

L2: Robot Geometry

Hao Su

Ack: Slides prepared with the help of Yuzhe Qin, Minghua Liu, Fanbo Xiang, Jiayuan Gu

Agenda

- Rigid Transformation
- $\mathbb{SO}(3)$ and $\mathbb{SE}(3)$
- Multi-Link Rigid-Body Geometry

Notation Convention

- An observer **records** the position of any point in the space **using a frame** \mathcal{F}_{ς}
- We use ordinary letters to denote points (e.g., p), and bold letters to dente **vectors** (e.g., v)
- When writing equations, we add a superscript to symbols to denote the recording frame, e.g.,

$$o_b^s = o_s^s + \mathbf{t}_{s \to b}^s$$

• There is a rigid object, to which we bind a frame \mathcal{F}_b (body frame) tightly, so that \mathcal{F}_b moves along with the object

When talking about the pose of the *rigid* object, we ask:

How to **transform** \mathcal{F}_s so that it overlaps with \mathcal{F}_b ?

- We first translate \mathcal{F}_{s} by $\mathbf{t}_{s \to b}$ to align o_{s} and o_{b}
- And then rotate by $R_{s \to b}$ to align $\{\mathbf{x}_i, \mathbf{y}_i, \mathbf{z}_i\}$ (i = s or b)

- Formally,
 - $\bullet \ o_h^s = o_s^s + \mathbf{t}_{s \to b}^s$
 - $[\mathbf{x}_b^s, \mathbf{y}_b^s, \mathbf{z}_b^s] = R_{s \rightarrow b}^s [\mathbf{x}_s^s, \mathbf{y}_s^s, \mathbf{z}_s^s]$
- Since the observer records everything using \mathscr{F}_{ς} ,

 - $\bullet \ [\mathbf{x}_{s}^{s}, \mathbf{y}_{s}^{s}, \mathbf{z}_{s}^{s}] = I_{3\times 3} \qquad {\overset{\mathbf{z}_{s}}{\nearrow}}_{s}$

- Therefore,
 - $\mathbf{t}_{s \to h}^s = o_h^s$
 - $\mathbf{R}_{s\rightarrow b}^{s} = [\mathbf{x}_{b}^{s}, \mathbf{y}_{b}^{s}, \mathbf{z}_{b}^{s}] \in \mathbb{R}^{3\times3}$

$(R_{s \to b}, \mathbf{t}_{s \to b})$ for Coordinate Transformation

Use Coordinate Transformation to Relate Coordinates in Frames

- Assume a second observer that records coordinates by \mathcal{F}_b
- Assume a point p on the body. Since \mathcal{F}_b moves along the body, its coordinate recorded in \mathcal{F}_b , denoted as p^b , should **never change**.

$(R_{s \to b}, \mathbf{t}_{s \to b})$ for Coordinate Transformation

- Imagine a process: \mathscr{F}_b moves from \mathscr{F}_s to the current location. This is how we define $(R_{s\to b}^s, \mathbf{t}_{s\to b}^s)$.
- Since p moves along \mathcal{F}_b , it is moved from the **initial** position, $p^s=p^b$, to the current location:

$$p^s = R^s_{s \to b} p^b + \mathbf{t}^s_{s \to b}$$

Homogenous Coordinates

Homogeneous coordinate for 3D Space:

$$\tilde{x} := \begin{bmatrix} x \\ 1 \end{bmatrix} \in \mathbb{R}^4$$

Homogeneous transformation matrix:

$$T_{s \to b}^s = \begin{bmatrix} R_{s \to b}^s & \mathbf{t}_{s \to b}^s \\ 0 & 1 \end{bmatrix}$$

Coordinate transformation under linear form:

$$\tilde{x}^s = T^s_{s \to b} \tilde{x}^b$$

Ignore ~ for simplicity in the future.

