Financial Mathematics 32000

Lecture 2

Roger Lee

2023 March 29

Pricing: problems and solutions

A description of a pricing problem and solution consists of:

- ▶ a **contract** (what are you pricing)
- ▶ a **model** of the **dynamics** (what are you assuming about the underlying risks)
- ▶ a **pricer** / solution **method** (how are you pricing it)

For example:

- ► Last Fall: contract = European, model = GBM, pricer = analytic
- ► Last week: contract ∈ {European, American, barrier} model = GBM or binomial tree; pricer = binomial/trinomial tree

(contract=lookback, dynamics=GBM, pricer=tree):

(contract=general, dynamics=local volatility, pricer=tree)

(contract=European call/put, dynamics=GBM, pricer=Taylor)

(contract=lookback, dynamics=GBM, pricer=tree): (contract=general, dynamics=local volatility, pricer=tree)

Another path-dependent option

A fixed-strike lookback with strike K, start date 0, and expiry T pays

Call:
$$(\max_{t \in [0,T] \cap \mathcal{T}} S_t - K)^+$$

Put:
$$(K - \min_{t \in [0,T] \cap \mathcal{T}} S_t)^+$$

where \mathcal{T} is some set of monitoring times.

Pricing a fixed-strike lookback call

With risk-neutral dynamics

$$dS_t = rS_t dt + \sigma S_t dW_t,$$

the level of S_t determines the time-t conditional distribution of

$$\max_{u \in [t,T] \cap \mathcal{T}} S_u.$$

But that's not enough information, if option is on $\max_{u \in [0,T] \cap \mathcal{T}} S_u$.

Need also to track the running maximum

$$M_t := \max_{u \in [0,t]} S_u.$$

So the time-t price of a fixed-strike lookback call is a function

$$C(t, S_t, M_t)$$

Pricing a fixed-strike lookback call in a tree

▶ Recall: the knockout option, also path-dependent, has price

$$C(t, S_t, \mathbf{1}_{\text{knockout prior to time } t})$$

Here the path-dependence is simple. The path-dependent state variable has only two states: 0/1 (live/dead).

And the "1" state does not need to be tracked in the tree.

▶ Lookback is more complicated than the barrier. At each node (t, S_t) in the tree, need to store a table of values associating each possible M_t with $C(t, S_t, M_t)$.

Example

(contract=lookback, dynamics=GBM, pricer=tree):

(contract=general, dynamics=local volatility, pricer=tree)

(contract=European call/put, dynamics=GBM, **pricer=Taylor**)

(contract=lookback, dynamics=GBM, pricer=tree): (contract=general, dynamics=local volatility, pricer=tree)

Local volatility models

We want a model that is consistent with the observed non-constant implied vol skew. One approach: local volatility models specify the instantaneous volatility σ to be a function of (S_t, t) .

▶ In the continuous-time setting,

$$dS_t = rS_t dt + \sigma(S_t, t) S_t dW_t$$

where W is \mathbb{P} -BM.

▶ In the tree setting, we let σ depend on the node (S_t, t) .

Note that the local volatility σ is not the same thing as σ_{imp} .

Analytic computation of option prices is difficult in the diffusion setting, even for European calls/puts (exception: $\sigma(S_t, t) = \sigma(t)$). But

by approximating the diffusion in a tree, the computations are easy.

Option pricing in the tree setting

Suppose we are given the local volatility function σ .

- Let $\Delta t = T/N$ (unless this fails to place important dates in the tree).
- To choose Δx , let σ_{avg} be some "representative" or "average" σ in the tree, and let σ_{max} be an upper bound on the σ in the tree.

Two guidelines: to make local discretization error small, we want

$$\Delta x \approx \sigma_{avg} \sqrt{3\Delta t}$$

but for stability reasons, we want

$$\Delta x \ge \sigma_{max} \sqrt{\Delta t}$$

So we can let $\Delta x = \max(\sigma_{avq}\sqrt{3\Delta t}, \sigma_{max}\sqrt{\Delta t})$

Option pricing in the tree setting

▶ Then at each node, use the $\sigma(S_t, t)$ prevailing at that particular node to generate the ν and the probabilities for the branches out of that node. Same formulas as L1:

$$p_{u,d} = \frac{1}{2} \left[\frac{\sigma^2 \Delta t + \nu^2 (\Delta t)^2}{(\Delta x)^2} \pm \frac{\nu \Delta t}{\Delta x} \right], \quad p_m = 1 - \frac{\sigma^2 \Delta t + \nu^2 (\Delta t)^2}{(\Delta x)^2}$$

▶ Price options – including path-dependent and American-style options - as we did for GBM.

