Mathematician

Postgraduate Entrance Examination Advanced Mathematics Notes

考研高等数学笔记

作者: LoafPhilosopher

2024年6月25日

目录

第一章	函数	1
1.1	数列	1
	1.1.1 等差数列	1
	1.1.2 等比数列	1
	1.1.3 常见数列前 n 项和	1
1.2	函数的基本概念与特性	2
	1.2.1 函数的概念	2
	1.2.2 反函数	2
	1.2.3 复合函数	Ę
	1.2.4 函数的四种特性及重要结论	6
	1.2.5 三种特殊函数	11
1.3	初等函数图像及其性质	12
	1.3.1 常数函数	12
	1.3.2 幂函数	13
	1.3.3 指数函数	14
	1.3.4 对数函数	14
	1.3.5 三角函数	16
	1.3.6 初等函数	20
	1.3.7 图像绘制	21
1.4	常用函数知识	21
	1.4.1 三角函数	21
	1.4.2 一元二次方程基础	23
	1.4.3 因式分解公式	23
	1.4.4 阶乘与双阶乘	23
	1.4.5 绝对值等式	23
第二章	极限	2 4
2.1	数列的极限	24
	2.1.1 数列极限的定义	
	2.1.2 收敛数列的性质	
2.2	函数的极限	

	2.2.1	超实数系	. 29
	2.2.2	邻域	. 29
	2.2.3	函数极限的定义	. 29
	2.2.4	函数极限的性质	. 34
	2.2.5	函数极限与数列极限的关系 (海涅定理)	. 36
2.3	无穷小	、与无穷大	. 39
	2.3.1	无穷小	. 39
	2.3.2	无穷大	. 43
	2.3.3	无穷大与无穷小的关系	. 43
2.4	函数极	及限的运算	. 44
	2.4.1	极限的四则运算法则	. 44
	2.4.2	泰勒公式	. 47
	2.4.3	洛必达法则	. 51
	2.4.4	等价替代求极限	. 55
	2.4.5	抓大头和抓小头	. 61
	2.4.6	利用函数性质求极限	. 62
	2.4.7	中值定理求极限	. 66
	2.4.8	七种未定式的计算	. 68
2.5	数列极	及限的运算	. 76
	2.5.1	n 项数列极限求解	. 76
	2.5.2	常用不等式	
	2.5.3	递推关系式 $x_{n+1} = f(x_n)$ 数列极限	. 84
第三章	连续		90
3.1		7连续性	
		前间断点	
	3.2.1	- 间断点的相关概念	
	3.2.2	间断点的分类....................................	
第四章			95
4.1	导数的	的概念	
	4.1.1	导数的定义	
	4.1.2	单侧导数	
	4.1.3	导数的几何意义	
	4.1.4	高阶导数	
4.2	微分 .		
	4.2.1	微分的概念	
	4.2.2	微分的几何意义	
4.3	导数的	的计算	
	4.3.1	基本求导公式	. 103

	4.3.2	有理运算法则)3
	4.3.3	复合函数的导数与微分形式不变性10)3
	4.3.4	分段函数的导数)4
	4.3.5	反函数的导数)4
	4.3.6	参数方程求导)5
	4.3.7	对数函数求导法)5
	4.3.8	幂指函数求导法)5
	4.3.9	隐函数求导)6
	4.3.10	高阶导数求导)6
4.4	导数的	几何应用10)7
	4.4.1	极值)7
	4.4.2	单调性判别)9
	4.4.3	凹凸性10)9
	4.4.4	拐点	Ι1
	4.4.5	渐近线	L2
	4.4.6	最值	13
	447	曲家与曲家坐经 11	13

第一章 函数

1.1 数列

1.1.1 等差数列

首项为 a_1 , 公差为 $d(d \neq 0)$ 的数列 $a_1, a_1+d, a_1+2d, \cdots, a_1+(n-1)d, \cdots$

注 1.1.1: 等差数列相关性质

- 通项公式 $a_n = a_1 + (n-1)d$
- 前 n 项的和 $S_n = \frac{n}{2}[2a_1 + (n-1)d] = \frac{n}{2}(a_1 + a_n)$

1.1.2 等比数列

首项为 a_1 , 公比为 $r(r \neq 0)$ 的数列 $a_1, a_1r, a_2r^2, ..., a_1r^{n-1}, ...$

注 1.1.2: 等比数列相关性质

- 通项公式 $a_n = a_1 r^{n-1}$
- 前 n 项的和 $S_n = \left\{ egin{array}{ll} na_1, & r=1, \\ \dfrac{a_1\left(1-r^n\right)}{1-r}, & r \neq 1. \end{array} \right.$
- $\bullet \ \ 1+r+r^2+\cdots+r^{n-1}=\frac{1-r^n}{1-r}(r\neq 1).$

1.1.3 常见数列前 *n* 项和

$$\begin{split} & \sum_{k=1}^n k = 1 + 2 + 3 + \dots + n = \frac{n(n+1)}{2}. \\ & \sum_{k=1}^n k^2 = 1^2 + 2^2 + 3^2 + \dots + n^2 = \frac{n(n+1)(2n+1)}{6}. \\ & \sum_{k=1}^n \frac{1}{k(k+1)} = \frac{1}{1 \times 2} + \frac{1}{2 \times 3} + \frac{1}{3 \times 4} + \dots + \frac{1}{n(n+1)} = \frac{n}{n+1}. \end{split}$$

1.2 函数的基本概念与特性

1.2.1 函数的概念

定义 1.2.1: 函数定义

设**数集** $D \subset \mathbb{R}$, 则称映射 $f: D \to \mathbb{R}$ 为定义在 D 上的函数, 通常简记为

$$y = f(x), x \in D$$

其中x称为自变量,y称为因变量,D称为定义域,记作 D_f ,即 $D_f = D$.

函数的定义中, 对**每个** $x \in D$, 按对应法则 f, 总有**唯一确定**的值 y 与之对应, 这个值称为函数 f 在 x 处的函数值, 记作 f(x), 即 y = f(x). 因变量 y 与自变量 x 之间的这种依赖关系, 通常称为**函数关系**. 函数值 f(x) 的全体所构成的集合称为函数 f 的值域, 记作 R_f 或 f(D) 即:

$$R_f=f(D)=\{y|y=f(x), x\in D\}$$

注 1.2.1: 关于定义域的注意事项

- 定义域指的是 x 的定义域
- 括号内定义域相同

题目 1. 已知 f(x+1) 的定义域为 [0,a](a>0), 则 f(x) 的定义域为, f(x+10) 的定义域为

解答. 已知定义域指的是 x 的定义域,因此 $x \in [0,a]$,那么 $x+1 \in [1,a+1]$.括号内定义域相同,那么可以得知 f(x) 定义域为 [1,a+1].f(x+10) 定义域为 [-9,a-9].

1.2.2 反函数

定义 1.2.2: 反函数定义

设函数 y = f(x) 的定义域为 D, 值域为 R. 如果对于每一个 $y \in R$, 必存在**唯一的** $x \in D^a$ 使得 y = f(x) 成立,则由此定义了一个新的函数 $x = \varphi(y)$,这个函数称为函数 y = f(x) 的**反函数**^b,一般记作 $x = f^{-1}(y)$,它的定义域为 R,值域为 D. 相对于反函数来说,原来的函数也被称为**直接函数**.

 a 该条件" 唯一性" 非常重要,如函数 $y=x^2$,当 $y=y_0$ 时,有不同的 x 值满足 $f(x)=y_0$,因此 x^2 不存在反函数,而 $y=\ln x$ 取任意 $y_0\in R_y$ 都存在唯一的 x 满足 $f(x)=y_0$

 b 一般地, $y=f(x),x\in D$ 的反函数记成 $y=f^{-1}\left(x\right) ,x\in f(D)$

题目 2. ★★★☆☆ 设 $y = \sin x, 0 \le x \le 2\pi$, 求其所有单调区间上的反函数

解答. 易知函数的单调区间为 $(0, \frac{\pi}{2}), (\frac{\pi}{2}, \frac{3\pi}{2}), (\frac{3\pi}{2}, 2\pi)$, 在第一个区间上,当 $0 \le x \le \frac{\pi}{2}$ 时,对 $y = \sin x$,有 $x = \arcsin y, y \in [0, 1]$;

当 $\frac{\pi}{2} < x \leqslant \frac{3\pi}{2}$ 时, 有 $-\frac{\pi}{2} < x - \pi \leqslant \frac{\pi}{2}$, 此时 $\sin(x - \pi) = -\sin(\pi - x) = -\sin x = -y$, 于是有 $x - \pi = -\arcsin y$, 故 $x = \pi - \arcsin y$, $y \in [-1, 1)$.

当 $\frac{3\pi}{2} < x \le 2\pi$ 时,有 $-\frac{\pi}{2} < x - 2\pi \le 0$,此时 $\sin(x - 2\pi) = \sin x = y$,于是有 $x - 2\pi = \arcsin y$,故 $x = 2\pi + \arcsin y$, $y \in (-1,0]$

综上所述

$$x = \begin{cases} \arcsin y, & 0 \leqslant x \leqslant \frac{\pi}{2}, \\ \pi - \arcsin y, & \frac{\pi}{2} < x \leqslant \frac{3\pi}{2}, \\ 2\pi + \arcsin y, & \frac{3}{2}\pi < x \leqslant 2\pi. \end{cases}$$

题目 2 的注记. 在求反函数时要标明区间,函数在区间上连续且单调,例如 $y = \arctan x$ 默认的是在 $y = \tan x$ 第一个区间 $(-\frac{\pi}{2}, \frac{\pi}{2})$ 上的反函数,因为在这个区间上没有间断点,是单调的

注 1.2.2: 关于反函数图像和 x,y 值转换的问题

基本解释: 若以函数 $y=e^x$ 为例, 其中 $y=e^x$ 为原函数, 记为 y=f(x), 其反函数为 $x=\ln y$, 记为 $x=f^{-1}(y)$, 自变量转换, 转换为 $y=\ln x$, 记为 y=f(x). 此时, 在同一直角坐标系中, y=f(x) 和 $x=f^{-1}(y)$ 的图形重合, y=f(x) 和 $y=f^{-1}(x)$ 的图形关于直线 y=x 对称。

详细解释: 若把 $x = f^{-1}(y)$ 与 y = f(x) 的图形画在同一坐标系中,则它们完全重合. 只有把 y = f(x) 的反函数 $x = f^{-1}(y)$ 写成 $y = f^{-1}(x)$ 后,它们的图形才关于 y = x 对称^a. 以函数 y = 2x + 1 为例:

原函数为 y = 2x + 1, 其中自变量为 x, 定义域为 [1,2], 因变量 y, 值域为 [3,5]. 如上图所示 $x = f^{-1}(y)$ 中自变量为 y, 定义域为 [3,5], 因变量 x, 值域为 $[1,2]^b$.

最终化为 $y=f^{-1}(x)$, 其中自变量为 x, 定义域为 [3,5], 因变量 y, 值域为 [1,2]. 此时反函数改写为 $y=f^{-1}(x)$, 该函数图像与 y=f(x) 关于直线 y=x 对称

"这是因为在 $x=f^{-1}(y)$ 中 y 是自变量而 x 是因变量,而在 y=f(x) 中恰恰相反(这个时候的图像应该一个是 x-y 坐标系函数图像,一个是 y-x 坐标系函数图像),因此如果此时不交换变量,那么其域没有变化,画在一起会重合,只有交换了变量之后才不会重合。

 b 此时仅发生了变量改变, $x = f^{-1}(y)$ 和 y = f(x) 图像在同一坐标轴中

定义 1.2.3: 反函数的性质

- $f^{-1}f(x) = x, f(f^{-1}(x)) = x$
- 严格单调函数必有反函数,但是有反函数的函数不一定是单调函数. 如函数 $f(x)= \begin{cases} x, & x\geqslant 0, \\ \frac{1}{x}, & x<0, \end{cases}$ 其函数图像为

- 连续可导的函数如果具有反函数,那么一定单调,但是单调函数不一定推出导数一定都不为 0,如 $f(x) = x^3 \text{ 在 } x = 0 \text{ 处的导数}$
- 若函数 f(x) 有反函数,则 f(x) 与任意水平线有且仅有一个交点. a

^a反函数的唯一性见此处定义1.2.2

题目 3. $\bigstar \triangle \triangle \triangle \triangle \triangle \triangle$ 求函数 $y = f(x) = \ln(x + \sqrt{x^2 + 1})$ 的反函数的表达式以及定义域

解答. 已知
$$y = f(x) = \ln(x + \sqrt{x^2 + 1})$$
, 则 $-y = \ln\frac{1}{x + \sqrt{x^2 + 1}} = \ln(\sqrt{x^2 + 1} - x)$

根据对数函数运算法则1.3.4,对两边可以进行如下操作

$$e^{-y} = \sqrt{x^2 + 1} - x$$
$$e^y = \sqrt{x^2 + 1} + x$$

那么可以得到 $x = \frac{1}{2}(e^y - e^{-y})$ 交换之后可以得到函数 f(x) 的反函数, 即 $y = f^{-1}(x) = \frac{1}{2}(e^x - e^{-x})$.

题目 3 的注记.

• 在上面的例子中,函数 $f(x)=\ln(x+\sqrt{x^2+1})$ 为反双曲正弦函数,其反函数为双曲正弦函数.除此之外,函数 $y=\frac{e^x+e^{-x}}{2}$ 是双曲余弦函数.

图 1.1: 双曲正弦函数 $y = \frac{e^x - e^{-x}}{2}$

图 1.2: 双曲余弦函数 $y = \frac{e^x + e^{-x}}{2}$

结论 1.2.1: 有关反双曲正弦函数结论

- $x \to 0$ HJ, $\ln\left(x + \sqrt{x^2 + 1}\right) \sim x$.
- $\bullet \ \left[\ln\left(x+\sqrt{x^2+1}\right)\right]'=\frac{1}{\sqrt{x^2+1}}, \mp \, \frac{1}{\cancel{\sim}} \int \frac{1}{\sqrt{x^2+1}} dx = \ln\left(x+\sqrt{x^2+1}\right) + C.$
- 由于 $y = \ln \left(x + \sqrt{x^2 + 1} \right)$ 是奇函数, 于是 $\int_{-1}^{1} \left[\ln \left(x + \sqrt{x^2 + 1} \right) + x^2 \right] dx = \int_{-1}^{1} x^2 dx = \frac{2}{3}$.
- 泰勒展开前两项为 $x \frac{1}{6}x^{3}$ b

a由洛必达法则证明

 $[^]b$ 前两项和 $\sin x$ 一样

1.2.3 复合函数

设函数 y = f(u) 的定义域为 D_1 , 函数 u = g(x) 在 D 上有定义, 且 $g(D) \subset D_1$, 则由

$$y = f[g(x)](x \in D)$$

确定的函数, 称为由函数 u = g(x) 和函数 y = f(u) 构成的**复合函数**, 它的定义域为 D,u 称为中间变量. 内层函数的值域是外层函数的子集 1 .

題目 4. 设
$$f(x) = \begin{cases} x^2, & x \geqslant 0, \\ y(x) = \begin{cases} -\sqrt{x}, & x > 0, \\ x^2, & x \leqslant 0, \end{cases}$$
 若 $y = f(g(x)), 则$ $\left(A\right) \frac{\mathrm{d}y}{\mathrm{d}x}\Big|_{x=1} = 1. \quad (B) \frac{\mathrm{d}y}{\mathrm{d}x}\Big|_{x=1}$ 不存在. $(C) \frac{\mathrm{d}y}{\mathrm{d}x}\Big|_{x=0} = 0. \quad (D) \frac{\mathrm{d}y}{\mathrm{d}x}\Big|_{x=0}$ 不存在

解答. 函数 y 为 f(x) 和 g(x) 复合函数,若求复合函数在 x=1 和 x=0 时的导数,那么可以将复合函数写为 $f(x)=\begin{cases} g(x)^2, & x\geqslant 0 \\ & \text{,} & \text{ 由此,作出 } g(x) \text{ 函数图像,结合图像,可以将上述图像函数表达式更改为} \end{cases}$

$$f(g(x)) = \begin{cases} x^2, & x \geqslant 0 \\ & . \text{ 则函数 } f(g(x)) \text{ 在 } x = 1 \text{ 处的导数为 } 0. \\ x^4, & x < 0 \end{cases}$$

题目 4 的注记. 看见复合函数,应把复合函数带入,把表达式求出来

1.2.4 函数的四种特性及重要结论

有界性

有界性分为三种情况,一种是有上界,一种是有下界,一种是有界。其中有界包含了有上界和有下界。

定义 1.2.4: 有界性的定义

设 f(x) 的定义域为 D, 数集 $I \subset D$. 如果存在某个正数 M, 使对任一 $x \in I$, 有 $|f(x)| \leq M$, 则称 f(z) 在 I 上有界; 如果这样的 M 不存在, 则称 f(x) 在 I 上无界.

• 有界是指,同时有上界和下界

 $^{^{1}}$ 需要注意的是, 不是任何两个函数都可以进行复合, 如果函数 A 的定义域与函数 B 的值域的交集为 \emptyset , 则两个函数不可进行复合

- 从几何上看, 如果在给定的区间, 函数 y = f(x) 的图形能够被直线 y = -M 和 y = M" 完全包起来", 则为有界; 从定义上说, 找到某个正数 M, 使得 $|f(z)| \leq M$, 则为有界.
- **在讨论有界还是无界的时候首先要指明区间**,如果没指名区间,则无法讨论有界性. 如函数 $y = \frac{1}{x}$ 则 $(2, +\infty)$ 上有界, 但是在 (0, 2) 上无界.

有界性的判断

- 利用定义
- f(x) 在 [a,b] 上连续 \Rightarrow f(x) 在 [a,b] 上有界
- f(x) 在 (a,b) 上连续, 且 $f(a^+)$ 和 $f(b^-)$ 存在 $\Leftrightarrow f(x)$ 在 (a,b) 上有界.
- f'(x) 在区间 $I(有限)^2$ 上有界 $\Rightarrow f(x)$ 在 I 上有界
 - 证明. 一使用拉格朗日中值定理进行证明: 设区间 I(a,b) 由拉格朗日中值定理可得 $f(b)-f(a)=f'(\xi)(b-a)$, 固定点 a, 那么对区间 I(a,b) 上每一个点求拉格朗日中值定理,那么 $f(x)=f(a)+f'(\xi)(x-a)$, 其中 f(a) 为固定值,f(x) 为有界值, $f'(\xi)$ 在 f(a) 上有界,综上 f(x) 在区间上必有界。
 - 使用斜率进行证明: 由几何意义可知, f'(x) 为 f(x) 的斜率, 那么如果 f'(x) 有界, 那么斜率有界, 那么说明 f(x) 的变化是有界的, 那么更说明 f(x) 不可能无界。
 - 使用面积进行证明: f'(x) 在有限区间上有界,则该区间上 f'(x) 与 x 轴所围成的面积是有界的,那么说明 f(x) 的变化是有界的,那么更说明 f(x) 不可能无界。

题目 5. 已知函数 $f(x)=\frac{\int_0^x\ln(1+t^2)\,\mathrm{d}\,t}{x^a}$ 在 $(0,+\infty)$ 上有界,则 a 的取值范围为

解答. 如果说 f(x) 在 $(0,+\infty)$ 上有界, 那么 f(x) 应该在区间两端点连续单侧极限存在. 即 $\lim_{x\to+\infty} f(x)$ 与 $\lim_{x\to0+} f(x)$ 极限存在。下面进行分情况讨论:

$$\begin{split} \lim_{x \to +\infty} f(x) &= \lim_{x \to +\infty} \frac{\int_0^x \ln(1+t^2)dt}{x^\alpha} \\ &\stackrel{\mbox{}}{=\!=\!=\!=} \lim_{x \to +\infty} \frac{\ln(1+x^2)}{\alpha x^{\alpha-1}} \\ &= \lim_{x \to +\infty} \frac{\ln(1+x^2)}{\alpha x^{\alpha-1}} \end{split}$$

7

²长度有限

若要 $x \to \infty$ 时函数有界, 那么分母应趋近于无穷。则 $\alpha - 1 > 0$.

$$\begin{split} \lim_{x\to 0^+} f(x) &= \lim_{x\to 0^+} \frac{\int_0^x \ln(1+t^2)dt}{x^\alpha} \\ &\stackrel{\mbox{\begin{subarray}{c} \begin{subarray}{c} \begin{subarray$$

若要该极限成立。 $\alpha-1\leqslant 2$ 使得极限整体趋于 0. 综上所述, α 的取值范围应为 (1,3].

题目 6. 以下四个命题中正确的是:

- (A) 若 f'(x) 在 (0,1) 内连续, 则 f(x) 在 (0,1) 内有界
- (B) 若 f(x) 在 (0,1) 内连续, 则 f(x) 在 (0,1) 内有界
- (C) 若 f'(x) 在 (0,1) 内有界, 则 f(x) 在 (0,1) 内有界
- (D) 若 f(x) 在 (0,1) 内有界, 则 f'(x) 在 (0,1) 内有界

解答. A,B 选项. 无论是导数还是原函数在区间上连续,都不可以推出原函数在区间上有界,比如函数 $\frac{1}{x}$ 其在 (0,1) 区间上连续,但是其原函数 $\ln x$ 在区间上无界.

一元函数中,优先看导数,由导数推函数 3 。同时此处可以使用有界性判断1.2.4的定理三,可以得出导函数如果在有限区间 I 上有界,那么函数在区间 I 上有界。本题选 C。

单调性

定义 1.2.5: 单调性的定义

判断单调性的方法

- 1. 利用导数进行判断, 若 f(x) 在区间 I 上可导, 则
 - $f'(x) > 0 (< 0) \Rightarrow f(x)$ 单调增 (单调减)
 - $f'(x) \ge 0 (\le 0) \Leftrightarrow f(x)$ 单调不减 (单调不增)
- 2. 利用导数的定义, 对任意 $x_1, x_2 \in D, x_1 \neq x_2$, 有

³导数可以决定函数的变化, 因此出现该类型的题目时, 优先看有导数的选项

- f(x) 是单调增函数 (严格单调) $\Leftrightarrow (x_1 x_2)[f(x_1) f(x_2)] > 0$
- f(x) 是单调减函数 (严格单调) $\Leftrightarrow (x_1 x_2)[f(x_1) f(x_2)] < 0$
- f(x) 是单调不减函数 $\Leftrightarrow (x_1 x_2)[f(x_1) f(x_2)] \ge 0$
- f(x) 是单调不增函数 $\Leftrightarrow (x_1 x_2) [f(x_1) f(x_2)] \leqslant 0$

奇偶性

定义 1.2.6: 奇偶性的定义

设 f(x) 的定义域 D 关于原点对称 (即若 $x \in D$, 则 $-x \in D$). 如果对于任一 $x \in D$, 恒有 f(-x) = f(x), 则称 f(x) 为**偶函数**. 如果对于任一 $x \in D$, 恒有 f(-x) = -f(x), 则称 f(x) 为**奇函数**.

注 1.2.3: 奇偶性的性质

- 1. 奇偶函数运算后的奇偶性:
 - 奇函数乘 (除) 偶函数 = 奇函数;
 - 奇函数乘 (除) 奇函数 = 偶函数;
 - 偶函数乘 (除) 偶函数 = 偶函数;
 - 奇函数加(减)奇函数 = 奇函数;
 - 偶函数加(减)偶函数 = 偶函数;
 - 不恒为零的偶(奇)函数加减不恒为零的奇(偶)函数为非奇非偶函数;
 - 偶(奇)函数乘以非奇非偶函数,一般不再是偶(奇)函数,为非奇非偶函数。
- 2. $f(\varphi(x))$ (内偶则偶, 内奇看外)^a
- 3. 对任意的 x, y 都有 f(x + y) = f(x) + f(y), 则 f(x) 是奇函数^b.
- 4. 求导后奇偶性互换
- 5. 连续的奇函数的一切原函数都是偶函数 连续的偶函数的原函数中仅有一个原函数是奇函数^c
- 6. 设 f(x) 连续, 若 f(x) 是奇函数, 则 $\int_a^x f(t) dt$ 是偶函数; 若 f(x) 是偶函数, 则 $\int_0^x f(t) dt$ 是奇函数 d
- 7. 对于任意函数 f(x), 令 $u(x) = \frac{1}{2}[f(x) + f(-x)], v(x) = \frac{1}{2}[f(x) f(-x)]$, 其中,u(x) 是偶函数,v(x)

是奇函数. 因为
$$f(x) = \frac{1}{2}[f(x) + f(-x)] + \frac{1}{2}[f(x) - f(-x)] = u(x) + v(x)$$

- 8. 奇函数 y = f(x) 的图形关于坐标原点对称, 当 f(x) 在 x = 0 处有定义时, 必有 f(0) = 0.
- 9. 偶函数 y = f(x) 的图形关于 y 轴对称, 且当 f(0) 存在时, 必有 f'(0) = 0.
- 10. 设 f(x) 是定义在 [-l,l] 上的任意函数,则

$$F_1(x) = f(x) - f(-x)$$
必为奇函数; $F_2(x) = f(x) + f(-x)$ 必为偶函数^e

 a 奇 [偶] ⇒ 偶; 偶 [奇] ⇒ 偶; 奇 [奇] ⇒ 奇; 偶 [偶] ⇒ 偶; 非奇非偶 [偶] ⇒ 偶

 c 证明如下: 设 f(x) 是连续函数,则其一个原函数可以表示为 $F(x) = \int_a^x f(t) dt$. 若 f(x) 是连续的奇函数,即有 f(x) = -f(-x), 且 $\int_{-a}^{a} f(t) dt = 0$,则 $F(-x) = \int_{a}^{-x} f(t) dt \xrightarrow{\underline{t=-u}} - \int_{-a}^{x} f(-u) du = \int_{-a}^{a} f(u) du + \int_{a}^{x} f(u) du = 0 + F(x) = F(x)$. 若 f(x) 是连续的偶函数,即有 f(-x) = f(x),且 $\int_{-a}^{a} f(t) dt = 2 \int_{0}^{a} f(t) dt$,则 $F(-x) = \int_{a}^{-x} f(t) dt \xrightarrow{\underline{t=-u}} - \int_{-a}^{x} f(-u) du = -\int_{-a}^{a} f(u) du - \int_{a}^{x} f(u) du = 0$ $\int_a^x f(u) du = -2 \int_0^a f(u) du - F(x)$ 则当 $\int_0^a f(u) du \equiv 0$ 时,F(x) 为奇函数.

 d 证明如下: 设 $F(x)=\int_a^x f(t)dt$ 由变上限积分求导公式可得: $(\int_a^x f(t)dt)'=f(x)$,已知f(x)为奇/偶函数,由奇偶性的性质 1.2.4 中第5条可得

e证明如下: 已知 f(x) 是任意函数,-1 带入可得, $F_1(-x) = f(-x) - f(x) = -F_1(x)$,同理可证 F_2 成立.

题目 7. 设 f(x) 连续且为奇函数,则下列函数中必为偶函数的为

- (A) $\int_0^x du \int_a^u t f(t) dt$ (B) $\int_a^x du \int_0^u f(t) dt$
- (C) $\int_a^x du \int_0^u t f(t) dt$ (D) $\int_0^x du \int_a^u f(t) dt$

解答. A 选项已知函数 f(x) 连续为奇函数, 那么 tf(t) 为偶函数, 若其想为奇函数, 其积分形式应为 $\int_0^u tf(t)dt$.

B 选项为奇函数, $\int_{0}^{x} f(t)dt$ 为偶函数, 再次积分, 无法满足过原点, 因此无奇偶性.

C 选项, 同理,tf(t) 为偶函数, 积分后为奇函数, 再次积分后为偶函数, 正确

D 选项, 第一次积分后为非奇非偶函数

周期性

定义 1.2.7: 周期函数的定义

设 f(x) 的定义域为 D, 如果存在一个正数 T, 使得对于任一 $x \in D$, 有 $x \pm T \in D$, 且 f(x + T) = f(x), 则称 f(x) 为周期函数,T 称为 f(x) 的周期. 从几何图形上看,在周期函数的定义域内,相邻两个长度为 T的区间上,函数的图形完全一样.

需要注意的是函数的周期性只与x的参数有关,比如若函数f(x)以T为周期,则f(ax+b)以 $\frac{T}{|a|}$ 为周期. 可以观察到其周期只与 x 的系数有关

重要结论

- 若 f(x) 是可导的周期为 T 的周期函数, 则 f'(x) 也是以 T 为周期的周期函数.
- 设 f(x) 连续且以 T 为周期,则 $F(x)=\int_0^x f(t)dt$ 是以 T 为周期的周期函数 $\Leftrightarrow \int_0^\tau f(x)\mathrm{d}x=0.4$
- 周期函数的原函数是周期函数的充要条件是其在一个周期上的积分为 0.

