Aufgabe 5

Gegeben sind die folgenden transaktionsähnlichen Abläufe. (Zunächst wird auf das Setzen von Sperren verzichtet.) Hierbei steht R(X) für ein Lesezugriff auf X und W(X) für einen Schreibzugriff auf X.

T1	T2
R(A)	R(D)
A := A-10	D := D-20
W(A)	W(D)
R(C)	R(A)
R(B)	A := A + 20
B := B + 10	W(A)
W(B)	

Betrachten Sie folgenden Schedule:

T1	T2
R(A)	
	R(D)
	D := D-20
	W(D)
	R(A)
	A := A + 20
	W(A)
A := A-10	
W(A)	
R(C)	
R(B)	
B := B + 10	
W(B)	

- (a) Geben Sie die Werte von A, B, C und D nach Ablauf des Schedules an, wenn mit A=100, B=200, C= true und D=150 begonnen wird.
 - A 90 (A := A 10 := 100 10) T2 schreibt 120 in A, was aber von T1 wiederüberschrieben wird.
 - **B** 210 (B wird nur in T1 gelesen, verändert und geschriebe)
 - **C** true (C wird nur in T1 gelesen)
 - **D** 130 (D wird nur in T2 gelesen, verändert und geschrieben)
- (b) Geben Sie den Dependency-Graphen des Schedules an.
- (c) Geben Sie alle auftretenden Konflikte an.
- (d) Begründen Sie, ob der Schedule serialisierbar ist.

(e) Beschreiben Sie, wie die beiden Transaktionen mit LOCK Aktionen erweitert werden können, so dass nur noch serialisierbare Schedules ausgeführt werden können. Die Angabe eines konkreten Schedules ist nicht zwingend notwendig.