

1. Inhaltsverzeichnis

1.	Inhaltsverzeichnis	2
2.	Informatik	3
2.1.	Mengenlehre	3
2.1.1.	Mengenoperationen	3
2.2.	Relationen – Spezielle Klassen von Relationen	4
2.3.	Abbildungen	7
2.3.1.	Rechts eindeutige Relation	7
2.3.2.	Links eindeutige Relation	7
2.3.3.	Links vollständige Relation	7
2.3.4.	Rechts vollständige Relation	8
2.3.5.	Totale Abbildung	
2.3.6.	Surjektive Abbildung	8
2.3.7.	Injektive Abbildung	8
2.3.8.	Surjektive Abbildung	
2.4.	Algorithmen und Datenstrukturen	.10
2.4.1.	Rekursion	.10
2.4.2.	Beispiele für Rekursion	.10
2.4.3.	Vollständige Induktion	
2.4.4.	Sortieralgorithmen	.12
2.4.5.	AVL-Baum	15
2.4.6.	Vielwegbaum	16
2.5.	Aussagenlogik	17
2.5.1.	Grundbegriffe	17
2.5.2.	Implikation	
2.5.3.	Beispiele für Tautologien	
2.5.4.	Äquivalenz von Formeln	17
2.5.5.	Allgemeine Äquivalenzen	17
2.5.6.	Umformungsregeln	18
2.5.7.	Konjunktive Normalform	18
2.5.8.	Resolventenprinzip	
2.5.9.	Hornformeln	
2.5.10.	Markierungsalgorithmus für Hornformeln	.20
2.6.	Graphentheorie	.21
2.6.1.	Definitionen	21
2.6.2.	Eulerscher Weg	22
2.6.3.	Eulerscher Graph	
2.7.	Graph kürzester Weg	
2.7.1.	Flüsse in Netzwerken, Ermittlung maximaler Fluss	
2.8.	Automatentheorie	
281	Grundheariffe	25

2. Informatik

2.1. Mengenlehre

2.1.1. Mengenoperationen

	A B
Schnittmenge $A \cap B$ Alle Elemente die zu A und gleichzeitig zu B gehören. $A \cap B = \{x \mid x \in A \land x \in B\}$	A
	A B
Produktmenge A×B	Beispiel: $A = \{a;b;c\}$ $B = \{u;v\}$ $A \times B = \{(a;u);(a;v);(b;u);(b;v);(c;u);(c;v);\}$

2.2. Relationen – Spezielle Klassen von Relationen

Identische Relation	$I = \{(x, x) \mid x \in M\}$		
	- jedes x steht nur in Relation zu x (sich selbst)		
1 3 2	Matrixdarstellung: 1 2 3		
	Nur Hauptdiagonale ist belegt.		

Symmetrische Relation

$(x,y) \in R \text{ folg } t(y,x) \in R \quad R = R^{-1}$

- zu jedem Pfeil gibt es einen Umkehrpfeil

Matrixdarstellung:

	1	2	3
1	1	1	1
2	1	1	1
3	1	1	0

Spiegelung an Hauptdiagonale möglich, Diagonale muss keine 1er enthalten, da bei Spiegelung nicht relevant.

Asymmetrische Relation

- weder Umkehrpfeile noch Ringpfeile

-gehört 1→2 zur Relation, gehört 2→1 nicht dazu

2

Matrixdarstellung:

	1		3
1	0	1	1
2	0	0	1
3	0	0	0

Kein Element ist mit sich selbst verknüpft und kein Element ist rückverknüpft

Irrereflexiv und antisymetrisch

Antisymmetrische Relation

Matrixdarstellung:

	-		<u> </u>
1	1	1	1
2	0	1	1
3	0	0	0

Elemente dürfen mit sich selbst verknüpft sein, aber keine Rückverknüpfungen zwischen Elementen

Transitive Relation	$(x,y) \in R$ $(y,z) \in R$ folgt $(x,z) \in R$			
	- zu je 2 Pfeilen gibt es einen Überbrückungspfeil			
	Matrixdarstellung:			
	1 2 3			
	1 1 1 1			
2	2 0 1 1			
	3 0 0 0			
	Wann immer 2 Pfeile aufeinander folgen gibt es			
3	einen Pfeil der diese überbrückt			
Bsp.: $1 \rightarrow 3$ und $1 \rightarrow 2 \rightarrow 3$				

