GPU Computing with CUDA Lecture 4 - Optimizations

Christopher Cooper Boston University

August, 2011 UTFSM, Valparaíso, Chile

Outline of lecture

- ▶ Recap of Lecture 3
- ▶ Control flow
- **▶** Coalescing
- ▶ Latency hiding
- ▶ Occupancy

Recap

- ▶ Shared memory
 - Small on chip memory
 - Fast (100x compared to global)
 - Allows communication among threads within a block
- ▶ Tiling
 - Use shared memory as cache

Recap

- ▶ Tiling examples for FD
 - Solution 1:
 - ▶ Fetching to global in block boundaries
 - Solution 2:
 - Using halo nodes
 - ▶ All threads load to shared, only some operate
 - Solution 3:
 - ▶ Using halo nodes
 - ▶ Load to shared in multiple steps, all threads operate

Recap

- ▶ Bank conflicts
 - Arrays in shared memory are divided into banks
 - Access to different data in the same bank by more than one thread in the same warp creates a bank conflict
 - Bank conflicts serializes the access to the minimum number of non-conflicting instructions

Control flow

- ▶ If statement
 - Threads are executed in warps
 - Within a warp, the hardware is not capable of executing *if* and *else* statements at the same time!

Control flow

▶ How does the hardware deal with an if statement?

Control flow

- ▶ Hardware serializes the different execution paths
- ▶ Recommendations
 - Try to make every thread in the same warp do the same thing
 - If the if statement cuts at a multiple of the warp size, there is no warp divergence and the instruction can be done in one pass
 - Remember threads are placed consecutively in a warp (t0-t31, t32-t63, ...)
 - ▶ But we cannot rely on any execution order within warps
 - If you can't avoid branching, try to make as many consecutive threads as possible do the same thing

- ▶ Let's implement a sum reduction
- ▶ In a serial code, we would just loop over all elements and add
- ▶ Idea:
 - To implement in parallel, let's take every other value and add in place it to its neighbor
 - To the resulting array do the same thing until we have only one value

```
__shared__ float partialSum[]
int t = threadIdx.x
for(int stride = 1; stride<blockDim.x; stride*=2)
{
    __syncthreads();
    if (t%(2*stride)==0)
      partialSum[t] += partialSum[t+stride];
}</pre>
```


- ▶ Advantages
 - Right result
 - Runs in parallel
- ▶ Disadvantages
 - The number of threads decreases per iteration, but we're using much more warps than needed
 - ▶ There is warp divergence in every iteration
 - No more than half the threads per thread are being executed per iteration
- ▶ Let's change the algorithm a little bit...

- ▶ Improved version
 - Instead of adding neighbors, let's add values with stride half a section away
 - Divide the stride by two after each iteration

```
__shared__ float partialSum[]
int t = threadIdx.x
for(int stride = blockDim.x; stride>1; stride>>=1)
{
    __syncthreads();
    if (t<stride)
    partialSum[t] += partialSum[t+stride];
}</pre>
```


▶ 512 elements

Iteration	Exec. threads	Warps
1	256	16
2	128	8
3	64	4
4	32	2
5	16	1
6	8	1
7	4	1
8	2	1

Threads > Warp

Threads < Warp

Warp divergence!

- ▶ We get warp divergence only for the last 5 iterations
- ▶ Warps will be shut down as the iteration progresses
 - This will happen much faster than for the previous case
 - Resources are better utilized
 - For the last 5 iterations, only 1 warp is still active

Control flow - Loop divergence

▶ Work per thread data dependent

```
__global__ void per_thread_sum (int *indices, float *data, float *sums)
{
    ...
    for (int j=indices[i]; j<indices[i+1]; j++)
    {
        sum += data[j];
    }
    sums[i] = sum
}</pre>
```

David Tarjan - NVIDIA

Control flow - Loop divergence

- ▶ Warp wont finish until the last thread finishes
 - Warp will be dragged
- ▶ Possible solution:
 - Try flatten peaks by making threads work in multiple data

- ▶ Global memory is accessed in chunks of aligned 32, 64 or 128 bytes
- ▶ Following protocol is used to issue a memory transaction of a half warp (valid for 1.X)
 - Find memory segment that contains address requested by the lowest numbered active thread
 - Find other active threads whose requested address lies in same segment, and reduce transaction size if possible
 - Do transaction. Mark serviced threads as inactive.
 - Repeat until all threads are serviced
- ▶ Worse case: fetch 32 bytes, use only 4 bytes: 7/8 wasted bandwidth!

