Correction du DS

Tout moyen de communication est interdit Les téléphones portables doivent être éteints et rangés dans les sacs Les calculatrices sont interdites

Au programme

Électrocinétique, résistances et sources, circuits RC et RL

Sommaire

$\mathbf{E1}$	Circuit de résistances	2
P1	Alimentation d'un train	3
P2	Étude d'une lampe de secours rechargeable (D'après CCINP TSI 2022)	7
P3	Guirlandes électriques	11

Les différentes questions peuvent être traitées dans l'ordre désiré. **Cependant**, vous indiquerez le numéro correct de chaque question. Vous prendrez soin d'indiquer sur votre copie si vous reprenez une question d'un exercice plus loin dans la copie, sous peine qu'elle ne soit ni vue ni corrigée.

Vous porterez une attention particulière à la **qualité de rédaction**. Vous énoncerez clairement les hypothèses, les lois et théorèmes utilisés. Les relations mathématiques doivent être reliées par des connecteurs logiques.

Vous prendre soin de la **présentation** de votre copie, notamment au niveau de l'écriture, de l'orthographe, des encadrements, de la marge et du cadre laissé pour la note et le commentaire. Vous **encadrerez les expressions** littérales, sans faire apparaître les calculs. Vous ferez apparaître cependant le détail des grandeurs avec leurs unités. Vous **soulignerez les applications numériques**.

Ainsi, l'étudiant-e s'expose aux malus suivants concernant la forme et le fond :

Malus

♦ A : application numérique mal faite;

♦ N : numéro de copie manquant ;

- A: application numerique mai faite;
- ♦ P : prénom manquant ;
- ♦ E : manque d'encadrement des réponses ;
- ♦ M : marge non laissée ou trop grande ;
- ♦ V : confusion ou oubli de vecteurs ;

- Q : question mal ou non indiquée ;
- ♦ C : copie grand carreaux;
- ♦ U : mauvaise unité (flagrante) ;
- \Diamond H : homogénéité non respectée ;
- ♦ S : chiffres significatifs non cohérents ;
- $\diamond \varphi$: loi physique fondamentale brisée.

Exemple application numérique

$$\boxed{n = \frac{PV}{RT}} \quad \text{avec} \quad \begin{cases} p = 1.0 \times 10^5 \, \text{Pa} \\ V = 1.0 \times 10^{-3} \, \text{m}^3 \\ R = 8.314 \, \text{J} \cdot \text{mol}^{-1} \cdot \text{K}^{-1} \\ T = 300 \, \text{K} \end{cases}}$$

A.N. : $n = 5.6 \times 10^{-4} \,\text{mol}$

2

24 E1 Circuit de résistances

On considère le circuit ci-dessous :

/5 1 Comment définit-on des résistances en série? en parallèle? Déterminer alors, parmi les 5 résistances du circuit ci-dessus, lesquelles sont en série et en parallèle.

- Réponse -

Des résistances sont en série si elles **partagent une borne** ① qui **n'est pas un nœud** ①. Elles sont en parallèle si elles **partagent leurs deux bornes** ①.

Dans ce circuit, on a R_1 et R_2 en série ①, et R_3 et R_5 en parallèle ①.

/4 $\boxed{2}$ En considérant que toutes les résistances ont la même valeur R, exprimer en fonction de R la résistance équivalente R_{AB} .

– Réponse -

On commence par l'association série entre R_1 et R_2 , qu'on appelle $R_{eq,1} = 2R$ ①. Celle-ci est en parallèle avec R_4 . Ainsi,

$$\frac{1}{R_{AB}} \stackrel{\text{?}}{=} \frac{1}{R_4} + \frac{1}{R_{\text{eq,1}}}$$

$$\Leftrightarrow \frac{1}{R_{AB}} = \frac{2}{2R} + \frac{1}{2R} = \frac{3}{2R}$$

$$\Leftrightarrow R_{AB} \stackrel{\text{?}}{=} \frac{2R}{3}$$

- 1 pour un schéma.
- /4 $\boxed{3}$ Exprimer de même les résistances équivalentes R_{BC} et R_{AC} en fonction de R.

 R_{BC} est l'assocation en parallèle de R_5 et R_3 . D'après ce qui précède, on obtient alors

$$R_{BC} = \frac{R^2}{2R} \Leftrightarrow \boxed{R_{BC} = \frac{1}{2}R}$$

Enfin, $R_{AC} = R_{AB} + R_{BC}$, soit

FIGURE 2.1 -(1)+(1)

6 4 Exprimer les tensions u_{AB} et u_{CB} en fonction de E.

– Réponse -

Avec un schéma équivalent, on observe que u_{AB} s'obtient par pont diviseur de tension, tel que :

FIGURE 2.2 – (1)

Pour u_{CB} , en faisant attention au sens de la flèche, on obtient

$$u_{CB} \stackrel{\textcircled{1}}{=} - \frac{R_{BC}}{R_{AB} + R_{BC}} E \stackrel{\textcircled{1}}{=} - \frac{3}{7} E$$

FIGURE 2.3 – (1)

5 5 Exprimer les intensités I_1 et I_4 en fonction de I.

- Réponse

Avec un pont diviseur de courant, on obtient aisément :

$$I_1 = \frac{1}{2R} I = \frac{1}{3} I$$

De même, en faisant attention au signe :

$$I_4 \stackrel{\textcircled{1}}{=} - \frac{R_{AB}}{R} I \stackrel{\textcircled{1}}{=} - \frac{2}{3} I$$

FIGURE 2.4 -(1)

/47

P1 | Alimentation d'un train

Les trains fonctionnent maintenant quasiment tous avec des motrices équipées de moteurs électriques. On va étudier les problèmes causés par la longue distance des lignes SNCF.

Le courant est transmis à la motrice par la caténaire (ligne haute tension) via le pantographe, puis le retour du courant s'effectue par les rails.

