

CROSS SECTION DATA FOR ELECTRON-IMPACT INELASTIC PROCESSES OF VIBRATIONALLY EXCITED MOLECULES OF HYDROGEN AND ITS ISOTOPES

R. CELIBERTO

Politecnico di Bari, Italy and Centro di Studio per la Chimica dei Plasmi del C.N.R., Bari, Italy

R. K. JANEV

National Institute for Fusion Science, Toki, Japan, and Macedonian Academy of Sciences and Arts, Skopje, Macedonia

A. LARICCHIUTA

Dipartimento di Chimica, Università di Bari, Italy

M. CAPITELLI

Centro di Studio per la Chimica dei Plasmi del C.N.R., Bari, Italy and Dipartimento di Chimica, Università di Bari, Italy

and

J. M. WADEHRA and D. E. ATEMS

Department of Physics and Astronomy, Wayne State University, Detroit, Michigan 48202

An extensive cross section database for the electron-impact inelastic processes of vibrationally excited molecules of hydrogen and its isotopes is presented. The following inelastic processes are covered: electronic excitation (dissociative and nondissociative), direct ionization (dissociative and nondissociative), excitation-radiative decay vibrational excitation and dissociation, and dissociative electron attachment. The data have been compiled partly from the literature and partly generated theoretically for the present report. The data are presented in graphical form. The data are also presented by sufficiently accurate analytic fit functions. Mass-scaling relations are provided for cross section evaluation of those isotope molecules for which calculated data are not available. © 2001 Academic Press

Data files associated with this article may be found on IDEAL at http://www.idealibrary.com/links/doi/10.1006/adnd.2000. 0850/dat.

CONTENTS

1. INTRODUCT	ON	162
	RIPTION OF COLLISION PROCESSES	164
	on and Ionizationon-Radiative Decay Vibrational Excitation and Dissocia-	164
_		165
2.3. Dissocia	ative Electron Attachment	165
3. CROSS SECT	ION DATA	165
4. ANALYTICAI	L FITS OF THE DATA AND SCALING RELATION-	
		165
	nic Excitation	167
	ative Ionization	169
	ntive Electron Attachment	169
EXPLANATION	OF GRAPHS	171
EXPLANATION	OF TABLES	171
GRAPHS		
I–VIII.	Dissociative Excitation Cross Sections	172
IX-XV.	Total Excitation Cross Sections	182
XVI, XVII.	Dissociative Ionization Cross Sections	191
XVIII.	Non-Dissociative Ionization Cross Sections	193
XIX.	Excitation-Radiative Decay Vibrational Excitation Cross	
	Sections	194
XX.	Excitation-Radiative Decay Dissociation Cross Sections	206
XXI.	Dissociative Electron Attachment Cross Sections	207
TABLES		
I.	Energy Parameters and Fitting Coefficients for the Pro-	
	$\operatorname{cess} H_2(X^1\Sigma_g^+, v_i) + e \to H_2(B^1\Sigma_u^+) + e \dots$	210
II.	Energy Parameters and Fitting Coefficients for the	
	Process $H_2(X^1\Sigma_g^+, v_i) + e \rightarrow H_2(C^1\Pi_u) + e$	211
III.	Energy Parameters and Fitting Coefficients for the Pro-	
	cess $D_2(X^1\Sigma_g^+, v_i) + e \to D_2(B^1\Sigma_u^+) + e$	212
IV.	Energy Parameters and Fitting Coefficients for the	
	Process $D_2(X^1\Sigma_g^+, v_i) + e \rightarrow D_2(C^1\Pi_u) + e$	213

1. INTRODUCTION

Electron-impact inelastic processes of vibrationally excited hydrogen molecules (or their isotopic variants) play a paramount role in the kinetics of a low-temperature hydrogenic plasma. This role is a consequence mainly of two specific features which characterize the inelastic processes (taking place via an electronic transition) of vibrationally ex-

cited molecules with respect to those involving ground state molecules: (i) the threshold for an inelastic process involving a vibrationally excited molecule decreases with increasing vibrational excitation of the molecule, and (ii) the cross section of the process increases (for some processes dramatically) with the increase of vibrational excitation of the molecule. The electron-impact inelastic processes involving vibrationally excited hydrogen molecules play a critical role in multicusp magnetic plasmas (H⁻/D⁻ion sources) [1, 2] and in plasma kinetics of cold divertor regions of magnetic fusion devices [3]. For a consistent description of the phenomena taking place in such plasmas, in particular for modeling their radiative and transport properties, it is of critical importance to have a complete, and as accurate as possible, cross section database for the electron-impact (and other) collision processes. A large amount of cross section information on electron-impact processes of vibrationally excited molecular hydrogen and its isotopic variants has been generated in theoretical calculations in our laboratories and compared with the limited independently derived data available in literature. An attempt has recently been made to collect this information, and present it in a systematic manner and in a form appropriate for use in practical applications (e.g., plasma studies) [4]. In this paper we present in a more compact way the same information, illustrating in graphical form the cross section data, as a function of both incident electron energy and vibrational levels of the molecule. Scaling laws and relationships for some processes, which allow a rapid evaluation of cross section data or their extension to situations for which more reliable information is not available, are also provided. The numerical cross section data can be also accessed, in electronic form, as Supplementary Material (http://www.idealibrary.com/links/doi/10.1006/adnd. 2000.0850/dat) in association with this article on IDEAL.

The electron-impact processes covered by the present article are as follows (A and B designate any hydrogen atom isotope):

—nondissociative electronic excitation,

$$e + AB(X, v_i) \rightarrow AB^*(\Lambda) + e,$$
 (1.1)

(where X is the ground electronic state of the molecule AB, Λ is the electronic state of the excited molecule AB*, and v_i denotes the vibrational state of the initial electronic (ground) state);

—dissociative electronic excitation,

$$e + AB(X, v_i) \rightarrow AB^*(\tilde{\Lambda}, or \Lambda^-) + e \rightarrow A + B^{(*)} + e,$$

$$(1.2)$$

(where $\tilde{\Lambda}$ is the continuum part of the bound electronic state Λ , Λ^- denotes a repulsive electronic state, and A and $B^{(*)}$ indicate the atomic dissociation products. B may also be in an excited electronic state):

-ionization

$$e + AB(X, v_i) \to e + AB^+(Y) + e,$$
 (1.3)

(where Y denotes a bound state of the ion AB^+);

-dissociative ionization,

$$e + AB(X, v_i) \rightarrow e + AB^+(Y^-) + e \rightarrow e + A + B^+ + e,$$
(1.4)

(where Y^- is a dissociative state of the ion AB⁺);

—excitation-radiative decay vibrational excitation,

$$e + AB(X, v_i) \rightarrow e + AB^*(\Lambda_r) \rightarrow e + AB(X, v_f) + h\nu,$$

$$(1.5)$$

(where Λ_r is an electronic excited state that is radiatively coupled with the ground state X, v_i , v_f are the initial and final vibrational quantum numbers);

—excitation-radiative decay dissociation,

$$e + AB(X, v_i) \rightarrow e + AB^*(\Lambda_r) \rightarrow e + A + B + h\nu,$$
 (1.6)

—dissociative electron attachment,

$$e + AB(X, v_i) \rightarrow AB^{-*}(\Lambda_q) \rightarrow A + B^-,$$
 (1.7)

(where Λ_q is a quasi-stationary, resonant state).

Due to insufficient data information for the resonant excitation,

$$e + AB(X, v_i) \rightarrow AB^{-*}(\Lambda_{res}) \rightarrow e + AB(X, v_f),$$
 (1.8)

(where Λ_{res} is a resonant state of AB⁻), particularly for the heavier isotopic variants, this process has not been included in the present database.

When we do not differentiate between the dissociative and nondissociative channels of the excitation of a bound state Λ , we call the process simply electronic excitation, and refer to the sum of the corresponding dissociative and nondissociative cross sections as total excitation cross section. The processes (1.1)–(1.7) have been the subject of extensive theoretical (and a limited number of experimental) studies, and cross sections have been generated for many of the isotopic combinations of hydrogen. We have taken as a basis for the present database our previous publications, where the cross section data have been discussed and compared with any existing experiment and theory. The following publications have been considered:

- —dissociative and nondissociative excitation: Refs. [5–10],
 - —dissociative ionization: Refs. [10–11],
 - —excitation-radiative decay processes: Refs. [12–13],
 - —dissociative electron attachment: Refs. [4, 14].

For the total excitation and dissociative ionization cross sections certain scaling relationships were established recently [8, 15, 16] both with respect to the vibrational quantum number and the isotope mass. The isotope effect in the dissociative electron attachment process has been known to exist from the early 1960s [17] and was recently discussed in more detail [18]. Although there is no clear physical basis for establishing a scaling relationship for the vibrational dependence of the dissociative electron attachment cross sections, they can be nevertheless expressed in a compact approximate analytic form [14].

The present article is organized as follows. In Section 2 we give a brief description of the various collision processes. In Section 3 we report a complete list of all the processes included in the paper, and in Section 4 we present the cross sections of specifically studied reactions by analytic-fit functions (with respect to their energy and vibrational quantum number dependence) and discuss the mass scaling relationships which should provide cross section information for the isotopic hydrogen molecule cases for which specific calculations have not been performed.

