Тема I: Многочлены

§ 6. Отделение кратных множителей

М.В.Волков

Уральский федеральный университет Институт естественных наук и математики кафедра алгебры и фундаментальной информатики

2021/2022 учебный год

Кратность неприводимого множителя

По теореме о разложении многочлена на неприводимые множители произвольный многочлен f положительной степени над полем F однозначно представим в виде

$$f = \alpha p_1^{k_1} p_2^{k_2} \cdots p_m^{k_m}.$$

Здесь p_1, p_2, \ldots, p_m – попарно различные неприводимые над F унитарные многочлены, $k_1, k_2, \ldots, k_m \in \mathbb{N}$, а $\alpha \in F$.

Многочлены p_1, p_2, \ldots, p_m называются неприводимыми множителями многочлена f, а число k_i (где $1 \le i \le m$) – кратностью неприводимого множителя p_i . Множители p_i , для которых $k_i > 1$, называют кратными.

Разложить многочлен в произведение неприводимых – трудная задача. Однако оказывается, что довольно просто *отделить кратные множители*, т.е. найти многочлен

$$g = p_1^{k_1 - 1} p_2^{k_2 - 1} \cdots p_m^{k_m - 1}.$$

Здесь мы считаем, что $p_i^0=1$, т.е. в разложении g участвуют в точности кратные множители многочлена f.

Характеристика поля

Пусть F – произвольное поле, $x\in F$, а n – натуральное число. Положим $nx:=\underbrace{x+x+\cdots+x}_{n\ \text{pas}}$. Если существует натуральное число n

такое, что nx=0 для всякого $x\in F$, то минимальное n с таким свойством называется характеристикой поля F; если такого n не существует, то характеристика поля F полагается равной 0. Характеристика поля F обозначается через $\operatorname{char} F$.

Примеры: $\operatorname{char} \mathbb{Q} = \operatorname{char} \mathbb{R} = \operatorname{char} \mathbb{C} = 0$, a $\operatorname{char} \mathbb{F}_p = p$.

Примеры: cnar $\mathbb{Q} = \operatorname{cnar} \mathbb{K} = \operatorname{cnar} \mathbb{C} = 0$, a cnar $\mathbb{F}_p = p$.

Нетрудно доказать, что характеристика всякого поля равна либо нулю, либо простому числу (упражнение).

 $\mbox{\it Peшениe:}$ Пусть ${\rm char}\, F=n.$ Имеем n>1, поскольку в поле $1\neq 0.$ Возьмем простой делитель p числа n. Тогда n=pk для некоторого k< n и

$$0 = \underbrace{1+1+\cdots+1}_{n \text{ pa3}} = \underbrace{1+1+\cdots+1}_{p \text{ pa3}} \cdot \underbrace{1+1+\cdots+1}_{k \text{ pa3}}.$$

В поле нет делителей нуля, поэтому один из сомножителей равен 0. Второй сомножитель не равен 0, так как k < n, а n – минимальное число с тем свойством, что $\underbrace{1+1+\cdots+1}_{n \text{ pas}}=0$. Значит, первый сомножитель

равен 0, и из минимальности n следует, что n=p.

Производная многочлена

Определение

Пусть $f(x)=\alpha_n x^n+\alpha_{n-1} x^{n-1}+\cdots+\alpha_0$ — многочлен над кольцом R. Если n>0, то производной многочлена f(x) называется многочлен $n\alpha_n x^{n-1}+(n-1)\alpha_{n-1} x^{n-2}+\cdots+\alpha_1$, обозначаемый через f'(x). Если n=0, то по определению f'(x)=0.

Для многочленов над полем $\mathbb R$ производная многочлена в нашем смысле совпадает с производной многочлена как функции от одной переменной в смысле математического анализа.

Степень производной многочлена степени n не обязательно равна n-1. Например, для многочлена $f(x)=x^p$ над полем \mathbb{F}_p имеем $f'(x)=px^{p-1}=0$, поскольку $\operatorname{char}\mathbb{F}_p=p$.

Замечания:

- а) для любого многочлена f над любым кольцом R выполнено неравенство $\deg f' \leq \deg f 1$,
- б) если f многочлен степени >0 над полем характеристики 0, то $\deg f' = \deg f 1.$

Производная многочлена (2)

Лемма о свойствах производной

Если f(x) и g(x) — многочлены над кольцом R, $\alpha \in R$, а $m \in \mathbb{N}$, то:

- $1) \ (\alpha f)' = \alpha f',$
- 2) (f+g)' = f' + g',
- 3) (fg)' = f'g + fg',
- 4) $(f^m)' = mf^{m-1}f'$.

Доказательство. 1) и 2) непосредственно вытекают из определений.

3) В силу свойств 1) и 2) свойство 3) достаточно доказать в случае, когда $f(x)=x^n$, а $g(x)=x^m$ для некоторых n и m. В самом деле, в этом случае

$$\begin{split} (fg)' &= (x^{n+m})' = (n+m)x^{n+m-1}, \\ f'g &= nx^{n-1} \cdot x^m = nx^{n+m-1}, \quad \text{w} \\ fg' &= x^n \cdot mx^{m-1} = mx^{n+m-1}. \end{split}$$

Следовательно, $f'g + g'f = (n+m)x^{n+m-1} = (fg)'$.

