Homework IV

Due: Nov. 20. (Fri) 23:59 PM

I. REMARK

- Reading materials: Ch 4.1-4.7, 5.1-5.4 in the textbook.
- Don't write just an answer. Please describe enough processes to justify your answer (Korean is also OK!!).
- Check the due date!!!
- Better the last smile than the first laughter.

II. PROBLEM SET

1) Let $M_{2\times 2}$ be the vector space of all 2×2 matrices, and define $T: M_{2\times 2} \to M_{2\times 2}$ by $T(A) = A + A^T$, where

$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

- a) Show that T is a linear transformation.
- b) Show that the range of T is the set of B in $M_{2\times 2}$ with the property that $B^T=B$.
- c) Describe the kernel of T.
- 2) Find a basis for the set of vectors in \mathbb{R}^3 in the plane $x_1+2x_2+x_3=0$.
- 3) Let \mathbb{P}_2 be the set of polynomials where the degree of polynomials is 2.
 - a) The set $B = \{1 t^2, t t^2, 2 2t + t^2\}$ is a basis for \mathbb{P}_2 . Find the change-of-coordinates matrix from the basis B to the standard basis $C = \{1, t, t^2\}$.
 - b) Find the coordinate vector of $\mathbf{p}(t) = 3 + t 6t^2$ relative to B.
- 4) Show that the set of polynomials $\{1, 1-t, 2-4t+t^2, 6-18t+9t^2-t^3\}$ is a basis of \mathbb{P}_3 .
- 5) Let λ be an eigenvalue of an invertible matrix A. Show that λ^{-1} is an eigenvalue of A^{-1} .
- 6) Diagonalize the matrix if possible.

$$A = \begin{bmatrix} 4 & 2 & 2 \\ 2 & 4 & 2 \\ 2 & 2 & 4 \end{bmatrix}$$

- 7) Assume the mapping $T: \mathbb{P}_2 \to \mathbb{P}_2$ defined by $T(a_0 + a_1t + a_2t^2) = 3a_0 + (5a_0 2a_1)t + (4a_1 + a_2)t^2$ is linear. Find the matrix representation of T relative to the basis $B = \{1, t, t^2\}$.
- 8) Let $T: \mathbb{P}_2 \to \mathbb{P}_4$ be the transformation that maps a polynomial $\mathbf{p}(t)$ into the polynomial $\mathbf{p}(t) + t^2 \mathbf{p}(t)$.
 - a) Find the image of $\mathbf{p}(t) = 2 t + t^2$.
 - b) Show that T is a linear transformation.

c) Find the matrix for T relative to the bases $\{1, t, t^2\}$ and $\{1, t, t^2, t^3, t^4\}$.