

Agenda

- Introduction to Classification
- Decision Tree
- Random Forest
- **■** Bayesian
- Lazy Learner (kNN)
- Support Vector Machine
- Model Evaluation and Selection

ClassificationDefinition

- In machine learning and statistics, classification is the problem of identifying to which of a set of categories (sub-populations) a new observation belongs, on the basis of a training set of data containing observations (or instances) whose category membership is known.
- Examples are assigning a given email to the "spam" or "non-spam" class, and assigning a diagnosis to a given patient based on observed characteristics of the patient (sex, blood pressure, presence or absence of certain symptoms, etc.)

Source : Wikipedia.com

Examples ofClassification Application

- Handwriting recognition: used to interpret intelligible handwritten input from sources such as paper documents, photographs, touch-screens and other devices
- **Web search engine :** used to classify information on World Wide Web
- Speech recognition: used for recognition and translation of spoken language into text by computers.
- Biological classification: used for classifying biological organism on the basis of shared characteristics (taxonomy)
- **Credit scores :** used to determine who qualifies for a loan, at what interest rate, and what credit limits.

Agenda

- Introduction to Classification
- Decision Tree Method
- Random Forest Method
- Bayesian Method
- Lazy Learner (kNN) Method
- Support Vector Machine
- Model Evaluation and Selection

Decision TreeDefinition

- Decision tree is a tree shaped diagram used to determine a course of action. Each branch of the tree represents a possible decision, occurrence or reaction
- Important Terms
 - Entropy: measure of randomness in the dataset
 - Information gain : measure of decrease in entropy after dataset is split
 - Leaf node: carries the classification or decision
 - Root node: top most decision node

Decision TreeClassification Task

Test Set

Example of a Decision Tree

	Categorical	Categorical	Continuous	Class
TID	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Training Data

Apply Model toTest Data

Test Data

Refund	Marital Status	Taxable Income	Cheat
No	Married	80K	?

Decision Tree Induction

Many Algorithms:

- Hunt's Algorithm (one of the earliest)
- CART
- ID3, C4.5
- SLIQ,SPRINT

Greedy strategy.

• Split the records based on an attribute test that optimizes certain criterion.

Issues

- Determine how to split the records
- How to specify the attribute test condition?
- How to determine the best split?
- Determine when to stop splitting

How to Specify Attribute Test Condition?

- Depends on attribute types
 - Discrete
 - Nominal
 - Ordinal
 - Continuous
- Depends on number of ways to split
 - Multi-way split
 - Binary split

Splitting Based on Nominal Attributes

■ Multi-way split:

Use as many partitions as distinct values.

- **■** Binary split:
 - Divides values into two subsets
 - Need to find optimal partitioning

Splitting Based on Ordinal Attributes

■ Multi-way split:

Use as many partitions as distinct values.

Binary split:

- Divides values into two subsets
- Need to find optimal partitioning

Splitting Based on Continuous Attributes

Different ways of handling

- Discretization to form an ordinal categorical attribute
 - Static discretize once at the beginning
 - Dynamic ranges can be found by equal interval bucketing, equal frequency bucketing (percentiles), or clustering.
- \blacksquare Binary Decision: (A < v) or (A \ge v)
 - consider all possible splits and finds the best cut
 - can be more compute intensive

(i) Binary Split

(ii) Multi-way Split

Decision TreeSummary

Advantages:

- Inexpensive to construct
- Extremely fast at classifying unknown records
- Easy to interpret for small-sized trees
- Accuracy is comparable to other classification techniques for many simple data sets

Disadvantages:

- Over-fitting when algorithm capture noise in the data
- The model can get unstable due to small variation of data
- Low biased tree: difficult for the model to work with new data

Agenda

- Introduction to Classification
- Decision Tree
- Random Forest
- Bayesian
- Lazy Learner (kNN)
- Support Vector Machine
- Model Evaluation and Selection

Random Forest Definition

- Random forest or Random Decision Forest is a method that operates by constructing multiple decision trees during training phases
- The Decision of the majority of the trees is chosen by the random forest as final decision

