CONTOH SOAL

KOLOID DAN KIMIA INTI

1. Soal SPMB

Efek penghamburan cahaya dari lampu mobil oleh partikel dalam kabut adalah

- (A) Etanol
- (B) Tyndall
- (C) Karbon dioksida
- (D) Rutherford
- (E) Kalsium karbonat

Jawaban: B

Efek penghamburan cahaya pada koloid dinamakan efek Tyndall.

2. Soal SNMPTN

Air santan merupakan contoh koloid sistem emulsi

SEBAB

Dalam air, santan medium pendispersi dan fase terdispersinya berwujud cair

Jawaban: A

Air santan merupakan sistem koloid yang medium pendispersinya cair dan fase terdispersinya juga cair, yang dinamakan emulsi

POLIMER, BIOKIMIA, DAN KIMIA LINGKUNGAN

Polimer adalah molekul raksasa dengan rantai sangat panjang yang terbentuk dari gabungan molekul-molekul sederhana (monomer). Berdasarkan proses polimerisasinya (reaksi penggabungan) polimer dapat dibagi menjadi dua, yaitu polimer adisi dan polimer kondensasi.

POLIMER ADISI

POLIMER KONDENSASI

Monomer:

Harus memiliki ikatan rangkap -C=C-

Pada proses polimerisasi tidak ada molekul yang hilang

Contoh:

Karet: polimer dari isoprena (2-metil-1,3-butadiena)

Plastik:

 $CH_2=CH_2$ (etena) = polietilena (PE)

CH₂=CHCH₃ (propena) = polipropilena (PP)

CH₃=CHCl (vinil klorida) = polivinilklorida (PVC)

 $CH_3 = CH - C_6H_6$ (stirena) = polistirena (PS)

CF, = CF, (tetrafluoroetena) = PTFE (teflon)

Monomer:

Harus memiliki gugus fungsi (–OH, –COOH, atau –NH,)

Pada proses polimerisasi ada molekul yang dilepaskan (misalnya H₂O)

Contoh:

- Protein (polipeptida): polimer dari asam amino
- Polisakarida: polimer dari glukosa serat sintesis:
- Poliester (tetoron): polimer dari asam paraftalat
- Poliamida (nilon): polimer dari asam adipat

a. KARBOHIDRAT

Karbohidrat merupakan senyawa karbon, hidrogen, dan oksigen yang terdapat di alam dan merupakan hasil fotosintesis tumbuhan yang mempunyai klorofil. Berdasarkan ukuran molekulnya, karbohidrat dapat dikelompokkan sebagai berikut:

1. Monosakarida

Merupakan karbohidrat yang paling sederhana, tidak dapat dihidrolisis lagi menjadi karbohidrat yang lebih kecil. Monosakarida yang terpenting adalah:

- a) Glukosa
- b) Galaktosa
- c) Fruktosa

2. Disakarida

Karbohidrat yang terbentuk dari dua monosakarida, dapat dihidrolisis menjadi monosakarida-monosakarida penyusunnya. Disakarida yang terpenting adalah:

- a) Maltosa: glukosa + glukosa
- b) Laktosa: glukosa + galaktosa
- c) Sukrosa: glukosa + fruktosa

Sifat-Sifat Karbohidrat

- 1. Semua karbohidrat bersifat optis aktif
- Monosakarida dan disakarida rasanya manis dan larut dalam air, sedangkan polisakarida rasanya tawar dan tidak larut dalam air.
- 3. Beberapa reaksi karbohidrat:
 - a. Hidrolisis: polisakarida → disakarida
 → monosakarida
 - Fermentasi: glukosa → etanol + CO₃
 - c. Dehidrasi: karbohidrat → Karbon
 + H₂O

Reaksi Uji Karbohidrat

•		
Uji Reaksi	Identifikasi	Tanda
Uji Fehling	Glukosa, galaktosa, maltosa, laktosa, glikogen Glukosa, galaktosa, maltosa, laktosa (banyak digunakan untuk uji kandungan glukosa dalam urine) Glukosa, galaktosa, maltosa, laktosa	Terbentuk endapan merah bata
Uji Benedict		Terbentuk endapan merah bata
Uji Tollens		Terbentuk endapan cermin perak
Uji Seliwanoff	Fruktosa, sukrosa	Terbentuk larutan merah
Uji lodium	Amilum	Terbentuk warna biru/ ungu

