Documentation for "Stochastic Reachability for Systems up to a Million Dimensions"

Adam J. Thorpe, Vignesh Sivaramakrishnan, Meeko M. K. Oishi ${\bf October~17,~2019}$

Documentation for the algorithms presented in "Stochastic Reachability for Systems up to a Million Dimensions" by Adam J. Thorpe, Vignesh Sivaramakrishnan, Meeko M. K. Oishi.

Contents

Li	st of Symbols	1
1	Start Here	2
2	Instructions	2
	2.1 Running The Code	. 2
	2.2 Generating the Figures	
	2.3 Modifying the Code	
3	Algorithms	2
	3.1 Preliminaries	. 2
	3.2 Kernel Distribution Embeddings Backward Recursion Algorithm	. 3
	3.3 Kernel Distribution Embeddings Backward Recursion (RFF) Algorithm	. 3
4	Problems	3
	4.1 Terminal-Hitting Time Problem	. 3
	4.2 First-Hitting Time Problem	. 3
5	Systems	3
	5.1 System Samples	. 3

List of Symbols

```
 \begin{array}{lll} \mathcal{H} & \text{Markov Control Process 2} \\ \mathcal{X} \subseteq \Re^n & \text{State Space 2} \\ \mathcal{U} \subseteq \Re^m & \text{Control Space 2} \\ Q & \text{Stochastic Kernel 2, 3} \\ \mathcal{S} & \text{Sample Set 2} \end{array}
```

1 Start Here

- 2 Instructions
- 2.1 Running The Code
- 2.2 Generating the Figures
- 2.3 Modifying the Code

3 Algorithms

The algorithms presented

3.1 Preliminaries

We consider a a Markov control process \mathcal{H} , which is defined in [?] as a 3-tuple:

$$\mathcal{H} = (\mathcal{X}, \mathcal{U}, Q) \tag{1}$$

where $\mathcal{X} \subseteq \mathbb{R}^n$ is the state space, $\mathcal{U} \subseteq \mathbb{R}^m$ is the control space, and Q is a stochastic kernel $Q: \mathcal{B}(\mathcal{X}) \times \mathcal{X} \times \mathcal{U} \to [0,1]$, which is a Borel-measurable function that maps a probability measure $Q(\cdot | x, u)$ to each $x \in \mathcal{X}$ and $u \in \mathcal{U}$ in the Borel space $(\mathcal{X}, \mathcal{B}(\mathcal{X}))$. A Markov control process can describe a wide class of stochastic, time-invariant systems, that can have either linear or nonlinear dynamics, as well as non-Gaussian disturbances. We consider a set \mathcal{S} of M samples of the form $\{(\bar{x}_i, \bar{u}_i, \bar{y}_i)\}_{i=1}^M$ taken from the stochastic kernel, such that \bar{y}_i is drawn i.i.d. from the stochastic kernel Q, and \bar{u}_i is drawn from a fixed Markov policy π .

$$\bar{y}_i \sim Q(\cdot | \bar{x}_i, \bar{u}_i)$$
 (2)

$$\bar{u}_i = \pi(\bar{x}_i) \tag{3}$$

The samples can be generated experimentally or via simulation, meaning they can be taken from real observations of the system evolution, or they can be generated using a known model. For demonstration purposes, all examples use samples collected via simulation. Once the samples are generated, the algorithm assumes no knowledge of the stochastic kernel Q or the disturbance.

- 3.2 Kernel Distribution Embeddings Backward Recursion Algorithm
- 3.3 Kernel Distribution Embeddings Backward Recursion (RFF) Algorithm

4 Problems

4.1 Terminal-Hitting Time Problem

4.2 First-Hitting Time Problem

5 Systems

The algorithms accept sample data drawn from a stochastic kernel Q. The data should be formatted such that the realizations of the stochastic kernel are formatted into the columns of a sample vector

$$\bar{x} = [\bar{x}_1, \dots, \bar{x}_M] \tag{4}$$

$$\bar{u} = [\bar{u}_1, \dots, \bar{u}_M] \tag{5}$$

$$\bar{y} = [\bar{y}_1, \dots, \bar{y}_M] \tag{6}$$

where the number of columns is M, and the number of rows is the dimensionality of the samples. For example, if $\bar{x}_i, \bar{y}_i \in \Re^n$, \bar{x} and \bar{y} should be $[n \times M]$.

5.1 System Samples

The system input to the algorithms is a set of samples organized in a class called SystemSamples. For example, to generate samples for the discrete-time double integrator system with sampling time T = 0.25,

$$\boldsymbol{x}_{k+1} = \begin{bmatrix} 1 & T \\ 0 & 1 \end{bmatrix} \boldsymbol{x}_k + \begin{bmatrix} \frac{T^2}{2!} \\ T \end{bmatrix} u_k + \boldsymbol{w}_k$$
 (7)

```
% Dimensionality of the state space samples.
    % Dimensionality of the input space samples.
    m = 2;
    % Sampling time.
    T = 0.25;
    % Number of samples.
    M = 1000;
10
    % Compute random initial states sampled from a zero-mean Gaussian.
    % Compute the input samples. For this example, the input is chosen to be 0.
13
    U = zeros(m, M);
14
    % Compute the disturbance.
    W = randn(n, M);
16
17
    % Construct the state and input matrices.
    A = [1 T; 0 1];
19
    B = [(T^2)/2!; T];
20
21
    % compute the output samples.
    Y = A * X + B * U + W;
```

```
24
25 % Create a SystemSamples object.
26 samples = SystemSamples('X', X, 'U', U, 'Y', Y);
```

References