Translation

- Translate(a,b): $\begin{bmatrix} x \\ y \end{bmatrix} \rightarrow \begin{bmatrix} x+a \\ y+b \end{bmatrix}$
- Problem: cannot represent translation using 2 by 2 matrices!
- Solution: homogeneous coordinates! Embed the affine space of dimension n in a space of dimension n+l
 - $\bullet \quad (x,y) \rightarrow (x,y,1)$
- Use a 3 by 3 linear transformation:

$$\begin{bmatrix} 1 & 0 & a \\ 0 & 1 & b \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} \rightarrow \begin{bmatrix} x+a \\ y+b \\ 1 \end{bmatrix}$$

The Projective Plane

The Projective Plane

- A point in the projective plane P^2 is represented by 3 coordinates, at least one of which is non-zero.
- Two 3-vectors \mathbf{a} , \mathbf{b} represent the same point in P^2 iff $\mathbf{a} = h\mathbf{b}$, where h is a non-zero scalar.
- A 2D point (x, y) in the Euclidean plane corresponds to all of the 3-vectors (hx, hy, h) in P^2 , such as (x, y, 1).
 - Note: this is a one-to-many correspondence!
- Geometric interpretation: each point (x,y) corresponds to a ray in 3D, from the origin (0,0,0) through the point (x,y,1)

The Projective Plane

- A 2D vector (x, y) in the Euclidean plane corresponds to all of the 3-vectors (hx, hy, 0) in P^2 , such as (x, y, 0).
- A 3-vector whose 3rd coordinate is 0 has two geometric interpretations (which are really the same):
 - A direction
 - A point at infinity

Homogeneous Coordinates

Translate(a,b):

$$\begin{bmatrix} 1 & 0 & a \\ 0 & 1 & b \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} x+a \\ y+b \\ 1 \end{bmatrix}$$

• Shear(a,b):

$$\begin{bmatrix} 1 & 0 & a \\ 0 & 1 & b \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} x+a \\ y+b \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & a & 0 \\ b & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} x+ay \\ bx+y \\ 1 \end{bmatrix}$$

Scale(a,b):

$$\begin{bmatrix} a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} ax \\ by \\ 1 \end{bmatrix}$$

• Rotate(θ):

$$\begin{bmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} x \cos \theta - y \sin \theta \\ x \sin \theta + y \cos \theta \\ 1 \end{bmatrix}$$

Homogeneous Matrices

 All of the 2D transformations we have seen so far can now be written as follows:

$$\begin{bmatrix} a & b & m \\ c & d & n \\ 0 & 0 & 1 \end{bmatrix}$$

• What happens when the last row is not [0, 0, 1]?

Combining Transformations

 A sequence of transformations can be collapsed into a single matrix using matrix multiplication:

$$\begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = T_{1,2,3} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

• Is the order of transformations important?

Example I

How to rotate about an arbitrary point?

Affine Transformations: Definition

- Let $T: A_1 \to A_2$, where A_1 and A_2 are affine spaces.
- Then T is said to be an affine transformation if:
 - T maps vectors to vectors and points to points
 - T is a linear transformation on vectors
 - If **p** is a point and **u** is a vector: $T(\mathbf{p} + \mathbf{u}) = T(\mathbf{p}) + T(\mathbf{u})$

Affine Transformations: Properties

• Affine transformations preserve affine combinations of points. In other words, given an affine transformation T and a point \mathbf{p} :

$$\mathbf{p} = \alpha_1 \mathbf{p}_1 + \cdots + \alpha_k \mathbf{p}_k$$

- it holds that: $T(\mathbf{p}) = \alpha_1 T(\mathbf{p}_1) + \cdots + \alpha_k T(\mathbf{p}_k)$
- Intersections between lines are preserved.
- Parallel lines are preserved.

Special Cases

• **Note**: affine transformation, in general, do not preserve lengths or angles.

• Rigid-body transformations:

- preserve angles and lengths
- an arbitrary sequence of translations and rotations

• Similarity transformations:

- preserve angles, but not lengths
- rigid transformations + uniform scaling

Transformations in 3D

3D Coordinate Systems

Right-handed coordinate system:

Left-handed coordinate system:

3D Transformations

A point is represented by a 3D column vector:

Homogeneous coordinates:

• Transformations are 4 by 4 matrices: $\begin{bmatrix} a & b & c & t_x \\ d & e & f & t_y \\ g & h & i & t_z \\ 0 & 0 & 0 & 1 \end{bmatrix}$

