Vysoká škola báňská – Technická univerzita Ostrava Fakulta elektrotechniky a informatiky Katedra kybernetiky a biomedicínského inženýrství

Simulátor měřicích přístrojů s komunikačním rozhraním Manuál k obsluze

doc. Ing. Petr Bilík, Ph.D. a kolektiv autorů

Ostrava 2014

Název: Simulátor měřicích přístrojů, Manuál k obsluze

Autor: doc. Ing. Petr Bilík, Ph.D.

Verze: 1.0 Počet stran: 21

Studijní materiály pro obor Měřicí a řídicí technika fakulty elektrotechniky a informatiky, VŠB TU Ostrava

Jazyková korektura: nebyla provedena.

Kontakt:

http://merenirizeni.vsb.cz/ http://cbe.vsb.cz

© doc. Ing. Petr Bilík, Ph.D. a kolektiv autorů (Ing. Petr Závodný, Ing. Michal Kelnar)

© VŠB – Technická univerzita Ostrava

Obsah

1		Úvo	d		. 2
2		Nap	ájecí	zdroj a digitální multimetr	. 2
	2.2	1	Obsl	uha čelního panelu	. 2
	2.2	2	Zdro	ıj konstantního napětí a proudu	. 2
		2.2.2	L	Scan mód	. 3
	2.3	3	Digit	tální multimetr - DMM	. 3
		2.3.2	L	Math	. 4
	2.4	4	Příka	azy	. 5
		2.4.2	L	Zdroj	. 5
		2.4.2	2	Scan mód	. 6
		2.4.3	3	DMM	. 6
		2.4.4	1	DMM Math	. 8
		2.4.5	5	DMM Měření	. 9
3		Funk	cční g	enerátor	11
	3.2	1	Obsl	uha čelního panelu	11
	3.2	2	Příka	эгу	12
4		Osci	losko	p	15
	4.3	1	Obsl	uha čelního panelu	15
	4.2	2	Příka	эгу	16
		4.2.2	L	Tigger	17
		4.2.2	2	Měření	17
5		Obe	cné p	rříkazy	18
6		IEEE	488.	2 příkazy	19
7		Prop	ojen	í přístrojů	21
8		Přílo	ha A		22
9		Přílo	ha B		23
10)	Pì	íloha	C:	24

1 Úvod

Simulátor měřicích přístrojů s komunikačním rozhraním slouží jako částečná náhrada reálných přístrojů pro samostatnou práci studentů mimo laboratoř.

Napájecí zdroj a digitální multimetr kopírují z části chování přístroje AGILENT U3606A. Pro detailní porozumění příkazům je doporučeno nastudovat příslušnou kapitolu v dokumentu "Agilent U3606A Multimeter | DC Power Supply Programmer's Reference", případně stran funkce přístroje dokument "Agilent U3606A Multimeter | DC Power Supply User's and Service Guide"

Osciloskop a funkční generátor nemají ekvivalent v konkrétních přístrojích a slouží pouze pro demonstraci, jak probíhá komunikace s přístroji tohoto typu.

2 Napájecí zdroj a digitální multimetr

2.1 Obsluha čelního panelu

Tento přístroj v sobě kombinuje stejnosměrný zdroj a multimetr. Stejnosměrný zdroj může poskytovat napětí až 31,5V/3A. Ke zdroji trvale připojená zátěž simulující odpor 100 Ohm. Zdroj může pracovat v režimu napěťového, nebo proudového zdroje.

Obr. 2-1 Čelní panel zdroje napětí a DMM.

2.2 Zdroj konstantního napětí a proudu

Požadovanou hodnotu napětí (proudu), lze provést kliknutím a napsáním hodnoty přímo do indikátoru. Zdroj automaticky přepíná režim mezi konstantním zdrojem napětí (CV - Constant Voltage) a proudu (CC - Constant Current) podle toho, zda je uživatelem měněno nastaveno napětí, nebo proud. Aktuální režim je indikován na displeji písmeny CV resp. CC.

