Page 1

Data sheet

Datasheet

MM32W06xxxB

32 ARM® Cortex® M0

1.00

Reserve the right to change relevant information without notice

1 general introduction	1
1.1 Overview	1
1.2 Product Features	1
2 Specification	3
2.1 Device comparison	3
2.2 Overview	3
2.2.1 ARM Cortex-M0 core with embedded flash memory and SRAM	3
2.2.2 Built-in flash memory	4
2.2.3 Built-in SRAM	4
2.2.4 CRC (Cyclic Redundancy Check) calculation unit	4
2.2.5 Nested Vectored Interrupt Controller (NVIC)	4
2.2.6 External Interrupt/Event Controller (EXTI)	4
2.2.7 Clock and Startup	4
2.2.8 Bootstrap mode	4
2.2.9 Power supply plan	5
2.2.10 Power Supply Monitor	5
2.2.11 Voltage regulator	5
2.2.12 Low power consumption mode	5
<u>2.2.13 DMA</u>	5
2.2.14 RTC (Real Time Clock)	6
2.2.15 Backup register	6
2.2.16 Timers and watchdogs	6
2.2.17 Universal Asynchronous Receiver Transmitter (UART)	8
2.2.18 I2C bus	8
2.2.19 Serial Peripheral Interface (SPI)	8
2.2.20 Universal Serial Bus (USB)	8
2.2.21 General Purpose Input Output Interface (GPIO)	8
2.2.22 ADC (Analog/Digital Converter)	8
2.2.23 Temperature Sensor	9
2.2.24 Serial Single Wire SWD Debug Port (SW-DP)	9
2.2.25 Comparator (COMP)	9
2.2.26 Bluetooth Low Energy Broadcasting	9
3 pin definition	12
4 memory mapping	twenty one
5 Typical Application Circuit	twenty thre
6 Electrical characteristics	26
6.1 Test conditions	
<u>6.1.1 Typical values</u>	
<u>6.1.2 Typical curve</u>	
6.1.3 Load capacitance	

Page 3

<u>6.1.4 Pin input voltage</u>
<u>6.1.5 Power supply plan</u>
6.1.6 current consumption measurement 27
6.2 RF general characteristics
6.3 RF transmitter characteristics
6.4 RF receiver characteristics
6.5 Absolute Maximum Ratings
<u>6.6 Working conditions</u>
6.6.1 General operating conditions 30
6.6.2 Working conditions at power-on and power-off 30
6.6.3 Features of Embedded Reset and Power Control Module 30
6.6.4 Power supply current characteristics
6.6.5 Characteristics of the external clock source
6.6.6 The characteristics of the internal clock source of the control module

6.6.7 PLL features	
6.6.8 Memory characteristics	
6.6.9 EMC characteristics	
6.6.10 absolute maximum (electrical sensitivity) 41	
6.6.11 I/O port characteristics	
6.6.12 NRST pin characteristics 43	
6.6.13 TIM timer characteristics	
6.6.14 Communication interface	
6.6.15 12-bit ADC characteristics	
6.6.16 temperature sensor characteristics	
6.6.17 Comparator Features	
7 PCB design suggestions	54
7.1 Power supply design recommendations	
7.2 PCB precautions	
7.3 2.4G RF antenna design55	
8 package characteristics	56
8.1 Package LQFP4856	
8.2 Package QFN32	
9 Model naming	60
10 Modification records	61

2

Page 4

illustration

1	Module block diagram
<u>2</u>	<u>Clock Tree</u>
<u>3</u>	<u>LQFP48 pinout</u> 12
<u>4</u>	<u>QFN32 Pinout</u>
<u>5</u>	LOFP48 typical application circuit 23
<u>6</u>	QFN32 Typical Application Circuit 24
<u>7</u>	The load condition of the pins
8	<u>Pin input voltage</u>
9	Power supply plan
<u>10</u>	Current consumption measurement scheme 28
<u>11</u>	Typical applications where the control module uses 2 ~ 24MHz crystals
<u>12</u>	Typical applications using 16MHz crystals for RF modules
<u>13</u>	Exchange timing diagram of external low-speed clock source
<u>14</u>	Exchange timing diagram of external high-speed clock source
<u>15</u>	Typical applications using 32.768KHz crystals
<u>16</u>	Definition of input and output AC characteristics 43
<u>17</u>	Proposed NRST pin protection 44
<u>18</u>	I2C bus AC waveform and measurement circuit (1)
<u>19</u>	SPI Timing Diagram-Slave Mode and CPHA = 0
<u>20</u>	SPI Timing Chart-Slave Mode and CPHA = 1 (1)
twen	ty SM Timing Diagram-Master Mode (1)
twen	ty ty8B timing: definition of data signal rise and fall time
twen	ty lisseADC typical connection diagram 52
twen	ty Rower supply and reference power supply decoupling line52
25	Power supply and reference power supply decoupling line 54

3

Page 5

form

1	Product features and peripheral configuration	3
<u>2</u>	Timer function comparison	6
<u>3</u>	<u>Pin definitions</u>	
<u>4</u>	PA port function multiplexing AF0-AF7	
<u>5</u>	PB port function multiplexing AF0-AF7	
<u>6</u>	PC port function multiplexing AF0-AF7	
<u>7</u>	PD port function multiplexing AF0-AF7	
<u>8</u>	Memory mapping twenty one	
9	<u>List of external components</u> twenty three	
<u>10</u>	<u>List of external components</u>	
<u>11</u>	RF general characteristics	
<u>12</u>	Radio Frequency Transmitter Characteristics Table	
<u>13</u>	RF receiver characteristics	
<u>14</u>	Voltage characteristics	
<u>15</u>	Current characteristics	
<u>16</u>	General working conditions	
<u>17</u>	Working conditions at power-up and power-down	
<u>18</u>	Embedded control module reset and power characteristics 30	
<u>19</u>	Power consumption parameters	
<u>20</u>	Typical and maximum current consumption in stop and standby mode (1)(2)	
twenty	y Maximum current consumption in run mode, the data processing code runs from internal flash memory (1)(2)(3)/4/83	
twenty	y Maximum current consumption in sleep mode, data processing code running from internal flash memory 11/2/23/33/1	
twenty	y <u>Guerent consumption of built-in peripherals (1)</u>	
twenty	y <u>High-speed external user clock characteristics</u>	
<u>25</u>	Radio frequency module high-speed crystal clock characteristics 34	
<u>26</u>	Low-speed external user clock characteristics 35	
<u>27</u>	HSE 2 ~ 24MHz oscillator characteristics (1)(2)	
<u>28</u>	LSE oscillator characteristics (f LSE =32.768KHz)/II	
<u>29</u>	HSI oscillator characteristics (1)(2)	
<u>30</u>	LSI oscillator characteristics (I)	
31	Control the wake-up time of the module in low-power mode39	
<u>32</u>	PLL characteristics μ_1	
33	<u>Flash memory property</u>	
34	Flash memory life and data retention period (1)(2)	
35	MCU ESD characteristics	
36	L/O static characteristics	
37	Output voltage characteristics (1)(2)	

4

Page 6

<u>43</u>	USB DC characteristics	49
<u>44</u>	ADC Features	50
<u>45</u>	\underline{f} ADC = 15MHz (1) maximum R AIN	51
<u>46</u>	ADC accuracy-limited test conditions (1)(2)	5
<u>47</u>	Temperature sensor characteristics (3)(4)	53
<u>48</u>	Comparator features	. 53
<u>49</u>	Antenna size 55	
<u>50</u>	LOFP48 Size Description	57
<u>51</u>	QFN32 Size Description	58
52	A mendment records	61

5

1

Sosuke

1.1

This product is a single-mode Bluetooth chip with ultra-low power consumption. The radio frequency uses 2.4GHZ ISM frequency band with 2MHz channel spacing.

Comply with Bluetooth specification. This product uses high preformance ARM core 32-bit microcontroller, the highest

The operating frequency can reach 48MHz, built-in high-speed memory, rich enhanced I/O ports and peripherals connected to the external bus. this

The product includes 1 12-bit ADC, 2 comparators, 1 16-bit general-purpose timer, 1 32-bit general-purpose timer,

Three 16-bit basic timers and one 16-bit advanced timer. Also includes standard communication interfaces: 1 I2C interface, 1

One SPI interface, one USB interface and two UART interfaces.

The working voltage of this product series is 2.3V ~ 3.6V, and the working temperature gange cise 40 ular type. Multiple power saving

Working mode guarantees the requirements of low-power applications.

This product provides two packages, LQFP48 and QFN32.

According to different packaging forms, the peripheral configuration in the device is not the same.

These rich peripheral configurations make this product microcontroller suitable for a variety of applications:

- · Wireless keyboard, mouse
- Industrial applications: industrial remote control, telemetry
- · Alarm system, access control system, data acquisition and transmission system

1.2

- Kernel and system
 - 32-bit ARM ® Cortex ® -M0 processor core
 - -The highest operating frequency can reach 48MHz
 - single-cycle 32-bit hardware multiplier
- Storage
 - Up to 64K bytes of Flash program memory
 - up to 8K bytes of SRAM, 4K bytes available to the user
 - Boot loader supports on-chip Flash, UART online user programming (IAP) / online system programming (ISP)
- Single-mode BLE RF transceiver
 - packet processing engine
 - GFSK encoding method
 - internal voltage regulator ensured PSRR
 - Programmable transmit power range: -28dBm ~ + 4dBm
 - 1Mbps air data transmission
 - RF link budget: up to -80dBm
- Clock, reset and power management

www.mm32mcu.com

1/ <u>61</u>

Page 8

- $-2.3V \sim 3.6V$ power supply
- -Power on/power-off reset (POR/PDR), programmable voltage monitor (PVD)
- RF module external high speed 16MHz crystal oscillator
- built by the factory tuned high-speed $48\mathrm{MHz}$ oscillator
- embedded 40KHz low frequency oscillator
- PLL supports CPU running at up to 48MHz
- External low-speed oscillator 32.768K
- Low power consumption
 - sleep, shutdown and standby modes
 - Support RTC function and backup registers
- 1 12-bit analog-to-digital converter, $1\mu S$ conversion time (up to 10 input channels)
 - Conversion range: 0 ~ V DDA

- support the resolution and sampling time configuration
- --On- chip temperature sensor
- --On- chip voltage sensor
- 2 comparators
- 5-channel DMA controller
 - Supported peripherals: Timer, UART, I2C, SPI , USB and ADC
- Up to 28 fast I/O ports:
 - All I / O port 16 may be mapped to external interrupts
- Debug mode
 - serial wire debug (SWD)
- Up to 9 timers
 - 1 16-bit 4-channel advanced control timer with 4-channel PWM output, as well as dead zone generation and tight Emergency stop function
 - 1 16-bit timer and 1 32-bit timer, up to 4 input capture/output compare, available Control decoding in IR
 - 2 16-bit timers, 1 input capture/output compare and 1 OCN, dead zone generation, emergency stop Only, the modulator gate is used for IR control
 - 1 16-bit timer with 1 input capture/output compare
 - 2 watchdog timers (independent and window type)
 - 1 System time timer: 24-bit self-decreasing counter
- Up to 5 communication interfaces
 - 2 UART interfaces
 - 1 I2C interface
 - 1 SPI interface
 - 1 USB device interface
- BOM cost of low-cost peripheral components
- 96-bit unique chip ID (UID)
- Available in LQFP48 and QFN32 packages

For complete details of this product, please refer to section $\underline{2.2~\text{of}}$ this product data sheet .

About Cortex * -M0 core related information, please refer to "Cortex* -M0 Technical Reference Manual.

www.mm32mcu.com

Page 9

DS_MM32W06xxxB_Ver1.00

2/61

7

Specifications

2.1

1.

	Product numb			
Peripheral interface		MM32W062NTB	MM32W062PFB	
Flash	memory-K bytes	64	64	
SRAM	-K bytes	8	8	
	General (16 bit)		1	
Timer	General (32 bit)		1	
	Basic		3	
	advanced		1	
	UART		2	
Communication Ir	I2C		1	
Communication	SPI		1	
	USB		1	
Number of GPIO ports		twenty two	28	
	Number		1	

12-bit ADC Number of channels 5 10 Number of comparators $2\sqrt[3]{\sqrt{}}$ RTC $2\sqrt[3]{\sqrt{}}$ CPU frequency $2.3V \sim 3.6V$ Package QFN32 LQFP48

2.2

2.2.1 ARM Cortex-M0 SRAM

 $ARM * The \ Cortex * \$ \quad -M0 \ processor \ is \ the \ latest \ generation \ of \ embedded \ ARM \ processor, \ it \ is \ needed \ to \ realize \ MCU$

Provides a low-cost platform, reduced number of pins, reduced system power consumption, while providing excellent computing performance and advanced Incoming interrupt system response.

ARM * The Cortex * -M0 is a 32-bit RISC processor, providing additional code efficiency, in the usual 8 and 16-bit

The high performance of the ARM core is exerted on the storage space of the system.

This product has a built-in ARM core, so it is compatible with all ARM tools and software.

www.mm32mcu.com 3/61

Page 10

DS_MM32W06xxxB_Ver1.00

2.2.2

The built-in flash memory of up to 64K bytes is used to store programs and data.

2.2.3 SRAM

Built-in SRAM up to 8K bytes.

2.2.4 CRC()

CRC (Cyclic Redundancy Check) calculation unit uses a fixed polynomial generator to generate from a 32-bit data word

 $A\ CRC\ code.\ In\ many\ applications,\ CRC\ based\ technology\ is\ used\ to\ verify\ the\ consistency\ of\ data\ transmission\ or\ storage.$

Within the scope of EN/IEC60335-1 standard, it provides a means to detect flash memory errors, CRC calculation

The unit can be used to calculate the signature of the software in real time and compare it with the signature generated when the software is linked and generated.

2.2.5 (NVIC)

This product has a built-in nested vectored interrupt controller that can handle multiple maskable interrupt channels (not including 16

CortexTM-M0 interrupt line) and 16 programmable priority levels.

- Tightly coupled NVIC can achieve low-latency interrupt response processing
- The interrupt vector entry address directly enters the kernel
- Tightly coupled NVIC interface
- Allow early processing of interrupts
- Handle the higher priority interrupts that arrive late
- Support interrupt tail link function
- · Automatically save processor state
- Automatic recovery when the interrupt returns, without additional instruction overhead

The module provides flexible interrupt management functions with minimal interrupt delay.