I/A Alimentation par une seule sous-station

On appelle sous-station le poste d'alimentation EDF délivrant une tension $E=1500\,\mathrm{V}$. Si toute la ligne SNCF était alimentée par une seule sous-station, on pourrait représenter cela par le schéma suivant, avec R_c la résistance de la caténaire, R_r celle du rail, M la motrice et E la tension d'alimentation.

 ${\bf Figure~2.5-Sch\'ema~\'electrique~avec~une~sous-station}$

La résistance du rail et celle de la caténaire dépendent de la distance entre la motrice et le poste d'alimentation. On peut écrire

$$R_c = \rho_c x$$
 ; $R_r = \rho_r x$

avec x la distance entre la motrice et le poste d'alimentation, $\rho_c = 30 \,\mu\Omega \cdot \text{m}^{-1}$ la résistance linéique de la caténaire et $\rho_r = 20 \,\mu\Omega \cdot \text{m}^{-1}$ celle du rail.

La motrice peut être modélisée par un dipôle consommant une puissance constante $P=1,5\,\mathrm{MW}.$ On note u la tension aux bornes de la motrice et i le courant la traversant.

/3 1 Exprimer u en fonction de i, ρ_c , ρ_r , E et x. La motrice est un dipôle à caractère récepteur. Définir ce terme.

Par la loi des mailles et le loi d'Ohm : $u = E - (\rho_r + \rho_c)xi$

Pour un dipôle à caractère récepteur, la puissance reçue est positive. (1)

Montrer que l'équation polynomiale de degré 2 vérifiée par u s'écrit

$$u^{2} - Eu + (\rho_{c} + \rho_{r})xP = 0 (2.1)$$

— Réponse —

La puissance reçue par la motrice est P = ui (u et i en convention récepteur).

$$u = E - (\rho_r + \rho_c)xP/u \quad \Leftrightarrow \quad u^2 = Eu - (\rho_r + \rho_c)xP \quad \Leftrightarrow \quad u^2 = Eu - (\rho_r + \rho_c)xP \quad \Leftrightarrow \quad u^2 = Eu - (\rho_r + \rho_c)xP = 0$$

3 Donner les solutions réelles possibles de cette équation. Par un argument sur l'évolution de u en fonction de x, déterminer alors laquelle des deux solutions convient. Donner un encadrement du discriminant Δ . En déduire un encadrement de u.

— Réponse –

Les solutions sont réelles si le discriminant est positif ou nul.

$$\Delta \stackrel{\text{(1)}}{=} E^2 - 4(\rho_r + \rho_c)xP \stackrel{\text{(1)}}{\geq} 0 \quad \Rightarrow \quad \boxed{u_{\pm} = \frac{E \pm \sqrt{\Delta}}{2}}$$

Physiquement, quand x augmente, u décroit. Comme Δ diminue quand x augmente (on rappelle que P > 0), alors la seule solution physiquement acceptable est $u = \frac{1}{2} \frac{E + \sqrt{\Delta}}{2}$

Comme $0 \le \Delta \le E^2$, on en déduit $E/2 \le u \le E$. (1)

Remarque Pour $x \to 0$, $\Delta \to E^2$, physiquement u est maximale, donc $u_{max} = E$. La solution $u = (E - \sqrt{\Delta})/2 = 0$ n'est remarkable car cela impliquerait $i \to +\infty$ pour avoir P = ui = cste.

Déterminer l'expression x_{max} de x telle que u soit minimale. Exprimer u_{min} la valeur minimale de u. Faire les applications numériques.

– Réponse –

 x_{max} vérifie $\Delta = 0$:

$$x_{\text{max}} = \frac{E^2}{4(\rho_c + \rho_r)P} \quad \text{et} \quad \boxed{\underbrace{u_{\text{min}} = E/2}} \quad \text{avec} \quad \begin{cases} E = 1.5 \times 10^3 \,\text{V} \\ \rho_c = 30 \,\text{µ}\Omega \cdot \text{m}^{-1} \\ \rho_r = 20 \,\text{µ}\Omega \cdot \text{m}^{-1} \\ P = 1.5 \,\text{MW} \end{cases}$$

Transformation Thévenin/Norton

On veut montrer qu'un générateur de Thévenin de f.e.m. e_{th} et de résistance r_{th} est équivalent à un générateur de Norton de c.e.m. η et de résistance r_N .

Figure 2.6 – Générateur de Thévenin

FIGURE 2.7 – Générateur de Norton

/3 $\boxed{5}$ Pour le générateur de Thévenin, établir l'expression de u_{th} en fonction de i_{th} , e_{th} et r_{th} . Tracer la caractéristique tension/courant correspondante.

/3 6 Pour le générateur de Norton, établir l'expression de u_N en fonction de i_N , η et r_N . Tracer la caractéristique tension/courant correspondante, u_N en fonction de i_N .

7 Déterminer les expressions de η et r_N en fonction de e_{th} et r_{th} afin que les deux générateurs soient équivalents.

- <> —

I/C Alimentation par plusieurs sous-stations

Afin d'alimenter la motrice sur de longues distances, on répartit des sous-stations tout le long de la ligne SNCF. Les sous-stations sont espacées entre elles d'une distance L. Le schéma équivalent est le suivant

Figure 2.10 – Schéma électrique avec deux sous-stations

On note x la distance entre la sous-station de gauche et la motrice, R_{c1} la résistance de la caténaire et R_{r1} celle des rails entre la sous-station de gauche et la motrice, R_{c2} la résistance de la caténaire et R_{r2} celle des rails entre la sous-station de droite et la motrice.

On note u' la tension aux bornes de la motrice et i' le courant la traversant.

/4 8 Exprimer les résistances R_{c1} , R_{c2} , R_{r1} et R_{r2} en fonction de ρ_c , ρ_r , L et x.

