An Introduction to Classical Predicate Calculus

- ♣ The Limitations of Propositional Logic **CPC**
- ♣ Formal (Object) Language (Syntax) of Classical First-Order Predicate Calculus (CFOPC)
- Substitutions
- Semantics (Model Theory) of CFOPC
- ♣ Semantic (Model-theoretical, Logical) Consequence Relation
- ♣ Hilbert Style Formal Logic Systems for CFOPC
- ♣ Gentzen's Natural Deduction System for CFOPC
- ♣ Gentzen's Sequent Calculus System for CFOPC
- ♣ Semantic Tableau Systems for CFOPC
- Resolution Systems for CFOPC
- Classical Second-Order Predicate Calculus (CSOPC)

Semantics (Model Theory) of CFOPC: The Fundamental Question

- The fundamental question
 - Why the semantics (model theory) of CFOPC is indispensable?
- **♣** The answer to the question
- Well-formed formulas of CFOPC have meaning only when an interpretation is given for the symbols of CFOPC.
- The semantics (model theory) of CFOPC gives a truth-value (truthfunctional) interpretation for the symbols/well-formed formulas of CFOPC.
- The semantics (model theory) of CFOPC provides a (philosophical and mathematical) fundamental basis for studying and using CFOPC.

Semantics (Model Theory) of CFOPC: Important Notes

- ♣ Important notes
 - The semantics (model theory) of **CFOPC** is the most intrinsic foundation of CFOPC.
 - Without a sound semantics, CFOPC is meaningless.
 - The semantics (model theory) of **CFOPC** is only relatively correct/sound/satisfactory, i.e., it is correct/sound/satisfactory only because it is based on those fundamental assumptions/principles underlying CML (Classical Mathematical Logic).

Fundamental Assumptions/Principles Underlying CML

- **♣** The classical abstraction
 - The only properties of a proposition that matter to logic are its form and its truth-value.
- The Fregean assumption / the principle of extensionality
 - The truth-value of a (composite) proposition depends only on its (composition) form and the truth-values of its constituents, not on their meaning
- The principle of bivalence
 - There are exactly two truth-values, "TRUE" and "FALSE". Every proposition has one or other, but not both, of these truth-values.
- The classical account of validity (CAV)
 - An argument is valid if and only if it is impossible for all its premises to be true while its conclusion is false.

83

Semantics (Model Theory) of CFOPC: Models (Structures)

- ♣ Models (Structures) for first-order languages
 - Let L(Con, Fun, Pre) be a first-order language determined by Con, Fun,
 - A model (structure) for L(Con, Fun, Pre) is an ordered pair M = (D, I) where **D** is a non-empty set of entities, called the **domain** or universe of M and I is a mapping, called an interpretation of M such that: for every constant symbol $c \in \mathbf{Con}$,

 c^{I} is an element (entity) of D, $c^{I} \in D$;

for every *n*-ary function symbol $f \in \mathbf{Fun}$,

 f^{I} is an *n*-ary function on $D, f^{I}: D^{n} \rightarrow D$;

for every *n*-ary predicate symbol $p \in \mathbf{Pre}$,

 p^{I} is an n-ary relation on D, $p^{I} \subseteq D^{n}$.

Semantics (Model Theory) of CFOPC: Models (Structures)

- Notes
 - The domain D defines the application area of the language L, and the interpretation mapping \boldsymbol{I} relates various symbols of L to entities and relationships among them in the application area D.
 - The interpretation mapping I relates each individual constant symbol c to an entity c^I in D, each n-ary function symbol f to an n-ary function f^I in D, and each *n*-ary predicate symbol *p* to an *n*-ary relation p^{l} in **D**.

84

Semantics (Model Theory) of CFOPC: Assignments

- Assignments in a model
 - An assignment Ass in a model M = (D, I) for the first-order language L(Con, Fun, Pre) is a mapping from the set of individual variables V to the domain D, Ass: $V \rightarrow D$.
 - The image of the individual variable x under the assignment Ass is denoted by x^{Ass} .
 - The assignment B in the model M is an x-variant of the assignment A in the model M, if A and B assign the same values to every individual variable in V except possibly x. (Note: An assignment may have many x-variants.)
- - **Ass** relates each individual variable x to an entity x^{ASS} in **D**.
 - A model may have many different assignments.
 - Once a model (structure) (D, I) for the language L(Con, Fun, Pre) together with an assignment Ass is defined (given), various symbols of L have certain meaning (interpretation) in the application area D.

