Федеральное агентство по образованию МОСКОВСКИЙ АВИАЦИОННЫЙ ИНСТИТУТ

(Национальный исследовательский университет)

Кафедра 106

КУРСОВАЯ РАБОТА

по дисциплине «Динамика полета»

Выполнил Москвитин Андрей Студент гр. М1О-403Б-18

Подпись:

Москва

РЕФЕРАТ

Курсовая работа по дисциплине «Динамика полета» 45 с., 50 рис., 0 источн., 22 табл. РАСЧЕТ ЛЁТНО-ТЕХНИЧЕСКИХ ХАРАКТЕРИСТИК.

Объектами исследования является расчет лётно-технических, взлётно-посадочных характеристик, траектории полета, диаграммы транспортных возможностей, характеристик продольной и статической устойчивости и управляемости самолета ИЛ-76

Цель работы – закрепление и систематизация знаний по динамике полета, а также овладение навыками инженерной работы в части расчета летных и пилотажных характеристик самолета.

содержание

1.	Ис	кодные данные	4
2.	Pac	счет лётно – технических характеристик самолета	7
3.	Pac	счет траектории полета	27
	3.1.	Расчет характеристик набора высоты	27
	3.2.	Расчет характеристик крейсерского полета	30
	3.3.	Расчет характеристик участка снижения	31
	3.4.	Расчет диаграммы транспортных возможностей	35
	3.5.	Расчет взлетно-посадочных характеристик самолета	36
	3.6.	Расчет характеристик маневренности самолета	38
	3.7.	Расчет характеристик продольной статической устойчивости и управляемости	39

1. Исходные данные

Таблица 1.1 — Исходные данные для самолета ИЛ-76

$M_{ m доп}$	V_i	m_0	$ar{m}_{ ext{\tiny LJH}}$	$ar{m}_{\scriptscriptstyle \mathrm{T}}$	$ar{m}_{ ext{ch}}$	\bar{P}_0	Ce_0	$\frac{n_{\rm ДB}}{n_{\rm peb}}$	P_s	b_a	$ar{L}_{ ext{ro}}$	S
_	<u>км</u> ч	ΚΓ	_	_	_	_	<u>кг</u> дан*ч	-	<u>дан</u> м ²	M	_	2
0.80	≤ 650	140000	0.26	0.39	0.46	0.276	0.048	4/2	457	6.436	3.10	300

Рисунок 1.1 — Аэродинамические характеристики самолета

Режимы: 1. Взлетный, 2. Посадочный, 3. Пробег с выпущенными интерцепторами.

Рисунок 1.2 — Аэродинамические характеристики самолета на взлётно-посадочных режимах

Рисунок 1.3 — Высотно-скоростные характеристики ТРДД на режиме «номинал»

Рисунок 1.4 — Относительный удельный часовой расход топлива для $\mathrm{ТРДД}$ на режиме «номинал»

Рисунок 1.5 — Аэродинамические характеристики для отдельных компоновочных групп самолета

2. Расчет лётно - технических характеристик самолета

Определим следующие характеристики самолета:

- 1. Зависимости от числа M (скорости) и H (высоты) полета результаты сведем в таблицы 2.1-2.7:
 - располагаемой и потребной для горизонтального установившегося полета тяги силовой установки,
 - энергетической скороподъемности,
 - часового расхода топлива,
 - километрового расхода топлива.

2. Зависимости от высоты:

- максимальной энергетической скороподъемности,
- минимального часового расхода топлива,
- минимального километрового расхода топлива,
- минимального и максимального числа M (скорости) полета (с учетом ограничений по безопасности полета),
- \bullet числа M (скорости) полета, соответствующего минимальной потребной тяги,
- ullet числа M (скорости) полета, соответствующего максимальной энергетической скороподъемности,
- скорости полета, соответствующей минимальному часовому расходу топлива,
- скорости полета, соответствующему минимальному километровому расходу топлива
- 3. Статический и практический потолки самолета.

Соотношения для расчета: Узловые точки по числу Маха:

$$M = [0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.95]$$

$$V = Ma_H, \tag{2.1}$$

где a_H — скорость звука на высоте H.

$$q = \frac{\rho_H V^2}{2},\tag{2.2}$$

где ρ_H — плотность воздуха на высоте H.

$$C_{y_n} = \frac{\bar{m}P_s 10}{q},\tag{2.3}$$

где $\bar{m}=0.95$ — относительная масса самолета, P_s — удельная нагрузка на крыло.

$$C_{x_n}(C_y, M) = C_{x_m}(M) + A(M) \left[C_{y_n} - C_{y_m}(M) \right]^2$$
(2.4)

где C_{y_m} — коэффициент подъемной силы при $C_x = C_{x_m}, C_{x_m}$ — минимальный коэффициент лобового сопротивления, A — коэффициент отвала поляры.

$$K_n = \frac{C_{y_n}}{C_{r_n}} \tag{2.5}$$

$$P_n = \frac{\bar{m}m_0g}{K_n} \tag{2.6}$$

$$P_p(M,H) = \bar{P}_0 m_0 g \tilde{P}(H,M) \tag{2.7}$$

$$n_x = \Delta \bar{P} = \frac{(P_p - P_n)}{\bar{m}m_0 g} \tag{2.8}$$

$$V_y^* = \Delta \bar{P}V \tag{2.9}$$

$$\bar{R} = \frac{P_n}{P_p} \tag{2.10}$$

$$q_{\mathbf{q}} = Ce(M, H, \bar{R})P_n = Ce_0\tilde{C}e(H, M)\hat{C}e_{\mathbf{pp}}(R)P_n$$
(2.11)

$$q_{\text{\tiny KM}} = \frac{q_{\text{\tiny q}}}{3.6V},$$
 (2.12)

где $q_{\mbox{\tiny ч}}$ — часовой расход топлива, $q_{\mbox{\tiny км}}$ — километровый расход топлива.

Таблица 2.1 — Результаты расчета для высоты H=0 км

$q_{\scriptscriptstyle m KM}$	$\frac{\mathrm{K}\Gamma}{\mathrm{K}\mathrm{M}}$	199.52	33.84	17.86	16.62	19.34	23.57	29.53	39.50	44.28	39.98
q ₄	KT	24442	8292	6563	8144	11849	17325	25322	38710	48822	46531
$ar{R}_{ ext{Kp}}$	-	1.38	0.39	0.29	0.37	0.57	0.89	1.39	2.50	4.50	5.72
V_y^*	$\frac{M}{C}$	-3.4	6.6	16.1	17.7	14.2	4.1	-15.9	-64.6	-156.3	-213.3
$\Delta ar{p}(n_x)$	I	-0.099	0.146	0.158	0.130	0.083	0.020	-0.067	-0.237	-0.510	-0.660
$P_p * 10^{-5}$	Н	3.531	3.282	3.062	2.856	2.679	2.510	2.342	2.173	2.005	1.920
$P_n * 10^{-5}$	Н	4.887	1.282	0.890	1.071	1.535	2.234	3.259	5.435	9.013	10.980
K_n	ı	2.67	10.18	14.65	12.19	8.50	5.84	4.00	2.40	1.45	1.19
C_{y_n}	I	6.454	1.614	0.717	0.403	0.258	0.179	0.132	0.101	0.080	0.072
d	$\frac{H}{M^2}$	602	2837	6383	11348	17732	25534	34754	45394	57451	64012
Λ	$\frac{KM}{4}$	123	245	368	490	613	735	858	086	1103	1164
7	C K	34	89	102	136	170	204	238	272	306	323
M	I	0.10	0.20	0.30	0.40	0.50	09.0	0.70	0.80	0.90	0.95

