Algebraic Measure Theory

Uncultured Tramp
October 23, 2022

Contents

4 Measurable Algebras

1	Mea	Measure Algebras 1			
	1.1	Subjec	:t	1	
		1.1.1	Definition and Basic Property	1	
		1.1.2	Measure Algebras Generated by Measure Spaces	4	
		1.1.3	Stone Representation Theorem	5	
		1.1.4	Ideals	6	
		1.1.5	Measure Properties	8	
		1.1.6	Connections with other Boolean Properties	11	
		1.1.7	Subspace Measures and Indefinite Integrals	13	
		1.1.8		14	
		1.1.9	Strictly Localizable Spaces	16	
		1.1.10	Subalgebras	17	
		1.1.11	Localization	19	
		1.1.12	Stone Spaces	20	
		1.1.13	Purely Infinite Elements	22	
	1.2	Topolo	ogy	23	
		1.2.1	Subject	23	
		1.2.2	Relations with an Order Structure	25	
		1.2.3	Classification Theorems	29	
		1.2.4	Closed Subalgebras	31	
		1.2.5	Metric Space of Finite Elements	33	
		1.2.6	Relation with Convergence In Measure	34	
		1.2.7		35	
		1.2.8	Metric Space of Pobability Subalgebras	36	
		1.2.9	Topology of the Lebesgue Algebra	37	
	1.3	Catego	ory	38	
		1.3.1	Measure Algebra Functor	38	
		1.3.2	Stone Space Functor	39	
		1.3.3		40	
		1.3.4	Measure Preserving Homomorphism	42	
		1.3.5	Example	46	
		1.3.6	Tensor Products	47	
		1.3.7	Independent Process Algebra	50	
		1.3.8		51	
		1.3.9	Coordinate Determination	52	
		1.3.10	Reduced Products	54	
	1.4	Radon	-Nikodym Parallels	55	
		1.4.1	Finitely Additive Functionals	55	
		1.4.2	Properly Atomless Functionals	58	
		1.4.3	Liapounoff's Convexity Theorem	61	
		1.4.4	Countably Additive Functionals	62	
		1.4.5	Completely Additive Functionals	65	
		1.4.6	Absolutely Continuous Additive Functionals	71	
		1.4.7	Radon-Nikodym's Isomorphism	76	
		1.4.8	Standard Extension	77	
2	Mał	naram's	s Theory	80	
3	Abs	tract E	rgodic Theory	80	

Intro

1 Measure Algebras

1.1 Subject

1.1.1 Definition and Basic Property

```
MeasureAlgebra ::? \sum A:\sigma-DedekindComplete .A\to_{\mathbb{R}_+}^\infty
(A,\mu): MeasureAlgebra \iff \forall a \in A \cdot \mu(a) = 0 \iff a = 0 \&
           & \forall a : \mathtt{PairwiseDisjointElements}(\mathbb{N},A) \; . \; \mu\left(\bigvee^{\infty} a_n\right) = \sum^{\infty} \mu(a_n)
measureAlgebraCategory :: CAT
\texttt{measureAlgebraCategory}\left(\right) = \mathsf{MA} := \Big( \texttt{MeasureAlgebra}, \mathsf{BOOL}, \circ, \mathrm{id} \, \Big)
MeasureMonotonicity :: \forall (A, \mu) : MeasureAlgebra . \forall a, b \in A . a \leq b \Rightarrow \mu(a) \leq \mu(b)
Proof =
   Write \mu(b) = \mu(a) + \mu(b \setminus a) \ge \mu(a).
  MeasureStrictMonotonicity :: \forall (A, \mu) : MeasureAlgebra . \forall a, b \in A . a > b \Rightarrow \mu(a) > \mu(b)
   Definition of measure algebra implies that \mu(b \setminus a) > 0.
   Write \mu(b) = \mu(a) + \mu(b \setminus a) > \mu(a).
  MinkovskyIneq :: \forall (A, \mu) : MeasureAlgebra . \forall a, b \in A . \mu(a \lor b) \le \mu(a) + \mu(b)
Proof =
   Write \mu(a) + \mu(b) = \mu(a \setminus ab) + \mu(ab) + \mu(ab
  {\tt MonotonicSupremumAsLimit} :: \forall (A,\mu) : {\tt MeasureAlgebra} . \ \forall a : \mathbb{N} \uparrow A . \ \mu\left(\bigvee_{n \to \infty}^{\infty} a_n\right) = \lim_{n \to \infty} \mu(a_n)
Proof =
  Construct disjoint sequence b_n = a_n \setminus \bigvee a_k.
  Then by construction \mu\left(\bigvee_{n=1}^{\infty}a_n\right)=\mu\left(\bigvee_{n=1}^{\infty}b_n\right)=\sum_{n=1}^{\infty}\mu(b_n)=\lim_{n\to\infty}\sum_{k=1}^{n}\mu(b_k)=\lim_{n\to\infty}\mu\left(\bigvee_{k=1}^{n}b_k\right)=\lim_{n\to\infty}\mu(a_n).
```

Proof =

Construct increasing sequence $b_n = \bigvee_{k=1}^n a_k$.

Then by construction $\mu\left(\bigvee_{n=1}^{\infty}a_n\right)=\mu\left(\bigvee_{n=1}^{\infty}b_n\right)=\lim_{n\to\infty}\mu(b_n)=\lim_{n\to\infty}\mu\left(\bigvee_{k=1}^{n}a_k\right)\leq\lim_{n\to\infty}\sum_{k=1}^{n}\mu(a_k)=\sum_{n=1}^{\infty}\mu(a_n)$.

MonotonicInfimumAsLimit ::

$$:: \forall (A,\mu) : \texttt{MeasureAlgebra} \ . \ \forall a : \mathbb{N} \downarrow A \ . \ \forall \mathbb{N} : \inf_{n \in \mathbb{N}} \mu(a_n) < \infty \ . \ \mu\left(\bigwedge_{n=1}^{\infty} a_n\right) = \lim_{n \to \infty} \mu(a_n)$$

Proof =

Without loss of generality assume that $\mu(a_1) < \infty$.

Then construct he increasing sequence $b_n = a_1 \setminus a_n$.

Then
$$\mu(a_1) - \mu\left(\bigwedge_{n=1}^{\infty} a_n\right) = \mu\left(a_1 \setminus \bigwedge_{n=1}^{\infty} a_n\right) = \mu\left(\bigvee_{n=1}^{\infty} a_1 \setminus a_n\right) = \mu\left(\bigvee_{n=1}^{\infty} b_n\right) = \lim_{n \to \infty} \mu(b_n) = \lim_{n \to$$

 $= \lim_{n \to \infty} \mu\left(a_1 \setminus a_n\right) = \lim_{n \to \infty} \mu(a_1) - \mu(a_n) = \mu(a_1) - \lim_{n \to \infty} \mu(a_n)$

So basic algebraic manipulations $\mu\left(\bigwedge_{n=1}^{\infty} a_n\right) = \lim_{n \to \infty} \mu(a_n)$.

SupremumExistance ::

 $:: \forall (A,\mu) : \texttt{MeasureAlgebra} \; . \; \forall C : \texttt{UpwardsDirected}(A) \; . \; \forall \aleph : \sup_{c \in C} \mu(c) < \infty \; . \; \exists a \in A : a = \sup C = \max(C) = 0$

Proof =

- 1 Assume $\gamma = \sup_{c \in C} \mu(c)$.
- 2 Then there exists a sequence of $a: \mathbb{N} \to C$ such that $\mu(a_n) \geq \gamma 2^{-n}$.
- 3 As C is upwards closed, it is possible to find $c: \mathbb{N} \to C$ such that $c_{n+1} \geq a_n \vee c_n$.
- 4 Then c is monotonic-nondecreasing and so it has $\mu\left(\bigvee_{n=1}^{\infty}c_{n}\right)=\lim_{n\to\infty}\mu(c_{n})=\gamma$.
- 4.1 Note that $\gamma \ge \mu(c_n) \ge \gamma 2^{-n}$.
- $5 \text{ let } d = \bigvee_{n=1}^{\infty} c_n.$
- $6 \ d \ge f$ for everty $f \in C$.
- 6.1 Assume this is false.
- 6.2 Then $f \setminus d \neq 0$ and so $\alpha = \mu(f \setminus d) > 0$.
- 6.3 Then there exists n such that $\gamma \mu(c_n) < \alpha$.
- 6.4 As C is upwards derected there is $g \in C$ such that $g \geq f \vee c_n$.
- 6.5 But $\mu(g) \ge \mu(f \lor c_n) = \mu(c_n) + \mu(f \setminus c_n) \ge \mu(c_n) + \mu(f \setminus d) > \gamma$ which is impossible.
- 7 If there is another f with the property (6), then $d = \bigvee_{n=1}^{\infty} c_n \leq f$ as $c_n \leq f$ for each $n \in \mathbb{N}$.

UpperContinuity ::

 $:: \forall (A,\mu) : \texttt{MeasureAlgebra} \; . \; \forall C : \texttt{UpwardsDirected}(A) \; . \; \forall \aleph : \exists a \in A : a = \sup C \; . \; \sup_{c \in C} \mu(c) = \mu \left(\sup C\right)$

Proof =

Case $\sup_{c \in C} \mu(c) = \infty$ is trivial.

Finite case follows from the construction in the previous theorem.

DisjointUpperContinuity ::

 $:: \forall (A, \mu) : \texttt{MeasureAlgebra} . \forall C : \texttt{PairwiseDisjointElements}(A) . \forall \aleph : \exists a \in A : a = \sup C$.

$$. \mu \left(\sup C \right) = \sum_{c \in C} \mu(c)$$

Proof =

Construct a new set $D = \left\{ \bigvee_{n=1}^{\infty} c_k \middle| c : \mathbb{N} \to C \right\}$.

Then D is upwards directed and $\sup C = \sup D$.

But this is evedent that $\mu\left(\sup D\right) = \sup_{d \in D} \mu(d) = \sup_{c: \mathbb{N} \to C} \mu\left(\bigvee_{n=1} c_n\right) = \sup_{n \in \mathbb{N}, c: \{1, \dots, n\} \to C} \sum_{k=1}^n \mu(c_k) = \sum_{c \in C} \mu(c).$

InfimumExistance ::

 $:: \forall (A,\mu) : \texttt{MeasureAlgebra} \; . \; \forall C : \texttt{DownwaedDirected}(A) \; . \; \forall \aleph : \inf_{c \in C} \mu(c) < \infty \; . \; \exists a \in A : a = \inf C \in A : A = \bigcap C \in A : A = \inf C \in A : A = \bigcap C : A =$

Proof =

- 1 There exists some $a \in C$ such that $\mu(a) < \infty$.
- 2 Construct another set $D = a \setminus C$.
- 3 Then D is upwards directed and $\sup_{d \in D} \mu(d) \leq \mu(a) < \infty$.
- 4 So there is $d = \sup d$.
- 5 Define $f = a \setminus d$.
- $6 f \le c \text{ for any } c \in C \text{ as } a \setminus f \ge a \setminus c.$
- 7 if some g has property (6) then $a \setminus g \ge d$ and so $g \le f$.

LowerContinuity ::

 $:: \forall (A, \mu) : \texttt{MeasureAlgebra} . \forall C : \texttt{DownwardsDirected}(A) . \forall \aleph : \exists a \in A : a = \inf C$.

$$\forall \exists : \inf_{c \in C} \mu(c) < \infty : \inf_{c \in C} \mu(c) = \mu (\inf C)$$

Proof =

Use the construction in the previous theorem.

1.1.2 Measure Algebras Generated by Measure Spaces

 $measureAlgebra :: MEAS \rightarrow MeasureAlgebra$

$$\texttt{measureAlgebra}\left(X,\Sigma,\mu\right) = \left(A_{\mu},\bar{\mu}\right) := \left(\frac{\Sigma}{\Sigma \cap \mathcal{N}_{\mu}},[E] \mapsto \mu(E)\right)$$

This is obviously well defined as [E] = [F] iff $\mu(E \triangle F) = 0$.

canonomical Projection $:: \forall (X, \Sigma, \mu) \in \mathsf{MEAS} . \sigma\text{-BOOL}(\Sigma, A_{\mu})$ canonical Projection $(E) = \pi_{\mu}(E) := [E]$

- 1 The algebraic properites are obvious as $\Sigma \cap \mathcal{N}_{\mu}$ is an ideal.
- 2 In order to prove sigma-continuity assume $E: \mathbb{N} \to \Sigma$.
- 2.1 Let $Z: \mathbb{N} \to \Sigma \cap \mathcal{N}_{\mu}$.

2.2 Then
$$F_Z = \bigvee_{n=1}^{\infty} (E_n \triangle Z_n) = \left(\bigvee_{n=1}^{\infty} E_n\right) \triangle \left(\bigvee_{n=1}^{\infty} Z_n\right).$$

2.3 Note that
$$\mu\left(\bigvee_{n=1}^{\infty} Z_n\right) \leq \sum_{n=1}^{\infty} \mu(Z_n) = 0.$$

2.4 So
$$\bigvee_{n=1}^{\infty} Z_n \in \Sigma \cap \mathcal{N}_{\mu}$$
 as $\mu \geq 0$.

2.5 Thus
$$[F_Z] = \left[\bigcap_{n=1}^{\infty} E_n\right]$$
 for any selection of Z .

2.6 This means that
$$\pi_{\mu}\left(\bigcap_{n=1}^{\infty} E_n\right) = \bigvee_{n=1}^{\infty} \pi_{\mu}(E_n)$$
.

 $\begin{tabular}{ll} {\tt MeasureAlgebraMonotonicity} &:: \forall (X,\Sigma,\mu) \in {\tt MEAS} \ . \ \forall T \subset_{\sigma} \Sigma \ . \ \pi_{\mu}(T) \subset_{\sigma} A_{\mu} \\ {\tt Proof} &= \\ \end{tabular}$

- 1 Clearly $B = \pi_{\mu}(T) \subset A_{\mu}$.
- 2 Also as T is $\sigma\text{-algebra}$ and $\pi-\mu$ is a $\sigma\text{-continuous}$ homomorphism B is again.

Proof =

- 1 Clearly $T = \pi_{\mu}^{-1}(B) \subset \Sigma$.
- 2 Assume F is a set constructed by applying σ -algebra operations to setes $E_1, E_2, \ldots \in T$.
- 3 Then $\pi_{\mu}(F)$ can be constructed by applying same operations to $\pi(E_1), \pi(E_2), \ldots$
- 4 This implies that $\pi_{\mu}(F) \in B$ and reciprorary $F \in T$.
- 5 Thus T is a σ -algebra.

1.1.3 Stone Representation Theorem

- 1 By Loomis-Sikorski representation there exists a set X with a sigma-algebra Σ and sigma-ideal I such that $\frac{\Sigma}{I}\cong_{\mathsf{BOOL}} A$.
- 2 Then there is a canonical projetion $\pi_I \in \mathsf{BOOL}(\Sigma, A)$.
- 3 Define $\nu = \pi_I \mu$.
- 4ν is measure on Σ .
- 4.1 $\nu(\emptyset) = \mu(0) = 0$.
- 4.2 Assume E is a disjoint sequence in Σ .
- 4.3 Then $\pi_I(E_n)\pi_I(E_m) = \pi_i(E_n \cap E_m) = \pi_i(\emptyset) = 0$, so $\pi_I(E)$ is disjoint in A.

4.4 Thus,
$$\nu\left(\bigcup_{n=1}^{\infty} E_n\right) = \pi_I \mu\left(\bigcup_{n=1}^{\infty} E_n\right) = \mu\left(\bigvee_{n=1}^{\infty} \pi_I(E_n)\right) = \sum_{n=1}^{\infty} \pi_I \mu(E_n) = \sum_{n=1}^{\infty} \nu(E_n)$$
.

5 Also by consytuction $\mathcal{N}_{\nu} \cap \Sigma = I$, so $(A, \mu) = (A_{\nu}, \bar{\nu})$.

 $spaceOfStone :: MeasureAlgebra \rightarrow MEAS$

 ${\tt SpaceOfStone}\,(A,\mu) = (Z_A,\dot{\Sigma}_\mu,\dot{\mu}) := {\tt StoneRepresentationTheorem}(A,\mu)$

1.1.4 Ideals

Proof =

This is obvious.

measureQuotient ::

$$:: \forall (A,\mu) : \texttt{MeasureAlgebra} . \ \forall I : \texttt{Ideal}(A) . \ \forall [a] \in \frac{A}{I} . \ \exists \gamma \in \overset{\infty}{\mathbb{R}}_{++} \ . \ \gamma = \min \{ \mu(b) | b \in A, \pi_I(b) = [a] \}$$

Proof =

- 1 $\gamma = \inf\{\mu(b)|b \in A, \pi_I(b) = [a]\}$ exists as a set is bounded by below by 0.
- 2 If $\gamma = \infty$ then the result is obvious.
- 3 Otherwise there is a decreasing sequence $b: \mathbb{N} \to A$ such that $\pi_I(b_n) = [a]$ for any n and $\lim_{n \to \infty} \mu(b_n) = \gamma$.

4 Then
$$c = \bigwedge_{n=1}^{\infty} b_n$$
 is such that $\mu(c) = \gamma$ and $\pi_I(c) = a$.

4.1 Clearly
$$\pi_I \left(\bigwedge_{n=1}^{\infty} b_n \right) = \bigwedge_{n=1}^{\infty} \pi_I(b_n) = \bigwedge_{n=1}^{\infty} [a] = [a].$$

5 So the infimum is atteined.

measureQuotient ::
$$\prod(A,\mu)$$
 : MeasureAlgebra . $\prod I$: Ideal (A) . $\frac{A}{I} \to \mathbb{R}_{++}$ measureQuotient $(a) = \mu_I(a)$:= $\min\{\mu(b)|b \in A, \pi_I(b) = a\}$

$$\mbox{finiteElementsIdeal} :: \prod (A,\mu) : \mbox{MeasureAlgebra} \; . \; \mbox{Ideal}(A) \\ \mbox{finiteElementsIdeal} \; () = A^f := \{a \in A | \mu(a) < \infty\} \\$$

 ${\tt MeasureIdealQuotient} \ :: \ \forall (A,\mu) : {\tt MeasureAlgebra} \ . \ \forall I : {\tt Ideal}(A) \ . \ {\tt MeasureAlgebra} \left(\frac{A}{I},\mu_I\right)$

Proof =

- 1 Clearly $\mu_I(0) = 0$.
- 2 Assume that $[a] \neq 0$.
- 2.1 Then there exists $b \in A$ such that $\pi_I(a) = [a]$ and $\mu(b) = \mu_I[a]$.
- 2.2 As $[a] \neq 0$, then $b \neq 0$, and henceforth $\mu(b) \neq 0$.
- 2.3 Thus, $\mu_I[a] \neq 0$.
- 3 Assume $[a]: \mathbb{N} \to \frac{A}{I}$ is disjoint.
- 3.1 It is possible to select representatives b_n for each $[a_n]$ such that $\mu(b_n) = \mu_I[a_n]$.
- 3.2 Then $b_n b_m \in I$ if $n \neq m$.
- 3.3 Construct a new sequence $c_n = b_n + \sum_{k=1}^{n-1} b_n b_k$ is a disjoint representative sequence for $[a_n]$.
- 3.3.1 In fact c = b.

- $3.4 \bigvee_{n=1}^{\infty} c_n$ is the minimal representative of $\bigvee_{n=1}^{\infty} [a_n]$.
- 3.4.1 Assume d is a representative for $\bigvee_{n=1}^{\infty} a_n$.
- 3.4.2 If $\mu(d) < \mu\left(\bigvee_{n=1}^{\infty} c_n\right)$ then we may construct $c_n \wedge d$ which is smaller then c.
- 3.4.3 But this is a contradiction.
- 3.5 So $\mu_I \left(\bigvee_{n=1}^{\infty} [a_n] \right) = \mu \left(\bigvee_{n=1}^{\infty} c_n \right) = \sum_{n=1}^{\infty} \mu(c_n) = \sum_{n=1}^{\infty} \mu_I[a_n].$

