Lecture 17 Characterisations of Convexity

Note by Samion Suwito on 3/18/25

Midterm Review

Question 1

Find compact SVD & Rank of A

$$egin{aligned} A &= egin{bmatrix} 0 & B \ B^ op & 0 \end{bmatrix} = egin{bmatrix} 0 & U_r \Sigma_r V_r \ V_r \Sigma_r U^ op & 0 \end{bmatrix} \ &= egin{bmatrix} U_r & 0 \ 0 & V_r \end{bmatrix} egin{bmatrix} 0 & \Sigma_r V_r^ op \ \Sigma_r U_r^ op & 0 \end{bmatrix} \ &= egin{bmatrix} U_r & 0 \ 0 & V_r \end{bmatrix} egin{bmatrix} \Sigma_r & 0 \ 0 & \Sigma_r \end{bmatrix} egin{bmatrix} 0 & V_r^ op \ U_r^ op & 0 \end{bmatrix} \end{aligned}$$

We know the rank is therefore 2r

Eigenvalues:

$$Aegin{bmatrix} u_i \ s_i v_i \end{bmatrix} = egin{bmatrix} 0 + s_i B v_i \ B^ op u_i + 0 \end{bmatrix} = egin{bmatrix} s_i \sigma_i u_i \ \sigma_i v_i \end{bmatrix} = \sigma_i egin{bmatrix} u_i \ s_i v_i \end{bmatrix}$$

Question 2

Projection of x onto $\mathcal{R}(A)$ is $A(A^{\top}A)^{-1}A^{\top}x$ in ($\|\cdot\|_2$):

$$egin{aligned} rg \min_{a \in \mathcal{R}(A)} \|a - x\|_2^2 &= \min_z \|Az - x\|_2^2 \ &= Az^* = A(A^ op A)^{-1}A^ op x \end{aligned}$$

Same Q in $\|z\|_c^2 = z^{ op} Cz$:

$$egin{aligned} \min_z \ \|C^{1/2}Az - C^{1/2}x\|_2^2 \ Az^* &= A(A^ op CA)^{-1}A^ op Cx \end{aligned}$$

Question 3

$$egin{aligned} \|M\|_1 &= \max_{x: \|x\|_1 = 1} \|Mx\|_1 = ? \max_j \|m_j\|_1 \ \|Mx\|_1 &= \|\sum_j x_j a_j\|_1 \leq \sum_j |x_j| \|m_j\|_1 \ &= \max_j \|m_j\|_1 \end{aligned}$$

Form:

$$egin{aligned} \min_x \|M + \sum_{i=1} x_i B_i\| ext{ as LP} \ &= \min_x \max_j \|m_j + \sum_j x_p b_j(p)\| \ &= \min_{x,u} u ext{ s.t.} ig\|m_j + \sum_j x_p b_j(p)ig\|_1 \leq u \ &= \min_{x,u,t} u ext{ s.t. } \pm ig(m_{ij} + \sum_j x_i b_{ij}(p)ig) \leq t_i \ &\sum_j t_{ij} \leq u orall j = 1 \dots n \end{aligned}$$

Where $b_j(p)$ is the jth column of B_p

Question 4

Solve LP:

$$\min c^{\top} x \text{ s.t. } Ax \leq b$$

where we have $\|c-c_0\|_2 \leq r$

$$egin{aligned} \min_{x} \max_{c: \|c-c_0\| \leq r} c^ op x ext{ s.t. } Ax \leq b \ &= \max_{u: \|u\|_2 \leq 1} c_0^ op x + ru^ op x \ &= \min c_0^ op x + rt ext{ s.t. } Ax \leq b, \|x\|_2 \leq t \end{aligned}$$

What if $\|c_0\|_2 \leq r$ and b=0

$$egin{aligned} \max_{c:\|c-c_0\| \leq r} c^ op x \geq 0 \implies p^* \geq 0 \ p^* \min_{x} \max_{c:\|c-c_0\|_2 \leq r} c^ op x \leq \max_{c:\|c-c_0 \leq r\|} c^ op 0 = 0 \end{aligned}$$

 $x^{st}=0$ given $p^{st}=0$ and check if it's feasible.

Convexity

A set $C\in\mathbb{R}^n$ is convex if $orall x_0,x_1\in C, heta x_0+ar{ heta}x_1\in C$ $heta\in[0,1],ar{ heta}=(1- heta)$

Intersection of two convex sets are still convex

 $f:\mathbb{R}^n o\mathbb{R}$ is convex if $\mathrm{epi}f$ is a convex set **Jensen's inequality**: $f(\theta x+ar{\theta}y)=\theta f(x)+ar{\theta}f(y) orall x,y,\theta\in[0,1]$ Maximum of two functions preserve convexity

If f is convex then $x\mapsto f(Ax+b)$ is convex:

$$f(A(heta x + ar{ heta} y) + b) = f(heta(Ax + b) + ar{ heta}(Ay + b)) \ \leq heta f(Ax + b) + ar{ heta}f(Ay + b)$$

Example

Say ${\mathcal L}$ is a convex function. Then the problems

$$\min_{w} \sum_{i} \mathcal{L}(w^{ op} x + b_i)$$

Has a convex objective.

Differential Characterisation of Convexity

Claim: If $f:\mathbb{R}^n \to \mathbb{R} \cup \{+\infty\}$ is differentiable on open domain then f is convex if and only if $f(y) \geq f(x) + \nabla f(x)^\top f(y-x) \forall x,y \in \mathrm{dom} f$ Looks like first order taylor series of f around x.

If f convex,

$$rac{f(x+\lambda(y-x))-f(x)}{\lambda} \leq rac{\lambda(f(y)+(1-\lambda)f(x)-f(x))}{\Lambda} \ = f(y)-f(x)$$

$$\lambda \in (0,1] \ f(x+\lambda(y-x)) = \lambda y + (1-\lambda)x$$
 Directional derivative $abla f(x)^{ op}(y-x)$

Conversely, Fix
$$x, y, \lambda, z = \lambda x + (1 - \lambda)y$$
 $f(x) \geq f(z) + \nabla f^{\top}(z)(x - z)$ $f(y) \geq f(z) + \nabla f^{\top}(z)(y - z)$ $\implies \lambda f(x) + (1 - \lambda)f(y) \geq f(z)$

Second Order Condition

Claim: If f is twice differentiable then f is convex if and only if the $abla^2 f(x) \geq 0$ (psd) $\forall x \in \mathrm{dom}(f)$

Example: e^x is convex $f(x)=e^x \implies f''(x)=e^x \geq 0$ Example 2: $-\log x$ is convex on x>0 $f(x)=-\log x$ $f'(x)=-\frac{1}{x}$ $f''(x)=\frac{1}{x^2}>0$

Convexity along a line

f is convex if and only if $t\geq 0\mapsto f(x_0+tz)$ is convex $\forall t\geq 0$ and sufficiently small s.t. $x_0+tz\in\mathrm{dom}(f)$

Example: $f(x) = -\log \det(x)$ is convex on x>0

Continue next lecture.