STUDENT ID NO										

MULTIMEDIA UNIVERSITY

FINAL EXAMINATION

TRIMESTER 2, 2019/2020

PTM0145 – TRIGONOMETRY

(Foundation in Information Technology / Life Sciences)

7 MARCH 2020 9.00 a.m. – 11.00 a.m. (2 Hours)

INSTRUCTIONS TO STUDENTS

- 1. This question paper consists of **TWO** pages excluding the cover page and the Appendix.
- 2. Answer ALL FIVE questions. All questions carry equal marks and the distribution of the marks for each question is given.
- 3. Please write all your answers in the Answer Booklet provided.
- 4. All necessary working steps MUST be shown.

Ų

Question 1 [10 marks]

- a. Given $z_1 = 1 i$ and $z_2 = 3 + 4i$. Find $z_1 z_2$ and $\frac{z_1}{z_2}$. Leave your answer in the standard form a + bi. (5 marks)
- b. Convert the complex number z = -2 + 3i to the polar form. Hence, compute z^6 using De Moivre Theorem and leave your answer in the polar form. (5 marks)

Question 2 [10 marks]

- a. Find the vertex, the focus and the directrix of the parabola with the equation $y^2 2y + 12x 35 = 0$. Sketch the graph of the parabola. (6 marks)
- b. Find the equation of an ellipse whose foci are at (-1,0) and (3,0), and the length of its minor axis is 2. (4 marks)

Question 3 [10 marks]

- a. If $\sin \alpha = \frac{4}{5}$ where $0 < \alpha < \frac{\pi}{2}$ and $\cos \beta = -\frac{12}{13}$ where $\frac{\pi}{2} < \beta < \pi$, find
 - i. $\cos(\beta \alpha)$ (3 marks)
 - ii. $\sin 2\beta$ (2 marks)
- b. Solve the following equation for $0 \le x \le 2\pi$:
 - i. $4\cos^2 x 4\cos x + 1 = 0$ (2 marks)
 - ii. $\cos 2x + \sin x = 0$ (3 marks)

Question 4 [10 marks]

- a. Establish the identity $\tan x + \cot x = \sec x \csc x$. (3 marks)
- b. Solve the triangle given that a = 10, b = 8 and c = 16. Then the area of the triangle ABC. (7 marks)

Continued...

NY

Question 5 [10 marks]

Find the inverse of $\begin{bmatrix} 1 & -6 & 3 \\ 2 & -7 & 3 \\ 4 & -12 & 5 \end{bmatrix}$. Hence, solve the following linear system using the

inverse method.

$$x-6y+3z=11$$

 $2x-7y+3z=14$
 $4x-12y+5z=25$

(10 marks)

End of Paper

NY 2/2

APPENDIX

Trigonometry Identities

$$\cos^2 A + \sin^2 A = 1$$

$$\sec^2 A = 1 + \tan^2 A$$

$$\csc^2 A = 1 + \cot^2 A$$

$$\cos(A+B) = \cos A \cos B - \sin A \sin B$$

$$\cos(A - B) = \cos A \cos B + \sin A \sin B$$

$$sin(A+B) = sin A cos B + cos A sin B$$

$$\sin(A - B) = \sin A \cos B - \cos A \sin B$$

$$\tan(A+B) = \frac{\tan A + \tan B}{1 - \tan A \tan B}$$

$$\tan(A - B) = \frac{\tan A - \tan B}{1 + \tan A \tan B}$$

$$\cos 2A = \cos^2 A - \sin^2 A$$
$$= 2\cos^2 A - 1 = 1 - 2\sin^2 A$$
$$\sin 2A = 2\sin A \cos A$$

$$\tan 2A = \frac{2\tan A}{1 - \tan^2 A}$$

$$\sin A \cos B = \frac{1}{2} \left[\sin(A+B) + \sin(A-B) \right]$$

$$\cos A \cos B = \frac{1}{2} \left[\cos(A+B) + \cos(A-B) \right]$$

$$\sin A \sin B = \frac{1}{2} \left[\cos(A - B) - \cos(A + B) \right]$$

$$\sin A + \sin B = 2\sin \frac{A+B}{2}\cos \frac{A-B}{2}$$

$$\sin A + \sin B = 2\sin\frac{A+B}{2}\cos\frac{A-B}{2}$$

$$\sin A - \sin B = 2\cos\frac{A+B}{2}\sin\frac{A-B}{2}$$

$$\cos A + \cos B = 2\cos\frac{A+B}{2}\cos\frac{A-B}{2}$$

$$\cos A + \cos B = 2\cos\frac{A+B}{2}\cos\frac{A-B}{2}$$

$$\cos A - \cos B = -2\sin\frac{A+B}{2}\sin\frac{A-B}{2}$$

$$\sin^2\frac{A}{2} = \frac{1-\cos A}{2}$$

$$\sin^2 \frac{A}{2} = \frac{1 - \cos A}{2}$$
 $\cos^2 \frac{A}{2} = \frac{1 + \cos A}{2}$ $\tan^2 \frac{A}{2} = \frac{1 - \cos A}{1 + \cos A}$

$$\tan^2 \frac{A}{2} = \frac{1 - \cos A}{1 + \cos A}$$

$$\sin\frac{A}{2} = \pm\sqrt{\frac{1-\cos A}{2}}$$

$$\sin\frac{A}{2} = \pm\sqrt{\frac{1-\cos A}{2}} \qquad \cos\frac{A}{2} = \pm\sqrt{\frac{1+\cos A}{2}} \qquad \tan\frac{A}{2} = \pm\sqrt{\frac{1-\cos A}{1+\cos A}}$$

$$\tan\frac{A}{2} = \pm\sqrt{\frac{1-\cos A}{1+\cos A}}$$

$$\tan\frac{A}{2} = \frac{1 - \cos A}{\sin A} = \frac{\sin A}{1 + \cos A}$$

Triangles

Law of Sines:

$$\frac{\sin A}{a} = \frac{\sin B}{b} = \frac{\sin C}{c}$$

Law of Cosines:

$$c2 = a2 + b2 - 2ab \cos C$$
$$b2 = a2 + c2 - 2ac \cos B$$
$$a2 = b2 + c2 - 2bc \cos A$$

Area of a Triangle:
$$A = \frac{1}{2}ab\sin C = \frac{1}{2}bc\sin A = \frac{1}{2}ac\sin B$$

 $A = \sqrt{s(s-a)(s-b)(s-c)}$ where $s = \frac{1}{2}(a+b+c)$

Polar Coordinates

$$x = r \cos \theta$$

$$y = r \sin \theta$$

$$r = \sqrt{x^2 + y^2}$$

$$\tan\theta = \frac{y}{x}$$