Numerical Linear Algebra for Computational Science and Information Engineering

Lecture 09
Basic Iterative Methods for Eigenvalue Problems

Nicolas Venkovic nicolas.venkovic@tum.de

Group of Computational Mathematics School of Computation, Information and Technology Technical University of Munich

Summer 2025

Outline

1	Methods for computing a single eigenvalue Section 5.1 in Darve & Wootters (2021)	
2	Basic QR iteration Section 5.2 in Darve & Wootters (2021)	1!
3	Other methods and implementations Section 5.2 in Darve & Wootters (2021)	2
4	Homework problems	30

Computing eigenvalues exactly is impossible

- Computing eigenvalues and eigenvectors is a very difficult task.
 - There is **no direct method** for computing eigenvalues of matrices of size five or higher in general.
 - That is, there is no algorithm that can compute eigenvalues exactly assuming exact arithmetic.
- Moreover, it can be proved that a method that computes eigenvalues exactly cannot exist for general matrices of size five or higher.
 - The reason for this is the Abel-Ruffini theorem, which states that **no direct method** exists **to find exact zeros of a polynomial** of degree five or higher.
 - That is the case because computing the roots of any polynomial is equivalent to finding the eigenvalues of a matrix.
 - Thus, since there is no method for finiding zeros of a polynomial, then there cannot exist an exact method for finding eigenvalues of a general matrix.

Computing eigenvalues exactly is impossible, cont'd

You saw one side of the equivalence between solving for eigenvalues of a general matrix and solving for the zeros of a polynomial in your Linear Algebra class.

To see the other direction, consider a generic polynomial given by

$$p(x) = x^{n} + a_{n-1}x^{n-1} + \dots + a_{1}x + a_{0}.$$

Then, there is a matrix

$$A = \begin{pmatrix} 0 & 1 & & & & \\ & 0 & 1 & & & \\ & & 0 & & & \\ & \vdots & & & & \\ -a_0 & -a_1 & -a_2 & \cdots & -a_{n-2} & -a_{n-1} \end{pmatrix}$$

such that, if we pick $u=[1\ z\ z^2\ \dots\ z^{n-1}]^T$ where z is a root of p(x), then we have Au=zu so that (z,u) is an eigenpair of A.

Consequently, all roots of p(x) are eigenvalues of A.

Convention

Let us denote $A = X\Lambda X^{-1}$ an eigendecomposition of A.

In this lecture, all the algorithms will normalize vectors, i.e., replace x by $x/\|x\|_2$ during the iterative process.

Therefore, when discussing convergence, we will assume the columns of \boldsymbol{X} have norm $\boldsymbol{1}.$

This is done without loss of generality, since $A=X\Lambda X^{-1}$ remains valid irrespective of the magnitude of the columns of X.

Moreover, in many places, results will be stated "up to a sign" or "up to a unit complex factor", because even with normed columns, the matrix X of an eigendecomposition is not unique.

Methods for computing a single eigenvalue Section 5.1 in Darve & Wootters (2021)

Taking powers of A

ightharpoonup Suppose that A is a square diagonalizable matrix.

Then A has an eigenvalue decomposition $A = X\Lambda Y^H$ where the columns x_i of X are right eigenvectors of A, and the columns y_i of $Y := X^{-H}$ are left eigenvectors of A:

One thing about the eigendecomposition is that powers of \boldsymbol{A} are such that

$$A^k = X\Lambda^k Y^H = \sum_i \lambda_i^k x_i y_i^H.$$

Notice that, even if A is real, it can have complex eigenvalues and vectors. Note also that left and right eigenvectors of A coincide if A is normal.

Taking powers of A, cont'd

lacktriangle Let us assume the eigenvalues of A are ordered such that

$$|\lambda_1| > |\lambda_2| \ge \cdots \ge |\lambda_n|$$

where, in particular, the largest eigenvalue has magnitude strictly greater than the second one.

