Opti Mid3

tyang27

November 2019

1 Properties of matrices

Positive definite (PD), and Positive semidefinite (PSD).

1.1 Definite

Let $A \in \mathbb{R}^{n \times n}$ be a symmetric matrix. A is

- PSD iff $\forall d \in \mathbb{R}^n$ nonzero, $d^T A d \geq 0$.
- PD iff $\forall d \in \mathbb{R}^n$ nonzero, $d^T Ad > 0$.
- PSD iff all eigenvalues of A nonnegative (≥ 0).
- PD iff all eigenvalues of A positive (> 0). (Invertible!).

1.2 PSD and invertible implies PD

If $A \in \mathbb{R}^{n \times n}$ is a symmetric, invertible, PSD matrix, then A is PD, and A^{-1} is PD as well.

- Since invertible, all eigenvalues are nonzero.
- Since PSD, eigenvalues are nonnegative.
- Since eigenvalues are nonzero and nonnegative, must be positive and PD.
- Since eigenvalues of inverse are just 1 over eigenvalue, which is still positive, so inverse is also PD.

$$eigenvalues(cA) = c\lambda_i$$

 $eigenvalues(cI + A) = c + \lambda_i$

2 Higher dimension Taylor

Note that hessian is symmetric.

Given function $f: \mathbb{R}^n \to \mathbb{R}$, sufficiently smooth, $\bar{\mathbf{x}} \in \mathbb{R}^n$, $\mathbf{d} \in \mathbb{R}^n$. Consider a function around the point $\bar{\mathbf{x}}$ in direction d,

$$h(\alpha) = f(\bar{x} + \alpha d)$$

1st order:

$$h(\alpha) = f(\bar{\mathbf{x}} + \alpha \mathbf{d}) = f(\bar{\mathbf{x}}) + (\nabla f^T(\mathbf{z}_1)\mathbf{d})\alpha$$

2nd order:

$$h(\alpha) = f(\bar{\mathbf{x}} + \alpha \mathbf{d}) = f(\bar{\mathbf{x}}) + (\nabla f^T(\bar{\mathbf{x}}) \mathbf{d})\alpha + \frac{1}{2} (\mathbf{d}^T \nabla^2 f(\mathbf{z}_2) \mathbf{d})\alpha^2$$

Where z is on the line segment between \bar{x} , $\bar{x} + d$.

2.1 Descent direction

Let $f: \mathbb{R}^n \to \mathbb{R}$ c1, $\mathbf{x} \in \mathbb{R}^n$. d is a descent direction iff

$$\nabla f^T(\bar{\mathbf{x}}) \mathbf{d} < 0$$

Note: steepest direction when $\nabla f(\bar{\mathbf{x}}) \neq 0$ is

$$d = -\nabla f(\bar{x})$$

Proof:

$$f(\bar{\mathbf{x}} + \alpha \mathbf{d}) = f(\bar{\mathbf{x}}) + [\nabla f^T(\mathbf{z}_1)\mathbf{d}]_{-}[\alpha]_{+} < f(\bar{\mathbf{x}})$$

3 Extrema

Suppose $S \subseteq \mathbb{R}^n$ open, $\bar{\mathbf{x}} \in S$, $f: S \to \mathbb{R}$...

3.1 First order necessary condition

 \dots and f is c1.

$$\bar{\mathbf{x}}$$
 is a local min $\implies \nabla f(\bar{\mathbf{x}}) = 0$

Proof: By contradiction, if gradient is not zero, then there would be a descent direction.

3.2 Second order necessary condition

 \dots and f is c2.

$$\bar{\mathbf{x}}$$
 is a local min $\implies \nabla^2 f(\bar{\mathbf{x}})$ is PSD

Proof: If hessian is not PSD, then $\exists d \in \mathbb{R}^n$ nonzero s.t. $d^T \nabla^2 f(\bar{x}) d < 0$.

$$f(x) = f(\bar{x}) + [\nabla f^T(\bar{\mathbf{x}})d]_{\mathbf{0}}\alpha + \frac{1}{2}[d^T\nabla^2 f(\bar{\mathbf{x}})d]_{\mathbf{-}}[\alpha^2]_{\mathbf{+}} \le f(\bar{\mathbf{x}})$$

However, \bar{x} is a local min, so we have reached a contradiction.

3.3 Second order sufficient condition

 \dots and f is c2.

$$\nabla f(\bar{\mathbf{x}}) = 0, \ \nabla^2 f(\bar{\mathbf{x}}) \text{ is PD} \implies \bar{\mathbf{x}} \text{ is a strict local min}$$

Proof:

$$f(x) = f(\bar{x}) + [\nabla f^T(\bar{x})d]_0 \alpha + \frac{1}{2}[d^T \nabla^2 f(z)d]_+ [\alpha^2]_+ > f(\bar{x})$$

Note: Must be PD and not PSD, since we could have inflection/saddle points.

