Memo: Symmetrische Darstellungstheorie

Simon Kapfer

6. September 2014

Teil I

Symmetrische Funktionen

Was im Stanley [7] drüber steht.

1 Definitionen

Wir arbeiten über $\mathbb{Q}[x_1, x_2, ..., x_n]$. Dabei ist n beliebig, aber hinreichend groß. Es sollen λ, ν, μ Partitionen sein. Partitionen in Multiindex–Schreibweise werden fett \mathbf{i}, \mathbf{j} notiert. Permutationen werden mit $\sigma, \tau \in \mathfrak{S}_n$ bezeichnet.

1.1. Sonstige Bezeichnungen.

$$\delta := (n-1, n-2, \ldots, 0), \quad n \text{ ist Anzahl der Variablen}$$

$$z_{\lambda} := z_{\mathbf{i}} := \prod_{k} k^{i_{k}} i_{k}!$$

$$\Delta_{\lambda}(x) := \det(x_{i}^{\lambda_{j}})_{ij} \quad \text{(schiefsymmetrisch in } x_{i})$$

$$\Delta(x) := \Delta_{\delta}(x) = \prod_{i < j} (x_{i} - x_{j}) \quad \text{Vandermonde-Determinante}$$

$$K_{\lambda\mu} \quad \text{Kostka-Zahlen}$$

$$N_{\lambda\mu}^{\nu} \quad \text{Littlewood-Richardson Zahlen}$$

1.2. Standardbasen.

- Monomial symmetrische Funktionen werden über $\mathbf{m}_{\lambda} = (x^{\lambda})^{\mathrm{Sym}}$ definiert.
- Schurpolynome sind über Determinanten definiert, [7, 7.15]:

$$\mathbf{s}_{\lambda} := \frac{\Delta_{\lambda+\delta}}{\Delta_{\delta}}$$

Die anderen Basen werden über Produkte definiert:

$$\mathbf{e}_{\lambda} = \prod_{i} \mathbf{e}_{\lambda_{i}}, \quad \mathbf{h}_{\lambda} = \prod_{i} \mathbf{h}_{\lambda_{i}}, \quad \mathbf{p}_{\lambda} = \prod_{i} \mathbf{p}_{\lambda_{i}}.$$

• Elementar– und vollständige symmetrische Funktionen \mathbf{e}_k und \mathbf{h}_k :

$$\mathbf{e}_k = \sum_{i_1 < i_2 < \dots < i_k} x_{i_1} x_{i_2} \dots x_{i_k}, \qquad \mathbf{h}_k = \sum_{i_1 \le i_2 \le \dots \le i_k} x_{i_1} x_{i_2} \dots x_{i_k}$$

- Potenzsummen $\mathbf{p}_k := x_1^k + x_2^k + \dots$
- 1.3. Erzeugende Funktionen.

$$\sum_{k\geq 0} \mathbf{e}_k t^k = \prod_i (1 + x_i t) = \exp\left(\sum_{k\geq 1} \frac{-(-1)^k}{k} \mathbf{p}_k t^k\right)$$
$$\sum_{k\geq 0} \mathbf{h}_k t^k = \prod_i \frac{1}{1 - x_i t} = \exp\left(\sum_{k\geq 1} \frac{1}{k} \mathbf{p}_k t^k\right)$$

2 Skalarprodukt und Involution

2.1. *Skalarprodukt.* Das Skalarprodukt wird so definiert, daß gilt:

$$\langle \mathbf{m}_{\lambda}, \mathbf{h}_{\mu} \rangle = \delta_{\lambda\mu} = \langle \mathbf{s}_{\lambda}, \mathbf{s}_{\mu} \rangle$$
$$\langle \mathbf{p}_{\lambda}, \mathbf{p}_{\mu} \rangle = \delta_{\lambda\mu} \mathbf{z}_{\lambda}$$

2.2. Adjungierte Multiplikationsperatoren. (7.15.2, und [5], S. 44.)

$$\langle \mathbf{s}_{\nu} f, \mathbf{s}_{\lambda} \rangle = \langle f, \mathbf{s}_{\lambda/\nu} \rangle$$

