NAIL062 V&P Logika: 9. cvičení

Témata: Tablo metoda v predikátové logice, jazyky s rovností.

Příklad 1. Předpokládejme, že

- (a) všichni viníci jsou lháři,
- (b) aspoň jeden z obviněných je také svědkem,
- (c) žádný svědek nelže.

Dokažte tablo metodou, že ne všichni obvinění jsou viníci.

Příklad 2. Nechť L(x,y) reprezentuje "existuje let z x do y" a S(x,y) reprezentuje "existuje spojení z x do y". Předpokládejme, že

- (a) Z Prahy lze letět do Bratislavy, Londýna a New Yorku, a z New Yorku do Paříže,
- (b) $(\forall x)(\forall y)(L(x,y) \to L(y,x)),$
- (c) $(\forall x)(\forall y)(L(x,y) \to S(x,y)),$
- (d) $(\forall x)(\forall y)(\forall z)(S(x,y) \land L(y,z) \rightarrow S(x,z)).$

Dokažte tablo metodou, že existuje spojení z Bratislavy do Paříže.

Příklad 3. Mějme teorii T^* s axiomy rovnosti. Pomocí tablo metody ukažte, že

(a)
$$T^* \models x = y \rightarrow y = x$$
 (symetrie)

(b)
$$T^* \models (x = y \land y = z) \rightarrow x = z$$
 (tranzitivita)

Hint: Pro (a) použijte axiom rovnosti (*iii*) pro $x_1 = x$, $x_2 = x$, $y_1 = y$ a $y_2 = x$, na (b) použijte (*iii*) pro $x_1 = x$, $x_2 = y$, $y_1 = x$ a $y_2 = z$.

Příklad 4. Ukažme, že platí následující pravidla 'vytýkání' kvantifikátorů. Používáme je při převodu do tzv. *Prenexní normální formy*. V následujících příkladech jsou φ a ψ sentence nebo formule s volnou proměnnou x (což značíme $\varphi(x)$, $\psi(x)$). Najděte tablo důkazy dané formule:

- (a) $\neg(\exists x)\varphi(x) \rightarrow (\forall x)\neg\varphi(x)$,
- (b) $(\forall x) \neg \varphi(x) \rightarrow \neg (\exists x) \varphi(x)$,
- (c) $(\exists x)(\varphi(x) \lor \psi(x)) \leftrightarrow (\exists x)\varphi(x) \lor (\exists x)\psi(x)$,
- (d) $(\forall x)(\varphi(x) \land \psi(x)) \leftrightarrow (\forall x)\varphi(x) \land (\forall x)\psi(x)$,
- (e) $(\varphi \lor (\forall x)\psi(x)) \to (\forall x)(\varphi \lor \psi(x))$ kde x není volná v φ ,
- (f) $(\varphi \wedge (\exists x)\psi(x)) \rightarrow (\exists x)(\varphi \wedge \psi(x))$ kde x není volná v φ .
- (g) $(\exists x)(\varphi \to \psi(x)) \to (\varphi \to (\exists x)\psi(x))$ kde x není volná v φ ,
- (h) $(\exists x)(\varphi \land \psi(x)) \rightarrow (\varphi \land (\exists x)\psi(x))$ kde x není volná v φ ,
- (i) $(\exists x)(\varphi(x) \to \psi) \to ((\forall x)\varphi(x) \to \psi)$ kde x není volná v ψ ,
- (j) $((\exists x)\varphi(x) \to \psi) \to (\forall x)(\varphi(x) \to \psi)$ kde x není volná v ψ .

Příklad 5. Dokažte větu o konstantách syntakticky, pomocí transformací tabel.

Věta. Buď φ formula v jazyce L s volnými proměnnými x_1, \ldots, x_n a T teorie v L. Označme L' extenzi L o nové konstantní symboly c_1, \ldots, c_n a T' teorii T v L'. Potom platí

$$T \vdash (\forall x_1) \ldots (\forall x_n) \varphi \quad \textit{právě když} \quad T' \vdash \varphi(x_1/c_1, \ldots, x_n/c_n).$$

Příklad 6. Dokažte větu o dedukci syntakticky, pomocí transformací tabel.

Věta. Pro každou teorii T (v uzavřené formě) a sentence φ , ψ ,

$$T \vdash \varphi \rightarrow \psi$$
 právě $když$ $T, \varphi \vdash \psi$.

Domácí úkol (3 body).