4 Convexity

Note: we don't really care about concavity, because f is convex iff -f is concave, so we only need to think about one.

4.1 Convex set

 $S \subseteq \mathbb{R}^n$ is convex set if

$$\forall x, y \in S, \ \lambda \in [0, 1], \ \lambda x + (1 - \lambda)y \in S$$

4.2 Convex function

 $S \subseteq \mathbb{R}^n$ nonempty convex set, $f: S \to \mathbb{R}$.

• f is a convex function if

$$\forall x, y \in S, \ \lambda \in [0, 1], \ f(\lambda x + (1 - \lambda)y) \le \lambda f(x) + (1 - \lambda)f(y)$$

 \bullet f is a strictly convex function if

$$\forall x, y \in S, x \neq y, \lambda \in [0, 1], f(\lambda x + (1 - \lambda)y) < \lambda f(x) + (1 - \lambda)f(y)$$

4.2.1 Using first degree taylor

 $S \subset \mathbb{R}^n$ open convex set, $f: S \to \mathbb{R}$ c1 function. f is...

convex iff

$$\forall \mathbf{x}, \hat{\mathbf{x}} \in S, \ f(\mathbf{x}) \ge f(\hat{\mathbf{x}}) + \nabla f(\hat{\mathbf{x}})^T (\mathbf{x} - \hat{\mathbf{x}})$$

stritly convex iff

$$\forall \mathbf{x}, \hat{\mathbf{x}} \in S, \mathbf{x} \neq \hat{\mathbf{x}}, f(\mathbf{x}) > f(\hat{\mathbf{x}}) + \nabla f(\hat{\mathbf{x}})^T (\mathbf{x} - \hat{\mathbf{x}})$$

2

4.2.2 Using hessian

 $S \subset \mathbb{R}^n$ open convex set, $f: S \to \mathbb{R}$ c2 function.

• f is convex iff $\nabla^2 f(\mathbf{x})$ is PSD $\forall \mathbf{x} \in S$. Proof:

$$\iff \forall x, \hat{x} \in S$$

$$f(\mathbf{x}) = f(\hat{\mathbf{x}}) + \nabla f(\hat{\mathbf{x}})^T (\mathbf{x} - \hat{\mathbf{x}}) + \left[\frac{1}{2} (\mathbf{x} - \hat{\mathbf{x}})^T \nabla^2 f(\mathbf{z})_{\geq \mathbf{0}} (\mathbf{x} - \hat{\mathbf{x}})_{\geq \mathbf{0}} \right]_{\geq \mathbf{0}}$$
$$f(\mathbf{x}) \geq f(\hat{\mathbf{x}}) + \nabla f(\hat{\mathbf{x}})^T (\mathbf{x} - \hat{\mathbf{x}})$$

 \Longrightarrow converse

• if $\nabla^2 f$ is PD, then strictly convex (converse not true e.g. x^4 is strictly convex but has $\nabla^2 f(x)$ at x = 0). Proof:

$$\implies \forall x, \hat{x} \in S, x \neq \hat{x}$$

$$f(\mathbf{x}) = f(\hat{\mathbf{x}}) + \nabla^T f(\hat{\mathbf{x}})(\mathbf{x} - \hat{\mathbf{x}}) + \left[\frac{1}{2} (\mathbf{x} - \hat{\mathbf{x}})^T \nabla^2 f(\mathbf{z})_{>0} (\mathbf{x} - \hat{\mathbf{x}})_{>0} \right]_{>0}$$

4.2.3 Using epigraph

 $S \subseteq \mathbb{R}^n$, $f: S \to \mathbb{R}$. Suppose S nonempty convex set and $f: S \to \mathbb{R}$.

$$f$$
 is convex iff $epigraph(f) = \left\{ \begin{bmatrix} \mathbf{x} \\ y \end{bmatrix} \mid \mathbf{x} \in S, y \in \mathbb{R}, y \geq f(\mathbf{x}) \right\}$ is a convex set

4.3 Support theorem

 $S \subseteq \mathbb{R}^n$ convex set, x is boundary point.

 \exists hyperplane containing x s.t. S is completely in an associated half space

4.4 Global is local minimizer for convex function

Suppose $S \subseteq \mathbb{R}^n$ open convex set, $f: S \to \mathbb{R}$ convex, c1 function.

$$\hat{\mathbf{x}}$$
 is global minimizer \iff $\hat{\mathbf{x}}$ is local minimizer \iff $\nabla f(\hat{\mathbf{x}}) = 0$

Proof:

Global min is a local min. Local min have gradient of 0, by first order necessary condition. If gradient is 0, then first order taylor is $f(x) \ge f(\hat{x}) + 0$ so it is a global minimizer.

