Algebra 2R

a voyage into the unknown

koteczek

 \sim

Spis treści

Teoria ı	równań algebraicznych	4
1.1	Rozwiązywanie układów równań	4
1.2	Rozszerzanie ciał	6
Ciała sl	kończone i pierwiastki z jedności	9
2.1	Algebraiczne domknięcie ciała	10
Ciała pi	roste, pierwiastki z jedności	12
3.1	Ciała proste	
3.2	,	
3.3	Ciała skończone	14
Rozszei	rzenia ciał	15
4.1	Wymiar przestrzeni liniowej	15
Wielom	niany koła, domknięcia algebraiczne	20
5.1	Wielomian rozkładu koła [cyclotomic polynomials]	20
5.2	Domknięcia algebraiczne	23
Wstęp (26
6.1	Grupy Galois	26
6.2		
6.3	Rozszerzenia rozdzielcze	28
Rozszei	rzenia radykalne (czysty Bangladesz)	31
7.1	Stopień rozdzielczy, radykalny ciała	33
Przeksz		35
8.1	,	
8.2	Rozszerzenia Galois	36
Rozszei		39
9.1	Rozszerzenia abelowe	
9.2	Rozwiązywalne rozszerzenia ciał i rozszerzenia przez pierwiastki	40
Rozszei	rzenia przestępne ciał	45
10.1	Własności	45
Moduły	<i>I</i>	47
10.1	Moduły wprowadzenie	47
10.2	Cel: zrozumieć moduły	48
	Moduły proste	
11.4	Moduły skończenie generowane	54

Wykład 1: Teoria równań algebraicznych

Przez R, S będziemy oznaczać pierścienie przemienne z 1 ≠ 0, natomiast K, L będziemy rezerwować dla oznaczeń ciał.

1.1 Rozwiązywanie układów równań

Rozważmy funkcje $f_1,...,f_m \in R[X_1,...,X_n]$. Dla wygody będziemy oznaczać krotki przez \overline{X} , czyli $R[X_1,...,X_n] = R[\overline{X}]$. Pojawia się problem: czy istnieje rozszerzenie pierścieni z jednością $R \subseteq S$ takie, że układ $U:f_1(\overline{X})=...=f_m(\overline{X})=0$ ma rozwiązanie w pierścieniu S?

Fakt 1.1. $\overline{a} = (a_1, ..., a_n) \subseteq S$, gdzie S jest rozszerzeniem pierścienia R, jest rozwiązaniem układu równań U \iff g(\overline{a}) = 0 dla każdego wielomianu g \in (f₁, ..., f_m) \triangleleft R[X].

Dowód. \longleftarrow Implikacja jest dość trywialna, jeśli każdy wielomian z ($f_1, ..., f_m$), czyli wytworzony za pomocą sumy i produktu wielomianów $f_1, ..., f_m$ zeruje się na \overline{a} , to musi zerować się też na każdym z tych wielomianów.

⇒ Rozważamy dwa przypadki:

1.
$$(f_1, ..., f_m) \ni b \neq 0 i b \in R$$
.

To znaczy w $(f_1, ..., f_m)$ mamy pewien niezerowy wyraz wolny. Wtedy mamy wielomian $g \in (f_1, ..., f_m)$ taki, że $g(\overline{a}) \neq 0$. Ale przecież g jest kombinacką wielomianów $f_1, ..., f_m$, która na \overline{a} przyjmują wartość 0. W takim razie dostajemy układ sprzeczny i przypadek jest do odrzucenia.

2. 2. $(f_1, ..., f_m) \cap R = \{0\}$. (nie ma wyrazów wolnych różnych od 0)

Teraz wiemy, że układ U jest niesprzeczny, a więc możemy skonstruować pierścień z 1 S będący rozszerzeniem R [S \supseteq R] oraz rozwiązanie $\overline{a} \subseteq$ S spełniające nasz układ równań.

Niech S = $R[\overline{X}]/(f_1, ..., f_m)$ i rozważmy

$$j: R[\overline{X}] \rightarrow S = R[\overline{X}]/(f_1, ..., f_m)$$

nazywane przekształceniem ilorazowym . Po pierwsze, zauważmy, że j ↑ R jest 1 – 1, bo

$$ker(j \upharpoonright R) = ker(j) \cap R = (f_1, ..., f_m) \cap R = \{0\}$$

i dlatego

$$j \upharpoonright R : R \xrightarrow{\cong} j[R] \subseteq S.$$

Z uwagi na ten izomorfizm, będziemy utożsamiać R, j[R]. W takim razie, S jest rozszerzeniem pierścienia R. Czyli mamy rozszerzenie pierścienia R.

Niech

$$\bar{a} = (a_1, ..., a_m) = (j(X_1), ..., j(X_n)) \subset S$$

czyli jako potencjalne rozwiązanie rozważamy zbiór obrazów wielomianów stopnia 1 przez wcześniej zdefiniowaną funkcję $j:R[\overline{X}]\to S$. Tak zdefiniowane \overline{a} jest rozwiązaniem układu U w pierścieniu S, bo dla funkcji wielomianowej (czyli zapisywalnej jako wielomian) $\widehat{f_i}\in (f_1,...,f_m)$ mamy

$$\widehat{f_i}(\overline{a}) = \widehat{f_i}(j(X_1),...,j(X_m)) = j(\widehat{f_i}(X_1,...,X_m)) = j(f_i) = 0.$$

TUTAJ TRZEBA POUZASADNIAĆ KILKA RÓWNOŚCI, ALE MOŻE NIE BĘDĘ TEGO ROBIŁA NA AISD

Uwaga 1.2. Skonstruowane powyżej rozwiązanie a układu U ma następującą własność uniwersalności:

(6) Jeżeli S' \supseteq R jest rozszerzeniem pierścienia z 1 i $\overline{a}' = (a'_1, ..., a'_m) \subseteq S$ jest rozwiązaniem U w S', to istnieje jedyny homomorfizm

$$h:R[\overline{a}]\to R[\overline{a}']$$

taki, że h \upharpoonright R jest identycznością na R i h(\overline{a}) = \overline{a}' . Wszystkie rozwiązania układów są homomorficzne.

Tutaj $R[\overline{a}] \subseteq S$ jest podpierścieniem generowanym przez $R \cup \{\overline{a}\}$, czyli zbiór:

$$R[\overline{a}] = \{f(\overline{a}) : f(\overline{X}) \in R[\overline{X}]\} \subseteq S$$

Dowód. Niech I = $\{g \in R[\overline{X}] : g(\overline{a}') = 0\} \subseteq S'$. Oczywiście mamy, że I $\triangleleft R[\overline{X}]$, a więc

$$(f_1, ..., f_m) \subseteq I$$
.

Z twierdzenia o faktoryzacji wie

Homomorfizm $\phi : R[\overline{X}] \to R[\overline{a}']$ określamy wzorem

$$\phi(w) = w(\overline{a}),$$

a homomorfizm j jest jak wyżej odwzorowaniem ilorazowym. Widzimy, że

$$I = \ker(\phi)$$

$$ker(j) = (f_1, ..., f_m).$$

Z twierdzenia o homomorfizmie pierścieni dostajemy jedyny homomorfizm

$$h: R[X]/(f_1,...,f_m) \rightarrow R[\overline{a}]$$

taki, że
$$h(\overline{a}) = \overline{a}'$$
.

Uwaga 1.3. Jeśli I = $(f_1, ..., f_m)$, to h : $R[\overline{a}] \xrightarrow{\cong} R[\overline{a}']$.

Wtedy mamy $\ker \phi = \ker j$, czyli $\ker (h \circ j) = \ker \phi = \ker j$, no a z tego wynika, że $\ker h$ jest trywialne, czyli h jest apimorfizmem (1-1). Z drugiej strony, $\operatorname{Im} \phi = \operatorname{Im}(h \circ j)$, a ϕ jest epimorfizmem ("na"), więc również h musi być "na".

Załóżmy, że S \supseteq R jest rozszerzeniem pierścienia oraz $\overline{a} \in S^n$. Wtedy:

1. ideał a nad R definiujemy jako

$$I(\overline{a}/R) = \{g \in R[\overline{X}] : g(\overline{a}) = 0\}$$

2. a nazywamy rozwiązaniem ogólnym układu U, jeśli ideał

$$I(\overline{a}/R) = (f_1, ..., f_m).$$

Uwaga 1.4. W sytuacji jak z definicji wyżej, gdy U jest układem niesprzecznym, wtedy \bar{a} jest rozwiązaniem ogólnym układu $\bar{U} \iff zachodzi$ warunek ((§) .

Dowód. Ćwiczenia.

1.2 Rozszerzanie ciał

Dla $K \subseteq L$ ciał i $\overline{a} \subseteq L$ definiujemy **ideał** \overline{a} **nad** K jako:

$$I(\overline{a}/L) := \{f(X_1, ..., X_n) \in K[\overline{X}] : f(\overline{a}) = 0\},$$

to znaczy generujemy ideał w wielomianach nad K zawierający wszystkie wielomiany (niekoniecznie tylko jednej zmiennej) zerujące się w ā.

Przykład:

Dla K = \mathbb{Q} , L = \mathbb{R} , n = 1, $a_1 = \sqrt{2}$ mamy

$$I(\sqrt{2}/\mathbb{O}) = \{f(x^2 - 2) : f \in \mathbb{O}[X]\} = (x^2 - 2) \triangleleft \mathbb{O}[X]$$

Dalej, definiujemy

$$K[\overline{a}] := \{f(\overline{a}) : f \in K[X]\}$$

czyli **podpierścień** L **generowany przez** $K \cup \{\overline{a}\}$ oraz $K(\overline{a})$, **czyli podciało** L generowane przez $K \cup \{\overline{a}\}$:

$$K(\overline{a}) := \{f(\overline{a}) : f \in K(X_1, ..., X_n) | f(\overline{a}) \text{ dobrze określone} \}.$$

Tutaj $K(X_1, ..., X_n)$ to ciało ułamków pierścienia $K[\overline{a}]$ w ciele L (czyli najmniejsze ciało, że pierścień może być w nim zanurzony). Czasami oznaczamy to przez $K[\overline{a}]_0$.

Uwaga 1.5. Niech $K \subseteq L_1$, $K \subseteq L_2$ będą ciałami. Wybieramy $\overline{a}_1 \in L_1$ i $\overline{a}_2 \in L_2$, $|\overline{a}_1| = |\overline{a}_2| = n$. Wtedy następujące warunki są równoważne:

1. istnieje izomorfizm $\phi: K[\overline{a}_1] \to K[\overline{a}_2]$ taki, że $\phi \upharpoonright K = id_K$ oraz $\phi(\overline{a}_1) = \overline{a}_2$.

2. $I(\bar{a}_1/K) = I(\bar{a}_2/K)$.

Dowód. $1 \implies 2$

Implikacja jest jasna, bo dla $g(\overline{X}) \in K[\overline{X}]$, bo $g(\overline{a}_1) = 0$ w $K[\overline{a}_1] \iff g(f(\overline{a}_1)) = 0$, a $f(\overline{a}_1) = \overline{a}_2$.

1 ← 2

Zwróćmy uwagę na odwzorowanie ewaluacji \overline{a}_1

$$\phi_{\overline{a}_1}: K[\overline{X}] \xrightarrow{"na"} K[a_1]$$

zadane wzorem

$$\phi(w(\overline{X})) = w(\overline{a}_1).$$

Mamy

$$\ker(\phi_{\overline{a}_1}) = I(\overline{a}_1/K).$$

Tak samo dla \overline{a}_2 możemy określić analogicznie odwzorowanie ewaluacyjne $\phi_{\overline{a}_2}: K[\overline{X}] \to K[\overline{a}_2]$. Wtedy

$$I(\overline{a}_2/K) = \ker(\phi_{\overline{a}_2}),$$

ale ponieważ $I(\overline{a}_1/K) = I(\overline{a}_2/K)$, to $\ker(\phi_{\overline{a}_1}) = \ker(\phi_{\overline{a}_2})$. Oznaczmy $I = I(\overline{a}_1/K) = I(\overline{a}_2/K)$. Widzimy, że $\phi_{\overline{a}_i} \upharpoonright K = \mathrm{id}_k$.

Niech f = $f_2f_1^{-1}$: $K[\overline{a}_1] \rightarrow K[\overline{a}_2]$ jest funkcją spełniającą warunki punktu 1.

MOŻE TUTAJ ŁADNIE SPRAWDZIĆ ŻE NAPRAWDĘ JEST TO DOBRZE SPEŁNIAJĄCA WARUNKI FUNKCIA?

Uwaga. Niech $I \triangleleft K[\overline{X}]$ noetherowskiego pierścienia $K[\overline{X}]$. Niech $I = (f_1, ..., f_m)$ dla pewnych $f_i \in K[\overline{X}]$. Wtedy istnieje rozszerzenie pierścienia $S \supseteq K$ oraz $\overline{a} \subseteq S$ - rozwiązanie ogólne układu $f_1(\overline{X}) = ... = f_m(\overline{X}) = 0$ takie, że $I(\overline{a}/K) = I$.

Dowód. Uwaga 1.4.

Twierdzenie 1.6. Niech $I \triangleleft K[\overline{X}]$. Wtedy istnieje ciało $L \supseteq K$ oraz $\overline{a} = (a_1, ..., a_n) \subseteq L$ takie, że $f(\overline{a}) = 0$ dla każdego $f \in I$.

Dowód. Niech $I \subseteq M \triangleleft K[\overline{X}]$ będzie ideałem maksymalnym. Niech $L = K[\overline{X}]/M$ i określmy przekształcenie ilorazowe

$$j: K[\overline{X}]/M \rightarrow L = K[\overline{X}]/M$$
.

Ponieważ M \cap K = {0} (bo inaczej w ideale byłby wielomian odwracalny), to j \uparrow K : K \rightarrow L jest funkcją 1 – 1, czyli

$$j \upharpoonright K : K \xrightarrow{1-1} j[K] \subseteq L.$$

Możemy utożsamić K z j[K], czyli K \subseteq L. Niech \overline{a} = $(a_1, ..., a_n)$ takie, że dla każdego $i \in [n]$

$$a_i = j(X_i) \in L$$
.

Wtedy $g(\overline{a}) = 0$ dla każdego $g(\overline{X}) \in M \supset I$ (bo inaczej mielibyśmy wyrazy wolne).

Wniosek 1.7. Niech $f \in K[X]$ stopnia > 0. Wtedy istnieje ciało $L \supseteq K$ rozszerzające ciało K takie, że f ma pierwiastek w ciele L.

Przykłady:

1. 1. Rozpatrzmy ciało K = \mathbb{Q} i f(X) = X – 2. Wtedy I = (f) $\triangleleft \mathbb{Q}[X]$ jest ideałem maksymalnym, bo jest on pierwszy (w tym wypadku nierozkładalny). Równanie f = 0 ma rozwiązanie ogólne w pierścieniu ilorazowym

$$\mathbb{O}[X]/I \cong \mathbb{O}.$$

Czyli nie zawsze musimy rozszerzać ciało do czegoś nowego.

2. 2. $\mathbb{C} = \mathbb{R}[i] = \mathbb{R}(i) = \mathbb{R}[z]$ dla każdego $z \in \mathbb{C} \setminus \mathbb{R}$, co jest na liście zadań.

Załóżmy, że $K \subseteq L_1$, $K \subseteq L_2$ są rozszerzeniami ciała. Wtedy mówimy, że L_1 **jest izomorficzne z** L_2 **nad** K [$L_1 \cong_K L_2$] \iff istnieje izomorfizm $f: L_1 \to L_2$ taki, że $f \upharpoonright K = id_K$.

Fakt 1.8.

- 1. Załóżmy, że $f(X) \in K[X]$ jest nierozkładalny. Niech $L_1 = K(a_1)$, $L_2 = K(a_2)$ i $f(a_i) = 0$ w L_i . Wtedy $L_1 \cong_K L_2$.
- 2. Ogółniej: załóżmy, że $\phi: K_1 \to K_2$ jest izomorfizmem i $f_1 \in K_1[X], f_2 \in K_2[X], \phi(f_1) = f_2, f_i$ jest nierozkładalne. Dodatkowo załóżmy, że $L_1 = K_1(a_1)$ i $L_2 = K_2(a_2)$, gdzie $f_i(a_i) = 0$ w L_i . Wtedy istnieje izomorfizm $\phi \in \psi: L_1 \to L_2$ taki, że $\psi(a_1) = a_2$.

Dowód.

- 1. 1. $I(a_1/K) = (f) = I(a_2/K)$, stąd na mocy 1.5 mamy $K(a_1) \cong_K K(a_2)$. Po dowodzie przypadku 2. możemy uzasadniać, że jest to szczególny przypadek tego ogólniejszego stwierdzenia właśnie.
- 2. 2. Zacznijmy od rozrysowania tej sytuacji:

Izomorfizm $\phi: K_1[X] \xrightarrow{\cong} K_2[X]$ indukuje nam przekształcenie

$$K_1[X]/(f_1) \xrightarrow{\cong} K_2[X]/(f_2),$$

bo $\phi(f_1)$ = f_2 . Wiemy, że f_i jest nierozkładalne, czyli

$$I(a_i/K_i) = (f_i) \triangleleft K_i[X]$$

jest ideałem maksymalnym. Mamy

₩

Wykład 2: Ciała skończone i pierwiastki z jedności

Ciało L \supseteq K nazywamy ciałem rozkładu nad K wielomianu f \in K[X], gdy spełnione są warunki:

- 1. f rozkłada się w pierścieniu L[X] na czynniki liniowe (stopnia 1)
- 2. Ciało L jest rozszerzeniem ciała K o elementy $a_1, ..., a_n$, gdzie $a_1, ..., a_n$ to wszystkie pierwiastki f w L.

Przykład: Jeżeli deg(f) = 0, to nie istnieje ciało rozkładu f.

Wniosek 2.1. Załóżmy, że $f \in K[X]$ jest wielomianem stopnia > 0. Wtedy

- 1. istnieje L: ciało rozkładu f nad K,
- 2. to ciało jest jedyne z dokładnością do izomorfizmy nad K.

Dowód.

1. Dowód przez indukcje względem stopnia f

Jako przypadek bazowy rozważmy f takie, że deg(f) = 1. Wtedy L = K i wszystko wniosek jest spełniony.

Załóżmy teraz, że stopień wielomianu f jest > 1 i tez zachodzi dla wszystkich wielomianów stopnia < deg(f) i wszystkich ciał K'. Teraz z 1.7 wiemy, że istnieje rozszerzenie ciała L \supseteq K takie, że f ma pierwiastek w L. Nazwijmy ten pierwiastek a $_0$ i niech

$$K' = K(a_0).$$

Ponieważ K'[X] wielomian f ma pierwiastek a_0 , to możemy zapisać

$$f = (x - a_0)f_1$$

dla pewnego $f_1 \in K'[X]$ i $deg(f_1) < deg(f)$. Z założenia indukcyjnego dla f_a istnieje $L' = K'(a_1, ..., a_r)$ - ciało rozkładu wielomianu f_1 nad K'. Wtedy

$$L = K(a_0, ..., a_r)$$

jest ciałem rozkładu f nad K.

2. Udowodnimy wersję ogólniejszą:

(**) Jeśli $\phi: K_1 \xrightarrow{\cong} K_2$ jest izomorfizmem nad ciałem i $f_i \in K_i[X]$ jest wielomianem stopnia > 0, $\phi(f_1) = f_2$, to wtedy istnieje $\psi: L_1 \xrightarrow{\cong} L_2$ izomorfizm nad ciałami rozkładu f_i w K_i rozszerzający izomorfizm ϕ (to znaczy $\phi \subseteq \psi$).

Wykorzystamy indukcję po deg(f). W przypadku bazowym mamy deg(f) = 1, czyli $L_1 = K_1, L_2 = K_2$ i $\phi = \psi$.

Teraz niech deg(f) > 1 i załóżmy, że dla wszystkich ciał K' oraz wielomianów stopnia < deg(f) jest to prawdą. Niech

$$f_i = f_i' \cdot g_i$$

gdzie $f_i', g_i \in K_i[X]$ i g_i jest wielomianem nierozkładalnym w K. Wiemy już, że istnieje $a_i \in L_i$ będące pierwiastkiem wielomianu g_i .

