(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 29 November 2001 (29.11.2001)

PCT

(10) International Publication Number WO 01/90358 A2

- (51) International Patent Classification7: C12N 15/12, C07K 14/715, 16/18, G01N 33/53, C12N 5/10
- (21) International Application Number: PCT/US01/16767
- (22) International Filing Date: 23 May 2001 (23.05.2001)
- (25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

60/206,862

24 May 2000 (24.05.2000)

- (71) Applicant: SCHERING CORPORATION [US/US]; 2000 Galloping Hill Road, Kenilworth, NJ 07033-0530
- (72) Inventor: GORMAN, Daniel, M.; 6371 Central Avenue, Newark, CA 94560 (US).
- (74) Agent: ZARADIC, Sandy; Schering-Plough Corporation, Patent Department, K-6-1, 1990, 2000 Galloping Hill Road, Kenilworth, NJ 07033-0530 (US).

- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, HR, HU, ID, IL, IN, IS, JP, KG, KR, KZ, LC, LK, LR, LT, LU, LV, MA, MD, MG, MK, MN, MX, MZ, NO, NZ, PL, PT, RO, RU, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UZ, VN, YU, ZA.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Declaration under Rule 4.17:

as to the applicant's entitlement to claim the priority of the earlier application (Rule 4.17(iii)) for all designations

Published:

without international search report and to be republished upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: MAMMALIAN RECEPTOR PROTEINS; RELATED REAGENTS AND METHODS

(57) Abstract: Nucleic acids encoding mammalian, e.g., primate, receptors, purified receptor proteins and fragments thereof. Antibodies, both polyclonal and monoclonal, are also provided. Methods of using the compositions for both diagnostic and therapeutic utilities are described.

5

MAMMALIAN RECEPTOR PROTEINS; RELATED REAGENTS AND METHODS

10

FIELD OF THE INVENTION

The present invention relates to compositions and methods for affecting mammalian physiology, including immune system function. In particular, it provides methods to regulate development and/or the immune system. Diagnostic and therapeutic uses of these materials are also disclosed.

15

20

25

30

35

BACKGROUND OF THE INVENTION

Recombinant DNA technology refers generally to techniques of integrating genetic information from a donor source into vectors for subsequent processing, such as through introduction into a host, whereby the transferred genetic information is copied and/or expressed in the new environment. Commonly, the genetic information exists in the form of complementary DNA (cDNA) derived from messenger RNA (mRNA) coding for a desired protein product. The carrier is frequently a plasmid having the capacity to incorporate cDNA for later replication in a host and, in some cases, actually to control expression of the cDNA and thereby direct synthesis of the encoded product in the host. See, e.g., Sambrook, et al. (1989) Molecular Cloning: A Laboratory Manual, (2d ed.) vols. 1-3, CSH Press, NY.

For some time, it has been known that the mammalian immune response is based on a series of complex cellular interactions, called the "immune network". Recent research has provided new insights into the inner workings of this network. While it remains clear that much of the immune response does, in fact, revolve around the network-like interactions of lymphocytes, macrophages, granulocytes, and other cells, immunologists now generally hold the opinion that soluble proteins, known as lymphokines, cytokines, or monokines, play critical roles in controlling these cellular interactions. Thus, there is considerable interest in the isolation, characterization, and mechanisms of action of cell modulatory factors, an understanding of which will lead to significant advancements in the diagnosis and therapy of numerous medical abnormalities, e.g., immune system disorders.

The immune system of vertebrates consists of a number of organs and several different cell types. Two major cell types include the myeloid and lymphoid lineages. Among the lymphoid cell lineage are B cells, which were originally characterized as differentiating in fetal liver or adult bone marrow, and T cells, which were originally characterized as differentiating in the thymus. See, e.g., Paul (ed. 1998) Fundamental Immunology (4th ed.) Raven Press, New York; and Thomson (ed. 1994) The Cytokine Handbook 2d ed., Academic Press, San Diego. Lymphokines apparently mediate cellular activities in a variety of ways. They have been shown to support the proliferation, growth, and/or differentiation of cells, e.g., pluripotential hematopoietic stem cells, into vast numbers of progenitors comprising diverse cellular lineages which make up a complex immune system. Proper and balanced interactions between the cellular components are necessary for a healthy immune response. The different cellular lineages often respond in a different manner when lymphokines are administered in conjunction with other agents.

5

10

15

20

25

30

35

Cell lineages especially important to the immune response include two classes of lymphocytes: B-cells, which can produce and secrete immunoglobulins (proteins with the capability of recognizing and binding to foreign matter to effect its removal), and T-cells of various subsets that secrete lymphokines and induce or suppress the B-cells and various other cells (including other T-cells) making up the immune network. These lymphocytes interact with many other cell types.

Research to better understand and treat various immune disorders has been hampered by the general inability to maintain cells of the immune system in vitro. Immunologists have discovered that culturing many of these cells can be accomplished through the use of T-cell and other cell supernatants, which contain various growth factors, including many of the lymphokines.

Various growth and regulatory factors exist which modulate morphogenetic development. And many receptors for cytokines are also known. Often there are at least two critical subunits in the functional receptor. See, e.g., Gonda and D'Andrea (1997) Blood 89:355-369; Presky, et al. (1996) Proc. Nat'l Acad. Sci. USA 93:14002-14007; Drachman and Kaushansky (1995) Curr. Opin. Hematol. 2:22-28; Theze (1994) Eur. Cytokine Netw. 5:353-368; and Lemmon and Schlessinger (1994) Trends Biochem. Sci. 19:459-463.

From the foregoing, it is evident that the discovery and development of new soluble proteins and their receptors, including ones similar to lymphokines, should contribute to new therapies for a wide range of degenerative or abnormal conditions which directly or indirectly involve development, differentiation, or function, e.g., of the

immune system and/or hematopoietic cells. In particular, the discovery and understanding of novel receptors for lymphokine-like molecules which enhance or potentiate the beneficial activities of other lymphokines would be highly advantageous. However, the lack of understanding of how the immune system is regulated or differentiates has blocked the ability to advantageously modulate the normal defensive mechanisms to biological challenges. Medical conditions characterized by abnormal or inappropriate regulation of the development or physiology of relevant cells thus remain unmanageable. The discovery and characterization of specific cytokines and their receptors will contribute to the development of therapies for a broad range of degenerative or other conditions which affect the immune system, hematopoietic cells, as well as other cell types. The present invention provides new receptors for ligands exhibiting similarity to cytokine like compositions and related compounds, and methods for their use.

SUMMARY OF THE INVENTION

The present invention is directed to novel receptors related to cytokine receptors, e.g., primate, cytokine receptor like molecular structures, designated DNAX Cytokine Receptor Subunits (DCRS), and their biological activities. In particular, it provides description of various subunits, designated DCRS6, DCRS7, DCRS8, DCRS9, and DCRS10. Primate, e.g., human, and rodent, e.g., mouse, embodiments of the various subunits are provided. It includes nucleic acids coding for the polypeptides themselves and methods for their production and use. The nucleic acids of the invention are characterized, in part, by their homology to cloned complementary DNA (cDNA) sequences enclosed herein.

The present invention provides a composition of matter selected from: a substantially pure or recombinant polypeptide comprising at least three distinct nonoverlapping segments of at least four amino acids identical to segments of SEQ ID NO: 2, 5, 8, 11, 23, or 26; a substantially pure or recombinant polypeptide comprising at least three distinct nonoverlapping segments of at least four amino acids identical to segments of SEQ ID NO: 14; a substantially pure or recombinant polypeptide comprising at least two distinct nonoverlapping segments of at least five amino acids identical to segments of SEQ ID NO: 14; a natural sequence DCRS8 comprising mature SEQ ID NO: 14; a fusion polypeptide comprising DCRS8 sequence; a substantially pure or recombinant polypeptide comprising at least three distinct nonoverlapping segments of at least four amino acids identical to segments of SEQ ID NO: 17 or 20; a substantially pure or recombinant polypeptide comprising at least two distinct nonoverlapping segments of at least five amino acids identical to segments of SEQ ID NO: 17 or 20; a natural

WO 01/90358

5

10

15

20

25

30

35

PCT/US01/16767

4

sequence DCRS9 comprising mature SEQ ID NO: 17 or 20; or a fusion polypeptide comprising DCRS9 sequence. Preferably, wherein the distinct nonoverlapping segments of identity include: one of at least eight amino acids; one of at least four amino acids and a second of at least five amino acids; at least three segments of at least four, five, and six amino acids, or one of at least twelve amino acids. In other embodiments, the: polypeptide: comprises a mature sequence of Tables 1, 2, 3, 4, or 5; is an unglycosylated form of DCRS8 or DCRS9; is from a primate, such as a human; comprises at least seventeen amino acids of SEQ ID NO: 14 or 17; exhibits at least four nonoverlapping segments of at least seven amino acids of SEO ID NO: 14 or 17; is a natural allelic variant of DCRS8 or DCRS9; has a length at least about 30 amino acids; exhibits at least two non-overlapping epitopes which are specific for a primate DCRS8 or DCRS9; is glycosylated; has a molecular weight of at least 30 kD with natural glycosylation; is a synthetic polypeptide; is attached to a solid substrate; is conjugated to another chemical moiety; is a 5-fold or less substitution from natural sequence; or is a deletion or insertion variant from a natural sequence.

The invention further embraces a composition comprising: a substantially pure DCRS8 or DCRS9 and another cytokine receptor family member; a sterile DCRS8 or DCRS9 polypeptide; the DCRS8 or DCRS9 polypeptide and a carrier, wherein the carrier is: an aqueous compound, including water, saline, and/or buffer; and/or formulated for oral, rectal, nasal, topical, or parenteral administration. Additional embodiments include a polypeptide comprising: mature protein sequence of Tables 1, 2, 3, 4, or 5; a detection or purification tag, including a FLAG, His6, or Ig sequence; or sequence of another cytokine receptor protein. Kit embodiments include ones comprising a described polypeptide, and: a compartment comprising the protein or polypeptide; or instructions for use or disposal of reagents in the kit.

Binding compositions are provided, e.g., comprising an antigen binding site from an antibody, which specifically binds to a natural DCRS8 or DCRS9 polypeptide, wherein: the binding compound is in a container; the DCRS8 or DCRS9 polypeptide is from a human; the binding compound is an Fv, Fab, or Fab2 fragment; the binding compound is conjugated to another chemical moiety; or the antibody: is raised against a peptide sequence of a mature polypeptide of Table 3 or 4; is raised against a mature DCRS8 or DCRS9; is raised to a purified human DCRS8 or DCRS9; is immunoselected; is a polyclonal antibody; binds to a denatured DCRS8 or DCRS9; exhibits a Kd to antigen of at least 30 µM; is attached to a solid substrate, including a bead or plastic membrane; is in a sterile composition; or is detectably labeled, including a radioactive or fluorescent label. Kits include ones comprising such a binding compound, and: a compartment

5

10

15

20

25

30

35

5

comprising the binding compound; or instructions for use or disposal of reagents in the kit.

The invention also provides methods of producing an antigen:antibody complex, comprising contacting under appropriate conditions a primate DCRS8 or DCRS9 polypeptide with a described antibody, thereby allowing the complex to form. Preferred methods include ones wherein: the complex is purified from other cytokine receptors; the complex is purified from other antibody; the contacting is with a sample comprising an interferon; the contacting allows quantitative detection of the antigen; the contacting is with a sample comprising the antibody; or the contacting allows quantitative detection of the antibody. Further compositions include those comprising: a sterile binding compound, as described, or the binding compound and a carrier, wherein the carrier is: an aqueous compound, including water, saline, and/or buffer; and/or formulated for oral, rectal, nasal, topical, or parenteral administration.

Nucleic acid compositions include an isolated or recombinant nucleic acid encoding a desribed polypeptide wherein the: DCRS8 or DCRS9 is from a human; or the nucleic acid: encodes an antigenic peptide sequence of Table 3 or 4; encodes a plurality of antigenic peptide sequences of Table 3 or 4; exhibits identity over at least thirteen nucleotides to a natural cDNA encoding the segment; is an expression vector; further comprises an origin of replication; is from a natural source; comprises a detectable label; comprises synthetic nucleotide sequence; is less than 6 kb, preferably less than 3 kb; is from a primate; comprises a natural full length coding sequence; is a hybridization probe for a gene encoding the DCRS8 or DCRS9; or is a PCR primer, PCR product, or mutagenesis primer. Also provided are a cell or tissue comprising such a recombinant nucleic acid, e.g., where the cell is: a prokaryotic cell; a eukaryotic cell; a bacterial cell; a yeast cell; an insect cell; a mammalian cell; a mouse cell; a primate cell; or a human cell.

Kit embodiments include those comprising a described nucleic acid and: a compartment comprising the nucleic acid; a compartment further comprising a primate DCRS8 or DCRS9 polypeptide; or instructions for use or disposal of reagents in the kit.

Other nucleic acids provided include ones which: hybridize under wash conditions of 30 minutes at 30° C and less than 2M salt to the coding portion of SEQ ID NO: 13 or 16; or exhibit identity over a stretch of at least about 30 nucleotides to a primate DCRS8 or DCRS9. Preferably, such will be nucleic acids where: the wash conditions are: at 45° C and/or 500 mM salt; at 55° C and/or 150 mM salt; or the stretch is at least 55 or 75 nucleotides.

Also provided are methods of modulating physiology or development of a cell or tissue culture cells comprising contacting the cell with an agonist or antagonist of a

WO 01/90358

6

mammalian DCRS8 or DCRS9. Preferably, the cell is transformed with a nucleic acid encoding the DCRS8 or DCRS9 and another cytokine receptor subunit.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

5

15

25

OUTLINE

- I. General
- II. Activities
- III. Nucleic acids
- 10
 - A. encoding fragments, sequence, probes
 - B. mutations, chimeras, fusions
 - C. making nucleic acids
 - D. vectors, cells comprising
 - IV. Proteins, Peptides
 - A. fragments, sequence, immunogens, antigens
 - B. muteins
 - C. agonists/antagonists, functional equivalents
 - D. making proteins
 - V. Making nucleic acids, proteins
- 20
- A. synthetic B. recombinant
- C. natural sources
- VI. Antibodies
 - A. polyclonals
- B. monoclonal
 - C. fragments; Kd
 - D. anti-idiotypic antibodies
 - E. hybridoma cell lines
- VII. Kits and Methods to quantify DCRSs
- 30 A. ELISA
 - B. assay mRNA encoding
 - C. qualitative/quantitative
 - D. kits
 - VIII. Therapeutic compositions, methods
 - A. combination compositions
 - B. unit dose
 - C. administration
 - IX. Screening
 - X. Ligands

40

45

35

I. General

The present invention provides the amino acid sequence and DNA sequence of mammalian, herein primate, cytokine receptor-like subunit molecules, these designated DNAX Cytokine Receptor Subunits 6 (DCRS6), 7 (DCRS7), 8 (DCRS8), 9 (DCRS9), and 10 (DCRS10) having particular defined properties, both structural and biological.

10

15

20

25

40

Various cDNAs encoding these molecules were obtained from primate, e.g., human, and/or rodent, e.g., mouse, cDNA sequence libraries. Other primate or other mammalian counterparts would also be desired.

Some of the standard methods applicable are described or referenced, e.g., in Maniatis, et al. (1982) Molecular Cloning, A Laboratory Manual, Cold Spring Harbor Laboratory, Cold Spring Harbor Press; Sambrook, et al. (1989) Molecular Cloning: A Laboratory Manual, (2d ed.), vols. 1-3, CSH Press, NY; Ausubel, et al., Biology, Greene Publishing Associates, Brooklyn, NY; or Ausubel, et al. (1987 and periodic supplements) Current Protocols in Molecular Biology, Greene/Wiley, New York; each of which is incorporated herein by reference.

Nucleotide (SEQ ID NO: 1) and corresponding amino acid sequence (SEQ ID NO: 2) of a primate, e.g., human, DCRS6 coding segment is shown in Table 1 along with reverse translation (SEQ ID NO: 3). Rodent, e.g., mouse, counterpart sequences are provided, e.g., SEQ ID NO: 4-6.

Similarly, nucleotide (SEQ ID NO: 7) and corresponding amino acid sequence (SEQ ID NO: 8) of a primate, e.g., human, DCRS7 coding segment is shown in Table 2 along with reverse translation (SEQ ID NO: 9). Rodent, e.g., mouse, counterpart sequences are provided, e.g., SEQ ID NO: 10-12. Nucleotide (SEQ ID NO: 13) and corresponding amino acid sequence (SEQ ID NO: 14) of a primate, e.g., human, DCRS8 coding segment is shown in Table 3 along with reverse translation (SEQ ID NO: 15).

Nucleotide (SEQ ID NO: 16) and corresponding amino acid sequence (SEQ ID NO: 17) of a primate, e.g., human, DCRS9 coding segment is shown in Table 4 along with reverse translation (SEQ ID NO: 18). Rodent, e.g., mouse, counterpart sequences are provided, e.g., SEQ ID NO: 19-21. Nucleotide (SEQ ID NO: 22) and corresponding amino acid sequence (SEQ ID NO: 23) of a primate, e.g., human, DCRS10 coding segment is shown in Table 5 along with reverse translation (SEQ ID NO: 24). Rodent, e.g., mouse, counterpart sequences are provided, e.g., SEQ ID NO: 26-27.

Table 1: Nucleotide and polypeptide sequences of DNAX Cytokine Receptor Subunit like embodiments (DCRS6). Primate, e.g., human, embodiment (see SEQ ID NO: 1 and 2). Predicted signal sequence indicated, but may vary by a few positions and depending upon cell type.

gta ccc cga gag ccg acc gtt caa tgt ggc tct gaa act ggg cca tct 96 Val Pro Arg Glu Pro Thr Val Gln Cys Gly Ser Glu Thr Gly Pro Ser 5 10 15

				_				-		ccg Pro		_	_		_	144
5										gca Ala						192
10		_	_		_	_		_		gca Ala 60	_	_	_		_	240
15	_	_	_	_		_		_	 _	ggc		_			_	288
20			_	_			_			gag Glu	-		-		_	336
20		_								tcc Ser			Gly			384
25	_		_			_				gcc Ala						432
30										tct Ser 140						480
35			_		_			_		aaa Lys		_	_	_	_	528
40	_		-	_		-	_			gct Ala	_	_	_			576
,			-	_						ccc Pro	_			_		624
45										Gly 999						672
50										tca Ser 220						720
55										ctg Leu						768

			ggc Gly														816
5			aca Thr 260														864
10			tgg Trp														912
15			gtg Val														960
20			tcc Ser														1008
			tac Tyr														1056
25			ttt Phe 340														1104
30			aaa Lys														1152
35	act Thr 370	caa Gln	aag Lys	aag Lys	gca Ala	gca Ala 375	gac Asp	aaa Lys	gtc Val	gtc Val	ttc Phe 380	ctt Leu	ctt Leu	tcc Ser	aat Asn	gac Asp 385	1200
40			agt Ser														1248
40	_		aac Asn			_					_					_	1296
45			cta Leu 420														1344
50			gag Glu														1392
55	ccc Pro 450	aag Lys	tac Tyr	cac His	ctc Leu	atg Met 455	aag Lys	gat Asp	gcc Ala	act Thr	gct Ala 460	ttc Phe	tgt Cys	gca Ala	gaa Glu	ctt Leu 465	1440

	ctc cat gtc aag cag gtg tca gca gga aaa aga tca caa gcc tgc 1488 Leu His Val Lys Gln Gln Val Ser Ala Gly Lys Arg Ser Gln Ala Cys 470 475 480
5	cac gat ggc tgc tgc tcc ttg tagcccaccc atgagaagca agagacctta 1539 His Asp Gly Cys Cys Ser Leu 485
10	aaggetteet ateccaccaa ttacagggaa aaaaegtgtg atgateetga agettaetat 1599
10	gcagcctaca aacagcctta gtaattaaaa cattttatac caataaaatt ttcaaatatt 1659
	gctaactaat gtagcattaa ctaacgattg gaaactacat ttacaacttc aaagctgttt 1719
15	tatacataga aatcaattac agctttaatt gaaaactgta accattttga taatgcaaca 1779
	ataaagcatc ttcagcc 1796
20	MSLVLLSLAALCRSAVPREPTVQCGSETGPSPEWMLQHDLIPGDLRDLRVEPVTTSVATGDYSILMNVSWVL RADASIRLLKATKICVTGKSNFQSYSCVRCNYTEAFQTQTRPSGGKWTFSYIGFPVELNTVYFIGAHNIPNA NMNEDGPSMSVNFTSPGCLDHIMKYKKKCVKAGSLWDPNITACKKNEETVEVNFTTTPLGNRYMALIQHSTI IGFSQVFEPHQKKQTRASVVIPVTGDSEGATVQLTPYFPTCGSDCIRHKGTVVLCPQTGVPFPLDNNKSKPG GWLPLLLLSLLVATWVLVAGIYLMWRHERIKKTSFSTTTLLPPIKVLVVYPSEICFHHTICYFTEFLQNHCR
25	SEVILEKWQKKKIAEMGPVQWLATQKKAADKVVFLLSNDVNSVCDGTCGKSEGSPSENSQDLFPLAFNLFCS DLRSQIHLHKYVVVYFREIDTKDDYNALSVCPKYHLMKDATAFCAELLHVKQQVSAGKRSQACHDGCCSL.
	Reverse translation of primate, e.g., human, DCRS6 (SEQ ID NO: 3):
30	atgwsnytng tnytnytnws nytngcngcn ytntgymgnw sngcngtncc nmgngarccn 60
	acngtncart gyggnwsnga racnggnccn wsnccngart ggatgytnca rcaygayytn 120
25	athcenggng ayytnmgnga yytnmgngtn garcengtna enaenwsngt ngenaenggn 180
35	gaytaywsna thytnatgaa ygtnwsntgg gtnytnmgng cngaygcnws nathmgnytn 240
	ytnaargcna cnaarathtg ygtnacnggn aarwsnaayt tycarwsnta ywsntgygtn 300
40	mgntgyaayt ayacngargc nttycaracn caracnmgnc cnwsnggngg naartggacn 360
	ttywsntaya thggnttycc ngtngarytn aayacngtnt ayttyathgg ngcncayaay 420
45	athccnaayg cnaayatgaa ygargayggn ccnwsnatgw sngtnaaytt yacnwsnccn 480
45	ggntgyytng aycayathat gaartayaar aaraartgyg tnaargcngg nwsnytntgg 540
	gayccnaaya thacngcntg yaaraaraay gargaracng tngargtnaa yttyacnacn 600
50	acncenytng gnaaymgnta yatggenytn athearcayw snacnathat hggnttywsn 660
	carginityg arceneayea raaraarear aenmgngenw snginginat heenginaen 720
55	ggngaywsng arggngcnac ngtncarytn acncentayt tycenaentg yggnwsngay 780
55	tgyathmgnc ayaarggnac ngtngtnytn tgyccncara cnggngtncc nttyccnytn 840
	gayaayaaya arwsnaarcc nggnggntgg ytnccnytny tnytnytnws nytnytngtn 900

	genachtggg thythgtnge ngghathtay ythatgtggm gheaygarmg nathaaraar	960
5	achwenttyw snachachac nythythcch cchathaarg thythgtngt ntaycchwen	1020
5	garathtgyt tycaycayac nathtgytay ttyacngart tyytncaraa ycaytgymgn	1080
	wsngargtna thytngaraa rtggcaraar aaraarathg cngaratggg nccngtncar	1140
10	tggytngcna cncaraaraa rgcngcngay aargtngtnt tyytnytnws naaygaygtn	1200
	aaywsngtnt gygayggnac ntgyggnaar wsngarggnw snccnwsnga raaywsncar	1260
15	gayytnttyc cnytngcntt yaayytntty tgywsngayy tnmgnwsnca rathcayytn	1320
•	cayaartayg tngtngtnta yttymgngar athgayacna argaygayta yaaygcnytn	1380
	wsngtntgyc cnaartayca yytnatgaar gaygcnacng cnttytgygc ngarytnytn	1440
20	caygtnaarc arcargtnws ngcnggnaar mgnwsncarg cntgycayga yggntgytgy	1500
	wsnytn	1506
25	Rodent, e.g., mouse embodiment (see SEQ ID NO: 4 and 5).	
	gat ttc agc agc cag acg cat ctg cac aaa tac ctg gag gtc tat ctt Asp Phe Ser Ser Gln Thr His Leu His Lys Tyr Leu Glu Val Tyr Leu	48
30	1 5 10 15	
30	ggg gga gca gac ctc aaa ggc gac tat aat gcc ctg agt gtc tgc ccc Gly Gly Ala Asp Leu Lys Gly Asp Tyr Asn Ala Leu Ser Val Cys Pro 20 25 30	96
35	caa tat cat ctc atg aag gac gcc aca gct ttc cac aca gaa ctt ctc Gln Tyr His Leu Met Lys Asp Ala Thr Ala Phe His Thr Glu Leu Leu 35 40 45	144
40	aag gct acg cag agc atg tca gtg aag aaa cgc tca caa gcc tgc cat Lys Ala Thr Gln Ser Met Ser Val Lys Lys Arg Ser Gln Ala Cys His 50 55 60	192
45	gat agc tgt tca ccc ttg tagtccaccc gggggaatag agactctgaa Asp Ser Cys Ser Pro Leu 65 70	240
	geetteetae teteeettee agtgacaaat getgtgtgae gaetetgaaa tgtgtgggag	300
50	aggetgtgtg gaggtagtge tatgtacaaa ettgetttaa aactggagtt tgcaaagtca	360
50	acctgagcat acacgcctga ggctagtcat tggctggatt tatgaagaca acacagttac $\dot{\cdot}$	420
	agacaataat gagtgggacc tacatttggg atatacccaa agctgggtaa tgattatcac	480
55	tgagaaccac gcactctggc catgaggtaa tacggcactt ccctgtcagg ctgtctgtca	540
	ggttgggtct gtcttgcact gcccatgctc tatgctgcac gtagaccgtt ttgtaacatt	600
	ttaatctgtt aatgaataat ccgtttggga ggctctc	637

 ${\tt DFSSQTHLHKYLEVYLGGADLKGDYNALSVCPQYHLMKDATAFHTELLKATQSMSVKKRSQACHDSCSPL.}$

5	Rev	erse	tra	nsla	tion	of :	rode	nt, (e.g.	, mo	use,	DCR	S6 (:	SEQ	ID N	0: 6):	
	gay	ttyw	snw :	snca	racno	са уу	ytnca	ayaa	r tay	yytn	garg	tnta	ayytı	raa :	nggn	gcngay	60
10	ytn	aarg	gng	ayta	yaay	gc ny	ytnw	sngti	n tg	yccn	cart	ayc	ayytı	nat	gaar	gaygen	120
10	acn	gcnt	tyc (ayacı	ngary	yt ny	ytna	argcı	n acı	ncar	wsna	tgw	sngti	naa	raarı	ngnwsn	180
	car	gcnt	gyc :	ayga	ywsnt	tg y	MBILC	cnyti	n								210
15 20	emb	odim icted	ents (DCR	57). Ī	rimat	te, e.g	,, hur	nan, e	mbo	dimer	ıt (see	SEQ	ΙDΪ	10: 7	ibunit li and 8). ling upo	
20	gag	tcag	gac	tece	aggad	ca ga	agagt	gca	c aaa	acta	ccca	gca	cagc	ccc (ctcc	gccccc	60
	tct	ggag	gct (gaaga	aggga	at to	ccago	cccct	gc	cacco	caca	gaca	acggg	gct (gacto	ggggtg	120
25	tct	gada	ccc 1	ttggg	gggca	an co	cacag	gggc	e tea	aggc	ctgg	gtg	ccaco	ctg (gcact	agaag	180
30															agc Ser		228
30					_							_	_	-	acc Thr		276
35															ctc Leu		324
40	_							_	-				_		cct Pro	_	372
45		_	_			_		_		_	_	_			gac Asp	-	420
50	_		_	_	_					_					cac His 75		468
															tta Leu		516
55															ctc Leu		564

		_	_				_	_	_	_	_	_	gag Glu				612
5													tct Ser				660
10													atc Ile				708
15		_					_	_					cag Gln	_	_		756
20													agc Ser 185				804
	_							_	_		-		gtg Val		_	_	852
25													ctg Leu				900
30	_	_	_										aac Asn	-			948
35	_	_				_				-	_	-	ccc Pro	_		_	996
40		_				_	_		_		_		acg Thr 265			_	1044
													tgg Trp				1092
45	_	_	_	_	_		_	_	_		_	_	gac Asp	_	_	_	1140
50													ccg Pro				1188
55													aat Asn				1236
	-			-	_		_	_	_	_	_		tgc Cys 345	_		_	1284

5			ctg Leu														1332
-			cag Gln														1380
10			cta Leu														1428
15			cta Leu		_	_	_			_	_	_	_			_	1476
20			ttg Leu 415														1524
§ 25	_	_	tgg Trp	_				_	-	_				_	_		1572
			ctc Leu														1620
30			ttg Leu		_	_	_	_	_			_	_			_	1668
35		_	ctg Leu					_	_	-	_				_	_	1716
40			gcc Ala 495														1764
45			ctg Leu														1812
43			cac His														1860
50	_	_	ctc Leu								_	_	_				1908
55			gjà aaa														1956

	cgc Arg	gcc Ala	tcg Ser 575	ctc Leu	agc Ser	tgc Cys	gtg Val	ctg Leu 580	ccc Pro	gac Asp	ttc Phe	ttg Leu	cag Gln 585	ggc	cgg Arg	gcg Ala	2004
5	ccc Pro	ggc Gly 590	agc Ser	tac Tyr	gtg Val	gjå aaa	gcc Ala 595	tgc Cys	ttc Phe	gac Asp	agg Arg	ctg Leu 600	ctc Leu	cac His	ccg Pro	gac Asp	2052
10	gcc Ala 605	gta Val	ccc Pro	gcc Ala	ctt Leu	ttc Phe 610	cgc Arg	acc Thr	gtg Val	ccc Pro	gtc Val 615	ttc Phe	aca Thr	ctg Leu	ccc Pro	tcc Ser 620	2100
15	caa Gln	ctg Leu	cca Pro	gac Asp	ttc Phe 625	ctg Leu	ggg Gly	gcc Ala	ctg Leu	cag Gln 630	cag Gln	cct Pro	cgc Arg	gcc Ala	ccg Pro 635	cgt Arg	2148
20	tcc Ser	gly ggg	cgg Arg	ctc Leu 640	caa Gln	gag Glu	aga Arg	gcg Ala	gag Glu 645	caa Gln	gtg Val	tcc Ser	cgg Arg	gcc Ala 650	ctt Leu	cag Gln	2196
20		gcc Ala															2244
25	cgc Arg	999 Gly 670	gtg Val	gga Gly	cca Pro	gjy aaa	gcg Ala 675	gga Gly	cct Pro	ggg Gly	gcg Ala	999 680	gac Asp	Gly 999	act Thr		2289
20	taaa	ataaa	igg o	cagad	gcto	3											2308
35	RCQI PAAI DGDI PFRI QLQI DDLO	CETDO LVQFO VVHL\ EDPRA ECLWA EALWA	CDLCI CQSVC VLNVS AHQNI ADSLC ACPMI	ERVAY ESVVY EEEQH LWQAA EPLKI OKYIH	VHLAV CDCFE IFGLS ARLRI DDVLI IKRWI	LLVWI LLTL(LTL(L	VEEPI SSEVI VQVQC QSWLI CGPQI LACLI	EDEER RIWSY EPPKI LDAP(ONRSI LFAAR	CFGGI CTQPI PRWHI CSLPI LCALI	AADLO RYEKI CNLTO AEAAI EPSGO (LLLLI	EVEEI LNHT EPQII LCWRA CTSLE CKDHA	PRNAS PQQLI TLNI PGGI PSKAS AKGWI	SLQA(PDCR(HTDL\ PCQI STRAA LRLLI	OVVLS ELEVE PLVPI ARLGI (QDVI	FQAY NNSII CIQVV PLSWI BYLL(RSGAA	YPTARCY PSCWALI VPLEPDS ENVTVDY QDLQSG(VARGRA)	LQTELVL VLLEVQV PWLNVSA SVRTNIC VNSSEKL QCLQLWD ALLLYSA
40	QDG		PAHGI	PHDAI	RASI	SCVI	SPDFI	LQGR <i>I</i>	APGS 3	/VGA	FDRI	THЫ	DAVP	LFR:	[VPV]		ALCSEWL LPDFLGA
	Reve	erse tr	ansla	tion o	f prin	nate,	e.g., 1	uman	, DC	RS7 (SEQ	ID N	O: 9):				
45	atg	cngt	inc o	entge	gtty)	yt ny	ytnws	snytr	ı gcı	ıytng	grm	gnws	sncai	tg g	gathy	ytnwsn	60
	ytn	garmo	ny t	ngti	ıggno	ec no	carga	aygcı	n acr	ncayt	gyw	snc	nggr	ıyt ı	nwsni	gymgn	120
50	ytni	ggga	ayw s	ngay	yathy	yt ni	gyyt	encer	ı ggr	ıgaya	thg	tnc	enger	icc i	nggno	ccngtn	180
50	ytng	genec	na c	cncay	ytno	a ra	acnga	arytr	ı gtı	ıytın	ngnt	gyca	ıraaı	rga 1	cacno	gaytgy	240
	gayy	/tntg	yyy t	nmgr	gtng	je ng	gtnca	ayytı	ı gcı	ngtno	ayg	gnca	aytgg	ga 1	rgaro	ccngar	300
55	gayg	garga	ara a	artty	/ggng	g ng	genge	engay	ytr	ıggnç	gtng	arga	arccı	nug 1	naay	gcnwsn	360
	ytno	cargo	enc a	argtı	ıgtny	yt nv	vsntt	усаз	gcı	ntayo	cna	cng	nmgı	ıtg y	ygtny	ytnytn	420

gargtnearg theengenge nythogtnear ttyggnearw sngthggnws ngthgthtay 480

	gaytgyttyg	argengenyt	nggnwsngar	gtnmgnatht	ggwsntayac	ncarccnmgn	540
5	taygaraarg	arytnaayca	yacncarcar	ytnccngayt	gymgnggnyt	ngargtntgg	600
3	aaywsnathc	cnwsntgytg	ggcnytnccn	tggytnaayg	tinwsngcnga	yggngayaay	660
	gtncayytng	tnytnaaygt	nwsngargar	carcayttyg	gnytnwsnyt	ntaytggaay	720
10	cargtncarg	gnccnccnaa	rccnmgntgg	cayaaraayy	tnacnggncc	ncarathath	780
	acnytnaayc	ayacngayyt	ngtnccntgy	ytntgyathc	argtntggcc	nytngarccn	840
15	gaywsngtnm	gnacnaayat	htgyccntty	mgngargayc	cnmgngcnca	ycaraayytn	900
13	tggcargcng	cnmgnytnmg	nytnytnacn	ytncarwsnt	ggytnytnga	ygcnccntgy	960
	wsnytnccng	cngargcngc	nytntgytgg	mgngcnccng	gnggngaycc	ntgycarccn	1020
20	ytngtnccnc	cnytnwsntg	ggaraaygtn	acngtngayg	tnaaywsnws	ngaraarytn	1080
	carytncarg	artgyytntg	ggcngaywsn	ytnggnccny	tnaargayga	ygtnytnytn	1140
25	ytngaracnm	gnggnccnca	rgayaaymgn	wsnytntgyg	cnytngarcc	nwsnggntgy	1200
20	acnwsnytnc	cnwsnaargc	nwsnacnmgn	gengenmgny	tnggngarta	yytnytncar	1260
	gayytncarw	snggncartg	yytncarytn	tgggaygayg	ayytnggngc	nytntgggcn	1320
30	tgyccnatgg	ayaartayat	hcayaarmgn	tgggcnytng	tntggytngc	ntgyytnytn	1380
	ttygcngcng	cnytnwsnyt	nathytnytn	ytnaaraarg	аусаудспаа	rggntggytn	1440
35	mgnytnytna	arcargaygt	nmgnwsnggn	gengengenm	gnggnmgngc	ngcnytnytn	1500
	ytntaywsng	cngaygayws	nggnttygar	mgnytngtng	gngcnytngc	nwsngcnytn	1560
	tgycarytnc	cnytnmgngt	ngcngtngay	ytntggwsnm	gnmgngaryt	nwsngcncar	1620
40	ggnccngtng	cntggttyca	ygcncarmgn	mgncaracny	tncargargg	nggngtngtn	1680
	gtnytnytnt	tywsnccngg	ngcngtngcn	ytntgywsng	artggytnca	rgayggngtn	1740
45	wsnggnccng	gngcncaygg	nccncaygay	gcnttymgng	cnwsnytnws	ntgygtnytn	1800
	ccngayttyy	tncarggnmg	ngeneenggn	wsntaygtng	gngcntgytt	ygaymgnytn	1860
	ytncaycong	aygengtnee	ngcnytntty	mgnacngtnc	cngtnttyac	nytnccnwsn	1920
50	carytnccng	ayttyytngg	ngcnytncar	carcenmgng	cnccnmgnws	nggnmgnytn	1980
	cargarmgng	cngarcargt	nwsnmgngcn	ytncarcong	cnytngayws	ntayttycay	2040
55	ccnccnggna	cnwsngcncc	nggnmgnggn	gtnggnccng	gngcnggncc	nggngcnggn	2100
J.	gayggnacn						2109

Rodent, e.g., mouse, embodiment (see SEQ ID NO: 10 and 11). Predicted signal sequence indicated, but may vary by a few positions and depending upon cell type. ccaaatcgaa aqcacqqqaq ctqatactqq qcctqqaqtc caqqctcact ggagtgggga 60 5 agcatggctg gagaggaatt ctagcccttg ctctctccca gggacacggg gctgattgtc 120 ageaggggeg agggtetge ecceettgg gggggeagga eggggeetea ggeetgggtg 180 10 etqteeggea cetqqaaq atq cet gtg tee tgg tte etg etg tee ttg gea Met Pro Val Ser Trp Phe Leu Leu Ser Leu Ala -20 -15 ctg ggc cga aac cct gtg gtc gtc tct ctg gag aga ctg atg gag cct 279 15 Leu Gly Arg Asn Pro Val Val Val Ser Leu Glu Arg Leu Met Glu Pro cag gac act gca cgc tgc tct cta ggc ctc tcc tgc cac ctc tgg gat 327 Gln Asp Thr Ala Arg Cys Ser Leu Gly Leu Ser Cys His Leu Trp Asp 20 qqt gac gtq ctc tqc ctq cct gga agc ctc cag tct gcc cca ggc cct 375 Gly Asp Val Leu Cys Leu Pro Gly Ser Leu Gln Ser Ala Pro Gly Pro 30 25 423 gtg cta gtg cct acc cgc ctg cag acg gag ctg gtg ctg agg tgt cca Val Leu Val Pro Thr Arg Leu Gln Thr Glu Leu Val Leu Arg Cys Pro 50 45 30 471 cag aag aca gat tgc gcc ctc tgt gtc cgt gtg gtc cac ttg gcc Gln Lys Thr Asp Cys Ala Leu Cys Val Arg Val Val His Leu Ala 519 gtg cat ggg cac tgg gca gag cct gaa gaa gct gga aag tct gat tca 35 Val His Gly His Trp Ala Glu Pro Glu Glu Ala Gly Lys Ser Asp Ser 80 gaa ctc cag gag tct agg aac gcc tct ctc cag gcc cag gtg gtg ctc 567 Glu Leu Gln Glu Ser Arg Asn Ala Ser Leu Gln Ala Gln Val Val Leu 40 90 95 615 tcc ttc cag gcc tac ccc atc gcc cgc tgt gcc ctg ctg gag gtc cag Ser Phe Gln Ala Tyr Pro Ile Ala Arg Cys Ala Leu Leu Glu Val Gln 105 45 gtg ccc gct gac ctg gtg cag cct ggt cag tcc gtg ggt tct gcg gta 663 Val Pro Ala Asp Leu Val Gln Pro Gly Gln Ser Val Gly Ser Ala Val 120 125 130 50 ttt gac tgt ttc gag gct agt ctt ggg gct gag gta cag atc tgg tcc 711 Phe Asp Cys Phe Glu Ala Ser Leu Gly Ala Glu Val Gln Ile Trp Ser 145 140 759 tac acg aag ccc agg tac cag aaa gag ctc aac ctc aca cag cag ctg 55 Tyr Thr Lys Pro Arg Tyr Gln Lys Glu Leu Asn Leu Thr Gln Gln Leu 160 165

		_	_	 		_	_		_	_		cag Gln 180	_	_		807
5	_	_							_		_	aat Asn	_		_	855
10												tta Leu				903
15												aaa Lys				951
20												gtt Val				999
												agg Arg 260				1047
25	_			 _	_			_				ctc Leu				1095
30												cta Leu				1143
35												gca Ala				1191
40												aag Lys				1239
					_		_	_		_		cac His 340				1287
45												caa Gln				1335
50												ctg Leu				1383
55												ttg Leu				1431
												gct Ala				1479

5		gag Glu															1527
3		aac Asn 425	_	_				_			_	_		_	_	_	1575
10		atc Ile			_		-		_		_	-	_			_	1623
15		gcg Ala															1671
20	gcg Ala	gcc Ala	cgt Arg	ggc Gly 475	tcc Ser	cgc Arg	acg Thr	gcc Ala	ttg Leu 480	ctc Leu	ctc Leu	cac His	tcc Ser	gcc Ala 485	gac Asp	gga Gly	1719
25		ggc Gly															1767
		cca Pro 505															1815
30		cac His		_		_					_	-	_	_		_	1863
35		gag Glu															1911
40		tgt Cys															1959
45	-	gcc Ala		_	-			_	_				_		_		2007
		cgg Arg 585															2055
50		cca Pro															2103
55		ccc Pro															2151

WO 01/90358 PCT/US01/16767

	tcc act tcc gcg ggg cga ccc gcg gac cgg gtg gaa cga gtg acc cag Ser Thr Ser Ala Gly Arg Pro Ala Asp Arg Val Glu Arg Val Thr Gln 635 640 645	2199
5	gcg ctg cgg tcc gcc ctg gac agc tgt act tct agc tcg gaa gcc cca Ala Leu Arg Ser Ala Leu Asp Ser Cys Thr Ser Ser Ser Glu Ala Pro 650 655 660	2247
10	ggc tgc tgc gag gaa tgg gac ctg gga ccc tgc act aca cta gaa Gly Cys Cys Glu Glu Trp Asp Leu Gly Pro Cys Thr Thr Leu Glu 665 670 675	2292
	taaaagccga tacagtattc ct	2314
15	MPVSWFLLSLALGRNPVVVSLERLMEPQDTARCSLGLSCHLWDGDVLCLPGSLQSAPGPVLVPTRL(RCPQKTDCALCVRVVVHLAVHGHWAEPEEAGKSDSELQESRNASLQAQVVLSFQAYPIARCALLEV(VQPGQSVGSAVFDCFEASLGAEVQIWSYTKPRYQKELNLTQQLPDCRGLEVRDSIQSCWVLPWLNVS VLLTLDVSEEQDFSFLLYLRPVPDALKSLWYKNLTGPQNITLNHTDLVPCLCIQVWSLEPDSERVE	QVPADL STDGDN
20	DPGAHRNLWHIARLRVLSPGVWQLDAPCCLPGKVTLCWQAPDQSPCQPLVPPVPQKNATVNEPQDF(PNLCVQVSTWEKVQLQACLWADSLGPFKDDMLLVEMKTGLNNTSVCALEPSGCTPLPSMASTRAAR) QDFRSHQCMQLWNDDNMGSLWACPMDKYIHRRWVLVWLACLLLAAALFFFLLLKKDRRKAARGSRT/ ADGAGYERLVGALASALSQMPLRVAVDLWSRRELSAHGALAWFHHQRRRILQEGGVVILLFSPAAV/ LQLQTVEPGPHDALAAWLSCVLPDFLQGRATGRYVGVYFDGLLHPDSVPSPFRVAPLFSLPSQLPAJ	LGEELL ALLLHS AQCQQW
25	GGCSTSAGRPADRVERVTQALRSALDSCTSSSEAPGCCEEWDLGPCTTLE.	LDILLQ
	Reverse translation of rodent, e.g., mouse, DCRS7 (SEQ ID NO: 12):	
30	atgccngtnw sntggttyyt nytnwsnytn gcnytnggnm gnaayccngt ngtngtnwsn	50
30	ytngarmgny tnatggarcc ncargayacn gcnmgntgyw snytnggnyt nwsntgycay	120
	ytntgggayg gngaygtnyt ntgyytnccn ggnwsnytnc arwsngcncc nggnccngtn	180
35	ytngtneena enmgnytnea raengarytn gtnytnmgnt gyeencaraa raengaytgy	240
	gcnytntgyg tnmgngtngt ngtncayytn gcngtncayg gncaytgggc ngarccngar	300
40	gargenggna arwsngayws ngarytnear garwsnmgna aygenwsnyt neargenear	360
40	gtngtnytnw snttycarge ntaycenath genmgntgyg enytnytnga rgtneargtn	420
	congongayy tngtncarco nggncarwsn gtnggnwsng cngtnttyga ytgyttygar	480
45	gcnwsnytng gngcngargt ncarathtgg wsntayacna arccnmgnta ycaraargar	540
	ytnaayytna cncarcaryt nccngaytgy mgnggnytng argtnmgnga ywsnathcar	500
50	wsntgytggg tnytnccntg gytnaaygtn wsnacngayg gngayaaygt nytnytnacn	660
30	ytngaygtnw sngargarca rgayttywsn ttyytnytnt ayytnmgncc ngtnccngay	720
	genytnaarw snytntggta yaaraayytn aenggneene araayathae nytnaayeay	780
55	acngayytng tnccntgyyt ntgyathcar gtntggwsny tngarccnga ywsngarmgn	840
	gtngarttyt gyccnttymg ngargaycen ggngcncaym gnaayytntg gcayathgcn	900
	mgnytnmgng tnytnwsnee nggngtntgg carytngayg encentgytg yytneenggn	960

21

aargtnacny tntgytggca rgcnccngay carwsnccnt gycarccnyt ngtnccnccn 1020 gtnccncara araaygcnac nqtnaaygar ccncargayt tycarytngt ngcnggncay 1080 5 ccnaayytnt gygtncargt nwsnacntgg garaargtnc arytncargc ntgyytntgg 1140 gengaywany tnggneentt yaargaygay atgytnytng tngaratgaa raenggnytn 1200 10 aayaayacnw snqtntqyqc nytnqarccn wsnggntqya cnccnytncc nwsnatggcn 1260 wsnacnmgng cngcnmgnyt nggngargar ytnytncarg ayttymgnws ncaycartgy 1320 atgcarytnt ggaaygayga yaayatgggn wsnytntggg cntgyccnat ggayaartay 1380 15 athcaymgnm gntgggtnyt ngtntggytn gcntgyytny tnytngcngc ngcnytntty 1440 ttyttyytny tnytnaaraa rgaymgnmgn aargengenm gnggnwsnmg naengenytn 1500 20 ytnytncayw sngcngaygg ngcnggntay garmgnytng tngqnqcnyt ngcnwsngcn 1560 ytnwsncara tgccnytnmg ngtngcngtn gayytntggw snmgnmgnga rytnwsngcn 1620 cayggngcny tngcntggtt ycaycaycar mgnmgnmgna thytncarga rggnggngtn 1680 25 gtnathytny tnttywsnec ngengengtn geneartgyc arcartggyt nearytnear 1740 acngtngarc enggneenca ygaygenytn gengentggy tnwsntgygt nytneengay 1800 30 ttyytncarg gnmgngcnac nggnmgntay gtnggngtnt ayttygaygg nytnytncay 1860 congaywang thechwance nttymgngth genechytht tywanythee hwancaryth 1920 congenttyy tngaygonyt noarggnggn tgywsnachw sngonggnmg noongongay 1980 35 mgngtngarm gngtnacnca rgcnytnmgn wsngcnytng aywsntgyac nwsnwsnwsn 2040 gargeneeng gntgytgyga rgartgggay ytnggneent gyaenaenyt ngar 2094 40 Table 3: Nucleotide and polypeptide sequences of DNAX Cytokine Receptor Subunit like embodiments (DCRS8). Primate, e.g., human, embodiment (see SEQ ID NO: 13 and 14). Predicted signal sequence indicated, but may vary by a few positions and depending upon cell 45 cccacgente egggecagea gegggeggee ggggegeaga gaacggeetg getgggegag 60 egcaeggee atg gee eeg tog etg eag etc tge tee gte tte ttt acg gte 111 Met Ala Pro Trp Leu Gln Leu Cys Ser Val Phe Phe Thr Val 50 -15 -10 aac gee tge ete aac gge teg eag etg get gtn gee get gge ggg tee 159 Asn Ala Cys Leu Asn Gly Ser Gln Leu Ala Xaa Ala Ala Gly Gly Ser -1 55 207 ggo ogo gog ong ggo goo gao aco tgt ago tgg ang gga gtg ggg coa Gly Arg Ala Kaa Gly Ala Asp Thr Cys Ser Trp Xaa Gly Val Gly Pro 15 20 25

WO 01/90358 22 PCT/US01/16767

5			aac Asn													255
,			tac Tyr 50													303
10	_		acc Thr		_	-		_	_					_	-	351
15			tgg Trp													399
20			ata Ile													447
25			cta Leu													495
23			gaa Glu 130													543
30			agg Arg	_								_	-			591
35			ttc Phe		_		_	_	_	_	_	-		_	_	639
40	_		gct Ala	_					_				_			687
45			Gly ggc													735
70			ttc Phe 210													783
50			aag Lys													831
55			ctc Leu													879

	_	gtg Val	_	_					-			_			_		927
5	_	cca Pro				_						-	_		_		975
10		gtg Val		_	_	_		_	_			_					1023
15		tgc Cys															1071
20		agc Ser 320								_	_			_			1119
		cgg Arg										Ser					1167
25	cag Gln	aat Asn	cac His	atg Met	aat Asn 355	gtc Val	gtc Val	cag Gln	tgt Cys	ttc Phe 360	gcc Ala	tac Tyr	ttc Phe	ctc Leu	cag Gln 365	gac Asp	1215
30		tgt Cys															1263
35		aga Arg															1311
40		ttc Phe 400															1359
10	_	aag Lys									-		_				1407
45		ctc Leu															1455
50	_	aag Lys	_	_	_			_		_	_			_	_		1503
5.5		gat Asp															1551
55		aag Lys 480															1599

	cac His 495	tcc Ser	cga Arg	gac Asp	cac His	ggc Gly 500	ctc Leu	cag Gln	gag Glu	ccg Pro	999 Gly 505	cag Gln	cac His	acg Thr	cga Arg	cag Gln 510	1647
5				agg Arg													1695
10				tgc Cys 530													1743
15		_	_	cag Gln		_							_	_			1791
20				ttg Leu													1839
20	_	_		cca Pro				_	_		_		-	_			1887
25	_	_		gly aaa	-				_	_		_			-	_	1935
30				ctg Leu 610													1983
35	_	_	-	ctg Leu			_	_		-			_		_		2031
40				ccg Pro													2079
	tcc Ser 655	gag Glu	ctg Leu	tct Ser	ctg Leu	cca Pro 660	ctg Leu	atg Met	gaa Glu	gga Gly	ctc Leu 665	tcg Ser	acg Thr	gac Asp	cag Gln	aca Thr 670	2127
45				tcc Ser													2175
50				cct Pro 690													2223
55				gat Asp													2271
	_	gcc Ala 720		ttg Leu	taad	caaaa	acg a	aaga	agtct	a ag	gcatt	geca	a ctt	tago	etge		2323

WO 01/90358

25

PCT/US01/16767

tgcctccctc tgattcccca gctcatctcc ctggttgcat ggcccacttg gagctgaggt 2383 ctcatacaag gatatttgga gtgaaatgct ggccagtact tgttctccct tgccccaacc 2443 5 ctttaccgga tatcttgaca aactctccaa ttttctaaaa tgatatggag ctctgaaagg 2503 catgtccata aggtctgaca acagcttgcc aaatttggtt agtccttgga tcagagcctg 2563 10 ttgtgggagg tagggaggaa atatgtaaag aaaaacagga agatacctgc actaatcatt 2623 cagacttcat tgagctctgc aaactttgcc tgtttgctat tggctacctt gatttgaaat 2683 gctttgtgaa aaaaggcact tttaacatca tagccacaga aatcaagtgc cagtctatct 2743 15 ggaatccatg ttgtattgca gataatgttc tcatttattt ttg MAPWLQLCSVFFTVNACLNGSQLAVAAGGSGRAXGADTCSWXGVGPASRNSGLYNITFKYDNCTTYLNPVGK

HVIADAONITISQYACHDQVAVTILWSPGALGIEFLKGFRVILEELKSEGRQXQQLILKDPKQXNSSFKRTG 20 MESQPXLNMKFETDYFVRLSFSFIKNESNYHPFFFRTRACDLLLQPDNLACKPFWKPRNLNISQHGSDMQVS FDHAPHNFGFRFFYLHYKLKHEGPFKRKTCKQEQTTEMTSCLLQNVSPGDYIIELVDDTNTTRKVMHYALKP VHSPWAGPIRAVAITVPLVVISAFATLFTVMCRKKQQENIYSHLDEESSESSTYTAALPRERLRPRPKVFLC YSSKDGQNHMNVVQCFAYFLQDFCGCEVALDLWEDFSLCREGQREWVIQKIHESQFIIVVCSKGMKYFVDKK NYKHKGGGRGSGKGELFLVAVSAIAEKLRQAKQSSSAALSKFIAVYFDYSCEGDVPGILDLSTKYRLMDNLP 25 QLCSHLHSRDHGLQEPGQHTRQGSRRNYFRSKSGRSLYVAICNMHQFIDEEPDWFEKQFVPFHPPPLRYREP VLEKFDSGLVLNDVMCKPGPESDFCLKVEAAVLGATGPADSQHESQHGGLDQDGBARPALDGSAALQPLLHT VKAGSPSDMPRDSGIYDSSVPSSELSLPLMEGLSTDQTETSSLTESVSSSSGLGEEEPPALPSKLLSSGSCK ADLGCRSYTDELHAVAPL.