- Réponse -

1)
$$R_{c1} = \rho_c x$$

2)
$$R_{c2} = \rho_c(L - x)$$
 3) $R_{r1} = \rho_r x$

3)
$$R_{r1} = \rho_r x$$

4)
$$R_{r2} = \rho_r(L-x)$$

 $\boxed{9}$ En utilisant les résultats de la question $\boxed{8}$, exprimer les courants η_1 et η_2 , ainsi que les résistances R_1 et R_2 en fonction de E, ρ_c , ρ_r , x et L pour que le schéma de la figure 2.11 soit équivalent à celui de la figure 2.10.

Figure 2.11 – Schéma équivalent n°1

- Réponse -

$$R_1 = R_{c1} + R_{r1} = (\rho_c + \rho_r)x$$

$$R_2 = R_{c2} + R_{r2} = (\rho_c + \rho_r)(L - x)$$

$$\boxed{\eta_1 = E/R_1 = E/R_1 = E/R_1}$$

10 Le schéma précédent est équivalent aux schémas ci-dessous. Donner alors les expressions de η_3 et R_3 , puis E' et R_4 en fonction de E, ρ_c , ρ_r , x et L.

FIGURE 2.12 - Schéma équivalent n°2

FIGURE 2.13 - Schéma équivalent n°3

Réponse -

Par association en parallèle de générateurs de Norton :

$$\eta_3 = \eta_1 + \eta_2 = \frac{E}{(\rho_c + \rho_r)} \left(\frac{1}{x} + \frac{1}{L - x} \right) \quad \Leftrightarrow \quad \boxed{\eta_3 = \frac{EL}{(\rho_c + \rho_r)x(L - x)}}$$

Par association en parralèle des résistances R_1 et R_2 :

$$\frac{1}{R_3} \stackrel{\textcircled{1}}{=} \frac{1}{R_1} + \frac{1}{R_2} \Leftrightarrow R_3 = \frac{R_1 R_2}{R_1 + R_2} \Leftrightarrow \boxed{R_3 \stackrel{\textcircled{1}}{=} \frac{(\rho_c + \rho_r)x(L - x)}{L}}$$

Transformation Thévenin/Norton : $E' = R_3 \eta_3 = E$; $R_4 = R_3 = \frac{(\rho_c + \rho_r)x(L - x)}{L}$

En utilisant l'équation (2.1), exprimer l'équation polynomiale de degré 2 vérifiée par u' en fonction de P, ρ_c , ρ_r , E/2 | 11 |L et x.

On remplace E par E' et $(\rho_c + \rho_r)x$ par R_4 : $u'^2 - Eu' + P(\rho_c + \rho_r)x(1 - x/L) = 0$

|4|12 Quelle est l'équation polynomiale vérifiée par x pour que u' soit minimale?

u' admet des solutions réelles si $\Delta = E^2 - 4P(\rho_c + \rho_r)x(L-x)/L \geq 0.$ On a alors

$$u' = \frac{E \pm \sqrt{\Delta}}{2} \in [E/2, E]$$

Ainsi u' est minimale quand $\Delta=0,$ soit $x^2-xL+\frac{LE^2}{4P(\rho_c+\rho_r)}=0$

$$x^2 - xL + \frac{LE^2}{4P(\rho_c + \rho_r)} = 0$$

Déterminer l'expression de L telle que u' soit minimale en x = L/2. Faire l'application numérique.

– Réponse —

On remplace $x_{\text{max}} = L/2$ dans l'équation précédente : $L = \frac{1}{(\rho_c + \rho_r)P}$ soit L = 30 km

$$: L = \frac{1}{(\rho_c + \rho_r)P} \quad \text{soit}$$

P2 Étude d'une lampe de secours rechargeable (D'après CCINP TSI 2022)

Il est recommandé d'avoir sur soi une lampe pour être vu en cas de détresse ou tout simplement pour se déplacer par nuit noire. Pour ne pas avoir à gérer des piles défaillantes ou des accumulateurs non chargés, une « lampe à secouer » peut s'avérer utile. Un extrait d'une description publicitaire de cet objet est rapporté ci-dessous.

Extrait d'une publicité pour une lampe à secouer

En secouant la lampe 30 secondes (un peu comme une bombe de peinture), de l'énergie électrique est produite et stockée dans un condensateur. Vous obtenez alors environ 20 minutes d'une lumière produite par une DEL (diode électroluminescente).

Si vous n'utilisez pas toute l'énergie produite, elle restera stockée dans le condensateur pendant plusieurs semaines pour être ensuite immédiatement disponible sur simple pression du bouton marche/arrêt.

On part d'une situation où on suppose que le condensateur vient d'être chargé et que la tension à ses bornes est $U_0 = 3.3 \,\mathrm{V}$. On cesse alors d'agiter la lampe et donc de recharger le condensateur.

Tout d'abord, on étudie la décharge de ce condensateur de capacité $C = 10 \,\mathrm{F}$ (« supercondensateur ») dans un conducteur ohmique de résistance R pouvant modéliser une lampe à incandescence. Le circuit étudié est donc représenté par le schéma de la figure 2.14. La partie de circuit utile lors de la phase de charge du condensateur n'est pas représentée.

À l'instant initial t=0 s, on ferme l'interrupteur K et la décharge commence.

Figure 2.14 – Circuit électrique équivalent lors de la phase de décharge du condensateur

1 | Établir l'équation différentielle vérifiée par $u_c(t)$ pendant la décharge en faisant apparaître une constante de temps τ dont on donnera l'expression. Puis déterminer l'expression littérale de la solution de cette équation différentielle.

