Podatkovne strukture in algoritmi

Andrej Brodnik UP FAMNIT

Slovar

posplošena drevesa, B drevesa, 2-3 drevesa, R-Č drevesa

Slovar

Imamo slovar S nekakšnih elementov. S tem slovarjem želimo početi vsaj naslednje operacije:

dodajanje: Insert(S, x) - v slovar S dodamo nov element x.

iskanje: Find(S, x) --> y - v slovarju S poiščemo element x. Rezultat y je lahko Boolova vrednost true ali false, ali pa neki podatki povezani z elementom x.

izločanje: Delete(S, x) --> S - iz slovarja S izločimo element x. Rezultat y je lahko Boolova vrednost true ali false, ki sporoči ali je bil element uspešno izločen ali ne, ali pa operacija ničesar ne vrne.

Drevesa

Pri dvojiških drevesih smo imeli koren in dve poddrevesi:

```
public class Drevo {
   Elt koren;
   Drevo levo, desno;
}
```

Pri urejenih/iskalnih drevesih dodatno velja:

levo < koren < desno .

Posplošimo definicijo na več poddreves.

Večsmerno drevo

```
Naj bo k neka konstanta, potem je k-tiško drevo definirino kot: public class kDrevo {    Elt[] koren; // teh je k-1    kDrevo[] poddrevo; // teh je k ... }
```

Velikost

V k-tiškem drevesu višine h je največ

$$(k-1)+(k-1)k+\cdots+(k-1)k^{h-1}=\frac{(k-1)k^h-1}{k-1}=k^h$$

elementov.

Drugače povedano, k-tiško drevo z n elementi je visoko vsaj

$$h \ge \log_k n = \frac{\lg n}{\lg k} .$$

Kako smo prišli do zadnjega ulomka?

Urejeno k-tiško drevo

```
public class kDrevo {
   Elt[] koren; // teh je k - 1
   kDrevo[] poddrevo; // teh je k
   ...
}
```

Pri urejenih k-tiških drevesih velja, da za poljuben $0 \le i < k-1$ velja:

- ▶ vsi elementi v poddrevesu poddrevo[i] so manjši od koren[i]
- lacktriangle vsi elementi v poddrevesu poddrevo[i+1] so večji od koren[i]

Podatki in računalniška arhitektura

- Arhitektura računalnika definira cene posameznih operacij.
- Ozko grlo predstavlja prenos podatkov med posameznimi sklopi (pomnilniška hierarhija): procesorjevi registri, predpomnilnik, pomnilnik, disk, omrežje itd.
- ► Ko so podatki že v registrih, je cena operacije odvisna od cene posameznih procesorjevih operacij in običajno štejemo *primerjave*.
- V ostalih primerih štejejo predvsem prenosi podatkov med podsklopi

 štejo pogledi/dostopi (ang. probes). Ti lahko trajajo tudi več desetkrat toliko kot ena primerjava.
- V enem dostopu pa ne prestavimo samo enega podatka med podsklopoma, ampak jih prestavimo več – pač glede na na velikost prestavljenega bloka in glede na velikost podatka.
- ▶ Recimo, da jih prestavimo B v resnici prestavimo polje velikosti B podatkov:

Podatek data[0..B-1]

Vozlišče k-tiškega drevesa je veliko največ B.

B-drevo

Za *B-drevo reda b* \geq 2 velja:

vozlišče - ključi vozlišče v ima k_v ključev v.key[i] $(0 \le i < k_v)$, kjer $\lceil b/2 \rceil - 1 < k_v \le b$, razen korena, ki ima lahko tudi samo en ključ;

vozlišče - poddrevesa vozlišče v, ki ima k_v ključev, ima k_v+1 poddreves v.sub[i] $(0 \le i \le k_v)$ razen listov, ki nimajo poddreves;

vozlišča - urejenost za vozlišče v velja v.sub[i] < v.key[i] < v.sub[i+1] za $0 \le i < k_v$; listi vsi listi so na isti globini h.