Then, even for moderate values of the power k, we expect λ_1^k to dominate in A^k , i.e., $|\lambda_1^k| \gg |\lambda_2^k| \ge \cdots \ge |\lambda_n^k|$ so that

$$A^k = \lambda_1^k x_1 y_1^H + \dots + \lambda_n^k x_n y_n^H \approx \lambda_1^k x_1 y_1^H.$$

Let's multiply A^k by a random vector z, such that y_1^Hz is not too small, then

$$A^k z \approx \lambda_1^k x_1 y_1^H z = \lambda_1^k (y_1^H z) x_1$$

so that $A^k z/\|A^k z\|_2$ gives a good approximation of x_1 .

Power iteration

- ▶ The power iteration is based on this idea of taking powers of *A* to approximate the largest eigenpair. The algorithm is as follows:
 - 1. Sample a random vector $q^{(0)} \in \mathbb{C}^n$
 - 2. $q^{(0)} := q^{(0)} / \|q^{(0)}\|_2$
 - 3. For $k = 0, 1, 2 \dots$
 - 4. $z^{(k)} := Aq^{(k)}$
 - 5. $\lambda^{(k+1)} = z^{(k)H}q^{(k)}$
 - 6. $q^{(k+1)} := z^{(k)} / ||z^{(k)}||_2$

where $(\lambda^{(k)}, q^{(k)})$ is an iterate approximating the largest eigenpair of A. At the k-th step, the approximate eigenvector is

$$q^{(k)} = A^k q^{(0)} / ||A^k q^{(0)}||_2,$$

and the corresponding approximate eigenvalue is $\lambda^{(k)} = q^{(k)H}Aq^{(k)}$. Note that, even though $q^{(k)}$ is formed with A^k , the matrix power A^k is not explicitly computed.

Instead, we just perform repeated matrix-vector products.

Convergence of power iteration

- Let us assume again that the eigenpairs $(\lambda_1, x_1), \ldots, (\lambda_n, x_n)$ of A are ordered such that $|\lambda_1| > |\lambda_2| \ge \cdots \ge |\lambda_n|$.
- ▶ The starting vector $q^{(0)}$ can be expressed in the basis formed by the eigenvectors of A, i.e.,

$$q^{(0)} = \alpha_1 x_1 + \dots + \alpha_n x_n.$$

For the method to work, we need to assume $\alpha_1 \neq 0$, that is, $q^{(0)}$ is not orthogonal to x_1 .

► Then, we have

$$A^{k}q^{(0)} = \sum_{i=1}^{n} \alpha_{i} A^{k} x_{i} = \sum_{i=1}^{n} \alpha_{i} \lambda_{i}^{k} x_{i}$$

which can be factorized as follows:

$$A^{k}q^{(0)} = \alpha_{1}\lambda_{1}^{k}x_{1} + \alpha_{2}\lambda_{2}^{k}x_{2} + \dots + \alpha_{n}\lambda_{n}^{k}x_{n}$$
$$\alpha_{1}\lambda_{1}^{k} \left(x_{1} + \frac{\alpha_{2}}{\alpha_{1}} \left(\frac{\lambda_{2}}{\lambda_{1}}\right)^{k} x_{2} + \dots + \frac{\alpha_{n}}{\alpha_{1}} \left(\frac{\lambda_{n}}{\lambda_{1}}\right)^{k} x_{n}\right)$$

Convergence of power iteration, cont'd

From that expression, we have

$$\begin{split} \|A^k q^{(0)}\|_2 &= |\alpha_1 \lambda_1^k| (1 + \mathcal{O}(|\lambda_2/\lambda_1|)) \text{ and } \\ \|(\alpha_1 \lambda_1^k)^{-1} A^k q^{(0)} - x_1\|_2 &= \mathcal{O}\left(\left|\frac{\lambda_2}{\lambda_1}\right|^k\right) \end{split}$$

which, along with the fact that $\|A^kq^{(0)}\|_2 \approx |\alpha_1\lambda_1^k|$ implies that our estimate $q^{(k)} = A^kq^{(0)}/\|A^kq^{(0)}\|$ approaches x_1 with an error $\mathcal{O}(|\lambda_2/\lambda_1|^k)$. In summary, we have

$$\|q^{(k)} - x_1\|_2 = \mathcal{O}\left(\left|\frac{\lambda_2}{\lambda_1}\right|^k\right) \quad \text{and} \quad |\lambda^{(k)} - \lambda_1| = \mathcal{O}\left(\left|\frac{\lambda_2}{\lambda_1}\right|^k\right).$$

▶ Although it is a good starting point, this version of power iteration is limited as it cannot find approximates of any eigenvalue except the largest one. It also cannot leverage given approximations of λ_i .

