Numerikus módszerek C

6. előadás: Nemlineáris egyenletek numerikus megoldása

Krebsz Anna

ELTE IK

Tartalomjegyzék

- 1 Bolzano-tétel, intervallumfelezés
- 2 Fixponttételek, egyszerű iterációk
- 3 Konvergencia rend
- 4 Matlab példák

Problémafelvetés, megközelítési módok

Feladat

Keressük meg egy $f\in\mathbb{R}\to\mathbb{R}$ nemlineáris függvény gyökét, avagy zérushelyét. (\exists ?, 1, több?)

$$f(x^*)=0, \qquad x^*=?$$

Problémafelvetés, megközelítési módok

Feladat

Keressük meg egy $f \in \mathbb{R} \to \mathbb{R}$ nemmeáris függvény gyökét, avagy zérushelyét. (\exists ?, 1, több?)

$$f(x^*) = 0, \qquad x^* = ?$$

Ekvivalens módon átfogalmazható (általában): keressük meg egy $\varphi \in \mathbb{R} \to \mathbb{R}$ nemlineáris függvény fixpontját.

$$x^* = \varphi(x^*), \qquad x^* = ?$$

Tartalomjegyzék

- 1 Bolzano-tétel, intervallumfelezés
- 2 Fixponttételek, egyszerű iterációk
- 3 Konvergencia rend
- 4 Matlab példák

Tétel: Bolzano-tétel

Ha $f \in C[a;b]$ és $f(a) \cdot f(b) < 0$, akkor $\exists x^* \in (a;b) : f(x^*) = 0$.

Tétel: Bolzano-tétel

Ha $f \in C[a; b]$ és $f(a) \cdot f(b) < 0$, akkor $\exists x^* \in (a; b) : f(x^*) = 0$.

Megjegyzés:

• $a, b \in \mathbb{R}$, a < b, [a; b] zárt intervallum,

Tétel: Bolzano-tétel

Ha $f \in C[a; b]$ és $f(a) \cdot f(b) < 0$, akkor $\exists x^* \in (a; b) : f(x^*) = 0$.

- $a, b \in \mathbb{R}$, a < b, [a; b] zárt intervallum,
- C[a; b]: az [a; b] (zárt) intervallumon folytonos függvények halmaza,

Tétel: Bolzano-tétel

Ha $f \in C[a; b]$ és $f(a) \cdot f(b) < 0$, akkor $\exists x^* \in (a; b) : f(x^*) = 0$.

- $a, b \in \mathbb{R}$, a < b, [a; b] zárt intervallum,
- C[a; b]: az [a; b] (zárt) intervallumon folytonos függvények halmaza,
- $f(a) \cdot f(b) < 0$: f(a) és f(b) különböző előjelűek

Tétel: Bolzano-tétel

Ha $f \in C[a; b]$ és $f(a) \cdot f(b) < 0$, akkor $\exists x^* \in (a; b) : f(x^*) = 0$.

- $a, b \in \mathbb{R}$, a < b, [a; b] zárt intervallum,
- C[a; b]: az [a; b] (zárt) intervallumon folytonos függvények halmaza,
- $f(a) \cdot f(b) < 0$: f(a) és f(b) különböző előjelűek
- van gyök az (a; b) (nyílt) intervallumban

Biz. (Bolzano-tétel): az intervallumfelezés módszerével

1 Legyen $x_0 := a, y_0 := b$.

Biz. (Bolzano-tétel): az intervallumfelezés módszerével

- **1** Legyen $x_0 := a, y_0 := b$.
- 2 lsmételjük:
 - Legyen $s_k := \frac{1}{2}(x_k + y_k)$, az intervallum fele.
 - Ha $f(x_k) \cdot \bar{f(x_k)} < 0$, akkor $x_{k+1} := x_k, \ y_{k+1} := s_k$.
 - Ha $f(x_k) \cdot f(s_k) > 0$, akkor $x_{k+1} := s_k, \ y_{k+1} := y_k$.

Biz. (Bolzano-tétel): az intervallumfelezés módszerével

- **1** Legyen $x_0 := a, y_0 := b$.
- 2 lsmételjük:
 - Legyen $s_k := \frac{1}{2}(x_k + y_k)$, az intervallum fele.
 - Ha $f(x_k) \cdot f(\bar{s_k}) < 0$, akkor $x_{k+1} := x_k, y_{k+1} := s_k$.
 - Ha $f(x_k) \cdot f(s_k) > 0$, akkor $x_{k+1} := s_k, \ y_{k+1} := y_k$.
- Álljunk meg, ha
 - egyenlőség teljesül, ekkor $x^* = s_k$, vagy

Biz. (Bolzano-tétel): az intervallumfelezés módszerével

- **1** Legyen $x_0 := a, y_0 := b$.
- 2 lsmételjük:
 - Legyen $s_k := \frac{1}{2}(x_k + y_k)$, az intervallum fele.
 - Ha $f(x_k) \cdot f(s_k) < 0$, akkor $x_{k+1} := x_k$, $y_{k+1} := s_k$.
 - Ha $f(x_k) \cdot f(s_k) > 0$, akkor $x_{k+1} := s_k, \ y_{k+1} := y_k$.
- Álljunk meg, ha
 - egyenlőség teljesül, ekkor $x^* = s_k$, vagy
 - elértük a kívánt pontosságot, ekkor $x^* \in (x_k, y_k)$, és

$$y_k - x_k = \frac{y_{k-1} - x_{k-1}}{2}$$

teljesül.

Megjegyzés:

• Általában nem tapasztalunk egyenlőséget.

- Általában nem tapasztalunk egyenlőséget.
- Az (x_k) és (y_k) sorozatok konvergenciájának részletes tárgyalása: Analízis...

- Általában nem tapasztalunk egyenlőséget.
- Az (x_k) és (y_k) sorozatok konvergenciájának részletes tárgyalása: Analízis...
- Hibabecslések:

$$|x_k - x| < \frac{b-a}{2^k}, \quad |y_k - x^*| < \frac{b-a}{2^k},$$
 $|s_k - x^*| < \frac{b-a}{2^{k+1}}.$

Példa

Közelítsük a $P(x) = x^3 + 3x - 2$ polinom egyik gyökét 0.1 pontossággal. Hány lépés szükséges?

Próbálkozhatunk a [0; 1] intervallummal...

A $P(x) = x^3 + 3x - 2$ polinom gyökét keressük intervallumfelezéssel a [0; 1] intervallumon:

A $P(x) = x^3 + 3x - 2$ polinom gyökét keressük intervallumfelezéssel a [0; 1] intervallumon:

$$P(0) = -2 < 0, \quad P(1) = 1 + 3 - 2 = 2 > 0$$

 $\Rightarrow \quad \exists \ x^* \in (0; 1) : P(x^*) = 0.$

A $P(x) = x^3 + 3x - 2$ polinom gyökét keressük intervallumfelezéssel a [0; 1] intervallumon:

$$P(0) = -2 < 0, \quad P(1) = 1 + 3 - 2 = 2 > 0$$

 $\Rightarrow \quad \exists \ x^* \in (0; 1) : P(x^*) = 0.$

Hibabecslés:

$$\frac{1}{2^k} < \frac{1}{10} \Longrightarrow k > 3,$$

tehát legalább 4 lépésre van szükségünk. Lassú ...