Réponse -

Avec une loi des mailles :

$$\begin{array}{c} u_C(t) - Ri(t) \overset{\textcircled{1}}{=} 0 \\ \Leftrightarrow u_C(t) + RC \dfrac{\mathrm{d} u_C}{\mathrm{d} t} \overset{\textcircled{1}}{=} 0 \\ \Leftrightarrow \dfrac{\mathrm{d} u_C}{\mathrm{d} t} + \dfrac{u_C(t)}{\tau} \overset{\textcircled{1}}{=} 0 \end{array} \begin{array}{c} \mathrm{RCT\ C\ convention\ générateur} \\ i = \boxed{-} C^{\dfrac{\mathrm{d} u_C}{\mathrm{d} t}} \\ \mathrm{Forme\ canonique\ et\ } \tau \overset{\textcircled{1}}{=} RC \end{array}$$

On résout en injectant la forme générique $u_C(t) = Ke^{rt}$:

$$r \cdot Ke^{rt} + \frac{Ke^{rt}}{\tau} = 0$$
$$\Leftrightarrow r = -\frac{1}{\tau}$$

Donc la forme générale de $u_C(t) = Ke^{-t/\tau}$. Or, $u_C(0^-) = U_0 = u_C(0^+)$ par continuité de la tension aux bornes de C (1). Cela donne donc $U_0 = K$ (1), et ainsi

$$u_C(t) = U_0 e^{-t/\tau}$$

MPSI3 - 2024/2025Lycée Pothier 7/16

– Réponse -

La décharge d'un condensateur s'accomplit à $t_{99} \approx 5\tau = 5RC$ ①. Ainsi,

$$5\tau = t_{99} \Leftrightarrow RC = \frac{t_{99}}{5} \Leftrightarrow \boxed{R = \frac{t_{99}}{5C}} \quad \text{avec} \quad \begin{cases} t_{99} = 20 \text{ minutes} = 1200 \text{ s} \\ C = 10 \text{ F} \end{cases}$$

$$A.N. : \underline{R = 24 \Omega}$$

Certains modèles électriques plus élaborés du « supercondensateur » utilisé ici permettent de traduire, plus fidèlement à la réalité, son comportement réel dans un circuit. Un des modèles possibles fait apparaître, autour de la capacité C, une résistance R_f en parallèle et une résistance série R_s conformément au schéma de la figure 2.15.

-- \$ -

Figure 2.15 – Modèle plus fidèle à la réalité pour le « supercondensateur »

/4 3 Pour quelles valeurs limites de R_s et R_f retrouve-t-on le modèle simple (C seul) du « supercondensateur »?

Réponse -

Avec $R_f \to \infty$ ①, on a un interrupteur ouvert ①, et avec $R_s = 0$ ① on a un fil ①, ce qui correspond bien à une capacité idéale seule.

 $- \diamond -\!\!-\!\!-$

Pour la suite des questions, on revient au modèle simple (C seul) pour le condensateur, toujours initialement chargé sous une tension $U_0=3,3\,\mathrm{V}$.

On remplace maintenant le conducteur ohmique de résistance R par une DEL dont les caractéristiques sont les suivantes (Figure 2.16 et Tableau 2.1) :

Figure 2.16 – Caractéristique $i = f(u_d)$ et symbole pour la diode électroluminescente DEL.

Pour cette diode, on appelle tension seuil, notée U_S la tension minimale au-delà de laquelle la diode devient passante. On convient alors que la diode électroluminescente cesse d'émettre suffisamment de lumière dès que $u_d < U_S + 0.1 \text{ V}$.

/14 $\boxed{4}$ Par quel dipôle peut-on modéliser la DEL lorsqu'elle est bloquée $(u_d < 2,3\,\mathrm{V})$?. D'autre part, lorsqu'elle est passante $(u_d > 2,3\,\mathrm{V})$, déterminer l'équation de la caractéristique $i(u_d)$ en donnant les valeurs numériques. Proposer alors un modèle électrique équivalent sous forme d'un générateur de Thévenin. On fera le schéma électrique correspondant en précisant bien les sens de l'intensité de la tension u_d .

Réponse

Parameter	Symbol	Condition	Min.	Typ.	Max.	Unit
Luminous Flux	Φ_V	$i = 200\mathrm{mA}$	6	8.5	_	lm
Forward Voltage	u_d	$i = 200 \mathrm{mA}$	_	2.5	2.8	V
D.C. Forward Current Max	i_M	_	_	_	250	mA
Peak Wavelength	λ_p	$i = 200 \mathrm{mA}$	_	635	_	nm
Dominant Wavelength	λ_d	$i = 200 \mathrm{mA}$	_	624	_	nm
Reverse Current	i_r	$u_r = 5 \mathrm{V}$	_	_	50	μA
Viewing angle	$2\Phi_{1/2}$	$i = 200 \mathrm{mA}$	_	120	_	\deg
Spectrum Line Halfwidth	$\Delta \dot{\lambda}$	$i = 200 \mathrm{mA}$	_	20	_	nm

Tableau 2.1 – Electrical & Optical Characteristics

- \diamond Lorsque la DEL est bloquée, on a i=0 ① et c'est donc un **interrupteur ouvert** ①.
- ♦ Lorsqu'elle est passante, on a une caractéristique affine, d'équation

$$(1)$$
 $i = au_d + b$

 \triangleright a est le coefficient directeur :

$$\boxed{a = \frac{i_{\text{max}} - i_{\text{min}}}{u_{d,\text{max}} - u_{d,\text{lim}}}} \quad \text{avec} \quad \begin{cases} i_{\text{max}} = 250 \,\text{mA} \\ = 0.250 \,\text{A} \\ i_{\text{min}} = 0 \\ u_{d,\text{max}} = 2.8 \,\text{V} \\ u_{d,\text{lim}} = 2.3 \,\text{V} \end{cases}$$

 \triangleright b est l'ordonnée à l'origine, que l'on obtient en connaissant les coordonnées d'un point. Ici, pour le point limite de blocage, on a

$$\underline{i_{\lim}}_{=0} = au_{d,\lim} + b \Leftrightarrow \boxed{0 = -au_{d,\lim}}$$

$$A.N. : b = -1.15 A$$

Pour la modéliser en générateur de Thévenin, il faut écrire sa caractéristique sous la forme $u_d = ri + U_S$ (1); on l'isole de l'équation précédente puis on détermine a' et b' en fonction des données précédemment trouvées :

D'où le schéma équivalent Figure 2.17.

