
Czas[s]	Rozwiązanie	Błąd[%]	Rozwiązanie	Błąd[%]	Rozwiązanie	Błąd[%]	
60	17086	520,18	15597	466,13	16630	503,63	
120	13630	394,74	12297	346,35	13223	379,96	
180	10578	283,96	10044	264,57	11155	304,90	
240	8848	221,16	8891	222,72	9453	243,12	
300	7460	170,78	7961	188,97	7614	176,37	
360	6560	138,11	7238	162,72	6414	132,81	
		Krzyżov	vanie: PMX	-			
		Mutacja	a: Scramble				
Współczynnik mutacji	0.01		0.05		0.10		
Czas[s]	Rozwiązanie	Błąd[%]	Rozwiązanie	Błąd[%]	Rozwiązanie	Błąd[%]	
60	15017	445,08	13978	407,37	13177	378,29	
120	12574	356,41	10783	291,40	9407	241,45	
180	11648	322,79	9123	231,14	7971	189,33	
240	10976	298,40	8278	200,47	7693	179,24	
300	10551	282,98	7893	186,50	7372	167,59	
360	10146	268,28	7787	182,65	7253	163,27	
		Krzyżo	wanie: OX				
		Mutacja	a: Inversion				
Współczynnik mutacji	0.01		0.05		0.10	0.10	
Czas[s]	Rozwiązanie	Błąd[%]	Rozwiązanie	Błąd[%]	Rozwiązanie	Błąd[%]	
60	16041	482,25	16958	515,54	15572	465,23	
120	12089	338,80	13105	375,68	11839	329,73	
180	9934	260,58	11083	302,29	9720	252,81	
240	8525	209,44	9672	251,07	8012	190,82	
300	7371	167,55	8311	201,67	7041	155,57	
360	6494	135,72	7198	161,27	6270	127,59	
			vanie: PMX				
		Mutacja	a: Inversion				
Współczynnik mutacji	0.01		0.05		0.10		
Czas[s]	Rozwiązanie	Błąd[%]	Rozwiązanie	Błąd[%]	Rozwiązanie	Błąd[%]	
60	15239	453,14	15500	462,61	14297	418,95	
120	14573	428,97	12849	366,39	12634	358,58	
180	14115	412,34	12369	348,97	11854	330,27	
240	13764	399,60	11671	323,63	11381	313,10	
300	13570	392,56	11635	322,32	11296	310,02	
360	13155	377,50	11559	319,56	11260	308,71	

Wykres 5: Analiza współczynnika mutacji – plik ftv170.atsp

4.2.3 Analiza współczynnika krzyżowania

Tabela 6: Analiza współczynnika krzyżowania – plik ftv170.atsp

		•	wanie: OX a: Scramble			
Współczynnik krzyżowania			0.9			
Czas[s]	Rozwiązanie	Błąd[%]	Rozwiązanie	Błąd[%]	Rozwiązanie	Błąd[%]
60	12392	349,80	13114	376,01	14807	437,46
120	8401	204,94	10007	263,23	11385	313,25
180	6547	137,64	7695	179,31	8865	221,78
240	6010	118,15	6615	140,11	7508	172,52
300	5982	117,13	6227	126,03	6498	135,86
360	5967	116,59	5904	114,30	5948	115,90
		Krzyżov	vanie: PMX	-		•
		Mutacja	a: Scramble			
Współczynnik krzyżowania	0.5		0.7		0.9	
Czas[s]	Rozwiązanie	Błąd[%]	Rozwiązanie	Błąd[%]	Rozwiązanie	Błąd[%]
60	12096	339,06	12754	362,94	13435	387,66
120	10423	278,33	11004	299,42	11558	319,53
180	9560	247,01	9835	256,99	10566	283,52
240	8846	221,09	9404	241,34	10088	266,17
300	8533	209,73	9223	234,77	9714	252,60
360	8490	208,17	9029	227,73	9348	239,31
		Krzyżo	wanie: OX			
		Mutacja	: Inversion			
Współczynnik krzyżowania	0.5		0.7		0.9	
Czas[s]	Rozwiązanie	Błąd[%]	Rozwiązanie	Błąd[%]	Rozwiązanie	Błąd[%]
60	11336	311,47	13602	393,72	14845	438,84
120	7805	183,30	9856	257,75	10198	270,16
180	6158	123,52	8845	221,05	8036	191,69
240	5896	114,01	6615	140,11	6352	130,56
300	5896	114,01	6283	128,06	5478	98,84
360	5865	112,89	5865	112,89	5128	86,13
			vanie: PMX			
		Mutacja	: Inversion			
Współczynnik krzyżowania	0.5		0.7		0.9	
Czas[s]	Rozwiązanie	Błąd[%]	Rozwiązanie	Błąd[%]	Rozwiązanie	Błąd[%]
60	14724	434,45	14833	438,40	14113	412,27
120	13732	398,44	13916	405,12	13255	381,13
180	13664	395,97	13647	395,35	12835	365,88
240	13391	386,06	13602	393,72	12473	352,74
300	13154	377,46	13343	384,32	12345	348,09
360	12756	363,01	13040	373,32	12345	348,09

