Probabilistic Virtual Load Monitoring of Offshore Wind Substructures: A Supervised Learning Approach

Nandar Hlaing, Pablo G. Morato, Phillipe Rigo

Naval and Offshore Engineering, ArGEnCo, University of Liege, Liege, Belgium

ISOPE-2022 Shanghai Conference The 32nd International Ocean and Polar Engineering Conference

Shanghai, China, June 5-10, 2022: www.isope.org

Motivation

- Current trend towards larger wind turbines, deeper water depths, farther from shore.
- Accentuated structural degradations.
- Difficult and costly inspections and maintenance.
- Advancement of sensor technologies and monitoring solutions.
- Sensors prone to damage in harsh marine environments.
- Limited lifetime of sensors Vs SCADA data available throughout lifetime

Virtual load monitoring

Framework for the development and deployment of a virtual load monitoring model

Uncertainty quantification

- Residual variability
- Observation error
- Parametric variability
 - minimize overfitting
 - Sensor re-installation/re-calibration of network weights
- Model inadequacy

$$z = \delta + \eta(x, \theta)$$

- -z = sensor data
- x = SCADA data
- θ = trained weights and bias
- $-\delta$ = model inadequacy

Ref: Kennedy, M.C. and O'Hagan, A. (2001), Bayesian calibration of computer models. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 63: 425-464. https://doi.org/10.1111/1467-9868.00294

Virtual load monitoring of an offshore structural connection

Wind turbine: Monopile-supported NREL 5MW Location: Ijmuiden site (Dutch North Sea)

Variable	Description	
Wind speed (V_w)	$V_{w} \sim \text{Weibull}$	
	(scale = 10.49, shape = 2.08)	
Wind direction (θ_{wind})	$P(\theta_{wind}, \theta_{wave} V_w)$	
Turbulence intensity (I)	IEC-3 ($I_{15 \text{ m/s}} = 0.14$)	
Significant wave height (H_s)	$P(H_s, T_p V_w)$	
Peak period (T_p)	$P(H_s, T_p V_w)$	
Wave direction (θ_{wave})	$P(heta_{ ext{wind}}, heta_{ ext{wave}} \ V_{ ext{w}})$	
Rotational speed (ω)	$f(V_w)$	
Yaw error (θ_{yaw})	$\theta_{yaw} \in [-10,10]$	

Numerical simulations and data processing

Input environmental and operational parameters (Pseudo-SCADA)

Ancestral sampling

Coupled aero-hydro-servo-elastic simulations

OpenFAST

Computation of hot-spot stress

Probability distribution of stress ranges

Rainflow counting

Network architecture

- Data normalization
- Input layer (7 neurons)
- 3 hidden layers (50, 100, 200 neurons) with ReLU activation function
- Output layer (50 neurons)

Softmax:
$$P(s_i) = \frac{e^{x_i}}{\sum_{j=1}^{S_n} e^{x_j}}, i = 1, 2, ..., S_n$$

Training the neural network

- Optimizer RMSProp (Lr = 0.001)
- Mean absolute error (MAE):

$$MAE = \frac{1}{N} \frac{1}{S_n} \sum_{j=1}^{N} \sum_{i=1}^{S_n} P_{pred,j}(s_i) - P_{data,j}(s_i)$$

- Early stopping callback which monitors validation MAE
- 80% trainset (training + validation),
 20% testset

Nandar Hlaing, & Pablo G. Morato. (2022). Post-processed dataset from 50000 numerical simulations of monopile-supported NREL 5MW wind turbine in OpenFAST (Version V1) [Data set]. Zenodo. https://doi.org/10.5281/zenodo.5957394

Training and cross-validation results

Random test sample

Testset

Random test sample

- Data → zero-probability bins
- Prediction → non-zero probability (due to softmax)

Under-estimations, e.g. bins 30-40 MPa

Test set

- Under-estimations in low probability regions
- Small stress ranges are more critical than higher stress ranges in fatigue

Prospective applications: Short-term/long-term fatigue damage estimation

Example: Fatigue hotspot at the mudline

$$n = 1200 \text{ cycles/10-minute}$$

$$log_{10} \text{ K} = 11.687$$

$$m = 3$$

• Miner's rule (linear SN curve):

$$D = n \sum_{i=1}^{S_n} \frac{P(s_i)}{N_{f_i}}, \text{ with } \log_{10} N_{f_i} = \log_{10} K - m \log_{10} s_i$$

Prospective applications: Bayesian inference of load effects

Example: Probabilistic fatigue assessment

$$D(t) = nt \left[\frac{q^m}{K} \Gamma \left(1 + \frac{m}{h} \right) \right], t = 0, 1, 2, \dots T_d$$

Fatigue assessment representative parameters

Variable	Distribution	Mean	Std(CoV)
\overline{FDF}	Deterministic	3	,
m	Deterministic	3	
$log_{10}K$	Normal	11.687 + 2Std	0.2
h	Deterministic	0.8	
q	Normal	*1.9776	(0.2)
\overline{n}	Deterministic	$6.32 \cdot 10^{6}$	

Time-invariant Weibull-scale parameter

$$q_{t=0} = 1.97666 \ (T_d = 20, FDF = 3)$$

$$q_{t+1} = q_t + \varepsilon, \text{ where } \varepsilon \sim \mathcal{N}(0, 0.1)$$

$$q_{t+1} = q_t + \varepsilon$$
, where $\varepsilon \sim \mathcal{N}(0, 0.1)$

Prospective applications: Bayesian inference of load effects

$$q_{obs} = q_{pred} + U_O + U_{PR} + U_{MI}$$

Variable	Distribution	Mean	Std(CoV)
U_O	Normal	0	0.25
U_{PR}	Normal	0	0.25
U_{MI}	Normal	0	0.5

Baye's rule: $P(q'|q_{obs}) \propto P(q_{obs}|q)P(q)$

ISOPE

Evolution of fatigue damage and uncertainty

Conclusions and outlook

- A data-based model can be trained while the SCADA and strain data are concurrently collected.
- The hindrance of different sampling frequencies can be circumvented by specifying the output as a probability distribution.
- The virtual load monitoring can be applied in
 - Fatigue damage evaluation, e.g., for design verification.
 - Decision making for optimal management planning, lifetime extension, etc.

Conclusions and outlook

- To explore robust feature selection methods
 - To select the most influencing input variables
 - To avoid redundant variables
- Probabilistic deep learning methods
 - Intrinsic quantification of aleatory and epistemic uncertainties
 - Reduction of model uncertainty with more training data

For questions and comments:

nandar.hlaing@uliege.be