Aquivalenzrelation - ist reflexiv, symmetrisch und transitiv Ordnung - reflexiv, antisymmetrisch und transitive Relation von R in M Partielle Ordnung: **Totale Ordnung**

dargestellt werden. Totale / partielle Ordnung 2 Elemente von M sind miteinander vergleichbar,

ansonsten partielle Teilordnung

2.3. Abbildungen

2.3.1. Rechts eindeutige Relation

 jedem Element von A (links) wird höchstens ein Element der rechten Menge B zugeordnet

- die Pfeile nach rechts sind eindeutig

2.3.2. Links eindeutige Relation

 jedes Element von rechts kommt h\u00f6chstens einmal als Bild eines Elements der linken Menge A vor

- auf jedes Element von B zeigt genau ein Pfeil

2.3.3. Links vollständige Relation

 - jedem Element von A (links) wird mindestens ein Element aus B zugeordnet

2.3.4. Rechts vollständige Relation

- jedes Element kommt mindestens einmal als Bild vor

2.3.5. Totale Abbildung

Beispiel: x²

- rechts eindeutig und links vollständig
- jedes Element v. A darf mit maximal einem Element aus B in Beziehung stehen

Definitionsbereich: Werte aus A Wertebereich: Werte aus B

2.3.6. Surjektive Abbildung

- jedes Element der Zielmenge kommt als Bild vor (zu jedem Element von B führt ein Pfeil)

2.3.7. Injektive Abbildung

- jedes Element der Zielmenge kommt höchstens einmal als Bild vor

2.3.8. Surjektive Abbildung

- ist injektiv und surjektiv jedes Element der Zielmenge kommt genau einmal als Bild vor

2.4. Algorithmen und Datenstrukturen

Statische Finitheit: Algorithmus darf nicht unendlich groß sein (Quelltext hat ein Ende) Dynamische Finitheit: benötigter Speicher darf nicht unendlich groß sein

2.4.1. Rekursion

```
Allgemeiner Ansatz:
int sum(int zahl) {
    int sum = 0;
    if (zahl==1) {
        sum=1;
        return sum;
    }
    else {
        sum=zahl + sum(zahl-1);
        return sum;
    }
}
```

2.4.2. Beispiele für Rekursion

•	
Summe der ersten n natürlichen Zahlen	geschlossene Formel: $\left(\frac{n^*(n+1)}{2}\right)$
	$sum(n) = \begin{cases} 0 & // n = 0 \\ sum(n-1) + 1 & // n \ge 1 \end{cases}$
Fakultät	$fak(n) = \begin{cases} 1 & // n \le 1 \\ n * fak(n-1) + 1 & // n \ge 1 \end{cases}$
	Näherungsformel: $n! \approx \sqrt{2\pi n} * \left(\frac{n}{e}\right)^n$
Euklidscher Algorithmus	$ggtT(x,y) = \begin{cases} y = 0 \Rightarrow x & //x \text{ mod } y = 0\\ ggT(y,x \text{ mod } y) \end{cases}$
Summe der ersten n	geschlossene Formel: n ²
ungeraden Zahlen	$\int 1 //n = 1$
	$quadrat(n) = \begin{cases} 1 & //n = 1\\ (2n-1) + quadrat(n-1) \end{cases}$
Summe der ersten n geraden	
Zahlen	$sumgerad(n) = \begin{cases} 2 & // n = 1\\ (2n) + sumgerad(n-1) \end{cases}$
Fibonacci	$f_0 = 0$ $f_1 = 1$ $// n < 2$
	$fib(n) = \begin{cases} f_0 = 0 & f_1 = 1 & //n < 2\\ fib(n-1) + fib(n-2) & //n \ge 2 \end{cases}$

