In [1]: In [2]: Out[2]:	NAME : SOUMIK SAHA REG NO:21BCE7048 MAIL ID :soumik.21bce7048@vitapstudent.ac.in SLOT: MORNING
	IMPORT SEABORN import seaborn as sns import matplotlib.pyplot as plt
	dset=sns.load_dataset("car_crashes") total speeding alcohol not_distracted no_previous ins_premium ins_losses abbrev 0 18.8 7.332 5.640 18.048 15.040 784.55 145.08 AL 1 18.1 7.421 4.525 16.290 17.014 1053.48 133.93 AK 2 18.6 6.510 5.208 15.624 17.856 899.47 110.35 AZ 3 22.4 4.032 5.824 21.056 21.280 827.34 142.39 AR
	3 22.4 4.032 5.824 21.056 21.280 827.34 142.39 AR 4 12.0 4.200 3.360 10.920 10.680 878.41 165.63 CA 5 13.6 5.032 3.808 10.744 12.920 835.50 139.91 CO 6 10.8 4.968 3.888 9.396 8.856 1068.73 167.02 CT 7 16.2 6.156 4.860 14.094 16.038 1137.87 151.48 DE 8 5.9 2.006 1.593 5.900 5.900 1273.89 136.05 DC 9 17.9 3.759 5.191 16.468 16.826 1160.13 144.18 FL
	10 15.6 2.964 3.900 14.820 14.508 913.15 142.80 GA 11 17.5 9.450 7.175 14.350 15.225 861.18 120.92 HI 12 15.3 5.508 4.437 13.005 14.994 641.96 82.75 ID 13 12.8 4.608 4.352 12.032 12.288 803.11 139.15 IL 14 14.5 3.625 4.205 13.775 710.46 108.92 IN 15 15.7 2.669 3.925 15.229 13.659 649.06 114.47 IA
	16 17.8 4.806 4.272 13.706 15.130 780.45 133.80 KS 17 21.4 4.066 4.922 16.692 16.264 872.51 137.13 KY 18 20.5 7.175 6.765 14.965 20.090 1281.55 194.78 LA 19 15.1 5.738 4.530 13.137 12.684 661.88 96.57 ME 20 12.5 4.250 4.000 8.875 12.375 1048.78 192.70 MD 21 8.2 1.886 2.870 7.134 6.560 1011.14 135.63 MA 22 14.1 3.384 3.948 13.395 10.857 1110.61 152.26 MI
	23 9.6 2.208 2.784 8.448 8.448 777.18 133.35 MN 24 17.6 2.640 5.456 1.760 17.600 896.07 155.77 MS 25 16.1 6.923 5.474 14.812 13.524 790.32 144.45 MO 26 21.4 8.346 9.416 17.976 18.190 816.21 85.15 MT 27 14.9 1.937 5.215 13.857 13.410 732.28 114.82 NE 28 14.7 5.439 4.704 13.965 14.553 1029.87 138.71 NV 29 11.6 4.060 3.480 10.092 9.628 746.54 120.21 NH
	30 11.2 1.792 3.136 9.632 8.736 1301.52 159.85 NJ 31 18.4 3.496 4.968 12.328 18.032 869.85 120.75 NM 32 12.3 3.936 3.567 10.824 9.840 1234.31 150.01 NY 33 16.8 6.552 5.208 15.792 13.608 708.24 127.82 NC 34 23.9 5.497 10.038 23.661 20.554 688.75 109.72 ND 35 14.1 3.948 4.794 13.959 11.562 697.73 133.52 OH
	36 19.9 6.368 5.771 18.308 18.706 881.51 178.86 OK 37 12.8 4.224 3.328 8.576 11.520 804.71 104.61 OR 38 18.2 9.100 5.642 17.472 16.016 905.99 153.86 PA 39 11.1 3.774 4.218 10.212 8.769 1148.99 148.58 RI 40 23.9 9.082 9.799 22.944 19.359 858.97 116.29 SC 41 19.4 6.014 6.402 19.012 16.684 669.31 96.87 SD 42 19.5 4.095 5.655 15.990 15.795 767.91 155.57 TN
	43 19.4 7.760 7.372 17.654 16.878 1004.75 156.83 TX 44 11.3 4.859 1.808 9.944 10.848 809.38 109.48 UT 45 13.6 4.080 4.080 13.056 12.920 716.20 109.61 VT 46 12.7 2.413 3.429 11.049 11.176 768.95 153.72 VA 47 10.6 4.452 3.498 8.692 9.116 890.03 111.62 WA 48 23.8 8.092 6.664 23.086 20.706 992.61 152.56 WV 49 13.8 4.968 4.554 5.382 11.592 670.31 106.62 WI
In [3]:	50 17.4 7.308 5.568 14.094 15.660 791.14 122.04 WY dset.info() <class 'pandas.core.frame.dataframe'=""> RangeIndex: 51 entries, 0 to 50 Data columns (total 8 columns): # Column Non-Null Count Dtype</class>
	0 total 51 non-null float64 1 speeding 51 non-null float64 2 alcohol 51 non-null float64 3 not_distracted 51 non-null float64 4 no_previous 51 non-null float64 5 ins_premium 51 non-null float64 6 ins_losses 51 non-null float64 7 abbrev 51 non-null object dtypes: float64(7), object(1) memory usage: 3.3+ KB
