k Nearest Neighbors

• • Classifiers

Nearest Neighbor Classifier

 Assign label of nearest training data point to each test data point

Voronoi partitioning of feature space for two-category 2D and 3D data

K - Nearest Neighbors

- For a given instance T, get the top k dataset instances that are "nearest" to T
 - Select a reasonable distance measure
- Inspect the category of these k instances, choose the category C that represent the most instances
- Conclude that T belongs to category C

K-nearest neighbor

• Let '+' be the new data points, whose class is unknown.

1-nearest neighbor

3-nearest neighbor

5-nearest neighbor

First: Nearest Neighbor (NN) Classifier

Train

Remember all training images and their labels

Predict

- Find the closest (most similar) training image
- Predict its label as the true label

CIFAR-10 and NN results

Example dataset: CIFAR-10

10 labels

50,000 training images, each image is tiny: 32x32

10,000 test images.

CIFAR-10 and NN results

Example dataset: CIFAR-10

10 labels 50,000 training images 10,000 test images.

For every test image (first column), examples of nearest neighbors in rows

k-nearest neighbor

- Find the k closest points from training data
- Take majority vote from K closest points

What does this look like?

What does this look like?

How to find the most similar training image? What is the distance metric?

L1 distance:

$$d_1(I_1,I_2) = \sum_p |I_1^p - I_2^p|$$

Where I_1 denotes image 1, and p denotes each pixel

•			
tool	In	\sim	
			_
tes		ıau	·

56	32	10	18
90	23	128	133
24	26	178	200
2	0	255	220

training image

10	20	24	17
8	10	89	100
12	16	178	170
4	32	233	112

pixel-wise absolute value differences

Hyperparameters

- What is the **best distance** to use?
- What is the best value of k to use?

 These are hyperparameters: choices about the algorithm that we set rather than learn

- How do we set them?
 - One option: try them all and see what works best

Choice of distance metric

Hyperparameter

L1 (Manhattan) distance

$$d_1(I_1,I_2) = \sum_p |I_1^p - I_2^p|$$

$$d_2(I_1,I_2)=\sqrt{\sum_pig(I_1^p-I_2^pig)^2}$$

K-Nearest Neighbors: Distance Metric

L1 (Manhattan) distance

$$d_1(I_1,I_2) = \sum_p |I_1^p - I_2^p|$$

L2 (Euclidean) distance

$$d_2(I_1,I_2)=\sqrt{\sum_p\left(I_1^p-I_2^p
ight)^2}$$

K = 1

Demo: http://vision.stanford.edu/teaching/cs231n-demos/knn/

• • Other distance measures

- City-block distance (Manhattan dist)
 - Add absolute value of differences
- Cosine similarity
 - Measure angle formed by the two samples (with the origin)
- Jaccard distance
 - Determine percentage of exact matches between the samples (not including unavailable data)
- Others

Distance Metrics

Manhattan / city-block:

Minkowsky: Euclidean: Manhattan / city-bl

$$D(x,y) = \left(\sum_{i=1}^{m} |x_i - y_i|^r\right)^{1/r} \qquad D(x,y) = \sqrt{\sum_{i=1}^{m} (x_i - y_i)^2} \qquad D(x,y) = \sum_{i=1}^{m} |x_i - y_i|$$

$$D(x,y) = \sqrt{\sum_{i=1}^{m} (x_i - y_i)^2}$$

$$D(x,y) = \sum_{i=1}^{m} |x_i - y_i|$$

Camberra:
$$D(x,$$

Camberra:
$$D(x,y) = \sum_{i=1}^{m} \frac{|x_i - y_i|}{|x_i + y_i|}$$

Chebychev:
$$D(x,y) = \max_{i=1}^{m} |x_i - y_i|$$

adratic:
$$D(x,y) = (x-y)^T Q(x-y) = \sum_{j=1}^m \left(\sum_{i=1}^m (x_i - y_i) q_{ji}\right) (x_j - y_j)$$
Q is a problem-specific positive

definite $m \times m$ weight matrix

Mahalanobis:

$$D(x,y) = [\det V]^{1/m} (x - y)^{\mathrm{T}} V^{-1} (x - y)$$

V is the covariance matrix of $A_1..A_m$, and A_i is the vector of values for attribute j occuring in the training set instances 1..n.

Correlation:
$$D(x,y) = \frac{\sum_{i=1}^{m} (x_i - \overline{x_i})(y_i - \overline{y_i})}{\sqrt{\sum_{i=1}^{m} (x_i - \overline{x_i})^2 \sum_{i=1}^{m} (y_i - \overline{y_i})^2}}$$

 $\overline{x}_i = \overline{y}_i$ and is the average value for attribute i occuring in the training set.