周期性的判断

- 1. 利用周期性的定义
- 2. 根据定义1.2.4第一条可导的周期函数其导函数为周期函数
- 3. 根据定义1.2.4第三条周期函数的原函数不一定是周期函数5

1.2.5 三种特殊函数

符号函数

$$y = \operatorname{sgn} x = \begin{cases} -1, & x < 0, \\ 0, & x = 0, \\ 1, & x > 0 \end{cases}$$

取整函数

$$y = [x]$$

数值上向下取整,数轴上向左取整⁶,即 $x-1 < [x] \le x$

狄利克雷函数

7

$$D\left(x\right) = \begin{cases} 1, & x \in \mathbf{Q}, \\ 0, & x \in \mathbf{Q}^{c}. \end{cases}$$

1.3 初等函数图像及其性质

1.3.1 常数函数

y = A, A 为常数, 其图形为平行于 x 轴的水平直线

图 1.3: 常数函数图像

⁶坐标轴上向左移, 在现实生活中就是年龄

⁷本函数图像无法绘制

1.3.2 幂函数

$y = x^{\mu}(\mu$ 是实数)

图 1.4: 幂函数图像

注 1.3.1: 幂函数常用技巧

- 当 $\mu > 0$ 且 0 < x < 1 时, 函数随着 μ 的增大而变小 (越大越低)
- 当 $\mu > 0$ 且 x > 1 时, 函数随着 μ 的增大而变大 (越大越高)
- 当 μ < 0 且 0 < x < 1 时, 函数随着 μ 的增大而变小 (越大越低)
- 当 μ < 0 且 x > 1 时, 函数随着 μ 的增大而变大 (越大越高)
- 当 x>0 时, 由 y=x 与 $y=\sqrt{x},y=\sqrt[3]{x},y=\ln x$ 具有相同的单调性, 因此可以利用这一特性来研究最值
- 见到 \sqrt{u} , $\sqrt[3]{u}$ 时, 可用 u 来研究最值
- 见到 | u | 时, 由 | u |= $\sqrt{u^2}$, 可用 u^2 来研究最值
- 见到 $u_1, u_2, u_3, \ln(u_1 + u_2 + u_3) = \ln u_1 + \ln u_2 + \ln u_3$ 来研究最值
- 见到 $\frac{1}{u}$ 时, 可用 u 来研究最值 (结论相反), 即 $\frac{1}{u}$ 与 u 的最大值点、最小值点相反

1.3.3 指数函数

$$y = a^x (a > 0, a \neq 1)$$

图 1.5: 指数函数图像

注 1.3.2: 指数函数相关性质

- 定义域: $(-\infty, +\infty)$. 值域: $(0, +\infty)$.
- 单调性: 常用的指数函数 $y = e^x$
- 极限: $\lim_{x\to-\infty} {\rm e}^x=0$, $\lim_{x\to+\infty} {\rm e}^x=+\infty$ (由于极限的唯一性,因此在趋于不同的无穷时,极限值的不同).
- 特殊函数值: $a^0 = 1$, $e^0 = 1$
- 指数运算法则:

$$a^{\alpha}\times a^{\beta}=a^{\alpha+\beta}, \frac{a^{\alpha}}{a^{\beta}}=a^{\alpha-\beta a}, (a^{\alpha})^{\beta}=a^{\alpha\beta}, (ab)^{\alpha}=a^{\alpha}b^{\alpha}, \left(\frac{a}{b}\right)^{\alpha}=\frac{a^{\alpha}}{b^{\alpha}}$$

 $[^]a$ eg: $e^{\tan x}-e^{\sin x}=e^{\sin x}\left(e^{\tan x-\sin x}-1\right)$. 此处常用于等价替换求极限,上式如果 $x\to 0$ 时,极限可写为: $\tan x-\sin x\sim e^{\tan x}-e^{\sin x}$

1.3.4 对数函数

$$y = \log_a x (a > 0, a \neq 1)$$

图 1.6: 对数函数图像

注 1.3.3: 对数函数相关性质

- 定义域: $(0, +\infty)$. 值域: $(-\infty, +\infty)$.
- 单调性: 当 a>1 时, $y=\log_a x$ 单调增加; 当 0< a<1 时, $y=\log_a x$ 单调减少;
- 常用对数函数: $y = \ln x$
- 特殊函数值: $\log_a 1 = 0$, $\log_a = 1$, $\ln 1 = 0$, $\ln e = 1$
- 极限 $\lim_{x\to 0^+} x = -\infty$, $\lim_{x\to +\infty} x = +\infty$.
- ★★☆☆☆ 对数运算法则
 - $\log_a(MN) = \log_a M + \log_a N$ (积的对数 = 对数的和).
 - $-\log_a \frac{M}{N} = \log_a M \log_a N$ (商的对数 = 对数的差).
 - $-\,\log_a M^n = n\log_a M, \quad \log_a \sqrt[n]{M} = \frac{1}{n}\log_a M(幂的对数 = 对数的倍数).$
- 常用公式: $x=\mathrm{e}^{\ln x}\left(x>0\right),u^{\upsilon}=\mathrm{e}^{\ln u^{\upsilon}}=\mathrm{e}^{\upsilon\ln u}\left(u>0\right)$

• 当 x > 0 时, 常用于中值定理:

$$\ln \sqrt{x}=\frac{1}{2}\ln x; \ln \frac{1}{x}=-\ln x; \ln \left(1+\frac{1}{x}\right)=\ln \frac{x+1}{x}=\ln (x+1)-\ln x.$$

1.3.5 三角函数

正弦和余弦函数

图 1.7: 正余弦函数图像

注 1.3.4: 正余弦函数相关性质

- 定义域: $(-\infty, +\infty)$, 值域:[-1, 1]
- 奇偶性: $y = \sin x$ 是奇函数, $y = \cos x$ 是偶函数, $x \in (-\infty, +\infty)$
- 周期性: $y = \sin x$ 和 $y = \cos x$ 均以 2π 为最小正周期. $x \in (-\infty, +\infty)$
- 有界性: $|\sin x| \le 1, |\cos x| \le 1$
- $\sin^2 \alpha + \cos^2 \alpha = 1$

正切和余切函数

$$y = \tan x = \frac{\sin x}{\cos x}$$

$$y = \cot x = \frac{\cos x}{\sin x} = \frac{1}{\tan x}$$

图 1.8: 正余切函数图像

注 1.3.5: 正余切函数相关性质

• $y = \tan x$ 的定义域为 $\{x \mid x \neq k\pi + \frac{\pi}{2} (k \in \mathbf{Z})\}$; $y = \cot x$ 的定义域为 $\{x \mid x \neq k\pi (k \in \mathbf{Z})\}$; 值域均为 $(-\infty, +\infty)$

• 奇偶性: 均为奇函数

• 周期性: 均以 π 为最小正周期

正割和余割函数

$$\sec x = \frac{1}{\cos x}$$

$$\csc x = \frac{1}{\sin x}$$

图 1.9: 正余割函数图像

注 1.3.6: 正余割函数相关性质

- 定义域: $y = \sec x$ 的定义域是 $\left\{ x \left| x \neq k\pi + \frac{\pi}{2} \left(k \in \mathbf{Z} \right) \right\}; y = \csc x$ 的定义域为 $\left\{ x \middle| x \neq k\pi, (k \in \mathbf{Z}) \right\}$ 值域均为: $(-\infty, -1] \cup [1, +\infty)$
- 奇偶性: $y = \sec x$ 为偶函数, $y = \csc x$ 为奇函数
- 周期性: 最小正周期均为 2π
- $1 + \tan^2 \alpha = \sec^2 \alpha$; $1 + \cot^2 \alpha = \csc^2 \alpha$

反三角函数

反正弦和反余弦函数

 $y = \arcsin x$

 $y = \arccos x$

(a) 反正弦函数图像

(b) 反余弦函数图像

图 1.10: 反正余弦函数图像

由于这两个函数分别是 $\sin x$ 和 $\cos x$ 的反函数,因此可以知道的是, $\sin x$ 的值域是 $\arcsin x$ 的定义域. 因此可以得到下面的结论

注 1.3.7: 反正余弦函数相关性质

• 定义域 [-1,1], $y = \arcsin x$ 值域 (主值区间) $^a [-\frac{\pi}{2},\frac{\pi}{2}]$, $y = \arccos x$ 值域 (主值区间) $[0,\pi]$ 需要注意 的是其值需要在值域内. 因为只有在这个区间上, 函数才满足反函数定义1.2.2中的唯一性. 那么可以 推断出如下的反函数:

$$\underline{ } \underline{ } \underline{ } x \in [\frac{\pi}{2}, \frac{3\pi}{2}] \; , x = \pi - \arcsin y$$

$$\underline{+}x \in [\frac{3\pi}{2}, 2\pi], x = 2\pi + \arcsin y$$

• 性质: $\arcsin x + \arccos x = \frac{\pi}{2} ($ 求导后可以发现导数为 0)

^a描述一个函数所有值的区间

注 1.3.8: 反三角函数恒等式

$$\sin(\arcsin x) = x, x \in [-1,1], \sin(\arccos x) = \sqrt{1-x^2}, x \in [-1,1];$$

$$\cos(\arccos x) = x, x \in [-1,1], \cos(\arcsin x) = \sqrt{1-x^2}, x \in [-1,1]^a;$$

上述两个式子可抽象为 $f^{-1}f(x) = x$. 除此之外, 还有下面的等式

$$\arcsin(\sin y) = y, y \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$$

$$\arccos(\cos y) = y, y \in [0, \pi]$$

a证明如下: 令 $t = \arccos x \in [0, \pi], \cos t = x$,又 $\sin^2 t + \cos^2 t = 1$,那么 $\sin t = \sqrt[3]{1 - x^2}$,即 $\sin(\arccos x) = \sqrt{1 - x^2}$

反正切和反余切函数

图 1.11: 反正余切函数图像

注 1.3.9: 反正余切函数相关性质

- 定义域 $[-\infty,+\infty],y=\arctan x$ 值域 $(-\frac{\pi}{2},\frac{\pi}{2}),y=\arccos x$ 值域 $(0,\pi)$
- 性质: $\arctan x + \operatorname{arccot} x = \frac{\pi}{2} ($ 求导后可以发现导数为 0)

1.3.6 初等函数

由基本初等函数经过有限次的四则运算,以及有限次的复合步骤所构成的并且可以由一个式子所表示的函数称为初等函数.

注 1.3.10

幂指函数 $u(x)^{\nu(x)}=e^{\nu(x)\ln u(x)}$ 也是初等函数, 如 x>0 时, $f(x)=x^x=e^{x\ln x}$. 其函数图像如下所示:

图 1.12: 函数 x^x 图像

1.3.7 图像绘制

极坐标下的图像

- 用描点法绘制函数图像: 就是把每一个点求出来, 然后连接起来即可, 但是需要点足够多
- 用直角坐标系观点画极坐标系的图像, 以函数 $r = 2(1 + \cos \theta)$ 为例.

图 1.13: 函数 $r = 2(1 + \cos \theta)$ 图像

可以看到 $\theta-r$ 的坐标系的关键点为 $(0,4),(\frac{\pi}{2},2),(\pi,0),(\frac{3}{2}\pi,2),(2\pi,4)$ 这五个点, 那么在极坐标系下可以绘制出这些点, 比如在 x=4 时, $\theta=0, x=2$ 时, $\theta=\frac{\pi}{2}, x=0$ 时, $\theta=\pi$.

参数方程

通过第三个变量即参数来表示别的两个变量.

摆线参数方程:

$$\begin{cases} x = r(t - \sin t) \\ y = r(1 - \cos t). \end{cases}$$

星型线参数方程:

$$\begin{cases} x = r\cos^3 t \\ y = r\sin^3 t \end{cases}$$

1.4 常用函数知识

1.4.1 三角函数

三角函数基本关系

$$csc \alpha = \frac{1}{\sin \alpha} \quad sec \alpha = \frac{1}{\cos \alpha} \quad cot \alpha = \frac{1}{\tan \alpha}$$

$$tan \alpha = \frac{\sin \alpha}{\cos \alpha} \quad cot \alpha = \frac{\cos \alpha}{\sin \alpha}$$

倍角公式

$$\sin 2a = 2\sin a\cos a, \quad \cos 2a = \cos^2 a - \sin^2 a = 1 - 2\sin^2 a = 2\cos^2 a - 1$$

$$\sin 3\alpha = -4\sin^3 a + 3\sin \alpha, \quad \cos 3a = 4\cos^3 a - 3\cos a$$

$$\tan 2\alpha = \frac{2\tan \alpha}{1 - \tan^2 \alpha}, \quad \cot 2\alpha = \frac{\cot^2 \alpha - 1}{2\cot \alpha}.$$

半角公式

$$\sin^2\frac{\alpha}{2} = \frac{1}{2}\left(1 - \cos\alpha\right), \quad \cos^2\frac{\alpha}{2} = \frac{1}{2}\left(1 + \cos\alpha\right),$$

$$\sin\frac{\alpha}{2} = \pm\sqrt{\frac{1 - \cos\alpha}{2}}, \quad \cos\frac{\alpha}{2} = \pm\sqrt{\frac{1 + \cos\alpha}{2}},$$

$$\tan\frac{\alpha}{2} = \frac{1 - \cos\alpha}{\sin\alpha} = \frac{\sin\alpha}{1 + \cos\alpha} = \pm\sqrt{\frac{1 - \cos\alpha}{1 + \cos\alpha}},$$

$$\cot\frac{\alpha}{2} = \frac{\sin\alpha}{1 - \cos\alpha} = \frac{1 + \cos\alpha}{\sin\alpha} = \pm\sqrt{\frac{1 + \cos\alpha}{1 - \cos\alpha}}.$$

和差公式

$$\sin(\alpha \pm \beta) = \sin \alpha \cos \beta \cos \alpha \sin \beta$$
$$\cos(\alpha \pm \beta) = \cos \alpha \cos \beta \mp \sin \alpha \sin \beta$$
$$\tan(\alpha \pm \beta) = \frac{\tan \alpha \pm \tan \beta}{1 \mp \tan \alpha \tan \beta}$$
$$\cot(\alpha \pm \beta) = \frac{\cot \alpha \cot \beta \mp 1}{\cot \beta \pm \cot \alpha}.$$

积化和差公式

$$\begin{vmatrix} \sin \alpha \cos \beta = \frac{1}{2} [\sin(\alpha + \beta) + \sin(\alpha - \beta)], \cos \alpha \sin \beta = \frac{1}{2} [\sin(\alpha + \beta) - \sin(\alpha - \beta)], \\ \cos \alpha \cos \beta = \frac{1}{2} [\cos(\alpha + \beta) + \cos(\alpha - \beta)], \sin \alpha \sin \beta = \frac{1}{2} [\cos(\alpha - \beta) - \cos(\alpha + \beta)]. \end{vmatrix}$$

和差化积公式

$$\sin \alpha + \sin \beta = 2 \sin \frac{\alpha + \beta}{2} \cos \frac{\alpha - \beta}{2}, \sin \alpha - \sin \beta = 2 \sin \frac{\alpha - \beta}{2} \cos \frac{\alpha + \beta}{2}$$
$$\cos \alpha + \cos \beta = 2 \cos \frac{\alpha + \beta}{2} \cos \frac{\alpha - \beta}{2}, \cos \alpha - \cos \beta = -2 \sin \frac{\alpha + \beta}{2} \sin \frac{\alpha - \beta}{2}.$$

万能公式

$$\sin \alpha = \frac{2 \tan \frac{\alpha}{2}}{1 + \tan^2 \frac{\alpha}{2}}$$
$$\cos \alpha = \frac{1 - \tan^2 \frac{\alpha}{2}}{1 + \tan^2 \frac{\alpha}{2}}$$

1.4.2 一元二次方程基础

- 一元二次方程组: $ax^2 + bx + c = 0 (a \neq 0)$
- 根的公式: $x_{1,2} = \frac{-b \pm \sqrt{b^2 4ac}}{2a}$
- 根与系数的关系: $x_1+x_2=-\frac{b}{a}, x_1x_2=\frac{c}{a}.$
- 判別式: $\Delta = b^2 4ac$
- 抛物线顶点坐标: $(-\frac{b}{2a},c-\frac{b^2}{4a})$

1.4.3 因式分解公式

1.4.4 阶乘与双阶乘

- $n! = 1 \cdot 2 \cdot 3 \cdot \dots \cdot n$, 规定0! = 1.
- $(2n)!! = 2 \cdot 4 \cdot 6 \cdots (2n) = 2^n \cdot n!$
- $(2n-1)!! = 1 \cdot 3 \cdot 5 \cdot \cdot \cdot (2n-1)$

1.4.5 绝对值等式

$$\varphi(x) = \max \left\{ f(x), g(x) \right\} = \frac{1}{2} [f(x) + g(x) + |f(x) - g(x)|]$$

$$\psi(x) = \min \left\{ f(x), g(x) \right\} = \frac{1}{2} [f(x) + g(x) - |f(x) - g(x)|]$$

第二章 极限

2.1 数列的极限

2.1.1 数列极限的定义

定义 2.1.1: 数列极限的定义

设 $|x_n|$ 为一数列,若存在常数 a,对于任意的 $\varepsilon > 0$ (不论它多么小).总存在正整数 N,使得当n > N时 $|x_n-a| < \varepsilon$ 恒成立,则称数 a 是数列 $|x_n|$ 的极限,或者称数列 $|x_n|$ 收敛于 a,记为

$$\lim_{n \to \infty} x_n = a \, \exists \, x_n \to a (n \to \infty)$$

该定义的 $\varepsilon-N^a$ 语言描述是

$$\lim_{n\to\infty}x_n=a\Leftrightarrow \forall \varepsilon>0, \exists \operatorname{\underline{RE}} XN, \exists n>N \operatorname{H}, \, \overline{q}|x_n,-a|<\varepsilon.$$

 $^a \varepsilon - N$ 几何意义: 对于点 a 的任何 ε 邻域即开区间 $(a-\varepsilon,a+\varepsilon)$ 一定存在 N, 当 n < N 即第 N 项以后的点 x_n 都落在开区间 $(a-\varepsilon,a+\varepsilon)$ 内,而只有有限个(最多有 N 个)在区间之外.

在上面的定义中, $\varepsilon>0$ 的 ε 任意性是非常重要的,只有这样才能表示出无限接近的意义. 总存在正整数 N,使得 n>N 这个条件用于表达 $n\to\infty$ 的过程.

注 2.1.1: 数列极限的性质

- 数列收敛 等价于数列极限存在
- 数列的极限值与数列的前有限列无关,只与后面无穷项有关
- 数列的最值只能在前有限项中取得,前有限项有比极限值大的,则数列存在最大值.前有限项有比极限值小的,则数列存在最小值
- 若数列 $\{a_n\}$ 收敛,则其任何子列 $\{a_{n_k}\}$ 也收敛,且 $\lim_{k\to\infty}a_{n_k}=\lim_{n\to\infty}a_n^b$

 $\bullet \quad \lim_{n \to \infty} x_n = a \Leftrightarrow \lim_{k \to \infty} x_{2k-1} = \lim_{k \to \infty} x_{2k} = a$

a区别于级数收敛

 b 此条定理提供了一个判断数列发散的方法:1. 至少一个子数列发散.2. 两个子数列收敛, 但是收敛值不同.

结论 2.1.1: 数列极限常用结论

- $\lim_{n\to\infty} \sqrt[n]{n} = 1$. $\lim_{n\to\infty} \sqrt[n]{a} = 1(a>0)$
- 关于数列 $(1+\frac{1}{n})^n$ 的结论
 - 单调增加
 - $\ \lim_{n \to \infty} (1 + \frac{1}{n})^n = e$

题目 8. 已知 $a_n=\sqrt[n]{n}-\frac{(-1)^n}{n}(n=1,2,\cdots),$ 则 a_n

- (A) 有最大值, 有最小值 (B) 有最大值, 没有最小值
- (C) 没有最大值, 有最小值 (D) 没有最大值, 没有最小值

解答. $\lim_{n\to\infty}a_n=1-0, a_1=2, a_2=\sqrt{2}-\frac{1}{2},$ 因此 a_n 既有最大值又有最小值

题目 9. 证明:若 $\lim_{n\to\infty} a_n = A$, 则 $\lim_{n\to\infty} |a_n| = |A|$

证明. 已知数列 a_n 极限为 A, 那么 $|a_n-A|<\varepsilon$, 由不等式1可得, $||a_n|-|A||\leqslant |a_n-A|<\varepsilon$, 因此 $\lim_{n\to\infty}|a_n|=|A|$.

推论 2.1.1: 上题题目推论

- 1. 此命题反过来则错误, 如取 $a_n = (-1)^n$, 则 $\lim_{n \to \infty} |(-1)^n| = 1$. 但 $\lim_{n \to \infty} (-1)^n$ 不存在.
- 2. 在本題中若 A=0, 则 $||a_n|-|A||=||a_n|-0|=|a_n-0|,$ 即有

$$\lim_{n\to\infty}a_n=0\Leftrightarrow \lim_{n\to\infty}|a_n|=0\ ,$$

此结论常用,即若要证明 $\lim_{n\to\infty}a_n=0$,可转换为证明 $\lim_{n\to\infty}|a_n|=0$,由于 $|a_n|\ge 0$,若使用了夹逼准则,只需证明 $|a_n|\leqslant 0$ 即可

3. 此结论对函数亦成立,即若 $\lim_{x\to x_0}f(x)=A$,则 $\lim_{x\to x_0}|f(x)|=|A|$.

题目 10. 设 $\lim_{n\to+\infty} a_n = a$, 且 $a\neq 0$, 则当 n 充分大时有

$$(\mathbf{A})\mid a_n\mid>\frac{\mid a\mid}{2}.\quad (\mathbf{B})\mid a_n\mid<\frac{\mid a\mid}{2}.\quad (\mathbf{C})a_n>a-\frac{1}{n}.\quad (\mathbf{D})a_n< a+\frac{1}{n}.$$

解答. 根据结论若 $\lim_{x\to x_0} f(x) = A$,则 $\lim_{x\to x_0} |f(x)| = |A|$.可得 $\lim_{n\to\infty} a_n = a \Rightarrow \lim_{n\to\infty} |a_n| = |a|$,即 $|a_n| > |a| > \frac{|a|}{2}$.

题目 10 的注记. 对于 C,D 选项, 只知道 a_n 的极限是 a, 那么就是说两者之间的距离是无穷小, 但是题目中没 有给出两者相距的量级, 因此一定错误的. 反例为 $a_n = a \pm \frac{1}{n^2}$.

题目 11. 设数列 x_n 与 y_n 满足 $\lim_{n\to\infty} x_n y_n = 0$, 则下列命题正确的是

- (A) 若 x_n 发散, 则 y_n , 必发散 (B) 若 x_n 无界, 则 y_n 必有界
- (C) 若 x_n 有界, 则 y_n 必为无穷小 (D) 若 $\frac{1}{x_n}$ 为无穷小, 则 y_n 必为无穷小

解答. A 选项: 令 $x_n = \begin{cases} 0, n$ 为奇数 $y_n \equiv 0$. 显然 x_n 发散, 但是 y_n 收敛. n n n n n

B 选项: 令
$$x_n = \begin{cases} y_n = 0. & \text{显然 } x_n \text{ 及取, 但是 } y_n \text{ 収函.} \end{cases}$$

$$y_n = \begin{cases} 0, n \text{ 为奇数} \\ n, n \text{ 为偶数} \end{cases}$$

$$y_n = \begin{cases} n, n \text{ 为偶数} \\ 0, n \text{ 为奇数} \end{cases}$$

$$0, n \text{ 为奇数}$$

$$0, n \text{ 为奇数}$$

C 选项: 令
$$x_n \equiv 0, y_n = \begin{cases} n, n$$
为奇数 . 同理也满足题意, 但是 y_n 为无穷大 $0, n$ 为偶数

D 选项:
$$\lim_{n \to \infty} x_n y_n = \lim_{n \to \infty} \frac{y_n}{\frac{1}{x_n}} = 0 \Rightarrow y_n = o(\frac{1}{x_n})$$

题目 11 的注记. 数列极限概念题一个很好的办法是举反例. 经典反例:(1) 分奇偶.(2) 恒为 0.

题目 12. 设 x_n 与 y_n 为两个数列,则下列说法正确的是

- (A) 若 x_n 与 y_n 无界, 则 $x_n + y_n$ 无界
- (B) 若 x_n 与 y_n 无界, 则 $x_n y_n$ 无界
- (C) 若 x_n 与 y_n 中, 一个有界, 一个无界, 则 $x_n y_n$ 无界
- (D) 若 x_n 与 y_n 均为无穷大, 则 $x_n y_n$ 一定为无穷大

B 选项: 令
$$x_n = \begin{cases} 0, n$$
为奇数
$$, y_n = \begin{cases} n, n$$
为奇数
$$, \text{ 显然 } x_n, y_n \text{ 无界, 但是 } x_n y_n \text{ 有界} \\ 0, n$$
为偶数

C 选项: 令
$$x_n = \begin{cases} 0, n$$
为奇数
$$, y_n \equiv 0, \text{ 显然 } x_n \text{ } - \text{ 个有界}, \text{ } - \text{ 个无界}, \text{ 但是二者相乘为有界} \\ n, n$$
为偶数

D 选项: 无穷大 × 无穷大 = 无穷大

题目 13. 设 x_n 与 y_n 为两个数列,则下列说法正确的是

- (A) 若 $\lim_{n\to\infty} x_n y_n = 0$, 则必有 $\lim_{n\to\infty} x_n = 0$ 或 $\lim_{n\to\infty} y_n = 0$
- (B) 若 $\lim_{n\to\infty} x_n y_n = \infty$, 则必有 $\lim_{n\to\infty} x_n = \infty$ 或 $\lim_{n\to\infty} y_n = \infty$
- (C) 若 $x_n y_n$ 有界, 则必有 x_n 与 y_n 都有界.
- (D) 若 $x_n y_n$ 无界, 则必有 x_n 无界或 y_n 无界

解答. A 选项: 令
$$x_n = \begin{cases} 0, n$$
为奇数 $\\ n, n$ 为偶数 \end{cases} , $y_n = \begin{cases} n, n$ 为奇数 $\\ 0, n$ 为偶数 , 显然 $x_n \cdot y_n \equiv 0$,但是 $x_n y_n$ 两者都无界. B 选项: 令 $x_n = \begin{cases} 1, n$ 为奇数 $\\ n, n$ 为偶数 , 显然二者相乘为 ∞ ,但是二者都是无界,没有极限 $\\ 1, n$ 为偶数

B 选项: 令
$$x_n = \begin{cases} 1, n$$
为奇数 $y_n = \begin{cases} n, n$ 为奇数 , 显然二者相乘为 ∞ , 但是二者都是无界,没有极限 $1, n$ 为偶数

- C 选项: 同 A 选项
- D 选项: 使用逆否命题: 若 x_n 有界且 y_n 有界, 则 $x_n \cdot y_n$ 有界, 显然成立, 有界 × 有界 = 有界

题目 13 的注记. 在证明中, 使用逆否命题可以减少复杂度, 如本题的 D 选项.

题目 14. 设 $\lim_{n\to\infty} a_n$ 与 $\lim_{n\to\infty} b_n$ 均不存在, 则下列选项正确的是

- A. 若 $\lim_{n\to\infty} (a_n + b_n)$ 不存在,则 $\lim_{n\to\infty} (a_n b_n)$ 必不存在
- B. 若 $\lim_{n\to\infty}(a_n+b_n)$ 不存在, 则 $\lim_{n\to\infty}(a_n-b_n)$ 必存在
- C. 若 $\lim_{n\to\infty}(a_n+b_n)$ 存在, 则 $\lim_{n\to\infty}(a_n-b_n)$ 必不存在
- D. 若 $\lim_{n\to\infty} (a_n + b_n)$ 存在, 则 $\lim (a_n b_n)$ 必存在

解答. A 选项: $a_n = e^n, b_n = e^n$, 显然 $\lim_{n\to\infty} (a_n + b_n)$ 不存在, 但是 $\lim_{n\to\infty} (a_n - b_n)$ 存在

B 选项: $a_n=e^n,b_n=2e^n,$ 显然 $\lim_{n\to\infty}(a_n+b_n)$ 不存在,但是 $\lim_{n\to\infty}(a_n-b_n)$ 也不存在

C 选项: 若 $\lim_{n\to\infty}(a_n+b_n)$ 存在,假设 $\lim_{n\to\infty}(a_n-b_n)$ 存在,那么 $\lim_{n\to\infty}[(a_n+b_n)-(a_n-b_n)]$ 也应该存 在, 但是 $\lim_{n\to\infty}=2b_n$, 根据题意可知不存在, 因此假设错误

D 选项: $a_n = e^n, b_n = -e^n$, 显然 $\lim_{n\to\infty} (a_n + b_n)$ 存在, 但是 $\lim_{n\to\infty} (a_n - b_n)$ 不存在

2.1.2 收敛数列的性质

唯一性

定义 2.1.2: 数列极限唯一性的定义

如果数列 $\{x_n\}$ 收敛,那么它的极限唯一

有界性

定义 2.1.3: 数列收敛的有界性的定义

如果数列 $\{x_n\}$ 收敛, 那么数列 $\{x_n\}$ 一定有界 a .

a如果数列有界, 但是不一定存在极限, 如数列 $(-1)^n$

保号性

定义 2.1.4: 数列极限保号性的定义

如果 $\lim_{n\to\infty} x_n = a$, 且 a>b(或 a<b), 那么存在正整数 N, 当 n>N 时, 都有 $x_n>b$ (或 $x_n<b$.

如果数列 $|x_n|$ 从某项起有 $x_n \ge b$ (或 $x_n \le b$), 且 $\lim_{n \to \infty} x_n = a$, 那么 $a \ge b$ ($a \le b$)^a.

^a其中 b 可以为任意实数, 常考 b=0 的情况

题目 15. 下列结论中错误的是

- (A) 设 $\lim_{n\to\infty} a_n = a > 1$, 则存在 M > 1, 当 n 充分大时, 有 $a_n > M$
- (B) 设 $a = \lim_{n \to \infty} a_n < \lim_{n \to \infty} b_n = b$, 则当 n 充分大时,有 $a_n < b_n$
- (C) 设 $M \leqslant a_n \leqslant N(n=1,2,\ldots)$, 若 $\lim_{n\to\infty} a_n = a$, 则 $M \leqslant a \leqslant N$
- (D) 若 $\lim_{n\to\infty} a_n = a \neq 0$, 则当 n 充分大时, $a_n > a \frac{1}{n}$

解答. A 选项: 若 $\lim_{n\to\infty}a_n=a$,那么当 n 充分大时, a_n 的值趋近于 a,那么肯定存在一个 M,满足 $a_n=a\geqslant M>1$.

- B 选项: 若 a_n 的极限 $> b_n$ 的极限, 则当 n 充分大时, $a_n > b_n$.
- C 选项: 不等式左右取极限可得 C 选项正确
- D 选项: 题目 3 解析1.1.1出有解释, 同理

题目 15 的注记. 数列极限的保号性可写为:两个数列 a_n 和 b_n , 若 $a_i > b_i$ 恒成立,且 $\lim_{n\to\infty} a_n$ 和 $\lim_{n\to\infty} b_n$ 都存在.则 n 趋于无穷时, a_n 的极限 $\geqslant b_n$ 的极限.(对不等式取极限时,> 要变成 \geqslant ,< 要变成 \leqslant , \geqslant 不用变, \leqslant 不用变).

若 a_n 的极限 $> b_n$ 的极限, 则当 n 充分大时, $a_n > b_n$. 若 a_n 的极限 $\ge b_n$ 的极限, 则当 n 充分大时, a_n 和 b_n 大小无法确定.

2.2 函数的极限

2.2.1 超实数系

定义 2.2.1: 超实数系的概念

超实数 (Hyperreal number) 是一个包含实数以及无穷大和无穷小的域,它们的绝对值分别大于和小于任何正实数.

注 2.2.1: 超实数集

- 超实数集是为了严格处理无穷量 (无穷大量和无穷小量) 而提出的.
- 超实数集,或称为非标准实数集,记为*ℝ,是实数集 ℝ的一个扩张.

2.2.2 邻域

2

定义 2.2.2: 邻域的相关概念

• δ 邻域: 设 x_0 是数轴上一个点, δ 是某一正数,则称 $(x_0-\delta,x_0+\delta)$ 为点 x_0 的 δ 邻域,记作 $U(x_0,\delta)$,即:

$$U(x_0, \delta) = \{x | x_0 - \delta < x < x_0 + \delta\} = \{x | \, |x - x_0| < \delta\}$$

- 去心 δ 邻域: 定义点 x_0 的去心邻域 $\mathring{U}(x_0,\delta)=\{x|0<\left|x-x_0\right|<\delta\}$
- 左, 右 δ 邻域: $\{x|0 < x x_0 < \delta\}$ 称为点 x_0 的右 δ 邻域, 记作 $U^+(x_0, \delta)$; $\{x|0 < x_0 x < \delta\}$ 称为点 x_0 的左 δ 邻域, 记作 $U^-(x_0, \delta)$.

2.2.3 函数极限的定义

 ∞)

函数极限的定义主要分为自变量趋于有限值 $(x \to x_0)$ 时的极限和自变量趋于无穷大时函数的极限 $(x \to x_0)$

 $^{^2}$ 邻域与区间不同,邻域属于区间的范畴. 但是邻域通常表示"一个局部位置". 比如"点 x_0 的 δ "邻域,可以理解为"点 x_0 "的附近,而区间是明确指出在实数系下的范围

自变量趋于有限值时的函数极限

定义 2.2.3: 当自变量趋于有限值时函数极限定义

设函数 f(x) 在点 x_0 的某一去心邻域内有定义. 如果存在常数 A, 对于任意给定的正数 ε (不论它多么小) a , 总存在正数 δ , 使得当 x 满足不等式 $0 < |x - x_0| < \delta$ 时, 对应的函数值 f(x) 都满足不等式

$$|f(x) - A| < \varepsilon$$

那么常数 A 就叫做函数 f(x) 当 $x \to x_0$ 时的极限, 记作:

$$\lim_{x\to x_0} f(x) = A \quad \vec{\boxtimes} f(x) \to A(\stackrel{\scriptscriptstyle \perp}{\rightrightarrows} x \to x_0)$$

其 $\varepsilon - N$ 语言为

$$\lim_{x\to x_0}f(x)=A\Leftrightarrow \forall \varepsilon>0, \exists \delta>0, \leqq 0<|x-x_0|<\delta \text{ if }, \not|f(x)-A|<\varepsilon.$$

 $\forall \varepsilon > 0, \exists \delta > 0$ 在证明中, 这两句是白给, 直接写. 后面的才是关键.

 $^{a}\varepsilon$ 用于衡量 |f(x)-A| 的值有多小

注 2.2.2: 函数极限注意事项

- 1. 在函数极限中 $x \to \infty$ 指的是 $|x| \to \infty$, 需要 x 趋于正无穷和负无穷, 但在数列中的 $n \to \infty$ 是 $n \to +\infty$
- 2. 函数的极限值只与邻域内的函数值有关, 而与该点的函数值无关.

题目 16. 设
$$\lim_{x\to 1} \frac{f(x)}{\ln x} = 1$$
, 则:

$$(A)f(1) = 0 \quad (B) \lim_{x \to 1} f(x) = 0 \quad (C)f'(1) = 1 \quad (D) \lim_{x \to 1} f'(x) = 1$$

解答. $\lim_{x\to 1} \ln x = 0$,根据极限四则运算法则1.4.1, $\lim_{x\to 1} f(x) = 0$,对于其他选项,需要知道的是函数的极限值与该点的函数值无关,只与邻域内的函数值有关。

单侧极限

定义 2.2.4: 单侧极限的定义

若当 $x \to x_0^-$ 时, f(x) 无限接近于某常数 A, 则常数 A 叫作函数 f(x) 当 $x \to x_0$ 时的左极限, 记为

若当 $x \to x_0^+$ 时, f(x) 无限接近于某常数 A, 则常数 A 叫作函数 f(x) 当 $x \to x_0$ 时的<mark>右极限</mark>, 记为

题目 17. 已知 $\lim_{x\to 0}\left[a\arctan\frac{1}{x}+(1+\mid x\mid)^{\frac{1}{x}}\right]$ 存在, 求a的值

解答. 由于存在 $\arctan = |x|$ 函数,则对于 0 点的极限值需要分左右进行计算.

题目 17 的注记. 由于自变量趋向的双向性,以下类型的函数因此需要进行特殊讨论:

- 形如 $f(x) = max\{h(x), g(x)\}$ 此类函数也需要注意在函数变化点的自变量取值问题
- $\lim_{x\to\infty} e^x : \lim_{x\to+\infty} e^x = +\infty, \lim_{x\to-\infty} e^x = 0$
- $\lim_{x\to 0} \frac{\sin x}{|x|}$: $\lim_{x\to 0^+} = \frac{\sin x}{x} = 1$, $\lim_{x\to 0^-} = \frac{\sin x}{-x} = -1$
- $\bullet \ \lim_{x\to\infty}\arctan x: \lim_{x\to+\infty}\arctan x = \frac{\pi}{2}, \lim_{x\to-\infty}\arctan x = -\frac{\pi}{2}$
- $\lim_{x\to 0} [x]: \lim_{x\to 0^+} [x] = 0, \lim_{x\to 0^-} [x] = -1$

自变量趋于无穷大时函数的极限

定义 2.2.5: 自变量趋于无穷大时函数极限定义

设函数 f(x) 在点 x_0 的某一去心邻域内有定义. 如果存在常数 A, 对于任意给定的正数 ε .(不论它多么小), 总存在正数 δ , 使得当 x 满足不等式 $0<|x-x_0|<\delta$ 时, 对应的函数值 f(x) 都满足不等式

$$|f(x) - A| < \varepsilon$$

那么常数 A 叫做函数 f(x) 当 $x \to x_0$ 的极限, 记作:

$$\lim_{x\to x_0}f(x)=A\vec{\boxtimes}f(x)\to A(\stackrel{.}{\boxminus}x\to x_0)$$

其 $\varepsilon - N$ 语言为

$$\lim_{x\to x_0}f(x)=A\Leftrightarrow \forall \varepsilon>0, \exists \delta>0, \leqq 0<|x-x_0|<\delta \text{\it if}\ , \not|f(x)-A|<\varepsilon.$$

 $\forall \varepsilon > 0, \exists \delta > 0$ 在证明中, 这两句是白给, 直接写. 后面的才是关键.

