Задача А. Степенные тройки

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 2 секунды Ограничение по памяти: 256 мегабайт

У братьев Васи и Пети папа силен в математике. После занимательной задачи про квадрокубы папа рассказал новую задачу, в которой нужно найти количество различных степенных троек. Для того чтобы троек было конечное число, папа задал дополнительное ограничение на сумму элементов каждой тройки. Степенная тройка — это последовательность из трех натуральных чисел, среди которых второе является полным квадратом, а третье — полным кубом. Первое число в степенной тройке не имеет дополнительных ограничений.

Вася и Петя придумали алгоритм для подсчета количества степенных троек, у которых сумма элементов не превосходит числа N. Помогите в проверке правильности ответов, которые нашли мальчики для различных значений N, напишите программу, которая находит количество различных степенных троек по заданному ограничению на сумму.

Формат входных данных

В единственной строке входного файла записано целое число $N~(3\leqslant N\leqslant 10^{18})$ — ограничение на сумму чисел в степенной тройке.

Формат выходных данных

Выходной файл должен содержать одно натуральное число, равное количеству степенных троек с суммой элементов не превосходящей N. Так как ответ может быть слишком большим, выведите его по модулю 2^{64} .

Система оценки

В данной задаче есть 5 групп тестов.

- 1. В данной группе выполняются ограничения $1 \le n \le 100$. Группа оценивается в 20 баллов.
- 2. В данной группе выполняются ограничения $1 \leqslant n \leqslant 10^6$. Группа оценивается в 15 баллов.
- 3. В данной группе выполняются ограничения $1 \le n \le 10^9$. Группа оценивается в 20 баллов.
- 4. В данной группе выполняются ограничения $1 \le n \le 10^{12}$. Группа оценивается в 20 баллов.
- 5. В данной группе выполняются ограничения $1 \le n \le 10^{18}$. Группа оценивается в 25 баллов.

Примеры

стандартный ввод	стандартный вывод
3	1
5	3
6	5
10	14

Замечание

В первом тесте возможна всего одна степенная последовательность (1, 1, 1).

Во втором тесте можно выписать три степенные последовательности (1, 1, 1), (2, 1, 1) и (3, 1, 1).

В третьем тесте возможные последовательности: (1, 1, 1), (2, 1, 1), (3, 1, 1), (4, 1, 1) и (1, 4, 1).

Задача В. Путешественник

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 1 секунда Ограничение по памяти: 256 мегабайт

Мальчик Бит очень любит путешествовать. Бит побывал почти во всех городах Байтландии, обошел интересные достопримечательности и парки, посетил различные кафе. Следующий город, в который Бит собирается отправиться в путешествие — Байтвилль. Он начал планировать свою поездку: выбрал даты и авиакомпанию, но не определил маршрут, по которому доберется до Байтвилля.

Всего в Байтландии N городов и M авиалиний. Кроме названий в Байтландии принято городам ставить в соответствие номера, города пронумерованы различными целыми числами от 1 до N. Город Байттаун, с которого Бит начинает свое путешествие, имеет номер 1, а Байтвилль — номер N. Все авиалинии соединяют пары городов, причем самолеты летают в обоих направлениях. Известно, что с помощью авиаперелетов можно добраться из Байттауна в Байтвилль, а также, что все M авиалиний соединяют различные пары городов.

Во время путешествий Бит записывает в блокнот названия посещенных городов в том порядке, в котором он их посещает. В Байтландии принято писать слова, не разделяя их пробелами, поэтому у Бита в блокноте получается одна последовательность букв, описывающая названия городов, в которых он побывал за время путешествия. Бит хочет быть уверен, что сделанная им запись поместится в его блокнот, поэтому она должна иметь минимальную длину. Бит выписал все возможные маршруты с минимальной суммарной длиной названий посещаемых городов. Для определенности он упорядочил все в лексикографическом порядке.

Бит решил поехать по первому маршруту в списке, т.е. с лексикографически минимальной записью. В последний момент он усомнился в правильности найденного маршрута, и просит Вас найти лексикографически минимальную запись маршрута из Байттауна в Байтвилль среди всех маршрутов с минимальной длиной записи.

Формат входных данных

В первой строке входных данных записаны два разделенных пробелом числа N и M (2 \leqslant N \leqslant 1000, 1 \leqslant M \leqslant min(250000, N(N-1)/2)) — количество городов и авиалиний в Байтландии соответственно.

Далее в N строках записаны названия городов в порядке их нумерации от 1 до N. Все названия городов состоят только из маленьких букв английского алфавита, их длины не превосходят 1000 символов

Далее в M строках записано по два различных числа X_i и Y_i — номера городов, между которыми летают самолеты i-й авиалинии.

Формат выходных данных

В единственной строке выведите лексикографически минимальную запись маршрута, которая может получиться.

Система оценки

В данной задаче есть 3 группы тестов.

