Question 1

A football coach is frustrated with his team's lack of speed. He measures each player's 40-yard dash speed and then sends all of them to a speed and agility camp. He then measures their times again after. The data is below. Is there sufficient evidence to say that the camp helped the players speed? Run a test.

Before	After
4.88	4.7
5.1	4.85
4.41	4.35
4.73	4.77
4.6	4.56
4.8	4.78
4.95	4.7
4.98	4.9
5.2	5.0
5.13	5.1
5.05	5.1
4.9	4.7
4.7	4.56
4.6	4.34
5.11	4.9

a) Write an appropriate hypothesis test for this situation and state the appropriate testing procedure

Hypothesis

Null Hypothesis H_0 : The mean difference in time before the camp and after the camp is zero. i.e.; μ Before - μ After =0

Alternate hypothesis H_1 : The mean difference in time before the camp and after the camp is greater than zero. i.e., μ Before - μ After >0

Correlated or Paired t-test

A paired or correlated t-test is used in the case of matched pairs of similar units or when there are cases of repeated measures.

Here the player's 40-yard dash speed before and after attending a speed and agility camp is measured. Hence paired t-test is used.

b) Compute the necessary summary statistics for the test in part (a)

1. Subtract each After(Y) from each Before(X)

Before(X)	After(Y)	X-Y
4.88	4.7	0.18
5.1	4.85	0.25
4.41	4.35	0.06
4.73	4.77	-0.04
4.6	4.56	0.04
4.8	4.78	0.02
4.95	4.7	0.25
4.98	4.9	0.08
5.2	5.0	0.2
5.13	5.1	0.03
5.05	5.1	-0.05
4.9	4.7	0.2
4.7	4.56	0.14
4.6	4.34	0.26
5.11	4.9	0.21

2. Add up all values from step 1

Before(X)	After(Y)	X-Y
4.88	4.7	0.18
5.1	4.85	0.25
4.41	4.35	0.06
4.73	4.77	-0.04
4.6	4.56	0.04
4.8	4.78	0.02
4.95	4.7	0.25
4.98	4.9	0.08
5.2	5.0	0.2
5.13	5.1	0.03
5.05	5.1	-0.05
4.9	4.7	0.2
4.7	4.56	0.14
4.6	4.34	0.26
5.11	4.9	0.21
	Sum:	1.83

3. Square the difference from step 1

Before(X)	After(Y)	X-Y	(X-Y) ²
4.88	4.7	0.18	0.0324
5.1	4.85	0.25	0.0625
4.41	4.35	0.06	0.0036
4.73	4.77	-0.04	0.0016
4.6	4.56	0.04	0.0016
4.8	4.78	0.02	0.0004
4.95	4.7	0.25	0.0625
4.98	4.9	0.08	0.0064
5.2	5.0	0.2	0.04
5.13	5.1	0.03	0.0009
5.05	5.1	-0.05	0.0025
4.9	4.7	0.2	0.04
4.7	4.56	0.14	0.0196
4.6	4.34	0.26	0.0676
5.11	4.9	0.21	0.0441
	Sum:	1.83	

4. Add up all of the squared differences from Step 3

Before(X)	After(Y)	X-Y	(X-Y) ²		
4.88	4.7	0.18	0.0324		
5.1	4.85	0.25	0.0625		
4.41	4.35	0.06	0.0036		
4.73	4.77	-0.04	0.0016		
4.6	4.56	0.04	0.0016		
4.8	4.78	0.02	0.0004		
4.95	4.7	0.25	0.0625		
4.98	4.9	0.08	0.0064		
5.2	5.0	0.2	0.04		
5.13	5.1	0.03	0.0009		
5.05	5.1	-0.05	0.0025		
4.9	4.7	0.2	0.04		
4.7	4.56	0.14	0.0196		
4.6	4.34	0.26	0.0676		
5.11	4.9	0.21	0.0441		
		Sum= 1.83	Sum = 0.3857		