需要注意的是趋向的值不同时, $\varepsilon-N$ 写法不同,不能照抄. 其 $\varepsilon-N$ 的表达为如下表格:

	$f(x) \to A$	$f(x) \to \infty$	$f(x) \to +\infty$	$f(x) \to -\infty$
$x \to x_0$	$\forall \varepsilon > 0, \exists \delta > 0,$	$\forall M > 0, \exists \delta > 0,$	$\forall M > 0, \exists \delta > 0,$	$\forall M > 0, \exists \delta > 0,$
	使当0 < x - x ₀	使当0 < x - x ₀	使当 $0 < x - x_0 $	使当0 < x - x ₀
	< δ 时,即有	$<\delta$ 时,即有	< δ时, 即有	$<\delta$ 时,即有
	$ f(x) - A < \varepsilon.$	f(x) > M	f(x) > M.	f(x) < -M
$x \to x_0^+$	$\forall \varepsilon > 0, \exists \delta > 0,$	$\forall M>0, \exists \delta>0,$	$\forall M > 0, \exists \delta > 0,$	$\forall M>0, \exists \delta>0,$
	使当 $0 < x - x_0 <$	使当 $0 < x - x_0 <$	使当 $0 < x - x_0 <$	使当 $0 < x - x_0 < \delta$
	δ时, 即有	δ时, 即有	δ时,即有	时,即有
	$ f(x) - A < \varepsilon.$	f(x) > M.	f(x) > M.	f(x) < -M
$x \to x_0^-$	$\forall \varepsilon > 0, \exists \delta > 0,$	$\forall M>0, \exists \delta>0,$	$\forall M > 0, \exists \delta > 0,$	$\forall M>0, \exists \delta>0,$
	使当 $0 > x - x_0 >$	使当 $0 > x - x_0 >$	使当 $0 > x - x_0 >$	使当 $0 > x - x_0 >$
	$-\delta$ 时,即有	$-\delta$ 时,即有	$-\delta$ 时,即有	$-\delta$ 时,即有
	$ f(x) - A < \varepsilon.$	f(x) > M.	f(x) > M	f(x) < -M
$x \to \infty$	$\forall \varepsilon > 0, \exists X > 0,$	$\forall M>0, \exists X>0,$	$\forall M > 0, \exists X > 0,$	$\forall M > 0, \exists X > 0,$
	使当 $ x > X$ 时,	使当 x > X	使当 x > X	使当 x >X 时,
	即有	时,即有	时,即有	即有
	$ f(x) - A < \varepsilon.$	f(x) > M	f(x) > M	f(x) < -M.
$x \to +\infty$	$\forall \varepsilon > 0, \exists X > 0,$	$\forall M > 0, \exists X > 0,$	$\forall M > 0, \exists X > 0,$	$\forall M>0, \exists X>0,$
	使当 x>X 时,	使当 $x > X$ 时,	使当 $x > X$ 时,	使当 x>X 时,
	即有	即有	即有	即有
	$ f(x) - A < \varepsilon.$	f(x) > M	f(x) > M.	f(x) < -M
$x \to -\infty$	$\forall \varepsilon > 0, \exists X > 0,$	$\forall M>0, \exists X>0,$	$\forall M > 0, \exists X > 0,$	$\forall M \setminus 0 \ \exists V \setminus 0 \ /\pm$
	使当 $x < -X$ 时,	使当 $x < -X$	使当 $x < -X$	$\forall M > 0, \exists X > 0, \notin$
	 即有 	时, 即有	时,即有	当 $x < -X$ 时,即有
	$ f(x) - A < \varepsilon.$	f(x) > M	f(x) > M	f(x) < -M.

注 2.2.3: 上表的部分解释

- 以 $\lim_{x\to x_0}f(x)=A$ 为例: 不管 f(x) 与 A 的距离多近 ($\forall \varepsilon>0$), 总有 x 不断靠近 x_0 , 使得 $|f(x)-A|<\varepsilon.$
- 以 $\lim_{x\to\infty}f(x)=\infty$ 为例: 不管 M 多大,总有当 $x>\infty$ 时,使得 |f(x)>M|,即满足 $\lim_{x\to\infty}f(x)=\infty$.

2.2.4 函数极限的性质

唯一性

定理 2.2.1

如果 $\lim_{x \to x_0} f(x)$ 存在, 那么极限唯一

注 2.2.4: 关于唯一性的说明

- 对于 $x \to \infty$, 意味着 $x \to +\infty$ 且 $x \to -\infty$
- 对于 $x \to x_0$, 意味着 $x \to x_0^+$ 且 $x \to x_0^-$

对于上述问题, 我们称为自变量取值的"双向性". 以下有一些常见的问题:

- $-\ \lim_{x\to\infty}e^x\ \text{不存在}, \lim_{x\to0}\frac{\sin x}{|x|}\ \text{不存在}, \lim_{x\to\infty}\arctan x\ \text{不存在}, \lim_{x\to x_0}[x]\ \text{不存在}.$
- 其不存在的原因均为分段函数分段点极限表达式不同, 需要分别求左右极限.

注 2.2.5: 极限存在的充要条件

$$\lim_{x\to x_0}f(x)=A\Leftrightarrow \lim_{x\to x_0^-}f(x)=A, \boxplus \lim_{x\to x_0^+}f(x)=A^a$$

$$\lim_{x\to x_0}f(x)=A\Leftrightarrow f(x)=A+\alpha(x), \lim_{x\to x_0}\alpha(x)=0 (\mathcal{\overline{R}} \text{ if } \exists \alpha(x)=0)^b$$

 b 对于此概念,如果引入超实数系的解释应为 A 是 f(x) 的标准实数部分,而 f(x) 的值是超实数系下的值,因此其值应为 $f(x)=A+\alpha(x)$

注 2.2.6: 极限不存在的情况

- 函数在该点附近趋于无穷
- 函数在该点的左右极限只存在一个,或两者都存在但不相等
- 函数在该点附近不停地震荡

^a左右极限都存在且相等

• 该点是函数无定义点的聚点

局部有界性

定理 2.2.2

若极限 $\lim_{x \to x_0} f(x)$ 存在 a , 则 f(x) 在点 x_0 某去心邻域内有界.

^a对局部有界性的描述需要指明是在那个区间上

注 2.2.7: 局部有界性的性质

- 极限存在必有界, 有界函数极限不一定存在.
- 若 y = f(x) 在 [a,b] 上为连续函数,则 f(x) 在 [a,b] 上必有界.
- 若 f(x) 在 (a,b) 内为连续函数,且 $\lim_{x\to a^+} f(x)$ 与 $\lim_{x\to b^-} f(x)$ 都存在,则 f(x) 在 (a,b) 内必定 有界.
- 有界函数与有界函数的和,差,积仍为有界函数。

a
商不是有界函数,因为: $y_1=1,y_2=0,rac{y_1}{y_2}=\infty$

题目 18. 在下列区间内,函数
$$f(x) = \frac{x \sin(x-3)}{(x-1)(x-3)^2}$$
 有界的是: A:(-2,1) B:(-1,0) C:(1,2) D:(2,3)

解答. 又题意可知, 函数的分段点为 x = 3,0,1, 对上述三点求极限, 分析可得, 当 x = 3,1 时, 函数极限为 ∞ , 因此函数在上述两点的极限不存在, 因此根据局部有界性的性质可得, 含这两个点的区间无界, 因此排除 A,C,D. 答案为 B.

局部保号性

定理 2.2.3

如果 $\lim_{x\to x_0}f(x)=A$,且 A>0(或 A<0),那么存在常数 $\delta>0$,使得当 $0<|x-x_0|<\delta$ 时有 $f(x)>0(f(x)<0)^a.$

如果在 x_0 的某去心邻域内 $f(x) \geqslant 0$ (或 $f(x) \leqslant 0$), 而且 $\lim_{x \to x_0} f(x) = A$, 那么 $A \leqslant 0$ 或 $(A \le 0)^b$.

对上述定理中, 为什么一个可以等于 0, 一个不能等于 0? 其解释如下: 如果第一个定理中 $A \leq 0, f(x) \leq 0$,

 $[^]a$ 如果函数在 x_0 附近的极限值为正, 那么 x_0 附近的函数值为正

 $^{^{}b}$ 如果函数在 x_{0} 附近的函数值 ≤ 0 , 那么 x_{0} 此处的极限值 ≤ 0

那么以函数 $f(x) = x^2$ 为例,虽然 $\lim_{x\to 0} f(x) = 0$,但是邻域内的函数值都大于 0. 对于第二个定理中如果 f(x) < 0, A < 0,那么以函数 $f(x) = -x^2$ 为例,虽然邻域内的函数值都小于 0,但是 $\lim_{x\to 0} f(x) = 0$.

注 2.2.8

由保号性可推出保序性: 设 $\lim_{x\to x_0} f(x) = A, \lim_{x\to x_0} g(x) = B,$ 则:

- 2. 若 $\exists \delta > 0$, 当 $x \in \mathring{U}(x_0, \delta)$ 时, $f(x) \geqslant g(x) \Rightarrow A \geqslant B$.

推论 2.2.1: 局部保号性的推论

如果 $\lim_{x\to x_0} f(x) = A > 0 (A \neq 0)$,那么就存在 x_0 的某一去心邻域 $\mathring{U}(x_0)$,当 $x \in U^\circ(x_0)$ 时,就有 $|f(x)| > \frac{|A|}{2}$

保号性推论的证明. 如果 $\lim_{x\to x_0}f(x)=A>0,$ 所以, 取 $\varepsilon=\frac{A}{2}>0,$ $\exists \delta>0$ 当 $0<|x-x_0|<\delta$ 时, 有

$$|f(x)-A|<\frac{A}{2}\Rightarrow f(x)>A-\frac{A}{2}=\frac{A}{2}>0.$$

2.2.5 函数极限与数列极限的关系(海涅定理)

需要知道一点,数列极限不可以直接使用洛必达法则,但是可以使用拉格朗日中值定理,泰勒公式,等价无穷小. 如果想使用洛必达法则,则需要使用海涅定理将数列极限改写为函数极限的形式. 即 x 改写成 n,考研数学中默认 n 为非负整数,所以 n 趋于无穷要改写成 x 趋于正无穷.

定理 2.2.4: 海涅定理

设 f(x) 在 $\mathring{U}(x_0, \delta)$ 内有定义,则 $\lim_{x \to x_0} f(x) = A$ 存在 \Leftrightarrow 对任何 $\mathring{U}(x_0, \delta)$ 内以 x_0 为极限的数列 $\{x_n\}$ $(x_n \neq x_0)$,极限 $\lim_{n \to \infty} f(x_n) = A$ 存在.

把这个定理简化一下, 主要意思就是

$$\lim_{x \to a} f(x) = L$$

$$\updownarrow$$

所有的 $\lim_{n\to\infty} a_n = a$, 有 $\lim_{n\to\infty} f(a_n) = L$

其不同之处在于是离散的趋近还是连续的趋近

除此之外,f(x) 和 $f(a_n)$ 的函数图像如下所示

如上图所示 $f(a_n)$ 其实是 f(x) 的抽样

需要注意的是,是所有的数列(抽样)才能完全代表整体.不能说我选了某个数列有极限就代表函数有极限.总结:海涅定理表述了离散与连续、数列极限与函数极限的关系.

题目 19. 求极限
$$\lim_{n\to\infty} n(\arctan n - \frac{\pi}{2})$$

解答.

原式 =
$$\lim_{n \to \infty} \frac{\arctan n - \frac{\pi}{2}}{\frac{1}{n}}$$

$$\begin{split} &= \lim_{x \to +\infty} \frac{\arctan x - \frac{\pi}{2}}{\frac{1}{x}} \\ &= \lim_{x \to +\infty} \frac{\frac{1}{1+x^2}}{-\frac{1}{x^2}} \\ &= -1 \end{split}$$

题目 19 的注记. 数列极限不可以直接使用洛必达法则, 若要使用洛必达法则, 则需要使用海涅定理进行替换.

题目 20. 求极限
$$\lim_{n\to\infty}\left[\frac{\left(1+\frac{1}{n}\right)^n}{\mathrm{e}}\right]^n$$

解答.

原式 =
$$\lim_{n \to \infty} \left[\frac{e^{n \ln(1 + \frac{1}{n})}}{e} \right]^n$$

= $\lim_{n \to \infty} \frac{e^{n^2 \ln(1 + \frac{1}{n})}}{e^n}$
= $\lim_{n \to \infty} e^{n^2 \ln(1 + \frac{1}{n}) - n}$

对 $\lim_{n\to\infty} n^2 \ln(1+\frac{1}{n}) - n$ 求极限得:

原式 =
$$\lim_{n \to \infty} \left[n - n^2 \ln \left(1 + \frac{1}{n} \right) \right]$$

= $\lim_{n \to \infty} n^2 \left[\frac{1}{n} - \ln \left(1 + \frac{1}{n} \right) \right]$
= $\lim_{n \to \infty} n^2 \cdot \frac{1}{2} \left(\frac{1}{n} \right)^2$
= $\frac{1}{2}$

综上函数极限为 $e^{-\frac{1}{2}}$

题目 20 的注记. 数列极限可以直接使用等价无穷小和泰勒公式

解答.

原式 =
$$\lim_{n \to \infty} e^{n \ln(\tan(\frac{\pi}{4} + \frac{2}{n}))}$$

$$\begin{split} &= \lim_{n \to \infty} e^{n \cdot (\tan(\frac{\pi}{4} + \frac{2}{n}) - 1)} \\ &= \lim_{n \to \infty} e^{n \cdot (\tan(\frac{\pi}{4} + \frac{2}{n}) - \tan\frac{\pi}{4})} \\ &= \lim_{n \to \infty} e^{n \cdot \sec^2 \varepsilon \cdot \frac{2}{n}} \quad \varepsilon \in (\frac{\pi}{4}, \frac{\pi}{4} + \frac{2}{n}) \\ &= e^4 \end{split}$$

题目 21 的注记. 数列极限可以使用拉格朗日中值定理

2.3 无穷小与无穷大

2.3.1 无穷小

定义 2.3.1: 无穷小的定义

如果函数 f(x) 当 $x \to x_0$ (或 $x \to \infty$) 时的极限为零, 那么称函数 f(x) 为当 $x \to x_0$ (或 $x \to \infty$) 时的无 穷小.

f(x) 是可以本身为 0 或者无限趋近于零, 其中 0 可以作为无穷小唯一常数.

注 2.3.1: 无穷小与函数极限的关系 (脱帽法)

 $\lim_{x\to \cdot} f(x) = A \Leftrightarrow f(x) = A + \alpha$, 其中 $\lim_{x\to \cdot} f(x)$ 为超实数值, 其实数部分为 A, 函数 f(x) 的函数值为 $A + \alpha$

无穷小的性质

1 有限个无穷小的和是无穷小3

证明. 设 α_1 和 α_2 为无穷小量. 则 $0 \le |\alpha_1 + \alpha_2| \le |\alpha_1| + |\alpha_2|, |\alpha_1| + |\alpha_2|$ 的极限为 0. 证明完毕.

2 有界函数与无穷小的乘积是无穷小4

证明. $|\alpha_1| \leqslant M, \alpha_2$ 是无穷小量. 那么 $0 \leqslant |\alpha_1 \times \alpha_2| = |\alpha_1| \times |\alpha_2| \leqslant M \times |\alpha_2|$ 证明完毕.

3 有限个无穷小的乘积是无穷小5

- 3 无穷个无穷小的和不一定是无穷小,如 $\lim_{n \to \infty} = (\frac{1}{n+1} + \frac{1}{n+2} + \frac{1}{n+3} \cdots + \frac{1}{n+n}) = \ln 2$
- 4 无界函数 × 无穷小量不一定是无穷小,如 $\lim_{x \to \infty} x$ ×
- 5这个地方虽然张宇老师给出了证明,但是好像存在一定的争议性

无穷小的比阶

定义 2.3.2: 不同无穷小的比阶

- 如果 $\lim \frac{\beta}{\alpha} = 0$, 那么就说 β 是比 α 高阶的无穷小, 记作 $\beta = o(\alpha)$;
- 如果 $\lim \frac{\beta}{\alpha} = \infty$, 那么就说 β 是比 α 低阶的无穷小;
- 如果 $\lim \frac{\beta}{\alpha} = c \neq 0$, 那么就说 β 与 α 是同阶无穷小;
- 如果 $\lim \frac{\beta}{\alpha^k} = c \neq 0, k > 0$, 那么就说 β 是关于 α 的 k 阶无穷小 a ;
- 如果 $\lim \frac{\beta}{\alpha} = 1$, 那么就说 β 与 α 是等价无穷小, 记作 $\alpha \sim \beta$

前三个定义解释: $\lim \frac{\beta}{\alpha}=0$ 是指分子趋于 0 的速度比分母快, $\lim \frac{\beta}{\alpha}=\infty$ 是指分子趋于 0 的速度比分母慢, $\lim \frac{\beta}{\alpha}=c\neq 0$ 是指趋于 0 的速度一样. 同时需要注意的是,并不是任意两个无穷小都可进行比阶的 6 .

对 o(x) 的理解: 它是一个无穷小,但是它趋向于 0 的速度比 x 要快,也就是 $\lim_{x\to 0} \frac{o(x)}{x} = 0$,也就是精度更高. 举一个实际的例子: $\tan x = x + \frac{1}{3}x^3 + \frac{2}{15}x^5 + o\left(x^5\right)$,那么就应该知道 $\tan x - x - \frac{1}{3}x^3 - \frac{2}{15}x^5 = o\left(x^5\right)$,也就是这玩意趋于 0 的速度非常之快!速度相当于 x^5 ,这给我们的精度分析提供了一些帮助.由此可以解释加减法不推荐用等价无穷小,例如 $\lim_{x\to 0} \frac{\tan x - x}{x^3} \neq \lim_{x\to 0} \frac{x-x}{x^3}$ 等价无穷小本身就是一种近似替换,直接把 $\tan x$ 近似成 x 显然精度太低(毕竟分母可是以 x^3 的速度趋于 0),那么我们就需要更高精度的近似了,也就是 $\lim_{x\to 0} \frac{\tan x - x}{x^3} = \lim_{x\to 0} \frac{x + \frac{1}{3}x^3 + o\left(x^3\right) - x}{x^3}$,这样我们就得到 $\lim_{x\to 0} \frac{\tan x - x}{x^3} = \frac{1}{3} + \lim_{x\to 0} \frac{o(x^5)}{x^3}$,显然,后者分子趋于 0 的速度大概是 x^5 级别比分母更快所以忽略不计.

结论 2.3.1: 无穷小比阶的结论

若 f(x) 在 x=0 的某邻域内连续, 且当 $x\to 0$ 时 f(x) 是 x 的 m 阶无穷小, $\varphi(x)$ 是 x 的 n 阶无穷小, 则 当 $x\to 0$ 时 $F(x)=\int_0^{\varphi(x)}f(t)\mathrm{d}t$ 是 x 的 n(m+1) 阶无穷小

题目 22. 把 $x \to 0^+$ 时的无穷小 $a = \int_0^x \cos t^2 dt$, $\beta = \int_0^{x^2} \tan \sqrt{t} dt$, $\gamma = \int_0^{\sqrt{x}} \sin t^3 dt$ 进行排序,使排在后面的是前一个的高阶无穷小,则正确的排列顺序是

解答. $\alpha: n=1, \lim_{x\to 0}\cos x^2=1$,因此 m=0,那么 n(m+1)=1; $\beta: n=2, m=\frac{1}{2}$,那么 $n(m+1)=3.\gamma: m=\frac{1}{2}x, n=2$,那么 n(m+1)=2. 因此顺序为 $\alpha\gamma\beta$

[&]quot;不是相等, 超实数系下没有加减运算, 只可以进行替换运算

 $^{^6}$ 例如,当 $x \to 0$ 时, $x \sin \frac{1}{x}$ 与 x^2 虽然都是无穷小,但是却不可以比阶,也就是说既无高低阶之分,也无同阶可言,因为 $\lim_{x \to 0} \frac{x \sin \frac{1}{x}}{x^2} = \lim_{x \to 0} \frac{1}{x} \sin \frac{1}{x}$ 不存在,其值为 ∞ 和 0

题目 23. 当 $x \to 0$ 时,下列无穷小中最高阶的是:

$$(A)\left(2+\tan x\right)^x-2^x$$

$$(B)\left(\cos x^2\right)^{\frac{1}{x}} - 1$$

$$(C)$$
 $\int_0^{1-\cos x} e^x \sin t^2 dt$

$$(A) \left(2 + \tan x\right)^x - 2^x \qquad (B) \left(\cos x^2\right)^{\frac{1}{x}} - 1 \qquad (C) \int_0^{1 - \cos x} e^x \sin t^2 \mathrm{d}t \qquad (D) \int_{\sin x}^{1 - \sqrt{\cos x}} \ln(1 + t^3) dt$$

解答. A 选项: $2^x[(1+\frac{\tan x}{2})^x-1]=\frac{\tan x}{2}\times x=\frac{1}{2}x^2$.

B 选项:
$$-\frac{x^4}{2x} = -\frac{x^3}{2}$$
.

C 选项:
$$n = \frac{1}{2}x^2, m = x^2$$
 那么 $n(m+1) = 6$.

D 选项:

原式 =
$$\int_{\sin x}^{1-\sqrt{\cos x}} \ln(1+t^3) dt$$
=
$$\int_{\sin x}^{0} \ln(1+t^3) dt + \int_{0}^{1-\sqrt{\cos x}} \ln(1+t^3) dt$$
=
$$\int_{0}^{1-\sqrt{\cos x}} \ln(1+t^3) dt - \int_{0}^{\sin x} \ln(1+t^3) dt$$

其中 $1 - \sqrt{\cos x} \sim \frac{\frac{1}{2}x^2}{2}$,那么 $\int_0^{1-\sqrt{\cos x}} \ln(1+t^3) dt$ 那么 n(m+1) = 8, $\int_0^{\sin x} \ln(1+t^3) dt$ 那么 n(m+1) = 88, $\int_{\sin x}^{1-\sqrt{\cos x}} \ln(1+t^3) dt$. 的阶数为 4. 综上 C 选项的阶数最高.

题目 23 的注记. D 选项: 如果为变上下限的形式,则转化为变上限的形式,然后使用结论进行计算,之后按照 无穷小的运算法则计算即可.

题目 24. 设 $p(x) = a + bx + cx^2 + dx^3$. 当 $x \to 0$ 时, 若 $p(x) - \tan x$ 是比 x^3 高阶的无穷小, 则下列结论中错 误的是:

$$(A)a = 0$$
 $(B)b = 1$ $(C)c = 0$ $(D)d = \frac{1}{6}$

解答. 对 $\frac{p(x)-\tan x}{r^3}$ 泰勒展开可得: $\frac{p(x)-(x+\frac{1}{3}x^3+\frac{2}{15}x^5)}{x^3}=\frac{a+bx+cx^2+dx^3-x-\frac{1}{3}x^3-\frac{2}{15}x^5}{x^3}$ 综上易知: $a = 0, b = 1, c = 0, d = \frac{1}{3}$. 因此,D 选项是错误的.

题目 25. 当 $x \to 0^+$ 时,下列无穷小量中最高阶的是

$$(A) \int_0^{x^2} \ln(1+\sqrt{t}) dt$$

$$(A) \int_0^{x^2} \ln(1+\sqrt{t}) \mathrm{d}t \qquad (B) \int_{x^3}^{x^2} \sqrt{1-\sqrt{\cos t}} \, \mathrm{d}t \qquad (C) \int_x^{2\sin x} \sin t^2 \mathrm{d}t \qquad (D) \int_x^{\sin x} (\mathrm{e}^{t^2}-1) \mathrm{d}t$$

$$(C)$$
 $\int_{0}^{2\sin x} \sin t^2 dt$

$$(D) \int_x^{\sin x} (e^{t^2} - 1) dt$$

解答. A: $\ln(1+\sqrt{x}) \sim \sqrt{x}$, 其 n(m+1) = 3.

$$B:\sqrt{1-\sqrt{\cos t}}=\frac{1}{2}x,$$
 其 $n(m+1)$ 的最小值为 4.

C: 使用积分中值定理可得: $\sin^2 \varepsilon \times (2\sin x - x), \varepsilon \in (2\sin x, x),$ 使用等价无穷小可得: $2\sin x - x \sim x, \sin^2 \varepsilon \sim$

 $\varepsilon^2 \sim x^2$, 那么其最终化为 x^3 .

D 选项: $(\sin x - x)(e^{\varepsilon^2} - 1), \varepsilon \in (\sin x, x)$. 使用等价无穷小可得: $(-\frac{1}{6}x^5 \times \varepsilon) \sim x^6$. 最终选择 D 选项.

题目 25 的注记. 如果上下限同阶的情况, 如本题的 C,D 选项, 则不可进行拆分, 需要使用积分中值定理1.4.7进行计算.

无穷小的运算

 7 设 m, n 为无穷小,则

1.
$$o(x^m) \pm o(x^n) = o(x^l), l = \min\{m, n\}$$

2.
$$o(x^m) \cdot o(x^n) = o(x^{m+n}), x^m \cdot o(x^n) = o(x^{m+n})$$

3.
$$o(x^m) = o(kx^m) = k \cdot o(x^m), k \neq 0$$

题目 26. 若当 $x \to 0$ 时, $\alpha(x)$, $\beta(x)$ 是非零无穷小量,则以下的命题中正确的是:

A. 若 $\alpha(x) \sim \beta(x)$, 则 $\alpha^2(x) - \beta^2(x)$; B. 若 $\alpha^2(x) \sim \beta^2(x)$, 则 $\alpha(x) \sim \beta(x)$;

C. 若
$$\alpha(x) \sim \beta(x)$$
, 则 $\alpha(x) - \beta(x) = o(\alpha(x))$; D. 若 $\alpha(x) \sim \beta(x) = o(\alpha(x))$, 则 $\alpha(x) - \beta(x)$

解答.

1.
$$\lim_{x\to 0} \frac{\alpha(x)}{\beta(x)} = 1$$
, 那么 $\lim_{x\to 0} \left[\frac{\alpha(x)}{\beta(x)}\right]^2 = 1$

$$2. \ \lim_{x \to 0} \frac{\alpha(x)^2}{\beta(x)^2} = 1 \Rightarrow \lim_{x \to 0} \frac{\alpha(x)}{\beta(x)} = \pm 1$$

3.
$$\lim_{x\to 0} \frac{\alpha(x) - \beta(x)}{\beta(x)} = 0$$

$$4. \ \lim_{x \to 0} \frac{\alpha(x) - \beta(x)}{\beta(x)} = 1$$

题目 26 的注记. 若 $\alpha(x) \sim \beta(x)$, 那么 $\lim_{x \to 0} \frac{\alpha(x)}{\beta(x)} = 1 \Leftrightarrow \lim_{x \to 0} \frac{\beta(x)}{\alpha(x)}$

题目 27. 设对任意的 x 总有 $\varphi(x) \leqslant f(x) \leqslant g(x)$, 且 $\lim_{x \to \infty} [g(x) - \varphi(x)] = 0$, 则 $\lim_{x \to \infty} f(x)$

(A) 存在且等于零. (B) 存在但不一定为零. (C) 一定不存在. (D) 不一定存在

题目 27 的注记. 遇见 \leq , \geq 的形式, 可以一律取 =

⁷此处多用于泰勒公式的应用中,会对上述高阶无穷小的运算提出要求

2.3.2 无穷大

定义 2.3.3: 无穷大的定义

设函数 f(x) 在 x_0 的某一去心邻域内有定义(或 |x| 大于来一正数时有定义)。如果对于任意给定的正数 M(不论它多么大),总存在正数 δ (或数 X),只要 x 适合不等式 $0 < |x - x_0| < \delta$ (或 |x| > X),对应的函数 值 f(x) 总满足不等式

那么称函数 f(x) 是当 $x \to x_0$ (或 $x \to \infty^a$) 时的无穷大. $b \notin \varepsilon - N$ 语言为

$$\lim_{x\to x_0}f(x)=\infty \Leftrightarrow \forall M>0, \exists \delta>0, \leqq 0<|x-x_0|<\delta \mathrm{id}, \, \dot{\pi}|f(x)|>M.$$

 b 无穷大一定无界,但无界不一定是无穷大量、与无穷小相同,都是一个极限过程,因此无穷大也是一个极限,所以无界不一定是无穷大量

无穷大的比阶

- $\exists x \to +\infty \text{ pl}, \ln^a x \ll x^\beta \ll a^x, \text{ pl} = \alpha > 0, \beta > 0, \alpha > 1.8$

无穷大的性质

- 两个无穷大量的积仍未无穷大量
- 无穷大量与有界变量的和仍是无穷大量

无穷大与无界变量的关系

无穷大量一定是无界变量,但无界变量不一定是无穷大量.9

2.3.3 无穷大与无穷小的关系

在自变量的同一变化过程中,若 f(x) 是无穷大,则 $\frac{1}{f(x)}$ 是无穷小;若 f(x) 是无穷小,且 $f(x) \neq 0$,则 $\frac{1}{f(x)}$ 是无穷大.

^a等价于 $x \to -\infty$ 同时 $x \to +\infty$

⁸由洛必达公式证明

 $^{^{9}}$ 如数列 $x_n = \begin{cases} n, n \text{ 为奇数} \\ 0, n \text{ 为偶数} \end{cases}$,是无界变量,但不是无穷大. 无穷大是一个极限

无穷小×∞ 的值

无穷小 $\times \infty$ **的值是一个为定式**. 因为低阶无穷小乘以高阶无穷大等于无穷大,高阶无穷小乘以低阶无穷大等于 0,同阶无穷小和无穷大相乘等于 1. 比如:

$$\lim_{x \to 0} x \cdot \ln x = 0$$

$$\lim_{x\to 0} x \cdot \frac{1}{\sin x} = 1$$

$$\lim_{x\to 0} x \cdot \frac{1}{x^2} = \infty$$

2.4 函数极限的运算

2.4.1 极限的四则运算法则

利用极限的四则运算法则求极限

¹⁰ 如果极限不存在,那么极限属于超实数系的范畴,在超实数系下不可以进行代数运算,只可以进行替换运算.但是如果极限均存在,那么可以进行代数计算.那么就可以使用下面的运算法则:

若 $\lim f(x) = A, \lim g(x) = B$, 那么

- $\lim[kf(x) \pm lg(x)] = k \lim f(x) \pm l \lim g(x) = kA \pm lB$, 其中 k, l 为常数
- $\lim[f(x)\cdot g(x)]=\lim f(x)\cdot \lim g(x)\equiv A\cdot B$, 特别的, 若 $\lim f(x)$ 存在,n 为正整数, 则 $\lim[f(x)]^n=\left[\lim f(x)\right]^n$
- $\lim \frac{f(x)}{g(x)} = \frac{\lim f(x)}{\lim g(x)} = \frac{A}{B}(B \neq 0)$

注 2.4.1: 常用结论

$$\overline{F}$$
存在 \pm 不存在 $=$ 不存在 \pm 不行在 \pm

 a 只有这一个是不存在,其余都是不一定或者存在 b 反例: $\lim_{x\to 0}(\sin\frac{1}{x}-\sin\frac{1}{x})=0$

¹⁰ 易错, 在计算中往往容易忽视极限不存在的情况

题目 28.

- 1. 证明: $\lim f(x) = A \neq 0 \Rightarrow \lim f(x)g(x) = A \lim g(x)$
- 2. 证明: $\lim \frac{f(x)}{g(x)}$ 存在, $\lim g(x) = 0 \Rightarrow \lim f(x) = 0$
- 3. 证明: 若 $\lim_{x\to x_0}g(x)=A,\lim_{x\to A}f(x)=B,$ 能否推出 $\lim_{x\to x_0}f(g(x))=B,$ 若不能,则满足什么条件可以推出该结论?

