

Agreement no: 2019-1-RO01-KA202-063965

Σχέδιο Μαθήματος – Πληροφορική

Θέμα : Εναλλακτική οδηγία IF - εφαρμογή στον προγραμματισμό συστήματος ασφαλείας υπερήχων

Ομάδα στόχος: 9th grade students (beginners)

Στόχοι / Δεξιότητες

- Στ1. Επεξήγηση της λειτουργίας της εναλλακτικής εντολής IF και των ένθετων IF
- Στ2. Κατασκευή της συσκευής Arduino
- Στ3. Εφαρμόστε τον κωδικό της συσκευής χρησιμοποιώντας τη δήλωση ΙΕ
- Στ4. Δοκιμή λειτουργικότητας συσκευής

Μέθοδοι διδασκαλίας: συνομιλία, επεξήγηση, επίλυση προβλημάτων, σχεδιασμός αλγορίθμων, επίδειξη

Εκπαιδευτικά Μέσα / Εργαλεία / Τεχνολογίες

Αριθμομηχανή, Διαδίκτυο, online πρόγραμμα επεξεργασίας Arduino, Στοιχεία έργου (Arduino Uno x 1, breadboard x 1, αισθητήρας υπερήχων x 1, κόκκινες x 1 LED, κίτρινο x 1, πράσινο 1 x 1, αντίσταση x 1, καλώδια x 10)

Προβολή της δραστηριότητας

Οι μαθητές θα χωριστούν σε 3 ομάδες που θα φτιάξουν τη συσκευή παράλληλα και θα την παρουσιάσουν. Σε κάθε ομάδα 10 μαθητών θα υπάρχουν μαθητές που θα κατασκευάσουν τη συσκευή και μαθητές που θα την προγραμματίσουν.

Διάρκεια	Δραστηριότητα	Μέθοδοι – Μέσα
5 λεπτά	Εισαγωγή της εναλλακτικής εντολής IF. Εξηγήστε τη σύνταξη C ++ και την αρχή της εκτέλεσης. Ένθετα IF, κανόνες συσχέτισης ELSE.	Επεξήγηση, συνομιλία
5 λεπτά	Παρουσίαση της συσκευής ασφαλείας υπερήχων (Βήμα 1 - παράρτημα)	Επίλυση προβλημάτων, Επεξήγηση, συνομιλία
20 λεπτά	Κατασκευή συσκευής (Βήμα 2- Βήμα 6 παράρτημα)	Επίλυση προβλημάτων, Επεξήγηση, συνομιλία
15 λεπτά	Προγραμματισμός συσκευής	Σχεδιασμός αλγορίθμου
5 λεπτά	Δοκιμή της λειτουργικότητας της συσκευής	Επίδειξη

Agreement no: 2019-1-RO01-KA202-063965

Αξιολόγηση/Ανατροφοδότηση:

Έλεγχος της λειτουργικότητας της συσκευής για κάθε κατάσταση που εφαρμόζεται από τις οδηγίες IF (τοποθέτηση σε διαφορετικές αποστάσεις και έλεγχος των φωτεινών και ηχητικών σημάτων).

Βιβλιογραφία /Webography:

https://create.arduino.cc/projecthub/Krepak/ultrasonic-security-system 3afe13?ref=tag&ref id=kids&offset=3

Annex 1

Βήμα 1: Παρουσίαση της συσκευής

Agreement no: 2019-1-RO01-KA202-063965

Βήμα 2: Σύνδεση:

- Το κόκκινο καλώδιο από τον ακροδέκτη 5V στο θετικό κανάλι στο breadboard
- Το μαύρο καλώδιο από την ακίδα GND στο Arduino στο αρνητικό κανάλι του breadboard
- Βομβητής = ακίδα 7
- Αισθητήρας υπερήχων:
 - ο Echo = ακίδα 3
 - ο Trig = ακίδα 2
- LEDs:
 - o RedLED = pin 4
 - o YellowLED = pin 5
 - o GreenLED = pin 6

Agreement no: 2019-1-RO01-KA202-063965

Τα πράσινα καλώδια συνδέουν τα LED στη σειρά ως εξής: Θετική λυχνία LED με αρνητική λυχνία LED στο αρνητικό κανάλι στο breadboard, χρησιμοποιώντας μια αντίσταση 220 ohm

Βήμα 3: Συναρμολογήστε το Breadboard

Πρώτα η ακίδα 5V και GND από το Arduino στο breadboard.

