PATENT ABSTRACTS OF JAPAN

(11) Publication number:

2000-134131

(43)Date of publication of application: 12.05.2000

(51)Int.Cl.

H04B H010 1/24 H01Q 21/29 HO4B HO4B HO4B 7/26

(21)Application number: 10-306985

(71)Applicant: DENSO CORP

(22)Date of filing:

28.10.1998

(72)Inventor: KOIDE TAIZO

(54) RADIO COMMUNICATION DEVICE

(57)Abstract:

PROBLEM TO BE SOLVED: To provide a radio communication device that can keep communication available, even when a main antenna emitting/capturing a radio wave is faulty. SOLUTION: If a whip antenna (main antenna) is faulty, an impedance as seamed from a transmission circuit 13 toward the whip antenna becomes infinite. When a discrimination circuit 22 that receives a current level from an envelope detection circuit 20 discriminates the current level reaching a threshold or over resulting from the defective whip antenna 8, a control circuit 24 controls a transmission changeover switch 15 to be thrown from a 1st transmission switching state (show in solid lines) into a 2nd transmission switching state (shown in broken lines). A transmission wave outputted from the transmission circuit 13 is not given to the whip antenna 8 but to a flat plate antenna 9 (sub antenna), and the flat plate antenna 9 emits the wave as a radio wave. Thus, even when the whip antenna 8 is faulty, the flat plate antenna 9 can emit/ capture the radio wave.

LEGAL STATUS

[Date of request for examination]

19.01.2005

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

(18)日本回传許庁 (JP)

(12) 公開特許公報(A)

(11)特許出版公照各号 特別2000-134131 (P2000-134131A)

(43)公開日 平成12年5月12日(2000.5.12)

(51) Int.CL'		鐵別配号	FI				3 12(-13-14)
H04B	1/44		H04B	1/44		•	デーマコート*(参考)
H01Q	1/24		H010	-,			51021
			-,,,,	1,20		A	51047
	21/29	,		21/29		Z	5K011
H04B	1/74		H04B				5 K O 2 1
		·	香奎爾求 未開求 置		OL (+ 7	(英	5 K O 5 B 最終夏に続く

(21) 出願番号

特膜平10-308985

(22)出展日

平成10年10月28日(1998, 10, 28)

(71) 出題人 000004260

株式会社デンソー

愛知原刈谷市昭和前1丁目1番地

(72)発明者 小出 憲三

愛知馬刈谷市昭和町1丁目1番地 株式会

社デンソー内

(74)代理人 100071135

弁理士 佐藤 強

五柱頁に続く

(54) 「発明の名称」 無線速信益圏

(57)【要約】

【興題】 電波を放射・諸捉するメインアンテナが故障 した場合であっても、速信を可能とする無線通信装置を 提供する。

「解決手段」 ホイップアンチナ8 (メインアンテナ) が故障すると、送信回路13側から見たホイップアンチナ8側のインピーダンスは無限大となる。制御回路24は、ホイップアンテナ8が故障したことに応じて、エンベローブ検波回路20から判定回路22に出力される第2小人が断値以上となったと判定すると、送信切換式意(図中、英線にて示す)から第2の送信切換状態(図中、破線にて示すと切換制御する。送信回路13から出力された送信波で、ボイップアンテナ8に与えられるようになる。これにより、ホイップアンテナ8が故障した場合であってカンテナ8から電波として放射されるようになる。これにより、ホイップアンテナ8が故障した場合であっても、電波を平板アンテナ8により放射・搶提することが可能となる。

(2)