2. 由于
$$g(x) = \frac{f(x)}{\frac{f(x)}{g(x)}}$$
,则 $\lim g(x) = \lim \frac{f(x)}{\frac{f(x)}{g(x)}} = \frac{\lim f(x)}{\lim \frac{f(x)}{g(x)}} = \frac{0}{A} = 0$

- 3. 无法推出, 有如下反例
 - $g(x) = x \sin \frac{1}{x}, f(x) = \begin{cases} x, x \neq 0 \\ 1, x = 0 \end{cases}$, $\lim_{x \to 0} g(x) = 0$, $\lim_{x \to 0} f(x) = 0$, 但是当 $x \to 0$ 时, $g(x) = x \sin \frac{1}{x}$

不仅趋于 0, 同时还能在 $\frac{1}{n\pi}$ 这样的点处严格等于 0. 此时 $\lim_{x\to 0} f(g(x)) = 1$, 所以 $\lim_{x\to 0} f(g(x))$ 不存在, 其极限值在 (0,1) 之间反复横跳.

$$\bullet \ \ g(x) \equiv 0, \\ f(x) = \begin{cases} x, x \neq 0 \\ \\ 1, x = 0 \end{cases}, \\ \lim_{x \to 0} g(x) = 0, \\ \lim_{x \to 0} f(x) = 0. \ \ (\boxtimes \lim_{x \to 0} f(g(x)) = 1) \end{cases}$$

因此结论不成立. 若要成立, 则应改为:

- 若 $\lim_{x\to x_0}g(x)=A,\lim_{x\to A}f(x)=B,$ 且 $g(x)\neq A,$ 则 $\lim_{x\to x_0}f(g(x))=B$
- 若 $\lim_{x\to x_0}g(x)=A,\lim_{x\to A}f(x)=B,$ 即 f(x) 在 x=A 处连续,则 $\lim_{x\to x_0}f(g(x))=B$

结论 2.4.1: 上题的三个结论

• $\lim f(x) = \lim \frac{f(x)}{g(x)} \cdot g(x) = \lim \frac{f(x)}{g(x)} \cdot \lim g(x) = A \cdot 0 = 0.$

• 若 $\lim_{x \to x_0} g(x) = A, \lim_{x \to A} f(x) = B,$ 且 $g(x) \neq A^a$,则 $\lim_{x \to x_0} f(g(x)) = B$

• 若 $\lim_{x \to x_0} g(x) = A$, $\lim_{x \to A} f(x) = B$, 即 f(x) 在 x = A 处连续 b ,则 $\lim_{x \to x_0} f(g(x)) = B$

"从根本上排除了常值函数和振荡间断点的反例

^b不管内函数能否取到极限值, 只要外函数连续, 复合之后极限一定存在

题目 29. 求
$$\lim_{x\to+\infty} \frac{e^x}{\left(1+\frac{1}{x}\right)^{x^2}}$$
. 极限

解答. 由于该极限的分子 e^x 的极限为无穷大,无穷大属于极限中的不存在情况,因此不可以使用极限的四则运算法则1.4.1,也不可以对分母使用两个重要无穷小进行化简.只能使用等价变换进行求解.即

原式 =
$$\lim_{x \to +\infty} \frac{e^x}{e^{x^2 \ln(1+\frac{1}{x})}}$$

= $\lim_{x \to +\infty} e^{x-x^2 \ln(1+\frac{1}{x})}$
 $\frac{\text{秦勒展}}{\text{$x \to +\infty}} \lim_{x \to +\infty} e^{x-x+\frac{1}{2}}$
= $e^{\frac{1}{2}}$

解答. 如果想把分子写 $x \to 0$ 时的导数形式,然后进行计算,即 $\lim_{x\to 0} \frac{f(x)-f(0)}{x-0} = \frac{f'(0)}{f'(0)} = 1$ 进行运算,则不满足极限四则运算法则1.4.1,因为其分母为 0,违背了极限的四则运算法则,因此不可这样计算,需要对其进行恒等变形计算。即

原式 =
$$\lim_{x\to 0} \frac{\frac{f(x)}{x^2}}{\frac{f'(x)-f'(0)}{x}}$$
 = $\frac{1}{f''(0)}\lim_{x\to x_0} \frac{f(x)}{x^2}$ = $\frac{\frac{3}{2}}{\frac{3}{2}} \frac{1}{f''(0)}\lim_{x\to 0} \frac{1}{2} \frac{f'(x)-f'(0)}{x}$ (易错: 此处的处理不可再次使用洛必达,因为二阶导在此不连续) = $\frac{1}{f''(0)} \frac{1}{2} f''(0)$ = $\frac{1}{2}$

题目 30 的注记. 使用极限运算法则的注意事项: 在求分式这种形式的极限时, 一定要注意分子的极限是不是无穷, 如果极限为无穷则不可以使用极限运算法则对极限进行拆分计算, 同时还要注意分母的极限是不是 0, 如果是 0, 则也不可以使用极限运算法则计算, 只能进行等价替换进行运算.

题目 31. 求 $\lim_{x\to 0} (\frac{1}{x^2} - \cot^2 x)$

解答.

原式 =
$$\lim_{x\to 0} \left(\frac{1}{x^2} - \frac{1}{\tan^x x}\right)$$

= $\frac{(\tan x + x)(\tan x - x)}{x^2 \times \tan^2 x}$
= $\frac{2x \times \frac{1}{3}x^3}{x^4}$
= $\frac{2}{3}$

题目 31 的注记. 本题的有另一个解法, 但是相较上面的解法相比有些复杂, 但是记录一个常见的错误, 即什么时候可以用等价无穷小的问题, 其写法为:

原式 =
$$\lim_{x\to 0} \left(\frac{1}{x^2} - \cot^2 x\right) = \left(\frac{1}{x^2} - \frac{\cos^2 x}{\sin^2 x}\right)$$

= $\lim_{x\to 0} \frac{\sin^2 x - x^2 \cos^2 x}{x^2 \sin^2 x}$
= $\lim_{x\to 0} \left(\frac{\sin^2 x - x^2 \cos^2 x}{x^4}\right)$

此处有一个常见的错误, 就是能不能把 $\cos^2 x$ 代换为 1, 其实是不能的, 即使最后答案正确, 此时 $x\to 0$ 时, 分母也趋于 0, 如果进行替换, 则违背了极限的运算法则, 因此不能进行替换

原式 =
$$\lim_{x \to 0} \frac{(\sin x - x \cos x)(\sin x + x \cos x)}{x^4} = \frac{$$
泰勒公式 $}{3}$

2.4.2 泰勒公式

泰勒公式的目的是提高精确度,用更高次的多项式来逼近函数

带拉格朗日余项的 n 阶泰勒展开式

如果函数 f(x) 在 x_0 的某个邻域 $U(x_0)$ 内具有 (n+1) 阶导数, 那么对任一 $x \in U(x_0)$, 有

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{f''(x_0)}{2!}(x - x_0)^2 + \frac{f^{(n)}\left(x_0\right)}{n!}\left(x - x_0\right)^n + \frac{f^{(n+1)}(\xi)}{(n+1)!}(x - x_0)^{n+1}$$

带佩亚诺余项的 n 阶泰勒展开式

如果函数 f(x) 在 x_0 处具有 n 阶导数, 那么存在 x_0 的一个邻域, 对于该邻域内的任一 x, 有

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{f''(x_0)}{2!}(x - x_0)^2 + \dots + \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n + o\left((x - x_0)^n\right)^n$$

带有佩亚诺余项的麦克劳林公式

对带有佩亚诺余项的泰勒公式取 $x_0 = 0$,则可以得到带有佩亚诺余项的麦克劳林公式 11

$$f(x) = f(0) + f'(0)x + \dots + \frac{f^{(n)}(0)}{n!}x^n + o(x^n)$$

当 $x \to 0$ 时, 由带有佩亚诺余项的麦克劳林公式可得, 有以下结论

$$\begin{aligned} \sin x &= x - \frac{x^3}{3!} + o(x^3) & \cos x &= 1 - \frac{x^2}{2!} + \frac{x^4}{4!} + o(x^4) \\ \arcsin x &= x + \frac{x^3}{3!} + o(x^3) & \arccos x &= \frac{\pi}{2} - \arcsin x &= \frac{\pi}{2} - x - \frac{1}{3!}x^3 + o(x^3) \\ \arctan x &= x - \frac{x^3}{3} + o(x^3) & \tan x &= x + \frac{x^3}{3} + o(x^3) \\ e^x &= 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + o(x^3) & (1 + x)^a &= 1 + \alpha x + \frac{\alpha(\alpha - 1)}{2!}x^2 + o(x^2) \\ \frac{1}{1 + x} &= 1 - x + x^2 - \dots + (-1)^n x^n + o(x^n) & \frac{1}{1 - x} &= 1 + x + x^2 + \dots + x^n + o(x^n) \\ \ln(x + \sqrt{1 + x^2}) &= x - \frac{1}{6}x^3 + \frac{3}{40}x^5 + \dots & \ln(1 + x) &= x - \frac{x^2}{2} + \frac{x^3}{3} + o(x^3) \end{aligned}$$

注 2.4.2: 泰勒公式应用时的展开原则

- $\frac{A}{B}$ 型, 适用于"上下同阶"原则: 具体来说, 如果分母或者分子是 x 的 k 次幂, 则应把分子或分母展 开到 x 的 k 次幂. 如: $\lim_{x\to 0}\frac{x-\ln(1+x)}{x^2}$,此处 $\ln(1+x)$ 应展开为 $x-\frac{x^2}{2}+o(x^2)$
- A-B 型, 适用"幂次最低"原则: 将 A,B 分别展开到他们系数不相等的 x 的最低次幂为止. 如: 已知 当 $x\to 0$ 时, $\cos x e^{\frac{x^2}{2}}$ 与 ax^b 为等价无穷小, 求 a,b. 则应展开为 $\cos x = 1 \frac{x^2}{2!} + \frac{x^4}{4!} + o(x^4)$, $e^{-\frac{x^2}{2}} = 1 \frac{x^2}{2} + \frac{1}{2!} \frac{x^4}{4} + o(x^4)$.

 $^{^{11}}$ 此处有一个易被忽略的地方,只有函数在 x_0 处,n 阶导数存在,才可以展开到 n 阶

¹该函数为反双曲正弦函数

注 2.4.3: 泰勒公式的解题技巧

- 1. 泰勒公式构建了函数与其高阶导之间的联系, 因此看见高阶导数, 要条件反射的想到泰勒公式
- 2. 奇函数的泰勒展式只有奇数次幂, 偶函数的泰勒展式只有偶数次幂^a
- 3. 极限当中,用佩亚诺余项 O(x 的 n 次幂),证明题中,用拉格朗日余项,找提供信息最多的点作为展开点
- 4. 等价无穷小的本质是泰勒的低精度形式,加减法不建议使用等价无穷小,建议直接泰勒
- 5. 加项减项的本质也是泰勒^b

 a 如 $\sin x$ 和 $\cos x$

 $b \ln \ln(x) = \ln(1+x-1) \sim x-1$

题目 32.
$$\lim_{x\to 0} \frac{e^x \sin x - x(1+x)}{x^2 \sin x}$$

解答.

原式 =
$$\lim_{x \to 0} \frac{\left[1 + x + \frac{1}{2}x^2 + \frac{1}{6}x^3 + o(x^3)\right]\left[x - \frac{1}{6}x^3 + o(x^3)\right] - x(1+x)}{x^3}$$

$$= \lim_{x \to 0} \frac{\left(-\frac{1}{6} + \frac{1}{2}\right)x^3 + o\left(x^3\right)}{x^3}$$

$$= \frac{1}{2}$$

题目 32 的注记. 有的题可能泰勒公式之后多几个高阶的, 但是还是应该遵循泰勒公式展开原则1.4.2

题目 33.
$$\lim_{x\to 0} \frac{\ln(1+x+x^2)-x}{x^2}$$

解答. 对等式进行泰勒展开即:

$$\frac{\ln(1+x+x^2)-x}{x^2} = \frac{(x+x^2-\frac{1}{2}(x+x^2)^2-x)}{x^2} = \lim_{x\to 0} \frac{x^2-\frac{1}{2}x^2}{x^2} = \frac{1}{2}$$

题目 34.
$$f(x)$$
 在 $x=0$ 处二阶可导且满足 $\lim_{x\to 0} \frac{f(x)\sin x + \ln(1+x)}{x^3} = 0$,求 $f(0), f'(0), f''(0)$

解答. 对原式中 f(x) 和 $\sin x$ 和 $\ln(1+x)$ 各项进行泰勒展开得:

$$\begin{split} &\lim_{x\to 0}\frac{f(x)\sin x+\ln(1+x)}{x^3}=0\\ &=\lim_{x\to 0}\frac{(f(x)=f(0)+f'(0)x+\frac{f''(0)}{2}x^2)(x-\frac{1}{6}x^3)-(x-\frac{1}{6}x^3)+(x-\frac{x^2}{2}+\frac{x^3}{3})}{x^3}=0\\ &=\frac{(f(0)+1)x+(f''(0)-\frac{1}{2})x^2+(-\frac{1}{6}f(0)+\frac{f''(0)}{2}+\frac{1}{3})x^3+o(x^3)}{x^3}=0. \end{split}$$

可以得到的是,分子的极限一定为 0,那么 $\begin{cases} f(0)+1=0 \\ f'(0)-\frac{1}{2}=0 \\ -\frac{1}{6}f(0)+\frac{f''(0)}{2}+\frac{1}{3}=0 \end{cases} \implies \begin{cases} f(0)=-1 \\ f'(0)=\frac{1}{2} \\ f''(0)=-1 \end{cases}$

题目 34 的注记. 看见各阶导数应想到泰勒公式

题目 35. 已知函数
$$f(x)$$
 在 $x=0$ 的某邻域内连续,且 $\lim_{x\to 0}(\frac{\sin x}{x^2}+\frac{f(x)}{x})=2$,试求 $f(0),f'(0)$

解答. 对原式进行通分然后对 $\sin x$ 进行泰勒展开:

$$\lim_{x \to 0} \frac{\sin x + x f(x)}{x^2} = 2$$

$$= \lim_{x \to 0} \frac{x + x f(x) + o(x^2)}{x^2} = 2$$

根据函数极限与无穷小的关系1.3.1可知,1+f(x)=2x+o(x),f(x)=2x-1+o(x) 因为函数在 x=0 上连续,因此 $f(0)=\lim_{x\to 0}f(x)$,f(x)=2x-1+o(x) 的表达式是 $x\to 0$ 时的表达式,将 x=0 带入可得 f(0)=-1,使用导数定义求得 f(x) 在点 0 处的导数,即 $f'(0)=\lim_{x\to 0}\frac{f(x)-f(0)}{x-0}=\frac{2x+o(x)}{x}=2$

题目 35 的注记. 看见此类问题, 第一步应先通分, 然后将具体函数的泰勒进行展开 (因为此题中的条件是连续而不是可导, 如果是可导的话可以全部进行展开), 然后把 f(x) 的表达式给求出来

题目 36. 设函数 $f(x) = \sec x$ 在 x = 0 处的 2 次泰勒多项式为 $1 + ax + bx^2$, 则

$$(A)a=1, b=\frac{1}{2} \qquad (B)a=1.b=\frac{1}{2} \qquad (C)a=0, b=-\frac{1}{2} \qquad (D)a=0, b=\frac{1}{2}$$

解答. $f(x) = \sec x = \frac{1}{\cos x}$, 该函数为偶函数, 因此泰勒展开只有偶数次幂, 那么 a = 0, 该函数一定大于 0, 因此 b > 0, 排除 C,A,B.

题目 36 的注记. 本题也可以将 sec x 展开, 但是较为麻烦, 可以采用上述的方法进行运算.

题目 37. 设函数
$$f(x)=\frac{\sin x}{1+x^2}$$
 在 $x=0$ 处的 3 次泰勒多项式为 $ax+bx^2+cx^3$,则 $(A)a=1,b=0,c=-\frac{7}{6}$ $(B)a=1,b=0,c=\frac{7}{6}$ $(C)a=-1,b=-1,c=-\frac{7}{6}$ $(D)a=-1,b=-1,c=\frac{7}{6}$

解答. 法 1: 对分子进行泰勒展开, 然后使用整式除法

$$\begin{array}{c|c}
x - \frac{7}{6}x^3 \\
1 + x^2 & x - \frac{7}{6}x^3 + \frac{1}{120}x^5 \\
\hline
x + x^3 \\
-\frac{7}{6}x^3 + \frac{1}{120}x^5 \\
-\frac{7}{6}x^3 - \frac{7}{6}x^5
\end{array}$$

法 2: 对整式进行泰勒展开与等价无穷小替换 $f(x) = (x - \frac{x^3}{6})(1 - x^2) = x - \frac{7}{6}x^3$

法 3: 对整式进行泰勒展开计算可得 $x-\frac{7}{6}x^3$

题目 37 的注记. 遇见此类问题,解题方法的优先级为长除法,利用等价替换,使用定义(利用泰勒公式直接所有项都展开)

2.4.3 洛必达法则

定义 2.4.1: 洛必达法则定义

- $\lim_{x\to x_0} f(x) = \lim_{x\to x_0} g(x) = 0(\infty)$
- f(x) 和 g(x) 在 x_0 的某去心邻域内可导, 且 $g'(x) \neq 0$
- $\lim_{x \to x_0} \frac{f'(x)}{g'(x)}$ 存在 (或 ∞)

则
$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = \lim_{x \to x_0} \frac{f'(x)}{g'(x)}$$

需要注意的是使用过洛必达法则之后的极限必须存在, 即 $\lim_{x\to x_0} \frac{f'(x)}{g'(x)}$ 必须存在.

题目 38. 求
$$\lim_{x\to 0} \frac{x^2 \times \sin \frac{1}{x}}{\sin x}$$

解答. 该函数也是 $\frac{0}{0}$ 型, 但是如果使用洛必达法则, 则 $2x \times \sin \frac{1}{x} - \cos \frac{1}{x}$, 极限显然不存在, 因此不可以使用洛

必达法则. 则正确求法为 $\lim_{x\to 0} \frac{x^2 \times \sin\frac{1}{x}}{x} = \lim_{x\to 0} x \times \sin\frac{1}{x} = 0.$

结论 2.4.2: 洛必达可以洛到几阶

- n 阶导连续,则最多可以洛到 n 阶.
- n 阶导存在/n 阶邻域内可导,则最多能洛到 n-1 阶.
- 实际上,n 阶等连续,不一定能够洛到 n 阶 a . 结论如下: $\lim_{x\to x_0} \frac{f(x)}{\left(x-x_0\right)^m}$ 到底能用多少次洛必达法则假设 m 和 n 均为正整数,并且 $f(x_0)=f'(x_0)=\cdots=f^{(n)}(x_0)=0$.
 - 1. 如果 f(x) 在 x_0 的 n 阶导数连续, 则:

(a) 若
$$m\leqslant n$$
, 则 $\lim_{x\to x_0}\frac{f(x)}{\left(x-x_0\right)^m}$ 可以用 m 次洛必达 $\lim_{x\to x_0}\frac{f^{(m)}\left(x\right)}{m!}=\frac{f^{(m)}\left(x_0\right)}{m!}$

(b) 若
$$m > n$$
, 则 $\lim_{x \to x_0} \frac{f(x)}{\left(x - x_0\right)^m}$ 则一次都不能用洛必达.

2. 如果 f(x) 在 x_0 有 n 阶导数 (没说 n 阶导函数连续), 则:

(a) 若
$$m \leqslant n-1$$
, 则 $\lim_{x \to x_0} \frac{f(x)}{\left(x-x_0\right)^m}$ 可以用 m 次洛必达 $\lim_{x \to x_0} \frac{f^{(m)}(x)}{m!} = \frac{f^{(m)}\left(x_0\right)}{m!}$

(b) 若
$$m=n$$
,则 $\lim_{x\to x_0}\frac{f(x)}{x^m}$ 可以用 $m-1$ 次洛必达出现 $\lim_{x\to x_0}\frac{f^{(m-1)}(x)}{m!(x-x_0)}$,然后利用导数 定义 $f^{(n)}(x_0)=\lim_{x\to x_0}\frac{f^{(n-1)}(x)-f^{(n-1)}(x_0)}{x-x_0}$ 进一步计算

(c) 若
$$m \ge n+1$$
, 则 $\lim_{x \to x_0} \frac{f(x)}{\left(x-x_0\right)^m}$ 一次都不能用洛必达

题目 39. 设 f(x) 有二阶连续导数,并且 f(0)=0, f'(0)=0, f''(0)=0, 并且 $\lim_{x\to 0}\frac{f(x)}{x^3}=1$, 问 $\frac{f(x)}{x^3}$ 是否可以进行洛必达法则? 如果可以请求出 f'''(0); 如果不存在,请说明理由.

解答. 看到此题的二阶导数连续,一般都认为可以进行洛必达,但是其实该方程式一次洛必达都不可以进行,假设函数 f(x) 表达式为

$$f(x) = \begin{cases} x^{\frac{28}{9}} \sin \frac{1}{\sqrt[3]{x}} + x^3, x \neq 0\\ 0, x = 0 \end{cases}$$

那么

$$f'\left(x\right) = \begin{cases} \frac{28}{9}x^{\frac{19}{9}}\sin\frac{1}{\sqrt[3]{x}} - \frac{1}{3}x^{\frac{16}{9}}\cos\frac{1}{\sqrt[3]{x}} + 3x^{2}, x \neq 0\\ 0, x = 0 \end{cases}$$

a但是考研中这点没有难为过人,因此可以粗略的认为上述两条是成立的

二阶导为

$$f''(x) = \begin{cases} \frac{532}{82} x^{\frac{10}{9}} \sin \frac{1}{\sqrt[3]{x}} - \frac{44}{27} x^{\frac{7}{9}} \cos \frac{1}{\sqrt[3]{x}} - \frac{1}{9} x^{\frac{4}{9}} \sin \frac{1}{\sqrt[3]{x}} + 6x, x \neq 0\\ 0, x = 0 \end{cases}$$

可知函数 f'(0) = 0, 且 f''(0) = 0, 该函数完全满足题意, 但是对 $\frac{f(x)}{x^3}$ 使用第一次洛必达时, 为

$$1 = \lim_{x \to 0} \frac{f(x)}{x^3} = \lim_{x \to 0} \frac{f'(x)}{3x^2} = \lim_{x \to 0} \frac{\frac{28}{9}x^{\frac{19}{9}} \sin \frac{1}{\sqrt[3]{x}} - \frac{1}{3}x^{\frac{16}{9}} \cos \frac{1}{\sqrt[3]{x}} + 3x^2}{3x^2}$$

洛必达之后的极限显然不存在,因此该情况下不可以使用洛必达法则.

题目 39 的注记. 本题需要注意,不是所有的条件下都可以进行洛必达法则,由此可以抽象出来一个样例:

$$f(x) = \begin{cases} x^{a} \sin \frac{1}{\sqrt[b]{x}} + x^{c}, x \neq 0\\ 0, x = 0 \end{cases}$$

题目 40. 已知函数 f(x) 在 x=0 的某邻域内可导,且 $\lim_{x\to 0}(\frac{\sin x}{x^2}+\frac{f(x)}{x})=2$,试求 f(0),f'(0) 以及 $\lim_{x\to 0}\frac{x}{f(x)+e^x}$

解答. 本题中未说明 f(x) 在邻域内连续可导,只说明一阶导存在,因此一阶都不可以进行洛必达法则,但是可以使用泰勒公式对上述式子进行泰勒展开,因此上述式子的解法为对原式进行通分然后对 $\sin x$ 进行泰勒展开:

$$\begin{split} & \lim_{x \to 0} \frac{\sin x + x f(x)}{x^2} = 2 \\ & = \lim_{x \to 0} \frac{x + x f(x) + o(x^2)}{x^2} = 2 \end{split}$$

根据函数极限与无穷小的关系1.3.1可知,1+f(x)=2x+o(x), f(x)=2x-1+o(x) 因为函数在 x=0 上连续, 因此 $f(0)=\lim_{x\to 0}f(x), f(x)=2x-1+o(x)$ 的表达式是 $x\to 0$ 时的表达式,将 x=0 带入可得 f(0)=-1,使用导数定义求得 f(x) 在点 0 处的导数,即 $f'(0)=\lim_{x\to 0}\frac{f(x)-f(0)}{x-0}=\frac{2x+o(x)}{x}=2$,然后带入极限 $\lim_{x\to 0}\frac{x}{f(x)+e^x}=\frac{x}{-1+2x+e^x}=\frac{1}{3}$

题目 40 的注记. 看见此类问题, 第一步应先通分, 然后将具体函数的泰勒进行展开 (因为此题中的条件是连续而不是可导, 如果是可导的话可以全部进行展开), 然后把 f(x) 的表达式给求出来

题目 41. 求极限 $\lim_{x\to+\infty} x(e^{\frac{\pi}{2}+\arctan x}-e^{\pi})$

解答。(1) 拉格朗日中值定理:

原式 =
$$\lim_{x \to +\infty} x \times e^{(\varepsilon)} (\arctan x - \frac{\pi}{2})$$

$$= e^{\pi} \lim_{x \to +\infty} \frac{\arctan x - \frac{\pi}{2}}{\frac{1}{x}}$$

$$= \lim_{x \to +\infty} \frac{\frac{1}{1 + x^2}}{-\frac{1}{x^2}}$$

$$= -e^{\pi}$$

(2) 提后项:

原式 =
$$\lim_{x \to +\infty} e^{\pi} (e^{\arctan \frac{\pi}{2}} - 1)$$

= $\lim_{x \to +\infty} e^{\pi} \times \arctan \frac{-\pi x}{2}$
= $-e^{\pi}$

(3) 直接洛:

原式 =
$$\lim_{x \to +\infty} \frac{e^{\frac{\pi + \arctan x}{2}} - e^{\pi}}{\frac{1}{x}}$$
=
$$\frac{e^{\frac{\pi}{2} + \arctan x} \times \frac{1}{1 + x^2}}{-\frac{1}{x^2}}$$
=
$$-e^{\pi}$$

题目 41 的注记· 该形式为无穷大乘以无穷小,可以构造无穷大比无穷大,或无穷小比无穷小,之后进行洛必达. 方法多了,往往会忽视洛必达,但有时洛必达反而会简单一些.

题目 42. 设 y = f(x) 是方程 $y'' + 2y' + y = e^{3x}$ 的解, 且满足 y(0) = y'(0) = 0, 则当 $x \to 0$ 时, 与 y(x) 为 等价无穷小的是 ()

(A).
$$\sin x^2$$
 (B). $\sin x$ (C). $\ln(1+x^2)$ (D). $\ln \sqrt{1+x^2}$

解答. 等价无穷小具有传递性,因此 $\sin x^2 \sim x^2, \sin x \sim x, \ln(1+x^2) \sim x^2, \ln(\sqrt{1+x^2}) \sim \frac{1}{2}x^2$. 若与 y(x) 为 等价无穷小,那么 $\lim_{x\to 0} \frac{y(x)}{f(x)} = 1$. 对 y(x) 进行泰勒展开 $y(x) = y(0) + y'(0)x + \frac{y''(0)}{2}x^2$. 当 x = 0 时,有

y''(0) = 1,易知一阶导是连续的,对函数形式进行分析,可知函数在二阶导也是连续的,那么就可以展开到二阶,那么 $y(x) = \frac{1}{2}x^2$.

除此之外, 还可以这样解决, 已知二阶导连续, 那么对 $\frac{y(x)}{A/B/C/D}$ 进行洛必达可知 D 选项正确.

2.4.4 等价替代求极限

两个重要极限

$$\lim_{\square \to \infty} (1 + |\square|)^{\frac{1}{\square}} = e^{|\square|\frac{1}{\square}} \qquad \qquad \lim_{\square \to 0} \frac{\sin\square}{\square} = 1$$

等价无穷小

等价无穷小的本质是泰勒的低精度形式

关于等价无穷小,有以下两个定理

定义 2.4.2: 等价无穷小的充要条件

 β 与 α 是等价无穷小的充分必要条件为

$$\beta = \alpha + o(\alpha)$$

定义 2.4.3: 等价无穷小的替换准则

设 $\alpha \sim \tilde{\alpha}, \beta \sim \tilde{\beta},$ 且 $\lim \frac{\tilde{\beta}}{\tilde{\alpha}}$ 存在, 则

$$\lim \frac{\beta}{\alpha} = \lim \frac{\tilde{\beta}}{\tilde{\alpha}}.$$

等价无穷小的本质还是在做恒等替换, 所以一般情况下整式的乘除法可以直接用等价无穷小替换, 分子及分母都可用等价无穷小来代替. 但是需要遵循以下代换原则⁴

- 乘除关系可以换: 若 $\alpha \sim \alpha_1, \beta \sim \beta_1,$ 则 $\lim \frac{\alpha}{\beta} = \lim \frac{\alpha_1}{\beta} = \lim \frac{\alpha}{\beta_1} = \lim \frac{\alpha_1}{\beta_1}$
- 加减关系一定条件下可以换 b

- 若
$$\alpha \sim \alpha_1, \beta \sim \beta_1,$$
且 $\lim \frac{\alpha_1}{\beta_1} = A \neq 1, 则 \alpha - \beta \sim \alpha_1 - \beta_1$

- 若
$$\alpha \sim \alpha_1, \beta \sim \beta_1,$$
且 $\lim \frac{\alpha_1}{\beta_1} = A \neq -1, 则 \alpha + \beta \sim \alpha_1 + \beta_1$

加减关系代换准则证明如下:

证明.

$$\lim \frac{\alpha-\beta}{\alpha_1-\beta_1} = \lim \frac{\beta(\frac{\alpha}{\beta}-1)}{\beta_1(\frac{\alpha_1}{\beta_1}-1)} = 1$$

a其实没有什么替换原则,本质其实是因为超实数系下不能进行实数运算,只能进行替换运算

以下为常用等价无穷小

当 $x \to 0$ 时,有

1.

$$x \sim \sin x \sim \tan x \sim \arcsin x \sim \arctan x$$

 $\sim \ln(1+x)$
 $\sim e^x - 1$

2.

$$(1+x)^{a} \sim 1 + ax$$

$$a^{x} - 1 \sim x \ln a$$

$$1 - \cos^{\alpha} x \sim \frac{\alpha}{2} x^{2}$$

证明.
$$1 - \cos^{\alpha} x \sim \frac{\alpha}{2} x^2$$

该等价替换主要由洛必达法则证明:

$$\lim_{x\to 0}\frac{1-(\cos x)^a}{\frac{1}{2}ax^2}=\lim_{x\to 0}\frac{-a(\cos x)^{a-1}(-\sin x)}{ax}=\lim_{x\to 0}(\cos x)^{a-1}=1.$$

3. 上述结论的推广:

当
$$x \to 0$$
 时, 若

$$(1+x)^a - 1 \sim ax,$$

^b这样的形式其实不经常用,看见加减最好使用泰勒公式进行替换运算

则

$$\alpha(x) \to 0, \alpha(x)\beta(x) \to 0,$$

那么

$$[1+\alpha(x)]^{\beta(x)}-1\sim\alpha(x)\beta(x)$$

4.

$$\boxed{\frac{1}{2}x^2 \sim \sec x - 1 \sim x - \ln(1+x)}$$

5.

$$\frac{1}{6}x^3 \sim x - \sin x \sim \arcsin x - x$$

6.

$$\frac{1}{3}x^3 \sim x - \arctan x \sim \tan x - x$$

7.
$$x \to 1$$
 时, $\ln x \sim x - 1$, 因为 $\ln(1 + x - 1) \sim x - 1$

8. 当
$$A \to 0, B \to 0$$
 时, $e^A - e^B \sim A - B$, 因为 $e^B(e^{A-B} - 1) \sim A - B$

题目 43. 假设
$$\lim_{x\to 0} \frac{f(x)}{1-\cos x}$$
 存在

解答. 若 $\lim_{x\to 0} \frac{f(x)}{1-\cos x}$ 存在, 那么构造恒等变形:

原式 =
$$\lim_{x \to 0} \left(\frac{f(x)}{\frac{1}{2}x^2} \times \frac{\frac{1}{2}x^2}{1 - \cos x} \right)$$

$$\frac{\text{等价无穷小}}{x \to 0} \lim_{x \to 0} \frac{f(x)}{\frac{1}{2}x^2}$$

题目 43 的注记. 整体的乘除法本质是构造恒等变形

等价无穷小替换的本质是构造恒等变形.需要谨记: 在使用等价无穷小时,需要按照上述步骤进行编写,不可以省 去恒等变形步骤,如果省去则可能导致错误. 如下题

题目 44. $\underline{求极限}\lim_{x\to 0} \frac{\sin(x^2\sin\frac{1}{x})}{x}$

解答. 由常用不等式1.5.2的 $x \to 0$, $|\sin x| \le |x|$, 那么

$$|\frac{\sin(x^2\sin\frac{1}{x})}{x}| \leq |\lim_{x\to 0}\frac{x^2\sin\frac{1}{x}}{x}|$$

由夹逼准则得:

$$0\leqslant \lim_{x\to 0}|\frac{\sin(x^2\sin\frac{1}{x})}{x}|\leqslant \lim_{x\to 0}|\frac{x^2\sin\frac{1}{x}}{x}|$$

左右极限都为 0, 因此 $\lim_{x\to 0} \frac{\sin(x^2\sin\frac{1}{x})}{x}$ 极限为 0

题目 44 的注记. 本题有一个常见的错误做法,就是直接把 $\lim_{x\to 0} \frac{\sin(x^2\sin\frac{1}{x})}{x}$ 进行等价无穷小替代,写为 $\lim_{x\to 0} \frac{x^2\sin\frac{1}{x}}{x}$,但是这是错误的,如果这样写,那么 $\lim_{x\to 0} \frac{\sin(x^2\sin\frac{1}{x})}{x^2\sin\frac{1}{x}} \times \frac{x^2\sin\frac{1}{x}}{x}$,在 $\lim_{x\to 0} \frac{\sin(x^2\sin\frac{1}{x})}{x^2\sin\frac{1}{x}}$ 的分母中,存在 $x=\frac{1}{n\pi}$ 的间断点,根据极限定义,极限如果存在,那么去心邻域一定要有定义,那这样写就违背了极限的存在准则,因此极限 $\lim_{x\to 0} \frac{x^2\sin\frac{1}{x}}{x}$ 不存在,不可以这样写.