5. Calculate t- score using the formula:

$$t = \frac{\sum d}{\sqrt{\frac{n(\sum d^2) - (\sum d)^2}{n-1}}}$$

$$\sum d = 1.83, n=15, \sum d2 = 0.3857$$

on substituting values on the equation, we get t=

1.83/0.41719

$$t = 4.387$$

- 6. Degrees of freedom = df = n-1 = 15-1 = 14
- c) Perform the t-test and report the p-value.
- 7. Find the p-value in the t-table using the degree of freedom and alpha value

	t-test table										
cum. prob one-tail two-tails	t _{.50} 0.50 1.00	t _{.75} 0.25 0.50	t _{.80} 0.20 0.40	t _{.85} 0.15 0.30	t _{.90} 0.10 0.20	0.05 0.10	t _{.975} 0.025 0.05	t _{.99} 0.01 0.02	t _{.995} 0.005 0.01	t _{.999} 0.001 0.002	t _{.9995} 0.0005 0.001
df	0.000	4.000	4.070	4.000	2.070	0.044	40.74	24.00	60.66	240.24	606.60
1 2	0.000	1.000 0.816	1.376 1.061	1.963 1.386	3.078 1.886	6.314 2.920	12.71 4.303	31.82 6.965	63.66 9.925	318.31 22.327	636.62 31.599
3	0.000	0.765	0.978	1.250	1.638	2.353	3.182	4.541	5.841	10.215	12.924
4	0.000	0.741	0.941	1.190	1.533	2.132	2.776	3.747	4.604	7.173	8.610
5	0.000	0.727	0.920	1.156	1.476	2.015	2.571	3.365	4.032	5.893	6.869
6	0.000	0.718	0.906	1.134	1.440	1.943	2.447	3.143	3.707	5.208	5.959
7	0.000	0.711	0.896	1.119	1.415	1.895	2.365	2.998	3.499	4.785	5.408
8	0.000	0.706	0.889	1.108	1.397	1.860	2.306	2.896	3.355	4.501	5.041
9	0.000	0.703	0.883	1.100	1.383	1.833	2.262	2.821	3.250	4.297	4.781
10	0.000	0.700	0.879	1.093	1.372	1.812	2.228	2.764	3.169	4.144	4.587
11 12	0.000	0.697 0.695	0.876 0.873	1.088 1.083	1.363 1.356	1.796 1.782	2.201 2.179	2.718 2.681	3.106 3.055	4.025 3.930	4.437 4.318
. 13	0.000	0.694	0.870	1.079	1.350	1.771	2.179	2.650	3.012	3.852	4.221
14	0.000	0.692	0.868	1.076	1.345	1.761	2.145	2.624	2.977	3.787	4.140
15	0.000	0.691	0.866	1.074	1.341	1.753	2.131	2.602	2.947	3.733	4.073
16	0.000	0.690	0.865	1.071	1.337	1.746	2.120	2.583	2.921	3.686	4.015
17	0.000	0.689	0.863	1.069	1.333	1.740	2.110	2.567	2.898	3.646	3.965
18	0.000	0.688	0.862	1.067	1.330	1.734	2.101	2.552	2.878	3.610	3.922
19	0.000	0.688	0.861	1.066	1.328	1.729	2.093	2.539	2.861	3.579	3.883
20	0.000	0.687	0.860	1.064	1.325	1.725	2.086	2.528	2.845	3.552	3.850
21 22	0.000	0.686 0.686	0.859 0.858	1.063 1.061	1.323 1.321	1.721 1.717	2.080 2.074	2.518 2.508	2.831 2.819	3.527 3.505	3.819 3.792
23	0.000	0.685	0.858	1.060	1.319	1.717	2.069	2.500	2.807	3.485	3.768
24	0.000	0.685	0.857	1.059	1.318	1.714	2.069	2.492	2.797	3.467	3.745
25	0.000	0.684	0.856	1.058	1.316	1.708	2.060	2.485	2.787	3.450	3.725
26	0.000	0.684	0.856	1.058	1.315	1.706	2.056	2.479	2.779	3.435	3.707
27	0.000	0.684	0.855	1.057	1.314	1.703	2.052	2.473	2.771	3.421	3.690
28	0.000	0.683	0.855	1.056	1.313	1.701	2.048	2.467	2.763	3.408	3.674
29	0.000	0.683	0.854	1.055	1.311	1.699	2.045	2.462	2.756	3.396	3.659
30	0.000	0.683	0.854	1.055	1.310	1.697	2.042	2.457	2.750	3.385	3.646
40	0.000	0.681	0.851	1.050	1.303	1.684	2.021	2.423	2.704	3.307	3.551
60	0.000	0.679	0.848	1.045	1.296	1.671	2.000	2.390	2.660	3.232	3.460
80	0.000	0.678	0.846	1.043	1.292 1.290	1.664	1.990	2.374	2.639	3.195	3.416
100 1000	0.000	0.677 0.675	0.845 0.842	1.042 1.037	1.290	1.660 1.646	1.984 1.962	2.364 2.330	2.626 2.581	3.174 3.098	3.390 3.300
Z											
Z	0.000	0.674	0.842	1.036	1.282	1.645	1.960	2.326	2.576	3.090	3.291
	0%	50%	60%	70%	80%	90%	95%	98%	99%	99.8%	99.9%
	Confidence Level										

