Počítadlo

Je SLO, ktoré slúži na počítanie impulzov. Údaj o ich počte sa uchová vo vnútornom stave obvodu a na výstupe sa zobrazuje v určitom kóde. Delenie podľa:

- 1. Použitého kódu binárne, BCD, ...
- 2. Smeru počítania
 - a) Nahor (+1 (vpred))
 - b) Nadol (-1 (vzad))
 - c) Vratné (obojsmerné)
- 3. Spôsobu spúšťania
 - a) Synchrónne Hodinový impulz privádzame na všetky stupne PO naraz

b) Asynchrónne - Hodinový impulz privádzame len na Oty stupeň PO, na vstup ďalšieho stupňa privádzame vstup predchádzajúceho. Jednotlivé stupne sa preklápajú postupne s rastúcim oneskorením.

Synchrónne počítadlá

 - Vyznačujú sa tým, že príslušné preklápacie obvody sa spúštajú súčasne, pretože vstupy hodinových impulzov sú zapojené paralelne.
 Mód počitadla M je počet stavov, ktorými počítadlo prejde Kapacita - najvyšší stav počítadla

Riešený príklad

Navrhnite synchrónne počítadlo vpred s módom 4 (4 stavy) pomocou JK-PO (MH74112).

1. Graf prechodov

2. Tabuľka prechodov

Starý stav	Nový stav
0	1
1	2
2	3
3	0

3. Binárne kódovaná tabuľka (aby sme stavy počítadla mohli prepísať do Karnafových máp)

		•		,		
		-	Z1			
(0)	0	0 1 0 1	0	1	(1)	q1, q0 - Stavové premenné, v ktorých je zapísaný
(1)	0	1	1	0	(2)	aktuálny stav
(2)	1	0	1	1	(3)	Z1, Z0 - Budiace funkcie, ktoré generujú nový stav
(3)	1	1	0	0	(0)	následujúci po aktuálnom stave

4. Karnafové mapy

Budiace funkcie prepíšeme do máp, pričom ku každej hodnote prepíšeme prechod $q_1 -> Z_1$ a $q_0 -> Z_0$.

5. Prepis máp budiacích funkcií a prechodov pre zvolený Po.
Pomocou tabuľky prechodov (v našom prípade JK PO) prepíšeme mapy budiacich funkcií a prechodov na budiace funkcie zvoleného preklápacieho obvodu.
V našom pripade použijeme tabuľku prechodov JK preklápacieho obvodu.

6. Označíme slučky a vypíšeme funkcie:

 $J_1 = K_1 = Q_0$ $J_0 = K_0 = 1$

7. Nakreslenie obvodu (MH74112)

IO má 2 JK preklápacie obvody s nastavením (S) a nulovaním (R)

Asynchrónne počítadlá

Integrované počitadlo 7493 - binárne

Počítadlo je zostavené z JK PO, reagujúcich na dobežnú hranu hodinového impulzu. Počítadlo neprepojenú väzbu medzi 0 a 1. Stupňom, čo umožnuje obvod rozdeliť na 2 nezávislé časti. Má 2 riadiace vstupy RO. Ak ich súčin = 1, vynulujú sa všetky obvody. Uplynulý cyklus počítadla je 2^4 = 16 (Počítadlá od 0-15) na výstupoch ABCD je informácia v binárnom obvode.

Pri nepripojenej väzbe medzi 0 a 1 stupňom

Pri pripojenej väzbe

Činnosť počítadla si ukážeme na priebehu logaritmických stavov na výstupoch B C D (používame počítadlo s módom 8 -> neprepojená väzba). Hodinový impulz privádzame na bust počítadlo reaguje na dobežnú hranu hodinového cyklu.

Počítadlo reaguje na dobežnú hranu hod ing

Počitadlo impulzov pracuje aj ako delič frekvencie. V priebehu logaritmických stavov sú označené Tvst, Tb, Tc, Td.

$$T_b = 2 * T_{vst} => f_B = \frac{f_{vst}}{2}$$
 $T_c = 4 * T_{vst} => f_c = \frac{f_{vst}}{4}$
 $T_d = 8 * T_{vst} => f_c = \frac{f_{vst}}{8}$
 $T = 1/f => f = 1/T$

Počítadlo impulzov pracuje súčasne ako delič frekvencie, pričom z najväčšieho rádu počítadla, ktoré sa ešte mení, odoberáme signál s frekvenciou, ktorá sa rovná frekvencii vstupného signálu podelenú počtom stavov počítadla (módom).

Skrátenie cyklu počítadla

Používame vstupy RO

Nakreslite počítadlo s módom 6.

Štandardný cyklus počítadla (0-7) Skrátený cyklus (0-5)

	D	C	В					
0	0	0	0		D	C	В	
1	0	0	1		1	1	0	——→D * C = 1
2	0	1	0					
3	0	1	1					
4	1	0	0					
5	1	0	1	_	→	Re	set	

Z výstupu D odoberáme fr/6 (z najvyššieho radu, ktorý ešte neni z 1 -> 0)

D C B A
0 1 1 0
C*B=1

(najvyšší rad, ktorý sa ešte mení)

Kaskádové deliče

Ak potrebujem navrhnúť delič napr f/1000, riešim ho ako kaskádový delič:

Deliaci pomer kaskádového deliča = súčinu jednotlivých deliacich pomerov. Deliče:

 Symetrické (strieda 1:1) - delič je symetrický, ak posledný delič v rade má deliaci pomer 2^x.