30

35

40

45

50

55

Reverse translation of primate, e.g., human, DCRS8 (SEQ ID NO: 15):

atggeneent ggytnearyt ntgywsngtn ttyttyaeng tnaaygentg yytnaayggn 60 wsncarytng engtngenge nggnggnwsn ggnmgngenn nnggngenga yaentgywsn 120 tggnnnggng tnggncenge nwsnmgnaay wsnggnytnt ayaayathac nttyaartay 180 gayaaytgya cnacntayyt naayccngtn ggnaarcayg tnathgcnga ygcncaraay 240 athacnathw sncartaygc ntgycaygay cargtngcng tnacnathyt ntggwsnccn 300 ggngcnytng gnathgartt yytnaarggn ttymgngtna thytngarga rytnaarwsn 360 garggnmgnc arnnncarca rytnathytn aargayccna arcarnnnaa ywsnwsntty 420 aarmgnacng gnatggarws ncarccnnnn ytnaayatga arttygarac ngaytaytty 480 gtnmgnytnw snttywsntt yathaaraay garwsnaayt aycayccntt yttyttymgn 540 acnmgngcnt gygayytnyt nytncarccn gayaayytng cntgyaarcc nttytggaar 600 ccnmgnaayy tnaayathws ncarcayggn wsngayatgc argtnwsntt ygaycaygcn 660 ccncayaayt tyggnttymg nttyttytay ytncaytaya arytnaarca ygarggnccn 720 ttyaarmgna aracntgyaa rcargarcar acnacngara tgacnwsntg yytnytncar 780 aaygtnwsnc cnggngayta yathathgar ytngtngayg ayacnaayac nacnmgnaar 840

	gtnatgcayt	aygcnytnaa	rccngtncay	wsnccntggg	cnggnccnat	hmgngcngtn	900
5	gcnathacng	tnccnytngt	ngtnathwsn	gcnttygcna	cnytnttyac	ngtnatgtgy	960
J	mgnaaraarc	arcargaraa	yathtaywsn	cayytngayg	argarwsnws	ngarwsnwsn	1020
	acntayacng	cngcnytnec	nmgngarmgn	ytnmgnccnm	gnccnaargt	nttyytntgy	1080
10	taywsnwsna	argayggnca	raaycayatg	aaygtngtnc	artgyttygc	ntayttyytn	1140
	cargayttyt	gyggntgyga	rgtngcnytn	gayytntggg	argayttyws	nytntgymgn	1200
15	garggncarm	gngartgggt	nathcaraar	athcaygarw	sncarttyat	hathgtngtn	1260
10	tgywsnaarg	gnatgaarta	yttygtngay	aaraaraayt	ayaarcayaa	rggnggnggn	1320
	mgnggnwang	gnaarggnga	rytnttyytn	gtngcngtnw	sngcnathgc	ngaraarytn	1380
20	mgncargcna	arcarwsnws	nwsngcngcn	ytnwsnaart	tyathgcngt	ntayttygay	1440
	taywsntgyg	arggngaygt	nccnggnath	ytngayytnw	snacnaarta	ymgnytnatg	1500
25	gayaayytnc	cncarytntg	ywsncayytn	caywanmgng	aycayggnyt	ncargarccn	1560
	ggncarcaya	cnmgncargg	nwsnmgnmgn	aaytayttym	gnwsnaarws	nggnmgnwsn	1620
	ytntaygtng	cnathtgyaa	yatgcaycar	ttyathgayg	argarccnga	ytggttygar	1680
30	aarcarttyg	tnccnttyca	yccnccnccn	ytnmgntaym	gngarccngt	nytngaraar	1740
	ttygaywsng	gnytngtnyt	naaygaygtn	atgtgyaarc	cnggnccnga	rwsngaytty	1800
35	tgyytnaarg	tngargcngc	ngtnytnggn	gcnacnggnc	cngcngayws	ncarcaygar	1860
	wsncarcayg	gnggnytnga	ycargayggn	gargcnmgnc	cngcnytnga	Addumendcu	1920
	gcnytncarc	cnytnytnca	yacngtnaar	gcnggnwsnc	cnwsngayat	gccnmgngay	1980
40	wanggnatht	aygaywanwa	ngtnccnwsn	wsngarytnw	snytnccnyt	natggarggn	2040
	ytnwsnacng	aycaracnga	racnwsnwsn	ytnacngarw	sngtnwsnws	nwsnwsnggn	2100
45	ytnggngarg	argarccncc	ngcnytnccn	wsnaarytny	tnwsnwsngg	nwsntgyaar	2160
	gcngayytng	gntgymgnws	ntayacngay	garytncayg	cngtngcncc	nytn	2214

Table 4: Nucleotide and polypeptide sequences of DNAX Cytokine Receptor Subunit like embodiments (DCRS9). Primate, e.g., human, embodiment (see SEQ ID NO: 16 and 17). Predicted signal sequence indicated, but may vary by a few positions and depending upon cell type.

atg ggg agc tcc aga ctg gca gcc ctg ctc ctg cct ctc ctc ctc ata 48

55 Met Gly Ser Ser Arg Leu Ala Ala Leu Leu Leu Pro Leu Leu Leu Ile
-20 -15 -10

PCT/US01/16767

			gac Asp -5														96
5			aac Asn														144
10	ata Ile	tcc Ser	ctt Leu	gcc Ala	gca Ala 30	cct Pro	ggt Gly	gjå aaa	ccc Pro	tct Ser 35	tct Ser	cca Pro	caa Gln	agc Ser	ctt Leu 40	ggt Gly	192
15	gtg Val	tgc Cys	gag Glu	tct Ser 45	ggc Gly	act Thr	gtt Val	ccc Pro	gct Ala 50	gtt Val	tgt Cys	gcc Ala	agc Ser	atc Ile 55	tgc Cys	tgt Cys	240
20	cag Gln	gtg Val	gct Ala 60	cag Gln	gtc Val	ttc Phe	aac Asn	999 Gly 65	gcc Ala	tct Ser	tcc Ser	acc Thr	tcc Ser 70	tgg Trp	tgc Cys	aga Arg	288
			aaa Lys														336
25	_		ctg Leu		_		_	_	_						-		384
30			atc Ile														432
35			cta Leu														480
40	ttc Phe	cca Pro	gat Asp 140	tgg Trp	act Thr	cac His	aaa Lys	ggc Gly 145	atg Met	gag Glu	gtg Val	ggc Gly	act Thr 150	ggg Gly	tac Tyr	aac Asn	528
	agg Arg	aga Arg 155	tgg Trp	gtt Val	cag Gln	ctg Leu	agt Ser 160	ggt Gly	gga Gly	ccc Pro	gag Glu	ttc Phe 165	tcc Ser	ttt Phe	gat Asp	ttg Leu	576
45	ctg Leu 170	cct Pro	gag Glu	gcc Ala	cgg Arg	gct Ala 175	att Ile	cgg Arg	gtg Val	acc Thr	ata Ile 180	tct Ser	tca Ser	ggc Gly	cct Pro	gag Glu 185	624
50	gtc Val	agc Ser	gtg Val	cgt Arg	ctt Leu 190	tgt Cys	cac His	cag Gln	tgg Trp	gca Ala 195	ctg Leu	gag Glu	tgt Cys	gaa Glu	gag Glu 200	ctg Leu	672
55	agc Ser	agt Ser	ccc Pro	tat Tyr 205	gat Asp	gtc Val	cag Gln	aaa Lys	att Ile 210	gtg Val	tct Ser	Gly 999	ggc Gly	cac His 215	act Thr	gta Val	720
	gag Glu	ctg Leu	cct Pro 220	tat Tyr	gaa Glu	ttc Phe	ctt Leu	ctg Leu 225	ccc Pro	tgt Cys	ctg Leu	tgc Cys	ata Ile 230	gag Glu	gca Ala	tcc Ser	768

5				gag Glu													816
5				gcc Ala													864
10				cag Gln													912
15				ctg Leu 285													960
20				gac Asp													1008
25	tat Tyr	gtt Val 315	ttg Leu	gag Glu	aag Lys	gtg Val	gac Asp 320	ctg Leu	cac His	ccc Pro	cag Gln	ctc Leu 325	tgc Cys	ttc Phe	aag Lys	gta Val	1056
23				ttc Phe													1104
30				tct Ser													1152
35				att Ile 365													1200
40				agc Ser													1248
45	gtg Val	tac Tyr 395	act Thr	gtc Val	agc Ser	cag Gln	gtg Val 400	tgg Trp	cgg Arg	tca Ser	gat Asp	gtc Val 405	cag Gln	ttt Phe	gcc Ala	tgg Trp	1296
73				ttg Leu													1344
50				ctg Leu													1392
55	ctc Leu	acc Thr	tgc Cys	cgg Arg 445	cgc Arg	cca Pro	cag Gln	tca Ser	ggc Gly 450	ccg Pro	ggc Gly	cca Pro	gcg Ala	cgg Arg 455	cca Pro	gtg Val	1440

		ctc Leu															1488
5		ctg Leu 475															1536
10		gtg Val	_	_								_			_	_	1584
15		tgg Trp															1632
20		ctg Leu	_	_		_		_	_		_	_	_	_			1680
	_	ccc Pro	_	_			_		_	_			_	_	_	-	1728
25		ctg Leu 555															1776
30		ccc Pro	_	_	_	_	_	_	-	_		_	_	_	-	_	1824
35	-	ccg Pro	-	_	_			_	-					-		_	1872
40		agc Ser															1920
70		ctg Leu	-	_			_	_		_	_	_		_	-		1968
45	ggt Gly	tgag	gcaga	igc t	ccac	cgca	ig to	ccgg	gtgt	cto	gegge	egc	t				2012
50	AVCA FALA WALA DYSO SSHV	ASICO (GPNI ECEEI (HTQM /ECPH	QVAQ RIQF SSPY IVMAI IQTGS	OVFNO CHGKV DVQF TLRO	ASST VFPDW CIVSC CPLKI INVSM	SWCF THKO GHTV EAAL DTQA	ENPKS MEVO VELPY CQRH	ELPHS TGYN EFLI DWHI LHFS	SSIC RRWV PCLC LCKI SRMH	DTRO QLSO LEAS LPNA IATES	CQHLI GPEF SYLQE TARE SAAWS	RGSO SFDI DTVF SDGW SLPGI	CLV\ LPEA RKKO YVLE LGQDT	TCLI RAIF PFQS KVDI LVPI	RAIT RVTIS WPEA HPQI PVYTV	rfpspp sgpev lygsdfy cfkvqi sqvwr	CESGTVP QTSPTRD EVRLCHQ WKSVHFT PWFSFGN EDVQFAW
55	ALGO PLLI	GRDV	'SRLC	wegi	HVAF	VGPL	PWLW	IAAR1	RVAF	EQGI	VLLI	WSGA	DLRE	VSGI	DPRA	APLLAI	LAELLRA LLHAAPR LCSRLER

Reverse translation of primate, e.g., human, DCRS9 (SEQ ID NO: 18):

atgggnwsnw snmgnytngc ngcnytnytn ytnccnytny tnytnathgt nathgayytn 60 5 wsngaywsng enggnathgg nttymgneay ytneeneayt ggaayaenmg ntgycenytn 120 genwancaya engargtnyt necnathwan ytngengene enganggnee nwanwancen 180 10 carwsnytng gngtntgyga rwsnggnacn gtnccngcng tntgygcnws nathtgytgy 240 cargtngcnc argtnttyaa yggngcnwsn wsnacnwsnt ggtgymgnaa yccnaarwsn 300 ytnccncayw snwsnwsnat hggngayacn mgntgycarc ayytnytnmg nggnwsntgy 360 15 tgyytngtng tnacntgyyt nmgnmgngcn athacnttyc cnwsnccncc ncaracnwsn 420 ccnacnmgng ayttygcnyt naarggncen aayytnmgna thearmgnea yggnaargtn 480 20 ttyccngayt ggacncayaa rggnatggar gtnggnacng gntayaaymg nmgntgggtn 540 carytnwsng gnggnccnga rttywsntty gayytnytnc cngargcnmg ngcnathmgn 600 gtnacnathw snwsnggncc ngargtnwsn gtnmgnytnt gycaycartg ggcnytngar 660 25 tgygargary tnwsnwsncc ntaygaygtn caraarathg tnwsnggngg ncayacngtn 720 garytneent aygarttyyt nytneentgy ytntgyathg argenwanta yytneargar 780 30 gayacnqtnm gnmgnaaraa rtqyccntty carwsntggc cngargcnta yggnwsngay 840 ttytggaarw sngtncaytt yacngaytay wsncarcaya cncaratggt natggcnytn 900 acnytnmgnt gyccnytnaa rytngargcn gcnytntgyc armgncayga ytggcayacn 960 35 ytntgyaarg ayytnccnaa ygcnacngcn mgngarwsng ayggntggta ygtnytngar 1020 aargtngayy tncayconca rytntgytty aargtncarc cntggttyws nttyggnaay 1080 40 wsnwsncayg tngartgycc ncaycaracn ggnwsnytna cnwsntggaa ygtnwsnatg 1140 gayacncarg cncarcaryt nathytncay ttywsnwsnm gnatgcaygc nacnttywsn 1200 gengentggw snytneengg nytnggnear gayaenytng tneeneengt ntayaengtn 1260 45 wsncargtnt ggmgnwsnga ygtncartty gcntggaarc ayytnytntg yccngaygtn 1320 wsntaymgnc ayytnggnyt nytnathytn gcnytnytng cnytnytnac nytnytnggn 1380 50 gtngtnytng cnytnacntg ymgnmgnccn carwsnggnc cnggnccngc nmgnccngtn 1440 ytnytnytne aygengenga ywsngargen carmgnmgny tngtnggnge nytngengar 1500 ytnytnmgng cngcnytngg nggnggnmgn gaygtnathg tngayytntg ggarggnmgn 1560 55 caygtngcnm gngtnggncc nytncentgg ytntgggcng cnmgnacnmg ngtngcnmgn 1620 garcarggna cngtnytnyt nytntggwsn ggngcngayy tnmgnccngt nwsnggnccn 1680

PCT/US01/16767

WO 01/90358

	gayo	ccnmg	ang (enger	nceny	/t ny	ytng	cnyti	ı ytı	ncay	gcng	cnc	cnmgi	icc i	nytny	tnytn	1740
	ytng	gcnta	ayt t	cywsi	ngny	yt ni	aya	cnaa	ggı	ngaya	athc	cnc	cncci	ayt i	nmgng	gcnytn	1800
5	ccnr	ngnta	aym g	gnyti	nytnr	ng ng	gayyi	tneci	ngi	nytny	ytnm	gng	cnyti	nga j	ygcni	ngnccn	1860
	ttyg	gcņga	arg o	cnaci	nwsnt	g g	garma	gnyti	ı ggı	ngcni	ngnc	armo	gnmgı	nca :	rwsnr	ngnytn	1920
10	gary	ytntg	Jyw i	snmgr	nytno	ga rī	ngnga	argcı	ı gcı	ngny	ytng	cnga	ayytı	ngg 1	n		1971
				ouse, nay va											signa	l sequen	ce
15	cago	ctcc	agg (ccago	gadat	g ct	gcc	ctctt	gca	agaca	agga	aaga	acat	ggt (ctcto	gegeee	60
	tgat	ccta	aca 🤉	gaago				Ser I					Ala 1		ctc (Leu 1		110
20				cta													158
	ser	Leu	-10	Leu	Leu	Leu	lle	-5	Leu	Ala	Val	Ser -1	AIa 1	Arg	Val	Ala	
25	_		_	ctg Leu		_			_		_		_	_		-	206
30				cgt Arg													254
35				tct Ser 40													302
40				gca Ala			-		_	_			_			_	350
40				agc Ser													398
45	aga Arg 85	ggc Gly	caa Gln	cgc Arg	acc Thr	aaa Lys 90	agg Arg	gcc Ala	cag Gln	cct Pro	tca Ser 95	gct Ala	gca Ala	gaa Glu	gga Gly	aga Arg 100	446
50				cct Pro													494
55	tcc Ser	ttt Phe	gat Asp	ttg Leu 120	ctg Leu	ccc Pro	gag Glu	gtg Val	cag Gln 125	gct Ala	gtt Val	cgg Arg	gtg Val	act Thr 130	att Ile	cct Pro	542

				aag Lys													590
5	_	_	_	ttg Leu	_	_			_		_						638
10				gta Val													686
15				tcc Ser													734
20				gct Ala 200													782
~~		_		ctg Leu			_	_	ac								808
25	WRHF PEVQ	RTPAS DAVRV	SFQRI TIPI	KLLG:	PSLS ARVRI	EESI CYQV	RISI VALEC	PSSA	AISHF	RGQR'I	KRAÇ)PSA/	EGRI	SHLPI	EAGS	QKCGGP	PPKFEDY EFSFDLL QEDTVRR
30	Reve	erse t	ransl	ation	of ro	dent,	e.g.,	mou	se, D	CRS	9 (SE	Q II	NO	: 21):	;		
	atgg	gnws	snc o	nmgr	ytng	c ng	jcnyt	nytr	ytr	wsny	rtnc	cnyt	nytr	nyt i	nath	gnytn	60
35	gene	gtnws	ing o	nmgr	gtng	gc nt	gyco	ntgy	ytr	mgnv	snt	ggad	nwsr	ıca y	/tgy	tnytn	120
	gcnt	aymo	ng t	ngay	aarn	ıg nt	tygo	nggr	ytr	cart	ggg	gnto	gtty	CC I	nytny	tngtn	180
40	mgna	arws	sna a	arwsr	ccnc	c na	artt	ygar:	gay	tay t	ggm	gnca	ıymgı	nac i	occng	gcnwsn	240
10	ttyc	armo	jna a	rytr	ytng	g nv	sncc	nwsr	ytr	wsng	jarg	arws	ncay	mg 1	nathw	vsnath	300
	ccnw	vsnws	ing o	nath	wsno	ауп	gngg	ncar	mgr	acna	arm	gngo	ncar	CC I	nwsng	gengen	360
45	garg	gnmc	ng a	arcay	ytno	c ng	gargo	nggr	wsn	ıcara	art	ayas	nggr	icc i	ıgart	tywsn	420
	ttyg	jayyt	ny t	nccr	ngarg	jt no	argo	ngtr	mgr	ngtna	cna	thco	ngcr	ıgg ı	nccna	argcn	480
50	mgng	gtnmg	ny t	ntgy	rtayo	a rt	gggc	nytr	gar	tgyg	jarg	ayyt	nwsr	ws I	ncent	tygay	540
50	acno	arae	ıra t	hgtr	wsng	g ng	gnca	ıyacı	gtr	ıgayy	tnc	cnta	ıygaı	tt y	ytny	ytnccn	600
	tgya	tgtg	ya t	hgar	gcnw	s nt	ayyt	ncar	gar	gaya	cng	tnmg	nmgr	ıaa ı	cwsng	gtnccn	660
55	wsnn	gngo	ng g	mytr	aary	rt na	tggc	ncar	acr	wsng	gnw	snca	rtay	gc 1	wsny	tnacn	720
	acno	cnws	n														729

																ubunit lil 22 and 2	
5	ttt	tgag	cag a	aggc	ttcc	ta g	gctc	cgta	g aa	attt	gcat	aca	gctt	cca (cttc	ctgctt	60
	cag	agcc	tgt	tctt	ctac	tt a	cctg	ggcc	c gg	agaa	ggtg	gag	ggag	acg a	agaa	gccgcc	120
10	gag	agcc	gac	tacc	ctcc	aa a	ccca	gtct	g to	tgtc	cgtg	gtg	gatc	taa 🤉	gaaa	ctaga	179
											gaa Glu						227
15											tcc Ser						275
20											gca Ala						323
25	-			_							gac Asp				_		371
30											cct Pro 75						419
30											agt Ser						467
35											cct Pro						515
40											gga Gly						563
45						Met	Glu		Arg		caa Gln						611
50											gac Asp 155						659
											ttg Leu						707
55											cga Arg						755

		acc Thr															803
5		agg Arg 210															851
10	_	gac Asp			_									_		_	899
15		cag Gln															947
20		cat His	_								_			_			995
20		cag Gln															1043
25		atc Ile 290	-	_	_	_			_		_			_	-		1091
30		ggc Gly													Ser		1139
35		gac Asp															1187
40		cca Pro			_	_	_				_				_		1235
70		gct Ala															1283
45		ccc Pro 370															1331
50	cct Pro 385	cca Pro	gcc Ala	aga Arg	gga Gly	act Thr 390	cta Leu	aaa Lys	aca Thr	agc Ser	aat Asn 395	ttg Leu	cca Pro	gaa Glu	gaa Glu	ttg Leu 400	1379
55	cgg Arg	aaa Lys	gtc Val	ttt Phe	atc Ile 405	act Thr	tat Tyr	tcg Ser	atg Met	gac Asp 410	aca Thr	gct Ala	atg Met	gag Glu	gtg Val 415	gtg Val	1427
	aaa Lys	ttc Phe	gtg Val	aac Asn 420	ttt Phe	ttg Leu	ttg Leu	gta Val	aat Asn 425	ggc Gly	ttc Phe	caa Gln	act Thr	gca Ala 430	att Ile	gac Asp	1475

5				_	_					_			aaa Lys 445		_		1523
J													gca Ala				1571
10													ctg Leu				1619
15													atg Met				1667
20	ttc Phe	ata Ile	aaa Lys	caa Gln 500	gga Gly	agc Ser	atg Met	aat Asn	ttc Phe 505	aga Arg	ttc Phe	atc Ile	cct Pro	gtg Val 510	ctc Leu	ttc Phe	1715
25													cag Gln 525				1763
	gtc Val	tac Tyr 530	agc Ser	tgg Trp	ccc Pro	aag Lys	aat Asn 535	aaa Lys	aaa Lys	aac Asn	atc Ile	ctg Leu 540	ctg Leu	cgg Arg	ctg Leu	ctg Leu	1811
30	aga Arg 545	gag Glu	gaa Glu	gag Glu	tat Tyr	gtg Val 550	gct Ala	cct Pro	cca Pro	cgg Arg	999 Gly 555	cct Pro	ctg Leu	ccc Pro	acc Thr	ctt Leu 560	1859
35			gtt Val			tgad	cacc	gtt (atco	cca	ga to	cact	gagg	c ca	ggcc	atgt	1914
	ttgg	gggc	ett 9	gttc	tgaca	ag ca	atte	tggct	gag	ggct	ggtc	ggt	agca	ctc (ctgg	ctggtt	1974
40	tttt	tctg	gtt d	cctc	ccega	ag ag	ggcc	ctcto	g gc	cccc	agga	aac	ctgt	tgt (gcag	agctct	2034
	tcc	ccgga	aga (cctc	cacao	ca co	cctg	gcttt	gaa	agtg	gagt	ctg	tgact	tgc	tctg	cattct	2094
45	ctg	ettti	taa a	aaaa	accat	t go	caggi	tgcca	a gt	gtcc	cata	tgt	tcct	cct (gaca	gtttga	2154
	tgtg	gtcca	att (ctgg	gcct	ct ca	agtgo	cttag	g caa	agtag	gata	atg	taag	gga	tgtg	gcagca	2214
	aato	ggaaa	atg a	acta	caaa	ca ct	tctc	ctato	c aat	tcact	ttca	ggc	tact	ttt a	atga	gttagc	2274
50	caga	atgct	tg 1	tgtai	tcct	ca ga	accaa	aacto	g att	tcate	gtac	aaa	taata	aaa a	atgti	ttactc	2334
	++++	ata		2222		aa aa	3222	aaaa	r aas	aaaa	aaaa	aaa	•				2377

MNRSIPVEVDESEPYPSQLLKPIPEYSPEEESEPPAPNIRNMAPNSLSAPTMLHNSSGDFSQAHSTLKLANH QRPVSRQVTCLRTQVLEDSEDSFCRRHPGLGKAFPSGCSAVSEPASESVVGALPAEHQFSFMEKRNQWLVSQ LSAASPDTGHDSDKSDQSLPNASADSLGGSQEMVQRPQPHRNRAGLDLPTIDTGYDSQPQDVLGIRQLERPL PLTSVCYPQDLPRPLRSREFPQFEPQRYPACAQMLPPNLSPHAPWNYHYHCPGSPDHQVPYGHDYPRAAYQQ VIQPALPGQPLPGASVRGLHPVQKVILNYPSPWDQEERPAQRDCSFPGLPRHQDQPHHQPPNRAGAPGESLE CPABLRPQVPQPPSPAAVPRPPSNPPARGTLKTSNLPEELRKVFITYSMDTAMEVVKFVNFLLVNGFQTAID IFEDRIRGIDIIKWMERYLRDKTVMIIVAISPKYKQDVEGAESQLDEDEHGLHTKYIHRMMQIEFIKQGSMN FRFIPVLFPNAKKEHVPTWLONTHVYSWPKNKKNILLRLLREEEYVAPPRGPLPTLQVVPL

10

5

Reverse translation of primate, e.g., human, DCRS10 (SEQ ID NO: 24):

atgaaymgnw snathccngt ngargtngay garwsngarc cntayccnws ncarytnytn 60 15 aarccnathc engartayws neengargar garwsngare encengenee naayathmgn 120 aayatggcnc cnaaywsnyt nwsngcnccn acnatgytnc ayaaywsnws nggngaytty 180 20 wsncargene aywsnaenyt naarytngen aayeayearm gneengtnws nmgneargtn 240 acntgyytnm gnacncargt nytngargay wsngargayw snttytgymg nmgncayccn 300 ggnytnggna argenttyce nwanggntgy wangengtnw angareenge nwangarwan 360 25 gtngtnggng cnytnccngc ngarcaycar ttywsnttya tggaraarmg naaycartgg 420 ytngtnwsnc arytnwsngc ngcnwsnccn gayacnggnc aygaywsnga yaarwsngay 480 30 carwsnytnc cnaaygenws ngengaywsn ytnggnggnw sneargarat ggtnearmgn 540 ccncarccnc aymgnaaymg ngcnggnytn gayytnccna cnathgayac nggntaygay 600 wsncarccnc argaygtnyt nggnathmgn carytngarm gnccnytncc nytnacnwsn 660 35 gtntgytayc cncargayyt nccnmgnccn ytnmgnwsnm gngarttycc ncarttygar 720 concarment ayeongonte yeoncarate ytnochocha ayythwshcc neayeoncon 780 40 tggaaytayc aytaycaytg yccnggnwsn ccngaycayc argtnccnta yggncaygay 840 tayconmgng cngcntayca rcargtnath carcongony thoconggnca rccnythcon 900 ggngcnwsng tnmgnggnyt neayeengtn caraargtna thytnaayta yeenwsneen 960 45 tgggaycarg argarmgncc ngcncarmgn gaytgywsnt tyccnggnyt nccnmgncay 1020 cargaycarc cncaycayca rccnccnaay mgngcnggng cnccnggnga rwsnytngar 1080 50 tgyccngcng arytnmgncc ncargtneen carcencenw sneengenge ngtneenmgn 1140 concenwsna ayeencenge nmgnggnacn ytnaaracnw snaayytnee ngargarytn 1200 mgnaargtnt tyathacnta ywsnatggay acngcnatgg argtngtnaa rttygtnaay 1260 55 ttyytnytng tnaayggntt ycaracngcn athgayatht tygargaymg nathmgnggn 1320 athgayatha thaartggat ggarmgntay ytnmgngaya aracngtnat gathathgtn 1380

	gena	acnws	anc c	maai	rtaya	a ro	arga	ıygtı	ı gar	ggng	geng	arws	snear	yt i	ıgayı	gargay	1440
	gard	caygo	ny t	ncay	/acna	a rt	ayat	hcay	mgr	natga	tgc	arat	hgar	tt y	atha	arcar	1500
5	ggnv	vsnat	ga a	ytty	mgnt	t ya	thco	engtr	ytr	ittyc	cna	aygo	naar	aa 1	gard	aygtn	1560
	ccnacntggy tncaraayac ncaygtntay wsntggccna araayaaraa raayathytn											1620					
10	ytnmgnytny tnmgngarga rgartaygtn geneencenm gnggneenyt neenaenytn															1680	
	cargtngtnc cnytn															1695	
15	Rodent, e.g., mouse, embodiment (see SEQ ID NO: 25 and 26).																
	cag Gln 1	gac Asp	ctc Leu	cct Pro	999 Gly 5	cct Pro	ctg Leu	agg Arg	tcc Ser	agg Arg 10	gaa Glu	ttg Leu	cca Pro	cct Pro	cag Gln 15	ttt Phe	48
20	gaa Glu	ctt Leu	gag Glu	agg Arg 20	tat Tyr	cca Pro	atg Met	aac Asn	gcc Ala 25	cag Gln	ctg Leu	ctg Leu	ccg Pro	ccc Pro 30	cat His	cct Pro	96
25			cag Gln 35														144
30	tac Tyr	cac His 50	cac His	cag Gln	gtg Val	cca Pro	cac His 55	ggc Gly	cat His	ggc Gly	tac Tyr	cct Pro 60	cca Pro	gca Ala	gca Ala	gcc Ala	192
35			caa Gln														240
33	gca Ala	agg Arg	gca Ala	aga Arg	ggc Gly 85	cca Pro	cgc Arg	cct Pro	gtg Val	cag Gln 90	aag Lys	gtc Val	atc Ile	ctg Leu	aat Asn 95	gac Asp	288
40	tcc Ser	agc Ser	ccc Pro	caa Gln 100	gac Asp	caa Gln	gaa Glu	gag Glu	aga Arg 105	cct Pro	gca Ala	cag Gln	aga Arg	gac Asp 110	ttc Phe	tct Ser	336
45	ttc Phe	ccg Pro	agg Arg 115	ctc Leu	ccg Pro	agg Arg	gac Asp	cag Gln 120	ctc Leu	tac Tyr	cgc Arg	cca Pro	cca Pro 125	tct Ser	aat Asn	gga Gly	384
50	gtg Val	gaa Glu 130	gcc Ala	cct Pro	gag Glu	gag Glu	tcc Ser 135	ttg Leu	gac Asp	ctt Leu	cct Pro	gca Ala 140	gag Glu	ctg Leu	aga Arg	cca Pro	432
EE	cat His 145	ggt Gly	ccc Pro	cag Gln	gct Ala	cca Pro 150	tcc Ser	cta Leu	gct Ala	gcc Ala	gtg Val 155	cct Pro	aga Arg	ccc Pro	cct Pro	agc Ser 160	480
55	aac Asn	ccc Pro	tta Leu	gcc Ala	cga Arg 165	gga Gly	act Thr	cta Leu	aga Arg	acc Thr 170	agc Ser	aat Asn	ttg Leu	cca Pro	gaa Glu 175	gaa Glu	528

				gtc Val 180													576
5				gtg Val													624
10				gag Glu													672
15				ctt Leu													720
20				aaa Lys	_	_		_		_		_	_	_	_		768
				ggc Gly 260													816
25				agt Ser													864
30				gcc Ala													912
35		_		agc Ser			_		_					_		_	960
40				gaa Glu													1008
		_		gta Val 340		_	tgad	gato	ggc (cacto	ccago	et ca	agtgo	ccag	3		1056
45	ctgt	tctc	cac a	agcat	tctt	c ta	agcgg	gagct	ggd	tggt	ggc	acco	aggo	ccc i	tggaa	acacct	1116
	ctto	ctaca	aga g	gtect	ctgt	c to	ctga	agtct	gag	gttgt	cct	cgct	999	ctt (ccaga	agcttc	1176
50	agtgcctgga tgctgcaggt gacagaaaca aacatctatg accacaaaaa ctctcatcac														1236		
30	ttca	agcta	act t	ttat	gagt	c gg	gtcag	gatgo	e tet	gtgt	cct	taga	acca	gtc 1	taaat	catgo	1296
	tcaa	aataa	ata a	aaatg	gatta	at to	ettt	gt .									1323
55	QDLPGPLRSRELPPQFELERYPMNAQLLPPHPSPQAPWNCQYYCPGGPYHHQVPHGHGYPPAAAYQQVI LPGQVLPGARARGPRPVQKVILNDSSPQDQEERPAQRDFSFPRLPRDQLYRPPSNGVEAPEESLDLPAI HGPQAPSLAAVPRPPSNPLARGTLRTSNLPEELRKVFITYSMDTAMEVVKFVNFLLVNGFQTAIDIFEI GIDIIKWMERYLRDKTVMIIVAISPKYKQDVEGAESQLDEDEHGLHTKYIHRMMQIEFISQGSMNFRFI FPNAKKEHVPTWLQNTHVYSWPKNKKNILLRLLREEEYVAPPRGPLPTLQVVPL.								LPAELRP [FEDRIR								

35

40

ccnytn

. 1026

5 cargayytnc enggneenyt nmgnwsnmgn garytneene encarttyga rytngarmgn 60 tayccnatga aygcncaryt nytnccnccn cayccnwsnc cncargence ntggaaytgy 120 cartaytayt qycenggngq neentaycay caycargtnc cncayggnca yggntaycen 180 10 congongong entaycarca rgtnytnear congonytne enggneargt nytneenggn 240 qenmqnqenm qnqqneenmg neengtnear aargtnathy tnaaygayws nwsneencar 300 qaycargarg armgncenge nearmgngay ttywsnttye enmgnytnee nmgngayear 360 15 ytntaymgnc cnccnwsnaa yggngtngar gcnccngarg arwsnytnga yytnccngcn 420 garytnmgnc cncayggncc ncargencen wsnytngeng engtneenmg ncencenwsn 480 20 aayccnytng cnmqnggnac nytnmgnacn wsnaayytnc cngargaryt nmgnaargtn 540 ttyathacnt aywsnatgga yacngcnatg gargtngtna arttygtnaa yttyytnytn 600 gtnaayggnt tycaracngc nathgayath ttygargaym gnathmgngg nathgayath 660 25 athaartgga tggarmgnta yytnmgngay aaracngtna tgathathgt ngcnathwsn 720 ccnaartaya arcargaygt ngarggngcn garwsncary tngaygarga ygarcayggn 780 30 ytncayacna artayathca ymgnatgatg carathgart tyathwsnca rggnwsnatg 840 aayttymgnt tyathccngt nytnttyccn aaygcnaara argarcaygt nccnacntgg 900

Reverse translation of rodent, e.g., mouse, DCRS6 (SEQ ID NO: 27):

Table 6: Alignment of the cytoplasmic portions of various cytokine receptor subunits. The IL-17R_Hu (SEQ ID NO: 28) is GenBank AAB99730.1(U58917), gi|7657230; the IL-17R_Mu (SEQ ID NO: 29) is GenBank AAC52357.1(U31993), gi|6680411; the IL-17R_Ce (SEQ ID NO: 30) is GenBank AAA811100.1(U39997), gi|1353171; and the DCRS6_Ce (SEQ ID NO: 31) is EMBCAA90543.1(Z50177), gi|7503597. Of particular interest are motifs or features corresponding, in primate DCRS8 to: R/K at 339/340; D/E at 348/349; alpha helical regions from H353-Q365, C370-S381, E389-H396, K410-D414, and D485-H495; beta sheet regions correspond to F400-V404 and F458-Y462; E at 431; E/D at 442/443; Y/F at 458; D/E at 468-470; Y/F at 481; and Q/R/F at 523.

vtncaraaya cncayqtnta ywsntqqccn aaraayaara araayathyt nytnmgnytn 960

ytnmgngarg argartaygt ngeneeneen mgnggneeny theenaenyt neargtngth 1020

	DCRS7_Mu DCRS7_Hu IL-17R_Hu	RTALLLHSADG-AGYERLVGALASALSQMPLRVAVDLWSRRB-LSAHGALAWFHHQR RAALLLYSADD-SGFERLVGALASALCQLPLRVAVDLWSRRB-LSAQGPVAWFHAQR RKVWIIYSADH-PLYVDVVLKFAQFLLTACGTEVALDLLEEQA-ISEAGVMTWVGRQK
5	IL-17R_Mu DCRS10 DCRS10_Mu	RKVWIVYSADH-PLYVEVVLKFAQFLITACGTEVALDLLBEQV-ISEVGVMTWVSRQK RKVFITYSMDTAMEVVKFVNFLLVNGFQTAIDIFBDRIRGIDIIKWMERYL RKVFITYSMDTAMEVVKFVNFLLVNGFQTAIDIFEDRIRGIDIIKWMERYL
	DCRS9_Hu DCRS8_Hu	RPVLLLHAADS-EAQRRLVGALAELLRAALGGGRDVIVDLWEGRH-VARVGPLPWLWAAR PKVFLCYSSKDGQNHMNVVQCFAYFLQDFCGCEVALDLWEDFS-LCREGQREWVIQKI
10	IL-17R_Ce DCRS6 Hu	VKVMIVYADDN-DLHTDCVKKLVENLRNCASCDPVFDLEKLITAEIVPSRWLVDQI IKVLVVYPSEICFHHTICYFTEFLQNHCRSEVILEKWQKKK-IAEMGPVQWLATQK
	DCRS6_Ce	FKVMLVCPEVS-GRDEDFMMRIADALKKSNNKVVCDRWFEDSKNAEENMLHWVYEQT .:. * *.
15	DCRS7_Mu	RRILQEGGVVILLFSPAAVAQCQQWLQLQTVEPGPHDALAAWLSCVLPDFL
	DCRS7_Hu	RQTLQEGGVVVLLFSPGAVALCSEWLQDGVSGPGAHGPHDAFRASLSCVLPDFL
	IL-17R_Hu	QEMVESNSKIIVLCSRGTRAKWQALLGRGAP-VRLRCDHGKPV-GDLFTAAMNMILPDFK
	IL-17R_Mu	QEMVESNSKIIILCSRGTQAKWKAILGWAEPAVQLRCDHWKPA-GDLFTAAMNMILPDFK
20	DCRS10	RDKTVMIIVAISPKYKQDVEGAESQLDED-EHGLHTKYIHRM-MQIEFIK RDKTVMIIVAISPKYKQDVEGAESQLDED-EHGLHTKYIHRM-MQIEFIS
20	DCRS10_Mu	TRVAREQGTVLLLWSGADLRPVSGAESQLDED-EHGLHTK1THAW-MQTEF15
	DCRS9_Hu DCRS8 Hu	HESQFIIVVCSKGMKYFVDKKNYKHKGGGRGSGKGELFLVAVSAIAEKLR
	IL-17R Ce	SSLKKFIIVVSDCAEKILDTEASETHQLVQARPFADLFGPAMEMIIRDAT
	DCRS6 Hu	KAADKVVFLLSNDVNSVCDGTCGKSEGSPSENSQDLFPLAFNLFCSDLR
25	DCRS6 Ce	KIABKIIVFHSAYYHPRCGIYDVINNFFPCTDPRLAHIALTPEAQ
	_	.:. *
	DCRS7_Mu	QGRATGRYVGVYFDGLLHPDSVPSPFRVAPLFSLP-SQLPAFLDALQGGCSTS
30	DCRS7_Hu	QGRAPGSYVGACFDRLLHPDAVPALFRTVPVFTLP-SQLPDFLGALQQPRAPR RPACFGTYVVCYFSEVSCDGDVPDLFGAAPRYPLM-DRFEEVYFRIQDLEMFQ
30	IL-17R_Hu	RPACFGTYVVCYFSGICSERDVPDLFNITSRYPLM-DRFEEVYFRIQDLEMFE
	IL-17R_Mu DCRS10	QGSMNFRFIPVLFPNAK-KEHVPTWLQNTHVYSWP-KNKKNILLRLL-REEEYVA
	DCRS10_Mu	OGSMNFRFIPVLFPNAK-KEHVPTWLQNTHVYSWP-KNKKNILLRLL-REEEYVA
	DCRS9 Hu	RPLLLLAYFSRLCAKGDIPPPLRALPRYRLL-RDLPRLLRALDARPFAE
35	DCRS8_Hu	QAKQSSSAALSKFIAVYFDYSC-EGDVPGILDLSTKYRLM-DNLPQLCSHLHSRDHGLQE
	IL-17R_Ce	HNFPEARKKYAVVRFNYSPHVPPNLAILNLPTFIPEQFAQLTAFLHN-VEHTER
	DCRS6_Hu	SQIHLHKYVVVYFREID-TKDDYNALSVCPKYHLM-KDATAFCAELLHVKQQ
	DCRS6_Ce	RSVPKEVEYVLPRDQKLLEDAFDITIADPLVIDIPIEDVAIPENVPIHHESC
40		
40	DCRS7 Mu	AGRPADRVERVTQALRSALDSCTS
	DCRS7_Hu	SGRLQERAEQVSRALQPALDSYFHPP
	IL-17R Hu	PGRMHRVGELSGDNYLRSPGGRQLRAALDRFRDWQVRCPDW
	IL-17R Mu	PGRMHHVRELTGDNYLQSPSGRQLKEAVLRFQEWQTQCPDW
45	DCRS10	PPRGPLPTLQVVPL
	DCRS10_Mu	PPRGPLPTLQVVPL
	DCRS9_Hu	ATSWGRLGARQRRQSRLELCSR
	DCRS8_Hu	PGQHTRQGSRRNYFRSKSGRSLYVAICNMHQFIDEEPDW
50	IL-17R_Ce	ANVTQNISEAQIHEWNLCASRMMSFFVRNPNW
50	DCRS6_Hu	VSAGKRSQACHDGCCSL
	DCRS6_Ce	DSIDSRNNSKTHSTDSGVSSLSSNS

WO 01/90358

5

10

15

20

25

30

35

41

PCT/US01/16767

Table 6 shows comparison of the available sequences of primate, rodent, and various other receptors. Various conserved residues are aligned and indicated. The structually homologous cytoplasmic domains most likely signal through pathways like IL-17, e.g., through NFkB. Similar to IL-1 signalling, it is likely that these receptors are invloved in innate immunity and/or development.

As used herein, the term DCRS shall be used to describe a protein comprising amino acid sequences shown in Tables 1-5, respectively. In many cases, a substantial fragment thereof will be functionally or structurally equivalent, including, e.g., an extracellular or intracellular domain. The invention also includes a protein variation of the respective DCRS allele whose sequence is provided, e.g., a mutein or soluble extracellular construct. Typically, such agonists or antagonists will exhibit less than about 10% sequence differences, and thus will often have between 1 and 11 substitutions, e.g., 2-, 3-, 5-, 7-fold, and others. It also encompasses allelic and other variants, e.g., natural polymorphic, of the protein described. Typically, it will bind to its corresponding biological ligand, perhaps in a dimerized state with an alpha receptor subunit, with high affinity, e.g., at least about 100 nM, usually better than about 30 nM, preferably better than about 10 nM, and more preferably at better than about 3 nM. The term shall also be used herein to refer to related naturally occurring forms, e.g., alleles, polymorphic variants, and metabolic variants of the mammalian protein. Preferred forms of the receptor complexes will bind the appropriate ligand with an affinity and selectivity appropriate for a ligand-receptor interaction.

This invention also encompasses combinations of proteins or peptides having substantial amino acid sequence identity with an amino acid sequence in Tables 1-5. It will include sequence variants with relatively few residue substitutions, e.g., preferably less than about 3-5.

A substantial polypeptide "fragment", or "segment", is a stretch of amino acid residues of at least about 8 amino acids, generally at least 10 amino acids, more generally at least 12 amino acids, often at least 14 amino acids, more often at least 16 amino acids, typically at least 18 amino acids, more typically at least 20 amino acids, usually at least 22 amino acids, more usually at least 24 amino acids, preferably at least 26 amino acids, more preferably at least 28 amino acids, and, in particularly preferred embodiments, at least about 30 or more amino acids. This includes, e.g., 40, 50, 60, 70, 85, 100, 115, 130, 150, and other lengths. Sequences of segments of different proteins can be compared to one another over appropriate length stretches, typically between conserved motifs. In many situations, fragments may exhibit functional properties of the intact subunits, e.g., the extracellular domain of the transmembrane receptor may retain the ligand binding features, and may be used to prepare a soluble receptor-like complex.