1 Ha $f \in C[a; b], f(a) \cdot f(b) < 0,$

- **1** Ha $f \in C[a; b], f(a) \cdot f(b) < 0,$
- 2 valamint $f \in D(a; b)$ és f' > 0 (vagy < 0),

- **1** Ha $f \in C[a; b], f(a) \cdot f(b) < 0,$
- 2 valamint $f \in D(a; b)$ és f' > 0 (vagy < 0),

akkor
$$\exists ! \ x^* \in (a; b) : f(x^*) = 0.$$

- **1** Ha $f \in C[a; b], f(a) \cdot f(b) < 0,$
- 2 valamint $f \in D(a; b)$ és f' > 0 (vagy < 0),

akkor $\exists ! \ x^* \in (a; b) : f(x^*) = 0.$

Biz.: A Bolzano-tételből következik, hogy van gyök. *f* szigorúan monoton, ezért egyértelmű is.

Tartalomjegyzék

- 1 Bolzano-tétel, intervallumfelezés
- 2 Fixponttételek, egyszerű iterációk
- 3 Konvergencia rend
- 4 Matlab példák

Emlékeztető, ötlet

Emlékeztető: Iterációs módszerek LER-ek esetén.

$$Ax = b \iff x = Bx + c$$

 $x^{(k+1)} = \varphi(x^{(k)}) = B \cdot x^{(k)} + c$

Emlékeztető: Iterációs módszerek LER-ek esetén.

$$Ax = b \iff x = Bx + c$$

 $x^{(k+1)} = \varphi(x^{(k)}) = B \cdot x^{(k)} + c$

Ötlet: Most, nemlineáris függvények zérushelyéhez:

$$f(x) = 0 \iff x = \varphi(x)$$

 $x_{k+1} = \varphi(x_k) = \dots$

Emlékeztető: fixpont, kontrakció

Emlékeztető: fixpont

Az $x^* \in \mathbb{R}^n$ pontot a $\varphi \colon \mathbb{R}^n \to \mathbb{R}^n$ leképezés *fixpontjának* nevezzük, ha $x^* = \varphi(x^*)$.

Emlékeztető: kontrakció

 $\mathsf{A} \ arphi : \mathbb{R}^n o \mathbb{R}^n$ leképezés *kontrakció*, ha $\exists \ q \in [0,1)$, hogy

$$\|\varphi(x) - \varphi(y)\| \le q \cdot \|x - y\|, \quad \forall x, y \in \mathbb{R}^n.$$

Megi.:

- kontrakció ≈ összehúzás, q: kontrakciós együttható
- most $n=1, \|.\|=|.|$; $\mathbb R$ helyett $[a;b]\subset \mathbb R$, így jobban használható

Definíció: kontrakció

A $\varphi:[a;b] o \mathbb{R}$ leképezés $\textit{kontrakció}\ [a;b]$ -n, ha $\exists\ q \in [0,1)$, hogy

$$|\varphi(x) - \varphi(y)| \le q \cdot |x - y|, \quad \forall x, y \in [a; b].$$

Definíció: kontrakció

A $\varphi:[a;b]
ightarrow \mathbb{R}$ leképezés kontrakció~[a;b]-n, ha $\exists~q \in [0,1)$, hogy

$$|\varphi(x) - \varphi(y)| \le q \cdot |x - y|, \quad \forall x, y \in [a; b].$$

Állítás

- **1** $\varphi \colon [a;b] \to \mathbb{R}$ függvény, $\varphi \in C^1[a;b]$ és
- **2** $|\varphi'(x)| < 1 \ (\forall \ x \in [a; b]),$

Definíció: kontrakció

A $arphi:[a;b] o\mathbb{R}$ leképezés $kontrakció\ [a;b]$ -n, ha $\exists\ q\in[0,1)$, hogy

$$|\varphi(x) - \varphi(y)| \le q \cdot |x - y|, \quad \forall x, y \in [a; b].$$

Állítás

- **1** $\varphi \colon [a;b] \to \mathbb{R}$ függvény, $\varphi \in C^1[a;b]$ és
- **2** $|\varphi'(x)| < 1 \ (\forall \ x \in [a; b]),$

akkor φ kontrakció [a; b]-n.

Definíció: kontrakció

A $\varphi:[a;b] o \mathbb{R}$ leképezés $kontrakció\ [a;b]$ -n, ha $\exists\ q \in [0,1)$, hogy

$$|\varphi(x) - \varphi(y)| \le q \cdot |x - y|, \quad \forall x, y \in [a; b].$$

Állítás

- **1** φ : $[a;b] \to \mathbb{R}$ függvény, $\varphi \in C^1[a;b]$ és
- **2** $|\varphi'(x)| < 1 \ (\forall \ x \in [a; b]),$

akkor φ kontrakció [a; b]-n.

Megj.:

 C¹: egyszer folyonosan differenciálható, vagyis a deriváltja folytonos.

Definíció: kontrakció

A $\varphi: [a; b] \to \mathbb{R}$ leképezés kontrakció [a; b]-n, ha $\exists g \in [0, 1)$, hogy

$$|\varphi(x) - \varphi(y)| \le q \cdot |x - y|, \quad \forall x, y \in [a; b].$$

Állítás =

- **1** φ : $[a; b] \to \mathbb{R}$ függvény, $\varphi \in C^1[a; b]$ és
- **2** $|\varphi'(x)| < 1 \ (\forall \ x \in [a; b]),$

akkor φ kontrakció [a; b]-n.

Megj.:

- C¹: egyszer folyonosan differenciálható, vagyis a deriváltja folytonos.
- A kontrakciós tulajdonság függ az intervallumtól.

Biz.: A Lagrange-féle középértéktétel segítségével.

Biz.: A Lagrange-féle középértéktétel segítségével.

$$q:=\max_{x\in[a;b]}\left|\varphi'(x)\right|<1$$

Kontraktív valós függvények

Biz.: A Lagrange-féle középértéktétel segítségével.

$$= q := \max_{x \in [a;b]} |\varphi'(x)| < 1$$

$$\forall x, y \in [a; b] (x < y) : \exists \xi \in (x; y) :$$
$$|\varphi(x) - \varphi(y)| = |\varphi'(\xi)| \cdot |x - y| \le q \cdot |x - y|.$$

Tétel: Brouwer-féle fixponttétel

1 Ha φ : $[a;b] \rightarrow [a;b]$

Tétel: Brouwer-féle fixponttétel

- **1** Ha φ : $[a;b] \rightarrow [a;b]$
- 2 és $\varphi \in C[a; b]$,

Tétel: Brouwer-féle fixponttétel

- **1** Ha φ : $[a;b] \rightarrow [a;b]$
- **2** és $\varphi \in C[a; b]$,

akkor
$$\exists x^* \in [a; b] : \varphi(x^*) = x^*$$
.

