Miyaoka-Yau inequality for hyperplane arrangements

Martin de Borbon arXiv: 2411.09573 (joint with Dmitri Panov)

Loughborough University

29/11/2024

• Main result:

• Main result: $Q \leq 0$ on C

• Main result: $Q \leq 0$ on C

• Proof:

• Main result: $Q \leq 0$ on C

 \bullet Proof: Bogomolov-Gieseker inequality for stable parabolic bundles

• Main result: $Q \leq 0$ on C

• Proof: Bogomolov-Gieseker inequality for stable parabolic bundles

• Application:

• Main result: $Q \leq 0$ on C

• Proof: Bogomolov-Gieseker inequality for stable parabolic bundles

• Application: complex reflection arrangements

• This is a paper about complex projective space

$$\mathbb{CP}^n = \left(\mathbb{C}^{n+1} \setminus \{0\}\right) / \mathbb{C}^*$$

• This is a paper about complex projective space

$$\mathbb{CP}^n = \left(\mathbb{C}^{n+1} \setminus \{0\}\right) / \mathbb{C}^*$$

• Let \mathcal{H} be a hyperplane arrangement in \mathbb{CP}^n \mathcal{H} is a finite set of pairwise distinct complex hyperplanes

$$H \subset \mathbb{CP}^n$$

• This is a paper about complex projective space

$$\mathbb{CP}^n = \left(\mathbb{C}^{n+1} \setminus \{0\}\right) / \mathbb{C}^*$$

• Let \mathcal{H} be a hyperplane arrangement in \mathbb{CP}^n \mathcal{H} is a finite set of pairwise distinct complex hyperplanes

$$H \subset \mathbb{CP}^n$$

• Let $L \subset \mathbb{CP}^n$ be a linear subspace obtained as intersection of hyperplanes in \mathcal{H} . The **multiplicity** of L is

$$m_L = \big| \{ H \in \mathcal{H} \,|\, H \supset L \} \big|$$

Note: $m_L \ge \operatorname{codim} L$

Codimension 2 subspaces

Let $L \subset \mathbb{CP}^n$ be a codimension 2 intersection of hyperplanes in \mathcal{H}

Codimension 2 subspaces

Let $L \subset \mathbb{CP}^n$ be a codimension 2 intersection of hyperplanes in \mathcal{H} We say that

- L is **reducible** if its multiplicity is $m_L = 2$
- L is irreducible if its multiplicity is $m_L \geq 3$

Figure 1: Reducible (left) and irreducible (right)

• $\mathcal{H} = \{H_1, \dots, H_N\}$ hyperplane arrangement in \mathbb{CP}^n

- $\mathcal{H} = \{H_1, \dots, H_N\}$ hyperplane arrangement in \mathbb{CP}^n
- σ_i = number of irreducible codimension 2 subspaces $L \subset H_i$

- $\mathcal{H} = \{H_1, \dots, H_N\}$ hyperplane arrangement in \mathbb{CP}^n
- σ_i = number of irreducible codimension 2 subspaces $L \subset H_i$
- The Hirzebruch quadratic form of \mathcal{H} is the homogeneous degree 2 polynomial on \mathbb{R}^N given by

$$Q(a_1, \dots, a_N) = \sum_{i,j=1}^{N} Q_{ij} a_i a_j$$

$$Q_{ij} = \begin{cases} -(n+1)\sigma_i + 2n & \text{if } i = j \\ -2 & \text{if } i \neq j \text{ and } L = H_i \cap H_j \text{ is reducible} \\ n-1 & \text{if } i \neq j \text{ and } L = H_i \cap H_j \text{ is irreducible} \end{cases}$$

Let σ_i be the number of points p with $r_p \ge 3$ lying on the i-th line of the given arrangement of k lines in the plane. We consider the $(k \times k)$ -symmetric matrix A with

(3)
$$A_{ij} = \begin{cases} 3\sigma_i - 4 & (i = j), \\ 2 & (i \neq j, p \in L_i \cap L_j \text{ with } r_p = 2), \\ -1 & (i \neq j, p \in L_i \cap L_j \text{ with } r_p \ge 3). \end{cases}$$

With the k lines we associate real variables x_i and let x be the column vector $(x_1, ..., x_k)$. With the s points p_j with $r_{p_j} \ge 3$ we associate real variables y_j . For each point p_j with $r_{p_j} \ge 3$ we consider the linear form

$$P_{j}(x, y) = 2y_{j} + \sum_{p_{j} \in L_{i}} x_{i}$$
, where $y = (y_{1}, ..., y_{s})$.