Wykres 6: Analiza współczynnika krzyżowania – plik ftv170.atsp

4.3 Plik rbg403.atsp

4.3.1 Analiza liczebności populacji

Tabela 7: Analiza liczebności populacji – plik rbg403.atsp

		•	wanie: OX a: Scramble			
Liczebność populacji	200		1000		5000	
Czas[s]	Rozwiązanie	Błąd[%]	Rozwiązanie	Błąd[%]	Rozwiązanie	Błąd[%]
60	5781	134,52	6773	174,77	6933	181,26
120	5268	113,71	6500	163,69	6863	178,42
180	4898	98,70	6210	151,93	6776	174,89
240	4677	89,74	5943	141,10	6690	171,40
300	4475	81,54	5742	132,94	6574	166,69
360	4291	74,08	5531	124,38	6459	162,03
		Krzyżov	vanie: PMX			
		Mutacja	a: Scramble			
Liczebność populacji	200		1000		5000	
Czas[s]	Rozwiązanie	Błąd[%]	Rozwiązanie	Błąd[%]	Rozwiązanie	Błąd[%]
60	5755	133,47	6740	173,43	6909	180,28
120	5453	121,22	6335	157,00	6785	175,25
180	5191	110,59	5859	137,69	6650	169,78
240	5016	103,49	5478	122,23	6602	167,83
300	4836	96,19	5351	117,08	6543	165,44
360	4737	92,17	5251	113,02	6343	157,32
		•	wanie: OX a: Inversion			
Liczebność populacji	200	<u> </u>	1000)	5000	
Czas[s]	Rozwiązanie	Błąd[%]	Rozwiązanie	Błąd[%]	Rozwiązanie	Błąd[%]
60	5651	129,25	6688	171,32	6985	183,37
120	5104	107,06	6373	158,54	6885	179,31
180	4750	92,70	6034	144,79	6786	175,29
240	4517	83,25	5742	132,94	6648	169,70
300	4286	73,87	5555	125,35	6619	168,52
360	4129	67,51	5388	118,58	6524	164,67
		Krzyżov	vanie: PMX	•		
			a: Inversion			
Liczebność populacji	200		1000		5000	
Czas[s]	Rozwiązanie	Błąd[%]	Rozwiązanie	Błąd[%]	Rozwiązanie	Błąd[%]
60	6049	145,40	6786	175,29	6976	183,00
120	5981	142,64	6451	161,70	6881	179,15
180	5942	141,05	6129	148,64	6790	175,46
240	5932	140,65	5726	132,29	6709	172,17
300	5893	139,07	5464	121,66	6661	170,22
360	5821	136,15	5403	119,19	6601	167,79

Na podstawie wyników do dalszej analizy została wybrana populacja o liczebności 200.

