Национальный исследовательский университет информационных технологий, механики и оптики

Факультет Программной Инженерии и Компьютерной Техники

Вариант № 1152 Лабораторная работа №6 По дисциплине: «Основы профессиональной деятельности»

Работу выполнила:

Студентка группы Р3112

Сенина Мария Михайловна

Преподаватель:

Перминов Илья Валентинович

Санкт-Петербург 2021

ТЕКСТ ЗАДАНИЯ

По выданному преподавателем варианту разработать и исследовать работу комплекса программ обмена данными в режиме прерывания программы. Основная программа должна изменять содержимое заданной ячейки памяти (X), которое должно быть представлено как знаковое число. Область допустимых значений изменения X должна быть ограничена заданной функцией F(X) и конструктивными особенностями регистра данных BV (8-ми битное знаковое представление). Программа обработки прерывания должна выводить на BV модифицированное значение X в соответствии с вариантом задания, а также игнорировать все необрабатываемые прерывания.

Номер варианта 1152

- Основная программа должна уменьшать на 2 содержимое X (ячейки памяти с адресом 013₁₆) в цикле.
- Обработчик прерывания должен по нажатию кнопки готовности ВУ-1 осуществлять вывод результата вычисления функции F(X)=6X-7 на данное ВУ, а по нажатию кнопки готовности ВУ-3 прибавить утроенное содержимое РД данного ВУ к X, результат записать в X.
- Если X оказывается вне ОДЗ при выполнении любой операции по его изменению, то необходимо в X записать максимальное по ОДЗ число.

Текст программы

Метка	Мнемоника	Параметр	Описание
	ORG	0x0	
V0:	WORD	\$DEFAULT	
	WORD	0x180	
V1:	WORD	\$INT1	
	WORD	0x180	
V2:	WORD	\$DEFAULT	
	WORD	0x180	
V3:	WORD	\$INT3	
	WORD	0x180	
V4:	WORD	\$DEFAULT	
	WORD	0x180	
V5:	WORD	\$DEFAULT	
	WORD	0x180	
V6:	WORD	\$DEFAULT	
	WORD	0x180	
V7:	WORD	\$DEFAULT	
	WORD	0x180	
DEFAULT:	IRET		

	ORG	0x13	
X:	WORD	0x0000	
MAX:	WORD	0x0016	
MIN	WORD	OxFFEA	

	ORG	0x20	
START:	DI		Запрет прерываний
	CLA		
	OUT	5	
	OUT	В	
	OUT	F	
	OUT	13	
	OUT	17	
	OUT	1C	
	OUT	1F	
	OUT	1	
	LD	#9	Назначаем ВУ-1 первый вектор
	OUT	3	
	LD	#B	Назначаем ВУ-3 третий вектор
	OUT	7	
REPITE:	DI		Запрещаем пребывания, чтобы обеспечить атомарность операции
TALLITIE.	NOP		Точка останова 1
	LD	X	Загружаем X d AC
	SUB	#2	Уменьшаем Х в АС на 2
	CMP	MIN	Если меньше минимума переход на загрузку мак значения
	BLT	LDMAX	
	CMP	MAX	Если больше максимума переход на загрузку мак значения
	BGE	LDMAX	
	JUMP	SAVE	Иначе перепрыгиваем и сохраняем
LDMAX:	LD	MAX	Иначе присваиваем МАХ значение
SAVE:	ST	Х	Сохраняем
	EI		Разрешаем прерывания
	HTL		Точка останова 2 (потом поменять на NOP)
	BR	REPITE	Повтор цикла

	ORG	0x50	
INT1:	LD	Х	(X*6) -7 -> X
	ASL		
	ASL		
	ADD	Х	
	ADD	Х	
	OUT	2	
	NOP		Точка останова 3
	IRET		Возврат из прерывания

	ORG	0x60	
TEMP:	WORD	0x0	
INT3:	IN	6	IN (#6) * 3 + X - > X
	ST	TEMP	
	ASL		
	ADD	TEMP	
	ADD	Х	
	ST	Х	
	NOP		Точка останова 4
	IRET		Возврат из прерывания

Назначение программы и реализуемые ею функции (формулы)

Основная программа уменьшает значение ячейки X (0х13) на 2 в цикле и выводит на BУ-1 значение функции f(X) = 6X - 7 при нажатии кнопки готовности на BУ-1. Также увеличивает значение X на значение BУ-3 на значение утроенное значение регистра данных этого устройства, если на нём нажать кнопку готовности.

