Presentation On Prim's Algorithm

Submitted to:

Mrs. Shano Solanki Assistant Professor Department of CSE NITTTR Chandigarh

Submitted by:

Pankaj Thakur ME(CSE) Modular RN 171408

Sub Topics to be covered:

- Introduction
- Basics concepts
- Minimum Spanning Tree Problem
- Solution to Minimum Spanning Tree Problem
- Generic-MST
- Prim's algorithm details
- Complexity Analysis of Prim's Algorithm.
- Applications and latest research work based on Prim's Algorithm
- Summary
- Queries.

Introduction

- •Prim's algorithm is a greedy algorithm that finds a minimum spanning tree for a weighted undirected graph.
- •Developed in 1930 by Czech mathematician Vojtěch Jarník and later rediscovered and republished by computer scientists Robert C. Prim in 1957 and E. W. Dijkstra in 1959.
- •Therefore, it is also sometimes called the **DJP algorithm**, **Jarník's algorithm**, the **Prim–Jarník algorithm**,or the **Prim–Dijkstra algorithm**.

Basic Concepts

Spanning Trees: A subgraph T of a undirected graph G = (V, E) is a spanning tree of G if it is a tree and contains every vertex of G.

- Every connected graph has a spanning tree.
- May have multiple spanning tree.
- For example see this graph.

Spanning Tree 1

Spanning Tree 2

Spanning Tree 3

Spanning Tree Cont...

Basic Concepts Cont.....

Weighted Graph: A weighted graph is a graph, in which each edge has a weight (some real number) Example:

Basic Concepts Cont....

Minimum Spanning Tree in an undirected connected weighted graph is a spanning tree of minimum weight. Example:

Minimum Spanning Tree Problem

MST Problem : Given a connected weighted undirected graph G, design an algorithm that outputs a minimum spanning tree (MST) of graph G.

- How to find Minimum Spanning Tree ?
- Generic solution to MST

GENERIC-MST Algorithm

GENERIC-MST (G, w)

1	A = 0
2	while A does not form a spanning tree
3	find an edge (u, v) that is safe for A
4	A = A U { (u, v) }
5	return A

- •The idea is to start with an empty graph and try to add edges one at a time, always making sure that what is built remains acyclic.
- •Gives us an idea how to grow a MST.
- •An edge (u, v) is safe for A if and only if $A \cup \{(u, v)\}$ is also a subset of some MST

PRIM's Algorithm

MST-PRIM(G, w, r)

1	for each u∈V[G]					
2	do key[u]←∞					
3	Π[u]←NIL					
4	key[r]←0					
5	Q←V[G]					
6	while Q is not Empty					
7	do u←EXTRACT-MIN(Q)					
8	for each v∈Adj[u]					
9	do if v ∈ Q and w(u ,v) < key[v]					
10	then ∏[v]←u					
11	key[v]←w(u, v)					

- A special case of generic minimumspanning-tree algorithm and operates much like Dijkstra's algorithm.
- Edges in the set A always form a single tree.
- Greedy algorithm since at each step it adds to the tree an edge that contributes the minimum amount possible to the tree's weight.
- •Connected graph G and the root r of the MST to be drawn are inputs.
- •During execution of the algorithm, all vertices that are not in the MST reside in a min-priority queue Q based on a key attribute.
- •For each vertex v, the attribute v.key is the minimum weight of any edge connecting v to a vertex in the tree.
- •The attribute v.∏ names parent of v in the tree.
- •Maintains the set A from GENERIC-MST as

$$A = \{ (v, v.\Pi) : v \in V - \{r\} - Q \}.$$

When the algorithm terminates, the min-priority queue Q is empty.

The MST A for G is thus

$$A = \{ (v, v.\Pi) : v \in V - \{r\} \}.$$

PRIM's Algorithm (Steps 1-5: Initialization)

MST-PRIM(G,w,r)

Example Graph

u	а	b	С	d	е	f	g	h	i
key[u]	8	8	8	8	8	8	8	8	8
Π[u]	NIL								

After Steps 1-3

u	а	b	С	d	e	f	G	Н	i
key[u]	0	8	8	8	8	8	8	8	8
Π[u]	NIL								

After Step 4

Q	А	b	С	d	e	f	g	h	i
Α	EMPTY								

After Step 5

PRIM's Algorithm (Steps 6 to 11)

