Übung zu Datenbanken I Relationaler Entwurf

WS 2019 / 2020

Relationaler Entwurf

Schemaeigenschaften

- Verfeinerung des logischen Entwurfs durch Beachtung der Integritätsbedingungen (z.B. funktionale Abhängigkeiten)
 - Vermeidung von Redundanzen durch Aufspalten von Relationenschemata (Normalform), unter der:
 - Abhängigkeitstreue: Es werden nur semantisch sinnvolle und konsistente Anwendungsdaten dargestellt. Nachweis über den RAP-Algorithmus.
 - Verbundtreue: Alle Anwendungsdaten sollen aus Basisrelationen hergeleitet werden können.
- Entwurfsverfahren
 - Dekomposition
 - Synthese

Zusammenfassung

Definition (Funktionale Abhängigkeit)

Gegeben seien zwei Attributmengen X und Y. Dann existiert eine funktionale Abhängigkeit (FD) zwischen X und Y, wenn der Attributwert x_i unter X den zugehörigen Attributwert y_i unter Y eindeutig bestimmt.

Alternative Schreibweisen:

- $\bullet X \rightarrow Y$
- Y ist funktional abhängig von X
- Y hängt funktional von X ab
- X bestimmt Y funktional

Beispiel:

Α	В	C	ullet A, B $ o$ C, denn $(1,1)$ $ o$ 3 und
1	1	3	$(1,2) \rightarrow 4$ eindeutig
1	1	3	
_	_	-	\bullet A \rightarrow C denn 1 \rightarrow 3 und 1 \rightarrow 4

Partielle und transitive Abhängigkeit

Definition (Partielle Abhängigkeit)

Gegeben seien zwei Attributmengen X und Y. Dann ist $X \to Y$ eine partielle Abhängigkeit, wenn gilt:

$$\exists A_i \in X : (X - \{A_i\}) \rightarrow Y$$

Beispiel:

Schemaeigenschaften

$$S = \{(ABC, \{AB\})\} \text{ mit } F = \{A \to C\}$$

Definition (Transitive Abhängigkeit)

Gegeben seien zwei Attributmengen X und Z. Dann ist $X \to Z$ eine transitive Abhängigkeit, wenn gilt:

$$\nexists$$
 Attributmenge $Y: X \rightarrow Y, Y \rightarrow Z, Y \nrightarrow X, Z \notin XY$

Beispiel:

$$S = \{(ABC, \{A\})\} \text{ mit } F = \{A \rightarrow B, B \rightarrow C\}$$

Partielle und transitive Abhängigkeiten für 2NF und 3NF

Zweite Normalform (2NF):

• Dritte Normalform (3NF):

Dritte Normalform — **S1**

Definition (Erste Normalform)

- Erlaubt im Relationenschema nur atomare Attribute
 - → Attributwerte sind Elemente von Standardtypen wie **string** oder **integer**, keine Konstruktoren wie **array** oder **set**
- Eliminierung mengenwertiger Attribute durch Duplizierung

Definition (Zweite Normalform)

Erlaubt keine partiellen Abhängigkeiten eines Nicht-Primattributs von einem Schlüssel

Definition (Dritte Normalform)

Erlaubt keine transitiven Abhängigkeiten eines Nicht-Primattributs von einem Schlüssel

Normalformen — Beispiele

Aufgabe:

- $S_1 = \{(ABC, \{A\})\} \text{ mit } F_1 = \{A \to B, A \to C\}$
- $S_2 = \{(ABC, \{A\})\} \text{ mit } F_2 = \{A \to B, B \to C\}$
- $S_3 = \{(ABC, \{AB\})\} \text{ mit } F_3 = \{A \to B, B \to C\}$
- $S_4 = \{(AB, \{A\}), (BC, \{B\})\} \text{ mit } F_4 = \{A \to B, B \to C\}$
- $S_5 = \{(ABC, \{A, B\})\} \text{ mit } F_5 = \{A \to B, B \to C, B \to A\}$

Normalformen — Beispiele

Aufgabe:

Schemaeigenschaften

000000

- $S_1 = \{(ABC, \{A\})\} \text{ mit } F_1 = \{A \to B, A \to C\}$
- $S_2 = \{(ABC, \{A\})\} \text{ mit } F_2 = \{A \to B, B \to C\}$
- $S_3 = \{(ABC, \{AB\})\}\$ mit $F_3 = \{A \to B, B \to C\}$
- $S_4 = \{(AB, \{A\}), (BC, \{B\})\} \text{ mit } F_4 = \{A \to B, B \to C\}$
- $S_5 = \{(ABC, \{A, B\})\}\$ mit $F_5 = \{A \to B, B \to C, B \to A\}$

