# Réaction d'oxydo-réduction

#chapitre16 #chimie

# Oxydants et réducteurs

## **Oxydant**

Espèce susceptible de capter un ou des électrons.

#### Réducteurs

Espèce susceptible de céder un ou des électrons.

## Couple rédox Ox/Red

Oxydation
$$Ox + n \, \acute{e} = Red$$
Réduction

# Nombre d'oxydation

Nombre d'électrons qu'un ion perdre ou gagne.

- Reduction: diminution du n.o.
- Oxydation: augmentation du n.o.
- Un atome ne peut pas gagner plus d'électrons qu'il ne lui en manque pour saturer sa couche de valence
- Un atome ne peut pas perdre plus d'électrons qu'il n'en possède en sa couche de valence.

#### Détermination du n.o.

- 1- La somme des n.o des atomes est égal à la charge total de l'édifice.
- 2- Toutes les atomes d'un même élément ont le même n.o dans l'édifice
- 3- n.o de l'oxygène est -II
- 4- n.o de l'hydrogène est +I
  - Si le résultat est incohérent, on peut utiliser la formule de Lewis.

# **Aspects thermodynamiques**

# Piles électrochimiques

- Oxydation dans l'anode.
- Réduction dans le cathode.

Anode 
$$o Zn|Zn^{2+}||Fe^{2+},Fe^{3+}|Pt\leftarrow$$
 Cathode

#### Pile Daniell

$$Zn|Zn^{2+}\|Cu^{2+}|Cu$$

#### Potentiel rédox

Différence de potentiel qui existe entre l'électrode de la demi-pile et un de référence.

$$ullet \ E_{ox/red}(T) = E_{ox/red}^0(T) + rac{RT}{nF} \mathrm{ln} \left( rac{a_{ox}^lpha}{a_{red}^eta} 
ight)$$

$$ullet \ E_{ox/red}(T) = E_{ox/red}^0(T) + rac{0,06}{n} \mathrm{log}\left(rac{a_{ox}^lpha}{a_{red}^eta}
ight) \ \mathsf{pour} \ 25 \degree$$

#### **Electrodes**

Electrodes de référence : invariant dans les conditions.

- $ESH: H^+/H_2$
- Electrodes à chlorure d'argent

## Electrodes de 1èr espèce

Conducteur métallique plongé dans une solution aqueuse contenant un ion du même métal.

#### Electrodes de 2nde espèce

Conducteur métallique au contact d'une de ses composés peu solubles, lui même au contact d'un solide contenant l'ion.

#### Electrode de 3èm espèce

Fil métallique plongé dans une solution contenant les deux ions d'une couple redox.

## Diagramme de prédominance et d'existence

#### Espèce ionique

- Oxydent majoritaire si le potentiel est supérieur au potentiel standard du couple.
- Réducteur majoritaire dans le cas contraire.

$$\begin{array}{c|c}
 & \text{Reducteur} & \text{Oxydant} \\
\hline
 & E^0
\end{array}$$

## Espèces gazeuses

On définie des domaines de stabilité.

$$\begin{array}{c|c}
 & \text{Reducteur} & \text{Oxydant} \\
\hline
 & E_{lim}
\end{array}$$

# Sens d'évolution spontané

## **Etude quantitative**

$$\log K^0 = rac{n_1 n_2}{0.06} (E_1^0 - E_2^0)$$

- $n_1n_2$ : PPCM
- 1- oxydant
- 2- réducteur

#### **Etude qualitative**

La réaction spontanée se produit entre l'oxydent le plus fort et le réducteur le plus fort.



- Si domaines disjointes, réaction totale.
- Si les domaines se recouvrent, pas de réaction.

#### **Dismutation**

Réaction au cours de laquelle un réactif joue à la fois le rôle de l'oxydent et du réducteur.

#### Médiamutation

Réaction au cours du laquelle un produit joue à la fois le rôle de l'oxydent et du réducteur.