Tétel: Brouwer-féle fixponttétel

- **1** Ha φ : $[a;b] \rightarrow [a;b]$
- **2** és $\varphi \in C[a; b]$,

akkor
$$\exists x^* \in [a; b] : \varphi(x^*) = x^*$$
.

Biz.: Definiáljuk a $g(x) = x - \varphi(x)$ függvényt, majd alkalmazzuk a Bolzano-tételt.

Biz. folyt.:

1 Mivel $\varphi(a), \varphi(b) \in [a; b] \Rightarrow$

$$g(a) = a - \varphi(a) \le 0, \quad g(b) = b - \varphi(b) \ge 0$$

 $\Rightarrow \quad g(a) \cdot g(b) \le 0.$

Biz. folyt.:

1 Mivel $\varphi(a), \varphi(b) \in [a; b] \Rightarrow$

$$g(a) = a - \varphi(a) \le 0, \quad g(b) = b - \varphi(b) \ge 0$$

 $\Rightarrow \quad g(a) \cdot g(b) \le 0.$

2 Ha $g(a) \cdot g(b) = 0$, akkor g(a) = 0 vagy g(b) = 0. Ez azt jelenti, hogy első esetben a, második esetben b fixpont.

Biz. folyt.:

1 Mivel $\varphi(a), \varphi(b) \in [a; b] \Rightarrow$

$$g(a) = a - \varphi(a) \le 0, \quad g(b) = b - \varphi(b) \ge 0$$

 $\Rightarrow \quad g(a) \cdot g(b) \le 0.$

- **2** Ha $g(a) \cdot g(b) = 0$, akkor g(a) = 0 vagy g(b) = 0. Ez azt jelenti, hogy első esetben a, második esetben b fixpont.
- 3 Ha $g(a) \cdot g(b) < 0$, akkor a Bolzano-tétel miatt van g-nek gyöke (a; b)-ben, azaz

$$\exists x^* \in (a; b) : g(x^*) = x^* - \varphi(x^*) = 0 \Leftrightarrow \varphi(x^*) = x^*$$

Tétel: Banach-féle fixponttétel [a; b]-re

Ha a $\varphi\colon [a;b] \to [a;b]$ függvény kontrakció [a;b]-n q kontrakciós együtthatóval, akkor

1 $\exists ! \ x^* \in [a; b] : x^* = \varphi(x^*)$, azaz létezik fixpont,

Tétel: Banach-féle fixponttétel [a; b]-re

Ha a φ : $[a;b] \to [a;b]$ függvény kontrakció [a;b]-n q kontrakciós együtthatóval, akkor

- 1 $\exists ! x^* \in [a; b] : x^* = \varphi(x^*)$, azaz létezik fixpont,

Tétel: Banach-féle fixponttétel [a; b]-re

Ha a φ : $[a;b] \to [a;b]$ függvény kontrakció [a;b]-n q kontrakciós együtthatóval, akkor

- **1** $\exists ! x^* \in [a; b] : x^* = \varphi(x^*)$, azaz létezik fixpont,
- 3 továbbá a következő hibabecslések teljesülnek:
 - $|x_k x^*| \le q^k \cdot |x_0 x^*| \le q^k (b a)$,
 - $|x_k x^*| \le \frac{q^k}{1 q} \cdot |x_1 x_0|$.

Tétel: Banach-féle fixponttétel [a; b]-re

Ha a φ : $[a;b] \to [a;b]$ függvény kontrakció [a;b]-n q kontrakciós együtthatóval, akkor

- **1** $\exists ! x^* \in [a; b] : x^* = \varphi(x^*)$, azaz létezik fixpont,
- 3 továbbá a következő hibabecslések teljesülnek:
 - $|x_k x^*| \le q^k \cdot |x_0 x^*| \le q^k (b a)$,
 - $|x_k x^*| \le \frac{q^k}{1 q} \cdot |x_1 x_0|$.

Biz.: Már volt, csak most \mathbb{R}^n helyett \mathbb{R} (n = 1), sốt [a; b].

Következmény: iteráció konvergenciájának elégséges feltétele

1 Ha φ : $[a;b] \rightarrow [a;b]$,

Következmény: iteráció konvergenciájának elégséges feltétele

- **1** Ha φ : $[a;b] \rightarrow [a;b]$,
- $\mathbf{Q} \ \varphi \in C^1[a;b]$ és

Következmény: iteráció konvergenciájának elégséges feltétele

- **1** Ha φ : $[a;b] \rightarrow [a;b]$,
- $\mathbf{Q} \ \varphi \in C^1[a;b]$ és
- $|\varphi'(x)| < 1 \quad \forall \ x \in [a; b],$

akkor az $x_{k+1} = \varphi(x_k)$ iteráció konvergens $\forall x_0 \in [a; b]$ esetén.

Következmény: iteráció konvergenciájának elégséges feltétele

- **1** Ha φ : $[a;b] \rightarrow [a;b]$,
- **2** $\varphi \in C^1[a; b]$ és
- $|\varphi'(x)| < 1 \quad \forall \ x \in [a; b],$

akkor az $x_{k+1} = \varphi(x_k)$ iteráció konvergens $\forall x_0 \in [a;b]$ esetén.

Megj.: Attól még lehet konvergens a sorozat, ha valahol $|\varphi'| \ge 1$. (Nem szükséges feltétel.)

Tétel Lokális fixponttétel

Legyen $\varphi \colon [a;b] \to \mathbb{R}$ függvény.

1 Ha $\varphi \in C^1[a;b]$ és

Tétel Lokális fixponttétel

Legyen $\varphi \colon [a;b] \to \mathbb{R}$ függvény.

- **1** Ha $\varphi \in C^1[a;b]$ és
- 2 $\exists \xi \in [a; b]$ és $\delta > 0$, melyre

$$|\varphi'(x)| \le q < 1 \quad \forall x \in [\xi - \delta; \xi + \delta] \subset [a; b].$$

Tétel Lokális fixponttétel

Legyen $\varphi \colon [a;b] \to \mathbb{R}$ függvény.

- **1** Ha $\varphi \in C^1[a;b]$ és
- **2** $\exists \xi \in [a; b]$ és $\delta > 0$, melyre

$$|\varphi'(x)| \le q < 1 \quad \forall x \in [\xi - \delta; \xi + \delta] \subset [a; b].$$

3 Ha $\exists r : 0 < r \le \delta$, melyre

$$|\varphi(\xi)-\xi|\leq (1-q)r,$$

(azaz ξ a fixpont egy elég jó közelítése,)

Tétel Lokális fixponttétel

Legyen $\varphi \colon [a;b] \to \mathbb{R}$ függvény.