Z faktu 1.8:(2), wiemy, że istnieje wtedy izomorfizm

$$\psi_0: K_1(a_1) \xrightarrow{\cong} K_2(a_2)$$

taki, że $\psi_0(a_1) = a_2 i \phi \subseteq \psi_0$.

$$egin{aligned} \mathsf{K_1}(\mathsf{a_1}) & & \cong & & \mathsf{K_2}(\mathsf{a_2}) \\ & \mathsf{I} & & \mathsf{I} & & \mathsf{I} \\ \mathsf{K_1'} & & & \mathsf{K_2'} \\ & & \cap & & & & \cap \\ \mathsf{L_1} & & & \cong & & \mathsf{L_2} \end{aligned}$$

Z założenia wiemy, że L_i to ciało rozkładu f_i' nad K_i . W takim razie z założenia indukcyjnego istnieje izomorfizm

$$\psi_1: L_1 \xrightarrow{\cong} L_2$$

taki, że $\psi \subseteq \psi_0$ i to już jest koniec.

Wniosek 2.2. Jeśli $f_1 \in K_1[X]$ i $f_2 \in K_2[X]$ są nierozkładalnymi wielomianami, $\phi : K_1 \xrightarrow{\cong} K_2$ izomorfizmem $i \phi(f_1) = f_2$, a L_1, L_2 to ciała rozkładu f_1, f_2 odpowiednio nad K_1 i K_2 , $a_i \in L_i$ to pierwiastek f_i , to wtedy istnieje $\psi : L_1 \xrightarrow{\cong} L_2$ takie, że $\psi(a_1) = a_2$.

Dowód. Wynika z dowodu stwierdzenia (---).

2.1 Algebraiczne domknięcie ciała

Ciało L jest algebraicznie domknięte \iff dla każdego $f \in L[X]$ o stopniu > 0 istnieje pierwiastek f w L. To znaczy każdy wielomian rozkłada się na czynniki liniowe nad L.

Przykład:

- • ℂ jest algebraicznie domknięte.
- \mathbb{R} nie jest algebraicznie domknięte, gdyż x^2 + 1 nie ma pierwiastka rzeczywistego.
- $\mathbb{Q}[i]$ nie jest algebraicznie domknięte, bo $x^2 2$ nie ma pierwiastka.

Twierdzenie 2.3. Każde ciało K zawiera się w pewnym ciele algebraicznie domkniętym.

Dowód. Jak mamy wielomian nad ciałem, to istnieje rozszerzenie ciała do tego wielomianu. I dalej leci kombinatoryka.

Lemat: Dla każdego ciała K istnieje L \supseteq K takie, że (\forall f \in K[X]) stopnia > 0, f ma pierwiastek w L.

Rozważmy dobry porządek na zbiorze wielomianów z K[X] stopnia > 0

$$\{f \in K[X] : deg(f) > 0\} = \{f_{\alpha} : \alpha < \kappa\}.$$

Tutaj α , κ to liczby porządkowe, niekoniecznie skończone. Skonstruujmy rosnący ciąg rozszerzeń ciał $\{K_\alpha: \alpha < \kappa\}$ taki, że

- $K \subseteq K_{\alpha} \subseteq K_{\beta}$ dla $\alpha < \beta < \kappa$
- f_{α} ma pierwiastek w $K_{\alpha+1}$.

Dowód przez indukcję pozaskończoną. Dla $K_0 = K$.

Załóżmy, że $\alpha < \kappa$ i mamy $\{K_\beta : \beta < \alpha\}$ spełniają warunki powyżej. Niech $K' = \bigcup_{\beta < \alpha} K_\beta$. Musimy pokazać, że K' jest ciałem.

1. 1. α to liczba graniczna. Definiujemy K' = $\bigcup_{\beta < \alpha}$ K $_{\beta}$ jako zbiór.

Musimy określić działania w K'. Niech x, y \in K', wtedy istnieje β < α takie, że x, y \in K $_{\beta}$. Czyli x + y \in K $_{\beta}$ \subseteq K' i xy \in K $_{\beta}$ \subseteq K'. W takim razie K' jest rozszerzeniem ciała K $_{\beta}$.

Teraz definiujemy $K_{\alpha} = K'$ i otrzymujemy pożądane rozszerzenie ciała.

2. 2. $\alpha = \beta + 1$ to następnik, wtedy K' = K $_{\beta}$.

Wielomian f_{α} jest wielomianem nad $K \subseteq K'$. Z wniosku 1.7 wiemy, że istnieje rozszerzenie $K_{\alpha} \supseteq K$ takie, że f_{α} ma pierwiastek w K_{α} .

L definiujemy jako sumę po wyżej udowodnionej konstrukcji:

$$\mathsf{L} = \bigcup_{\alpha < \kappa} \mathsf{K}_{\alpha}$$

i to ciało spełnia nasz lemat.

Wracamy teraz do dowodu twierdzenia 2.3 i niech (L_n , $n < \omega$) będzie rosnącym ciągiem ciał takim, że

- $L_0 = K$
- $L_{n+1} \supseteq L_n$, gdzie L_{n+1} dane jest przez lemat, to znaczy ($\forall f \in L_n[X]$) f ma pierwiastek w L_{n+1} .

Niech

$$L_{\infty} = \bigcup_{n < \omega} L_n \supseteq K.$$

Jest to ciało, ponieważ suma rosnącego ciągu ciał jest ciałem. Dalej mamy, że jest to ciało algebraicznie domknięte, gdy dowolny $f \in L_{\infty}[X]$ ma stopień skończony > 0, czyli istnieje n takie, że $f \in L_n[X]$. A więc f ma wszystkie pierwiastki w $L_{n+1} \subseteq L_{\infty}$.

Wykład 3: Ciała proste, pierwiastki z jedności

3.1 Ciała proste

Uwaga 3.0. Załóżmy, że mamy ciała $K \subseteq L$. Wtedy

- char(K) = char(L)
- $0_{K} = 0_{L} \text{ oraz } 1_{K} = 1_{L}$
- $K^* = K \setminus \{0\} < L^* = L \setminus \{0\}$ oraz dla $x \in K -x w K$ jest równe -x w L.

K jest ciałem prostym wtedy i tylko wtedy, gdy K nie zawierza żadnego właściwego podciała.

Przykład:

- \mathbb{Q} , gdzie char(\mathbb{Q}) = 0 to ciało proste nieskończone.
- Ciałem prostym skończonym jest na przykład \mathbb{Z}_p dla liczby pierwszej p, wtedy char (\mathbb{Z}_p) = p.

Uwaga 3.1.

- 1. Każde ciało zawiera jedyne podciało proste
- 2. Z dokładnościa do $\cong \mathbb{Q}$, \mathbb{Z}_p to wszystkie ciała proste.

Przykład: Załóżmy, że K jest skończone. Wtedy K* też jest skończone rzędu $|K^*| = n < \infty$. Później dowiemy się, że $|K| = p^k$, a więc $|K^*| = p^k - 1$. Wiemy, że dla każdego $x \in K^*$ zachodzi $x^n = 1$.

3.2 Pierwiastki z jedności

Niech R będzie pierścieniem przemiennym z 1 ≠ 0. Mamy następujące definicje:

- 1. $a \in R$ jest **pierwiastkiem z** 1 stopnia $n > 0 \iff a^n = 1$
- 2. $\mu_n(R) = \{a \in R : a^n = 1\}$ jest **grupą pierwiastków z** 1 stopnia n
- 3. $\mu(R) = \{a \in R : (\exists n) a^n = 1\} = \bigcup_{n>0} \mu_n(R) \text{ jest grupą pierwiastków z 1}$
- 4. a jest **pierwiastkiem pierwotnym** [primitive root] stopnia n z 1 \iff a $\in \mu_n(R)$ oraz dla każdego k < n a $\notin \mu_k(R)$.

Uwaga 3.2.

- 1. $\mu_n(R) \triangleleft R^*$ jest grupą jednostek pierścienia
- 2. $\mu(R) \triangleleft R^*$
- 3. $\mu(R)$ jest torsyjną grupą abelową (każdy element jest pierwiastkiem z 1).

Przykłady

- 1. $\mu(\mathbb{C}) = \bigcup_{n>0} \mu_n(\mathbb{C}) \lneq (\{z \in \mathbb{C} : |z| = 1\}, \cdot) < \mathbb{C}^* = C \setminus \{0\}$ jest nieskończona.
- 2. $\mu(\mathbb{C}) \cong (\mathbb{Q}, +)/(\mathbb{Z}, +)$, bo $f: \mathbb{Q} \xrightarrow{\text{"na"}} \mu(\mathbb{C})$ taki, że $f(w) = \cos(w2\pi) + i\sin(w2\pi)$ ma jądro $\ker(f) = \mathbb{Z}$.
- 3. $\mu(\mathbb{R}) = \{\pm 1\}$
- 4. $\mu_n(K) = \{ \text{zera wielomianu } x^n 1 \}$. Ten wielomian będziemy oznaczali $w_n(x) = x^n 1$.

Uwaga 3.3.

- 1. Jeśli char(K) = 0, to $w_n(x) = x^n 1$ ma tylko pierwiastki jednokrotne w K [simple roots]
- 2. Jeśli char(K) = p > 0 i $n = p^l n_1$ takie, że $p \nmid n_1$, to wszystkie pierwiastki $w_n(x) = x^n 1$ mają krotność p^l w K.

Dowód:

1. Niech $a \in K$ takie, że $w_n(a) = 0$. Z twierdzenia Bezouta mamy, że

$$w_n(x) = x^n - 1 = x^n - a^n = (x - a)(x^{n-1} + ax^{n-2} + ... + a^{n-2}x + a^{n-1}) = (x - a)v_n(x)$$

gdzie $v_n(x) = x^{n-1} + ax^{n-2} + ... + a^{n-2}x + a^{n-1}$.

Z tego, że char(K) = 0 wynika, że $v_n(a)$ = $na^{n-1} \neq 0$, skąd wynika, że a jest jednokrotnym pierwiastkiem $w_n(x)$.

2. Jesteśmy w ciele K o char(K) = p. Niech n = $p^l n_1$. Rozważmy wielomian

$$w_n(X) = X^n - 1 = (X^{n_1})^{p^l} - 1^{p^l} = (X^n - 1)^{p^l} = w_{n_1}(X)^{p^l}.$$

Czyli $\mu_n(K) = \mu_{n_1}(K)$. Załóżmy, że a \in K to pierwiastek wielomianu $w_n(X)$. Wtedy a jest też pierwiastkiem wielomianu w_{n_1} w ciele K. Wtedy

$$w_{n_1}(X) = (X - a)v_{n_1}(X),$$

v_{n₁} jak w przypadku wyżej. Wówczas

$$v_{n_1}(a) = n_1 a^{n_1 - 1} \neq 0$$
,

bo p \nmid n₁. Jeśli a jest 1-krotnym pierwiastkiem $w_{n_1}(X)$, to jest on p^l-krotnym pierwiastkiem $w_n(X)$.

Twierdzenie 3.4. Niech G < μ (K) i G jest podgrupą skończoną o |G| = n. Wtedy

- 1. $G = \mu_n(K)$
- 2. G jest cykliczna
- 3. Jeśli char(K) = p > 0, to $p \nmid n$.

Dowód.

- 1. 1. Jeśli |G| = n, to dla każdego $x \in G$ mamy $x^n = 1$. Z tego wynika, że $G \subseteq \mu_n(K)$, ale $|\mu_n(K)| \le n$, czyli $G = \mu_n(K)$.
- 2. 2. Chcemy pokazać, że dla wielomianu $w_n(X)$ mamy n różnych pierwiastków. Wystarczy pokazać, że istnieje $x \in G$ taki, że ord(x) = n.

Załóżmy nie wprost, że dla każdego $x \in G$ ord(x) < n. Niech

$$k = max\{ord(x) : x \in G\}.$$

Niech $x_0 \in G$ takie, że ord $(x_0) = k$. Wtedy

$$(\forall y \in G) \text{ ord}(y) \mid k.$$

Gdyby tak nie było, to istniałby $y \in G$, ord(y) $\nmid k$. Czyli istnieje liczba pierwsza p taka, że l jest podzielne przez wyższą potęgę p niż k. To oznacza, że $l = p^{\alpha}l'$ i $k = p^{\beta}k'$, gdzie $p \nmid l'$ i $\alpha > \beta$. Rozważmy $y' = y^{l'}$. Skoro y ma rząd l, to ord(y') = p^{α} , a dla $x'_0 = x_0^{p^{\beta}}$ mamy ord(x') = k'. Wobec tego ord(x'_0y') = $p^{\alpha} \cdot k'$, ale to jest większe od k i dostajemy sprzeczność.

3. 3. Wiemy, że wszystkie pierwiastki $w_n = x^n - 1$ są jednokrotne, bo jest ich w tym przypadku dokładnie n (z poprzedniego punktu). Z uwagi 3.3, że jeśli $n = p^l n_1$, to pierwiastki wielomianu $w_n(x)$ mają krotność p^l . Ale w tym przypadku pierwiastki mają krotność jeden, czyli $p^l = 1$ i $n = 1 \cdot n_1$, gdzie $p \nmid n_1$.

Wniosek 3.5. Jeśli $a \in \mu_n(K)$ jest pierwiastkiem pierwotnym z 1 stopnia n > 1, to a generuje $\mu_n(K)$.

Dowód. $\mu_n(K) \supseteq \langle a \rangle = \mu_k(K)$ dla pewnego $k \in \mathbb{N}$. Ale ponieważ a było pierwiastkiem pierwotnym z 1, to musimy mieć n = k.

3.3 Ciała skończone

Twierdzenie 3.6. Niech K będzie ciałem skończonym. Wtedy

- 1. $char(K) = p \implies |K| = p^n dla pewnego n \in \mathbb{N}$
- 2. Dla każdego n > 0 istnieje dokładnie jedno ciało K takie, że $|K| = p^n z$ dokładnością do izomorfizmu. Ciało mocy p^n będziemy oznaczać $F(p^n)$.

Dowód. 1. Skoro char(K) = p, to $\mathbb{Z}_p \subseteq K$ jest najmniejszym podciałem prostym ciała K. W takim razie, K jest skończoną przestrzenią liniową nad \mathbb{Z}_p . Jeśli n = $\dim_{\mathbb{Z}_p}(K)$, to K jest izomorficzne z \mathbb{Z}_p^n , jako przestrzenie liniowe nad \mathbb{Z}_p . W takim razie $|K| = p^n$.

2.

Istnienie:

Niech n > 0. Rozważmy

$$w_{p^n-1}(x) = x^{p^n-1} \in \mathbb{Z}_p[X].$$

Niech L $\supseteq \mathbb{Z}_p$ będzie ciałem rozkładu wielomianu w_{p^n-1} , a K = $\{0\} \cup \{$ pierwiastki $w_{p^n-1}\}$. Wtedy

$$|K| = 1 + p^n - 1 = p^n$$

czyli mamy potencjalne ciało rzędu pⁿ. Wystarczy więc pokazać, że K jest ciałem.

Niech $f: L \xrightarrow{1-1} L$ będzie funkcją Frobeniusa $x \mapsto x^p$. Teraz niech $f^n = f \circ ... \circ f$, $f^n(x) = x^{p^n}$. Jest to monomorfizm, bo składamy ze sobą n takich samych funkcji 1-1. Dla $a \in L$ mamy

$$(a^{p^n-1} = 1 \lor a = 0) \iff a \in K.$$

Co więcej, $a^{p^n-1} = 1 \iff a^{p^n} = a \iff f^n(a) = a$, czyli $K = \{a \in L : f^n(a) = a\}$ jest zbiorem punktów stałych morfizmu f^n , czyli jest ciałem, czego dowód jest pozostawiony na ćwiczenia.

Jedyność K:

Ciało K stworzone jak wyżej jest ciałem rozkładu $w_{p^n-1}(x)$ nad \mathbb{Z}_p .

Załóżmy nie wprost, że K' to inne ciało mocy p^n . Bes straty ogólności $\mathbb{Z}_p\subseteq K'$. Niech $x\in K'$. wiemy, że x=0 lub $x^{p^n-1}=1$. W takim razie w_{p^n-1} rozkłada się nad K' na czynniki liniowe. Zatem K' jest również ciałem rozkładu w_{p^n-1} nad \mathbb{Z}_p .

Z wniosku 2.1.(2) mamy, że dwa ciała rozkładu nad jednym wielomianem są izomorficzne i K \cong K' nad \mathbb{Z}_p i mamy sprzeczność.

Wykład 4: Rozszerzenia ciał

Definicja 4.1. Niech $K \subseteq L$ będą ciałami i $a \in L \setminus K$.

- Jeżeli a jest algebraiczny nad K, to istnieje $f \in K[X]$ stopnia > 0 i f(a) = 0
- a jest przestępny nad K [transcendental] ← a nie jest algebraiczny.
- Rozszerzenie $L \supseteq K$ jest algebraiczne \iff dla każdego $a \in L$ a jest algebraiczny nad K.
- Rozszerzenie jest przestępne \iff nie jest algebraiczne.
- Niech $a \in \mathbb{C}$. Wtedy a jest algebraiczna, gdy a jest algebraiczna nad \mathbb{Q} .

Przykłady:

- 1. W \mathbb{C} na i jest pierwiastkiem algebraicznym wielomianu $x^2 + 1$, a $\sqrt[n]{d}$ jest pierwiastkiem $x^n d$.
- 2. Ciało $F(p^n)$ ma charakterystykę p i $F(p) \subseteq F(p^n)$ jest rozszerzeniem ciał, które jest algebraiczne. Dla dowolnego $a \in F(p^n)$ to jest ono pierwiastkiem wielomianu X^{p^n} X, czyli a jest algebraiczne nad F(p).
- 3. Pierwiastki przestępne to na przykład e, π , E^{π} , aczkolwiek nie jesteśmy pewni tego ostatniego [doczytać w S. Lang, Algebra].
- 4. Rozważamy $K \subseteq L = K(X)$, czyli pierścień ułamków. Weźmy $x \in K(X)$ przestępny nad K. Załóżmy, że istnieje wielomian $f \in K[X]$ rózny od 0. I załóżmy, że $0 = \widehat{f}(X)$ to funkcja wielomianowa.

$$0 = \widehat{f}(X) = f \neq 0$$

i jest to sprzeczność.

Uwaga 4.2. Niech a jak wyżej. Wtedy a jest algebraiczny nad $K \iff I(a/K) \neq \{0\}$ jako ideał K[X].

4.1 Wymiar przestrzeni liniowej

Niech K \subseteq L będzie rozszerzeniem ciała K. Wtedy L jest **przestrzenią liniową nad** K. Definiujemy stopień rozszerzenia [coś innego jak indeks przy grupach]

$$[L:K]:=dim_K(L)$$

jako wymiar przestrzeni liniowej nad K.

Uwaga 4.3. Niech $a \in L \setminus K$. Następujące warunki są równoważne:

- 1. a jest algebraiczny nad K
- 2. K[a] = K(a), to znaczy K[a] jest ciałem (usuwanie niewymierności z mianownika)
- 3. [K(a) : K] = dim_K(a) < ∞

Dowód. $1 \implies 2$

Wystarczy pokazać, że K[a] jest ciałem. Rozważamy $I(a/K) \triangleleft K[X]$. Wiemy, że K[X] jest PID, więc potrzebujemy, aby I(a/K) było ideałem pierwszym.

$$f\cdot g\in I(a/K)\iff 0=\widehat{f\cdot g}(a)$$

gdzie daszek oznacza homomorfizm ewaluacji, który jest również homomorfizmem w punkcie. Czyli

$$\widehat{f \cdot g}(a) = \widehat{f}(a)\widehat{g}(a) = 0 \iff \widehat{f}(a) = 0 \vee \widehat{g}(a) = 0.$$

Czyli I(a/K) jest ideałem pierwszym w pierścieniu PID, więc jest ideałem maksymalnym. Mamy więc, że

jest ciałem, więc jest izomorficzne z K(a), bo K[a] to najmniejszy pierścień generowany przez K \cup {a} (tutaj pierścień), a K(a) to najmniejsze ciało generowane przez K \cup {a}.

$$2 \implies 3$$

Załóżmy, że a \neq 0. Wtedy $a^{-1} \in K[a]$, czyli istnieje wielomian $f \in K[X]$

$$f(x) = \sum_{i=1}^{n} b_i x^i, \quad b_n \neq 0$$

taki, że $a^{-1} = f(a)$. Wobec tego mamy

$$1 = f(a) \cdot a$$

$$0 = f(a)a - 1 = b_n a^{n+1} + b_a a^2 + ... + b_0 a - 1,$$

stąd mamy, że

$$a^{n+1} = -\frac{1}{b_n}(b_{n-1}a^n + ... + b_0a - 1) \in Lin_K(1, a, ..., a^n)$$

jest w domknięciu liniowym (1, a, ..., aⁿ). Indukcyjnie pokazujemy, że

$$(\forall m \geq 0) a^m \in Lin_K(1, a, ..., a^n).$$

- 1. m = 0, ..., n + 1 bo one są już w $Lin_k(1, a, ..., a^n)$.
- 2. Zakładamy teraz, że dla m mamy

$$a^m = \sum_{i=0}^n c_i a^i$$

i pokazujemy dla m + 1.

$$a^{m+1} = a \cdot a^m = a \sum_{i=0}^n c_i a^i = \sum_{i=0}^n c_i a^{i+1} \in Lim_K(1, a, ..., a^n),$$

bo $a^{n+1} \in Lim_K(1, a, ..., a^m)$.