Область представления и область допустимых значений исходных данных и результата

Область Представления

Числа X, MAX и MIN – 8-ти разрядные целые знаковые числа с фиксированной запятой. (для хранения в БЭВМ используется расширение знака)

Регистр данных ВУ-3 — 8-ти разрядное целое знаковое число с фиксированной запятой

Область Допустимых Значений

Область допустимых значений ячейки X обусловлена размером регистром данных BУ-1 (1 байт). Получается, что $-128_{10}=80_{16}\leq 6X-7\leq 7F_{16}=127_{10}$ Значит $X\in [EA_{16};16_{16}]=[-20_{10};22_{10}]=[\text{MIN};\text{MAX}]$, где MIN и MAX соответствующие константные ячейки.

Расположение в памяти ЭВМ программы, исходных данных и результатов

Ячейки 0x0-0xF – векторы прерывания

Ячейки 0x20-0x45 – код основной программы Ячейки 0x50-0x58 – код подпрограммы прерывания INT1 (для ВУ-1) Ячейки 0x60-0x69 – код подпрограммы прерывания INT3 (для ВУ-3)

Адреса первой и последней выполняемых процессором команд

Первая команда: 0х20

Методика проверки

- 1. Загрузить программы и данные в БЭВМ и скомпилировать код.
- 2. Проверить, что основная программа в цикле уменьшает значение Х. Для этого:
 - а. Убедиться, что после первого запуска с начального адреса 0x020 программа остановилась на отладочной команде HLT в ячейке с адресом 0x039, а значение X в ячейке 0x13 уменьшилось на 2.
 - b. Запустить код ещё раз с того места, где программа остановилась, и проверить, что она снова остановилась в том же месте, а значение X в ячейке 0х13 уменьшилось ещё на 2.
- 3. Проверить, что при выходе за ОДЗ значение Х будет установлено в МАХ. Для этого:
 - а. Повторять пункт 2.b (ещё 8 раз) пока значение в X не приблизится к MIN (станет равным 0xFFEA)
 - b. В следующий раз значение должно стать равным MAX = 0x16.
- 4. Проверить, что при нажатии на кнопку готовности ВУ-3 к X прибавляется утроенное значение регистра данных ВУ-3. Для этого:
 - а. Установить значение регистра данных ВУ-3 равным 0хFF (-1_{10}) . И нажать кнопку готовности, запустить код с места остановки и проверить, что он остановился на том же месте, а значение младшего байта X = 0х11. (Так должно получиться, т.к. в процессе прерывания мы к 22 добавили (-1) *3, а потом вычли ещё 2, т.е. получилось 17).
 - b. Теперь можно проверить поведение программы при прибавлении числа, выводящего X за ОДЗ сверху. Установить значение регистра данных BУ-3 равным 0x03. И нажать кнопку готовности, запустить код с места остановки и проверить, что он остановился на том же месте, а значение в X=0x16. (Так получится, т.к. в пребывании мы добавили к X=0x16 (Так получится), то больше максимума, значит в X=0x16 запишется 0x16)
- 5. Проверить, что при нажатии на кнопку готовности ВУ-1 выводится результат функции от f(x) = 6*x 7. Для этого:
 - а. Нажать кнопку и запустить программу с того же места. При остановке в регистре данных BУ-1 должно быть 0x125. (125 = 22*6-7), а X уменьшится на 2.
 - b. Чтобы проверить, что прерывание не сработает внутри блока вычитания двойки: поменяем значение ячейки 0х030 с NOP на HLT (т.е. с кода 0000 на код 0100). Выполним запуск и код остановится на этой ячейке. Далее нажмём кнопку готовности, и программа остановится, как и раньше на ячейке 0х39, а в регистре данных должно появиться 0х101. (Т.к. вычитание должно произойти раньше, чем произойдёт прерывание, т.е. значение в X уменьшится на 2 и будет равно 18₁₀. А значит в регистре будет 18*6 -7 = 95. В противном случае получилось бы 101, т. к. прерывание выполнилось бы для значения X = 20).
- 6. Надеяться, что всё проверили.

Вывод

В этой лабораторной я познакомилась с тем, как подключаются к БЭВМ организована работа с внешними устройствами по прерыванию. Использовала команды новые DI, EI и IRET. Попробовала отладку программ на БЭВМ через замену команды NOP на HLT.