2. BRIEF DESCRIPTION OF COLLISION PROCESSES

In this section we comment briefly on the various electron-molecule collision processes included in this paper. For the theoretical methods used to evaluate the related cross sections and for the numerical details of the calculation, the reader is referred to the cited literature.

The corresponding potential energy curves for the considered molecular electronic states are shown in Fig. 1.

2.1. Excitation and Ionization

Electronic excitation processes by electron impact considered here involve molecules of hydrogen (or one of its isotopic variants) initially in a given vibrational level belonging to an α_i electronic state. The molecule, after the collision, is left either in the bound vibrational manifold of the excited electronic state (see Process 1.1) or in the continuum one (Process 1.2). In this last case dissociation takes place. The *total cross section* $\sigma_{v_i}^{\alpha_i \to \alpha_f}(E)$ for these processes is

FIG. 1. Schematic potential energy diagram for the H₂ molecule.

defined as

$$\sigma_{v_i}^{\alpha_i \to \alpha_f}(E) = \Sigma_{v_f} \sigma_{v_i, v_f}^{\alpha_i \to \alpha_f}(E) + \int d\varepsilon \frac{d\sigma_{v_i, \varepsilon}^{\alpha_i \to \alpha_f}(E)}{d\varepsilon}, \quad (2.1)$$

where v_i and v_f indicate the quantum number of the vibrational levels belonging to α_i and α_f electronic states, respectively, ε is the energy of the continuum state of the α_f electronic state, and E is the incident electron energy. The two terms on the right hand side of Eq. (2.1) represent the contributions to the total cross section coming, respectively, from the nondissociative (bound-to-bound) and dissociative (bound-to-continuum) excitations.

In the present paper the following singlet–singlet (optically allowed) transitions have been included: $X^1\Sigma_g^+ \to B^1\Sigma_u^+, X^1\Sigma_g^+ \to C^1\Pi_u, X^1\Sigma_g^+ \to B'^1\Sigma_u^+, X^1\Sigma_g^+ \to D^1\Pi_u, X^1\Sigma_g^+ \to B''^1\Sigma_u^+, X^1\Sigma_g^+ \to D'^1\Pi_u, B^1\Sigma_u^+ \to I^1\Pi_g$. The states B', D, B", D' are usually referred to as low-lying Rydberg states. All the transitions start from the ground state $X^1\Sigma_g^+$, except the last one which involves two excited electronic states. The related dissociative and total cross sections (the bound-to-bound non-dissociative cross sections can be obtained from (2.1) by subtraction) have been calculated as a function of both the incident energy and the initial vibrational quantum number v_i , by using the quantum-mechanical impact parameter method [5, 7, 8, 13, 19, 20].

Cross sections, obtained by using a semiclassical method [9, 21], are reported also for the singlet–triplet (optically forbidden) transition $X^1\Sigma_g^+ \to b^3\Sigma_u$, which is the main dissociative channel for the hydrogen molecule.

The same semiclassical method has been employed also for the evaluation of electron-impact dissociative and nondissociative ionization cross sections [10, 11]. The calculation has been performed for both the H_2 and D_2 molecules by considering the nondissociative ionization (1.3) through the $^2\Sigma_g^+$ electronic state of the H_2^+ and D_2^+ molecules, and the dissociative ionization (1.4) occurring either through the repulsive part of the $^2\Sigma_g^+$ state or through the completely repulsive state $^2\Sigma_u^+$ of the molecular ion.

2.2. Excitation-Radiative Decay Vibrational Excitation and Dissociation

The excitation-radiative decay process (1.5), also known in plasma chemistry as the E-V process, can be explicitly sketched, for a hydrogen molecule, as

$$H_2(X^1\Sigma_g^+, v_i) + e \to H_2^* + e \to H_2(X^1\Sigma_g^+, v_f) + e + hv.$$

It can be regarded as a two-step process leading to vibrational excitation. The molecule, initially in its ground electronic state and in a given vibrational level v_i , is excited by electron impact to a singlet state, represented by H_2^* , which can radiatively decay again on the same vibrational manifold (v_f) , populating in particular the higher levels [22]. This is the main channel in negative ion sources leading to a strong non-Boltzmann vibrational distribution of the hydrogen plasma.

Dissociation can also occur for those molecules falling in the continuum branch of the ground electronic state.

Vibrational and dissociative excitation cross sections for this two-step process have been obtained for both H_2 and D_2 molecules [12, 13], including in the electron-impact excitation step (leading to H_2^* or D_2^* formation) both the $B^1\Sigma_u^+$ and $C^1\Pi_u$ singlet states.

2.3. Dissociative Electron Attachment

In the resonance model, the physics of the process of dissociative electron attachment to a molecule AB is described via the formation of a temporary bound state of the electron-molecule system [23, 24]. The electron in this molecular anion state AB $^-$ (also called the resonant state) can autodetach with a finite lifetime (related to the width, Γ , of the resonance), leaving behind a vibrationally excited neutral molecule. On the other hand, if the lifetime of the resonance is long enough, the anion AB $^-$ can dissociate into A + B $^-$, leading to the process of dissociative electron attachment.

Thus, in a schematic sense one has

$$e_i + AB(v_i) \rightarrow AB^- \begin{cases} \rightarrow A + B^- \\ \rightarrow e_f + AB(v_f). \end{cases}$$

The final level with quantum number v_f can be either discrete (corresponding to vibrational excitation of the molecule) or could lie in the continuum (corresponding to dissociation of the molecule).

Specifically, for molecular hydrogen (and its heavier isotopic variants) the lowest resonant state is the ${}^2\Sigma_u^+$ state of H_2^- (see Fig. 1). This is a shape resonance, with the $X^1\Sigma_g^+$ state of H_2 as its parent, for internuclear separations less than 3 a.u. The next higher resonant state of H_2^- is the ${}^2\Sigma_g^+$ state, but its contribution to the dissociative attachment at low energies can be neglected [25, 26]. In the present article we include the results obtained [4, 14] within the nonlocal version of the resonance model for the ${}^2\Sigma_u^+$ resonant state of H_2^- only, i.e., for the process

$$H_2(X^1\Sigma_{\sigma}^+, v_i) + e \to H_2^-(^2\Sigma_{\mu}^+) \to H(1s) + H^-(1s^2)$$

and for its other five isotopic versions (HD, HT, D_2 , DT, and T_2).

The computational procedure is somewhat involved and is described elsewhere [27, 28].

3. CROSS SECTION DATA

The calculated cross sections data refer to the electron impact inelastic processes given in Table A. Each process is labeled by a Roman number plus a, b, c, d, e, f to indicate H₂, D₂, T₂, DT, HD, and HT, respectively. The corresponding data tables, accessible as downloadable files on IDEAL (http://www.idealibrary.com/links/doi/10.1006/adnd.2000. 0850/dat), are identified using the same classification labels.

4. ANALYTICAL FITS OF THE DATA AND SCALING RELATIONSHIPS

In this section we give analytical fits of the numerical cross section data for some of the transitions discussed in the previous sections and also provide some "vibrational" and "mass" scaling relationships, which permit a rapid evaluation of the cross sections as a function of the vibrational quantum number as well as an extension of the present results to other hydrogen isotopes for which cross section data are not available.

The vibrational energy eigenvalues for all isotopic variants of H_2 , useful in the scaling and fits relationships, are given in Table B.