- Prvi dve vrstici zagotavljata eksponentno povečevanje elementov na posameznem nivoju in posledično logaritemsko globino;
- tretja vrstica omogoča iskanje po principu deli in vladaj; in
- zadnja vrsta zagotavlja uravnoteženost, ki zagotavlja enak čas pri operacijah nad katerimkoli podatkom v drevesu.

Vozlišče B-drevesa

- V drevesu hranimo elemente Elt (ki pa sestoje iz ključa in podatka).
- Višina drevesa je odvisna od števila ključev v vozlišču (reda) in večji je red, nižje je drevo ter hitrejše so operacije.

```
public class bTree {
   Elt elt[b]; // podatki
   bTree sub[b+1]; // poddrevesa
   int k; // število elementov v vozlišču
   ...
}
```

Najmanjši b, za katerega je definicija smiselna, je b = 4. Tedaj ima vozlišče v

$$\lceil b/2 \rceil - 1 = 1 \le k_{\nu} < b = 4$$

ključev, oziroma najmanj dve in največ štiri poddrevesa. Zato takšnim drevesom rečemo tudi 2-3 drevesa.

- ▶ Imejmo B-drevo reda b in višine h. V takšnem drevesu je lahko največ b^h in najmanj $(b/2)^{h-1} \cdot 2$ elementov.
- Če obrnemo in imamo B-drevo reda b z n elementi, potem je njegova višina h največ

$$1 + \log_{\lceil b/2 \rceil} \frac{n+1}{2} .$$

Primer

Primer — naj bo:

- ightharpoonup B = 4kB običajna velikost prebranega bloka z diska;
- velikost elementa 32B, od česar naj bo 6B ključ (dovolj za EMŠO) in 26B podatkov;
- referenca na poddrevo naj bo 8B (64 bitov);
- za zapis k potrebujemo 2B.

V velikost B spravimo vozlišče B-drevesa, če b = 102.

- ▶ Za n = 2.066.880 (število prebivalcev Slovenije na 1.1.2018) je $h \le 5$. To pomeni, da bomo pri iskanju ključa pregledali kvečjemu pet vozlišč drugače, *dostopili* bomo samo do petih vozlišč!
- ▶ Za n = 7.661.384.500 (približno število prebivalcev na svetu) je $h \le 7$. To pomeni, da bomo pri iskanju ključa pregledali kvečjemu sedem vozlišč drugače, *dostopili* bomo samo do sedmih vozlišč!

B+ drevesa

- Na B ne moremo vplivati: definira računalniška arhitektura, oziroma pomnilniška hierarhija − npr. dolžina predpomnilniške vrstice, velikost sektorja na disku, velikost ethernet paketa ipd..
- b lahko povečamo, če v vozlišča ne dajemo celotnih elementov, ampak samo njihove ključe, medtem ko podatke hranimo v listih – govorimo o B+ drevesih:

```
public class bPlusTree extends bPlusNode {
  Key key[b]; // ključi
  bPlusNode sub[b+1]; // poddrevesa ali podatki
  int k; // število elementov v vozlišču
  bool leaf; // notranje vozlišče ali list (potrebno?)
  ...
}
```

Primer – nadaljevanje

- ightharpoonup B = 4kB običajna velikost prebranega bloka z diska;
- velikost ključa 6B (dovolj za EMŠO);
- referenca na poddrevo naj bo 8B (64 bitov);
- ▶ za zapis *k* potrebujemo 2B.

V velikost B spravimo vozlišče B-drevesa, če b = 291.

- Za n = 2.066.880 (število prebivalcev Slovenije na 1.1.2018) je $h \le 4$ (bilo 5).
- Za n = 7.661.384.500 (približno število prebivalcev na svetu) je $h \le 6$ (bilo 7).

opomba: Podatki so relativno majhni, samo 26B v primerjavi s 6B ključa.

