STA 250/MTH 342 – Intro to Mathematical Statistics

Lecture 21

Sampling models on contingency tables

- The test of independence on contingency tables as we have studied so far rely on the multinomial sampling model: the n individual cases are distributed over the $r \times c$ cells of the table independently according to $r \times c$ cell probabililities.
- So the sampling distribution of the $r \times c$ cell counts are multinomial.
- ► This is called *full multinomial sampling* (FMS).

- ▶ Sometimes the counts in a table do not arise in this fashion.
- ► For example, one or both sets of the marginal totals may be fixed by design.
- ▶ If one set of marginal totals (either the row totals or the column totals) are fixed, we have a *product multinomial sampling* (PMS) model.
- ► If both row totals and column totals are fixed, we have *hypergeometric sampling* model.
- ▶ Let us learn these through examples.

Example A: Social influence on right-handedness?

Counts of 1180 art works showing activity that can be categorized as left- or right-handed, by geographic location.

	Right	Left	Total	% Right
Central Europe	312	23	335	93%
Medit. Europe	300	17	317	95%
Middle East	85	4	89	96%
Africa	105	12	117	90%
Central Asia	93	8	101	92%
Far East	126	13	139	91%
Americas	72	10	82	88%
Total	1093	87	1180	92.6%

From Coren and Porac (1977). Science.

► Is the degree of right-handedness socially determined?

- ► The row totals are essentially *fixed*, not actually random.
- ▶ What is the null hypothesis we want to test?
- ▶ H_0 : The proportion of right-handed is the same across all the geographic locations.
- ▶ Under H_0 , each row is a multinomial vector (in this particular example a Binomial(n_i ; θ_i) vector).
- ► The rows are independent. So the joint probability of the cell counts are the product of the probability of each row.
- Let us look at another example.

Example B: Like father, like son?

► A study was carried out to investigate the starting words in writing samples from British economists James Mill and John Stuart Mill.

First Word:	But	Where	This/ItThus/And	A/By	All others	Totals
James Mill	39	26	339	33	638	1075
John Stuart Mill	38	16	112	11	274	451
Totals	77	42	451	44	912	1526

From O'Brien and Darnell (1982).

▶ Do the two have similar style in choosing the start of a sentence?

- Similar to the previous example, the row totals are essentially fixed.
- ► The null hypothesis: the proportion of each word is the same across the rows.
- Again, the joint probability of the cell counts are the product of the two multinomials.
- ► This is called *product multinomial sampling*.

Product multinomial sampling

When the row totals are fixed,

 \triangleright For each row i,

$$(X_{i1}, X_{i2}, \ldots, X_{ic}) \sim \text{multinomial}(X_{i+} = n_i; \theta_{i1}, \theta_{i2}, \ldots, \theta_{ic}).$$

► The rows are independent multinomial vectors.

We want to test

$$H_0: (\theta_{i1}, \theta_{i2}, \dots, \theta_{ic}) = (\theta_1, \theta_2, \dots, \theta_c)$$
 for all i

VS

$$H_1$$
: otherwise.

That is, the vectors $(\theta_{i1}, \theta_{i2}, \dots, \theta_{ic})$ are not the same across all *i*.

► This is called the *test of homogeneity*.

- Let us try to find out what tests can we use for this purpose.
- Note that this still lies inside the general problem of testing two composite hypotheses. So again we can try to construct the (generalized) LR test and perhaps even find a corresponding χ^2 test as an approximation to the LR test.
- ▶ The likelihood under H_0 is

$$L(\theta_1,\theta_2,\ldots,\theta_c) = \prod_{i=1}^r \left(\frac{X_{i+}!}{\prod_{j=1}^c X_{ij}!} \theta_1^{X_{i1}} \theta_2^{X_{i2}} \cdots \theta_c^{X_{ic}} \right).$$

► So we can solve for the restricted MLE (exercise!):

$$\hat{\theta}_j = \frac{X_{+j}}{X_{++}} = \frac{X_{+j}}{n}$$

and by the invariance property

$$\hat{m}_{ij} = \frac{X_{i+}X_{+j}}{n}$$
. (Does this look familiar?)