TABLE AList of Electron Impact Inelastic Processes

Process	Identification label
Dissociative excitation	
$\mathrm{H}_2(X^1\Sigma_g^+, v_i) + e \rightarrow \mathrm{H}_2(B^1\Sigma_u^+) + e \rightarrow 2\mathrm{H} + e$	Ia
$D_2(X^1\Sigma_g^+, v_i) + e \rightarrow D_2(B^1\Sigma_u^+) + e \rightarrow 2D + e$	Ib
$T_2(X^1\Sigma_g^8, v_i) + e \to T_2(B^1\Sigma_u^+) + e \to 2T + e$	Ic
$DT(X^{1}\Sigma_{g}^{+}, v_{i}) + e \rightarrow DT(B^{1}\Sigma_{u}^{+}) + e \rightarrow D + T + e$	Id
$H_2(X^1\Sigma_g^4, v_i) + e \to H_2(C^1\Pi_u) + e \to 2H + e$	IIa
$D_2(X^1\Sigma_g^s, v_i) + e \rightarrow D_2(C^1\Pi_u) + e \rightarrow 2D + e$	IIb
$T_2(X^1\Sigma_q^{\circ}, v_i) + e \rightarrow T_2(C^1\Pi_u) + e \rightarrow 2T + e$	IIc
$T_2(X^1\Sigma_g^+, v_i) + e \to T_2(C^1\Pi_u) + e \to 2T + e$ $DT(X^1\Sigma_g^+, v_i) + e \to DT(C^1\Pi_u) + e \to D + T + e$	IId
$H_2(X^1\Sigma_q^+, v_i) + e \to H_2(B'^1\Sigma_u^+) + e \to 2H + e$	IIIa
$D_2(X^1\Sigma_g^+, v_i) + e \to D_2(B'^1\Sigma_u^+) + e \to 2D + e$	IIIb
$H_2(X^1\Sigma_q^+, v_i) + e \to H_2(D^1\Pi_u) + e \to 2H + e$	IVa
$D_2(X^1\Sigma_g^+, v_i) + e \rightarrow D_2(D^1\Pi_u) + e \rightarrow 2D + e$	IVb
$H_2(X^1\Sigma_g^+, v_i) + e \to H_2(B''^1\Sigma_u^+) + e \to 2H + e$	Va
$D_2(X^1\Sigma_n^+, v_i) + e \to D_2(B''^1\Sigma_n^+) + e \to 2D + e$	Vb
$H_2(X^1\Sigma_g^+, v_i) + e \to H_2(D'^1\Pi_u) + e \to 2H + e$	VIa
$D_2(X^1\Sigma_g^+, v_i) + e \rightarrow D_2(D'^1\Pi_u) + e \rightarrow 2D + e$	VIb
$H_2(B^1\Sigma_u^+, v_i) + e \to H_2(I^1\Pi_g) + e \to 2H + e$	VIIa
$H_2(X^1\Sigma_g^+, v_i) + e \to H_2(b^3\Sigma_u^+) + e \to 2H + e$	VIIIa
$D_2(X^1\Sigma_g^+, v_i) + e \to D_2(b^3\Sigma_u^+) + e \to 2D + e$	VIIIb
Total excitation	
$\mathrm{H}_2(X^1\Sigma_g^+, v_i) + e \rightarrow \mathrm{H}_2(B^1\Sigma_u^+) + e$	IXa
$D_2(X^1\Sigma_q^+, v_i) + e \to D_2(B^1\Sigma_u^+) + e$	IXb
$T_2(X^1\Sigma_{g}^{\circ}, v_i) + e \to T_2(B^1\Sigma_{u}^{\circ}) + e$	IXc
$\mathrm{DT}(X^1\Sigma_g^+, v_i) + e \to \mathrm{DT}(B^1\Sigma_u^+) + e$	IXd
$\mathrm{H}_2(X^1\Sigma_g^+, v_i) + e \rightarrow \mathrm{H}_2(C^1\Pi_u) + e$	Xa
$D_2(X^1\Sigma_a^+, v_i) + e \to D_2(C^1\Pi_u) + e$	Xb
$T_2(X^1\Sigma_q^+, v_i) + e \to T_2(C^1\Pi_u) + e$	Xc
$\mathrm{DT}(X^1\Sigma_g^{\circ+}, v_i) + e \to \mathrm{DT}(C^1\Pi_u) + e$	Xd
$H_2(X^1\Sigma_g^+, v_i) + e \to H_2(B'^1\Sigma_u^+) + e$	XIa
$D_2(X^1\Sigma_g^+, v_i) + e \rightarrow D_2(B'^1\Sigma_u^+) + e$	XIb
$H_2(X^1\Sigma_g^+, v_i) + e \to H_2(D^1\Pi_u) + e$	XIIa
$D_2(X^1\Sigma_g^+, v_i) + e \to D_2(D^1\Pi_u) + e$	XIIb
$D_2(X^1\Sigma_g^+, v_i) + e \to D_2(D^1\Pi_u) + e$ $H_2(X^1\Sigma_g^+, v_i) + e \to H_2(B''^1\Sigma_u^+) + e$	XIIIa
$D_2(X^1\Sigma_q^+, v_i) + e \to D_2(B''^1\Sigma_u^+) + e$	XIIIb
$H_2(X^1\Sigma_g^+, v_i) + e \to H_2(D'^1\Pi_u) + e$	XIVa
$D_2(X^1\Sigma_g^+, v_i) + e \to D_2(D'^1\Pi_u) + e$	XIVb
$\mathrm{H}_2(B^1\Sigma_u^+, v_i) + e \to \mathrm{H}_2(I^1\Pi_g) + e$	XVa
Dissociative ionization	
$H_2(X^1\Sigma_g^+, v_i) + e \to H_2^+(X^2\Sigma_g^+) + 2e$	XVIa
\rightarrow H + H ⁺ + 2e	
$D_2(X^1\Sigma_g^+, v_i) + e \rightarrow D_2^+(X^2\Sigma_g^+) + 2e$ $\rightarrow D + D^+ + 2e$	XVIb
$H_2(X^1\Sigma_g^+, v_i) + e \to H_2^+(^2\Sigma_u^+) + 2e$	XVIIa
\rightarrow H + H ⁺ + 2e	
$D_2(X^1\Sigma_g^+, v_i) + e \to D_2^+(^2\Sigma_u^+) + 2e$	XVIIb
$\to D + D^+ + 2e$	
Nondissociative ionization	
$D_2(X^1\Sigma_g^+, v_i) + e \to D_2^+(X^2\Sigma_g^+) + 2e$	XVIIIb

TABLE A—Continued

Process	Identification label
Excitation-radiative decay vibrational excitation	
$H_2(X^1\Sigma_g^+, v_i) + e \to H_2^*(B^1\Sigma_u^+, C^1\Pi_u) + e$ $\to H_2(X^1\Sigma_g^+, v_f) + e + hv$	XIXa1-15
$D_{2}(X^{1}\Sigma_{g}^{+}, v_{i}) + e \to D_{2}^{*}(B^{1}\Sigma_{u}^{+}, C^{1}\Pi_{u}) + e$ $\to D_{2}(X^{1}\Sigma_{g}^{+}, v_{f}) + e + hv$	XIXb1-8
Excitation-radiative decay dissociation $ \begin{aligned} & \text{H}_2(X^1\Sigma_g^+, v_i) + e \to \text{H}_2^*(B^1\Sigma_u^+, C^1\Pi_u) \\ & + e \to \text{H}_2(X^1\Sigma_g^+) + e + h\nu \end{aligned} $	XXa
$H + H + e$ $D_2(X^1\Sigma_g^+, v_i) + e \rightarrow D_2^*(B^1\Sigma_u^+, C^1\Pi_u)$ $+ e \rightarrow D_2(X^1\Sigma_g^+) + e + hv$ $D + D + e$	XXb
Dissociative electron attachment	
$H_2(X^1\Sigma_g^+, v_i) + e \to H_2^-(^2\Sigma_u^+) \to H + H^-$	XXIa
$D_2(X^1\Sigma_g^+, v_i) + e \to D_2^-(^2\Sigma_u^+) \to D + D^-$	XXIb
$T_2(X^1\Sigma_g^+, v_i) + e \to T_2^-(^2\Sigma_u^+) \to T + T^-$	XXIc
$\mathrm{DT}(X^1\Sigma_g^+, v_i) + e \to \mathrm{DT}^-(^2\Sigma_u^+) \to \mathrm{D} + \mathrm{T}^-$	XXId
$\mathrm{HD}(X^{1}\Sigma_{g}^{+}, v_{i}) + e \to \mathrm{HD}^{-}(^{2}\Sigma_{u}^{+}) \to \mathrm{H} + \mathrm{D}^{-}$ $\mathrm{HT}(X^{1}\Sigma_{g}^{+}, v_{i}) + e \to \mathrm{HT}^{-}(^{2}\Sigma_{u}^{+}) \to \mathrm{H} + \mathrm{T}^{-}$	XXIe XXIf

TABLE B
Vibrational Energies (eV) for Nonrotational States of Hydrogen
Molecule and Its Isotopic Variants taken from Ref. [30]

	Molecule and its isotopic variants taken from Ref. [30]											
v_i	H_2 D_2 T_2		T_2	HD	HT	DT						
0	0.269621	0.191437	0.156698	0.233935	0.220739	0.174955						
1	0.785643	0.562637	0.462281	0.684342	0.646680	0.515117						
2	1.272478	0.919064	0.757944	1.112742	1.053012	0.842929						
3	1.730734	1.260982	1.043845	1.519570	1.440112	1.158600						
4	2.160789	1.588593	1.320108	1.905130	1.808254	1.462292						
5	2.562770	1.902047	1.586839	2.269597	2.157612	1.754136						
6	2.936514	2.201432	1.844114	2.612993	2.488243	2.034220						
7	3.281535	2.486772	2.091988	2.935174	2.800074	2.302590						
8	3.596933	2.758012	2.330482	3.235814	3.092897	2.559235						
9	3.881305	3.015025	2.559587	3.514346	3.366335	2.804102						
10	4.132594	3.257592	2.779258	3.769939	3.619805	3.037081						
11	4.347968	3.485377	2.989420	4.001410	3.852505	3.257992						
12	4.523470	3.697942	3.189955	4.207173	4.063305	3.466576						
13	4.653525	3.894680	3.380690	4.385146	4.250775	3.662508						
14	4.730414	4.074808	3.561412	4.532532	4.413019	3.845342						
15		4.237378	3.731847	4.645552	4.547566	4.014501						
16		4.381146	3.891630	4.719242	4.651099	4.169322						
17		4.504592	4.040336		4.719374	4.308939						
18		4.605719	4.177461			4.432312						
19		4.682042	4.302368			4.538137						
20		4.730468	4.414316			4.624762						
21			4.512393			4.690197						
22			4.595471			4.731982						
23			4.662200									
24			4.710992									

4.1. Electronic Excitation

Total cross sections for the processes

$$H_2(X^1\Sigma_g^+, v_i = 0, 14) + e \to H_2(B^1\Sigma_u^+) + e$$
 (IXa)
 $H_2(X^1\Sigma_e^+, v_i = 0, 14) + e \to H_2(C^1\Pi_u) + e$ (Xa)

and the corresponding ones for D₂ (IXb, Xb), have been put in analytical form [29] by using the following expressions $(E_{\min} \text{ and } \bar{E} \text{ are defined below}).$

$$X^1\Sigma_g^+ \to B^1\Sigma_u^+$$
 transition

For $E_{\min} \leq E \leq \bar{E}$

$$\sigma_{v_i}^{X \to B}(E) = c_1 x \, e^{(-c_2 x)} + c_4 x^{c_5}, \tag{4.1}$$

where $x = E - c_3$.