• t-value

Significance level (
$$\alpha$$
) = 0.05
Degree of freedom (df) = n-1
= 15 - 1
= 14

From the t-test table, t- value = 1.761 Calculated t-value = 4.387

The calculated t-value is greater than the table value at an alpha level of 0.05

• P-value

P-value =
$$0.0003103$$

= 3.103×10^4

P-value is less than the alpha level p < 0.05

d) Interpret your results in the conclusion

Conclusion:

The calculated t-value is greater than the table value at the alpha level of 0.05 The p-value is less than the alpha; p < 0.05

Since the p-value is less than alpha ($3.103 \times 10^4 < 0.05$) we reject the null hypothesis. In conclusion, we found that the mean difference in times from before the camp to after the camp has decreased and that the camp has helped the player's speed.

Calculation using Excel

Calculation Using SPSS

Question 2

The distribution of scores of students taking the LSATs is claimed to have a mean of 521. Sample 25 incoming Harvard Law School freshman LSAT scores and find a mean of 589 and a standard deviation of 37. Since Harvard is an Ivy League school, they think their freshmen are smarter than average law students. Test this theory by applying a suitable hypothesis test (that Harvard students score higher than average on the LSATs) at the 0.05 significance level.

Use one sample t test

- 1. The null hypothesis H_0 : $\mu = 521$ The mean LSATS for Harvard freshman is 521.
- 2. Alternate hypothesis H_1 : $\mu > 521$ The mean LSATS for Harvard freshman is greater than 521
- 3. Identify Statistical values

Summary statistics for the test

mean
$$\mu$$
 = 521
 \bar{x} = 589
Standard deviation s = 37
Significance level α = 0.05
 n = 25
Degree of freedom df = n-1
= 25-1
= 24

4. Calculate t-score

$$t = \frac{\overline{X} - \mu}{\frac{S}{\sqrt{n}}}$$
= (589 - 521) / (37 / $\sqrt{25}$)
= 68/7.4
= 9.1891

