Phinéase Prof.Bruno Bouzy Projet étoilé L1 Info-math 20 mars 2019

Analyse des données de Bridge

Pour étudier les caractéristiques de Bridge et de son joueur en Monte Carlo, j'ai fait quatre expérimentations pour répondre les questions suivantes:

- 1.Est-ce que la méthode de Monte Carlo est la solution imbattable contre les joueurs aléatoires? C'est à dire, est-il le meilleur pour gagner ce jeu?
- 2. Combien de simulation est-il suffit pour trouver une meilleure réponse? Ou peut-être il y a un nombre assez efficace?
 - 3. Combien fois de jeu pour trouver des donnés stables qui a le sens statistique?
- 4. Sous le cas de la meilleure solution, qu'est-ce que le taux de réussite pour qu'on a trouvé pour le Monte Carlo contre un joueur aléatoire?
 - 5. Est-ce que le commencement de jeu (le joueur de début) influence les données?
 - 6. Comment la fréquence de simulation influence le Monte Carlo?

1.Est-ce que la méthode de Monte Carlo est la solution imbattable contre les joueurs aléatoires? C'est à dire, est-il le meilleur pour gagner ce jeu?

Condition: 7 scores pour gagner - commence par West - srand(time(NULL))

2 jeux par une fois	Premier jeu	Deuxième jeu	En cas de MC échoué tous les deux fois
West	Monte Carlo	Aléatoire	
North	Aléatoire	Monte Carlo	Refaire avec même
East	Monte Carlo	Aléatoire	cartes, compte si MC est encore échoué.
South	Aléatoire	Monte Carlo	

Simulation par tour en 2000 fois - 4000 jeux en total - 5 fois expérimentations --->20000 jeux

Voice les données:

	Échoué deux fois	Encore échoué
Jeu fermé	239/20000 (1.195%)	17/20000 (0.085%)
Jeu ouvert	148/20000 (0.74%)	9/20000 (0.045%)

Conclusion:

Monte Carlo n'est pas parfaite, il y a encore des fois que le joueur aléatoire gagne. Ça semble logique s'il n'y a pas de bug dans mon logiciel, parce que c'est juste une méthode statistique, sûrement qu'il y a des meilleurs solutions, et ça peut être trouvé au hasard par l'algorithme random. Et comme c'est déjà presque 1% que ça se passe. Alors ce n'est pas très étonnant d'apparaître deux fois consécutives. (Mais 1,195% * 1,195% c'est 0,01428%, donc 0,085% est presque 6 fois. Donc je trouve ça un peu confuse.)

2.Combien de simulation est-il suffit pour trouver une meilleure réponse? Ou peut-être il y a un nombre assez efficace?

Condition: 7 scores pour gagner - commence par West - srand(time(NULL)) 20000 jeux en total

Voici les données:

Simulation	srand(time) - 20000	
10	74,884 %	
20	75,288 %	
40	75,38 %	
80	75,07 %	
160	74,82 %	
320	75,38 %	
640	75,05 %	
1280	75,35 %	
2560	75,6 %	
5120	75,93 %	
10240	76,32 %	

(* la cellule orange est la réponse de Question 4)

Je trouve qu'il n'y a pas de grande changement depuis le 10 fois de simulations. Alors peut-être c'est déjà assez de faire moins de 10 fois. Donc j'ai fait des autres expérimentations.

Simulation	srand(time) - 10000
2	66,67 %
3	70,59 %
4	72,64 %
5	72,58 %
6	73,68 %
7	73,12 %
8	74,18 %
9	73,98 %

Conclusion:

Plus de 6 fois de simulation est déjà arrivée dans un point assez stable. Mais généralement c'est toujours meilleur si on augmente la simulation. Cela dépend de la ressource de temps et de la puissance de calcul.

3. Combien de jeu pour trouver une limite stable de donnée en moyenne?

Condition: 7 scores pour gagner - commence par West - srand(1) Voici les données:

Jeux	Joueur aléatoire * 4
100	53 % < 58 % < 63 %
200	47.96 % < 51.5 % < 55.03 %
400	47 % < 49.5 % < 52 %
800	47.352 % < 49.12 % < 50.88 %
1600	47.81 % < 49.06 % < 50.31 %
3200	49.86 % < 50.75 % < 51.63%
6400	50.1 % < 50.73 % < 51.35%
10000	49.86% < 50.36% < 50.86%

Conclusion:

Pour une précisions de 10⁻¹, c'est 10000 fois de jeux pour y arriver. Mais je pense que 800 de jeux est déjà assez pour la plupart de cas.

5. Est-ce que le commencement de jeu (le joueur de début) influence les données?

Condition: 7 scores pour gagner - commence par West - srand(1)

10000 jeux

Taux de gagne	West - East
Commence par West	50.36 %
Commence aléatoirement	49,36 %

Conclusion:

Il y a très peu d'influence.

6.Comment la fréquence de simulation influence le Monte Carlo?

Condition: 7 scores pour gagner - commence par West - srand(1) 10000 jeux - 4 joueurs Monte Carlo - WE 2 fois de simulations que NS

Simulation (WE/NS)	WE	NS
200/100	51,35 %	48,65 %
100/50	51,33 %	48,67 %
50/25	51,53 %	48,47 %
24/12	51,56 %	48,44 %
12/6	52,99 %	47,01 %

Simulation (WE/NS)	WE	NS
6/3	54,17 %	45,83 %
2/1	56,43 %	43,57 %
10/1	60,71 %	39,29 %

Conclusion:

Il n'y a que de grande influence si le nombre est inférieur de 5. Si non, même si on a une différence de 10000, ça ne change pas beaucoup.