1.1.5 Measure Properties

```
ProbabilityAlgebra ::?MeasureAlgebra
(A,\pi): ProbabilityAlgebra \iff \pi(e)=1
FiniteMeasureAlgebra ::?MeasureAlgebra
(A,\mu): FiniteMeasureAlgebra \iff \mu(e) < \infty
\sigma-FiniteMeasureAlgebra ::?MeasureAlgebra
(A,\mu): \sigma\text{-FiniteMeasureAlgebra} \iff \exists a: \mathbb{N} \to A \;.\; \forall n \in \mathbb{N} \;.\; \mu(a_n) < \infty \;\&\; \bigvee^\infty a_n = e
SemifiniteMeasureAlgebra ::?MeasureAlgebra
(A,\mu): SemifiniteMeasureAlgebra \iff \forall a \in A . \mu(a) = \infty \Rightarrow \exists b \in A . b < a \& 0 < \mu(b) < \infty
LocalizableMeasureAlgebra := OrderDedekindComplete & SemifiniteMeasureAlgebra : Type;
ProbabilityConstruction :: \forall (X, \Sigma, \mu) \in \mathsf{MEAS}. Probability(X, \Sigma, \mu) \iff \mathsf{ProbabilityAlgebra}(A_{\mu}, \bar{\mu})
Proof =
 This is obvious.
FiniteConstruction :: \forall (X, \Sigma, \mu) \in \mathsf{MEAS}. Finite(X, \Sigma, \mu) \iff \mathsf{FiniteMeasureAlgebra}(A_{\mu}, \bar{\mu})
Proof =
 This is obvious.
SigmaFiniteConstruction :: \forall (X, \Sigma, \mu) \in \mathsf{MEAS} . \sigma-Finite(X, \Sigma, \mu) \iff \sigma-FiniteMeasureAlgebra(A_{\mu}, \bar{\mu})
Proof =
 This is obvious.
SemifiniteConstruction ::
   :: \forall (X, \Sigma, \mu) \in \mathsf{MEAS}. Semifinite(X, \Sigma, \mu) \iff \mathsf{SemifiniteMeasureAlgebra}(A_{\mu}, \bar{\mu})
Proof =
This is obvious.
LocalizableConstruction ::
   :: \forall (X, \Sigma, \mu) \in \mathsf{MEAS}. Localizable(X, \Sigma, \mu) \iff \mathsf{LocalizableMeasureAlgebra}(A_{\mu}, \bar{\mu})
Proof =
 This is obvious.
```

```
AtomInConstruction ::
          :: \forall (X, \Sigma, \mu) \in \mathsf{MEAS} : \forall E \in \Sigma : E \in \mathrm{Atom}(X, \Sigma, \mu) \iff [E] \in \mathrm{Atom}(A_{\mu}, \bar{\mu})
Proof =
  This is obvious.
  AtomlessConstruction ::
         :: \forall (X, \Sigma, \mu) \in \mathsf{MEAS} : \forall E \in \Sigma : E \in \mathsf{Atomless}(X, \Sigma, \mu) \iff [E] \in \mathsf{Atomless}(A_{\mu}, \bar{\mu})
Proof =
  This is obvious.
  PurelyAtomicConstruction ::
          :: \forall (X, \Sigma, \mu) \in \mathsf{MEAS} : \forall E \in \Sigma : E \in \mathsf{PurelyAtomic}(X, \Sigma, \mu) \iff [E] \in \mathsf{PurelyAtomic}(A_{\mu}, \bar{\mu})
Proof =
  This is obvious.
  П
FinitenessPropertiesIerarchy ::
         :: \forall (A, \mu) : \texttt{MeasureAlgebra} . \texttt{PobabilityAlgebra}(A, \mu) \Rightarrow \texttt{FiniteMeasureAlgebra}(A, \mu) \Rightarrow
          \Rightarrow \sigma-FiniteMeasureAlgebra(A, \mu) \Rightarrow LocalizableMeasureAlgebra(A, \mu) \Rightarrow Semifinite(A, \mu)
Proof =
1 Most implications here are obvious expect the one deriving Localizability from \sigma-finiteness.
2 So assume that (A, \mu) is \sigma-finite.
2.1 Then the corresponding Stone space (ZA, \Sigma_{\mu}, \bar{\mu}) is \sigma-finite.
2.2 But then (\mathsf{Z}A, \Sigma_{\mu}, \bar{\mu}) is localizable.
2.3 So (A, \mu) is also localizable.
  MeasureAlgebraOfCompletion :: \forall (X, \Sigma, \mu) \in \mathsf{MEAS} : A_{\mu} \cong_{\mathsf{BOOL}} A_{\hat{\mu}}
Proof =
This is basically follows from definitions.
  MeasureAlgebraOfLocallyDeterminedCompletion ::
         :: \forall (X, \Sigma, \mu) \in \mathsf{MEAS} \ . \ \exists A_{\mu} \xrightarrow{\phi} A_{\bar{\mu}} : \mathsf{BOOL} \ . \ \forall a \in A_{\bar{\mu}} \ . \ \hat{\bar{\mu}}(a) < \infty \Rightarrow \exists b \in A_{\mu} \ . \ \phi(b) = a \ \& b \in A_{\mu} \ . \ \phi(b) = a \ \& b \in A_{\mu} \ . \ \phi(b) = a \ \& b \in A_{\mu} \ . \ \phi(b) = a \ \& b \in A_{\mu} \ . \ \phi(b) = a \ \& b \in A_{\mu} \ . \ \phi(b) = a \ \& b \in A_{\mu} \ . \ \phi(b) = a \ \& b \in A_{\mu} \ . \ \phi(b) = a \ \& b \in A_{\mu} \ . \ \phi(b) = a \ \& b \in A_{\mu} \ . \ \phi(b) = a \ \& b \in A_{\mu} \ . \ \phi(b) = a \ \& b \in A_{\mu} \ . \ \phi(b) = a \ \& b \in A_{\mu} \ . \ \phi(b) = a \ \& b \in A_{\mu} \ . \ \phi(b) = a \ \& b \in A_{\mu} \ . \ \phi(b) = a \ \& b \in A_{\mu} \ . \ \phi(b) = a \ \& b \in A_{\mu} \ . \ \phi(b) = a \ \& b \in A_{\mu} \ . \ \phi(b) = a \ \& b \in A_{\mu} \ . \ \phi(b) = a \ \& b \in A_{\mu} \ . \ \phi(b) = a \ \& b \in A_{\mu} \ . \ \phi(b) = a \ \& b \in A_{\mu} \ . \ \phi(b) = a \ \& b \in A_{\mu} \ . \ \phi(b) = a \ \& b \in A_{\mu} \ . \ \phi(b) = a \ \& b \in A_{\mu} \ . \ \phi(b) = a \ \& b \in A_{\mu} \ . \ \phi(b) = a \ \& b \in A_{\mu} \ . \ \phi(b) = a \ \& b \in A_{\mu} \ . \ \phi(b) = a \ \& b \in A_{\mu} \ . \ \phi(b) = a \ \& b \in A_{\mu} \ . \ \phi(b) = a \ \& b \in A_{\mu} \ . \ \phi(b) = a \ \& b \in A_{\mu} \ . \ \phi(b) = a \ \& b \in A_{\mu} \ . \ \phi(b) = a \ \& b \in A_{\mu} \ . \ \phi(b) = a \ \& b \in A_{\mu} \ . \ \phi(b) = a \ \& b \in A_{\mu} \ . \ \phi(b) = a \ \& b \in A_{\mu} \ . \ \phi(b) = a \ \& b \in A_{\mu} \ . \ \phi(b) = a \ \& b \in A_{\mu} \ . \ \phi(b) = a \ \& b \in A_{\mu} \ . \ \phi(b) = a \ \& b \in A_{\mu} \ . \ \phi(b) = a \ \& b \in A_{\mu} \ . \ \phi(b) = a \ \& b \in A_{\mu} \ . \ \phi(b) = a \ \& b \in A_{\mu} \ . \ \phi(b) = a \ \& b \in A_{\mu} \ . \ \phi(b) = a \ \& b \in A_{\mu} \ . \ \phi(b) = a \ \& b \in A_{\mu} \ . \ \phi(b) = a \ \& b \in A_{\mu} \ . \ \phi(b) = a \ \& b \in A_{\mu} \ . \ \phi(b) = a \ \& b \in A_{\mu} \ . \ \phi(b) = a \ \& b \in A_{\mu} \ . \ \phi(b) = a \ \& b \in A_{\mu} \ . \ \phi(b) = a \ \& b \in A_{\mu} \ . \ \phi(b) = a \ \& b \in A_{\mu} \ . \ \phi(b) = a \ \& b \in A_{\mu} \ . \ \phi(b) = a \ \& b \in A_{\mu} \ . \ \phi(b) = a \ \& b \in A_{\mu} \ . \ \phi(b) = a \ \& b \in A_{\mu} \ . \ \phi(b) = a \ \& b \in A_{\mu} \ . \ \phi(b) = a \ \& b \in A_{\mu} \ . \ \phi(b) = a \ \& b \in A_{\mu} \ . \ \phi(b) = a \ \& b \in A_{\mu} \ . \ \phi(b) = a \ \& b \in A_{\mu} \ . \ \phi(b) = a \ \& b \in A_{\mu} \ . \ \phi(b) = a \ \& b \in A_{\mu} \ . \ \phi(b) = a \ \& b \in A_{\mu} \ . \ \phi(b) = a \ \& b \in A_{\mu} \ . \ \phi(b) 
         & \forall b \in A_{\mu} : \hat{\mu}(b) < \infty \Rightarrow \hat{\bar{\mu}}(\phi(b)) = \hat{\mu}(b)
Proof =
 . . .
  {\tt localDeterminationMorphism} \, :: \, \prod(X,\Sigma,\mu) \in {\sf MEAS} \, . \, {\sf BOOL}(A_{\mu},A_{\bar{\mu}})
{	t localDetermination Morphism} \, () = \phi_{\mu} := {	t Measure Algebra Of Locally Determined Completion}
```

```
localDeterminationMorhismInjectivity ::
   :: \forall (X, \Sigma, \mu) \in \mathsf{MEAS}. Semifinite(X, \Sigma, \mu) \iff \mathsf{Injective}(A_{\mu}, A_{\bar{\mu}}, \phi_{\mu})
Proof =
. . .
localDeterminationMorhismBijectivity ::
   :: \forall (X, \Sigma, \mu) \in \mathsf{MEAS}. Localizable(X, \Sigma, \mu) \iff \mathsf{Bijective}(A_{\mu}, A_{\bar{\mu}}, \phi_{\mu})
Proof =
. . .
SemifinitenessCriterion :: \forall (A, \mu) : MeasureAlgebra .
   . SemifiniteMeasureAlgebra(A, \mu) \iff \exists P : \texttt{PartitionOfUnity}(A) . \forall p \in P . \mu(p) < \infty
 1 (\Rightarrow) assume first that (A, \mu) is semifinite.
 1.1 Then A^f is order dense in A.
 1.2 By order density theorem there is a desired partition of unity.
 2 \iff D Let P be the partition of unity.
 2.1 Assume a \in A is such that \mu(a) = \infty.
 2.2 Then there exists p \in P such that pa \neq 0.
 2.3 Note that this means that \mu(pa) > 0.
2.4 Also it is clear that \mu(pa) \leq \mu(p) < \infty.
SemifiniteneSupElementExpression ::
   :: \forall (A,\mu): \texttt{SemifiniteMeasureAlgebra}(A,\mu) \; . \; \forall a \in A \; . \; a = \bigvee \{b \in A: b \leq a, \mu(b) < \infty \}
Proof =
This follows from the previous theorem.
SemifiniteneSupMeasureComputation ::
   :: \forall (A,\mu): \texttt{SemifiniteMeasureAlgebra}(A,\mu) \; . \; \forall a \in A \; . \; \mu(a) = \bigvee \{\mu(b) \in A: b \leq a, \mu(b) < \infty \}
Proof =
This follows from the previous theorem.
```

1.1.6 Connections with other Boolean Properties

SemifiniteIsWeaklyDistributive ::

 $:: \forall (A, \mu) : \mathtt{SemifiniteMeasureAlgebra}(A, \mu) . (\sigma, \infty) - \mathtt{WeaklyDistributive}(A, \mu)$

Proof =

1 Assume $X: \mathbb{N} \to 2^A$ is a sequence of downwards selected sets with $\inf X_n = 0$ for every $n \in \mathbb{N}$.

- 2 Let $C = \{a \in A : \forall n \in \mathbb{N} : \exists x \in X_n : a \ge x\}.$
- 3 Assume $d \in A$ is such that $d \neq 0$.
- 4 Then there is an element $d' \leq d$ such that $0 < \mu(d') < 0$.
- $5 \inf_{x \in X} d'x = 0 \text{ for each } n \in N.$
- 6 Select a sequence $x: \prod_{n=1}^{\infty} X_n$ suc that $\mu(d'x_n) \leq 2^{-n-2}\mu(d')$.
- 7 Define $c = \sup_{n=1} a_n \in C$.
- 8 Then $\mu(d'c) \leq \sum_{n=0}^{\infty} \mu(cx_n) < \mu(d')$.
- 9 This means that $d \not\leq c$.
- 10 And as d was arbitrary inf C = 0.

SemifiniteIffCCC :: $\forall (A, \mu)$: SemifiniteMeasureAlgebra (A, μ) .

 $. \sigma$ -FiniteMeasureAlgebra $(A, \mu) \iff \mathtt{WithCountableChainCondition}(A)$

Proof =

- $1 \iff assume that A has ccc.$
- 1.1 Then there is a partition of unitity P in A consisting of finite elements as A is semifinite.
- 1.2 But as A has $\operatorname{ccc} P$ must be atmost countable.
- 1.3 This proves that A is σ -finite.
- $2 \implies$ assume that (A, μ) is σ -finite.
- 2.1 Then there exists a countable partition of unity P of A with finite elements.
- 2.2 If A is not ccc, then there exists an uncountable refinement Q of A with finite elements.
- 2.3 Then by pigionhole principle there exists $p \in P$ such that set $Q' = \{q \in Q : q \subset p\}$ such that Q' is uncountable.
- 2.4 as for $\mu(q) > 0$ for any $q \in Q'$ by pigionhole principle there exists some $n \in \mathbb{Z}$ such that there are an infinite number of $q \in Q'$ with $\mu(q) \in [2^{-n-1}, 2^{-n}]$.
- 2.5 So $\mu(p) \ge \sum_{q \in Q'} \mu(q) = \infty$, but this is a contradiction.

${\tt SemifiniteIffProbabilityRenormalizationExists} :: \\$

Proof =

- 1 Corresponding Stone space is σ -finite.
- 2 So there exists a proper renormalization of $\bar{\mu}$ to a probability π with the same sets of measure zero.
- 3 Then the measure algebra of $(\mathsf{Z} A, \pi)$ is a probability algebra and $A_\pi \cong_{\mathsf{BOOL}} A$.

1.1.7 Subspace Measures and Indefinite Integrals

MeasurableEnvelopePrincipleIdealIsomorphism ::

 $:: \forall (X, \Sigma, \mu) \in \mathsf{MEAS} \ . \ \forall Y \subset X \ . \ \forall E : \mathtt{MeasurableEnvelope}(X, \Sigma, \mu, Y) \ . \ (A_{\mu|Y}, \widehat{\mu|Y}) \cong_{\mathsf{MA}} \left(([E]), \widehat{\mu}_{|([E])} \right)$

Proof =

This result is technically convoluted but actually is pretty intuituve.

PrincipleIdealIsomorphism ::

$$:: \forall (X, \Sigma, \mu) \in \mathsf{MEAS} \ . \ \forall E \in \Sigma \ . \ (A_{\mu|E}, \widehat{\mu|E}) \cong_{\mathsf{MA}} \left(([E]), \widehat{\mu}_{|([E])} \right)$$

Proof =

A straightforward application of a previous theorem.

ThickEquivalence ::

$$:: \forall (X, \Sigma, \mu) \in \mathsf{MEAS} \ . \ \forall Y : \mathtt{Thick}(X, \Sigma, \mu) \ . \ (A_{\mu|E}, \widehat{\mu|E}) \cong_{\mathsf{MA}} (X, \widehat{\mu})$$

Proof =

A straightforward application of a previous theorem.

IndefiniteIntegralPrincipleIdealIsomorphism ::

$$:: \forall (X, \Sigma, \mu) \in \mathsf{MEAS} . \forall f \in \mathsf{I}_+(X, \Sigma, \mu) . \exists E \in \Sigma . A_{f d\mu} \cong_{\mathsf{BOOL}} ([E])$$

Proof =

We may assume that supp f has a measurable envelope E.

Then the result is obvious as $\mathcal{N}_{\mu} \subset \mathcal{N}_{f d\mu}$.

1.1.8 Simple Products

 $\texttt{simpleProduct} :: \prod_{I \in \mathsf{SET}} (I \to \mathtt{MeasureAlgebra}) \to \mathtt{MeasureAlgebra}$

 $\mathtt{simpleProduct}\left(A,\mu\right) = \prod_{i \in I}\left(A_i,\mu_i\right) := \left(\prod_{i \in I}A_i,\sum_{i \in I}\mu_i\right)$

Obviously $\sum_{i \in I} \mu_i(0) = \sum_{i \in I} 0 = 0.$

Also assume $a: \mathbb{N} \to \prod_{i \in I} A_i$ is disjoint.

Then $\sum_{i \in I} \mu_i \left(\bigvee_{n=1}^{\infty} a_n \right) = \sum_{i \in I} \sum_{n=1}^{\infty} \mu_i(a_{n,i}) = \sum_{n=1}^{\infty} \sum_{i \in I} \mu_i(a_{n,i}) = \sum_{n=1}^{\infty} \sum_{i \in I} \mu_i(a_n).$

PrincipleIdealsInMeasureAlgebras ::

 $:: \forall I \in \mathsf{SET} : \forall (A, \mu) : I \to \mathtt{MeasureAlgebra} : (A_i, \mu_i) \cong_{\mathsf{MA}} \left((e_i), \left(\sum_{i \in I} \mu_i \right)_{|(e_i)} \right)$

Proof =

This is pretty ovious.

SimpleProductCoproductCorrespondance ::

 $:: \forall I \in \mathsf{SET} \ . \ \forall (X, \Sigma, \mu) : I \to \mathsf{MEAS} \ . \ \prod_{i \in I} (A_{\mu_i}, \hat{\mu}_i) \cong \mathtt{measureAlgebra} \coprod_{i \in I} (X_i, \Sigma_i, \mu_i)$

Proof =

Obvious by Stone Theory.

SimpleProductOfSemifinite ::

 $:: \forall I \in \mathsf{SET} : \forall (A,\mu): I o \mathsf{SemifiniteMeasureAlgebra} \ . \ \mathsf{SemifiniteMeasureAlgebra} \left(\prod_{i \in I} (A,\mu) \right)$

Proof =

Assume a has infinite measure in (A, μ) .

Then there exists $i \in I$ such that $a_i \neq 0$.

As (A_i, μ_i) is semifinite there is $b \leq a_i$ such that $0 < \mu_i(b) < \infty$.

Then $be_i \leq a$ and $0 < \sum_{j \in I} \mu_j(be_i) = \mu_i(b) < \infty$.

SimpleProductOfLocalizable ::

 $:: \forall I \in \mathsf{SET} : \forall (A,\mu): I \to \mathsf{LocalizableMeasureAlgebra} \ . \ \mathsf{LocalizableMeasureAlgebra} \left(\prod_{i \in I} (A,\mu) \right)$

Proof =

Let J be a set and $a: J \to \prod_{i \in I} (A_i, \mu_i)$.

Then
$$\sup_{i \in J} a_j = (\sup_{i \in J} a_{j,i})_{i \in I}$$
.

PoUProductRepresentation ::

$$:: \forall (A,\mu) : \texttt{MeasureAlgebra} \ . \ \forall (e_n)_{n=1}^{\infty} : \texttt{PartitionOfUnity}(A) \ . \ (A,\mu) \cong_{\mathsf{MA}} \prod_{n=1}^{\infty} \Big((e_n), \mu_{|(e_m)} \Big)$$

Proof =

This is pretty obvious.

PoUProductRepresentation ::

 $:: \forall (A, \mu) : \texttt{LocalizableMeasureAlgebra} . \exists I \in \mathsf{SET} . \exists (B, \nu) : I \to \mathsf{FiniteMeasureAlgebra} .$

$$.\;(A,\mu)\cong_{\mathsf{MA}}\prod_{i\in I}(B_i,\nu_i)$$

Proof =

It is possible to select a partition of unity P of A consisting of finite elements.

Then by previous theorem $(A, \mu) \cong \prod_{p \in P} (p), \mu_{|(p)}$.

And each $(p), \mu_{|(p)}$ are obviously finite.

LocalizableMeasureAlgebrasHasLocallyDeterminedRepresentations ::

 $:: \forall (A,\mu) : \texttt{LocalizableMeasureAlgebra} \ . \ \exists (X,\Sigma,\nu) : \texttt{LocallyDetermined} \ . \ (A,\mu) \cong_{\mathsf{MA}} (A_{\nu},\hat{\nu})$

Proof =

Represent
$$(A, \mu) \cong_{\mathsf{MA}} \prod_{i \in I} (B_i, \nu_i).$$

Then Stone's spaces $Z B_i$ correspond to finite measure spaces.

And Stone's space of product correspond to a disjoint union of $Z B_i$.

But such spaces are trivially locally determined.

1.1.9 Strictly Localizable Spaces

```
\begin{split} & \texttt{StrictlyLocalizableSpacePoU} :: \\ & :: \forall (X, \Sigma, \mu) : \texttt{StrictlyLocalizable} . \ \forall P : \texttt{PartitionOfUnity}(A_{\mu}) \ . \\ & . \ \exists E : P \to \Sigma \ . \ \forall p \in P \ . \ [E_p] = p \ \& \ \texttt{Decomposition}(X, \Sigma, \mu, \operatorname{Im} E) \end{split} & \texttt{Proof} = \\ & \dots \\ & \square \end{split}
```

1.1.10 Subalgebras

```
SubalgebaMeasureAlgebra :: \forall (A, \mu) : MeasureAlgebra . \forall B \subset_{\sigma} A . MeasureAlgebra(B, \mu_{|B})
Proof =
This is obvious.
SubalgebaFinifteMeasureAlgebra ::
   :: \forall (A, \mu) : \texttt{FiniteMeasureAlgebra} : \forall B \subset_{\sigma} A : \texttt{FiniteMeasureAlgebra}(B, \mu_{|B})
Proof =
This is obvious.
SigmaFiniteSubalgebraMeasureAlgebra ::
   :: \forall (A, \mu) : \sigma-FiniteMeasureAlgebra . \forall B \subset_{\sigma} A.
   . SemifiniteMeasureAlgebra(B,\mu_{|B})\Rightarrow\sigma-FiniteMeasureAlgebra(B,\mu_{|B})
Proof =
 1 The set B^f is order-dense in B.
2 But then B^f is also order-dense in A.
 3 Select a finite-measured countable partition of unity P in A.
 4 If B is not \sigma-finite, then there is a subordinate uncountal partition of unity Q.
 5 Then there would exist a uncountable refinement of P subordinate to Q.
 6 Then P must contain an infinite element, but this is imposible!.
 7 So Q must be countable, and so (B, \mu_{|B}) must be countable.
FinifteMeasureAlgebraBySubalgebra ::
   :: \forall (A, \mu) : \texttt{MeasureAlgebra} . \forall B \subset_{\sigma} A . \texttt{FiniteMeasureAlgebra}(B, \mu_{|B}) \Rightarrow \texttt{FiniteMeasureAlgebra}(A, \mu)
Proof =
This is obvious.
\Box
ProbabilityAlgebraBySubalgebra ::
   :: \forall (A, \mu) : \texttt{MeasureAlgebra} . \forall B \subset_{\sigma} A.
   . ProbabilityAlgebra(B, \mu_{|B}) \Rightarrow ProbabilityAlgebra(A, \mu)
Proof =
This is obvious.
```

```
\label{eq:sigmaFiniteAlgebraBySubalgebra} \begin{array}{l} \text{SigmaFiniteAlgebraBySubalgebra} :: \\ :: \forall (A,\mu) : \texttt{MeasureAlgebra} . \ \forall B \subset_{\sigma} A \ . \\ . \ \sigma\text{-Finite}(B,\mu_{|B}) \Rightarrow \sigma\text{-Finite}(A,\mu) \\ \text{Proof} = \\ \text{This is obvious.} \\ \square \\ \end{array}
```

1.1.11 Localization

MeasureAlgebraCompletion ::

 $:: \forall (A,\mu): \mathtt{SemifiniteMeasureAlgebra} \ . \ \exists ! \hat{\mu}: \tau(A) o \stackrel{\infty}{\mathbb{R}}_{++} \ .$

. $\hat{\mu}_{|A} = \mu \ \& \ \texttt{LocalizableMeasureAlgebra}(\tau(A), \hat{\mu})$

Proof =

1 Define $\hat{\mu}(t) = \sup{\{\mu(a) | a \in A, a \le t\}}$.

2 As A is order dense in $\tau(A)$, it holds that $\hat{\mu}(a) = 0 \iff a = 0$ for any $a \in \tau(A)$.

3 If
$$t: \mathbb{N} \to \tau(A)$$
 is disjoint then $\hat{\mu}\left(\bigvee_{n=1}^{\infty} t_n\right) = \sum_{n=1}^{\infty} \hat{\mu}(t_n)$.

- 3.1 Write $S = \{a \in A : \exists c : \mathbb{N} \to A : a = \lim_{n \to \infty} c_n \& c \le t\}.$
- 3.2 Then there is $s = \sup S \in \tau(A)$.

3.3 We write
$$\hat{\mu}(s) = \sup_{c \le t} \mu\left(\bigvee_{n=1}^{\infty} c_n\right) = \sup_{c \le t} \sum_{n=1}^{\infty} \mu(c_n) = \sum_{n=1}^{\infty} \sup_{c \le t_n} \mu(c) = \sum_{n=1}^{\infty} \hat{\mu}(t_n)$$
.

4 Obviously $(\tau(A), \hat{\mu})$ is semifinite and order-complete, and hence Localizable. \Box

 $\mbox{localization} :: \mbox{SemifiniteMeasureAlgebra} \rightarrow \mbox{LocalizableMeasureAlgebra} \\ \mbox{localization} (A, \mu) = \Big(\tau(A), \tau(\mu)\Big) := \mbox{MeasureAlgebraCompletion} \\$

LocalizationFiniteEmbedding ::

 $:: \forall (A, \mu) : \mathtt{SemifiniteMeasureAlgebra} \ . \ \iota_{ au}(A^f) = au^f(A)$

Proof =

- 1 Assume $t \in \tau(A)$ such that $\hat{\mu}(t) < \infty$.
- 2 Note, $\hat{\mu}(t) = \sup_{a \le t} \mu(a)$.
- 3 So we may select an increasing $a: \mathbb{N} \to A$ such that $\lim_{n \to \infty} \mu(a_n) = \hat{\mu}(t)$.
- 4 Then $b = \bigvee_{n=1}^{\infty} a_n \in A$ and $\hat{\mu}(b) = \mu(b) = \hat{\mu}(t)$.
- 5 So $\mu(t \setminus b) = 0$, and so $t = b \in A$ as clearly b < t.