2.2.6 / (EXTI)

The external interrupt/event controller contains multiple edge detectors to generate interrupt/event requests. Each interrupt line can be independent Configure its trigger event (rising edge or falling edge or both edges), and can be individually shielded; there is a pending register

The register maintains the status of all interrupt requests. EXTI can detect that the pulse width is smaller than the clock period of the internal APB2. So

There are general I/O ports connected to 16 external interrupt lines.

2.2.7

The system clock is selected at startup. The internal 48 MHz oscillator divided by 6 is selected as the default CPU at reset

Clock, then you can select an external 1 \sim 24 MHz clock with failure monitoring. When an external clock failure is detected,

It will be isolated and the system will automatically switch to the internal oscillator. If the interrupt is enabled, the software can receive the corresponding Interruption. Similarly, complete interrupt management of the PLL clock can be taken when needed (for example, when an indirectly used external

When the oscillator fails).

Multiple prescalers are used to configure the AHB frequency, high-speed APB (APB2 and APB1) area. AHB and high-speed APB

The highest frequency is 48MHz. Refer to Figure 2 for the clock drive block diagram.

2.2.8

At startup, one of three boot modes can be selected through the boot pin:

www.mm32mcu.com

4/ <u>61</u>

Page 11

DS_MM32W06xxxB_Ver1.00

- Boot from program flash memory
- Boot from system memory
- · Boot from internal SRAM

The boot loader is stored in the system memory, and the flash memory can be reprogrammed through UART1.

2.2.9

 \bullet V DD = 2.3V \sim 3.6V: The V DD pin supplies power to the I/O pins and the internal voltage regulator.

 $V_{DDA} = 2.3V \sim 3.6V$: Provide power for the analog part of ADC, reset module, oscillator and PLL. V_{DDA} and

V ssa must be connected to $V\ {\rm DD}$ and V ss respectively .

2.2.10

This product integrates a power-on reset (POR)/power-down reset (PDR) circuit, which is always in working condition to ensure

Prove that the system works when the power supply exceeds 2.3V; when $V_{DD\,b}$ lower than the set threshold ($V_{POR,PDR}$), the device is placed in reset state State without using an external reset circuit.

There is also a programmable voltage monitor (PVD) in the device, which monitors the V DD /V DDA power supply and compares it with the threshold V PVD .

When $V_{DD\,B}$ lower or higher than the threshold V_{PVD} , an interrupt is generated. The interrupt handler can issue a warning message or switch the microcontroller to Enter safe mode. The PVD function needs to be turned on by program.

2.2.11

The voltage regulator converts the external voltage into a voltage for internal digital logic work, and the voltage regulator is always in working state after reset.

2.2.12

The product supports low-power mode, which can achieve the best balance between requirements for low power consumption, short startup time, and multiple wake-up events.

Balance.

In sleep mode, only the CPU is stopped, all peripherals are in working state and can wake up the CPU when an interrupt/event occurs.

Under the condition that the contents of SRAM and registers are not lost, the shutdown mode can achieve the lowest power consumption. Down

 $In this mode, the HSI \ oscillator \ and \ HSE \ crystal \ oscillator \ are \ turned \ off. \ You \ can \ use \ any \ signal \ configured \ as \ EXTI \ to \ and \ any \ signal \ configured \ as \ extra \ to \ any \ signal \ configured \ as \ extra \ to \ any \ signal \ configured \ as \ extra \ to \ any \ signal \ configured \ as \ extra \ to \ any \ signal \ configured \ as \ extra \ to \ any \ signal \ configured \ as \ extra \ to \ any \ signal \ configured \ as \ extra \ to \ any \ signal \ configured \ as \ extra \ to \ any \ signal \ configured \ as \ extra \ to \ any \ signal \ configured \ as \ extra \ to \ any \ signal \ configured \ as \ extra \ to \ any \ signal \ configured \ as \ extra \ to \ any \ signal \ configured \ as \ extra \ to \ any \ signal \ configured \ as \ extra \ to \ any \ signal \ configured \ as \ extra \ to \ any \ signal \ configured \ any \ signal \ configured \ as \ extra \ to \ any \ signal \ configured \ any \ signal \ signal \ configured \ any \ signal \ signal$

The controller wakes up from stop mode, EXTI signal can be one of 16 external I/O ports, the wake-up signal of PVD output number.

Standby mode can achieve the lowest power consumption of the system. This mode turns off the voltage regulator when the CPU is in deep sleep mode, internal

All the power supply areas of the 1.5V part are disconnected. PLL, HSI and HSE oscillators are also turned off, you can use WKUP and the power supply areas of the 1.5V part are disconnected. PLL and HSE oscillators are also turned off, you can use WKUP are the power supply areas of the 1.5V part are disconnected. PLL and HSE oscillators are also turned off, you can use WKUP are the power supply areas of the 1.5V part are disconnected. PLL and HSE oscillators are also turned off, you can use WKUP are the power supply areas of the 1.5V part are disconnected. PLL and HSE oscillators are also turned off, you can use WKUP are the power supply areas of the 1.5V part are disconnected. PLL and HSE oscillators are also turned off, you can use WKUP are the power supply areas of the 1.5V part are disconnected. PLL and HSE oscillators are also turned off, you can use WKUP are the power supply are the power su

The rising edge of the pin, external reset of the NRST pin, IWDG reset wake-up or watchdog timer wake-up and reset.

The contents of SRAM and registers will be lost. Only the backup registers and standby circuits maintain power.

2.2.13 DMA

Flexible 5-channel general-purpose DMA can manage data transfer from memory to memory, device to memory, and memory to device

The DMA controller supports the management of the ring buffer, which avoids the intermediate transfer caused when the controller transfer reaches the end of the buffer Off.

www.mm32mcu.com

5/ <u>61</u>

Page 12

DS_MM32W06xxxB_Ver1.00

Each channel has a dedicated hardware DMA request logic, and each channel can be triggered by software at the same time; Both the source address and destination address of the input can be individually set by software.

DMA can be used for the main peripherals: use UART, I2C, SPI, ADC, USB and general/basic/advanced control Timer TIMx.

2.2.14 RTC()

The real-time clock is an independent timer. The RTC module has a set of continuous counting counters. Under the corresponding software configuration, Can provide clock calendar function. Modifying the counter value can reset the current time and date of the system. RTC module

And the clock configuration system (RCC_BDCR register) is in the backup area, that is, after the system is reset or wakes up from standby mode,

The RTC setting and time remain unchanged.

2.2.15

The backup registers are 20 16-bit registers that can be used to store user application data.

They will not be reset when the system is woken up in standby mode, or when the system is reset or power is reset.

2.2.16

The product includes 1 advanced timer, 2 general timers, and 3 basic timers. And 2 watchdog timers and 1 system tick timer.

The following table compares the functions of advanced control timers, general timers and basic timers:

2.

Timer type	name	Counter resolution	Counter type	Prescaler	DMA request generation	Capture / compare c	han6cimplementary output
advanced	TIM1	16 bits	Increase, pass Decrease, pass Increase/decrea	$1 \sim 65536$ Any in between Integer	Have	4	Have
Universal	TIM2	32 bit	Increase, pass Decrease, pass Increase/decrea	$1 \sim 2$ 32 – 1 Any in between use Integer	Have	4	no
	TIM3	16 bits	Increase, pass Decrease, pass Increase/decrea	$1 \sim 65536$ Any in between ase Integer	Have	4	no
Basic	TIM14	16 bits	Increase	$1 \sim 65536$ Any in between	Have	1	no
	TIM16 / TIM17	16 bits	Increase	$1 \sim 65536$ Any in between	Have	1	Have

(TIM1)

The advanced control timer is composed of a 16-bit counter, 4 capture/compare channels and a three-phase complementary PWM generator.

It has complementary PWM output with dead zone insertion and can also be used as a complete general-purpose timer. Four independent channels

<u>www.mm32mcu.com</u> 6/ <u>61</u>

Page 13

DS_MM32W06xxxB_Ver1.00

Used for:

- Input capture
- Output comparison
- Generate PWM (edge or center aligned mode)
- Single pulse output

When configured as a 16-bit general-purpose timer, it has the same function as the TIMx timer. Configured as 16-bit PWM generation It has full modulation capability (0 \sim 100%) when the device is used.

In debug mode, the counter can be frozen and the PWM output is disabled, thereby cutting off the control by these outputs Switch.

Many functions are the same as the general TIM timer, and the internal structure is also the same, so the advanced control timer can be set The timer link function cooperates with the TIM timer to provide synchronization or event link function.

(TIMx)

In the product, up to 2 general-purpose timers (TIM2, TIM3) that can run synchronously are built-in. The timer has a 32-bit Automatic loading up/down counter, a 16-bit prescaler and 4 independent channels, each channel is available For input capture, output comparison, PWM and single pulse mode output.

32

The timer has a 32-bit autoload up/down counter, a 16-bit prescaler and 4 independent communication channels. Each channel can be used for input capture, output comparison, PWM and single pulse mode output.

16

Each timer has a 16-bit auto-loading up/down counter, a 16-bit prescaler and 4 independent

Each channel can be used for input capture, output comparison, PWM and single pulse mode output.

They can also work with advanced control timers through the timer link function to provide synchronization or event link functions. in In debug mode, the counter can be frozen. Any general-purpose timer can be used to generate PWM output. Every timer All have independent DMA request mechanism.

These timers can also process signals from incremental encoders, as well as digital outputs from 1 to 4 Hall sensors. each Both timers have PWM output, or as a simple time base.

TIM14

The timer is based on a 16-bit auto-reload increment counter and a 16-bit prescaler. Has a single channel, with For input capture/output comparison, PWM or single pulse mode output. In debug mode, its counter can be frozen.

TIM16 / TIM17

The timers are based on a 16-bit auto-reload increment counter and a 16-bit prescaler. There is a single channel for Input capture/output comparison, PWM or single pulse mode output. Complementary output, with dead zone generation and independent DMA Seek generation function. In debug mode, the timer is off.

The independent watchdog is based on a 12-bit down counter and an 8-bit prescaler, which consists of an internal independent 40KHz oscillator provides the clock; because this oscillator is independent of the main clock, it can run in shutdown and standby mode. It can be used to reset the whole system when a problem occurs in the system or as a free timer to provide super

www.mm32mcu.com

7/ <u>61</u>

Page 14

DS_MM32W06xxxB_Ver1.00

Time management. The option byte can be configured to enable the watchdog by software or hardware. In debug mode, the watchdog is turned off close.

There is a 7-bit down counter in the window watchdog, and it can be set to free running. It can be used as a watchdog

To reset the entire system when a problem occurs. It is driven by the main clock and has an early warning interrupt function; in the debug mode,

The watchdog is closed.

This timer is dedicated to the real-time operating system and can also be used as a standard down counter. It has the following characteristics:

- 24-bit down counter
- Auto reload function
- \bullet A maskable system interrupt can be generated when the counter is 0
- Programmable clock source

2.2.17 (UART)

The UART interface has hardware CTS and RTS signal management. Support LIN master-slave function. Compatible with ISO7816 smart Card mode. The UART interface supports output data length that can be configured as 5 bits, 6 bits, 7 bits, 8 bits, and 9 bits.

All UART interfaces can use DMA operation.

2.2.18 I2C

 $The \ I2C \ bus \ interface \ can \ work \ in \ multi-master \ mode \ or \ slave \ mode, \ and \ supports \ standard \ and \ fast \ modes.$

The I2C interface supports 7-bit or 10-bit addressing

2.2.19

(SPI) SPI interface, in slave or master mode, can be configured as 1 to 32 bits per frame

All SPI interfaces can use DMA operation.

2.2.20 (USB)

A device controller compatible with full-speed USB is embedded in the product, which follows the standard of full-speed USB device (12 Mbit/s).

Points can be configured by software. The 48MHz clock dedicated to USB is directly generated by the internal PLL or the internal clock at room temperature (HSI).

2.2.21 (GPIO)

Each GPIO pin can be configured by software as output (push-pull or open-drain), input (with or without pull-up or pull-down) or multiplex

The peripheral function port used. Most GPIO pins are shared with digital or analog multiplexed peripherals. All GPIO pins

All have high current passing capacity.

When needed, the peripheral functions of I/O pins can be locked by a specific operation to avoid accidental writing

I/O register.

2.2.22 ADC(/ Number)

The product is embedded with a 12-bit analog/digital converter (ADC), ADC can use up to 10 external channels, which can be realized

Single, single cycle and continuous scan conversion. In scan mode, automatic acquisition on a selected set of analog inputs

Value conversion

www.mm32mcu.com

8/ <u>61</u>

Page 15

DS_MM32W06xxxB_Ver1.00

ADC can use DMA operation.

The analog watchdog function allows very precise monitoring of one channel or all selected channels, when the monitored signal exceeds the preset When the threshold is reached, an interrupt will be generated.

The events generated by the general-purpose timer (TIMx) and the advanced control timer can be internally cascaded to the ADC trigger respectively. The application program can synchronize the ADC conversion with the clock.

The temperature sensor generates a voltage that varies linearly with temperature. The temperature sensor is internally connected to the ADC input On the road, it is used to convert the output of the sensor to a digital value.

SWD (SW-DP)

Embedded ARM's two-wire serial debug port (SW-DP).

ARM's SW-DP interface allows to connect to the microcontroller through a serial wire debugging tool.

2.2.25 (COMP)

The product has two built-in comparators, which can be used independently (applicable to I/O ports on all terminals) or combined with timers. and also Can be used for multiple functions, including

- Low-power mode wake-up event triggered by analog signal
- · Adjust the analog signal
- The PWM output of the timer is combined to form a cycle-by-cycle current control loop
- · Rail-to-rail comparator
- · Each comparator has an optional threshold
 - the I reusable / O pin
 - -The internal comparison voltage CRV can select AVDD or the divided voltage value of the internal reference voltage
- · Programmable hysteresis voltage
- Programmable rate and power consumption
- The output can be redirected to one I/O port or multiple timer inputs, and the following events can be triggered:
 - Capture Event
 - OCref_clr event (cycle-by-cycle current control)
 - For fast PWM off braking event

2.2.26

This chip integrates Bluetooth specification and radio frequency transceiver, compatible with the definition of the International Communication Union Radio Communication B Available 2.4GHz ISM frequency band.