- **1** Ha $\varphi \in C^1[a;b]$ és
- 2 $\exists \xi \in [a; b]$ és $\delta > 0$, melyre

$$|\varphi'(x)| \le q < 1 \quad \forall x \in [\xi - \delta; \xi + \delta] \subset [a; b].$$

3 Ha $\exists r : 0 < r \le \delta$, melyre

$$|\varphi(\xi)-\xi|\leq (1-q)r,$$

(azaz ξ a fixpont egy elég jó közelítése,) akkor φ kontrakció $[\xi - r; \xi + r]$ -n és

$$\forall x \in [\xi - r; \xi + r] : \varphi(x) \in [\xi - r; \xi + r].$$

Biz.: A tétel feltételeiből következik, hogy φ kontrakció $[\xi - \delta; \xi + \delta]$ -n.

Biz.: A tétel feltételeiből következik, hogy φ kontrakció $[\xi - \delta; \xi + \delta]$ -n.

Gondoljuk meg, hogy a kontrakciós tulajdonság a $[\xi-r;\xi+r]\subset [\xi-\delta;\xi+\delta]$ részintervallumra is teljesül a q kontrakciós együtthatóval.

Biz.: A tétel feltételeiből következik, hogy φ kontrakció $[\xi - \delta; \xi + \delta]$ -n.

Gondoljuk meg, hogy a kontrakciós tulajdonság a $[\xi-r;\xi+r]\subset [\xi-\delta;\xi+\delta]$ részintervallumra is teljesül a q kontrakciós együtthatóval.

Tetszőleges $x \in [\xi - r; \xi + r]$ esetén

$$|\varphi(x)| = |\varphi(x) - \varphi(\xi) + \varphi(\xi) - \xi| \le$$

$$\le |\varphi(x) - \varphi(\xi)| + |\varphi(\xi) - \xi| \le$$

$$\le q \cdot \underbrace{|x - \xi|}_{\leq r} + (1 - q) \cdot r = r$$

Tehát φ az $x \in [\xi - r; \xi + r]$ intervallumba beleképez.

Következmény:

Ha a lokális fixponttétel feltételei teljesülnek, akkor valójában a Banach-féle fixponttétel feltételei teljesülnek az $[\xi-r;\xi+r]$ intervallumra, így

Következmény:

Ha a lokális fixponttétel feltételei teljesülnek, akkor valójában a Banach-féle fixponttétel feltételei teljesülnek az $[\xi-r;\xi+r]$ intervallumra, így

1 $\exists ! \, x^* \in [\xi - r; \xi + r] : x^* = \varphi(x^*)$, azaz létezik fixpont,

Következmény:

Ha a lokális fixponttétel feltételei teljesülnek, akkor valójában a Banach-féle fixponttétel feltételei teljesülnek az $[\xi-r;\xi+r]$ intervallumra, így

- \blacksquare $\exists ! \, x^* \in [\xi r; \xi + r] : x^* = \varphi(x^*)$, azaz létezik fixpont,
- 2 $\forall x_0 \in [\xi r; \xi + r]$ esetén az $x_{k+1} = \varphi(x_k), \ k \in \mathbb{N}_0$ sorozat konvergens és $\lim_{k \to \infty} x_k = x^*$,

Következmény:

Ha a lokális fixponttétel feltételei teljesülnek, akkor valójában a Banach-féle fixponttétel feltételei teljesülnek az $[\xi-r;\xi+r]$ intervallumra, így

- 1 $\exists ! x^* \in [\xi r; \xi + r] : x^* = \varphi(x^*)$, azaz létezik fixpont,
- 2 $\forall x_0 \in [\xi r; \xi + r]$ esetén az $x_{k+1} = \varphi(x_k), \ k \in \mathbb{N}_0$ sorozat konvergens és $\lim_{k \to \infty} x_k = x^*$,
- 3 továbbá a következő hibabecslések teljesülnek:
 - $|x_k x^*| \le q^k \cdot |x_0 x^*| \le q^k (b a),$
 - $|x_k x^*| \le \frac{q^k}{1 q} \cdot |x_1 x_0|$.

Egyszerű iterációk

1. Példa

A zsebszámológépünkbe írjunk be egy 0 és 1 közötti számot, majd nyomjuk meg az x^2 billentyűt. A sokadik gombnyomás után mit tapasztalunk?

1. Példa

A zsebszámológépünkbe írjunk be egy 0 és 1 közötti számot, majd nyomjuk meg az x^2 billentyűt. A sokadik gombnyomás után mit tapasztalunk?

Valójában az $x = x^2$ egyenlet fixpontját keressük az

$$x_{k+1} = x_k^2$$

iterációval. Két fixpontja van 0 és 1, de

- $0 \le x_0 < 1$ esetén $\lim(x_k) = 0$.
- $x_0 = 1$ esetén $\lim(x_k) = 1$.

Egyszerű iterációk

2. Példa

A zsebszámológépünkbe írjunk be egy 0 és 1 közötti számot, majd nyomjuk meg a \sqrt{x} billentyűt. A sokadik gombnyomás után mit tapasztalunk?

2. Példa

A zsebszámológépünkbe írjunk be egy 0 és 1 közötti számot, majd nyomjuk meg a \sqrt{x} billentyűt. A sokadik gombnyomás után mit tapasztalunk?

Valójában az $x = \sqrt{x}$ egyenlet fixpontját keressük az

$$x_{k+1} = \sqrt{x_k}$$

iterációval. Két fixpontja van 0 és 1, de

- $x_0 = 0$ esetén $\lim(x_k) = 0$.
- $0 < x_0 \le 1$ esetén $\lim(x_k) = 1$.

Egyszerű iterációk

3. Példa

A zsebszámológépünkbe írjunk be egy 0 és 1 közötti számot, majd nyomjuk meg a $\cos(x)$ billentyűt. A sokadik gombnyomás után mit tapasztalunk?

3. Példa

A zsebszámológépünkbe írjunk be egy 0 és 1 közötti számot, majd nyomjuk meg a $\cos(x)$ billentyűt. A sokadik gombnyomás után mit tapasztalunk?

Valójában az $x=\cos(x)$ fixpontegyenlet megoldását keressük a [0,1] intervallumon az

$$x_{k+1} := \cos(x_k), \ x_0 \in [0,1]$$

iterációval. Egyértelmű-e a megoldás? Konvergens ez a sorozat? Adjunk hibabecslést! Hány lépés után kapjuk a megoldást 0.1-es pontossággal?

