Seminar 2. Limbaje. Specificari. Gramatici independente de context simple

1. Multimi si limbaje

Se cere sa se defineasca (folosind multimi si descrierea proprietatilor specifice ale elementelor) urmatoarele limbaje. Se poate folosi concatenare, operatia * - inchiderea reflexiv tranzitiva.

- A. limbajul numerelor naturale in reprezentare binara
- B. limbajul numerelor intregi in reprezentare binara
- C. limbajul numerelor reale pozitive in reprezentare binara
- D. limbajul numerelor naturale in reprezentare zecimala
- E. limbajul numerelor intregi in reprezentare zecimala
- F. limbajul numerelor reale pozitive in reprezentare zecimala

2. Gramatici independente de context simple

1. Descrieti limbajul generat de urmatoarele gramatici:

```
 \begin{array}{ll} a) & G{=}(N,\,\Sigma,\,S,\,P) \\ & N{\,=\,}\{\,A,B\,\} \\ & \Sigma{=}\,\{\,a,\,b\,\} \\ & S{\,=\,}A \\ & P{:} & A{\,->\,}a\,B \\ & A{\,->\,}B \\ & B{\,->\,}b \end{array}
```

```
<nume-predicativ> -> <adjectiv>
<adjectiv> -> derivabila | continua
<substantiv> -> functie
<determinant> -> o | orice
```

- 2. Dati cate o gramatica care genereaza propozitiile:
 - a) ab, ac
 - b) abc

3. BNF si EBNF

1. Dati o descriere echivalenta in BNF si EBNF pentru doua dintre limbajele definite in sectiunile precedente.

4. Descrieri de limbaje folosind mecanisme generative

- 1. Fie L un limbaj peste alfabetul {a,b} definit dupa cum urmeaza:
 - (i) $ab \in L$
 - (ii) Daca $x \in L$ atunci $axb \in L$
 - (iii) Niciun alt cuvant nu apartine lui L.
 - a) Descrieti limbajul definit mai sus folosind multimi si descrierea proprietatilor specifice ale elementelor.
 - b) Descrieti limbajul definit mai sus folosind o gramatica independenta de context

5. Gramatici independente de context si limbajul generat

1. Sa se construiasca o gramatica care genereaza limbajul:

$$L = \{x^n y^n \mid n \in \mathbf{N}\}\$$

Pentru gramatica construita, demonstrati ca L(G) = L.

- 2. Analog pt. L = $\{a^{2n}bc \mid n \in \mathbb{N}\}$
- 3. Analog pt. $L = \{a^{2n+1} \mid n \in \mathbb{N}\}$

Probleme rezolvate

Rezolvarea problemei A din sectiunea 1:

A. limbajul numerelor naturale in reprezentare binara

$$L_A = \{1w \mid w \in \{0, 1\}^*\} \cup \{0\}$$

Rezolvarea problemei 1 din sectiunea 4:

1. a)
$$L = \{a^n b^n \mid n \in \mathbb{N}\}\$$

b)
$$G=(N, \Sigma, S, P)$$

$$N = \{A,B\}$$

$$\Sigma = \{a, b\}$$

$$S = A$$

$$P: A \rightarrow a S b$$

$$A \rightarrow \epsilon$$

Rezolvarea problemei 2 din sectiunea 5:

Sa se construiasca o gramatica care genereaza limbajul:

$$L = \{ a^{2n}bc \mid n \in \mathbf{N} \}$$

Pentru gramatica construita, demonstrati ca L(G) = L.

Gramatica G ce genereaza L (L=L(G)) este:

$$G = (\{S\}, \{a,b,c\}, \{S \rightarrow aaS \mid bc\}, S).$$

Demonstratia pt: L = L(G)

Egalitatea multimilor, $L(G) = \{a^{2n}bc | n \ge 0\}$ se demonstrează prin dublă incluziune:

a) orice cuvant din L este generat de G, adica

$$L=\{a^{2n}bc|n \ge 0\} \subseteq L(G)$$

Fie $w \in L$, oarecare. => $w=a^{2n}bc$. Trebuie sã arãtãm cã $w \in L(G)$.

Într-adevar, folosind de n ori productia 1. $S \rightarrow aaS$ si odata productia 2. $S \rightarrow bc$, avem:

$$S_{\frac{1}{2}}^{\frac{n}{2}} > (a^2)^n S_{\frac{n}{2}} > a^{2n}bc$$
, adica $a^{2n}bc \in L(G)$.

b) orice cuvant generat de G este in L (sau G nu genereaza nimic in plus), adicã

$$L(G) \subseteq \{a^{2n}bc \mid n \ge 0\}$$

A demonstra incluziunea inversã (" \supseteq "), adicã L(G) \subseteq { $a^{2n}bc \mid n \ge 0$ }, revine la a arãta cã gramatica G genereazã numai cuvinte de forma $a^{2n}bc$. Pentru a demonstra acest lucru sã considerãm propozitia care depinde de numãrul natural n, P(n):

"Folosind de n ori productiile $S \rightarrow aaS$, $S \rightarrow bc$ se obtin numai secvente de forma $a^{2n}S$ sau $a^{2(n-1)}bc$ ".

Demonstrãm proprietatea P(n) prin inductie matematicã.

- Verificare.
 Dacă n=1, deci folosind o singură productie, obtinem secventa a²S sau bc.
- 2. Dem. P(k) => P(k+1)

Presupunem cã P(k) este adevãratã si trebuie sã demonstrãm cã si P(k+1) este adevãratã. Secventele $a^{2(k+1)}S$, $a^{2k}bc$ se obtin folosind câte una din cele douã productii, pornind de la secventa $a^{2k}S$.

Din proprietatea P(n) rezultă că singurele cuvinte generate de gramatică sunt de forma $a^{2n}b$, $n \ge 0$ si este adevărată incluziunea " \supset ".