Obr. 2-2 Ovládaní napětí a proudu zdroje.

Display V (napětí)

Slouží k nastavení výstupní napětí v režimu napěťového zdroje (0 V až 31,5V). Při aktivaci proudového zdroje indikuje aktuální napětí připojené na zátěž.

Display A (proud)

Slouží k nastavení výstupní proudu v režimu proudového zdroje (0 A až 3A). Při aktivaci napěťového zdroje indikuje proud tekoucí do zátěže. Protože simulovaná zátěž má 100 Ohm, maximální proud, který dokáže zdroj vytvořit je limitován jeho napětím na 0,032 A.

Output

Stisknutím tlačítka se aktivuje/deaktivuje výstup zdroje. Pokud je aktivní Scan mod, dojde k jeho aktivaci.

2.2.1 Scan mód

Kromě konstantního napěťového/proudového výstupu, je možné použít i tzv. scan výstup, kdy je výstupní napětí postupně navyšováno od 0V po zadanou maximální hodnotu ve v zadaném počtu stejně velkých a dlouhých kroků.

Obr. 2-3 Ovládací panel scan.

U [V]

Udává velikost koncového napětí scan modu

Dwell [s]

Čas udávající délku jednoho kroku ve scan mod. (1 až 99 s).

Steps

Počet kroků rozmítání (1 až 100).

Scan

Aktivuje a deaktivuje scanovaní. Současně se scan musí být aktivován i výstup zdroje (Output).

2.3 Digitální multimetr - DMM

Multimetr dokáže měřit napětí, nebo proud. Pomocí přepínače AC/DC je možné přepínat mezi stejnosměrnou a střídavou vazbou multimetru na zdroj měřeného signálu. Přístroj může být virtuálně připojen k internímu zdroji napětí/proudu (přes 100 Ohm odpor), nebo k externímu zdroji napětí ze signálového generátoru (měří se pouze napětí, proud je nulový). Multimetr se může být přepnut do třech stavů indikovaných na displeji (multimetru) nápisy Run/Idle/Trig. Pokud je ve stavu Run, je

spuštěno kontinuální měření, ve stavu Idle je měření vypnuto, ve stavu Trig je přístroj připraven k měření a čeká trigger signál (tláčítko Trigger, nebo příkaz *TRG).

Obr. 2-4 Ovládací panel DMM.

Display

Indikuje aktuální měřenou hodnotu. Pokud je měřená veličina mimo rozsah, je zobrazeno NAN.

Range (A)

Výběr rozsahu pro měření proudu.

Range (V)

Výběr rozsahu pro měření napětí.

Input

Vybírá zdroj vstupního napětí pro měření.

U/I

Přepínání mezi měřením proudu a napětí.

AC/DC

Přepíná mezi střídavou a stejnosměrnou vazbou.

Mode

Přepíná mód DMM mezi Run, Idle a Trigger.

Run – měření probíhá, nepřetižte (automatické generování trigger signálu)

Idle – měření pozastaveno

Trigger – měření připraveno, DMM čeká na trigger signál (manuální spuštění měření)

Trigger

Aktivuje trigger signál (manuální trigger). Tento prvek je aktivní pouze, pokud je mód nastaven na Trigger.

2.3.1 Math

Sekce Math ovládá statistické výpočty nad naměřenými daty. Výpočet se provádí pro jednu vybranou veličinu napětí/proud. Změnou měřené veličiny dojde k restování výpočtů.

Obr. 2-5 Ovládací panel Math.

Calc

Aktivuje/Deaktivuje statistická měření. Při každé nové aktivaci dojde k vynulování naměřených hodnot.

Avg

Zobrazí na hlavním display průměrnou hodnotu naměřené veličiny.

Min

Zobrazí na hlavním display nejmenší hodnotu naměřené veličiny.

Max

Zobrazí na hlavním display největší hodnotu naměřené veličiny.

2.4 Příkazy

2.4.1 Zdroj

[SOURce:]VOLTage[:LEVel][:IMMediate][:AMPLitude] <voltage>

Nastaví výstupní napětí zdroje v CV režimu.