Рисунок 2.2 — График $C_{\rm 9доп}, C_{yn}$

Рисунок $2.4 - График q_{KM}, q_{Ч}$

Рисунок 2.3 — График $V_y^*(M, H)$

Таблица 2.2 — Результаты расчета для высоты H=2 км

$q_{\scriptscriptstyle m KM}$	$\frac{\mathrm{K}\Gamma}{\mathrm{K}\mathrm{M}}$	237.14	39.61	17.73	14.44	15.77	18.64	23.38	32.25	39.63	39.31
$q_{^{\mathrm{H}}}$	KI	28389	9483	9989	6914	9442	13389	19589	30890	42702	44704
$ar{R}_{ ext{Kp}}$	I	1.99	0.53	0.33	0.36	0.50	0.75	1.14	2.04	3.65	4.63
V_y^*	C IK	-7.5	8.9	13.7	16.5	15.1	8.7	-5.4	-42.1	-112.3	-156.2
$\Deltaar{p}(n_x)$	I	-0.226	0.103	0.138	0.124	0.091	0.044	-0.023	-0.158	-0.375	-0.494
$P_p * 10^{-5}$	Н	3.153	2.983	2.814	2.650	2.501	2.376	2.245	2.095	1.945	1.870
$P_n * 10^{-5}$	Н	6.261	1.576	0.925	0.946	1.255	1.776	2.566	4.271	7.096	8.660
K_n	I	2.08	8.28	14.11	13.79	10.40	7.35	5.09	3.06	1.84	1.51
C_{y_n}	I	8.226	2.057	0.914	0.514	0.329	0.229	0.168	0.129	0.102	0.091
b	$\frac{H}{M^2}$	557	2226	5009	8904	13913	20034	27269	35617	45077	50225
N	KM	120	239	359	479	599	718	838	958	1077	1137
Λ	C	33	29	100	133	166	200	233	266	299	316
M	I	0.10	0.20	0:30	0.40	0.50	09.0	0.70	0.80	0.90	0.95

 $q_{\text{Kal}}(H = 2.000 [\text{Kal}])$

24

22

Рисунок 2.6 — График $C_{\rm y_{\rm ron}},\,C_{y_n}$

16000

14000

12000 ...

10000

8000

\£133.013

14

12

225

200

175

125

100

22

20

 $V[{
m M/c}^2]$

 $-\sqrt{4\epsilon_{min}}$ =109.735

Рисунок 2.8 — График $q_{\scriptscriptstyle \mathrm{KM}},\,q_{\scriptscriptstyle \mathrm{T}}$

1.5

1.0 -

[H]d

2.5

4.0

3.5

3.0

 $q_{\kappa_M}[\kappa_{\Gamma}/\kappa_M]$

Рисунок 2.7 — График $V_y^*(M, H)$

12

Рисунок $2.5-\Gamma {\rm pa}фик {\rm pacnoлaraemoй}$ и потребной тяги

0.0

0.0

0.5

Таблица 2.3 — Результаты расчета для высоты $H=4~\mathrm{km}$

$q_{\scriptscriptstyle m KM}$	KT	262.99	48.11	19.39	13.47	13.19	14.97	18.46	25.87	34.23	36.55
$q_{^{\mathrm{H}}}$	KI.	30731	11243	9629	6297	2022	10495	15101	24181	35998	40578
$ar{R}_{ ext{Kp}}$	I	3.30	0.83	0.44	0.39	0.48	0.68	1.00	1.70	2.88	3.56
V_y^*	$\frac{M}{C}$	-13.4	1.9	9.2	13.0	13.3	9.3	-0.2	-26.0	-77.1	-109.6
$\Delta ar{p}(n_x)$	Ι	-0.412	0.029	0.095	0.100	0.082	0.048	-0.001	-0.100	-0.264	-0.355
$P_p * 10^{-5}$	H	2.461	2.397	2.333	2.268	2.177	2.083	2.010	1.965	1.926	1.906
$P_n * 10^{-5}$	H	8.113	1.998	1.034	0.890	1.055	1.425	2.020	3.339	5.552	6.788
K_n	I	1.61	6.53	12.62	14.67	12.37	9.16	6.46	3.91	2.35	1.92
C_{y_n}	I	10.606	2.652	1.178	0.663	0.424	0.295	0.216	0.166	0.131	0.118
b	$\frac{H}{M^2}$	432	1726	3885	9069	10791	15538	21150	27624	34961	38954
Λ	KM 4	117	234	351	467	584	701	818	935	1052	1110
Λ	C	32	65	26	130	162	195	227	260	292	308
M	I	0.10	0.20	0:30	0.40	0.50	09.0	0.70	0.80	0.90	0.95

Рисунок 2.11 — График $V_y^*(M, H)$

Рисунок $2.12-\Gamma {\rm paфик}~q_{\mbox{\tiny KM}},~q_{\mbox{\tiny T}}$

14

Таблица 2.4 — Результаты расчета для высоты H=6 км

<i>q</i> км	$\frac{\mathrm{K}\Gamma}{\mathrm{K}\mathrm{M}}$	238.38	58.57	21.77	13.37	11.58	12.29	14.65	20.50	27.83	30.44
ф	Kr	27157	13346	7439	6093	6598	8404	11687	18679	28534	32940
$ar{R}_{ ext{Kp}}$	-	5.19	1.29	0.62	0.47	0.49	0.63	0.89	1.48	2.47	3.04
V_y^*	C	-19.8	-2.7	5.2	9.6	11.2	9.5	3.2	-15.5	-53.5	-78.0
$\Delta ar{p}(n_x)$	Ι	-0.626	-0.042	0.054	0.076	0.071	0.050	0.015	-0.061	-0.188	-0.259
$P_p * 10^{-5}$	Н	2.053	2.018	1.984	1.950	1.909	1.858	1.808	1.771	1.755	1.748
$P_n * 10^{-5}$	Н	10.644	2.598	1.237	0.908	0.934	1.172	1.607	2.614	4.334	5.309
K_n	I	1.23	5.03	10.55	14.37	13.97	11.13	8.12	4.99	3.01	2.46
C_{y_n}	I	13.851	3.463	1.539	0.866	0.554	0.385	0.283	0.216	0.171	0.153
b	$\frac{H}{M^2}$	331	1322	2975	5288	8263	11899	16196	21153	26772	29830
Λ	KM	114	228	342	456	570	684	797	911	1025	1082
Λ	C	32	63	92	127	158	190	222	253	285	301
M	I	0.10	0.20	0:30	0.40	0.50	09.0	0.70	0.80	0.90	0.95

Рисунок 2.15 — График $V_y^*(M,H)$

Рисунок 2.16 — График $q_{\mbox{\tiny KM}},\,q_{\mbox{\tiny T}}$

Таблица 2.5 — Результаты расчета для высоты $H=8~\mathrm{km}$

$q_{\scriptscriptstyle m KM}$	$\frac{\mathrm{K}\Gamma}{\mathrm{K}\mathrm{M}}$	65.20	78.89	25.78	14.11	10.83	10.57	11.97	16.38	22.42	24.79
$q_{ m H}$	Kr 4	7232	15278	8579	6261	6006	7032	9292	14533	22380	26118
$ar{R}_{ m KP}$	I	8.71	2.13	76.0	0.63	0.56	0.64	0.84	1.32	2.18	2.68
V_y^*	C	-28.1	-8.2	0.3	5.3	7.8	7.8	4.1	-9.0	-37.2	-55.8
$\Delta ar{p}(n_x)$	I	-0.912	-0.133	0.003	0.043	0.051	0.042	0.019	-0.037	-0.134	-0.191
$P_p * 10^{-5}$	Н	1.626	1.618	1.611	1.603	1.596	1.592	1.576	1.571	1.561	1.556
$P_n * 10^{-5}$	Н	14.155	3.449	1.564	1.016	0.897	1.016	1.318	2.075	3.405	4.176
K_n	ı	0.92	3.78	8.34	12.84	14.55	12.84	9.90	6.29	3.83	3.12
C_{y_n}	I	18.344	4.586	2.038	1.147	0.734	0.510	0.374	0.287	0.226	0.203
b	$\frac{H}{\mathrm{M}^2}$	250	866	2246	3993	6239	8984	12228	15972	20214	22523
1	$\frac{\mathrm{KM}}{\mathrm{q}}$	1111	222	333	444	555	999	276	887	866	1054
Λ	C IM	31	62	92	123	154	185	216	246	277	293
M	I	0.10	0.20	0.30	0.40	0.50	09.0	0.70	0.80	0.90	0.95