For $E \ge \bar{E} + 1 \text{ eV}$

$$\sigma_{v_i}^{X \to B}(E) = \frac{c_6}{x} \left(\frac{x-1}{x+1}\right)^{c_{10}} \left[c_7 + c_8 \left(1 - \frac{1}{2x}\right) \ln(c_9 + \sqrt{x-1})\right], \tag{4.2}$$

where $x = E/\Delta E$.

$$X^1\Sigma_g^+ \to C^1\Pi_u$$
 transition

For $E_{\min} \leq E \leq \bar{E}$

$$\sigma_{v}^{X \to C}(E) = c_1 x e^{(-c_2 x)} + c_4 x^{c_5} + c_6 x e^{(-c_7 x)}, \tag{4.3}$$

where $x = E - c_3$.

For
$$E > \bar{E} + 1 \text{ eV}$$

$$\sigma_{v_i}^{X \to C}(E) = \frac{c_8}{x^{c_{13}}} \left(\frac{x-1}{x+1}\right)^{c_{12}} \left[c_9 + c_{10}\left(1 - \frac{1}{2x}\right) \ln(c_{11} + \sqrt{x-1})\right],$$
(4.4)

where $x = E/\Delta E$.

The energy is expressed in eV and the cross section in $Å^2$.

Expressions (4.1) and (4.3) have been used to properly smooth out the small maximum arising in the cross sections for low incident energies $(E \leq \bar{E})$ and which is an artifact of the computational method. The parameter E_{\min} is very close to the threshold energy, so that for $E < E_{min}$ the cross section is assumed to be zero. Far from the threshold $(E > \bar{E} + 1 \text{ eV})$ the cross sections have been fitted by using the expressions (4.2) and (4.4), where x is defined in terms of transition energy ΔE . The cross sections in the energy range $\bar{E} < E < \bar{E} +$ 1 eV can be obtained by interpolation.

All the parameters \bar{E} , E_{\min} , and ΔE depend on the vibrational quantum number v_i . Their values, together with the fitting coefficients c_i and the percentage rms deviation (i.e., the root mean square (rms) average of the relative deviations of the fitted from the calculated values in %) are given in Tables I-IV.

A vibrational scaling law for the total cross sections of processes (IXa) and (Xa) can be obtained from the equations of the impact-parameter method and can be written as [6, 15]

$$\sigma_{v_i}^{X \to \alpha_f}(x) = \tilde{\sigma}^{X \to \alpha_f}(x) \frac{1}{\left|\Delta E^{X \to \alpha_f}(R_{v_i})\right|^{\gamma}}, \tag{4.5}$$

where $x = E/\Delta E^{X \to \alpha_f}(R_{v_i})$ is the reduced energy and R_{v_i} is the largest classical turning point for the v_i th vibrational level. $\tilde{\sigma}^{X \to \alpha_f}(x)$ is a "shape function," practically independent of the mass, obtained by an averaging procedure [15], which includes, through x, the dependence of the total cross section on the incident energy. γ is a numerical exponent, set to 3 for $X \to B$ and to 2 for $X \to C$ transition.

The shape function $\tilde{\sigma}^{X \to \alpha_f}(x)$ is expressed in analytical form as [6, 15]

$$X \to B \quad \tilde{\sigma}^{X \to B}(x) = \frac{1}{r} \left[c_1 e^{-c_2 \cdot x} + c_3 \ln(c_4 \cdot x) \right] \quad (4.6)$$

$$X \to C \quad \tilde{\sigma}^{X \to C}(x) = c_1 e^{-c_2 \cdot x} + c_3 \ln(c_4 \cdot x).$$
 (4.7)

The fitting coefficients c_i (i = 1, 4) are given in Table C. The transition energies $\Delta E^{X \to \alpha_f}(R_{v_i})$, defined as the difference (evaluated at the classical turning point R_{v_i}) between the potential energies for the two electronic states involved in the transition, are given in Table D.

TABLE C Fitting Coefficient for the Function $\tilde{\sigma}^{X \to \alpha_f}(x)$

	$\tilde{\sigma}^{X \to B}(x)$	$\tilde{\sigma}^{X \to C}(x)$
c_1	$4926.0 (\mathring{A}^2 \cdot eV^3)$	$-172.49 (\mathring{A}^2 \cdot eV^2)$
c_2	1.9586	0.74392
<i>c</i> ₃	2312.2 ($\mathring{A}^2 \cdot eV^3$)	$27.212 (\mathring{A}^2 \cdot eV^2)$
c_4	0.82802	0.014272

TABLE D $X \to B$ and $X \to C$ Vertical Transition Energies ΔE (eV) for the H_2 Molecule as a Function of the Vibrational Quantum Number v_i

v_i	$\Delta E(X \to B)$	$\Delta E(X \to C)$
0	11.61	12.28
1	10.75	11.61
2	10.13	11.12
3	9.62	10.81
4	9.19	10.53
5	8.81	10.30
6	8.48	10.12
7	8.21	9.97
8	7.97	9.86
9	7.80	9.80
10	7.68	9.78
11	7.64	9.79
12	7.70	9.88
13	7.94	10.01
14	9.11	10.21

Total cross sections for processes (IXb, IXc, IXd) and (Xb, Xc, Xd) for the other isotopic variants can be obtained by using Eq. (4.5) as well. The required transition energies can be obtained from the corresponding ones for the H₂ molecule, by applying a mass-scaling law based on the correspondence among the vibrational eigenvalues for the various isotopes [8]. According to this scaling law, the v_i th vibrational level for a given isotope should have the same energy eigenvalue as a pseudo-vibrational level of the hydrogen molecule whose (noninteger) quantum number v' is [6, 8]

$$v' = \sqrt{\frac{\mu_{H_2}}{\mu_I}} v_i \tag{4.8}$$

and where μ_{H_2} and μ_I represent the reduced mass for the hydrogen molecule and the isotopic variant, respectively. The vertical transition energy for the "level" v', equal to the $\Delta E(R_{v_i})$ for the isotope, can be obtained by linear interpolation of the data given in Table D.

The vibrational scaling for the processes

$$H_2(X^1\Sigma_g^+, v_i = 0, 14) + e \to H_2(B'^1\Sigma_u^+) + e$$
 (XIa)

$$H_2(X^1\Sigma_g^+, v_i = 0, 14) + e \rightarrow H_2(D^1\Pi_u) + e$$
 (XIIa)

$$H_2(X^1\Sigma_g^+, v_i = 0, 14) + e \to H_2(B''^1\Sigma_u^+) + e$$
 (XIIIa)

$$H_2(X^1\Sigma_g^+, v_i = 0, 14) + e \to H_2(D'^1\Pi_u) + e$$
 (XIVa)

has the form [8]

$$\sigma_{v_{i}}^{X \to \alpha_{f}}(x) = \sigma_{v_{i}=1}^{X \to \alpha_{f}}(x) \left[\frac{\Delta E_{v_{i}=1}}{\Delta E_{v_{i}}} \right]^{(1+c_{1}v_{i}^{c_{2}})(c_{3}+(2/x)^{c_{4}})} \times \left\{ c_{5} + c_{6}v_{i} + \left(\frac{c_{7}}{x^{c_{8}}} + c_{9} \right) v_{i}^{2} + c_{10}v_{i}^{3} + \left(\frac{c_{11}}{x^{c_{8}}} + c_{12} \right) v_{i}^{4} \right\},$$

$$(4.9)$$

where ΔE_{v_i} is the transition energy for v_i th vibrational level and $x = E/\Delta E_{v_i}$. Equation (4.9) gives the total cross section for each vibrational level in terms of the $v_i = 1$ total cross section $\sigma_{v_i=1}^{X\to\alpha_f}(x)$. This last quantity, together with the $v_i = 0$ cross section, can be obtained in analytical form as [8]

$$\sigma_{v_i=0,1}^{X\to\alpha_f}(x) = \frac{1}{x} \left[a_1 e^{-a_2 x} + a_3 \ln(a_4 x) \right]. \tag{4.10}$$

The fitting coefficients a_i (i = 1, 4) and the transition energies, entering Eq. (4.9), for $v_i = 0$, 1 for the XIa–XIVa processes, are given in Table E, while the coefficients c_i are listed in Table F.

Total cross sections for the isotopic variants can also be obtained by using Eq. (4.9) by replacing v_i by v', calculated from Eq. (4.8), and by evaluating the transition energies at the classical turning point of the "v'th" level for the given isotope [8, 31].

