# Discrete Mathematics

Tutorial solution

Topic-9

Relations

# Question 1.

Let  $\mathcal{S}$  be a set and  $\mathcal{R}$  be a relation on  $\mathcal{S}$ . Explain what it means (you are expected to give mathematical definitions.) to say that  $\mathcal{R}$  is:

- 1. reflexive;
- 2. symmetric;
- 3. anti-symmetric;
- 4. transitive;
- 5. an equivalence relation;
- 6. a partial order.

In each case give an example of a relation which has the given property and another relation which does not have it.

Solution:

- 1.  $\mathcal{R}$  is reflexive if  $\forall x \in S, x$ §

  Example: Equality is reflexive, but is  $Less\ than(<)$  is not reflexive
- 2.  $\mathcal{R}$  is symmetric if  $\forall x, y \in S, x\mathcal{R}y \Rightarrow y\mathcal{R}x$  Example: marriage is symmetric, but is the parent of is not symmetric.
- 3.  $\mathcal{R}$  is antisymmetric if  $\forall x, y \in S, x\mathcal{R}y \land y\mathcal{R}x \Rightarrow x = y$ Example: Subset ( $\subseteq$ ) is antisymmetric, but is parent of not.
- 4.  $\mathcal{R}$  is transitive if  $\forall x, y, z \in S, x\mathcal{R}y \land y\mathcal{R}z \Rightarrow x\mathcal{R}z$ Example: been an ancestor is transitive, but been a parent is not
- 5.  $\mathcal{R}$  is an equivalence relation if it is reflexive, symmetric and transitive Example: is equal to on the set of real number is an equivalence relation. is less or equal ( $\leq$ ) is not an equivalence relation.
- 6.  $\mathcal{R}$  is a partial order if it is reflexive, antisymmetric and transitive Example: The relation divides ( | ) on the set of positive integers (the natural numbers  $\mathbb{N}$  ), certainly reflexive, antisymmetric, and transitive. But the same relation applied to the set of integers  $\mathbb{Z}$ , is not antisymmetric since  $-2 \mid 2$  and  $2 \mid -2$  but  $2 \neq 2$ .

# Question 2.

Let  $S = \{a, b, c\}$  and  $A = \{(c, c), (a, b), (b, b), (b, c), (c, b)\}.$ Define a relation R on S by "x is related to y whenever $(x, y) \in A$ ".

- 1. Draw the relationship digraph.
- 2. The relation R is not reflexive. What pair (x, y) should be added to A to make R reflexive?
- 3. The relation R is not symmetric. What pair (x, y) should be added to A to make R symmetric?
- 4. The relation R is not anti-symmetric. What pair (x, y) should be removed to make R anti-symmetric?
- 5. The relation R is not transitive. What pair (x, y) should be added to A to make R transitive?

### Solution:

- 1.
- 2. (a,a)
- 3. (b,a)
- 4. (b,c) or (c,b)
- 5. (a,c)

### Question 3.

The following relations are defined on a set  $S = \{a, b, c\}$ .

 $R_1$  is the relation given by  $\{(a,a),(a,b),(a,c),(b,a),(b,b),(c,a),(c,c)\}$ 

 $R_2$  is given by  $\{(a,a),(a,b),(b,a),(b,b),((c,c))\}$ 

 $R_3$  is given by  $\{(a,b),(a,c),(b,a),(b,c),(c,a),(c,b)\}$ 

 $R_4$  is given by  $\{(a,a),(a,b),(a,c),((b,b),(b,c),(c,c)\}$ 

Complete the table below. If the relation is an equivalence relation give the equivalence classes. Also state whether any of the relations is a partial order,

justifying your answer.

|                 | reflexive | symmetric | antisymmetric | transitive | equivalence rel. |  |
|-----------------|-----------|-----------|---------------|------------|------------------|--|
| $\mathcal{R}_1$ |           |           |               |            |                  |  |
| $\mathcal{R}_2$ |           |           |               |            |                  |  |
| $\mathcal{R}_3$ |           |           |               |            |                  |  |
| $\mathcal{R}_4$ |           |           |               |            |                  |  |

|                 | reflexive | symmetric | antisymmetric | transitive | equivalence rel. | Partial order |
|-----------------|-----------|-----------|---------------|------------|------------------|---------------|
| $\mathcal{R}_1$ | yes       | yes       | no            | no         | no               | no            |
| $\mathcal{R}_2$ | yes       | yes       | no            | yes        | yes              | no            |
| $\mathcal{R}_3$ | no        | yes       | no            | no         | no               | no            |
| $\mathcal{R}_4$ | yes       | no        | yes           | yes        | no               | yes           |

 $\mathcal{R}_{\in}$  is an equivalence relation with equivalence classes  $T = \{[a], [c]\}$ 

 $\mathcal{R}_{\triangle}$  is the only relation which is a partial order.

