Лабораторна робота № 3

Тема: «Програмування алгоритмів з використанням операторів умовної передачі управління **«if»»**

Мета роботи: Набуття практичних навичок у створенні програм з розгалуженнями з використанням оператора «if».

Завдання для підготовки до роботи:

- 1. Вивчити роботу з логічними операціями та операціями відношення.
- 2. Вивчити можливості мови програмування С для організації розгалужень.
- 3. Розробити алгоритм та програму для вирішення завдання відповідного варіанту.
- 4. Підібрати набори тестових даних.
- 5. Набрати програму, налаштувати її, протестувати. Роздрукувати текст програми і результати її роботи на тестових даних.
- 6. При захисті звіту необхідно відповідати на контрольні запитання та вміти пояснювати роботу програми.

Зміст звіту:

- 1. Тема та мета роботи.
- 2. Завдання за варіантом.
- 3. Блок-схема алгоритму роботи програми.
- 4. Код програми.
- 5. Контрольний приклад виконання програми: набори тестових даних з обгрунтуванням їх вибору, скріншоти з результатами роботи програми.
- 6. Висновки про виконану роботу. Опис і аналіз помилок, виявлених при налаштуванні програми.

Завдання 3.1.

Побудувати програму, яка вводить координати точки (x, y) і визначає, чи потрапляє точка в заштриховану область на рисунку. Попадання на межу області вважати попаданням в область.

Теоретичні відомості:

Першим кроком алгоритму має бути введення координат точки: х і у. Для більшої зручності при аналізі результатів можна вивести введені значення на екран. Дослідження зображення на рисунку-завданні дає нам підставу стверджувати, що цільова область утворюється перетином: прямої з коефіцієнтом –1 і зміщенням +1 і кола з центром на початку координат і радіусом 1, як показано на рисунку.

$$y = -x + 1$$
$$x^2 + y^2 = 1$$

Рівняння кола:

$$x^2 + y^2 = 1$$

Для перевірки потрапляння точки в задану область потрібно перевірити умови того, що:

1) точка лежить вище прямої або на ній, тобто:

$$y > = -x + 1;$$

2) точка лежить всередині кола або на ньому, тобто:

$$x^2 + y^2 <= 1$$

Точка лежить в області, якщо виконуються обидві умови, якщо не виконується хоча б одна з них, точка лежить поза областю. Отже, ці умови повинні бути об'єднані логічною операцією "І".

Завдання 3.2.

Папо пійсна значання д. Общиснити значання ня запаної функції у Разуні тати на пати у

Дано дійсне значення a. Обчислити значення для заданої функції y. Результати надати у вигляді таблиці відповідності x та y, тобто $\mid x \mid y \mid$.