Höfer's formula. For the algebraic surface Y (a good covering of S of degree d with respect to $L_1, \ldots, L_k, E_1, \ldots, E_s$ and the given branching numbers $n_1, \ldots, n_k, m_1, \ldots, m_s$) we have

(4)
$$(3c_2(Y) - c_1^2(Y))/d = \frac{1}{4} \left(x^t A x + \sum_{j=1}^t P_j(x, y)^2 \right),$$

where $x_i = 1 - \frac{1}{n_i}$ and $y_j = -1 - \frac{1}{m_j}$.

 \mathcal{H} is an essential and irreducible hyperplane arrangement in \mathbb{CP}^n

 \mathcal{H} is an essential and irreducible hyperplane arrangement in \mathbb{CP}^n

• A basis of $\mathcal{H} = \{H_1, \dots, H_N\}$ is a subset $\mathcal{B} \subset \mathcal{H}$ consisting of n+1 linearly independent hyperplanes

 \mathcal{H} is an essential and irreducible hyperplane arrangement in \mathbb{CP}^n

- A basis of $\mathcal{H} = \{H_1, \dots, H_N\}$ is a subset $\mathcal{B} \subset \mathcal{H}$ consisting of n+1 linearly independent hyperplanes
- The indicator vector of \mathcal{B} is the 1/0 vector

$$\mathbf{e}_{\mathcal{B}} = \sum_{i \, | \, H_i \in \mathcal{B}} \mathbf{e}_i$$

where $\mathbf{e}_1, \dots, \mathbf{e}_N$ are the standard basis vectors of \mathbb{R}^N

 \mathcal{H} is an essential and irreducible hyperplane arrangement in \mathbb{CP}^n

- A basis of $\mathcal{H} = \{H_1, \dots, H_N\}$ is a subset $\mathcal{B} \subset \mathcal{H}$ consisting of n+1 linearly independent hyperplanes
- The indicator vector of \mathcal{B} is the 1/0 vector

$$\mathbf{e}_{\mathcal{B}} = \sum_{i \, | \, H_i \in \mathcal{B}} \mathbf{e}_i$$

where $\mathbf{e}_1, \dots, \mathbf{e}_N$ are the standard basis vectors of \mathbb{R}^N

ullet The matroid polytope is the convex hull of the vectors ${f e}_{\mathcal B}$

$$P = \operatorname{conv}\{\mathbf{e}_{\mathcal{B}} \mid \mathcal{B} \text{ is a basis of } \mathcal{H}\}\$$

 \mathcal{H} is an essential and irreducible hyperplane arrangement in \mathbb{CP}^n

- A basis of $\mathcal{H} = \{H_1, \dots, H_N\}$ is a subset $\mathcal{B} \subset \mathcal{H}$ consisting of n+1 linearly independent hyperplanes
- The indicator vector of \mathcal{B} is the 1/0 vector

$$\mathbf{e}_{\mathcal{B}} = \sum_{i \, | \, H_i \in \mathcal{B}} \mathbf{e}_i$$

where $\mathbf{e}_1, \dots, \mathbf{e}_N$ are the standard basis vectors of \mathbb{R}^N

ullet The matroid polytope is the convex hull of the vectors ${f e}_{\mathcal B}$

$$P = \operatorname{conv}\{ \mathbf{e}_{\mathcal{B}} \mid \mathcal{B} \text{ is a basis of } \mathcal{H} \}$$

Note: P is contained in the (N-1)-simplex $\Delta \subset \mathbb{R}^N$ with

$$\Delta = \{ (a_1, \dots, a_N) \in \mathbb{R}^N \mid a_i \ge 0, \sum_i a_i = n+1 \}$$

• The **semistable cone** is the cone over the matroid polytope

$$C = \mathbb{R}_{>0} \cdot P = \text{cone } \{ \mathbf{e}_{\mathcal{B}} \mid \mathcal{B} \text{ is a basis of } \mathcal{H} \}$$

It is a convex polyhedral cone contained in the octant $(\mathbb{R}_{\geq 0})^N$

• The semistable cone is the cone over the matroid polytope

$$C = \mathbb{R}_{>0} \cdot P = \text{cone } \{ \mathbf{e}_{\mathcal{B}} \mid \mathcal{B} \text{ is a basis of } \mathcal{H} \}$$

It is a convex polyhedral cone contained in the octant $(\mathbb{R}_{\geq 0})^N$

• The stable cone is the interior of $C \subset \mathbb{R}^N$

$$C^{\circ} = \operatorname{int}(C)$$

• The semistable cone is the cone over the matroid polytope

$$C = \mathbb{R}_{>0} \cdot P = \text{cone } \{ \mathbf{e}_{\mathcal{B}} \mid \mathcal{B} \text{ is a basis of } \mathcal{H} \}$$

