Circuit Analysis Techniques

Lecture 6 Thevenin Theorem

Lecture delivered by:

Topics

- Thevnin's Theorem
- Computing Thevenin Equivalent
- Networks to Illustrate Thevenin Theorem

Objectives

At the end of this lecture, student will be able to:

 State and implement Thevenin's theorem on any complicate linear bilateral network

Thevenin's Theorem

• Thevenin's Theorem states that "Any circuit with sources (dependent or independent) and resistors can be replaced by an equivalent circuit containing a single voltage source and a single resistor".

 Thevenin's theorem implies that we can replace arbitrarily complicated networks with simple networks for purposes of analysis.

Independent Sources (Thevenin)

- •Any network with two open terminals can be replaced by a single voltage source (V_{TH}) and a series resistance (R_{TH}) connected to the open terminals.
- A component can be removed to produce the open terminals.

Circuit with independent sources

Thevenin equivalent circuit

Computing Thevenin Equivalent

Basic steps to determining Thevenin equivalent are

– Find v_{Th}

 V_{TH} is determined by calculating the voltage between open terminals A and B.

- Find R_{Th}

R_{TH} is determined by shorting the voltage source and calculating the circuit's total resistance as seen from open terminals A and B.

Networks to Illustrate Thevenin Theorem

Computing Thevenin Equivalent

Refer to network (b), in R_2 there is not complete circuit, thus no current, thus current in R_3

And p.d across R₃ is

Since no current in R2, thus

Refer to network (c) the resistance at AB

Thus current in R (refer network (d))

$$I_{R3} = \frac{V}{R_1 + R_3} \tag{1}$$

$$V_{R3} = \frac{VR_3}{R_1 + R_3} \tag{2}$$

$$V_{th} = \frac{VR_3}{R_1 + R_3}$$
 (3)

$$R_{th} = R_2 + \frac{R_1 R_3}{R_1 + R_3} \tag{4}$$

$$I = \frac{V_{th}}{R_{th} + R} \tag{5}$$

Thevnin's Theorem

Calculate the current through R₃ Solution

With R₃ disconnected as in figure below

$$I_1 = \frac{6-4}{R_1 + R_2} = \frac{2}{2+3} = 0.4A$$

p.d across CD is E₁-I₁R₁

$$V = 6 - (0.4 \times 2) = 5.2V$$

Continued...

To determine the internal resistance we remove the e.m.f s

$$r = \frac{2 \times 3}{2+3} = 1.2 \,\Omega$$

Replace the network with V=5.2V and r=1.2, then the at terminal CD, R3, thus the current

$$I = \frac{5.2}{1.2 + 10} = 0.46A$$

Theynin's Theorem

Example 2

What is the Thevenin voltage for the circuit?

8.76 V

What is the Thevenin resistance for the circuit?

 $7.30 \text{ k}\Omega$

Remember, the load resistor has no affect on the Thevenin parameters.

Summary

 Thevnin's Theorem states that "Any circuit with sources (dependent or independent) and resistors can be replaced by an equivalent circuit containing a single voltage source and a single resistor".

