Orders

Alon Gurny

February 2, 2025

1 Properties

Lemma 1. Let P be an additive property of linear orders. Then the property bounded -P is has the star property.

2 Hausdorff Rank

Definition 1. Let L be a linear order.

We define **hrank** $(L) \leq 0$ iff L is finite.

Let $\alpha > 0$ be an ordinal.

We define $\operatorname{hrank}(L) \leq \alpha$ iff $L = \sum_{i \in I} L_i$ for some linear order I, where $\operatorname{hrank}(L_i) < \alpha$ and I is a finite sum of 1, ω and $-\omega$.

We write $\operatorname{hrank}(L) = \alpha$ iff α is the least ordinal such that $\operatorname{hrank}(L) \leq \alpha$.

We will be working with scattered linear orders.

Claim 1. Let L be a countable linear order.

Then $\mathbf{hrank}(L)$ is defined iff L is scattered.

Proof. To prove \implies is easy, as a scattered sum of scattered linear orders is scattered.

For the other direction... TODO.

Notations 1. Let $\mathcal{H}_{<\alpha}$ be the class of linear orders of Hausdorff rank $<\alpha$ and $\mathcal{H}_{=\alpha}$ be the class of linear orders of Hausdorff rank $=\alpha$.

Let $\mathcal{B}_{<\alpha}$ be the class of linear orders of Hausdorff rank $<\alpha$ on bounded subintervals.

```
Let Q_{<\alpha} = \{L : 1 + L \in \mathcal{B}_{<\alpha}\}.

Let \mathcal{R}_{<\alpha} = \{L : L + 1 \in \mathcal{B}_{<\alpha}\}.

Clearly, \mathcal{H}_{<\alpha}, Q_{<\alpha}, \mathcal{R}_{<\alpha} \subseteq \mathcal{B}_{<\alpha}.

Clearly, \mathcal{H}_{<\alpha+1} = \{L : \mathbf{hrank}(L) \le \alpha\}.
```

Claim 2. The following are equal:

1. $\mathcal{H}_{<\alpha}$

- 2. $\{L: 1+L+1 \in \mathcal{B}_{<\alpha}\}.$
- 3. $Q_{<\alpha} \cap \mathcal{R}_{<\alpha}$

Proof. The equivalence of 1 and 2 is clear, and obviously 2 implies 3.

The other direction (3 implies 2) follows from the star property of $\mathcal{B}_{<\alpha}$. \square

Lemma 2. Let L be a linear order. Then there exists a largest subinterval $M \subseteq L$ such that $x \in M$ and $M \in \mathcal{B}_{\leq \alpha}$.

Definition 2. Let L be a linear order. Let $x \in L$. We define $M_{\alpha}[x]$ to be the largest subinterval $M \subseteq L$ such that $x \in M$ and $M \in \mathcal{B}_{\leq \alpha}$.

We define \sim_{α} to be the equivalence relation on L such that $x \sim_{\alpha} y$ iff $M_{\alpha}[x] = M_{\alpha}[y]$.

Lemma 3. Let L be a linear order. Let $P, Q, R \subseteq L$ be relations, such that:

- P represents \sim_{α} on L.
- Q is such that $x \in Q$ iff $M_{\alpha}[x] \in \mathcal{Q}_{<\alpha}$.
- R is such that $x \in R$ iff $M_{\alpha}[x] \in \mathcal{R}_{<\alpha}$.

Then for some linear order I there exists a decomposition $L = \sum_{i \in I} L_i$ such that $L_i \in \mathcal{B}_{\leq \alpha}$ for all $i \in I$, L_i is monochromatic with respect to P, Q and R.

Furthermore, let τ_i be the n-type of L_i, p_i, q_i, r_i in MSO[p, q, r], where $p_i = 1_{L_i \subset P}$, $q_i = 1_{L_i \subset Q}$ and $r_i = 1_{L_i \subset R}$. Then the following hold

- if i has a successor, $p(\tau_i) \neq p(\tau_{i+1})$
- if i has a successor, either $r(\tau_i) = 0$ or $q(\tau_{i+1}) = 0$

Proof. Take $I = L/\sim_{\alpha}$.

Then $L = \sum_{i \in I} L_i$ where L_i is the \sim_{α} -equivalence class of i.

