Discussion 8: Solutions

Important Topics

- Cost Curves
- Profit Maximization
- Perfect Competition
- Shut-down/Break-Even Prices
- Supply Curve Derivation

Exercise

Exercise 1 William's winery has cost functions illustrated below, where Q denotes gallons of wine. Suppose that the wine market is perfectly competitive.

- (a) Find the break-even price and the shut-down price.
- (b) Draw the short-run supply curve on the graph.
- (c) Calculate the fixed cost.
- (d) If the price is P = 25, then what is William's profit?

Solution

(a) The break-even price is determined at the intersection point of ATC and MC:

$$P_{be} = 35.$$

The shut-down price is determined at the intersection point of AVC and MC:

$$P_{sd} = 15.$$

(b) If the price is below the shut-down price $P_{sd} = 15$, then William produces nothing. Otherwise, by the price-taker and profit-maximization conditions,

$$P = MR = MC$$

so the supply-curve coincides with the graph of MC function.

(c) At Q = 30,

$$AFC = ATC(30) - AVC(30) = 40 - 20 = 20.$$

Hence,

$$FC = AFC \times Q = 20 \times 30 = 600.$$

(d) Given P = 25, William produces Q = 30. Hence, the profit is

$$\pi(30) = TR(30) - TC(30)$$

= $P \times Q - ATC \times Q$
= $25 \times 30 - 40 \times 30$
= -450 .

Exercise 2 Consider a bakery with the following cost functions in a perfectly competitive bread market:

$$TC = q^2 + 4q + 5,$$

$$MC = 2q + 4,$$

where q denotes pounds of bread.

- (a) What is the shut-down price for this bakery?
- (b) Derive the short-run supply curve.

Suppose that there are 10 bakeries with the same cost functions in the bread market and that the market demand curve is given by $P = -Q_d + 40$.

(c) Find the short-run equilibrium in the bread market.

Solution

(a) Note that

$$AVC = \frac{VC}{q} = \frac{q^2 + 4q}{q} = q + 4.$$

Hence, at the shut-down price,

$$2q + 4 = MC = AVC = q + 4,$$

so q=0. By plugging this back into MC function, the shut-down price is

$$P_{sd} = 2 \times 0 + 4 = 4.$$

(b) The supply curve is

$$\begin{cases} P = MC = 2q + 4 & \text{if } P \ge 4, \\ q = 0 & \text{if } P < 4. \end{cases}$$

(c) Note that for each $P \geq 4$, the optimal output level for an individual bakery is

$$q = \frac{P}{2} - 2.$$

Since all the 10 firms have the same cost function, they have the same optimal output level. Hence, the market supply curve is given by

$$Q_s = \begin{cases} 10q = 10(\frac{P}{2} - 2) = 5P - 20 & \text{if } P \ge 4, \\ 0 & \text{if } P < 4. \end{cases}$$

On the other hand, the market demand is

$$Q_d = 40 - P.$$

Hence, at the equilibrium,

$$5P^* - 20 = Q_s = Q_d = 40 - P^*,$$

SO

$$P^* = \frac{60}{6} = 10.$$

By plugging this into the market demand curve,

$$Q^* = 40 - 10 = 30.$$

Therefore, the equilibrium is $(Q^*, P^*) = (30, 10)$.

Exercise 3 You are working in a small construction company in a perfectly competitive housing market. You accidentally spilled coffee on an important file below, which summarizes the company's costs.

Q	ТС	VC	FC	ATC	AVC	AFC	MC
0							
1							50
2		200					
3				600			
4					600		
5	5000					120	

- (a) Restore the file by filling all the blanks.
- (b) If the market price is P = 1200, then what is the profit of the construction company? Solution.

(i)

Q	TC	VC	FC	ATC	AVC	AFC	MC
0	600	600	600				
1	650	50	600	650	50	600	50
2	800	200	600	400	100	300	150
3	1800	1200	600	600	400	200	1000
4	3000	2400	600	750	600	150	1200
5	5000	4400	600	1000	880	120	2000

Step 1. First, since AFC = 120 at Q = 5,

$$FC = AFC \times Q = 120 \times 5 = 600.$$

FC is independent of output levels, and thus we can fill in all the blanks for FC with 600.

