

Transparent Vision: A Theory of Hierarchical Invariant Representations

Shuren Oi, Yushu Zhang, Chao Wang, Zhihua Xia, Xiaochun Cao, and Fenglei Fan

0. TL;DR

When deep nets get too complicated, I resort to toy models: a designed CNN with hierarchical invariance.

spherical cow

1. Why Invariance?

Empirical learning v.s. robustness, interpretability, efficiency...

Integrating invariance into representations

Invariance is ubiquitous!

2. State of the Art and Motivation

Invariance helps deep nets

MLP (no inv.) \rightarrow CNN (translation inv. on grid) \rightarrow Geometric Deep Learning (GDL, going beyond translation or grid)

Equivariant networks: SOTA in GDL but need discrete sampling, with limited efficiency & invariance.

3. The Blueprint

Rethink CNN modules and formalize a hierarchical invariant blueprint.

[1] S. Qi et al. A Principled Design of Image Representation. TPAMI, 2023.

[92] J. Flusser et al. Moments and Moment Invariants in Pattern Recognition, 2009.

Mage information can pass through each inter CNN layer in a geometrically controllable manner, and on the last layer, the invariants are allowed by compact designs with sufficient information.

4. Definitions

6-invariant representation $\mathcal{R}_n \triangleq \mathbb{I} \circ \mathbb{P}_{[L]} \circ \mathbb{S}_{[L]} \circ \mathbb{C}_{[L]} \circ \cdots \circ \mathbb{P}_{[1]} \circ \mathbb{S}_{[1]} \circ \mathbb{C}_{[1]}$

- \mathfrak{G} -covariant convolutional layer $\mathbb{C}M \triangleq \langle M, V_{nm}^{uvw} \rangle$ [\mathbb{Q} 1]
- Nonlinearity layer $\mathbb{S}M = \sigma(M(i,j)) \triangleq |M(i,j;k)|$
- Local pooling layer $\mathbb{P}M = M'$
- \mathfrak{G} -invariant layer $\mathbb{I}M = \mathcal{I}(\{\langle M(i,j;k), V_{nm}(x_i,y_i)\rangle\})$ [92]

 Ω : 2D image grid; \mathfrak{G} : translation, rotation, flipping, scaling symmetry group over Ω

5. Properties

One-shot symmetry properties between image and representation

- \mathfrak{G}_1 equivariance $\mathbb{U}_{[L]} \circ \cdots \circ \mathbb{U}_{[2]} \circ \mathbb{U}_{[1]}(\mathfrak{g}_1 M) \equiv \mathfrak{g}_1 \mathbb{U}_{[L]} \circ \cdots \circ \mathbb{U}_{[2]} \circ \mathbb{U}_{[1]}(M)$
- \mathfrak{G}_2 covariance $\mathbb{U}^w_{[L]} \circ \cdots \circ \mathbb{U}^w_{[2]} \circ \mathbb{U}^w_{[1]}(\mathfrak{g}_2 M) \equiv \mathfrak{g}_2' \mathbb{U}^w_{[L]} \circ \cdots \circ \mathbb{U}^w_{[2]} \circ \mathbb{U}^w_{[1]}(M)$
- \mathfrak{G}_0 hierarchical invariance $\mathbb{I}(\mathfrak{g}_0'M)_{[L]} \equiv \mathbb{I}M_{[L]}$

 \mathfrak{G}_1 : translation, rotation, flipping symmetry group; \mathfrak{G}_2 : scaling symmetry group, with scaling factor s; any $\mathfrak{G}_0 \subseteq \mathfrak{G}_1 \times \mathfrak{G}_2$ as the symmetry group of interest; $\mathbb{U} \triangleq$ $\mathbb{P} \circ \mathbb{S} \circ \mathbb{C}$; \mathfrak{g}_2' means acting also on the w of \mathbb{U} : $\mathfrak{g}_2' \mathbb{U}^w \triangleq \mathfrak{g}_2 \mathbb{U}^{ws}$

6. Practices

7. An Application Case: AIGC Detection

Similar discriminability to large CNN, with much fewer training samples and new robustness/interpretability.

8. Useful Links

code this paper

tutorial bigger picture

profile homepage Online Q&A