П

1.1.12 Stone Spaces

```
LocallalizableMeasureAlgebraHasStrictlyLocalizableStoneSpace ::
   :: \forall (A, \mu) : \texttt{LocalizableMeasureAlgebra}. StrictlyLocalizable(Z A, \Sigma_{\mu}, \bar{\mu})
Proof =
 1 We already proved that \bar{\mu} is locally determined.
 2 As (A, \mu) is semifinite there is a partition of unity P consisting of finite elements.
 3 Use Stone representation S_A(P) to construct a corresponding set in Z A.
 4 Assume E \in \Sigma_{\mu} such that \bar{\mu}(E) > 0.
 5 By definition of Stone's Space there is a clopen set F \in \mathsf{Z}\ A such that E \triangle F is meager.
 6 And there is a Stone representation a \in A such that F = S_A(a).
 7 Then \mu(a) = \nu(S_A(a)) = \nu(E) > 0.
 8 So, there exists p \in P such that ap \neq 0.
9 Ths means that \nu(E \cap S_A(p)) > 0.
 10 As E was arbitrary this means that S_A(P) provides a strict localization for \bar{\mu}.
MeagerSetsAreNowhereDense ::
   :: \forall (A, \mu) : \mathtt{SemifiniteMeasureAlgebra} : \forall M \in \mathbf{MGR}(\mathsf{Z}\ A) : \mathtt{NowhereDense}(\mathsf{Z}\ A, M)
Proof =
1 As it was shown A is (\sigma, \infty)-WeaklyDistributive boolean algebra.
2 And this is a property of (\sigma, \infty)-WeaklyDistributive boolean algebra.
StoneSpaceMeasurableExpression ::
   \forall (A, \mu) : SemifiniteMeasureAlgebra . \forall E \in \Sigma_{\mu}.
   . \exists U : \mathtt{Clopen}(\mathsf{Z}\ A) . \exists F : \mathtt{NowhereDense}(\mathsf{Z}\ A) . E = U \cap F
Proof =
1 This is clear from the previous theorem.
StoneSpaceMeasureComputation ::
   :: \forall (A,\mu) : \mathtt{SemifiniteMeasureAlgebra} \ . \ \forall E \in \Sigma_{\mu} \ .
   . \ \bar{\mu}(E) = \sup \left\{ \mu(U) \middle| U : \mathtt{Clopen}(\mathsf{Z}\ A), U \subset E \right\}
 1 This is clear from the previous theorem.
StoneSpaceCLDIsStrictlyLocalizable ::
   :: \forall (A,\mu) : \mathtt{SemifiniteMeasureAlgebra} . \mathtt{StrictlyLocalizable}(\mathsf{Z}\ A, \bar{\Sigma}_{\mu}, \bar{\bar{\mu}})
Proof =
. . .
```

```
{\tt StoneSpaceCLDZeroSets} ::
```

$$:: \forall (A,\mu) : \texttt{SemifiniteMeasureAlgebra} . \mathcal{N}_{\bar{\mu}} = \mathcal{N}_{\bar{\mu}}$$

 Proof =

...

FiniteStoneSpaceMeasureComputation ::

$$:: \forall (A,\mu): \texttt{FiniteMeasureAlgebra} \ . \ \forall E \in \Sigma_{\mu} \ .$$

$$. \ \bar{\mu}(E) = \inf \Big\{ \mu(U) \Big| U: \texttt{Clopen}(\mathsf{Z}\ A), E \subset U \Big\}$$

Proof =

1 This is clear from the previous theorem.

1.1.13 Purely Infinite Elements

purelyInfiniteElements :: $\prod (A,\mu)$: MeasureAlgebra . σ -Ideal(A) purelyInfiniteElements $()=I_{\infty}(\mu:=\{a\in A: \forall b\in A : b\leq a \ \& \ \mu(b)<\infty\Rightarrow b=0\}$

$$\begin{split} & \texttt{semifiniteMeasure} \, :: \, \prod(A,\mu) : \texttt{MeasureAlgebra} \, . \, \frac{A}{I_\infty(\mu)} \to_{\mathbb{R}_+}^\infty \\ & \texttt{semifiniteMeasure} \, ([a]) = \mu_{\mathrm{sf}} := \sup\{\mu(b)|b \in A : b \leq a \, \& \, \mu(b) < \infty\} \\ & \text{If } [a] = [b], \, \text{then } a \bigtriangleup b \in I_\infty(\mu). \\ & \text{So } \mu_{\mathrm{sf}} \, \text{is well-defined.} \end{split}$$

SemifiniteMeasureIsMeasure ::

 $:: orall (A,\mu): exttt{MeasureAlgebra} \ . \ exttt{SemifiniteMeasureAlgebra} \left(rac{A}{I}, \mu_{ ext{sf}}
ight)$

Proof =

- 1 If $\mu_{\rm sf}[a] = 0$, then clearly $a \in I_{\infty}$.
- 2 Assume $[a]: \mathbb{N} \to A$ is disjoint.
- 2.1 Then $a_n a_m \in I_{\infty}$ if $n \neq m$.

2.2 Select increasing
$$b: \mathbb{N} \to A^f$$
 such that $b_n \leq \bigvee_{k=1}^{\infty} a_k$ and $\lim_{n \to \infty} \mu(b_n) = \mu_{\mathrm{sf}} \left[\bigvee_{k=1}^{\infty} a_k \right] = \mu_{\mathrm{sf}} \bigvee_{k=1}^{\infty} [a_k]$.

2.3 By (2.1) we mat assert that ab_n is disjoint and then $\bigvee_{k=1}^{\infty} a_k b_n = b_n$ for any $n \in \mathbb{N}$.

2.4 So
$$\mu(b) = \sum_{k=1}^{\infty} \mu(a_k b_n)$$
.

2.5 By taking limits and using monotonic convergence theorem

$$\sum_{k=1}^{\infty} \mu_{\rm sf}[a_k] = \sum_{k=1}^{\infty} \lim_{n \to \infty} \mu(a_k b_n) = \lim_{n \to \infty} \mu(b_n) = \mu_{\rm sf} \bigvee_{k=1}^{\infty} [a_k].$$

- 3 Clearly $\mu_{\rm sf}[a] < \mu(a)$.
- 3.1 If $\mu_{\rm sf}[a] = \infty$, then $a \notin I_{\infty}$.
- 3.2 So it is possible to select $b \in A$ such that $b \le a$ and $0 < \mu(b) \le a$.
- 3.3 $0 < \mu_{\rm sf}[b] \le \mu(b) < \infty$.
- 3.4 This proves that $\left(\frac{A}{I}, \mu_{\rm sf}\right)$ is semifinite.

1.2 Topology

1.2.1 Subject

```
measureAlgebraAsTopologicalSpace :: MeasureAlgebra → TOP
measureAlgebraAsTopologicalSpace ((A, \mu)) = (A, \mu) :=
   := (A, \mathcal{W}(A^f \times A^f, \mathbb{R}, \Lambda a \in A^f . \Lambda b \in A^f . \Lambda c \in A . \mu(ac + ab)))
measureAlgebraAsUniformlSpace :: MeasureAlgebra <math>\rightarrow UNI
measureAlgebraAsUniformSpace ((A, \mu)) = (A, \mu) :=
   := \left( A, \mathcal{I}(A^f \times A^f, \mathbb{R}, \Lambda a \in A^f \cdot \Lambda b \in A^f \cdot \Lambda c \in A \cdot \mu(ac \triangle ab) \right) 
\texttt{metricOfFrechetNikodym} :: \prod (A, \mu) : \texttt{MeasureAlgebra} \cdot \texttt{Metric}(A^f)
\texttt{metricOfFrechetNikodym}\,() = \rho_{\mu} := \Lambda a, b \in A^f \;.\; \mu(a \mathrel{\triangle} b)
BooleanOperationsAreUniformlyContinuous ::
   :: \forall (A, \mu) : \texttt{MeasureAlgebra} . (*), (\setminus), (\vee), (\wedge) \in \mathsf{UNI}(A \times A, A)
Proof =
 1 Let o stay for any binary operation above.
 2 Select c, d \in A.
3 Then \mu(a(c \circ d) + b) \le \mu(a(c \lor d) + b) \le \mu(ac + d) + \mu(ad + b).
 4 So \mu is bounded by the sum of uniform functions and is uniformly continuous.
FiniteElementsAreDense ::
   \forall (A, \mu) : MeasureAlgebra . Dense(A, A^f)
Proof =
 1 Select c \in A.
2 Then c has a base of neighborhoods of form U = \{u \in A : \mu(au + ac) \leq r\} with a \in A^f, r \in \mathbb{R}_{++}.
 3 But then ac \in U and ac \in A^f.
FiniteMeasureAlgebraHasUniformlyContinuousMeasure ::
   \forall (A, \mu) : \mathtt{FiniteMeasureAlgebra} : \mu \in \mathsf{UNI}(A, \mathbb{R}_{++})
 This is pretty obvious as \mu = \rho_{\mu}(0, a).
```

```
FiniteMeasureAlgebraHasUniformlyContinuousMeasure :: \forall (A,\mu): \texttt{FiniteMeasureAlgebra} \ . \ \mu \in \mathsf{UNI}(A,\mathbb{R}_{++}) Proof = This is pretty obvious as \mu = \rho_{\mu}(0,a).
```

SemifinitMeasureAlgebraHasLowerSemicontinuousMeasure ::

$$\forall (A,\mu): \texttt{SemifiniteMeasureAlgebra} \ . \ \mu \in \texttt{LowerSemicontinuous}(A,\overset{\infty}{\mathbb{R}}_{++}) \\ \texttt{Proof} \ = \ .$$

- 1 Assume $a \in A$ and $\alpha \in \mathbb{R}_+$ such that $\mu(a) > \alpha$.
- 2 As A is semifinite there exists $b \leq a$ such that $\infty > \mu(b) > \alpha$.
- 3 Assume $c \in A$ is such that $\mu(b+cb) < \mu(b) \alpha$.
- 4 Then $\mu(c) \ge \mu(cb) = \mu(b) \mu(b(a \setminus c)) = \mu(b) \mu(b + cb) > \alpha$. \square

 ${\tt Measure Algebra Has Uniformly Continuous Finitised Measure} ::$

$$\forall (A,\mu): \texttt{MeasureAlgebra} \ . \ \forall a \in A^f \ . \ (\Lambda c \in A \ . \ \mu(ac)) \in \mathsf{UNI}(A,\mathbb{R}_{++})$$

$$\mathsf{Proof} \ =$$

This is simmilar to the case of finite measure space.

 $\mbox{finiteElementMetric} :: \prod A : \mbox{MeasureAlgebra} : A^f \to \mbox{Semimetric}(A)$ $\mbox{finiteElementMetric} (a) = \rho_a := \Lambda x, y \in A : \mu(ax + ay)$

MeasurAlgebraProductTopology ::

$$:: \forall I \in \mathsf{SET} \ . \ \forall (A,\mu): I \to \mathtt{MeasureAlgebra} \ . \ \prod_{i \in I} (A,\mu) =_{\mathsf{TOP}} \left(\prod_{i \in I} A_i, \sum_{i \in I} \mu_i\right)$$

Proof =

. . .

1.2.2 Relations with an Order Structure

```
upwardDirectedFilter ::
   \cdots \prod (A, \mu): MeasureAlgebra . NonEmpty & UpwardsDirected(A) \rightarrow CauchyFilerbase(A)
\texttt{upwardDirectedFilter}\left(D\right) = \mathcal{F}(\uparrow D) := \left\{ \left\{ c \in D : d \leq c \right\} \middle| d \in D \right\}
1 Write F_d = \{c \in D : d \le c\}.
2 \mathcal{F}(\uparrow D) is a filter.
2.1 As D is non empty, \mathcal{F}(\uparrow D) is also non-empty.
2.2 \ d \in F_d, so F_d \neq \emptyset and henceforth \emptyset \notin \mathcal{F}(\uparrow D).
2.3 Assume F_d, F_f \in \mathcal{F}(\uparrow D).
2.3.1 Then there is an element g \in D such that g \geq f \vee d.
2.3.2 Note, that F_g \subset F_d \cap F_f and F_g \in \mathcal{F}(\uparrow D).
3 \mathcal{F}(\uparrow D) is Cauchy.
3.1 Assume U is some measure connector for (A, \mu).
3.2 then there is an element a \in A^f and r \in \mathbb{R}_{++} such that \{(f,g) \in A \times A : \mu(af + ag) < r\} \subset U.
3.3 The set \{\mu(ad)|d\in D\} is bounded by \mu(a), so supremum is attained.
3.4 So there is f \in D, so \mu(ad) < \mu(af) + r/2 for any d \in D.
3.5 Assume g, h \in F_f.
3.5 Then \mu(ag + ah) \le \mu(ag \setminus af) + \mu(ah \setminus af) = (\mu(ag) - \mu(af)) + (\mu(ah) - \mu(af)) < r.
3.6 Thus, (g,h) \in U and F_f \times F_f \subset U.
UpwardsDirectedSup ::
   :: \forall (A, \mu) : \mathtt{SemifiniteMeasureAlgebra} . \forall D : \mathtt{UpwardsDirected}(A) \to \mathtt{CauchyFilerbase}(A) . \forall a \in A.
   a = \sup D \Rightarrow a = \lim \mathcal{F}(\uparrow D)
Proof =
1 Assume a = \sup D.
2 Assume U is an uniformity fo (A, \mu).
3 then there is an element c \in A^f and r \in \mathbb{R}_{++} such that \{g \in A \times A : \mu(ca + cg) < r\} \subset U(a).
4 Consider set M = \{\mu(cd) | d \in D\}.
5 Then sup M = \mu(ca).
6 So there is d \in D such that \mu(ca + cd) < r.
7 But d \leq f \leq a for any f \in F_d.
8 Thus \mu(cf + cd) < r and F_d \subset U(a).
9 Thus, da = \lim \mathcal{F}(\uparrow D).
```

```
UpwardsDirectedLimit ::
    \forall (A, \mu) : \texttt{SemifiniteMeasureAlgebra} . \forall D : \texttt{NonEmpty} \& \texttt{UpwardsDirected}(A) . \forall a \in A.
    a = \sup D \Rightarrow a \in \operatorname{cl} D
Proof =
. . .
UpwardsDirectedFilterLimit ::
    \forall (A, \mu) : \texttt{SemifiniteMeasureAlgebra} . \forall D : \texttt{NonEmpty} \& \texttt{UpwardsDirected}(A) . \forall a \in A.
    a = \lim \mathcal{F}(\uparrow D) \iff a = \sup D
Proof =
 1 (\Rightarrow) \quad a = \lim \mathcal{F}(\uparrow D).
 1.1 Then for any connector U of (A, \mu) There is some F \in \mathcal{F}(\uparrow F) such that F \subset U(a).
 1.2 Assume d \in D.
 1.3 Assume d \not\leq a.
 1.4 Then there is f \in A such that f \leq d \setminus a and 0 < \mu(f) < \infty.
 1.5 Thus \mu(fh + fa) \ge \mu(f) for every h \in F_s.
 1.6 But G \cap F_d \neq \emptyset for any G \in \mathcal{F}(\uparrow D) so this contradicts (1.1).
lowerDirectedFilter ::
    \cdots \prod (A, \mu): MeasureAlgebra . NonEmpty & LowerDirected(A) \rightarrow CauchyFilerbase(A)
\texttt{loweDirectedFilter}\left(D\right) = \mathcal{F}(\uparrow D) := \left\{ \left\{ c \in D : d \geq c \right\} \middle| d \in D \right\}
LowerDirectedInf ::
    \forall (A, \mu) : \texttt{SemifiniteMeasureAlgebra} : \forall D : \texttt{NonEmpty} \& \texttt{LowerDirected}(A) : \forall a \in A.
    a = \inf D \Rightarrow a = \lim \mathcal{F}(\uparrow D)
Proof =
By duality.
UpwardsDirectedLimit ::
    \forall (A, \mu) : \mathtt{SemifiniteMeasureAlgebra} . \forall D : \mathtt{NonEmpty} \ \& \ \mathtt{LowerDirected}(A) . \forall a \in A .
    a = \inf D \Rightarrow a \in \operatorname{cl} D
Proof =
 By duality.
UpwardsDirectedFilterLimit ::
    :: \forall (A, \mu) : \mathtt{SemifiniteMeasureAlgebra} . \forall D : \mathtt{NonEmpty} \& \mathtt{LowerDirected}(A) . \forall a \in A.
    a = \lim \mathcal{F}(\uparrow D) \iff a = \inf D
Proof =
 By duality.
```

```
{\tt ClosedSetsAreOrderClosed} :: \forall (A, \mu) : {\tt MeasureAlgebra} . \forall F : {\tt Closed}(A) . {\tt OrderClosed}(A, F)
Follows from previous theorems in this chapter.
{\tt DenseSetsAreOrderDense} \ :: \ \forall (A,\mu) : {\tt MeasureAlgebra} \ . \ \forall {\tt Dense}(A,D) \ . \ {\tt OrderDense}(A,D) \ .
Proof =
Follows from previous theorems in this chapter.
{\tt ClosedRays} \ :: \ \forall (A,\mu) : {\tt SemifiniteMeasureAlgebra} \ . \ \forall a \in A \ . \ {\tt Closed} \Big( A, \{c \in A : c \leq a\} \ \& \ \{c \in A : c \geq a\} \Big)
Proof =
 1 Let F = \{c \in A : c \le a\}.
 2 Assume d \in F^{\complement}.
 3 Then d \setminus a \neq 0.
4 As A is semifinite there is an g \in A^f such that g \leq d \setminus a and 0 < \mu(g).
5 \rho_g(d, f) \ge \mu(g) fo any f \in F^{\complement}.
6 And this means that F^{\complement} and F is closed.
Proof =
 This is obvious now.
 \textbf{InfimumConvergence} :: \forall A : \texttt{MeasureAlgebra} . \ \forall a : \mathbb{N} \downarrow A . \ \forall s \in A . \ s = \inf_{n=1} a_n \Rightarrow s = \lim_{n=1} a_n 
Proof =
 This is obvious now.
SummableIncrements :: \prod A : \texttt{MeasureAlgebra} : ?(\mathbb{N} \to A)
a: \mathtt{SummableIncrements} \iff \forall n \in \mathbb{N} \ . \ \sum_{n=1}^{\infty} \mu(a_n + a_{n+1}) < \infty
```

SummableIncrementsLimSupLimInfEq ::

 $:: \forall A : \texttt{MeasureAlgebra} . \ \forall a : \texttt{SummableIncrements}(A) \ . \ \inf_{n=1} \sup_{m=n} a_n = \sup_{n=1} \inf_{m=n} a_n$

Proof =

1 Let
$$\alpha_n = \mu(a_n + a_{n+1}), \beta_n = \sum_{m=n}^{\infty} \alpha_n$$
.

2 As a has summable increments this means $\beta \downarrow 0$.

3 Let
$$b_n = \sup_{m \ge n} a_m + a_{m+1} = \bigvee_{m=n}^{\infty} a_m + a_{m+1}$$
.

4 Then
$$\mu(b_n) \le \sum_{m=n}^{\infty} \mu(c_m + c_{m+1}) = \beta_n$$
.

5 Assume $m \leq n$.

6 And also
$$a_m + a_n \le \sup_{m \le k \le n} a_k + a_{k+1} \le b_n$$
.

7 So
$$a_n \setminus b_n \le a_m \le a_n \vee b_n$$
.

8 Thus
$$a_n \setminus b_n \le \inf_{k \ge m} a_k \le \sup_{k \ge m} a_k \le a_n \vee b_n$$
.

9 By taking limits in m one gets $a_n \setminus b_n \leq \inf_{m=1} \sup_{k=n} a_k \leq \sup_{m=1} \inf_{k=m} a_k \leq a_n \vee b_n$.

$$10 a_n + \inf_{m=1} \sup_{k=m} a_k \le b_n.$$

$$11 \ a_n + \sup_{m=1} \inf_{k=m} a_k \le b_n.$$

12 From (10) and (11)
$$\inf_{m=1} \sup_{k=m} a_k \setminus \sup_{m=1} \inf_{k=m} a_k \leq b_n$$
.

13 But
$$\lim_{n\to\infty} b_n = 0$$
.

14 So
$$\inf_{m=1} \sup_{k=m} a_k = \sup_{m=1} \inf_{k=m} a_k$$
.

SummableIncrementsLim ::

 $:: \forall A : \texttt{MeasureAlgebra} . \forall a : \texttt{SummableIncrements}(A) . \forall x \in A .$

$$x = \lim_{n \to \infty} a_n \Rightarrow \inf_{n=1} \sup_{m=n} a_n = x = \sup_{n=1} \inf_{m=n} a_n$$

Proof =

This follows from the previous proof.

1.2.3 Classification Theorems

 ${\tt SemifiniteIffHausdorff} \ :: \ \forall (A,\mu) : {\tt MeasureAlgebra} \ . \ {\tt SemifiniteMeasureAlgebra}(A,\mu) \ \Longleftrightarrow \ {\tt T2}(A)$

Proof =

- $1 \implies$ assume that (A, μ) is semifinite.
- 1.1 Take $x, y \in A$ such that $x \neq y$.
- 1.2 Then $x + y \neq 0$ so there is $a \in A^f$ such that $\mu(a) > 0$ and a < x + y.
- 1.3 So $\rho_a(x,y) = \mu(a) > 0$.
- 1.4 And cells of form $\mathbb{B}_{\rho_a}(x,\mu(a)/2)$ and $\mathbb{B}_{\rho_a}(y,\mu(a)/2)$ produce the separation.
- $2 \iff$ assume that A is Hausdorff in the topology of (A, μ) .
- 2.1 Assume $x \in A$ such that $\mu(x) = \infty$.
- 2.2 Then $x \neq 0$.
- 2.3 Assume $a \in A^f$.
- 2.4 If xa = 0 then $\rho_a(x, 0) = 0$.
- 2.5 So, as A is Hausdorff there must some $a \in A^f$ such that $xa \neq 0$.
- 2.6 But this means that (A, μ) is semifinite.

SigmaFiniteIffMetrizable ::

 $:: \forall (A, \mu) : \texttt{MeasureAlgebra} . \sigma - \texttt{FiniteMeasureAlgebra}(A, \mu) \iff \texttt{Metrizable}(A)$

Proof =

- $1 (\Rightarrow)$ assume that (A, μ) is σ -finite.
- 1.1 Then there is a countable partition of unity a with finite elements.

1.2 define
$$\sigma: A^2 \to \mathbb{R}_{++}$$
 as $\sigma(x,y) = \sum_{n=1}^{\infty} 2^{-n} \frac{\rho_{a_n}(x,y)}{\mu(a_n)}$.

- 1.3 Then σ is a metic for A.
- 1.4 So the topology of (A, μ) is metrizable.
- $2 \iff$ assume that (A, μ) is metrizable.
- 2.1 Let σ be an metrizing metric.
- 2.2 Then there exists a system of elements $k : \mathbb{N} \to \mathbb{N}, a : \prod_{n=1}^{\infty} \{1, \dots, k_n\} \to A^f$ and $\delta : \mathbb{N} \to \mathbb{R}_{++}$

such that $\rho_{a_{n,i}}(b,e)$ for any $1 \leq i \leq k_n$ imply that $\sigma(b,e) < 2^{-n}$ for any $b \in A$.

2.3 Then
$$e = \bigvee_{n=1}^{\infty} \bigvee_{i=1}^{k_n} a_{n,i}$$
.

2.4 So (A, μ) is σ -finite.

LocalizableIffComplete ::

 $:: \forall (A, \mu) : \texttt{MeasureAlgebra} . \texttt{LocalizableMeasureAlgebra}(A, \mu) \iff \texttt{T2 \& Complete}(A)$

Proof =

- $1 \implies Assume (A, \mu)$ is localizable measure algebra.
- 1.2 Then A is Hausdorff as (A, μ) is semifinite.
- 1.3 Assume \mathcal{F} is a Cauchy filter in A.
- 1.4 Take $a \in A^f$.
- 1.5 Then there is $d_a \leq a$ and a cauchy sequence c_a subordinate to \mathcal{F} such that $\lim_{n \to \infty} \rho_a(d_a, c_{a,n}) = 0$.
- 1.5.1 select a sequence $F_a: \mathbb{N} \to \mathcal{F}$ such that $\rho_a(x,y) \leq 2^{-n}$ for $x,y \in F_{a,n}$ and $n \in \mathbb{N}$.
- 1.5.2 Then select a sequence $c_{a,n} \in \bigcap_{k=1}^{n} F_{a,k}$.
- 1.5.3 Then $\rho(c_{a,n}, c_{a,n+1}) \leq 2^{-n}$.
- 1.5.4 Construct $d_a = \liminf ac_a$.
- 1.5.5 Then $\lim_{n\to\infty} \rho_a(d_a, c_{an}) = \lim_{n\to\infty} \mu(d_a + ac_a) = 0.$
- 1.6 Assume $a, b \in A^f$ are such that $a \leq b$.
- 1.7 Then $d_a = ad_b$.
- 1.7.1 $F_{n,a} \cap F_{n,b} \neq \emptyset$.
- 1.7.2 So select $f \in F_{n,a} \cap F_{n,b}$.
- 1.7.3 Then $\rho_a(d_a, d_b) \leq \rho_a(d_a, c_{a,n}) + \rho_a(c_{a,n}, f) + \rho_a(f, c_{b,n}) + \rho_a(c_{b,n}, d_b) \leq \rho_a(d_a, c_{a,n}) + 2^{-n} + 2^{-n} + \rho_a(c_{b,n}, d_b) \to 0 \text{ as } n \to \infty.$
- 1.8 Let $f = \bigvee_{a \in A^f} d_a$.
- 1.9 Then $\lim \mathcal{F} = f$.
- 1.9.1 $ad_a = af$ for any $a \in A^f$.
- 1.9.2 and there is a \mathcal{F} subordinate Cauchy sequence c_a such that $\rho_a(f,c_a)=\rho_a(d_a,c_a)\to 0$.
- 1.9.3 Then there is $n \in \mathbb{N}$ such that $\rho_a(d_a, c_{a,n}) + 2^{-n} < \varepsilon$.
- 1.9.4 Take any $g \in F_{a,n}$.
- 1.9.5 But $\rho_a(f,g) \le \rho_a(f,c_{a,n}) + \rho_{c_{a,n}} \le \rho_a(d_a,c_{a,n}) + 2^{-n} < \varepsilon$.
- 1.9.6 This $F_{a,n} \subset \mathbb{B}_{\rho_a}(f,\varepsilon)$.
- 2 (\Leftarrow) now Assume that A is Hausdorff and complete.
- 2.1 As A is Hausdorff (A, μ) must be semifinite.
- 2.2 As A is complete (A, μ) is order complete and hence localizable.
- 2.2.1 Think about order filters $\mathcal{F}(\uparrow D)$ and $\mathcal{F}(\downarrow D)$.