Czyli

$$K[a] = K(a) = Lin_K(1, a, ..., a^n),$$

co daje, że $[K(a) : K] \le n < \infty$.

 $3 \implies 1$

 $[K(a):K] < \infty$, z czego wynika, że

$$\{1, a, ..., a^n, ..., \} = \{a^t : t \in \mathbb{N}\} \subseteq K(a)$$

jest zbiorem liniowo zależnym. Z liniowej zależności wiemy, że

$$(\exists \ n \in \mathbb{N})(\exists \ b_{n-1},...,b_0) \ a^n = b_{n-1}a^{n-1} + ... + b_1a + b_0.$$

Stad dla $f \in K[X]$ zadanego wzorem

$$f(x) = b_{n-1}x^{n-1} + ... + b_0 - x^n$$

mamy f(a) = 0, zatem a jest algebraiczny nad K.

Definicja 4.4. Niech $a \in L \supseteq K$ będzie algebraicznym pierwiastkiem nad K, $I(a/K) = \{w \in K[X] : w(a) = 0\} = (f), f \neq 0, f \in K[X], f unormowany (ang. monic)$

- f jest nazywany wielomianem minimalnym a nad K (wyznaczony jednoznacznie)
- stopień a nad K jest definiowany jako deg(f).

Uwaga 4.5. Załóżmy, że I(a/K) = (f) i f jest unormowany. Wówczas:

- 1. f jest unormowanym wielomianem minimalnego stopnia takim, że f(a) = 0
- 2. deg(f) = [K(a): K], czyli stopień tego wielomianu jest równy stopniu przestrzeni liniowej K(a) nad K.

Dowód.

- 1. Oczywiste DOWODZIK, ZE IRREDUCIBLE JEST MINIMAL
- 2. Niech n = deg(f),

$$f(x) = x^n + \sum_{k < n} b_k x^k$$

Z tego, $\dot{z}e$ f(a) = 0 mamy, $\dot{z}e$

$$a^n = -\sum_{k \le n} b_k x^k \in \text{Lin}_K (\textbf{1},\textbf{a},...,\textbf{a}^{n-1}) \subseteq \textbf{L}.$$

Czyli K(a) = $\text{Lin}_K(1, a, ..., a^{n-1})$ i wystarczy zobaczyć, że $\{1, ..., a^{n-1}\}$ jest liniowo niezależny. W przeciwnym przypadku dla pewnego $0 < r < m \ a^r \in \text{Lim}_K(1, a, ..., a^{t-1})$, czyli istnieje wielomian taki, że a jest jego pierwiastkiem, a stopień jest nie większy niż r < n i to daje sprzeczność.

Czyli $Lim_K(1, a, ..., a^n)$ jest bazą K(a) nad K i koniec.

Przykład:

- 1. $\sqrt{2} \in \mathbb{R} \supseteq \mathbb{Q}$, wtedy $f(x) = x^2 2$ jest wielomianem minimalnym $\sqrt{2}$ nad \mathbb{Q} i stopień $\sqrt{2}$ nad \mathbb{Q} jest równy 2.
- 2. $\pi \in \mathbb{R}$ nie ma stopnia, bo π nie jest liczbą algebraiczną nad \mathbb{Q}
- 3. $\sqrt[7]{7+\sqrt[3]{3}}-\sqrt[6]{6}\in\mathbb{R}$, czy jest to algebraiczne nad \mathbb{Q} ? Tak i ma stopień 126.

Jeśli K \subseteq L \ni a jest algebraiczny, to deg(a/K) = n, to

$$K(a) = K[a] = \{\sum_{i=0}^{n-1} b_i a^i : b_i \in K\}$$

Fakt 4.6. Niech $K \subseteq L \subseteq M$ będą rozszerzeniami ciał. Wtedy

$$[M : K] = [M : L] \cdot [L : K]$$

Dowód. Niech $\{e_i : i \in I\}$ będzie bazą L nad K, a $\{f_j : j \in J\}$ będzie bazą M nad L. Stąd |I| = [L : K] i |J| = [M : L].

Chcemy za pomocą tych dwóch zbiorków zrobić bazę M nad K. Rozważmy zbiór

$$X = \{e_i \cdot f_j \ : \ i \in I, j \in J\}.$$

Musimy pokazać, że

- 1. X jest liniowo niezależny
- 2. X jest baza M nad K
- 3. $|X| = |I| \cdot |J|$

Czyli X jest bazą M nad K (1.,2.) i ma odpowiednią moc (3.).

1. Załóżmy nie wprost, że X nie jest lnz, czyli istnieją $k_{ij} \in K$ takie, że

$$\sum_{i \in J} \sum_{i \in I} k_{ij} e_i f_j = 0,$$

ale $\sum_{i} k_{i} j e_{i} = l_{j}$ są elementami L, czyli

$$\sum_{j\in J}l_jf_j=0$$

więc f_i są liniowo zależne, a przecież były bazowe, w takim razie

$$0 = l_j = \sum_{i \in I} k_{ij} e_i,$$

e_i ≠ 0, czyli k_{ii} = 0 i koniec.

2. X generuje M nad K, bo dla $m \in M$ mam

$$m = \sum l_j f_j = \sum \left(\sum a_{ij} e_i\right) f_j = \sum \sum a_{ij} e_i f_j = \sum \sum k_{ij} e_i f_j$$

3. Załóżmy, nie wprost, że dla i \neq i' i j \neq j' i $e_i f_i = e_{i'} f_{i'}$. Czyli

$$e_i f_j - e_{i'} f_{i'} = 0$$
,

czyli f_j , $f_{j'}$ są liniowo zależne nad L, czyli mamy, że f_j = $f_{j'}$ i

$$0 = e_i f_i - e_{i'} f_i = (e_i - e_{i'}) f_i \implies e_i - e_{i'} = 0 \implies i = i'$$

Z tego wynika, $\dot{z}e[M:K] = |X| = |I||J| = [L:K][M:L].$

Wniosek 4.7. Niech $K \subseteq L$ będzie rozszerzeniem skończonego ciała. Niech

 $K_{alg}(L) = \{a \in L : a \text{ jest algebraiczny nad } K\}.$

Okazuje się, że K_{alg} jest podciałem.

Dowód. Weźmy a, $b \in K_{alg}$. Wiemy, że [K(a) : K] i [K(b) : K] są skończone. Mamy, że

$$K \subset K(a) \subset K(a,b)$$

Z faktu ?? wiemy, że

$$[K(a, b) : K] = [K(a, b) : K(a)] \cdot [K(a) : K]$$

czyli również K(a, b) jest skończone. Zatem dla $x \in K(a, b)$ mamy

$$[K(x) : K] \leq [K(a, b) : K]$$

też jest skończone, zatem x jest algebraiczny nad K.

Dla $x \in K(a,b)$ mamy $[K(x):K] \le [K(a):K]$, czyli również jest skończone. W takim razie, x jest algebraiczny nad K i należy do K_{alg} .

Definicja 4.8.

- 1. K_{alg}(L) nazywamy **algebraicznym domknięciem** K w L.
- 2. K jest relatywnie algebraicznie domknięte w L \iff $K_{alg}(L) = K$.

Przykłady:

- 1. $\mathbb{Q}_{alg}(\mathbb{C}) := \widehat{\mathbb{Q}} = \mathbb{Q}^{alg}$ jest to tak zwane ciało liczb algebraicznych . $\widehat{\mathbb{Q}}$ jest przeliczalne, bo $\mathbb{Q}[x]$ jest przeliczalne, więc jest mnóstwo liczb przestępnych (zespolonych, które nie są algebraiczne, ale nie potrafimy żadnej wskazać).
- 2. K jest algebraicznie domknięte w K(X)

3. $\frac{1}{\sqrt[3]{2}+\sqrt{3}}\in\mathbb{Q}[\sqrt{3},\sqrt[3]{2}]$, bo $\mathbb{Q}[\sqrt{3},\sqrt[3]{2}]$ jest ciałem

$$\begin{split} \mathsf{L} = & \underbrace{\mathbb{Q}[\sqrt[3]{2},\sqrt{2}]}_{\subseteq \mathbb{C}} = \underbrace{\mathbb{Q}[\sqrt[3]{2}][\sqrt{3}]}_{\text{ciało}} \mathbb{Q} = \{\mathsf{a} + \mathsf{b}\sqrt[3]{2} + \mathsf{c}\sqrt[3]{2} \ : \ \mathsf{a},\mathsf{b},\mathsf{c} \in \mathbb{Q}(\sqrt{3})\} \\ & \underbrace{\sqrt[3]{2}\mathsf{alg.w}}_{\sqrt[3]{2} + \sqrt{3}} \in \mathsf{L} \implies \frac{1}{\sqrt[3]{2} + \sqrt{3}} \in \mathsf{L} \end{split}$$

Wykład 5: Wielomiany koła, domknięcia algebraiczne

Uwaga 5.1. Niech $K \subseteq L \subseteq M$ będą rozszerzeniami ciał. $K \subseteq M$ jest algebraiczne $\iff K \subseteq L \ i \ L \subseteq M$ są algebraiczne

Dowód.

 \implies 0K

 \Leftarrow

Weźmy dowolny m \in M. L \subseteq M jest algebraiczny, co oznacza f(m) = 0, gdzie f \in L[X]

$$f = \sum_{i=0}^{n} a_n x^i, \quad a_n \neq 0$$

W takim razie m jest algebraiczne nad ciałek $K(a_0,, a_n)$. Ale teraz

$$[K(m) : K] \leq [K(a_0,...,a_m,m) : ;K] \stackrel{4.6}{=} [K(a_0,...,a_n,m) : K(a_0,...,a_n)][K(a_0,...,a_n) : K] < \infty$$

bo m jest algebraiczny $K(\overline{a})$. Czyli

$$[K(m):K]<\infty$$

więc m jest algebraiczny nad K (uwaga 4.3).

Uwaga 5.2. $K_{alg}(L)$ jest relatywnie algebraicznie domknięty w L. To znaczy $(K_{alg}(L))_{alg}(L) = K_{alg}(L)$.

Dowód. Ćwiczenia.

5.1 Wielomian rozkładu koła [cyclotomic polynomials]

Rozważamy wielomian

$$w_m(x) = x^m - 1$$

dla m $\in \mathbb{N}$. Wiemy, że

- pierwiastki w_m w \mathbb{C} są jednokrotne
- $\mu_{\mathbf{m}}(\mathbb{C})$ jest grupą cykliczną
- a $\in \mu_m(\mathbb{C})$ jest generatorem $\mu_m(\mathbb{C})$ = {aⁱ : 0 \leq i \leq m} \cong (\mathbb{Z}_m , +)
- a^k generuje $\mu_m(\mathbb{C}) \iff NWD(k, m) = 1$

Funkcja Eulera:

$$\phi(m) = |\{k \in \mathbb{N} : 0 \le k < m. NWD(k, m) = 1\}|$$

 $\mu_{\mathsf{m}}(\mathbb{C})$ ma $\phi(\mathsf{m})$ generatorów.

Niech

$$\{k \in \mathbb{N} : 0 < k < m, NWD(k, m) = 1\} = \{m_1, ..., m_{\phi(n)}\}$$

i zdefiniujmy

$$F_m(x) := (x - a^{m_1})...(x - a^{m_{\phi(n)}}) \in \mathbb{C}[X]$$

 F_m to m-ty wielomian cyklotoniczny.

Uwaga 5.3.

1.
$$w_m(x) = x^m - 1 = F_m(x) \cdot v_m(x) = F_m(x) \cdot \prod_{\substack{d < m \\ d \mid m}} F_d(x)$$

2.
$$F_m(x) \in \mathbb{Z}[X]$$

Dowód:

1. Wiemy, że wielomian w_m ma m pierwiastków na płaszczyźnie Gaussa, więc jest iloczynem dwumianów x - b, $b \in \mu_m(\mathbb{C})$, czyli

$$\alpha \in \mu_{\mathbf{m}}(\mathbb{C}) \implies \alpha^{\mathbf{d}} - 1 \quad \mathbf{d} = \operatorname{ord}(\alpha), \ \mathbf{d} \mid \mathbf{m}$$

Wtedy α jest pierwiastkiem pierwotnym z 1 stopnia d. Wobec tego

$$F_d(x) = \prod_{\substack{\alpha \in \mu_m(\mathbb{C}) \\ \text{ord}(\alpha) = d}} (x - \alpha) \implies \text{(teza)}$$

2. Dowód przez indukcję względem m. Dla m = 1 mamy $F_m(x) = x - 1 \in \mathbb{Z}[X]$.

Teraz zakładamy, że dla wszystkich 0 < d < m jest $F_d(x) \in \mathbb{Z}[X]$. Z punktu (1) wiemy, że

$$x^{m} - 1 = w_{m}(x) = F_{m}(x)v_{m}(x)$$

z założenia indukcyjnego $v_m(x)\in\mathbb{Z}[X]$, bo jest iloczynem $\prod_{\substack{\alpha\in\mu_m(\mathbb{C})\\ \mathrm{ord}(\alpha)=d}}(x-\alpha)$

 $w_m(x)$ w $\mathbb{Z}[X]$ jest podzielny przez v_m i dostajemy:

$$w_m(x) = v_m(x) \cdot L(x)$$

ale w $\mathbb{C}[X] \supseteq \mathbb{Z}[X]$ było

$$w_m(x) = v_m(x) \cdot F_m(x)$$

czyli $F_m = L \in \mathbb{Z}[X]$.

Uwaga 5.4. [Lemat Gaussa] $F_m(x)$ jest wielomianem nierozkładalnym w $\mathbb{Q}[X]$ (równoważnie w $\mathbb{Z}[X]$).

Dowód:

Po pierwsze zauważmy, że F_m jest nierozkładalny w $\mathbb{Q}[X] \iff$ nierozkładalny w $\mathbb{Z}[X]$.

Załóżmy nie wprost, że

$$F_m(x) = G_1(x) \cdot G_2(x)$$

dla $G_1, G_2 \in \mathbb{Z}[X]$. Możemy założyć, że $G_1(x)$ jest dalej nierozkładalny w $\mathbb{Z}[X]$ oraz $0 < \deg(G_1) < \deg(F_m) = \phi(m)$

Lemat: Istnieje ε' -pierwiastek G_1 oraz liczba pierwsza p taka, że p \nmid m i $G_1(b) = G_2(b^p) = 0$.

Dowód lematu:

Niech ε będzie jakimś pierwiastkiem G_1 , a τ będzie jakimś pierwiastkiem G_2 . W takim razie

$$\tau, \varepsilon \in \mu_{\mathbf{m}}(\mathbb{C}) \implies \tau = \varepsilon^{\mathbf{l}}$$

dla pewnego l takiego, że NWD(l, m) = 1.

Niech $l = p_1 \cdot ...p_s$ będzie rozkładem na liczby pierwsze. Wtedy mamy ciąg różnych liczb

pierwiastem
$$G_1 = \varepsilon$$
, ε^{p_1} , $\varepsilon^{p_1p_2}$, ..., $\varepsilon^{p_1,...,p_s} = \tau$ pierwiastek G_2

które są pierwiastkami pierwotnymi stopnia m. Z tego wynika, że każda z tych liczb jest pierwiastkiem G_1 lub G_2 , czyli istnieje taka pozycja i, że

$$G_1(\varepsilon^{p_1...p_i}) = 0$$
,

$$G_2(\varepsilon^{p_1...p_{i+1}}) = 0$$

wtedy $\varepsilon' := \varepsilon^{p_1 \dots p_i}$ oraz p = p_{i+1} i lemat jest spełniony.

Wimy już, że $G_1(\varepsilon)$ = 0 i $G_1 \in \mathbb{Z}[X]$ jest wielomianem nierozkładalnym. Niech p będzie liczbą pierwszą z lematu. Rozważmy

$$G_3(x) = G_2(x^p).$$

Wtedy $G_2(\varepsilon^p) = G_3(\varepsilon) = 0$, ale stąd wynika, że $G_1(x)$ dzieli $G_3(x)$. Niech więc

$$G_3(x) = G_1(x)H(x) \in \mathbb{Z}[X].$$

Rozważmy homomorfizm

$$f: \mathbb{Z} \to \mathbb{Z}_p \mathbb{Z}/p\mathbb{Z}$$
 =

i indukowany przez niego epimorfizm pierścieni

$$\overline{f}: \mathbb{Z}[X] \to \mathbb{Z}_p[X].$$

Z założenia $F_m = G_1G_2$ mamy, że

$$\bar{f}(F_m) = \bar{f}(G_1)\bar{f}(G_2)$$

a z rozumowania powyżej ($G_3 = G_1H$)

$$\overline{f}(G_3) = \overline{f}(G_1)\overline{f}(H)$$

ale

$$\overline{f}(G_3(x)) = \overline{f}(G_2(x^p)) = \overline{f}(G_2(x))^p$$

bo współczynniki $f(G_2(x^p))$ są w \mathbb{Z}_p , a $(\sum c_i x^i)^p = \sum c_i x^{pi}$, bo $c_i^{kp} = c_i^k$ dla $c_i \in \mathbb{Z}_p$.

Stąd wiemy, że

$$f(G_2(x))^p = \overline{f}(G_1)\overline{f}(H).$$

Pierścień $\mathbb{Z}_p[X]$ jest UFD, więc $\bar{f}(G_1)$ i $\bar{f}(G_2)$ mają wspólny dzielnik w $\mathbb{Z}_p[X]$, stopnia co najmniej 1. Zatem z

$$\overline{f}(F_m) = \overline{f}(G_1)\overline{f}(G_2)$$

$$\bar{f}(F_m)|\bar{f}(w_m) = x^m - 1.$$

Zatem w pewnym rozszerzeniu $L \supseteq \mathbb{Z}_p$ w_m ma pierwiastek wielokrotny co daje sprzeczność.

Uwaga 5.5. Jeżeli $\varepsilon \in \mathbb{C}$ jest pierwiastkiem pierwotnym z 1 stopnia m, to $[\mathbb{Q}(\varepsilon) : \mathbb{Q}] = \phi(m)$.

Dowód: $F_m(x) \in \mathbb{Q}[X]$ jest nierozkładalny, a ε jest jego pierwiastkiem. To znaczy, że $F_n(x)$ jest wielomianem minimalnym dla ε nad \mathbb{Q} . Mamy, że $[\mathbb{Q}(b):\mathbb{Q}]$ = deg F_m = $\phi(m)$.

Lemat 5.6. [lemat Liouville'a o aproksymacji diofantycznej]: Jeżeli $a \in \mathbb{R}$ jest liczbą algebraiczną stopnia N > 1, to istnieje $c = c(a) \in \mathbb{R}_+$ takie, że dla każdego $r = \frac{p}{q} \in \mathbb{Q}$ zachodzi

$$\left|a - \frac{p}{q}\right| \ge \frac{c}{q^N}$$

Lemat Liouville'a mówi o cesze. Jeżeli liczba nie spełnia tego lematu, to jest liczba przestępna.

