Правительство Российской Федерации

Федеральное государственное автономное

образовательное учреждение высшего образования

«Национальный исследовательский университет «Высшая школа экономики»

Факультет компьютерных наук Образовательная программа бакалавриата 01.03.02 «Прикладная математика и информатика»

Отчет по учебной практике

В	ЕШВ УИН	
	(название организации, предпри	(китки
		Выполнил студент группы БПМИ19
		Мкртчян О. С.
		(инициалы, фамилия)
		(70,777,07)
		(подпись)
уководитель пра	ктики	
, 	MЛ алгебраической топологии и ее прил	южений, завлаб
	(подразделение ФКН, должно	
	Айзенберг Антон Андрееві	
	(ФИО руководителя практи	ки)
ата 5.09.2021		
	(оценка)	(подпись)

Содержание

1	Введение	3		
2	Календарный план-график	4		
3	сновная часть			
	3.1 Основные определения	5		
	3.2 Реализация	5		
	3.3 Описание полученных результатов	5		
4	Заключение	6		
5	Список истоиников			

1 Введение

Математическая нейронаука это активно развивающаяся область, занимающаяся разработкой и эксплуатацией математических и вычислительных подходов для решения вопросов сетевой нейробиологии. Она изучает нейронное кодирование и нейронные сети используя новейшие методы алгебры, топологии и геометрии. Мотивацией нашей работы является исследование Владимира Ицкова, формирующее гипотезу об гомотопической эквивалентности конструкции, строящей по облаку точек симплициальное частично упорядоченное множество, букету сфер. Мы хотели посредством вычислительного эксперимента проверить гипотезу в частном случае.

Задачи практики:

- Разобрать конструкцию Ицкова
- Подготовить код, вычисляющий гомологии симплициального чума
- Повычислять гомологии чумов Ицкова

2 Календарный план-график

№ п/п	Сроки проведения	Выполненные работы
1	1.07.21	Инструктаж по ознакомлению с требованиями охраны труда, техники безопасности, пожарной безопасности, а так же правилами внутреннего трудового распорядка
2	02.07 - 07.07.21	Повторное ознакомление с методичкой по гомологиям
3	03.07.2021	Изучение популярных реализаций вычислений гомологий симплициальных комплексов.
4	04 - 10.07.2021	Подготовка кода для вычисления гомологий.
5	10 - 14.07.2021	Попытки разобраться с чумами Ицкова и их реализацией.
6	15.07.2021	Подготовка отчета по практике

3 Основная часть

3.1 Основные определения

Определение 1. Симплициальным комплексом на конечном множестве вершин M называется совокупность $K \subset 2^M$ подмножеств множества M, удовлетворяющая следующим двум условиям:

- 1. если $I \in K$ и $J \subset I$, то $J \in K$;
- $2. \ \varnothing \in K.$

Определение 2. Cumnлексом называются элементы симплециального комплекса K.

Определение 3. V это конечное множество вершин

- ullet Последовательность в V это симплекс с линейным порядком
- Множество всех последовательностей это частично упорядоченное множество (чум далее)

Определение 4. Направленный Комплекс это чум последовательностей в V, закрытых на включении.

Определение 5. *Гипотеза.* Пусть $x \in \mathbb{R}^d$ будет множеством точек в общем положении. Положим, что либо $d \leq 3$ и $n \geq d+2$ или $d \geq 4$ и $n \geq 2d-1$. Тогда гомология направленного комплекса $D_{lin}(X)$ удовлетворяет $H_*(D_{lin}(X)) = H_*(\bigvee^{n-1} S^d)$

3.2 Реализация

Для начала, мы решили попробовать написать собственную программу для вычисления гомологий симплициальных комплексов, используя нормальную форму Смита, язык Руthon и пакет sympy. После чего приступили к изучению работы популярных пакетов по работе с симплициальными множествами, таких как Simplicial из репозитория Nebneuron лаборатории института математической нейробиологии, работающий с такими реализациями как Persistent Homology Algorithm Toolbox (PHAT) и The Perseus Software Project for Rapid Computation of Persistent Homology. (Perseus). Все реализации являются крайне интересными, однако только Simplicial использует язык Julia наиболее подходящий для объемных вычислений, в свою очередь я бы хотел продолжить работать С Антоном Андреевичем над данным проектом и попробовать реализовать аналогичный пакет на Scala.

3.3 Описание полученных результатов

Результаты практики:

- Были изучены материалы связанные с вычислительной топологией
- Мы ознакомились с работой Владимира Ицкова
- Была реализована программа считывающая гомологии симплициального комплекса посредством нормальной формы Смита
- Мы изучили пакеты реализующие вычисления гомологий симплициальных чумов
- Мы попрактиковались в вычислительной топологии и поверхностно ознакомились с математической нейробиологией

4 Заключение

В рамках выполнения данной работы студент получил знания по вычислительной топологии и симлпициальным гомологиям, изучил современные пакеты работы с симплициальными множествами, реализовал программу для расчёта гомологий симплициального комплекса.

5 Список источников

- 1. А. А. Айзенберг, пример вычисления устойчивых гомологий в Python.
- 2. А. А. Айзенберг, Комбинаторика, топология и алгебра симплициальных комплексов, конспект курса НОЦ Миан.
- 3. А. А. Айзенберг, Методичка по симплициальным комплексам и гомологиям.
- 4. Vladimir Itskov: Directed complexes, sequence dimension and inverting a neural network
- 5. Calculating Homology of a Simplicial Complex Using Smith Normal Form
- 6. Package Simplicial
- 7. H.Edelsbrunner, J.Harer: Computational Topology, An Introduction. American Mathematical Society, 2010, ISBN 0-8218-4925-5