Bezeichne mit D() den adjungierten Operator zur Multiplikation. Dann:

$$D(\mathbf{p}_n) = \sum_{r \ge 0} \mathbf{h}_r \frac{\partial}{\partial \mathbf{h}_{n+r}} = (-1)^{n-1} \sum_{r \ge 0} \mathbf{e}_r \frac{\partial}{\partial \mathbf{e}_{n+r}} = n \frac{\partial}{\partial \mathbf{p}_n}$$

2.3. *Involution.* Definiere eine Involution ω durch

$$\omega \mathbf{e}_{\lambda} = \mathbf{h}_{\lambda}.$$

Dann hat ω folgende Eigenschaften:

$$\omega^{2} = id$$

$$\langle \omega f, \omega g \rangle = \langle f, g \rangle$$

$$\omega \mathbf{p}_{\lambda} = \deg(\lambda) \mathbf{p}_{\lambda}$$

$$\omega \mathbf{s}_{\lambda/\nu} = \mathbf{s}_{\lambda'/\nu'}$$
(7.7.5)
$$(7.7.5)$$

2.4. *Duale Basen.* $\{\mathbf{u}_{\lambda}\}$, $\{\mathbf{v}_{\lambda}\}$ seien zwei duale Basen für symmetrische Funktionen, d. h. $\langle \mathbf{u}_{\lambda}, \mathbf{v}_{\nu} \rangle = \delta_{\lambda \nu}$. Dann gilt:

$$\sum_{\lambda} \mathbf{u}_{\lambda}(x) \mathbf{v}_{\lambda}(y) = \prod_{i,j} \frac{1}{1 - x_i y_j}$$
$$\sum_{\lambda} \mathbf{u}_{\lambda}(x) \omega_y \mathbf{v}_{\lambda}(y) = \prod_{i,j} 1 + x_i y_j$$

3 Beziehungen zwischen den Basen

3.1. *Darstellung durch* \mathbf{m}_{λ} . Siehe [7, 7.4.1, 7.5.1., 7.7.1.]

$$\mathbf{s}_{\lambda} = \sum_{\mu} K_{\lambda\mu} \mathbf{m}_{\mu} \tag{3.1.1}$$

- **3.2.** *Durch Potenzsummen.* Siehe [7, 7.7.6.]
- **3.3.** *Durch Schur.* [7, 7.12.4, 7.15.3, 7.17.3]

$$\mathbf{s}_{\nu}\mathbf{h}_{\mu} = \sum_{\lambda} K_{\lambda/\nu\mu} \,\mathbf{s}_{\lambda} \tag{3.3.1}$$

$$\mathbf{s}_{\nu}\mathbf{e}_{\mu} = \sum_{\lambda} K_{\lambda'/\nu'\mu} \,\mathbf{s}_{\lambda} \tag{3.3.2}$$

$$\mathbf{s}_{\nu}\mathbf{p}_{\mu} = \sum_{\lambda} \chi^{\lambda/\nu}(\mu) \,\mathbf{s}_{\lambda} \tag{3.3.3}$$

$$\mathbf{s}_{\nu}\mathbf{s}_{\mu} = \sum_{\lambda} C_{\nu\mu}^{\lambda} \mathbf{s}_{\lambda} \tag{3.3.4}$$

Gleichung 3.3.3 heißt Murnagham-Nakayama Regel. χ wird in [7, 7.17.3] definiert. Dort auch Border-Strip-Tableaus.

3.4. *Durch Matrizen.* Siehe [5] S. 56. K ist die Matrix aus Kostka–Zahlen. M^{\top} bedeutet Transposition, $M^{-\top}$ bedeutet Transposition plus Inversion. $J_{\lambda\mu} = \delta_{\lambda'\mu}$.

	e	h	m	s
e	1	$K^{\top}JK^{-\top}$	$K^{\top}JK$	$K^{\top}J$
h	$K^{\top}JK^{-\top}$	1	$K^{\top}K$	K^{\top}
m	$K^{-1}JK^{-\top}$	$K^{-1}K^{-\top}$	1	K^{-1}
s	$JK^{-\top}$	$K^{-\top}$	K	1

3.5. *Jacobi-Trudy.* (Stanley 7.16.1)

$$\mathbf{s}_{\lambda/\mu} = \det\left(\mathbf{h}_{\lambda_i - \mu_j + i - j}\right)$$

