GRU

Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine Translation

황주훈

INDEX

O 1
RNN
LSTM

O 2
GRU Model

Result & Conclusion

01. 배경지식

E=Error E=Y - ŷ

$$\begin{split} s_t &= \tanh\left(Ux_t + Ws_{t-1}\right) \\ \hat{y}_t &= softmax\left(Vs_t\right) \\ \frac{\partial E_3}{\partial W_s} &= \frac{\partial E_3}{\partial \bar{y}_3} \frac{\partial \bar{y}_3}{\partial \bar{s}_3} \frac{\partial \bar{s}_3}{\partial W_s} \end{split}$$

$$\begin{split} s_t &= \tanh\left(Ux_t + Ws_{t-1}\right) \\ \hat{y}_t &= softmax\left(Vs_t\right) \\ \frac{\partial E_3}{\partial W_s} &= \frac{\partial E_3}{\partial \bar{y}_3} \frac{\partial \bar{y}_3}{\partial \bar{s}_3} \frac{\partial \bar{s}_3}{\partial W_s} \\ \frac{\partial E_3}{\partial W_s} &= \frac{\partial E_3}{\partial \bar{y}_3} \frac{\partial \bar{y}_3}{\partial \bar{s}_3} \frac{\partial \bar{s}_3}{\partial \bar{s}_2} \frac{\partial \bar{s}_2}{\partial W_s} \end{split}$$