Then L_i is monochromatic with respect to P, Q and R.

The only thing left to prove is the last two conditions. The first follows from the fact that P represents \sim_{α} .

The second follows because if it were not the case, then L_i and L_{i+1} would be the same \sim_{α} -equivalence class.

Lemma 4. Let I be a linear order. Let $n \in \mathbb{N}$. Let p, q, r be boolean variables. Let τ_i be an assignment of satisfiable n-types in $\mathbf{MSO}[p, q, r]$ for all $i \in I$. Assume that

- if i has a successor, $p(\tau_i) \neq p(\tau_{i+1})$
- if i has a successor, either $r(\tau_i) = 0$ or $q(\tau_{i+1}) = 0$

Then there exists a linear order L and $P, Q, R \subseteq L$ such that:

• P represents \sim_{α} on L.

- Q is such that $x \in Q$ iff $M_{\alpha}[x] \in \mathcal{Q}_{\leq \alpha}$.
- R is such that $x \in R$ iff $M_{\alpha}[x] \in \mathcal{R}_{\leq \alpha}$.

such that for all $i \in I$, L_i is a \sim_{α} -equivalence class of L, and is thus monochromatic with respect to P, Q and R.

Furthermore, the n-type of L_i, p_i, q_i, r_i in MSO[p, q, r] is τ_i , where $p_i =$ $1_{L_i \subseteq P}$, $q_i = 1_{L_i \subseteq Q}$ and $r_i = 1_{L_i \subseteq R}$,

Proof. Since τ_i is satisfiable, we can take L_i to be a linear order of n-type τ_i such that:

- If $q(\tau_i) = r(\tau_i) = 1$, then $L_i \in \mathcal{Q}_{\leq \alpha} \cap \mathcal{R}_{\leq \alpha}$.
- If $q(\tau_i) = 1$ and $r(\tau_i) = 0$, then $L_i \in \mathcal{Q}_{\leq \alpha} \mathcal{R}_{\leq \alpha}$.
- If $q(\tau_i) = 0$ and $r(\tau_i) = 1$, then $L_i \in \mathcal{R}_{\leq \alpha} \mathcal{Q}_{\leq \alpha}$.
- If $q(\tau_i) = r(\tau_i) = 0$, then $L_i \in \mathcal{B}_{\leq \alpha} (\mathcal{Q}_{\leq \alpha} \cup \mathcal{R}_{\leq \alpha})$.

Let $L = \sum_{i \in I} L_i$.

By definition each L_i is in $\mathcal{B}_{<\alpha}$. We need to prove that each L_i is a largest $\mathcal{B}_{<\alpha}$ -subinterval in L.

On the contrary, suppose that there exist $i' \neq i$ such that $[L_i, L_{i'}] \in \mathcal{B}_{<\alpha}$. WLOG, $L_i < L_{i'}$.

Since I is scattered, take some $i \leq a < b \leq i'$ such that there is no element between a and b in I.

Then
$$L_a \in \mathcal{R}_{<\alpha}$$
 and $L_b \in \mathcal{Q}_{<\alpha}$, in contradiction.

Lemma 5. Let L be a scattered countable linear order.

Let $J \subseteq L$ be some subinterval in $\mathcal{B}_{\leq \alpha}$.

Then $\operatorname{hrank}(J) \leq \alpha$.

Furthermore, $\operatorname{hrank}(J) < \alpha \text{ iff } J \in \mathcal{Q}_{<\alpha} \cap \mathcal{R}_{<\alpha}$.

Proof. Let $\{x_i\}_{i\in I}\subseteq J$ be a bidirectional, cofinal, weakly monotone I-sequence in J, i.e, $x_i \leq x_j$ if $i \leq j$ for $I \subseteq \mathbb{Z}$. Write $J = \sum_{i \in I} [x_i, x_{i+1}]$. Then every $[x_i, x_{i+1}]$ is of Hausdorff rank $< \alpha$.

Thus, **hrank** $(J) \leq \alpha$.

Suppose **hrank** $(J) < \alpha$, then obviously $J \in \mathcal{Q}_{<\alpha} \cap \mathcal{R}_{<\alpha}$.