Homogenous Coordinates

- The coordinate transformation works for any choice of \mathcal{F}_s and \mathcal{F}_b
- As a general rule, we have:

$$x^1 = T^1_{1 \to 2} x^2$$

Some Rules of Homogenous Coordinate Transformation

By
$$x^1=T^1_{1\to 2}x^2$$
, we have $x^2=T^2_{2\to 1}x^1$ and $x^3=T^3_{3\to 2}x^2$. Therefore, $x^3=T^3_{3\to 2}T^2_{2\to 1}x^1$. But $x^3=T^3_{3\to 1}x^1$

• Composition rule: $T_{3\rightarrow 1}^3=T_{3\rightarrow 2}^3T_{2\rightarrow 1}^2$

By
$$x^1 = T_{1\to 2}^1 x^2$$
, we have $x^2 = (T_{1\to 2}^1)^{-1} x^1$

• Change of observer's frame: $T_{2\rightarrow 1}^2=(T_{1\rightarrow 2}^1)^{-1}$

A simple 2 DoF robot arm

revolute (θ_1)

prismatic (θ_2)

base

link1

$$T_{0\to 1}^{0} = \begin{bmatrix} \cos\theta_1 & -\sin\theta_1 & 0 & -l_2\sin\theta_1 \\ \sin\theta_1 & \cos\theta_1 & 0 & l_2\cos\theta_1 \\ 0 & 0 & 1 & l_1 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

revolute (θ_1)

link1

link2

$$T_{1\to 2}^{1} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & l_3 \\ 0 & 0 & 1 & \theta_2 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

prismatic (θ_2)

link2

end_effector

$$T_{2\rightarrow 3}^{2} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & -l_{4} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

end_effector

$$T_{0\to 3}^{0} = T_{0\to 1}^{0} T_{1\to 2}^{1} T_{2\to 3}^{2} = \begin{bmatrix} \cos\theta_{1} & -\sin\theta_{1} & 0 & -\sin\theta_{1}(l_{2}+l_{3}) \\ \sin\theta_{1} & \cos\theta_{1} & 0 & \cos\theta_{1}(l_{2}+l_{3}) \\ 0 & 0 & 1 & l_{1}-l_{4}+\theta_{2} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$(R_{S\rightarrow b}, \mathbf{t}_{S\rightarrow b})$ as a Linear Transformation

• $(R_{s \to b}, \mathbf{t}_{s \to b})$ transforms any **point** in the *whole space* by the following equation:

$$x'^{s} = R^{s}_{s \to b} x^{s} + \mathbf{t}^{s}_{s \to b}$$

- Suppose $\mathcal{F}_p^s = \{p^s, (\mathbf{x}_p^s, \mathbf{y}_p^s, \mathbf{z}_p^s)\}$ is a frame at an arbitrary point p^s
- Then, the new origin is: $p'^s = ?$

- Suppose $\mathcal{F}_p^s = \{p^s, (\mathbf{x}_p^s, \mathbf{y}_p^s, \mathbf{z}_p^s)\}$ is a frame at an arbitrary point p^s
- Then, the new origin is: $p'^s = R_{s \to b}^s p^s + \mathbf{t}_{s \to b}^s$

- Suppose $\mathcal{F}_p^s = \{p^s, (\mathbf{x}_p^s, \mathbf{y}_p^s, \mathbf{z}_p^s)\}$ is a frame at an arbitrary point p^s
- Then, the new origin is: $p'^s = R^s_{s \to b} p^s + \mathbf{t}^s_{s \to b}$
- How about the bases vectors of the frame?
 - Assume three curves, γ_x , γ_y , γ_z , passing p^s at t=0 with tangents \mathbf{x}_p , \mathbf{y}_p , \mathbf{z}_p

- Suppose $\mathcal{F}_p^s = \{p^s, (\mathbf{x}_p^s, \mathbf{y}_p^s, \mathbf{z}_p^s)\}$ is a frame at an arbitrary point p^s
- Then, the new origin is: $p'^s = R^s_{s \to b} p^s + \mathbf{t}^s_{s \to b}$
- How about the bases vectors of the frame?
 - Assume three curves, γ_x , γ_y , γ_z , passing p^s at t=0 with tangents \mathbf{x}_p , \mathbf{y}_p , \mathbf{z}_p
 - Then, the new tangents after transformation are:

$$\frac{d}{dt}R_{s\to b}^s\gamma_x^s(0), \frac{d}{dt}R_{s\to b}^s\gamma_y^s(0), \frac{d}{dt}R_{s\to b}^s\gamma_z^s(0)$$