Dowód. Niech N > 1 i a $\in \mathbb{Q}$. Niech f $\in \mathbb{Z}[X]$ taki, że f(a) = 0 i deg(f) = deg(a/ \mathbb{Q}). Teraz zauważmy, że na f patrzymy jako na funkcję wielomianową. To znaczy, dla każdego x $\in \mathbb{R}$ patrząc na

$$\widehat{f}(x) = \widehat{f}(x) - \underbrace{\widehat{f}(a)}_{=0}$$

ale funkcje wielomianowe są różniczkowalne. Dlatego możemy skorzystać z theoremierdzenia o wartości średniej. To znaczy

$$\widehat{f}(x) - \widehat{f}(a) = \widehat{f}'(x - a)$$

My wiemy, że a jest pierwiastkiem jednokrotnym wielomianu f(x). Niech $\varepsilon > 0$ takie, że $a \in (a - \varepsilon, a + \varepsilon)$ jest jedynym pierwiastkiem f(x) w tym przedziale. Oczywiście,

$$deg(\widehat{f}'(x)) < deg(\widehat{f}(x)) \implies \widehat{f}'(a) \neq 0.$$

Bez straty ogólności $\hat{f}'(a) > 0$. Niech i d = $\sup_{x \in I} \hat{f}'(x)$.

$$c = c(a) = min(\varepsilon, \frac{1}{d}).$$

Udowodnimy, że c jest dobrze określona. Niech r = $\frac{p}{q} \in \mathbb{Q}$ i p, q $\in \mathbb{Z}$, q > 0.

$$f(x) = \sum_{k=0}^{N} a_k x^k, \quad a_k \in \mathbb{Z}, a_N \neq 0$$

Rozważamy przypadki:

- 1. f \notin I. Wtedy $\left| a \frac{p}{q} \right| \ge \varepsilon \ge \frac{\varepsilon}{q^N} \ge \frac{c}{q^N}$
- 2. $f \in I.$ Wtedy $\left| a \frac{p}{q} \right|$ i $\frac{p}{q}$ może być naszym x. Czyli

$$\left|a-\frac{p}{q}\right|=\frac{|f(\frac{p}{q})|}{|f(f'(t))|}\geq \frac{|f(\frac{p}{q})|}{d}\geq \frac{c}{q^N}$$

bo $c \leq \frac{1}{d}$

$$0 \neq |f(\frac{p}{q})| = \left|\sum_{k=0}^{N} a_k \frac{p^k}{q^k}\right| = \frac{\left|\sum\limits_{k=0}^{N} a_k p^k q^{N-k}\right|}{q^N} \geq \frac{1}{q^N}$$

5.2 Domknięcia algebraiczne

Definicja 5.7. Ciało L \supseteq K jest **algebraicznym domknięciem** K wtedy i tylko wtedy, gdy:

- 1. L jest algebraicznie domknięte
- 2. L \supseteq K jest rozszerzeniem algebraicznym, to znaczy dla każdego a \in L a jest pierwiastkiem algebraicznym nad K

Takie L oznaczamy przez \widehat{K} , K^{alg} .

Uwaga 5.8. Dla każdego K istnieje algebraiczne domknięcie \widehat{K} .

Dowód. Rozważmy $K_{\infty}\supseteq K$ - ciało algebraicznie domknięte (theoremierdzenie z początku wykładu). Pokażemy, że

$$\widehat{K}$$
 = $K_{alg}(K_{\infty})$ = $\{a \in K_{\infty} \ : \ a \ algebraiczny \ nad \ K\}$

1. K jest algebraicznie domknięte:

Jeżeli $f\in \widehat{K}[X]$, to f ma pierwiastek w K, ale $\widehat{K}\subseteq K_{\infty}$, to znaczy, że $a\in \widehat{K}$ jest algebraiczne nad K.

2. $K \subseteq \widehat{K}$ jest rozszerzeniem algebraicznym:

 $K\subseteq \widehat{K}$ = $K_{alg}(K_{\infty})$ z definicji jest rozszerzeniem algebraicznym.

Twierdzenie 5.9. \hat{K} jest jedyne z dokładnością do izomorfizmu nad K.

$$L_1 \xrightarrow[\cong]{(\exists! f) f \upharpoonright K = id_K} L_2$$

Dowód. Można użyć indukcji pozaskończonej, a można też użyć lematu Zorna. My zrobimy to drugie. Niech

$$\mathfrak{K} = \{(\mathsf{k}',\mathsf{f}') : \mathsf{K} \subseteq \mathsf{K}' \subseteq \mathsf{L}_1,\mathsf{f}' : \mathsf{K}' \xrightarrow{\mathsf{1}-\mathsf{1}} \mathsf{L}_2, \mathsf{f}' \upharpoonright \mathsf{K} = \mathsf{id}_k\}$$

Oczywiście, $\Re \neq \emptyset$, bo (K, id_K) $\in \Re$. W \Re definiujemy relację porządku w naturalny sposób, to znaczy

$$(K',f') \leq (K'',f'') \iff K' \subseteq K'' \ \land \ f'' \upharpoonright K' = f''.$$

Wtedy (\mathfrak{K}, \leq) jest zbiorem częściowo uporządkowanym i niepustym (bo jest $(K, id_K) \in \mathfrak{K}$). Ponadto każdy wstępujący łańcuch (\mathfrak{K}, \leq) ma ograniczenie górne. Na mocy lematu Kuratowskiego-Zorna w tej rodzinie istnieje element maksymalny, nazwijmy go (K_1, f_1) . Pokażemy, że $K_1 = L_1$.

Załóżmy nie wprost, że istnieje a \in L₁ \ K₁. Niech w(x) \in K₁[X] będzie wielomianem minimalnym elementu a nad K₁. Niech

$$\begin{split} & K_2 = f_1[K_1] \\ v(x) = f_1(a_0) + f_1(a_1)x + ... + f_1(a_n)x^n \in K_2[X]. \end{split}$$

v(x) też jest nierozkładalny nad K_2 , bo w(x) był nierozkładalny nad K_1 . Niech $b \in L_2$ będzie pierwiastkiem wielomianu v.

Zauważmy, że $K_1(a) = K_1[a]$, bo w(x) jest nierozkładalny nad K_1 , ale

$$K_1[a] \simeq K_1[X]/(w) \simeq K_2[X]/(v) \simeq K_2[b] \simeq K_2(b)$$
.

Czyli $K_1(a) \simeq K_2(b)$ i $f_2: K_1(a) \xrightarrow{\cong} K_2(b)$ jest izomorfizmem rozszerzającym f_1 . Wtedy mamy $(K_1, f_1) \leq (K_1(a), f_2)$, co daje sprzeczność z maksymalnością (K_1, f_1) . Zatem $L_1 = K_2$.

Zrobimy sprytnie wprost: $K_1 = L_1$, $K \subseteq K_2 \subseteq L_2$ i $K_1 \cong_K K_2$. K_1 jest aglebraicznie domknięte, więc K_2 też takie musi być. Czyli $K \subseteq K_2 \subseteq L_2$ jest algebraiczne, więc $K_2 = L_2$, bo założyliśmy, że $b \in L_2 \setminus K_2$ i wtedy wielomina minimalny $f_b(x) \in K_2[X]$ ma pierwiastek $c \in K_2$, czyli $(x - c)|f_n(x)$ a więc $x - c = f_b(x)$ jest nierozkładalny i b = c.

Wniosek 5.10. Jeśli K \cong L, to $\widehat{K} \cong \widehat{L}$. Dokładniej, jeżeli $f_0 : LK \to L$ jest izomorfizmem ciał, to istnieje izomorfizm $f : \widehat{K} \to \widehat{L}$ taki, że $f \upharpoonright K = f_0$.

Dowód. Ćwiczenia

Uwaga 5.11. Jeśli $K \subseteq L$ jest algebraicznym rozszerzeniem ciał, to istnieje monomorfizm $f: L \to \widehat{K}$ taki, że $f \upharpoonright K = id_K$.

Dowód. Ćwiczenie

Wykład 6: Wstęp do teorii Galois

6.1 Grupy Galois

Niech K będzie ciałem, \widehat{K} jego algebraicznym domknięciem. Niech K \subseteq L będzie rozszerzeniem algebraicznym ciał [BSO: L \subseteq \widehat{K}]. **Grupą Galois** rozszerzenia K \subseteq L nazywamy

$$G(L/K) = Gal(L/K) = \{f \in Aut(L) : f \upharpoonright K = id_k\} = Aut(L/K)$$

ze składaniem jako działaniem. Jest to jednocześnie podgrupa wszystkich automorfizmów.

Przykład:

- 1. Niech K będzie ciałem prostym (\cong z \mathbb{Q} lub z \mathbb{Z}_p). Wtedy Gal(L/K) = Aut(L), bo
 - Niech char(K) = char(L) = p > 0 i niech $f \in Aut(L)$. Wtedy f(1) = 1, $f(\underbrace{1 + + 1}_{k}) = \underbrace{1 + + 1}_{k}$, a ponieważ $K = \{\underbrace{1 + ... + 1}_{k} : k \in \{1, ..., p\}\}$, zatem $f \upharpoonright K = id_{K}$, czyli $f \in Gal(L/K)$.
 - Niech char(K) = char(L) = 0, wtedy K $\cong \mathbb{Q}$. Niech $f \in Aut(L)$. Wtedy f(0) = 0, f(1) = 1, a dla dowolnego $k \in \mathbb{N}$ $f\underbrace{1+....+1}_{k} = \underbrace{1+....+1}_{k}$, stąd dostajemy, że f(n) = n dla $n \in \mathbb{Z}$, a z własności \mathbb{Q} dostajemy, że $f(\frac{m}{n}) = \frac{m}{n}$, zatem $f \upharpoonright K = id_{K}$.
- 2. $Gal(\mathbb{Q}(\sqrt{2})/\mathbb{Q}) = Aut(\mathbb{Q}(\sqrt{2})) = \{f_0, f_1\} \cong \mathbb{Z}$, bo $\sqrt{2}$ może przejść na siebie albo na $-\sqrt{2}$. Wtedy $f_0 = id$, a $f_1(-\sqrt{2})$

Grupę Galois $Gal(\widehat{K}/K)$ nazywamy **absolutną grupą Galois** ciała K.

Czy każda grupa skończona jest izomorficzna z $Gal(L/\mathbb{Q})$ dla pewnego $\mathbb{Q}\subseteq L$? Jest to otwarty problem teorii Galois.

Uwaga 6.1. a, b $\in \widehat{K}$, takie, że I(a/K) = I(b/K), to wtedy istnieje f $\in Gal(\widehat{K}/K)$ takie, że f(a) = b.

Dowód.

$$\begin{array}{ccc} \mathsf{K}[\mathsf{a}] & & \xrightarrow{\cong} & \mathsf{K}[\mathsf{b}] \\ & & & & & \downarrow \subseteq \\ \\ \mathsf{K}[\mathsf{a}]^{\mathsf{alg}} = \widehat{\mathsf{K}} & & \xrightarrow{\exists \ f'} & \widehat{\mathsf{K}} = \mathsf{K}[\mathsf{b}]^{\mathsf{alg}} \end{array}$$

Co jest wnioskiem z wniosku 5.10.

6.2 Rozszerzenia algebraiczne normalne

 \widehat{K} jest największym algebraicznym rozszerzeniem K tzn. K \subseteq L oznacza, że istnieje f : L \to \widehat{K} monomorfizm ciał taki, że f \upharpoonright K = id_K. (\clubsuit)

Mówmy, że rozszerzenie algebraiczne $K\subseteq L$ jest normalne, gdy w (\clubsuit) $f[L]\subseteq \widehat{K}$ dla wszystkich $f:L\to K$.

Przykład Rozszerzenie $K \subseteq \widehat{K}$ jest normalne.

Uwaga 6.2. Załóżmy, że $K \subseteq L \subseteq \widehat{K}$. Wtedy rozszerzenie $K \subseteq L$ jest normalne \iff dla każdego $f \in Gal(\widehat{K}/K)$ f[L] = L.

Dowód. \implies z definicji, bo id_K[L] = L. \iff z definicji.

Czyli K \subset L₁ \subset L i K \subset L jest normalna, to L₁ \subset L(\subset \widehat{K}), wiec Gal($\widehat{L_1}/L_1$) < Gal(\widehat{K}/K).

Twierdzenie 6.3. Dla $K \subseteq L$ algebraicznego rozszerzenia jest normalne \iff dla każdego $b \in L$ wielomian minimalny $f \in K[X]$ rozkłada się w L[X] na iloczyn czynników liniowych.

Dowód. Bez straty ogólności rozważamy $L \subseteq \widehat{K}$.

 \Longrightarrow

Dowód nie wprost, to znaczy załóżmy, że istnieje $b \in L$ takie, że $w_b(x)$ ma pierwiastek $a \in \widehat{K} \setminus L$. Ale wtedy z Uwagi 6.1. na jednorodność \widehat{K} istnieje $f \in Gal(\widehat{K}/K)$ takie, że f(b) = a, więc f[L] = L co jest sprzeczne z 6.2.

 \leftarrow

Załóżmy nie wprost, że na mocy 6.2. istnieje $f \in Gal(\widehat{K}/K)$ takie, że $f[L] \neq L$. Ale L i f[L] są wzajemnie sprzężone, więc wybierzmy $a \in L \setminus f[L]$. Symetrycznie, $a' \in f[L] \setminus L$, $f' : f[L] \xrightarrow{\cong} L$ spełnia warunek (\clubsuit). Niech $w_a(x)$ jest wielomianem minimalnym a nad K. Wtedy $w_a(X) = f(w_a(x))$, bo $f \upharpoonright K = id_K$. Czyli w_a jest wielomianem minimalnym dla b = f(a)/K. Czyli $L \cong_K f[L]$. $Z (\clubsuit)$ wiemy, że $w_a(x)$ rozkłada się nad L na czynniki liniowe. Czyli $w_a(x)$f[L]..., co daje nam sprzeczność, bo a jest pierwiastkiem $w_a(X)$, ale $a \notin f[L]$.

Rozszerzenie ciał K \subseteq L jest **skończone**, jeśli [L : K] < ∞ .

Twierdzenie 6.4. Niech $K \subseteq L$ będą rozszerzeniami ciał. Wtedy następujące warunki są równoważne:

- 1. rozszerzenie $K \subseteq L$ jest skończone i normalne
- 2. L jest ciałem rozkładu pewnego wielomianu

Dowód. Bez straty ogólności załóżmy, że $K \subseteq L \subseteq \widehat{K}$.

$$(2) \implies (1)$$

Załóżmy, że L jest ciałem rozkłądu pewnego wielomianu. Wtedy L = $K(a_1, ..., a_n)$, gdzie $a_1, ..., a_n$ to wszystkie pierwiastki wielomianu w(x) w \hat{K} .

Niech $f \in Gal(\widehat{K}/K)$, wtedy $f(a_1, ..., f(a_n))$ to też wszystkie pierwiastki wielomianu w(x). Stąd

$$f[L] = K(f(a_1), ..., f(a_n)) = K(a_1, ..., a_n) = L,$$

zatem rozszerzenie $K \subseteq L$ jest normalne i skończone.

$$(1) \implies (2)$$

Niech K \subseteq L będzie skończone i normalne. Wtedy L = K(a₁, ..., a_n) dla pewnych a₁, ..., a_n \in L i {a₁, ..., a_n} będzie bazą L nad K. Wtedy istnieje w \in K[X] \ {0} takie, że w(a₁) = ... = w(a_n) = 0, zatem

$$L \supseteq \{ \text{ pierwiastki w} \} \supseteq \{a_1, ..., a_n \}.$$

COŚ TUTAJ JEST NIE TAK

Przykłady:

- 1. Niech K \subseteq L będą ciałami skończonymi, wtedy K \subseteq L jest ciałem normalnym, bo |L| = pⁿ, w_{pⁿ-1}(x) = $x^{p^n-1} 1$ i L jest ciałem rozkładu w nad K.
- 2. $\mathbb{Q} \subseteq \mathbb{Q}(\sqrt[3]{2})$ to rozszerzenie skończone, ale nie normalne. Jest tak, bo
 - $x^3 2$ jest nierozkładalny nad $\mathbb Q$ (kryterium Eisteina)
 - W ciele \mathbb{C} x^3 2 ma 3 pierwiastki, z których tylko jeden jest w $\mathbb{Q}(\sqrt[3]{2})\subseteq\mathbb{R}$ a

Uwaga 6.5. Niech $K \subseteq L \subseteq \widehat{K}$ i niech L_1 będzie ciałem generowanym przez $\bigcup \{f[L]: f \in Gal(\widehat{K}/K)\}$. Wtedy L_1 to normalne domknięcie ciała L w \widehat{K} . Wtedy

- 1. Rozszerzenie $K \subset L_1$ jest normalne
- 2. Jeśli $K \subseteq L_2$ i $L \subseteq L_2$ są normalne, to istnieje monomorfizm $L_1 \to L_2$ taki, że $f \upharpoonright K$ = id.

Dowód. (1) Z 6.2

(2)

Bez straty ogólności załóżmy, że K \subseteq L \subseteq L₂ \subseteq \widehat{K} i K \subseteq L \subseteq L₂ \subseteq \widehat{K} . Niech f \in Gal(\widehat{K}/K), f[L] \subseteq L₂. W takim razkie $\bigcup \{f[L] : f \in Gal(\widehat{K}/K)\} \subseteq L_2$, z czego wynika, że L₁ \subseteq L₂.

6.3 Rozszerzenia rozdzielcze

- Niech K będzie ciałem i a \in \widehat{K} . Mówimy, że a jest **rozdzielczy nad** K, gdy wielomian minimalny a, $w_a(x) \in K[X]$ ma tylko pierwiastki jednokrotne w \widehat{K} .
- Algebraiczne rozszerzenie K ⊆ L jest **rozszerzeniem rozdzielczym,** gdy dla każdego a ∈ L a jest rozdzielcze nad K.
- Wielomian $w(x) \in K[X]$ jest **rozdzielczy**, gdy w ma tylko pierwiastki jednokrotne w \hat{K} .

Uwaga 6.6. Załóżmy, że $w(x) \in K[X]$ jest wielomianem nierozkładalnym stopnia > 0. Wtedy

- 1. w(x) jest rozdzielczy $\iff w(x)$ i w'(x) są względnie pierwsze
- 2. Jeśli char(K) = 0, to w jest rozdzielczy
- 3. Jeśli char(K) = p > 0, to w jest nierozdzielczy \iff w(x) \in K[X^p], to znaczy w(x) = v(x^p dla pewnego v(x) \in K[X]).

Dowód. Dowód zadanie z listy 4

Przykłady:

- 1. Niech K \subseteq L będzie rozdzielcze i K \subseteq L₁ \subseteq L. Wtedy L₁ \subseteq L też jest rozdzielcze [ćwiczenia]
- 2. Jeśli char(K) = 0, to każde rozszerzenie algebraiczne ciała K jest rozdzielcze.
- 3. Niech $K \subseteq L$ będą ciałami skończonymi. Wtedy $K \subseteq L$ jest rozdzielcze. Ciał L rozkładu wielomianu $x^{p^n} x$ o pierwiastkach jednokrotnych.
- 4. Rozszerzeni nierozdzielnicze: niech K = $F_p(X) \subseteq L = K(\sqrt[p]{x})$. Niech $w_a(T) = T^p x \in K[T]$ będzie wielomianem minimalnym a = $\sqrt[p]{x}$. Wtedy $w_a' = 0$, czyli w ciele L istnieje p-krotny pierwiastek w_a : $w_a(T) = (t-a)^p$.a

Lemat 6.7.

- 1. Jeśli $a \in \widehat{K}$, to $|\{f(a) : f \in Gal(\widehat{K}/K)\}| \le stopień a nad K$
- 2. a jest rozdzielczy nad K \iff w podpunkcie (1) jest równość.

Dowód.

 $\{f(a): \ f\in Gal(\widehat{K}/K)\} \stackrel{\textbf{??}}{=} \{pierwiastki \ wielomianu \ minimalnego \ w_a\in K[X] \ nad \ K\}$ czyli $deg(a/K)=deg(w_a).$

Twierdzenie 6.8. Niech K \subseteq L będzie rozszerzeniem skończonym, L = K(a₁, ..., a_n) i a₁, ..., a_n rozdzielcze nad K. Wtedy istnieje a* \in L rozdzielczy nad K taki, że L = K(a*).

Dowód. Bez starty ogólności załóżmy, że $K \subseteq L \subseteq \widehat{K}$. Rozważmy dwa przypadki:

- 1. K jest skończone. Wtedy L także jest skończone, a L* jest cykliczna. Niech więc a* ∈ L* będzie generatorem L*. Wtedy L = K(a*).
- 2. K jest nieskończone.

Dowód przez indukcję względem n. Dla n = 1 jest oczywiste. Robimy więc krok indukcyjny (n – 1) \implies n:

$$K(a_1, ..., a_{n-1}) = K(b)$$

 $K(a_1, ..., a_{n-1}, a_n) = K(b, a_n)$

Niech teraz k będzie stopniem b nad K, a m - stopniem a_n nad K(b). Z lematu 6.7 wiemy, że istnieją $f_1,...,f_k\in Gal(\widehat{K}/K)$ takie, że $f_1(b),...,v_k(b)$ są parami różne. Niech więc $f_{1,1},...,f_{1,m}\in G(\widehat{K}/K(b))$ takie, że $f_{1,1}(a),...,f_{1,m}(a)$ są parami różne.