Inverse iteration

- Assume we are equipped with an approximation μ of the eigenvalue λ_i of A.
- An inverse iteration uses μ to form an abritrarily good approximation of λ_i .
- If μ is a good approximation of λ_i , then

The shifted matrix $A - \mu I_n$ has a small eigenvalue $\lambda_i - \mu$.

The shift-and-invert matrix $(A - \mu I_n)^{-1}$ has a large eigenvalue $1/(\lambda_i - \mu)$.

So, a power iteration applied to $(A-\mu I_n)^{-1}$ should allow us to calculate x_i very quickly, since $1/(\lambda_i-\mu)$ is now the largest eigenvalue, with the corresponding eigenvector x_i .

The algorithm of inverse iteration is as follows:

- 1. Sample a random vector $q^{(0)} \in \mathbb{C}^n$
- 2. $q^{(0)} := q^{(0)} / \|q^{(0)}\|_2$
- 3. For $k = 0, 1, 2 \dots$
- 4. Solve for $z^{(k)}$ s.t. $(A \mu I_n)z^{(k)} = q^{(k)} // z^{(k)} := (A \mu I_n)^{-1}q^{(k)}$
- 5. $q^{(k+1)} := z^{(k)}/||z^{(k)}||_2$
- 6. $\lambda^{(k+1)} = q^{(k+1)H} A q^{(k+1)}$

Convergence of inverse iteration

 Similarly to power iteration, we can characterize the convergence of inverse interations by

$$|\lambda^{(k)} - \lambda_i| = \mathcal{O}\left(\left|\frac{\lambda_i - \mu}{\lambda_j - \mu}\right|^k\right)$$

where λ_i and λ_j are the closest and second closest eigenvalues of A to μ , respectively.

If $|\lambda_i - \mu| \ll |\lambda_j - \mu|$, then the convergence is fast.

Rayleigh quotient iteration

- As inverse iterations progess, the iterate $\lambda^{(k)}$ becomes a better approximation of the eigenvalue λ_i than μ .
 - One could use this fact to redefine the shift μ and get faster convergence.
- Let us assume the matrix A is real and symmetric so that its eigenvalues and eigenvectors are real, and the eigenvectors are orthogonal.
- ▶ The idea to **update the shift** μ **during the iteration** is deployed in an algorithm called **Rayleigh quotient iteration**.
 - Let us consider the Rayleigh quotient given by $r(x) = \frac{x^T A x}{x^T x}$ for $x \neq 0$.
 - The Rayleigh quotient is used to approximate an eigenvalue.
 - Indeed, note that if x is an eigenvector of A, i.e., $Ax = \lambda x$, then $r(x) = \lambda$ is the corresponding eigenvalue.

Rayleigh quotient iteration, cont'd

- ▶ The algorithm for Rayleigh quotient iterations is as follows:
 - 1. Sample a random vector $q^{(0)} \in \mathbb{C}^n$
 - 2. $q^{(0)} := q^{(0)} / \|q^{(0)}\|_2$
 - 3. $\lambda^{(0)} := \mu$
 - 4. For $k = 0, 1, 2 \dots$
 - 5. Solve for $z^{(k)}$ such that $(A \lambda^{(k)}I_n)z^{(k)} = q^{(k)}$
 - 6. $q^{(k+1)} := z^{(k)} / ||z^{(k)}||_2$
 - 7. $\lambda^{(k+1)} = q^{(k+1)H} A q^{(k+1)}$
- Rayleigh quotient iterations converge faster than inverse iterations.

Convergence of Rayleigh quotient iterations

Note first that the gradient of the Rayleigh quotient r for a symmetric A is given by $\nabla r(x) = \frac{2}{x^T x} (Ax - r(x)x)$ so that $r(x_i) = \lambda_i$ implies $\nabla r(x_i) = 0$.

More often than not, the zeros of ∇r are saddle points, as the Rayleigh quotient is only minimized (resp. maximized) at the smallest eigenpair (resp. largest eigen-pair).

