The LNM Institute of Information Technology

Jaipur, Rajasthan

Discrete Mathematical Structures

Assignment # 1

Group Theory

Q1. Let G be a group and let a, $b \in G$. For any + ve integer n, we have $(a^{-1}ba)^n = a^{-1}b^na$. (Prove this by induction)

Q2. The set of 2X2 matrices of the form $\begin{bmatrix} a & 0 \\ c & d \end{bmatrix}$ with entries from Q and satisfying $a\neq 0$, $d\neq 0$ forms a group under ordinary multiplication. (Over what other number systems, besides Q, is this conclusion still valid?)

Q3. Let G be a group and $a,b \in G$. Then $(ab)^2=a^2b^2$ if and only if ab=ba.

Q4. If G be a group in which a^2 =e for all $a \in G$, then G is abelian.

Q5. Which of the following subsets of \mathbb{Z} are groups under addition? Give brief reasons for your answer.

- a. A=Set of even integers.
- b. B=Set of odd integers.
- c. C=Set of non-negative integers.
- d. $D = \{0\}$.
- e. E=Set of integers which are expressible as 42m + 1023n for integers m, n.

Q6. Which of the following subsets of C (set of complex nos.) are groups under multiplication? Give brief reasons for your answers.

- a. $A=\{a+bi: a>0\}$
- b. B={1, π , π^2 , π^3 , ...}

Q7. Check whether the following forms a group or not?

G: Set of rational numbers under composition * defined as a*b=ab/2, a, b \in G.

Q8. Let H be a subgroup of G and let $N = \bigcap xHx^{-1} \forall x \in G$ then show that N is a normal subgroup of G.

Q9. Let G be a group. Suppose $a,b \in G$ such that

a. ab = ba

b.
$$(o(a), o(b)) = 1$$

Show that o(ab) = o(a).o(b).

Q10. Let G be a group. Show that

$$O(a^n) = \frac{O(a)}{(O(a), n)} \ \forall \ a \in G$$

where n is an integer and (o(a), n) = gcd(o(a), n).

Q11. Converse of Lagrange's Theorem holds on finite cyclic groups.

Q12. Let G be a finite group whose order is not divisible by 3. Suppose $(ab)^3 = a^3b^3 \ \forall \ a,b \in G$ then show that G is abelean.

Q13. If $a \in G$ be of finite order n and also $a^m = e$ then show that $n \mid m$.