No	Завдання	№	Завдання
1	$\int x - a \ npu \ (x+3) > a $	16	$\int x + a \ npu \ (10 - x) = a $
	$y = \begin{cases} x/5 & npu (x+3) < a \end{cases}$		$y = \begin{cases} 15/a & npu \ (10-x) < a \end{cases}$
	a+3 інакше		a-x інакше
2	$\int x * a \ npu \ x-3 > a$	17	$\int x - a \ npu \ (x+3) > a $
	$y = \begin{cases} x/a & npu x-3 = a \end{cases}$		$y = \begin{cases} x * 5 & npu (x+3) < a \end{cases}$
	х-2 інакше		а/3 інакше
3	$\int x - a npu \ a + 3 = x$	18	$\int x - a \ npu \ x < (a - 1)$
	$y = \begin{cases} x * 5 & npu \\ a + 3 < x \end{cases}$		$y = \begin{cases} x * 5 & npu \ x = (a-1) \end{cases}$
	а/3 інакше		а/3 інакше
4	$\int x/3 npu \ x < (a-1)$	19	$\int x/3 \ npu \ (a+x) > 10$
	$y = \begin{cases} x * 2 & npu & x = (a-1) \end{cases}$		$y = \begin{cases} x * 2 & npu \ (a + x) = 10 \end{cases}$
	а + а інакше		а + а інакше
5	$\int x - a \ npu \ (a + x) > 10$	20	$\int x * a \ npu \ (x+a) > 12$
	$y = \begin{cases} x * 5 & npu \ (a+x) = 10 \end{cases}$		$y = \begin{cases} x/a & npu \ (x+a) = 12 \end{cases}$
	а/3 інакше		(х-2 інакше
6	$\left \begin{array}{cc} x/5 & npu & x-3 > a \end{array} \right $	21	$\left(x/4 npu \ (x+4) > a \right)$
	$y = \begin{cases} a*5 & npu x-3 = a \end{cases}$		$y = \begin{cases} x*3 & npu \ (x+4) < a \end{cases}$
	[а–12 інакше		а + 2а інакше
7	$\int x + a \ npu \ (x + a) = 15$	22	$\begin{cases} x + a & npu \ (a - x) > 7.5 \end{cases}$
	$y = \left\{ 15 / a \ npu \ (x + a) < 15 \right\}$		$y = \begin{cases} x/6 & npu \ (a-x) = 7.5 \end{cases}$
	а – х інакше		a^2 інакше
8	$\left x + a \ npu \ (7 - x) = a \right $	23	$\left(x/5 npu \mid x-3 \mid > a \right)$
	$y = \begin{cases} x/a & npu \ (7-x) < a \end{cases}$		$y = \begin{cases} a*5 & npu x-3 = a \end{cases}$
	а – х інакше		[а – 12 інакше
9	$\left(x*4\ npu\ (x+a) > 12\right)$	24	$\left(x + a \ npu \ (x + a) = 15\right)$
	$y = \begin{cases} x/a & npu \ (x+a) = 12 \end{cases}$		$y = \begin{cases} 15/a & npu \ (x + a) < 15 \end{cases}$
	а інакше		а – х інакше
10	$\left a+1 \ npu \ a +3=x \right $	25	$\left x + a \ npu \ (10 - x) = a \right $
	$y = \begin{cases} x/2 & npu & a + 3 < x \end{cases}$		$y = \begin{cases} x/a & npu \ (10-x) < a \end{cases}$
	х*а інакше		а – х інакше

11	$\int x/5 npu \ x + a-1 > 10$	26	$ \left x * 4 \ npu \ \left x - 1 \right = a $
	$y = \begin{cases} a*5 & npu \ x + a-1 < 10 \end{cases}$		$y = \left \frac{x}{a} npu \mid x - 1 \right > a$
	а – 12 інакше		а інакше
12	$\left(a+1 \ npu \ (x+\left a\right)=15\right)$	27	$\int x + a \ npu \ (x + a) > 12$
	$y = \begin{cases} x/2 & npu \ (x + a) < 15 \end{cases}$		$y = \begin{cases} x/a & npu \ (x+a) = 12 \end{cases}$
	х*а інакше		a-x інакше
13	$\int x + a \ npu \ (10 - x) = a $	28	$ \left \left a + 1 \right npu \left a \right + 4 = x $
	$y = \left\{ \frac{15}{a} \text{ npu } (10 - x) < a \right\}$		$y = \begin{cases} x/2 & npu & a + 4 < x \end{cases}$
	а – х інакше		х*а інакше
14	$\int x - a \ npu \ x + a - 1 > 10$	29	$\int x * a \ npu \ x-3 > a$
	$y = \begin{cases} x/5 & npu \ x + a-1 < 10 \end{cases}$		$y = \begin{cases} x/a & npu x-3 = a \end{cases}$
	а+3 інакше		x-2 інакше
15	$\left(x + a \ npu \ (x + a) = 15\right)$	30	$\int x/5 npu x-3 > a$
	$y = \left\{ \frac{15}{a} \text{ npu } (x + a) < 15 \right\}$		$y = \begin{cases} a*5 & npu x-3 = a \end{cases}$
	а – х інакше		а – 12 інакше

Контрольні запитання:

- 1. Дайте характеристику оператору розгалуження. 2. Що представляє собою логічне вираження? 3. Який вираз називається відношенням?

- 4. У якому порядку виконуються операції в логічних виразах? 5. Як організувати бінарне розгалуження?