▶ With out any restrictions, the likelihood is

$$L(\theta_{11}, \theta_{12}, \dots, \theta_{rc}) = \prod_{i=1}^r \left(\frac{X_{i+}!}{\prod_{j=1}^c X_{ij}!} \theta_{i1}^{X_{i1}} \theta_{i2}^{X_{i2}} \cdots \theta_{ic}^{X_{ic}} \right).$$

▶ The global MLE for the θ 's are now

$$\hat{\theta}_{ij} = \frac{X_{ij}}{X_{i+}}.$$

► Accordingly, the generalized LR is

$$\Lambda = \frac{L(\hat{\theta}_1, \hat{\theta}_2, \dots, \hat{\theta}_c)}{L(\hat{\theta}_{11}, \hat{\theta}_{12}, \dots, \hat{\theta}_{rc})} = \prod_{i=1}^r \prod_{j=1}^c \left(\frac{\hat{m}_{ij}}{X_{ij}}\right)^{X_{ij}}.$$

► Thus

$$-2\log\Lambda = \sum_{i=1}^{r} \sum_{j=1}^{c} 2X_{ij} \log\left(\frac{X_{ij}}{\hat{m}_{ij}}\right).$$

- ► Look back at the test of *independence* under *full multinomial sampling*.
- ► This is exactly the same LR test statistic!

► Consequently, after applying Taylor's expansion, we get exactly the same χ^2 test as well!

$$Q = \sum_{i=1}^{r} \sum_{j=1}^{c} \frac{(X_{ij} - \hat{m}_{ij})^{2}}{\hat{m}_{ij}}.$$

- ► Now the test statistics are the same as those for the test of independence. What are about their sampling distribution under the null hypothesis?
- We know the null sampling distribution is χ^2 . What's the degrees of freedom?

- ▶ What is the number of *free* parameters under H_0 , that is in Θ_0 ?
- We have (c-1) free column marginal probabilities. So the total is

$$(c-1).$$

- ▶ What is the number of *free* parameters overall?
- ▶ We have (c-1) free column probabilities *each row*. So the total is

$$r(c-1)$$
.

► Therefore the degrees of freedom for the approximate sampling distribution is

$$r(c-1) - (c-1) = (r-1)(c-1).$$

► We have exactly the same sampling distribution as in the case of testing independence!

Example A: The 1970 draft lottery

- ▶ In 1970 the US conducted a draft lottery to determine the order of induction of mails aged 19-26. The 366 possible birthdates were randomly drawn one by one without replacement.
- ► The order in which they were drawn was their "drawing number".

Drawing							Month						
numbers	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Totals
1-122	9	7	5	8	9	11	12	13	10	9	12	17	122
123-244	12	12	10	8	7	7	7	7	15	15	12	10	122
245-366	10	10	16	14	15	12	12	11	5	7	6	4	122
Totals	31	29	31	30	31	30	31	31	30	31	30	31	366

From Feinberg (1971). Science.

- ► This presents an extreme case of deviation from the multinomial sampling model.
- ▶ Both the column totals and row totals are *fixed* by design.
- ▶ This is called *hypergeometric sampling* model, because the joint distribution of the cell counts under the null hypothesis is called the *hypergeometric distribution*.
- ▶ What is the null hypothesis we want to test?
- ► The null hypothesis: all possible assignment of the numbers 1 to 366 to the birthdates are equally likely.
- ► Under this null hypothesis, what is the probability of observing the previous table?

$$\begin{split} P(\text{Table}) &= P(Jan)P(Feb|Jan)P(Mar|Jan,Feb)\cdots P(Dec|Jan,Feb,\dots,Nov) \\ &= \frac{\binom{122}{9}\binom{122}{12}\binom{122}{10}}{\binom{366}{31}}\frac{\binom{113}{7}\binom{110}{12}\binom{112}{10}}{\binom{335}{29}}\cdots \frac{\binom{17}{17}\binom{10}{10}\binom{4}{4}}{\binom{31}{31}} \\ &= \frac{\frac{122!122!122!}{9!12!10!7!12!10!\cdots 17!10!4!}}{\frac{366!}{366!}}. \end{split}$$

31!29!...31!