FIGURE 2.17 -(1)+(1)

/6 $\boxed{5}$ Faire le schéma électrique de la DEL modélisée et insérée dans le circuit précédent. Puis, montrer que la nouvelle équation différentielle régissant l'évolution de $u_c(t)$ lorsque le condensateur se décharge dans la diode électroluminescente est $\frac{\mathrm{d}u_c}{\mathrm{d}t} + \frac{u_c(t)}{\tau'} = \frac{U_S}{\tau'}$. Préciser l'expression de τ' .

$$\begin{array}{c} u_C - ri - U_S \stackrel{\textcircled{\scriptsize 1}}{=} 0 \\ & \Leftrightarrow u_C + rC \frac{\mathrm{d} u_C}{\mathrm{d} t} \stackrel{\textcircled{\scriptsize 1}}{=} U_S \\ & \Leftrightarrow \frac{\mathrm{d} u_C}{\mathrm{d} t} + \frac{u_C(t)}{\tau'} \stackrel{\textcircled{\scriptsize 1}}{=} \frac{U_S}{\tau'} \end{array} \end{array} \right) \text{ Canonique et } \tau' \stackrel{\textcircled{\scriptsize 1}}{=} rC$$

FIGURE 2.18 – Schéma équivalent (1)+(1)

8 6 Déterminer la solution $u_c(t)$ de cette nouvelle équation différentielle, avec les mêmes conditions initiales que précédemment, puis représenter graphiquement l'allure de son évolution en fonction du temps, en mettant en évidence les points importants du graphe (valeur et tangente à l'origine ainsi qu'une asymptote éventuelle).

- 🔷 -

- Réponse ·

On trouve comme précédemment une solution homogène de la forme $u_{C,h}(t) = Be^{-t/\tau'}$ (1). La solution particulière constante donne $u_{C,p}(t) = U_S$

1. D'où la solution générale totale :

$$u_C(t) = u_{C,h}(t) + u_{C,p} = Be^{-t/\tau'} + U_S$$

On a toujours $u_C(0) = U_0$, soit ici

$$U_0 = B + U_S \Leftrightarrow \boxed{\underbrace{B = U_0 - U_S}}$$

$$\Rightarrow u_C(t) = U_S + (U_0 - U_S)e^{-t/\tau'} \quad \text{avec} \quad \tau' = rC$$

FIGURE 2.19 -(1)+(1)+(1)

/5 $\boxed{7}$ Déterminer l'expression littérale de i(t), puis représenter graphiquement l'allure de son évolution en fonction du temps, en mettant en évidence les points importants.

- Réponse -

Avec la RCT de C en convention générateur :

$$i \stackrel{\text{1}}{=} -C \frac{\mathrm{d}u_C}{\mathrm{d}t} \Leftrightarrow i = -C \left(-\frac{1}{\tau'} \right) (U_0 - U_S) \mathrm{e}^{-t/\tau'}$$
$$\Leftrightarrow i(t) \stackrel{\text{1}}{=} \frac{U_0 - U_S}{r} \mathrm{e}^{-t/\tau'}$$

FIGURE 2.20 -(1)+(1)+(1)

/6 8 À l'aide des caractéristiques techniques fournies dans le Tableau 2.1, indiquer si le fonctionnement correct de la DEL est garanti sans dommage. Proposer une solution pour éventuellement remédier au problème rencontré.

On remarque que $u_{C,\text{max}} = U_0 = 3.3 \,\text{V}$ (1) et que $i_{\text{max}} = \frac{U_0 - U_S}{r} = 0.5 \,\text{A}$. (1)

Or, d'après le Tableau donné, $i_{\text{max}} = 250 \,\text{mA}$ (1) et $u_{c,\text{max}} = 2.8 \,\text{V}$. (1)

Ainsi, il faut restreindre la charge initiale du condensateur en **secouant moins longtemps** \bigcirc ($\approx 20 \, \mathrm{s}$). On peut aussi **ajouter une résistance en série** \bigcirc avec la DEL pour diviser la valeur initiale de l'intensité.

/7 9 Prévoir, sans la mise en œuvre de la solution précédente, la durée approximative d'éclairage de cette lampe notée T (on rappelle que $\ln(10) \approx 2.3$). Conclure.

Réponse — D'après l'énoncé, la lampe éclaire tant que $u_d > U_s + 0.1 \,\mathrm{V}$ (1); or, d'après le schéma de la question (5), $u_d = u_C$ (1). La condition d'éclairage est donc

$$\mathcal{V}_S + (U_0 - U_S)e^{-t/\tau'} > \mathcal{V}_S + 0.1 \,\mathrm{V}$$

$$\Rightarrow (U_0 - U_S)e^{-T/\tau'} = 0.1 \,\mathrm{V}$$

$$\Leftrightarrow e^{-T/\tau'} = \frac{0.1 \,\mathrm{V}}{U_0 - U_S}$$

$$\Leftrightarrow \frac{-T}{\tau'} = \ln \frac{0.1 \,\mathrm{V}}{U_0 - U_S}$$

$$\Leftrightarrow T = \tau' \ln \frac{U_0 - U_S}{0.1 \,\mathrm{V}}$$
avec
$$\begin{cases}
\tau' = rC \\ r = 2 \,\Omega \\ C = 10 \,\mathrm{F} \\ U_0 - U_S = 1.0 \,\mathrm{V}
\end{cases}$$

A.N. : $T \approx 46 \,\mathrm{s}$

On est très loin des 20 minutes annoncées! (1)

/3 | 10 | Exprimer, en fonction de U_0 et de $U_f = U_S + 0.1 \text{ V}$, le pourcentage d'énergie restante dans le condensateur lorsque la DEL cesse d'émettre de la lumière par rapport à l'énergie initiale accumulée (on ne cherche pas à la calculer, mais on estime ici ce pourcentage à environ 50 %).