Wykres 7: Analiza liczebności populacji – plik rbg403.atsp

4.3.2 Analiza współczynnika mutacji

Tabela 8: Analiza współczynnika mutacji – plik rbg403.atsp

		•	wanie: OX a: Scramble			
Współczynnik mutacji	0.01		0.05		0.10	
Czas[s]	Rozwiązanie	Błąd[%]	Rozwiązanie	Błąd[%]	Rozwiązanie	Błąd[%]
60	5861	137,77	5592	126,86	5620	127,99
120	5229	112,13	5043	104,58	5087	106,37
180	4869	97,53	4681	89,90	4717	91,36
240	4568	85,31	4472	81,42	4464	81,10
300	4344	76,23	4318	75,17	4287	73,91
360	4173	69,29	4140	67,95	4137	67,83
		Krzyżov	vanie: PMX	-		
		Mutacja	a: Scramble			
Współczynnik mutacji	0.01		0.05		0.10	
Czas[s]	Rozwiązanie	Błąd[%]	Rozwiązanie	Błąd[%]	Rozwiązanie	Błąd[%]
60	5983	142,72	5763	133,79	5809	135,66
120	5751	133,31	5154	109,09	5260	113,39
180	5375	118,05	4781	93,96	4823	95,66
240	5166	109,57	4565	85,19	4628	87,75
300	4944	100,57	4398	78,42	4417	79,19
360	4820	95,54	4211	70,83	4230	71,60
		Krzyżo	wanie: OX			
		Mutacja	a: Inversion			
Współczynnik mutacji	0.01		0.05		0.10	
Czas[s]	Rozwiązanie	Błąd[%]	Rozwiązanie	Błąd[%]	Rozwiązanie	Błąd[%]
60	5628	128,32	5427	120,16	5375	118,05
120	4948	100,73	4919	99,55	4664	89,21
180	4601	86,65	4611	87,06	4278	73,55
240	4359	76,84	4365	77,08	4043	64,02
300	4203	70,51	4187	69,86	3845	55,98
360	4034	63,65	4041	63,94	3724	51,08
		Krzyżov	wanie: PMX			
		Mutacja	a: Inversion			
Współczynnik mutacji	0.01		0.05		0.10	
Czas[s]	Rozwiązanie	Błąd[%]	Rozwiązanie	Błąd[%]	Rozwiązanie	Błąd[%]
60	5794	135,05	6020	144,22	5967	142,07
120	5765	133,87	5872	138,22	5741	132,90
180	5699	131,20	5824	136,27	5655	129,41
240	5699	131,20	5803	135,42	5608	127,51
300	5688	130,75	5748	133,18	5587	126,65
360	5661	129,66	5666	129,86	5567	125,84

Wykres 8: Analiza współczynnika mutacji – plik rbg403.atsp

4.3.3 Analiza współczynnika krzyżowania

Tabela 9: Analiza współczynnika krzyżowania – plik rbg403.atsp

		•	wanie: OX a: Scramble			
Współczynnik krzyżowania	0.5	3	0.7		0.9	
Czas[s]	Rozwiązanie	Błąd[%]	Rozwiązanie	Błąd[%]	Rozwiązanie	Błąd[%]
60	5299	114,97	5429	120,24	5616	127,83
120	4843	96,47	4755	92,90	5020	103,65
180	4517	83,25	4578	85,72	4632	87,91
240	4194	70,14	4411	78,95	4393	78,22
300	3993	61,99	4218	71,12	4190	69,98
360	3834	55,54	4044	64,06	4038	63,81
		Krzyżov	vanie: PMX	•		
		Mutacja	a: Scramble			
Współczynnik krzyżowania	0.5		0.7		0.9	
Czas[s]	Rozwiązanie	Błąd[%]	Rozwiązanie	Błąd[%]	Rozwiązanie	Błąd[%]
60	5658	129,53	5893	139,07	5693	130,95
120	5213	111,48	5475	122,11	5421	119,92
180	4999	102,80	5178	110,06	5129	108,07
240	4815	95,33	4687	90,14	4888	98,30
300	4682	89,94	4586	86,04	4761	93,14
360	4548	84,50	4533	83,89	4657	88,92
		Krzyżo	wanie: OX	-		
		Mutacja	a: Inversion			
Współczynnik krzyżowania	0.5		0.7		0.9	
Czas[s]	Rozwiązanie	Błąd[%]	Rozwiązanie	Błąd[%]	Rozwiązanie	Błąd[%]
60	5064	105,44	5261	113,43	5691	130,87
120	4501	82,60	4614	87,18	5388	118,58
180	4133	67,67	4275	73,43	5375	118,05
240	3874	57,16	4046	64,14	5322	115,90
300	3704	50,26	3861	56,63	4772	93,59
360	3567	44,71	3700	50,10	4466	81,18
			vanie: PMX			
		Mutacja	a: Inversion			
Współczynnik krzyżowania	0.5		0.7		0.9	
Czas[s]	Rozwiązanie	Błąd[%]	Rozwiązanie	Błąd[%]	Rozwiązanie	Błąd[%]
60	6242	153,23	5942	141,05	5924	140,32
120	6203	151,64	5811	135,74	5816	135,94
180	6191	151,16	5802	135,38	5764	133,83
240	6145	149,29	5770	134,08	5753	133,39
300	6058	145,76	5757	133,55	5730	132,45
360	6058	145,76	5722	132,13	5676	130,26

