

Local and global models

- We can make models of light-matter interaction in two ways
 - Locally: we treat each object in a scene separately from any other object
 - Globally: we treat all objects together, and model the interactions between objects
- we'll develop a simple local illumination model in detail
- we'll look at global models in COMP37111 next year

3

MANCHESTER 1824

Illumination models

- The interaction of light and matter is an extremely complex process
- In computer graphics we try to model this process. In other words, we approximate it
- Computer pictures are digital, with finite precision. We can only ever approximate.

Local illumination: elements

- We'll develop a model step-by-step, to include the following:
 - Ambient illumination
 - Diffuse reflection
 - Positional light source
 - Specular reflection
 - Colour of lights and surfaces

5

Reflectivity • There are three kinds of reflection: • Perfect diffuse reflection • Perfect specular reflection • Imperfect specular reflection

Diffuse and specular reflection

- Diffuse reflection is absorption and uniform reradiation
 - Some wavelengths are absorbed, some are reflected
 - a green object looks green because it only reflects green
- Specular reflection is reflection at the air/ surface interface
 - To a first approximation, the colour of the specular reflection is that of the light source

Diffuse/specular surfaces

 Most surfaces exhibit a combination of diffuse and specular reflection

 We can model these effects with varying degrees of realism

15

MANCHESTER 1824

Illumination sources

- We begin our development of the local illumination model by considering diffuse reflection, and sources of illumination:
 - Ambient illumination
 - Point illumination source at infinity (directional illumination)
 - Point illumination source in the scene

Ambient illumination

- Consider an environment with a light source
- Multiple reflections cause a general level of illumination in the scene

17

MANCHESTER

Ambient illumination

- ullet If intensity of ambient light is I_a
- Amount of light diffusely reflected from a surface is

$$I_{\text{ambient}} = k_a I_a$$

Where k_a is the ambient reflection coefficient of the surface

$$0 \le k_a \le 1$$

Local illumination model v1

- We now have the first term in the model we're developing
- I = ambient
- $I = k_a I_a$

True ambient lighting

Note: the

 $I = k_a I_a$

term is a gross simplification of true ambient illumination, which is **not** constant in a scene

MANCHESTER 1824

True ambient lighting

Scene modelled and rendered with accurate global illumination model

Describing surface orientation

- $\ \ \, \hat{N}$ is surface normal
- $\hat{\mathbf{L}}$ is direction of light source
- ullet heta is angle of incidence
- Note the vectors are normalised

MANCHESTER 1824

Diffuse reflection: Lambert's Law

- Light source of intensity \boldsymbol{I}_p Effective intensity received is \boldsymbol{I}_e
- Lambert's Law: $I_e = I_p \cos \theta$

Johann Heinrich Lambert (1728-1777)

Lambert's Law derived

 Consider light of intensity I and cross-sectional width x falling on a surface:

 So width x on surface receives all of intensity I

20

MANCHESTER 1824

Lambert's Law derived

- Now consider the light inclined at heta
- $x' = x/\cos\theta$, so $x = x'\cos\theta$
- So width x receives intensity $I\cos\theta$

Diffuse reflectivity

- We express how good a diffuse reflector a surface is using k_d
- k_d is the **diffuse reflection coefficient** of the surface, $0 \le k_d \le 1$
- Amount of diffusely reflected light is
 - $I_{\text{diffuse}} = I_p k_d \cos \theta$

 $I_{\text{diffuse}} = I_p k_d (\hat{\mathbf{N}} \cdot \hat{\mathbf{L}})$

31

MANCHESTER

Local illumination model v2

- I = ambient + diffuse
- $I = k_a I_a + I_p k_d (\hat{\mathbf{N}} \cdot \hat{\mathbf{L}})$

Effect of k_d

Varying k_d from 0 to 1

35

MANCHESTER

Light source distance

- Physically, light intensity falls off with the square of distance travelled
- After travelling \boldsymbol{d} , original intensity \boldsymbol{I}_p is now \boldsymbol{I}_e

$$I_e = \frac{I_p}{4\pi d^2}$$

Light source distance

- While this is physically correct, it doesn't always work well for computer graphics
- We only have a limited number of pixel intensities, and often the d^2 term changes too rapidly, so instead we use:

$$I_e = \frac{I_p}{\frac{k_c + k_l d + k_q d^2}{k_c + k_l d + k_q d^2}}$$
 We can choose $\frac{k_c, k_l, k_q}{k_c + k_l d + k_q d^2}$ best results

