

Una questione genetica

Action Comics #1 1938

Una questione genetica

la struttura fisica degli abitanti era avanzata di milioni di anni rispetto alla nostra. Raggiunta la maturità, le persone di quella razza guadagnavano una forza titanica!

Una questione di gravità

Superman #1 1939

Una questione di gravità

I poteri sono dovuti alla maggiore gravità di Krypton

Una questione di gravità

I poteri sono dovuti alla maggiore gravità di Krypton

Le leggi che utilizzeremo

Moto

- velocità
- accelerazione

Le leggi che utilizzeremo

Moto

- velocità
- accelerazione

Tipi di moto

- moto rettilineo uniforme
- moto uniformemente accelerato

Le leggi che utilizzeremo

Forza ed energia

- forza
- gravità
- energia cinetica
- energia potenziale

Più in alto di un grattacielo

Su Superman #1 veniamo a sapere che Superman è in grado di superare con un balzo un palazzo alto 200 metri! L'eroe carica i muscoli come una molla e rilascia verso l'alto l'energia accumulata.

accelerazione

$$a = \frac{v_f - v_i}{\Delta t}$$

accelerazione

$$a = \frac{v_f - v_i}{\Delta t}$$

velocità media

$$v = \frac{v_f + v_i}{2} = \frac{h}{\Delta t}$$

accelerazione

$$a = \frac{v_f - v_i}{\Delta t}$$

velocità media

$$v = \frac{v_f + v_i}{2} = \frac{h}{\Delta t}$$

• La velocità iniziale di Superman è

$$v_i^2 = 2hg$$

accelerazione

$$a = \frac{v_f - v_i}{\Delta t}$$

velocità media

$$v = \frac{v_f + v_i}{2} = \frac{h}{\Delta t}$$

• La velocità iniziale di Superman è

$$v_i^2 = 2hg$$

ovvero $v = 62.6 \, m/s = 224 \, km/h$

I muscoli di Superman

• Energia:

$$\frac{1}{2}mv^2 = Fh$$

I muscoli di Superman

• Energia:

$$\frac{1}{2}mv^2 = Fh$$

Sostituendo i numeri si ottiene

$$E = 196000J$$

La gravità su Krypton

Salto in alto da fermo: 1,61 m. Vedi video

La gravità su Krypton

• energia potenziale

$$U = mgh$$

La gravità su Krypton

energia potenziale

$$U = mgh$$

 Sostituendo e invertendo per trovare l'accelerazione di gravità si ottiene

$$g = 1200m/s^2$$

Una sonda verso Krypton

Pianeti extrasolari rocciosi

Gravità, raggio, densità

$$g = \frac{4}{3}\pi G\rho r$$

Pianeti extrasolari rocciosi

Gravità, raggio, densità

$$g = \frac{4}{3}\pi G\rho r$$

- **CoRoT-7 b**; massa = $8,0 \pm 1,2 M_T$; raggio = $1,58 R_T$ (2009)
- **Kepler-36 b**; massa = $4,28 M_T$; raggio = $1,51 R_T$ (2011)
- **Kepler-68 c**; massa = $4, 8 M_T$; raggio = $0, 95 R_T$ (2011)
- Tau Ceti e (non ancora confermato); massa = $4, 3 M_T$ (2012)

Soluzioni al dilemma di Krypton

Sfera di Dyson costruita intorno a una stella di neutroni, la cui densità è circa 10¹⁴ volte più alta rispetto alla materia ordinaria

Il potere del Sole

Rao, stella di Krypton: rossa Sole, stella della Terra: bianca

L'efficienza di Superman

$$W_S = \frac{1}{2}m_S(v^2 - v_0^2) + m_S g \frac{v^3}{v_T^2} t$$

- \bullet m_S , massa di Superman
- v, velocità di Superman
- \bullet v_T velocità terminale
- v₀ velocità iniziale

L'efficienza di Superman

$$\eta = \frac{W_S}{S_c A_S t} = 656000\%$$

- $S_c = 1,47kW/m^2$, costante solare, indica la potenza irradiata dal Sole nell'unità di superficie
- \bullet A_S superficie di Superman