It is a convex polyhedral cone contained in the octant $(\mathbb{R}_{\geq 0})^N$

• The stable cone is the interior of $C \subset \mathbb{R}^N$

$$C^{\circ} = \operatorname{int}(C)$$

• \mathcal{H} is essential and irreducible \iff dim P = N - 1 \iff C° is non empty

• Let \mathcal{L} be the finite set of non-empty and proper linear subspaces $L \subset \mathbb{CP}^n$ obtained by intersecting members of \mathcal{H}

- Let \mathcal{L} be the finite set of non-empty and proper linear subspaces $L \subset \mathbb{CP}^n$ obtained by intersecting members of \mathcal{H}
- $(a_1, \ldots, a_N) \in C^{\circ} \iff \forall i : a_i > 0 \text{ and } \forall L \in \mathcal{L} :$

$$\sum_{i \mid L \subset H_i} a_i < \frac{\operatorname{codim} L}{n+1} \cdot \sum_{i=1}^N a_i$$

- Let \mathcal{L} be the finite set of non-empty and proper linear subspaces $L \subset \mathbb{CP}^n$ obtained by intersecting members of \mathcal{H}
- $(a_1, \ldots, a_N) \in C^{\circ} \iff \forall i : a_i > 0 \text{ and } \forall L \in \mathcal{L} :$

$$\sum_{i \mid L \subset H_i} a_i < \frac{\operatorname{codim} L}{n+1} \cdot \sum_{i=1}^N a_i$$

Relation to Geometric Invariant Theory:

- Let \mathcal{L} be the finite set of non-empty and proper linear subspaces $L \subset \mathbb{CP}^n$ obtained by intersecting members of \mathcal{H}
- $(a_1, \ldots, a_N) \in C^{\circ} \iff \forall i : a_i > 0 \text{ and } \forall L \in \mathcal{L} :$

$$\sum_{i \mid L \subset H_i} a_i < \frac{\operatorname{codim} L}{n+1} \cdot \sum_{i=1}^N a_i$$

Relation to Geometric Invariant Theory:

• Standard embedding $\mathbb{CP}^n \subset \mathfrak{su}(n+1)^*$ as a coadjoint orbit Let $p_i \in (\mathbb{CP}^n)^*$ be the annihilator of H_i

- Let \mathcal{L} be the finite set of non-empty and proper linear subspaces $L \subset \mathbb{CP}^n$ obtained by intersecting members of \mathcal{H}
- $(a_1, \ldots, a_N) \in C^{\circ} \iff \forall i : a_i > 0 \text{ and } \forall L \in \mathcal{L} :$

$$\sum_{i \mid L \subset H_i} a_i < \frac{\operatorname{codim} L}{n+1} \cdot \sum_{i=1}^N a_i$$

Relation to Geometric Invariant Theory:

- Standard embedding $\mathbb{CP}^n \subset \mathfrak{su}(n+1)^*$ as a coadjoint orbit Let $p_i \in (\mathbb{CP}^n)^*$ be the annihilator of H_i
- $(a_1, \ldots, a_N) \in C^{\circ} \iff \exists F \in SL(n+1, \mathbb{C}) \text{ such that the centre of }$ mass of the points $F(p_i)$ with weights a_i is $0 \in \mathfrak{su}(n+1)^*$

- Let \mathcal{L} be the finite set of non-empty and proper linear subspaces $L \subset \mathbb{CP}^n$ obtained by intersecting members of \mathcal{H}
- $(a_1, \ldots, a_N) \in C^{\circ} \iff \forall i : a_i > 0 \text{ and } \forall L \in \mathcal{L} :$

$$\sum_{i \mid L \subset H_i} a_i < \frac{\operatorname{codim} L}{n+1} \cdot \sum_{i=1}^N a_i$$

Relation to Geometric Invariant Theory:

- Standard embedding $\mathbb{CP}^n \subset \mathfrak{su}(n+1)^*$ as a coadjoint orbit Let $p_i \in (\mathbb{CP}^n)^*$ be the annihilator of H_i
- $(a_1, \ldots, a_N) \in C^{\circ} \iff \exists F \in SL(n+1, \mathbb{C}) \text{ such that the centre of }$ mass of the points $F(p_i)$ with weights a_i is $0 \in \mathfrak{su}(n+1)^*$
- If n=1 then $\mathbb{CP}^1=S^2$ and $\mathfrak{su}(2)^*=\mathbb{R}^3$

Main Result

Theorem (Miyaoka-Yau inequality, dB-Panov 2024)

$$C\subset \{Q\leq 0\}$$

Theorem (Miyaoka-Yau inequality, dB-Panov 2024)

