Yifan 7hu

Iowa State University

Continuous Random Variables (Ch. 5.2)

Yifan Zhu

Introduction to Continuous Random Variables

Probability Density Functions

> Cumulative Distribution Functions

Outline

Introduction to Continuous Random Variables

Probability Density Functions

Cumulative Distribution Functions

A special case: the exponential distribution

Continuous Random Variables (Ch. 5.2)

Yifan Zhu

Introduction to Continuous Random Variables

Probability Density Functions

Cumulative Distributior Functions

Cumulative Distribution Functions

- Two types of random variables:
 - Discrete random variable: one that can only take on a set of isolated points (X, N, and S).
 - ► Continuous random variable: one that can fall in an interval of real numbers (*T* and *Z*).
- Examples of continuous random variables:
 - Z = the amount of torque required to loosen the next bolt (not rounded).
 - ► *T* = the time you'll have to wait for the next bus home.
 - ightharpoonup C =outdoor temperature at 3:17 PM tomorrow.
 - ightharpoonup L =length of the next manufactured part.

Probability Density Functions

Functions
A special case: the

- V: % yield of the next run of a chemical process.
- Y: % yield of a better process.
- ► How do we mathematically distinguish between *V* and *Y*, given:
 - ▶ Each has the same range: $0\% \le V, Y \le 100\%$
 - ► There are uncountably many possible values in this range.
- We want to show that Y tends to take on higher % yield values than V.

V and *Y* have *continuous* probability distributions

- ► The heights of these curves are not themselves probabilities.
- ► However, the the curves tell us that process *Y* will yield more product per run on average than process *V*.

Continuous Random Variables (Ch. 5.2)

Yifan Zhu

Introduction to Continuous Random Variables

Probability Density Functions

Cumulative Distribution Functions

A generic probability density function (pdf)

Continuous Random Variables (Ch. 5.2)

Yifan Zhu

Introduction to Continuous Random Variables

Probability Density Functions

Cumulative Distribution Functions

Outline

Introduction to Continuous Random Variables

Probability Density Functions

Cumulative Distribution Functions

A special case: the exponential distribution

Continuous Random Variables (Ch. 5.2)

Yifan 7hu

Introduction to Continuous Random Variables

Probability Density Functions

Cumulative Distribution Functions

Definition: probability density function (pdf)

A probability density function (pdf) of a continuous random variable X is a function f(x) with:

$$f(x) \ge 0$$
 for all x .
$$\int_{-\infty}^{\infty} f(x) dx = 1$$

The probability of an interval is evaluated by integral:

$$P(a \le X \le b)$$

$$=P(a < X < b)$$

$$=P(a \le X < b)$$

$$=P(a < X \le b)$$

$$=\int_{a}^{b} f(x)dx, \ a \le b$$

► The pdf is the continuous analogue of a discrete random variable's probability mass function.

Continuous Random Variables (Ch. 5.2)

Yifan Zhu

Introduction to Continuous Random Variables

Probability Density Functions

Cumulative Distribution Functions

► Say *Y* has a density of the form:

$$f(y) = \begin{cases} c & 0 \le y \le \frac{1}{60} \\ 0 & \text{otherwise} \end{cases}$$

we say that Y has a Uniform (0, 1/60) distribution.

ightharpoonup f(y) must integrate to 1:

$$1 = \int_{-\infty}^{\infty} f(y)dy = \int_{-\infty}^{0} 0dy + \int_{0}^{1/60} cdy + \int_{1/60}^{\infty} 0dy = \frac{c}{60}$$

▶ hence, c = 60, and:

$$f(y) = \begin{cases} 60 & 0 \le y \le \frac{1}{60} \\ 0 & \text{otherwise} \end{cases}$$

Continuous Random Variables (Ch. 5.2)

Yifan Zhu

Introduction to Continuous Random Variables

Probability Density Functions

Cumulative Distributior Functions

A look at the density

Continuous Random Variables (Ch. 5.2)

Yifan Zhu

Introduction to Continuous Random Variables

Probability Density Functions

Cumulative Distribution Functions

Your turn: calculate the following probabilities.

$$f(y) = \begin{cases} 60 & 0 \le y \le \frac{1}{60} \\ 0 & \text{otherwise} \end{cases}$$