Parametry:

<voltage> Napětí ve voltech
Rozsah: 0 až 31.5 | MAX | MIN | DEF

Výchozí: 0

[SOURce:]CURRent[:LEVel][:IMMediate][:AMPLitude] <current>

Nastaví výstupní proud zdroje v CC režimu.

Parametry:

<current> Proud v ampérech

Rozsah: 0 až 3.15 | MAX | MIN | DEF

Výchozí: 0

OUTPut[:STATe] <state>

Zapne/vypne zdroj napětí.

Parametry:

<state> Stav výstupu

Rozsah: OFF | ON | 0 | 1

Výchozí: OFF

2.4.2 Scan mód

[SOURce:]VOLTage[:LEVel]:SCAN[:AMPLitude] <amplitude>

Konečná hodnota amplitudy výstupního napětí pro scan režim.

Parametry:

<amplitude> Napětí ve voltech Rozsah: 0 až 3.15 | MAX | MIN | DEF

Výchozí: 0

[SOURce:]VOLTage[:LEVel]:SCAN:STEP <step>

Počet kroků rozmítání

Parametry:

<step> Počet kroků

Rozsah: 1 až 100 Výchozí: 10

[SOURce:]VOLTage[:LEVel]:SCAN:DWELling <time>

Konečná hodnota amplitudy výstupního napětí pro scan režim.

Parametry:

<time> Délka kroku ve vteřinách

Rozsah: 1 až 99 Výchozí: 2

2.4.3 DMM

[SENSe:]VOLTage[:DC]:RANGe[:UPPer] <range>

Nastaví napěťový měřící rozsah pro DC. Pokud je zapnut autorange čtení vrací aktuální automaticky vybraný rozsah.

Parametry:

<range> Napěťový rozsah ve voltech

Rozsah: 0.02 | 0.1 | 1 | 10 | 100 | 1000 | MAX | MIN | DEF

Výchozí: 0.02 (auto)

[SENSe:]VOLTage:AC:RANGe[:UPPer] <range>

Nastaví napěťový měřící rozsah pro AC. Pokud je zapnut autorange čtení vrací aktuální automaticky vybraný rozsah.

Parametry:

<range> Napěťový rozsah ve voltech

Rozsah: 0.1 | 1 | 10 | 100 | 1000 | MAX | MIN | DEF

Výchozí: 0.1 (Auto)

[SENSe:]CURRent[:DC]:RANGe[:UPPer] <range>

Nastaví proudový měřící rozsah pro DC. Pokud je zapnut autorange čtení vrací aktuální automaticky vybraný rozsah.

Parametry:

<range> Proudový rozsah v ampérech
Rozsah: 0.01 | 0.1 | 1 | 3 | MAX | MIN | DEF

Výchozí: 0.01 (Auto)

[SENSe:]CURRent:AC:RANGe[:UPPer] <range>

Nastaví proudový měřící rozsah pro AC. Pokud je zapnut autorange čtení vrací aktuální automaticky vybraný rozsah.

Parametry:

<range> Proudový rozsah v ampérech
Rozsah: 0.01 | 0.1 | 1 | 3 | MAX | MIN | DEF

Výchozí: 0.01 (Auto)

[SENSe:]VOLTage[:DC]:RANGe:AUTO <state>

Zapne nebo vypne autorange pro měření DC napětí.

Parametry:

<state> Autorange zap./vyp.

Rozsah: OFF | ON | 0 | 1

Výchozí: ON

[SENSe:]VOLTage:AC:RANGe:AUTO <state>

Zapne nebo vypne autorange pro měření AC napětí.

Parametry:

<state> Autorange zap./vyp.

Rozsah: OFF | ON | 0 | 1

Výchozí: ON

[SENSe:]CURRent[:DC]:RANGe:AUTO <state>

Zapne nebo vypne autorange pro měření DC proudu.

Parametry:

<state> Autorange zap./vyp.

