Temporal Dynamics on Decoding Target Stimuli in Rapid Serial Visual Presentation using Magnetoencephalography

Chuncheng Zhang¹, Shuang Qiu¹, Shengpei Wang¹, Wei Wei¹, Huiguang He¹

¹Research Center for Brain-inspired Intelligence, Institute of Automation, Chinese Academy of Science, Beijing, China.

June 9, 2020

- Introduction
- 2 Experiment
- Methods
- 4 Results and Discussion
- Conclusion
- 6 Acknowledgements

Detail of Contents (Delete)

- Introduction
- 2 Experiment
 - Task Design
 - MEG and MRI acquisition
- Methods
 - MEG Preprocessing
 - MVPA
 - Cortical Neuronal Activation Estimation
- Results and Discussion
 - MEG Signal Visualization
 - MVPA Scores
 - MVPA Scores
 - Cortical Neuronal Activation
- Conclusion

- Introduction
- 2 Experiment
- 3 Methods
- 4 Results and Discussion
- Conclusion
- 6 Acknowledgements

Introduction

Background
Rapid serial visual presentation (RSVP) has been widely used in brain-computer interface (BCI) as a high efficient paradigm [1].
RSVP-BCI has been applied in many areas such as data categorization [2], face recognition [3] ,speller [4] and website evaluation [5].

Introduction

Motivation

- Little has been known about the temporal dynamics of the neural activity that triggered by target stimuli in RSVP.
- Besides the successful engineering applications of RSVP-BCI, the underlying neural activity is still unclear.

Introduction

This work

- The temporal dynamic of target event-related responses in a static RSVP paradigm was investigated using paired structural MRI and MEG signal with different frequency bands.
- The MVPA was applied on MEG epoch responses to estimate the decoding power dynamic.

- Introduction
- 2 Experiment
 - Task Design
 - MEG and MRI acquisition
- Methods
- 4 Results and Discussion
- Conclusion
- 6 Acknowledgements

Task Design

Subjects Recruited 10 college students (7 males and 3 females, aged 23.79 ± 3.6).

Design During a block, 100 pictures were shown to the subject in random ordered sequences at a rate of 10 Hz.

Ratio The chance of target pictures (odd ball) was set to 4%.

MEG and MRI acquisition

- MEG MEG data were scanned with a whole-head CTF MEG system with 272 channels (MISL-CTF DSQ-3500, Vancouver, BC, Canada) at the MEG Center of Institute of Biophysics, Chinese Academy of Sciences.
- MRI MRI data were scanned with a 3.0 T MRI scanner (Siemens, Germany) at the MRI Center of Institute of Biophysics, Chinese Academy of Sciences.

- Introduction
- 2 Experiment
- Methods
 - MEG Preprocessing
 - MVPA
 - Cortical Neuronal Activation Estimation
- 4 Results and Discussion
- Conclusion
- 6 Acknowledgements

MEG Preprocessing

Software The MEG data were preprocessed using MNE software.

De-noise Suppressing artificial noise using ICA method. The artificial sources were zeroed out from raw data.

Filter The bands used in this research were Delta, Theta, Alpha bands, and two custom bands: U07 and U30 band.

Table: Filter bands

Filter Name	Freq band
Delta	1 – 4 <i>Hz</i>
Theta	4 – 7 <i>Hz</i>
Alpha	8 – 12 <i>Hz</i>
U07	0.1 - 7Hz
U30	0.1 - 30Hz

MVPA

Feature Feature extraction was applied to training data, using xDAWN algorithm. Number of components was set as 6.

Classifier Support Vector Machine (SVM) was applied as classifier.

Validation The MVPA was applied in a 10-folder cross-validation protocol. In each folder, we use one run as testing data and others as training data.

Cortical Neuronal Activation Estimation

Surfaces The subject-specific cortical surfaces were build based on the MRI data using *freesurfer* software.

Model A forward model was calculated to project the MEG data into cortical surfaces using the 'oct6' space.

- 1 Introduction
- 2 Experiment
- 3 Methods
- Results and Discussion
 - MEG Signal Visualization
 - MVPA Scores
 - MVPA Scores
 - Cortical Neuronal Activation
- Conclusion
- 6 Acknowledgements

MEG Signal Visualization MVPA Scores MVPA Scores Cortical Neuronal Activation

MEG Signal Visualization

Joint plot of evoked U07 U30

MEG Signal Visualization MVPA Scores MVPA Scores Cortical Neuronal Activation

MVPA Scores

Accuracy F1-score Recall ratio

MEG Signal Visualization MVPA Scores MVPA Scores Cortical Neuronal Activation

MVPA Scores

Scores in temporal resolution

MEG Signal Visualization MVPA Scores MVPA Scores Cortical Neuronal Activation

Cortical Neuronal Activation

Evoked activations

- Introduction
- 2 Experiment
- Methods
- 4 Results and Discussion
- 6 Conclusion
- 6 Acknowledgements

Conclusion

- 1 Introduction
- 2 Experiment
- Methods
- 4 Results and Discussion
- Conclusion
- 6 Acknowledgements

Acknowledgements

Big thanks