- Suppose $\mathcal{F}_p^s = \{p^s, (\mathbf{x}_p^s, \mathbf{y}_p^s, \mathbf{z}_p^s)\}$ is a frame at an arbitrary point p^s
- Then, the new origin is: $p'^s = R^s_{s \to b} p^s + \mathbf{t}^s_{s \to b}$
- How about the bases vectors of the frame?
 - Assume three curves, γ_x , γ_y , γ_z , passing p^s at t=0 with tangents \mathbf{x}_p , \mathbf{y}_p , \mathbf{z}_p
 - Then, the new tangents after transformation are:

$$\frac{d}{dt}R_{s\to b}^{s}\gamma_{x}^{s}(0), \frac{d}{dt}R_{s\to b}^{s}\gamma_{y}^{s}(0), \frac{d}{dt}R_{s\to b}^{s}\gamma_{z}^{s}(0)$$

• So the new frame is: $\mathcal{F}_{p'}^s=\{p'^s,R_{s\to b}^s[\mathbf{x}_p^s,\mathbf{y}_p^s,\mathbf{z}_p^s]\}$

$$T_{1\rightarrow 2}^{s}$$

- We have introduced the notations when the observer is recoding by \mathcal{F}_s or \mathcal{F}_b
 - $T_{s o b}^{s}$ (record the frame alignment from \mathcal{F}_1 to \mathcal{F}_2)
 - By the change of observer's frame, we introduced $T^b_{b \to s} = (T^s_{s \to b})^{-1}$
- Next, we define the notion of $T_{1\to 2}^s$, which is how we **record** an arbitrary transformation from $\mathcal F_1$ to $\mathcal F_2$ in $\mathcal F_s$
 - $T_{1\to 2}^s := T_{s\to 2}^s T_{1\to s}^1$

Composition as a Homogeneous Linear Transformation

• Under the definition $T^s_{1\to 2}:=T^s_{s\to 2}T^1_{1\to s}$, the composition rule is:

$$T_{1\to 2}^s = T_{3\to 2}^s T_{1\to 3}^s$$

Change Observer's Frame with Similarity Transformation

• Given $T_{1\rightarrow 2}^s$, what is $T_{1\rightarrow 2}^b$?

$$T_{1\rightarrow2}^ST_{s\rightarrow1}^S=T_{s\rightarrow2}^S \quad \text{Composition as Linear Transformation}$$

$$T_{1\rightarrow2}^ST_{s\rightarrow b}^ST_{b\rightarrow1}^D=T_{s\rightarrow b}^ST_{b\rightarrow2}^D \quad \text{Composition as Coordinate Transformation}$$

$$T_{1\rightarrow2}^ST_{s\rightarrow b}^ST_{b\rightarrow1}^D=T_{s\rightarrow b}^ST_{1\rightarrow2}^DT_{b\rightarrow1}^D \quad \text{Composition as Linear Transformation}$$

$$T_{1\rightarrow2}^ST_{s\rightarrow b}^S=T_{s\rightarrow b}^ST_{1\rightarrow2}^D$$

$$T_{1\rightarrow2}^ST_{s\rightarrow b}^S=T_{s\rightarrow b}^ST_{1\rightarrow2}^D$$

$$T_{1\rightarrow2}^ST_{s\rightarrow b}^ST_{1\rightarrow2}^DT_{s\rightarrow b}^DT_{1\rightarrow2}^DT_{s\rightarrow b}^DT_{s\rightarrow b}^DT$$

Similarity Transformation changes the superscript

 $B = X^{-1}AX$: Similarity Transformation

A Special Case

• By
$$T_{1\to 2}^s = T_{s\to b}^s T_{1\to 2}^b (T_{s\to b}^s)^{-1}$$
,

- If
$$\mathscr{F}_1 = \mathscr{F}_s$$
 and $\mathscr{F}_2 = \mathscr{F}_b$, $T^s_{s \to b} = T^b_{s \to b}$!