MST-PRIM(G,w,r)

1	for each u∈V[G]
2	do key[u]←∞
3	Π[u]←NIL
4	key[r]←0
5	Q←V[G]
6	while Q is not Empty
7	do u←EXTRACT-MIN(Q)
8	for each v∈Adj[u]
9	do if v∈Q and w(u,v) <key[v]< td=""></key[v]<>
10	then ∏[v]←u
11	key[v]←w(u,v)

Before Step 6

Q	а	b	С	d	e	f	g	h	i
key[u]	0	8	8	∞	8	8	8	8	8
Π[u]	NIL								

Q	а	b	С	d	Ε	f	ф	h	i
۸	EM								
Α	PTY								

Steps 6-11 (for u=a)

u	٧	v∈Q AND w(u,v) < Key[v]	Π[v]←u, Key[v]←w(u,v)
а	b	YES	Π[b]←a, Key[b]←4
а	h	YES	Π[h]←a, Key[h]←8

After Step 6-11 (for u=a)

Q	а	b	С	d	е	f	g	h	i
key[u]	0	4	∞	∞	∞	8	8	8	8
П[u]	NIL	a	NIL	NIL	NIL	NIL	NIL	а	NIL

Q	b	С	d	е	f	g	h	i	
Α	а								

PRIM's Algorithm (Steps 6 to 11)

MST-PRIM(G,w,r)

1	for each u∈V[G]
2	do key[u]←∞
3	Π[u]←NIL
4	key[r]←0
5	Q←V[G]
6	while Q is not Empty
7	do u←EXTRACT-MIN(Q)
8	for each v∈Adj[u]
9	do if v∈Q and w(u,v) <key[v]< td=""></key[v]<>
10	then ∏[v]←u
11	key[v]←w(u,v)

Before Step 6

Q	а	b	С	d	e	f	g	h	i
key[u]	0	∞	8	∞	8	8	8	8	8
П[u]	NIL								

Q	а	b	С	d	e	f	ф	h	i
Α									

Steps 6-11 (for u=a)

u	٧	v∈Q AND w(u,v) < Key[v]	П[v]←u, Key[v]←w(u,v)
а	b	YES	Π[b]←a, Key[b]←4
а	h	YES	Π[h]←a, Key[h]←8

After Step 6-11 (for u=a)

Q	а	b	С	d	е	f	g	h	i
key[u]	0	4	∞	∞	8	8	8	8	8
П[u]	NIL	а	NIL	NIL	NIL	NIL	NIL	а	NIL

Q	b	С	d	е	f	g	h	i	
Α	а								

PRIM's Algorithm (Steps 6 to 11, for u=b)

6	while Q is not Empty
7	do u←EXTRACT-MIN(Q)
8	for each v∈Adj[u]
9	do if v∈Q and w(u,v) <key[v]< td=""></key[v]<>
10	then ∏[v]←u
11	key[v]←w(u,v)

Status of Q before using u=b

Q	a	b	С	d	е	f	g	h	i
key[u]	0	4	∞	∞	∞	∞	∞	8	∞
П[u]	NIL	a	NIL	NIL	NIL	NIL	NIL	a	NIL

Q	b	С	d	е	f	g	h	i	
Α	a								

Steps 6-11(for u=b)

u	V	v∈Q AND w(u, v) < Key[v]	Then Π[v]←u, Key[v]←w(u,v)
b	С	YES	П[с]←b, Key[с]←8
b	h	NO	do nothing
b	а	NO	do nothing

After Step 6-11 (for u=b)

Q	а	b	С	d	е	f	g	h	i
key[u]	0	4	8	∞	∞	8	∞	8	8
Π[u]	NIL	a	b	NIL	NIL	NIL	NIL	а	NIL

Q	С	d	е	f	۵۵	h	i	
Α	a	b						

PRIM's Algorithm (Steps 6 to 11, for u=b)

6	while Q is not Empty
7	do u←EXTRACT-MIN(Q)
8	for each v∈Adj[u]
9	do if v∈Q and w(u,v) <key[v]< td=""></key[v]<>
10	then ∏[v]←u
11	key[v]←w(u,v)

Status of Q before using u=b

Q	a	b	С	d	е	f	g	h	i
key[u]	0	4	∞	∞	∞	∞	∞	8	8
Π[u]	NIL	a	NIL	NIL	NIL	NIL	NIL	a	NIL