Wykres 9: Analiza współczynnika krzyżowania – plik rbg403.atsp

4.4 Porównanie z Tabu Search

Tabela 10: Porównanie z Tabu Search

	Ftv47.atsp	Ftv170.atsp	Rbg403.atsp
Tabu Search	1945	5507	2694
Algorytm Genetyczny	1777 (po 2 minutach)	4361 (po 12 minutach)	3051 (po godzinie)

Ftv47.atsp:

$$2-41-43-22-40-20-0-25-1-9-33-27-3-24-4-29-30-5-31-6-10-8-11-37-38-18-17-12-32-7-23-34-13-46-36-14-35-15-16-45-39-19-44-21-47-26-42-28-2$$

Ftv170.atps:

$$70 - 69 - 66 - 63 - 64 - 56 - 58 - 57 - 62 - 86 - 93 - 166 - 107 - 106 - 105 - 100 - 101 - 102 - 114 - 115 - 116 - 119 - 124 - 128 - 131 - 133 - 134 - 142 - 152 - 160 - 150 - 161 - 151 - 15 - 159 - 16 - 18 - 19 - 107 - 168 - 161 - 120 - 121 - 122 - 123 - 162 - 104 - 109 - 127 - 126 - 125 - 137 - 147 - 138 - 139 - 141 - 6 - 7 - 14 - 13 - 17 - 21 - 32 - 158 - 36 - 157 - 156 -$$

Rbg403.atsp:

$$5 - 133 - 93 - 349 - 29 - 235 - 121 - 275 - 147 - 164 - 25 - 341 - 372 - 41 - 241 - 112 - 47 - 19 - 297 - 82 - 161 - 110 - 141 - 392 - 351 - 281 - 360 - 69 - 245 - 81 - 22 - 21 - 402 - 211 - 122 - 40 - 263 - 268 - 292 - 329 - 286 - 49 - 37 - 166 - 199 - 388 - 348 - 290 - 248 - 63 - 57 - 364 - 345 - 378 - 71 - 134 - 243 - 24 - 13 - 205 - 265 - 326 - 325 - 174 - 157 - 1 - 8 - 168 - 367 - 269 - 58 - 254 - 223 - 309 - 131 - 318 - 118 - 282 - 350 - 178 - 138 - 198 - 102 - 136 - 332 - 296 - 222 - 276 - 259 - 90 - 92 - 207 - 397 - 260 - 203 - 335 - 284 - 343 - 77 - 31 - 214 - 132 - 320 - 140 - 312 - 35 - 183 - 17 - 12 - 177 - 70 - 384 - 373 - 355 - 319 - 86 - 97 - 366 - 321 - 204 - 333 - 267 - 370 - 272 - 356 - 2 - 395 - 361 - 16 - 227 - 212 - 213 - 399 - 224 - 238 - 229 - 225 - 125 - 298 - 186 - 53 - 344 - 142 - 116 - 155 - 323 - 400 - 175 - 196 - 0 - 43 - 225 - 125 - 298 - 186 - 53 - 344 - 142 - 116 - 155 - 323 - 400 - 175 - 196 - 0 - 43 - 225 - 125 - 298 - 186 - 53 - 344 - 142 - 116 - 155 - 323 - 400 - 175 - 196 - 0 - 43 - 225 - 125 - 298 - 186 - 53 - 344 - 142 - 116 - 155 - 323 - 400 - 175 - 196 - 0 - 43 - 225 - 125 - 298 - 186 - 53 - 344 - 142 - 116 - 155 - 323 - 400 - 175 - 196 - 0 - 43 - 225 - 125 - 298 - 186 - 53 - 344 - 142 - 116 - 155 - 323 - 400 - 175 - 196 - 0 - 43 - 225 - 125 - 298 - 186 - 53 - 344 - 142 - 116 - 155 - 323 - 400 - 175 - 196 - 0 - 43 - 225 - 125 - 298 - 186 - 53 - 344 - 142 - 116 - 155 - 323 - 400 - 175 - 196 - 0 - 43 - 225 - 125 - 298 - 186 - 53 - 344 - 142 - 116 - 155 - 323 - 400 - 175 - 196 - 0 - 43 - 225 - 125 - 125 - 298 - 186 - 53 - 344 - 142 - 116 - 155 - 323 - 400 - 175 - 196 - 0 - 43 - 225 - 125 -$$

