Recherche opérationnelle

DUT Info 2e année, parcours A

Différentes formes d'un programme linéaire

Florent Foucaud

- La fonction objectif est à maximiser
- Les contraintes avec ≥ 2 variables sont des ≤
- Les variables sont toutes ≥ 0

- · La fonction objectif est à maximiser
- Les contraintes avec ≥ 2 variables sont des ≤
- Les variables sont toutes ≥ 0

minimiser:	10x	+	5 <i>y</i>			max.:	-10x	_	5 <i>y</i>		
tel que :			У	\leq	1000 1500 -2	t.q. :			У	\leq	1000 1500 -2

- · La fonction objectif est à maximiser
- Les contraintes avec ≥ 2 variables sont des ≤
- Les variables sont toutes ≥ 0

- · La fonction objectif est à maximiser
- Les contraintes avec ≥ 2 variables sont des ≤
- Les variables sont toutes ≥ 0

1. On pose
$$y = y' - 2$$
 avec $y' \ge 0$

- · La fonction objectif est à maximiser
- Les contraintes avec ≥ 2 variables sont des ≤
- Les variables sont toutes ≥ 0

1. On pose
$$y = y' - 2$$
 avec $y' \ge 0$

- · La fonction objectif est à maximiser
- Les contraintes avec ≥ 2 variables sont des ≤
- Les variables sont toutes ≥ 0

minimiser:
$$10x + 5y$$
 max.: $-10(x^+ - x^-) - 5y'$ tel que: $1.5x - 2y \ge 1000$ t.q.: $-1.5(x^+ - x^-) + 2y' \le -996$ $3(x^+ - x^-) + y' \le 1502$ $y' \ge 0$ x^+ $x^ y' \ge 0$

1. On pose
$$y = y' - 2$$
 avec $y' \ge 0$

2. On pose
$$x = x^{+} - x^{-}$$
 avec $x^{+}, x^{-} \ge 0$

- · La fonction objectif est à maximiser
- Les contraintes avec ≥ 2 variables sont des ≤
- Les variables sont toutes ≥ 0

minimiser:
$$10x + 5y$$
 $max.: -10x^+ + 10x^- - 5y'$ tel que: $1.5x - 2y \ge 1000$ $t.q.: -1.5x^+ + 1.5x^- + 2y' \le -996$ $3x + y \le 1500$ $y \ge -2$ x^+ $y' \ge 0$ $x^ y \ge 0$

1. On pose
$$y = y' - 2$$
 avec $y' \ge 0$

2. On pose
$$x = x^{+} - x^{-}$$
 avec $x^{+}, x^{-} \ge 0$

Un programme linéaire est sous forme standard si :

- · La fonction objectif est à maximiser
- Les contraintes avec ≥ 2 variables sont des ≤
- Les variables sont toutes ≥ 0
- Les contraintes (autres que "variable ≥ 0") sont des égalités

Un programme linéaire est sous forme standard si :

- · La fonction objectif est à maximiser
- Les contraintes avec ≥ 2 variables sont des ≤
- Les variables sont toutes ≥ 0
- Les contraintes (autres que "variable ≥ 0") sont des égalités

On introduit une variable d'écart pour chaque contrainte

Un programme linéaire est sous forme standard si :

- · La fonction objectif est à maximiser
- Les contraintes avec ≥ 2 variables sont des ≤
- Les variables sont toutes ≥ 0
- Les contraintes (autres que "variable ≥ 0") sont des égalités

On introduit une variable d'écart pour chaque contrainte

Remarque: $2x - 3y \ge 1000$ est équivalent à 2x - 3y - e = 1000 et $e \ge 0$

Un programme linéaire est sous forme standard si :

- · La fonction objectif est à maximiser
- Les contraintes avec ≥ 2 variables sont des ≤
- Les variables sont toutes > 0
- Les contraintes (autres que "variable ≥ 0") sont des égalités

On introduit une variable d'écart pour chaque contrainte

Proposition

Tout PL est équivalent à sa forme standard.