1.
$$P(Y \leq \frac{1}{100})$$

2.
$$P(Y > \frac{1}{70})$$

3.
$$P(|Y| < \frac{1}{120})$$

4.
$$P(|Y - \frac{1}{200}| > \frac{1}{110})$$

5.
$$P(Y = \frac{1}{80})$$

Continuous Random Variables (Ch. 5.2)

Yifan Zhu

Introduction to Continuous Random Variables

Probability Density Functions

Cumulative Distribution Functions

Answers: calculate the following probabilities

1.

$$P(Y \le \frac{1}{100}) = P(-\infty < Y \le \frac{1}{100})$$

$$= \int_{-\infty}^{1/100} f(y) dy$$

$$= \int_{-\infty}^{0} 0 dy = \int_{0}^{1/100} 60 dy$$

$$= \frac{60}{100} = \frac{3}{5}$$

Continuous Random Variables (Ch. 5.2)

Yifan Zhu

Introduction to Continuous Random Variables

Probability Density Functions

Cumulative Distribution Functions

$$P(Y > \frac{1}{70}) = P(\frac{1}{70} < Y \le \infty)$$

$$= \int_{1/70}^{\infty} f(y) dy$$

$$= \int_{1/70}^{1/60} 60 dy + \int_{1/60}^{\infty} 0 dy$$

$$= 60y \Big|_{1/70}^{1/60} + 0$$

$$= 60 \left(\frac{1}{60} - \frac{1}{70}\right)$$

$$= \frac{1}{7} \approx 0.143$$

Yifan Zhu

Introduction to Continuous Random Variables

Probability Density Functions

Cumulative Distribution Functions

$$P(|Y| < \frac{1}{120}) = P(-\frac{1}{120} < Y < \frac{1}{120})$$

$$= \int_{-1/120}^{1/120} f(y) dy$$

$$= \int_{-1/120}^{0} 0 dy + \int_{0}^{1/120} 60 dy$$

$$= 0 + 60y \Big|_{0}^{1/120}$$

$$= 60 \left(\frac{1}{120} - 0\right) = \frac{1}{2}$$

Yifan Zhu

Introduction to Continuous Random Variables

Probability Density Functions

Cumulative Distribution Functions

$$P(\left|Y - \frac{1}{200}\right| > \frac{1}{110})$$

$$= P(Y - \frac{1}{200} > \frac{1}{110} \text{ or } Y - \frac{1}{200} < -\frac{1}{110})$$

$$= P(Y > \frac{31}{2200} \text{ or } Y < -\frac{9}{2200})$$

$$= P(Y > \frac{31}{2200}) + P(Y < -\frac{9}{2200})$$

$$= \int_{31/2200}^{\infty} f(y)dy + \int_{-\infty}^{-9/2200} f(y)dy$$

$$= \int_{31/2200}^{1/60} 60dy + \int_{1/60}^{\infty} 0dy + \int_{-\infty}^{-9/2200} 0dy$$

$$= 60|_{31/2200}^{1/60} + 0 + 0$$

$$= 60\left(\frac{1}{60} - \frac{31}{2200}\right) = \frac{17}{6600} \approx 0.00258$$

Yifan Zhu

Introduction to Continuous Random Variables

Probability Density Functions

Cumulative Distribution Functions

$$P(Y = \frac{1}{80}) = P(\frac{1}{80} \le Y \le \frac{1}{80})$$

$$= \int_{1/80}^{1/80} f(y) dy = \int_{1/80}^{1/80} 60 dy$$

$$= 60 \mid_{1/80}^{1/80} = 60 \left(\frac{1}{80} - \frac{1}{80}\right)$$

$$= 0$$

In fact, for any random variable X and any real number a:

$$P(X = a) = P(a \le X \le a)$$
$$= \int_{a}^{a} f(x)dx = 0$$

Continuous Random Variables (Ch. 5.2)

Yifan Zhu

Introduction to Continuous Random Variables

Probability Density Functions

Cumulative Distribution Functions

Outline

Introduction to Continuous Random Variables

Probability Density Functions

Cumulative Distribution Functions

A special case: the exponential distribution

Continuous Random Variables (Ch. 5.2)

