Functional Integration of Concept Semantic Memory and Probabilistic Category Learning in Soar

Yongjia Wang University of Michigan

Outline

- Definitions & Motivation
- Design and Implementation of Concept Semantic Memory
- Evaluations with Functional Integration Models
- Nuggets and Coal

What is semantic knowledge

- General knowledge independent of specific context
 - Contrast to episodic memory, which is tied to specific context/experience
 - Support sub-symbolic learning: learn consistent prototypes from variations of specific instances
- Semantic knowledge includes many kinds of general knowledge
 - Concepts about concrete things
 - Food, tools, materials ...
 - Concepts about abstract things
 - Relation, emotion ...
 - Events, facts and information
 - **–** ...
- The type of semantic knowledge in this research
 - Functional category knowledge of concrete objects
 - Stored in Concept Semantic Memory

Functional Category Knowledge of Concrete Objects

- Functional category knowledge is one specific form of fundamental semantic knowledge
 - Based on simplest scenario where a single agent interacts with the environment
 - Functional properties: related to direct physical interactions of an embodied agent
 - Objects within the same functional category shares more functional properties than objects belong to different functional categories
- Generalization
 - although interactions with the world takes place at the level of individual objects, much reasoning takes part at the level of categories (Russell & Norvig, AIMA)
- Learning approach
 - Knowledge engineering is implausible for more challenging domains

Motivational Category Learning Example – Hunting

Motivational Category Learning Example – Hunting

Outline

- Definitions & Motivation
- Design and Implementation of Concept Semantic Memory
- Evaluations with Functional Integration Models
- Nuggets and Coal

Requirements of Semantic Category Learning

- Incremental learning, noise tolerance (sub-symbolic)
- Integration with diverse knowledge sources
 - Episodic learning
 - Reinforcement learning
- Functionally meaningful (semantics)
 - Categorization must be based on functional properties (related to direct physical interactions)
 - Same object may be used for different purposes, therefore need multiple ways of categorization
 - Example:
 - Categorize swordfish as food
 - Categorize swordfish as weapon

Architectural Design

Functional Integration

Functional Features and Predictive Features

Functional Features	Predictive Features
Properties directly related to actions	Indirectly related to functional properties
Example: shape and surface texture of an object to be gripped by a robotic arm agent	Example: Color of the object to be gripped
More "expensive" to observe: require interaction	"Cheaper" to observe: ranged sensors
Prior knowledge: define categorization criteria	Learning: select relevant features and ignore irrelevant features in order to predict functional features more accurately

Interface of Concept Semantic Memory to the Architecture

- Train the system with an object for a specific categorization criteria
 - Example:
 - Categorize swordfish (object) as food (criteria)
 - Categorize swordfish (object) as weapon (criteria)
- Retrieve the symbolic category given predictive features
- Retrieve the functional features given predictive features

Concept Semantic Memory Retrieval type I animal-taxon<u>omy</u> **Working Memory** Hierarchical Category structure query animals result cue Mammal & Bird Reptile & Amphibian concept-name Fish animal-taxonomy category-id Reptile predictive -features bird Mammal Amphibian color, shape, voice ... Category Recognition Model fruit-taxonomy furniture-taxonomy

Retrieval type II

Hierarchical Clustering Algorithm

- Adapted from COBWEB (D. Fisher, 1987)
- Incremental learning
- Create hierarchical category structure
- Can deal with several representation forms
 - Nominal features
 - Numeric features
 - Relational structural features
- Robust (noise tolerant)

Category Recognition Model

- Right now we use Naïve Bayesian Classifier
 - Incremental learning
 - A set of "basic level categories" (classes)
 - Complete independency among features give class label
 - Handles numeric features

Can use more sophisticated models

Outline

- Definitions & Motivation
- Design and Implementation of Concept Semantic Memory
- Evaluations with Functional Integration Models
- Nuggets and Coal

Evaluations with Functional Integration Models

- Evaluation Task
 - Hunting task
- Functional Integration Models
 - Integration with Episodic memory
 - Not tested with real Soar Episodic Memory yet
 - Real integration will involve subtle technical issues
 - Integration with Reinforcement learning
 - Tested with real Soar-RL

The Hunting Task

- There are two functional types of objects in the world, both have diverse sub-types (requires category learning)
 - Animals
 - Weapons
- There are complex interactions between the two functional types of objects
 - Certain animal is only huntable with certain weapons
 - Goal is to learn to make the correct decision based on experience

The Hunting Domain Data

Weapon features (both functional and predictive)

Name	type	weight	power-damage	max-range
Sling	ranged	1~2	1~1.5	5~10
Bow	ranged	1~2	2~3	10~15
Crossbow	ranged	1~2	4~5	15~20
Trident	polearm	4~5	4~4	3~4
Pilum	polearm	3~4	3~3	2~4
Spear	polearm	2~3	2~2	2~4
Axe	melee	4~5	4~5	1~1
Sword	melee	2~3	3~4	1~1
Club	melee	2~3	1~2	1~1

Numeric feature: lower_bound ~ upper_bound

Symbolic feature: value_1/.../value_n

Both use uniform distribution

Created based on our personal knowledge, Google image, Wikipedia ...