# Question 4.

Let  $S = \{1,2,3,4,5,6,7,8,9\}$  and let P be the partition on S given by

$$\{\{1,4,7\},\{2,5,8\},\{3,6,9\}\}.$$

Define  $\mathcal{R}$  to be the equivalence relation associated to  $\mathcal{P}$ .

- 1. Give two conditions for  $\mathcal{P}$  to be a partition.
- 2. Draw the relationship digraph.
- 3. Write down the equivalence class [5] as a set.

# Solution:

- 1.  $\mathcal{P}$  is a partition if
  - all the elements of S are in the partition.
  - each element of S appears in one partition only.







3.  $[5] = \{2, 5, 8\}$ 

# Question 5.

Let  $S = \mathbb{Z} \times \mathbb{N}^+$  and Let  $\mathbb{R}$  be relation on S defined as follows:

$$(a,b) \mathcal{R} (c,d)$$
 whenever  $ad = bc$ 

- 1. Show that  $\mathcal{R}$  is an equivalence relation
- 2. Define the equivalence class generated by (a,b), for  $a \in \mathbb{Z}$  and  $b \in \mathbb{N}^+$

1.  $\mathcal{R}$  is reflexive as  $\forall (a,b) \in S$ .  $(a,b) \mathcal{R}$  (a,b)  $\mathcal{R}$  is symmetric as  $\forall (a,b), (c,d) \in S$ .  $(a,b) \mathcal{R}$   $(c,d) \Rightarrow ad = bc \Rightarrow cb = da \Rightarrow (c,d) \mathcal{R}$  (a,b)  $\mathcal{R}$  is transitive as  $\forall (a,b), (c,d), (e,f) \in S$ .  $(a,b) \mathcal{R}$  (c,d) and  $(c,d) \mathcal{R}$   $(e,f) \Rightarrow ad = bc$  and  $cf = de \Rightarrow cbde = dacf \Rightarrow be = af \Rightarrow (a,b) \mathcal{R}$  (e,f)2.  $[(a,b)] = \{(m,n) : (a,b) \in \mathbb{Z} \times \mathbb{N}^+ \text{ and } \frac{a}{b} = \frac{m}{n}\}$ 

### Question 6.

Let A and B be two sets where:

 $A = \{France, Germany, Switzerland, England, Morocco\}$  and

 $B = \{French, German, English, Arabic\}$ . Let  $\mathcal{R}$  be relation defined from A to B, given by  $a\mathcal{R}b$  when b is a national language of a. The national language of of each of these countries is as follows: French for France, German for Germany, English for England, Arabic for Morocco, whereas, Switzerland has two national languages, French and German. Find the logical matrix for the relation  $\mathcal{R}$ .

### Solution:

|                     |             | French | German | English | Arabic |
|---------------------|-------------|--------|--------|---------|--------|
|                     | France      | 1      | 0      | 0       | 0      |
|                     | Germany     | 0      | 1      | 0       | 0      |
| $M_{\mathcal{R}} =$ | England     | 0      | 0      | 1       | 0      |
|                     | Morocco     | 0      | 0      | 0       | 1      |
|                     | Switzerland | _ 1    | 1      | 0       | 0      |

# Question 7.

For each of the following relations on the set of all people, state if i is an equivalence relation. Explain your answer.

