

DEEP LEARNING

MODAL DECOMPOSITION

Reconstruction

Prediction

HOSVD

HODMD

ModelFLOWs

Pattern detection

Data Repairing

Superresolution

HODMD

Pattern detection

Reconstruction

Prediction

Autoencoders

Superresolution

Full DL

Hybrid

MODAL DECOMPOSITION

Pattern detection Reconstruction

Prediction

HOSVD

Data Repairing

HODMD

HODMD

ModelFLOWs

Superresolution

DEEP LEARNING

Pattern detection

Reconstruction

Autoencoders

Superresolution

Full DL

Prediction

Hybrid

Motivation

Physics of Fluids

LETTER

scitation.org/journal/phf

On the generation and destruction mechanisms of arch vortices in urban fluid flows o

Cite as: Phys. Fluids **34**, 051702 (2022); doi: 10.1063/5.0088305 Submitted: 15 February 2022 · Accepted: 8 April 2022 ·

AFFILIATIONS

ModelFLOWs

School of Aerospace Engineering, Universidad Politécnica de Madrid, Madrid E-28040, Spain

²Instituto de Matemática Pura y Aplicada, Universitat Politècnica de València, Camino de Vera, 46024 València, Spain

FLOW, Engineering Mechanics, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden

^{a)}Author to whom correspondence should be addressed: rvinuesa@mech.kth.se

https://doi.org/10.1063/5.0088305

Pattern analysis in turbulent complex flows in urban environments.

Methodology

Vega, J. M., & Le Clainche, S. (2020). *Higher order dynamic mode decomposition and its applications*. Academic Press.

$$V_{d+1}^K \cong R_1 V_1^{K-d} + R_2 V_2^{K-(d-1)} + \dots + R_d V_d^{K-1}$$

DMD modes

$$M(t) \simeq \sum_{m=1}^{M} \underbrace{a_m u_m}_{m} e^{(\delta_m + i\omega_m)t} \ for \ t_1 \le t \le t_1 + T$$

Amplitude

Growth-rate

Frequency

Database & Data preparation

Database & Data preparation

Snapshots Tensor =
$$\{N_v, N_x, N_y, N_z, N_t\}$$

$$\begin{cases} - & N_v = 3 \\ - & N_x = 100 \\ - & N_y = 125 \\ - & N_z = 50 \\ - & N_t = 224 \end{cases}$$

Spatial dimension = 1875000

Temporal dimension = 224

Calibration

Tolerance SVD: How many singular values we retain. In turbulence, different scales.

Values: 1e-2, 1e-3, 1e-4

Spatial dimension = 1875000

Temporal dimension = 224

Tolerance DMD: What minimum amplitude is associated to the modes. Different scales.

Values: 1e-2, 1e-3, 1e-4

Number of windows: Needed for the HODMD windowing process ($\sim 10-50\%~N_t$).

Values: 10, 20, 50, 100

Calibration

Tolerance SVD:

Values: 1e-3

Tolerance DMD:

Values: 1e-3

Window size:

Values: 50

Results

HODMD

Results

HODMD


```
Thanks for
watching! Visit us
on:
http://modelflows.e
S
```