Aula 6.2019-02-27

MOVIMENTO CIRCULAR

Trajetória plana, com centro de curvatura num ponto C, fixo, e com raio R constante. $S(t) = Si + RO(t) \left(\frac{\partial zm}{radianos}\right)$

 $w = \dot{\theta} = velocidade angular$ ∠ = û = aæleração angular

$$w = \dot{\theta}$$
 $x = \dot{w}$ $x = w \frac{dw}{d\theta}$ Resolvem-se tal eomo as equações do Capítulo 1.

Relação entre variáveis angulares e circulares:

$$v = R\omega$$
 $a_t = R\omega$ $a_n = R\omega^2$

MOVIMENTO CIRCULAR UNIFORME

Periodo, tempo que demara uma volta $(\Delta \theta = 2\pi)$ $\Delta \theta = \omega T = 2\pi$ $\Rightarrow T = \frac{2\pi}{\omega}$

Frequência. Número de voltas por unidade de tempo. $f = \frac{1}{T} = \frac{\omega}{2\pi}$ $\Rightarrow \omega = 2\pi f$

f tem unidades de inverso do tempo. No sistema SI, 1H=15' (hertz)

rpm = min = 1/60 Hz (rotações por minuto)

ROTAÇÃO DOS CORPOS RÍGIDOS

Posição relativa a um ponto (A) do corpo:

repa pode mudar de direção, mas o seu módulo permanece constante

$$|\vec{\Gamma}_{B/A}|^2 = \vec{\Gamma}_{B/A} \cdot \vec{\Gamma}_{B/A} = \vec{A} \cdot \vec{B}^2 = \text{constante}$$

$$\Rightarrow \vec{\Gamma}_{B/A} \cdot \frac{d\vec{\Gamma}_{B/A}}{dt} = \vec{V}_{B/A} \cdot \vec{\Gamma}_{B/A} = 0$$

A velocidade relativa entre dois pontos no corpo l é sempre perpendicular à posição relativa entre eles.

Como tal, o movimento de B, e de qualquer outro ponto, relativo a A, é numa esfera de raio AB. Como as distâncias entre todos os pontos do corpo devem ser constantes, $V_{B/A}$, $V_{C/A}$,...

ser constantes, $\vec{v}_{B/A}$, $\vec{v}_{C/A}$,...

serão tangentes a arcos de circumferências paralelas entre sim. De rerão existir então dois pontos, $\vec{z} \in \vec{z}$, que estão em repouso, em relação a $\vec{v}_z = \vec{v}_z = \vec{v}_A$)

Eixo de rotação: linha reta que passa por \vec{A} e portodos 05 pontos com a mesma velocidade de \vec{A} .

Plano de rotação: Plano perpendiculão eixo de rotação

Projeção dos movimentos, relativos, no plano de rotação: No intervalo [t, t+dt], todos os pontos rodam o mesmo ângulo do. $w = \frac{d\theta}{dt}$ = velocidade angular do corpo, no instante t (a cada instante, w/t) pode ser dife-cente e a direção do eixo também, d=w=acel, angular B (ent UB/A = RB/A W RBA = projeção da distância AB, no plano de rotação Exemplo 3.2. Sistema biela-manivek. Determine w da biela è da manivela, no instante em que o pistão deslaca--se para a esquerda, com velocidade Up = 60 cm e 7=40°. Q $\overline{QQ} = 7.5 \text{ cm}$ PQ = 20 cm (distâncias em) cm, tempe ems Resolução: Ua/o L OQ UQ/p I PQ $\sin \beta = \frac{7.5 \sin 40^{\circ}}{20} = 0.2410$ =7 B= 13.95° Ta/0 = Ja-Vo = Ja Ua = 7.5 Wm

Va/p = 20 Wm

Observe-se que a direção do eixo de rotação e a velocidade angular de um corpo rígido são independentes do ponto escolhido como referência.

No exemplo da manivela e à biela, a velocidade angular, um, da manivela, é a derivada do ángulo Θ ($\omega_m = \bar{\theta}$) e a velocidade angular da biela é a derivada de β : $\omega_b = \bar{\beta}$

Os resultados positivos, indicam que de B estao a aumentar, nesse instante.

Nos dois casos, o eixo de rotação é perpendicular à figura.