 $\texttt{LessRelationIsClosed} \ :: \ \forall (A,\mu) : \texttt{SemifiniteMeasureAlgebra} \ . \ \texttt{Closed} \Big(A^2, \{(a,b) \in A^2 : a \leq b\} \Big)$

Proof =

- 1 As (A, μ) is a semifinite measure algebra A must be Hausdorff.
- 2 So singleton $\{0\}$ is closed.
- 3 Then $\{(a,b) \in A^2 : a \le b\} = (\backslash)^{-1}\{0\}$ is closed.

1.2.4 Closed Subalgebras

ClosedSubalgebraTHM ::

 $\forall (A, \mu) : \texttt{LocalizableMeasureAlgebra} : \forall B \subset_{\mathsf{RING}} A : \texttt{Closed}(A, B) \iff \texttt{OrderClosed}(A, B)$

Proof =

- $1 (\Rightarrow)$ follows from the general theory.
- $2 \iff Assume now that B is order-closed.$
- 2.1 Assume $g \in cl_A B$.
- 2.2 Assume $a \in A^f$ and $n \in \mathbb{N}$.
- 2.3 Then there exists a sequence $c_a: \mathbb{N} \to B$ such that $\rho_a(c_{a,n}, g) < 2^{-n}$.

$$2.4 \text{ Note, } \sum_{n=1}^{\infty} \mu(ac_{a,n} + ac_{a,n+1}) \leq \sum_{n=1}^{\infty} \mu(ac_{a,n} + ag) + \mu(ag + ac_{a,n+1}) < \sum_{n=1}^{\infty} 2^{-n} + 2^{-n-1} = \frac{3}{2} .$$

- 2.5 So, sequence ac_a has summable increments .
- 2.6 Define $d_a = \liminf c_a$.
- 2.7 As ac_a has finite increments $\lim_{n\to\infty} \rho_a(c_{a,n},d_n) = 0$.
- 2.8 Furthermore, $\rho_a(d_a, g) = 0$, so $ag = d_a$.
- 2.9 As B is order-closed $d_a \in B$ for each $a \in A^f$.
- 2.10 Set $d'_a = \inf\{d_b : b \in A^f, a \le b\} \in B$.

$$2.11 \ d'_a a = \bigwedge_{a \le b} d_b a = \bigwedge_{a \le b} d_b b a = \bigwedge_{a \le b} g b a = g a.$$

- 2.12 Let $D = \{d'_a | a \in A\}.$
- 2.13 Clearly D is upwards directed as $d'_a \vee d'_b = d'_{a \wedge b}.$
- 2.14 Then sup $D = \{ad'_a | a \in A\} = \{ag | a \in A\} = g$ as (A, μ) is semifinite.
- 2.15 so $g \in B$ as B is order-closed.
- 2.16 Thus B is closed.

SubalgebraClosure :: $\forall (A, \mu)$: LocalizableMeasureAlgebra . $\forall B \subset_{\mathsf{RING}} A$. $\overline{B} = \tau(B)$

Proof =

- 1 Note that \overline{B} is a subgroup of A.
- 2 Also it must be order-closed as \overline{B} is closed.
- 3 Also $\tau(B)$ is an order-closed subalgebra, and hence a closed subalgebra.
- 4 So both objects can be realized as intersections of closed subalgebras containing B, and hence they are equal.

ClosedMeasureSubalgebra :: $\prod (A,\mu)$: MeasureAlgebra . Subalgebra(A)

 $B: {\tt ClosedMeasureSubalgebra} \iff B\subset_{\sf MA} A \iff {\tt Closed}(A,B)$

```
OrderClosedExtension ::
    :: \forall (A, \mu) : \texttt{LocalizableMeasureAlgebra} . \forall B \subset_{\mathsf{MA}} A . \forall a \in A . \langle B \cup \{a\} \rangle_{\mathsf{BOOL}} \subset_{\mathsf{MA}} A
Proof =
This follows from order-closed subalgebra extension theorem for boolean algebras.
{\tt SigmaFiniteSigmaSubalgebraIsClosed} \ :: \ \forall (X,\Sigma,\mu) : \sigma\text{-Finite} \ . \ \forall T \subset_{\sigma} \Sigma \ . \ \pi_{\mu}(T) \subset_{\sf MA} A_{\mu}
Proof =
 1 As (X, \Sigma, \mu) is \sigma-finite A_{\mu} is also \sigma-finite.
 2 So A_m u is actually metrizable with a metric \sigma.
 3 In a metric space set is closed iff it is sequence-closed.
 4 Consider a sequence a: \mathbb{N} \to \pi_{\mu}(T) with a limit x.
 5 Then there is a sequence E: \mathbb{N} \to T such that a = [E].
 7 Then \limsup E = \liminf E \in T, but also [\limsup E] = x.
8 Thus x \in \pi_{\mu}(T).
{\tt SigmaFiniteSigmaSubalgebraIsClosed2} \ :: \ \forall (X,\Sigma,\mu) : \sigma\text{-Finite} \ . \ \forall B \subset_{\sf MA} A_{\mu} \ . \ \pi_{\mu}^{-1}(B) \subset_{\sigma} A_{\mu}
Proof =
Inverse argument.
OrderClosedSetsAreClosedInLocalizableAlgebra ::
    :: \forall (A, \mu) : \texttt{LocalizableMeasureAlgebra} : \forall C : \texttt{OrderClosed}(A) : \texttt{Closed}(A, C)
Proof =
 1 Same proof as with closed algebras.
SubalgebraClosureIsSubalgebra ::
    :: \forall (A, \mu) : \texttt{MeasureAlgebra} . \forall B \subset_{\mathsf{RING}} A . \overline{B} \subset_{\mathsf{RING}} A
Proof =
 1 B is a topological subgroup of A.
 2 So by general theory of topological groups \overline{B} is a subgroup of A again.
 3 So \overline{B} is closed under operation (+).
 4 Also \overline{B} is closed and hence order-closed.
 5 But then it is closed under operations (\vee), (\wedge).
 6 And being closed under operations (\vee), (\wedge), (+) is enough to be a boolean algebra.
```

1.2.5 Metric Space of Finite Elements

```
BooleanOperationsAreUniformlyContinuous ::
   :: \forall (A, \mu) : \texttt{MeasureAlgebra} . (*), (\backslash), (\vee), (\wedge) \in \mathsf{UNI}(A^f \times A^f, A^f)
Proof =
This is obvious.
MeasureIs1Lip ::
   \forall (A, \mu) : \texttt{MeasureAlgebra} . \mu_{|A^f} \in 1\text{-Lip}(A^f)
Proof =
This is obvious.
FiniteElementsAreComplete ::
   :: \forall (A,\mu) : \texttt{MeasureAlgebra} . \texttt{Complete}(A^f)
Proof =
1 Assume a is a cauchy sequence in A^f.
2 without loss of generality we may assume that a has summable differences .
2.1 Just select a subsequence.
3 Define x = \liminf a \in A.
4 Then \lim_{n\to\infty} a_n = x.
5 So, there is some n \in \mathbb{N} such that \mu(x \setminus a_n) < \infty.
6 Thus \mu(x) < \infty and x \in A^f.
```

1.2.6 Relation with Convergence In Measure

indicatorFunctionRepresentation :: $\prod (X, \Sigma, \mu) \in \mathsf{MEAS} : A_{\mu} \to \mathbf{L}^0(X, \Sigma, \mu)$ indicatorFunctionRepresentation $(a) = \chi_a := [\chi_E]$ where a = [E]

- 1 This is well defined.
- 2 Assume that a = [E] = [F] for some $E, F \in \Sigma$.
- 3 Then $\mu(E \triangle F) = 0$.
- 4 Hence, $\chi_E =_{\mu} \chi_F$ and $[\chi_E] = [\chi_F]$.

IndicatorFunctionRepresentationIsHomeo ::

$$:: orall (X, \Sigma, \mu) \in \mathsf{MEAS}$$
 . Homeomorphism $\Big(A_\mu, \chi_{A_\mu}, \chi_ullet\Big)$

Proof =

- 1 Here we always assume that $\mathbf{L}^0(X,\Sigma,\mu)$ is equiped with a convergence in measure topology.
- 2 Clearly χ_{\bullet} is injective.
- 2.1 Assume $\chi_a = \chi_b$.
- 2.2 Then there is common representative $E \in \Sigma$ such that a = [E] = b.
- 3 Also χ_{\bullet} is trivially sirjective.
- $4 \chi_{\bullet}$ is homeomorphism.
- 4.1 This can be seen by direct corespondence between semimetrics ρ_a

4.2 and
$$\rho_E = \inf_{t \in \mathbb{R}_{++}} t + \mu \Big\{ x \in E : |f(x) - g(x)| > t \Big\}.$$

4.3 where corespondence is between finite $a \in A^f_{\mu}$ and $E \in \Sigma^f$ such that a = [E].

FiniteIndicatorEmbeddingL1Isometri ::

$$:: \forall (X, \Sigma, \mu) \in \mathsf{MEAS}$$
 . Isometry $\left(A_{\mu}, \chi_{A_{\mu}}, \chi_{ullet}\right)$

Proof =

This is obvious as difference of indicators are measure of difference of sets.

1.2.7 Localization

```
LocalizationIsCompletion :: \forall (A,\mu) : SemifiniteMeasureAlgebra . Completion(A,\tau(A),\iota_{\tau}) Proof = 1 \iota_{\tau}(A) is order dense in \tau(A). 2 So its order-closure is \tau(A). 3 \tau(A) is localizable and \iota_{\tau}(A) is a subalgebra, so the closure of \iota_{\tau}(A) is equal to the order closure. \Box
```

1.2.8 Metric Space of Pobability Subalgebras

 $\verb|metricSpaceOfProbabilitySubalgebra:: ProbabilityAlgebra \to CompleteMetricSpace metricSpaceOfProbabilitySubalgebra (A, \pi) = \mathsf{FB}(A, \pi) :=$

$$:= \left(\mathtt{Closed} \ \& \ \mathtt{Subring}(A), \Lambda B, C \subset_{\mathsf{MA}} A \ . \ \max \left(\sup_{b \in B} \inf_{c \in C} \rho_{\pi}(b,c), \sup_{c \in C} \inf_{b \in B} \rho_{\pi}(b,c) \right) \right)$$

- 1 Note, that indicator representation maps such closed subalgebras into closed uniformly integrable subsets of $\mathbf{L}^1(\mathsf{Z}\ A, \Sigma_{\pi}, \bar{\pi})$.
- 2 Then there is a natural isometric inclusion $\chi\left(\mathbf{FB}(A,\pi)\right) \subset \mathbf{F}\left(\mathbf{L}^1(\mathsf{Z}\ A,\Sigma_\pi,\bar{\pi})\right)$, which can be equiped with a Hausdorff metric d.
- 3 Now consider an boolean binary operation \circ .
- 4 Assume $C: \mathbb{N} \to \mathsf{FB}(A, \pi)$ is a converging sequence with a limit L.
- 5 Then clearly $e, 0 \in L$ as $e, 0 \in C_n$ for every $n \in \mathbb{N}$.
- 6 Now assume $x, y \in L$.
- 7 Then there exists a sequences $u, v : \prod_{n=1}^{\infty} C_n$ such that $x = \lim_{n \to \infty} u_n$ and $y = \lim_{n \to \infty} v_n$.
- 8 But Then $u_n \circ v_n \in C_n$ and $x \circ y = \lim_{n \to \infty} u_n \circ \lim_{n \to \infty} v_n = \lim_{n \to \infty} u_n \circ v_n \in L$.
- 9 So $L \in \mathsf{FB}(A, \pi)$.

- 10 As C and L were arbitraty $\chi(\mathbf{FB}(A,\pi))$ must be a closed subset of $\mathsf{F}(\mathbf{L}^1(\mathsf{Z}\,A,\Sigma_\pi,\bar{\pi}))$.
- But $F(L^1(Z A, \Sigma_{\pi}, \bar{\pi}))$ as complete $L^1(Z A, \Sigma_{\pi}, \bar{\pi})$ is complete, so $FB(A, \pi)$ is complete.

1.2.9 Topology of the Lebesgue Algebra

```
algebraOfLebesgue :: \sigma-Finite algebraOfLebesgue () = \Lambda := \mathcal{B}(\mathbb{R})_{\lambda}

LebesgueAlgebraIsSeparable :: Separable(\Lambda)

Proof =

1 consider \mathcal{A} to be an algebra generated by open intervals with rational endpoints.

2 Then |\mathcal{A}| = \aleph_0 as \mathbb{Q} are countable.

3 As \Lambda is localizable \Lambda = \pi_{\lambda} \Big( \mathcal{B}(\mathbb{R}) \Big) = \pi_{\lambda} \Big( \tau_{\mathcal{B}(\mathbb{R})}(\mathcal{A}) \Big) = \tau \Big( \pi_{\lambda}(\mathcal{A}) \Big) = \overline{\pi_{\lambda}(\mathcal{A})}.

4 So \Lambda is separable.
```

1.3 Category

1.3.1 Measure Algebra Functor

```
NullIdealPreservingMapToHomomorphism ::
     :: \forall (X, \Sigma, \mu), (Y, T, \nu) \in \mathsf{MEAS} . \forall D : \mathsf{Thick}(X, \Sigma, \mu) . \forall f : D \to Y.
     . \forall \aleph : \forall E \in T . f^{-1}(E) \in (\hat{\Sigma}|D) . \forall \beth : \forall E \in \mathcal{N}_{\nu} \cap T f^{-1}(E) \in \mathcal{N}_{\mu}.
     . \exists \phi \in \mathsf{MA} \& \mathsf{SequentiallyOrderClosed}(A_{\nu}, A_m u) \ . \ \forall E \in T \ . \ \forall F \in \Sigma \ .
     \phi[E] = [F] \iff f^{-1}(F) \triangle (E \cap D) \in \mathcal{N}_{\mu}
Proof =
 1 Define \phi[E] = \left[ f^{-1}(E) \right].
 2 \phi is well defined.
 2.1 Assume E, F \in T are such that [E] = [F].
 2.2 Then \nu(E \triangle F) = 0.
 2.3 So \mu(f^{-1}(E \triangle F)) = 0.
 2.4 \text{ Write } \phi[E] = \left\lceil f^{-1}(E) \right\rceil = \left\lceil f^{-1}(E \bigtriangleup F \bigtriangleup F) \right\rceil = \left\lceil f^{-1}(F) \right\rceil + \left\lceil f^{-1}(E \bigtriangleup F) \right\rceil = \left\lceil f^{-1}(F) \right\rceil = \phi[F] \ .
3 \phi is a boolean morphism.
3.1 \phi(1) = \left[ f^{-1}(X) \right] = \left[ f^{-1}(Y) \right] = 1.
3.2 The rest is obvious from properties of f^{-1}: 2^Y \to 2^D.
3.3 As measures are \sigma-additive the \sigma-continuity follows by simmilar arguments.
```

 $\label{eq:measureAlgebraFunctor} \begin{subarral}{l} measureAlgebraFunctor :: Contravariant(BOR_0, MeasureAlgebra) \\ measureAlgebraFunctor ((X, \Sigma, \mu)) = MA(X, \Sigma, \mu) := (A_\mu, \hat{\mu}) \\ measureAlgebraFunctor (X, Y, f) = MA_{X,Y}(f) := NullIdealPreservingMapToHomomorphism \\ \end{subarra}$

4 The final property is also obvious by construction.

1.3.2 Stone Space Functor

$$\begin{split} & \texttt{spaceOfStoneFunctor} :: \texttt{Contravariant}(\texttt{MeasureAlgebra}, \texttt{BOR}_0) \\ & \texttt{spaceOfStoneFunctor}\left((A, \mu)\right) = \mathsf{Z}(A, \mu)) := (\mathsf{Z}A, \Sigma_{\mu}, \bar{\mu}) \\ & \texttt{spaceOfStoneFunctor}\left(X, Y, f\right) = \mathsf{Z}_{X,Y}(f) := \mathsf{Z}_{X,Y}(f) \end{split}$$

- 1 Assume E is nowhere dense in $\mathsf{Z}X$.
- 1.2 Then $\left(\mathsf{Z}_{X,Y}(f)\right)^{-1}(E)$ is nowhere dense in $\mathsf{Z}Y$.
- 1.3 But this means that $\left(\mathsf{Z}_{X,Y}(f)\right)^{-1}(E)$ is meager and has measure zero.
- 2 Now assume E has $\bar{\mu}$ -measure zero.
- 2.1 Then E must be meager.
- 2.2 So write $E = \bigcap_{n=1}^{\infty} N_n$, where each N is nowhere dense.
- 2.3 By elementary set theory $\left(\mathsf{Z}_{X,Y}(f)\right)^{-1}(E) = \bigcup_{n=1}^{\infty} \left(\mathsf{Z}_{X,Y}(f)\right)^{-1}(N_n)$.
- 2.3 As each $\left(\mathsf{Z}_{X,Y}(f)\right)^{-1}(N_n)$ has measure 0, $\left(\mathsf{Z}_{X,Y}(f)\right)^{-1}(E)$ also has measure 0.

1.3.3 Order Continuous Homomorphism

```
OrderContinuousByCodomain ::
```

```
 :: \forall (A,\mu) \in \mathsf{MA} \ . \ \forall (B,\nu) : \mathtt{SemifiniteMeasureAlgebra} \ . \ \forall \phi \in \mathsf{MA}\Big((A,\mu),(B,\nu)\Big) \ . \\ \phi \in \mathsf{TOP}(A,B) \Rightarrow \mathtt{OrderContinuous}(A,B,\phi)
```

Proof =

- 1 Assume D is downwards directed subset of A such that $\inf D = 0$.
- 2 Then $0 \in \overline{D}$.
- 3 As ϕ is continuous $0 \in \overline{\phi(D)}$.
- $4\inf\phi(D)=0.$
- 4.1 Assume inf $\phi(D) = b > 0$.
- 4.2 As ν is semifinite, where is $c \in B^f$ such that $c \leq b$ and $\nu(b) > 0$.
- 4.3 Then $\rho_c(\phi(a), 0) = \nu(\phi(a)c) = \nu(c) > 0$ for any $a \in D$.
- 4.4 So $0 \notin \overline{\phi(D)}$, a contradiction!
- 5 Then ϕ must be order-continuous.

```
\label{eq:ContinuousByDomain} \begin{split} &\text{ContinuousByDomain} \ :: \ \forall (A,\mu) : \texttt{SemifiniteMeasureAlgebra} \ . \ \forall (B,\nu) \in \mathsf{MA} \ . \ \forall \phi \in \mathsf{MA} \Big( (A,\mu), (B,\nu) \Big) \ . \\ &\text{OrderContinuous}(A,B,\phi) \Rightarrow \phi \in \mathsf{TOP}(A,B) \end{split} \mathsf{Proof} \ = \end{split}
```

- 1 It is enough to prove that ϕ is continuous at zero.
- 2 Assume $b \in B^f$ and $\varepsilon \in \mathbb{R}_{++}$.
- 2.1 Assume that for any $a \in A^f$ and $\delta \in \mathbb{R}_{++}$ where is some $c \in A$ such that $\rho_a(c,0) < \delta$ but $\rho_b(\phi(c),0) \ge \varepsilon$.
- 2.1.1 Then it is possible to construct a system of elements $c: A^f \times \mathbb{N} \to A$ such that $\rho_a(c_{a,n},0) < 2^{-n}$ and $\rho_b(\phi(c_{a,n}),0) \ge \varepsilon$.
- 2.1.2 Set $d_a = \liminf c_a$.
- 2.1.3 Then $\rho_a(d_a, 0) = 0$.
- 2.1.4 Thus, $d_a a = 0$.
- 2.1.5 As ϕ is order continuous $\phi(d_a) = \limsup \phi(c_a)$.
- 2.1.6 So, $\rho_b(\phi(d_a), 0) \ge \varepsilon$.
- 2.1.7 This implies that $\rho_b(\phi(\bar{a}), 0) \geq \varepsilon$.
- 2.1.8 Now consider set $D = \{\bar{a} | a \in A^f\}$.
- 2.1.8.1 Then D is downwards directed.
- 2.1.8.1.1 If $c, d \in A^f$ then $c \vee d \in A^f$ also.
- 2.1.8.1.2 So by De Muavre law if $\bar{c}, \bar{d} \in D$, then $\bar{a} \wedge \bar{b} = \overline{a \vee b} \in D$.
- 2.1.8.2 As μ is semifinite inf D=0.
- 2.1.8.2.1 There is dense subset consisting of elements of A^f .
- $2.1.9 \text{ So } 0 \in \overline{D}.$
- 2.1.10 But (2.1.9) is in contradiction with (2.1.7)!
- 2.2 So we showed that there is always some δ and $a \in A^f$ such that $\rho_b(\phi(c), 0) < \varepsilon$ for any $c \in \mathbb{B}_a(0, \delta)$.
- 3 But as b and ε were arbitrary, the homomorphism ϕ must be continuous.

ContinuoutyEquivalence ::

```
:: \forall (A,\mu), (B,\nu) : \mathtt{SemifiniteMeasureAlgebra} \ . \ \forall \phi \in \mathsf{MA}\Big((A,\mu), (B,\nu)\Big) \ . . \ \mathsf{OrderContinuous}(A,B,\phi) \iff \phi \in \mathsf{TOP}(A,B)
```

Proof =

Combine two previous results.

UniformEquivalencse ::

```
:: \forall A \in \mathsf{BOOL} . \forall \mu, \nu : \mathsf{SemifiniteMeasureAlgebra}(A) . \mathcal{U}_{\nu} = \mathcal{U}_{\mu}
```

Proof =

- 1 Identity mapping is always order-continuous.
- 2 But by previous theorem it must be a homeomorphism.
- 3 A homomorphism whis is also a homeomorphism must be a unimorphism.