In [4]: Out[4]:	0 18.8 7.332 5.640 18.048 15.040 784.55 145.08 AL 1 18.1 7.421 4.525 16.290 17.014 1053.48 133.93 AK 2 18.6 6.510 5.208 15.624 17.856 899.47 110.35 AZ 3 22.4 4.032 5.824 21.056 21.280 827.34 142.39 AR
In [5]: Out[5]:	dset.tail() total speeding alcohol not_distracted no_previous ins_premium ins_losses abbrev 46 12.7 2.413 3.429 11.049 11.176 768.95 153.72 VA 47 10.6 4.452 3.498 8.692 9.116 890.03 111.62 WA 48 23.8 8.092 6.664 23.086 20.706 992.61 152.56 WV
In [6]:	49 13.8 4.968 4.554 5.382 11.592 670.31 106.62 WI 50 17.4 7.308 5.568 14.094 15.660 791.14 122.04 WY HEAT MAP corr=dset.corr()
Out[6]:	<pre>corr <ipython-input-6-dc92a5ab8bf7>:1: FutureWarning: The default value of numeric_only in DataFrame.corr is deprecated. In a future version, it will default to False. Select only valid columns or specify the value of numeric_only to silence this warning.</ipython-input-6-dc92a5ab8bf7></pre>
In [7]:	not_distracted 0.827560 0.588010 0.732816 1.000000 0.747307 -0.174856 -0.075970 no_previous 0.956179 0.571976 0.783520 0.747307 1.000000 -0.156895 -0.006359 ins_premium -0.199702 -0.077675 -0.170612 -0.174856 -0.156895 1.000000 0.623116 ins_losses -0.036011 -0.065928 -0.112547 -0.075970 -0.006359 0.623116 1.000000 Sns.heatmap(corr,annot=True)
Out[7]:	total - 1
	not_distracted - 0.83
	ins_losses0.036 -0.066 -0.11 -0.076 -0.0064 0.62 1 - losses0.036 -0.066 -0.11 -0.0064 0.62 1 - losses0.036 -0.066 0.62 1 - losses0.036 0.62 1
In [8]: Out[8]:	<pre>total False speeding False alcohol False not_distracted False no_previous False ins_premium False ins_losses False abbrev False dtype: bool</pre>
	dset.isnull().sum() total 0 speeding 0 alcohol 0 not_distracted 0 no_previous 0 ins_premium 0 ins_losses 0 abbrev 0
	<pre>srs.scatterplot(x="alcohol", y="total", data=dset) plt.title("Scatterplot: Alcohol vs Total Crashes") plt.xlabel("Alcohol Consumption") plt.ylabel("Total Crashes")</pre> Text(0, 0.5, 'Total Crashes')
Out[10]:	Scatterplot: Alcohol vs Total Crashes 22.5 - 20.0 -
	17.5 - E 15.0 - E 12.5 - 10.0 -
-	7.5 - 5.0 2 4 6 8 10 Alcohol Consumption Inference: Positive correlation between alcohol consumption and total crashes from the above plot, i.e as the alcohol consumption increases the total crashes increases. sns.scatterplot(x="speeding", y="total", data=dset)
In [11]: Out[11]:	sns.scatterplot(x="speeding", y="total", data=dset) plt.title("Scatterplot: Speeding vs Total Crashes") plt.xlabel("Speeding") plt.ylabel("Total Crashes") Text(0, 0.5, 'Total Crashes') Scatterplot: Speeding vs Total Crashes 22.5 -
	22.5 - 20.0 - 17.5 - 15.0 - 10.5 -
	10.0 - 10.0 - 7.5 - 5.0 - 2 3 4 5 6 7 8 9 Speeding
In [12]:	Inference: Speeding doesn't show a clear linear trend with total crashes. LINE PLOT sns.lineplot(x="alcohol", y="total", data=dset) plt.title("Lineplot: Alcohol vs Total Crashes")
Out[12]:	plt.xlabel("Alcohol Consumption") plt.ylabel("Total Crashes") Text(0, 0.5, 'Total Crashes') Lineplot: Alcohol vs Total Crashes 22.5
	20.0 - 17.5 - 15.0 - 12.5 -
	10.0 - 7.5 - 5.0 2 4 6 8 10 Alcohol Consumption
In [13]: Out[13]:	Inference: No obvious linear trend in the relationship between alcohol consumption and total crashes. sns.lineplot(x="speeding", y="total", data=dset) plt.title("Lineplot: Speeding vs Total Crashes") plt.xlabel("Speeding") plt.ylabel("Total Crashes") Text(0, 0.5, 'Total Crashes') Lineplot: Speeding vs Total Crashes
	22.5 - 20.0 -
