Algebra Lineare, c.d.L. in Informatica, Esempio I compitino 2022

NON SI POSSONO UTILIZZARE CALCOLATRICI NÉ CONSULTARE LIBRI O APPUNTI

NOME E COGNOME: _		
Numero di matricola : _		

1) DARE SOLO LA RISPOSTA FINALE SENZA IL PROCEDIMENTO. OGNI RISPOSTA ESATTA VALE 3 PUNTI

1a) Si consideri al variare di $k \in \mathbf{R}$ il seguente sistema:

$$S_k: \begin{cases} 2x - y = k \\ x - y - 3z = 0 \\ x + y + k^2 z = k. \end{cases}$$

Stabilire per quali $k \in \mathbf{R}$ il sistema S_k è compatibile e, se esistono, trovare le soluzioni quando k = 1.

1b) Si considerino i vettori $v_1 = \begin{pmatrix} 1 \\ 0 \\ 3 \end{pmatrix}, v_2 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$. Determinare per quali $t \in \mathbf{R}$ il vettore $\begin{pmatrix} 1 \\ t \\ t^2 \end{pmatrix}$ appartiene al sottospazio $Span(v_1, v_2)$.

1c) Trovare una base per il sottospazio U di \mathbf{R}^4 definito da $U=\left\{x=\begin{pmatrix}x_1\\x_2\\x_3\\x_4\end{pmatrix}|x_1+x_3=x_1+x_2-x_4=0\right\}$

1d) Se per $t \in \mathbf{R}$, definiamo vettori di \mathbf{R}^3 mediante $v_1 = \begin{pmatrix} t \\ 1 \\ -1 \end{pmatrix}$, $v_2 = \begin{pmatrix} 0 \\ t \\ t \end{pmatrix}$, $v_3 = \begin{pmatrix} 0 \\ t \\ 1 \end{pmatrix}$, dire per quali $t \in \mathbf{R}$ l'insieme $\mathcal{B} = \{v_1, v_2, v_3\}$ è una base di \mathbf{R}^3 .

2) Rispondere (con precisione) alle seguenti domande
2a) (vale 3 punti)a) Dare la definizione di sottospazio vettoriale di uno spazio vettoriale.b) Enunciare la formula di Grassmann
2b) (vale 5 punti) a) Dire cosa vuol dire che vettori v_1, \ldots, v_n di uno spazio vettoriale V sono linearmente indipendenti.
b) Siano v_1, v_2 vettori linearmente <u>indipendenti</u> e v_1, v_2, v_3 vettori linearmente <u>dipendenti</u> di uno spazio vettoriale V . Dimostrare che v_3 si può scrivere come combinazione lineare di v_1, v_2 .
2c) (vale 3 punti) Enunciare il Teorema di struttura per i sistemi lineari.

3) RISPONDERE, MOTIVANDO E DANDO DETTAGLI DEL PROCEDIMENTO, ALLA SEGUENTE DOMANDA CHE VALE $10~\mathrm{PUNTI}$.

3a) Sia

$$A = \left(\begin{array}{cccc} 1 & 3 & 2 & 3 \\ 2 & 0 & 1 & 3 \\ 0 & 2 & 1 & 1 \\ 3 & 1 & 2 & 5 \end{array}\right)$$

Trovare una base per lo spazio U generato dalle colonne di A e una base per lo spazio W delle soluzioni del sistema omogeneo Ax=0. Dire, motivando, se $\mathbf{R}^4=U\oplus W$ oppure no.