1.3.4 Measure Preserving Homomorphism

```
MeasurePreservingHomomorphism :: \prod (A, \mu), (B, \nu) \in MA. ?BOOL(A, B)
\phi : MeasurePreservingHomomorphism \iff \forall a \in A \ . \ \mu(a) = \nu\Big(\phi(a)\Big)
measurePreservingMeasureAlgebraCategory :: LSCAT
\texttt{measurePreservingMeasureAlgebraCategory} \ () = \mathsf{MA}_\# := \Big(\mathsf{MA}, \mathtt{MeasurePreservingHomomorphism}, \circ, \mathrm{id} \, \Big)
{\tt MPHIsInjective} \, :: \, \forall (A,\mu), (B,\nu) \in {\sf MA} \, . \, \forall \phi \in {\sf MA}_{\#} \Big( (A,\mu), (B,\nu) \Big) \, . \, \forall \phi \in {\sf Injective}(A,B) \Big) = {\sf MA}_{\#} \Big( (A,\mu), (B,\nu) \Big) \, . \, \forall \phi \in {\sf Injective}(A,B) \Big) = {\sf MA}_{\#} \Big( (A,\mu), (B,\nu) \Big) \, . \, \forall \phi \in {\sf Injective}(A,B) \Big) = {\sf MA}_{\#} \Big( (A,\mu), (B,\nu) \Big) \, . \, \forall \phi \in {\sf Injective}(A,B) \Big) = {\sf MA}_{\#} \Big( (A,\mu), (B,\nu) \Big) \, . \, \forall \phi \in {\sf Injective}(A,B) \Big) = {\sf MA}_{\#} \Big( (A,\mu), (B,\nu) \Big) \, . \, \forall \phi \in {\sf Injective}(A,B) \Big) = {\sf MA}_{\#} \Big( (A,\mu), (B,\nu) \Big) \, . \, \forall \phi \in {\sf Injective}(A,B) \Big) = {\sf MA}_{\#} \Big( (A,\mu), (B,\nu) \Big) \, . \, \forall \phi \in {\sf Injective}(A,B) \Big) = {\sf MA}_{\#} \Big( (A,\mu), (B,\nu) \Big) \, . \, \forall \phi \in {\sf Injective}(A,B) \Big) = {\sf MA}_{\#} \Big( (A,\mu), (B,\nu) \Big) \, . \, \forall \phi \in {\sf Injective}(A,B) \Big) = {\sf MA}_{\#} \Big( (A,\mu), (B,\nu) \Big) \, . \, \forall \phi \in {\sf Injective}(A,B) \Big) = {\sf MA}_{\#} \Big( (A,\mu), (B,\nu) \Big) \, . \, \forall \phi \in {\sf Injective}(A,B) \Big) = {\sf MA}_{\#} \Big( (A,\mu), (B,\nu) \Big) \, . \, \, \forall \phi \in {\sf Injective}(A,B) \Big) = {\sf MA}_{\#} \Big( (A,\mu), (B,\nu) \Big) \, . \, \, \forall \phi \in {\sf Injective}(A,B) \Big) = {\sf MA}_{\#} \Big( (A,\mu), (B,\nu) \Big) \, . \, \, \forall \phi \in {\sf Injective}(A,B) \Big) = {\sf MA}_{\#} \Big( (A,\mu), (B,\mu) \Big) \, . \, \, \forall \phi \in {\sf Injective}(A,B) \Big) = {\sf MA}_{\#} \Big( (A,\mu), (B,\mu) \Big) \, . \, \, \forall \phi \in {\sf Injective}(A,B) \Big) = {\sf MA}_{\#} \Big( (A,\mu), (B,\mu) \Big) \, . \, \, \forall \phi \in {\sf Injective}(A,B) \Big) = {\sf MA}_{\#} \Big( (A,\mu), (B,\mu) \Big) \, . \, \, \forall \phi \in {\sf Injective}(A,B) \Big) = {\sf MA}_{\#} \Big( (A,\mu), (B,\mu) \Big) \, . \, \, \forall \phi \in {\sf Injective}(A,B) \Big) = {\sf MA}_{\#} \Big( (A,\mu), (B,\mu) \Big) \, . \, \, \forall \phi \in {\sf Injective}(A,B) \Big) = {\sf MA}_{\#} \Big( (A,\mu), (B,\mu) \Big) \, . \, \, \forall \phi \in {\sf Injective}(A,B) \Big) = {\sf MA}_{\#} \Big( (A,\mu), (B,\mu) \Big) \, . \, \, \forall \phi \in {\sf Injective}(A,B) \Big) = {\sf MA}_{\#} \Big( (A,\mu), (B,\mu) \Big) \, . \, \, \forall \phi \in {\sf Injective}(A,B) \Big) = {\sf MA}_{\#} \Big( (A,\mu), (B,\mu) \Big) \, . \, \, \forall \phi \in {\sf Injective}(A,B) \Big) = {\sf MA}_{\#} \Big( (A,\mu), (B,\mu) \Big) \, . \, \, \forall \phi \in {\sf Injective}(A,B) \Big) = {\sf MA}_{\#} \Big( (A,\mu), (B,\mu) \Big) \, . \, \, \forall \phi \in {\sf Injective}(A,B) \Big) = {\sf MA}_{\#} \Big( (A,\mu), (B,\mu) \Big) \, . \, \, \forall \phi \in {\sf Injective}(A,B) \Big) = {\sf MA}_{\#} \Big( (A,\mu), (B,\mu) \Big) \, . \, \, \forall \phi \in {\sf Injective}(A,B) \Big) = {\sf MA}_{\#} \Big( (A,\mu), (B,\mu) \Big) \, . 
Proof =
   1 If \phi is not injective then it has nontrivial kernel.
   2 Select a \in \ker \phi such that a \neq 0.
   3 Then \mu(a) > 0 but \nu(\phi(a)) = \nu(0) = 0, a contradiction!
  MPHFiniteness ::
          :: \forall (A,\mu), (B,\nu) \in \mathsf{MA} : \forall \phi \in \mathsf{MA}_{\#} \Big( (A,\mu), (B,\nu) \Big) .
           . FiniteMeasureAlgebra(A, \mu) \iff FiniteMeasureAlgebra(B, \nu)
Proof =
   1 For any boolean homomorphism \phi(e_A) = e_B.
   2 So finiteness follows by measure preservation.
   FiniteMPHIsContinuous ::
           :: \forall (A,\mu), (B,\nu): \mathtt{FiniteMeasureAlgebra} \ . \ \forall \phi \in \mathsf{MA}_{\#}\Big((A,\mu), (B,\nu)\Big) \ . \ \phi \in \mathsf{TOP}(A,B)
Proof =
   \phi is an isometry with respect to natural metrics \rho_{\mu} and \rho_{\mu}.
FiniteMPHIsOrderContinuous ::
           :: \forall (A,\mu), (B,\nu): \mathtt{FiniteMeasureAlgebra} \ . \ \forall \phi \in \mathsf{MA}_{\#}\Big((A,\mu), (B,\nu)\Big) \ .
           . OrderContinuous(A, B, \phi)
Proof =
This follows from the previous chapter and previous theorem.
```

```
{\tt SigmaFiniteMPH1} :: \forall (A,\mu) : {\tt SemifiniteMeasureAlgebra} . \forall (B,\nu) : \sigma	ext{-}{\tt FiniteMeasureAlgebra} .
   . \forall \phi \in \mathsf{MA}_\#\Big((A,\mu),(B,\nu)\Big) . \sigma\text{-Finite}(A,\mu)
Proof =
 1 As \mu is semiferit there is a partition of unity of finite elements D.
 2 |\phi(D)| = |D| as \phi is injective.
3 \phi(D) is disjoint.
3 As \nu is \sigma-finite \phi(D) can be embedded into a countable partition of unity, so |D| \leq \aleph_0.
4 This means that \mu is \sigma-finite.
SigmaFiniteMPH2 :: \forall (A, \mu) : \sigma-FiniteMeasureAlgebra . \forall (B, \nu) \in \mathsf{MA} .
   . \ \forall \phi \in \mathsf{MA}_{\#}\Big((A,\mu),(B,\nu)\Big) \ \& \ \sigma\text{-}\mathsf{Continuous}(A,B) \ . \ \sigma\text{-}\mathsf{FiniteMeasureAlgebra}(B,\nu)
Proof =
 1 There is countable partition of unity P consisting of finite measure elements in A.
 2 Then \phi(P) is a countable disjoint subset of B consisting of finite measure elements.
3 But \sup \phi(P) = \phi(\sup P) = \phi(e_A) = e_B.
 4 Thus, \phi(P) is also a countable partition of unity in (B, \nu) consisting of finite measure elements.
5 So (B, \nu) is \sigma-finite.
SemifiniteMPH :: \forall (A, \mu) : SemifiniteMeasureAlgebra . \forall (B, \nu) \in \mathsf{MA} .
   . \ \forall \phi \in \mathsf{MA}_{\#}\Big((A,\mu),(B,\nu)\Big) \ \& \ \mathsf{OrderContinuous}(A,B) \ . \ \mathsf{SemifiniteMeasureAlgebra}(B,\nu)
Proof =
 1 There is partition of unity P consisting of finite measure elements in A.
2 Then \phi(P) is a disjoint subset of B consisting of finite measure elements.
 3 But \sup \phi(P) = \phi(\sup P) = \phi(e_A) = e_B.
4 Thus, \phi(P) is also a partition of unity in (B, \nu) consisting of finite measure elements.
5 So (B, \nu) is semifinite.
AtomlessMPH :: \forall (A, \mu) : SemifiniteMeasureAlgebra & Atomless . \forall (B, \nu) \in \mathsf{MA} .
   . \forall \phi \in \mathsf{MA}_\#\Big((A,\mu),(B,\nu)\Big) & \mathsf{OrderContinuous}(A,B) . \mathsf{Atomless}(B)
Proof =
 1 There is partition of unity P consisting of finite measure elements in A.
 2 Then \phi(P) is a disjoint subset of B consisting of finite measure elements.
 3 But \sup \phi(P) = \phi(\sup P) = \phi(e_A) = e_B.
4 Thus, \phi(P) is also a partition of unity in (B, \nu) consisting of finite measure elements.
5 Now assume b is an atom in B.
 5.1 Then there is an element a \in P such that \phi(a)b \neq 0.
 5.2 But as b is an atom this means that b = \phi(a).
 5.3 A is atomless so there are some c such that 0 < c < a.
5.4 So 0 < \phi(c) < \phi(a) = b.
5.5 But this means that b is not an atom, a contradiction!!
```

PurelyAtomicMPH ::

 $\forall (A,\mu) : \texttt{SemifiniteMeasureAlgebra} : \forall (B,\mu) : \texttt{PurelyAtomicMeasureAlgebra} .$

.
$$\forall \phi \in \mathsf{MA}_\#\Big((A,\mu),(B,\nu)\Big)$$
 . $\mathsf{PurelyAtomic}(A)$

Proof =

- 1 Assume $a \in A$ is such that $a \neq 0$.
- 1.1 Assume that a do not contain any atoms.
- 1.2 As A is semifinite there is a $c \in A^f$ such that $0 < c \le a$.
- 1.3 Then there exist a sequnce of partitions $d: \mathbb{B}^* \to A^f$ such that

such that
$$c = \bigvee_{t \in \mathbb{B}^n}^{2^n} d_t$$
 and $d_t \neq 0$ for any $t \in \mathbb{B}^*$ and $d_t d_s = d_s$ iff $t \sqsubset s$ and $d_t d_s = 0$ iff $|s| = |t|$ and $t \neq s$

and
$$\mu(d_t) \to 0$$
 as $|t| \to \infty$.

1.3 Then $\phi(d)$ has all same properties .

1.4 Moreover
$$\nu(\phi(c)) = \nu\phi\left(\bigvee_{t\in\mathbb{B}^n}^{2^n} d_t\right) = \sum_{t\in\mathbb{B}^n}^{2^n} \nu(\phi(d_t)).$$

1.5 So
$$\phi(c) = \bigvee_{t \in \mathbb{B}^n}^{2^n} \phi(d_t)$$
 as $\phi(d_t)$ must be disjoint.

- 1.6 So $\phi(c)$ can't contain atoms.
- 1.7 But B is purely atomic, so we have a contradiction!

GeneratedSigmaSubalgebraImage ::

$$:: \forall (A,\mu), (B,\nu): \mathtt{FiniteMeasureAlgebra} \; . \; \forall \phi \in \mathsf{MA}_{\#}\Big((A,\mu), (B,\nu)\Big) \; . \; \forall C \subset A \; . \; \phi \langle C \rangle_{\sigma} = \langle \phi(C) \rangle_{\sigma}$$

Proof =

This follows from previous theorems about finite measure algebras.

MeasurePreservingMeasureAlgebra ::

$$:: \forall (X, \Sigma, \mu), (Y, T, \nu) \in \mathsf{MEAS} \; . \; \forall f \in \mathsf{MEAS}^{\#} \Big((X, \Sigma, \mu), (Y, T, \nu) \Big) \; . \; \mathsf{MA}_{X,Y}(f) \in \mathsf{MA}_{\#}(T_{\nu}, \Sigma_{\mu})$$

Proof =

This is obvious.

MeasurePreservingZeroSpace ::

$$:: \forall (A\mu), (B,\nu) \in \texttt{MeasureAlgebra} . \forall f \in \mathsf{MA}_{\#}\Big((A,\mu), (B,\nu)\Big) .$$

.
$$\mathsf{Z}_{A,B}(f) \in \mathsf{MEAS}^\#\Big((\mathsf{Z}\;B,\Sigma_{\nu},\bar{\nu}),(\mathsf{Z}\;A,\Sigma_{\mu},\bar{\mu})\Big)$$

Proof =

This is obvious.

```
MeasurePresevingHomomorphismExtensionFromSubalgebra ::
```

$$\vdots \ \forall (A,\mu), (B,\nu) : \texttt{FiniteMeasureAlgebra} \ . \ \forall C \subset_{\texttt{BOOL}} A \ . \ \forall \aleph : \texttt{Dense}(A,C) \ . \ . \ \forall \phi \in \texttt{MeasureAlgebra}_{\#}(C,B) \ . \ \exists \Phi \in \texttt{MeasureAlgebra}_{\#}(A,B) \ . \ \Phi_{|C} = \phi$$

Proof =

- 1 obviously ϕ is an isometry.
- 2 So there exists a uniqui iometry extrnsion Φ of ϕ by \aleph .
- $3~\Phi$ is a homomorphism.
- 3.1 This holds as boolean operations are continuous and ϕ is also continuous.
- 3.2 Let \circ be some binary boolean operation and $u, v \in A$.
- 3.3 Then there are sequences $x, y : \mathbb{N} \to C$ such that $u = \lim x$ and $v = \lim y$.

$$3.4 \ \Phi(v) \circ \Phi(u) = \lim_{n \to \infty} \phi(x_n) \circ \phi(y_n) = \lim_{n \to \infty} \phi(x_n \circ y_n) = \Phi(v \circ u) \ .$$

- 4Φ is measure preserving.
- 4.1 Assume $a \in A$.
- 4.2 just note $\nu(\Phi(a)) = \rho_{\nu}(\Phi(a), 0) = \rho_{\nu}(\Phi(a), \Phi(0)) = \rho_{\mu}(a, 0) = \mu(a)$.

${\tt Measure Preseving Homomorphism Extension From Subset} ::$

$$:: \forall (A, \mu), (B, \nu) : \texttt{FiniteMeasureAlgebra} : \forall C \subset A : \forall f : C \to A .$$

.
$$\forall \aleph : \forall c : \mathbb{N} \to C$$
 . $\nu(\inf f(c)) = \mu(\inf c)$. $\exists \Phi \in \mathsf{MA}_{\#} \Big(\langle C \rangle_{\mathsf{MA}}, B \Big)$. $\Phi_{|C} = f$

Proof =

...

1.3.5 Example

Let $A = 2^{\mathbb{N}}$ with $\mu = \#$.

The elements of A can be identified with sequences $\mathbb{N} \to \mathsf{BOOL}$.

Let $\phi(a)$ be defined as right shift padded by 0 if a is finite.

Let $\phi(a)$ be defined as right shift padded by 1 if a is cofinite.

Otherwis let $\phi(a) = a$.

Then as finite sets form an and 0+0=0 and $0 \wedge t=0$ it is clear ϕ that preserves their structure.

Also as cofinite sets are their complement and 1+1=0 and $1 \wedge t=t$

it is clear that ϕ is an algebra morphism.

Clearly ϕ preserves cardinality.

On the other hand consider a sequence $f_n = \{2, \dots, 2n\}$.

Then
$$\bigvee_{n=1}^{\infty} f_n = 2\mathbb{N}$$
.

But
$$2\mathbb{N} = \phi(2\mathbb{N}) = \phi\left(\bigvee_{n=1}^{\infty} f_n\right) \neq \bigvee_{n=1}^{\infty} f_n = 1$$

1.3.6 Tensor Products

measureAlgebraTensorProduct
$$:: \prod I : \texttt{Finite} : (I \to \texttt{MA}) \to \texttt{MA}$$

$$\texttt{measureAlgebraTensorProduct}\left(A,\mu\right) = \left(\bigotimes_{i \in I} A_i, \prod_{i \in I} \mu_i\right) := \mathsf{MA}\left(\bigotimes_{i \in \mathcal{I}} \mathsf{Z}(A_i,\mu_i)\right)$$

measureAlgebraTensorProductEmbedding ::

$$::\prod I: \mathtt{Finite}:\prod(A,\mu):I o \mathtt{MA}:\prod_{i\in I}\mathtt{OrderContinuous}\left(A_i,\bigotimes_{j\in I}A_j
ight)$$

 $\texttt{measureAlgebraTensorProductEmbedding} \, () = \iota_i := \mathsf{MA}_{\mathsf{Z}(A_i,\mu_i), \bigotimes_{i \in I} \mathsf{Z}(A_i,\mu_i)}(\pi_i)$

1 ι_i is well defined.

1.1 Assume $E \in \sigma_{\mu_i}$ is such that $\bar{\mu}_i(E) = 0$.

1.2 Then
$$\bigotimes_{j \in I} \bar{\mu}_j \left(\pi_i^{-1}(E) \right) = \bigotimes_{j \in I} \bar{\mu}_j \prod_{k \in I} \left(\widehat{\mathsf{Z}A_i}(E) \right)_k = \sup \left\{ \prod_{j \in I} \bar{\mu}_j(F) \middle| F : \prod_{j \in I} \Sigma_{\mu_i}, F_i \subset E \right\} = 0.$$

1.3 So
$$\pi_i \in \mathsf{BOR}_0\left(\bigotimes_{j \in I} \mathsf{Z}(A_j, \mu_j), \mathsf{Z}(A_i, \mu_i)\right)$$
.

 $2 \iota_i$ is order-continuous.

2.1 Assume $D \subset A_i$ is downwards closed with inf D = 0.

2.2 Also assume $0 \neq u = \inf \iota_i(D)$.

2.3 Then
$$\prod_{i \in I} \mu_i(u) > 0$$
.

2.4 By definition there is
$$E: \prod_{i \in I} \Sigma_{\bar{\mu}_i}^f$$
 and $F \in \bigotimes_{j \in I} \Sigma_{\bar{\mu}_j}$ such that $u = [F]$ and $\bigotimes_{i \in I} \bar{\mu}_i \left(F \cap \prod_{j \in I} E_j \right) > 0$.

2.5 But
$$\inf_{d \in D} d[E_i] = 0$$
, so $\inf_{d \in D} \mu_i \left(d[E_i] \right) = 0$.

2.6 So there exists
$$d \in D$$
 such that $\mu_i \Big(d[E_i] \Big) \prod_{j \in \{i\}^{\complement}} \bar{\mu}_j(E_j) < \bigotimes_{i \in I} \bar{\mu}_i \left(F \cap \prod_{j \in I} E_j \right)$.

2.7 Also there is $G \in \Sigma$ such that d = [G].

2.8 Thus,
$$\bigotimes_{i \in I} \overline{\mu}_i \left(F \setminus \prod_{j \in I} \left(\widehat{E}_i(G) \right)_j \right) = 0.$$

2.9 Then
$$\bigotimes_{i \in I} \bar{\mu}_i \left(F \cap \prod_{j \in I} E_j \right) \le \bigotimes_{j \in J} \bar{\mu}_i \left(\prod_{j \in I} \left(\widehat{E}_i(G \cap E_i) \right)_j \right) = \bar{\mu}_i(G \cap E_i) \prod_{j \in \{i\}^{\complement}} \mu_j(E_j) = 0$$

$$\mu_i\Big(d[E_i]\Big) \prod_{j \in \{i\}^{\complement}} \mu_j(E_j) .$$

2.10 A contradiction with (2.5)!

measureAlgebraTensorRepresentation ::

$$:: \prod I : \mathtt{Finite} \;.\; \prod (A,\mu) : I \to \mathsf{MA} \;.\; \mathsf{BOOL}\left(\bigotimes_{i \in I} A_i, \bigotimes_{i \in I} (A_i,\mu_i)\right)$$

 $\texttt{measureAlgebraTensorRepresentation}\left(\right) = \Psi_{A,\mu} := \texttt{tensor}\left(\Lambda[E] \in \prod_{i \in I} A_i \; . \; \left[\prod_{i \in I} E_i\right]\right)$

 ${\tt TensorRepresentationsAreDense} \, :: \, \forall I : {\tt Finite} \, . \, \forall (A,\mu) : I \to {\tt MA} \, . \, {\tt Dense} \left(\bigotimes_{i \in I} (A,\mu_i), \Psi_{A,\mu} \left(\bigotimes_{i \in I} A_i \right) \right)$

Proof =

- 1 Assume $s \in \bigotimes_{i \in I} (A_i, \mu_i)$ and $f \in \left(\bigotimes_{i \in I} (A_i, \mu_i)\right)^f$ and $\varepsilon \in \mathbb{R}_{++}$.
- 2 Then there is $S, F \in \bigotimes_{i \in I} \mathsf{Z}(A_i, \mu_i)$ such that s = [E] and f = [F].
- 3 We show that there is $t \in \Psi_{A,\mu}\left(\bigotimes_{i \in I} A_i\right)$ such that $\rho_f(t,s) < \varepsilon$.
- 3.1 As sf is finite there must exist a natural number n and a system $E:\{1,\ldots,n\}\to\prod_{i\in I}\Sigma_{\mu}$

such that
$$\bigotimes_{i \in I} \hat{\mu}_i \left(S \cap F \triangle \bigcup_{k=1}^n \prod_{i \in I} E_i \right) < \varepsilon$$
.

3.2 But then
$$\rho_f\left(s,\bigvee_{k=1}^n \Psi_{A,\mu}\left(\bigotimes_{i\in I}[E_i]\right)\right)<\varepsilon.$$

Write just $\bigotimes_{i \in I} a_i$ for $\Psi_{A,\mu} \left(\bigotimes_{i \in I} a_i \right)$.

 ${\tt TensorMeasureComputation} :: \forall I : {\tt Finite} \; . \; \forall (A,\mu) : I \to {\sf MA} \; . \; \forall t \in \bigotimes_{i \in I} (A,\mu) \; .$

$$\prod_{i \in I} \mu_i(t) = \sup \left\{ \prod_{i \in I} \mu_i \left(t \bigotimes_{i \in I} a_i \right) \middle| a \in \prod_{i \in I} A_i^f \right\}$$

Proof =

This follos by the definition of the cld product.

TensorRepresentationComputation :: $\forall I$: Finite . $\forall (A, \mu): I \rightarrow \texttt{SemifiniteMeasureAlgebra}$.

$$\forall a \in \prod_{i \in I} A_i : \prod_{i \in I} \mu_i \left(\bigotimes_{i \in I} a_i \right) = \prod_{i \in I} \mu(a_i)$$

Proof =

This is pretty obvious.

TensorRepresentationUniqueness ::

 $\forall I: \mathtt{Finite} \forall (A,\mu): I \rightarrow \mathtt{SemifiniteMeasureAlgebra}$.

. Injective
$$\left(\bigotimes_{i\in I}A_i,\bigotimes_{i\in I}(A_i,\mu_i),\Psi_{A,\mu}
ight)$$

Proof =

This follows from the previous result.

MeasureSpaceCLDProductUniversalProperty ::

 $:: \forall I : \mathtt{Finite} \ . \ \forall (X, \Sigma, \mu) : I \to \mathtt{Semifinite} \ . \ \forall (A, \nu) : \mathtt{LocalizableMeasureAlgebra} \ .$

. $\forall \phi: \prod_{i \in I} \mathtt{OrderContinuous} \ \& \ \mathsf{BOOL} \left(\mathsf{MA}(X_i, \Sigma_i, \mu_i), A \right)$.

.
$$\forall \aleph : \forall x \in \prod_{i \in I} \mathsf{MA}(X_i, \Sigma_i, \mu_i) . \nu \left(\bigwedge_{i \in I} \phi_i(x_i) \right) = \prod_{i \in I} \mu_i(x_i) .$$

$$. \ \exists ! \psi : \texttt{MeasurePreservingHomomorphism} \left(\mathsf{MA} \left(\bigotimes_{i \in I} (X, \Sigma, \mu) \right), (A, \nu) \right) \ . \ \psi \left(\bigotimes_{i \in I} x_i \right) = \bigwedge_{i \in I} \phi_i(x_i)$$

Proof =

. . .

