COM 599200 Statistical Learning Homework #2

(Due April 13, 2018 noon to the TA at EECS 613)

Note: Detailed derivations are required to obtain a full score for each problem. (Total 80%)

- 1. (6%) Solve Problem 3(c) of HW #1 using QDA.
- **2.** (8%) Solve Problem 7 of Chapter 4, but with the observed variance being $\hat{\sigma}^2 = 25$ for those that issued a dividend and $\hat{\sigma}^2 = 36$ for those that didn't.
- 3. (12%) Let

$$CV_{(n)} = \frac{1}{n} \sum_{i=1}^{n} \left(y_i - \hat{f}(x_i; \mathcal{D} \setminus \{(x_i, y_i)\})^2 \right)$$

be the leave-one-out cross-validation (LOOCV) error. Show that

$$CV_{(n)} = \frac{1}{n} \sum_{i=1}^{n} \left(\frac{y_i - \hat{y}_i}{1 - h_i} \right)^2$$

where $\hat{y}_i = \hat{f}(x_i; \mathcal{D})$ is the *i*-th fitted value from the original least square fit (using the entire data set \mathcal{D}), and h_i is the leverage statistic.

(Hint: Fill in the details of the sketch proof shown in class.)

- **4.** (10%+10%) Suppose that the input and output variables of the n training data points can be expressed as $\mathbf{X} = (x_1, \dots, x_n)^T$ and $\mathbf{y} = (y_1, \dots, y_n)^T$, respectively. In ridge regression, the coefficient vector $\boldsymbol{\beta} = (\beta_0, \dots, \beta_p)^T$ is chosen such that $\|\mathbf{y} \mathbf{X}\boldsymbol{\beta}\|^2 + \lambda \|\boldsymbol{\beta}\|^2$ is minimized for some $\lambda \geq 0$.
 - (a) Show that the resulting coefficient estimate is given by

$$\hat{\beta}_{\lambda} = (\mathbf{X}^T \mathbf{X} + \lambda \mathbf{I})^{-1} \mathbf{X}^T \mathbf{y}$$
 and that $\|\beta_{\lambda}\|_{\lambda > 0} \le \|\beta_{\lambda}\|_{\lambda = 0}$

(b) Show that the training error is

$$\overline{\text{err}} = \frac{1}{n} \mathbf{y} \left[\mathbf{I} - \mathbf{X} (\mathbf{X}^T \mathbf{X} + \lambda \mathbf{I})^{-1} \mathbf{X}^T \right]^2 \mathbf{y}$$

and that it is an increasing function of λ .

- 5. (10%+8%) Suppose that the available data set is $\mathcal{D} = \{(x_1, y_1), (x_2, y_2), (x_3, y_3)\} = \{(1,2), (3,7), (5,8)\}$, and that B bootstrap data sets $\mathcal{D}^{*1}, \ldots, \mathcal{D}^{*B}$ (excluding those with only 1 distinct data point) are generated from \mathcal{D} , each with the same size as \mathcal{D} . Linear regression is performed on each data set to obtain coefficient estimates $\beta^{*1}, \ldots, \beta^{*B}$, where
 - (a) For $B \to \infty$, find the standard errors of the coefficient estimates $\hat{\beta}_0$ and $\hat{\beta}_1$.
 - (b) Compare with the standard error estimates derived in Chapter 3 for original least squares (i.e., ridge regression with $\lambda = 0$), that is,

$$\widehat{SE}(\hat{\beta}_0)^2 = \hat{\sigma}^2 \left[\frac{1}{n} + \frac{\bar{x}^2}{\sum_{i=1}^n (x_i - \bar{x})^2} \right]$$

and

$$\widehat{SE}(\hat{\beta}_1)^2 = \frac{\hat{\sigma}^2}{\sum_{i=1}^n (x_i - \bar{x})^2},$$

where n=3 in this case.

6. (16%) Problem 5 of Chapter 6 with $x_{11} = -x_{12}$ and $x_{21} = -x_{22}$ and, in (b), $\hat{\beta}_1 = -\hat{\beta}_2$.