2.4.3. Vollständige Induktion

Summe der ersten n Zahlen: $\sum_{i=1}^{n} i = \frac{n*(n+1)}{2}$

Induktionsanfang	$n=1 \qquad \frac{1*(1+1)}{2} = 1$
Induktionsbehauptung	$\sum_{i=1}^{n+1} i = \frac{(n+1) * n(+2)}{2}$
Induktionsbeweis	$\sum_{i=1}^{n+1} i = 1+2+3+\dots+n+(n+1) = \frac{(n+1)*(n+2)}{2}$ $(1+2+3+\dots+n \to \frac{n*(n+1)}{2})$ $\frac{n*(n+1)}{2} + (n+1) = \frac{(n+1)*(n+2)}{2}$ $\frac{n^2+n}{2} + (n+1) = \frac{n^2+3n+2}{2}$ $\frac{n^2+n+2n+2}{2} = \frac{n^2+3n+2}{2}$
	$\frac{n^2 + 3n + 2}{2} = \frac{n^2 + 3n + 2}{2}$ q.e.d!

⁻ wenn P(1) wahr ist und auch P(n+1) wahr ist, so ist P(n) wahr für alle n!

2.4.4. Sortieralgorithmen

2.4.4.1. Straight Insertion Sort

Beispiel:	 fange beim letzten Element an → in Marke schreiben
5, 3, 2, <u>8</u> , 9 8	 vgl. 8 mit 9 → kein Tausch notwendig
5, 3, <u>2</u> , 8, 9 2	Algorithmus:
\rightarrow 2 < 8 \rightarrow 2 in Marke	 es wird von hinten im Array ausgegangen, beim
5, 3, 2, 8, 9 2	vorletzten Element wird angefangen
3, 3, 2, 0, 9 2 → 3 > 2 Tausch, 3 in Marke	Element wird in Marke geschrieben
7 0 7 2 Tauson, 5 III Warke	 Element wird mit den nachfolgenden verglichen,
<u>5</u> , 2, 3, 8, 9 3	solange Element größer als Nachfolger ist, wird
\rightarrow 5 > 2, 5 in Marke	getauscht
2, 5, 3, 8, 9 3 → 5 > 3 → Tausch	
70707 Tauscri	
2, 3, 5, 8, 9	

Quelitext:

```
int x = 0;
int j = 0;
for (int i = arValues.Length - 3; i >= 0; i--)
    x = arValues[i];
   arValues[arValues.Length-1] = x;
   j = i + 1;
    while (x > arValues[j])
        arValues[j - 1] = arValues[j];
        j++;
   arValues[j - 1] = x;
```

Komplexität:

Durchlauf:

1 → 2 Vergleiche

2 → 3 Vergleiche

3 → 4 Vergleiche

daraus folgt:

$$Vergleiche_{max} = \frac{n*(n+1)}{2} - 1 \qquad Tausch = \frac{n*(n+1)}{2}$$

$$Tausch = \frac{n*(n+1)}{2}$$

2.4.4.2. Bubble Sort

- es werden immer 2 benachbarte Elemente verglichen
- ist x > x+1 → tauschen
- nach jedem Durchlauf steht das größte Element oben

Beispiel:	Komplexität:	
5 3 → Vergleich → Grenze äußere Schleife	Vergleiche:	$\frac{n(n-1)}{2}$
5 3 2 8 1 3 5 2 8 1 3 2 5 8 1 3 2 5 8 1 3 2 5 1 18 2 3 5 1 18 2 3 1 1 5 8 2 3 1 1 5 8 2 3 1 5 8 2 1 3 5 8 1 2 3 5 8 1 2 3 5 8	Zuweisung:	$BC:0$ $WC:3*\frac{n(n-1)}{2}$

2.4.4.3. Heap Sort

Aufbau des Arrays als Binärbaum

Beispiel: 17, 31, 05, 59, 13, 41, 43, 67, 11, 23

letzte Hälfte des Arrays sind die Blätter

Zugriff auf Kindknoten: arrayIndex * 2 (links)

arrayIndex * 2 -1 (rechts)

(1 basierte Arrays!)

2.4.5. AVL-Baum

- maximaler Höhenunterschied 1 zwischen Knoten
- wenn Bedingung verletzt → Umbau

2.4.6. Vielwegbaum

- mehrere Elemente pro Stufe
- Baum wird von unten nach oben aufgebaut

Beispiel: 20, 40, 10, 30, 15, 35, 7

2.5. Aussagenlogik

2.5.1. Grundbegriffe

Aussagensymbole: $A,B,A_1,A_2,...$

Junktoren: \land (und), \lor (oder), \neg (nicht), \neg (Implikation), \leftrightarrow (Äquivalenz)

Tautologie: immer wahr Kontradiktion: immer falsch

2.5.2. Implikation

Beispiel: "Wenn es regnet wird die Straße nass."