In particular, we remember the Courant-Fischer theorem from lecture 1 which states T

$$\lambda_{min} = \min_{x \neq 0} \frac{x^T A x}{x^T x}$$
 and $\lambda_{max} = \max_{x \neq 0} \frac{x^T A x}{x^T x}$.

Then, suppose that y is close to an eigenvector x_i , by Taylor expansion around x_i , we have

$$r(y) \approx r(x_i) + \nabla r(x_i)^T (y-x_i) + (y-x_i)^T H(x_i) (y-x_i)$$
This is zero since
$$\nabla r(x_i) = 0$$

$$r(x_i) = \lambda_i$$
Here, H is the Hessian matrix we have:
$$(y-x_i)^T H(x_i) (y-x_i) \leq \|H(x_i)\| \|y-x_i\|^2 = O(\|y-x_i\|^2)$$

Convergence of Rayleigh quotient iterations, cont'd

Consequently, the first order term disapears, leaving us with

$$r(y) = \lambda_i + \mathcal{O}(\|y - x_i\|_2^2)$$

and the behavior of the Rayleigh quotient near an eigenvector x_i is as follows:

Basic QR iteration

Section 5.2 in Darve & Wootters (2021)

Basic QR iteration

- ▶ The PageRank algorithm is a variant of power iteration aimed at finding the largest eigenvector of a modified adjacency matrix of a web graph. However, in general, iterative methods for computing a single eigenpair have limited applicability.
- Unlike those previously covered iterative methods for eigenvalue solving, QR iterations aim at finding all the eigenvalues of a matrix.
- ➤ The QR iteration was elected one of the 10 best algorithms of the 20th century by Dongarra and Sullivan (2000).
- The QR iteration is the state of the art eigensolver for small dense eigenvalue problems. It is implemented in LAPACK, and it serves as a building block of larger, possibly sparse iterative eigensolvers.
- An important assumption of this Section is that A is diagonalizable with separate eigenvalues, i.e., such that $|\lambda_1| > |\lambda_2| > \cdots > |\lambda_n|$.
 - Because ${\cal A}$ is real with separate eigenvalues, we have that eigen- and Schur decompositions of ${\cal A}$ are real.

Dongarra, J., & Sullivan, F. (2000). Guest editor's introduction: The top 10 algorithms. Computing in Science & Engineering 2, 22-23.

Orthogonal iteration for r=2

- Orthogonal iterations allow us to recover more than one eigenvalue at once.
- lacktriangle For starter, consider that only r=2 eigenvalues are needed.

Then, the pseudocode of orthogonal iterations is as follows:

- 1. Sample two random vector $q_1, q_2 \in \mathbb{R}^n$
- 2. While not converged:
- 3. $q_1 := Aq_1; \ q_2 := Aq_2$
- 4. Project q_2 onto the space orthogonal to q_1 // $q_2 := \left(I_n \frac{q_1 q_1^T}{q_1^T q_1}\right) q_2$
- 5. $q_1 := q_1/\|q_1\|_2, \ q_2 := q_2/\|q_2\|_2$
- 6. Return $q_1^T A q_1$ and $q_2^T A q_2$

Disregarding the vector q_2 , the vector q_1 undergoes a standard power iteration so that, at the k-th step, we have

$$q_1^{(k)} = \frac{A^k q_1^{(0)}}{\|A^k q_1^{(0)}\|_2}$$

which converges towards x_1 .

Orthogonal iteration for r=2, cont'd₁

If we assume that $q_1 \approx x_1$ has already converged, then the update step for q_2 is of the form $q_2^{(k)} \approx (I_n - x_1 x_1^T) A q_2^{(k-1)}$

where $I_n - x_1 x_1^T$ is the orthogonal projector onto span $\{x_1\}^{\perp}$.

Thus, q_2 is undergoing a power iteration with the matrix $(I_n - x_1 x_1^T)A$.

It can be shown that the largest eigenvalue of this matrix is λ_2 with an eigenvector along $(I_n-x_1x_1^T)x_2$ towards which q_2 converges.