Рисунок 2.18 — График $C_{\rm y_{10}},\,C_{y_n}$

Рисунок $2.20-\Gamma {\rm pad}$ ик $q_{{\scriptscriptstyle \mathrm{KM}}},\,q_{{\scriptscriptstyle \mathrm{T}}}$

Рисунок 2.19 — График $V_y^*(M,H)$

0.8

0.6

 $V_y^*(H=8.000[\text{KM}])$

 $V_y^*[M/c^2]$

 $V[{\rm M/c^2}]$

=8.098

Таблица 2.6 — Результаты расчета для высоты $H=10~\mathrm{km}$

$q C_{y_n} K_n$	K_n	 $P_n * 10^{-5}$	$P_p * 10^{-5}$	$\Delta ar{p}(n_x)$	V_y^*	$ar{R}_{ m kp}$	$q_{ m H}$	$q_{\scriptscriptstyle m KM}$
$\frac{H}{M^2}$ — — —	ı	 Н	Н	I	C IM	I	KI 4	$\frac{\mathrm{K}\Gamma}{\mathrm{K}\mathrm{M}}$
85 24.679 0.68	89.0	19.109	1.266	-1.299	-38.9	15.09	-58010	-537.97
742 6.170 2.80	2.80	 4.667	1.270	-0.247	-14.8	3.68	16467	76.35
669 2.742 6.32	6.32	 2.065	1.273	-0.058	-5.2	1.62	10375	32.07
968 1.542 10.55	10.55	 1.237	1.277	0.003	0.3	76.0	2098	16.46
4637 0.987 13.67	13.67	0.954	1.281	0.024	3.6	0.75	5930	11.00
6678 0.686 13.59	13.59	 0.960	1.289	0.024	4.3	0.74	9979	9.68
0.504 11.33	11.33	1.151	1.305	0.011	2.3	0.88	7739	10.25
11872 0.386 7.64	7.64	1.708	1.321	-0.028	-6.8	1.29	11489	13.32
15025 0.305 4.77	4.77	2.738	1.341	-0.102	-27.4	2.04	17564	18.10
$16741 \mid 0.273 \mid 3.89$	3.89	3.357	1.350	-0.146	-41.6	2.49	20734	20.24

220 Рисунок 2.22 — График $C_{\rm y_{\rm zou}},\,C_{y_n}$ 4182.714 200 $-K(q_{\overline{q}_{min}}) = 155.756$ 160 --- $q_{\text{KM}}(H = 10.000 [\text{KM}])$ 140 120

 $d^{\mathrm{KW}}[\mathrm{KL}/\mathrm{KW}]$

Ξ

0009 -

6500

7500

8500

13 -

12

8000

Рисунок $2.24-\Gamma {\rm pad}$ ик $q_{{\scriptscriptstyle \mathrm{KM}}},\,q_{{\scriptscriptstyle \mathrm{T}}}$

180

×

 $V[{
m M/c}^2]$

Таблица 2.7 — Результаты расчета для высоты $H=11.558~\mathrm{кm}$

M	- 1 1	2.18	45	23	45	42	94	01	99	50	31
$q_{\scriptscriptstyle m KM}$	KT KM	-2112.18	58.45	36.23	19.45	12.42	10.04	10.01	12.09	15.50	17.31
$q_{ m H}$	Kr 4	-224366	12418	11545	8265	6595	6402	7445	10273	14816	17465
$ar{R}_{ ext{KP}}$	Ι	25.71	6.19	2.67	1.51	1.06	0.96	1.05	1.42	2.13	2.57
V_y^*	C	-50.4	-21.5	-10.6	-4.4	7.0-	0.5	-0.7	-7.8	-24.6	-36.5
$\Delta ar{p}(n_x)$	I	-1.708	-0.365	-0.119	-0.037	-0.005	0.003	-0.004	-0.033	-0.092	-0.130
$P_p * 10^{-5}$	Н	0.949	0.966	0.983	0.999	1.016	1.032	1.061	1.089	1.121	1.137
$P_n * 10^{-5}$	Н	24.407	5.979	2.623	1.513	1.079	0.994	1.109	1.542	2.391	2.923
K_n	I	0.53	2.18	4.97	8.62	12.10	13.13	11.76	8.46	5.46	4.46
C_{y_n}	-	31.451	7.863	3.495	1.966	1.258	0.874	0.642	0.491	0.388	0.348
b	$\frac{H}{M^2}$	146	582	1310	2329	3639	5240	7132	9316	11790	13137
Λ	KM 4	106	212	319	425	531	637	744	850	956	1009
Λ	C IM	30	59	89	118	148	177	207	236	266	280
M	l	0.10	0.20	0.30	0.40	0.50	09.0	0.70	0.80	0.90	0.95

Рисунок 2.26 — График $C_{y_{non}}, C_{y_n}$

Рисунок $2.28 - \Gamma$ рафик $q_{\text{км}}, q_{\text{ч}}$

Рисунок $2.27 - \Gamma \mathrm{pad}$ ик $V_y^*(M,H)$

Для построение таблицы 2.8

- 1. Определим M_{\min_P} и M_{\max_P} , как точка пересечения графиков $P_n(M, H_i)$ и $P_p(M, H_i)$ (рисунки 2.1, 2.5, 2.9,2.13,2.17,2.21,2.25).
- 2. Минимально допустимое число $M_{\min_{\text{доп}}}$, как точка пересечения графиков $C_{y_n}(M, H_i)$ и $C_{y_{\text{доп}}}(M)$ (рисунки ,2.2, 2.6, 2.10, 2.18, 2.22, 2.26).
- 3. Максимально допустимое число M полета по условиям безопасности определяется как:

$$M_{ ext{max}_{ ext{доп}}} = \min \left\{ M_{ ext{пред}}, M(V_{i_{ ext{max}}}
ight\},$$
где $M(V_{i_{ ext{max}}}) = rac{V_{i_{ ext{max}}}\sqrt{\Delta^{-1}}}{3.6a_H}, \, \sqrt{\Delta^{-1}} = \sqrt{rac{
ho_0}{
ho_H}}$

4. Располагаемые значение минимального и максимального числа M определяются как:

$$M_{\min} = \max \left\{ M_{\min_{gon}}, M_{\min_{P}} \right\},\,$$

$$M_{\text{max}} = \min \left\{ M_{\text{max}_{\text{доп}}}, M_{\text{max}_P}, M_{\text{пред}} \right\}.$$

5. Число M_1 полета, соответствующее минимальной потребной тяге определяется как:

$$M_1 = M(P_{n_{\min}}) = \arg\min_{M} \Delta P_n(M).$$

 Число М₂ полета, соответствующее максимальной энергетической скороподъёмности определяется как:

$$M_2 = M(V_{y_{max}}^*) = \arg\max_{M} V_y^*(M, H_i).$$

7. Минимальные значения часового $q_{\mathbf{u}_{min}}$ и километрового $q_{\mathbf{k}\mathbf{u}_{min}}$ расхода топлива, и соответствующие им скорости полета определены на рисунка 2.4, 2.4, 2.4, 2.4, 2.4, 2.4, 2.4, 2.4 или как:

$$q_{\mathbf{q}_{min}} = \min_{V} q_{\mathbf{q}}(V, H_i), \ V_3 = V(q_{\mathbf{q}_{min}}) = \arg\min_{V} q_{\mathbf{q}}(V, H_i);$$

$$q_{\text{km}_{min}} = \min_{V} q_{\text{km}}(V, H_i), \ V_4 = V(q_{\text{km}_{min}}) = \arg\min_{V} q_{\text{km}}(V, H_i).$$