On a
$$\mathcal{E}_{C}(t) \stackrel{\mathbf{Reponse}}{=} \frac{1}{2} C u_{C}(t)^{2}$$

$$\Rightarrow \mathcal{E}_{C,i} = \frac{1}{2} C U_{0}^{2} \quad \text{et} \quad \mathcal{E}_{C,f} = \frac{1}{2} C U_{f}^{2}$$

$$\Rightarrow p \stackrel{\text{(1)}}{=} 100 \times \frac{\mathcal{E}_{C,f}}{\mathcal{E}_{c,i}} \Leftrightarrow \boxed{p \stackrel{\text{(1)}}{=} 100 \times \frac{U_{f}^{2}}{U_{0}^{2}}}$$

P3 | Guirlandes électriques

Dans ce problème, on cherche à optimiser l'alimentation électrique d'un système comportant deux guirlande électriques G_1 et G_2 , chacune étant modélisée par un conducteur ohmique de résistance identique $R_1 = R_2 = R$.

— <

La première guirlande est dédiée à un fonctionnement continu. La seconde est associée avec un interrupteur S en série qui bascule de manière périodique afin de produire un clignotement.

On supposera dans ce problème que la puissance lumineuse fournie par ces guirlandes est proportionnelle à la puissance électrique qu'elles reçoivent.

Système de base

On considère dans un premier temps le circuit ci-contre alimenté par un générateur réel de f.e.m. E et de résistance interne r. Les expressions demandées ne feront intervenir que E,r et R.

On considère que l'interrupteur S est ouvert (Figure 2.21).

FIGURE 2.21

1 | Quelle est la puissance reçue $\mathcal{P}_{2,o}$ par la seconde guirlande G_2 ?

L'intensité i_2 est alors nulle ①, donc $\mathcal{P}_{2,o} = 0$. ①

 $- \diamondsuit \boxed{2}$ Établir l'expression du courant i_o passant à travers le générateur. En déduire que la puissance électrique $\mathcal{P}_{1,o}$ reçue par la guirlande G_1 s'exprime :

$$\mathcal{P}_{1,o} = R \left(\frac{E}{r+R} \right)^2$$

- Réponse -

Le circuit est équivalent à :

FIGURE 2.22 - (1)

La loi des mailles donne :

$$E \stackrel{\text{(1)}}{=} i_0(r+R) \Rightarrow oldsymbol{i_0} \stackrel{\text{(1)}}{=} \frac{E}{r+R}$$

Or, d'après la loi d'OHM, $U_1 = Ri_0$ (1).

D'où la puissance reçue par G_1 :

$$\boxed{\mathcal{P}_{1,o} = i_o U_1 = R \left(\frac{E}{r+R}\right)^2}$$

 \Diamond

On considère désormais que l'interrupteur S est fermé.

/5 $\boxed{3}$ Établir l'expression du courant i_f passant à travers le générateur.

Réponse -

Les deux guirlandes sont en dérivation.

On peut les remplacer par une résistance équivalente :

$$\frac{1}{R_{\rm eq}} \stackrel{\textcircled{1}}{=} \frac{1}{R} + \frac{1}{R} \Leftrightarrow \boxed{R_{\rm eq} \stackrel{\textcircled{1}}{=} \frac{R}{2}}$$

La loi des mailles donne :

$$E = i_f \left(r + \frac{R}{2} \right) \Rightarrow i_f = \frac{E}{r + \frac{R}{2}}$$

FIGURE 2.23 – (1)

 $\boxed{4}$ À l'aide d'un pont diviseur de courant, déterminer les expressions de $i_{1,f}$ et $i_{2,f}$.

——— Réponse –

Pour $i_{k,f}$ découlant de i_f , avec R_{eq} la résistance équivalente en parallèle et R_k la résistance dans la branche, on a

$$i_{k,f} = \frac{R_{\text{eq}}}{R_k} i_f \quad \text{soit} \quad i_{k,f} = \frac{R/2}{R} i_f$$

$$i_{1,f} = \frac{E}{2r+R} = i_{2,f}$$

d'où

- 1 pour un schéma.
- _____

/2 $\boxed{5}$ En déduire que les puissances $\mathcal{P}_{1,f}$ et $\mathcal{P}_{2,f}$ reçues par les deux guirlandes s'expriment :

$$\mathcal{P}_{1,f} = \mathcal{P}_{2,f} = R \left(\frac{E}{2r+R}\right)^2$$

— Réponse –

On a simplement

$$\mathcal{P}_{k,f} = Ri_{k,f}^{2} \Rightarrow \boxed{\mathcal{P}_{1,f} = \mathcal{P}_{2,f} = R\left(\frac{E}{2r+R}\right)^{2}}$$

 \Diamond

Comparaisons des 2 situations.

Réponse

On a:

$$\mathcal{P}_{1,o} = R\left(\frac{E}{r+R}\right)^2 \stackrel{\textcircled{1}}{\neq} \mathcal{P}_{1,f} = R\left(\frac{E}{2r+R}\right)^2$$

La guirlande 1 va donc se mettre à clignoter ①, puisque la puissance lumineuse qu'elle émet varie périodiquement. Ce montage ne satisfait donc pas le cahier des charges. ①

73 [7] Comment doit-on choisir r par rapport à R pour limiter le problème? Cette condition est-elle vérifiée pour $r = R = 1 \Omega$?

— Réponse —

Pour limiter cet effet, il faut que $r \ll R$ 1. Dans ce cas, on peut négliger r devant R, et il vient

$$\boxed{\mathcal{P}_{1,o} \approx \mathcal{P}_{1,f} \overset{\textcircled{1}}{\approx} R \left(\frac{E}{R}\right)^2}$$

Ce n'est pas le cas avec les valeurs données dans l'énoncé. (1)

- 🔷

III/B

Système amélioré

On considère maintenant le circuit ci-dessous afin de limiter la variation de puissance électrique reçue par la première guirlande, donc la variation du courant i_1 .