5

10

15

20

25

30

35

42

Amino acid sequence homology, or sequence identity, is determined by optimizing residue matches. In some comparisons, gaps may be introduces, as required. See, e.g., Needleham, et al., (1970) J. Mol. Biol. 48:443-453; Sankoff, et al., (1983) chapter one in Time Warps, String Edits, and Macromolecules: The Theory and Practice of Sequence Comparison, Addison-Wesley, Reading, MA; and software packages from IntelliGenetics, Mountain View, CA; and the University of Wisconsin Genetics Computer Group (GCG), Madison, WI; each of which is incorporated herein by reference. This changes when considering conservative substitutions as matches. Conservative substitutions typically include substitutions within the following groups: glycine, alanine; valine, isoleucine, leucine; aspartic acid, glutamic acid; asparagine, glutamine; serine, threonine; lysine, arginine; and phenylalanine, tyrosine. Homologous amino acid sequences are intended to include natural allelic and interspecies variations in the cytokine sequence. Typical homologous proteins or peptides will have from 50-100% homology (if gaps can be introduced), to 60-100% homology (if conservative substitutions are included) with an amino acid sequence segment of, e.g., Table 3 or 4. Homology measures will be at least about 70%, generally at least 76%, more generally at least 81%, often at least 85%, more often at least 88%, typically at least 90%, more typically at least 92%, usually at least 94%, more usually at least 95%, preferably at least 96%, and more preferably at least 97%, and in particularly preferred embodiments, at least 98% or more. The degree of homology will vary with the length of the compared segments. Homologous proteins or peptides, such as the allelic variants, will share most biological activities with the embodiments described in Tables 1-5.

As used herein, the term "biological activity" is used to describe, without limitation, effects on inflammatory responses, innate immunity, and/or morphogenic development by cytokine-like ligands. For example, these receptors should mediate phosphatase or phosphorylase activities, which activities are easily measured by standard procedures. See, e.g., Hardie, et al. (eds. 1995) The Protein Kinase FactBook vols. I and II, Academic Press, San Diego, CA; Hanks, et al. (1991) Meth. Enzymol. 200:38-62; Hunter, et al. (1992) Cell 70:375-388; Lewin (1990) Cell 61:743-752; Pines, et al. (1991) Cold Spring Harbor Symp. Quant. Biol. 56:449-463; and Parker, et al. (1993) Nature 363:736-738. The receptors, or portions thereof, may be useful as phosphate labeling enzymes to label general or specific substrates. The subunits may also be functional immunogens to elicit recognizing antibodies, or antigens capable of binding antibodies.

The terms ligand, agonist, antagonist, and analog of, e.g., a DCRS8 or DCRS9, include molecules that modulate the characteristic cellular responses to cytokine ligand proteins, as well as molecules possessing the more standard structural binding competition features of ligand-receptor interactions, e.g., where the receptor is a natural

receptor or an antibody. The cellular responses likely are typically mediated through receptor tyrosine kinase pathways.

Also, a ligand is a molecule which serves either as a natural ligand to which said receptor, or an analog thereof, binds, or a molecule which is a functional analog of the natural ligand. The functional analog may be a ligand with structural modifications, or may be a wholly unrelated molecule which has a molecular shape which interacts with the appropriate ligand binding determinants. The ligands may serve as agonists or antagonists, see, e.g., Goodman, et al. (eds. 1990) Goodman & Gilman's: The Pharmacological Bases of Therapeutics, Pergamon Press, New York.

10

15

20

25

5

Rational drug design may also be based upon structural studies of the molecular shapes of a receptor or antibody and other effectors or ligands. See, e.g., Herz, et al. (1997) J. Recept. Signal Transduct. Res. 17:671-776; and Chaiken, et al. (1996) Trends Biotechnol. 14:369-375. Effectors may be other proteins which mediate other functions in response to ligand binding, or other proteins which normally interact with the receptor. One means for determining which sites interact with specific other proteins is a physical structure determination, e.g., x-ray crystallography or 2 dimensional NMR techniques. These will provide guidance as to which amino acid residues form molecular contact regions. For a detailed description of protein structural determination, see, e.g., Blundell and Johnson (1976) Protein Crystallography, Academic Press, New York, which is hereby incorporated herein by reference.

II. Activities

The cytokine receptor-like proteins will have a number of different biological activities, e.g., modulating cell proliferation, or in phosphate metabolism, being added to or removed from specific substrates, typically proteins. Such will generally result in modulation of an inflammatory function, other innate immunity response, or a morphological effect. The subunit will probably have a specific low affinity binding to the ligand.

30

The DCRS8 and DCRS9 have characteristic motifs of receptors signaling through the JAK pathway. See, e.g., Ihle, et al. (1997) Stem Cells 15(suppl. 1):105-111; Silvennoinen, et al. (1997) APMIS 105:497-509; Levy (1997) Cytokine Growth Factor Review 8:81-90; Winston and Hunter (1996) Current Biol. 6:668-671; Barrett (1996) Baillieres Clin. Gastroenterol. 10:1-15; and Briscoe, et al. (1996) Philos. Trans. R. Soc. Lond. B. Biol. Sci. 351:167-171.

35

The biological activities of the cytokine receptor subunits will be related to addition or removal of phosphate moieties to substrates, typically in a specific manner, but occasionally in a non specific manner. Substrates may be identified, or conditions for

enzymatic activity may be assayed by standard methods, e.g., as described in Hardie, et al. (eds. 1995) The Protein Kinase FactBook vols. I and II, Academic Press, San Diego, CA; Hanks, et al. (1991) Meth. Enzymol. 200:38-62; Hunter, et al. (1992) Cell 70:375-388; Lewin (1990) Cell 61:743-752; Pines, et al. (1991) Cold Spring Harbor Symp. Ouant. Biol. 56:449-463; and Parker, et al. (1993) Nature 363:736-738.

The receptor subunits may combine to form functional complexes, e.g., which may be useful for binding ligand or preparing antibodies. These will have substantial diagnostic uses, including detection or quantitation.

10 III. Nucleic Acids

5

15

20

25

30

35

This invention contemplates use of isolated nucleic acid or fragments, e.g., which encode these or closely related proteins, or fragments thereof, e.g., to encode a corresponding polypeptide, preferably one which is biologically active. In addition, this invention covers isolated or recombinant DNAs which encode combinations of such proteins or polypeptides having characteristic sequences, e.g., of the DCRSs. Typically, the nucleic acid is capable of hybridizing, under appropriate conditions, with a nucleic acid sequence segment shown in Tables 1-5, but preferably not with a corresponding segment of other receptors described in Table 6. Said biologically active protein or polypeptide can be a full length protein, or fragment, and will typically have a segment of amino acid sequence highly homologous, e.g., exhibiting significant stretches of identity, to one shown in Tables 1-5. Further, this invention covers the use of isolated or recombinant nucleic acid, or fragments thereof, which encode proteins having fragments which are equivalent to the DCRS8 or DCRS9 proteins. The isolated nucleic acids can have the respective regulatory sequences in the 5' and 3' flanks, e.g., promoters, enhancers, poly-A addition signals, and others from the natural gene. Combinations, as described, are also provided.

An "isolated" nucleic acid is a nucleic acid, e.g., an RNA, DNA, or a mixed polymer, which is substantially pure, e.g., separated from other components which naturally accompany a native sequence, such as ribosomes, polymerases, and flanking genomic sequences from the originating species. The term embraces a nucleic acid sequence which has been removed from its naturally occurring environment, and includes recombinant or cloned DNA isolates, which are thereby distinguishable from naturally occurring compositions, and chemically synthesized analogs or analogs biologically synthesized by heterologous systems. A substantially pure molecule includes isolated forms of the molecule, either completely or substantially pure.

An isolated nucleic acid will generally be a homogeneous composition of molecules, but will, in some embodiments, contain heterogeneity, preferably minor. This

45

heterogeneity is typically found at the polymer ends or portions not critical to a desired biological function or activity.

5

10

15

20

25

30

35

A "recombinant" nucleic acid is typically defined either by its method of production or its structure. In reference to its method of production, e.g., a product made by a process, the process is use of recombinant nucleic acid techniques, e.g., involving human intervention in the nucleotide sequence. Typically this intervention involves in vitro manipulation, although under certain circumstances it may involve more classical animal breeding techniques. Alternatively, it can be a nucleic acid made by generating a sequence comprising fusion of two fragments which are not naturally contiguous to each other, but is meant to exclude products of nature, e.g., naturally occurring mutants as found in their natural state. Thus, for example, products made by transforming cells with an unnaturally occurring vector is encompassed, as are nucleic acids comprising sequence derived using any synthetic oligonucleotide process. Such a process is often done to replace a codon with a redundant codon encoding the same or a conservative amino acid, while typically introducing or removing a restriction enzyme sequence recognition site. Alternatively, the process is performed to join together nucleic acid segments of desired functions to generate a single genetic entity comprising a desired combination of functions not found in the commonly available natural forms, e.g., encoding a fusion protein. Restriction enzyme recognition sites are often the target of such artificial manipulations, but other site specific targets, e.g., promoters, DNA replication sites, regulation sequences, control sequences, or other useful features may be incorporated by design. A similar concept is intended for a recombinant, e.g., fusion, polypeptide. This will include a dimeric repeat. Specifically included are synthetic nucleic acids which, by genetic code redundancy, encode equivalent polypeptides to fragments of DCRSs and fusions of sequences from various different related molecules, e.g., other cytokine receptor family members.

A "fragment" in a nucleic acid context is a contiguous segment of at least about 17 nucleotides, generally at least 21 nucleotides, more generally at least 25 nucleotides, ordinarily at least 30 nucleotides, more ordinarily at least 35 nucleotides, often at least 39 nucleotides, more often at least 45 nucleotides, typically at least 50 nucleotides, more typically at least 55 nucleotides, usually at least 60 nucleotides, more usually at least 66 nucleotides, preferably at least 72 nucleotides, more preferably at least 79 nucleotides, and in particularly preferred embodiments will be at least 85 or more nucleotides. Typically, fragments of different genetic sequences can be compared to one another over appropriate length stretches, particularly defined segments such as the domains described below.

46

A nucleic acid which codes for the DCRS8 or DCRS9 will be particularly useful to identify genes, mRNA, and cDNA species which code for itself or closely related proteins, as well as DNAs which code for polymorphic, allelic, or other genetic variants, e.g., from different individuals or related species. Preferred probes for such screens are those regions of the interleukin which are conserved between different polymorphic variants or which contain nucleotides which lack specificity, and will preferably be full length or nearly so. In other situations, polymorphic variant specific sequences will be more useful.

5

10

15

20

25

30

35

This invention further covers recombinant nucleic acid molecules and fragments having a nucleic acid sequence identical to or highly homologous to the isolated DNA set forth herein. In particular, the sequences will often be operably linked to DNA segments which control transcription, translation, and DNA replication. These additional segments typically assist in expression of the desired nucleic acid segment.

Homologous, or highly identical, nucleic acid sequences, when compared to one another, e.g., DCRS8 sequences, exhibit significant similarity. The standards for homology in nucleic acids are either measures for homology generally used in the art by sequence comparison or based upon hybridization conditions. Comparative hybridization conditions are described in greater detail below.

Substantial identity in the nucleic acid sequence comparison context means either that the segments, or their complementary strands, when compared, are identical when optimally aligned, with appropriate nucleotide insertions or deletions, in at least about 60% of the nucleotides, generally at least 66%, ordinarily at least 71%, often at least 76%, more often at least 80%, usually at least 84%, more usually at least 88%, typically at least 91%, more typically at least about 93%, preferably at least about 95%, more preferably at least about 96 to 98% or more, and in particular embodiments, as high at about 99% or more of the nucleotides, including, e.g., segments encoding structural domains such as the segments described below. Alternatively, substantial identity will exist when the segments will hybridize under selective hybridization conditions, to a strand or its complement, typically using a sequence derived from Tables 1-5. Typically, selective hybridization will occur when there is at least about 55% homology over a stretch of at least about 14 nucleotides, more typically at least about 65%, preferably at least about 75%, and more preferably at least about 90%. See, Kanehisa (1984) Nucl. Acids Res. 12:203-213, which is incorporated herein by reference. The length of homology comparison, as described, may be over longer stretches, and in certain embodiments will be over a stretch of at least about 17 nucleotides, generally at least about 20 nucleotides, ordinarily at least about 24 nucleotides, usually at least about 28 nucleotides, typically at least about 32 nucleotides, more typically at least about 40 nucleotides, preferably at least

about 50 nucleotides, and more preferably at least about 75 to 100 or more nucleotides. This includes, e.g., 125, 150, 175, 200, 225, 246, 273, and other lengths.

Stringent conditions, in referring to homology in the hybridization context, will be stringent combined conditions of salt, temperature, organic solvents, and other parameters typically controlled in hybridization reactions. Stringent temperature conditions will usually include temperatures in excess of about 30 C, more usually in excess of about 37 C, typically in excess of about 45 C, more typically in excess of about 55 C, preferably in excess of about 65 C, and more preferably in excess of about 70 C. Stringent salt conditions will ordinarily be less than about 500 mM, usually less than about 400 mM, more usually less than about 300 mM, typically less than about 200 mM, preferably less than about 100 mM, and more preferably less than about 80 mM, even down to less than about 20 mM. However, the combination of parameters is much more important than the measure of any single parameter. See, e.g., Wetmur and Davidson (1968) J. Mol. Biol. 31:349-370, which is hereby incorporated herein by reference.

The isolated DNA can be readily modified by nucleotide substitutions, nucleotide deletions, nucleotide insertions, and inversions of nucleotide stretches. These modifications result in novel DNA sequences which encode this protein or its derivatives. These modified sequences can be used to produce mutant proteins (muteins) or to enhance the expression of variant species. Enhanced expression may involve gene amplification, increased transcription, increased translation, and other mechanisms. Such mutant DCRS8—like derivatives include predetermined or site-specific mutations of the protein or its fragments, including silent mutations using genetic code degeneracy. "Mutant DCRS8" as used herein encompasses a polypeptide otherwise falling within the homology definition of the DCRS8 as set forth above, but having an amino acid sequence which differs from that of other cytokine receptor-like proteins as found in nature, whether by way of deletion, substitution, or insertion. In particular, "site specific mutant DCRS8" encompasses a protein having substantial sequence identity with a protein of Table 3, and typically shares most of the biological activities or effects of the forms disclosed herein.

Although site specific mutation sites are predetermined, mutants need not be site specific. Mammalian DCRS8 mutagenesis can be achieved by making amino acid insertions or deletions in the gene, coupled with expression. Substitutions, deletions, insertions, or many combinations may be generated to arrive at a final construct. Insertions include amino- or carboxy- terminal fusions. Random mutagenesis can be conducted at a target codon and the expressed mammalian DCRS mutants can then be screened for the desired activity, providing some aspect of a structure-activity relationship. Methods for making substitution mutations at predetermined sites in DNA

5

10

15

20

25

30

35

having a known sequence are well known in the art, e.g., by M13 primer mutagenesis. See also Sambrook, et al. (1989) and Ausubel, et al. (1987 and periodic Supplements).

The mutations in the DNA normally should not place coding sequences out of reading frames and preferably will not create complementary regions that could hybridize to produce secondary mRNA structure such as loops or hairpins.

The phosphoramidite method described by Beaucage and Carruthers (1981) <u>Tetra.</u> <u>Letts.</u> 22:1859-1862, will produce suitable synthetic DNA fragments. A double stranded fragment will often be obtained either by synthesizing the complementary strand and annealing the strand together under appropriate conditions or by adding the complementary strand using DNA polymerase with an appropriate primer sequence.

Polymerase chain reaction (PCR) techniques can often be applied in mutagenesis. Alternatively, mutagenesis primers are commonly used methods for generating defined mutations at predetermined sites. See, e.g., Innis, et al. (eds. 1990) PCR Protocols: A Guide to Methods and Applications Academic Press, San Diego, CA; and Dieffenbach and Dveksler (1995; eds.) PCR Primer: A Laboratory Manual Cold Spring Harbor Press, CSH, NY.

Certain embodiments of the invention are directed to combination compositions comprising the receptor or ligand sequences described. In other embodiments, functional portions of the sequences may be joined to encode fusion proteins. In other forms, variants of the described sequences may be substituted.

IV. Proteins, Peptides

As described above, the present invention encompasses primate DCRS6-10, e.g., whose sequences are disclosed in Tables 1-5, and described above. Allelic and other variants are also contemplated, including, e.g., fusion proteins combining portions of such sequences with others, including, e.g., epitope tags and functional domains.

The present invention also provides recombinant proteins, e.g., heterologous fusion proteins using segments from these primate or rodent proteins. A heterologous fusion protein is a fusion of proteins or segments which are naturally not normally fused in the same manner. Thus, the fusion product of, e.g., a DCRS8 with another cytokine receptor is a continuous protein molecule having sequences fused in a typical peptide linkage, typically made as a single translation product and exhibiting properties, e.g., sequence or antigenicity, derived from each source peptide. A similar concept applies to heterologous nucleic acid sequences. Combinations of various designated proteins into complexes are also provided.

In addition, new constructs may be made from combining similar functional or structural domains from other related proteins, e.g., cytokine receptors or Toll-like

5

10

15

20

25

30

35

49

receptors, including species variants. For example, ligand-binding or other segments may be "swapped" between different new fusion polypeptides or fragments. See, e.g., Cunningham, et al. (1989) Science 243:1330-1336; and O'Dowd, et al. (1988) J. Biol. Chem. 263:15985-15992, each of which is incorporated herein by reference. Thus, new chimeric polypeptides exhibiting new combinations of specificities will result from the functional linkage of receptor-binding specificities. For example, the ligand binding domains from other related receptor molecules may be added or substituted for other domains of this or related proteins. The resulting protein will often have hybrid function and properties. For example, a fusion protein may include a targeting domain which may serve to provide sequestering of the fusion protein to a particular subcellular organelle.

Candidate fusion partners and sequences can be selected from various sequence data bases, e.g., GenBank, c/o IntelliGenetics, Mountain View, CA; and BCG, University of Wisconsin Biotechnology Computing Group, Madison, WI, which are each incorporated herein by reference. In particular, combinations of polypeptide sequences provided in Tables 1-5 are particularly preferred. Variant forms of the proteins may be substituted in the described combinations.

The present invention particularly provides muteins which bind cytokine-like ligands, and/or which are affected in signal transduction. Structural alignment of human DCRSs with other members of the cytokine receptor family show conserved features/residues. See Table 6. Alignment of the human DCRS8 sequence with other members of the cytokine receptor family indicates various structural and functionally shared features. See also, Bazan, et al. (1996) Nature 379:591; Lodi, et al. (1994) Science 263:1762-1766; Sayle and Milner-White (1995) TIBS 20:374-376; and Gronenberg, et al. (1991) Protein Engineering 4:263-269.

Substitutions with either mouse sequences or human sequences are particularly preferred. Conversely, conservative substitutions away from the ligand binding interaction regions will probably preserve most signaling activities; and conservative substitutions away from the intracellular domains will probably preserve most ligand binding properties.

"Derivatives" of the primate DCRS8 include amino acid sequence mutants, glycosylation variants, metabolic derivatives and covalent or aggregative conjugates with other chemical moieties. Covalent derivatives can be prepared by linkage of functionalities to groups which are found in the DCRS8 amino acid side chains or at the N- or C- termini, e.g., by means which are well known in the art. These derivatives can include, without limitation, aliphatic esters or amides of the carboxyl terminus, or of residues containing carboxyl side chains, O-acyl derivatives of hydroxyl group-containing residues, and N-acyl derivatives of the amino terminal amino acid or amino-group

WO 01/90358

5

10

15

20

25

30

35

containing residues, e.g., lysine or arginine. Acyl groups are selected from the group of alkyl-moieties, including C3 to C18 normal alkyl, thereby forming alkanoyl aroyl species.

50

PCT/US01/16767

In particular, glycosylation alterations are included, e.g., made by modifying the glycosylation patterns of a polypeptide during its synthesis and processing, or in further processing steps. Particularly preferred means for accomplishing this are by exposing the polypeptide to glycosylating enzymes derived from cells which normally provide such processing, e.g., mammalian glycosylation enzymes. Deglycosylation enzymes are also contemplated. Also embraced are versions of the same primary amino acid sequence which have other minor modifications, including phosphorylated amino acid residues, e.g., phosphotyrosine, phosphoserine, or phosphothreonine.

A major group of derivatives are covalent conjugates of the receptors or fragments thereof with other proteins of polypeptides. These derivatives can be synthesized in recombinant culture such as N- or C-terminal fusions or by the use of agents known in the art for their usefulness in cross-linking proteins through reactive side groups. Preferred derivatization sites with cross-linking agents are at free amino groups, carbohydrate moieties, and cysteine residues.

Fusion polypeptides between the receptors and other homologous or heterologous proteins are also provided. Homologous polypeptides may be fusions between different receptors, resulting in, for instance, a hybrid protein exhibiting binding specificity for multiple different cytokine ligands, or a receptor which may have broadened or weakened specificity of substrate effect. Likewise, heterologous fusions may be constructed which would exhibit a combination of properties or activities of the derivative proteins. Typical examples are fusions of a reporter polypeptide, e.g., luciferase, with a segment or domain of a receptor, e.g., a ligand-binding segment, so that the presence or location of a desired ligand may be easily determined. See, e.g., Dull, et al., U.S. Patent No. 4,859,609, which is hereby incorporated herein by reference. Other gene fusion partners include glutathione-S-transferase (GST), bacterial \(\beta\)-galactosidase, trpE, Protein A, \(\beta\)-lactamase, alpha amylase, alcohol dehydrogenase, and yeast alpha mating factor. See, e.g., Godowski, et al. (1988) Science 241:812-816. Labeled proteins will often be substituted in the described combinations of proteins.

The phosphoramidite method described by Beaucage and Carruthers (1981) <u>Tetra.</u> <u>Letts.</u> 22:1859-1862, will produce suitable synthetic DNA fragments. A double stranded fragment will often be obtained either by synthesizing the complementary strand and annealing the strand together under appropriate conditions or by adding the complementary strand using DNA polymerase with an appropriate primer sequence.

Such polypeptides may also have amino acid residues which have been chemically modified by phosphorylation, sulfonation, biotinylation, or the addition or removal of

other moieties, particularly those which have molecular shapes similar to phosphate groups. In some embodiments, the modifications will be useful labeling reagents, or serve as purification targets, e.g., affinity ligands.

Fusion proteins will typically be made by either recombinant nucleic acid methods or by synthetic polypeptide methods. Techniques for nucleic acid manipulation and expression are described generally, for example, in Sambrook, et al. (1989) Molecular Cloning: A Laboratory Manual (2d ed.), Vols. 1-3, Cold Spring Harbor Laboratory, and Ausubel, et al. (eds. 1987 and periodic supplements) Current Protocols in Molecular Biology, Greene/Wiley, New York, which are each incorporated herein by reference. Techniques for synthesis of polypeptides are described, for example, in Merrifield (1963) J. Amer. Chem. Soc. 85:2149-2156; Merrifield (1986) Science 232: 341-347; and Atherton, et al. (1989) Solid Phase Peptide Synthesis: A Practical Approach, IRL Press, Oxford; each of which is incorporated herein by reference. See also Dawson, et al. (1994) Science 266:776-779 for methods to make larger polypeptides.

This invention also contemplates the use of derivatives of a DCRS8 other than variations in amino acid sequence or glycosylation. Such derivatives may involve covalent or aggregative association with chemical moieties. These derivatives generally fall into three classes: (1) salts, (2) side chain and terminal residue covalent modifications, and (3) adsorption complexes, for example with cell membranes. Such covalent or aggregative derivatives are useful as immunogens, as reagents in immunoassays, or in purification methods such as for affinity purification of a receptor or other binding molecule, e.g., an antibody. For example, a cytokine ligand can be immobilized by covalent bonding to a solid support such as cyanogen bromide-activated Sepharose, by methods which are well known in the art, or adsorbed onto polyolefin surfaces, with or without glutaraldehyde cross-linking, for use in the assay or purification of a cytokine receptor, antibodies, or other similar molecules. The ligand can also be labeled with a detectable group, for example radioiodinated by the chloramine T procedure, covalently bound to rare earth chelates, or conjugated to another fluorescent moiety for use in diagnostic assays.

A combination, e.g., including a DCRS8, of this invention can be used as an immunogen for the production of antisera or antibodies specific, e.g., capable of distinguishing between other cytokine receptor family members, for the combinations described. The complexes can be used to screen monoclonal antibodies or antigen-binding fragments prepared by immunization with various forms of impure preparations containing the protein. In particular, the term "antibodies" also encompasses antigen binding fragments of natural antibodies, e.g., Fab, Fab2, Fv, etc. The purified DCRS8 can also be used as a reagent to detect antibodies generated in response to the presence of

elevated levels of expression, or immunological disorders which lead to antibody production to the endogenous receptor. Additionally, DCRS8 fragments may also serve as immunogens to produce the antibodies of the present invention, as described immediately below. For example, this invention contemplates antibodies having binding affinity to or being raised against the amino acid sequences shown in Tables 1-5, fragments thereof, or various homologous peptides. In particular, this invention contemplates antibodies having binding affinity to, or having been raised against, specific fragments which are predicted to be, or actually are, exposed at the exterior protein surface of the native DCRS8 or DCRS9. Complexes of combinations of proteins will also be useful, and antibody preparations thereto can be made.

The blocking of physiological response to the receptor ligands may result from the inhibition of binding of the ligand to the receptor, likely through competitive inhibition. Thus, in vitro assays of the present invention will often use antibodies or antigen binding segments of these antibodies, or fragments attached to solid phase substrates. These assays will also allow for the diagnostic determination of the effects of either ligand binding region mutations and modifications, or other mutations and modifications, e.g., which affect signaling or enzymatic function.

This invention also contemplates the use of competitive drug screening assays, e.g., where neutralizing antibodies to the receptor complexes or fragments compete with a test compound for binding to a ligand or other antibody. In this manner, the neutralizing antibodies or fragments can be used to detect the presence of a polypeptide which shares one or more binding sites to a receptor and can also be used to occupy binding sites on a receptor that might otherwise bind a ligand.

V. Making Nucleic Acids and Protein

5

10

15

20

25

30

35

DNA which encodes the protein or fragments thereof can be obtained by chemical synthesis, screening cDNA libraries, or by screening genomic libraries prepared from a wide variety of cell lines or tissue samples. Natural sequences can be isolated using standard methods and the sequences provided herein, e.g., in Tables 1-5. Other species counterparts can be identified by hybridization techniques, or by various PCR techniques, combined with or by searching in sequence databases, e.g., GenBank.

This DNA can be expressed in a wide variety of host cells for the synthesis of a full-length receptor or fragments which can in turn, for example, be used to generate polyclonal or monoclonal antibodies; for binding studies; for construction and expression of modified ligand binding or kinase/phosphatase domains; and for structure/function studies. Variants or fragments can be expressed in host cells that are transformed or transfected with appropriate expression vectors. These molecules can be substantially

free of protein or cellular contaminants, other than those derived from the recombinant host, and therefore are particularly useful in pharmaceutical compositions when combined with a pharmaceutically acceptable carrier and/or diluent. The protein, or portions thereof, may be expressed as fusions with other proteins. Combinations of the described proteins, or nucleic acids encoding them, are particularly interesting.

Expression vectors are typically self-replicating DNA or RNA constructs containing the desired receptor gene or its fragments, usually operably linked to suitable genetic control elements that are recognized in a suitable host cell. These control elements are capable of effecting expression within a suitable host. The multiple genes may be coordinately expressed, and may be on a polycistronic message. The specific type of control elements necessary to effect expression will depend upon the eventual host cell used. Generally, the genetic control elements can include a prokaryotic promoter system or a eukaryotic promoter expression control system, and typically include a transcriptional promoter, an optional operator to control the onset of transcription, transcription enhancers to elevate the level of mRNA expression, a sequence that encodes a suitable ribosome binding site, and sequences that terminate transcription and translation. Expression vectors also usually contain an origin of replication that allows the vector to replicate independently of the host cell.

The vectors of this invention include those which contain DNA which encodes a combination of proteins, as described, or a biologically active equivalent polypeptide. The DNA can be under the control of a viral promoter and can encode a selection marker. This invention further contemplates use of such expression vectors which are capable of expressing eukaryotic cDNAs coding for such proteins in a prokaryotic or eukaryotic host, where the vector is compatible with the host and where the eukaryotic cDNAs are inserted into the vector such that growth of the host containing the vector expresses the cDNAs in question. Usually, expression vectors are designed for stable replication in their host cells or for amplification to greatly increase the total number of copies of the desirable gene per cell. It is not always necessary to require that an expression vector replicate in a host cell, e.g., it is possible to effect transient expression of the protein or its fragments in various hosts using vectors that do not contain a replication origin that is recognized by the host cell. It is also possible to use vectors that cause integration of the protein encoding portions into the host DNA by recombination.

Vectors, as used herein, comprise plasmids, viruses, bacteriophage, integratable DNA fragments, and other vehicles which enable the integration of DNA fragments into the genome of the host. Expression vectors are specialized vectors which contain genetic control elements that effect expression of operably linked genes. Plasmids are the most commonly used form of vector but all other forms of vectors which serve an equivalent

5

10

15

20

25

30

35

function and which are, or become, known in the art are suitable for use herein. See, e.g., Pouwels, et al. (1985 and Supplements) <u>Cloning Vectors: A Laboratory Manual</u>, Elsevier, N.Y., and Rodriguez, et al. (eds. 1988) <u>Vectors: A Survey of Molecular Cloning Vectors and Their Uses</u>, Buttersworth, Boston, which are incorporated herein by reference.

Transformed cells are cells, preferably mammalian, that have been transformed or transfected with vectors constructed using recombinant DNA techniques. Transformed host cells usually express the desired proteins, but for purposes of cloning, amplifying, and manipulating its DNA, do not need to express the subject proteins. This invention further contemplates culturing transformed cells in a nutrient medium, thus permitting the proteins to accumulate. The proteins can be recovered, either from the culture or, in certain instances, from the culture medium.

For purposes of this invention, nucleic sequences are operably linked when they are functionally related to each other. For example, DNA for a presequence or secretory leader is operably linked to a polypeptide if it is expressed as a preprotein or participates in directing the polypeptide to the cell membrane or in secretion of the polypeptide. A promoter is operably linked to a coding sequence if it controls the transcription of the polypeptide; a ribosome binding site is operably linked to a coding sequence if it is positioned to permit translation. Usually, operably linked means contiguous and in reading frame, however, certain genetic elements such as repressor genes are not contiguously linked but still bind to operator sequences that in turn control expression.

Suitable host cells include prokaryotes, lower eukaryotes, and higher eukaryotes. Prokaryotes include both gram negative and gram positive organisms, e.g., <u>E. coli</u> and <u>B. subtilis</u>. Lower eukaryotes include yeasts, e.g., <u>S. cerevisiae</u> and <u>Pichia</u>, and species of the genus <u>Dictyostelium</u>. Higher eukaryotes include established tissue culture cell lines from animal cells, both of non-mammalian origin, e.g., insect cells, and birds, and of mammalian origin, e.g., human, primates, and rodents.

Prokaryotic host-vector systems include a wide variety of vectors for many different species. As used herein, <u>E. coli</u> and its vectors will be used generically to include equivalent vectors used in other prokaryotes. A representative vector for amplifying DNA is pBR322 or many of its derivatives. Vectors that can be used to express the receptor or its fragments include, but are not limited to, such vectors as those containing the lac promoter (pUC-series); trp promoter (pBR322-trp); Ipp promoter (the pIN-series); lambda-pP or pR promoters (pOTS); or hybrid promoters such as ptac (pDR540). See Brosius, et al. (1988) "Expression Vectors Employing Lambda-, trp-, lac-, and Ipp-derived Promoters", in <u>Vectors: A Survey of Molecular Cloning Vectors and Their Uses</u>, (eds. Rodriguez and Denhardt), Buttersworth, Boston, Chapter 10, pp. 205-236, which is incorporated herein by reference.

55

Lower eukaryotes, e.g., yeasts and <u>Dictyostelium</u>, may be transformed with DCRS8 sequence containing vectors. For purposes of this invention, the most common lower eukaryotic host is the baker's yeast, <u>Saccharomyces cerevisiae</u>. It will be used to generically represent lower eukaryotes although a number of other strains and species are also available. Yeast vectors typically consist of a replication origin (unless of the integrating type), a selection gene, a promoter, DNA encoding the receptor or its fragments, and sequences for translation termination, polyadenylation, and transcription termination. Suitable expression vectors for yeast include such constitutive promoters as 3-phosphoglycerate kinase and various other glycolytic enzyme gene promoters or such inducible promoters as the alcohol dehydrogenase 2 promoter or metallothionine promoter. Suitable vectors include derivatives of the following types: self-replicating low copy number (such as the YRp-series), self-replicating high copy number (such as the YEp-series); integrating types (such as the YIp-series), or mini-chromosomes (such as the YCp-series).

5

10

15

20

25

30

35

Higher eukaryotic tissue culture cells are normally the preferred host cells for expression of the functionally active interleukin or receptor proteins. In principle, many higher eukaryotic tissue culture cell lines are workable, e.g., insect baculovirus expression systems, whether from an invertebrate or vertebrate source. However, mammalian cells are preferred. Transformation or transfection and propagation of such cells has become a routine procedure. Examples of useful cell lines include HeLa cells, Chinese hamster ovary (CHO) cell lines, baby rat kidney (BRK) cell lines, insect cell lines, bird cell lines, and monkey (COS) cell lines. Expression vectors for such cell lines usually include an origin of replication, a promoter, a translation initiation site, RNA splice sites (if genomic DNA is used), a polyadenylation site, and a transcription termination site. These vectors also usually contain a selection gene or amplification gene. Suitable expression vectors may be plasmids, viruses, or retroviruses carrying promoters derived, e.g., from such sources as from adenovirus, SV40, parvoviruses, vaccinia virus, or cytomegalovirus. Representative examples of suitable expression vectors include pCDNA1; pCD, see Okayama, et al. (1985) Mol. Cell Biol. 5:1136-1142; pMC1neo PolyA, see Thomas, et al. (1987) Cell 51:503-512; and a baculovirus vector such as pAC 373 or pAC 610.

For secreted proteins and some membrane proteins, an open reading frame usually encodes a polypeptide that consists of a mature or secreted product covalently linked at its N-terminus to a signal peptide. The signal peptide is cleaved prior to secretion of the mature, or active, polypeptide. The cleavage site can be predicted with a high degree of accuracy from empirical rules, e.g., von-Heijne (1986) Nucleic Acids Research 14:4683-4690; and Nielsen, et al. (1997) Protein Eng. 10:1-12, and the precise amino acid composition of the signal peptide often does not appear to be critical to its function, e.g.,

56

Randall, et al. (1989) <u>Science</u> 243:1156-1159; and Kaiser, et al. (1987) <u>Science</u> 235:312-317. The mature proteins of the invention can be readily determined using standard methods.

It will often be desired to express these polypeptides in a system which provides a specific or defined glycosylation pattern. In this case, the usual pattern will be that provided naturally by the expression system. However, the pattern will be modifiable by exposing the polypeptide, e.g., an unglycosylated form, to appropriate glycosylating proteins introduced into a heterologous expression system. For example, the receptor gene may be co-transformed with one or more genes encoding mammalian or other glycosylating enzymes. Using this approach, certain mammalian glycosylation patterns will be achievable in prokaryote or other cells. Expression in prokaryote cells will typically lead to unglycosylated forms of protein.

5

10

15

20

25

30

35

The source of DCRS8 can be a eukaryotic or prokaryotic host expressing recombinant DCRS8, such as is described above. The source can also be a cell line, but other mammalian cell lines are also contemplated by this invention, with the preferred cell line being from the human species.

Now that the sequences are known, the primate DCRS8 or DCRS9, fragments, or derivatives thereof can be prepared by conventional processes for synthesizing peptides. These include processes such as are described in Stewart and Young (1984) Solid Phase Peptide Synthesis, Pierce Chemical Co., Rockford, IL; Bodanszky and Bodanszky (1984) The Practice of Peptide Synthesis, Springer-Verlag, New York; and Bodanszky (1984) The Principles of Peptide Synthesis, Springer-Verlag, New York; all of each which are incorporated herein by reference. For example, an azide process, an acid chloride process, an acid anhydride process, a mixed anhydride process, an active ester process (for example, p-nitrophenyl ester, N-hydroxysuccinimide ester, or cyanomethyl ester), a carbodiimidazole process, an oxidative-reductive process, or a dicyclohexylcarbodiimide (DCCD)/additive process can be used. Solid phase and solution phase syntheses are both applicable to the foregoing processes. Similar techniques can be used with partial DCRS8 or DCRS9 sequences.

The DCRS8 proteins, fragments, or derivatives are suitably prepared in accordance with the above processes as typically employed in peptide synthesis, generally either by a so-called stepwise process which comprises condensing an amino acid to the terminal amino acid, one by one in sequence, or by coupling peptide fragments to the terminal amino acid. Amino groups that are not being used in the coupling reaction typically must be protected to prevent coupling at an incorrect location.

If a solid phase synthesis is adopted, the C-terminal amino acid is bound to an insoluble carrier or support through its carboxyl group. The insoluble carrier is not

particularly limited as long as it has a binding capability to a reactive carboxyl group. Examples of such insoluble carriers include halomethyl resins, such as chloromethyl resin or bromomethyl resin, hydroxymethyl resins, phenol resins, tert-alkyloxycarbonylhydrazidated resins, and the like.

An amino group-protected amino acid is bound in sequence through condensation of its activated carboxyl group and the reactive amino group of the previously formed peptide or chain, to synthesize the peptide step by step. After synthesizing the complete sequence, the peptide is split off from the insoluble carrier to produce the peptide. This solid-phase approach is generally described by Merrifield, et al. (1963) in <u>J. Am. Chem. Soc.</u> 85:2149-2156, which is incorporated herein by reference.

The prepared protein and fragments thereof can be isolated and purified from the reaction mixture by means of peptide separation, e.g., by extraction, precipitation, electrophoresis, various forms of chromatography, and the like. The receptors of this invention can be obtained in varying degrees of purity depending upon desired uses. Purification can be accomplished by use of the protein purification techniques disclosed herein, see below, or by the use of the antibodies herein described in methods of immunoabsorbant affinity chromatography. This immunoabsorbant affinity chromatography is carried out by first linking the antibodies to a solid support and then contacting the linked antibodies with solubilized lysates of appropriate cells, lysates of other cells expressing the receptor, or lysates or supernatants of cells producing the protein as a result of DNA techniques, see below.

Generally, the purified protein will be at least about 40% pure, ordinarily at least about 50% pure, usually at least about 60% pure, typically at least about 70% pure, more typically at least about 80% pure, preferable at least about 90% pure and more preferably at least about 95% pure, and in particular embodiments, 97%-99% or more. Purity will usually be on a weight basis, but can also be on a molar basis. Different assays will be applied as appropriate. Individual proteins may be purified and thereafter combined.

VI. Antibodies

5

10

15

20

25

30

35

Antibodies can be raised to the various mammalian, e.g., primate DCRS8 or DCRS9 proteins and fragments thereof, both in naturally occurring native forms and in their recombinant forms, the difference being that antibodies to the active receptor are more likely to recognize epitopes which are only present in the native conformations. Denatured antigen detection can also be useful in, e.g., Western analysis. Anti-idiotypic antibodies are also contemplated, which would be useful as agonists or antagonists of a natural receptor or an antibody.

58

Antibodies, including binding fragments and single chain versions, against predetermined fragments of the protein can be raised by immunization of animals with conjugates of the fragments with immunogenic proteins. Monoclonal antibodies are prepared from cells secreting the desired antibody. These antibodies can be screened for binding to normal or defective protein, or screened for agonistic or antagonistic activity. These monoclonal antibodies will usually bind with at least a K_D of about 1 mM, more usually at least about 300 μ M, typically at least about 100 μ M, more typically at least about 30 μ M, preferably at least about 10 μ M, and more preferably at least about 3 μ M or better.

10

5

The antibodies, including antigen binding fragments, of this invention can have significant diagnostic or therapeutic value. They can be potent antagonists that bind to the receptor and inhibit binding to ligand or inhibit the ability of the receptor to elicit a biological response, e.g., act on its substrate. They also can be useful as non-neutralizing antibodies and can be coupled to toxins or radionuclides to bind producing cells, or cells localized to the source of the interleukin. Further, these antibodies can be conjugated to drugs or other therapeutic agents, either directly or indirectly by means of a linker.

15

20

The antibodies of this invention can also be useful in diagnostic applications. As capture or non-neutralizing antibodies, they might bind to the receptor without inhibiting ligand or substrate binding. As neutralizing antibodies, they can be useful in competitive binding assays. They will also be useful in detecting or quantifying ligand. They may be used as reagents for Western blot analysis, or for immunoprecipitation or immunopurification of the respective protein. Likewise, nucleic acids and proteins may be immobilized to solid substrates for affinity purification or detection methods. The substrates may be, e.g., solid resin beads or sheets of plastic.

25

30

Protein fragments may be joined to other materials, particularly polypeptides, as fused or covalently joined polypeptides to be used as immunogens. Mammalian cytokine receptors and fragments may be fused or covalently linked to a variety of immunogens, such as keyhole limpet hemocyanin, bovine serum albumin, tetanus toxoid, etc. See (1969) Microbiology, Hoeber Medical Division, Harper and Row; Landsteiner (1962) Specificity of Serological Reactions, Dover Publications, New York; and Williams, et al. (1967) Methods in Immunology and Immunochemistry, Vol. 1, Academic Press, New York; each of which is incorporated herein by reference, for descriptions of methods of preparing polyclonal antisera. A typical method involves hyperimmunization of an animal with an antigen. The blood of the animal is then collected shortly after the repeated immunizations and the gamma globulin is isolated.

35

In some instances, it is desirable to prepare monoclonal antibodies from various mammalian hosts, such as mice, rodents, primates, humans, etc. Description of

techniques for preparing such monoclonal antibodies may be found in, e.g., Stites, et al. (eds.) Basic and Clinical Immunology (4th ed.), Lange Medical Publications, Los Altos, CA, and references cited therein; Harlow and Lane (1988) Antibodies: A Laboratory Manual, CSH Press; Goding (1986) Monoclonal Antibodies: Principles and Practice (2d ed.) Academic Press, New York; and particularly in Kohler and Milstein (1975) Nature 256:495-497, which discusses one method of generating monoclonal antibodies. Each of these references is incorporated herein by reference. Summarized briefly, this method involves injecting an animal with an immunogen. The animal is then sacrificed and cells taken from its spleen, which are then fused with myeloma cells. The result is a hybrid cell or "hybridoma" that is capable of reproducing in vitro. The population of hybridomas is then screened to isolate individual clones, each of which secrete a single antibody species to the immunogen. In this manner, the individual antibody species obtained are the products of immortalized and cloned single B cells from the immune animal generated in response to a specific site recognized on the immunogenic substance.

5

10

15

20

25

30

35

Other suitable techniques involve in vitro exposure of lymphocytes to the antigenic polypeptides or alternatively to selection of libraries of antibodies in phage or similar vectors. See, Huse, et al. (1989) "Generation of a Large Combinatorial Library of the Immunoglobulin Repertoire in Phage Lambda," Science 246:1275-1281; and Ward, et al. (1989) Nature 341:544-546, each of which is incorporated herein by reference. The polypeptides and antibodies of the present invention may be used with or without modification, including chimeric or humanized antibodies. Frequently, the polypeptides and antibodies will be labeled by joining, either covalently or non-covalently, a substance which provides for a detectable signal. A wide variety of labels and conjugation techniques are known and are reported extensively in both the scientific and patent literature. Suitable labels include radionuclides, enzymes, substrates, cofactors, inhibitors, fluorescent moieties, chemiluminescent moieties, magnetic particles, and the like. Patents, teaching the use of such labels include U.S. Patent Nos. 3,817,837; 3,850,752; 3,939,350; 3,996,345; 4,277,437; 4,275,149; and 4,366,241. Also, recombinant or chimeric immunoglobulins may be produced, see Cabilly, U.S. Patent No. 4,816,567; or made in transgenic mice, see Mendez, et al. (1997) Nature Genetics 15:146-156; Abgenix; and Medarex. These references are incorporated herein by reference.

The antibodies of this invention can also be used for affinity chromatography in isolating the DCRS8 proteins or peptides. Columns can be prepared where the antibodies are linked to a solid support, e.g., particles, such as agarose, Sephadex, or the like, where a cell lysate may be passed through the column, the column washed, followed by increasing concentrations of a mild denaturant, whereby the purified protein will be

60

released. Alternatively, the protein may be used to purify antibody. Appropriate cross absorptions or depletions may be applied.

The antibodies may also be used to screen expression libraries for particular expression products. Usually the antibodies used in such a procedure will be labeled with a moiety allowing easy detection of presence of antigen by antibody binding.

5

10

15

20

25

30

35

Antibodies raised against a cytokine receptor will also be used to raise antiidiotypic antibodies. These will be useful in detecting or diagnosing various immunological conditions related to expression of the protein or cells which express the protein. They also will be useful as agonists or antagonists of the ligand, which may be competitive inhibitors or substitutes for naturally occurring ligands.

A cytokine receptor protein that specifically binds to or that is specifically immunoreactive with an antibody generated against a defined immunogen, such as an immunogen consisting of the amino acid sequence of SEQ ID NO: 14, is typically determined in an immunoassay. The immunoassay typically uses a polyclonal antiserum which was raised, e.g., to a protein of SEQ ID NO: 14. This antiserum is selected to have low crossreactivity against other cytokine receptor family members, preferably from the same species, and any such crossreactivity is removed by immunoabsorption prior to use in the immunoassay.

In order to produce antisera for use in an immunoassay, the protein, e.g., of SEQ ID NO: 14, is isolated as described herein. For example, recombinant protein may be produced in a mammalian cell line. An appropriate host, e.g., an inbred strain of mice such as Balb/c, is immunized with the selected protein, typically using a standard adjuvant, such as Freund's adjuvant, and a standard mouse immunization protocol (see Harlow and Lane, supra). Alternatively, a synthetic peptide derived from the sequences disclosed herein and conjugated to a carrier protein can be used an immunogen. Polyclonal sera are collected and titered against the immunogen protein in an immunoassay, e.g., a solid phase immunoassay with the immunogen immobilized on a solid support. Polyclonal antisera with a titer of 10⁴ or greater are selected and tested for their cross reactivity against other cytokine receptor family members using a competitive binding immunoassay such as the one described in Harlow and Lane, supra, at pages 570-573. Preferably at least two cytokine receptor family members are used in this determination. These cytokine receptor family members can be produced as recombinant proteins and isolated using standard molecular biology and protein chemistry techniques as described herein.

Immunoassays in the competitive binding format can be used for the crossreactivity determinations. For example, the protein of SEQ ID NO: 14 can be immobilized to a solid support. Proteins added to the assay compete with the binding of

5

10

15

20

25

30

35

the antisera to the immobilized antigen. The ability of the above proteins to compete with the binding of the antisera to the immobilized protein is compared to the other proteins. The percent crossreactivity for the above proteins is calculated, using standard calculations. Those antisera with less than 10% crossreactivity with each of the proteins listed above are selected and pooled. The cross-reacting antibodies are then removed from the pooled antisera by immunoabsorption with the above-listed proteins.

The immunoabsorbed and pooled antisera are then used in a competitive binding immunoassay as described above to compare a second protein to the immunogen protein (e.g., the DCRS8 like protein of SEQ ID NO: 14). In order to make this comparison, the two proteins are each assayed at a wide range of concentrations and the amount of each protein required to inhibit 50% of the binding of the antisera to the immobilized protein is determined. If the amount of the second protein required is less than twice the amount of the protein of the selected protein or proteins that is required, then the second protein is said to specifically bind to an antibody generated to the immunogen.

It is understood that these cytokine receptor proteins are members of a family of homologous proteins that comprise at least 9 so far identified members, 6 mammalian and 3 worm embodiments. For a particular gene product, such as the DCRS8, the term refers not only to the amino acid sequences disclosed herein, but also to other proteins that are allelic, non-allelic, or species variants. It is also understood that the terms include nonnatural mutations introduced by deliberate mutation using conventional recombinant technology such as single site mutation, or by excising short sections of DNA encoding the respective proteins, or by substituting new amino acids, or adding new amino acids. Such minor alterations typically will substantially maintain the immunoidentity of the original molecule and/or its biological activity. Thus, these alterations include proteins that are specifically immunoreactive with a designated naturally occurring DCRS8 protein. The biological properties of the altered proteins can be determined by expressing the protein in an appropriate cell line and measuring the appropriate effect, e.g., upon transfected lymphocytes. Particular protein modifications considered minor would include conservative substitution of amino acids with similar chemical properties, as described above for the cytokine receptor family as a whole. By aligning a protein optimally with the protein of the cytokine receptors and by using the conventional immunoassays described herein to determine immunoidentity, one can determine the protein compositions of the invention.