Rozsah: OFF | ON | 0 | 1

Výchozí: ON

[SENSe:]CURRent:AC:RANGe:AUTO <state>

Zapne nebo vypne autorange pro měření AC proudu.

Parametry:

<state> Autorange zap./vyp.

Rozsah: OFF | ON | 0 | 1

Výchozí: ON

SENSe:INPUt <input>

Přepíná zdroj signálu vstupujícího do DMM.

Parametry:

<input> INTernal | EXTernal INT: interní zdroj napětí

EXT: externí vstup (připojeno na funkční generátor)

Výchozí: INT

2.4.4 DMM Math

[SENSe:]FUNCtion[:ON] <function>

Nastaví druh veličiny pro výpočty math subsystemu.

Parametry:

<function> VOLTage:DC | VOLTage:AC | CURRent:DC | CURRent:AC

VOLTage:DC – napětí DC VOLTage:AC – napětí AC CURRent:DC – proud DC CURRent:AC – proud AC

Výchozí: VOLTage:DC

CALCulate[:STATe] <state>

Aktivuje nebo deaktivuje statistické výpočty. Aktivováním dojde k smazaní předchozích výsledků.

Parametry:

<state>

Rozsah: OFF | ON | 0 | 1

Výchozí: ON

CALCulate: AVERage: AVERage?

Vrátí aktuální hodnotu průměru měřené hodnoty.

Vrací: <value> Průměr ve V/A Použití: Pouze pro čtení.

CALCulate: AVERage: COUNt?

Vrátí počet naměřených hodnot od aktivace průměrování.

Vrací: <value> Počet změřených hodnot.

Použití: Pouze pro čtení.

CALCulate: AVERage: MINimum?

Vrátí minimum z naměřených hodnot.

Vrací: <value> Minimum ve V/A

CALCulate: AVERage: MAXimum?

Vrátí maximum z naměřených hodnot.

Vrací: <value> Maximum ve V/A

Použití: Pouze pro čtení

2.4.5 DMM Měření

TRIGger:SOURce <source>

Nastaví zdroj triggeru na interní (IMM) pro okamžité měření, nebo na vzdálený (BUS) pro softwarové ovládání.

Parametry:

<source> IMMediate | BUS

IMM: okamžité měření BUS: software trigger

Výchozí: IMM

INITiate:CONTinuous <state>

Aktivuje/deaktivuje kontinuální měření.

Parametry:

<state> kontinuální měření zap./vyp.

Rozsah: OFF | ON | 0 | 1

Výchozí: ON

INITiate[:IMMediate]

Vypne kontinuální měření, smaže z paměti poslední měřenou hodnotu a připraví přístroj na příjem triggeru.

Použití: Událost.

MEASure[:VOLTage][:DC]? [<range>]

Nastaví trigger a rozsah měření na výchozí hodnoty a poté změří jednu hodnotu DC napětí. Volitelným parametrem lze zvolit vybraný rozsah měření (výchozí je Auto).

Parametry:

<range> Hodnota rozsahu | AUTO | MAX | MIN | DEF

AUTO: auto range

Výchozí: AUTO

Vrací: <value> Naměřená hodnota ve voltech.

MEASure[:VOLTage]:AC? [<range>]

Nastaví trigger a rozsah měření na výchozí hodnoty a poté změří jednu hodnotu AC napětí. Volitelným parametrem lze zvolit vybraný rozsah měření (výchozí je Auto).

Parametry:

<range> Hodnota rozsahu | AUTO | MAX | MIN | DEF

AUTO: auto range

Výchozí: AUTO

Vrací: <value> Naměřená hodnota ve voltech.

Použití: Pouze pro čtení.

MEASure:CURRent[:DC]? [<range>]

Nastaví trigger a rozsah měření na výchozí hodnoty a poté změří jednu hodnotu DC proudu. Volitelným parametrem lze zvolit vybraný rozsah měření (výchozí je Auto).

