妮可代数结构答案

En 土土

2023年3月9日

目录

1	集合	2
2	数论初步	5
3	映射	10
4	二元关系	11
5	群论初步	12
6	商群	13
7	环和域	14
8	格和布尔代数	15

1 集合

1.1

- (1) 不相等.
- (2) 相等.
- (3) 相等.

1.2

证明.

$$\left\{ \begin{array}{l} A\subseteq B \Rightarrow \ \forall \ x\in A, \ x\in B. \\ \\ B\subset C \Rightarrow \left\{ \begin{array}{l} \forall \ x\in B, \ x\in C \\ \\ \exists \ x\in C, \ x\notin B \end{array} \right. \end{array} \right. \Rightarrow \left\{ \begin{array}{l} \forall \ x\in A, \ x\in C \\ \\ \exists \ x\in C, \ x\notin A \end{array} \right. \Rightarrow A\subset C.$$

1.3

- (1) 不成立.
- (2) 不成立.
- (3) 不成立.
- (4) 成立.
- (5) 成立.
- (6) 不成立.

1.4

- (1) 不成立.
- (2) 成立.
- (3) 成立.

En 土土 代数结构答案 妮可

1.5

证明.

(1)
$$A \cap (\overline{A} \cup B) = (A \cap \overline{A}) \cup (A \cap B) = \emptyset \cup (A \cap B) = A \cap B.$$

(2)
$$A \cup (A \cap B) = (A \cup A) \cap (A \cup B) = A \cap (A \cup B).$$

$$\begin{cases} A \subseteq A \cup (A \cap B) \\ A \supseteq A \cap (A \cup B) \end{cases} \Rightarrow A \cup (A \cap B) = A.$$

(3) (a)

$$\forall \ x \in \bigcap_{i} \overline{A_{i}} \ \Rightarrow x \notin \bigcap_{i} A_{i} \qquad \forall \ x \in \bigcup_{i} \overline{A_{i}} \ \Rightarrow \exists 1 \leq k \leq n, x \in \overline{A_{k}}$$

$$\Rightarrow \exists 1 \leq k \leq n, x \notin A_{k} \qquad \Rightarrow \exists 1 \leq k \leq n, x \notin A_{k}$$

$$\Rightarrow \exists 1 \leq k \leq n, x \in \overline{A_{k}} \qquad \Rightarrow x \notin \bigcap_{i} A_{i}$$

$$\Rightarrow x \in \bigcup_{i} \overline{A_{i}} \qquad \Rightarrow x \in \bigcap_{i} A_{i}$$

$$\Rightarrow \bigcap_{i} A_{i} \subseteq \bigcup_{i} \overline{A_{i}} \qquad \Rightarrow \bigcup_{i} \overline{A_{i}} \subseteq \bigcap_{i} A_{i}$$

即证 $\overline{\bigcap_i A_i} = \bigcup_i \overline{A_i}$.

(b)

$$\forall \ x \in \overline{\bigcup_{i} A_{i}} \ \Rightarrow x \notin \bigcup_{i} A_{i} \qquad \forall \ x \in \bigcap_{i} \overline{A_{i}} \ \Rightarrow \forall 1 \leq k \leq n, x \in \overline{A_{k}}$$

$$\Rightarrow \forall 1 \leq k \leq n, x \notin A_{k} \qquad \Rightarrow \forall 1 \leq k \leq n, x \notin A_{k}$$

$$\Rightarrow \forall 1 \leq k \leq n, x \notin \overline{A_{k}} \qquad \Rightarrow x \notin \bigcup_{i} A_{i}$$

$$\Rightarrow x \in \bigcap_{i} \overline{A_{i}} \qquad \Rightarrow x \in \overline{\bigcup_{i} A_{i}}$$

$$\Rightarrow \overline{\bigcup_{i} A_{i}} \subseteq \bigcap_{i} \overline{A_{i}} \qquad \Rightarrow \bigcap_{i} \overline{A_{i}} \subseteq \overline{\bigcup_{i} A_{i}}$$

即证 $\overline{\bigcup_i A_i} = \bigcap_i \overline{A_i}$.

1.6

证明.

(1) $B \subseteq C \Rightarrow \forall x \in B, x \in C$.

$$\forall x \in (A \cap B), x \in A \perp x \in B \implies x \in A \perp x \in C \implies x \in (A \cap C)$$

(2)

$$\begin{split} A \subseteq C, \ B \subseteq \ C \ \Leftrightarrow A \cup C = C, \ B \cup C = C \\ \Leftrightarrow \ (A \cup B) \cup C = A \cup (B \cup C) = A \cup C = C \\ \Leftrightarrow \ (A \cup B) \subseteq C. \end{split}$$

1.7

- (1) 设所求集合为 E.
 - 1. (基础语句) 令 $D = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$,若 $x \in D$,则 $x \in E$.
 - 2. (归纳语句) 若 $x, y \in E$, 则 x 与 y 的连接 $\overline{xy} \in E$.
 - 3. (终结语句) $x \in E$,当且仅当 x 是由有限次 1,2 得到的.
- (2) 设所求集合为 E.
 - 1. (基础语句) 令 $D = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$,若 $x \in D$,则 $x \in E$, $x \in E$.
 - 2. (归纳语句) 若 x = a.b, $y = c.d \in E$, 则 $\overline{ac}.\overline{bd} \in E$.
 - 3. (终结语句) $x \in E$, 当且仅当 x 是由有限次 1,2 得到的.
- (3) 设所求集合为 E.
 - 1. (基础语句) 0, 10 ∈ E.
 - 2. (归纳语句) 若 $x = \overline{A0} \in E \ (x \neq 0)$, 则 $\overline{A00}$, $\overline{A10} \in E$.
 - 3. (终结语句) $x \in E$, 当且仅当 x 是由有限次 1,2 得到的.