- 1.  $\mathcal{R}_1 = \{(x, y) | x \text{ and } y \text{ are the same height } \}.$
- 2.  $\mathcal{R}_2 = \{(x,y)|x \text{ and } y \text{ have, at some time, lived in the same country}\}.$
- 3.  $\mathcal{R}_3 = \{(x, y) | x \text{ and } y \text{ have the same first name} \}.$
- 4.  $\mathcal{R}_4 = \{(x,y)|x \text{ is taller than } y\}.$
- 5.  $\mathcal{R}_5 = \{(x,y)|x \text{ and } y \text{ have the same colour hair}\}.$

### Solution:

1.  $\mathcal{R}_1$ . is reflexive as for all x, x is has the same height as x.  $\mathcal{R}_1$ . is symmetric as for all x, y, if x has the same height as y, then y has the same height as x.  $\mathcal{R}_1$ . is transitive as for all x, y, z, if x has the same height as y **AND** y has the same height as y, then y has the same height as y. Thus, y an equivalence relation.

- 2.  $\mathcal{R}_2$  is reflexive as for all  $x, x\mathcal{R}_2x$ .  $\mathcal{R}_2$  is symmetric as for all x, y, if x and y have at some time lived in the same country, then y and x have at some time lived in the same country.  $\mathcal{R}_2$  is not transitive as for all x, y, z, if x and y have at some time lived in the same country doesn't necessarily mean that x and z have at some time lived in the same country.  $\mathcal{R}_2$  is then not an equivalence relation.
- 3.  $\mathcal{R}_3$  is reflexive as for all  $x, x\mathcal{R}_3x$ .  $\mathcal{R}_3$  is symmetric as for all x, y, if  $x\mathcal{R}_3y$  then x and y have the same first name, hence,  $y\mathcal{R}_3x$ .  $\mathcal{R}_3$  is transitive as for x, y, z if x has the same first name as y and y has the same first name as z then x and z have the same first name as well.  $\mathcal{R}_3$  is then an equivalence relation.
- 4.  $\mathcal{R}_4$  is not reflexive as for all x, x is not taller than itself.  $\mathcal{R}_4$  is not symmetric either as if x is taller than y then y is not taller than x. Hence,  $\mathcal{R}_4$  is not an equivalence relation.
- 5.  $\mathcal{R}_5$  is reflexive as for all  $x, x\mathcal{R}_5x$ .  $\mathcal{R}_x$  is symmetric as for all x, y, if  $x\mathcal{R}_5y$  then x and y have the same colour hair , hence,  $y\mathcal{R}_5x$ .  $\mathcal{R}_5$  is transitive as for x, y, z if x has the same colour hair as y and y has the same colour hair as z then x and z have the same colour hair as well.  $\mathcal{R}_5$  is then an equivalence relation.

# Question 8.

Let  $S = \{\{1\}, \{1,2\}, \{1,2,3\}, \{1,2,3,4\}, \{1,2,3,4,5\}\}$ . Define a relation  $\mathcal{R}$  between the elements of S by

X is related to Y whenever  $X \subseteq Y$ .

- 1. Draw the relationship digraph.
- 2. Determine whether or not  $\mathcal{R}$  is reflexive, symmetric, antisymmetric or transitive. Give a brief justification for each of your answers.
- 3. State, with reasons, whether or not  $\mathcal{R}$  is an equivalence relation, whether or not it is a partial order and whether or not it is a total order.

#### Solution:



1.

$$s=\{1\},\ \ t=\{1,2\},\ \ u=\{1,2,3\},\ \ v=\{1,2,3,4\},\ \ w=\{1,2,3,4,5\}$$

- 2.  $\mathcal{R}$  is reflexive,  $\forall x \in S, x\mathcal{R}x$ .
  - $\mathcal{R}$  is not symmetric,  $\{1\} \subseteq \{1,2\}$  but  $\{1,2\} \not\subseteq \{1\}$ .
  - $\mathcal{R}$  is antisymmetric,  $\forall X, Y \in S, \ X \subseteq Y \text{ and } Y \subseteq X \Rightarrow X = Y.$
  - $\mathcal{R}$  is transitive,  $\forall X, Y, Z \in S$ ,  $X \subseteq Y$  and  $Y \subseteq Z \Rightarrow X \subseteq Z$ .
- 3.  $\mathcal{R}$  is not an equivalence relation since  $\mathcal{R}$  is not symmetric.
  - $\mathcal{R}$  is reflexive, antisymmetric and transitive then it is a partial order.
  - $\mathcal{R}$  is total order as it is a partial order and every two element of S are comparable with respect to the relation  $\mathcal{R}$ .