Iskanje

Iskanje ključa key v B-drevesu s korenom bTree opravi naslednji preprosti algoritem:

```
data Search(Key key) {
  int i= 0;
  while ( (i < k) && (key[i] > key) ) i++;
  if (! leaf) return sub[i].Search(key);
  else {
    if (key[i] == key) return sub[i];
    else return DataInvalid;
  }
}
```

Iskanje – analiza

```
Časovna zahtevnost je: dostopov: h = O(\log_b n); primerjav: bh = b\log_b n = \frac{b}{\lg b}\lg n (v vozlišču lahko samo b/2 ključev in v korenu samo 2).
```

Iskanje – analiza

Časovna zahtevnost je:

```
dostopov: h = O(\log_b n);
```

primerjav: $bh = b \log_b n = \frac{b}{\lg b} \lg n$ (v vozlišču lahko samo b/2 ključev

in v korenu samo 2).

Če bi namesto linearnega iskanja po vozlišču uporabili razpolavljanje, bi se število primerjav zmanjšalo na

$$(\lg b)h = \lg b \log_b n = \frac{\lg b}{\lg b} \lg n = \lg n$$

primerjav, kar je primerljivo z dvojiškimi drevesi.

► Novi element Elt vedno vstavimo v list – do tam se sprehodimo na enak način kot pri iskanju.

- Novi element Elt vedno vstavimo v list − do tam se sprehodimo na enak način kot pri iskanju.
- ▶ Če je v vozlišču v manj kot b elementov, element Elt vstavimo tako, da se ohrani naraščajoče zaporedje ključev. Zaključimo preprosto vstavljanje.

- Novi element Elt vedno vstavimo v list do tam se sprehodimo na enak način kot pri iskanju.
- ▶ Če je v vozlišču v manj kot b elementov, element Elt vstavimo tako, da se ohrani naraščajoče zaporedje ključev. Zaključimo preprosto vstavljanje.
- ightharpoonup Če je vozlišču v z vstavljanim elementom b+1 element, jih uredimo in razdelimo na tri dele:
 - ▶ prvih $\lceil b/2 \rceil 1$ elementov \Rightarrow vozlišče v,

- Novi element Elt vedno vstavimo v list do tam se sprehodimo na enak način kot pri iskanju.
- ▶ Če je v vozlišču v manj kot b elementov, element Elt vstavimo tako, da se ohrani naraščajoče zaporedje ključev. Zaključimo preprosto vstavljanje.
- ightharpoonup Če je vozlišču v z vstavljanim elementom b+1 element, jih uredimo in razdelimo na tri dele:
 - ▶ prvih $\lceil b/2 \rceil 1$ elementov \Rightarrow vozlišče v,
 - lelement r in

- Novi element Elt vedno vstavimo v list do tam se sprehodimo na enak način kot pri iskanju.
- ▶ Če je v vozlišču v manj kot b elementov, element Elt vstavimo tako, da se ohrani naraščajoče zaporedje ključev. Zaključimo preprosto vstavljanje.
- ightharpoonup Če je vozlišču v z vstavljanim elementom b+1 element, jih uredimo in razdelimo na tri dele:
 - ▶ prvih $\lceil b/2 \rceil 1$ elementov \Rightarrow vozlišče v,
 - lelement *r* in
 - ▶ preostali elementi ⇒ vozlišče v_n

- Novi element Elt vedno vstavimo v list do tam se sprehodimo na enak način kot pri iskanju.
- ▶ Če je v vozlišču v manj kot b elementov, element Elt vstavimo tako, da se ohrani naraščajoče zaporedje ključev. Zaključimo preprosto vstavljanje.
- ightharpoonup Če je vozlišču v z vstavljanim elementom b+1 element, jih uredimo in razdelimo na tri dele:
 - ▶ prvih $\lceil b/2 \rceil 1$ elementov \Rightarrow vozlišče v,
 - lelement r in
 - ightharpoonup preostali elementi \Rightarrow vozlišče v_n

in vrnemo staršu (r, v_n) .

