

Figure 1

BEST AVAILABLE COPY

Figure 1a**B**

	Protein name	Peptide matches	% sequence coverage	NCBI gi number
■	Hsp90	15/44	30%	20149594
▲	Flag-LKB1	14/46	35%	7106425
●	Cdc37	31/72	59%	5901922
◆	STRAD α	11/80	34%	12060855
*	MO25 α	17/37	47%	7706481

C

Figure 2**A**

hMO25α	1	MIF-PFGKSHKSPADIVKNCRESKAKLRRD-	-I	SDKKAERAKATEEVSKNLVA
hMO25β	1	MPL-PSKSHKSPADIVKNCRESKAKLRRD-	-D	DKKTEKASEEVSKSLOA
dMO25	1	MPL-PGKSHKSPADIVKNCRESKAKLRRD-	-D	DKKTEKASEEVSKSLOA
cMO25α	1	WLKPFLCKWDDKTPADIVKNCRESKAKLRRD-	-TNTSE	KVEKAERDTAKMIAL
cMO25β	1	WLKPFLCKWDDKTPADIVKNCRESKAKLRRD-	-TNTSE	KVEKAERDTAKMIAL
				SDKKYEVSKNLVA
hMO25α	50	MKEETLYGL-NEKEP-QTEAVAAQLAQELYNSGGLSTLADQLIDFEGKKDVQIENNL		
hMO25β	46	MKEETLYGL-NEKEP-QTEAVAAQLAQELYNSGGLSTLADQLIDFEGKKDVQIENNL		
dMO25	46	MKEETLYGL-SIAEPPADYVVAQLEQELYNSGGLSTLADQLIDFEGKKDVQIENNL		
cMO25α	53	AKTFREYGEDANEPNN-BQVOLAAQEVNLYVPLIKHHRFEFECKKDVAQEFNNNL		
cMO25β	60	TKSFITYQNDSAEPPSEHVVQVAQLAQELYNSGGLSTLADQLIDFEGKKDVQIENNL		
hMO25α	107	RHQIGTRSPPTVEYICTOONIIFMLLKGYH-SPEIALRCCMLRECIRHEPLAKIILNS		
hMO25β	103	RHQIGTRSPPTVEYISWPHIFMLLKGYH-APOIALRCCMLRECIRHEPLAKIILNS		
dMO25	104	RHQIGTRSPPTVEYICTKPEIIFTIASYEDAHPHIALNSCMLRECARYPLAKIILNS		
cMO25α	110	RHQIGTRSPPTVEYIAAPPEIIFTLLGYH-OPIIAALCCMLRECIRHEPLAKIILNS		
cMO25β	120	RHQIGTRSPPTVEYAGAPPEIIFTLGYSV-VPHIAALCCMLRESIRHPLAKIILNS		
hMO25α	165	QFDFFYVEMSTFDIASDAFTFKDILLTRHKIISAEFLKQHYDFPF-SEVERLLHSENY		
hMO25β	161	QFDFFYVEMSTFDIASDAFTFKDILLTRHKIIVAFLEQVDTIFF-EDVERLLHSENY		
dMO25	164	EFDKFFYVEMSTFDIASDAFTFKDILLTRHKIISAEFLDANYDFPSQHNQALLNSENY		
cMO25α	168	YFORFFYEVTSDFVFDIASDAFTFKDILTRHKIISAEFLDHYDFPF-GQXALTNSENY		
cMO25β	176	VFTYFFYEVSEVDIESDAFTFKDILTRHKIISAEFLDSHYDFPF-ACYONULLNSKJY		
hMO25α	224	VTKRQSLKLLGELLLDRHNFMTKYISOPENLKLMMNLLRDKSRNIQFEAFHVFKVFVA		
hMO25β	220	VTKRQSLKLLGELLLDRHNFMTKYISOPENLKLMMNLLRDKSRNIQFEAFHVFKVFVA		
dMO25	224	VTRRQSLKLLGELLLDRHNFMTKYISOPENLKLMMNLLRDKSRNIQFEAFHVFKVFVA		
cMO25α	227	VTRRQSLKLLGELLLDRHNFMTKYISOPENLKLMMNLLRDKSRNIQFEAFHVFKVFVA		
cMO25β	237	VTRRQSLKLLGELLLDRHNFMTKYISOPENLKLMMNLLRDKSRNIQFEAFHVFKVFVA		
hMO25α	284	NPNKTOPIDILLRNQAKLLEELFLSKPQNDEPTEDEQFNDEKAYLQKIQIILKRPQQEA--		
hMO25β	280	SPHKTOPIDILLRNQAKLLEELFLSKPQNDEPTEDEQFNDEKAYLQKIQIILKRPQQEA--		
dMO25	284	NPNKPKPIDIILLRNQAKLLEELFLSKPQNDEPTEDEQFNDEKAYLQKIQIILKRPQQEA--		
cMO25α	287	NPNKPKPIDIILLRNQAKLLEELFLSKPQNDEPTEDEQFNDEKAYLQKIQIILKRPQQEA--		
cMO25β	297	NPNKPKPIDIILLRNQAKLLEELFLSKPQNDEPTEDEQFNDEKAYLQKIQIILKRPQQEA--		
hMO25α		-----		
hMO25β		-----		
dMO25		-----		
cMO25α		-----		
cMO25β	357	KSKEDEDNQEPAAGPSEGPTSQ		