Таблица 2.8 — Результаты для построение графика высот и скоростей

$q_{ m KM_{min}}$	KT	16.3	14.44	12.99	11.58	10.49	9.67	92.6
$q_{ m q_{min}}$	$\frac{\mathrm{K}\Gamma}{\mathrm{q}}$	0.370 6536.16 16.3	0.400 6286.48 14.44	0.460 6193.81 12.99	161 0.510 6076.86 11.58	176 0.570 5951.95 10.49	183 0.610 5902.71 9.67	192 0.650 6374.66 9.76
M_4	I	0.370	0.400	0.460	0.510	0.570	0.610	0.650
$V_3 \ \left(q_{ m smin} ight) \ \left(q_{ m KM} m min} ight)$	$\frac{\mathrm{KM}}{\mathrm{q}}$	126	133	149	161	176	183	192
$V_3 \over (q_{^4\mathrm{min}})$	$\frac{\mathrm{KM}}{^{\mathrm{T}}}$	99	110	120	130	145	156	171
$M_2[V_2] \ (V_{ymax}^*)$	$-\left[\frac{\mathrm{KM}}{\mathrm{q}}\right]$	0.380[466]	0.420[503]	0.460[538]	0.500[570]	0.540[599]	0.590 [636]	0.600 [637]
$M_1[V_1] \ (P_{\scriptscriptstyle m II}min)$	$-\left[\frac{\mathrm{KM}}{\mathrm{q}}\right]$	0.300 [368]	0.340 [407]	0.380 [444]	0.440 [501]	0.500[555]	0.540 [582]	0.590 [627]
M[V] max	$-\left[\frac{\mathrm{KM}}{\mathrm{q}}\right]$	0.612[750]	0.671[803]	0.699 [817]	0.726 [827]	0.744 [825]	0.739 [796]	0.664 [705]
M[V]	$-\left[\frac{\mathrm{KM}}{\mathrm{q}}\right]$	0.240 [293]	0.270[324]	0.307 [359]	0.352[401]	0.406 [451]	0.475 [513]	0.544 [578]
M[V] max доп	$-\left[\frac{\mathrm{KM}}{\mathrm{q}}\right]$	0.612 [750]	0.675 [808]	0.748 [874]	0.800 [911]	0.800 [887]	0.800 [863]	0.800 [850]
M[V] min доп	$-\left[\frac{\mathrm{KM}}{\mathrm{q}}\right]$	$17.79 \left \begin{array}{c c} 0.240 \left[293 \right] \end{array} \right \left. 0.612 \left[750 \right] \right \left. 0.240 \left[293 \right] \right \left. 0.612 \left[750 \right] \right \left. 0.300 \left[368 \right] \right \left. 0.380 \left[466 \right] \right $	16.56 0.270 [324] 0.675 [808] 0.270 [324] 0.671 [803] 0.340 [407] 0.420 [503]	13.58 0.307 [359] 0.748 [874] 0.307 [359] 0.699 [817] 0.380 [444] 0.460 [538]	11.23 0.352 [401] 0.800 [911] 0.352 [401] 0.726 [827] 0.440 [501] 0.500 [570] 130	$8.1 \left \begin{array}{c c} 0.406 \left[451 \right] & 0.800 \left[887 \right] \end{array} \right \left \begin{array}{c c} 0.406 \left[451 \right] & 0.744 \left[825 \right] \end{array} \right \left \begin{array}{c c} 0.500 \left[555 \right] & 0.540 \left[599 \right] \end{array} \right \ 145$	10.0 4.33 0.475 [513] 0.800 [863] 0.475 [513] 0.739 [796] 0.540 [582] 0.590 [636] 156	11.56 0.5 0.544 [578] 0.800 [850] 0.544 [578] 0.664 [705] 0.590 [627] 0.600 [637] 171
V^*_{ymax}	C	17.79	16.56	13.58	11.23	8.1	4.33	0.5
Н	KM	0.0	2.0	4.0	0.9	8.0	10.0	11.56

Рисунок $2.29 - \Gamma$ рафик области высот и скоростей установившегося горизонтального полета

Рисунок 2.30 — График $V^*_{y_{max}}(H)$

Рисунок 2.31 — График $q_{\mathbf{q}_{min}}(H), q_{\mathbf{k}\mathbf{M}_{min}}(H)$

3. Расчет траектории полета

3.1. Расчет характеристик набора высоты

Начальные условия:

$$H_0 = 0; M_0 = 1.2 M_{min_{\pi o \pi}}, V_0 = 1.2 V_{min_{\pi o \pi}}.$$

Конечные условия:

$$(H_{\kappa}, M_{\kappa}) = \arg\min_{H,M} q_{\kappa_{\mathrm{M}}}(M, H)$$

Конечная высота принимается равная $H_{\kappa} = 10 \, \mathrm{km}$.

Соотношения для расчета:

$$\frac{dV}{dH} = \frac{V^{i+1} - V^i}{H^{i+1} - H^i} \tag{3.1}$$

$$\kappa = \frac{1}{1 + \frac{V}{g} \frac{dV}{dH}} \tag{3.2}$$

$$\theta_{\text{Ha6}} = n_x \kappa 57.3 \tag{3.3}$$

$$V_{y_{\text{ma6}}} = V_{y_{max}}^* \kappa \tag{3.4}$$

$$H_{s}^{i} = H^{i} + \frac{(V^{i})^{2}}{2q} \tag{3.5}$$

$$\Delta H_9 = H_9(V_{\text{Ha6}}^{i+1}, H^{i+1}) - H_9(V_{\text{Ha6}}^i, H^i)$$
(3.6)

$$\left(\frac{1}{n_x}\right)_{\text{cp}} = 0.5 \left[\frac{1}{n_x(H_{\mathfrak{g}}^i)} + \frac{1}{n_x(H_{\mathfrak{g}}^{i+1})}\right]$$
 (3.7)

$$\left(\frac{1}{V_y^*}\right)_{\text{cd}} = 0.5 \left[\frac{1}{V_y^*(H_{\text{g}}^i)} + \frac{1}{V_y^*(H_{\text{g}}^{i+1})}\right] \tag{3.8}$$

$$\left(\frac{CeP}{V_y^*}\right)_{cp} = 0.5 \left[\frac{CeP}{V_y^*(H_9^i)} + \frac{CeP}{V_y^*(H_9^{i+1})}\right]$$
(3.9)

$$L_{\text{\tiny HA6}} = \sum \left(\frac{1}{n_x}\right)_{\text{\tiny CD}} \frac{\Delta H_{\text{\tiny 9}}}{1000} \tag{3.10}$$

$$t_{\text{\tiny Ha6}} = \sum \left(\frac{1}{V_y^*}\right)_{\text{\tiny Cp}} \frac{\Delta H_9}{60} \tag{3.11}$$

$$m_{T_{\text{Ha6}}} = \sum \left(\frac{CeP}{V_y^*}\right)_{\text{cp}} \frac{\Delta H_9}{3600} \tag{3.12}$$