$$\begin{split} s_t &= \tanh \left(U x_t + W s_{t-1} \right) \\ \hat{y}_t &= softmax \left(V s_t \right) \\ \frac{\partial E_3}{\partial W_s} &= \frac{\partial E_3}{\partial \bar{y}_3} \frac{\partial \bar{y}_3}{\partial \bar{s}_3} \frac{\partial \bar{s}_3}{\partial W_s} \\ \frac{\partial E_3}{\partial W_s} &= \frac{\partial E_3}{\partial \bar{y}_3} \frac{\partial \bar{y}_3}{\partial \bar{s}_3} \frac{\partial \bar{s}_3}{\partial \bar{s}_2} \frac{\partial \bar{s}_2}{\partial W_s} \\ \frac{\partial E_3}{\partial W_s} &= \frac{\partial E_3}{\partial \bar{y}_3} \frac{\partial \bar{y}_3}{\partial \bar{s}_3} \frac{\partial \bar{s}_3}{\partial \bar{s}_2} \frac{\partial \bar{s}_2}{\partial \bar{s}_1} \frac{\partial \bar{s}_1}{\partial W_s} \\ \frac{\partial E_3}{\partial W_s} &= \frac{\partial E_3}{\partial \bar{y}_3} \frac{\partial \bar{y}_3}{\partial \bar{s}_3} \frac{\partial \bar{s}_3}{\partial \bar{s}_2} \frac{\partial \bar{s}_3}{\partial \bar{s}_1} \frac{\partial \bar{s}_3}{\partial W_s} + \\ &= \frac{\partial E_3}{\partial \bar{y}_3} \frac{\partial \bar{y}_3}{\partial \bar{s}_3} \frac{\partial \bar{s}_3}{\partial \bar{s}_2} \frac{\partial \bar{s}_2}{\partial W_s} + \\ &= \frac{\partial E_3}{\partial \bar{y}_3} \frac{\partial \bar{y}_3}{\partial \bar{s}_3} \frac{\partial \bar{s}_3}{\partial \bar{s}_2} \frac{\partial \bar{s}_2}{\partial W_s} + \\ &= \frac{\partial E_3}{\partial \bar{y}_3} \frac{\partial \bar{y}_3}{\partial \bar{s}_3} \frac{\partial \bar{s}_3}{\partial \bar{s}_2} \frac{\partial \bar{s}_2}{\partial W_s} + \\ &= \frac{\partial E_3}{\partial \bar{y}_3} \frac{\partial \bar{y}_3}{\partial \bar{s}_3} \frac{\partial \bar{s}_3}{\partial \bar{s}_2} \frac{\partial \bar{s}_2}{\partial W_s} + \\ &= \frac{\partial E_3}{\partial \bar{y}_3} \frac{\partial \bar{y}_3}{\partial \bar{s}_3} \frac{\partial \bar{s}_3}{\partial \bar{s}_2} \frac{\partial \bar{s}_2}{\partial W_s} + \\ &= \frac{\partial E_3}{\partial \bar{y}_3} \frac{\partial \bar{y}_3}{\partial \bar{s}_3} \frac{\partial \bar{s}_3}{\partial \bar{s}_2} \frac{\partial \bar{s}_2}{\partial W_s} + \\ &= \frac{\partial E_3}{\partial \bar{y}_3} \frac{\partial \bar{y}_3}{\partial \bar{s}_3} \frac{\partial \bar{s}_3}{\partial \bar{s}_2} \frac{\partial \bar{s}_2}{\partial W_s} + \\ &= \frac{\partial E_3}{\partial \bar{y}_3} \frac{\partial \bar{y}_3}{\partial \bar{s}_3} \frac{\partial \bar{s}_3}{\partial \bar{s}_2} \frac{\partial \bar{s}_2}{\partial W_s} + \\ &= \frac{\partial E_3}{\partial \bar{y}_3} \frac{\partial \bar{y}_3}{\partial \bar{s}_3} \frac{\partial \bar{s}_3}{\partial \bar{s}_2} \frac{\partial \bar{s}_2}{\partial W_s} + \\ &= \frac{\partial E_3}{\partial \bar{y}_3} \frac{\partial \bar{y}_3}{\partial \bar{s}_3} \frac{\partial \bar{s}_3}{\partial \bar{s}_2} \frac{\partial \bar{s}_3}{\partial \bar{s}_1} \frac{\partial \bar{s}_3}{\partial W_s} + \\ &= \frac{\partial E_3}{\partial \bar{y}_3} \frac{\partial \bar{y}_3}{\partial \bar{s}_3} \frac{\partial \bar{s}_3}{\partial \bar{s}_2} \frac{\partial \bar{s}_3}{\partial \bar{s}_1} \frac{\partial \bar{s}_3}{\partial W_s} + \\ &= \frac{\partial E_3}{\partial \bar{y}_3} \frac{\partial \bar{y}_3}{\partial \bar{s}_3} \frac{\partial \bar{s}_3}{\partial \bar{s}_2} \frac{\partial \bar{s}_3}{\partial \bar{s}_1} \frac{\partial \bar{s}_3}{\partial W_s} + \\ &= \frac{\partial E_3}{\partial \bar{y}_3} \frac{\partial \bar{y}_3}{\partial \bar{s}_3} \frac{\partial \bar{s}_3}{\partial \bar{s}_2} \frac{\partial \bar{s}_3}{\partial \bar{s}_3} \frac{\partial \bar{s}_$$

왜 tanh를 쓰는가?

Activation Function

□ Sigmoid

□ Tanh

	Sigmoid
f(x)	$\frac{1}{1+e^{-x}} (y:0 \sim 1)$
$\frac{d}{dx}f(x)$	$\frac{1}{1+e^{-x}}\left(1-\frac{1}{1+e^{-x}}\right)(y':0\sim0.25)$

	Tanh
f(x)	$\frac{e^x - e^{-x}}{e^x + e^{-x}} \text{ (y: } -1 \sim 1\text{)}$
$\frac{d}{dx}f(x)$	$1 - \tanh(x)^2 (y': 0 \sim 1)$

왜 tanh를 쓰는가?