Second, for each output level Q,

$$AFC = \frac{FC}{Q} = \frac{600}{Q}.$$

Third, at Q = 0,

$$VC(0) = 0,$$

 $TC(0) = VC(0) + FC = 600.$

Step 2. At Q = 1,

$$TC(1) = TC(0) + MC(1) = 600 + 50 = 650,$$

 $VC(1) = TC(1) - FC = 650 - 600 = 50.$

Hence,

$$ATC(1) = \frac{TC(1)}{1} = \frac{650}{1} = 650,$$

 $AVC(1) = \frac{VC(1)}{1} = \frac{50}{1} = 50.$

Step 3. At Q = 2,

$$TC(2) = VC(2) + FC = 200 + 600 = 800,$$

 $MC(2) = TC(2) - TC(1) = 800 - 650 = 150.$

Hence,

$$ATC(2) = \frac{TC(2)}{2} = \frac{800}{2} = 400,$$

 $AVC(2) = \frac{VC(2)}{2} = \frac{200}{2} = 100.$

Q	TC	VC	FC	ATC	AVC	AFC	MC
0	600	0	600				_
1			600			600	50
2		200	600			300	
3			600	600		200	
4			600		600	150	
5	5000		600			120	

Q	TC	VC	FC	ATC	AVC	AFC	MC
0	600	0	600				_
1	650	50	600	650	50	600	50
2		200	600			300	
3			600	600		200	
4			600		600	150	
5	5000		600			120	

Q	TC	VC	FC	ATC	AVC	AFC	MC
0	600	0	600				_
1	650	50	600	650	50	600	50
2	800	200	600	400	100	300	150
3			600	600		200	
4			600		600	150	
5	5000		600			120	

Step 4. At
$$Q = 3$$
,

$$TC(3) = ATC(3) \times 3 = 600 \times 3 = 1800.$$

Hence,

$$VC(3) = TC(3) - FC = 1800 - 600 = 1200,$$

 $AVC(3) = \frac{VC(3)}{3} = \frac{1200}{3} = 400,$

MC(3) =	=TC(3) -	-TC(2) =	= 1800 -	- 800 =	1000.

Step 5. At Q = 4,

$$VC(4) = AVC(4) \times 4 = 600 \times 4 = 2400.$$

Hence,

$$TC(4) = VC(4) + FC = 2400 + 600 = 3000,$$

 $ATC(4) = \frac{TC(4)}{4} = \frac{3000}{4} = 750,$
 $MC(4) = TC(4) - TC(3) = 3000 - 1800 = 1200.$

Step 6. At Q = 5,

$$VC(5) = TC(5) - FC = 5000 - 600 = 4400.$$

Hence,

$$ATC(5) = \frac{TC(5)}{5} = \frac{5000}{5} = 1000,$$

$$AVC(5) = \frac{VC(5)}{5} = \frac{4400}{5} = 880,$$

$$MC(5) = TC(5) - TC(4) = 5000 - 3000 = 2000.$$

Q	TC	VC	FC	ATC	AVC	AFC	MC
0	600	0	600				—
1	650	50	600	650	50	600	50
2	800	200	600	400	100	300	150
3	1800	1200	600	600	400	200	1000
4			600		600	150	
5	5000		600			120	

Q	TC	VC	FC	ATC	AVC	AFC	MC
0	600	0	600				
1	650	50	600	650	50	600	50
2	800	200	600	400	100	300	150
3	1800	1200	600	600	400	200	1000
4	3000	2400	600	750	600	150	1200
5	5000		600			120	

0	600	0	600	_	_		
1	650	50	600	650	50	600	50
2	800	200	600	400	100	300	150
3	1800	1200	600	600	400	200	1000
4	3000	2400	600	750	600	150	1200
5	5000	4400	600	1000	880	120	2000

ATC

AVC

AFC

MC

FC

 $\overline{\text{TC}}$

 $\overline{\text{VC}}$

(b) By the price-taker and profit-maximization conditions,

$$P = MR = MC$$
.

Hence, at P = 1200, the company will produce Q = 4. Therefore, the profit is

$$\pi = TR - TC = 1200 \times 4 - 3000 = 1800.$$