NAME:	
2.	[2 pts.] Consider the line Y = 2 * X + 7, slope of the line is and y-intercept is
3.	[2 pts.] Consider the line Y = 2 * X + 7, x-intercept of the line is
4.	[2 pts.] Consider the line Y = 3 * X – 5, a point (,) lies on this line.
5.	[3 pts.] Consider two lines L_1 and L_2 represented by equations $Y = 2 X + 4$ and $Y = X + 2$ respectively. The
	point of intersection of these two lines is (,).
6.	[3 pts.] Consider a point P ₁ (2, 5). The equation of the line which pass through points P ₁ and has slope -2 is
7.	[3 pts.] Consider two points P_1 (2, 5) and P_2 (1, 3). The equation of the line which pass through points P_1 and P_2 is
8.	[2 pts.] Derivative of y in equation $y = 3 x^2 - 5x + 2$ with respect to x is
9.	[2 pts.] Partial derivatives of z in equation $z = 5 x^3 - 3 y^2 - 11$ with respect to x and y would be and
10.	[2 pts.] Partial derivatives of z in equation $z = 5 x^3 * 3 y^2 - 2 x^2 + 5 y^3 + 9$ with respect to x and y would be and
11.	[2 pts.]In matrix algebra for two matrix A and B which qualify for multiplication, the expression $(A \times B)^T = A^T$
	$x B^{T}$ where A^{T} is transpose of the matrix A is [True / False]
12.	[2 pts.] In matrix calculus for matrix \tilde{X} and vector $\overrightarrow{\hat{w}}$, the following partial derivative will result into $\frac{\partial}{\partial \hat{w}} \tilde{X} \ \overrightarrow{\hat{w}} = \underline{\hspace{1cm}}$
13.	[2 pts.] In matrix calculus for matrix \tilde{X} , vector $\overrightarrow{\hat{w}}$ and transpose of $\overrightarrow{\hat{w}}$ represented as $\overrightarrow{\hat{w}}'$, the following
	partial derivative will result into $\frac{\partial}{\partial \hat{w}} \vec{\hat{w}}' \tilde{X} =$
14.	[2 pts.] In matrix calculus for matrix \widetilde{X} , vector $\overrightarrow{\hat{w}}$ and transpose of $\overrightarrow{\hat{w}}$ represented as $\overrightarrow{\hat{w}}'$, the following
	partial derivative will result into $\frac{\partial}{\partial \vec{\hat{w}}} \vec{\hat{w}}' \tilde{X} \vec{\hat{w}} =$