Introduction to Formal Language, Fall 2016

Due: 21-Apr-2016 (Thursday)

Homework 4 Solutions

Instructor: Prof. Wen-Guey Tzeng Scribe: Yi-Ruei Chen

1. Find context-free grammars for the language $L=\{a^nb^m:n\neq 2m\}$ with $n\geq 0,$ $m\geq 0.$

Answer.

[Solution 1] Parse L as $L = L_1 \cup L_2$, where $L_1 = \{a^nb^m : n > 2m\}$ and $L_2 = \{a^nb^m : n < 2m\}$. Then construct productions for L_1 and L_2 , respectively. A context-free grammar for L is $G = (\{S, S_1, S_2, A, B\}, \{a, b\}, S, P)$ with the productions

$$S \to S_1 | S_2,$$

 $S_1 \to aaS_1b | A, A \to a | aA,$
 $S_2 \to aaS_2b | B, B \to b | Bb | ab.$

[Solution 2] Produce $L' = \{a^n b^m : n = 2m\}$ then add extra a's or b's. A context-free grammar for L is $G = (\{S, A, B\}, \{a, b\}, S, P)$ with the productions

$$S \to aaSb|A|B,$$

 $A \to a|aA,$
 $B \to b|Bb|ab.$

2. Find context-free grammars for the language $L = \{a^n b^m c^k : k \neq n+m\}$. (with $n \geq 0$, $m \geq 0, k \geq 0$)

Answer.

Parse L as $L = L_1 \cup L_2$, where $L_1 = \{a^n b^m c^k : k > n + m\}$ and $L_2 = \{a^n b^m c^k : k < n + m\}$. Then construct productions for L_1 and L_2 , respectively. A context-free grammar for L is $G = (\{S, S_1, S_2, T_1, T_2, A, B, C\}, \{a, b, c\}, S, P)$ with the productions

$$\begin{split} S &\to S_1|S_2, \\ S_1 &\to aS_1c|T_1, T_1 \to bT_1c|C, C \to cC|c, \\ S_2 &\to aS_2c|T_2|AB|A|B, T_2 \to bT_2c|B, A \to aA|a, B \to bB|b. \end{split}$$

3. Show that $L = \{w \in \{a, b, c\}^* : |w| = 3n_a(w)\}$ is a context-free language. Answer.

A context-free grammar for L is $G = (\{S, T\}, \{a, b, c\}, S, P)$ with the productions

$$S \rightarrow SaSTSTS|STSaSTS|STSTSaS|\lambda, \\ T \rightarrow b|c.$$

- 4. Let $L = \{a^nb^n : n \ge 0\}$. Show that \overline{L} and L^* are context-free. **Answer.**
 - (1) $\overline{L} = \{a^m b^k : m \neq k\} \cup \{(a+b)^* b a (a+b)^*\}$. A context-free grammar for \overline{L} is $G = (\{S, S_1, S_2, A, B, T\}, \{a, b\}, S, P)$ with the productions

$$S \to S_1|S_2,$$

 $S_1 \to aS_1b|A|B, A \to a|aA, B \to b|bB,$
 $S_2 \to TbaT, T \to aT|bT|\lambda.$

(2) $L^* = \{(a^n b^n)^m : n, m \ge 0\}$. A context-free grammar for \overline{L} is $G = (\{S, S_1, S_2, A, B, T\}, \{a, b\}, S, P)$ with the productions

$$S \to SS_1|\lambda,$$

 $S_1 \to aS_1b|\lambda.$

5. Show a derivation tree for the string aabbbb with the grammar

$$S \to AB|\lambda,$$

 $A \to aB,$
 $B \to Sb.$

Answer.

6. Define what one might mean by properly nested parenthesis structures involving two kinds of parentheses, say () and []. Intuitively, properly nested strings in this situation are ([]), ([[]])[()], but not ([)] or ((]]. Using your definition, give a context-free grammar for generating all properly nested parentheses.

Answer.

A context-free grammar for generating all properly nested parentheses is $G = (\{S\}, \{(,), [,]\}, S, P)$ with production

$$S \to [S]|(S)|\lambda$$
.