VII. Kits and quantitation

Both naturally occurring and recombinant forms of the cytokine receptor like molecules of this invention are particularly useful in kits and assay methods. For

WO 01/90358

5

10

15

20

25

30

35

62

PCT/US01/16767

example, these methods would also be applied to screening for binding activity, e.g., ligands for these proteins. Several methods of automating assays have been developed in recent years so as to permit screening of tens of thousands of compounds per year. See, e.g., a BIOMEK automated workstation, Beckman Instruments, Palo Alto, California, and Fodor, et al. (1991) Science 251:767-773, which is incorporated herein by reference. The latter describes means for testing binding by a plurality of defined polymers synthesized on a solid substrate. The development of suitable assays to screen for a ligand or agonist/antagonist homologous proteins can be greatly facilitated by the availability of large amounts of purified, soluble cytokine receptors in an active state such as is provided by this invention.

Purified protein can be coated directly onto plates for use in the aforementioned ligand screening techniques. However, non-neutralizing antibodies to these proteins can be used as capture antibodies to immobilize the respective receptor on the solid phase, useful, e.g., in diagnostic uses.

This invention also contemplates use of receptor subunit, fragments thereof, peptides, and their fusion products in a variety of diagnostic kits and methods for detecting the presence of the protein or its ligand. Alternatively, or additionally, antibodies against the molecules may be incorporated into the kits and methods. Typically the kit will have a compartment containing, e.g., a DCRS8 peptide or gene segment or a reagent which recognizes one or the other. Typically, recognition reagents, in the case of peptide, would be a receptor or antibody, or in the case of a gene segment, would usually be a hybridization probe.

A preferred kit for determining the concentration of DCRS8 in a sample would typically comprise a labeled compound, e.g., ligand or antibody, having known binding affinity for DCRS8, a source of DCRS8 (naturally occurring or recombinant) as a positive control, and a means for separating the bound from free labeled compound, e.g., a solid phase for immobilizing the DCRS8 in the test sample. Compartments containing reagents, and instructions, will normally be provided. Appropriate nucleic acid or protein containing kits are also provided.

Antibodies, including antigen binding fragments, specific for mammalian DCRS8 or a peptide fragment, or receptor fragments are useful in diagnostic applications to detect the presence of elevated levels of ligand and/or its fragments. Diagnostic assays may be homogeneous (without a separation step between free reagent and antibody-antigen complex) or heterogeneous (with a separation step). Various commercial assays exist, such as radioimmunoassay (RIA), enzyme-linked immunosorbent assay (ELISA), enzyme immunoassay (EIA), enzyme-multiplied immunoassay technique (EMIT), substrate-labeled fluorescent immunoassay (SLFIA) and the like. For example, unlabeled

63

antibodies can be employed by using a second antibody which is labeled and which recognizes the antibody to a cytokine receptor or to a particular fragment thereof. These assays have also been extensively discussed in the literature. See, e.g., Harlow and Lane (1988) Antibodies: A Laboratory Manual, CSH, and Coligan (ed. 1991 and periodic supplements) Current Protocols In Immunology Greene/Wiley, New York.

5

10

15

20

25

30

35

Anti-idiotypic antibodies may have similar use to serve as agonists or antagonists of cytokine receptors. These should be useful as therapeutic reagents under appropriate circumstances.

Frequently, the reagents for diagnostic assays are supplied in kits, so as to optimize the sensitivity of the assay. For the subject invention, depending upon the nature of the assay, the protocol, and the label, either labeled or unlabeled antibody, or labeled ligand is provided. This is usually in conjunction with other additives, such as buffers, stabilizers, materials necessary for signal production such as substrates for enzymes, and the like. Preferably, the kit will also contain instructions for proper use and disposal of the contents after use. Typically the kit has compartments for each useful reagent, and will contain instructions for proper use and disposal of reagents. Desirably, the reagents are provided as a dry lyophilized powder, where the reagents may be reconstituted in an aqueous medium having appropriate concentrations for performing the assay.

The aforementioned constituents of the diagnostic assays may be used without modification or may be modified in a variety of ways. For example, labeling may be achieved by covalently or non-covalently joining a moiety which directly or indirectly provides a detectable signal. In many of these assays, a test compound, cytokine receptor, or antibodies thereto can be labeled either directly or indirectly. Possibilities for direct labeling include label groups: radiolabels such as ¹²⁵I, enzymes (U.S. Pat. No. 3,645,090) such as peroxidase and alkaline phosphatase, and fluorescent labels (U.S. Pat. No. 3,940,475) capable of monitoring the change in fluorescence intensity, wavelength shift, or fluorescence polarization. Both of the patents are incorporated herein by reference. Possibilities for indirect labeling include biotinylation of one constituent followed by binding to avidin coupled to one of the above label groups.

There are also numerous methods of separating the bound from the free ligand, or alternatively the bound from the free test compound. The cytokine receptor can be immobilized on various matrixes followed by washing. Suitable matrices include plastic such as an ELISA plate, filters, and beads. Methods of immobilizing the receptor to a matrix include, without limitation, direct adhesion to plastic, use of a capture antibody, chemical coupling, and biotin-avidin. The last step in this approach involves the precipitation of antibody/antigen complex by any of several methods including those

64

utilizing, e.g., an organic solvent such as polyethylene glycol or a salt such as ammonium sulfate. Other suitable separation techniques include, without limitation, the fluorescein antibody magnetizable particle method described in Rattle, et al. (1984) <u>Clin. Chem.</u> 30(9):1457-1461, and the double antibody magnetic particle separation as described in U.S. Pat. No. 4,659,678, each of which is incorporated herein by reference.

5

10

15

20

25

30

35

The methods for linking protein or fragments to various labels have been extensively reported in the literature and do not require detailed discussion here. Many of the techniques involve the use of activated carboxyl groups either through the use of carbodiimide or active esters to form peptide bonds, the formation of thioethers by reaction of a mercapto group with an activated halogen such as chloroacetyl, or an activated olefin such as maleimide, for linkage, or the like. Fusion proteins will also find use in these applications.

Another diagnostic aspect of this invention involves use of oligonucleotide or polynucleotide sequences taken from the sequence of an cytokine receptor. These sequences can be used as probes for detecting levels of the respective cytokine receptor in patients suspected of having an immunological disorder. The preparation of both RNA and DNA nucleotide sequences, the labeling of the sequences, and the preferred size of the sequences has received ample description and discussion in the literature. Normally an oligonucleotide probe should have at least about 14 nucleotides, usually at least about 18 nucleotides, and the polynucleotide probes may be up to several kilobases. Various labels may be employed, most commonly radionuclides, particularly ³²P. However, other techniques may also be employed, such as using biotin modified nucleotides for introduction into a polynucleotide. The biotin then serves as the site for binding to avidin or antibodies, which may be labeled with a wide variety of labels, such as radionuclides, fluorescers, enzymes, or the like. Alternatively, antibodies may be employed which can recognize specific duplexes, including DNA duplexes, RNA duplexes, DNA-RNA hybrid duplexes, or DNA-protein duplexes. The antibodies in turn may be labeled and the assay carried out where the duplex is bound to a surface, so that upon the formation of duplex on the surface, the presence of antibody bound to the duplex can be detected. The use of probes to the novel RNA may be carried out in conventional techniques such as nucleic acid hybridization, plus and minus screening, recombinational probing, hybrid released translation (HRT), and hybrid arrested translation (HART). Antisense nucleic acids, which may be used to block protein expression, are also provided. See, e.g., Isis Pharmaceuticals, Sequitur, Inc., or Hybridon. This also includes amplification techniques such as polymerase chain reaction (PCR).

Diagnostic kits which also test for the qualitative or quantitative presence of other markers are also contemplated. Diagnosis or prognosis may depend on the combination

of multiple indications used as markers. Thus, kits may test for combinations of markers. See, e.g., Viallet, et al. (1989) <u>Progress in Growth Factor Res.</u> 1:89-97.

VIII. Therapeutic Utility

5

10

15

20

25

30

35

This invention provides reagents with significant therapeutic value. See, e.g., Levitzki (1996) Curr. Opin. Cell Biol. 8:239-244. The cytokine receptors (naturally occurring or recombinant), fragments thereof, mutein receptors, and antibodies, along with compounds identified as having binding affinity to the receptors or antibodies, should be useful in the treatment of conditions exhibiting abnormal expression of the receptors of their ligands. Such abnormality will typically be manifested by immunological disorders, e.g., innate immunity, or developmentally. Additionally, this invention should provide therapeutic value in various diseases or disorders associated with abnormal expression or abnormal triggering of response to the ligand. For example, the IL-1 ligands have been suggested to be involved in morphologic development, e.g., dorso-ventral polarity determination, and immune responses, particularly the primitive innate responses. See, e.g., Sun, et al. (1991) Eur. J. Biochem. 196:247-254; and Hultmark (1994) Nature 367:116-117.

Recombinant cytokine receptors, muteins, agonist or antagonist antibodies thereto, or antibodies can be purified and then administered to a patient. These reagents can be combined for therapeutic use with additional active ingredients, e.g., in conventional pharmaceutically acceptable carriers or diluents, along with physiologically innocuous stabilizers and excipients. These combinations can be sterile, e.g., filtered, and placed into dosage forms as by lyophilization in dosage vials or storage in stabilized aqueous preparations. This invention also contemplates use of antibodies or binding fragments thereof which are not complement binding.

Ligand screening using cytokine receptor or fragments thereof can be performed to identify molecules having binding affinity to the receptors. Subsequent biological assays can then be utilized to determine if a putative ligand can provide competitive binding, which can block intrinsic stimulating activity. Receptor fragments can be used as a blocker or antagonist in that it blocks the activity of ligand. Likewise, a compound having intrinsic stimulating activity can activate the receptor and is thus an agonist in that it simulates the activity of ligand, e.g., inducing signaling. This invention further contemplates the therapeutic use of antibodies to cytokine receptors as antagonists.

The quantities of reagents necessary for effective therapy will depend upon many different factors, including means of administration, target site, reagent physiological life, pharmacological life, physiological state of the patient, and other medicants administered. Thus, treatment dosages should be titrated to optimize safety and efficacy. Typically,

WO 01/90358

5

10

15

20

25

30

35

PCT/US01/16767

dosages used in vitro may provide useful guidance in the amounts useful for in situ administration of these reagents. Animal testing of effective doses for treatment of particular disorders will provide further predictive indication of human dosage. Various considerations are described, e.g., in Gilman, et al. (eds. 1990) Goodman and Gilman's: The Pharmacological Bases of Therapeutics, 8th Ed., Pergamon Press; and Remington's Pharmaceutical Sciences, 17th ed. (1990), Mack Publishing Co., Easton, Penn.; each of which is hereby incorporated herein by reference. Methods for administration are discussed therein and below, e.g., for oral, intravenous, intraperitoneal, or intramuscular administration, transdermal diffusion, and others. Pharmaceutically acceptable carriers will include water, saline, buffers, and other compounds described, e.g., in the Merck Index, Merck & Co., Rahway, New Jersey. Because of the likely high affinity binding, or turnover numbers, between a putative ligand and its receptors, low dosages of these reagents would be initially expected to be effective. And the signaling pathway suggests extremely low amounts of ligand may have effect. Thus, dosage ranges would ordinarily be expected to be in amounts lower than 1 mM concentrations, typically less than about 10 µM concentrations, usually less than about 100 nM, preferably less than about 10 pM (picomolar), and most preferably less than about 1 fM (femtomolar), with an appropriate carrier. Slow release formulations, or slow release apparatus will often be utilized for continuous administration.

Cytokine receptors, fragments thereof, and antibodies or its fragments, antagonists, and agonists, may be administered directly to the host to be treated or, depending on the size of the compounds, it may be desirable to conjugate them to carrier proteins such as ovalbumin or serum albumin prior to their administration. Therapeutic formulations may be administered in many conventional dosage formulations. While it is possible for the active ingredient to be administered alone, it is preferable to present it as a pharmaceutical formulation. Formulations comprise at least one active ingredient, as defined above, together with one or more acceptable carriers thereof. Each carrier must be both pharmaceutically and physiologically acceptable in the sense of being compatible with the other ingredients and not injurious to the patient. Formulations include those suitable for oral, rectal, nasal, or parenteral (including subcutaneous, intramuscular, intravenous and intradermal) administration. The formulations may conveniently be presented in unit dosage form and may be prepared by methods well known in the art of pharmacy. See, e.g., Gilman, et al. (eds. 1990) Goodman and Gilman's: The Pharmacological Bases of Therapeutics, 8th Ed., Pergamon Press; and Remington's Pharmaceutical Sciences, 17th ed. (1990), Mack Publishing Co., Easton, Penn.; Avis, et al. (eds. 1993) Pharmaceutical Dosage Forms: Parenteral Medications Dekker, NY; Lieberman, et al. (eds. 1990) Pharmaceutical Dosage Forms; Tablets Dekker, NY; and

Lieberman, et al. (eds. 1990) <u>Pharmaceutical Dosage Forms: Disperse Systems</u> Dekker, NY. The therapy of this invention may be combined with or used in association with other therapeutic agents, particularly agonists or antagonists of other cytokine receptor family members.

5

10

IX. Screening

Drug screening using DCRS8 or fragments thereof can be performed to identify compounds having binding affinity to the receptor subunit, including isolation of associated components. Subsequent biological assays can then be utilized to determine if the compound has intrinsic stimulating activity and is therefore a blocker or antagonist in that it blocks the activity of the ligand. Likewise, a compound having intrinsic stimulating activity can activate the receptor and is thus an agonist in that it simulates the activity of a cytokine ligand. This invention further contemplates the therapeutic use of antibodies to the receptor as cytokine agonists or antagonists.

15

Similarly, complexes comprising multiple proteins may be used to screen for ligands or reagents capable of recognizing the complex. Most cytokine receptors comprise at least two subunits, which may be the same, or distinct. Alternatively, the transmembrane receptor may bind to a complex comprising a cytokine-like ligand associated with another soluble protein serving, e.g., as a second receptor subunit.

20

25

30

35

One method of drug screening utilizes eukaryotic or prokaryotic host cells which are stably transformed with recombinant DNA molecules expressing the DCRS8 in combination with another cytokine receptor subunit. Cells may be isolated which express a receptor in isolation from other functional receptors. Such cells, either in viable or fixed form, can be used for standard antibody/antigen or ligand/receptor binding assays. See also, Parce, et al. (1989) Science 246:243-247; and Owicki, et al. (1990) Proc. Nat'l Acad. Sci. USA 87:4007-4011, which describe sensitive methods to detect cellular responses. Competitive assays are particularly useful, where the cells (source of putative ligand) are contacted and incubated with a labeled receptor or antibody having known binding affinity to the ligand, such as ¹²⁵I-antibody, and a test sample whose binding affinity to the binding composition is being measured. The bound and free labeled binding compositions are then separated to assess the degree of ligand binding. The amount of test compound bound is inversely proportional to the amount of labeled receptor binding to the known source. Many techniques can be used to separate bound from free ligand to assess the degree of ligand binding. This separation step could typically involve a procedure such as adhesion to filters followed by washing, adhesion to plastic followed by washing, or centrifugation of the cell membranes. Viable cells could also be used to screen for the effects of drugs on cytokine mediated functions, e.g., second messenger

levels, e.g., Ca⁺⁺; cell proliferation; inositol phosphate pool changes; and others. Some detection methods allow for elimination of a separation step, e.g., a proximity sensitive detection system. Calcium sensitive dyes will be useful for detecting Ca⁺⁺ levels, with a fluorimeter or a fluorescence cell sorting apparatus.

5

10

15

20

30

35

X. Ligands

The descriptions of the DCRS8 herein provides means to identify ligands, as described above. Such ligand should bind specifically to the respective receptor with reasonably high affinity. Various constructs are made available which allow either labeling of the receptor to detect its ligand. For example, directly labeling cytokine receptor, fusing onto it markers for secondary labeling, e.g., FLAG or other epitope tags, etc., will allow detection of receptor. This can be histological, as an affinity method for biochemical purification, or labeling or selection in an expression cloning approach. A two-hybrid selection system may also be applied making appropriate constructs with the available cytokine receptor sequences. See, e.g., Fields and Song (1989) Nature 340:245-246.

Most likely candidates will be structually related to members of the IL-17 family. See, e.g., USSN 09/480,287.

The broad scope of this invention is best understood with reference to the following examples, which are not intended to limit the inventions to the specific embodiments.

EXAMPLES

25 I. General Methods

Some of the standard methods are described or referenced, e.g., in Maniatis, et al. (1982) Molecular Cloning, A Laboratory Manual, Cold Spring Harbor Laboratory, Cold Spring Harbor Press; Sambrook, et al. (1989) Molecular Cloning: A Laboratory Manual, (2d ed.), vols. 1-3, CSH Press, NY; or Ausubel, et al. (1987 and Supplements) Current Protocols in Molecular Biology, Greene/Wiley, New York. Methods for protein purification include such methods as ammonium sulfate precipitation, column chromatography, electrophoresis, centrifugation, crystallization, and others. See, e.g., Ausubel, et al. (1987 and periodic supplements); Coligan, et al. (ed. 1996) and periodic supplements, Current Protocols In Protein Science Greene/Wiley, New York; Deutscher (1990) "Guide to Protein Purification" in Methods in Enzymology, vol. 182, and other volumes in this series; and manufacturer's literature on use of protein purification products, e.g., Pharmacia, Piscataway, N.J., or Bio-Rad, Richmond, CA. Combination

5

10

15

20

25

30

35

with recombinant techniques allow fusion to appropriate segments, e.g., to a FLAG sequence or an equivalent which can be fused via a protease-removable sequence. See, e.g., Hochuli (1990) "Purification of Recombinant Proteins with Metal Chelate Absorbent" in Setlow (ed.) Genetic Engineering, Principle and Methods 12:87-98, Plenum Press, N.Y.; and Crowe, et al. (1992) OIAexpress: The High Level Expression & Protein Purification System QUIAGEN, Inc., Chatsworth, CA.

Computer sequence analysis is performed, e.g., using available software programs, including those from the GCG (U. Wisconsin) and GenBank sources. Public sequence databases were also used, e.g., from GenBank and others.

Many techniques applicable to IL-10 receptors may be applied to the DCRSs, as described, e.g., in USSN 08/110,683 (IL-10 receptor), which is incorporated herein by reference.

II. Computational Analysis

Human sequences related to cytokine receptors were identified from genomic sequence database using, e.g., the BLAST server (Altschul, et al. (1994) Nature Genet. 6:119-129). Standard analysis programs may be used to evaluate structure, e.g., PHD (Rost and Sander (1994) Proteins 19:55-72) and DSC (King and Sternberg (1996) Protein Sci. 5:2298-2310). Standard comparison software includes, e.g., Altschul, et al. (1990) J. Mol. Biol. 215:403-10; Waterman (1995) Introduction to Computational Biology: Maps, Sequences, and Genomes Chapman & Hall; Lander and Waterman (eds. 1995)

Calculating the Secrets of Life: Applications of the Mathematical Sciences in Molecular Biology National Academy Press; and Speed and Waterman (eds. 1996) Genetic Mapping and DNA Sequencing (IMA Volumes in Mathematics and Its Applications, Vol 81)

Springer Verlag. Each reference is incorporate herein by reference.

III. Cloning of full-length cDNAs; Chromosomal localization

PCR primers derived from the sequences are used to probe a human cDNA library. Sequences may be derived, e.g., from Tables 1-5, preferably those adjacent the ends of sequences. Full length cDNAs for primate, rodent, or other species DCRS8 are cloned, e.g., by DNA hybridization screening of $\lambda gt10$ phage. PCR reactions are conducted using T. aquaticus Taqplus DNA polymerase (Stratagene) under appropriate conditions. Extending partial length cDNA clones is typically routine.

Chromosome spreads are prepared. In situ hybridization is performed on chromosome preparations obtained from phytohemagglutinin-stimulated human lymphocytes cultured for 72 h. 5-bromodeoxyuridine was added for the final seven hours

of culture (60 μ g/ml of medium), to ensure a posthybridization chromosomal banding of good quality.

A PCR fragment, amplified with the help of primers, is cloned into an appropriate vector. The vector is labeled by nick-translation with ³H. The radiolabeled probe is hybridized to metaphase spreads at final concentration of 200 ng/ml of hybridization solution as described, e.g., in Mattei, et al. (1985) <u>Hum. Genet.</u> 69:327-331.

After coating with nuclear track emulsion (KODAK NTB₂), slides are exposed. To avoid any slipping of silver grains during the banding procedure, chromosome spreads are first stained with buffered Giemsa solution and metaphase photographed. R-banding is then performed by the fluorochrome-photolysis-Giemsa (FPG) method and metaphases rephotographed before analysis.

Similar appropriate methods are used for other species.

IV. Localization of mRNA

5

10

15

20

25

30

35

Human multiple tissue (Cat# 1, 2) and cancer cell line blots (Cat# 7757-1), containing approximately 2 μg of poly(A)⁺ RNA per lane, are purchased from Clontech (Palo Alto, CA). Probes are radiolabeled with [α-32P] dATP, e.g., using the Amersham Rediprime random primer labeling kit (RPN1633). Prehybridization and hybridizations are performed, e.g., at 65° C in 0.5 M Na₂HPO₄, 7% SDS, 0.5 M EDTA (pH 8.0). High stringency washes are conducted, e.g., at 65° C with two initial washes in 2 x SSC, 0.1% SDS for 40 min followed by a subsequent wash in 0.1 x SSC, 0.1% SDS for 20 min. Membranes are then exposed at -70° C to X-Ray film (Kodak) in the presence of intensifying screens. More detailed studies by cDNA library Southerns are performed with selected appropriate human DCRS clones to examine their expression in hemopoietic or other cell subsets.

Alternatively, two appropriate primers are selected from Tables 1-5. RT-PCR is used on an appropriate mRNA sample selected for the presence of message to produce a cDNA, e.g., a sample which expresses the gene.

Full length clones may be isolated by hybridization of cDNA libraries from appropriate tissues pre-selected by PCR signal. Northern blots can be performed.

Message for genes encoding DCRS will be assayed by appropriate technology, e.g., PCR, immunoassay, hybridization, or otherwise. Tissue and organ cDNA preparations are available, e.g., from Clontech, Mountain View, CA. Identification of sources of natural expression are useful, as described. And the identification of functional receptor subunit pairings will allow for prediction of what cells express the combination of receptor subunits which will result in a physiological responsiveness to each of the cytokine ligands.

WO 01/90358

5

10

15

20

25

30

35

For mouse counterpart distribution, e.g., Southern Analysis can be performed: DNA (5 µg) from a primary amplified cDNA library was digested with appropriate restriction enzymes to release the inserts, run on a 1% agarose gel and transferred to a nylon membrane (Schleicher and Schuell, Keene, NH).

71

Samples for mouse mRNA isolation may include: resting mouse fibroblastic L cell line (C200); Braf:ER (Braf fusion to estrogen receptor) transfected cells, control (C201); T cells, TH1 polarized (Mel14 bright, CD4+ cells from spleen, polarized for 7 days with IFN-y and anti IL-4; T200); T cells, TH2 polarized (Mel14 bright, CD4+ cells from spleen, polarized for 7 days with IL-4 and anti-IFN-y; T201); T cells, highly TH1 polarized (see Openshaw, et al. (1995) J. Exp. Med. 182:1357-1367; activated with anti-CD3 for 2, 6, 16 h pooled; T202); T cells, highly TH2 polarized (see Openshaw, et al. (1995) J. Exp. Med. 182:1357-1367; activated with anti-CD3 for 2, 6, 16 h pooled; T203); CD44- CD25+ pre T cells, sorted from thymus (T204); TH1 T cell clone D1.1, resting for 3 weeks after last stimulation with antigen (T205); TH1 T cell clone D1.1, 10 ug/ml ConA stimulated 15 h (T206); TH2 T cell clone CDC35, resting for 3 weeks after last stimulation with antigen (T207); TH2 T cell clone CDC35, 10 μg/ml ConA stimulated 15 h (T208); Mel14+ naive T cells from spleen, resting (T209); Mel14+ T cells, polarized to Th1 with IFN-y/IL-12/anti-IL-4 for 6, 12, 24 h pooled (T210); Mel14+ T cells, polarized to Th2 with IL-4/anti-IFN-y for 6, 13, 24 h pooled (T211); unstimulated mature B cell leukemia cell line A20 (B200); unstimulated B cell line CH12 (B201); unstimulated large B cells from spleen (B202); B cells from total spleen, LPS activated (B203); metrizamide enriched dendritic cells from spleen, resting (D200); dendritic cells from bone marrow, resting (D201); monocyte cell line RAW 264.7 activated with LPS 4 h (M200); bone-marrow macrophages derived with GM and M-CSF (M201); macrophage cell line J774, resting (M202); macrophage cell line J774 + LPS + anti-IL-10 at 0.5, 1, 3, 6, 12 h pooled (M203); macrophage cell line J774 + LPS + IL-10 at 0.5, 1, 3, 5, 12 h pooled(M204); aerosol challenged mouse lung tissue, Th2 primers, aerosol OVA challenge 7, 14, 23 h pooled (see Garlisi, et al. (1995) Clinical Immunology and Immunopathology 75:75-83; X206); Nippostrongulus-infected lung tissue (see Coffman, et al. (1989) Science 245:308-310; X200); total adult lung, normal (O200); total lung, rag-1 (see Schwarz, et al. (1993) Immunodeficiency 4:249-252; O205); IL-10 K.O. spleen (see Kuhn, et al. (1991) Cell 75:263-274; X201); total adult spleen, normal (O201); total spleen, rag-1 (O207); IL-10 K.O. Peyer's patches (O202); total Peyer's patches, normal (O210); IL-10 K.O. mesenteric lymph nodes (X203); total mesenteric lymph nodes, normal (O211); IL-10 K.O. colon (X203); total colon, normal (O212); NOD mouse pancreas (see Makino, et al. (1980) Jikken Dobutsu 29:1-13; X205); total thymus, rag-1 (O208); total kidney, rag-1 (O209); total heart, rag-1 (O202); total brain, rag-1 (O203);

10

15

20

25

30

35

total testes, rag-1 (O204); total liver, rag-1 (O206); rat normal joint tissue (O300); and rat arthritic joint tissue (X300).

Samples for human mRNA isolation may include, e.g.: peripheral blood mononuclear cells (monocytes, T cells, NK cells, granulocytes, B cells), resting (T100); peripheral blood mononuclear cells, activated with anti-CD3 for 2, 6, 12 h pooled (T101); T cell, TH0 clone Mot 72, resting (T102); T cell, TH0 clone Mot 72, activated with anti-CD28 and anti-CD3 for 3, 6, 12 h pooled (T103); T cell, TH0 clone Mot 72, anergic treated with specific peptide for 2, 7, 12 h pooled (T104); T cell, TH1 clone HY06, resting (T107); T cell, TH1 clone HY06, activated with anti-CD28 and anti-CD3 for 3, 6, 12 h pooled (T108); T cell, TH1 clone HY06, anergic treated with specific peptide for 2, 6, 12 h pooled (T109); T cell, TH2 clone HY935, resting (T110); T cell, TH2 clone HY935, activated with anti-CD28 and anti-CD3 for 2, 7, 12 h pooled (T111); T cells CD4+CD45RO- T cells polarized 27 days in anti-CD28, IL-4, and anti IFN-y, TH2 polarized, activated with anti-CD3 and anti-CD28 4 h (T116); T cell tumor lines Jurkat and Hut78, resting (T117); T cell clones, pooled AD130.2, Tc783.12, Tc783.13. Tc783.58, Tc782.69, resting (T118); T cell random y8 T cell clones, resting (T119); Splenocytes, resting (B100); Splenocytes, activated with anti-CD40 and IL-4 (B101); B cell EBV lines pooled WT49, RSB, JY, CVIR, 721.221, RM3, HSY, resting (B102); B cell line JY, activated with PMA and ionomycin for 1, 6 h pooled (B103); NK 20 clones pooled, resting (K100); NK 20 clones pooled, activated with PMA and ionomycin for 6 h (K101); NKL clone, derived from peripheral blood of LGL leukemia patient, IL-2 treated (K106); NK cytotoxic clone 640-A30-1, resting (K107); hematopoietic precursor line TF1, activated with PMA and ionomycin for 1, 6 h pooled (C100); U937 premonocytic line, resting (M100); U937 premonocytic line, activated with PMA and ionomycin for 1, 6 h pooled (M101); elutriated monocytes, activated with LPS, IFNy, anti-IL-10 for 1, 2, 6, 12, 24 h pooled (M102); elutriated monocytes, activated with LPS, IFNy, IL-10 for 1, 2, 6, 12, 24 h pooled (M103); elutriated monocytes, activated with LPS, IFNy, anti-IL-10 for 4, 16 h pooled (M106); elutriated monocytes, activated with LPS, IFNy, IL-10 for 4, 16 h pooled (M107); elutriated monocytes, activated LPS for 1 h (M108); elutriated monocytes, activated LPS for 6 h (M109); DC 70% CD1a+, from CD34+ GM-CSF. TNFα 12 days, resting (D101); DC 70% CD1a+, from CD34+ GM-CSF, TNFα 12 days, activated with PMA and ionomycin for 1 hr (D102); DC 70% CD1a+, from CD34+ GM-CSF, TNFa 12 days, activated with PMA and ionomycin for 6 hr (D103); DC 95% CD1a+, from CD34+ GM-CSF, TNFa 12 days FACS sorted, activated with PMA and ionomycin for 1, 6 h pooled (D104); DC 95% CD14+, ex CD34+ GM-CSF, TNFα 12 days FACS sorted, activated with PMA and ionomycin 1, 6 hr pooled (D105); DC CD1a+ CD86+, from CD34+ GM-CSF, TNFa 12 days FACS sorted, activated with PMA and

5

10

15

20

25

30

35

73

ionomycin for 1, 6 h pooled (D106); DC from monocytes GM-CSF, IL-4 5 days, resting (D107); DC from monocytes GM-CSF, IL-4 5 days, resting (D108); DC from monocytes GM-CSF, IL-4 5 days, activated LPS 4, 16 h pooled (D109); DC from monocytes GM-CSF, IL-4 5 days, activated TNFα, monocyte supe for 4, 16 h pooled (D110); leiomyoma L11 benign tumor (X101); normal myometrium M5 (O115); malignant leiomyosarcoma GS1 (X103); lung fibroblast sarcoma line MRC5, activated with PMA and ionomycin for 1, 6 h pooled (C101); kidney epithelial carcinoma cell line CHA, activated with PMA and ionomycin for 1, 6 h pooled (C102); kidney fetal 28 wk male (O100); lung fetal 28 wk male (O101); liver fetal 28 wk male (O102); heart fetal 28 wk male (O103); brain fetal 28 wk male (O107); adipose tissue fetal 28 wk male (O108); ovary fetal 25 wk female (O109); uterus fetal 25 wk female (O110); testes fetal 28 wk male (O111); spleen fetal 28 wk male (O112); adult placenta 28 wk (O113); and tonsil inflamed, from 12 year old (X100).

TaqMan quantitative PCR techniques have shown the DCRS6, in both mouse and human, to be expressed on T cells, including thymocytes and CD4+ naive and differentiated (hDCRS6 is also expressed on dendritic cells), in gastrointestinal tissue, including stomach, intestine, colon and associated lymphoid tissue, e.g., Peyer's patches and mesenteric lymph nodes, and upregulated in inflammatory models of bowel disease, e.g., IL-10 KO mice. The hDCRS7 was detected in both resting and activated dendritic cells, epithelial cells, and mucosal tissues, including GI and reproductive tracts. These data suggest that family members are expressed in mucosal tissues and immune system cell types, and/or in gastrointestinal, airway, and reproductive tract development.

As such, therapeutic indications include, e.g., short bowel syndrome, post chemo/radio-therapy or alcoholic recovery, combinations with ulcer treatments or arthritis medication, Th2 pregnancy skewing, stomach lining/tissue regeneration, loss of adsorptive surface conditions, etc. See, e.g., Yamada, et al. (eds. 1999) <u>Textbook of Gastroenterology</u>; Yamada, et al. (eds. 1999) <u>Textbook and Atlas of Gastroenterology</u>; Gore and Levine (2000) <u>Textbook of Gastrointestinal Radiology</u>; and (1987) <u>Textbook of Pediatric Gastroenterology</u>.

Similar samples may isolated in other species for evaluation.

Primers specific for IL-17RA were designed and used in Taqman quantative PCR against various human libraries. IL-17RA is highly expressed in innate immune myeloid cells including dendritic cells and monocytes. Expression is also detected in T-cell libraries. These data demonstrate the receptor is expressed in immune cell types and may be regulated by activation conditions.

Table for IL-17RA library description	CT for	IL-
	17RA_H	
DC ex monocytes GM-CSF, IL-4, resting	16.97	
U937 premonocytic line, activated	17.14	
DC ex monocytes GM-CSF, IL-4, resting	17.53	
DC 70% CD1a+, ex CD34+ GM-CSF, TNFa,	18.17	
resting		
monocytes, LPS, gIFN, anti-IL-10	18.27	
DC ex monocytes GM-CSF, IL-4, LPS	18.51	
activated 4+16 hr		
DC ex monocytes GM-CSF, IL-4, monokine	18.68	
activated 4+16 hr		
kidney epithelial carcinoma cell line CHA,	18.69	
activated		
monocytes, LPS, 1 hr	18.72	
monocytes, LPS, 6 hr	18.72	
DC 70% CD1a+, ex CD34+ GM-CSF, TNFa,	18.91	
activated 1 hr	20.51	
DC 70% CD1a+, ex CD34+ GM-CSF, TNFa,	18.94	
activated 6 hr	10.54	
T cell, TH1 clone HY06, activated	18.99	
lung fetal	19.15	
T cell, TH1 clone HY06, resting	19.18	
T cell, TH1 clone HY06, anergic	19.13	
monocytes, LPS, gIFN, IL-10, 4+16 hr	19.23	
spleen fetal	19.51	
testes fetal	19.51	
T cell, THO clone Mot 72, resting		
,	19.84	
DC CD1a+ CD86+, ex CD34+ GM-CSF, TNFa,	19.94	
activated 1+6 hr		
peripheral blood mononuclear cells,	20.01	
activated		
hematopoietic precursor line TF1, activated		
lung fibroblast sarcoma line MRC5,	20.18	
activated		
Splenocytes, activated	20.21	
T cell gd clones, resting	20.27	
ovary fetal	20.45	
T cells CD4+, TH2 polarized, activated	20.57	
Splenocytes, resting	20.6	
uterus fetal	20.62	
DC 95% CD1a+, ex CD34+ GM-CSF, TNFa,	20.94	
activated 1+6 hr		
epithelial cells, unstimulated	20.96	
peripheral blood mononuclear cells, resting	20.97	
adipose tissue fetal	21.13	

B cell line JY, activated	21.28
monocytes, LPS, gIFN, IL-10	21.37
placenta 28 wk	21.38
NK 20 clones pooled, activated	21.55
pool of two normal human lung samples	21.63
normal human thyroid	21.65
epithelial cells, IL-1b activated	21.72
normal human skin	21.84
T cell, THO clone Mot 72, anergic	21.87
small intestine fetal	22.01
CD28- T cell clone in pME	22.08
T cell, TH2 clone HY935, activated	22.09
T cell clones, pooled, resting	22.29
Hashimoto's thyroiditis thyroid sample	22.3
NK 20 clones pooled, resting	22.4
B cell EBV lines, resting	22.45
T cell, TH2 clone HY935, resting	22.86
T cell, THO clone Mot 72, activated	23.3
	23.39
T cell lines Jurkat and Hut78, resting	23.4
T cell, THO clone Mot 72, activated	23.56
Pneumocystic carnii pneumonia lung sample	24.05
U937 premonocytic line, resting	25.01
pool of rheumatoid arthritis samples, human	25.85
	26.1
samples	
DC 95% CD14+, ex CD34+ GM-CSF, TNFa,	32.69
activated 1+6 hr	
kidney fetal	33.7
liver fetal	34.4
NK cytotoxic clone, resting	34.49
tonsil inflammed	35.02
normal w.t. monkey lung	35.45
gallbladder fetal	35.84
TR1 T cell clone	35.86
allergic lung sample	36.39
Psoriasis patient skin sample	36.44
normal human colon	37.34
brain fetal	37.35
Ascaris-challenged monkey lung, 4 hr.	37.75
Ascaris-challenged monkey lung, 24 hr.	40
heart fetal	40
normal w.t. monkey colon	40
ulderative dolitic human dolon dample	40

76

Primers specific for DCRS6_H were designed and used in Taqman quantative PCR against various human libraries. DCRS6_H is expressed in innate immune myeloid cells including dendritic cells and monocytes. Expression is also detected in T-cell libraries. These data demonstrate the receptor is expressed in immune cell types and may be regulated by activation conditions.

Table for DCRS6_H	
library description	CT for DCRS6_H
T cell, THO clone Mot 72, resting	15.54
T cell, THO clone Mot 72, resting	15.7
DC ex monocytes GM-CSF, IL-4, resting	17.84
DC ex monocytes GM-CSF, IL-4, resting	18.19
DC ex monocytes GM-CSF, IL-4, LPS	18.3
activated 4+16 hr	
DC ex monocytes GM-CSF, IL-4, monokine	18.3
activated 4+16 hr	
T cell, TH1 clone HY06, resting	18.43
NK cytotoxic clone, resting	18.53
T cell clones, pooled, resting	18.8
T cell, TH1 clone HY06, activated	19.03
T cell, TH2 clone HY935, activated	19.1
TR1 T cell clone	19.12
T cells CD4+, TH2 polarized, activated	20.06
B cell EBV lines, resting	20.3
T cell, TH2 clone HY935, resting	20.48
kidney epithelial carcinoma cell line CHA,	21.07
activated	
T cell, TH1 clone HY06, anergic	21.14
normal human colon	21.29
NK 20 clones pooled, resting	21.49
T cell gd clones, resting	21.58
gallbladder fetal	22.21
kidney fetal	22.79
liver fetal	22.8
Pneumocystic carnii pneumonia lung sample	23.06
CD28- T cell clone in pME	23.18
T cell, THO clone Mot 72, anergic	23.2
ovary fetal	23.51
normal human thyroid	24.03
small intestine fetal	24.13
testes fetal	24.82
	26.08
pool of three heavy smoker human lung	26.49
samples	
placenta 28 wk	26.56
normal w.t. monkey lung	28.65
peripheral blood mononuclear cells,	33.39

activated	
Ascaris-challenged monkey lung, 4 hr.	36.59
spleen fetal	38.43
peripheral blood mononuclear cells, resting	40
T cell, THO clone Mot 72, activated	40
T cell lines Jurkat and Hut78, resting	40
Splenocytes, resting	40
Splenocytes, activated	40
B cell line JY, activated	40
NK 20 clones pooled, activated	40
hematopoietic precursor line TF1, activated	40
U937 premonocytic line, resting	40
U937 premonocytic line, activated	40
monocytes, LPS, gIFN, anti-IL-10	40
monocytes, LPS, gIFN, IL-10	40
monocytes, LPS, gIFN, anti-IL-10, 4+16 hr	40
monocytes, LPS, gIFN, IL-10, 4+16 hr	40
monocytes, LPS, 1 hr	40
monocytes, LPS, 6 hr	40
DC 70% CD1a+, ex CD34+ GM-CSF, TNFa,	40
resting	
DC 70% CD1a+, ex CD34+ GM-CSF, TNFa,	40
activated 1 hr	
DC 70% CD1a+, ex CD34+ GM-CSF, TNFa,	40
activated 6 hr	
DC 95% CD1a+, ex CD34+ GM-CSF, TNFa,	40
activated 1+6 hr	
DC 95% CD14+, ex CD34+ GM-CSF, TNFa,	40
activated 1+6 hr	
DC CD1a+ CD86+, ex CD34+ GM-CSF, TNFa,	40
activated 1+6 hr	
epithelial cells, unstimulated	40
lung fibroblast sarcoma line MRC5,	40
activated	
Ascaris-challenged monkey lung, 24 hr.	40
pool of two normal human lung samples	40
allergic lung sample	40
normal w.t. monkey colon	40
ulcerative colitis human colon sample	40
Hashimoto's thyroiditis thyroid sample	40
pool of rheumatoid arthritis samples, human	40
normal human skin	40
Psoriasis patient skin sample	40
tonsil inflammed	40
lung fetal	40
heart fetal	40
brain fetal	40
adipose tissue fetal	40
uterus fetal	40

WO 01/90358 PCT/US01/16767

T cell, THO clone Mot 72, activated

5

Primers specific for DCRS7_H were designed and used in Taqman quantative PCR against various human libraries. DCRS7_H is expressed in innate immune myeloid cells including dendritic cells and monocytes. Expression is also detected in fetal libraries. These data demonstrate the receptor is expressed in immune cell types and may be regulated by activation conditions.

Table for DCRS7_H		
library description	CT for DCRS7 H	
fetal uterus	_	19.05
DC mix		19.34
fetal small intestine		19.46
fetal ovary		19.68
fetal testes		19.75
fetal lung		20.04
CHA		20.24
normal thyroid		20.32
DC/GM/IL-4		20.52
fetal spleen	•	20.86
normal lung		20.94
TF1		21
allergic lung #19		21.02
Psoriasis skin		21.07
fetal liver		21.15
MRC5		21.15
24 hr. Ascaris lung		21.17
hi dose IL-4 lung		21.23
CD1a+ 95%		21.32
Hashimotos thyroiditis		21.35
Crohns colon 4003197A		21.35
normal lung pool		21.36
70% DC resting		21.42
fetal kidney adult placenta		21.58
lung 121897-1		21.68
Pneumocystis carnii lung		21.8
#20		21.81
A549 unstim.		21.89
normal colon #22		21.94
18 hr. Ascaris lung		22.09
normal skin		22.1
Crohns colon 9609C144		22.13
fetal adipose tissue		22.35
D6		22.39

DC resting CD34-derived	22.45
DC TNF/TGFb act CD34-der.	22.54
fetal brain	22.9
DC CD40L activ. mono-	22.91
deriv.	22.71
Crohns colon 403242A	22.91
ulcerative colitis colon	23
#26	23
•	22 00
RA synovium pool	23.06
A549 activated	23.06
mono + IL-10	23.42
DC LPS	23.49
Mot 72 activated	23.66
CD1a+ CD86+	23.86
HY06 resting	23.87
U937 activated	23.97
inflammed tonsil	23.97
D1 .	24.06
M1	24.17
CD14+ 95%	24.21
lung 080698-2	24.28
4 hr. Ascaris lung	24.37
_	24.42
DC resting mono-derived	24.48
HY06 activated	24.54
C+	24.64
Splenocytes resting	24.65
U937/CD004 resting	24.96
	25.8
Mot 72 resting	25.91
mono + anti-IL-10	26.14
-	26.99
	27.34
mast cell pME	27.38
Tc gamma delta	28.14
TC1080 CD28- pMET7	31.05
PBMC activated	31.89
NK non cytotox.	32.3
RV-C30 TR1 pMET7	32.5
Bc	33.72
C-	33.8
Splenocytes activated	34.7
JY	35.05
NK cytotox.	36.44
NKL/IL-2	37.59
HY935 resting	37.6
NK pool activated	38.15
Mot 72 anti-peptide	38.87
fetal heart	40.92

B21 resting	42.05
Jurkat resting pSPORT	42.8
B21 activated	43.09
NKA6 pSPORT	44.85
HY935 activated	45
M6	45

Primers specific for DCRS9_H were designed and used in Taqman quantative PCR against various human libraries. DCRS9_H is expressed T-cells, fetal lung, and resting monocytes. These data demonstrate the receptor is expressed in immune cell types and may be regulated by activation conditions.

Table for DCRS9_H library description CT for

IIDIALY GESCLIPCION	CI IOI	•
	DCRS9_	H
HY06 resting		22.35
fetal lung		22.63
HY06 anti-peptide		22.72
HY06 activated		22.96
U937/CD004 resting		24.16
fetal small		24.94
intestine .		
JY		25.04
Mot 72 resting		25.12
Jurkat activated		25.2
pSPORT		
RV-C30 TR1 pMET7		26.51
fetal kidney		26.76
MRC5		27.2
Psoriasis skin		27.3
Tc gamma delta		27.37
Crohns colon		27.44
4003197A		
fetal spleen		27.72
normal lung		27.83
Hashimotos		28.03
thyroiditis		
B21 resting		28.32
TF1		28.39
NK cytotox.		28.44
TC1080 CD28- pMET7		28.61
Pneumocystis carnii		29.05
lung #20		
U937 activated		29.06
HY935 resting		29.09
CD1a+ 95%		29.13

B21 activated	29.2
Mot 72 activated	29.21
fetal testes	29.27
lung 080698-2	29.32
Jurkat resting	29.38
- CDODE	
CD14+ 95%	29.38
CD14+ 95% normal thyroid	29.53
Mot 72 anti-	29.65
peptide	
Splenocytes	29.85
resting	
Crohns colon	30.28
9609C144	
lung 121897-1	30.37
24 hr. Ascaris lung	
hi dose IL-4 lung	30.8
CD1a+ CD86+	31.42
normal skin	31.73
fetal uterus	31.79
PBMC activated	31.82
inflammed tonsil	31.98
fetal brain	32.21
RA synovium pool	32.77
	33.18
	33.42
adult placenta	33.43
normal lung pool	33.45
Crohns colon	33.52
403242A	22 70
NK pool	33.72
HY935 activated	33.75
DC/GM/IL-4	34.28
DC resting mono-	34.57
derived	
fetal ovary	35.06
fetal adipose	35.07
tissue	
CHA	35.2
PBMC resting	35.95
Bc	36.19
A549 unstim.	36.4
fetal heart	36.87
ulcerative colitis	37.83
colon #26	
C-	38.32
4 hr. Ascaris lung	40.2
D6	40.62
C+	44.38

A549 activated	44.58
Splenocytes	45
activated	
NK pool activated	45
NKA6 pSPORT	45
NKL/IL-2	45
NK non cytotox.	45
mono + anti-IL-10	45
mono + IL-10	45
M1	45
M6	45
70% DC resting	45
D1	45
DC LPS	45
DC mix	45
fetal liver	45
mast cell pME	45
DC CD40L activ.	45
mono-deriv.	
DC resting CD34-	45
derived	
DC TNF/TGFb act	45
CD34-der.	
normal colon #22	45

15

20

25

30

35

V. Cloning of species counterparts

Various strategies are used to obtain species counterparts of the DCRSs, preferably from other primates or rodents. One method is by cross hybridization using closely related species DNA probes. It may be useful to go into evolutionarily similar species as intermediate steps. Another method is by using specific PCR primers based on the identification of blocks of similarity or difference between genes, e.g., areas of highly conserved or nonconserved polypeptide or nucleotide sequence. Sequence database searches may identify species counterparts.

10 VI. Production of mammalian protein

An appropriate, e.g., GST, fusion construct is engineered for expression, e.g., in E. coli. For example, a mouse IGIF pGex plasmid is constructed and transformed into E. coli. Freshly transformed cells are grown, e.g., in LB medium containing 50 µg/ml ampicillin and induced with IPTG (Sigma, St. Louis, MO). After overnight induction, the bacteria are harvested and the pellets containing the appropriate protein are isolated. The pellets are homogenized, e.g., in TE buffer (50 mM Tris-base pH 8.0, 10 mM EDTA and 2 mM pefabloc) in 2 liters. This material is passed through a microfluidizer (Microfluidics, Newton, MA) three times. The fluidized supernatant is spun down on a Sorvall GS-3 rotor for 1 h at 13,000 rpm. The resulting supernatant containing the cytokine receptor protein is filtered and passed over a glutathione-SEPHAROSE column equilibrated in 50 mM Tris-base pH 8.0. Fractions containing the DCRS8-GST fusion protein are pooled and cleaved, e.g., with thrombin (Enzyme Research Laboratories, Inc., South Bend, IN). The cleaved pool is then passed over a O-SEPHAROSE column equilibrated in 50 mM Tris-base. Fractions containing DCRS8 are pooled and diluted in cold distilled H2O, to lower the conductivity, and passed back over a fresh Q-Sepharose column, alone or in succession with an immunoaffinity antibody column. Fractions containing the DCRS8 protein are pooled, aliquoted, and stored in the -70° C freezer.

Comparison of the CD spectrum with cytokine receptor protein may suggest that the protein is correctly folded. See Hazuda, et al. (1969) J. Biol. Chem. 264:1689-1693.

