μ**A7800 SERIES** POSITIVE-VOLTAGE REGULATORS

SLVS056J - MAY 1976 - REVISED MAY 2003

- 3-Terminal Regulators
- **Output Current up to 1.5 A**
- **Internal Thermal-Overload Protection**

KC (TO-220) PACKAGE (TOP VIEW)

High Power-Dissipation Capability

KTE PACKAGE

- **Internal Short-Circuit Current Limiting**
- **Output Transistor Safe-Area Compensation**

description/ordering information

This series of fixed-voltage integrated-circuit voltage regulators is designed for a wide range of applications. These applications include on-card regulation for elimination of noise and distribution problems associated with single-point regulation. Each of these regulators can deliver up to 1.5 A of output current. The internal current-limiting and thermal-shutdown features of these regulators essentially make them immune to overload. In addition to use as fixed-voltage regulators, these devices can be used with external components to obtain adjustable output voltages and currents, and also can be used as the power-pass element in precision regulators.

ORDERING INFORMATION

ТЈ	V _{O(NOM)} (V)	PACKAGE [†]		ORDERABLE PART NUMBER	TOP-SIDE MARKING
		POWER-FLEX (KTE)	Reel of 2000	μΑ7805CKTER	μΑ7805C
	5	TO-220 (KC)	Tube of 50	μΑ7805CKC	A700EC
		TO-220, short shoulder (KCS)	Tube of 20	μΑ7805CKCS	μA7805C
		POWER-FLEX (KTE)	Reel of 2000	μΑ7808CKTER	μΑ7808C
	8	TO-220 (KC)	Tube of 50	μΑ7808CKC	470000
200 (2. 40500		TO-220, short shoulder (KCS)	Tube of 20	μΑ7808CKCS	μA7808C
	10	POWER-FLEX (KTE)	Reel of 2000	μΑ7810CKTER	μΑ7810C
		TO-220 (KC)	Tube of 50	μΑ7810CKC	μΑ7810C
0°C to 125°C		POWER-FLEX (KTE)	Reel of 2000	μΑ7812CKTER	μΑ7812C
		TO-220 (KC)	Tube of 50	μΑ7812CKC	
		TO-220, short shoulder (KCS)	Tube of 20	μΑ7812CKCS	μA7812C
		POWER-FLEX (KTE)	Reel of 2000	μΑ7815CKTER	μΑ7815C
	15	TO-220 (KC)	Tube of 50	μΑ7815CKC	A7945C
		TO-220, short shoulder (KCS)	Tube of 20	μΑ7815CKCS	μA7815C
	24	POWER-FLEX (KTE)	Reel of 2000	μΑ7824CKTER	μΑ7824C
	24	TO-220 (KC)	Tube of 50	μΑ7824CKC	μA7824C

[†]Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

recommended operating conditions

			MIN	MAX	UNIT
	μΑ7	7805C	7	25	
	μᾹ	7808C	10.5	25	
.	μA7	7810C	12.5	28	V
٧ı	Input voltage μΑ7	7812C	14.5	30	V
	μΑ7	μΑ7815C	17.5	30	
	μΑ7	7824C	27	38	
lo	Output current			1.5	Α
TJ	Operating virtual junction temperature μΑ7	7800C series	0	125	°C

electrical characteristics at specified virtual junction temperature, $V_{\rm I}$ = 10 V, $I_{\rm O}$ = 500 mA (unless otherwise noted)

PARAMETER	TEST CONDITIONS		_ +	μ	UNIT		
PARAMETER	IESI COND	ITIONS	T _J †	MIN	TYP	MAX	UNIT
Output voltage	$I_O = 5 \text{ mA to 1 A},$	V _I = 7 V to 20 V,	25°C	4.8	5	5.2	V
Output voltage	P _D ≤ 15 W		0°C to 125°C	4.75		5.25	V
Input voltage regulation	V _I = 7 V to 25 V		25°C		3	100	mV
input voltage regulation	V _I = 8 V to 12 V		25 0		1	50	IIIV
Ripple rejection	$V_{I} = 8 \text{ V to } 18 \text{ V}, \qquad \text{f}$	= 120 Hz	0°C to 125°C	62	78		dB
Output voltage regulation	$I_O = 5$ mA to 1.5 A		25°C		15	100	mV
	I _O = 250 mA to 750 mA				5	50	
Output resistance	f = 1 kHz		0°C to 125°C		0.017		Ω
Temperature coefficient of output voltage	$I_O = 5 \text{ mA}$		0°C to 125°C		-1.1		mV/°C
Output noise voltage	f = 10 Hz to 100 kHz		25°C		40		μV
Dropout voltage	I _O = 1 A		25°C		2		V
Bias current			25°C		4.2	8	mA
Dies surrent change	V _I = 7 V to 25 V I _O = 5 mA to 1 A		200 / 40500			1.3	A
Bias current change			0°C to 125°C			0.5	mA
Short-circuit output current			25°C		750		mA
Peak output current			25°C		2.2		Α

