

This is a digital copy of a book that was preserved for generations on library shelves before it was carefully scanned by Google as part of a project to make the world's books discoverable online.

It has survived long enough for the copyright to expire and the book to enter the public domain. A public domain book is one that was never subject to copyright or whose legal copyright term has expired. Whether a book is in the public domain may vary country to country. Public domain books are our gateways to the past, representing a wealth of history, culture and knowledge that's often difficult to discover.

Marks, notations and other marginalia present in the original volume will appear in this file - a reminder of this book's long journey from the publisher to a library and finally to you.

Usage guidelines

Google is proud to partner with libraries to digitize public domain materials and make them widely accessible. Public domain books belong to the public and we are merely their custodians. Nevertheless, this work is expensive, so in order to keep providing this resource, we have taken steps to prevent abuse by commercial parties, including placing technical restrictions on automated querying.

We also ask that you:

- + *Make non-commercial use of the files* We designed Google Book Search for use by individuals, and we request that you use these files for personal, non-commercial purposes.
- + Refrain from automated querying Do not send automated queries of any sort to Google's system: If you are conducting research on machine translation, optical character recognition or other areas where access to a large amount of text is helpful, please contact us. We encourage the use of public domain materials for these purposes and may be able to help.
- + *Maintain attribution* The Google "watermark" you see on each file is essential for informing people about this project and helping them find additional materials through Google Book Search. Please do not remove it.
- + *Keep it legal* Whatever your use, remember that you are responsible for ensuring that what you are doing is legal. Do not assume that just because we believe a book is in the public domain for users in the United States, that the work is also in the public domain for users in other countries. Whether a book is still in copyright varies from country to country, and we can't offer guidance on whether any specific use of any specific book is allowed. Please do not assume that a book's appearance in Google Book Search means it can be used in any manner anywhere in the world. Copyright infringement liability can be quite severe.

About Google Book Search

Google's mission is to organize the world's information and to make it universally accessible and useful. Google Book Search helps readers discover the world's books while helping authors and publishers reach new audiences. You can search through the full text of this book on the web at http://books.google.com/

52 TJ 1165 ,C13

		^	•		
				-	
,					
		•			
•		•			
			•	•	
				•	
•					
MACHINE	SHOP	CALCULATIO	ONS		
•					
		•			
					٠
				•	4
				:	

McGraw-Hill Book Co. Inc

Coal Age v Electric Railway Journal
Electrical World v Engineering News-Record
Railway Age Cazette v American Machinist
Electrical Merchandising v The Contractor
Engineering & Mining Journal v Power
Metallurgical & Chemical Engineering

MACHINE SHOP CALCULATIONS

The T BY

FRED H. COLVIN, A.S.M.E., F.I.

ASSOCIATE EDITOR OF THE AMERICAN MACHINIST, AUTHOR OF "MACHINE SHOP ARITHMETIC," "ENGINEERS' ARITHMETIC," "RAILROAD POCKET-BOOK," "HILL KINE BOOKS," "AMERICAN MACHIN-ISTS' HANDBOOK," ETC, ETC.

FIRST EDITION - SIXTH IMPRESSION

McGRAW-HILL BOOK COMPANY, Inc. 239 WEST 39TH STREET, NEW YORK

LONDON: HILL PUBLISHING CO., Ltd. 6 & 8 BOUVERIE ST., E. C. 1908

Copyright, 1908, By THE HILL PUBLISHING COMPANY

PREFACE

FIGURES are simply tools that are a help in securing accuracy, in saving time and making a man more valuable to himself and others. True, many good mechanics get along with only enough mathematical knowledge to count up their wages, but the men who get to the top are not those who depend on others to tell them what gears to use, or the depth of a 9-pitch thread.

While the explanations in this book may be considered too elementary by some, I have simply tried to make every point so clear that any one could understand it, and to show how the methods apply to every-day shop work. I have given only such rules and calculations as have proved useful in the shop, and have omitted much that most schools consider necessary, because in my experience it only tends to confuse and is rarely used in actual work in the shop. And in each case I have tried to show the "why" of each step taken, so as to make a man as independent as possible of having to remember rules.

I shall appreciate suggestions and questions from any reader at any time.

THE AUTHOR.

334558

CONTENTS

CHAPTER			PAGE
I	COMMON FRACTIONS	•	1-7
п	DECIMAL FRACTIONS		8-15
Ш	CANCELLATION	•	16-21
IV	RATIO OR PROPORTION		22-25
v	Percentage		2 6–28
VI	Speed of Pulleys		29 -33
VII	Speed of Gearing		34-36
VIII	GEARING A LATHE TO CUT ANY THREAD.		37-52
·IX	SCREW THREAD CALCULATIONS		53–61
x	DRILLING FOR TAPS		62-64
XI	TAPER WORK		65–71
XII	SPEED OF LATHES, PLANERS AND SHAPERS		72-77
XIII	SQUARE AND CUBE ROOT		78-84
XIV	MEASURING SURFACES		85-90
xv	CONTENTS OR VOLUME OF SOLID BODIES .		91-102
XVI	MEASURING ANGLES		103-109
XVII	MAKING AND USING FORMULAS		110-116
XVIII	THE VERNIER AND MICROMETER		117-120
XIX	REGULAR POLYGONS AND THEIR PROPERTIES		121-126
XX	THE USES OF SHOP "TRIG"		127-137
	TRIGONOMETRY TABLES		138-172

•

MACHINE SHOP CALCULATIONS

CHAPTER I

COMMON FRACTIONS

IF we could measure everything in even inches and never had to divide anything so as to make parts of an inch come in the answer, there would be very little use for fractions in the shop. But as this is not the case we must get used to odd dimensions and know how to figure them.

Suppose we have a piece of steel 9 inches long to be cut in four equal parts. If it was 8 inches, each part would be just 2 inches, but there is an inch left over, so we divide this in four parts also and get 1 inch to add to the 2 inches, making 21 inches for each piece. You can try this with a rule, but it is well to depend on figures, as it isn't always convenient to measure things off with a rule. Dividing o by 4 gives

4)9(2 8 1

and the number left over goes over the number we divide by, making it 1, as we found before.

The number top of the line is called the numerator; that below the line the denominator; the number we divide by is the divisor; the number we divide it into is the dividend; the answer is the quotient, and the number left over is the remainder. In this example the parts are as follows:

$$\frac{\text{I (Numerator)}}{4 \text{ (Denominator)}} \text{ of } 9 = \frac{\text{Divisor Dividend Quotient}}{4} \frac{9}{1} \frac{(2\frac{1}{4})}{(\text{Remainder})}$$

The quotient or answer is a mixed number, in which 2 is the whole number and $\frac{1}{2}$ the fraction.

To divide 318 into three parts it doesn't take any figuring to see that $\frac{1}{3}$ of 3 equals 1, and that $\frac{1}{3}$ of $\frac{3}{16}$ equals $\frac{1}{16}$ so that $\frac{1}{3}$ of $3\frac{3}{18}$ equals $1\frac{1}{18}$. Now suppose we have two holes in a piece of work, 41 inches apart, and want to put two holes in between them at equal distances. This means dividing the distance into three equal parts, but it doesn't divide as easily as the others in the way we have been doing. Going back to the first example, it is easy to see that we might have put the o over the 4, and made 2, in which o is the numerator and 4 the denominator. To reduce this to a mixed number, 21, we divide 9 by 4, so we see the numerator is the same as the dividend and the denominator the same as the divisor. In other words, 2 is the same as 21, only expressed in a different way, and in any fraction the number above the line is to be divided by the number below it. When the numerator is larger than the denominator it is called an improper fraction, because it can be reduced to a mixed number.

It is often easier to divide an improper fraction than a mixed number, and $4\frac{1}{8}$ to be divided into thirds is an example of this. So we change it back to a mixed number by multiplying the whole number by the denominator of the fraction, and adding the numerator to it. This gives 8 times 4 equals 32, plus 1 equals 33, and don't forget that the 8 must go underneath, as it is $\frac{3}{8}$ and not 33 whole

ones. Dividing $\frac{3}{8}$ by 3 gives $\frac{1}{8}$, so we know that $\frac{1}{8}$ is exactly one third of $\frac{3}{8}$ or $4\frac{1}{8}$, and reducing $\frac{1}{8}$ to a mixed number by dividing 11 by 8 we have 1 and 3 eighths left over, so one third of $4\frac{1}{8}$ is $1\frac{2}{8}$, and it is easier to do it in this way.

Different Ways of Expressing the Same Value

A curious thing about fractions is that you can express the same thing in such a variety of ways; as $\frac{1}{2}$ and $\frac{3}{4}$ and $\frac{3}{4}$ and $\frac{1}{10}$ and $\frac{1}{10}$ and $\frac{1}{10}$ and $\frac{1}{10}$ all have the same value, because the denominator is just double the numerator in every case. You can multiply a fraction by a whole number by either multiplying the numerator or dividing the denominator by that number. Suppose you wish to multiply $\frac{1}{4}$ inch by 2. You could either multiply the numerator and get $\frac{2}{4}$, or divide the denominator and get $\frac{1}{2}$, both being of the same value. The last way is the easiest, when it comes out even, but to multiply $\frac{1}{3}$ by 2 it is easier to use the first method and multiply the numerator, making it $\frac{2}{3}$.

The reverse is true when we come to divide fractions, as to divide $\frac{2}{3}$ by 2 we either divide the numerator and get $\frac{1}{3}$, or multiply the denominator and get $\frac{2}{3}$ which is exactly the same thing. It is easier to divide the numerator when it can be done evenly, as that gives the fraction in lower terms and is to be preferred. By lower terms is meant smaller numbers in both numerator and denominator. Both $\frac{1}{3}$ % and $\frac{1}{3}$ have the same value, and in the case of large numbers see how many times they can be divided by the same number. If you have $\frac{1}{3}$ 7 it is at its lowest terms, because there is no number which will divide them both evenly, but with $\frac{1}{3}$ 8 we can divide both by 2 and get $\frac{1}{3}$ 8 as

the lowest, or with $\frac{1}{3}\frac{6}{2}$ we can divide both terms four times by 2, or divide both by 16 and get $\frac{1}{2}$ in either case.

It often happens that we have to multiply fractions by whole numbers and divide fractions by fractions, but this is not hard if we go at it understandingly. If we lay three test blocks each $\frac{3}{8}$ of an inch side by side, we have practically multiplied $\frac{3}{8}$ by 3, and common sense as well as a rule will tell us that here are 3 times 3 eighths or 9 eighths, which is $1\frac{1}{8}$. This shows us again that to multiply fractions by whole numbers we multiply the numerator or divide the denominator as the case may be.

Dividing a Fraction by a Fraction

But to divide a fraction by a fraction we multiply the two numerators together and also the two denominators together. Suppose we have to make a model $\frac{3}{8}$ inch to the inch, and find a piece that is $\frac{3}{4}$ of an inch in the full-sized piece. We must find how much $\frac{3}{8}$ of $\frac{3}{4}$ is, and we do this by multiplying 3 times 3 and 8 times 4, and getting $\frac{9}{32}$ as the size desired.

It is easier to use signs where we can, so we may as well jot down right here that:

+ means plus or addition, 4+4=8

- means minus or subtraction, 4-2=2

 \times means times or multiplication, $4 \times 2 = 8$

 \div means divided by or division, $4 \div 2 = 2$

= means equals or equal to, $\frac{1}{2} = \frac{2}{4} = \frac{3}{6}$.

Division is also expressed by putting the divisor under the number to be divided, as in a fraction, and is often used in

this way: $\frac{1}{2} = \frac{1}{4}$, meaning that $\frac{1}{2}$ divided by $2 = \frac{1}{4}$.

In the same way you may want to divide $\frac{7}{6}$ into 4 equal parts, which means that each part will be $\frac{1}{4}$ of $\frac{7}{6}$. Multiplying numerators we have 7, and multiplying denominators we have $4 \times 16 = 64$, or $\frac{7}{64}$ is $\frac{1}{4}$ of $\frac{7}{6}$.

Suppose you have measured up the distance between two surfaces of a jig by using standard distance blocks, and that when you count them up you find one each of the following blocks: $\frac{1}{2}$ inch, $\frac{3}{8}$ inch, $\frac{5}{16}$ inch, and $\frac{7}{4}$ inch, how much is the distance?

It is plain that before we can add these we must get them to the same terms or with the same denominator. As we cannot reduce $\frac{7}{64}$ to the other denominators, we must bring the others to that. To do this, divide each denominator into 64 and multiply the numerator by the result. Starting with the first block, $\frac{1}{2}$ inch, 2 goes into 64, 32 times, and $32 \times 1 = 32$, so $\frac{1}{2}$ inch $= \frac{3}{62}$. In $\frac{2}{6}$, 8 goes into 64, 8 times, and $3 \times 8 = 24$, so $\frac{2}{8}$ inch $= \frac{2}{62}$. In $\frac{7}{16}$, 16 goes into 64, 4 times, and $4 \times 5 = 20$, so $\frac{7}{16} = \frac{2}{62}$. Now they are all in 64ths, and we add numerators, which gives $\frac{3}{62} + \frac{2}{62} + \frac{2$

It sometimes happens that the denominators will not reduce to any one of them, as would be the case if the fractions were $\frac{1}{2}$, $\frac{1}{6}$, $\frac{1}{3}$, and $\frac{1}{7}$. In this case it would be necessary to multiply all four denominators together for one that is common to all, as $2 \times 5 \times 3 \times 7 = 210$, which is the least common denominator to them all. Dividing this by each denominator and multiplying the numerators by this,

we have $\frac{1}{2} = \frac{1}{2} \frac{6}{10}, \frac{1}{5} = \frac{2}{2} \frac{6}{10}, \frac{1}{3} = \frac{70}{210}$, and $\frac{1}{7} = \frac{30}{210}$, so that $\frac{1}{2} \frac{6}{10} + \frac{42}{210} + \frac{30}{210} + \frac{30}{210} = \frac{347}{210} = \frac{137}{210}$. This is an exceptional case, but it is well to be ready for emergencies

Dividing by Mixed Numbers

It is sometimes puzzling to divide by mixed numbers as well as by fractions, and yet it often needs to be done. Suppose there is a certain shop which has increased business enough to hire half as many more men as it had before, and now has 180 men. How many had they at first? Here is where a little reasoning comes in, and it is one of the best parts of arithmetic that it makes us think.

After they add one half to their force there is then one and one half as many men as at first, so we know that $180 = 1\frac{1}{2}$ times the original number. So we must divide 180 by $1\frac{1}{2}$.

The easiest way to do this is to turn the $1\frac{1}{2}$ into $\frac{3}{2}$. Then as 180 equals $\frac{3}{2}$, one half must be $\frac{1}{3}$ of 180 or 60, and the original number was $2 \times 60 = 120$. The best of these examples are that we can prove them to be sure we are right. If the shop has 120 men and we add half as many more, we then have 120 + 60 = 180, as in the example, so that we know we are right.

Suppose a man does 350 pieces of work in 13 hours, how many does he do in an hour?

Reducing $1\frac{3}{4}$ to quarters we have $\frac{7}{4}$. If $350 = \frac{7}{4}$, then $\frac{1}{4}$ equals $\frac{1}{7}$ of 350 or 50, and $\frac{4}{7}$ or one $\frac{1}{7}$ or $\frac{1}{7}$

EXAMPLES

What will a man get for $16\frac{1}{2}$ hours' work at \$2.75 per day of 10 hours? Ans. $4.53\frac{3}{4}$.

How much more will he receive if the work is overtime at "time and a quarter"? Ans. \$5.67 $\frac{3}{16}$; \$1.13 $\frac{7}{6}$ more.

If the time cards for a certain piece of work show 2 hours and 10 minutes lathe work, 3 hours and 15 minutes planing, 1 hour and 20 minutes vise work, what will it cost at \$3 per day of 9 hours? Ans. \$2.25.

Which is the cheapest, to have a $12\frac{1}{2}$ cent an hour man take $13\frac{1}{4}$ hours on a piece of work, or hire a $17\frac{1}{2}$ cent an hour man who can do it in $9\frac{1}{3}$ hours? Ans. $12\frac{1}{2}$ cent man will cost \$1.65\frac{1}{6}\$; $17\frac{1}{2}$ cent man \$1.63\frac{1}{3}\$.

If four castings, $108\frac{1}{2}$, $97\frac{1}{3}$, $86\frac{1}{4}$, and $21\frac{7}{8}$ pounds are bought at $3\frac{7}{8}$ cents a pound, what is the total cost? Ans. $$12.19\frac{3}{4}$.

A crank-shaft forging weighs $160\frac{1}{3}$ pounds, and when finished only weighs $50\frac{1}{2}$ pounds. If the forging cost 17 cents a pound and the metal turned off can be sold for $2\frac{1}{2}$ cents a pound, what is the net cost of the metal in the crank-shaft? Ans. First cost, \$27.25\frac{2}{3}. Metal turned off, 100\frac{2}{3} lbs. value of turnings = \$2.52\frac{1}{3}. Net cost, \$24.73\frac{7}{3}s.

CHAPTER II

DECIMAL FRACTIONS

If you use a micrometer caliper or a scale with 10ths and 100th divisions, you will see at once why common fractions do not entirely fill the bill. Time was, and not so very many years ago either, when the very best workmen measured fine work by the 64th "scant" or "full," or would designate it as $\frac{1}{16}$, and a 32d and a 64th, meaning $\frac{1}{16}$ + $\frac{1}{32}$ + $\frac{1}{64}$ or $\frac{4}{64}$, "scant" or "full" as the case might be. But such measurements are clumsy in spite of the fact that they made remarkably close measurements in that way, and every modern machinist must know how to use the micrometer and understand decimal fractions or decimals.

Decimal fractions are written without a denominator, but the denominator is always understood to be 10 or a multiple of 10. The name comes from the Latin word "decem" meaning "ten." Instead of a denominator the number is written with a period in front of it, and the numbers after the period show the value of the decimal. The first number to the right of the decimal point is called tenths, the second place hundredths, the third thousandths, the fourth ten-thousandths, etc., this being as fine as most machine measurements go. Bearing this in mind, we see that $I = \frac{1}{10}$, $I = \frac{1}{100}$, $I = \frac{1}{1000}$, $I = \frac{1}{1000}$, $I = \frac{1}{1000}$, and $I = \frac{1}{10000}$. This shows that every cipher we put to the right of the decimal

mal point, and between the point and the number, divides the number by 10. So to divide .25 by 10 we simply put a cipher ahead of the two and make it .025. Ciphers the other side of the point do not affect it, as 0.1 is the same as .1. Some use a cipher in front of the decimal point to show that it is less than a whole number. Ciphers to the right of the decimal do not affect its value if used, as it is evident that .10 = $\frac{1}{100}$, which is the same as $\frac{1}{100}$.

Whole numbers and decimals are used together the same as mixed numbers in common fractions, such as 2.5, which reads $2\frac{5}{10}$ and the same as $2\frac{1}{2}$.

Suppose the drawing called for a piece $\frac{3}{8}$ inch thick and you wanted to measure this with a micrometer to get it exact. The micrometer does not measure common fractions so it is necessary to change $\frac{3}{8}$ to a decimal. To do this, divide the numerator by the denominator. But how can we divide 3 by 8? By putting a decimal point after the 3 and adding ciphers after it like this:

8)<u>3.000</u> -375

and put the decimal point in front of as many figures in the answer as you use ciphers in the dividend. This shows that $\frac{3}{8} = .375$, which is $\frac{375}{1000}$, so we set the micrometer at .375 and know it is the same as $\frac{3}{8}$.

Decimals can be added, subtracted, multiplied, and divided the same as whole numbers by simply watching the decimal points. Suppose the opening of a die is measured by three gage blocks, .875, .3125, and .125 inch. To add these, treat them the same as whole numbers, except that the decimal points must be placed under each other, as:

.875 .3125 .125 .13125

and add up the same as whole numbers. The decimal point is placed between the 1 and the 3, because there are only four figures in any of the decimals, and we point off from the right as many places as the largest number of decimals in the figures added.

Subtracting is done in the same way, as .125 from .375 is

·375 .125 .250

This is a little more difficult when the smaller number has the most figures, as in taking. 3125 from .75, as

·75 ·3125 ·4375

In this case we add, either actually or in our mind, ciphers to make up the number. Then we say, 5 from 10 = 5, 2 from 9 = 7, 1 from 4 = 3, and 3 from 7 = 4. The point goes before the 4 because there are four places in the longest decimal. There is hardly a place where a little thought and common sense helps more than in pointing off. In the case just given it is very evident that it should not be between the 4 and 3, as the answer cannot be more than either of the numbers. Neither could it be .04375 because it shows that .3 from .7 must be .4 and not .04. A little care in such cases will prevent many mistakes.

Multiplying decimals is very easy as it is exactly like whole numbers, and we point off as many places as there are decimals in both the numbers. It will also be seen that the result is the same as with common fractions. Or $.5 \times .5 = .25$, which is just the same as $\frac{1}{2} \times \frac{1}{2} = \frac{1}{4}$, as we found before.

Multiplying .25 by .25 we have

Here we only have three whole numbers in the answer and, it becomes necessary to put a cipher in front of the 625 to make the four places. Here again a little care helps out, for we know when we multiply two numbers less than 1 the answer is less than either number, and that .625 would very clearly be wrong and .00625 would be altogether too small. Another thing to watch is the multiplying numbers with a lot of ciphers, as

Here, although one number is over 1, the answer is very much less than 1, because both numbers together have eight decimal places, and the answer had only six before adding the two extra ciphers. While this seems very small we can look at it in another way. This is to say

that .0021 is multiplied by a little more than 1.25 or 11, and 11 times .0021 is just about .0026.

Decimals are divided the same as whole numbers, taking care to point off in the answer only as many places as the decimals in the dividend exceed those in the divisor, and is just the reverse of multiplication in every way. Suppose you have a block of steel which figures up to 21.25 cubic inches, and that it weighs 5.9925 pounds, how much per cubic inch does it weigh? Clearly, we must divide the weight by the number of cubic inches, as

In order to carry the answer to third decimal place or thousandths, it was necessary to add a cipher to the dividend, and this made five decimal places in the dividend and only two in the divisor, so we point off the difference, or three places in the answer. If we had not added the cipher the answer would have been .28 +, as then there would be but two decimal places in excess of the divisor.

Decimals can also be divided by whole numbers, as in the case of finding the depth of a screw thread. If it is a V-thread we can find out, either by a table or by figuring, that the depth is .866 of an inch, for a pitch of one to the inch, or we can say it is .866 of the pitch. Then for 10 threads to the inch the depth will be .866 divided by 10, which we can do by simply moving the decimal point one

place to the left, as .0866. Or we can perhaps show this more clearly in the case of 16 threads to the inch. Divide .866 by 16, just as though .866 was a whole number, as

and as there are three decimal places in the dividend and none in the divisor, there must be three in the answer, so we put a cipher before the first figure, making the answer .054.

It is handy to remember that you can prove any example you do by working it backwards. In addition, subtract one of the numbers from the answer, and it will give the other one if only two are added. If more, add part of them together, subtract from the answer and it will give the sum of all the other numbers.

In subtraction, add the smaller number to the answer and it will give the larger number, or subtract the answer from the larger number and it will give the smaller number.

In multiplication, divide the answer by one of the numbers and it will give the other.

In division, multiply the answer by the divisor and you get the dividend, or divide the dividend by the answer and get the divisor.

Also remember that moving the decimal point to the right multiplies the number by ten for every place moved, and moving it to the left divides it by ten for every place moved.

DECIMAL EQUIVALENTS OF FRACTIONS OF AN INCH. (ADVANCING BY 8THS, 16THS, 32NDS AND 64THS.)

8ths	32nds	64ths	64ths
\$ = .125 \$ = .250 \$ = .375 \$ = .500 \$ = .625 \$ = .750 \$ = .875	11 = .03125 12 = .09375 13 = .15625 13 = .21875 14 = .28125 15 = .34375 15 = .40625 15 = .40625 15 = .40875	1015625 6046875 6046875 6078125 6109375 6140625 6171875 623125 6234375	## = .515625 ## = .546875 ## = .578125 ## = .609375 ## = .640625 ## = .671875 ## = .703125
16ths. 16 = .0625 16 = .1875 16 = .3125 16 = .4375 16 = .5625 16 = .6875 16 = .8125 16 = .9375	17 = .53125 17 = .59375 11 = .65625 12 = .7875 13 = .78125 14 = .90625 15 = .90625 16 = .90625 17 = .90625	17 = .265625 18 = .296875 18 = .328125 18 = .359375 18 = .390625 18 = .421875 18 = .453125 18 = .484375	\$\frac{1}{2} = .765625\$\$\frac{1}{2} = .705875\$\$\frac{1}{2} = .828125\$\$\frac{1}{2} = .859375\$\$\frac{1}{2} = .890625\$\$\frac{1}{2} = .921875\$\$\frac{1}{2} = .953125\$\$\frac{1}{2} = .984375\$\$\$\frac{1}{2} = .984375\$\$\$\$\frac{1}{2} = .984375\$\$\$\$\frac{1}{2} = .984375\$\$\$\frac{1}{2} = .984375\$\$\$\$\frac{1}{2} = .984375\$\$\$\$\$\frac{1}{2} = .984375\$\$\$\$\$\frac{1}{2} = .984375\$\$\$\$\$\frac{1}{2} = .984375\$\$\$\$\$\$\$\frac{1}{2} = .984375\$

DECIMAL EQUIVALENTS OF FRACTIONS OF AN INCH. (ADVANCING BY 64THS.)

$\begin{array}{c} \frac{1}{64} = .015625 \\ \frac{1}{83} = .03125 \\ \frac{3}{64} = .046875 \\ \frac{1}{16} = .0625 \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} \frac{33}{67} = .515625 \\ \frac{1}{67} = .53125 \\ \frac{35}{64} = .546875 \\ \frac{9}{16} = .5625 \end{array}$	$\begin{array}{c} \frac{49}{62} = .765625\\ \frac{25}{32} = .78125\\ \frac{21}{32} = .796875\\ \frac{16}{16} = .8125 \end{array}$
$\begin{array}{l} \frac{5}{64} = .078125 \\ \frac{8}{32} = .09375 \\ \frac{7}{64} = .109375 \\ \frac{1}{8} = .125 \end{array}$	$\begin{array}{c} \frac{21}{64} = .328125 \\ \frac{1}{32} = .34375 \\ \frac{2}{64} = .359375 \\ \frac{2}{64} = .375 \end{array}$	$\begin{array}{c} \frac{87}{64} = .578125 \\ \frac{16}{32} = .59375 \\ \frac{89}{64} = .609375 \\ \frac{1}{8} = .625 \end{array}$	$\begin{array}{c} \frac{58}{64} = .828125 \\ \frac{27}{85} = .84375 \\ \frac{55}{64} = .859375 \\ \frac{7}{8} = .875 \end{array}$
$\begin{array}{c} \frac{9}{64} = .140625 \\ \frac{5}{32} = .15625 \\ \frac{11}{64} = .171875 \\ \frac{1}{16} = .1875 \end{array}$	$\begin{array}{c} \frac{25}{64} = .390625 \\ \frac{18}{18} = .40625 \\ \frac{18}{64} = .421875 \\ \frac{7}{16} = .4375 \end{array}$	$\begin{array}{c} \frac{1}{61} = .640625 \\ \frac{21}{62} = .65625 \\ \frac{1}{62} = .671875 \\ \frac{1}{16} = .6875 \end{array}$	$\begin{array}{c} \frac{57}{34} = .890625 \\ \frac{34}{32} = .90625 \\ \frac{52}{34} = .921875 \\ \frac{16}{16} = .9375 \end{array}$
$\begin{array}{l} \frac{18}{64} = .203125 \\ \frac{7}{32} = .21875 \\ \frac{1}{64} = .234375 \\ \frac{1}{4} = .25 \end{array}$	$\begin{array}{c} \frac{29}{64} = .453125 \\ \frac{15}{32} = .46875 \\ \frac{1}{32} = .484375 \\ \frac{1}{2} = .50 \end{array}$	$\begin{array}{c} \frac{45}{64} = .703125 \\ \frac{25}{33} = .71875 \\ \frac{1}{34} = .734375 \\ \frac{1}{4} = .75 \end{array}$	$\begin{array}{c} \frac{61}{64} = .953125 \\ \frac{81}{64} = .96875 \\ \frac{68}{64} = .984375 \end{array}$

As it is often necessary to change the common fractions of an inch into decimals and back again, the preceding table is given as being very conveniently arranged, and as a saver of time in figuring it out whenever you want to know what $\frac{1}{16}$ is in decimals, or what fraction is equivalent to .375 of an inch.

EXAMPLES

A foreman gave the toolmaker three distance blocks, to make a snap gage that would just fit when the three blocks were put together. The blocks were 0.625, 0.28125, and 0.015625 inches, what was the size of the snap gage? Ans. 0.921875 inches.

What are the decimal equivalents to $\frac{51}{128}$ and $\frac{12}{84}$? Ans. 0.39843 and 0.296875.

If the correct size of a reamer is 0.796875 and the tool-maker finds it is only 0.78929, how much too small is it? Ans. 0.007585 too small.

When the limit of accuracy is 0.005 inch, what is the largest and the smallest diameter allowable, if the nominal size is 1.175 inch. Ans. 1.1725 and 1.1775.

If a reamer is 1.1875 on the small end and 1.375 on the large end, and the tapered portion is 6 inches long, what is the taper per foot? Ans. 0.375 inch per foot.

CHAPTER III

CANCELLATION

JUST as we use some tools to make the work easier and quicker, so we can use methods or short cuts which will save time. One of these is called cancellation, and it will save time in both multiplication and division. It comes especially handy with formulas, such as the one for horse-power where we have

$$H.P. = \frac{P \times L \times A \times N}{33000}$$

where pressure, $P_1 = 100$ pounds, length of stroke, $L_2 = 3$ feet, area of piston, $A_3 = 180$ square inches, and $N_3 = 200$ strokes per minute. So we have,

$$H.P. = \frac{100 \times 3 \times 180 \times 200}{33000}$$

Instead of multiplying all the numerators together, we see how much we can reduce both numerator and denominator by dividing both of them by any number which will go evenly into both.

We can begin by dividing 33000 by 100, and crossing out the 100 above the line, which leaves 330 as the denominator. Divide it again by 3 and get 110. Divide 180 and 110 by 10 and get 18 and 11.

$$H.P. = \frac{\cancel{100} \times \cancel{3} \times \cancel{180} \times \cancel{200}}{\cancel{33000}}$$

$$\cancel{110}$$

Nothing will divide 11 and this will not go in to 18 or 200, so we have reached the limit. Now all we have to do is to multiply $18 \times 200 = 3600$ divided by 11, which gives 327 horse-power.

Let us suppose a case of a train of driving gears where the driving gears are 24, 36, 48, 55, and the driven 30, 40, 44, and 60 teeth. The driving gears go above the line and the driven gears below, so we have

Ratio of speeds =
$$\frac{24 \times 36 \times 48 \times 55}{30 \times 40 \times 44 \times 60}$$
.

Starting with the first pair, divide by the largest number that will go in both, which is 6, leaving 4 and 5. The 4 will go in 40 and leave 10. In 36 and 60, 12 will go 3 and 5 times. In 55 and 44 we can divide by 11, leaving 5 and 4. The 4 will go in 48, 12 times, the 5's cancel each other, 12 and 10 are divisible by 2, leaving 6 and 5.

This leaves us only $\frac{3 \times 6}{5 \times 5} = \frac{18}{25}$, showing that the whole train is equivalent to an 18-tooth driving gear and a 25-tooth driven gear.

This will be found extremely useful in all sorts of calculations, and a little practice will make it easy to do many examples without any division except what can be done in your head.

Pulleys make one of the cases where cancellation comes in very handy as a time saver and a few examples will show how it saves figuring. Take as an example a line-shaft running 200 revolutions, pulley on the line-shaft 30 inches, pulley on a grinder 6 inches, how fast will the grinder run? An easy rule fits this case, and is: multiply the diameter of the driving pulley by its speed and divide by the diameter of the driven pulley, which would be $30 \times 200 = 6000$ and divided by 6 = 1000 revolutions for the grinder.

We learned in common fractions that the placing of figures in this way meant that the numerator was divided by the denominator, so in cancellation we place the numbers that are to be multiplied together above the line, and the number or numbers we divide by below the line, like this:

$$\frac{30 \times 200}{6}$$
.

Then, instead of multiplying 30 by 200 we see if any of the numbers below the line will divide into any of those above the line evenly, or the other way, just as it happens. In this case 6 will divide evenly into 30, so we cross out the 6 and put a 5 over the 30, to show that the 30 has been reduced to 5 by crossing out the 6 below the line, like this:

$$\frac{\cancel{5}\cancel{\cancel{9}\cancel{\cancel{9}}} \times 200}{\cancel{\cancel{9}}} = 1000$$

Then we only have to multiply 5 times 200, which gives 1000 without using a pencil at all. This is such a simple case that the saving is very little indeed, but it often happens that it reduces the work wonderfully. Suppose we

have an example where 13, 20, 16, and 21 have to be multiplied together, and divided by the product of 39, 5, 7, and 8. This would mean a lot of multiplying and dividing, but by the cancellation plan the work is easy, and we write it like this:

$$\frac{13 \times 20 \times 16 \times 21}{39 \times 5 \times 7 \times 8}$$

Looking for numbers that will cancel we find that 13 goes into 39 just 3 times, so cross out both 13 and 39 and put a 3 in place of 39. Next 5 goes in 20 just 4 times, 7 goes in 21 just 3 times, and 8 goes into 16 just 2 times, so we have:

$$\begin{array}{ccccc}
 & 4 & 2 & 3 \\
 & \cancel{18} \times \cancel{20} \times \cancel{16} \times \cancel{21} \\
 & \cancel{39} \times \cancel{5} \times \cancel{7} \times \cancel{8}
\end{array}$$

Looking it over we find a 3 above the line and another below, so we cross out both of them, which leaves only 4 and 2 above the line, and nothing at all below, so we now have:

$$\frac{\cancel{18} \times \cancel{20} \times \cancel{16} \times \cancel{21}}{\cancel{39} \times \cancel{5} \times \cancel{7} \times \cancel{5}} = 4 \times 2 = 8$$

which is certainly much easier and quicker than multiplying and dividing in the regular way.

Here is a lathe counter-shaft with two 10-inch pulleys. The forward pulley is to run 300, the backing pulley 1½ times as fast, or 450 turns for a quick return. The line-shaft runs 150 revolutions, what pulleys must go on the line-shaft? We have the diameters and speeds of the

driven pulleys, and the speed of the drivers to find their diameters; so, as we must divide by the speed of the drivers, we put this below the line and the driven above the line.

Diameters are both 10 inches, so we say
$$\frac{10 \times 300}{150} = 20$$

inches for forward pulley on line-shaft; and $\frac{10 \times 450}{150} = 30$ inches for backing pulley on line-shaft.

Suppose, however, that a shaft A runs 200 turns a minute, and the pulley B on A is 12 inches in diameter. This drives an 8-inch pulley D on a shaft C; and pulley E, also on shaft C, is 18 inches in diameter, while pulley F on a shaft G is only 6 inches in diameter, how fast will shaft G run?

Separate the driving pulleys from the driven, no matter how many there are of each, and as the answer is to be the speed of the driven pulleys, the diameters of the driven pulleys make the denominator, while the diameters and speed of driving pulleys go above the line. This makes it

$$\frac{200 \times 12 \times 18}{8 \times 6} = \text{speed of shaft } G,$$

and as 6 will go in 18 just 3 times we cancel these. Then 4 will go in 8 twice and in 12 three times, so we cancel these. The 2 will go in 200 evenly, making it 100, and we now have $3 \times 3 \times 100 = 900$, as follows:

$$\frac{100}{200 \times 12 \times 18} = 900.$$

$$\frac{\cancel{2}\cancel{0}\cancel{0} \times \cancel{1}\cancel{2} \times \cancel{1}\cancel{8}}{\cancel{2}} = 900.$$

This solves the problem without bothering to find the speed of the intermediate shaft C, which was not asked, but which can be found as before, and will be

$$\frac{25}{200 \times 12} = 300 \text{ revolutions.}$$

Suppose the engine should run away and get up to 200 revolutions per minute, what would be the speed of the rim of the fly-wheel (and of the belt) if the wheel is 10 feet in diameter, also what is the surface speed of the bearings if the shaft is 12 inches in diameter at the journal?

Multiply the diameter by the constant 3.1416 to get the circumference, which is $10 \times 3.1416 = 31.416$ feet, and at 200 revolutions we get 200×31.416 or 6283.2 feet, over a mile a minute, which is too fast for a cast-iron wheel. The bearing is 1×3.1416 or 3.1416 feet for each revolution, and 628.32 feet surface speed for the bearings, just one tenth the fly-wheel speed.

EXAMPLES

Cancel the following down to the lowest terms:

1.
$$\frac{2 \times 6 \times 18 \times 3}{3 \times 7 \times 12 \times 8}$$
2. $\frac{7 \times 4 \times 9 \times 3}{8 \times 12 \times 7 \times 8}$
3. $\frac{1}{2} \times \frac{3}{4} \times \frac{13}{4} \times \frac{13}{4}$
4. $\frac{84 \times 110 \times 36 \times 10}{33000 \times 6}$

Ans. $1 = \frac{9}{14}$, $2 = \frac{9}{64}$, $3 = \frac{11}{16}$, $4 = \frac{84}{8}$

CHAPTER IV

RATIO OR PROPORTION

RATIO and proportion is the same as the old "rule of three" of our forefathers and is one of the handiest rules in arithmetic, if it is understood.

One of its uses is in selecting change gears for screw cutting. Calling the lead screw 4 pitch and the thread to be cut 8 pitch, we say the "ratio" is 4 to 8, or 1 to 2, because 4 is one half of 8. We know that if we could use gears with 4 and 8 teeth the right thread would be cut, but we have no gears with such a small number of teeth; so we must find others having the same ratio or proportion to each other. This is why we multiply both by the same number in all cases to find what gears we can use.

Multiplying 4 and 8 by 6 gives 24 and 48, or by 7 gives 28 and 56. If the gears run in fives instead of fours, that is, vary five teeth, as 25, 30, 35, etc., multiply 4 and 8 by 5, giving 20 and 40. But 20 is smaller than we usually have, and we must find two other gears, with the teeth divisible by 5, which are in the same ratio, or of which one has twice as many teeth as the other. Multiplying by 10 gives 40 and 80; by 7½ gives 30 and 60; by 6½ gives 25 and 50, all being in the same proportion or ratio. You can multiply by any number that will give gears that you have, and as long as you multiply both by the same number the ratio or proportion is unchanged.

Another example is in the method of laying out a square corner, by what is called 6, 8, and 10 rule. This means that any triangle having sides of 6, 8, and 10 inches, or in that ratio, is always a right-angled triangle. The sides can be 6, 8, and 10 feet or miles, and the angle will be the same. Or it can be 3, 4, and 5; 1½, 2, and 2½; 9, 12, and 15; 30, 40, and 50 inches, feet, or miles; the ratio is the same in all these cases. As long as we multiply or divide all the factors or parts by the same number, we have not disturbed the proportion.

If a casting weighs 7 pounds and we want to know how much 13 castings would weigh, we simply multiply 13 by 7 and get 91 pounds. But if you are told that 13 castings weigh 91 pounds and want to find how much 7 will weigh, it looks a little harder. But there is an easy way to work out any of these problems with very few figures. First draw a horizontal line and then ask yourself whether the answer wants to be greater or less than the figure you already have. In this case the 7 castings will weigh less than the 13, so put the line and figures like this:

$$\frac{7 \times 91}{13} = \frac{637}{13} = 49,$$

or it would have been easier to do this by dividing 13 into o1 and canceling, like this:

$$\frac{7\times91}{13}=49,$$

leaving only $7 \times 7 = 49$.

This works out very nicely in figuring out belt speeds, pulley diameters or gears, and will save lots of time if used carefully. Suppose we have a nest of compound gears, with the driving gears having 100, 50, and 30 teeth, and the driven gears 60, 40, and 20 teeth; how fast will the driven shaft turn if the first driver turns 100 times a minute? The easiest way is to put all the driving gears on top of the line and the driven gears below, as follows:

$$\frac{100 \times 50 \times 30}{60 \times 40 \times 20}$$

Canceling, we divide 60 by 30, crossing out both numbers and put down 2; 20 into 100 gives 5, and dividing 40 and 50 by 10 (canceling ciphers) gives 4 and 5. This leaves 5×5 over the line and 2×4 below, as follows:

$$\frac{\cancel{100} \times \cancel{50} \times \cancel{30}}{\cancel{60} \times \cancel{40} \times \cancel{40} \times \cancel{20}} = \frac{\cancel{5} \times \cancel{5}}{\cancel{2} \times \cancel{4}} = \frac{\cancel{25}}{\cancel{8}}.$$

This shows that the driven shaft will turn $\frac{2}{3}$ times as fast as the driver. If the gears had been reversed and the smaller ones the drivers, the numbers would also be reversed and the larger ones placed below the line. Then the driven shaft would turn $\frac{2}{3}$ as fast as the driver. In the first case the driven shaft will run

$$\frac{25 \times 100}{8} = \frac{2500}{8} = 312\frac{1}{2}$$
 revolutions.

In the second it would run

$$\frac{8 \times 100}{25} = \frac{800}{25} = 32$$
 revolutions per minute.

Suppose you earn \$7 making 35 pieces of work, how many

pieces can you make for \$11? As you know it will be more, just put the example like this:

$$\frac{11\times35}{7}$$

and cancel as follows:

$$\frac{11 \times 35}{7} = 55 \text{ pieces.}$$

The school books always give proportion like this:

which is read, "as 2 is to 4 so is 8 to 16." The four numbers are called the four "terms," first, second, third, and fourth, and the first multiplied by the fourth equals the second multiplied by the third. So to find the first or fourth terms we multiply the second and third together and divide by the one we have, or reverse this if the first and fourth are given and one of the others missing.

EXAMPLES

If a worm runs 260 turns a minute and the worm wheel 13 turns a minute, what is the ratio of reduction? Ans. 20 to 1.

Three gears mesh together and drive different shafts. The driver has 100 teeth and runs 80 turns a minute, the next gear has 80 teeth and the last 60 teeth. What is the ratio between the speed of the shafts? Ans. First runs 80, second 100, third 133\frac{1}{3} revolutions per minute.

If a mixture has copper 3 parts, lead 2 parts, and tin 1 part, what amount of each will it take to make a 60-pound casting? Ans. Copper, 30 pounds; lead, 20 pounds; tin, 10 pounds.

CHAPTER V

PERCENTAGE

Percentage is very closely related to decimals and is very easy as well as very useful. It may be called a decimal system with one hundred as the base, and comes from two words, per, centum: per — by, and centum — hundred; by the hundred.

So one per cent means one one-hundredth of whatever we are talking about. If a raise in pay of 10 per cent is made, it means that one tenth of the present amount will be added to it. If the rate is \$3 per day, 10 per cent of this is $_{10}^{1}$ of \$3 or 30 cents, so that the new rate is \$3.30. If a formula for babbit metal is 82 per cent lead, 15 per cent tin, and 3 per cent copper, it does not mean that there must be 82 pounds of one, etc., but that $_{100}^{8.9}$ of whatever the amount is, is to be lead.

If we have a motor with 90 per cent efficiency, it means that we are getting 90 parts of work out of a possible hundred, or in the case of a 100 horse-power motor we get out 90 horse-power by putting 100 horse-power of work into the motor at the wires. In other words, 10 horse-power is lost in friction and the electrical losses.

We often hear belt slippage given as 2 per cent, which means that for every 100 feet the belt should travel, it only travels 98 feet, the slippage being 2 feet, or, if the pulleys

are the same size on both driver and driven, and the driver runs 100 revolutions per minute, the driven shaft will only run 98 revolutions, owing to the 2 per cent slippage.

The only difficulty in figuring percentage is to know what number to use as the base or principal. If you have \$200 in the bank at 4 per cent interest, multiply 200 by .04 = \$8.00, as the interest for one year. If you leave this in the bank the interest is no longer figured on \$200, but on \$208, so that the next year the interest is \$208 \times .04 = \$8.32.

Going back to the question of the 10 per cent raise in pay, from \$3 to \$3.30, we see the result of the difference in the base for a 10 per cent cut would leave us worse off than before; for $3.30 \times .10 = .33$ cents, which would leave only \$2.97 instead of \$3, because we are dealing with a larger sum as the base. If we offer a man \$400 for a piano, for which he asks \$500, we must raise our offer 25 per cent to meet him, as $400 \times .25 = 100$, while he can meet us by cutting his price only 20 per cent, as $500 \times .20 = 100$, showing the difference in the way we figure.

If a metal is 60 per cent lead, 10 per cent copper, and 30 per cent tin, and the lead weighs 12 pounds, how much tin and copper is there, and how much does it all weigh?

As the lead weighs 12 pounds, and this is 60 per cent, one per cent = $\frac{1}{60}$ of 12, or $\frac{1}{60}$ of a pound. The copper weighs 10 times this, or $\frac{1}{60}$, or 2 pounds, and the tin 30 times or $\frac{360}{60} = 6$ pounds. Or we could say that, as the lead weighed 12 pounds, and there was $\frac{1}{6}$ as much copper as lead, this must be 2 pounds, and as the tin is $\frac{1}{2}$ the lead, this will be 6 pounds, making 12 + 2 + 6 = 20 pounds in all.

Or if by adding 10 per cent to the men in the shop you would then have 220, how many have you now?

This puts a different light on it, but while you do not know the number now employed, you know that it equals 100 per cent, whether it is one man or 200. So if you add 10 per cent and you then have 110 per cent of the original force. So 220 = 110 per cent and one per cent equals 220 divided by 110, or 2, and $100 \times 2 = 200$, the original number.

This shows that percentages may be very misleading. A shop employing only 4 men would increase its force 25 per cent if it hired the fifth man, while a shop of 100 men would have to employ 25 more men to equal this percentage, and a shop with 2000 men would have to hire 500 new men to increase 25 per cent, yet the percentage is the same in either case.

EXAMPLES

A machinist has been raised from \$2.50 to \$2.75 per day, what is the percentage of the increase? Ans. 10 per cent.

If he is cut 10 per cent from this, what will his daily wage be? Ans. 2.47.

Why is 10 per cent reduction more than the 10 per cent increase?

If we take a contract for \$1800, and it costs us \$1600, what percentage have we earned on the cost? Ans. 12 $\frac{1}{2}$ per cent.

A job nets us \$300 on the contract price, which is a 5 per cent profit on the cost. What was the cost and the contract price? Ans. Cost, \$6000; contract, \$6300.

CHAPTER VI

SPEED OF PULLEYS

One of the most common problems which comes up in the shop is about the speed of belts, pulleys, and gears. A new machine is bought which has a counter-shaft that should run 400 revolutions a minute, according to the tag on the counter. What size pulley goes on the line-shaft to give this speed? This depends on the speed of the line-shaft and the size of the pulley on the counter-shaft. If the line-shaft runs at 200 revolutions and the pulley on the counter is 12 inches in diameter, we have enough information for the job.

As the counter must run faster than the line-shaft, it is very plain that the pulley on the line-shaft must be larger than the one on the counter, and as 400 is just double 200, it must be just twice as large, or 24 inches in diameter. This is a case where we can figure it out in our head, but let us see why.

A belt drives by running around on the rim of a pulley, and if the distance around both pulleys is the same they must run at the same speed because the rim of each must run at the same speed. In Fig. 1 it will be seen that when the large pulley turns once around, the rim of the small pulley must travel twice as far, and this holds good whether they turn part of a revolution or 100 revolutions.