- $\textbf{ } \textbf{ } \mathsf{Belátjuk, hogy a } \varphi(x) := \cos(x) \mathsf{ függvény a } [0;1] \\ \mathsf{intervallumot a } [0;1] \mathsf{-be képezi:}$
 - Mivel $\varphi'(x) = -\sin(x) < 0$, $\forall x \in [0; 1]$, ezért φ szigorúan monoton fogyó [0; 1]-en.
 - $\varphi([0;1])=[\varphi(1);\varphi(0)]=[\cos(1),1]\subset[0;1],$ tehát $\varphi:\ [0;1]\to[0;1].$

- **1** Belátjuk, hogy a $\varphi(x) := \cos(x)$ függvény a [0; 1] intervallumot a [0; 1]-be képezi:
 - Mivel $\varphi'(x) = -\sin(x) < 0$, $\forall x \in [0; 1]$, ezért φ szigorúan monoton fogyó [0; 1]-en.
 - $\varphi([0;1]) = [\varphi(1); \varphi(0)] = [\cos(1), 1] \subset [0;1]$, tehát $\varphi: [0;1] \to [0;1]$.
- 2 Belátjuk, hogy a $\varphi(x)=\cos(x)$ függvény kontrakció [0; 1]-en. Tetszőleges $x,y\in[0;1]$ -re a Lagrange-középértéktételt alkalmazva $\exists\,\xi\in(0;1)$, melyre

$$|\varphi(x) - \varphi(y)| = |\varphi'(\xi)| \cdot |x - y| \le q \cdot |x - y|,$$

ahol a kontrakciós együttható $q:=\max_{\xi\in[0;1]}|-\sin(\xi)|=\sin(1)\approx 0.8415<1.$

A Banach-féle fixponttétel feltételei teljesülnek, így annak állításai felhasználhatóak, ezzel a fixpont létezését, egyértelműségét és a konvergenciát beláttuk.

- A Banach-féle fixponttétel feltételei teljesülnek, így annak állításai felhasználhatóak, ezzel a fixpont létezését, egyértelműségét és a konvergenciát beláttuk.
- 4 Hibabecslése:

$$|x_k - x^*| \le 0.8415^k \cdot \underbrace{|x_0 - x^*|}_{<1} \le 0.8415^k.$$

- A Banach-féle fixponttétel feltételei teljesülnek, így annak állításai felhasználhatóak, ezzel a fixpont létezését, egyértelműségét és a konvergenciát beláttuk.
- A Hibabecslése:

$$|x_k - x^*| \le 0.8415^k \cdot \underbrace{|x_0 - x^*|}_{<1} \le 0.8415^k.$$

6 A megadott pontosság eléréséhez szükséges lépésszám:

$$0.8415^k < \frac{1}{10} \quad \Leftrightarrow \quad k > \frac{-1}{\lg(0.8415)} \approx 13.34.$$

Nagyon lassú ...

Tartalomjegyzék

- 1 Bolzano-tétel, intervallumfelezés
- 2 Fixponttételek, egyszerű iterációk
- 3 Konvergencia rend
- 4 Matlab példák

Definíció: konvergencia rend

Az (x_k) konvergens sorozat – határértékét jelölje x^* – p-edrendben konvergens, ha $\exists c \in (0; +\infty) \subset \mathbb{R}$, hogy

$$\lim_{k \to \infty} \frac{|x_{k+1} - x^*|}{|x_k - x^*|^p} = c.$$

Definíció: konvergencia rend

Az (x_k) konvergens sorozat – határértékét jelölje x^* – p-edrendben konvergens, ha $\exists c \in (0; +\infty) \subset \mathbb{R}$, hogy

$$\lim_{k \to \infty} \frac{|x_{k+1} - x^*|}{|x_k - x^*|^p} = c.$$

Meg jegyzés:

• p egyértelmű, $p \ge 1$,

Definíció: konvergencia rend

Az (x_k) konvergens sorozat – határértékét jelölje x^* – p-edrendben konvergens, ha $\exists c \in (0; +\infty) \subset \mathbb{R}$, hogy

$$\lim_{k \to \infty} \frac{|x_{k+1} - x^*|}{|x_k - x^*|^p} = c.$$

Meg jegyzés:

- p egyértelmű, $p \ge 1$,
- p nem feltétlenül egész (A szelőmódszernél $p=\frac{1+\sqrt{5}}{2}$.)

Definíció: konvergencia rend

Az (x_k) konvergens sorozat – határértékét jelölje x^* – p-edrendben konvergens, ha $\exists c \in (0; +\infty) \subset \mathbb{R}$, hogy

$$\lim_{k \to \infty} \frac{|x_{k+1} - x^*|}{|x_k - x^*|^p} = c.$$

Meg jegyzés:

- p egyértelmű, $p \ge 1$,
- p nem feltétlenül egész (A szelőmódszernél $p=\frac{1+\sqrt{5}}{2}$.)
- p=1: elsőrendű vagy lineáris konvergencia (ekkor $c\leq 1$) p=2: másodrendű vagy kvadratikus konvergencia

Definíció: konvergencia rend

Az (x_k) konvergens sorozat – határértékét jelölje x^* – p-edrendben konvergens, ha $\exists c \in (0; +\infty) \subset \mathbb{R}$, hogy

$$\lim_{k \to \infty} \frac{|x_{k+1} - x^*|}{|x_k - x^*|^p} = c.$$

Meg jegyzés:

- p egyértelmű, p > 1,
- p nem feltétlenül egész (A szelőmódszernél $p = \frac{1+\sqrt{5}}{2}$.)
- p = 1: elsőrendű vagy lineáris konvergencia (ekkor c < 1) p=2: másodrendű vagy kvadratikus konvergencia
- p > 1: szuperlineáris konvergencia

 Gyakorlatban a legalább p-edrendű konvergencia megfogalmazása:

$$\exists K \in \mathbb{R}^+ : \forall k \in \mathbb{N}_0 : |x_{k+1} - x^*| \le K \cdot |x_k - x^*|^p$$

 Gyakorlatban a legalább p-edrendű konvergencia megfogalmazása:

$$\exists K \in \mathbb{R}^+ : \forall k \in \mathbb{N}_0 : |x_{k+1} - x^*| \le K \cdot |x_k - x^*|^p$$

 A fixponttételek nem mondanak konvergencia rendet. (Csak annyit, hogy legalább elsőrendű.)

 Gyakorlatban a legalább p-edrendű konvergencia megfogalmazása:

$$\exists K \in \mathbb{R}^+ : \forall k \in \mathbb{N}_0 : |x_{k+1} - x^*| \le K \cdot |x_k - x^*|^p$$

- A fixponttételek nem mondanak konvergencia rendet. (Csak annyit, hogy legalább elsőrendű.)
- Ha c = 0, akkor a keresett konvergencia rend nagyobb a megadottnál.