4 Plethysmen

4.1. *Definition.* Für f eine symmetrische Funktion ist der Plethysmus mit einer Potenzsumme definiert durch: $f[\mathbf{p}_n](x_1, x_2, \ldots) = f(x_1^n, x_2^n, \ldots) = \mathbf{p}_n[f](x_1, x_2, \ldots)$ und der Forderung, daß f[g] ein Ringhomomorphismus in f ist. In g hat man nicht mal Linearität. Plethysmen haben was mit Verkettung zu tun. Man kann sich auch den Plethysmus mit \mathbf{e}_n bzw. \mathbf{h}_n so vorstellen, daß man die Variablen x_1, x_2, \ldots durch die Monome ersetzt, die in \mathbf{e}_n , \mathbf{h}_n vorkommen. Das gilt nicht für jede beliebige symmetrische Funktion, nur wenn man einen Funktor von Darstellungen finden kann, welcher die Charaktere entsprechend transformiert, siehe auch 8.4.

4.2. Plethystische Identitäten. Siehe [7, S. 447ff].

$$\mathbf{h}_n[-\mathbf{p}_1] = (-1)^n \mathbf{e}_n \tag{4.2.1}$$

$$f[-\mathbf{p}_1] = (-1)^n \omega(f)$$
 (4.2.2)

$$\sum_{n} \mathbf{h}_{n}[\mathbf{e}_{1} + \mathbf{e}_{2}] = \sum_{\lambda} \mathbf{s}_{\lambda}$$
 (4.2.3)

5 Hopfalgebren

Der Ring der symmetrischen Funktionen trägt mehrere Hopfalgebren-Strukturen.

5.1. Klassische Hopfalgebrenstruktur. [2] Mit den Setzungen

$$\Delta(\mathbf{e}_n) := \sum \mathbf{e}_i \otimes \mathbf{e}_{n-i}, \qquad \varepsilon(\mathbf{e}_n) := \delta_{0,n}$$

und der bekannten Involution als Antipode. Man hat für die Komultiplikation:

$$\Delta(\mathbf{h}_n) = \sum \mathbf{h}_i \otimes \mathbf{h}_{n-i}, \quad \Delta(\mathbf{s}_{\mu}) = \sum \mathbf{s}_{\lambda} \otimes \mathbf{s}_{\mu/\lambda}, \quad \Delta(\mathbf{p}_n) = 1 \otimes \mathbf{p}_n + \mathbf{p}_n \otimes 1$$

Die \mathbf{p}_n spannen die primitiven Elemente der Komultiplikation. S. [4, Kap. 10]. Außerdem hat man die Adjunktionsformel $\langle x \otimes y, \Delta(z) \rangle = \langle x y, z \rangle$.

5.2. *Produkt–Bialgebra.* [4, 1] Mit der Setzung

$$\Delta(\mathbf{p}_n) := \mathbf{p}_n \otimes \mathbf{p}_n, \ \text{bzw. } \Delta(\mathbf{h}_n) = \sum_{\|\lambda\| = n} \mathbf{h}_{\lambda} \otimes \mathbf{m}_{\lambda} = \sum_{\|\lambda\| = n} \mathbf{s}_{\lambda} \otimes \mathbf{s}_{\lambda}$$

ist eine andere Bialgebren-Struktur erklärt.

5.3. Faà di Bruno Algebra. [1] Auch die Setzung

$$\Delta(\mathbf{h}_n) := \sum_k \mathbf{h}_k \otimes \mathbf{h}_{n-k} \left[(1+k)\mathbf{p}_1 \right], \quad \varepsilon(\mathbf{h}_n) := \delta_{0,n}, \quad \psi(\mathbf{h}_n) := \frac{\mathbf{h}_n \left[-(1+n)\mathbf{p}_n \right]}{1+n}$$

definiert eine Hopfalgebra.

Teil II

Darstellungstheorie

Orientiert sich an Fulton-Harris, [3]. Im Stanley, [7, 7.18, 7.A2], steht auch was.

6 Allgemeines über Charaktere

Folgendes gilt für beliebige (endliche) Gruppen G, welche auf \mathbb{C} -Vektorräumen wirken.

