Universidade Estadual de Campinas Instituto de Computação

Introdução ao Processamento Digital de Imagem (MC920 / MO443)

Professor: Hélio Pedrini

Trabalho 1

1 Especificação do Problema

O objetivo deste trabalho é realizar alguns processamentos básicos em imagens digitais. Quando pertinente, a vetorização de comandos deve ser empregada nas operações.

1.1 Transformação de Intensidade

Transformar o espaço de intensidades (níveis de cinza) de uma imagem monocromática para (i) obter o negativo da imagem, ou seja, o nível de cinza 0 será convertido para 255, o nível 1 para 254 e assim por diante, (ii) converter o intervalo de intensidades para [100, 200].

(a) negativo da imagem

(b) imagem transformada

1.2 Ajuste de Brilho

Aplicar a correção gama para ajustar o brilho de uma imagem monocromática A de entrada e gerar uma imagem monocromática B de saída. A transformação pode ser realizada (a) convertendose as intensidades dos pixels para o intervalo de [0,255] para [0,1], (b) aplicando-se a equação $B=A^{(1/\gamma)}$ e (c) convertendo-se de volta os valores resultantes para o intervalo [0,255].

imagem

 $\gamma = 1.5$

 $\gamma = 2.5$

 $\gamma = 3.5$

1.3 Quantização de Imagens

Quantização refere-se ao número de níveis de cinza usados para representar uma imagem monocromática. A quantização está relacionada à profundidade de uma imagem, a qual corresponde ao número de bits necessários para armazenar a imagem. Represente uma imagem com diferentes níveis de quantização.

1.4 Planos de Bits

(e) 8 níveis

Extrair os planos de bits de uma imagem monocromática. Os níveis de cinza de uma imagem monocromática com m bits podem ser representados na forma de um polinômio de base 2:

(f) 4 níveis

$$a_{m-1} 2^{m-1} + a_{m-2} 2^{m-2} + \ldots + a_1 2^1 + a_0 2^0$$
 (1)

O plano de bits de ordem 0 é formado pelos coeficientes a_0 de cada pixel, enquanto o plano de bits de ordem m-1 é formado pelos coeficientes a_{m-1} .

no de bit 4 (d) plano de bit 7

(g) 2 níveis

1.5 Mosaico

Construir um mosaico de 4×4 blocos a partir de uma imagem monocromática. A disposição dos blocos deve seguir a numeração mostrada na figura (c).

1	2	3	4
5	6	7	8
9	10	11	12
13	14	15	16
a> 1 1 11			

6	11	13	3
8	16	1	9
12	14	2	7
4	15	10	5

(a) imagem

(b) ordem dos blocos

(c) nova ordem dos blocos

(d) mosaico

1.6 Combinação de Imagens

Combinar duas imagens monocromáticas de mesmo tamanho por meio da média ponderada de seus níveis de cinza.

1.7 Filtragem de Imagens

0.2*A + 0.8*B

Uma operação de filtragem aplicada a uma imagem digital é altera localmente os valores de intensidade dos pixels da imagem levando-se em conta tanto o valor do pixel em questão quanto valores de pixels vizinhos. No processo de filtragem, utiliza-se uma operação de convolução de uma máscara pela imagem. Este processo equivale a percorrer toda a imagem alterando seus valores conforme os pesos da máscara e as intensidades da imagem.

0.5*A + 0.5*B

0.8*A + 0.2*B

Aplicar os seguintes filtros (individualmente) em uma imagem digital monocromática:

$$h_1 = \begin{array}{|c|c|c|c|c|} \hline -1 & -1 & -1 \\ \hline -1 & 8 & -1 \\ \hline -1 & -1 & -1 \\ \hline \end{array}$$

$$h_2 = \begin{vmatrix} -1 & -2 & -1 \\ 0 & 0 & 0 \\ 1 & 2 & 1 \end{vmatrix}$$

1.8 Entropia

Calcular a entropia de uma imagem monocromatica, de acordo com a equação:

$$H = -\sum_{i=0}^{L_{\text{max}}} p_i \log p_i$$

em que a distribuição dos níveis de intensidade da imagem pode ser transformada em uma função densidade de probabilidade, dividindo-se o número de pixels de intensidade i, denotado n_i , pelo

número total
$$n$$
 de pixels na imagem, ou seja $p_i=\frac{n_i}{n}$, em que $\sum_{i=0}^{L_{\max}}p_i=1$.

2 Entrada de Dados

As imagens de entrada estão no formato PNG (*Portable Network Graphics*). Alguns exemplos encontram-se disponíveis no diretório: http://www.ic.unicamp.br/~helio/imagens_png/

3 Saída de Dados

As imagens de saída devem estar no formato PNG (*Portable Network Graphics*). Resultados intermediários podem ser também exibidos na tela.

4 Especificação da Entrega

- A entrega do trabalho deve conter os seguintes itens:
 - código fonte: o arquivo final deve estar no formato *zip* ou no formato *tgz*, contendo todos os programas ou dados necessários para sua execução.
 - relatório: deve conter uma descrição dos algoritmos e das estruturas de dados, considerações adotadas na solução do problema, testes executados, eventuais limitações ou situações especiais não tratadas pelo programa.
- Data de entrega: 10/09/2021

5 Observações Gerais

- Os programas serão executados em ambiente Linux. Os formatos de entrada e saída dos dados devem ser rigorosamente respeitados pelo programa, conforme definidos anteriormente.
- Os seguintes aspectos serão considerados na avaliação: funcionamento da implementação, clareza do código, qualidade do relatório técnico.