Parametry:

<range> Hodnota rozsahu | AUTO | MAX | MIN | DEF

AUTO: auto range

Výchozí: AUTO

Vrací: <value> Naměřená hodnota v ampérech.

Použití: Pouze pro čtení.

MEASure:CURRent:AC? [<range>]

Nastaví trigger a rozsah měření na výchozí hodnoty a poté změří jednu hodnotu AC proudu. Volitelným parametrem lze zvolit vybraný rozsah měření (výchozí je Auto).

Parametry:

<range> Hodnota rozsahu | AUTO | MAX | MIN | DEF

AUTO: auto range

Výchozí: AUTO

Vrací: <value> Naměřená hodnota v ampérech.

Použití: Pouze pro čtení.

READ?

Spustí měření podle aktuální konfigurace a vrátí naměřenou hodnotu. Pokud je trigger nastaven na BUS, command vrátí chybu.

Vrací: <value> Naměřená hodnota v A/V.

Použití: Pouze pro čtení.

FETCh?

Vrátí poslední změřenou hodnotu. Na rozdíl od READ? nespustí nové měření.

Vrací: <value> Naměřená hodnota v A/V.

3 Funkční generátor

3.1 Obsluha čelního panelu

Čelní panel je pro přehlednost rozdělen do tří částí. V pravé krajní části je seznam přijatých příkazů. V prostřední části jsou prvky pro nastavení většiny hodnot generátoru, jakou jsou amplituda, frekvence a DC offset signálu. Také zde jsou prvky k nastavení hodnot pro frekvenční rampu. V poslední části jsou prvky pro výběr typu signálu, nastavení střídy (využitelné pouze u signálu s obdélníkovým průběhem) a výběr módu generátoru. Tato část také obsahuje prvek povolující přidání šumu a prvek, jímž můžeme nastavit velikost šumu. Tato poslední část také obsahuje signalizaci, zda je k přístroji uživatel připojen. Na tlačítkách čelního panelu jsou viditelné aktuálně nastavené hodnoty.

Obr. 3-1 Čelní panel generátoru funkcí.

Shape

Výběh typu průběhu výstupního signálu.

Noise

Aktivování přičtení šumu k výstupnímu signálu.

Duty Cycle

Střída obdélníkového průběhu signálu.

Noise [V]

Amplituda šumu.

Mode

Přepíná mód generátoru mezi normálním (konstantní amplituda) a rozmítáním.

Amplitude [V]

Amplituda výstupního signálu.

Frequency [Hz]

Frekvence výstupního signálu.

DC Offset [V]

Napěťový offset výstupního signálu.

Start [Hz]

Počáteční frekvence pro frekvenční rampu. Nesmí být shodné se Stop.

Stop [Hz]

Koncová frekvence pro frekvenční rampu. Nesmí být shodné se Start.

Step [Hz]

Velikost změny frekvence pro jeden krok frekvenční rampy.

Step [ms]

Délka trvání jednoho kroku frekvenční rampy.

Command

Seznam přijatých příkazů.

Error

Indikuje, že fronta chyb není prázdná.

3.2 Příkazy

SOUR:FUNC:SHAP <shape>

Nastavení typu generovaného signálu.

Parametry: <shape> SIN | SQU | TRI | SAW

SIN: sinusový průběh SQU: obdélníkový průběh TRI: trojúhelníkový průběh

SAW: pilovitý průběh

Výchozí: SIN

SOUR:AMPL <amplitude>

Nastavení požadované amplitudy signálu.

Parametry:

<amplitude> Napětí ve voltech

Rozsah: 0.0 až 10.0 | MAX | MIN | DEF | RAND

Výchozí: 0.0

SOUR:VOLT:OFFS <offset>

Nastavení požadovaného DC offsetu signálu.

Parametry:

<offset> Napětí ve voltech

Rozsah: -5.0 až 5.0 | MAX | MIN | DEF | RAND

Výchozí: 0.0

SOUR:FREQ < frequency>

Nastaví frekvenci výstupního signálu.