Semantics (Model Theory) of CFOPC: Interpretations for Terms

- A Interpretations for terms
 - Let M = (D, I) be a model of the first-order language L(Con, Fun, Pre), and let A be an assignment in the model.
 - For every term $t \in \mathbf{Ter}$, its interpretation (a *value* in **D**) is defined as follows:
 - (1) $c^{IA} = c^I$ for every $c \in \mathbf{Con}$, if t = c;
 - (2) $x^{IA} = x^A$ for every $x \in \mathbf{V}$, if t = x;
 - (3) $[f(t_1, ..., t_n)]^{IA} = f^I(t_1^{IA}, ..., t_n^{IA})$ for every $f \in \mathbf{Fun}$.

Semantics (Model Theory) of CFOPC: Interpretations for Terms

- Let M = (D, I) be a model of the first-order language L(Con, Fun, Pre), and let A be an assignment in the model.
- The interpretation mapping I relates each individual constant symbol c to an entity c^I in D; each n-ary function symbol f to an n-ary function f^I in D; each *n*-ary predicate symbol *p* to an *n*-ary relation p^{I} in D.
- The assignment A relates each individual variable x to an entity x^{A} in D.
- For every term $t \in \mathbf{Ter}$ and every *n*-ary function symbol $f \in \mathbf{Fun}$, if t = c, tis interpreted as c^{I} , an entity in **D**; if t = x, t is interpreted as x^{A} , also an entity in D; and for n terms $t_1, ..., t_n \in \mathbf{Ter}$ and an n-ary function f^I in D, $f(t_1, ..., t_n)$ is interpreted as $f^I(t_1^{IA}, ..., t_n^{IA})$, its value is an entity in D.
- The value of a closed term does not depend on the assignment A.

Semantics (Model Theory) of CFOPC: Truth-Value of Formula

- ♣ Truth-value of a formula in a model
 - Let M = (D, I) be a model of the first-order language L(Con, Fun, Pre), and let A be an assignment in the model. For any $R \in WFF$, its *truth*value $v_f^{IA}(R)$ under A in M is defined by a truth valuation function $v_f^{IA}: \overrightarrow{\mathbf{WFF}} \rightarrow \{\mathbf{T}, \mathbf{F}\}$ as follows:
 - (1) for every atomic formula $p(t_1, ..., t_n) \in \mathbf{WFF}$, $v_f^{IA}(p(t_1, ..., t_n)) = \mathbf{T} \text{ if } (t_1^{IA}, ..., t_n^{IA}) \in p^I, \text{ and }$ $v_f^{IA}(p(t_1, ..., t_n)) = \mathbf{F}$ otherwise;
 - (2) for any $(\neg R)$, $(R*S) \in \mathbf{WFF}$, where * is a binary connective, $v_f^{IA}(\neg R), v_f^{IA}(R*S)$ are the same as the definition of v_f of **CPC**;
 - (3) for any $((\forall x)R)$, $v_f^{IA}(((\forall x)R)) = \mathbf{T}$ if $v_f^{IB}(R) = \mathbf{T}$ for every assignment \mathbf{B} in M that is an x-variant of A, and $v_f^{IA}(((\forall x)R)) = \mathbf{F}$ otherwise;
 - (4) for any $((\exists x)R)$, $v_f^{IA}(((\exists x)R)) = \mathbf{T}$ if $v_f^{IB}(R) = \mathbf{T}$ for some assignment \mathbf{B} in M that is an x-variant of A, and $v_f^{IA}(((\forall x)R)) = \mathbf{F}$ otherwise.

90

Semantics (Model Theory) of CFOPC: Truth-Value of Formula

Notes

- We use T and F to represent "TRUE" and "FALSE" respectively; they belong to our meta-language but not the object language of CFOPC.
- The truth-value of a closed formula (sentence) does not depend on the
- Recall: A formula with no free (occurrence) variables (called a closed formula or sentence) represents a proposition that must be true or false.
- Any atomic formula $p(t_1, ..., t_n)$ is valuated under A in M as T if and only if it is interpreted as a real relation instance of *n*-ary relation p^{I} in D.

