Functional Analysis

April 18, 2024

Solution of problem 1: We consider the operator $(\lambda^{-1}A - I)^{-1}$, for $\lambda \in \mathbb{C} \setminus \{0\}$. This is equal to $\sum_{n=0}^{\infty} A^n (\lambda^{-1})^n$ where the radius of convergence R is

$$\frac{1}{R} = \liminf_{n \to \infty} ||A^n||^{1/n}.$$

Thus we must have $|\lambda| > \liminf_{n \to \infty} ||A^n||^{1/n}$.

See that for n > 1, we have

$$A^{n} - \lambda^{n}I = (A - \lambda)(A^{n-1} + \dots + \lambda^{n-1}I)(A - \lambda I)$$
$$= (A - \lambda I)(A^{n-1} + \dots + \lambda^{n-1}I).$$

If $A^n - \lambda^n I$ were invertible, then $A - \lambda I$ would have a left and a right inverse, hence would be invertible. Now if $A - \lambda I$ were not invertible, $A^n - \lambda^n I$ would not be invertible. Thus, if $\lambda \in \sigma(A)$, we would have $\lambda^n \in \sigma(A^n)$. Thus $|\lambda|^n \leq ||A^n||$, which gives us the other inequality.

Solution of problem 2: 1. We shall prove the contrapositive. Let us take $\lambda \in \rho(S+T)$. Then $(T+S-\lambda I)$ has a bounded inverse. If we assume that $S-\lambda I$ is injective, then we can show that $(I-(T+S-\lambda I)^{-1}T)$ is injective. This is because if $S-\lambda I=(T+S-\lambda I)(I-(T+S-\lambda I)^{-1}T)$, which proves it. Thus we know that λ cannot lie in the point spectrum, if at all it lies in the spectrum. This is the required result.

2. We have that $S + T \in \mathcal{B}(X)$, and $-T \in \mathcal{K}(X)$. Then replacing S by S + T and S + T by (S + T) - T we get that $\sigma(S + T) \setminus \sigma_p(S + T) \subseteq \sigma(S)$. Taking the union on both sides by the point spectrum of S + T gives us the required answer.

Solution of problem 3: 1.

- 2. If $\lambda \in \sigma_p(ST)$, then we have that for some $v \neq 0 \in X$, $STv = \lambda v$. Then see that y = Tv is an eigenvector for TS, such that $\lambda \in \sigma_p(TS)$.
- 3. Consider $D(x_1, \ldots) = (x_1, \ldots, \frac{x_n}{n}, \ldots)$, and R is the right shift operator. Then see that $RD(x_1, \ldots) = (0, x_1, \frac{x_2}{2}, \ldots)$, whose

Solution of problem 4: If p(0) = 0 then take a bounded sequence of values (x_n) . Now see that p(T) is of the form T(p'(T)), where p' is some polynomial. Now we have that (Tx_n) has a convergent subsequence, so see that $p(T)(x_n) = (Tx_n)(p'(T)(x_n))$. If we consider

1

 (x_{n_k}) , the subsequence such that Tx_{n_k} converges, we have that $(Tx_{n_k})(p'(T)(x_{n_k}))$ must also converge, since (x_n) is bounded, and T is bounded, and p' is a polynomial, we have that $(p'(T)(x_{n_k}))$ is bounded, hence p(T) is compact.

Conversely, if p(T) is compact, and assume that $p(0) \neq 0$ then we have that p(T) - p(0)Imust be compact, since it is zero for T=0. Then we have that p(T)-p(0)I-p(T) must be compact, which implies that I must be a compact operator, which is impossible. Thus p(0) = 0.

Solution of problem 5: Let T be a compact operator. Take $\{u_n\}$ be an orthonormal basis. It is bounded, thus $\{Tu_n\}$ has a convergent subsequence. Using the next to next problem (all but the last part) we can see that $Tx = \sum_{i=1}^{\infty} c_i \langle x, e_i \rangle e_i$, where $c_n := \langle Te_i, e_i \rangle$. This is a bounded operator, since T is compact and it sends the unit ball (hence the orthonormal basis in particular) to a paracompact, hence bounded set. Moreover, $\{Tu_i\}$ has a convergent subsequence.

1. Using Parseval's identity, we have $\sum_{\alpha \in \Lambda} ||Tu_{\alpha}||^2 = \sum_{\alpha,\beta \in \Lambda} |\langle Tu_{\alpha}, u_{\beta} \rangle|^2 =$ Solution of problem 6: 1. Using Parseval's identity, we have $\sum_{\alpha,\beta\in\Lambda} |\langle u_\alpha,T^*u_\beta\rangle|^2 = \sum_{\alpha\in\Lambda} ||T^*u_\alpha||^2.$ 2. Take another orthonormal basis $\{v_\alpha\}$. Since we have

$$\sum_{\alpha \in \Lambda} ||Tu_{\alpha}||^2 = \sum_{\alpha \in \Lambda} ||T^*u_{\alpha}||^2 = \sum_{\alpha,\beta \in \Lambda} |\langle v_{\alpha}, T^*u_{\beta} \rangle|^2 = \sum_{\alpha,\beta \in \Lambda} |\langle Tv_{\alpha}, u_{\beta} \rangle|^2 = \sum_{\alpha \in \Lambda} ||Tv_{\alpha}||^2,$$

which is the required result.

3. We will approximate T using a sequence of finite rank operators. Let $\{T_n\}$ be such that $T_n(e_i) = Te_i$ for i < n, and 0 otherwise. These are clearly finite rank operators, and see that

$$||T_n - T|| \le \sum_{i=1}^{\infty} ||(T_n - T)u_i||^2 = \sqrt{\left(\sum_{i>n} ||Te_i||^2\right)} \to 0,$$

for $i \to \infty$.

1. Let us see that for n such that $|\langle x, u_n \rangle| < 1$, we have $|\langle x, u_n \rangle|^2 < 1$ Solution of problem 7: 1. We have

$$||Tx|| \le \sum_{n=1}^{\infty} |k_n| |\langle x, u_n \rangle|$$

$$\le M \sum_{n=1}^{\infty} |\langle x, u_n \rangle| \le M ||x||,$$

since we can replace all those n such that $|\langle x, u_n \rangle| < 1$ by 0, and consider the norm of that. Thus this is a bounded operator.

2. If T is compact, then we must have that Conversely, if $|k_n| \to 0$, then we can approximate this operator by finite rank operator, and it is easy to see that the tail that $T_n - T$ gives must converge. Thus it is compact.

3.

Solution of problem 8: If $\theta_1 \neq \theta_2$, then if $f(\theta_1) = f(\theta_2)$ we have

$$\sum_{k=0}^{n} c_k \left(e^{ik\theta_1} - e^{ik\theta_2} \right) = 0,$$

and if we pick $f \in \mathcal{A}$ such that $c_k \neq 0$ for at least one nonzero value of k, then by linear independence of $e^{ik\theta}$, we must have $\theta_1 = \theta_2$, a contradiction. Thus \mathcal{A} separates points on K.

We can also show that for all θ , there is a $f \in \mathcal{A}$ such that $f(\theta) \neq 0$. Clearly, any non-zero constant function defined on \mathcal{A} does not disappear.

See that $\iota(e^{i\theta}) = e^{-i\theta}$ is a continuous function. However, no element of \mathcal{A} can approximate it since all functions on it can only have positive k.