Math 171 Midterm

5/2, 9:30am - 10:45am

Open book, open notes. No computers or internet enabled devices allowed. $Give\ complete\ proofs.$

- **1.** (10 points) Let (M, d) be a metric space and C a positive real number. Define a function $d': M \times M \to \mathbb{R}$ as $d'(x, y) = \min(d(x, y), C)$.
- (a) Prove that (M, d') is a metric space.
- (b) Prove that a subset $U \subset M$ is open with respect to d if and only if it is open with respect to d'.
- **2.** (10 points) Prove that the function $f: \ell^1 \to \mathbb{R}$ defined by

$$f(\{a_n\}_{n=1}^{\infty}) = \sum_{n=1}^{\infty} a_n$$

is well defined and continuous.

3. (10 points) Let $\{a_n\}_{n=1}^{\infty}$ and $\{b_n\}_{n=1}^{\infty}$ be bounded sequences of real numbers. Assume that $\liminf a_n > 0$ and $\liminf b_n > 0$. Prove that

$$\limsup_{n\to\infty}(a_nb_n)\leq \big(\limsup_{n\to\infty}a_n\big)\big(\limsup_{n\to\infty}b_n\big).$$

- **4.** (10 point) Give an example (with proof) of a subset $A \subset \ell^2$ which is *not* closed.
- **5.** (10 points) Let M be a metric space.
- (a) Let $f: M \to \mathbb{R}$ a continuous function. Prove that the set

$$\{x \in M | f(x) > 0\}$$

is an open subset of M.

(b) Let $U \subseteq M$ be an open set. Prove that there exists a continuous function $f: M \to \mathbb{R}$ with $f(x) \geq 0$ for all $x \in M$ such that $U = \{x \in M | f(x) > 0\}$.