Prämisse: "es regnet" Konklusion: "die Straße wird nass"

Ist die Prämisse falsch, so ist die Aussage dennoch wahr, da die Straße auch aus anderen Gründen nass sein kann. 0 → a

2.5.3. Beispiele für Tautologien

$$(1) \quad (p \land q) \rightarrow p \quad oder \quad p \rightarrow (p \lor q) \\ \qquad \qquad (6) \quad ((p \rightarrow q) \land (q \rightarrow p)) \leftrightarrow (p \leftrightarrow q)$$

(2)
$$(q \rightarrow p) \lor (\neg q \rightarrow p)$$

(3)
$$(p \rightarrow q) \leftrightarrow (\neg p \lor q)$$

(4)
$$(p \rightarrow q) \leftrightarrow (\neg q \rightarrow \neg p)$$

(5)
$$(p \land (p \rightarrow q)) \rightarrow q$$

2.5.4. Äquivalenz von Formeln

2 Formeln sind logisch äquivalent (p=q), wenn die Formel (p↔q) eine Tautologie ist.

2.5.5. Allgemeine Äquivalenzen

Kommutativität	(p∧q)	=	(q∧p)
	(p∨q)	=	(q∨p)
Assoziativität	(p∧(q∧r)	=	((p∧q)∧r)
	(p∨(q∨r)	≡	((p∨q)∨r)
Distributivität	(p∧(q∨r))	=	$((p \land q) \lor (p \land r))$
	(p∨(q∧r))	=	$((p\lor q)\land (p\lor r))$
Indempotenz	(p∧p)	=	р
	(p∨p)	≡	р
Doppelnegation	(¬(¬p))	=	р
de Morgan	(¬(p∧q))	=	((¬p)∨(¬q))
	(¬(p∨q))	=	((¬p)∧(¬q))
Tautologieregeln	Falls q eine Tautologie (wahr) ist, gilt:		
	(p∧q)	≡	р
	(p∨q)	=	q ≡ wahr

Kontradiktionsregeln	Falls q eine Ko	Falls q eine Kontradiktion (falsch) ist, gilt:		
	(p∧q)	=	q	≡ falsch
	(p∨q)	=	р	
Absorbtionsgesetze	¬A∨(A∧B)	=	¬A∨B	
	¬A∧(A∨B)	=	¬A∧B	

2.5.6. Umformungsregeln

2.5.7. Konjunktive Normalform

- Konjunktion (logische UND-Verknüpfung) von Disjunktionstermen
- Disjunktionsterme sind Disjunktionen (ODER-Verknüpfung) von Literalen (negierte oder nicht negierte Variablen)
- jede Formel lässt sich in eine KNF umwandeln

2.5.8. Resolventenprinzip

Grundidee: jede Formel kann in eine äquivalente Konjunktion von Klauseln (=Disjunktionsterm) transformiert werden.

Mengenschreibweise: $(\neg A \lor B \lor C) \leftrightarrow \{\neg A, B, C\}$ leere Menge \Rightarrow leere Klausel $\{\}$

Beispiel: $\{\neg A,B,C\},\{B,C\},\{A,C\}$ entspricht: $(\neg A \lor B \lor C) \land (B \lor C) \land (A \lor C)$

- Klausel wird wahr, wenn eine Variable wahr wird (da Disjunktion)
- Klauselmenge wird wahr, wenn alle Klauseln wahr sind
- leere Klausel erhält den Wahrheitswert "falsch" → Klauselmenge mit leerer Klausel ist immer unerfüllbar

Resolvente:

- kann aus 2 Klauseln gebildet werden, wenn eine Variable in einer Klausel vorkommt und in einer anderen als Negation
- z.B.: $\{A,B\},\{\neg A,B\}$ \rightarrow Resolvente: $\{B,C\}$
- Resolvente wird der Klauselmenge angefügt und bleibt zur ursprünglichen äquivalent