Figure 2a

Figure 2b

Figure 3

Figure 4**A****B**

Figure 4a**C**

Figure 5

	MO25α	STRADα	LKB1
MO25α	A	B	C
STRADα	D	E	F
MO25α + STRADα	G	H	I

Figure 5a

	J	K	L
LKB1			
STRAD α + LKB1	M	N	O
MO25 α + STRAD α + LKB1	P	Q	R

Figure 6

Figure 6a

Figure 7

Figure 8**A****B**

Figure 9

Figure 10

hSTRADAα	1 MSFLAVSKLIERIRRHVSEK FWK IVEGIRDLELFGEPPGDTNRKTNDASSEIASF KQEVMS
hSTRADβ	1 -----MELIDOPCTISHTDVSLEPEK----- GSEUSIEQYLVDEPIILWSRIPSTRAEV
hSPAK	1 -----MAEPGSPVH W OLPODAAP Y TAAAAA A APAPA A APAPA A APAPA A AV M ED Q AD
hOSR1	1 -----
hSTRADAα	61 SELPEGGCYELTVIGKGFDLMTVHLARYKPTGEYVT V RRI N I E AGSNE H VT F LOGE H
hSTRADβ	50 LOSTNVSHYEI Q VE I GRGF D NLT S VHLARH T PTGL T V I INLEN C NEERLK A QAVI
hSPAK	57 GMPIC C DAYE I QEV I GSG----- ATAVVQAA LCKPRO R V A I K R I N L E K COT S MD L L K -EIQ
hOSR1	9 PW S INR D DY E LO E V I GSG----- ATAVVQAA YCAPKK E V A I K R I N L E K COT S MD L L K -EIQ
hSTRADAα	121 VSKLFNRPNIVPYRAT I F J ADNELEM T SP M AYGS A K D I C THFMDG----- F NELA T AY
hSTRADβ	110 LSHFFRHPN I TTY H TV F VG S W I W I SP M AYGS A SQL R TYF P E G ----- M SE F FR R N
hSPAK	114 AMSQC S RPN M V T YYT S F V V K DEL A I V MR L LSGGSM H DE B I K Y I VNRGEH K NGV L EEA L IA T
hOSR1	66 AMSQC S RPN I V E YYT S F V V K DEL A I V MR L LSGGSM H DE B I K Y I VAKGEH K SG E TEST I AT
hSTRADAα	175 I L OQ G V L K A LDY G H H M G V H E S V K A S H I I L S V D G K V Y I I S GL R S N L M I S H C Q R Q R V U H D P F
hSTRADβ	164 I L FG A V R G L N Y L H Q G C H R S T K A S H I I L S G D G L V I H S G L S H S I V K H Q R R H A V Y D P F
hSPAK	174 I L M B V L E G L D L H R N Q I I H R D I K A G N I I L G E D G S V Q I A D F G V S A F L A T G D V I T R -- N K V R
hOSR1	126 I L IP E V L E G L E Y L H I Q G Q I I H R D V K A G N I I L G E D G S V Q I A D F G V S A F L A T G D I T R -- N K V R
hSTRADAα	235 KYSVKLP E ILS P E V I Q Q N Q O GYDA K SDIMSV G IT A CEL A NC H V P K D PA T OM I DE K LG N
hSTRADβ	224 QF S TSV Q W N S P E I A R ODL H GY I V K S D IMSV G IT A CEL A SG Q V P QDM H R T Q L Q K L K G
