Diseño de Bases de Datos y Evolución Histórica

Curso de Modelado en SAP HANA - VIDEO 7

Introducción

El diseño de una base de datos es el **proceso que determina su organización y estructura**. Similar a la construcción de un edificio, involucra diferentes profesionales y etapas bien definidas para lograr un resultado exitoso.

Proceso de Diseño de Bases de Datos

Analogía con la Construcción

Para comprender mejor el proceso, podemos compararlo con la construcción de una casa:

- 1. Cliente → Entrega un boceto con sus ideas y requisitos
- 2. Arquitecto → Crea planos detallados con especificaciones técnicas
- 3. Constructores → Implementan físicamente la construcción siguiendo los planos

Los Tres Modelos de Diseño

1. MODELO CONCEPTUAL

Características Principales

- Equivale al boceto del cliente en la construcción
- Estructura de la futura base de datos totalmente independiente del lenguaje
- Vista genérica que no incluye:
 - Tipos de datos específicos
 - Sistema gestor de base de datos particular
 - Lenguaje de implementación

Objetivos

- Establecer la información que se quiere almacenar
- Definir la estructura de almacenamiento
- Centrarse en problemas estructurales de la información
- Crear relaciones lógicas y coherentes
- Garantizar eficiencia en el trabajo con los datos

Herramienta Principal

Modelo Entidad-Relación: El 99% de las bases de datos relacionales utilizan diagramas entidad-relación en esta etapa.

2. MODELO LÓGICO

Características Principales

Equivale al trabajo del arquitecto en la construcción

- Se realiza a partir del modelo conceptual
- Transforma el modelo conceptual en algo implementable físicamente

Consideraciones Técnicas

- Debe tener en cuenta el sistema gestor de base de datos elegido
- Para sistemas relacionales debe indicar:
 - Relaciones entre tablas
 - Atributos de cada entidad
 - Claves primarias y foráneas
 - **Índices** necesarios

Enfoque

- Dedicado a cuestiones tecnológicas
- Los problemas estructurales deben estar resueltos del modelo anterior
- Se centra en traducir el esquema conceptual a una estructura implementable

Herramientas

Formas Normales: Serie de reglas que ayudan a realizar las modificaciones necesarias hasta obtener un modelo correcto para implementar.

3. MODELO FÍSICO

Características Principales

- Equivale al trabajo de construcción física
- Transforma el modelo lógico para mayor eficiencia
- Crea los **objetos físicos** en la base de datos

Decisiones Críticas

Al implementar físicamente, se deben tomar decisiones sobre:

Campos de Texto:

- Tipo de dato específico
- Codificación (ASCII vs Unicode)
- Longitud variable vs tamaño fijo

Campos Numéricos:

- Enteros vs decimales
- Precisión y escala

Fechas:

- Tipo de dato fecha específico
- Formato de almacenamiento

Impacto

Estas decisiones influyen directamente en:

- **Eficacia** del sistema
- Rendimiento de las consultas
- Espacio de almacenamiento requerido

Evolución Histórica de los Modelos de Bases de Datos

Contexto Actual

- Las bases de datos relacionales son el estándar de facto
- Los cursos ya no especifican el tipo porque se asume que son relacionales
- El modelo relacional marcó un antes y un después en el diseño de bases de datos

División Histórica

Sistemas Pre-relacionales → Sistema Relacional → Sistemas Post-relacionales

SISTEMAS PRE-RELACIONALES

Modelo Jerárquico

- Uno de los primeros modelos estables implementados
- Los datos se relacionan de modo jerárquico
- Se representa mediante estructura de árbol
- Limitación: Cada nodo solo puede tener un nodo padre

Ejemplo: Como un árbol genealógico donde cada persona tiene un único padre directo.

Modelo de Red

- Evolución del modelo jerárquico
- Mejora principal: Un nodo puede tener varios nodos padre
- Estructura más compleja pero con mayor interrelacionalidad
- Aún así, las relaciones siguen siendo bastante limitadas

SISTEMA RELACIONAL

Características Revolucionarias

- Se olvida de las relaciones jerárquicas tradicionales
- Utiliza conceptos matemáticos para:
 - Establecer relaciones
 - Representar datos
 - Definir operaciones

Ventajas

- Permite crear estructuras más complejas
- Rendimiento superior a modelos anteriores
- Flexibilidad en las consultas y operaciones
- Independencia de la estructura física

Impacto

- Revolución completa en el almacenamiento y consulta de datos
- Se convirtió en el estándar universal
- Cuando se habla de "bases de datos" sin especificar, se asume que son relacionales

SISTEMAS POST-RELACIONALES

Modelo Orientado a Objetos

Características

- Los datos se representan mediante objetos
- Los objetos están compuestos por:
 - Variables (atributos)
 - **Métodos** (funciones)
- La manipulación se realiza mediante mensajes

Relación con la Programación

- Similar a la programación orientada a objetos
- Conceptos análogos:
 - **Clases** → Plantillas de objetos
 - Atributos → Variables que almacenan valores
 - Métodos → Funciones para manipular datos
 - **Mensajes** → Comunicación entre objetos

Aplicaciones

- Bases de datos complejas con estructuras no tradicionales
- Sistemas multimedia con diferentes tipos de datos
- Aplicaciones especializadas que requieren comportamientos complejos

Resumen del Proceso Completo

Flujo de Diseño

```
\begin{aligned} & \mathsf{MODELO}\;\mathsf{CONCEPTUAL} \to \mathsf{MODELO}\;\mathsf{L\acute{O}GICO} \to \mathsf{MODELO}\;\mathsf{F\'ISICO} \\ & (\mathsf{Boceto}) \qquad (\mathsf{Planos}) \qquad (\mathsf{Construcci\acute{o}n}) \end{aligned}
```

Evolución Tecnológica

```
PRE-RELACIONALES → RELACIONALES → POST-RELACIONALES

(Jerárquico) (Tabular) (Orientado a Objetos)

(Red) (SQL) (Multimedia)
```

Conclusiones

Importancia del Proceso Secuencial: Cada etapa del diseño tiene su propósito específico y debe completarse correctamente antes de avanzar a la siguiente.

Dominio del Modelo Relacional: Aunque existen otros modelos, el relacional sigue siendo el más utilizado y el que debemos dominar.

Evolución Continua: La tecnología de bases de datos ha evolucionado constantemente, adaptándose a las necesidades cambiantes del almacenamiento y procesamiento de datos.

Fundamentos Sólidos: Comprender la evolución histórica nos ayuda a entender mejor las decisiones de diseño actuales y las posibles direcciones futuras.

Curso de Modelado en SAP HANA - VIDEO 7 Diseño de Bases de Datos y Evolución Histórica