Propose this by measuring the distance around the pulse other by ising a tape or by rolling a pulser of a senior into the made one turn, we find that a made one turn, we find that a more surface of the senior pulser at more and a 14-inch pulser at more and a 21-inch pulser to inches around. The senior time

relation between the crameter relation of the circumsers.

The around it, or its circumsers.

The periphery or the perimeter. The circumsers are outside boundary of any shaped

to multiply this by the must be to multiply this by the must be to must be to must be to the free per minute. It is must be the the minute of the minute be the minute of the minute be the minute of the minute of

pulley which drives the counter-shaft must have a circumference that will run at the same speed, and as the line-shaft only runs 200, we must divide 1256.64 by 200 to find the distance around the pulley or the distance moved in one turn of the shaft. This gives 6.2832 feet around the pulley, and dividing by the constant 3.1416 we get 2 feet for the diameter.

When we stop to think that the circumference is always 3.1416 times the diameter, we see that we can just as well use the diameter in each case, and that it is very much easier. This would let us multiply the diameter of countershaft pulley by 400, and divide this by 200, getting 2 feet as the right diameter for line-shaft pulley without any decimals whatever.

A little practice will enable any one to figure almost any necessary example in pulley speeds in their head without resorting to the use of paper and pencil at all, and it is very much better to reason out the whole thing than to depend on any rule without knowing why it is used.

A very common way of working these out mentally is to find how many times larger or smaller the driven pulley is and divide or multiply the driving pulley diameter by this number, as the case may be. With the driving pulley 30 inches and the driven pulley only 4 inches it will run 7½ times the speed of the driving pulley.

Having seen the reason why, we can make this into a little rule which may be handy, based on the fact that the diameter of the *driving* pulley multiplied by its speed always equals the diameter of the *driven* pulley multiplied by its speed. So we can say

Having	To Find	Rule
Diameter of driving pulley	Speed of	Multiply diameter of driving
Diameter of driven pulley	driven	pulley by its speed and divide
Speed of driving pulley	pulley	by diameter of driven pulley
Diameter of driving pulley	Diameter	Multiply diameter of driving
Speed of driving pulley	of driven	pulley by its speed and divide
Speed of driven pulley	pulley	by speed of driven pulley
Diameter of driving pulley	Speed of	Multiply diameter of driven
Diameter of driven pulley	driving	pulley by its speed and divide
Speed of driven pulley	pulley	by diameter of driving pulley
Diameter of driven pulley Speed of driven pulley Speed of driving pulley	of the driv-	Multiply diameter of driven pulley by its speed and divide by speed of driving pulley

These cover all the cases of direct driving with only two pulleys, and where there are more, as in belting from lineshaft to counter, and from counter to the machine, it can be worked as two separate problems or combined into one as shown on page 20.

EXAMPLES

With the line-shaft running at 180 turns a minute and the counter-shaft pulley 14 inches in diameter, what size pulley must go on the line-shaft to drive counter 420 a minute? Ans. 323; in practice, 33 inch.

The engine makes 90 turns a minute, and is to drive a dynamo at 1200 through a jack-shaft, which is to run 300. Driving wheel is 10 feet and pulley on dynamo 12 inches. What must the driven and driving pulleys on jack-shaft be?

Ans. Driven pulley on jack-shaft, 36 inches; pulley on jack-shaft driving dynamo, 48 inches.

With a grindstone 7 feet in diameter, how many turns a minute must it run to get a surface speed of 3300 feet per minute, and what pulley must be used on the stone to run from a 15-inch pulley on line-shaft running 200 a minute? Ans. Grindstone must run 150 turns and have a 20-inch pulley.

CHAPTER VII

SPEED OF GEARING

THE speed of gearing is figured in just the same way as the speed of belts and pulleys, except that the number of teeth are used instead of diameters. This gives the same results as using the pitch diameter, but as this is less than the outside diameter, the number of teeth is easier to find and is used on that account. If a gear having 20 teeth drives another gear having 40 teeth, it is very plain that when the driving gear makes one turn the driven gear of 40 teeth will only have made half a turn or be running half as fast. The same rules apply as for pulleys, if we substitute teeth for diameter. The number of teeth in the driving gear multiplied by its speed equals the number of teeth in driven gear multiplied by its speed; so to find either the teeth or speed of the driven gear we use the factor we have of the driven gear as the denominator or divisor. Thus if the 20-tooth gear ran 100 turns a minute, the prob-

lem would become
$$\frac{20 \times 100}{40} = 50$$
 turns for the 40-tooth gear.

This is especially handy where there is a long train of gears, in which the intermediate shafting is driven by one

gear and drives the next with a different gear. Where it is a direct train the intermediate gears are all idlers, which, if the driver has 20 teeth, simply transmits the motion of 20 teeth to the last gear of the train. If this has 40 teeth as before, it will turn one half as fast as the driver, no matter how many intermediate gears are in the train.

But where a 60-tooth gear drives a 40, and a 60-tooth gear on the same shaft drives an 80, while a 40 drives a 30, and a 40 drives a 24, it is easy to find the speed of each or the speed of the last, whichever you need. If you want the speed of the driven gear, then the teeth of the driven must be the divisor, and calling the speed of the first shaft

80 turns a minute, the second will be $\frac{60 \times 80}{40}$ = 120 turns.

The driver here is 60 and the next driven gear has 80 teeth,

so we have
$$\frac{60 \times 120}{80} = 90$$
 turns for the third shaft.

Here a 40-tooth gear drives a 30, so the fourth shaft

must run $\frac{40 \times 90}{30} = 120$ revolutions per minute. On this

is a 40 driving a 24 on the last shaft, so we have
$$\frac{40 \times 120}{24} = \frac{40 \times 120}{6}$$

200 revolutions per minute.

Now, to get the final speed at once without all these intermediate shafts, we can make this all into one example by putting the speed of the first driver and the teeth of all the drivers above the line, and the teeth of all the driven gears below the line. This gives the same as before.

$$\frac{\cancel{80} \times \cancel{60} \times 60 \times \cancel{40} \times \cancel{40}}{\cancel{40} \times \cancel{80} \times \cancel{80} \times \cancel{30} \times \cancel{24}} = \frac{600}{3} = 200.$$

Suppose this had been reversed, and we had the same gears, but that the last shaft must run 250 turns, how fast must the first shaft run? We now have the speed of the driven, so the driving gears become the divisors and go below the line like this:

EXAMPLES

The first shaft runs 100 turns a minute and carries an 80-tooth gear, which drives a 60-tooth gear on the second shaft. A 40-tooth gear on this drives a 60-tooth gear on the third. What is the speed of each shaft? Ans. 100, 133\frac{1}{3}, and 88\frac{3}{4} revolutions per minute.

What gear will be necessary to drive a second shaft 48 turns a minute if the driver has 72 teeth and runs 114 turns a minute? Ans. 171 teeth.

If a gear of 100 teeth running 99 turns a minute drives a gear of 99 teeth, how fast will it run? Ans. 100 turns a minute.

CHAPTER VIII

GEARING A LATHE TO CUT ANY THREAD

THE selection of the proper gears for screw cutting is a problem as old as the engine lathe itself, and yet it probably comes up more frequently in the shop than any other, not even excepting the question of turning tapers. Instead of attempting to give any hard-and fast rules at first, it seems better to try to understand just "how" the carriage and tool are moved in screw cutting, so that it will be perfectly clear "why" we make each move in the game.

Simple Gearing

Fig. r shows the head of an engine lathe with simple gearing. Gear E is solid with the lathe spindle and turns with it in the direction of the arrow. Neither F nor G is in mesh with E, so no motion is given to any of the gears or the lead screw.

Raising gear bracket I so as to mesh G into E, and tracing the turning direction of the various gears, we find that L turns in the same direction as the spindle, so that a right-hand thread on the lead screw will move the carriage toward the head and cut a right-hand thread, as is usual. It is easy to trace out the direction in which gears will turn in several ways. One is to remember that every other gear turns in the same direction. This means that E, H

and L will all turn the same way. The gear F is not in the train, but is running idle in this position. Another way is to follow the gears themselves with your eye or with a stick (but don't risk a finger if they are in motion), as shown by the arrows in Fig. 2, following the motion till you come to the end or to the particular gear wanted. The fact that the large intermediate gear does not mesh with H does not affect its motion, as the smaller gear is on the same shaft, or what is commonly called the stud.

Reversing the Lead Screw

To cut a left-hand thread, the handle I is lowered until gear F meshes with E. This makes L run in the reverse direction, as E, G and the intermediate run the same way. This is the object of the gear F, which is idle when cutting right-hand threads.

Having settled the direction in which the gears run, the next question is, the gears required to produce the right thread on the work. It is easy to see that if the lathe spindle and the lead screw revolve at the same rate, the carriage will advance one thread at each revolution and cut the same thread as the lead screw.

With the gearing shown in Fig. 1, this will not be the case, because the gear on the stud S has fewer teeth than the main driving gear E, so that the lead screw will turn at a slower rate, and cut a finer thread.

Finding the "True" Thread of Lead Screw

The first thing to do is to see if the stud S turns at the same speed as the spindle. This can be done by counting the teeth in E and in H. These are usually the same, and

if so, the stud turns at the same rate as the spindle and the lathe is geared "even." If these gears are inside the head, and hard to get at, put gears having the same number of teeth on both the stud and the lead screw, and take a cut on an old piece of stock to see what it cuts. If the thread is the same as the lead screw, the gears are "even," as before; if not, call the thread you cut in this way the true thread of your lead screw in all cases, and ignore the actual pitch of your lead screw in all calculations. This will save much time and trouble in future.

After you have found the true pitch of your lead screw it is easy to find the gears for any thread as long as the train of gearing remains the same, that is, not compounded in any way.

Calculating the Gears

All you have to do is to multiply both the pitch to be cut and the true pitch of the lead screw by the same number and you get the gears to use.

Call your lead-screw pitch 6, and you want to cut a 10 thread. Multiply both 6 and 10 by 4 and get 24 and 40, or by 5 and get 30 and 50, or by 6 and get 36 and 60. It doesn't matter which pair you use if you put them on the right place.

Just remember that the gear you get by multiplying the pitch of lead screw goes on the stud, and you'll have no trouble. The other, of course, goes on the lead screw. Let us see why, so there will be no need of remembering or taking any one's say so.

The screw to be cut in this case is 10 pitch, slower than the lead screw. So the carriage must move more slowly than to cut a screw the same pitch as the lead screw. This means the lead screw must revolve more slowly than the spindle; to do this, the larger gear must go on the lead screw.

Suppose you select gears with 30 and 50 teeth and put the 30 on the stud. Then every revolution of the stud will turn all the gearing in the train just 30 teeth, which will revolve the lead screw \$8, or \$ of a revolution, which is correct for a 10 thread with a 6-pitch lead screw. But it isn't necessary to bother with this figuring unless you want to prove the "why" of it to yourself.

A Few Simple Rules

If you want this in a little rule or rules, you can say; multiply true pitch of lead screw and pitch of thread to be cut by any number that will give two gears that you have for that lathe.

Put the gear obtained by multiplying the thread to be cut, on the lead screw.

Or, if the pitch of the thread to be cut is *faster* than the lead screw, the smallest gear goes on the screw. If slower than lead screw, smallest gear goes on the stud. But—don't apply these rules unless you know what thread the lathe will cut, with even gears on both stud and lead screw.

Compounding the Gears

So far it has been plain sailing with a direct train of gears, but when you begin to double up or compound it is necessary to keep your weather eye open for squalls. They don't arrive if you take time to be sure you are right, but lie in wait for the fellow who "knows it all" or who "never makes a mistake."

Compound gearing is necessary to give the lathe a large range of threads, as it isn't practical to use a 160-tooth gear to cut a 40 thread, as would be necessary with a 6-pitch lead screw and a 24 gear on the stud. So "compound" or change the gearing between stud and the lead screw, as in Fig. 3.

Where the Difference Comes In

Here all the gearing between the spindle and the stud is the same as Fig. 1. But instead of the stud gear driving the same large gear as drives the gear on lead screw, as in Fig. 1, the stud gear drives gear A, and fastened to this, and turning with it, is gear B, which drives the lead-screw gear L.

The gear A is one half the diameter of B, and has one half as many teeth. As they both turn together, one revolution will move A 60 teeth and B twice this, or 120 teeth; and as B drives L, then L will be driven 120 teeth also, or twice as fast as though it were driven direct from S, by both meshing into the same intermediate gear, as in Fig. 1. The compounding in this case is "geared up" to cut a rapid thread, such as $1\frac{1}{2}$ to the inch. With straight gears this would call for $16 \times 1\frac{1}{2} = 24$; and $16 \times 6 = 96$. If we have no 96 gear we gear up the compound attachment, as shown, and use a 48 gear on the stud, the 24 on the lead screw.

To "gear down" for cutting a finer thread, as a 40, the stud S would drive the large gear B, while A would drive lead-screw gear L, through an intermediate. This brings us to the form of compound gearing shown in Fig. 4, which is quite common on modern lathes, and is also somewhat puzzling unless you pick the arrangement to pieces. So this is the next step.

A Compound Cone of Gears

The upper sets of gears A, B, C, are loose on the shaft or pin, except when made to drive with it by the feather or key K, shown engaged in A. Gears B and C are now running idle. Gears D, E and F are keyed solidly together. As shown, the lathe is simple geared from A, through D and G, to lead screw H. Calling A 24 teeth, one turn will revolve D the same number of teeth, which also moves G 24 teeth, and revolves lead-screw gear H once, as this has 24 teeth. So far this is simple gearing, as shown in outline by Fig. 5.

The next change is to move gears G and H in toward the head, so as to mesh in with E. This is shown in Fig. 6. Now A, with 24 teeth, drives D, having 48 teeth. E, with 36 teeth, drives the intermediate gear G, and screw gear H.

When A revolves one turn, or moves 24 teeth, D must also move 24 teeth, or one half a turn. But E, also making half a turn, moves 18 teeth, and this is transmitted to gear H, showing that "gearing down" takes place as we move gears G and H to the smaller diameters of the cone.

Tracing Out the Gear Movement

To find what thread will be cut with this arrangement, just pick out the gears which *drive* from the main spindle to the intermediate gear G. These are A and E, in Fig. 6, with 24 and 36 teeth. Multiply them together. This gives $36\times24=864$. Now take the *driven* gears, D and H (G doesn't count at all), and multiply them together, getting $48\times24=1152$. Multiply this by pitch of lead screw 6, and divide the whole thing by 864, which gives 8, showing an 8 thread will be cut.

The Gears to Use

Working this the other way, to find what gears to use to cut a 10 thread, we do it in almost the same way.

Multiply the two driving gears, A and E, together as before, and multiply this by the thread to be cut. This gives $24\times36\times10$, or 8640. Then multiply the driven gear D, 48 teeth, by the pitch of lead screw 6, and get $48\times6=288$.

Cone of Gears and Gear Train.

Divide 8640 by the 288 and find that 30 is the gear to put on the lead screw.

The Next Change

Shifting the gears G and H in toward the head and putting both collars X X on the outside, so G meshes into F, gives another step in the change of gears as shown in Fig. 7. As D has 48 teeth and F 24 teeth, F will drive G just half

as fast as D is being driven by A and gear the lead screw down just half, or make it the same as a 12 thread in simple gear.

Remember that gears B and C are running idle all this time and need not be considered at all.

This takes us through one set of changes and makes clear the process. Moving the pin in so that the key K engages B, we have an entirely different set of conditions; but they can be followed out in just the same way.

With gears G and H outside, as in Fig. 4, the gear B drives E, both having 36 teeth; D, with 48 teeth, drives G and H. The same calculations can be made as before, multiplying together the driving gears B and D and the thread to be cut and dividing this by the driven gear E multiplied by the pitch. This gives the thread that will be cut.

When Gears Drive Direct

No matter what the lathe or the gearing, when all the gears in the driving train are in direct line, as in Fig. 4, the gear H will turn just as many teeth as the number of teeth in A, for every revolution of the spindle; and with the gear H having the same number of teeth as the gear A, the thread cut will be the same as the lead screw.

To Cut 111 Thread

This particular lathe is equipped with change gears from 24 to 66 varying by six teeth, and includes a 39-tooth gear, but none that will cut an 11½ thread, which could be done with a 69-toothed gear on the lead screw (which is 4 pitch) and the train in a direct line, as in Fig. 4. As 66 is the largest gear in the list, and this cuts an 11 thread, to

cut a 12 it is necessary to compound, which is done by leaving pin K in gear A and moving G in to mesh in F; a 36 is used on the lead screw. Just to prove this, and not take it for granted, figure it out. The driving gears are A and F, 24 teeth each. Driven gear is D, 48 teeth. $24 \times 24 \times 12 = 6912$. Multiply 48 by 4, the pitch of the lead screw, and get 192. Divide the first by the second and get 36 as the gear for the lead screw.

Cutting as Near as Possible

No regular combination of the gears gives 111 thread, but we can get very close to it by making a little compound gear of our own by taking off the intermediate gear G and fastening two other gears to run on that stud. With the gears in a single train, as shown in Fig. 4, it would take a 60-tooth gear to cut the 111 thread. But as these are not to be had, we must find something smaller, and make up for the difference by turning it a little more slowly. So we slip off the first collar X in the lead screw and fasten together a 42 and a 36 to place on G, with the larger gear meshing into D and the smaller into the lead-screw gear H. Trying this with a 66 gear on H, we have as driving gears 24 and 36, and as driven gears 66 and 42. Then $24 \times 36 = 864$, and $66 \times 42 = 2772$. Divide this by 864 and get 3.2 as the ratio between the lead screw and the thread to be cut. Multiply it by 4, the pitch of the lead screw, showing that this combination will cut a 12.8 pitch thread.

Cut and Try Method

This shows the lead screw must turn faster, so we try 60 on the lead screw instead of 66, and see what thread will be cut. Repeating the multiplications, we get $60 \times 42 = 2520$. Divide this by the same number as before, as the driving gears have not been changed, and we get 2.91 as the ratio. Multiply this by 4 and find that it will cut a thread having 11.64 pitch, which will do for a short length of thread, if nothing better is at hand.

Trying one more combination, we use 48 and 42 as the compound gears, and come a little closer. The figuring in this case for the driving gear is $24 \times 42 = 1008$, and for the driven gears $60 \times 48 = 2880$. Dividing gives 2.85, and multiplying by 4 gives 11.4 threads per inch.

Another way of doing this, without decimals, is to multiply the driven gears by the pitch of the lead screw before dividing. This will give the thread that will be cut by the combination given. This would work out like this:

$$\frac{60 \times 48 \times 4}{24 \times 42} = \frac{11,520}{1008} = 11\frac{3}{7}, \text{ or } 11.43,$$

as you prefer. Figuring out various combinations in this way will show just what can be done, and by taking care to separate the driving gears from the driven and remembering to put the pitch of the lead screw with the driven gears, because it is driven with them, there will be no trouble even if a number of compounding sets are used.

Intermediate Gears Don't Count

A word of caution regarding intermediate gears may save mistakes in some cases.

Any gear which simply transmits motion from a driving gear to a driven gear can be left out of the question entirely. In Fig. 4, with the gears as shown, both D and G are inter-

mediate and have nothing to do with the thread cut. But moving G to mesh in E makes D a driven and E a driver, as both are fastened so as to move together.

In Fig. 8 is a train of gears of varying numbers of teeth, in which A is the driver and L the driven. Both A and L have 24 teeth. When A makes one turn, L must do the same, because when A moves one tooth, they all follow suit and L moves one tooth also, not allowing for lost motion.

In Fig. 9 the rack is practically an intermediate gear. With A the driver, B will move 24 teeth, or half-way around for every turn of A; and with B as the driver, A will move 48 teeth, or two revolutions, for every turn to B. So by leaving out all gears which simply transmit motion without changing its rate, and keeping driving gears in one lot and driven gears in another, there will be no trouble in figuring out what gears are needed for any pitch of thread.

Fractional Threads

The calculations for gears to cut the 11½ thread show how any thread can be handled, but there is sometimes a chance for getting mixed up on threads that are odd and fast, such as 1½ threads to 2 inches. This is ¾ of a thread to an inch and means that the lead screw must make four turns and move the carriage an inch while the spindle is making ¾ of a revolution. So the gear selected for the stud must be large enough to turn the lead screw fast enough to move the carriage $1\frac{1}{3}$ inches to each turn of the spindle. With a lead screw of 4 pitch this must turn four times $1\frac{1}{3}$ or $5\frac{1}{3}$ times as fast as the spindle. Using a 24-tooth gear on the screw would mean $5\frac{1}{3}$ times this, or a 128-tooth gear on the stud. If this is larger than you have at hand, use

a 64 and put in a 2 to 1 compound gear to double the speed of the intermediate gear, and the thread will be right.

Still Another Way

Sometimes you get an order to make a thread 1½ inches pitch, meaning 1½ inches between threads. The easiest way to handle this is to consider the pitch of the lead screw in the same way, as being ½ inch between threads. Then as 1½ inches is 5 times ½ inch, the lead screw must turn five times as fast as the spindle, using a 120-gear on the stud, and a 24 on the lead screw, or a 60 on the stud, with a doubling-up compound gear in between.

If the thread is very odd, such as \$\frac{3}{4}\$ between threads, which isn't likely to happen, but which you want to be able to handle if it does, the same method holds good. As \frac{1}{4} is \frac{1}{4}\$, the ratio is 16 and 57. Multiplying both by 2 gives 32 teeth for the lead-screw gear and 114 for the stud. Compounding 2 to 1 would give a 57-tooth gear, which is also odd, and 3 to 1 would give a 38, which is more apt to be on hand.

By carefully following each step you will have no trouble in cutting any kind of a thread wanted, even metric threads, which are sometimes called for.

Cutting Metric Threads

This can be done on any lathe by using a special pair of compound gears having 50 and 127 teeth. It may be necessary to make longer studs for the head and change gears in some cases.

With the 50-tooth gear as the driver of the pair, the 127-tooth being driven from the head, the carriage travel will

be reduced in the proportion of 2.54 to 1, because there are 2.54 centimeters to an inch.

The pitch of metric threads is given in millimeters, giving the distance in millimeters from one thread to the next. To use these "translating" gears, as the 50 and 127 are called, it is necessary to reduce the pitch to threads per centimeter, which is 10 millimeters. If the pitch is 2 millimeters, there will be five threads to the centimeter.

Then the lathe is geared just as though you were cutting five threads per inch, with a 24 on the stud and a 30 on the lead screw. The "translating" gears reduce carriage movement just in proportion as a centimeter is less than an inch.

Take care to get the thread measurement into the number of threads per centimeter, then it will be plain sailing.

Having a lathe which will cut a 4 thread with even gears on stud and screw, we wish to cut a 6 thread. What gears shall we use?

Multiply lead screw or 4 by any number, as 8, and get 32, the gear for the stud. Then multiply thread to be cut by the same number and get 48, as the gear for the lead screw.

With a 24-gear on the stud, what gear on the lead screw will cut a 20 thread?

Multiply stud gear 24 by thread to be cut, 20, and get 480. Divide this by pitch of lead screw and get 120 as gear for lead screw. This is probably larger than we have, so we must reduce the speed with a compound gear of say 2 to 1 or 3 to 1, letting the 24 gear on the stud drive a 48-gear and a 24 on the same shaft drive a 60 on the lead screw, just half the size that would be needed driving direct in a 2 to 1 compounding of gears.

To prove this, try it by the rule to find the pitch of the thread that will be cut with any gears. The pitch of lead screw multiplied by screw gear and any other driven gears is $4 \times 60 \times 48$, and this divided by stud and any other

driving gear is
$$\frac{\cancel{4} \times \cancel{60} \times \cancel{48}}{\cancel{24} \times \cancel{24}} = 20$$
 as the thread that will

be cut.

These rules will cover all the cases of thread cutting you will find and can be boiled down as shown below.

Having	To Find	Rule
True pitch of lead screw Thread to be cut Gear on the stud	Gear for lead screw	Multiply stud gear by thread to be cut and divide by true pitch of lead screw
True pitch of lead screw Gearor stud and any other driving gear in the train Gear on lead screw and any other driven gears in the train	Pitch of thread that will be cut	Multiply pitch of lead screw by screw gear and any other driven gears in the train, and divide by the stud gear and any other gears in the driving train
True pitch of lead screw and thread to be cut	Gears for stud and gear for lead screw	Multiply pitch of lead screw by any number as 4, 5, 6, or 8, that will give a gear in the train. This gear goes on the stud. Multiply thread to be cut by the same number, and the answer is number of teeth in gear to go on the lead screw

EXAMPLES

With a lead screw of 6 pitch, what gears can be used to cut a 7-pitch thread? Ans. 30 on stud, 35 on screw; 36 and 42; 48 and 56, etc.

What thread will be cut with a 40 gear on the stud and a 50 on the lead screw, if the lead screw is 4 pitch? Ans. 5-pitch screw.

With the lead screw 4 pitch, what gears are needed to cut a $11\frac{1}{2}$ -pitch-thread? Ans. 24 on stud, 69 on screw, or 32 on stud and 92 on screw.

With a 6-pitch lead screw, what gears will be needed to cut a thread having 1\frac{1}{3} inches lead? Ans. 24 on the screw and 192 on stud, or a 64 on stud compounded 3 to 1.

To cut a thread of 2 millimeters pitch with lead screw 6 pitch, what gears are used with the translating gears of 50 and 127 on compound stud? Ans. 30 on stud, 36 on lead screw.

CHAPTER IX

SCREW THREAD CALCULATIONS

Pitch and Lead

BEFORE taking steps to cut any threads it is best to fix in the mind what the pitch of a screw is. As usually measured, we say 10 pitch, meaning 10 threads to the inch, or 20 or 9, or any other number. On the other hand, we sometimes run across a drawing marked $\frac{3}{4}$ pitch, which should mean three quarters of a turn to the inch or one turn in $1\frac{1}{3}$ inches. If it says $\frac{3}{4}$ -inch pitch it means $\frac{3}{4}$ inch from one thread to the next.

The next point to watch is "pitch" and "lead." The pitch of a thread is the distance from the center of one tooth to the center of the next. The lead of a screw is the distance a nut will advance in one revolution of the screw. If it is a single-thread screw, the pitch and lead are always the same; but for double, triple, or any multiple thread, the lead is just as many times the pitch as there are multiple threads. A double thread has a lead twice the pitch, a triple screw three times, and so on. The pitch might measure 12 with a thread gage, but be a quadruple thread of 3 to the inch. The angle of the thread around the bar tells the story here.

The United States Standard Thread

The United States Standard or Franklin Institute or Sellers thread is so called because it was designed by Wm. Sellers, recommended by the Franklin Institute, and has been adopted by the United States Government. This thread has the same angles as the V, 60 degrees, but has one eighth of the depth taken off the top and bottom, as shown in Fig. 1. This gives the proportions for a thread of 1 pitch or 1 inch from one to the next.

FIG. 1. - United States Standard Thread.

The depth of a V-thread of this pitch is 0.86 inch, and of the United States Standard 0.65 inch, while the flat at top and bottom is 0.125 inch. To find the depth of any other thread, divide these figures by the number of threads to the inch. To help in allowing for the thread when boring a die or other piece with internal thread, Table 1 will be found useful. This also gives the width of the flat for the point of the thread tool, but it is fully as easy to measure this with a standard thread gage and there is much less chance of error. Simply grind the tool to fit the gage for whatever thread is to be cut, being sure it is a United States Standard thread gage and not a V.

TABLE 1.-PROPORTIONS OF THREADS

	V. TH	READS	U. S. S. THREADS		
Pitch or Threads per Inch	Depth of Thread on One Side	Depth of Thread on Both Sides	Depth of Thread on One Side	Depth of Thread on Both Sides	Width of Flat at Top and Bottom
I	0.86	1.72	0.65	1.30	0.125
2	0.43	0.86	0.325	0.65	0.0625
3	0.29	0.58	0.22	0.44	0.042
4	0.216	0.43	0.16	0.33	0.031
5	0.17	0.35	0.13	0.26	0.025
6	0.14.	0.29	0.11	0.22	0.021
7	0.12	0.25	0.093	0.19	0.018
8	0.11	0.22	0.08	0.17	0.016
9	0.095	0.19	0.072	0.15	0.014
10	0.086	0.172	0.065	0.13	0.0125
11	0.08	0.16	0.06	0.12	0.011
12	0.07	0.15	0.055	0.11	0.01
13	0.075	0.15	0.05	0.10	0.009
14	0.06	0.13	0.046	0.092	0.009
16	0.055	0.11	0.04	80.0	0.008
18	0.05	0.10	40.036	0.072	0.007
20	0.043	0.09	0.033	0.066	0.006

Cutting Double Threads

A single thread is simply one continuous turn around a bar, called a helix by the professors, but it can be thought about easier if we think of a spring wrapped around a mandrel, as in Fig. 2, where it makes a round thread.

If we wanted a faster thread, we could stretch the spring

out as in Fig. 3, leaving gaps in between as shown. If these were threads, we might call the first 4 to the inch and the latter 2 to the inch, as in Figs. 4 and 5. In Fig. 5 we have cut away all the metal between the threads to make it resemble the spring more closely, but this would be a hard thread to cut and is not desirable. What should really be done is to cut the thread as in Fig. 6, leaving the metal in between, and then cutting a second thread in between the others just as though we wound a second spring in between the coils of the first in Fig. 3.

Single and Double Threads.

The reason for the faster thread of 2 to the inch is to get a half-inch movement for every turn of the screw instead of one-quarter inch with the 4 thread.

If the screw is large enough in diameter to stand the depth of a 2 thread, then there is no need of a double thread; but take a screw as in Fig. 7, 1\frac{3}{8} inches in diameter, and see how a single thread of 2 to the inch weakens the screw. Fig. 8 shows the same diameter screw with two threads of

2 pitch cut one half their total depth or the same depth as a 4 thread.

Having decided on the double thread to be cut, the first thread is cut to one half the depth for that pitch and the second thread cut half-way between the grooves of the first

thread. This space can be divided by measurement, by turning the work half-way round or by turning the *stud gear* just half-way round. The last is probably the easiest except when an odd-tooth gear, as when the change gears jump by 5, is on the stud. In that case it is probably easier to measure and reset the tool.

Square Threads

Square threads are sometimes puzzling in two ways: in grinding the tools and in cutting the thread. The width of the tool is half the pitch because the land and the space must both be the same, although in practice it is necessary to make the space a little wider to allow for play and for

TABLE 2.—SQUARE-THREAD TOOLS—WIDTH AND DEPTH

Pitch or Threads per Inch	Single Thread	Double Thread	Triple Thread
I	0.5	0.25	0.166
2	0.25	0.125	0.083
3	0.166	0.083	0.055
4	0.125	0.062	0.042
5	0.10	0.05	0.033
6	0.083	0.042	0.028
7	0.071	0.035	0.023
8	0.062	0.031	0.021

any variation in the pitch. In Fig. 9 a pitch of 1 to the inch is shown. This means either the distance from center to center of threads, or from the face of one thread to the corresponding face in the next thread. If it is a double or triple thread, we must be careful and not confuse pitch and lead. The depth of the square thread is usually the same as the width of the land or the space, although here again there is a difference of opinion, some allowing clearance at the bottom. The square thread is rather difficult

to cut on account of giving clearance on the sides to avoid rubbing from the angularity of the thread.

In cutting double threads of square section, the same precautions must be observed as with V or other threads. Table 2 gives the width of square-thread tools for use in cutting single, double, and triple threads.

Top rake on square-thread tools gives a good cutting edge, and the chips can often be rolled out in a hurry if the stock is good and clear.

Acme Threads

Square threads were not always easy to cut, and so it often happened that feed screws, lead screws, etc., were made flat top and bottom, but with slanting sides of any angle that pleased the eye of the man who ground the thread

No. Threads per In. Linear	Depth of Thread	Width at Top of Thread	Space at Bot- tom of Thread	Space at Top of Thread	Thickness at Root of Thread
r .	0.5100	0.3707	0.3655	0.6293	0.6345
2	0.2600	0.1853	0.1801	0.3147	0.3199
3	0.1767	0.1235	0.1183	0.2098	0.2150
4	0.1350	0.0927	0.0875	0.1573	0.1625
5	0.1100	0.0741	0.0689	0.1259	0.1311
6	0.0933	0.0618	0.0566	0.1049	0.1101
7	0.0814	0.0529	0.0478	0.0899	0.0951
8	0.0725	0.0463	0.0411	0.0787	0.0839
9	0.0655	0.0413	0.0361	0.0699	0.0751
. 10	0.0600	0.0371	0.0319	0.0629	0.0681
		1		1	

TABLE 3.—PROPORTIONS OF ACME THREADS

tool. As these were neither square nor V, they soon had a name of their own and were called bastard. In some parts of the country this term is applied only to odd pitches, but any old hand will recall bastard threads of a great variety of shapes and sizes. Of course no two of these were alike, and the natural course of events brought about a standard which is now known as the Acme thread. The proportions for a pitch of one to the inch are shown in Fig. 10, and Table 3 gives full details for other sizes. Thread gages can be had for the Acme thread if desired.

Worm Threads

The Acme thread is so near the worm thread that care must be taken to avoid using one for the other or getting the proportions mixed. The angle is the same, 20 degrees;

Table 4.—Brown & Sharpe Worm Thread Proportions

Worm Threads

Pitch in Threads per Inch	Lead per Revolution	Depth of Thread	Width of Tool Point or Bot- tom of Thread	Width of Top of Thread	Width of Space at Top of Thread	Width of Root of Thread
1 2 3 4 5 6 7 8	1 0.5 0.333 0.25 0.20 0.166 0.141 0.125	0.6866 0.3433 0.2288 0.1716 0.1373 0.1144 0.0981 0.0858	0.31 0.155 0.103 0.077 0.06 0.05 0.044	0.335 0.167 0.111 0.084 0.067 0.056 0.048	0.665 0.332 0.222 0.166 0.133 0.111 0.095	0.69 0.345 0.23 0.17 0.14 0.115 0.098 0.086

but the depth is greater, as can be seen in Fig. 11. This also shows an easy way to lay out the angle of 29 degrees if you want to make a gage for yourself.

Take a piece of sheet iron, draw a circle say 2 inches in diameter; draw a line through the center, as fi. Take one quarter the diameter, or $\frac{1}{2}$ inch, in the dividers and mark off g and h from f. Connect gi and hi and the enclosed angle is 20 degrees.

The point of the tool ab is $0.31 \times$ the pitch: the space cd is $0.665 \times$ the pitch; and the hight e is $0.6866 \times$ the pitch, according to the Brown & Sharpe standard, or practically one third deeper than the Acme thread. The details are given in Table 4.

EXAMPLES

What is the lead of an 8-pitch single-thread screw? Ans. 0.125 inch.

If a thread makes one turn in 1½ inches, what lead is it?

Ans. 4 of an inch.

With a double thread, measuring $\frac{1}{4}$ inch between the points, what is the lead? Ans. $\frac{1}{2}$ inch.

What is the difference between the Acme and the Worm thread? Ans. Angle is same, worm thread is deeper.

What is the width of a square thread tool for a 2-pitch double thread? Ans. $\frac{1}{2}$ inch.

CHAPTER X

DRILLING FOR TAPS

BEFORE giving a rule for this it is better to make a few sketches on paper or metal so there can be no doubt as to just what we are doing. Both the V-thread and the U. S. S. (or Sellers or Franklin Institute) thread have sides 60 degrees from the center line of the screw, so the first step is to lay off a thread with a large pitch, say one inch from

point to point, as in Fig. 1. There is no need for a 60-degree triangle to do this. Take one inch in a pair of dividers and, starting from a, draw the arc b c; then, with the point on c, draw a b; join a b and b c, and the thread is done. Continue this as shown for further use.

Now measure the distance from the line at the top of threads to the bottom, which will give the depth of a thread of one-inch pitch, or one to the inch. This will be found to be 0.866 of an inch, and in most cases you can call it

o.86 with perfect safety. This shows the depth of one thread, one to the inch, to be o.86 inch, so that the threads on both sides of a bolt or other piece of work would be double this, or 1.73 inch, allowing for the last 0.006 that was dropped before.

If we want to know the depth of both threads on a bolt having 10 to the inch, we simply divide 1.73 by 10 and get 0.173 as the difference between the outside diameter of the tap and the diameter of the drill to use. If this is on a $\frac{3}{4}$ -inch bolt, the correct size of hole will be 0.75 — 0.173 = 0.577, or a little over $\frac{9}{16}$ inch. The same allowance should be made, no matter what the diameter of the work is, as long as the thread is 10 to the inch.

The rule, then, for V-threads is to divide 1.73 by the number of threads per inch, and subtract this from the outside diameter of the thread to be tapped or chased.

In most cases it will be better not to allow the full depth of the thread for tapping or chasing, except perhaps in brass, where a sharp thread is desired. In tapping cast iron it is customary to drill large enough so that the thread will not be quite full, owing to the tendency to crumble if left sharp; and in the case of wrought iron or soft steel, the metal is apt to crowd up in the thread, so that a scant allowance will give a full thread.

The depths of U. S. S. threads are found in the same way, but the figures are different.

Continuing the threads as in Fig. 2, we have the same angles, but $\frac{1}{8}$ the depth is taken from the top of the thread and filled in at the bottom, leaving a flat top and bottom and making the thread $\frac{3}{4}$ as deep as the V-thread. So, instead of being 0.866 deep, it measures practically 0.65

inch deep. Doubling this to take in both sides, we can use the same rule as before by simply changing 1.73 to 1.3 and figuring as before.

In using this for taps it is safe to take the nearest drill larger than the size given by the figures, unless the thread is very fine indeed.

A rough and ready way which does not give a full thread is to subtract one part of the threads per inch from the diameter. So for an inch tap with an 8 thread we would say 1 inch minus $\frac{1}{8} = \frac{7}{8}$ inch for the hole, leaving $\frac{1}{18}$ inch on a side for the thread.

EXAMPLES

What is the depth of a V-thread of 2 pitch? Ans. 0.43 inch.

Of a United States Standard thread? Ans. .325 inch.

What must the bore of a hole be to chase for a 2-inch bolt with a 6-pitch, V-thread? Ans. 1.712 inch.

What is the diameter of a 1-inch 8 thread U. S. S. thread bolt at the bottom of the thread? Ans. .84 inch.

If we bore a hole to 1.812 inches for a 2-inch V-thread tap of 6 pitch, how near a full thread will it be? Ans. This allows .094 inch on each side, instead of .144 inch as required for a full thread.

CHAPTER XI

TAPER WORK

Any machinist who has tried to turn a piece of work perfectly straight knows the difficulty of getting the tail center set just right to give exactly the same diameter at each end. But when it comes to setting the lathe for just the right taper, especially without useless trials that take a lot of time, it isn't any easier than turning a piece straight.

Next to selecting the change gears for thread cutting, the question of how much to set the tailstock over for a given taper is asked more often than any other. While it is a simpler problem than the other, in some ways it has some points which are not always clear.

Measuring the Taper

The first thing to consider is just what the taper is, as this is sometimes a point for differences of opinion. Some measure the taper on each side, while the usual way is to take the total taper, as with pipe threads. The standard pipe taper is $\frac{3}{4}$ inch to the foot, which is the same as $\frac{1}{16}$ inch to the inch, or 1 inch in 16 inches, whichever way you like best. In many cases it is easier to have the taper per inch, but we have to take these things as they come to us on the blue-prints or drawings.

The amount of taper depends on the diameter at the

two ends of the taper part of the bar and on the length of the taper, but the amount of offset for the tailstock depends on the length of the whole bar, regardless of how much is turned taper. In Fig. 1 is a section of a taper plug with a taper hole. The difference in diameter is 1 inch in both

cases, but the taper of the hole is much sharper, as it is less than half as long as the plug. The outside is τ inch taper in $6\frac{1}{2}$ inches, while the hole is τ inch in 3 inches.

The Lathe Centers

There is some question as to what the effect of the depth the centers enter the work has on the setting over of the tailstock; but as it is practically out of the question to set :

it over the exact distance the first time in any case, this need not enter into the question for general work. Fig. 2 shows a very short piece being turned at a sharp taper. It can be seen how the outer edge a and the point b bear on one end; on the other it is opposite, as in c and d. This is very hard on centers and makes it difficult to keep them from cutting. In fact, if much taper work is to be turned, a point more blunt than the usual 60 degrees may be found better. Some use a somewhat rounded point, as in e, Fig. 2.

Forgetting about the center and its action, and considering that the work is held between the points of the centers as in Fig. 3, H being the head and T the tail center, how much must we set the tailstock T over to cut the outside taper shown in Fig. 1? This is 3 inches at one end and 2 inches at the other, so we must reduce the small diameter 1 inch, which means $\frac{1}{2}$ inch on a side, and we set the tailstock over $\frac{1}{2}$ inch, as at a in Fig. 4. The tool moves along the line b c and cuts off $\frac{1}{2}$ inch at the small end, running out at b. If the tailstock has been set over just $\frac{1}{2}$ inch, the outside will be the correct taper, as shown by dotted lines.

In Fig. 5 the tailstock is set over the same amount and the small end reduced to 2 inches as before, but as the piece is 15 inches long instead of 6½ inches, the taper per inch or per foot is very much less.

Count Full Distance Between Centers

Taking the case of a bar 3 inches in diameter and 30 inches long, how much must it be set over to make a taper of 2 inches in 24, or within 6 inches of the whole length?

As the taper is 2 inches in 24 or 1 in 12 inches, or 15 of

an inch in 1 inch, in 30 inches it would be \$\frac{3}{2}\$ or $2\frac{1}{2}$ inches; so the tail center must be set over one half of this or $1\frac{1}{2}$ inches. An example of this work is in turning the taper on the end of a piston rod, where the taper may be 6 inches long and perhaps an inch to the foot, as in the above case. The rod may be 48 inches long, and the whole length must be considered in setting over the tail center. In 48 inches the taper would be \$\frac{4}{2}\$ or 4 inches, so that the tailstock would have to be set over 2 inches. The two points to remember are the getting of the right taper and always to consider the total length of the piece regardless of the taper portion. And it makes no difference where the taper portion is, whether at the tail end, the middle, or near the headstock, the set-over is the same in any case.

Ways of Figuring Tapers

It is generally easier to figure tapers if we reduce them to the amount per inch in order to get at the offset. If the taper is given per foot, we divide it by 12, as, if it is pipe-thread taper of $\frac{3}{4}$ inch per foot, we have $\frac{1}{18}$ of $\frac{3}{4}$, or $\frac{3}{48}$ or $\frac{3}{18}$ per inch. If the taper is given 1 in 8 or 1 in 15, the taper per inch is of course $\frac{1}{8}$ or $\frac{1}{16}$ inch to the inch.

Tapers are frequently given in degrees, and in such cases they are usually turned with a compound rest divided into degrees; but it is sometimes handy to know what the taper would be in inches, so we give a table which may help if you get a blue-print with the taper marked in degrees. It is given to four places of decimals and you can use as many as circumstances seem to demand.

Tapers in Degrees

This table shows that to cut a taper of 4 degrees on a bar 10 inches long means a total taper of 0.708 inch, and that the tail center must be set over one half of this or practically 0.4 inch.

The table will also be a guide in the opposite direction by giving something of an idea as to what angle a given taper is. Taking the pipe taper of $\frac{3}{4}$ inch to the foot, or $\frac{1}{16}$ inch to the inch, what angle is it? Consulting a table of decimal equivalents, or dividing 1 by 16, gives 0.0625, and this is between 3 and 4, very nearly $3\frac{1}{2}$ degrees.

In the same way a taper of 1 in 12 or $\frac{1}{12}$ inch to the inch is 0.083, which comes very close to being 5 degrees; to cut this, we set the tailstock over 0.042 inch for every inch of length in the bar.

TAPERS IN DEGREES AND THE EQUIVALENTS IN INCHES

I	. 0.0175
2	0.0349
3	0.0524
4	0.0708
5	0.0873
71/2	0.1310
10	0.175
15	0.2633
20	0.3526
25	0.4434
30	0.5360
35	` o .6306
40 .	0.7279
45	0.8284
50	0.9326
55	1.0411
60	1.1547

Points to Remember

The main points about taper work are:

Always consider the length of the work or the distance between centers instead of the length of the taper portion.

Make the offset half the amount of the total taper, which would be the difference between the diameters of the large and small ends if the taper were extended the whole length of the piece.

Always set the point of the tool at the hight of the lathe center in taper work. If it is set above or below the center, there will be a slight change in the taper between each cut, or as the diameter is reduced. You can see this by imagining the tool set ½ inch below the center. When the work gets down to 1 inch in diameter, the tool will not cut at all at the small end, but will cut more and more as it feeds on to the larger diameter. This is a very important point to remember.

In cutting threads, set the tool square with the center line of the work and not square with its surface.

It is always well not to set the tailstock over the full amount at first, so that the small end will be larger than required, rather than smaller. If the taper is too sharp, from setting the tailstock over too much, there is danger of spoiling the piece by having the taper run up too far on the bar in making a fit into a tapered hole. In making long taper fits it is easier to have the bearing for a short distance on each end with a relief in the center, and this generally answers the purpose equally well.

EXAMPLES

How much should the tailstock be set over for a taper bar 18 inches long to be $\frac{1}{2}$ inch to the foot? Ans. $\frac{3}{8}$ inch.

What is the standard pipe thread taper? Ans. $\frac{3}{4}$ inch per foot, 1 inch in 16 or $\frac{1}{16}$ inch in 1 inch.

How much should the tailstock be set over to turn a taper 6 inches long on a 12-inch bar, the taper to be 1½ inches at small end and 2 inches at the large end? Ans. ½ inch.

How many degrees from the center line of the cross slide would you set the compound rest to bore a cone having 70 degrees included angle? Ans. 55 degrees.

CHAPTER XII

SPEED OF LATHES, PLANERS, AND SHAPERS

THE cutting speed of a lathe tool depends on the diameter of the work and the number of revolutions that it makes per minute, so that to find how fast a shaft or other piece of work must turn to give, say, 60 feet cutting speed, we first find the diameter, which call 10 inches. The distance around the piece will be $10 \times 3.1416 = 31.416$ inches or dividing by 12 = 2.618 feet. Divide 60 by this and we get, $60 \div 2.618 = 22.9$, practically 23 turns a minute.

How long will it take to turn 3 feet of this with a feed of $\frac{1}{16}$ inch per revolution?

This depends entirely on the number of revolutions per minute, and not on either the diameter or cutting speed. With 23 turns a minute and $\frac{1}{16}$ -inch feed per turn, gives $\frac{28}{16}$ or $\frac{7}{16}$ inches feed in one minute. So we find the number of times $\frac{7}{16}$ inches goes in 3 feet or 36 inches, and we have the time required for the cut, not allowing for any delay in sharpening tools, etc. Dividing 36 inches by $\frac{7}{16}$ gives $\frac{1}{16}$ or practically 25 minutes for the cut. Increasing the feed to $\frac{1}{16}$ inch per revolution would cut the time in half, if the work and the tool can stand it.

The time of milled work can be figured in exactly the same way if the feed is given in parts of an inch per revolution of the cutter; if, however, the feed is given in inches

per minute, as is frequently the case in milling machine or surface grinding work, the revolutions of the cutter do not enter into the calculation at all, although it must run at its proper cutting speed to allow of such a feed to the work.

A table of cutting speeds will sometimes be found handy either for lathe work or milling cutter, but it is better to be independent of all tables, and the rules given on page 74 are simple and easily learned.

This will enable you to estimate very closely on work of this kind.