Dla i = 1, ..., k, j = 1, ..., m niech $f_{i,j} = f_i \circ f_{1,j} \in Gal(\widehat{K}/K)$.

Zauważmy, że

$$\langle i,j\rangle \not\equiv \langle i',j'\rangle \implies \langle f_{i,j}(a),f_{i,j}(b)\rangle \not\equiv \langle f_{i',j'}(a),f_{i',j'}(b)\rangle,$$

bo są dwie możliwości:

•
$$i \neq i'$$
, wtedy $f_{i,j} = f_i(b) \neq f_{i'}(b) = f_{i',i'}(b)$

•
$$i = i' \land j \neq j'$$
, wtedy $f_{ij}(a) = f_i(f_{1,j}(a)) \neq f_{i'}(f_{1,j}(a)) = f_{i'j'}(a)$, bo $f'_{1,j}(a) \neq f'_{1,i'}(a)$.

Skoro K było nieskończone, to istnieje $c \in K$ takie, że dla $\langle i,j \rangle \neq \langle i',j' \rangle$ mamy

$$f_{i,j}(b) + f_{i,j}(a) \cdot c \neq f_{i',i'}(b) + f_{i',i'}(a) \cdot c$$

bo

$$F(x) = \prod_{\langle i,j \rangle \neq \langle i',j' \rangle} [f_{i,j}(b) + f_{ij}(a)x - (f_{i'j'}(b) + f_{i'j'}(a)x)]$$

i c po prostu nie jest pierwiastkiem F.

Postulujemy, że $K(b, a_n) = K(a^*)$, gdzie $a^* = b + a_n c$ jest elementem pierwotnym.

⊇ jest jasne

 $\subseteq f_{ij}(a^*)$, $1 \le i \le k$, $1 \le j \le m$ parami różne.

Wiemy, że $deg(a^*/K) \ge k \cdot m$, z drugiej strony

$$k \cdot m \le [K(a^*) : K] \le [K(a_h, b) : K] = [K(b) : K][K(a_n, b) : K(b)] = km$$

czyli wszędzie wyżej są równości i mamy $K(a^*) = K(a_n, b)$.

Wniosek 6.9.

- 1. Jeśli L = $K(a_1, ..., a_n)$ i a_i są rozdzielcze nad K, to $L \supseteq K$ też jest rozdzielcze.
- 2. $K \subseteq L$ jest rozdzielcze i $L \subseteq M$ jest rozdzielcze, to $K \subseteq M$ też jest rozdzielcze.

Dowód. 1. Niech L = K(a) i a jest rozdzielczy nad K. Załóżmy, że b ∈ L nie jest rozdzielczy nad K. Wtedy L = K(b, a).

$$n \cdot m$$
 n m
 $deg(a/K) = deg(b/K) \cdot deg(a/K(b))$
 u u u
 $[K(a): K] = [K(b): K] \cdot [K(a, b): K(b)]$

Wybierzmy teraz $g \in K[X]$ takie, że g(a) = b. Wtedy

$$n \cdot m = |\{f(a) : f \in Gal(\widehat{K}/K)\}| = (\star),$$

bo a jest rozdzielczy nad K. Dalej,

$$(\star) = |\{(f(b), f(a)) : f \in Gal(\widehat{K}/K)\}| = (\star\star),$$

bo f(b) ma k < n możliwości, gdyż b nie jest rozdzielczy nad K i korzystamy z 6.7. Przy ustalonym f(b) skakać po f(a) możemy na co najwyżej m sposobów, bo deg(a/K(b)) = m = deg(f(a)/K(f(b)). Czyli koniec końców

$$(\star\star)$$
 < k·m < n·m,

co daje sprzeczność.

2. Podobny dowód zostawiony studentowi do pokiwania głową, że rozumie a w duszy płacz bo co się dzieje?

_

Wykład 7: Rozszerzenia radykalne (czysty Bangladesz)

Niech $K \subseteq L \subseteq \widehat{K}$ jak zwykle. Wtedy

- $a \in L$ jest czysto nierozdzielczy nad K, czyli radykalny, gdy wielomian minimalny a nad K, $w_a(x) \in K[X]$, ma tylko jeden pierwiastek w \widehat{K} .
- $K\subseteq L$ jest **rozszerzeniem radykalnym** (czysto nierozdzielczym), gdy dla każdego a $\in L$ a jest radykalne nad K.

Uwaga 7.1.

- 1. Jeśli char(K) = 0, to a nad K jest czysto nierozdzielczy \iff a \in K.
- 2. a jest radykalne nad K \iff dla każdego f \in Gal(\widehat{K}/K) f(a) = a
- 3. Jeśli char(K) = p, to a jest radykalne nad K \iff istnieje n \geq 0 a $^{p^n} \in K$.

Dowód.

- 1. $w_a(x)$ ma tylko pierwiastki jednokrotne, gdy char(K) = 0
- 2. Oczywiste *
- 3. \leftarrow oczywiste: $w_a(x) \in K[X]$ dzieli $x^{p^n} a^{p^n} = (x a)^{p^n} \in K[X]$
 - \implies Dowodzimy indukcją po n = deg(a/K). Niech $w_a(x) = (x-a)^n \in K[X]i \ w_a'(x) = n(x-a)^{n-1} \in K[X]i \ w_a' \in I(a/K) \ gdy \ n > 1$, czyli $w_a'(x) = 0$, więc p|n. Niech więc n = p \cdot n₁ i wtedy $w_a(x) = (x^p a^p)^{n_1}$ i a^p jest radykalny nad K, bo deg(a^p/K) $\le n_1 < n$. Z założenia indukcyjnego istnieje $k \ge 0$ takie, że $(a^p)^{p^k} = a^{p^{k+1}} \in K$ i to jest to, czego szukaliśmy.

Niech $K \subseteq L$ będzie rozszerzeniem algebraicznym. Definiujemy

- 1. rozdzielcze domknięcie K w L: $sep_L(K)$ = $\{a \in L : a \text{ radykalne nad } K\}$
- 2. radykalne domknięcie (czysto nierozdzielcze) K w L: $rad_L(K)$ = $\{a \in L : a \text{ radykalny nad } K\}$

Wniosek 7.2. $K \subseteq \text{sep}_L(K)$ $i \text{ rad}_L(K) \subseteq L \subseteq \widehat{K}$ to ciała takie, że $\text{sep}_L(K) \cap \text{rad}_L(K) = K$.

 $\textbf{Dow\'od.} \ \ \text{Fakt, } \dot{\text{ze}} \ \text{sep}_{L}(\textbf{K}) \ \text{jest ciałem wynika z 6.9.} \ \text{Natomiast to, } \dot{\text{ze}} \ \text{rad}_{L}(\textbf{K}) \ \text{jest ciałem wynika z tego, } \dot{\text{ze}}$

$$rad_L(K) = L \cap \bigcap_{f \in Gal(\widehat{K}/K)} Fix(f) = \{a \in \widehat{K} : f(a) = a\}$$

 $Dalej,\,dla\;a\in sep_L(K)\cap rad_L(K)\;mamy\;w_a(x)=x-a\;jest\;wielomianem\;minimalnym\;a\;nad\;K.$

- $\Re \widehat{K}^{s} = \operatorname{sep}_{\widehat{K}}(K)$ jest rozdzielczym domknięciem K
- $\Re \widehat{K}^r = \operatorname{rad}_{\widehat{\nu}}(K)$ jest radykalnym domknięciem K.

Uwaga 7.3.

- 1. Gdy $K \subseteq L \subseteq \widehat{K}$, to $sep_L(K) = \widehat{K}^S \cap L$, $rad_L(K = \widehat{K}^\Gamma \cap L)$
- 2. Załóżmy, że K \subseteq L \subseteq M \subseteq \widehat{K} , wtedy K \subseteq L \subseteq M \iff K \subseteq M rad

3. $Jeśli \, char(K) = 0$, to $sep_L(K) = K^{alg}(L) \, i \, rad_L(K) = K$, $oraz \, \widehat{K}^S = \widehat{K}$, $\widehat{K}^r = K$.

Fakt 7.4. Załóżmy, że $K \subseteq L \subseteq \widehat{K}$, $K_S = \text{sep}_L(K)$, $K_r = \text{rad}_L(K)$, $L' = K_S \cdot K_r$ i niech $L' = K_S \cdot K_r$ będzie złożeniem ciał K_S i K_r w L (tzn. ciało generowane w L przez $K_S \cup K_r$: $L' = K_S(K_r) = K_r(K_S)$). Wtedy:

- 1. $[L':K] = [K_S:K] \cdot [K_r:K]$
- 2. Gdy $K \subseteq L$ jest rozszerzeniem normalnym, to $K_S \cdot K_r = L$
- 3. $K_s \subseteq L$ jest radykalne, a $K_r \subseteq L'$ rozdzielcze

Dowód. Jeśli chark(K) = 0, to problem jest trywialny, bo $K_r = K$, $K_S = L$ i L' = L. Załóżmy więc, że char(K) = p > 0.

1. $L' = K_r(K_s) \supseteq K_r \supseteq K$, wiec:

$$[L':K] = [K_r(K_S):K_r][K_r:K]$$

Wystarczy pokazać, że $[K_S : K] = [K_r(K_S) : K_r]$.

Zadanie z listy 4: Załóżmy, że K \subseteq L, M \subseteq \widehat{K} są rozszerzeniami ciała takie, że L \cap M = K. Jeśli dla wszystkich L₀, M₀ takich, że K \subseteq L₀ \subseteq L i K \subseteq M₀ \subseteq M są skończone i [L₀(M₀) : L₀] = [M₀ : K], to [L(M) : L] = [M : K].

W takim razie wystarczy, że pokażemy

$$[K_r(K_s) : K] = [K_s : K]$$

korzystając z zadania 4 (wyżej). Niech K \subseteq K $_r^0 \subseteq$ K $_r$ i K \subseteq K $_s^0 \subseteq$ K $_s$, pierwsze rozszerzenia są skończone. Na mocy twierdzenia Abela możemy wybrać a \in K $_s^0$ takie, że K $_s^0$ = K(a). Wtedy również

$$K_r^0(K_s^0) = K_r^0(a)$$

i $[K_s^0 : K]$ = stopień a nad $K_r^0(a) : K_r^0]$ = stopień a nad K_r^0 . Wystarczy pokazać, że oba te stopnie się zgadzają.

Niech n = [K(a): K] = stopień a nad K. Wtedy

to baza liniowa K(a) nad K. Przez to, że a jest rozdzielczy nad K i p = char(K), to K(a) = K(a p) [zad. 7 lista 4], czyli dla każdego l > 0

1,
$$a^{p^l}$$
, ..., $a^{(n-1)p^l}$

też jest bazą K(a) nad K.

Pokażemy, że 1, a, ..., a^{n-1} jest bazą liniową $K_r^0(a)$ nad K_r^0 :

· liniowa niezależność:

$$\sum k_i a^i \text{ = 0, } k_i \in K^0_r$$

Niech l będzie takie, że $k_i^{p^l} \in K$ dla wszystkich i, wtedy

$$\sum k_i^{p^l} a^{ip^l} = 0 \implies (\forall i) k_i = 0$$

Czyli $[K_r^0(a):K_r^0] \le [K(a):K] = n i 1, a, ..., a^{n-1} jest bazą <math>K_r^0(a)/K_r^0$.

2. Bez straty ogólności załóżmy, że [L : K] < ∞ , bo

$$L = \bigcup \{L_0 : K \subseteq \atop \mathsf{skon}, \mathsf{norm} L_0 \subseteq L\}$$

(a) Niech $a \in L \supseteq K_r$, postulujemy, że a jest rozdzielczy nad K_r . Niech $a = a_1, a_2, ..., a_n$ będą wszystkimi pierwiastkami wielomianu $w_a(X) \in K[X]$ i niech

$$v(x) = \prod_{i=1}^{n} (x - a_i).$$

Wtedy dla $f \in Gal(\widehat{K}/K)$ mamy f[L] = L, więc f permutuje $\{a_1, ..., a_n\}$. Stąd f(v(x)) = v(x), czyli f zachowuje współczynniki v(x). To onzacza, że $v(x) \in K_r[X]$ i mamy, że a jest rozdzielczy nad K_r .

(b) L \supseteq K_s jest radykalne: z uwagi 6.6(3) wiemy, że jeśli a \in L to dla pewnego l mamy a^{pl} jest rozdzielcze nad K. Czyli a^{pl} \in K_s, więc a jest radykalny nad K_s.

Z podpunktów wyżej wiemy, że L \subseteq K_r · K_s jest rozszerzeniem rozdzielczym i radykalnym, więc L = K_r · K_s.

3. L \supseteq K_s jest radykalne w sposób analogiczny do rozumowania wyżej. L' \supseteq K_r jest rozdzielcze, bo L' = K_r[K_s].

7.1 Stopień rozdzielczy, radykalny ciała

 $K \subset L \subset \widehat{K}$

Definiujemy $[L:K]_S = [sep_L(K):K]$ jako **stopień rozdzielczy** ciała L nad K oraz $[L:K]_r = [L:sep_L(K)]$ jako **stopień radykalny** L nad K.

Z wyników wyżej dostajemy

$$[L:K] = [L:K]_{S} \cdot [L:K]_{r}$$

bo $K \subseteq \text{sep}_1(K)$ jest rozdzielcze, a $\text{sep}_1(K) \subseteq L$ jest radykalne.

Uwaga 7.5. $K \subseteq L \subseteq \widehat{K}$

- 1. Jeśli $K \subseteq L$ jest rozdzielcze, to $[L:K] = |\{f \upharpoonright L : f \in Gal(\widehat{K}/K)\}| = |\{f : L \to \widehat{K} : f \upharpoonright K = id\}|$
- 2. Ogólnie, $[L:K]_S = |\{f \mid L: f \in Gal(\widehat{K}/K)\}|$ (jak wyżej)

Dowód. Rozważamy [L : K] < ∞ . Przypadek ogólny [L : K] można zredukować do przypadku skończonego, co jest ćwiczeniem na liście [wskazówka: rozważyć odpowiednią bazę liniową L nad K]

- Z twierdzenia Abela L = K(a) i dla f ∈ Gal(K/K), f ↑ L jest wyznaczone jednoznacznie przez f(a). Wiemy, że f(a) ∈ {pierwiastki w_a(x)}, których jest n = [L : K].
- 2. $l \supseteq K_s$ to rozszerzenie radykalne, więc $f \upharpoonright L$ jest wyznaczone przez $f \upharpoonright K_s$. Dlatego:

$$|\{f\upharpoonright L\,:\, f\in Gal(\widehat{K}/K)\}|=|\{f\upharpoonright K_S\,:\, f\in Gal(\widehat{K}/K)\}|=[K_S:K]=[L\,:K_S]$$

Uwaga. Jeśli char(K) = p i [L : K]_r < ∞ , to [L : K]_r jest potęgą p.

Dowód. Indukcja względem $[L:K]_r = [L:K_s]$. Bez starty ogólności załóżmy, że $K = K_s$. Niech $a \in L \setminus K$, wtedy a jest radykalne nad K, czyli istnieje minimalne I takie, że $a^{pl} \in K$.

Niech $a' = a^{p^{l-1}}$, wtedy $a' \in L \setminus K$ i $(a')^p \in K$, dlatego $w_{a'}(x) = x^p - (a')^p$ i $K \subseteq K(a') \subseteq L$, pierwsze rozszerzenie ma stopień p, a drugie jest radykalne.

Mamy [L: K(a')] < [L: K], więc z założenia indukcyjnego [L: K(a')] = $p^r \implies [L:K] = p^{r+1}$

Wykład 8: Przekształcenia liniowe

Od teraz K \subseteq L to będzie skończone rozszerzenie ciała, L będzie przestrzenią liniową nad K o wymiarze $\dim_K L = [L:K]$. Dla a \in L będziemy opisywać homomorfizm

$$f_a:L\to I$$

$$f_a(z) = a \cdot z$$

będący K-liniowym przekształceniem.

8.1 Norma, ślad

 $N_{L/K}(a) = det(f_a)$ jest normą homomorfizmu f_a

 $r_{L/K}(a) = Tr(f_a)$ jest śladem f_a .

Fakt 8.1. Niech $\{f_1, ..., f_\} = \{f : L \to \widehat{K} : f \upharpoonright K = id\}, k = [L : K]_s i a \in L.$ Wtedy

1.
$$N_{L/K}(a) = \left[\prod_{i=1}^{k} f_i(a)\right]^{[L:K]_r}$$

2.
$$Tr_{L/K}(a) = [L : K]_r \cdot \sum_{i=1}^k f_i(a)$$
.

Rozważmy najpierw przypadek, gdy $L_K(a)$ i a jest rozdzielczy nad K. Niech $w_a(x) = x^k + a_{k-1}x^{k-1} + ... + a_1x + a_0 \in K[X]$ będzie wielomianem minimalnym dla a nad K.Niech $b_1 = a, ..., b_n \in \widehat{K}$ będą pierwiastkami w_a i możemy założyć bez straty ogólności, że $b_i = f_i(a)$. W takim razie, jeśli popatrzymy na w_a w \widehat{K} , to mamy

$$w_a = \prod (x - b_i)$$

$$a_{k-1} = -\sum b_{i}$$

$$a_0 = (-1)^k \prod b_i$$

Na mocy zadania 4 z listy 5 dostajemy więc

$$N_{L/K}(a) = (-a)^k a_0 = \prod f_i(a)$$

 $Tr_{L/K}(a) = -a_{k-1} = \sum f_i(a)$

Dowód. 1. Niech a \in L. WtedyO JEZU JA NIE MYŚLĘĘĘ

2. Jeśli
$$[L:K]_r \neq 1$$
, to $[L:K]_r = p^l$ dla $l \geq 1$ i $T_r(a) = 0$

(a)
$$a \in K_s$$
, to $tr_{L/K}(a) = [L : K_s] \cdot Tr_{K_s/K}(a) = 0$

(b) a
$$\notin$$
 K_s, wtedy $w_a(x) \in K[X]$ nie jest rozdzielczy na mocy 6.6(4). Czyli $K[X^p] \ni w_a(x) = x^{tp} + a_{(t-1)p}x^{(t-1)p} +$ Stąd $a_{tp-1} = 0 = Tr_{L/K}(a) = [L:K(a)]\underbrace{Tr_{K(a)/K}(a)}_{=0}$

3. Jeśli [L : K] $_{r}$ = 1, to L = K i K \subseteq L jest rozdzielcze. Patrzymy na ciąg

$$K \subseteq K(a) \subseteq L$$

mamy

$$\operatorname{Tr}_{L/K}(a) = [L : K(a)] \cdot \operatorname{Tr}_{K(a)/K}(a)$$

Możemy wziąc b takie, że K(a, b) = L. Teraz liczymy homomorfizmy L $\underset{K}{\rightarrow}$ \widehat{K}

 $K\subseteq L\subseteq \widehat{K}$

- Mówimy, że rozszerzenie algebraiczne jest Galois , gdy dla każdego a \in L \ K istnieje f \in Gal(L/K) takie, że f(a) \neq a.
- Niech $G \le Aut(L)$. Wtedy **ciałem punktów stałych** grupy G nazywamy

$$L^G = \{a \in L \ : \ (\forall \ f \in G) \ f(a) = a\} = \bigcap_{f \in G} Fix(f)$$

Uwaga: Jeśli K \subseteq L jest algebraiczne, to K \subseteq L jest Galois \iff K = L^{G(L/K)} [ćwiczenia].