The only change is that σ (hence ν , p_u , p_m , p_d) vary across nodes.

What if σ is not given

Then *calibrate* it to the prices of listed options.

The general idea of calibration:

- ▶ Observe prices of liquidly traded assets (e.g. listed options)
- ▶ Choose the model's parameters (e.g. the σ function) in such a way that the model generates theoretical prices that match closely the observed prices.

Then one can apply that model, with the calibrated parameters, to

- Compute hedges and risk sensitivities
- ► Price illiquid options
- Price and hedge complex deals (e.g. exotic options, structured products)

Calibration of local volatility $\sigma(t)$

If σ is a non-random function of t and

$$dS_t = rS_t dt + \sigma(t)S_t dW_t$$

then $d \log S_t = (r - \frac{1}{2}\sigma(t))dt + \sigma(t)dW_t$ so

$$\log S_T = \log S_0 + \left(r - \frac{\bar{\sigma}_T^2}{2}\right)T + \int_0^T \sigma(t)dW_t$$

$$\sim \text{Normal}\left(\log S_0 + \left(r - \frac{\bar{\sigma}_T^2}{2}\right)T, \ \bar{\sigma}_T^2 T\right) \text{ where } \left|\bar{\sigma}_T := \sqrt{\frac{1}{T} \int_0^T \sigma^2(t) dt}\right|$$

(intuition: a nonrandomly weighted sum of indep normals is normal)

So time-0 call prices $C(K,T) = C^{BS}(\bar{\sigma}_T)$, thus $\sigma_{imn}(K,T) = \bar{\sigma}_T$.

Calibration: If given C(K,T) at various expiries T, then obtain σ_{imp} and use boxed equation to (not uniquely) find $\sigma(t)$.

Calibration of local volatility $\sigma(S,t)$ in a trinomial tree

It's harder when σ depends on (S, t).

Here's the rough idea. Assume r=0 and a tree with S-levels s_i with equal spacing $\Delta S = s_{i+1} - s_i$. Let $\Delta K := \Delta S$.

Given: $C_0(K,\tau)$, the time-0 price of a strike-K expiry- τ call, for all (K,τ) . Find at each node (s_j,t_n) : Local volatility σ which generates risk-neutral probabilities consistent with call prices (and stock prices).

▶ The probability of reaching node (s_j, t_n) equals (ΔK) Fly₀ (s_j, t_n) where $\text{Fly}_0(K,\tau)$ is the time-0 price of a butterfly:

$$Fly_0(K,\tau) := \frac{C_0(K - \Delta K, \tau) - 2C_0(K, \tau) + C_0(K + \Delta K, \tau)}{(\Delta K)^2}$$

Calibration of local volatility in a trinomial tree

▶ The probability of reaching node (s_j, t_n) and then going up equals $(\Delta t/\Delta K)\operatorname{Cal}_0(s_j,t_n)$, where $\operatorname{Cal}_0(K,\tau)$ is the time-0 price of a calendar spread:

$$\operatorname{Cal}_0(K,\tau) := \frac{C_0(K,\tau + \Delta t) - C_0(K,\tau)}{\Delta t}$$

Hence the conditional up-probability from node (s_j, t_n) is the ratio

$$p_u = \frac{\mathbb{P}(\text{reach }(s_j, t_n) \text{ then up})}{\mathbb{P}(\text{reach }(s_i, t_n))} = \frac{(\Delta t/\Delta K)\text{Cal}_0}{(\Delta K)\text{Flyo}}$$

