1 Wstęp

Napisz tu coś mądrego.

2 Zadania

Pokazać, że...

- 1. Dowieść, że wielomian stopnia n nad \mathbb{R}, \mathbb{Q} lub \mathbb{Z} ma co najwyżej n miejsc zerowych.
 - \bullet Udowodnij, że jeśli dwa wielomiany stopnia nzgadzają się w n+1 punktach, to są sobie równe.
- 2. (Twierdzenie o pierwiastkach wymiernych) Niech $W(x) = a_n x^n + \ldots + a_1 x + a_0$ będzie wielomianem o współczynnikach całkowitych. Udowodnij, że jeśli W ma pierwiastek wymierny $\frac{p}{q}$ (gdzie p, q całkowite, niezerowe, względnie pierwsze), to $p \mid a_0$ i $q \mid a_n$.
- 3. (Kryterium Eisensteina) Niech $W(x) = a_n x^n + a_{n-1} x^{n-1} \dots + a_1 + a_0$ będzie wielomianem o współczynnikach całkowitych. Niech p będzie liczbą pierwszą taką, że $p \nmid a_n, p \mid a_i$ dla każdego i < n, ale $p^2 \nmid a_0$. Udowodnij, że wielomian jest nierozkładalny (w liczbach całkowitych).
 - Udowodnij, że wielomian $x^4 + 2$ jest nierozkładalny w $\mathbb Z$
 - Udowodnij, że wielomian $2x^3 + 19x^2 54x + 3$ jest nierozkładalny w \mathbb{Z} .
- 4. (Bardzo trudne. Czasami nazywane lematem Gaussa) Udowodnij, że jeśli wielomian (stopnia co najmniej 1) o współczynnikach całkowitych jest nierozkładalny w liczbach całkowitych, to jest nierozkładalny w liczbach wymiernych.
- 5. (Baltic Way) Niech F, G, H będą takimi wielomianami stopnia co najwyżej 2n+1 o współczynnikach rzeczywistych, że:

Dla wszystkich liczb rzeczywistych x mamy

$$F(x) \leqslant G(x) \leqslant H(x)$$

Istnieją takie różne liczby rzeczywiste $x_1, x_2, ..., x_n$, że

$$F(x_i) = H(x_i)$$
 dla $i = 1, 2, ..., n$.

Istnieje liczba rzeczywista x_0 różna od x_1, x_2, \ldots, x_n , dla której

$$F(x_0) + H(x_0) = 2G(x_0).$$

Dowieść, że

$$F(x) + H(x) = 2G(x)$$

dla wszystkich liczb rzeczywistych x.

- 6. (IMO) Niech $a, b \in \mathbb{Z}_+$ będą takie, że $ab+1 \mid a^2+b^2$. Udowodnij, że $\frac{a^2+b^2}{ab+1}$ jest kwadratem liczby całkowitej.
- 7. (Trudne) Niech $a, b \in \mathbb{Z}_+$ będą takie, że $ab \mid a^2 + b^2 + 1$. Udowodnij, że $3ab = a^2 + b^2 + 1$.