Таблица 3.1 -Результаты расчета набора высоты

V	$ A_1 $	$V_{\scriptscriptstyle m KM}$	$\frac{\Delta V}{\Delta H}$	n_x	V_y^*	θ	$V_{y_{ m Ha6}}$	$H_{\mathfrak{d}}$	$\Delta H_{ m e}$	$n_{x_{ m cp}}$	$\frac{\Delta H_{ m s}}{1000n_x}$
$\frac{M}{C} \qquad \frac{KM}{\Psi} \qquad \frac{1}{C}$	$\frac{KM}{\Psi}$ $\frac{1}{c}$	1 c		ı	C M	град.	⊠ C	M	M	I	KM
97.8 352.1 0.021	0.021			0.16	17.8	7.6	14.7	488.0	$2507.0 \mid 0.136$	0.136	15.69
0.42 139.7 502.8 0.005 0	0.005	0.005		0.119	16.6	6.4	15.5	2994.0	2142.0	0.103	18.07
0.46 149.3 537.5 0.004 0	0.004	0.004).091	0.091 13.6	4.9	12.7	5136.0	2140.0	0.08	23.53
$oxed{158.2 569.6 0.004 0}$	0.004	0.004	$^{\circ}$	0.071	11.2	3.8	10.5	7276.0	2135.0	0.058	30.07
0.54 166.4 599.0 0.008	$599.0 \mid 0.008$	0.008	_	0.049	8.1	2.4	7.1	9411.0	2291.0	0.032	47.06
0.61 182.7 657.8 0.0	0.0			0.023	4.3	1.3	4.3	11702.0	I	Î	ı

Таблица 3.1-(Продолжение) Результаты расчета набора высоты

	$\frac{CeP}{V_y^*}$	$\left(\frac{CeP}{V_y^*}\right)_{\mathrm{CP}}$	$\frac{\Delta H_{\rm s}}{3600} \left(\frac{CeP}{V_y^*} \right)_{\rm cp}$	$L_{\rm {\tiny Ha6}}$	$V_{y_{ m cp}}^*$	$t_{ m Ha6}$	Ce
Н	ı	ı	KT	KM	C M	MINH	$\frac{\mathrm{K}\Gamma}{H\mathrm{Y}}$
308927.0 1283.7	1283.7	1042.1	725.6	18.4	18.4 0.1	2.44	0.061
261897.0	1092.4	1036.9	617.0	20.8	0.1	2.39	0.065
221372.0	1123.0	1069.3	635.5	26.8	0.1	2.9	0.065
190906.0 1158.4 1167.8	1158.4	1167.8	692.5	37.0	$37.0 \mid 0.1 \mid$	3.78	0.064
159439.0	1421.7	1570.4	999.2	72.7	0.2	22.9	0.063
129122.0 1892.1	1892.1	ı	ı	ı	-	I	0.063

Таблица 3.2 — Основные параметры в наборе высоты

$t_{ m Ha6}$	Мин	18.3
$L_{\scriptscriptstyle { m Ha6}}$	$ m K_{M}$	175.7
$m_{T_{ m Ha6}}$	Kr	3669.9

Рисунок 3.1 — График зависимости $L(t), m_T(t)$

Рисунок 3.2 — График зависимости L(t), $m_T(t)$

Рисунок 3.3 — Программа набора высоты

3.2. Расчет характеристик крейсерского полета

Для расчета времени $T_{\rm \kappa p}$ и дальности $L_{\rm \kappa p}$ крейсерского полета:

$$T_{\text{kp}} = \frac{60K_{\Gamma\Pi}}{gCe} \ln \frac{1 - \bar{m}_{T_{\text{Ha6}}} - \bar{m}_{T_{\text{np}}}}{1 - \bar{m}_{T_{\text{kp}}} - \bar{m}_{T_{\text{na6}}} - \bar{m}_{T_{\text{np}}}}$$
(3.13)

$$L_{\text{kp}} = \frac{36V K_{\Gamma\Pi}}{gCe} \ln \frac{1 - \bar{m}_{T_{\text{Ha6}}} - \bar{m}_{T_{\text{np}}}}{1 - \bar{m}_{T_{\text{kp}}} - \bar{m}_{T_{\text{np}}}}$$
(3.14)

где
$$\bar{m}_{\mathrm{T_{\kappa p}}} = 1 - \bar{m}_{\mathrm{cH}} - \bar{m}_{\mathrm{I_H}} - \bar{m}_{\mathrm{T_{Ha6}}} - \bar{m}_{\mathrm{T_{chf}}} - \bar{m}_{\mathrm{T_{ah3}}} - \bar{m}_{\mathrm{T_{np}}} = 0.1827$$

Принимаем: $m_{\rm цн}=0,26$ – относительная масса пустого снаряженного самолета; $m_{\rm ch}=0,46$ – относительная масса целевой нагрузки;

 $m_{T_{chn}}=0.015$ - относительная масса топлива, расходуемая при снижении и посадке; $\bar{m}_{T_{\text{наб}}}\frac{m_{T_{\text{наб}}}}{m_0}=\frac{3670\,\text{кг}}{140000\,\text{кr}}=0.0262$ — относительная масса топлива, расходуемая при наборе высоты;

 $m_{\mathrm{T_{ah3}}}=0.05$ - аэронавигационный запас топлива; $m_{\mathrm{T_{np}}}=0.01$ - запас топлива для маневрирования по аэродрому, опробования двигателей, взлета; $K_{\Gamma\Pi}=13.51~V=183\,\frac{\mathrm{M}}{\mathrm{c}^2}$ $Ce=0.063\,\frac{\mathrm{Kr}}{\mathrm{H*q}}$ – удельный расход топлива на высоте крейсерского полета

Высота в конце крейсерского полета $H_{\kappa\kappa p}$ определяется как:

$$\rho_{H \, \text{kp}} = \frac{2\bar{m}_{\text{k} \, \text{kp}} P s 10}{C_{y_{\text{TI}}} V_{\text{k}}^2},\tag{3.15}$$

где $\bar{m}_{\text{к кр}} = 1 - \bar{m}_{T_{\text{наб}}} - \bar{m}_{T_{\text{пр}}} - \bar{m}_{T_{\text{кр}}}.$

Результаты приведены в таблице 3.3:

Таблица 3.3 — Результаты расчета участка крейсерского полета

$T_{\rm kp}$	$L_{ m kp}$	$ ho_{H\mathrm{kp}}$	$H_{0 \mathrm{Kp}}$	$H_{ ext{k} ext{K} ext{P}}$
МИН	KM	$\frac{\text{K}\Gamma}{\text{M}^3}$	KM	KM
285.43	2770.0	0.324	11	11.8

3.3. Расчет характеристик участка снижения

Расчет аналогичен расчету участка набора высоты (раздел 3.1), только в качестве программы снижения принимается зависимость $M_{\rm ch}(H)$, соответствующая минимуму потребной тяги.

Начальные условия:

Скорость соответствует минимуму потребной тяги $M_1(P_{n \text{ min}})$. Определена в таблице 2.8.

$$M_0 = 0.540; H_0 = 10 \,\mathrm{km}$$

Конечные условия:

Скорость в конце снижения соответствует наивыгоднейшей скорости при H=0.

$$M_{\rm K}=0.370;\ H_{\rm K}=0$$

Результаты расчетов приведены в таблице 3.4, по этим данным построили зависимости H(t), $\theta(t)$, $V_y^*(t)$, V(t), L(t), $m_T(t)$ на рисунках 3.4, 3.5, 3.6. Программа снижения представлена на рисунке 3.7.

По результатам программ набора, крейсерского полета и снижения был получен график H(L) на рисунке 3.7 для всего полета.