# Question 9.

Let  $\mathcal{S} = \{a,b,c,d\}$  and let  $A \subseteq \mathcal{S} \times \mathcal{S}$  be given by

$$\{(a, a), (a, c), (b, b), (b, d), (c, a), (c, c), (d, b), (d, d)\}.$$

A relation  $\mathcal{R}$  on  $\mathcal{S}$  is defined by

x is related to y whenever  $(x, y) \in A$ .

- 1. Draw the relationship digraph.
- 2. Determine whether or not  $\mathcal{R}$  is reflexive, symmetric, antisymmetric or transitive, giving a brief justification for your answer.
- 3. State, with reasons, whether or not  $\mathcal{R}$  is and equivalence relation, whether or not it is a partial order and whether or not it is a total order.

### Solution:



1.

- 2.  $\mathcal{R}$  is reflexive  $for x \in S$ ,  $x \mathcal{R} x$ 
  - $\mathcal{R}$  is symmetric,  $\forall x, y \in S, x\mathcal{R}y \Rightarrow y\mathcal{R}x$ .
  - $\mathcal{R}$  is not antisymmetric,  $a\mathcal{R}b$  but  $b \mathcal{R}a$ .
  - $\mathcal{R}$  is transitive if  $\forall x, y, z \in S, x\mathcal{R}y \land y\mathcal{R}z \Rightarrow x\mathcal{R}z$
- 3.  $\mathcal{R}$  is an equivalence relation.  $\mathcal{R}$  is not a partial order as  $\mathcal{R}$  is not antisymmetric.  $\mathcal{R}$  is not a total order as it is not a partial order

# Question 10.

Let  $\mathcal{R}$  be a relation from a set A to a set B. The inverse of  $\mathcal{R}$ , denoted  $\mathcal{R}^{-1}$ , is the relation from B to A defined by  $\mathcal{R}^{-1} = \{(y, x) : (x, y) \in \mathcal{R}\}$ . Given a relation  $\mathcal{R}$  from  $A = \{2, 3, 4\}$  to  $B = \{3, 4, 5, 6, 7\}$  defined by  $(x, y) \in \mathcal{R}$  if x divides y.

- 1. List the elements of of  $\mathcal{R}$  and write down the matrix,  $M_{\mathcal{R}}$ , of  $\mathcal{R}$ .
- 2. List the elements of of  $\mathcal{R}^{-1}$  and write down the matrix,  $M_{\mathcal{R}^{-1}}$ , of  $\mathcal{R}$ .

#### Solution:

1.  $\mathcal{R} = \{(2,4), (2,6), (3,3), (3,6), (4,4)\}$ 

2.  $\mathcal{R}^{-1} = \{(4,2), (6,2), (3,3), (6,3), (4,4)\}$ . The relation  $\mathcal{R}^{-1}$  can be defined from B to A by  $(x,y) \in \mathcal{R}^{-1}$  if x is divisible by y

$$M_{\mathcal{R}^{-1}} = egin{array}{cccc} & 2 & 3 & 4 \\ 3 & & & 1 & 0 \\ 4 & & & 1 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 7 & & & 0 & 0 \end{array} 
ight]$$

# Question 11.

Let  $\mathcal{R}_1$  and  $\mathcal{R}_2$  be the relations on a set  $S = \{1, 2, 3, 4\}$  given by:  $\mathcal{R}_1 = \{(1, 1), (1, 2), (3, 4), (4, 2), (2.4)\}$   $\mathcal{R}_2 = \{(1, 1), (3, 2), (4, 4), (2, 2), (4, 2)\}.$ 

- 1. Find the matrix representation  $\mathcal{R}_1$  and that of  $\mathcal{R}_2$ .
- 2. Find the matrix of the intersection of both matrices in (1).
- 3. Find the matrix of the union both matrices in (1).

- 4. list the element of  $\mathcal{R}_1 \cap \mathcal{R}_2$ .
- 5. list the element of  $\mathcal{R}_1 \cup \mathcal{R}_2$ .

1.

$$M_{\mathcal{R}_1} = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 1 & 1 & 0 & 0 \\ 2 & 0 & 0 & 0 & 1 \\ 3 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \end{bmatrix}$$

$$M_{\mathcal{R}_2} = egin{array}{cccc} 1 & 2 & 3 & 4 \\ 1 & 1 & 0 & 0 & 0 \\ 2 & 0 & 1 & 0 & 0 \\ 3 & 4 & 0 & 1 & 0 & 1 \\ \end{array}$$

2.