抽象函数使用等价无穷小求极限

结论 2.4.3: 抽象函数等价的条件

若 $f(x) \rightarrow 0$, 只有 $f(x) \neq 0$, 才能将 $\sin(f(x)) \sim f(x)$

题目 45. 设 $\lim_{x\to 0} \varphi(x) = 0$, 则下列命题中正确的个数为

$$(1)\lim_{x\to 0}\frac{\sin\varphi(x)}{\varphi(x)}=1$$

$$(2)\lim_{x\to 0} (1+\varphi(x))^{\frac{1}{\varphi(x)}} = e.$$

$$(3) 若 f'(x_0) = A, 则 \lim_{x \rightarrow 0} \frac{f(x_0 + \varphi(x)) - f(x_0)}{\varphi(x)} = A$$

解答. 这三个都是错的,因为 $\varphi(x)$ 在分母上,都可能为 0. 比如函数 $\varphi(x)=x\times\sin\frac{1}{x}$,其极限为 0,但是又存在 $x=\frac{1}{n\pi}$ 的无定义点.

积分等价替换求极限

定义 2.4.4: 积分等价替换法则

设 f(x) 和 g(x) 在 x=0 的某邻域内连续,且 $\lim_{x\to 0}\frac{f(x)}{g(x)}=1$,则 $\int_0^x f(t)\mathrm{d}t\sim\int_0^x g(t)\mathrm{d}t$.

定义 2.4.5: 变限积分求导公式

设 $F(x)=\int_{\varphi_1(x)}^{\varphi_2(x)}f(t)\mathrm{d}t$,其中 f(x) 在 [a,b] 上连续,可导函数 $\varphi_1(x)$ 和 $\varphi_2(x)$ 的值域在 [a,b] 上,则在函数 $\varphi_1(x)$ 和 $\varphi_2(x)$ 的公共定义域上,有

$$F'(x) = \frac{\mathrm{d}}{\mathrm{d}x} \bigg[\int_{\varphi_1(x)}^{\varphi_2(x)} f(t) \mathrm{d}t \bigg] = f \big[\varphi_2(x) \big] \varphi_2'(x) - f \big[\varphi_1(x) \big] \varphi_1'(x).$$

题目 46. 求
$$\lim_{x\to+\infty} \frac{\int_0^x (1+t^2)e^{t^2}dt}{xe^{x^2}+x^2}$$

解答. 看见变上限积分类型计算题应首先想到洛必达法则,对原式进行进行洛必达法则得:

原式 =
$$\lim_{x \to +\infty} \frac{e^{x^2} + x^2 e^{x^2}}{e^{x^2} + 2x^2 e^{x^2} + 2x}$$
$$= \frac{1 + x^2}{1 + 2x^2 + \frac{2x}{e^{x^2}}}$$

对极限取大头可得

$$\lim_{x \to +\infty} \frac{1 + x^2}{1 + 2x^2 + \frac{2x}{2x^2}} = \frac{1}{2}$$

题目 46 的注记. 在极限中, 处理变上限积分的最好办法是洛必达. 能洛则洛, 不能洛的话就换元之后再洛.

题目 47. 若
$$\lim_{x\to 0} \frac{\int_0^x \frac{t^2}{\sqrt{a^2+t^2}} dt}{bx-\sin x} = 1$$
, 求 a,b, 其中 a,b 为正数

解答.

原式 =
$$\frac{x^2}{\sqrt{a^2 + x^2}}$$
$$= \frac{1}{a} \cdot \lim_{x \to 0} \frac{x^2}{b - \cos x}$$

若分子趋近于零, 但是该等式的极限为 1, 那么该分母的极限一定趋近于 0, 那么 b 一定为 1

原式 =
$$\frac{1}{a} \cdot \lim_{x \to 0} \frac{x^2}{\frac{1}{2}x^2}$$

$$a = 2$$

综上所述 a=2,b=1

题目 47 的注记. 对于本题, 还可以可被积函数进行等价运算1.4.4, 但是这不是通法, 因此应当对此类问题首先进行洛必达. 以下为使用被积函数等价运算计算过程: 由于当 $t\to 0$ 时, $\frac{t^2}{\sqrt{a^2+t^2}}\sim \frac{t^2}{a^2}$

原式 =
$$\lim_{x \to 0} \frac{\int_0^x \frac{t^2}{\sqrt{a^2 + t^2}} dt}{bx - \sin x}$$

= $\lim_{x \to 0} \frac{\int_0^x \frac{t^2}{a} dt}{bx - \sin x}$
= $\frac{1}{3a} \lim_{x \to 0} \frac{x^3}{bx - \sin x} \xrightarrow{b \neq 1} \frac{1}{3a} \lim_{x \to 0} \frac{x^3}{bx - x} = 0$

等式矛盾, 因此 b = 1, 对上式进行泰勒展开得:

$$1 = \frac{1}{3a} \lim_{x \to 0} \frac{x^3}{x - \sin x} = \frac{1}{3a} \lim_{x \to 0} \frac{x^3}{\frac{x^3}{6}} = \frac{2}{a}$$

综上所述 a=2,b=1

题目 48. 求极限
$$\lim_{x\to 0} \frac{x \int_0^x \ln{(1+t^2)} dt}{x^2 - \sin^2{x}}$$

解答.

原式 =
$$\lim_{x \to 0} \frac{x \int_0^x \ln(1+t^2)dt}{(x-\sin x)(x+\sin x)}$$

= $\lim_{x \to 0} \frac{x \int_0^x \ln(1+t^2)dt}{2x \times \frac{1}{6}x^3}$
= $\frac{\ln(1+x^2)}{x^2} = 1$

题目 48 的注记. 看见形如 $x^2 - \sin x^2$ 的形式, 就应当想到 $(x + \sin x)(x - \sin x)$ 的展开, 然后可以通过泰勒展

开进行计算

题目 49. 设函数
$$f(x)$$
 连续,且 $f(0) \neq 0$,求极限 $\lim_{x\to 0} \frac{\int_0^x (x-t) f(t) dt}{x \int_0^x f(x-t) dt}$

解答. 由于分母有两个变量,因此不好进行洛必达,那么此时就要对分母进行换元,换元过程如下: \diamondsuit (x-t) = u,对等式两边求微分得:d(-t) = du.

首先,对分子展开,对分母换元得:

原式 =
$$\lim_{x \to 0} \frac{x \int_0^x f(t) dt - \int_0^x t f(t) dt}{x \int_0^x f(t) dt}$$

对原式进行进行洛必达法则得

原式 =
$$\lim_{x \to 0} \frac{\int_0^x f(t) \mathrm{d}t + x f(x) - x f(x)}{\int_0^x f(t) \mathrm{d}t + x f(x)}$$
$$= \lim_{x \to 0} \frac{\int_0^x f(t) \mathrm{d}t}{\int_0^x f(t) \mathrm{d}t + x f(x)}$$

如果此时还要进行洛必达,那么分母则会出现 f'(x),那么最后是不可计算的,因此此时应进行积分中值定理,则 $\int_0^x f(t)dt = x f(\varepsilon) (\varepsilon \in (0,x))^{12}$

原式 =
$$\lim_{x \to 0} \frac{xf(c)}{xf(c) + xf(x)}$$
$$= \frac{f(0)}{f(0) + f(0)} = \frac{1}{2}$$

题目 49 的注记. 如果出现两个变量则换元之后再洛,如果实在洛不了的话,再考虑使用积分中值定理. 积分中值定理和拉格朗日中值定理中出现的 ε ,最后一步想说明最终结果时,严格来说需要夹逼准则.(卷面上可以不体现出来,但脑子里必须把这些事情想明白)

本题也可以积分替换进行计算, 但是不推荐, 写法如下:

原式 =
$$\lim_{x \to 0} \frac{x \int_0^x f(t) dt - \int_0^x t f(t) dt}{x \int_0^x f(t) dt}$$
.
$$= 1 - \lim_{x \to 0} \frac{\int_0^x t f(t) dt}{x \int_0^x f(t) dt}$$

$$= 1 - \lim_{x \to 0} \frac{\frac{f(0)}{2} x^2}{f(0) x^2}$$

¹² 这个地方一定要可以夹起来, 如果夹起来的极限不一样, 那么则不可以使用积分中值定理

$$=\frac{1}{2}$$

2.4.5 抓大头和抓小头

本质是同时处以最高阶/最低阶

$$\lim_{x \to \infty} \frac{a_0 x^m + a_1 x^{m-1} + \dots + a_m}{b_0 x^n + b_1 x^{n-1} + \dots + b_n} = \begin{cases} 0, & \text{if } n > m \\ \frac{a_0}{b_0}, & \text{if } n = m \\ \infty, & \text{if } n < m \end{cases}$$

还有一个重要的等价为 $\lim_{n\to\infty} \sqrt[n]{n!} \sim e^{-1} \times n$ 该等价由斯特林公式 $\lim_{n\to\infty} \frac{n!}{\sqrt{2\pi n} \left(\frac{n}{e}\right)^n} = 1$ 而来,又可写为 $\lim_{n\to\infty} \frac{\sqrt[n]{n!}}{n!} = e^{-1}$

题目 50. 求
$$\lim_{x\to\infty} \frac{4x^3+x^2+3x+10}{3x^3+2x+7}$$

解答. 对等式上下同除以
$$x^3$$
 得 $\lim_{x\to\infty} \frac{4+\frac{1}{x}+\frac{3}{x^2}+\frac{10}{x^3}}{3+\frac{2}{x^2}+\frac{7}{x^3}}=\frac{4}{3}$

题目 51. 求
$$\lim_{x\to 0} \frac{x+2x^2+3x^4}{2x+4x^3+x^5}$$

解答. 上下同除以 x 得 $\lim_{x\to 0} \frac{1+2x+3x^3}{2+4x^2+x^4} = \frac{1}{2}$

2.4.6 利用函数性质求极限

幂指函数性质求极限

一般主要是使用幂指函数的性质进行恒等变换,即 $a^b=e^{b\ln a}$. 如果两个函数的指数相同,则可以提后项/前项.

除此之外, 还有一个常用的结论:对于 $\forall a,b>0$ 均有: $\lim_{x\to 0^+} x^a (\ln x)^b=0$, 证明如下:证明.

原式 =
$$\lim_{x \to 0^+} x^a \cdot \ln^b x$$

= $\lim_{x \to 0^+} \frac{\ln^b x}{x^{-a}}$

$$= \lim_{x \to 0^+} \frac{b \ln^{b-1} x \cdot \frac{1}{x}}{-ax^{-a-1}}$$

每洛一次,分子次数-1. 分母次数不变,一直洛下去,分子次数要么洛到 0(即 $\lim_{x\to 0^+}\frac{c}{x^{-a}}=\lim_{x\to o^+}cx^a=0$),要 么洛成负数 $(\lim_{x\to 0^+}c\frac{\ln^m x}{x^{-a}}=0)$,最终结果都是 0

题目 52. 求极限 $\lim_{x\to 0^+} x^{(x^x-1)}$

解答.

原式 =
$$\lim_{x \to 0^+} x^{e^{x \ln x} - 1}$$

= $\lim_{x \to 0^+} x^{x \ln x}$
= $\lim_{x \to 0^+} e^{x \ln^2 x} = 1$

题目 53. 求极限 $\lim_{x\to 0} (\cos 2x + 2x \sin x)^{\frac{1}{x^4}}$

解答.

原式 =
$$\lim_{x\to 0} e^{\frac{1}{x^4}\ln(\cos 2x + 2x\sin x)}$$

= $e^{\lim_{x\to 0} \frac{1}{x^4}\ln((1 - \frac{4x^2}{2} + \frac{(2x)^4}{24}) + x - \frac{x^3}{6})}$
= $e^{\lim_{x\to 0} \frac{2}{3}x^4 - \frac{1}{3}x^4}$
= $e^{\frac{1}{3}}$

题目 54. <u>求极限</u> $\lim_{x\to 0^+} \frac{x^x - (\sin x)^x}{x^2 \ln(1+x)}$

解答. 本题方法较多, 因此分阶段进行分析:

原式 =
$$\lim_{x \to 0} \frac{e^{x \ln x} - e^{x \ln \sin x}}{x^2 \ln(1+x)}$$
$$= \frac{e^{x \ln x} - e^{x \ln \sin x}}{x^3}$$

接下来,可以对上述式子进行中值定理计算或者使用提后项的方法:中值定理:

原式 =
$$\lim_{x\to 0} \frac{e^{\varepsilon}(x \ln x - x \ln \sin x)}{x^3}$$

= $\frac{\ln x - \ln \sin x}{x^2}$

提后项:

原式 =
$$\lim_{x \to 0} \frac{e^{x \ln \sin x} (e^{x \ln x - x \ln \sin x} - 1)}{x^3}$$
$$= \lim_{x \to 0} \frac{(e^{x \ln x - x \ln \sin x} - 1)}{x^3}$$
$$= \frac{\ln x - \ln \sin x}{x^2}$$

然后对于 $\frac{\ln x - \ln \sin x}{x^2}$ 可使用中值定理和对数运算法则进行计算:

拉格朗日中值定理:

原式 =
$$\lim_{x \to 0} \frac{\frac{1}{\varepsilon}(x - \sin x)}{x^2}$$
 $(x < \varepsilon < \sin x)$
$$= \lim_{x \to 0} \frac{x - x + \frac{1}{6}x^3}{x^2\varepsilon}$$

$$= \frac{1}{6}$$

对数运算法则:

原式 =
$$\lim_{x \to 0} \frac{\ln(\frac{x}{\sin x})}{x^2}$$
=
$$\frac{\ln(1 + \frac{x}{\sin x} - 1)}{x^2}$$
=
$$\frac{\frac{x}{\sin x} - 1}{x^2}$$
=
$$\frac{x - \sin x}{x^2 \sin x}$$
=
$$\frac{1}{6}$$

题目 **55.** 求极限
$$\lim_{x\to 0} \frac{(3+x)^{\sin x} - 3^{\sin x}}{x^2}$$

解答.

原式 =
$$\lim_{x \to 0} \frac{3^{\sin x} [(1 + \frac{x}{3})^{\sin x} - 1]}{x^2}$$

= $\lim_{x \to 0} \frac{\frac{x}{3} \sin x}{x^2}$
= $\frac{1}{3}$

对数函数性质求极限

极限当中, 见到 $\ln A$, A 趋于 1 时, 优先想到构造成 $\ln(1+无穷小)$ 的形式, 如果这个式子本身进行恒等变形之后的结果过于复杂, 则要想到利用对数运算法则构造 $\ln(1+无穷小)$.

题目 56. 已知当
$$x \to 0$$
 时, $f(x) = \ln \frac{1+x}{1-x} - 2\ln(x+\sqrt{1+x^2})$ 是 x 的 n 阶无穷小, 则 $n = 1$

解答.

原式 =
$$\lim_{x\to 0} (\ln(1+x) - \ln(1-x) - 2\ln(x+\sqrt{1+x^2}))$$

= $\lim_{x\to 0} (x - \frac{x^2}{2} + \frac{x^3}{3} + x + \frac{x^2}{2} + \frac{x^3}{3} - 2x + \frac{1}{3}x^3)$
= x^3

综上易知:n=3

题目 57. 求极限
$$\lim_{x\to 0} \frac{\ln(\sin^2 x + e^x) - x}{\ln(e^{2x} - x^2) - 2x}$$

解答.

原式 =
$$\lim_{x \to 0} \frac{\ln(\sin^2 x + e^x) - \ln e^x}{\ln(e^{2x} - x^2) - \ln e^{2x}}$$

= $\lim_{x \to 0} \frac{\ln \frac{\sin^2 x + e^x}{e^x}}{\ln \frac{e^{2x} - x^2}{e^{2x}}}$
= $\lim_{x \to 0} \frac{\ln(1 + \frac{\sin^2 x}{e^x})}{\ln(1 - \frac{x^2}{e^{2x}})}$
= $\lim_{x \to 0} \frac{\frac{\sin^2 x}{e^x}}{\frac{x^2}{e^{2x}}}$
= $\lim_{x \to 0} e^x = 1$

題目 58. 已知
$$\lim_{x\to 0}\frac{2\arctan x-\ln\frac{1+x}{1-x}}{x^p}=c\neq 0$$
 A. $p=3,c=-\frac{4}{3}$ B. $p=-3,c=\frac{4}{3}$ C. $p=\frac{4}{3},c=3$ D. $p=-\frac{4}{3},c=-3$

解答.

原式 =
$$\lim_{x\to 0} \frac{2\arctan x - \ln(1+x) + \ln(1-x)}{x^p} = c$$

$$= \lim_{x\to 0} \frac{2x - \frac{2x^3}{3} - x + \frac{x^2}{2} - \frac{x^3}{3} - x - \frac{x^2}{2} - \frac{x^3}{3}}{x^p}$$

$$= \lim_{x\to 0} \frac{-\frac{4}{3}x^3}{x^p}$$

综上易知:
$$p = 3, c = -\frac{4}{3}$$

题目 59.
$$\lim_{x\to+\infty} \left(x^{\frac{1}{x}}-1\right)^{\frac{1}{\ln x}}$$

解答.

$$\begin{split} \overrightarrow{\mathbb{R}}\overrightarrow{\mathbb{R}} &= \lim_{x \to +\infty} e^{\frac{1}{\ln x}\ln(x^{\frac{1}{x}}-1)} \\ &= \lim_{x \to +\infty} e^{\frac{\ln(e^{\frac{\ln x}{x}}-1)}{\ln x}} \\ &= \lim_{x \to +\infty} e^{\frac{\ln\frac{\ln x}{x}}{\ln x} \times \frac{\ln(e^{\frac{\ln x}{x}}-1)}{\ln\frac{\ln x}{x}}} \\ &= \lim_{x \to +\infty} e^{\frac{\ln\ln x - \ln x}{\ln x}} = e^{-1} \end{split}$$

题目 59 的注记. 注意: $a^b = e^{b \ln a}$ 在这个题中非常易错

2.4.7 中值定理求极限

中值定理求极限通常和夹逼准则配合求极限

夹逼准则

定义 2.4.6: 函数极限夹逼准则

如果

• $\exists x \in U^{\circ}(x_0, r) (\overrightarrow{y} | x | > M)$ 时

$$g(x) \leqslant f(x) \leqslant h(x)$$

• $\lim_{x \to x_0(x \to \infty)} g(x) = A, \lim_{x \to x_0(x \to \infty)} h(x) = A$

那么 $\lim_{x\to x_0(x\to\infty)} f(x)$ 存在, 且等于 A.

积分中值定理

定义 2.4.7

若函数 f(x) 在闭区间 [a,b] 上连续,则在积分区间 [a,b] 上至少存在一个点 ε ,使下式成立

$$\int_{a}^{b} f(x) dx = f(\varepsilon) (b - a)$$

其中,a、b、 ε 满足: $a \le \varepsilon \le b$

拉格朗日中值定理求极限

如果两个函数的形式一样,那么可以使用拉格朗日中值定理进行计算,但是处理之后的 ε 需要可以使用夹逼准则.

题目 60.
$$\lim_{x\to+\infty} x^2 \left(a^{\frac{1}{x}} - a^{\frac{1}{x+1}}\right) (a>0)$$

解答. 该题存在相近的函数形式,使用拉格朗日中值定理进行解析 $a^{\frac{1}{x}}-a^{\frac{1}{x+1}}=a^{\frac{1}{\varepsilon}}\ln a^{\frac{1}{\varepsilon^2}}, \varepsilon\in(x,x+1)$

原式 =
$$x^2 a^{\frac{1}{\varepsilon}} \ln a \frac{1}{\varepsilon^2}$$

当 $\varepsilon \to x+1$ 时,原式的极限为 $x^2 a^{\frac{1}{x+1}} \ln a^{\frac{1}{(x+1)^2}} = \ln a$

当 $\varepsilon \to x$ 时,原式的极限为 $x^2 a^{\frac{1}{x}} \ln a^{\frac{1}{x^2}} = \ln a$

综上, 函数极限为 ln a

题目 61.
$$\lim_{n\to\infty} n^2 \left(\arctan \frac{a}{n} - \arctan \frac{a}{n+1}\right) (a>0)$$

解答. 该题存在相近的函数形式, 使用拉格朗日中值定理进行解析 $\arctan \frac{a}{n} - \arctan \frac{a}{a+1} = -\frac{a}{\varepsilon^2 + a^2}$

原式 =
$$\lim_{n \to \infty} n^2(-\frac{a}{\varepsilon^2 + a^2}), (\varepsilon \in (n, n+1))$$

当 $\varepsilon \to n+1$ 时,原式的极限为 $\lim_{n \to \infty} n^2 (-\frac{a}{(n+1)^2+a^2}) = a$ 当 $\varepsilon \to n$ 时,原式的极限为 $\lim_{n \to \infty} n^2 (-\frac{a}{(n)^2+a^2}) = a$ 综上,函数极限为 a

题目 62.
$$\lim_{x\to 0} \frac{\cos(2x) - \cos x}{x^2}$$

解答. 对分子进行泰勒展开得:

原式 =
$$\frac{1 - \frac{4}{2}x^2 - 1 + \frac{x^2}{2} + o(x^2)}{x^2}$$
$$= -\frac{3}{2}$$

题目 62 的注记. 本题看似可以存在两个形式相同的函数形式, 但是如果对其使用拉格朗日中值定理解析, 则 $\sin \varepsilon, \varepsilon \in (x, 2x)$, 此时 $\sin \varepsilon$ 的极限不可以通过夹逼准则得到, 因此不可以使用这种方法, 只可以使用泰勒展开.

2.4.8 七种未定式的计算

主要有以下类型
$$\frac{0}{0}, \frac{\infty}{\infty}, 0 \times \infty, \infty - \infty, \infty^0, 1^\infty$$

形如
$$\frac{0}{0}, \frac{\infty}{\infty}, 0 \times \infty$$

 $\frac{0}{0}, \frac{\infty}{\infty}, 0 \times \infty$ 可以直接计算或者简单转换可以直接计算.

题目 63. ★★☆☆☆ 设函数
$$f(x) = \lim_{n\to\infty} \frac{x^2 + nx(1-x)\sin^2 \pi x}{1 + n\sin^2 \pi x}$$
, 则 $f(x) = \lim_{n\to\infty} \frac{x^2 + nx(1-x)\sin^2 \pi x}{1 + n\sin^2 \pi x}$

解答. 分情况讨论, 当 $\sin^2 \pi x = 0$ 和 $\sin^2 \pi x \neq 0$ 时进行讨论.

当 $\sin^2 \pi x = 0$ 时:

原式 =
$$x^2$$

当 $\sin^2 \pi x \neq 0$ 时:

原式 =
$$\lim_{n \to \infty} \frac{\frac{x^2}{n} + x(1 - x)\sin^2 \pi x}{\frac{1}{n} + \sin^2 \pi x}$$
$$= \frac{x(1 - x)\sin^2 \pi x}{\sin^2 \pi x}$$
$$= x(1 - x)$$

综上 f(x) 表达式为:

$$f(x) = \begin{cases} x^2, & x = 0, \pm 1, \pm 2, \cdots \\ x(1-x), & x$$
取其他值.

题目 64. ★★☆☆ 求极限
$$\lim_{x\to-\infty}\frac{\sqrt{4x^2+x-1}+x+1}{\sqrt{x^2+\sin x}}$$

解答.

原式 =
$$\lim_{x \to -\infty} \frac{\sqrt{4 + \frac{1}{x} - \frac{1}{x^2}} - \frac{1}{x} - 1}{\sqrt{1 + \frac{\sin x}{x^2}}}$$

$$= \frac{2 - 1}{1}$$
= 1

题目 64 的注记. 这个题直接用抓大头会错, 因为后面还有一个同阶的 x, 然后还有就是下面是趋于 $-\infty$

形如 $\infty - \infty$

分式类型的 $\infty - \infty$, 直接通分:

题目 65.
$$\lim_{x\to 0} \left(\frac{1}{x^2} - \frac{1}{\sin^2 x} \right)$$

解答.

原式 =
$$\lim_{x \to 0} \frac{(\sin x + x)(x - \sin x)}{x^2 \times \sin^2 x}$$

= $\frac{(x + x - \frac{x^3}{6})(x - x + \frac{x^3}{6})}{x^4}$
= $\frac{1}{3}$

题目 66.
$$\lim_{x\to+\infty}\arccos\left(\sqrt{x^2+x}-x\right)$$

解答.

原式 =
$$\lim_{x \to +\infty} \arccos\left(\frac{(\sqrt{x^2 + x} - x)(\sqrt{x^2 + x} + x)}{\sqrt{x^2 + x} + x}\right)$$
= $\lim_{x \to +\infty} \arccos\left(\frac{x}{\sqrt{x^2 + x} + x}\right)$
= $\lim_{x \to +\infty} \arccos\frac{1}{2}$
= $\frac{\pi}{3}$

题目 66 的注记. 本题是分式的 $\infty - \infty$ 类型,因此需要通分计算,本题易错处在于,看见两个等级别的 $\infty - \infty$,直接写 0,因此看见两个等级别的 $\infty - \infty$,千万不要写 $0!!!^{13}$ 最后导致答案为 $\frac{\pi}{2}$

非分式的 $\infty - \infty$:

- 1. 通法:提最高阶无穷,构造无穷大乘以无穷小. 之后可以对后面的无穷小进行等价/泰勒,或者把无穷大乘以 无穷小改造成无穷小比无穷小,或无穷大比无穷大,之后洛必达. 提最高阶无穷之前,能算的极限要先算出 来.
- 2. 见到两个根式相减,可以考虑有理化. 但注意只能是平方根, 立方根就不适用了.
- 3. 看见函数形式相同, 可以考虑使用拉格朗日中值定理.

题目 67. 求极限
$$\lim_{x\to 0} \left(\frac{e^x + xe^x}{e^x - 1} - \frac{1}{x} \right)$$

¹³此处已经错 n 次了!!! 尤其是三大计算!!!

解答.

原式 =
$$\lim_{x\to 0} \left(\frac{x(e^x + xe^x) - e^x + 1}{x(e^x - 1)}\right)$$

= $\lim_{x\to 0} \frac{xe^x + x^2e^x - e^x + 1}{x^2}$
= $\lim_{x\to 0} \frac{e^x(x + x^2 - 1) + 1}{x^2}$
= $\lim_{x\to 0} \frac{3xe^x + x^2e^x}{2x}$
= $\lim_{x\to 0} \frac{3e^x + xe^x}{2}$
= $\frac{3}{2}$

题目 67 的注记. 本题可能上去第一步就把 $e^x - 1$ 直接给替换,但是不能这样写,因为等价无穷小不可以进行 部分替代

题目 68. 求极限
$$\lim_{x\to +\infty} (\sqrt{x+\sqrt{x+\sqrt{x}}}-\sqrt{x})$$

解答.

原式 =
$$\lim_{x \to +\infty} \sqrt{x} \left(\sqrt{1 + \sqrt{\frac{1}{x} + \sqrt{\frac{1}{x\sqrt{x}}}}} - 1 \right)$$

= $\lim_{x \to +\infty} \sqrt{x} \times \frac{1}{2} \sqrt{\frac{1}{x} + \frac{1}{x\sqrt{x}}}$
= $\lim_{x \to +\infty} \frac{1}{2} \sqrt{1 + \frac{1}{\sqrt{x}}}$
= $\frac{1}{2}$

题目 68 的注记. 上述解法为通法, 即提最高阶无穷 \sqrt{x} . 除此之外, 还可以使用有理化进行通分:

原式 =
$$\lim_{x \to +\infty} \frac{\sqrt{x + \sqrt{x}}}{\sqrt{x + \sqrt{x + \sqrt{x}}} + \sqrt{x}}$$

$$= \lim_{x \to +\infty} \frac{\sqrt{1 + \frac{1}{\sqrt{x}}}}{\sqrt{1 + \sqrt{\frac{1}{x} + \frac{1}{x\sqrt{x}}} + 1}}$$

$$= \frac{1}{2}$$

 $[\]frac{1}{x}$ 此处不能把后面的极限算出来的原因是 $\frac{1}{x}$ 极限为不存在,因此如果拆分计算则违背了极限的运算法则

题目 69. $\lim_{x\to+\infty} x^{3/2} \left(\sqrt{1+x} + \sqrt{x-1} - 2\sqrt{x} \right)$

解答.

原式 =
$$\lim_{x \to +\infty} x^2 \left(\sqrt{1 + \frac{1}{x} + \sqrt{1 - \frac{1}{x}}} - 2 \right)$$

= $\left[1 + \frac{1}{2x} + \frac{\frac{1}{2}(\frac{1}{2} - 1)}{2!} \frac{1}{x^2} + 1 - \frac{1}{2x} + \frac{\frac{1}{2}(\frac{1}{2} - 1)}{2!} (-\frac{1}{x})^2 + o(\frac{1}{x^2}) - 2 \right]$
= $\lim_{x \to +\infty} x^2 \cdot \left[-\frac{1}{4} \frac{1}{x^2} + o(\frac{1}{x^2}) \right]$
= $\frac{1}{4}$

题目 69 的注记. 本题有一个错误的做法:

原式 =
$$x^{\frac{3}{2}} \cdot \sqrt{x}(\sqrt{\frac{1}{x}+1} + \sqrt{1-\frac{1}{x}} - 2)$$

= $x^2(1+1-2)$
= 0

此处不能把后面的极限算出来的原因与上题一样也是 $\frac{1}{x}$ 极限为不存在,因此如果拆分计算则违背了极限的运算法则

题目 70. 设
$$\lim_{n\to\infty}\frac{n^{2023}}{n^{\alpha}-(n-1)^{\alpha}}=\beta\neq 0$$
, 求 α 及 β

解答.

原式 =
$$\lim_{n \to \infty} \frac{n^{2023}}{n^{\alpha}(1 - (1 - \frac{1}{n})^{\alpha})}$$
= $\lim_{n \to \infty} \frac{n^{2023}}{-n^{\alpha}((1 - \frac{1}{n})^{\alpha} - 1)}$
= $\lim_{n \to \infty} \frac{n^{2023}}{\frac{a}{n}}$

综上可知: $\alpha = 2023, \beta = \frac{1}{2023}$

解答.

原式 =
$$\lim_{x \to +\infty} \left[\frac{x}{\left(1 + \frac{1}{x}\right)^x} - \frac{x}{e} \right]$$

= $\lim_{x \to +\infty} \frac{x \left[e - \left(1 + \frac{1}{x}\right)^x \right]}{e \left(1 + \frac{1}{x}\right)^x}$

= $\frac{1}{e^2} \lim_{x \to +\infty} \frac{e - \left(1 + \frac{1}{x}\right)^x}{\frac{1}{x}}$

= $\frac{-1}{e^2} \lim_{t \to 0^+} \frac{(1 + t)^{\frac{1}{t}} - e}{t}$

= $\frac{-1}{e^2} \lim_{t \to 0^+} \frac{e^{\frac{\ln(1+t)}{t}} - e}{t}$

= $-\frac{1}{e} \lim_{t \to 0^+} \frac{e^{\frac{\ln(1+t)-t}{t}} - 1}{t}$

= $-\frac{1}{e} \lim_{t \to 0^+} \frac{\ln(1+t) - t}{t^2}$

= $-\frac{1}{e} \lim_{t \to 0^+} \frac{-\frac{1}{2}t^2}{t^2} = \frac{1}{2e}$

形如 $\infty^0,0^0$

 ∞^0 与 0^0 通常使用 $u^v = e^{v \ln u}$ 来计算

形如 1∞

 1^{∞} 通常使用 $\lim u^v = e^{\lim(u-1)v}$ 来计算 14 . 之后将 (u-1)v 摘出, 然后使用替换法则或者泰勒公式进行求解

题目 72. 设 n 为正整数, 则
$$\lim_{x\to\infty} [\frac{x^n}{(x-1)(x-2)\cdots(x-n)}]^x$$

解答.

原式 =
$$\lim_{x \to \infty} \left[\frac{x^n}{(x-1)(x-2)\cdots(x-n)} \right]^x$$
= $\lim_{x \to \infty} \left(\frac{x}{x-1} \right)^x \left(\frac{x}{x-2} \right)^x \cdots \left(\frac{x}{x-n} \right)^x$
= $\lim_{x \to \infty} \left(\frac{x-1}{x} \right)^{-x} \left(\frac{x-2}{x} \right)^{-x} \cdots \left(\frac{x-n}{x} \right)^{-x}$

 $^{^{14}}$ 其实本质还是使用了幂指函数的性质进行计算,因为 $\lim u^v = e^{\lim v \ln(u)} = e^{\lim v \ln(1+u-1)} = e^{\lim v(u-1)}$

$$\begin{split} &= \lim_{x \to \infty} \left(1 - \frac{1}{x}\right)^{-x} \left(1 - \frac{2}{x}\right)^{-x} \cdots \left(1 - \frac{n}{x}\right)^{-x} \\ &= \mathbf{e} \cdot \mathbf{e}^2 \cdots \mathbf{e}^n = \mathbf{e} \frac{n(n+1)}{2} \end{split}$$

题目 73. 已知曲线 y = f(x) 在点 (0,0) 处的切线过点 (1,2), 则 $\lim_{x\to 0} \left(\cos x + \int_0^x f(t) dt\right)^{\frac{1}{x^2}}$

解答. 已知 f(0) = 0, f'(0) = 2

原式 =
$$\lim_{x \to 0} e^{\frac{\ln\left(\cos x + \int_0^x f(t)dt\right)}{x^2}}$$

$$= \lim_{x \to 0} e^{\frac{\cos x - 1 + \int_0^x f(t)dt}{x^2}}$$

$$= \lim_{x \to 0} e^{\frac{\int_0^x f(t)dt}{x^2} - \frac{1}{2}}$$

$$= \lim_{x \to 0} e^{\frac{f(x)}{2x} - \frac{1}{2}}$$

$$= \lim_{x \to 0} e^{\frac{1}{2}}$$

题目 74. ★★★☆ 求极限
$$\lim_{x\to 0} \left(\frac{e^x + e^{2x} + e^{3x}}{3}\right)^{\frac{e}{x}}$$
.

