CS3063 Theory of Computing

Semester 4 (21 Intake), Jan – May 2024

Lecture 1

- 1. Course Details
- 2. Introduction to Theory of Computing

Sanath Jayasena

Announcements

This Lecture 1 is online on Zoom

- The rest in flipped-classroom model, weekly schedule
 - Video recorded lecture and slides on Moodle: students study these privately in their own time
 - Interactive session physically from Week 3 (5th Feb), on
 Thursdays, in Level 2 Lab: students divided into two Groups
 - **Group 1** ([200086U], [210001R] -- [210365J])
 - Group 2 ([210369B] [210745B])

Announcements

- Physical interactive sessions in Level 2 Lab
 - Start with a 5-6 minute online Quiz on previous week's lecture
 - **08.15am 09.00am**: Group 1 (W3), Group 2 (W4), ...
 - **09.15am 10.00am**: Group 2 (W3), Group 1 (W4), ...
 - Group 1 and Group 2 come first (at 8.15am) and second (at 9.15am) in alternate weeks
 - Group 1 at 8.15am in odd numbered weeks (W3, W5, ..., W11, W13)
 - Group 2 at 8.15am in even numbered weeks (W4, W6, ..., W12, W14)

Announcements

- Lecture 1: online on Zoom
 - Today's password for Attendance marking on Moodle: 8pxhfs

Today's Outline

Lecture 1

- Course Details
 - Objectives
 - Syllabus and Calendar
 - Evaluation
- Introduction to Theory of Computing
 - Overview
 - Mathematical Background

Today's Outline

Lecture 1

- Course Details
 - Objectives
 - Syllabus and Calendar
 - Evaluation
- Introduction to Theory of Computing
 - Overview
 - Mathematical Background

Course Details

 On Moodle: https://online.uom.lk/course/view.php?id=22898

- Videos and slides made available on Moodle
- Interactive sessions, starting with a Quiz, on Thursdays

Details

Schedule (Tentative)

Week #	Week	Activity
1	22 – 26 Jan	No Lecture (25 th Jan was holiday)
2	29 Jan – 02 Feb	L1 (Lecture 1), L2
3	05 – 09 Feb	L3, Quiz 1
4	12 – 16 Feb	L4, Quiz 2, Assignment 1 out
5	19 – 23 Feb	L5, Quiz 3
6	26 Feb – 01 Mar	L6, Quiz 4
7	04 - 08 Mar	L7, Quiz 5, Assignment 1 due
8	11 – 15 Mar	L8, Quiz 6,
9	18 - 22 Mar	L9, Quiz 7, Assignment 2 out
10	25 – 29 Mar	L10, Quiz 8
11	01 - 05 Apr	L11, Quiz 9
	06 – 21 Apr	New Year Break
12	22 – 26 Apr	L12, Quiz 10, Assignment 2 due
13	29 Apr – 03 May	L13, Quiz 11
14	06-10 May	L14, Quiz 12
	20 - 31 May	Final Exams

Today's Outline

Lecture 1

- Course Details
 - Objectives
 - Syllabus and Calendar
 - Evaluation
- Introduction to Theory of Computing
 - Overview
 - Mathematical Background

Subjects of Interest...

 What are the fundamental capabilities and limitations of a computer?

- Above can be discussed in the contexts of
 - Complexity theory
 - Computability theory
 - Automata theory

What is Computation?

- One possible answer
 - Consists of executing an algorithm
 - Inputs + step-by-step procedure → result
- One might say: a step in computation is an operation a computer can perform

What kind of computers will we consider?

What are Computers?

- The computers we consider are not real ones
 - Will a theory based on an actual piece of current hardware be useful?
 - Real computers are too complex for theoretical study
- We consider (simpler) abstract machines or models of computation
 - Defined mathematically (several of them)
 - Can be as powerful as real computers

Decision Problems

- We mainly consider decision problems
 - Computational problems for which the answer is either "yes" or "no"

- E.g., given an integer n > 0, is n prime?
 - -n is encoded as a string of digits
 - This string will be the input to the problem

Languages

- Input to "is n prime?" problem is a string
- This is a language recognition problem
 - [What is a language ? → a set of strings]
 - For an arbitrary string of digits, determine whether it is one of the strings in the language of all strings that represent primes

 A decision problem can be stated as a problem of recognizing a language

Models of Computation & Languages

 Different types of abstract models can recognize languages of different complexity → hierarchy of language types

- Types of abstract machines
 - Finite automata
 - Pushdown automata
 - Linear-bounded automata
 - Turing machines

The Chomsky Hierarchy

Туре	Abstract Machine	Languages (Grammars)
3	Finite automaton	Regular
2	Pushdown automaton	Context-free
1	Linear-bounded automaton	Context-sensitive
0	Turing machine	Recursively enumerable (unrestricted, phrase-structure)

16

Finite Automata

- A finite automaton (FA) is a finite-state machine
 - At each moment, in one of finite number of states
 - Moves among states in a predictable way responding to inputs
 - Recognizes a regular language

17

Pushdown Automata

- The limitation of an FA: little or no memory
 - It can only keep track of its current state
 - So, can recognize only simple languages
- Context-free languages can be recognized by pushdown automata
 - An FA with an auxiliary stack memory
 - Context-free grammars: important because they can describe syntax of programming languages

Turing Machines

A pushdown automaton cannot be a general model of computation

- Turing machine: general computing device
 - Can do any step-by-step procedure
 - More general languages than other two

A Turing machine can do anything a computer can do

Is Every Problem Solvable?