6.1. *Definition.* Eine Darstellung ist ein Algebrenhomomorphismus: $\mathbb{C}[G] \longrightarrow \mathbb{E}$ ndV. Der Charakter χ_V ist die Verkettung der Darstellung mit der Spurbildung, also eine lineare Abbildung: $\mathbb{C}[G] \longrightarrow \mathbb{C}$.

Charaktere sind Klassenfunktionen, d. h. der Wert des Charakters hängt nur von der Konjugationsklasse ab. Zwei Darstellungen sind gleich, falls ihre Charaktere gleich sind.

6.2. Rechenregeln für Charaktere. Für die induzierten Darstellungen gilt:

$$\chi_{V \oplus W} = \chi_V + \chi_W \tag{6.2.1}$$

$$\chi_{V \otimes W} = \chi_V \chi_W \tag{6.2.2}$$

$$\chi_{\text{Hom}(V,W)} = \overline{\chi_V} \chi_W \tag{6.2.3}$$

$$\sum_{k \ge 0} \chi_{\text{Sym}^k V}(g) t^k = \exp\left(\sum_{j \ge 1} \frac{1}{j} \chi_V(g^j) t^j\right)$$
 (6.2.4)

$$\sum_{k\geq 0} \chi_{\Lambda^k V}(g) t^k = \exp\left(\sum_{j\geq 1} \frac{(-1)^{j+1}}{j} \chi_V(g^j) t^j\right)$$
 (6.2.5)

Man beweist das mit Potenzsummen, vollständigen und elementarsymmetrischen Polynomen in den Eigenwerten der darstellenden Matrizen.

6.3. *Komposition von Darstellungen.* Wirkt eine Gruppe G auf V und die Gruppe GL(V) auf W, so gilt für die induzierte Wirkung auf W (siehe [7, S. 448]):

$$\chi_{G,W} = \chi_{GL(V),W}[\chi_{G,V}]$$

- **6.4.** *Ring der Darstellungen.* Durch Hinzufügen formaler additiver Inverser werden die Darstellungen einer festen Gruppe mit \oplus , \otimes ein Ring mit der trivialen Darstellung als 1. Die Abbildungen $\chi_V(g) \mapsto \chi_V(g^k)$ sind Ringhomomorphismen und heißen auch Adams–Operationen.
- **6.5.** *Irreduzible Darstellungen.* Es gibt genauso viele irreduzible Darstellungen wie Konjugationsklassen. Die Charaktere der irreduziblen Darstellungen bilden eine Orthonormalbasis der Klassenfunktionen bezüglich des Skalarprodukts:

$$\langle \alpha, \beta \rangle := \frac{1}{|G|} \sum_{g \in G} \overline{\alpha(g)} \beta(g)$$

Jede Darstellung von G zerfällt in eine direkte Summe von irreduziblen. [3, 2.13]

- 6.6. Darstellungen, die Namen haben und Konstruktionen.
 - Die **triviale** Darstellung: Eindimensional, irreduzibel, jedes Gruppenelement wirkt wie die Identität. V^G ist isomorph zu einer direkten Summe trivialer Darstellungen.
 - Die **reguläre** Darstellung ist $\mathbb{C}[G]$ mit Linksmultiplikation. Jede irreduzible Darstellung taucht in der Zerlegung der regulären mit einer Vielfachheit auf, die gleich ihrer Dimension ist.

- Wirkt H auf W und G auf V, so wirkt $H \times G$ auf $W \otimes V$. Diese Konstruktion heißt äußeres Tensorprodukt und wird $W \boxtimes V$ geschrieben.
- Sei $H \le G$ eine Untergruppe, W eine Darstellung von H. Die **induzierte** Darstellung von G ist

$$\operatorname{Ind}_{H}^{G}W = \bigoplus_{\gamma \in G/H} \gamma \cdot W \tag{6.6.1}$$

und ist adjungiert zur Einschränkung der Darstellung bezüglich Hom_G , Hom_H , sowie des Skalarprodukts von Klassenfunktionen im Sinne von [3, 3.20]:

$$\langle \chi_{\operatorname{Ind}_{H}^{G}W}, \chi_{V} \rangle = \langle \chi_{W}, \chi_{\operatorname{Res}_{H}^{G}V} \rangle$$
 (6.6.2)

6.7. Invarianten. Der Mittelungs-Operator

$$\frac{1}{|G|} \sum_{g \in G} g$$

projiziert V auf V^G , den Teil der unter G-Wirkung invariant bleibt. Das entspricht dem Summand, der von der trivialen (irreduziblen) Darstellung kommt.