Conversely, suppose $J \in \mathcal{Q}_{\leq \alpha} \cap \mathcal{R}_{\leq \alpha}$.

Then $1+J+1 \in \mathcal{B}_{<\alpha}$. But it is a bounded interval, so **hrank** $(1+J+1) < \alpha$ and thus **hrank** $(J) < \alpha$.

Lemma 6. Let $J \subseteq L$ be a subinterval.

Then $\operatorname{hrank}(J) \leq \alpha$ iff J is a finite sum of $\mathcal{B}_{<\alpha}$ -subintervals.

Note: this lemma does not work if we take a general **Q** property.

Proof. From the previous lemma, it is clear that if J is a finite sum of $\mathcal{B}_{<\alpha}$ -subintervals, then $\mathbf{hrank}(J) \leq \alpha$, since the rank bound is preserved under finite sums.

Conversely, suppose $\operatorname{\mathbf{hrank}}(J) \leq \alpha$.

If $J = \sum_{i \in \mathbb{Z}} J_i$ for some J_i of Hausdorff rank $< \alpha$, take $x, y \in J$. Then let $x \in J_{i_1}$ and $y \in J_{i_2}$.

Then $[x,y] \subseteq \sum_{i \in [i_1,i_2]} J_i$. But the last sum is of rank $< \alpha$ and thus [x,y] is of rank $< \alpha$. That is, $J \in \mathcal{B}_{<\alpha}$.

Since every subinterval of rank $\leq \alpha$ is a finite sum of \mathbb{Z} -sums of intervals of rank $< \alpha$, we are done.

Corollary 1. Let $J \subseteq L$ be a subinterval.

Then $\operatorname{\mathbf{hrank}}(J) \leq \alpha$ iff J is a finite sum of largest $\mathcal{B}_{<\alpha}$ -subintervals in L

Lemma 7. There exists a global computable function $f : \mathbb{N} \to \mathbb{N}$ such that for all $n \in \mathbb{N}$, The ordinal-sequence A_{β} of all n-types satisfiable in $\mathcal{H}_{<\beta}$ stabilizes at f(n), i.e, $A_{\beta} = A_{f(n)}$ for all $\beta \geq f(n)$.

Proof. Let τ be an n-type. We prove by induction on $\beta \geq f(n)$ that $\tau \in A_{f(n)}$. The base clear is clear as $\beta = f(n)$ implies $\tau \in A_{f(n)+1}$, that is $\tau \in A_{f(n)}$.

The induction step is also clear, because if $\beta > f(n)$, then we can write $\tau = \sum_{i \in I} \tau_i$ where τ_i of rank $< \beta$, and thus by induction $\tau_i \in A_{f(n)}$, thus $\tau \in A_{f(n)+1} = A_{f(n)}$.

Lemma 8. For every ordinal $\alpha \geq f(n)$, and for every linear order L with $\operatorname{\mathbf{hrank}}(L) \geq f(n)$, and for every class C which is one of:

- 1. $\mathcal{H}_{<\alpha}$
- 2. $Q_{<\alpha} \mathcal{R}_{<\alpha}$
- 3. $\mathcal{R}_{\leq \alpha} \mathcal{Q}_{\leq \alpha}$,
- 4. $\mathcal{B}_{\leq \alpha} (\mathcal{Q}_{\leq \alpha} \cup \mathcal{R}_{\leq \alpha}).$

there exists some linear order $L' \in \mathcal{C}$ such that $L \equiv_n L'$.

Proof. Let A_k be the set of all satisfiable n-types of rank < k. Then A_{k+1} is the closure of A_k under finite sums of $\subseteq \mathbb{Z}$ -sums.

The sequence $A_0 \subseteq A_1 \subseteq \dots$ stabilizes at some point. Suppose $A_{f(n)} = A_{f(n)+1}$.

Suppose L has rank $\beta \geq f(n)$.

Write $L = \sum_{i \in I} L_i$ where **hrank** $(L_i) < \beta$, and I is a finite sum of $\subseteq \mathbb{Z}$.

If β is a limit ordinal, then there must be a bi-cofinal sequence i_k such that $\operatorname{hrank}(L_{i_k}) \to \beta$.

If β is a successor ordinal, then **hrank** $(L_i) = \beta - 1$ must hold infinitely many times.