Furthermore, if function is strictly convex, the global min is unique and strict.

5 Newton's method

Assume f is c2, $\hat{\mathbf{x}}$ is initial guess. Take second degree Taylor.

$$f(x) \approx g(x) = f(\hat{x}) + \nabla f(\hat{x})^T (x - \hat{x}) + \frac{1}{2} (x - \hat{x})^T \nabla^2 f(\hat{x}) (x - \hat{x})$$

Derive wrt x, set to 0, then solve for x

$$g'(\mathbf{x}) = 0 = \nabla f(\hat{\mathbf{x}}) + \nabla^2 f(\hat{\mathbf{x}})(\mathbf{x} - \hat{\mathbf{x}})$$

$$\nabla^2 f(\hat{\mathbf{x}})(\mathbf{x} - \hat{\mathbf{x}}) = -\nabla f(\hat{\mathbf{x}})$$

$$\mathbf{x} - \hat{\mathbf{x}} = -[\nabla^2 f(\hat{\mathbf{x}})]^{-1} \nabla f(\hat{\mathbf{x}})$$

$$\mathbf{x} = \hat{\mathbf{x}} - [\nabla^2 f(\hat{\mathbf{x}})]^{-1} \nabla f(\hat{\mathbf{x}})$$

$$\mathbf{x} = \hat{\mathbf{x}} - \mathbf{d}$$

Assume f is convex, $\nabla^2 f(\hat{\mathbf{x}})$ is invertible, $\nabla f(\hat{\mathbf{x}}) \neq 0$. d is a descent direction. Recall, a vector d is a descent direction if $\nabla f(\hat{\mathbf{x}})^T d < 0$.

$$\nabla f(\hat{\mathbf{x}})^T \mathbf{d} = \left[-\nabla f(\hat{\mathbf{x}})^T [\nabla^2 f(\hat{\mathbf{x}})]_{>0}^{-1} \nabla f(\hat{\mathbf{x}})_{>0} \right]_{<0}$$

Thus, d is a descent direction.

5.1 Algorithm

$$x_0 \in \mathbb{R}^n$$

for $k = 1 \dots$ until $\nabla f(x_k) = 0$
 $\mathbf{x}_{k+1} = \mathbf{x}_k - [\nabla^2 f(\hat{\mathbf{x}}_k)]^{-1} \nabla f(\mathbf{x}_k)$

6 Steepest descent

6.1 Algorithm

$$x_0 \in \mathbb{R}^n$$
for $k = 1 \dots$ until $\nabla f(x_k) = 0$

$$\alpha_* = \min_{\alpha > 0} f(\mathbf{x}_k - \alpha \nabla f(\mathbf{x}_k))$$

$$\mathbf{x}_{k+1} = \mathbf{x}_k - \alpha_* \nabla f(\mathbf{x}_k)$$

6.2 Note

This algorithm moves orthogonally. That is, $\nabla f(\mathbf{x}_k) \perp \nabla f(\mathbf{x}_{k+1})$.

$$g'(\alpha_*) = 0 = \nabla f(\mathbf{x}_k - \alpha \nabla f(\mathbf{x}_k))[-\nabla f(\mathbf{x}_k)] = \nabla f(\mathbf{x}_{k+1})^T \nabla f(\mathbf{x}_k)$$

7 Ferkas theorem

 $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^n$. Either:

1.
$$\exists x \in \mathbb{R}^n \text{ s.t. } Ax = b, x > 0$$

2.
$$\exists y \in \mathbb{R}^m \text{ s.t. } \mathbf{b}^T \mathbf{y} > 0, \mathbf{A}^T \mathbf{y} \leq 0$$

Proof: Consider (LP0), (DP0), where c = 0

• If 1 is true,

$$\exists$$
 x s.t. $Ax = b, x \ge 0$
(LP0) is feasible From construction $b^Ty \le c^Tx = 0$ By weak duality $b^Ty \ne 0$

So 2 is false.

• If 2 is false,

$$\nexists$$
 y s.t.b^Ty > 0, A^Ty \le 0
 \forall y s.t. b^Ty \le 0 or A^Ty > 0
y = 0 maximizes b^Ty Optimality
c^Tx = b^Ty = 0 By strong duality
(LP0) is feasible

So 1 is true.

8 Gordons theorem

 $A \in \mathbb{R}^{m \times n}$. Either:

1. $\exists x \in \mathbb{R}^n$ s.t. $Ax = 0, x \ge 0, x$ nonzero.

