

Power-to-Gas for Energy Storage

Rob Harvey Director, Energy Storage

DOE Electrolytic Hydrogen Production Workshop National Renewable Energy Laboratory, Golden, CO – Feb 28, 2014

Power-to-Gas converts clean generation when it is not needed into renewable fuel, power or heat where and when it is needed

Power-to-Gas Solution

The value proposition is compelling

Power-to-Gas Applications

Value Proposition	Direct Injection	H2 Fueling Station	Industrial H2 Feed	Biogas Methanation	Captive RE
Ancillary Services					
Store Energy					
Seasonal Storage					
Tx Grid Capital Deferral	•			•	
Renewable H2					

Only hydrogen can provide seasonal storage capacity by charging consecutive days or even weeks without needing to discharge

Hydrogen storage far exceeds the capacity of competing storage technology

An alternative operating model for a Power-to-Gas plant is to capture low-cost power and provide ancillary services

LEVELIZED COSTS OF HYDROGEN FOR A GRID-CONNECTED ELECTROLYSIS PLANT

Note: Illustrative example based on SBC Energy Institute simulation based on DOE H2A Model. © 2013 SBC Energy Institute.

Source: Excerpt from presentation by Benoit Decourt entitled *Hydrogen-Based Energy Storage Solutions* at the IEA Hydrogen Roadmap Workshop, Paris – July 10, 2013.

For example, an electrolyzer operating 12-15 hours a day could accommodate a wide range of fueling demand and provide a useful regulation band for the ISO

A number of challenges remain...

Remove Barriers to Energy Storage

- Power-to-Gas proponents need to join energy storage associations to support efforts to smooth adoption of energy storage technologies
- Includes wholesale power input prices, provision of ancillary services,
 ITCs, procurement targets

Testing MW Stacks

 Facilities/resources for product development testing of full size electrolyzer stacks in MW and Multi-MW configurations

Launch MW-Scale Power-to-Gas Pilot Projects

- Need field deployments for different P2G applications
- Demonstration of technology and provision of ancillary services
- Real operating data will lay foundation for contracting commercial projects

Power-to-Gas pilot plants today will drive commercial scale deployments tomorrow

To Date...

Needs...

Future...

Demonstration projects using proven technology

Pilot projects using large scale electrolysis platforms

Commercial scale plants

2 MW Alkaline

1 MW PEM

40 MW Plant