LocalizableTensorProductUniversalProperty ::

 $:: \forall I : \texttt{Finite} : \forall (A, \mu) : I \rightarrow \texttt{SemifiniteMeasureAlgebra} : \forall (B, \eta) : \texttt{LocalizableMeasureAlgebra} .$

$$. \ \forall \phi: \prod_{i \in I} \texttt{OrderContinuous} \ \& \ \mathsf{BOOL}(A_i, B) \ . \ \forall \aleph: \forall a: \prod_{i \in I} (A_i) \ . \ \eta \left(\bigvee_{i \in I} \phi_i(a_i)\right) = \prod_{i \in I} \mu_i(a_i) \ .$$

.
$$\exists ! \psi : \texttt{MeasurePreservingHomomorphism} \ \& \ \texttt{OrderContinuous} \left(\bigotimes_{i \in I} (A, \mu_i), B \right) \ . \ \iota \psi = \phi$$

Proof =

. . .

1.3.7 Independent Process Algebra

 $independent \texttt{ProcessAlgebra} :: \prod_{I \in \mathsf{SFT}} (I \to \mathsf{ProbabilityAlgrbra}) \to \mathsf{ProbabilityAlgebra}$ $\mathtt{randomProcessAlgebra}\left(A,p\right) = \left(\bigotimes A_i, \prod p_i\right) := \mathsf{MA}\left(\bigotimes \mathsf{Z}(A_i,p_i)\right)$ independentAlgebraTensorProductEmbedding :: $::\prod_{i=1}^n\prod(A,\mu):I o\mathsf{MA}$. $\prod_{i=1}^n\mathsf{OrderContinuous}\left(A_i,\bigotimes_iA_j
ight)$ $independet Algebra Tensor Product Embedding () = \iota_i := \mathsf{MA}_{\mathsf{Z}(A_i,p_i),igotimes_{i\in I}\mathsf{Z}(A_i,p_i)}(\pi_i)$ independentProcessUniversalProperty :: $:: \forall I \in \mathsf{SET} : \forall (A,p) : I \to \mathsf{ProbabilityAlgebra} : \forall (B,q) : \mathsf{ProbabilityAlgebra} .$. $\forall \phi: \prod_{i \in I} \mathtt{OrderContinuous} \ \& \ \mathsf{BOOL} \left(A_i, \bigotimes_i (A_i, p_i)\right)$. $.\;\forall \aleph: \forall J: \mathtt{Finite}(I)\;.\; \forall a: \prod_{j\in J} (A_j)\;.\; \eta\left(\bigvee_{i\in I} \phi_j(a_j)\right) = \prod_{j\in J} \mu_j(a_j)\;.$. $\exists ! \psi : \texttt{MeasurePreservingHomomorphism} \ \& \ \texttt{OrderContinuous} \ \left(\bigotimes (A_i, \mu_i), B \right) \ . \ \iota \psi = \phi$ Proof = . . . measureAlgebraTensorRepresentation :: $:: \prod I \in \mathsf{SET} : \prod (A,p) : I \to \mathsf{ProbabilityAlgebra} : \mathsf{BOOL}\left(\bigotimes_i A_i, \bigotimes_i (A_i,p_i)\right)$ $\texttt{measureAlgebraTensorRepresentation} \ () = \Psi_{A,\mu} := \texttt{tensor} \left(\left. \Lambda[E] \in \prod_i A_i \ . \ \left| \prod_i E_i \right| \ \right)$ TensorRepresentationsAreDense :: $:: \forall I \in \mathsf{SET} : \forall (A,p): I \to \mathsf{ProbabilityAlgebra} : \mathsf{Dense} \left(\bigotimes(A,p_i), \Psi_{A,\mu} \left(\bigotimes A_i \right) \right)$ Proof = . . .

1.3.8 independent Subalgebras

 $\begin{aligned} &\texttt{StochasticalyIndependent} \ :: \ \prod(A,p) : \texttt{ProbabilityAlgebra} \ . \ \prod I \in \mathsf{SET} \ . \ ?(I \to \mathsf{Subring}(A)) \\ &C : \texttt{StochasticalyIndependent} \ \Longleftrightarrow \ \forall J : \mathsf{Finite}(I) \ . \ \forall c : \prod_{j \in J} A_j \ . \ p\left(\bigvee_{j \in J} c_j\right) = \prod_{j \in J} p(c_j) \end{aligned}$

StochasticalyIndependentGeneration ::

 $\forall (A,p) : \texttt{ProbabilityAlgebra} : \forall I \in \mathsf{SET} : \forall C : \texttt{StochasticalyIndependent}(A,p,I) : \mathsf{StochasticalyIndependent}(A,p,I) : \mathsf{Stochastical}(A,p,I) : \mathsf{Stochastical}(A,p,I) : \mathsf{Stochastical}(A,p,I) : \mathsf{Stochastical}(A,p,I) : \mathsf{Stochastical}(A,p,I) : \mathsf{Stochastical$

$$.\;\forall\aleph:\forall i\in I\;.\;C_i\subset_{\mathsf{MA}}(A,p)\;.\;\bigotimes_{i\in I}(C_i,p)\cong_{\mathsf{MA}}\left\langle\bigcup_{i\in I}C_i\right\rangle_{\mathsf{MA}}\subset_{\mathsf{MA}}(A,p)$$

Proof =

This is obvious.

${\tt StochasticalyIndependentInProcessAlgebra} ::$

 $:: \forall I \in \mathsf{SET} : \forall (A,p): I \to \mathsf{ProbabilityAlgebra} : \mathsf{StochasticalyIndependent}\left(\bigotimes_{i \in I} (A_i,p_i), I, (A,p)\right)$

Proof =

This is obvious.

1.3.9 Coordinate Determination

$$\begin{array}{l} \operatorname{coordinateSubalgebra} :: \prod_{I \in \mathsf{SET}} (I \to \mathsf{ProbabilityAlgebra}) \to ?I \to \mathsf{ProbabilityAlgebra} \\ \operatorname{coordinateSubalgebra} ((C,p),J) = C_J := \bigvee_{j \in J} \iota_j(C_j) \end{array}$$

ProcessAlgebraRepresentation ::

$$:: \forall I \in \mathsf{SET} \ . \ \forall (C,p): I \to \mathsf{ProbabilityAlgebra} \ . \ \forall J \subset I \ . \ C_J \cong_{\mathsf{MA}} \bigotimes_{j \in J} (C_j,p_j)$$

Proof =

This is obvious.

CoordinateDeterminationExists ::

$$:: \forall i \in \mathsf{SET} \forall (C,p): I \to \mathsf{ProbabilityAlgebra} \ . \ \forall c \in C \ . \ \exists ! \min \left\{J: \mathsf{Countable}(I) \middle| c \in C_J\right\}$$

Proof =

1 Let
$$\mathcal{J} = \left\{ J : \mathtt{Countable}(I) \middle| c \in C_J \right\}$$
 .

$$2 \mathcal{J} \neq \emptyset$$
.

2.1 Note that
$$\bigotimes_{i \in I} C_i$$
 is dense in $\bigotimes_{i \in I} (C_i, p_i)$.

2.2 So there exists a sequence of natural numbers $n: \mathbb{N} \to \mathbb{N}$,

a system of finite subsets
$$i \in \prod_{k=1}^{\infty} \{1, \dots, n_l\} \times \{1, \dots, n_k\} \to I$$
 and $t \in \prod_{k=1}^{\infty} \prod_{l=1}^{k} \prod_{h=1}^{n_k} C_{i_{k,l,h}}$

such that $c = \lim_{k \to \infty} \sum_{l=1}^k \bigotimes_{h=1}^{n_k} t_{k,t,h}$, where are all missing slots are filled by e.

2.3 Then
$$J = \text{Im } i \in \mathcal{J}$$
, so $\mathcal{J} \neq \emptyset$.

- 3 \mathcal{J} has a minimal element.
- 3.1 Assume C is a chain in \mathcal{J} .
- 3.2 Then $c \in C_J$ for any $J \in \mathcal{C}$.

3.3 So
$$c \in \bigcap_{J \in \mathcal{C}} C_J = C_{\bigcap_{J \in \mathcal{C}} J}$$
.

- 3.3.1 Here we used the fact that C is decreasing.
- $3.3.2 C_J$ Form a sequence of decreasing closed subalgebras.

3.4 So
$$\bigcap_{J \in \mathcal{C}} J \in \mathcal{J}$$
 and the lower bound is at
ained.

- 4 The minimum Is unique.
- 4.1 Assume that $I, J \in \mathcal{J}$.
- 4.2 Then $c \in C_I \cap C_J$.

. .

 $\texttt{coordinateDetermination} \ :: \ \prod_{I \in \mathsf{SFT}} \prod(C,p) : I \to \mathsf{ProbabilityAlgebra} \ . \ \bigotimes_{i \in I}(C_i,p_i) \to \mathsf{Countable}(I)$ $coordinateDetermination(c) = J_c := CoordinateDeterminationExists$ MidElementCoordinatesDetermination :: $:: \forall I \in \mathsf{SET} \ . \ \forall (C,p): I \to \mathsf{PurelyAtomic} \ . \ \forall a,c \in \bigotimes_I (C_i,p_i) \ . \ \forall \aleph: a \leq c \ . \ \exists b \in C_{J_a \cap J_c} \ . \ a \leq b \leq c$ Proof = This follows from Fubbini Theorem! MidElementCoordinatesDetermination :: $:: \forall I \in \mathsf{SET} \ . \ \forall (C,p): I \to \mathsf{PurelyAtomic} \ . \ \forall a,c \in \bigotimes_I (C_i,p_i) \ . \ \forall \aleph: a \leq c \ . \ \exists b \in C_{J_a \cap J_c} \ . \ a \leq b \leq c$ Proof = This follows from Fubbini Theorem! . . . CoordinatesDetermination :: $:: \forall I \in \mathsf{SET} \ . \ \forall (C,p): I \to \mathtt{PurelyAtomic} \ . \ \forall \mathcal{J} : ??I \ . \ \bigcap C_{\mathcal{J}} = C_{\bigcap \mathcal{J}}$ Proof = Part of the previous Theorem.

Note: It may be interesting to prove this results independently of abstract measure theory, and then prove Fubbini theorem and related results from coordinate Determination.

1.3.10 Reduced Products

1.4 Radon-Nikodym Parallels

1.4.1 Finitely Additive Functionals

```
finitelyAdditiveFunctionals :: Contravariant(BOOL, R-VS)
finitlyAdditiveFunctionals (A) = a(A) :=
   := \Big\{ f: A 	o \mathbb{R}: orall (a,b): 	exttt{DisjointPair}(A) \ . \ f(a ee b) = f(a) + f(b) \Big\}
finitelyAdditiveFunctionals (A, B, \phi) = a_{A,B}(\phi) := \phi_*
boundedAdditiveFunctionals :: Contravariant(BOOL, R-VS)
\texttt{boundedAdditiveFunctionals} \ (A) = \texttt{ba}(A) := \Big\{ f \in \texttt{a}(A) : \exists r \in \mathbb{R}_+ \ . \ \forall a \in a \ . \ |f(a)| < r \ \Big\}
boundedAdditiveFunctionals (A, B, \phi) = ba_{A,B}(\phi) := \phi_*
Zero :: \forall A \in \mathsf{BOOL} . \forall f \in \mathsf{a}(A) . f(0) = 0
Proof =
1 (0,0) is a disjoint pair as 0 \cdot 0 = 0.
 2 So f(0) = f(0 \lor 0) = f(0) + f(0).
 3 Which can be rewritten as f(0) = 0.
Restriction :: \forall A \in \mathsf{BOOL} . \forall f \in \mathsf{a}(A) . \forall a \in A . \Lambda c \in A . f(ac) \in \mathsf{a}(A)
Proof =
1 Defin q(c) = f(ab).
 2 Assume (c, d) is a disjoint pair.
 3 Then (ac)(ad) = acd = 0.
 4 (ac, ad) is a disjoint pair also.
5 So g(c \lor d) = f(a(c \lor d)) = f(ac \lor ad) = f(ac) + f(ad) = g(c) + g(d).
 6 Thus, g \in a(A).
PositiveIffMonotonic :: \forall A \in \mathsf{BOOL} . \forall f \in \mathsf{a}(A) . f \geq 0 \iff \mathsf{Monotonic}(A, \mathbb{R}, f)
Proof =
1 Assume f > 0.
1.1 Asume a, b \in A is such that a > b.
1.2 Then f(a) = f(ab \lor b \setminus a) = f(ab) + f(b \setminus a) = f(a) + f(b \setminus a) \ge f(a).
2 Assume that f is monotonic.
2.1 Assume a \in A.
2.2 Note, that f(0) = 0.
2.3 So, as a \ge 0 then f(a) \ge 0.
```

JordanDecomposition ::

$$:: \forall A \in \mathsf{BOOL} \ . \ \forall f \in \mathsf{a}(A) \ . \ f \in \mathsf{ba}(A) \iff \exists g,h \in \mathsf{a}(A) \ . \ g,h \geq 0 \ \& \ f = g-h$$

Proof =

- $1 \implies Assume f$ is bounded.
- 1.1 Define $g(a) = \sup\{f(c) | c \in A, c \le a\}$.
- 1.2 g is finitely addive.
- 1.2.1 Assume $a, b \in A$ are such that ab = 0.

1.2.2 Then
$$g(a \lor b) = \sup\{f(c) | c \in A, c \le a \lor b\} = \sup\{f(c(a \lor b)) | c \in A, c \le a \lor b\} = \sup\{f(ca \lor cb) | c \in A, c \le a \lor b\} = \sup\{f(ca \lor cb) | c \in A, c \le a \lor b\} = \sup\{f(c) + f(d) | c, d \in A, c \le a, d \le b\} = \sup\{f(c) | c \in A, c \le a\} + \{f(c) | c \in A, c \le b\} = g(a) + g(b).$$

- 1.3 Then h can be defined in a simmilar manner but for -f.
- 1.4 f = g h.

$$1.4.1 \ g(a) - h(a) = \sup\{f(c)|c \in A, c \le a\} - \sup\{-f(c)|c \in A, c \le a\} = \sup\{f(c)|c \in A, c \le a\} + \inf\{f(c)|c \in A, c \le a\}.$$

- 1.4.2 Then we may select some $c: \mathbb{N} \to (a)$ such that $g(a) = \lim_{n \to \infty} f(c_n)$.
- 1.4.3 Then $-h(a) = \lim_{n \to \infty} f(a \setminus c_n)$ from (1.4.1).

1.4.4 Thus
$$g(a) - h(a) = \lim_{n \to \infty} f(c_n) + \lim_{n \to \infty} f(a \setminus c_n) = \lim_{n \to \infty} f(c_n) + f(a \setminus c_n) = \lim_{n \to \infty} f(a) = f(a).$$

- 2 (\Leftarrow) Assume there are $g, h \in a_+(A)$ such that f = g h.
- 2.1 Assume $a: \mathbb{N} \to A$ is a disjoint sequence.

2.2 Then
$$\sum_{n=1}^{\infty} g(a_n) = \lim_{k \to \infty} \sum_{n=1}^{k} g(a_n) = \lim_{k \to \infty} g\left(\bigvee_{n=1}^{k} a_n\right) \le g(a) < \infty.$$

- 2.3 g is bounded.
- 2.3.1 Assume now that g is unbounded.
- 2.3.2 Then there exists a sequence c such that $\lim_{n\to\infty} g(c_n) = 0$.

2.3.3 Define
$$a_n = c_n \setminus \bigvee_{k=1}^{n-1} a_k$$
.

2.3.4 Then
$$\sum_{n=1}^{\infty} g(a_n) = \lim_{n \to \infty} g\left(\bigvee_{k=1}^{n} c_k\right) \ge \lim_{n \to \infty} g(c_k) = \infty.$$

- 2.3.5 But this contradicts (2.2)!
- 2.4 The same is true about h.
- 2.5 So f is bounded as linear comination of bounded functionals.

$$\frac{\texttt{decompositionOfJordan}}{\texttt{decompositionOfJordan}} :: \prod A \in \mathsf{BOOLba}(A) \to \mathsf{ba}^2_+(A)$$

$$\frac{\texttt{decompositionOfJordan}}{\texttt{decompositionOfJordan}} (f) = (f_+, f_-) := \texttt{JordanDecomposition}(A, f)$$

$${\tt cilindersElements} \, :: \, \prod I \in {\tt SET} \, . \, (I \to {\tt BOOL}) \to {\tt Monoid}$$

$$\mathtt{cilindersElements}\left(A\right) = C(I,A) := \left\{ \bigwedge_{j \in J} \iota_j(a_j) \middle| J : \mathtt{Finite}(I), a \in \prod_{j \in J} A_j \right\}$$

 $\textbf{CoproductExtension} \, :: \, \forall I \in \mathsf{SET} \, . \, \forall A : I \to \mathsf{BOOL} \, . \, \forall \theta : C(I,A) \to \mathbb{R} \, .$

$$. \ \forall \aleph: \forall c \in C(I,A) \ . \ \forall i \in I \ . \ \forall a \in A_i \ . \ \theta(c) = \theta \Big(c \iota_i(a) \Big) + \theta \Big(c \overline{\iota_i(a)} \Big) \ . \ \exists f \in \mathbf{a} \left(\bigotimes_{i \in I} A_i \right) \ . \ f_{|C} = \theta \Big(e \iota_i(a) \Big) + \theta \Big(e \iota_i(a) \Big) + \theta \Big(e \iota_i(a) \Big) \Big)$$

Proof =

. . .

1.4.2 Properly Atomless Functionals

ProperlyAtomless :: $\prod_{A \in \mathsf{BOOL}} ?\mathsf{a}(A)$ $f: \mathsf{ProperlyAtomless} \iff \iff \forall \varepsilon \in \mathbb{R}_{++} \ . \ \exists P: \mathsf{PartitionOfUnity}(A) \ . \ |P| < \infty \ \& \ \forall p \in P \ . \ \forall a \in (p) \ . \ |f(a)| \le \varepsilon$ $\mathsf{VectorSubspace} \ :: \ \forall A \in \mathsf{BOOL} \ . \ \mathsf{ProperlyAtomless}(A) \subset_{\mathbb{R}\text{-VS}} \mathsf{ba}(A)$ $\mathsf{Proof} = 1 \ \mathsf{Assume} \ f \ \text{is properly Atomless}.$ $2 \ \mathsf{Then} \ f \ \text{is bounded}.$ $2.1 \ \mathsf{There} \ \text{is a finite partition of unity} \ P \ \mathsf{such that} \ |f(a)| < 1 \ \text{for any} \ p \in P \ \text{and} \ a \in (p).$ $2.2 \ \mathsf{Then} \ |f(a)| = \left|f\left(a\bigvee P\right)\right| = \left|\sum_{p \in P} f(ap)\right| \le \sum_{p \in P} |f(ap)| \le |P| < \infty.$ $3 \ \mathsf{Then} \ \alpha P \ \mathsf{may} \ \mathsf{use simmilar partitions} \ \mathsf{as} \ P \ \mathsf{fo} \ \frac{\varepsilon}{|\alpha|}.$ $4 \ \mathsf{And} \ \mathsf{a sum} \ f + g \ \mathsf{may} \ \mathsf{use intermeshes} \ \mathsf{of} \ f \ \mathsf{and} \ g.$

ContinuousPartitioningTHM1 ::

 $:: \forall A : \sigma\text{-Algebra} \ . \ \forall I \in \mathsf{SET} \ . \ \forall f : I \to \mathsf{a}_+(A) \ .$

$$. \ \forall \alpha \in A \ . \ \exists \alpha \in \left[\frac{1}{3}, \frac{2}{3}\right] \ . \ \exists a' \in (a) \ . \ \forall i \in I \ . \ \alpha f_i(a) = f_i(a') \ .$$

.
$$\forall a \in A : \exists u : [0,1] \uparrow (a) : u_0 = 0 \& u_1 = a \& \forall \tau \in [0,1] : \forall i \in I : f_i(u_\tau) = \tau f_i(a)$$

Proof =

- 1 Assume that there is $k \in I$ such that $f_k(a) > 0$.
- 1.1 Otherwise set $u_1 = a$ and $u_{\tau} = 0$.
- 2 Define $\gamma_i = \frac{f_i(a)}{f_k(a)}$.
- 3 Define sets $D: \mathbb{Z}_+ \to 2^{(a)}$ recursively in a such way that D is increasing, and each D_n is finite and ordered with $a, 0 \in D_n$ and $f_i(d) = \gamma_i f_k(d)$ for every $i \in I$.
- 3.1 Let $D_0 = \{0, a\}$.
- 3.2 Then assume $m = |D_n|$ and let $d: \{1, \ldots, m\} \to D_n$ be an an order-preserving enumeration.
- 3.3 Then by \aleph there is $c:\{1,\ldots,m-1\}\to (a)$ such that $c_l\le d_{l+1}\setminus d_l$ m

And a sequence $\alpha: \{1, \ldots, m-1\} \to \left[\frac{1}{3}, \frac{2}{3}\right]$ such that $f_i(c_l) = \alpha_l f_i(d_{l+1} \setminus d_l)$ for any $i \in I$.

- 3.4 Define $D_{n+1} = D_n \cup \{d_l \vee c_l | l \in \{1, \dots, m-1\}\}.$
- 3.5 The it is obvious that D_{n+1} is finite and ordered.
- 3.6 So we constructed and increasing D with a property $f_i(d_{l+1} \setminus d_l) \le \left(\frac{2}{3}\right)^n f_i(a)$

for any $i \in I$ and d being enumeration of D_n as above.

$$4 \text{ Set } C = \bigcup_{n=1}^{\infty} D_n.$$

- 5 Then C is countale totally ordered set with $0, a \in C$ and $f_k(C)$ is dense in $[0, f_k(a)]$.
- 6 Define $u_{\tau} = \sup\{c \in C, f_k(c) \le \tau f_k(a)\}$.
- 6.1 This supremum has to exists.
- 6.2 As $f_k(C)$ is dense in $[0, f_k(a)]$ there is a sequence $c: \mathbb{N} \to C$ with $\lim_{n \to \infty} c_n = \tau f_k(a)$.
- 6.3 Without loss of generality we may assume that c is non-decreasing.
- 6.4 And we may define $u_{\tau} = \bigvee_{n=1}^{\infty} c_n$.
- 7 Then $u_0 = 0$ and $u_1 = a$ and $f_i(u_\tau) = \tau f_i(a)$ for any $i \in I$.

ContinuousPartitioningTHM2 ::

 $:: \forall A: \sigma\text{-Algebra} \ . \ \forall n \in \mathbb{N} \ . \ \forall f: \{1,\dots,n\} \to \texttt{ProperlyAtomless}(A) \ .$

 $. \forall \aleph : \forall i \in \{1, \dots, n\} . 0 \le f_i \le f_1 .$

. $\forall a \in A : \exists u : [0,1] \uparrow (a) : u_0 = 0 \& u_1 = a \& \forall \tau \in [0,1] : \forall i \in \{1,\ldots,n\} : f_i(u_\tau) = \tau f_i(a)$

Proof =

- 1 We prove that conditions of Previous theorem are satisfied with $I = \{1, \ldots, n\}$.
- 2 At first consider the case $I = \{1\}$.
- 2.1 We seek to prove $a \in A$ there is an $\alpha \in \left[\frac{1}{3}, \frac{2}{3}\right]$ and $a' \in (a)$ such that $f_1(a') = \alpha f_1(a)$.
- 2.2 Then there is finite partition of unity P such that $|f_1(c)| < \frac{1}{3}f_1(a)$ for any $p \in P$ and for any $c \le p$.
- 2.3 Then it must be possible to sample $Q \subset P$ in such a way that $a' = a \bigvee_{p \in Q} p$ and $\frac{f_1(a')}{f_1(a)} \in \left[\frac{1}{3}, \frac{2}{3}\right]$.
- 2.3.1 We know that $a = a \bigvee_{p \in P} p$ and $|f_1(ap)| \leq \frac{f_1(a)}{3}$.
- 2.3.2 So if $f_1(ap) < \frac{f_1(a)}{3}$ for some $p \in P$ there is also some $q \in P$ such that $f_1(a(p \lor q)) \le \frac{2f_1(a)}{3}$.
- 2.3.3 This Process must stop as $f_1(a) = f_1\left(a\bigvee_{p\in P}p\right) = \sum_{p\in P}f_1(ap)$.
- 3 We follow by induction.
- 3.1 Assume the theorem holds for all $i \in I$ with i < m and we have corresponding u for $\{1, \ldots, m-1\}$.
- $3.2 |f_m(u_t) f_m(u_s)| = f_m(u_t \setminus u_s) \le f_0(u_t \setminus u_s) = (t s)f_0(a) \text{ for } 0 \le s \le t \le 1.$
- 3.3 So $\phi(t) = f_m(u_t)$ is continuous.
- 3.4 and the function $\psi: \left[0, \frac{1}{2}\right] \to \mathbb{R}_+$ defined by $\psi(t) = f_m(u_{t+\frac{1}{2}}) f_m(u_t)$ is continuous.
- 3.5 Note that $\psi(0) + \psi\left(\frac{1}{2}\right) = f_m(a)$.
- 3.6 So by the intermidiate value theorem there must be some $t \in \left[0, \frac{1}{2}\right]$ such that $\psi(t) = \frac{1}{2} f_m(a)$.
- 3.7 Define $u' = u_{t+\frac{1}{2}} \setminus u_t$.
- 3.8 Then $f_i(u') = \frac{1}{2} f_i(a)$ for all $i \in \{1, ..., m\}$.
- 3.9 But this means that that the assertion holds fo $\{1, \ldots, m\}$ And we can use the previous theorem.