After supplying power to the chip, the RF transceiver peripheral only needs to build simple peripheral components to achieve wireless transceiver functions. It provides high Excellent RF link budget up to -80dBm.

www.mm32mcu.com 9/ <u>61</u>

Page 16

DS_MM32W06xxxB_Ver1.00 Flash ෆුਓ CPU SRAM ₩≢點 <u>z</u>ე 2 ∖υ∘□顛ጢ □ಘ (RCC)

GPIOA/B/C/D CRC

DMA 篤≲

ANALOG PART DIGITAL PART CSN 2.4GHz GFSK TX SCK MISO MOSI IRQ ANT Baseband Analog PLL Freq. Control RF_XI RF_XO Oscillator /buffer

1.

www.mm32mcu.com

10/<u>61</u>

VDDA

Regulator

Page 17

 $DS_MM32W06xxxB_Ver1.00$

LSI Ring LSI Watchdog LS RTCSEL RTC Enable RTC LSE OSC LSE FCLK ST PRESC SysTick LSI /128 /8 APB1 PRESC CSS PLLXTPRE PCLK1 to APB1 /1, 2,... HSE OSC /2 HSE AHB If(APB1 Presc=1)x1 else x2 2~24MHz PLLSRC PRESC /1, 2, ...,512 to TIMx SYSCLK PLL x 3, 4,... sw APB2 PRESC PCLK2 to APB2 /2, 3, 4,... /1, 2,... Peripheral RC 48MHz HSI ADC Level shifters to ADC PRESC /2, 3...17 Clock Recovery If(APB2 Presc=1)x1 to TIMx HSI48MSEL else x2 exclude TIM.Adv System USB TIM.SEL Peripheral PRESC TIM.Adv PRESC clock enable /1, 2, 3, 4 to TIM.Adv HSI
HSI
HSE
LSE
LSI
SYSCLK
enty foldLLCLK /1, 2, 4,... Peripheral Main Clock Output clock enable to USB48M Peripheral clock enable /HJHQG +6(KLJK VSHHGH[WHUQDOFORFNVLJQDO +6, KLJK VSHHG LQWHUQDO FORFN VLJQDO /6, ORZ VSHHG LQWHUQDO FORFN VLJQDO /6(ORZ VSHHGH[WHUQDOFORFNVLJQDO

2.

<u>www.mm32mcu.com</u> 11/ <u>61</u>

Page 18

DS_MM32W06xxxB_Ver1.00

3

Pin definition

Data sheet

3. LQFP48

www.mm32mcu.com

12/ <u>61</u>

Page 19

4. QFN32

3.							
Pin o	code	Dia	T		Main function		
LQFP48	QFN32	Pin name	Type (1)	I/O level (2)	Main function	Optional multiplexing function Add function	
1	-	NC	-	-	NC	-	
2		p.c.i.a	1/0	TC	DC12	TIM2_CH1	
2	-	PC13 I/O TC	13 I/O TC PC13	PCIS	TIM2_ETR		
3	-	PC14	I/O	TC	PC14	TIM2 CH2	
		OSC32_IN	1/0	IC	FC14	TIM2_CH2 -	
	-	PC15	I/O	TC	PC15	TIMO CHO	
4		OSC32_OUT	1/0	TC	rcis	TIM2_CH3 -	
						I2C1_SDA	
		PD0			PD0	TIM1_CH1N	
5	2		I/O	TC		UART1_TX -	
		OS	OSC_IN				TIM1_CH2
						SPI1_MOSI	

<u>www.mm32mcu.com</u> 13/ <u>61</u>

Page 20

Pin code									
LQFP48	QFN32	Pin name	Type (1)	I/O level (2)	Main function	Optional multiplexi	ng function Add function		
						TIM1_BKIN			
						I2C1_SCL			
		PD.		TIM1_CH1					
6	3	PD1	I/O	TC	PD1	UART1_RX	-		
		OSC_OUT				TIM1_CH2			
						SPI1_MISO			
						SPI1_SCK			
7	4	nRST	I/O	TC	nRST	-	-		
8	-	VSSA	S	-	VSSA	-	-		
9	8	VDDA	S	-	VDDA	-	-		
						UART2_CTS			
10	9							TIM2_CH1	ADC1_VIN[0]
		PA0	I/O	TC	PA0	TIM2_ETR	COMP1_INP[0]		
		WKUP	10			UART1_RX	COMP2_INP[0]		
						TIM14_CH1	COMP1_INM[2]		
						COMP1_OUT			
						UART2_RTS	ADC1_VIN[1]		
11	_	PA1	I/O	TC	PA1	TIM2_CH2	COMP1_INP[1]		
11		FAI	ь	10	1711	TIM1_CH2	COMP1_INF[1] COMP2_INP[1]		
						UART1_TX	COM 2_NV[1]		
						UART2_TX	ADC1_VIN[2]		
12	10	PA2	I/O	TC	PA2	TIM2_CH3	COMP1_INP[2]		
						TIM1_CH2N	COMP2_INP[2]		
						COMP2_OUT	COMP2_INM[2]		
						UART2_RX	ADC1_VIN[3]		
13	11	PA3	I/O	TC	PA3	TIM2_CH4	COMP1_INP[3]		
						TIM1_CH3	COMP2_INP[3]		
						SPI1_NSS			
						SPI1_SCK	ADC1_VIN[4]		
14	12	PA4	I/O	TC	PA4	TIM1_CH3N	COMP1_INM[0]		
alanon atel	ucarcontan	t com/translat	Δ f						

						TIM14_CH1	COMP2_INM[0]
						TIM1_BKIN	
						SPI1_SCK	
						SPI1_NSS	ADC1_VIN[5]
15	13	PA5	I/O	TC	PA5	TIM2_CH1	COMP1_INM[1]
						TIM2_ETR	COMP2_INM[1]
						TIM1_CH3N	

<u>www.mm32mcu.com</u> 14/<u>61</u>

Page 21

DS_MM32W06xxxB_Ver1.00

Pin code								
LQFP48	QFN32	Pin name	Type (1)	I/O level (2)	Main function	Optional multiplexing	g function Add function	
						SPI1_MISO		
						TIM3_CH1		
						TIM1_BKIN		
16	-	PA6	I/O	TC	PA6	TIM16_CH1	ADC1_VIN[6]	
						TIM1_CH3		
						COMP1_OUT		
						SPI1_MOSI		
						TIM3_CH2		
						TIM1_CH1N		
			1/0	TO.	2.5	TIM1_CH3N		
17	-	PA7	I/O	TC	PA7	TIM14_CH1	ADC1_VIN[7]	
						TIM17_CH1		
						TIM1_CH2N		
						COMP2_OUT		
						TIM3_CH3		
			1/0	TO.	PD 0	TIM1_CH2N		
18	-	- PB0	I/O	TC	PB0	TIM1_CH1N	ADC1_VIN[8]	
						TIM1_CH3		
						TIM14_CH1		
						TIM3_CH4		
						TIM1_CH3N		
19	-	PB1	I/O	TC	PB1	TIM1_CH2N	ADC1_VIN[9]	
						TIM2_CH3		
						TIM1_CH2		
						TIM1_CH1N		
20	17	VDD	S	-	VDD	-	-	
twenty one	25	RF_VDD1V2	S	-	RF_VDD1V2	-	-	
twenty two	-	IRQ	S	-	IRQ	-	-	
twenty three	e -	NC	S	-	NC	-	-	
twenty four	-	RF_XO	О	-	RF_XO	-	-	
25	-	RF_XI	I	-	RF_XI	-	-	
26	-	RF_VDD	S	-	RF_VDD	-	-	
27	-	RF_VSS	S	-	RF_VSS	-	-	
28	6	ANTP	-	-	ANTP	-	-	
29	5	VSS	S	-	VSS	-	-	
30	-	RF_VDD	S	-	RF_VDD	-	-	
31	-	RF_VDD	S	-	RF_VDD	-	-	

<u>www.mm32mcu.com</u> 15/ <u>61</u>

Page 22

DS_MM32W06xxxB_Ver1.00

Pin code						
LQFP48	QFN32	Pin name	Type (1)	I/O level (2)	Main function	Optional multiplexing function Add function
						UART1_CTS
						TIM1_CH4
						TIM1_CH3
32	twenty one	PA11	I/O	TC	PA11	CANI_RX -
						I2C1_SCL
						TIM1_BKIN
						COMPI_OUT
						UART1_RTS
						TIM1_ETR
						TIM1_CH3N
33	twenty two	PA12	I/O	TC	PA12	CAN1_TX -
						I2C1_SDA
						TIM1_CH2
						COMP2_OUT
34	twenty three	PA13	I/O	TC	PA13	SWDIO
	,					UART1_TX
35	-	PD2	I/O	TC	PD2	I2C1_SCL
						SPI1_NSS
						I2C1_SDA
36	-	PD3	I/O	TC	PD3	SPI1_SCK -
						SPI1_MISO
						SWDCLK
37	twenty four	PA14	I/O	TC	PA14	UART2_TX -
						UART1_RX
						SPI1_NSS
						UART2_RX
38	-	PA15	I/O	TC	PA15	TIM2_CH1
						TIM2_ETR
						TIM1_CHIN
						TIM1_CH3N
						SPI1_SCK
						TIM2_CH2
39	26	PB3	I/O	TC	PB3	TIM1_CH1 -
						TIM1_CH2N
						TIM1_CH3

<u>www.mm32mcu.com</u> 16/ <u>61</u>

Page 23

Pin code		Pin name	Type (1)	I/O level (2)	Main function	Optional multiplexing function Add function
LQFP48	QFN32	1 III IIIIII	1) pe (.)	1/O 16 VCI (2)	man randuon	optional manipioning randion rad randion
						SPI1_MISO
		PB4	T/O	TC	PB4	TIM3_CH1
40	27					TIM1_CH2
40	21		I/O			TIM17_BKIN
						TIM1 CH3N

						TIM1_CH2N	
						SPI1_MOSI	
						TIM3_CH2	
41	28	PB5	I/O	TC	PB5	TIM16_BKIN	-
						TIM1_CH1	
						TIM1_CH2	
						UART1_TX	
						I2C1_SCL	
42	29	PB6	I/O	TC	PB6	TIM16_CH1N	
42	29	РВо	1/0		PB0	TIM1_CH2N	-
						TIM1_CH2	
						TIM1_CH1N	
						UART1_RX	
						I2C1_SDA	
43	30	PB7	I/O	TC	PB7	TIM17_CH1N	-
						TIM1_CH3	
						TIM1_CH1	
44	31	BOOT0	I	-	BOOT0	-	-
						UART1_RX	
						I2C1_SCL	
45	31	PB8	I/O	TC	PB8	TIM16_CH1	
43	31	РВо	10	ic	гво	TIM1_CH1	-
						CAN1_RX	
						TIM3_CH2	
						UART1_TX	
46		PD0	I/O	TC	PB9	I2C1_SDA	
46	-	PB9	1/0	IC	РВ9	TIM17_CH1	-
						TIM3_CH3	
47	7	VSS	S	-	VSS	-	-
48	-	VDD	S	-	VDD	-	-
-	1	RF_OSC_IN	I	-	RF_OSC_IN	-	-

<u>www.mm32mcu.com</u> 17/ <u>61</u>

Page 24

Pin code		Dia	T.		Main formation	Outional multiplania - foresting Add foresting
LQFP48	QFN32	Pin name	Type (1)	I/O level (2)	Main function	Optional multiplexing function Add function
_	14	PB10	I/O	TC	PB10	I2C1_SCL
	14	FB10	100	ic	1 100	TIM2_CH3
_	15	PB11	I/O	TC	PB11	I2C1_SDA
-	13	FBII	1/0	ic	FBII	TIM2_CH4
_	16	VSS	I/O	TC	VSS	I2C1_SDA
	10	V 33	100		V 33	TIM2_CH4
				TC		MCO
_	18	PA8	I/O		PA8	TIM1_CH1
	10	RF_IRQ	20		1710	TIM1_CH2
						TIM1_CH3
						UART1_TX
						TIM1_CH2
_	19	PA9	I/O	TC	PA9	UART1_RX
						I2C1_SCL
						MCO
						TIM1_CH1N

TIM17_BKIN UART1_RX TIM1_CH3 20 PA10 I/O TC PA10 UART1_TX I2C1_SDA TIM1_CH1 TIM16_CH1 32 RF_OSC_OUT RF_OSC_OUT О

1. I = input, O = output, S = power, HiZ = high impedance

2. TC: Standard IO, the input signal does not exceed the VDD voltage

4. PA		AF0-AF7						
Pin Name	AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7
PA0	-	UART2_CTS	TIM2_CH1 TIM2_ETR	-	UART1_RX	-	TIM14_CH1 C	OMP1_OUT
PA1	-	UART2_RTS TIM	M2_CH2	TIM1_CH2	UART1_TX	-	-	-
PA2	-	UART2_TX	TIM2_CH3	TIM1_CH2N	-	-	-	COMP2_OUT
PA3	-	UART2_RX	TIM2_CH4	TIM1_CH3	-	-	-	-
PA4	SPI1_NSS	SPI1_SCK	-	TIM1_CH3N T	IM14_CH1 TIM1_BK	IN	-	-
PA5	SPI1_SCK	SPI1_NSS	TIM2_CH1 TIM2_ETR	-	-	-	TIM1_CH3N	-