hSPAK	232 KTFV G TC C W M MA P E V MEQ - VR G YDF K AD I NS F GI T AE L AT G A P H K Y P PM K V L LT I QN
hOSR1	184 KTFV G TC C W M MA P E V MEQ - VR G YDF K AD I NS F GI T AE L AT G A P H K Y P PM K V L LT I QN
hSTRADAα	295 -----T V P-----CLL-DT S T I P A E E L T MS P SR S V A N G L-S D SL
hSTRADβ	284 -----PP Y SP-----L--DI S I P Q E S R M K N-S Q SG V D S G I G S V L
hSPAK	291 DP P T L E T GV E D K E M K K Y G K S FR K I H I L SC L Q K D P S K R P T A E L L K C K E F Q O K A K N R - E M I H
hOSR1	243 DPP S LET G V Q D K E M K K Y G K S FR K I H I L SC L Q K D P S K R P T A E L L K H K E F Q O K A K N K - E F L Q
hSTRADAα	328 TT S T P PS N G W P S E P Y H R T --FSP P H F H F V E Q C L Q R N P D ARP S A S T L LN H S F K Q I K R R
hSTRADβ	318 VSSG T I H TV N SD R L H TP S SK T --FSP A F S L V Q L C I QQ D P E K R P S A S L L SH V FF K OM K E E
hSPAK	350 E K L L TR T P D I A Q R A K K V R R V P G S S C H L H K T E D G W E W S D D E K S H E G K A F S Q E K S R R
hOSR1	302 E K I L Q R A P T I S E R A K V R R V P G S S C G L H K T E D G W E W S D D E E S E G K A A I S Q L R S R R
hSTRADAα	386 ASK-----A I P R I L RP-----V T P I T N E
hSTRADβ	376 S Q D-----S I L S LL P
hSPAK	410 V K E -- E N P E H A V S S - -----I I P B O H QS-----I I S M H D S Q G P P N A N E D Y
hOSR1	362 VK E S I S N S E L F P I T D P V G T L L Q V P E O I S A H L P Q A G Q I A T Q P T Q V S L P T A E P A K T A Q A L
hSTRADAα	404 E G S Q -S-----QDH S G T F G L V T N L E E L V D D W F-----
hSTRADβ	389 N K P S I S -----L P P V L P W T E P C D F P D E K D S Y W E F-----
hSPAK	447 R E F S -S-----C A V N L V L R L R N S R K E L N D I R F-----E F T P G R D T A E G V S Q E L F S A G L V D G E D V I
hOSR1	422 S G G S S Q E T K I P E S L V L R R N S R K E L N D I R F-----E F T P G R D T A E G V S Q E L F S A G L V D G E D V I
hSTRADAα	502 VAANLOKI V D E P K A L K T L T F K L A S G G D G S E I P D E V K L I G F A Q L S M
hSTRADβ	482 VAANLOKI V E E P Q S N R S V T F K L A S G V E G S D I P D D G K L I G F A Q L S M

