COMPREHENSIVE EXAM

ALGEBRA

[Spring/Fall] [Year]

Part I: Group Theory (Do 4 of the following 5 problems)

- 1. Assuming Cauchy's Theorem for all finite abelian groups, prove Cauchy's Theorem for all finite groups.
- 2. Let G be a finite group.
 - (a) If [G:Z(G)]=n where n is a positive, show that every conjugacy class has at most n elements.
 - (b) Suppose that the size of each conjugacy class in G is at most 2. Show that for all $g \in G$, the centralizer $C_G(g)$ is a normal subgroup of G.
- 3. Let G be a finite group and suppose that H is a maximal subgroup of G. In other words, if K is any subgroup of G with $H \subseteq K \subseteq G$, then either H = K or K = G. Assuming H is normal subgroup of G, prove that the index [G:H] must be prime.
- 4. (a) If G is a cyclic group, prove that every subgroup of G is also cyclic.
 - (b) Suppose $g \in G$ and $\operatorname{ord}(g) = n$. Given a positive integer m, if $d = \gcd(n, m)$, prove that $\operatorname{ord}(a^m) = \operatorname{ord}(a^d)$.
- 5. Let G be a group of order $182 = 2 \cdot 7 \cdot 13$.
 - (a) Show that G has a normal 13-Sylow subgroup.
 - (b) Show that G has a cyclic subgroup H with |H| = 91.
 - (c) List two non-isomorphic groups of order 182. You do not have to prove that the two groups you list are not isomorphic.

Part II: Ring and Field Theory (Do 4 of the following 5 problems)

- 1. Let R be a commutative ring with unity, and let P be a prime ideal in R.
 - (a) If I and J are ideals in R with $I \cap J \subseteq P$, show that one of I or J is a subset of P.
 - (b) If R is finite, then explain why R/P is a field.
- 2. Let E be a field and let F be a subfield of E. Let c and d be elements of E, both algebraic over F, where the minimal polynomial of c has degree n, and the minimal polynomial of d has degree m.
 - (a) Prove that the set $\{1, c, c^2, \dots, c^{n-1}\}$ is linearly independent over F.
 - (b) Suppose m and n are relatively prime. Determine, with proof, the degree of the extension F(c,d) over F.
- 3. For each prime p and each positive integer n, show that there is a field with p^n elements by constructing a splitting field for a suitable polynomial f(x) in $\mathbb{Z}_p[x]$.
- 4. Let ζ be a primitive 7-th root of unity.
 - (a) Determine, with proof, the degree of the extension $[\mathbb{Q}(\zeta):\mathbb{Q}]$.
 - (b) Determine the number of intermediate fields L with $\mathbb{Q} \subsetneq L \subsetneq \mathbb{Q}(\zeta)$.
 - (c) List all fields L from part (b) and determine their degree over \mathbb{Q} .
- 5. (a) Give the splitting field K for $f(x) = x^3 5$ over \mathbb{Q} .
 - (b) Explain why K/\mathbb{Q} is a Galois extension.
 - (c) Determine, with proof, the Galois group of K over \mathbb{Q} . We will denote this group by G.
 - (d) Let σ be an element of G where σ has order 3. Determine the fixed field of $\langle \sigma \rangle$.