Resolventenprinzip:

Behauptung → A sei wahr

- zur Klauselmenge wird ein Widerspruch hinzugefügt {¬A}
- anschließend Resolventen bilden, diese werden der ursprunglichen Formel hinzufügt
- lässt sich die leere Menge als Resolvente ableiten, so ist die Behauptung wahr

Beispiel A sei wahr:

Beispier A serwarir.	
Formel	${A,B,\neg C}, {A,B,C}, {A,\neg B}$
Hinzufügen von $\{ \neg A \}$ und	$\{\neg A\}, \{A, B, \neg C\}, \{A, B, C\}, \{A, \neg B\}$
Bildung von Resolventen	1. 2. 3. 4.
	2. u . 4. $\{A, \neg C\}$ 5.
	$2. u. 3. \{A,B\}$ 6.
	4. u. 6. {A} 7.
	1. u. 7. $\{\} \Rightarrow Widerspruch \Rightarrow erfüllbar$

2.5.9. Hornformeln

Aussagenlogische Formel mit maximal einem Atom in der Konklusion, bzw. Formel in KNF und höchstens einem positiven Literal pro Klausel (Umwandlung Implikation → Disjunktionsterm)

z.B.: $(A \to B) \Leftrightarrow (\neg A \lor B)$ (maximal ein Atom in der Prämisse und maximal ein positives Literal \to Hornformel)

weiteres Beispiel:

$$\begin{split} (A \vee \neg B) \wedge (\neg C \vee \neg A \vee D) \wedge (\neg A \vee \neg B) \wedge D \\ (B \to A) \wedge (C \wedge A \to D) \wedge (A \wedge B \to 0) \wedge (1 \to D) \end{split}$$

$$D \Leftrightarrow (1 \rightarrow D)$$

2.5.10. Markierungsalgorithmus für Hornformeln

Beispiel 1:	$(E \to 0) \land (C \to A) \land C \land B \land (G \to D) \land G$
1. Schritt	Markierung aller Vorkommen von einer atomaren Formel x, falls es eine Teilformel der Form (Wahr \rightarrow 1): $(E \rightarrow 0) \land (*C \rightarrow A) \land *C \land *B \land (*G \rightarrow D) \land *G$
2. Schritt	Prüfen ob es eine Teilformel in den Formen $G = (A_1 \land A_2 \land A_n \rightarrow B) (Typ1)$ $G = (A_1 \land A_2 \land A_n \rightarrow 0) (Typ2)$ gibt, welche in der Prämisse alle Atome markiert haben, aber in der Konklusion noch nicht. Wenn Teilformel von Typ 1 ist, markiere alle B, sonst (Teilformel von Typ 2) gib "unerfüllbar" aus und Stoppe. $ \rightarrow \text{Schritt 2 wird wiederholt, solange es Teilformeln ohne markierte Konklusion gibt (Typ 1 oder Typ 2) } $ $(E \rightarrow 0) \land (*C \rightarrow A) \land *C \land *B \land (*G \rightarrow D) \land *G \land *G \rightarrow A) \land *C \land *B \land (*G \rightarrow D) \land *G \rightarrow A) \land *C \land *B \land (*G \rightarrow D) \land *G \rightarrow A) \land *C \land *B \land (*G \rightarrow C) \land *G \rightarrow A) \land *C \land *B \land (*G \rightarrow C) \land *G \rightarrow A) \land *C \land *B \land (*G \rightarrow C) \land *G \rightarrow A) \land *C \land *B \land (*G \rightarrow C) \land *G \rightarrow A) \land *C \land *B \land (*G \rightarrow C) \land *G \rightarrow A) \land *C \land *B \land (*G \rightarrow C) \land *G \rightarrow A) \land *C \land *B \land (*G \rightarrow C) \land *G \rightarrow A) \land *C \land *B \land (*G \rightarrow C) \land *G \rightarrow A) \land *C \land *B \land (*G \rightarrow C) \land *G \rightarrow A) \land *C \land *B \land (*G \rightarrow C) \land *G \rightarrow A) \land *C \land *B \land (*G \rightarrow C) \land *G \rightarrow A) \land *C \land *B \land (*G \rightarrow C) \land *G \rightarrow A) \land *C \land *B \land (*G \rightarrow C) \land *G \rightarrow A) \land *C \land *B \land (*G \rightarrow C) \land *G \rightarrow A) \land *C \land *B \land (*G \rightarrow C) \land *G \rightarrow A) \land *C \land *B \land (*G \rightarrow C) \land *G \rightarrow A) \land *C \land *B \land (*G \rightarrow C) \land *G \rightarrow A) \land *C \land *B \land (*G \rightarrow C) \land *G \rightarrow A) \land *C \land *B \land (*G \rightarrow C) \land *G \rightarrow A) \land *C \land *B \land (*G \rightarrow C) \land *G \rightarrow A) \land *C \land *B \land (*G \rightarrow C) \land *G \rightarrow A) \land *C \land *B \land (*G \rightarrow C) \land *G \rightarrow A) \land *C \land *B \land (*G \rightarrow C) \land *G \rightarrow A) \land *C \land *B \land (*G \rightarrow C) \land *G \rightarrow A) \land *C \land *B \land (*G \rightarrow C) \land *G \rightarrow A) \land *C \land *B \land (*G \rightarrow C) \land *G \rightarrow A) \land *C \land *B \land (*G \rightarrow C) \land *G \rightarrow A) \land *C \land *B \land (*G \rightarrow C) \land *G \rightarrow A) \land *C \land *B \land (*G \rightarrow C) \land *G \rightarrow A) \land *C \land *B \land (*G \rightarrow C) \land *G \rightarrow A) \land *C \land *B \land (*G \rightarrow C) \land *G \rightarrow A) \land *C \land *B \land (*G \rightarrow C) \land *G \rightarrow A) \land *C \land *B \land (*G \rightarrow C) \land *G \rightarrow A) \land *C \land *B \land (*G \rightarrow C) \land *G \rightarrow A) \land *C \land *B \land (*G \rightarrow C) \land *G \rightarrow A) \land *C \land *B \land (*G \rightarrow C) \land *G \rightarrow A) \land *C \land *G \rightarrow A$
3. Schritt	Gib erfüllbar aus.