Parametry:

<frequency> frekvence v hertzích

Rozsah: 1.0 až 100.0 | MAX | MIN | DEF | RAND

Výchozí: 5.0

SOUR:MODE < mode>

Vybere mód generovaného signálu.

Parametry:

<mode> NORM | SWP

NORM: normální (konstantní amplituda)

SWP: Rozmítání (postupné zvyšování frekvence)

Výchozí: NORM

SOUR:SWP <start>,<stop>,<step>,<delay>

Konfiguruje průběh generované rampy.

Parametry:

<start> počáteční frekvence

Rozsah: 0.0 až 100.0 Hz

Výchozí: 1.0

<stop> koncová frekvence

Rozsah: 1.0 až 100.0 Hz

Výchozí: 10.0

<step> velikost kroku

Rozsah: 0.1 až 100.0 Hz

Výchozí: 1.0

<delay> zpoždění mezi kroky

Rozsah: 1 až 1000 ms

Výchozí: 1000

SOUR:FUNC:SQU:DCYC <duty>

Nastaví střídu obdélníkového signálu.

Parametry:

<duty> střída v procentech

Rozsah: 20.0 až 80.0 | MAX | MIN | DEF | RAND

Výchozí: 50.0

SOUR:FUNC:NOIS:AMPL <amplitude>

Nastaví amplitudu přidaného šumu.

Parametry:

<amplitude> amplituda šumu ve voltech

Rozsah: 0.01 až 2.0 | MAX | MIN | DEF | RAND

Výchozí: 0.01

SOUR:FUNC:NOIS <noise>

Zapne/vypne přičítání šumu k výstupnímu signálu.

Parametry:

<state> šum zap./vyp.

Rozsah: OFF | ON | 0 | 1

Výchozí: ON

4 Osciloskop

4.1 Obsluha čelního panelu

Na obrázku níže je zobrazen čelní panel simulátoru osciloskopu. Čelní panel tohoto přístroje je rozdělen jako ostatní do tří částí. V pravé krajní části jsou indikátory pro zobrazení posledně přijatého příkazu a odeslané odpovědi a je zde také indikátor pro informaci o tom, zda přijatý příkaz byl rozpoznán a zda obsahoval hodnoty, jež jsou v daných mezích. V prostřední části je obrazovka osciloskopu s prvky přímo ovlivňujícími zobrazení naměřených hodnot. V levé části jsou prvky přímo ovlivňující měření. Je zde možnost přepnutí režimu osciloskopu z kontinuálního měření na měření jednorázové. Dále jsou zde prvky nastavující mód triggeru a jeho vlastnosti. A také je zde indikátor pro signalizaci toho, zda je k osciloskopu připojen uživatel. Na tlačítkách čelního panelu jsou viditelné aktuálně nastavené hodnoty.

Obr. 4-1 Čelní panel osciloskopu.

Mode

Volba módu osciloskopu - kontinuální /single.

CONT – kontinuální mření

SING – jednorázové měření

Run

Spuštění měření pro signle mód osciloskopu. Tento prvek je aktivní, pouze pokud je mód osciloskopu nastaven na single.

Trigger

Vybírá způsob spouštění časové základny.

AUTO – automatické spouštění

NORM – spouštění trigger signálem

Slope

Výběr hrany, která aktivuje trigger.

RISING - náběžná hrana

FALLING – sestupná hrana

Trig Value [V]

Napěťová úroveň triggeru.

Range [V]

Napěťový rozsah volt/dílek.

Time [ms]

Volba časové základny.

Offset [V]

Nastavení napěťového offsetu.

Error

Indikuje, že fronta chyb není prázdná.

4.2 Příkazy

OSCI:VOLT:RANG < range>

Nastavení vstupního napěťového rozsahu osciloskopu.

Parametry:

<range> napětí V/Dílek
Rozsah: 0.1 | 0.5 | 1 | 2 | 5 | 10

Výchozí: 10.0

OSCI:TIME <scale>

Nastavuje časovou základnu osciloskopu.

