Selection

Monday, February 3, 2025 9:47 AM

Last Time:

Today:

- Randomized Quicksort
- Select

• Quick select

Hws -> due Friday

select

Input: List of items A[i...n]

Torget rack

Output: The rth smallest Hem

1 7 8 6 2 9 3

r = 6

anickselect (Alimn), r)

- 1) pick a pirot ap
- 2) partition around the prost ap -) p
- (3) If $r = \hat{p}$, then a_{p-1} , the r^{+n} smallest If $r < \hat{p}$, then quick select $(A[1...(\hat{p}-1)], r)$ If $r > \hat{p}$, then quick select $(A[(\hat{p}+1)...n), r - \hat{p})$

1 5 8 6 2 9 3

12 (3) 5 8 6 9

 $\hat{p}=3$ sclect the rank 3 this from Efficiency $T(n) = o(n) + max (n-\hat{p}), T(\hat{p})$ partition worst-case: $T(n) = \varphi(n) + T(n-1) = \varphi(n^2)$ In practice: Randon's choose a pivot. Randomized quickselect -> (1) expected instime $\neg) T(n) = \theta(n) + T(n/2)$ 16921 -10 n° v.) (n') $(T(n) = \psi(n) + 2 T(n/2)$ mom_select (A[1...n], r)
if n<1000: do binte-force. otherwise: Q(n) - T (1) Divide A into 1/37 inbarray, of 5 items each M, M2 ... Mn/5. (2) Find the median of each of the subarrays, and

Find the median of each of the subarrays, and make a list M[1... 1/5] $T(\frac{3}{5})$ —) [3) $a_p \leftarrow mom - scleet(M[1... 7/5]), r = \frac{n}{10})$. p(n) - Partition (A, ap) ~ (3) Run mom-select on A[1...(p-1)], r A[p+1,...n], r-P we don't need $\hat{p} = \frac{\eta_2}{2} \dots$ let $\hat{p} = \left(\frac{n}{\beta}\right)$ dir sine $\beta > 1$ = $\frac{n}{4}$ max & T(n-p), T(p) $n - \frac{n}{\beta} = \frac{(p-1)n}{\beta} = \frac{n}{\left(\frac{p}{\beta-1}\right)} = \frac{n}{(-1)^{n}}$ $T(n) = \psi(n) + T\left(\frac{n}{r}\right)$ $\log_{c} 1 = 0$ $n^{\circ} \ldots n^{\circ}$ T(n) in o(n) by case 3. A = $(1, 6_2) 6_3 6_4 6_7$ $(3_1) 5_2 5_3 (5_4) 5_5$ $(1, 6_2) 6_3 6_4 6_7$ (1, 0, 0) b, b2 b3 -...

$$M = \left\langle a_2, b_4 \right\rangle$$

$$\alpha = \left\langle b_4 \right\rangle$$

$$\alpha = \left\langle b_4 \right\rangle$$

What 11 the rack of ap! Up 1, the median of M) ap is largor than no items each of these 1, bigger than 2 other things ... ap is rack at least $\frac{30}{10}$

ap is cart at most $\frac{70}{10}$

 $\frac{3n}{10}$ < β < $\frac{7n}{10}$

Efficiency

$$T(n) = \Theta(n) + T(n) + \max_{1 \le j \le n} T(n-p), T(p)$$

$$T(n) = \Theta(n) + T(n) + T(n) + T(n)$$

$$T(n) = \Theta(n) + T(n)$$

$$T(n) = \Theta(n)$$

$$T(n) =$$

$$T(n) = \phi(n) + T(\gamma_{5}) + T(\frac{\gamma_{n}}{10})$$

$$+(n) \qquad n \qquad (n)$$

$$+(n/5) \qquad f(\frac{\gamma_{n}}{10}) \qquad = D \qquad \frac{n}{5} \qquad \frac{\gamma_{n}}{10} \qquad = D \qquad \frac{n}{5} \qquad \frac{\gamma_{n}}{10} \qquad = D \qquad \frac{n}{5} \qquad \frac{n}{5} \qquad \frac{\gamma_{n}}{10} \qquad \frac{n}{5} \qquad \frac{n}$$

$$5 = D T(n) = \Theta(n) + T(\frac{\gamma_{n}}{\gamma_{n}}) + T(\frac{\gamma_{n}}{\gamma_{n}})$$

$$3 = D T(n) = \Theta(n) + T(\frac{\gamma_{n}}{\gamma_{n}}) + T(\frac{2n}{3})$$

$$\frac{\gamma_{n}}{\gamma_{n}} = \frac{2\gamma_{n}}{\gamma_{n}} = \frac{1}{2}$$

$$\frac{\gamma_{n}}{\gamma_{n}} + \frac{\gamma_{n}}{\gamma_{n}} + \frac{\gamma_{n}}{\gamma_{n}} = \frac{\gamma_{n}}{\gamma_{$$