Алгебра I, листочек 7

1. Постройте базисы над полем \Bbbk в алгебрах: матриц $\mathcal{M}at_n(\Bbbk)$; верхнетреугльных матриц; многочленов с коэффициентами в \Bbbk . Запишите законы умножения в этих базисах.

Очевидно, что на матрицы можно смотреть как на наборы чисел, а значит и как на элементы свободного модуля. Тогда матричные единицы $\{e_{i,j}\}$, в которых на одном месте стоит единица, а на остальных нули, образуют базис алгебры, более того часто матрицы строят как свободная алгебра на матричных единицах. Умножение матричных единиц происходит по следующему правилу $e_{i,j}e_{k,l}=\delta_{i,k}e_{i,l}$.

Базис верхнетреугольных матриц состоит из матричных единиц $e_{i,j}$, для которых $i \leq j$. Умножение остается таким же, проверим замкнутость по нему: пусть $i \leq j$ и $k \leq l$, если произведение $e_{i,j}e_{l,k}$ не нулевое, то j=l, тогда по транзитивности \leq мы получим $i \leq l$, а значит результат произведения также врехнетреугольный.

Так как полиномы имеют моном максимальной степени, то каждый полином раскладывается в линейную комбинацию x^n . Тогда $\{x^n\}$ – базис алгебры. Это нельзя формализовать из наивного определения полиномов, но если из рассматривать как элементы группового (наверно правильнее говорить моноидального, так как $\mathbb N$ не группа) кольца $K[\mathbb N]$, то это утверждение верно по определению. Произведение ведёт себя следующим образом, $x^n x^m = x^{n+m}$.

2. Постройте канонические изоморфизмы

(a) $U+W\cong U\oplus W/(U\cap W)$ для подпространств $U,W\leq V$

Если прочитать это соотношение как $U+W\cong U\oplus (W/(U\cap W))$, то изоморфизм нельзя канонически построить, так как придётся выбирать базис, и поэтому мы пойдём по иному пути, который верен в более общем случае для модулей.

 $U+W\cong (U\oplus W)/(U\cap W)$. Построим точную последовательность

$$0 \rightarrow U \cap W \rightarrow U \oplus W \rightarrow U + W \rightarrow 0$$

где нетривиальные стрелки $i=a\mapsto (a,-a)$ и $\pi=(a,b)\mapsto a+b$ в том порядке, в котором они появляются в последовательности. Её точность тривиальна, а тогда согласованно с ней искомое соотношение, которое следует для теоремы об изоморфизме для π , то есть $U+W=\mathrm{Im}(\pi)\cong U\oplus W/\mathrm{Ker}(\pi)=U\oplus W/\mathrm{Im}(i)\cong U\oplus W/U\cap W$, так как $i:U\cap W\to U\oplus W$ – вложение и факторизация происходит по нему. Сопутствующий изоморфизм будет следующим:

$$[(a,b)] \in U \oplus W/U \cap W \mapsto a+b$$

(b) [Теорема Нетер об изоморфизме] $(U+W)/U\cong W/(U\cap W)$ для подмодулей $U,W\leq V$

Построим сюръективный морфизм $\phi = a \in W \mapsto a + U \in (U + W)/U$, ядро которого $W \cap U$. Применим теорему о гомоморфизме и получим нужное соотношение $W/(U \cap W) \cong (U + W)/U$. Сопутствующий изомрфизм $w + U \cap W \in W/(U \cap W) \mapsto w + U \in (U + W)/U$.

(c) $V/(U+W) \cong (V/U)/(W/(U\cap W))$ для подмодулей $U,W \leq V$

Здесь правый фактор не происходит по стандартному вложению, так как одно не подмножество другого, поэтому это соотношение образовано из точной последовательности:

$$0 \to W/(U \cap W) \to V/U \to V/(U+W) \to 0$$

где нетривиальные стрелки следующие $i=w+U\cap W\mapsto w+U$ и $\pi=v+U\mapsto v+U+W$. Первая инъективна так как для $w\in W$, w+U=U означает, что $w\in U$, а тогда $w\in U\cap W$ и $w+U\cap W=U\cap W$. Вторая стрелка инъективна, так как для v+U+W можно найти прообраз v+U. Последовательность точна, так как с одной стороны для $w\in W$ w+U+W=U+W, а значит $\mathrm{Im}(i)\subseteq \mathrm{Ker}(\pi)$, с другой стороны,

если v+U+W=U+W, то $v\in U+W$, тогда v=u+w для некоторых $u\in U$ и $w\in W$. Тогда прообраз равен $v+U=w+u+U=w+U\in {\rm Im}(i)$ и мы получили второе включение. Осталось использовать теорему о гомеоморфизме $V/(U+W)={\rm Im}(\pi)\cong (V/U)/{\rm Ker}(\pi)=(V/U)/{\rm Im}(i)\cong (V/U)/(W/(U\cap W))$. Сопутствующий изоморфизм следующий $[v+U]\in (V/U)/(W/(U\cap W))\mapsto v+U+W$.