Таблица 3.4 — Результаты расчета снижения высоты

$\frac{\Delta H_9}{1000n_x}$	KM	37.91	38.09	39.2	38.92	40.41	I
$n_{x_{\mathrm{cp}}}$	I	-0.063	-0.058	-0.055	-0.054	-0.052	ı
$\Delta H_{ m 9}$	M	-2437.0	-2221.0	-2213.0	-2124.0 -	-2120.0	ı
H_9	M	11646.0	9210.0	6988.0	4775.0	2652.0	531.0
$V_{y_{\scriptscriptstyle{\mathrm{CH}}}}$	C K	-3.5	6.9-	-9.3	-11.5	-14.1	-15.7
θ	град.	-3.0	-3.0	-2.9	-2.9	-2.8	-2.9
V_y^*	C		6.3	11.2	13.6	16.6	17.8
n_x	I	-0.064 2.0	-0.058 6.3	-0.056 11.2 -2.9	-0.055 13.6 -2.9	-0.052	-0.051 17.8 -2.9 -15.7
$\frac{\Delta V}{\Delta H}$	$\frac{1}{c}$	0.013	554.6 0.007	501.3 0.008	444.0 0.005	0.005	0.0
$V_{\scriptscriptstyle m KM}$	$\frac{\mathrm{KM}}{\mathrm{q}}$	79.7 647.0 0.013			444.0	407.0 0.005	02.1 367.5
Λ	C M	179.7	154.1	139.2	123.3	113.1	102.1
М	ı	9.0	0.5	6.0 0.44	4.0 0.38	2.0 0.34	0.0 0.3
H	M	10.0	0.8	0.9	4.0	2.0	0.0

Таблица 3.4- (Продолжение) Результаты расчета снижения высоты

Ce		$\begin{bmatrix} \frac{K\Gamma}{H^{H}} \end{bmatrix}$	0.123	0.117	8 0.118	0.118	0.116	0.118
ton		МИН	-0.2 7.33	4.19	3.28	2.63	2.3	I
*/	$y_{ m cp}$	C IM		-0.1 4.19	-0.1	-0.1	40.8 -0.1	I
Lon	- 1	$_{ m KM}$	38.7	38.2	39.9	39.7	40.8	-
$\left(\frac{\Delta H_3}{2}\left(\frac{CeP}{V}\right)_{cn}\right)$	$3600 \cdot V_y^* / \text{cP}$	ΚΓ	109.5	81.3	81.0	9:92	78.3	-
$\left(\frac{CeP}{c}\right)_{c.s.}$	V_y^* /cp	I	-161.8	-131.7	-131.8	-129.9	-132.9	-
$\frac{CeP}{C}$	λ^*	ı	-237.2	-146.7	-146.9	-140.2	-136.2	-137.7
Ь	1	H	6779.0	8629.0	11614.0 -146.9	13687.0	16476.0 -136.2	18370.0 -137.7

Таблица 3.5 — Основные параметры снижения высоты

$t_{ m cH}$	Мин	2.61
$L_{ m cH}$	$ m K_{M}$	197.3
$m_{T_{ m cH}}$	Kr	426.7

Рисунок 3.4 — График зависимости $L(t), m_T(t)$

Рисунок 3.5 — График зависимости $L(t), m_T(t)$

Рисунок 3.6 — Программа снижения

Рисунок 3.7 — Совмещенный график H(L) для участков набора высоты, крейсерского полета и снижения

3.4. Расчет диаграммы транспортных возможностей

Определим зависимость целевой нагрузки от дальности полета самолета $m_{\text{цн}}(L)$ (Рисунок 3.8) Расчет ведется для трех режимов:

- 1. Полет с максимальной коммерческой нагрузкой,
- 2. Полет с максимальным запасом топлива,
- 3. Полет без коммерческой нагрузки ($m_{\text{пн}}=0$) с максимальным запасом топлива.

Режим 1.

Для данного режима определили в разделах 3.1, 3.2, 3.3.

$$m_{\mathrm{LH}} = \frac{m_{\mathrm{LH}}}{m_0}$$

Режим 2.

$$L = L_{\text{\tiny Ha6}} + L_{\text{\tiny Kp}} + L_{\text{\tiny CH}}$$

Для упрощения дальность полета, расход топлива при наборе и снижении, для всех режимов соответствует первому режиму.

Тогда дальность полета вычисляется как:

$$L_{\rm kp} = \frac{36VK}{gCe} \ln \frac{\bar{m}_{\rm \tiny B3JI} - \bar{m}_{T_{\rm \tiny Ha6}} - \bar{m}_{T_{\rm \tiny Hp}}}{\bar{m}_{\rm \tiny \tiny B3JI} - \bar{m}_{T_{\rm \tiny kp}} - \bar{m}_{T_{\rm \tiny Ha6}} - \bar{m}_{T_{\rm \tiny np}}},$$
(3.16)

где $\bar{m}_{\text{взл}} = 1$, $\bar{m}_{T_{\text{кр}}} = \bar{m}_{T_{max}} - \bar{m}_{T_{\text{на6}}} - \bar{m}_{T_{\text{сн}}} - \bar{m}_{T_{\text{пр}}}$, $\bar{m}_{T_{max}} = 0.5258$, $\bar{m}_{\text{цн}} = 1 - \bar{m}_{\text{пуст}} - \bar{m}_{T_{max}}$, $\bar{m}_{T_{max}}$, $\bar{m}_{T_{max}} = \frac{88500}{m_0}$.

Режим 3.

$$\bar{m}_{\scriptscriptstyle \mathrm{B3J}} = \bar{m}_{\scriptscriptstyle \mathrm{\PiYCT}} + \bar{m}_{T_{max}}$$

Результаты расчетов сведены в таблицу 3.6.

Таблица 3.6 — Результаты расчета

Режим	L	$m_{\scriptscriptstyle m LH}$
$\mathcal{N}_{ar{0}}$	KM	ΚΓ
1	3143.0	64400.0
2	5422.0	36400.0
3	7898.0	0.0

Рисунок 3.8 — График зависимости $m_{\text{цн}}(L)$

3.5. Расчет взлетно-посадочных характеристик самолета

Для расчета: скорости отрыва при взлете $V_{\text{отр}}$, длины разбега L_{p} , взлетной дистанции $L_{\text{вд}}$, скорости касания ВПП при посадке $V_{\text{кас}}$, длины пробега $L_{\text{пр}}$, посадочной дистанции $L_{\text{пд}}$, предполагается что:

- 1. Угол атаки при разбеге и пробеге $\alpha_{\rm p}=\alpha_{\rm n}=2^{\circ}$
- 2. Угол атаки при отрыве и касании ВПП $\alpha_{\rm orp}=\alpha_{\rm kac}=6^\circ$
- 3. Безопасная высота пролета препятствий $H_{\mbox{\tiny BSJ}}=10.7\,\mbox{м}$ и $H_{\mbox{\tiny пос}}=15\,\mbox{м}$
- 4. Тяга двигателей $P_{\text{взл}}=(1.2...1.3)P,\ Ce_{\text{взл}}=(1.03...1.05)Ce_0$
- 5. При пробеге по ВПП используется реверс тяги.

Соотношения для расчета:

$$V_{\text{otp}} = \sqrt{\frac{20P_s(1 - 0.9\bar{P}_{\text{взл}}\sin\alpha_{\text{otp}})}{\rho_0 C_{y_{\text{otp}}}}}$$
(3.17)

$$C_p = 0.9\bar{P}_{\text{взл}} - f_p \tag{3.18}$$

$$b_p = (C_{x_p} - f_p C_{y_p}) \frac{\rho_0}{2P_c 10}, \tag{3.19}$$

где $f_p = 0.02$

$$L_p = \frac{1}{2gb_p} \ln \frac{C_p}{C_p - b_p V_{\text{opp}}^2}$$
 (3.20)

$$V_2 = 1.1 V_{\text{orp}}$$
 (3.21)

$$\hat{V}_{\rm cp} = \sqrt{\frac{V_2^2 + V_{\rm opp}^2}{2}} \tag{3.22}$$

$$\hat{n}_{x_{\rm cp}} = \bar{P}_{\rm \tiny B3JI} - \frac{C_{x_{\rm opp}} \rho_0 \hat{V}_{\rm cp}^2}{P_{\rm o} 20}$$
(3.23)