Parametry:

<scale> časová základna ms/dílek

Rozsah: 20 | 100 | 200

Výchozí: 200

OSCI:VOLT:OFFS <offset>

Nastavení offsetu vstupního signálu.

Parametry:

<offset> napětí ve voltech

Rozsah: -5.0 až 5.0

Výchozí: 0.0

OSCI:MODE < mode>

Nastavuje měřící mód osciloskopu.

Parametry:

<mode> CONT | SINGL

CONT: kontinuální měření SINGL: jednorázové měření

Výchozí: CONT

4.2.1 Tigger

OSCI:TRIG < mode>

Vybírá způsob spouštění časové základny.

Parametry:

<mode> AUTO | NORM

AUTO: automatické spouštění NORM: spouštění trigger signálem

Výchozí: AUTO

OSCI:TRIG:VAL <value>

Napěťová úroveň triggeru.

Parametry:

<value> napětí ve voltech

Rozsah: -5.0 až 5.0

Výchozí: 0.0

OSCI:TRIG:SLOP <slope>

Výběr aktivní hrany triggeru.

Parametry:

<slope> FALL | RISE

FALL: sestupná hrana RISE: náběžná hrana

Výchozí: RISE

4.2.2 Měření

OSCI:RUN?

Spuštění jednorázového měření. Vrací: <value> Maximum ve V/A

Použití: Událost

OSCI:READ?

OSCI:MEAS?

Vrátí dříve či aktuálně naměřené hodnoty dle stavu měření aktivní / vypnuto.

Vrací: <run>;<dt>;<samples>

run: ON – měření je aktivní OFF – měření je vypnuto dt: delta času mezi vzorky

samples: naměřené vzorky, oddělené středníky

5 Obecné příkazy

SYST:HELP?

Vrátí výpis všech přístrojem podporovaných funkcí.

Pozn.: Není dostupné pro Dmm a Pwr Source

Vrací: <string>

Použití: Pouze pro čtení

SYSTem: VERSion?

Vrátí verzi přístroje ve tvaru YYYY.V, kde YYYY je rok a V je číslo verze.

Vrací: <version>

Použití: Pouze pro čtení

STATus: QUEStionable: ENABle

Konfiguruje masku vyhodnocující stav questionable registru. (viz. Příloha A)

pozn.: Hodnoty tohoto registru jsou validní pouze pro přístroj Pwr & DMM, viz. příloha A.

Parametry: <register> decimální hodnota registru

Rozsah: 0 až 65535 **Výchozí**: 65535

STATus:QUEStionable:EVENt?

Vrátí hodnotu questionable event registru. Tento registr indikuje, zda došlo ke změně stavu questionable registru. Tento registr je záchytný, tzn. pomatuje změnu (přechod z 0 na 1). Po přečtení je jeho hodnota resetována.

pozn.: Hodnoty tohoto registru jsou validní pouze pro přístroj Pwr & DMM, viz. příloha A.

Vrací: <register> decimální hodnota registru

Rozsah: 0 až 65535 Použití: Pouze pro čtení

STATus:QUEStionable:CONDition?

Vrátí aktuální hodnotu stavu questionable registru.

pozn.: Hodnoty tohoto registru jsou validní pouze pro přístroj Pwr & DMM, viz. příloha A.

Vrací: <register> decimální hodnota registru

Rozsah: 0 až 65535 Použití: Pouze pro čtení

SYSTem:ERRor?

Vrátí nejstarší chybu (první položku) z fronty chyb. Po vyčtení všech chyb smaže indikátor error.

Vrací: <Error>

6 IEEE 488.2 příkazy

*CLS

Resetování všech registrů a zásobníku chyb.

Použití: Událost

*ESE

Nastavení enable masky pro ESR registr. Povoluje korespondující bity v ESR registru. (viz. příloha A) Význam bitů pro DmmPwr:

- 0 Operace dokončena (OPC)
- 1 Nepoužívá se (0)
- 2 Chyba při dotazu (Query Error)
- 3 Chyba přístroje (Device Error)
- 4 Chyba při vykonávání operace (Execution Error)
- 5 Chyba příkazu (Command Error)
- 6 Nepoužívá se (0)
- 7 Přístroj byl zapnut

Pro ostatní přístroje

Parametry: <mask> decimální hodnota masky

Rozsah: 0 až 255

*ESR?

