POLITECHNIKA ŁÓDZKA

Wydział Elektrotechniki, Elektroniki, Informatyki i Automatyki Instytut Informatyki Stosowanej

Lingwistyka Matematyczna Laboratorium

Rok akademicki 2020/2021

Zadanie 5

Analizator składniowy LL(1) wykorzystujący rozbiór generacyjny zstępujący z wyprzedzeniem o jeden symbol

Mateusz Domalążek 239517

Gramatyka:

$$S ::= W ; Z$$

$$Z ::= W ; Z \mid \varepsilon$$

$$W := P \mid POW$$

$$P ::= R | (W)$$

$$R := L \mid L.L$$

$$L := C \mid CL$$

$$C ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9$$

Sprawdzenie gramatyki

Wyznaczenie symboli pierwszych

First(Z) = First(W)
$$\cup$$
 { ϵ } = {0,1,2,3,4,5,6,7,8,9,(} \cup { ϵ } = {0,1,2,3,4,5,6,7,8,9,(, ϵ }

First(W) = First(P)
$$\cup$$
 First(P) = {0,1,2,3,4,5,6,7,8,9,(}

First(P) = First(R)
$$\cup$$
 {(} = {0,1,2,3,4,5,6,7,8,9,(}

$$First(R) = First(L) \cup First(L) = First(C) \cup First(C) = \{0,1,2,3,4,5,6,7,8,9\}$$

First(L) = First(C)
$$\cup$$
 First(C) = {0,1,2,3,4,5,6,7,8,9}

First(C) =
$$\{0,1,2,3,4,5,6,7,8,9\}$$

$$First(O) = \{*,:,+,-,^{\land}\}\$$

Sprawdzenie pierwszej reguły gramatycznej

S: brak alternatywy (reguła spełniona)

Regula spełniona, ponieważ w produkcji S nie występuje alternatywa, $gdy\dot{z} S ::= W$; Z.

Z: First(W)
$$\cap \{\epsilon\} = \{0,1,2,3,4,5,6,7,8,9,(\} \cap \{\epsilon\} = \emptyset \text{ (regula spełniona)}\}$$

Reguła spełniona, ponieważ zbiory symboli pierwszych w zdaniach, które mogą być wyprowadzone są rozłączne.

W: First(P) \cap First(P) = {0,1,2,3,4,5,6,7,8,9,(} \cap {0,1,2,3,4,5,6,7,8,9,(} \neq Ø (regula niespełniona)

Regula niespełniona, ponieważ zbiory symboli pierwszych w zdaniach, które mogą być wyprowadzone nie są rozłączne tzn. $First(P) \cap First(P) \neq \emptyset$.

P: First(R)
$$\cap$$
 {(} = {0,1,2,3,4,5,6,7,8,9} \cap {(} = \emptyset (regula spełniona)

Regula spełniona, ponieważ zbiory symboli pierwszych w zdaniach, które mogą być wyprowadzone są rozłączne.

R: First(L) \cap First(L) $\neq \emptyset$ (regula niespelniona)

Regula niespełniona, ponieważ zbiory symboli pierwszych w zdaniach, które mogą być wyprowadzone nie są rozłączne tzn. $First(L) \cap First(L) \neq \emptyset$.

L: First(C) \cap First(C) $\neq \emptyset$ (regula niespełniona)

Regula niespełniona, ponieważ zbiory symboli pierwszych w zdaniach, które mogą być wyprowadzone nie są rozłączne tzn. $First(C) \cap First(C) \neq \emptyset$.

C:

$$\{0\}\cap\{1\}=\emptyset$$

$$\{0\} \cap \{2\} = \emptyset$$

$$\{0\} \cap \{3\} = \emptyset$$

. . .

$$\{0\} \cap \{9\} = \emptyset$$

Reguła spełniona, ponieważ zbiory symboli pierwszych w zdaniach, które mogą być wyprowadzone są rozłączne.