EXAMPLES

With a cutting speed of 40 feet a minute, how long will it take to turn a 6-inch bar 30 inches long, with a $\frac{1}{8}$ -inch feed? Ans. A little under 10 minutes.

At 60 revolutions per minute, how long will it take to make a roughing cut with $\frac{3}{16}$ -inch feed, and a finishing cut with $\frac{1}{16}$ feed — both cuts 21 inches long and allowing one minute for changing tools? Ans. 8.46 minutes.

What feed is necessary to run a cut of 32 inches in 8 minutes at 40 revolutions per minute? Ans. $\frac{1}{10}$ of an inch feed per revolution.

With a feed of $\frac{1}{8}$ inch per revolution, how fast is it necessary to run a bar, to turn 40 inches long in 10 minutes? Ans. 32 revolutions per minute.

ACTUAL CUTTING SPEED OF PLANERS

If a planer has a forward movement of 20 feet a minute and the return is at the same speed, it is very clear that the actual cutting speed is one half of 20 or 10 feet, as it spends half the time in going back for a new cut. Calling the cut 20 feet long, it would take it one minute to go forward and

RULES FOR CUTTING SPEEDS

Having	To Find	Rule		
-	er minute	Multiply diameter of work by 3.1416 and divide desired cutting speed by it.		
Diameter of work or milling cutter and re- volutions per minute	Cutting speed	Multiply diameter by 3.1416 and by revolutions per minute.		
	ork or mil-	Divide desired cutting speed by revolutions per minute and divide this by 3.1416.		

RULES FOR TIME REQUIRED

- RODES FOR TIME REQUIRED							
Having	To Find	Rule					
Revolutions per minute Feed per revolution Length of cut	Time required	Divide length of cut in inches by feed per revolution in parts of an inch and by revolutions per minute, or multiply feed by revolutions and divide length of cut by this.					
Revolutions per minute Length of cut Time required	Feed per revolution	Multiply revolutions per min- ute by time required and divide length of cut by this.					
Length of cut Time required Feed per revolution	Revolutions per minute	Multiply feed per revolution by time required and divide length of cut by this.					
Time required Feed per revolution Revolutions per minute	Length of cut	Multiply time required by feed per revolution and by revolu- tions per minute.					

another minute to go back, so that while the table travels 40 feet in 2 minutes it is only cutting during 20 feet of the distance, and as the round trip takes 2 minutes, the actual cutting speed per minute is only 10 feet.

Increase the return speed to 40 feet, and see what happens. Now the forward cut of 20 feet takes one minute as before, but the return stroke is made in half the time, so that the round trip takes 1½ minutes, or the 20-foot cut takes 1½ minutes instead of 2. As we cut 20 feet in 1½ minutes, in one minute we cut ½ of 20 feet or 13½ feet actual cutting speed; so that doubling the return speed has only increased the actual cutting rate 3½ feet a minute.

Now going to the extreme of a return five times as fast as the cutting speed, or 100 feet per minute, and we still have the 20-foot cut made in one minute, but the return stroke only takes $\frac{1}{6}$ of a minute, so that the round trip takes $\frac{1}{6}$ minutes. Dividing 20 by $\frac{1}{6}$ gives $\frac{18}{3}$ feet per minute for actual cutting speed, so that in spite of the high return speed the actual cutting speed is not doubled. In fact it would be impossible to double it as it would be necessary to return without consuming any time whatever, and this is out of the question.

By increasing the cutting speed to 25 feet a minute, and using a return of 3 to 1, we have the 25-foot cutting stroke in 1\frac{1}{3} minutes. Dividing 25 by 1\frac{1}{3} we have 18\frac{2}{4} feet actual cutting speed for the planer. This shows that it helps more to increase the forward speed by 25 per cent than to increase the return speed by 500 per cent.

It is also easier on the mechanism of the planer as the shock of reversal is much less with a moderate return speed.

Cutting Speed of Shapers

When it comes to shapers we have an entirely different proposition, for here we count by revolutions per minute and not by cutting speed.

Just suppose the shaper is running 30 revolutions, and making a cut one foot long at each stroke. Then it is cutting 30 feet of metal per minute, regardless of the return speed, but it is cutting it at a faster rate than this, depending on the return speed ratio.

If it returns at the same speed as the cutting stroke, then as both strokes occur 30 times a minute, each takes half the time and goes at twice the speed, or 60 feet per minute.

If it returns at twice the cutting speed, then the return stroke takes $\frac{1}{3}$ and the cutting stroke $\frac{2}{3}$ of the time. As the tool travels 60 feet a minute, counting both forward and backward strokes, and it makes 30 backward strokes or 30 feet in $\frac{1}{3}$ of a minute, it travels $3 \times 30 = 90$ feet a minute on the return stroke. And as it makes 30 forward strokes or 30 feet in $\frac{2}{3}$ of a minute, then in one minute it travels at the rate of $1\frac{1}{2} \times 30 = 45$ feet, one half as fast as the return stroke.

This is entirely different from the planer, as in this case the greater the return speed the slower the cutting speed for the same number of revolutions. But this does not mean that there is no object in having a quick return, for it allows the shaper to be speeded up enough faster to make the cutting speed as fast as with the slower return.

EXAMPLES

What is the actual cutting speed of a planer having 20 feet forward and 30 feet return per minute? Ans. 12 feet per minute.

What increase is made by increasing the return to 60 feet per minute? Ans. 3 feet, from 12 to 15.

Instead of increasing the return, suppose we increase the cutting speed to 30 feet and have the return 40 feet, what is the actual cutting speed? Ans. 17.1 feet.

With a forward speed of 30 feet per minute, what return will be necessary to get an effective cutting speed of 20 feet? Ans. 60 feet return speed.

CHAPTER XIII

SQUARE AND CUBE ROOT

WE know that if we have a square frame with 12 holes up and down, and 12 holes across, we can find the total number by multiplying 12 by 12 = 144 holes in all, the same as the area of a 12-inch square in square inches. In other words, multiplying a number by itself is called squaring it, which is easy, but reversing the process to find the number of holes on a side of a square to contain 144 holes is a little different proposition, and is called finding the square root. This is needed in many shop calculations, and is not difficult if we go at it right. The rules are easy, but it is better to look into the reasons a little before we learn the fule.

One of the common uses is in finding the distance across the corners of a square: such as to find the long diameter of a square nut. Fig. 1 shows that three squares with one side equal to the sides of a right-angled triangle are so proportioned that the square on the long side or hypothenuse is always equal to the other two. In other words, if the sides of a triangle are 3, 4, and 5 inches, we know that the square of 3 plus the square of 4 will equal the square of the other side, because we have $3 \times 3 = 9$, $4 \times 4 = 16$, and 9 + 16 = 25, which is the square of 5.

Now suppose we have a right-angled triangle with one

of the square sides 9 inches and the other square side 12 inches, it is plain that the third or slant side or hypothenuse is such a length as, multiplied by itself or squared, will equal the square of 9, or 81, plus the square of 12, or 144,

Square Root Examples.

which is 225. This brings us to the necessity for the rule for finding what number, multiplied by itself, equals 225, or the rule for square root.

Rule for Square Root

Divide the number into periods of 2 figures each, beginning at the right, by making dots over the first, third, fifth, etc., figure, as 225, beginning at the 5. Find the largest number which, when squared, will go into the first left-hand period or 2. This number will be the first part of the root. The largest number is 1, as $2 \times 2 = 4$, and this will not go in 2 so we put 1 in the answer at the right. Square this and subtract from the 2, leaving 1. Bring down the next period, making it 125. Double the root already found, making 2 for the trial divisor into the first two figures of the new dividend, and we see that 2 in 12 will go

no more than 5 times, as this is only a trial division with part of the divisor, so we put 5 in the answer and also after the trial divisor, making the final or true divisor 25. Then $5 \times 25 = 125$, which just goes into the dividend, so that we know the square root of 225 is 15, and can prove it by multiplying 15 by 15 and getting 225. The whole operation is:

Number pointed off = $\dot{2}2\dot{5}(15 \text{ Ans.})$

$$2 \times 1 = 2 =$$
trial divisor.

2 in 12 = 5, so put 5
after 2, making 25
the final divisor.

5 × 25 =

 $\frac{1}{125}$ number brought down =

Taking another example, find the square root of 189225.

Begin at right and point off
$$189225(435)$$
Largest square in 18 is 4. $4 \times 4 = 16$

$$292$$
Doubling 4 = trial divisor = 8
8 in 29 = 3.
Put 3 after 8 = final divisor 83
 $3 \times 83 = 249$
Doubling answer for trial divisor = 86
 4325
Put 5 after 83 for final divisor = 865
$$4325$$

Decimals are handled in just the same way, except in pointing off we put the first mark over the second figure

after the decimal point, so the periods will have two figures just the same, as square root of i44.49 = 12.07.

Instead of writing "square root" we use the sign $\sqrt{}$ and, if this is only to include part of the numbers, we use a bar or vinculum to show how many, as: $\sqrt{3 \times 4 \times 5} + 16$ means that only the square root of the numbers under the bar is wanted; then the 16 is added to the answer.

Suppose we have a 10-inch square and want to find the distance across the corners. We know that the square of the diagonal equals the square of two sides added together, so we have $10 \times 10 = 100 \times 2 = 200$, and the $\sqrt{200} = 14.14$ inches.

In the same way, if we have any right-angled triangle and want to find the hypothenuse or slant side, we know that if we find the sum of the squares of the other sides and take the square root, we have the slant side and we can say:

The slant side = $\sqrt{\text{sum of square of other two sides}}$, and either of the other sides =

 $\sqrt{\text{square of slant side}}$ — square of other side, as can be seen from Fig. 1.

Another common case is finding the depth of a V-thread. Here we have the distance from one thread to the next as the base of an equilateral or equal-sided triangle, and as the depth is the distance from the point to the bottom, we divide the triangle, as in Fig. 2, to make it a right angle. We now have the end d b, and the slant side, b c, to find the other side, d c. Calling the thread 4 to the inch the lead will be .25, so that the distance d b will be .125, and b c will equal .25. Then the distance d $b = \sqrt{b} \frac{c^2 - d}{b^2}$. .25 \times .25 = .0625, and .125 \times .125 = .015625. Then .0625 - .015625 = .046875. The square root of this equals the depth d b, and is

Point off as many places in the answer as there are periods in the dividend, making the answer .216 with a remainder. If it was necessary to carry it further we would add two ciphers to the remainder and go ahead. So we know the depth of a 4-pitch V-thread is .216 inches.

By using a good table of squares much square root calculation can be avoided, but it is well to know how to do it when you want to.

EXAMPLES

Find the square root of 8281. Ans. 91.

Find the square root of 11881. Ans. 109.

Find the square root of 211. Ans. 14.525 + ...

What is the hypothenuse of a right-angled triangle having sides 12 and 16 inches long? Ans. 20 inches.

If a right triangle is 18 inches on the base and 30 inches on the slant side, what is the other side? Ans. 24 inches.

FINDING THE CUBE ROOT

CUBE root is an enlargement on square root, and is the method of finding what number multiplied by itself twice will equal a given number. It is not used nearly as often as square root, but it is well to know how it is done.

Point off the number 12167 in three places, instead of two, as 12167, and we know that the largest number that will go in 12 is 2, so this goes in the answer, and we bring down the rest, 4167. Square the root already found, multiply it by 3 and annex two ciphers. See how many times this goes into 4167. Squaring $2 = 2 \times 2 = 4$, and $4 \times 3 = 12$. Then 12 in 41 = 3, so this is the next figure in the answer. Add three times the product of the last root figure by the rest of the root and annex one cipher to it, then add the square of the last root figure. This gives the true divisor and must be multiplied by the last figure in the answer.

To find the cube root of 12167 point off

Ans. Cube root of 12167 = 23, and $23 \times 23 \times 23 = 12167$.

The cube root sign is the same as the other, except that a small 3 is placed in it as, $\sqrt[3]{1728} = 12$, meaning that the cube root of 1728 = 12. In a similar way the cube of a number is written $12^8 = 1728$.

In pointing off decimals, the first point is over the third figure to the right of the decimal point, and in the answer there will be as many decimal places as there are periods pointed off of the decimals.

EXAMPLES

What is the cube root of 9261? Ans. 21.

What is the cube root of 1030301? Ans. 101.

What is the cube root of 313? Ans. 6.789+.

What size must a cubical tank be to contain 226981 cubic inches? Ans. 61 inches each way.

How much less is the cube root of 1328 than the square root of the same number? Ans. Cube root is 10.9917293. Square root is 36.4417343, cube root is 25.450005, less than the square root.

CHAPTER XIV

MEASURING SURFACES

THE measurement of surfaces of any kind, or the calculation of the contents of any box or tank, or the weight of any bar or other material, brings us to what is called mensuration.

If we have a square piece of tin one inch each way, as in Fig. 1, it is clear that it must measure one square inch in area, as the surface is called. If we cut a square piece measuring two inches each way, as in Fig. 2, and divide it off into one-inch squares, we see at once that it is the same as four squares of one inch each and contains four square inches. This brings us to the first rule, that the area of any rectangle, which means any figure having four square corners, as a square or the oblong Fig. 4, can be found by multiplying the length of one side by the length of one end. In the case of a square this means multiplying one side by the other, and in Fig. 2 we have $2 \times 2 = 4$ square inches.

One thing that is a little puzzling at first is finding the area of a square that is less than one. Suppose the square is only $\frac{1}{2}$ an inch on each side. Multiply $\frac{1}{2} \times \frac{1}{2} = \frac{1}{4}$, and we see that a square of this size only has $\frac{1}{4}$ of a square inch area, as can be seen in Fig. 1, where four $\frac{1}{2}$ -inch squares are laid off in the one-inch square. If the side of the

square is 3 inches, the area will be $3 \times 3 = 9$ square inches, and $4 \times 4 = 16$ inches for a four-inch square. This also shows us what is known as the "law of squares," which means that areas of squares do not vary directly with the diameters or sides, and that a 4-inch square is not twice as large as a two-inch square, but 4 times as large. Let us see. The 2-inch square is $2 \times 2 = 4$ square inches in area, and the 4-inch square is $4 \times 4 = 16$ square inches, and 16 is 4 times 4.

Multiplying a number by itself is called "squaring" it, so we see that 4 is the square of 2 and 16 is the square of 4. We also see that the side of the large square is twice as long as the small one, and to compare the areas we divide the large dimension by the small one and square the answer. This gives 4 divided by 2 = 2, and $2 \times 2 = 4$, showing that the 4-inch square is 4 times as large as the 2-inch. To compare a 2- and a 10-inch square divide 10 by 2, which gives 5, and $5 \times 5 = 25$ times as large. To prove this, multiply $2 \times 2 = 4$ and $10 \times 10 = 100$ and it is easy to see that the 10-inch square is 25 times as large as the 2-inch square. This law holds good for any regular shaped figures if both are exactly alike, except for size, and only similar dimensions are considered. This will be taken up later.

Fig. 3 shows an L-shaped figure which can be calculated best by dividing into two parts, as shown by the dotted line. This makes it a 1-inch square and a rectangle 1×3 inches and $1 \times 3 = 3$, plus 1 = 4 the total area. Fig. 4 contains the same area in a straight strip 1 inch wide by 4 inches long.

Coming back to the law of squares, we find this very useful in many ways. It shows us that a sheet of iron 2

inches square is 4 times as heavy as a piece 1 inch square of the same thickness, and that a bar 8 inches square is 16 times as heavy as one 2 inches square of the same length. This also applies to circles, to round bars, to triangles, or any other shaped figure. If the side of a triangle is 2 inches and the same side of another one exactly like it is 1 inch, we know that the small one is only \(\frac{1}{4}\) as large as the other, as shown in Fig. 5, or in the case of the rhombus or slanting figure in Fig. 6, where the squares of similar dimensions show the comparative areas.

The Circle

The circumference and area of a circle are always a fixed relation to the diameter, and knowing this we can always find the desired quantity very easily. The circumference, or distance around, is practically 3½ times the diameter, 3.14159 to be exact, but 3.1416 is generally used.

To see just why this is so, take a 7-inch pulley and make a mark on the side of the rim and a mark on the bench. Put these marks together as at the left of Fig. 7, and roll the pulley to the right until the mark comes down to the bench again, which measures the distance around the pulley. Mark this point on the bench and measure the distance between the marks. If the pulley is just 7 inches and the work has been carefully done, the marks will be 22 inches apart, which is just $3\frac{1}{7}$ times the diameter of the pulley. If the pulley was 14 inches the distance will be 44 inches, and so on. Figuring the usual way, we have $7 \times 3.1416 = 21.9912$, which is only 88 ten thousandths of an inch different from the other way.

The area of a circle can be figured in three different ways,

whichever happens to be the most convenient. The usual way is to square the diameter and multiply by .7854, because it has been found that a circle is just .7854 as large as a square of the same diameter, the corners being .2146 of the whole area. This means that if a square was 10 inches each way or had an area of 100 square inches, the largest circle that could be cut from it would be 78.54 square inches. If you have any doubts, just make a square

and a circle of the same diameter and thickness, and get your drug-store friend to weigh them both on his finest scales. You will find them in this proportion if you figure out the weight of each.

The other ways of figuring are:

"Multiply half the circumference by half the diameter."

This may be handy if you know the circumference, as it does away with squaring the diameter, and

Square the radius and multiply by 3.1416.

This is not as apt to be used as the other two.

Fig. 8 shows a 2-inch square with a circle inside of it, and in this case the area is the same as the multiplier for

finding the circumference. A word of warning here may not be amiss, for it is very easy to "discover" relationships which only exist for diameters of 2 and 4, such as the area of a 4-inch circle is 12.56, which is the same as the circumference of a 4-inch circle, except that one is square and the other linear inches or inches of length. But this does not hold true in any other case, and is simply a case of "happen so."

The law of squares applies just the same to circles as to squares, as can be figured out, and can be seen in Fig. 9. Here the small diameter is 1 inch and the large one 2 inches or twice as large. Then as the diameter of the large is twice or 2 times as great, the area will be $2 \times 2 = 4$ times as much, just as in the case of squares. The places where the circles lap just make up for the four open spaces between the small circles and the big one outside.

CHAPTER XV

CONTENTS OR VOLUME OF SOLID BODIES

THE area of any flat surface depends on two dimensions, hight and breadth, and the answer is in square measure, inches, feet, or other units. The volume or cubical contents brings in the third dimension of thickness, and we first find the area in square inches by multiplying the hight by the breadth, and then multiply this by the thickness, in the case of a disk, or the length, in the case of a bar or long piece.

In Fig. 1 we have a plate 5 inches square and 1 inch thick, and, as can be seen by the dotted lines, the front surface contains $5 \times 5 = 25$ square inches. As it is 1 inch thick we multiply this by 1 and get 25 cubic inches, showing that it has the same volume as 25 cubes each 1 inch on all sides. In Fig. 2 we have added four more plates like Fig. 10, and now have a block that is 5 inches on all sides, making it a perfect cube. It is very plain that this cube contains 5 times as many 1-inch cubes as the plate in Fig. 10, and shows that the cubical contents is the hight \times breadth \times thickness or length, as $5 \times 5 \times 5 = 125$ cubic inches.

This also shows that the "law of squares" does not hold, but gives place to the "law of cubes" when the dimensions increase in all three dimensions. In Fig. 1, the side

is 5 times the length of one of the cubes, and as $5 \times 5 = 25$, the area is 25 times as great. But in Fig. 2 we see that the small square which is heavily outlined is only $\frac{1}{2}5$ of the whole cube, because $5 \times 5 \times 5 = 125$, the same as the volume.

This is also true of a ball or sphere where all dimensions increase in the same ratio, and a 5-inch ball will weigh 125 times as much as a 1-inch ball.

When, however, one of the dimensions remains the same the law of squares still holds, and this is used more than the other.

Take, for example, two shafts of the same length, but one 2 inches in diameter and the other 4. As 2 into 4 = 2 and $2 \times 2 = 4$, the large one weighs 4 times as much, though only twice as large in diameter. Or if one shaft is 2 inches and the other 3 inches, how much heavier is the large one, both being the same length? Here we can say

 $2 \times 2 = 4$ and $3 \times 3 = 9$. Dividing 9 by $4 = 2\frac{1}{4}$, so that the 3-inch shaft weighs $2\frac{1}{4}$ as much as the small one, which is $\frac{2}{3}$ as large. Or we could say 2 into $3 = 1\frac{1}{2}$, and $1\frac{1}{2} \times 1\frac{1}{2} = 2\frac{1}{4}$, which is the same as before. If the lengths vary the law of cubes can be used, but it is generally easier to find the volume or weight for one unit (inch or foot) of length and multiply each shaft by its length. This avoids confusion and is easily done.

Finding Weights of Bodies

The weight of any body can be figured if we can find the number of cubic inches it contains, and know the weight of one cubic inch of the material. The latter is easier than the first, as the figures given in the table that follows are from good authorities and represent average conditions.

A plate of steel 12 inches square and $\frac{1}{8}$ inch thick contains $12 \times 12 \times \frac{1}{8} = 18$ cubic inches. Multiplying this by .28, the weight of one cubic inch of average steel, we have 5.04 pounds. This shows that for rapid estimating we can remember that a square foot of $\frac{1}{8}$ -inch steel weighs 5 pounds, so that we know a plate $\frac{1}{18}$ inch thick will weigh $\frac{1}{2}$ pounds and one $\frac{1}{8}$ inch thick will weigh $5 \times 5 = 25$ pounds.

If the steel is a bar $\frac{1}{2} \times 3$ inches and 30 inches long, we have $\frac{1}{2} \times 3 \times 30 = 45$ cubic inches $\times .28 = 12.60$ pounds, and any regular bar can be estimated in the same way. A round bar 2 inches in diameter by 3 feet is handled in this way: First find the area of the end, and $2 \times 2 \times .7854 = 3.1416$ square inches. Multiply by 36 and get $3.1416 \times 36 = 113.0976$ cubic inches. This multiplied by .28 gives 31.667 pounds as the weight.

For hollow bodies such as cylinders, it is easiest to subtract the area of the inside hole from the area of the outside, and multiply this difference, which is the area of the ring, by the length. Remember that it makes no difference whether the hole is central or not, as in an eccentric the area is the same. Always be sure that all the dimensions are in the same denomination, as we sometimes get into trouble by multiplying inches by feet or pounds by tons. They must all be alike, either by changing the larger to the smaller or the reverse.

Where bodies are regular there is very little trouble in finding their contents and weight, and when they are not uniform some little ingenuity is necessary to find just how much they contain. This can usually be done by dividing the body into two or more parts and taking the areas of each part separately. Figs. 3 and 4 show by dotted lines how this can easily be done.

Figs. 3 and 4 show two cases which are about as complicated as we are likely to find. The first is a 2-inch shaft with a square in the center 3 inches on a side by $\frac{3}{4}$ inch wide or thick, each 2 inch diameter is 3 inches long, and on each end is a piece 1 inch in diameter by 2 inches long.

These ends, A, are eccentric to the shaft B, but that makes no difference in the volume or the weight.

First calculate the volume or contents of the square C, $3 \times 3 \times .75 = 6.75$ cubic inches. The area of a 1-inch piece is .7854, and this is 2 inches long, so each end is $2 \times .7854 = 1.5708$ cubic inches, and the two ends are twice this or 3.1416 cubic inches. The 2-inch bar has an area four times the 1-inch or 3.1416, and multiplying by its length we have $3 \times 3.1416 = 9.4248$ cubic inches in each piece. Both of these will contain $2 \times 9.4248 = 18.8496$ cubic inches, and we add 6.75 + 3.1416 + 18.8496 and get 28.7412 cubic inches in the shaft. To find the weight we multiply by the weight of one cubic inch of the material it is made of, as found in the table on following page.

Fig. 4 is a crank-shaft, and is given to show how it can be divided up into parts in the same way. The crank-pin between the cheeks are simply round bars with holes bored in them, and can be easily figured. The cranks have round ends and can be divided as shown in the sketch at the side. This makes it two half circles and a square block, so that the two ends can be figured together as a circle and added to the contents of the block in the center.

A GENERAL RULE FOR ALL REGULAR SOLIDS

In many works on Mensuration, designed for schools, and in a few of the "Table and Data" books compiled for the use of engineers, there is given a rule for ascertaining the volume of certain solids called "Prismoids" which are not usually named in the category of regular bodies, but for which, as for them, a ready method of solution is equally necessary. These prismoidal forms have flat ends, which

PROPERTIES OF METALS

Metal	Melting Point	Wt. per Cu. In.	Wt. per Cu. Ft.	Tensile Strength	Specific Gravity	Chem- ical Symbol
Aluminum	1157	.0024	159.63	20,000	2.56	Al.
Antimony	1130	.2424	418.86	•	6.71	Sb.
Bismuth	505	-354	611.76		9.83	Bi.
Brass, cast	1692	.3029	523.2	24,000	8.393	l
Bronze	1692	.319	550.	36,000	8.83	
Chromium	3500	.2457	429.49		6.8	Cr.
Cobalt	2732	.307	530.6		8.5	Co.
Copper	1929	.322	556.	36,000	8.9	Cu.
Gold	1965	.6979	1206.05	20,000	19.32	Au.
Iridium	3992	.8099	1400.	-	22.42	Ir.
Iron, cast	2700	.26	450.	16,500	7.21	Fe.
Iron, wrought	2920	.278	480.13	50,000	7.7	Fe.
Lead	618	.41	710.	3,000	11.37	Pb.
Manganese	3452	.289	499.4	_	8.	Mn.
Mercury	— 39	.4909	848.35		13.59	Hg.
Nickel	2700	.3179	549-34		8.8	Ni.
Platinum	3227	.7769	1342.13		21.5	Pt.
Silver	1733	.3805	657.33	40,000	10.53	Ag.
Steel — cast	2450	.28	481.2	50,000	7.81	
Steel — rolled	2600	.2833	489.6	65,000	7.854	ł
Tin	445	.2634	455.08	4,600	7.29	Sn.
Tungsten	3600	.69	1192.31		19.10	W.
Vanadium	3230	.1987	343-34		5.50	· V.
Zinc	779	.245	430.	7,500	6.86	Zn.

are parallel to each other, and they have three or more sides, each one of which is a geometric plane, but the ends may be very dissimilar in shape and very different in area; for this reason a special rule has been devised and demonstrated, and is entered on the list of rules for solids under the name of the "Prismoidal Formula."

The exact form and working of this rule may be given in the following words; all dimensions must be taken in units of a like kind: Add together The area of the base.

The area of the top.

Four times the area of the middle section.

Multiply this sum by one sixth of the perpendicular hight. The resulting product is the cubic contents, or volume required.

The *middle section* must of course be taken midway between the ends and parallel thereto, and its elements found either by calculation or by some graphic method.

The prismoidal rule is serviceable in calculating the cubic contents of many regularly formed bodies. For the rectangular solids, and for cylinders, cones and pyramids, the usual rules given are shorter in the calculation than this one, but then it is well to know that the prismoidal formula will meet and serve all cases.

For the sphere, the difference of figuring may be little; as for instance, take one twelve inches in diameter to find its volume. The usual rule is: Multiply the cube of the diameter by .5236; thus: 12×12×12×.5236=904.78.

The prismoidal rule works the problem out in this way:

Area of the top $\dots =$	000.
Area of the bottom=	
Four times the middle area=	452.39
Multiply by one-sixth the hight	2
-	904.78

This rule, as applied to the sphere, resolves itself into the product of one sixth its diameter, and the area of a circle whose diameter is double the given diameter of the sphere.

Four times the middle section here is simply the area of a

circle twenty-four inches diameter, a method of procedure in accordance with the mathematical law, which proves that a double diameter gives a quadruple area. With the help of the area tables, in the latter method, the arithmetical process of finding the volume of the sphere is really shorter than the usual way of cubing its diameter, and then multiplying the product so found by the "regulation" decimal.

Many individual rules which facilitate solution are based on certain leading dimensions given in the following:

These are examples of one rule for each, but how much more convenient to the memory is the application of the one rule for all, to this group of bodies, as it is to many other forms.

To express a general rule for certain bodies in terms differing from any of these, the following is offered: The volume of any figure generated by a revolving surface is equal to the product of the area of the generating surface and the circumference described by its center of gravity.

Let us give an illustration and proof of this last method. A cylinder, eight inches in diameter, and eight inches long, is generated by the revolution of a rectangle four inches by eight inches about its longer side, as axis; that is, the space swept through by this revolving rectangle is that of a cylinder, the dimensions of which are given. The center of gravity of this rectangle is the center of figure, and the circumference described by this point, in revolution, is 12.5664

inches corresponding to a diameter of four inches. We have, therefore, $4\times8\times12.5664=402.1248=$ the volume required.

By the usual rule for cylinders we have the area of the base multiplied by the length of the axis, or the hight, thus:

Area of eight-inch diameter = 50.2656, which, multiplied by 8 = 402.1248, the same as the other.

By the prismoidal formula we have:

Area of top	. 50.2656
Area of bottom	. 50.2656
Four times area of middle	. 201.0624
The sum of these	
Multiplied by & of hight, or, which	100.5312
is the same, add	402.1248

From an inspection of this latter array of figures, it plainly appears that the result sought, and here found, is eight times the area of one end, but which shows something in favor of the prismoidal formula.

There are many forms of revolution resembling a shallow dish or deep kettle, resulting from a sweeping fragment of a curve, such as soap pans, stills, retorts, and the like, the contents of which are always wanted to be known, and the weight of the vessels also, before they are cast.

The inner capacity found in cubic inches may be converted into gallons, and the difference between the inner and outer "skins" of the vessel, representing the thickness (which may not be uniform), may be counted in cubic inches, from which the weight can be figured. If the curve varies, and close results are needed, the body may be divided into zones, and the rule applied as directed, to each segment.:

To make the application of the "one rule for all" more clear to the reader, we give some illustrations of regularly formed solids.

From the examples already given in the text, and referring in this place to Figs. 5 to 14 as above, no modification of the rule in its use for ascertaining their solid content is necessary, the lines passing the areas of top and bottom and middle are plainly indicated.

The top areas of Figs. 5, 8 and 10, and the top and bottom areas of Fig. 7, being equal to 0. In every case the perpendicular, not the slant, hight must be taken.

In Fig. 15, the part above ef must be treated the same as Fig. 10, in which ab is the middle section; and the part below ef, in which cd is the middle section, must be calculated separately, the bottom area being equal to o. The sum of the solidities of the two parts being, of course, equal to the whole.

Figs. 16, 17, 18 and 19 must be halved by the medial line a b, and each half calculated in the same way as directed for Figs. 5, 10 and 11, which they resemble in form.

In Fig. 20 we have the section of a dish or pan. The line a b cuts the middle section of the inner skin or content of the pan, so to speak, and the line c d the middle section of the outer skin. The space between the two skins represents the cubic content of the material of the pan, and the cubic content of the inner skin will represent the capacity of the pan; this latter may be converted from units of lineal

measure into gallons, which answers the question as to what it will hold, and the former into pounds weight, from which the price can be found, thus readily solving the dual problem. Other regularly formed solids will yield to the same treatment.

CHAPTER XVI

MEASURING ANGLES

ANGLES are sometimes puzzling and not thoroughly understood. An angle is the measure of the inclination of one line to another, and is based on a circle divided into 360 equal parts. This is purely arbitrary, but makes a very good system when thoroughly understood. The first thing is to realize that a degree is not a measure of distance, but is $\frac{1}{380}$ of the circle that we are working with and is really a measure of the inclination of lines as stated before. Another thing is, that if you are measuring degrees of any circle by length, the measure must be taken on the circle and not across the corners, and it will be clear that the length of the degree will vary with the diameter of the circle as it is not a measurement of length but of $\frac{1}{380}$ part of a circle.

Fig. 1 shows three circles around a given center, each circle being divided into four parts by the solid lines and into eight parts by the dotted lines. The four solid lines divide it into four equal parts so that each quarter contains one fourth of 360 degrees, or 90 degrees. Now the distances around the circles vary with each diameter, but the angle is the same in each, as can be clearly seen. Dividing each of these 90-degree angles in two equal parts gives 45 degrees for each, and as each part is one eighth of the

whole circle, we can divide 360 by 8 and get 45 degrees just the same.

Similar angles always bear the same proportion to each other without regard to the size of the figures, as can be seen in Fig. 1, and lines at right angles to each other always produce 90 degrees of angle whether they are one inch or one mile in length. In Fig. 2 we have three triangles of different sizes, one within the other, yet it can be seen that the angles are the same in each case, and where the angles

are the same, the lengths of all sides vary just in proportion to the length of any one side. Thus, if a d is 3 inches and a c 2 inches, then all the sides of the triangle a c f will be two thirds as long as the sides of a d e. And if all the sides of any triangle are exactly in proportion the angles must be the same in both.

Going a step farther, we find that the sum of the angles of any triangle is always 180 degrees, the same as in a half circle. Thus an equilateral triangle with all angles equal must be 60 degrees in every angle. If you have a triangle

having two equal sides and know the central angle, the other two can be easily found. With two sides equal, the two outer angles must be the same, so we subtract the central angle from 180, and half the remainder must be the angle of the other two corners. With two angles of a triangle given, the third angle can be found by adding the two together and subtracting this from 180 degrees.

Triangles

Four forms of triangles will show how this works. Fig. 3 is an equilateral or equal triangle, each angle being 60 degrees or 180 in all. Fig. 4 is a right-angled triangle with the other angles 35 and 55 degrees. Fig. 5, a triangle with

two equal sides and angles of 75 degrees, the remaining angle being 30 degrees. Fig. 6 is unequal in every way, one being 29 degrees, another 48 degrees, and the large angle 103 degrees. This also shows how any triangle can be divided into right-angled triangles to find the area or for other purposes requiring a right triangle. A line drawn at right angles to the long side to the opposite point is the easiest way with a triangle having all sides unequal. With two sides equal, as Fig. 5, the line can be drawn at right angles to the short side and to the opposite point, in this case the top.

Setting Compound Rests

The difficulty experienced in measuring angles and setting dividing heads and compound rests comes mainly from two causes: A confusion of ideas as to whether half or the total angle is meant and the position of the base line.

FIG. 7. - Compound Rest on Lathe.

In the compound rest we have the work measured in angles from a line drawn between the lathe centers, while the slide is at right angles to this as in Fig. 7. If we have to turn the bevel on a valve-seat reamer that is 60 degrees total angle, as is usual, we must set the slide rest at 30 degrees from the line of the centers. This very seldom means that we can set it to 30 degrees on the compound rest as they are usually divided to read from the cross-movement at right angles to the center.

Perhaps the easiest way is to swing the compound rest parallel to the lathe centers with the handle toward the headstock, and the two 45-degree marks come together if they are divided in this way. Then move the handle end out until 30 degrees have passed by the 45-degree mark, or until 15 degrees on the upper coincides with the 45 if both are graduated. No matter how it is divided, move the compound 30 degrees without regard to the numbers as they appear.

When you are facing work to any desired angle and the work is normally in line with the cross-slide, you can read the divisions just as they are graduated, bearing in mind that each degree the slide is set off means 2 degrees total angle for the work.

Different Graduation.

Figs. 7, 8, and 9 show three methods of graduating compound rests on a lathe or swivel head on a planer. In Fig. 7 the base is divided into 45 degrees each side of a zero line at the side or at right angles to the cross-slide. With this graduation the scale shows the degrees moved through by the tool slide with reference to the cross-slide. If we set it to 15 degrees we can face off a piece 15 degrees on each side of the end, but this would leave the end with

a total angle of 150 degrees with the center line of the work, as seen in Fig. 10.

In Fig. 8 the graduations are reversed, being on the upper slide, and the zero on the base. The results are the same, except that we read on the opposite side of the zero mark of the graduations; swinging the upper slide to the left 15 degrees, we must read the angle on the side of the scale now hidden from view.

Fig. 9 is a different plan and one which has some things to recommend it. The 90-degree mark is in place of the zero, in Fig. 7, the 75-degree in place of the 15, but, of course, the 45 comes in the same place, an account of its being half-way between the two.

This method of graduation shows the exact angle that will be cut each side of the center line, and we get the total angle by doubling the figures of the graduation. If we move it to 75 it will cut the same as the other rest did in Fig. 7, and the result will be 75 degrees each side of the center line, as in Fig. 10. If it is moved to 45 it cuts a 90-degree total angle, as in Fig. 11, and if to 60 it cuts 30 degrees away on each side, leaving 120 degrees included angle, as in Fig. 12. Bearing this in mind, there should be no confusion as to what angle will be cut.

After one becomes familiar with the divisions of the machine he is handling, it is easy to set by the numbers, but as they are apt to be confusing, it is safer to check the reading by counting the degrees from the point when the side is parallel with the lathe centers.

CHAPTER XVII

MAKING AND USING FORMULAS

A FORMULA is simply a rule in which the various quantities are represented by letters, and the operations to be performed shown by signs and the position of the letters. There is nothing to be afraid of about a formula, and they can be handled as easily as a regular rule if we understand a little about them. The best way to understand a thing is to make it and see how it goes together, then we can know if anything goes wrong.

Taking an easy rule, as the one for pulley speeds, we know: Speed of Driven Pulley = Multiply the diameter of the driving pulley by its speed and divide this by the diameter of the driven pulley.

To turn this into a formula we let

D represent Diameter of Driving Pulley.

d represent Diameter of Driven Pulley.

S represent Speed of Driving Pulley.

s represent Speed of Driven Pulley.

Then we say:

$$s = \frac{D \times S}{d}$$

showing that D times S are divided by d instead of the whole wording of the rule.

Calling the Driving pulley 20 inches in diameter, the

Driven pulley 10 inches, and the speed of the Driver 200 revolutions a minute, we put these values in place of the

letters and have
$$s = \frac{20 \times 200}{10} = \frac{4000}{10} = 400$$
 revolutions

per minute for the speed of the driven pulley.

When two or more letters, each representing a different quantity, are placed together without any sign between them, it is understood that they are to be multiplied together the same as though the sign of multiplication was between them. All other signs are always shown.

So we often see the formula for horse-power written

$$H.P. = \frac{PLAN}{33000}$$

meaning that P or mean effective pressure, L or length of stroke in feet, A or area of piston in square inches, and N or the number of strokes per minute, are all multiplied together and divided by the number 33000 to find the horse-power. This 33000 is called a constant, the same as 3.1416 is the constant representing the ratio between the diameter and circumference of a circle, and .7854 is the constant ratio between the area of a circle and a square having its side the same diameter as the circle.

Coming to a little more complicated formula, we have the one for translating Fahrenheit to Centigrade thermometer. In Centigrade 0 is freezing and 100 is boiling, while in Fahrenheit 32 is freezing and 212 is boiling, so that 212 - 32, or 180 degrees of the Fahrenheit scale, equals 100 degrees of the Cent. scale. We have Cent. = Fahr. $-32 \times \frac{6}{2}$ or Cent. = $212 - 32 \times \frac{6}{2} = 212 - 32 = 180 \times \frac{6}{2}$

= 100, and Fahr. = Cent. $\times \frac{9}{5} + 32$, or 100 $\times \frac{9}{5} = \frac{9}{5}$ 0 = 180 + 32 = 212.

Wherever plus or minus signs come in, be sure to perform these operations in their proper turn or there will be trouble. If in the first case we took § of 212 and then subtracted 32, the answer would be 85.7 instead of 100. In some cases the formula is written with the numbers that belong together enclosed in brackets and that is a very good way, as,

$$P = \frac{7200}{D} \left(T - .333 \left(I - \frac{D}{I00} \right) \right) - I00$$

the formula for cast-iron pipes from Kent's Pocket-Book, where P = pressure, D = inside diameter, T = thickness of the shell. Calling D = 10 and T = 2, and beginning with the inside brackets, we have $1 - \frac{1}{100} = 1 - \frac{1}{10} = .9$. Next we have $2 - .333 = 1.677 \times .9 = 1.5093$ for the value of the number inside the brackets. This, then, is to

be multiplied by
$$\frac{7200}{10} = 720 \times 1.5093 = 1086.696$$
, and

from this we subtract 100 pounds, leaving 986.696 as the safe working pressure for a cast-iron pipe 10 inches inside diameter and 2 inches thick. So while the formula looks rather complicated, it is easily handled if we take one step at a time.

Transposing Formula

One of the handy features of using formulas is the ease with which they can be transposed to find any particular factor you desire, much more easily than with a rule in regular form.

Taking the simple case of the formula for electric current,

 $C = \frac{E}{R}$, or current equals volts divided by resistance, we can see how to handle more complicated formula. Perhaps the easiest way to thoroughly understand just how to handle this is to consider the whole thing as an example in division, so that the result desired is the quotient, the numerator of the fraction is the dividend, and the denominator is the divisor. We know that the dividend must equal the divisor and quotient multiplied together, and as dividing the dividend by the divisor gives the quotient, so by reversing this and dividing the dividend by the quotient we must get the divisor.

Trying this out with the formula we have, we start with $C = \frac{E}{R}$, in which E is the dividend, R the divisor, and C the quotient. Then R, the divisor, must equal $\frac{E}{C}$, and E, the dividend, equals both R and C multiplied together, or $R = \frac{E}{C}$ and $E = R \times C$.

Giving these values, E = 100 volts, R = 50 ohms resistance, what is C? Then C = $\frac{100}{50}$ = 2. To find R we

say, $R = \frac{E}{C} = \frac{100}{2} = 50$, and to find E we multiply $R \times C$, and have $E = 50 \times 2 = 100$, proving that this is right. You can always prove these things, to make sure they are right, and unless you are perfectly sure, it is best to do so.

When the formula becomes more complicated this transposing is not quite so easy, but the same principles hold true and will work out in every case.

The formula for falling bodies is, $h = \frac{g \ell}{2}$, where

h =hight in feet from which a body falls;

g = acceleration per second = 32.16 feet;

t = number of seconds in falling,

will show us how this works out. As g is given, the only thing to find is f or t, which is one factor of the dividend. To make this clear, suppose we had to divide 100 by 10. The answer is clearly 10. Now call the dividend 25×4 instead of 100, and suppose we wish to find one of these factors, the other being known. Multiplying divisor and quotient gives the whole dividend, so dividing the product of the divisor and dividend by the known factor of the dividend will give the other factor. This means that

$$t^2 = \frac{h \times 2}{g}$$
, or $t = \sqrt{\frac{h \times 2}{g}}$.

Trying this transposition, we have first:

$$h = \frac{32.16 \times 100}{2}$$
, where $t = 10$ seconds and $t = 100$.
 $h = \frac{3216}{2} = 1608$ feet in 10 seconds.

Transposing we have:

$$f = \frac{h \times 2}{g} = \frac{1608 \times 2}{32.16} = \frac{3216}{32.16} = 100.$$
 $f = 100, t = 10.$

Going a step farther, we take the wiring formula, $R = \frac{D \times 1000}{C \times 2 L}$ where R = resistance in ohms per 100 feet, D = volts drop, C = amperes, L = single length of line.

To find D we have
$$D = \frac{R \times C \times 2L}{1000}$$

To find C we have $C = \frac{D \times 1000}{R \times 2L}$

To find L we have $2L = \frac{D \times 1000}{R \times C}$, and $L = \frac{1}{2}$ of $\frac{D \times 1000}{R \times C}$

Calling L = 1000 feet, D = 10 volts, and C = 100 amperes, we have

$$R = \frac{10 \times 1000}{100 \times 2 \times 1000} = \frac{10000}{200000} = \frac{1}{20} \text{ ohm, and}$$

$$D = \frac{\frac{1}{20} \times 100 \times 2 \times 1000}{1000} = \frac{10000}{1000} = 10.$$

$$C = \frac{10 \times 1000}{\frac{1}{20} \times 2 \times 1000} = \frac{10000}{100} = 100.$$

$$2 L = \frac{10 \times 1000}{\frac{1}{20} \times 100} = \frac{10000}{5} = 2000,$$

$$L = \frac{1}{2} \text{ of } 2000 = 1000.$$

Taking another formula, the one for horse-power,

H.P. =
$$\frac{P \times L \times A \times N}{33000}$$
, where

P = effective pressure per square inch.

L = length of stroke in feet.

A = area of piston in square inches.

N = number of strokes per minute or twice the revolutions.

Remembering that the numerator is the dividend divided into four factors, we can find any one of them by taking it out of the numerator, making the rest into the divisor and putting H.P. \times 33000 for the numerator.

This is easily done as follows:

$$P = \frac{H.P. \times 33000}{L \times A \times N}$$

$$A = \frac{H.P. \times 33000}{P \times L \times N}$$

$$L = \frac{H.P. \times 33000}{P \times A \times N}$$

$$N = \frac{H.P. \times 33000}{P \times L \times A}$$

CHAPTER XVIII

THE VERNIER AND MICROMETER

THIS method of measuring or of dividing known distances into very small parts is credited to the invention of Pierre Vernier in 1631. The principle is shown in Figs. 1 to 3, and its application in Figs. 4 and 5. In Figs. 1 and 2 both distances o-1 are the same, but they are divided

into different divisions. Calling o - i = i inch, then in Fig. 1 it is clear that moving the lower scale one division will divide the upper one in half. In Fig. 2 the upper scale is divided in half and the lower one in thirds. If the lower

scale is moved either way until $\frac{1}{3}$ or $\frac{3}{3}$ comes under the end line, it has moved $\frac{1}{3}$ of an inch, but if either of these are moved to the center line, then it is only moved $\frac{1}{2}$ of this amount or $\frac{1}{3}$.

Fig. 3 shows the usual application of the principle except that it is divided in four parts instead of ten. Here both the scales have four parts, but on the lower scale the four parts just equal three parts of the upper scale. It is evident that if we move the lower scale so that o goes to 1 and 4 goes to 4, that it will be moved \(\frac{1}{4}\) the length of the

FIG. 6. - Micrometer.

distance o - 4 on the upper scale. If this distance was r inch, each division on the upper scale equals $\frac{1}{4}$ inch, and moving the lower scale so that the line r just matches the line next to o on the upper scale gives $\frac{1}{4}$ of one of these divisions or $\frac{1}{16}$ of an inch.

Figs. 4 and 5 show the usual application in which the lower or vernier scale is divided into 10 parts, which equals 9 parts of the upper scale. The same division holds good, however, and when the lower scale is moved so that the

first division of the vernier just matches the first line of the scale, it has been moved just one tenth of a division. In Fig. 4 the third lines match so that it has moved $\frac{3}{10}$, and in Fig. 5 $\frac{7}{10}$ of a division. So if A B is one inch, then each division is $\frac{1}{10}$ of an inch, and each line of the vernier is $\frac{1}{10}$ of that or $\frac{1}{100}$ of an inch.

FIG. 7. - Micrometer Graduations.

To find the reading of any vernier, divide one division of the upper or large scale by the number of divisions in the small scale. So if we had a vernier with 16 divisions in each, the large scale being 1 inch long, then the movement of one division is $\frac{1}{18}$ of $\frac{1}{18}$ or $\frac{1}{288}$ of an inch.

Reading the Micrometer

The commercial micrometer consists of a frame, the anvil or fixed measuring point, the spindle which has a thread cut 40 to the inch on the portion inside the sleeve or barrel, and the thimble which goes outside the sleeve and turns the spindle. One turn of the screw moves the spindle $\frac{1}{40}$ or .025 of an inch, and the marks on the sleeve

show the number of turns the screw is moved. Every fourth graduation is marked 1, 2, 3, etc., representing tenths of an inch, or, as each mark is .025, the first four means .025 \times 4 = .100, the third means .025 \times 4 \times 3 = .300.

