Coordination of a Multi-Agent System for Emergency Response

Team 05

December 8, 2024

Introduction

 Objective: Design the cooperation and coordination mechanisms that will be used to solve the emergency response for fire-related emergencies in Lloret de Mar, Girona.

Teams Involved:

- Emergency Services
- Firefighters
- Medical Services
- Public Communications
- Forensics

Overview:

- For each crew: process definition and Pydantic outputs.
- Agent interactions: flows and routers.

Emergency Services Process and Outputs

Sequential Process Flow with Agent Responsibility

EmergencyDetails

+FireType fire_type
+Location location
+List injured_details
+FireSeverity fire_severity
+List hazards
+bool indoor
+int trapped_people

- What type of fire is it?
- Where is it?
- Is anyone injured? How badly?
- How severe is the fire?
- Are there hazards?
- Is it an indoor or outdoor fire?
- Is anyone inside or trapped?

Firefighters Process and Outputs

Medical Services Process

Medical Services Crew Task Flow

Medical Services Outputs

Public Communications Process

Sequential Process Flow with Agent Responsibility

Public Communications Outputs

Emergency Planner Flow

- Crews coordinate through centralized state
- Flow manages state and crew kickoffs
- Use of _and, _or and router allow complex ordering and parallelization
- Retry system facilitates public communications

Emergency Planner State

```
class EmergencyPlannerState:
    call_transcript: str | None
    call_assessment: CallAssessment | None
    firefighters_report: FirefightersReport | None
    medical_report: MedicalReport | None
    public_report: PublicReport | None
    retry_count: int = 0
```

- call_transcript: The transcript of the emergency call
- call_assessment: From EmergencyServices crew
- firefighters_response_report: From Firefighters crew
- medical_response_report: From MedicalServices crew
- public_communication_report: From PublicCommunication crew
- mayor_approval_retry_count: Number of mayor approval attempts

Conclusion

- Emergency Services establishes robust initial assessment and crew dispatching
- Firefighters and Medical Services demonstrates effective parallel operation and complex processes
- Public Communications generates useful summaries with mayor approval system and retry mechanisms
- We use a centralized state management with the CrewAl flow framework, enabling coordination between crews
- We use a standardized reporting system with structured outputs from each specialized crew, which will be compiled into a single report

Thank You!

Questions?

References

Kathleen Keogh and Liz Sonenberg.

Designing multi-agent system organisations for flexible runtime behaviour.

Applied Sciences, 10(15), 2020.

Leonid Sheremetov and Matías Alvarado.

Weiss, gerhard. multiagent systems a modern approach to distributed artificial intelligence.

3, 10 2009.

Michael Wooldridge.

An Introduction to MultiAgent Systems.

Wiley Publishing, 2nd edition, 2009.

Michael Wooldridge.

Properties of intelligent autonomous agents, 2010.