Beispiel 2:	$(A \land E \to 0) \land (1 \to A) \land (A \land C \to E) \land (A \land F \to C) \land (1 \to F)$
	1. Markiere A, F wegen (1 → A) und (1 → F)
	$(*A \land E \to 0) \land (1 \to *A) \land (*A \land C \to E) \land (*A \land *F \to C) \land (1 \to *F)$
	2. Markiere C wegen $(*A \land *F \rightarrow C)$
	$(*A \land E \to 0) \land (1 \to *A) \land (*A \land *C \to E) \land (*A \land *F \to *C) \land (1 \to *F)$
	3. Markiere E wegen $(*A \land *C \rightarrow E)$
	$(*A \land *E \to 0) \land (1 \to *A) \land (*A \land *C \to *E) \land (*A \land *F \to *C) \land (1 \to *F)$
	→ unerfüllbar wegen (* $A \land *E \to 0$) = Typ 2

2.6. Graphentheorie

2.6.1. Definitionen

Ein Graph stellt eine Menge von Objekten zusammen mit einer Beziehung dar, z.B. Personen, A kennt B.

Kante	Verbindung von 2 Knoten (Pfeil)
	- Kante (v,w) ist <u>inzident</u> zu <u>v</u> und <u>w</u> - <u>v</u> u. <u>w</u> sind <u>adjazent</u> (benachbart)
Gerichteter Graph	Pfeile zeigen in bestimmte Richtung
Ungerichteter Graph	Pfeile zeigen in keine Richtung, bzw. in beide Richtungen
Schlichter Graph	Ungerichteter Graph ohne Mehrfachkanten und Schlingen
Teilgraph	Teil eines Graphen, z.B. Ursprung: Teilgraph:
Spannender Teilgraph	Sämtliche Knoten des Urspungsgraphen müssen vorhanden sein:
Gesättigter Teilgraph	Teilmenge der Knoten, aber mit allen Kanten

Vollständiger Graph	Jeder Knoten ist mit jedem anderen verbunden
Grad eines Knotens	- Anzahl der inzidenten Kanten
	- Schlingen werden doppelt gezählt
	- bei gerichteten Graphen: Ausgangsgrad Eingangsgrad
	3 2
	A A
	A Grad: 3 A Ausgangsgrad: 2
	A Eingangsgrad: 1
Weg	Verbindung auf Graph den man "ablaufen" kann
Kreis	Anfang = Ende, sonst jeder Knoten nur einmal ansteuerbar
elementarer Weg	ohne Schlingen
Länge des Weges	- bei normalen Graphen, Anzahl Kanten
	- bei gewichteten → Wichtung

Eulerscher Weg 2.6.2.

