Лекция 12. Линейные преобразования евклидовых пространств

Наличие в линейном (вещественном) пространстве создает определенную специфику при рассмотрении линейных преобразований. Дадим определение трёх типов линейных преобразований.

Пусть E – евклидово пространство, $\varphi: E \to E$ - линейное преобразование.

1. Сопряженные преобразования.

Определение 1. Линейное преобразование $\varphi^*: E \to E$ называется сопряженным к φ , если для любых векторов $x, y \in E$: $(\varphi(x), y) = (x, \varphi^*(y))$. (1)

Мотив такого определения будет объяснен чуть ниже.

Прежде всего выясним, как найти матрицу сопряженного преобразования, зная матрицу $A_{\varphi,e} = A_{\varphi}$ данного преобразования в некотором базисе e и матрицу Грама $G = G_e$. Запишем равенство (1) в координатах:

$$(\varphi(x), y) = (A_{\varphi}X)^T GY = X^T (A_{\varphi}^T G)Y = (x, \varphi * (y)) = X^T G(A_{\varphi *}Y) = X^T (GA_{\varphi *})Y, \forall X, Y \in \mathbb{R}^n$$
. Короче, $X^T (A_{\varphi}^T G)Y = X^T (GA_{\varphi *})Y, \forall X, Y \in \mathbb{R}^n$ (*).

Отсюда (как и для билинейных форм, беря в качестве X, Y любые пары единичных столбцов) получаем: $A_{\varphi}{}^{T}G = GA_{\varphi^*}, \quad A_{\varphi^*} = G^{-1}A_{\varphi}{}^{T}G$ (**). В ортонормированном базисе условие (**) выглядит особенно просто: $A_{\varphi^*} = A_{\varphi}{}^{T}$. В частности, доказано

Утверждение 1. Любое линейное преобразование $\varphi: E \to E$ имеет единственное сопряженное. Установим основные взаимоотношения между преобразованиями и их сопряженными. Теорема 1. Пусть $\varphi, \psi: E \to E$ - линейные преобразования. Тогда

- 1) $(\varphi^*)^* = \varphi$;
- 2) $(\varphi \psi)^* = \psi^* \varphi^*$;
- 3) Если U инвариантное подпространство: $\varphi(U) \subset U$, то $\varphi^*(U^{\perp}) \subset U^{\perp}$;
- 4) $\operatorname{Im} \varphi = (Ker \varphi^*)^{\perp}$;
- 5) $Ker \varphi = (\operatorname{Im} \varphi^*)^{\perp}$.

Доказательство. 1), 2) докажем в ортонормированном базисе.

$$A_{\phi^*} = A_{\phi}^{\ T} \Longrightarrow A_{(\phi^*)^*} = (A_{\phi}^{\ T})^T = A_{\phi} \ \text{ if } \ A_{(\phi\psi)^*} = (A_{\phi\psi})^T = A_{\psi}^{\ T} A_{\phi}^{\ T} = A_{\psi^*} A_{\phi^*}.$$

- 3) Пусть $x \in U, y \in U^{\perp} \Rightarrow (x, \phi^*(y)) = (\phi(x), y) = 0$, т.к. $\phi(x) \in U$.
- 4) Если

$$z \in \operatorname{Im} \varphi \Rightarrow \exists x \in E : z = \varphi(x) \Rightarrow \forall y \in \operatorname{Ker} \varphi^*, (z, y) = (\varphi(x), y) = (x, \varphi^*(y)) = 0 \Rightarrow z \in (\operatorname{Ker} \varphi^*)^{\perp}.$$

Таким образом, $\operatorname{Im} \varphi \subseteq (Ker \varphi^*)^{\perp}$. Чтобы доказать равенство, сравним размерности этих подпространств: $\dim \operatorname{Im} \varphi = rgA_{\varphi}$, $Ker \varphi^* = \{Y : A_{\varphi}^{\ T} Y = 0\} = n - rgA_{\varphi}^{\ T} = n - rgA_{\varphi} \Rightarrow \dim(Ker \varphi^*)^{\perp} = rgA_{\varphi}$, чтд.