- 1. В данной группе выполняются ограничения $1 \le n \le 50$. Все названия городов имеют длину 1. Группа оценивается в 30 баллов. Для тестирования на этой группе не обязательно проходить тесты из условия.
- 2. В данной группе выполняются ограничения $1 \le n \le 50$. Группа оценивается в 30 баллов.
- 3. В данной группе выполняются ограничения $1 \le n \le 1000$. Группа оценивается в 40 баллов.

Tinkoff Generation A. Дистанционный тур - 13 Водный Стадион, 9.02.2019

Примеры

стандартный ввод	стандартный вывод
2 1	bytetownbyteville
bytetown	
byteville	
1 2	
4 4	bytetownbytebytebyteville
bytetown	
bytecity	
bytebyte	
byteville	
1 2	
1 3	
2 4	
3 4	

Замечание

В первом тесте всего два города, и они оба должны быть в маршруте.

Во втором тесте из двух кратчайших записей «bytetownbytecitybyteville» и «bytetownbytebytebyteville» (соответствуют путям $(1,\ 2,\ 4)$ и $(1,\ 3,\ 4)$) вторая лексикографически меньше.

Задача С. Картинка Фурье

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 1 секунда Ограничение по памяти: 256 мегабайт

У Фурье есть картинка из $M \times N$ пикселей (M строк, N столбцов). Все пиксели изначально белые. Фурье хочет покрасить несколько пикселей в черный, чтобы получить потрясающую картинку. Он считает, что картинка потрясающая, если в любой группе из K подряд идущих столбцов есть хотя бы один, содержащих хотя бы F чёрных пикселей. Не будем спорить с ним, являются ли такие картинки потрясающими или нет, просто посчитаем, сколько же возможных потрясающих картинок может получить Фурье, покрасив некоторые пиксели в чёрный цвет. Так как это число может быть слишком большим, посчитайте его по модулю $998\,244\,353$.

Формат входных данных

В единственной строке входных данных даны 4 числа N M K F (1 \leqslant K \leqslant N \leqslant 10^9 , $1 \leqslant F \leqslant M \leqslant$ 20).

Формат выходных данных

В единственной строке выведите единственное число — число потрясающих картинок, которые может получить Φ урье по модулю 998 244 353.

Система оценки

В данной задаче есть 4 группы тестов:

- 1. $M \times N \leq 20$. Группа оценивается в 20 баллов.
- 2. $M \le 20, N \times K \le 10^7$. Группа оценивается в 20 баллов.
- 3. $M \le 20, K \le N \le 10^7$. Группа оценивается в 30 баллов.
- 4. $M \le 20, K \le 100, N \le 10^9$. Группа оценивается в 30 баллов.

Примеры

стандартный ввод	стандартный вывод
2 6 2 2	217
2 6 2 1	3105

Задача D. Биатлон

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 2 секунды Ограничение по памяти: 256 мегабайт

Как известно, биатлон — соревнование, где каждому из n участников приходится соревноваться сразу в двух дисциплинах. У каждого участника есть его скиллы в обоих дисциплинах — V_i и U_i соответственно. Это означает, что если сложность первой дисциплины S_1 , а второй — S_2 , то i-й участник потратит S_1/V_i времени на первую дисциплину и S_2/U_i времени на вторую дисциплину соответственно. Участник является победителем, если время, затраченное им суммарно на 2 дисциплины строго меньше, чем у всех остальных участников (Таким образом победителя не больше одного, а может оказаться, что победителей нет совсем).

Вам известны скилы каждого участника, но не известны сложности каждой дисциплины. Определите, какие участники могут оказаться победителями. Сложности не могут быть отрицательными.

Формат входных данных

В первой сроке вам дано единственное число $n\ (2 \le n \le 100\,000)$ — число участников.

В следующих строках заданы описания скилов участников. В i-й из них даны два числа U_i и V_i $(1 \leqslant U_i, V_i \leqslant 10\,000)$ — скил i-го участника в первой и второй дисциплине соответственно.

Формат выходных данных

В единственной строке выведите в порядке возрастания номера всех участников, которые могут стать победителями (нумерация ведётся с нуля). В случае, если победителя никогда не будет существовать, выведите число -1.

Система оценки

В данной задаче есть 3 группы тестов

- 1. $2 \le n \le 100, 1 \le V_i, U_i \le 100$. Группа оценивается в 20 баллов.
- 2. $2 \le n \le 5\,000$. Группа оценивается в 40 баллов.
- 3. $2 \le n \le 100\,000$. Группа оценивается в 40 баллов.

Примеры

стандартный ввод	стандартный вывод
4	0 2 3
1 4	
2 2	
4 1	
3 3	
3	-1
3 3	
3 3	
2 2	

Замечание

В первом тесте из условия 0 участник побеждает при $S_1=1$ $S_2=10$, участник 2 побеждает при $S_1=10$ $S_2=0$. Участник 3 побеждает при $S_1=10$ и $S_2=10$. Участник 1 не может победить так как участник 3 всегда будет его опережать.