The thimble has a beveled edge divided into 25 parts and numbered 0, 5, 10, 15, 20, and to 0 again. Each of these mean $\frac{1}{25}$ of a turn or $\frac{1}{25}$ of $\frac{1}{20} = \frac{1}{1000}$ of an inch. To read, multiply the marks on the barrel by 25 and add the graduations on the edge of the thimble. In the cut there are 7 marks on the sleeve and 3 on the thimble, so we say $7 \times 25 = 175$, plus 3 = 178 or .178.

In shop practice it is common to read them without any multiplying, by using mental addition. Beginning at the largest number shown on the sleeve and calling it hundreds and adding 25 for each mark, we say in the case shown 100 and 25, 50, 75, and then add the numbers shown on the thimble, 3, making 178 in all. If it showed 4 and one mark, with the thimble showing 8 marks, the reading would be 400 + 25 + 8 = 433 thousandths or .433.

The Ten-Thousandth Micrometer

This adds a vernier to the micrometer sleeve or barrel, as shown in Fig. 7, which is read the same as any vernier, as has been explained. First note the thousandths as in the ordinary micrometer and then look at the line on the sleeve which just matches a line on the thimble. If the two zero lines match two lines on the thimble, the measurement is in even thousandths as at B, which reads .225. At C the seventh line matches a line on the thimble, so the reading is .2257 inch.

CHAPTER XIX

REGULAR POLYGONS AND THEIR PROPERTIES

THE easiest way to lay out figures of this kind is to draw a circle and space it off, but it saves lots of time to know what spacing to use or how large a circle to draw to get a figure of the right size. Suppose we wish to lay out any regular figure, such as a pentagon or five-sided figure, having sides 1½ inches long.

Looking in the third column, we find "Diameter of circle that will just enclose it," and opposite pentagon we find

Number of Sides	Name of Figure	Diameter of Circle that will just en- close when side is 1	Diameter of circle that will just go inside when side is t	Length of side where diameter of enclos- ure circle equals 1	Length of side where inside circle equals 1	Angle formed by lines drawn from center to corners	Angle formed by outer sides of fig- ures	To find Area of Fig- ure multiply side by itself and by num- ber in this column
3	Triangle	1.1546	-5774	.866	1.732	1200	60°	-4330
4	Square	1.4142		.7071	I.	90	90	I.
5	Pentagon	1.7012	1.3764	.5878	-7265		108	1.7204
6	Hexagon	2.	1.732	.5	-5774	60	120	2.5980
7	Heptagon .	2.3048	2.0766	+4338	-4815	51°-26'	128 #	3.6339
8	Octagon	2.6132	2.4142	.3827	.4142	45	135	4.8284
9	Nonagon	2.9238	2.7474	.342	.3639	40	140	6.1818
10	Decagon	3.236	3.0776	.309	.3247	36 32°-43	144	7.6942
11	Undecagon	3.5494	3.4056	.2817	.2936	32°-43	14711	9.3656
12	Dodecagon	3.8638	3.732	.2588	.2679	30	150	11.1961

1.7012 as the circle that will just enclose a pentagon having a side equal to 1. This may be 1 inch or 1 anything else, so as we are dealing in inches we call it inches. As the side of the pentagon is to be 1½ inches, we multiply 1.7012 by 1½ and get 2.5518 as the diameter of circle to draw, and take half of this or the radius 1.2759 in the compass to draw the circle. Then with 1½ inches in the dividers we space round circle, and if the work has been carefully done it will just divide it into five equal parts. Connect these points by straight lines, and you have a pentagon with sides 1½ inches long.

If the pentagon is to go inside a circle of given diameter, say 2 inches, look under column 5 which gives "Length of side when diameter of enclosing circle equals 1," and find .5878. Multiply by 2 as this is for a 2-inch circle, and the side will be $2 \times .5878 = 1.1756$. Take this distance in the dividers and step around the 2-inch circle.

Assume that it is necessary to have a triangular end on a round shaft, how large must the shaft be to give a triangle 1.5 inches on a side?

Look in the table under column 3, and opposite triangle find 1.1546, meaning that where the side of a triangle is 1, the diameter of a circle that will just enlose it is 1.1546. As the side is 1.5, we have $1.5 \times 1.1546 = 1.7318$, the diameter of the shaft required. If the corners need not be sharp, probably a shaft 1.625 would be ample.

Reversing this, to find the size of a bearing that can be turned on a triangular bar of this size, look in column 4, which gives the largest circle that will go inside a triangle with a side equal to 1. This gives .5774. Multiply this by 1.5 = .8661.

A square taper reamer is to be used which must ream I inch at the small end and I.5 at the back, what size must this be across the flats at both places?

Under column 5 find .7071 as the length of the side of a square when the diameter of the enclosing circle is 1, so this will be the side of the small end of the reamer, and $1.5 \times .7071 = 1.0606$ is the side of the reamer at the large end.

The Circle

A circle is a continuous curved line having every point at an equal distance from the center.

Its perimeter or circumference is always 3.14159265359 times the diameter, although 3.1416 is generally used and 3½ is a very close approximation.

Area equals the diameter squared \times .7584, or half the diameter squared \times 3.1416, or half the diameter \times half the circumference.

Diameter of a square having equal area = diameter of circle \times .89 very nearly.

The Triangle

Equilateral triangle is a regular figure having three equal sides and three equal angles of 60 degrees each.

The side equals .866 times the diameter of enclosing circle.

Distance from one side to opposite point equals the side times .866, or diameter of enclosing circle \times .75, or inside circle \times .14.

Diameter of enclosing circle equals side times 1.1546, or $1\frac{1}{3}$ times distance from side to point, or twice inside circle.

Diameter of inside circle equals side times .5774 or $\frac{1}{2}$ the enclosing circle.

The area equals one side multiplied by itself and by .433013.

Diameter of circle having equal area equals side of triangle times .73.

The Square

A square is a figure with four equal sides and four equal angles of 90 degrees.

Its perimeter or outside surface is four times the length of one side.

Area equals one side multiplied by the other, which is the same as multiplying by itself, or "squaring."

Diagonal or "long diameter," or "distance across corners," equals the side multiplied by 1.414.

Area of circle that will go inside the square equals one side multiplied by itself times .7854, or .7854 times the area of the square.

Area of circle that will just enclose the square equals diagonal multiplied by itself times .7854, or 1.27 times the area of the square.

Diameter of a circle having an equal area is 1.126 or practically 11 times the side of the square.

The Hexagon

A hexagon is a regular figure with six equal sides and six equal angles of 120 degrees. It can be drawn inside a circle by spacing around with the radius of the circle.

The side equals half the diameter of enclosing circle.

The *long diameter* equals diameter of enclosing circle or twice the length of one side.

The short diameter equals the long diameter multiplied by .866 or 1.732 times one side.

The area equals one side multiplied by itself and by 2.5981.

The area of enclosing circle is one side multiplied by itself and by 3.1416.

The area of an inside circle is the short diameter multiplied by itself and by .7854.

Diameter of circle having equal area is practically .9 times long diameter.

The Octagon

An octagon is a regular figure with eight equal sides and eight equal angles of 135 degrees.

The side equals the long diameter multiplied by .382.

The *side* equals the short diameter multiplied by .415. The *long diameter* equals diameter of enclosing circle or

The long diameter equals diameter of enclosing circle of one side multiplied by 2.62.

The short diameter equals the long diameter multiplied by .93, or one side multiplied by 2.45.

The area equals one side multiplied by itself and by 4.8284.

The area of enclosing circle is 1.126 times area of octagon. The area of inside circle is .972 times area of octagon.

The diameter of a circle having equal area is .953 times the long diameter of the octagon.

What is length of the side of a pentagon drawn in a circle with a diameter of 40 inches? Look in column 4 opposite pentagon or 5, and find .5878. Multiply by 40 and get 23.5114 inches as side of pentagon.

To find its area, square the side and multiply it by the number in column 9 which is 1.7205, and get 929 square inches as the area.

Or having the area of an octagon, to find the side. Divide the area by 4.8284 (col. 9) and take the square root of answer.

Having the side, find the diameter of circle which will just touch its corners by dividing by 0.76536.

Polygons drawn outside of a circle can be handled in the same way by using columns 3 and 5.

CHAPTER XX

THE USES OF SHOP "TRIG"

THE laying out of angles is sometimes difficult by ordinary methods and a little knowledge of shop "trig" is very useful and much easier than as though we called it by its full name.

It is really a system of constants or multipliers based on the fact that there are always fixed proportions between the sides and angles of triangles and other figures. Fig. 1

shows a 30-degree angle with 1, 2 and 3-inch arcs, 1 c, 2 f, and 3 i. It will be found that every similar measurement is in exact proportion to the radius, thus 2 d is exactly twice the length of 1 a, and h i is just three times b c. So, if we know the distance a c for a 1-inch radius for any angle, a similar distance as g i for the same angle will be in exact

proportion to the radius of the circle to one inch which is the base. All these parts are named as shown in Figs. 2, 3, and 4.

The exact proportions of all the various parts have been

figured for each part of a degree that is likely to be needed in ordinary work, and these figures are given in the tables which follow. These numbers are simply multipliers or constants for a radius of one, and for any other radius we multiply the numbers given by the radius we are using. These tables form the most accurate means of calculating many problems, as will be shown. These constants can represent *one* of anything, inches, feet, meters, or miles, and the answer will be in the same unit. In tool work they are usually in inches, but the relation is the same regardless of the unit.

Lines 1-3 and 1-7 are called radius of the circle.

1-2 is called the cosine of the angle.

4-5 is always the same as cosine of the angle.

2-3 is called the versed sine of the angle.

4-7 is called the co-versed sine of the angle.

2-5 is called the sine of the angle.

3-6 is called the tangent of the angle.

7-8 is called the co-tangent of the angle.

1-6 is called the secant of the angle.

1-8 is called the co-secant of the angle.

Angle is Always Taken each Side of the Center Line as Shown

The names always refer to the angle on one side of the center line and not to the total or included angle. In dealing with a 60-degree thread we divide this by a center line and call the angle 30 degrees in all our calculations. Everything is based on the radius of a circle, and a 1 radius is used as this base. Perhaps the three most important parts are the sine, the tangent, and the secant, these being 2-5, 3-6, and 1-6 in all three of the figures. From this it will be seen that the sine is half the chord, or the distance from the radius to the horizontal. The tangent 3-6 is the

distance from the horizontal radius to an extension of the radius at the angle given. The secant is the distance along the radius from the center to the tangent. From 2 to 3 is called the *versed sine*, and is the distance from the center of the chord to the outer circle.

The angle considered in this work is always less than 90 degrees, and the angle between the angle used and 90 degrees, or the angle which is necessary to complete this to 90 degrees, is called the complementary angle. In the first case the complementary angle is 60 degrees, in the second case 45 degrees, and in the third case 30 degrees. The co-sine is the distance 4-5, the co-tangent is 7-8, the co-secant is 1-8, and the co-versed sine is 4-7 in all three examples. In the 45-degree angle it will be seen that the various parts are alike in both angles, as the sine is the same as the cosine, while the sine of the angle of 30 degrees is the same as the cosine of the angle of 60 degrees. These facts will be borne out by the tables and can be seen by studying the diagrams or by making any calculation and then proving it as near as may be on the drawing board.

All this is interesting, but unless it is useful it has no value to the practical man, so we will see where it can be used to advantage in saving time and labor.

Perhaps the easiest application is in finding the depth of a V-thread without making any figures. The angle is 60 degrees or 30 degrees each side of the center line. The pitch is 1 inch so that each side is also an inch, and so the radius is an inch. The depth of the thread is the distance 1-2 or 4-5, and is the cosine of the angle. Looking in the table for the cosine of the angle of 30 degrees we find 0.86603, and as the radius is 1 this gives us the depth directly as

o.86603 inch. If the radius was 2 inches we would multiply by 2, or if it was $\frac{1}{2}$ inch, divide by 2 and get the exact depth with almost no figuring. Suppose, on the other hand, that the thread was one inch deep and we want to find the length of one side, the angle remaining the same as before. In this case we have the depth which is the line 1-3, and we wish to find 1-6 which is the secant, so we look at the table again and find the secant of 30 degrees to be 1.1547 inches which is the length of the side.

Suppose you have a square bar 2½ inches on each side, what is the distance across the corners? Looking at the second example we see that the side of the square bar is represented by line 1-3 and the corner distance by the secant 1-6, so we look for the secant of 45 degrees (because we know that half the 90 degree angle of a square bar must be 45 degrees) and find 1.4142, which would be the distance if the bar was one inch square, so we multiply 1.4142 by 2½ and get 3.5355 inches as the distance across the corners, and can know that this is closer than we can measure, and is not a guess by any means.

Reversing this, we can find the side of a square that can be milled out of a round bar, such as the end of a reamer or tap. What square can we make on a 2-inch round reamer shank? The radius of the bar is the radius as 1-5 and the angle 45 degrees as before; half the side of the square will be the sine 2-5, which the table shows to be 0.70711, and as this is half the chord which makes the flat across the bar, we multiply this by 2 and get 1.41422 inches as the distance across the flats for a reamer shank of this size.

A very practical use for this kind of calculation is in spacing bolt holes or otherwise dividing a circle into any

number of equal parts. It is easy enough to get the length of each arc of the circumference by dividing 360 degrees by the number of divisions, but what we want is to find the chord or the distance from one point to the next in a straight line as a pair of dividers would step it off. First divide 360 by the number of divisions — say 9 — and get 40 degrees in each part. Fig. 5 shows this and we want the distance ab or the chord of the angle. This equals

FIG. 5. - Spacing Bolt Circles.

twice the sine of half the angle. Half the angle is 20 degrees and the sine for this is .342. Twice this or 0.684 is the chord of the 40-degree angle for every inch of radius. If the circle is 14 inches in diameter the distance between the holes will be 7 times 0.684 or 4.788 inches. This is very quick and the most accurate method known.

Draftsmen often lay out jigs with the angles marked in degrees as in Fig. 6, overlooking the fact that the toolmaker has no convenient or accurate protractor for measuring the angle. Assume that a drawing shows three holes as a, b, and c, with

b and c 20 degrees apart. The distance from a to b is 3 inches, what is the distance from b to c or from a to c?

As the known radius is from a to b, the distance b c is the tangent of the angle, and the tangent for a 1-inch radius is .36397, so for a 3-inch radius it is $3 \times .36397 = 1.09191$ inches from b to c and at right angles to it.

But we need not depend on the accuracy of the square or of the way we use it, as we can find the distance from a to c just as easily and just as accurately as we did b c. This distance is the secant, and is 1.0642 for a 1-inch radius.

FIG. 6. - Laying out Jigs.

Multiplying this by 3 = 3.1926 as the distance which can be accurately measured.

If the distance between a and c had been 3 inches, then b c would have been the sine and a b the cosine of the angle, both of which can be easily found from the tables.

.It often happens that we want to find the angle of a roller or other piece of work as Fig. 7. Always work from the center line and continue the lines to complete the angle. Every triangle has the sides and they are called the "side opposite," "side adjacent," and "hypothenuse," the first being opposite the angle, the second the base line, and the third the slant line.

The following rules are very useful in this kind of work:

(1) Sine =
$$\frac{\text{Side Opp.}}{\text{Hypot.}}$$

(2) Cosine =
$$\frac{\text{Side Adj.}}{\text{Hypot.}}$$

(3) Tangent =
$$\frac{\text{Side Opp.}}{\text{Side Adj.}}$$

(4) Co-Tangent =
$$\frac{\text{Side Adj.}}{\text{Side Opp.}}$$

(5) Hypot.
$$\frac{\text{Side Opp.}}{\text{Sine.}}$$

(6) Side Opp. = Hypot.
$$\times$$
 Sine.

(10) Hypot. =
$$\frac{\text{Side Adj.}}{\text{Cosine.}}$$

If we have the dimensions shown in Fig. 7, the side opposite, and the hypothenuse, we use formula No. 1, and dividing 2 by 4 we get $\frac{1}{2}$ or .5 as the sine of the angle. The table shows this to be the sine of the angle of 30 degrees, consequently this is a 30-degree angle.

If we have the side opposite and the side adjacent we use formula No. 3, and find that $\frac{2}{4} = \frac{1}{2}$ or .5 = the tangent of the angle. The table shows this to be the tangent of 26 degrees and 45 minutes.

Should it happen that we only knew the hypothenuse and the angle we use formula No. 6 and multiply $4 \times .5 = 2$, the side opposite. In the same way we can find the side adjacent by using formula No. 7. The cosine of 30 degrees in .866 and $4 \times .866 = 3.464$ inches as the side adjacent.

Having a bar of steel 2 by 3 inches, what is the distance across the corners? Either formulas 3 or 4 will answer for this. Taking No. 4 we have 2 as the side opposite, 3 as the side adjacent. Dividing 3 by 2 gives 1.5.

Looking under co-tangents for this we find 1.5108 after 33 degrees 30 minutes, which is nearly the correct angle. Then look for the secant of this and find 1.1958. Multiply this by 3 and get 3.5874 as the distance across the corners.

FIG. 7. — A Cone Roller.

The next two pages give all the transposition of these formula that will be needed for any case, and the tables which follow will give all the values of the different functions. A little practice will show how they save time and give accurate results.

Pull Lines	are gires.	Detted Lines	us to be found
4.	ngha "	<u> </u>	glana di
Figure	Fermulae	Figure	Permulae
A	os a B dn b B A 0 sia a A 0 cos b A \(\sqrt{03} \) B? a 80° a°		3 - A cotg a 0 - A sin a b - 80° - a°
A CO	A — 0 cos b B — 0 sin b a — 90° — b°	A B	B— A tang a 0— A on b a— 90°— b°
A P	take a \longrightarrow \xrightarrow{A} take b \longrightarrow \xrightarrow{B} 0 \longrightarrow \xrightarrow{A} 0 \longrightarrow	A. O	A— B tang a G— B ess' a b— 90°— a°
A S	sin s — A C sos b — A C B — C sin b B — O cos A B — VC2 — A2 a — 90°— b° b — 90°— a°	A G	A — B cotg b C — B sin b a — 80°— b
	Figure	Formulae .	
·	A D	A- C sin a B- C cos a b- 80°- a°	. •

TABLE OF TRIGONOMETRICAL FORMULAS FOR RIGHT ANGLED TRIANGLES.

Name Pigere	$A = \frac{0 \text{ din } a}{\text{din } (a + b)}$ $B = \frac{0 \text{ din } b}{\text{din } (a + b)}$ $C = 180^{2} - (a + b)^{0}$ $A = \frac{0 \text{ din } a}{\text{din } a}$ $B = \frac{0 \text{ din } (a + b)}{\text{din } a}$ $D = 180^{2} - (a + c)^{0}$ $A = \frac{0 \text{ din } (a + c)}{\text{din } a}$ $D = 180^{2} - (a + c)^{0}$ $A = \frac{0 \text{ din } (b + c)}{\text{din } a}$ $B = \frac{0 \text{ din } b}{\text{din } a}$
(a + b) (a + c) (a +	Star (a + b) B = 0 star (a + b) D = 180^{2} - (a + b)^{2} D = 180^{2} - (a + b)^{2} D = 0 star (a + e) D = 180^{2} - (a + e)^{2} D = 0 star (b + e) D = 0 star (a + e) D = 0 star (
b sin o din a A A C B B C B C B B C B B C B B C B B C B B C B B C B B C B B C B B C B B C B C B B C B B C B B C	$B = \frac{0 \sin (a + e)}{y \ln e}$ $b = 180^{\circ} - (a + e)^{\circ}$ $A = \frac{0 \sin (b + e)}{\sin e}$ $B = \frac{0 \sin b}{\sin e}$
(a) (b) (c) (b) (d) (d) (d) (d) (d) (d) (d) (d) (d) (d)	$b = 180 \frac{C}{\sin (b + a)}$ $A = \frac{C}{\sin a} \frac{\sin (b + a)}{\sin a}$ $B = \frac{C}{\sin a} \frac{\sin b}{a}$
b A C B	i
	a 180°-(b+ e)°
<u>+ •)°</u> b> . 0	sin b = B sin a
(<u>a+b)</u> .	C = A dn e dn e P = A B dn e
b	$\sin a = \frac{A \sin b}{B}$ $e = 180^{\circ} - (a + b)^{\circ}$ $C = \frac{A \sin e}{\sin a}$
• + •)° • - •) • 6 > < 0	$Tg \ a = \frac{A \sin \ e}{B - A \cos \ e}$ $C = \sqrt{A^2 + B^2 - 4 A B \cos^2 e}$ $C = \sqrt{A + B^2 - 4 A B \cos^2 e}$ $C = \sqrt{A - B^2 + 4 A B \sin^2 e}$
	+ 0)°

TABLE OF TRIGONOMETRICAL FORMULAS, COMMON PLANE TRIANGLE.

	. () o	1 1	• 1	11 9	2° 1	1 3	0	1
•	TAN.	Co-tan.		CO-TAN.		Co-tan.		Co-tan.	,
-	.00000	Infinite.	.01746	57.2900	.03492	28.6363	.0524I	1180.01	60
I	.00029	3437-750	.O1775	56.3506	.03521	28.3994	.0527O	18-9755	59 58
3	.00058	1718.870	.01804	55-4415	.03550	28.1664	-05299	18.8711	
3	.00087	1145.920 859.436	.01833	54.5613 53.7086	.03579	27.9372 27.7117	-05328 -05357	18.7678 18.6656	57 56
4	.00145	687.549	.01801	52.8821	-03638	27-4899	Ø5387	18.5645	55
5	-00175	572-957	.01920	52.0807	.03667	27.2715	-05416	18.4645	54
7	.00204	491.106	.01949	51.3032	.o3696	27.0566	-05445	18.3655	53
	.00233	429.718	.01978	50.5485	-03725	26.8450	-05474	18.2677	52
9 10	.00262	381.971	.02007	49.8157 49.1039	£3754 £3783	26.6367 26.4316	-05503	18.1708. 18.0750	51
11	.00320	343-774 312.521	.02066	48.4121	.03812	26.2206	.05533 .05562		50
12	.00349	286.478	.02005	47.7395	.03842	26.0307	.05501	17.0802 17.8863	49 48
13	.00378	264.441	.02124	47.0853	.03871	25.8348	.05620	17.7934	47
14	.00407	245.552	.02153	46.4489	.03900	25.6418	£05649	17.7015	46
15	.00436	229.182	.02182	45.8294	.03929	25.4517	-05678	17.6106	45
ıŏ	.00465	214.858	.02211	45.2261	.03958	25.2644	.05708	17.5205	44
17 18	.00495	202.219 100.084	.02240	44.6386 44.0661	.04016	25.0798 24.8978	.05737 .05766	17.4314 17.3432	43
10	.00553	180.932	.02208	43.5081	-04046	24.7185	£5795	17.2558	4I
20	.00582	171.885	.02328	42.9641	-04075	24.5418	.05824	17.1693	40
21	11000	163.700	.02357	42-4335	.04104	24.3675	-05854	17.0837	39
22	.00640	156.259	.02386	41.9158	.04133	24.1957	.05883	16.9990	38
23 24	.00000	149.465 143.237	.02415	41.4100	.04101	24.0263 23.8593	.05912 .05941	16.8310	37 36
25	.00727	137.507	.02473	40.4358	.04220	23.6945	.05970	16.7496	35
26	-00756	132.210	.02502	39.9655	-04250	23.5321	-05999	16.6681	34
27 28	.00785	127.321	.02531	39.5059	-04270	23.3718	.06029	16.5874	33
	.00814	122.774	.02560	39.0568	.04308	23.2137	.06058	16.5075	32
29 30	-00844 -00873	118.540 114.580	.02589	38.6177 38.1885	.04337 .04366	23.0577	.06087 .06116	16.4283 16.3499	31 30
31	.00002	110.802	.02648	37.7686	.04395	22.7519	.06145	16.2722	29
32	.00931	107.426	.02677	37-3579	.04424	22.6020	.06175	16.1052	28
33	.00960	104.171	.02706	36.9560	.04454	22.4541	.06204	16.1190	27
34	.00989	101.107	.02735	36.5627	.04483	22.3081	.06233	16.0435	26
35 36	.01018 .01047	98.2179 95.4895	.02764	36.1776 35.8006	.04512	22.1640 22.0217	.06262 .06201	15.0687	25
	.01076	92.9085	.02822	35.4313	.04570	21.8813	.06321	15.8945	24 23
37 38	.01105	90.4633	.02851	35.0695	.04599	21.7426	06350	15.7483	22
39	.01135	88.1436	.02881	34.7151	-04628	21.6056	.06379	15.6762	21
40	.01164	85.9398	.02910	34.3678	.04658	21.4704	.06408	15.6048	20
41	-01193	83.8435	.02939	34.0273	04687	21.3369	.06437	15.5340	19
42	.01222 .01251	81.8470 79.9434	.02968	33.6935 33.3662	.04716	21.2049	.06467 .06496	15.4638	18
43 44	.01280	78.1263	.03026	33-0452	.04774	21.0747	.06525	15.3943 15.3254	17 16
45	.01300	76.3900	.03055	32.7303	.04803	20.8188	.o6554	15.2571	15
45 46	.01338	74.7292	.03084	32.4213	.04832	20.6932	.06584	15.1893	14
47 48	.01367	73.1390	.03114	32.1181	.04862	20.5691	.06613	15.1222	13
49	.01396 .01425	71.6151	.03143	31.8205 31.5284	.04891	20.4465	.06642 .06671	15.0557 14.9898	12
50	.01455	70.1533 68.7501	.0320I	31.2416	-04949	20.3253	.06700	14.9244	10
51	.01484	67.4010	.03230	30.9599	-04978	20.0872	.06730	14.8596	
52	.01513	66.1055	.03259	30.6833	.05007	19.9702	.06759	14.7954	98
53	.01542	64.8580	.03288	30.4116	.05037	19.8546	06788	14.7317	7
54	.01571	63.6567	.03317	30.1446	.05066	19.7403	.06817	14.6685	
55 56	.01620	62.4992 61.3829	.03346	29.8823 29.6245	.05095	19.6273	.06847	14.6050 14.5438	5
57	.01658	60.3058	.03405	29.0245	.05124	19.5150	.00070	14.4823	4
57 58	.01687	59.2659	.03434	29.1220	.05182	19.2959	.06934	14.4212	2
59 60	.01716	58.2612	.03463	28.8771	.05212	19.1879	.06963	14.3607	I
<u>∞</u>	.01746	57.2900	.03492	28.6363	.05241	19.0811	.06993	14.3007	•
,	Co-tan.	90 TAN.	Co-tan. 8	Tan.	Co-tan.	Tan.	Co-tan.	Tan.	7

1	4	۰ ۱	1 5	• 1	1 6	0	1 7	'o 1	1
	TAN.	Co-tan.	TAN.	Co-tan.	TAN.	Co-tan.	TAN.	Co-tan.	-
۰	.06993	14.3007	.08749	11.4301	.10510	9.51436	.12278	8.14435	60
1	.07022	.14.2411	.08778	11.3919	.10540	9.48781	.12308	8.12481	59
3	.07051 .07080	14.1821	.08807 .08837	11.3540	.10569	9.46141 9.43515	.12338	8.10536	58 57
4	.07110	14.0655	.08866	11.2789	.10628	0.40004	.12307	8.06674	56
5	.07130	14.0079	.08895	11.2417	.10657	9.38307	.12426	8.04756	55
6	.07168	13.9507	.08925	11.2048	.10687	9.35724	.12456	8.02848	54
7 8	.07197 .07227	13.8940	.08054	11.1681	.10716	9.33154	.12485	8.00948 7.99058	53 52
9	.07256	13.7821	.00013	. 11.0954	.10775	9.28058	.12544	7.97176	51
10	.07285	13.7267	.09042	11.0594	.10805	9.25530	.12574	7.95302	50
11	.07314 .07344	13.6719	.09071	11.0237	.10834	9.23016 9.20516	.12603 .12633	7.93438 7.91582	49 48
13	-07373	13.5634	.09130	10.0520	.10893	9.18028	.12662	7.89734	47
14	.07402	13.5098	-00150	10.9178	.10922	9.15554	.12692	7.87895	46
15	.0743I	13.4566	.09189	10.8829	.10952	9.13093	.12722	7.86064	45
16 17	.07461	13.4039	.00218	10.8483	.10981	9.10646 9.08211	.12751	7.84242	44
18	.07490 .07519	13.2996	.09247	10.5139	.11040	9.05789	.12810	7.80622	43 42
19	.07548	13.2480	.09306	10.7457	.11070	9.03379	.12840	7.78825	41
20	<i>-</i> 07578	13.1969	-09335	10.7119	.11099	9.00983	.12869	7-77035	40
2I 22	.07607 .07636	13.1461	.09365	10.6783	.11128	8.98598 8.96227	.12899	7.75254 7.73480	39 38
23	.07665	13.0458	.09394	10.0450	.11187	8.03867	.12958	7.71715	37
24	.07695	12.9962	-09453	10.5789	.11217	8.91520	.12988	7.69957	36
25	-07724	12.0469	.09482	10.5462	.11246	8.89185	.13017	7.68208	35
26	.07753 .07782	12.8981	.09511	10.5136	.11276	8.86862	.13047	7.66466	34
27 28	.07812	12.8496	.09541	10.4813	.11305	8.84551	.13076	7.64732	33 32
20	.07841	12.7536	.00600	10.4172	.11364	8.79964	.13136	7.61287	31
30	.07870	12.7062	.09629	10.3854	.11394	8.77689	.13165	7.59575	30
31 32	.07899	12.6591	.09658 .09688	10.3538	.11423	8.75425	.13195	7.57872	20 28
33	.07958	12.5660	.09717	10.2013	.11482	8.70931	.13254	7.54487	27
34	.07987	12.5199	.09746	10.2602	.11511	8.68701	.13284	7.52806	26
35	.08017	12.4742	.09776	10.2204	.11541	8.66482	.13313	7.51132	25
36 27	.08046 .08075	12.4288	.09805 .09834	10.1988	.11570	8.64275	.13343 .13372	7.49465 7.47806	24
37 38	.08104	12.3390	.09864	10.1381	.11620	8.59893	.13402	7-46154	22
39	.08134	12.2946	.09893	10.1080	.11659	8.57718	.13432	7-44500	21
40	.08163 .08192	12.2505	.09923	10.0780	.11688	8.55555	.13461	7.42871	20
41 42	208331	12.2007	.09952	10.0483	.11718	8.53402 8.51259	.13491 .13521	7.41240 7.39616	19 18
43	.08251	12.1201	.10011	0.08031	.11777	8.49128	.13550	7.37999	17
44	.0828o	12.0772	.10040	9.96007	.11806	8.47007	.13580	7.36380	16
45 46	.08309 .08339	12.0346	.10069	9.93101	.11836	8.44896	.13609	7.34786	15
47	.08368	11.9504	.10099	9.87338	.11805	8.42795	.13669	7.33190 7.31600	13
47 48	-08307	11.9087	.10158	9.84482	.11024	8.38625	.13698	7.30018	12
49	.08427	11.8673	.10187	9.81641	.11954	8.36555	.13728	7.28442	11
50	.08456	11.8262	.10216	9.78817	.11983	8.34496	.13758	7.26873	10
51 52	.08485 .08514	11.7853	.10246	9.76009 9.73217	.12013	8.32446 8.30406	.13787 .13817	7.25310 7.23754	8
53	.08544	11.7045	.10305	9.70441	.12072	8.28376	.13846	7.22204	
54	.08573	11.6645	.10334	9.67680	.12101	8.26355	.13876	7.20661	7 6
55 56	.08602 .08632	11.6248	.10363	9.64935	.12131	8.24345	.13906	7.19125	5
57	.08661	11.5853	.10393	9.62205	.12160 -	8.22344 8.20352	.13935 .13965	7.17594 7.16071	4
57 58	.08690	11.5072	.10452	9.56791	.12210	8.18370	.13905	7.14553	2
59	-08720	11.4685	.10481	9.54106	.12249	8.16398	.14024	7.13042	I
60	.08749	11.4301	.10510	9.51436	.12278	8.14435	.14054	7.11537	_°
7	Co-tan.	TAN.	CO-TAN.		Co-tan.	TAN.	CO-TAN.	TAN.	,
	8	50	4 -	84°	l 8	3°	1 8	20	

	8	۱ ه] 9			00	1	1°	1
	TAN.	Co-tan.	TAN.	Co-tan.	TAN.	Co-tan.	Tan.	Co-tan.	_
0	.14054	7.11537	.15838	6.31375	.17633 .17663	5.67128	.19438	5.14455	60
2	.14113	7.10038	.15868	6.20007	.17603	5.65205	.19468	5.13658 5.12862	59 58
	.14143	7.07050	.15928	6.22820	.17723	5.64248	.19529	5.12060	57
3 4	.14173	7.05570	.15058	6.26655	.17753	5.63295	.19559	5.11270	56
5	.14202	7.04105	.15988	6.25486	.17783	5.62344	.19589	5.10490	55
	.14232	7.02637	.16017	6.24321	.17813	5.61397	.19619	5.09704	54
8	.14262	7.01174	.16047	6.23160	.17843	5.60452	.19649	5.08921	53
	.14291	6.99718	.16077	6.22003	.17873	5.59511	.19680	5.08139	52
9	.14321	6.98268	.16107	6.20851	.17903	5.58573	.19710	5.07360	5 E
10	.14351	6.96823	.16137	6.19703	.17933	5.57638	.19740	5.06584	50
11	.14381	6.95385	.16167	6.18559	.17963	5.56706	.19770	5.05809	49
12	.14410	6.93952	.16196	6.17419	.17993 .18023	5.55777	.19801	5.05037	48
13	.14440	6.92525 6.01104	.16256	6.16283 6.15151	.18023	5.54851	.19831	5.04267	47 46
15	.14499	6.80688	.16286	6.14023	.18083	5.53927 5.53007	.19801	5.02734	45
16	.14529	6.88278	.16316	6.12899	.18113	5.52090	.10031	5.01071	44
17	.14559	6.86874	.16346	6.11779	.18143	5.51176	.19952	5.01210	43
18	.14588	6.85475	.16376	6.10664	.18173	5.50264	.19982	5.00451	42
19	.14618	6.84082	.16405	6.09552	.18203	5.49356	.20012	4.99695	41
20	.14648	6.82694	.16435	6.08444	.18233	5.48451	.20042	4.98940	40
21	.14678	6.81312	.16465	6.07340	.18263	5.47548	.20073	4.98188	39
22	-14707	6.79936	.16495	6.06240	.18293	5.46648	.20103	4.97438	38
23	.14737	6.78564	.16525	6.05143	.18323	5.45751	.20133	4.96690	37
24	.14767	6.77199	.16555	6.04051	.18353	5.44857	.20164	4-95945	36
25 26	.14796	6.75838	.16585	6.02962 6.01878	.18383	5.43966	.20194	4.95201	35
27	.14856	6.74483	.16615	6.00797	.18414	5.43077 5.42192	.20224	4.94460 4.93721	34
28	.14886	6.71789	.16674	5.99720	.18474	5.41300	.20285	4.92984	33 32
29	.14015	6.70450	.16704	5.98646	.18504	5.40429	.20315	4.92249	31
30	·14945	6.69116	.16734	5.97576	.18534	5.39552	.20345	4.91516	30
31	.14975	6.67787	.16764	5.96510	.18564	5.38677	.20376	4.90785	20
32	.15005	6.66463	.16794	5.95448	.18594	5.37805	.20406	4.90056	28
33 34	.15034 .15064	6.65144 6.63831	.16824	5.94390	.18624 .18654	5.36936 5.36070	.20436	4.89330	27 26
35	.15004	6.62523	.16884	5.93335 5.02283	.18684	5.35206	-20407	4.87882	25
36	.15124	6.61210	.16014	5.91235	.18714	5.34345	.20527	4.87162	24
37 38	.15153	6.59921	.16944	5.90191	.18745	5.33487	-20557	4.86444	23
38	.15183	6.58627	.16974	5.89151	.18775	5.32631	.20588	4.85727	22
39	.15213	6.57339	.17004	5.88114	.18805	5.31778	.20018	4.85013	21
40	.15243	6.56055	.17033	5.87080	.18835	5.30928	.20648	4.84300	20
41	.15272	6.54777	.17063	5.86051	.18865	5.30080	.20679	4.83590	10
42	.15302	6.53503	.17093	5.85024	.18895	5.29235	.20709	4.82882	18
43	.15332	6.52234	.17123	5.84001	.18925	5.28393	.20739	4.82175	17
44 45	.15302	6.50970 6.49710	.17153	5.82982 5.81966	.18986	5.27553 5.26715	.20770	4.81471	16
46	.15421	6.48456	.17213	5.80053	.10016	5.25880	.20830	4.80068	14
47	.15451	6.47206	.17243	5.79944	.10046	5.25048	.20861	4.79370	13
47 48	.15481	6.45961	.17273	5.78938	.19076	5.24218	.20891	4.78673	12
49	.15511	6.44720	.17303	5.77936	.19106	5.23391	.20021	4.77978	11
50	.15540	6.43484	.17333	5.76937	.19136	5.22566	.20952	4.77286	10
51	.15570	6.42253	.17363	5.75941	.19166	5-21744	.20982	4.76595	8
52	.15600	6.41026	.17393	5.74949	.19197	5.20925	.21013	4.75906	
53	.15630	6.30804	.17423	5.73960	.19227	5.20107	.21043	4.75219	7
54 55	.15660	6.38587 6.37374	.17453 .17483	5.72974	.19257	5.19293	.21073	4.74534	5
56	.15719	6.36165	.17513	5.71002 5.71013	.19287	5.18480 5.17671	.21104	4.73851 4.73170	.4
57	.15749	6.34961	.17543	5.70037	.19317	5.16863	.21154	4.72490	3
57 58	-15779	6.33761	.17573	5.60064	.19378	5.16058	.21105	4.71813	2
59	.15800	6.32566	.17603	5.68094	.10408	5.15256	.21225	4.71137	t
60	.15838	6.31375	.17633	5.67128	.19438	5.14455	.21256	4.70463	٥
7	CO-TAN.	TAN.	CO-TAN.	TAN.	Co-tan.	TAN.	CO-TAN.	TAN.	7
	8	10	8	00 17	7	90 77.	7	80 TAN.	l

	1	2° .	1 1	3°	1 1	40	1	5°	ı
•	TAN.	Co-tan.	TAN.	Co-tan.	TAN.	Co-tan.	TAN.	Co-tan.	
0	.21256	4.70463	.23087	4.33148	-24933	4.01078	.26795	3.73205	60
I	.21286	4.69791	.23117	4-32573	-24964	4.00582	.26826	3.72771	59
2	.21316	4.69121	.23148	4.32001	.24995 .25026	4.00086	.26857	3.72338	58
3	.21347	4.67786	.23179	4.31430	.25020	3.99592	.26020	3.71907 3.71476	57 56
	.21408	4.67121	.23240	4.30201	.25087	3.98607	.26051	3.71046	55
5	.21438	4.66458	.23271	4.29724	.25118	3.98117	.26082	3.70616	54
7 8	.21469	4.65797	.23301	4.20150	.25149	3.97627	.27013	3.70188	53
8	.21499	4.65138	.23332	4.28595	.25180	3.97139	.27044	3.69761	52
9	.21529	4.64480	.23363	4.28032	.25211	3.96651	.27076	3.69335	5 X
10	.21560	4.63825	-23393	4.27471	.25242	3.96165	-27107	3.68909	50
11	.21590	4.63171	.23424	4.26911	.25273	3.95680	.27138	3.68485	49 48
12	.21621	4.62518	-23455	4.26352	.25304	3.95196	.27169	3.68061	48
13	.21651	4.61868	.23485	4-25795	-25335	3.94713	.27201	3.67638	47
14	.21682	4 61219	.23516	4.25239	.25366	3.94232	.27232	3.67217 3.66796	46
16	.21743	4.59927	.23547 .23578	4.24132	.25397	3.93751	.27204	3.66376	45 44
17	.21773	4.59283	.23608	4.23580	-25459	3.92793	.27326	3.65957	43
18	.21804	4.58641	.23639	4.23030	.25490	3.92316	-27357	3.65538	42
19	.21834	4.5800I	.23670	4.22481	.25521	3.91839	.27388	3.65121	41
20	.21864	4.57363	.23700	4.21933	.25552	3.91364	.27419	3.64705	40
21	.21895	4.56726	.23731	4.21387	.25583	3.90890	.27451	3.64289	39
22	.21925	4.56091	.23762	4.20842	.25614	3.90417	.27482	3.63874	39 38
23	.21956	4.55458	.23793 .23823	4.20298	.25645	3.89945	.27513	3.63461	37
24	.21986	4.54826		4.19756	.25676	3.89474	-27545	3.63048	36
25 26	.22017	4.54106	.23854	4.19215 4.18675	.25707	3.89004 3.88536	.27576	3.62636 3.62224	35
27	.22047	4.53568 4.52941	.23005	4.18137	.25769	3.88068	.27638	3.61814	34
28	.22108	4.52316	.23946	4.17600	.25800	3.87601	.27670	3.61405	33 32
29	.22139	4.51693	.23977	4.17064	.25831	3.87136	.27701	3.60996	31
30	.22169	4.51071	.24008	4.16530	.25862	3.86671	.27732	3.60588	30
31	.22200	4.50451	.24039	4.15007	.25893	3.86208	.27764	3.60181	20
32	.22231	4.49832	.24069	4.15465	:25924	3.85745	-27795	3-59775	20 28
33	.22261	4.49215	.24100	4.14934	-25955	3.85284	.27826	3.59370	27 26
34	.22292	4.48600	.24131	4.14405	.25986	3.84824	.27858	3.58966	
35	.22322	4.47986	.24162	4.13877	.26017	3.84364	.27889	3.58562	25
36 37	.22353	4-47374 4-46764	.24223	4.13350	.26048	3.83906 3.83449	.27920	3.58160 3.57758	24
3/ 38	.22414	4.46155	.24254	4.12301	.26110	3.82992	.27983	3.57357	22
39	.22444	4.45548	.24285	4.11778	.26141	3.82537	.28015	3.56957	21
40	.22475	4.44942	.24316	4.11256	.26172	3.82083	.28046	3.56557	20
41	.22505	4.44338	-24347	4.10736	.26203	3.81630	.28077	3.56159	10
42	.22536	4-43735	-24377	4.10216	.26235	3.81177	.28109	3.55761	19 18
43	.22567	4-43134	.24408	4.09699	.26266	3.80726	.28140	3.55364	17
44	.22597	4-42534	-24439	4.00182	.26297	3.80276	.28172	3.54968	16
45 46	.22628	4.41936	.24470	4.08666	.26328	3.79827	.28203	3.54573	15
47	.22680	4-40745	.24501	4.08152	.26359	3.79378 3.78931	.28234 .28266	3.54179 3.53785	14
48	.22719	4.40152	.24562	4.07127	.26421	3.78485	.28207	3.53393	12
49	.22750	4.39560	.24593	4.06616	.26452	3.78040	.28329	3.53001	11
50	.22781	4.38969	.24624	4.06107	.26483	3.77595	.28360	3.52609	10
51	.22811	4.38381	.24655	4.05500	.26515	3.77152	.28301	3.52219	9
52	.22842	4-37793	.24686	4.05092	.26546	3.76709	.28423	3.51829	8
53	.22872	4.37207	.24717	4.94586	.26577	3.76268	.28454	3.51441	7
54	.22903	4.36623	-24747	4.04081	.26608	3.75828	.28480	3.51053	
55	.22934	4.36040	.24778	4.03578	.26639	3.75388	.28517	3.50666	5
56	.22964	4-35459	.24809 .24840	4.03075	.26670	3.74950 3.74512	.28549 .28580	3.50279 3.49894	4
57 58	.22995 23026	4.34300	.24871	4.02074	.26733	3.74512	.28612	3.49594	3
59	23056	4.33723	.24902	4.01576	.26764	3.73640	.28643	3.49125	ī
60	.23087	4.33148	-24933	4.01078	.26795	3.73205	.28675	3.48741	0
-	<u></u>		0		Co-tan.	- T	C		 -
•	Co-tan.	TAN.	CO-TAN.	6° TAN.	CO-TAN.	TAN.	CO-TAN.	TAN.	ľ
	1 7	1-	1 (0-	1 7	5 -) 7	4	l

	10	3° 11	1'	7° 1	1	8° 1	1	9° 1	
-	TAN.	Co-tan.	TAN.	Co-tan.	TAN.	Co-tan.	TAN.	Co-tan.	<u>'</u>
0	.28675	3.48741	-30573	3.27085	.32492	3.07768	-34433	2.90421	60
I	.28706 .28738	3.48359	.30605 .30637	3.26745 3.26406	.32524 .32556	3.07464 3.07160	.34465 .34498	2.90147 2.89873	59 58
2	.28760	3-47977 3-47596	.30669	3.26067	.32588	3.06857	.34530	2.80600	57
3 4	.28800	3.47216	.30700	3.25729	.32621	3.06554	.34563	2.80327	56
- 3	.28832	3.46837	.30732	3.25392	.32653	3.06252	.34596	2.80055	55
5	.28864	3.46458	.30764	3.25055	.32685	3.05950	.34628	2.88783	54
7	.28895	3.46080	.30796	3.24719	.32717	3.05649	.34661	2.88511	53
	.28927	3.45703	.30828	3.24383	-32749	3.05349	.34693	2.88240	52
9	.28958	3.45327	.30860	3.24049	.32782	3.05049	-34726	2.87970	51
10	.28990	3.44951	.30891	3.23714	.32814	3.04749	.34758	2.87700	50
11	.29021	3.44576	.30923	3.23381	.32846	3.04450	-34791	2.87430	49
12	.20053	3.44202	.30955	3.23048	.32878	3.04152	.34824 .34856	2.87161	48 47
13	.20004	3.43829 3.43456	.31010	3.22715	.32911	3.03556	.34880	2.86624	46
15	.20147	3.43084	.31051	3.22053	.32975	3.03260	.34022	2.86356	45
16	.20179	3.42713	.31083	3.21722	.33007	3.02963		2.86080	44
17	.20210	3-42343	.31115	3.21302	.33040	3.02667	·34954 ·34987	2.85822	43
18	.20242	3.41973	.31147	3.21063	.33072	3.02372	.35019	2.85555	42
19	.29274	3.41604	.31178	3.20734	.33104	3.02077	.35052	2.85289	4 I
20	.29305	3.41236	.31210	3.20406	.33136	3.01783	.35085	2.85023	40
21	-29337	3.40869	.31242	3.20079	.33160	3.01489	.35117	2.84758	39
22	.29368	3.40502	.31274	3.19752	.33201	3.01196	.35150	2.84494	38
23	.29400	3.40136	.31306	3.19426	-33233	3.00003	.35183	2.84229	37
24	.29432	3.39771	.31338	3.10100	.33266	3.00611	.35216	2.83965	36
25 26	.29463	3.39406	.31370	3.18775 3.18451	.33298	3.00319	.35248	2.83702	35 34
27	.29526	3.38679	-31434	3.18127	.33330	2.99738	-35314	2.83176	33
28	.29558	3.38317	.31466	3.17804	33395	2.00447	.35346	2.82014	32
20	.20500	3.37955	.31498	3.17481	-33427	2.00158	-35379	2.82653	31
30	.29621	3-37594	.31530	3.17159	.33460	2.98868	.35412	2.82391	30
31	.29653	3.37234	.31562	3.16838	-33492	2.08580	-35445	2.82130	29
32	.29685	3.36875	.31594	3.16517	-33524	2.98292	-35477	2.81870	28
33	.29716	3.36516	.31626	3.16197	-33557	2.98004	.35510	2.81610	27
34	.29748	3.36158	.31658	3.15877	.33589	2.97717	-35543	2.81350	26
35 36	.29780	3.35800	.31690	3.15558	.33621	2.97430	.35576	2.81091	25
	.20811	3-35443 3-35087	.31722 .31754	3.15240	.33654 .33686	2.97144	.35608 .35641	2.80574	24
37 38	.29875	3.34732	.31786	3.14605	.33718	2.0053	.35674	2.80316	23
39	.20006	3.34377	.31818	3.14288	-33751	2.96573	35707	2.80050	21
40	.29938	3.34023	.31850	3.13972	.33783	2.96004	-35740	2.79802	20
41	.20070	3.33670	.31882	3.13656	.33816	2.05721	-35772	2.79545	10
42	.30001	3.33317	.31914	3.13341	.33848	2.95437	.35805	2.79289	18
43	.30083	3.32965	.31946	3.13027	.33881	2.95155	.35838	2.79033	17
44	.30065	3.32614	.31978	3.12713	.33913	2.94872	.35871	2.78778	16
45	.30097	3.32264	.32010	3.12400	-33945	2.94590	-35904	2.78523	15
46	.30128	3.31914	.32042	3.12087	.33978	2.94309	·35937 ·35969	2.78269	14
47 48	.30102	3.31565	.32074 .32106	3.11464	.34010	2.03748	.350002	2.77761	12
49	.30224	3.30868	.32130	3.11153	.34075	2.93468	.36035	2.77507	11
50	.30255	3.30521	.32171	3.10842	.34108	2.03180	.36035 .36068	2.77254	10
51	.30287	3.30174	.32203	3.10532	.34140	2.02010	.36101	2.77002	٥
52	.30310	3.29829	.32235	3.10223	-34173	2.02632	.36134	2.76750	8
53	.30351	3.29483	.32267	3.09914	.34205	2.92354	.36167	2.76498	7
54	.30382	3.29139	.32299	3.00606	.34238	2.92076	.36199	2.76247	
55	-30414	3.28795	.32331	3.09298	-34270	2.91799	.36232	2.75996	5
56	-30446	3.28452	.32363	3.08001	-34303	2.91523	.36265	2.75746	4
57 58	.30478	3.28100	.32396	3.08685	·34335 ·34368	2.91246	.36298 .36331	2.75496	3
59	.30541	3.27767	.32420	3.08073	.34400	2.00606	.36364	2.74997	1
60	-30573	3.27085	.32402	3.07768	-34433	2.90421	.36397	2.74748	0
_	I								1-
,	CO-TAN	TAN.	CO-TAN	TAN.	CO-TAN	. TAN.	CO-TAN	. TAN.	۱′
	1 7	/3°	11 7	′2°	11 7	71°	11 7	70°	1