Lösung:

000000

Definition (Minimalität)

Minimale Anzahl von Relationenschemata, die die anderen Eigenschaften (**S1**, **T1**, **T2**) erfüllt

Aufgabe:

- $F = \{A \rightarrow BC, C \rightarrow D, C \rightarrow A, E \rightarrow C\}$
- $S = \{(ABCD, \{A, C\}), (CE, \{E\})\}$

00000

Definition (Minimalität)

Minimale Anzahl von Relationenschemata, die die anderen Eigenschaften (S1, T1, T2) erfüllt

Aufgabe:

- $F = \{A \rightarrow BC, C \rightarrow D, C \rightarrow A, E \rightarrow C\}$
- $S = \{(ABCD, \{A, C\}), (CE, \{E\})\}$

Lösung:

Wähle ein kleineres Schema:

- $S' = \{(ABCDE, \{E\})\}$
- \Rightarrow S' enthält transitive Abhängigkeit $E \rightarrow C \rightarrow A$
- \Rightarrow S' erfüllt **S1** nicht mehr
- S ist minimal

Kann eine bestimmte FD $X \to Y$ aus der vorgegebenen Menge F abgeleitet werden, d.h. wird sie von F impliziert?

- Hülle: $F_R^+ := \{f \mid (f \text{ FD "uber } R) \land F \models f\}$ Membership-Problem (1): $X \to Y \in F_R^+$?
- Hülle von X bzgl. F ist $X_F^+:=\{A\mid X\to A\in F^+\}$ Membership-Problem (2): $Y\subseteq X_F^+$?

• RAP-Regeln:

R Reflexivität
$$\{\} \Rightarrow X \rightarrow X$$

A Akkumulation $\{X \rightarrow YZ, Z \rightarrow AW\} \Rightarrow X \rightarrow YZA$
A' $\{X \rightarrow YZ, Z \rightarrow W\} \Rightarrow X \rightarrow YZW$
P Projektivität $\{X \rightarrow YZ\} \Rightarrow X \rightarrow Y$

- Die RAP-Regelmenge ist vollständig, die Regeln selbst sind gültig und unabhängig.
 - gültig (sound): Regeln leiten keine FDs ab, die logisch nicht impliziert werden
 - vollständig (complete): alle implizierten FDs werden abgeleitet
 - unabhängig (independent): keine Regel kann weggelassen werden

Algorithm 1 RAP-Algorihtmus

```
1. X^{+} := X
                                                                  ▶ R-Regel
 2: repeat
        X_{\text{Hilfe}} := X^+
 3:
    for all FDs Y \rightarrow Z \in F do
 4:
            if X_i \to Y_i \in F mit X_i \subset X^+ then X^+ := X^+ \cup Y_i
 5:
            end if
                                                                 6:
        end for
 8: until X^+ = X_{\text{Hilfe}}
9: if Y \subset X^+ then X \to Y \in F^+
                                                                  ▶ P-Regel
10: end if
```

- R-Regel ⇒ Ausnutzten der Reflexivität
- A-Regel (mehrfach angewandt) ⇒ Berechnung der Hülle
- P-Regel ⇒ Ableiten möglicher FDs

Definition (Abhängigkeitstreue)

Eine Menge von Abhängigkeiten kann äquivalent in eine zweite Menge von Abhängigkeiten transformiert werden.

Spezieller: Für ein gegebenes Datenbankschema S ist die Menge der (funktionalen) Abhängigkeiten F äquivalent zur Menge der Schlüsselbedingungen G.

Zu zeigen:

- $X \rightarrow Y \in F \Rightarrow X \rightarrow Y \in G^+$
- $X \rightarrow Y \in G \Rightarrow X \rightarrow Y \in F^+$

Aufgabe:

- Datenbankschema: $S = \{(OSHP, \{OSH\})\}$
- Funktionale Abhängigkeiten:

$$F = \{OSH \rightarrow P, P \rightarrow O\}$$

- Schlüsselabhängigkeiten: $G = \{OSH \rightarrow OSHP\}$
- \Rightarrow Frage: Ist F äquivalent zu G?

