## Cálculo Numérico - IME/UERJ

## Lista de Exercícios 2

## Série de Taylor e Raízes de funções

- 1. Numa calculadora aproxima-se o valor de  $e^x$ , para todo  $x \in [-1, 1]$ , pelo valor do polinomio de Taylor de grau 3, obtido através da expansão de  $e^x$  em série de Taylor em torno do ponto  $x_0 = 0$ .
  - (a) Qual a aproximação de  $e^{0.5}$  fornecida pela calculadora?
  - (b) Utilizando a expressão do erro cometido ao se aproximar a função  $e^x$  pela sua expansão em série de Taylor, forneça um limitante superior para o erro cometido no item (a).
- 2. Seja  $f(x) = \ln(x+1)$ .
  - (a) Obtenha a série de Taylor ao redor de 0 para f(x).
  - (b) Obtenha o polinômio de Taylor de terceira ordem ao redor de 0 da função f(x) do item anterior e calcule  $P_3(0.5)$ . Qual o erro verdadeiro cometido?
  - (c) Encontre a expressão analítica para o erro de truncamento  $R_3(x)$  e estime o erro máximo em módulo ao se usar  $P_3(0.5)$  para aproximar f(0.5). Mostre que o resultado é compatível com o erro que foi encontrado no item (b).
  - (d) Determine o número mínimo de termos que deve ter o polinômio de Taylor para que  $\ln(1.5)$  seja calculado com um erro de truncamento menor que  $10^{-8}$ .
- 3. Seja  $f(x) = \frac{1}{x}$ .
  - (a) Calcule a série de Taylor ao redor de 8.
  - (b) Determine um limitante inferior e outro superior do erro de truncamento para o polinômio de Taylor de ordem 4 de f(x) em x = 10 ao redor de 8.
  - (c) Obtenha uma aproximação de 0.1 usando o polinômio de ordem 4 e verifique que o erro cometido fica entre os limites encontrados em (b).
  - (d) Calcule a expressão binária de 0.1 a partir de (a).
  - (e) Determine uma aproximação binária de 0.1 a partir de (b).
  - (f) De que ordem deve ser o polinômio de Taylor para obter uma aproximação de 0.1 com erro inferior a  $10^{-8}$ ?
- 4. Calcule uma aproximação de  $x^* = \sqrt[3]{25}$  com uma tolerância  $\xi = 10^{-4}$  pelo método da Bisseção.

- 5. Determine uma aproximação da raiz da equação  $x + \log(x) = 0$  com tolerância  $\xi = 0.001$  pelo método da Bisseção no intervalo [0.1, 0.6].
- 6. Considere o método da bisseção. Quantas iterações são necessárias para encontrar uma aproximação da solução de  $x 0, 5(\text{sen}(x) + \cos(x)) = 0$  com 3 casas decimais corretas sendo [0, 1] o intervalo inicial?
- 7. Considere o polinômio  $p(x) = (x-1)(x-2,5)^2(x-4)^3$  Quais zeros não podem ser determinadas usando o método da bisseção? Justifique a sua resposta.
- 8. Determine um intervalo [a, b] para iniciar o cálculo de  $\ln(10)$  usando o método da bisseção. Explique. Quantas iterações são necessárias para obter  $\ln(10)$  com erro menor ou igual a  $10^{-3}$ ?
- 9. Determine um intervalo (a,b) e uma função de iteração  $\varphi(x)$  associada, de tal forma que  $\forall x_0 \in (a,b)$ , a função de iteração gere uma sequência convergente para a(s) raiz(es) de cada uma das funções abaixo, usando o método iterativo do ponto fixo (ou método da iteração linear (MIL)).

(a) 
$$f_1(x) = \sqrt{x} - e^{-x}$$
.

(b) 
$$f_2(x) = \ln(x) - x + 2$$
.

(c) 
$$f_3(x) = e^{x/2} - x^3$$
.

(d) 
$$f_4(x) = \text{sen}(x) - x^2$$
.

(e) 
$$f_5(x) = x/4 - \cos(x)$$
.

