$\Pi p u \kappa \pi a \partial$. Знайти розв'язки системи рівнянь:

$$100x_1 + 6x_2 - 2x_3 = 200;$$

$$6x_1 + 200x_2 - 10x_3 = 600;$$

$$x_1 - 2x_2 + 100x_3 = 500$$

методом ітерацій з похибкою 0.001.

Перетворимо цю систему рівнянь до вигляду (7.9). Для цього поділимо перше рівняння на коефіцієнт при x_1 (100), друге — на коефіцієнт при x_2 (200), третє – на коефіцієнт при x_3 (100) та матимемо:

$$x_1 + 0.06x_2 - 0.02x_3 = 2;$$

 $0.03x_1 + x_2 - 0.05x_3 = 3;$
 $0.01x_1 - 0.02x_2 + x_3 = 5.$

Запишемо систему рівнянь для визначення невідомих x_1, x_2, x_3 з кожного з обчислених рівнянь відповідно:

$$x_1 = -0.06x_2 + 0.02x_3 + 2;$$
 $x_2 = -0.03x_1 + 0.05x_3 + 3;$
 $x_3 = -0.01x_1 + 0.02x_2 + 5$
або у матричному вигляді**К+**

$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 & -0.06 & 0.02 \\ -0.03 & 0 & 0.05 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 2 \\ 3 \end{bmatrix}$$
(7.12)

Оберемо вектор початкових значень

(7.11) (

підставимо його значення в систему (7.12) та обчислимо перше наближення розв'язку системи рівнянь

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}^{(1)} = \begin{bmatrix} 0 & -0.06 & 0.02 \\ -0.03 & 0 & 0.05 \\ -0.01 & 0.02 & 0 \end{bmatrix} \begin{bmatrix} 2 \\ 3 \\ 5 \end{bmatrix} + \begin{bmatrix} 2 \\ 3 \\ 5 \end{bmatrix} = \begin{bmatrix} 1.92 \\ 3.19 \\ 4.92 \end{bmatrix}.$$

$$||x^{(2)}y^{(1)}|| \leq \frac{1}{||C||} \cdot \varepsilon$$

Здобуті значення першого наближення розв'язку підставимо знов у систему (7.12) та обчислимо друге наближення розв'язку системи рівнянь

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}^{(2)} = \begin{bmatrix} 0 & -0.06 & 0.02 \\ -0.03 & 0 & 0.05 \\ -0.01 & 0.02 & 0 \end{bmatrix} \begin{bmatrix} 1.92 \\ 3.19 \\ 4.92 \end{bmatrix} + \begin{bmatrix} 2 \\ 3 \\ 5 \end{bmatrix} = \begin{bmatrix} 1.907 \\ 3.1884 \\ 4.917 \end{bmatrix}.$$

x = 1 : $\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}^{(2)} = \begin{bmatrix} 0 & -0.06 & 0.02 \\ -0.03 & 0 & 0.05 \\ -0.01 & 0.02 & 0 \end{bmatrix} \begin{bmatrix} 1.92 \\ 3.19 \\ 4.92 \end{bmatrix} + \begin{bmatrix} 2 \\ 3 \\ 5 \end{bmatrix} = \begin{bmatrix} 1.907 \\ 3.1884 \\ 4.917 \end{bmatrix}$. $\begin{bmatrix} 3,1884 \\ 4.917 \end{bmatrix}$. $\begin{bmatrix} 4,917 \\ 4,92 \end{bmatrix}$ = $\begin{bmatrix} -0.013 \\ 4.92 \end{bmatrix}$ = $\begin{bmatrix} -0.013 \\ 4.92 \end{bmatrix}$ = $\begin{bmatrix} -0.013 \\ 4.917 \end{bmatrix}$.

Продовживши ітераційний процес, матимемо вектор третього наближення розв'язку системи рівнянь

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}^{(3)} = \begin{bmatrix} 0 & -0.06 & 0.02 \\ -0.03 & 0 & 0.05 \\ -0.01 & 0.02 & 0 \end{bmatrix} \begin{bmatrix} 1.907 \\ 3.1884 \\ 4.917 \end{bmatrix} + \begin{bmatrix} 2 \\ 3 \\ 5 \end{bmatrix} = \begin{bmatrix} 1.907036 \\ 3.18864 \\ 4.917162 \end{bmatrix}.$$

$$= \max \{ (1, 1), (1, 1) \}$$

$$= 0.013$$

$$\Leftrightarrow \Rightarrow \infty^{(2)} = \infty^{x}$$

$$\Rightarrow \qquad \text{wigh. } \infty^{(3)}$$

$$i \quad 1.5$$