- Therefore, we often see the abbreviated notations:
 - $T_b^s \equiv T_{s \to b}^s$
 - $T_{sb} \equiv T_{s \to b}^{s}$
 - $T_b \equiv T_{s \to b}^s$
- The above equation can therefore be written as:

$$T_{1\to 2}^s = T_{s\to b} T_{1\to 2}^b (T_{s\to b})^{-1}$$

- Consider a camera with frame \mathcal{F}_c observing a red car
- Denote the current frame of the red car as \mathcal{F}_1

$$T_{c\to 1}^{c} = \begin{bmatrix} \cos\frac{\pi}{2} & -\sin\frac{\pi}{2} & 0 & l\\ \sin\frac{\pi}{2} & \cos\frac{\pi}{2} & 0 & -l\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 1 \end{bmatrix}$$

• Then the red car move to a new frame \mathcal{F}_2

$$T_{c\to 1}^c = \begin{bmatrix} \cos \pi & -\sin \pi & 0 & l\\ \sin \pi & \cos \pi & 0 & -l\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 1 \end{bmatrix}$$

By the composition rule of coordinate transformation:

$$T_{c\to 2}^c = T_{c\to 1}^c T_{1\to 2}^1$$

$$T_{1\to 2}^1 = (T_{c\to 1}^c)^{-1} T_{c\to 2}^c =$$

$$T_{1\to 2}^{1} = (T_{c\to 1}^{c})^{-1} T_{c\to 2}^{c} = \begin{bmatrix} \cos\frac{\pi}{2} & -\sin\frac{\pi}{2} & 0 & 2l \\ \sin\frac{\pi}{2} & \cos\frac{\pi}{2} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

• By the composition rule of coordinate transformation:

$$T_{c\to 2}^c = T_{c\to 1}^c T_{1\to 2}^1$$

$$T_{1\to 2}^{1} = (T_{c\to 1}^{c})^{-1} T_{c\to 2}^{c} = \begin{bmatrix} \cos\frac{\pi}{2} & -\sin\frac{\pi}{2} & 0 & 2l \\ \sin\frac{\pi}{2} & \cos\frac{\pi}{2} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

• The movement from \mathcal{F}_1 to \mathcal{F}_2 can also be represented as a linear transformation from \mathcal{F}_1 to \mathcal{F}_2 , recorded by frame c, denoted as $T_{1\to 2}^c$

With similarity transformation:

$$T_{1\to 2}^c = T_{c\to 1}^c T_{1\to 2}^1 (T_{c\to 1}^c)^{-1} = \begin{bmatrix} \cos\frac{\pi}{2} & -\sin\frac{\pi}{2} & 0 & 0\\ \sin\frac{\pi}{2} & \cos\frac{\pi}{2} & 0 & 0\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 1 \end{bmatrix}$$

• Note: translation in $T_{1\rightarrow 2}^c$ is all zero! Why?

• Transformation $T_{1\rightarrow 2}^c$ can be regarded as rotating about z-axis by 90 degree

$$T_{1\to 2}^{c} = \begin{bmatrix} \cos\frac{\pi}{2} & -\sin\frac{\pi}{2} & 0 & 0\\ \sin\frac{\pi}{2} & \cos\frac{\pi}{2} & 0 & 0\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Example

• When observer is recording in the camera frame \mathcal{F}_c , the red car is rotated about the z-axis of camera frame c through +90 degree

Additional Notes by the Example

- $T_{1 \to 2}^s$ is **NOT** to record the transformation by first translating \mathscr{F}_1 to \mathscr{F}_2 and then rotating (this recording convention **only** works when $\mathscr{F}_1 = \mathscr{F}_s$). It is based on the rule $T_{1 \to 2}^s := T_{s \to 2}^s T_{1 \to s}^1$
- An observer chooses its way to decompose $T_{1 o 2}$ into $R_{1 o 2}$ and ${\bf t}_{1 o 2}$ based upon its own frame choice
- We will discuss the "canonical" decomposition next week

Additional Notes by the Example

 The linear transformation view allows us to discuss the movement of bodies conveniently (without worrying about the change of observer):

$$T_{1\to 2}^s = T_{3\to 2}^s T_{1\to 3}^s$$

Suppose a body is moving. Then,

$$T_{t_0 \to t + \Delta t}^s = T_{t \to t + \Delta t}^s T_{t_0 \to t}^s$$

where *t* parameterizes time.