b. AMINA, ASAM AMINO, DAN PROTEIN

Amina adalah senyawa organik yang mengandung atom nitrogen. Amina mempunyai sifat basa karena pada atom N terdapat pasangan elektron bebas (PEB). Amina merupakan senyawa turunan amonia di mana satu atau lebih atom H diganti oleh gugus alkil. Karena N dapat mengikat 3 gugus/atom lain maka terdapat tiga jenis amina, yaitu amina primer (satu atom H diganti oleh gugus alkil; RNH₂), amina sekunder (dua atom H diganti oleh gugus alkil; R₂NH), dan amina tersier (Semua atom H diganti oleh gugus alkil; R₃N)

amina tersier amina sekunder

Asam amino adalah senyawa yang mengandung gugus karboksil (–COOH) dan gugus amina (–NH₂). Rumus umum untuk asam amino adalah sebagai berikut:

$$R- \overset{\mathsf{H}}{\underset{\mathsf{NH}_2}{\mathsf{COOH}}}$$

ASAM AMINO

Esensial	Nonesensial
Arginin, fenilalanin, his- tidin, isoleusin, leusin, lisin, metionin, treonin, triptofan, valin.	Alanin, asam aspartat, asam glutamate, asparagin, glisin, glutamine, prolin serin istein, tirosin

Sifat-sifat asam amino

- Bersifat amfoter, karena mempunyai gugus karboksil (-COOH) yang bersifat asam dan gugus amina (-NH₂) yang bersifat basa
- 2. Dapat membentuk ion zwitter, yaitu ion yang bermuatan ganda (+) dan (–).

 Semua asam amino bersifat optis aktif, kecuali glisin. Pada glisin, gugus R digantikan oleh atom H sehingga tidak terdapat atom C-asimetrik.

4. Dapat berpolimerisasi membentuk protein melalui suatu ikatan peptida

5. Larut baik dalam air

Reaksi uji protein

Reaksi Uji	Identifikasi	Tanda
Uji biuret	lkatan peptida	Timbul warna larutan ungu
Uji xantho- proteat	Asam amino yang mengandung gugus fenil (cincin benzena)	Timbul warna larutan kuning

Uji kandungan
belerang di Timbul
asetat dalam asam endapan hitam
amino

Uji millon Ikatan peptida Warna larutan
merah

a. Pencemaran Udara

Jenis Pencemar Udara

Pencemar udara dapat dikelompokkan sebagai berikut:

Kelompok		Subkelompok	Contoh
Gas anorganik	1.	Oksida nitrogen	NO; NO ₂ ; N ₂ O ₅
	2.	Oksida belerang	SO ₂ ; SO ₃
	3.	Oksida karbon	CO; CO ₂
	4.	Gas anorganik lain	H ₂ S; HF; NH ₃ ; Cl ₂
Gas organik	1.	Hidrokarbon	Metana, butana, oktana, benzena, asetilena, etilena,
	2.	Aldehid & keton	butadiena.
	3.	Gas Organik Lainnya	Formaldehida, aseton
			Hidrokarbon terklorinasi, alkohol, asam organik.
Partikulat	1.	Partikulat padat	Uap, debu, asap, abu, karbon, asbes, timbal.
	2.	Partikulat cair	Kabut, buih, minyak, lemak, asam.

1. Oksida karbon (CO dan CO₂)

Sumber: asap kendaraan bermotor, asap rokok, dan pembakaran bahan bakar minyak.

Efek: CO beracun bagi tubuh karena di dalam tubuh CO akan bereaksi dengan hemoglobin (Hb) dalam darah. Reaksi CO dengan Hb 210 kali lebih kuat dibandingkan dengan O₂ dengan Hb. CO₂ bersama oksida nitrogen, metana, dan CFC juga dapat menyebabkan efek rumah kaca (*global warming*).

2. Oksida belerang (SO₂ dan SO₃) Sumber: industri H₂SO₄, pembakaran minyak dan batu bara, oksidasi bijihbijih sulfida di industri.

Efek: SO₂ menyebabkan radang paruparu dan tenggorokan, serta menyebabkan klorosis (kepucatan) daun tanaman.

SO₃ menyebabkan hujan asam, yang mengakibatkan korosi pada logamlogam dan kerusakan bangunan yang terbuat dari batu pualam.

Oksida nitrogen (NO, NO₂, N₂O₅)
 Sumber: petir dan asap kendaraan bermotor

Efek: oksida-oksida nitrogen

menghasilkan fotochemical smog (kabut asap) yang menyebabkan mata perih, sesak napas, dan tanaman layu.