 Gyakorlatban a legalább p-edrendű konvergencia megfogalmazása:

$$\exists K \in \mathbb{R}^+ : \forall k \in \mathbb{N}_0 : |x_{k+1} - x^*| \le K \cdot |x_k - x^*|^p$$

- A fixponttételek nem mondanak konvergencia rendet. (Csak annyit, hogy legalább elsőrendű.)
- Ha c = 0, akkor a keresett konvergencia rend nagyobb a megadottnál.
- Ha $c = \infty$, akkor a keresett konvergencia rend kisebb a megadottnál.

Példa

Mennyi a konvergenciarendje a következő nullsorozatoknak?

$$\left(\frac{1}{n^2}\right); \qquad \left(\frac{1}{2^n}\right); \qquad \left(q^n\right) \; (|q|<1); \qquad \left(\frac{1}{2^{2^n}}\right);$$

Példa

Mennyi a konvergenciarendje a következő nullsorozatoknak?

$$\left(\frac{1}{n^2}\right); \qquad \left(\frac{1}{2^n}\right); \qquad \left(q^n\right) \; (|q|<1); \qquad \left(\frac{1}{2^{2^n}}\right);$$

Vizsgáljuk az egyik sorozatot, a többit gyakorlaton..

Tekintsük az $(x_k)=\left(rac{1}{2^k}
ight)$, $(k\in\mathbb{N})$ sorozatot.

Tekintsük az $(x_k) = \left(\frac{1}{2^k}\right)$, $(k \in \mathbb{N})$ sorozatot.

① Tippeljük p = 2-re a konvergencia rendet:

$$\lim_{k \to \infty} \frac{|x_{k+1} - x^*|}{|x_k - x^*|^p} = \lim_{k \to \infty} \frac{\left| \frac{1}{2^{k+1}} - 0 \right|}{\left| \frac{1}{2^k} - 0 \right|^2} = \lim_{k \to \infty} \frac{2^{2k}}{2^{k+1}} = \lim_{k \to \infty} 2^{k-1} = \infty.$$

Látjuk, hogy a határérték ∞ , vagyis kisebb p-vel kell próbálkoznunk.

Tekintsük az $(x_k) = \left(\frac{1}{2^k}\right)$, $(k \in \mathbb{N})$ sorozatot.

1 Tippeljük p = 2-re a konvergencia rendet:

$$\lim_{k \to \infty} \frac{|x_{k+1} - x^*|}{|x_k - x^*|^p} = \lim_{k \to \infty} \frac{\left| \frac{1}{2^{k+1}} - 0 \right|}{\left| \frac{1}{2^k} - 0 \right|^2} = \lim_{k \to \infty} \frac{2^{2k}}{2^{k+1}} = \lim_{k \to \infty} 2^{k-1} = \infty.$$

Látjuk, hogy a határérték ∞ , vagyis kisebb p-vel kell próbálkoznunk.

2 Tippeljük p = 1-re a konvergencia rendet.

$$\lim_{k \to \infty} \frac{|x_{k+1} - x^*|}{|x_k - x^*|^p} = \lim_{k \to \infty} \frac{\left| \frac{1}{2^{k+1}} - 0 \right|}{\left| \frac{1}{2^k} - 0 \right|} = \lim_{k \to \infty} \frac{2^k}{2^{k+1}} = \lim_{k \to \infty} \frac{1}{2} = \frac{1}{2}.$$

Látjuk, hogy a határértek rendben van, a konvergencia elsőrendű.

Mit jelent az első- és másodrendű konvergencia számokban? $(\sqrt{2})$

Mit jelent az első- és másodrendű konvergencia számokban? $(\sqrt{2})$

<u>1.414</u>184570312500

 $\underline{1.4142}45605468750$

<u>1.41421</u>5087890625

Mit jelent az első- és másodrendű konvergencia számokban? $(\sqrt{2})$

<u>1.414</u>184570312500

<u>1.4142</u>45605468750

<u>1.41421</u>5087890625

Minden lépésben kb. egy újabb tizedesjegy pontos.

Mit jelent az első- és másodrendű konvergencia számokban? $(\sqrt{2})$

<u>1.414</u>184570312500

<u>1.4142</u>45605468750

<u>1.41421</u>5087890625

Minden lépésben kb. egy újabb tizedesjegy pontos.

2
$$p = 2$$
, $|x_{k+1} - x^*| \le K \cdot |x_k - x^*|^2$

<u>1.41</u>666666666667

1.414215686274510

1.414213562374690

Mit jelent az első- és másodrendű konvergencia számokban? $(\sqrt{2})$

<u>1.414</u>184570312500

<u>1.4142</u>45605468750

<u>1.41421</u>5087890625

Minden lépésben kb. egy újabb tizedesjegy pontos.

2
$$p = 2$$
, $|x_{k+1} - x^*| \le K \cdot |x_k - x^*|^2$

<u>1.41</u>6666666666667

<u>1.41421</u>5686274510

1.414213562374690

Minden lépésben kb. kétszer annyi tizedesjegy pontos.

Tétel: p-edrendben konvergens iterációk

Tétel: p-edrendben konvergens iterációk

1 Legyen $\varphi \colon \mathbb{R} \to \mathbb{R}$, $\varphi \in C^p[a;b]$ és

Tétel: p-edrendben konvergens iterációk

- **1** Legyen $\varphi \colon \mathbb{R} \to \mathbb{R}$, $\varphi \in C^p[a; b]$ és
- 2 az $x_{k+1} = \varphi(x_k)$ sorozat konvergens, határértéke x^* .

Tétel: p-edrendben konvergens iterációk

- **1** Legyen $\varphi \colon \mathbb{R} \to \mathbb{R}$, $\varphi \in C^p[a; b]$ és
- 2 az $x_{k+1} = \varphi(x_k)$ sorozat konvergens, határértéke x^* .
- **3** Ha $\varphi'(x^*) = \cdots = \varphi^{(p-1)}(x^*) = 0$, de $\varphi^{(p)}(x^*) \neq 0$,

Tétel: p-edrendben konvergens iterációk

- **1** Legyen $\varphi \colon \mathbb{R} \to \mathbb{R}$, $\varphi \in C^p[a; b]$ és
- 2 az $x_{k+1} = \varphi(x_k)$ sorozat konvergens, határértéke x^* .
- **3** Ha $\varphi'(x^*) = \cdots = \varphi^{(p-1)}(x^*) = 0$, de $\varphi^{(p)}(x^*) \neq 0$,

akkor a konvergencia p-edrendű és hibabecslése:

$$|x_{k+1}-x^*| \leq \frac{M_p}{p!} |x_k-x^*|^p$$

ahol
$$M_p = \max_{\xi \in [a;b]} |\varphi^{(p)}(\xi)|.$$

Biz.: Írjuk fel a φ függvény x^* körüli Taylor-polinomját a maradéktaggal.

