In [2]: import numpy as np #for numerical calculation import pandas as pd #for data loading import matplotlib.pyplot as plt #for ploting graph %matplotlib inline import seaborn as sns #for visualization

In [3]: df = pd.read_csv(r'C:\Users\ASUS\Downloads\EDA in Python\Python_Diwali_Sales_Analysis-main\Python_Diwali

df as dataframe where we load data with use of pd, 1st copying location of data from downloads then adding an name next to it with .csv

In [4]: df

Out[4]:

	User_ID	Cust_name	Product_ID	Gender	Age Group	Age	Marital_Status	State	Zone	Occupation	Product_Ca
0	1002903	Sanskriti	P00125942	F	26-35	28	0	Maharashtra	Western	Healthcare	
1	1000732	Kartik	P00110942	F	26-35	35	1	Andhra Pradesh	Southern	Govt	
2	1001990	Bindu	P00118542	F	26-35	35	1	Uttar Pradesh	Central	Automobile	
3	1001425	Sudevi	P00237842	М	0-17	16	0	Karnataka	Southern	Construction	
4	1000588	Joni	P00057942	М	26-35	28	1	Gujarat	Western	Food Processing	
			***							***	
11246	1000695	Manning	P00296942	М	18-25	19	1	Maharashtra	Western	Chemical	
11247	1004089	Reichenbach	P00171342	М	26-35	33	0	Haryana	Northern	Healthcare	Ve
11248	1001209	Oshin	P00201342	F	36-45	40	0	Madhya Pradesh	Central	Textile	
11249	1004023	Noonan	P00059442	М	36-45	37	0	Karnataka	Southern	Agriculture	
11250	1002744	Brumley	P00281742	F	18-25	19	0	Maharashtra	Western	Healthcare	

11251 rows × 15 columns

In [5]: df.shape

Out[5]: (11251, 15)

In [6]: df.head(10)

Out[6]:

	User_ID	Cust_name	Product_ID	Gender	Age Group	Age	Marital_Status	State	Zone	Occupation	Product_Categor
0	1002903	Sanskriti	P00125942	F	26-35	28	0	Maharashtra	Western	Healthcare	Aut
1	1000732	Kartik	P00110942	F	26-35	35	1	Andhra Pradesh	Southern	Govt	Aut
2	1001990	Bindu	P00118542	F	26-35	35	1	Uttar Pradesh	Central	Automobile	Aut
3	1001425	Sudevi	P00237842	М	0-17	16	0	Karnataka	Southern	Construction	Aut
4	1000588	Joni	P00057942	М	26-35	28	1	Gujarat	Western	Food Processing	Aut
5	1000588	Joni	P00057942	М	26-35	28	1	Himachal Pradesh	Northern	Food Processing	Aut
6	1001132	Balk	P00018042	F	18-25	25	1	Uttar Pradesh	Central	Lawyer	Aut
7	1002092	Shivangi	P00273442	F	55+	61	0	Maharashtra	Western	IT Sector	Aut
8	1003224	Kushal	P00205642	М	26-35	35	0	Uttar Pradesh	Central	Govt	Aut
9	1003650	Ginny	P00031142	F	26-35	26	1	Andhra Pradesh	Southern	Media	Aut
4											>

```
In [7]: df.info()
          <class 'pandas.core.frame.DataFrame'>
          RangeIndex: 11251 entries, 0 to 11250
          Data columns (total 15 columns):
           #
                Column
                                   Non-Null Count
                                                     Dtype
           a
                User_ID
                                                      int64
                                    11251 non-null
                Cust_name
                                    11251 non-null
           2
                                    11251 non-null
                Product_ID
                                                      object
           3
                Gender
                                    11251 non-null
                                                      object
           4
                Age Group
                                    11251 non-null
                                                      obiect
                Age
                                    11251 non-null
                                                      int64
           6
                Marital_Status
                                    11251 non-null
                                                     int64
                State
                                    11251 non-null
                                                      object
           8
                Zone
                                    11251 non-null
                                                      object
           9
                Occupation
                                    11251 non-null
                                                      object
           10
                Product_Category 11251 non-null
                                                      object
           11
                Orders
                                    11251 non-null
                                                      int64
           12
                Amount
                                    11239 non-null
                                                      float64
           13
                Status
                                    0 non-null
                                                      float64
           14 unnamed1
                                    0 non-null
                                                      float64
          dtypes: float64(3), int64(4), object(8)
          memory usage: 1.3+ MB
 In [8]: df.drop(['Status','unnamed1'], axis=1, inplace=True)
 In [9]: |df.info()
          <class 'pandas.core.frame.DataFrame'>
          RangeIndex: 11251 entries, 0 to 11250
          Data columns (total 13 columns):
                Column
                                   Non-Null Count
                                                      Dtype
          ---
           0
                User ID
                                    11251 non-null
                                                      int64
           1
                Cust_name
                                    11251 non-null
                                                      object
           2
                                    11251 non-null
                Product_ID
                                                      object
           3
                Gender
                                    11251 non-null
                                                      object
           4
                Age Group
                                    11251 non-null
                                                      object
           5
                                    11251 non-null
                Age
                                    11251 non-null
           6
                Marital_Status
                                                      int64
           7
                State
                                    11251 non-null
                                                      object
           8
                7one
                                    11251 non-null
                                                      object
                Occupation
                                    11251 non-null
                                                      object
           10
                Product_Category
                                   11251 non-null
                                                      object
           11
                Orders
                                    11251 non-null
                                                      int64
           12 Amount
                                    11239 non-null float64
          dtypes: float64(1), int64(4), object(8)
          memory usage: 1.1+ MB
In [10]: |df.isnull()
Out[10]:
                                                          Age
                  User_ID Cust_name Product_ID Gender
                                                                Age Marital_Status State Zone Occupation Product_Category Orde
                                                        Group
               0
                    False
                                                  False
                                                         False
                                                              False
                                                                                  False
                                                                                        False
                                                                                                    False
                                                                                                                     False
                                                                                                                            Fal
                               False
                                          False
                                                                            False
               1
                    False
                               False
                                          False
                                                  False
                                                         False
                                                              False
                                                                            False
                                                                                  False
                                                                                        False
                                                                                                    False
                                                                                                                     False
                                                                                                                            Fal
                                                         False
               2
                    False
                               False
                                          False
                                                  False
                                                              False
                                                                            False
                                                                                  False
                                                                                        False
                                                                                                    False
                                                                                                                     False
                                                                                                                            Fal
               3
                    False
                               False
                                          False
                                                  False
                                                         False False
                                                                            False
                                                                                  False False
                                                                                                    False
                                                                                                                     False
                                                                                                                            Fal
               4
                    False
                               False
                                          False
                                                  False
                                                         False False
                                                                             False
                                                                                  False False
                                                                                                    False
                                                                                                                     False
                                                                                                                            Fal
           11246
                    False
                               False
                                          False
                                                  False
                                                         False False
                                                                             False False False
                                                                                                    False
                                                                                                                     False
                                                                                                                            Fal
           11247
                               False
                                                                                                    False
                    False
                                          False
                                                  False
                                                         False False
                                                                            False False False
                                                                                                                     False
                                                                                                                            Fal
           11248
                    False
                               False
                                          False
                                                  False
                                                         False
                                                              False
                                                                            False
                                                                                  False
                                                                                        False
                                                                                                    False
                                                                                                                     False
                                                                                                                            Fal
           11249
                    False
                               False
                                          False
                                                  False
                                                         False
                                                              False
                                                                             False
                                                                                  False
                                                                                        False
                                                                                                    False
                                                                                                                     False
                                                                                                                            Fal
```

localhost:8888/notebooks/DSML24/DA Projects/temp data/Python project for Data Analysis - Diwali Sales Analysis.ipynb

False

False

False False

False False False

False

11250

False

11251 rows × 13 columns

False

Fal

•

False

```
In [11]: df.isnull().sum()
Out[11]: User_ID
                               0
         Cust_name
                               0
         Product_ID
                               0
                               0
         Gender
         Age Group
                               0
                               0
         Age
         Marital_Status
         State
                               0
         Zone
                               0
         Occupation
                               0
         Product_Category
                               0
         Orders
                               0
         Amount
                              12
         dtype: int64
In [12]: df.shape
Out[12]: (11251, 13)
In [13]: #dropna function drop null values
         df.dropna(inplace=True) #inplace is for saving the changes
In [14]: df.shape
Out[14]: (11239, 13)
In [15]: import pandas as pd
         # lets creating an list
         data_test=[['vaishali',28],['shailesh',],['tilak',23]]
         # creat an pandas dataframe using list
         df_test=pd.DataFrame(data_test,columns=['Name','Age'])
         df test
Out[15]:
              Name
                   Age
             vaishali
                    28.0
             shailesh NaN
                tilak 23.0
In [16]: df_test.dropna(inplace=True) #beacuse of inplace function its possible to save the changes
In [17]: df_test
Out[17]:
              Name Age
          0 vaishali 28.0
          2
               tilak 23.0
In [18]: #change data type of amount
         df['Amount']=df['Amount'].astype('int')
In [19]: df['Amount'].dtype
Out[19]: dtype('int32')
In [20]: df.columns
Out[20]: Index(['User_ID', 'Cust_name', 'Product_ID', 'Gender', 'Age Group', 'Age',
                 'Marital_Status', 'State', 'Zone', 'Occupation', 'Product_Category',
                 'Orders', 'Amount'],
                dtype='object')
```

