Задача 9-2

1. Постоянные потери

1.1. За время t в сосуд от нагревателя поступит энергия $E_{\mathbb{H}} = Pt$. Тепловые потери осуществляются через боковую поверхность сосуда и поверхность воды в сосуде. Тогда общая площадь механизма тепловых потерь:

$$S_{nor} = 2\pi r H + \pi r^2 = 707 \text{cm}^2$$

За время t на тепловые потери уйдет энергия $E_{\text{пот}} = q_0 S_{\text{пот}} t$.

Поступающая энергия идет на нагревание воды, массу которой можно определить через ее объем:

$$m_0 = \rho \pi r^2 H = 1,57 \text{ K} r$$

Тогда, записывая количество энергии, необходимое на нагрев воды, получаем:

$$E_{\rm H} - E_{\rm nor} = cm(T_2 - T_1)$$

Подставляя выражения для энергий, найдем время, необходимое для нагрева воды:

$$t = \frac{cm_0(T_2 - T_1)}{P - q_0 S_{max}} = 141 \text{ c} = 2,36 \text{ мин}$$

1.2. Чтобы воду можно было нагревать, количество потерь энергии не должно превышать количество поступающей от нагревателя. Пограничный случай: $\mathbf{E}_{\mathtt{H}} = \mathbf{E}_{\mathtt{пот}}$, откуда при подстановке соответствующих выражений:

$$H_{max} = \frac{P/q_0 - \pi r^2}{2\pi r} = 72.4 \text{ cm}$$

1.3. Пусть объем воды, приходящий в единицу времени равен λ_0 . Тогда объем воды $\lambda_0 t$, или массу $\rho \lambda_0 t$, поступающую (и уходящую) за время t, необходимо успеть нагреть от температуры T_1 до T_3 , то есть:

$$E_{\rm s} - E_{\rm nor} = c(\rho \lambda_0 t)(T_3 - T_1)$$

Подставляя полученные ранее выражения для энергий, пренебрегая потерями теплоты и площадью подводящих и уводящих воду труб, получим:

$$\lambda_0 = \frac{P - q_0 S_{\text{mot}}}{c\rho (T_{\text{S}} - T_1)} = 33.3 \, \text{CM}^3/_{\text{C}} = 2.00 \, \text{J}/_{\text{MWH}}$$

2. Переменные потери

2.1. Мощность тепловых потерь теперь определяется выражением $P_{\text{пот}} = \beta(T - T_1)S_{\text{пот}}$, где T — текущая температура воды. Когда вода оказывается при максимальной неизменной температуре T_{max} , ее нагрева больше не происходит, и вся мощность, получаемая от плитки, уходит в тепловые потери:

$$P = P_{\text{nor}} = \beta (T_{max} - T_1) S_{\text{nor}}$$

Отсюда максимальная температура:

$$T_{max} = \frac{P}{\beta S_{max}} + T_1 = 114 \text{ °C}$$

Однако при нормальном давлении вода может нагреться лишь до температуры кипения (за исключением некоторых «экзотических» случаев). Поэтому корректным ответом данного пункта будет: воду можно нагреть вплоть до температуры кипения $T_{\text{кип}} = 100\,^{\circ}C$.

2.2. Из графика видно, что в начальный момент времени температура жидкости T равна температуре окружающего воздуха T_1 . Тогда мощность тепловых потерь $P_{\text{пот}} = 0$. Записывая уравнение теплового баланса для небольшого промежутка времени Δt в начале нагрева, когда вода успела нагреться на некоторую температуру ΔT , получим:

$$P\Delta t - 0 = cm_0\Delta T$$

Откуда можно выразить искомую мощность плитки:

$$P = cm_0 \frac{\Delta T}{\Delta t}$$

Отношение $\frac{\Delta T}{\Delta t}$, описывающее, как уже было отмечено, скорость нагрева/остывания воды, можно найти, построив касательную к графику зависимости температуры воды от времени в точке t=0. Тогда, выбирая промежуточный отрезок Δt на оси температур, можно найти соответствующее приращение температуры ΔT и найти отношение:

$$\frac{\Delta T}{\Delta t} = 22.5 \frac{^{\circ}C}{_{\rm MUH}} = 0.375 \frac{^{\circ}C}{_{\rm C}}$$

Тогда полезная мощность плитки оказывается равной:

$$P = 2470 \text{ Bt}$$

Из графика также можно заметить, что максимальная температура нагрева воды составляет $T_{\max 1} = 50 \, ^{\circ}C$. Тогда, как и в пункте 2.1, получаем выражение $P = \beta_1 (T_{\max 1} - T_1) S_{\text{пот. Отсюда коэффициент теплоотдачи:}$

$$\beta_1 = \frac{P}{(T_{max1} - T_1)S_{max}} = 1160 \frac{BT}{M^2 \cdot {}^{\circ}C}$$

2.3. Вновь запишем уравнение теплового баланса при остывании жидкости на ΔT за малый промежуток времени Δt в какой-то момент:

$$\beta_1(T - T_1)S_{\text{nor}}\Delta t = cm_0\Delta T$$

Отсюда, зная значение β_1 и остальных характеристик из предыдущих пунктов, можем выразить зависимость убывания температуры воды от ее температуры: $\Delta T(T)$:

$$\Delta T(T) = \frac{\beta_1 S_{\text{not}}}{c \, m_0} (T - T_1) \Delta t$$

Выбирая за Δt , некоторый промежуток времени, например 0,5 мин, можем пошагово вычислять примерное изменение температуры и заносить данные в таблицу:

Таблица 1 – Пошаговое вычисление температуры воды от времени при остывании

<i>t</i> , мин	T, °C	ΔT , °C	<i>T-∆T</i> , ° <i>C</i>
0	50	11,194	38,806
0,5	38,806	7,017	31,789
1	31,789	4,399	27,390
1,5	27,390	2,758	24,633
2	24,633	1,729	22,904
2,5	22,904	1,084	21,821
3	21,821	0,679	21,141
3,5	21,141	0,426	20,715
4	20,715	0,267	20,449
4,5	20,449	0,167	20,281
5	20,281	0,105	20,176

<i>t</i> , мин	T, °C	ΔT , °C	<i>T-∆T</i> , ° <i>C</i>
5,5	20,176	0,066	20,110
6	20,110	0,041	20,069
6,5	20,069	0,026	20,043
7	20,043	0,016	20,027
7,5	20,027	0,010	20,017
8	20,017	0,006	20,011
8,5	20,011	0,004	20,007
9	20,007	0,003	20,004
9,5	20,004	0,001	20,003
10	20,003	0,001	20,002

На основании полученных данных можно нанести точки на искомый график зависимости и провести через них сглаживающую кривую:

Рисунок 1 - Зависимость температуры воды от времени в ходе остывания