3.

$$M_{\mathcal{R}_1 \cup \mathcal{R}_2} = egin{bmatrix} 1 & 1 & 0 & 0 \ 0 & 0 & 0 & 1 \ 0 & 0 & 0 & 1 \ 0 & 1 & 0 & 0 \end{bmatrix} ee egin{bmatrix} 1 & 0 & 0 & 0 \ 0 & 1 & 0 & 0 \ 0 & 1 & 0 & 0 \ 0 & 1 & 0 & 1 \end{bmatrix} = egin{bmatrix} 1 & 1 & 0 & 0 \ 0 & 1 & 0 & 1 \ 0 & 1 & 0 & 1 \ 0 & 1 & 0 & 1 \end{bmatrix}$$

- 4.  $\mathcal{R}_1 \cap \mathcal{R}_2 = \{(1,1), (4,2)\}.$
- 5.  $\mathcal{R}_1 \cup \mathcal{R}_2 = \{(1,1), (1,2), (3,4), (4,2), (2.4), (3,2), (4,4), (2,2)\}.$

# Question 12.

Let  $\mathcal{R}$  be a relation on set A.

- 1. How can we quickly determine whether a relation R is reflexive by examining the matrix of  $\mathcal{R}$ ?
- 2. How can we quickly determine whether a relation R is symmetric by examining the matrix of  $\mathcal{R}$ ?
- 3. How can we quickly determine whether a relation R is anti-symmetric by examining the matrix of  $\mathcal{R}$ ?

Let  $\mathcal{R}_1$  and  $\mathcal{R}_2$  be two relations

- 1. A relation is reflexive if and only if its matrix has  $1\tilde{O}s$  on the main diagonal.
- 2. A relation  $\mathcal{R}$  is symmetric if and only if its matrix  $M_{\mathcal{R}}$  satisfies the following: For all i and j, the  $(ij)^{th}$  entry of  $M_{\mathcal{R}}$  is equal to the j  $(ji)^{th}$  entry of  $M_{\mathcal{R}}$ .
- 3. A relation  $\mathcal{R}$  is anti-symmetric if and only if its matrix  $M_{\mathcal{R}}$  satisfies the following: For all i and j with  $i \neq j$ , if the  $(ij)^{th}$  entry of  $M_{\mathcal{R}}$  is non-zeror then the  $(ji)^{th}$  entry of  $M_{\mathcal{R}}$  is equal to zero.

## Question 13.

For each of following relations on a set  $A = \{a, b, c\}$  defined by their corresponding Matrices, say wether is reflexive, symmetric or anti-symmetric.

1. 
$$M_{\mathcal{R}_1} = \begin{bmatrix} a & b & c \\ 1 & 1 & 0 \\ 0 & 1 & 0 \\ c & 0 & 1 & 0 \end{bmatrix}$$

2. 
$$M_{\mathcal{R}_2} = \begin{bmatrix} a & b & c \\ 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix}$$

3. 
$$M_{\mathcal{R}_3} = \begin{bmatrix} a & b & c \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ c & 0 & 0 & 1 \end{bmatrix}$$

$$4. \ M_{\mathcal{R}_4} = \begin{bmatrix} a & b & c \\ 1 & 1 & 0 \\ b & 1 & 1 & 1 \\ c & 0 & 1 & 1 \end{bmatrix}$$

Solution:

1. 
$$M_{\mathcal{R}_1} = \begin{bmatrix} a & b & c \\ 1 & 1 & 0 \\ 0 & 1 & 0 \\ c & 0 & 1 & 0 \end{bmatrix}$$

 $\mathcal{R}_1$  is not reflexive because the leading diagonal is not all 1's as  $m_{33}=0$  which means that c is not related to itself.

 $\mathcal{R}_1$  is not symmetric as  $m_{12}=1$  whereas  $m_{21}=0$ . This matrix is not symmetric.

 $\mathcal{R}_1$  is anti-symmetric as if  $m_{ij} = 1$  then  $m_{ji} = 0$  for all  $i \neq j$ .

2. 
$$M_{\mathcal{R}_2} = \begin{bmatrix} a & b & c \\ 1 & 1 & 0 \\ 0 & 1 & 0 \\ c & 0 & 1 & 1 \end{bmatrix}$$

 $\mathcal{R}_2$  is reflexive as the leading diagonal is all 1's.

