1- Introduction

There is lot of crimes in America the number crimes is increasing by the time so here, we want to move our store to place the have less crimes and more safe so this will be our main task focus on using the data that are provided through police department we will divide the areas and cluster them to determine the best option for moving our business.

Problem

If someone is looking to open Restaurant, where would he open it?

So, there is a recommendation needed for the owners of the restaurants so we will try to analyze and understand the data to extract the best area.

2- Methodology

My methodology will consist of the following

- 1- collect the data
- 2- Understand the Data
- 3- Preprocess the data
- 4- Modeling
- 5- Evaluation

3- collect the Data

Data is downloaded from

(website using the link (https://data.sfgov.org/api/views/wg3w-h783/rows.csv)

4- Understand the Data

In this section I will describe the data that will be used to analyses and predict the best places and neighborhood the following Data have 27 attributes

Attribute

Description

Incident Datetime	The date and time of the incident
Incident Date	The date of the incident
Incident Time	The Time of the incident
Incident Year	The year the incident occurred
Incident Day of Week	The day the incident occurred
Report Datetime	when the report was filed

Row ID	Identifier for the data set
Incident ID	identifier for incident reports
Incident Number	number issued on the report
CAD Number	Computer Aided Dispatch Number
Report Type Code	This code is used for the report types
Report Type Description	The description of the report type
Filed Online	Reports that are filed online

Incident Code	Code is used to describe the type of the incidents
Incident Category	Category mapped with incident code
Incident Subcategory	Subcategory mapped with incident code
Incident Description	description of the incident
resolution	resolution of the incident at the time of the report
Intersection	street names that intersect closes to the incident
CNN	identifier of the intersection

Police District	
Analysis Neighborhood	
Supervision District	The districts are numbered

Attribute

Description

Incident Datetime	The date and time of the incident
Incident Date	The date of the incident
Incident Time	The Time of the incident
Incident Year	The year the incident occurred
Incident Day of Week	The day the incident occurred
Report Datetime	when the report was filed

Row ID	Identifier for the data set
Incident ID	identifier for incident reports
Incident Number	number issued on the report
CAD Number	Computer Aided Dispatch Number
Report Type Code	This code is used for the report types
Report Type Description	The description of the report type
Filed Online	Reports that are filed online

Incident Code	Code is used to describe the type of the incidents
Incident Category	Category mapped with incident code
Incident Subcategory	Subcategory mapped with incident code
Incident Description	description of the incident
resolution	resolution of the incident at the time of the report
Intersection	street names that intersect closes to the incident
CNN	identifier of the intersection

Police District	
Analysis Neighborhood	
Supervision District	The districts are numbered

3- Data Preprocessing

First I will start with calculating the correlation for the attributes

```
[99]: df2 = df.corr()

[100]: df2

[100]:
```

Then after that I will drop the unnecessary attribute for the analysis

```
df.drop(['Row ID', 'Incident ID', 'Incident Number', 'CAD Number', 'Report Type Code', 'Filed Online', 'Incident Code', 'Incident Subcategory', 'CNN', 'Supervisor District', 'point',':

'Current Police Districts', 'Current Supervisor Districts', 'Analysis Neighborhoods', 'HSOC Zones as of 2018-06-05', 'ONED Public Spaces', 'Central Market/Tenderloin Boundary Poi

'Parks Alliance CPSI (27+TL sites)', 'ESNCAG - Boundary File', 'Areas of Vulnerability, 2016'], axis = 1, inplace = True)

df
```

After that I will use that data that are remaining in this data frame

Attribute

Description

Incident Date	The date of the incident
Incident Time	The Time of the incident
Incident Year	The year the incident occurred
Incident Day of Week	The day the incident occurred
Report Datetime	when the report was filed

Report Type Description	The description of the report type
Incident Category	Category mapped with incident code
Incident Description	description of the incident
resolution	resolution of the incident at the time of the report
Intersection	street names that intersect closes to the incident
Police District	Name of the police district location
Analysis Neighborhood	

Latitude	Numeric value for location
Longitude	Numeric value for location

Drop the missing values

The second preprocessing step that I did for the data is to remove the rows that contains Nan missing values

```
[131]: df = df.dropna(axis =0 )
```

Then after that I reduced some of the rows for the prediction and modeling but before starting the modeling I will visualize the highest 5 types of crimes

Visualize the top 5 crimes

Modeling

The Data can considered as classification problem I will use the classification models

1- Decision Tree

Decision Tree modelling is done with criterion=entropy and depth value of 10 to achieve the proper results

```
[144]: X_trainset, X_testset, y_trainset, y_testset = train_test_split(X, y, test_size=0.5, random_state=3)
[145]: drugTree = DecisionTreeClassifier(criterion="entropy", max_depth = 10)
       drugTree # it shows the default parameters
[145]: DecisionTreeClassifier(class_weight=None, criterion='entropy', max_depth=10,
                   max_features=None, max_leaf_nodes=None,
                   min_impurity_decrease=0.0, min_impurity_split=None,
                   min_samples_leaf=1, min_samples_split=2,
                   min_weight_fraction_leaf=0.0, presort=False, random_state=None,
                   splitter='best')
[146]: drugTree.fit(X_trainset,y_trainset)
[146]: DecisionTreeClassifier(class_weight=None, criterion='entropy', max_depth=10,
                  max_features=None, max_leaf_nodes=None,
min_impurity_decrease=0.0, min_impurity_split=None,
                   min_samples_leaf=1, min_samples_split=2,
                   min_weight_fraction_leaf=0.0, presort=False, random_state=None,
                   splitter='best')
[147]: predTree = drugTree.predict(X_testset)
[148]: print (predTree [0:5])
      print (y_testset [0:5])
       ['Mission' 'Tenderloin' 'Mission' 'Mission' 'Mission']
             Analysis Neighborhood
                     Castro/Upper Market
       2280
       15244
                                    Nob Hill
       18705
                               Mission Bay
       6116 Financial District/South Beach
       17406
                            Haight Ashbury
[150]: from sklearn import metrics
       import matplotlib.pyplot as plt
       print("DecisionTrees's Accuracy: ", metrics.accuracy_score(y_testset, predTree))
       DecisionTrees's Accuracy: 0.15014522976092948
```

The accuracy of the model = 0.150145

KNN

Preprocessing steps is that I did standers scaler transformation for the numeric value and then make the value of k is 9

And test the model

The accuracy of the model = 0.14463271576203332