Amplitudes de Probabilidade

Erwin Schrödinger desenvolveu uma teoria que descreve as amplitudes de probabilidade dos objetos quânticos $\psi(\vec{r})$

A probabilidade de detetar uma partícula numa dada posição é dado por $P(\vec{r}) = |\psi(\vec{r})|^2$

Amplitude de probabilidade

Em geral é necessário resolver a equação de Schrödinger para determinar níveis energético dos sistema quânticos

$$\left[-\frac{\hbar^2}{2m} \nabla^2 + V(\vec{r}, t) \right] \psi(\vec{r}) = E \psi(\vec{r})$$
 (Fisica Quântica I 2º semestre 2º ano)

- Uma exceção é o caso dos níveis energéticos principais do átomo de hidrogénio (modelo de Bohr)
- Uma outra exceção é o caso do "poço infinito"

Uma partícula de massa m, frequentemente um eletrão, é confinado num poço potencial infinito com uma largura L

Problema modelo
Pode ser usado para estimar
energias "de confinamento"
estruturas semicondutores
moléculas

Uma partícula num poço infinito

Entre x = 0 e x = L a partícula é livre só tem energia cinética

A probabilidade encontrar a partícula nas regiões x < 0 ou x > L é nula (requeria uma energia infinito)

As posições x= 0 ou x=L tem ser nós na amplitude da probabilidade (equivalente a uma corda numa guitarra)

$$n\frac{\lambda}{2} = L \quad \lambda = \frac{2L}{n}$$

$$E = \frac{p^2}{2m} \quad p = \frac{h}{\lambda} = \frac{nh}{2L}$$

$$E_n = \frac{h^2}{8mL^2}n^2$$

$$n = 1, 2, 3...$$

Como é que a partícula salta dum lado ao outro?

É um caso de interferência destrutiva (entre uma onda que se propaga á direita e outra que se propaga á esquerda)

Modelo de Bohr para H

Niels Bohr 1885-1962 Nobel 1922

- Eletrão apenas pode estar encontrado em certas "orbitas" circulares (estados estacionários)
- O momento angular nestas orbitas está quantizada em unidades de $h/2\pi$
- Ao transitar duma orbita superior á uma orbita inferior o eletrão liberta energia (linhas espetrais)

$$r = \frac{n^2}{Z} a_B \qquad a_B \equiv \frac{4\pi \varepsilon_0 \hbar^2}{me^2} \approx 53 \, pm$$

$$E_n^H = -\frac{1}{2} \left(\frac{e^2}{4\pi \varepsilon_0 a_B} \right) \frac{1}{n^2} \approx -\frac{13.6eV}{n^2}$$

O modelo de Bohr

O modelo de Bohr é uma mistura de conceitos clássicos e quânticos.

Condição de quântização do momento angular

$$m \mathbf{v}_n r_n = n \hbar$$
 $p = m \mathbf{v}_n = \frac{n \hbar}{r_n}$

$$\Delta x \Delta p_x \ge \frac{\hbar}{2}$$

No modelo de Bohr $\Delta r \rightarrow 0$

$$\Delta r \rightarrow 0$$

Mesmo ao invocar o comprimento de deBroglie

$$\Delta r \approx \lambda \approx \frac{h}{p}$$
 $\Delta p \ge \frac{\hbar}{2\Delta r} \approx \frac{p}{4\pi}$

Orbitais em átomos de H

Em vezes de orbitais bem definidos, a resolução da equação do Schrödinger resulta em amplitudes de probabilidade, ψ (como ondas)

$$\left[-\frac{\hbar^2}{2m} \nabla^2 + V(\vec{r}, t) \right] \psi(\vec{r}) = E\psi(\vec{r})$$

A probabilidade de encontrar o eletrão numa certa posição é dado pelo $|\psi(\vec{r})|^2$

- O modelo de Bohr prevê corretamente os níveis energéticos principais dos átomos com apenas 1 eletrão
- A escala das orbitais atómicas também está mais ou menos certa
- Mais a equação de Schrödinger prevê distribuições de probabilidade de encontrar o eletrão bem diferentes dos que as orbitas circulares.
- Também a quantização de momento angular acontece numa maneira diferente.