7. Find an s-grammar for $L = \{a^n b^{n+1} : n \ge 2\}$.

Answer.

An s-grammar for \overline{L} is $G = (\{S, S_1, S_2, B\}, \{a, b\}, S, P)$ with the productions

$$S \rightarrow aS_1B,$$

 $S_1 \rightarrow aS_2B,$
 $S_2 \rightarrow aS_2B|b,$
 $B \rightarrow b.$

8. Construct an unambiguous grammar equivalent to the following grammar.

$$S \to AB|aaB,$$

$$A \to a|Aa,$$

$$B \to b.$$

Answer.

This grammar generates the strings a^+b . A desirable grammar is $G=(\{S,A\},\{a,b\},S,P)$ with the productions

$$S \to aS|b,$$

$$A \to aA|a.$$

9. Show that the following grammar is ambiguous.

$$S \to aSbS|bSaS|\lambda.$$

Answer.

The string w = abab has the following two derivation trees:

10. Eliminate useless productions from

$$\begin{split} S &\to a|aA|B|C, \\ A &\to aB|\lambda, \\ B &\to Aa, \\ C &\to cCD, \end{split}$$

$D \rightarrow ddd$.

Answer.

There are two cases for useless variables

- Case 1: Variables that cannot generate strings in T^* .
 - $-V_1 = \{\}, (T \cup V_1)^* = \{a, b, c, d\}^*;$
 - Since $S \to a$, $A \to \lambda$, and $D \to ddd$, add S, A, and D to V_1 ;
 - $-V_1 = \{S, A, D\}, (T \cup V_1)^* = (\{a, b, c, d, S, A, D\})^*;$
 - Since $S \to aA$ and $B \to Aa$, add S and B to V_1 ;
 - $V_1 = \{S, A, B, D\}, (T \cup V_1)^* = (\{a, b, c, d, S, A, B, D\})^*;$
 - Since $S \to B$ and $A \to aB$, $B \to Aa$, the algorithm stops since there is no new rules can be added to V_1 ;

Thus, we have $V_1 = \{S, A, B, D\}$. After removing the related useless productions, we have:

$$\begin{split} S &\to a|aA|B, \\ A &\to aB|\lambda, \\ B &\to Aa, \\ D &\to ddd. \end{split}$$

- Case 2: Variables that cannot be reached from S.
 - The dependency graph of the result grammar in Case 1 is as follows.

-D is unreachable from S;

Thus, after removing the related useless productions, we have:

$$S \to a|aA|B$$
,

$$A \to aB|\lambda$$
,

$$B \to Aa$$
.

11. Eliminate all λ -productions from

$$S \to AaB|aBB$$
,

$$A \to \lambda$$
,

$$B \to bbA|\lambda$$
.

Answer.

A procedure of removing all λ -productions is as follows.

- Find the nullable variable set $V_N = \{A, B\}$;
- The λ -production $A \to \lambda$ can be removed after adding new productions obtained by substituting λ for A where it occurs on the right:

$$S \to AaB|aBB|aB,$$

$$B \to bbA|\lambda|bb$$
;

• The λ -production $B \to \lambda$ can be removed after adding new productions obtained by substituting λ for B where it occurs on the right:

$$S \rightarrow AaB|Aa|aBB|aB|a,$$

$$B \to bbA|bb;$$

12. Eliminate all unit-productions in Question 10.

Answer.

From the dependency graph of the grammar, we add the new rules $S \to Aa|cCD$ to the non-unit productions

$$S \rightarrow a|aA|Aa|cCD$$
,
 $A \rightarrow aB|\lambda$,
 $B \rightarrow Aa$,
 $C \rightarrow cCD$,
 $D \rightarrow ddd$.

13. Transform the grammar with production

$$S \to abAB$$
,
 $A \to bAa|\lambda$,
 $B \to BAa|A|\lambda$

into Chomsky normal form.

Answer.

The transform procedure is as follows.

