Lista 2

Probabilidade I

2025-1

Deve fazer **todos** os exercícios marcados com **(*)** e mais um; só pode entregar esses exercícios. Tem até o dia 11 de Abril até as 23.59 para enviar a lista; cada dia de retraso se descontará um ponto da sua nota. Entrega em LATEX é desejável mas não obrigatória. Enviar no e-mail bruno.andrades@impa.br com o assunto "Lista 2 - [SEU NOME] - Prob I". Pode responder em inglês, espanhol ou português.

Independência

- 1. **(*)** Construa variáveis aleatórias X_1,\cdots,X_n tal que para todo $S\subsetneq [n]$ temos que as variáveis $(X_i)_{i\in S}$ são independentes mas X_1,\cdots,X_n não são independentes
- 2. Seja $X=(X_1,\cdots,X_d)$ um vetor Gaussiano, i.e. X tem densidade

$$p_X(x) = (2\pi)^{-d/2} |\det(K_X)|^{-1/2} e^{-\frac{1}{2}(x-\mu_X)^T K_X^{-1}(x-\mu_X)}$$

onde $\mu_X \in \mathbb{R}^d$ e $K_X \in \mathbb{R}^{d \times d}$ é uma matriz positiva definida. Mostre que X_1, \cdots, X_d são independentes se e somente $\text{cov}(X_i, X_j) = 0$ para todo $i \neq j$

- 3. (*) Prove que
 - (a) Para toda \mathbb{P}_X medida de probabilidade em $(\mathbb{R},\mathcal{B}(\mathbb{R}))$, $\mathbb{P}_X(A)\in\{0,1\}$ para todo $A\in\mathcal{B}(\mathbb{R})$ se e somente se $\mathbb{P}_X=\delta_p$ para algum $p\in\mathbb{R}$
 - (b) Se X é uma variável aleatória independente de se mesma, então X=c quase certamente para algum $c\in\mathbb{R}$
 - (c) Se X=c quase certamente para algum $c\in\mathbb{R}$ então X é independente de qualquer outra variável aleatória
 - (d) Sejam X e Y independentes. De uma condição suficiente e necessária para que $\mathbb{P}(X=Y)>0$
 - (e) Se X e Y são variáveis aleatórias independentes tais que X+Y=c quase certamente para algum $c\in\mathbb{R}$ então $X=c_1$ e $Y=c_2$ quase certamente onde $c_1,c_2\in\mathbb{R}$ tais que $c_1+c_2=c$
 - (f) Prove que se X e Y são variáveis aleatórias independentes sem átomos, então X+Y também não tem átomos
- 4. Suponha que as variáveis aleatórias $X_i \sim \text{Exp}(\lambda_i)$ com $\lambda_i > 0$ são independentes
 - (a) Ache a distribuição de $\min\{X_1,\ldots,X_n\}$
 - (b) Mostre que

$$\mathbb{P}(X_j = \min\{X_1, \cdots, X_n\}) = \frac{\lambda_j}{\sum_{i \in [n]} \lambda_i}$$

5. Suponha que $U,V\sim \mathrm{Exp}(\lambda)$ com $\lambda>0$ são independentes. Prove que as variáveis $\frac{U}{U+V}$ e U+V são independentes e encontre a distribuição de ambas

Borel-Cantelli

- 1. Sejam $(X_i)_{i\geq 1}$ variáveis aleatórias i.i.d. não negativas. Mostre que
 - (a) Se $\mathbb{E}X_1 < \infty$ então,

$$\limsup_{n} \frac{X_n}{n} = 0 \text{ q.c.}$$

(b) Se $\mathbb{E}X_1=\infty$ então,

$$\limsup_n \frac{X_n}{n} = \infty \text{ q.c.}$$

- 2. **(*)** Sejam $X_i \sim \text{Exp}(1)$ i.i.d.
 - (a) Prove que

$$\limsup_n \frac{X_n}{\log n} = 1 \text{ q.c.}$$

(b) Seja $M_n = \max_{i \in [n]} X_i$. Prove que

$$\liminf_n \frac{M_n}{\log n} \ge 1 \text{ q.c.}$$

(c) Prove que existe uma subsequência n_k tal que

$$\limsup_k \frac{M_{n_k}}{\log n_k} \le 1 \text{ q.c.}$$

(d) Mostre que

$$\lim_n \frac{M_n}{\log n} = 1 \text{ q.c.}$$

3. Seja X_i uma sequência de variáveis aleatórias independentes. Mostre que $\sup_n X_n < \infty$ q.c. se e somente se existe algum A > 0 tal que

$$\sum_{k\geq 1} \mathbb{P}(X_k > A) < \infty$$

Sigma álgebra caudal

- 1. (*) Seja $(X_n)_n$ uma sequencia de variáveis aleatórias, seja $\mathcal{B}_n = \sigma((X_k)_{k \geq n})$ e $\mathcal{B}_\infty = \cap_n \mathcal{B}_n$
 - (a) Considere $f:\mathbb{N} o \mathbb{R}_+$. Mostre que os seguintes eventos estão em \mathcal{B}_{∞}

$$\begin{array}{l} \text{i. } \left\{ \frac{X_n}{f(n)} \in B, \text{ para infinitos } n \text{'s} \right\} \text{ para } B \in \mathcal{B}(\mathbb{R}) \\ \text{ii. } \left\{ \limsup_n \frac{X_n}{f(n)} > c \right\} \text{ para } c \in \mathbb{R} \\ \text{iii. } \left\{ \exists \lim_n \frac{X_n}{f(n)} \right\} \end{array}$$

ii.
$$\left\{\limsup_{n} \frac{X_n}{f(n)} > c \right\}$$
 para $c \in \mathbb{R}$

iii.
$$\left\{ \exists \lim_{n} \frac{X_n}{f(n)} \right\}$$

(b) Conclua que $\limsup_n \frac{X_n}{f(n)}$ e $\lim_n \frac{X_n}{f(n)} \mathbb{1}_{\left[\exists \lim_n \frac{X_n}{f(n)} \right]}$ são variáveis aleatórias (possivelmente nos reais estendidos) \mathcal{B}_{∞} -mensuráveis

2