<u>www.mm32mcu.com</u> 18/ <u>61</u>

Page 25

Pin	AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7
Name	Aru	AFI	Arz	AFS	AF4	Ars	Aru	AF/
PA6	SPI1_MISO	TIM3_CH1	TIM1_BKIN	-	-	TIM16_CH1 TI	M1_CH3	COMP1_OUT
PA7	SPI1_MOSI	TIM3_CH2	TIM1_CH1N T	IM1_CH3N TIM14	_СН1 ТІМ17_СН1	TIM1_CH2N COM	MP2_OUT	
PA8	MCO	-	TIM1_CH1	-	-	-	TIM1_CH2	TIM1_CH3
PA9	-	UART1_TX	TIM1_CH2	UART1_RX	I2C1_SCL	MCO	TIM1_CH1N	-
PA10 TI	M17_BKIN	UART1_RX	TIM1_CH3	UART1_TX	I2C1_SDA	TIM1_CH1	TIM16_CH1	-
PA11	-	UART1_CTS 7	TIM1_CH4	TIM1_CH3	CAN1_RX	I2C1_SCL	TIM1_BKIN CO	OMP1_OUT
PA12	-	UART1_RTS T	TIM1_ETR	TIM1_CH3N C	AN1_TX	I2C1_SDA	TIM1_CH2	COMP2_OUT
PA13	SWDIO	-	-	UART1_TX	-	-	-	-
PA14	SWDCLK	UART2_TX	-	UART1_RX	-	-	-	-
PA15	SPI1 NSS	UART2 RX	TIM2_CH1	_	_	-	TIM1 CH1N TI	M1 CH3N
			TIM2_ETR					
5. PB		AF0-AF7						
Pin	AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7
Name								
PB0	-	TIM3_CH3	TIM1_CH2N	TIM1_CH1N T	IM1_CH3	-	-	-
PB1	TIM14_CH1 TIM	M3_CH4	TIM1_CH3N	TIM1_CH2N T	IM2_CH3	TIM1_CH2	TIM1_CH1N	-
PB3	SPI1_SCK	-	TIM2_CH2	-	TIM1_CH1	-	TIM1_CH2N T	ПМ1_СН3
PB4	SPI1_MISO TIM	13_CH1	-	-	TIM1_CH2	TIM17_BKIN T	TM1_CH3N TIM1_	CH2N
PB5	SPI1_MOSI TIM	13_CH2	TIM16_BKIN	-	-	-	TIM1_CH1	TIM1_CH2
PB6	UART1_TX	I2C1_SCL	TIM16_CH1N	-	TIM1_CH2N	-	TIM1_CH2	TIM1_CH1N
PB7	UART1_RX	I2C1_SDA	TIM17_CH1N	-	-	-	TIM1_CH3	TIM1_CH1
PB8	UART1_RX	I2C1_SCL	TIM16_CH1	TIM1_CH1	CAN1_RX	-	TIM3_CH2	-
PB9	UART1_TX	I2C1_SDA	TIM17_CH1	-	CAN1_TX	-	TIM3_CH3	-
PB10	-	I2C1_SCL	TIM2_CH3	-	-	-	-	-
PB11	-	I2C1_SDA	TIM2_CH4	-	-	-	-	-
6. PC		AF0-AF7						
Pin	AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7

Name								
DG13							TIM2_CH1	
PC13	-	-	-	-	-	-	TIM2_ETR	-
PC14	-	-	-	-	-	-	TIM2_CH2	-
PC15	-	-	-	-	-	-	TIM2_CH3	-
7. PD		AF0-AF7						
Pin	. 770			4.772				
Name	AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7
PD0	_	I2C1 SDA	TIM1 CHIN U	ART1 TX	TIM1 CH2	SPI1 MOSI S	PI1 MOSI	_

<u>www.mm32mcu.com</u> 19/ <u>61</u>

Page 26

Pin	. 570	. 54						
Name	AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7
PD1	TIM1_BKIN	I2C1_SCL	TIM1_CH1	UART1_RX	TIM1_CH2	SPI1_MISO SF	PI1_SCK	-
PD2	-	I2C1_SCL	-	-	-	SPI1_NSS	SPI1_NSS	-
PD3	_	I2C1 SDA	-	_	_	SPI1 SCK	SPI1 MISO	_

www.mm32mcu.com

20/ <u>61</u>

Page 27

DS_MM32W06xxxB_Ver1.00

Memory map

8.				
bus	Address range	size	Peripherals	Remarks
	00000 0000 00000 FFFF	64 KD	Main flash memory, system memory or	
	0x0000 0000-0x0000 FFFF	64 KB	SRAM depends on BOOT configuration	
	0x0001 0000-0x07FF FFFF	~ 128 MB	Reserved	
	0x0800 0000–0x0800 FFFF	64 KB	Main Flash memory	
	0x0801 0000-0x1FFD FFFF	~ 383 MB	Reserved	
Flash	0x1FFE 0000-0x1FFE 01FF	0.5 KB	Reserved	
	0x1FFE 0200-0x1FFE 0FFF	3 KB	Reserved	
	0x1FFE 1000-0x1FFE 1BFF	3 KB	Reserved	
	0x1FFE 1C00-0x1FFF F3FF	~ 256 MB	Reserved	
	0x1FFF F400-0x1FFF F7FF	1 KB	System memory	
	0x1FFF F800-0x1FFF F80F	16 B	Option bytes	
	0x1FFF F810-0x1FFF FFFF	~2 KB	Reserved	
SRAM	0x2000 0000-0x2000 1FFF	8 KB	SRAM	
	0x2000 2000-0x2FFF FFFF	~ 255 MB	Reserved	
	0x4000 0000–0x4000 03FF	1 KB	TIM2	
	0x4000 0400-0x4000 07FF	1 KB	TIM3	
	0x4000 0800-0x4000 0BFF	8 KB	Reserved	
	0x4000 2800–0x4000 2BFF	1 KB	RTC/BKP	
	0x4000 2C00-0x4000 2FFF	1 KB	WWDG	
	0x4000 3000-0x4000 33FF	1 KB	IWDG	
	0x4000 3400-0x4000 37FF	1 KB	Reserved	
APB1	0x4000 3800-0x4000 3BFF	1 KB	Reserved	
	0x4000 4000–0x4000 43FF	1 KB	Reserved	
	0x4000 4400–0x4000 47FF	1 KB	UART2	
	0x4000 4800–0x4000 4BFF	3 KB	Reserved	
	0x4000 5400–0x4000 57FF	1 KB	I2C1	
	0x4000 5800-0x4000 5BFF	1 KB	Reserved	
	0x4000 5C00-0x4000 5FFF	1 KB	USB	
	0x4000 6000–0x4000 63FF	1 KB	Reserved	

21/ 61 www.mm32mcu.com

Page 28

bus	Address range	size	Peripherals	Remarks
	0x4000 6400–0x4000 67FF	1 KB	Reserved	
	0x4000 6800–0x4000 6BFF	1 KB	Reserved	
APB1	0x4000 6C00-0x4000 6FFF	1 KB	CSR	
	0x4000 7000-0x4000 73FF	1 KB	PWR	

1/19/2021 Data sheet 0x4000 7400-0x4000 FFFF 35 KB Reserved SYSCFG 0x4001 0000-0x4001 03FF 1 KB EXTI

0x4001 0400-0x4001 07FF 1 KB 0x4001 0800-0x4001 23FF 7 KB Reserved 0x4001 2400-0x4001 27FF 1 KB ADC1 0x4001 2800-0x4001 2BFF 1 KB 0x4001 2C00-0x4001 2FFF 1 KB TIM1 1 KB 0x4001 3400-0x4001 37FF 1 KB

0x4001 3000-0x4001 33FF SPI1 APB2

DBGMCU 0x4001 3800-0x4001 3BFF UART1 1 KB

0x4001 3C00-0x4001 3FFF 1 KB COMP 0x4001 4000-0x4001 43FF 1 KB TIM14

TIM16 0x4001 4400-0x4001 47FF 1 KB 0x4001 4800-0x4001 4BFF 1 KB TIM17

0x4001 4C00-0x4001 7FFF 13 KB Reserved 0x4002 0000-0x4002 03FF 1 KB DMA

0x4002 0400-0x4002 0FFF 3 KB Reserved RCC 0x4002 1000-0x4002 13FF 1 KB

0x4002 1400-0x4002 1FFF 3 KB Reserved 0x4002 2000-0x4002 23FF 1 KB Flash Interface

0x4002 2400-0x4002 2FFF 3 KB 0x4002 3000-0x4002 33FF 1 KB CRC

0x4002 3400-0x4002 FFFF 47 KB Reserved 0x4003 0000-0x4003 03FF 1 KB Reserved $\sim 127~\mathrm{MB}$ 0x4003 0400-0x47FF FFFF Reserved

0x4800 0000-0x4800 03FF 1 KB GPIOA 0x4800 0400–0x4800 07FF 1 KB GPIOB 0x4800 0800-0x4800 0BFF 1 KB GPIOC

0x4800 0C00-0x4800 0FFF 1 KB GPIOD ~ 384 MB 0x4800 1000-0x5FFF FFFF Reserved

> 22/ <u>61</u> www.mm32mcu.com

Page 29

DS_MM32W06xxxB_Ver1.00

AHB

Typical application circuit

R39 8 7 8 5 4 3 2 4 9 3 8 3

https://translate.googleusercontent.com/translate_f

Data sheet

5. LQFP48 9.

R34, C14 Reset circuit

C25 Decoupling capacitor

R39 Start selection resistance

R43 Amplifier negative feedback resistance

www.mm32mcu.com

23/ 61

Page 30

DS_MM32W06xxxB_Ver1.00

S) S) Q)

6. QFN32

Note: This typical application circuit uses the RF module and the control module to share a crystal oscillator solution. If the customer uses the internal clock of the control module, There is no need to add C1, and Pin2 can be used as GPIO.

<u>www.mm32mcu.com</u> 24/ <u>61</u>

Page 31

DS_MM32W06xxxB_Ver1.00

10.

Decoupling filter capacitor C5, C8, C9 C2, C3 Crystal loading capacitor Shared clock capacitor C1 C4 1.2V digital regulator decoupling capacitor C6, C11, L1 RF matching network capacitor R4, C10 Reset circuit Start mode selection resistance R1 16MHz crystal oscillator (provided for RF module and control module Y1 Clock source) J2 2.4G RF antenna

<u>www.mm32mcu.com</u> 25/ <u>61</u>

Page 32

DS_MM32W06xxxB_Ver1.00

6

Electrical characteristics

6.1

Unless otherwise specified, all voltages are based on V ss .

6.1.1 number

Unless otherwise specified, typical data is based on T $\mathring{\mathbb{A}} \in \frac{2}{6} \mathring{\mathbb{A}} d \ V_{DD} = 3.3 \text{V}$. These data are only used for design guidance and not After testing.

6.1.2

Unless otherwise specified, typical curves are only for design guidance and not tested.

6.1.3

The load conditions when measuring pin parameters are shown in the figure below.

C = 50 pF

7.

6.1.4

The measurement method of the input voltage on the pin is shown in the figure below.

www.mm32mcu.com

26/ <u>61</u>

Page 33

 $V_{\ \scriptscriptstyle IN}$

8.

6.1.5

The power supply design scheme is shown in the figure below.

6.1.6

The measurement method of current consumption on the pin is shown in the figure below.

<u>www.mm32mcu.com</u> 27/ <u>61</u>

Page 34

DS_MM32W06xxxB_Ver1.00 $I_{\ DD}$ $V_{\ DDA}$

10.

6.2 RF

11. RF

Label	parameter	Test Conditions	Minimum	Typical value Max	unit
FREQ	Frequency change	V $_{\text{DD}}=3.0\text{V},\text{T}_{\text{A}}=25{\rm {}_{^{\circ}}}\text{C}$	2400	2,483.5	MHz
FC	Channel spacing	$V_{\text{ DD}}=3.0V,T_{\text{ A}}=25{\rm {}_{^{\circ}}}C$		2	MHz
RFch	RF channel center	$V_{\rm DD}=3.0V,T_{\rm A}=25{\rm \cdot C}$	2402	2480	MHz

6.3 RF

12.						
Label	parameter	Test Conditions	Minimum	Typical va	alue Max	unit
MOD	Modulation	G	FSK			
BT	bandwidth			0.5		
M index	Modulation index		0.45	0.5	0.55	
DR	Air transmission index			1		Mbps
P max	Maximum transmission power				+4	dBm
D	6dB bandwidth modulated carrier		500			1/11
P BWIM	(1Mbps)		500			KHz
P SPUR	Spurious emission				-41	dBm
CF dev	Center frequency deviation				±150	KHz
Freq drift	Frequency drift				±50	KHz
IFreq drift	Initial carrier frequency drift				±20	KHz

6.4 RF

<u>www.mm32mcu.com</u> 28/ <u>61</u>

Page 35

DS_MM32W06xxxB_Ver1.00

13. RF					
Label	parameter	Test Conditions	Minimum	Typical value Max	unit
RX sens	Receiving sensitivity	BER <0.1%		-80	dBm

6.5

If the load on the device exceeds the value given in the "Absolute Group Maximum Ra le 14, Table 15), it may

Will cause permanent damage to the device. Here is only the maximum load that can was soes not mean that the device under this condition Functional operation is correct. Long-term operation of the device under the maximum condition will affect the reliability of the device.

14.				
symbol	description	Minimum	Max	unit
V DD -V SS	External main supply voltage (including	V DDA and -0.3	4.0	
V N	V ss) (1) Input voltage on other pins (2)	V ss -0.3	V DD + 0.3	V

- 1. All power supply (V DD , V DDA) and ground (V ss , V SSA) pins must always be connected to the external power supply within the allowable range System
- $2. \ The \ maximum \ value \ of \ V \ {\scriptstyle IN} \ must \ always \ be \ observed \ . \ See \ the \ table \ below \ for \ the \ maximum \ allowable \ injection \ current \ value.$

15.			
symbol	description	Max	unit
I vdd	Total current (supply current) through the V $_{\text{DD}}$ /V $_{\text{DDA}}$ power line $_{(1)}$	120	
I vss	Total current (outgoing current) through the V $_{\mbox{\scriptsize SS}}$ ground wire $_{\mbox{\scriptsize (1)}}$	-120	
	Output sink current on any I/O and control pin	25	
I ю	Output current on any I/O and control pin	-25	mA
I _{INJ(PIN)} (2)(3)	Injection current of nRST pin	±5	

The injection current of the OSC_IN pin of HSE \pm Injection current of other pins $_{(4)}$ \pm

- 1. All the power supply (V DD, V DDA) and ground (V ss, V ssA) pins must always be connected to the external power supply within the allowable range System.
- 2. I INJ(PIN) must not exceed its limit, which means that V IN does not exceed its maximum value. If you can not guarantee V the IN is not If it exceeds its maximum value, it is also necessary to ensure that the external limit I INJ(PIN) does not exceed its maximum value. When V IN V DD, there is a There is a forward injection current; when V IN V SS, there is a reverse injection current.
- 3. The reverse injection current will interfere with the analog performance of the device.
- 4. When several I/O ports have injection current at the same time, the maximum value of \$\Sigma\$1 Interpretation for the forward injection current and the reverse injection current. The sum of the real-time absolute value of. This result is based on the characteristics of the maximum value of \$\Sigma\$1 Interpretation for the device.