Une bobine d'inductance L a donc été ajoutée en série avec la première guirlande. L'interrupteur S est ouvert de manière périodique pour $t \in \left[0; \frac{T}{2}\right[$ et fermé pour $t \in \left[\frac{T}{2}; T\right[$.

FIGURE 2.24

/2 8 En régime stationnaire (permanent continu), donner le schéma équivalent du nouveau montage.

Réponse

En régime stationnaire, la bobine est équivalente à un fil électrique ①. Le montage est donc équivalent à celui de la partie précédente. ①

On se place juste avant la fermeture de l'interrupteur, c'est-à-dire en $t=\frac{T}{2}$, et on admet que le régime stationnaire a été atteint.

/3 9 Déterminer la valeur de $i_1\left(\frac{T}{2}\right)$. En déduire la valeur de $i_1\left(\frac{T}{2}\right)$.

– Réponse –

Puisque le montage est équivalent à celui de la partie précédente, on sait que :

$$i_1\left(\frac{T}{2}\right) \stackrel{\textcircled{1}}{=} \frac{E}{r+R}$$

Or, le courant traversant une bobine est continu (1), soit

$$i_1\left(\frac{T}{2}^-\right) = i_1\left(\frac{T}{2}^+\right) \stackrel{\text{(1)}}{=} \frac{E}{r+R}$$

/5 10 Déterminer les valeurs de $i_2\left(\frac{T}{2}^-\right)$ et $i_2\left(\frac{T}{2}^+\right)$.

- Réponse -

L'interrupteur étant ouvert, on a :

$$i_2 \left(\frac{T}{2}\right) \stackrel{\text{1}}{=} 0$$

Une fois l'interrupteur fermé, la loi des mailles à $t = \frac{T}{2}^+$ donne :

$$E \stackrel{\textcircled{1}}{=} ri + Ri_2 \left(\frac{T}{2}^+\right)$$

$$\Leftrightarrow E = r \left(i_1 \left(\frac{T}{2}^+\right) + i_2 \left(\frac{T}{2}^+\right)\right) + Ri_2 \left(\frac{T}{2}^+\right)$$

$$\Leftrightarrow i_2 \left(\frac{T}{2}^+\right) \stackrel{\textcircled{1}}{=} \frac{E - ri_1 \left(\frac{T}{2}^+\right)}{r + R}$$

$$\Leftrightarrow i_2 \left(\frac{T}{2}^+\right) \stackrel{\textcircled{1}}{=} \frac{E - r \left(\frac{E}{r + R}\right)}{r + R}$$

$$\Leftrightarrow i_2 \left(\frac{T}{2}^+\right) \stackrel{\textcircled{1}}{=} E \frac{R}{(r + R)^2}$$
On simplifie

On considère l'intervalle $[0, \frac{T}{2}]$, lorsque l'interrupteur est ouvert.

/5 11 Établir l'équation différentielle dont i_1 est solution sur l'intervalle $[0; \frac{T}{2}]$. On fera apparaître un temps caractéristique τ_o en fonction de L, r et R.

FIGURE 2.25 - (1)

- Réponse -

Loi des mailles:

$$E = r_1 i + u_L + R i_1$$

$$\Leftrightarrow L \frac{\mathrm{d}i_1}{\mathrm{d}t} + (r+R)i_1 = E$$

$$\Leftrightarrow \boxed{\frac{\mathrm{d}i_1}{\mathrm{d}t} + \frac{i_1(t)}{\tau_o} = E}_{} \qquad \text{avec} \qquad \boxed{\tau_o = L \atop r+R}$$
Canonique

On s'intéresse maintenant à l'intervalle $\left[\frac{T}{2};T\right]$, lorsque l'interrupteur est fermé.

/8 | 12 | Montrer que i_1 est solution de l'équation différentielle suivante :

$$\frac{\mathrm{d}i_1}{\mathrm{d}t} + \frac{i_1}{\tau_f} = \frac{E}{L\left(1 + \frac{r}{R}\right)} \quad \text{avec} \quad \tau_f = \frac{L\left(1 + \frac{r}{R}\right)}{2r + R}$$

FIGURE 2.26 - (1)

Loi des mailles et loi des nœuds :

$$E \stackrel{\text{\scriptsize (1)}}{=} r_1 i + R i_1 + L \frac{\mathrm{d} i_1}{\mathrm{d} t}$$

$$\Leftrightarrow E = r(i_1 + i_2) + R i_1 + L \frac{\mathrm{d} i_1}{\mathrm{d} t}$$

Or, avec les branches en parallèle,

$$Ri_2 \stackrel{\textcircled{1}}{=} Ri_1 + L \frac{\mathrm{d}i_1}{\mathrm{d}t} \Rightarrow i_2 \stackrel{\textcircled{1}}{=} i_1 + \frac{L}{R} \frac{\mathrm{d}i_1}{\mathrm{d}t}$$

D'où en combinant :

$$E \stackrel{\text{\scriptsize 1}}{=} r \left(i_1 + i_1 + \frac{L}{R} \frac{\mathrm{d}i_1}{\mathrm{d}t} \right) + Ri_1 + L \frac{\mathrm{d}i_1}{\mathrm{d}t}$$
 On simplifies
$$\Leftrightarrow E = i_1(2r + R) + L \left(1 + \frac{r}{R} \right) \frac{\mathrm{d}i_1}{\mathrm{d}t}$$
 Canonique
$$\Leftrightarrow \boxed{\frac{\mathrm{d}i_1}{\mathrm{d}t} + \frac{i_1(t)}{\tau_f} \stackrel{\text{\scriptsize 1}}{=} \frac{E}{L \left(1 + \frac{r}{R} \right)}}$$
 avec
$$\boxed{\tau_f \stackrel{\text{\scriptsize 2}}{=} \frac{L \left(1 + \frac{r}{R} \right)}{2r + R}}$$