特闘2000-134131

【特許請求の範囲】

【請求項1】 筐体から突出して設けられ送信回路から 出力された送信波を電波として放射可能であると共に電 波を捕捉可能なメインアンチナと、前配筐体に内蔵され 電波を捕捉可能なサブアンチナと、前記メインアンテナ により薄型された電波が受信回路に受信波として与えら れる第1の受信切換状態と前記サブアンテナにより捕捉 された電波が前記受信回路に受信波として与えられる第 2の受信切換状態とを切換可能な受信切換手段とを値 え、この受信切換手段が切換制御されることにより前記 10 メインアンテナと前配サブアンテナとによりダイバーシ ティ受信するように構成された無疑遺信装置において、 前記送信回路から出力された送信彼が前記メインアンテ ナに与えられる第1の送信切換状態と前配送信回路から 出力された迷信波が前記サブアンテナに与えられる第2 の送信切換状態とを切換可能であって、常には、第1の 送信切換状態に切換制御されている送信切換手段と、 前記送信回路から出力された送信波の反射波のレベルを 検出するレベル検出手段と、

てのレベル検出手段により検出された送信波の反射波の 20 レベルが所定値未満から所定値以上に変化したときに、 前配送信切換手段を第1の送信切換状態から第2の送信 切換状態に切換制御する制御手段とを備えたことを特徴 とする無線通信装置。

【精求項2】 前記制御手段は、前記レベル検出手段により検出された送信彼の反射波のレベルが所定値未満から所定値以上に変化したときに、前記受信切換手段を第2の受信切換状態に切換制御することを特徴とする請求項1記載の無線通信装置。

【請求項3】 所定の報知情報を出力する報知手段を健 30 え、

前配制御手段は、前記レベル検出手段により検出された 送信波の反射波のレベルが所定値未満から所定値以上に 変化したときに、前配報知手段を起助するように構成さ れているととを特徴とする請求項1または2記載の無線 通信装置。

【請求項4】 前記制御手段は、前記レベル検出手段により検出された送信彼の反射波のレベルが所定値以上から所定値未満に変化したときに、前記送信切接手段を第2の送信切換伏態から第1の送信切換伏態に切換制御するととを特徴とする請求項1ないし3のいずれかに記載の無線通信装置。

【請求項5】 前記レベル検出手段は、エンベローブ検 被回路を主体として様成されていることを特徴とする時 求項1ないし4のいずれかに記載の無線通信装置。

【発明の詳細な餅明】

[0001] .

【発明の属する技術分野】本発明は、筐体から突出して 設けられたメインアンテナと、筐体に内蔵されたサブア ンテナとを嘱え、これらメインアンテナとサブアンテナ 50 とによりダイバーシティ受信するように構成された無線 通信装置に関する。

[0002]

【発明が解決しようとする際題】近年、電気還信技術の 進歩に伴って、携帯電話装置などの無線運信装置が広く 普及している。ところで、携帯電話装置は、一般的に は、筐体から突出して設けられたホイップアンテナと、 筐体に内臓された平板アンテナとを備え、ホイップアン テナは、電波を放射・舘提するための送受信兼用のメイ ンアンテナとして作用し、平板アンテナは、電波を抽泥 するための受信専用のサブアンテナとして作用するよう になっている。そして、携帯電話装置は、これらホイッ フアンテナと平板アンテナとによりダイバーシティ受信 する構成となっている。

【0003】しかしながら、従来のものは、このようにメインアンチナとして作用するホイップアンテナが管体から突出して設けられた構成となっているので、例えば、使用者が携帯電話装置をズボンの後ろボケットに入れたまま座ってしまうと、ホイップアンチナが折れ曲がってしまい、故障してしまうという度があった。そうなると、ホイップアンチナは、電波を放射・捕捉することが良好にできなくなるので、その結果、通信できなくなるという問題があった。

【0004】本発明は、上記した事情に継みてなされたものであり、その目的は、電波を放射・指提するメインアンテナが故障した場合であっても、通信することを可能とする無線通信装置を提供することにある。 【0005】

【課題を解決するための手段】 請求項1 記載の無録通信 装置によれば、メインアンテナが故障すると、送信回路 側から見たメインアンテナ側のインピーダンスは無限大 となることから、これに応じて、制御手段は、レベル検 出手段により検出された送信波の反射液のレベルが所定 健未織から所定値以上に変化したことを検出すると、送 信切終手段を第1の送信切換状態から第2の送信切換状 態に切換制御する。これにより、送信回路から出力され た送信波は、メインアンテナに与えられることはなく、 サブアンテナに与えられるようになる。

