Prática 1 (16/10/2020). Valor: 25 pontos.

Simulação de sistemas dinâmicos contínuos e discretos. Discretização de sistemas contínuos.

1. Considere o sistema dinâmico discreto

$$y_k = (1 - d) y_{k-1} + u_k, (1)$$

que modela a relação entre o montante y_k da sua conta corrente no k-ésimo dia e a quantia u_k depositada no k-ésimo dia (ou retirada, se u_k for negativo). A constante d modela um abatimento diário no montante que se encontra depositado em sua conta. Note que $0 \le d < 1$.

Faça o que se pede:

- (a) Obtenha a função de transferência discreta H(z) desse sistema em função de d.
- (b) Obtenha a expressão analítica da resposta ao impulso unitário desse sistema em função de d.
- (c) Arbitre um valor razoável para d e gere o gráfico da resposta ao impulso unitário desse sistema.
- (d) Se você depositar R\$50,00 todos os dias ao longo de uma semana, a partir de uma condição inicial nula ($y_0 = 0$), quanto dinheiro você terá no trigésimo dia a partir do primeiro dia de depósito? Obtenha o gráfico de resposta do sistema por simulação numérica da equação dinâmica (1) e por meio da implementação do somatório de convolução. Dica: Na hora de plotar os gráficos de simulação, utilize a função stem (MATLAB ou Octave).

2. Considere o modelo dinâmico contínuo

$$J\frac{d\omega(t)}{dt} = \tau(t) - b\,\omega(t) \tag{2}$$

que descreve o comportamento da velocidade de giro $\omega(t)$ de um motor submetido a atuação de um torque $\tau(t)$. O parâmetro $J=1\,\mathrm{Nms^2}$ é o momento de inércia da carga do motor e $b=20\,\mathrm{Nms}$ é um coeficiente de atrito viscoso associado ao movimento do eixo do motor.

- (a) Obtenha a função de transferência H(s) desse sistema dinâmico e calcule a sua constante de tempo.
- (b) Simule o comportamento temporal da variável $\omega(t)$ quando o motor é submetido a um degrau de torque de amplitude 5 Nm. Plote em uma mesma figura os gráficos da entrada e da saída do sistema. Dica: utilize as funções tf e lsim (MATLAB ou Octave). Verifique a validade do valor da constante de tempo calculado no item anterior.
- (c) Obtenha a expressão analítica para o sinal $\omega(t)$ obtido no item (b). Para tanto, utilize a função residue (MATLAB ou Octave), que implementa o método da expansão em frações parciais. Gere o gráfico de $\omega(t)$ a partir da expressão analítica obtida e compare-o com a resposta simulada obtida no item (b).

- (d) Discretize o modelo (2) utilizando a aproximação de Euler $(\dot{\omega} \approx \frac{\omega_{k+1} \omega_k}{T})$. Escolha um valor "razoável" para T.
- (e) Determine a função de transferência H(z) do sistema dinâmico discreto obtido.
- (f) Simule o comportamento temporal da variável $\omega(k)$ quando o motor é submetido a um degrau de torque de amplitude 5 Nm. Para tanto, utilize a função dlsim (MATLAB ou Octave). Plote em uma mesma figura os gráficos da entrada e da saída do sistema e compare os resultados obtidos com aqueles do item (b).