Przykłady:

- 1. L = K(a) i a jest algebraiczne nad K. w_a jest wielomianem minimalnym dla a i a = $a_1,...,a_k$ są wszystkie pierwiastki w_a w L. Wtedy $G(L/K) \ni F$ jest wyznaczone przez $f(a) \in \{a_1,...,a_k\}$. Stąd też $|Gal(L/K)| \le k \le [L:K]$.
- 2. L = K(a₁, ..., a_k) \supseteq K jest ciałem rozkładu wielomianu w(x) \in K[X] (a₁, ..., a_k to wszystkie pierwiastki w w L). Gal(L/K) \ni f jest wyznaczone przez f \upharpoonright {a₁, ..., a_n} \in Sum({a₁, ..., a_n}) i istnieje monomorfizm G(L/K) \rightarrow Sum({a₁, ..., a_n}) taki, że f \mapsto f \upharpoonright {a₁, ..., a_n}.
- 3. $\zeta_a \in \mathbb{C}$ jest pierwiastkiem pierwotnym z 1 sotpnia m. Wtedy $[\mathbb{Q}[\eta_1]:\mathbb{Q}] = \phi(m)$ i $\eta_1 \in \{\zeta_1,...,\zeta_{\phi(m)} \subseteq \mathbb{C}$ to wszystkie pierwiastki pierwotne stopnia m z 1 w \mathbb{C} . Dowolny $Gal(\mathbb{Q}[\zeta_1]/\mathbb{Q}) \ni f$ jest wyznaczony przez $f(\zeta_1)$ (może być dowolny ζ_i , $1 \le i \le m$), bo $Gal(\mathbb{Q}[\zeta_1]/\mathbb{Q}) = \mathbb{Q}(\zeta_i)$. Czyli $f(\zeta_1) = \zeta_1^{l_f}$ dla pewnego $0 < l_f < takiego$, że $gcd(m, l_f) = 1$. Czyli $Gal(\mathbb{Q}(\zeta_1)/\mathbb{Q}) \cong \mathbb{Z}_m^k$ takie, że $f \mapsto l_f$.

Twierdzenie 8.2. Niech $K \subseteq L$ będzie algebraiczne. Wtedy $K \subseteq L$ jest Galois $\iff K \subseteq L$ jest rozdzielcze i normalne.

Dowód. Bez starty ogólności niech $L \subseteq \widehat{K}$

 \Longrightarrow Niech $a \in L \setminus K$ i niech $a = a_1, ..., a_n \in L$, wszystkie parami różne, będą pierwiastkami $w_a(x) \in K[X]$ w L. Niech $v(x) = (x - a_1)(x - a_2)...(x - a_n) \in L[X]$, wtedy $v(x)|w_a(x)$ i v(x) jest niezmienniczy względem Gal(L/K) [f permutuje $a_1, ..., a_n$]. Czyli $v(x) \in L^{Gal(L/K)}[X] = K[X]$, bo $K \subseteq L$ jest Galois. Stąd Galois0, więc Galois1 rozdzielczy i rozkłada się nad Galois2 na czynniki liniowe. Stąd wynika, że Galois3 pierwiastkami Galois4 na czynniki liniowe.

 \leftarrow

Weźmy $a \in L \setminus K$ i niech $w_a(x)$ będzie wielomianem minimalnym [rozdzielczym]. Istnieje $a \neq a' \in L$ będące innym pierwiastkiem w_a w L (bo L normalne). Istnieje $f \in Gal(\widehat{K}/K)$ takie, że f(a) = a'. Ponieważ $K \subseteq L$ było normalne, to f[L] = L i mamy $f \upharpoonright L \in Gal(L/K)$, $f \upharpoonright L(a) \neq a$, czyli z uwagi wcześniej $K \subseteq L$ jest Galois.

Wniosek 8.3. Załóżmy, że mamy $K \subseteq L \subseteq M \subseteq K$. $K \subseteq M$ jest rozszerzeniem Galois $\iff L \subseteq M$ jest Galois.

Twierdzenie 8.4. Twierdzenie Artina: niech $G \leq Aut(L)$, wtedy $L^G \subseteq L$ jest rozszerzeniem Galois i $[L:L^G] = |G|$.

Dowód. Niech $G \leq Gal(L/L^G)$, wtedy:

- dla każdego $x \in L \setminus L^G$ istnieje $f \in Gal(L/L^G)$ takie, że f(x) = x
- $L^G \subseteq L$ jest algebraiczne:

Niech $a \in L \setminus L^G$, $\{a = a_0, ..., a_l\} = G(a)$ będzie orbitą a w L. Niech $w(x) = (x - a_0)(x - a_1)...(x - a_n) \in L[X]$. Wtedy dla każdego $g \in G$ mamy g(w(x)) = w(x) i $w \in L^G[X] \implies$ a jest algebraiczny nad L^g .

Ponieważ deg(w) \leq |G|, to [L^G(a) : L^g] \leq |G|. L^g jest rozdzielczym rozszerzeniem L, co razem z twierdzeniem Abela daje nam [L : L^G] \leq |G| i L = L^G(a) dla pewnego a. Czyli $w_a(x) \in L^G[X]$ jest wielomianem minimalnym a nad L^G, więc deg(w_a) \leq |G|.

 $L^g\subseteq L$ jest rozdzielcze i normalne. Czyli $|Gal(L^G/L)|=deg(w_a)=[L:L^G]\le |G|$. Ponieważ $G\le Gal(L/L^G)$, to $G=Gal(L/L^G)$ i $[L:L^g]=|G|$

Wniosek 8.5. Niech $K \subseteq L$ będzie skończonym rozszerzeniem Galois. Wtedy [L : K] = |Gal(L/K)|

Dowód. Niech G = Gal(L/K), wtedy K = L^G i G jest skończona i z twierdzenia Artina [L : K] = [L : L^G] = |G|

 $K \subset L \subset \widehat{K}$. Definiujemy

$$\mathcal{L} = \{L' : K \subset L' \subset L\}$$

$$\mathscr{G} = \{H : H \leq Gal(L/K)\}$$

Od razu pojawiają nam się naturalne homomorfizmy:

$$\Gamma: \mathscr{L} \to \mathscr{G}$$

$$L' \mapsto Gal(L/L') < Gal(L/K)$$

$$\Lambda:\mathscr{G} o\mathscr{L}$$

$$G\mapsto [K\subset]L^G\subset L$$

Twierdzenie 8.6. Załóżmy, że K \subseteq L jest skończonym rozszerzeniem Galois Wtedy Γ jest bijekcją i Λ = Γ^{-1} .

Dowód.

$$\mathcal{L} \ni \mathsf{L}' \stackrel{\Gamma}{\mapsto} \mathsf{Gal}(\mathsf{L}/\mathsf{L}') \stackrel{\Lambda}{\mapsto} \mathsf{L}^{\mathsf{Gal}(\mathsf{L}/\mathsf{L}')} = \mathsf{L}',$$

bo $L' \subseteq L$ jest Galois i używamy 8.3.

Czyli $\Lambda \circ \Gamma$ = od φ . Tak samo w drugą stronę:

$$\mathscr{G}\ni \mathsf{H}\overset{\Lambda}{\mapsto}\mathsf{L}^\mathsf{H}\subseteq \mathsf{K}\overset{\Gamma}{\mapsto}\mathsf{Gal}(\mathsf{L}/\mathsf{L}^\mathsf{H})=\mathsf{H}$$

Wniosek 8.9. Załóżmy, że $K \subseteq L$ jest skończone i Galois. Dla $H \subseteq Gal(L/K)$ mamy $H \triangleleft Gal(L/K) \iff K \subseteq L^H(= \Lambda(H))$ jest normalne (tzn. tutaj Galois).

Ponadto wtedy $Gal(L^H/K) \cong Gal(L/K)/H$

Przed dowodem ćwiczenie, które pojawi się na liście zadań:

Niech K \subseteq L' \subseteq L \subseteq \widehat{K} takie, że K \subseteq L jest normalne (może być też skończone). Wtedy K \subseteq L' jest normalne \iff dla każdej f \in Gal(L/K) f[L'] = L' [ćwiczenia].

Dowód. Weźmy sobie $f \in Gal(L/K)$ RYSUNEK

NIE ROZUMIEM

110

Wykład 9: Rozszerzenia abelowe

9.1 Rozszerzenia abelowe

Załóżmy, że K \subseteq L jest skończonym rozszerzeniem Galois. Wtedy rozszerzenie K \subseteq L jest abelowe (cykliczne) gdy Gal(L/K) jest abelowe (cykliczne).

Twierdzenie 9.3. Założmy, że $K \subseteq L_1 \subseteq L$ to rozszerzenia ciał. Jeśli $K \subseteq L$ jest abelowe (cykliczne), to $K \subseteq L_1$ i $L_1 \subseteq L$ też takie są.

Dowód. Z tego, że $Gal(L/L_1) \triangleleft Gal(L/K)$ wynika, że $K \subseteq L_1$ i $L_1 \subseteq L$ jest rozszerzeniem Galois i $Gal(L_1/K) \cong Gal(L/K)/Gal(L/L_1)$. Dlatego mamy $Gal(L/L_1)$ i $Gal(L_1/K)$ są abelowe (cykliczne).

Przykłady:

1. Niech K $\subseteq \widehat{K}$ i $\zeta \in \widehat{K}$ będzie pierwiastkiem pierwotnym stopnia n z 1.

$$\begin{array}{ccc} \text{Gal}(\textbf{K}(\zeta)/\textbf{K}) & \longleftarrow & \mathbb{Z}_n^* \\ & & & \psi & & \psi \\ & & f & \longmapsto & l_f \end{array}$$

 l_f wybieramy tak, żeby $f(\zeta) = \zeta^{l_f}$ 0 < l_f < n. Gdy char(K) = 0, to homomorfizm wyżej jest izomofrizmem, wpp nie musi być to prawdą. Natomiast mamy pewność, że $K(\zeta) \supseteq K$ jest rozszerzeniem abelowym.

2. Niech char(K) = p i p \nmid n. Wybierzmy a \in K takie, że $\sqrt[n]{a} \notin$ K. Załóżmy, że $\zeta \in$ K jest pierwiastkiem pierwotnym z 1 stopnia n.

W takim przypadku, L = K($\sqrt[n]{a}$) \supseteq K jest rozszerzeniem Galois i niech w(x) = xⁿ – a (niekoniecznie nierozkładalny). Pierwiastki w(a) w L mają postać $\zeta^i \sqrt[n]{a}$ dla i = 0, ..., n – 1.

Niech $f \in Gal(L/K)$ będzie wyznaczony przez $f(\sqrt[n]{a}) = \zeta^{l_f} \sqrt[n]{a}$ dla $0 \le l_f < n$. Wtedy funkcja jak wyżej, tzn.

$$Fal(L/K) \ni f \mapsto l_f \in \mathbb{Z}_n^*$$

jest monomorfizmem, ponieważ

$$\begin{split} \text{Gal}(L/K) \ni f \mapsto l_f \\ \text{Fal}(L/K) \ni g \mapsto l_g \\ (g \circ f)(\sqrt[n]{a}) = g(\zeta^{l_f}\sqrt[n]{a}) = \zeta^{l_f}g(\sqrt[n]{a}) = \zeta^{l_f}\zeta^{l_g}\sqrt[n]{a} = \zeta^{l_f+l_g}\sqrt[n]{a}, \end{split}$$

więc $l_{g \circ f} = l_g +_n l_f$. Z tego powodu, Gal(L/K) jest grupą cykliczną.

Twierdzenie 9.4. Załóżmy, że K \subseteq L jest rozszerzeniem cykliczny takim, że [L : K] = n. Niech $\zeta \in$ K będzie pierwiastkiem pierwotnym z 1 stopnia n (czyli p \nmid n gdy char(K) = p). Wtedy (\exists a \in K) L = K($\sqrt[n]{a}$).

Dowód. Niech $\gamma \in Gal(L/K)$ będzie generatorem rozszerzenia L rzędu n. Dla b \in L niech

$$c(b) = b + \zeta \gamma(b) + ... + \zeta^{n-1} \gamma^{n-1}(b)$$

$$\gamma(c(b)) = \gamma(b) + \zeta \gamma^{2}(b) + ... + \zeta^{n-1} \underbrace{\gamma^{n}(b)}_{=b} = \zeta^{-1}c(b)$$

$$\gamma^{i}(c(b)) = \zeta^{-a}c(b), i = 0, 1, 2, ...$$

Jeżeli c(b) ≠ 0 [założenie ad hoc], to

$$\{\gamma^0(c(b)), \gamma(c(b)), ..., \gamma^{n-1}(c(b))\}$$

jest n-elementowym zbiorem pierwiastków wielomianu $w_{c(h)}(x) \in K[X]$, czyli

$$[K(c(b):K] \ge n \implies K(c(b)) = L$$

bo $K(c(b)) \subset L$.

Mamy $c(b)^n \in K$, bo

$$\gamma^{\mathsf{i}}(\mathsf{c}(\mathsf{b})^{\mathsf{n}}) = \left[\gamma^{\mathsf{i}}(\mathsf{c}(\mathsf{b})) \right]^{\mathsf{n}} = \left[\zeta^{-\mathsf{i}}\mathsf{c}(\mathsf{b}) \right]^{\mathsf{n}} = \zeta^{-\mathsf{i}\mathsf{n}}\mathsf{c}(\mathsf{b})^{\mathsf{n}} = \mathsf{c}(\mathsf{b})^{\mathsf{n}}$$

dla wszystkich i = 0,1,..., n – 1. Dlatego c(b) = $\sqrt[n]{a}$ dla a = c(b)ⁿ \in K i L = K($\sqrt[n]{a}$).

Wszystko to zachodzi pod warunkiem, że $c(b) \neq 0$, ale wiemy, że istnieje $b \in L$ takie, że $c(b) \neq 0$, bo:

Twierdzenie 9.5. Załóżmy, że $\alpha_1, ..., \alpha_n \in Aut(L)$, $a_1, ..., a_n \in L$ i każdy jest $\neq 0$. Wtedy

(
$$\exists \ c \in L$$
) ($\sum a_i \alpha_i$)(c) $\neq 0$

Innymi słowy: α_1 , ..., α_n są liniowo niezależne w przestrzeni L^L nad L.

Dowód. Indukcja względem n. Dla n = 1 jest to oczywiste. c = 1 : $a_1\alpha_1(1) = a_1 \neq 0$.

Krok indukcyjny:

Załóżmy nie prosty, że $(\forall x \in L) \sum_{i=1}^{n+1} a_i \alpha_i(x) = 0$. Niech $a \in L$ dowolne różne od zera. Wtedy

$$(\forall \ x \in L) \ \sum_{n+1}^{n+1} a_i \alpha_i(ax) = 0$$

$$\sum_{n+1}^{n+1} (a_i \alpha_i(a)) \alpha_i(x) = 0$$

$$\sum_{n+1}^{n+1} a_i \alpha_i(a) [\alpha_{n+1}(a)]^{-1} \alpha_i(x) = 0$$

$$\sum_{n+1}^{n+1} a_i \alpha_i(x) - \sum_{n+1}^{n+1} a_i \alpha_i(a) \alpha_{n+1}(a)^{-1} \alpha_i(x) = 0$$

$$\sum_{n+1}^{n+1} \underbrace{\left[a_i - a_i \alpha_i(a) \alpha_{n+1}(a)^{-1} \right] \cdot \alpha_i(x)}_{=0 \text{ gdy i=n+1}} \cdot \alpha_i(x) = 0$$

$$\sum_{n+1}^{n+1} \underbrace{\left[a_i - a_i \alpha_i(a) \alpha_{n+1}(a)^{-1} \right] \cdot \alpha_i(x)}_{=0 \text{ gdy i=n+1}} \cdot \alpha_i(x) = 0$$

$$(1 - \alpha_{n+1}(a)^{-1}) \sum_{n=1}^{n} a_i \alpha_i(a) = 0$$

Z założenia indukcyjnego wiemy, że cała ta suma nie jest zerem, więc zerem musi być 1 – α_{n+1} , czyli każdy poziom sumy po wymnożeniu jest zerem i:

$$a_i - a_i \alpha_i(a) \alpha_{n+1}(a)^{-1} = 0,$$

czyli $\alpha_i(a) = \alpha_{n+1}(a)$ gdy $a_i \neq 0$. Z tego wynika, że dla każdego $a \in L$ jest $\alpha_i(a) = \alpha_{n+1}(a)$ i w takim razie $\alpha_i = \alpha_n$, co daje sprzeczność, bo α_i były parami różne.

9.2 Rozwiązywalne rozszerzenia ciał i rozszerzenia przez pierwiastki

Załóżmy, że $K \subseteq L$ jest skończonym rozszerzeniem ciał.

- 1. K ⊆ L jest **rozszerzeniem rozwiązywalnym**, gdy K ⊆ L jest Galois i Gal(L/K) jest grupą rozwiązywalną.
- 2. K ⊆ L jest **rozszerzeniem ciała przez pierwiastki** [radicals], gdy istnieje k oraz

$$L \subseteq L_0 \supseteq L_1 \supseteq ... \supseteq L_k = K$$

takie, że dla każdego i < k L_i jest ciałem rozkładu wielomianu

- $x^{n_i} b_i$, $b_i \in L_{i+1}$ nad L_{i+1} ($p \nmid n_i$ jeśli char(K) = p
- lub $x^p x b_i$ dla L_{i+1} nad L_{i+1}

Twierdzenie 9.6. Załóżmy, że K \subseteq L jest rozszerzeniem skończonym ciał. Wtedy K \subseteq L jest rozszerzeniem przez pierwiastki \iff istnieje L' \supseteq L takie, że K \subseteq L' jest rozwiązalne.

Dowód. \Longrightarrow

Możemy założyć, że $K \subseteq L_0$ jest rozszerzeniem Galois (przez rozszerzenie ciąg), wtedy mamy ciąg normalny grup [ćwiczenie].

$$Gal(L_0/L_k) \triangleright Gal(L_0/L_{k-1}) \triangleright Gal(L_0/L_{k-1}) \triangleright ... \triangleright Gal(L_0/L_1) \triangleright \{e\}$$

faktorami tego ciągu są $Gal(L_i/L_{i+1})$. Wystarczy pokazać, że $L_i \supseteq L_{i+1}$ jest rozwiązywalna [wtedy można rozdrobić ciąg wyżej tak, by miał faktory abelowe].

Alternatywnie: H ⊲ G, jeśli H jest rozwiązywalna i G/H jest rozwiązywalna, to G jest rozwiązywalna [ćwiczenie].

Rozważamy przypadki wielomianów z definicji wyżej:

• $x^{n_i} - b_i$

Niech $a_i = \sqrt[n_i]{b_i} \in L_i$. Wtedy $L_i = L_{i+1}(\zeta_{n_i}, a_i)$, ζ_{n_i} jest pierwiastkiem pierwotnym z 1 stopnia n_i .

$$L_{i} = L_{i+1}(\zeta_{n_{i}}, a_{i}) \stackrel{(\clubsuit)}{\supseteq} L_{i+1}(\zeta_{n_{i}}) \supseteq L_{i+1}$$

Ponieważ $L_{j+1} \ \supseteq \ L_{j}$ jest rozszerzeniem Galois, to takie jest również rozszerzenie (*) i

 $\operatorname{Gal}(L_{i+1}(\zeta_{n_i}, a_i)/L_{i+1}(\zeta_{n_i})) \cong \mathbb{Z}_{n_i}^*$ jest cykliczna i abelowa.

Również rozszerzenie $L_{i+1} \subseteq L_{i+1}(\zeta_{n_i})$ jest Galois i grupa $Gal(L_{i+1}(\zeta_{n_i})/L_{i+1})$ jest abelowa.

Stąd

$$Gal(L_i/L_{i+1}) \overset{(\mathfrak{D})}{\triangleright} Gal(L_i/L_{i+1}(\zeta_{n_i}) \triangleright \{e\}$$

i faktor w ($\mathfrak D$) jest izomorficzny do abelowej grupy $Gal(L_i(\zeta_{n_i})/L_{i+1})$. Czy $Gal(L_i/L_{i+1})$ jest rozwiązywalna stopnia ≤ 2 .

• $x^{p} - x - b_{i}$

Niech a ∈ L_i będzie peirwiastkiem wielomianu wyżej. Wtedy a + 1 jest również pierwiastkiem, bo

$$(a + 1)^p - (a + 1) - b_i = a^p + 1^p - a - 1 - b_i = a^p - a - b_i = 0$$

Dlatego a, a + 1, ..., $a_i p - 1 \in L_i$ i wszystkie są pierwiastkami wielomianu wyżej. Stąd $L_i = L_{i+1}(a)$.

Niech $f \in Gal(L_i/L_{i+1})$ będzie wielomianem wyznaczanym przez $f(a) = a + l_f$. Przekształcanie

$$\text{Fal}(L_i/L_{i+1})\ni f\mapsto l_f\in\mathbb{Z}_p^*$$

daje $Gal(L_i/L_{i+1}) \hookrightarrow \mathbb{Z}_p^*$ (w istocie jest tutaj \cong). Więc $l_i \supseteq L_{i+1}$ jest rozszerzeniem cyklicznym, czyli rozwiązywalny,

 \leftarrow

Niech K \subseteq L będzie rozszerzeniem rozwiązywalnym. Pokażemy, że jest też rozszerzeniem pierwiastkowym.