Calibration of local volatility in a trinomial tree

On the other hand, the up-probability is also obtained by solving

$$\begin{aligned} p_u(\Delta K) + p_m(0) + p_d(-\Delta K) &= 0 \\ p_u(\Delta K)^2 + p_m(0) + p_d(-\Delta K)^2 &= \sigma^2 s_i^2(\Delta t) \end{aligned} \Rightarrow p_u = \frac{\sigma^2 s_j^2 \Delta t}{2(\Delta K)^2}$$

where σ , p_u, p_m, p_d all depend on (s_j, t_n) . Therefore

$$\frac{\sigma^2 s_j^2 \Delta t}{2(\Delta K)^2} = \frac{(\Delta t / \Delta K) \operatorname{Cal}_0}{(\Delta K) \operatorname{Fly}_0}$$

Conclusion: at node (s_j, t_n) , the local volatility calibrated at time 0 is

$$\sigma(s_j, t_n) = \sqrt{\frac{2}{s_j^2} \times \frac{\operatorname{Cal}_0(s_j, t_n)}{\operatorname{Fly}_0(s_j, t_n)}}$$

Conceptually, the local volatility $\sigma(s,t)$ can be inferred from prices of options with strikes near s and expiries near t.

Calibration of local volatility in a trinomial tree

Comments:

- ▶ We have derived a discrete version of the "Dupire equation." We'll return to this formula in the PDE context.
- If you try to implement this formula directly, the calibrated σ
 will be sensitive to noise in the option price observations.
 In practice some regularization/smoothing procedure is advisable.
- ▶ Calibration is much easier in the case where σ depends only on t instead of jointly on (S,t).

(contract=lookback, dynamics=GBM, pricer=tree):

(contract=general, dynamics=local volatility, pricer=tree

(contract=European call/put, dynamics=GBM, pricer=Taylor)

Taylor approximation

Postpone error analysis until we do finite difference methods.

A key tool in that error analysis will be Taylor approximation:

If f has n+1 continuous derivatives in a neighborhood of x_0 then

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{f''(x_0)}{2}(x - x_0)^2 + \dots + \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n + O(x - x_0)^{n+1}$$

as $x \to x_0$.

We may use Taylor approximation for two different purposes:

- ▶ To approximate prices and sensitivities example on next page.
- ➤ To analyze the error in tree or finite difference calculation of prices and sensitivities

Interview question

No calculators allowed. Your interviewer says to you:

Spot is 100. No dividends. What's the price of a Europeanstyle 1-year at-the-money-forward (ATMF) vanilla option with 20% implied volatility?

(ATMF at time 0 means $K = F_0$. Recall $F_0 = S_0 e^{rT}$ if no divs.)

Answer: Black-Scholes call price is

$$S_0 N(d_1) - K e^{-rT} N(d_2)$$

where

$$d_{1,2} := d_{+,-} := \frac{\log(S_0 e^{rT}/K)}{\sigma\sqrt{T}} \pm \frac{\sigma\sqrt{T}}{2}$$

ATMF option prices are almost linear in vol

ATMF option price is

$$S_0N(d_1) - Ke^{-rT}N(d_2) = S_0(N(\sigma\sqrt{T}/2) - N(-\sigma\sqrt{T}/2))$$

For small |x|,

$$N(x) = N(0) + N'(0)x + \frac{1}{2}N''(0)x^2 + O(x^3) = \frac{1}{2} + \frac{1}{\sqrt{2\pi}}x + 0 + O(x^3).$$

So option price is approximately

$$S_0\left(\frac{1}{2} + \frac{\sigma\sqrt{T}/2}{\sqrt{2\pi}} - \frac{1}{2} + \frac{\sigma\sqrt{T}/2}{\sqrt{2\pi}}\right) = \frac{S_0\sigma\sqrt{T}}{\sqrt{2\pi}} \approx 0.4 \times S_0\sigma\sqrt{T}.$$

Your answer: 8 dollars

(True answer: 7.97 dollars)

Follow-up question

Same assumptions. What's the delta of the ATMF call? Differentiating the approximate option price $S_0 \sigma \sqrt{T} / \sqrt{2\pi}$ with respect to S_0 , we have a delta of

$$\frac{\sigma\sqrt{T}}{\sqrt{2\pi}} \approx 0.08$$

Or do we? I thought the delta of an ATMF call should be close to 0.5.