(d) $V/U \cong (V/W)/(U/W)$ для подмодулей $W \leq U \leq V$ Построим точную последовательность

$$0 \rightarrow U/W \rightarrow V/W \rightarrow V/U \rightarrow 0$$

где нетривиальные морфизмы $i=u+W\mapsto u+W$ и $\pi=v+W\mapsto U$. Единственная вещь достойная проверки – это точность посередине. С одной стороны для $u\in U$ $\pi(u+W)=U$, а значит $\mathrm{Im}(i)\leq \mathrm{Ker}(\pi)$, в другую сторону проверка также очевидна. Тогда согласно этой последовательности построим изоморфизм $V/U=\mathrm{Im}(\pi)\cong (V/W)/\mathrm{Ker}(\pi)=(V/W)/\mathrm{Im}(i)\cong (V/W)/(U/W)$, сопутствующий изоморфизм $[v+W]\mapsto v+U$.

Здесь во всех случаях корректность изоморфизма гарантирована теоремой о гомоморфизме.

3. Постройте канонический изоморфизм $V \cong U \oplus V/U$, где $U \leq V$.

Я не рассматриваю в доказуемое соотношение правую часть как сумму пространства и фактор пространства, так как тогда изоморфизм не будет каноническим, так как придется выбирать базисы. С другой стороны разложение на компоненты

Этот случай совпадает с первым пунктом прошлого задания, а тогда я вкратце повторю шаги. Построим точную последовательность

$$0 \to U \to U \oplus V \to V$$

где нетривиальные стрелки $i = u \mapsto (u, -u)$ и $\pi = (u, v) \mapsto u + v$. Точность гарантирует соотношение и индуцирует изоморфизм $[(u, v)] \mapsto u + v$.

4. Докажите, что

Здесь я изменю порядок пунктов, чтобы решение одних основывалось на предыдущих результатах.

- (a) $\dim(U \oplus W) = \dim(U) + \dim(W)$ для пространств U, W Выберем базис $\{u_i\}_{i \in I}$ в U и базис $\{w_j\}_{j \in J}$ в W, тогда базисом $U \oplus W$ будет $\{(u_i, 0)\}_{i \in I} \sqcup \{(0, w_j)\}_{j \in J}$, так как очевидно порождает $U \oplus W$ и линейно независим, если $\sum (u_i, 0)k_i + \sum (0, w_j)l_j = (0, 0) = (\sum u_ik_i, \sum w_jl_j)$, то в каждой координате линейная комбинация занулить, так как там нулевые линейные комбинация элементов базисов компонент суммы. Дизъюнктивная сумма по определению складывает кардиналы базисов, а значит формула суммы верна.
- (b) $\dim(V) = \dim(U) + \dim(V/U)$ для подпространства $U \leq V$ Для этого построим не канонический изоморфизм, выберем базис $\{u_i\}$ в U и дополним его элементами $\{v_i\}$ до базиса V. Тогда элемент $x = \sum u_i x_i + \sum v_j x_j$ мы отправим в $(\sum u_i x_i, \sum v_j x_j + U)$. Как нетрудно заметить, мы получим сюрьективный морфизм векторных пространств. Осталось проверить, его инъективность, она верна, так как если $(\sum u_i x_i, \sum v_j x_j + U) = (0,0)$, то по свойству базиса все координаты при u_i занулятся, но и так как тогда $\sum v_j x_j \in U$, то $\sum v_j x_j = \sum u_j k_j$, но по свойству базиса все координаты должны занулится, а поэтому координаты при v_j нулевые, ядро тривиально, морфизм инъективен, а значит теперь мы показали, что он изоморфизм.

Тогда по прошлому пункту из $V\cong U\oplus V/U$ заключаем, что $\dim(V)=\dim(U)+\dim(V/U)$.

- (c) $\dim(U+W)=\dim(U)+\dim(W)-\dim(U\cap W)$ для подпространств $U,W\leq V$ По прошлому заданию мы знаем, что $U+W\cong (U\oplus W)/(U\cap W)$, а тогда $\dim(U+W)=\dim(U\oplus W)-\dim(U\cap W)=\dim(U\cap W)$
- (d) $\dim(V) \dim(U) = \dim(V/(\operatorname{Im}(f))) \dim(\operatorname{Ker}(f))$ для гомоморфизма $f: U \to V$ Мы знаем, что $\operatorname{Im}(f) \cong U/\operatorname{Ker}(f)$, а значит $\dim(U) = \dim(\operatorname{Im}(f)) + \dim(\operatorname{Ker}(f)$. С другой стороны $\dim(V/\operatorname{Im}(f)) = \dim(V) \dim(\operatorname{Im}(f)) = \dim(V) \dim(\operatorname{Ker}(f))$, откуда мы и получаем искомое тождество.
- 5. Докажите, что целочисленными элементарными преобразованиями строк и столбцов любую целочисленную матрицу можно привести к диагональному виду с числами $d_1, ..., d_k$ на диагонали, так что $d_1 | ... | d_k$.