Figure 11**A****B**

Figure 12

Tos3	11	..LPRSSLLYNNASNNSRIKETRKVKLLYNPLTKR.....Q...ILNNFEILATLGNGQ
Pak1	94	..TPTTSSFCSSGSSKNKVETNRISLTYPVSKR.....K...VLNTYEIIKELGHGQ
CaMKK β	121	CICPSLPYSPVSSPQSSPRLPRTVESHVSITGM.....QDCVQLNQYTLKDEIGKGS
LKB1	7	QQLGMFTEGELMSVGMDTFIHRIDSTEVIYQP..RR.....KRAKLIGKYLMGDLLGEGS
Elm1	39	TSSFGSSFSQQKPTYSTIIGENIHTILDEIRPYVKKITVSDQDKKTINQYTLGVSAGSGQ
consensus	121	p ss s s ss rik tv l y pltkr q ilnnny i 1G Gq
Tos3	61	YGKVKLARDLGTGALVAIKILNRFKRS....GYSL.....QLKV.EN.....
Pak1	144	HGKVKLARDILSKQLVIAKIVDRHEKKQRKFTFIK.....SSKISEN.....
CaMKK β	176	YGVVKLAYNENDNTYYAMKVL SK..KKLIRQAGFPR.....RPPRGTRPAPGGCIQP
LKB1	60	YGKVKEVLDSETLCRRAVKILKK..KKLRR.....
Elm1	99	FGYVRKAYSSTLGKVVAVKIPKKPWNAQQYSVNQVMRQIQLWKSKGKITTNMSGNEAMR
consensus	181	yGkvkla d t lvAikil k kk k y k
Tos3	99	...PRVNQEIEVMKRCHHE.NVVELYEILNDPESTKVLVLEYCSRGPVKWCPENKMEI
Pak1	187	...DIKIREIAIMKKCHHK.HVVKQLEIVLDDLKSRKIYLVLEYCSRGEVKWCPPDCMES
CaMKK β	227	RGPIEQVYQEIAILKKLDHP.NVVKLVEVLDDPNEDHLYMVFELVNQGPV.....MEV
LKB1	89	PNGEANVKKEIQLLRLRHK.NVIQLVDVLYNEEKQKMYMVMEYC.....VCGMQEM.L
Elm1	159	LMNIEKCRWEIFAASRLRNNHVIRLIECLDSPFSESIWIVTNWCSLGELOQWKRDDDEDI
consensus	241	drvk EI vmkrlhh nvv LievLddp s kvylVleycs g v wc mei
Tos3	154	.KAVGPSILTFFQQ....SRKVVLDDVSGLEYLHSQGITHRDIKPSNLLISSNGTV.KISD
Pak1	242	.DAKGPSLLSFQE....TREILRGVVLGLEYLHYQGIIRDIKPSNLLISGDGTV.KISD
CaMKK β	279	.PTLKP..LSEDQ....ARFYFQDLIKIEYLHYQKIIIRDIKPSNLLVGEDGHI.KIAD
LKB1	141	.DSVPEKRFPVVCQ....AHGYFCQLIDGLEYLHSQGIVHKDIKPGNLLTTGGTL.KISD
Elm1	219	LPQWKKIVISNCVSVTFAKKILEDMTKGLLEYLHSQGCIHRDIKPSNILLDEEEKVAKLSD
consensus	301	v p ils q ar vv dvv GLEYLhsQgiiHrDIKPsNLLis dgtv KisD
