AI VIETNAM
Time Series Data

Feature Engineering for Time Series Data

Minh-Duc Bui

Outline

- Feature Engineering in General
- Feature Engineering for Time Series Data

Outline

- Feature Engineering in General
- Feature Engineering for Time Series Data

Feature Engineering in General

Feature engineering is the process of extracting features (characteristics, properties, attributes) from raw data.

- Missing values
- Data Normalization/Standardization
- Encoding Categorical Data
- Dimensionality Reduction
- Temporal Feature Engineering
- Domain-Specific Features

Feature Engineering in General

- Having the right features tends to give the biggest performance boost compared to clever algorithmic techniques such as hyper-parameter tuning.
- State-of-the-art model architectures can still perform poorly if they don't use a good set of features.

Time Series Data Feature Engineering for Time Series

Outline

- Feature Engineering in General
- Feature Engineering for Time Series Data

***** What is Stationarity?

Stationarity describes the concept that how a time series is changing will remain the same in the future.

In mathematical terms, a time series is stationary when its statistical properties are independent of time:

- constant mean,
- constant variance, and
- covariance is independent of time.

Why it is important?

Some time series forecasting models (e.g., autoregressive models) require a stationary time series because they are easier to model due to their constant statistical properties.

Time Series 2

Monthly Airline Passenger Numbers 1949-1960

Time Series 5

Time Series 3 Annual total of lynx trapped in the McKenzie River district of north-west Canada

Daily change in the IBM Stock price for 386 consecutive days

❖ Non-stationarity => Stationarity

You can apply different transformations to a non-stationary time series to try to make it stationary:

- Differencing
- Detrending by model fitting
- Log transformation

First-order differencing

The differenced series is the change between consecutive observations in the original series:

$$y_t' = y_t - y_{t-1}.$$


```
import pandas as pd
import matplotlib.pyplot as plt
df = pd.read_csv('ch2_co2_levels.csv')
# Convert to datetime
df['datestamp'] =
pd.to datetime(df['datestamp'])
# Set datestamp column as index
df = df.set index('datestamp')
df_diff = df.diff()
```

Second-order differencing

Occasionally the differenced data will not appear to be stationary and it may be necessary to difference the data a second time to obtain a stationary series:


```
y_t'' = y_t' - y_{t-1}'
    = (y_t - y_{t-1}) - (y_{t-1} - y_{t-2}) \ \ \ \ \ \ y_t' = y_t - y_{t-1}.
     = y_t - 2y_{t-1} + y_{t-2}.
 import pandas as pd
 import matplotlib.pyplot as plt
 df = pd.read csv('ch2 co2 levels.csv')
# Convert to datetime
df['datestamp'] =
pd.to_datetime(df['datestamp'])
# Set datestamp column as index
 df = df.set index('datestamp')
          = df.diff().diff()
```

Seasonal differencing

A seasonal difference is the difference between an observation and the previous observation from the same season.

$$y_t' = y_t - y_{t-m},$$

```
import pandas as pd
 import matplotlib.pyplot as plt
df = pd.read csv('ch2 co2 levels.csv')
# Convert to datetime
df['datestamp'] =
pd.to datetime(df['datestamp'])
# Set datestamp column as index
df = df.set index('datestamp')
df_diff = df.diff(periods=12)
```

Detrending by model fitting

Fit a trend model and then subtracting the trend component from the original series.


```
from sklearn.linear model import LinearRegression
# Create a numerical time index (e.g., 0, 1, 2, ...)
 df['time_index'] = np.arange(len(df))
 # Prepare the data for the linear model
 X = df['time_index'].values.reshape(-1, 1)
 y = df['co2'].values
 # Create and fit the linear model
 model = LinearRegression()
 model.fit(X, y)
 # Predict CO2 levels using the model
 predicted co2 = model.predict(X)
 # Detrend the data by subtracting the predicted
 values from the original CO2 levels
▶detrended_co2 = df['co2'] - predicted_co2
```

Log transformation

Apply the logarithm function to each data point in a dataset.

=> Stabilizing Variance, Reducing Skewness


```
import pandas as pd
 import matplotlib.pyplot as plt
df = pd.read csv('ch2 co2 levels.csv')
# Convert to datetime
df['datestamp'] =
pd.to datetime(df['datestamp'])
# Set datestamp column as index
df = df.set index('datestamp')
df_log_transforme = np.log(df['co2'])
```

Time-based Features

- Create new features from date and time information.
- Extract the day of the week, hour of the day, or month of the year.

