Discrete Math HW #10

Dor Rondel April 26, 2017

Dor Rondel

16. For the relation $V = (x, y) \mid xy > 0$ on \mathbb{Z} , prove or disprove that V is reflexive, irreflexive, symmetric, antisymmetric and transitive.

Proof: The relation V is not reflexive because if x = 2 and y = 3, xy = 6 and 6 is greater than 0. So the pair $(2,3) \in V$ but since $2 \neq 3$, V is not reflexive.

The relation V is not irreflexive, because for the value pair (1,1), 1 times itself is greater than 0 and $1 \in \mathbb{Z}$ so $(1,1) \in V$ but since 1 = 1, the relation V is not irreflexive.

The relation V is symmetric, because $\forall x, y \in \mathbb{Z}, xy > 0 \implies yx > 0$ by the commutative property of multiplication.

The relation V is not antisymmetric, because $(2,3) \in V$ and $(3,2) \in V$ as previously proved, but $2 \neq 3$.

x,y can either both be negative, or both me positive, and still be in V because if their parity was different, their product would always be negative and not found in relation V. In the case where x,y < 0, if xy > 0 and yz > 0 then surely xz > 0. A similar argument can be used for when x,y,z > 0. Since xVy and $yVx \implies xVz \forall x,y,z \in \mathbb{Z}$, V is transitive. \square

Dor Rondel

17. Prove Theorem 7.3.1. If \sim is an equivalence relation on A, then $a \sim b \iff [a] = [b]$.

Proof: To prove that, $a \sim b \implies [a] = [b]$. Let $a, b \in A$, $a \sim b$, and $x \in [a]$. By definition of equivalence classes, $a \sim x$. Since we're told \sim is an equivalence relation, that means its reflexive, symmetric, and transitive. By symmetry, $a \sim b \implies b \sim a$, and we assumed $a \sim x$. So by transitivity, $b \sim a$ and $a \sim x \implies b \sim x$ and therefore $x \in [b]$. So it can be said that $x \in [a]x \in [b]$. For the same reasons, $x \in [b] \implies x \in [a]$, as:

$$x \in [b] \implies b \sim x$$
$$\implies a \sim x$$
$$\implies x \in [a]$$

Since $x \in [b] \iff x \in [a]$, we can say [a] = [b] derived from $a \sim b$.

To prove that $[a] = [b] \iff a \sim b$, let $x \in [a]$ by definition of the equivalence class, $a \sim x$ and assume $x \in [b]$, so $b \sim x$. Since \sim is reflexive, a = x = b and given $a \sim x$ from $x \in [a]$, we can substitute b for x such that $[a] = [b] \implies a \sim b$.

Dor Rondel

18. Let $A = \{x \in \mathbb{N} \mid 2 \le x \le 100\}$. For p a prime number let $A_p = \{a \in A \mid p \text{ is the smallest prime that divides } a\}$. Note you proved these form a partition on A in Question 15.

Define a relation \sim on A, such that $a \sim b$ is $a \in A_p$ and $b \in A_p$ for some prime p. Prove that \sim is an equivalence relation.

Proof: By the fundamental theorem of arithmetic, any number in the given range can be described as the product of certain prime numbers if it isn't prime itself. Let $a,b \in A$, Let P_1 be the set of prime numbers that when multiplied yield a and let P_2 be the set of prime numbers that when multiplied yield b. The relation \sim then can be described as saying that $a \sim b \implies min(p_1) = min(P_2)$, note that $min(P_1)$ and $min(P_2)$ must equal the prime subscript of the partition a,b are part of. Therefore, the relation $a \sim b \implies a \in A_p$ and $b \in A_p \forall a,b \in [2,100]$.

I don't however see how \sim can be an equivalence relation, as $4 \sim 6$, $4,6 \in [2,100]$, and $4,6 \in A_2$ but $4 \neq 6$ so \sim can't be reflexive and hence not an equivalence relation.