5)равносильно 4): $\operatorname{Im} \varphi = (Ker \varphi^*)^{\perp} \Leftrightarrow (\operatorname{Im} \varphi)^{\perp} = Ker \varphi^*$. Заменяя здесь φ на φ^* и φ^* на $\varphi = (\varphi^*)^*$, получаем требуемое.

Замечание 1. Равенство пункта 4 дает геометрическую интерпретацию и новое доказательство (правда, для систем с квадратной матрицей) теоремы Фредгольма.

Замечание 2. В общем случае сопряженное преобразование — это преобразование сопряженного пространства E^* . А именно, $\varphi^*: E \to E$ определяется равенством

 $\varphi^*(f)(x) := f(\varphi(x)), \forall f \in E^*, x \in E$. Но скалярное произведение позволяет отождествить E и E^* .

Для
$$x = \sum_{i=1}^{n} x_{i} e_{i}$$
, $f(x) = \sum_{i=1}^{n} a_{i} x_{i} = (a, x)$, если базис ортонормированный, то $f \leftrightarrow a = (a_{1}, ..., a_{n})$.

2. Самосопряженные преобразования евклидовых пространств, свойства их собственных значений и собственных векторов

Определение 2. Линейное преобразование $\varphi: E \to E$ евклидова пространства E называется самосопряженным, если $\varphi^* = \varphi$, т.е. $\forall x, y \in E : (\varphi(x), y) = (x, \varphi(y))$.

Пусть ϕ – самосопряженное преобразование евклидова пространства E. Из теоремы 1 следуют

Утв. 1. Если U — подпространство в E, инвариантное относительно ϕ (короче, ϕ - инвариантное подпространство) (т.е. $\forall x \in U \Rightarrow \phi(x) \in U$), то ортогональное дополнение U^{\perp} также ϕ -инвариантно.

Утв. 2. В ортонормированном базисе матрица A самосопряженного преобразования ϕ является симметрической: $A^T = A$.

Замечание. Ограничение самосопряженного преобразования на инвариантное подпространство является самосопряженным, если на подпространстве рассматривать скалярное произведение, заданное во всем пространстве.

У*тв.3*. Собственные векторы самосопряженного преобразования φ , отвечающие различным собственным значениям, ортогональны.

Доказательство. Если
$$\frac{\varphi(x_1) = \lambda_1 x_1, \ \varphi(x_2) = \lambda_2 x_2, x_1 \neq 0, x_2 \neq), \lambda_1 \neq \lambda_2 \Rightarrow (\varphi(x_1), x_2) = (x_1, \varphi(x_2)), }{\lambda_1(x_1, x_2) = \lambda_2(x_1, x_2) \Rightarrow (\lambda_1 - \lambda_2)(x_1, x_2) = 0, \ \lambda_1 \neq \lambda_2 \Rightarrow (x_1, x_2) = 0 }$$

В доказательстве свойства собственных значений понадобится *Лемма*. Любое линейное преобразование конечномерного действительного линейного пространства L обладает одномерным или двумерным инвариантным подпространством U.

Доказательство. Если $\exists \lambda \in \mathbb{R}: \ \varphi(x) = \lambda x, x \neq 0 \Rightarrow U = \langle x \rangle$. Если все характеристические корни мнимые, пусть $\lambda_1 = \alpha + i\beta, \beta \neq 0$ один из них, тогда $\overline{\lambda} = \alpha - i\beta$ также является характеристическим корнем, т.к. $\det(A_{\varphi} - \lambda E)$ многочлен с действительными коэффициентами.

