

개념정리 #13

딥러닝 파이토치 교과서 8장

8. 성능 최적화

8.1 성능 최적화

8.2. 하드웨어를 이용한 성능 최적화

8.3. 하이퍼파라미터를 이용한 성능 최적화

8. 성능 최적화

8.1 성능 최적화

데이터를 사용한 성능 최적화

- 최대한 많은 데이터 수집하기: 일반적으로 DL / ML 알고리즘은 데이터양이 많을수록 성능이 좋음
- 데이터 생성하기 : 데이터 증강 등
- 데이터 범위(scale) 조정하기
 - 활성화 함수 시그모이드 (데이터셋 범위 0~1), 하이퍼볼릭 탄젠트 (데이터셋 범위 -1~1)
 - Normalization, Regularization, Standardization

알고리즘을 사용한 성능 최적화

수많은 알고리즘 중에 우리가 선택한 알고리즘이 최적의 알고리즘이 아닐 수도 있다. 따라서 유사한 용도의 알고리즘들을 선택해 모델을 훈련시켜 보고, 그 중 최적의 성능을 보이는 알고리즘을 선택할 필요가 있다.

알고리즘 튜닝을 위한 성능 최적화

모델을 하나 선택하여 훈련시키려면 다양한 하이퍼파라미터를 변경하면서 훈련시키고 최적의 성능을 도출해야 한다.

- **진단**: 모델에 대한 평가 성능 향상을 막는 overfitting 등의 원인에 대한 인사이트를 얻을 수 있음
 - ∘ Train 성능이 test보다 눈에 띄게 좋다면: overfitting 의심
 - → Regularization으로 해결

- ∘ Train/test 성능이 모두 좋지 않다면: underfitting 의심
 - → 네트워크 구조 변경, training epoch 수 증가 등으로 해결
- Train 성능이 test 성능을 넘어서는 변곡점이 있다면
 - → early stopping 고려
- 가중치 : 초깃값 작은 난수 사용 or autoencoder 같은 비지도 학습을 이용해 사전 훈련을 진행한 후 지도 학습 진행
- 학습률: 학습률은 모델의 네트워크 구성에 따라 다르기 때문에, 초기에 매우 크거나 작은 임의의 난수를 선택해 학습 결과를 보고 조금씩 변경해야함
 - 。 네트워크 계층이 많다면: 학습률 높아야 함
 - 네트워크 계층이 적다면: 학습률을 작게 설정해야 함
- **활성화 함수** : Activation function을 변경할 때 loss function도 함께 변경해야 하는 경우가 많음 → 다루고자 하는 데이터의 유형, 데이터로 어떤 결과를 얻고 싶은지에 대해 정확히 이해하지 못했다면 활성화 함수의 변경은 신중해야 함
 - 。 일반적으로 활성화 함수로 Sigmoid, Tanh 사용했다면 : 출력층에서는 Softmax, Sigmoid
- **배치와 에포크**: 일반적인 최근 딥러닝 트렌드 큰 에포크와 작은 배치 / 적절한 배치 크기를 위해 다양한 테스트를 진행하는 것이 좋음
- 옵티마이저 및 손실 함수
 - 일반적으로 옵티마이저 : SGD 많이 사용함 + Adam, RMSProp
- 네트워크 구성 (= Network topology)
 - 。 넓은 네트워크 : 하나의 hidden layer에 뉴런을 여러 개
 - 。 깊은 네트워크: layer 수를 늘리되 뉴런 개수는 줄임

앙상블을 이용한 성능 최적화

앙상블 Ensemble : 모델을 두 개 이상 섞어서 사용하는 것

8.2. 하드웨어를 이용한 성능 최적화

CPU 대신 GPU를 이용해 성능 향상

CPU와 GPU 사용의 차이

CPU

- ALU + control + 캐시
- 직렬 처리 방식: 명령어가 입력되는 순서대로 데이터를 처리함

GPU

- 캐시 메모리 비중은 낮고, 연산을 수행하는 ALU 개수가 많아짐
- 병렬 처리 방식 : 서로 다른 명령어를 동시에 처리하도록 설계됨
- 하나의 코어에 ALU 수백~수천 개

개별적 코어 속도: CPU >> GPU

행렬 연산 같은 순차적 재귀 연산 등의 직렬 연산에서는 CPU가 적합하다.

Backpropagation처럼 복잡한 미적분은 병렬 연산을 해야 속도가 빨라지므로 GPU가 적합하다.

⇒ 딥러닝은 수백~수천만 개의 데이터를 벡터로 변환 후 복잡한 연산을 수행하므로 GPU를 사용해 모델 트레이닝 시간을 효율적으로 단축할 수 있다.

GPU를 이용한 성능 최적화

CUDA: Computed Unified Device Architecture. NVIDIA에서 개발한 GPU 개발 툴 Google Colab에서는 GPU 환경을 클라우드로 제공해준다.