解答.

原式 =
$$\lim_{x \to 0} e^{\frac{e}{x} \ln \frac{e^x + e^{2x} + e^{3x}}{3}}$$

$$= \lim_{x \to 0} e^{\frac{e}{x} \left(\frac{e^x + e^{2x} + e^{3x}}{3} - 1\right)}$$

把分子摘出来:

$$\begin{split} \frac{e}{3} \lim_{x \to 0} \left(\frac{e^x + e^{2x} + e^{3x}}{x} - 3 \right) &= \frac{e}{3} \lim_{x \to 0} \left(\frac{e^x - 1}{x} + \frac{e^{2x} - 1}{x} + \frac{e^{3x} - 1}{x} \right) \\ &= \lim_{x \to 0} \frac{e^x - 1}{x} + \lim_{x \to 0} \frac{e^{2x} - 1}{x} + \lim_{x \to 0} \frac{e^{3x} - 1}{x} \end{split}$$

综上原式为
$$e^{\displaystyle\frac{e}{3} \binom{1+2+3}{}}=e^{2e}$$

题目 74 的注记. 本题的关键在于对数函数形式1.3.4的变换和对于等式的使用

题目 75. 求极限
$$\lim_{x\to\infty}\left(\frac{x^2}{(x-a)(x+b)}\right)^x$$

解答.

原式 =
$$e^{x \ln\left(\frac{x^2}{(x-a)(x-b)}\right)}$$

$$= e^{x\left(\frac{x^2}{(x-a)(x-b)^{-1}}\right)}$$

$$= e^{\frac{ax^2 - bx^2 + abx}{x^2 - ax + bx}}$$

$$= e^{\frac{2ax - 2bx + ab}{2x + b - a}}$$

$$= e^{a-b}$$

解答.

原式 =
$$\lim_{n \to \infty} \frac{e^{n^2 \ln(1 + \frac{1}{n})}}{e^n}$$

$$= \lim_{n \to \infty} e^{n^2 \ln(1 + \frac{1}{n}) - n}$$

$$= e^{\lim_{n \to \infty} -n^2 \left[\frac{1}{n} - \ln(1 + \frac{1}{n})\right]}$$

$$= e^{\lim_{n \to \infty} -n^2 \cdot \frac{1}{2} \left(\frac{1}{n}\right)^2}$$

$$= e^{-\frac{1}{2}}$$

题目 76 的注记. 本题易错点,一是直接把 $(1+\frac{1}{n})^n$ 直接替换成 e,二是在计算 $\frac{e^{n^2\ln(1+\frac{1}{n})}}{e^n}$ 时,替换成 $\frac{e^{n^2\frac{1}{n}}}{e^n}$,这两个错误的点都是在计算时进行了部分替代.

题目 77.
$$\underline{求极限} \lim_{x \to 0} \left(\frac{a_1^x + a_2^x + \dots + a_n^x}{n} \right)^{\frac{n}{x}},$$
其中 $a_i > 0, i = 1, 2, \dots, n.$

解答. 已知 $\lim_{x\to 0} a_i^x = 1$, 则函数形式为 1^∞ 型

原式 =
$$\lim_{x \to 0} e^{\frac{n}{x}(\frac{a_1^x + a_2^x + a_3^x + \dots + a_n^x}{n})}$$

$$= e^{\left\{\lim_{x \to 0} \frac{a_1^x - 1}{x} + \lim_{x \to 0} \frac{a_2^x - 1}{x} + \dots + \lim_{x \to 0} \frac{a_n^x - 1}{x}\right\}}$$

$$= e^{\lim_{x \to 0} a_1^x \ln a_1 + a_2^x \ln a_2 + \dots + a_n^x \ln a_n}$$

$$= a_1 a_2 a_3 \dots a_n$$

题目 77 的注记. 本题需注意的是 $\lim_{x\to 0} a_i^x = 1$,然后可以观察出该极限类型为 1^∞ 型,之后可以利用等价无穷小替换求的极限

2.5 数列极限的运算

2.5.1 n 项数列极限求解

n 项连加的数列极限

常用等式:

放缩技巧:

$$\begin{cases} n\times u_{\min}\leqslant u_1+u_2+\cdots+u_n\leqslant n\times u_{\max},\\ \\ \ \, \exists u_i\geqslant 0 \\ \ \, \exists 1\times u_{\max}\leqslant u_1+u_2+\cdots+u_n\leqslant n\times u_{\max}. \end{cases}$$

处理手法:

1. 优先看变化部分¹⁵的最大值是主体部分¹⁶的同量级或次量级

¹⁵分母中随项的变化而变化, 称其为变化部分

¹⁶不随项的变化而变化, 称其为主体部分

- 次量级使用夹逼进行求解
- 同量级使用定积分定义进行求解17
- 2. 放缩的通用手法是分子/分母取最大的或最小的, 即取两头

题目 78. 求极限
$$\lim_{n\to\infty} \left(\frac{n}{n^2+1} + \frac{n}{n^2+2} + \dots + \frac{n}{n^2+n} \right)$$

解答. 对原式进行放缩可得:

$$\frac{n^2}{n^2 + n} \leqslant \left(\frac{n}{n^2 + 1} + \frac{n}{n^2 + 2} + \dots + \frac{n}{n^2 + n}\right) \leqslant \frac{n^2}{n^2 + 1}$$

对不等式两侧取极限可得:

$$\lim_{n\to\infty}\frac{n^2}{n^2+n}\leqslant \lim_{n\to\infty}\left(\frac{n}{n^2+1}+\frac{n}{n^2+2}+\cdots+\frac{n}{n^2+n}\right)\leqslant \lim_{n\to\infty}\frac{n^2}{n^2+1}$$

易知左右两侧不等式极限均为 1, 解得不等式极限为 1

题目 78 的注记. 对本题的分析: 主体部分与变化部分的最大值是次量级关系. 即 n^2 与 n 不是同一个变化量级. 那么就可以使用夹逼准则进行夹逼运算出最大值

题目 79. 求极限
$$\lim_{n\to\infty} \left(\frac{n}{n^2+1^2} + \frac{n}{n^2+2^2} + \dots + \frac{n}{n^2+n^2}\right)$$
.

解答.

原式 =
$$\lim_{n \to \infty} \frac{1}{n} \left(\frac{1}{1 + (\frac{1}{n})^2} + \frac{1}{1 + (\frac{2}{n})^2} + \dots + \frac{1}{1 + (\frac{n}{n})^2} \right)$$

= $\lim_{n \to \infty} \sum_{1}^{n} f(\frac{\varepsilon}{n}) \quad f(x)$ 函数表达式为 $\frac{1}{1 + x^2}$
= $\int_{0}^{1} \frac{1}{1 + x^2} dx = \frac{\pi}{4}$

题目 79 的注记. 主体部分与变化部分的最大值是同量级关系. 即 n^2 与 n^2 不是同一个变化量级. 那么就可以使用夹逼准则进行夹逼运算出最大值

¹⁷可爱因子 $\frac{1}{n}$,然后构造形如 $\lim_{n\to\infty}\frac{1}{n}\sum_{k=1}^{n-c}f(\frac{\varepsilon}{n})=\int_0^1f(x)dx$ 的表达式进行求解,其中 C 为任意常数, $\varepsilon\in[k-1,k]$.

解答.

$$\lim_{n \to \infty} \frac{\frac{e - e^{n + 1}}{1 - e}}{e^n + n^2} \leqslant \lim_{n \to \infty} \left(\frac{e}{e^n + 1^2} + \frac{e^2}{e^n + 2^2} + \dots + \frac{e^n}{e^n + n^2} \right) \leqslant \lim_{n \to \infty} \frac{\frac{e - e^{n + 1}}{1 - e}}{e^n + 1^2}$$

根据抓大头的思路可化为

$$\frac{-e}{1-e}\leqslant \lim_{n\to\infty}\left(\frac{e}{e^n+1^2}+\frac{e^2}{e^n+2^2}+\cdots+\frac{e^n}{e^n+n^2}\right)\leqslant \frac{-e}{1-e}$$

可知原式极限为 $\frac{-e}{1-e}$

题目 81. 求极限
$$\lim_{n\to\infty} \left(\frac{1}{\sqrt{n^6+n}} + \frac{2^2}{\sqrt{n^6+2n}} + \dots + \frac{n^2}{\sqrt{n^6+n^2}} \right)$$

解答.

$$\frac{\frac{n(n+1)(2n+1)}{6}}{\sqrt{n^6+n^2}} \leqslant \Big(\frac{1}{\sqrt{n^6+n}} + \frac{2^2}{\sqrt{n^6+2n}} + \dots + \frac{n^2}{\sqrt{n^6+n^2}}\Big) \leqslant \frac{\frac{n(n+1)(2n+1)}{6}}{\sqrt{n^6+n}}$$

取极限得:

$$\begin{split} &\lim_{n \to \infty} \frac{\frac{n(n+1)(2n+1)}{6}}{\sqrt{n^6 + n^2}} \leqslant \lim_{n \to \infty} \Big(\frac{1}{\sqrt{n^6 + n}} + \frac{2^2}{\sqrt{n^6 + 2n}} + \dots + \frac{n^2}{\sqrt{n^6 + n^2}} \Big) \leqslant \lim_{n \to \infty} \frac{\frac{n(n+1)(2n+1)}{6}}{\sqrt{n^6 + n}} \\ &\frac{2n^3 + 3n^2 + n}{\sqrt{n^6 + n^2}} \leqslant \lim_{n \to \infty} \Big(\frac{1}{\sqrt{n^6 + n}} + \frac{2^2}{\sqrt{n^6 + 2n}} + \dots + \frac{n^2}{\sqrt{n^6 + n^2}} \Big) \leqslant \frac{2n^3 + 3n^2 + n}{\sqrt{n^6 + n}} \end{split}$$

根据抓大头的思路可知原式极限为 $\frac{1}{3}$

题目 82. 求极限
$$\lim_{n\to\infty}\left(\frac{1}{\sqrt{n^2+1^2}}+\frac{1}{\sqrt{n^2+2^2}}+\cdots+\frac{1}{\sqrt{n^2+n^2}}\right)$$

解答.

原式 =
$$\lim_{n \to \infty} \frac{1}{n} \left(\frac{1}{\sqrt{1 + (\frac{1}{n})^2}} + \frac{1}{\sqrt{1 + (\frac{2}{n})^2}} + \dots + \frac{1}{\sqrt{1 + (\frac{n}{n})^2}} \right)$$

= $\int_0^1 \frac{1}{\sqrt{1 + x^2}} dx$
= $\ln(x + \sqrt{1 + x^2})|_0^1$

$$= \ln(1 + \sqrt{2})$$

解答.

原式 =
$$\lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} \frac{k}{n} \ln \left(1 + \frac{k}{n} \right)$$

= $\int_{0}^{1} x \ln(1+x) dx$
= $\frac{1}{2} \int_{0}^{1} \ln (1+x) dx^{2}$
= $\frac{x^{2}}{2} \ln(1+x) \Big|_{0}^{1} - \frac{1}{2} \int_{0}^{1} \frac{x^{2}}{1+x} dx$
= $\frac{1}{4}$

解答. 首先对等式进行化简,使用夹逼准则可以得到:

$$\lim_{n\to\infty}\frac{\sum_1^k\sin\frac{k\pi}{n}}{n+1}\leqslant\lim_{n\to\infty}\left(\frac{\sin\frac{\pi}{n}}{n+1}+\frac{\sin\frac{2\pi}{n}}{n+\frac{1}{2}}+\cdots+\frac{\sin\frac{n\pi}{n}}{n+\frac{1}{n}}\right)\leqslant\lim_{n\to\infty}\frac{\sum_1^k\sin\frac{k\pi}{n}}{n+\frac{1}{n}}$$

等式左右两侧可等价为如下形式:

$$\lim_{n\to\infty}\frac{\sum_1^k\sin\frac{k\pi}{n}}{n}\leqslant\lim_{n\to\infty}\left(\frac{\sin\frac{\pi}{n}}{n+1}+\frac{\sin\frac{2\pi}{n}}{n+\frac{1}{2}}+\cdots+\frac{\sin\frac{n\pi}{n}}{n+\frac{1}{n}}\right)\leqslant\frac{\sum_1^k\sin\frac{k\pi}{n}}{n}$$

左右两侧使用定积分定义可得:

$$\int_0^1 \sin(\pi x) dx \leqslant \lim_{n \to \infty} \left(\frac{\sin \frac{\pi}{n}}{n+1} + \frac{\sin \frac{2\pi}{n}}{n+\frac{1}{2}} + \dots + \frac{\sin \frac{n\pi}{n}}{n+\frac{1}{n}} \right) \leqslant \int_0^1 \sin(\pi x) dx$$

其中 $\int_0^1 \sin(\pi x) dx = \frac{2}{\pi}$, 综上, 等式极限为 $\frac{2}{\pi}$

题目 84 的注记. 本题分析,首先看到分母的变化部分的最大值与主体部分是次量级关系的,那么如果想使用夹逼进行计算,那么就会发现分子的大小无法计算,没有一个等差或者等比数列的公式可以计算出分子的各项和,因此应该最终应该使用定积分定义进行计算.

题目 85. 求极限
$$\lim_{n\to\infty} \left(\frac{n+1}{1^2+n^2} + \frac{n+\frac{1}{2}}{2^2+n^2} + \dots + \frac{n+\frac{1}{n}}{n^2+n^2} \right)$$

解答.
$$\diamondsuit$$
 $\lim_{n \to \infty} \left(\frac{n+1}{1^2+n^2} + \frac{n+\frac{1}{2}}{2^2+n^2} + \dots + \frac{n+\frac{1}{n}}{n^2+n^2} \right) = I$

$$\lim_{n \to \infty} (n + \frac{1}{n}) (\frac{1}{1 + n^2} + \frac{1}{2^2 + n^2} + \ldots + \frac{1}{n^2 + n^2}) \leqslant \lim_{n \to \infty} I \leqslant \lim_{n \to \infty} (n + 1) (\frac{1}{1 + n^2} + \frac{1}{2^2 + n^2} + \ldots + \frac{1}{n^2 + n^2})$$

$$\lim_{n \to \infty} \frac{1}{n^2} (n + \frac{1}{n}) (\frac{1}{1 + \frac{1^2}{n^2}} + \frac{1}{1 + \frac{2^2}{n^2}} + \ldots + \frac{1}{1 + \frac{n^2}{n^2}}) \leqslant \lim_{n \to \infty} I \leqslant \lim_{n \to \infty} \frac{1}{n^2} (n + 1) (\frac{1}{1 + \frac{1}{n^2}} + \frac{1}{1 + \frac{2^2}{n^2}} + \ldots + \frac{1}{1 + \frac{n^2}{n^2}})$$

左右两侧等价得:

$$\lim_{n\to\infty}\frac{1}{n}(\frac{1}{1+\frac{1^2}{n^2}}+\frac{1}{1+\frac{2^2}{n^2}}+\ldots+\frac{1}{1+\frac{n^2}{n^2}})\leqslant \lim_{n\to\infty}I\leqslant \lim_{n\to\infty}\frac{1}{n}(\frac{1}{1+\frac{1}{n^2}}+\frac{1}{1+\frac{2^2}{n^2}}+\ldots+\frac{1}{1+\frac{n^2}{n^2}})$$

使用定积分定义可得:

$$\int_{0}^{1} \frac{1}{1+x^{2}} dx \leqslant \lim_{n \to \infty} I \leqslant \int_{0}^{1} \frac{1}{1+x^{2}} dx$$

$$\int_0^1 \frac{1}{1+x^2} dx = \frac{\pi}{4}$$
, 综上, 等式极限为 $\frac{\pi}{4}$

题目 86. 已知
$$\frac{1}{n+1} < \ln(1+\frac{1}{n}) < \frac{1}{n}$$
,设 $a_n = 1+\frac{1}{2}+\ldots+\frac{1}{n}-\ln n (n=1,2,\ldots)$,证明数列 $\{a_n\}$ 收敛

解答. 令
$$a_{n+1} - a_n$$
 得 $\left(\frac{1}{n+1} - \ln(1+\frac{1}{n})\right) < 0$

$$\begin{split} a_n &= 1 + \frac{1}{2} + \frac{1}{2} + \ldots + \frac{1}{n} - \ln n \\ &> \ln(1+1) + \ln(1+\frac{1}{2}) + \ldots + \ln(1+\frac{1}{n}) - \ln n \\ &= \ln(2 \times \frac{3}{2} \times \frac{4}{3} \times \ldots \times \frac{n+1}{n}) - \ln n \\ &= \ln(1+n) - \ln n > 0 \end{split}$$

综上所诉, 由于数列单调递减且有下界, 因此收敛

题目 86 的注记. 此题的方法为非常规的方法,需要考虑上下问,结合进行分析.

n 项连乘的数列极限

主要有以下两种方法:

- 1. 夹逼准则
- 2. 取对数化为 n 项和 18

题目 87. 极限
$$\lim_{n\to\infty} \frac{\sqrt{1+\sqrt{2}+\cdots+\sqrt{n}}}{\sqrt{n(1+2+\cdots+n)}}$$

解答.

原式 =
$$\lim_{n \to \infty} \frac{\sqrt{1 + \sqrt{2} + \dots + \sqrt{n}}}{\sqrt{\frac{n^2(n+1)}{2}}}$$

$$= \sqrt{2} \lim_{n \to \infty} \sqrt{\frac{n}{n+1}} \cdot \frac{1}{n} \left(\sqrt{\frac{1}{n}} + \sqrt{\frac{2}{n}} + \dots + \sqrt{\frac{n}{n}} \right)$$

$$= \sqrt{2} \int_0^1 \sqrt{x} dx = \frac{2\sqrt{2}}{3}$$

题目 88. 设
$$x_n = \left(1 + \frac{1}{n^2}\right) \left(1 + \frac{2}{n^2}\right) \cdots \left(1 + \frac{n}{n^2}\right)$$
,则 $\lim_{n \to \infty} x_n = \frac{1}{n^2}$

解答. 对原式取对数可知: $\ln x_n = \ln(1+\frac{1}{n^2}) + \ln(1+\frac{2}{n^2}) + \dots + \ln(1+\frac{n}{n^2})$ 当 x>0 时, $\frac{x}{1+x} < \ln(1+x) < x$, 则

$$\frac{k}{n^2 + n} \leqslant \frac{k}{n^2 + k} = \frac{\frac{k}{n^2}}{1 + \frac{k}{n^2}} < \ln\left(1 + \frac{k}{n^2}\right) < \frac{k}{n^2}$$

$$\lim_{n \to \infty} \sum_{k=1}^{n} \frac{k}{n^2} = \lim_{n \to \infty} \frac{\frac{1}{2}n(n+1)}{n^2} = \frac{1}{2}, \lim_{n \to \infty} \sum_{k=1}^{n} \frac{k}{n^2 + n} = \lim_{n \to \infty} \frac{\frac{1}{2}n(n+1)}{n^2 + n} = \frac{1}{2}$$

 $\text{for }\lim\nolimits_{n\to\infty}\ln x_n=\frac{1}{2},\lim\nolimits_{n\to\infty}x_n=\mathrm{e}^{\frac{1}{2}}$

题目 89. 设函数 f(x) 在 [a,b] 上连续, $x_1,x_2,...,x_n$ 是 [a,b] 上的一个点列,求 $\lim_{n\to\infty} \sqrt[n]{\frac{1}{n}} \sum_{k=1}^n e^{f(x_k)}$

¹⁸通法

解答. f(x) 在 [a,b] 上连续,已知 $e^{f(x)}$ 在 [a,b] 上非负连续,且 $0 < m \leqslant e^{f(x)} \leqslant M$,其中 M,m 分别是 $e^{f(x)}$ 在 [a,b] 上的最大值和最小值,于是 $0 < m \leqslant \frac{1}{n} \sum_{k=1}^n e^{f(x)} \leqslant M$,故 $\sqrt[n]{m} \leqslant \sqrt[n]{\frac{1}{n} \sum_{k=1}^n e^{f(x_k)}} \leqslant \sqrt[n]{M}$,又 $\lim_{n \to \infty} \sqrt[n]{m} = \lim_{n \to \infty} \sqrt[n]{M} = 1^{19}$,根据夹逼准则,得 $\lim_{n \to \infty} \sqrt[n]{\frac{1}{n} \sum_{k=1}^n e^{f(x_k)}} = 1$

题目 90.
$$\underline{\vec{x}}a_n = \sqrt[n]{\frac{1}{2} \times \frac{3}{4} \times \cdots \times \frac{2n-1}{2n}}, 求极限 \lim_{n \to \infty} a_n$$

解答. 显然 $a_n \leq 1$, 又

$$a_n = \sqrt[n]{\frac{1}{2} \times \frac{3}{4} \times \dots \times \frac{2n-1}{2n}} = \sqrt[n]{\frac{3}{2} \times \frac{5}{4} \times \dots \times \frac{2n-1}{2n-2} \times \frac{1}{2n}} \geqslant \sqrt[n]{\frac{1}{2n}}$$

又

$$\lim_{n\to\infty}\sqrt[n]{\frac{1}{2n}}=\lim_{n\to\infty}\frac{1}{\sqrt[n]{2}\cdot\sqrt[n]{n}}=1$$

则 $\lim_{n\to\infty}a_n=1$

题目 90 的注记. 这题的方法不是常规方法,如果按照一般的处理方法,应该写为

$$\begin{split} \lim_{n \to \infty} \ln a_n &= \lim_{n \to \infty} \frac{1}{n} \ln (\frac{1}{2} \times \frac{3}{4} \times \ldots \times \frac{2n-1}{2n}) \\ &= \lim_{n \to \infty} \frac{1}{n} [\ln \frac{1}{2} + \ln \frac{3}{4} + \ldots + \ln \frac{2n-1}{2n}] \\ &= \lim_{n \to \infty} \frac{\ln \frac{1}{2}}{n} + \lim_{n \to \infty} \frac{\ln \frac{3}{4}}{n} + \ldots + \lim_{n \to \infty} \frac{\ln \frac{2n-1}{2n}}{n} \\ &= 0 + 0 + 0 + \ldots + 0 \\ &= 0 \end{split}$$

但是这显然是错误的, 无穷多个无穷小相加, 结果仍是未定式.

题目 91.
$$\underline{\vec{x}}\lim_{n\to\infty}\frac{1}{n}\sqrt[n]{(n+1)(n+2)\cdots(n+n)}$$

解答. $\Leftrightarrow a_n = \frac{1}{n} \sqrt[n]{(n+1)(n+2)(n+3)...(n+n)},$ 则

$$\begin{split} \lim_{n\to\infty} \ln a_n &= \lim_{n\to\infty} \{\ln\frac{1}{n} + \frac{1}{n} \ln[(n+1)(n+2)\cdots(n+n)]\} \\ &= \lim_{n\to\infty} \frac{1}{n} \ln[(n+1)(n+2)\cdots(n+n)] - \ln n \end{split}$$

¹⁹写成幂函数形式配合泰勒公式即可看出,来自此处数列的性质:1.1.1

$$= \lim_{n \to \infty} \frac{1}{n} [\ln(n+1) + \ln(n+2) + \dots + \ln(n+n) - n \ln n]$$

$$= \lim_{n \to \infty} [\ln(1 + \frac{1}{n}) + \ln(1 + \frac{2}{n}) + \dots + \ln(1 + \frac{n}{n})]$$

$$= \int_0^1 \ln(1+x) dx$$

$$= \int_0^1 \ln(1+x) d(x+1)$$

$$= (x+1) \ln(1+x) |_0^1 - 1$$

$$= 2 \ln 2 - 1$$

禁上 $\lim_{n\to\infty} a_n = e^{2\ln 2 - 1} = \frac{4}{e}$

题目 92. 证明 $\lim_{n\to\infty} \sqrt[n]{n!} \sim e^{-1} \times n$

解答.

$$\begin{split} a_n &= \frac{\sqrt[n]{n!}}{n} \Rightarrow \lim_{n \to \infty} \ln a_n = \lim_{n \to \infty} \frac{1}{n} \ln(n \times (n-1) \times \ldots \times 1) - \ln n \\ &= \lim_{n \to \infty} [\ln n + \ln(n-1) + \ldots + \ln 1 - n \ln n] \\ &= \lim_{n \to \infty} \frac{1}{n} [\ln \frac{n}{n} + \ln \frac{n-1}{n} + \ldots + \ln \frac{1}{n}] \\ &= \int_0^1 \ln x dx \\ &= x \ln x |_0^1 - 1 = -1 \end{split}$$

黛玉上 $\lim_{n \to \infty} a_n = e^{-1} \Rightarrow \lim_{n \to \infty} \sqrt[n]{n!} \sim e^{-1} \cdot n$

常用不等式 2.5.2

- 利用如下重要不等式
 - 1. 设 a,b 为实数, 则 $|a+b| \le |a| + |b|;$ |a| |b| $| \leqslant |a-b|$ 20

$$2. \ \sqrt{ab} {\leqslant} \frac{a+b}{2} {\leqslant} \sqrt{\frac{a^2+b^2}{2}} (a,b{>}0)^{21}$$

 $^{^{20}}$ 可以将上述式子推广为 n 个实数的情况: $|a_1\pm a_2\pm\cdots\pm a_n|\leqslant |a_1|+|a_2|+\cdots+|a_n|$. 21 还有一个不等式是 $|ab|\leqslant \frac{a^2+b^2}{2}$

题目 93. 证明函数 $f(x) = \frac{x}{1+x^2}$ 在 $(-\infty, +\infty)$ 内有界

解答. 当
$$x \neq 0$$
 时,令 $|f(x)| = \frac{|x|}{1+x^2} = \frac{1}{\frac{1}{|x|}+|x|}$,由不等式 $\frac{1}{x}+x>2\sqrt{\frac{1}{x}\times x}=2$ 可得 $\frac{1}{\frac{1}{|x|}+|x|}<\frac{1}{2}$,即 $|f(x)|\leqslant\frac{1}{2}$ 当 $x=0$ 时, $f(x)=0$ 综上, $f(x)$ 在 $(-\infty,+\infty)$ 内有界

题目 93 的注记. 本题利用了绝对值和不等式来证明函数有界

$$3. \ \sqrt[3]{abc} \leqslant \frac{a+b+c}{3} \leqslant \sqrt{\frac{a^2+b^2+c^2}{3}} (a,b,c>0)$$

4. 设
$$a \ge b \ge 0$$
,则
$$\begin{cases} \exists n \ge 0 \text{ 时}, a^n \ge b^n, \\ \exists n \le 0 \text{ th}, a^n \le b^n. \end{cases}$$

6.
$$\sin x < x < \tan x \left(0 < x < \frac{\pi}{2} \right)$$

7.
$$\sin x < x(x > 0)$$

8.
$$\pm 0 < x < \frac{\pi}{4}$$
 $\exists t, x < \tan x < \frac{4}{\pi}x$

9.
$$\pm 0 < x < \frac{\pi}{2}$$
 时, $\sin x > \frac{2}{\pi}x$

10. $\arctan x \le x \le \arcsin x (0 \le x \le 1)$

11.
$$e^x \ge x + 1(\forall x)^{23}$$

12.
$$x-1 \ge \ln x (x > 0)^{24}$$

13.
$$\frac{1}{1+x} < \ln(1+\frac{1}{x}) < \frac{1}{x}(x>0) \implies \frac{x}{1+x} < \ln(1+x) < x(x>0)^{25}$$

14. 在处理如下数列时,可以在前面加一个减项,如
$$(1+\frac{1}{2^2})(1+\frac{1}{2^{2^2}})...(1+\frac{1}{2^{2^n}})$$
,可化为 $(1-\frac{1}{4})(1+\frac{1}{2^2})(1+\frac{1}{2^{2^2}})...(1+\frac{1}{2^{2^n}})$ * $\frac{4}{3}$

递推关系式 $x_{n+1} = f(x_n)$ 数列极限

1. 单调有界 (先证明极限存在, 之后对 $x_{n+1} = f(x_n)$ 两端取极限)

$$\overline{{}^{22} \underline{\,\,}\underline{\,\,} n\pi < x < (n+1)\pi, 2n < S(x) < 2(n+1) \\ \exists \frac{2n}{(n+1)\pi} < \frac{S(x)}{x} < \frac{2(n+1)}{n\pi}.$$

$$24$$
 当 $x_n > 0$ 时,若 $x_{n+1} = \ln x_n + 1$,由 $\ln x_n + 1 \leqslant x_n$,得 $x_{n+1} \leqslant x_n$,即 $\{x_n\}$ 单调不增
$$25 \diamondsuit f(x) = \ln x$$
,并在区间 $[x, x+1]$ 上对其使用拉格朗日中值定理,有 $\ln \left(1 + \frac{1}{x}\right) = \ln(1+x) - \ln x = \frac{1}{\xi}$ 其中 $0 < x < \xi < x+1$,因此对任意的 $x > 0$,有 $\frac{1}{1+x} < \ln \left(1 + \frac{1}{x}\right) = \frac{1}{\xi} < \frac{1}{x}$

 $^{^{23}}$ 当 $x_{n+1}=\mathrm{e}^{x_n}-1$ 时,由 $\mathrm{e}^{x_n}-1\geqslant x_n$,得 $x_{n+1}\geqslant x_n$,即 $\{x_n\}$ 单调不减

定理 2.5.1: 数列的单调有界准则

单调有界数列必有极限, 即若数列 $\{x_n\}$ 单调增加 (减少) 且有上界 (下界), 则 $\lim_{n\to\infty}x_n$ 存在

证明数列单调性的方法:

(a)
$$x_{n+1} - x_n > 0$$
 或 $\frac{x_{n+1}}{x_n} > 1$ (同号)

(b) 利用数学归纳法

定义 2.5.1: 第一数学归纳法的定义

第一数学归纳法是证明当 n 等于任意一个自然数时某命题成立. 证明分下面两步:

- i. 证明: 当 n=1 时命题成立.^a
- ii. 证明: 若假设在 n=m 时命题成立, 可推导出在 n=m+1 时命题成立.

这种方法的原理在于:首先证明在某个起点值时命题成立,然后证明从一个值到下一个值的过程有效.当这两点都已经证明,那么任意值都可以通过反复使用这个方法推导出来.

a选择数字 1 因其作为自然数中的最小值

- (c) 利用重要不等式
- (d) $x_n x_{n-1}$ 与 $x_{n-1} x_{n-2}$ 同号,则 x_n 单调
- (e) 利用结论: 对 $x_{n+1} = f(x_n)(n = 1, 2, ...), x_n \in 区间I$

• 若 $f'(x) > 0, x \in$ 区间I,则数列 $\{x_n\}$ 单调,且 $= \begin{cases} \exists x_2 > x_1 \text{时,数列} \{x_n\} \text{单调增加} \\ \exists x_0 < x_1 \text{时,数列} \{x_n\} \text{单调减少} \end{cases}$

证明. 若 f(x) 单调增加, 且 $x_1 < x_2$, 则数列单增的图像是这样的:

若 f(x) 单调增加,且 $x_1 > x_2$,则数列单增的图像是这样的

• 若 $f'(x) < 0, x \in 区间 I$, 则数列 $\{x_n\}$ 不单调

证明. 若 f(x) 单调递减, 且 $x_1 < x_2$ 时, 则图像为

2. 利用压缩映射 (先斩后奏): 先令 $\lim_{n\to\infty} x_n = A$, 然后等式 $x_{n+1} = f(x_n)$ 两端取极限解得 A, 得到极限初步结果, 最后再证明 $\lim_{n\to\infty} x_n = A$.核心是用 $x_n = f(x_{n-1})$ 证明一个递推不等式 $|x_n - a| \leqslant A|x_{n-1} - a|$, 其中 0 < A < 1

题目 94. 设 $0 < x_1 < 3, x_{n+1} = \sqrt{x_n (3 - x_n)} (n = 1, 2, ...)$, 证明: 数列 x_n 极限存在并求此极限

解答. 由 $0 < x_1 < 3, x_{n+1} = \sqrt{x_n(3-x_n)}$ 可得:

$$x_{n+1} = \sqrt{x_n(3-x_n)} \leqslant \frac{3}{2}$$

可知数列 x_n 存在上界, 令 $x_{n+1}-x_n$ 可得:

$$\begin{split} x_{n+1} - x_n &= \sqrt{x_n(3-x_n)} - x_n \\ &= \frac{x_n(3-x_n) - x_n^2}{\sqrt{x_n(3-x_n)} + x_n} \end{split}$$

$$=\frac{x_n(3-2x_n)}{\sqrt{x_n(3-x_n)}+x_n}\geqslant 0$$

故 x_n 单调递增,根据数列单调有界定理,该数列极限存在,因此设 $\lim_{x_n}=a$,对等式 $x_{n+1}=\sqrt{x_n(3-x_n)}$ 左右 两边取极限得: $a=\sqrt{a(3-a)}$. 解得 $a=\frac{3}{2}$

综上,数列极限为 $\frac{3}{2}$

题目 94 的注记. 出现本题的形式 $x_{n+1} = \sqrt{x_n(3-x_n)}$ 可以使用常用不等式1.5.2, 对不等式放缩计算极限.

