作业

1、假设一个系统中有 5 个进程,它们的到达时间和服务时间如表 3-1 所示,忽略 I/O 以及其他开销时间,若分别按先来先服务(FCFS)、非抢占及抢占的短作业优先 (SJF)、高响应比优先(HRRN)、时间片轮转(RR,时间片=1)、多级反馈队列调度算法(FB,第 i 级队列的时间片=2ⁱ⁻¹)进行 CPU 调度,请给出各进程的完成时间、周转时间、带权周转时间、平均周转时间和平均带权周转时间。

表 3-1 进程到达和需服务时间

进程	到达时间	服务时间
Α	0	3
В	2	6
· С	4	4
D	6	5
Е	8	2

FCFS:

进程	到达时间	服务时间	完成时间	周转时间	带权周转时间
Α	0	3	3	3	1.00
В	2	6	9	7	1.17
С	4	4	13	9	2.25
D	6	5	18	12	2.40
E	8	2	20	12	6.00

平均周转时间: (3+7+9+12+12)/5=8.6

平均带权周转时间: (1+1.17+2.25+2.4+6)/5=2.564

非抢占式 SJF:

进程	到达时间	服务时间	完成时间	周转时间	带权周转时间
Α	0	3	3	3	1.00
В	2	6	9	7	1.17
С	4	4	15	11	2.75
D	6	5	20	14	2.80
E	8	2	11	3	1.50

平均周转时间: (3+7+11+14+3)/5=7.6

平均带权周转时间: (1+1.17+2.75+2.8+1.5)/5=1.844

抢占式 SJF:

进程	到达时间	服务时间	完成时间	周转时间	带权周转时间
Α	0	3	3	3	1.00
В	2	6	15	13	2.17
С	4	4	8	4	1.00
D	6	5	20	14	2.80
Е	8	2	10	2	1.00

平均周转时间: (3+13+4+14+2)/5=7.2

平均带权周转时间: (1.00+2.17+1.00+2.80+1.00)/5=1.594

高响应比优先(HRRN):

进程	到达时间	服务时间	完成时间	周转时间	带权周转时间
Α	0	3	3	3	1.00
В	2	6	9	7	1.17
С	4	4	13	9	2.25
D	6	5	20	14	2.80
E	8	2	15	7	3.50

平均周转时间: (3+7+9+7+14)/5=8

平均带权周转时间: (1.00+1.17+2.25+3.50+2.80)/5=2.144

时间片轮转(RR):

进程	到达时间	服务时间	完成时间	周转时间	带权周转时间
Α	0	3	4	4	1.33
В	2	6	18	16	2.67
С	4	4	17	13	3.25
D	6	5	20	14	2.80
E	8	2	15	7	3.50

平均周转时间: (4+16+13+14+7)/5=10.8

平均带权周转时间: (1.33+2.67+3.25+2.8+3.5)/5=2.71

多级反馈队列调度(FB):

进程	到达时间	服务时间	完成时间	周转时间	带权周转时间
Α	0	3	4	4	1.33
В	2	6	18	16	2.67
С	4	4	15	11	2.75
D	6	5	20	14	2.80
E	8	2	16	8	4.00

平均周转时间: (4+16+11+14+8)/5=10.6

平均带权周转时间: (1.33+2.67+2.75+2.80+4.00)/5=2.71

作业

- 2、设在 t 时刻,系统中有 5 个进程,三种资源 A、B、C 的使用情况如下表所示,设系统可供使用的空闲资源数为 Available=2,2,1。若此时有以下三种不同的分配请求,请用银行家算法判断系统能否予以分配,并写出具体步骤。(注:以下各小题没有因果关系,每小题都以表中所示状态为当前状态)
 - (1) P3 进程申请资源 A、B、C 分别为 2、0、0, 能否分配, 为什么
 - (2) P1 进程申请资源 A、B、C 分别为 0、0、2, 能否分配, 为什么
 - (3) P2 进程申请资源 A、B、C 分别为 1、1、1,能否分配,为什么

进程		Max Need				
	Α	В	С	Α	В	С
P0	1	3	3	1	2	2
P1	3	2	2	2	2	1
P2	2	2	1	2	1	1
P3	2	0	2	1	0	1
P4	2	4	3	2	3	3

(1) 不能分配,因为 Request(A) > Need(A), P3 所需要的资源 A 的数量已经超过它所宣布的最大值 (2) 不能分配,因为 Request(C) > Need(C), P1 所需要的资源 C 的数量已经超过它所宣布的最大值

P2.Need=1、0、0,还是能够分配给 P2,使 P2 进程运行,不会发生死锁。

安全序列为: P2 -> P1 -> P3 -> P0 -> P4

(3) 可以分配,因为 Request(A,B,C) < Need(A,B,C)且 Request(A,B,C) < Available(A,B,C),分配资源后,Available=1、1、0,