Yifan Zhu

Introduction to Continuous Random Variables

Probability Density Functions

Cumulative Distribution Functions

Cumulative

► The **cumulative distribution function** of a random variable *X* is a function *F* such that:

$$F(x) = P(X \le x) = \int_{-\infty}^{x} f(t)dt$$

In other words:

$$\frac{d}{dx}F(x) = f(x)$$

- ► As with discrete random variables, *F* has the following properties:
 - ▶ $F(x) \ge 0$ for all x.
 - F is monotonically increasing.
 - $\lim_{x \to -\infty} F(x) = 0$
 - $\blacktriangleright \lim_{x\to\infty} F(x) = 1$

Example: calculating the cdf of Y

Remember:

$$f_Y(y) = \begin{cases} 60 & 0 \le y \le 1/60 \\ 0 & \text{otherwise} \end{cases}$$

For v < 0:

$$F(y) = P(Y \le y) = \int_{-\infty}^{y} f(t)dt = \int_{-\infty}^{0} 0dt = 0$$

► For $0 \le y \le 1/60$:

$$F(y) = P(Y \le y) = \int_{-\infty}^{y} f(t)dt = \int_{-\infty}^{0} 0dt + \int_{0}^{y} 60dt = 60y$$

For y > 1/60:

$$F(y) = P(Y \le y) = \int_{-\infty}^{y} f(t)dt$$
$$= \int_{-\infty}^{0} 0dt + \int_{0}^{1/60} 60dt + \int_{1/60}^{\infty} 0dt = 1$$

Continuous Random Variables (Ch. 5.2)

Yifan Zhu

Introduction to Continuous Random Variables

Probability Density Functions

Cumulative Distribution Functions

A look at the cdf

Continuous Random Variables (Ch. 5.2)

Yifan Zhu

Introduction to Continuous Random Variables

Probability Density Functions

Cumulative Distribution Functions

Your turn: calculate the following using the cdf

$$F(y) = \begin{cases} 0 & y < 0 \\ 60y & 0 \le y \le \frac{1}{60} \\ 1 & y > \frac{1}{60} \end{cases}$$

- 1. F(1/70)
- 2. $P(Y \leq \frac{1}{80})$
- 3. $P(Y > \frac{1}{150})$
- 4. $P(\frac{1}{130} \le Y \le \frac{1}{120})$

Continuous Random Variables (Ch. 5.2)

Yifan Zhu

Introduction to Continuous Random Variables

Probability Density Functions

Cumulative Distribution Functions

Answers: calculate the following using the cdf

1. $F(\frac{1}{70}) = 60\frac{1}{70} = \frac{6}{7}$

2.
$$P(Y \le \frac{1}{80}) = F(\frac{1}{80}) = 60\frac{1}{80} = \frac{3}{4}$$

3.

$$P(Y > \frac{1}{150}) = \int_{1/150}^{\infty} f(y) dy$$

$$= \int_{-\infty}^{\infty} f(y) dy - \int_{-\infty}^{1/150} f(y) dy$$

$$= 1 - F(1/150) = 1 - \frac{60}{150}$$

$$= \frac{3}{5}$$

In fact, for any random variable X, discrete or continuous:

$$P(X \ge x) = 1 - P(X < x)$$

Continuous Random Variables (Ch. 5.2)

Yifan Zhu

Introduction to Continuous Random Variables

Probability Density Functions

Cumulative Distribution Functions

Cumulative

A special case: the exponential

$$P(\frac{1}{130} \le Y \le \frac{1}{120}) = \int_{1/130}^{1/120} f(y)dy$$

$$= \int_{-\infty}^{1/120} f(y)dy - \int_{-\infty}^{1/130} f(y)dy$$

$$= F(1/120) - F(1/130)$$

$$= 60(1/120) - 60(1/130)$$

$$= 1/26 \approx 0.0384$$

Outline

Introduction to Continuous Random Variables

Probability Density Functions

Cumulative Distribution Functions

A special case: the exponential distribution

Continuous Random Variables (Ch. 5.2)