 $\mathcal{R}_2$  is not symmetric as  $m_{12} = 1$  whereas  $m_{21} = 0$ . This matrix is not symmetric.

 $\mathcal{R}_2$  is anti-symmetric as if  $m_{ij} = 1$  then  $m_{ji} = 0$  for all  $i \neq j$ .

3. 
$$M_{\mathcal{R}_3} = \begin{bmatrix} a & b & c \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ c & 0 & 0 & 1 \end{bmatrix}$$

 $\mathcal{R}_3$  is reflexive as the leading diagonal is all 1's.

 $\mathcal{R}_3$  is symmetric as this matrix is symmetric.

 $\mathcal{R}_3$  is anti-symmetric as if  $m_{ij}=1$  then  $m_{ji}=0$  for all  $i\neq j$ .

$$4. \ M_{\mathcal{R}_4} = \begin{bmatrix} a & b & c \\ 1 & 1 & 0 \\ b & 1 & 1 & 1 \\ c & 0 & 1 & 1 \end{bmatrix}$$

 $\mathcal{R}_4$  is reflexive as the leading diagonal is all 1's.

 $\mathcal{R}_4$  is symmetric as this matrix is symmetric.

 $\mathcal{R}_4$  is not anti-symmetric as for example  $m_{i2}=m_{21}=1$  or  $m_{23}=m_{32}=1$ 

#### Question 14.

Let  $A = \{1, 2, ..., 10\}$  and let  $\mathcal{R}$  be a relation on A defined by  $x\mathcal{R}y$  if 3 divides x - y.

- 1. Show that the relation  $\mathcal{R}$  is an equivalence relation on A.
- 2. List all the equivalence classes of  $\mathcal{R}$ .

## Solution:

1. To show that  $\mathcal{R}$  is an equivalence relation on a set A, we need to show that it is reflexive, symmetric and transitive.

<u>Reflexive:</u> for all x in A 3 divided x - x = 0, hence  $x\mathcal{R}x$ . Thus  $\mathcal{R}$  is a reflexive relation.

Symmetric: for all  $x, y \in A$  if 3 divides x - y then 3 divides y - x. Hence,  $\mathcal{R}$  is a symmetric relation.

<u>Transitive</u>: for all  $x, y, z \in A$  if 3 divides x - y and 3 divides y - z then 3 divides x - y + y - z = x - z. Hence, for all  $x, y, z \in A$  if  $x\mathcal{R}y$  and  $y\mathcal{R}z$  then  $x\mathcal{R}z$ . Thus,  $\mathcal{R}$  is a transitive relation.

- 2.  $[1] = \{x \in A : 3 \text{ divides } x 1\} = \{1, 4, 7, 10\}.$ 
  - $[2] = \{x \in A : 3 \text{ divides } x 2\} = \{2, 5, 8\}.$
  - $[3] = \{x \in A : 3 \text{ divides } x 3\} = \{3, 6, 9\}.$

# Question 15.

Let  $A = \{1, 2, ..., 10\}$  and let  $\mathcal{R}$  be a relation on A defined by  $x\mathcal{R}y$  if  $x \mod 2 = y \mod 2$ .

- 1. Show that the relation  $\mathcal{R}$  is an equivalence relation on A.
- 2. List all the equivalence classes of  $\mathcal{R}$ .
- 3. is  $\mathcal{R}$  a partial or a total order?

#### Solution:

1. To show that  $\mathcal{R}$  is an equivalence relation on a set A, we need to show that it is reflexive, symmetric and transitive.

<u>Reflexive:</u> for all x in A  $x \mod 2 = x \mod 2$ , hence  $x\mathcal{R}x$ . Thus  $\mathcal{R}$  is a reflexive relation.

Symmetric: for all  $x, y \in A$  if  $x \mod 2 = y \mod 2$  then  $y'mod2 = x \mod 2$  as the equal is commutative. Hence,  $\mathcal{R}$  is a symmetric relation.

<u>Transitive</u>: for all  $x, y, z \in A$  if  $x \mod 2 = y \mod 2$  and  $y \mod 2 = z \mod 2$  then  $x \mod 2 = z \mod 2$ . Hence, for all  $x, y, z \in A$  if  $x \mathcal{R} y$  and  $y \mathcal{R} z$  then  $x \mathcal{R} z$ . Thus,  $\mathcal{R}$  is a transitive relation.