Tos3	208	FG..VAM.STATGSTNIQSSHEQLLKSRALGTPAFFAPELCSTEKEY.....
Pak1	296	FG..VSIAASSTNSSDSESLSDELELAKTVGTPAFFAPEMCLGEDAFTRYNLTKENLFRG
CaMKK β	331	FG..V.....SNEFKGS..DALLSNTVGTPAFMAPESLS.....ETRKIFSG
LKB1	195	LG..VAEALHPFAADDTCRTSQ.....GSPAFQPPEIANGLDTFS.....
Elm1	279	FGSCIFTQSLPFSANFEDCFQRELNKIVGTPAFIAPELCHLGNSKRDFVTD.....
consensus	361	fG v t s d s 1 r vGtPAF aPElc y
Tos3	252	SC.SSAIDIWSLGVTIYCLLFGKLPFNANSGLELFDSIINKPLEFPSYEEMLNGATSGIT
Pak1	354	SCISFMIDIWAVGVTLYCLLFGMLPFFSDFELKLFKEIVNDPLKFPTFKEIQSNKVSKVS
CaMKK β	369	K....ALDVWAMGVTLYCFVFGQCPFMDERIMCLHSKIKSQALEFPDOPDIA.....
LKB1	233	...GFKVDIWSAGVTLYNITTGLYLPFEGDNIYKLHENIGKGSYAI.....
Elm1	332	...GFKLDIWSLGVTLYCLLYNELPFFGENEFETYHKIEEVSSLSSKINGNTLNDLVIKRL
consensus	421	f idIWslGVTLYcllfg 1PF ad 1 lfdkli 1 fp em
Tos3	311	M.EEYT...DAKDLKKLLQKDPDKRIKLAVIDKVFHPFMC.....HYGKSDAASVL...TN
Pak1	414	CEEEYE...MAKDLLLKLLEKNPQKRMTIPIAKKHPFVS.WDFDHVPENDEKLLS...SV
CaMKK β	417E...DLKDLITRMLDKNPESRIVVPEIKILHPWVTRHGAEPPLPSEDENCTLVEVTE
LKB1	276	.GDCGP...PLSDLKGMLEYEPAKRFSIIRQIROHSWFRK...KHPPAEAPVPIPSP PDT
Elm1	389	LEKDVTLRISIQLDVKVLSDQPIDSRNHSQISSSS.VNPVRNEGPVRRFFGRLLTKKGK
consensus	481	ee . 1kDlkklleknP kri 1 ik hpfv dh p d v1 t
Tos3	359	LETFHETKVSPP.....SSCKRVELVSLPVNSSFASLDSSVYMFHDHNNLRTGADRNS
Pak1	467	LE..QKLRF.....QCNQTDQFE.PISISKHELKNAV.....SGVGKKIKESV
CaMKK β	469	EEEVNSVKHIPSLATVILVKTMRKRSFGNPFEGRSREERSLSAPGNLLTKQGSEDNLQG
LKB1	329	KDRWRSMTVVPYLEDLHGADEDDEDLFDIEDDIITYQDFTVPGQVPEEEASHNGQRRGLPK
Elm1	448	KKTSGKGKDKVLVSATSKVTPSIHIDEEPDKECFSTTVLRSSPDSSDYCSSLGEAEIQVT
consensus	541	e 1k p l rve pv s lks s lg