Illustration of Random Forest

Application ofRandom Forest

Random **Forests**

■ Randomization

- Bootstrap Samples
- Random Selection of *K* ≤ p split variables
- Random Selection of the Treshold

Random Forests

Extra Trees

Random Forest (Breiman 2001)

Random Forest

- Each classifier in the ensemble is a *decision tree* classifier and is generated using a random selection of attributes at each node to determine the split
- During classification, each tree votes and the most popular class is returned

Two Methods to construct Random Forest

- Forest-RI (random input selection): Randomly select, at each node, F attributes as candidates for the split at the node. The CART methodology is used to grow the trees to maximum size
- Forest-RC (random linear combinations): Creates new attributes (or features) that are a linear combination of the existing attributes (reduces the correlation between individual classifiers)
- Insensitive to the number of attributes selected for consideration at each split, and faster than bagging (grouping based on frequency) or boosting

How DoesRandom Forest Work?

■ We have 3 trees in the forest...

How DoesRandom Forest Work?

What fruit is this?

Diameter: 3

Colour : Orange

Grows in summer : Yes

Shape: Circle

- From Tree 1, we classify it as ORANGE
- From Tree 2, we classify it as CHERRY
- From Tree 3, we classify it as ORANGE
- Majority voted as ORANGE, so we classify it as ORANGE

Advantages:

- It can be used for both regression and classification tasks and that it's easy to view the relative importance it assigns to the input features
- It is also considered as a very handy and easy to use algorithm, because it's default hyperparameters often produce a good prediction result

Disadvantages:

- a large number of trees can make the algorithm to slow and ineffective for real-time predictions. A more accurate prediction requires more trees, which results in a slower model
- It is a predictive modeling tool and not a descriptive tool

Agenda

- Introduction to Classification
- Decision Tree
- Random Forest
- Bayesian
- Lazy Learner (kNN)
- Support Vector Machine
- Model Evaluation and Selection

Bayesian ClassifierDefinition

→ A probabilistic framework for solving classification problems

Conditional Probability:

$$P(C \mid A) = \frac{P(A, C)}{P(A)}$$

$$P(A \mid C) = \frac{P(A,C)}{P(C)}$$

■ Bayes theorem:

$$P(C \mid A) = \frac{P(A \mid C)P(C)}{P(A)}$$

Examples ofBayes Theorem

- Given:
 - A doctor knows that meningitis causes stiff neck 50% of the time
 - Prior probability of any patient having meningitis is 1/50,000
 - Prior probability of any patient having stiff neck is 1/20
- If a patient has stiff neck, what's the probability he/she has meningitis?

$$P(M \mid S) = \frac{P(S \mid M)P(M)}{P(S)} = \frac{0.5 \times 1/50000}{1/20} = 0.0002$$

Bayesian Classifier

- Consider each attribute and class label as random variables
- Given a record with attributes $(A_1, A_2,...,A_n)$
 - Goal is to predict class C
 - Specifically, we want to find the value of C that maximizes P(C| A₁, A₂,...,A_n)
- Can we estimate $P(C | A_1, A_2,...,A_n)$ directly from data?

Bayesian Classifier

Approach:

• compute the posterior probability $P(C \mid A_1, A_2, ..., A_n)$ for all values of C using the Bayes theorem

$$P(C \mid A_{1}A_{2}...A_{n}) = \frac{P(A_{1}A_{2}...A_{n} \mid C)P(C)}{P(A_{1}A_{2}...A_{n})}$$

- Choose value of C that maximizes
 P(C | A₁, A₂, ..., A_n)
- Equivalent to choosing value of C that maximizes
 P(A₁, A₂, ..., A_n | C) P(C)

How to estimate $P(A_1, A_2, ..., A_n \mid C)$?