[†] Pulse-testing techniques maintain the junction temperature as close to the ambient temperature as possible. Thermal effects must be taken into account separately. All characteristics are measured with a 0.33-μF capacitor across the input and a 0.1-μF capacitor across the output.

electrical characteristics at specified virtual junction temperature, V_I = 14 V, I_O = 500 mA (unless otherwise noted)

DADAMETED	TEST CONDITIONS	_ +	μ Α7808C			UNIT
PARAMETER	TEST CONDITIONS	TJ [†]	MIN	TYP	MAX	UNIT
Output voltage	$I_O = 5 \text{ mA to 1 A}, \qquad V_I = 10.5 \text{ V to 23 V},$	25°C	7.7	8	8.3	V
Output voltage	$P_D \le 15 \text{ W}$	0°C to 125°C	7.6		8.4	V
Input voltage regulation	$V_{I} = 10.5 \text{ V to } 25 \text{ V}$	25°C		6	160	mV
input voltage regulation	V _I = 11 V to 17 V	25 C		2	80	IIIV
Ripple rejection	V _I = 11.5 V to 21.5 V, f = 120 Hz	0°C to 125°C	55	72		dB
Output voltage regulation	$I_{O} = 5 \text{ mA to } 1.5 \text{ A}$	25°C		12	160	mV
	I _O = 250 mA to 750 mA			4	80	
Output resistance	f = 1 kHz	0°C to 125°C		0.016		Ω
Temperature coefficient of output voltage	$I_O = 5 \text{ mA}$	0°C to 125°C		-0.8		mV/°C
Output noise voltage	f = 10 Hz to 100 kHz	25°C		52		μV
Dropout voltage	I _O = 1 A	25°C		2		V
Bias current		25°C		4.3	8	mA
Discourant shares	V _I = 10.5 V to 25 V	0°C to 125°C			1	mA
Bias current change	$I_O = 5 \text{ mA to 1 A}$	0 0 10 125 0			0.5	IIIA
Short-circuit output current		25°C		450		mA
Peak output current		25°C		2.2		Α

T Pulse-testing techniques maintain the junction temperature as close to the ambient temperature as possible. Thermal effects must be taken into account separately. All characteristics are measured with a 0.33-μF capacitor across the input and a 0.1-μF capacitor across the output.

electrical characteristics at specified virtual junction temperature, V_I = 17 V, I_O = 500 mA (unless otherwise noted)

PARAMETER	TEST CONDITIONS		_ +	μ	UNIT		
PARAMETER			TJ [†]	MIN	TYP	MAX	UNIT
Output voltage	$I_0 = 5 \text{ mA to 1 A},$	V _I = 12.5 V to 25 V,	25°C	9.6	10	10.4	V
Output voltage	P _D ≤ 15 W		0°C to 125°C	9.5	10	10.5	V
Input voltage regulation	V _I = 12.5 V to 28 V		25°C		7	200	mV
Input voltage regulation	V _I = 14 V to 20 V		25 C		2	100	IIIV
Ripple rejection	V _I = 13 V to 23 V,	f = 120 Hz	0°C to 125°C	55	71		dB
Output voltage regulation	$I_O = 5 \text{ mA to } 1.5 \text{ A}$ $I_O = 250 \text{ mA to } 750 \text{ mA}$		25°C		12	200	mV
					4	100	
Output resistance	f = 1 kHz		0°C to 125°C		0.018		Ω
Temperature coefficient of output voltage	$I_O = 5 \text{ mA}$		0°C to 125°C		-1		mV/°C
Output noise voltage	f = 10 Hz to 100 kHz		25°C		70		μV
Dropout voltage	I _O = 1 A		25°C		2		V
Bias current			25°C		4.3	8	mA
Dies surrent shangs	V _I = 12.5 V to 28 V		0°C to 125°C			1	mA
Bias current change	I _O = 5 mA to 1 A		0-0 10 125-0			0.5	mA
Short-circuit output current			25°C		400		mA
Peak output current			25°C		2.2		Α

[†] Pulse-testing techniques maintain the junction temperature as close to the ambient temperature as possible. Thermal effects must be taken into account separately. All characteristics are measured with a 0.33-µF capacitor across the input and a 0.1-µF capacitor across the output.

electrical characteristics at specified virtual junction temperature, V_I = 19 V, I_O = 500 mA (unless otherwise noted)