Note that, if x_1 and x_2 are not orthogonal, then $(I_n - x_1x_1^T)x_2$ is not aligned wth x_2 . However, we do have $\operatorname{span}\{q_1,q_2\} = \operatorname{span}\{x_1,x_2\}$.

Then, we claim that Q^TAQ where $Q=[q_1\ q_2]$ converges to an upper-triangular matrix with λ_1 and λ_2 on the diagonal :

Orthogonal iteration for r = 2, cont'd₂

- First, the upper-triangularity is explained as follows:

$$q_2^T A q_1 \approx q_2^T A x_1 = \lambda_1 q_2^T x_1 \approx \lambda_1 q_2^T q_1 = 0$$

so that the lower-left entry converges to zero.

- To see that λ_1 and λ_2 lie on the diagonal, it suffices to show that they are eigenvalues of Q^TAQ , as Q^TAQ is triangular.

For this, since $\mathrm{span}\{q_1,q_2\}=\mathrm{span}\{x_1,x_2\}$ after convergence, then there is $v_i\in\mathbb{R}^2$ such that $Qv_i\approx x_i$ and we have

$$Q^T A Q v_i \approx Q^T A x_i = \lambda_i Q^T x_i \approx \lambda_i Q^T Q v_i = \lambda_i v_i$$

so that v_i is an eigenvector of Q^TAQ with eigenvalue λ_i for i=1,2.

- Since Q is orthogonal and Q^TAQ is upper triangular with the same eigenvalues as A, it seems that $Q(Q^TAQ)Q^T$ is a Schur decomposition of A.

Orthogonal iteration for general r

- ightharpoonup When an arbitrary number r of eigenvalues is sought, the approximate eigenvectors are orthogonalized by performing a QR factorization, leading to the following pseudocode:
 - 1. Sample a random matrix $Q_0 \in \mathbb{R}^{n \times r}$
 - 2. k := 0
 - 3. While not converged:
 - 4. $Y_{k+1} := AQ_k$
 - 5. Compute QR factorization $Q_{k+1}R_{k+1} = Y_{k+1}$
 - 6. k := k + 1
 - 7. Return $\operatorname{diag}(Q_k^T A Q_k)$

Similarly as with r=2, this method converges to an upper-triangular matrix $Q_k^TAQ_k$ with eigenvalues $\lambda_1,\ldots,\lambda_r$.

Once the algorithm has converged, the approximate eigenvalues can be read from the diagonal of the Schur form $Q_k^TAQ_k$.

Convergence of orthogonal iteration for general \boldsymbol{r}

- ▶ If A is symmetric, then the eigenvectors x_1, \ldots, x_r are orthogonal, and the i-th column of Q_k , which we denote by $q_i^{(k)}$, converges to $\pm x_i$. For general matrices, things are different.
- Let us denote the matrices $Q^x \in \mathbb{R}^{n \times r}$ and $R^x \in \mathbb{R}^{r \times r}$ such that

$$[x_1 \ldots x_r] = Q^x R^x.$$

We see that the iterate Q_k converges to Q^x :

Since $q_1^{(k)}$ undergoes a normal power iteration, it converges to $x_1 = q_1^x$.

For $q_2^{(k)}$, the QR decomposition ensures $\mathrm{span}\{x_1,x_2\}=\mathrm{span}\{q_1^x,q_2^x\}$ and we have

$$span\{q_1^{(k)}, q_2^{(k)}\} \approx span\{x_1, x_2\} = span\{q_1^x, q_2^x\}$$

Thus $q_2^{(k)}$ converges to something in the space $\mathrm{span}\{q_1^x,q_2^x\}$, and it also has to be orthogonal to $q_1^{(k)}\approx q_1^x$. Therefore $q_2^{(k)}$ has to converge to $\pm q_2^x$. Similarly, $q_i^{(k)}$ converges to $\pm q_i^x$. Overall, we have that Q_k converges to Q^x .