TABLE E Fitting Coefficients a_i and Transition Energies ΔE_{v_i} for the $v_i = 0$, 1 H₂ Cross Sections

	$X \to B'$		X -	$X \to D$		<i>> B</i> ′′	$X \to D'$		
	$v_i = 0$	$v_i = 1$	$v_i = 0$	$v_i = 1$	$v_i = 0$	$v_i = 1$	$v_i = 0$	$v_i = 1$	
$a_1(\mathring{A}^2)$	-0.0828	-0.114	-0.0399	-0.0507	0.586	0.529	0.278	0.288	
a_2	0.387	0.371	0.456	0.419	1.678	1.238	1.867	1.544	
$a_3(\mathring{A}^2)$	0.187	0.215	0.0694	0.0776	0.310	0.361	0.127	0.145	
a_4	1.334	1.352	1.494	1.514	0.794	0.698	0.781	0.703	
$\Delta E_{v_i}(\mathrm{eV})$	14.85	13.09	15.67	13.86	14.99	13.35	15.66	14.04	

TABLE F Scaling Relation c_i Coefficients

Coefficient	$X \to B'$	$X \to D$	$X \to B''$	$X \to D'$
c_1	0.0	2.93×10^{-3}	0.0	1.1×10^{-4}
c_2	0.0	2.25	0.0	3.6
c_3	2.0	1.0	-2.0×10^{-1}	0.55
c_4	0.0	0.20	0.0	0.26
c_5	1.1	1.0	1.1	1.0
c_6	-1.3×10^{-1}	0.0	-1.3×10^{-1}	0.0
c_7	1.94×10^{-2}	0.0	1.26×10^{-2}	0.0
c_8	7.0×10^{-1}	0.0	5.0×10^{-1}	0.0
<i>C</i> 9	2.42×10^{-2}	0.0	3.44×10^{-2}	0.0
c_{10}	-3.2×10^{-3}	0.0	-5.4×10^{-3}	0.0
c_{11}	-1.08×10^{-4}	0.0	-9.20×10^{-5}	0.0
c ₁₂	1.36×10^{-4}	0.0	2.55×10^{-4}	0.0

4.2. Dissociative Ionization

Equation (4.5) can also be used to describe the cross section for the dissociative ionization process [11, 16]

$$H_2(X^1\Sigma_g^+, v_i = 0-14) + e$$

 $\to H_2^+(^2\Sigma_u^+) + 2e \to H(1s) + H^+ + 2e.$ (XVIIa)

The γ -exponent in Eq. (4.5) equals 2.18 in this case. The transition energies at the classical turning point are given in Table G. The shape function has the form [16],

$$\tilde{\sigma}^{X \to {}^{2}\Sigma_{u}^{+}}(x) = \frac{c_{1}}{x} \left(\frac{x-1}{x}\right)^{c_{2}} (1 + c_{3} \ln x), \tag{4.11}$$

where $c_1 = 20013$ ($\mathring{A}^2 eV^{\gamma}$), $c_2 = 2.63323$, and $c_3 =$ 0.57363.

Cross sections for the other isotopic variants can be obtained by using once again Eq. (4.8) for evaluating the transition energies and by assuming the shape function, given by Eq. (4.11), as independent of the mass.

4.3. Dissociative Electron Attachment

For all six isotopic versions of H₂ the attachment cross sections show a peak at the threshold and a rapid reduction in magnitude as the electron energy is increased above the threshold E_{th} . The attachment cross sections can be fitted

TABLE H

Threshold Energy E_{th} (eV) and Peak Cross Section (Å²), as a Function of the Initial Vibrational Quantum Number v_i , for Dissociative Electron Attachment to Vibrationally Excited H2 and Its Isotopic Variants

		H_2		HD		НТ	
v_i	E_{th}	$\sigma_{ m peak}$	E_{th}	$\sigma_{ m peak}$	E_{th}	$\sigma_{ m peak}$	
0	3.73	1.65 (-05)	3.76	1.57 (-06)	3.78	5.35 (-07)	
1	3.21	5.54 (-04)	3.31	6.52 (-05)	3.35	2.30 (-05)	
2	2.73	7.92 (-03)	2.88	1.13 (-03)	2.95	4.34 (-04)	
3	2.27	6.33 (-02)	2.48	1.16 (-02)	2.56	4.76 (-03)	
4	1.84	3.22 (-01)	2.09	2.09 7.56 (-02)		3.39 (-02)	
5	1.44	1.16 (+00)	1.73	3.36 (-01)	1.84	1.66 (-01)	
		D_2		DT	T_2		
v_i	$E_{ m th}$	$\sigma_{ m peak}$	$E_{ m th}$	$\sigma_{ m peak}$	$E_{ m th}$	$\sigma_{ m peak}$	
0	3.81	3.11 (-08)	3.82	3.36 (-09)			
1	3.44	1.52 (-06)	3.48	2.04 (-07)	3.54	1.39 (-08)	
2	3.08	3.33 (-05)	3.16	5.07 (-06)	3.25	3.89 (-07)	
3	2.74	4.28 (-04)	2.84	2.84 7.67 (-05)		6.61 (-06)	
4	2.41	3.70 (-03)	2.54	7.64 (-04)	2.68	7.78 (-05)	
5	2.10	2.37 (-02)	2.25	5.46 (-03)	2.41	6.66 (-04)	
6	1.80	1.08 (-01)	1.97	2.91 (-02)	2.16	4.17 (-03)	
7					1.91	2.09 (-02)	

with high accuracy to the expression

$$\sigma_{\rm DA}(E) = \sigma_{\rm peak} \exp[-(E - E_{\rm th})/E_0], \tag{4.12}$$

where σ_{peak} is the cross section value at the threshold and E_0 is a fitting parameter. The parameter E_0 has the value, in eV, 0.45, 0.39, 0.36, 0.32, 0.30, and 0.28 for H₂, HD, HT, D₂, DT, and T₂ respectively. σ_{peak} and E_{th} are given in Table H.

Assuming a Maxwellian distribution for electron energies, the rate of electron attachment can be written in terms of an analytical expression of the form

$$k(\langle E \rangle) = \left(\frac{27}{\pi} \frac{\langle E \rangle}{m}\right)^{1/2} \sigma_{\text{peak}} \exp\left(-\frac{3E_{\text{th}}}{2\langle E \rangle}\right) \times \left[\left(\frac{3}{2} + \frac{\langle E \rangle}{E_0}\right)^{-2} + \frac{E_{\text{th}}}{\langle E \rangle} \left(\frac{3}{2} + \frac{\langle E \rangle}{E_0}\right)^{-1}\right],$$
(4.13)

where $\langle E \rangle = 3kT/2$ and T is the electron temperature.

TABLE G

Transition Energies ΔE_{v_i} (eV) for the Dissociative Ionization of H₂ Molecule, Evaluated at the Classical Turning Point of the v_i th Vibrational Level of the Electronic Ground State

v_i	0	1	2	3	4	5	6	7	8	9	10	11	12	13
ΔE_v	30.6	27.4	25.2	23.4	21.9	20.6	19.6	18.5	17.6	16.7	16.0	15.4	14.8	14.2

Acknowledgment

This work has been partially supported by MURST (Project 9903102919–004).

References

- 1. M. Capitelli, R. Celiberto, and M. Cacciatore, Adv. At. Mol. Opt. Phys. **33**, 321 (1994)
- M. Capitelli, M. Cacciatore, R. Celiberto, F. Esposito, C. Gorse, and A. Laricchiuta, Plasma Phys. Repts. 25, 3 (1999)
- 3. R. K. Janev, in: *Atomic and Molecular Processes in Fusion Edge Plasmas*, edited by R. K. Janev (Plenum, New York, 1995), p. 1; R. K. Janev, Contrib. Plasma Phys. **38**, 307 (1998)
- R. Celiberto, A. Laricchiuta, M. Capitelli, R. K. Janev, J. M. Wadehra, and D. E. Atems, Cross Section Data for Electron-Impact Inelastic Processes of Vibrationally Excited Hydrogen Molecules and Their Isotopes, International Nuclear Data Committee, INDC(NDS)–397, IAEA, June 1999, Vienna, Austria
- R. Celiberto and T. N. Rescigno, Phys. Rev. A 47, 1939 (1993)
- R. Celiberto, R. K. Janev, and A. Laricchiuta, Physica Scripta, in press (2001).
- 7. R. Celiberto, M. Capitelli, N. Durante, and U. T. Lamanna, Phys. Rev. A **54**, 432 (1996)
- 8. R. Celiberto, A. Laricchiuta, U. T. Lamanna, R. K. Janev, and M. Capitelli, Phys. Rev. A **60**, 2091 (1999)
- 9. R. Celiberto, M. Cacciatore, M. Capitelli, and C. Gorse, Chem. Phys. **133**, 355 (1989)
- 10. R. Celiberto, P. Cives, M. Cacciatore, M. Capitelli, and U. T. Lamanna, Chem. Phys. Lett. **169**, 69 (1990)
- 11. R. Celiberto, M. Capitelli, and M. Cacciatore, Chem. Phys. **140**, 209 (1990)
- 12. R. Celiberto, M. Capitelli, and U. T. Lamanna, Chem. Phys. **183**, 101 (1994)
- 13. R. Celiberto, U. T. Lamanna, and M. Capitelli, Phys. Rev. A **50**, 4778 (1994)

