

Interfacing STM32 with 16×2 LCD

1

G V V Sharma*

1

1

1

2

CONTENTS

1	Components
---	------------

- 2 Hardware
- 3 Software
- 4 Project

Abstract—This manual shows how to interface the 16×2 HD44780-controlled LCD using STM32F103C8T6.

1 Components

Component	Value	Quantity
Breadboard		1
		1
STM32F103C8T6		
LCD	16 × 2	1
	HD44780	
Jumper Wires	F-F	20
Jumper Wires	M-F	20

TABLE 1.0: Components

2 Hardware

Problem 2.1. Make connections as shown in Table 2.1.

*The author is with the Department of Electrical Engineering, Indian Institute of Technology, Hyderabad 502285 India e-mail: gadepall@iith.ac.in. All content in this manual is released under GNU GPL. Free and open source.

Rpi 3	STM32	LCD Pins	LCD Pin Label	LCD Pin Description
GND		1	GND	
5V		2	Vcc	
GND		3	Vee	Contrast
	A0	4	RS	Register Select
GND		5	R/W	Read/Write
	A1	6	EN	Enable
	A2	11	DB4	Serial Connection
	A3	12	DB5	Serial Connection
	A4	13	DB6	Serial Connection
	A5	14	DB7	Serial Connection
5V		15	LED+	Backlight
GND		16	LED-	Backlight

TABLE 2.1: Pin Connections

3 Software

Problem 3.1. Execute the following program

https://github.com/gadepall/ STM32F103C8T6/blob/master/ examples/lcd/lcd_example.c

The following problems explain how to display the string **0** on the screen using the above code.

Problem 3.2. Write the ASCII code for the 0 character.

Solution: The code for 0 is 48 = 0b00110000 = 0x30.

Problem 3.3. How is 0 written by the STM32 to the LCD controller.

Solution: For the number 0, the upper nibble 0011 is first written followed by the lower nibble 0000. This is done by

```
void SendByte (byte data)
{
    SendNibble(data >> 4); // send
        upper 4 bits 0011
    SendNibble(data); // send lower 4
        bits 0000
}
```

Problem 3.4. How is the nibble 0011 written to the LCD.

Solution: This is done by the following function where data = 0011.

The expression

$$GPIOA - > BSRR = (data << 2)\&0b00111100$$

= $0b00001100$. (3.4.1)

This ensures that 11 is written to the pins A2-A3. Note that << indicates 2 left shifts. Similarly,

$$GPIOA - > BRR = (data << 2)\&0b00111100$$
(3.4.2)

ensures that 00 is written to the pins A4-A5. PulseEnableLine() provides a clock pulse used to write the nibble 0011 to the LCD.

Problem 3.5. Which pins of the STM32 are used for what purpose?

Solution: The A2-A5 pins of the STM32 are used for pushing the upper/lower data nibble to the DB4-DB7 pins of the LCD using the BRR and BSRR registers. The A0-A1 pins are used for Register Select and EN for the LCD.

Problem 3.6. What is Register Select?

Solution: Register Select = 0 implies that LCD configuration commands are being written. For exam-

ple, cursor on/off, clearing display, number of lines, etc... Register Select = 1 implies that characters are being writen to the LCD.

4 Project

Develop an arithmetic calculator using the STM32 along with the LCD.