Convergence to the Schur decomposition

- Now that we know that Q_k converges to Q^x , we can analyze the matrix $Q_k^TAQ_k$, which converges to $Q^{xT}AQ^x$ up to some columnwise sign changes.
- ▶ Since $AX = X\Lambda$ where $X = [x_1, \dots, x_r]$ and $\Lambda = \operatorname{diag}(\lambda_1, \dots, \lambda_r)$, the definitions of Q^x and R^x imply that

$$AX = X\Lambda$$

$$AQ^x R^x = Q^x R^x \Lambda$$

$$Q^{xT} AQ^x R^x (R^x)^{-1} = Q^{xT} Q^x R^x \Lambda (R^x)^{-1}$$

$$Q^{xT} AQ^x = R^x \Lambda (R^x)^{-1}.$$

Since R^x is upper triangular and Λ is diagonal, we have that $R^x\Lambda(R^x)^{-1}$ is upper triangular.

More particularly, we also have that $Q^{xT}AQ^x$ is upper triangular with the eigenvalues $\lambda_1, \ldots, \lambda_r$ on the diagonal.

Then, the matrix $Q_k^T A Q_k$ converges to $Q^{xT} A Q^x$, which is upper triangular and has the top r eigenvalues of A on the diagonal.

Convergence of orthogonal iteration

▶ The convergence analysis being sequential, i.e., we assumed $q_1^{(k)} \approx q_1^x$, then showed that $q_2^{(k)}$ converges to q_2^x , and so on; may lead to think that the convergence of orthogonal iteration is slow. I.e., we first have to wait that $q_1^{(k)}$ converges, then $q_2^{(k)}$, and so on.

But, in fact, what actually happens is that all of the $q_i^{(k)}$ converge simultaneously.

It can be shown that the convergence of the iterate Q_k to Q^x depends, similarly as before, on the separation between λ_r and λ_{r+1} . In particular, we have

$$\|Q_k Q_k^T - Q^x Q^{xT}\|_2 = \mathcal{O}\left(\left|\frac{\lambda_{r+1}}{\lambda_r}\right|^k\right).$$

That is, the smaller $|\lambda_{r+1}/\lambda_r|$, the faster the convergence of Q_k to Q^x .

QR iteration

- lacksquare QR iterations are a re-framing of orthogonal iterations with r=n.
 - QR iterations yield the full Schur decomposition $T=Q^TAQ$ of A where T is an n-by-n upper triangular matrix with the eigenvalues of A on the diagonal, and Q is a n-by-n orthogonal matrix of a QR decomposition of the eigenvectors X of A.
- ▶ The iterate of QR iteration is denoted by Q_k with a corresponding matrix $T_k := Q_k^T A Q_k$.
- The formulation of QR iterations is more commonly expressed as a recurrence from $T_k = Q_k^T A Q_k$ to $T_{k+1} = Q_{k+1}^T A Q_{k+1}$.

From the definition of orthogonal iterations, we have

$$Q_{k+1}R_{k+1} = AQ_k$$
 so that $T_k = Q_k^T AQ_k = Q_k^T Q_{k+1}R_{k+1}$

and, since r=n, we have $Q_kQ_k^T=I_n$ and

$$R_{k+1}Q_k^T = Q_{k+1}^T A$$
 so that $T_{k+1} = Q_{k+1}^T A Q_{k+1} = R_{k+1}Q_k^T Q_{k+1}$

QR iteration, cont'd₁

Then, as we let $U_{k+1} := Q_k^T Q_{k+1}$, we have

$$T_k = U_{k+1} R_{k+1}$$
$$T_{k+1} = R_{k+1} U_{k+1}$$

where R_{k+1} is upper triangular, and U_{k+1} is orthogonal.

Note that $U_{k+1}R_{k+1}$ is a QR decomposition of $T_k = Q_k^TAQ_k$.

This yields the following pseudocode to compute the eigenvalues of A:

- 1. $T_0 := A$
- 2. k := 0
- 3. While not converged:
- 4. Compute QR factorization $U_{k+1}R_{k+1} = T_k$
- 5. $T_{k+1} := R_{k+1} U_{k+1}$
- 6. k := k + 1
- 7. Return $\operatorname{diag}(T_k)$

Notice that A is only needed at the start of the algorithm, after what we only repeatedly compute QR decompositions and switch the factors.

QR iteration, cont'd₂

▶ In this algorithm, the matrix $U_{k+1} = Q_k^T Q_{k+1}$ represents an orthogonal correction.