题目 95. 设
$$x_1 = \sqrt{6}, x_2 = \sqrt{6 + \sqrt{6}}, \cdots, x_n = \sqrt{6 + \sqrt{6 + \sqrt{6 + \cdots + \sqrt{6}}}}$$
, 求极限 $\lim_{n \to \infty} x_n$

解答. 由题意可知, 讲数列的表达式可抽象为 $x_{n+1} = \sqrt{6 + x_n}$, 其函数表达式为 $f(x) = \sqrt{6 + x}$, 对其求导可得: $f'(x) = \frac{1}{2\sqrt{6 + x}} > 0$, 由于 $x_1 < x_2$ 因此数列单调递增. 又因为 $x_1 = \sqrt{6} < 3$, 若 $x_n < 3$, 则 $x_{n+1} = \sqrt{6 + x_n} < 3$, 从而 $x_n < 3$, 即数列 x_n 有上界, 则 $\lim_{n \to \infty} x_n$ 存在, 设 $\lim_{n \to \infty} x_n = a$, 由于 $0 < x_n < 3$, 故由极限的保序性可得: $0 \le a \le 3.x_{n+1} = \sqrt{6 + x_n}$, 两侧取极限得: $a = \sqrt{6 + a}$, 解得 a = 3, 综上数列极限为 $\lim_{n \to \infty} x_n = 3$

题目 95 的注记. 除此之外, 本题还可以使用压缩映射进行求解:

解答. 直接证明 $\lim_{n\to\infty} x_n = 3$, 由 $x_{n+1} = \sqrt{6+x_n}$ 知:

原式 =
$$|x_n - 3| = |\sqrt{6 + x_{n-1}} - 3|$$

对于此处的运算, 我们可以使用拉格朗日中值定理进行化简, 即

原式 =
$$|\sqrt{6+x_{n-1}}-3|$$

= $|\sqrt{6+x_{n-1}}-\sqrt{9}|$
= $\frac{1}{2\sqrt{\varepsilon}}|x_{n-1}-3|<\frac{1}{2}|x_{n-1}-3|<\frac{1}{2^2}|x_{n-2}-3|<\ldots<\frac{1}{2^{n-1}}|x_1-3|\to 0 \quad (n\to\infty)$

则 $\lim_{n\to\infty} x_n = 3$

当然也可以使用有理化进行化简:

$$\text{ \mathbb{R}} \vec{\mathbb{R}} = \frac{|x_{n-1}-3|}{\sqrt{6+x_{n-1}}+3} < \frac{1}{3} \mid x_{n-1}-3 \mid < \frac{1}{3^2} \mid x_{n-2}-3 \mid < \dots < \frac{1}{3^{n-1}} \mid x_1-3 \mid \to 0 \quad (n \to \infty)$$

综上

$$0\leqslant \lim_{n\to\infty}|x_n-3|\leqslant \lim_{n\to\infty}\frac{1}{3^{n-1}}|x_1-3|$$

使用夹逼准则可以得到 $\lim_{n\to\infty} x_n = 3$

题目 96. 设
$$x_1=2, x_{n+1}=2+\frac{1}{x_n}(n=1,2,\ldots),$$
 求极限 $\lim_{n\to\infty}x_n$

解答. 令 $f(x)=2+\frac{1}{x}$, 则 $x_{n+1}=f(x_n)$, 显然 f(x) 在 $(0,+\infty)$ 上单调减, 故 $\{x_n\}$ 不具有单调性, 因此只能使 用压缩映射.

令
$$\lim_{n\to\infty} x_n = a$$
,则 $\lim_{n\to\infty} x_{n+1} = 2 + \frac{1}{\lim_{n\to\infty} x_n} \Rightarrow a = 2 + \frac{1}{a}$,解得 $a = 1 \pm \sqrt{2}$. 由题设知 $x_n \geq 2$,故由极限的保号性知, $a \geq 2$,从而 $a = 1 \pm \sqrt{2}$,以下证明 $\lim_{n\to\infty} x_n = 1 + \sqrt{2}$
$$|x_n - a| = \left| \left(2 + \frac{1}{x_{n-1}} \right) - \left(2 + \frac{1}{a} \right) \right| = \left| \frac{x_{n-1} - a}{ax_{n-1}} \right| \leqslant \frac{|x_{n-1} - a|}{2a} \leqslant \frac{|x_{n-1} - a|}{2} \leqslant \frac{|x_{n-2} - a|}{2} \leqslant \cdots \leqslant \frac{|x_{n-1} - a|}{2n + 1} \to 0$$

题目 96 的注记. 需要切记的是在压缩映射中,极限值为根式时,要用极限时的等式对极限值进行替换,比如在 本题中在证明数列极限为 $1+\pm\sqrt{2}$ 中, 应写为 $|x_n-a|$, 而不是 $|x_n-1-\sqrt{2}|$

题目 97. 设 $x_1 = \sqrt{a(a > 0)}, x_{n+1} = \sqrt{a + x_n}$, 证明: $\lim_{n \to \infty} x_n$ 存在, 并求其值.

本颢有四种方法,下面依次给出求解:

解答. 法 1: 数学归纳法找上界: 数列形式可写为 $f(x) = \sqrt{a+x}$, 则 $f'(x) = \frac{1}{2\sqrt{a+x}} > 0$, 因此 f(x) 单增, 又 $x_1=\sqrt{a}, x_2=\sqrt{a+\sqrt{a}}, x_2>x_1$, 因此 x_n 单增.

假设 $\lim_{n\to\infty}x_n=A=\frac{1+\sqrt{1+4a}}{2}$. 由第一数学归纳法可得: 验证 $x_1=\sqrt{a}<\frac{1+\sqrt{1+4a}}{2}$, 即证:

$$2\sqrt{a} < 1 + \sqrt{1 + 4a}$$

$$4a < 2 + 4a + 2\sqrt{1 + 4a}$$

假设 $x_n < \frac{1+\sqrt{1+4a}}{2}$ 成立, 验证 $x_{n+1} < \frac{1+\sqrt{1+4a}}{2}$ 即证:

$$2\sqrt{a+x_n}<1+\sqrt{1+4a}$$

$$4a + 4x_n < 2 + 4a + 2\sqrt{1 + 4a}$$

$$4x_n < 2 + 2\sqrt{1 + 4a}$$

党上
$$\lim_{n\to\infty} x_n = \frac{1+\sqrt{1+4a}}{2}$$

解答. 法 2: 对方法一进行化简 (最佳): 数列形式可写为 $f(x) = \sqrt{a+x}$, 则 $f'(x) = \frac{1}{2\sqrt{a+x}} > 0$, 因此 f(x)

单增, 又 $x_1=\sqrt{a}, x_2=\sqrt{a+\sqrt{a}}, x_2>x_1$, 因此 x_n 单增.

设 $A=\sqrt{a+A}$ 假设 $\lim_{n\to\infty}x_n=A=\frac{1+\sqrt{1+4a}}{2}$. 由第一数学归纳法可得:

验证 $x_1 < A$, 即证:

$$x_1 = \sqrt{a}, A = \sqrt{a+A}$$

$$\sqrt{a} < \sqrt{a+A} \Rightarrow x_1 < A$$

假设 $x_n < A$ 成立, 验证 $x_{n+1} < A$ 即证:

$$x_{n+1} = \sqrt{x+x_n} < \sqrt{a+A} = A$$

即证: $x_n < A$, 显然成立.

综上: $x_n < A$, 且 x_n 单增, 那么 $\lim_{n \to \infty} x_n$ 存在, 令 $\lim_{n \to \infty} x_n = M$, 则 $M = \sqrt{a+M}$, 解得 $M = \frac{1+\sqrt{1+4a}}{2}$

解答. 法 3: 构造不等式进行放缩
26
 易知 x_n ,单调递增,且 $x_n>0$ \Rightarrow
$$\begin{cases} x_{n+1}>x_n>...>x_1=\sqrt{a}\\ \frac{x_n}{x_{n+1}}<1 \end{cases}$$

$$\begin{split} x_{n+1} &= \sqrt{a + x_n} \\ \Rightarrow x_{n+1}^2 &= a + x_n \\ \Rightarrow \frac{a}{x_{n+1}} + \frac{x_n}{x_{n+1}} \\ \Rightarrow x_{n+1} &< \frac{a}{x_{n+1}} + 1 \end{split}$$

$$x_n$$
 单增且有上界,因此 $\lim_{n\to\infty}x_n$ 存在.设 $\lim_{n\to\infty}x_n=A$,则 $A=\sqrt{a+A}$,解得 $A=\frac{1+\sqrt{1+4a}}{2}$ 综上 $\lim_{n\to\infty}x_n=\frac{1+\sqrt{1+4a}}{2}$

²⁶ 其实不好放缩, 但是可以硬往条件上凑

解答. 法 4: 压缩映射 + 有理化

$$\begin{split} |x_n - A| &= |\sqrt{a + x_{n+1}} - \sqrt{a + A}| \\ &= \frac{|x_{n-1} - A|}{\sqrt{a + x_{n-1}} + \sqrt{a + A}} \leqslant \frac{1}{2\sqrt{a}}|x_{n+1} - A| \end{split}$$

题目 98. 设数列 $\{x_n\}$ 满足 : $x_1>0, x_ne^{x_{n+1}}=e^{x_n}-1(n=1,2,\cdots)$. 证明 $\{x_n\}$ 收敛, 并求 $\lim_{n\to\infty}x_n$

解答.

$$x_{n+1}-x_n=\ln\biggl(\frac{\mathrm{e}^{x_n}-1}{x_n}\biggr)-x_n=\ln\biggl(\frac{\mathrm{e}^{x_n}-1}{x_n\mathrm{e}^{x_n}}\biggr).$$

令 $f(x) = e^x - 1 - xe^x$,则 $f'(x) = -xe^x$. 当 x > 0 时, f(x) 在 $[0, +\infty)$ 上单调减少,于是, f(x) < f(0) = 0. 从 而,当 x > 0 时

$$\frac{e^x - 1}{xe^x} - 1 = \frac{e^x - 1 - xe^x}{xe^x} < 0$$

即 $\frac{e^x-1}{xe^x} < 1$ 又因为对所有的正整数 n,都有 $x_n > 0$,所以 $\ln\left(\frac{\mathrm{e}^{x_n}-1}{x_n\mathrm{e}^{x_n}}\right) < \ln 1 = 0$,即 $x_{n+1}-x_n < 0$. 因此,数列 $|x_n|$ 单调减少.

由单调有界准则可知, 数列 $|x_n|$ 收敛. 由于对所有的正整数 n, 都有 $x_n>0,$ 故 $\lim_{n\to\infty}x_n=a\geqslant 0.$

对 $x_n e^{x_n+1} = e^{x_n} - 1$ 两端同时令 $n \to \infty$, 可得 $a e^n = e^a - 1$, 由前面的结果可知,x = 0 是 $f(x) = e^x - 1 - x e^x$ 在 $[0, +\infty)$ 上的唯一零点, 因此,a = 0, 即 $\lim_{n \to \infty} x_n = 0$.

第三章 连续

3.1 函数的连续性

定义 3.1.1: 连续点的定义

设函数 y = f(x) 在点 x_0 的某一邻域内有定义, 如果

$$\lim_{x\to x_0}f(x)=f(x_0)$$

那就称为函数 y = f(x) 在点 x_0 连续.

注 3.1.1: 函数连续的性质

• 当极限需要讨论时:

$$\lim_{x\to x_0^+}f\left(x\right)=\lim_{x\to x_0^-}f\left(x\right)=f\left(x_0\right)\Leftrightarrow f\left(x\right)$$
在点 x_0 处连续

- 一点连续不能推出邻域连续: 以函数 f(x) = xD(x) 为例, 其中 D(x) 为狄利克雷函数: 该函数在 x = 0 时极限为 0, 函数值也为 0, 因此函数在 x = 0 点连续, 但是其邻域内所有点都不连续.
- 连续性的四则运算: 设 f(x) 与 g(x) 都在点 $x=x_0$ 处连续, 则 $f(x)\pm g(x)$ 与 f(x)g(x) 在点 $x=x_0$ 处连续, 当 $g(x_0)\neq 0$ 时, f(x)/g(x) 在点 $x=x_0$ 处也连续。
- 复合函数的连续性: 设 $u=\varphi(x)$ 在点 $x=x_0$ 处连续,y=f(u) 在点 $u=u_0$ 处连续,且 $u_0=\varphi(x_0)$,则 $f[\varphi(x)]$ 在点 $x=x_0$ 处连续。
- 反函数的连续性: 设 y=f(x) 在区间 I_x 上单调且连续,则反函数 $x=\varphi(y)$ 在对应的区间 $I_y=\{y|y=f(x),x\in I_x\}$ 上连续且有相同的单调性
- f(x) 在点 $x=x_0$ 处连续,且 $f(x_0)>0$ (或 $f(x_0)<0$),则存在 $\delta>0$,使得当 $|x-x_0|<\delta$ 时 f(x)>0(或f(x)<0).

3.2 函数的间断点

3.2.1 间断点的相关概念

讨论间断点的前提: 函数 f(x) 在点 x_0 的某去心领域内有定义

定义 3.2.1: 可去间断点的定义

可去间断点: 若 $\lim_{x \to x_0} f(x) = A \neq f(x_0)(f(x_0)$ 甚至可以无定义), 则这类间断点称为可去间断点

题目 99. 函数
$$f(x) = \frac{(x+1)|x-1|}{e^{\frac{1}{x-2}} \ln |x|}$$
 的可去间断点的个数为

解答. 该题中可疑点为 $x=\pm 1,2,0$,对上述四点求极限可得: $\lim_{x\to 0}=0$,但是函数 f(x) 在 x=0 点无定义. 因此 x=0 是可去间断点. $\lim_{x\to 1}f(x)$ 时 $\lim_{x\to 1^+}\neq \lim_{x\to 1^-}$. 因此 x=1 是跳跃间断点. $\lim_{x\to -1}=-2\sqrt[3]{e}$,因此 x=-1 是可去间断点. $\lim_{x\to 2^+}f(x)=0$, $\lim_{x\to 2^-}f(x)=\infty$,x=2 是第二类间断点.

题目 99 的注记. 如何找间断点? 主要是找可疑点

- 绝对值分段点
- 这一点本身没有定义,但邻域内都有定义的点1.

 $\ln(x)$ 本身不需要讨论 x 等于 0, 因为只有 0 点右邻域有定义,0 点的左邻域内连定义都没有, 更不用谈 0 点的左极限, 所以此时 0 不可能是间断点. 但出现 $\ln|x|, \ln(x^2)$ 时,0 点本身无定义,但 0 点左右邻域内都有定义,所以 0 可能是间断点.

题目 100. 函数
$$f(x) = \frac{|x|^x - 1}{x(x+1)\ln|x|}$$
 的可去间断点的个数为

解答.
$$f(x) = \frac{\mid x\mid^x - 1}{x(x+1)\ln\mid x\mid}$$
 在 $x = -1, 0, 1$ 处无定义
$$\lim_{x \to -1} f(x) = \lim_{x \to -1} \frac{\mathrm{e}^{x\ln|x|} - 1}{x(x+1)\ln|x|} = \lim_{x \to -1} \frac{x\ln|x|}{x(x+1)\ln|x|} = \lim_{x \to -1} \frac{1}{x+1} = \infty,$$

¹比如分母为 0 的点

$$\begin{split} &\lim_{x\to 0} f(x) = \lim_{x\to 0} \frac{\left|x\right|^x - 1}{x(x+1)\ln|x|} = \lim_{x\to 0} \frac{\mathrm{e}^{x\ln|x|} - 1}{x(x+1)\ln|x|} = \lim_{x\to 0} \frac{x\ln|x|}{x(x+1)\ln|x|} = \lim_{x\to 0} \frac{1}{x+1} = 1\,, \\ &\lim_{x\to 1} f(x) = \lim_{x\to 1} \frac{\left|x\right|^x - 1}{x(x+1)\ln|x|} = \lim_{x\to 1} \frac{\mathrm{e}^{x\ln|x|} - 1}{x(x+1)\ln|x|} = \lim_{x\to 1} \frac{x\ln|x|}{x(x+1)\ln|x|} = \lim_{x\to 1} \frac{1}{x+1} = \frac{1}{2} \end{split}$$
 综上, $x = 0$ 与 $x = 1$ 为可去间断点

定义 3.2.2: 跳跃间断点的定义

跳跃间断点^a: 若 $\lim_{x\to x_0^+} f(x)$ 与 $\lim_{x\to x_0^+} f(x)$ 都存在,但 $\lim_{x\to x_0^+} f(x) \neq \lim_{x\to x_0^-} f(x)$,则这类间断点 称为跳跃间断点

跳跃间断点函数图像

a一点极限存在 f(x) 在 x_0 连续

定义 3.2.3: 无穷间断点的定义

无穷间断点: 若 $\lim_{x\to x_0}f(x)=\infty,$ 则这类间断点称为无穷间断点, 如 $y=\tan x$

图 3.1: 无穷间断点函数 tan 图像

定义 3.2.4: 振荡间断点的定义

振荡间断点: 若 $\lim_{x \to x_0} f(x)$ 振荡不存在, 则这类间断点称为振荡间断点

3.2.2 间断点的分类

通过求函数在该点的左右极限来判断

• 第一类间断点: $\lim_{x\to x_0^-}f(x)$ 和 $\lim_{x\to x_0^+}f(x)$ 均存在

 $- \ \exists \ \pm^2 \colon \lim\nolimits_{x \to x_0^-} f(x) = \lim\nolimits_{x \to x_0^+} f(x) \neq f(x_0)$

- 跳跃: $\lim_{x\to x_0^-}f(x)\neq \lim_{x\to x_0^+}f(x)$

• 第二类间断点: 除第一类以外的间断点 $\implies \lim_{x \to x_0^-} f(x)$ 和 $\lim_{x \to x_0^+} f(x)$ 均至少一个不存在

题目 101. ★★☆☆ 设函数
$$f(x) = \lim_{n \to \infty} \frac{x^2 + nx(1-x)\sin^2 \pi x}{1 + n\sin^2 \pi x}$$
,则 $f(x) = \lim_{n \to \infty} \frac{x^2 + nx(1-x)\sin^2 \pi x}{1 + n\sin^2 \pi x}$

解答. 分情况讨论, 当 $\sin^2 \pi x = 0$ 和 $\sin^2 \pi x \neq 0$ 当 $\sin^2 \pi x = 0$ 时,

原式 =
$$\lim_{n \to \infty} \frac{x^2}{1}$$
= x^2

原式 =
$$\lim_{n \to \infty} \frac{\frac{x^2}{n} + x(1 - x)\sin^2 \pi x}{\frac{1}{n} + \sin^2 \pi x}$$
$$= \lim_{n \to \infty} \frac{x(1 - x)\sin^2 \pi x}{\sin^2 \pi x}$$
$$= x(1 - x)$$

²可去间断点上极限存在但是导数不存在

综上函数
$$f(x) = \begin{cases} x^2, \sin^2 \pi x = 0 \\ x(1-x), \sin^2 \pi x \neq 0 \end{cases}$$

题目 102. <u>求函数</u> $f(x) = \lim_{n \to \infty} \frac{x^{n+2} - x^{-n}}{x^n + x^{-n}}$ 的间断点并指出其类型.

解答. 当
$$n \to \infty$$
 时,有 $\lim_{x \to \infty} x^n = \begin{cases} \infty, |x| > 1 \\ 0, |x| < 1 \\ 1, x = 1 \\ (-1)^n, x = -1 \end{cases}$,那么 $\lim_{n \to \infty} \frac{x^{n+2} - x^{-n}}{x^n + x^{-n}} = \begin{cases} -1, 0 < |x| < -1 \\ x^2, |x| > 1 \\ 0, |x| = 1 \end{cases}$

综上, $x = \pm 1$ 为跳跃间断点,x = 0 为可去间断点

题目 102 的注记. 对于 f(x) 是 x 的函数,表达式是以 n 的极限的形式给出的情况,方法为把 f(x) 分段解出来,n 趋于无穷时, x^n 要以 |x|=1 为界限进行分段.

同时应该结合
$$x^n$$
 的解析式进行求解: $\lim_{x\to\infty}x^n=$
$$\begin{cases} \infty, |x|>1\\ 0, |x|<1\\ 1, x=1\\ (-1)^n, x=-1 \end{cases}$$

题目 103. $\underline{\,\,\,\,\,\,\,\,\,} f(x) = \lim_{n \to \infty} \frac{2\mathrm{e}^{(n+1)x} + 1}{\mathrm{e}^{nx} + x^n + 1}, \, 贝 f(x):$

(A) 仅有一个可去间断点. (B) 仅有一个跳跃间断点. (C) 有两个可去间断点. (D) 有两个跳跃间断点.

解答.
$$\lim_{x\to\infty}e^{nx}=\begin{cases} 0, x<0\\ 1, x=0\\ +\infty, x>0 \end{cases}, \lim_{x\to\infty}x^n=\begin{cases} \infty, |x|>1\\ 0, |x|<1\\ 1, x=1\\ (-1)^n, x=-1 \end{cases}$$
 综上可得:
$$\lim n\to\infty=f(x)=\lim_{n\to\infty}\frac{2\mathrm{e}^{(n+1)x}+1}{\mathrm{e}^{nx}+x^n+1}=\begin{cases} 0, x<-1\\ 1, -1< x<0\\ 2\mathrm{e}^x, x>0 \end{cases}$$

第四章 导数

4.1 导数的概念

4.1.1 导数的定义

定义 4.1.1: 导数的定义

设函数 y=f(x) 在点 x_0 的某个邻域内有定义,当自变量 x 在 x_0 处取得增量 Δx (点 $x_0+\Delta x$ 仍在该邻域内) 时,相应地,因变量取得增量 $\Delta y=f(x_0+\Delta x)-f(x_0)$;如果 Δy 与 Δx 之比当 $\Delta x\to 0$ 时的极限存在,那么称函数 y=f(x) 在点 x_0 处可导,并称这个极限为函数 y=f(x) 在点 x_0 处的**导数**,记为 $f'(x_0)$,即

$$f^{'}(x_{0}) = \lim_{x \to x_{0}} \frac{f(x) - f(x_{0})}{x - x_{0}} = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \lim_{\Delta x \to 0} \frac{f(x_{0} + \Delta x) - f(x_{0})}{\Delta x}$$

也可记作
$$\left.y'\right|_{x=x_0}, \left.\frac{\mathrm{d}y}{\mathrm{d}x}\right|_{x=x_0}$$
 或 $\left.\frac{\mathrm{d}f(x)}{\mathrm{d}x}\right|_{x=x_0}$.

注 4.1.1: 导数定义的注意事项

1. 在考题中, 增量 Δx 一般会被命题人广义化为"□", 即

$$f'(x_0) = \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x} \xrightarrow{\text{fixe}} \lim_{\Box \to 0} \frac{f(x_0 + \Box) - f(x_0)}{\Box}$$

需要知道的是 \square 需要同时趋近于 0^+ 和 0^- 该点导数才存在, 如果仅趋近于其中的一个, 则是 \square 处的单侧导数

若在上式中, 令 $x_0 + \Delta x = x$, 则可将导数定义式写成

$$f'(x_0) = \lim_{x \to x_0} \frac{f\left(x\right) - f\left(x_0\right)}{x - x_0}$$

观察上式, 可以观察到上式有以下特点:

- 分母同时趋近于 0+ 和 0-
- Δx 在趋于 0 的过程中没有间断点
- 分子为一个动点一个定点
- 2. 以下的三种说法是等价的:
 - y = f(x) 在点 x_0 处可导
 - y = f(x) 在点 x_0 处导数存在
 - $f'(x_0) = A(A$ 为有限数)
- 3. 原函数可导无法推出导函数连续
- 4. 需要区分一点处的右导数和导数的右极限

•
$$f'_+(x_0)$$
 ⇒ 表示一点处的右导数 ⇒ $\lim_{x\to x_0^+} \frac{f(x)-f(x_0)}{x-x_0}$

•
$$f'(x_0^+) = f'(x_0 + 0) \Rightarrow$$
导数的右极限 $\Rightarrow \lim_{x \to x_0^+} f'(x)$

•
$$f(x_0^+) = f(x_0 + 0) \Rightarrow$$
 函数的右极限 $\Rightarrow \lim_{x \to x_0^+} f(x)$

如果函数 f(x) 连续可导或者 f'(x) 连续,那么 $f'_+(x_0) = f'(x_0^+)$,即一点处的右导数等于导数的右极限. 此处如果可以这样理解: 把导数降一个纬度理解,令 f'(x) = F(x),那么如果 F(x) 在 x_0 处左侧的值和 F(x) 左侧极限相等,则 F(x) 必须可导或者连续,那么可以得到 f'(x) 连续或 f(x) 连续可导。如果不连续,以函数 $f(x) = \begin{cases} x, x \leqslant 0 \\ x+1, x>0 \end{cases}$

• 左导数:
$$f'_{-}(0) = \lim_{x \to 0^{-}} \frac{f(x) - f(0)}{x} = \lim_{x \to 0^{-}} \frac{x - 0}{x} = 1$$

• 右导数:
$$f'_{+}(0) = \lim_{x \to 0} \frac{f(x) - f(0)}{x} = \lim_{x \to 0^{+}} \frac{x + 1 - 0}{x} = \frac{1}{0} = \infty$$

• 导数的右极限: $\lim_{x\to 0^+} f'(x) = \lim_{x\to 0^+} (x+1)' = 1$

题目 104. 若 f(x) 在点 x_0 处的左, 右导数都存在, 则 f(x) 在点 x_0 处

(A) 可导 (B) 连续 (C) 不可导 (D) 不一定连续

解答. 左右导数存在说明左右可导, 左可导说明左连续, 右可导说明右连续¹. 左连续说明左侧极限等于该点函数值, 右连续说明右侧极限等于该点函数值, 那么左右极限相等且等于该点函数值, 那么函数在该点连续. 因此 B

¹一点可导的必要条件

选项正确.

题目 105. 设 f(0) = 0, 则 f(x) 在点 x = 0 可导的充要条件为

$$\begin{split} & ({\bf A}){\rm lim}_{h\to 0}\,\frac{1}{h^2}f(1-\cos h)\ {\it 存在} \quad ({\bf B}){\rm lim}_{h\to 0}\,\frac{1}{h}f(1-e^h)\ {\it 存在} \\ & ({\bf C}){\rm lim}_{h\to 0}\,\frac{1}{h^2}f(h-\sin h)\ {\it 存在} \quad ({\bf D}){\rm lim}_{h\to 0}\,\frac{1}{h}[f(2h)-f(h)]\ {\it 存在} \end{split}$$

解答. A: $\lim_{h\to 0} \frac{f(1-\cos h)-f(0)}{h^2} = \lim_{h\to 0} \frac{f(1-\cos h)-f(0)}{1-\cos h} \cdot \frac{1-\cos h}{h^2}$,若 $h\to 0$ 可以知道的是 $1-\cos h$ 趋近于 0^+ , $\frac{1-\cos h}{h^2}\to 1$,那么 $\frac{1}{2}f'_+(0)$ 存在 B: $\lim_{h\to 0} \frac{1}{h}f(1-e^h) = \lim_{h\to 0} \frac{1-e^h}{h}\frac{f(1-e^h)-f(0)}{1-e^h}$,易知 $1-e^h$ 同时趋近于 0^+ 和 0^- ,那么函数 f'(0) 存在 C: $\lim_{h\to 0} \frac{1}{h^2}f(h-\sin h) = \lim_{h\to 0} \frac{f(h-\sin h)-f(0)}{h^2} = \lim_{h\to 0} \frac{f(h-\sin h)}{h-\sin h} \cdot \frac{h-\sin h}{h^2}$,已知 $h-\sin h \sim \frac{1}{6}h^3$,那么 $\lim_{h\to 0} \frac{f(h-\sin h)}{h-\sin h} \cdot \frac{h}{1}$ 极限存在,同时 $h\to 0$,但是不可以推出 $\frac{f(h-\sin h)}{h-\sin h}$ 极限存在,只能得到该极限是为定式,那么更无法推出该导数存在

D: 若 $\lim_{h\to 0} \frac{1}{h} [f(2h)-f(h)]$ 存在,那么其实什么都推不出来,因为不知道 $\frac{f(2h)}{h}$ 和 $\frac{f(h)}{h}$ 是否存在,如果写成下列形式 $\lim_{h\to 0} \frac{[f(2h)-f(0)]-[f(h)-f(0)]}{h} = \lim_{h\to 0} \left(\frac{f(2h)-f(0)}{h}-\frac{f(h)-f(0)}{h}\right)$,则违反了极限的运算法则.

综上答案选择 B 选项

结论 4.1.1: 若 f(x) 在 x = 0 处可导,则必须满足下面的四个条件:

- 1. 一动减一定: 必须是一个动点减一个定点. 比如上题中的 D 选项, 本质上是两个动点相减.
- 2. 可正可负: 指的是分母, 即定义中的 □, 需要同时趋近于 0⁺ 和 0⁻, 如果只能趋近于一个, 则为单侧导数.
- 3. 上下同阶: 即分子的阶数小于等于分母阶数. 但是如果要求是充要条件则必须是同阶. 比如下面的例 子: 若 $\lim_{x\to 0} \frac{f(x-\sin x)-f(0)}{x^4}$ 存在, 那么 $\lim_{x\to 0} \frac{f(x-\sin x)-f(0)}{x-\sin x} \cdot \frac{x-\sin x}{x^4}$, 其中 $x-\sin x \sim \frac{1}{6}x^3$, 那么 $\lim_{x\to 0} \frac{f(x-\sin x)-f(0)}{(x-\sin x)-0} \cdot \frac{1}{6x}$, 其中 $\lim_{x\to 0} \frac{1}{6x} \to \infty$, 那么 $\lim_{x\to 0} \frac{f(x-\sin x)-f(0)}{(x-\sin x)-0}$ 必定存在且 $\frac{f(x-\sin x)-f(0)}{(x-\sin x)-0} = 0 \Rightarrow f'(0) = 0$
- 4. 填满邻域: 在定义中的 \square 需要把其附近邻域都给填满. 比如下面的例子: $\lim_{n\to\infty} \frac{f(\frac{1}{n}) f(0)}{\frac{1}{n}} = 0$, 无法推出 $f'_+(0) = 0$ 存在,因为 $\frac{1}{n}$ 取不到无理数,无法包含 \square 邻域

上述结论的本质还是导数的定义表达式的特点.

题目 106. 设函数 f(x) 连续, 且 f'(0) > 0, 则存在 $\delta > 0$ 使得:

- (A) f(x) 在 $(0, \delta)$ 内单调增加 (B) f(x) 在 $(0, \delta)$ 内单调减少
- (C) 对任意的 $x \in (0, \delta)$ 有 f(x) > f(0) (D) 对任意的 $x \in (-\delta, 0)$ 有 f(x) > f(0)

解答. A,B 选项²: 已知函数 f(x) 连续,且函数在 f'(0) 处的导数大于 0,那么只能说明函数在 x=0 点导数存在 且大于 0,0 可能是函数的震荡间断点. 因此函数无法说明函数在邻域内单增或者单减.C,D 选项: 对函数在 x=0 求导数,即 $\lim_{x\to 0} \frac{f(x)-f(0)}{x} > 0$,则 C 选项成立.

注 4.1.2: 函数可导性与连续的关系

1. 导数若存在,则导数要么连续,要么只可能有震荡间断点

导数若存在有震荡间断点的证明: 以函数
$$F(x) = \begin{cases} x^2 \sin \frac{1}{x}, x \neq 0 \\ 0, x = 0 \end{cases}$$
 为例:

根据导数定义对函数在 x=0 处求导: $F'(0)=\lim_{x\to 0}\frac{F(x)-F(0)}{x-0}=\lim_{x\to 0}\frac{x^2\sin\frac{1}{x}-0}{x}=\lim_{x\to 0}\frac{x^2\sin\frac{1}{x}-0}{x}=\lim_{x\to 0}\frac{1}{x}$

$$F'(x) = \begin{cases} 2x \sin\frac{1}{x} - \cos\frac{1}{x}, x \neq 0 \\ 0, x = 0 \end{cases}, \quad \text{那么易知 } \lim_{x \to 0} \left(2x \sin\frac{1}{x} - \cos\frac{1}{x}\right) \text{ 是震荡的. 虽然函数导}$$

数存在, 但是这是震荡间断点.

同时,导数震荡的话,则导数极限不存在,由此可以推出衍生推论:导数极限定理1.1.1

- 2. 函数在一点可导的必要条件: 若 f(x) 在一点可导, 则 f(x) 在该点连续^a
- a上面两个结论非常重要, 经常和高阶导数一起考察

定理 4.1.1: 导数极限定理

如果 f(x) 在 x_0 的邻域内连续,在 x_0 的去心邻域内可导,且导函数在 x_0 处的极限存在 (等于 a),则 f(x) 在 x_0 处的导数也存在并且等于导函数的极限 (等于 a)

上述定理可解释为导数如果在某点极限存在,那么在该点导函数一定连续.因为导数存在要么有震荡间断点,要么连续.如果说该点导函数极限存在,那么一定连续.

 2 在本题中,答案给出了一个例子可以满足该题(但是本题中例子并不重要,重要的是思想)即 $f(x) = \begin{cases} x + 2x^2 \sin \frac{1}{x}, & x \neq 0, \\ 0, & x = 0, \end{cases}$,在考研中常用的一个例子是 $k \times \sin \frac{1}{x^b} \pm M \pm f(x)$

题目 107. 设 f(x) 在 $x = x_0$ 处有二阶导数,则

- (A) 当 f(x) 在 x_0 的某邻域内单调增加时, $f'(x_0) > 0$. (B) 当 $f'(x_0) > 0$ 时, f(x) 在 x_0 的某邻域内单调增加
- (C) 当 f(x) 在 x_0 的某邻域内是凹函数时, $f''(x_0) > 0$. (D) 当 $f''(x_0) > 0$ 时, f(x) 在 x_0 的某邻域内是凹函数

解答. A: 当函数 f(x) 在 x_0 处的邻域内单增, $f'(x_0)$ 的值可以为 0, 这样函数也是单调递增.