O:

$$\{*\} \cap \{:\} = \emptyset$$

$$\{*\} \cap \{+\} = \emptyset$$

. . .

$$\{*\} \cap \{^{\wedge}\} = \emptyset$$

Regula spełniona, ponieważ zbiory symboli pierwszych w zdaniach, które mogą być wyprowadzone są rozłączne.

Sprawdzenie drugiej reguły gramatycznej (produkcje generujące ε)

Z:

First(Z) =
$$\{0,1,2,3,4,5,6,7,8,9,(,\epsilon)\}$$

 $Follow(Z) = Follow(S) = \emptyset$

First(Z)
$$\cap$$
 Follow(Z) = {0,1,2,3,4,5,6,7,8,9,(ε } \cap Ø = Ø (reguła spełniona)

Regula jest spełniona, ponieważ dla każdego symbolu nieterminalnego Z, z którego można wyprowadzić pusty ciąg symboli ($Z \rightarrow *$), zbiór symboli pierwszych jest rozłączny ze zbiorem symboli następnych.

Poprawiona gramatyka

S ::= W ; Z

 $Z := W ; Z \mid \varepsilon$

W ::= PW'

 $W' ::= OW | \epsilon$

P ::= R | (W)

R ::= LR'

 $R' ::= .L \mid \epsilon$

L := CL'

L' ::= L | ε

C ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

 $O ::= *|:|+|-|^$

Zastosowano lewostronną faktoryzację dla produkcji W, R, L w celu zastąpienia powtarzającej się reguły oraz dodania nowej. Było to koniecznie, ponieważ po obu stronach alternatywy występowały kolejno P, L i C. W produkcji W alternatywa $P \mid POW$ zaczynała się zawsze od P, natomiast w produkcji R alternatywa $L \mid L.L$ rozpoczynała się za każdym razem od L. Ten sam problem występował również w produkcji L, w której alternatywa $C \mid CL$ startowała zawsze od C. Wdrożenie lewostronnej faktoryzacji pozwoliło jednoznacznie określić produkcję do rozwinięcia nieterminala w drzewie składniowym.

Sprawdzenie pierwszej reguły dla zmienionych produkcji

Wyznaczenie zbiorów symboli pierwszych dla poprawionych i nowych produkcji

First(W) = First(P) = First(R)
$$\cup$$
 {(} = {0,1,2,3,4,5,6,7,8,9,(}

First(W') = First(O)
$$\cup \{\epsilon\} = \{*, +, -, ^{\land}\} \cup \{\epsilon\} = \{*, +, -, ^{\land}, \epsilon\}$$

$$First(R) = First(L) = First(C) = \{0,1,2,3,4,5,6,7,8,9\}$$

$$First(R') = \{.\} \cup \{\epsilon\} = \{., \epsilon\}$$

$$First(L) = First(C) = \{0,1,2,3,4,5,6,7,8,9\}$$

First(L') = First(L)
$$\cup \{\epsilon\} = \{0,1,2,3,4,5,6,7,8,9\} \cup \{\epsilon\} = \{0,1,2,3,4,5,6,7,8,9,\epsilon\}$$

W: brak alternatywy (reguła spełniona)

Reguła spełniona, ponieważ w produkcji W nie występuje alternatywa, gdyż W::=PW'.

W': First(O)
$$\cap \{\epsilon\} = \{*,:,+,-,^{\land}\} \cap \{\epsilon\} = \emptyset$$
 (regula spełniona)

Regula spełniona, ponieważ zbiory symboli pierwszych w zdaniach, które mogą być wyprowadzone są rozłączne.

R: brak alternatywy (reguła spełniona)

Regula spełniona, ponieważ w produkcji R nie występuje alternatywa, gdyż R' ::= $L \mid \varepsilon$.

R':
$$\{.\} \cap \{\epsilon\} = \emptyset$$
 (regula spelniona)

Regula spełniona, ponieważ zbiory symboli pierwszych w zdaniach, które mogą być wyprowadzone są rozłączne.