Vstavljanje – popravljanje

► Če starš obstaja, vstavi *r* in *v*_n tako, da se ohranja urejenost. Če je v staršu še bil prostor zaključimo, sicer ponovno razdelimo elemente in nadaljujemo pri staršu.

Vstavljanje – popravljanje

- Če starš obstaja, vstavi r in vn tako, da se ohranja urejenost. Če je v staršu še bil prostor zaključimo, sicer ponovno razdelimo elemente in nadaljujemo pri staršu.
- ightharpoonup Če pa starša ni, naredimo nov koren v, r, v_n .

V najslabšem primeru razpolovimo h vozlišč in zatorej potrebujemo največ nekako 2h+1 dostopov, kar je $2\log_b n+1$.

Brisanje

- ▶ Podobno kot pri binarnih drevesih izbrisani ključ nadomestimo s skrajnim levim (desnim) ključem v desnem (levem) poddrevesu
- ▶ pri tem se lahko zmanjša število elementov v listu pod mejo $\frac{b}{2}$ kaj sedaj?
- karkoli že naredimo, ponavljamo rekurzivno do korena, ki lahko, izgine

Zahtevnost

	Find	Insert	Delete
seznam	O(n)	O(1)	O(n)
urejen seznam	O(n)	O(n)	O(n)
binarno drevo	O(n)	O(n)	O(n)
AVL drevo	$O(\log n)$	$O(\log n)$	$O(\log n)$
B drevo	$O(\log_b n)$	$O(\log_b n)$	$O(\log_b n)$

Zahtevnost

	Find	Insert	Delete
seznam	O(n)	O(1)	O(n)
urejen seznam	O(n)	O(n)	O(n)
binarno drevo	O(n)	O(n)	O(n)
AVL drevo	$O(\log n)$	$O(\log n)$	$O(\log n)$
B drevo	$O(\log_b n)$	$O(\log_b n)$	$O(\log_b n)$

- ► In koliko je primerjav?
- ▶ OPAŽANJE: popravek je potreben pri staršu, če je tudi starš v »robnem stanju«.

Dvojiška (AVL) in B-drevesa

- V obeh primerih mora struktura imeti:
 - urejenost, kar omogoča iskanje (in ostale operacije) po načelu »deli in vladaj« (lokalnost) in s tem pri iskanju ne zahteva iskanja po celi strukturi; in
 - 2. uravnoteženost, kar omejuje najslabši čas operacij
- pri 1 podobno obe vrsti dreves,
- pri 2 sta različni rešitvi:
 - pri dvojiških drevesih dodajamo vedno nova vozlišča pri listih ter nato uporabimo vrtenja, da drevo uravnotežimo;
 - pri B-drevesih pa dodajamo nova vozlišča pri korenu, kar ohranja liste na isti globini in drevo uravnoteženo.
- prva rešitev (programsko) izgleda precej bolj zapletena kot druga
- ali lahko drugo rešitev uporabimo pri dvojiških drevesih?

2-3-4 (TTF) drevesa

Vzemimo B-drevesa z redom b = 3:

- imajo v vozlišču do 3 elemente (tudi enega);
- ▶ 2, 3 ali 4 naslednike (2-3-4 drevesa TTF drevesa) in
- ightharpoonup v drevesu višine h je najmanj 2^h elementov in če obrnemo, je drevo, ki ima n elementov visoko največ lg n.

Operacije nad TTF drevesi

iskanje enako kot pri B-drevesih, ker so drevesa uravnožena in urejena – časovna zahtevnost $O(\log n)$ primerjav

vstavljanje pričnemo z (neuspešnim) iskanjem in pridemo do lista nato imamo dve možnosti:

- prišli smo do 2 ali 3 lista: preprosto vstavimo novi element
- prišli smo do 4 lista, ki ga razcepimo in popravljamo vozlišča do korena.