89

Semantics (Model Theory) of CFOPC: Satisfiability of Formula

Satisfiability of a formula in a model

For any model M = (D, I) of the first-order language L(Con, Fun, Pre) and any $R \in \mathbf{WFF}$.

- R is satisfiable in M or R may be true in M IFF there is some assignment A (called a satisfying assignment) such that under A, $v_f^{IA}(R) = T$;
- *M satisfies R* or *R* is *true* in *M*, written as $| |_M R$, IFF $v_f^{IA}(R) = T$ for any assignment A:
- M does not satisfy R or R may be false in M IFF there is some assignment A such that under A, $v_f^{IA}(R) = \mathbf{F}$;
- R is **unsatisfiable** in M or R is **false** in M, written as $\neq_M R$, IFF $v_f^{IA}(R) = \mathbf{F}$ for any assignment \mathbf{A} .

Note

• A formula with free variables may be satisfied (i.e., true) for some values in the domain and not satisfied (i.e., false) for the others.

Semantics (Model Theory) of CFOPC: Logical Validity of Formula

- ♣ Logical validity of a formula (logical theorem)
 - For the first-order language $L(\mathbf{Con}, \mathbf{Fun}, \mathbf{Pre})$ and any $R \in \mathbf{WFF}, R$ is **logically valid**, written as $=_{CFOPC} R$, IFF $=_{M} R$ in any model M for the language (Ex: $R = (A \lor \neg A)$).
- ♣ Unsatisfiability of a formula
 - For the first-order language $L(\mathbf{Con}, \mathbf{Fun}, \mathbf{Pre})$ and any $R \in \mathbf{WFF}, R$ is **unsatisfiable**, written as $\neq_{\text{CFOPC}} R$, IFF $\neq_{M} R$ in any model M for the language (Ex: $R = (A \land \neg A)$).
 - For any $R \in \mathbf{WFF}$, R is logically valid IFF $\neg R$ is unsatisfiable, and R is satisfiable IFF $\neg R$ is not logically valid.
- * The undecidability of CFOPC [A. Church, 1936, A. M. Turing, 1936]
 - Theorem: The validity problem for CFOPC, i.e., whether a formula of CFOPC is valid or not, is undecidable.
 - $\bullet\,$ The undecidability of \boldsymbol{CFOPC} is one of the fundamental results for logic as well as for computer science.

Semantics (Model Theory) of CFOPC: Tautologies, Contradictions, and Contingencies

- * Tautologies, contradictions, and contingencies
 - A formula $A \in WFF$ is a *tautology* (*logical theorem*) of **CFOPC**, written as $| =_{CFOPC} A$, IFF $| =_M A$ for any model M of CFOPC, i.e., A is logically valid:

A formula $A \in \mathbf{WFF}$ is a *contradiction* of **CFOPC**, written as $\neq_{\mathbf{CFOPC}} A$, IFF $\neq_M A$ for any model M of **CFOPC** (i.e., A is unsatisfiable); A formula is a *contingency* IFF it is neither a tautology nor a contradiction.

- A formula must be any one of tautology, contradiction, and contingency.
- The set of all tautologies (logical theorems) of **CFOPC** is denoted by Th(CFOPC).
- Relationship between tautologies and contradictions
 - Theorem: For any $A \in \mathbf{WFF}$, A is a tautology IFF $(\neg A)$ is a contradiction, and A is a contradiction IFF $(\neg A)$ is a tautology.

Semantics (Model Theory) of CFOPC: Models of Formulas

- A Satisfiability of a set of formulas
 - For any model M = (D, I) of the first-order language L(Con, Fun, Pre) and any $\Gamma \subseteq \mathbf{WFF}$, Γ is *satisfiable* in M if there is some assignment A(called a *satisfying assignment*) such that under A, $v_f^{IA}(R) = \mathbf{T}$ for all $R \in$
 - Theorem (*Compactness*): Let Γ be a set of sentences. If every finite subset of Γ is satisfiable in model M, so is Γ .
 - Note: Γ may be an infinite set.
- Models of a set of formulas
 - For any model M = (D, I) of the first-order language L(Con, Fun, Pre) and any $\Gamma \subseteq \mathbf{WFF}$, M is called a **model** of Γ IFF $=_M R$ (i.e., $v_i^{IA}(R) = \mathbf{T}$ for any assignment A) for any $R \in \Gamma$.
 - The set of all models of Γ is denoted by $M(\Gamma)$.

