9.3 Critical Damping ~= Wo (PP 334 8# Ed HRD) When $d = w_0$, the roots are red and equal. Comider L = 7+1 c = /40 F ad R = 756 (Earlie R = 6.2) U(0)=0 ad i(0)=10A Nou d= 1 = 56 Wo = 1 = 16 Here S1,2 = - x + J x 2 No2 Returning to original differential Cd2u + 1 dv + 1 v=0 (Nor = 2x) or dru + 1 du + 1 v=0 ad d= No2=1 Thus $\frac{d^2v}{dt^2} + 2x dv + x^2v = 0$ This = h has a standard solution: -U=e (A, t+Az)

So we get

$$u(t) = A_1 t e^{-\sqrt{6}t} + A_2 e^{-\sqrt{6}t}$$
 $u(t) = A_1 t e^{-\sqrt{6}t} + A_2 e^{-\sqrt{6}t}$

Given $u(0) = 0$
 $0 = A_1 \times 0 \times 1 + A_2$

So $A_2 = 0$

Hence

 $u(t) = A_1 t e^{-\sqrt{6}t} + 0$

or $u(t) = A_1 t e^{-\sqrt{6}t}$

or $du = A_1 e^{-\sqrt{6}t} - \sqrt{6} + A_1 e^{-\sqrt{6}t}$
 $du = A_1 e^{-\sqrt{6}t} - \sqrt{6} + A_1 e^{-\sqrt{6}t}$

Thus, $A_1 = 420$

Hence

 $u(t) = 420 t e^{-2.45t}$, V

Proceeding from:
$$d^2u + 2v du + x^2u = 0$$

or $d(du + xu) + x(du + xu) = 0$

Let $du + xu = f$

Then $df + xf = 0$

Then $df + xf = 0$
 $f = A_1e$

is a 1st order = n so

 $f = A_1e$

So we get from A
 $du + xu = A_1e$

This can be written as

 $d(e^{xt}u) = A_1$

Integrating both sides

 $e^{xt}u = A_1t + A_2$

or $u = e^{xt}(A_1t + A_2)$, v

Graphical Representation of the Critically Danged Response (PP 336 8 H Ed HRD) With the values of R, L and C such that $\alpha = \omega_0$, we have arrived at the end result :v(t) = 420t e -2.45t V - This result confines that the execupied initial value is zuo as u(0) = 0; 1(0) = 10 A. It is not obvious that the response also approaches
zero as t becomes infinitely lays; which it should
be the said for the given source-pre circuit. - Horaner, using L'Hospital's rule Lin (t) = 420 lin t - 20 45t = 420 li 1 2.45 e 2.45 t = 0 _ To determine the time to to which maximum value occurs, me deposition art time and put the result egul to zew. du = 420 { tx-2.45e + e x1 } = 0 $-2.45t_{m} = -1$ (andaped had) tm = 0.408 \$ - Putty this valle is vits, we get (overed had) Um = 63.1 V

Scanned with CamScanner

- Contd (334)

- The settling time at which 1% of max value is

reached is $\frac{U_m}{100} = \frac{63-1}{100} = 420 \, \text{t}_s \, \text{e}$ - By trial anderson; $t_s = 3-12 \, \text{s}$ (5.15 \$ onerdaysed)

Graphically

