Major Test: MAL 522

Max. Marks: 50 Time: Two Hours

(Marks awarded will be restricted to 50)

- 1. Let $X_{(i)}$ be the i-th order statistics of a random sample of size n from an absolutely continuous distribution function F(x). Show that $\frac{n-i+1}{i} \frac{F(X_{(i)})}{1-F(X_{(i)})}$ has a F-distribution with (i, n-i+1) degrees of freedom. (6)
- 2. Let m_r be the r-th sample moment about the origin of a size n random sample from any population. Assuming all population moments exist, show that $\sqrt{m_r}$ is the CAN estimator for $\sqrt{\mu_r}$, the corresponding population value. (5)
- 3. Show that $\frac{n}{n+1}\overline{X}^2$ is UMVUE for $1/\theta^2$ for exponential pdf $f(x;\theta) = \theta e^{-\theta x}$, x > 0, where \overline{X} is the sample mean based on a random sample of size n. Also compute its efficiency. (7)
- 4. Prove the invariance property of a MLE. (5)
- 5. State and prove Neyman-Pearson lemma for testing a simple null against a simple alternative hypothesis. (6)
- 6. Find a UMP test of size α for the hypothesis H₀: θ ≥ θ₀, against the alternative H₁: θ < θ₀, using a size n sample from the pdf f(x; θ) = θ/x², x > θ.
 (6)
- 7. Define an invariant hypothesis testing problem and a maximal invariant statistics. Prove that a test ϕ for a hypothesis is invariant iff it is a function of a maximal invariant statistics. (6)
- 8. Find α size likelihood ratio test for the hypothesis $H_0: \mu_1 = \mu_2$, against $H_1: \mu_1 \neq \mu_2$, for the means of two normal populations $N(\mu_1, \sigma^2)$ and $N(\mu_2, \sigma^2)$, based on two independent random samples one from each of sizes m and n respectively. (6)
- 9. Based on a random sample of size n from normal population $N(4, \sigma^2)$, find a uniformly most accurate 95% upper confidence bound for σ^2 . (6)