Semantics (Model Theory) of CFOPC: Models of Formulas

- ♣ Consistency (Satisfiability) of a set of formulas
- For any $\Gamma \subseteq WFF$, Γ is *semantically (model-theoretically, logically)* consistent (satisfiable) IFF it has at least one model; Γ is semantically (model-theoretically, logically) inconsistent (unsatisfiable) IFF it has no model.
- Note
 - · Here, consistency says "has at least one model", and inconsistency says "has no model".

Some Tautologies of CFOPC

- $| =_{CFOPC} B(t) \rightarrow (\exists x) B(x)$, if t is free for x in B(x)
- $| =_{CFOPC} ((\forall x)B) \rightarrow (\exists x)B$
- $\models_{\mathbf{CFOPC}} ((\forall x)(\forall y)B) \rightarrow (\forall y)(\forall x)B$
- $| =_{CFOPC} ((\forall x)B) \Leftrightarrow \neg (\exists x) \neg B$
- $\models_{\mathbf{CFOPC}} ((\forall x)(B \rightarrow C)) \rightarrow (((\forall x)B) \rightarrow (\forall x)C)$
- $|\mathbf{=}_{CFOPC}(((\forall x)B) \land (\forall x)C) \Leftrightarrow (\forall x)(B \land C)$
- $=_{\text{CFOPC}} (((\forall x)B) \lor (\forall x)C) \rightarrow (\forall x)(B \lor C)$
- $\big| =_{\mathsf{CFOPC}} ((\exists x)(\exists y)B) \Longleftrightarrow (\exists y)(\exists x)B$ • $| =_{CFOPC} ((\exists x)(\forall y)B) \rightarrow (\forall y)(\exists x)B$

Let S be a set of sentences (closed formulas), and γ and δ be sentences. If $S \cup \{\gamma\}$ is satisfiable, so is $S \cup \{\gamma, \gamma(t)\}$ for any closed term t. If $S \cup \{\delta\}$ is satisfiable, so is $S \cup \{\delta, \delta(p)\}$ for any constant symbol p that is new to Sand δ.

Uniform Notation of First-order Formulas

♣ Uniform notation of first-order formulas [R. M. Smullyan, 1968]

- · Classify all quantified formulas and their negations into two categories, i.e., γ -formulas which act universally, and δ -formulas, which act existentially.
- For each variety and for each term t, an instance is defined.

100

102

Uniform Notation of First-order Formulas

A γ-formulas and δ-formulas and their instances

Universal		Existential	
γ	$\gamma(t)$	δ	$\delta(t)$
(∀ <i>x</i> Φ)	$\Phi[x/t]$	(∃ <i>x</i> Φ)	$\Phi[x/t]$
$\neg(\exists x\Phi)$	$\neg \Phi[x/t]$	$\neg(\forall x\Phi)$	$\neg \Phi[x/t]$

An Introduction to Classical Predicate Calculus

- ♣ The Limitations of Propositional Logic **CPC**
- ♣ Formal (Object) Language (Syntax) of Classical First-Order Predicate Calculus (CFOPC)
- Substitutions
- Semantics (Model Theory) of CFOPC
- Semantic (Model-theoretical, Logical) Consequence Relation
- ♣ Hilbert Style Formal Logic Systems for **CFOPC**
- ♣ Gentzen's Natural Deduction System for CFOPC
- ♣ Gentzen's Sequent Calculus System for CFOPC
- ♣ Semantic Tableau Systems for CFOPC Resolution Systems for CFOPC
- ♣ Classical Second-Order Predicate Calculus (CSOPC)

Semantic (Model-theoretical) Logical Consequence Relation

- ♣ Semantic (Model-theoretical, Logical) consequence relation
 - For any $\Gamma \subseteq \mathbf{WFF}$ and any $A \in \mathbf{WFF}$,

 Γ semantically (model-theoretically, logically) entails A, or A semantically (model-theoretically, logically) follows from Γ , or A is a semantic (model-theoretical, logical) consequence of Γ , written as $\Gamma \models_{\mathsf{CFOPC}} A$, IFF $\models_{\mathsf{M}} A$ for any model M of Γ .