Naïve Bayes Classifier

- Assume independence among attributes A_i when class is given:
 - $P(A_1, A_2, ..., A_n | C) = P(A_1 | C_i) P(A_2 | C_i)... P(A_n | C_i)$
 - Can estimate P(A_i | C_i) for all A_i and C_i.
 - New point is classified to C_j if $P(C_j)$ Π $P(A_i | C_j)$ is maximal.

How to Estimate Probabilities from Data?

e.g.,
$$P(No) = 7/10$$
, $P(Yes) = 3/10$

••• For discrete attributes:

$$P(Ai \mid Ck) = |Aik| / Nc$$

where |Aik| is number of instances having attribute Ai and belongs to class Ck

TID	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

How to EstimateProbabilities from Data?

TID	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

$$P(Income = 120 \mid No) = \frac{1}{\sqrt{2\pi}(54.54)} e^{\frac{(120-110)^2}{2(2975)}} = 0.0072$$

Normal distribution:

$$P(A_{i} \mid c_{j}) = \frac{1}{\sqrt{2\pi\sigma_{ij}^{2}}} e^{\frac{(A_{i} - \mu_{ij})^{2}}{2\sigma_{ij}^{2}}}$$

- One for each (Ai,ci) pair
- For (Income, Class=No):
 - If Class=No
 - sample mean = 110
 - sample variance = 2975

Example ofNaïve Bayes Classifier

Name	Give Birth	Can Fly	Live in Water	Have Legs	Class
Human	Yes	No	No	Yes	Mammals
Phyton	No	No	No	No	Non-Mammals
Salmon	No	No	Yes	No	Non-Mammals
Whale	Yes	No	Yes	No	Mammals
Frog	No	No	Sometimes	Yes	Non-Mammals
Komodo	No	No	No	Yes	Non-Mammals
Bat	Yes	Yes	No	Yes	Mammals
Pigeon	No	Yes	No	Yes	Non-Mammals
Cat	Yes	No	No	Yes	Mammals
Leopard Shark	Yes	No	Yes	No	Non-Mammals
Turtle	No	No	Sometimes	Yes	Non-Mammals
Penguin	No	No	Sometimes	Yes	Non-Mammals
Porcupine	Yes	No	No	Yes	Mammals
Eel	No	No	Yes	No	Non-Mammals
Salamander	No	No	Sometimes	Yes	Non-Mammals
Gila Monster	No	No	No	Yes	Non-Mammals
Platypus	No	No	No	Yes	Mammals
Owl	No	Yes	No	Yes	Non-Mammals
Dolphin	Yes	No	Yes	No	Mammals
Eagle	No	Yes	No	Yes	Non-Mammals

-	Δ.	Attri	ihı	ıtes
	Α.	ALLI	เมเ	いにつ

M: Mammals

N: Non-Mammals

$$P(A \mid M) = \frac{6}{7} \times \frac{6}{7} \times \frac{2}{7} \times \frac{2}{7} = 0.06$$

$$P(A \mid N) = \frac{1}{13} \times \frac{10}{13} \times \frac{3}{13} \times \frac{4}{13} = 0.0042$$

$$P(A \mid M)P(M) = 0.06 \times \frac{7}{20} = 0.021$$

$$P(A \mid N)P(N) = 0.004 \times \frac{13}{20} = 0.0027$$

P(A|M)P(M) > P(A|N)P(N)

=> Mammals

Give Birth	Can Fly	Live in Water	Have Legs	Class
Yes	No	Yes	No	?

Naïve Bayes Summary

- Robust to isolated noise points
- Handle missing values by ignoring the instance during probability estimate calculations
- Robust to irrelevant attributes
- Independence assumption may not hold for some attributes
 - Use other techniques such as Bayesian Belief Networks (BBN)

Agenda

- Introduction to Classification
- Decision Tree
- Random Forest
- Bayesian
- Lazy Learner (kNN)
- Support Vector
- Model Evaluation and Selection

Nearest Neighbor Definition

K-nearest neighbors of a record x are data points that have the k smallest distance to x

Lazy Learner (kNN) Technique Nearest Neighbor Classifiers

■ Basic idea:

