

planetmath.org

Math for the people, by the people.

properties of the Lebesgue integral of nonnegative measurable functions

 ${\bf Canonical\ name} \quad {\bf Properties Of The Lebesgue Integral Of Nonnegative Measurable Functions}$

Date of creation 2013-03-22 16:13:50 Last modified on 2013-03-22 16:13:50 Owner Wkbj79 (1863) Last modified by Wkbj79 (1863)

Numerical id 22

Author Wkbj79 (1863)

Entry type Theorem Classification msc 26A42 Classification msc 28A25

 $Related\ topic \qquad Properties Of The Lebesgue Integral Of Lebesgue Integrable Functions$

Theorem. Let (X, \mathfrak{B}, μ) be a measure space, $f: X \to [0, \infty]$ and $g: X \to [0, \infty]$ be measurable functions, and $A, B \in \mathfrak{B}$. Then the following properties hold:

$$1. \int_A f \, d\mu \ge 0$$

2. If
$$f \leq g$$
, then $\int_A f d\mu \leq \int_A g d\mu$.

3.
$$\int_A f d\mu = \int_X \chi_A f d\mu$$
, where χ_A denotes the characteristic function of

4. If
$$A \subseteq B$$
, then $\int_A f d\mu \le \int_B f d\mu$.

5. If
$$c \geq 0$$
, then $\int_A cf d\mu = c \int_A f d\mu$.

6. If
$$\mu(A) = 0$$
, then $\int_A f d\mu = 0$.

7.
$$\int_{A} (f+g) \, d\mu = \int_{A} f \, d\mu + \int_{A} g \, d\mu$$

8. If
$$A \cap B = \emptyset$$
, then $\int_{A \cup B} f \, d\mu = \int_A f \, d\mu + \int_B f \, d\mu$.

9. If
$$f = g$$
 almost everywhere with respect to μ , then $\int_A f d\mu = \int_A g d\mu$.

Proof. 1. Let s be a simple function with $0 \le s \le f$. Let $s = \sum_{k=1}^{n} c_k \chi_{A_k}$

for
$$c_k \in [0, \infty]$$
 and $A_k \in \mathfrak{B}$. Then $\int_A s \, d\mu = \sum_{k=1}^n c_k \mu(A \cap A_k) \ge 0$. By definition, $\int_A f \, d\mu \ge \int_A s \, d\mu$. It follows that $\int_A f \, d\mu \ge 0$.

- 2. Let s be a simple function with $0 \le s \le f$. Since $f \le g$, $0 \le s \le g$. By definition, $\int_A s \, d\mu \le \int_A g \, d\mu$. Since this holds for every simple function s with $0 \le s \le f$, it follows that $\int_A f \, d\mu \le \int_A g \, d\mu$.
- 3. Let s be a simple function with $0 \le s \le f$. Then $0 \le \chi_A s \le \chi_A f$. Let $s = \sum_{k=1}^n c_k \chi_{A_k}$ for $c_k \in [0, \infty]$ and $A_k \in \mathfrak{B}$. Then

$$\int_{A} s \, d\mu = \sum_{k=1}^{n} c_{k} \mu(A \cap A_{k})$$

$$= \int_{X} \sum_{k=1}^{n} c_{k} \chi_{A \cap A_{k}} \, d\mu$$

$$= \int_{X} \sum_{k=1}^{n} c_{k} \chi_{A} \chi_{A_{k}} \, d\mu$$

$$= \int_{X} \chi_{A} \sum_{k=1}^{n} c_{k} \chi_{A_{k}} \, d\mu$$

$$= \int_{X} \chi_{A} s \, d\mu$$

$$\leq \int_{X} \chi_{A} f \, d\mu.$$

Thus, $\int_A f d\mu \le \int_X \chi_A f d\mu$.