- $\varnothing \mid =_{CFOPC} A = \mid =_{CFOPC} A$ and it means that A is a tautology (logical theorem) of CFOPC, $A \in \text{Th}(CFOPC)$.
- All semantic (model-theoretical, logical) consequences of premises
 - The set of all semantic (model-theoretical, logical) consequences of Γ is denoted by $C_{sem}(\Gamma)$.
- ♣ Note
 - The semantic (model-theoretical, logical) consequence relation of CFOPC is a semantic (model-theoretical) formalization of the notion that one proposition follows from another or others.

Semantic (Model-theoretical, Logical) Equivalence Relation

- ♣ Semantic (Model-theoretical, Logical) equivalence relation
- For any $A, B \in \mathbf{WFF}$, A is semantically (model-theoretically, logically) equivalent to B in CFOPC IFF both $\{A\} \mid =_{\text{CFOPC}} B$ and $\{B\} \mid =_{\text{CFOPC}} A$.
- Theorem: A is semantically (model-theoretically, logically) equivalent to B IFF $(A \leftrightarrow B)$ is a tautology.
- ♣ Properties of semantic (model-theoretical, logical) consequence relation
 - The same as those of CPC.

101

Semantic Deduction Theorems

- Semantic deduction theorems
 - Semantic (model-theoretical, logical) deduction theorem for CFOPC: For any $A, B \in \mathbf{WFF}$ and any $\Gamma \subseteq \mathbf{WFF}$,

 $\Gamma \cup \{A\} \bigm| =_{\mathsf{CFOPC}} B \mathsf{\ IFF\ } \Gamma \bigm| =_{\mathsf{CFOPC}} (A {\rightarrow} B);$

- $\{A\} \mid =_{\mathsf{CFOPC}} B \mathsf{IFF} \mid =_{\mathsf{CFOPC}} (A {\rightarrow\!\!\!\!\rightarrow} B).$
- Semantic (model-theoretical, logical) deduction theorem for CFOPC for *finite consequences*: For any $A_1, ..., A_{n-1}, A_n, B \in \mathbf{WFF}$ and any $\Gamma \subseteq \mathbf{WFF}$, $\Gamma \cup \{A_1,...,A_{n-1},A_n\} \models_{\mathsf{CFOPC}} B \mathsf{\ IFF\ } \Gamma \models_{\mathsf{CFOPC}} (A_1 {\rightarrow} (...(A_{n-1} {\rightarrow} (A_n {\rightarrow} B))...));$ $\Gamma \cup \{A_1,...,A_{n-1},A_n\} \ \big| =_{\mathbf{CFOPC}} B \ \text{IFF} \ \Gamma \ \big| =_{\mathbf{CFOPC}} ((A_1 \wedge (...(A_{n-1} \wedge A_n)...)) \rightarrow B).$

· The semantic deduction theorems are intrinsically important metatheorems of CFOPC.

Semantic Deduction Theorems

- - As a special case of the above deduction theorems, $\{A\}$ $\models_{CFOPC} B$ IFF $|=_{CFOPC}(A \rightarrow B)$, i.e., A semantically (model-theoretically, logically) entails B IFF $(A \rightarrow B)$ is a tautology.
 - In the framework of **CFOPC**, the semantic (model-theoretical, logical) consequence relation, which is a representation of the notion of entailment in the sense of meta-logic, is "equivalent" to the notion of material implication (denoted by '→' in CFOPC).
 - · However, in semantics, the notion of material implication is NOT an accurate representation of the notion of entailment.

An Introduction to Classical Predicate Calculus

- ♣ The Limitations of Propositional Logic **CPC**
- ♣ Formal (Object) Language (Syntax) of Classical First-Order Predicate Calculus (CFOPC)
- Substitutions
- ♣ Semantics (Model Theory) of **CFOPC**
- ♣ Semantic (Model-theoretical, Logical) Consequence Relation
- ♣ Hilbert Style Formal Logic Systems for **CFOPC**
- ♣ Gentzen's Natural Deduction System for **CFOPC**
- ♣ Gentzen's Sequent Calculus System for **CFOPC**
- ♣ Semantic Tableau Systems for **CFOPC**
- ♣ Resolution Systems for **CFOPC**
- ♣ Classical Second-Order Predicate Calculus (CSOPC)

Jingde Cheng / Saitama University