	co2	month	day
datestamp			
1958 03-29	316.1	3	29
1958-04-05	317.3	4	5
1958-04-12	317.6	4	12
1958-04-19	317.5	4	19
1958-04-26	316.4	4	26
1958-05-03	316.9	5	3
1958-05-10	317.5	5	10
1958-05-17	317.5	5	17
1958-05-24	317.9	5	24
1958-05-31	315.8	5	31

```
import pandas as pd
import matplotlib.pyplot as plt
df = pd.read csv('ch2 co2 levels.csv')
# Convert to datetime
df['datestamp'] =
pd.to datetime(df['datestamp'])
# Set datestamp column as index
df = df.set index('datestamp')
df['month'] = df.index.month
df['day'] = df.index.day
```

Lag Features

- Shift the values of a variable backward in time by a certain number of time periods.
- Lagged features can capture temporal dependencies and trends in the data.

	co2	lag_1	lag_2	lag_3
datestamp				
1958-03-29	316.1	NaN	NaN	NaN
1958-04-05	317.3	316.1	NaN	NaN
1958-04-12	317.6	317.3	316.1	NaN
1958-04-19	317.5	317.6	317.3	316.1
1958-04-26	316.4	317.5	317.6	317.3
1958-05-03	316.9	316.4	317.5	317.6
1958-05-10	317.5	316.9	316.4	317.5
1958-05-17	317.5	317.5	316.9	316.4
1958-05-24	317.9	317.5	317.5	316.9
1958-05-31	315.8	317.9	317.5	317.5

```
import pandas as pd
 import matplotlib.pyplot as plt
df = pd.read_csv('ch2_co2_levels.csv')
# Convert to datetime
df['datestamp'] =
pd.to datetime(df['datestamp'])
# Set datestamp column as index
df = df.set index('datestamp')
df['lag_1'] = df['co2'].shift(1)
df['lag_2'] = df['co2'].shift(2)
df['lag_3'] = df['co2'].shift(3)
```

Rolling Window Features

- Calculating summary statistics, such as the **mean** or **standard deviation**, over a sliding window of previous values.
 - highlighting long-term trends or cycles
 - smoothing out short-term fluctuations
 - o removing outliers

df_mean = df.rolling(window=48).mean()

Expanding Window Features

- In zolling window technique, we consider only the most recent values and ignore the past values.
- The idea behind the expanding window feature is that it takes all the past values into account.

Rolling & Expanding Window

- Capture the local trends, fluctuations, and overall behavior.
 - => Allow the model to learn from the temporal dynamics.
- Rolling window: useful when dealing with noisy data or non-stationarity.
- Expanding window: provide insights into the cumulative effects or long-term trends.

Series Decomposition

- Time series are a combination of (mainly) three components: *trend*, *seasonality*, *and residuals/remainder*
- Decomposition provides a useful abstract model:
 - thinking about time series generally
 - better understanding problems during time

series analysis and forecasting

	,,					
	CO2	trend	seasonal	resid		
datestamp		l				
1959-04-04	317.7	315.759615	1.235242	0.705142		
1959-04-11	317.1	315.760577	1.412344	-0.072921		
1959-04-18	317.6	315.765385	1.701186	0.133429		
1959-04-25	318.3	315.773077	1.950694	0.576229		
1959-05-02	318.2	315.787500	2.032939	0.379561		
1959-05-09	318.7	315.811538	2.445506	0.442955		
1959-05-16	318.0	315.840385	2.535041	-0.375426		
1959-05-23	318.4	315.872115	2.662031	-0.134147		
1959-05-30	318.5	315.899038	2.837948	-0.236987		
1959-06-06	318.5	315.914423	2.786137	-0.200560		
1959-06-13	318.1	315.930769	2.897139	-0.727908		


```
from statsmodels.tsa.seasonal import seasonal_decompose
# Plot the decomposition for multiplicative series
decomposition_plot = seasonal_decompose(df)
```

Series Decomposition

```
\begin{aligned} & \textbf{procedure DLINEAR}(x) \\ & \textbf{seasonal\_init\_trend\_init} \leftarrow \textbf{SeriesDecomposition}(x) \\ & \textbf{seasonal\_output} \leftarrow \textbf{Linear\_Seasonal}(\textbf{seasonal\_init}) \\ & \textbf{trend\_output} \leftarrow \textbf{Linear\_Trend}(\textbf{trend\_init}) \\ & \textbf{result} \leftarrow \textbf{seasonal\_output} + \textbf{trend\_output} \\ & \textbf{return } \textbf{result} \\ & \textbf{end procedure} \end{aligned}
```

Domain-Specific Features

- Incorporating domain-specific features can significantly enhance the performance.
- Domain-specific features are derived from expert knowledge in the relevant field and can provide valuable information that is not present in the raw time series data.

For example in finance:

- P/E, P/E, EPS
- Earnings Before Interest and Taxes (EBIT): Lợi nhuận trước lãi vay và trước thuế EBIT = Lợi nhuận trước thuế + Chi phí lãi vay
- Enteprise Value (EV): Giá trị doanh nghiệp
 EV = Market Cap + Tổng nợ Tiền mặt và các khoản tương đương tiền