Мы постараемся показать, что любую матрицу $A_0 \in \mathcal{M}\!at_{n \times m}(\mathbb{Z})$ можно привести к виду

$$\left(\begin{array}{cc}
a_1 & 0 \dots 0 \\
0 \\
\vdots & A_1 \\
0
\end{array}\right)$$

где a_1 делит все коэффициенты в A_1 . Так как тогда можно продолжить алгоритм для матричного нижнего блока и так как целочисленные преобразования сохраняют наибольший общий делитель, то приведенный вида подматрицы A_1 на блоки a_2 и A_2 будет удовлетворять условию $a_1|a_2$.

Этап 1. Для начала, если матрица ненулевая, то можно перестановками строк и столбцов добиться того, чтобы в верхнем левом угле стоял не нуль. В $\mathbb Z$ у каждого числа есть только конечный набор делителей, и мы будем этим активно пользоваться.

Этап 2. Дальше мы добьёмся того, чтобы число a в верхнем левом угле делило все числа в первой строке и в первом столбце. Мы этого добьёмся следующей процедурой, если некоторое число b в первой строке или столбце не делится на a, то мы воспользуемся соотношением Безу и найдем целые числа α , β , что $a\alpha + b\beta = \gcd(a,b) = d$. Заменим a' = a/d и b' = b/d. Тогда у нас будет $a'\alpha + b'\beta = 1$. Этому соотношению будет соответствовать матрица с детерминантом 1.

$$P_0 = \left(\begin{array}{cc} \alpha & \beta \\ -b' & a' \end{array} \right)$$

Покажем, что эта матрица образована произведением элементарных матриц, соответствующих элементарным преобразованиям. Для этого обозначим a=(1,0) и b=(0,1), что можно записать в матричном виде

$$\left(\begin{array}{cc|c} 1 & 0 & a' \\ 0 & 1 & b' \end{array}\right)$$

Применим алгоритм евклида по строкам, в котором каждое действие соответствует элементарному преобразованию по окончанию алгоритма мы получим

$$\begin{pmatrix} x & y & 1 \\ z & w & 0 \end{pmatrix}$$

где матрица имеет детерминант 1. Это означает, что xa'+yb'=1 и za'+wb'=0. Так как $\mathrm{gdc}(a',b')=1$ и $\mathrm{gdc}(z,w)=1$, иначе детерминант не был бы 1, то нетрудно видеть, решив это диофантовое уравнение, что z=-b' и w=a'. Тогда матрица слева это в точности матрица P_0 . Она раскладывается в произведение элементарных.

Теперь если b лежит в первом столбце в строке i, то мы строим матрицу P по матрице из единичной матрицы I_m , занулив в ней 1 и i строки и поместив в (1,1) $(P_0)_{1,1}$, в (i,1) $(P_0)_{2,1}$, в (1,i) $(P_0)_{1,2}$ и в (i,i) $(P_0)_{i,i}$. Очевидно, что эта матрица также получена теми же элементарными преобразованиями, что и P_0 , но на иных строках 1 и i. Теперь если b

Домножение на P, как нетрудно убедится запишет в (1,1) $\gcd(a,b)$. Мы будем продолжать этот процесс, пока верхний левый коэфициент не будет делить все числа в первом столбце и в первой строке. Количество итераций ограничено количеством простых делителей верхнего левого коэффициента, так как каждая уменьшает их количество, а значит вычислимая ситуация наступит за конечное время.

Дальше мы вычтим первую строку и первый столбец необходимое число раз, чтобы занулить все коэффициенты в первой строке и в первом столбце, кроме верхнего левого коэффициента, после этого, если наш верхний левый коэффициент не делит какой-нибудь коэффициент из нижней блочной матрицы, то мы добавим строку с этим коэффициентом в первую и начнем заново процедуру этапа 2. Это имеет смысл, так как такое добавление не изменит наш верхний левый коэффициент, потому как в первом столбце под первой строчкой везде нули, и это действие перенесет неделящийся коэффициент наверх, относительно которого вновь можно считать нод. По той же причине, что и в прошлый раз вычисления закончатся за конечное время.

Теперь у нас будет нужный вид и когда вычисления закончатся у нас будет диагональная матрицаБ

6. Докажите, что подгруппа свободной? конечно порожденной абелевой группы свободна? и конечно порождена. Докажите, что любая свободная? конечно порожденная абелева группа изоморфна

$$\mathbb{Z}/d_1\mathbb{Z} \oplus \ldots \oplus \mathbb{Z}/d_k\mathbb{Z}$$

для некоторых d1, ..., dk, так что $d_1|...|d_k$. Единственно ли такое разложеие?

7. Верно ли, что подмодуль свободного модуля свободен? Это конечно же не верно, так как в свободном $\mathbb{Z}/4\mathbb{Z}$ -модуле $\mathbb{Z}/4\mathbb{Z}$ есть подмодуль $2\mathbb{Z}/4\mathbb{Z}$ и он конечно же не свободен, так как его порядок 2, что не является степенью порядка кольца $\mathbb{Z}/4\mathbb{Z}$, то есть не степень 4.