

1. Problem Definition

The correlation between video moments and text is crucial for the task of video moment retrieval (VMR), yet there is a scarcity of large-scale datasets.

2. Solution

- A video diffusion model that synthesises training data
- A data selection module that selects beneficial data for the VMR task

5. Data Selection

Generative Video Diffusion for Unseen Novel Semantic Video Moment Retrieval

Dezhao Luo¹, Shaogang Gong¹, Jiabo Huang², Hailin Jin³, Yang Liu^{4,5}

¹Queen Mary University of London, ²Sony AI, ³Adobe Research,

⁴WICT, Peking University, ⁵State Key Laboratory of General Artificial Intelligence, Peking University,

3. Video Diffusion Model

6. Video Editing Ability

Uni-modal structure: $s_u(m_s, m_e) = \frac{1}{N} \sum_{i=1}^{N} \cos(\text{VM}(f_{m_s}^i), \text{VM}(f_{m_e}^i))$

Model performance: $D_{mpd} = TOP_l(\{(d, -VMR(d)) \mid d \in D_{cu}\})$

4. Data Generation

Sony Al

7. Conclusion

a. FVE is able to generate high-quality training data that benefits the VMR task (44.89%vs 44.01%) b. FVE is able to change the action in a video and maintain other details.