	17.5 - 15.0 - 10.0 - 7.5 - 10.0 - 10.
	5.0 2 3 4 5 6 7 8 9 Inference: Speeding doesn't exhibit a consistent linear relationship with total crashes. DISTRIBUTION PLOT
In [14]: Out[14]:	<pre>sns.histplot(dset["not_distracted"], kde=True) plt.title("Distplot: Not Distracted") plt.xlabel("Not Distracted") Text(0.5, 0, 'Not Distracted') Distplot: Not Distracted 16 -</pre>
	14 - 12 - 10 - 10 -
In [15]: Out[15]:	Inference: The distribution of "not_distracted" values is right-skewed sns.histplot(dset["alcohol"], kde=True) plt.title("Distplot: Alcohol Consumption") plt.xlabel("Alcohol Consumption") Text(0.5, 0, 'Alcohol Consumption')
out[13].	Distplot: Alcohol Consumption 12 - 10 -
	8 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 -
	Inference: The distribution of alcohol consumption appears to be right-skewed as well
<pre>In [16]: Out[16]:</pre>	sns.boxplot(x="alcohol", y="total", data=dset) plt.title("Boxplot: Alcohol vs Total Crashes") plt.xlabel("Alcohol Consumption") plt.ylabel("Total Crashes") Text(0, 0.5, 'Total Crashes')
	22.5 -
In [17]:	1.5930GGWAN 300 Alcohol Consumption Inference: The boxplot shows the distribution of total crashes for different levels of alcohol consumption. The lines indicates the outliers sns.boxplot(x="speeding", y="total", data=dset) plt.title("Boxplot: Speeding vs Total Crashes") plt.xlabel("Speeding")
Out[17]:	plt.ylabel("Total Crashes") Text(0, 0.5, 'Total Crashes') Boxplot: Speeding vs Total Crashes
	17.5
	1.79.09900000000000000000000000000000000
In [18]: Out[18]:	<pre>sns.barplot(x="alcohol", y="total", data=dset) plt.title("Barplot: Alcohol vs Total Crashes") plt.xlabel("Alcohol Consumption") plt.ylabel("Total Crashes")</pre> Text(0, 0.5, 'Total Crashes')
	Barplot: Alcohol vs Total Crashes
	15 - P
In [19]:	Alcohol Consumption Inference: The barplot displays the mean total crashes for different levels of alcohol consumption. So, if the alcohol consumption is high, then total crashes are also high. sns.barplot(x="speeding", y="total", data=dset) plt.title("Barplot: Speeding vs Total Crashes")
<pre>In [19]: Out[19]:</pre>	Alcohol Consumption Inference: The barplot displays the mean total crashes for different levels of alcohol consumption. So, if the alcohol consumption is high, then total crashes are also high. sns.barplot(x="speeding", y="total", data=dset) plt.title("Barplot: Speeding vs Total Crashes") plt.ylabel("Speeding") plt.ylabel("Total Crashes") Text(0, 0.5, 'Total Crashes') Barplot: Speeding vs Total Crashes
	Alcohol Consumption Inference: The barplot displays the mean total crashes for different levels of alcohol consumption. So, if the alcohol consumption is high, then total crashes are also high. sns.barplot(x="speeding", y="total", data=dset) plt.title("Barplot: Speeding vs Total Crashes") plt.xlabel("Speeding") plt.ylabel("Total Crashes") Text(0, 0.5, 'Total Crashes') Barplot: Speeding vs Total Crashes
	Inference: The barplot displays the mean total crashes for different levels of alcohol consumption. So, if the alcohol consumption is high, then total crashes are also high. Sins. barplot (x="speeding", y="total", data=dset) plt: title("darplot: speeding vs Total Crashes") plt: vitle("darplot: speeding vs Total Crashes") Text(e, e.5. "Total Crashes") Text(e, e.5. "Total Crashes") Barplot: Speeding vs Total Crashes 1.78 1937 Poscous 4-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2
