NITEESH KUMAR

700763258

ASSIGNMENT 5

NEURAL NETWORKS AND DEEP LEARNING

1. Implement Naïve Bayes method using scikit-learn library Use dataset available with name glass Use train_test_split to create training and testing part Evaluate the model on test part using score and classification_report(y_true, y_pred)

```
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.naive_bayes import GaussianNB
from sklearn.metrics import classification_report, accuracy_score
# Load dataset
glass_data = pd.read_csv('glass.csv')
# Separate features (X) and target labels (y)
X = glass_data.drop("Type", axis=1)
y = glass_data['Type']
# Split data into training and testing sets
x_train, x_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0)
# Initialize Gaussian Naïve Bayes classifier
gnb = GaussianNB()
gnb.fit(x_train, y_train)
# Make predictions on the testing data
y_pred = gnb.predict(x_test)
# Generate classification report
report = classification_report(y_test, y_pred)
print(report)
# Calculate and print accuracy
accuracy = accuracy_score(y_test, y_pred)
print("Naive Bayes accuracy is: {:.2f}%".format(accuracy * 100))
```

OUTPUT:-

⋺	precision	recall	f1-score	support
1	0.19	0.44	0.27	9
2	0.33	0.16	0.21	19
3	0.33	0.20	0.25	5
5	0.00	0.00	0.00	2
6	0.67	1.00	0.80	2
7	1.00	1.00	1.00	6
accuracy			0.37	43
macro avg	0.42	0.47	0.42	43
weighted avg	0.40	0.37	0.36	43

Naive Bayes accuracy is: 37.21%

Implement linear SVM method using scikit library
 Use the same dataset above
 Use train_test_split to create training and testing part
 Evaluate the model on test part using score and

```
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.svm import SVC
from sklearn.metrics import classification_report, accuracy_score
glass_data=pd.read_csv('glass.csv')
x_train=glass_data.drop("Type",axis=1)
y_train=glass_data['Type']
# splitting train and test data using train_test_split
x_train, x_test, y_train, y_test=train_test_split(x_train, y_train, test_size=0.2, random_state=0)
# Train the model using the training sets
svc=SVC()
svc.fit(x_train,y_train)
y_pred=svc.predict(x_test)
#Classification report
qual_report=classification_report(y_test, y_pred, zero_division=0)
print(qual_report)
print("SVM accuracy is:", accuracy_score(y_test,y_pred)*100)
```

OUTPUT:-

글	precision	recall	f1-score	support	
1	0.21	1.00	0.35	9	
2	0.00	0.00	0.00	19	
3	0.00	0.00	0.00	5	
5	0.00	0.00	0.00	2	
6	0.00	0.00	0.00	2	
7	0.00	0.00	0.00	6	
accuracy			0.21	43	
macro avg	0.03	0.17	0.06	43	
weighted avg	0.04	0.21	0.07	43	
SVM accuracy	is: 20.93023	255813953	7		

3. Which algorithm you got better accuracy? Can you justify why?

Answer :- The accuracy for the Gaussian algorithm is improved. Given that the accuracy we gained through gaussian training exceeded that of SVM.