DADAMETED	TEST CONDITIONS		_ +	μ Α7812C			UNIT
PARAMETER			TJ [†]	MIN	TYP	MAX	UNIT
Output voltage	$I_0 = 5 \text{ mA to 1 A}, V_1 = 14.$	5 V to 27 V,	25°C	11.5	12	12.5	V
Output voltage	$P_D \le 15 \text{ W}$		0°C to 125°C	11.4		12.6	V
Input voltage regulation	$V_I = 14.5 \text{ V to } 30 \text{ V}$		25°C		10	240	mV
Input voltage regulation	V _I = 16 V to 22 V		25 C		3	120	IIIV
Ripple rejection	V _I = 15 V to 25 V, f = 120	Hz	0°C to 125°C	55	71		dB
Output voltage regulation	I _O = 5 mA to 1.5 A I _O = 250 mA to 750 mA		25°C		12	240	mV
			25 C		4	120	
Output resistance	f = 1 kHz		0°C to 125°C		0.018		Ω
Temperature coefficient of output voltage	$I_O = 5 \text{ mA}$		0°C to 125°C		-1		mV/°C
Output noise voltage	f = 10 Hz to 100 kHz		25°C		75		μV
Dropout voltage	I _O = 1 A		25°C		2		V
Bias current			25°C		4.3	8	mA
Dies surrent change	V _I = 14.5 V to 30 V I _O = 5 mA to 1 A					1	mA
Bias current change			0°C to 125°C			0.5	""
Short-circuit output current			25°C		350		mA
Peak output current			25°C		2.2		Α

[†] Pulse-testing techniques maintain the junction temperature as close to the ambient temperature as possible. Thermal effects must be taken into account separately. All characteristics are measured with a 0.33-µF capacitor across the input and a 0.1-µF capacitor across the output.

electrical characteristics at specified virtual junction temperature, V_I = 23 V, I_O = 500 mA (unless otherwise noted)

PARAMETER	TEST CONDITIONS	_ +	μ Α7815C			UNIT
PARAMETER	TEST CONDITIONS	TJ [†]	MIN	TYP	MAX	ONII
Output voltage	$I_O = 5 \text{ mA to 1 A}, \qquad V_I = 17.5 \text{ V to 30 V},$	25°C	14.4	15	15.6	V
Output voltage	$P_D \le 15 \text{ W}$	0°C to 125°C	14.25		15.75	V
Input voltage regulation	V _I = 17.5 V to 30 V	25°C		11	300	mV
input voltage regulation	V _I = 20 V to 26 V	25 C		3	150	IIIV
Ripple rejection	V _I = 18.5 V to 28.5 V, f = 120 Hz	0°C to 125°C	54	70		dB
Output voltage regulation	$I_O = 5$ mA to 1.5 A	25°C		12	300	mV
	I _O = 250 mA to 750 mA	25 C		4	150	
Output resistance	f = 1 kHz	0°C to 125°C		0.019		Ω
Temperature coefficient of output voltage	$I_O = 5 \text{ mA}$	0°C to 125°C		-1		mV/°C
Output noise voltage	f = 10 Hz to 100 kHz	25°C		90		μV
Dropout voltage	I _O = 1 A	25°C		2		V
Bias current		25°C		4.4	8	mA
Pigg current change	V _I = 17.5 V to 30 V	0°C to 125°C			1	mA
Bias current change	I _O = 5 mA to 1 A	0.0 10 125.0			0.5	mA
Short-circuit output current		25°C		230		mA
Peak output current		25°C		2.1		Α

[†] Pulse-testing techniques maintain the junction temperature as close to the ambient temperature as possible. Thermal effects must be taken into account separately. All characteristics are measured with a 0.33-μF capacitor across the input and a 0.1-μF capacitor across the output.

electrical characteristics at specified virtual junction temperature, V_I = 33 V, I_O = 500 mA (unless otherwise noted)

DADAMETED	TEST 60	TEST CONDITIONS		μ Α7824C			UNIT
PARAMETER	TEST CONDITIONS		TJ [†]	MIN	TYP	MAX	UNIT
Output voltage	$I_0 = 5 \text{ mA to 1 A},$	$V_{I} = 27 \text{ V to } 38 \text{ V},$	25°C	23	24	25	V
Output voltage	P _D ≤ 15 W		0°C to 125°C	22.8		25.2	V
Input voltage regulation	V _I = 27 V to 38 V		25°C		18	480	mV
Input voltage regulation	V _I = 30 V to 36 V		25 C		6	240	IIIV
Ripple rejection	V _I = 28 V to 38 V,	f = 120 Hz	0°C to 125°C	50	66		dB
Output voltage regulation	I _O = 5 mA to 1.5 A I _O = 250 mA to 750 mA		25°C		12	480	mV
					4	240	
Output resistance	f = 1 kHz		0°C to 125°C		0.028		Ω
Temperature coefficient of output voltage	$I_O = 5 \text{ mA}$		0°C to 125°C		-1.5		mV/°C
Output noise voltage	f = 10 Hz to 100 kHz		25°C		170		μV
Dropout voltage	I _O = 1 A		25°C		2		V
Bias current			25°C		4.6	8	mA
Bias current change	V _I = 27 V to 38 V I _O = 5 mA to 1 A		0°C to 125°C			1	mΛ
			0 0 10 125 0	0.5		mA	
Short-circuit output current			25°C		150		mA
Peak output current		-	25°C		2.1		Α

[†] Pulse-testing techniques maintain the junction temperature as close to the ambient temperature as possible. Thermal effects must be taken into account separately. All characteristics are measured with a 0.33-μF capacitor across the input and a 0.1-μF capacitor across the output.