Yifan 7hu

Introduction to Continuous Random Variables

Probability Density Functions

Cumulative Distributior Functions

The exponential distribution

A random variable X has an Exponential(α) distribution if:

$$f(x) = \begin{cases} \frac{1}{\alpha} e^{-x/\alpha} & x > 0\\ 0 & \text{otherwise} \end{cases}$$

Continuous Random Variables (Ch. 5.2)

Yifan Zhu

Introduction to Continuous Random Variables

Probability Density Functions

Distribution
Functions
A special case: the

exponential distribution

Your turn: for $X \sim \text{Exp}(2)$, calculate the following

$$f(x) = \begin{cases} \frac{1}{2}e^{-x/2} & x > 0\\ 0 & \text{otherwise} \end{cases}$$

- 1. $P(X \le 1)$
- 2. P(X > 5)
- The cdf F of X

Continuous Random Variables (Ch. 5.2)

Yifan Zhu

Introduction to Continuous Random Variables

Probability Density Functions

Cumulative Distribution Functions

Probability Density Functions

Cumulative Distribution Functions

A special case: the exponential distribution

1.

$$P(X \le 1) = \int_{-\infty}^{1} f(x)dx$$

$$= \int_{-\infty}^{0} 0dx + \int_{0}^{1} \frac{1}{2}e^{-x/2}dx$$

$$= 0 + (-e^{-x/2})_{0}^{1}$$

$$= -e^{-1/2} - (-e^{-0/2})$$

$$= 1 - e^{-1/2} \approx 0.393$$

$$P(X > 5) = \int_{5}^{\infty} f(x)dx$$

$$= \int_{5}^{\infty} \frac{1}{2} e^{-x/2} dx$$

$$= -e^{-x/2} |_{5}^{\infty}$$

$$= -e^{-\infty/2} + e^{-5/2}$$

$$= e^{-5/2} \approx 0.082$$

Yifan Zhu

Introduction to Continuous Random Variables

Probability Density Functions

Cumulative Distribution Functions

3. For x < 0:

$$F(x) = P(X \le x) = \int_{-\infty}^{x} f(x)dx$$
$$= \int_{-\infty}^{x} 0dx = 0$$

For x > 0:

$$F(x) = P(X \le x) = \int_{-\infty}^{x} f(x)dx$$
$$= \int_{-\infty}^{0} 0dx + \int_{0}^{x} \frac{1}{2}e^{-t/2}dt$$
$$= -e^{-t/2} |_{0}^{x} = -e^{-x/2} - (-e^{-0/2})$$
$$= 1 - e^{-x/2}$$

Continuous Random Variables (Ch. 5.2)

Yifan Zhu

Introduction to Continuous Random Variables

Probability Density Functions

Cumulative Distribution Functions

Probability Density Functions

Cumulative Distribution Functions

A special case: the exponential distribution

Hence:

$$F(x) = \begin{cases} 1 - e^{-x/2} & x \ge 0\\ 0 & \text{otherwise} \end{cases}$$

In general, an $Exp(\alpha)$ random variable has cdf:

$$F(x) = \begin{cases} 1 - e^{-x/\alpha} & x \ge 0\\ 0 & \text{otherwise} \end{cases}$$

- Introduction to Continuous Random Variables
- Probability Density Functions
 - Cumulative Distribution Functions

- ► The exponential distribution is the continuous analog of the geometric distribution:
 - A Geometric(p) randomvariable counts the number of trials until a success happens, and the success probability for each trail is the same; An $\text{Exp}(\alpha)$ random variable measures the waiting time until a specific event happens, and at any point in time, that event has an equal chance of happening.
 - Memoryless: in Geometric(p), if we know the success has not occured in the first t_0 trails, the additional number of trails (beyond t_0) needed to get a success is still a Geometric(p) random variable; in $\text{Exp}(\alpha)$, if we know the event has not happended by time t_0 , the additional waiting time for that event to happen is still $\text{Exp}(\alpha)$

Uses of the $Exp(\alpha)$ random variable

Continuous Random Variables (Ch. 5.2)

Yifan Zhu

Introduction to Continuous Random Variables

Probability Density Functions

Functions

A special case: the exponential distribution

Examples:

- ► Time between your arrival at a bus stop and the moment the bus comes.
- ► Time until the next person walks inside the library.
- ▶ Time until the next car accident on a stretch of highway.