The Hirzebruch quadratic form is non-positive on the semistable cone:

$$C\subset \{Q\leq 0\}$$

• If n=1 then $Q\equiv 0$

Theorem (Miyaoka-Yau inequality, dB-Panov 2024)

$$C\subset \{Q\leq 0\}$$

- If n=1 then $Q\equiv 0$
- If n = 2 this follows from Panov's Polyhedral Kähler Manifolds, Geometry & Topology, 2009

Theorem (Miyaoka-Yau inequality, dB-Panov 2024)

$$C\subset \{Q\leq 0\}$$

- If n=1 then $Q\equiv 0$
- If n = 2 this follows from Panov's Polyhedral Kähler Manifolds, Geometry & Topology, 2009
- Conjecture: if $\mathbf{a} = (a_1, \dots, a_N) \in C^{\circ}$ is such that $Q(\mathbf{a}) = 0$ and $a_i \in (0,1)$. Then there is a Kähler metric on \mathbb{CP}^n of constant holomorphic sectional curvature with cone angles $2\pi\alpha_i$ in transverse directions to the hyperplanes $H_i \in \mathcal{H}$, with $\alpha_i = 1 a_i$

Theorem (Miyaoka-Yau inequality, dB-Panov 2024)

$$C \subset \{Q \le 0\}$$

- If n=1 then $Q\equiv 0$
- If n=2 this follows from Panov's Polyhedral Kähler Manifolds, Geometry & Topology, 2009
- Conjecture: if $\mathbf{a} = (a_1, \dots, a_N) \in C^{\circ}$ is such that $Q(\mathbf{a}) = 0$ and $a_i \in (0, 1)$. Then there is a Kähler metric on \mathbb{CP}^n of constant holomorphic sectional curvature with cone angles $2\pi\alpha_i$ in transverse directions to the hyperplanes $H_i \in \mathcal{H}$, with $\alpha_i = 1 a_i$
 - If \mathcal{H} is a complex reflection arrangement then the metrics have been constructed by Couwenberg-Heckman-Looijenga (IHÉS, 2005)

klt and CY arrangements

A weighted arrangement is a pair $(\mathcal{H}, \mathbf{a})$ consisting of:

- a hyperplane arrangement \mathcal{H} in \mathbb{CP}^n
- a weight vector $\mathbf{a} \in \mathbb{R}^{\mathcal{H}}$ with components $a_H > 0$

klt and CY arrangements

A weighted arrangement is a pair $(\mathcal{H}, \mathbf{a})$ consisting of:

- a hyperplane arrangement \mathcal{H} in \mathbb{CP}^n
- a weight vector $\mathbf{a} \in \mathbb{R}^{\mathcal{H}}$ with components $a_H > 0$

The weighted arrangement $(\mathcal{H}, \mathbf{a})$ is

• klt if

$$\forall L \in \mathcal{L}: \sum_{H \supset L} a_H < \operatorname{codim} L$$

where \mathcal{L} is the set of non-empty and proper subspaces $L \subset \mathbb{CP}^n$ obtained by intersecting hyperplanes in \mathcal{H} . In particular,

$$0 < a_H < 1$$

klt and CY arrangements

A weighted arrangement is a pair $(\mathcal{H}, \mathbf{a})$ consisting of:

- a hyperplane arrangement \mathcal{H} in \mathbb{CP}^n
- a weight vector $\mathbf{a} \in \mathbb{R}^{\mathcal{H}}$ with components $a_H > 0$

The weighted arrangement $(\mathcal{H}, \mathbf{a})$ is

• klt if

$$\forall L \in \mathcal{L}: \sum_{H \supset L} a_H < \operatorname{codim} L$$

where \mathcal{L} is the set of non-empty and proper subspaces $L \subset \mathbb{CP}^n$ obtained by intersecting hyperplanes in \mathcal{H} . In particular,

$$0 < a_H < 1$$

• Calabi-Yau (CY) if

$$\sum_{H \in \mathcal{H}} a_H = n + 1$$

Theorem (Miyaoka-Yau inequality, dB-Panov 2024)

Suppose that the weighted arrangement $(\mathcal{H}, \mathbf{a})$ is klt and CY. Then

$$Q(\mathbf{a}) = \sum_{L \in \mathcal{L}_{irr}^{n-2}} a_L^2 - \frac{1}{2} \sum_{H \in \mathcal{H}} B_H \cdot a_H^2 - \frac{n+1}{2} \le 0$$

Theorem (Miyaoka-Yau inequality, dB-Panov 2024)

