

Calculus and Analytical Geometry BSCS/BSSE

Course Code	CSSS1713/ SESS1713	
Credit Hours	3	
Assessments	 Quiz 15% Assignment 10% Class Participation 10% Mid Exam 20% Final Exam 45% 	
Course Instructor	Dr. Abdul Rauf Nizami Email: arnizami@ucp.edu.pk Cell:_0336-7778271 Office Address: Building A, F304, Cabin 4 Office Hours: Displayed on the office door	
Textbook	CALCULUS by Howard Anton 10 th Edition	
Reference Material	 CALCULUS by Thomas APPLIED CALCULUS by Hughes Hallett 	
Course Goals	 Upon successful completion of the course, the students should be able to: Understand functions and their graphs. Understand the concepts of limits and continuity. Understand geometrical and physical meanings of derivative. Use derivative to find extreme values. Understand the concept of indefinite integral. Compute indefinite integrals by parts and by partial fractions. Understand the concept of definite integral. Find areas between curves as applications of definite integrals. Understand the conic sections and their applications 	

Lecture	Contents	Practice Exercises
Lecture 1	Intervals	See my lecture notes on Intervals and Inequalities.
Lecture 2	Inequalities	See my lecture notes on Intervals and Inequalities.
Lecture 3	Graph of an Equation	See my lecture notes on Graph of an Equation.
		Quick Exercises 0.1 (Pg. 11)
Lecture 4	Functions: independent variable, dependent	Problems: 1 and 3
	variable, domain and range of a function,	
	vertical line test, horizontal line test	Exercise Set 0.1 (Pg. 13)
	for one-to-one and onto functions	Problems: 7, 10 (a), and 10(b)
Lecture 5	Limit	Exercise Set 1.2 (Pg. 87)
		Problems: 2,3,4, and 9
Lecture 6		Exercise Set 1.5 (Pg. 118)
	Continuity	Problems: 1,4, and 29
Lecture 7		Exercise Set 2.2 (Pg. 152)
	Secant and tangent lines	Problems: 9,10, and 11
		1105161113. 3,10, 4114 11
Lecture 8	Average rate, Instantaneous rate, The	Exercise Set 2.1 (Pg. 140)
	derivative	Problems: 11 and 12
Lecture 9	Techniques of differentiation	Exercise Set 2.3 (Pg. 161)
		Problems: 1,3,7,9, and 10
Lecture 10	Techniques of differentiation	Exercise Set 2.4 (Pg. 168)
		Problems: 1,3,11, and 13
Lecture 11		Exercise Set 2.5 (Pg. 172)
	Applications of the Derivative: Intervals	Problems: 1,3,5,7, and 25
	of increase and decrease, Concavity	Exercise Set 4.1 (Pg. 242)
	(optional)	Problems: 15,17, and 19

La atuma 12	Applications of the Designations Critical	1		
Lecture 12	Applications of the Derivative: Critical	Exercise Set 4.2 (Pg. 252)		
	points, Second derivative test, Extreme	Problems: 3,7, and 8		
	values	11001cm3. 3,7, and 0		
Lecture 13	Applications of the Derivative: Maximize	Exercise Set 4.5 (Pg. 285)		
	profit and revenue, Minimize cost	Problems: 42,43, and 44		
Lecture 14	Rolle's Theorem, Mean-Value Theorem	Exercise Set 4.8 (Pg. 308)		
		Problems: 1,2,5, and 6		
Lecture 15	Revision for mid-term exam			
Lecture 16	Revision for mid-term exam			
Mid-Term Exam				
Lecture	Contents	Practice Exercises		
Lecture 17	The indefinite integral of algebraic	Exercise Set 5.2 (Pg. 330)		
	functions	Problem: 9,10,11,14,17, and 19		
Lecture 18	The indefinite integral of exponential,	Exercise Set 5.2 (Pg. 330)		
	logarithmic, and trigonometric functions	Problems: 21,23,25, and 30		
Lecture 19	Integration by parts	Exercise Set 7.2 (Pg. 498)		
		Problems: 1,3, and 5		
Lecture 20	Integration by parts	Exercise Set 7.2 (Pg. 498)		
		Problems: 7,9,21, and 23		
Lecture 21	Integration by partial fractions	Exercise Set 7.5 (Pg. 514)		
		Problems: 1,9,10, and 12		
Lecture 22	Integration by partial fractions	Exercise Set 7.5 (Pg. 514)		
		Problems: 17,19, and 23		
Lecture 23	The definite integral	Exercise Set 5.4 (Pg. 350)		
		Problems: 36,37, and 39		
Lecture 24	Properties of the definite integral	Exercise Set 5.5 (Pg. 360)		
		Problems: 13,21, and 25		

Lecture 25	Applications of the definite integral:	Exercise Set 5.6 (Pg. 373)
	area under a curve	Problems: 5,7,35,37, and 39
Lecture 26	Applications of the definite integral:	Exercise Set 6.1 (Pg. 419)
	area between two curves	Problems: 5,7,8, and 15
Lecture 27	Parabola	Exercise Set 10.4 (Pg. 744)
		Problems: 3,4, and 15
Lecture 28	Parabola	Exercise Set 10.4 (Pg. 744)
		Problems: 5 and 6
Lecture 29	Ellipse	Exercise Set 10.4 (Pg. 744)
		Problems: 7,8,9, and 10
Lecture 30	Hyperbola	Exercise Set 10.4 (Pg. 744)
		Problems: 11,12,13, and 14
Lecture 31	Revision for Final-Term Exam	
Lecture 32	Revision for Final-Term Exam	