Estado fundamental

Alguns membros da familia

Alguma distribuições de probabilidade radial

week ending 24 MAY 2013

Hydrogen Atoms under Magnification: Direct Observation of the Nodal Structure of Stark States

A. S. Stodolna, ^{1,*} A. Rouzée, ^{1,2} F. Lépine, ³ S. Cohen, ⁴ F. Robicheaux, ⁵
A. Gijsbertsen, ¹ J. H. Jungmann, ¹ C. Bordas, ³ and M. J. J. Vrakking ^{1,2,*}

¹FOM Institute AMOLF, Science Park 104, 1098 XG Amsterdam, Netherlands

²Max-Born-Institut, Max Born Straße 2A, D-12489 Berlin, Germany

³Institut Lumière Matière, Université Lyon 1, CNRS, UMR 5306, 10 Rue Ada Byron, 69622 Villeurbanne Cedex, France

⁴Atomic and Molecular Physics Laboratory, Physics Department, University of Ioannina, 45110 Ioannina, Greece

⁵Department of Physics, Auburn University, Auburn, Alabama 36849, USA

(Received 18 January 2013; revised manuscript received 13 March 2013; published 20 May 2013)

Quais são estas etiquetas?

O átomo de hidrogénio é um sistema 3 dimensional com uma simetria esférica

Coordenados esféricos r, θ, ϕ

Na descrição quântica dos orbitais de hidrogénio existe 3 números quânticos

- n : o número principal (1,2,3...)
 Determine os níveis energéticos
 Distância radial em média de eletrão do núcleo
- L: o momento angular orbital (0,1,...n-1)
 L=0 orbital s esfericamente simétrica
 L=1 orbital p
 L=2 orbital d
 L=3 orbital f
- m_L: a projeção do momento angular no eixos dos zz m_L: (-L, -L+1,...,1,0,1,...L-1,L)
 Em total são 2L+1 valores possíveis

O momento angular é quantizada

A projeção do momento angular orbital no eixo dos zzs assuma valores inteiros do constante de Planck \hbar

Evidência para a quantização do momento angular

(a)

Espetro duma mancha solar onde existe campo magnéticos fortes

O campo magnético forte desdobra os níveis energéticos.

O momento magnético do eletrão é proporcional ao seu valor m

Experiência Stern Gerlach (1922)

Resultado inesperado Momento angular orbital é sempre inteiro L Numero de projeções no eixo do campo (2L+1) que é sempre impar

Otto Stern (1888 -1969) Nobel 1943

Walter Gerlach (1889 -1979) Nobel 1943

Spin o 4º número quântico

Wolfgang Pauli 1900-1958 Nobel 1945

Momento angular intrínseco com apenas 2 projeções

Principio de exclusão: partículas com um spin intrínseco igual á $\frac{1}{2}$ \hbar nunca são encontrados no mesmo estado quântico. È o resultado dum efeito de interferência

Estrutura da tabela Periódica

Electron configuration 2s2p Atom 1s $1s^{2}2s^{1}$ Li n = 1,2,3,...L = 0,1,...n-1 $m_L = -L,...;L$ $1s^22s^2$ Be $Sz = \uparrow, \downarrow$ $1s^22s^22p^1$ B L = 0 s $m_L = 0$ $1s^22s^22p^2$ C $L = 1 p m_L^- = -1,0,1$ $1s^22s^22p^3$ N $1s^22s^22p^4$ O $1s^22s^22p^5$ F $1s^22s^22p^6$ N