Summary

- Basic notation:
 - $T_{s o b}^s$: Record the motion of frame alignment from \mathcal{F}_s to \mathcal{F}_b in \mathcal{F}_s
- Coordinate transformation
 - $T_{c\rightarrow a}^c = T_{c\rightarrow b}^c T_{b\rightarrow a}^b$: Composition for coordinate transformation
 - $T_{b\to s}^b = (T_{s\to b}^s)^{-1}$: Change of frame for \mathscr{F}_s to \mathscr{F}_b motion
- Linear transformation
 - $T^s_{1 o 2}:=T^s_{s o 2}T^1_{1 o s}$: Record the motion of frame alignment from \mathscr{F}_1 to \mathscr{F}_2 in \mathscr{F}_s
 - $T_{c \to a}^{s} = T_{b \to a}^{s} T_{c \to b}^{s}$: Composition as a linear transformation
- $T_{1\to 2}^s = T_{s\to b} T_{1\to 2}^b (T_{s\to b})^{-1}$: Change of frame for \mathcal{F}_1 to \mathcal{F}_2 motion

SO(3) and SE(3)

SO(3): The Space of Rotations

- $\mathbb{SO}(n) = \{R \in \mathbb{R}^{n \times n} : \det(R) = 1, RR^T = I\}$
- $\mathbb{SO}(n)$: "Special Orthogonal Group"

- "Group": roughly, closed under matrix multiplication
- "Orthogonal": $RR^T = I$
- "Special": det(R) = 1

- SO(2): 2D rotations, 1 DoF
- SO(3): 3D rotations, 3 DoF

$\mathbb{SE}(3)$: The Space of Rigid Transformations

•
$$\mathbb{SE}(3) := \left\{ T = \begin{bmatrix} R & \mathbf{t} \\ 0 & 1 \end{bmatrix}, R \in \mathbb{SO}(3), \mathbf{t} \in \mathbb{R}^3 \right\}$$

- SE(3): "Special Euclidean Group"
- "Group": roughly, closed under matrix multiplication
- "Euclidean": R and t
- "Special": det(R) = 1
- 6 DoF

- We need some theoretical understanding of $\mathbb{SO}(3)$ and $\mathbb{SE}(3)$
 - The topological structure
 - The parameterization
 - The differentiable properties

Multi-Link Rigid-Body Geometry

Link and Joint

Link:

- **Links** are the rigid-body connected in sequence **Joint**:
 - **Joints** are the connectors between links. They determine the DoF of motion between adjacent links

Base Link and End-Effector Link

- Base link / root link:
 - The 0-th link of the robot
 - Regarded as the "fixed" reference
 - The spatial frame \mathcal{F}_s is attached to it
- End-effector link
 - The last link
 - e.g., the gripper
 - A frame \mathcal{F}_e is attached to it

Two Common Joint Types

Revolute/Hinge/Rotational joint

Prismatic/Translational joint

Kinematics: The Basic Geometry Calculation Task

- Kinematics: Describing the motion of bodies (position and velocity)
- Kinematics does not consider how to achieve motion via force

Kinematics Configuration

- Assuming frames are assigned to each link, we can parameterize the pose of each joint
 - Using the relative **angle** and **translation** between adjacent frames
- Two representations of the pose of the end-effector
 - Joint space: The space in which each coordinate is a vector of joint poses (angles around joint axis)
 - Cartesian space: The space of the rigid transformations of the end-effector by $(R_{s \to e}, \mathbf{t}_{s \to e})$, where \mathscr{F}_e is the end-effector frame

Kinematics Equations

• Map the joint space coordinate $\theta \in \mathbb{R}^n$ to Cartesian space transformation $T \in \mathbb{SE}(3)$:

$$T_{s \to e} = f(\theta)$$

Calculated by composing transformations along the kinematic chain

base

end_effector

$$T_{0\to 3}^{0} = T_{0\to 1}^{0} T_{1\to 2}^{1} T_{2\to 3}^{2} = \begin{bmatrix} \cos\theta_{1} & -\sin\theta_{1} & 0 & -\sin\theta_{1}(l_{2}+l_{3}) \\ \sin\theta_{1} & \cos\theta_{1} & 0 & \cos\theta_{1}(l_{2}+l_{3}) \\ 0 & 0 & 1 & l_{1}-l_{4}+\theta_{2} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

How to Relate the Motion in Joint Space and Cartesian Space?

- Q1: If the robot moves by $\Delta\theta$ in the joint space, how much will it move in the Cartesian space? (Forward Kinematics)
- Q2: If the robot would move the end-effector by Δx in the Cartesian space, how shall it change its joint poses? (Inverse Kinematic)
- Suppose we parameterize (R, t) by the **angles** around **axis**, we need to derive the differential map

 We will study the differentiability of rotation and rigid transformations