$$\begin{split} \exists \, \xi \in (x, x^*) \ \, &(\text{vagy } (x^*, x)) : \\ \varphi(x) &= \varphi(x^*) + \varphi'(x^*)(x - x^*) + \dots + \frac{\varphi^{(p-1)}(x^*)}{(p-1)!} (x - x^*)^{p-1} + \\ &\quad + \frac{\varphi^{(p)}(\xi)}{p!} (x - x^*)^p \end{split}$$

Biz.: Írjuk fel a φ függvény x^* körüli Taylor-polinomját a maradéktaggal.

$$\begin{split} \exists \, \xi \in (x, x^*) \ \, &(\text{vagy } (x^*, x)) : \\ \varphi(x) &= \varphi(x^*) + \varphi'(x^*)(x - x^*) + \dots + \frac{\varphi^{(p-1)}(x^*)}{(p-1)!} (x - x^*)^{p-1} + \\ &\quad + \frac{\varphi^{(p)}(\xi)}{p!} (x - x^*)^p \end{split}$$

Vizsgáljuk ezt az $x = x_k$ helyen, kihasználva a deriváltak zérus voltát is. $(\exists \xi_k)$:

$$x_{k+1} = \varphi(x_k) = \underbrace{\varphi(x^*)}_{x^*} + \frac{\varphi^{(p)}(\xi_k)}{p!} (x_k - x^*)^p$$

Biz. folyt.: átrendezve

$$x_{k+1} - x^* = \frac{\varphi^{(p)}(\xi_k)}{p!} (x_k - x^*)^p.$$

Biz. folyt.: átrendezve

$$x_{k+1} - x^* = \frac{\varphi^{(p)}(\xi_k)}{p!} (x_k - x^*)^p.$$

$$\lim_{k\to\infty}\frac{|x_{k+1}-x^*|}{|x_k-x^*|^p}=\lim_{k\to\infty}\frac{\left|\varphi^{(p)}(\xi_k)\right|}{p!}=\frac{\left|\varphi^{(p)}(x^*)\right|}{p!}\neq 0.$$

Tehát (x_k) egy p-adrendben konvergens sorozat.

Biz. folyt.: átrendezve

$$x_{k+1} - x^* = \frac{\varphi^{(p)}(\xi_k)}{p!} (x_k - x^*)^p.$$

$$\lim_{k\to\infty}\frac{|x_{k+1}-x^*|}{|x_k-x^*|^p}=\lim_{k\to\infty}\frac{\left|\varphi^{(p)}(\xi_k)\right|}{p!}=\frac{\left|\varphi^{(p)}(x^*)\right|}{p!}\neq 0.$$

Tehát (x_k) egy p-adrendben konvergens sorozat.

Vegyük szemügyre a k+1-edik és a k-adik tag hibáját.

$$|x_{k+1}-x^*| = \frac{\left|\varphi^{(p)}(\xi_k)\right|}{p!} \cdot |x_k-x^*|^p \le \frac{M_p}{p!} |x_k-x^*|^p,$$

ahol
$$M_p = \max_{\xi \in [a,b]} \left| \varphi^{(p)}(\xi) \right|.$$

Következmény

1 Ha φ : $[a;b] \rightarrow [a;b]$ kontrakció,

akkor

Következmény

- **1** Ha φ : $[a; b] \rightarrow [a; b]$ kontrakció,
- $\mathbf{2} \ x^* \ \mathbf{a} \ \varphi$ fixpontja és

akkor

Következmény

- **1** Ha φ : $[a; b] \rightarrow [a; b]$ kontrakció,
- **2** x^* a φ fixpontja és

3
$$\varphi'(x^*) = \cdots = \varphi^{(p-1)}(x^*) = 0$$
, de $\varphi^{(p)}(x^*) \neq 0$,

akkor

Következmény

- **1** Ha φ : $[a; b] \rightarrow [a; b]$ kontrakció,
- **2** x^* a φ fixpontja és

3
$$\varphi'(x^*) = \cdots = \varphi^{(p-1)}(x^*) = 0$$
, de $\varphi^{(p)}(x^*) \neq 0$,

akkor

1 a fixpont egyértelmű,

Magasabbrendben konvergens sorozatokról

Következmény

- **1** Ha φ : $[a; b] \rightarrow [a; b]$ kontrakció,
- **2** x^* a φ fixpontja és
- **3** $\varphi'(x^*) = \cdots = \varphi^{(p-1)}(x^*) = 0$, de $\varphi^{(p)}(x^*) \neq 0$,

akkor

- 1 a fixpont egyértelmű,
- **2** $\forall x_0 \in [a; b]$ esetén az $x_{k+1} = \varphi(x_k), k \in \mathbb{N}_0$ sorozat konvergens és $\lim_{k \to \infty} x_k = x^*$,

Magasabbrendben konvergens sorozatokról

Következmény

- **1** Ha φ : $[a; b] \rightarrow [a; b]$ kontrakció,
- **2** x^* a φ fixpontja és
- **3** $\varphi'(x^*) = \cdots = \varphi^{(p-1)}(x^*) = 0$, de $\varphi^{(p)}(x^*) \neq 0$,

akkor

- 1 a fixpont egyértelmű,
- 2 $\forall x_0 \in [a; b]$ esetén az $x_{k+1} = \varphi(x_k), k \in \mathbb{N}_0$ sorozat konvergens és $\lim_{k \to \infty} x_k = x^*$,
- 3 és a következő hibabecslés teljesül:

$$|x_{k+1}-x^*| \leq \frac{M_p}{p!} |x_k-x^*|^p$$
.

Magasabbrendben konvergens sorozatokról

Következmény

- **1** Ha φ : $[a; b] \rightarrow [a; b]$ kontrakció,
- **2** x^* a φ fixpontja és
- **3** $\varphi'(x^*) = \cdots = \varphi^{(p-1)}(x^*) = 0$, de $\varphi^{(p)}(x^*) \neq 0$,

akkor

- 1 a fixpont egyértelmű,
- 2 $\forall x_0 \in [a; b]$ esetén az $x_{k+1} = \varphi(x_k), k \in \mathbb{N}_0$ sorozat konvergens és $\lim_{k \to \infty} x_k = x^*$,
- 3 és a következő hibabecslés teljesül: $|x_{k+1} x^*| \le \frac{M_p}{p!} |x_k x^*|^p$.

Biz.: Ez a Banach-féle fixponttétel és a *p*-edrendben konvergens iterációk tételének összeházasításaként adódik.

Még egy példa egyszerű iterációra

Példa

Írjunk fel fixpont-iteráció(ka)t az $x^3 - x - 1 = 0$ egyenlet megoldására, bizonyítsuk a konvergenciát.

- **a** $x = x^3 1$,
- **b** $x = \sqrt[3]{x+1}$.

Még egy példa egyszerű iterációra

Példa

Írjunk fel fixpont-iteráció(ka)t az $x^3 - x - 1 = 0$ egyenlet megoldására, bizonyítsuk a konvergenciát.

a
$$x = x^3 - 1$$
,

b
$$x = \sqrt[3]{x+1}$$
.