Tabela Periódica

1 IA 1A 1A 1 Hydrogen 1s1 3 6.941	2 IIA 2A 4 ^{9,012}					Perio	13 IIIA 3A 5 ^{10,811}	14 IVA 4A 6	15 VA 5A 7	16 VIA 6A 8 15,999	17 VIIA 7A 9 ^{18,998}	18 VIIIA 8A 2 4.003 Helium 1s ² 10 20.180					
Lithium [He]zs ¹ 11 Na Sodium [Ne]3s ¹	Be Beryllium [He]2s ² 12 24.305 Mg Magnesium [Ne]3s ²	3 IIIB 3B	4 IVB 4B	5 VB 5B	6 VIB 6B	7 VIIB 7B	8	9 VIII — 8	me onfiguration	11 IB 1B	12 IIB 2B	B Boron [He 2s ² 2p ¹] 13 26.982 Al Aluminum [Ne 3s ² 3p ¹]	Carbon [He]2s ² 2p ² 14 28.086 Si Silicon [Ne]3s ² 3p ²	Nitrogen (Hel2s ² 2p ³) 15 P Phosphorus (Nel3s ² 3p ³	Oxygen (He)23 ² 2p ⁴ 16 32.066 Sulfur (Ne)3s ² 3p ⁴	Fluorine (He)2x ² 2p ⁵ 17 Cl Chlorine (Ne)3x ² 3p ⁵	Ne Neon [He]zs²zp6 18 39.948 Ar Argon [Ne]3s²3p6
19 K Potassium [Ar/Jus ¹] 37 84.468	20 40.078 Ca Calcium [A/J45² 38 87.62 Sr	21 44.956 SC Scandium [A/J3d ¹ 4s ² 39 88.906	22 47.88 Ti Titanium [At]3d ² 4s ² 40 91.224 Zr	23 50,942 V Vanadium [A/]3d ³ 4s ² 41 92,906 Nb	24 51.996 Cr Chromium [At]3d ² 4s ¹ 42 95.95 Mo	25 54,938 Mn Manganese [At]3d ⁵ 4s ² 43 98,907 TC	Fe Iron [Ar]3d ⁶ 4s ² 44 101.07 Ru	27 58,933 Co Cobalt [A/]3d ⁷ 4s ² 45 102,906 Rh	28 58.693 Ni Nickel [Ar]3d ⁸⁴ s ² 46 106.42 Pd	29 63.546 Cu Copper [Ar]3d ¹⁰ 4s ¹ 47 107.868 Ag	Zn Zinc Zinc [A/J3d ¹⁰ 4s ² 48 112.411 Cd	31 69.732 Ga Gallium [Af]3d ¹⁰ 4s ² 4p ¹ 49 114.818	32 72.61 Ge Germanium [Arij3d104s24p2] 50 118.71 Sn	33 74.922 As Arsenic [Ar]3d ¹⁰ 4e ² 4p ³ 51 121.760 Sb	34 78.972 Selenium [Arj3d ¹⁰ 4x ² 4p ⁴ 52 127.6 Te	35 79.904 Br Bromine [Ar]3d ¹⁰ 4s ² 4p ⁵ 53 126.904	36 84.80 Kr Krypton [Ar]3d104s24p6 54 131.29 Xe
Rubidium [Kr]5s ¹ 55 132.905 CS Cesium [Xe]6s ¹	Strontium [Kr]5s ² 56 137.327 Ba Barium [Xe]6s ²	Yttrium 184344 ¹ 55 ² 57-71	Zirconium [Kr]4d ² 5s ² 72 178.49 Hf Hafnium [Xe]4f ¹⁴ 5d ² 6s ²	Niobium Kr 4d ⁴ 5s ¹ 73 180.948 Ta Tantalum Xe 4f ¹⁴ 5d ³ 6s ²	Molybdenum Kr 4d ⁵ 5s ¹	75 186.207 Re Rhenium [xe]4f ¹⁴ 5d ⁵ 6s ²	Ruthenium [Kr]4d ⁷ 5s ¹ 76 190.23 OS Osmium [Xe]4f ¹⁴ 5d ⁶ 6s ²	Rhodium Kr 4d ⁸ 5s ¹ 77	Palladium [Kr]4d ¹⁰ 78 Pt Platinum [Xe]4f ¹⁴ 5d ⁹ 6s ¹	Silver Kr 4d ¹⁰ 5s ¹ 79 196.967 Au Gold Xe 4f ¹⁴ 5d ¹⁰ 6s ¹	Cadmium Kr/Hd ¹⁰ 5s ² 80 200.59 HG Mercury Xel ⁴ f ¹⁴ 5d ¹⁰ 6s ²	Indium [Kr]4d ¹⁰ 5s ² 5p ¹ 81 Thallium [Xe]4f ¹⁴ 5d ¹⁰ 6s ² 6p ¹	Tin [Kr]4d ¹⁰ 5s ² 5p ² 82 Pb Lead [Xe]4f ¹⁴ 5d ¹⁰ 6s ² 6p ²	Antimony [Kr]4d ¹⁰ 5s ² 5p ³ 83 83 83 81 8i 8i 8i 8i 8i 8i 8i 8i 8i	Tellurium [Kr]4d ¹⁰ 5s ² 5p ⁴ 84 [208.982] PO Polonium [Xe]4f ¹⁴ 5d ¹⁰ 6s ² 6p ⁴	lodine [Kr]4d ¹⁰ 5s ² 5p ⁵ 85 209.987 At Astatine [Xe]4f ¹⁴ 5d ¹⁰ 6s ² 6p ⁵	Xenon (Kr)4d ¹⁰ 5s ² 5p ⁶ 86 Rn Radon (Xe)4f ¹⁴ 5d ¹⁰ 6s ² 6p ⁶
87 223.020 Fr Fr Francium	88 226.025 Ra Radium [Rn]7s ²	89-103	104 [261] Rf Rutherfordium [Rn]5f ¹⁴ 6d ² 75 ^{2*}	105 [262] Db Dubnium [Rn]5f ¹⁴ 6d ³ 7s ^{2*}	106 [266] Sg Seaborgium [Rn]5f ¹⁴ 6d ⁴ 7s ^{2*}	107 [284] Bh Bohrium [Rn]5f ¹⁴ 6d ⁵ 7s ^{2*}	108 [269] HS Hassium [Rn]5f ¹⁴ 6d ⁶ 7s ^{2*}	109 Kt Mt Meitnerium [Rn]55 ^{1,4} 6d ⁷ 7s ^{2*}	110 [269] DS Darmstadtium [Rn]5f ¹⁴ 6d ⁸ 7s ^{2*}	Roentgenium [Rn]Sf ¹⁴ 6d ⁹ 7s ^{2*}	112 Cn Cn Copernicium [Rn]5f ¹⁴ 6d ¹⁰ 7s ^{2*}	113 ^{unknown} Uut Ununtrium [Rn]5f ¹⁴ 6d ¹⁰ 7s ² 7p ^{1*}	114 [289] Flerovium [Rn]5f ¹⁴ 6d ¹⁰ 7s ² 7p ^{2*}	115 unknown Uup Ununpentium [Rn]5f ¹⁴⁶ d ¹⁰ 7s ² 7p ^{3*} Configu	116 [298] Ly Livermorium [Rn]5f ¹⁴ 6d ¹⁰ 7s ² 7p ^{4*} irations denoted with a *	117 unknown Uus Ununseptium [Rn]sf ¹⁴ 6d ¹⁰ 7s ² 7p ^{5*} are unknown and the lis	118 unknown UUO Ununoctium [Rn]5f ¹⁴ 6d ¹⁰ 7s ² 7p ^{6*} ted values are predicted.

