BIRLA INSTITUTE OF TECHNOLOGY & SCIENCE, PILANI AUGSD

FIRST SEMESTER 2024- 2025 COURSE HANDOUT (PART II)

Date: 22 / 07 / 2024

In addition to Part I (General Handout for all courses appended to the timetable) this portion gives further specific details regarding the course.

Course No : ECE F434

Course Title : **Digital Signal Processing**Instructor-in-charge : Rajesh Kumar Tripathy

Instructors : Subhendu Kumar Sahoo, and Rajesh Kumar Tripathy

1. Course Description:

This course deals with the design of analog filters like Butterworth, Chebyshev, Elliptic., digital filter design for both IIR & FIR filters. Different filter structures for the realization of digital filters will be discussed. Finite word length effects and Multirate DSP will be introduced. DSP Processor architecture and implementation of DSP algorithms will be part of the course, which will be emphasized upon.

2. Scope and Objective:

The course aims at enumerating the theoretical and practical aspects of modern signal processing in a digital environment. It also aims at discussing application areas with particular stress on speech and image data.

3. Text Book:

- 1. Digital Signal Processing: Principles, Algorithms and Application", John G Proakis & D G Manolakis, PHI, 1998.
- 2. Digital Signal Processing, Sanjit K Mitra, TMH, Fourth Ed., 2013.

4. Reference Books:

- 1. "Digital Signal Processing: A Practical Approach, Second Edition", Emmanuel C. Ifeachor and Barrie W. Jervis, Pearson education.
- 2. "Digital Signal Processing: Fundamentals and Applications", Li Tan, Elsevier.
- 3. "Digital Signal Processing", Oppenhiem & Schafer, Pearson Education Asia, 2002.
- 4. TI DSP Processor User Manuals
- 5. Digital Signal Processors, Architecture, Programming and Applications", B. Venkataramani & M Bhaskar, TMH, 2002.
- 6. MATLAB Help

5. Course Plan:

Lecture No.	Learning Objectives	rning Objectives Topics to be covered	
1	Overview of the course	erview of the course Introduction to DSP	
2-4	Discrete time Fourier transform	CTFT, DTFT, Phase and group delay	TB2 Chapter 3
5-7	Z- Transform and its application	Basics of Z- transform and its use for analysis of LTI systems	TB2 Chapter 6

		Numeric representation used in	TB2 Chapter 11.8-	
8,9	DSP Architectures	DSP, Architectural details of a	11.9, RB 2, Class	
		typical DSP processor	notes	
10, 11	Finite length discrete	DFT, FFT, DITFFT and DIFFT	TB2 Chapter 5	
	transform	algorithms		
12-16	Analog filter design	Butterworth, Chebyshev,	TB2 Appendix A,	
12-10		Elliptic	B Page 863-893	
17,18	Analog filter design	Design of HP, BP and BS filters	TB2 Chapter A	
17,10		Design of III, bi and by inters	Page 863-893	
19		Sampling lowpass & bandpass	TB2 Chapter 3.8 –	
19	Sampling	signals	3.10	
20-22	Simple digital filters	Different LTI systems as	TB2 Chapter 7.1-	
20-22		frequency selective device.	7.4	
23, 24	Digital Filter design	IIR filter design: IIT, BLT	TB2 Chapter 9	
25	Digital Filters	Linear phase FIR filters	TB2 Chapter 7.3	
26-29	Digital Filter design	FIR Filter Design	TB2 Chapter 10	
30, 31	Digital filter structures	Realization of IIR filters	TB2 Chapter 8.4- 8.8	
32, 33	Digital filter structures	Realization of FIR filters	TB2 Chapter 8.3, 8.9	
34, 35	Finite Word-Length Effects	IIR & FIR Filters	TB2 Chapter 12	
36, 37	Multi rate DSP	Decimators & Interpolators	TB2 Chapter 13.1, 13.2	
		Introduction and Concepts of		
38- 40	Adaptive Digital Filters	Adaptive filtering, Wiener	RB2 10.1 – 10.3	
		Filters		
41- 42	Introduction to Wavelet	Wavelet Concepts and brief	Class notes	
	Transform	applications	Class Hotes	

TB –Text Book RB- Reference Book

6. Evaluation Scheme:

S.	Evaluation Component	Duration	Weightage	Date. time, venue
No.		Min.		
1	Midsemester Exam	90	30%	As announced in the Timetable
2	Regular Lab, Lab Quiz	Regular	20%	Regular/ Will be announced
3	Quiz		10%	Will be announced
4	Comprehensive	120	40%	As announced in the Timetable

7. Chamber Consultation Hours: To be announced in the class.

8. Make-up Policy:

Make-up for any component will be given only in genuine cases. In all cases prior intimation must be given to IC.

There will be no makeup for Lab quiz and Quiz Exam components.

9. Notices: Notices regarding the course will be displayed on CMS.

Instructor - in - charge ECE F434