PLSC 502 – Autumn 2016 Hypothesis Testing

October 18, 2016

Hypothesis Testing: Concepts

- A null hypothesis, H₀
- an alternative hypothesis H_a
- a test statistic $\theta = f(\mathbf{X})$
- ullet a *rejection region* in the range of heta

Example

Quinnipiac poll:

- Clinton = 47 percent
- Trump = 41 percent
- N = 660 likely voters.

Hypothesis:

$$H_a: \pi > 0.5$$

Corresponding null:

$$H_0: \pi = 0.5$$

Test statistic: $\hat{\pi} = 0.47$

Types of Errors

- Type I error = "false positive."
- Type II error = "false negative."

	Reailty / Population	
Test Statistic / Sample	H_a	$\overline{H_0}$
H _a	Correct	Type I error
H_0	Type II Error	Correct

Alphas and Significance

By convention:

$$Pr(Type \ I \ Error) = \alpha \ ("significance level")$$

and

$$1 - \alpha =$$
 "specificity"

While

$$Pr(Type\ II\ Error) = \beta$$

and

$$1 - \beta =$$
 "sensitivity."

A New Table

		Reailty / Population	
Sample Result	Positive	Negative	Frequency
Positive	True Positive (N_{TP})	Type I error (False Positive) (N_{FP})	$N_P = N_{TP} + N_{FP}$
Negative	Type II Error (False Negative) (N_{FN})	True Negative (N_{TN})	$N_N = N_{TN} + N_{FN}$
Frequency	$N_{(+)} = N_{TP} + N_{FN}$	$N_{(-)} = N_{TN} + N_{FP}$	N

Components...

- False positive / significance rate $\alpha = N_{FP}/N_{(-)}$,
- False negative rate $\beta = N_{FN}/N_{(+)}$,
- False discovery rate = N_{FP}/N_P ,
- False omission rate = N_{FN}/N_N ,
- $Accuracy = (N_{TP} + N_{FP})/N$

Hypothesis Testing

In the Clinton / PA example, we know:

$$\hat{\pi} \sim \mathcal{N}(\pi, \sigma_{\hat{\pi}}^2).$$

and

$$\hat{\sigma}^2 = 0.470(1 - 0.470)$$
$$= 0.249$$

and

$$\hat{\sigma}_{\hat{\pi}}^2 = \frac{0.249}{660} = 0.00038.$$

That means:

$$\hat{\pi} \sim \mathcal{N}(0.5, 0.00038).$$

More Hypothesis Testing

Converting $\hat{\pi}$ to z:

$$rac{\hat{\pi} - \pi}{\sigma_{\hat{\pi}}} = Z \sim \mathcal{N}(0, 1).$$

Decision rule:

Reject
$$H_0$$
 if $Z \geq z_{\alpha}$.

$\alpha = 0.05 \rightarrow Z \ge 1.65$

Example, Continued

Here,

$$Z = \frac{0.470 - 0.50}{0.0195} = -1.54$$

so we fail to reject the null.

Another alternative H_0 : $\pi = 0.40$ yields

$$Z = \frac{0.47 - 0.40}{0.0195}$$
$$= 3.59$$

meaning we would reject that null.

Tailedness

An alternative formulation:

$$H_a$$
 : $\pi \neq 0.5$.

Alternative decision rule:

Reject
$$H_0$$
 if $|Z| \ge z_{\alpha/2}$

$\alpha = 0.05 \rightarrow Z \ge 1.96$

P-Values Versus Significance Tests

P-value (or "attained significance level"): The smallest level of significance α for which the observed data indicate that the null hypothesis should be rejected.

Why we like them:

- Avoid arbitrary "cutoffs."
- Provide more information.

Significance Tests and Confidence Intervals

C.I.:

$$\mathsf{c.i.}_{lpha} = \hat{ heta} \pm \mathsf{z}_{lpha/2} \sigma_{\hat{ heta}}$$

vs. test:

$$|Z| \equiv \left| \frac{\hat{\theta} - \theta}{\sigma_{\hat{\theta}}} \right| \geq z_{\alpha/2}.$$

Significance Tests and Confidence Intervals

"Acceptance region":

$$-z_{\alpha/2} \leq \frac{\hat{\theta} - \theta}{\sigma_{\hat{\alpha}}} \leq z_{\alpha/2} = \hat{\theta} - z_{\alpha/2}\sigma_{\hat{\theta}} \leq \theta \leq \hat{\theta} + z_{\alpha/2}\sigma_{\hat{\theta}},$$

I.e., "Do not reject H_0 at $P=\alpha$ if θ lies within a $(1-\alpha) \times 100$ -percent confidence interval around $\hat{\theta}$, and reject H_0 if it does not."

Important Things, I

1. *P*-values are not "the probability that the null hypothesis is false."

"The test statistic allows us to reject the null hypothesis at P < 0.01, indicating that there is a less than one in 100 chance that the null hypothesis is true."

"The test statistic allows us to reject the null hypothesis at P < 0.01, which is strong evidence that the observed result is not due to chance."

Important Things, II

2. One does not, in general, "accept" the null hypothesis.

"The P-value for the regression coefficient on Female is 0.56, indicating that there is no relationship between gender and support for immigrants' rights."

"The P-value for the regression coefficient on Female is 0.56, indicating the data do not support the hypothesized relationship between gender and support for immigrants' rights."

Important Things, III

3. *P*-values are not the long-run frequency of a "statistically significant" test statistic.

"The P-value of 0.01 means that 99 out of 100 hypothetical replications would reject the null hypothesis."

Important Things, IV

4. Statistical significance does not equate to substantive significance.

```
> popmean <- with(data, prop.table(table(1-Active)))[1]
> popmean
0.8956
> with(data[data$Sign=="Scorpio",],
       prop.test(table(1-Active),p=popmean,
                 correct=FALSE))
1-sample proportions test without continuity correction
data: table(1 - Active), null probability popmean
X-squared = 2, df = 1, p-value = 0.2
alternative hypothesis: true p is not equal to 0.8956
95 percent confidence interval:
0.8832 0.8975
sample estimates:
     р
0.8905
```

Important Things, V

5. A statistic can never be "significant in the wrong direction."

"Our estimate of the effect of trade liberalization on the probability of a civil war – which we expected to be negative – is in fact positive, and statistically significant at P = 0.02."

Important Things, VI and VII

6. Identical *P*-values are not "better" or "more reliable" if they are based on a larger sample.

7. Failing to reject the null hypothesis in a larger sample is a bigger deal than failing to do so in a small one.