- Removing λ -productions:
 - Removing $A \to \lambda$: $S \to abAB|abB$, $A \to bAa|ba$, $B \to BAa|A|\lambda|Ba$.
 - Removing $B \to \lambda$: $S \to abAB|abB|abA|ab$, $A \to bAa|ba$, $B \to BAa|A|Ba|Aa|a$.
- Removing unit-production $B \to A$: $S \to abAB|abB|abA|ab$, $A \to bAa|ba$, $B \to BAa|bAa|ba|Ba|Aa|a$.
- Removing useless productions: No useless productions.
- Convert the grammar into Chomsky normal form:
 - Introduce new variables S_x for each $x \in T$:

$$S \rightarrow S_a S_b A B | S_a S_b B | S_a S_b A | S_a S_b,$$

$$A \rightarrow S_b A S_a | S_b S_a,$$

$$B \rightarrow B A S_a | S_b A S_a | B S_a | A S_a | a,$$

$$S_a \rightarrow a,$$

$$S_b \rightarrow b.$$

- Introduce additional variables to get the first two productions into normal

form and we get the final result

$$\begin{split} S &\to S_a U | S_a X | S_a Y | S_a S_b, \\ A &\to S_b W | S_b S_a, \\ B &\to B Z | S_b V | S_b B | S_b A | S_b | B S_a | A S_a | a, \\ U &\to S_b V, \\ V &\to A B, \\ X &\to S_b B, \\ Y &\to S_b A, \\ W &\to A S_a, \\ Z &\to A S_a, \\ S_a &\to a, \\ S_b &\to b. \end{split}$$

14. Convert the grammar with production

$$S \to ABb|a,$$

 $A \to aaA|B,$
 $B \to bAb|\lambda$

into Greibach normal form.

Answer.

We introduce new variables X and Y:

$$S \to ABX|Y,$$

$$A \to YYA|B,$$

$$B \to XAX|\lambda,$$

$$X \to b,$$

$$Y \to a$$

Then, by using the substitution, we immediately get the equivalent grammar

$$\begin{split} S &\to aYABX|bAXBX|bAXX|b|a, \\ A &\to aYA|B, \\ B &\to bAX|\lambda, \\ X &\to b, \\ Y &\to a \end{split}$$

Example 6.11

Determine whether the string w = aabbb is in the language generated by the grammar

$$S \to AB$$
,
 $A \to BB|a$,
 $B \to AB|b$.

First note that $w_{11} = a$, so V_{11} is the set of all variables that immediately derive a, that is, $V_{11} = \{A\}$. Since $w_{22} = a$, we also have $V_{22} = \{A\}$ and, similarly

$$V_{11} = \{A\}, V_{22} = \{A\}, V_{33} = \{B\}, V_{44} = \{B\}, V_{55} = \{B\}.$$

Now we use (6.8) to get

$$V_{12} = \{A : A \to BC, B \in V_{11}, C \in V_{22}\}.$$

Since $V_{11} = \{A\}$ and $V_{22} = \{A\}$, the set consists of all variables that occur on the left side of a production whose right side is AA. Since there are none, V12 is empty. Next,

$$V_{23} = \{A : A \to BC, B \in V_{22}, C \in V_{33}\},\$$

so the required right side is AB, and we have $V_{23} = \{S, B\}$. A straightforward argument along these lines then gives

$$V_{12} = \emptyset, V_{23} = \{S, B\}, V_{34} = \{A\}, V_{45} = \{A\}, V_{13} = \{S, B\}, V_{24} = \{A\}, V_{35} = \{S, B\}, V_{14} = \{A\}, V_{25} = \{S, B\}, V_{15} = \{S, B\}, V_{1$$

so that $w \in L(G)$.

15. Use the CYK algorithm to determine whether the strings *aabb*, *aabba*, and *abbbb* are in the language generated by the grammar in Example 6.11.

Answer.