- 1	2	0°	1 2	1°	2	2°	1 2	3°	ı
•	TAN.	Co-tan.	Tan.	Co-tan.	TAN.	Co-tan.	TAN.	Co-tan.	<u>'</u>
0	.36397	2.74748	.38386	2.60500	-40403	2.47509	-42447	2.35585	60
1	.36430	2.74499	.38420	2.60283	40436	2.47302	-42482	2.35395	59
2	.36463 .36496	2.74251	.38453 .38487	2.60057 2.59831	-40470	2.47005 2.46888	.42516	2.35205	58
3 4	.36529	2.74004 2.73756	.38520	2.59606	.40504 .40538	2.46682	.42551 .42585	2.35015 2.34825	57 56
7	.36562	2.73500	.38553	2.59381	.40572	2.46476	.42610	2.34636	55
5	.36595	2.73263	.38587	2.59156	.40606	2.46270	.42654	2.34447	54
7 8	.36628	2.73017	.38620	2.58932	.40640	2.46065	-42688	2.34258	53
	.36661	2.72771	.38654	2.58708	.40674	2.45860	-42722	2.34069	52
9 10	.36694 .36727	2.72526 2.72281	.38687 .38721	2.58484 2.58261	.40707	2.45655	-42757	2.33881	51
					.40741	2.45451	-42791	2.33693	50
11	.36760 .36793	2.72036 2.71792	.38754 .38787	2.58038 2.57815	.40775	2.45246 2.45043	.42826 .42860	2.33505	49 48
13	.36826	2.71548	.38821	2.57593	.40843	2.44839	.42804	2.33317	47
14	.36859	2.71305	.38854	2.57371	.40877	2.44636	.42020	2.32943	46
15	.36892	2.71062	.38888	2.57150	.40011	2.44433	.42963	2.32756	45
16	.36925	2.70819	.38921	2.56928	.40945	2.44230	.42998	2.32570	44
17	.36958	2.70577	.38955 .38988	2.56707	.40979	2.44027	.43032	2.32383	43
18	.36991	2.70335		2.56487	.41013	2.43825	.43067	2.32197	42
19 20	.37024 .37057	2.70094 2.69853	.39022 /39055	2.56266 2.56046	.41047 .41081	2.43623	.43101	2.32012 2.31826	41 40
21	.37000	2.60612	.39089	2.55827	1 '				
22	.37124	2.60371	.39009	2.55608	.41115 .41140	2.43220	.43170 .43205	2.31641 2.31456	39 38
23	-37157	2.69131	.30156	2.55389	.41183	2.42819	-43239	2.31271	37
24	.37190	2.68892	.30100	2.55170	.41217	2.42618	-43274	2.31086	36
25	.37223	2.68653	.39223	2.54952	.41251	2.42418	.43308	2.30902	35
26	.37256	2.68414	·39257	2.54734	.41285	2.42218	·43343	2.30718	34
27 28	.37289	2.68175	.39290	2.54516	.41319	2.42019	-43378	2.30534	33
20	.37322	2.67937 2.67700	-39324 -39357	2.54299 2.54082	.41353 .41387	2.41619	.43412 .43447	2.30351	32 31
30	·37355 ·37388	2.67462	.39391	2.53865	.41421	2.41421	.43481	2.29984	30
31	-37422	2.67225	.39425	2.53648	.41455	2.41223	-43516	2.20801	20
32	-37455	2.66989	.39458	2.53432	.41490	2.41025	.43550	2.20610	28
33	.37488	2.66752	.39492	2.53217	.41524	2.40827	.43585	2.29437	27
34	.37521	2.66516	.39526	2.53001	.41558	2.40629	.43620	2.29254	26
35	-37554	2.66281	-39559	2.52786	-41592	2.40432	.43654	2.20073	25
36	.37588 .37621	2.66046 2.65811	.39593 .39626	2.52571	.41626 .41660	2.40235	.43689 .43724	2.28891	24
37 38	.37654	2.65576	.39660	2.52142	.41694	2.30841	.43758	2.28528	23
39	.37654 .37687	2.65342	-30604	2.51020	.41728	2.30645	-43793	2.28348	21
40	-37720	2.65100	-39727	2.51715	.41763	2.39449	.43828	2.28167	20
41	-37754	2.64875	•.30761	2.51502	.41797	2.39253	.43862	2.27087	10
42	.37787	2.64642	-39795	2.51280	.41831	2.39058	-43897	2.27806	18
43	37820	2.64410	.39829	2.51076	.41865	2.38862	-43932	2.27626	17
44	.37853 .37887	2.64177	.39862	2.50864	-41899	2.38668	.43966	2.27447	16
45 46	.37007	2.63945	.39896	2.50652	.41933 .41968	2.38473	.44001 .44036	2.27267	15
47	.37053	2.63483	.39963	2.50220	.42002	2.38084	.4407I	2.26900	13
47 48	·37953 ·37986	2.63252	-39997	2.50018	.42036	2.37891	.44105	2.26730	12
49	.38020	2.63021	.4003I	2.49807	-42070	2.37697	.44140	2.26552	11
50	.38053	2.62791	.40065	2.49597	.42105	2.37504	-44175	2.26374	10
51	.38086	2.62561	.40098	2.49386	.42139	2.37311	-44210	2.26196	9
52	.38120	2.62332	.40132	2.40177	.42173	2.37118	-44244	2.26018	
53	.38153 .38186	2.62103	.40166	2.48967	.42207 .42242	2.36925 2.36733	-44279	2.25840 2.25663	7
54 55	.38220	2.01074	.40234	2.48549	.42242	2.30733	·44314 ·44349	2.25486	5
56	.38253	2.61418	-40267	2.48340	.42310	2.36349	.44384	2.25300	4
57	.38286	2.61190	.40301	2.48132	-42345	2.36158	.44418	2.25132	3
58	.38320	2.60963	.40335	2.47924	-42379	2.35967	-44453	2.24956	2
59 60	.38353 .38386	2.60736	.40369	2.47716	.42413	2.35776	.44488	2.24780	I
_	.30300	2.00500	.40403	2.47509	-42447	2.35585	-44523	2.24604	
,	Co-tan.	TAN.	Co-tan. 6	TAN.	Co-tan. 6	TAN. 7°	Co-tan.	TAN.	′

1	2	4º	1 2	5°	1 2	6° 1	1 2	7° ,	
	TAN.	Co-tan.	TAN.	Co-tan.	TAN.	Co-tan.	TAN.	CO-TAN.	_
0	-44523	2.24604	.46631 .46666	2.14451	.48773 .48800	2.05030	.50953	1.96261	60
I.	.44558	2.24428	.40000	2.14288	.48845	2.04579	.50989	1.96120	59
2	-44593 -44627	2.24252	.46737	2.13963	.48881	2.04/20	.51020	1.95979	58
3	.44662	2.23002	-46772	2.13801	.48017	2.04426	.51003	1.95698	57 56
4	44697	2.23727	.46808	2.13639	.48953	2.04276	.51136	1.95557	55
5 6	-44732	2.23553	.46843	2.13477	.48989	2.04125	.51173	1.95417	54
7	-44767	2.23378	.46879	2.13316	.49026	2.03975	.51200	1.95277	53
7 8	.44802	2.23204	.46014	2.13154	.49062	2.03825	.51246	1.95137	52
9	.44837	2.23030	.46950	2.12993	.49098	2.03675	.51283	1.04997	51
10	-44872	2.22857	.46985	2.12832	-49134	2.03526	.51319	1.94858	50
11	-44007	2.22683	.47021	2.12671	-49170	2.03376	.51356	1.04718	49
12	44942	2.22510	.47056	2.12511	.40206	2.03227	.51393	1.94579	48
13	-44977	2.22337	.47092	2.12350	-49242	2.03078	.51430	1.94440	47
14	.45012	2.22164	.47128	2.12190	.49278	2.02929	.51467	1.94301	46
15	-45047	2.21992	.47163	2.12030	-49315	2.02780	.51503	1.94162	45
16	-45082	2.21819	-47199	2.11871	.4935I	2.02631	.51540	1.94023	.44
17	.45117	2.21647	-47234	2.11711	.49387	2.02483	.51577	1.93885	43
18	-45152	2.21475	.47270	2.11552	-49423	2.02335	.51614	1.93746	42
19	-45187	2.21304	-47305	2.11392	-49459	2.02187	.51651	1.93608	4 I
20	.45222	2.21132	-4734I	2.11233	49495	2.02039	.51688	1.93470	40
21	-45257	2.20961	-47377	2.11075	-49532	2.01891	.51724	1.93332	39
22	-45292	2.20790	.47412	2.10916	.49568	2.01743	.51761	1.93195	38
23	-45327	2.20619	.47448	2.10758	.49604	2.01596	.51798	1.93057	37
24	.45362	2.20449	.47483	2.10600	.49640	2.01449	.51835	1.92920	36
25	-45397	2.20278	.47519	2.10442	.49677	2.01302	.51872	1.92782	35
26	.45432	2.20108	-47555	2.10264	-49713	2.01155	.51909	1.92645	34
27 28	.45467 .45502	2.19938	.47590 .47626	2.00969	-49749 -49786	2.00862	.51946	1.92508	33 32
20	-45537	2.19/09	.47662	2.00811	.40822	2.00715	.52020	1.02235	31
30	·45573	2.19430	.47698	2.09654	.49858	2.00560	.52057	1.02068	30
	-45608				.40804		.52004	1.01062	20
31 32	.45643	2.19261	·47733 ·47769	2.09498 2.09341	.49094 .40031	2.00423	.52004	1.01826	28
33	.45678	2.18023	.47709	2.00184	.49951	2.00131	.52168	1.01600	27
34	45712	2.18755	.47840	2.00028	.50004	1.99986	.52205	1.01554	26
35	45748	2.18587	.47876	2.08872	.50040	1.00841	.52242	1.91418	25
36	-45784	2.18410	.47912	2.08716	.50076	1.99695	.52279	1.91282	24
37	.45819	2.18251	47948	2.08560	.50113	1.99550	.52316	1.01147	23
38	-45854	2.18084	.47984	2.08405	.50149	1.99406	-52353	1.91012	22
39	45889	2.17916	.48019	2.08250	.50185	1.99261	.52390	1.90876	21
40	-45924	2.17749	.48055	2.08094	.50222	1.99116	-52427	1.90741	20
41	-45060	2.17582	.48001	2.07939	.50258	1.98972	.52464	1.90607	19
42	·45995	2.17416	.48127	2.07785	.50295	1.98828	.52501	1.90472	18
43	.46030	2.17249	.48163	2.07630	.50331	1.98684	.52538	1.90337	17
44	46065	2.17083	.48198	2.07476	.50368	1.98540	-52575	1.90203	16
45	.46101	2.16917	.48234	2.07321	.50404	1.98396	.52613	1.90069	15
46	-46136	2.16751	.48270	2.07167	.50441	1.98253	.52650	1.89935 1.89801	14
47	.46171 .46206	2.16585	.48306	2.07014	-50477	1.98110	.52687	1.80667	13
	.46242	2.16420 2.16255	.48342 .48378	2.00706	.50514	1.97966	.52724 .52761	1.89533	11
49 50	.46277	2.10000	.48414	2.06553	.50587	1.97680	.52798	1.80400	10
-							1	1.80266	
51	46312	2.15925 2.15760	.48450 .48486	2.06400	.50623 .50660	1.97538	.52836	1.89133	8
52 53	.46348 .46383	2.15596	.48521	2.06004	.50696	1.97395 1.97253	.52073	1.80000	,
53 54	.46418	2.15590	.48557	2.05042	-50733	1.9/233	-52947	1.88867	7
55 55	46454	2.15268	.48503	2.05790	.50769	1.96969	.52984	1.88734	5
56	46489	2.15104	.48629	2.05637	.50806	1.06827	.53022	1.88602	4
57	.46525	2.14040	.48665.	2.05485	.50843	1.96685	.53059	1.88469	3
58	.46560	2.14777	.48701	2.05333	.50879	1.96544	.53096	1.88337	2
59 60	.46595	2.14614	48737	2.05182	.50916	1.96402	.53134	1.88205	x
60	.46631	2.14451	.48773	2.05030	.50953	1.96261	.53171	1.88073	0
-	CO-TAN.	Tan.	Cos	Т	Cost	Т	Cost	T	1
	OU-TAN	5° TAN.	Co-tan.	1 Tan. 40	CO-TAN.	TAN.	CO-TAN.	TAN. 20	ľ
	, 0	U -	ı 0	3	·· '0	ບ້	ii (4)

	2	8°	1 2	9°	3	0° 1	1 3	1°	ı
_	TAN.	Co-tan.	Tan.	Co-tan.	TAN.	Co-tan.	TAN.	Co-tan.	_
0	-53171	1.88073	·55431	1.80405 1.80281	-57735	1.73205	.60086	1.66428	60
1 2	.53208 .53246	1.87941	.55469 .55507	1.80158	·57774 ·57813	1.73089	.60126	1.66318	59 58
	.53283	1.87677	-55545	1.80034	.57851	1.72857	.60205	1.66000	50
3 4	.53320	1.87546	.55583	1.70011	.57890	1.72741	.60245	1.65990	57 56
7	.53358	.1.87415	.55621	1.79788	.57929	1.72625	.60284	1.65881	55
5 6	-53395	1.87283	.55659	1.79665	-57968	1.72500	.60324	1.65772	54
7	-53432	1.87152	.55697	1.79542	.58007	1.72393	.60364	1.65663	53
7 8	-53470	1.87021	.55736	1.79419	.58046.	1.72278	.60403	1.65534	52
9	-53507	1.86891	-55774	1.79296	.58085	1.72163	.60443	1.65445	51
10	-53545	1.86760	.55812	1.79174	.58124	1.72047	.60483	1.65337	50
11	.53582	1.86630	.55850	1.79051	.58162	1.71932	.60522	1.65228	40
12	.53620	1.86499	.55888	1.78929	.58201	1.71817	.60562	1.65120	49 48
13	-53657	1.86369	.55926	1.78807	.58240	1.71702	.60602	1.65011	47
14	.53694	1.86239	.55964	1.78685	.58279	1.71588	.60642	1.64903	46
15	.53732	1.86109	.56003	1.78563	.58318	1.71473	.60681	1.64705	45
10	.53769	1.85979	.56041	1.78441	-58357	1.71358	.60721	1.64687	44
17	.53807	1.85850	.56079	1.78319	.58396	1.71244	.60761	1.64579	43
18	.53844	1.85720	.56117	1.78198	-58435	1.71129	.60801	1.64471	42
19	.53882	1.85591	.56156	1.78077	.58474	1.71015	.60841	1.64363	41
20	.53920	1.85462	.56194	1.77955	.58513	1.70901	14	1.64256	40
21	-53957	1.85333	.56232	1.77834	.58552	1.70787	.60921	1.64148	39
22	-53995	1.85204	.56270	1.77713	.58591	1.70673	.60960	1.64041	38
23	.54032	1.85075	.56300	1.77592	.58631	1.70560	.61000	1.63934	37
24	.54070	1.84946	.56347	1.77471	.58670	1.70446	.61040	1.63826	36
25 26	.54107	1.84818	.56385	1.77351	.58709 .58748	1.70332	.61120	1.63719	35
	.54145	1.84561	.56462	1.77230	.58787	1.70106	.61160	1.63505	34
27 28	.54220	1.84433	.56500	1.76000	.58826	1.69992	.61200	1.63398	33 32
20	.54258	1.84305	.56539	1.76869	.58865	1.60870	.61240	1.63202	31
30	.54206	1.84177	.56577	1.76740	.58004	1.60766	.61280	1.63185	30
-	• • •	1.84040	.56616	1.76630	.58944	1.69653	.61320	1.63070	29
. 31 . 32	·54333 ·54371	1.83922	.56654	1.76510	.58983	1.69541	.61360	1.62972	28
33	.54400	1.83794	.56693	1.76300	.50022	1.69428	.61400	1.62866	27
34	.54446	1.83667	.56731	1.76271	.59061	1.69316	.61440	1.62760	26
35	.54484	1.83540	.56769	1.76151	.59101	1.69203	.61480	1.62654	25
36	.54522	1.83413	.56808	1.76032	.59140	* 6000	.61520	1.62548	24
37 38	.54560	1.83286	.56846	1.75913	.59179	1.68979	.61561	1.62442	23
38	-54597	1.83159	.56885	1.75794	.59218	I.08800	.61601	1.62336	22
39	-54635	1.83033	.56923	1.75675	.59258	1.68754	.61641	1.62230	21
40	-54673	1.82906	.56962	1.75556	-59297	1.68643	.61681	1.62125	20
41	.54711	1.82780	.57000	1.75437	.59336	1.68531	.61721	1.62019	10
42	-54748	1.82654	.57039	1.75319	.59376	1.68419	.61761	1.61914	18
43	.54786	1.82528	.57078	1.75200	-59415	1.68308	10816.	1.61808	17
44	.54824	1.82402	.57116	1.75082	-59454	1.68196	.61842	1.61703	16
45	.54862	1.82276	-57155	1.74964	-59494	1.68085	.61882	1.61598	15
46	.54900	1.82150	-57193	1.74846	-59533	1.67974	.61922 .61962	1.61493 1.61388	14
47 48	-54938 -54975	1.81800	.57232 .57271	1.74728 1.74610	.59573 .50612	1.67752	.62003	1.61363	12
49	.55013	1.81774	.57300	1.74402	.50651	1.67641	.62043	1.61170	11
50	.55051	1.81640	.57348	1.74375	.59691	1.67530	.62083	1.61074	10
-	.55089	1.81524	:				.62124	1.60970	l
51 52	.55127	1.81399	.57386 .57425	1.74257	.59730	1.67419 1.67309	.62164	1.60865	8
53	.55165	1.81274	.57464	1.74022	.59809	1.67198	.62204	1.60761	7
54	.55203	1.81150	.57503	1.73905	.59849	1.67088	.62245	1.60657	7 6
55	.55241	1.81025	.57541	1.73788	.50888	1.66978	.62285	1.60553	5
56	-55279	1.80901	.57580	1.73671	.50028	1.66867	.62325	1.60449	4
57	-55317	1.80777	.57019	1.73555	.59967	1.66757	.62366	1.60345	3
58	-55355	1.80653	.57657	1.73438	.60007	1.66647	.62406	1.60241	2
59	-55393	1.80529	.57696	1.73321	.60046	1.66538	.62446	1.60137	1
60	·55431	1.80405	-57735	1.73205	.60086	1.66428	.62487	1.60033	0
_	Co-TAN.	TAN.	Co-tan.	TAN.	Co-tan.	TAN.	CO-TAN.	TAN.	_
	O-TAN.	10 1 4 10		0° 1 VN	CU-IAN.	90 140.	CO-IAN.	80 TAN.	ı
	, 0		11 O	· ·	11 O	J	ı 9	0	•

•										
		.,,,	ı 9	3°	11 9	4°	1 2	50	,	
				Co-tan.		CO-TAN.	_	CO-TAN.		
	141	('V) TAN.	TAN.	CO-TAN.	1 AN.	CO-TAN.	I AN.	CO-TAN.		
		1.00033	.64941	1.53986	.67451	1.48256	.7002I	1.42815	60	
	1.14	1.50030	.64082	1.53888	.67493	1.48163	.70064	1.42726	59	
•	h., .,	1.50826	.65023	1.53701	.67536	1.48070	.70107	1.42638	58	
ij	teres as	1.59723	.65065	1.53693	.67578	1.47977	.70151	1.42550	57	
ì	41440	1.50620	.65100	1.53595	.67620	1-47885	.70194	1-42462	56	
•	42000	1.59517	.65148	1.53497	67663	1.47792	.70238	1.42374	55	
, i	W7,10	1.59414	.65189	1.53400	.67705	. 1-47699	.70281	1.42286	54	
	0.770	1.59311	.65231	1.53302	67748	1.47607	.70325	1.42198	53	
ĸ	11610	1.59208	.65272	1.53205	67790	1-47514	.70368	1.42110	52	
4	0.853	1.59105	.65314	1.53107	.67832	1.47422	.70412	1.42022	51	
14	01903	1.59002	.65355	1.53010	67875	1-47330	-70455	1.41934	50	
4.4	.03033	1.58900	.65397	1.52013	.67917	1.47238	.70499	1.41847	49	
14	03973	1.58797	.65438	1.52816	.67960	1.47146	.70542	1.41759	48	
11	.03014	1.58695	.65480	1.52719	.68002	1.47053	.70586	1.41672	47	
14	.03055	1.58593	.65521	1.52622	.68045 .68088	1.46962 1.46870	.70629	1.41584	46	
13	.03095	1.58490 1.58388	.65563 .65604	1.52525	.68130	1.46778	.70717	1.41407	45 44	
	.63136 .63177	1.58286	65646	1.52429	.68173	1.46686	.70760	1.41322	43	
13	.63217	1.58184	.65688	1.52235	.68215	1.46505	.70804	1.41235	42	
10	.63258	1.58083	.65729	1.52130	.68258	1.46503	.70848	1.41148	41	
30	.63299	1.57981	.65771	1.52043	.68301	1.46411	.70801	1.41061	40	
81	.63340	1.57870	.65813	1.51946	.68343	1.46320	.70935	1.40074	39	
33	.63380	1.57778	.65854	1.51850	.68386	1.46220	.70979	1.40887	38	
83	.63421	1.57676	.65896	1.51754	.68429	1.46137	.71023	1.40800	37	
84	.63462	1.57575	.65938	1.51658	.68471	1.46046	.71066	1.40714	36	
95	.63503	1.57474	.65980	1.51562	.68514	1.45955	.71110	1.40627	35	
8Ó	.63544	1.57372	.66021	-1.51466	.68557	1.45864	.71154	1.40540	34	
#7 #8	63584	1.57271	.66063	1.51370	.68600	1.45773	.71198	1.40454	33	
88	.63625	1.57170	.66105	1.51275	68642	1.45682	.71242	1.40367	32	
80	.63666	1.57069	.66147	1.51170	.68685	1.45592	.71285	1.40281	31	
30	.63707	1.56969	.66189	1.51084	.68728	1.45501	.71329	1.40195	30	
31	.63748	1.56868	.66230	1.50988	.68771	1.45410	.71373	1.40109	20	
32	.63789	1.56767	.66272	1.50893	68814	1.45320	.71417	1.40022	28	
33	.63830	1.56667	.66314	1.50797	.68857	1.45220	.71461	1.39936	27	
34	.63871	1.56566	.66356	1.50702	.68000	1.45130	.71505	1.39850	26	
35	.63912 .63953	1.56466	.66398 .66440	1.50607	.68985	1.45049	.71549 .71593	1.39764 1.39679	25 24	
36	.63994	1.56265	.66482	1.50417	.60028	1.44958 1.44868	.71637	1.39593	23	
37 38	.64035	1.56165	.66524	1.50322	.60071	1.44778	.71681	1.30507	22	
39	.64076	1.56065	.66566	1.50228	.69114	1.44688	.71725	1.39421	21	
40	.64117	1.55966	.66608	1.50133	.69157	1.44598	.71769	1.39336	20	
41	.64158	1.55866	.66650	1.50038	.60200	1.44508	.71813	1.30250	10	
42	.64199	1.55766	.66692	1.49944	.69243	1.44418	.71857	1.39165	18	
43	.64240	1.55666	.66734	1.49849	.69286	1.44329	.71901	1.39079	17	
44	.64281	1.55567	.66776	1.49755	.69329	1.44239	.71946	1.38994	16	
45	.64322	1.55467	.66818	1.49661	.69372	1.44149	.71990	1.38909	15	
46	.64363	1.55368	.66860	1.49566	.69416	1.44060	.72034	1.38824	14	
47 48	.64404	1.55269	.66902	1.49472	.69459	1.43070	.72078	1.38738	13	
48	.64446	1.55170	.66944	1.49378	.69502	1.43881	.72122	1.38653 1.38568	12	
49 50	.64487 .64528	1.55071	.67028	1.49284	.69545 .69588 -	1.43792 1.43703	.72211	1.38484	11	
- 1			1 .				1			
51	.64569 .64610	1.54873	.67071	1.49097	.69631	1.43614	.72255	1.38399 1.38314	8	
52	.64652	1.54774 1.54675	.67113	1.49003	.60718	1.43525 1.43436	.72299 .72344	1.38229	2	
	64693	1.54576	.67197	1.48816	.60761	1.43347	.72388	1.38145	7	
	34	1.54478	.67239	1.48722	.60804	1.43258	.72432	1.38060	5	
	7	1.54379	.67282	1.48629	.69847	1.43169	.72477	1.37976	4	
		1.54281	.67324	1.48536	.69891	1.43080	.72521	1.37891	3	
		1.54183	.67366	1.48442	.69934	1.42992	.72565	1.37807	2	
		1.54085	.67409	1.48349	.69977	1.42903	.72610	1.37722	I	
		1.53986	.67451	1.48256	.70021	1.42815	.72054	1.37638	•	
	-	TAN.	Co-tan.	TAN.	Co-tan.	TAN.	Co-tan.	TAN	-	
	Ė	70 - 20.	E LAN.	6° 1 AN.	CU-IAN.	50 TAN.	CU-IAN.	TAN.	ŀ	
	U							-		

	. 3	6°	11 3	7° .	ıı 3	80	ll 3	90	ı
•	TAN.	Co-tan.		Co-tan.	TAN.	Co-tan.	TÀN.	Co-tan.	
•	.72654	1.37638	-75355	1.32704	.78129	1.27994	.80978	1.23490	60
1	.72699	1.37554	.75401	1.32624	.78175	1.27917	81027	1.23416	59 58
2 3	.72743	1.37470	·75447 ·75492	1.32464	.78260	1.27764	.81123	1.23270	57
4	.72832	1.37302	.75538	1.32384	.78316	1.27688	.81171	1.23196	56
5	.72877	1.37218	.75584	1.32304	.78363	1.27611	.81220	1.23123	55
	.72921	1.37134	.75629 .75675	1.32224	.78410 .78457	1.27535	.81268 .81316	1.23050	54 53
7 8	.72966 .73010	1.36967	.75721	1.32064	.78504	1.27382	.81364	1.22004	52
õ	.73055	1.36883	.75767	1.31984	.78551	1.27306	.81413	1.22831	51
10	.73100	1.36800	.75812	1.31904	.78598	1.27230	.81461	1.22758	50
11-	.73144	1.36716	.75858	1.31825	.78645	1.27153	.81510	1.22685	49
12	.73189	1.36633	-75904	1.31745	.78692 .78739	1.27077	.81558 .81606	1.22530	48 47
13	.73234 .73278	1.36549 1.36466	.75950 .75996	1.31586	.78786	1.26025	.81655	1.22467	46
15	.73323	1.36383	.76042	1.31507	.78834	1.26849	.81703	1.22394	45
16	.73368	1.36300	.76088	1.31427	.78881	1.26774	.81752	1.22321	44
17	·73413	1.36217	.76134	1.31348 1.31269	.78928 .78975	1.26698	.81800 .81849	1.22249 1.22176	43 42
18	-73457 -73502	1.36051	.76180 .76226	1.31100	.79022	1.26546	.81808	1.22104	41
20	.73547	1.35968	.76272	1.31110	.79070	1.26471	.81946	1.22031	40
21	·73592	1.35885	.76318	1.31031	.79117	1.26395	.81995	1.21959	39
22	.73637	1.35802	.76364	1.30952	.79164	1.26319	.82044	1.21886	38
23	.73681	1.35719	.76410	1.30873	.79212	1.26244	.82092	1.21814	37 36
24	.73726	1.35637	.76456 .76502	1.30795 1.30716	.79259 .79306	1.26169	.82141 .82100	1.21/42	35
25 26	.73771 .73816	1.35554	.76548	1.30637	.79354	1.26018	.82238	1.21598	34
27	.73861	1.35389	.76594	1.30558	.79401	1.25943	.82287	1.21526	33
28	.73906	1.35307	.76640	1.30480	.79449	1.25867	.82336	1.21454	32
29	.73951	1.35224	.76686	1.30401	.79496 .79544	1.25792	.82385 .82434	1.21382	3I 30
30	.73996	1.35142	.76779	1.30344	·79591	1.25642	.82483	1.21238	20
31 32	.74041 .74086	1.35060 1.34978	.76825	1.30244	.79591	1.25567	.82531	1.21166	28
33	.74131	1.34806	.76871	1.30087	.79686	1.25492	.82580	1.21094	27
34	.74176	1.34814	.76918	1.30000	.79734	1.25417	.82629	1.21023	26
35	.74121	1.34732	.76964	1.20031	.79781	1.25343	.82678 .82727	1.20051	25 24
36 37	.74267 .74312	1.34650 1.34568	.77010	1.20775	.79877	1.25193	.82776	1.20808	23
38	·74357	1.34487	.77103	1.29696	-79924	1.25118	.82825	1.20736	22
39	.74402	1.34405	.77140	1.29618	.79972	1.25044	.82874	1.20665	21
40	·74447	1.34323	.77196	1.29541	.80020	1.24969	.82923	1.20593	20.
41	·74492	1.34242	.77242	1.20463	.80067 .80115	1.24895	.82972 .83022	1.20522 1.20451	19 18
42 43	.74538 .74583	1.34160	.77289 .77335	1.20307	.80163	1.24746	.83071	1.20370	17
44	.74628	1.33998	.77382	1.29229	.80211	1.24672	83120	1.20308	16
45	.74674	1.33916	.77428	1.29152	.80258	1.34597	.83169	1.20237	15
46	.74719	1.33835	.77475	1.20074	.80306 .80354	1.24523	.83218 .83268	1.20166	14
47 48	.74764 .74810	1.33754 1.33673	.77521	1.28010	.80402	1.24449	.83317	1.20024	12
49	.74855	1.33592	.77615	1.28842	.80450	1.24301	.83366	1.19953	11
50	.74900	1.33511	.77661	1.28764	.80498	1.24227	.83415	1.19882	10
51	.74946	1.33430	.77708	1.28687	.80546	1.24153	.83465	1.19811	8
52	.74991	1.33349	.77754 .77801	1.28610	.80594	1.24079	.83514 .83564	1.19740 1.19669	~
53	.75037 .75082	1.33268	.77801	1.28533 1.28456	.80642 .80600	1.24005	.83613	1.19599	7 6
54 55	.75128	1.33107	.77895	1.28379	.80738	1.23858	.83662	1.19528	5
56	.75173	1.33026	.7794I	1.28302	.80786	1.23784	.83712	1.19457	4
57 58	.75219	1.32046	.77988	1.28225	.80834 .80882	1.23710	.83761 .83811	1.19387	3
58 59	.75264 .75310	1.32865	.78035 .78082	1.28148	.80030	1.23637	.83860	1.10246	î
59 60	-75355	1.32704	.78129	1.27994	.80978	1.23490	.83910	1.19175	0
-			-	T	Consum	Tax	Co. TATE	TAN.	-
•	Co-tan. 5	TAN. 30	Co-tan. 5	Tan. 2°	Co-tan. 5	TAN.	Co-tan. 5	0° 1 AN.	l

	3	2°	1 3	30	3	4º	1 3	5°	ì
,	TAN.	Co-tan.		Co-tan.	TAN.	Co-tan.	TAN.	Co-tan.	•
•	.62487	1.60033	.64941	1.53986	.67451	1.48256	.70021	1.42815	60
1	.62527	1.59930	.64982	1.53888	.67493	1.48163	.70064	1.42726	59
2	.62568	1.59826	.65023	1.53791	.67536	1.48070 1.47977	.70107	1.42638 1.42550	58 57
3	.62608 .62649	1.59723 1.59620	.65065 .65100	1.53693 1.53595	.67620	1.47885	.70194	1.42462	56
4	.62680	1.50517	.65148	1.53497	.67663	1.47792	.70238	1.42374	55
5 6	.62730	1.59414	.65189	1.53400	.67705	1.47699	.70281	1.42286	54
7 8	.62770	1.59311	.65231	1.53302	.67748	1.47607	.70325	1.42198	53
	.62811	1.59208	.65272	1.53205	.67790	1-47514	.70368	1.42110	52
9	.62852 .62892	1.59105	.65314	1.53107	.67832 .67875	1.47422	.70412 .70455	1.42022 1.41934	51 50
11	.62933	1.58000	.65397	1.52913	.67917	1.47238	.70499	1.41847	49
12	.62973	1.58797	.65438	1.52816	.67960	1.47146	.70542	1.41759	48
13	.63014	1.58695	.65480	1.52719	.68002	1.47053	.70586	1.41672	47
14	.63055	1.58593	.65521	1.52622	.68045 .68088	1.46962 1.46870	.70629	1.41584	46
15 16	.63095 .63136	1.58490 1.58388	.65563 .65604	1.52525	.68130	1.46778	.70717	1.41497 1.41409	45 44
17	.63177	1.58286	.65646	1.52332	.68173	1.46686	.70760	1.41322	43
18	.63217	1.58184	.65688	1.52235	.68215	1.46595	.70804	1.41235	42
. 10	.63258	1.58083	.65729	1.52139	.68258	1.46503	.70848	1.41148	41
20	.63299	1.57981	.65771	1.52043	.68301	1.46411	.70891	1.41061	40
21 22	.63340	1.57879	.65813 .65854	1.51946	.68343 .68386	1.46320	.70935	1.40974	39 38
23	.63380 .63421	1.57778 1.57676	.65896	1.51754	.68429	1.46137	.71023	1.40800	37
24	.63462	1.57575	.65938	1.51658	.68471	1.46046	.71066	1.40714	36
25	.63503	1.57474	.65980	1.51562	.68514	1.45955	.71110	1.40627	35
26	.63544	1.57372	.66021	• 1.51466	.68557	1.45864	.71154	1.40540	34
27 28	.63584	1.57271	.66063	1.51370	.68600	1.45773	.71198	1.40454	33
	.63625	1.57170	.66105	1.51275	.68642 .68685	1.45682	.71242	1.40367	32 31
29 30	.63666	1.57069	.66147 .66189	1.51179	.68728	1.45592	.71329	1.40195	30
-	.63748	1.56868	.66230	1.50088	.68771	1.45410	.71373	1.40100	29
. 31 . 32	.63780	1.56767	.66272	1.50803	.68814	1.45320	.71417	1.40022	28
33	.63830	1.56667	.66314	1.50797	.68857	1.45229	.71461	1.39936	27
34	.63871	1.56566	.66356	1.50702	.68900	1.45139	.71505	1.39850	26
35	.63912	1.56466	.66398	1.50607	.68942	1.45049	·71549	1.39764	25
36	.63953	1.56366	.66440	1.50512	.68985 .69028	1.44958	.71593 .71637	1.39579	24
37 38	.63994 .64035	1.56265	.66524	1.50317	.60071	1.44778	.71681	1.39595	23
39	.64076	1.56065	.66566	1.50228	.60114	1.44688	.71725	1.30421	21
40	.64117	1.55966	.66608	1.50133	.69157	1.44598	.71769	1.39336	20
41	.64158	1.55866	.666.50	1.50038	.60200	1.44508	.71813	1.39250	19
42	.64199	1.55766	.66692	1.49944	.69243	1.44418	.71857	1.39165	18
43	.64240	1.55666	.66734	1.49849	.69286	1.44329	.71001	1.39079	17
44	.64281	1.55567	.66776	1.49755	.69329	1.44239	.71946	1.38994	16
45 46	.64322 .64363	1.55467	.66860	1.49661	.69372 .69416	1.44149 1.44060	.72034	1.38824	14
47	.64404	1.55269	.66902	1.49472	.69459	1.43970	.72078	1.38738	13
48	.64446	1.55170	.66044	1.49378	.69502	1.43881	.72122	1.38653	12
49	.64487	1.55071	.66986	1.49284	.69545	1.43792	.72166	1.38568	11
50	.64528	1.54972	67028	1.49190	.69588	1.43703	.72211	1.38484	10
51	.64569	1.54873	.67071	1.49097	.69631	1.43614	.72255	1.38399	8
52 53	.64610	1.54774	.67113	1.49003	.69675 .69718	1.43525	.72299 .72344	1.38229	
53 54	.64693	1.54576	.67197	1.48816	.69761	1.43347	.72388	1.38145	7 6
55	.64734	1.54478	.67239	1.48722	.69804	1.43258	.72432	1.38060	5
55 56	.64775	1.54379	.67282	1.48629	.69847	1.43169	.72477	1.37976	4
57 58	64817	1.54281	.67324	1.48536	.69891	1.43080	.72521	1.37891	3 2
58	.64858	1.54183	.67366	1.48442	.69934	1.42003	.72565	1.37807	2
59 60	.64941	1.53986	.67451	1.48256	.70021	1.42815	.72054	1.37638	6
			 		 				
•	CO-TAN.	TAN.	CO-TAN.	TAN.	Co-tan.	TAN.	Co-tan.	TAN.	Ι΄
	5	7°	li 5	6°	u 5	5°	u 5	4°	1

	. 3	6° 1	11 3	7°	D 3	80		90	1
•	TAN.	Co-tan.		Co-tan.		Co-tan.	Tàn.	Co-tan.	<u>'</u>
•	.72654	1.37638	-75355	1.32704	.78129	1.27994	.80978	1.23490	60
1	.72699	1.37554	.75401	1.32624	.78175	1.27017	81027	1.23416	59
2	.72743	1.37470	·75447	1.32544	.78222	1.27841	.81075 .81123	1.23343	58
3	.72788	1.37386	·75492	1.32464	.78316	1.27688	.81171	1.23196	57 56
4	.72832 .72877	1.37302	.75538 .75584	1.32304	.78363	1.27611	.81220	1.23123	55
5 6	.72077	1.37134	.75629	1.32224	.78410	1.27535	.81268	1.23050	54
	.72966	1.37050	.75675	1.32144	.78457	1.27458	.81316	1.22977	53
8	.73010	1.36967	.75721	1.32064	.78504	1.27382	.81364	1.22004	52
9	-73055	1.36883	.75767	1.31984	.78551	1.27306	.81413	1.22831	51
10	.73100	1.36800	.75812	1.31904	.78598	1.27230	.81461	1.22758	50
11	-73144	1.36716	.75858	1.31825	.78645	1.27153	.81510 .81558	1.22685	49 48
12	.73189	1.36633	-75904	1.31745	.78692	1.27077	.81606	1.22530	
13	.73234	1.36549 1.36466	.75950 .75996	1.31666	.78739 .78786	1.27001	.81655	1.22467	47 46
14	.73278 .73323	1.36383	.76042	1.31507	.78834	1.26840	.81703	1.22304	45
16	.73368	1.36300	.76088	1.31427	.78881	1.26774	.81752	1.22321	44
	-73413	1.36217	.76134	1.31348	.78928	1.26698	.81800	1.22240	43
17 18	-73457	1.36133	.76180	1.31269	.78975	1.26622	.81849	1.22176	42
19	.73502	1.36051	.76226	1.31190	.79022	1.26546	.81898	1.22104	41
20	·73547	1.35968	.76272	1.31110	.79070	1.26471	.81946	1.22031	40
21	-73592	1.35885	.76318	1.31031	.79117	1.26395 1.26310	.81995 .82044	1.21959	39 38
22	.73637	1.35802	.76364	1.30952	.79164	1.26344	.82092	1.21814	37
23	.73681 .73726	1.35719	.76410 .76456	1.30795	.79259	1.26160	.82141	1.21742	36
24 25		1.35554	.76502	1.30716	.70306	1.26093	.82100	1.21670	35
26	.73771 .73816	1.35472	.76548	1.30637	-79354	1.26018	.82238	1.21598	34
	.73861	1.35389	.76594	1.30558	.79401	1.25043	.82287	1.21526	33
27 28	.73906	1.35307	.76640	1.30480	-79449	1.25867	.82336	1.21454	32
29	·73951	1.35224	.76686	1.30401	.79496	1.25792	.82385	1.21382	31
30	.73996	1.35142	.76733	1.30323	-79544	1.25717	.82434	-	30
31	.74041	1.35060	.76779	1.30244	.79591 .79630	1.25642	.82483 .82531	1.21238 1.21166	20 28
32	.74086	1.34978	.76825 .76871	1.30166	.79686	1.25402	.82580	1.21004	
33	.74131 .74176	1.34896 1.34814	.76918	1.30000	-79734	1.25417	.82620	1.21023	27 26
34 35	.74121	1.34732	.76964	1.20031	.79781	1.25343	.82678	1.20951	25
36	.74267	1.34650	.77010	1.29853	.79829	1.25268	.82727	1.20879	24
37	.74312	1.34568	-77057	1.29775	.79877	1.25193	.82776	1.20808	23
38	·74357	1.34487	.77103	1.29696	-79924	1.25118	.82825 .82874	1.20736	22 21
39	.74402	1.34405	.77149 .77196	1.29518	.79972 .80020	1.25044	.82023	1.20593	20.
40	-74447	1.34323			.80067	1.24895	.82972	1.20522	19
41	-74492	1.34242	.77242	1.29463	.80115	1.24820	.83022	1.20451	18
42 43	.74538 .74583	1.34160	.77335	1.29307	.80163	1.24746	.83071	1.20379	17
44	.74628	1.33998	.77382	1.20220	.80211	1.24672	.83120	1.20308	16
45	.74674	1.33916	.77428	1.29152	.80258	1.24597	.83169	1.20237	15
46	.74719	1.33835	-77475	1.20074	.80306	1.24523	.83218	1.20166	14
47	-74764	1.33754	.77521	1.28997	.80354 .80402	1.24449	.83268 .83317	1.20095	13 12
48	.74810 .74855	1.33673	.77568	1.28919	.80450	1.24301	.83366	1.19953	11
49 50	.74000	1.33511	.77661	1.28764	.80498	1.24227	83415	1.19882	10
51	.74946	1.33430	.77708	1.28687	.80546	1.24153	.83465	1.10811	9
52	.7499I	1.33349	.77754	1.28610	.80594	1.24079	.83514	1.19740	8
53	.75037	1.33268	.77801	1.28533	.80642	1.24005	.83564	1.19669	7
54	.75082	1.33187	.77848	1.28456	.80690	1.23931	.83613	1.19599	0
55	.75128	1.33107	.77895	1.28379	.80738 .80786	1.23858	.83662 .83712	1.19528	5
56	·75173	1.33026	.77941 .77988	1.28302	.80834	1.23784	83761	1.19457	7
57 58	.75219 .75264	1.32946	.78035	1.28148	.80882	1.23637	.83811	1.19316	3 2
59	.75310	1.32785	.78082	1.28071	.80030	1.23563	.83860	1.19246	I
60	.75355	1.32704	.78129	1.27994	.80978	1.23490	.83910	1.19175	٥
-	l		G	Tim	Commi	TAN.	CO-TAN.	TAN.	-
•	CO-TAN	TAN.	CO-TAN.	Tan. 2°	Co-tan.	1º AN.	CO-TAN.	0° 1 vy.	
	l D	3°	u 0	4	ll 9	• .		v	•