In [21]: #for renaming any column
df.rename(columns={'Marital_Status':'shadi'})

Out[21]:

	User_ID	Cust_name	Product_ID	Gender	Age Group	Age	shadi	State	Zone	Occupation	Product_Category
0	1002903	Sanskriti	P00125942	F	26-35	28	0	Maharashtra	Western	Healthcare	Auto
1	1000732	Kartik	P00110942	F	26-35	35	1	Andhra Pradesh	Southern	Govt	Auto
2	1001990	Bindu	P00118542	F	26-35	35	1	Uttar Pradesh	Central	Automobile	Auto
3	1001425	Sudevi	P00237842	М	0-17	16	0	Karnataka	Southern	Construction	Auto
4	1000588	Joni	P00057942	М	26-35	28	1	Gujarat	Western	Food Processing	Auto
			***					•••		***	
11246	1000695	Manning	P00296942	М	18-25	19	1	Maharashtra	Western	Chemical	Office
11247	1004089	Reichenbach	P00171342	М	26-35	33	0	Haryana	Northern	Healthcare	Veterinary
11248	1001209	Oshin	P00201342	F	36-45	40	0	Madhya Pradesh	Central	Textile	Office
11249	1004023	Noonan	P00059442	М	36-45	37	0	Karnataka	Southern	Agriculture	Office
11250	1002744	Brumley	P00281742	F	18-25	19	0	Maharashtra	Western	Healthcare	Office

11239 rows × 13 columns

In [22]: #its changes columns name as maritial status to shadi. its just for an example

In [23]: #for renaming any column
df.rename(columns={'Marital_Status':'Marital_Status'})

Out[23]:

	User_ID	Cust_name	Product_ID	Gender	Age Group	Age	Marital_Status	State	Zone	Occupation	Product_Ca
0	1002903	Sanskriti	P00125942	F	26-35	28	0	Maharashtra	Western	Healthcare	_
1	1000732	Kartik	P00110942	F	26-35	35	1	Andhra Pradesh	Southern	Govt	
2	1001990	Bindu	P00118542	F	26-35	35	1	Uttar Pradesh	Central	Automobile	
3	1001425	Sudevi	P00237842	М	0-17	16	0	Karnataka	Southern	Construction	
4	1000588	Joni	P00057942	М	26-35	28	1	Gujarat	Western	Food Processing	
11246	1000695	Manning	P00296942	М	18-25	19	1	Maharashtra	Western	Chemical	
11247	1004089	Reichenbach	P00171342	М	26-35	33	0	Haryana	Northern	Healthcare	Ve
11248	1001209	Oshin	P00201342	F	36-45	40	0	Madhya Pradesh	Central	Textile	
11249	1004023	Noonan	P00059442	М	36-45	37	0	Karnataka	Southern	Agriculture	
11250	1002744	Brumley	P00281742	F	18-25	19	0	Maharashtra	Western	Healthcare	
11239	rows × 13	columns									

In [24]: #describe function give brief description if data presesnt in dataset in the form of min max mean mode m df.describe()

Out[24]:

	User_ID	Age	Marital_Status	Orders	Amount
count	1.123900e+04	11239.000000	11239.000000	11239.000000	11239.000000
mean	1.003004e+06	35.410357	0.420055	2.489634	9453.610553
std	1.716039e+03	12.753866	0.493589	1.114967	5222.355168
min	1.000001e+06	12.000000	0.000000	1.000000	188.000000
25%	1.001492e+06	27.000000	0.000000	2.000000	5443.000000
50%	1.003064e+06	33.000000	0.000000	2.000000	8109.000000
75%	1.004426e+06	43.000000	1.000000	3.000000	12675.000000
max	1.006040e+06	92.000000	1.000000	4.000000	23952.000000

In [25]: #above data is describe base on numerical values of all columns, but we can select an selective columns df[['Age','Orders','Amount']].describe()

Out[25]:

	Age	Orders	Amount
count	11239.000000	11239.000000	11239.000000
mean	35.410357	2.489634	9453.610553
std	12.753866	1.114967	5222.355168
min	12.000000	1.000000	188.000000
25%	27.000000	2.000000	5443.000000
50%	33.000000	2.000000	8109.000000
75%	43.000000	3.000000	12675.000000
max	92.000000	4.000000	23952.000000

Exploratory Data Analysis

Above we did an data processing and data cleaning process here in EDA we doing an important column wise analysis by ploting an graph. by visualization its easy to differentiate by considering different state,age,product & occupation wise orders,purachsing rate,sales and demand so its easy for imporvement.

