1. Программирование. Rest Service. Часть I

Задание A - см. https://github.com/eartser/comp-networks/tree/master/lab02/REST_service

Задание Б

GET

GET by id

GET by id

PUT

GET

DELETE

GET

2. Задачки

Задание 1

В момент, когда первый пакет будет полностью доставлен к приемнику, в пути или в очереди будут находиться остальные P-1 пакетов, причем каждые $\frac{L}{R}$ секунд до приемника будет доходить в точности 1 пакет. Таким образом,

$$d_{\text{\tiny CKBO3H}} = (N + P - 1) \cdot \frac{L}{R}.$$

Задание 2

Пропускная способность сети равна минимуму из R1, R2, R3, то есть, $R=200~{\rm Kбит/c}.$ Тогда передача файла займет $\frac{L}{R}=\frac{5~{\rm Mбайт}}{200~{\rm Kбит/c}}=\frac{40000~{\rm Kбит}}{200~{\rm Kбит/c}}=200~{\rm c}\approx 3,33~{\rm минуты}.$

Задание 3

Пусть X_i - независимые случайные величины такие, что $P(X_i=1)=0$, 2,

$$P(X_i = 0) = 0, 8.$$
 Тогда

P(одновременной передачи ≥ 12 пользователями $)=1-P(\sum\limits_{i=1}^{60}X_{i}\leq 11).$

Воспользуемся ЦПТ:

$$P(\sum\limits_{i=1}^{60}X_i\leq 11)=P(rac{\sum\limits_{i=1}^{60}X_i-12}{\sqrt{60\cdot0,2\cdot0,8}}\leq rac{-1}{\sqrt{60\cdot0,2\cdot0,8}})pprox P(Z\leq -0,32)$$
, где Z - случайная величина

со стандартным нормальным распределением. Следовательно,

P(одновременной передачи ≥ 12 пользователями) $\approx 1 - P(Z \leq 0.32) = 1 - 0.3745 = 0.6255$.

Задание 4

Всего формируется $\frac{X}{S}$ пакетов длиной 80+S. Из первого задания мы знаем, что $d_{\text{передачи}}=(\frac{X}{S}+2)\cdot\frac{80+S}{R}$. Найдем нули производной $d_{\text{передачи}}$: $d_{\text{передачи}}'=\frac{2}{R}-\frac{80\cdot X}{R\cdot S^2}=0$, отсюда $S=\sqrt{40\cdot X}$ - точка минимума, то есть, задержка передачи файла будет минимальной при $S=\sqrt{40\cdot X}$.