Q	b	С	d	е	f	g	h	i	
Α	a								

Steps 6-11(for u=b)

u	V	v∈Q AND w(u,v) < Key[v]	Then Π[v]←u, Key[v]←w(u,v)
b	С	YES	Π[c]←b, Key[c]←8
b	h	NO	do nothing
b	а	NO	do nothing

After Step 6-11 (for u=b)

Q	а	b	С	d	е	f	g	h	-
key[u]	0	4	8	∞	8	∞	∞	8	8
П[u]	NIL	а	b	NIL	NIL	NIL	NIL	a	NIL

Q	С	d	е	f	g	h	i	
Α	а	b						

PRIM's Algorithm (Steps 6 to 11, for u=c)

6	while Q is not Empty
7	do u←EXTRACT-MIN(Q)
8	for each v∈Adj[u]
9	do if v∈Q and w(u,v) <key[v]< td=""></key[v]<>
10	then ∏[v]←u
11	key[v]←w(u,v)

Status of Q before using u=c

Q	а	b	С	d	е	f	g	h	i
key[u]	0	4	8	∞	∞	8	8	8	∞
П[u]	NIL	a	b	NIL	NIL	NIL	NIL	a	NIL

Q	С	d	е	f	g	h	i	
Α	a	b						

Steps 6-11(for u=c)

u	V	v∈Q AND w(u, v) < Key[v]	Then Π[v]←u, Key[v]←w(u,v)
С	i	YES	Π[i]←c, Key[i]←2
С	f	YES	Π[f]←c, Key[f]←4
С	d	YES	Π[d]←c, Key[d]←7
С	b	NO	Do Nothing

After Step 6-11 (for u=c)

Q	a	b	С	d	е	f	g	h	i
key[u]	0	4	8	7	8	4	8	8	2
Π[u]	NIL	а	b	С	NIL	С	NIL	а	С

Q	d	е	f	g	h	i		
Α	a	b	С					

PRIM's Algorithm (Steps 6 to 11, for u=c)

6	while Q is not Empty
7	do u←EXTRACT-MIN(Q)
8	for each v∈Adj[u]
9	do if v∈Q and w(u,v) <key[v]< td=""></key[v]<>
10	then ∏[v]←u
11	key[v]←w(u,v)

Status of Q before using u=c

Q	а	b	С	d	е	f	g	h	i
key[u]	0	4	8	∞	∞	∞	8	8	∞
П[u]	NIL	а	b	NIL	NIL	NIL	NIL	а	NIL

Q	С	d	е	f	æ	h	i	
А	a	b						

Steps 6-11(for u=c)

u	V	v∈Q AND w(u, v) < Key[v]	Then Π[v]←u, Key[v]←w(u,v)
С	i	YES	Π[i]←c, Key[i]←2
С	f	YES	Π[f]←c, Key[f]←4
С	d	YES	Π[d]←c, Key[d]←7
С	b	NO	Do Nothing

After Step 6-11 (for u=c)

Q	a	b	С	d	е	f	g	h	i
key[u]	0	4	8	7	8	4	8	8	2
Π[u]	NIL	а	b	С	NIL	С	NIL	а	С

Q	d	е	f	g	h	i		
Α	a	b	С					

PRIM's Algorithm (Steps 6 to 11, for u=i)

6	while Q is not Empty
7	do u←EXTRACT-MIN(Q)
8	for each v∈Adj[u]
9	do if v∈Q and w(u,v) <key[v]< td=""></key[v]<>
10	then ∏[v]←u
11	key[v]←w(u,v)

Status of Q before using u=i

Q	а	b	С	d	е	f	g	h	i
key[u]	0	4	8	7	∞	4	8	8	2
Π[u]	NIL	a	b	С	NIL	С	NIL	а	С

Q	d	е	f	g	h	i		
Α	a	b	С					

Steps 6-11(for u=i)

u	V		Then Π[v]←u, Key[v]←w(u,v)
i	h	YES	Π[h]←i, Key[h]←7
i	9	YES	Π[g]←i, Key[g]←6
i	С	NO	Do Nothing

Example Graph

After Step 6-11 (for u=i)