Figure 13

Figure 14**A) Activity in supernatant****C) Activity in pellet****B) Immunoprecipitation of polypeptides****D) Immunoblotting of pellets**

Figure 15**A) Activation of AMPK α 1 catalytic domain by LKB1**

Figure 15a**B) Phosphorylation of AMPK α 1 catalytic domain by LKB1**

Figure 16

Figure 17

Figure 18

Figure 19

		-12	-11	-10-9	-5	-3 -2	P
PKA-C α	239	DFGFAKR..	V.KG.	RTWTLCGTPEYLAPE			
PKC α	539	DFGMCKEHMM.	DGVTRTRFCGT	PDYIAPE			
NuaK1	196	DFGLSNLYQKDK..	FLQTFCGSPLYASPE				
NuaK2	237	DFGLSNLYHQGK..	FLQTFCGSPLYASPE				
BrsK1	190	DFGMASLQVGDS..	LLETSCGSPHYACPE				
BrsK2	159	DFGMASLQVGDS..	LLETSCGSPHYACPE				
SIK	167	DFGFGNFYKSGE..	PLSTWCGSPPYAAPE				
QIK	160	DFGFGNFFKSGE..	LLATWCGSPPYAAPE				
AtSnRK1- α 1	160	DFGLSNIMRDGH..	FLKTSCGSPTYAAPE				
AtSnRK1- α 2	161	DFGLSNVMRDGH..	FLKTSCGSPTYAAPE				
AMPK- α 1	159	DFGLSNMMSDGE..	FLRTSCGSPTYAAPE				
AMPK- α 2	157	DFGLSNMMSDGE..	FLRTSCGSPTYAAPE				
ScSnf1	195	DFGLSNIMTDGN..	FLKTSCGSPTYAAPE				
QSK	206	DFGFSNLFTPQ..	LLKTWCGSPPYAAPE				
MELK	150	DFGLCAKPKGNDYHLQTCCGSLAYAAPE					
consensus	243	DFGlsnl	g	fL	TsCGSp	YAaPE	

Figure 20

K_m: 1.80 ± 0.48

V_{max}: 23.43 ± 3.51 U/mg

Figure 21

AMPK1	159-	DFGLSNMMSDGE--FLRTSCGSPNYAAPE	*	*
AMPK2	157-	DFGLSNMMSDGE--FLRTSCGSPNYAAPE		
BRSK1	174-	DFGMASLQVGDS--LLETSCGSPHYACPE		
BRSK2	159-	DFGMASLQVGDS--LLETSCGSPHYACPE		
NUAK1	196-	DFGLSNLYQKDK--FLQTECGSPLYASPE		
NUAK2	193-	DFGLSNLYHQGK--FLQTECGSPLYASPE		
SIK	167-	DFGFGNFYKSGE--PLSTWCGSPPYAAPE		
QIK	160-	DFGFGNFFKSGE--LLATWCGSPPYAAPE		
QSK	206-	DFGFSNEFTPGQ--LLKTWCGSPPYAAPE		
MARK1	200-	DFGFSNEFTVGN--KLDTECGSPPYAAPE		
MARK2	160-	DFGFSNEFTVGN--KLDTECGSPPYAAPE		
MARK3	196-	DFGFSNEFTVGG--KLDTECGSPPYAAPE		
MARK4	198-	DFGFSNEFTLGS--KLDTECGSPPYAAPE		
MELK	150-	DFGLCAKPKGNKDYHLOTCGSLAYAAPE		

Figure 21A

30/38
Figure 22

Figure 23

Figure 24

Figure 25

Figure 26

Figure 27

Figure 28

Figure 29

Figure 30

Kinase	Phosphopeptide	Mass observed	Theoretical mass
BRSK2 P ₁	IAAFGmASLQVGDSLLET(p)SCGSPHYACPEVIR	3268.7870	3628.6680
BRSK2 P ₂	SLQVGDSLLET(p)SCGSPHYACPEVIR	2951.4530	2951.3472
NUAK2 P ₃	FLQT(p)FCGSPLYASPEIVNGK	2356.1088	2356.1333
MARK4	LDT(p)FCGSPPYAAPELFQQK	2225.9983	2226.1497
MELK	GNKDYHLQT(p)CCGSLAYAAPELJQCK	2970.4421	2970.3648

**This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record**

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

- BLACK BORDERS**
- IMAGE CUT OFF AT TOP, BOTTOM OR SIDES**
- FADED TEXT OR DRAWING**
- BLURRED OR ILLEGIBLE TEXT OR DRAWING**
- SKEWED/SLANTED IMAGES**
- COLOR OR BLACK AND WHITE PHOTOGRAPHS**
- GRAY SCALE DOCUMENTS**
- LINES OR MARKS ON ORIGINAL DOCUMENT**
- REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY**
- OTHER:** _____

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.