Suppose that the weighted arrangement $(\mathcal{H}, \mathbf{a})$ is klt and CY. Then

$$Q(\mathbf{a}) = \sum_{L \in \mathcal{L}_{i_{\text{tr}}}^{n-2}} a_L^2 - \frac{1}{2} \sum_{H \in \mathcal{H}} B_H \cdot a_H^2 - \frac{n+1}{2} \le 0$$

• \mathcal{L}_{irr}^{n-2} is the set of irreducible codimension 2 subspaces $L \subset \mathbb{CP}^n$

Theorem (Miyaoka-Yau inequality, dB-Panov 2024)

Suppose that the weighted arrangement $(\mathcal{H}, \mathbf{a})$ is klt and CY. Then

$$Q(\mathbf{a}) = \sum_{L \in \mathcal{L}_{\text{irr}}^{n-2}} a_L^2 - \frac{1}{2} \sum_{H \in \mathcal{H}} B_H \cdot a_H^2 - \frac{n+1}{2} \le 0$$

- $\mathcal{L}_{\mathrm{irr}}^{n-2}$ is the set of irreducible codimension 2 subspaces $L \subset \mathbb{CP}^n$
- The weight a_L at $L \in \mathcal{L}_{irr}^{n-2}$ is given by

$$a_L = \frac{1}{2} \cdot \sum_{H \supset L} a_H$$

Theorem (Miyaoka-Yau inequality, dB-Panov 2024)

Suppose that the weighted arrangement $(\mathcal{H}, \mathbf{a})$ is klt and CY. Then

$$Q(\mathbf{a}) = \sum_{L \in \mathcal{L}_{\text{irr}}^{n-2}} a_L^2 - \frac{1}{2} \sum_{H \in \mathcal{H}} B_H \cdot a_H^2 - \frac{n+1}{2} \le 0$$

- $\mathcal{L}_{\mathrm{irr}}^{n-2}$ is the set of irreducible codimension 2 subspaces $L \subset \mathbb{CP}^n$
- The weight a_L at $L \in \mathcal{L}_{irr}^{n-2}$ is given by

$$a_L = \frac{1}{2} \cdot \sum_{H \supset L} a_H$$

• $B_H + 1$ is the number of $L \in \mathcal{L}_{irr}^{n-2}$ with $L \subset H$

 \bullet Logarithmic resolution

$$X \xrightarrow{\pi} \mathbb{CP}^n$$

with $D = \pi^{-1}(\mathcal{H})$ a simple normal crossing divisor

• Logarithmic resolution

$$X \xrightarrow{\pi} \mathbb{CP}^n$$

with $D = \pi^{-1}(\mathcal{H})$ a simple normal crossing divisor

ullet X is the minimal De Concini-Procesi wonderful model of ${\mathcal H}$

• Logarithmic resolution

$$X \xrightarrow{\pi} \mathbb{CP}^n$$

with $D = \pi^{-1}(\mathcal{H})$ a simple normal crossing divisor

- ullet X is the minimal De Concini-Procesi wonderful model of ${\mathcal H}$
- The irreducible components of D are in bijective correspondence with non-empty and proper irreducible subspaces $L \in \mathcal{L}_{irr}$

$$D = \bigcup_{L \in \mathcal{L}_{irr}} D_L$$

where D_L is the unique irreducible component of D such that

$$\pi(D_L) = L$$

Sketch proof: the resolution (example)

Let $p_1, \ldots, p_5 \in \mathbb{CP}^3$ be five points in general linear position

$$\mathcal{H} = 10 \text{ planes } \overline{p_i p_j p_k}$$

- Step 1: $X_1 \xrightarrow{\sigma_1} \mathbb{CP}^3$ is the blowup at the five points p_i
- Step 2: $X \xrightarrow{\sigma_2} X_1$ is the blowup at the 10 (disjoint) proper transforms of the lines L_{ij}

$$\pi^{-1}(\mathcal{H}) = \underbrace{\left(\bigcup_{H} D_{H}\right)}_{10 \text{ divisors } \cong \mathrm{Bl}_{4} \, \mathbb{P}^{2}} \, \underbrace{\left(\bigcup_{L} D_{L}\right)}_{10 \text{ divisors } \cong \mathbb{P}^{1} \times \mathbb{P}^{1}} \, \underbrace{\left(\bigcup_{p} D_{p}\right)}_{5 \text{ divisors } \cong \mathrm{Bl}_{4} \, \mathbb{P}^{2}}$$

Sketch proof: the resolution (example)