Q	а	b	С	d	е	f	g	h	i
key[u]	0	4	8	7	8	4	6	7	2
П[u]	NIL	a	b	С	NIL	С	i	i	С

Q	d	e	f	g	h		
Α	a	b	С	i			

PRIM's Algorithm (Steps 6 to 11, for u=i)

6	while Q is not Empty
7	do u←EXTRACT-MIN(Q)
8	for each v∈Adj[u]
9	do if v∈Q and w(u,v) <key[v]< td=""></key[v]<>
10	then ∏[v]←u
11	key[v]←w(u,v)

Status of Q before using u=i

Q	а	b	С	d	е	f	g	h	i
key[u]	0	4	8	7	∞	4	8	8	2
Π[u]	NIL	a	b	С	NIL	С	NIL	а	С

Q	d	е	f	g	h	i		
A	a	b	С					

Steps 6-11(for u=i)

u	٧		Then Π[v]←u, Key[v]←w(u,v)
i	h	YES	Π[h]←i, Key[h]←7
i	g	YES	Π[g]←i, Key[g]←6
i	С	NO	Do Nothing

Example Graph

After Step 6-11 (for u=i)

Q	а	b	С	d	е	f	g	h	i
key[u]	0	4	8	7	8	4	6	7	2
П[u]	NIL	а	b	С	NIL	С	i	i	С

Q	d	е	f	g	h		
Α	а	b	С				

PRIM's Algorithm (Steps 6 to 11, for u=f)

6	while Q is not Empty
7	do u←EXTRACT-MIN(Q)
8	for each v∈Adj[u]
9	do if v∈Q and w(u,v) <key[v]< td=""></key[v]<>
10	then ∏[v]←u
11	key[v]←w(u,v)

Status of Q before using u=f

(Q	a	b	С	d	е	f	g	h	i
ke	y[u]	0	4	8	7	∞	4	6	7	2
П	[u]	NIL	a	b	С	NIL	С	i	i	С

Q	d	е	f	g	h		
А	a	b	С	i			

Steps 6-11(for u=f)

u	V	v∈Q AND w(u, v) < Key[v]	Then Π[v]←u, Key[v]←w(u,v)
f	d	NO	Do nothing
f	е	YES	Π[e]←f, Key[e]←10
f	g	YES	Π[g]←f, Key[g]←2
f	С	NO	Do nothing

After Step 6-11 (for u=f)

Q	а	b	С	d	е	f	g	h	i
key[u]	0	4	8	7	10	4	2	7	2
П[u]	NIL	а	b	С	f	С	f	i	С

Q	d	е	g	h			
Α	a	b	С	i	f		

PRIM's Algorithm (Steps 6 to 11, for u=f)

6	while Q is not Empty
7	do u←EXTRACT-MIN(Q)
8	for each v∈Adj[u]
9	do if v∈Q and w(u,v) <key[v]< td=""></key[v]<>
10	then ∏[v]←u
11	key[v]←w(u,v)

Status of Q before using u=f

Q	a	b	С	d	е	f	g	h	i
key[u]	0	4	8	7	∞	4	6	7	2
Π[u]	NIL	а	b	С	NIL	С	i	i	С

Q	d	е	f	g	h		
Α	a	b	С	i			

Steps 6-11(for u=f)

u	V	v∈Q AND w(u, v) < Key[v]	Then Π[v]←u, Key[v]←w(u,v)
f	d	NO	Do nothing
f	Ф	YES	Π[e]←f, Key[e]←10
f	g	YES	Π[g]←f, Key[g]←2
f	С	NO	Do nothing

After Step 6-11 (for u=f)

Q	а	b	С	d	е	f	g	h	i
key[u]	0	4	8	7	10	4	2	7	2
П[u]	NIL	a	b	С	f	С	f	i	С

Q	d	е	g	h			
Α	a	b	С	i	f		

PRIM's Algorithm (Steps 6 to 11, for u=g)

6	while Q is not Empty
7	do u←EXTRACT-MIN(Q)
8	for each v∈Adj[u]
9	do if v∈Q and w(u,v) <key[v]< td=""></key[v]<>
10	then ∏[v]←u
11	key[v]←w(u,v)