- Turing machines can still have limits
 - But there is no more powerful machine

- There are unsolvable problems, no matter how much time and resources we have
 - Computability theory addresses this
 - Discussed using Turing machine as the computational model

Kinds of Solvable Problems

- There are *intractable problems*
 - Problems that are solvable theoretically
 - But practical issues due to huge time/resource requirements
 - Complexity theory addresses this

 E.g., why are some problems computationally easy and others hard?

Computing Vs The Theory of ...

- Computation by humans has a long history
- But the current state of pervasive computing is a new phenomenon
- Theory of computing older than computers
 - Pioneers (Turing et al) saw the power of computers
 - Conceptual models very useful
 - Important field of study relevant to other areas

Today's Outline

Lecture 1

- Course Details
 - Objectives
 - Syllabus and Calendar
 - Evaluation
- Introduction to Theory of Computing
 - Overview
 - Mathematical Background

Assumed Background: Basics

- Sets: basic set theory, notations
- Logic: propositional logic, implication, equivalence, quantifiers ∀ and ∃
- Functions
- Relations
- Mathematical induction and proofs
- Recursion and recursive definitions
- READ Chapters 1, 2

Languages (again)

- A language
 - A set of strings where the symbols are drawn from an alphabet
- An alphabet
 - A finite **set of symbols**, denoted by ∑
- Length of a string x over Σ
 - Number of symbols in x, denoted by |x|

- Null string (string of length 0) is a string over Σ
 - Denoted by
 - No matter what Σ is

- For any alphabet Σ, the set of all strings over Σ is denoted by Σ*
 - A language over Σ is a subset of Σ^*

- Example: if $\Sigma = \{a, b\}$, then:
 - Some strings over Σ are a, baa, aba, aabba
 - -|a|=1, |baa|=|aba|=3, |aabaa|=5
 - $-\Sigma^*=\{\Lambda, a, b, aa, ab, ba, bb, aaa, aab, aba, \dots\}$
 - A few languages over ∑ are:

```
\{\Lambda, a, aa, aab\}
\{x \in \{a, b\}^* \mid |x| \text{ is odd}\}
\{x \in \{a, b\}^* \mid |x| \le 8\}
```

- New languages can be constructed using set operations (because languages are sets of strings)
- For any two languages over an alphabet Σ :
 - Their union, intersection, difference are also languages over Σ
- Complement L' of a language L over Σ

$$-L'=\Sigma^*-L$$

• Language over Σ is a subset of Σ^*

- If $L_1 \subseteq \Sigma_1^*$ and $L_2 \subseteq \Sigma_2^*$ then both L_1 and L_2 are subsets of $(\Sigma_1 \cup \Sigma_2)^*$
- New languages can also be created using concatenation
 - If x and y are elements of Σ^* , concatenation of x and y is the string xy
 - For any string x, $x\Lambda = \Lambda x = x$
 - For any strings x, y and z, (xy)z = x(yz)

- A string x is a substring of a string y if there are strings w and z (either or both can be null) so that y = wxz
- A prefix of a string is an initial substring
 - E.g., Λ , a, ab, abb and abba \rightarrow prefixes of abba
- A suffix is a final substring
 - E.g., Λ , a, ba, bba and $abba \rightarrow$ suffixes of abba

- If $L_1 \subseteq \Sigma^*$ and $L_2 \subseteq \Sigma^*$ then $L_1L_2 = \{xy \mid x \in L_1 \text{ and } y \in L_2\}$
- For any language L, $L\{\Lambda\} = \{\Lambda\}L = L$
- We use exponential notation to indicate the number of items concatenated
 - Items can be symbols, strings or languages

• If Σ is an alphabet, $\alpha \in \Sigma$, $x \in \Sigma^*$, $L \subseteq \Sigma^*$

$$a^{k} = aa \cdot \cdot \cdot a$$
 $x^{k} = xx \cdot \cdot \cdot x$

$$\sum_{k=1}^{k} \sum_{k=1}^{k} \sum_{k=1}^{k} \sum_{k=1}^{k} |x| = k$$
 $L^{k} = LL \cdot \cdot \cdot L$

Special cases:

$$a^{0} = \Lambda$$

$$\Sigma^{0} = \{\Lambda\}$$

$$L^{0} = \{\Lambda\}$$

- Unit of concatenation is Λ
- Set of all strings obtained by concatenating any number of $L^* = \bigcup_{i=0}^{\infty} L^i$ Kleene star elements of L:

 The set of all strings obtained by concatenating one or more elements of L: $L^+ = \bigcup_{i=1}^{\infty} L^i$

$$L^{+} = \bigcup_{i=1}^{\infty} L^{i}$$

• Note that $L^+ = L^*L = L L^*$

 The way we describe how to construct an arbitrary string in a language may also be used to recognize a string in the language

 Recognition of languages is considered in the context of abstract machines

Conclusion

- In this session we discussed ...
 - Course Details
 - Introduction to the Theory of Computing
 - Overview
 - Mathematical background

- Next time...
 - Regular Languages, Regular Expressions,
 Finite Automata