AAA

川合玲央

2025年5月1日

目次

第 I 部 [1505.04772]	1
1 abstract	2
2 Introduction	2
3 Field Theory of Weyl semimetal	2
4 Holographic Model	2
5 Numerical Calculation	2
6 Conclusion	2
第 II 部 [1511.05505]	2
第 III 部 [1604.01346]	2
第 IV 部 Appendix	2
7 Dirac 半金属と Weyl 半金属 7.1 スピン分裂した Dirac 電子	3
第1部	
[1505.04772]	

The holographic Weyl semi-metal

1 abstract

Varying a mass parameter forces Weyl semimetal undergo a quantum phase transition: from gapless to gapped.

2 Introduction

Semimetals have a Fermi surface with isolated points (Weyl points).

3 Field Theory of Weyl semimetal

Weyl cones are usually rotationally symmetric and their opening angles are equal.

$$\partial_{\mu}J_{5}^{\mu} = \frac{1}{16\pi^{2}} \epsilon^{\mu\nu\rho\lambda} F_{\mu\nu} F_{\rho\lambda} + 2M\bar{\Psi}\gamma_{5}\Psi. \tag{1}$$

4 Holographic Model

We consider the following holographic action:

- 5 Numerical Calculation
- 6 Conclusion

第川部

[1511.05505]

Quantum phase transition between a topological and a trivial semimetal from holography

第Ⅲ部

[1604.01346]

Odd viscosity in the quantum critical region of a holographic Weyl semimetal

第Ⅳ部

Appendix

これについての基礎的知識を以下にまとめる.

7 Dirac 半金属と Weyl 半金属

エネルギー分散がどのように変化するかを Dirac ハミルトニアンから調べる.

7.1 スピン分裂した Dirac 電子

トポロジカル絶縁体の電子状態を記述する有効ハミルトニアンは

参考文献

- [1] 文献情報
- [2] 文献情報