Let $p_1, \ldots, p_5 \in \mathbb{CP}^3$ be five points in general linear position

$$\mathcal{H} = 10 \text{ planes } \overline{p_i p_j p_k}$$

- Step 1: $X_1 \xrightarrow{\sigma_1} \mathbb{CP}^3$ is the blowup at the five points p_i
- Step 2: $X \xrightarrow{\sigma_2} X_1$ is the blowup at the 10 (disjoint) proper transforms of the lines L_{ij}

$$\pi^{-1}(\mathcal{H}) = \underbrace{\left(\bigcup_{H} D_{H}\right)}_{10 \text{ divisors } \cong \mathrm{Bl}_{4} \, \mathbb{P}^{2}} \, \underbrace{\left(\bigcup_{L} D_{L}\right)}_{10 \text{ divisors } \cong \mathbb{P}^{1} \times \mathbb{P}^{1}} \, \underbrace{\left(\bigcup_{p} D_{p}\right)}_{5 \text{ divisors } \cong \mathrm{Bl}_{4} \, \mathbb{P}^{2}}$$

Remark: $X = \overline{M_{0.6}}$

Parabolic bundle \mathcal{E}_* on (X, D) defined by:

Parabolic bundle \mathcal{E}_* on (X, D) defined by:

• vector bundle $\mathcal{E} = \pi^*(T\mathbb{CP}^n)$

Parabolic bundle \mathcal{E}_* on (X, D) defined by:

- vector bundle $\mathcal{E} = \pi^*(T\mathbb{CP}^n)$
- weights a_L for $L \in \mathcal{L}_{irr}$ given by

$$a_L = (\operatorname{codim} L)^{-1} \sum_{H \supset L} a_H$$

Parabolic bundle \mathcal{E}_* on (X, D) defined by:

- vector bundle $\mathcal{E} = \pi^*(T\mathbb{CP}^n)$
- weights a_L for $L \in \mathcal{L}_{irr}$ given by

$$a_L = (\operatorname{codim} L)^{-1} \sum_{H \supset L} a_H$$

• increasing filtrations of $\mathcal{E}|_{D_L}$ by vector subbundles

$$F_a^L = \begin{cases} \pi^*(TL) & \text{if } a < a_L \\ \mathcal{E}|_{D_L} & \text{if } a \ge a_L \end{cases}$$

Parabolic bundle \mathcal{E}_* on (X, D) defined by:

- vector bundle $\mathcal{E} = \pi^*(T\mathbb{CP}^n)$
- weights a_L for $L \in \mathcal{L}_{irr}$ given by

$$a_L = (\operatorname{codim} L)^{-1} \sum_{H \supset L} a_H$$

• increasing filtrations of $\mathcal{E}|_{D_L}$ by vector subbundles

$$F_a^L = \begin{cases} \pi^*(TL) & \text{if } a < a_L \\ \mathcal{E}|_{D_L} & \text{if } a \ge a_L \end{cases}$$

Remark: klt implies $a_L \in (0,1)$ and CY implies

$$\operatorname{par-c}_1(\mathcal{E}_*) = 0 \in H^2(X, \mathbb{R})$$

Sketch proof: the stability theorem

Sketch proof: the stability theorem

• Fix positive integers b_L for L in $\mathcal{L}_{irr}^{\circ} = \mathcal{L}_{irr} \setminus \mathcal{H}$ such that

$$P_k = k \cdot \pi^* \big(\mathcal{O}_{\mathbb{P}^n}(1) \big) - \sum_{L \in \mathcal{L}_{\text{irr}}^{\circ}} b_L \cdot D_L$$

is an ample line bundle on X for all $k \gg 1$

Sketch proof: the stability theorem

• Fix positive integers b_L for L in $\mathcal{L}_{irr}^{\circ} = \mathcal{L}_{irr} \setminus \mathcal{H}$ such that

$$P_k = k \cdot \pi^* \big(\mathcal{O}_{\mathbb{P}^n}(1) \big) - \sum_{L \in \mathcal{L}_{\mathrm{irr}}^{\circ}} b_L \cdot D_L$$

is an ample line bundle on X for all $k \gg 1$

• Stability Theorem. If $V \subset \mathcal{E}$ is a non-zero and proper saturated subsheaf. Then

$$\operatorname{par-c}_1(\mathcal{V}_*) \cdot c_1(P_k)^{n-1} < 0$$

where \mathcal{V}_* is the naturally induced parabolic structure on \mathcal{V}

• The Bogomolov-Gieseker inequality for stable parabolic bundles (proved by Takuro Mochizuki in 2006, Astérisque) asserts that

$$\operatorname{par-ch}_2(\mathcal{E}_*) \cdot c_1(P_k)^{n-2} \le 0$$

• The Bogomolov-Gieseker inequality for stable parabolic bundles (proved by Takuro Mochizuki in 2006, Astérisque) asserts that

$$\operatorname{par-ch}_2(\mathcal{E}_*) \cdot c_1(P_k)^{n-2} \le 0$$

• The expression par-ch₂(\mathcal{E}_*) · $c_1(P_k)^{n-2}$ defines a polynomial of degree n-2 in k that we write as p(k)