Now we proceed by induction on $\alpha \geq f(n)$.

1. If $C = \mathcal{H}_{<\alpha}$, we take $L' \in A_{f(n)}$, which necessarily has rank $< f(n) \le \alpha$.

2. If $C = Q_{<\alpha} - \mathcal{R}_{<\alpha}$, we take an ω -sequence α_k such that $\alpha_k \to \alpha$ (if α is a limit ordinal) or $\alpha_k = \alpha - 1$ (if α is a successor ordinal).

Then we take $L' = \sum_{i \in \omega} L'_i$ where **hrank** $(L'_{ik}) = \alpha_k$ (and **hrank** $(L'_i) =$ **hrank** (L_i) for every other i). Then $L' \in \mathcal{Q}_{<\alpha} - \mathcal{R}_{<\alpha}$, but also $L' \equiv_n L$.

- 3. This is just the same with $-\omega$ instead of ω .
- 4. This is just the same with \mathbb{Z} instead of $-\omega$.

Corollary 2. Over scattered with interpretations of P, Q and R as above, the properties $\mathbf{hrank}(\cdot) \leq \alpha$, $\mathbf{hrank}(\cdot) < \alpha$ and $\mathbf{hrank}(\cdot) = \alpha$ over subintervals are all expressible in $\mathbf{MSO}[P,Q,R]$.

Proof. For **hrank** $(\cdot) \le \alpha$ and **hrank** $(\cdot) < \alpha$, we can use the previous lemmas. For **hrank** $(\cdot) = \alpha$, we can use the previous two.

Theorem 1. There is a an algorithm solving satisfiability for MSO[P, Q, R] over scattered linear orders, given an oracle which solves the satisfiability problem for MSO over scattered linear orders.

Proof. By the decomposition theorem, there exists a translation, that given an $\mathbf{MSO}[P,Q,R]$ formula φ of quantifier-depth n. outputs an $\mathbf{MSO}[\{X_{\tau}\}_{\tau}]$ formula ψ .

Let P_L, Q_L, R_L be the interpretations of P, Q, R on L. Then

$$L, P := P_L, Q := Q_L, R := R_L \models \varphi \iff I, \{X_\tau := I_\tau\}_\tau \models \psi$$

Where $I_{\tau} = \{i \in I : L_i \models \tau\}$ for every *n*-type τ .

Let T be the set of n-types in $\mathbf{MSO}[p,q,r]$ which satisfy $q(\tau)=1 \iff \tau \in \mathcal{Q}_{<\alpha}$ and $r(\tau)=1 \iff \tau \in \mathcal{R}_{<\alpha}$.

Let $S = \{(\tau_1, \tau_2) : p(\tau_1) \neq p(\tau_2) \land (r(\tau_1) = 0 \lor q(\tau_2) = 0)\}.$

Then T and S can be calculated using the oracle.

Then ψ is an $\mathbf{MSO}[T,S]$ formula.

Then we define an $\mathbf{MSO}[p,q,r]$ formula ψ' as follows:

 ψ' claims that there exists a partition (with possible empty sets) $\{Y_{\tau}\}_{\tau}$ of I such that

- Every $i \in I$ is in some Y_{τ} for $\tau \in T$.
- If i' = i + 1 in I, then for some $(\tau_1, \tau_2) \in S$, $i \in Y_{\tau_1}$ and $i' \in Y_{\tau_2}$.

Now we claim that φ is satisfiable in some linear order, iff ψ' is satisfiable in some linear order.

Suppose φ is satisfiable in some linear order L.

Take a decomposition $L = \sum_{i \in I} L_i$ as in lemma 2.

Then ψ holds over the assignment $X_{\tau} := I_{\tau}$. But by lemma 2, this assignment satisfies the condition required for ψ' to hold. Then ψ' holds over I.

Conversely, suppose psi' holds in I.

Let $X_{\tau} := Z_{\tau}$ be the assignment that is guaranteed by psi'.

Let tau_i be the unique τ such that $i \in Z_{\tau}$.

Then the conditions for lemma 3 are guaranteed.

Thus, take L as in lemma 3. Then ψ holds over I when we set $X_i := Z_{\tau}$. But $Z_{\tau} = I_{\tau}$ for all τ , so φ holds over L.