VII. Preparation of specific antibodies

Inbred Balb/c mice are immunized intraperitoneally with recombinant forms of the protein, e.g., purified DCRS8 or stable transfected NIH-3T3 cells. Animals are boosted at appropriate time points with protein, with or without additional adjuvant, to further stimulate antibody production. Serum is collected, or hybridomas produced with harvested spleens.

84

Alternatively, Balb/c mice are immunized with cells transformed with the gene or fragments thereof, either endogenous or exogenous cells, or with isolated membranes enriched for expression of the antigen. Serum is collected at the appropriate time, typically after numerous further administrations. Various gene therapy techniques may be useful, e.g., in producing protein in situ, for generating an immune response. Serum or antibody preparations may be cross-absorbed or immunoselected to prepare substantially purified antibodies of defined specificity and high affinity.

Monoclonal antibodies may be made. For example, splenocytes are fused with an appropriate fusion partner and hybridomas are selected in growth medium by standard procedures. Hybridoma supernatants are screened for the presence of antibodies which bind to the DCRS8, e.g., by ELISA or other assay. Antibodies which specifically recognize specific DCRS8 embodiments may also be selected or prepared.

In another method, synthetic peptides or purified protein are presented to an immune system to generate monoclonal or polyclonal antibodies. See, e.g., Coligan (ed. 1991) Current Protocols in Immunology Wiley/Greene; and Harlow and Lane (1989) Antibodies: A Laboratory Manual Cold Spring Harbor Press. In appropriate situations, the binding reagent is either labeled as described above, e.g., fluorescence or otherwise, or immobilized to a substrate for panning methods. Nucleic acids may also be introduced into cells in an animal to produce the antigen, which serves to elicit an immune response. See, e.g., Wang, et al. (1993) Proc. Nat'l. Acad. Sci. 90:4156-4160; Barry, et al. (1994) BioTechniques 16:616-619; and Xiang, et al. (1995) Immunity 2: 129-135.

VIII. Production of fusion proteins

5

10

15

20

25

30

35

Various fusion constructs are made with DCRS8 or DCRS9. A portion of the appropriate gene is fused to an epitope tag, e.g., a FLAG tag, or to a two hybrid system construct. See, e.g., Fields and Song (1989) <u>Nature</u> 340:245-246.

The epitope tag may be used in an expression cloning procedure with detection with anti-FLAG antibodies to detect a binding partner, e.g., ligand for the respective cytokine receptor. The two hybrid system may also be used to isolate proteins which specifically bind to the receptor subunit.

IX. Structure activity relationship

Information on the criticality of particular residues is determined using standard procedures and analysis. Standard mutagenesis analysis is performed, e.g., by generating many different variants at determined positions, e.g., at the positions identified above, and evaluating biological activities of the variants. This may be performed to the extent of determining positions which modify activity, or to focus on specific positions to

determine the residues which can be substituted to either retain, block, or modulate biological activity.

Alternatively, analysis of natural variants can indicate what positions tolerate natural mutations. This may result from populational analysis of variation among individuals, or across strains or species. Samples from selected individuals are analyzed, e.g., by PCR analysis and sequencing. This allows evaluation of population polymorphisms.

X. Isolation of a ligand

5

10

15

20

25

30

35

A cytokine receptor can be used as a specific binding reagent to identify its binding partner, by taking advantage of its specificity of binding, much like an antibody would be used. The binding receptor may be a heterodimer of receptor subunits; or may involve, e.g., a complex of the DCRS8 with another cytokine receptor subunit. A binding reagent is either labeled as described above, e.g., fluorescence or otherwise, or immobilized to a substrate for panning methods.

The binding composition is used to screen an expression library made from a cell line which expresses a binding partner, i.e., ligand, preferably membrane associated. Standard staining techniques are used to detect or sort surface expressed ligand, or surface expressing transformed cells are screened by panning. Screening of intracellular expression is performed by various staining or immunofluorescence procedures. See also McMahan, et al. (1991) EMBO J. 10:2821-2832.

For example, on day 0, precoat 2-chamber permanox slides with 1 ml per chamber of fibronectin, 10 ng/ml in PBS, for 30 min at room temperature. Rinse once with PBS. Then plate COS cells at $2\text{-}3 \times 10^5$ cells per chamber in 1.5 ml of growth media. Incubate overnight at 37 C.

On day 1 for each sample, prepare 0.5 ml of a solution of 66 µg/ml DEAE-dextran, 66 µM chloroquine, and 4 µg DNA in serum free DME. For each set, a positive control is prepared, e.g., of DCRS8-FLAG cDNA at 1 and 1/200 dilution, and a negative mock. Rinse cells with serum free DME. Add the DNA solution and incubate 5 hr at 37 C. Remove the medium and add 0.5 ml 10% DMSO in DME for 2.5 min. Remove and wash once with DME. Add 1.5 ml growth medium and incubate overnight.

On day 2, change the medium. On days 3 or 4, the cells are fixed and stained. Rinse the cells twice with Hank's Buffered Saline Solution (HBSS) and fix in 4% paraformaldehyde (PFA)/glucose for 5 min. Wash 3X with HBSS. The slides may be stored at -80 C after all liquid is removed. For each chamber, 0.5 ml incubations are performed as follows. Add HBSS/saponin (0.1%) with 32 µl/ml of 1 M NaN3 for 20 min. Cells are then washed with HBSS/saponin 1X. Add appropriate DCRS8 or

10

15

20

25

30

35

DCRS8/antibody complex to cells and incubate for 30 min. Wash cells twice with HBSS/saponin. If appropriate, add first antibody for 30 min. Add second antibody, e.g., Vector anti-mouse antibody, at 1/200 dilution, and incubate for 30 min. Prepare ELISA solution, e.g., Vector Elite ABC horseradish peroxidase solution, and preincubate for 30 min. Use, e.g., 1 drop of solution A (avidin) and 1 drop solution B (biotin) per 2.5 ml HBSS/saponin. Wash cells twice with HBSS/saponin. Add ABC HRP solution and incubate for 30 min. Wash cells twice with HBSS, second wash for 2 min, which closes cells. Then add Vector diaminobenzoic acid (DAB) for 5 to 10 min. Use 2 drops of buffer plus 4 drops DAB plus 2 drops of H₂O₂ per 5 ml of glass distilled water.

Carefully remove chamber and rinse slide in water. Air dry for a few minutes, then add 1 drop of Crystal Mount and a cover slip. Bake for 5 min at 85-90 C.

Evaluate positive staining of pools and progressively subclone to isolation of single genes responsible for the binding.

Alternatively, receptor reagents are used to affinity purify or sort out cells expressing a putative ligand. See, e.g., Sambrook, et al. or Ausubel, et al.

Another strategy is to screen for a membrane bound receptor by panning. The receptor cDNA is constructed as described above. Immobilization may be achieved by use of appropriate antibodies which recognize, e.g., a FLAG sequence of a DCRS8 fusion construct, or by use of antibodies raised against the first antibodies. Recursive cycles of selection and amplification lead to enrichment of appropriate clones and eventual isolation of receptor expressing clones.

Phage expression libraries can be screened by mammalian DCRS8. Appropriate label techniques, e.g., anti-FLAG antibodies, will allow specific labeling of appropriate clones.

We tested the ability of DCRS receptors to specifically bind IL-17 family cytokines. Recombinant FLAG-hIL-17 family cytokines were used in binding experiments on Baf/3 DCRS receptor transfected expressing recombinant IL-17R_H, DCRS6_H, DCRS7_H, DCRS8_H and DCRS9_H and analyzed by FACS. We can demonstrate specific binding of IL-17 family member IL-74 to DCRS6 expressing Baf/3 cells. In additional experiments we have shown IL-17 specific binding to IL-17R_H, DCRS7_H, DCRS8_H. Further experiments show IL-71 binding to DCRS8_Hu transfectants. These experiments demonstrate the sequence homology among IL-17 related cytokine receptors confers functional binding to IL-17 cytokines.

All citations herein are incorporated herein by reference to the same extent as if each individual publication or patent application was specifically and individually indicated to be incorporated by reference.

87

Many modifications and variations of this invention can be made without departing from its spirit and scope, as will be apparent to those skilled in the art. The specific embodiments described herein are offered by way of example only, and the invention is to be limited by the terms of the appended claims, along with the full scope of equivalents to which such claims are entitled; and the invention is not to be limited by the specific embodiments that have been presented herein by way of example.

10

15

25

30

35

WHAT IS CLAIMED IS:

- 1. A composition of matter selected from:
 - a) a substantially pure or recombinant polypeptide comprising at least three distinct nonoverlapping segments of at least four amino acids identical to segments of SEQ ID NO: 14;
 - a substantially pure or recombinant polypeptide comprising at least two distinct nonoverlapping segments of at least five amino acids identical to segments of SEQ ID NO: 14;
 - c) a natural sequence DCRS8 comprising mature SEQ ID NO: 14;
 - d) a fusion polypeptide comprising DCRS8 sequence;
 - e) a substantially pure or recombinant polypeptide comprising at least three distinct nonoverlapping segments of at least four amino acids identical to segments of SEQ ID NO: 17 or 20;
 - f) a substantially pure or recombinant polypeptide comprising at least two distinct nonoverlapping segments of at least five amino acids identical to segments of SEQ ID NO: 17 or 20;
 - g) a natural sequence DCRS9 comprising mature SEQ ID NO: 17 or 20; or
 - h) a fusion polypeptide comprising DCRS9 sequence.
- 20 2. The substantially pure or isolated antigenic polypeptide of Claim 1, wherein said distinct nonoverlapping segments of identity include:
 - a) one of at least eight amino acids;
 - b) one of at least four amino acids and a second of at least five amino acids;
 - c) at least three segments of at least four, five, and six amino acids, or
 - d) one of at least twelve amino acids.
 - 3. The composition of matter of Claim 1, wherein said:
 - a) polypeptide:
 - i) comprises a mature sequence of Table 3 or 4;
 - ii) is an unglycosylated form of DCRS8 or DCRS9;
 - iii) is from a primate, such as a human;
 - iv) comprises at least seventeen amino acids of SEQ ID NO: 14 or 17;
 - v) exhibits at least four nonoverlapping segments of at least seven amino acids of SEQ ID NO: 14 or 17;
 - vi) is a natural allelic variant of DCRS8 or DCRS9;
 - vii) has a length at least about 30 amino acids;

- viii) exhibits at least two non-overlapping epitopes which are specific for a primate DCRS8 or DCRS9;
- ix) is glycosylated;
- x) has a molecular weight of at least 30 kD with natural glycosylation;
- xi) is a synthetic polypeptide;
- xii) is attached to a solid substrate;
- xiii) is conjugated to another chemical moiety;
- xiv) is a 5-fold or less substitution from natural sequence; or
- xv) is a deletion or insertion variant from a natural sequence.

- 4. A composition comprising:
 - a) a substantially pure DCRS8 or DCRS9 and another cytokine receptor family member;
 - b) a sterile DCRS8 or DCRS9 polypeptide of Claim 1;
- 15 c) said DCRS8 or DCRS9 polypeptide of Claim 1 and a carrier, wherein said carrier is:
 - i) an aqueous compound, including water, saline, and/or buffer; and/or
 - ii) formulated for oral, rectal, nasal, topical, or parenteral administration.
- 20 5. The fusion polypeptide of Claim 1, comprising:
 - a) mature protein sequence of Table 3 or 4;
 - b) a detection or purification tag, including a FLAG, His6, or Ig sequence; or
 - c) sequence of another cytokine receptor protein.
- 25 6. A kit comprising a polypeptide of Claim 1, and:
 - a) a compartment comprising said protein or polypeptide; or
 - b) instructions for use or disposal of reagents in said kit.
- 7. A binding compound comprising an antigen binding site from an antibody, which specifically binds to a natural DCRS8 or DCRS9 polypeptide of Claim 1, wherein:
 - a) said binding compound is in a container;
 - b) said DCRS8 or DCRS9 polypeptide is from a human;
 - c) said binding compound is an Fv, Fab, or Fab2 fragment;
 - d) said binding compound is conjugated to another chemical moiety; or
- 35 e) said antibody:
 - i) is raised against a peptide sequence of a mature polypeptide of Table 3 or 4;

- ii) is raised against a mature DCRS8 or DCRS9;
- iii) is raised to a purified human DCRS8 or DCRS9;
- iv) is immunoselected;
- v) is a polyclonal antibody;
- vi) binds to a denatured DCRS8 or DCRS9;
- vii) exhibits a Kd to antigen of at least 30 μM;
- viii) is attached to a solid substrate, including a bead or plastic membrane;
- ix) is in a sterile composition; or
- x) is detectably labeled, including a radioactive or fluorescent label.

20

25

30

35

- 8. A kit comprising said binding compound of Claim 7, and:
 - a) a compartment comprising said binding compound; or
 - b) instructions for use or disposal of reagents in said kit.
- 9. A method of producing an antigen:antibody complex, comprising contacting under appropriate conditions a primate DCRS8 or DCRS9 polypeptide with an antibody of Claim 7, thereby allowing said complex to form.
 - 10. The method of Claim 9, wherein:
 - a) said complex is purified from other cytokine receptors;
 - b) said complex is purified from other antibody;
 - c) said contacting is with a sample comprising an interferon;
 - d) said contacting allows quantitative detection of said antigen;
 - e) said contacting is with a sample comprising said antibody; or
 - f) said contacting allows quantitative detection of said antibody.
 - 11. A composition comprising:
 - a) a sterile binding compound of Claim 7, or
 - b) said binding compound of Claim 7 and a carrier, wherein said carrier is:
 - i) an aqueous compound, including water, saline, and/or buffer; and/or
 - ii) formulated for oral, rectal, nasal, topical, or parenteral administration.
 - 12. An isolated or recombinant nucleic acid encoding said polypeptide of Claim 1, wherein said:
 - a) DCRS8 or DCRS9 is from a human; or
 - b) said nucleic acid:
 - i) encodes an antigenic peptide sequence of Table 3 or 4;

91

ii) encodes a plurality of antigenic peptide sequences of Table 3 or 4; iii) exhibits identity over at least thirteen nucleotides to a natural cDNA encoding said segment; iv) is an expression vector; 5 v) further comprises an origin of replication; vi) is from a natural source; vii) comprises a detectable label; viii) comprises synthetic nucleotide sequence; ix) is less than 6 kb, preferably less than 3 kb; 10 x) is from a primate; xi) comprises a natural full length coding sequence; xii) is a hybridization probe for a gene encoding said DCRS8 or DCRS9; xiii) is a PCR primer, PCR product, or mutagenesis primer. 15 A cell or tissue comprising said recombinant nucleic acid of Claim 12. 13. 14. The cell of Claim 13, wherein said cell is: a) a prokaryotic cell; 20 b) a eukaryotic cell; c) a bacterial cell; d) a yeast cell; e) an insect cell; f) a mammalian cell; 25 g) a mouse cell; h) a primate cell; or i) a human cell. 15. A kit comprising said nucleic acid of Claim 12, and: 30 a) a compartment comprising said nucleic acid; b) a compartment further comprising a primate DCRS8 or DCRS9 polypeptide; c) instructions for use or disposal of reagents in said kit. 16. A nucleic acid which: 35 a) hybridizes under wash conditions of 30 minutes at 30° C and less than 2M salt to the coding portion of SEQ ID NO: 13 or 16; or

WO 01/90358

5

- b) exhibits identity over a stretch of at least about 30 nucleotides to a primate DCRS8 or DCRS9.
- 17. The nucleic acid of Claim 16, wherein:
 - a) said wash conditions are at 45° C and/or 500 mM salt; or
 - b) said stretch is at least 55 nucleotides.
- 18. The nucleic acid of Claim 16, wherein:
 - a) said wash conditions are at 55° C and/or 150 mM salt; or
- b) said stretch is at least 75 nucleotides.
 - 19. A method of modulating physiology or development of a cell or tissue culture cells comprising contacting said cell with an agonist or antagonist of a mammalian DCRS8 or DCRS9.
 - 20. The method of Claim 19, wherein said cell is transformed with a nucleic acid encoding said DCRS8 or DCRS9 and another cytokine receptor subunit.

--LRVAVDLWSRRE-LSAHGALAWFHHQR RAALLLYSADD-SGFERLVGALASALCQLP---LRVAVDLWSRRE-LSAQGPVAWFHAQR RKVWIIYSADH-PLYVDVVLKFAQFLLTACG--TEVALDLLEEQA-ISEAGVMTWVGRQK RKVWIVYSADH-PLYVEVVLKFAQFLITACG--TEVALDLLEEQV-ISEVGVMTWVSRQK RKVFITYSMD~---TAMEVVKFVNFLLVNG---FQTAIDIFEDR--IRGIDIIKWMERYL RKVFITYSMD----TAMEVVKFVNFLLVNG---FQTAIDIFEDR--IRGIDIIKWMERYL RPVLLLHAADS-EAQRRLVGALAELLRAALGGGRDVIVDLWEGRH-VARVGPLPWLWAAR VKVMIVYADDN-DLHTDCVKKLVENLRNCAS--CDPVFDLEKLI---TAEIVPSRWLVDQI IKVLVVYPSEI--CFHHTICYFTEFLQNHCR--SEVILEKWQKKK-IAEMGPVQWLATQK FKVMLVCPEVS-GRDEDFMMRIADALKKSN---NKVVCDRWFEDSKNAEENMLHWVYEQT PKVFLCYSSKDGQNHMNVVQCFAYFLQDFCG--CEVALDLWEDFS-LCREGQREWVIQKI RTALLLHSADG-AGYERLVGALASALSQMP-DCRS10_Mu DCRS9_Hu DCRS8_Hu IL-17R_Ce DCRS6_Hu DCRS6_Ce IL-17R_Hu IL-17R_Mu DCRS7_Mu DCRS7_Hu DCRS10

R---DKTVMIIVAISPKYKQDVE----GAESQLDED-EHGL---HTKYIHRM-MQIEFIS TRVAREQGTVLLLWSGADLRPVS----GPDP-RAAP------LLA----LLHAAP H----ESQFIIVVCSKGMKYFVD---KKNYKHKGGGRGSGK---GELFLVAVSAIAEKLR K----AADKVVFLLSNDVNSVCD----GTCGKSEGSPSENS---QDLFPLAFNLFCSDLR K----IAEKIIVFHSAYYHPRCG---IYDVINNFFPCTDPR-----LAHIALT---PEAQ RRILQEGGVVILLFSPAAVAQCQ---QWLQLQTVEP---GP---HDALAAWLSCVLPDFL RQTLQEGGVVVLLFSPGAVALCS---EWLQDGVSGPGAHGP---HDAFRASLSCVLPDFL QEMVESNSKIIVLCSRGTRAKWQALLGRGAP-VRLRCDHGKPV-GDLFTAAMMILPDFK QEMVESNSKIIILCSRGTQAKWKAILGWAEPAVQLRCDHWKPA-GDLFTAAMMILPDFK R---DKTVMIIVAISPKYKQDVE----GAESQLDED-EHGL---HTKYIHRM-MQIEFIK ---TEASETHQLVQARP--FADLFGPAMEMIIRDAT S----SLKKFIIVVSDCAEKILD-DCRS10_Mu DCRS9_Hu DCRS8_Hu IL-17R_Ce DCRS6_Hu IL-17R Hu IL-17R_Mu DCRS7 Hu DCRS7 Mu DCRS10

FIG. 1A

DCRS7_Mu	QGRATGRYVGVYFDGLLHPDSVPSPFRVAPLFSLP-SQLPAFLDALQGGCSTS
IL-17R_Hu	RPACFGTTVVVCYFSEVSCDGDVPDLFGAAPRYPLM-DRFEEVYFRIQDLEMFQ
IL-17R_Mu	RPACFGTYVVCYFSGICSERDVPDLFNITSRYPLM-DRFEEVYFRIQDLEMFE
DCRS10	QGSMNFRFIPVLFPNAK-KEHVPTWLQNTHVYSWP-KNKKNILLRLL-REEEYVA
DCRS10 Mu	QGSMNFRFIPVLFPNAK-KEHVPTWLQNTHVYSWP-KNKKNILLRLL-REEEYVA
DCRS9_Hu	RPLLLILAYFSRLCAKGDIPPPLRALPRYRLL-RDLPRLLRALD-ARPFAE
IL-17R Ce	KANGOSSINGTON TO TO SECTION TO THE PROPERTY OF THE SECTION OF THE
DCRS6_Hu	SQIHLHKYVVVYFREID-TKDDYNALSVCPKYHLM-KDATAFCAELLHVKQQ
DCRS6_Ce	RSVPKEVEYVLPRDQKLLEDAFDITIADPLVIDIPIEDVAIPENVPIHHESC
DCRS7_Mu	AGRPADRVERVTQALRSALDSCTS
DCRS7_Hu	SGRLQERAEQVSRALQPALDSYFHPP
IL-17R_Hu	PGRMHRVGELSGDNYLRSPGGRQLRAALDRFRDWQVRCPDW
IL-17R_Mu	PGRMHHVRELTGDNYLQSPSGRQLKEAVLRFQEWQTQCPDW
DCRS10	PPRGPLPTLQWPL
DCRS10_Mu	PPRGPLPTLQWPL
DCRS9_Hu	ATSWGRLGARQRRQSRLELCSR
DCRS8_Hu	PGQHTRQGSRRNYFRSKSGRSLYVAICNMHQFIDEEPDW
IL-17R_Ce	ANVTQNISEAQIHEWNLCASRMMSFFVRNPNW
DCRS6_Hu	VSAGKRSQACHDGCCSL
DCRS6_Ce	DSIDSRNNSKTHSTDSGVSSLSSNS

FIG. 1B

1

SEQUENCE SUBMISSION

```
SEQ ID NO: 1 is primate DCRS6 nucleotide sequence.
SEQ ID NO: 2 is primate DCRS6 polypeptide sequence.
SEQ ID NO: 3 is primate DCRS6 reverse translation.
SEQ ID NO: 4 is rodent DCRS6 nucleotide sequence.
SEQ ID NO: 5 is rodent DCRS6 polypeptide sequence.
SEQ ID NO: 6 is rodent DCRS6 reverse translation.
SEQ ID NO: 7 is primate DCRS7 nucleotide sequence.
SEQ ID NO: 8 is primate DCRS7 polypeptide sequence.
SEQ ID NO: 9 is primate DCRS7 reverse translation.
SEQ ID NO: 10 is rodent DCRS7 nucleotide sequence.
SEQ ID NO: 11 is rodent DCRS7 polypeptide sequence.
SEQ ID NO: 12 is rodent DCRS7 reverse translation.
SEQ ID NO: 13 is primate DCRS8 nucleotide sequence.
SEQ ID NO: 14 is primate DCRS8 polypeptide sequence.
SEQ ID NO: 15 is primate DCRS8 reverse translation.
SEQ ID NO: 16 is primate DCRS9 nucleotide sequence.
SEQ ID NO: 17 is primate DCRS9 polypeptide sequence.
SEQ ID NO: 18 is primate DCRS9 reverse translation.
SEQ ID NO: 19 is rodent DCRS9 nucleotide sequence.
SEQ ID NO: 20 is rodent DCRS9 polypeptide sequence.
SEQ ID NO: 21 is rodent DCRS9 reverse translation.
SEQ ID NO: 22 is primate DCRS10 nucleotide sequence.
SEQ ID NO: 23 is primate DCRS10 polypeptide sequence.
SEQ ID NO: 24 is primate DCRS10 reverse translation.
SEQ ID NO: 25 is rodent DCRS10 nucleotide sequence.
SEQ ID NO: 26 is rodent DCRS10 polypeptide sequence.
SEQ ID NO: 27 is rodent DCRS10 reverse translation.
SEQ ID NO: 28 is primate IL-17 receptor peptide sequence.
SEQ ID NO: 29 is rodent IL-17 receptor peptide sequence.
SEQ ID NO: 30 is worm IL-17 receptor peptide sequence.
SEQ ID NO: 31 is worm DCRS6 nucleotide sequence.
<110> Schering Corporation
<120> Mammalian Receptor Proteins; Related Reagents and
      Methods
<130> DX01170K PCT
<140>
<141>
<150> US 60/206,862
<151> 2000-05-24
<160> 31
<170> PatentIn Ver. 2.0
<210> 1
<211> 1796
<212> DNA
<213> Unknown
<220>
<223> Description of Unknown Organism:primate; surmised
      Homo sapiens
```

<220> <221> CDS <222> (4)..(1509) <220> <221> mat_peptide <222> (46)..(1509) <400> 1 ged atd ted etc dtd etd eta age etg ged ged etg tge agg age ged Met Ser Leu Val Leu Leu Ser Leu Ala Ala Leu Cys Arg Ser Ala -10 gta ccc cga gag ccg acc gtt caa tgt ggc tct gaa act ggg cca tct Val Pro Arg Glu Pro Thr Val Gln Cys Gly Ser Glu Thr Gly Pro Ser cca gag tgg atg cta caa cat gat cta atc ccg gga gac ttg agg gac 144 Pro Glu Trp Met Leu Gln His Asp Leu Ile Pro Gly Asp Leu Arg Asp ctc cga gta gaa cct gtt aca act agt gtt gca aca ggg gac tat tca 192 Leu Arg Val Glu Pro Val Thr Thr Ser Val Ala Thr Gly Asp Tyr Ser 40 att ttg atg aat gta agc tgg gta ctc cgg gca gat gcc agc atc cgc Ile Leu Met Asn Val Ser Trp Val Leu Arg Ala Asp Ala Ser Ile Arg 60 288 ttg ttg aag gcc acc aag att tgt gtg acg ggc aaa agc aac ttc cag Leu Leu Lys Ala Thr Lys Ile Cys Val Thr Gly Lys Ser Asn Phe Gln 75 336 tee tae age tgt gtg agg tge aat tae aca gag gee tte cag act cag Ser Tyr Ser Cys Val Arg Cys Asn Tyr Thr Glu Ala Phe Gln Thr Gln acc aga ccc tct ggt ggt aaa tgg aca ttt tcc tat atc ggc ttc cct 384 Thr Arg Pro Ser Gly Gly Lys Trp Thr Phe Ser Tyr Ile Gly Phe Pro 105 gta gag ctg aac aca gtc tat ttc att ggg gcc cat aat att cct aat Val Glu Leu Asn Thr Val Tyr Phe Ile Gly Ala His Asn Ile Pro Asn 115 120 gca aat atg aat gaa gat ggc cct tcc atg tct gtg aat ttc acc tca Ala Asn Met Asn Glu Asp Gly Pro Ser Met Ser Val Asn Phe Thr Ser 130 135 cca ggc tgc cta gac cac ata atg aaa tat aaa aaa tgt gtc aag Pro Gly Cys Leu Asp His Ile Met Lys Tyr Lys Lys Lys Cys Val Lys 150 gcc gga agc ctg tgg gat ccg aac atc act gct tgt aag aag aat gag 576 Ala Gly Ser Leu Trp Asp Pro Asn Ile Thr Ala Cys Lys Lys Asn Glu 165 170 gag aca gta gaa gtg aac ttc aca acc act ccc ctg gga aac aga tac Glu Thr Val Glu Val Asn Phe Thr Thr Thr Pro Leu Gly Asn Arg Tyr 185

_	_					_				gjà âãa			_			672
_			_	_			_	_	_	tca Ser 220						720
										ctg Leu						768
	_		_	_	_		_			gga Gly		_			_	816
				_				_	_	aac Asn			-	_	_	864
			_				_	-		ctg Leu	_		_			912
	_		_					_		agg Arg 300		_			_	960
-									_	ccc Pro			_	_		1008
	_				_		-			cac His						1056
	_						_	_	_	gag Glu	_			_	-	1104
	_		_			_		_		cca Pro		_			_	1152
		_	_	_	_	_		_	_	ttc Phe 380					_	1200
										aag Lys						1248
										gcc Ala						1296
										aaa Lys						.1344

WO 01/90358 PCT/US01/16767

	aga Arg 435	Glu														1392
	aag Lys															1440
	cat His	_	_	_	_			_			_			_	-	1488
	gat Asp						tago	cca	ccc a	atgag	gaago	ca ag	gaga	cctta	a	1539
aag	aaggetteet ateceaecaa ttacagggaa aaaaegtgtg atgateetga agettaetat														1599	
gca	gcct	aca .	aaca	gcct	ta g	caatt	caaaa	a cat	ttta	atac	caat	aaaa	att 1	ttcaa	aatatt	1659
gct	aact	aat	gtag	catt	aa ci	caaco	gatte	g gaa	acta	acat	ttac	caact	tc a	aaago	etgttt	1719
tat	acat	aga	aatca	aatt	ac ag	gcttt	aatt	gaa	aact	tgta	acca	tttt	ga 1	taato	gcaaca	1779
ata	aagc	atc	ttcag	gcc												1796
<210> 2 <211> 502 <212> PRT <213> Unknown																
	0> 2 Ser	Leu	Val	Leu -10	Leu	Ser	Leu	Ala	Ala -5	Leu	Суз	Arg	Ser -1	Ala 1	Val	
Pro	Arg	Glu 5	Pro	Thr	Val	Gln	Суs 10	Gly	Ser	Glu	Thr	Gly 15	Pro	Ser	Pro	
Glu	Trp 20	Met	Leu	Gln	His	Asp 25	Leu	Ile	Pro	Gly	Asp 30	Leu	Arg	Asp	Leu	
Arg 35	Val	Glu	Pro	Val	Thr 40	Thr	Ser	Val	Ala	Thr 45	Gly	qaA	Tyr	Ser	Ile 50	
Leu	Met	Asn	Val	Ser	Trp	Val	Leu	Arg	Ala	Asp	Ala	Ser	Ile	Arg	Leu	
				55					60					65		
Leu	ГЛа	Ala	Thr 70		Ile	Cys	Val	Thr 75		Lys	Ser	Asn	Phe 80		Ser	
•	Lys Ser		70	Lys				75	Gly				80	Gln		
Tyr	•	Сув 85	70 Val	Lys Arg	Cys	Asn	Tyr 90	75 Thr	Gly Glu	Ala	Phe	Gln 95	80 Thr	Gln Gln	Thr	

Asn	Met	Asn	Glu	Asp 135	Gly	Pro	Ser	Met	Ser 140	Val	Asn	Phe	Thr	Ser 145	Pro
Gly	Cys	Leu	Asp 150	His	Ile	Met	Lys	Tyr 155	Lys	Lys	Lys	Сув	Val 160	Lys	Ala
Gly	Ser	Leu 165	Trp	Asp	Pro	Asn	Ile 170	Thr	Ala	Сув	ГÀв	Lys 175	Asn	Glu	Glu
Thr	Val 180	Glu	Val	Asn	Phe	Thr 185	Thr	Thr	Pro	Leu	Gly 190	Asn	Arg	Tyr	Met
Ala 195	Leu	Ile	Gln	His	Ser 200	Thr	Ile	Ile	Gly	Phe 205	Ser	Gln	Val	Phe	Glu 210
Pro	His	Gln	Ьув	Lys 215	Gln	Thr	Arg	Ala	Ser 220	Val	Val	Ile	Pro	Val 225	Thr
Gly	Asp	Ser	Glu 230	Gly	Ala	Thr	Val	Gln 235	Leu	Thr	Pro	Tyr	Phe 240	Pro	Thr
Cys	Gly	Ser 245	Asp	Cys	Ile	Arg	His 250	Lys	Gly	Thr	Val	Val 255	Leu	САв	Pro
Gln	Thr 260	Gly	Val	Pro	Phe	Pro 265	Leu	Asp	Asn	Asn	Lys 270	Ser	Lys	Pro	Gly
Gly 275	Trp	Leu	Pro	Leu	Leu 280	Leu	Leu	Ser	Leu	Leu 285	Val	Ala	Thr	Trp	Val 290
Leu	Val	Ala	Gly	Ile 295	Tyr	Leu	Met	Trp	Arg 300	His	Glu	Arg	Ile	Lys 305	Lys
Thr	Ser	Phe	Ser 310	Thr	Thr	Thr	Leu	Leu 315	Pro	Pro	Ile	Lys	Val 320	Leu	Val
Val	Tyr	Pro 325	Ser	Glu	Ile	Cys	Phe 330	His	His	Thr	Ile	Сув 335	Tyr	Phe	Thr
Glu	Phe 340	Leu	Gln	Asn	His	Сув 345	Arg	Ser	Glu	Val	Ile 350	Leu	Glu	Lys	Trp
Gln 355	Lys	Lys	Lys	Ile	Ala 360	Glu	Met	Gly	Pro	Val 365	Gln	Trp	Leu	Ala	Thr 370
Gln	Lys	Lys	Ala	Ala 375	qaA	ГÀв	Val	Val	Phe 380	Leu	Leu	Ser	Asn	Asp 385	Val
Asn	Ser	Val	Сув 390	Asp	Gly	Thr	CAa	Gly 395	Lys	Ser	Glu	Gly	Ser 400	Pro	Ser
Glu	Asn	Ser 405	Gln	Asp	Leu	Phe	Pro 410	Leu	Ala	Phe	Asn	Leu 415	Phe	Cys	Ser
Asp	Leu 420	Arg	Ser	Gln	Ile	His 425	Leu	His	Lys	Tyr	Val 430	Val	Val	Tyr	Phe
Arg 435	Glu	Ile	qaA	Thr	Lys 440	Asp	Asp	Tyr	Asn	Ala 445	Leu	Ser	Val	Сув	Pro 450

Lys Tyr His Leu Met Lys Asp Ala Thr Ala Phe Cys Ala Glu Leu Leu

His Val Lys Gln Gln Val Ser Ala Gly Lys Arg Ser Gln Ala Cys His

Asp Gly Cys Cys Ser Leu 485

<210> 3

<211> 1506

<212> DNA

<213> reverse translation

<220>

<221> misc feature

<222> (1) .. (1506)

<223> n may be a, c, g, or t

<400> 3

atgwsnytng tnytnytnws nytngengen ytntgymgnw sngengtnee nmgngareen 60 acngtneart gyggnwsnga racnggneen wsneengart ggatgytnea reaygayytn 120 athconggng ayytnmgnga yytnmgngtn garcongtna cnacnwsngt ngcnacnggn 180 gaytaywsna thytnatgaa ygtnwsntgg gtnytnmgng cngaygcnws nathmgnytn 240 ytnaargcna cnaarathtg ygtnacnggn aarwsnaayt tycarwsnta ywsntgygtn 300 mgntgyaayt ayacngargc nttycaracn caracnmgnc cnwsnggngg naartggacn 360 ttywsntaya thqqnttycc nqtngarytn aayacngtnt ayttyathgg ngcncayaay 420 athccnaayg cnaayatgaa ygargayggn ccnwsnatgw sngtnaaytt yacnwsnccn 480 ggntgyytng aycayathat gaartayaar aaraartgyg tnaargcngg nwsnytntgg 540 gayccnaaya thacngcntg yaaraaraay gargaracng tngargtnaa yttyacnacn 600 acnocnytng gnaaymgnta yatggcnytn athcarcayw snacnathat hggnttywsn 660 carginityg arcencayea raaraarear acnmgngenw snginginat heenginaen 720 qqnqaywsnq arqqnqcnac nqtncarytn acncentayt tycenaentg yggnwsngay 780 tgyathmgnc ayaarggnac ngtngtnytn tgyccncara cnggngtncc nttyccnytn 840 gayaayaaya arwsnaarcc nggnggntgg ytnccnytny tnytnytnws nytnytngtn 900 gcnacntggg tnytngtngc nggnathtay ytnatgtggm gncaygarmg nathaaraar 960 achwenttyw snachachac hythythcen cenathaarg thythgtngt ntayeenwen 1020 garathtgyt tycaycayac nathtgytay ttyacngart tyytncaraa ycaytgymgn 1080 wsngargtna thytngaraa rtggcaraar aaraarathg cngaratggg nccngtncar 1140 WO 01/90358

PCT/US01/16767 7

tggytngcna cncaraaraa rgcngcngay aargtngtnt tyytnytnws naaygaygtn 1200 aaywsngtnt gygayggnac ntgyggnaar wsngarggnw snccnwsnga raaywsncar 1260 gayytnttyc cnytngcntt yaayytntty tgywsngayy tnmgnwsnca rathcayytn 1320 cayaartayg tngtngtnta yttymgngar athgayacna argaygayta yaaygcnytn 1380 wsngtntgyc cnaartayca yytnatgaar gaygcnacng cnttytgygc ngarytnytn 1440 cayqtnaarc arcarqtnws nqcnqqnaar mqnwsncarq cntqycayqa yqqntqytgy 1500 1506 wsnytn

<210> 4

<211> 637

<212> DNA

<213> Unknown

<220>

<223> Description of Unknown Organism:rodent; surmised Mus musculus .

<220>

<221> CDS

<222> (1)..(210)

<400> 4

48 gat tto ago ago cag acg cat ctg cac aaa tac ctg gag gto tat ctt Asp Phe Ser Ser Gln Thr His Leu His Lys Tyr Leu Glu Val Tyr Leu

ggg gga gca gac etc aaa ggc gac tat aat gee etg agt gte tge eec 96 Gly Gly Ala Asp Leu Lys Gly Asp Tyr Asn Ala Leu Ser Val Cys Pro 25

caa tat cat ctc atg aag gac gcc aca gct ttc cac aca gaa ctt ctc 144 Gln Tyr His Leu Met Lys Asp Ala Thr Ala Phe His Thr Glu Leu Leu

192 aag get acg cag age atg tea gtg aag aaa ege tea eaa gee tge cat Lys Ala Thr Gln Ser Met Ser Val Lys Lys Arg Ser Gln Ala Cys His

gat age tgt tca ccc ttg tagtccaccc gggggaatag agactctgaa 240 Asp Ser Cys Ser Pro Leu 65

gccttcctac tctcccttcc agtgacaaat gctgtgtgac gactctgaaa tgtgtgggag 300 aggctgtgtg gaggtagtgc tatgtacaaa cttgctttaa aactggagtt tgcaaagtca 360 acctgagcat acacgcctga ggctagtcat tggctggatt tatgaagaca acacagttac 420 agacaataat gagtgggacc tacatttggg atatacccaa agctgggtaa tgattatcac 480 tgagaaccac gcactctggc catgaggtaa tacggcactt ccctgtcagg ctgtctgtca 540 ggttgggtct gtcttgcact gcccatgctc tatgctgcac gtagaccgtt ttgtaacatt 600

ttaatctgtt aatgaataat ccgtttggga ggctctc

8

```
<210> 5
<211> 70
<212> PRT
<213> Unknown
<400> 5
Asp Phe Ser Ser Gln Thr His Leu His Lys Tyr Leu Glu Val Tyr Leu
Gly Gly Ala Asp Leu Lys Gly Asp Tyr Asn Ala Leu Ser Val Cys Pro
Gln Tyr His Leu Met Lys Asp Ala Thr Ala Phe His Thr Glu Leu Leu
Lys Ala Thr Gln Ser Met Ser Val Lys Lys Arg Ser Gln Ala Cys His
Asp Ser Cys Ser Pro Leu
<210> 6
<211> 210
<212> DNA
<213> reverse translation
<220>
<221> misc_feature
<222> (1)..(210)
<223> n may be a, c, g, or t
gayttywsnw sncaracnca yytncayaar tayytngarg tntayytngg nggngcngay 60
ytnaarggng aytayaaygc nytnwsngtn tgyccncart aycayytnat gaargaygcn 120
acngenttyc ayacngaryt nytnaargen acnearwsna tgwsngtnaa raarmgnwsn 180
cargentgyc aygaywsntg ywsnccnytn
                                                                   210
<210> 7
<211> 2308
<212> DNA
<213> Unknown
<220>
<223> Description of Unknown Organism:primate; surmised
     Homo sapiens
<220>
<221> CDS
<222> (181)..(2289)
<220>
```

<221> mat_peptide <222> (241) .. (2289) <220> <221> misc_feature <222> (664) <223> Xaa translation depends on genetic code <400> 7 gagtcaggac teccaggaca gagagtgcac aaactaceca geacageeee etecgeeeee 60 totggaggot gaagagggat tocagcoot gccacccaca gacacqggot gactgggqtg 120 tetgecece ttgggggcan ccacagggee tcaggeetgg gtgccacetg gcactagaag 180 atg cct gtg ccc tgg ttc ttg ctg tcc ttg gca ctg ggc cga agc caq Met Pro Val Pro Trp Phe Leu Leu Ser Leu Ala Leu Gly Arg Ser Gln -10 tgg atc ctt tct ctg gag agg ctt gtg ggg cct cag gac gct acc cac 276 Trp Ile Leu Ser Leu Glu Arg Leu Val Gly Pro Gln Asp Ala Thr His tgc tct ccg ggc ctc tcc tgc cgc ctc tgg gac agt gac ata ctc tgc 324 Cys Ser Pro Gly Leu Ser Cys Arg Leu Trp Asp Ser Asp Ile Leu Cys ctg cct ggg gac atc gtg cct gct ccg ggc ccc gtg ctg gcg cct acg Leu Pro Gly Asp Ile Val Pro Ala Pro Gly Pro Val Leu Ala Pro Thr cac ctg cag aca gag ctg gtg ctg agg tgc cag aag gag acc gac tgt 420 His Leu Gln Thr Glu Leu Val Leu Arg Cys Gln Lys Glu Thr Asp Cys 45 50 gac etc tgt etg egt gtg get gte eac ttg gee gtg eat ggg eac tgg 468 Asp Leu Cys Leu Arg Val Ala Val His Leu Ala Val His Gly His Trp 65 gaa gag cct gaa gat gag gaa aag ttt gga gga gca gct gac tta ggg 516 Glu Glu Pro Glu Asp Glu Glu Lys Phe Gly Gly Ala Ala Asp Leu Gly 80 90 gtg gag gag cct agg aat gcc tct ctc cag gcc caa gtc gtg ctc tcc 564 Val Glu Glu Pro Arg Asn Ala Ser Leu Gln Ala Gln Val Val Leu Ser 95 100 ttc cag gcc tac cct act gcc cgc tgc gtc ctg ctg gag gtg caa gtg 612 Phe Gln Ala Tyr Pro Thr Ala Arg Cys Val Leu Leu Glu Val Gln Val 110 115 cet get gee ett gtg cag tit ggt cag tet gtg gge tet gtg gta tat 660 Pro Ala Ala Leu Val Gln Phe Gly Gln Ser Val Gly Ser Val Val Tyr 125 gac tgc ttc gag gct gcc cta ggg agt gag gta cga atc tgg tcc tat 708 Asp Cys Phe Glu Ala Ala Leu Gly Ser Glu Val Arg Ile Trp Ser Tyr act cag ccc agg tac gag aag gaa ctc aac cac aca cag cag ctg cct 756

Thr	Gln	Pro	Arg 160	Tyr	Glu	Lys	Glu	Leu 165	Asn	His	Thr	Gln	Gln 170	Leu	Pro	
	tgc Cys															804
	ccc Pro 190															852
_	aat Asn	_			-	_						_				900
_	gtc Val	-											_			948
_	cag Gln				_				_	_	-		_		_	996
	cag Gln				_	-		_		_		_			_	1044 .
	ttc Phe 270			-		_	_		_					_	_	1092
_	ctg Leu	_	_	_		_	_	_		_	_	_	_	_	_	1140
	ctg Leu															1188
	tgc Cys	_		_	_		_						_			1236
gac Asp	gtg Val	aac Asn 335	agc Ser	tcg Ser	gag Glu	aag Lys	ctg Leu 340	cag Gln	ctg Leu	cag Gln	gag Glu	tgc Cys 345	ttg Leu	tgg Trp	gct Ala	1284
	tcc Ser 350															1332
ggc Gly 365	ccc Pro	cag Gln	gac Asp	aac Asn	aga Arg 370	tcc Ser	ctc Leu	tgt Cys	gcc Ala	ttg Leu 375	gaa Glu	ccċ Pro	agt Ser	ggc	tgt Cys 380	1380
	tca Ser															1428
tac	tta	cta	caa	gac	ctg	cag	tca	ggc	cag	tgt	ctg	cag	cta	tgg	gac	1476

11

Tyr Leu Leu Gln Asp Leu Gln Ser Gly Gln Cys Leu Gln Leu Trp Asp 400 gat gac ttg gga gcg cta tgg gcc tgc ccc atg gac aaa tac atc cac 1524 Asp Asp Leu Gly Ala Leu Trp Ala Cys Pro Met Asp Lys Tyr Ile His 420 aag ege tgg gee ete gtg tgg etg gee tge eta ete ttt gee get geg 1572 Lys Arg Trp Ala Leu Val Trp Leu Ala Cys Leu Leu Phe Ala Ala Ala 435 440 ctt tcc ctc atc ctc ctt ctc aaa aag gat cac gcg aaa ggg tgg ctg 1620 Leu Ser Leu Ile Leu Leu Lys Lys Asp His Ala Lys Gly Trp Leu agg ctc ttg aaa cag gac gtc cgc tcg ggg gcg gcc gcc agg ggc cgc 1668 Arg Leu Leu Lys Gln Asp Val Arg Ser Gly Ala Ala Ala Arg Gly Arg geg get etg etc etc tac tea gec gat gac teg ggt tte gag ege etg 1716 Ala Ala Leu Leu Tyr Ser Ala Asp Asp Ser Gly Phe Glu Arg Leu 485 gtg ggc gcc ctg gcg tcg gcc ctg tgc cag ctg ccg ctg cgc gtg gcc 1764 Val Gly Ala Leu Ala Ser Ala Leu Cys Gln Leu Pro Leu Arg Val Ala 500 gta gac ctg tgg agc cgt cgt gaa ctg agc gcg cag ggg ccc gtg gct 1812 Val Asp Leu Trp Ser Arg Arg Glu Leu Ser Ala Gln Gly Pro Val Ala 515 tgg ttt cac gcg cag cgg cgc cag acc ctg cag gag ggc ggc gtg gtg 1860 Trp Phe His Ala Gln Arg Arg Gln Thr Leu Gln Glu Gly Gly Val Val 530 535 gtc ttg ctc ttc tct ccc ggt gcg gtg gcg ctg tgc agc gag tgg cta 1908 Val Leu Leu Phe Ser Pro Gly Ala Val Ala Leu Cys Ser Glu Trp Leu 545 1956 Gln Asp Gly Val Ser Gly Pro Gly Ala His Gly Pro His Asp Ala Phe 560 ege gee teg ete age tge gtg etg eee gae tte ttg eag gge egg geg 2004 Arg Ala Ser Leu Ser Cys Val Leu Pro Asp Phe Leu Gln Gly Arg Ala 575 ccc ggc agc tac gtg ggg gcc tgc ttc gac agg ctg ctc cac ccg gac 2052 Pro Gly Ser Tyr Val Gly Ala Cys Phe Asp Arg Leu Leu His Pro Asp 590 595 gee gta eee gee ett tte ege ace gtg eee gte tte aca etg eee tee 2100 Ala Val Pro Ala Leu Phe Arg Thr Val Pro Val Phe Thr Leu Pro Ser 605 610 615 caa ctg cca gac ttc ctg ggg gcc ctg cag cag cct cgc gcc ccg cgt Gln Leu Pro Asp Phe Leu Gly Ala Leu Gln Gln Pro Arg Ala Pro Arg 625 tcc ggg cgg ctc caa gag aga gcg gag caa gtg tcc cgg gcc ctt cag 2196

WO 01/90358 PCT/US01/16767

Ser Gly Arg Leu Gln Glu Arg Ala Glu Gln Val Ser Arg Ala Leu Gln 640 645 cca gcc ctg gat agc tac ttc cat ccc ccg ggg acn tcc gcg ccg gga 2244 Pro Ala Leu Asp Ser Tyr Phe His Pro Pro Gly Xaa Ser Ala Pro Gly 660 cgc ggg gtg gga cca ggg gcg gga cct ggg gcg ggg gac ggg act 2289 Arg Gly Val Gly Pro Gly Ala Gly Pro Gly Ala Gly Asp Gly Thr 675 2308 taaataaagg cagacgctg <210> 8 <211> 703 <212> PRT <213> Unknown <400> 8 Met Pro Val Pro Trp Phe Leu Leu Ser Leu Ala Leu Gly Arg Ser Gln -15 Trp Ile Leu Ser Leu Glu Arg Leu Val Gly Pro Gln Asp Ala Thr His -1 1 Cys Ser Pro Gly Leu Ser Cys Arg Leu Trp Asp Ser Asp Ile Leu Cys Leu Pro Gly Asp Ile Val Pro Ala Pro Gly Pro Val Leu Ala Pro Thr His Leu Gln Thr Glu Leu Val Leu Arg Cys Gln Lys Glu Thr Asp Cys 55 Asp Leu Cys Leu Arg Val Ala Val His Leu Ala Val His Gly His Trp Glu Glu Pro Glu Asp Glu Glu Lys Phe Gly Gly Ala Ala Asp Leu Gly Val Glu Glu Pro Arg Asn Ala Ser Leu Gln Ala Gln Val Val Leu Ser Phe Gln Ala Tyr Pro Thr Ala Arg Cys Val Leu Leu Glu Val Gln Val 110 115 Pro Ala Ala Leu Val Gln Phe Gly Gln Ser Val Gly Ser Val Val Tyr Asp Cys Phe Glu Ala Ala Leu Gly Ser Glu Val Arg Ile Trp Ser Tyr 145 Thr Gln Pro Arg Tyr Glu Lys Glu Leu Asn His Thr Gln Gln Leu Pro 165 Asp Cys Arg Gly Leu Glu Val Trp Asn Ser Ile Pro Ser Cys Trp Ala 180 Leu Pro Trp Leu Asn Val Ser Ala Asp Gly Asp Asn Val His Leu Val

