📏 AdaDelta and RMSProp Optimization Algorithms

6 Problem Addressed

Traditional gradient descent may face the problem of **exploding or vanishing learning** rates (α) due to unbounded gradients. AdaDelta and RMSProp both address this by dynamically adjusting the learning rate using a form of gradient normalization.

* Key Idea: Exponential Weighted Average of Squared Gradients

To prevent uncontrolled growth of the learning rate:

• Use an exponentially decaying average of past squared gradients:

$$S_{d\omega_t} = eta S_{d\omega_{t-1}} + (1-eta) \left(rac{\partial L}{\partial \omega}
ight)^2$$

Similarly for bias:

$$S_{db_t} = eta S_{db_{t-1}} + (1-eta) \left(rac{\partial L}{\partial b}
ight)^2$$

- Here,
 - β is typically set to 0.9 or 0.95.
 - The smaller term $(1-\beta)$ ensures that the contribution from the current gradient is limited, preventing large spikes.

Learning Rate Adjustment (AdaDelta/RMSProp Style)

To compute the effective learning rate:

$$\eta' = rac{\eta}{\sqrt{S_{d\omega_t}} + \epsilon}$$

- ullet is a small constant to prevent division by zero.
- This approach scales down the learning rate when gradients are large and scales it up when gradients
 are small.

Weight and Bias Update Rules

• Weight update:

$$\omega_t = \omega_{t-1} - \eta' \cdot rac{\partial L}{\partial \omega_{t-1}}$$

Bias update:

$$b_t = b_{t-1} - \eta' \cdot rac{\partial L}{\partial b_{t-1}}$$

These updates are computed at each mini-batch iteration using the updated exponential moving averages.

Summary of Steps in Mini-Batch Training

- 1. Compute gradients:
 - $\frac{\partial L}{\partial \omega}$ $\frac{\partial L}{\partial b}$
- 2. Update squared gradient averages:
 - $S_{d\omega}$ and S_{db}
- 3. Adjust learning rate η' using RMSProp/AdaDelta formula.
- 4. Update parameters ω_t, b_t

Are AdaDelta and RMSProp the Same?

Not exactly, but very similar:

Common ground:

Both use the idea of exponential moving averages of squared gradients to adaptively scale the learning rate per parameter.

- Differences:
 - o **RMSProp**: Uses a fixed global learning rate scaled by the running average.
 - o **AdaDelta**: Eliminates the need to manually set a learning rate by using ratios of accumulated updates to gradients.

Hence, while the mathematical intuition and core ideas are very close, AdaDelta goes a step further by removing the dependency on the learning rate hyperparameter.