Introduction to Molecular Biology

Content

- Cells and organisms
- Molecules of life (Biomolecules)
- Central dogma of molecular biology
- Genes and gene expression

@: Most pictures have been freely obtained from: http://www.accessexcellence.org/

Cells & organisms

Cells and organisms

- Organisms
 - □ Unicellular: One single cell (or simpler)
 - Archaea
 - Prokaryotes: Bacteria, Yeast
 - Eukaryote: Protozoos
 - □ Pluricellular: Eukaryote cells
 - Different organitation levels (e.g. tissues)
 - Diversity in number, type and syze
 - Viruses are not properly organisms

Eukaryotes

- "Eu" good,"Karyo" nut or kernel →
- Presence of nucleous separated from del cytoplasm by the nucleous envelope.
- DNA: double-stranded, it is organized in chromosomes
- The cell contains other membrane-bound organelles
- Sexual reproduction is common

Prokaryotes

- Lack a cell nucleous
- DNA: circular single stranded
- Lack other membranebound organelles.
- Without sexual reproduction although there are genetic recombination

Viruses

- Contain nucleic acids and proteins but no other characteristics
- They use the cellular machinery of their hosts to replicate
- NO can replicate outside the host → NOT living beings

Cellular components to scale

Content

- Cells and organisms
- Molecules of life (Biomolecules)
- The central dogma
- Genes and gene expression

@: Most pictures have been freely obyained from: http://www.accessexcellence.org/

Biomolecules

Key biomolecules

- The basic components of biological systems are
 - □ Sugars (carbohydrates)
 - □ Fats (lipids)
 - Nucleic acids
 - Proteins
- Sugars and lipids have no important role regarding "biological information" → Not discussed here

Nucleic acids and proteins

- Molecules that contain and transport information are
 - □ DNA (4 different nucleotides)
 - Contains encoded biological information
 - □RNA (4 different nucleotides)
 - Carries information from DNA to proteins
 - □ Proteins (20 different amino acids)
 - Function and structure of living beings

Nucleotides

- Basic components of nucleic acids
- Consisting of
 - □ A sugar (Ribose or Deoxyribose)
 - □ A nitrogen base
 - □ A phosphate group
- In biological parlance we speak of "bases" instead of nucleotides to describe a string (3000bp = 3000 bp)

DNA nucleotides

Deoxyribonucleic Acid (DNA) contains four nucleotide bases.

The Nucleotides of DNA

The pairing between complementary bases

DNA Basepairs

Adenosine-Thymidine (Adenine-Thymine)

Guanosine-Cytidine (Guanine-Cytosine)

The primary structure of DNA

- Sequence of nuceotides
- Forms an unbranched polymer
- Organized in a double-stranded

atgaatcgta ggggtttgaa cgctggcaat acgatgactt ctcaagcgaa cattgacgac ggcagctgga aggcggtctc cgagggcgga

DNA vs RNA

- DNA is organized into a complementary double helix. RNA does not.
- One of the four bases are different
 - \square DNA \rightarrow A, C, G, T
 - \square RNA \rightarrow A, C, G, U
- Differ from the nucleotide sugar
 - □ DNA→ Deoxyribose
 - □ ARN → Ribose

17

DNA strands sense

- Each DNA strand has a polarity:
 - □ The strand begins with the 1st nucleotide 5'-hydroxyl (or 5'-phospho) group, and
 - □ Ends with the last nucleotide 3'-hydroxyl group
 - □ The strand goes 5' to 3' ("Five prime to three prime")
- The two DNA strands are antiparallel
 - \square One goes 5' \rightarrow 3' and the other goesy 3' \rightarrow 5'.

- Amino acid sequence
- Forms an unbranched polymer
- There are 20 different amino acids (AA)
- The key function of proteins is in its three dimensional structure

Amino acids

Proteins "fold" into conformational structure

Protein's structure

Proteins fold into lowest to highest complexity level:

- Primary structure: amino acid sequence
- Secondary structure: regularly repeating local structures stabilized by hydrogen bonds.
- Tertiary structure: fold into 3-dimensional structures.
- Quaternary structure: structure formed by several protein molecules (protein complex).

primary structure (amino acid sequence)

secondary structure (α-helix)

tertiary structure (folded individual peptide)

Content

- Cells and organisms
- Molecules of life (Biomolecules)
- Central dogma of molecular biology
- Genes and gene expression

@: Most pictures have been freely obyained from: http://www.accessexcellence.org/

Central dogma of molecular biology

Central dogma of molecular biology

Central dogma of molecular biology states that information encoded in DNA is transferred to proteins through RNA.

