Systèmes dynamiques

Feuille d'exercices 5

Exercice 1. Flots linéaires et conjugaison.

- 1. Soient deux flots continus $(\varphi_t)_{t \in \mathbf{R}}$ et $(\phi_t)_{t \in \mathbf{R}}$ sur \mathbf{R}^d qui sont topologiquement conjugués : il existe un homéomorphisme $h : \mathbf{R}^d \to \mathbf{R}^d$ tel que $h \circ \varphi_t = \phi_t \circ h$ pour tout $t \in \mathbf{R}$.
 - (a) Montrer que h envoie les points périodiques sur les points périodiques.
 - (b) Montrer que pour tout $x \in \mathbf{R}^d$, l'orbite $\mathcal{O}_{\varphi}(x) = \{\varphi_t(x), t \in \mathbf{R}\}$ est fermée si et seulement si l'orbite $\mathcal{O}_{\phi}(h(x))$ (définie identiquement) est fermée.
 - (c) Montrer que h transporte aussi les ensembles ω -limites.
- 2. Soient A, B les matrices définies par

$$A = \left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right), \quad B = \left(\begin{array}{cc} 1 & 1 \\ -1 & 1 \end{array}\right).$$

- (a) Déterminer les flots associés à A et B.
- (b) Montrer que pour tout $x \in \mathbf{R}^n$, il existe un unique $t \in \mathbf{R}$ tel que $||e^{tA}x|| = 1$.
- (c) Construire une conjugaison entre les flots associés à A et B.
- 3. Soit $C = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$. Montrer que le flot associé à C n'est pas conjugué à celui associé à B. Montrer que e^C n'est pas conjuguée (au sens topologique) à e^B .

Exercice 2. Matrices hyperboliques.

On note $\mathcal{H}(\mathbf{R}^n)$ (resp. $\mathrm{GL}(\mathbf{R}^n)$ et $\mathcal{L}(\mathbf{R}^n)$) l'espace des endomorphismes hyperboliques (resp. endomorphismes inversibles et endomorphismes) de \mathbf{R}^n .

- 1. Montrer que $\mathcal{H}(\mathbf{R}^n)$ (resp. $\mathrm{GL}(\mathbf{R}^n)$) est un ouvert dense de $\mathrm{GL}(\mathbf{R}^n)$ (resp. $\mathcal{L}(\mathbf{R}^n)$).
- 2. Soit $A \in \mathcal{H}(\mathbf{R}^n)$. Montrer qu'il existe $\delta > 0$ tel que pour tout $B \in \mathcal{L}(\mathbf{R}^n)$ vérifiant $||A B|| \leq \delta$, alors A et B sont topologiquement conjuguées.
- 3. Soit $A \in \mathcal{H}(\mathbf{R}^n)$. Montrer que pour tout $\varepsilon > 0$ il existe une norme $\|\cdot\|$ sur \mathbf{R}^n telle que la norme d'opérateur associée de A soit strictement inférieure à $\rho(A) + \varepsilon$, où $\rho(A)$ est le rayon spectral de A.

Exercice 3. Points périodiques voisins.

Soit $f: \mathbf{R}^n \to \mathbf{R}^n$ un \mathcal{C}^1 difféomorphisme. Soit $x \in \mathbf{R}^n$ un point fixe hyperbolique de f, de période minimale $N \ge 1$. Montrer que la période de tout point périodique assez proche de x (et différent de x) a une période strictement strictement plus grande que N.

Exercice 4. Espaces stable et instable, et cônes.

Soit E un espace vectoriel réel de dimension finie et $A \in \mathcal{H}(E)$. On note $E = E^s \oplus E^u$ la décomposition en espaces stable et instable de A, et π_s , π_u les projecteurs associés. Pour tout $\gamma > 0$ on définit les cônes

$$C_{\gamma}^{s} = \{x \in E : \|\pi_{u}(x)\| \le \gamma \|\pi_{s}(x)\|\}, \quad C_{\gamma}^{u} = \{x \in E : \|\pi_{s}(x)\| \le \gamma \|\pi_{u}(x)\|\}.$$

1. Montrer que

$$E^s = \bigcup_{\gamma > 0} \bigcap_{n \ge 0} A^{-n}(C^s_\gamma), \quad E^u = \bigcup_{\gamma > 0} \bigcap_{n \ge 0} A^n(C^u_\gamma).$$

2. Montrer que

$$E^{s} = \left\{ x \in \mathbf{R}^{n}, \sup_{n \ge 0} \|A^{n}x\| < +\infty \right\}, \quad E^{u} = \left\{ x \in \mathbf{R}^{n}, \sup_{n \ge 0} \|A^{-n}x\| < +\infty \right\}.$$

Exercice 5. Des flots particuliers.

Soit $\rho: \mathbf{R} \to \mathbf{R}$ la fonction définie par $\rho(x) = 0$ si $x \leq 0$ et

$$\rho(x) = \exp\left(-\frac{1}{x^2}\right), \quad x > 0.$$

1. Montrer que ρ est lisse.

On définit le champ de vecteur X sur \mathbf{R}^2 par

$$X(x,y) = (y + \rho(r^2)x, -x + \rho(r^2)y), \quad r^2 = x^2 + y^2, \quad x, y \in \mathbf{R}.$$

2. Montrer que X est un champ de vecteurs lisse et calculer $\mathrm{d}X(0)$.

Soit K un compact de \mathbb{R}_+ contenant 0.

3. Construire une fonction $\rho_K: \mathbf{R}_+ \to \mathbf{R}_+$ qui est lisse et telle que

$$\rho(x) > 0 \iff x \notin K.$$

On définit le champ de vecteur X_K comme X en remplaçant ρ par ρ_K .

4. Montrer que pour tous $\varepsilon, r > 0$, on peut choisir ρ_K tel que

$$||X_K(x,y) - (y,-x)|| < \varepsilon, \quad (x,y) \in \mathbf{R}^2, \quad ||(x,y)|| \le r.$$

- 5. Montrer que si $r^2 \in K$, alors le cercle de rayon r centré en 0 est une orbite de X_K .
- 6. Soient a < b tels que $a^2, b^2 \in K$ et tels que $a^2, b^2 \cap K = \emptyset$. Que dire des trajectoires des points $a^2, b^2 \cap K = \emptyset$. Que dire des trajectoires des points $a^2, b^2 \cap K = \emptyset$.
- 7. Montrer que si K et K' ne sont pas homéomorphes, alors les flots de X_K et de $X_{K'}$ ne sont pas conjugués.