	190					195					200				
Leu 205	Asn	Val	Ser	Glu	Glu 210	Gln	His	Phe	Gly	Leu 215	Ser	Leu	Tyr	Trp	Asn 220
Gln	Val	Gln	Gly	Pro 225	Pro	Lys	Pro	Arg	Trp 230	His	ГЛа	Asn	Leu	Thr 235	Gly
Pro	Gln	Ile	Ile 240	Thr	Leu	Asn	His	Thr 245	Asp	Leu	Val	Pro	Сув 250	Leu	Cys
Ile	Gln	Val 255	Trp	Pro	Leu	Glu	Pro 260	Asp	Ser	Val	Arg	Thr 265	Asn	Ile	Cys
Pro	Phe 270	Arg	Glu	Asp	Pro	Arg 275	Ala	His	Gln	Asn	Leu 280	Trp	Gln	Ala	Ala
Arg 285	Leu	Arg	Leu	Leu	Thr 290	Leu	Gln	Ser	Trp	Leu 295	Leu	Asp	Ala	Pro	300 Cys
Ser	Leu	Pro	Ala	Glu 305	Ala	Ala	Leu	Сув	Trp 310	Arg	Ala	Pro	Gly	Gly 315	Asp
Pro	Сув	Gln	Pro 320	Leu	Val	Pro	Pro	Leu 325	Ser	Trp	Glu	Asn	Val 330	Thr	Val
Asp	Val	Asn 335	Ser	Ser	Glu	ГЛя	Leu 340	Gln	Leu	Gln	Glu	Cys 345	Leu	Trp	Ala
Asp	Ser 350	Leu	Gly	Pro	Leu	Lys 355	Asp	Asp	Val	Leu	Leu 360	Leu	Glu	Thr	Arg
Gly 365	Pro	Gln	Asp	Asn	Arg 370	Ser	Leu	Cys	Ala	Leu 375	Glu	Pro	Ser	Gly	Cys 380
Thr	Ser	Leu	Pro	Ser 385	Lys	Ala	Ser	Thr	Arg 390	Ala	Ala	Arg	Leu	Gly 395	Glu
Tyr	Leu	Leu	Gln 400	qaA	Leu	Gln	Ser	Gly 405	Gln	Суз	Leu	Gln	Leu 410	Trp	Asp
Asp		Leu 415	Gly	Ala	Leu	Trp	Ala 420	Суз	Pro	Met	Asp	Lys 425	Tyr	Ile	His
Lys	Arg 430	Trp	Ala	Leu	Val	Trp 435	Leu	Ala	Сув	Leu	Leu 440	Phe	Ala	Ala	Ala
Leu 445	Ser	Leu	Ile	Leu	Leu 450	Leu	ГÀЗ	Lys	Asp	His 455	Ala	Lys	Gly	Trp	Leu 460
Arg	Leu	Leu	ГÀз	Gln 465	qaA	Val	Arg	Ser	Gly 470	Ala	Ala	Ala	Arg	Gly 475	Arg
Ala	Ala	Leu	Leu 480	Leu	Tyr	Ser	Ala	Asp 485	Asp	Ser	Gly	Phe	Glu 490	Arg	Leu
Val	Gly	Ala 495	Leu	Ala	Ser	Ala	Leu 500	Cys	Gln	Leu	Pro	Leu 505	Arg	Val	Ala
Val	Asp	Leu	Trp	Ser	Arg	Arg	Glu	Leu	Ser	Ala	Gln	Gly	Pro	Val	Ala

PCT/US01/16767

14

510 515 520

Trp Phe His Ala Gln Arg Arg Gln Thr Leu Gln Glu Gly Val Val 525 530

Val Leu Leu Phe Ser Pro Gly Ala Val Ala Leu Cys Ser Glu Trp Leu

Gln Asp Gly Val Ser Gly Pro Gly Ala His Gly Pro His Asp Ala Phe 565

Arg Ala Ser Leu Ser Cys Val Leu Pro Asp Phe Leu Gln Gly Arg Ala

Pro Gly Ser Tyr Val Gly Ala Cys Phe Asp Arg Leu Leu His Pro Asp

Ala Val Pro Ala Leu Phe Arg Thr Val Pro Val Phe Thr Leu Pro Ser 605 610 615

Gln Leu Pro Asp Phe Leu Gly Ala Leu Gln Gln Pro Arg Ala Pro Arg 630

Ser Gly Arg Leu Gln Glu Arg Ala Glu Gln Val Ser Arg Ala Leu Gln 640

Pro Ala Leu Asp Ser Tyr Phe His Pro Pro Gly Xaa Ser Ala Pro Gly 660

Arg Gly Val Gly Pro Gly Ala Gly Pro Gly Ala Gly Asp Gly Thr 670 675

<210> 9

<211> 2109

WO 01/90358

<212> DNA

<213> reverse translation

<220>

<221> misc_feature

<222> (1)..(2109)

<223> n may be a, c, g, or t

<400> 9

atgccngtnc cntggttyyt nytnwsnytn gcnytngqnm qnwsncartg qathytnwsn 60 ytngarmgny tngtnggncc ncargaygcn acncaytgyw snccnggnyt nwsntgymgn 120 ytntgggayw sngayathyt ntgyytnccn ggngayathg tnccngcncc nggnccngtn 180 ytngcnccna cncayytnca racngarytn gtnytnmgnt gycaraarga racngaytgy 240 gayytntgyy tnmgngtngc ngtncayytn gcngtncayg gncaytggga rgarccngar 300 gaygargara arttyggngg ngcngcngay ytnggngtng argarccnmg naaygcnwsn 360 ytncargene argtngtnyt nwsnttycar gentayeena engenmgntg yqtnytnytn 420 gargtnearg threngenge nythigtnear thyggnearw sngthignws ngthigtneay 480

gaytgyttyg argengenyt nggnwsngar gtnmgnatht ggwsntayae nearcenmgn 540 taygaraarg arytnaayca yacncarcar ytnccngayt gymgnggnyt ngargtntgg 600 aaywsnathc cnwsntgytg ggcnytnccn tggytnaayg tnwsngcnga yggngayaay 660 gtncayytng tnytnaaygt nwsngargar carcayttyg gnytnwsnyt ntaytggaay 720 cargineary gneeneenaa reenmgning cayaaraayy inacnggnee nearathath 780 acnytnaayc ayacngayyt ngtnccntgy ytntgyathc argtntggcc nytngarccn 840 gaywsngtnm gnacnaayat htgyccntty mgngargayc cnmgngcnca ycaraayytn 900 tggcargeng enmgnytnmg nytnytnacn ytncarwsnt ggytnytnga ygencentgy 960 wsnytneeng engargenge nythtgytgg mgngeneeng gnggngayee ntgyeareen 1020 ytngtnccnc cnytnwsntg ggaraaygtn acngtngayg tnaaywsnws ngaraarytn 1080 carytncarg artgyytntg ggcngaywsn ytnggnccny tnaargayga ygtnytnytn 1140 ytngaracnm gnggnccnca rgayaaymgn wsnytntgyg cnytngarcc nwsnggntgy 1200 acnwsnytne cnwsnaarge nwsnacnmgn gengenmgny tnggngarta yytnytnear 1260 gayytncarw snggncartg yytncarytn tgggaygayg ayytnggngc nytntgggcn 1320 tgyccnatgg ayaartayat hcayaarmgn tgggcnytng tntggytngc ntgyytnytn 1380 ttygcngcng cnytnwsnyt nathytnytn ytnaaraarg aycaygcnaa rggntggytn 1440 mgnytnytna arcargaygt nmgnwsnggn gengengenm gnggnmgnge ngenytnytn 1500 ytntaywsng cngaygayws nggnttygar mgnytngtng gngcnytngc nwsngcnytn 1560 tgycarytnc cnytnmgngt ngcngtngay ytntggwsnm gnmgngaryt nwsngcncar 1620 ggncengtng entggttyca ygcncarmgn mgncaracny tncargargg nggngtngtn 1680 gtnytnytnt tywsncengg ngengtngen ytntgywsng artggytnea rgayggngtn 1740 wanggneeng gngeneaygg neeneaygay genttymgng enwanytnwa ntgygtnytn 1800 ccngayttyy tncarggnmg ngcnccnggn wantaygtng gngcntgytt ygaymgnytn 1860 ythcaycong aygongtnoc ngonythtty mgnacngtno ongthttyac nythoonwsn 1920 carythceng ayttyytngg ngenythear careenmgng encenmgnws nggnmgnyth 1980 cargarmgng engarcargt nwsnmgngen ytneareeng enytngayws ntayttyeay 2040 cencenggna enwangence nggnmgnggn gtnggneeng gngenggnee nggngenggn 2100 2109 gayggnacn

<210> 10 <211> 2314

<212> DNA

<213> Unknown <220> <223> Description of Unknown Organism: rodent; surmised <220> <221> CDS <222> (199)..(2292) <220> <221> mat_peptide <222> (259)..(2292) <400> 10 ccaaatcgaa agcacgggag ctgatactgg gcctggagtc caggctcact ggagtgggga 60 agcatggetg gagaggaatt ctagecettg eteteteca gggacaeggg getgattgte 120 agcaggggcg aggggtctgc cccccttgg gggggcagga cggggcctca ggcctgggtg 180 ctgtccggca cctggaag atg cct gtg tcc tgg ttc ctg ctg tcc ttg gca Met Pro Val Ser Trp Phe Leu Leu Ser Leu Ala -15 ctg ggc cga aac cct gtg gtc gtc tct ctg gag aga ctg atg gag cct 279 Leu Gly Arg Asn Pro Val Val Val Ser Leu Glu Arg Leu Met Glu Pro cag gac act gca cgc tgc tct cta ggc ctc tcc tgc cac ctc tgg gat 327 Gln Asp Thr Ala Arg Cys Ser Leu Gly Leu Ser Cys His Leu Trp Asp ggt gac gtg ctc tgc ctg cct gga agc ctc cag tct gcc cca ggc cct 375 Gly Asp Val Leu Cys Leu Pro Gly Ser Leu Gln Ser Ala Pro Gly Pro 25 30 gtg cta gtg cct acc cgc ctg cag acg gag ctg gtg ctg agg tgt cca Val Leu Val Pro Thr Arg Leu Gln Thr Glu Leu Val Leu Arg Cys Pro 40 45 50 cag aag aca gat tgc gcc ctc tgt gtc cgt gtg gtc cac ttg gcc 471 Gln Lys Thr Asp Cys Ala Leu Cys Val Arg Val Val His Leu Ala 60 gtg cat ggg cac tgg gca gag cct gaa gaa gct gga aag tct gat tca 519 Val His Gly His Trp Ala Glu Pro Glu Glu Ala Gly Lys Ser Asp Ser 75 qua etc eaq que tet agg auc gee tet etc eag gee eag gtg gtg etc 567 Glu Leu Gln Glu Ser Arg Asn Ala Ser Leu Gln Ala Gln Val Val Leu 90 95 tec tte cag gee tac eec ate gee ege tgt gee etg etg gag gte cag Ser Phe Gln Ala Tyr Pro Ile Ala Arg Cys Ala Leu Leu Glu Val Gln 105 gtg ccc gct gac ctg gtg cag cct ggt cag tcc gtg ggt tct gcg gta Val Pro Ala Asp Leu Val Gln Pro Gly Gln Ser Val Gly Ser Ala Val 120 125 130

17

					gct Ala											711
	_	-			tac Tyr	_							_	_	_	759
	_	_			ctt Leu	_	_		_	-		_	_	_		807
_	_				aat Asn	_			_		-		-		_	855
	_	_	_		gag Glu 205		_	_		_			-		_	903
_		-	-	_	gct Ala				_					_		951
		-			act Thr					_	_	_		_		999
					tcg Ser											1047
_				_	gat Asp			-								1095
_		_		_	ctg Leu 285				_		-		_			1143
_	_	_	_		aag Lys	-		_	_		_	_		_	_	1191
					ctt Leu											1239
	Asn				gat Asp											1287
					acc Thr											1335
					365 999											1383

_							_	_	_	ttg Leu	_		_	1431
										gct Ala				1479
	 	_	-		_	_			_	tgt Cys 420	_	_	_	1527
										ccc Pro				1575
										tgc Cys				1623
_	 								_	gac Asp	_			1671
										tcc Ser				1719
										gcg Ala 500				1767
										cgc Arg				1815
		_		_				_	_	cgc Arg	_		-	1863
										gcg Ala				1911
										ccc Pro				1959
										gat Asp 580				2007
										gac Asp				2055
										ccg Pro				2103

ctg ccc tcg cag ctg ccg gct ttc ctg gat gca ctg cag gga ggc tgc Leu Pro Ser Gln Leu Pro Ala Phe Leu Asp Ala Leu Gln Gly Gly Cys 625 630	2151
tcc act tcc gcg ggg cga ccc gcg gac cgg gtg gaa cga gtg acc cag Ser Thr Ser Ala Gly Arg Pro Ala Asp Arg Val Glu Arg Val Thr Gln 635 640 645	2199
gcg ctg cgg tcc gcc ctg gac agc tgt act tct agc tcg gaa gcc cca Ala Leu Arg Ser Ala Leu Asp Ser Cys Thr Ser Ser Ser Glu Ala Pro 650 655 660	2247
ggc tgc tgc gag gaa tgg gac ctg gga ccc tgc act aca cta gaa Gly Cys Cys Glu Glu Trp Asp Leu Gly Pro Cys Thr Thr Leu Glu 665 670 675	2292
taaaagccga tacagtattc ct	2314
<210> 11 <211> 698 <212> PRT <213> Unknown	
<pre><400> 11 Met Pro Val Ser Trp Phe Leu Leu Ser Leu Ala Leu Gly Arg Asn Pro -20 -15 -10 -5</pre>	
Val Val Val Ser Leu Glu Arg Leu Met Glu Pro Gln Asp Thr Ala Arg	
Cys Ser Leu Gly Leu Ser Cys His Leu Trp Asp Gly Asp Val Leu Cys 15 20 25	
Leu Pro Gly Ser Leu Gln Ser Ala Pro Gly Pro Val Leu Val Pro Thr 30 35 40	
Arg Leu Gln Thr Glu Leu Val Leu Arg Cys Pro Gln Lys Thr Asp Cys 45 50 55 60	
Ala Leu Cys Val Arg Val Val Val His Leu Ala Val His Gly His Trp 65 70 75	
Ala Glu Pro Glu Glu Ala Gly Lys Ser Asp Ser Glu Leu Gln Glu Ser 80 85 90	
Arg Asn Ala Ser Leu Gln Ala Gln Val Val Leu Ser Phe Gin Ala Tyr 95 100 105	
Pro Ile Ala Arg Cys Ala Leu Leu Glu Val Gln Val Pro Ala Asp Leu 110 115 120	
Val Gln Pro Gly Gln Ser Val Gly Ser Ala Val Phe Asp Cys Phe Glu 125 130 135 140	
Ala Ser Leu Gly Ala Glu Val Gln Ile Trp Ser Tyr Thr Lys Pro Arg 145 150 155	
Tyr Gln Lys Glu Leu Asn Leu Thr Gln Gln Leu Pro Asp Cys Arg Gly	

160 165 170 Leu Glu Val Arg Asp Ser Ile Gln Ser Cys Trp Val Leu Pro Trp Leu 180 Asn Val Ser Thr Asp Gly Asp Asn Val Leu Leu Thr Leu Asp Val Ser Glu Glu Gln Asp Phe Ser Phe Leu Leu Tyr Leu Arg Pro Val Pro Asp Ala Leu Lys Ser Leu Trp Tyr Lys Asn Leu Thr Gly Pro Gln Asn Ile 225 Thr Leu Asn His Thr Asp Leu Val Pro Cys Leu Cys Ile Gln Val Trp Ser Leu Glu Pro Asp Ser Glu Arg Val Glu Phe Cys Pro Phe Arg Glu Asp Pro Gly Ala His Arg Asn Leu Trp His Ile Ala Arg Leu Arg Val Leu Ser Pro Gly Val Trp Gln Leu Asp Ala Pro Cys Cys Leu Pro Gly 290 295 Lys Val Thr Leu Cys Trp Gln Ala Pro Asp Gln Ser Pro Cys Gln Pro Leu Val Pro Pro Val Pro Gln Lys Asn Ala Thr Val Asn Glu Pro Gln Asp Phe Gln Leu Val Ala Gly His Pro Asn Leu Cys Val Gln Val Ser Thr Trp Glu Lys Val Gln Leu Gln Ala Cys Leu Trp Ala Asp Ser Leu 355 Gly Pro Phe Lys Asp Asp Met Leu Leu Val Glu Met Lys Thr Gly Leu Asn Asn Thr Ser Val Cys Ala Leu Glu Pro Ser Gly Cys Thr Pro Leu Pro Ser Met Ala Ser Thr Arg Ala Ala Arg Leu Gly Glu Glu Leu Leu 405 Gln Asp Phe Arg Ser His Gln Cys Met Gln Leu Trp Asn Asp Asp Asn 420 Met Gly Ser Leu Trp Ala Cys Pro Met Asp Lys Tyr Ile His Arg Arg 430 Trp Val Leu Val Trp Leu Ala Cys Leu Leu Leu Ala Ala Leu Phe Phe Phe Leu Leu Lys Lys Asp Arg Lys Ala Ala Arg Gly Ser 465 Arg Thr Ala Leu Leu His Ser Ala Asp Gly Ala Gly Tyr Glu Arg

WO 01/90358 PCT/US01/16767

480 485 490

Leu Val Gly Ala Leu Ala Ser Ala Leu Ser Gln Met Pro Leu Arg Val 495 500 505

Ala Val Asp Leu Trp Ser Arg Glu Leu Ser Ala His Gly Ala Leu 510 515 520

Ala Trp Phe His His Gln Arg Arg Ile Leu Gln Glu Gly Gly Val 525 530 535 540

Val Ile Leu Leu Phe Ser Pro Ala Ala Val Ala Gln Cys Gln Gln Trp 545 550 555

Leu Gln Leu Gln Thr Val Glu Pro Gly Pro His Asp Ala Leu Ala Ala
560 565 570

Trp Leu Ser Cys Val Leu Pro Asp Phe Leu Gln Gly Arg Ala Thr Gly 575 580 585

Arg Tyr Val Gly Val Tyr Phe Asp Gly Leu Leu His Pro Asp Ser Val 590 595 600

Pro Ser Pro Phe Arg Val Ala Pro Leu Phe Ser Leu Pro Ser Gln Leu 605 610 615 620

Pro Ala Phe Leu Asp Ala Leu Gln Gly Gly Cys Ser Thr Ser Ala Gly 625 630 635

Arg Pro Ala Asp Arg Val Glu Arg Val Thr Gln Ala Leu Arg Ser Ala 640 . 645 650

Leu Asp Ser Cys Thr Ser Ser Glu Ala Pro Gly Cys Cys Glu Glu 655 660 665

Trp Asp Leu Gly Pro Cys Thr Thr Leu Glu
670

<210> 12

<211> 2094

<212> DNA

<213> reverse translation

<220>

<221> misc_feature

<222> (1)..(2094)

<223> n may be a, c, g, or t

<400> 12

atgccngtnw sntggttyyt nytnwsnytn gcnytnggnm gnaayccngt ngtngtnwsn 60 ytngarmgny tnatggarcc ncargayacn gcnmgntgyw snytnggnyt nwsntgycay 120 ytntgggayg gngaygtnyt ntgyytnccn ggnwsnytnc arwsngcncc nggnccngtn 180 ytngtnccna cnmgnytnca racngarytn gtnytnmgnt gyccncaraa racngaytgy 240

genythtgyg thmgngthgt ngtheapyth gengtheapy gheaptggge ngareengar 300

gargenggna arwsngayws ngarytnear garwsnmgna aygenwsnyt neargenear 360 gtngtnytnw snttycarge ntayeenath genmgntgyg enytnytnga rgtncargtn 420 congongayy tngthcarco nggncarwan gtnggnwang ongthttyga ytgyttygar 480 gcnwsnytng gngcngargt ncarathtgg wsntayacna arccnmgnta ycaraargar 540 ytnaayytna cncarcaryt nccngaytgy mgnggnytng argtnmgnga ywsnathcar 600 wsntgytggg tnytnecntg gytnaaygtn wsnacngayg gngayaaygt nytnytnacn 660 ytngaygtnw sngargarca rgayttywsn ttyytnytnt ayytnmgncc ngtnccngay 720 gcnytnaarw snytntggta yaaraayytn acnggnccnc araayathac nytnaaycay 780 acngayytng tnccntgyyt ntgyathcar gtntggwsny tngarccnga ywsngarmgn 840 gtngarttyt gyccnttymg ngargayccn ggngcncaym gnaayytntg gcayathgcn 900 mgnytnmgng tnytnwsncc nggngtntgg carytngayg cnccntgytg yytnccnggn 960 aargtnacny tntgytggca rgcnccngay carwsnccnt gycarccnyt ngtnccnccn 1020 gtnccncara araaygcnac ngtnaaygar ccncargayt tycarytngt ngcnggncay 1080 cenaayytht gygtheargt nwsnachtgg garaargthe arythearge htgyythtgg 1140 gengaywany tnggneentt yaargaygay atgytnytng tngaratgaa raenggnytn 1200 aayaayacnw sngtntgygc nytngarccn wsnggntgya cnccnytncc nwsnatggcn 1260 wsnacnmgng cngcnmgnyt nggngargar ytnytncarg ayttymgnws ncaycartgy 1320 atgcarytnt ggaaygayga yaayatgggn wsnytntggg cntgyccnat ggayaartay 1380 athcaymgnm gntgggtnyt ngtntggytn gcntgyytny tnytngcngc ngcnytntty 1440 ttyttyytny tnytnaaraa rgaymgnmgn aargengenm gnggnwsnmg naengenytn 1500 ytnytncayw sngcngaygg ngcnggntay garmgnytng tnggngcnyt ngcnwsngcn 1560 ytnwsncara tgccnytnmg ngtngcngtn gayytntggw snmgnmgnga rytnwsngcn 1620 cayggngeny tngentggtt yeayeayear mgnmgnmgna thytnearga rggnggngtn 1680 gtnathytny tnttywsncc ngcngcngtn gcncartgyc arcartggyt ncarytncar 1740 acngtngarc enggneenca ygaygenytn gengentggy tnwsntgygt nytneengay 1800 ttyytncarg gnmgngcnac nggnmgntay gtnggngtnt ayttygaygg nytnytncay 1860 congaywang thechwance nttymgngth genechytht tywanythee nwancaryth 1920 congenttyy tngaygonyt nearggnggn tgywsnachw sngenggnmg neengengay 1980 mgngtngarm gngtnacnca rgcnytnmgn wsngcnytng aywsntgyac nwsnwsnwsn 2040 2094 gargeneeng gntgytgyga rgartgggay ytnggneent gyaenaenyt ngar

23

<210> 13 <211> 2786 <212> DNA <213> Unknown <220> <223> Description of Unknown Organism:primate; surmised Homo sapiens <220> <221> CDS <222> (70)..(2283) <220> <221> mat peptide <222> (118)..(2283) <220> <221> misc_feature <222>'(9)..(134) <223> Xaa translation (9, 18,26, 109,120, 134) depends on genetic code <400> 13 cccacgente egggecagea gegggeggee ggggegeaga gaacggeetg getgggegag 60 egeacggee atg gee eeg tgg etg eag etc tge tee gte tte ttt acg gte 111 Met Ala Pro Trp Leu Gln Leu Cys Ser Val Phe Phe Thr Val aac gcc tgc ctc aac ggc tcg cag ctg gct gtn gcc gct ggc ggg tcc 159 Asn Ala Cys Leu Asn Gly Ser Gln Leu Ala Xaa Ala Ala Gly Gly Ser -1 ggc cgc gcg cng ggc gcc gac acc tgt agc tgg ang gga gtg ggg cca 207 Gly Arg Ala Xaa Gly Ala Asp Thr Cys Ser Trp Xaa Gly Val Gly Pro gcc agc aga aac agt ggg ctg tac aac atc acc ttc aaa tat gac aat 255 Ala Ser Arg Asn Ser Gly Leu Tyr Asn Ile Thr Phe Lys Tyr Asp Asn tgt acc acc tac ttg aat cca gtg ggg aag cat gtg att gct gac gcc Cys Thr Thr Tyr Leu Asn Pro Val Gly Lys His Val Ile Ala Asp Ala 50 55 60 cag aat atc acc atc agc cag tat gct tgc cat gac caa gtg gca gtc Gln Asn Ile Thr Ile Ser Gln Tyr Ala Cys His Asp Gln Val Ala Val 65 70 acc att ctt tgg tcc cca ggg gcc ctc ggc atc gaa ttc ctg aaa gga 399 Thr Ile Leu Trp Ser Pro Gly Ala Leu Gly Ile Glu Phe Leu Lys Gly 80 ttt cgg gta ata ctg gag gag ctg aag tcg gag gga aga cag ngc caa Phe Arg Val Ile Leu Glu Glu Leu Lys Ser Glu Gly Arg Gln Xaa Gln 95 100 105 110 caa ctg att cta aag gat ccg aag cag ntc aac agt agc ttc aaa aga

24

Gln	Leu	Ile	Leu	Lys	Asp	Pro	Lys	Gln	Xaa	Asn	Ser	Ser	Phe	Lys	Arg	
				115					120					125		
	gga Gly	_	_					_		_			_	_	_	543
	ttc Phe															591
	cct Pro 160															639
_	aat Asn		_	_									_			687
_	cag Gln			_	_	_	_				-		_	_		735
	ttc Phe															783
	cct Pro															831
	agc Ser 240															879
_	gtg Val	_	_					_			_			_		927
	cca Pro															975
	gtg Val															1023
	tgc Cys															1071
	agc Ser 320															1119
ctc Leu 335	cgg Arg	ccg Pro	cgg Arg	ccg Pro	aag Lys 340	gtc Val	ttt Phe	ctc Leu	tgc Cys	tat Tyr 345	tcc Ser	agt Ser	aaa Lys	gat Asp	ggc Gly 350	1167
cag	aat	cac	atg	aat	gtc	gtc	cag	tgt	ttc	gcc	tac	ttc	ctc	cag	gac	1215

PCT/US01/16767

Gln	Asn	His	Met	Asn 355	Val	Val	Gln	Суз	Phe 360	Ala	Tyr	Phe	Leu	Gln 365	Asp	
					gtg Val											1263
					aga Arg											1311
_					gtt Val	_				_	_				_	1359
					cac His 420											1407
					gcg Ala											1455
					tcc Ser											1503
	-			_	gag Glu		_	_					_	_	_	1551
	_		_		atg Met	_				_		_			-	1599
		_	_		ggc Gly 500		_		_		_		_	_	_	1647
					tac Tyr											1695
					atg Met											1743
	_		_		gtt Val							_	_			1791
					aaa Lys											1839
					cct Pro 580											1887
gct	gtt	ctt	ggg	gca	acc	gga	cca	gcc	gac	tcc	cag	cac	gag	agt	cag	1935

WO 01/90358

26

PCT/US01/16767

Ala	Val	Leu	Gly	Ala 595	Thr	Gly	Pro	Ala	Asp 600	Ser	Gln	His	Glu	Ser 605	Gln	
	Gly 999															1983
_	gcc Ala	-	_				-		_			_				2031
_	gac Asp 640	_	_		_					-	_		_			2079
	gag Glu	_		_		_	-	-			_	_	_			2127
-	acg Thr			_	-		_									2175
	gag Glu	_			_				_							2223
_	aaa Lys	_	_			_	-	_			-	_				2271
_	gcc Ala 720		_	taad	caaaa	acg a	aaaga	agtei	a aq	gcatt	gcca	a ctt	tag	ctgc		2323
tgc	ctcc	ctc 1	tgati	ccc	ca go	ctcat	cata	cte	ggtt	gcat	ggc	ccact	tg 9	gagci	gaggt	2383
ctc	ataca	aag g	gatat	ttg	ga gt	gaaa	atgct	gg	ccagt	cact	tgtt	ctc	cct 1	tgcc	ccaacc	2443
ctt	tacc	gga t	tatci	tgad	ca aa	actci	ccaa	a tti	tcta	aaaa	tgat	atg	gag (ctcts	gaaagg	2503
cat	gtcca	ata a	aggto	ctgad	ca a	caget	tgc	c aaa	atttg	ggtt	agto	cctt	gga 1	tcaga	agcctg	2563
ttg	tggg	agg (tagg	gagga	aa at	tatgi	caaag	g aaa	aaaca	agga	agat	cacci	ge a	acta	atcatt	2623
cag	actto	cat 1	gago	ctctg	gc aa	aacti	tgc	tgt	ttg	ctat	tgg	ctaco	ett 9	gatti	gaaat	2683
gcti	tgt	gaa a	aaaa	ggca	ct ti	taad	catca	a tag	gccad	caga	aato	caagt	gc (cagto	ctatct	2743
gga	atcca	atg 1	tgta	attgo	ca ga	ataat	gtto	e tea	attta	attt	ttg					2786

<210> 14 <211> 738 <212> PRT

<213> Unknown

<400> 14
Met Ala Pro Trp Leu Gln Leu Cys Ser Val Phe Phe Thr Val Asn Ala -15 -10 -5 -1

Cys Leu Asn Gly Ser Gln Leu Ala Xaa Ala Ala Gly Gly Ser Gly Arg Ala Xaa Gly Ala Asp Thr Cys Ser Trp Xaa Gly Val Gly Pro Ala Ser Arg Asn Ser Gly Leu Tyr Asn Ile Thr Phe Lys Tyr Asp Asn Cys Thr Thr Tyr Leu Asn Pro Val Gly Lys His Val Ile Ala Asp Ala Gln Asn Ile Thr Ile Ser Gln Tyr Ala Cys His Asp Gln Val Ala Val Thr Ile Leu Trp Ser Pro Gly Ala Leu Gly Ile Glu Phe Leu Lys Gly Phe Arg Val Ile Leu Glu Glu Leu Lys Ser Glu Gly Arg Gln Xaa Gln Gln Leu Ile Leu Lys Asp Pro Lys Gln Xaa Asn Ser Ser Phe Lys Arg Thr Gly 120 Met Glu Ser Gln Pro Xaa Leu Asn Met Lys Phe Glu Thr Asp Tyr Phe Val Arg Leu Ser Phe Ser Phe Ile Lys Asn Glu Ser Asn Tyr His Pro 150 155 Phe Phe Phe Arg Thr Arg Ala Cys Asp Leu Leu Gln Pro Asp Asn Leu Ala Cys Lys Pro Phe Trp Lys Pro Arg Asn Leu Asn Ile Ser Gln 185 His Gly Ser Asp Met Gln Val Ser Phe Asp His Ala Pro His Asn Phe 200 Gly Phe Arg Phe Phe Tyr Leu His Tyr Lys Leu Lys His Glu Gly Pro Phe Lys Arg Lys Thr Cys Lys Gln Glu Gln Thr Thr Glu Met Thr Ser Cys Leu Leu Gln Asn Val Ser Pro Gly Asp Tyr Ile Ile Glu Leu Val 245 250 Asp Asp Thr Asn Thr Thr Arg Lys Val Met His Tyr Ala Leu Lys Pro Val His Ser Pro Trp Ala Gly Pro Ile Arg Ala Val Ala Ile Thr Val 280 Pro Leu Val Val Ile Ser Ala Phe Ala Thr Leu Phe Thr Val Met Cys 295 300 Arg Lys Lys Gln Gln Glu Asn Ile Tyr Ser His Leu Asp Glu Glu Ser

Ser Glu Ser Ser Thr Tyr Thr Ala Ala Leu Pro Arg Glu Arg Leu Arg Pro Arg Pro Lys Val Phe Leu Cys Tyr Ser Ser Lys Asp Gly Gln Asn His Met Asn Val Val Gln Cys Phe Ala Tyr Phe Leu Gln Asp Phe Cys Gly Cys Glu Val Ala Leu Asp Leu Trp Glu Asp Phe Ser Leu Cys Arg 375 Glu Gly Gln Arg Glu Trp Val Ile Gln Lys Ile His Glu Ser Gln Phe Ile Ile Val Val Cys Ser Lys Gly Met Lys Tyr Phe Val Asp Lys Lys Asn Tyr Lys His Lys Gly Gly Gly Arg Gly Ser Gly Lys Gly Glu Leu Phe Leu Val Ala Val Ser Ala Ile Ala Glu Lys Leu Arg Gln Ala Lys Gln Ser Ser Ser Ala Ala Leu Ser Lys Phe Ile Ala Val Tyr Phe Asp 455 Tyr Ser Cys Glu Gly Asp Val Pro Gly Ile Leu Asp Leu Ser Thr Lys Tyr Arg Leu Met Asp Asn Leu Pro Gln Leu Cys Ser His Leu His Ser 485 490 Arg Asp His Gly Leu Gln Glu Pro Gly Gln His Thr Arg Gln Gly Ser Arg Arg Asn Tyr Phe Arg Ser Lys Ser Gly Arg Ser Leu Tyr Val Ala Ile Cys Asn Met His Gln Phe Ile Asp Glu Glu Pro Asp Trp Phe Glu Lys Gln Phe Val Pro Phe His Pro Pro Pro Leu Arg Tyr Arg Glu Pro 555 Val Leu Glu Lys Phe Asp Ser Gly Leu Val Leu Asn Asp Val Met Cys 570 Lys Pro Gly Pro Glu Ser Asp Phe Cys Leu Lys Val Glu Ala Ala Val 585 Leu Gly Ala Thr Gly Pro Ala Asp Ser Gln His Glu Ser Gln His Gly Gly Leu Asp Gln Asp Gly Glu Ala Arg Pro Ala Leu Asp Gly Ser Ala Ala Leu Gln Pro Leu Leu His Thr Val Lys Ala Gly Ser Pro Ser Asp

29

Met Pro Arg Asp Ser Gly Ile Tyr Asp Ser Ser Val Pro Ser Ser Glu
645 650 655

Leu Ser Leu Pro Leu Met Glu Gly Leu Ser Thr Asp Gln Thr Glu Thr 660 665 670

Ser Ser Leu Thr Glu Ser Val Ser Ser Ser Gly Leu Gly Glu Glu 675 680 685

Glu Pro Pro Ala Leu Pro Ser Lys Leu Leu Ser Ser Gly Ser Cys Lys 690 695 700

Ala Asp Leu Gly Cys Arg Ser Tyr Thr Asp Glu Leu His Ala Val Ala 705 710 715 720

Pro Leu

<210> 15

<211> 2214

<212> DNA

<213> reverse translation

<220>

<221> misc_feature

<222> (1)..(2214)

<223> n may be a, c, g, or t

<400> 15

atggcnccnt ggytncaryt ntgywsngtn ttyttyacng tnaaygcntg yytnaayggn 60 wsncarytng engtngenge nggnggnwsn ggnmgngenn nnggngenga yacntgywsn 120 tggnnnggng tnggncenge nwsnmgnaay wsnggnytnt ayaayathac nttyaartay 180 gayaaytgya enacntayyt naayeengtn ggnaarcayg tnathgenga ygencaraay 240 athaenathw sncartayge ntgycaygay cargtngeng tnacnathyt ntggwsneen 300 ggngenytng gnathgartt yytnaarggn ttymgngtna thytngarga rytnaarwsn 360 garggnmgne arnnnearca rytnathytn aargayeena arearnnaa ywsnwsntty 420 aarmgnaeng gnatggarws neareennnn ytnaayatga arttygarae ngaytaytty 480 gtnmgnytnw snttywsntt yathaaraay garwsnaayt ayeayeentt yttyttymgn 540 aenmgngent gygayytnyt nytneareen gayaayytng entgyaaree nttytggaar 600 cencayaayt tyggnttymg nttyttytay ytneaytaya argtnwsntt ygayeaygen 660 cencayaayt tyggnttymg nttyttytay ytneaytaya argtnaarea ygarggneen 720 ttyaarmgna araentgyaa reargarear aenaengara tgaenwsntg yytnytnear 780 aaygtnwsne enggngayta yathathgar ytngtngayg ayaenaayae naenmgnaar 840 gtnatgeayt aygenytnaa reengtneay wsneentggg enggneenat hmgngengtn 900

genathacng the third in the state of the sta mgnaaraarc arcargaraa yathtaywsn cayytngayg argarwsnws ngarwsnwsn 1020 achtayacng engenythee nmgngarmgn ythmgneenm gneenaargt nttyythtgy 1080 taywsnwsna argayggnca raaycayatg aaygtngtnc artgyttygc ntayttyytn 1140 cargayttyt gyggntgyga rgtngcnytn gayytntggg argayttyws nytntgymgn 1200 garggncarm gngartgggt nathcaraar athcaygarw sncarttyat hathgtngtn 1260 tgywsnaarg gnatgaarta yttygtngay aaraaraayt ayaarcayaa rggnggnggn 1320 mgnggnwsng gnaarggnga rytnttyytn gtngcngtnw sngcnathgc ngaraarytn 1380 mgncargcna arcarwsnws nwsngcngcn ytnwsnaart tyathgcngt ntayttygay 1440 taywsntgyg arggngaygt nccnggnath ytngayytnw snacnaarta ymgnytnatg 1500 gayaayytnc cncarytntg ywsncayytn caywsnmgng aycayggnyt ncargarccn 1560 ggncarcaya cnmgncargg nwsnmgnmgn aaytayttym gnwsnaarws nggnmgnwsn 1620 ytntaygtng cnathtgyaa yatgcaycar ttyathgayg argarccnga ytggttygar 1680 aarcarttyg tnecnttyca yccnccnccn ytnmgntaym gngarccngt nytngaraar 1740 ttygaywsng gnytngtnyt naaygaygtn atgtgyaarc cnggnccnga rwsngaytty 1800 tgyytnaarg tngargcngc ngtnytnggn gcnacnggnc cngcngayws ncarcaygar 1860 wsncarcayg gnggnytnga ycargayggn gargcnmgnc cngcnytnga yggnwsngcn 1920 genytheare enythythea yaengthaar gengghwshe enwshgayat geenmghgay 1980 wsnggnatht aygaywsnws ngtnccnwsn wsngarytnw snytnccnyt natqqarqqn 2040 ytnwsnacng aycaracnga racnwsnwsn ytnacngarw sngtnwsnws nwsnwsnggn 2100 ytnggngarg argarcence ngenytneen wsnaarytny tnwsnwsngg nwsntgyaar 2160 gengayytng gntgymgnws ntayaengay garytneayg engtngenee nytn 2214

```
<210> 16
```

<211> 2012

<212> DNA

<213> Unknown

<220>

<223> Description of Unknown Organism:primate; surmised
 Homo sapiens

<220>

<221> CDS

<222> (1)..(1971)

<220>

<221> mat_peptide <222> (70)..(1971)

atg ggg agc tcc aga ctg gca gcc ctg ctc ctg cct ctc ctc ctc ata Met Gly Ser Ser Arg Leu Ala Ala Leu Leu Pro Leu Leu Leu Ile -20 -15 gtc atc gac ctc tct gac tct gct ggg att ggc ttt cgc cac ctg ccc Val Ile Asp Leu Ser Asp Ser Ala Gly Ile Gly Phe Arg His Leu Pro -5 -1 cac tgg aac acc cgc tgt cct ctg gcc tcc cac acg gaa gtt ctg cct His Trp Asn Thr Arg Cys Pro Leu Ala Ser His Thr Glu Val Leu Pro ata tee ett gee gea eet ggt ggg eee tet tet eea eaa age ett ggt Ile Ser Leu Ala Ala Pro Gly Gly Pro Ser Ser Pro Gln Ser Leu Gly 30 35 gtg tgc gag tet ggc act gtt ccc gct gtt tgt gcc agc atc tgc tgt Val Cys Glu Ser Gly Thr Val Pro Ala Val Cys Ala Ser Ile Cys Cys 45 cag gtg gct cag gtc ttc aac ggg gcc tct tcc acc tcc tgg tgc aga 288 Gln Val Ala Gln Val Phe Asn Gly Ala Ser Ser Thr Ser Trp Cys Arg aat cca aaa agt ctt cca cat tca agt tct ata gga gac aca aga tgc 336 Asn Pro Lys Ser Leu Pro His Ser Ser Ser Ile Gly Asp Thr Arg Cys 80 cag cac ctg ctc aga gga agc tgc tgc ctc gtc gtc acc tgt ctg aga Gln His Leu Leu Arg Gly Ser Cys Cys Leu Val Val Thr Cys Leu Arg 95 100 aga gcc atc aca ttt cca tcc cct ccc cag aca tct ccc aca agg gac 432 Arg Ala Ile Thr Phe Pro Ser Pro Pro Gln Thr Ser Pro Thr Arg Asp ttc gct cta aaa gga ccc aac ctt cgg atc cag aga cat ggg aaa gtc 480 Phe Ala Leu Lys Gly Pro Asn Leu Arg Ile Gln Arg His Gly Lys Val ttc cca gat tgg act cac aaa ggc atg gag gtg ggc act ggg tac aac 528 Phe Pro Asp Trp Thr His Lys Gly Met Glu Val Gly Thr Gly Tyr Asn 145 agg aga tgg gtt cag ctg agt ggt gga ccc gag ttc tcc ttt gat ttg 576 Arg Arg Trp Val Gln Leu Ser Gly Gly Pro Glu Phe Ser Phe Asp Leu 160 ctg cct gag gcc cgg gct att cgg gtg acc ata tct tca ggc cct gag 624 Leu Pro Glu Ala Arg Ala Ile Arg Val Thr Ile Ser Ser Gly Pro Glu gtc agc gtg cgt ctt tgt cac cag tgg gca ctg gag tgt gaa gag ctg Val Ser Val Arg Leu Cys His Gln Trp Ala Leu Glu Cys Glu Glu Leu

agc Ser	agt Ser	ccc Pro	tat Tyr 205	gat Asp	gtc Val	cag Gln	aaa Lys	att Ile 210	gtg Val	tct Ser	gly aaa	ggc Gly	cac His 215	act Thr	gta Val	720
		cct Pro 220														768
		caa Gln														816
		gaa Glu														864
		agc Ser														912
		aag Lys														960
	_	aaa Lys 300	_		_		_	-	_	-			_			1008
		ttg Leu		_		_				_		_		_	_	1056
		tgg Trp														1104
		Gly ggg							-	_	_	_			_	1152
		ctg Leu														1200
gct Ala	gcc Ala	tgg Trp 380	agc Ser	ctc Leu	cca Pro	ggc Gly	ttg Leu 385	Gly 999	cag Gln	gac Asp	act Thr	ttg Leu 390	gtg Val	ccc Pro	ccc Pro	1248
gtg Val	tac Tyr 395	act Thr	gtc Val	agc Ser	cag Gln	gtg Val 400	tgg Trp	cgg Arg	tca Ser	gat Asp	gtc Val 405	cag Gln	ttt Phe	gcc Ala	tgg Trp	1296
		ctc Leu														1344
		gca Ala														1392

	acc Thr	_		_		_			_							1440
	ctc Leu	_				_	_			_		_	_			1488
	ctg Leu 475	_	_	-			-	-	_				-	-		1536
	gtg Val	_	_								_				-	1584
	tgg Trp															1632
	ctg Leu	_	_		_		_	_		_	_	_	_			1680
_	ccc Pro	_	_			_		_	_			_	-	_	_	1728
	ctg Leu 555															1776
	ccc Pro	_	_	_	_	_	_	_			_	_	_	_	-	1824
_	ccg Pro	_	-	-		_	_	_					-		_	1872
	agc Ser			-					_	_		_	-	_		1920
	ctg Leu	_	_			_	_		_	_	_		_	_		1968
ggt Gly	tgag	gcaga	igc t	ccac	cgca	ıg to	ccgg	gtgt	ctg	gegge	ege	t				2012

<210> 17

Met Gly Ser Ser Arg Leu Ala Ala Leu Leu Leu Pro Leu Leu Leu Ile -15 -20

<211> 657 <212> PRT

<213> Unknown

Val Ile Asp Leu Ser Asp Ser Ala Gly Ile Gly Phe Arg His Leu Pro His Trp Asn Thr Arg Cys Pro Leu Ala Ser His Thr Glu Val Leu Pro Ile Ser Leu Ala Ala Pro Gly Gly Pro Ser Ser Pro Gln Ser Leu Gly Val Cys Glu Ser Gly Thr Val Pro Ala Val Cys Ala Ser Ile Cys Cys Gln Val Ala Gln Val Phe Asn Gly Ala Ser Ser Thr Ser Trp Cys Arg Asn Pro Lys Ser Leu Pro His Ser Ser Ser Ile Gly Asp Thr Arg Cys Gln His Leu Leu Arg Gly Ser Cys Cys Leu Val Val Thr Cys Leu Arg 100 Arg Ala Ile Thr Phe Pro Ser Pro Pro Gln Thr Ser Pro Thr Arg Asp 115 Phe Ala Leu Lys Gly Pro Asn Leu Arg Ile Gln Arg His Gly Lys Val Phe Pro Asp Trp Thr His Lys Gly Met Glu Val Gly Thr Gly Tyr Asn 145 Arg Arg Trp Val Gln Leu Ser Gly Gly Pro Glu Phe Ser Phe Asp Leu Leu Pro Glu Ala Arg Ala Ile Arg Val Thr Ile Ser Ser Gly Pro Glu Val Ser Val Arg Leu Cys His Gln Trp Ala Leu Glu Cys Glu Glu Leu Ser Ser Pro Tyr Asp Val Gln Lys Ile Val Ser Gly Gly His Thr Val 205 210 Glu Leu Pro Tyr Glu Phe Leu Leu Pro Cys Leu Cys Ile Glu Ala Ser Tyr Leu Gln Glu Asp Thr Val Arg Arg Lys Lys Cys Pro Phe Gln Ser 235 Trp Pro Glu Ala Tyr Gly Ser Asp Phe Trp Lys Ser Val His Phe Thr 255 Asp Tyr Ser Gln His Thr Gln Met Val Met Ala Leu Thr Leu Arg Cys Pro Leu Lys Leu Glu Ala Ala Leu Cys Gln Arg His Asp Trp His Thr Leu Cys Lys Asp Leu Pro Asn Ala Thr Ala Arg Glu Ser Asp Gly Trp 300 305

Tyr Val Leu Glu Lys Val Asp Leu His Pro Gln Leu Cys Phe Lys Val 320 Gln Pro Trp Phe Ser Phe Gly Asn Ser Ser His Val Glu Cys Pro His Gln Thr Gly Ser Leu Thr Ser Trp Asn Val Ser Met Asp Thr Gln Ala 350 355 Gln Gln Leu Ile Leu His Phe Ser Ser Arg Met His Ala Thr Phe Ser Ala Ala Trp Ser Leu Pro Gly Leu Gly Gln Asp Thr Leu Val Pro Pro Val Tyr Thr Val Ser Gln Val Trp Arg Ser Asp Val Gln Phe Ala Trp Lys His Leu Cys Pro Asp Val Ser Tyr Arg His Leu Gly Leu Leu 410 415 420 Ile Leu Ala Leu Leu Ala Leu Leu Thr Leu Leu Gly Val Val Leu Ala Leu Thr Cys Arg Arg Pro Gln Ser Gly Pro Gly Pro Ala Arg Pro Val Leu Leu Leu His Ala Ala Asp Ser Glu Ala Gln Arg Arg Leu Val Gly 465 Ala Leu Ala Glu Leu Leu Arg Ala Ala Leu Gly Gly Arg Asp Val 480 Ile Val Asp Leu Trp Glu Gly Arg His Val Ala Arg Val Gly Pro Leu Pro Trp Leu Trp Ala Ala Arg Thr Arg Val Ala Arg Glu Gln Gly Thr Val Leu Leu Trp Ser Gly Ala Asp Leu Arg Pro Val Ser Gly Pro 530 Asp Pro Arg Ala Ala Pro Leu Leu Ala Leu Leu His Ala Ala Pro Arg Pro Leu Leu Leu Ala Tyr Phe Ser Arg Leu Cys Ala Lys Gly Asp Ile Pro Pro Pro Leu Arg Ala Leu Pro Arg Tyr Arg Leu Leu Arg Asp Leu Pro Arg Leu Leu Arg Ala Leu Asp Ala Arg Pro Phe Ala Glu Ala Thr Ser Trp Gly Arg Leu Gly Ala Arg Gln Arg Arg Gln Ser Arg Leu Glu Leu Cys Ser Arg Leu Glu Arg Glu Ala Ala Arg Leu Ala Asp Leu