	4	0° 1	11 4	1° ı	ı 4	2° 1	1 4	3°	ı
•	TAN.	Co-tan.	TAN.	Co-tan.	TAN.	Co-tan.	TAN.	Co-tan.	•
0	.83910	1.19175	.86929	1.15037	.90040	1.11061	.93252	1.07237	60
1 2	.83960 .84009	1.19105	.86980	1.14969	.90093	1.10096	.93306 .93360	1.07174	59 58
3	.84059	1.18064	.87031 .87082	1.14834	.00100	1.10931	.93415	1.07049	57
4	.84108	1.18804	.87133	1.14767	.90251	1.10802	.93469	1.06087	56
5	.84158	1.18824	.87184	1.14699	.90304	1.10737	-93524	1.06925	55
5 6	.84208	1.18754	87236	1.14632	.90357	1.10672	.93578	1.06862	54
7· 8	.84258	1.18684	87287	1.14565	.90410	1.10607	-93633	1.06800	53
8	.84307	1.18614	.87338	1.14498	.90463	1.10543	.93688	1.06738	52
9	.84357	1.18544	.87389 .87441	1.14430	.90516 .90569	1.10478	-93742	1.06676	51 50
10	.84407		'''				-93797		-
11	.84457	1.18404	.87492	1.14296 1.14220	.90621 .90674	1.10349	.93852 .93906	1.06551	48
12	.84507 .84556	1.18264	.87543 .87595	1.14229	.00727	1.10205	.93961	1.00409	47
14	.84606	1.18194	.87646	1.14095	.00781	1.10156	.94016	1.06365	46
15	.84656	1.18125	87608	1.14028	.90834	1.10001	.04071 -	1.06303	45
16	.84706	1.18055	.87749	1.13961	.90887	1.10027	.94125	1.06241	44
17 18	.84756	1.17986	.87801	1.13894	.90940	1.00063	.94180	1.06179	43
	.84806	1.17016	.87852	1.13828	.90993	1.09899	-94235	1.06117	42
19	.84856	1.17846	.87904	1.13761	.91046	1.09834	.94290 -94345	1.06056 1.05994	41 40
20	.84906	1.17777	.87955	1.13694	.91099				
21	.84956	1.17708	.88007 .88059	1.13627	.91153 .91206	1.09706	.94400	1.05932	39 38
22	.85006 .85057	1.17638	.88110	1.13561	.91250	1.09578	.94455 .94510	1.05800	37
24	.85107	1.17500	.88162	1.13428	.91313	1.00514	.04565		36
25	.85157	1.17430	.88214	1.13361	.91366	1.00450	.04620	1.05747	35
2Ó	.85207	1.17361	.88265	1.13295	.91419	1.09386	-94676	1.05624	34
27	.85257	1.17292	.88317	1.13228	.91473	1.09322	-9473I	1.05562	33
28	.85307	1.17223	.88369	1.13162	.91526	1.00258	.94786	1.05501	32
29	.85358	1.17154	.88421	1.13096	.91580	1.00105	.94841 .94896	1.05430	31
30	.85408	1.17085	.88473	1.13029	.91633	1.09131	I I	1.05378	3Q
31	.85458 .85509	1.17016 1.16947	.88524 .88576	1.12963	.91687	1.00007	.94952 .95007	1.05317	29 28
32 33	.85559	1.16878	.88628	1.12831	.91740 .91794	1.08040	.95062	1.05194	27
34	.85600	1.16800	.88680	1.12765	.91847	1.08876	.95118	1.05133	26
35	.85660	1.16741	.88732	1.12699	10010.	1.08813	.95173	1.05072	25
36	85710	1.16672	88784	1.12633	91955	1.08749	.95229	1.05010	24
37	.85761	1.16603	.88836 .88888	1.12567	.92008	1.08686	.95284	1.04949	23
38	.85811 .85862	1.16535	.88040	1.12501	.92062	1.08622	.95340	1.04888	22 2I
39 40	.85012	1.16398	.88002	1.12435	.02116	1.08406	.95395 .95451	1.04766	20
	.85963	1.16329	.89045		.02224	1.08432	.05506	1.04705	19
41 42	.86014	1.16261	.80007	1.12303	.02277	1.08360	.95562	1.04644	18
43	.86064	1.16102	.89149	1.12172	.92331	1.08306	.95618	1.04583	17
44	.86115	1.16124	.89201	1.12106	.92385	1.08243	.95673	1.04522	16
45	.86166	1.16056	89253	1.12041	.92439	1.08179	-95729	1.04461	15
46	.86216	1.15987	.89306	1.11975	.92493	1.08116	.95785	1.04401	14
47 48	.86267	1.15919	.89358	1.11000	.92547	1.08053	-95841	1.04340	13
40 49	.86318 .86368	1.15051	.89410 .89463	1.11844	.92601 .92655	1.07990	.95897 -95952	1.04279	11
50	.86410	1.15715	.80515	1.11713	.02700	1.07864	.96008	1.04158	10
51	.86470	1.15647	.89567	1.11648	.92763	1.07801	06064	1.04007	_
52	.86521	1.15570	.80620	1.11582	.92817	1.07738	.96120	1.04036	8
53	.86572	1.15511	.89672	1.11517	.92872	1.07676	.96176	1.03976	7 6
54	.86623	1.15443	89725	1.11452	.92926	1.07613	.96232	1.03915	
55	.86674	1.15375	.89777	1.11387	.92980	1.07550	.96288	1.03855	5
56	.86725	1.15308	.89830	1.11321	.93034 .93088	1.07487	.96344	1.03794	4
57 58	.86776 .86827	1.15240	80883	1.11256		1.07425	.96400 .96457	1.03734	3
59	.86878	1.15172	.89935 .89988	1.11191	.93143	1.07302	.96513	1.03613	ī
60	.86929	1.15037	.90040	1.11061	.93252	1.07237	.96569	1.03553	ō
_			<u> </u>						-
•	CO-TAN.	TAN.	CO-TAN.	TAN.	CO-TAN.	TAN.	Co-tan.	TAN.	1
	4	9°	. 4	8°	1 4	7°	u 4	6°	ı

	44°		1	11	44°			19	1 4	i	
•	TAN.	Co-tan.	•	•	TAN.	Co-tan.	•	Ľ	TAN.	Co-tan.	•
•	.96569	1.03553	60	21	-97756	1.02295	39 38	41	.98901	1.01112	19
I	-96625	1.03493	59	22	.97813	1.02236		42	.98958	1.01053	18
2	-96681	1.03433	58	23	-97870	1.02176	37	43	-99016	1.00994	17
3	.96738	1.03372	57	24	-97927	1.02117	36	44	-99073	1.00935	16
4	-96794	1.03312	56	25	.97984	1.02057	35	45	-99131	1.00876	15
5	.96850	1.03252	55	26	.98041	1.01998	34	46	.99189	1.00818	14
6	.96907	1.03192	54	27	.98098	1.01939	33	47	-99247	1.00750	13
7	.96963	1.03132	53	28	.98155	1.01879	32	48	-99304	1.00701	12
8	.97020	1.03072	52	29	.98213	1.01820	31	49	.99362	1.00642	11
9	.97076	1.03012	5I	30	.98270	1.01761	30	50	.99420	1.00583	10
10	.97133	1.02952	50	31	.98327	1.01702	20	51	.99478	1.00525	9
11	.97189	1.02892	49	32	.98384	1.01642	28	52	-99536	1.00467	8
12	.97246	1.02832	48	33	.98441	1.01583	27	53	-99594	1.00408	7
13	.97302	1.02772	47	34	.98499	1.01524	26	54	.99652	1.00350	6
14	-97359	1.02713	46	35	.98556	1.01465	25	55	.99710	1.00291	5
15	.97416	1.02653	45	36	.98613	1.01406	24	56	.99768	1.00233	4
16	-97472	1.02593	44	37	.98671	1.01347	23	57	.99826	1.00175	3
17	-97529	1.02533	43	38	.98728	1.01288	22	58	.99884	1.00116	2
18	.97586	1.02474	42	39	.98786	1.01229	21	59	.99942	1.00058	I
19	.97643	1.02414	41	40	.98843	1.01170	20	60	1	1	0
20	.97700	1.02355	40								
•	CO-TAN.	TAN.	•	•	Co-tan.	TAN.	,	•	Co-tan.	TAN.	•
	4	5°		l	4	5°			4.	5°	

NATURAL SINES AND COSINES

	0°			1 " 1 11			1	1 00 1			H	1 0° 1		
<u>'</u>	SINE	Cosine	,	Ľ	SINE	COSINE	'	Ľ	SINE	COSINE	•			
0	.00000	I	60	21	.00611	.99998	39	41	.01193	-99993	19			
1	.00020	I	59	22	.00640	.99998	39 38	42	.01222	-99993	18			
2	.00058	1 .	58	23	.00660	.00008	37	43	.01251	-99992	17			
3	.00087	1	57	24	.00698	.99998	36	44	.01280	-99992	16			
4	.00116	1	56	25	.00727	-99997	35	45	.01300	.00001	15			
5	.00145	1	55	26	.00756	-99997	34	46	.01338	.00001	14			
ő	.00175	1	54	27	.00785	-00007	33	47	.01367	.99991	13			
7	.00204	1	53	28	.00814	-00007	32	48	.01396	-99990	12			
8	.00233	r	52	20	.00844	.000006	31	49	.01425	.00000	11			
9	.00262	1	51	30	.00873	.99996	30	50	.01454	.99989	10			
10	.00291	1	50	31	.00902	.99996	20	51	.01483	.00080	9			
11	.00320	-99999	49	32	.00031	.99996	28	52	.01513	99989				
12	.00340	-99999	48	33	.000060	-99995	27	53	.01542	.99988	7			
13	.00378	-99999	47	34	.00989	-99995	26	54	.01571	.99988	6			
14	.00407	-99999	46		81010.	-99995	25	55	01000	99987	5			
15	.00436	-99999	45	· 36	.01047	-99995	24	56	01620	99987	4			
16	.00465	-99999	44 .	37	.01076	-99994	23	57	01658	.99936	3			
17	.00495	-99999	43	38	.01105	-99994	22	58	.01687	.99986	2			
18	.00524	-99999	42	39	.01134	-99994	21	59	.01716	.99985	1			
19	.00553	.99998	41	40	.01164	-99993	20	600	.O1745	.99985	٥			
30	.00582	.99998	40					۱			_			
7	Cosine 8	SINE	•	•	Cosine 8	SINE	•	,	COSINE 8	SINE	,			

	. ,	۱۰ ۱	n •	2° 1	, ,	3°		1 0	
•	SINE	COSINE	SINE	COSINE	SINE	COSINE	SINE	Cosine	,
_						.99863	-06076		_
0	.01745 .01774	.99985 .99984	.03490 .03510	.99939 .99938	.05234 .05263	.99861	-07005	-99756 -99754	60
å	.01803	.99984	.03548	99937	.05292	.99860	-07034	-00752	59 58
3	.01832	-99983	-03577	.99936	.05321	-99858 	-07063	-99750	57
4	.01862	-99983	.03606	-99935	-05350	.99857	.07092	-99748	56
5 6	.01891	.99982	.03635	-99934	-05379	.99855 -99854	.07121	-99746	55
	.01920 .01940	.99982 .99981	.03664	.99933 .99932	.05408 .05437	-99054 -99852	.07150 .07170	-99744	54
7 8	.01948	.99980	.03723	.9993I	.05466	.0085I	-07208	-99742 -99740	53 52
ŏ	.02007	.99980	.03752	.99930	-05495	.99849	.07237	-99738	51
10	.02036	-99979	.03781	-99929	.05524	.99847	-07266	99736	50
11	.02065	-99979	.03810	-99927	.o55 <u>53</u>	-99846	.07295	-99734	49
12	02004	.99978	.03839	-99926	-05582	.99844	.07324	-9973I	48
13	.02123	-99977	.03868	-99925	.05611	.99842 -99841	-07353	-99729	47
14	.02152 .02181	-99977 -99976	.03897	-99924 -99023	-05669	.99839	.07382 .07411	.99727 -99725	46 45
16	.02211	.99976	.03920	.00022	05608	.99838	.07440	.99723	44
17	.02240	99975	.03984	.99921	.05727	.00836	-07469	.99721	43
18	.02269	-99974	.04013	.99919	.05756	.99834	.07498	.99719	42
19	.02298	-99974	.04042	.99918	.05785	-99833	.07527	.99716	41
20	.02327	-99973	.0407I	-99917	.05814	.99831	-07556	-99714	40
21	.02356	-99972	.04100	.99916	.05844	.99829	.07585	-99712	39 38
22	.02385	-99972	.04129	.00013	.05873	.99827 .99826	.07614	-99710 -99708	
24	.02414	.99971 -99970	.04188	.00012	.05931	.00824	.07672	-99705	37 36
25	.02472	.99969	.04217	100011	.05060	-99822	.07701	-99703	35
26	02501	.99969	.04246	.99910	.05989	.99821	.07730	9970I	34
27	.02530	.99968	.04275	.99909	.06018	.99819	-07759	-99699	33
28	.02560	.99967	.04304	.99907	.06047	.99817	.07788	.99696	32
29	.02580	.99966	.04333	.99906	.06076	.99815	.07817	-99694	31
30	.02618	.99966	.04362	-99905	.06105	.99813	.07846	.99692 .99689	30
31 32	.02647 .02676	.99965	.04391	.99904 .00002	.06134 .06163	.99810	.07875	.99069 .99687	20 28
33	.02705	.00063	.04440	.00001	.06103	.00808	-07933	.99685	27
34	.02734	.00063	.04478	.00000	.06221	.00806	.07062	-00683	26
35	.02763	.99962	04507	.99898	-06250	.99804	.07991	.9968o	25
36	.02792	.99961	.04536	.99897	.06270	.99803	.08020	.99678	24
37	.02821	.99960	.04565	.99896	.06308	.99801	.08049 .08078	-99676	23
38 39	.02850 .02879	-99959	.04594	.99894 .99893	.06337 .06366	99799 99797	.08107	.99673 .99671	22 21
40	.02908	.99959 .99958	.04653	.99892	.06395	99795	.08136	.99668	20
41	.02938	-99957	.04682	.00800	.06424	90703	.08165	.00666	10
42	.02067	.00056	.04711	.99889	.06453	-99793	.08104	.99664	18
43	.02996	-00055	.04740	.oo888	.06482	-99790	.08223	99661	17
44	.03025	99954	.04769	.99886	.06511	99788	.08252	.99659	16
45	.03054	-99953	.04798	.99885	.0 6540	.99786	.08281	.99657	15
46	.03083	.99952	-04827	-99883	-06569	-99784	.08310	-99654	14
47 48	.03112	-99952	.04856	.99882 .99881	.06598 .06627	.99782 .99780	.08330 .08368	.99652 .00640	13
49	.03141 .03170	.99951	.04005	.99879	.06656	.99778	.08305	-99647	11
50	.03170	-99949	.04943	.99878	.06685	.99776	.08426	-99644	10
51	.03228	.00048	.04972	.00876	.06714	-99774	.08455	.00642	0
52	.03257	-00047	.05001	.00875	.06743	-00772	-08484	.99639	8
53	.03286	.99946	.05030	.99873	.06773	.99770	.08513	.99637	7
54	.03316	-99945	.05050	.99872	.06802	99768	.08542	.99635	6
55	.03345	-99944	.05088	.99870	.06831	.99766	.08571	.99632	5
56	.03374	.99943 .00042	.05117	.99869 .99867	.06880	.99764 .99762	.08620	.99630	3
57 58	.03433	.00041	.05175	.00866	.06018	.99760	.08658	.00625	3
59	03461	-99940	.05205	.99864	.06947	.99758	.08687	.99622	ī
59 60	03490	-99939	.05234	.99863	.06976	.99756	.08716	.99619	0
-	COSINE	Span	COSINE	SINE	COSINE	SINE	COSINE	SINE	-
	88	SINE	87	O SINE	8	go SINE	8	20 SINE	

	1 1	50	1 (3° 1	, ,	7º 1	1 8	30 I	1
,	SINE	Cosine		Cosine	SINE	Cosine	SINE	Cosine	•
0	.o8716	.99 619	.10453	-99452	.12187	-99255	.13917	.99027	60
I	£8745 ₽	-99617	.10482	-99449	.12216	-9925I	.13946	.99023	59 58
2	.08774 .08803	.99614 .99612	.10511	.99446 -99443	.12245 .12274	.99248 .99244	.13975 .14004	.99019 .99015	57
3 4	.08831	.00600	.10560	-99440	.12302	.00240	.14033	.00011	56
	.08860	-99607	.10597	-99437	.12331	-99237	.14061	.99006	55
5 6	.0888g	.99604	.10626	-99434	.12360	-99233	.14090	-99002	54
7 8	.08918 .08947	.99602 -99599	.10655	.99431 -99428	.12380	-99230 -99226	.14110 .14148	.98998 .98994	53 52
ô	.08076	.00506	.10064	-99424	.12447	-00222	.14177	.08000	51
10	.09005	-99594	.10742	.99421	.12476	.99219	.14205	.98986	50
11	.09034	-9959I	.10771	.99418	.12504	-99215	.14234 .14263	.98982 .98978	49 48
12	.00003	.99588 .99586	.10820	.99415 .99412	.12533 .12562	-99211 -99208	.14203	-98973	47
14	.00131	-00583	.10858	-99409	.12501	-99204	.14320	-98969	46
15	.09150	.99580	.10887	-99406	.12620	-99200	.14340	.98965	45
16	.09179	-99578	.10916	-99402	.12649 .12678	-99197	.14378	.98961 -98957	44 43
17 18	.09208 .09237	-99575 -99572	.10945 .10973	.99399 .99396	.12076	.99193 .99189	.14407 .14436	.08053	43
10	200200	-99570	.11002	-99393	.12735	.99186	.14464	.98953 .98948	41
20	.09295	-99567	.11031	-99390	.12764	-99182	·14493	-98944	40
21	.09324	.99564	.11060	-99386	.12793	.99178	.14522	.98940 .98936	39 38
22 23	.09353 .09382	.99562 -99559	.11080	.99383 .99380	.12851	-99175 -99171	.14551	-08031	37
24	.09411	-99556	.11147	-99377	.12880	.00167	.14608	-98927	36
25	.09440	-99553	.11176	-99374	.12908	-99163	.14637	98923	35
26	-09469	-9955I	.11205	-99370	.12937	-99160	.14666	.98919	34
27 28	.00498	-99548 -99545	.11234	-99367 -99364	.12966 .12995	-99156 -99152	.14695 .14723	.98914 .98910	33 32
20	.00556	-99542	.11201	.00360	.13024	-90148	.14752	.08006	31
30	.og585	-99540	.11320	-99357	.13053	-99144	.14781	.98902	30
31	.09614	-99537	.11349	-99354	.13081	.99141	.14810	.98897	29
32	.09642	-99534	.11378	.99351	.13110	-99137	.14838	-98893	28
33	.00671 .00700	.99531 .99528	.11407 .11436	-99347	.13139	.00120	.14867 .14806	-98889 -08884	27 26
34 35	.00720	-99526	.11455	-99344 -99341	.13107	-00125	.14025	.08880	25
36	.og758	-99523	.11494	-99337	.13226	.99122	.14954	.98876	24
37	-09787	-99520	.11523	-99334	.13254	81100.	.14982	.98871	23
38	.098r6	-99517	.11552	-99331	.13283	.00114	.15011	.98867 .98863	22 21
39 40	.09845 .09874	-99514 -99511	.11500	.99327 -99324	.13312 .13341	-99106	.15040	-98858	20
41	.00003	.00508	.11638	.00320	.13370	.00102	.15007	-08854	10
42	.09932	-90506	.11667	.99317	.13399	.99298	.15126	.08840	18
43	.09961	-99503	.11696	-99314	.13427	-99094	.15155	-98845	17
44	-09990	-99500	.11725	.99310	.13456	100001	.15184	.98841 .98836	16
45 46	.10010	-99497 -99494	.11754	-99307 -99303	.13485	.99087 .99083	.15212 .15241	-98830 -98832	15
47	.10077	-99494 -99491	.11812	.00300	.13543	99079	.15270	-98827	13
47 48	.10106	.99488	.11840	.99297	.13572	-99075	.15299	-98823	12
49	.10135	-99485	.11869	-99293	.1 3600	-9907I	.15327	-98818	11
50	.10164	.99482	.11898	-99290	.13629	.99067	.15356	-98814	10
51	.10192	-99479 -90476	.11927 .11956	.99286 .99283	.13658	.99063	.15385	.98809 .98805	8
52 53	.10221	-99476	.11985	-99263	.13007	-99059 -99055	.15414 .15442	.08800	7
54	.10279	-99470	.12014	.99276	-13744	-9905I	.15471	-98796	7 6
55	.10308	-99467	.12043	-99272	.13773	-99047	.15500	-98791	5
56	.10337	-99464	.12071	.99269 .99265	.13802	-99043	.15529	-98787 -98782	4
57 58	.10366 .10395	-99461 -99458	.12100	.99205 .99262	.13831 .13860	.99039 .99035	.15557	-9878 -98778	3
50	.10424	-99455	.12158	.99258	.13889	.99031	.15615	-98773	ī
59 60	.10453	-99452	.12187	-99255	.13917	.99027	.15643	-98769	<u> </u>
,	Cosine 8	SINE	Cosine 8	SINE	Cosine 8	SINE	COSINE 8	SINE	′

		3° 1	1 14)° I	. 1:	10	1 1	2° (ì
•	SINE	COSINE	SINE	COSINTE	SINE	COSINE		COSINE	,
		.08760		.08481	.19081	.98163		-07815	60
0	.15643 .15672	.08764	.17365	.08476	.10001	,98157	.20791	-97800	
2	.15701	.98760	.17422	.98471	.19138	.98152	.20848	.97803	50 ` 58
3	.15730	.98755 .98751	.17451	.98466	.19167	.98146 .98140	.20877	-97797	57 56
4	.15758	.08746	.17479	.98461 .98455	.10195	.08135	.20005	-97791 -97784	55
5	.15816	.98741	.17537	.98450	.19252	.98129	.20062	.97778	54
7 8	.15845	.98737	.17565	-98445	.19281	.98124	.20000	-97772	53
	.15873 .15902	.98732 .98728	.17594 .17623	.98440 .98435	.19309	.98118	.21019	-97766 -97760	52 51
9 10	.15931	.98723	.17651	-98430	.19356	.98107	.21076	-97754	50
11	.15050	.08718	.17680	.08425	.10305	10180.	.21104	-07748	49
12	.15988	.98714	.17708	-98420	.19423	.98096	.21132	97742	48
13	.16017	.98709 .98704	.17737	.98414 .98409	.19452	.98090 .98084	.21161	-97735	47 46
14 15	.16046 .16074	.98700	.17766	-98404	.19481	.08070	.21100	-97729 -97723	45
16	.16103	.98695	.17823	.98399	.19538	.98073	.21246	-97717	44
17	.16132	.98690	.17852	.98394	.19566	.98067	.21275	.97711	43
18	.16160	.98689 .98681	.17880	.98389	.19595 .19623	.98061 .98056	.21303	-97705	42 41
20	.16218	.98676	.17909	.98383 .98378	.19652	.08050	.21331	.97698 .97692	40
21	.16246	.08671	.17066	08373	.10680	.08044	.21388	.07686	39
22	.16275	.98667	.17995	.98368	.19709	98039	.21417	.97680	38
23	.16304	.98662	.18023	.98362	.19737	.98033	.21445	-97673	37
24 25	.16333 .16361	.98657 .98652	.18052	.98357 .98352	.19766	.98027 .98021	.21474	.97667 .97661	36 35
26	.16390	.08648	.18100	.98347	.19823	.08016	.21530	.97655	34
27	.16419	.98643	.18138	.98341	.19851	.98010	.21559	.97648	33
A8	·×6447	.98638	.18166	.98336	.19880	.98004	.21587	-97642	32
29 30	.16476 .16505	.98633 .98629	.18195	.98331 .98325	.19908	-97988 -97992	.21644	.97636 .97630	31 30
31	.16533	.08624	.18252	.08320	.10065	.97987	.21672	.07623	20
32	.16562	.98619	.18281	.08315	.19994	.97981	.21701	.97617	28
33	.16591	.98614	.18309	.98310	.20022	-97975	.21720	.97611	27
34	.16620 .16648	.98609 .08604	.18338	.98304 .98299	.20031	.97969	.21758	.97604 .97598	26 25
35 36	.16677	.98600	.18307	.98294	.20108	.97963 .97958	.21814	.97592	24
37	.16706	-98595	.18424	.98288	.20136	-97952	.21843	.97585	23
38	16734	.98590	.18452	-98283	.20165	.97946	.21871	-97579	22
39 40	.16763 .16792	.98585 .08580	.18481	.98277 .98272	.20193	.97940 .97934	.21899	.97573 .97566	21 20
41	.16820	.98575	.18538	.08267	.20250	-97934	.21956	.97560	10
42	.16849	.98570	.18567	.08261	.20270	.97922	.21985	.97553	18
43	.16878	.98565	18595	.98256	.20307	.97916	.22013	-97547	17
44,	.16906	.98561 .98556	.18624	.98250	.20336	.97910	.22041	·9754I	16
45 46	.16935 .16964	.98551	.18681	.98245 .98240	.20364	.97905	.22070	·97534 ·97528	15 14
47 48	.16992	.98546	.18710	.98234	.20421	.97893	.22126	.97521	13
	.17021	.98541	.18738	.98229	.20450	.97887	.22155	-97515	12
49 50	.17050	.98536 .98531	.18767	.98223 .98218	.20478	.97881 .97875	.22183	.97508	11
51	.17107	.08526	.18824	.08212	.20507	.97869	.22212	.97502 .97496	
52	.17136	.98521	.18852	.08207	.20553	.97863	.22268	.97489	8
53	.17164	.98516	.18881	.98201	.20592	97857	.22297	97483	7 6
54	.17193	.98511	.18910	.98196	.20620	.97851	.22325	-97476	
55 56	.17222 .17250	.98506 .98501	.18938	.98190 .98185	.20649 .20677	.97845 .97839	.22353	.97470 .97463	5 4
57	.17279	.98496	.18907	.98179	.20706	-97833	.22410	97457	3
57 58	17308	.98491	.19024	.98174	.20734	.07827	.22438	.97450	2
59 60	.17336 .17365	.98486 .98481	.19052	.98168 .98163	.20763	.07821 .97815	.22467	-97444	1 0
				.90103	.20791	.9/013	.22495	-97437	
	COSINE	SINE	COSINE	SINE	Cosine	SINE	COSINE	SINE	•
	80	J*	1 79	90	1 78	go	7'	<i>,</i> -	1

	1:	3°	l 1	4 º	1 14	5° 1	1 10	60	ı
<u>'</u>	SINE	Cosine	SINE	Cosine	SINE	Cosine	SINE	COSINE	′
٥	.22495	-97437	.24192	.97030	.25882	-96593	27564	.96126	60
1 2	.22523	.97430 .97424	.24220	.97023	.25910	.96585 .96578	27592	.96118 .96110	59 58
3	.22580	-97417	.24277	.97008	.25966	.96570	.27648	-06102	57
4	.22608	-97411	-24305	.97001	-25994	.96562	.27676	96094	55
5	.22637	.97404	124333	.96994	.26022	.96555	27704	-96086	55
6	.22665	.97398	.24362	.96987	.26050	.96547	2773I	.96078	54
7 8	.22693	-97391	-24390	.96980	.26079	.96540	27759	-96070	53
	.22722	.97384	.24418	.96973	.26107	.96532	27787	.9606:	52
9	.22750	.97378 .97371	.24446	.96966 .96959	.26135 .26163	.96524 .96517	27815	.96054 .96046	51
10					1 - 1		1.000	1	50
11	.22807 .22835	.97365 .97358	.24503 .24531	.96952 .96945	.26191 .26219	.96509 .96502	27871	.96037 .96029	49 48
12 13	.22863	.9735I	.24559	.96937	.26247	-96494	27027	.96021	47
14	.22802	97345	.24587	.96930	.26275	.06486	27955	.96013	46
15	.22020	.97338	.24615	.96923	.26303	.96479	27983	.96005	45
ıŏ	.22948	·97331	.24644	.96916	.26331	.96471	28011	-95997	44
17	.22977	-97325	.24672	.96909	.26359	.96463	.28039	.95989	43
18	.23005	.97318	.24700	.96902	.26387	.96456	28007	.95981	42
19	.23033	.97311	.24728	.96894 .96887	.26415	.96448 .96440	28095	-95972	41
20	.23062	-97304	.24756		.26443			.95964	40
31	.23000	.97298	.24784	.96880	.26471	.96433	.28150	-95956	39
22	.23118 .23146	.97291 .97284	.24813	.96873 .96866	.26500 .26528	.96425 .96417	28178	.95948 .95940	38 37
23 24	.23175	.97278	.24869	.06858	.26556	.96410	28234	.95931	36
25	.23203	.97271	.24807	.06851	.26584	.06402	28262	.95923	35
26	.23231	.97264	.24925	.96844	.26612	.96394	28290	.95915	34
27	.23260	97257	-24954	.96837	.26640	.96386	28318	.95907	33
28	.23288	-97251	.24982	.96829	.26668	.96379	.28346	.95898	32
29	.23316	-97244	.25010	.96822	.26696	.96371	28374	.95890	31
30	.23345	-97237	.25038	.96815	.26724	.96363	.28402	.95882	30
31	·23373	.97230	.25066	.96807 .96800	.26752 .26780	.96355	28420	.95874	29 28
32 33	.23401 .23429	.97223 .97217	.25094	.96793	.20760	.96347 .96340	28485	.95865 -95857	20
34	.23458	.07210	.25151	.96786	.26836	.96332	28513	.95849	26
35	.23486	.07203	.25170	.06778	.26864	.96324	28541	.95841	25
36	.23514	.97196	.25207	.96771	.26892	.96316	28569	.95832	24
37	.23542	.97189	.25235	.96764	.26920	.96308	.28597	.95824	23
38	.23571	.97182	.25263	.96756	.26948	.96301	28625	.95816	22
39	.23599	.97176	.25291	.96749 .96742	.26976	.96293 .96285	.28652 .28680	.95807 .05700	21 20
40	.23627	.97169							
41	.23656 .23684	.97162 -97155	.25348	.96734 .96727	.27032 .27060	.96277 .96269	.28708	.95791 .95782	19 18
42 43	.23712	.97148	.25404	.96719	.27088	.96261	28764	·95774	17
44	.23740	.07141	.25432	.96712	.27116	.96253	28792	.95766	16
45	.23769	-97134	.25460	.96705	.27144	.96246	.28820	-95757	15
46	-23797	-97127	.25488	.96697	.27172	.96238	28847	-95749	14
47 48	.23825	.97120	.25516	.96690	.27200	.96230	.28875	.95740	13
	.23853 .23882	.97113 .97106	·25545 ·25573	.96682 .96675	.27228	.96222 .96214	.28903	.9573 2 .95724	12
49 50	.23002	.97100	.25601	.96667	.27284	.06206	.28950	-95715	10
-	٠	1	.25629	.06660		.96198	28087	-05707	
51 52	.23938 .23966	.97093 .97086	.25657	.96653	.27312	.96190	.20015	.95698	8
53	-23905	.07070	.25685	.96645	.27368	.06182	20042	.95690	
54	.24023	-97072	.25713	.96638	.27396	.96174	.20070	.95681	7 6
55 56	.24051	-97065	·2574I	.96630	.27424	.96166	,20098	.95673	5
56	.24079	-97058	.25769	.96623	.27452	.96158	29126	.95664	4
57 58	.24108 .24136	.97051	.25798	.96615 .96608	.27480	.96150 .96142	29154	.95656 .95647	3
50	.24150	.97044 -97037	.25854	.96600	.27536	.96134	20200	.95639	I
59 60	.24102	407030	.25882	-96593	.27564	.96126	.20237	.95630	0
_							-		-
′,	COSINE	SINE	COSINE	SINE	COSINE	SINE	COSINE	SINE	'
	1 70	30 1	78	50	11 74	4°	1 7	3°	i

	(1	7° 1	1 1	80	n 19	9° 1	1 2	0°	
<u>'</u>	SINE	COSINE	SINE	COSINE	SINE	COSINE	SINE	COSINE	<u></u>
0	.29237	.95630	.30902	-95106	-32557	-94552	.34202	.93969	60
1 2	.29205	.95622 .95613	.30Q2Q .30Q57	.95097 .95088	.32584	-94542 -94533	34220 34257	-93959 -93949	59 58
3	.20321	.95605	.30985	-95079	.32639	·94523	.34284	-93949	57
4	.20348	.95596	.31012	-95070	.32667	-94514	-34311	-93939	56
3	.20376	.95588	.31040	-9506I	.32694	-94504	-34339	-93919	55
5 6	.20404	-95579	.31068	.95052	.32722	-94495	.34366	-93909	54
7 8	.29432	·95571	.31095	-95043	-32749	-94485	-34393	.93899	53
	.29460	.95562	.31123	-95033	-32777	.94476	·34421	.93889	52
9	.29487	-95554	.31151	.95024	.32804	94466	-34448	-93879	51
10	.29515	-95545	.31178	-95015	.32832	-94457	-34475	.93869	50
11	-29543	.95536	.31206	.95006	.32859	-94447	-34503	-93859	49 48
12	.29571	.95528	.31233	-94997	.32887	-94438	-34530	.93849	
13	.29599 .20626	-95519	.31261	.94988	-32914	-94428	·34557 ·34584	.93839	47 46
14	.29654	.95511	.31289	-94979	.32942 .32969	-94418 -94409	.34504	.93829 .93819	
15 16	.20682	.95502 -95493	.31316 .31344	.94970 .94961	-32907	-94399	-34639	.93809	45 44
	.29710	-95485	-31372	-94952	.33024	-94390	.34666	93799	43
17 18	-29737	.95476	.31399	-94943	.33051	-94380	-34694	-93789	42
19	.20765	.95467	-31427	-94933	-33079	.94370	-34721	-93779	41
20	.29793	95459	·31454	.94924	.33106	.94361	-34748	.93769	40
21	.20821	-95450	.31482	.04015	·33134	-9435I	-34775	-93759	39
22	.29849	-95441	.31510	.04006	.33161	-94342	.34803	-93748	38
23	.29876	-95433	-31537	.94897	.33189	-94332	.34830	-93738	37
24	.29904	-95424	.31565	.94888	.33216	-94322	.34857	-93728	36
25	.29932	-95415	-31593	.94878	-33244	-94313	.34884	.93718	35
26	-29960	-95407	-31620	.94869	.33271	-94303	-34912	-93708	34
27 28	.29987	.95398	.31648	.94860	.33298	-94293 -94284	-34939 -34966	.93698 .93688	33
20	.30015	.95389 .95380	.31675	.94851 .94842	.33326 .33353	-94274	-34993	-93677	32 31
30	.30071	-95372	.31730	.94832	.33381	.04264	.35021	-93667	30
31	.30008			.04823	.33408		35048	-03657	20
32	30006	.95363 -95354	.31758 .31786	.94814	-33436	.94254 .04245	-35046	-03647	28
33	.30154	95345	.31813	.04805	.33463	-04235	.35102	-93637	27
34	.30182	.95337	.31841	.94795	.33490	.04225	.35130	-93626	26
35	.30200	-95328	.31868	-04786	.33518	.94215	-35157	-93616	25
36	.30237	.95319	.31896	-94777	-33545	-94206	.35184	-93606	24
37 38	.30265	.95310	.31923	-94768	·33573	.94196	.35211	-93596	23
	.30292	.95301	.31951	.94758	.33600	.94186	·35239	-93585	22
39	.30320	-95293	-31979	-94749	.33627	.94176	-35266	-93575	21
40	.30348	-95284	.32000	-94740	.33655	.94167	-35293	.93565	20
4I	.30376	-95275	.32034	-94730	.33682	-94157	.35320	-93555	10
42 43	.30403 .30431	.95266	.32061	.94721 -94712	.33710	.94147 .04137	-35347	-93544	18
44	.30459	.95257 .95248	.32116	.04702	·33737 ·33764	.94137	·35375 ·35402	-93534 -93524	16
45	.30486	-95240	.32144	.94693	-33704	.94118	-35429	-93524 -93514	15
46	.30514	-95231	.32171	.94684	.33819	-94108	-35456	-03503	14
47	-30542	.95222	.32199	-94674	.33846	-04008	.35484	-93493	13
48	-30570	-95213	.32227	94665	-33874	.94088	.35511	.93483	12
49	-30597	-95204	-32254	.94656	.33901	-94078	-35538	-93472	11
50	30625	.95195	.32282	.94646	33929	94068	-35565	.93462	10
51	.30653	.95186	.32300	.94637	.33956	94058 .	-35592	-93452	9
52	·30680	-95177	-32337	.94627	.33983	-94049	.35610	.9344I	
53	.30708	-95168	.32364	.94618	.34011	-94039	-35647	·9343I	7
54 55	.30736 .30763	-95159	.32392	.94609	.34038	.94029	-35674	.93420	5
56 56	.30703	.95150 .95142	.32419 .32447	-94599 -94599	.34065 .34093	.94019 .94009	.35701 .35728	.93410 .93400	4
57	.30819	.95133	-32474	.94580	.34120	-93999		.93389	3
58	.30846	.95124	.32502	.94571	-34147	93989	·35755 ·35782	-93379	2
59	.30874	.95115	.32529	.94561	-34175	-93979	.35810	-93368	1
60	.30902	.95106	·32557	-94552	.34202	.93969	.35837	.93358	0
7	COSINE	SINE	Consum	Cover	Convi	Cum	Carret		-
	72	OTIVE	Cosine 7	SINE	Cosine	SINE	Cosine 69	SINE	١ *
- 1	1 44	- 1	, ()	• '	11 11	ا .	1 0	,	l

	21°		I 22° II		23°		ll 24°		
1	SINE	COSINE	SINE	COSINE		Cosine		COSINE	<u>'</u>
•	.35837	.93358	.37461	.92718	-39073	.92050	.40674	-91355	60
I	.35864	-93348	.37488	.92707	.39100	.92039	40700	-91343	59 58
2	.35891	93337	-37515	.92697	.39127	-92028	.40727	.91331	
3	.35918	-93327	-37542	.92686	.39153	.92016	.40753	.91319	57
4	-35945 -35973	.93316 .03306	-37569	.92675 .92664	.39180	.92005 .01004	.40780	.01307	56
5 6	35973	.93295	.37595 .37622	.92653	.39207 .39234	.01082	.40833	.91293	55 54
	.36027	.93285	.37640	.02642	.39260	.91971	.40860	.01272	53
7 8	.36054	93274	.37676	.02631	.39287	.91959	.40886	.91260	52
9	.36081	.93264	.37703	.92620	.39314	.91948	.40913	.91248	51
10	.36108	-93253	-37730	.92609	-39341	.91936	.40939	.91236	50
11	.36135	.93243	-37757	.92598	.39367	.91925	.40966	.91224	49 48
12	.36162	.93232	.37784	.92587	-39394	.91914	.40992	.91212	48
13	36190	.93222	.37811	.92576	.39421	-91902	.41019	-91200	47 46
14	.36217	.93211	.37838	.92565	-39448	.91891	-41045	.91188	
15 16	.36244 .36271	.93201 .93190	.37865 .37892	.92554 .92543	·39474 ·39501	.91879 .91868	.41072 .41098	.91176 .91164	45 44
17	.36298	.93180	.37919	.02532	.39528	.91856	.41125	.01152	43
18	.36325	.93169	37946	.02521	-39555	.91845	.41151	.01140	42
19	.36352	.93159	-37973	.92510	.39581	.91833	.41178	.91128	41
20	.36379	.93148	-37999	-92499	.39608	.91822	.41204	.91116	40
21	.36406	-93137	.38026	.92488	.39635	.91810	.41231	.91104	39
22	.36434	.93127	.38053	-92477	.39661	.91799	.41257	.91092	38
23	.36461	.93116	.38080	.92466	.39688	.91787	.41284	.91080	37
24 25	.36488 .36515	.93106	.38107	.92455	.39715	.91775 .91764	.41310	.91068	36 35
26	.36542	.93095 .93084	.38161	.92444 .92432	-39741 -39768	.91752	.41337 .41363	.01044	34
27	36569	.93074	.38188	.92421	-39795	.91741	.41390	.01032	33
28	.36596	.93063	.38215	.02410	.39822	.91729	.41416	.01020	32
29	.36623	.93052	.38241	.92399	30848	.91718	.41443	.91008	31
30	.36650	.93042	.38268	.92388	.39875	.91706	.41469	.90996	30
31	.36677	.93031	.38295	-92377	.39902	.91694	.41496	.90984	20 28
32	.36704	.93020	38322	.92366	.39928	.g1683	.41522	.90972	
33	.36731	.93010	38349	-92355	-39955	.91671 .91660	.41549	.90960	27 26
34 35	.36758 .36785	.92999 .92988	.38376 .38403	.92343 .92332	.39982 .40008	.01648	.41575 .41602	.90946	25
36	.36812	.92978	.38430	.92332	.40035	.01636	.41628	.90924	24
37	36830	.02067	.38456	-02310	.40062	.01625	.41655	11000.	23
38	.36867	.92956	.38483	-92299	.40088	.91613	.41681	.90899	22
39	36894	-92945	.38510	.92287	.40115	.91601	.41707	.93887	21
40	.36921	-92935	.38537	-92276	.40141	.91590	41734	.90875	20
41	36948	.92924	.38564	.92265	.40168	.91578	.41760	.90863	10 18
42	.36975	.92913	.38591	.92254	.40195	.91566	.41787	.90851 .90839	17
43	.37002	.92902 .92892	.38617 .38644	.92243	.40221 -40248	-91555 -91543	.41813 .41840	.00826	16
44 45	.37029 .37056	.92881	.38671	.92231	.40275	-91531	.41866	.90814	15
46	.37083	.02870	.38698	.02200	.40301	-01510	.41892	.00802	14
47	.37110	.92859	.38725	.92198	.40328	.01508	41919	.90790	13
48	.37137	.92849	.38752	.92186	.40355	.91496	.41945	.90778	12
49	.37164	.92838	.38778	.92175	.40381	.91484	-41972	.90766	11
50	.37191	.92827	.38805	.92164	.40408	.91472	-41998	92753 -	
51	.37218	.92816	.38832	.92152	.40434	.91461	.42024	-90741	8
52	-37245	.92805	.38850 .38886	.92141	.40461	.91449 .91437	.42051 .42077	.90729	
53 54	·37272 ·37299	.02704 .02784	.38012	.92130 .92119	.40514	.91425	.42104	.90704	7
55	.37326	-92773	.38939	.02107	.40541	.01414	.42130	.90692	5
56	-37353	.92762	.38066	.92096		.91402	.42156	.90680	4
57	.37380	.92751	.38003	.02085	.40594	.91390	.42183	.90668	3
58	-37407	.92740	.30020	.02073		.91378	.42200	.90655	2 I
59 60	·37434	-02720	.30046	.02050	.40647	.91366 .91355	.42235 .42262	.90643 .90631	0
	.37461	.92718	-39073	.92030	.40074	2000	-44202	.90031	_
•	Cosine 6	SINE	COSINE 6	SINE	Cosine 6	SINE	COSINE 6	SINE	′

•									
1	2			6°	2'		2	3°	l
•	SINE	COSINE	SINE	COSINE	SINE	COSINE	SINE	COSINE	′
•	.42262	.90631	-43837	.80870	-45399	.80101	-46047	.88295	60
1	42288	.00618	-43863	.89867	-45425	.89087	-46973	.88281	
2	.42315	90606	43889	89854	-4545I	.89074	-46999	88267	59 58
3	-4234I	.90594	.43916	.89841	45477	.89061	-47024	.88254	57
4	.42367	.90582 .90569	.43942 .43968	.89828 .80816	-45503 -45529	.89048 .89035	-47050 -47076	.88240 .88226	56
5	.42394 .42420	.90557	·43994	80803	45554	.80021	47101	.88213	55 54
	.42446	.90545	.44020	.89790	45580	.80008	47127	.88199	53
7 8	.42473	.90532	.44046	.89777	-45606	.88995	47153	.88185	52
9.	.42499	.90520	-44072	.89764	45632	.88981	.47178	.88172	51
10	.42525	.90507	.44098	.89752	.45658	.88968	-47204	.88158	50
11	42552	-90495	.44124	.89739	-45684	.88955	47229	88144	49 48
12	.42578 .42604	.90483	.44151	.89726 .89713	.45710 -45736	.88942 .88028	.47255 .47281	.88130 .88117	45
13	.42631	.00458	.44177 .44203	.80700	45762	.88915	47306	.88103	47 46
15	.42657	.00446	.44220	.80687	45787	.88002	47332	.88080	45
16	.42683	.90433	-44255	.89674	45813	.88888	.47358	.88075	44
17	.42700	.90421	.44281	.89662	-45839	.88875	.47383	.88062	43
18	.42736	.90408	-44307	.89649	-45865	.88862	-47400	.88048	42
19	.42762 .42788	.90396 .90383	·44333 ·44359	.89636 .89623	.45891 .45917	.88848 .88835	-47434 -47460	.88034 .88020	41 40
	.42815		.44385	.80610	-45942	.88822	-47486	.88006	•
21	.42841	.90371 .90358	.44305 .44411	.89597	-45942 -45968	.88808	.47460 .47511	.87993	39 38
23	.42867	.90346	.44437	.89584	45904	.88705	47537	87979	37
24	42804	.90334	-44464	.89571	-46020	.88782	.47562	.87965	36
25	.42920	.90321	·44490	.89558	.46046	.88768	.47588	.87951	35
26	42946	.90309	-44516	.89545	.46072	.88755	.47614	87937	34
27 28	.42972 .42000	.90296 .90284	-44542 -44568	.89532 .89519	.46097 .46123	.88741 .88728	.47639 .47665	.87923 .87909	33 32
20	.43025	.90271	·44594	.80506	.46149	.88715	.47690	.87806	31
30	.4305I	.90259	.44620	89493	.46175	.88701	.47716	.87882	30
31	43077	.00246	.44646	.89480	.46201	.88688	.4774I	87868	20
32	43104	.90233	.44672	89467	.46226	.88674	47767	.87854	28
33	43130	.90221	.44698	89454	.46252	.88661	-47793	87840	27
34	:43156	.90208	-44724	.89441	.46278	.88647	47818	.87826	26
35	.43182	.90196	.44750 .44776	.89428 .89415	.46304 .46330	.88634 .88620	.47844 .47860	.87812 .87798	25 24
36 37	.43209 -43235	.00103	.44802	.80402	.46355	.88607	.47895	87784	23
38	.43261	.00158	.44828	.80380	.46381	.88503	.47020	.87770	22
30	.43287	.90146	.44854	89376	.46407	.88580	-47946	.87756	21
40	·43313	.90133	.44880	.89363	.46433	.88566	-4797I	.87743	20
41	.43340	.90120	.44906	.89350	.46458	.88553	-47997	.87729	19
42	.43366	.90108	·44932	89337	.46484	.88539	.48022	87715	18
43	-43392	.90005	-44958	.89324	.46510 .46536	.88526 .88512	.48048 .48073	.87701 .87687	17 16
44 45	.43418 ·43445	.90082	.44984 .45010	.89311 .892 9 8	.46561	.88499	.48000	.87673	15
45	·43445 ·43471	.90057	.45036	.89285	.46587	.88485	.48124	.87659	14
47	·43497	.90045	.45062	.89272	.46613	.88472	.48150	.87645	13
48	-43523	.90032	.45088	.89259	.46639	.88458	.48175	.87631	12
49	·43549	.90019	.45114	.89245	.46664	.88445	.48201	.87617	11
50	·43575	.90007	.45140	.89232	.46690	.88431		.87603	
51	.43602	.89994	.45166	.89219	.46716	.88417 .88404	.48252	87589	8
52 53	.43628 .43654	.89981 .89968	45192 .45218	.89206 .89193	.46742 .46767	.88300	.48303	.87575 .87561	
53 54	.43054	.80056	-45243	.80180	.46793	.88377	.48328	87546	7 6
55	.43706	.89943	.45269	.89167	.46819	.88363	.48354	.87532	5
56	-43733	.89930	-45295	.89153	.46844	.88349	.48379	.87518	4
57	-43759	89918	.45321	.89140	.46870	.88336	.48405	.87504	3
58	.43785	.89905	·45347	.89127	.46896	.88322 .88308	.48430	87490	2
59 60	.43811	.89892 .89879	·45373 ·45399	.89114 .89101	.46921 .46947	.88295	.48456 .48481	.87476 .87462	ا ا
	-43037		43399	.09101	140947	.00293			ا_ا
•	COSINE	SINE	COSINE	SINE	COSINE	SINE	COSINE	SINE	1'
) 6	4°	II. 6	30 311	il 6	20	6	10	1
	64°								