Niech

$$Gal(L/K) \triangleright G_{k-1} \triangleright G_{k-2} \triangleright ... \triangleright G_0 = \{e\}$$

będzie ciągiem normalnym podgrup o faktorach abelowych i bez straty ogólności cyklicznych, prostych, tzn. $\cong \mathbb{Z}_q$, q - liczba pierwsza. Wtedy

jest ciągiem rozszerzeń cyklicznych, prostych.

Claim: Wystarczy teraz pokazać, że jeśli $K \subseteq L$ jest cykliczne, $L \subseteq \widehat{K}$ i Gal(L/K) jest prosta, to $K \subseteq L$ jest pierwiastkowe.

Dowód na boczku: Niech [L : K] = n, Gal(L/K) $\cong \mathbb{Z}_n^*$, a n jest liczbą pierwszą. Rozważamy przypadki charakterystyk ciał:

• $carh(K) = p \neq n lub char(K) = 0$

Niech $\zeta \in \widehat{K}$ będzie pierwiastkiem pierwotnym z 1 stopnia n. Mamy, że $K \subseteq K(\zeta)$ i $K(\zeta) \subseteq L(\zeta)$ jest rozszerzeniem Galois. Dalej, $[L(\zeta) : K(\zeta)]|[L : K]$, bo $Gal(L(\zeta)/K(\zeta)) \hookrightarrow Gal(L/K) \cong \mathbb{Z}_n^*$. Niech $m = [L(\zeta) : K(\zeta_1, \text{czyli } m = 1 \text{ lub } m = n. \text{ Z twierdzenia } 9.4 \text{ dostajemy}$

$$L(\zeta) = K(\zeta)(\sqrt[n]{a}), a \in K(\zeta)$$

gdy m = n. Gdy m = 1 jest trywialne.

• char(K) = p = n

Niech $\gamma \in Gal(L/K)$ będzie generatorem. Z twierdzenia Dedekinda (9.5) wiemy, że istneiej b \in L takie, że

$$K \in \mathsf{Tr}_{\mathsf{L}/\mathsf{K}}(\mathsf{b}) = \sum_{\mathsf{i}=\mathsf{0}}^{\mathsf{p}-\mathsf{1}} \gamma^{\mathsf{i}}(\mathsf{b}) \not= \mathsf{0}$$

Dla b' = $\frac{1}{t}$ b mamy $Tr_{L/K}(b')$ = 1.

Niech a = $\gamma(b')$ + $2\gamma^2(b')$ + ... + $(p-1)\gamma^{p-1}(b')$. Wtedy

$$\gamma(a) = \gamma^2(b') + 2\gamma^3(b') + ... + \underbrace{(p-1)\gamma^p(b')}_{=b'} = a - Tr_{L/K}(b') = a - 1,$$

ale

$$\gamma(a^{p} - a) = \gamma(a)^{p} - \gamma(a) = (a - 1)^{p} - (a - 1) = a^{p} - a$$

więc $a^p - a \in Fix(\gamma) = K$. Niech $c = a^p - a$. Stąd a jest pierwiastkiem $x^p - x - v$ oraz L to ciało rozkładu $x^p - x - c$ nad K, więc $K \subseteq L$ jest pierwiastkowe.

Przykłady:

1. Niech $S_n := Sym(\{x_1, ..., x_n\})$ będzie grupą funkcji symetrycznych o n zmiennych, $L = K(x_1, ..., x_n)$ i $M = K(x_1, ..., x_n)^{S_n}$. Wiemy, że $S_n < Aut(L)$. Z twierdzenia Artina wiemy, że $K \subseteq L$ jest rozszerzeniem Galois oraz $S_n = Gal(L/M)$.

W przypadku, gdy n \geq 5 S_n nie jest rozwiązalna, więc M \subseteq L też takie nie jest. L jest ciałem rozkładu wielomianu

$$\begin{split} \mathsf{M}[\mathsf{T}] \ni \mathsf{w}(\mathsf{T}) = & (\mathsf{T} - \mathsf{x}_1)(\mathsf{T} - \mathsf{x}_2)...(\mathsf{T} - \mathsf{x}_n) = \\ & = \mathsf{T}^n - \sigma_1(\overline{\mathsf{x}})\mathsf{T}^{n-1} + \sigma_2(\overline{\mathsf{x}})\mathsf{T}^{n-2} + ... + (-1)^{n-1}\sigma_{n-1}(\overline{\mathsf{x}})\mathsf{T} + (-1)^n\sigma_n(\overline{\mathsf{x}}) \end{split}$$

gdzie $\sigma_i(\overline{x}) = \sum_{1 \leq j_1 < ... < j_i \leq n} x_{j_1} x_{j_2} ... x_{j_n}$ to bazowe funkcje symetryczne (wzory Viete'a). Mamy $\sigma_i(\overline{x}) \in M = L^{S_n}$.

2. Gdy $K \subseteq L$ jest rozszerzeniem ciał oraz L jest ciałem rozkładu nad K wielomianu w(x) stopnia co najwyżej 4, to Gal(L/K) wkłada się w S_4 , a S_4 jest grupą rozwiązywalną. Podgrupa grupy rozwiązywalnej jest nadal rozwiązywalna, więc równanie

$$w(x) = 0$$

jest rozwiązywalne przez pierwiastki.

Niech M = $L^{Gal(L/K)}$. Wtedy z twierdzenia Artina wiemy, że K \subseteq M jest radykalne, a M \subseteq L jest Galois (fakt 7.4.). $Gal(L/M) = Gal(L/K) \implies M \subseteq L$ jest rozszerzeniem pierwiastkowym, tzn:

$$L \subseteq L_0 \supseteq L_1 \supseteq ... \supseteq L_k = M$$
,

wszystkie rozszerzenia $L_i \supseteq L_{i+1}$ są rozszerzeniami o pierwiastki, więc wszystkie pierwiastki w(x) dają się wyrazić nad K poprzez stosowanie działań ciała (włączając dzielenie, odejmowanie) oraz "pierwiastkowanie" tj. branie rozwiązań wielomianów x^n – a lub x^p – x – a.

Gdy z kolei wielomian w(x) jest stopnia 5 to nie musi być to prawdą [ćwiczenie: czy dla 6,7 powyższe zachodzi?]

Fakt
$$K(\sigma_1, ..., \sigma_n) = K(x_1, ..., x_n)^{S_n}$$

Dowód. ⊆ jasne

 \supseteq

$$\begin{split} K(\vec{\sigma}) \subseteq K(\overline{x})^{\mathsf{S}_{\mathsf{N}}} \subseteq K(\overline{x}) \\ \mathsf{n}! &= [K(\overline{x}) : K(\overline{x})^{\mathsf{S}_{\mathsf{N}}}] \leq [K(\overline{x}) : K(\vec{\sigma})] \leq \mathsf{n}!, \end{split}$$

z czego ostatnia nierówność zachodzi, bo $K(\overline{x})$ jest ciałem rozkładu wielomianu

$$w(T) = (T - x_1)...(T - x_n)$$

nad K(σ). Czyli mamy

$$[K(\overline{x}):K(\overline{x})^{S_n}]=[K(\overline{x}):K(\vec{\sigma})]]$$

i zawieranie $K(\vec{\sigma}) \subseteq K(\bar{x})^{S_n}$ jest tak naprawdę równością.

Można też pokazać, że $K[\sigma_1, ..., \sigma_n] = K[x_1, ..., x_n]^{S_n}$, co jest **podstawowym twierdzeniem o wielomianach symetrycznych**.

Zastosowania: czyli konstrukcje przy pomocy cyrkla i linijki. Dane są punkty A \neq B \in \mathbb{R}^2 .

cyrkiel

Mamy okrąg
$$\{ \begin{pmatrix} x \\ y \end{pmatrix} : (x - a)^2 + (y - b)^2 = r^2 \}$$
:

czyli r =
$$\sqrt{(a'-a)^2 + (b'-b)^2}$$

linijka

Rozważamy prostą L przechodzącą przez punkty A i B, czyli o równaniu

$$\begin{vmatrix} x - a & a' - a \\ y - b & b' - b \end{vmatrix} = 0$$

Niech $(a_1,b_1),...,(a_n,b_n)\in\mathbb{R}^2$. Punkt $(a,b)\in\mathbb{R}^2$ jest konstruowany przy pomocy cyrkla i linijki na płaszczyźnie \mathbb{R}^2 z punktów $(a_1,b_1),...,(a_n,b_n)$ i punktów $(0,1),(1,0)\iff$ rozszerzenie ciał $K\subseteq K(a,b)$ jest rozszerzeniem przez pierwiastki stopnia ≤ 2 . Tutaj oczywiście $K=\mathbb{Q}(a_1,b_1,...,a_n,b_n)$.

• Kwadratura koła:

Dane jest koło o promieniu 1 i punkt (0,1). Szukamy kwadratu o polu π . Równoważnie problem można wyrazić jako szukanie punktu (0, $\sqrt{\pi}$). Ale π jest liczbą przestępną, więc $\sqrt{\pi}$ też takie jest i rozwiązanie jest niemożliwe.

· Trysekcja kąta:

Dany jest kąt $0 < \theta < \pi$ i naszym celem jest skonstruować kąt $\frac{1}{3}\theta$.

a jest algebraiczne nad b, bo

$$4a^3 - 3a - b = 0$$
.

Cel jest niemożliwy, gdyż $[\mathbb{Q}(a,b):\mathbb{Q}(b)] = 3$.

Podwojenie sześcianu o krawędzi jednostkowej, równoważnie skonstruowanie (0, a), gdzie s³ = 2.
 Również jest to niemożliwe.

Wykład 10: Rozszerzenia przestępne ciał

 $K \subseteq L$ to rozszerzenie ciał.

 $K \subseteq L$ jest przestępne, gdy istnieje $a \in L$ takie, że a jest przestępne nad K (tzn. I(a/K) = 0).

 $K \subseteq L$ jest czysto przestępne, gdy każde $a \in L$ jest przestępne nad K.

Uwaga 10.1. a jest przestępne nad K \iff K(a) \cong K(x).

Dowód. Ćwiczenia

Niech U = \widehat{U} będzie (dużym) ciałem oraz K \subseteq U będzie podciałem. Niech F \subseteq K będzie podciałem prostym.

 $acl_K: P(U) \rightarrow P(U)$ to operator algebraicznego domknięcia nad K taki, że dla A \subseteq A $acl_K(A) = K(A)^{alg} \subseteq U$.

 $A \subseteq U$ jest algebraicznie domknięte nad K, gdy $A = cl_K(A)$.

10.1 Własności

- 1. $\operatorname{acl}_{K}(\emptyset) = \widehat{K}$
- 2. (a) $A \subseteq B \implies cl_K(A) \subseteq (B)$ monotoniczność
 - (b) $A \subseteq \operatorname{acl}_{K}(A)$
 - (c) $\operatorname{acl}_K(\operatorname{acl}_K(A)) = \operatorname{acl}_K(A)$ idempotetność, tzn: acl_K jest operatorem domknięcia.
- 3. $\operatorname{acl}_{K}(A) = \bigcup_{A_0 \subseteq A \atop ck} \operatorname{acl}_{K}(A_0)$ skończony charakter
- 4. własność wymiany

$$a \in acl_K(A \cup \{b\} \setminus acl_K(A) \implies b \in acl_K(A \cup \{a\})$$

Dowód.

3. $[\operatorname{acl}_{K}(A) =]K(A)^{\operatorname{alg}} = \bigcup_{\substack{A_0 \subseteq A \\ \operatorname{sk}}} K(A_0)^{\operatorname{alg}}$

 \subseteq

Weźmy $b \in K(A)^{alg}$. Wtedy istnieje $w(x) \in K(A)[X]$ takie, że w(b) = 0 i w $\neq 0$. w ma współczynniki w $K(A_0 \text{ dla pewnego skończonego } A_0 \subseteq A$, więc $b \in K(A_0)^{alg}$.

4. Jeśli a $\notin \underbrace{(K(A)^{alg})}_{=L}$, to wtedy b $\notin K(A)^{alg}$, tzn. b jest przestępny nad L i L(b) \cong L[Y]. Jest tak, bo

$$b \in K(A)^{alg} \implies a \in K(A, b)^{alg} = K(A)^{alg}$$

Niech teraz $a \in K(A, b)^{alg}$ i dla wygody oznaczmy $L = K(A)^{alg}$. Wtedy $K(A, b)^{alg} = L(b)^{alg}$. Wtedy istnieje $w(x) \in L[X]$, w(a) = 0 i stopień w jest niezerowy.

Bez straty ogólności: $w(x) \in L[b][X]$ (bo L(b) jest ciałem ułamków pierścienia L[b]).

$$w(x) = c_n x^n + ... + c_1 x + c_0$$

 $c_i \in L[b]$, tzn. c_i = $v_i(b)$ i $v_i \in L[Y]$. Niech

$$v(y) = v_n(y) \cdot a^n + ... + v_1(y) \cdot a + v_0(y).$$

 $\in L[a][y]$

$$\begin{array}{l} v(b) = 0 \\ v \neq 0 [\acute{c}wiczenia] \end{array} \right\} \implies b \in acl_K(A \cup \{a\}) = L(a)^{alg}$$

 $A \subseteq U$ jest **algebraicznie niezależny** nad K, gdy dla każdego $a \in A$ a \notin acl_K(A \ {a}).

Równoważnie: dla każdego n i dla wszystkich $a_1,...,a_n\in A$ parami różnych, dla każdego $w(x_1,...,x_n)\in K[\overline{X}]$ $w(\overline{a})\neq 0$.

- A jest bazą przestępną zbioru B \subseteq U nad K, gdy A jest algebraicznie niezależny nad K i $A \subseteq B \subseteq \operatorname{acl}_K(A)$.
- wymiar przestępny B nad K trdeg_K(B) to moc jakiejkolwiek bazy przestępnej zbioru B nad K.
- Gdy K = F jest ciałem prostym, to pomijamy je w acl_K, trdeg_K. Jest to uzasadnione przez następujące twierdzenie.

Twierdzenie 10.2.

- 1. Jeśli $A \subseteq B \subseteq U$ i A jest algebraicznie niezależny nad K, to istnieje A', $A \subseteq A' \subseteq B$, czyli baza przestępna B nad K.
- 2. Każde dwie bazy przestępne zbioru B nad K są równoliczne.

Dowód. Ćwiczenia (patrz: dowód dla operatora Lin w przestrzeni liniowej)

Przykład

- 1. Niech K będzie ciałem, x_i , $i \in I$ zmiennymi oraz $U = K(x_i : i \in I)^{alg}$. Wtedy $\{x_i : i \in I\} \subseteq U$ jest algebraicznie niezależne nad K i trdeg_K(U) = |I|.
- 2. Jeśli K \subseteq L \subseteq U oraz $\{a_i: i \in I\}$ jest bazą przestępną L nad K, to

$$K(a_i : i \in I) \cong_K K(x_i : i \in I)$$

$$K\subseteq K(a_i\,:\,i\in I)\subseteq L$$

z czego pierwsze rozszerzenie jest czysto przestepne, a drugie - algebraiczne.

Wykład 11: Moduły

10.1 Moduły wprowadzenie

Przestrzenie liniowe nad pierścieniami

Definicja 10.3. Niech R będzie pierścieniem z 1, niekoniecznie przemienny. $(M, +, r)_r \in R$ jest modułem nad R, gdy spełnia aksjomaty przestrzeni liniowej nad R.

Moduł może być:

lewostronny, wtedy $M \ni x \mapsto rx$ dla każdego r, x jest w M

 \Rightarrow prawostronny (analogicznie, $xr \in M$).

Łączność mnożenia w modułach:

lewostronna prawostronna mieszana
$$r_1(r_2m) = (r_1r_2)m \qquad (mr_1)r_2 = m(r_1r_2) \qquad \text{jeśli jesteśmy w lewostron-} \\ nym module: \\ (mr_2)r_1 = m(r_2r_1) \\ \text{i nie to samo co przy prawostronnym}$$

Przykłady:

- 1. R = K to ciała, K-moduł to przestrzeń liniowa nad K
- 2. G jest grupą abelową, wtedy G jest Z-modułem
- 3. G ejst grupą abelową, wtedy End(G) są pierścieniem z jednością i G jest modułem nad end(G)
- 4. Załóżmy, że j : R \rightarrow End(G) jest homomorfizmem pierścieni z 1. Wtedy j wyznacza na G strukturę R-modułu. Na odwrót: gdy G(+r)_{r∈R} jest ZMAZAŁ MI
- 5. Gdy $R_1 \subseteq R$ jest podpierścieniem z 1, to R jest modułem nad R_1 .
- 6. Gdy j : $R_1 \to R$ ejst homomorfizmem pierścieni z jednością i M = $(M, +, r)_{r \in R}$ jest R-modułem, to M jest R_1 -modułem z dzialaniem indukowanym przez j.
- 7. R jest pierścieniem z jednością i $I \subseteq R$ jest ideałem lewostronnym. Wtedy I jest R-modułem.

Definicja 10.4. Załóżmy, że M jest R-modułem oraz $N \subseteq M$. Wtedy N jest R-podmodułem M, gdy N jest modułem względem działam z M, to znaczy:

$$>>$$
 $(N, +) < (M, +)$

ightharpoonup N jest zamknięty względem mnożenia przez skalary $r \in R$ w M.

Uwaga 10.5. Niech M będzie R-modułem, wtedy

1.
$$0 \cdot m = 0 \in M$$

2.
$$r \cdot 0 = 0$$

3.
$$(-1)m = -m$$

Dowód.

1.
$$0 \cdot m = (0 + 0) \cdot m = 0m + 0m \implies 0m = 0$$

2.
$$r \cdot 0 = r(0 + 0) = r0 + r0 \implies r0 = 0$$

3.
$$(-1)m + 1m = (-1 + 1)m = 0m = 0 \implies (-1)m = -m$$

Przykład:

 $\{0\} \subseteq M$ jest podmodułem zerowym.

Wniosek 10.6. Niech $A \subseteq M$. Wtedy istnieje najmniejszy podmoduł (ze względu na zawieranie) $N \subseteq M$ taki, że $A \subseteq M$. Jest to **podmoduł generowany przez** A

$$N = \{ \sum r_i a_i \ : \ r_i \in R, \ a_i \in A \} \cup \{0\}$$

- 1. Jeśli $N_1, N_2 \subseteq M$ są podmodułami, to $N_1 + N_2$ też jest podmodułem. To samo, jeśli weźmiemy n takich podmodułów.
- 2. Prdukt R-modułów M, N, czyli Mimes N, też jest R-modułem
- 3. $M = N_1 \oplus ... \oplus N_n$ jest modułem dla $N_1, ..., N_n$ podmodułów M

Homomorfizm modułów $h: M \to N$ działa tak samo jak zwykle. Nazwy izo-, endo-, auto-, mono- nadal są applicable.

Niech h : M \to N będzie homomorfizmem R-modułów. Dla N' \subseteq N podmodułu h⁻¹[N'] jest podmodułem M. Dla M' \subseteq M h[M'] \subseteq N.

M/M' to **modul ilorazowy**.

Twierdzenie 10.7. Zasadnicze twierdzenie o homomorfizmie R-modułów. Niech M, N będą modułami i

$$M \xrightarrow{N} f$$

Wtedy istnieje dokładnie jeden f taki, że

$$\begin{array}{c}
M \xrightarrow{\forall f} N \\
\downarrow \text{iloraz} & \exists ! \overline{f} \\
M/\text{ker(F)}
\end{array}$$

Twierdzenie 10.8.

$$\begin{array}{ccc}
M & \xrightarrow{f} & N \\
\downarrow g & \stackrel{\nearrow}{\exists} & h \iff \ker(f) \supseteq \ker(g)
\end{array}$$

$$h: M \rightarrow N \text{ jest } 1-1 \iff \ker(h) = \{0\}$$

10.2 Cel: zrozumieć moduły

Dany jest R-moduł M. Gdy M = \bigoplus_i M_i, gdzie M_i \subseteq M jest małymi podmodułami o zrozumiałej strukturze, to struktura M też jest zrozumiała.

