- **1.** (2 punts) Sigui $\{a_n\}$ una successió tal que $a_1 = 1$ i $a_{n+1} = \sqrt[3]{4 + a_n^2}$ si $n \ge 1$.
 - (a) Demostreu que $0 \le a_n \le 2$, $\forall n \ge 1$.
 - (b) Demostreu que $\{a_n\}$ és creixent.
 - (c) Demostreu que $\{a_n\}$ és convergent i calculeu el seu límit.
- **2.** (2 punts)
 - (a) Escriviu el polinomi de Taylor de grau 4 de la funció $f(x) = \cos x$ en el punt $x_0 = 0$ i l'expressió del residu corresponent en la forma de Lagrange.
 - (b) Utilitzant el polinomi i el residu de l'apartat a) calculeu el valor aproximat de $\cos \frac{1}{2}$ i doneu una fita superior de l'error absolut d'aquesta aproximació.
- **3.** (2 punts) Siguin $f(x) = -x^2 2x$ i $g(x) = x^2 4$.
 - (a) Trobeu els nombres reals x tals que $f(x) \ge g(x)$. Representeu sobre la recta real el conjunt de solucions, digueu si és fitat i si té suprem, infim, màxim i mínim.
 - (b) Dibuixeu els gràfics de f i g. Calculeu l'àrea de la regió limitada per les corbes y = f(x) i y = g(x).
- 4. (2 punts) Donada la funció de dues variables

$$f(x,y) = 1 + \sqrt{x^2 + y^2}.$$

- (a) Dibuixeu les corbes de nivell de f corresponents als nivells 0, 1, 2, 3.
- (b) Trobeu la derivada direccional en el punt P(1,2) en la direcció del vector que va del punt P a l'origen.
- (c) Determineu la direcció en la qual f creix més ràpidament en el punt P(1,2) i trobeu la derivada direccional de f en aquesta direcció.
- 5. (2 punts) Donada la funció $f(x,y) = x^2 y^3$.
 - (a) Trobeu i classifiqueu els punts crítics de f en \mathbb{R}^2 .
 - (b) Justifiqueu l'existència dels extrems absoluts de la funció f en el conjunt

$$K = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 \le 1\}.$$

(c) Determineu el màxim i mínim absoluts de f en la regió K.