1. Постановка задачі

Обчислити інтеграл

$$I(a) = \int_{0}^{\infty} \frac{e^{-x}}{a+x} dx$$
, $a = 1,2,...,10$

з точністю $\varepsilon = 10^{-4}$, користуючись формулою трапецій. Оцінити верхню межу інтегрування, для оцінки точності головної частини інтегралу застосувати принцип Рунге.

2. Опис методу розв'язку

1)Оцінка верхньої межі

Необхідно знайти верхню меже інтегрування, тобто таке число b, щоб виконувалась дана нерівність:

$$\int_{b}^{\infty} f(x) \, dx \le \frac{\varepsilon}{2}, \text{де } f(x) = \frac{e^{-x}}{a+x}$$

А оскільки $b \in [0, \infty]$ то справедливою буде наступна нерівність:

$$\int_{b}^{\infty} \frac{e^{-x}}{a+x} dx \le \int_{b}^{\infty} e^{-x} dx = \lim_{c \to \infty} \int_{b}^{c} e^{-x} dx = e^{-b} \le \frac{\varepsilon}{2}$$

Тепер можна знайти найменше b, при якому точність задовольнятиме ту, яка вимагається в умові:

$$b = \ln \frac{2}{\varepsilon}$$

2)Інтегрування методом трапецій

Замінимо функцію на відрізку $[x_i, x_{i+1}]$ многочленом першого степеню з вузлами у x_i, x_{i+1} , тоді можна записати наступне:

$$I = \int_{x_i}^{x_{i+1}} f(x) dx pprox \frac{1}{2} (x_{i+1} - x_i) (f(x_{i+1}) + f(x_i)),$$
 де $i = \overline{0, n-1}$

Тоді для всього проміжку $x \in [0, b]$ можна записати:

$$I \approx \frac{h}{2} \sum_{i=0}^{n-1} (f(x_i) + f(x_{i+1}))$$

Лістинг 1 – числове інтегрування

```
static double CalcualteIntegral(double from, double to, double h,double a)
{
    double Integral = 0;
    double x = from;
    do
    {
        Integral += f(x, a) + f(x + h, a);
        x += h;
    } while (x < to);
    Integral = (h / 2) * Integral;
    return Integral;
}</pre>
```

Зауваження: Оскільки х можна виразити наступним чином:

 $x_{i+1} = x_i + h$, де $x_0 = 0$ — нижня межа інтегрування то можна обійтись без обчислення n, просто додаючи вираз, який знаходиться під знаком суми, до тих пір поки $x \le b$

3)Оцінка похибки методом Рунге

Для оцінки похибки застосована наступна формула:

$$I - I_h = \left| \frac{I_h - I_{2h}}{2^k - 1} \right|$$

Де I_h - значення інтегралу обчислене з кроком h, k — порядок точності, в даному випадку k=2. Виходячи з вищезгаданого рівняння можна таке h, щоб виконувалась наступна нерівність:

$$\left|\frac{I_h - I_{2h}}{2^k - 1}\right| \le \varepsilon$$

Лістинг 2 – оцінка похибки методом Рунге:

```
for (int a = 0; a < 10; a++)
{
    h = 1;
    do
    {
        h *= 0.1;
        Integrals[a] = CalcualteIntegral(0, b, h, a + 1);
        Eps[a] = Math.Abs(Integrals[a] - CalcualteIntegral(0, b, h * 2, a + 1)) /
        3;//похибка інтегрування, обчислена за методом Рунге
    } while (Eps[a] >= e);
    Console.WriteLine("Для значення a={0} значення інтегралу I({0})={1,0:f2} з кроком
        h={3,0:f3} та точністю e={2,0:f8}", a + 1, Integrals[a], Eps[a],h);
}
```

3. Результат

а	I(a)	h	ε
1	0,60	0,01	0,00001668
2	0,36	0,01	0,00000626
3	0,26	0,01	0,00000372

4	0,21	0,01	0,00000262
5	0,17	0,01	0,00000201
6	0,15	0,01	0,00000163
7	0,13	0,01	0,00000137
8	0,11	0,01	0,00000118
9	0,10	0,01	0,00000104
10	0,09	0,1	0,00009157

3 таблиці видно, що при збільшенні a при h=const, похибка, оцінена методом Рунге зменшується, тобто збільшується точність інтегрування, також можна помітити, що при тільки a=10 крок h=0,1 задовольняє ту точність, яка вимагається в умові.

4. Висновки

Ну, не знаю... В даній роботі було реалізовано мовою С# алгоритм чисельного інтегрування методом трапецій та оцінку похибки методом Рунге.

Лістинг 3 – весь код програми

```
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
namespace Alg_Lab2_Var6
{
    class Program
    {
        static double f(double x,double a)
            return Math.Exp(-x) / (x + a);
        }
        /// <summary>
        /// Обчислює інтеграл
        /// </summary>
        /// <param name="from">нижня межа інтегрування</param>
        /// <param name="to">верхня межа інтегрування</param>
        /// <param name="h">κpoκ</param>
        /// <param name="a">параметр</param>
        /// <returns>значення інтеграла</returns>
        static double CalcualteIntegral(double from, double to, double h,double a)
            double Integral = 0;
            double x = from;
            do
            {
                Integral += f(x, a) + f(x + h, a);
                x += h;
            } while (x < to);</pre>
            Integral = (h / 2) * Integral;
            return Integral;
        static void Main(string[] args)
            try
            {
                double e = 0.0001;//необхідна точність інтегрування
                double h; //κροκ
                double[] Integrals = new double[10];//масив значень інтегралів
                double[] Eps = new double[10];//масив похибок
                double b = Math.Log(2 / e);//оцінка верхньої межі
                for (int a = 0; a < 10; a++)
                {
                    h = 1;
                    do
                        h *= 0.1;
                        Integrals[a] = CalcualteIntegral(0, b, h, a + 1);
                        Eps[a] = Math.Abs(Integrals[a] - CalcualteIntegral(0, b, h * 2, a +
                         1)) / 3;//похибка інтегрування, обчислена за методом Рунге
                    } while (Eps[a] >= e);
                    Console.WriteLine("Для значення a=\{0\} значення інтегралу I(\{0\})=\{1,0:f2\}
                     з кроком h=\{3,0:f3\} точністю e=\{2,0:f8\}", a+1, Integrals[a],
                     Eps[a],h);
                }
            }
            catch (Exception e)
            {
                Console.WriteLine("Щось пішло не так :(\n"+ e.Message);
            }
       }
   }
 }
```