197 - 295 - 375 - 191 - 304 - 394 - 393 - 79 - 62 - 36 - 311 - 55 - 167 - 362 - 169 -10 - 115 - 66 - 261 - 78 - 382 - 306 - 354 - 4 - 285 - 45 - 65 - 347 - 39 - 251 - 391 -210 - 38 - 270 - 381 - 387 - 67 - 94 - 111 - 374 - 278 - 377 - 99 - 300 - 72 - 398 -396 - 44 - 160 - 15 - 231 - 288 - 247 - 249 - 256 - 153 - 307 - 11 - 165 - 172 - 105 -158 - 287 - 322 - 190 - 100 - 98 - 87 - 56 - 64 - 3 - 358 - 327 - 195 - 380 - 289 - 233-324 - 144 - 202 - 353 - 180 - 244 - 208 - 80 - 236 - 280 - 279 - 128 - 228 - 337 - $127 \, - \, 139 \, - \, 88 \, - \, 96 \, - \, 313 \, - \, 340 \, - \, 152 \, - \, 310 \, - \, 6 \, - \, 218 \, - \, 145 \, - \, 59 \, - \, 14 \, - \, 252 \, - \, 371 \, - \, 46$ -217 - 363 - 181 - 200 - 266 - 188 - 173 - 216 - 342 - 108 - 26 - 194 - 61 - 293 - 42-126 - 336 - 148 - 258 - 171 - 23 - 253 - 185 - 60 - 237 - 150 - 84 - 83 - 308 - 299 -215 - 73 - 163 - 365 - 104 - 314 - 101 - 109 - 135 - 113 - 257 - 232 - 176 - 315 - 162-48 - 246 - 346 - 189 - 193 - 91 - 338 - 242 - 50 - 51 - 273 - 386 - 239 - 117 - 302 -89 - 376 - 68 - 316 - 120 - 143 - 149 - 146 - 294 - 317 - 95 - 27 - 76 - 209 - 28 - 184-368 - 170 - 334 - 331 - 75 - 179 - 303 - 18 - 33 - 359 - 221 - 159 - 20 - 119 - 52 -401 - 385 - 389 - 283 - 277 - 352 - 182 - 240 - 219 - 85 - 32 - 156 - 154 - 234 - 250 - 240 - 210 - 220 -74 - 305 - 383 - 34 - 230 - 226 - 390 - 206 - 30 - 106 - 369 - 124 - 339 - 187 - 123 - $192 \, - \, 114 \, - \, 130 \, - \, 301 \, - \, 129 \, - \, 255 \, - \, 291 \, - \, 379 \, - \, 137 \, - \, 54 \, - \, 151 \, - \, 7 \, - \, 220 \, - \, 9 \, - \, 264 \, - \, 100 \, - \,$ 274 - 107 - 271 - 357 - 328 - 330 - 201 - 262 - 103 - 5

5 Wnioski

Algorytm genetyczny jest bardzo uniwersalny. W przypadku problemu komiwojażera oceną funkcji przystosowania jest długość ścieżki, jednak wystarczy zmienić jedynie funkcję celu, aby użyć tego schematu przy innych problemach. Uniwersalność algorytmu stanowi też pewną wadę, nie będzie on tak skuteczny, jak algorytm specjalizowany. Metoda jest szybka i ma możliwość wielokrotnego powtarzania obliczeń. Niestety nie gwarantuje nam znalezienia poprawnego rozwiązania, jest ono jedynie akceptowalne. W odróżnieniu od poprzednich algorytmów, gdzie operowaliśmy na jednym rozwiązaniu, w przypadku algorytmu genetycznego operujemy na pewnej populacji – zbiorze rozwiązań.