PCT/US01/16767

Gly

<210> 18

WO 01/90358

<211> 1971 <212> DNA <213> reverse translation <220> <221> misc_feature <222> (1)..(1971) <223> n may be a, c, g, or t <400> 18 atgggnwsnw snmgnytngc ngcnytnytn ytnccnytny tnytnathgt nathgayytn 60 wsngaywsng cnggnathgg nttymgncay ytnccncayt ggaayacnmg ntgyccnytn 120 genwancaya engargtnyt neenathwan ytngengene enggnggnee nwanwancen 180 carwsnytng gngtntgyga rwsnggnacn gtnccngcng tntgygcnws nathtgytgy 240 cargingene arginityaa yggngenwsn wsnachwsni ggigymgnaa yeenaarwsn 300 ytnccncayw snwsnwsnat hggngayacn mgntgycarc ayytnytnmg nggnwsntgy 360 tgyytngtng tnacntgyyt nmgnmgngcn athacnttyc cnwsnccncc ncaracnwsn 420 ccnacnmgng ayttygcnyt naarggnccn aayytnmgna thcarmgnca yggnaargtn 480 ttyccngayt ggacncayaa rggnatggar gtnggnacng gntayaaymg nmgntgggtn 540 carytnwsng gnggnccnga rttywsntty gayytnytnc cngargcnmg ngcnathmgn 600 gtnacnathw snwsnggncc ngargtnwsn gtnmgnytnt gycaycartg ggcnytngar 660 tgygargary tnwsnwsncc ntaygaygtn caraarathg tnwsnggngg ncayacngtn 720 garytnecnt aygarttyyt nytnecntgy ytntgyathg argenwenta yytneargar 780 gayacngtnm gnmgnaaraa rtgyccntty carwsntggc cngargcnta yggnwsngay 840 ttytggaarw sngtncaytt yacngaytay wsncarcaya cncaratggt natggcnytn 900 acnytnmgnt gyccnytnaa rytngargcn gcnytntgyc armgncayga ytggcayacn 960 ytntgyaarg ayytnccnaa ygcnacngcn mgngarwang ayggntggta ygtnytngar 1020 aargtngayy tncayccnca rytntgytty aargtncarc cntggttyws nttyggnaay 1080 wsnwsncayg tngartgycc ncaycaracn ggnwsnytna cnwsntggaa ygtnwsnatg 1140 gayacncarg cncarcaryt nathytncay ttywsnwsnm gnatgcaygc nacnttywsn 1200 gengentggw snytneengg nytnggnear gayaenytng tneeneengt ntayaengtn 1260 wsncargtnt ggmgnwsnga ygtncartty gcntggaarc ayytnytntg yccngaygtn 1320

WO 01/90358

37

wsntaymgnc ayytnggnyt nytnathytn gcnytnytng cnytnytnac nytnytnggn 1380

gtngtnytng cnytnacntg ymgnmgnccn carwsnggnc cnggnccngc nmgnccngtn 1440

PCT/US01/16767

ytnytnytne aygengenga ywsngargen carmgnmgny tngtnggnge nytngengar 1500 ytnytnmgng cngcnytngg nggnggnmgn gaygtnathg tngayytntg ggarggnmgn 1560 caygtngcnm gngtnggncc nytncentgg ytntgggeng enmgnacnmg ngtngenmgn 1620 garcarggna cngtnytnyt nytntggwsn ggngcngayy tnmgnccngt nwsnggnccn 1680 gaycenmgng engencenyt nytngenyth ythreaygeng encenmgnee nytnytnyth 1740 ytngcntayt tywsnmgnyt ntgygcnaar ggngayathc cnccnccnyt nmgngcnytn 1800 ccnmgntaym gnytnytnmg ngayytnccn mgnytnytnm gngcnytnga ygcnmgnccn 1860 ttygengarg enaenwsntg gggnmgnytn ggngenmgne armgnmgnea rwsnmgnytn 1920 garytntgyw snmgnytnga rmgngargcn gcnmgnytng cngayytngg n 1971 <210> 19 <211> 808 <212> DNA <213> Unknown <223> Description of Unknown Organism:rodent; surmised Mus musculus <220> <221> CDS <222> (78)..(806) <220> <221> mat_peptide <222> (147)..(806) <400> 19 cageteeggg ecaggeeetg etgeeetett geagacagga aagacatggt etetgegeee 60 tgatectaca gaagete atg ggg age eee aga etg gea gee ttg etc etg 110 Met Gly Ser Pro Arg Leu Ala Ala Leu Leu Leu tot etc ecg eta etg etc atc gge etc get gtg tet get egg gtt gee 158 Ser Leu Pro Leu Leu Leu Ile Gly Leu Ala Val Ser Ala Arg Val Ala -10 tgc ccc tgc ctg cgg agt tgg acc agc cac tgt ctc ctg gcc tac cgt Cys Pro Cys Leu Arg Ser Trp Thr Ser His Cys Leu Leu Ala Tyr Arg 10 gtg gat aaa cgt ttt gct ggc ctt cag tgg ggc tgg ttc cct ctc ttg 254 Val Asp Lys Arg Phe Ala Gly Leu Gln Trp Gly Trp Phe Pro Leu Leu 25 gtg agg aaa tot aaa agt oot oot aaa ttt gaa gac tat tgg agg cac 302

Val Arg Lys	Ser Lys	Ser Pro	Pro I	Lys Phe 45	Glu As	sp Tyr	Trp Arg	His	
agg aca cca Arg Thr Pro	Ala Ser	_				-		_	350
tct gag gaa Ser Glu Glu 70	-	-	Ser I		Ser Se	_			398
aga ggc caa Arg Gly Glr 85									446
gaa cat cto Glu His Lev		Ala Gly		_			-		494
tcc ttt gat Ser Phe Asp			Val G		_				542
gca ggc ccc Ala Gly Pro 135	Lys Ala							_	590
tgt gaa gad Cys Glu Asp 150		_	_	-	_	ys Ile			638
ggg cac act Gly His Thr 165		_	_	-		_		- 3	686
ata gag gco Ile Glu Ala		Leu Gln		-			_	J - 1	734
cct tcc aga Pro Ser Arg			Leu M						782
tac gct tca Tyr Ala Ser 215	Leu Thr	_	_	aC					808
<210 > 20 <211 > 243 <212 > PRT <213 > Unkno	own								
<400> 20 Met Gly Ser	Pro Arg	Leu Ala		leu Leu 15	Leu Se	er Leu	Pro Leu -10	Leu	
Leu Ile Gly		Val Ser -1		arg Val	Ala Cy	ys Pro 5	Cys Leu	Arg	

WO 01/90358

Ser Trp Thr Ser His Cys Leu Leu Ala Tyr Arg Val Asp Lys Arg Phe Ala Gly Leu Gln Trp Gly Trp Phe Pro Leu Leu Val Arg Lys Ser Lys

39

PCT/US01/16767

Ser Pro Pro Lys Phe Glu Asp Tyr Trp Arg His Arg Thr Pro Ala Ser

Phe Gln Arg Lys Leu Leu Gly Ser Pro Ser Leu Ser Glu Glu Ser His

Arg Ile Ser Ile Pro Ser Ser Ala Ile Ser His Arg Gly Gln Arg Thr

Lys Arg Ala Gln Pro Ser Ala Ala Glu Gly Arg Glu His Leu Pro Glu 100

Ala Gly Ser Gln Lys Cys Gly Gly Pro Glu Phe Ser Phe Asp Leu Leu 115 110

Pro Glu Val Gln Ala Val Arg Val Thr Ile Pro Ala Gly Pro Lys Ala

Arg Val Arg Leu Cys Tyr Gln Trp Ala Leu Glu Cys Glu Asp Leu Ser 145

Ser Pro Phe Asp Thr Gln Lys Ile Val Ser Gly Gly His Thr Val Asp

Leu Pro Tyr Glu Phe Leu Leu Pro Cys Met Cys Ile Glu Ala Ser Tyr

Leu Gln Glu Asp Thr Val Arg Arg Lys Ser Val Pro Ser Arg Ala Gly

Leu Lys Leu Met Ala Gln Thr Ser Gly Ser Gln Tyr Ala Ser Leu Thr

Thr Ala Ser 220

<210> 21

<211> 729

<212> DNA

<213> reverse translation

<220>

<221> misc_feature

<222> (1)..(729)

<223> n may be a, c, g, or t

atgggnwsnc cnmgnytngc ngcnytnytn ytnwsnytnc cnytnytnyt nathggnytn 60 gengtnwsng enmgngtnge ntgycentgy ytnmgnwsnt ggaenwsnea ytgyytnytn 120 gentaymgng tngayaarmg nttygenggn ytneartggg gntggttyce nytnytngtn 180

mgnaarwsna arwsncenee naarttygar gaytaytggm gneaymgnae neengenwsn 240

40

ttycarmgna arytnytngg nwsnccnwsn ytnwsngarg arwsncaymg nathwsnath 300 conwsnwsng cnathwsnca ymgnggncar mgnacnaarm gngcncarcc nwsngcngcn 360 garggnmgng arcayytncc ngargcnggn wsncaraart gyggnggncc ngarttywsn 420 ttygayytny tnccngargt ncargengtn mgngtnacna thccngcngg nccnaargen 480 mgngtnmgny tntgytayca rtgggcnytn gartgygarg ayytnwsnws nccnttygay 540 acncaraara thgtnwsngg nggncayacn gtngayytnc cntaygartt yytnytnccn 600 tgyatgtgya thgargcnws ntayytncar gargayacng tnmgnmgnaa rwsngtnccn 660 wsnmgngcng gnytnaaryt natggcncar acnwsnggnw sncartaygc nwsnytnacn 720 729 acngcnwsn <210> 22 <211> 2377 <212> DNA <213> Unknown <220> <223> Description of Unknown Organism:primate; surmised Homo sapiens <220> <221> CDS <222> (180)..(1874) ttttgagcag aggcttccta ggctccgtag aaatttgcat acagcttcca cttcctgctt 60 cagagectgt tettetaett acetgggece ggagaaggtg gaggagaeg agaageegee 120 gagageegae tacceteegg geecagtetg tetgteegtg gtggatetaa gaaactaga 179 227 atg aac cga agc att cct gtg gag gtt gat gaa tca gaa cca tac cca Met Asn Arg Ser Ile Pro Val Glu Val Asp Glu Ser Glu Pro Tyr Pro 15 1 10 agt cag ttg ctg aaa cca atc cca gaa tat tcc ccg gaa gag gaa tca 275 Ser Gln Leu Lys Pro Ile Pro Glu Tyr Ser Pro Glu Glu Glu Ser 20 323 gaa cca cct gct cca aat ata agg aac atg gca ccc aac agc ttg tct Glu Pro Pro Ala Pro Asn Ile Arg Asn Met Ala Pro Asn Ser Leu Ser 35 40 gca ccc aca atg ctt cac aat tcc tcc gga gac ttt tct caa gct cac 371 Ala Pro Thr Met Leu His Asn Ser Ser Gly Asp Phe Ser Gln Ala His 50 tca acc ctg aaa ctt gca aat cac cag cgg cct gta tcc cgg cag gtc 419 Ser Thr Leu Lys Leu Ala Asn His Gln Arg Pro Val Ser Arg Gln Val 65 70

		ctg Leu														467
	_	cac His			_								_			515
-	_	gag Glu 115							_		_			_		563
	_	ttt Phe			_	_		_				_	_		-	611
		gcg Ala														659
		tta Leu														707
_		caa Gln			_					-	_		_	_	_	755
		ata Ile 195														803
		cag Gln														851
		ctc Leu														899
		agg Arg														947
		gct Ala														995
		gtg Val 275														1043
gtg Val	atc Ile 290	cag Gln	ccg Pro	gct Ala	ctg Leu	cct Pro 295	61Å 888	cag Gln	ccc Pro	ctg Leu	cct Pro 300	gga Gly	gcc Ala	agt Ser	gtg Val	1091
		ctg Leu														1139

tgg Trp	gac Asp	caa Gln	gaa Glu	gag Glu 325	agg Arg	ccc Pro	gca Ala	cag Gln	aga Arg 330	gac Asp	tgc Cys	tcc Ser	ttt Phe	ccg Pro 335	ggg Gly	1187
														aga Arg		1235
ggt Gly	gct Ala	cct Pro 355	Gly 999	gag Glu	tcc Ser	ttg Leu	gag Glu 360	tgc Cys	cct Pro	gca Ala	gag Glu	ctg Leu 365	aga Arg	cca Pro	cag Gln	1283
														agc Ser		1331
		_	_						-		_		_	gaa Glu	-	1379
		_					-	_	-		_	_		gtg Val 415		1427
					_	_	_							att Ile	_	1475
														atg Met		1523
_				_	_			_			-	_		agc Ser		1571
			_	_		-		_		_	_	_	_	gag Glu	-	1619
						_				_	_	_	_	att Ile 495		1667
														ctc Leu		1715
cca Pro	aat Asn	gct Ala 515	aag Lys	aag Lys	gag Glu	cat His	gtg Val 520	ccc Pro	acc Thr	tgg Trp	ctt Leu	cag Gln 525	aac Asn	act Thr	cat His	1763
														ctg Leu		1811
														acc Thr		1859

43

cag gtg gtt ccc ttg tgacaccgtt catccccaga tcactgaggc caggccatgt 1914 Gln Val Val Pro Leu 565

<210> 23

<211> 565

<212> PRT

<213> Unknown

<400> 23

Met Asn Arg Ser Ile Pro Val Glu Val Asp Glu Ser Glu Pro Tyr Pro 1 10 15

Ser Gln Leu Lys Pro Ile Pro Glu Tyr Ser Pro Glu Glu Glu Ser 20 25 30

Glu Pro Pro Ala Pro Asn Ile Arg Asn Met Ala Pro Asn Ser Leu Ser 35 40 45

Ala Pro Thr Met Leu His Asn Ser Ser Gly Asp Phe Ser Gln Ala His 50 55 60

Ser Thr Leu Lys Leu Ala Asn His Gln Arg Pro Val Ser Arg Gln Val 65 . 70 . 75 . 80

Thr Cys Leu Arg Thr Gln Val Leu Glu Asp Ser Glu Asp Ser Phe Cys
85 90 95

Arg Arg His Pro Gly Leu Gly Lys Ala Phe Pro Ser Gly Cys Ser Ala 100 105 110

Val Ser Glu Pro Ala Ser Glu Ser Val Val Gly Ala Leu Pro Ala Glu 115 120 125

His Gln Phe Ser Phe Met Glu Lys Arg Asn Gln Trp Leu Val Ser Gln 130 135 140

Leu Ser Ala Ala Ser Pro Asp Thr Gly His Asp Ser Asp Lys Ser Asp 145 150 155 160

Gln Ser Leu Pro Asn Ala Ser Ala Asp Ser Leu Gly Gly Ser Gln Glu 165 170 175

Met Val Gln Arg Pro Gln Pro His Arg Asn Arg Ala Gly Leu Asp Leu Pro Thr Ile Asp Thr Gly Tyr Asp Ser Gln Pro Gln Asp Val Leu Gly 200 Ile Arg Gln Leu Glu Arg Pro Leu Pro Leu Thr Ser Val Cys Tyr Pro 215 Gln Asp Leu Pro Arg Pro Leu Arg Ser Arg Glu Phe Pro Gln Phe Glu Pro Gln Arg Tyr Pro Ala Cys Ala Gln Met Leu Pro Pro Asn Leu Ser Pro His Ala Pro Trp Asn Tyr His Tyr His Cys Pro Gly Ser Pro Asp 265 His Gln Val Pro Tyr Gly His Asp Tyr Pro Arg Ala Ala Tyr Gln Gln 280 Val Ile Gln Pro Ala Leu Pro Gly Gln Pro Leu Pro Gly Ala Ser Val 295 Arg Gly Leu His Pro Val Gln Lys Val Ile Leu Asn Tyr Pro Ser Pro Trp Asp Gln Glu Glu Arg Pro Ala Gln Arg Asp Cys Ser Phe Pro Gly 330 Leu Pro Arg His Gln Asp Gln Pro His His Gln Pro Pro Asn Arg Ala Gly Ala Pro Gly Glu Ser Leu Glu Cys Pro Ala Glu Leu Arg Pro Gln 360 Val Pro Gln Pro Pro Ser Pro Ala Ala Val Pro Arg Pro Pro Ser Asn Pro Pro Ala Arg Gly Thr Leu Lys Thr Ser Asn Leu Pro Glu Glu Leu 390 395 385 Arg Lys Val Phe Ile Thr Tyr Ser Met Asp Thr Ala Met Glu Val Val Lys Phe Val Asn Phe Leu Leu Val Asn Gly Phe Gln Thr Ala Ile Asp 420 Ile Phe Glu Asp Arg Ile Arg Gly Ile Asp Ile Ile Lys Trp Met Glu 440 Arg Tyr Leu Arg Asp Lys Thr Val Met Ile Ile Val Ala Ile Ser Pro 455 Lys Tyr Lys Gln Asp Val Glu Gly Ala Glu Ser Gln Leu Asp Glu Asp Glu His Gly Leu His Thr Lys Tyr Ile His Arg Met Met Gln Ile Glu 490

Phe Ile Lys Gln Gly Ser Met Asn Phe Arg Phe Ile Pro Val Leu Phe 500 505 510

Pro Asn Ala Lys Lys Glu His Val Pro Thr Trp Leu Gln Asn Thr His 515 520 525

Val Tyr Ser Trp Pro Lys Asn Lys Lys Asn Ile Leu Leu Arg Leu Leu 530 535 540

Arg Glu Glu Glu Tyr Val Ala Pro Pro Arg Gly Pro Leu Pro Thr Leu 545 550 555 560

Gln Val Val Pro Leu 565

<210> 24

<211> 1695

<212> DNA

<213> reverse translation

<220>

<221> misc feature

<222> (1)..(1695)

<223> n may be a, c, g, or t

<400> 24

atgaaymgnw snathcengt ngargtngay garwsngare entayeenws nearytnytn 60 aarccnathc engartayws neengargar garwsngare encengence naayathmgn 120 aayatggcnc cnaaywsnyt nwsngcnccn acnatgytnc ayaaywsnws nggngaytty 180 wsncargcnc aywsnacnyt naarytngcn aaycaycarm gnccngtnws nmgncargtn 240 acntgyytnm gnacncargt nytngargay wsngargayw snttytgymg nmgncayccn 300 ggnytnggna argenttyce nwsnggntgy wsngengtnw sngarcenge nwsngarwsn 360 gtngtnggng cnytnccngc ngarcaycar ttywsnttya tggaraarmg naaycartgg 420 ytngtnwsnc arytnwsngc ngcnwsnccn gayacnggnc aygaywsnga yaarwsngay 480 carwsnythc chaaygchws ngcngaywsn ytnggngghw shcargarat ggthcarmgn 540 ccncarccnc aymgnaaymg ngcnggnytn gayytnccna cnathgayac nggntaygay 600 wsncarcene argaygtnyt nggnathmgn carytngarm gneenytnee nytnaenwsn 660 gtntgytayc cncargayyt nccnmgnccn ytnmgnwsnm gngarttycc ncarttygar 720 concarmint ayiongenti ygoncarati ytnochocha ayythwshoc neaygeneen 780 tggaaytayc aytaycaytg yccnggnwsn ccngaycayc argtnecnta yggncaygay 840 tayccnmgng cngcntayca rcargtnath carccngcny tnccngqnca rccnytnccn 900 ggngcnwsng tnmgnggnyt ncayccngtn caraargtna thytnaayta yccnwsnccn 960 tgggaycarg argarmgncc ngcncarmgn gaytgywant tyccnggnyt necnmgncay 1020 cargaycarc cncaycayca recncenaay mgngcnggng cnccnggnga rwsnytngar 1080 tgyccngcng arytnmgncc ncargtnecn carcencenw sneengenge ngtneenmgn 1140 cencenwana ayeencenge nmgnggnacn ytnaaraenw snaayytnee ngargarytn 1200 mgnaargtnt tyathaenta ywsnatggay aengenatgg argtngtnaa rttygtnaay 1260 ttyytnytng tnaayggntt yearaengen athgayath tygargaymg nathmgnggn 1320 athgayatha thaartggat ggarmgntay ytnmgngaya araengtnat gathathgtn 1380 genathwane enaartayaa reargaygtn garggngeng arwsnearyt ngaygargay 1440 garcayggny tneayaenaa rtayatheay mgnatgatge arathgartt yathaarear 1500 ggnwsnatga ayttymgntt yatheengtn ytnttycena aygenaaraa rgarcaygtn 1560 eenaentggy tnearaayae neaygtntay wsntggeena araayaaraa raayathytn 1620 ytnmgnytny tnmgngarga rgartaygtn geneencenm gnggneenyt neenaenytn 1680 eargtngtne cnytn

<210> 25

<211> 1323

<212> DNA

<213> Unknown

<220>

<223> Description of Unknown Organism:rodent; surmised
 Mus musculus

<220>

<221> CDS

<222> (1)..(1026)

<400> 25

cag gac ctc cct ggg cct ctg agg tcc agg gaa ttg cca cct cag ttt 48
Gln Asp Leu Pro Gly Pro Leu Arg Ser Arg Glu Leu Pro Pro Gln Phe
1 5 10 15

gaa ctt gag agg tat cca atg aac gcc cag ctg ctg ccg ccc cat cct 96 Glu Leu Glu Arg Tyr Pro Met Asn Ala Gln Leu Leu Pro Pro His Pro 20 25 30

tcc cca cag gcc cca tgg aac tgt cag tac tac tgc ccc gga ggg ccc 144
Ser Pro Gln Ala Pro Trp Asn Cys Gln Tyr Tyr Cys Pro Gly Gly Pro
35 40 45

tac cac cac cag gtg cca cac ggc cat ggc tac cct cca gca gca gcc

Tyr His His Gln Val Pro His Gly His Gly Tyr Pro Pro Ala Ala Ala

50 55 60

tac cag caa gta ctc cag cct gct ctg cct ggg cag gtc ctt cct ggg
Tyr Gln Gln Val Leu Gln Pro Ala Leu Pro Gly Gln Val Leu Pro Gly
65 70 75 80

47

-		aga Arg			-			_	_	_		_		_	288
	_		85		J			90					95	•	
		caa Gln 100													336
	_	 ctc Leu	_		_	_			_						384
		cct Pro													432
		cag Gln													480
		gcc Ala	-				_		_		_		_	_	528
		gtc Val 180													576
		gtg Val			_										624
_		gag Glu	_	_					_					_	672
	_	ctt Leu	_	_	-			_			_	-		-	720
		aaa Lys	_	-	_	_		_		_	_	_	_		768
		ggc Gly 260													816
		agt Ser	_		_	_							-		864
		gcc Ala													912
		agc Ser													960

WO 01/90358 PCT/US01/16767

ctc agg gag gaa gag tat gtg gct cct ccc cga ggc cct ctg ccc acc 1008 Leu Arg Glu Glu Glu Tyr Val Ala Pro Pro Arg Gly Pro Leu Pro Thr ctt cag gtg gta ccc ttg tgacgatggc cactccagct cagtgccagc 1056 Leu Gln Val Val Pro Leu 340 ctgttctcac agcattcttc tagcggagct ggctggtggc acccaqgccc tggaacacct 1116 cttctacaga gtcctctgtc tcctgagtct gagttgtcct cgctgggctt ccagagcttc 1176 agtgcctgga tgctgcaggt gacagaaaca aacatctatg accacaaaaa ctctcatcac 1236 ttcagctact tttatgagtc ggtcagatgc tctgtgtcct tagaccagtc taaatcatgc 1296 tcaaataata aaatgattat tctttgt 1323 <210> 26 <211> 342 <212> PRT <213> Unknown <400> 26 Gln Asp Leu Pro Gly Pro Leu Arg Ser Arg Glu Leu Pro Pro Gln Phe Glu Leu Glu Arg Tyr Pro Met Asn Ala Gln Leu Leu Pro Pro His Pro 20 Ser Pro Gln Ala Pro Trp Asn Cys Gln Tyr Tyr Cys Pro Gly Gly Pro Tyr His His Gln Val Pro His Gly His Gly Tyr Pro Pro Ala Ala Ala 55 Tyr Gln Gln Val Leu Gln Pro Ala Leu Pro Gly Gln Val Leu Pro Gly Ala Arg Ala Arg Gly Pro Arg Pro Val Gln Lys Val Ile Leu Asn Asp Ser Ser Pro Gln Asp Gln Glu Glu Arg Pro Ala Gln Arg Asp Phe Ser 100 105 110 Phe Pro Arg Leu Pro Arg Asp Gln Leu Tyr Arg Pro Pro Ser Asn Gly 120 Val Glu Ala Pro Glu Glu Ser Leu Asp Leu Pro Ala Glu Leu Arg Pro 130 135 His Gly Pro Gln Ala Pro Ser Leu Ala Ala Val Pro Arg Pro Pro Ser Asn Pro Leu Ala Arg Gly Thr Leu Arg Thr Ser Asn Leu Pro Glu Glu 165 170

Leu Arg Lys Val Phe Ile Thr Tyr Ser Met Asp Thr Ala Met Glu Val

49

180 185 190

Val Lys Phe Val Asn Phe Leu Leu Val Asn Gly Phe Gln Thr Ala Ile 195 200 205

Asp Ile Phe Glu Asp Arg Ile Arg Gly Ile Asp Ile Ile Lys Trp Met 210 215 220

Glu. Arg Tyr Leu Arg Asp Lys Thr Val Met Ile Ile Val Ala Ile Ser 225 230 235 240

Pro Lys Tyr Lys Gln Asp Val Glu Gly Ala Glu Ser Gln Leu Asp Glu 245 250 255

Asp Glu His Gly Leu His Thr Lys Tyr Ile His Arg Met Met Gln Ile 260 265 270

Glu Phe Ile Ser Gln Gly Ser Met Asn Phe Arg Phe Ile Pro Val Leu 275 280 285

Phe Pro Asn Ala Lys Lys Glu His Val Pro Thr Trp Leu Gln Asn Thr 290 295 300

His Val Tyr Ser Trp Pro Lys Asn Lys Lys Asn Ile Leu Leu Arg Leu 305 310 315 320

Leu Arg Glu Glu Glu Tyr Val Ala Pro Pro Arg Gly Pro Leu Pro Thr 325 330 335

Leu Gln Val Val Pro Leu 340

<210> 27

<211> 1026

<212> DNA

<213> reverse translation

<220>

<221> misc feature

<222> (1) .: (1026)

<223> n amy be a, c, g, or t

<400> 27

cargayytnc enggneenyt nmgnwsnmgn garytneene encarttyga rytngarmgn 60 tayeenatga aygenearyt nytneeneen cayeenwsne encargenee ntggaaytgy 120 cartaytayt gycenggngg neentayeay cayeargtne encayggnea yggntayeen 180 cengengeng entayearea rgtnytnear eengenytne enggneargt nytneenggn 240 genmgngenm gnggneenmg neengtnear aargtnathy tnaaygayws nwsneenear 300 gayeargarg armgneenge nearmgngay ttywsnttye enmgnytnee nmgngayear 360 ytntaymgne encenwsnaa yggngtngar geneengarg arwsnytnga yytneengen 420 garytnmgne encayggnee neargeneen wsnytngeng engtneenmg neeneenwsn 480

WO 01/90358 PCT/US01/16767

aayccnytng cnmgnggnac nytnmgnacn wsnaayytnc cngargaryt nmgnaargtn 540 ttyathacnt aywsnatgga yacngcnatg gargtngtna arttygtnaa yttyytnytn 600 gtnaayggnt tycaracngc nathgayath ttygargaym gnathmgngg nathgayath 660 athaartgga tggarmgnta yytnmgngay aaracngtna tgathathgt ngcnathwsn 720 ccnaartaya arcargaygt ngarggngcn garwsncary tngaygarga ygarcayggn 780 ytncayacna artayathca ymgnatgatg carathgart tyathwsnca rggnwsnatg 840 aayttymgnt tyathccngt nytnttyccn aaygcnaara argarcaygt nccnacntgg 900 ytncaraaya cncaygtnta ywsntggccn aaraayaara araayathyt nytnmgnytn 960 ytnmgngarg argartaygt ngcnccnccn mgnggnccny tnccnacnyt ncargtngtn 1020 ccnytn

<210> 28

<211> 207

<212> PRT

<213> Unknown

<220>

<223> Description of Unknown Organism:primate; surmised Homo sapiens

<400> 28

Arg Lys Val Trp Ile Ile Tyr Ser Ala Asp His Pro Leu Tyr Val Asp 1 5 10

Val Val Leu Lys Phe Ala Gln Phe Leu Leu Thr Ala Cys Gly Thr Glu 20 25 30

Val Ala Leu Asp Leu Leu Glu Glu Gln Ala Ile Ser Glu Ala Gly Val
35 40 45

Met Thr Trp Val Gly Arg Gln Lys Gln Glu Met Val Glu Ser Asn Ser 50 60

Lys Ile Ile Val Leu Cys Ser Arg Gly Thr Arg Ala Lys Trp Gln Ala 65 70 75 80

Leu Leu Gly Arg Gly Ala Pro Val Arg Leu Arg Cys Asp His Gly Lys
85 90 95

Pro Val Gly Asp Leu Phe Thr Ala Ala Met Asn Met Ile Leu Pro Asp 100 105 110

Phe Lys Arg Pro Ala Cys Phe Gly Thr Tyr Val Val Cys Tyr Phe Ser 115 120 125

Glu Val Ser Cys Asp Gly Asp Val Pro Asp Leu Phe Gly Ala Ala Pro 130 135 140

Arg Tyr Pro Leu Met Asp Arg Phe Glu Glu Val Tyr Phe Arg Ile Gln 145 150 155 160

WO 01/90358 PCT/US01/16767

Asp Leu Glu Met Phe Gln Pro Gly Arg Met His Arg Val Gly Glu Leu 165 170 175

Ser Gly Asp Asn Tyr Leu Arg Ser Pro Gly Gly Arg Gln Leu Arg Ala 180 185 190

Ala Leu Asp Arg Phe Arg Asp Trp Gln Val Arg Cys Pro Asp Trp 195 200 205

<210> 29

<211> 208

<212> PRT

<213> Unknown

<220>

<223> Description of Unknown Organism:rodent; surmised Mus musculus

<400> 29

Arg Lys Val Trp Ile Val Tyr Ser Ala Asp His Pro Leu Tyr Val Glu

1 10 15

Val Val Leu Lys Phe Ala Gln Phe Leu Ile Thr Ala Cys Gly Thr Glu 20 25 30

Val Ala Leu Asp Leu Leu Glu Glu Gln Val Ile Ser Glu Val Gly Val
35 40 45

Met Thr Trp Val Ser Arg Gln Lys Gln Glu Met Val Glu Ser Asn Ser 50 60

Lys Ile Ile Leu Cys Ser Arg Gly Thr Gln Ala Lys Trp Lys Ala 65 70 75 80

Ile Leu Gly Trp Ala Glu Pro Ala Val Gln Leu Arg Cys Asp His Trp 85 90 95

Lys Pro Ala Gly Asp Leu Phe Thr Ala Ala Met Asn Met Ile Leu Pro

Asp Phe Lys Arg Pro Ala Cys Phe Gly Thr Tyr Val Val Cys Tyr Phe 115 120 125

Ser Gly Ile Cys Ser Glu Arg Asp Val Pro Asp Leu Phe Asn Ile Thr 130 140

Ser Arg Tyr Pro Leu Met Asp Arg Phe Glu Glu Val Tyr Phe Arg Ile 145 150 155 160

Gln Asp Leu Glu Met Phe Glu Pro Gly Arg Met His His Val Arg Glu 165 170 175

Leu Thr Gly Asp Asn Tyr Leu Gln Ser Pro Ser Gly Arg Gln Leu Lys
180 185 190

Glu Ala Val Leu Arg Phe Gln Glu Trp Gln Thr Gln Cys Pro Asp Trp
195 200 205

WO 01/90358 PCT/US01/16767

52

<210> 30 <211> 190 <212> PRT <213> Unknown <223> Description of Unknown Organism:worm; surmised Caenorabditis elegans Val Lys Val Met Ile Val Tyr Ala Asp Asp Asn Asp Leu His Thr Asp Cys Val Lys Leu Val Glu Asn Leu Arg Asn Cys Ala Ser Cys Asp Pro Val Phe Asp Leu Glu Lys Leu Ile Thr Ala Glu Ile Val Pro Ser Arg Trp Leu Val Asp Gln Ile Ser Ser Leu Lys Lys Phe Ile Ile Val Val Ser Asp Cys Ala Glu Lys Ile Leu Asp Thr Glu Ala Ser Glu Thr His Gln Leu Val Gln Ala Arg Pro Phe Ala Asp Leu Phe Gly Pro Ala . 85 Met Glu Met Ile Ile Arg Asp Ala Thr His Asn Phe Pro Glu Ala Arg 105 Lys Lys Tyr Ala Val Val Arg Phe Asn Tyr Ser Pro His Val Pro Pro

Gln Leu Thr Ala Phe Leu His Asn Val Glu His Thr Glu Arg Ala Asn

Asn Leu Ala Ile Leu Asn Leu Pro Thr Phe Ile Pro Glu Gln Phe Ala

120

135

Val Thr Gln Asn Ile Ser Glu Ala Gln Ile His Glu Trp Asn Leu Cys 165 170 175

Ala Ser Arg Met Met Ser Phe Phe Val Arg Asn Pro Asn Trp
180 185 190

<210> 31 <211> 178 <212> PRT

<213> Unknown

<220>

WO 01/90358

<4	0	0	>	3	1
----	---	---	---	---	---

- Phe Lys Val Met Leu Val Cys Pro Glu Val Ser Gly Arg Asp Glu Asp 1 5 10 15
- Phe Met Met Arg Ile Ala Asp Ala Leu Lys Lys Ser Asn Asn Lys Val 20 25 30
- Val Cys Asp Arg Trp Phe Glu Asp Ser Lys Asn Ala Glu Glu Asn Met
 35 40 45
- Leu His Trp Val Tyr Glu Gln Thr Lys Ile Ala Glu Lys Ile Ile Val
 50 60
- Phe His Ser Ala Tyr Tyr His Pro Arg Cys Gly Ile Tyr Asp Val Ile 65 70 75 80
- Asn Asn Phe Phe Pro Cys Thr Asp Pro Arg Leu Ala His Ile Ala Leu 85 90 95
- Thr Pro Glu Ala Gln Arg Ser Val Pro Lys Glu Val Glu Tyr Val Leu 100 105 110
- Pro Arg Asp Gln Lys Leu Leu Glu Asp Ala Phe Asp Ile Thr Ile Ala 115 120 125
- Asp Pro Leu Val Ile Asp Ile Pro Ile Glu Asp Val Ala Ile Pro Glu 130 135 140
- Asn Val Pro Ile His His Glu Ser Cys Asp Ser Ile Asp Ser Arg Asn 145 150 155 160
- Asn Ser Lys Thr His Ser Thr Asp Ser Gly Val Ser Ser Leu Ser Ser 165 170 175

Asn Ser

(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 29 November 2001 (29.11.2001)

PCT

(10) International Publication Number WO 01/090358 A3

(51) International Patent Classification⁷: C12N 15/12, C07K 14/715, 16/18, G01N 33/53, C12N 5/10

(21) International Application Number: PCT/US01/16767

(22) International Filing Date: 23 May 2001 (23.05.2001)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data: 60/206,862

24 May 2000 (24.05.2000) US

(71) Applicant: SCHERING CORPORATION [US/US]; 2000 Galloping Hill Road, Kenilworth, NJ 07033-0530 (US).

(72) Inventor: GORMAN, Daniel, M.; 6371 Central Avenue, Newark, CA 94560 (US).

(74) Agent: ZARADIC, Sandy; Schering-Plough Corporation, Patent Department, K-6-1, 1990, 2000 Galloping Hill Road, Kenilworth, NJ 07033-0530 (US).

(81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CZ,

DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, HR, HU, ID, IL, IN, IS, JP, KG, KR, KZ, LC, LK, LR, LT, LU, LV, MA, MD, MG, MK, MN, MX, MZ, NO, NZ, PL, PT, RO, RU, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UZ, VN, YU, ZA.

(84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Declaration under Rule 4.17:

as to the applicant's entitlement to claim the priority of the earlier application (Rule 4.17(iii)) for all designations

Published

with international search report

(88) Date of publication of the international search report: 23 January 2003

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

1/090358 A

(54) Title: MAMMALIAN RECEPTOR PROTEINS; RELATED REAGENTS AND METHODS

nal Application No PCT/US 01/16767

A. CLASSIFICATION OF SUBJECT MATTER
IPC 7 C12N15/12 C07K14/715 C07K16/18 G01N33/53 C12N5/10

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Minimum documentation searched (classification system followed by classification symbols) IPC 7 CO7K

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the International search (name of data base and, where practical, search terms used)

SEQUENCE SEARCH, EMBL, EPO-Internal, MEDLINE, BIOSIS, WPI Data, PAJ, CHEM ABS Data, SCISEARCH, EMBASE

	Citation of document, with indication, where appropriate, of the	Relevant to claim No.	
X	WO 96 29408 A (IMMUNEX CORP) 26 September 1996 (1996-09-26) page 2, line 35 -page 15, line	1-18	
X	YAO Z ET AL: "MOLECULAR CHARAGOF THE HUMAN INTERLEUKIN (IL)-1 CYTOKINE, ACADEMIC PRESS LTD, PHILADELPHIA, PA, US, vol. 9, no. 11, November 1997 (pages 794-800, XP000867704 ISSN: 1043-4666 page 795; figure 2	7 RECEPTOR"	1-4,6, 12-15
T	the state of the s	F 1	
X Furt	her documents are listed in the continuation of box C.	X Patent family members are listed	în annex.
Special ca A" docume consid E" earlier filling c "L" docume which citation "O" docume other "P" docume	tegories of cited documents: ent defining the general state of the art which is not lered to be of particular relevance focument but published on or after the international late int which may throw doubts on priority claim(s) or is cited to establish the publication date of another no rother special reason (as specified) ent referring to an oral disclosure, use, exhibition or	*T* later document published after the interpretation or priority date and not in conflict with cited to understand the principle or the invention "X" document of particular relevance; the cannot be considered novel or cannot involve an inventive step when the do "Y" document of particular relevance; the cannot be considered to involve an indocument is combined with one or ments, such combination being obvious in the art. "&" document member of the same patent	amational filling date the application but sory underlying the daimed invention be considered to cument is taken alone daimed invention ventive step when the are other such docu- us to a person skilled
Special ca "A" docume consid "E" earlier filing c "L" docume which citatio "O" docume other "P" docume later ti	ent defining the general state of the art which is not leted to be of particular relevance document but published on or after the international late that the state of the state of the state of another is cited to establish the publication date of another or or other special reason (as specified) and referring to an oral disclosure, use, exhibition or means and published prior to the international filing date but	"T" later document published after the inte or priority date and not in conflict with cited to understand the principle or the invention of particular relevance; the cannot be considered novel or cannot involve an inventive step when the document of particular relevance; the cannot be considered to involve an indocument is combined with one or more ments, such combination being obvious in the art.	amational filing date the application but approved the properties of the application but allowed invention be considered to cument is taken alone talmed invention ventive step when the ore other such docu- us to a person skilled family
Special ca "A" docume consid "E" earlier of filing of "L" docume which citation "O" docume other of the	ent defining the general state of the art which is not leted to be of particular relevance document but published on or after the international late into which may throw doubts on priority claim(s) or is cited to establish the publication date of another nor other special reason (as specified) ent referring to an oral disclosure, use, exhibition or means ent published prior to the international filing date but than the priority date claimed	"T" later document published after the inte or priority date and not in conflict with cited to understand the principle or th invention "X" document of particular relevance; the cannot be considered novel or cannot involve an inventive step when the do "Y" document of particular relevance; the cannot be considered to involve an in document is combined with one or ments, such combination being obvior in the art. "&" document member of the same patent	amational filing date the application but appropriate invention be considered to cument is taken alone tained invention ventive step when the ore other such docu- us to a person skilled family

Internation No PCT/US 01/16767

0.00	-1) POOLINE HEE CONCIDENCE TO BE SELECTION	PC1/US 01/16/6/
C.(Continu	ation) DOCUMENTS CONSIDERED TO BE RELEVANT Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	DATABASE EMBL 'Online! EBI; 18 February 2000 (2000-02-18) BLOECKER ET AL.: "Homo sapiens mRNA; cDNA DKFZp434N1928" Database accession no. AL133097 XP002183453 the whole document	1-4,6, 12-15
Α	WO 99 14240 A (HUMAN GENOME SCIENCES INC; RUBEN STEVEN M (US); SHI YANGGU (US)) 25 March 1999 (1999-03-25) the whole document	
Α .	TIAN E ET AL: "EVI27 ENCODES A NOVEL MEMBRANE PROTEIN WITH HOMOLOGY TO THE IL17 RECEPOR" ONCOGENE, BASINGSTOKE, HANTS, GB, vol. 19, no. 17, 20 April 2000 (2000-04-20), pages 2098-2109, XP008000240 ISSN: 0950-9232 the whole document	
Α	SHI YANGGU ET AL: "A novel cytokine receptor-ligand pair: Identification, molecular characterization, and in vivo immunomodulatory activity." JOURNAL OF BIOLOGICAL CHEMISTRY (JBC PAPERS IN PRESS, DOI 10.1074/JBC.M910228199), vol. 275, no. 25, 3 April 2000 (2000-04-03), pages 19167-19176, XP002197927 ISSN: 0021-9258 the whole document	
A	FOSSIEZ F ET AL: "INTERLEUKIN-17" INTERNATIONAL REVIEWS OF IMMUNOLOGY, HARWOOD ACADEMIC PUBLISHERS, LONDON, GB, vol. 16, no. 5/6, 1998, pages 541-551, XP000867763 ISSN: 0883-0185 the whole document	
E	WO 01 68859 A (AMGEN INC ;JING SHUQIAN (US)) 20 September 2001 (2001-09-20) page 2, line 19 -page 10, line 27; examples 1-4	1-18
E	WO 01 46420 A (GENENTECH INC) 28 June 2001 (2001-06-28) page 5, line 1 -page 16, line 17; figures 17,18	1-18
	-/	

Internal Application No PCT/US 01/16767

4 November 1999 (1999-11-04) SEQ ID NO's 125 and 303 and corresponding cDNA's page 3 -page 17 DATABASE EMBL 'Online! EBI; 22 July 1999 (1999-07-22) NCI-CGAP: "ty30c03.x1 NCI_CGAP_UT2 Homo sapiens cDNA clone IMAGE:2280580 3' mRNA sequence" Database accession no. AI861981 XP002209553 the whole document			PCT/US 01/	/16767
WO 99 55865 A (GENESIS RES & DEV CORP LTD) 4 November 1999 (1999-11-04) SEQ ID NO's 125 and 303 and corresponding cDNA's page 3 -page 17 DATABASE EMBL 'Online! EBI; 22 July 1999 (1999-07-22) NCI-CGAP: "ty30c03.x1 NCI_CGAP_UT2 Homo sapiens cDNA clone IMAGE:2280580 3' mRNA sequence" Database accession no. AI861981 XP002209553 the whole document DATABASE EMBL 'Online! EBI; 21 October 1999 (1999-10-21) MARRA ET AL.: "u191g04.y1 Sugano mouse kidney mkia Mus musculus cDNA clone IMAGE:2159478 5', mRNA sequence" Database accession no. AW107583 XP002209554 the whole document		·		
4 November 1999 (1999-11-04) SEQ ID NO's 125 and 303 and corresponding cDNA's page 3 -page 17 DATABASE EMBL 'Online! EBI; 22 July 1999 (1999-07-22) NCI-CGAP: "ty30c03.x1 NCI_CGAP_UT2 Homo saptens cDNA clone IMAGE:2280580 3' mRNA sequence" Database accession no. AI861981 XP002209553 the whole document DATABASE EMBL 'Online! EBI; 21 October 1999 (1999-10-21) MARRA ET AL.: "ul91g04.y1 Sugano mouse kidney mkia Mus musculus cDNA clone IMAGE:2159478 5', mRNA sequence" Database accession no. AW107583 XP002209554 the whole document	ategory °	Citation of document, with indication, where appropriate, of the relevant passages		Relevant to claim No.
EBI; 22 July 1999 (1999-07-22) NCI-CGAP: "ty30c03.x1 NCI_CGAP_UT2 Homo sapiens cDNA clone IMAGE:2280580 3' mRNA sequence" Database accession no. AI861981 XP002209553 the whole document DATABASE EMBL 'Online! EBI; 21 October 1999 (1999-10-21) MARRA ET AL.: "u191g04.y1 Sugano mouse kidney mkia Mus musculus cDNA clone IMAGE:2159478 5', mRNA sequence" Database accession no. AW107583 XP002209554 the whole document	(4 November 1999 (1999-11-04) SEQ ID NO's 125 and 303 and corresponding cDNA's		1-18
EBI; 21 October 1999 (1999-10-21) MARRA ET AL.: "u191g04.y1 Sugano mouse kidney mkia Mus musculus cDNA clone IMAGE:2159478 5', mRNA sequence" Database accession no. AW107583 XP002209554 the whole document	(EBI; 22 July 1999 (1999-07-22) NCI-CGAP: "ty30c03.x1 NCI_CGAP_UT2 Homo sapiens cDNA clone IMAGE:2280580 3' mRNA sequence" Database accession no. AI861981 XP002209553		12-18
	X	EBI; 21 October 1999 (1999-10-21) MARRA ET AL.: "ul91g04.y1 Sugano mouse kidney mkia Mus musculus cDNA clone IMAGE:2159478 5', mRNA sequence" Database accession no. AW107583 XP002209554 the whole document		12-18

Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)
This International Search Report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:
Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:
2. X Claims Nos.: 19, 20 because they relate to parts of the International Application that do not comply with the prescribed requirements to such
an extent that no meaningful International Search can be carried out, specifically: see FURTHER INFORMATION sheet PCT/ISA/210
3. Claims Nos.:
3. Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).
Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)
This International Searching Authority found multiple inventions in this international application, as follows:
see additional sheet
As all required additional search fees were timely paid by the applicant, this International Search Report covers all searchable claims.
2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
As only some of the required additional search fees were timely paid by the applicant, this International Search Report covers only those claims for which fees were paid, specifically claims Nos.:
4. No required additional search fees were timely paid by the applicant. Consequently, this International Search Report is restricted to the invention first mentioned in the claims; it is covered by claims Nos
Remark on Protest The additional search fees were accompanied by the applicant's protest.
No protest accompanied the payment of additional search fees.

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

This International Searching Authority found multiple (groups of) inventions in this international application, as follows:

1. Claims: 1-18 (all partly)

Compositions comprising primate DCRS8 polypeptides and nucleic acid sequences (SEQ ID NO's 14 and 13, respectively) as well as further embodiments relating to the said polypeptides and nucleic acid sequences.

2. Claims: 1-18 (all partly)

Compositions comprising primate or rodent DCRS9 polypeptides and nucleic acid sequences (SEQ ID NO's 16, 19 and 17, 20, respectively) as well as further embodiments relating to the said polypeptides and nucleic acid sequences.

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

Continuation of Box I.2

Claims Nos.: 19, 20

Present claims 19 and 20 relate to a method defined by reference to a desirable characteristic or property, namely contacting a cell with an unspecified agonist or antagonist of a mammalian protein of the application (e.g. DCRS8 or DCRS9).

The claims cover all methods having this characteristic or property, whereas the application provides support within the meaning of Article 6 PCT and/or disclosure within the meaning of Article 5 PCT for only a very limited number of such methods. In the present case, the claims so lack support, and the application so lacks disclosure, that a meaningful search over the whole of the claimed scope is impossible. Independent of the above reasoning, the claims also lack clarity (Article 6 PCT). An attempt is made to define the method by reference to a result to be achieved. Again, this lack of clarity in the present case is such as to render a meaningful search over the whole of the claimed scope impossible. Consequently, no search has been carried out for claims 19 and 20.

The applicant's attention is drawn to the fact that claims, or parts of claims, relating to inventions in respect of which no international search report has been established need not be the subject of an international preliminary examination (Rule 66.1(e) PCT). The applicant is advised that the EPO policy when acting as an International Preliminary Examining Authority is normally not to carry out a preliminary examination on matter which has not been searched. This is the case irrespective of whether or not the claims are amended following receipt of the search report or during any Chapter II procedure.