【000日】とこで、サブアンテナは、本来、電波を循 提可能に構成されているので、アンテナの可逆性により、送信回路から出力された送信波が与えられると、そ の送信波を電波として放射することができる。したかっ て、メインアンテナが故障した場合であっても、電波を サブアンテナにより放射・捕捉することができ、速信を 実行するととができる。

【0007】請求項2記載の無根通信裝置によれば、制御手段は、レベル検出手段により検出された送信波の反射波のレベルが所定値未満から所定値以上に変化したととを検出すると、上記したように送信切換手段を第1の送信切換状態から第2の送信切換状態に切換制御すると

特頭2000-134131

共に、受信切換手段を第1の受信切換状態から第2の受 信切換状態に切換例御する。これにより、メインアンテ ナとサブアンテナとによりダイバーシティ受信を実行す ることはなくなり、つまり、故障したメインアンテナに より捕捉された電波が受信回路に受信波として与えられ るととはなく、サブアンテナにより捕捉された電波が受 信回路に受信波として与えられるようになるので、電波 をサブアンテナにより良好に受信することができる。

【0008】請求項3記載の無線通信裝置によれば、制 御手段は、レベル検出手段により検出された送信波の反 10 射波のレベルが所定値未満から所定値以上に変化したと とを検出すると、上記したように送信切換手段を第1の 送信切換状態から第2の送信切換状態に切換制御し、受 信切換手段を第1の受信切換状態から第2の受信切換状 態に切換制御すると共に、報知手段を超動する。これに より、使用者は、報知手段から所定の報知情報が出力さ れることにより、メインアンテナが故障したことを認識 するととができる。

【0009】 請求項4 記載の無線通信装置によれば、メ インアンテナが故障から復帰すると、送僧回路側から見 20 たメインアンテナ側のインピーダンスは正常なときの値 に復帰するととから、これに応じて、制御手段は、レベ ル検出手段により検出された送信波の反射波のレベルが 所定値以上から所定値未満に変化したことを検出する と、送信切換手段を第2の送信切換状態から第1の送信 切換状態に切換制御する。これにより、故障する前の状 激に速やかに復帰するととができ、すなわち、電波をメ インアンテナにより放射・鎖捉することができ、通信を 良好に実行することができる。

【0010】 論求項5 記載の無線運信装置によれば、レ 30 ベル検出手段をエンベローブ検波回路を主体として構成 したので、エンベローブ検波回路が汎用性の高い周知の 様成であることから、レベル検出手段を簡単に構成する ととできる。

[0011]

【発明の実施の形態】以下、本発明を携帯電話装置に適 用した一実施例について図面を参照して説明する。ま ず、図2において、携帯電話装置1にあって筐体2の表 面側には、通話開始ヤー、リダイヤルキー、通話終了キ 一、「0」~「8」の数字キー、*(アスタリスク)キ 40 ー、ન(シャープ)キー、F (ファンクション) キーた どの各種キーが配設されてなるキーバッド3、遠話相手 の電話番号などを表示するディスプレイ4(本発明でい う報知手段)、送話信号を入力するマイク(送話器) 5、受話信号を出力するスピーカ(受話器)6、着信し たときに点波するLED7が設けられている。

【0012】また、筐体2の上部側には、アンテナケー ス部2 & が上方に突出するように一体に設けられてお り、そのアンテナケース部2gの内部には、ホイップア ンテナ8が配設されている。さらに、筺体2の裏面側に 50 [0018]サーキュレータ14は、3個の端子を有し

は、平板アンテナ9が配設されている。これらホイップ アンテナ8 および平板アンチナ8 は、給電部(図示せ ず)から給電されるようになっており、通常の使用形態 では、ホイップアンテナ8は、電波を放射・拮捉する送 受信兼用のメインアンテナとして作用し、平板アンテナ 8は、電波を捕捉する受信専用のサブアンテナとして作 用するようになっている。