MANCHESTER

Local illumination model v3

• I = ambient + distance (diffuse)

$$I = k_a I_a + \frac{I_p}{d'} k_d (\hat{\mathbf{N}} \cdot \hat{\mathbf{L}})$$

• Where $d' = k_c + k_l d + k_q d^2$

Modelling specular reflection $\hat{\mathbf{L}} \qquad \hat{\mathbf{N}} \qquad \hat{\mathbf{R}} \qquad \hat{\mathbf{V}} \qquad \hat{\mathbf{$

Modelling specular reflection

- Variation of observed specular = $F(\phi)$
- But what is the function F?
- Bui-Tuong Phong (1942-1975) proposed using the function $\cos^n \phi$

Phong's specular function

So we now have

•
$$I_{\text{specular}} = I_p \cos^n \phi$$

• Which we can rewrite using vectors as

$$I_{\text{specular}} = I_p (\hat{\mathbf{R}} \cdot \hat{\mathbf{V}})^n$$

• Normally we use $1 \le n \le 200$

lichard Lobl

$$n = 10$$

n = 20

n = 80

n = 200

47

MANCHESTER 1824

Incident angle and wavelength

- Recall $I_{\text{specular}} = S(\phi, \theta, \lambda)$
- We've accounted for ϕ
- Now we look at the effects of $\, heta\,$ and $\,\lambda\,$

Incident angle and wavelength

- This complex variation is expressed by the Fresnel equation (Augustin-Jean Fresnel, 1788-1827)
 - > A founder of the wave theory of light.
 - > Developed theory of diffraction of light.
 - Obtained circularly polarised light
 - Developed the use of compound lenses instead of mirrors for lighthouses.

53

MANCHESTER

Incident angle and wavelength

 This complex variation is expressed by the Fresnel equation (Augustin-Jean Fresnel, 1788-1827)

$$F = \frac{1}{2} \left[\frac{\sin^2(\phi - \theta)}{\sin^2(\phi + \theta)} + \frac{\tan^2(\phi - \theta)}{\tan^2(\phi + \theta)} \right]$$

- *F* is the fraction of light reflected
- $\sin \theta = \sin \phi / \mu$
- μ is the refractive index of the material (λ dependent)

Incident angle and wavelength

- In practice, we usually approximate F with a single constant $k_{\scriptscriptstyle S}$
- k_s is the **specular reflection coefficient** of the surface, $0 \le k_s \le 1$
- $I_{\text{specular}} = I_p \mathbf{k}_s (\mathbf{R} \cdot \mathbf{V})^n$
- But, we sacrifice accuracy for efficiency

55

MANCHESTER

Local illumination model v4

I = ambient + distance (diffuse + specular)

$$I = k_a I_a + \frac{I_p}{d'} \left[k_d (\hat{\mathbf{N}} \cdot \hat{\mathbf{L}}) + k_s (\hat{\mathbf{R}} \cdot \hat{\mathbf{V}})^n \right]$$

• Where $d' = k_c + k_l d + k_q d^2$

Incorporating colour

- So far, we've only considered light intensity, not colour
- It's easy to incorporate we express light colour as a triple of RGB intensities:
 - I_{pR}, I_{pG}, I_{pB}
- And correspondingly we express surface colour using
 - k_{aR}, k_{aG}, k_{aB}
 - k_{dR}, k_{dG}, k_{dB}

63

MANCHESTER

Local illumination model v5

- We now have a separate expression for each colour component. For example, for red:
- I_R = ambient_{Red} + distance (diffuse_{Red} + specular)

$$I_R = k_{aR} I_{aR} + \frac{I_{pR}}{d'} \left[k_{dR} (\hat{\mathbf{N}} \cdot \hat{\mathbf{L}}) + k_s (\hat{\mathbf{R}} \cdot \hat{\mathbf{V}})^n \right]$$

Multiple lights

- Finally, what if we have more than one light?
- Easy, compute illumination separately for each and sum. For M lights:

•
$$I = ambient + \sum_{i=1}^{M} (diffuse_i + specular_i)$$

The "standard" model

- The local illumination model we've developed is the "standard" model in use today
- Implemented in OpenGL
- Implemented in hardware on consumer 3D graphics cards