Lásd gyakorlat...

A két sorozat közül az egyik konvergens, a másik divergens. Melyik-melyik? Milyen intervallumon konvergens? Indokoljuk.

Tartalomjegyzék

- 1 Bolzano-tétel, intervallumfelezés
- 2 Fixponttételek, egyszerű iterációk
- 3 Konvergencia rend
- 4 Matlab példák

Példák Matlab-ban

- 1 Intervallumfelezés számolása és szemléltetése.
- **2** Egyszerű iterációk és fixpontok elemzése az x = cos(x) egyenlet példáján keresztül.
- 3 Tapasztalati kontrakciós együtthatók szemléltetése.
- 4 $\sqrt{2}$ közelítése különböző iterációkkal (p=1,2,3 rendűek).
- 6 A logisztikus leképezés viselkedésének bemutatása érdekességképpen.

Tapasztalati kontrakciós együttható vizsgálata

1. Példa:

$$x_{k+1} := \cos(x_k), \ x_0 \in [0,1]$$

Tapasztalati kontrakciós együttható vizsgálata

1. Példa:

Az egymást követő tapasztalati kontrakciós együtthatók mértani közepét rajzoltuk ki. $q\approx 0.6736$

$\sqrt{2}$ közelítése különböző iterációkkal

2. Példa:

Matlab segítségével vizsgáljuk a következő sorozatokat:

1 A $\sqrt{2}$ lánctörtkifejtéséből: (p=1)

$$x_{k+1} = 1 + \frac{1}{1 + x_k}.$$

2. Példa:

Matlab segítségével vizsgáljuk a következő sorozatokat:

1 A $\sqrt{2}$ lánctörtkifejtéséből: (p=1)

$$x_{k+1} = 1 + \frac{1}{1 + x_k}.$$

2 Az $f(x) = x^2 - 2$ függvényre alkalmaztuk a Newton-módszert, analízisből ismerős lehet... (p = 2)

$$x_{k+1} = \frac{1}{2} \left(x_k + \frac{2}{x_k} \right).$$

$\sqrt{2}$ közelítése különböző iterációkkal

2. Példa:

Matlab segítségével vizsgáljuk a következő sorozatokat:

1 A $\sqrt{2}$ lánctörtkifejtéséből: (p=1)

$$x_{k+1} = 1 + \frac{1}{1 + x_k}.$$

2 Az $f(x) = x^2 - 2$ függvényre alkalmaztuk a Newton-módszert, analízisből ismerős lehet... (p = 2)

$$x_{k+1} = \frac{1}{2} \left(x_k + \frac{2}{x_k} \right).$$

3 Másodfokú Taylor-polinom közelítéssel: (p = 3)

$$x_{k+1} = x_k \cdot \frac{x_k^2 + 6}{3x_k^2 + 2}.$$

Az ökológusok gyakran vizsgálnak olyan - időszakosan szaporodó - populációkat (pl. gyümölcsöskerti kártevők), amelyekben nincs átfedés az egyes generációk között. A kutatások célja ilyenkor annak megértése, hogy az n+1-edik generáció számossága (N_{n+1}) hogyan függ az előző, n-edik generáció számosságától (N_n) . Az ismert tendenciát figyelembe véve, nevezetesen, hogy az utódok száma (N_{n+1}) általában nő, ha a populáció számossága kicsi, és csökken, ha N_n értéke nagy, egy egyszerű nemlineáris differenciaegyenletet írhatunk fel:

$$N_{n+1} = kN_n - bN_n^2 = N_n(k - bN_n),$$

amelyet logisztikus differenciaegyenletnek neveznek, és amelyben k és b a populációk növekedésének, illetve csökkenésének mértékét megszabó paraméterek.

$$N_{n+1} = kN_n \left(1 - \frac{bN_n}{k}\right) \Leftrightarrow \frac{bN_{n+1}}{k} = k \frac{bN_n}{k} \left(1 - \frac{bN_n}{k}\right)$$

Az $x_n = bN_n/k$ jelölést bevezetve az egyenlet a következő egyszerű alakra hozható:

$$x_{n+1}=kx_n(1-x_n),$$

amit logisztikus leképezésnek nevezünk.

$$N_{n+1} = kN_n \left(1 - \frac{bN_n}{k}\right) \Leftrightarrow \frac{bN_{n+1}}{k} = k \frac{bN_n}{k} \left(1 - \frac{bN_n}{k}\right)$$

Az $x_n = bN_n/k$ jelölést bevezetve az egyenlet a következő egyszerű alakra hozható:

$$x_{n+1} = kx_n(1-x_n),$$

amit logisztikus leképezésnek nevezünk.

A logisztikus leképezés egyik nagy előnye az, hogy 1 < k < 4 esetén a megoldás mindig a 0 < x < 1 intervallumban marad. A k < 1 esetben az összes megoldás az x = 0 ponthoz tart, azaz a populáció kihal.

k értéke és a megfigyelt dinamikai viselkedés:

- 3.0000 : a fixpont instabilissá válik, megjelenik az oszcilláció
- 3.4500 : a perióduskettőződés kezdete
- 3.5700 : a 2n periódusú oszcillációk torlódási pontja, a kaotikus tartomány kezdete
- 3.6786 : az első páratlan periódusú oszcilláció megjelenése
- 3.8284 : a háromperiódusú oszcilláció megjelenése
- 4.0000 : a kaotikus tartomány vége.

k értéke és a megfigyelt dinamikai viselkedés:

- 3.0000 : a fixpont instabilissá válik, megjelenik az oszcilláció
- 3.4500 : a perióduskettőződés kezdete
- 3.5700 : a 2n periódusú oszcillációk torlódási pontja, a kaotikus tartomány kezdete
- 3.6786 : az első páratlan periódusú oszcilláció megjelenése
- 3.8284 : a háromperiódusú oszcilláció megjelenése
- 4.0000 : a kaotikus tartomány vége.

Irodalom: Gáspár Vilmos: Játsszunk káoszt! (Természet Világa cikk)

Példák Matlab-ban

Példa

Vizsgáljuk meg az $x_0 \in [0,1], \ x_{k+1} = \alpha \cdot x_k (1-x_k)$ iterációk (logisztikus leképezés) viselkedését különböző $\alpha \in [0,4]$ paraméterek esetén.

Példa

Vizsgáljuk meg az $x_0 \in [0,1], \ x_{k+1} = \alpha \cdot x_k (1-x_k)$ iterációk (logisztikus leképezés) viselkedését különböző $\alpha \in [0,4]$ paraméterek esetén.

Megj.: Általában nem kontrakció. Könnyen eljuthatunk differenciaegyenletek bifurkációinak és a káoszelmélet alapjainak vizsgálatához. . .