Βήμα 4: Συναρμολόγηση - Αισθητήρας υπερήχων

Agreement no: 2019-1-RO01-KA202-063965

Αισθητήρας υπερήχων HC-SRO4! Τοποθετήστε τον αισθητήρα υπερήχων με την όψη προς τα επάνω όσο το δυνατόν πιο δεξιά.

Συνδέουμε:

- Ακίδα GND από τον αισθητήρα υπερήχων στο αρνητικό κανάλι στο breadboard.
- Περάστε την ακίδα στον αισθητήρα στην ακίδα 2 από το Arduino
- Ακίδα ηχού στον αισθητήρα στην ακίδα 3 στο Arduino.
- Ακίδα VCC στον αισθητήρα υπερήχων στο θετικό κανάλι στο breadboard.

Βήμα 5: Συναρμολόγηση – LED

Βήμα 6: Συναρμολόγηση – Βομβητής

ROBOSTEM Project Agreement no: 2019-1-RO01-KA202-063965

Agreement no: 2019-1-RO01-KA202-063965


```
const int trigPin = 2;
const int echoPin = 3;
const int LEDlampRed = 4;
const int LEDlampYellow = 5;
const int LEDlampGreen = 6;
const int buzzer = 7;
int sound = 500;
void setup() {
  Serial.begin (9600);
  pinMode(trigPin, OUTPUT);
  pinMode(echoPin, INPUT);
  pinMode(LEDlampRed, OUTPUT);
  pinMode(LEDlampYellow, OUTPUT);
  pinMode(LEDlampGreen, OUTPUT);
  pinMode(buzzer, OUTPUT);
void loop() {
  long durationindigit, distanceincm;
  digitalWrite(trigPin, LOW);
  delayMicroseconds(2);
  digitalWrite(trigPin, HIGH);
  delayMicroseconds(10);
```


Agreement no: 2019-1-RO01-KA202-063965

```
digitalWrite(trigPin, LOW);
  durationindigit = pulseIn(echoPin, HIGH);
  distanceincm = (durationindigit * 0.034) / 2;
  if (distanceincm > 50) {
    digitalWrite(LEDlampGreen, LOW);
    digitalWrite(LEDlampYellow, LOW);
    digitalWrite(LEDlampRed, LOW);
    noTone(buzzer);
  else if (distanceincm <= 50 && distanceincm > 20) {
    digitalWrite(LEDlampGreen, HIGH);
    digitalWrite(LEDlampYellow, LOW);
    digitalWrite(LEDlampRed, LOW);
    noTone(buzzer);
  }
  else if (distanceincm <= 20 && distanceincm > 5) {
    digitalWrite(LEDlampYellow, HIGH);
    digitalWrite(LEDlampGreen, HIGH);
    digitalWrite(LEDlampRed, LOW);
    tone(buzzer, 500);
  else if (distanceincm <= 0) {</pre>
    digitalWrite(LEDlampGreen, LOW);
    digitalWrite(LEDlampYellow, HIGH);
    digitalWrite(LEDlampRed, LOW);
    noTone(buzzer);
  else {
    digitalWrite(LEDlampGreen, HIGH);
    digitalWrite(LEDlampYellow, HIGH);
    tone(buzzer, 1000);
    digitalWrite(LEDlampRed, HIGH);
    delay(300);
    digitalWrite(LEDlampRed, LOW);
  Serial.print(distanceincm);
  Serial.println(" cm");
  delay(300);
}
```