Lanthanide Series	57 138.906 La Lanthanum [Xejsd¹6s²	58 140.115 Ce Cerium [Xe]4f ³ 5d ³ 6s ²	59 140.908 Pr Praseodymium [Xe]4f ³ 6s ²	Nd	Ρ̈́m	62 150.36 Sm Samarium [Xe]4f ⁶ 6s ²	63 151.966 Eu Europium (Xe)44 ⁷ 6s ²	64 157.25 Gd Gadolinium [Xe]4f ⁷ 5d ¹ 6s ²	65 158.925 Tb Terbium (Xe)4f ⁹ 6s ²	66 162.50 Dy Dysprosium (Xe)4f ¹⁰ 6s ²	67 184.930 Ho Holmium [Xe]4f ¹¹ 6s ²	68 167.26 Er Erbium (Xe)4f ¹² 6s ²	69 168.934 Tm Thulium [Xe]4f ¹³ 6s ²	70 173.04 Yb Ytterbium [Xe]4f ¹⁴ 6s ²	71 174.967 Lu Lutetium [Xe)4f ¹⁴ 5d ¹ 6s ²
Actinide Series	Actinium	90 232.038 Th Thorium [Rn]6d ² 7s ²	91 231.036 Pa Protactinium (Rn)5r ² 6d ¹ 7s ²	92 238.029 U Uranium [Rn]55 ² 6d ¹ 7s ²	93 237.048 Np Neptunium [Rn]5f ⁴ 6d ¹ 7s ²	94 Pu Pu Plutonium [Rn]Si ⁶ 7s ²	95 243.061 Am Americium [Rn]56 ⁷ 7s ²	96 247.070 Cm Curium [Rn]5f ⁷ 6d ¹ 7s ²	97 247.070 Bk Berkelium [Rn]56 ⁹ 7s ²	98 251.080 Cf Californium (Rn)Sf ¹⁰ 7s ²	99 [254] ES Einsteinium [Rn]5f ¹¹ 7s ²	100 ^{257.095} Fm Fermium (Rn)5f ¹² 7s ²	101 ^{258.1} Md Mendelevium [Rn]5f ¹³ 7s ²	102 ^{259.101} No Nobelium (Rn)5f ¹⁴ 7s ²	103 [262] Lr Lawrencium [Rn]5f ¹⁴ 6d ¹ 7s ²

Produção de Raios X

voltage

Picos no espetro corresponde a energia libertada por um eletrão excitado que transita para um nível inferior

Se Tungsténio (Z=74) fosse ionizado ate haver apenas 1 eletrão, o modelo de Bohr dá para as energias

$$E_n^Z = -\frac{Z^2}{n^2} (13.6eV)$$
 $E_2^{Z=74} \approx -17.6keV$ $E_1^{Z=74} \approx -70.5keV$

$$\Delta E \approx 53 keV \ \lambda \approx 20 pm$$

Aplicações de Raios X

A radiação dos raios X passam facilmente através materiais com átomos leves (H,C,N,O), mas são absorvidos pelas materiais feitos dos átomos mais pesados

Mão de Sra. Röentgen

Padrão de difração – estrutura cristalina proteína