Definicja 10.9. Mówimy, że R-moduł M jest **prosty**, gdy M ≠ 0 i dla każdego N ⊆ M podmodułu, N = 0. Pierścień enodmorfizmów R-modułu M

$$End_{R}(M) = \{endomorfizmy M\}$$

jest podpierścieniem End(M, +).

Lemat 10.10. Lemat Schura: jeśl iM jest R-modułem prostym, to $End_R(M)$ jest pierścieniem z dzieleniem (prawie ciało, poza tym, że nie musi być przemienny).

Dowód. Niech $0 \neq f \in End_R(M)$. Wtedy Im(f) = M, bo jest to niezerowy podmoduł M, a M przecież było modułem prostym. Stąd właśnie Im jest całością. ker(f) = $\{0\}$, czyli f jest 1 – 1 i "na".

Załóżmy, że M jest R-modułem oraz K = $\operatorname{End}_R(M)$ jest pierścieniem z dzieleniem ("ciało nieprzemienne"). Uwaga! nie zakładamy prostości M (ale możliwe że to wyniknie z K-pierścień z dzieleniem). Wtedy o M możemy myśleć jako o K-module. Załóżmy, że n = $\dim_K(M) < \infty$. Wtedy $\operatorname{End}_K(M) \cong \operatorname{M}_{n \times n}(K)$.

Wybierzmy $r \in R$ i niech $\phi_r : M \to M$ takie, że $\phi_r(m) = r \cdot m$. Wtedy $\phi_r \in End_K(M)$ (? gdy R-przemienny ? - zadanie)

$$r \longmapsto m(\phi_r) \in M_{n \times n}(K)$$

 \cup

homomorfizm pierścieni z 1 R \longrightarrow $M_{n\times n}(K)$

Powyższe jest rozwinięte jako teoria reprezentacji pierścieni

Niech R będzie pierścieniem z 1 ≠ 0 i M będzie R-modułem.

 \hookrightarrow Układ $\{m_i\}\subseteq M$ jest liniowo niezależny, gdy

$$(\forall \ \{r_i\} \subseteq R) \ \sum r_i m_i = 0 \implies (\forall \ i) \ r_i = 0$$

Liniowa zależność jest zaprzeczeniem

 $S \subseteq M$ jest liniowo niezależny, gdy układ $\{m_i\} = S$ (bez powtórzeń)

 \Rightarrow B \subseteq M jest baza, gdy:

- jest liniowo niezależny
- generuje M jako R-moduł
- $Lin_{R}(B) = M$.

Przykład:

- 1. $\{0\} \subseteq M$ jest liniowo niezależny, natomiast układ (m_0, m_0) jest liniowo zależny, bo $1 \cdot m_0 + (-1) \cdot m_0 = 0$.
- 2. \mathbb{Q} jako \mathbb{Z} -moduł (a, b) jest liniowo zależny dla wszystkich a, b $\in \mathbb{Q}$.

Bez straty ogólności a, b \neq 0 i a \neq b. a = $\frac{m}{n}$, b = $\frac{p}{a}$, czyli

$$(np) \cdot a - (qm) \cdot b = pm - mp = 0$$

W takim razie, \mathbb{Q} nie ma bazy jako \mathbb{Z} -moduł.

11.3 Moduly proste

(Abstrakcyjna) suma prosta rodziny modułów (koprodukt) to

$$M_i = M - i = \{f \in \prod M_i : \{i \in I : f(i) \neq 0\} \text{ jest skończony}\}$$

Uwaga 11.1. Jeśli dla każdego $i \in I$ istnieje $M_i \to M$ to istnieje dokładnie 1 $h: \bigsqcup M_i \to M$ taki, że dla każdego i_0

$$\begin{array}{c} M_{i_0} \xrightarrow{g_{i_0}} M \\ \downarrow^{f_{i_0}} \xrightarrow{h} \end{array}$$

$$\coprod M_i$$

Jest to nazywane własnością uniwersalności.

Dowód. Ćwiczenia

Uwaga 11.2. $M = M_1 \oplus M_2$ dla podmodułów $M_1, M_2 \subseteq M$. Wtedy dla

$$g_i = id_{M_i} : M_i \rightarrow M$$
,

dla h z uwagi wcześniej

$$h: M_1 \sqcup M_2 \to M$$

to jest izomorfizm modułów.

Dowód. Ćwiczenie, łatwy.

Definicja 11.3. M jest wolnym R-modułem, gdy M ma bazę.

Przykłady:

- 1. R jest wolnym R-modułem z bazą {1}.
- 2. \mathbb{Q} nie jest wolnym \mathbb{Z} -modułem
- 3. $\{M_i\}$ są rodziną wolnych R-modułów, wtedy $\bigsqcup M_i$ jest wolnym R-modułem.

Dowód. Niech $B_i \subseteq M_i$ będą bazami. Wtedy

$$f_{i_0}: M_{i_0} \xrightarrow{\cong} f_{i_0}[M_{i_0}] \subseteq \bigsqcup M_i$$

$$\bigcup f_i[B_i]$$

jest bazą | | M_i.

Uwaga 11.4. Niech R będzie pierścieniem z jednością, a M R-modułem. Niech $A = \{a_i : i \in i\} \subseteq M$ będzie podzbiorem bez powtórzeń. Następujące warunki są równoważne:

- 1. A jest bazą
- 2. dla każdego $m \in M$ istnieją jedyne $r_i \in R$ takie, że $m = \sum r_i a_i$ i jest ich skończenie wiele
- 3. dla każdego N R-modułu dla każdej funkcji $g:A\to N$ istnieje jedyna funkcja $g':M\to N$ indukowana przez g.

Dowód. (1) \iff (2) jak w algebrze liniowej.

$$(2) \Longrightarrow (3)$$

Weźmy dowolny $m \in M$, wtedy

$$g'(m) = \sum r_i g(a_i)$$

jest jedyną dobrą definicją.

$$(3) \implies (1)$$

· A generuje M:

Niech M' =
$$\langle A \rangle \subset M$$
. Rozważmy

$$\begin{array}{c}
M \xrightarrow{j} M/M' \\
0
\end{array}$$

$$M$$

 $g = j \upharpoonright A = 0 \upharpoonright A = 0$, wiec na mocy (3)

$$\begin{array}{c} A \xrightarrow{g=0} M/M' \\ & \\ & \\ M \end{array}$$

• A jest liniowo niezależne:

Załóżmy, że istnieje $\sum {\bf r_{i_k}} {\bf a_{i_k}}$ = 0, ${\bf r_{i_k}} \neq$ 0. Niech g : A \rightarrow R takie, że

$$g(a_0) = \begin{cases} 0 & i \neq i_0 \\ 1 & i = i_0 \end{cases}.$$

Na mocy (3) wiemy, że istnieje dokładnie jedno $g': M \to R$ takie, że

$$0 = g'(0) = g'(\sum r_i a_i) = \sum r_i g(a_i) = r_{i_0} \cdot 1 = r_{i_0} \neq 0$$

co daje sprzeczność.

Uwaga 11.5. 1. Jeśli A = $\{a_i\}_{i \in I}$ jest bazą M to wtedy

- (a) Ra; jest podmodułem M
- (b) $M = \bigoplus Ra_i$
- 2. Jeśli A jest dowolnym zbiorem, to istnieje R-moduł M o bazie A. Wtedy

$$M = \bigsqcup_{a \in \Delta} R_a$$

i wtedy $R_a \cong R$

Przykład: \mathbb{Z} jest modułem wolnym (wolna grupa abelowa).

Twierdzenie 11.6. Załóżmy, że R jest przemienny. Wtedy każde dwie bazy R-modułu M są równoliczne.

Dowód. Redukujemy do algebry liniowej. Niech I \triangleleft R będzie maksymalnym ideałem i niech M' = IM \subseteq M będzie podmodułem generowanym przez

$$\{im : i \in I, m \in M\}.$$

Wtedy, jeśli popatrzymy na M/M', to ma on naturalną strukturę modułu nad R/I. Dla (m + M') i (r + I) definiujemy

$$(r + I)(m + M') = (rm + M')$$

oraz dodawanie jak w grupie ilorazowej.

Niech B_1 , $B_2 \subseteq M$ będą bazami M. Ustalmy ilorazowe homomorfizmy

$$i:M\to M/M'$$

$$l: R \rightarrow R/I$$
.

Chcemy pokazać, że $j[B_1]$, $j[B_2]$ są bazami M/M' jako R/I-modułu.

· generowanie:

$$M\ni m=\sum r_ib_i \implies j(m)=\sum j(r_ib_i)=\sum [r_ib_i+M']=\sum (r_i+I)(m_i+M')=\sum l(r_i)j(b_i)$$

· liniowa niezależność:

Naszym celem jest pokazać, że jeśli

$$\sum l(r_i)j(b_i) = 0 \implies l(r_i) = 0$$

to wtedy

$$j(\sum r_i b_i) = 0.$$

Wiemy, że $\sum r_i b_i \in IM = M'$. Dalej:

$$\sum r_i b_i = \sum r'_i m'_i$$

dla $r_i' \in I$ oraz $m_i' \in M$. Niech więc $m_i' = \sum s_{ij} b_i$ dla $s_{ij} \in R$ oraz $b_i \in B_1$. Wtedy

$$\sum_{i,j} r'_j m'_j = \sum_{i,j} r'_j s_{ij} b_i = \sum_{i} \left[\sum_{j} r'_j s_{ij} \right] b_i = \sum_{i} r_i b_i$$

Sokoro dla każdego i mamy $r_i = \sum_j r_j' s_{ij} \in I$, to dla każdego i $l(r_i) = 0$ w R/I. Więc $j[B_1]$ jest liniowo niezależny w M/M' jako układ. Ponieważ możemy ustalić

$$j: B_1 \xrightarrow[na]{1-1} j[B_1]$$

to $B_1 \sim j[B_1]$ oraz $B_2 \sum j[B_2]$. Ale R/I jest ciałem, więc M/M' jest przestrzenią liniowa nad R/I, więc ponieważ $j[B_i]$ są bazami tej przestrzeni liniowej, to

$$j[B_1] \sim j[B_2]$$

$$B_1 \sim B_2$$

Uwaga 11.7. Każdy R-moduł M jest homomorficznym obrazem R-modułu wolnego.

Dowód. Taki sam jak dla:

- grupy wolnej
- wolnej grupy abelowej
- · algebry wolnej w rozmaitości algebraicznej

Niech N = $\bigsqcup_{m \in M} R_m$ będzie R-modułem wolnym o bazie M. Równie dobrze możemy wziąć N = $\bigsqcup_{a \in A} R_a$, gdzie A generuje M.

Z uwagi 11.4(3) f istnieje i jest epimorfizmem.

SOME MORE THINKING

Fakt 11.8. Załóżmy, że M, N są R-modułami, N jest wolny i f : M \rightarrow N jest epimorfizmem. Wtedy M \cong ker(f) \oplus N. Więcej: istnieje N' \cong N taki, że M = ker(f) \oplus N'.

Dowód. Niech $B \subseteq N$ będzie bazą modułu N.

Dla $b \in B$ ustalamy $b' \in M$ takie, że f(b') = b. Niech $g : B \to M$ takie, że g(b) = b'. Z uwagi 11.4(3) wiemy, że istnieje jedyne $g' : N \to M$ R liniowe takie, że g' rozszerza g.

Wtedy $f \circ g' : N \to N$ i $(f \circ g') \upharpoonright B = id_B$, czyli z uwagi 11.4(3) $f \circ g' = id_B$. Stąd g' jest 1 – 1. Czyli $N \cong g'[N] \subseteq M$. Pokażemy teraz, że $M = \ker(f) \oplus g'[N]$. Weźmy dowolny $m \in M$. Wtedy

$$m = \underbrace{(m - (g'f)(m))}_{\text{ker}(f)} + \underbrace{(g'f)(m)}_{\in g'[N]}$$

bo

$$g(m - (g'f)(m)) = f(m) - (fg')f(m) - f(m) = 0.$$

Pozostaje nam pokazać, że $\ker(f) \cap g'[N] = 0$. Niech $m \in \ker(f) \cap g'[N]$. Wtedy m = g'(n). Ale wtedy 0 = f(m) = (fg')(n) = n. Wobec tego n = 0, więc m = g'(n) = g'(0) = 0.

COŚ TUTAJ CHYBA JEST ŹLE

Definicja 11.9.

R-moduł N jest **projektywny**, jeśli dla każdego M i każdego epimorfizmu $f: M \to N$ mamy $M = \ker(f) \oplus M'$ dla pewnych podmodułów $M' \subseteq M$.

Jest to równoważne [ćwiczenia] istnieniu g : N \rightarrow M takiego, że f \circ g = id_N.

M N

to znaczy, że f rozszczepia się.

R-moduł M jest **injektywny** wtedy, gdy dla każdego N i każdego monomorfizmu g : M \hookrightarrow N istnieje N' \subseteq N taki, że N = Im(g) \oplus N'. To znaczy, obraz g jest *składnikiem prostym* N.

Przykłady:

- 1. Moduł wolny jest projektywny
- 2. W przypadku, gdy R jest ciałem, to każdy R-modul jest projektywny i injektywny.

Definicja 11.10. Załóżmy, że R jest pierścieniem przemiennym z jednością. Mówimy, że M jest R-modułem cyklicznym, gdy jest generowany przez pojedynczy element. To znaczy, że istnieje a ∈ M takie, że

$$M = Ra.$$

Przykłady:

- 1. R = R1 jest modułem cyklicznym
- 2. M jest R-modułem. i a \in M, to wtedy Ra \subseteq M jest podmodułem cyklicznym.

Uwaga 11.11. M jest modułem cyklicznym \iff M \cong R/I jako R-moduły dla pewnego I \triangleright R.

Dowód. ← R/I jest generowany przez 1 + I i to jest koniec.

 \Longrightarrow

M = aR, wtedy f : R \rightarrow M, r \mapsto ra, jest epimorfizmem R-modułów. Czyli jeśli I = ker(f), to R/I \cong M.

₩

Definicja 11.12.

- Dla $a \in M \mid_a = \{r \in R : ra = 0\} \triangleright R \text{ jest torsja} \text{ elementu a.}$
- a jest torsyjny, gdy Ia 70. W przeciwnym przypadku mówimy, że a jest beztorsyjny.
- Mówimy, że M jest modułem torsyjnym, gdy każdy jego element jest torsyjny. M jest beztorsyjny, gdy każdy niezerowy element jest beztorsyjny.
- $M_t = \{a \in M : a \text{ jest torsyjny}\}$ nazywamy ??? torsyjnym M

Uwaga 11.13.

- 1. M_t jest podmodułem M
- 2. M/M_t jest beztorsyjny.

Dowód.

- 1. ćwiczenie
- 2. Załóżmy, że m + M_t jest torsyjny. Czyli r(m + M_t) = 0 + M_t dla pewnego r ≠ 0. Ale to oznacza, że rm ∈ M_t. To znaczy, że r'(rm) = 0 dla pewnego r' ≠ 0. Ale wtedy (r'r)m = 0 i r'r ≠ 0, bo R jest dziedziną. Czyli m jest torsyjny i m ∈ M_t. W takim razie m + M_t = 0

Przykłady: grupy abelowe torsyjne/beztorsyjne (jako Z-moduły)

11.4 Moduły skończenie generowane

Twierdzenie 11.14. R jest pierścieniem przemiennym z 1 \neq 0. Niech M, N będą R-modułami oraz f : M \rightarrow N jest epimorfizmem. Niech M' = ker(f), N \cong M/M'.

- 1. N, M' są skończenie generowane, to M też jest skończenie generowane
- 2. M jest skończenie generowany, to wtedy N też taki jest

Dowód.

1. Niech $\{n_1,...,n_k\}\subseteq N$ i $\{m_1,...,m_l\}\subseteq M$ będą zbiorami generatorów. Weźmy $n_1',...,n_k'\in M$ takie, że $f(n_i')=n_i$.

W takim razie, $\{n'_1,...,n'_k,m_1,...,m_l\}$ generują M, bo dla dowolnego $x\in M$ mamy $f(x)\in N$, więc $f(x)=\sum r_in_i$ dla $f_i\in R$. Niech więc $M\ni x'=\sum r_in'_i$. Wtedy $f(x')=\sum r_in_i$, czyli f(x-x')=0 i mamy $x-x'\in M'=\ker(f)$. Więc $M'\ni x-x'$, z czego dostajemy $x-x'=\sum r'_jm_j$ dla $r'_j\in R$ i $x=x'+(x-x')=\sum r_in'_i+\sum r'_jm_j$.

2. Ćwiczenie, łatwe. A \subseteq M \implies f[A] generuje N, gdzie A jest zbiorem generatorów M.

Spis twierdzeń

1.1	Fakt	
1.2	Uwaga	
1.3	Uwaga	
1.4	Uwaga	6
1.5	Uwaga	
1.6	Twierdzenie	7
1.7	Wniosek	7
1.8	Fakt	7
2.1	Wniosek	9
2.2	Wniosek	10
2.3	Twierdzenie	10
3.1	Uwaga	12
3.2	Uwaga	12
3.3	Uwaga	
3.4	Twierdzenie	
3.5	Wniosek	
3.6	Twierdzenie	
4.1	Definicja	
4.2	Uwaga	
4.3	Uwaga	
4.4	Definicja: wielomian minimalny, stopień pierwiastka	
4.5	Uwaga: $I(a/K) = (f) \implies deg(f) = [K(a):K] \dots \dots$	
4.6	Fakt: $\dim_{K}(M) = \dim_{L}(M) \cdot \dim_{K}(L)$	17
4.7		
	Wniosek: K _{alg} - podciałem	
4.8	Definicja: (relatywne) algebraiczne domknięcie	
5.1	Uwaga: algebraiczne rozszerzenia ciał	
5.2	Uwaga: $(K_{alg}(L))_{alg}(L) = K_{alg}(L)$	
5.3	Uwaga: $F_m \in \mathbb{Z}\left[X\right]$	
5.4	Uwaga: lemat Gaussa: F_m nierozkładalny w \mathbb{Q}	21
5.5	Uwaga: pierwiastek pierwotny a $\dim_{\mathbb{Q}}(\mathbb{Q}(b))$	22
5.6	Lemat: lemat Liouville'a o aproksymacji diofatycznej	22
5.7	Definicja: algebraiczne domknięcie	
5.8	Uwaga: istnieje algebraiczne domknięcie	23
5.9	Twierdzenie: jedyność domknięcia algebraicznego	
5.10	Wniosek: K \cong L \Longrightarrow $\widehat{K} \cong \widehat{L}$	24
5.11	Uwaga: algebraiczne rozszerzenie 1 – 1 $\rightarrow \hat{K}$	25
6.1	Uwaga: $jednorodność \hat{K}$	
6.2	Uwaga	
6.3	Twierdzenie: rozszerzenie jest normalne	
6.4	Twierdzenie: skończone i normalne \iff ciało rozkładu wielomianu	
6.5	Uwaga	
6.6	, ,	
6.7	Lemat	
6.8	Twierdzenie: Abela o elemencie pierwotnym	
6.9	Wniosek	
7.1	Uwaga	
7.2	Wniosek: przekrój sep _L i rad _L	
7.3	Uwaga	
7.4	Fakt	
7.5	Uwaga	
8.1	Fakt	
8.2	Twierdzenie	
8.3	Wniosek	
8.4	Twierdzenie: Artin	36
8.5	Wniosek	37

8.6	Twierdzenie: podstawowe twierdzenie teorii Galois	
8.9	Wniosek	
9.3	Twierdzenie	39
9.4	Twierdzenie	
9.5	Twierdzenie: twierdzenie Dedekinda o liniowej niezależności charakterów	40
9.6	Twierdzenie	41
10.1	Uwaga	45
10.2	Twierdzenie	46
10.3	Definicja	47
10.4	Definicja	47
10.5	Uwaga	47
10.6	Uwaga	47
	Wniosek	
	Twierdzenie: zasadnicze twierdzenie o homommoorfizmie R-modułów	
10.8	Twierdzenie	48
10.9	Definicja	48
10.10	Lemat: lemat Schura	48
11.1	Uwaga	49
11.2	Uwaga	50
11.3	Definicja	50
11.4	Uwaga	50
11.5	Uwaga	
11.6	Twierdzenie	
11.7	Uwaga	52
11.8	Fakt	52
11.9	Definicja	53
11.10	Definicja: moduł cykliczny	53
11.11	Uwaga: $cykliczny \iff M \cong R/I \dots \dots$	54
11.12	Definicja: torsje, moduł torsyjny	54
11.13	Uwaga	54
11.14	Twierdzenie	54