【0013】次に、上記携帯電話装置】の電気的が提成 の要部について、図1を参照して説明する。ホイップア ンチナ8は、アンテナ共用器10を介して受信切換スイ ッチ11 (本発明でいう受信切換手段)の一方の固定接。 点11aに煅焼されており、平板アンテナ9は、受信切 換スイッチ11の他方の固定接点11bに接続されてい る。そして、受信切換スイッチ 11の可動接点 11c は、受信回路12に接続されている。

【0014】これにより、受信切換スイッチ11におい て固定接点11 a と可動接点11 c とが接続されている とき(図1中、実線にて示す状態、本発明でいう第1の 受信切換状態にあるとき)には、ホイップアンテナ8に より捕捉された電波が受信回路 12 に受信波として与え られるようになる。一方、受信切換スイッチ11におい て固定接点11bと可動接点11cとが接続されている とき(図1中、破線にて示す状態、本発明でいう第2の 受信切換状態にあるとき)には、平板アンテナ8により 捕捉された電波が受信回路12に受信波として与えられ るようになる。

【0015】送信回路13は、サーキュレータ14を介 して送信切換スイッチ15(本発明でいう送信切換手 段)の可助接点15gに接続されている。そして、送信 切換スイッチ15の一方の固定接点15bは、上記アン テナ共用器10を介してホイップアンテナ8に接続され ており、送信切換スイッチ15の他方の固定接点15 c は、平板アンテナ9に接続されている。

【0016】これにより、送信切換スイッチ15におい て可動接点15 aと固定接点15 bとが接続されている とき(図1中、英級にて示す状態、本発明でいう第1の 送信切換状態にあるとき)には、送信回路13から出力 された送信波は、ホイップアンテナ8 化与えられるよう になり、ホイップアンテナ8から電波として放射される ようになる。一方、送信切換スイッチ15において可助 接点15aと固定接点15cとが接続されているとき (図1中、破壊にて示す状態、本発明でいう第2の送信 切換状態にあるとき)には、送信回路13から出力され た送信波は、平板アンテナ9に与えられるようになる。 【0017】ことで、平板アンナナ8は、上記したよう に、通常の使用形態では、電波を捕捉する受信専用アン チナとして作用するものであるので、アンチナの可逆性 により、送信波が与えられると、その与えられた送信波 を貸波として放射するようになる。

特闘2000-134131

ており、そのうちの1つの端子は、終始抵抗18に接続 されている。この場合、サーキュレータ14と終端抵抗 16との間の部分は、ダイオード17、抵抗18および コンデンサ19からなるエンペローブ検波回路20(本 発明でいうレベル検出手段)の入力側との間で電磁結合 するようになっている。とれにより、送信回路13から 出力された送信彼の一部がホイップアンテナ8で反射し て反射波となり、その反射波がサーキュレータ14を介 して終始抵抗16に向かって流れると、その反射波の電 流に応じた満れ電流がエンベローブ検波回路20に流れ 10 るようになっている。

【0018】エンペローブ検波回路20の出力側は、オ ペアンプ21の非反転入力端子に接続されており、オペ アンプ2 1 の出力端子は、判定回路2 2 に接続されてい ると共に、反転入力艦子に負帰還接続されている。つき り、オペアンプ21は、ボルチージホロワ回路23を構 成しており、とれにより、エンベローブ検波回路20の 出力働と判定回路22の入力側との間でインビーダンス が整合され、判定回路22の動作が安定するようになっ ている.

【0020】特定回路22は、エンベローブ検波回路2 0からポルテージホロワ回路23を介して与えられる電 流レベルと、あらかじめ設定されている関値(本発明で いう所定値)とを比較するようになっており、比較結果 を制御回路24(本発明でいう制御手段)に出力するよ うになっている.