Drugi možnosti se izognemo tako, da zagotovimo, da list nikoli ne bo 4-vozlišče in na ta način nikoli ne dobimo na dnu 4-vozlišča ter nam ni potrebno cepiti staršev.

izločanje tudi enako kot pri B-drevesih – časovna zahtevnost $O(\log n)$ primerjav

izločanje tudi enako kot pri B-drevesih – časovna zahtevnost $O(\log n)$ primerjav

Tvorimo drevo:

ASEARCHING

Rdeče črna drevesa – red-black trees

- B-drevesa so zelo koristna, če štejemo število dostopov, če pa štejemo število primerjav, se ne obnašajo nič bolje od dvojiških dreves
- zato preoblikujmo naša TTF drevesa v običajna dvojiška drevesa. Posamezna vozlišča preoblikujemo (preslikamo) v dvojiška vozlišča.

Rdeče črna drevesa – nadalj.

- 2-vozlišča se preprosto preslikajo v dvojiška vozlišča
- ➤ 3-vozlišča se preslikajo v eno od obeh možnosti (a konsistentno uporabljajmo eno, vseeno katero)
- ▶ 4-vozlišča se preslikajo v tri 2-vozlišča

Kako dokazati naslednje trditve:

▶ vsi listi (neobstoječa vozlišca – null) so črni;

- ▶ vsi listi (neobstoječa vozlišca null) so črni;
- ▶ če je vozlišče rdeče, potem sta oba naslednika črna;

- vsi listi (neobstoječa vozlišca null) so črni;
- če je vozlišče rdeče, potem sta oba naslednika črna;
- vzemimo poljubno (notranje) vozlišče v in vse liste l_i v poddrevesu, kateremu je v koren; potem je število črnih vozlišč na poti od v do lista l_i enako za vse liste poddrevesa;

- vsi listi (neobstoječa vozlišca null) so črni;
- če je vozlišče rdeče, potem sta oba naslednika črna;
- vzemimo poljubno (notranje) vozlišče v in vse liste l_i v poddrevesu, kateremu je v koren; potem je število črnih vozlišč na poti od v do lista l_i enako za vse liste poddrevesa;
- ▶ višina drevesa je največ 2-kratna višina FFT drevesa in zato je še vedno O(log n);

- vsi listi (neobstoječa vozlišca null) so črni;
- če je vozlišče rdeče, potem sta oba naslednika črna;
- vzemimo poljubno (notranje) vozlišče v in vse liste l_i v poddrevesu, kateremu je v koren; potem je število črnih vozlišč na poti od v do lista l_i enako za vse liste poddrevesa;
- ▶ višina drevesa je največ 2-kratna višina FFT drevesa in zato je še vedno O(log n);
- posledično vse operacije imajo zahtevnost O(log n) primerjav (in dostopov).

Kako dokazati naslednje trditve:

- ▶ vsi listi (neobstoječa vozlišca null) so črni;
- če je vozlišče rdeče, potem sta oba naslednika črna;
- vzemimo poljubno (notranje) vozlišče v in vse liste l_i v poddrevesu, kateremu je v koren; potem je število črnih vozlišč na poti od v do lista l_i enako za vse liste poddrevesa;
- ▶ višina drevesa je največ 2-kratna višina FFT drevesa in zato je še vedno O(log n);
- posledično vse operacije imajo zahtevnost O(log n) primerjav (in dostopov).

Preglejte podrobnosti operacij, ki slone samo na zgornjih lastnostih in ne na TTF drevesih.

Analiza

Časovna zahtevnost:

	Find	Insert	Delete
seznam	O(n)	O(1)	O(n)
urejen seznam	O(n)	O(n)	O(n)
binarno drevo	O(n)	O(n)	O(n)
AVL drevo	$O(\lg n)$	$O(\lg n)$	$O(\lg n)$
B drevo	$O(\log_b n)$	$O(\log_b n)$	$O(\log_b n)$
RB-drevo	$O(\lg n)$	$O(\lg n)$	$O(\lg n)$

- ► Kakšna je prostorska zahtevnost?
- ▶ In koliko je primerjav? Kako velika je konstanta skrita v O()?