If it walks like a duck, quacks like a duck, then it's probably a duck

Nearest-Neighbor Classifiers

→ Requirement

- The set of stored records
- Distance Metric to compute distance between records
- The value of k, the number of nearest neighbors to retrieve

To classify an unknown record:

- Compute distance to other training records
- Identify k nearest neighbors
- Use class labels of nearest neighbors to determine the class label of unknown record (e.g., by taking majority vote)

1 Nearest-Neighbor

Voronoi Diagram

Nearest-Neighbor Classification

- Compute distance between two points:
 - Euclidean distance

$$d(p,q) = \sqrt{\sum_{i} (p_{i} - q_{i})^{2}}$$

- Determine the class from nearest neighbor list
 - take the majority vote of class labels among the k-nearest neighbors
 - Weigh the vote according to distance
 - weight factor, w = 1/d2

Nearest-Neighbor Classification

Choosing the value of k:

- If k is too small, sensitive to noise points
- If k is too large, neighborhood may include points from other classess

k-NN classifiers are lazy learners

- It does not build models explicitly
- Unlike eager learners such as decision tree induction and rule-based systems
- Classifying unknown records are relatively expensive

Example: PEBLS

- → PEBLS: Parallel Exemplar-Based Learning System (Cost & Salzberg)
 - Works with both continuous and nominal features
 - For nominal features, distance between two nominal values is computed using modified value difference metric (MVDM)
 - Each record is assigned a weight factor
 - Number of nearest neighbor, k = 1

Example: PEBLS

TID	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Class	Marital Status		
Class	Single	Married	Divorced
Yes	2	0	1
No	2	4	1

Class	Refund		
Class	Single	Married	
Yes	0	3	
No	3	4	

Distance between nominal attribute values:

d(Single, Married)

d(Single, Divorced)

$$= |2/4 - 1/2| + |2/4 - 1/2| = 0$$

d(Married, Divorced)

$$= |0/4 - 1/2| + |4/4 - 1/2| = 1$$

d(Refund=Yes,Refund=No)

$$= |0/3 - 3/7| + |3/3 - 4/7| = 6/7$$

$$d(V_1, V_2) = \sum_{i} \left| \frac{n_{1i}}{n_1} - \frac{n_{2i}}{n_2} \right|$$

Example: PEBLS

TIDRefundMarital StatusTaxable IncomeCheatXYesSingle125KNoYNoMarried100KNo

Distance between record X and record Y:

$$\Delta(X,Y) = w_X w_Y \sum_{i=1}^{d} d(X_i, Y_i)^2$$

where: $w_X = \frac{\text{Number of times X is used for prediction}}{\text{Number of times X predicts correctly}}$

 $W_X \cong 1$ if X makes accurate prediction most of the time

 $w_X > 1$ if X is not reliable for making predictions

K-NN Summary

Advantages:

- Simple technique that is easily implemented
- Building model is cheap
- Extremely flexible classification scheme
- Well suited for
 - Multi-modal classes
 - Records with multiple class labels
- Error rate at most twice that of Bayes error rate

Disadvantages:

- Classifying unknown records are relatively expensive
 - Requires distance computation of k-nearest neighbors
 - Computationally intensive, especially when the size of the training set grows
- Accuracy can be severely degraded by the presence of noisy or irrelevant features

Agenda

- Introduction to Classification
- Decision Tree
- Random Forest
- Bayesian
- Lazy Learner (kNN)
- Support Vector Machine
- Model Evaluation and Selection

Support Vector Machine Objectives

Support Vector

Machine

One Possible Solution

Another Possible Solution

Other Possible Solution

- → Which one is better? B1 or B2?
- **■** How do you define better?

Support Vector

Machine

Find hyperplane maximizes the margin => B1 is better than B2

sification Mo

Support Vector Machines Issue

What if the problem is not linearly separable?

Support VectorMachines Issue

What if the problem is not linearly separable?