- ▶ Access pattern visualization
 - Thread O is lowest active, accesses address 116
 - ▶ Belongs to 128-byte segment 0-127

David Tarjan - NVIDIA

▶ Simple access pattern

One 64 byte transaction

Will be looking at compute capability 1.X examples

▶ Sequential but misaligned

One 128 byte transaction

One 64 byte transaction and one 32 byte transaction

▶ Strided access

One 128 byte transaction, but half of bandwidth is wasted

▶ Example: Copy with stride

```
__global__ void strideCopy(float *odata, float *idata, int stride)
{
  int xid = (blockIdx.x*blockDim.x+threadIdx.x)*stride;
  odata[xid] = idata[xid];
}
```


- ▶ 2.X architecture
 - Global memory is cached
 - ▶ Cached in both L1 and L2: 128 byte transaction
 - ▶ Cached only in L2: 32 byte transaction
 - Whole warps instead of half warps

Memory coalescing - SoA or AoS?

► Array of structures

```
struct record
{
   int key;
   int value;
   int flag;
};
record *d_record;
cudaMalloc((void**) &d_records, ...);
```

Memory coalescing - SoA or AoS?

► Structure of array

```
struct SoA
{
   int *key;
   int *value;
   int *flag;
};

SoA *d_AoA_data;
cudaMalloc((void**) &d_SoA_data.keys, ...);
cudaMalloc((void**) &d_SoA_data.value, ...);
cudaMalloc((void**) &d_SoA_data.flag, ...);
```

Memory coalescing - SoA or AoS?

cudaMalloc guarantees aligned memory, then accessing the SoA will be much more efficient

```
__global__ void bar (record *AoS_data, SoA SoA_data)
{
  int i = blockDim.x*blockIdx.x + threadIdx.x;
  // AoS wastes bandwidth
  int key = AoS_data[i].key;
  // SoA efficient use of bandwidth
  int key_better = SoA_data.keys[i];
}
```

Latency hiding

- ► A warp is not scheduled until all threads have finished the previous instruction
- ► These instructions can have high latency (eg. global memory access)
- ▶ Ideally one wants to have enough warps to keep the GPU busy during the waiting time.

Latency hiding

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009 ECE 498AL, University of Illinois, Urbana-Champaign

Latency hiding

- ▶ How many instructions do we need to hide latency of L clock cycles?
 - 1.X: L/4 instructions
 - ▶ SM issues one instruction per warp over four cycles
 - 2.0: Linstructions
 - ▶ SM issues one instruction per warp over two clock cycles for two warps at a time
 - 2.1: L/2 instructions
 - ▶ SM issues a pair of instructions per warp over two clock cycles for two warps at a time

Latency hiding

- ▶ Doing the exercise
 - Instruction takes 22 clock cycles to complete
 - ▶ 1.X: we need 6 available warps to hide latency
 - ▶ 2.X: we need 22 available warps to hide latency
 - Fetch to global memory: ~600 cycles!
 - ▶ Depends on FLOPs per memory access (arithmetic intensity)
 - ▶ eg. if ratio is 15:
 - 10 warps for 1.X
 - 40 warps for 2.X

Occupancy

- ▶ Occupancy is the ratio of resident warps to maximum number of resident warps
- ▶ Occupancy is determined by the resource limits in the SM
 - Maximum number of blocks per SM
 - Maximum number of threads
 - Shared memory
 - Registers

Occupancy

- ▶ --ptxas-options=-v for compiler to tell you register and shared memory usage
- ▶ Use CUDA Occupancy Calculator
- ▶ The idea is to find the optimal threads per block for maximum occupancy
- ▶ Occupancy != performance: but low occupancy codes have a hard time hiding latency
- ▶ Demonstration

Measuring performance

- ▶ Right measure depends on program
 - Compute bound: operations per second
 - ▶ Performance given by ratio of number of operations and timing of kernel
 - ▶ Peak performance depends on architecture: Fermi ~1TFLOP/s
 - Memory bound: bandwidth
 - ▶ Performance given by ratio of number of global memory accesses and timing of kernel
 - ▶ Peak bandwidth for GTX 280 (1.107GHz with 512-bit width)

 $1107*10^6*(512/8)*2/10^9 = 141.7 \text{ GB/s}$