【0021】制御回路24は、判定回路22から比較結 果が与えられると、その比較結果に基づいて受信切換ス イッチ! 1 および送信切換スイッチ15を切換制御する 回路22から与えられた比較結果により、エンペローブ 検彼回路20から判定回路22に出力された電流レベル が既健未満であることを検出しているときには、受信回 路12ド与えられる受信波の受信強度に基づいて受信切・ 換スイッチ11を第1の受信切換状態と第2の受信切換 状態との間で切換制御すると共に、送信切換スイッチ1 5を第1の送信切換状態に切換制御するようになってい

【0022】一方、制御回路24は、判定回路22から 与えられた比較結果により、エンベローブ検波回路20 から判定回路22に出力された電流レベルが開催以上で あることを検出しているときには、受信切換スイッチ1 1を第2の受信切換状族に切換制御すると共に、送信切 換スイッテ15を第2の送借切換状態に切換制御するよ うになっている。また、とのとき、制御国路24は、表 示詞御郎25に表示制御信号を出力することにより、デ ィスプレイ4 化所定の表示情報(本発明でいう報知情 報)を表示させるようになっている。

【0023】次に、上記した様成の作用について、図3 も参照して説明する。まず、遺常のとき、つまり、ホイ 50

ップアンテナ8が正常であるときには、送信回路13側 から見たホイップアンチナ8厠のインビーダンスは正常 な値であり、エンベロープ検波回路20から判定回路2 2に出力される電流レベルは、関値未満であり、関値以 上となることはない。

【0024】とのとき、制御回路24は、上記したよう に、受信国路12に与えられる受信波の受信強度に基づ いて受信切換スイッチ11を第1の受信切換状態と第2 の受信切換状態との間で切換制御することにより、ホイ ップアンテナ8により舗提した電波と平板アンテナ8に より捕捉した電波のうちの受信強度の高い方が受信回路 12に受信波として与えられるようにダイバーシティ受 信を制御し、また、送信切換スイッチ15を第1の送信 切換状態に切換制御することにより、送信回路13から 出力された送信波がホイップアンテナ8から電波として 放射されるように送信を制御する。

【0025】さて、ととで、ホイップアンチナ8が何ら かの原因により故障した場合を考える。ホイップアンチ ナ8が故障すると、送信回路13側から具たホイップア 20 ンテナ8側のインピーダンスは無限大となり、送像図路 13から出力された送信波の大部分がホイップアンテナ 8で反射するようになり、エンベロープ検波回路20か 5 判定回路22 に出力される電流レベルは、関値以上と

【0026】とのとき、制御回路24は、受信切換スイ ッチ11を第2の受信切換状態に切換制御することによ り、平板アンチナ9により増促した電波が受信回路12 に受信波として与えられるように受信を制御し、また、 送信切換スイッチ15を第2の送信切換状態に切換所御 ようになっている。具体的には、例知回路24は、料定 30 することにより、送信回路13から出力された送信波が 平板アンテナ8から電波として放射されるように送信を 制御し、表示制御部25に表示制御信号を出力すること により、ディスプレイ4化「ホイップアンテナコショウ チュウ」という表示情報を表示させる(図3参照)。

[0027]尚、との場合、制御回路24は、受信切換 スイッチ11および送信切換スイッチ15をTDMA動 作に応じた所定の受信タイミングおよび送信タイミング により切換制御しており、これにより、送信回路13か **う出力された送信波が受信回路 1 2 に与えられることが** ないようになっている。

【0028】また、ホイップアンテナ8が故障から復帰 すると、送信回路13側から見たホイップアンテナ8側 のインピーダンスは正常な値に復帰し、エンペローブ検 彼區路20から判定回路22に出力される電流レベルは 曖値未満に復帰するので、とのとき、制御回路24は、 上記したように、ホイップアンテナ8 および平板アンテ ナ8によりダイバーシティ受信を制御し、また、ホイッ プアンチナ8により送信を制御する。

【0028】このように本実施例によれば、ホイップア ンテナ8が故障したときには、送信切換スイッチ15が (5)

特開2000-134131

第1の送信切換状態から第2の送信切換状態と切換例他されるようになるので、送信回路13から出力された送信波は、ホイップアンテナ8に与えられることはなく、平板アンテナ8に与えられ、平板アンテナ8から電波として放射されるようになる。したがって、ホイップアンテナ8が故障した場合であっても、電波を平板アンテナ8により放射・捕捉することができ、通信を実行することができる。