L: brak alternatywy (reguła spełniona)

Regula spełniona, ponieważ w produkcji L nie występuje alternatywa, gdyż L := CL'.

L': First(L)
$$\cap \{\epsilon\} = \{0,1,2,3,4,5,6,7,8,9\} \cap \{\epsilon\} = \emptyset$$
 (regula spelniona)

Regula spełniona, ponieważ zbiory symboli pierwszych w zdaniach, które mogą być wyprowadzone są rozłączne.

Sprawdzenie drugiej reguły gramatycznej dla produkcji generujących ε

First(
$$Z$$
) = {0,1,2,3,4,5,6,7,8,9,(, ε }

$$Follow(Z) = Follow(S) = \emptyset$$

$$First(Z) \cap Follow(Z) = \{0,1,2,3,4,5,6,7,8,9,(,\epsilon\} \cap \emptyset = \emptyset \text{ (regula spełniona)}$$

Regula jest spełniona, ponieważ dla każdego symbolu nieterminalnego Z, z którego można wyprowadzić pusty ciąg symboli ($Z \rightarrow *$), zbiór symboli pierwszych jest rozłączny ze zbiorem symboli następnych.

First(W') = First(O)
$$\cup \{\epsilon\} = \{*,:,+,-,^{\wedge}\} \cup \{\epsilon\} = \{*,:,+,-,^{\wedge}, \epsilon\}$$

$$Follow(W') = Follow(W) = \{;\} \cup \{;\} \cup \{\} = \{;,\} \}$$

First(W')
$$\cap$$
 Follow(W') = $\{*,:,+,-,^{\circ}, \varepsilon\} \cap \{:,\} = \emptyset$ (regula spełniona)

Regula jest spełniona, ponieważ dla każdego symbolu nieterminalnego W', z którego można wyprowadzić pusty ciąg symboli ($W' \rightarrow *$), zbiór symboli pierwszych jest rozłączny ze zbiorem symboli następnych.

$$First(R') = \{.\} \cup \{\epsilon\} = \{.,\epsilon\}$$

$$Follow(R') = Follow(R) = Follow(P) = Follow(W') = Follow(W) = \{;\} \cup \{;$$

First(R')
$$\cap$$
 Follow(R') = {., ε } \cap {;,)} = \emptyset (regula spełniona)

Regula jest spełniona, ponieważ dla każdego symbolu nieterminalnego R', z którego można wyprowadzić pusty ciąg symboli ($R' \rightarrow *$), zbiór symboli pierwszych jest rozłączny ze zbiorem symboli następnych.

First(L') = First(L)
$$\cup \{\epsilon\} = \{0,1,2,3,4,5,6,7,8,9\} \cup \{\epsilon\} = \{0,1,2,3,4,5,6,7,8,9,\epsilon\}$$

$$Follow(L') = Follow(L) = Follow(R') = Follow(R) = Follow(P) = Follow(W') = Follow(W) =$$

= $\{;\} \cup \{;\} \cup \{\}\} = \{;,\}\}$

First(L')
$$\cap$$
 Follow(L') = {0,1,2,3,4,5,6,7,8,9, ε } \cap {;,)} = \emptyset (regula spełniona)

Regula jest spełniona, ponieważ dla każdego symbolu nieterminalnego L', z którego można wyprowadzić pusty ciąg symboli ($L' \rightarrow *$), zbiór symboli pierwszych jest rozłączny ze zbiorem symboli następnych.

Diagram składni dla poprawionej gramatyki:

Produkcja S:

Produkcja Z:

Produkcja W:

Produkcja W':

Produkcja P:

Produkcja R:

Produkcja R':

Produkcja L:

Produkcja L':

Produkcja C:

Produkcja O:

Redukowanie:

SiZ

WiW'

LiL':

Podstawianie:

Produkcja W do głowy gramatyki

Zredukowana produkcja R do głowy gramatyki

Produkcja C do głowy gramatyki

Do powyższego diagramu wprowadzono uproszczony zapis produkcji C.

Produkcja O do głowy gramatyki