8.3. 하이퍼파라미터를 이용한 성능 최적화

배치 정규화를 이용한 성능 최적화

- 정규화 Normalization : 데이터 범위를 사용자가 원하는 범위로 제한. Feature scaling이라고
 도 한
 - \circ MinMaxScaler() : $rac{x-x_{\min}}{x_{\max}-x_{\min}}$ (x : input data)
- 규제화 Regularization : 모델 복잡도를 줄이기 위해 제약을 두는 방법.
 - Dropout
 - Early stopping
- 표준화 Standardization : 데이터를 평균 0, 표준편차 1인 형태로 변환하는 방법. Standard scaler 혹은 z-score normalization이라고도 함.
 - 평균을 기준으로 얼마나 떨어져 있는지 살펴볼 때 유용함
 - 보통 데이터 분포가 가우시안 분포를 따를 때 유용함
 - $\circ \quad rac{x-m}{\sigma} \; (x: ext{input data, } m: ext{mean, } \sigma: ext{std})$

배치 정규화 Batch Normalization

: 데이터 분포가 안정되어 학습 속도를 높일 수 있음. Gradient vanishing/exploding 같은 문제를 해결하기 위한 방법.

- Gradient vanishing/exploding problem의 원인: 내부 공변량 변화(internal covariance shift, 네트워크의 각 층마다 활성화 함수가 적용되면서 입력 값들의 분포가 계속 바뀌는 현상)
 - ⇒ 분산된 분포를 정규분포로 만들기 위해 standardization과 유사한 방식을 mini-batch에 적용해 평균은 0으로, 표준편차는 1로 유지하도록 함
- 1. $\mueta \leftarrow rac{1}{m}\sum_{i=1}^m x_i$: 미니 배치 평균을 구한다
- 2. $\sigma^2eta\leftarrowrac{1}{m}\sum_{i=1}^m(x_i-\mueta)^2$: 미니 배치의 분산과 표준편차를 구한다
- 3. $\hat{x_i} \leftarrow rac{x_i \mu eta}{\sqrt{\sigma^2 eta + \epsilon}}$: 정규화를 수행한다
- 4. $y_i \leftarrow \gamma \hat{x_i} + eta \Leftrightarrow \mathrm{BN}_{\gamma,eta}(x_i)$: 스케일을 조정한다

매 단계마다 활성화 함수를 거치면서 데이터셋 분포가 일정해짐

○ 장점:속도 향상 가능

◦ 단점 :

- 배치 크기가 작을 때는 정규화 값이 기존 값과 다른 방향으로 트레이닝될 수 있음 (e.g. 분산이 0이면 normalization 자체가 안 됨)
- RNN는 네트워크 계층 별로 mini normalization을 적용해야 함 → 모델이 더 복잡해지고 비효율적

BN 사용하는 이유

Hidden layer에서 학습이 진행될 때마다 입력 분포가 변하면서 weight이 엉뚱한 방향으로 갱신되는 문제가 종종 발생하기 때문이다. 즉, 신경망의 층이 깊어질수록 학습할때 가정했던 입력 분포가 변화해 엉뚱한 학습이 진행될 수 있는데, BN을 적용해서 입력분포를 고르게 맞추어 줄 수 있다.

* 배치 정규화 위치

FC과 Conv 뒤 / Activation funct. 앞

드롭아웃을 이용한 성능 최적화

드롭아웃 Dropout: 트레이닝 시 일정 비율의 뉴런만 사용하고, 나머지 뉴런에 해당하는 weight은 업데이트하지 않는 방법. Hidden layer에 배치된 노드 중 일부를 임의로 끄면서 학습함.

- 어떤 노드를 비활성화할지는 학습 때마다 무작위로 선정됨
- 테스트 데이터로 평가할 때는 모든 노드를 사용해 출력하되 노드 삭제 비율(드롭아웃 비율)을 곱해 서 성능을 평가함
- 트레이닝 시간이 길어지는 단점이 있지만, 모델 성능을 향상하기 위해 —overfitting을 피하기 위해— 상당히 자주 쓰는 방법임

조기 종료를 이용한 성능 최적화

조기 종료 Early stopping : 뉴럴 네트워크가 overfitting을 회피하는 regularization 기법

- 매 에포크마다 validation data에 대한 loss를 측정해 모델의 학습 종료 시점을 제어함
- Validation loss가 증가하는 시점에서 학습을 멈추도록 조정함
- 학습을 언제 종료시킬지 결정할 뿐 최고의 성능을 갖는 모델을 보장하지는 않음!

- ▲ Learning rate decay를 사용하면 accuracy 그래프가 완만한 곡선 형태를 보이며, 트레이닝이 종료된 시점의 valid set에 대한 accuracy도 높게 나타나고 있음
- ⇒ Learning rate scheduler가 성능 향상에 어느 정도 기여함!

● Valid set에 대한 loss가 에포크 20 정도에 서 정체하고 더 이상 감소하지 않음

Early stopping이 항상 성능에 좋은 영향을 미치는 것은 아님 — 모델이 제대로 학습하지 못할 수 있음

성능 향상보다는 cost 효율화