Рассмотрим φ как линейное преобразование пространства \mathbb{C}^n по формуле

$$\varphi(Z) = A_{\varphi}Z, \ \forall Z = (z_1,...,z_n)^T$$
, в таком случае
$$\exists Z_1 = (z_1,...,z_n)^T = X_1 + iY_1 \neq 0 \ (X_1,Y \in \mathbb{R}^n)_1 : A_{\varphi}Z_1 = \lambda_1 Z_1 \Leftrightarrow$$

$$A_{\varphi}(X_1 + iY_1) = (\alpha + i\beta)(X_1 + iY_1) = (\alpha X_1 - \beta Y_1) + i(\beta X_1 + \alpha Y_1) \Leftrightarrow$$

$$A_{\varphi}X_{1} = \alpha X_{1} - \beta Y_{1}, A_{\varphi}Y_{1} = \beta X_{1} + \alpha Y_{1}$$

Это показывает, что $U = \langle X_1, Y_1 \rangle$ - двумерное инвариантное подпространство. \square

Утверждение 4. Все характеристические корни (корни характеристического уравнения) самосопряженного преобразования (или симметрической матрицы) действительные.

Доказательство проводится индукцией по $n=\dim E$. Случай n=1 очевиден. При n=2 в ортонормированном базисе

 $\det(A-\lambda E) = \begin{vmatrix} a_{11}-\lambda & a_{12} \\ a_{12} & a_{22}-\lambda \end{vmatrix} = \lambda^2 - (a_{11}+a_{22})\lambda + a_{11}a_{22} - a_{12}{}^2 = 0.$ Дискриминант этого уравнения $D = (a_{11}-a_{22})^2 + 4a_{12}{}^2 \geq 0$, следовательно, $\lambda_{1,2} \in \mathbb{R}$.

При n>2 сделаем индуктивное предположение о том, что у любой симметрической матрицы порядка <n все характеристические корни действительные. Допустим, что хотя бы один характеристический корень матрицы A мнимый. Согласно лемме, существует двумерное инвариантное подпространство U. По утверждению $1, U^{\perp}$ также инвариантно.

В ортонормированном базисе, составленном из базисов подпространств U и U^{\perp} , матрица преобразования имеет блочный вид $A' = \begin{vmatrix} A_1 & 0 \\ 0 & A_2 \end{vmatrix}$, где A_1 - симметрическая матрица 2 порядка , A_2 — симметрическая матрица порядка n-2, $\det(A - \lambda E) = \det \begin{vmatrix} A_1 - \lambda E & 0 \\ 0 & A_2 - \lambda E \end{vmatrix} = |A_1 - \lambda E| \cdot |A_2 - \lambda E|$. По предположению индукции, уравнение $A_2 - A_1 = 0$ имеет все действительные корни, следовательно (с учетом случая 2), уравнение $A_1 - A_2 = 0$ тоже — противоречие, следовательно, утверждение 4 верно для всех n. \Box

Теорема 2. Для любого самосопряженного преобразования существует ортонормированный базис из его собственных векторов. Матрица преобразования в

этом базисе диагональна:
$$\begin{pmatrix} \lambda_1 & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & \lambda_n \end{pmatrix}$$
, где $\lambda_1,...,\lambda_n$ - собственные значения матрицы

этого преобразования.

Доказательство теоремы 2 – индукция по n.

При n = 1 доказывать нечего. При n > 1 пусть λ_1 — какой-либо характеристический корень (действительный, по теореме 1), h_1 соответствующий собственный вектор (можно сразу взять $|h_1|=1$) и $U=< h_1>$ — одномерное инвариантное подпространство.

Согласно утв.1, U^{\perp} инвариантно размерности n–1, и для ограничения преобразования на U^{\perp} , по предположению индукции, существует ортонормированный базис $h_2,...,h_n$ из собственных векторов. Тогда $h_1;h_2,...,h_n$ искомый базис.