- 2.  $[1] = \{x \in A : x \mod 2 = 1 \mod 2 = 1\} = \{1, 3, 5, 7, 9\}.$  $[2] = \{x \in A : x \mod 2 = 2mod2 = 0\} = \{2, 4, 6, 8, 10\}.$
- 3. partial order:  $\mathcal{R}$  is not a partial order as it is not antisymmetric:  $2\mathcal{R}4$  and  $4\mathcal{R}2$  but  $2 \neq 4$ . Hence,  $\mathcal{R}$  is not a total order.

# Question 16.

Let  $A = \{1, 2, ..., 10\}$  and let  $\mathcal{R}$  be a relation on A defined by  $x\mathcal{R}y$  if  $x + y \mod 2 = 0$ .

- 1. Show that the relation  $\mathcal{R}$  is an equivalence relation on A.
- 2. List all the equivalence classes of  $\mathcal{R}$ .
- 3. is  $\mathcal{R}$  a partial or a total order?

### Solution:

1. To show that  $\mathcal{R}$  is an equivalence relation on a set A, we need to show that it is reflexive, symmetric and transitive.

<u>Reflexive:</u> for all x in A  $x + x = 2x \mod 2 = 0$ , hence  $x\mathcal{R}x$ . Thus  $\mathcal{R}$  is a reflexive relation.

Symmetric: for all  $x, y \in A$  if  $x + y \mod 2 = 0$  then  $y + x \mod 2 = 0$  as the addition is commutative. Hence,  $\mathcal{R}$  is a symmetric relation.

<u>Transitive</u>: for all  $x, y, z \in A$  if x+y=2m and y+z=2b then x+y+y+z=2(n+m), which leads to x+z=2(n+m-y), hence  $x+z \mod 2=0$  Hence, for all  $x,y,z\in A$  if  $x\mathcal{R}y$  and  $y\mathcal{R}z$  then  $x\mathcal{R}z$ . Thus,  $\mathcal{R}$  is a transitive relation.

- 2.  $[1] = \{x \in A : 1 + x \mod 2 = 0\} = \{1, 3, 5, 7, 9\}.$  $[2] = \{x \in A : 2 + x \mod 2 = 0\} = \{2, 4, 6, 8, 10\}.$
- 3. partial order:  $\mathcal{R}$  is not a partial order as it is not antisymmetric:  $2\mathcal{R}4$  and  $4\mathcal{R}2$  but  $2 \neq 4$ . Hence,  $\mathcal{R}$  is not a total order.

### Question 17.

Let  $\mathcal{R}$  be are relation on the set  $A = \{1, 2, 3, 4, 5\}$  defined by the rule  $x\mathcal{R}y$  if x = y - 1. Is this relation reflexive, symmetric, antisymmetric, transitive, equivalence, and/or a partial order?

Solution:

Reflexive:  $x \neq x - 1$  for all  $x \in A$ . Thus this relation is not reflexive.

Symmetric:  $2\mathcal{R}3$  as 2=3-1 however,  $3\mathcal{R}2$  as  $3\neq 2-1$ . Thus  $\mathcal{R}$  is not symmetric.

Antisymmetric: we can show this by contradiction: Assume there is exists  $x, y \in A$  with  $x \neq y$  and x = y - 1 and y = x - 1. This implies that x = x - 2, hence, 0 = -2 (contradiction). Thus  $\mathcal{R}$  is antisymmetric.

<u>Transitive</u>: it suffices to give a counter-example to show that this relation is not transitive.  $2\mathcal{R}3(2=3-1)$  and  $3\mathcal{R}4(3=4-1)$ , however,  $2\mathcal{R}4$  as  $2 \neq 4-1$ . Hence, mathcalR is not a transitive relation.

equivalence: for a relation to be an equivalence relation, it has be reflexive, symmetric and transitive. however,  $\mathcal{R}$  is neither symmetric nor transitive. Hence,  $\mathcal{R}$  is not an equivalence relation.

<u>partial order</u>: for a relation to be partial order, it has be reflexive, antisymmetric and transitive. however,  $\mathcal{R}$  is neither reflexive nor transitive. Hence,  $\mathcal{R}$  is not a partial order.

