Feuille de TD n.8 de IPD 2015-2016, Ensimag 2A IF

H. Guiol & J. Lelong

Exercice 1. (processus d'Ornstein-Uhlenbeck)

Soit $(B_t, t \in \mathbb{R}_+)$ un mouvement brownien standard, $a \in \mathbb{R}$ fixé et $X_t := \int_0^t e^{-a(t-s)} dB_s$, $t \in \mathbb{R}_+$. 1) Montrer que (X_t) est un processus gaussien centré. Quelle est sa covariance?

Réponse. On a

$$X_t = e^{-at} \int_0^t e^{as} dB_s = e^{-at} Y_t$$

où Y_t est une intégrale de Wiener donc est un processus gaussien centré de covariance

$$Cov(Y_t, Y_s) = \int_0^{t \wedge s} e^{2au} \ du = \frac{e^{2a(s \wedge t)} - 1}{2a}$$

On en déduit que (X_t) est gaussien centré de covariance

$$Cov(X_t, X_s) = e^{-a(t+s)}Cov(Y_t, Y_s) = e^{-a(t+s)}\frac{e^{2a(s \wedge t)} - 1}{2a}$$

Remarque: (X_t) n'est par contre ni une martingale ni un processus à accroissements indépendants! (pourquoi?)

Réponse. On voit que pour tout $0 \le s < t$

$$\mathbb{E}(X_t|\mathcal{F}_s) = e^{-at}Y_s = e^{-a(t-s)}X_s \neq X_s$$

de plus

$$\mathbb{E}(X_t - X_s | \mathcal{F}_s) = (e^{-a(t-s)} - 1)X_s \neq \mathbb{E}(X_t - X_s) = 0$$

2) Démontrer que (X_t) satisfait l'équation suivante:

$$X_t = -a \int_0^t X_s \, ds + B_t.$$

Réponse. On applique Itô à $X_t = e^{-at}Y_t$

$$dX_t = -aX_t dt + e^{-at} dY_t + d\langle e^{a\cdot}, Y \rangle_t = -aX_t dt + dB_t$$

On en déduit que $\langle X \rangle_t = t$.

3) Démontrer par la formule d'Itô que le processus $f(X_t)$ est une martingale si f satisfait l'équation différentielle suivante:

$$-ax f'(x) + \frac{1}{2}f''(x) = 0, \quad f(0) = 0, \quad f'(0) = 1.$$

Réponse. Par Ito on a

$$df(X_t) = f'(X_t) \ dX_t + \frac{1}{2}f''(X_t)d\langle X \rangle_t = \left[-aX_t f'(X_t) + \frac{1}{2}f''(X_t) \right] \ dt + f'(X_t) \ dB_t$$

Une condition nécessaire pour que $f(X_t)$ soit une martingale est que le terme en dt ans l'expression ci-dessus soit nul. Cela correspond à l'équation différentielle.

4) Poser g(x) = f'(x) et résoudre l'équation différentielle. Conclure que

$$f(x) = \int_0^x \exp(ay^2) \, dy.$$

Réponse. On a -axg(x) + (1/2)g'(x) = 0 d'où

$$\frac{g'(x)}{g(x)} = 2ax \implies \ln(g(x)) = ax^2 + cte$$

l'hypothèse 1 = f'(0) = g(0) implique cte = 0. On en titre

$$f(x) = \int_0^x e^{au^2} du + K$$

et l'hypothèse f(0) = 0 implique K = 0. D'où le résultat.

On note au passage qu'on a bien $f'(X_t) = e^{aX_t^2} \in \Pi_2^2[0,T]$ donc $f(X_t)$ est bien une martingale.

5) On pose $T := \inf\{t \in \mathbb{R}_+ : X_t \notin]b, c[\}$, le premier temps de sortie de l'intervalle]b, c[(T est un temps d'arrêt). Utiliser les question 3 et 4 pour calculer $\mathbb{P}(X_T = b)$.