• The Bogomolov-Gieseker inequality for stable parabolic bundles (proved by Takuro Mochizuki in 2006, Astérisque) asserts that

$$\operatorname{par-ch}_2(\mathcal{E}_*) \cdot c_1(P_k)^{n-2} \le 0$$

- The expression par-ch₂(\mathcal{E}_*) · $c_1(P_k)^{n-2}$ defines a polynomial of degree n-2 in k that we write as p(k)
- Calculation of par-ch₂(\mathcal{E}_*) and certain cup products in $H^*(X)$ show that

$$p(k) = Q(\mathbf{a}) \cdot k^{n-2} + O(k^{n-3})$$

• The Bogomolov-Gieseker inequality for stable parabolic bundles (proved by Takuro Mochizuki in 2006, Astérisque) asserts that

$$\operatorname{par-ch}_2(\mathcal{E}_*) \cdot c_1(P_k)^{n-2} \le 0$$

- The expression par-ch₂(\mathcal{E}_*) · $c_1(P_k)^{n-2}$ defines a polynomial of degree n-2 in k that we write as p(k)
- Calculation of par-ch₂(\mathcal{E}_*) and certain cup products in $H^*(X)$ show that

$$p(k) = Q(\mathbf{a}) \cdot k^{n-2} + O(k^{n-3})$$

• Since p(k) < 0 for $k \gg 1$, we must have $Q(\mathbf{a}) \leq 0$

Stability Theorem and distributions on \mathbb{CP}^n

Key estimate

Suppose that $(\mathcal{H}, \mathbf{a})$ is a weighted arrangement that is klt and CY. Then there is $\delta > 0$ such that, for any distribution $\mathcal{V} \subset T\mathbb{CP}^n$ with index $i = c_1(\mathcal{V}) \geq 0$, we have

$$\sum_{H|H \cap \mathcal{V}} a_H \ge \imath + \delta \,,$$

where the sum is over all $H \in \mathcal{H}$ that are transverse to \mathcal{V} .

Stability Theorem and distributions on \mathbb{CP}^n

Key estimate

Suppose that $(\mathcal{H}, \mathbf{a})$ is a weighted arrangement that is klt and CY. Then there is $\delta > 0$ such that, for any distribution $\mathcal{V} \subset T\mathbb{CP}^n$ with index $i = c_1(\mathcal{V}) \geq 0$, we have

$$\sum_{H|H \pitchfork \mathcal{V}} a_H \ge \imath + \delta \,,$$

where the sum is over all $H \in \mathcal{H}$ that are transverse to \mathcal{V} .

Example. Let $M \subset \mathbb{CP}^n$ be a linear subspace with dim M = r - 1 for some $1 \leq r \leq n - 1$. The collection of all r-dimensional subspaces that contain M defines a distribution $\mathcal{V} \cong \mathcal{O}_{\mathbb{P}^n}(1)^{\oplus r}$ of index i = r. A hyperplane is tangent to \mathcal{V} if and only if $H \supset M$.

Application: lower bound on total sum of multiplicities

Theorem (dB-Panov, 2024)

Suppose that for all $L \in \mathcal{L}$ we have

$$m_L < \operatorname{codim} L \cdot \frac{N}{n+1} \quad (i.e. \ \mathbf{1} \in C^{\circ})$$

Then

$$\sum_{L \in \mathcal{L}^{n-2}} m_L \ge \left(1 - \frac{2}{n+1}\right) N^2 + N \quad (i.e. \ Q(\mathbf{1}) \le 0)$$

Equality holds if and only if every $H \in \mathcal{H}$ intersects $\mathcal{H} \setminus \{H\}$ along

$$\left(1 - \frac{2}{n+1}\right)N + 1 \quad (i.e. \ \mathbf{1} \in \ker Q)$$

codimension 2 subspaces.

Hirzebruch arrangements

A hyperplane arrangement \mathcal{H} is Hirzebruch if:

Hirzebruch arrangements

A hyperplane arrangement \mathcal{H} is Hirzebruch if:

• for every subspace $L \in \mathcal{L}$ we have

$$\frac{m_L}{\operatorname{codim} L} \le \frac{N}{n+1}$$

Hirzebruch arrangements

A hyperplane arrangement \mathcal{H} is Hirzebruch if:

• for every subspace $L \in \mathcal{L}$ we have

$$\frac{m_L}{\operatorname{codim} L} \le \frac{N}{n+1}$$

• every $H \in \mathcal{H}$ intersects the others along

$$\left(1 - \frac{2}{n+1}\right)N + 1$$

codimension 2 subspaces.