Abhängigkeitstreue — Beispiel

Aufgabe:

- Datenbankschema: $S = \{(OSHP, \{OSH\})\}$
- Funktionale Abhängigkeiten:

$$F = \{OSH \rightarrow P, P \rightarrow O\}$$

- Schlüsselabhängigkeiten: $G = \{OSH \rightarrow OSHP\}$
- \Rightarrow Frage: lst F äquivalent zu G?

Lösung:

- $OSH \rightarrow OSHP \in F^+$
- $OSH \rightarrow P \in G^+$
- \bullet $P \rightarrow O \notin G^+$
- \Rightarrow Antwort: F ist nicht äquivalent zu G.

Definition (Verbundtreue)

Für eine Zerlegung eines Relationenschemas R in $\bigcup_{i=1}^{n} R_i$ gilt:

$$R = R_1 \bowtie R_2 \bowtie ... \bowtie R_n$$

Kriterium 1 (für 2 Relationenschemata):

 Die Dekomposition einer Attributmenge X in X₁ und X₂ ist verbundtreu bzgl. F über X, wenn

$$X_1 \cap X_2 \rightarrow X_1 \in F^+ \text{ oder } X_1 \cap X_2 \rightarrow X_2 \in F^+$$

Kriterium 2 (allgemeiner, falls Abhängigkeitstreue vorhanden ist):

- Der Universalschlüssel muss in einem Relationenschema der Dekomposition vollständig enthalten sein.
- Universalschlüssel: minimale Teilmenge von U, die U funktional bestimmt

Kriterium 1:

Schemaeigenschaften

- $S_1 = \{(ABC, \{A\})\}$
- $S_2 = \{(AB, \{A, B\}), (BCD, \{C\})\}$
- $S_3 = \{(AB, \{A\}), (BC, \{C\})\}$
- $S_4 = \{(AB, \{A\}), (CD, \{C\})\}$
- $S_5 = \{(ABD, \{B\}), (ABC, \{C\})\}$

Kriterium 2 (Schlüsselsuche):

- $F_1 = \{A \rightarrow B, B \rightarrow C, A \rightarrow D, D \rightarrow H, B \rightarrow E\},\ U_1 = \{ABCDEH\}$
- $F_2 = \{A \rightarrow BCD, BC \rightarrow A, BC \rightarrow D\}, U_2 = \{ABCDE\}$

Verbundtreue — Beispiele

Kriterium 1:

• $S_1 = \{(ABC, \{A\})\}$	Schema	Verbund-
(treue
• $S_2 = \{(AB, \{A, B\}), (BCD, \{C\})\}$	$\overline{S_1}$	√
• $S_3 = \{(AB, \{A\}), (BC, \{C\})\}$	S_2	\checkmark
• $S_4 = \{(AB, \{A\}), (CD, \{C\})\}$	S_3	X
• $S_5 = \{(ABD, \{B\}), (ABC, \{C\})\}$	S_4	X
-3 (()()))	S_5	\checkmark

Kriterium 2 (Schlüsselsuche):

•
$$F_1 = \{A \rightarrow B, B \rightarrow C, A \rightarrow D, D \rightarrow H, B \rightarrow E\},\ U_1 = \{ABCDEH\}$$

 \Rightarrow Universalschlüssel: A

•
$$F_2 = \{A \rightarrow BCD, BC \rightarrow A, BC \rightarrow D\}, U_2 = \{ABCDE\}$$

 \Rightarrow Universalschlüssel: AE

Beispiel I — Eigenschaften

Aufgabe:

•
$$F = \{LT \rightarrow A, L \rightarrow O, O \rightarrow E\}$$

•
$$S = \{(LTA, \{LT\}), (LO, \{L\}), (OE, \{O\})\}$$

Aufgabe:

Schemaeigenschaften

- $F = \{LT \rightarrow A, L \rightarrow O, O \rightarrow E\}$
- $S = \{(LTA, \{LT\}), (LO, \{L\}), (OE, \{O\})\}$

Eigenschaften:

- Abhängigkeitstreue:
 √
- 3 Normalform:
 √
 - partielle Abhängigkeit: x
 - transitive Abhängigkeit: x
- Verbundtreue: √
 - Der Universalschlüssel LT ist Teil eines Relationenschemas.
- Minimalität: √

Aufgabe:

- $F = \{A \rightarrow BC, C \rightarrow AD, E \rightarrow C\}$
- $S = \{(ABCD, \{A\}), (AE, \{E\})\}$

Beispiel II — Eigenschaften

Aufgabe:

- $F = \{A \rightarrow BC, C \rightarrow AD, E \rightarrow C\}$
- $S = \{(ABCD, \{A\}), (AE, \{E\})\}$

Eigenschaften:

- Abhängigkeitstreue: x
 - $C \rightarrow AD \notin G^+$
- 3 Normalform:
 √
 - partielle Abhängigkeit: x
 - transitive Abhängigkeit: x, C ist alternativer Schlüssel
- Verbundtreue:
 - ✓ nach Kriterium 1
 - Kriterium 2 hier nicht anwendbar.
- Minimalität: x
 - Setzt Abhängigkeitstreue voraus.