- J. M. Wadehra and D. E. Atems, in Contribution to IAEA-CRP meeting on Atomic and Plasma Wall Interaction Data for Fusion Reactor Divertor Modelling, March 1999, Vienna, Austria
- 15. R. Celiberto, M. Capitelli, and R. K. Janev, Chem. Phys. Lett. **256**, 575 (1996)
- R. Celiberto, M. Capitelli, and R. K. Janev, Chem. Phys. Lett. 278, 154 (1997)
- 17. Y. N. Demkov, Phys. Lett. 15, 235 (1965)
- 18. D. E. Atems and J. M. Wadehra, Chem. Phys. Lett. **197**, 525 (1992)
- 19. A. U. Hazi, Phys. Rev. A 23, 2232 (1981)
- M. J. Redmon, B. C. Garrett, L. T. Redmon, and C. W. McCurdy, Phys. Rev. A 32, 3354 (1985)
- 21. E. Bauer and C. D. Bartky, J. Chem. Phys. **43**, 2466 (1965)
- 22. J. R. Hiskes, J. Appl. Phys. **51**, 4592 (1980)
- 23. T. F. O'Malley, Phys. Rev. 150, 14 (1966)
- 24. J. N. Bardsley, J. Phys. B 1, 349 (1968)
- 25. J. M. Wadehra in *Nonequilibrium Vibrational Kinetics*, edited by M. Capitelli (Springer-Verlag, New York, 1986)
- A. Chutjian, A. Garscadden, and J. M. Wadehra, Phys. Reps. 264, 393 (1996)
- J. M. Wadehra and J. N. Bardsley, Phys. Rev. Lett. 41, 1795 (1978)
- 28. J. M. Wadehra, Phys. Rev. A 29, 106 (1984)
- R. Celiberto and R. K. Janev, Analytical Representation of Electron Impact Excitation Cross Sections of Vibrationally Excited H₂ and D₂ Molecules, International Nuclear Data Committee, INDC(NDS)–333, IAEA, February 1995, Vienna, Austria
- 30. W. Kolos and L. Wolniewicz, J. Chem. Phys. **49**, 404 (1968)
- 31. T. E. Sharp, Atomic Data 2, 119 (1971)

EXPLANATION OF GRAPHS

GRAPHS I-VIII. Dissociative Excitation Cross Sections

GRAPHS IX–XV. Total Excitation Cross Sections

GRAPHS XVI, XVII. Dissociative Ionization Cross Sections

GRAPH XVIII. Non-Dissociative Ionization Cross Sections

GRAPH XIX. Excitation-Radiative Decay Vibrational Excitation Cross Sections

GRAPH XX. Excitation-Radiative Decay Dissociation Cross Sections

GRAPH XXI. Dissociative Electron Attachment Cross Sections

The calculated cross sections, for a given process as indicated at the top of each graph, are plotted for all vibrational levels of the molecule as a function of incident electron energy

The cross sections are expressed in $Å^2$ and the energy in eV.

 v_i initial vibrational quantum number of the molecule

 v_f final vibrational quantum number of the molecule

Graphs are labeled with the same identification Roman numeral as in Table A, with a, b, c, d, e, and f (here given in parentheses inside each graph) referring to H_2 , D_2 , T_2 , DT, HD, and HT, respectively.

Each graph for the radiative decay process in hydrogen (XIXa) and deuterium (XIXb) refers to a given value of initial vibrational quantum number v_i , while each cross section curve is identified by the final vibration quantum number v_f . The value $v_f = v_i$, corresponding to the largest cross section, is explicitly indicated in the plot. For the H₂ molecule, cross section data are given for $v_i = 0$ –14, for the D_2 molecule they are available only for $v_i = 0$, 5, 7, 10, 14, 15, 17, 20.

EXPLANATION OF TABLES

TABLE I. Energy Parameters and Fitting Coefficients for the Process $H_2(X^1\Sigma_e^+, v_i) + e \rightarrow H_2(B^1\Sigma_u^+) + e$

TABLE II. Energy Parameters and Fitting Coefficients for the Process $\mathrm{H}_2(X^1\Sigma_g^+, \nu_i) + e \to \mathrm{H}_2(C^1\Pi_u) + e$

TABLE III. Energy Parameters and Fitting Coefficients for the Process $D_2(X^1\Sigma_g^+, v_i) + e \rightarrow D_2(B^1\Sigma_u^+) + e$

TABLE IV. Energy Parameters and Fitting Coefficients for the Process $D_2(X^1\Sigma_g^+, v_i) + e \rightarrow D_2(C^1\Pi_u) + e$

Energy parameters and fitting coefficients, entering in Eqs. (4.1)–(4.4), are tabulated for the total excitation processes IXa, Xa, IXb, and Xb and for each vibrational level, v_i .

 ΔE transition energy (eV)

 \bar{E} upper energy limit (eV) for Eqs. (4.1) and (4.3) E_{min} lower energy limit (eV) for Eqs. (4.1) and (4.3)

rms deviation% root mean square deviation for fitting procedure (see text)

 c_i fitting coefficients for Eqs. (4.1)–(4.4)

GRAPH I. Dissociative Excitation Cross Sections See page 171 for Explanation of Graphs

GRAPH I. Dissociative Excitation Cross Sections See page 171 for Explanation of Graphs

GRAPH II. Dissociative Excitation Cross Sections See page 171 for Explanation of Graphs

GRAPH II. Dissociative Excitation Cross Sections See page 171 for Explanation of Graphs

GRAPH III. Dissociative Excitation Cross Sections See page 171 for Explanation of Graphs

$$HI - H_{2} (X^{1}\Sigma_{g}^{+}, v_{i}) + e \rightarrow H_{2} (B^{i} \Sigma_{u}^{+}) + e \rightarrow H (Is) + H (2l) + e$$

$$0.14$$

$$0.12$$

$$0.08$$

$$0.08$$

$$0.08$$

$$0.04$$

$$0.04$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

GRAPH IV. Dissociative Excitation Cross Sections See page 171 for Explanation of Graphs

$$IV - H_{2} (X^{1}\Sigma_{g}^{+}, v_{i}) + e \rightarrow H_{2} (D^{1}\Pi_{u}) + e \rightarrow H (Is) + H (3l) + e$$

$$0.025$$

$$0.020$$

$$0.015$$

$$0.015$$

$$0.005$$

$$0.005$$

$$0.005$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

GRAPH V. Dissociative Excitation Cross Sections See page 171 for Explanation of Graphs

$$V - H_{2} (X^{1}\Sigma_{g}^{+}, v_{i}) + e \rightarrow H_{2} (B^{n-1}\Sigma_{u}^{+}) + e \rightarrow H (Is) + H (3l) + e$$

$$0.020$$

$$0.015$$

$$0.010$$

$$0.005$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

GRAPH VI. Dissociative Excitation Cross Sections See page 171 for Explanation of Graphs

$$VI - H_2 \left(X^T \Sigma_g^+, V_i \right) + e \rightarrow H_2 \left(D^{t-1} \Pi_u \right) + e \rightarrow H \left(Is \right) + H \left(4l \right) + e$$

$$0.010$$

$$0.008$$

$$0.006$$

$$0.004$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

GRAPH VII. Dissociative Excitation Cross Sections See page 171 for Explanation of Graphs

GRAPH VIII. Dissociative Excitation Cross Sections See page 171 for Explanation of Graphs

GRAPH IX. Total Excitation Cross Sections See page 171 for Explanation of Graphs

GRAPH IX. Total Excitation Cross Sections See page 171 for Explanation of Graphs

GRAPH X. Total Excitation Cross Sections See page 171 for Explanation of Graphs

GRAPH X. Total Excitation Cross Sections See page 171 for Explanation of Graphs

GRAPH XI. Total Excitation Cross Sections See page 171 for Explanation of Graphs

GRAPH XII. Total Excitation Cross Sections See page 171 for Explanation of Graphs

GRAPH XIII. Total Excitation Cross Sections See page 171 for Explanation of Graphs

GRAPH XIV. Total Excitation Cross Sections See page 171 for Explanation of Graphs

GRAPH XV. Total Excitation Cross Sections See page 171 for Explanation of Graphs

GRAPH XVI. Dissociative Ionization Cross Sections See page 171 for Explanation of Graphs

GRAPH XVII. Dissociative Ionization Cross Sections See page 171 for Explanation of Graphs

$$XVII - H_{2} (X^{1}\Sigma_{g}^{+}, v_{i}) + e \rightarrow H_{2}^{+} (^{2}\Sigma_{u}^{+}) + 2e \rightarrow H(Is) + H^{+} + 2e$$

$$1.40$$

$$1.20$$

$$0.80$$

$$0.60$$

$$0.40$$

$$0.20$$

$$0.00$$

$$0.00$$

$$20.0$$

$$40.0$$

$$60.0$$

$$80.0$$

$$100.0$$

$$Energy (eV)$$

GRAPH XVIII. Non-Dissociative Ionization Cross Sections See page 171 for Explanation of Graphs

GRAPH XIX. Excitation-Radiative Decay Vibrational Excitation Cross Sections
See page 171 for Explanation of Graphs

GRAPH XIX. Excitation-Radiative Decay Vibrational Excitation Cross Sections
See page 171 for Explanation of Graphs

GRAPH XIX. Excitation-Radiative Decay Vibrational Excitation Cross Sections
See page 171 for Explanation of Graphs

GRAPH XIX. Excitation-Radiative Decay Vibrational Excitation Cross Sections
See page 171 for Explanation of Graphs

GRAPH XIX. Excitation-Radiative Decay Vibrational Excitation Cross Sections
See page 171 for Explanation of Graphs