1보다 미분값이 클경우 Gradient Exploding

1보다 미분값이 클경우 Gradient Exploding

Gradient cliffing

1보다 미분값이 작을경우 Gradient Vanishing

Forget Gate

$$f_t = \sigma\left(W_f \cdot [h_{t-1}, x_t] + b_f\right)$$

Input Gate

$$i_t = \sigma \left(W_i \cdot [h_{t-1}, x_t] + b_i \right)$$

$$\tilde{C}_t = \tanh(W_C \cdot [h_{t-1}, x_t] + b_C)$$

Cell update

$$C_t = f_t * C_{t-1} + i_t * \tilde{C}_t$$

Output Gate

$$o_t = \sigma (W_o [h_{t-1}, x_t] + b_o)$$
$$h_t = o_t * \tanh (C_t)$$

02.GRU Model

Gate	Equation
Reset Gate	$r_t = \sigma(W_{xr}x_t + W_{hr}h_{t-1} + b_r)$
Forget Gate	$z_t = \sigma(W_{xz}x_t + W_{hz}h_{t-1} + b_z)$
Input Gate	$1-z_t$
Hidden State	$g_t = tanh(W_{xg}x_t + W_{hg}(r_t igotimes h_{t-1}) + b_g)$
	$h_t = z_t igotimes h_{t-1} + (1-z_t) igotimes g_t$

Gate	Equation	
Reset Gate	$r_t = \sigma(W_{xr}x_t + W_{hr}h_{t-1} + b_r)$	
Forget Gate	$z_t = \sigma(W_{xz}x_t + W_{hz}h_{t-1} + b_z)$	
Input Gate	$1-z_t$	
Hidden State	$g_t = tanh(W_{xg}x_t + W_{hg}(r_t \bigodot h_{t-1}) + b_g)$	
	$h_t = z_t igotimes h_{t-1} + (1-z_t) igotimes g_t$	

Gate	Equation
Reset Gate	$r_t = \sigma(W_{xr}x_t + W_{hr}h_{t-1} + b_r)$
Forget Gate	$z_t = \sigma(W_{xz}x_t + W_{hz}h_{t-1} + b_z)$
Input Gate	$1-z_t$
Hidden State	$g_t = tanh(W_{xg}x_t + W_{hg}(r_t igotimes h_{t-1}) + b_g)$
	$h_t = z_t \bigodot h_{t-1} + (1-z_t) \bigodot g_t$

Figure 1: An illustration of the proposed RNN Encoder–Decoder.

$$\underbrace{p(y_1, \dots, y_{T'} \mid x_1, \dots, x_T)}, \\ \mathbf{\underline{Encoder}} \longrightarrow \mathbf{h}_{\langle t \rangle} = f(\mathbf{h}_{\langle t-1 \rangle}, x_t),$$

Figure 1: An illustration of the proposed RNN Encoder–Decoder.

Figure 1: An illustration of the proposed RNN Encoder–Decoder.

$$P(y_t|y_{t-1},y_{t-2},\ldots,y_1,\mathbf{c})=g\left(\mathbf{h}_{\langle t\rangle},y_{t-1},\mathbf{c}\right).$$

$$\max_{\boldsymbol{\theta}} \frac{1}{N} \sum_{n=1}^{N} \log p_{\boldsymbol{\theta}}(\mathbf{y}_n \mid \mathbf{x}_n),$$

03. Model-smt

p(e|f)

F가 주어줬을때 e가 나올 확률

 $p(e|f) \propto p(f|e)p(e)$

비례관계

 $ilde{e} = arg \max_{e \in e^*} p(e|f) = arg \max_{e \in e^*} p(f|e)p(e)$

가장 높은 확률로 나오는 표현을 골라 번역 e를 찾는다

03. Model-활용

$$\log p(\mathbf{f} \mid \mathbf{e}) = \sum_{n=1}^{N} w_n f_n(\mathbf{f}, \mathbf{e}) + \log Z(\mathbf{e}), \quad (9)$$

03. Result & Conclusion

03. Model-활용

Models	BLEU		
Models	dev	test	
Baseline	30.64	33.30	
RNN	31.20	33.87	
CSLM + RNN	31.48	34.64	
CSLM + RNN + WP	31.50	34.54	

03. Model-활용

THANK YOU!