Let t be a simple function with $0 \le t \le \chi_A f$. Then $\chi_A t = t$. Thus, $\int_X t \, d\mu = \int_X \chi_A t \, d\mu = \int_A t \, d\mu.$ Therefore, $\int_X \chi_A f \, d\mu = \int_A \chi_A f \, d\mu.$ Since $\chi_A f \le f$, $\int_A \chi_A f \, d\mu \le \int_A f \, d\mu$ by property 2. Hence, $\int_A f \, d\mu \le \int_X \chi_A f \, d\mu \le \int_A f \, d\mu.$ It follows that $\int_A f \, d\mu = \int_X \chi_A f \, d\mu.$

- 4. Since $A \subseteq B$, $\chi_A \le \chi_B$. Thus, $\chi_A f \le \chi_B f$. By property 2, $\int_X \chi_A f \, d\mu \le \int_X \chi_B f \, d\mu$. By property 3, $\int_A f \, d\mu = \int_X \chi_A f \, d\mu \le \int_X \chi_B f \, d\mu = \int_B f \, d\mu$.
- 5. If c = 0, then $\int_A cf \, d\mu = \int_A 0 \, d\mu = 0 = 0$ $\int_A f \, d\mu = c \int_A f \, d\mu$. If c > 0, let $S = \{s \colon X \to [0, \infty] \mid s \text{ is simple and } s \le cf\}$ and $T = \{t \colon X \to [0, \infty] \mid t \text{ is simple and } t \le f\}$. Then $\int_A cf \, d\mu = \sup_{s \in S} \int_A s \, d\mu = \sup_{s \in S} \int_A c \cdot \frac{s}{c} \, d\mu = c \sup_{s \in S} \int_A \frac{s}{c} \, d\mu = c \sup_{t \in T} \int_A t \, d\mu = c \int_A f \, d\mu$.
- 6. Let s be a simple function with $0 \le s \le f$. Let $s = \sum_{k=1}^{n} c_k \chi_{A_k}$ for $c_k \in [0, \infty]$ and $A_k \in \mathfrak{B}$. Then $\int_A s \, d\mu = \sum_{k=1}^{n} c_k \mu(A \cap A_k) = \sum_{k=1}^{n} c_k \cdot 0 = 0$. Thus, $\int_A f \, d\mu = 0$.
- 7. Let $\{s_n\}$ be a nondecreasing sequence of nonnegative simple functions converging pointwise to f and $\{t_n\}$ be a nondecreasing sequence of nonnegative simple functions converging pointwise to g. Then $\{s_n+t_n\}$ is a nondecreasing sequence of nonnegative simple functions converging pointwise to f+g. Note that, for every n, $\int_A (s_n+t_n) d\mu = \int_A s_n d\mu + \int_A t_n d\mu$. By Lebesgue's monotone convergence theorem, $\int_A (f+g) d\mu = \int_A f d\mu + \int_A g d\mu$.

$$\int_{A \cup B} f \, d\mu = \int_{X} \chi_{A \cup B} f \, d\mu$$

$$= \int_{X} (\chi_{A} + \chi_{B} - \chi_{A \cap B}) f \, d\mu$$

$$= \int_{X} (\chi_{A} + \chi_{B} - \chi_{\emptyset}) f \, d\mu$$

$$= \int_{X} (\chi_{A} + \chi_{B} - 0) f \, d\mu$$

$$= \int_{X} (\chi_{A} f + \chi_{B} f) \, d\mu$$

$$= \int_{X} \chi_{A} f \, d\mu + \int_{X} \chi_{B} f \, d\mu$$

$$= \int_{A} f \, d\mu + \int_{B} f \, d\mu$$

9. Let $E = \{x \in A : f(x) = g(x)\}$. Since f and g are measurable functions and $A \in \mathfrak{B}$, it must be the case that $E \in \mathfrak{B}$. Thus, $A \setminus E \in \mathfrak{B}$. By hypothesis, $\mu(A \setminus E) = 0$. Note that $E \cap (A \setminus E) = \emptyset$ and $E \cup (A \setminus E) = A$. Thus, $\int_A f \, d\mu = \int_E f \, d\mu + \int_{A \setminus E} f \, d\mu = \int_E f \, d\mu + 0 = \int_E g \, d\mu + 0 = \int_E g \, d\mu + \int_{A \setminus E} g \, d\mu = \int_A g \, d\mu$.