

Analyzing Trading Strategies with the Black-Scholes Model

November 26, 2024

Submitted By:

Name	ID Number		
Arham Jain	2021B4A71882G		

Sujal Pimpale 2021B4A41067G Trisha Hitesh 2021B4A72157G

Instructor In-Charge:

Dr. Mayank Goel

1 Abstract

The Black-Scholes model is a pivotal framework for pricing European-style options, utilizing parameters such as the underlying stock price, strike price, time to expiration, risk-free interest rate, and market volatility. This report extends the theoretical foundation of the Black-Scholes model by implementing and analyzing three options trading strategies: **Basic Strategy**, **Bull Spread**, and **Butterfly Spread**. Each strategy is evaluated using real-world options data to assess profitability and effectiveness in various market scenarios, offering insights into the practical application of the model.

2 Introduction

Developed in 1973 by Fischer Black, Myron Scholes, and Robert Merton, the Black-Scholes model revolutionized options pricing by providing a mathematical method to compute the theoretical value of European-style options. The model assumes that asset prices follow a lognormal distribution and evolve through a random walk characterized by constant drift and volatility. By incorporating key parameters such as current stock price, strike price, time to expiration, risk-free interest rate, and market volatility, the model serves as a powerful tool for understanding market behavior and pricing derivatives.

This project explores the practical applications of the Black-Scholes model by implementing and analyzing three trading strategies:

- Basic Strategy: A straightforward approach involving buying options when the theoretical price exceeds the market price by a predefined threshold and selling when the market price surpasses the buy price by a set margin.
- Bull Spread: A moderately bullish strategy combining the purchase of a call option at a lower strike price with the sale of a call option at a higher strike price, both with the same expiration date.
- Butterfly Spread: A market-neutral strategy aimed at low-volatility conditions, combining the purchase and sale of options at varying strike prices, limiting both profit and loss.

Through these analyses, this report bridges the theoretical underpinnings of the Black-Scholes model with its practical applications in options trading.

3 The Black-Scholes Model Formula

The Black-Scholes model calculates the theoretical price of European-style options by incorporating several key variables, including the current price of the underlying asset, strike price, time to expiration, risk-free interest rate, and volatility. Using these inputs, the model derives the call option price as follows:

$$C = SN(d_1) - Ke^{-rt}N(d_2)$$

where:

$$d_1 = \frac{\ln\left(\frac{S}{K}\right) + \left(r + \frac{\sigma^2}{2}\right)t}{\sigma\sqrt{t}}, \quad d_2 = d_1 - \sigma\sqrt{t}$$

Variables:

- C: Call option price.
- S: Current price of the underlying asset.
- K: Strike price.
- r: Risk-free interest rate.
- t: Time to expiration (in years).
- σ : Volatility of the underlying asset.
- N(x): Cumulative distribution function of the standard normal distribution.

The formula comprises two primary components:

- 1. $SN(d_1)$: The present value of the expected payoff from owning the underlying asset, adjusted by the probability of in-the-money options.
- 2. $Ke^{-rt}N(d_2)$: The discounted strike price, weighted by the probability of exercising the option.

This equation provides a theoretical basis for pricing call options, incorporating market dynamics and the time value of money.

4 Data Collection

The dataset contains options data for seven companies: Amazon, Apple, Google, Microsoft, Meta, Nvidia, and Tesla. Each entry includes information about individual call options, with columns for the contract symbol, strike price, bid price, ask price, implied volatility, option price, and the remaining time to expiration. This data was collected from Yahoo Finance to analyze and model options, pricing, and strategies.

5 Comparison of Strategies

Feature	Basic Strategy	Bull Spread	Butterfly Spread	
		Strategy	Strategy	
Type of	Single option	Combination of	Multi-leg options	
Strategy	buying and selling	two options (e.g.,	strategy	
		buying a call and		
		selling a call at		
		different strikes)		
Market View	Can be directional	Moderately bullish	Neutral (price near	
	(e.g., buying calls)		middle strike)	
Instruments	1 call (or 1 put)	1 lower strike call,	1 lower strike	
	option	1 higher strike call	call/put, 2 middle	
			strike calls/puts, 1	
			higher strike	
			call/put	
Profit	Price needs to	Price moves	Price stays near	
Condition	move in a certain	moderately upward	the middle strike	
	direction		at expiration	
Risk	High risk if price	Limited risk due to	Limited risk due to	
	doesn't move	the defined spread	selling two options	
	significantly			
Reward	Unlimited	Limited reward	Limited reward but	
	potential if price	due to the spread	also limited risk	
	moves significantly			

Table 1: Comparison of Different Trading Strategies

6 Results

Total Profit per Company

Success Ratio per Company

Company	Total Profit(Basic)	Total Profit(Bull)	Total Profit(Butterfly)
Amazon	3048.6	1842.32	3511.54
Apple	545.3	85.01	90.27
Google	-40.02	968.21	1678.67
Meta	-166.27	134.29	172.68
Microsoft	-35.699	113.2	133.04
NVIDIA	357.65	263.18	239.61
Tesla	-137.67	334.32	438.97
Net Profit	3571.891	3740.53	6264.78

Table 2: Total Profit per Company

	Success	Total	Success	Total	Success	Total
Company	Ratio	Trades	Ratio	Trades	Ratio	Trades
	(Basic)	(Basic)	(Bull)	(Bull)	(Butterfly)	(Butterfly)
Amazon	0.875	16	0.65	1011	0.549	5029
Apple	0.947	19	0.477	86	0.629	124
Google	0.764	17	0.585	699	0.559	2947
Meta	0.789	19	0.497	141	0.673	205
Microsoft	0.833	24	0.535	116	0.688	154
NVIDIA	0.794	34	0.607	178	0.715	249
Tesla	0.703	37	0.589	253	0.764	406

Table 3: Success Ratio and Total No. of Trades per Company

Note: The difference in the number of trades in each model is due to the combinatorial complexity of each model. In the butterfly spread, for each set of 3 unique strikes, a potential trade is generated, which drastically increases the number of trades.

7 Conclusion

This report has demonstrated the practical application of the Black-Scholes model through the analysis of three distinct options trading strategies: *Basic Strategy*, *Bull Spread*, and *Butterfly Spread*. By employing real-world data from companies such as Amazon, Apple, Google, Meta, Microsoft, NVIDIA and Tesla, we assessed the profitability and effectiveness of each strategy under various market conditions.

Our findings reveal the following key insights:

- The **Basic Strategy** offers potential for significant profits; however, it carries a high risk if the market does not move as anticipated.
- The **Bull Spread** strategy, being moderately bullish, proved to be effective when the market experienced slight upward movements.
- The **Butterfly Spread** strategy was most effective in low-volatility conditions, providing a balanced approach with limited risk and reward.

These results highlight the importance of selecting the appropriate strategy based on market conditions to optimize the risk-reward tradeoff.

8 References

- [1] Black, F., Scholes, M. (1973). The pricing of options and corporate liabilities. The Journal of Political Economy, 81(3), 637–654. https://doi.org/10.1086/260062.
- [2] Shivaprasad, S. P., Geetha, E., Raghavendra, Kishore, L., Matha, R. (2022). Choosing the right options trading strategy: Risk-return trade-off and performance in different market conditions. Investment Management and Financial Innovations, 19(2), 37–50. http://dx.doi.org/10.21511/imfi.19(2).2022.04.
- [3] Chaput, J. S., Ederington, L. H. (2002). Option spread and combination trading. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.296036