Francisco J. Gonzalez

Data Scientist, Strong Analytics

 $\mathfrak{D} + 1 (224) 465 6868$ ⋈ me@franciscojgonzalez.com www.franciscojgonzalez.com

Education

2016–2018 M.Sc., University of Illinois at Urbana-Champaign, Aerospace Engineering.

Adviser: Maciej Balajewicz

Thesis: "Learning low-dimensional feature dynamics using convolutional recurrent

autoencoders"

2012–2016 **B.Sc.**, University of Illinois at Urbana-Champaign, Aerospace Engineering.

Cum Laude, Minor: Computational Science & Engineering

Experience

2019 Data Scientist, Strong Analytics, Chicago, IL.

Present Data science consulting and machine learning development.

- o Designed and developed computer vision solutions used to help keep children safe online from cyberbulling and other potentially harmful situations.
- Developing 3D computer vision applications to help global shipping companies optimize last-mile logistics.

2018–2019 Data Scientist - Computer Vision, CCC, Chicago, IL.

AI-enabled vehicle collision estimating tools.

- Developing deep learning tools that leverage photos and telematics data for vehicle claims automation.
- Researched innovative approaches to detect and classify vehicle damage from multiview images.

2016–2018 Graduate Research Assistant, University of Illinois at Urbana-Champaign. Data-driven methods in computational science.

- Developed deep learning based, completely data-driven nonlinear model reduction
- Currently researching applications of deep learning to modeling complex dynamical systems.

Summer Research Intern, Mitsubishi Electric Research Laboratory, Cambridge, MA.

2018 Optimal sensor placement for state estimation.

- Developed optimal sensor placement algorithm for state estimation of large thermofluid systems.
- Implemented iterative solvers for large-scale matrix equations used in estimation.

Summer Computational Physics Fellow, Los Alamos National Laboratory.

2016 Quinoa: Adaptive Fluid Dynamics

- Contributed to the development of Quinoa, a fully asynchronous distributed-memory parallel finite element solver using unstructured grids.
- Implemented load-balancing capabilities on the finite element solver using the Charm++ runtime system.
- 2015–2016 Blue Waters Research Intern, National Center for Supercomputing Applications, Urbana, IL.

Computational bio-fluid mechanics

- o Utilized the petascale supercomputer, Blue Waters, to investigate and develop residualbased turbulence models applicable to arterial blood flow.
- Designed and ran simulations investigating intracranial blood flow during +Gz accelerations.

Software

Languages & Programming

Frameworks • Python, C/C++, MATLAB, Fortran 90

Machine Learning/Deep Learning

TensorFlow, Keras, Scikit-learn, AWS SageMaker

Big Data

• PySpark

High Performance Computing

• OpenMP, MPI, CUDA, Charm++

Open-source nMOR: neural Model Order Reduction

Packages • Deep learning based package for nonlinear model order reduction written in Python and Tensorflow, available on Github.

Publications

2018

1. Gonzalez, F., Balajewicz, M. (2018) Deep convolutional recurrent autoencoders for learning low-dimensional feature dynamics of fluid systems, arXiv preprint arXiv:1808.01346. (Submitted to Int J Num Meth Fluids)

2016

1. Gonzalez, F., Rogers, B. (2016) Asynchronous Navier-Stokes solver for unstructured grids using overdecomposition, Los Alamos National Laboratory Tech. Rep. LA-UR-16-27258, 104-124.

—— Conference Proceedings

- Bakosi, J., Bird, R., Junghans, C., Pavel, R., Waltz, J., Gonzalez, F., Rogers,
 B. (2017) Quinoa: Adaptive Computational Fluid Dynamics, 15th Annual
 Workshop on Charm++ and its Applications, Urbana, IL.
- 1. **Gonzalez, F.** (2016) Numerical simulation of highly pulsatile blood flow through idealized femoral artery bifurcations, 2016 Undergraduate Research Symposium, Urbana, IL.
- 2015
 1. Gonzalez, F. (2015) Gain scheduling approach to variable pitch vertical axis wind turbines, 2015 SAEOPP McNair/SSS Scholars Research Conference, Atlanta, GA. (2nd Place Oral Presentation Award)
 - 2. **Gonzalez, F.** (2015) Parallelized 2D vortex panel model for rotating airfoils, 2015 Undergraduate Research Symposium, Urbana, IL.

■ Honors & Awards

- 2018–2020 Alfred P. Sloan MPhD Scholar, UIUC/Alfred P. Sloan Foundation (declined offer)
- 2016–2018 SURGE Fellowship, UIUC College of Engineering
- 2014–2016 Ronald E. McNair Scholar, UIUC
- 2015–2016 Blue Waters Fellowship, National Center for Supercomputing Applications
- 2013–2016 Edmund J. James Scholar, UIUC College of Engineering
- 2014, 2015 Dean's List, UIUC College of Engineering
- 2012–2016 President's Award Program Honors Scholarship, UIUC
 - 2015 David Kuck Computational Science & Engineering Award, UIUC
 - 2015 La Casa Latina Outstanding Scholar Award, UIUC

Teaching

- Fall 2015 $\,$ Teaching Assistant, CSE High Performance Computing Workshop, NCSA
- 2013–2014 Mathematics Tutor, Office of Minority Student Affairs, UIUC