Status of Q before using u=g

Q	а	b	С	d	е	f	αρ	h	i
key[u]	0	4	8	7	10	4	2	7	2
П[u]	NIL	a	b	С	f	С	f	i	С

Q	d	е	g	h			
Α	a	b	С	i	f		

Steps 6-11(for u=g)

u	٧	v∈Q AND w(u, v) < Key[v]	Then Π[v]←u, Key[v]←w(u,v)
g	h	YES	Π[h]←g, Key[h]←1
g	i	NO	Do Nothing
g	f	NO	Do Nothing

After Step 6-11 (for u=g)

Q	а	b	С	d	е	f	g	h	i
key[u]	0	4	8	7	10	4	2	1	2
Π[u]	NIL	а	b	С	f	С	f	g	С

Q	d	е	h					
Α	а	b	С	i	f	g		

PRIM's Algorithm (Steps 6 to 11, for u=g)

6	while Q is not Empty
7	do u←EXTRACT-MIN(Q)
8	for each v∈Adj[u]
9	do if v∈Q and w(u,v) <key[v]< td=""></key[v]<>
10	then ∏[v]←u
11	key[v]←w(u,v)

Status of Q before using u=g

Q	а	b	С	d	е	f	g	h	i
key[u]	0	4	8	7	10	4	2	7	2
П[u]	NIL	a	b	С	f	С	f	:-	С

Q	d	е	g	h			
Α	a	b	С	i	f		

Steps 6-11(for u=g)

u	٧	v∈Q AND w(u, v) < Key[v]	Then Π[v]←u, Key[v]←w(u,v)
g	h	YES	Π[h]←g, Key[h]←1
g	i	NO	Do Nothing
g	f	NO	Do Nothing

After Step 6-11 (for u=g)

Q	а	b	С	d	е	f	g	h	i
key[u]	0	4	8	7	10	4	2	1	2
Π[u]	NIL	а	b	С	f	С	f	g	С

Q	d	е	h					
Α	a	b	С	i	f	g		

PRIM's Algorithm (Steps 6 to 11, for u=h)

6	while Q is not Empty
7	do u←EXTRACT-MIN(Q)
8	for each v∈Adj[u]
9	do if v∈Q and w(u,v) <key[v]< td=""></key[v]<>
10	then ∏[v]←u
11	key[v]←w(u,v)

Status of Q before using u=h

Q	a	b	С	d	е	f	g	h	
key[u]	0	4	8	7	10	4	2	7	2
Π[u]	NIL	а	b	С	f	С	f	i	C

Q	d	е	h					
Α	a	b	С	i	f	go		

Steps 6-11(for u=h)

u	٧	v∈Q AND w(u, v) < Key[v]	Then Π[v]←u, Key[v]←w(u,v)
h	а	NO	Do Nothing
h	b	NO	Do Nothing
h	i	NO	Do Nothing
h	g	NO	Do Nothing

After Step 6-11 (for u=h)

Q	а	b	С	d	е	f	g	h	i
key[u]	0	4	8	7	10	4	2	1	2
Π[u]	NIL	а	b	С	f	С	f	g	С

Q	d	е						
Α	a	b	С	i	f	g	h	

PRIM's Algorithm (Steps 6 to 11, for u=h)

6	while Q is not Empty
7	do u←EXTRACT-MIN(Q)
8	for each v∈Adj[u]
9	do if v∈Q and w(u,v) <key[v]< td=""></key[v]<>
10	then ∏[v]←u
11	key[v]←w(u,v)

Status of Q before using u=h

Q	a	b	С	d	е	f	g	h	i
key[u]	0	4	8	7	10	4	2	7	2
Π[u]	NIL	а	b	С	f	С	f	i	С

Q	d	е	g	h			
А	a	b	С	ï	f		

Steps 6-11(for u=h)

u	>	v∈Q AND w(u, v) < Key[v]	Then Π[v]←u, Key[v]←w(u,v)
h	а	NO	Do Nothing
h	b	NO	Do Nothing
h	i	NO	Do Nothing
h	g	NO	Do Nothing

After Step 6-11 (for u=h)

Q	а	b	С	d	е	f	g	h	i
key[u]	0	4	8	7	10	4	2	1	2
П[u]	NIL	а	b	С	f	С	f	g	С

Q	d	е						
Α	a	b	С	i	f	g	h	

PRIM's Algorithm (Steps 6 to 11, for u=d)