NO₂ + air g HNO₃ menghasilkan hujan asam.

4. Hidrokarbon (CH₄)

Sumber: pembakaran bensin dan minyak bumi.

Efek: efek rumah kaca, *fotochemical smog*, dan anoksia (penyakit kekurangan oksigen)

5. Freon (CF,Cl,)

Sumber: pendingin ruangan, lemari es, hair spray, deodoran.

Efek: efek rumah kaca dan merusak lapisan ozon.

6. Partikulat

Timbal (Pb)

Sumber: zat aditif bensin (TEL). **Efek:** gangguan syaraf pada bayi.

Kadmium (Cd)

Sumber: industri kimia, tekstil, keramik **Efek**: penyakit *itay-itay byo*, merusak ginjal, hati, tulang, dan kelenjar gondok.

Merkuri (Hg)

Sumber: industri termometer, industri pengolahan bijih emas, perak, dan tembaga.

Efek: menyebabkan sendi-sendi kaku, gangguan penglihatan, gangguan mental, dan kematian.

Nikel (Ni)

Sumber: batu bara, bahan bakar diesel, dan rokok.

Efek: kanker paru-paru

Kasus-kasus Pencemaran Udara

Kasus	Pencemar
Efek rumah kaca (<i>green</i> house effect)	CO ₂ , N ₂ O, CH ₄ , CCl ₂ F ₂ (freon)
Kabut fotokimia (photochemical smog)	Oksida nitrogen, hidrokarbon, O ₃ (ozon)
Hujan asam	SO ₂ , SO ₃ , NO ₂
Lubang ozon	NO, CCl ₂ F ₂ (freon)

b. Pencemaran Air

> Akibat yang ditimbulkan

- Menurunnya pH air, memperbesar sifat korosi air pada Fe, dan dapat mengakibatkan terganggunya kehidupan organisme air.
- Kenaikan suhu air mengakibatkan kelarutan O₂ berkurang.
- Adanya pembusukan zat-zat organik yang mengubah warna, bau, dan rasa air.

Syarat air bersih

- Jernih, tidak berwarna, tidak berbau, dan tidak memiliki rasa
- Memiliki pH netral
- · Mengandung oksigen terlarut
- Tidak mengandung ion yang merugikan makhluk hidup
- DO (Dissolved Oxygen) atau oksigen terlarut adalah jumlah oksigen terlarut dalam air yang berasal dari fotosintesis. Semakin besar nilai DO semakin banyak oksigen yang terlarut maka kualitas air semakin baik.
- BOD (Biochemical Oxygen Demand) adalah banyaknya oksigen yang diperlukan pada proses biokimia di dalam air. Semakin besar nilai BOD maka semakin tercemar air tersebut.
- COD (Chemical Oxygen Demand) adalah jumlah oksigen yang diperlukan untuk mengoksidasi zat-zat organik di dalam air. Semakin besar nilai COD maka kualitas air semakin buruk.

Sumber Pencemaran Air

Sumber	Pencemar	Efek
	Pupuk	Menyuburkan ganggang dan eceng gondok
Limbah pertanian	Pestisida	Meracuni ekosistem
F	Sampah pertanian	Berbau dan menghalangi aliran air

	Sampah plastik	Sukar terdegradasi
Limbah rumah	Sampah organik	Menimbulkan bau dan sumber kuman
tangga	Limbah detergen	Sukar terdegradasi dan mengandung pospat yang menyuburkan ganggang
Limbah	Asam/ basa	Menaikkan/ menurunkan pH
industri (logam		Mengganggu sistem syaraf janin dan bayi
berat)		Penyakit <i>itay itay byo</i>
	• 5	Penyakit teluk minamata

Air Sadah

Air sadah dapat dibagi menjadi 2, yaitu:

Air sadah sementara

Air yang mengandung (HCO₃-), atau boleh jadi air tersebut mengandung senyawa kalsium bikarbonat (Ca(HCO₃)₂) dan atau magnesium bikarbonat (Mg(HCO₃)₂). Kesadahan sementara dapat dihilangkan dengan cara:

 Mendidihkan atau memanaskan air tersebut, karena garam karbonat mengendap pada pemanasan.

$$Ca(HCO_3)_{2(aq)} \rightarrow CO_{3(s)} + CO_{2(q)} + H_2O_{(l)}$$

Menambahkan larutan Ca(OH),

$$Ca(HCO_3)_{2(aq)} + Ca(OH)_{2(aq)} \rightarrow 2CaCO_{3(s)} + 2H_2O_{(j)}$$

2. Air sadah tetap

Air sadah tetap adalah air sadah yang mengadung anion selain ion bikarbonat, dapat berupa ion Cl⁻, NO₃⁻, dan SO₄²⁻. Contoh: CaCl₂, Ca(NO₃)₂, CaSO₄, MgCl₂, Mg(NO₃)₂.