1	29	9° 1	30)° 1	! 3:	1°	ı 3:	20	i
•	SINE	COSINE	SINE	Cosine	SINE	COSINE	SINE	COSINE	<u>'</u>
0	.48481	.87462	.50000	.86603	.51504	.85717	.52992	.84805	60
I	.48506	.87448	.50025	.86588	.51529	.85702 .85687	.53017	.84789	59
2	.48532	-87434	.50050	.86573 .86550	-51554	.85672	.53041	.84774	58
3	.48557 .48583	.87420 .87406	.50076 .50101	.86544	.51579 .51604	.85657	.53066 .53001	.84759	57 56
4	.48608	.8739I	.50101	.86530	.51628	.85642	.53115	.84743 .84728	55
5	48634	87377	.50151	.86515	.51653	.85627	.53140	84712	54
7	.48659	.87363	.50176	.86501	.51678	.85612	.53164	.84697	53
7	-48684	.87349	.50201	.86486	.51703	.85597	.53180	.84681	52
9	.48710	.87335	.50227	.86471	.51728	.85582	-53214	.84666	51
10	-48735	87321	.50252	.86457	·51753	.85567	.53238	.84650	50
11	-48761	.87306	.50277	.86442	.51778	.85551	.53263	£84635	49
12	-48786	87292	.50302	86427	.51803	.85536	.53288	.84619	48
13	.48811	87278	.50327	.86413	.51828	.85521	.53312	-84604	47 46
14	-48837	.87264	.50352	.86398	.51852	.85506	-53337	-84588	46
15	48862 48888	87250	.50377	.86384 .86369	.51877	.85491 .85476	.53361	-84573	45
16	48013	.87235 .87221	.50403 .50428	.86354	.51902 .51927	.85461	.53386 .53411	.84557 .84542	44
17	-48938	.87207	.50423	.86340	.51952	.85446	·53435	.84526	43 42
10	48964	87193	.50478	.86325	.51977	85431	.53460	84511	41
20	-48080	87178	.50503	.86310	.52002	.85416	-53484	.84495	40
21	-40014	.87164	.50528	.86295	.52026	.85401	.53500	.84480	39
22	-40040	.87150	-50553	.86281	.52051	-85385	-53534	.84464	38
23	40065	.87136	.50578	.86266	.52076	85370	.53558	84448	37
24	49090	.87121	.50603	.86251	.52101	-85355	.53583	.84433	36
25	49116	87107	.50628	.86237	.52126	.85340	.53607	-84417	35
26	49141	87093	.50654	.86222	.52151	.85325	.53632	.84402	34
27	49166	.87079	.50679	.86207 .86102	-52175	.85310	.53656 .53681	84386	33
28	-49192	.87064 .87050	.50704	.86178	.52200 .52225	.85294 .85279	-53705	.84370 .84355	32
30	.49217 -49242	.87036	-50754	.86163	.52250	.85264	·53730	.84339	3I 30
-		87021	.50770	.86148		.85249			20
31	-49268	.87007	.50804	.86133	.52275 .52299	.85234	·53754 ·53779	.84324 .84308	20 28
32 33	.49293 .49318	.86993	.50820	.86119	-52324	.85218	.53804	.84292	27
34	-40344	.86978	.50854	.86104	-52349	.85203	.53828	84277	26
35	.49369	.86964	.50879	.86089	-52374	.85188	.53853	84261	25
36	-49394	.86949	.50904	.86074	-52399	.85173	.53877	84245	24
37 38	-49419	86935	.50929	.86059	-52423	.85157	.53902	.84230	23
	49445	.8692I	-50954	.86045	.52448	.85142	.53926	84214	22
39	.49470	.86906 .86802	.50979 .51004	.86030 .86015	.52473 .52498	.85127 .85112	.53951 .53975	.84198 .84182	2 I 20
40	-49495			.86000	1 1	- 1			
41	.49521	.86878 .86863	.51029	.80000 .85985	.52522	.85096 .85081	.54000	.84167 .84151	18
42	.49546 -49571	.86849	.51054	&5970	.52547 .52572	.85066	.54024 .54049	84135	17
43 44	-40596	.86834	.51104	£5956	-52597	.85051	-54073	84120	16
45	.49622	.86820	.51120	.85041	.52621	.85035	.54097	.84104	15
45 46	40647	.86805	.51154	.85926	.52646	.85020	.54122	.84088	14
47 48	-49672	.86791	-51179	.85011	.52671	£5003	.54146	.84072	13
48	.49697	.86777	.51204	.85896	.52696	.84989	.54171	-84057	12
49	-49723	86762	.51220	.85881 .85866	.52720	.84974	.54195	.84041	11
50	-49748	86748	.51254		·52745	.84959	.54220	.84025	10
51	-49773	86733	.51279	.85851 .85836	-52770	.84943	-54244	.84009	9
52	.49798 .49824	.86719 .86704	.51304	.85821	.52794 .52810	.84928 .84913	.54269	.83994 .83978	
53 54	-49849	.86600	.51329 .51354	85806	.52844	.84807	.54293 .54317	.83978 .83962	7
55	.49874	86675	.51379	.85792	.52869	.84882	.54342	83946	5
56	40800	.86661	.51404	85777	.52893	.84866	.54366	. 83930	4
57 58	-49924	.86646	.51429	.85762	.52918	.84851	·54391	.B3915	3
58	-49950	86632	.51454	-85747	-52943	.84836	-54415	.83800	2
59 60	-49975	86617	-51479	85732	.52967	.84820	-54440	.83883	I
00	.50000	.86603	.51504	.85717	-52992	.84805	-54464	.83867	°
7	COSINE	SINE	COSINE	SINE	COSINE	SINE	COSINE	SINE	•
	R	00	50	90	5	30	5	79	
	, ,	•	- 0	-	- 0	- 1	, ,	•	•

1	33	30 (1 34	4° 1	3	5° 1	1 30	3° 1	1
<u>.</u>	SINE	COSINE	SINE	COSINE	SINE	COSINE	SINE	COSNE	_
0	.54464	.83867	-55919	.82904 .82887	-57358	.81915 .81899	.58779 .58802	.80002 .80885	60
I	.54488	.83851 .83835	·55943 ·55968	82871	.57381 .57405	81882	.58826	.80867	59 58
2	-54513 -54537	.83819	-55992	82855	-57420	.81865	.58840	.808so	57
3	.54561	82804	.56016	82830	-57453	81848	.58873	.80833	56
3	.54586	.83788	.56040	.82822	-57477	81832	.58806	.80816	55
5	.54610	83772	.56064	.82806	.57501	81815	.58920	.80799	54
7 8	.54635	.83756	.56088	.82790	-57524	.81798	.58943	.80782	53
	.54659 .54683	83740	.56112	82773	-57548	81782	.58967	.80765	52
9	.54083	.83724	.56136	-82757	·57572	.81765 .81748	.58990	.80748 .80730	51 50
10	.54708	.83708	.56160	.82741	-57596		.59014		_
11	-54732	.83692	.56184	82724	.57619	81731	-59037	.80713 .80606	49 48
12	-54756	.83676 .83660	.56208	.82708 .82602	.57643 .57667	.81714 .81608	.59061 .59084	.80670	40
13	.54781 .54805	.83645	.56232 .56256	.82675	.57601	.81681	.59108	.80662	47 46
15	.54829	.83620	.56280	82650	-57715	81664	.59131	.80644	45
16	.54854	83613	.56305	.82643	-57738	81647	-59154	.80627	44
17	.54878	.83597	.56329	.82626	.57762	.81631	.59178	.80610	43
18	.54902	.8358ı	.56353	.82610	.57786	.81614	.59201	.8 0593	42
19	-54927	.83565	.56377	.82593	.57810	81597	.59225	.80576	4I
20	.54951	-83549	.56401	-82577	.57833	.8158o	.59248	.80558	40
21	-54975	83533	.56425	.82561	.57857	-B1563	.59272	.8054I	39 38
22	·54999	.83517	.56449	82544	.57881	-81546	-59295	80524	
23	.55024	83501	.56473	.82528	-57904	.81530	.59318	.80507 .80480	37
24	.55048	.83485 .83460	.56497	.82511 .82495	.57928 .57952	.81513 .81496	.59342 .59365	80472	36 35
25 26	.55072 .55097	.83453	.56521 .56545	.82478	·57932 ·57976	.81470	.59389	-80455	34
	.55121	83437	.56569	.82462	-57999	81462	.59412	80438	33
27 28	-55145	83421	.56593	.82446	.58023	81445	.59436	80420	32
20	.55160	.83405	.56617	.82429	.58047	.81445 .81428	-59459	.80403	31
30	-55194	83389	.56641	.82413	.58070	.81412	.59482	.8o386	30
31	.55218	.83373	.56665	.82396	.58094	.81395	.59506	.80368	29
32	.55242	.83356	.56689	.82380	.58118	81378	.59529	.80351	2 8
33	.55266	83340	.56713	.82363	.58141	81361	·59552	.80334	27
34	.55291	.83324	.56736	-82347	.58165	81344	.59576	.80316	26
35	.55315	.83308	.56760	.82330 .82314	.58189 .58212	.81327 .81310	·59599 ·59622	.80299 .80282	25 24
36 37	·55339 ·55363	.83292 .83276	.56784 .56808	.82207	.58236	.81310	.59646	.80264	23
38	.55388	83260	.56832	.82281	.58260	81276	.59669	.80247	22
39	.55412	.83244	.56856	.82264	.58283	.81259	.59693	.80230	21
40	-55436	.83228	.56880	.82248	.58307	.81242	.59716	.80212	20
41	.55460	.83212	.56904	.82231	.58330	.81225	-50730	.8o195	19 18
42	.55484	.83195	.56928	.82214	.58354	.81208	.59763	.8 0178	
43	-55500	83179	.56952	82198	.58378	.81191	.59786	.80160	17
44	-55533	.83163	.56976	.82181	.58401	.81174	6.59809	80143	16
45	·55557	.83147	.57000	.82165 .82148	.58425	.81157 .81140	.59832 .59856	.80125 .80108	15
46	.55581 .55605	.83131 .83115	.57024 .57047	.82132	.58449 .58472	.81123	.59879	.80001	14
47 48	.55630	83008	.5707I	.82115	.58406	.81106	.50002	.80073	12
49	-55654	83082	.57095	.82008	.58519	.8108g	.59926	.80056	11
50	.55678	83066	.57119	.82082	.58543	.81072	-59949	.80038	10
51	55702	83050	-57143	.82065	.58567	.81055	-59972	.80021	٥
52	55726	83034	.57167	.82048	.58590	.81038	-59995	.80003	8
53	-55750	83017	.57191	.82032	.58614	81021	.60019	.79986	7
54	-55775	.83001 i	.57215	.82015	.58637	.81004	.60042	.79968	6
55	·55799	.82985	.57238	.81999	.58661	80987	.60065	·79951	5
56	.55823	.82969	.57262	.81982 .81965	.58684 .58708	.80970 .80953	.60112	.79934 .79916	4
57 58	.55847 .55871	.82953 .82936	.57286 .57310	.81905	.58731	.80935 .80936	.60135	.79899	3
59	.55895	.82020	.57310	.81032	.58755	.80010	.60158	.79881	ī
60	.55010	.82004	.57358	.81915	.58779	.80902	.60182	.79864	ō
_		<u>-</u>				I			-
•	COSINE	SINE	COSINE	SINE	COSINE	SINE	COSINE	SINE	'
	j 5	60	1 5	5°	1 5·	40	1 5	30	ı

1	3'	7° 1	1 3	8° 1	1 3	9°	4	0°	ı
•	SINE	COSINE	SINE	COSINE	SINE	COSINE	SINE	COSINE	
0	.60182	.79864	.61566	.78801	.62932	.77715	.64279	.76604	60
I 2	.60205 .60228	.79846 .79829	.61589	.78783 .78765	.62955 .62977	.77696 .77678	.64301 .64323	.76586 .76567	59 58
3	.60251	.79811	.61635	.78747	.63000	.77660	.64346	.76548	57
4	.60274	-79793	.61658	.78729	.63022	.77641	.64368	.76530	56
5	.60298 .60321	.79776 .79758	.61681	.78711 .78604	.63045 .63068	.77623 .77605	.64390 .64412	.76511 .76492	55 54
	.60344	.79741	.61726	.78676	.63000	.77586	.64435	.76473	53
7	.60367	.79723	.61749	.78658	.63113	.77568	.64457	.76455	52
9	.60390	.79706 .79688	.61772	.78640 .78622	.63135	·77550	.64479	.76436	51 50
10	.60414 .60437	.79671	.61795	.78604	.63158 .63180	.77531 .77513	.64501 .64524	.76417 .76398	-
12	,60460	.79653	.61841	.78586	.63203	-77494	.64546	.76380	49 48
13	.60483	-79635	.61864	.78568	.63225	*77476	.64568	.76361	47
14	.60506	.79618	.61887	.78550 .78532	.63248	-77458	.64590 .64612	.76342	46 45
15 16	.60529 .60553	.79600 .79583	.61909	.78514	.63271	·77439 ·77421	.64635	.76323 .76304	43
17	.60576	.79565	.61055	.78496	.63316	.77402	.64657	.76286	43
18	.60599	-79547	.61978	.78478	.63338	.77384	.64679	.76267	42
20	.60622	.79530	.62001 .62024	.78460 .78442	.63361 .63383	.77366	.64701	.76248 .76220	41 40
21	.60645 .60668	.79512	.62046	.78424	.63406	·77347	.64723	.76210	39
21	.60601	·79494 ·79477	.62060	.78405	.63428	.77329	.64768	.76102	38
23	.60714	-79459	.62002	.78387	.63451	.77292	.64790	.76173	37
24	.60738	.79441	.62115	.78369	.63473	.77273	.64812	.76154	36
25 26	.60761 .60784	-79424	.62138 .62160	.78351 .78333	.63496 .63518	.77255 .77236	.64834 .64856	.76135 .76116	35
20	.60807	.79406 .79388	.62183	.78315	.63540	.77218	.64878	.76007	34 33
28	.60830	.79371	.62206	.78297	.63563	.77199	.64901	.76078	32
20	.60853	-79353	.62229	.78279	.63585	.77181	.64923	.76059	31
30	.60876	-79335	.62251	.78261	.63608	.77162	.64945	.76041	30
31 32	.60899 .60022	.79318 .79300	.62274	.78243 .78225	.63630 .63653	.77144 .77125	.64967 .64980	.76022 .76003	29 28
33	.60045	.79282	.62320	.78206	.63675	.77107	.65011	.75084	27
34	.60068	-79264	.62342	.78188	.63698	.77088	.65033	.75965	26
35	.60991	-79247	.62365	.78170	.63720	.77070	.65055	.75946	25
36 37	.61015 .61038	.79229 .79211	.62388 .62411	.78152 .78134	.63742 .63765	.77051 .77033	.65077 .65100	.75927 .75908	24
38	.61061	.79193	.62433	78116	.63787	.77014	.65122	.75889	22
39	.61084	.79176	.62456	.78098	.63810	.76996	.65144	.75870	21
40	.61107	.79158	.62479	.78079	.63832	.76977	.65166	.75851	20
41 42	.61130 .61153	.79140 .70122	.62502 .62524	.78061 .78043	.63854 .63877	.76959 .76040	.65188 .65210	.75832 .75813	10
43	.61176	.79105	.62547	.78025	.63800	.76921	.65232	·75794	17
44	.01199	.79087	.62570	.78007	.63022	.76903	65254	·75775	16
45	.61222	.79069	.62592 .62615	.77988	.63944 .63966	.76884 .76866	.65276	-75756	15
46	.61245 .61268	.79051 .79033	.62638	.77970 .77952	.63989	.76847	.65320	.75738 .75719	13
47 48	.61201	.79016	.62660	-77934	.64011	.76828	.65342	.75700	13
49	.61314	.78998	.62683	.77916	.64033	.76810	.65364	.75680	11
50	.61337	.78980	.62706	.77897	.64056	.76791	.65386	.75661	10
51 52	.61360 .61383	.78962 .78944	.62728 .62751	.77879 .77861	.64078 .64100	.76772 .76754	65408	.75642 .75623	8
53	.61406	.78026	62774	.77843	.64123	.76735	.65452	.75604	
54	61429	.78008	.62706	.77824	.64145	.76717	.65474	.75585	7 6
55	61451	.78891 .78873	.62819	.77806	.64167	.76698	.65496	.75566	5
56 57	.61474 .61497	.78873 .78855	.62842	.77788 .77769	.64190	.76679 .76661	.65518 .65540	·75547 ·75528	3
57 58	.61520	.78837	.62887	.77751	.64234	.76642	.65562	.75509	2
50	.Ó1543	.78819	.62909	-77733	.64256	.76623	.65584	.75490	1
60	.61566	.78801	.62932	·77715	.64279	.76604	.65606	·75471	-
•	COSINE	SINE	COSINE	SINE	COSINE	SINE	COSINE	SINE	,
ı	52	So	5	l° l	1 50)° 51.12	1 4	90 52.2	

	ı 4	1° 1	11 49	2° 1	1 4:	3° (1 4	4 0	
•		Cosine		Cosine	SINE	COSINE	SINE	COSINE	<u>_</u>
•	.65606	-75471	.66913	.74314	.68200	-73135	.69466	.71934	60
1 2	.65628 .65650	-75452	.66935 .66956	.74295 .74276	.68221	.73116 .73096	.60487	.71914 .71894	59 58
3	.65672	-75433 -75414	.66978	.74256	.68264	.73076	.69529	.71873	57
4	.65694	-75395	.66999	-74237	.68285	.73056	.09549	.71853	57 56
5	.65716	·75375	.67021	.74217	.68306	.73036 .73016	.69570	.71833 .71813	55
7	.65738	.75356 .75337	.67043	.74198 .74178	.68349	.72996	.60591	.71013 .71702	54 53
7 8	.65781	.75318	.67086	.74159	.68370	.72976	.69633	.71772	52
9	.65803	-75299	.67107	.74139	.68391	72957	.69654	.71752	5 I
10	.65825	.75280	.67129	74120	.68412	-72937	.69675	.71732	50
11	.65847 .65860	.75261	.67151	.74100 .74080	.68434 .68455	.72917	.69696	.71711 .71691	49 48
13	.65801	.75241 .75222	.67194	.7406I	.68476	.72877	.69737	.71671	47
14	.65913	.75203	.67215	.74041	.68497	.72857	.69758	.71650	46
15	-65935	.75184	.67237	.74022	.68518	.72837	69779	.71630	45
16	.65956	.75165	.67258	.74002 .73983	.68539 .68561	.72817	.69800 .69821	.71610 .715 9 0	44
17 18	.65978	.75146 .75126	.67301	-73963	.68582	.72777	.60842	.71560	43 42
19	.66022	.75107	.67323	-73944	.68603	-72757	.69862	.71549	41
20	.66044	.75088	.67344	-73924	.68624	·72737	.69883	.71529	40
21	.66066	.75069	.67366	.73904	.68645	.72717	.69904	.71508	39 38
22	.66088	.75050	.67387	.73885 .73865	.68666 .68688	.72697 .72677	.69925 .69946	.71488 .71468	38
23 24	.66131	.75030	.67409	.73846	.68700	.72657	.69966	.71400	36
25	.66153	-74992	.67452	.73826	.68730	.72637	.69987	.71427	35
26	.66175	-74973	.67473	.73806	.68751	.72617	.70008	.71407	34
27 28	.66197	-74953	.67495	.73787	.68772	.72597	.70029	.71386	33
20	.66218	-74934 -74915	67538	.73767 .73747	.68793	.72577 .72557	.70049	.71366 .71345	32 31
30	.66262	.74806	.67559	.73728	.68835	72537	.70091	.71325	30
31	.66284	.74876	.67580	.73708	.68857	.72517	.70112	.71305	20 28
32	.66306	.74857	.67602	.73688	.68878	.72497	.70132	.71284	
33	.66327	.74838	.67623	.73669	.68899	-72477	.70153	.71264	27 26
34 35	.66349 .66371	.74818 .74700	.67645 .67666	.73649 .73620	.68041	.72457 .72437	.70174	.71243	25
36	.66303	74780	67688	.73610	.68962	.72417	.70215	.71203	24
37 38	.66414	.74760	.67709	-73590	.68983	-72397	.70236	.71182	23
	.66436 .66458	-74741	.67730 .67752	.73570	.69004	.72377	.70257	.71162	22 21
39 40	.66480	.74722 .74703	.67773	.73551 .73531	.69046	·72357 ·72337	.70208	.71121	20
41	.66501	.74683	.67795	.73511	.60067	.72317	.70310	.71100	
42	.66523	.74664	.67816	.73491	.69088	.72297	.70339	.71080	18
43	.66545	.74644	.67837	.73472	.69109	.72277	.70360	.71059	17
44	.66566	.74625 .74606	.67859 :67880	·73452 ·73432	.69130 .69151	.72257	.70381	.71039	16 15
45 46	.66610	.74586	.67001	.73413	.60172	.72216	.70422	.70008	14
47 48	.66632	.74567	.67923	·73393	.69193	.72196	-70443	.70978	13
48	.66653	-74548	.67944	•73373	.69214	.72176	.70463	.70957	12
49 50	.66675	74528	.67965	·73353 ·73333	.69235	.72156 .72136	.70484	.70937 .70916	10
51	.66718	.74489	.68008	-73314	.60277	.72116	.70525	.70806	
52	.66740	.74470	.68020	.73294	.60208	.72005	.70546	.70875	8
53	.66762	.74451	.68051	.73274	.69319	.72075	.70567	.70855	7
54	.66783	·74431	.68072	-73254	.69340	.72055	.70587	.70834	
55 56	.66805 .66827	.74412 .74392	.68093	.73234 .73215	.69361 .69382	.72035 .72015	.70608 .70628	.70813 .70793	5 4
57	.66848	·74392	.68136	.73195	.69403	.71995	.70649	.70772	3
57 58	.66870	-74353	.68157	.73175	.69424	.71974	.70670	.70752	2
59 60	.66891	-74334	.68179 .68200	.73155	.69445 .69466	.71054	.70690 .70711	.70731	I
	.00913	.74314	.00200	.73135	.09400	.71934	.70711	.70711	_
•	Cosine 48	SINE	Cosine 4	SINE 70	Cosine 46	SINE 30	Cosine 4	Sine 5°	′

)° 1	1 1	، ه	1 2	و ا	1 8	30	ı
<u>'</u>	SEC.	Co-sec.	SEC.	Co-sec.	SEC.	Co-sec.	SEC.	Co-sec.	<u>'</u>
0	1	Infinite.	1000.1	57-299	1.0006	28.654	1.0014	19.107	бо
1	1	3437.70	1.0001	56.359	1.0006	28.417	1.0014	19.002	59 58
2 3	I	1718.90	1.0002	55.450 54.570	1.0006	28.184 27.955	1.0014	18.704	57
4	ī	859-44	1.0002	53.718	1.0006	27.730	1.0014	18.692	56
6	ī	687.55	1.0002	52.891	1.0007	27.508	1.0014	18.591	55
	I	572.96	1.0002	52.000	1.0007	27.290	1.0015	18.491	54
7 8	I	491.11	1.0002 1.0002	51.313 50.558	1.0007	27.075 26.864	1.0015	18.393 18.295	53 52
ŏ	i	381.97	1.0002	49.826	1.0007	26.655	1.0015	18.108	51
10	I	343.77	1.0002	49.114	1.0007	26.450	1.0015	18.103	50
11	1	312.52	1.0002	48.422	1.0007	26.249	1.0015	18.008	49
12	1	286.48	1.0002	47-750	1.0007	26.050	1.0016	17.914	48
13	I	264.44	1.0002	47.096	1.0007	25.854	0100.1	17.821	47 46
14 15	1	245.55 229.18	1.0002	46.460 45.840	1.0008	25.661 25.471	1.0010	17.730 17.639	45
16	i	214.86	1.0002	45.237	1.0008	25.284	1.0016	17.549	44
17	I	202.22	1.0002	44.650	1.0008	25.100	1.0016	17.460	43
18	I	190.99	1.0002	44-077	8000.1	24.918	1.0017	17.372	42
19	I	180.73	1.0003	43.520	8000.I	24.739	1.0017	17.285	4I
20	I	171.89	1.0003	42.976	8000.1	24.562	1.0017	17.198	40
21	1	163.70	1.0003	42.445	8000.1	24.358	1.0017	17.113	39 38
22 23	I	156.26	1.0003	41.928 41.423	1 0000	24.216	1.0017	17.028 16.944	37
24	ī	143.24	1.0003	40.930	1.0000	23.880	1.0018	16.861	36
25	ī	137.51	1.0003	40.448	1.0000	23.716	8100.1	16.779	35
26	1	132.22	1.0003	39.978	1.0000	23.553	8100.1	16.698	34
27 28	I	127.32	1.0003	39.518	1.0000	23.393	8100.1	16.617	33
20	I	122.78	1.0003	39.069 38.631	1.0000	23.235	1.0018	16.538 16.459	32 31
30	ī	114.59	1.0003	38.201	1.0009	22.925	1.0010	16.380	30
31	ī	110.00	1.0003	37.782	1.0010	22.774	1.0010	16.303	20
32	ī	107-43	1.0003	37.371	1.0010	22.624	1.0010	16.226	28
_ 33	I	104.17	1.0004	36.969	1.0010	22.476	1.0019	16.150	27
34	I	101.11	1.0004	36.576	1.0010	22.330	1.0019	16.075	26
35 36	I	98.223	1.0004	36.191 35.814	0100.1	22.186	1.0020	16.000 15.926	25 24
	ī	95-495	1.0004	35-445	1.0010	21.004	1.0020	15-853	23
37 38	1.0001	02.460	1.0004	35.084	1.0010	21.765	1.0020	15.780	22
39	1.0001	88.149	1.0004	34.720	1100.1	21.629	1.0020	15.708	21
40	1.0001	85.946	1.0004	34.382	1.0011	21.404	1.0020	15.637	20
41	1.0001	83.849	1.0004	34.042	1.0011	21.360	1.0021	15.566	10
42	1.0001	81.853	1.0004	33.708	1100.1	21.228	1.0021	15.496 15.427	18 17
43 44	1.0001	79.950 78.133	1.0004	33.38t 33.060	1.00.1	20.970	1.0021	15.358	16
45	1.0001	76.396	1.0005	32.745	1.0011	20.843	1.0021	15.200	15
46	1.0001	74.736	1.0005	32.437	1.0012	20.717	1.0022	15.222	14
47 48	1.0001	73.146	1.0005	32.134	1.0012	20.593	1.0022	15.155	13
40 49	1.0001	71.622 71.160	1.0005 ~1.0005	31.836 31.544	1.0012	20.471	1.0022	15.089 15.023	II
50	1.0001	68.757	1.0005	31.257	1.0012	20.230	1.0022	14-058	10
51	1,0001	67.400	1.0005	30.976	1.0012	20.112	1.0023	14.803	
52	1.0001	66.113	1.0005	30.699	1.0012	10-005	1.0023	14.829	8
53	1.0001	64.866	1.0005	30.428	1.0013	19.880	1.0023	14.765	7
54	1.0001	63.664	1.0005	30.161	1.0013	19.766	1.0023	14.702	
55 56	1000.1	62.507	1.0005	29.899 29.641	1.0013	19.653 19.541	1.0023	14.640 14.578	5
5 <u>7</u>	1.0001	61.314	1.0006	20.388	1.0013	19.431	1.0024	14.517	3
58	1.0001	59.274	1 00006	29.139	1.0013	19.322	1.0024	14-456	
50	1000.1	58.270	1.0006	28.894	1.0013	19.214	1.0024	14-395	I
66	1000.1	57.299	1.0006	28.654	1.0014	19.107	1.0024	14.335	<u> </u>
7	Co-szc.	SEC.	Co-sec.	SEC.	Co-sec.	SEC.	Co-sec.	SEC.	_

	1 4	40	n .	5°	n 6	30	11 2	70	
<u>'</u>	SEC.	Co-sec.		Co-sec.	SEC.	Co-sec	ii '	Co-sæc.	
۰	1.0024	14.335	1.0038	31.474	1.0055	9.5668	1.0075	8.2055	60
1	1.0025	14.276	1.0038	11.436	1.0055	9.5404	1.0075	8.1861	59 58
3	1.0025	14.217	1.0039	11.398	1.0056	9.5141 9.4880	1.0076	8.1668	58
4	1.0025	14.101	1.0030	11.323	1.0056	9.4620	1.0076	8.1285	56
5	1.0025	14.043	1.0039	11.286	1.0057	9-4362	1.0077	8.1094	55
	1.0026 1.0026	13.986	1.0040	11.249	1.0057	9.4105 9.3850	1.0077	8.0905	54
7	1.0026	13.930 13.874	1.0040	11.213	1.0057	9.3596	1.0078	8.0717	53 52
9	1.0026	13.818	1.0040	11.140	1.0058	9-3343	1.0078	8.0342	51
IO	1.0026	13.763	1.0041	11.104	1.0058	9.3092	1.0079	8.0156	50
11	1.0027	13.708	1.0041	11.069	1.0058	9.2842	1.0079	7-9971	49
12	1.0027 1.0027	13.654 13.600	1.0041	11.033	1.0059	9.2593	1.0079	7-9787	48
14	1.0027	13.547	1.0041	10.963	1.0059	9.2346	1.0080	7.9604 7.0421	47 46
15	1.0027	13.494	1.0042	10.020	1.0060	0.1855	1.0080	7.0240	45
16	1.0028	13.441	1.0042	10.894	1.0000	9.1612	1.0081	7-9059	44
17 18	1.0028	13.389	1.0043	10.860	1.0060	9.1370	1800.1	7.8879	43
10	1.0028	13.337 13.286	I.0043 I.0043	10.826 10.702	1.0061	0.0800	1.0082	7.8700 7.8522	42 41
20	1.0020	13.235	1.0043	10.758	1.0061	9.0651	1.0082	7.8344	40
21	1.0020	13.184	1.0044	10.725	1.0062	0.0414	1.0083	7.8168	
22	1.0029	13.134	1.0044	10.692	1.0062	9.0179	1.0083	7.7992	39 38
23	1.0029	13.084	1.0044	10.659	1.0062	8.9944	1.0084	7.7817	37
24	1.0029	13.034	1.0044	10.626	1.0063	8.9711	1.0084	7.7642	36
26	1.0030	12.985	1.0045	10.593 10.561	1.0063	8.9479 8.9248	1.0085	7.7469 7.7296	35 34
27	1.0030	12.937	1.0045	10.529	1.0064	8.0018	1.0085	7.7124	33
	1.0030	12.840	1.0046	10.497	1.0064	8.8790	1.0085	7.6953	32
29	1.0031	12.793	1.0046	10.465	1.0064	8.8563	1.0086	7.6783	31
30	1.0031	12.745	1.0046	10.433		8.8337		7.6613	30
31 32	1.0031	12.658	1.0046	10.402	1.0065	8.8112 8.7888	1.0087	7.6444 7.6276	20 28
33	1.0032	12.606	1.0047	10.340	1.0066	8.7665	1.0087	7.6108	27
34	1.0032	12.560	1.0047	10.300	1.0066	8.7444	1.0088	7.5942	26
35	1.0032	12.514	1.0048	10.278	1.0066	8.7223	1.0088	7.5776	25
36	1.0032	12.469	I.0048	10.248	1.0067 1.0067	8.7004 8.6786	1.0089	7.5611 7.5446	24 23
37 38	1.0033	12.370	1.0048	10.187	1.0067	8.6560	1.0080	7.5282	22
39	1.0033	12.335	1.0049	10.157	1.0068	8.6353	1.0000	7.5119	21
40	1.0033	12.291	1.0049	10.127	1.0068	8.6138	1.0090	7-4957	20
4I	1.0033	12.248	1.0049	10.098	1.0068	8.5924	1.0000	7-4795	10
42 43	I.0034 I.0034	12.204	1.0050	10.068	1.0069	8.5711 8.5499	1.0001 1.0001	7.4634	18 17
44	1.0034	12.118	1.0050	10.010	1.0060	8.5280	1.0002	7-4474 7-4315	16
45	1.0034	12.076	1.0050	9.9812	1.0070	8.5079	1.0092	7-4156	15
46	1.0035	12.034	1.0051	9.9525	1.0070	8.4871	1.0092	7.3998	14
47 48	1.0035	11.992	1.0051	9.9239 9.8955	1.0070	8.4663	1.0003	7.3840 7.3683	13
49	1.0035	11.000	1.0052	0.8672	1.0071	8.4457 8.4251	1.0004	7.3003	12
50	1.0036	11.868	1.0052	9.8391	1.0071	8.4046	1.0094	7.3372	10
51	1.0036	11.828	1.0052	9.8112	1.0072	8.3843	1.0094	7.3217	9
52	1.0036	11.787	1.0053	9.7834	1.0072	8.3640	1.0095	7.3063	8
53	1.0036	11.747	1.0053	9.7558 9.7283	1.0073	8.3439 8.3238	1.0005	7.2909	7 6
54 55	1.0037	11.707	1.0053	0.7010	1.0073	8.3030	1.0006	7.2757	5
56	1.0037	11.628	1.0054	9.6739	1.0074	8.2840	1.0007	7-2453	4
57 58	1.0037	11.589	1.0054	9.6469	1.0074	8.2642	1.0097	7.2302	3
58 59	1.0038	11.550	1.0054	9.6200 9.5933	1.0074	8.2446 8.2250	1.0007	7.2152	2 I
60	1.0038	11.512	1.0055	9.5668	1.0075	8.2055	1.0008	7.2002 7.1853	
-	C								÷
•	Co-sec.	SEC.	Co-sec.	SEC.	Co-sec.	SEC.	Co-sec.	SEC.	

	. 8	o 1	ı 0	۱ ۹	1 14)° 1	1 1	l° ı	
•	SEC.	Co-sec.	SEC.	Co-sec.	SEC.	Co.sec.	SEC.	Co-sec.	,
-	1.0008	7.1853	1.0125	6.3924	1.0154	5.7588	1.0187	5.2408	60
1	1.0099	7.1704	1.0125	6.3807	1.0155	5.7493	1.0188	5.2330	59
2	1.0099	7.1557	1.0125	6.3690	1.0155-	5.7398	1.0188	5.2252	58
3	1.0099	7.1400	1.0126	6.3574	1.0156	5.7304 5.7210	1.0189	5.2174 5.2007	57 56
4	1.0100	7.1263	1.0126	6.3458	1.0156	5.7117	1.0100	5.2010	55
5	1.0100	7.1117	1.0127	6.3343	1.0157	5.7023	1.0101	5.1942	54
	1.0101	7.0827	1.0128	6.3113	1.0158	5.6930	1,0101	5.1865	53
7	1.0102	7.0683	1.0128	6.2999	1.0158	5.6838	1.0192	5.1788	52
9	1.0102	7.0539	1.0129	6.2885	1.0159	5.6745	1.0192	5.1712	51
10	1.0102	7.0396	1.0129	6.2772	1.0159	5.6653	1.0193	5.1636	50
11	1.0103	7.0254	1.0130	6.2650	1.0160	5.6561	1.0193	5.1560	49 48
12	1.0103	7.0112	1.0130	6.2546	1.0160	5.6470	1.0194	5.1484	48
13.	1.0104	6.9971	1.0131	6.2434	1.0161	5.6379 5.6288	1.0195	5.1409 5.1333	47 46
14	1.0104	6.9830	1.0131	6.2322	1.0102	5.6107	1.0196	5.1258	45
15 16	1.0105	6.9550	1.0132	6.2100	1.0163	5.6107	1.0106	5.1183	44
17	1.0105	6.0411	1.0133	6.1990	1.0163	5.6017	1.0197	5.1100	43
18	1.0106	6.0273	1.0133	6.1880	1.0164	5.5928	1.0198	5.1034	43
19	1.0106	6.9135	1.0134	6.1770	1.0164	5.5838	1.0198	5.0060	4I
30	1.0107	6.8998	1.0134	6.1661	1.0165	5.5749	1.0199	5.0886	40
21	1.0107	6.8861	1.0135	6.1552	1.0165	5.5660	1.0199	5.0812	39 38
22	1.0107	6.8725	1.0135	6.1443	1.0166	5.5572	1.0200	5.0739	35
23	8010.1	6.8589	1.0136	6.1335	1.0166	5.5484 5.5396	1.0201	5.0666 5.0593	37 36
24	8010.1	6.8454 6.8320	1.0136	6.1227 6.1120	1.0167	5.5308	1.0202	5.0520	35
25 26	1.0109	6.8185	1.0137	6.1013	1.0168	5.5221	1.0202	5.0447	34
27	1.0110	6.8052	1.0137	6.0006	1.0160	5.5134	1.0203	5.0375	33
28	1.0110	6.7919	1.0138	6.0800	1.0169	5.5047	1.0204	5.0302	32
29	1.0111	6.7787	1.0138	6.0694	1.0170	5.4960	1.0204	5.0230	31
30	1.0111	6.7655	1.0139	6.0588	1.0170	5.4874	1.0205	5.0158	30
31	1.0111	6.7523	1.0139	6.0483	1.0171	5.4788	1.0205	5.0087	20
32	1.0112	6.7392	1.0140	6.0379	1.0171	5.4702	1.0206	5.0015	28
33	1.0112	6.7263	1.0140	6.0274	1.0172	5.4617 5.4532	1.0207	4.9944	27 26
34	1.0113	6.7003	1.0141	6.0066	1.0173	5.4447	1.0208	4.0802	25
35 36	1.0114	6.6874	1.0142	5.9963	1.0174	5.4362	1.0208	4.0732	24
37	1.0114	6.6745	1.0142	5.9860	1.0174	5.4278	1.0209	4.9661	23
38	1.0115	6.6617	1.0143	5.9758	1.0175	5.4194	1.0210	4.9591	22
39	1.0115	6.6490	1.0143	5.9655	1.0175	5.4110	1.0210	4.9521	2 I 20
40	1.0115	6.6363	1.0144	5.9554	1.0176	5.4026	1.0211	4.9452	
41	1.0116	6.6237	1.0144	5.9452	1.0176	5.3943 5.3860	1.0211	4.9382	19 18
42	1.0116	6.6111	1.0145	5.9351	1.0177	5.3777	1.0212	4.9313	17
43 44	1.0117	6.5985 6.5860	1.0145	5.9250	1.0178	5.3695	1.0213	4.9175	16
45	1.0118	6.5736	1.0146	5.9049	1.0179	5.3612	1.0214	4.9106	15
46	8110.1	6.5612	1.0147	5.8950	1.0170	5.3530	1.0215	4.9037	14
47 48	1.0119	6.5488	1.0147	5.8850	1.0180	5.3449	1.0215	4.8969	13
48	1.0119	6.5365	1.0148	5.8751	1810.1	5.3367 5.3286	1.0216	4.8901 4.8833	12
49	1.0119	6.5243	1.0148	5.8652 5.8554	1.0181	5.3205	1.0216	4.8765	10
50	1.0120	6.5121	1.0149		1.0182	5.3124	1.0218	4.8607	
51	1.0120	6.4999 6.4878	1.0150	5.8456 5.8358	1.0182	5.3044	1.0218	4.8630	8
52 53	1.0121	6.4757	1.0151	5.8261	1.0183	5.2003	1.0210	4.8563	7
54	1.0122	6.4637	1.0151	5.8163	1.0184	5.2883	1.0220	4.8496	
	1.0122	6.4517	1.0152	5.8067	1.0184	5.2803	1.0220	4.8429	5
55 56	1.0123	6.4398	1.0152	5.7970	1.0185	5.2724	1.0221	4.8362	4
57 58	1.0123	6.4270	1.0153	5.7874	1.0185	5.2645	1.0221	4.8296	3
58	1.0124	6.4160	1.0153	5.7778	1.0186	5.2566	1.0222	4.8163	i
59 60	1.0124	6.4042	1.0154	5.7588	1.0187	5.2408	1.0223	4.8007	•
	1.0123	0.3944		3.,300					 -
,	Co-sec.	SEC.	Co-sec.	SEC.	Co-sec.	SEC.	Co-sec.	SEC.	'
	i 8	i°	u 8	0°) 7	9°	i 7	8°	j

164 NATURAL SECANTS AND CO-SECANTS

1	15	2º 1	ı 13	3° 1	1 1	1 0	1 1	.5°	ı
′	SEC.	Co-sec.	SEC.	Co-sec.	SEC.	Co-sec.	SEC.	Co-sec.	<u>_</u>
•	1.0223	4.8097	1.0263	4-4454	1.0306	4.1336 4.1287	1.0353	3.8637 3.8595	60
1 2	1.0224	4.8032	1.0264	4.4398 4.4342	1.0307	4.1239	1.0354	3.8553	59 58
3	1.0225	4.7901	1.0265	4.4287	1.0308	4.1191	1.0355	3.8512	57
4	1.0226	4.7835	1.0266	4.4231 4.4176	1.0309	4.1144 4.1096	1.0356	3.8470 3.8428	56 55
5 6	1.0227	4.7706	1.0267	4.4121	1.0311	4.1048	1.0358	3.8387	54
7 8	1.0228	4.7641	1.0268	4.4065	1.0311	4.1001	1.0358	3.8346 3.8304	53
9	1.0228	4.7576 4.7512	1.0268	4.4011 4.3056	1.0312	4.0953 4.0906	1.0359	3.8263	52 51
10	1.0230	4.7448	1.0270	4.3910	1.0314	4.0859	1.0361	3.8222	50
11	1.0230	4.7384	1.0271	4.3847	1.0314	4.0812	1.0362	3.8181	49
12	1.0231	4.7320	1.0271	4.3792	1.0315	4.0765	1.0362	3.8140 3.8100	48 47
14	1.0232	4.7193	1.0273	4.3738 4.3684	1.0317	4.0672	1.0364	3.8059	46
15	1.0233	4.7130	1.0273	4.3630	1.0317	4.0625	1.0365	3.8018	45
16 17	1.0234	4.7067	1.0274	4.3576	1.0318	4.0579	1.0366	3.7978 3.7937	44
18	1.0235	4.6942	1.0276	4.3469	1.0320	4.0486	1.0367	3.7897	42
19 20	1.0235	4.6879 4.6817	1.0276	4.3415 4.3362	1.0320	4.0440	1.0368	3.7857 3.7816	41 40
21	1.0230	4.6754	1.0278	4.3302	1.0322	4.0348	1.0370	3.7776	39
22	1.0237	4.6692	1.0278	4.3256	1.0323	4.0302	1.0371	3.7736	38
23	1.0238	4.6631	1.0279	4.3203	1.0323	4.0256	1.0371	3.7697	37 36
24 25	1.0239	4.6569 4.6507	1.0280	4.3150	1.0324	4.0211	1.0372	3.7657 3.7617	35
26	1.0240	4.6446	1.0281	4.3045	1.0326	4.0120	1.0374	3.7577	34
27 28	1.0241	4.6385 4.6324	1.0282	4.2993 4.2941	1.0327	4.0074	1.0375	3.7538 3.7498	33
20	1.0241	4.6263	1.0283	4.2888	1.0327	3.0084	1.0376	3.7459	31
30	1.0243	4.6202	1.0284	4.2836	1.0329	3.9939	1.0377	3.7420	30
31	1.0243	4.6142	1.0285	4.2785	1.0330	3.9894	1.0378	3.7380	20 28
32 33	1.0244	4.6081 4.6021	1.0285	4.2733 4.2681	1.0330	3.9850 3.9805	1.0379	3.7341 3.7302	27
34	1.0245	4.5961	1.0287	4.2630	1.0332	3.9760	1.0381	3.7263	26
35 36	1.0246	4.5001 4.5841	1.0288	4-2579	1.0333	3.9716 3.9672	1.0382	3.7224 3.7186	25 24
37	1.0247	4.5782	1.0280	4.2527 4.2476	1.0334	3.9627	1.0383	3 7147	23
38	1.0248	4.5722	1.0290	4.2425	1.0335	3.9583	1.0384	3.7108	22 21
39 40	1.0249	4.5663 4.5604	1.0201	4.2375	1.0336	3.9539 3.9495	1.0385	3.7070 3.7031	20
41	1.0250	4.5545	1.0202	4.2273	1.0338	3.0451	1.0387	3.6993	10
42	1.0251	4.5486	1.0293	4.2023	1.0338	3.9408	1.0387	3.6955	18
43 44	1.0251	4.5428	1.0293	4.2173	1.0339	3.9364	1.0388	3.6917 3.6878	17 16
45	1.0252	4.5311	1.0204	4.2122	1.0341	3.9320	1.0300	3.6840	15
46	1.0253	4.5253	1.0206	4.2022	1.0341	3.9234	1.0391	3.6802 3.6765	14
47 48	1.0254	4.5195 4.5137	1.0296	4.1972	1.0342	3.9199 3.9147	1.0392	3.0705	13
49 .	1.0255	4.5079	1.0298	4.1873	1.0344	3.9104	1.0393	3.6689	11
50	1.0256	4.5021	1.0299	4.1824	1.0345	3.9061	1.0394	3.6651	10
51 52	1.0257	4.4964	1.0299	4.1774	1.0345	3.9018 3.8976	1.0395	3.6614 3.6576	8
53	1.0257	4.4907	1.0300	4.1725	1.0346	3.8933	1.0390	3.6539	7
54	1.0259	4-4793	1.0302	4.1627	1.0348	3.8990	1.0398	3.6502	5
55 56	1.0260	4.4736	1.0302	4.1578	1.0349	3.8848 3.8805	1.0399	3.6464 3.6427	4
57 58	1.0261	4.4623	1.0304	4.1481	1.0350	3.8763	1.0400	3.6390	3
	1.0262	4.4566	1.0305	4.1432	1.0351	3.8721 3.8679	1.0401	3.6353 3.6316	2 I
59 60	1.0202	4.4510 4.4454	1.0305	4.1384	1.0352	3.8637	1.0403	3.6279	۰
7	Co-sec.	SEC.	Co-sec.		Co-sec.	SEC.	Co-sec.	SEC.	-
	7	70 380.	7	6° SEC.	7	5°	7	4°	l
	•	- '	•	-		-		- 1	•