【0030】また、このとき、受信切換スイッチ1】が 第1の受信切換状態から第2の受信切換状態に切換制御 10 されるようになるので、ホイップアンテナ8と平板アンテナ8とによりダイバーシティ受信されることはなくなり、故障したホイップアンテナ8により捕捉された軽波が受信団路12に受信波として与えられることはなく、平板アンテナ8により捕捉された電波が受信回路12に受信波として与えられるようになり、電波をより良好に受信することができる。

【0031】また、とのとき、ディスプレイ4に「ホイップアンテナコショウチュウ」という表示情報が表示されるようになるので、使用者は、との表示情報により、ホイップアンテナ8が故障したととを認識することができる。

【0032】また、ホイップアンテナ8が故障から復帰したときには、送信切換スイッチ15が第2の送信切換状態に切換制御されるようになるので、ホイップアンテナ8が故障する前の状態に速やかに復帰し、電波をホイップアンテナ8により放射・増促するととができ、通信を良好に実行することができる。

【0033】さらに、ホイップアンデナ8が故障したか

否かを検出するレベル検出手段としての回路をエンベロープ検波回路20を主体として橡成したので、エンベロープ検波回路20が汎用性の高い周知の橡成であることから、レベル検出手段を簡単に構成することできる。【0034】本発明は、上記した実施例にのみ限定されるものでなく、次のように変形または拡張することができる。無線通信装置としては、携帯電話装置に限らず、送受信兼用のメインアンテナと受信専用のサブアンテナとを備えているものであれば、他の通信装置であっても良い。

8

【0035】エンベローブ検波回路の入力側は、電磁結合する構成に限らず、容量結合する構成であっても良い。メインアンデナが故障したときに、LEDが点灯したり、スピーカが鳴動するようにしても良い。また、ディスプレイに表示される表示情報としては、カナ表示に限らず、「ホイップアンデナ故障中」のようなカナ漢字表示であっても良く、さらに、表示情報のメッセージとしては、他のメッセージであっても良い。

【図面の簡単な説明】

- 【図1】本発明の一実施例を示すブロック構成図
- 【図2】外麒斜視図
- 【図3】ディスプレイの表示を示す図

【符号の説明】

図面中、1は携帯電転装置(無線遺信装置)、2は筐体、4はディスプレイ(報知手段)、8はホイップアンテナ(メインアンテナ)、9は平板アンテナ(サブアンテナ)、11は受信切換スイッチ(受信切換手段)、12は受信回路、13は送信回路、15は送信切換スイッチ(送信切換手段)、20はエンベロープ検波回路(レベル検出手段)、24は制御回路(制御手段)である。

(6)

特務2000-134131

【図1】

特開2000-134131

フロントページの統合

(51) Int.Cl.7 H04B 7/08 7/26

Fターム(参考) 53021 AA02 AA06 AA13 CA06 FAZ4 FA25 FA26 FA31 GA01 GA08 HAOS HAOS HAID JAOI 5J047 AA04 AA05 AB03 AB06 AB10 FA09 F810 F812 FC06 FD01 5K011 AA06 BA03 DA02 DA21 FA01 GA05 JA01 KA11 5K021 AA01 8810 CC01 CC06 CC14 0002 EE01 FF04 FF11 CC01 5K059 CC03 DD02 EE03 5K067 AA26 AA33 BB04 CC24 EE02 FF18 CG01 KK03

ゲーヤコート (参考) H 0 4 B 7/08

FI

7/26

5 K O 6 7 В

D

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT OR DRAWING

BLURRED OR ILLEGIBLE TEXT OR DRAWING

SKÉWED/SLANTED IMAGES

COLOR OR BLACK AND WHITE PHOTOGRAPHS

GRAY SCALE DOCUMENTS

LINES OR MARKS ON ORIGINAL DOCUMENT

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.