Zadanie 2. Uzgadnianie klucza DH pomiędzy partnerami A i B. Wykorzystaj podane na wykładach algorytmy do rozwiązania poniższych zadań¹.

- a) Sprawdź, że liczba $p=4\,194\,329$ jest prawdopodobnie pierwsza z poziomem ufności 95 % (tj. $\Pr(p\not\in\mathbb{P})\leqslant0.05$). (2 p.)
- **b)** Niech parametrami globalnymi protokołu uzgadniania klucza będą p i wybrany losowo² generator g grupy \mathbb{Z}_p^* , $1 < g \le p-1$, $\operatorname{ord}(g) = p-1 = 4\,194\,328 = 2^3 \cdot 29 \cdot 101 \cdot 179$. (2 p.)
- c) Niech parametrami prywatnymi będą wybrane losowo $1 \le a \le p-1$ (znany tylko A) i $1 \le b \le p-1$ (znany tylko B). Oblicz przesyłane publicznie wiadomości:

$$A \to B$$
: $A \equiv g^a \pmod{p}$,
$$B \to A$$
: $B \equiv g^b \pmod{p}$.
$$(2 p.)$$

(2 p.)

d) Sprawdź, że

$$K \equiv A^b \equiv B^a \pmod{p}$$
.

i wyznacz tajny klucz współdzielony K.

e) Zaatakuj protokół, odtworzając klucz K na podstawie znajomości tylko parametrów globalnych p i g oraz publicznie przesłanych wiadomości A i B, korzystając z algorytmu Shanksa (baby-step giant-step). (2 p.)

¹Rozwiąż zadanie za pomocą napisanych samodzielnie programów (języki: C/C++, Java, Python, Fortran, Bash) lub przez obliczenia na kartce. W przesłanym rozwiązaniu zamieść programy (w archiwum .zip) lub obliczenia (operacje arytmetyczne na liczbach naturalnych można wykonać za pomocą kalkulatora).

²Dla wyboru losowego liczb możesz użyć generatora liczb losowych dostępnego z poziomu bibliotek języka programowania, systemowego generatora liczb losowych ('polecenie echo \$RANDOM' w sysmie Linux, funkcje 'Get-Random' lub 'Get-SecureRandom' w PowerShell), funkcji LOS arkusza kalkulacyjnego lub przycisku funkcji losowej kalkulatora, o ile taka posiada.