	1 10	8° 1	1 1	7°	ii 1	8° 1	1 19	go	!
<u>'</u>	SEC.	Co-sec.	SEC.	Co-sec.	SEC.	Co-sec.	SEC.	Co-sec.	<u>'</u>
0	1.0403	3.6279	1.0457	3.4203	1.0515	3.2361	1.0576	3.0715	60
1	1.0404	3.6243	1.0458	3.4170	1.0516	3.2332	1.0577	3.0690	59 58
2	1.0405	3.6206	1.0459	3.4138	1.0517	3.2303	1.0578	3.0664	
3	1.0406	3.6169	1.0460	3.4106	1.0518	3-2274	1.0579	3.0638	57
4	1.0406	3.6133 5.6006	1.0461	3.4073 3.4041	1.0519	3.2245	1.0580	3.0612	56
5	1.0407	3.6060	1.0462	3.4000	1.0521	3.2188	1.0582	3.0561	55 54
	1.0400	3.6024	1.0463	3.3977	1.0522	3.2150	1.0584	3.0535	53
7 8	1.0410	3.5987	1.0464	3-3945	1.0523	3.2131	1.0585	3.0500	52
9	1.0411	3.5951	1.0465		1.0524	3.2102	1.0586	3.0484	51
10	1.0412	3.5915	1.0466	3.3913	1.0525	3.2074	1.0587	3.0458	50
11	1.0413	3.5879	1.0467	3.3849	1.0526	3.2045	1.0588	3.0433	49
12	1.0413	3.5843	1.0468	3.3817	1.0527	3.2017	1.0589	3.0407	48
13	1.0414	3.5807	1.0469	3.3785	1.0528	3.1989 3.1960	1.0590	3.0382	47 46
14	1.0415	3.5772	1.0470	3.3754 3.3722	1.0520	3.1932	1.0591	3.0357	45
15 16	1.0417	3.5736 3.5700	1.0471	3.3690	1.0531	3.1904	1.0593	3.0306	44
17	1.0418	3.5665	1.0473	3.3659	1.0532	3.1876	1.0594	3.0281	43
18	1.0410	3.5629	1.0474	3.3627	1.0533	3.1848	1.0595	3.0256	42
19	1.0420	3.5594	1.0475	3.3596	1.0534	3.1820	1.0596	3.0231	41
20	1.0420	3.5559	1.0476	3.3565	1.0535	3.1792	1.0598	3.0206	40
21	1.0421	3.5523	1.0477	3.3534	1.0536	3.1764	1.0599	3.0181	39 38
22	1.0422	3.5488	1.0478	3.3502	1.0537	3.1736	1.0600	3.0156	
23	1.0423	3.5453	1.0478	3-347I	1.0538	3.1708 3.1681	1.0601	3.0131	37 36
24	1.0424	3.5418	1.0479	3.3440	1.0539	3.1653	1.0003	3.0081	35
25 26	1.0425 1.0426	3.5383 3.5348	1.0481	3.3400 3.3378	1.0541	3.1625	1.0604	3.0056	34
27	1.0427	3.5313	1.0482	3.3347	1.0542	3.1598	1.0005	3.0031	33
28	1.0428	3.5279	1.0483	3.3316	1.0543	3.1570	1,0606	3.0007	32
20	1.0428	3.5244	1.0484	3.3286	1.0544	3.1543	1.0607	2.0082	31
3Ó	1.0429	3.5209	1.0485	3.3255	1.0545	3.1515	8000.1	2.9957	30
31	1.0430	3.5175	1.0486	3.3224	1.0546	3.1488	1.0600	2.9933	20 28
32	1.0431	3.5140	1.0487	3.3194	1.0547	3.1461	1.0611	2.9008	
33	1.0432	3.5106	1.0488	3.3163	1.0548	3.1433	1.0612	2.0884	27 26
34	1.0433	3.5072	1.0489	3.3133	1.0549	3.1406 3.1379	1.0613	2.0835	25
35 36	1.0434 1.0435	3.5037	1.0490	3.3102	1.0550	3.1352	1.0615	2.0810	24
37	1.0436	3.4969	1.0492	3.3042	1.0552	3.1325	1.0616	2.9786	23
38	1.0437	3.4935	1.0493	3.3011	1.0553	3.1298	1.0617	2.9762	22
39	1.0438	3.400I	1.0494	3.2981	1.0554	3.1271	1.0618	2.9738	21
40	1.0438	3.4867	1.0495	3.2951	1.0555	3.1244	1.0619	2.9713	30
4I	1.0439	3.4833	1.0496	3.2021	1.0556	3.1217	1.0620	2.9689	10 18
42	1.0440	3.4799	1.0497	3.2891	1.0557	3.1100	1.0622	2.9665 2.9641	17
43	1.0441	3.4766	1.0498	3.2861 3.2831	1.0558	3.1163 3.1137	1.0023	2.0017	16
44	1.0442	3.4732 3.4698	1.0499	3.2801	1.0559	3.1110	1.0625	2.0503	15
45 46	1.0444	3.4665	1.0501	3.2772	1.0561	3.1083	1.0626	2.9569	14
47	1.0445	3.4632	1.0502	3.2742	1.0562	3.1057	1.0627	2.9545	13
47 48	1.0446	3.4598	1.0503	3.2712	1.0563	3.1030	1.0628	2.9521	12
49	1.0447	3.4565	1.0504	3.2683	1.0565	3.1004	1.0629	2.9497	11
50	1.0448	3.4532	1.0505	3.2653	1.0566	3.0977	1.0630	2-9474	10
51	1.0448	3.4498	1.0506	3.2624	1.0567	3.0951	1.0632	2.0450	8
52	1.0449	3.4465	1.0507	3.2594	1.0568	3.0025	1.0633	2.9426	
53	1.0450	3.4432	1.0508	3.2565	1.0569	3.0898	1.0634	2.9402	7 6
54	1.0451	3.4399 3.4366	1.0500	3.2535 3.2506	1.0570	3.0872 3.0846	1.0635	2-9379 2-9355	5
55 50	1.0453	3.4334	1.0510	3.2477	1.0572	3.0820	1.0637	2.9332	4
	1.0454	3.430I	1.0512	3.2448	1.0573	3.0793	1.0638	2.9308	3
57 58	1.0455	3.4268	1.0513	3.2419	1.0574	3.0767	1.0630	2.9285	2
59	1.0456	3.4236	1.0514	3.2300	1.0575	3.0741	1.0641	2.9261	ī
59 60	1.0457	3.4203	1.0515	3.2361	1.0576	3.0715	1.0642	2.9238	
7	Co-sec.	SEC.	Co-sec.	SEC.	Co-sec.	SEC.	Co-sec.	SEC.	,
	7	30 20.	7	20 25.	7	io SEC.	7	00 3200	l
	, "	•	. "			• '		•	•

166 NATURAL SECANTS AND CO-SECANTS

	1 2	00	li 2	1°	ıı 2:	2º	1 2	3°	ı
,	SEC.	Co-sec.		Co-sec.	SEC.	Co-sec.		Co-sac.	•
•	1.0642	2.9238	1.0711	2.7004	1.0785	2.6695	1.0864	2.5593	60
1	I.0643 I.0644	2.9215	1.0713	2.7883	1.0787	2.6675 2.6656	1.0865	2.5558	59 58
3	1.0045	2.9168	1.0715	2.7841	1.0780	2.6637	1.0868	2.5540	57
4	1.0646	2.9145	1.0716	2.7820	1.0790	2.6618	1.0869	2.5523	56
ş	1.0647	2.9122	1.0717	2.7799	1.0792	2.6500	1.0870	2.5506	55
	1.0648	2.9098	1.0719	2.7778	1.0793	2.6580 2.6561	1.0872	2.5488 2.5471	54 53
7	1.0651	2.9052	1.0721	2.7736	1.0795	2.0542	1.0874	2.5453	52
9	1.0652	2.9029	1.0722	2.7715	1.0797	2.6523	1.0876	2.5436	51
10	1.0653	2.9006	1.0723	2.7694	1.0798	2.6504	1.0877	2.5419	50
11	1.0654	2.8983	1.0725	2.7674	1.0799	2.6485 2.6466	1.0878	2.5402	49 48
12	1.0655	2.8960	1.0727	2.7632	1.0802	2.6447	1.0880	2.5384	47
14	1.0658	2.8015	1.0728	2.7611	1.0803	2.6428	1.0882	2.5350	46
15	1.0659	2.8892	1.0729	2.7591	1.0804	2.6410	1.0884	2.5333	45
16	1.0660	2.8869 2.8846	1.0731	2.7570 2.7550	1.0806	2.6391 2.6372	1.0885 1.0886	2.5316	44
17 18	1.0001	2.8824	1.0733	2.7520	1.0808	2.6353	1.0888	2.5299 2.5281	43 42
10	r.0663	2.88oI	1.0734	2.7509	0180.1	2.6335	1.088g	2.5264	41
90	1.0664	2.8778	1.0736	2.7488	1180.1	2.6316	1.0891	2.5247	40
21	1.0666	2.8756	1.0737	2.7468	1.0812	2.6297	1.0892	2.5230	39
22	1.0667	2.8733 2.8711	1.0738	2.7447	1.0813	2.6279	1.0893	2.5213	38
23	1.0000	2.8688	1.0739	2.7427 2.7406	1.0815	2.6260 2.6242	1.0895	2.5196	37 36
	1.0670	2.8666	1.0742	2.7386	1.0817	2.6223	1.0897	2.5163	35
25 20	1.0671	2.8644	1.0743	2.7366	1.0819	2.6205	1.0899	2.5146	34
27 28	1.0673	2.8621	1.0744	2.7346	1.0820	2.6186	1.0000	2.5129	33
20	1.0674	2.8599 2.8577	1.0745	2.7325 2.7305	1.0821	2.6168 2.6150	1.0902	2.5112	32 31
30	1.0676	2.8554	1.0748	2.7285	1.0824	2.6131	1.0904	2.5078	30
31	1.0677	2.8532	1.0740	2.7265	1.0825	2.6113	1.0006	2.5062	20
32	1.0678	2.8510	1.0750	2.7245	1.0826	2.6095	1.0007	2.5045	28
33	1.0679	2.8488	1.0751	2.7225	1.0828	2.6076	1.0908	2.5028	27
34	1.0681	2.8466 2.8444	I.0753 I.0754	2.7205	1.0829	2.6058	1.0010	2.5011	26 25
35 36	1.0683	2.8422	1.0755	2.7165	1.0832	2.6022	1.0013	2.4978	24
37 38	1.0684	2.8400	1.0756	2.7145	1.0833	2.6003	1.0014	2.4961	23
38	1.0685	2.8378	1.0758	2.7125	1.0834	2.5985	1.0915	2.4945	22
39 40	1.0686	2.8356 2.8334	1.0759	2.7105 2.7085	1.0836	2.5967 2.5949	1.0917	2.4928	2I 20
41	1.0680	2.8312	1.0761	2.7065	1.0838	2.5031	1.0020	2.4895	10
42	1.0600	2.8200	1.0763	2.7045	1.0840	2.5013	1.0021	2.4870	18
43	1.0691	2.8260	1.0764	2.7026	1.0841	2.5895	1.0922	2.4862	17
44	1.0692	2.8247	1.0765	2.7006	1.0842	2.5877	1.0924	2.4846	16
45 46	1.0694 1.0695	2.8225	1.0766	2.6986	1.0844	2.5859	1.0025	2.4829	15
47	1.0606	2.8182	1.0760	2.6947	1.0846	2.5823	1.0927	2.4797	13
47 48	1.0697	2.8160	1.0770	2.6927	1.0847	2.5805	1.0929	2.4780	12
49	1.0698	2.8139	1.0771	2.6008	1.0849	2.5787	1.0931	2.4764	II
50	1.0699	2.8117	1.0773	2.6888	1.0850	2.5770	1.0932	2.4748	10
51 52	1.0701	2.8096 2.8074	1.0774	2.6869 2.6849	1.0851	2.5752 2.5734	1.0934	2.4731	8
53	1.0703	2.8053	1.0776	2.6830	1.0854	2.5716	1.0936	2.4600	
54	1.0704	2.8032	1.0778	2.6810	1.0855	2.5699	1.0938	2.4683	7 6
55	1.0705	2.8010	1.0779	2.6791	1.0857	2.5681	1.0039	2.4666	5
56 57	1.0707	2.7989 2.7968	1.0780	2.6772	1.0858	2.5663 2.5646	1.0041	2.4650 2.4634	4
58	1.0700	2.7047	1.0783	2.6733	1.0861	2.5628	1.0042	2.4618	3
59 60	1.0710	2.7925	1.0784	2.6714	1.0862	2.5610	1.0945	2.4602	I
60	1.0711	2.7904	1.0785	2.6695	1.0864	2.5593	1.0946	2.4586	•
·	Co-sec.	SEC.	Co-sec.	SEC.	Co-sec.	SEC.	Co-sec.	SEC.	•
	69	90	68	ვი ఀఀఀఄఄ	67	70 020.	6	60 200	
				- 1	. •	•		- '	

	1 2	4 º	n 2	5°	1 2	6°	ii 2	7°	t
<u>'</u>	SEC.	Co-sec.	SEC.	Co-sec.	SEC.	Co-sec.	SEC.	Co-sec.	<u>'</u>
•	1.0946	2.4586	1.1034	2.3662	1.1126	2.2812	1.1223	2.2027	60
1	1.0948	2.4570	1.1035	2.3647	1.1127	2.2798	1.1225	2.2014	59 58
3	1.0949	2.4554 2.4538	1.1037	2.3618	1.1131	2.2771	1.1228	2.1989	
4	1.0952	2.4522	1.1040	2.3603	1.1132	2.2757	1.1230	2.1977	57 56
- 3	1.0953	2.4506	1.1041	2.3588	1.1134	2.2744	1.1231	2.1064	55
5	1.0955	2.4400	1.1043	2.3574	1.1135	2.2730	1.1233	2.1952	54
7 8	1.0956	2.4474	1.1044	2.3559	1.1137	2.2717	1.1235	2.1939	53
	1.0958	2.4458	1.1046	2.3544	1.1139	2.2703	1.1237	2.1927	52
9	1.0959	2.4442	1.1047	2.3530	1.1140	2.2690	1.1238	2.1914	51
10	1.0961	2.4426	1.1049	2.3515	1.1142	2.2676	1.1240	2.1902	50
11	1.0962	2.4411	1.1050	2.3501	1.1143	2.2663	1.1242	2.1889	49
12	1.0963	2.4395	1.1052	2.3486	1.1145	2.2650	1.1243	2.1877	48
13	1.0965	2.4379	1.1053	2.3472	1.1147	2.2636	1.1245	2.1865 2.1852	47
14 15	1.0966 1.0968	2.4363	1.1055	2.3457	1.1148	2.2623 2.2610	1.1247	2.1840	46
16	1.0969	2.4347 2.4332	1.1058	2.3443 2.3428	1.1151	2.2596	1.1250	2.1828	45 44
17	1.0071	2.4316	1.1059	2.3414	1.1153	2.2583	1.1252	2.1815	43
18	1.0072	2.4300	1.1061	2.3399	1.1155	2.2570	1.1253	2.1803	42
19	1.0073	2.4285	1.1062	2.3385	1.1156	2.2556	1.1255	2.1791	41
20	1.0975	2.4269	1.1064	2.3371	1.1158	2.2543	1.1257	2.1778	40
21	1.0076	2.4254	1.1065	2.3356	1.1159	2.2530	1.1258	2.1766	39
22	1.0978	2.4238	1.1067	2.3342	1.1161	2.2517	1.1260	2.1754	38
23	1.0979	2.4222	1.1068	2.3328	1.1163	2.2503	1.1262	2.1742	37
24	1.0981	2.4207	1.1070	2.3313	1.1164	2.2490	1.1264	2.1730	36
25	1.0082	2.4191	1.1072	2.3200	1.1166	2.2477	1.1265	2.1717	35
26	1.0984	2.4176	1.1073	2.3285	1.1167	2.2464	1.1267	2.1705	34
27 28	1.0985 1.0986	2.4160 2.4145	1.1075	2.3271 2.3256	1.1169	2.2451	1.1269	2.1693 2.1681	33
20	1.0088	2.4130	1.1078	2.3242	1.1172	2.2425	1.1272	2.1660	32 31
30	1.0080	2.4114	1.1070	2.3228	1.1174	2.2411	1.1274	2.1657	30
31	1.0001	2.4000	1.1081	2.3214	1.1176	2.2398	1.1275	2.1645	20
32	1.0002	2.4083	1.1082	2.3200	1.1177	2.2385	1.1277	2.1633	28
33	1.0004	2.4068	1.1084	2.3186	1.1170	2.2372	1.1279	2.1620	27
34	1.0005	2.4053	1.1085	2.3172	1.1180	2.2359	1.1281	2.1608	26
35	1.0997	2.4037	1.1087	2.3158	1.1182	2.2346	1.1282	2.1596	25
36	1.0998	2.4022	1.1088	2.3143	1.1184	2.2333	1.1284	2.1584	24
37	1.1000	2.4007	1.1090	2.3129	1.1185	2.2320	1.1286	2.1572	23
38	1.1001	2.3992	1.1092	2.3115	1.1187	2.2307	1.1287	2.1560	22
39 40	1.1003	2.3976	1.1003	2.3101	1.1189	2.2204	1.1289	2.1548 2.1536	2I 20
•		2.3961		2.3087		1 1			
41	1.1005	2.3946	1.1006	2.3073	1.1192	2.2269	1.1293	2.1525	18
42	1.1007	2.3931 2.3916	1.1008	2.3050	1.1193	2.2250	1.1204	2.1513 2.1501	17
43	1.1010	2.3901	1.1101	2.3046	1.1197	2.2230	1.1298	2.1489	16
45	1.1011	2.3886	1.1102	2.3018	1.1198	2.2217	1.1200	2.1477	15
46	1.1013	2.3871	1.1104	2.3004	1.1200	2.2204	1.1301	2.1465	14
47	1.1014	2.3856	1.1106	2.2000	1.1202	2.2192	1.1303	2.1453	13
48	1.1016	2.3841	1.1107	2.2976	1.1203	2.2170	1.1305	2.1441	12
49	1.1017	2.3826	1.1100	2.2962	1.1205	2.2166	1.1306	2.1430	11
50	1.1019	2.3811	1.1110	2.2949	1.1207	2.2153	1.1308	2.1418	10
51	1.1020	2.3796	1.1112	2.2935	1.1208	2.2141	1.1310	2.1406	8
52	1.1022	2.3781	1.1113	2.2921	1.1210	2.2128	1.1312	2.1304	
53	1.1023	2.3766	1.1115	2.2907	1.1212	2.2115	1.1313	2.1382	7
54 55	1.1025	2.3751 2.3736	1.1118	2.2880	1.1213	2.2103	1.1315	2.1371 2.1350	5
56	1.1028	2.3721	1.1110	2.2866	1.1217	2.2077	1.1317	2.1347	4
	1.1020	2.3706	1.1121	2.2853	1.1218	2.2065	1.1320	2.1335	3
57 58	1.1031	2.3691	1.1123	2.2839	1.1220	2.2052	1.1322	≱.1324	2
59	1.1032	2.3677	1.1124	2.2825	1.1222	2.2039	1.1324	2.1312	I
60	1.1034	2.3662	1.1126	2.2812	1.1223	2.2027	1.1326	2.1300	0
7	Corre	SEC.	Cosec	SEC.	Co.crc	Sno	Coanc		,
	Co-sec.	SEC.	Co-sec.	3EC.	Co-sec.	SEC.	Co-sec.	SEC.	
	• 00) "	104	2	. 00) ·	1 02	a- 1	

	. 2	80	1 2	90	1 30	0° 1	11 3	10	
,	SEC.	Co-sec.	SEC.	Co-sec.	SEC.	Co-sæc.	SEC.	Co-sacc.	•
-	1.1326	2.1300	1.1433	2.0627	1.1547	2.0000	1.1666	1.9416	60
I	1.1327	2.1289	1.1435	2.0616	1.1549	1.9990 1.9980	1.1668	I-9407 I-9397	59 58
2 3	1.1329	2.1277	1.1437	2.0594	1.1553	1.9970	1.1672	1.9388	57
4	1.1333	2.1254	1.1441	2.0583	1.1555	1.9960	1.1674	1.9378	56
5	1.1334	2.1242	1.1443	2.0573	1.1557	1.9950	1.1676	1.9369	55
6	1.1336	2.1231	1.1445 1.1446	2.0562	1.1559	1.9940 1.9930	1.1678	1.9360 1.9350	54 53
7	1.1338	2.1210	1.1448	2.0540	1.1562	1.0020	1.1683	1.0341	52
9	1.1341	2.1196	1.1450	2.0530	1.1564	1.9910	1.1685	1.9332	51
10	1.1343	2.1185	1.1452	2.0519	1.1566	1.9900	1.1687	1.9322	50
11	1.1345	2.1173	1.1454	2.0508	1.1568	1.9890	1.1689	1.9313	49
12	1.1347	2.1162	1.1456	2.0498	1.1570	1.9880	1.1691	1.9304	48
13 14	1.1349 1.1350	2.1150	1.1458	2.0476	1.1572	1.0860	1.1695	1.9295	47 46
15	1.1352	2.1127	1.1461	2.0466	1.1576	1.9850	1.1697	1.9276	45
16	1.1354	2.1116	1.1463	2.0455	1.1578	1.9840	1.1699	1.9267	44
17 18	1.1356	2.1104	1.1465	2.0444	1.1580	1.0830	1.1701	1.9258	43
10	1.1357	2.1003	1.1467	2.0434	1.1582	1.0811	1.1703	I.0248 I.0230	42 41
20	1.1351	2.1070	1.1471	2.0413	1.1586	1.0801	1.1707	1.9230	40
21	1.1363	2.1050	1.1473	2.0402	1.1588	1.9791	1.1700	1.9221	
22	1.1365	2.1048	1.1474	2.0392	1.1590	1.9781	1.1712	1.9212	39 38
23	1.1366	2.1036	1.1476	2.0381	1.1592	1.9771	1.1714	1.9203	37
24	1.1368	2.1025	1.1478	2.0370	1.1594	1.9761	1.1716	1.9193	36
25 26	1.1370	2.1014	1.1482	2.0340	1.1598	1.9742	1.1720	1.0175	35 34
	1.1373	2.0991	1.1484	2.0339	1.1600	1.9732	1.1722	1.9166	33
27 28	1.1375	2.0980	1.1486	2.0320	1.1602	1.9722	1.1724	1.9157	32
29	1.1377	2.0969	1.1488	2.0318	1.1604	1.9713	1.1726	1.9148	31 30
30	1.1379	2.0957	1	_	1.1608	1.0603	1.1730	1.0130	
31	1.1381	2.0946	1.1491	2.0297	1.1008	1.0683	1.1730	1.0121	20 28
32 33	1.1384	2.0933	1.1495	2.0276	1.1612	1.9674	1.1734	1.9112	27
34	1.1386	2.0012	1.1497	2.0266	1.1614	1.9664	1.1737	1.9102	26
35	1.1388	2.0001	1.1499	2.0256	1.1616	1.9654	1.1739	1.9093	25
36	1.1390	2.0890	1.1501	2.0245	1.1618	1.9645 1.9635	1.1741	1.9084 1.9075	24 23
37 38	1.1391	2.0868	1.1505	2.0224	1.1622	1.9625	1.1745	1.9066	22
39	1.1395	2.0857	1.1507	2.0214	1.1624	1.9616	1.1747	1.9057	21
40	1.1397	2.0846	1.1508	2.0204	1.1626	1.9606	1.1749	1.9048	20
41	1.1399	2.0835	1.1510	2.0194	1.1628	1.9596	1.1751	1.9039	10 18
42	1.1401	2.0824	1.1512	2.0183	1.1630	1.9587	1.1753	1.9030	18
43 44	1.1402	2.0801	1.1514	2.0173	1.1632	1.9568	1.1758	1.0013	16
45	1.1406	2.0790	1.1518	2.0152	1.1636	1.9558	1.1760	1.9004	15
45 46	1.1408	2.0779	1.1520	2.0142	1.1638	1.9549	1.1762	1.8995	14
47 48	1.1410	2.0768	1.1522	2.0132	1.1640	1.9539	1.1764 1.1766	1.8986 1.8077	13
48 49	1.1411	2.0757	1.1524	2.0122	1.1642	1.9530	1.1768	1.8068	11
50	1.1415	2.0735	1.1528	2.0101	1.1646	1.9510	1.1770	1.8959	10
51	1.1417	2.0725	1.1530	2.0091	1.1648	1.9501	1.1772	1.8950	8
52	1.1419	2.0714	1.1531	2.0081	1.1650	1.9491	1.1775	1.8941	
53	1.1421	2.0703	1.1533	2.0071	1.1652	1.9482	1.1777	1.8932	7
54 55	1.1422 1.1424	2.0602	1.1535	2.0050	1.1654	1.9473	1.1779	1.8915	5
56	1.1424	2.0670	1.1539	2.0040	1.1658	1.9454	1.1783	1.8006	4
57 58	1.1428	2.0650	1.1541	2.0030	1.1660	1.9444	1.1785	1.8807	3
	1.1430	2.0648	1.1543	2.0020	1.1662	1.9435	1.1787	1.8888	2
59 60	1.1432	2.0637	1.1545	2.0010	1.1664	1.9425 1.9416	1.1790	1.8871	
									_
′	Co-sec.	SEC.	Co-sec.	O°	Co-sec.	SEC.	Co-sec.	SEC.	'

1	ı 32° ı		1 33° 1		1 34° 1		ı 35°		
<u>,</u>	SEC.	Co-sec.	SEC.	Co-sec.	SEC.	Co-sec.	SEC.	Co-sec.	′
0	1.1792	1.8871	1.1924	1.8361	1.2062	1.7883	1.2208	1.7434	60
I	1.1794	1.8862 1.8853	1.1926	1.8352	1.2064	1.7875	1.2210	1.7427	59 58
2	1.1796	1.8844	1.1928	1.8344	1.2007	1.7860	1.2213	1.7420	
3	1.1798 1.1800	1.8836	1.1933	1.8328	1.2072	1.7852	1.2218	1.7413	57 56
4	1.1802	1.8827	1.1935	1.8320	1.2074	1.7844	1.2220	1.7398	55
5 6	1.1805	1.8818	1.1937	1.8311	1.2076	1.7837	1.2223	1.7301	54
7	1.1807	1.8809	1.1939	1.8303	1.2079	1.7829	1.2225	1.7384	53
8	1.1809	1.8801	1.1942	1.8295	1.2081	1.7821	1.2228	1.7377	52
9	1.1811	1.8792	1.1944	1.8287	1.2083	1.7814	1.2230	1.7369	51
10	1.1813	1.8783	1.1946	1.8279	1.2086	1.7806	1.2233	1.7362	50
11	1.1815	1.8785	1.1948	1.8271	1.2088	1.7798	1.2235	1.7355	49 48
12	1.1818	1.8766	1.1951	1.8263	1.2091	1.7701	1.2238	1.7348	
13	1.1820	1.8757	1.1953	1.8255	1.2093	1.7783	1.2240	1.7341	47
14	1.1822	1.8749	1.1955	1.8238	1.2098	1.7776	1.2243 1.2245	1.7334	46
15 16	1.1826	1.8731	1.1960	1.8230	1.2100	1.7760	1.2248	1.7327	45 44
17	1.1828	1.8723	1.1962	1.8222	1.2103	1.7753	1.2250	1.7312	43
18	1.1831	1.8714	1.1964	1.8214	1.2105	1.7745	1.2253	1.7305	42
19	1.1833	1.8706	1.1967	1.8206	1.2107	1.7738	1.2255	1.7298	41
20	1.1835	1.8697	1.1969	1.8198	1.2110	1.7730	1.2258	1.7291	40
21	1.1837	1.8688	1.1971	1.8190	1.2112	1.7723	1.2260	1.7284	39
22	1.1839	1.8680	1.1974	1.8182	1.2115	1.7715	1.2263	1.7277	39 38
23	1.1841	1.8671	1.1976	1.8174	1.2117	1.7708	1.2265	1.7270	37
24	1.1844	1.8663	1.1978	1.8166	1.2119	1.7700	1.2268	1.7263	36
25 26	1.1846	1.8654 1.8646	1.1980	1.8158	1.2122	1.7693 1.7685	1.2270	1.7256	35
	1.1850	1.8637	1.1985	1.8142	1.2124	1.7678	1.2273	1.7249 1.7242	34
27 28	1.1852	1.8620	1.1087	1.8134	1.2120	1.7670	1.2278	1.7234	33 32
29	1.1855	1.8620	1.1990	1.8126	1.2132	1.7663	1.2281	1.7227	31
30	1.1857	1.8611	1.1992	1.8118	1.2134	1.7655	1.2283	1.7220	30
31	1.1850	1.8603	1.1004	1.8110	1.2136	1.7648	1.2286	1.7213	20
32	1.1861	1.8595	1.1997	1.8102	1.2139	1.7640	1.2288	1.7206	28
33	1.1863	1.8586	1.1999	1.8094	1.2141	1.7633	1.2291	1.7199	27
34	1.1866	1.8578	1.2001	1.8086	1.2144	1.7625	1.2293	1.7192	26
35	1.1868	1.8569	1.2004	1.8078	1.2146	1.7618	1.2296	1.7185	25
36	1.1870	1.8561	1.2006	1.8070	1.2140	1.7610	1.2298	1.7178	24
37 38	1.1874	1.8544	1.2000	1.8054	1.2151	1.7596	1.2301	1.7171	23 22
39	1.1877	1.8535	1.2013	1.8047	1.2156	1.7588	1.2306	1.7157	21
40	1.1879	1.8527	1.2015	1.8039	1.2158	1.7581	1.2300	1.7151	20
41	1.1881	1.8510	1.2017	1.8031	1.2161	1.7573	1.2311	1.7144	19
42	1.1883	1.8510	1.2020	1.8023	1.2163	1.7566	1.2314	1.7137	18
43	1.1886	1.8502	1.2022	1.8015	1.2166	1.7559	1.2316	1.7130	17
44	1.1888	1.8493	1.2024	1.8007	1.2168	1.7551	1.2319	1.7123	16
45 46	1.1890	1.8485	1.2027	1.7999	1.2171	1.7544	1.2322	1.7116	15
40	1.1892	1.8477	1.2029	1.7992	1.2173	1.7537	1.2324	1.7109	14
47 48	1.1894	1.8468 1.8460	1.2031	1.7984	1.2175	1.7529	1.2327	1.7102	13
49	1.1899	1.8452	1.2036	1.7968	1.2180	1.7514	1.2332	1.7088	11
50	1.1901	1.8443	1.2039	1.7960	1.2183	1.7507	1.2335	1.7081	10
51	1.1003	1.8435	1.2041	1.7053	1.2185	1.7500	1.2337	1.7075	
52	1.1000	1.8427	1.2043	1.7945	1.2188	1.7493	1.2340	1.7068	8
53	1.1908	1.8418	1.2046	1.7937	1.2190	1.7485	1.2342	· 1.7061	7 6
54	1.1910	1.8410	1.2048	1.7929	1.2193	1.7478	1.2345	1.7054	
55	1.1912	1.8402	1.2050	1.7921	1.2195	1.7471	1.2348	1.7047	5
56	1.1915	1.8304	1.2053	1.7914	1.2198	1.7463	1.2350	1.7040	4
57 58	1.1917	1.8385	1.2055	1.7006	1.2200	1.7450	1.2353	1.7033	3
50	1.1919	1.8377 1.8360	1.2057	1.7898 1.7891	1.2203	1.7449	1.2355 1.2358	I.7027 I.7020	2 I
59 60	1.1921	1.8361	1.2002	1.7883	1.2208	1.7434	1.2350	1.7013	9
		1.0301		1.,					ّ
,	Co-sec.	SEC.	CO-SEC.	SEC.	Co-sec.	SEC.	Co-sec.	SEC.	′
	5	7°	1 50	80	5	5°	5	1 °)
,	•							•	

	30	36° 37°		7°	∘ n 38∘ ı			1 39° 1	
•	SEC.	Co-sec.	SEC.	Co-sec.	SEC.	Co-sæc.	SEC.	Co-sec.	<u>'</u>
-	1.2361	1.7013	1.2521	1.6616	1.2600	1.6243	1.2867	1.5800	60
1	1.2363	1.7006	1.2524	1.6610	1.2693	1.6237	1.2871	1.5884	59
2	1.2366	1.6999	1.2527	1.6603	1.2696	1.6231	1.2874	1.5879	58
3	1.2368	1.6993	1.2530	1.6597	1.2699	1.6224	1.2877	1.5873	57
4	1.2371	1.6986	1.2532	1.6591	1.2702	1.6218	1.2880	1.5867	56
5	1.2374 1.2376	1.6979	1.2535	1.6584 1.6578	1.2705	1.6212	1.2883	1.5862 1.5856	55
~	1.2370	1.6065	1.2541	1.0572	1.2710	1.6200	1.2880	1.5850	54 53
8	1.2382	1.6959	1.2543	1.6565	1.2713		1.2802	1.5845	52
9	1.2384	1.6952	1.2546	1.6559	1.2716	1.6194 1.6188	1.2895	1.5839	51
10	1.2387	1.6945	1.2549	1.0552	1.2719	1.6182	1.2898	1.5833	50
11	1.2389	1.6938	1.2552	1.6546	1.2722	1.6176	1.2001	1.5828	49
12	1.2392	1.6932	1.2554	1.6540	1.2725	1.6170	1.2004	1.5822	48
13	1.2395	1.6925 1.6918	1.2557	1.6533	1.2728	1.6164	1.2007	1.5816 1.5811	47 46
14 15	1.2397	1.6012	1.2563	1.0527	1.2734	1.6153	1.2013	1.5805	45
16	1.2403	1.6005	1.2565	1.6514	1.2737	1.6147	1.2016	1.5799	44
17	1.2405	1.6808	1.2568	1.6508	1.2739	1.6141	1.2010	1.5704	43
17 18	1.2408	1.6891	1.2571	1.6502	1.2742	1.6135	1.2922	1.5788	42
19	1.2411	1.6885	1.2574	1.6496	1.2745	1.6120	1.2926	1.5783	41
20	1.2413	1.6878	1.2577	1.6489	1.2748	1.6123	1.2929	1.5777	40
21	1.2416	1.6871	1.2579	1.6483	1.2751	1.6117	1.2932	1.5771	39 38
22 23	1.2419	1.6858	1.2582	1.6477 1.6470	1.2754	1.6105	1.2935	1.5766 1.5760	30
24	1.2424	1.6851	1.2588	7.6464	1.2760	1.6000	1.2941	1.5755	36
25	1.2427	1.6845	1.2501	1.6458	1.2763	1.6003	1.2044	1.5749	35
2Ğ	1.2420	1.6838	1.2593	1.6452	1.2766	1.6087	1.2947	1.5743	34
27	1.2432	1.6831	1.2596	1.6445	1.2769	1.6081	1.2950	1.5738	33
28	1.2435	1.6825	1.2599	1.6439	1.2772	1.6077	1.2953	1.5732	32
29	1.2437	1.6818	1.2602	1.6433 1.6427	1.2775	1.6070	1.2956 1.2960	1.5727	31
30 31	1.2440	1.6805	1.2607	1.6420	1.2778	1.6058	1.2003	1.5721 1.5716	30 20
32	1.2445	1.6798	1.2610	1.6414	1.2784	1.6052	1.2966	1.5710	28
33	1.2448	1.6792	1.2613	1.6408	1.2787	1.6046	1.2969	1.5705	27
34	1.2451	1.6785	1.2616	1.6402	1.2790	1.6040	1.2972	1.5699	2Ó
35	1.2453	1.6779	1.2619	1.6396	1.2793	1.6034	1.2975	1.5604	25
36	1.2456	1.6772	1.2622	1.6389	1.2795	1.6029	1.2978	1.5688	24
37	1.2459	1.6766	1.2624	1.6383	1.2798	1.6023	1.2981	1.5683 1.5677	23 22
38 39	1.2461	1.6759	1.2630	1.6377	1.2804	1.6017	1.2988	1.5672	2I
40	1.2467	1.6746	1.2633	1.6365	1.2807	1.6005	1.2001	1.5666	20
41	1.2470	1.6730	1.2636	1.6350	1.2810	1.6000	1.2004	1.5661	19
42	1.2472	1.6733	1.2639	1.6352	1.2813	1.5994	1.2997	1.5655	18
43	1.2475	1.6726	1.2641	1.6346	1.2816	1.5988	1.3000	1.5650	17
44	1.2478	1.6720	1.2644	1.6340	1.2819	1.5982	1.3003	1.5644	16
45 46	1.2480	1.6713	1.2647	1.6334 1.6328	1.2822	1.5976	1.3006	1.5639 1.5633	15 14
47	1.2486	1.6700	1.2653	1.6322	1.2828	1.5965	1.3013	1.5628	13
48	1.2488	1.6604	1.2656	1.6316	1.2831	1.5959	1.3016	1.5622	12
49	1.2490	1.6687	1.2659	1.6309	1.2834	1.5953	1.3019	1.5617	11
50	1.2494	1.6681	1.2661	1.6303	1.2837	1.5947	1.3022	1.5611	10
51	1.2497	1.6674	1.2664	1.6297	1.2840	1.5942	1.3025	1.5606	8
52	1.2499	1.6668	1.2667	1.6201	1.2843	1.5936	1.3029	1.5600	
53 54	1.2502	1.6655	1.2670	1.6285	1.2840	1.5030 1.5024	1.3032	1.5595	7
55	1.2508	1.6648	1.2676	1.6273	1.2852	1.5010	1.3038	1.5584	5
56	1.2510	1.6642	1.2679	1.6267	1.2855	1.5013	1.3041	1.5570	4
57	1.2513	1.6636	1.2681	1.6261	1.2858	1.5907	1.3044	1.5573	3
58	1.2516	1.6629	1.2684	1.6255	1.2861	1.5001	1.3048	1.5568	2
59 60	1.2519	1.6623	1.2687	1.6249	1.2864	1.5896	1.3051	1.5563	1
	1.2521	1.6616	1.2690	1.6243	1.2867	1.5890	1.3054	1.5557	-
,	CO-SEC. SEC.		Co-sec.	SEC.	Co-sec.	SEC.	Co-sec.	SEC.	'
	53°		II 5	2°	1 5	1°	l 5	00	l

	. 40	0° 1	r 4	1°	ll 42°		!! 43 °		ı
<u>'</u>	SEC.	Co-sec.	SEC.	Co-sec.	SEC.	Co-sec.	SEC.	Co-sec.	'
۵	1.3054	1.5557	1.3250		1.3456	I-4945		1.4663	60
I 2	1.3057	1.5552 1.5546	1.3253	1.5237		1-4940 1-4935	1.3677	1.4658	59 58
3	1.3064	1.5541	1.3260	1.5227	1.3467	I-4930	1.3684	1-4649	57
4	1.3067	1.5536	1.3263	1.5222	1.3470	1-4925	1.3688	1.4644	56
5	1.3070	1.5530	1.3267	1.5217	1.3474	1.4921	1.3692	1-4640	55
6	1.3073	1.5525	1.3270	1.5212	1.3477	1.4916	1.3695	I-4635	54
7 8	1.3076	1.5520	1.3274	1.5207	1.3481	1.4911 1.4906	1.3699	1.4631	53
Ö	1.3083	1.5500	1.32%	1.5197	1.3488	1-4901	1.3703	1.4626 1.4622	52 51
10	1.3086	1.5503	1.3284	1.5192	1.3492	1.4897	1.3710	1.4617	50
11	1.3089	1.5408	1.3287	1.5187		1.4892	1.3714	1.4613	- 1
12	1.3002	1.5493	1.3200	1.5182	1.3499	1.4887	1.3718	1.4608	49 48
13	1.3096	1.5487	1.3294	1.5177	1.3502	1-4882	1.3722	1-4604	47
14	1.3099	1.5482	1.3297	1.5171	1.3506	1-4877	1.3725	1-4599	46
15	1.3102	1.5477		1.5166	1.3509	1-4873	1.3729	1-4595	45
16	1.3105	1.5471	1.3304	1.5161	1.3513	1.4868	1.3733	1-4500	44
17 18	1.3109	1.5466 1.5461	1.3307	1.5156	1.3517	1-4858	1-3737	1.4586	43
19	1.3112	1.5456	1.3314	1.5146	1.3524	1-4854	1.3740 1.3744	1-4581 1-4577	42 41
20	1.3118	1.5450	1.3318	1.5141	1.3527	1.4840	1.3748	1-4572	40
21	1.3121	1.5445	1.3321	1.5136	1.3531	1.4844	1.3752	1-4568	
22	1.3125	1.5440	1.3324	1.5131	1.3534	1.4839	1.3756	1-4563	39 38
23	1.3128	1.5434	1.3328	1.5126		1.4835	1.3759	1-4550	37
24	1.3131	1.5429	1.3331	1.5121	1.3542	1-4830	1.3763	1-4554	36
25	1.3134	1.5424	1.3335	1.5116	1-3545	1-4825	1.3767	1-4550	35
26	1.3138	1.5419	1.3338	1.5111	1.3549	1-4821	1.3771	1-4545	34
27	1.3141	1.5413	1.3342	1.5106	1.3552	1-4816	1.3774	1-4541	33
28 20	1.3144	1.5408 1.5403	1.3345	1.5101	1.3556 1.3560	1.4811	1.3778	1.4536	32
30	1.3140	1.5398	I.3352	1.5002	1.3563	1-4802	1.3786	1.4532	31 30
	1.3154	1.5392	•	1.5087		1-4797			-
· 31 32	1.3157	1.5387	1.3359	1.5082	1.3571	1-4792	1.3794	1.4523 1.4518	29 28
33	1.3161	1.5382	1.3362	1.5077	1.3574	1.4788	1.3797	1.4514	27
34	1.3164	I 5377	1.3306	1.5072	1.3578	1-4783	1.3801	1.4510	26
35	1.3167	1.5371	1.3309	1.5067	1.3581	1-4778	1.3805	1-4505	25
36	1.3170	1.5366	1.3372	1.5062	1.3585	1-4774	1.3809	1.4501	24
37 38	1.3174	1.5361	1.3376	1.5057	1.3589	1-4769	1.3813	1.4496	23
30 39	1.3177	1.5356	1.3379	1.5052	1.3592 1.3596	1-4764 1-4760	1.3820	I-4492 I-4487	22 21
40	1.3184	1.5345	1.3386	1.5042	1.3600	1-4755	1.3824	I-4483	20
41	1.3187	1.5340	1.3300	1.5037		1-4750	1.3828	1-4479	10
42	1.3100	1.5335	1.3393	1.5032	1.3607	1-4746	1.3832	1-4474	18
43	1.3193	1.5330	1.3397	1.5027	1.3611	1-4741	1.3836	1.4470	17
44	1.3197	1.5325	1.3400	1.5022	1.3614	1-4736	1.3839	1.4465	ΙÓ
45	1.3200	1.5319	1.3404	1.5018	1.3618	I-4732 ·	1.3843	1.4461	15
46	1.3203	1.5314		1.5013	1.3622	1-4727	1.3847	1-4457	14
47 48	1.3207	1.5300	1.3411	1.5008	1.3625	1.4723 1.4718	1.3851	1-4452	13
49	1.3210	1.5304 1.5299	1.3414	1.5003	1.3633	1-4713	1.3859	I.4448 I-4443	12
50	1.3217	1.5294	1.3421	1.4993	1.3636	1-4700	1.3863	1-4439	10
51	1.3220	1.5280	1.3425	1.4088	1.3640	1-4704	1.3867	1-4435	
52	1.3223	1.5283	1.3428	1-4983	1.3644	1-4699	1.3870	1-4430	8
53	1.3227	1.5278	1.3432	1.4979	1.3647	1.4695	1.3874	1-4426	7
54	1.3230	1.5273	1.3435	1-4974	1.3651	1-4600	1.3878	1-4422	
55	1.3233	1.5268	1.3439	1.4969	1.3655	1-4686	1.3882	1-4417	5
56	1.3237	1.5263	1-3442	1.4964	1.3658	1-4681	1.3886	1-4413	4
57 58	1.3240	1.5258	1.3446	1.4059	1.3662 1.3666	1-4676 1-4672	1.3890	1-4408	3
50 59	1.3243	1.5253 1.5248	1.3449 1.3453	1-4954 1-4940	1.3669	1.4667	1.3808	1-4404 1-4400	1
66	1.3250	1.5242	1.3456	1-4945	1.3673	1.4663	1.3002	1-4395	
_	i ———	l							_
•	Co-sec.		Co-sec.	SEC.	Co-sec.	SEC.	Co-sec.	SEC.	
	ı 49	90 I	ս 43	3°	1 4	7°	u 40	30	i

172 NATURAL SECANTS AND CO-SECANTS

	1. 440		1	1	l 44° i		1		1 44°		ı
•	SEC.	Co-sec.	•	'_	SEC.	Co-sec.	'	′	SEC	Co-sæc.	,
-	1.3902	1.4395	60	21	1.3984	1.4305	39	41	1.4065	1.4221	19
1	1.3905	1.4391	59	22	1.3988	1.4301	38	42	1.4069	1.4217	18
2	1.3909	1-4387	58	23	1.3992	1.4297	37	43	1.4073	1.4212	17
3	1.3913	1.4382	57	24	1.3996	1.4292	36	44	I 4077	1.4208	16
4	1.3917	1.4378	56	25	1.4000	1.4288	35	45	1.4081	1.4204	15
5	1.3921	1.4374	55	26	1.4004	1.4284	34	46	1.4085	1.4200	14
6	1.3925	1.4370	54	27	1.4008	1.4280	33	47	1.4089	1.4196	13
7 8	1.3929	1.4365	53	28	1.4012	1.4276	32	48	1.4093	1.4192	12
8	1.3933	1.4361	52	29	1.4016	1.4271	31	40	1.4097	1.4188	11
9	1.3937	1.4357	51	30	1.4020	1.4267	30	50	1.4101	1.4183	10
10	1.3941	1.4352	50	31	1.4024	1.4263	20	51	1.4105	1.4170	9
11	1.3945	1.4348	49	32	1.4028	1.4250	28	52	1.4100	1.4175	8
12	1.3949	I-4344	48	33	1.4032	1.4254	27	53	1.4113	1.4171	7 6
13	1.3953	1.4339	47	34	1.4036	1.4250	26	54	1-4117	1.4167	6
14	1.3957	1.4335	46	35	1.4040	1.4246	25	55	1.4122	1.4163	5
15	1.3960	1.4331	45	36	1.4044	1.4242	24	56	1.4126	1.4159	4
16	1.3964	1.4327	44	37	1.4048	1.4238	23	57	1.4130	1.4154	3
17	1.3968	1.4322	43	38	1.4052	1.4233	22	58	1.4134	1.4150	2
18	1.3972	1.4318	42	39	1.4056	1.4229	21	59	1.4138	1.4146	1
19	1.3976	1.4314	41	40	1.4060	1.4225	20	60	1.4142	1.4142	0
20	1.3980	1.4310	40		1			-1			1
7	Co-sec.	SEC.	•	1	Co-sec.	SEC.	•	,	Co-sec.	SEC	7
	45°			l	1 4	5°			4	5°	

INDEX

PAGE	, PAGE
Acme thread 59	Fractions, common 1-7
Angles 129	Fractions, decimal 8-15
Angles and their functions	Fractions, improper 2
138-172	Fractional threads 48
Angles, measuring103-109	
Areas of surfaces 85-90	Gearing, speed of34-36
	Gearing a lathe for thread
Bolt circles 132	cutting37-52
Brown and Sharpe thread. 60	Gears, compounding 41
<u>-</u>	Gears, cone of
Cancellation 16	-
Common fractions 1-7	Hexagon121, 124
Compound gears41-43	, , ,
Compound rests106-109	Improper fractions 2
Cone of gears 43	
Cone roller	Lathe, gearing for thread
Contents of solid bodies 91-102	cutting37-52
Cube and square root78-84	Lathes, speed of72-77
Cut and try method of	Laying out jig 133
screw cutting 46	Lead and pitch 53
Cutting speed72-77	Lead screw, true pitch of 39
	-
Decimal equivalents 14	Making and using formula
Decimal fractions 8-15	110-116
Double threads55-57	Measuring angles103-109
Drilling for taps62-64	Measuring surfaces85-90
•	Metals, properties of 96
Formulas, making and	Metric threads 49
using	Micrometer and vernier . 117-120

PAGE	PAGE
Mixed numbers 6	Square and cube root78-84
	Square threads 58
Numbers, mixed 6	Surfaces, measuring85-90
	_
Octagon121-125	Taper work65-71
One rule for all95-102	Tapers, figuring 68
•	Tapers in degrees 69
Pentagon 121	Taps, drilling for62-64
Percentage26-28	Thread cutting37-52
Pitch and lead 53	Threads, square 58
Planers, speed of	Threads, Acme 59
Polygons, properties of 121-126	Threads, Brown & Sharpe 60
Proportion or ratio22-25	Threads, double55-57
Pulleys, speed of29-33	Threads, fractional 48
	Threads, metric 49
Ratio or proportion22-25	Threads, U. S. S54-55
Regular polygons and their	Threads, worm 60
properties121-126	Triangles105, 121, 123
	Trigonometry for shop use
Screw cutting37-52	127-137
Screw thread calculations. 53-61	Trigonometry tables138-172
Shapers, speed of 76	True pitch of lead screw 39
Shop trigonometry127-137	
Solid bodies, contents of 91-102	U. S. S. thread54-55
Spacing bolt circles 132	
Speed of gearing34-36	Vernier and micrometer. 117-120
Speed of lathes and planers	Volume of solid bodies91-102
72-77	
Speed of pulleys29-33	Weight of bodies 93
Square 121, 124	Worm, threads 60

MAR 21 1919

. , · ,