- Introduce slack variables
 - Need to minimize:

$$L(w) = \frac{||\vec{w}||^2}{2} + C\left(\sum_{i=1}^{N} \xi_i^k\right)$$

Subject to:

$$f(\vec{x}_i) = \begin{cases} 1 & \text{if } \vec{w} \cdot \vec{x}_i + b \ge 1 - \xi_i \\ -1 & \text{if } \vec{w} \cdot \vec{x}_i + b \le -1 + \xi_i \end{cases}$$

Nonlinear Support Vector Machines

What if decision boundary is not linear?

SVM Summary

■ Advantages:

- SVM's are very good when we have no idea on the data.
- Works well with even unstructured and semi structured data like text, Images and trees.
- The kernel trick is real strength of SVM. With an appropriate kernel function, we can solve any complex problem.
- Unlike in neural networks, SVM is not solved for local optima.
- It scales relatively well to high dimensional data.
- SVM models have generalization in practice, the risk of overfitting is less in SVM.

Disadvantages:

- Choosing a "good" kernel function is not easy.
- Long training time for large datasets.
- Difficult to understand and interpret the final model, variable weights and individual impact.
- Since the final model is not so easy to see, we can not do small calibrations to the model hence its tough to incorporate our business logic.

Agenda

- Introduction to Classification
- Decision Tree
- Random Forest
- Bayesian
- Lazy Learner (kNN)
- Support Vector Machine
- Model Evaluation and Selection

Metrics forPerformance Evaluation

- Focus on the predictive capability of a model
 - Rather than how fast it takes to classify or build models, scalability, etc.
- Confusion Matrix:

	Predicted Class		
		Class = Yes	Class = No
Actual Class	Class = Yes	a (TP)	b (TN)
	Class = No	c (FP)	d (FN)

Most widely-used metric:

Accuracy =
$$\frac{a+d}{a+b+c+d} = \frac{TP+TN}{TP+TN+FP+FN}$$

Limitation of Accuracy

- Consider a 2-class problem
 - Number of Class 0 examples = 9990
 - Number of Class 1 examples = 10
- If model predicts everything to be class 0, accuracy is 9990/10000 = 99.9 %
 - Accuracy is misleading because model does not detect any class 1 example

Cost Matrix

	Predicted Class		
	C(i j)	Class = Yes	Class = No
Actual Class	Class = Yes	C(Yes Yes)	C(No Yes)
	Class = No	C(Yes No)	C(No No)

C(i|j): Cost of misclassifying class j example as class i

Computing Cost ofClassification

Predicted Class		
C(i j)	+	-
+	-1	100
-	1	0
		C(i j) +

Model M ₁	Predicted Class		
		+	-
Actual Class	+	150	40
	-	60	250

Accuracy = 80%

Cost = 3910

Accuracy = 90%

Cost = 4255

Cost vs Accuracy

	Predicted Class		
		Class = Yes	Class = No
Actual Class	Class = Yes	а	b
	Class = No	С	d

	Predicted Class		
		Class = Yes	Class = No
Actual Class	Class = Yes	р	q
	Class = No	q	р

Accuracy is proportional to cost if

1.
$$C(Yes|No) = C(No|Yes) = q$$

2.
$$C(Yes|Yes) = C(No|No) = p$$

$$-$$
ON = a + b + c + d

$$\blacksquare$$
Accuracy = (a + d)/N

Cost-Sensitive Measures

Precision (p) =
$$\frac{a}{a+c}$$

Recall (r) =
$$\frac{a}{a+b}$$

F-measure (F) =
$$\frac{2rp}{r+p} = \frac{2a}{2a+b+c}$$

- → Precision is biased towards C(Yes|Yes) & C(Yes|No)
- → Recall is biased towards C(Yes|Yes) & C(No|Yes)
- F-measure is biased towards all except C(No | No)

7/	

Weighted Accuracy =
$$\frac{w_1 a + w_4 d}{w_1 a + w_2 b + w_3 c + w_4 d}$$

	Predicted Class		
Actual Class	Class = Yes Class = No	Class = Yes a (TP) c (FP)	Class = No b (TN) d (FN)