Réponse. On pose $T_n = T \wedge n$ qui est un T.A. borné. Donc par le théorème d'arrêt on a

$$\mathbb{E}(f(X_{T_n})) = \mathbb{E}(f(X_0)) = 0$$

On remarque sur $\{T < \infty\}$ par convergence dominé $\lim_{n \to \infty} \mathbb{E}(f(X_{T_n})|T < \infty) = \mathbb{E}(f(X_T)|T < \infty)$ et on a

$$\mathbb{E}(f(X_T)|T < \infty) = 0 = \int_0^b e^{au^2} \ du \ \mathbb{P}(X_T = b|T < \infty) + \int_0^c e^{au^2} \ du \ \mathbb{P}(X_T = c|T < \infty)$$

D'où

$$\mathbb{P}(X_T = b|T < \infty) = \frac{\int_0^c e^{au^2} du}{\int_a^c e^{au^2} du}$$

Le fait que $\mathbb{P}(T < +\infty) = 1$ n'est pas trivial. Il peut se déduire de la propriété de Markov que vérifie le processus d'Ornstein-Uhlenbeck mais sort du cadre que nous nous sommes fixé dans ce cours. On ne détaillera donc pas ce point.

Exercice 2. (le mouvement brownien écrit votre prénom avec probabilité > 0 en un temps fini)

1) Montrer que si $(B_t, t \in \mathbb{R}_+)$ est un mouvement brownien standard, alors on a pour T > 0 fixé,

$$\mathbb{P}\left(\sup_{0 < t < T} |B_t| \le \varepsilon\right) > 0, \quad \forall \varepsilon > 0.$$

Réponse. On remarque que $\{\sup_{0 \le t \le T} |B_t| \le \varepsilon\} = \{\tau_{\varepsilon} > T\}$. Où τ_{ε} est le premier temps de sortie du brownien de l'intervalle $]-\varepsilon,\varepsilon[$.

Un résultat théorique (que nous ne détaillerons pas ici) donne pour tous T>0 et $\varepsilon>0$

$$\mathbb{P}(\tau_{\varepsilon} > T) = \frac{4}{\pi} \sum_{n=1}^{+\infty} (-1)^{n+1} \frac{1}{2n-1} \exp\left(-\frac{(2n-1)^2 \pi^2}{8\varepsilon^2} T\right) > 0$$

2) Soit $g: \mathbb{R}_+ \to \mathbb{R}$ une fonction (déterministe) continûment dérivable et telle que g(0) = 0. Démontrer que

$$\mathbb{P}\left(\sup_{0 < t < T} |B_t - g(t)| \le \varepsilon\right) > 0, \quad \forall \varepsilon > 0.$$

Indication: Effectuer un changement de probabilité $\mathbb{P} \mapsto \tilde{\mathbb{P}}_T$ de telle sorte que $\tilde{B}_t := B_t - g(t)$ soit un mouvement brownien standard sous $\tilde{\mathbb{P}}_T$. Se rappeler également que $\mathbb{P}(A) = 0$ implique $\tilde{\mathbb{P}}_T(A) = 0$.

Réponse. Il s'agit d'appliquer ici le théorème de Cameron-Martin, on pose pour tout $t \in [0,T]$

$$L_t = \exp\left[-\int_0^t h(s) \ dB_s - \frac{1}{2} \int_0^t (h(s))^2 \ ds\right]$$

avec h(t) = -g'(t) qui définit une probabilité $\tilde{\mathbb{P}}_T$ telle que $L_t = \frac{d\tilde{\mathbb{P}}_T}{d\mathbb{P}}$ telle que le processus W définit par $W_t = B_t - g(t)$ est un MBS sous $\tilde{\mathbb{P}}_T$.

De 1) on déduit que $\tilde{\mathbb{P}}_T$ $\left(\sup_{0 \leq t \leq T} |W_t| \leq \varepsilon\right) > 0$ ce qui entraine $\mathbb{P}\left(\sup_{0 \leq t \leq T} |W_t| \leq \varepsilon\right) > 0$ qui est le résultat annoncé.

Remarque: cette propriété reste vraie pour un mouvement brownien en deux dimensions et $g: \mathbb{R}_+ \to \mathbb{R}^2$. Si on pense alors à la fonction g qui écrit votre prénom (avec des lettres liées pour être continûment dérivable...), on arrive à la conclusion citée au début de l'exercice. On peut même montrer que la probabilité vaut 1 si on a le choix de l'échelle à laquelle on regarde le mouvement brownien!