6	while Q is not Empty
7	do u←EXTRACT-MIN(Q)
8	for each v∈Adj[u]
9	do if v∈Q and w(u,v) <key[v]< td=""></key[v]<>
10	then ∏[v]←u
11	key[v]←w(u,v)

Status of Q before using u=d

Q	а	b	С	d	е	f	g	h	i
key[u]	0	4	8	7	10	4	2	7	2
Π[u]	NIL	а	b	С	f	С	f	i	С

Q	d	е						
Α	a	b	С	i	f	h		

Steps 6-11(for u=d)

u	٧	v∈Q AND w(u, v) < Key[v]	Then Π[v]←u, Key[v]←w(u,v)
d	С	NO	Do Nothing
d	f	NO	Do Nothing
d	е	YES	Π[e]←d, Key[e]←9

After Step 6-11 (for u=d)

Q	а	b	С	d	е	f	g	h	i
key[u]	0	4	8	7	9	4	2	1	2
П[u]	NIL	а	b	С	d	С	f	g	С

Q	е								
Α	a	b	C	i	f	5 0	h	d	

PRIM's Algorithm (Steps 6 to 11, for u=d)

6	while Q is not Empty
7	do u←EXTRACT-MIN(Q)
8	for each v∈Adj[u]
9	do if v∈Q and w(u,v) <key[v]< td=""></key[v]<>
10	then ∏[v]←u
11	key[v]←w(u,v)

Status of Q before using u=d

Q	а	b	С	d	е	f	مه	h	i
key[u]	0	4	8	7	10	4	2	7	2
Π[u]	NIL	а	b	С	f	С	f	i	С

Q	d	е						
Α	a	b	С	i	f	h		

Steps 6-11(for u=d)

u	٧	v∈Q AND w(u, v) < Key[v]	Then Π[v]←u, Key[v]←w(u,v)
d	С	NO	Do Nothing
d	f	NO	Do Nothing
d	е	YES	Π[e]←d, Key[e]←9

After Step 6-11 (for u=d)

Q	а	b	С	d	е	f	g	h	i
key[u]	0	4	8	7	9	4	2	1	2
П[u]	NIL	a	b	С	d	С	f	g	С

Q	е								
Α	а	b	C	·-	f	مم	h	d	

PRIM's Algorithm (Steps 6 to 11, for u=e)

6	while Q is not Empty
7	do u←EXTRACT-MIN(Q)
8	for each v∈Adj[u]
9	do if v∈Q and w(u,v) <key[v]< td=""></key[v]<>
10	then ∏[v]←u
11	key[v]←w(u,v)

Status of Q before using u=e

Q	a	b	С	d	е	f	g	h	i
key[u]	0	4	8	7	9	4	2	1	2
П[u]	NIL	а	b	С	d	С	f	g	С

Q	е								
Α	a	b	С	i	f	യ	h	d	

Steps 6-11(for u=e)

u	٧	v∈Q AND w(u,v) < Key[v]	Then Π[v]←u, Key[v]←w(u,v)
е	d	NO	Do Nothing
е	f	NO	Do Nothing

After Step 6-11 (for u=e)

Q	а	b	С	d	е	f	g	h	i
key[u]	0	4	8	7	9	4	2	1	2
Π[u]	NIL	а	b	С	d	С	f	g	С

Q									
Α	a	b	С	i	f	g	h	d	е

PRIM's Algorithm (Steps 6 to 11, for u=e)

6	while Q is not Empty
7	do u←EXTRACT-MIN(Q)
8	for each v∈Adj[u]
9	do if v∈Q and w(u,v) <key[v]< td=""></key[v]<>
10	then ∏[v]←u
11	key[v]←w(u,v)

Status of Q before using u=e

Q	а	b	С	d	е	f	g	h	i
key[u]	0	4	8	7	9	4	2	1	2
П[u]	NIL	а	b	С	d	С	f	g	С

Q	е								
Α	a	b	С	i	f	D	h	d	

Steps 6-11(for u=e)

u	٧	v∈Q AND w(u, v) < Key[v]	Then Π[v]←u, Key[v]←w(u,v)
е	d	NO	Do Nothing
е	f	NO	Do Nothing

After Step 6-11 (for u=e)

Q	а	b	С	d	е	f	g	h	i
key[u]	0	4	8	7	9	4	2	1	2
Π[u]	NIL	а	b	С	d	С	f	g	С

Q									
Α	a	b	С	i	f	g	h	d	е

PRIM's Algorithm (Steps 6 to 11, for u=e)