Kesadahan tetap dapat dihilangkan dengan cara-cara berikut:

• Proses soda-kapur Direaksikan dengan soda Na_2CO_3 dan kapur $Ca(OH)_2$ sehingga ion-ion Ca^{2+} dan Mg^{2+} diendapkan $Ca(HCO_3)_{2(aq)} + Ca(OH)_{2(aq)} \rightarrow (2CaCO_{3(s)} + 2H_2O_{(l)})$ $MgSO_{4(aq)} + Ca(OH)_{2(aq)} \rightarrow Mg(OH)_{2(s)} + CaSO_{4(aq)}$ $CaSO_{4(aq)} + Na_2CO_{3(aq)} \rightarrow CaCO_{3(s)} + Na_3SO_{4(aq)}$

Proses zeolit

Dengan cara ini, air sadah dialirkan melalui natrium zeolit sehingga ionion Ca²⁺ dan Mg²⁺ akan diikat zeolit menggantikan ion Na⁺ membentuk kalsium atau magnesium zeolit.

- Distilasi (penyulingan)
 Cara ini relatif mahal khususnya untuk produksi dalam jumlah besar.
- Menggunakan resin penukar ion Resin penukar ion kini banyak digunakan untuk melunakkan air, baik untuk kebutuhan rumah tangga maupun industri.

Keuntungan dan kerugian dari air sadah

Keuntungan air sadah adalah sebagai berikut:

- Mempunyai rasa yang lebih baik daripada air lunak.
- Menyediakan kalsium yang diperlukan tubuh, misalnya untuk pembentukan gigi dan tulang.
- Senyawa timbal (dari pipa air) lebih sukar larut dalam air sadah. Timbal merupakan racun bagi tubuh.

Kerugian air sadah adalah sebagai berikut:

- Memboroskan sabun
- Karena air sadah menggumpalkan sabun membentuk scum (buih) sehingga sabun tidak akan berbuih sebelum ion Ca²⁺ dan Mg²⁺ mengendap.
- Scum dapat meninggalkan noda pada pakaian sehingga pakaian menjadi kusam.
- Menimbulkan kerak pada ketel, pipa air, dan pipa radiator sehingga mengakibatkan boros bahan bakar karena keraknya tidak menghantarkan panas dengan baik dan dapat menyumbat pipa air

c. Pencemaran Tanah

Penyebab pencemaran tanah adalah:

- Penggunaan pupuk atau pestisida yang berlebihan
- · Limbah radioaktif
- Sampah yang tak bisa diuraikan oleh mikroba, seperti plastik dan karet
- Zat-zat pencemar udara dapat larut bersama air hujan dan mencemari tanah.

POLIMER, BIOKIMIA, DAN KIMIA LINGKUNGAN

CONTOH SOAL

1. Soal SPMB

Reaksi pembentukan glukosa (C₆H₁₂O₆) pada tumbuhan melalui reaksi antara gas CO₂ dan air dengan bantuan sinar matahari merupakan proses fotosintesis

SEBAB

Glukosa merupakan polimer yang tersusun oleh rantai CO₂ dan H₂O secara berselangseling.

Jawaban: C

$$CO_2 + H_2O \xrightarrow{UV} C_6H_{12}O_6 + O_2$$

merupakan reaksi fotosintesis (**pernyataan** benar)

Glukosa merupakan monomer dari polisakarida

Struktur glukosa: (alasan salah)

2. Soal SNMPTN

Molekul H₂NCH₂CH₂COOH tidak dapat membentuk polimer

SEBAB

Reaksi antara gugus karboksil (–COOH) dengan gugus amino (–NH₂) antardua molekul H₂NCH₂CH₂COOH merupakan reaksi adisi

Jawaban: E

Molekul H₂NCH₂CH₂COOH merupakan asam amino yang <u>dapat</u> membentuk polimer menjadi protein. (**pernyataan salah**)

Reaksi asam amino dengan asam amino lainnya membentuk protein terjadi antara gugus karboksilat dengan gugus amino yang dinamakan reaksi kondensasi. (alasan salah)