1.4.3 Liapounoff's Convexity Theorem

```
 \begin{aligned} &\operatorname{vectorValuedFinitelyAdditiveFunctionals} :: \prod V : \mathbb{R}\text{-BAN} \cdot \operatorname{Contravariant}(\mathsf{BOOL}, \mathbb{R}\text{-VS}) \\ &\operatorname{finitlyAdditiveFunctionals}(A) = \mathsf{a}(A,V) := \\ &:= \left\{ f : A \to V : \forall (a,b) : \operatorname{DisjointPair}(A) \cdot f(a \vee b) = f(a) + f(b) \right\} \\ &\operatorname{finitelyAdditiveFunctionals}(A,B,\phi) = \mathsf{a}_{A,B}(\phi) := \phi_* \\ &\operatorname{vectorValuedBoundedAdditiveFunctionals} :: \prod V : \mathbb{R}\text{-BAN} \cdot \operatorname{Contravariant}(\mathsf{BOOL},\mathbb{R}\text{-VS}) \\ &\operatorname{boundedAdditiveFunctionals}(A) = \mathsf{ba}(A,V) := \left\{ f \in \mathsf{a}(A) : \exists r \in \mathbb{R}_+ \cdot \forall a \in a \cdot \|f(a)\| < r \right. \right\} \\ &\operatorname{boundedAdditiveFunctionals}(A,B,\phi) = \mathsf{ba}_{A,B}(\phi) := \phi_* \\ &\operatorname{ProperlyAtomless} :: \prod_{A \in \mathsf{BOOL}} \prod_{V \in \mathbb{R}\text{-BAN}} ?\mathsf{a}(A) \\ &f : \operatorname{ProperlyAtomless} \iff \\ &\iff \forall \varepsilon \in \mathbb{R}_{++} \cdot \exists P : \operatorname{PartitionOfUnity}(A) \cdot |P| < \infty \ \& \ \forall p \in P \cdot \forall a \in (p) \cdot \|f(a)\| \leq \varepsilon \\ &\operatorname{LiapounoffsConvexityTHM} :: \\ &:: \forall A : \sigma\text{-Algebra} \cdot \forall n \in \mathbb{N} \cdot \forall f : \operatorname{ProperlyAtomless}(A,\mathbb{R}^n) \cdot \operatorname{Convex}(\mathbb{R}^n, f(A)) \\ &\operatorname{Proof} = \\ &\operatorname{This} \text{ is an application of continuous decomposition theorems.} \\ &\cdots \\ &\square \end{aligned}
```

Note this is an additional problem then this theorem hold for infinite-dimensional vector spaces.

1.4.4 Countably Additive Functionals

countablyAdditiveFunctionals :: Contravariant(BOOL $_{\sigma}$, \mathbb{R} -VS) countablyAdditiveFunctionals (A) = ca(A) :=

$$:= \left\{ f \in \mathsf{a}(A) : \forall a : \mathtt{DisjointSequence}(A) \exists \bigvee_{n=1}^{\infty} a_n \Rightarrow f\left(\bigvee_{n=1}^{\infty} a_n\right) = \sum_{n=1}^{\infty} f(a_n) \right\}$$

countablyAdditiveFunctionals $(A, B, \varphi) = \operatorname{ca}_{A,B}(\varphi) := \varphi_*$

IncreasingExpression ::

$$:: \forall A \in \mathsf{BOOL} \ . \ \forall f \in \mathsf{ca}(A) \ . \ \forall a : \mathbb{N} \uparrow A \ . \ \exists \bigvee_{n=1}^\infty a_n \Rightarrow f\left(\bigvee_{n=1}^\infty a_n\right) = \lim_{n \to \infty} f(a_n)$$

Proof =

1 Note that $a_n \setminus a_{n-1}$ is a disjoint sequence with $a_0 = 0$.

2 Then
$$f\left(\bigvee_{n=1}^{\infty}a_n\right) = f\left(\bigvee_{n=1}^{\infty}a_n \setminus a_{n-1}\right) = \sum_{n=1}^{\infty}f(a_n \setminus a_{n-1}) = \lim_{n\to\infty}\sum_{k=1}^nf(a_k \setminus a_{k-1}) = \lim_{n\to\infty}f(a_n).$$

DecreasingExpression ::

$$:: \forall A \in \mathsf{BOOL} \ . \ \forall f \in \mathsf{ca}(A) \ . \ \forall a : \mathbb{N} \downarrow A \ . \ \exists \bigwedge_{n=1}^\infty a_n \Rightarrow f\left(\bigwedge_{n=1}^\infty a_n\right) = \lim_{n \to \infty} f(a_n)$$

Proof =

1 Note that $a_1 \setminus a_n$ is increasing.

2 Then
$$f\left(\bigwedge_{n=1}^{\infty} a_n\right) = f\left(a_1 \setminus \bigvee_{n=1}^{\infty} (a_1 \setminus a_n)\right) = f(a_1) - f\left(\bigvee_{n=1}^{\infty} (a_1 \setminus a_n)\right) = f(a_1) - \lim_{n \to \infty} f(a_1 \setminus a_n) = f(a_1) - \lim_{n \to \infty} f(a_1) - f(a_n) = \lim_{n \to \infty} f(a_n).$$

 $\textbf{Restriction} :: \, \forall A \in \mathsf{BOOL} \; . \; \forall f \in \mathsf{ca}(A) \; . \; \forall a \in A \; . \; \Lambda c \in A \; . \; f(ac) \in \mathsf{ca}(A)$

Proof =

...

$$\textbf{CAFByLimits} \, :: \, \forall A \in \textbf{BOOL} \, . \, \forall f \in \textbf{a}(A) \, . \, \forall \aleph : \forall a : \mathbb{N} \downarrow A \, . \, \bigwedge_{n=1}^{\infty} a_n = 0 \Rightarrow \lim_{n \to \infty} f(a_n) = 0 \, . \, f \in \textbf{ca}(A)$$

Proof =

1 Assume $a: \mathbb{N} \to A$ is a disjoint sequence with $\bigvee_{n=1}^{\infty} a_n$ existing.

2 Then
$$\bigwedge_{n=1}^{\infty} \bigvee_{m=n}^{\infty} a_n = 0$$
.

3 So,
$$\lim_{n\to\infty} f\left(\bigvee_{m=n}^{\infty} a_n\right) = 0$$
 by \aleph .

4 Then for any $m \in \mathbb{N}$ there is a rewrite $f\left(\bigvee_{n=1}^{\infty} a_n\right) = \sum_{k=1}^{m} f(a_k) + f\left(\bigvee_{n=m+1}^{\infty} a_n\right)$.

5 Taking a limit $m \to \infty$ produces the desired result $f\left(\bigvee_{n=1}^{\infty} a_n\right) = \sum_{n=1}^{\infty} f(a_n)$.

 $\begin{array}{l} {\tt DominatedCAF} \, :: \, \forall A \in {\tt BOOL} \, . \, \forall f \in {\tt a}(A) \, . \, \forall g \in {\tt ca}(A) \, . \, |f| \leq g \Rightarrow f \in {\tt ca}(A) \\ {\tt Proof} \, = \, \end{array}$

1 Assume $a: \mathbb{N} \downarrow A$ such that $\bigwedge_{n=1}^{\infty} a_n = 0$.

 $2 g \in \mathsf{ca}(A)$ imply that $\lim_{n \to \infty} g(a_n) = 0$.

3 But then domination Imply that $\lim_{n\to\infty} f(a_n) = 0$.

4 By previous theorem this means that $f \in ca(A)$.

1 (\Rightarrow) Assume f is bounded.

1.1 Then $f = f_{+} - f_{-}$ by simple Jordan's decomposition for finitely additive functionals.

1.2 We may write $f_+(a) = \sup\{f(c)|c \in A, c \le a\}$.

1.3 Assume $a: \mathbb{N} \to A$ is a disjoint sequence such that $\bigvee_{n=1}^{\infty} a_n$ exists.

1.4 Then
$$f_+\left(\bigvee_{n=1}^{\infty}a_n\right) = \sup\left\{f(c)\Big|c\in A, c\leq \bigvee_{n=1}^{\infty}a\right\} = \sup\left\{f\left(c\bigvee_{n=1}^{\infty}a_n\right)\Big|c\in A, c\leq \bigvee_{n=1}^{\infty}a\right\} = \sup\left\{f\left(\bigvee_{n=1}^{\infty}ca_n\right)\Big|c\in A, c\leq \bigvee_{n=1}^{\infty}a\right\} = \sup\left\{\sum_{n=1}^{\infty}f(ca_n)\Big|c\in A, c\leq \bigvee_{n=1}^{\infty}a\right\} = \sup\left\{\sum_{n=1}^{\infty}f(ca_n)\Big|c\in A, c\leq \bigvee_{n=1}^{\infty}a\right\} = \sup\left\{\sum_{n=1}^{\infty}f(c_n)\Big|c: \mathbb{N}\to A, \forall n\in \mathbb{N}: c_n\leq a_n\right\} = \sum_{n=1}^{\infty}\sup\{f(c)\Big|c\in A, c\leq a_n\} = \sum_{n=1}^{\infty}f_+(a_n)$$

1.4.1 the sum
$$\sum_{n=1}^{\infty} f(c_n)$$
 must exist as $\sum_{n=1}^{\infty} |f(c_n)| \leq \sum_{n=1}^{\infty} f_+(c_n)$.

1.4.2 And if
$$\sum_{n=1}^{\infty} f_+(c_n)$$
 diverges then the sequence $\phi_n = f_+\left(\bigvee_{k=1}^n c_k\right)$ must be unbounded.

1.4.3 But f_+ must bounded by basic Jordan decomposition theorem, a contradiction!

1.4.4 So
$$\sum_{n=1}^{\infty} f(c_n)$$
 exists as absolutely converging series.

2 (\Leftarrow) This direction follows from basic Jordan Decomposition.

HahnDecomposition1 :: $\forall A \in \sigma$ -Algebra . $\operatorname{ca}(A) \subset_{\mathbb{R}\text{-VS}} \operatorname{ba}(A)$

Proof =

1 Assume $f \in \mathsf{ba}(A)$.

2 Let
$$\gamma = \sup_{a \in A} f(a)$$
.

3 Then there is a disjoint sequence
$$a: \mathbb{N} \uparrow A$$
 such that $\gamma = \lim_{n=1} f(a_n) = f\left(\bigvee_{n=1}^{\infty} a_n\right) < \infty$.

3.1 Clearly there is a sequence $c: \mathbb{N} \to A$ such that $\lim_{n=1} f(c_n) = \gamma$.

3.2 Without loss of generality it may be assumed that $f(c_n) > 0$.

3.2.1 Otherwise $\sup_{a \in A} f(a) = f(0) = 0$.

3.3 So
$$\gamma = \lim_{n \to \infty} f(c_n) \le \lim_{n \to \infty} \sum_{k=1}^n f(c_k) = \lim_{n \to \infty} f\left(\bigvee_{k=1}^n c_k\right) \le \gamma$$
.

3.4 So
$$\gamma = \lim_{n \to \infty} f\left(\bigvee_{k=1}^{n} c_k\right)$$
.

3.5 Just define
$$a_n = \bigvee_{k=1}^n c_k$$
.

1 Let γ and a be as above.

2 Let
$$d = \bigvee_{n=1}^{\infty} a_n$$
.

3 Assume $c \in (\bar{d})$.

4 If $f(c) \ge 0$ then $f(c \lor d) > \gamma$ but this is impossible.

5 Otherwise if $c \leq d$ and f(c) < 0 then $f(d \setminus c) > \gamma$ which is impossible.

1.4.5 Completely Additive Functionals

```
completelyAdditiveFunctionals :: Contravariant(BOOL_{\tau}, \mathbb{R}-VS)
completelyAdditiveFunctionals (A) = \tau-ca(A) :=
   f := \left\{ f \in \mathsf{a}(A) : \forall D : \mathsf{DownwardsDirected}(A) : \bigvee_{d \in D} d = 0 \Rightarrow \inf_{d \in D} |f(d)| = 0 \right\}
CountaleAdditivity :: \forall A \in \mathsf{BOOL} \cdot \tau\text{-ca}(A) \subset_{\mathbb{R}\text{-VS}} \mathsf{ca}(A)
Proof =
 1 Assume f \in \tau-ca(A).
 2 Also Assume a: \mathbb{N} \to A is a decreasing with \bigwedge^{\infty} a_n = 0.
 3 Then \lim_{n=1} f(a_1) = 0.
 4 Hence f is countably additive.
 InfimumLocalization ::
    :: \forall A \in \mathsf{BOOL} : \forall f \in \tau\text{-ca}(A) : \forall \varepsilon \in \mathbb{R}_{++} : \forall D : \mathsf{DownwardsDirected}(A) : \forall \aleph : \inf D = 0.
    \exists d \in D : \forall c \in (d) : |f(c)| < \varepsilon
Proof =
 1 Assume otherwise.
 2 Let C = \{c \in A : |f(c)| \ge \varepsilon, \exists d : d \le c\}.
 3 Every member of A includes some member of C.
 3.1 \text{ Assume } d \in D.
 3.2 Then by (1) there is c \in A such that c \leq d and |f(c)| \geq \varepsilon.
 3.3 Let D'_d = \{d' \setminus c | d' \in D, d' \le d\}.
 3.4 Then D'_d is downwards directed and \lim D'_d = 0.
 3.5 So there is a d' such that |f(d' \setminus c)| < |f(c)| - \varepsilon.
 3.6 Let c' = d' \vee c.
 3.7 Then c' < d.
 3.8 Also |f(c')| = |f(d' \setminus c) + f(c)| \ge |f(c)| - |f(d' \setminus c)| \ge \varepsilon.
 3.9 So c' \in C.
 4 Since every member of C includes a member A it must be the case that C is downwards directed and \lim C
 5 On the other hand \lim_{c \in C} |f(c)| \ge \varepsilon.
 6 And this contradicts the fact of f \in \tau-ca(A).
 Continuity :: \forall A \in \mathsf{BOOL} . \forall f \in \tau\text{-}\mathsf{ca}_+(A) . \mathsf{OrderContinuous}(A, \mathbb{R}, f)
Proof =
```

```
Proof =
. . .
DominatedCAF :: \forall A \in \mathsf{BOOL} . \forall f \in \mathsf{a}(A) . \forall g \in \tau\text{-}\mathsf{ca}(A) . |f| \leq g \Rightarrow f \in \tau\text{-}\mathsf{ca}(A)
Proof =
. . .
CCCUpgrade :: \forall A : WithCountableChainCondition . ca(A) = \tau - ca(A)
Proof =
 1 Take f \in ca(A).
 2 Assume D is downwards directed in A with I inf I = 0.
 3 Then there is a countable C \subset D with inf C = 0 as A is CCC.
4 Let c be an enumeration of C with \lim_{n\to\infty} c_n = 0.
 5 Then it is possible to construct a sequence d \in D such that d_n \leq \bigvee c_k.
 6 Thus \inf f(D) \le \lim_{n \to \inf ty} f(d_n) = 0.
 7 and so f \in \tau-ca(A).
 Proof =
1 Assume f is not bounded.
2 Then we can construct recursevely a countal partition of unity such that \sup |f(p)| > \infty.
2.1 Select p_{0.1} = e.
2.2 On the step n there can be we seek elemen a with |f(a)| \ge n + |f(p_{n,n})|.
2.3 Then we can assert that a \leq p_{n,n}.
2.3.1 Define p_{n+1,k} = p_{n,k} fo k < n.
2.3.2 Define p_{n+1,n} = p_{n,n} \setminus a and p_{n+1,n+1} = a.
2.3.3 Then \bigvee_{k=1}^{n+1} p_{n+1,k} = \bigvee_{k=1}^{n-1} p_{n,k} \vee (p_{n,n} \setminus a) \vee (a) = \bigvee_{k=1}^{n} p_{n,k}.
2.3.4 Also |f(p_{n+1,n})| \ge n > n-1.
2.3.5 Then either \sup |f(p_{n+1,n})| = \infty or \sup |f(p_{n+1,n+1})| = \infty.
2.3.6 In the first case swap p_{n+1,n} and p_{n+1,n+1}.
2.4 As every element p_{\bullet,k} of the fixed index k changes at
most 2 times we can construct an infinite disjoint sequence.
2.5 Then |f(d_n)| \ge n - 1, so \sup_{m \in \mathbb{N}} |f(d_m)| = \infty.
 3 This contradicts (\aleph).
```

Restriction :: $\forall A \in \mathsf{BOOL}$. $\forall f \in \tau\text{-}\mathsf{ca}(A)$. $\forall a \in A$. $\Lambda c \in A$. $f(ac) \in \tau\text{-}\mathsf{ca}(A)$

```
JordanDecomposition1 :: \forall A \in \mathsf{BOOL} : \tau\text{-ca}(A) \subset_{\mathbb{R}\text{-VS}} \mathsf{ba}(A)
Proof =
 1 Assume that d is a disjoint sequence in A.
 2 Define D = \{a \in A : \exists N \in \mathbb{N} : \forall n \in \mathbb{N} : n \geq N \Rightarrow d_n \leq a\}.
 3 Then D is downwards directed.
4 Also as d_n^{\complement} \in D and d is disjoint it follows that \bigwedge D = 0.
5 So it follows that there is a \in D such that |f(c)| \le 1 for all c \le a.
 6 But this means that |f(d_n)| \leq 1 for a cofinite set of indexes.
 7 Thus, d is bounded.
 8 So, as d was arbitrary, by the previous theorem f is also bounded.
 JordanDecomposition2 :: \forall A \in \mathsf{BOOL} . \forall f \in \tau\text{-ca}(A) . f_+, f_- \in \tau\text{-ca}(A)
Proof =
 1 Write f_{+}(a) = \sup\{f(c) | c \in A, c \le a\}.
 2 Assume D is a downwards directed set with \bigwedge D = 0.
 3 Also assume \varepsilon \in \mathbb{R}_{++}.
 4 We know that there is d \in D such that |f(c)| \le \varepsilon for all c \le d.
 5 So \inf_{u \in D} f_+(u) \le f_+(d) \le \varepsilon.
 6 Thus, \inf_{d \in D} f_+(d) = 0 and f_+ \in \tau-ca(A).
 7 The same argument holds for f_{-}.
```

UnitySummability ::

$$:: \forall A \in \mathsf{BOOL} \ . \ \forall f: A \to \mathbb{R} \ . \ f \in \tau\text{-}\mathsf{ca}(A) \iff \forall P: \mathsf{PartitionOfUnity}(A) \ . \ f(e) = \sum_{p \in P} f(p)$$

Proof =

- $1 \implies Assume f \in \tau$ -ca(A).
- 1.1 Transfinite induction on |J| with trivial base f(e) = f(e).
- 1.1.1 Assume that the result holds for some non-limit ordinal κ .
- 1.1.2 Consider an ordering p of P with cardinality equivalent to $\kappa + 1$.
- 1.1.3 Let $f' \in \tau$ -ca(A) be a restiction of f to $p_{\kappa+1}^{\complement}$.
- 1.1.4 Also define Q to be qual to P but with $p_{\kappa+1}$ and p_{κ} replaced by $p_{\kappa} \vee p_{\kappa+1}$.
- 1.1.5 Then by induction hypothesis

$$f(e) = f'(e) + f(p_{\kappa+1}) = f(p_{\kappa+1}) + \sum_{q \in Q} f'(q) = f(p_{\kappa+1}) + \sum_{\tau \le \kappa} f(p_{\tau}) = \sum_{q \in P} f(q).$$

- 1.2 Now let κ be a limit cardinal and that induction hypothesis holds for all $\tau < \kappa$.
- 1.2.1 Note that $\sum_{p\in P} f(p)$ converges unconditionally to f(e) iff for any $\varepsilon \in \mathbb{R}_{++}$ there is finite $F \subset P$

such that
$$\left| f(e) - \sum_{p \in G} f(p) \right| \le \varepsilon$$
 for any finite G with $F \subset G$.

- 1.2.2 Consider a set $D = \left\{ e \setminus \bigvee_{p \in F} p \middle| F : \mathtt{Finite}(P) \right\}$.
- 1.2.3 Then, as P is a partition of unity $\bigwedge D = 0$.
- 1.2.4 Also *D* is downwards directed as $\bar{a} \wedge \bar{b} = \overline{a \vee b}$
- 1.2.5 So there is $d \in D$ such that $|f(c)| \le \varepsilon$ for all $c \le d$.
- 1.2.6 Represent $d = e \setminus \bigvee_{p \in F} p$ for some finite $F \subset P$.
- 1.2.7 Take some finite $G \subset P$ such that $F \subset G$.

$$1.2.8 \text{ Then } \left| f(e) - \sum_{p \in G} f(p) \right| = \left| f(e \setminus \bigvee_{p \in G} p \right| < \varepsilon \text{ as } e \setminus \bigvee_{p \in G} p \le e \setminus \bigvee_{p \in F} p \ .$$

- $2 \iff$ Now consider the case then the second condition holds
- 2.1 for any disjoint $D \subset A$ with $\bigvee D = a$ it holds that $f(a) = \sum_{d \in D} f(d)$.
- 2.1.1 Consider a partiotion of unity $P = D \cup \{\bar{a}\}.$

2.1.2 Then
$$\sum_{p \in P} f(p) = f(e) = f(a) + f(\bar{a}).$$

- 2.1.3 By substraction $f(\bar{a})$ one gets $\sum_{d \in D} f(d) = f(a)$.
- $2.2 \ f \in a(A).$
- 2.2.1 Consider $a, c \in A$ such that ac = 0.
- 2.2.2 Then $f(a \lor c) = f(a) + f(c)$ by (2.1).

- $2.3 \ f \in \mathsf{ba}(A)$.
- 2.3.1 Assume $d: \mathbb{N} \to A$ is disjoint.
- 2.3.2 Let \mathcal{D} be a set of all disjoint sets D with $\operatorname{Im} d \subset D$.
- 2.3.3 Then By Zorn Lemma there is an upper bound P which must be a partition of unity.
- 2.3.4 Then $f(e) = \sum_{p \in P} f(p)$.
- 2.3.5 But this means the $\lim_{n\to\infty} f(d) = 0$.
- 2.3.6 As d was arbitrary f(d) is bounded.
- 2.4 Now it is possible to write $f = f_+ f_-$.
- 2.5 Then $\sup_{d \in D} f_+(d) = f(a)$ for a disjoint set D with $\bigwedge D = a$.
- 2.5.1 Assume D is such disjoint set.
- 2.5.2 Then $f(b) = \sum_{d \in D} f(bd) \le \sum_{d \in D} f_{+}(d)$ for any $b \le a$.
- 2.5.3 So by taking supremum $f_{+}(a) \leq \sum_{d \in D} f_{+}(d)$.

$$2.5.4 \text{ But also } \sum_{d \in D} f_+(d) = \sup \left\{ \sum_{d \in F} f(d) \middle| F : \texttt{Finite}(D) \right\} = \sup \left\{ f\left(\bigvee F\right) \middle| F : \texttt{Finite}(D) \right\} \leq f_+(a) \; .$$

So
$$\sum_{d \in D} f_{+}(d) = f_{+}(a)$$
.