6.6

www.mm32mcu.com

29/ <u>61</u>

Page 36

DS_MM32W06xxxB_Ver1.00

6.6.1

16.					
symbol	parameter	condition	Minimum	Max	unit
$f_{ \rm HCLK}$	Internal AHB clock frequency		0	48MHz	
f_{PCLK1}	Internal APB1 clock frequency		0	$f_{\rm HCLK}$	MHz
f PCLK2	Internal APB2 clock frequency		0	$f_{\rm HCLK}$	
$V_{\ DD}$	Standard working voltage		2.3	3.6	V
P D	T $_{\rm A}$ =85 $_{\circ}$ C $_{\rm (I)}$				mW
Tr.	Tr.	Maximum power dissipation	-40	85	.C
T A	T A	Low power dissipation (2)	-40	105	
T ı	Junction temperature range		-40	105	· C

- 1. It is recommended to use the same power supply to power $V\ \mbox{\tiny DD}$ and $V\ \mbox{\tiny DDA}$.
- 2. If T A is low, as long as T J does not exceed T $_{Jmax}$ (see Section $\underline{6. \ The}$ 1), allowing a higher P D value.

6.6.2

The parameters given in the following table are tested under general working conditions.

17.

symbol	parameter	condition	Minimum	Max	unit
t vdd	V vdd rise rate	T _A = 25 · C	1	œ	CAL
	V VDD falling rate	1 A = 23 · C	500	œ	μS/V

6.6.3

The parameters given in the following table are based on testing under the ambient temperature and $V_{\ DD}$ supply voltage listed in Table 16 .

18.

symbol	parameter	condition	Minimum	Typical value Max	unit
		PLS[3:0]=0000 (rising edge)		1.8	V
		PLS[3:0]=0000 (falling edge)		1.7	V
		PLS[3:0]=0001 (rising edge)		2.1	V
		PLS[3:0]=0001 (falling edge) 2.0	2.0	V	
		PLS[3:0]=0010 (rising edge)		2.4	V
V PVD	Programmable voltage detection	PLS[3:0]=0010 (falling edge)		2.3	V
	Detector level selection	PLS[3:0]=0011 (rising edge)		2.7	V
		PLS[3:0]=0011 (falling edge)		2.6	V
		PLS[3:0]=0100 (rising edge)		3.0	V
		PLS[3:0]=0100 (falling edge)		2.9	V
		PLS[3:0]=0101 (rising edge)		3.3	V

PLS[3:0]=0101 (falling edge) 3.2 V

<u>www.mm32mcu.com</u> 30/<u>61</u>

Page 37

DS_MM32W06xxxB_Ver1.00

symbol	parameter	condition	Minimum	Typical value Max	unit
		PLS[3:0]=0110 (rising edge)		3.6	V
V pvd		PLS[3:0]=0110 (falling edge)		3.5	V
		PLS[3:0]=0111 (rising edge)		3.9	V
	Programmable voltage detection Detector level selection	PLS[3:0]=0111 (falling edge)		3.8	V
		PLS[3:0]=1000 (rising edge)		4.2	V
* 170		PLS[3:0]=1000 (falling edge)		4.1	V
		PLS[3:0]=1001 (rising edge)		4.5	V
		PLS[3:0]=1001 (falling edge)		4.4	V
		PLS[3:0]=1010 (rising edge)		4.8	V
		PLS[3:0]=1010 (falling edge)		4.7	V
V POR/PDR	Power-on/power-down reset thresh	nold Flip point		1.65	V
T rsttempo	Reset duration			2.7	ms

^{1.} Guaranteed by design, not tested in production.

Note: The reset duration is measured from power-on to the moment when the user application code reads the first instruction.

6.6.4

Current consumption is a comprehensive index of a variety of parameters and factors. These parameters and factors include working voltage, ambient temperature, I/O Pin load, product software configuration, operating frequency, I/O pin flip rate, program location in memory and execution

Lines of code, etc.

Refer to Figure $\underline{10}$ for the description of the current consumption measurement method .

The current consumption measurements in all operating modes given in this section are all executing a set of simplified codes.

The microcontroller is in the following conditions:

- All I/O pins are in input mode and connected to a static level—V DD or V ss (no load).
- All peripherals are turned off, unless otherwise specified.
- The access time of the flash memory is adjusted to the frequency of f HCLK (0 \sim 24 MHz is 0 wait cycles, 24 \sim 48 1 wait period at MHz).
- $\bullet \text{ The instruction prefetch function is turned on. When the peripheral is turned on: } f_{\text{PCLK1}} = f_{\text{PCLK2}} = f_{\text{HCLK}} \,.$

Note: The instruction prefetch function must be set before setting the clock and bus frequency division.

19.	number									
		Externally provide 3.3V DC voltage								
Label	parameter	Test Conditions	Minimum	Typical value	Max	unit				
		MCU @ STANDBY mode,		3.5						
	Supply	RF block @ STANDBY mode		3.3						
I	Current	MCU @ STOP mode,		5.8		uA				
		RF block @ STANDBY mode		5.0						

<u>www.mm32mcu.com</u> 31/<u>61</u>

Page 38

DS_MM32W06xxxB_Ver1.00

Externally provide 3.3V DC voltage

Label parameter Test Conditions Minimum Typical value Max unit

		MCU @ STOP mod	le,	53.8		uA
		RF block @ STOP mo	33.6			
		MCU @ SLEEP mo	de,	14.8	15.3	mA
Supply I Current	RF block @ STOP me	14.0	13.3	IIIA		
	MCU @ ACTIVE me	28		mA		
Current		RF block @ RX mo	de	20		IIIA
			-3dBm	28		
		MCU @ ACTIVE,	0dBm	30		mA
		RF block @ TX mode	+3dBm	36		

1. The measured power consumption parameters for TX and RX use HSI as the clock source and are configured as f hclk = 48MHZ, f apb_1 = f hclk /2, f apb_2 = f hclk , based on T a = 25 $^{\circ}$ C and V dd = the measured value of 3.3V.

20.							
symbol	parameter	condition		Typical value			
	parameter	condition	-40 · C	25 · C	85 - C	unit	
I dd	Supply current in shutdown mode	PWR->CR[0] is set to 1	1.5	5.2	55.9		
	Supply current in standby mode	LSI and RTC are on	1.3	1.6	6.0	μΑ	
	Supply current in standay mode	IWDG is on	0.5	0.5	5.1		

- 1. Resulted from comprehensive evaluation, not tested in production. The IO status is analog input.
- 2. The maximum value is tested when the power supply voltage is 3.3V.

The MCU is under the following conditions:

- All I/O pins are in input mode and connected to a static level—V DD or V ss (no load).
- All peripherals are turned off, unless otherwise specified.
- The access time of the flash memory is adjusted to the frequency of f HCLK (0 \sim 24 MHz is 0 wait cycles, 24 \sim 48 l wait cycle at MHz
- The instruction prefetch function is turned on. When the peripheral is turned on: $f_{PCLK1} = f_{PCLK2} = f_{HCLK}$.

Note: The instruction prefetch function must be set before setting the clock and bus frequency division.

www.mm32mcu.com

Page 39

 $DS_MM32W06xxxB_Ver1.00$

32/<u>61</u>

twenty one.			Data (1)(2)(3)(4)(5)							
symbol	parameter	condition		Enable all peripherals			1	Turn off all peripherals		
syllibol	parameter	condition	ition f HCLK	-40 · C	25 · C	85 - C	-40 · C	25 · C	85 - C	unit
			48MHz	15.70	16.00	16.30	8.37	8.07	8.24	
	run		24MHz	9.50	9.70	9.91	5.29	4.95	5.09	
	mode		8MHz	5.19	5.30	5.42	3.10	2.67	2.75	
I dd	Down	internal	4MHz	4.13	4.22	4.32	2.58	2.13	2.21	mA
	supply	clock	2MHz	3.62	3.69	3.78	2.32	1.86	1.93	
	Current		1MHz	3.36	3.43	3.51	2.21	1.73	1.79	
			500K	3.23	3.29	3.38	2.14	1.67	1.73	
			125K	3.13	3.20	3.28	2.09	1.62	1.68	

- 1. All I/O pins are in input mode, and V ${\tiny DD}$ or V ss are static values (no load);
- 2. All peripherals are in a prohibited state, unless explicitly stated
- 3. The FLASH access time complies with the user manual configuration

- 4. Tested when the power supply voltage is 3.3V
- 5. When the HCLK frequency is less than 8MHz, the system clock is obtained by dividing the HSI frequency

twenty two.			Data (1)(2)(3)(4)(5)								
symbol	parameter	condition		Enable all peripherals			Turn off all peripherals				
symbol		condition	f HCLK	-40 · C	25 · C	85 - C	-40 · C	25 · C	85 - C	unit	
			48MHz	12.10	12.30	12.50	4.72	4.33	4.42		
		run		24MHz	7.64	7.79	7.94	3.46	3.04	3.11	
		mode		8MHz	4.58	4.66	4.77	2.48	2.03	2.09	
I dd	Down	internal	4MHz	3.83	3.90	4.00	2.28	1.82	1.87	mA	
	supply	clock	2MHz	3.47	3.53	3.62	2.17	1.71	1.76		
	Current		1MHz	3.28	3.35	3.43	2.11	1.65	1.71		
	Current		500K	3.19	3.26	3.34	2.10	1.63	1.68		
			125K	3.13	3.19	3.27	2.08	1.61	1.66		

- 1. All I/O pins are in input mode, and V DD or V ss are static values (no load);
- 2. All peripherals are in a prohibited state, unless explicitly stated
- 3. The FLASH access time complies with the user manual configuration
- 4. Tested when the power supply voltage is $3.3\mathrm{V}$
- 5. When the HCLK frequency is less than 8MHz, the system clock is obtained by dividing the HSI frequency

The current consumption of the built-in peripherals is listed in Table 23, and the working conditions of the MCU are as follows:

- All I/O pins are in input mode and connected to a static level—V DD or V ss (no load).
- All peripherals are turned off, unless otherwise specified.
- The value given is calculated by measuring current consumption
 - -Turn off the clock of all peripherals
 - open only a peripheral clock

(1)

<u>www.mm32mcu.com</u> 33/ <u>61</u>

Page 40

 $DS_MM32W06xxxB_Ver1.00$

 \bullet The ambient temperature and V $_{DD}$ supply voltage conditions are listed in Table $\underline{16}$.

twenty unce.								
Built-in peripherals		Built-in peripherals	25 · Classic at C Power consumption	unit	Built	-in peripherals	25 · Classic at C Power consumption	unit
			•				•	
		GPIOD	0.12			TIM14	0.35	mA
		GPIOC	0.13		APB2	TIM16	0.38	
	AHB	GPIOB	0.12			TIM17	0.43	
		GPIOA	0.15			WWDG	0.09	
		CRC	0.20			SPI2	1.03	
		DMA	0.36	mA		UART2	0.77	
		DBG	0.04			I2C1	1.19	
		ADC1	0.28		APB1	TIM2	0.97	
	APB2	TIM1	1.28			TIM3	0.70	
	All D2	SPI1	0.97			PWR	0.23	
		COMP	0.20			CRS	0.13	
		SYSCFG 0.09						
	APB2	UART1	0.78	mA	APB1	USB	3.32	mA

1. f HCLK = 96MHz, HSI is used as the PLL clock source.

6.6.5

The characteristic parameters given in the following table are measured using a high-speed external clock source, and the ambient temperature and power supply voltage confor Working conditions.

twenty four.

twenty three

symbol parameter condition Minimum Typical value Max uni

$f_{ \text{HSE_ext}}$	User external clock frequency (1)			8	32	MHz
$V_{\ HSEH}$	OSC_IN input pin high level voltage		$0.7V_{\ DD}$		$V_{\text{ DD}}$	V
$V_{\ \ HSEL}$	OSC_IN input pin low voltage		V ss		$0.3V_{\ DD}$	V
$t_{\rm \ w(HSE)}$	OSC_IN high or low time (1)		15			ns
$C_{\mathrm{in(HSE)}}$	OSC_IN Input capacitive reactance (1)			5		pF
DuCy (HSE)	Duty cycle			50		%
25.						
symbol	parameter	condition	Minimum	Typical value	Max	unit
f NOM	Nominal frequency			16		MHz
V_{TOL}	Frequency tolerance	Load capacitance, tempera	iture		±50	ppm
ESR	Equivalent series				100	Ω
PD	Drive level				20	mA

^{1.} Guaranteed by design, not tested in production.

<u>www.mm32mcu.com</u> 34/ <u>61</u>

Page 41

DS_MM32W06xxxB_Ver1.00

The characteristic parameters given in the following table are measured using a low-speed external clock source. The ambient temperature and power supply voltage conform to Working conditions.

26.						
symbol	parameter	condition	Minimum	Typical value	Max	unit
$f_{ LSE_{ext}}$	User external clock frequency (1)		16	32.768	1000	KHz
V_{LSEH}	OSC_IN input pin high level voltage		$0.7V_{\ DD}$		V_{DD}	V
V LSEL	OSC_IN input pin low voltage		V ss		$0.3V_{\ DD}$	V
$t_{\rm \ w(LSE)}$	OSC_IN high or low time (1)		450			ns
$t_{\rm r(LSE)}$	OSC_IN rising time (i)				50	ns
t f(LSE)	OSC_IN falling time (1)				50	ns
C in(LSE)	OSC_IN Input capacitive reactance (1)				10	pF
DuCy (LSE)	Duty cycle			50		%
Iι	OSC_IN input leakage current	$V_{\text{ SS}} \leq V_{\text{ IN}} \leq V_{\text{ DD}}$	-1		1	μΑ

1. Guaranteed by design, not tested in production.

<u>www.mm32mcu.com</u> 35/<u>61</u>

Page 42

The high-speed external clock (HSE) can be generated by an oscillator composed of a $2 \sim 24$ MHz crystal/ceramic resonator. this

The information given in the section is based on the results obtained through comprehensive characteristic evaluation using the typical external components listed in the table be fruit. In the application, the resonator and load capacitor must be as close as possible to the oscillator pin to reduce output distortion and start-up.