From DNA to proteins

- DNA is replicated in a complex process involving many enzymes: replication replicación
- DNA is copied in a string of complementary messenger RNA (mRNA): transcription transcripción
- In eukaryotic cells, the mRNA is processed procesa eliminating coding fragments ("splicing") and migrates from the nucleous to the cytoplasm.
- The mRNA carries coded information to ribosomes (ribosomal RNA) that "read" and perform protein synthesis: translation traslación

1. Replication

Animations (1), (2), (3)

2. Transcription

3. RNA processing or splicing

RNA synthesis and processing

1DNA vs. 3 RNA's

4. Protein synthesis

- The mRNA goes to the cytoplasm where it binds to ribosomes.
- Codon: mRNA information unit.
- The tRNA brings the complementary AA tRNA.
- The AA are bound to the protein to complete the sequence.
- Animations (1), (2)

4' The genetic code

2nd base in codon

	כ	U	Α	G	
U	Phe	Ser	Tyr	Cys	U
	Phe	Ser	Tyr	Cys	C
	Leu	Ser	STOP	STOP	Α
	Leu	Ser	STOP	Тгр	G
С	Leu	Pro	His	Arg	C
	Leu	Pro	His	Arg	С
	Leu	Pro	Gln	Arg	C A
	Leu	Pro	Gln	Arg	G
Α	lle	Thr	Asn	Ser	U
	lle	Thr	Asn	Ser	С
	lle	Thr	Lys	Arg	Α
	Met	Thr	Lys	Arg	G
G	Val	Ala	Asp	Gly	U
	Val	Ala	Asp	Gly	С
	Val	Ala	Glu	Gly	C
	Val	Ala	Glu	Gly	G

3rd base in codon

Content

- Cells and organisms
- Molecules of life (Biomolecules)
- Central dogma of molecular biology
- Genes and gene expression

@: Most pictures have been freely obyained from: http://www.accessexcellence.org/

Genes and gene expression

What is a gene?

- It is the functional and physical unit of heredity transmitted from one generation to their offsprings.
- Genes are DNA fragments
- Most of the genes contain the necessary information for the synthesis of a specific protein.

Gene components

Regulation of gene expression

- Genes can be "turned on" or "off".
- Each cell expresses (or active or "on") only a fraction of their genes.
- Remaining genes are repressed ("off").
- The process consisting in activate genes and suppress others is gene regulation.
- Gene regulation determines:
 - The appearance and different function of different cells types
 - The ability of some cells to react quickly to environmental changes

How genes are regulated?

- Gene regulation can occur at any point in the process of expression but often occurs during transcription.
- Environmental signs or other cells activate proteins called transcription factor.
- They bind to the regulatory regions of genes, increasing or decreasing the level of transcription → They control the amount of gene product produced by the gene in every moment.

Example: Genes activation

- With no HGC (glucocorticoid hormone) genes are inactive
- In presence of HGC genes are activated and expressed (in block)

Mutations

- Mutations are genetic changes randomly produced or by the action of mutagens (chemicals, X rays, UV, etc.)
- Most are lethal because the original AA and nucleotides sequence is the product of millions of years of evolution
 - □ → Product of natural selection (or not...)

Mutations at the molecular level

- A mutation results in a change in the order of nucleotides in the genes
- Consider for example the peptide

```
Nucleotides TAC TTA {C}GA TAA TGC ATT

Codons mRNA- AUG AAU {G}CU AUU ACG UAA

Sequence AA- met asn ala ile thr stop
```

■ We can change a nucleotide (eg. "C"→"G") for another or delete it.

Point mutations

- Point mutation
 - □ Substitution of one nucleotide for another
 - □ It can be lethal or harmless (due to the degeneracy of the code)

Nucleotides TAC TTA {C}GA TAA TGC ATT

Substitution C→G TAC TTA {G}GA TAA TGC ATT

Codons mRNA- AUG AAU {C}CU AUU ACG UAA

New seq. met asn **pro** ile thr stop

Original seq. met asn **ala** ile thr stop

"Frameshift" mutation

- Change the reading frame
 - □ Deleting a nucleotide → change in the grouping of codons

```
Nucleotides TAC TTA {C}GA TAA TGC ATT
C supression TAC TTA GA(T) AAT GCA TT?
Codons mRNA- AUG AAU CU(A) UUA CGU UA?
New seq. met asn leu arg lys ???
Original seq. met asn ala ile thr stop
```