Out[19]:	Interence: The barplot displays the mean total crashes for different levels of alcohol consumption. So, if the alcohol consumption is high, then total crashes are also high. Sns. barplot (x="speeding", y="total", data=dsct) plit.itile("Barplot: Speeding vs Total Crashes") plit.vjabel("Total Crashes") plit.vjabel("Total Crashes") Text(e, e.s., 'Total Crashes') Text(e, b.s., 'Total Crashes') 1.7119999991111000061111000000000000000000
Out[19]:	Alcohol Consumption informace The bargist displays the mount made to allow the rest of alcohol consumption. Stu, if the absolute consumption is high, then coal concluss one above high. stock bar Conference in the street of the coal concluss one above high. stock of Conference in the street of the coal conclusion of the coal coal coal coal coal coal coal coal
Out[19]:	Inference The baselot dispassy the man locate for different levels of accord consumption 5c. ("the above consumption in high, then look creatives are size high." The consumption of the consumption of the consumption of high, then look creatives are size high. The consumption of the consumption of the consumption of high, then look creatives are size high. The consumption of the consumption of the consumption of high, then look creatives are size high. The consumption of the consumption of the consumption of high, then look creatives are size high. The consumption of the consumption of the consumption of high, then look creatives are size high. The consumption of the consumption of the consumption of high, then look creatives are size high. The consumption of the consumption of the consumption of high, then look creatives are size high. The consumption of the consumption of the consumption of high, then look creatives are size high. The consumption of the consumption of the consumption of high then look creatives are size high. The consumption of the c
Out[19]:	Accobal Consequence of the page of page time in the consequence of page of pag
Out[19]:	Acceled Communities ### Acceled Communities
Out[19]: In [20]: Out[20]:	Accided Consumption Accided C
Out[19]: In [20]: Out[20]:	Activation Consumption Activation Consumption Activation Consumption Activation Consumption Activation Consumption Activation Activation Consumption Activation Activa
Out[19]: In [20]: Out[20]:	And the control of th
Out[19]: In [20]: Out[20]:	The control of the co
<pre>In [20]: Out[20]: Out[21]:</pre>	The control for large displaced control contro
<pre>In [20]: Out[20]: In [21]: Out[21]:</pre>	The continue of the continue o
<pre>In [20]: Out[20]: In [21]: Out[21]:</pre>	The control of the co
<pre>In [20]: Out[20]: In [21]: Out[21]:</pre>	Manufacture for the control of the c
<pre>In [20]: Out[20]: In [21]: Out[22]:</pre>	THE THE PROPERTY OF THE PROPER
<pre>In [20]:</pre>	District Control of the Control of t
<pre>In [20]:</pre>	Additional and additional additional and additional
<pre>In [20]: Out[20]: Out[21]: Out[22]: Out[22]:</pre>	And control of the co
<pre>In [20]: Out[20]: Out[21]: Out[22]: Out[22]:</pre>	STATE AND ADDRESS OF THE STATE
<pre>In [24]: In [24]: In [22]: Out [22]: Out [23]: </pre>	The control of the co
<pre>In [24]: In [24]: In [22]: Out [22]: Out [23]: </pre>	The state of the s
In [24]: Out [21]: Out [22]: Out [23]:	The state of the s
In [24]: Out [21]: Out [22]: Out [23]:	The state of the control of the cont
In [24]: Out [21]: Out [22]: Out [23]:	The state of the s