The Hunting Domain Data

Name	Health	Attack	Damage	Defense	Aggressive	Swiftness	Speed
elephant	5~5	5~5	5~5	4~4	3~3	2~2	3~3
rhino	5~5	5~5	5~5	5~5	4~4	2~2	3~3
tiger	4~4	5~5	5~5	3~3	5~5	4~4	4~4
bear	4~4	5~5	5~5	4~4	5~5	3~3	3~3
wolf	3~3	4~4	4~4	3~3	3~3	4~4	4~4
badger	3~3	3~3	3~3	3~3	4~4	3~3	3~3
tortoise	1~1	2~2	2~2	5~5	1~1	1~1	1~1
armadillo	2~2	2~2	2~2	5~5	1~1	1~1	1~1
deer	2~2	2~2	2~2	2~2	2~2	4~4	4~4
sheep	2~2	2~2	2~2	2~2	2~2	3~3	3~3
antelope	1~1	1~1	1~1	1~1	1~1	5~5	5~5
rabbit	1~1	1~1	1~1	1~1	1~1	5~5	3~3

Animal functional features "Expensive" to observe Small variance

Name	NOSE-TYPE	BODY-SHAPE	has-horn	has-tusk	color	SIZE	leg-ratio	tail-ratio	motion-agility
									0 ,
elephant	iong	bulky	no	yes/no	gray/dark	4~5	3~5	2~4	0.5~2
rhino	extrude	bulky	yes	no	white/gray	4~4.5	2~3	2~3	0.5~2
tiger	flat	long	no	no	striped-yellow-black	2.5~3.5	2~4	4~5	1~4
bear	extrude	bulky/fit	no	no	black/gray/brown/white	3~4	2~3	1~1	0.5~3
wolf	extrude	fit	no	no	white/gray	2~2.5	3~4	3~4	1~4
badger	extrude	flat	no	no	stripped-gray-white	1~2	1~2	2~3	3~4
tortoise	flat	plate	no	no	green/gray	0.5~1.5	1~2	2~3	0~1
armadillo	pointed	round	no	no	brown/gray	0.5~2.5	1~2	3~5	0.5~3
deer	extrude	bulky/fit/slim	yes/no	no	brown/gray	2~3	4~5	1~2	3~5
sheep	extrude	chubby/fit	yes/no	no	white/gray/brown/black	1.5~2.5	3~4	1~2	1~4
antelope	extrude	fit/slim	yes/no	no	brown/white	1~2.5	4~5	1~2	4~5
rabbit	flat	chubby/fit	no	no	gray/mixed/white/brown	0.5~1.5	1~3	1~3	3~5

Animal predictive features "Cheap" to observe Large variance

The Hunting Domain Data

Outcomes of interactions (hunting animal with weapon) success – 1, failure – 0
Completely deterministic – for simplicity

	Sling	Bow	Crossbow	Trident	Pilum	Spear	Axe	Sword	Club
elephant	0	0	0	0	0	0	1	0	0
rhino	0	0	0	0	0	0	1	0	0
tiger	0	0	1	1	1	1	0	0	0
bear	0	0	0	1	1	1	1	0	0
wolf	0	1	1	1	1	1	0	1	1
badger	1	1	1	1	1	1	0	1	1
tortoise	0	0	0	0	0	0	1	1	0
armadillo	0	0	0	0	0	0	1	1	1
deer	1	1	1	0	0	0	0	0	0
sheep	1	1	1	0	0	0	0	0	0
antelope	1	1	1	0	0	0	0	0	0
rabbit	1	1	1	0	0	0	0	0	0

Soar Episodic Memory Approach

Training

- The agent is presented with specific animal and weapon
- Perform an action (hunt) and observes the result
- Record the experience in episodic memory

Testing

- Given a specific weapon and animal, retrieve the "best match" episode
- Use the retrieved episode to predict the potential result and make the decision

Condition 1

Condition 2

Condition 3

Learning Curve Comparison

Conclusions from the plot

- Specific functional features are more reliable than general perceptual features
- Instance based learning is faster in the beginning, because probabilistic learning must accumulate enough samples
- After sufficient sampling, probabilistic learning outperforms, because it assumes a more compact model

Soar-RL Approach

Training

- The agent is presented with specific animal and weapon
- Perform an action (hunt/avoid) and receives a reward
- Update numeric preference based on rewards

Testing

 Choose the action with the highest numeric preference (Q-value)

Antelope + Club + hunt = Failure

Individual RL rules

State representation with hierarchical category

Rabbit + Sword + hunt = ?

State representation with hierarchical category

Individual RL rules

W6

Antelope

Compare Learning Speed

Conclusions from the plot

- Integration of category learning helps RL with better generalization
- RL with hierarchical category representation converges slower on the horizon (not shown)
 - "Wrong generalization" is always the tradeoff
 - In the worst case, some specific situations may NEVER be learned correctly
- A possible solution is to "switch" to using only most specific rules after certain point
 - It can be made architectural
 - Similar, in spirit, to the idea of decaying learning rate and exploration rate in standard RL

Nuggets and Coal

Nuggets

- Added Architectural Concept Semantic Memory
 - Sub-symbolic probabilistic category learning
- First computational models for functional integration of category learning in a general cognitive architecture
 - Integrated with "Episodic Memory" and improved learning performance
 - Integrated with Soar-RL and improved learning performance

Coal

- Need fully integration with real Soar Episodic Memory
- Further improvement on integration with Soar-RL
- Evaluation scenario is still relatively simple