GRAPH XIX. Excitation-Radiative Decay Vibrational Excitation Cross Sections
See page 171 for Explanation of Graphs

GRAPH XIX. Excitation-Radiative Decay Vibrational Excitation Cross Sections
See page 171 for Explanation of Graphs

GRAPH XIX. Excitation-Radiative Decay Vibrational Excitation Cross Sections See page 171 for Explanation of Graphs

GRAPH XIX. Excitation-Radiative Decay Vibrational Excitation Cross Sections
See page 171 for Explanation of Graphs

GRAPH XIX. Excitation-Radiative Decay Vibrational Excitation Cross Sections
See page 171 for Explanation of Graphs

GRAPH XIX. Excitation-Radiative Decay Vibrational Excitation Cross Sections
See page 171 for Explanation of Graphs

GRAPH XIX. Excitation-Radiative Decay Vibrational Excitation Cross Sections
See page 171 for Explanation of Graphs

GRAPH XX. Excitation-Radiative Decay Dissociation Cross Sections See page 171 for Explanation of Graphs

GRAPH XXI. Dissociative Electron Attachment Cross Sections See page 171 for Explanation of Graphs

GRAPH XXI. Dissociative Electron Attachment Cross Sections See page 171 for Explanation of Graphs

GRAPH XXI. Dissociative Electron Attachment Cross Sections See page 171 for Explanation of Graphs

TABLE I. Energy Parameters and Fitting Coefficients for the Process $H_2(X^1\Sigma_g^+, v_i) + e \to H_2(B^1\Sigma_u^+) + e$ See page 171 for Explanation of Tables

v_i	$\Delta E(eV)$	$\overline{E}(eV)$	$E_{min}(eV)$	rms deviation %
0	11.184	19.0	12.0	0.18
1	10.668	18.0	11.0	0.34
2	10.181	17.0	11.0	0.26
3	9.720	17.0	10.0	0.30
4	9.293	17.0	10.0	0.24
5	8.891	17.0	9.0	0.20
6	8.518	17.0	9.0	0.13
7	8.173	17.0	9.0	0.10
8	7.857	17.0	9.0	0.25
9	7.573	17.0	9.0	0.11
10	7.322	17.0	8.0	0.11
11	7.107	15.0	8.0	0.06
12	6.931	15.0	8.0	0.05
13	6.801	15.0	8.0	0.09
14	6.728	12.0	8.0	0.57

v_i	c_{l}	c_2	c_3	c ₄	c_5
0	0.42566	0.77443	11.779	0.12348	0.52783
1	0.18587	0.54890	10.657	0.18158	0.41690
2	204.43	8.2291	10.999	0.38253	0.18743
3	0.33555	1.0022	9.4783	0.31928	0.35993
4	0.58584	1.1664	9.1842	0.36943	0.37479
5	-0.17229	0.26616	8.9927	0.78985	0.16288
6	0.81749	1.1943	8.5233	0.47785	0.38492
7	0.92882	1.3186	8.4091	0.56917	0.35835
8	0.99807(-1)	0.18517(-3)	-0.62248	-0.13667(-2)	1.9877
9	0.77975	1.2227	7.6998	0.64647	0.35969
10	1.0400	1.3663	7.4995	0.65988	0.35626
11	1.1981	1.2854	7.3894	0.59678	0.39410
12	1.5766	1.3453	7.1073	0.51796	0.40905
13	1.4026	1.2931	7.1190	0.39449	0.42743
14	-60.135	19.035	7.9949	0.51074	-0.45264(-1)
v_i	c_6	c_7	c_8	c_9	c ₁₀
0	1.3204	-0.41817	2.4241	1.5734	0.65554
1	1.4717	-0.13197	2.4646	1.3141	0.65343
2	1.5461	0.73359	2.4239	0.46240	0.53316
3	1.6301	0.64238	2.7458	0.48972	0.45566
4	1.7350	0.56070	3.0202	0.51226	0.39730
5	1.5320	0.60858	3.9202	0.51458	0.34594
6	1.9010	0.44166	3.5723	0.53076	0.30894
7	2.0227	0.40399	3.7513	0.53283	0.29153
8	2.1438	0.29802	3.9108	0.55645	0.27578
9	2.1457	0.22872	4.1795	0.57404	0.27130
10	2.1576	0.38416(-1)	4.3488	0.62831	0.26689
11	2.3242	-0.67696(-1)	4.0416	0.71734	0.33856
12	2.3338	-0.94302	4.1097	1.2971	0.47889
13	2.1836	-0.70133	3.6786	1.1129	0.49914
14	1,7421	-0.70482(-1)	3.0156	0.93408	0.75610

TABLE II. Energy Parameters and Fitting Coefficients for the Process $H_2(X^1\Sigma_g^+, v_i) + e \to H_2(C^1\Pi_u) + e$ See page 171 for Explanation of Tables

v_i	$\Delta E(eV)$	$\overline{E}(eV)$	$E_{min}(eV)$	rms deviation %
0	12.286	20.0	13.0	0.32
1	11.770	20.0	12.0	0.23
2	11.284	21.0	12.0	0.17
3	10.825	20.0	11.0	0.25
4	10.395	20.0	11.0	0.18
5	9.994	20.0	11.0	0.16
6	9.620	20.0	11.0	0.21
7	9.275	20.0	11.0	0.15
8	8.959	20.0	11.0	0.13
9	8.675	20.0	10.0	0.12
10	8.424	20.0	10.0	0.10
11	8.209	20.0	10.0	0.08
12	8.033	20.0	10.0	0.06
13	7.903	19.0	10.0	0.05
14	7.827	19.0	10.0	0.09

v_i	c_I	c_2	c_3	c_4	c ₅	c_6	c_7
0	-21.104	7.5183	12.982	0.33278	-0.12174	0.15650(-4)	-0.82171
1	-5.6133	1.8255	11.060	1.0203	-1.0879	0.26640(-1)	0.38005(-2)
2	-5.1597	1.2903	9.9600	2.8643	-1.5687	0.28243(-1)	0.11213(-2)
3	1039.7	5325.6	11.000	0.28241	0.12567	0.20179(-6)	-1.0019
4	0.94696(-1)	1.2590	10.741	0.27962	0.15267	0.39886(-4)	-0.44900
5	0.29713	1.2037	10.573	0.25451	0.24534	0.60266(-6)	-0.79353
6	-15.175	11.648	10.596	0.36577	-0.80066(-1)	0.15964(-1)	-0.23501(-1)
7	0.44044	0.76833	9.4456	0.16712	0.68358	-0.23623(-1)	-0.20746(-1)
8	0.50732	0.73511	9.2031	0.14399	0.74461	-0.16500(-1)	-0.44010(-1)
9	0.58310	0.70071	8.7542	0.13343	0.84653	-0.24827(-1)	-0.40838(-1)
10	0.64865	0.70313	8.5216	0.12030	0.79792	-0.75871(-2)	-0.81168(-1)
11	0.75869	0.71280	8.3024	0.12198	0.78819	-0.49496(-2)	-0.99475(-1)
12	0.87782	0.76076	8.4109	0.14269	0.71022	-0.25767(-2)	-0.12122
13	-0.26847	0.20917	9.9543	0.84057	0.13306	-0.23326(-2)	-0.16704
14	0.72749	1.2724	10.000	0.41301	0.34294(-1)	0.12402(-1)	-0.62748(-1)
v_i	c_8	<i>c</i> ₉	c ₁₀	c_{11}	c ₁₂	c ₁₃	
0	1.2634	0.53604	1.7887	0.91350	0.84579	0.97791	·
1	0.89589	0.99339	2.6247	0.78349	0.87587	0.97108	
2	1.3223	0.71412	1.9027	0.83987	0.91615	0.96520	
3	1.3474	0.66045	1.9566	1.0497	0.97251	0.95727	1
4	1.3594	0.64618	1.9662	1.2854	1.0338	0.94678	
5	0.67008	1.4074	4.0764	1.4930	1.0948	0.93639	
6	1.3629	0.75903	2.0443	1.7497	1.1600	0.92431	
7	1.3735	0.80852	2.0533	2.0464	1.2200	0.91235	
8	1.4009	0.82039	2.0331	2.3989	1.2751	0.90089	
9	1.0210	-0.14058	1.1700	50.529	1.2422	0.76367	
10	1.5907	-0.17221	2.4144	3.2491	1.2642	0.90686	1
11	1.8729	-1.0566	2.8283	3.0753	1.1474	0.93537	
	1.0/29	-1.0500	2.0203				
12	2.0642	-1.4724	3.0355	2.9882	1.0945	0.94792	
12 13					ł .	0.94792 0.93072	

