

R-Type

19	16 1	15	13	12 10	9 7	6	4 3	0
opcode		rd		rs	rt	sa	ор	select
4 bits		3 bits		3 bits	3 bits	3 bit	<u> </u>	4 bits

I-Type

So you can see that our Instructions need 20 bits

Operation select

_						
S_3	S_2	S_1	S_0		Operation	Function
0	0	0	0	1	F = A	Transfer A
0	0	0	0		F = A+1	Increment A
0	0	0	1		F = A + B	Addition
0	0	0	1		F = A + B + 1	Add with carry
0	0	1	0		F = A + B	Subtract with borrow
0	0	1	0		F = A + B + 1	Subtraction
0	0	1	1		F = A - 1	Decrement A
0	0	1	1		F = A	Transfer A
0	1	0	0		$F = A \wedge B$	AND
0	1	0	1		$F = A \vee B$	OR
0	1	1	0		$F = A \oplus B$	XOR
0	1	1	1		F = A	Complement A
1	0	\times	\times		$F = \operatorname{shr} A$	Shift right A into F
1	1	\times	\times		F = shl A	Shift left A into F

Opcode Functionality

0000	R-Type					
0001						
0010	I-type (Arithmetic) -> rs = offset [7-0]					
0011	I-type (Arithmetic) -> rs += offset [7-0]					
0100	LOAD					
0101	STORE					
0110	CALL ACC.					
//	//					
1111	NOP (stall)					

Opcode has 4 bits (but 3 bits is sufficient)

Memory (8 KB)

0	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0
1								
2								
8191 (2^13 -1)								

So we need 13 bits for Addressing And also 8 bits for data

Required System C Files

- main.cpp
- System.cpp
- Micro.cpp
- Controller.cpp
- Bus.cpp
- Register.cpp // for saving the previous data for pipelining
- Memory.cpp
- IR.cpp // instruction register -> each row has 20 bits
- RegFile // has 8 rows and each row has 8 bits
- PC.cpp // program counter
- ALU.cpp
- IF.cpp // pipeline register
- ID.cpp // pipeline register
- EXE.cpp // pipeline register
- WB.cpp // pipeline register
- Acc1.cpp ... Accn.cpp

Testing wires

STALL

