Thought about STD

Jiaxin Hu

May 17, 2021

1 Equivalent model of STD

Claim: the new noise tensor consists of i.i.d. (sub-)Gaussian entries if and only if all $X_k, k \in [3]$ has orthogonal columns and the diagonal elements of $(X_k^T X_k)^{-1}$ keep the same for $k \in [3]$.

Proof. Let $\mathcal{E}' = \mathcal{E} \times_1 M_1 \times_2 M_2 \times_3 M_3$, where \mathcal{E} has independent sub-Gaussian- σ entries. By the Prop 1 in the supplementary of STD paper, \mathcal{E}' is a sub-Gaussian tensor with a different parameter σ' , where σ' depends on M_k . Now, consider the case that \mathcal{E} has i.i.d. Gaussian entries with variance 1. We only need to show that $\operatorname{cov}(\mathcal{E}'_{i,j,k},\mathcal{E}'_{i',j',k'}) = 0$ and $\operatorname{cov}(\mathcal{E}'_{i,j,k},\mathcal{E}'_{i,j,k}) = \sigma^2$, for arbitrary (i,j,k), $(i',j',k') \neq (i,j,k)$, and for a constant σ^2 .

Note that for arbitrary (i, j, k) we have

$$\mathcal{E}'_{i,j,k} = \sum_{a \in [d_1], b \in [d_2], c \in [d_3]} \mathcal{E}_{abc} M_{1,ia} M_{2,jb} M_{3,kc}.$$

Then, the covariance is equal to

$$cov(\mathcal{E}'_{i,j,k}, \mathcal{E}'_{i',j',k'}) = \sum_{a \in [d_1], b \in [d_2], c \in [d_3]} M_{1,ia} M_{2,jb} M_{3,kc} M_{1,i'a} M_{2,j'b} M_{3,k'c}
= \sum_{b \in [d_2], c \in [d_3]} e_{1,i}^T M_1 M_1^T e_{1,i'} M_{2,jb} M_{3,kc} M_{2,j'b} M_{3,k'c}
= [e_{1,i}^T (X_1^T X_1)^{-1} e_{1,i'}] [e_{2,j}^T (X_2^T X_2)^{-1} e_{2,j'}] [e_{3,k}^T (X_3^T X_3)^{-1} e_{3,k'}],$$
(1)

where $e_{k,i} \in \mathbb{R}^{p_k}$ whose *i*-th elements is 1 and the other entries remain 0, for $k \in [3], i \in [p_k]$. The equation (1) implies that the covariance equal to 0 for all pairs $(i', j', k') \neq (i, j, k)$ if and only if all $X_k, k \in [3]$ should have orthogonal columns.

Next, note the variance of $\mathcal{E}_{i,j,k}$ is

$$cov(\mathcal{E}'_{i,j,k}, \mathcal{E}'_{i,j,k}) = [\mathbf{e}_{1,i}^T (\mathbf{X}_1^T \mathbf{X}_1)^{-1} \mathbf{e}_{1,i}] [\mathbf{e}_{2,j}^T (\mathbf{X}_2^T \mathbf{X}_2)^{-1} \mathbf{e}_{2,j}] [\mathbf{e}_{3,k}^T (\mathbf{X}_3^T \mathbf{X}_3)^{-1} \mathbf{e}_{3,k}]$$

$$= (\mathbf{X}_1^T \mathbf{X}_1)_{ii}^{-1} (\mathbf{X}_2^T \mathbf{X}_2)_{jj}^{-1} (\mathbf{X}_3^T \mathbf{X}_3)_{kk}^{-1}.$$
(2)

The equation (2) implies that all entries of \mathcal{E}' have equal variance if and only if the diagonal elements of $(\mathbf{X}_k^T \mathbf{X}_k)^{-1}$ should be the same for $k \in [3]$.

Alternative Way

Sub-Claim: Suppose $\mathcal{E} \in \mathbb{R}^{d_1 \times d_2 \times d_3}$ has i.i.d. Gaussian entries, the product $\mathcal{E}_1 = \mathcal{E} \times_1 M_1$ has i.i.d. entries if and only if $X_1 \in \mathbb{R}^{d_1 \times p_1}$ has orthogonal columns, where $M_1 = (X_1^T X_1)^{-1} X_1^T \in \mathbb{R}^{p_1 \times d_1}$.

Proof of Sub-Claim: It is equivalent to show the vectorized tensor $\text{vec}(\mathcal{E}_1) = (\mathbf{M}_1 \otimes \mathbf{I}_{d_2d_3})\text{vec}(\mathcal{E})$ has a diagonal covariance matrix, where \otimes is the matrix Kronecker product and $\mathbf{I}_{d_2d_3}$ is the identity matrix with dimension d_2d_3 . Note that \mathcal{E} has i.i.d. Gaussian entries. Then, the covariance matrix

$$\operatorname{cov}(\operatorname{vec}(\mathcal{E}_1)) = \boldsymbol{M}_1 \boldsymbol{M}_1^T \otimes \boldsymbol{I}_{d_2 d_3} = (\boldsymbol{X}_1^T \boldsymbol{X}_1)^{-1} \otimes \boldsymbol{I}_{d_2 d_3}$$

is diagonal if and only if $(X_1^T X_1)^{-1}$ is diagonal, i.e., the columns of X_1 are orthogonal.

Proof of Claim: (\Rightarrow) Suppose all the matrix $X_k, k \in [3]$ have orthogonal columns. Then by the Sub-Claim, the tensor $\mathcal{E}_1 = \mathcal{E} \times_1 M_1$ has i.i.d. Gaussian entries. Similarly, the tensor $\mathcal{E}_2 = \mathcal{E}_1 \times_2 M_2$ and $\mathcal{E}' = \mathcal{E}_2 \times_3 M_3$ have i.i.d. Gaussian entries.

(\Leftarrow) Suppose the tensor $\mathcal{E}' = \mathcal{E} \times M_1 \times_2 M_2 \times_3 M_3$ has i.i.d. Gaussian entries. Let $N_k = (M_k^T M_k)^{-1} M_k^T$ for $k \in [3]$. Note that

$$\mathcal{E}' \times \mathbf{N}_1 \times_2 \mathbf{N}_2 \times_3 \mathbf{N}_3 = \mathcal{E}.$$