Stability time when moving. For detailed parameters (frequency, packaging, accuracy, etc.) of the crystal resonator, please consult the corresponding production Vendor.

27. HSE 2	$2 \sim 24 \text{MHz}$ (1)(2)					
symbol	parameter	condition	Minimum	Typical value	Max	unit
f osc_in	Oscillator frequency	2.0V <vdd<3.6v< td=""><td>2</td><td>8</td><td>12</td><td>MHz</td></vdd<3.6v<>	2	8	12	MHz
1 OSC_IN	Oscillator frequency	3.0V <vdd<3.6v< td=""><td>12</td><td>16</td><td>twenty four</td><td>MITIZ</td></vdd<3.6v<>	12	16	twenty four	MITIZ
R F	Feedback resistance (4)			510		$k\Omega$
		$f_{{\rm OSC_IN}}=24M$			60	
	Support crystal serial impedance	$V_{\text{ DD}} = 3.0 V$			00	
ESR	(C _{1.1} C _{1.2} (3) is 16pF)	$f_{{\rm OSC_IN}} = 12M$			150	Ω
	(61.61.	$V_{\text{ DD}} = 2.0V$			150	
	HSE drive current	$f_{{\rm OSC_IN}}=24M$				
I 2		$V_{\text{ DD}} = 2.0V$		1.5		mA
1 2		ESR= 30Ω		1.5		IIIA
		$C_{\ L1}\ C_{\ L2}\ {}_{(3)}is\ 20pF$				
g m	Transconductance of the oscillato	r start up		9		mA/V
t su(HSE)	Start Time	V DD is stable		3		ms

- $1. \ The \ characteristic \ parameters \ of \ the \ resonator \ are \ given \ by \ the \ crystal/ceramic \ resonator \ manufacturer.$
- 2. Resulted from comprehensive evaluation, not tested in production.

<u>www.mm32mcu.com</u> 36/ <u>61</u>

Page 43

Ceramic capacitors, and choose a crystal or resonator that meets the requirements. Usually C L1 and C L2 have the same parameters. Crystals

The manufacturer usually gives the parameter of the load capacitance in the serial combination of C L1 and C L2. When choosing C L1 and C L2, PCB

The capacitive reactance with the MCU pin should be taken into account (the capacitance between the pin and the PCB board can be roughly estimated as 10pF).

- 4. The relatively low R F resistance value can provide protection to avoid problems caused by use in a humid environment.
 The leakage and bias conditions generated in this environment have changed. However, if the MCU is used in harsh tides
 In wet conditions, this parameter needs to be taken into consideration when designing.
- 5. t su (HSE) is the start-up time, which is measured from the software enabling HSE until a stable 8MHz oscillation is obtained time. This value is measured on a standard crystal resonator, it may vary depending on the crystal manufacturer big change.

Note: 1. The AC timing diagram of the external high-speed clock source indicates that the control module and the RF module share a 16MHz crystal/ceramic Porcelain resonator, 16MHz crystal/ceramic resonator mainly provides high-speed clock for RF module, and a 100nF is also connected in series

The capacitor provides a high-speed clock for the control module.

2. If the user uses the internal clock source of the control module, a 16MHz crystal/ceramic resonator is provided separately for the RF module bell.

/

The low-speed external clock (LSE) can be generated by an oscillator composed of a 32.768KHz crystal/ceramic resonator. this

The information given in the section is based on the results obtained through comprehensive characteristic evaluation using the typical external components listed in the table be fruit. In the application, the resonator and load capacitor must be as close as possible to the oscillator pin to reduce output distortion and start-up.

Stability time when moving. For detailed parameters (frequency, packaging, accuracy, etc.) of the crystal resonator, please consult the corresponding production

Vendor. (Annotation: The crystal resonator mentioned here is what we usually call a passive crystal oscillator) Note: For C L1 and C L2,

It is recommended to use high-quality ceramic capacitors between 5pF ~ 15pF, and choose a crystal or resonator that meets the requirements. through

Often C L1 and C L2 have the same parameters. Crystal manufacturers usually give the load capacitance in the serial combination of C L1 and C L2

parameter. The load capacitance C L is calculated by the following formula: C L = C L1 x C L2 / (C L1 + C L2) + C stray, where C stray is the pin

The typical value of the capacitance is between 2pF ~ 7pF and the capacitance related to the PCB board or PCB. Warning: To avoid

<u>www.mm32mcu.com</u> 37/ <u>61</u>

Page 44

DS_MM32W06xxxB_Ver1.00

Avoid exceeding the maximum value of C L1 and C L2 (15pF). It is strongly recommended to use a resonator with a load capacitance $CL \le 7pF$. Use a resonator with a load capacitance of 12.5pF. For example: If a resonator with a load capacitance CL = 6pF is selected and

 $C_{\text{stray}} = 2pF$, then $C_{L1} = C_{L2} = 8pF$.

28. LSE $(f_{LSE} = 32.768 KHz)_{(1)}$ symbol parameter condition Minimum Typical value Max unit $g_{=}$ Transconductance of the oscillator $r_{LSU(ISE)}$ r_{C} Start Time $r_{LS} = 30 k\Omega$ 3 S

- 1. Resulted from comprehensive evaluation, not tested in production.
- 2. t SU (HSE) is the start-up time, which is measured from the software enable HSE until a stable 8MHz oscillation is obtained time. This value is measured on a standard crystal resonator, it may vary depending on the crystal manufacturer big change.

15. 32.768KHz

6.6.6

The characteristic parameters given in the following table are measured when the ambient temperature and supply voltage meet the general working conditions.

(HSI)

29. HSI	(1)(2)					
symbol	parameter	condition	Minimum	Typical value	Max	unit
f _{HSI}	frequency			48		MHz
ACC HSI	Accuracy of HSI oscillator	$T_A = 25$	-1		1	%
t su(hsi)	HSI oscillator start time			12	16	μs
I dd(HSI)	HSI oscillator power consumption			328		μΑ

- 1. V DD = 3.3V, unless otherwise specified.
- 2. Guaranteed by design, not tested in production.

(LSI)

<u>www.mm32mcu.com</u> 38/ <u>61</u>

Page 45

 $DS_MM32W06xxxB_Ver1.00$

30. LSI	(1)					
symbol	parameter	condition	Minimum	Typical value	Max	unit
$f_{\text{ LSI}}^{\ (2)}$	frequency			40		KHz
t su(LSI)	LSI oscillator startup time				85	μs
I DD(LSD (3)	LSI oscillator power consumption			1	1.4	uА

- 1. $V_{\ DD} = 3.3 V$ unless otherwise specified.
- 2. Resulted from comprehensive evaluation, not tested in production.
- 3. Guaranteed by design, not tested in production.

The wake-up time listed in the table below is measured during the wake-up phase of the internal clock HSI. The clock source used when waking up depends on the current Depending on the mode of operation:

- Stop or standby mode: the clock source is the oscillator
- \bullet Sleep mode: the clock source is the clock used when entering sleep mode

All times are measured using ambient temperature and power supply voltage in accordance with general working conditions.

31.				
symbol	parameter	condition	Max	unit
t wusleep (1)	Wake up from sleep mode	HSI is the system clock	2.7	μs
t wustop (1)	Wake up from stop mode (Voltage regulator is in operation)	HSI is the system clock	5.5	μs
t wustop (1)	Wake up from stop mode (Voltage regulator is in low power con-	HSI is the system clock sumption state)	7.7	μs
t wustdby (1)	Wake up from standby mode	PWR->CR[15:14]=0x00	498	μs

t wustdby	(1)	Wake up from standby mode	PWR->CR[15:14]=0x01	430	μs
t wustdby	(1)	Wake up from standby mode	PWR->CR[15:14]=0x02	390	μs
t wustdby	(1)	Wake up from standby mode	PWR->CR[15:14]=0x03	318	μs

^{1.} The wake-up time is measured from the start of the wake-up event to the user program reading the first instruction.

6.6.7 PLL

The parameters listed in the following table are measured using ambient temperature and power supply voltage in accordance with general working conditions.

32. PLL	(1)				
symbol	parameter	Minimum	Typical value	Max	unit
$f_{\text{PLL_IN}}$	PLL input clock (2)	4		twenty four	MHz
$f_{\text{PLL_IN}}$	PLL input clock duty cycle	40		60	%
$f_{\text{PLL_OUT}}$	PLL multiplier output clock	40		200	MHz
t lock	PLL lock time			100	μs
t lock	PLL lock time			100	

^{1.} Guaranteed by design, not tested in production.

<u>www.mm32mcu.com</u> 39/ <u>61</u>

Page 46

DS_MM32W06xxxB_Ver1.00

2. It is necessary to pay attention to using the correct frequency multiplication factor, so that f PLL_OUT is in the allowable range according to the PLL input clock frequency.

Inside.

6.6.8

33.						
symbol	parameter	condition	Minimum	Typical value	Max	unit
t prog	8-bit programming time		6		7.5	μs
t erase	Page erase time		4		5	ms
t me	Whole chip erase time		20		40	ms
		Read mode		4		mA
I dd	Supply current	Write mode			7	mA
		Erase mode			2	mA
V_{prog}	Programming voltage			1.5		V
34.	Data (1)(2)					
symbol	parameter	condition	Minimum	Typical value	Max	unit
	Life (erasable					
NEND	frequency)		20			Thousand times
t ret	Data retention period	$T_A = 25 \cdot C$	100			year

^{1.} Resulted from comprehensive evaluation, not tested in production.

6.6.9 EMC

Sensitivity testing is carried out by sampling during the comprehensive evaluation of the product.

EMC evaluation and optimization at the device level are carried out in a typical application environment. It should be noted that good

EMC performance is closely related to user applications and specific software.

Therefore, it is recommended that users implement EMC optimization on the software and conduct certification tests related to EMC.

The software flow must include the control of program runaway, such as:

- Corrupted program counter
- Unexpected reset
- Critical data is destroyed (control registers, etc...)

Many common failures (unexpected resets and program counters are destroyed) can be manually introduced on NRST

Low level or introduce a low level on the crystal oscillator pin for 1 second to reproduce.

During the ESD test, the voltage exceeding the application requirements can be directly applied to the chip. When an unexpected action is detected Locally, the software part needs to be strengthened to prevent unrecoverable errors.

www.mm32mcu.com

40/ <u>61</u>

Page 47

DS_MM32W06xxxB_Ver1.00

6.6.10

Based on three different tests (ESD, LU), using specific measurement methods, the chip strength test to determine its

Performance in terms of electrical sensitivity.

(ESD)

Electrostatic discharge (a positive pulse and then a negative pulse after one second interval) is applied to all the pins of all samples,

The size of the sample is related to the number of power supply pins on the chip (3 pieces x (n + 1) power supply pins). This test complies with JEDEC JS-001-2017/JS-002-2018 standard.

In order to evaluate the latching performance, 2 complementary static latching tests need to be performed on 6 samples:

- Provide a supply voltage exceeding the limit for each power supply pin.
- Inject current into each input, output, and configurable I/O pin.

This test complies with the EIA/JESD78E integrated circuit latch standard.

35. MCU ESD

symbol	parameter	condition	Max	unit
V esd(hbm)	Electrostatic discharge voltage (human	$T_A = 25 \cdot C$, in line with JEDEC n body model) JS-001-2017	±8000	V
V ESD(CDM)	Electrostatic discharge voltage (charging	$T_A = 25 \cdot C$, in line with JEDEC device model) JS-002-2018	±2000	v
I LU	Static latch type (Latch-up current)	T $_A$ = 25 $_{\circ}$ C, in line with JESD78E	±100	mA

6.6.11 I/O

/

Unless otherwise specified, the parameters listed in the following table are in accordance with the table The condition of 14 is measured. All I/O ports are compatible CMOS.

36.	I/O

symbol	parameter	condition	Minimum	Typical value	Max	unit
V IL	Input low level voltage	$V_{\rm DD} = 3.3 V$	-0.3		0.8	v
$V_{\rm IH}$	Input high level voltage	$V_{\rm DD}=3.3V$	2.3		3.6	V
$V_{\ hys}$	I/O pin Schmitt trigger voltage hysteresis (1)	$V_{\rm DD}=3.3V$	0.1V dd			V
I _{kg}	Input leakage current (2)	$V_{\rm DD}=3.3V$			1	μΑ
R PU	Weak pull-up equivalent resistance (5)	3.3V V _{IN} =V _{SS}	twenty two		100	$k\Omega$
R PD	Weak pull-down equivalent resistance	$\begin{array}{c} 3.3V \\ V_{IN} = V_{SS} \end{array}$	20		50	$k\Omega$
Сю	I/O pin capacitance	3.3V			10	pF

1. The hysteresis voltage of Schmitt trigger switching level. Resulted from comprehensive evaluation, not tested in production.

www.mm32mcu.com

41/ <u>61</u>

Page 48

- 2. If there is reverse current in the adjacent pin, the leakage current may be higher than the maximum value.
- 3. The pull-up and pull-down resistors are MOS resistors.

GPIO (General Purpose Input/Output Port) can sink or output up to $\pm 20 mA$ current.

In the user application, the number of I / O pins must ensure that the drive current does not exceed $6 \pm Ab$ solute maximum ratings given in Section 5:

- \bullet The sum of the currents obtained by all I/O ports from V DD , plus the maximum operating current obtained by the MCU on V DD , does not Can exceed the absolute maximum rating I VDD .
- ullet The sum of the current absorbed by all I/O ports and flowing out of V ss , plus the maximum operating current of the MCU on V ss Current, cannot exceed the absolute maximum rating I vss .

Unless otherwise specified, the parameters listed in the following table are measured using ambient temperature and V DD supply voltage in accordance with the conditions in Ta To. All I/O ports are CMOS compatible.