MST-PRIM(G, w, r)

1	for each u∈V[G]
2	do key[u]←∞
3	Π[u]←NIL
4	key[r]←0
5	Q←V[G]
6	while Q is not Empty
7	do u←EXTRACT-MIN(Q)
8	for each v∈Adj[u]
9	do if v ∈ Q and w(u ,v) < key[v]
10	then ∏[v]←u
11	key[v]←w(u, v)

Q	а	b	С	d	е	f	g	h	i
key[u]	0	4	8	7	9	4	2	1	2
П[u]	NIL	а	b	С	d	С	f	g	С

Q									
Α	a	b	С	i	f	مم	h	d	e

Complexity Analysis of Prim's algorithm

MST-PRIM(G,w,r)

Example 2.

Example 2 Continue.....

Applications

Design of a network

(telephone network, computer network, electronic circuitry, electrical wiring network, water distribution network, cable TV network)

- A less obvious application is that the minimum spanning tree can be used to approximately solve the travelling salesman problem.
- Finding airline routes.
- To create high quality mazes
- Routing algorithms
- Study of molecular bonds in Chemistry
- Cartography
- Geometry
- Clustering
- Tour/Travel Management

Latest research papers based on Prim's Algorithm

Exploring the parallel implementations of the three classical MST algorithms

(N. R. Latha; G. Shyamala; G. R. Prasad 2017 International Conference on Inventive Communication and Computational Technologies (ICICCT))

Joint reconfiguration of feeders and allocation of capacitor banks in distribution systems using a multi-start strategy

(Márcio M. Montsutsumi; Jose N. Melchor; Leonardo H. Macedo; Rubén Romero, 2017 IEEE PES Innovative Smart Grid Technologies Conference - Latin America (ISGT Latin America))

Distributed minimum spanning tree based information exchange policy for distributed systems

(Taj Alam; Zahid Raza, 2016 Fourth International Conference on Parallel, Distributed and Grid Computing (PDGC))

Generating spanning tree of non-regular graphic sequences through a variant of Prim's algorithm

(Prantik Biswas; Abhisek Paul; Paritosh Bhattacharya, 2015 International Conference on Circuits, Power and Computing Technologies [ICCPCT-2015])

The transmission time analysis of IPTV multicast service in SDN/OpenFlow environments

(Pornnipa Rattanawadee; Natchaphon Ruengsakulrach; Chaiyachet Saivichit, 2015 12th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON))

Optimization of the Connection Topology of an Offshore Wind Farm Network

(Ouahid Dahmani; Salvy Bourguet; Mohamed Machmoum; Patrick Guérin; Pauline Rhein; Lionel Jossé, IEEE Systems Journal)

Multiagent-Based Distribution Automation Solution for Self-Healing Grids

(Markus Eriksson; Mikel Armendariz; Oleg O. Vasilenko; Arshad Saleem; Lars Nordström, IEEE Transactions on Industrial Electronics)

Cost-minimum network planning in large wind farm using revised prim's algorithm

Ichiro Kousaka; Daisuke Eguchi; Daiki Yamashita; Yosuke Nakanishi; Ruichi Yokoyama; Kenji Iba ISGT 2014

Prime Object Proposals with Randomized Prim's Algorithm

Santiago Manen; Matthieu Guillaumin; Luc Van Gool, 2013 IEEE International Conference on Computer Vision

Prim's algorithm based P2MP energy-saving routing design for MiDORi

Akiko Hirao; Yuki Nomura; Haruka Yonezu; Hidetoshi Takeshita; Daisuke Ishii; Satoru Okamoto; Naoaki Yamanaka, The 10th International Conference on Optical Internet (COIN2012)

References

- Coremen, Leiserson, Rivest and Stein: Introduction to algorithms, PHI
- Horowitz, Sahni and Rajsekaran: Fundamentals of Computer Algorithms, Galgotia.
- www.mathworld.wolfram.com
- IEEE xplore

Summary

Prim's algorithm is a greedy algorithm, and is a special case of generic minimum-spanning-tree algorithm and operates much like Dijkstra's algorithm, that finds a minimum spanning tree for a weighted undirected graph and is mainly used for a dense graph i.e. a graph with lots of edges.

Question?

Thanks!