$$L_{\text{\tiny BYB}} = \frac{1}{\hat{n}_{x_{\text{\tiny CP}}}} \left(\frac{V_2^2 + V_{\text{\tiny OTP}}^2}{2g} + H_{\text{\tiny B3Л}} \right) \tag{3.24}$$

$$\bar{m}_{\text{пос}} = \bar{m}_{\text{к кр}} - \bar{m}_{T_{\text{снп}}} \tag{3.25}$$

$$V_{\text{\tiny Kac}} = \sqrt{\frac{2\bar{m}_{\text{\tiny HOC}}P_s10}{C_{y_{\text{\tiny Kac}}}\rho_0}} \tag{3.26}$$

$$\bar{P}_{\text{peB}} = \frac{P_{\text{peB}}}{m_{\text{moc}} g} \tag{3.27}$$

$$a_n = -\bar{P}_{\text{peB}} - f_n \tag{3.28}$$

$$b_n = \frac{\rho_0}{\bar{m}_{\text{пос}} P_s 20} (C_{x_{\text{про6}}} - f_n C_{y_{\text{про6}}})$$
(3.29)

$$L_{\text{проб}} = \frac{1}{2ab_n} \ln \frac{a_n - b_n V_{\text{kac}}^2}{a_n}$$
 (3.30)

$$C_{y_{\text{noc}}} = 0.7C_{y_{\text{kac}}}(\alpha_{\text{kac}}) \tag{3.31}$$

$$V_{\text{пл}} = \sqrt{\frac{2\bar{m}_{\text{пос}}P_s10}{C_{y_{\text{пос}}}\rho_0}}$$

$$(3.32)$$

$$K_{\text{noc}} = \frac{C_{y_{\text{noc}}}}{C_{x_{\text{noc}}}} \tag{3.33}$$

$$L_{\text{вуп}} = K_{\text{пос}} \left(H_{\text{пос}} + \frac{V_{\text{пл}}^2 - V_{\text{кас}}^2}{2a} \right)$$
 (3.34)

$$L_{\text{пд}} = L_{\text{проб}} + L_{\text{вуп}}$$
 (3.35)

Результаты расчетов приведены в таблице 3.7.

Таблица 3.7 — Результаты расчета

$V_{ m orp}$	$L_{ m p}$	$L_{\scriptscriptstyle m BД}$	$V_{ m kac}$	$L_{\pi \mathrm{p}}$	$L_{\scriptscriptstyle \Pi extsf{ iny I}}$
<u>М</u> С	M	M	<u>М</u> С	M	M
90.0	1830.0	2289.0	65.0	811.0	1418.0

3.6. Расчет характеристик маневренности самолета

В данном разделе определим характеристики правильного виража.

Расчеты ведутся для высоты $H = 6 \, \text{км}$.

Характеристики маневренности рассчитываются при 50%-ом выгорании топлива для массы самолета: $\bar{m}_{\rm c}=1-0.5\bar{m}_T$

Для расчета таблицы 3.8:

1. Максимальная допустимая нормальная перегрузка:

$$n_{y_{\text{доп}}} = \min \left\{ n_{y_{\text{9}}}, \, n_{y}(C_{y_{\text{доп}}}) \right\}$$
 $n_{y_{\text{9}}} = 3, \, n_{y}(C_{y_{\text{доп}}}) = rac{C_{y_{\text{доп}}}}{C_{y_{\Gamma\Pi}}}, \, C_{y_{\Gamma\Pi}} = rac{ar{m}_{\text{c}}P_{\text{s}}10}{q}$

2. Нормальная перегрузка предельного правильного виража

$$\begin{split} n_{y_{\mathtt{вир}}} &= \min \left\{ n_{y_{\mathtt{доп}}}, \, n_{y_{P}} \right\} \\ n_{y_{P}} &= \frac{1}{C_{y_{a}}\Gamma\Pi} \left(C_{y_{m}} + \sqrt{\frac{\bar{P}C_{y_{a}}\Gamma\Pi - C_{x_{\mathtt{M}}}}{A}} \right), \, \bar{P} = \frac{P_{p}}{mg} \end{split}$$

3. Кинематические параметры виража:

$$\omega_{\text{вир}} = \frac{g}{V} \sqrt{n_{y\,\text{вир}}^2 - 1}$$

$$r_{\text{вир}} = \frac{V}{\omega_{\text{вир}}}$$

$$t_{\text{вир}} = \frac{2\pi r_{\text{вир}}}{V}$$

4. Диапазон Маха берется: M = [0.4, 0.5, 0.6, 0.7]

Таблица 3.8 — Расчет виража

M	V	V	q	$C_{y_{\Gamma\Pi}}$	$C_{y_{ m дon}}$	$n_{y_{ m доп}}$	$K_{\Gamma\Pi}$	$P_n * 10^{-5}$	$P_p * 10^{-5}$
-	<u>м</u> с	<u>КМ</u> Ч	$\frac{H}{{}_{ m M}^2}$	-	-	-	-	Н	Н
0.4	127.0	456.	5287.0	0.866	1.112	1.284	14.36	6.196	15.694
0.5	158.0	570.	8262.0	0.554	1.083	1.954	13.97	6.371	15.368
0.6	190.0	684.	11897.0	0.385	1.033	2.684	11.13	7.996	14.955
0.7	222.0	797.	16193.0	0.283	0.977	3.0	8.12	10.96	14.555

Таблица 3.8 — (Продолжение) Расчет виража

\bar{P}	n_{y_p}	$n_{y_{\mathtt{Bup}}}$	$\omega_{ ext{вир}}$	$r_{\text{вир}}$	$t_{\scriptscriptstyle \mathrm{B}\mathrm{H}\mathrm{p}}$
_	-	-	$\frac{1}{c}$	M	С
0.142	1.612	1.284	0.062	2026.7	100.6
0.139	1.865	1.865	0.098	1620.9	64.4
0.135	1.838	1.838	0.08	2383.8	78.9
0.132	1.27	1.27	0.035	6393.1	181.3

Рисунок 3.9 — График зависимости $n_{y_{\text{вир}}}(M), \, \omega_{\text{вир}}(M), \, r_{\text{вир}}(M), \, t_{\text{вир}}(M)$

3.7. Расчет характеристик продольной статической устойчивости и управляемости

Для расчета продольной статической устойчивости и управляемости необходимо определить безразмерную площадь горизонтального оперения $\bar{S}_{\Gamma {
m O}}$ из условия устойчивости и балансировки.

Для определения $\bar{S}_{\Gamma {
m O}}$ рассчитываются предельно передняя $\bar{x}_{{
m T}\Pi\Pi}$ для режима посадки

 $(H=0,\,M=0.2)$ и предельно задняя \bar{x}_{TH3} центровки:

$$\bar{x}_{\text{THH}} = \frac{-m_{Z_0 \text{ BFO}} + \bar{x}_{F \text{ BFO}} C_{y \text{ BFO}} + C_{y \text{ FO}} \bar{S}_{\text{FO}} K_{\text{FO}} \bar{L}_{\text{FO}}}{C_{y \text{ BFO}}}, \tag{3.36}$$

где $C_{y\,\text{БГО}} = C_{y_0\,\text{БГО}} + C_{y\,\text{БГО}}^{\alpha}\alpha$, $C_{y\,\text{ГО}} = C_{y\,\text{ГО}}^{\alpha_{\text{ГО}}} \left[\alpha(1-\epsilon^{\alpha})+\varphi_{\text{эф}}\right] < 0$, $\varphi_{\text{эф}} = \varphi_{\text{уст}} + n_{\text{в}}\delta_{max}$, $\delta_{\text{max}} = -25^{\circ}$, $\varphi_{\text{уст}} = -4^{\circ}$.