7 Irreduzible Darstellungen von \mathfrak{S}_d

- **7.1.** *Young–Symmetrisierer.* Die Projektion auf die irreduzible Darstellung, die einer (beliebig numerierten) Partition λ zugeordnet wird, lautet: $c_{\lambda} = a_{\lambda}b_{\lambda} \in \mathbb{C}[\mathfrak{S}_d]$ wobei $a_{\lambda} = \sum \sigma$ und $b_{\lambda} = \sum \operatorname{sgn}(\sigma)\sigma$. Die erste Summe durchläuft die Permutationen, die die Reihen, die zweite die, die die Spalten auf sich abbilden. Wenn man die Reihenfolge von a_{λ} und b_{λ} vertauscht, so erhält man für jeden Summanden sein Inverses (Antipode).
- **7.2.** *Frobenius Abbildung.* [7, S. 351] Bilde Klassenfunktionen auf symmetrische Polynome ab durch:

$$\operatorname{ch}: \bigoplus \operatorname{CF}(\mathfrak{S}_n) \longrightarrow \Lambda$$

$$\operatorname{ch} f = \frac{1}{n!} \sum_{\sigma \in \mathfrak{S}_n} f(\sigma) \, \mathbf{p}_{\lambda(\sigma)} = \sum_{\lambda} \frac{1}{z_{\lambda}} f(\lambda) \, \mathbf{p}_{\lambda}$$

Diese Abbildung ist linear und bezüglich der Skalarprodukte eine Isometrie. Für Darstellungen V, W von \mathfrak{S}_n , \mathfrak{S}_m definiert $(V,W) \mapsto \operatorname{Ind}_{\mathfrak{S}_n \times \mathfrak{S}_m}^{\mathfrak{S}_{n+m}}(V \boxtimes W)$ eine Multiplikation auf $\bigoplus \operatorname{CF}(\mathfrak{S}_n)$, bezüglich der ch ein Isomorphismus von Ringen wird.

7.3. *Frobenius Formel.* Bezeichnen $\lambda = (\lambda_1 \ge \lambda_2 \ge ...)$ und **i** Partitionen, wobei i durch Multiplizitäten gegeben ist. Dann gilt mit den Bezeichnungen aus 1.1:

$$\mathbf{p_i} = \sum_{\lambda} \chi_{\lambda}(C_i) \, \mathbf{s_{\lambda}}$$
 bzw. $\chi_{\lambda}(C_i) = \left[x^{\lambda + \delta} \right] \, \Delta(x) \mathbf{p_i}(x)$

7.4. *Hakenlängenformel.* Für die irreduzible Darstellung zur Partition λ gilt:

$$\dim V_{\lambda} = \frac{d!}{\prod (\text{Längen der Haken})}$$

- **7.5.** *Standard–Darstellung.* $\mathbb{C}^d = 1 + V_{(d-1,1)}$, direkte Summe aus trivialer Darstellung und sog. Standarddarstellung. Die äußere Potenz $\Lambda^k V_{(d-1,1)} = V_{(d-k,1,1,\ldots)}$ ergibt die Darstellung, die zu einem Haken gehört. [3, 4.6] Siehe auch [6].
- **7.6.** Regel von Young. Seien $U_{\lambda} = \mathbb{C}[\mathfrak{S}_d] a_{\lambda}$, $V_{\lambda} = \mathbb{C}[\mathfrak{S}_d] c_{\lambda}$. Dann ist V_{λ} irreduzibel und (vergleiche mit 3.4):

$$U_{\lambda} = \sum_{\mu} K_{\mu\lambda} V_{\mu}$$

Schur-Funktoren

8.1. *Definition.* Auf $V^{\otimes d}$ wirkt \mathfrak{S}_d durch Vertauschung der Faktoren. Dann ist der Schurfunktor definiert durch $\mathbb{S}^{\lambda}V:=c_{\lambda}(V^{\otimes d})$. Insbesondere also: $\mathbb{S}^{(1^d)}=\Lambda^d$ und $\mathbb{S}^{(d)} = \operatorname{Sym}^d$. Man hat:

$$V^{\otimes d} = \bigoplus (\mathbb{S}^{\lambda} V)^{\oplus \dim V_{\lambda}}$$

8.2. *Link zu symmetrischen Funktionen.* Sei *G* Gruppe, die auf *V* wirkt. Dann ist $\chi_{\mathbb{S}^{\lambda}V}$ das Schurpolynom s_{λ} in den Eigenwerten der korrespondierenden Matrix. Insbesondere hat man die Formeln:

$$\dim \mathbb{S}^{\lambda} V = s_{\lambda}(1, 1, \dots) = \prod_{1 \le i < j \le \dim V} \frac{\lambda_{i} - \lambda_{j} + j - i}{j - i}$$

$$\mathbb{S}^{\lambda} V \otimes \mathbb{S}^{\mu} V = \bigoplus_{\nu} N_{\lambda \mu}^{\nu} \mathbb{S}^{\nu} V$$
(8.2.1)

$$\mathbb{S}^{\lambda}V \otimes \mathbb{S}^{\mu}V = \bigoplus_{\nu} N_{\lambda\mu}^{\nu} \mathbb{S}^{\nu}V \tag{8.2.2}$$

8.3. Weitere Analogien. Die Funktoren

$$V \longmapsto a_{\lambda}(V^{\otimes d}) = \operatorname{Sym}^{\lambda_1} V \otimes \operatorname{Sym}^{\lambda_2} V \otimes \dots$$
$$V \longmapsto b_{\lambda'}(V^{\otimes d}) = \Lambda^{\lambda_1} V \otimes \Lambda^{\lambda_2} V \otimes \dots$$

verhalten sich wie die vollständigen und elementarsymmetrischen Polynome:

$$\Lambda^{\lambda_1} V \otimes \ldots \otimes \Lambda^{\lambda_r} V = \bigoplus K_{\mu\lambda} \mathbb{S}^{\mu'} V \tag{8.3.1}$$

und die analogen Identitäten gelten auch.

- **8.4.** *Plethysmen.* Es gilt (?): Die Charaktere von $\mathbb{S}^{\lambda}(\mathbb{S}^{\mu}V)$ sind als symmetrische Funktionen in den Eigenwerten gleich $\mathbf{s}_{\lambda}[\mathbf{s}_{u}]$.
- **8.5.** *Andere Rechenregeln.* Siehe [3, S. 79ff]. Für das äußere Produkt von Darstellungen hat man:

$$\mathbb{S}^{\nu}(V \oplus W) = \bigoplus N_{\lambda\mu}^{\nu} \left(\mathbb{S}^{\lambda} V \boxtimes \mathbb{S}^{\mu} W \right)$$
 (8.5.1)

$$\mathbb{S}^{\nu}(V \boxtimes W) = \bigoplus C_{\lambda\mu\nu} \Big(\mathbb{S}^{\lambda} V \boxtimes \mathbb{S}^{\mu} W \Big)$$
 (8.5.2)

$$\operatorname{Sym}^{d}(V \boxtimes W) = \bigoplus_{\lambda \vdash d} \mathbb{S}^{\lambda} V \boxtimes \mathbb{S}^{\lambda} W \tag{8.5.3}$$

Literatur

- [1] Jean-Paul Bultel. A one-parameter deformation of the farahat-higman algebra. *Europ. J. of Combinatorics*, 2011.
- [2] Grinberg Dari. mathoverflow. http://mathoverflow.net/questions/85985/symmetric-polynoms-are-hopf-algebra-what-for-one-needs-co-product, 2012.
- [3] William Fulton and Joe Harris. *Representation Theory.* GTM 129. Springer, 1991.
- [4] M. Hazewinkel. Witt vectors. Part 1. ArXiv e-prints.
- [5] Ian G. Macdonald. *Symmetric functions and Hall polynomials*. Clarendon Press, Oxford, 1979.
- [6] Ivan Marin. Hooks generate the representation ring of the symmetric group. 2010.

[7] Richard P. Stanley. *Enumerative combinatorics. Volume 2.* Cambridge studies in advanced mathematics. Cambridge university press, Cambridge, New York, 1999. Errata et addenda: p. 583-585.