13 Donner la forme **générale** $i_1(t)$ de la solution de cette équation différentielle.

De plus, avec $i_{1,p}$ la solution particulière constante, on

La solution générale est la somme de la solution homogène et de la solution particulière (1). Or, pour la solution homogène, en injectant $i_{1,h}(t) = Ae^{rt}$ (1) on

$$r + \frac{1}{\tau_f} = 0 \Leftrightarrow \boxed{r = -\frac{1}{\tau_f}} \quad \text{soit} \quad i_{1,h}(t) = Ae^{-\frac{t}{\tau_f}}$$

$$\frac{i_{1,p}}{\tau_f} = \frac{E}{L\left(1 + \frac{r}{R}\right)} \Leftrightarrow i_{1,p} = E \frac{\cancel{L}\left(1 + \frac{r}{R}\right)}{(2r+R)\cancel{L}\left(1 + \frac{r}{R}\right)}$$

$$\Leftrightarrow \boxed{i_{1,p} = \frac{E}{2r+R}}$$

$$i_1(t) \stackrel{\text{(1)}}{=} A e^{-\frac{t}{\tau_f}} + \frac{E}{2r + R}$$

/6 | 14 | Montrer alors, par calcul de la constante d'intégration, que $i_1(t)$ s'écrit

$$i_1(t) = \frac{E}{(r+R)(2r+R)} \left(re^{\left(\frac{T}{2}-t\right)/\tau_f} + r + R \right)$$

– Réponse ·

On rappelle (question |9|) la valeur de $i_1(T/2)$:

$$i_{1}\left(\frac{T}{2}\right) \stackrel{\textcircled{!}}{=} \frac{E}{r+R}$$

$$\Leftrightarrow Ae^{-T/(2\tau_{f})} + \frac{E}{2r+R} = \frac{E}{r+R}$$

$$\Leftrightarrow A \stackrel{\textcircled{!}}{=} E\left(\frac{1}{r+R} - \frac{1}{2r+R}\right) e^{T/(2\tau_{f})}$$

$$\Leftrightarrow A \stackrel{\textcircled{!}}{=} E\left(\frac{2r+R-(r+R)}{(r+R)(2r+R)}\right)$$

$$\Leftrightarrow A \stackrel{\textcircled{!}}{=} E\left(\frac{2r+R-(r+R)}{(r+R)(2r+R)}\right)$$

$$\Leftrightarrow A \stackrel{\textcircled{!}}{=} \frac{Er}{(r+R)(2r+R)} e^{T/(2\tau_{f})}$$

$$\Leftrightarrow A \stackrel{\textcircled{!}}{=} \frac{E}{(r+R)(2r+R)} \left(re^{\left(\frac{T}{2}-t\right)/\tau_{f}} + r + R\right)$$

D'où, dans la forme générale

$$\Leftrightarrow A \stackrel{\text{1}}{=} E \left(\frac{1}{r+R} - \frac{1}{2r+R} \right) e^{T/(2\tau_f)} \qquad i_1(t) \stackrel{\text{1}}{=} \frac{Er}{(r+R)(2r+R)} e^{\left(\frac{T}{2}-t\right)/\tau_f} + \frac{E}{2r+R} \times \frac{r+R}{r+R}$$

$$\Leftrightarrow i_1(t) = \frac{E}{(r+R)(2r+R)} \left(re^{\left(\frac{T}{2}-t\right)/\tau_f} + r + R \right)$$

On étudie expérimentalement les variations du courant $i_1(t)$ en mesurant la tension aux bornes de la guirlande G_1 à l'aide d'un oscilloscope et on obtient le résultat suivant (Figure 2.27) pour deux valeurs différentes de l'inductance L. La résistance R vaut 2Ω et la résistance r vaut 1Ω

FIGURE 2.27

/2 15 Parmi les deux bobines d'inductance L_a et L_b , laquelle permet d'atteindre le régime stationnaire mentionné dans les questions 8 à 10 ?

– Réponse -

Il s'agit de la bobine L_a ①, puisque la charge de la bobine a le temps de se faire entièrement. ①

/5 16 Retrouver, par lecture graphique, la valeur de L_a . Reproduire sommairement sur votre copie la Figure ?? et indiquer la construction à effectuer.

– Réponse -

Le temps τ_f correspond au temps nécessaire pour réaliser 63% de la décharge de la bobine ①. À partir du point de bascule en t = 1 s, 63% de la décharge correspond à une intensité de 1,69 A, ce qui s'atteint pour $t_1 = 1,033$ s; ainsi,

$$\underline{\tau_f = 33\,\mathrm{ms}} \underbrace{1} \quad \text{et} \quad L_a \stackrel{\textcircled{1}}{=} \tau_f \frac{2r+R}{1+\frac{r}{R}} \quad \text{avec} \quad \left\{ \begin{array}{l} r = 1\,\Omega \\ R = 2\,\Omega \end{array} \right. \quad \text{A.N.} \ : \ \underline{L_a = 88\,\mathrm{mH}}$$

FIGURE 2.28 - (1)

On peut également réaliser une tangente au point de bascule, et trouver l'intersection avec l'asymptote $i_1(t) = i_{1,f}$.

/2 17 Justifiez que $L_b \gg L_a$, sans chercher à déterminer sa valeur.

– Réponse –

Le temps caractéristique du régime transitoire avec L_b est très supérieur devant celui avec L_a ①, d'où $L_b \gg L_a$ ①

 $-- \diamond -$

Quelle est la valeur de l'inductance à retenir parmi L_a et L_b pour minimiser les variations de puissance reçue par la première guirlande?

— Réponse –

- 🔷 -

Il s'agit de L_b , ① car l'intensité $i_1(t)$ ne varie presque pas ① (et il en va de même pous la tension U).