Ensemble dénombrable, famille sommable des nombres complexes, séries entières

Coralie RENAULT

11 janvier 2015

Exercice

Former le développement en série entière en 0 de

$$x \mapsto \operatorname{sh}\left(\arcsin x\right)$$

Exercice

Vous jouez à pile ou face avec un ami. Il parie pile, lance la pièce et fait pile. Quelle est la probabilitée qu'il soit un tricheur? On peut noter p la proportion de tricheur dans la pop

Exercice

a) Développer en série entière en 0 la fonction arcsin et préciser le domaine de convergence.

b) En étudiant

$$\int_0^{\pi/2} \arcsin(\sin(t)) \, \mathrm{d}t$$

déterminer

$$\sum_{k=0}^{+\infty} \frac{1}{(2k+1)^2} \text{ puis } \sum_{k=1}^{+\infty} \frac{1}{k^2}$$

Exercice

Une involution d'un ensemble E est une application $f: E \to E$ vérifiant $f \circ f = \mathrm{Id}_E$. Pour $n \ge 1$, on note I_n le nombre d'involutions de $[\![1,n]\!]$. On convient : $I_0 = 1$.

a) Montrer, si $n \ge 2$, que

$$I_n = I_{n-1} + (n-1)I_{n-2}$$

b) Montrer que la série entière $\sum_{n\geqslant 0}\frac{I_n}{n!}x^n$ converge si $x\in]-1,1[.$

On note S(x) sa somme.

) En déduire une expression de S(x), puis une expression de I_n .

Exercice

Exercice (Théorème de Bernstein)

Soit $f:[0,1]\to\mathbb{C}$ une fonction continue, ω son module de continuité, i.e $\omega(h)=\sup\{|f(u)-$ |f(v)|; $|u-v| \leq h$. Pour $n \geq 1$, on considère le polynôme $B_n(f,x) = B_n(x) = \sum_{k=0}^n {n \choose k} x^k (1-x)^k$ $(x)^{n-k}f(\frac{k}{n})$, le *n*-ième polynôme de Bernstein de f. On va montrer que :

1. B_n converge uniformément vers f sur [0,1].

Pour cela:

- Soit $x \in [0,1]$ et soit (X_n) une suite de variables aléatoires indépendantes et identique-
- ment distribuées de loi $\mathcal{B}(x)$. Déterminer la loi de $S_n = \sum_{k=1}^n X_k$. On définit la variance de X, lorsqu'elle existe, par : $Var(X) = \mathbb{E}([X \mathbb{E}(X)]^2)$. Montrer que $Var(X) = \mathbb{E}(X^2) - (\mathbb{E}(X))^2$
- Montrer l'inégalité de Tchébytchev : Soit X une variable aléatoire réelle alors montrer que:

$$\mathbb{P}(|X - \mathbb{E}(X)| \ge t) \le \frac{Var(X)}{t^2}$$

Soient (X_1, X_2, \ldots, X_n) des variables aléatoires réelles indépendantes et identiquement distribuées tel que $Var(X_1)$ existe. Montrer que :

$$Var(S_n) = nVar(X_1)$$

- Calculer $\mathbb{E}[f(\frac{S_n}{n})]$
- Montrer que $\forall \delta > 0$ on a :

$$|f(x) - B_n(x)| \le \omega(\delta) + 2||f||_{\infty} \mathbb{P}(|x - \frac{S_n}{n}| \ge \delta)$$

Conclure

Exercice

Soient $a \in \mathbb{C}^*$ et $p \in \mathbb{N}$. Former le développement en série entière de

$$x \mapsto \frac{1}{(x-a)^{p+1}}$$

Exercice

Une succession d'individus A_1, \ldots, A_n se transmet une information binaire du type « oui »ou

Chaque individu A_k transmet l'information qu'il a reçu avec la probabilité p à l'individu A_{k+1} ou la transforme en son inverse avec la probabilité 1-p. Chaque individu se comporte indépendamment des autres.

Calculer la probabilité p_n pour que l'information reçu par A_n soit identique à celle émise par

On suppose $0 . Quelle est la limite de <math>p_n$ quand n tend vers l'infini?

Exercice

Une famille possède deux enfants.

- a) Quelle est la probabilité que les deux soient des garçons?
- b) Quelle est cette probabilité sachant que l'aîné est un garçon?
- c) On sait que l'un des deux enfants est un garçon, quelle est la probabilité que le deuxième le soit aussi?
- d) On sait que l'un des deux enfants est un garçon est né un 29 février, quelle est la probabilité que le deuxième soit un garçon?

Exercice

Soit X et Y deux variables aléatoires indépendantes suivant des lois de Poisson de paramètres λ et μ .

Reconnaître la loi de X sachant X + Y = n.

Exercice

Une variable aléatoire X suit une loi binomiale de taille n et de paramètre p.

Quelle est la loi suivie par la variable Y = n - X?

Exercice

Soient X_1, \ldots, X_n des variables mutuellement indépendantes suivant une même loi d'espérance m et de variance σ^2 .

a) On pose

$$\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$$

Calculer espérance et variance de \bar{X}_n .

b) On pose

$$V_n = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X}_n)^2$$

Calculer l'espérance de V_n .

Exercice

Dans une population, une personne sur 10~000 souffre d'une pathologie. Un laboratoire pharmaceutique met sur le marché un test sanguin. Celui-ci est positif chez 99~% des malades mais aussi faussement positif chez 0,1~% des personnes non atteintes. Un individu passe ce test et obtient un résultat positif.

Quelle est sa probabilité d'être malade? Qu'en conclure?