(1) For the string aabb:

Firstly, we have

$$V_{1,1} = \{A\}, V_{2,2} = \{A\}, V_{3,3} = \{B\}, V_{4,4} = \{B\}.$$

Then, by using the equation

$$V_{ij} = \bigcup_{k \in \{i, i+1, \dots, j-1\}} \{A \to BC, \text{ with } B \in V_{ik}, C \in V_{k+1, j}\},$$

we have

$$\begin{split} V_{1,2} &= \{A \to BC, B \in V_{1,1}, C \in V_{2,2}\} = \{\}, \\ V_{2,3} &= \{A \to BC, B \in V_{2,2}, C \in V_{3,3}\} = \{S, B\}, \\ V_{3,4} &= \{A \to BC, B \in V_{3,3}, C \in V_{4,4}\} = \{A\}, \\ \end{split}$$

$$V_{1,3} &= \{A \to BC, B \in V_{1,1}, C \in V_{2,3}\} \cup \{A \to BC, B \in V_{1,2}, C \in V_{3,3}\} = \{S, B\}, \\ V_{2,4} &= \{A \to BC, B \in V_{2,2}, C \in V_{3,4}\} \cup \{A \to BC, B \in V_{2,3}, C \in V_{4,4}\} = \{A\}, \\ \end{split}$$

$$V_{1,4} &= \{A \to BC, B \in V_{1,1}, C \in V_{2,4}\} \cup \{A \to BC, B \in V_{1,2}, C \in V_{3,4}\} \cup \{A \to BC, B \in V_{1,2}, C \in V_{1,2}\} \cup \{A \to BC, B \in V_{1,2}, C \in V_{1,2}\} \cup \{A \to BC, B \in V_{1,2}, C \in V_{1,2}\} \cup \{A \to BC, B \in V_{1,2}, C \in V_{1,2}\} \cup \{A \to BC, B \in V_{1,2}, C \in V_{1,2}\} \cup \{A \to BC, B \in V_{1,2}, C \in V_{1,2}\} \cup \{A \to$$

Thus, we have

$V_{1,4} = \{A\}$			
$V_{1,3} = \{S, B\}$	$V_{2,4} = \{A\}$		
$V_{1,2} = \{\}$	$V_{2,3} = \{S, B\}$	$V_{3,4} = \{A\}$	
$V_{1,1} = \{A\}$	$V_{2,2} = \{A\}$	$V_{3,3} = \{B\}$	$V_{4,4} = \{B\}$

Because $V_{1,4} = \{A\}$, $S \notin V_{1,4}$, we conclude that aabb is not in the language generated by the given grammar, i.e., $aabb \notin L(G)$, by using the CYK algorithm.

(2) For the string aabba: Similarly, we have

$V_{1,5} = \{\}$				
$V_{1,4} = \{A\}$	$V_{2,5} = \{\}$			
$V_{1,3} = \{S, B\}$	$V_{2,4} = \{A\}$	$V_{3,5} = \{\}$		
$V_{1,2} = \{\}$	$V_{2,3} = \{S, B\}$	$V_{3,4} = \{A\}$	$V_{4,5} = \{\}$	
$V_{1,1} = \{A\}$	$V_{2,2} = \{A\}$	$V_{3,3} = \{B\}$	$V_{4,4} = \{B\}$	$V_{5,5} = \{A\}$

Because $V_{1,5} = \{\}$, we conclude that aabba is not in the language generated by the given grammar, i.e., $aabba \notin L(G)$, by using the CYK algorithm.

(3) For the string *abbbb*: Similarly, we have

$V_{1,5} = \{A\}$				
$V_{1,4} = \{S, B\}$	$V_{2,5} = \{A\}$			
$V_{1,3} = \{A\}$	$V_{2,4} = \{S, B\}$	$V_{3,5} = \{S, B\}$		
$V_{1,2} = \{S, B\}$	$V_{2,3} = \{A\}$	$V_{3,4} = \{A\}$	$V_{4,5} = \{A\}$	
$V_{1,1} = \{A\}$	$V_{2,2} = \{B\}$	$V_{3,3} = \{B\}$	$V_{4,4} = \{B\}$	$V_{5,5} = \{B\}$

Because $V_{1,5} = \{A\}$, $S \notin V_{1,5}$, we conclude that abbbb is not in the language generated by the given grammar, i.e., $abbbb \notin L(G)$, by using the CYK algorithm.