Chapter 8b:

Revision on Variables Separable,

First Order Linear,

and

Second Order Linear Constant Coefficient ODES

Variables Separable ODEs

Solve the first order variables separable ODE

$$\frac{dy}{dx} = \frac{x^2 + x}{y^2 + 1}.$$

To separate variables, we must bring all the y-stuff to the left along with the dy which is already there.

We must also multiply by dx so it is on the right with the dx-stuff.

$$(y^2 + 1) dy = (x^2 + x) dx.$$

Now insert integral signs:

$$\int (y^2 + 1) \, dy = \int (x^2 + x) \, dx.$$

Now do the integrals (each wrt its own variable):

$$\frac{y^3}{3} + y = \frac{x^3}{3} + \frac{x^2}{2} + C.$$

This is the general solution, as required.

The Logistic Equation

The logistic differential equation for population growth is

$$\frac{dN}{dt} = rN\left(1 - \frac{N}{K}\right).$$

The solution with initial condition
$$N(0)=N_0$$
 is $N(t)=\frac{KN_0}{N_0+(K-N_0)e^{-rt}}.$

- (a) For what populations N is the population (i) increasing? (ii) decreasing?
- (b) Explain why N = K is a stable equilibrium and interpret the constant K in terms of the model.

(c) By differentiating $\frac{dN}{dt}$ and using the Chain Rule, show that

$$\frac{d^2N}{dt^2} = r^2N\left(1 - \frac{N}{K}\right)\left(1 - \frac{2N}{K}\right).$$

- (d) Use this to show that there is a point of inflection when $N = \frac{K}{2}$ and that this occurs at time $\tau = \frac{1}{r} \ln \left(\frac{K - N_0}{N_0} \right)$.
- (a) N is increasing when $\frac{dN}{dt} > 0$. that is N(K - N) > 0, that is 0 < N < K. N is decreasing when $\frac{dN}{dt} < 0$,

that is N(K - N) < 0, that is N > K.

(b) At N = K, $\frac{dN}{dt} = 0$, so the population remains constant.

If N is below K, it is increasing, so moves towards K.

If N is above K, it is decreasing, so moves towards K.

So points near N = K moves towards N = K, that is the equilibrium is stable.

N=K is called the *carrying capacity* of the population. It is also the long-term limit $\lim_{t\to\infty} N(t)$.

(c)
$$\frac{d^2N}{dt^2} = \frac{d}{dt}\frac{dN}{dt} = \frac{d}{dt}\left(rN\left(1 - \frac{N}{K}\right)\right)$$
$$= r\frac{d}{dN}\left(N - \frac{N^2}{K}\right)\frac{dN}{dt} = r\left(1 - 2\frac{N}{K}\right)\left(rN\left(1 - \frac{N}{K}\right)\right)$$
$$= r^2N\left(1 - \frac{N}{K}\right)\left(1 - \frac{2N}{K}\right).$$

(d) When $N = \frac{K}{2}$, $\frac{d^2N}{dt^2} = 0$, and $\frac{dN}{dt} \neq 0$, so there is a point of inflection.

Suppose
$$N(\tau) = \frac{K}{2}$$
.

Then
$$\frac{K}{2} = \frac{KN_0}{N_0 + (K - N_0)e^{-r\tau}}$$
. We solve this for τ .

Divide both sides by K and multiply through by the denominator on the right to get:

$$\frac{1}{2}(N_0 + (K - N_0)e^{-r\tau}) = N_0.$$

Multiply by 2 and rearrange to get $(K - N_0)e^{-r\tau} = N_0$.

So
$$e^{-r\tau} = \frac{N_0}{K - N_0}$$
,

and hence (taking logs) $-r\tau = \ln\left(\frac{N_0}{K - N_0}\right)$.

So
$$\tau = \frac{1}{-r} \ln \left(\frac{N_0}{K - N_0} \right) = \frac{1}{r} \ln \left(\frac{K - N_0}{N_0} \right).$$

(Aside: in the last step we used $\ln\left(\frac{1}{x}\right) = -\ln x$.)

First Order Linear ODEs

A falling object of mass m has velocity v at time t. It satisfies the ODE $m\frac{dv}{dt} = mg - kv$, where g and k are constants.

- (a) Show that the solution of this ODE with initial condition $v(0) = v_0$ is $v(t) = \frac{mg}{k} + \left(v_0 \frac{mg}{k}\right)e^{-\frac{k}{m}t}$.
- (b) Find the terminal velocity, that is $\lim_{t\to\infty} v(t)$.
- (c) Take m = 1, k = 0.1 and g = 10. Write out an expression for v(t) at all times t. Find the terminal velocity and find its speed after ten seconds.
- (d) How long does it take for the speed to reach 90m/s?

(a) First we show it satisfies the differential equation:

$$\frac{dv}{dt} = 0 + \left(v_0 - \frac{mg}{k}\right) \left(-\frac{k}{m}\right) e^{-\frac{k}{m}t} = \left(-\frac{k}{m}\right) \left(v - \frac{mg}{k}\right) \\
= -\frac{k}{m}v + g.$$

So
$$m \frac{dv}{dt} = -kv + mg$$
. \checkmark

Next we check the initial condition:

$$v(0) = \frac{mg}{k} + \left(v_0 - \frac{mg}{k}\right)e^0 = \frac{mg}{k} + v_0 - \frac{mg}{k} = v_0.$$

(b) $\lim_{t\to\infty} v(t) = \frac{mg}{k} + 0$, since the exponential goes to zero.

(c) Putting in the numbers we get:

$$v(t) = \frac{10}{0.1} + \left(0 - \frac{10}{0.1}\right)e^{-\frac{0.1}{1}t} = 100(1 - e^{-0.1t}).$$

The terminal velocity is 100.