B: 已知 f(x) 在 $x=x_0$ 处有二阶导数,那么 f'(x) 在 x_0 处连续. 当函数 $f'(x_0)>0$ 时,排除了震荡的情况,因此 B 选项正确

C: 领域内 f''(x) > 0, 则 f(x) 为凹函数,反之则不行,因为可能存在二阶导为 0 的点,但是依然为凹函数,如 $f(x) = x^2$

 $D: f''(x_0) > 0$ 可能存在震荡间断点, 因此不能推出邻域内 f''(x) > 0

题目 107 的注记. D 选项, 如果增加条件,f''(x) 在 $x=x_0$ 处连续或 $f'''(x_0)$ 存在, 则 D 选项也成立.

题目 108. 已知 f(x) 在 x = 0 处连续, 且 $\lim_{x \to 0} \frac{x^2}{f(x)} = 1$, 则下列结论中正确的个数为

- (1)f'(0) 存在,且 f'(0) = 0. (2)f''(0) 存在,且 f''(0) = 2.
- (3) f(x) 在 x = 0 处取得极小值 (4) f(x) 在 x = 0 的某邻域内连续.

解答.

题目 108 的注记.

题目 109. 设函数 f(x) 在 (-1,1) 上有定义, 且 $\lim_{x\to 0} f(x) = 0$, 则

(C) 当
$$f(x)$$
 在 $x = 0$ 处可导时, $\lim_{x\to 0} \frac{f(x)}{\sqrt{|x|}} = 0$ (D) 当 $f(x)$ 在 $x = 0$ 处可导时, $\lim_{x\to 0} \frac{f(x)}{x^2} = 0$

解答.

题目 109 的注记.

题目 110. 设 f(x) 可导且 $f'(x_0) = \frac{1}{2}$, 则当 $\Delta x \to 0$ 时 f(x) 在 x_0 处的微分 dy 是 Δx 的无穷小. A. 等价 B. 同阶 C. 低阶 D. 高阶

解答.

题目 110 的注记.

题目 111. 已知函数
$$f(x) = \begin{cases} x, & x \leqslant 0, \\ \frac{1}{n}, & \frac{1}{n+1} < x \leq \frac{1}{n}, n = 1, 2, \cdots, \end{cases}$$
 (A) $x = 0$ 是 $f(x)$ 的第一类间断点. (C) $f(x)$ 在 $x = 0$ 处连续但不可导.

(B) x = 0 是 f(x) 的第二类间断点. (D) f(x) 在 x = 0 处可导.

解答.

题目 111 的注记.

题目 112. 下列命题正确的个数为:

- 1. 设 $\lim_{x\to x_0^-} f'(x)$ 与 $\lim_{x\to x_0^+} f'(x)$ 均存在, 则 f(x) 在 $x=x_0$ 处必连续
- 2. 设 $f'_{-}(x_0)$ 与 $f'_{+}(x_0)$ 均存在, 则 f(x) 在 $x = x_0$ 处必连续
- 3. 设 $f(x_0^-)$ 与 $f(x_0^+)$ 均存在, 则 f(x) 在 $x = x_0$ 处必连续
- 4. 设 $\lim_{x\to x_0^-}f'(x)$ 与 $\lim_{x\to x_0^+}f'(x)$ 中至少有一个不存在, 则 f(x) 在 $x=x_0$ 处必不可导

解答.

题目 112 的注记.

4.1.2单侧导数

定义 4.1.2: 单侧导数的定义

函数 f(x) 在 x_0 点可导的充分必要条件是左导数和右导数存在且相等, 其表达式为

$$\lim_{h \rightarrow 0^{-}} \frac{f(x_{0} + h) - f(x_{0})}{h} \stackrel{\mathrm{id}}{=\!\!\!=\!\!\!=} f'_{-}\left(x_{0}\right)$$

$$\lim_{h \to 0^+} \frac{f(x_0 + h) - f(x_0)}{h} \stackrel{\text{id}}{=} f'_+(x_0)$$

注 4.1.3: 一点可导与邻域的关系

- 一点可导 \neq 点邻域可导: 以函数 $f(x)=x^2D(x)=$ $\begin{cases} x^2, x \in \text{有理数} \\ 0, x \in \text{无理数} \end{cases}$ 为例
- 一点可导邻域内连续: 若函数在一点可导,则函数在该点连续,而无法断言函数在这点附近的连续 性, 仍可以 $f(x) = x^2 D(x)$ 为例

4.1.3 导数的几何意义

定义 4.1.3: 导数的几何意义

y=f(x)在 x_0 处导数是 f(x)在 x_0 处切线的斜率 $k_{\rm tJ}=f'(x_0)$ 并且 $k_{\rm tJ}*k_{\rm tz}=-1$ 在 (x_0,y_0) 处, 切线方程:

$$y - y_0 = f'(x_0)(x - x_0)$$

如上图所示, 点 (x_0, y_0) 处的切线为虚线

法线方程:

$$y - y_0 = -\frac{1}{f'(x_0)}(x - x_0)$$

注 4.1.4: 角点与无穷导数

• 研究 y = f(x) = |x| 在 x = 0 处的切线问题

解答. 从 x=0 出发, 取增量 Δx , 有 $\Delta y = f(0+\Delta x) - f(0) = |\Delta x|$

当
$$\Delta x > 0$$
 时, $\Delta y = \Delta x$, 则 $f'_{+}(0) = \lim_{\Delta x \to 0^{+}} \frac{\Delta y}{\Delta x} = 1$ $\stackrel{\square}{=} k_{+}$

当
$$\Delta x > 0$$
 时, $\Delta y = \Delta x$, 则 $f'_{+}(0) = \lim_{\Delta x \to 0^{+}} \frac{\Delta y}{\Delta x} = 1 \stackrel{i \exists}{=\!=\!=} k_{+}$ 当 $\Delta x < 0$ 时, $\Delta y = -\Delta x$, 则 $f'_{-}(0) = \lim_{\Delta x \to 0^{-}} \frac{\Delta y}{\Delta x} = -1 \stackrel{i \exists}{=\!=} k_{-}$

• 研究 $y = f(x) = x^{\frac{1}{3}}$ 在 x = 0 处的切线问题

解答. 显然, 在
$$x = 0$$
 处 $\frac{\Delta y}{\Delta x} = \frac{f(0 + \Delta x) - f(0)}{\Delta x} = \frac{(\Delta x)^{\frac{1}{3}}}{\Delta x} = \frac{1}{(\Delta x)^{\frac{2}{3}}} \stackrel{.}{=} \Delta x > 0$ 时, $f'_{+}(0) = \lim_{\Delta x \to 0^{+}} \frac{1}{(\Delta x)^{\frac{2}{3}}} = +\infty$ 这样的结果称为无穷导数. 又

±∞ 被叫作广义的数, 所以无穷导数在有些数学场合也可被视为导数存在的特殊情形. 但是在考研中无穷被认为是不存在

4.1.4 高阶导数

定义 4.1.4: 高阶导数的定义

函数 y = f(x) 具有 n 阶导数,也常说成函数 f(x) 为 n 阶可导,如果函数 f(x) 在点 x 处具有 n 阶导数,那么 f(x) 在点 x 的某一邻域内必定具有一切低于 n 阶的导数.二阶及二阶以上的导数统称为高阶导数.记作:

$$f^{(n)}(x_0) = \lim_{\Delta x \rightarrow 0} \frac{f^{(n-1)}(x_0 + \Delta x) - f^{(n-1)}(x_0)}{\Delta x} \ \vec{\boxtimes} f^{(n)}(x_0) = \lim_{x \rightarrow x_0} \frac{f^{(n-1)}(x) - f^{(n-1)}(x_0)}{x - x_0}$$

当 n=2 时:

$$f^{\prime\prime}(x_0) = \lim_{\Delta x \to 0} \frac{f^{\prime}(x_0 + \Delta x) - f^{\prime}(x_0)}{\Delta x} \vec{\boxtimes} f^{\prime\prime}(x_0) = \lim_{x \to x_0} \frac{f^{\prime}(x) - f^{\prime}(x_0)}{x - x_0}$$

注 **4.1.5:** n 阶导数与 n-1 阶导数的关系

如果 f(x) 在点 x_0 处有二阶导数,则 f(x) 在 x_0 的某个邻域内有一阶导数且 f'(x) 在 x_0 处连续.

如果 f(x) 在点 x_0 处有 n 阶导数, 则 f(x) x_0 的某个邻域内有 $1 \sim (n-1)$ 阶的各阶导数.

4.2 微分

4.2.1 微分的概念

定义 4.2.1: 微分的定义

设函数 y = f(x) 在某区间内有定义, x_0 及 $x_0 + \Delta x$ 在这个区间内, 如果函数的增量为

$$\Delta y = f(x_0 + \Delta x) - f(x_0)$$

可表示为

$$\Delta y = A\Delta x + o(\Delta x)$$

其中 A 是不依赖于 Δx 的常数, 那么称函数 f(x) 在点 x_0 是可微的, 而 $A\Delta x$ 叫做函数 y=f(x) 在点 x_0

相应于自变量增量 Δx 的微分, 记作 dy, 即:

$$dy = A\Delta x$$

函数 f(x) 在任意点 x_0 的微分, 称为函数的微分, 记作 dy 或 $df(x_0)$, 即

$$dy = f'(x)\Delta x$$

4.2.2 微分的几何意义

若 f(x) 在点 x_0 处可微,则在点 (x_0,y_0) 附近可以用切线段近似代替曲线段,这是可微的几何意义.

4.3 导数的计算

4.3.1 基本求导公式

$$(C)' = 0; \qquad (x^{\alpha})' = \alpha x^{\alpha - 1};$$

$$(a^{x})' = a^{x} \ln a; \qquad (e^{x})' = e^{x};$$

$$(\log_{a} x)' = \frac{1}{x \ln a}; \qquad (\ln |x|)' = \frac{1}{x};$$

$$(\sin x)' = \cos x; \qquad (\cos x)' = -\sin x;$$

$$(\tan x)' = \sec^{2} x; \qquad (\cot x)' = -\csc^{2} x;$$

$$(\sec x)' = \sec x \tan x; \qquad (\csc x)' = -\csc x \cot x;$$

$$(\arcsin x)' = \frac{1}{\sqrt{1 - x^{2}}}; \qquad (\arccos x)' = -\frac{1}{\sqrt{1 - x^{2}}};$$

$$(\arctan x)' = \frac{1}{1 + x^{2}}; \qquad (\arccos x)' = -\frac{1}{1 + x^{2}}.$$

$$[\ln(x + \sqrt{x^{2} + 1})]' = \frac{1}{\sqrt{x^{2} + 1}}; \qquad [\ln(x + \sqrt{x^{2} - 1})]' = \frac{1}{\sqrt{x^{2} - 1}}$$

4.3.2 有理运算法则

设 u = u(x), v = v(x) 在 x 处可导, 则

$$(u \pm v)' = u' \pm v'$$

$$(uv)' = u'v + uv'$$

$$\left(\frac{u}{v}\right)' = \frac{u'v - uv'}{v^2} \quad (v \neq 0)$$

4.3.3 复合函数的导数与微分形式不变性

复合函数导数

定义 4.3.1: 复合函数导数的定义

设 y = f(g(x)) 是由 y = f(z), z = g(x) 复合而成,且 f(z), g(x) 均可导,则 $\{f[g(x)]\}' = f'[g(x)]g'(x)$

微分形式不变形

定义 4.3.2: 微分形式不变形

设 u = g(x) 在点 x(没有下标是泛指的点,下同)处可导,y = f(u)在点 u = g(x)处可导,则

$$d\{f[g(x)]\} = f'[g(x)]g'(x)dx = f'[g(x)]d[g(x)]$$

指无论 u 是中间变量还是自变量,dy = f'(u)du 都成立.

4.3.4 分段函数的导数

设
$$f(x) = \begin{cases} f_1(x), & x \geqslant x_0, \\ & \text{其中 } f_1(x), f_2(x)$$
 分别在 $x > x_0, x < x_0$ 时可导, 则
$$f_2(x), & x < x_0, \end{cases}$$

- 在分段点 x_0 处用导数定义求导: $f'_+(x_0) = \lim_{x \to x_0^+} \frac{f_1(x) f(x_0)}{x x_0}, f'_-(x_0) = \lim_{x \to x_0^-} \frac{f_2(x) f(x_0)}{x x_0}$.根据 $f'_+(x_0)$ 是否等于 $f'_-(x_0)$ 来判定 $f'(x_0)$;
- 在非分段点用导数公式求导, 即 $x > x_0$ 时, $f'(x) = f'_1(x)$; $x < x_0$ 时, $f'(x) = f'_2(x)$

4.3.5 反函数的导数

定义 4.3.3: 反函数导数的定义

设 y=f(x) 为单调、可导函数, 且 $f'(x)\neq 0$, 则存在反函数 $x=\varphi(y)$, 且 $\frac{\mathrm{d}x}{\mathrm{d}y}=\frac{1}{\frac{dy}{dx}}$, 即 $\varphi'(y)=\frac{1}{f'(x)}$

注 4.3.1: 反函数的二阶导数

在 y=f(x) 单调,且二阶可导的情况下,若 $f'(x)\neq 0$,则存在反函数 $x=\varphi(y)$,记 $f'(x)=y'_x,\varphi'(y)=x'_y$,则有

$$y_x' = \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{\frac{\mathrm{d}x}{\mathrm{d}y}} = \frac{1}{x_y'}$$

$$y_{xx}^{\prime\prime} = \frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = \frac{\mathrm{d}\left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)}{\mathrm{d}x} = \frac{\mathrm{d}\left(\frac{1}{x_y^{\prime}}\right)}{\mathrm{d}x} = \frac{\mathrm{d}\left(\frac{1}{x_y^{\prime}}\right)}{\mathrm{d}y} \cdot \frac{1}{x_y^{\prime}} = -\frac{1}{(x_y^{\prime})^2} \cdot (x_y^{\prime})_y^{\prime} \cdot \frac{1}{x_y^{\prime}} = -\frac{x_{yy}^{\prime\prime}}{(x_y^{\prime})^2} \cdot \frac{1}{x_y^{\prime}} = -\frac{x_{yy}^{\prime\prime}}{(x_y^{\prime})^3}$$

反过来则有:

$$x_y' = \frac{1}{y_x'}, x_{yy}'' = -\frac{y_{xx}''}{(y_x')^3}$$

4.3.6 参数方程求导

定义 4.3.4: 参数方程所确定的函数的导数

设 y = f(x) 的参数方程是 $\begin{cases} x = \varphi(t), \\ (\alpha < t < \beta) \text{ 确定的函数} \end{cases}$ $y = \psi(t),$

如果 $\varphi(t)$ 和 $\psi(t)$ 都可导, 且 $\varphi'(t) \neq 0$ 则其一阶导可写为

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\psi'(t)}{\varphi'(t)}$$

若 $\varphi(t)$ 和 $\psi(t)$ 二阶可导, 且 $\varphi'(t) \neq 0$, 则

$$\frac{\mathrm{d}^2 y}{\mathrm{d} x^2} = \frac{d}{dx} \left(\frac{dy}{dx} \right) = \frac{\mathrm{d}}{\mathrm{d} t} \left(\frac{\psi'(t)}{\varphi'(t)} \right) \times \frac{1}{\varphi'(t)}$$
$$= \frac{\psi''(t)\varphi'(t) - \varphi''(t)\psi'(t)}{\varphi'^2(t)} \times \frac{1}{\varphi'(t)}$$
$$= \frac{\psi''(t)\varphi'(t) - \varphi''(t)\psi'(t)}{\varphi'^3(t)}$$

4.3.7 对数函数求导法

对于多项相乘、相除、开方、乘方的式子, 一般先取对数再求导. 设 y = f(x)(f(x) > 0), 则

- 等式两边取对数, 得 $\ln y = \ln f(x)$
- 两边对自变量 x 求导 (同样注意 y = f(x), 即将 y 看作中间变量), 得

$$\frac{1}{y}y' = \left[\ln f(x)\right]' \Rightarrow y' = \frac{yf'(x)}{f(x)}$$

4.3.8 幂指函数求导法

对于 $u(x)^{v(x)}$ 函数, 可采用 $e^{v(x)\ln u(x)}$ 进行转换求导然后求导, 得

$$\left[u(x)^{\nu(x)} \right]' = \left[\mathrm{e}^{\nu(x) \ln u(x)} \right]' = u(x)^{\nu(x)} \left[\nu'(x) \ln u(x) + \nu(x) \cdot \frac{u'(x)}{u(x)} \right]$$

4.3.9 隐函数求导

隐函数的定义

定义 4.3.5: 隐函数与显函数的定义

- 隐函数:y = x 的关系隐含在一个等式中,F(x,y) = 0, 如 $x^2 + y^2 = 4$
- 显函数: 因变量与自变量在等式两端,y 和 x 各占一边, 如 y = 3x

隐函数求导

定义 4.3.6: 隐函数求导法则

设函数 y = y(x) 是由方程 F(x,y) = 0 确定的可导函数则

- 方程 F(x,y)=0 两边对自变量 x 求导, 注意 y=y(x), 即将 y 看作中间变量, 得到一个关于 y' 的 方程
- 解该方程便可求出 y'

4.3.10 高阶导数求导

归纳法求高阶导数

常用高阶导数:

$$\begin{split} \left[\sin(ax+b)\right]^{(n)} &= a^n \sin\left(ax+b+\frac{n\pi}{2}\right) & \left[\cos(ax+b)\right]^{(n)} &= a^n \cos\left(ax+b+\frac{n\pi}{2}\right) \\ \left[\ln(ax+b)\right]^{(n)} &= (-1)^{n-1} a^n \frac{(n-1)!}{(ax+b)^n} & \left(\frac{1}{ax+b}\right)^{(n)} &= (-1)^n a^n \frac{n!}{(ax+b)^{n+1}} \\ \left(e^{ax+b}\right)^{(n)} &= a^n e^{ax+b} \end{split}$$

莱布尼兹公式求高阶导数

设 $u = u(x), \nu = \nu(x)$ 均 n 阶可导, 则

$$(u \pm v)^{(n)} = u^{(n)} \pm v^{(n)}$$

$$(u\nu)^{(n)} = u^{(n)}\nu + C_n^1u^{(n-1)}\nu' + C_n^2u^{(n-2)}\nu'' + \dots + C_n^ku^{(n-k)}\nu^{(k)} + \dots + C_n^{n-1}u'\nu^{(n-1)} + u\nu^{(n)} = \sum_{k=0}^n C_n^ku^{(n-k)}\nu^{(k)} + \dots + C_n^{n-1}u'\nu^{(n-1)} + u\nu^{(n)} = \sum_{k=0}^n C_n^ku^{(n-k)}\nu^{(k)} + \dots + C_n^{n-1}u'\nu^{(n-1)} + u\nu^{(n)} = \sum_{k=0}^n C_n^ku^{(n-k)}\nu^{(k)} + \dots + C_n^{n-1}u'\nu^{(n-1)} + u\nu^{(n)} = \sum_{k=0}^n C_n^ku^{(n-k)}\nu^{(k)} + \dots + C_n^{n-1}u'\nu^{(n-1)} + u\nu^{(n)} = \sum_{k=0}^n C_n^ku^{(n-k)}\nu^{(k)} + \dots + C_n^{n-1}u'\nu^{(n-1)} + u\nu^{(n)} = \sum_{k=0}^n C_n^ku^{(n-k)}\nu^{(k)} + \dots + C_n^{n-1}u'\nu^{(n-1)} + u\nu^{(n)} = \sum_{k=0}^n C_n^ku^{(n-k)}\nu^{(k)} + \dots + C_n^{n-1}u'\nu^{(n-1)} + u\nu^{(n)} = \sum_{k=0}^n C_n^ku^{(n-k)}\nu^{(k)} + \dots + C_n^{n-1}u'\nu^{(n-1)} + u\nu^{(n)} = \sum_{k=0}^n C_n^ku^{(n-k)}\nu^{(k)} + \dots + C_n^{n-1}u'\nu^{(n-1)} + u\nu^{(n)} = \sum_{k=0}^n C_n^ku^{(n-k)}\nu^{(k)} + \dots + C_n^{n-1}u'\nu^{(n-1)} + u\nu^{(n)} = \sum_{k=0}^n C_n^ku^{(n-k)}\nu^{(k)} + \dots + C_n^{n-1}u'\nu^{(n-1)} + u\nu^{(n)} = \sum_{k=0}^n C_n^ku^{(n-k)}\nu^{(k)} + \dots + C_n^{n-1}u'\nu^{(n)} + \dots + C_n^{n-1}u$$

泰勒公式求高阶导数

已知带佩亚诺余项的 n 阶泰勒展开式的条件为, 如果函数 f(x) 在 x_0 处具有 n 阶导数, 那么该函数的抽象展开为

$$y = f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n$$

具体展开为:

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{f''(x_0)}{2!}(x - x_0)^2 + \dots + \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n + o\left((x - x_0)^n\right)^n + o\left((x - x_0$$

当 $x_0 = 0$ 时

$$y = f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n$$

具体展开为:

$$f(x) = f(0) + f'(0)x + \dots + \frac{f^{(n)}(0)}{n!}x^n + o(x^n)$$

函数泰勒展开式的唯一性: 无论 f(x) 由何种方法展开, 其泰勒展开式具有唯一性, 那么就可以通过比较抽象展开和具体展开的系数, 获得 $f^{(n)}(x_0)$ 或者 $f^{(n)}(0)$

4.4 导数的几何应用

4.4.1 极值

极值的定义

定义 4.4.1: 极值的定义

对于函数 f(x), 若存在点 x_0 的某个邻域, 使得在该邻域内任意一点 x, 均有

$$f(x) \leqslant f(x_0)(\vec{\boxtimes} f(x) \geqslant f(x_0))$$

成立, 则称点 x_0 为 f(x) 的极大值点 (或极小值点), $f(x_0)$ 为 f(x) 的极大值 (或极小值).

注 4.4.1: 极值的注意事项

- 端点出不讨论极值, 因为单侧可能不存在
- 常函数某任一邻域内处处都是极值点
- 间断点也可以极值点, 只要满足其邻域内最大值即可.
- 极值点只能有两种情况,即驻点和不可导点:
 - 1. 驻点: $f'(x_0) = 0$, 如 $y = x^2$ 在 (0,0) 处的情形
 - 2. 不可导点: $f'(x_0)$ 不存在, 如 y = |x| 在 (0,0) 处的情形

极值的判定

定义 4.4.2: 极值判定的必要条件

设 f(x) 在 $x=x_0$ 处可导, 且在点 x_0 处取得极值, 则必有 $f'(x_0)=0$

定义 4.4.3: 极值判定的第一充分条件

设 f(x) 在 $x = x_0$ 处连续, 且在 x_0 的某去心邻域 $\mathring{U}(x_0, \delta)(\delta > 0)$ 内可导.

- 1. 若 $x \in (x_0 \delta, x_0)$ 时 , f'(x) < 0, 而 $x \in (x_0, x_0 + \delta)$ 时 , f'(x) > 0, 则 f(x) 在 $x = x_0$ 处取得极小 值
- 2. 若 $x \in (x_0 \delta, x_0)$ 时 , f'(x) > 0, 而 $x \in (x_0, x_0 + \delta)$ 时 , f'(x) < 0, 则 f(x) 在 $x = x_0$ 处取得极大 值
- 3. 若 f'(x) 在 $(x_0 \delta, x_0)$ 和 $(x_0, x_0 + \delta)$ 内不变号, 则点 x_0 不是极值点

定义 4.4.4: 极值判定的第二充分条件

设 f(x) 在 $x = x_0$ 处二阶可导, 且 $f'(x_0) = 0, f''(x_0) \neq 0$

- 1. 若 $f''(x_0) < 0$, f(x) 在 x_0 处取得极大值
- 2. 若 $f''(x_0) > 0$, f(x) 在 x_0 处取得极小值.

证明. 极值判定的第二充分条件

$$f''(x_0) = \lim_{x \to x_0} \frac{f'(x) - f'(x_0)}{x - x_0}$$
$$= \lim_{x \to x_0} \frac{f'(x)}{x - x_0}$$

若 $x - x_0 > 0$ 且 $f''(x_0) < 0$,则 f'(x) < 0.若 $x - x_0 < 0$ 且 $f''(x_0) < 0$,则 f'(x) > 0,那么 x_0 为极小 值点. 同理可得极大值点.

定义 4.4.5: 极值判定的第三充分条件

设 f(x) 在 $x=x_0$ 处 n 阶可导, 且 $f^{(m)}(x_0)=0 (m=1,2,\cdots,n-1), f^{(n)}(x_0)\neq 0 (n\geqslant 2),$ 则

- 1. 当 n 为偶数且 $f^{(n)}(x_0) < 0$ 时, f(x) 在 x_0 处取得极大值
- 2. 当 n 为偶数且 $f^{(n)}(x_0) > 0$ 时, f(x) 在 x_0 处取得极小值

4.4.2 单调性判别

设函数 y = f(x) 在 [a,b] 上连续, 在 (a,b) 内可导.

- 如果在 (a,b) 内 $f'(x) \ge 0$, 且等号仅在有限个点处成立, 那么函数 y = f(x) 在 [a,b] 上严格单调增加
- 如果在 (a,b) 内 f'(x) ≤ 0, 且等号仅在有限个点处成立, 那么函数 y = f(x) 在 [a,b] 上严格单调减少

4.4.3 凹凸性

凹凸性第一种的定义

定义 4.4.6: 凹凸性的定义

设函数 f(x) 在区间 I 上连续. 如果对 I 上任意不同两点 x_1, x_2 , 恒有

$$f\left(\frac{x_1+x_2}{2}\right)<\frac{f(x_1)+f(x_2)}{2}$$

则称 y = f(x) 在 I 上的图形是凹的 (或凹弧), 即如下图所示

如果恒有

$$f\left(\frac{x_1+x_2}{2}\right)>\frac{f(x_1)+f(x_2)}{2}$$

则称 y = f(x) 在 I 上的图形是凸的 (或凸弧), 即如下图所示

定义 4.4.7: 凹凸性的第二种定义

设 f(x) 在 [a,b] 上连续, 在 (a,b) 内可导, 若对 (a,b) 内的任意 x 及 $x_0(x \neq x_0)$, 均有

$$f(x_0) + f'(x_0)(x - x_0) < f(x)$$

则称 f(x) 在 [a,b] 的图形上是凹的

同理, 当上式 > 0 时, 则称 f(x) 在 [a,b] 的图形上是凸的

注 4.4.2: 凹凸性第二种定义的几何意义

 $y = f(x_0) + f'(x_0)(x - x_0)$ 是曲线 y = f(x) 在点 $(x_0, f(x_0))$ 处的切线方程,因此该表达式的几何意义如下图所示.若曲线 y = f(x)(a < x < b) 在任意点处的切线(除该点外)总在曲线的下方(上方),则该曲线是凹 (凸)的.

 x_0

凹凸性的判别

定义 4.4.8: 凹凸性的判别

设函数 f(x) 在 I 上二阶可导:

- 1. 若在 $I \perp f''(x) > 0$, 则 f(x) 在 I 上的图形是凹的
- 2. 若在 $I \perp f''(x) < 0$, 则 f(x) 在 I 上的图形是凸的

4.4.4 拐点

拐点的定义

定义 4.4.9: 拐点的定义

连续曲线的凹弧与凸弧的分界点称为该曲线的拐点

注 4.4.3: 拐点存在的情况

若点 $(x_0, f(x_0))$ 为曲线 y = f(x) 的拐点, 则只有以下两种情况

- 1. $f''(x_0) = 0$, 如 $y = x^3$ 在 (0,0) 处的情形
- 2. $f''(x_0)$ 不存在, 如 $y = \sqrt[3]{x}$ 在 (0,0) 处的情形

拐点的判别

定义 4.4.10: 拐点的判别的必要条件

设 $f''(x_0)$ 存在, 且点 $(x_0, f(x_0))$ 为曲线的拐点, 则 $f''(x_0) = 0$

定义 4.4.11: 拐点的判别的第一充分条件

设 f(x) 在点 $x=x_0$ 处连续, 在点 $x=x_0$ 的某去心邻域 $\mathring{U}(x_0,\delta)$ 内二阶导数存在, 且在该点的左、右邻域内 f''(x) 变号 (无论是由正变负, 还是由负变正), 则点 $(x_0,f(x_0))$ 为曲线的拐点^a.

 $a(x_0,f(x_0))$ 为曲线 y=f(x) 的拐点, 并不要求 f(x) 在点 x_0 的导数存在

定义 4.4.12: 拐点的判别的第二充分条件

设 f(x) 在 $x = x_0$ 的某邻域内三阶可导, 且 $f''(x_0) = 0$, $f'''(x_0) \neq 0$, 则点 $(x_0, f(x_0))$ 为曲线的拐点.

定义 4.4.13: 拐点的判别的第三充分条件

设 f(x) 在 x_0 处 n 阶可导,且 $f^{(m)}(x_0) = 0 (m = 2, \dots, n-1), f^{(n)}(x_0) \neq 0 (n \ge 3)$,则当 n 为奇数时,点 $(x_0, f(x_0))$ 为曲线的拐点.

极值点和拐点的重要结论

结论 4.4.1: 极值点和拐点的重要结论

- 1. 曲线的可导点不可同时为极值点和拐点; 曲线的不可导点可同时为极值点和拐点
- 2. 设多项式函数 $f(x) = (x-a)^n g(x)(n>1)$, 且 $g(a) \neq 0$, 则当 n 为偶数时, x=a 是 f(x) 的极值点; 当 n 为奇数时, 点 (a,0) 是曲线 f(x) 的拐点.
- 3. 设多项式函数 $f(x)=(x-a_1)^{n_1}(x-a_2)^{n_2}...(x-a_k)^{n_k}$, 其中 n_i 是正整数, a_i 是实数且 a_i 两两不等, $i=1,2,\cdots,k$.

记 k_1 为 $n_i=1$ 的个数, k_2 为 $n_i>1$ 且 n_i 为偶数的个数, k_3 为 $n_i>1$ 且 n_i 为奇数的个数,则 f(x) 的极值点个数为 $k_1+2k_2+k_3-1$,拐点个数为 $k_1+2k_2+3k_3-2$.

4.4.5 渐近线

铅直渐近线

定义 4.4.14: 铅直渐近线定义

若 $\lim_{x\to x_0^+}f(x)=\infty$ (或 $\lim_{x\to x_0^-}f(x)=\infty$),则 $x=x_0$ 为一条铅直渐近线.

水平渐近线

定义 4.4.15: 水平渐近线定义

若 $\lim_{x\to +\infty} f(x) = y_1$, 则 $y=y_1$ 为一条水平渐近线.

若 $\lim_{x\to-\infty} f(x) = y_2$, 则 $y = y_2$ 为一条水平渐近线.

若 $\lim_{x\to +\infty}f(x)=\lim_{x\to -\infty}f(x)=y_0$,则 $y=y_0$ 为一条水平渐近线

斜渐近线

定义 4.4.16: 斜渐近线定义

若 $\lim_{x\to+\infty}\frac{f(x)}{x}=a_1(a_1\neq 0), \lim_{x\to+\infty}\left[f(x)-a_1x\right]=b_1$,则 $y=a_1x+b_1$ 是曲线 y=f(x) 的一条斜渐近线

若 $\lim_{x \to -\infty} \frac{f(x)}{x} = a_2(a_2 \neq 0)$, $\lim_{x \to -\infty} [f(x) - a_2 x] = b_2$, 则 $y = a_2 x + b_2$ 是曲线 y = f(x) 的一条斜渐近线 若 $\lim_{x \to +\infty} \frac{f(x)}{x} = \lim_{x \to -\infty} \frac{f(x)}{x} = a(a \neq 0)$, $\lim_{x \to +\infty} [f(x) - ax] = \lim_{x \to -\infty} [f(x) - ax] = b$, y = ax + b 是曲线 y = f(x) 的一条斜渐近线.

4.4.6 最值

最值的定义

定义 4.4.17: 最值的定义

设 x_0 为 f(x) 定义域内一点, 若对于 f(x) 的定义域内任意一点 x, 均有

$$f(x)\leqslant f(x_0)(\vec{\boxtimes}f(x)\geqslant f(x_0))$$

成立, 则称 $f(x_0)$ 为 f(x) 的最大值 (或最小值).

结论 4.4.2: 有关极值点和最值点的结论

如果 f(x) 在区间 I 上有最值点 x_0 ,并且此最值点 x_0 不是区间 I 的端点而是 I 内部的点,那么此 x_0 必是 f(x) 的一个极值点.

4.4.7 曲率与曲率半径

定义 4.4.18: 曲率与曲率半径的计算公式

设 y(x) 二阶可导, 则曲线 y=y(x) 在点 (x,y(x)) 处的曲率公式为

$$k = \frac{|y''|}{\left[1 + (y')^2\right]^{\frac{3}{2}}}$$

曲率半径的计算公式

$$R = \frac{1}{k} = \frac{\left[1 + (y')^2\right]^{\frac{3}{2}}}{|y''|}(y'' \neq 0)$$