37.	(1)(2)				
MODEx[1:0]	symbol	parameter	condition	Typical value	unit
Configuration	,				
	V ol	Output low level	I 10 =8mA,	0.4	
	t он	Output high level	$V_{DD} = 3.3V$	V DD -0.4	
11	V ol	Output low level	I 10 =20mA,	0.3*V DD	
11	t он	Output high level	V DD =3.3V	0.6*V DD	
	V ol	Output low level	I 10 =6mA,	0.4	
	t он	Output high level	$V_{DD} = 3.3V$	V DD -0.4	
	V ol	Output low level	I 10 =8mA,	0.4	
	t он	Output high level	$V_{DD} = 3.3V$	$V_{\ DD}$ -0.4	
10	V ol	Output low level	I 10 =20mA,	0.2*V DD	v
	t он	Output high level	$V_{DD} = 3.3V$	0.8*V DD	
	V ol	Output low level	I 10 =6mA,	0.4	
	t он	Output high level	$V_{DD} = 3.3V$	V DD -0.4	
	V ol	Output low level	I 10 =8mA,	0.4	
	t он	Output high level	$V_{DD} = 3.3V$	V DD -0.4	
01	V ol	Output low level	I 10 =20mA,	0.2*V DD	
•	t он	Output high level	$V_{DD} = 3.3V$	0.8*V DD	
	V ol	Output low level	I 10 =6mA,	0.4	
	t он	Output high level	$V_{DD} = 3.3V$	V DD -0.4	

1. Resulted from comprehensive evaluation, not tested in production.

The definitions and values of the input and output AC character in E

in Figure 16 and Table 38, respectively.

Unless otherwise specified, the parameters listed in Table 38 are measured when the aml

re and supply voltage meet the conditions in Table 14.

www.mm32mcu.com

42/ <u>61</u>

Page 49

DS_MM32W06xxxB_Ver1.00

38.	(1)(2)				
MODEx[1:0]	symbol	parameter	condition	Typical value	unit
Configuration	symoor	parameter	Condition	Typical value	
	t f(IO)out	Output fall time		7.20	
11	t r(IO)out	Output rise time		7.20	
10	t f(IO)out	Output fall time	C L =50pF,	4.40	ns
10	t r(IO)out	Output rise time	$V_{DD} = 3.3V$	4.40	113
01	t f(IO)out	Output fall time		3.73	
	t r(IO)out	Output rise time		3.73	

The speed of the I/O port can be configured through MODEx[1:0]. Refer to the GPIO port in this chip reference manual Description of configuration registers.

2. Guaranteed by design, not tested in production.

6.6.12 NRST

 $The NRST pin input driver uses CMOS technology, which is connected with a pull-up resistor, R \, \texttt{PU} \,, which cannot be disconnected \,. \\$

Unless otherwise specified, the parameters listed in the following table are measured using ambient temperature and V DD supply voltage in accordance with the conditions in T_i To.

39. NRST				
symbol	parameter	condition Minimum	Typical value Max	unit
$V_{\text{IL(NRST)}}^{ (1)}$	NRST input low level voltage	-0.3	0.8	v
$V_{\text{IH(NRST)}}^{ (1)}$	NRST input high level voltage	2.3	3.6	•
$V_{\rm \ hys(NRST)}$	NRST Schmitt trigger voltage delay Stagnation	0.1*V DD		v
R PU	Weak pull-up equivalent resistance $^{(2)}$ V $^{(1)}$	$_{N} = V_{SS}$ twenty two	100	$k\Omega$

43/ <u>61</u> www.mm32mcu.com

Page 50

DS_MM32W06xxxB_Ver1.00

 $\mathsf{L}_{\bigcap \vec{\mathfrak{P}}}$

纂識、u

symbol	parameter	condition	Minimum	Typical value	Max	unit	
V f(NRST)	NRST input filter pulse				1000	ns	
V NF(NRST)	NRST input unfiltered pulse		4000			ns	
	 Guaranteed by design, not tested in production. The pull-up resistor is a MOS resistor. 						
ε敲∕,u↓購	(I) NI	V di RST (2)	o R pu	\$	識、u		

17. NRST

1. The reset network is to prevent parasitic reset.

 $0.1 \mu F$

2. The user must ensure that the potential of the NRST pin can be lower than the maximum $V_{IL(NRST)}$ listed in Table 39, otherwise the MCU Can't get reset.

6.6.13 TIM

The parameters listed in the following table are guaranteed by design.

For details on the characteristics of the input/output multiplex function pins (output compare, input capture, external clock, PWM output), refer to See subsection 6.6.11.

40. TIMx (1)					
symbol	parameter	condition	Minimum	Max	unit
t res(TIM)	Timer to distinguish time		1		t timecle
t res(TIM)	Timer to distinguish time	f_{TIMXCLK} =96MHz	10.4		ns
f ext	When the timer of CH1 to CH4 is exte	0	$f_{ {\rm TIMxCLK/2}}$	MHz	
1 EXT	Clock frequency	$f_{\text{TIMxCLK}}\!=\!\!96MHz$	0	48	WITIZ
Res TIM	Timer resolution			16	Bit
	When the internal clock is selected, 16	5-bit	1	65536	t timxclk
t counter	Counter clock period	$f_{\text{TIMxCLK}} 96 MHz$	0.0104	682.6	μs

www.mm32mcu.com 44/ 61

Page 51

DS_MM32W06xxxB_Ver1.00

symbol	parameter	condition	Minimum	Max	unit
	Maximum possible count			65536 ×65536	t timeclk
t max_count	Maximum possible count	f timsclk 96MHz		44.7	S

1. TIMx is a common name.

6.6.14

I2C

Unless otherwise specified, the parameters listed in Table 41 are the operating environment temperature, f PCLKI frequency and V DD supply voltage meet the requirements of Tal.

The conditions are measured.

The I2C interface conforms to the standard I2C communication protocol, but has the following limitations: SDA and SCL are not'true' pins, when configured When it is an open-drain output, the PMOS tube between the pin and V pp is turned off, but it still exists.

The characteristics of the I2C interface are listed in Table 41. For details on the characteristics of the input and output the function pins (SDA and SCL), see the Section 6.6.11.

41. I2C

		Standard I2C (1)		Fast I2C (1)	Fast I2C (1)(2)	
symbol	parameter	Minimum	Max	Minimum	Max	unit
$t_{\rm \ w(SCLL)}$	SCL clock low time	8*t PCLK		8*t PCLK		μs
t w(SCLH)	SCL clock high time	6*t pclk		6*t pclk		μs
t su(SDA)	SDA establishment time	2*t pclk		2*t pclk		ns
t h(SDA)	SDA data retention time	0 (3)		0 (4)	875 (3)	ns
$t_{\rm r(SDA)}\ t_{\rm r(SDL)}$	SDA and SCL rise time		1000		300	ns
t f(SDA) t f(SDL)	SDA and SCL fall time		300		300	ns
t h(STA)	Start condition hold time	8*t pclk		8*t PCLK		μs
t su(STA)	Repeated start condition establishment to	in ⊛ t _{PCLK}		6*t PCLK		μs
t su(STO)	Stop condition establishment time	6*t PCLK		6*t PCLK		μs
	From the stop condition to the start cond					
t w(STO:STA)	Time (bus free)	5*t pclk		5*t pclk		μs
Сь	Capacitive load of each bus	4.7		1.2		pF

- 1. Guaranteed by design, not tested in production.
- 2. To reach the maximum frequency of standard mode I2C, f PCLK1 must be greater than 3MHz. To reach the maximum of I2C in fast mode
 The frequency, f PCLK1 must be greater than 12MHz.
- 3. If the low-level time of the SCL signal is not required to be lengthened, only the maximum hold time of the start condition is required.
- 4. In order to cross the undefined area on the falling edge of SCL, the MCU must ensure that the SDA signal is at least 300nS

The hold time.

<u>www.mm32mcu.com</u> 45/ <u>61</u>

Page 52

DS_MM32W06xxxB_Ver1.00

\$V\$ dd \$V\$ dd \$V\$ dd $$4.7 \mbox{K}\Omega$$ 4.7 $\mbox{K}\Omega$$ 4.7 $\mbox{K}\Omega$ 4.7 $\mbox{K}\Omega$ 5 DA 12C bus $$100 \ \Omega$$ 5 SCL

Repeated start conditions

Start condition

Start condition t su(STA) SDA t f(SDA) $t \; r(\mathrm{SDA})$ $t \, \operatorname{su(SDA)}$ t su(STA:STO) $Stop \rightarrow condition$ t h(STA) $t\le (\text{SCKL})$ t h(SDA) SCL t r(SCK) t f(SCK) t w (SCKH) t su(STO)

Australia

18. I2C (1)

1. The measurement points are set at CMOS level: $0.3V\ \mbox{dd}$ and $0.7V\ \mbox{dd}$.

SPI

Unless otherwise indicated in Table 42 lists the parameters are ambient temperature, F PCLKx frequency and V DD supply voltage in accordance with Table 16 is The conditions are measured.

For details on the characteristics of the input and output alternate function pins (NSS, SCK, MOSI, MISO), see section $\underline{6.6.11}$.

42. SPI	(1)				
symbol	parameter	condition	Minimum	Max	unit
$f_{\rm SCK}~1/t_{\rm ~c(SCK)}$	SPI clock frequency	Master mode		twenty four	MHz
$f_{\rm SCK}1/t_{c(SCK)}$	SPI clock frequency	Slave mode		12	MHz
t r(SCK)	SPI clock rise and fall time	Load capacitance: C= 15pF		6	ns
t f(SCK)	SPI clock rise and fall time	Load capacitance: C= 15pF		6	ns
t su(NSS)	NSS establishment time	Slave mode	1T PCLK		ns
t h(NSS) (2)	NSS hold time	Slave mode	2T PCLK		ns
$t_{\rm \ w(SCKH)} \qquad ^{(2)}$	SCK high time		$t_{\ c(SCK)'}\ 2\text{-}6$	t e(SCK)/ 2-6	ns
$t_{\rm \ w(SCKL)} \qquad ^{(2)}$	SCK low time		t c(SCK)/ 2-6	t c(SCK)/ 2-6	ns
$t_{\mathrm{su(Mi)}}^{}(2)}$	Data input establishment time	Master mode, $f_{PCLK} = 48MHz$, Prescaler factor = 2 high speed mode	12		ns

<u>www.mm32mcu.com</u> 46/ <u>61</u>

DS_MM32W06xxxB_Ver1.00

symbol	parameter	condition	Minimum	Max	unit
$t_{\mathrm{su(SI)}} ^{(2)}$	Data input establishment time	Slave mode	5		ns
(2)		Master mode, $f_{PCLK} = 48MHz$,	0	_	
t h(MI)	Data input hold time	Prescaler factor = 2 high speed mode	U		ns
$t_{\ h(SI)} ^{(2)}$		Slave mode	6		ns
(2)(1)		Slave mode (after enable edge)		24	
t v(SO)		Non-high speed mode		34	
, (2)	Data output valid time	Slave mode (after enable edge)		12	ns
t h(SO)		High speed mode		13	
t h(MO) (2)	Data output valid time	Master mode (after enabling edge)	-0.6	2	ns

- 1. Resulted from comprehensive evaluation, not tested in production.
- 2. The minimum value indicates the minimum time to drive the output, and the maximum value indicates the maximum time to obtain the data correctly.
- 3. The minimum value represents the minimum time to turn off the output, and the maximum value represents the maximum time to put the data line in a high impedance state.

<u>www.mm32mcu.com</u> 47/ <u>61</u>

Page 54

 $DS_MM32W06xxxB_Ver1.00$

NSS input $tsu \, (\text{NSS}) \hspace{1cm} tc \, (\text{SCK}) \hspace{1cm} t \, h \, (\text{NSS})$ $t \, CPHA = 1 \\ p \, CPOL = 0 \hspace{1cm} tW \, (\text{SCKH})$ $K \, (PHA = 1) \hspace{1cm} tW \, (\text{SCKL})$ SCPOL = 1

 t a (SO)
 t V (SO)
 t h (SO)
 sect. (SO)
 t dis (SO)

 MISO OUTPUT
 MSB OUT
 BIT6 OUT
 LSB OUT

 t su (SI)
 t h (SI)

 MOSI INPUT
 MSB IN
 BIT1 IN
 LSB IN

20. SPI -CPHA = 1 (1)

1. The measurement points are set at CMOS level: $0.3V\ \mbox{dd}$ and $0.7V\ \mbox{dd}$.

www.mm32mcu.com

48/ <u>61</u>

Page 55

DS_MM32W06xxxB_Ver1.00

NSS input t c(SCK) CPHA = 0 CPHA = 0 CPOL = 1 CPHA = 1 CPOL = 0 CPHA = 1 CPOL = 1 t w (SCKH) t w (SCKL) tr(SCK) t su(MI) t f(SCK) MSB IN BIT6 IN MOSI OUTPUT MSB OUT BIT1 OUT LSB OUT t v(MO)

21. SPI - (I

1. The measurement points are set at CMOS level: $0.3V\ \mbox{dd}$ and $0.7V\ \mbox{dd}$.

USB

43. USB					
symbol	parameter	condition	Minimum (1)	Maximum (1)	unit
		Input level			
V_{DD}	USB operating voltage (2)		3.0 (3)	3.6	
$V_{\text{ DI}}^{(4)}$	Differential input sensitivity	I(USBDP, USBDM)	0.2		V
$V_{\rm CM}^{\ (4)}$	Differential common mode range	Include V DI range	0.8	2.5	V
$V_{\text{SE}}^{\ (4)}$	Single-ended receiver threshold		1.3	2	
		Output level			
V ol	Static output low level	$1.5k\Omega$ R $_{\rm Lis}$ connected to $3.6V$ $_{(5)}$		0.3	
V on	Static output high level	$15k\Omega$ R $_{\rm Lis}$ connected to V $_{SS}$ $^{(5)}$	2.8	3.6	V

- 1. All voltage measurements are based on the ground wire of the device terminal.
- 2. In order to be compatible with USB 2.0 full-speed electrical specifications, a $1.5~\text{k}\Omega$ resistor has been built into the USBDP(D+) pin

<u>www.mm32mcu.com</u> 49/ <u>61</u>

Page 56

DS_MM32W06xxxB_Ver1.00

Connect to $V \ \mbox{\tiny DD}$, no need to connect externally.

- 3. The correct USB function of this product can be guaranteed at 2.7 V, instead of falling in the voltage range of 2.7 V to 3.6 V Electrical characteristics.
- 4. Guaranteed by comprehensive evaluation, not tested in production.
- 5. RL is the load connected to the USB drive.