- $2.6 f_+ \in \tau\text{-ca}(A)$.
- 2.6.1 Assume D is a downwards directed set with $\bigwedge D = 0$.
- 2.6.2 Let $C = \{a \in A : \exists d \in D : da = 0\}$.
- 2.6.3 Then C is order dense.
- 2.6.4 So it is possible to extract a partition of Unity $P \subset C$.

2.6.5
$$\sum_{p \in P} f_+(p) = f_+(e)$$
 by (2.5).

- 2.6.6 So for any $\varepsilon \in \mathbb{R}_{++}$ there is some finite $F \subset C$ such that $f_+\left(e \setminus \bigvee F\right) = f_+(e) \sum_{p \in F} f_+(p) < \varepsilon$.
- 2.6.7 By construction of C there is a $d \in D$ such that $d \leq e \setminus \bigvee F$.
- 2.6.8 Therefore $f_+(d) < \varepsilon$.
- 2.6.9 $\inf_{d \in D} f_+(d) = 0$ as ε was arbitrary.
- $2.7 f_{-} \in \tau$ -ca(A) by simmilar arguments.
- 2.8 So $f \in \tau$ -ca(A).

Summability ::

$$:: \forall A \in \mathsf{BOOL} \ . \ \forall f \in \tau\text{-}\mathsf{ca}(A) \ . \ \forall D : \mathtt{Disjoint}(A) \ . \ \forall a \in A \ a = \bigvee D \Rightarrow f(a) = \sum_{f \in D} f(d)$$

Proof =

This is a part of the previous theorem.

StrictHahnDecomposition ::

$$:: \forall A \in \mathsf{BOOL} \ . \ \forall f \in \tau\text{-ca}(A) \ . \ \exists ! q \in A \ . \ \forall c \in C \ . \ 0 < c \leq q \Rightarrow f(c) > 0 \ \& \ c \leq \overline{(q)} \Rightarrow f(c) \leq 0 \text{ for a } f(c) \leq 0 \text{ for all } f(c) \leq 0 \text{ for$$

Proof =

1 Define
$$C_+ = \{a \in A : 0 < c \le a \Rightarrow f(c) > 0\}$$
 and $C_- = \{a \in A : c \le a \Rightarrow f(c) \le 0\}$.

2 $C_+ \cup C_-$ is order dense.

2.1 By ordinary Hahn decomposition there is $a' \in A$ such that $f(c) \geq 0$ for all $c \leq a'$ and $f(c) \leq 0$ for all $c \leq \overline{a'}$.

 $2.2 \ a\overline{a'} \in C_{-}$ for any $a \in A$ such that $a \ neg 0$.

2.3 In case $a\overline{a'} = 0$ it must be the case that $a \le a'$.

2.4 If $a \notin C_+$ there must be some $d \leq a$ such that $f(d) \leq 0$.

2.5 But $d \le a'$, so f(d) = 0 and f(c) = 0 for any $c \le d$.

2.6 So $d \in C_{-}$ and $ad \neq 0$.

3 So there is a partition of unity $P \subset C_+ \cup C_-$.

 $4 P \cap C_+$ is countable.

4.1 The series $\sum_{p \in P} f(p)$ must be absolutely convergent.

4.2 So any subseries of $\sum_{p \in P} f(p)$ must be strictly convergent.

4.3 This includes $\sum_{p \in P \cap C_+} f(p)$.

4.4 But f(p) > 0 any element $P \cap C_+$, so there can be at at a countable number of such elements.

5 Element $q = \bigvee (P \cap C_+)$ exists.

6 Clearly
$$f(a) = f\left(\bigvee_{p \in P \cap C_+} ap\right) = \sum_{p \in p \cap C_+} f(ap) > 0$$
 for any $a \le q$ such that $a \ne 0$.

7 Then $f(a) \leq 0$ if $a \leq \bar{q}$.

8 q is unique.

8.1 Assume p has same properties as q.

8.2 But then $f(p \setminus q) \leq 0$ and $f(q \setminus p) = 0$ meaning that $p \setminus q = q \setminus p = 0$.

8.3 Thus p = q.

$$\mathbf{saturation} :: \prod_{A \in \mathsf{BOOL}} \tau\text{-}\mathsf{ca}^2(A) \to A$$

 $\mathtt{saturation}\,(f,g) = [f > g]_A := \mathtt{StrictHahnDecomposition}(A,f-g)$

1.4.6 Absolutely Continuous Additive Functionals

```
AbsolutelyContinuousAdditiveFunctional ::
```

$$:: \prod (A, \mu) \in \mathsf{MA} : ?\mathsf{a}(A)$$

 $f: \texttt{AbsolutelyContinuousAdditiveFunctional} \iff f \in \mathsf{ac}(A,\mu) \iff \iff \forall \varepsilon \in \mathbb{R}_{++} \; . \; \exists \delta \in \mathbb{R}_{++} \; . \; \forall a \in A \; . \; \mu(a) \leq \delta \Rightarrow |f(a)| \leq \varepsilon$

 ${\tt ContinuousIsCompletelyAdditive} \ :: \ \forall (A,\mu) \in {\sf MA} \ . \ \forall f \in {\sf a}(A) \ . \ f \in C_0(A) \Rightarrow f \in \tau\text{-}{\sf ca}(A)$

Proof =

- 1 Assume D is a downwards directed in A with $\bigwedge D = 0$.
- 2 Then $\lim_{d \in D} d = 0$ in a measure topology of A.
- 3 So by continuity $\lim_{d \in D} |f(d)| = 0$ so $\inf_{d \in D} |f(d)| = 0$ also.
- 4 But this means that $f \in \tau$ -ca(A).

CountablyAdditive :: $\forall (A, \mu) \in \mathsf{MA} \cdot \mathsf{ca}(A) \subset \mathsf{ac}(A, \mu)$

Proof =

- 1 Take $f \in \mathsf{ca}(A) \setminus \mathsf{ac}(A, \mu)$.
- 2 Then there exists $\varepsilon \in \mathbb{R}_{++}$ such that for all $\delta \in \mathbb{R}_{++}$ there is an element $a \in A$ with $\mu(a) \leq \delta$ and $|f(a)| \geq \varepsilon$.
- 3 Select a sequence $a: \mathbb{N} \to A$ with $|f(a_n)| \ge \varepsilon$ and $\mu(a_n) \le 2^{-n}$.
- 4 Define a decreasing sequence $c_n = \bigvee_{k=n}^{\infty} a_k$.
- 5 Then $\mu(c_n) = 2^{1-n} \to 0$.
- 6 So $\lim_{n\to\infty} c_n = 0$ and $\bigvee_{n=1}^{\infty} c_n = 0$.
- 7 Thus, $\inf_{n \in \mathbb{N}} |f(c_n)| = 0$.

8 on the other hand $f(c_n) \geq \varepsilon$ which leads to a contradiction.

QuasiSemifinite :: $\forall (A, \mu) \in \mathsf{MA} : ?(A \to \mathbb{R})$

 $\varphi: \mathtt{QuasiSemifinite} \iff \forall a \in A : \varphi(a) \neq 0 \Rightarrow \exists c \in A^f : \varphi(ac) \neq 0$

```
ContinuousIsQuasiSemifinite ::
```

$$:: \forall (A,\mu) \in \mathsf{MA} \ . \ \forall f \in \mathsf{a}(A) \ .$$

$$f \in C_0(A) \Rightarrow f \in \mathsf{ca} \& \mathsf{QuasiSemifinite}(A)$$

Proof =

- 1 We know that $f \in \tau$ -ca(A), so $f \in ca(A)$.
- 2 Assume $a \in A$ such that $f(a) \neq 0$.
- 3 Then $a \neq 0$ and $\mu(a) \neq 0$.
- 4 Assume $\mu(a) = \infty$.
- 5 If $\mu(c) = \infty$ for any $c \in A$ such that $c \le a$ and $c \ne 0$ Then $\lim a = 0$.
- 6 And so $f(a) = \lim f(a) = 0$, which is impossible.
- 7 Therefore, $\{0\} \subsetneq C = A^f \cap (a)$.
- 8 Let $D = \{d \in A : d \le a \& \forall u \in A : 0 < u \le d \Rightarrow \mu(u) = \infty\}.$
- 9 Then $C \cup D$ is dense in (a).
- 10 Let $P \subset C \cup D$ be a partition of unity.
- 11 Note that f(d) = 0 by arguments simmilar to (5) and (6) for any $d \in D$.

12 Thus,
$$0 \neq f(a) = \sum_{p \in P} f(p) = \sum_{p \in P \cap C} f(p)$$
.

13 Therefore, there exists $c \in C$ such that $f(ac) = f(c) \neq 0$.

${\tt SigmaAdditiveAndQuasiSemifiniteIsUniformlyContinuous}::$

$$:: \forall (A,\mu) \in \mathsf{MA} \; . \; \forall f \in \mathsf{a}(A) \; . \; f \in \mathsf{ca} \; \& \; \mathtt{QuasiSemifinite}(A) \Rightarrow f \in \mathsf{UNI}\Big((A,\mu),\mathbb{R}\Big)$$

Proof =

- 1 f is bounded, so there is a Jordan decomposition $f = f_+ f_-$.
- 2 Define $g = f_+ + f_-$ and $\gamma = \sup\{g(a) | a \in A^f\}$.
- 3 Then there is a sequence of elements $a: \mathbb{N} \to A^f$ such that $\gamma = \lim_{n \to \infty} g(a_n)$.

4 Let
$$a^* = \bigvee_{n=1}^{\infty} a_n$$
.

- 5 If $d \in A$ and $a^*d = 0$ then f(d) = 0.
- 5.1 Assume $d \in A$ is such that $a^*d = 0$ and $c \in A^f$.
- 5.2 Then $|f(cd)| \le g(cd) \le g(c \setminus a_n) = g(a_n \vee c) g(a_n) \le \gamma g(a_n)$.
- 5.3 By taking the limit we see that |f(cd)| = 0 and hence f(cd) = 0.
- 5.4 As c was arbitrary as f is quasi-semifinite f(d) = 0.
- 6 Construct the sequence $c_n^* = \bigvee_{k=n}^{\infty} a_n$.
- 7 Then $\lim_{n\to\infty} g(a^* \setminus c_n^*) = 0$.
- 8 As f is countably additive it must be absolutely continuous.
- 9 Assume $\varepsilon \in \mathbb{R}_{++}$, then there is δ such that $|f(a)| \leq \varepsilon$ having $\mu(a) < \delta$ for all $a \in A$.
- 10 Assume $n \in \mathbb{N}$ is such that $|g(a^* \setminus c_n^*)| < \varepsilon$.
- 11 Then $|f(a)| \leq |f(ac_n^*)| + |f(a(a^* \setminus c_n^*))| + |f(a \setminus a^*)| \leq |f(ac_n^*)| + g(a^* \setminus c_n^*) \leq |f(ac_n^*)| + \varepsilon$ for any $a \in A$.
- 12 Assume $a, c \in A$ such that $\mu((b+c)c_n^*) < \delta$.
- 13 Then $|f(a) f(c)| \le |f(a \setminus c)| + |f(c \setminus a)| \le |f((a \setminus c)c_n^*)| + |f((a \setminus d)c_n^*)| + 2\varepsilon \le 4\varepsilon$.
- 14 But this means that f is uniformly continuous.

 ${\tt AdditiveFunctionalContinuity} \, :: \, \forall (A,\mu) \in {\sf MA} \, . \, \forall f \in {\sf a}(A) \, . \, f \in C_0(A) \iff f \in {\sf UNI}(A,\mathbb{R})$

Proof =

This follows from the previous theorems.

```
SemifiniteAdditiveFunctionalContinuity ::
```

$$:: \forall (A, \mu) : \mathtt{Semifinite} . \forall f \in \mathtt{a}(A) . f \in \tau \text{-}\mathtt{ca}(A) \iff f \in \mathsf{UNI}(A, \mathbb{R})$$

Proof =

- $1 (\Leftarrow)$ is obvious.
- 1.1 f is continuous in zero an hence completely additive.
- $2 \implies \text{consider } f \in \tau\text{-ca}(A).$
- 2.1 I will show that f is quasi-Semifinite.
- 2.1.1 Assume $a \in A$ is such that $f(a) \neq 0$.
- 2.1.2 Then $a \neq 0$.
- 2.1.3 $\{0\} \neq C = (a) \cap A^f$ is dense in (a) as μ is semifinite.
- 2.1.4 Let $P \subset C$ be a partiotion of unity for (a).
- 2.1.5 Then $0 \neq f(a) = \sum_{p \in P} f(p)$.
- 2.1.6 So there must be $c \in C$ such that $f(c) \neq 0$.
- 2.2 As f is also countably additive it must be uniformly continuous.

${\tt SigmaFiniteAdditiveFunctionalContinuity}::$

$$:: \forall (A,\mu): \sigma\text{-Finite} \ . \ \forall f \in \mathsf{a}(A) \ . \ f \in \tau\text{-}\mathsf{ca}(A) \iff f \in \mathsf{UNI}(A,\mathbb{R}) \iff f \in \mathsf{ca}(A)$$

Proof =

- 1 σ -finite measure algebras are CCC.
- 2 So every countably additive functional must be completely additive.

FiniteAdditiveFunctionalContinuity ::

$$:: \forall (A, \mu) :$$
Finite $. \forall f \in a(A) .$

$$f \in \tau$$
-ca $(A) \iff f \in \mathsf{UNI}(A,\mathbb{R}) \iff f \in \mathsf{ca}(A) \iff f \in \mathsf{ac}(A,\mu)$

Proof =

- 1 Assume f is absolutely continuous with repsect to μ .
- 2 Also assume D is downwards directed in A with $\bigvee D = 0$.
- 3 So $\inf_{d \in D} \mu(d) = 0$.
- 3.1 This argument requires μ to be finite.
- 4 By absolute continuity $\inf_{d \in D} |f(d)| = 0$.
- 5 As D was arbitrary this means that f is completely continuous .

```
canonical Additive Functionals Isomorphism:: \prod (X, \Sigma, \mu) \in \mathsf{MEAS}.
    . Isomorphism (\mathbb{R}\text{-VS}, \mathsf{a}(\mathsf{MA}(X,\Sigma,\mu)), \mathsf{a}_0(X,\Sigma,\mu))
\texttt{canonicalAdditiveFunctionalsIsomorphism}\,(f) = \varphi(f) := f \circ \pi_{\mathcal{N}_{\boldsymbol{\mu}}}
 1 The Mapping \varphi is cleary injective.
 2 It is also bijective.
 2.1 Assume f \in a_0(X, \Sigma, \mu).
 2.2 Then there is an auxiliary functional \bar{f} defined by \bar{f}[E] = E.
 2.3 This is well defined as f respects the ideal od zero sets.
 2.4 Then obviously \varphi(\bar{f}) = f.
Proof =
This is obvious.
IsomorphismCountablyAdditive ::
    :: \forall (X, \Sigma, \mu) \in \mathsf{MEAS} : \forall f \in \mathsf{a}\big(\mathsf{MA}(X, \Sigma, \mu)\big) : f \in \mathsf{ca}\big(\mathsf{MA}(X, \Sigma, \mu)\big) \iff \varphi(f) \in \mathsf{ca}(X, \Sigma, \mu)
Proof =
This is obvious.
IsomorphismCountablyAdditive ::
    :: \forall (X, \Sigma, \mu) \in \mathsf{MEAS} \ . \ \forall f \in \mathsf{a}\big(\mathsf{MA}(X, \Sigma, \mu)\big) \ . \ f \in \mathsf{ca}\big(\mathsf{MA}(X, \Sigma, \mu)\big) \iff \varphi(f) \in \mathsf{ac}(X, \Sigma, \mu) \cap \mathsf{ca}(X, \Sigma, \mu)
Proof =
This is obvious.
IsomorphismTruelyContinuous ::
    :: \forall (X, \Sigma, \mu) \in \mathsf{MEAS} \ . \ \forall f \in \mathsf{a}\big(\mathsf{MA}(X, \Sigma, \mu)\big) \ . \ f \in C\big(\mathsf{MA}(X, \Sigma, \mu)\big) \iff \varphi(f) \in \mathsf{tc}(X, \Sigma, \mu)
Proof =
This is obvious.
SemifiniteIsomorphismTruelyContinuous ::
    :: \forall (X, \Sigma, \mu) : \mathtt{Semifinite} : \forall f \in \mathsf{a}\big(\mathsf{MA}(X, \Sigma, \mu)\big) : f \in \tau\text{-}\mathsf{ca}\big(\mathsf{MA}(X, \Sigma, \mu)\big) \iff \varphi(f) \in \mathsf{tc}(X, \Sigma, \mu)
Proof =
This is obvious.
```

1.4.7 Radon-Nikodym's Isomorphism

$$\textbf{isomorphismOfRadonNikodym} :: \prod (X, \Sigma, \mu) : \textbf{Semifinite} \; .$$

$$. \; \textbf{Isomorphism} \Big(\textbf{OVS}, \mathbf{L}^1(X, \Sigma, \mu), \tau\text{-ca} \big(\textbf{MA}(X, \Sigma, \mu) \big) \Big)$$

$$\textbf{isomorphismOfRadonNikodym} \left([f] \right) = \rho \nu[f] := \Lambda[E] \in \Sigma_{\mu} \; . \; \int_{E} f \; d\mu$$

1 The expression $\int_{E} f d\mu$ above is clearly well defined for an integrable f as [E]

is defined up to a set of the measure zero.

- 2 [f] Is also defined up to function g equal to 0 almost everywhere μ so the whole operator $\rho\nu$ is well defined.
- $3 \rho \nu$ is invertible.
- 3.1 Assume $f \in \tau$ -ca $(\Sigma_{\mu}, \bar{\mu})$.
- 3.2 Then $\varphi(f)$ is truly continuous additive functional on (X, Σ, μ) as this space is semifinite.
- 3.3 So by classical Radon-Nikodym's theorem there is $\frac{d\varphi(f)}{d\mu} \in L^1(X, \Sigma, \mu)$

such that
$$\varphi(f)(E) = \int_E \frac{d\varphi(f)}{d\mu} d\mu$$
 for any $E \in \Sigma$.

3.4 So define
$$(\rho\nu)^{-1}(f) = \left[\frac{d\varphi(f)}{d\mu}\right] \in \mathbf{L}^1(X,\Sigma,\mu)$$
.

4 The linearity and order preservation is pretty obvious for $\rho\nu$.

Question: Is this a natural equivalence of functors?

1.4.8 Standard Extension

CompleteleAdditiveRestriction ::

$$:: \forall (A,\mu) : \texttt{MeasureAlgebra} \ . \ \forall a \in A^f \ . \ (\Lambda c \in A \ . \ \mu(ac)) \in \tau\text{-ca}(A)$$

 Proof $=$

- 1 As μ is additive its restriction is also additive.
- 2 Assume D is a downwards directed in A with $\bigwedge D = 0$.
- 3 Then aD is still downwards directed in A^f and $\bigwedge aD = 0$.
- 4 Note, that by choice of a the restriction is finitely additive.
- 5 Then $\inf_{d \in D} \mu(ad) = \inf_{d \in aD} \mu(d) = 0.$

StandardExtensionLemma ::

```
:: \forall (A,\mu) \in \mathtt{FiniteMeasureAlgebra} \ . \ \forall (C,\nu) \subset_{\mathsf{MA}} (A,\mu) \ . \ \exists ! \mathsf{ca}(C,\nu) \xrightarrow{R} \mathsf{ca}(A,\mu) : \mathsf{OVS} \ . \\ . \ \forall f \in \mathsf{ca}(C,\nu) \ . \ \forall \alpha \in \mathbb{R} \ . \ R(f)_{|C} = f \ \& \ [R(f) > \alpha \mu] = [f > \alpha \nu]
```

Proof =

- 1 Represent (A, μ) as a measure algebra of the measure space $(X, \Sigma, \hat{\mu})$.
- 2 Then (C, ν) can be seen as a measure algebra of the measure space $(X, T, \hat{\nu})$ with $T \subset \Sigma$ and $\hat{\nu} = \hat{\mu}_{|T}$.
- $3 \varphi(f) \in \mathsf{tc}(X, T, \hat{\nu}) \text{ for any } f \in \mathsf{ca}(C, \nu) .$
- 4 So there is a Radon-Nikodym presentation $\phi = \rho \nu^{-1}(f)$ such that $f[E] = \int_E \phi \ d\hat{\nu}$ for any $E \in T$.
- 5 Define $R(f)[E] = \int_{E} \phi \, d\hat{\mu}$ for any $E \in \Sigma$.
- $6 [R(f) > \alpha \mu] \in C.$
- 6.1 Define level sets $H_{\alpha} = \{x \in X : \phi(x) > \alpha\} \in T$.
- 6.2 $\int_{E} \phi \ d\mu > \alpha \hat{\mu}(E)$ if $E \subset H_{\alpha}$ and $\hat{\mu}(E) > 0$ for any $E \in \Sigma$.
- 6.3 $\int_{E} \phi \ d\mu \le \alpha \hat{\mu}(E)$ if $E \cap H_{\alpha} = \emptyset$ for any $E \in \Sigma$.
- 6.4 This can be rewritten in terms of measur algebras.
- 6.5 $R(f)(a) > \alpha \mu(a)$ if $a \leq [H_{\alpha}]$ and $a \neq 0$ for any $a \in A$.
- 6.6 And $R(f)(a) \leq \alpha \mu(a)$ if $a[H_{\alpha}] = 0$ for any $a \in A$.
- 6.7 Thus, $[R(f) > \alpha \mu] = [H_{\alpha}] \in C$.
- 7 Clearly $R(f)_{|C} = f$.
- 8 Note, that $\mu_{|C} = \nu$.
- 9 Therefore, $[R(f) > \alpha \mu] = [f > \alpha \nu]$ for all $\alpha \in \mathbb{R}$.
- 10 R is uinquily determined.
- 10.1 Assume g has all required properties.
- 10.2 Then $[g > \alpha \mu] = [f > \alpha \nu] = [R(f) > \alpha \mu]$ for all $\alpha \in \mathbb{R}$.
- 10.3 Then there is a measurable function $\gamma: X \to \mathbb{R}$ such that $\int_E \gamma \ d\mu = g[E]$ for any $E \in \Sigma$.
- 10.4 But then level sets of γ equal to level sets of ϕ modulo $\mu\text{-measure zero.}$
- 10.5 So $\gamma = \phi$ μ -almost everywhere.
- 10.6 Thus R(f) = g.

Measure :: $\forall (A, \mu)$: FiniteMeasureAlgebra . $\forall (C, \nu) \subset_{\mathsf{MA}} (A, \mu)$. $R(\nu) = \mu$

Proof =

In this case $\phi(x) = 1$.

PartitionOfUnity ::

 $:: \forall (A,\mu) : \mathtt{FiniteMeasureAlgebra} \ . \ \forall (C,\nu) \subset_{\mathsf{MA}} (A,\mu) \ . \ \forall f : \mathbb{N} \to \mathsf{ca}_+(C,\nu) \ .$

.
$$\forall \aleph : \forall c \in C . \nu(c) = \sum_{n=1}^{\infty} f_n(c) . \forall a \in A . \mu(a) = \sum_{n=1}^{\infty} R(f_n)(a)$$

Proof =

1 Let $\phi: \mathbb{N} \to L^1(X, T, \hat{\nu})$ be functional representations for f_n as in the previous theorem .

2 Define
$$\gamma_n = \sum_{k=0}^n \phi_k$$
.

3 Then γ is an increasing sequence such that $\lim_{n\to\infty} \gamma_n = 1$ almost everywhere μ .

4 But then
$$\sum_{n=1}^{\infty} R(f_n)[E] = \sum_{n=1}^{\infty} \int_{E} \phi_n \ d\hat{\mu} = \lim_{n \to \infty} \int_{E} \gamma_n \ d\hat{\mu} = \int_{E} \lim_{n \to \infty} \gamma_n \ d\hat{\mu} = \int_{E} d\hat{\mu} = \mu[E].$$

4.1 Here we used monotonic convergence theorem.

- 2 Maharam's Theory
- 3 Abstract Ergodic Theory
- 4 Measurable Algebras

Sources

- 1. O. Vladimirskaya Classes of Banach spaces connected with the Lyapunov convexity 1999
- 2. D. H. Fremlin Measure Theory Volume 3 (32,33,34,37,38,39) 2016