Sequential Circuits Design

State-Machine Diagrams p.221~

1

1

State-Machine Diagrams

p.221

- 전통적인 상태도 : 큰 설계에 적용하기에 비효율적이다.
 - -입력변수와 출력변수를 모두 열거해야 한다.
 - -간소하고 효율적인 상태다이어그램 표현이 필요하다.

State-Machine Diagrams

p.221

- 전통적인 상태도 : 큰 설계에 적용하기에 비효율적이다.
 - -입력변수와 출력변수를 모두 열거해야 한다.
 - -간소하고 효율적인 상태다이어그램 표현이 필요하다.
- State-Machine Diagram
 - -조건 : 입력변수들을 부울 수식으로 표현
 - •TC (Transition condition 변이조건): 1이면 변이가 일어난다
 - •OC(output condition 출력조건) : 1이면 출력한다.

Constraints of State-Machine Diagram p. 224

■ Constraint 1

-주어진 상태로부터의 전이 조건 T1 T2 T3는 상호배타적이라야 한다.

Constraint 2

-주어진 상태로부터의 전이 조건 T1 T2 T3은 모든 조합을 가져이 한다.

•T1 + T2 + T3 = 1 (모든 조건을 다 고려하고 있는가?)

Input	Meaning for Value 1	Meaning for Value 0*	
NI	Three ingredients	Two ingredients	
Start	Start a batch cycle	No action	
Stop	Stop an on-going batch cycle	No action	
L0	Tank empty	Tank not empty	
L1	Tank filled to level 1	Tank not filled to level 1	
L2	Tank filled to level 2	Tank not filled to level 2	
L3	Tank filled to level 3	Tank not filled to level 3	
TZ	Timer at value 0	Timer not at value 0	
Output	Meaning for Value 1	Meaning for Value 0	
MX	Mixer on	Mixer off	
PST	Load timer with value from D	No action	
TM	Timer on	Timer off	
V1	Valve open for ingredient 1	Valve closed for ingredient 1	
V2	Valve open for ingredient 2	Valve closed for ingredient 2	
V3	Valve open for ingredient 3	Valve closed for ingredient 3	
VE	Output valve open	Output valve closed	

State Code Condition Next State Including Mealy	State	200000000000000000000000000000000000000	TC			Non-zero Outputs
Fill_1 010000						Including Mealy
Fill_1 010000	Init	100000	START + STOP	' Init	100000	
STOP			START-STOP	Fill_1	010000	
Fill_2 001000 Fill_2 001000 Fill_2 001000 V2 STOP	Fill_1	010000				VI _
Fill_2 001000 V2 STOP Init 100000 L2·STOP Fill_2 001000 L2·NI·STOP Mix 000010 PST* L2·NI·STOP Fill_3 000100 Fill_3 000100 V3 STOP Init 100000 V3			STOP	Init	100000	Moore output
Fill_2 001000 V2 STOP Init 100000 L2·NI·STOP Fill_2 001000 L2·NI·STOP Fill_3 000100 V3 Fill_3 000100 V3 STOP Init 100000 V3 STOP Fill_3 000100			L1-STOP	Fill_1	010000	3
STOP			L1-STOP	Fill_2	001000	
L2-STOP Fill_2 001000	Fill_2	001000				V2
L2·NI·STOP Mix 000010 PST* OC / outpose			STOP	Init	100000	
Fill_3 000100			L2-STOP	Fill_2	001000	
Fill_3 000100 V3 STOP Init 100000 L3-STOP Fill_3 000100			L2-NI-STOP	Mix	000010	
STOP Init 100000 L3-STOP Fill_3 000100			L2·NI·STOP	Fill_3	000100	OC / output
<u>L3-STOP</u> Fill_3 000100	Fill_3	000100				V3
			STOP	Init	100000	
			L3-STOP	Fill_3	000100	
L3-STOP Mix 000010 PST*			L3-STOP	Mix	000010	PST*

p.228 Batch 혼합 시스템을 위한 FF입력식

■ 다음 상태가 Init이 되는 변이조건을 모두 연산한다.
Init(t+1)=Init·(start'+stop)+fill1·stop+fill2·stop+fill3·stop
+mix·stop+empty·(Lo+stop)
=Init·start'+Init·stop+fill1·stop+fill2·stop+fill3·stop
+mix·stop+empty·Lo+empty·stop
=Init·start'+stop+empty·Lo

상태를 one-hot코드로 지정했으므로

각 FF의 상태기호를 Init,fill1,fill2,fill3,mix,empty라 부를 수 있다.

19

19

p.228 Batch 혼합 시스템을 위한 FF입력식'

- 다음 상태가 fill1,fill2,fill3이 되는 변이식
 fill1(t+1) = init·start·stop' + fill1·L1'·stop'
 fill2(t+1) = fill1·L1·stop' + fill2·L2'·stop'
 fill3(t+1) = fill2·L2·NI·stop' + fill3·L3'·stop'
- empty(t+1) 변이식…
- 출력 V1,V2,V3,Pst,Mix,Tm 출력식을 구한다.

p.229 에 출력식

20

정리

- State-Machine Diagram 의 이해
- State-Machine Diagram의 제약조건1,2
- 설계예>

동작 제어 시스템에서의 State-Machine Diagram

→ 상태표 → 설계를 위한 FF입력식과 출력식

2