Hirzebruch arrangements

A hyperplane arrangement \mathcal{H} is Hirzebruch if:

• for every subspace $L \in \mathcal{L}$ we have

$$\frac{m_L}{\operatorname{codim} L} \le \frac{N}{n+1}$$

• every $H \in \mathcal{H}$ intersects the others along

$$\left(1 - \frac{2}{n+1}\right)N + 1$$

codimension 2 subspaces.

Examples: (i) The n+1 coordinate hyperplanes in \mathbb{CP}^n .

(ii) If $\mathcal{H} \subset \mathbb{CP}^1$ and $|\mathcal{H}| \geq 2$ then \mathcal{H} is Hirzebruch.

However, if $n \geq 2$ then the Hirzebruch condition is more rigid.

- $G \subset U(n+1)$ irreducible complex reflection group
- \bullet $\mathcal{H} = \text{reflecting hyperplanes}$

- $G \subset U(n+1)$ irreducible complex reflection group
- \mathcal{H} = reflecting hyperplanes

Theorem (dB-Panov, 2024)

 ${\cal H}$ is Hirzebruch and its quadratic form Q is negative semidefinite

- $G \subset U(n+1)$ irreducible complex reflection group
- \mathcal{H} = reflecting hyperplanes

Theorem (dB-Panov, 2024)

 ${\cal H}$ is Hirzebruch and its quadratic form Q is negative semidefinite

Proof: show that $\mathbf{1} \in C^{\circ}$ and $Q(\mathbf{1}) = 0$. Key identity:

$$\sum_{H \in \mathcal{H}} |\langle v, n_H \rangle|^2 = \frac{N}{n+1} \cdot ||v||^2$$

which follows from Schur's lemma. \Box

- $G \subset U(n+1)$ irreducible complex reflection group
- \mathcal{H} = reflecting hyperplanes

Theorem (dB-Panov, 2024)

 ${\cal H}$ is Hirzebruch and its quadratic form Q is negative semidefinite

Proof: show that $1 \in C^{\circ}$ and Q(1) = 0. Key identity:

$$\sum_{H \in \mathcal{H}} |\langle v, n_H \rangle|^2 = \frac{N}{n+1} \cdot ||v||^2$$

which follows from Schur's lemma. \Box

Example: Take in $\mathbb{C}P^{n+1}$ the plane $\mathbb{C}P^n = \{x_1 + \ldots + x_{n+2} = 0\}$. The braid arrangement $A_{n+1} \subset \mathbb{C}P^n$ is given by planes $x_i - x_j = 0$ for $i \neq j \in \{1, \ldots, n+2\}$. A_{n+1} consists of (n+1)(n+2)/2 hyperplanes and induces A_n on each of them.

Hirzebruch's problem 1985. Consider an arrangement of N lines in $\mathbb{C}P^2$ such that each line intersects others in exactly N/3+1 points. Does such an arrangement consist of mirrors of a finite reflection group?

Hirzebruch's problem 1985. Consider an arrangement of N lines in $\mathbb{C}P^2$ such that each line intersects others in exactly N/3+1 points. Does such an arrangement consist of mirrors of a finite reflection group?

Hirzebruch's problem 1985. Consider an arrangement of N lines in $\mathbb{C}P^2$ such that each line intersects others in exactly N/3+1 points. Does such an arrangement consist of mirrors of a finite reflection group?

Hirzebruch's problem 1985. Consider an arrangement of N lines in $\mathbb{C}P^2$ such that each line intersects others in exactly N/3+1 points. Does such an arrangement consist of mirrors of a finite reflection group?

Panov (Geometry & Topology, 2018): there exist exactly four Hirzebruch line arrangements in \mathbb{RP}^2

Example: Non-Pappus matroid

The Hirzebruch quadratic form is ≤ 0 on the positive octant of \mathbb{R}^9 .

Example: Non-Pappus matroid

The Hirzebruch quadratic form is ≤ 0 on the positive octant of \mathbb{R}^9 .

Question: does Miyaoka-Yau inequality holds for oriented matroids?

Open problem: do symplectic 4-manifolds of 'general type' satisfy $c_1^2 \leq 3c_2$?

Example: Non-Pappus matroid

The Hirzebruch quadratic form is ≤ 0 on the positive octant of \mathbb{R}^9 .

Question: does Miyaoka-Yau inequality holds for oriented matroids?

Open problem: do symplectic 4-manifolds of 'general type' satisfy $c_1^2 \leq 3c_2$?

THANK YOU!