- Graph hat einen Weg (a,b) der alle Kanten genau einmal enthält a, b sind die einzigen Knoten mit ungeraden Grad (z.B. Haus vom Nikolaus)

Eulerscher Graph 2.6.3.

jeder Knoten von G hat einen geraden Grad

2.7. Graph kürzester Weg

					_	
	0	1	2	3	4	5
la	0	0	0	0	0	0
I_b	∞	5	<u>4</u> 2	4	4	4
Ic	∞	<u>2</u>	2	2	2	2
I_d	∞	∞	9	<u>6</u>	6	6
l _e	∞	∞	10	10	<u>10</u>	10
I_f	∞	∞	∞	∞	13	12
			_	_		_
	0	1	2	3	4	5
- p _a	0 *	1 *	*	*	*	5 *
р а						
	*	* a a	*	*	*	*
p_{b}	* * *	* a a *	* C	* C	* C	* C
p_b	* * * * * *	* a a * *	* c a c	* c a	* c a	* c a
р _ь р _с р _d	* * *	* a a *	* C a C	* c a b	* c a b	* c a b

kürzester Weg wird in alle Ia eingetragen alle Weg von a zu anderen Knoten eintragen, wenn kein Weg möglich ∞ vorgetragene Wege zu Knoten müssen nicht mehr berückgesichtigt werden, z.B. bei 1 → 2 Knotenwege werden eingetragen

Startknoten a, Weg nach A = 0

vortragen wie bei Schritt 1

in der letzten Spalte kann der Weg abgelesen werden

f → e → c → a
Kürzester weg ist: a → c → e → f

Bearbeitete unbearbeitete Knoten:

	u	b
0	a,b,c,d,e,f	
1	b,c,d,e,f	а
2	b,d,e,f	a,c
3	d,e,f	a,b,c
4	e,f	a,b,c,d
5	f	a,d,c,d,e

Knoten die bearbeitet wurden werden hier eingetragen und müssen für weitere Wegezahl nicht mehr berücksichtigt werden (vortragen in Schritt 1)

2.7.1. Flüsse in Netzwerken, Ermittlung maximaler Fluss

2.8. Automatentheorie

2.8.1. Grundbegriffe

Alphabet	- nichtleere endliche Menge von Symbolen (A = {a ₁ ,a ₂ ,,a _n } Beispiele:
	boolesches Alphabet: A _b ={0,1}
	lateinisches Alphabet: A _{lat} ={A,,Z}
Wort	- endliche Folge an Symbolen eines Alphabets
	$w = a_i a_j \mid a_k \in A, i \le k \le j$
	A* = Menge der Wörter über A inkl. des leeren Wortes (Länge 0 bis beliebig)
	ε = leeres Wort (Länge 0)
	A ⁺ = wie A [*] , aber ohne leeres Wort (Länge 1 bis beliebig)
Formale Sprache	- eine Menge von Wörtern über einem Alphabet A ist eine
	Menge von Wörtern über A
	Beispiel: A = {0,1,2,3,4,5,6,7,8,9}
	Menge der Dezimaldarstellungen natürlicher Zahlen die durch 7 teilbar sind, z.B.: 35, 714,
Potenzen von	L ⁿ = n-fache Verkettung von L mit L ⁰ ={e}
Sprachen	Beispiel: L = {0,01}
	$L^3 = \{111,1101,10101,010101,0111,01011,1011,$
Kleen-Stern	Iteration von L: $L^* = \bigcup_{n \ge 1}^{\infty} L^i$
	$L^0 = \{\varepsilon\} \qquad L^{i+1} = L^i * L$