Relation réflexive

Définition

Soient un ensemble E et une relation binaire R sur E, R est réflexive si : $\forall e \in E, (e, e) \in R \text{ (que l'on note aussi eRe)}$

Exemple

Une relation non réflexive

Relation irréflexive

Définition

Soient un ensemble E et une relation binaire R sur E, R est irréflexive si : $\forall e \in E$, $(e,e) \notin R$

Relation symétrique

Définition

Soient un ensemble E et une relation binaire R sur E, R est symétrique si : $\forall e_1, e_2 \in E$, si $(e_1, e_2) \in R$, alors $(e_2, e_1) \in R$

Relation antisymétrique

Définition

Soient un ensemble E et une relation binaire R sur E, R est anti-symétrique si : $\forall e_1, e_2 \in E$, si $(e_1, e_2) \in R$ et $(e_2, e_1) \in R$, alors $e_2 = e_1$

Exemple

Une relation non antisymétrique

Relation transitive

Définition

Soient un ensemble E et une relation binaire R sur E, R est une relation transitive si $\forall e_1, e_2, e_3 \in E$, e_1Re_2 et $e_2Re_3 \implies e_1Re_3$

Relation d'équivalence

Définition

Soient un ensemble E une relation binaire R sur E, R est une relation d'équivalence si :

- réflexive
- symétrique
- transitive

Exemple

Une relation d'équivalence

Une relation qui n'est pas une relation d'équivalence

Préordre

Définition

Soient un ensemble E une relation binaire R sur E est un pré-ordre si :

- réflexive
- transitive

Exemple

Une relation qui n'est pas un préordre

Ordre

Définition

Soient un ensemble E une relation binaire R (notée \leq) sur E est un ordre si elle est :

- réflexive
- antisymétrique
- transitive

 (E, \leq) est appelé un ensemble ordonné. On écrit $x \leq y$ plutôt que $(x, y) \in \leq$.

Exemple

Une relation qui n'est pas un ordre

Vocabulaire

- y couvre x si $x \neq y$, $y \geq x$ et $\forall z$, si $y \geq z$ et $z \geq x$, on a x = z ou y = z
- x est un minorant de y si $x \le y$ (resp. majorant si $y \le x$)
- x et y sont comparables si $x \le y$ ou $y \le x$
- x et y sont incomparables si $x \not \leq y$ et $y \not \leq x$ (notation m x||y|)

Exemple

 e_2 majore et couvre e_1 , e_5 majore mais ne couvre pas e_1 , e_2 et e_4 sont incomparables

Diagramme de Hasse

Définition

Soit un ensemble ordonné (E, \leq) son diagramme de Hasse est une représentation graphique de sa relation de couverture telle que chaque élément x de E est représenté par un point p(x) du plan avec :

- si $x \le y$, la droite horizontale passant par p(x) est au-dessous de la droite horizontale passant par p(y).
- lorsque y couvre x, un segment de droite joint p(x) et p(y).

Relation d'ordre strict

Définition

Soit un ensemble E, une relation binaire R sur E est une relation d'ordre strict (notée <) si elle est :

- irréflexive
- transitive

Elle est alors asymétrique : quand xRy, on n'a pas yRx.

Exemple

Un ordre strict

Une relation qui n'est pas un ordre strict

Relation d'ordre total

Définition

Soit un ensemble ordonné (E, \leq) , \leq est un ordre total si $\forall x, y \in E$ on a $x \not\leq y \implies y \leq x$

Morphisme entre relations binaires sur un ensemble E

Definition (Morphisme entre relations binaires sur un ensemble E)

Si R_p et R_q sont deux relations binaires sur E, un morphisme de R_p vers R_q est une application m de E vers E vérifiant : $\forall x,y \in E$, $xR_py \implies m(x)R_qm(y)$. Un morphisme préserve les couples et peut en ajouter.

Isomorphismes et types d'ordre, Morphismes

Définition (morphisme d'ordre)

Soient deux ensembles ordonnés $P=(E_P,\leq_P)$ et $Q=(E_Q,\leq_Q)$, une application a de E_P vers E_Q vérifiant : $\forall x,y\in E_P,\,x\leq_P y\implies a(x)\leq_Q a(y)$. a est appelée un morphisme d'ordre. a préserve l'ordre \leq_P .

Définition (isomorphisme d'ordre)

Deux ensembles ordonnés $P=(E_P,\leq_P)$ et $Q=(E_Q,\leq_Q)$ sont isomorphes (on dira aussi qu'ils sont du même type) lorsqu'il existe une bijection b de E_P and E_Q vérifiant : $\forall x,y\in E_P,x\leq_P y\Leftrightarrow b(x)\leq_Q b(y)$. b est appelée un isomorphisme d'ordre. b préserve l'ordre \leq_P et sa réciproque b^{-1} préserve l'ordre \leq_Q .

Exemple

Un isomorphisme d'ordre

Un morphisme d'ordre qui n'est pas un isomophisme

Exercices

- Dessiner des modèles UML pour les notions rencontrées et discuter des modélisations et de la sémantique apportée par la sémantique mathématique sous-jacente.
- On donne le diagramme de Hasse ci-dessous, reconstruire l'ordre qu'il représente.

- Formaliser la relation « est isomorphe à » et indiquer ses propriétés.
- Formaliser pour Java les relations suivante et indiquer leurs propriétés :
 - les relations extends et implements
 - a la relation extends+ qui relie une classe à elle-même ou à chacune de ses super-classes; ou une interface à elle-même ou à chacune de ses super-interfaces
- Soit un programme Java contenant des classes et des interfaces, existe-t-il un morphisme de la relation extends restreinte aux classes vers la relation extends ∪ implements? Et inversement? Poser formellement les éléments en jeu.
- Formaliser la relation d'inclusion entre paquetages en Java et indiquer ses propriétés.