Entwurfsverfahren

Schemaeigenschaften

Ziel: Universum U und FD-Menge $F \Rightarrow$ lokal erweitertes Datenbankschema $S = \{(R_1, K_1), ..., (R_p, K_p)\}$

Bedingungen:

- T1 S charakterisiert F vollständig.
- S1 S ist bzgl. F in 3NF.
- T2 Die Dekomposition von U in $R_1, ..., R_p$ ist bzgl. F verbundtreu.
- Minimalität, d.h. $\exists S' : S'$ erfüllt **T1**, **S1**, **T2** und |S'| < |S|. **S2**

Verfahren:

- Dekomposition
- Synthese

- Verfahren:
 - Gegeben: Universalrelationenschema R = (U, K(F)) mit $K(F) = \{K \rightarrow U : K \rightarrow U \in F^+ \text{ und } K \text{ minimal}\}\$
 - Gesucht: Zerlegung in $D = \{R_1, R_2, ...\}$ von 3NF-Schemata
- Reihenfolgeabhängig
- Komplexität: NP-vollständiges Problem (Schlüsselsuche in Original relation mit exponentiellem Aufwand)

Kennung	Eigenschaft	erfüllt
S 1	3NF	✓
S2	Minimalität	X
T1	Abhängigkeitstreue	X
Т2	Verbundtreue	✓

Aufgabe:

•
$$F = \{A \rightarrow B, B \rightarrow C, A \rightarrow D, D \rightarrow H, B \rightarrow E\}$$

 $U = ABCDEH$

Aufgabe:

Schemaeigenschaften

•
$$F = \{A \rightarrow B, B \rightarrow C, A \rightarrow D, D \rightarrow H, B \rightarrow E\}$$

 $U = ABCDEH$

Lösung:

- Universalschlüssel: A, denn $A^+ = ABCDEH$
- Universal relationenschema: $S = \{(ABCDEH, \{A\})\}$
- Transitive Abhängigkeiten von A:
 - $A \rightarrow B \rightarrow C \Rightarrow \{(ABDEH, \{A\}), (BC, \{B\})\}$
 - $A \rightarrow B \rightarrow E \Rightarrow \{(ABDH, \{A\}), (BC, \{B\}), (BE, \{B\})\}\}$
 - $A \rightarrow D \rightarrow H \Rightarrow \{(ABD, \{A\}), (BC, \{B\}), (BE, \{B\}), (BE,$ $(DH, \{D\})$
- Ergebnisrelationenschema:

$$S' = \{(ABD, \{A\}), \underbrace{(BC, \{B\}), (BE, \{B\})}_{\text{Minimalität für } (BCE, \{B\})}, (DH, \{D\})\}$$

- Verfahren: • Gegeben: Relationenschema R mit FDs F
 - Gesucht: abhängigkeitstreue, minimale Zerlegung $D = \{R_1, R_2, ...\}$ von 3NF-Schemata
- Reihenfolgeunabhängig
- Komplexität: quadratisch

Kennung	Eigenschaft	erfüllt
S 1	3NF	✓
S 2	Minimalität	✓
T1	Abhängigkeitstreue	✓
T2	Verbundtreue	✓

Zusammenfassung

Kennung	Eigenschaft	Kurzcharakteristik
S1	3NF	keine transitiven Abhängigkeiten
		eines Nicht-Primattributes von
		einem Schlüssel
S2	Minimalität	minimale Anzahl von Relationen-
		schemata, die die anderen Eigen-
		schaften erfüllt
T1	Abhängigkeitstreue	alle gegebenen Abhängigkeiten
		sind durch Schlüssel repräsentiert
T2	Verbundtreue	Originalrelationen können durch
		den Verbund der Basisrelationen
		wiedergewonnen werden

Entwurfsverfahren:

- Dekomposition
- Synthese