4) выводится из 3) индукцией по m.

Неприводимые множители многочлена и его производной

Лемма о производной неприводимого многочлена

Если p – неприводимый многочлен и $p' \neq 0$, то $\mathsf{HOД}(p,p') = 1$.

Доказательство. Положим $d=\mathsf{HOД}(p,p')$. Тогда p=dq и p'=dr для некоторых многочленов q и r. Если $\deg q=0$, то

$$\deg p = \deg dq = \deg d + \deg q = \deg d \le \deg p' \le \deg p - 1.$$

Полученное противоречие показывает, что $\deg q \neq 0$, и потому $q \notin F$. Следовательно, $d \in F$. Раз $d \neq 0$, заключаем, что d ассоциирован с 1.

Замечание. Условие $p'\neq 0$ в формулировке леммы существенно. Приведем пример неприводимого многочлена p, для которого оно не выполняется. Рассмотрим поле $\mathbb{F}_2(y)$ рациональных функций от y над двухэлементным полем \mathbb{F}_2 . Многочлен $p(x)=x^2+y$ неприводим над $\mathbb{F}_2(y)$ по обобщенному критерию Эйзенштейна. Однако p'(x)=2x=0, так как $\operatorname{char}\mathbb{F}_2=2$.

Неприводимые множители многочлена и его производной (2)

Предложение о неприводимых множителях многочлена и его производной

Пусть F — поле характеристики 0, а p — неприводимый множитель кратности k многочлена $f\in F[x]$. Если k=1, то p не делит f'. Если k>1, то p является неприводимым множителем многочлена f' кратности k-1.

Доказательство. Обозначим через g произведение всех неприводимых множителей многочлена f, отличных от p, и старшего коэффициента многочлена f. Тогда $f=p^kg$ и $p\nmid g$. Раз $\operatorname{char} F=0$, то $p'\neq 0$ и по лемме о производной неприводимого многочлена имеем $\operatorname{HOД}(p,p')=1$. Из свойств взаимно простых многочленов заключаем, что p не делит p'g. Если k=1, то f=pg, и потому f'=(pg)'=p'g+pg'. Если бы p делил f', то p делил бы и p'g=f'-pg'. Итак, если k=1, то p не делит f'. Пусть теперь k>1. Тогда

$$f' = (p^k g)' = (p^k)'g + p^k g' = kp^{k-1}p'g + p^k g' = p^{k-1}(kp'g + pg').$$

Видно, что p^{k-1} делит f'. Осталось проверить, что p не делит kp'g+pg'. Предположим, что p делит kp'g+pg'. Тогда, очевидно, p делит и kp'g. Поскольку $\operatorname{char} F=0$, в F есть элемент α , обратный к $\underbrace{1+1+\dots+1}_{k \text{ pas}} \neq 0$.

Умножив kp'g на lpha, получим, что p делит p'g, что невозможно.

Отделение кратных множителей

Пусть $f=\alpha p_1^{k_1}p_2^{k_2}\cdots p_m^{k_m}$ — разложение на неприводимые множители многочлена f над полем F нулевой характеристики и $k=\max_i\{k_i\}$. Обозначим через $d_j,\ j=1,2,\ldots,k$, произведение всех тех неприводимых множителей многочлена f, кратность которых равна j, т.е. $d_j:=\prod_{k_i=j}p_i$. (Если множителей какой-то кратности j нет, полагаем $d_j:=1$.) Тогда

$$f = \alpha d_1 d_2^2 d_3^3 \cdots d_k^k,$$

поскольку неприводимые множители из d_1 входят в разложение f по одному разу, множители из d_2 – по два раза и т.д. Из предложения о неприводимых множителях многочлена и его производной вытекает, что

$$f_1 := \mathsf{HOД}(f, f') = d_2 d_3^2 \cdots d_k^{k-1}.$$

Многочлен $g_1:=rac{f}{lpha f_1}=d_1d_2\cdots d_k=p_1p_2\cdots p_m$ есть произведение всех попарно различных неприводимых множителей f. Применяя эту же процедуру к многочлену f_1 , можно найти многочлены

$$f_2 := \mathsf{HOД}(f_1, f_1') = d_3 \cdots d_k^{k-2}$$
 и $g_2 := \frac{f_1}{f_2} = d_2 \cdots d_k.$

Разделив g_1 на g_2 , найдем d_1 . Продолжая этот процесс, можно *отделить* кратные множители многочлена f, т.е. найти все многочлены d_2,\ldots,d_k .

Кратные корни

По следствию теоремы Безу α является корнем многочлена f(x) тогда и только тогда, когда $(x-\alpha)|f(x)$, т.е. когда двучлен $x-\alpha$ служит одним из неприводимых множителей многочлена f(x).

Если $x-\alpha$ – множитель кратности k>1 для f(x), то α называют кратным корнем, а число k – кратностью этого корня.

Следствием проведенных выше рассмотрений является полезный факт:

Замечание (исключение кратных корней)

Пусть f — многочлен на полем характеристики 0. Многочлен $\frac{f}{\mathsf{HOД}(f,f')}$ имеет те же корни, что и f, но не имеет кратных корней. B частности, если $\mathsf{HOД}(f,f')=1$, то сам многочлен f не имеет кратных корней.