$$\bar{x}_{\text{TII3}} = \bar{x}_H + \sigma_{n \text{ min}} \tag{3.37}$$

$$\bar{x}_H = \bar{x}_F - \frac{m_z^{\bar{\omega}_z}}{\mu}, \ \mu = \frac{2P_s 10}{\rho g b_a}, \ m_z^{\bar{\omega}_z} = m_{z \, \mathrm{BTO}}^{\bar{\omega}_z} + m_{z \, \mathrm{TO}}^{\bar{\omega}_z}, \ m_{z \, \mathrm{TO}}^{\bar{\omega}_z} = -C_{y \, \mathrm{TO}}^{\alpha_{\mathrm{TO}}} \bar{S}_{\mathrm{TO}} \bar{L}_{\mathrm{TO}} \sqrt{K_{\mathrm{TO}}}$$

$$\bar{x}_F = \bar{x}_{FB\Gamma O} + \Delta \bar{x}_{F_{\Gamma O}} \tag{3.38}$$

$$\Delta \bar{x}_{F_{\Gamma O}} \approx \frac{C_{y \Gamma O}^{\alpha_{\Gamma O}}}{C_{y}^{\alpha}} (1 - \varepsilon^{\alpha}) \bar{S}_{\Gamma O} \bar{L}_{\Gamma O} K_{\Gamma O}, \ \sigma_{n \min} = -0.1$$

По приведенным формулам для ряда значений $\bar{S}_{\Gamma O}=(0.01,\,0.2)$ рассчитываются значения $\bar{x}_{\Pi\Pi\Pi},\,\bar{x}_{\Pi\Pi 3},$ результаты представлены в таблице 3.9.

Затем графически определяется потребная площадь ГО (рисунок 3.10) из условия:

$$\bar{x}_{\text{ТПЗ}}(\bar{S}_{\Gamma \text{O}}) - \bar{x}_{\text{ТПП}}(\bar{S}_{\Gamma \text{O}}) = \Delta \bar{x}_{\text{s}} 1.2$$

 $\Delta \bar{x}_{\rm s} \approx 0.15$

Далее расчеты характеристик устойчивости и управляемости производятся для средней центровки:

$$\bar{x}_T = 0.5 \left[\bar{x}_{\text{TII3}} (\bar{S}_{\Gamma O}^*) + \bar{x}_{\text{TIII}} (\bar{S}_{\Gamma O}^*) \right]$$

Значения величин \bar{x}_F , \bar{x}_H , $\bar{x}_{T\Pi 3}$, σ_n определяются в узловых точках по M на высоте H=0 результаты которого сведены в таблицу 3.10.

$$\sigma_n = \bar{x}_T - \bar{x}_F + \frac{m_z^{\bar{\omega}_z}}{\mu}$$

По результатам получены графики зависимости $\bar{x}_F, \bar{x}_H, \bar{x}_{\text{ТПЗ}}$ от числа M на рисунке 3.11.

Зависимости $\varphi_{\text{бал}}(M)$, $\varphi^n(M)$, $n_{y_p}(M)$ для трех значений высот: $H=(0\,\text{км},\,6\,\text{км},\,H_{\text{кр}})$ рассчитываются по формулам:

$$m_z^{C_y} = \bar{x}_T - \bar{x}_F$$

 $\bar{x}_F = \bar{x}_{F\,\rm B\,\Gamma\rm O} + \Delta \bar{x}_{F\,\,\Gamma\rm O}, \, m_z^{\delta_{\rm B}} = -C_{y\,\Gamma\rm O}^{\alpha_{\Gamma\rm O}} \bar{S}_{\Gamma\rm O} \bar{L}_{\Gamma\rm O} K_{\Gamma\rm O} n_{\rm B}, \, C_{y\,\Gamma\rm O} = \frac{10 P_s \bar{m}}{q}, \, \bar{m} = 1 - 0.5 \bar{m}_T,$

$$m_{Z_0} = m_{Z_0 \, \text{B}\Gamma\text{O}} - (1 - \varepsilon^{\alpha}) \bar{S}_{\Gamma\text{O}} \bar{L}_{\Gamma\text{O}} K_{\Gamma\text{O}} C_{y \, \Gamma\text{O}}^{\alpha_{\Gamma\text{O}}} \alpha_0$$

$$\delta_{\text{бал}} = -\frac{m_{z_0} m_z^{C_y} C_y \Gamma \Pi}{m_z^{\delta_B} \left(1 + \frac{m_z^{C_y}}{L_{\text{ro}}}\right)} + \frac{\varphi_{\text{уст}}}{n_{\text{B}}}$$

$$\delta^n = -57.3 \frac{C_{y \Gamma\Pi} \sigma_n}{m_z^{\delta_{\rm B}}}$$

$$n_{y_{\rm p}} = 1 + \frac{\delta_{\rm max} + \varphi_{\rm yct} - \delta_{\rm 6aJ}}{\delta^n}$$

Результаты расчетов сведены в таблицы 3.11 - 3.13. Графические зависимости $\varphi_{\text{бал}}(M)$, $\varphi^n(M)$, $n_{y_p}(M)$ представлены на рисунках 3.12, 3.13, 3.14 соответственно.

Таблица 3.9 — Значения для построения графика на рисунке 3.10

$\bar{S}_{ m ro}$	$\bar{x}_{\mathrm{T}\Pi\Pi}$	$\bar{x}_{\mathrm{T\Pi3}}$
0.01	0.2629	0.198
0.2	0.0543	0.4849

Рисунок 3.10 — График зависимости $\bar{x}_{\mathrm{ТПП}}(\bar{S}_{\mathrm{ro}})$

Таблица 3.10 — Результаты расчетов

M	\bar{x}_F	\bar{x}_H	$\bar{x}_{ ext{T}\Pi ext{3}}$	σ_n
0.24	0.4026	0.4398	0.3398	-0.19
0.31	0.4028	0.44	0.34	-0.1902
0.41	0.4095	0.447	0.347	-0.1972
0.51	0.4168	0.4546	0.3546	-0.2048

Рисунок 3.11 — График зависимости $\bar{x}_F(M)$, $\bar{x}_H(M)$, $\bar{x}_{T\Pi 3}(M)$, $\sigma_n(M)$

Таблица 3.11 — Результаты расчетов для балансировочных зависимостей для высоты H=0 км

M	V	$arphi_{ m бал}$	φ^n	n_{y_p}
_	<u>М</u> С	град	град ед.перег.	-
0.24	82.0	-1.36	-40.14	1.689
0.31	105.0	-1.12	-24.06	2.159
0.41	139.0	-0.97	-13.79	3.033
0.51	173.0	-0.9	-8.96	4.136

Таблица 3.12 — Результаты расчетов для балансировочных зависимостей для высоты $H=6\,\,\mathrm{km}$

M	V	arphiбал	φ^n	n_{y_p}
_	<u>М</u> С	град	град ед.перег.	-
0.35	111.0	-1.36	-36.43	1.759
0.4	127.0	-1.22	-28.03	1.991
0.5	159.0	-1.06	-18.13	2.541
0.6	190.0	-0.99	-13.01	3.153
0.7	222.0	-0.97	-10.09	3.778

Таблица 3.13 — Результаты расчетов для балансировочных зависимостей для высоты $H=11\ {
m km}$

M	V	arphiбал	φ^n	n_{y_p}
-	<u>М</u> С	град	<u>град</u> ед.перег.	-
0.52	153.0	-1.35	-33.76	1.819
0.61	179.0	-1.22	-25.33	2.097
0.71	209.0	-1.16	-19.87	2.402

Рисунок 3.12 — График зависимости $\varphi_{\text{бал}}(M,\,H=0,6,11\,\text{км})$

Рисунок 3.13 — График зависимости $\varphi^n(M,\,H=0,6,11\,{\rm km})$

Рисунок 3.14 — График зависимости $n_{y_p}(M,\,H=0,6,11\,{\mbox{кm}})$