TABLE III. Energy Parameters and Fitting Coefficients for the Process $D_2(X^1\Sigma_g^+, v_i) + e \rightarrow D_2(B^1\Sigma_u^+) + e$ See page 171 for Explanation of Tables

v_i	$\Delta E(eV)$	$\overline{E}(eV)$	$E_{min}(eV)$	rms deviation %
0	11.232	20.0	12.0	0.18
1	10.858	20.0	11.0	0.62
2	10.502	17.0	11.0	0.40
3	10.160	17.0	11.0	0.26
4	9.832	17.0	10.0	0.53
2 3 4 5 6	9.519	17.0	10.0	0.17
6	9.219	17.0	10.0	0.15
7	8.935	17.0	9.0	0.14
8 9	8.664	17.0	9.0	0.11
	8.407	17.0	9.0	0.10
10	8.165	17.0	9.0	0.10
11	7.938	17.0	9.0	0.10
12	7.725	17.0	9.0	0.09
13	7.529	17.0	8.0	0.10
14	7.349	17.0	8.0	0.11
15	7.187	17.0	8.0	0.12
16	7.043	12.0	8.0	0.14
17	6.921	12.0	8.0	0.16
18	6.820	12.0	8.0	0.20
19	6.745	12.0	8.0	0.29
20	6.696	12.0	8.0	0.65

v	i	c_{l}	c_2	c_3	c_4	c_5
0	\neg	0.42471	0.76300	11.906	0.11262	0.54884
1	- 1	0.17721	0.67170	10.999	0.20505	0.32861
		243.18	9.0523	10.999	0.33873	0.15726
2 3 4 5 6		33.760	6.7297	10.994	0.37842	0.18106
1 4		-10543.	1283.2	9.8222	0.40500	0.20033
1 7		0.40097	1.2569	9.2975	0.35437	0.20033
1 2	1	0.40097	1.1953	9.2973 8.8956	0.33437	0.34632
7						
/		0.53678	1.0710	8.8104	0.39234	0.39768
8		0.66759	1.2311	8.6775	0.46194	0.37088
9		0.83828	1.3704	8.5001	0.52064	0.35862
1 10		0.98306	1.4197	8.4226	0.56806	0.35291
1		1.1122	1.4878	8.3761	0.62009	0.34236
10		1.4462	1.6945	8.2921	0.67725	0.32690
1.		1.2428	1.4429	7.6842	0.64729	0.35649
1.		1.3696	1.5038	7.6953	0.66871	0.34893
1.		1.5980	1.5373	7.4954	0.64900	0.35537
1		1.3686	0.92554	6.9246	0.33385	0.68554
1		-0.40586	0.30323	7.8413	1.2166	0.14048
1	8	1.3783	1.1302	7.0212	0.36912	0.52474
1	9	1.2250	1.2477	7.3473	0.33168	0.45997
2	0	0.85479	1.3836	7.8065	0.25622	0.34867
V	'n	c ₆	c_7	c_8	c_9	c_{10}
	<u> </u>	1.3798	-0.57477	2.3389	1.6385	0.60737
Ĭĭ		1.5429	-0.53135	2.3520	1.5352	0.56493
1 2		1.4439	0.79528	2.2281	0.45151	0.60139
3		1.5138	0.71871	2.4330	0.45596	0.51944
4	Ĺ	1.5889	0.65506	2.6589	0.48388	0.47477
5		1.6425	0.59310	2.9201	0.51277	0.43529
1 6		1.6879	0.54635	3.1419	0.52071	0.39136
1 7	,	1.8102	0.50676	3.2103	0.51510	0.35527
8		1.8759	0.30070	3.4495	0.53940	0.33437
		1.9416	0.41979	3.6438	0.53340	0.33437
	0	1.9902	0.36310	3.8044	0.55190	0.32171
1		2.0394	0.30310	3.9435	0.55279	0.27636
	2	2.2200	0.31872	3.8673	0.57247	0.27459
	3	2.1998	0.23324	4.1138	0.59573	0.27439
	э 4	2.1998	5.6316(-2)	4.0488	0.62592	0.27591
	5	2.2974 2.3062		4.0488	0.62392	0.27391
	5 6	2.3426	-7.7798(-2)		1.1235	0.28483
	7	2.3426	0.26682 -0.23612	3.9999 4.3338	1.1233	0.57721
	8	2.0763	-0.23612		0.97688	0.60907
		2.0186	-0.17849	4.0675 3.4256	0.97688	0.68477
	9	1.6757	-1.7776(-2)	2.9165	0.90989	0.85543

TABLE IV. Energy Parameters and Fitting Coefficients for the Process $D_2(X^1\Sigma_g^+, v_i) + e \to D_2(C^1\Pi_u) + e$ See page 171 for Explanation of Tables

v_i	$\Delta E(eV)$	$\overline{\overline{E}}(eV)$	$E_{min}(eV)$	rms deviation %
0	12.327	20.0	13.0	0.27
1	11.953	20.0	13.0	0.25
2	11.596	20.0	12.0	0.23
3	11.255	20.0	12.0	0.32
4	10.927	20.0	12.0	0.26
2 3 4 5 6 7 8	10.613	20.0	11.0	0.29
6	10.314	20.0	11.0	0.25
7	10.029	20.0	11.0	0.21
8	9.759	20.0	11.0	0.17
9	9.502	20.0	11.0	0.14
10	9.260	20.0	11.0	0.10
11	9.032	20.0	10.0	0.08
12	8.820	20.0	10.0	0.06
13	8.623	20.0	10.0	0.05
14	8.443	20.0	10.0	0.06
15	8.281	20.0	10.0	0.05
16	8.138	20.0	10.0	0.05
17	8.015	20.0	10.0	0.05
18	7.915	20.0	10.0	0.04
19	7.839	20.0	10.0	0.03
20	7.791	20.0	10.0	0.04

v_i	c_I	c_2	c_3	c ₄	c_5	c_6	c_7
0	0.32639	0.98564	12.817	0.19363	0.18025	0.25607(-4)	-0.56546
1	4.3447	0.65602	7.4652	-1825.1	-4.7057	3.4344(-2)	2.7978(-2)
2	-7.4553	1.2273	9.5075	5.4510	-1.8500	0.21207(-1)	-0.12975(-1)
3	524.62	638.95	12.000	0.29288	0.57725(-1)	0.76303(-6)	-0.99153
4	100.58	8.8569	11.999	0.29807	0.80959(-1)	0.10850(-5)	-0.96085
5	0.17350	1.1783	10.902	0.25746	0.17812	0.16319(-6)	-0.99180
6	0.27941	1.2051	10.724	0.24469	0.22886	0.11475(-7)	-1.2139
7	0.35423	1.1407	10.507	0.23660	0.27326	0.19264(-9)	-1.5644
8	0.40370	1.1069	10.425	0.23384	0.30543	0.40505(-13)	-2.3673
9	0.50801	0.99073	10.060	0.25611	0.68138	-0.81247(-1)	0.92718(-2)
10	0.53662	0.94008	9.8618	0.21754	0.65296	-0.47436(-1)	0.13532(-2)
11	0.55693	0.82815	9.5201	0.17889	0.74806	-0.40187(-1)	-0.16679(-1)
12	0.61671	0.86110	9.3999	0.26340	0.82752	-0.11991	-0.23322(-2)
13	0.64980	0.82813	9.2531	0.25073	0.84678	-0.11294	-0.57026(-2)
14	0.67586	0.74353	8.9355	0.20008	0.91095	-0.87950(-1)	-0.17009(-1)
15	0.73189	0.75758	8.8193	0.16804	0.86057	-0.46903(-1)	-0.26117(-1)
16	0.79759	0.74311	8.5821	0.15762	0.88434	-0.42977(-1)	-0.30501(-1)
17	0.88718	0.72416	8.3442	0.20028	0.95517	-0.97381(-1)	-0.18481(-1)
18	0.96757	0.72012	8.2266	0.16123	0.94599	-0.60737(-1)	-0.25980(-1)
19	0.96791	0.90174	9.0830	0.21247	0.49236	-0.14901(-6)	-0.74653
20	-143.72	3.5354	8.3620	1.2827	-0.14777	-0.32881	0.23099
v_i	c_8	c_9	c ₁₀	c_{11}	c ₁₂	c ₁₃	
0	1.2547	0.54778	1.7732	0.88913	0.84823	0.97858	
1	1.2703	0.65898	1.7781	0.78635	0.86937	0.97313	
2	1.2931	0.69227	1.8095	0.78909	0.89254	0.96880	
3	1.3176	0.69682	1.8613	0.84577	0.92152	0.96454	
4	1.3312	0.67057	1.9273	0.98267	0.96132	0.95927	
5	1.3468	0.64895	1.9499	1.1488	1.0052	0.95260	
6	1.3286	0.67380	2.0010	1.2956	1.0487	0.94532	İ
7	0.51095	1.8672	5.3254	1.4387	1.0958	0.93779	
8	1.3746	0.73665	2.0108	1.5942	1.1394	0.93013	
9	1.2309	0.86404	2.2290	1.7724	1.1805	0.92167	
10	1.3675	0.81862	2.0266	1.9546	1.2207	0.91417	İ
11	1.3285	0.87650	2.0844	2.2070	1.2639	0.90508	
12	1.3892	0.78664	2.0069	2.5215	1.2922	0.89801	•
13	1.0079	-0.15960	1.1456	54.339	1.2477	0.76269	
14	1.5417	0.43687(-1)	2.3172	3.2442	1.2917	0.90106	
15	1.7121	-0.70998	2.6827	3.2087	1.2107	0.92216	
16	1.9018	-1.1833	2.8861	3.0755	1.1376	0.93849	1
17	2.0525	-1.4619	3.0292	2.9730	1.0994	0.94813	
18	2.0383	-1.7444	3.3018	2.9469	1.0944	0.95232	1
19 20	2.1991 2.1810	-1.7929 -1.7566	3.1864 3.0518	3.0034 3.2085	1.1227 1.2238	0.95215 0.94339	