When t = 10, we get $v(10) = 100(1 - e^{-1}) = 63.2$.

(d) When v = 90, we get $90 = 100 - 100e^{-0.1t}$.

So $100e^{-0.1t} = 10$, that is, $e^{-0.1t} = 0.1$.

Taking logs: $-0.1t = \ln 0.1 = -2.3$.

So t = 23 seconds.

Simple Harmonic Motion

Solve the simple harmonic oscillator equation y'' + 25y = 0, with initial conditions y(0) = 3 and y'(0) = -5.

Here $\omega^2 = 25$, so $\omega = 5$.

General solution: $y = C_1 \cos(5t) + C_2 \sin(5t)$.

Then $y' = -5C_1 \sin(5t) + 5C_2 \cos(5t)$.

Initial condition y(0) = 3 gives $3 = C_1$.

Initial condition y'(0) = -5 gives $-5 = 5C_2$, so $C_2 = -1$.

Solution: $y = 3\cos(5t) - \sin(5t)$.

Second-order Linear Homogeneous ODE

Solve the constant coefficient, second-order, linear, homogeneous ODE y'' + 8y' + 15y = 0, subject to initial conditions y(0) = 4 and y'(0) = -8.

Auxiliary equation is $m^2 + 8m + 15 = 0$.

This factors into (m+3)(m+5) = 0.

This has solutions m = -3 and m = -5.

We know each of these gives an " e^{mt} " solution.

So the general solution is $y = C_1 e^{-3t} + C_2 e^{-5t}$.

Differentiating this we get $y' = -3C_1e^{-3t} - 5C_2e^{-5t}$.

Applying initial condition y(0) = 4 gives $4 = C_1 + C_2$.

Applying initial condition y'(0) = -8 gives

$$-8 = -3C_1 - 5C_2.$$

Adding three times the first equation to the second, we get $12 - 8 = -2C_2$, so $C_2 = -2$.

The first equation then gives $C_1 = 6$.

So the solution is $y = 6e^{-3t} - 2e^{-5t}$.

Second-order Linear Homogeneous ODE

Solve the constant coefficient, second-order, linear, homogeneous ODE y'' + 14y' + 49y = 0, subject to initial conditions y(0) = 1 and y'(0) = -5.

Auxiliary equation is $m^2 + 14m + 49 = 0$.

This factors into (m+7)(m+7) = 0.

It has a double root m = -7.

So the general solution is $y = C_1 e^{-7t} + C_2 t e^{-7t}$.

Differentiating (using the Product Rule) gives

$$y' = -7C_1e^{-7t} + C_2(e^{-7t} - 7te^{-7t}).$$

Applying initial condition y(0) = 1 gives $1 = C_1$.

Applying initial condition y'(0) = -5 gives

$$-5 = -7C_1 + C_2 = -7 + C_2.$$

So $C_2 = 2$.

So the solution is $y = e^{-7t} + 2t e^{-7t}$.

Second Order ODE with Forcing

The equation of motion of a damped mass spring system

is
$$m\frac{d^2y}{dt^2} + \mu\frac{dy}{dt} + ky = f(t)$$
.

Consider a mass with m=1 and Hooke constant k=10 and damping constant $\mu=2$.

The external force is f(t) = 10t - 8.

If the initial displacement is y = 1 and the mass is released from rest at time 0, find the displacement at all times $t \ge 0$.

Put in the given numbers to get the ODE

$$\frac{d^2y}{dt^2} + 2\frac{dy}{dt} + 10y = 10t - 8,$$

with initial conditions y(0) = 1 and y'(0) = 0

(since the initial velocity is zero).

We write the full solution as $y = y_h + y_p$.

The homogeneous equation is $y_h'' + 2y_h' + 10y_h = 0$.

This has auxiliary equation $m^2 + 2m + 10 = 0$.

Solving this equation, we find it has complex roots $m = -1 \pm 3i$.

The -1 gives e^{-t} and the $\pm 3i$ gives $e^{\pm 3it}$, which gives $\cos(3t)$ and $\sin(3t)$.

So the homogeneous solution is

$$y_h = C_1 e^{-t} \cos(3t) + C_2 e^{-t} \sin(3t).$$

We now look for a particular solution $y_p = \alpha t + \beta$.

Then
$$0 + 2\alpha + 10(\alpha t + \beta) = 10t - 8$$
.

That is
$$10\alpha t + 2\alpha + 10\beta = 10t - 8$$
.

So
$$10\alpha = 10$$
 and $2\alpha + 10\beta = -8$.

Solving these gives $\alpha = 1$ and $\beta = -1$.

So the particular solution is $y_p = t - 1$.

The general solution of the ODE is then

$$y = C_1 e^{-t} \cos(3t) + C_2 e^{-t} \sin(3t) + t - 1.$$

To apply the initial conditions, we also need the derivative.

Differentiating, using the Product Rule, gives

$$y' = -C_1 e^{-t} \cos(3t) - 3C_1 e^{-t} \sin(3t)$$
$$-C_2 e^{-t} \sin(3t) + 3C_2 e^{-t} \cos(3t) + 1.$$

Applying the initial condition y(0) = 1 gives $1 = C_1 - 1$.

So
$$C_1 = 2$$
.

Applying the initial condition y'(0) = 0 gives

$$0 = -C_1 + 3C_2 + 1.$$

So
$$3C_2 = C_1 - 1 = 1$$
. That is $C_2 = \frac{1}{3}$.

So the solution is $y = 2e^{-t}\cos(3t) + \frac{1}{3}e^{-t}\sin(3t) + t - 1$.