3D Transformations

• Translation:
$$\begin{bmatrix} 1 & 0 & 0 & a \\ 0 & 1 & 0 & b \\ 0 & 0 & 1 & c \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} = \begin{bmatrix} x+a \\ y+b \\ z+c \\ 1 \end{bmatrix}$$

• Scaling:
$$\begin{bmatrix} a & 0 & 0 & 0 \\ 0 & b & 0 & 0 \\ 0 & 0 & c & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} = \begin{bmatrix} ax \\ by \\ cz \\ 1 \end{bmatrix}$$

3D Shearing

• Shearing: $\begin{bmatrix} 1 & a & b & 0 \\ c & 1 & d & 0 \\ e & f & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} = \begin{bmatrix} x + ay + bz \\ cx + y + dz \\ ex + fy + z \\ 1 \end{bmatrix}$

- The change in each coordinate is a linear combination of all three
- Transforms a cube into a general parallelepiped

3D Rotation

Rotation about the x-axis:

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta & 0 \\ 0 & \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} = \begin{bmatrix} x \\ y \cos \theta - z \sin \theta \\ y \sin \theta + z \cos \theta \\ 1 \end{bmatrix}$$

- Rotations about each of the other two axes are defined similarly.
- Rotations are orthogonal matrices, preserving distances and angles.

Rotation About an Arbitrary Axis

- The idea: make the arbitrary axis coincident with one of the coordinate axes, rotate, and then transform back:
 - Translate rotation axis to pass through the origin;
 - Rotate about the X axis into the XZ plane;
 - Rotate about the Y axis into the YZ plane rotation axis is now aligned with the Z axis;
 - Rotate about the Z axis by the desired angle;
 - Apply inverse rotations about the Y and X axes;
 - Apply inverse translation.

Euler Angles

- **Euler's rotation theorem**: any rotation or sequence of rotations of a rigid body about a fixed point is equivalent to a single rotation by a given angle θ about a fixed axis (called the *Euler axis*) that runs through the fixed point.
- **Euler angles**: the orientation of an object is specified by rotation angles about the X,Y, Z axes (performed in this order)
- Euler angle interpolation is not intuitive
- Gimbal lock

Euler Angles

Quaternions

- Rotations may be represented by unit quaternions: $q = a + b\mathbf{i} + c\mathbf{j} + d\mathbf{k}$
- a, b, c, d are real numbers, $a^2 + b^2 + c^2 + d^2 = 1$
- $i^2 = j^2 = k^2 = -1$ ij = k = -ji jk = i = -kj ki = j = -ik

 Rotation by angle φ about the unit vector [b, c, d] corresponds to the quaternion:

$$q = \cos\frac{\phi}{2} + b\sin\frac{\phi}{2}\mathbf{i} + c\sin\frac{\phi}{2}\mathbf{j} + d\sin\frac{\phi}{2}\mathbf{k}$$

Quaternions (cont'd)

The rotation matrix corresponding to a quaternion:

$$R = egin{pmatrix} a^2 + b^2 - c^2 - d^2 & 2bc - 2ad & 2bd + 2ac \ 2bc + 2ad & a^2 - b^2 + c^2 - d^2 & 2cd - 2ab \ 2bd - 2ac & 2cd + 2ab & a^2 - b^2 - c^2 + d^2 \end{pmatrix}$$

- Performing successive rotations corresponds to multiplying unit quaternions
- Unit quaternions can be thought of as points on the unit sphere in 4D
- Interpolating between orientations can be done by spherical linear interpolation (slerp) between unit quaternions!

3D Reflection

• Through the xy plane: $\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$

• How can we reflect through some arbitrary plane?

Transforming Planes

- One way to transform a plane is by transforming any three non-collinear points on the plane.
- Another way is to transform the plane equation coefficients [A,B,C,D] directly:

as [A,B,C,D] directly:
$$Ax + By + Cz + D = \begin{bmatrix} A & B & C & D \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} = 0$$

Given a transformation T that transforms [x,y,z] to [x',y',z'] find A', B', C', and D', such that:

$$\begin{bmatrix} A' & B' & C' & D' \end{bmatrix} \begin{bmatrix} x' \\ y' \\ z' \\ 1 \end{bmatrix} = 0$$

(continued)

Note that
$$\begin{bmatrix} A & B & C & D \end{bmatrix} T^{-1} T \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} = 0$$

Thus, the transformation that we should apply to

the plane equation is:

$$(T^{-1})^T \begin{bmatrix} A \\ B \\ C \\ D \end{bmatrix} = \begin{bmatrix} A' \\ B' \\ C' \\ D' \end{bmatrix}$$

This is how we transform normal vectors!