 \square **Пример**. В некотором о.н.б. в R^3 линейное преобразование ϕ задано матрицей $A = \begin{pmatrix} 2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{pmatrix}$. Найти для ϕ ортонормированный базис из собственных векторов и

записать в нем матрицу преобразования.

$$|A - \lambda E| = \det \begin{pmatrix} 2 - \lambda & -1 & 1 \\ -1 & 2 - \lambda & -1 \\ 1 & -1 & 2 - \lambda \end{pmatrix} = \begin{vmatrix} 1 - \lambda & 1 - \lambda & 0 \\ -1 & 2 - \lambda & -1 \\ 0 & 1 - \lambda & 1 - \lambda \end{vmatrix} = (1 - \lambda)^2 \begin{vmatrix} 1 & 1 & 0 \\ -1 & 2 - \lambda & -1 \\ 0 & 1 & 1 \end{vmatrix} = (1 - \lambda)^2 \begin{vmatrix} 1 & 1 \\ -1 & 3 - \lambda \end{vmatrix} = (1 - \lambda)^2 (4 - \lambda) = 0$$

Собственные векторы:
$$\lambda_{1,2} = 1$$
, $A - E = \begin{pmatrix} 1 & -1 & 1 \\ -1 & 1 & -1 \\ 1 & -1 & 1 \end{pmatrix}$. Система уравнений для

собственных векторов: $x_1-x_2+x_3=0$, так что имеются два линейно независимых собственных вектора . Можно взять $h_1=(1,1,0)^T$. Второй линейно независимый собственный вектор ищем ортогональный к h_1 , т.е. как решение системы $\begin{cases} x_1-x_2+x_3=0\\ x_1+x_2&=0 \end{cases}$. Например, $x_1=1,x_2=-1,x_3=x_2-x_1=-2$, т.е. $h_2=(1,-1,-2)^T$.

Собственный вектор для $\lambda_3 = 4$, по утв. 2, ортогонален к h_1, h_2 , так что в трехмерном пространстве он единственный, с точностью до множителя, вектор из $< h_1, h_2 >^{\perp}$. Читая уравнение $x_1 - x_2 + x_3 = 0$ как скалярное произведение $((x_1, x_2, x_3), (1, -1, 1)) = 0$, без вычислений находим $h_3 = (1, -1, 1)^T$. (Разумеется, можно было решить характеристическую систему уравнений для $\lambda_3 = 4$ и получить то же самое.) Окончательно, нормируя, получаем

$$h_{1}'=(\frac{1}{\sqrt{2}},\frac{1}{\sqrt{2}},0), h_{2}'=(\frac{1}{\sqrt{6}},-\frac{1}{\sqrt{6}},-\frac{2}{\sqrt{6}}), h_{3}'=(\frac{1}{\sqrt{3}},-\frac{1}{\sqrt{3}},\frac{1}{\sqrt{3}})$$
. В этом базисе $A'=diag(1,1,4)$. \square

Можно упомянуть 2 типичных примера самосопряженных преобразований. Пусть E-n-мерное евклидово пространство, U- подпространство в $E, 0 \neq U \neq V$, тогда любой вектор $x \in E$ единственным образом представляется в виде $x = y + z, y \in U, z \in U^{\perp}$.

Пример 1. Ортогональное проектирование V на U: P(x) := y. Проверка самосопряженности: $x_{1,2} = y_{1,2} + z_{1,2}, y_{1,2} \in U, z_{1,2} \in U^{\perp} \Rightarrow (P(x_1), x_2) = (y_1, y_2) = (x_1, P(x_2))$. Ядром преобразования является U.

Собственные векторы: $y \in U - \{0\}$, $\lambda_1 = 1$; $z \in U^\perp - \{0\}$, $\lambda_2 = 0$. В о.н.б., составленном из базисов подпространств U, U, U^\perp , матрица преобразования равна $diag(\underbrace{1,...,1}_{m},\underbrace{0,...,0}_{n-m})$,

если $\dim U = m$.

Пример 2. Ортогональная симметрия (или зеркальное отражение) S пространства E относительно U: S(x) = y - z. Проверить самосопряженность можно аналогично. Собственные векторы: $y \in U - \{0\}, \lambda_1 = 1; z \in U^\perp - \{0\}, \lambda_2 = -1$. В о.н.б., составленном из базисов подпространств U, U^\perp , матрица оператора равна $diag(\underbrace{1,...,1}_{n-m},\underbrace{-1,...,-1}_{n-m})$.