2.
$$\exists y \in \mathbb{R}^m \text{ s.t. } \mathbf{A}^T \mathbf{y} < 0$$

Proof:

• 2 is true iff

$$\exists y, \varepsilon, \varepsilon > 0 \text{ s.t. } A^T y + \varepsilon 1 \leq 0$$

iff (use linalg)

$$\begin{split} \exists \begin{bmatrix} \mathbf{y} \\ \varepsilon \end{bmatrix}, & \begin{bmatrix} \mathbf{0} \\ \mathbf{1} \end{bmatrix}^T \begin{bmatrix} \mathbf{y} \\ \varepsilon \end{bmatrix} > 0 \ (\mathbf{b}'^T \mathbf{y}' > 0) \\ & \begin{bmatrix} \mathbf{A}^T & 1 \end{bmatrix} \begin{bmatrix} \mathbf{y} \\ \varepsilon \end{bmatrix} \leq 0 \ (\mathbf{A}'^T \mathbf{y}' \leq 0) \end{split}$$

iff (use Farkas $2\rightarrow 1$)

$$\nexists \mathbf{x} \in \mathbb{R}^n \text{ s.t. } \begin{bmatrix} \mathbf{A} \\ \mathbf{1}^T \end{bmatrix} \mathbf{x} = \begin{bmatrix} 0 \\ 1 \end{bmatrix} (\mathbf{A}'^T \mathbf{y}' = \mathbf{b}')$$

iff

$$Ax = 0$$

$$\sum x = 1$$

$$x \ge 0$$

We know that $\sum x = 1$ iff x is nonzero. In the forward direction, obvious. In the reverse direction, we can scale x without affecting Ax = 0. So 1 is true.

8.1 Active constraint

$$\mathcal{A}_{\mathbf{x}} = \{ i \mid g_i(\mathbf{x}) = 0 \}$$

Let $m = |\mathcal{A}_x|$

- Obvious: If x feasible in (P) is a local min of (P), then \nexists d that is simultaneously a descent direction for f and for all active g_i , $i \in \mathcal{A}_x$. (By contradiction, if there was a descent direction, would not be a local min).
- LinAlg: If x feasible in (P) is a local min of (P), then

• Gordon's $2\rightarrow 1$: If x feasible in (P) is a local min of (P), then

$$\exists \ \lambda \geq 0 \text{ nonzero s.t. } J^T \lambda = 0$$

• Inactive/CompSlack: If x feasible in (P) and is a local min of (P) then $\exists \begin{bmatrix} \beta \\ \lambda \end{bmatrix} \ge 0$ s.t.

$$\left[\nabla f(\mathbf{x}), \dots \nabla g_i(\mathbf{x})\right] \begin{bmatrix} \beta \\ \lambda \end{bmatrix} = 0$$

$$\lambda_i * g_i(\mathbf{x}) = 0 \implies \sum \lambda_i g_i(\mathbf{x}) = 0 \implies \lambda \cdot g(\mathbf{x}) = 0$$

• Fritz John: If x feasible in (P) and is a local min of (P), then

$$\exists \lambda, \beta \text{ s.t.}$$
$$\beta \nabla f(\mathbf{x}) + \nabla g(\mathbf{x})\lambda = 0$$
$$\lambda^T g(\mathbf{x}) = 0$$
$$\lambda, \beta > 0$$

8.2 KKT

$$(P) \min f(\mathbf{x})$$

s.t. $g(\mathbf{x}) \le 0$

If x feasible and local min of (P) and x satisfies a constraint qualification that $\{\nabla g_i(\mathbf{x}) \mid i \in \mathcal{A}_{\mathbf{x}}\}$ are linearly indepedent, then $\exists \ \lambda \in \mathbb{R}^m \text{ s.t.}$

$$\nabla f(\mathbf{x}) + \nabla g(\mathbf{x})\lambda = 0$$
$$\lambda \cdot g(\mathbf{x}) = 0$$
$$\lambda \ge 0$$

Find all KKT points

- Check when no active constraints (interior), aka all lambdas 0, aka $\nabla f(\mathbf{x}) = 0$.
- Check when one constraint active.
- Check when multiple constraints active.

Find and verify KKT point

- Guess point.
- Check which constraints are active, g(x) = 0 and say that the $\lambda = 0$ for inactive, so that $\lambda \cdot g(x) = 0$
- Calculate ∇f and ∇g for active constraints. Check nonzero and linear independent, and write that it satisfies constraint qualification.
- Set $\nabla f(\mathbf{x}) + \lambda_i \nabla g_i(\mathbf{x}) = 0$, solve for λ_i .
- Verify that $\lambda_i > 0$.