Calculated t-value = 9.1891

5. Find t- value from the table

t-value from table = 1.711

				t_te	et t	able					
				1-10	,51	abic					
cum. prob	t.50	t .75	t.80	t.85	t.90	t_95	t.975	t ,99	t .995	t ,999	t ,9995
one-tail	0.50	0.25	0.20	0.15	0.10	0.05	0.025	0.01	0.005	0.001	0.0005
two-tails	1.00	0.50	0.40	0.30	0.20	0.10	0.05	0.02	0.01	0.002	0.001
df											
1	0.000	1.000	1.376	1.963	3.078	6.314	12.71	31.82	63.66	318.31	636.62
2	0.000	0.816	1.061	1.386	1.886	2.920	4.303	6.965	9.925	22.327	31.599
3	0.000	0.765	0.978	1.250	1.638	2.353	3.182	4.541	5.841	10.215	12.924
4	0.000	0.741	0.941	1.190	1.533	2.132	2.776	3.747	4.604	7.173	8.610
5 6	0.000	0.727 0.718	0.920 0.906	1.156 1.134	1.476 1.440	2.015 1.943	2.571	3.365 3.143	4.032 3.707	5.893 5.208	6.869 5.959
7	0.000	0.710	0.896	1.119	1.415	1.895	2.365	2.998	3.499	4.785	5.408
8	0.000	0.706	0.889	1.108	1.397	1.860	2.306	2.896	3.355	4.501	5.041
9	0.000	0.703	0.883	1.100	1.383	1.833	2.262	2.821	3.250	4.297	4.781
10	0.000	0.700	0.879	1.093	1.372	1.812	2.228	2.764	3.169	4.144	4.587
11	0.000	0.697	0.876	1.088	1.363	1.796	2.201	2.718	3.106	4.025	4.437
12	0.000	0.695	0.873	1.083	1.356	1.782	2.179	2.681	3.055	3.930	4.318
13	0.000	0.694	0.870	1.079	1.350	1.771	2.160	2.650	3.012	3.852	4.221
14	0.000	0.692	0.868	1.076	1.345	1.761	2.145	2.624	2.977	3.787	4.140
15	0.000	0.691	0.866	1.074	1.341	1.753	2.131	2.602	2.947	3.733	4.073
16	0.000	0.690	0.865	1.071	1.337	1.746	2.120	2.583	2.921	3.686	4.015
17	0.000	0.689	0.863	1.069	1.333	1.740	2.110	2.567	2.898	3.646	3.965
18	0.000	0.688	0.862	1.067	1.330	1.734	2.101	2.552	2.878	3.610	3.922
19	0.000	0.688	0.861	1.066	1.328	1.729	2.093	2.539	2.861	3.579	3.883
20 21	0.000	0.687	0.860	1.064	1.325	1.725	2.086	2.528	2.845	3.552	3.850
21	0.000	0.686 0.686	0.859 0.858	1.063 1.061	1.323	1.721 1.717	2.080 2.074	2.518 2.508	2.831 2.819	3.527 3.505	3.819 3.792
23	0.000	0.685	0.858	1.060	1.319	1.717	2.069	2.500	2.807	3.485	3.768
24	0.000	0.685	0.857	1.059	1.318	1.711	2.064	2.492	2.797	3.467	3.745
25	0.000	0.684	0.856	1.058	1.316	1.708	2.060	2.485	2.787	3.450	3.725
26	0.000	0.684	0.856	1.058	1.315	1.706	2.056	2.479	2.779	3.435	3.707
27	0.000	0.684	0.855	1.057	1.314	1.703	2.052	2.473	2.771	3.421	3.690
28	0.000	0.683	0.855	1.056	1.313	1.701	2.048	2.467	2.763	3.408	3.674
29	0.000	0.683	0.854	1.055	1.311	1.699	2.045	2.462	2.756	3.396	3.659
30	0.000	0.683	0.854	1.055	1.310	1.697	2.042	2.457	2.750	3.385	3.646
40	0.000	0.681	0.851	1.050	1.303	1.684	2.021	2.423	2.704	3.307	3.551
60	0.000	0.679	0.848	1.045	1.296	1.671	2.000	2.390	2.660	3.232	3.460
80	0.000	0.678	0.846	1.043	1.292	1.664	1.990	2.374	2.639	3.195	3.416
100	0.000	0.677	0.845	1.042	1.290	1.660	1.984	2.364	2.626	3.174	3.390
1000	0.000	0.675	0.842	1.037	1.282	1.646	1.962	2.330	2.581	3.098	3.300
Z	0.000	0.674	0.842	1.036	1.282	1.645	1.960	2.326	2.576	3.090	3.291
	0%	50%	60%	70%	80%	90%	95%	98%	99%	99.8%	99.9%
					Conf	dence Le	vel				

Conclusion:

Calculated t-value > table t-value at significance level 0.05. Therefore, we reject the null hypothesis. We can conclude that the mean LSATS for Harvard freshman is higher than the average LSATS.