Na powyższych wykresach można zauważyć, że w miarę upływu czasu algorytm znajduje coraz to lepsze rozwiązania, jeśli ma do czynienia z większą instancją problemu. Przy małym pliku już po minucie lub dwóch otrzymujemy optymalne rozwiązanie. W przypadku większych plików, gdy poczekamy jeszcze chwilę, otrzymamy jeszcze lepsze rozwiązania.

Zaskakującym faktem jest, iż dla małego pliku najlepsze wyniki otrzymywaliśmy przy największej wartości populacji, a dla dużego na odwrót. Mogłoby się wydawać, że przy małych instancjach potrzebujemy małej populacji, a przy dużych większej, ale pomiary pokazały, że niekoniecznie. Dzieje się tak być może dlatego, że dla większej instancji algorytm nie będzie w stanie wykonać tylu iteracji w tak krótkim czasie.

Po analizie wpływu współczynników można zauważyć, że im większe prawdopodobieństwo na mutację lub krzyżowanie, tym częściej otrzymamy lepsze wyniki.

Najistotniejszą rolę w algorytmie odkrywają sposoby mutacji i krzyżowania. Zestawiając ze sobą wszystkie te metody na zasadzie każda z każdą widzimy, że najlepsze wyniki otrzymujemy przy krzyżowaniu OX i mutacji poprzez inwersję, a najgorsze przy zestawieniu tej samej mutacji, jednak z innym sposobem krzyżowania. Co ciekawe, tak znaczące różnice w rozwiązaniach nie występują, gdy zestawimy oba sposoby krzyżowania z mutacją Scramble. Z tego wynika, że porównując jedynie dwie metody krzyżowania lub dwie metody mutacji do siebie nawzajem możemy wyciągnąć inne wnioski, gdy porównujemy zestawienie tych metod ze sobą.

Za pomocą algorytmu genetycznego udało się znaleźć lepsze rozwiązania niż za pomocą algorytmu Tabu Search dla dwóch plików, jednak dla pliku ftv170.atsp wymagało to więcej czasu. Dla pliku rbg403.atsp najlepszą drogę znajdujemy po jeszcze dłuższym czasie, jednak obserwujemy, że algorytm nie wpada w globalne optimum. Przez dłuższy czas nie znajdował lepszego wyniku, jednak w końcu na niego trafił, nie zapętlił się. Być może, gdyby algorytm miał wystarczająco dużo czasu, to za którymś razem w końcu trafiłby na idealne lub bardzo dobre rozwiązanie.

6 Bibliografia

- https://www.youtube.com/watch?v=Pg4HP6Ayijs&t=4s
- https://www.youtube.com/watch?v=fjaVAHnF_Ks
- http://aragorn.pb.bialystok.pl/~wkwedlo/EA5.pdf
- https://mfiles.pl/pl/index.php/Algorytm_genetyczny
- https://www.fuw.edu.pl/~durka/ksiazki/as/HTML/node46.html
- http://staff.iiar.pwr.wroc.pl/dariusz.banasiak/si/SI wyklad10.pdf
- http://aragorn.pb.bialystok.pl/~wkwedlo/EA2.pdf
- https://www.mimuw.edu.pl/~son/msui/6,7,8 GA.pdf
- https://pl.wikipedia.org/wiki/Algorytm_genetyczny
- http://home.agh.edu.pl/~vlsi/AI/gen_t/
- https://sound.eti.pg.gda.pl/student/isd/isd03 algorytmy_genetyczne.pdf
- https://www.math.uni.lodz.pl/~marta/2012_2013_z/zz/gen.pdf