2 数论初步

2.1

证明.

(1)
$$\forall x | a, x | b \begin{cases} x > 0 & \xrightarrow{a > 0, x | a} x \le a \\ x < 0 & \xrightarrow{a > 0} x < a \end{cases} \Rightarrow x < a \xrightarrow{a | a, a | b} (a, b) = a.$$

(2)
$$\begin{cases} (a,b)|(a,b),\ (a,b)|b \\ \forall \ x|(a,b),\ x|b,\ \bar{n}x \leq (a,b). \end{cases} \Rightarrow ((a,b),b) = (a,b).$$

2.2

证明.

(1) 不妨假设 $\exists n > 0, (n, n+1) = d > 1$

$$(n, n+1) = d \Rightarrow \exists x, y \in \mathbb{Z}, \ n = xd, n+1 = yd$$

 $\Rightarrow 1 = (n+1) - n = (y-x)d > 0$
 $\Rightarrow y > x, \ (y-x)d \ge d > 1$
 \Rightarrow 矛盾,假设不成立.

(2) 可取 (n,k), 证明如下

由推论 2.3, 取
$$x = 1$$
, $a = n$, $b = k$, 有 $(n, k) = (n, n + k)$.

2.3

(1) (314,159) = 1,有解。由辗转相除法

$$314 = 159 \cdot 1 + 155$$
$$159 = 155 \cdot 1 + 4$$
$$155 = 4 \cdot 38 + 3$$
$$4 = 3 \cdot 1 + 1$$

即

$$1 = 4 - 3 \cdot 1$$

$$= 4 - (155 - 4 \cdot 38) \cdot 1$$

$$= (159 - 155 \cdot 1) \cdot 39 - 155$$

$$= 159 \cdot 39 - 155 \cdot 40$$

$$= 159 \cdot 39 - (314 - 159 \cdot 1) \cdot 40$$

$$= 159 \cdot 79 - 314 \cdot 40.$$

 $\mathbb{P} x = -40, y = 79.$

(2) (3141,1592) = 1,有解。由辗转相除法

$$3141 = 1592 \cdot 1 + 1549$$

 $1592 = 1549 \cdot 1 + 43$
 $1549 = 43 \cdot 36 + 1$

即

$$1 = 1549 - 43 \cdot 36$$

$$= 1549 - (1592 - 1549 \cdot 1) \cdot 36$$

$$= 1549 \cdot 37 - 1592 \cdot 36$$

$$= (3141 - 1592 \cdot 1) \cdot 37 - 1592 \cdot 36$$

$$= 3141 \cdot 37 - 1592 \cdot 73.$$

 $\mathbb{P} x = 37, y = -73.$

2.4

证明.

(0)
$$n = 1, n^3 - n = 0$$
, $f(0) = 6 \cdot 0, 6 | (n^3 - n)$.

(1)
$$n = 2, n^3 - n = 0$$
, $f = 6 - 1, 6 | (n^3 - n)$.

(2) 假设 $n = k, k \in \mathbb{N}$ 时,有 $6|(k^3 - k)$,则 n = k + 1 时有

$$(k+1)^3 - (k+1) = k^3 + 3k^2 + 2k$$

= $(k^3 - k) + 3k(k+1)$

显然有 $6|(k^3-k)$, 下证 6|3k(k+1)

$$1^{\circ}$$
 $k = 1, 3k(k+1) = 6$,有 $6 = 6 \cdot 1, 6 \mid 3k(k+1) \mid$

 2° 若 6|3k(k+1),则

$$3(k+1)(k+2) = 3k(k+1) + 6(k+1) \implies 6|3(k+1)(k+2)|$$

即证

$$\forall k \in \mathbb{N} \ 6|3k(k+1) \implies 6|(k+1)^3 - (k+1)$$

综上, 即证

$$\forall n > 0, 6 | (n^3 - n).$$

妮可

2.5

证明.

$$\begin{cases} 3^4 \equiv 1 \pmod{10} & \Rightarrow 3^{4n} \equiv 1 \pmod{10} \\ & \Rightarrow 3^{m+4n} \equiv (-1) \pmod{10}, \\ 10|(3^m+1) & \Rightarrow 3^m \equiv (-1) \pmod{10} \end{cases}$$

即证

$$10|(3^{m+4n}+1)$$

2.6

(1)

$$2345 = 5 \cdot 7 \cdot 67$$

(2)

$$3456 = 2 \cdot 3 \cdot 3 \cdot 3$$

2.7

证明. 不妨假设 $\exists n > 0$,使得 $n(n+1) = d^2$ 为平方数,则有

$$n^{2} < n(n+1) = d^{2} < (n+1)^{2} \implies n < d < n+1$$

不存在相邻整数间的整数, d 不存在, 假设不成立, 即证.

2.8

证明.
$$n = 5! + 1 = 2 \cdot 3 \cdot 4$$

2.9

2.10

2.11

2.12

2.13

2.14

2.15

2.16

2.17

2.18

2.19

2.20

2.21

2.22

2.23

2.24

2.25

2.26

2.27

2.28

2.29

2.30

2.31

2.32

2.33

2.34

2.35

2.36

2.37

3 映射

4 二元关系

5 群论初步

6 商群

7 环和域

8 格和布尔代数