Since upon convergence $U_k \to I_n$, the determinant of U_k is 1 for large k, and we can interpret U_k as a small rotation on the orthogonal vectors in Q_k . In particular, we have:

$$U_1 \dots U_{k+1} = Q_0^T Q_1 Q_1^T Q_2 \dots Q_k^T Q_{k+1} = Q_0 Q_{k+1} = Q_{k+1}$$

because we chose $Q_0 = I_n$.

As the algorithm converges, Q_k and Q_{k+1} become very close.

▶ In the symmetric case, $T_k = Q_k^T A Q_k$ is symmetric, but since it also converges to an upper symmetric matrix, it actually converges to a diagonal form, in which case the Schur decomposition is actually an eigendecomposition.

QR iteration, cont'd₃

- The QR iteration presented so far has drawbacks:
 - A QR factorization at cost $\mathcal{O}(n^3)$ is computed at each iteration.
 - The convergence depends heavily on the distribution of the eigenvalues, and it may never converge if two eigenvalues have the same magnitude.
- ► Improvements of the QR iteration method can be introduced to improve the robustness and efficiency:
 - The transformation of ${\cal A}$ into an upper Hessenberg form allows to decrease the cost of the QR factorizations.
 - A shifted version of the QR iteration can improve convergence, even when the eigenvalues are not well-separated, making the method robust to cases of eigenvalues with equal magnitudes.

Other methods and implementations Section 5.2 in Darve & Wootters (2021)

Divide-and-conquer method

► A symmetric matrix can efficiently be transformed into a tridiagonal form using an orthogonal transformation

$$Q^T A Q = T.$$

Then, the eigendecomposition of A can be obtained from that of T.

► The divide-and-conquer method splits the tridiagonal matrix into two tridiagonal blocks plus a rank-1 perturbation:

$$T = \begin{bmatrix} T_1 & \\ & T_2 \end{bmatrix} + \rho u u^T.$$

- ► The method proceeds as follows:
 - Calculate the eigendecompositions of T_1 and T_2 .
 - ② The rank-1 perturbation allows to compute the eigenvalues of T given the eigendecompositions of T_1 and T_2 .

Method of bissection

- ▶ The method of bissection also considers a tridiagonal form $Q^TAQ = T$.
- The eigenvalues of T are the roots of $p_n(\lambda) = \det(T \lambda I_n)$. Finding these roots is generally a complex problem, but it can be simplified if we consider only the leading r-by-r block T_r of T and the corresponding characteristic polynomial

$$p_r(\lambda) = \det(T_r - \lambda I_r).$$

- As T is tridiagonal, it is possible to find a simple relation between p_r , p_{r-1} and p_{r-2} .
 - Using this sequence of polynomials, the method of bissection is able to efficiently calculate the roots of p_n .

Existing implementations

- QR iteration:
 - Available for general matrices.
 - Implementation sometimes requires tridiagonalization.
 - Fastest to compute the eigendecomposition of small matrices ($n \leq 25$).
 - Algorithm behind the Matlab, NumPy and Julia functions.
 - Available in LAPACK as ssyev for dense symmetric matrices.
 - Available in LAPACK as sstev for symmetric tridiagonal matrices.
- Divide-and-conquer method:
 - Available for symmetric matrices.
 - Implementation requires tridiagonalization.
 - Fastest to compute the eigendecomposition of medium size tridiagonal matrices, i.e., for n>25.
 - Available in LAPACK as sstevd for symmetric tridiagonal matrices, sstevd defaults to QR iteration for smaller matrices.
- Method of bissection:
 - Available in LAPACK as ssyevx for dense symmetric matrices.

Homework problems

Homework problem

Turn in your own solution to Pb. 20:

Pb. 19 Show that the gradient of the Rayleigh quotient of a symmetric matrix A given by

$$r(x) = \frac{x^T A x}{x^T x} \text{ for } x \neq 0$$

is
$$\nabla r(x) = \frac{2}{x^T x} (Ax - r(x)x)$$
.

Pb. 20 Let (λ, x) be a right eigen-pair of A, (μ, y) be a left eigen-pair of A and μ be distinct from λ . Show that x and y are orthogonal.