Лабораторная работа № 3

по курсу "Языки программирования и методы программирования" (информатика, 3 семестр)

Техническое задание

1. Постановка задачи

Написать программу на C++, реализующую алгоритмы (поиска) на графах. Написать краткое техническое задание (Т3). Выполнить реализацию. Написать для нее тесты.

2. Функциональные требования

Ориентированный граф должен позволять хранить в своих ребрах любые численные типы, то есть быть шаблонным.

Методы класса:

Метод:	Назначение:	Сигнатура:
PrintMatrix	Печатает матрицу	void PrintMatrix()
	смежности графа	
Dijkstra	Ищет все кратчайшие	Sequence <int>* Dijkstra(int start,</int>
	пути от заданной	int end)
	вершины методом	
	Дейкстры	
	Выбирает путь от	Sequence <int>*</int>
result_path	заданной вершины до	result_path(Sequence <int>*</int>
	нужной пользователю,	ex_path, Sequence <t>*</t>
	используя информацию	short_path, int start, int end)
	из предыдущего метода	
Length	Возвращает длину пути	T Length(Sequence <int>* path)</int>
PrintPath	Печатает вершины в	void PrintPath(Sequence <int>*</int>
	порядке их прохождения	path)

Если запрашивается путь из начальной вершины в нее же, то он считается равным нулю.

Если пути из начальной вершины в конечную не существует, он считается равным бесконечности.

Результат является одним кратчайшим путем, а не набором всех возможных путей из начальной вершины.

3. Требования к структурам данных

Ориентированный граф должен быть основан на матрице смежности, которая в свою очередь базируется на виртуальном классе Sequence, пользующийся реализацией методов ArraySequence. То есть матрица представляется идущими друг за другом строками в массиве.

Основные методы класса Sequence:

Метод:	Назначение:	Сигнатура:
GetSize	Возвращает размер	int GetSize() const
	подпоследовательности	
Set	Вставляет элемент по индексу	void Set(int index, T
		item)
Get	Возвращает элемент по	T Get(const int i) const
	индексу	
Delete_	Удаляет элемент по индексу	void Delete_(const int
		index)
Append	Вставляет элемент в конец	void Append(T value)
Prepend	Вставляет элемент в начало	void Prepend(T value)

4. Требования к интерфейсу

Должен быть реализован консольный интерфейс.

Интерфейс должен предоставлять пользователю выбор между задачами, поддерживать как автоматический, так и ручной ввод данных, давать возможность пользователю увидеть результат и промежуточные значения, а также время выполнения алгоритмов.

5. Требования к входным и выходным данным

Данные должны являться целыми числами.

6. Требования к тестированию

Все основные методы должны быть покрыты тестами.