### Question 18.

Let  $A = \{1, 2, ..., 10\}$  and let  $\mathcal{R}$  be a relation on  $A \times A$  defined by  $(a, b)\mathcal{R}(c, d)$  if a + d = b + c. Show that  $\mathcal{R}$  is an equivalence relation on  $A \times A$ . Solution:

To show this relation is an equivalence relation, we need to show that is reflexive, symmetric, and transitive. Reflexive: for all  $(a,b) \in A \times A$  we have  $(a,b)\mathcal{R}(a,b)$  as a+b=a+b.

Symmetric: for all  $(a,b), (c,d) \in A \times A$  if  $(a,b)\mathcal{R}(c,d)$  then a+d=b+c. this implies c+b=d+a as both = and + are commutative. hence,  $(c,d)\mathcal{R}(a,b)$ . Thus  $\mathcal{R}$  is symmetric. Transitive: for all  $(a,b), (c,d), (e,f) \in A \times A$  we need to show that if  $(a,b)\mathcal{R}(c,d)$  and  $(c,d)\mathcal{R}(e,f)$  then  $(a,b)\mathcal{R}(e,f)$ .

- $(a,b)\mathcal{R}(c,d)$  and  $(c,d)\mathcal{R}(e,f)$  implies that:
- (1) a + d = b + c and (2) c + f = d + e, hence
- (1) a+d=b+c and (2) c=d+e-f. if we substitute c fro m(2) in (1), we get:
- a+d=b+d+e-f this implies that a+e=b+e, hence,  $(a,b)\mathcal{R}(e,f)$ . Thus,  $\mathcal{R}$  is a transitive relation.

Therefore,  $\mathcal{R}$  is an equivalence relation.

# Question 19.

Let  $X = \{1, 2, 3, 4\}, Y = \{3, 4\}$ , and  $C = \{1, 3\}$  and let  $\mathcal{R}$  be a relation on  $\mathcal{P}(X)$ , the set of all subsets of X, defined as

$$\forall A, B \in \mathcal{P}(X), \quad A\mathcal{R}B \text{ if } A \cup Y = B \cup Y$$

1. Show that  $\mathcal{R}$  is an equivalence relation.

2. List the elements of [C], the equivalence class containing C.

#### Solution:

Writing down the  $\mathcal{P}(X)$  is not necessary but we can do it as it has only 16 elements.  $\mathcal{P}(X) = \{\emptyset, \{1\}, \{2\}, \{3\}, \{4\}, \{1,2\}, \{1,3\}, \{1,4\}, \{2,3\}, \{2,4\}, \{3,4\}, \{1,2,3\}, \{1,2,4\}, \{1,3,4\}, \{2,3,4\}, \{1,2,3,4\}\}$ 

- 1. We need to show that  $\mathcal{R}$  is reflexive, symmetric and transitive. Reflexive: for all  $A \in \mathcal{P}(X)$  we have  $A \cup Y = A \cup Y$ . Hence,  $\mathcal{R}$  is reflexive. Symmetric: for all  $A, B \in \mathcal{P}(X)$  if  $A\mathcal{R}B$  then  $A \cup Y = B \cup Y$ . This implies that  $\overline{B \cup Y} = \overline{A} \cup Y$  as equality is commutative. hence,  $B\mathcal{R}A$ . Thus  $\mathcal{R}$  is symmetric. transitive: for all  $A, B, C \in \mathcal{P}(X)$  we need to show if  $A\mathcal{R}B$  and  $B\mathcal{R}C$  then  $A\mathcal{R}C$ .  $A\mathcal{R}B$  and  $B\mathcal{R}C$  implies that  $A \cup Y = B \cup Y$  and  $B \cup Y = C \cup Y$ . This implies that  $A \cup Y = C \cup Y$ , hence,  $A\mathcal{R}C$ . Thus  $\mathcal{R}$  is an equivalence relation.
- 2.  $Y = \{3, 4\}$ , and  $C = \{1, 3\}$   $[C] = \{B : B \in \mathcal{P}(X) \text{ AND } B \cup Y = C \cup Y = \{1, 3, 4\}\}$  $[C] = \{\{1\}, \{1, 3\}, \{1, 4\}, \{1, 3, 4\}\}$