- 10. A equação  $x^2 7x + 12 = 0$  tem 3 e 4 como raízes. Considere a função de iteração dada por  $\varphi(x) = x^2 6x + 12$ . Determine o intervalo (a,b), onde para qualquer que seja  $x_0$  escolhido a sequência  $x_{n+1} = \varphi(x_n)$  converge para a raiz x = 3. Mostre que a convergência é quadrática.
- 11. As funções de iterações  $\varphi_1(x) = \frac{x^2}{2} 2x + 4$  e  $\varphi_2(x) = \frac{x^2}{2} 2.5x + 5$  geram sequências convergentes para a raiz x = 2, para qualquer aproximação inicial  $x_0 \in (1.5, 3)$ . Qual das duas funções geram sequências mais rapidamente convergentes para esta raiz? Justifique a resposta.
- 12. Para determinar a raiz quadrada de um número  $c \ge 0$ , basta resolver a equação  $x^2 c = 0$ . E possível determinar sua raiz quadrada usando a função de iteração  $\varphi(x) = c/x$ ? Justifique a resposta.
- 13. Determine as raízes do exercício 9, usando o Método de Newton-Raphson com tole-

rância  $\varepsilon \leq 1 \cdot 10^{-4}$ .

- 14. Os zeros da função  $f(x) = x^4 12x^3 + 47x^2 60x$  são:  $x_1 = 0, x_2 = 3, x_3 = 4$  e  $x_4 = 5$ .
  - (a) Calcule uma iteração do método de Newton-Raphson a partir de  $x_0 = 2$ . A sequência parece convergir para que raiz?
  - (b) Repita o processo a partir de  $x_0 = 1$ . O que acontece neste caso?
  - (c) É possível aplicar o método da bisseção no intervalo [2, 3.5]? Justifique a resposta. No caso afirmativo, obtenha o número de iterações a partir da qual obtém-se uma aproximação de a menos de 0.001.
- 15. O zero da função  $f(x) = \arctan(x)$  é  $x^* = 0$ . Considere o método de Newton-Raphson. Verifique se:
  - (a) o ponto inicial é  $x_0 = 1.3917452$ , então temos a sequência de iterações  $x_1 = -1.3917$ ;  $x_2 = 1.3917$ ;  $x_3 = -1.3917$ ; . . .
  - (b) o ponto inicial é  $x_0 = 1.3$ , então a sequência converge a  $x^*$ .
  - (c)  $x_0 = 1.5$ , então a sequência diverge.
- 16. Calcular as raízes dos polinômios abaixo, por Birge-Vieta, usando uma casa decimal com erro menor que 0,1.
  - (a)  $P(x) = x^3 21x^2 + 95x 75 = 0$ .
  - (b)  $P(x) = x^4 18x^3 + 97x^2 180x + 100 = 0$ .
- 17. Seja  $x = \xi$  uma raiz de f(x), tal que  $f'(\xi) \neq 0$  e  $f''(\xi) = 0$ . Mostre que neste caso o Método de Newton-Raphson tem convergência cúbica.
- 18. (Segundo trabalho extra Valendo 1,0 ponto)

(Raízes múltiplas) Considere  $f(x) = (x-1)^2$ 

- (a) Aplique o método de Newton-Raphson para f(x) = 0 com tolerância  $\epsilon = 10^{-4}$ . Sendo r a raiz verdadeira encontrada, calcule o erro  $e_k = x_k r$  para cada iteração k realizada. Qual a taxa de convergência baseada nos erros calculados?
- (b) Aplique o método de Newton modificado a seguir e verifique o que acontece com as iterações.

$$x_{k+1} = x_k - 2\frac{f(x_k)}{f'(x_k)}, \ k = 0, 1, \dots$$

(c) Prove que a ordem de convergência do método do item (b) é quadrática, ou seja, prove que:

$$e_{k+1} \approx \frac{f'''(r)}{6f''(r)}e_k^2 = \frac{f'''(r)}{12}e_k^2$$
, onde  $e_k = x_k - r$ .

Dicas:

Use aproximação por série de Taylor de  $f(x_k)$  em torno de r e depois faça a sua primeira derivada,  $f'(x_k)$ . Despreze termos de terceira e quarta ordem  $(e_k^3, e_k^4)$  quando for conveniente. Use também  $\left(1 + \frac{e_k}{2} \frac{f'''(r)}{f''(r)}\right)^{-1} \approx 1 - \frac{e_k}{2} \frac{f'''(r)}{f''(r)}$ .