Vrátí obsah ESR registru. Po jeho vyčtení je obsah smazán.

Význam hodnot pro DmmPwr viz *ESE.

Vrací: <value> decimální hodnota

Použití: Pouze pro čtení

*STB?

Vrátí obsah STB registru. (viz. příloha A)

Význam status byte pro přístroj DmmPwr:

- 0 Nepoužívá se (0)
- 1 Nepoužívá se (0)
- 2 Chybová fronta není prázdná
- 3 Nepoužívá se (0)
- 4 Nepoužívá se (0)
- 5 Jeden nebo více bitů v ESR je nastaveno na 1
- 6 Jeden nebo více bitů v STB je nastaveno na 1
- 7 Nepoužívá se (0)

Vrací: <value> decimální hodnota

*SRE

Nastavení masky pro STB registr.

Parametry: <mask> decimální hodnota masky

Rozsah: 0 až 255

*IDN?

Vrátí identifikační údaje přístroje.

Vrací: <string>

Použití: Pouze pro čtení

*OPC

Smaže OPC flag v ESR registru. Po dokončení následujícího příkazu bude opět nastaven na 1.

Pozn.: má efekt pouze pro scanning mód přístroje DmmPwr

Použití: Událost

*OPC?

Vrátí 1, když je operace dokončena.

Pozn.: má efekt pouze pro scanning mód přístroje DmmPwr

Vrací: 1

Použití: Pouze pro čtení

*RST

Resetování přístroje a nastavení defaultních hodnot.

Použití: Událost

*TST

Simuluje self-test přístroje.

Vrací: 0 (OK)

7 Propojení přístrojů

Typ propojení simulovaných přístrojů lze volit na příslušné záložce simulátoru. Volba propojení přístrojů není dostupná přes komunikační rozhraní.

Napájecí zdroj může být připojen k digitálnímu multimetru přímo (odpor 100Ω), usměrňovací diodu nebo Zenerovu diodu.

Obr. 2 Propojení napájecího zdroje a digitálního multimetru

Funkční generátor může být připojen k osciloskopu přímo nebo přes konfigurovatelný filtr.

Obr. 3 Propojení funkčního generátoru s osciloskopem

8 Příloha A:

Diagram stavových registrů přístroje DmmPwr:

9 Příloha B:

Pro komunikaci se simulátorem se používají funkce VISA Read/Write, ale při zápisu je potřeba na konec stringu přidat znak \n

nebo v LabVIEW vybrat zobrazení '\' code display pro string a napsat \n.

Při inicializaci je potřeba nakonfigurovat VISA takto (důležité je povolení termination charakter), jak to lze vidět v Initialize.vi driveru.

10 Příloha C:

Postup konfigurace nového zařízení v NI Max:

Výše zmíněné simulované přístroje se chovají jako síťová zařízení. Abyste mohli s přístroji vzdáleně komunikovat je nutné je ručně nakonfigurovat. V prostředí NI Max vybereme přidat nové zařízení VISA TCI/IP Resource.

Nastavení parametrů komunikace provedeme manuálním zadáním.

IP adresa zařízení je vždy stejná a to buď číselně 127.0.0.1 nebo textově localhost, číslo portu na kterém simulovaný přístroj poslouchá je již volitelný uživatelem v záložce Setup simulovaného přístroje, defaultní hodnoty jsou 9997 pro Dmm a napájecí zdroj, 9998 pro funkční generátor a 9996 pro osciloskop.

Posledním krokem je zadání přezdívky přístroje, pod kterou bude vystupovat v programovacích prostředích. Z důvodu jednotnosti jsou doporučovány názvy DmmPwr_Simulator, FG_Simulator, OS_Simulator.