Chi-square: $D(x,y) = \sum_{i=1}^{m} \frac{1}{sum_i} \left(\frac{x_i}{size_x} - \frac{y_i}{size_x} \right)^2$

 sum_i is the sum of all values for attribute i occurring in the training set, and $size_x$ is the sum of all values in the vector x.

Kendall's Rank Correlation:

$$sign(x)=-1, 0 \text{ or } 1 \text{ if } x < 0,$$

 $x = 0, \text{ or } x > 0, \text{ respectively.}$

$$D(x,y) = 1 - \frac{2}{n(n-1)} \sum_{i=1}^{m} \sum_{j=1}^{i-1} \operatorname{sign}(x_i - x_j) \operatorname{sign}(y_i - y_j)$$

How to determine the good value for k?

- Determined experimentally
- Start with k=1 and use a test set to validate the error rate of the classifier
- Repeat with k=k+2
- Choose the value of k for which the error rate is minimum

Note: k should be odd number to avoid ties

Idea #1: Choose hyperparameters that work best on the data

Your Dataset

Idea #1: Choose hyperparameters that work best on the data

BAD: K = 1 always works perfectly on training data

Your Dataset

Idea #1: Choose hyperparameters that work best on the data

BAD: K = 1 always works perfectly on training data

Your Dataset

Idea #2: Split data into train and test, choose hyperparameters that work best on test data

train test

Idea #1: Choose hyperparameters that work best on the data

BAD: K = 1 always works perfectly on training data

that work best on the data	perfectly	on training dat	la
Your Dataset			
Idea #2: Split data into train and test, choose hyperparameters that work best on test data		idea how algo m on new dat	
train		test	

Idea #1: Choose hyperparameters that work best on the data

BAD: K = 1 always works perfectly on training data

Your Dataset Idea #2: Split data into train and test, choose hyperparameters that work best on test data train Idea #3: Split data into train, val. and test: choose

Idea #3: Split data into train, val, and test; choose hyperparameters on val and evaluate on test

Better!

train	validation	test
-------	------------	------

Your Dataset

Idea #4: Cross-Validation: Split data into folds, try each fold as validation and average the results

fold 1	fold 2	fold 3	fold 4	fold 5	test
fold 1	fold 2	fold 3	fold 4	fold 5	test
fold 1	fold 2	fold 3	fold 4	fold 5	test

Useful for small datasets, but not used too frequently in deep learning

Example of 5-fold cross-validation for the value of **k**.

Each point: single outcome.

The line goes through the mean, bars indicated standard deviation

(Seems that $k \sim = 7$ works best for this data)

Recap: How to pick hyperparameters?

- Methodology
 - Train and test
 - Train, validate, test

- Train for original model
- Validate to find hyperparameters
- Test to understand generalizability

• • k-NN Time Complexity

- Suppose there are m instances and n features in the dataset
- Nearest neighbor algorithm requires computing m distances
- Each distance computation involves scanning through each feature value
- Running time complexity is proportional to m X n

kNN -- Complexity and Storage

N training images, M test images

- Training: O(1)
- Testing: O(MN)

- Hmm...
 - Normally need the opposite
 - Slow training (ok), fast testing (necessary)

- Disadvantage of kNN (instance-based methods) is that the costs of classifying new instances can be high
- Nearly all computation takes place at classification time rather than learning time

k-Nearest Neighbor on images never used.

- terrible performance at test time
- distance metrics on level of whole images can be very unintuitive

(all 3 images have same L2 distance to the one on the left)

• • k-NN variations

- Value of k
 - Larger k increases confidence in prediction
 - Note that if k is too large, decision may be skewed
- Weighted evaluation of nearest neighbors
 - Plain majority may unfairly skew decision
 - Revise algorithm so that closer neighbors have greater "vote weight"
- Other distance measures

When to Consider Nearest Neighbors

- Instances map to points in R^d
- Less than 20 features (attributes) per instance, typically normalized
- Lots of training data

Advantages:

- Training is very fast
- Learn complex target functions
- Do not loose information

Disadvantages:

- Slow at query time
 - Presorting and indexing training samples into search trees reduces time
- Easily fooled by irrelevant features (attributes)

k-Nearest Neighbors: Summary

- In image classification we start with a training set of images and labels, and must predict labels on the test set
- The K-Nearest Neighbors classifier predicts labels based on nearest training examples
- Distance metric and K are hyperparameters
- Choose hyperparameters using the validation
 set; only run on the test set once at the very end!