6.6.15 12 ADC

Unless otherwise specified, the parameters in the following table are to use ambient temperature, f PCLK2 frequency and V DDA power supply that meet the conditions in Table 16 The voltage is measured.

44. ADC						
symbol	parameter	condition	Minimum	Typical value	Max	unit
V_{DDA}	Supply voltage		2.5	3.3	3.6	V
$f_{ADC}\stackrel{(1)(3)}{-}$	ADC clock frequency				16	MHz
f s ⁽¹⁾⁽³⁾	Sampling rate				1	MHz
$f_{\text{ TRIG}}^{ (1)}$	External trigger frequency	$f_{\mathrm{ADC}}=15MHz$			937.5	KHz
$f_{ TRIG} ^{(1)}$	External trigger frequency				16	$1/f_{\rm \; ADC}$
$V_{\rm \ AIN}^{\ \ (2)}$	Conversion voltage range (3)		0		$V_{\ DD}$	V
$R_{\rm \ AIN}$ $^{(1)}$	External input impedance		See t	formula 1 and table 45		$k\Omega$
$R_{\ ADC}^{ (1)}$	Sampling switch resistance				1.5	$k\Omega$
G (I)	Internal sample and hold powe	r			10	F
C adc (1)	Content				10	pF
t s (1)	sampling time	$f_{\text{ADC}}=16MHz$	0.156		15.031	μs

 $t_{\text{conv}} \stackrel{\text{(1)}}{=} \begin{cases} & 1.5 & 240.5 & 1.0 \text{f }_{\text{ADC}} \\ & 1.5 & 253 & 240.5 & 1.0 \text{f }_{\text{ADC}} \\ & 1.5 & 1.5 & 253 & 240.5 & 1.0 \text{f }_{\text{ADC}} \\ & 1.5 & 253 & 253 & 240.5 & 1.0 \text{f }_{\text{ADC}} \\ & 1.5 & 253 & 253 & 240.5 & 1.0 \text{f }_{\text{ADC}} \\ & 1.5 & 253 & 253 & 240.5 & 1.0 \text{f }_{\text{ADC}} \\ & 1.5 & 253 & 253 & 240.5 & 1.0 \text{f }_{\text{ADC}} \\ & 1.5 & 253 & 253 & 240.5 & 1.0 \text{f }_{\text{ADC}} \\ & 1.5 & 253$

- 1. Guaranteed by comprehensive evaluation, not tested in production.
- 2. Guaranteed by design, not tested in production.
- 3. In this series of products, $V_{\text{REF+}}$ is internally connected to V_{DDA} , and $V_{\text{REF-}}$ is internally connected to V_{SSA} .

<u>www.mm32mcu.com</u> 50/ <u>61</u>

Page 57

DS_MM32W06xxxB_Ver1.00

$$R_{AIN} < T_{S} - R_{ADC} \times C_{ADC} \times In(2_{N+2})$$

The above formula (Equation 1) is used to determine the maximum external impedance so that the error can be less than 1/4 LSB. Where N = 12 (table Shows 12-bit resolution).

45. $f_{ADC} = 15MHz_{(1)}$	R ain	
Ts(period)	t s (μs)	Maximum $\mathbf{R}_{AIN}(k\Omega)$
2.5	0.156	0.1
8.5	0.531	4.0
14.5	0.906	7.8
29.5	1.844	17.5
42.5	2.656	25.9
56.5	3.531	34.9
72.5	4.531	45.2
240.5	15.031	153.4

1. Guaranteed by design, not tested in production.

46. ADC	- (1)	(2)		
symbol	parameter	Test Conditions	Typical value Max	unit
Resoluion	Resolution		12	BIT
ET	Composite error		3.4/-2.3	
EO	Offset error	$f_{PCLK2} = 24MHz$,	-2.5	
EG	Gain error	$f_{\rm ADC}=12MHz,R_{\rm AIN}\!<\!0.1K\Omega,$	3.7	LSB
ED	Differential linearity error	$V_{\rm DDA} = 3.3 V, T_{\rm A} = 25 \cdot C$	1/-1	
EL	Integral linearity error		1.8/-3	

- 1. The relationship between ADC accuracy and reverse injection current: It is necessary to avoid injecting reverse current on any standard analog input pin.

 Flow, because this will significantly reduce the accuracy of the conversion being performed on the other analog input pin. It is recommended to produce Add a Schottky diode to the standard analog pin that generates reverse injection current (between the pin and ground).

 If the forward injection current, as long as the section is 6.6. The I given in 12 INJ (PIN), and [Sigma] I INJ (PIN) within range, it
 - If the forward injection current, as long as the section is <u>6.6.</u> The I given in 12 INJ (PIN), and [Sigma] I INJ (PIN) within range, i Will not affect ADC accuracy.
- 2. Guaranteed by comprehensive evaluation, not tested in production.
- ET = total unadjusted error: the maximum deviation between the actual and ideal transmission curves.
- EO = Offset error: the deviation between the first actual conversion and the first ideal conversion.
- EG = gain error: the deviation between the last ideal conversion and the last actual conversion.
- ED = Differential linearity error: the maximum deviation between the actual step and the ideal value.
- EL = Integral linearity error: the maximum deviation between any actual conversion and the endpoint correlation line.

<u>www.mm32mcu.com</u> 51/<u>61</u>

Page 58

DS_MM32W06xxxB_Ver1.00

twenty threeADC

- 1. For the values of R $_{\mbox{\scriptsize AIN}}$, R $_{\mbox{\scriptsize ADC}}$ and C $_{\mbox{\scriptsize ADC}}$, see Table $\underline{46}$.
- $2.\ C_{\ parasitic} \ represents \ the \ parasitic \ capacitance \ (about \ 7pF) \ on \ the \ PCB \ (related \ to \ soldering \ and \ PCB \ layout \ quality) \ and \ pads. More \\ A \ large \ C_{\ parasitic} \ value \ will \ reduce \ the \ accuracy \ of \ the \ conversion. The \ solution \ is \ to \ reduce \ f \ abc \ .$

PCB

The decoupling of the power supply must be connected according to the following figure. The 10 nF capacitors in the picture must be ceramic capacitors, and they should be as Near the MCU chip.

Page 59

DS_MM32W06xxxB_Ver1.00

47.	(3)(4)				
symbol	parameter	Minimum	Typical value	Max	unit
$T\; \iota^{(1)}$	Linearity of V $_{\mbox{\scriptsize SENSE}}$ with respect to temperature		±5		• C
Avg_Slope (1)	Average slope	4.571	4.801	5.984	$mV/ \cdot C$
$V_{\ 25}^{\ (1)}$	ADC sampling value at 25 · C		offset (5)		
t start (2)	Establishment time			10	μs
$T_{\ s_{temp}}^{\qquad (2)}$	When reading temperature, ADC sampling time	10			μs

- 1. Guaranteed by comprehensive evaluation, not tested in production.
- 2. Guaranteed by design, not tested in production.
- 3. The shortest sampling time can be determined by the application through multiple cycles.
- 4. $V_{DD} = 3.3V$.
- Temperature formula: TS_adc = 25 + (value * V DDA offset * 3300)/(4096 * Avg_Slope), offset is recorded
 Recorded in the lower 12 bits of 0x1FFFF7F6, value is the conversion result data of ADC.

6.6.17

symbol	parameter	Register configuration	Minimum	Typical value	Max	unit
HYST	Hysteresis	00		0		mV
HYST	Hysteresis	01		15		mV
HYST	Hysteresis	10		30		mV
HYST	Hysteresis	11		90		mV
OFFSET	Offset voltage	00	0.091	0.213	0.358	mV
OFFSET	Offset voltage	01	3.23	7.51	12.08	mV
OFFSET	Offset voltage	10	9.79	15	20.8	mV
OFFSET	Offset voltage	11	34.25	47.4	62.22	mV
DELAY (1)	Propagation delay	00		80		ns
DELAY (1)	Propagation delay	01		51		ns
DELAY (1)	Propagation delay	10		26		ns
DELAY (1)	Propagation delay	11		9		ns
$I_{q}^{(2)}$	Average working current	00		4.5		μΑ
$I_{\mathfrak{q}}^{(2)}$	Average working current	01		4.4		μΑ
$I_{\mathfrak{q}}^{(2)}$	Average working current	10		4.4		μΑ
$I_{q}^{(2)}$	Average working current	11		4.4		μΑ

- 1. The time difference between the 50% output flip and the input flip.
- 2. Average value of total current consumption, working current.

www.mm32mcu.com

53/ <u>61</u>

Page 60

PCB

 $DS_MM32W06xxxB_Ver1.00$

7_{PCB}

PCB design recommendations

7.1

The decoupling of the power supply must be connected according to the following figure. The 10nF capacitors in the picture must be ceramic capacitors, and they should be as a Near the MCU chip.

V dda

 $1~\mu F$ // 10~nF

V ssa

25.

7.2 PCB

Bluetooth works in the 2.4G wireless frequency band, and should try to avoid the influence of various factors on wireless transmission and reception, pay attention to the follow

- Avoid using metal in the product shell surrounding the Bluetooth module. When using a partial metal shell, try to keep the antenna part of the module Keep away from metal parts.
- The metal connecting wires or metal screws inside the product should be as far away from the antenna part of the module as possible.
- The antenna part of the module should be placed around the PCB of the carrier board. It is not allowed to be placed in the board, and the carrier board under the antenna is mil In the parallel direction, copper laying or routing is not allowed. It is also a better choice to expose the antenna part directly to the carrier board.
- Try to spread a large piece of GND under the module, and try to extend the wiring to the periphery.
- It is recommended to use insulating material to isolate the module mounting position on the substrate, such as placing a whole piece of silk screen at this position (TopOverl av).
- The wiring of the power cord and ground wire is directly related to the performance of the product and minimizes noise interference. Try your best when wiring Widen the width of ground wire and power wire, ground wire> power wire signal wire, usually signal wire width is 0.2 ~ 0.3mm, power wire

 The width is 1.2 ~ 2.5mm, and a large area of copper layer is used as the ground wire, and the useless space is laid out on the PCB.
- The power supply plus two decoupling filter capacitors: if using LDO power supply, the values are 1uF and 0.1uF respectively for filtering; If it is powered by a button battery, the values are 10uF and 10uF respectively for voltage stabilization.
- The trace between the chip ANT and the antenna should not be too long, and the line width should consider impedance matching requirements.

7.3 2.4G

49

Page 61

PCB

The size of a small antenna may change significantly due to the impact of performance. Therefore, it is strongly recommended to

Accurate reference design to achieve the best performance. When drawing a PCB antenna, refer to the dimensions given in the figure below to draw the antenna.

26.

 Label
 Typical value (mm)

 L1
 3.94

 L2
 2.70

 L3
 5.00

 L4
 2.64

 L5
 2.00

 L6
 4.90

 W1
 0.90

1/19/2021		Data sheet
	W2 D1	0.50 0.50
	D2	0.30
	D3	0.30
	D4	0.50
	D5	1.40
	D6	1.70

<u>www.mm32mcu.com</u> 55/ <u>61</u>

Page 62

DS_MM32W06xxxB_Ver1.00

8

Package characteristics

D A2 A3 D1 0.61BSC

EI E

27. LQFP48, 48

- 1. The figure is not drawn to scale.
- 2. The dimensions are in millimeters.

Page 63

DS_MM32W06xxxB_Ver1.00

50. LQFP48			
Label		Mm	
Laber	Minimum	Typical value	Max
A	-	-	1.60
A1	0.05	-	0.15
A2	1.35	1.40	1.45
A3	0.59	0.64	0.69
b	0.18	-	0.27
b1	0.17	0.20	0.23
c	0.13	-	0.18
c1	0.117	0.127	0.137
D	8.80	9.00	9.20
D1	6.90	7.00	7.10
Е	8.80	9.00	9.20
E1	6.90	7.00	7.10
e	0.40	0.50	0.60
Н	8.14	8.17	8.20
L	0.50	-	0.70
L1		1.00REF	
R1	0.08	-	-
R2	0.08	-	0.20
S	0.20	-	-
θ	0 -	3.5 -	7 -
θ 1	11 -	12 -	13 -
θ 2	11 -	12 -	13 -

<u>www.mm32mcu.com</u> 57/ <u>61</u>

Page 64

DS_MM32W06xxxB_Ver1.00

8.2 QFN32

D

A2

A

e A1 A3

b

E2 b

E1 E

1

L

32

PIN 1 Identifier

PIN 1 Identifier D2

28. QFN32, 32

- 1. The figure is not drawn to scale.
- 2. The dimensions are in millimeters.

51. QFN32

Label	Mm		
	Minimum	Typical value	Max
A	0.7	0.75	0.80
Al	0.00	0.02	0.05
A2	0.50	0.55	0.60
A3		0.20REF	
ь	0.20	0.25	0.30
D	4.90	5.00	5.10
E	4.90	5.00	5.10
D2	3.40	3.50	3.60

<u>www.mm32mcu.com</u> 58/ <u>61</u>

Page 65

DS_MM32W06xxxB_Ver1.00

Label	Mm		
	Minimum	Typical value	Max
E2	3.40	3.50	3.60
e		0.5	
Н		0.30REF	
K		0.35REF	
L	0.35	0.40	0.45
R	0.09		
c1		0.08	
c2		0.08	
N		Number of pins $= 32$	

www.mm32mcu.com

59/ <u>61</u>

Page 66

DS_MM32W06xxxB_Ver1.00

9

Model naming

MM32 W 0 6 2 P F B

Device family

MM32 = ARM-base 32-bit microcontroller

Product type

W = Wireless

Sub-family

0 = Cortex M0

User code memory size

6 = 64 Kbytes

Func on family

2 = Support ADC, USB

1 = Support ADC

Package

P = LQFP

N = QFN

Pin count

F = 48 Pins

T = 32 Pins

Wireless type

 $B = B\Gamma E$

29. MM32

<u>www.mm32mcu.com</u> 60/ <u>61</u>

Page 67

DS_MM32W06xxxB_Ver1.00

10

Modify record

52

date 2020/07/02 version Rev 1.00 content formal edition

www.mm32mcu.com

61/<u>61</u>