Gender

```
In [28]: ax = sns.countplot(x= 'Gender',data=df) #by this we only get an bar
for bars in ax.containers:  #by this loop we get and amount on tap of the bar
ax.bar_label(bars)
```



```
In [33]: sales_gen= df.groupby(['Gender'],as_index=False)['Amount'].sum().sort_values(by='Amount',ascending=False
```

In [34]: sales_gen

Out[34]:

	Gender	Amount
0	F	74335853
1	М	31913276

In [35]: sales_gen= df.groupby(['Gender'],as_index=False)['Amount'].sum().sort_values(by='Amount',ascending=False
sns.barplot(x='Gender',y='Amount',data=sales_gen)

Out[35]: <Axes: xlabel='Gender', ylabel='Amount'>

from above we analyz that purchasing rate of female is more than male.

Age

In [36]: ax = sns.countplot(x= 'Age Group',data=df,hue='Gender') #by this we only get an bar without values

In [39]: sales_Age= df.groupby(['Age Group'],as_index=False)['Amount'].sum().sort_values(by='Amount',ascending=Fa

In [40]: sales_Age

Out[40]:

	Age Group	Amount
2	26-35	42613442
3	36-45	22144994
1	18-25	17240732
4	46-50	9207844
5	51-55	8261477
6	55+	4080987
0	0-17	2699653

In [41]: sales_Age= df.groupby(['Age Group'],as_index=False)['Amount'].sum().sort_values(by='Amount',ascending=Fass.barplot(x='Age Group',y='Amount',data=sales_Age)

Out[41]: <Axes: xlabel='Age Group', ylabel='Amount'>

From above graph we can see that Most of buyer from age group 26-35 year female are most

State

Out[54]: <Axes: xlabel='State', ylabel='Orders'>

Above we can see state wise orders. where we can find UP, Maharashtra, Karnataka, Delhi are the top most cities who have ordered.

we can see that most of purchasing orderswise as well amountwise states are up, maharashtra,karnataka, delhi etc, but we found at end amountwise states are change when we compare with orders graph.

Marital_Status

```
In [64]: ax = sns.countplot(x= 'Marital_Status',data=df)
sns.set(rc={'figure.figsize':(5,5)})
for bars in ax.containers:
    ax.bar_label(bars)
```



```
In [69]: sales_Marital_Status= df.groupby(['Marital_Status','Gender'],as_index=False)['Amount'].sum().sort_values
sns.set(rc={'figure.figsize':(5,5)})  # for providing space between an column that is size
sns.barplot(x='Marital_Status',y='Amount',data=sales_Marital_Status,hue='Gender')
```


from above graph we can see purchasing power of married women is higher.

Occupation

```
In [71]: sns.set(rc={'figure.figsize':(20,5)})
ax=sns.countplot(data=df,x='Occupation')
for bars in ax.containers:
    ax.bar_label(bars)
```



```
In [72]: sales_State= df.groupby(['Occupation'],as_index=False)['Amount'].sum().sort_values(by='Amount',ascending
sns.set(rc={'figure.figsize':(15,5)}) # for providing space between an column that is size
sns.barplot(x='Occupation',y='Amount',data=sales_State)
```


from above graph we can see purchasing power of IT Sector, Healthcare, Aviation and Banking is highest as compare to others.

Product_Category

From Above graph we can see that most of product order for clothing & appearances, food and Electronic & Gadgets

```
In [82]: sales_State= df.groupby(['Product_Category'],as_index=False)['Amount'].sum().sort_values(by='Amount',asc
sns.set(rc={'figure.figsize':(22,5)}) # for providing space between an column that is size
sns.barplot(x='Product_Category',y='Amount',data=sales_State)
```

Out[82]: <Axes: xlabel='Product_Category', ylabel='Amount'>

From Above graph we can see that most of amount spend on food, clothing & appearances and Electronic & Gadgets.

```
In [83]: sales_State= df.groupby(['Product_ID'],as_index=False)['Orders'].sum().sort_values(by='Orders',ascending
sns.set(rc={'figure.figsize':(22,5)}) # for providing space between an column that is size
sns.barplot(x='Product_ID',y='Orders',data=sales_State)
```

Out[83]: <Axes: xlabel='Product_ID', ylabel='Orders'>

Conclusion:

so from above analysis we conclude that age group of 26-35 years married women belonging from UP,Maharashtra,Karnataka, Delhi who are working for IT Sector,Healthcar and Aviation having an highest purchasing rate for products like Clothes and appearance ,Food and Electronic & Gadgest.