Intermal Application No
PCT/US 01/16767

				_	PCI/US	01/16767
	atent document d in search report		Publication date		Patent family member(s)	Publication date
WO	9629408	A	26-09-1996	AU CA EP JP NO NZ US US US US US US	696775 B2 5526396 A 2215394 A1 0817847 A1 11503309 T 974258 A 306653 A 6096305 A 6072033 A 6197525 B1 6191104 B1 6100235 A 6072037 A 9629408 A1 5869286 A	17-09-1998 08-10-1996 26-09-1996 14-01-1998 26-03-1999 24-11-1997 29-03-1999 01-08-2000 06-06-2000 06-03-2001 20-02-2001 08-08-2000 06-06-2000 26-09-1996 09-02-1999
MO	9914240	Α	25-03-1999	AU EP WO	9482498 A 1015488 A1 9914240 A1	05-04-1999 05-07-2000 25-03-1999
WO	0168859	A	20-09-2001	AU WO US	4754501 A 0168859 A2 2002045213 A1	24-09-2001 20-09-2001 18-04-2002
WO	0146420	A	28-06-2001	AUOUUUU WAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	2590901 A 0146420 A2 2055401 A 2224800 A 2596700 A 2877900 A 3514400 A 1220905 A2 0053754 A1 0053756 A2 0053758 A2 0140466 A2 2002094416 A1 3434601 A 7573000 A 1208202 A2 0116318 A2 0140465 A2 2883600 A 3381600 A 3774300 A 5152700 A 5459900 A 6391000 A 1159419 A1 1210418 A1 1208195 A2 1212417 A2 1185648 A2 0053757 A2 0073454 A1 0073445 A2 0077037 A2 0073348 A2	03-07-2001 28-06-2001 12-06-2001 28-09-2000 28-09-2000 28-09-2000 10-07-2002 14-09-2000 14-09-2000 07-06-2001 26-03-2001 29-05-2002 08-03-2001 28-09-2000 18-12-2000 02-01-2001 18-12-2001 05-12-2001 05-06-2002 29-05-2002 12-06-2002 29-05-2002 13-03-2001 05-12-2001 05-12-2001 05-12-2000 07-12-2000 07-12-2000 07-12-2000

Internation Application No
PCT/US 01/16767

		FC1/U3 U1/10/0/			
Patent document cited in search report	Publication date		Patent family member(s)		Publication date
WO 0146420	A	WO	0073452		07-12-2000
		WO	0109327		08-02-2001
		ŲS	2002072496		13-06-2002
		ÚS	2002072067		13-06-2002
		US	2002072092		13-06-2002
		US	2002072497	A1	13-06-2002
		ΑU	1916701	Α	16-07-2001
		ΑU	6802801	Α	24-09-2001
		WO	0149715		12-07-2001
		WO	0168848		20-09-2001
		US	2002098505		25-07-2002
		US	2002098506		25-07-2002
		US	2002098507		25-07-2002
		US	2002090681		11-07-2002
		US	2002010137		24-01-2002
		US	2002058309	A1	16-05-2002
WO 9955865	A 04-11-1999	US	6150502	Α	21-11-2000
		ΑÜ	3961499		16-11-1999
		CA	2327317	A1	04-11-1999
•		CN	1307637	T	08-08-2001
		EP	1073740	A1	07-02-2001
		JP	2002512798	T	08-05-2002
		WO	9955865	A1	04-11-1999
		NZ	507728	Α	28-06-2002

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 3 January 2002 (03.01.2002)

(10) International Publication Number WO 02/00690 A2

(51)	International Pat	ent Classification7: C07	K 14/00		09/854,208	10 May 2001 (10.05.2001)	US
					09/854,280	10 May 2001 (10.05.2001)	US
(21)	International App	olication Number: PCT/US	01/19692		09/866,028	25 May 2001 (25.05.2001)	US
(22)	International Fili	Data: 30 I 2001 (20	06 2001\		09/866,034	25 May 2001 (25.05.2001)	US
(22)	IUICTUALIOUAI FIII	ng Date: 20 June 2001 (20.	00.2001)		PCT/US01/17092	25 May 2001 (25.05.2001)	US
(25)	Filing Language:		English		09/870,574	30 May 2001 (30.05.2001)	US
(-0)	g Danibunger		2		PCT/US01/17443	30 May 2001 (30.05.2001)	US
(26)	Publication Lang	uage:	English	`~	PCT/US01/17800	1 June 2001 (01.06.2001)	US
(30)	Priority Data:			(71)	•• •	nated States except US): GE	
	60/213,637	23 June 2000 (23.06.200	•			1 DNA Way, South San France	cisco,
	60/219,556	20 July 2000 (20.07.200	•		CA 94080-4990 (US).		
	60/220,624	25 July 2000 (25.07.200					
	60/220,664	25 July 2000 (25.07.200		` '	Inventors; and		
	PCT/US00/20710	28 July 2000 (28.07.200	•	(75)	• •	(for US only): BAKER, K	
	60/222,695	2 August 2000 (02.08.200	•			lian Run Drive, Damestown,	
	09/643,657	17 August 2000 (17.08.200	•	•		RA, Napoleone [US/US];	
	PCT/US00/23522	23 August 2000 (23.08.200				San Francisco, CA 94109	
	PCT/US00/23328	24 August 2000 (24.08.200			•	[CH/US]; #5, 1121 Tenn	
=	60/230,978	7 September 2000 (07.09.200				CA 94107 (US). GERRIT	
	60/000,000	15 September 2000 (15.09.200			• • • • • • • • • • • • • • • • • • • •	11 Parrott Drive, San Mateo	•
Ē		18 September 2000 (18.09.200	•			RD, Audrey [CA/US]; 110 C	_
	09/665,350	18 September 2000 (18.09.200	•			CA 94131 (US). GODOW	
	60/242,922	24 October 2000 (24.10.200	•			7 Easton Drive, Burlingame	•
	09/709,238	8 November 2000 (08.11.200	0) US			Y, Austin, L. [US/US]; 1 D	
3	PCT/US00/30952					002 (US). HILLAN, Kenne	,
		8 November 2000 (08.11.200	0) US		•	Street, San Francisco, CA 9	
	PCT/US00/30873				• •	ot, A. [US/US]; 990 Cherry S	
		10 November 2000 (10.11.200	0) US		•	(US). PAN, James [CA/US];	
	PCT/US00/32678					elmont, CA 94002 (US). PA	
		1 December 2000 (01.12.200	-			1756 Terrace Drive, Belmon	
-	09/747,259	20 December 2000 (20.12.200	0) US			N, Jean-Philippe, F. [FR/US]	
=	PCT/US00/34956					illbrae, CA 94030 (US). WA	
=		20 December 2000 (20.12.200	•			US]; 128 Corliss Drive, Mo	
	09/767,609	22 January 2001 (22.01.200	•			LIAMS, P., Mickey [US/US]	
=	09/796,498	28 February 2001 (28.02.200	1) US			on Bay, CA 94019 (US). W(
	PCT/US01/06520					5 Southdown Court, Hillsbor	
= =		28 February 2001 (28.02.200	•			Weilan [CN/US]; 119 Barke	entine
	PCT/US01/06666	1 March 2001 (01.03.200			Street, Foster City, CA	94404 (US).	
=	09/802,706	9 March 2001 (09.03.200	•				
2	09/808,689	14 March 2001 (14.03.200	•	(74)	•	Atulya, R. et al.; c/o GEI	
-	09/816,744	22 March 2001 (22.03.200	•			DNA Way, South San France	cisco,
	09/828,366	5 April 2001 (05.04.200	1) US		CA 94080-4990 (US).		

[Continued on next page]

(54) Title: COMPOSITIONS AND METHODS FOR THE DIAGNOSIS AND TREATMENT OF DISORDERS INVOLVING AN-**GIOGENESIS**

(57) Abstract: Compositions and methods are disclosed for stimulating or inhibiting angiogenesis and/or cardiovascularization in mammals, including humans. Pharmaceutical compositions are based on polypeptides or antagonists thereto that have been identified for one or more of these uses. Disorders that can be diagnosed, prevented, or treated by the compositions herein include trauma such as wounds, various cancers, and disorders of the vessels including atherosclerosis and cardiac hypertrophy. In addition, the present invention is directed to novel polypeptides and to nucleic acid molecules encoding those polypeptides. Also provided herein are vectors and host cells comprising those nucleic acid sequences, chimeric polypeptide molecules comprising the polypeptides of the present invention fused to heterologous polypeptide sequences, antibodies which bind to the polypeptides of the present invention and to methods for producing the polypeptides of the present invention.

- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European

patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:

 without international search report and to be republished upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

COMPOSITIONS AND METHODS FOR THE DIAGNOSIS AND TREATMENT OF DISORDERS INVOLVING ANGIOGENESIS

Field of the Invention

The present invention relates to compositions and methods useful for the modulation (e.g., promotion or inhibition) of angiogenesis and/or cardiovascularization in mammals in need of such biological effect. The present invention further relates to the diagnosis and treatment of disorders involving angiogenesis (e.g., cardiovascular as well as oncological disorders).

10

15

20

25

30

35

5

2. Background of the Invention

2.1. Angiogenesis

Angiogenesis, defined as the growth or sprouting of new blood vessels from existing vessels, is a complex process that primarily occurs during embryonic development. Under normal physiological conditions in adults, angiogenesis takes place only in very restricted situations such as hair growth and wounding healing (Auerbach, W. and Auerbach, R., 1994, *Pharmacol Ther* 63(3):265-3 11; Ribatti et al.,1991, *Haematologica* 76(4):3 11-20; Risau, 1997, *Nature* 386(6626):67 1-4). Unregulated angiogenesis has gradually been recognized to be responsible for a wide range of disorders, including, but not limited to cardiovascular disease, cancer, rheumatoid arthritis, psoriasis and diabetic retinopathy (Folkman, 1995, *Nat Med* 1(1):27-31; Isner, 1999, *Circulation* 99(13): 1653-5; Koch, 1998, *Arthritis Rheum* 41(6):951-62; Walsh, 1999, *Rheumatology (Oxford)* 38(2):103-12; Ware and Simons, 1997, *Nat Med* 3(2): 158-64).

2.2. Cardiac Disorders and Factors

Heart failure affects approximately five million Americans, and new cases of heart failure number about 400,000 each year. It is the single most frequent cause of hospitalization for people age 65 and older in the United States. Recent advances in the management of acute cardiac diseases, including acute myocardial infarction, are resulting in an expanding patient population that will eventually develop chronic heart failure. From 1979 to 1995, hospitalizations for congestive heart failure (CHF) rose from 377,000 to 872,000 (a 130 percent increase) and CHF deaths increased 116 percent.

CHF is a syndrome characterized by left ventricular dysfunction, reduced exercise tolerance, impaired quality of life, and markedly shortened life expectancy. The sine qua non of heart failure is an inability of the heart to pump blood at a rate sufficient to meet the metabolic needs of the body's tissues (in other words, there is insufficient cardiac output).

At least four major compensatory mechanisms are activated in the setting of heart failure to boost cardiac output, including peripheral vasoconstriction, increased heart rate, increased cardiac contractility, and increased plasma volume. These effects are mediated primarily by the sympathetic nervous system and the renin-angiotensin system. See, Eichhorn, American Journal of Medicine, 104: 163-169 (1998). Increased output from the

sympathetic nervous system increases vascular tone, heart rate, and contractility. Angiotensin II elevates blood pressure by 1) directly stimulating vascular smooth muscle contraction, 2) promoting plasma volume expansion by stimulating aldosterone and antidiuretic hormone secretion, 3) stimulating sympathetic-mediated vascular tone, and 4) catalyzing the degradation of bradykinin, which has vasodilatory and natriuretic activity. See, review by Brown and Vaughan, Circulation, 97: 1411-1420 (1998). As noted below, angiotensin II may also have directly deleterious effects on the heart by promoting myocyte necrosis (impairing systolic function) and intracardiac fibrosis (impairing diastolic and in some cases systolic function). See, Weber, Circulation, 96: 4065-4082 (1998).

5

10

15

20

25

30

35

A consistent feature of congestive heart failure (CHF) is cardiac hypertrophy, an enlargement of the heart that is activated by both mechanical and hormonal stimuli and enables the heart to adapt to demands for increased cardiac output. Morgan and Baker, Circulation, 83: 13-25 (1991). This hypertrophic response is frequently associated with a variety of distinct pathological conditions such as hypertension, aortic stenosis, myocardial infarction, cardiomyopathy, valvular regurgitation, and intracardiac shunt, all of which result in chronic hemodynamic overload.

Hypertrophy is generally defined as an increase in size of an organ or structure independent of natural growth that does not involve tumor formation. Hypertrophy of the heart is due either to an increase in the mass of the individual cells (myocytes), or to an increase in the number of cells making up the tissue (hyperplasia), or both. While the enlargement of an embryonic heart is largely dependent on an increase in myocyte number (which continues until shortly after birth), post-natal cardiac myocytes lose their proliferative capacity. Further growth occurs through hypertrophy of the individual cells.

Adult myocyte hypertrophy is initially beneficial as a short term response to impaired cardiac function by permitting a decrease in the load on individual muscle fibers. With severe, long-standing overload, however, the hypertrophied cells begin to deteriorate and die. Katz, "Heart Failure", in: Katz A.M. ed., Physiology of the Heart (New York: Raven Press, 1992) pp. 638-668. Cardiac hypertrophy is a significant risk factor for both mortality and morbidity in the clinical course of heart failure. Katz, Trends Cardiovasc. Med., 5: 37-44 (1995). For further details of the causes and pathology of cardiac hypertrophy see, e.g., Heart Disease, A Textbook of Cardiovascular Medicine, Braunwald, E. ed. (W.B. Saunders Co., 1988), Chapter 14, "Pathophysiology of Heart Failure."

On a cellular level, the heart is composed of myocytes and surrounding support cells, generically called non-myocytes. While non-myocytes are primarily fibroblast/mesenchymal cells, they also include endothelial and smooth muscle cells. Indeed, although myocytes make up most of the adult myocardial mass, they represent only about 30% of the total cell numbers present in heart. In response to hormonal, physiological, hemodynamic, and pathological stimuli, adult ventricular muscle cells can adapt to increased workloads through the activation of a hypertrophic process. This response is characterized by an increase in myocyte cell size and contractile protein content of individual cardiac muscle cells, without concomitant cell division and activation of embryonic genes, including the gene for atrial natriuretic peptide (ANP). Chien et al., FASEB J., 5: 3037-3046 (1991); Chien et al., Annu. Rev. Physiol., 55: 77-95 (1993). An increment in myocardial mass as a result of an increase in myocyte size that is associated with an accumulation of interstitial collagen within the extracellular matrix and around intramyocardial coronary arteries has been described in left ventricular hypertrophy secondary to pressure overload

in humans. Caspari et al., <u>Cardiovasc. Res.</u>, <u>11</u>: 554-558 (1977); Schwarz et al., <u>Am. J. Cardiol.</u>, <u>42</u>: 895-903 (1978); Hess et al., <u>Circulation</u>, <u>63</u>: 360-371 (1981); Pearlman et al., <u>Lab. Invest.</u>, <u>46</u>: 158-164 (1982).

It has also been suggested that paracrine factors produced by non-myocyte supporting cells may additionally be involved in the development of cardiac hypertrophy, and various non-myocyte derived hypertrophic factors, such as, leukocyte inhibitory factor (LIF) and endothelin, have been identified. Metcalf, Growth Factors, 7: 169-173 (1992); Kurzrock et al., Endocrine Reviews, 12: 208-217 (1991); Inoue et al., Proc. Natl. Acad. Sci. USA, 86: 2863-2867 (1989); Yanagisawa and Masaki, Trends Pharm. Sci., 10: 374-378 (1989); U.S. Patent No. 5,573,762 (issued November 12, 1996). Further exemplary factors that have been identified as potential mediators of cardiac hypertrophy include cardiotrophin-1 (CT-1) (Pennica et al., Proc. Nat. Acad. Sci. USA, 92: 1142-1146 (1995)), catecholamines, adrenocorticosteroids, angiotensin, and prostaglandins.

5

10

15

20

25

30

35

At present, the treatment of cardiac hypertrophy varies depending on the underlying cardiac disease. Catecholamines, adrenocorticosteroids, angiotensin, prostaglandins, LIF, endothelin (including endothelin-1, -2, and -3 and big endothelin), and CT-1 are among the factors identified as potential mediators of hypertrophy. For example, beta-adrenergic receptor blocking drugs (beta-blockers, e.g., propranolol, timolol, tertalolol, carteolol, nadolol, betaxolol, penbutolol, acetobutolol, atenolol, metoprolol, carvedilol, etc.) and verapamil have been used extensively in the treatment of hypertrophic cardiomyopathy. The beneficial effects of beta-blockers on symptoms (e.g., chest pain) and exercise tolerance are largely due to a decrease in the heart rate with a consequent prolongation of diastole and increased passive ventricular filling. Thompson et al., Br. Heart J., 44: 488-98 (1980); Harrison et al., Circulation, 29: 84-98 (1964). Verapamil has been described to improve ventricular filling and probably reducing myocardial ischemia. Bonow et al., Circulation, 72: 853-64 (1985).

Nifedipine and diltiazem have also been used occasionally in the treatment of hypertrophic cardiomyopathy. Lorell et al., Circulation, 65: 499-507 (1982); Betocchi et al., Am. J. Cardiol., 78: 451-457 (1996). However, because of its potent vasodilating properties, nifedipine may be harmful, especially in patients with outflow obstruction. Disopyramide has been used to relieve symptoms by virtue of its negative inotropic properties. Pollick, N. Engl. J. Med., 307: 997-999 (1982). In many patients, however, the initial benefits decrease with time. Wigle et al., Circulation, 92: 1680-1692 (1995). Antihypertensive drug therapy has been reported to have beneficial effects on cardiac hypertrophy associated with elevated blood pressure. Examples of drugs used in antihypertensive therapy, alone or in combination, are calcium antagonists, e.g., nitrendipine; adrenergic receptor blocking agents, e.g., those listed above; angiotensin converting enzyme (ACE) inhibitors such as quinapril, captopril, enalapril, ramipril, benazepril, fosinopril, and lisinopril; diuretics, e.g., chlorothiazide, hydrochlorothiazide, hydroflumethazide, methylchlothiazide, benzthiazide, dichlorphenamide, acetazolamide, and indapamide; and calcium channel blockers, e.g., diltiazem, nifedipine, verapamil, and nicardipine.

For example, treatment of hypertension with diltiazem and captopril showed a decrease in left ventricular muscle mass, but the Doppler indices of diastolic function did not normalize. Szlachcic et al., Am. J. Cardiol., 63: 198-201 (1989); Shahi et al., Lancet, 336: 458-461 (1990). These findings were interpreted to indicate that excessive amounts of interstitial collagen may remain after regression of left ventricular hypertrophy. Rossi et al., Am. Heart J., 124: 700-709 (1992). Rossi et al., supra, investigated the effect of captopril on the prevention and

5

10

15

20

25

30

35

regression of myocardial cell hypertrophy and interstitial fibrosis in pressure overload cardiac hypertrophy, in experimental rats,

Agents that increase cardiac contractility directly (iontropic agents) were initially thought to benefit patients with heart failure because they improved cardiac output in the short term. However, all positive inotropic agents except digoxigenin have been found to result in increased long-term mortality, in spite of short-term improvements in cardiac performance. Massie, <u>Curr. Op. in Cardiology</u>, <u>12</u>: 209-217 (1997); Reddy et al., <u>Curr. Opin. Cardiol.</u>, <u>12</u>: 233-241 (1997). Beta-adrenergic receptor blockers have recently been advocated for use in heart failure. Evidence from clinical trials suggests that improvements in cardiac function can be achieved without increased mortality, though documented improvements of patient survival have not yet been demonstrated. *See* also, U.S. Pat. Nos. 5,935,924, 5,624,806; 5,661,122; and 5,610,134 and WO 95/28173 regarding the use of cardiotropin-1 or antagonists thereof, or growth hormone and/or insulin-like growth factor-I in the treatment of CHF. Another treatment modality is heart transplantation, but this is limited by the availability of donor hearts.

Endothelin is a vasoconstricting peptide comprising 21 amino acids, isolated from swine arterial endothelial culture supernatant and structurally determined. Yanagisawa et al., Nature, 332: 411-415 (1988). Endothelin was later found to exhibit various actions, and endothelin antibodies as endothelin antagonists have proven effective in the treatment of myocardial infarction, renal failure, and other diseases. Since endothelin is present in live bodies and exhibits vasoconstricting action, it is expected to be an endogenous factor involved in the regulation of the circulatory system, and may be associated with hypertension, cardiovascular diseases such as myocardial infarction, and renal diseases such as acute renal failure. Endothelin antagonists are described, for example, in U.S. Pat. No. 5,773,414; JP Pat. Publ. 3130299/1991, EP 457,195; EP 460,679; and EP 552,489. A new endothelin B receptor for identifying endothelin receptor antagonists is described in U.S. Pat. No. 5,773,223.

Current therapy for heart failure is primarily directed to using angiotensin-converting enzyme (ACE) inhibitors, such as captopril, and diuretics. These drugs improve hemodynamic profile and exercise tolerance and reduce the incidence of morbidity and mortality in patients with CHF. Kramer et al., Circulation, 67(4): 807-816 (1983); Captopril Multicenter Research Group, J.A.C.C., 2(4): 755-763 (1983); The CONSENSUS Trial Study Group, N. Engl. J. Med., 316(23): 1429-1435 (1987); The SOLVD Investigators, N. Engl. J. Med., 325(5): 293-302 (1991). Further, they are useful in treating hypertension, left ventricular dysfunction, atherosclerotic vascular disease, and diabetic nephropathy. Brown and Vaughan, supra. However, despite proven efficacy, response to ACE inhibitors has been limited. For example, while prolonging survival in the setting of heart failure, ACE inhibitors appear to slow the progression towards end-stage heart failure, and substantial numbers of patients on ACE inhibitors have functional class III heart failure.

Moreover, improvement of functional capacity and exercise time is only small and mortality, although reduced, continues to be high. The CONSENSUS Trial Study Group, N. Engl. J. Med., 316(23): 1429-1453 (1987); The SOLVD Investigators, N. Engl. J. Med., 325(5): 293-302 (1991); Cohn et al., N. Engl. J. Med., 325(5): 303-310 (1991); The Captopril-Digoxin Multicenter Research Group, JAMA, 259(4): 539-544 (1988). Hence, ACE inhibitors consistently appear unable to relieve symptoms in more than 60% of heart failure patients and reduce mortality of heart failure only by approximately 15-20%. For further adverse effects, see Brown and Vaughan,

supra.

5

10

15

20

25

30

35

An alternative to ACE inhibitors is represented by specific AT1 receptor antagonists. Clinical studies are planned to compare the efficacy of these two modalities in the treatment of cardiovascular and renal disease. However, animal model data suggests that the ACE/Ang II pathway, while clearly involved in cardiac hypertrophy, is not the only, or even the primary pathway active in this role. Mouse genetic "knockout" models have been made to test individual components of the pathway. In one such model, the primary cardiac receptor for Ang II, AT sub 1A, has been genetically deleted; these mice do not develop hypertrophy when Ang II is given experimentally (confirming the basic success of the model in eliminating hypertrophy secondary to Ang II). However, when the aorta is constricted in these animals (a model of hypertensive cardiac stress), the hearts still become hypertrophic. This suggests that alternative signaling pathways, not depending on this receptor (AT sub 1A), are activated in hypertension. ACE inhibitors would presumably not be able to inhibit these pathways. See, Harada et al., Circulation, 97: 1952-1959 (1998). See also, Homey, Circulation, 97: 1890-1892 (1998) regarding the enigma associated with the process and mechanism of cardiac hypertrophy.

About 750,000 patients suffer from acute myocardial infarction (AMI) annually, and approximately one-fourth of all deaths in the United States are due to AMI. In recent years, thrombolytic agents, e.g., streptokinase, urokinase, and in particular tissue plasminogen activator (t-PA) have significantly increased the survival of patients who suffered myocardial infarction. When administered as a continuous intravenous infusion over 1.5 to 4 hours, t-PA produces coronary patency at 90 minutes in 69% to 90% of the treated patients. Topol et al., Am. J. Cardiol., 61: 723-728 (1988); Neuhaus et al., J. Am. Coll. Cardiol., 12: 581-587 (1988); Neuhaus et al., J. Am. Coll. Cardiol., 14: 1566-1569 (1989). The highest patency rates have been reported with high dose or accelerated dosing regimens. Topol, J. Am. Coll. Cardiol., 15: 922-924 (1990). t-PA may also be administered as a single bolus, although due to its relatively short half-life, it is better suited for infusion therapy. Tebbe et al., Am. J. Cardiol., 64: 448-453 (1989). A t-PA variant, specifically designed to have longer half-life and very high fibrin specificity, TNK t-PA (a T103N, N117Q, KHRR(296-299)AAAA t-PA variant, Keyt et al., Proc. Natl. Acad. Sci. USA, 91: 3670-3674 (1994)) is particularly suitable for bolus administration. However, despite all these advances, the long-term prognosis of patient survival depends greatly on the post-infarction monitoring and treatment of the patients, which should include monitoring and treatment of cardiac hypertrophy.

2.3. Growth Factors

Various naturally occurring polypeptides reportedly induce the proliferation of endothelial cells. Among those polypeptides are the basic and acidic fibroblast growth factors (FGF) (Burgess and Maciag, Annual Rev. Biochem., 58: 575 (1989)), platelet-derived endothelial cell growth factor (PD-ECGF) (Ishikawa et al., Nature, 338: 557 (1989)), and vascular endothelial growth factor (VEGF). Leung et al., Science, 246: 1306 (1989); Ferrara and Henzel, Biochem. Biophys. Res. Commun., 161: 851 (1989); Tischer et al., Biochem. Biophys. Res. Commun., 165: 1198 (1989); EP 471,754B granted July 31, 1996.

Media conditioned by cells transfected with the human VEGF (hVEGF) cDNA promoted the proliferation of capillary endothelial cells, whereas control cells did not. Leung et al., Science, 246: 1306 (1989). Several

additional cDNAs were identified in human cDNA libraries that encode 121-, 189-, and 206-amino acid isoforms of hVEGF (also collectively referred to as hVEGF-related proteins). The 121-amino acid protein differs from hVEGF by virtue of the deletion of the 44 amino acids between residues 116 and 159 in hVEGF. The 189-amino acid protein differs from hVEGF by virtue of the insertion of 24 amino acids at residue 116 in hVEGF, and apparently is identical to human vascular permeability factor (hVPF). The 206-amino acid protein differs from hVEGF by virtue of an insertion of 41 amino acids at residue 116 in hVEGF. Houck et al., Mol. Endocrin., 5: 1806 (1991); Ferrara et al., J. Cell. Biochem., 47: 211 (1991); Ferrara et al., Endocrine Reviews, 13: 18 (1992); Keck et al., Science, 246: 1309 (1989); Connolly et al., J. Biol. Chem., 264: 20017 (1989); EP 370,989 published May 30, 1990.

It is now well established that angiogenesis, which involves the formation of new blood vessels from preexisting endothelium, is implicated in the pathogenesis of a variety of disorders. These include solid tumors and metastasis, atherosclerosis, retrolental fibroplasia, hemangiomas, chronic inflammation, intraocular neovascular syndromes such as proliferative retinopathies, e.g., diabetic retinopathy, age-related macular degeneration (AMD), neovascular glaucoma, immune rejection of transplanted corneal tissue and other tissues, rheumatoid arthritis, and psoriasis. Folkman et al., J. Biol. Chem., 267: 10931-10934 (1992); Klagsbrun et al., Annu. Rev. Physiol., 53: 217-239 (1991); and Garner A., "Vascular diseases", In: Pathobiology of Ocular Disease. A Dynamic Approach, Garner A., Klintworth GK, eds., 2nd Edition (Marcel Dekker, NY, 1994), pp 1625-1710.

In the case of tumor growth, angiogenesis appears to be crucial for the transition from hyperplasia to neoplasia, and for providing nourishment for the growth and metastasis of the tumor. Folkman et al., Nature, 339: 58 (1989). The neovascularization allows the tumor cells to acquire a growth advantage and proliferative autonomy compared to the normal cells. A tumor usually begins as a single aberrant cell which can proliferate only to a size of a few cubic millimeters due to the distance from available capillary beds, and it can stay 'dormant' without further growth and dissemination for a long period of time. Some tumor cells then switch to the angiogenic phenotype to activate endothelial cells, which proliferate and mature into new capillary blood vessels. These newly formed blood vessels not only allow for continued growth of the primary tumor, but also for the dissemination and recolonization of metastatic tumor cells. Accordingly, a correlation has been observed between density of microvessels in tumor sections and patient survival in breast cancer as well as in several other tumors. Weidner et al., N. Engl. J. Med, 324: 1-6 (1991); Horak et al., Lancet, 340: 1120-1124 (1992); Macchiarini et al., Lancet, 340: 145-146 (1992). The precise mechanisms that control the angiogenic switch is not well understood, but it is believed that neovascularization of tumor mass results from the net balance of a multitude of angiogenesis stimulators and inhibitors (Folkman, 1995, Nat Med 1(1):27-31).

The search for positive regulators of angiogenesis has yielded many candidates, including aFGF, bFGF, TGF-α, TGF-β, HGF, TNF-α, angiogenin, IL-8, etc. Folkman et al., J.B.C., supra, and Klagsbrun et al., supra. The negative regulators so far identified include thrombospondin (Good et al., Proc. Natl. Acad. Sci. USA., 87: 6624-6628 (1990)), the 16-kilodalton N-terminal fragment of prolactin (Clapp et al., Endocrinology, 133: 1292-1299 (1993)), angiostatin (O'Reilly et al., Cell, 72: 315-328 (1994)), and endostatin. O'Reilly et al., Cell, 88: 277-285 (1996).

Work done over the last several years has established the key role of VEGF, not only in stimulating vascular endothelial cell proliferation, but also in inducing vascular permeability and angiogenesis. Ferrara et al., Endocr. Rev., 18: 4-25 (1997). The finding that the loss of even a single VEGF allele results in embryonic lethality points to an irreplaceable role played by this factor in the development and differentiation of the vascular system. Furthermore, VEGF has been shown to be a key mediator of neovascularization associated with tumors and intraocular disorders. Ferrara et al., Endocr. Rev., supra. The VEGF mRNA is overexpressed by the majority of human tumors examined. Berkman et al., J. Clin. Invest., 91: 153-159 (1993); Brown et al., Human Pathol., 26: 86-91 (1995); Brown et al., Cancer Res., 53: 4727-4735 (1993); Mattern et al., Brit. J. Cancer, 73: 931-934 (1996); Dvorak et al., Am. J. Pathol., 146: 1029-1039 (1995).

10

5

Also, the concentration levels of VEGF in eye fluids are highly correlated to the presence of active proliferation of blood vessels in patients with diabetic and other ischemia-related retinopathies. Aiello et al., N. Engl. J. Med., 331: 1480-1487 (1994). Furthermore, recent studies have demonstrated the localization of VEGF in choroidal neovascular membranes in patients affected by AMD. Lopez et al., Invest. Ophthalmol. Vis. Sci., 37: 855-868 (1996).

15

Anti-VEGF neutralizing antibodies suppress the growth of a variety of human tumor cell lines in nude mice (Kim et al., Nature, 362: 841-844 (1993); Warren et al., J. Clin. Invest., 95: 1789-1797 (1995); Borgström et al., Cancer Res., 56: 4032-4039 (1996); Melnyk et al., Cancer Res., 56: 921-924 (1996)) and also inhibit intraocular angiogenesis in models of ischemic retinal disorders. Adamis et al., Arch. Ophthalmol., 114: 66-71 (1996). Therefore, anti-VEGF monoclonal antibodies or other inhibitors of VEGF action are promising candidates for the treatment of solid humors and various intraocular neovascular disorders. Such antibodies are described, for example, in EP 817,648 published January 14, 1998 and in WO98/45331 and WO98/45332 both published October 15, 1998.

20

25

There exist several other growth factors and mitogens, including transforming oncogenes, that are capable of rapidly inducing a complex set of genes to be expressed by certain cells. Lau and Nathans, Molecular Aspects of Cellular Regulation, 6: 165-202 (1991). These genes, which have been named immediate-early- or early-response genes, are transcriptionally activated within minutes after contact with a growth factor or mitogen, independent of de novo protein synthesis. A group of these intermediate-early genes encodes secreted, extracellular proteins that are needed for coordination of complex biological processes such as differentiation and proliferation, regeneration, and wound healing. Ryseck et al., Cell Growth Differ., 2: 235-233 (1991).

30

35

Highly-related proteins that belong to this group include cef 10 (Simmons et al., Proc. Natl. Acad. Sci. USA, 86: 1178-1182 (1989)), cyr 61, which is rapidly activated by serum- or platelet-derived growth factor (PDGF) (O'Brien et al., Mol. Cell Biol., 10: 3569-3577 (1990), human connective tissue growth factor (CTGF) (Bradham et al., J. Cell. Biol., 114: 1285-1294 (1991)), which is secreted by human vascular endothelial cells in high levels after activation with transforming growth factor beta (TGF-β), exhibits PDGF-like biological and immunological activities, and competes with PDGF for a particular cell surface receptor, fisp-12 (Ryseck et al., Cell Growth Differ., 2: 235-233 (1991)), human vascular IBP-like growth factor (VIGF) (WO 96/17931), and nov, normally arrested in adult kidney cells, which was found to be overexpressed in myeloblastosis-associated-virus-type-1-induced nephroblastomas. Joloit et al., Mol. Cell. Biol., 12: 10-21 (1992).

The expression of these immediate-early genes acts as "third messengers" in the cascade of events triggered by growth factors. It is also thought that they are needed to integrate and coordinate complex biological processes, such as differentiation and wound healing in which cell proliferation is a common event.

As additional mitogens, insulin-like growth factor binding proteins (IGFBPs) have been shown, in complex with insulin-like growth factor (IGF), to stimulate increased binding of IGF to fibroblast and smooth muscle cell surface receptors. Clemmons et al., J. Clin. Invest., 77: 1548 (1986). Inhibitory effects of IGFBP on various IGF actions in vitro include stimulation of glucose transport by adipocytes, sulfate incorporation by chondrocytes, and thymidine incorporation in fibroblast. Zapf et al., J. Clin. Invest., 63: 1077 (1979). In addition, inhibitory effects of IGFBPs on growth factor-mediated mitogen activity in normal cells have been shown.

10

5

2.4. Need for Further Treatments

In view of the role of vascular endothelial cell growth and angiogenesis in many diseases and disorders, it is desirable to have a means of reducing or inhibiting one or more of the biological effects causing these processes. It is also desirable to have a means of assaying for the presence of pathogenic polypeptides in normal and diseased conditions, and especially cancer. Further, in a specific aspect, as there is no generally applicable therapy for the treatment of cardiac hypertrophy, the identification of factors that can prevent or reduce cardiac myocyte hypertrophy is of primary importance in the development of new therapeutic strategies to inhibit pathophysiological cardiac growth. While there are several treatment modalities for various cardiovascular and oncologic disorders, there is still a need for additional therapeutic approaches.

20

25

30

15

3. <u>Summary of the Invention</u>

The present invention provides compositions and methods for modulating (e.g., promoting or inhibiting) angiogenesis and/or cardiovascularization in mammals. The present invention is based on the identification of compounds (i.e., proteins) that test positive in various cardiovascular assays that test modulation (e.g., promotion or inhibition) of certain biological activities. Accordingly, the compounds are believed to be useful drugs and/or drug components for the diagnosis and/or treatment (including prevention and amelioration) of disorders where such effects are desired, such as the promotion or inhibition of angiogenesis, inhibition or stimulation of vascular endothelial cell growth, stimulation of growth or proliferation of vascular endothelial cells, inhibition of tumor growth, inhibition of angiogenesis-dependent tissue growth, stimulation of angiogenesis-dependent tissue growth, inhibition of cardiac hypertrophy and stimulation of cardiac hypertrophy, e.g., for the treatment of congestive heart failure. In addition, the compositions and methods of the invention provide for the diagnostic monitoring of patients undergoing clinical evaluation for the treatment of angiogenesis-related disorders, for monitoring the efficacy of compounds in clinical trials and for identifying subjects who may be predisposed to such angiogenic-related disorders.

35

In one embodiment, the present invention provides a composition comprising a PRO polypeptide, an agonist or antagonist thereof, or an anti-PRO antibody in admixture with a pharmaceutically acceptable carrier. In one aspect, the composition comprises a therapeutically effective amount of the polypeptide, agonist, antagonist

or antibody. In another aspect, the composition comprises a further active ingredient, namely, a cardiovascular, endothelial or angiogenic agent or an angiostatic agent, preferably an angiogenic or angiostatic agent. Preferably, the composition is sterile. The PRO polypeptide, agonist, antagonist or antibody may be administered in the form of a liquid pharmaceutical formulation, which may be preserved to achieve extended storage stability. Preserved liquid pharmaceutical formulations might contain multiple doses of PRO polypeptide, agonist, antagonist or antibody, and might, therefore, be suitable for repeated use. In a preferred embodiment, where the composition comprises an antibody, the antibody is a monoclonal antibody, an antibody fragment, a humanized antibody, or a single-chain antibody.

10

In a further embodiment, the present invention provides a method for preparing such a composition useful for the treatment of a cardiovascular, endothelial or angiogenic disorder comprising admixing a therapeutically effective amount of a PRO polypeptide, agonist, antagonist or antibody with a pharmaceutically acceptable carrier.

In a still further aspect, the present invention provides an article of manufacture comprising:

- (a) a composition of matter comprising a PRO polypeptide or agonist or antagonist thereof;
- (b) a container containing said composition; and

15

5

(c) a label affixed to said container, or a package insert included in said container referring to the use of said PRO polypeptide or agonist or antagonist thereof in the treatment of a cardiovascular, endothelial or angiogenic disorder, wherein the agonist or antagonist may be an antibody which binds to the PRO polypeptide. The composition may comprise a therapeutically effective amount of the PRO polypeptide or the agonist or antagonist thereof.

20

25

30

35

In another embodiment, the present invention provides a method for identifying an agonist of a PRO polypeptide comprising:

- (a) contacting cells and a test compound to be screened under conditions suitable for the induction of a cellular response normally induced by a PRO polypeptide; and
- (b) determining the induction of said cellular response to determine if the test compound is an effective agonist, wherein the induction of said cellular response is indicative of said test compound being an effective agonist.

In another embodiment, the present invention provides a method for identifying an agonist of a PRO polypeptide comprising:

- (a) contacting cells and a test compound to be screened under conditions suitable for the stimulation of cell proliferation by a PRO polypeptide; and
- (b) measuring the proliferation of said cells to determine if the test compound is an effective agonist, wherein the stimulation of cell proliferation is indicative of said test compound being an effective agonist.

In another embodiment, the invention provides a method for identifying a compound that inhibits the activity of a PRO polypeptide comprising contacting a test compound with a PRO polypeptide under conditions and for a time sufficient to allow the test compound and polypeptide to interact and determining whether the activity of the PRO polypeptide is inhibited. In a specific preferred aspect, either the test compound or the PRO polypeptide is immobilized on a solid support. In another preferred aspect, the non-immobilized component carries a detectable

label. In a preferred aspect, this method comprises the steps of:

5

10

15

20

25

30

35

(a) contacting cells and a test compound to be screened in the presence of a PRO polypeptide under conditions suitable for the induction of a cellular response normally induced by a PRO polypeptide; and

(b) determining the induction of said cellular response to determine if the test compound is an effective antagonist.

In another preferred aspect, this process comprises the steps of:

- (a) contacting cells and a test compound to be screened in the presence of a PRO polypeptide under conditions suitable for the stimulation of cell proliferation by a PRO polypeptide; and
 - (b) measuring the proliferation of the cells to determine if the test compound is an effective antagonist.

In another embodiment, the invention provides a method for identifying a compound that inhibits the expression of a PRO polypeptide in cells that normally expresses the polypeptide, wherein the method comprises contacting the cells with a test compound and determining whether the expression of the PRO polypeptide is inhibited. In a preferred aspect, this method comprises the steps of:

- (a) contacting cells and a test compound to be screened under conditions suitable for allowing expression of the PRO polypeptide; and
 - (b) determining the inhibition of expression of said polypeptide.

In a still further embodiment, the invention provides a compound that inhibits the expression of a PRO polypeptide, such as a compound that is identified by the methods set forth above.

Another aspect of the present invention is directed to an agonist or an antagonist of a PRO polypeptide which may optionally be identified by the methods described above.

One type of antagonist of a PRO polypeptide that inhibits one or more of the functions or activities of the PRO polypeptide is an antibody. Hence, in another aspect, the invention provides an isolated antibody that binds a PRO polypeptide. In a preferred aspect, the antibody is a monoclonal antibody, which preferably has non-human complementarity-determining-region (CDR) residues and human framework-region (FR) residues. The antibody may be labeled and may be immobilized on a solid support. In a further aspect, the antibody is an antibody fragment, a single-chain antibody, or a humanized antibody. Preferably, the antibody specifically binds to the polypeptide.

In a still further aspect, the present invention provides a method for diagnosing a disease or susceptibility to a disease which is related to a mutation in a PRO polypeptide-encoding nucleic acid sequence comprising determining the presence or absence of said mutation in the PRO polypeptide nucleic acid sequence, wherein the presence or absence of said mutation is indicative of the presence of said disease or susceptibility to said disease.

In a still further aspect, the invention provides a method of diagnosing a cardiovascular, endothelial or angiogenic disorder in a mammal which comprises analyzing the level of expression of a gene encoding a PRO polypeptide (a) in a test sample of tissue cells obtained from said mammal, and (b) in a control sample of known normal tissue cells of the same cell type, wherein a higher or lower expression level in the test sample as compared to the control sample is indicative of the presence of a cardiovascular, endothelial or angiogenic disorder in said mammal. The expression of a gene encoding a PRO polypeptide may optionally be accomplished by measuring

the level of mRNA or the polypeptide in the test sample as compared to the control sample.

5

10

15

20

25

30

35

In a still further aspect, the present invention provides a method of diagnosing a cardiovascular, endothelial or angiogenic disorder in a mammal which comprises detecting the presence or absence of a PRO polypeptide in a test sample of tissue cells obtained from said mammal, wherein the presence or absence of said PRO polypeptide in said test sample is indicative of the presence of a cardiovascular, endothelial or angiogenic disorder in said mammal.

In a still further embodiment, the invention provides a method of diagnosing a cardiovascular, endothelial or angiogenic disorder in a mammal comprising (a) contacting an anti-PRO antibody with a test sample of tissue cells obtained from the mammal, and (b) detecting the formation of a complex between the antibody and the PRO polypeptide in the test sample, wherein the formation of said complex is indicative of the presence of a cardiovascular, endothelial or angiogenic disorder in the mammal. The detection may be qualitative or quantitative, and may be performed in comparison with monitoring the complex formation in a control sample of known normal tissue cells of the same cell type. A larger or smaller quantity of complexes formed in the test sample indicates the presence of a cardiovascular, endothelial or angiogenic dysfunction in the mammal from which the test tissue cells were obtained. The antibody preferably carries a detectable label. Complex formation can be monitored, for example, by light microscopy, flow cytometry, fluorimetry, or other techniques known in the art. The test sample is usually obtained from an individual suspected to have a cardiovascular, endothelial or angiogenic disorder.

In another embodiment, the invention provides a method for determining the presence of a PRO polypeptide in a sample comprising exposing a sample suspected of containing the PRO polypeptide to an anti-PRO antibody and determining binding of said antibody to a component of said sample. In a specific aspect, the sample comprises a cell suspected of containing the PRO polypeptide and the antibody binds to the cell. The antibody is preferably detectably labeled and/or bound to a solid support.

In further aspects, the invention provides a cardiovascular, endothelial or angiogenic disorder diagnostic kit comprising an anti-PRO antibody and a carrier in suitable packaging. Preferably, such kit further comprises instructions for using said antibody to detect the presence of the PRO polypeptide. Preferably, the carrier is a buffer, for example. Preferably, the cardiovascular, endothelial or angiogenic disorder is cancer.

In yet another embodiment, the present invention provides a method for treating a cardiovascular, endothelial or angiogenic disorder in a mammal comprising administering to the mammal an effective amount of a PRO polypeptide. Preferably, the disorder is cardiac hypertrophy, trauma such as wounds or burns, or a type of cancer. In a further aspect, the mammal is further exposed to angioplasty or a drug that treats cardiovascular, endothelial or angiogenic disorders such as ACE inhibitors or chemotherapeutic agents if the cardiovascular, endothelial or angiogenic disorder is a type of cancer. Preferably, the mammal is human, preferably one who is at risk of developing cardiac hypertrophy and more preferably has suffered myocardial infarction.

In another preferred aspect, the cardiac hypertrophy is characterized by the presence of an elevated level of PGF_{2a} . Alternatively, the cardiac hypertrophy may be induced by myocardial infarction, wherein preferably the administration of the PRO polypeptide is initiated within 48 hours, more preferably within 24 hours, following myocardial infarction.

In another preferred embodiment, the cardiovascular, endothelial or angiogenic disorder is cardiac hypertrophy and said PRO polypeptide is administered together with a cardiovascular, endothelial or angiogenic agent. The preferred cardiovascular, endothelial or angiogenic agent for this purpose is selected from the group consisting of an antihypertensive drug, an ACE inhibitor, an endothelin receptor antagonist and a thrombolytic agent. If a thrombolytic agent is administered, preferably the PRO polypeptide is administered following administration of such agent. More preferably, the thrombolytic agent is recombinant human tissue plasminogen activator.

5

10

15

20

25

30

35

In another preferred aspect, the cardiovascular, endothelial or angiogenic disorder is cardiac hypertrophy and the PRO polypeptide is administered following primary angioplasty for the treatment of acute myocardial infarction, preferably wherein the mammal is further exposed to angioplasty or a cardiovascular, endothelial, or angiogenic agent.

In another preferred embodiment, the cardiovascular, endothelial or angiogenic disorder is a cancer and the PRO polypeptide is administered in combination with a chemotherapeutic agent, a growth inhibitory agent or a cytotoxic agent.

In a further embodiment, the invention provides a method for treating a cardiovascular, endothelial or angiogenic disorder in a mammal comprising administering to the mammal an effective amount of a PRO polypeptide agonist, antagonist or anti-PRO antibody. Preferably, the cardiovascular, endothelial or angiogenic disorder is cardiac hypertrophy, trauma, a cancer, or age-related macular degeneration. Also preferred is where the mammal is human, and where an effective amount of an angiogenic or angiostatic agent is administered in conjunction with the agonist, antagonist or anti-PRO antibody.

In still further embodiments, the invention provides a method for treating a cardiovascular, endothelial or angiogenic disorder in a mammal that suffers therefrom comprising administering to the mammal a nucleic acid molecule that codes for either (a) a PRO polypeptide, (b) an agonist of a PRO polypeptide or (c) an antagonist of a PRO polypeptide, wherein said agonist or antagonist may be an anti-PRO antibody. In a preferred embodiment, the mammal is human. In another preferred embodiment, the gene is administered via ex vivo gene therapy. In a further preferred embodiment, the gene is comprised within a vector, more preferably an adenoviral, adeno-associated viral, lentiviral, or retroviral vector.

In yet another aspect, the invention provides a recombinant retroviral particle comprising a retroviral vector consisting essentially of a promoter, nucleic acid encoding (a) a PRO polypeptide, (b) an agonist polypeptide of a PRO polypeptide, or (c) an antagonist polypeptide of a PRO polypeptide, and a signal sequence for cellular secretion of the polypeptide, wherein the retroviral vector is in association with retroviral structural proteins. Preferably, the signal sequence is from a mammal, such as from a native PRO polypeptide.

In a still further embodiment, the invention supplies an ex vivo producer cell comprising a nucleic acid construct that expresses retroviral structural proteins and also comprises a retroviral vector consisting essentially of a promoter, nucleic acid encoding (a) a PRO polypeptide, (b) an agonist polypeptide of a PRO polypeptide or (c) an antagonist polypeptide of a PRO polypeptide, and a signal sequence for cellular secretion of the polypeptide, wherein said producer cell packages the retroviral vector in association with the structural proteins to produce

recombinant retroviral particles.

5

10

15

20

25

30

35

In yet another embodiment, the invention provides a method for inhibiting endothelial cell growth in a mammal comprising administering to the mammal (a) a PRO polypeptide, (b) an agonist of a PRO polypeptide, or (c) an antagonist of a PRO polypeptide, wherein endothelial cell growth in said mammal is inhibited, and wherein said agonist or antagonist may be an anti-PRO antibody. Preferably, the mammal is human and the endothelial cell growth is associated with a tumor or a retinal disorder.

In yet another embodiment, the invention provides a method for stimulating endothelial cell growth in a mammal comprising administering to the mammal (a) a PRO polypeptide, (b) an agonist of a PRO polypeptide, or (c) an antagonist of a PRO polypeptide, wherein endothelial cell growth in said mammal is stimulated, and wherein said agonist or antagonist may be an anti-PRO antibody. Preferably, the mammal is human.

In yet another embodiment, the invention provides a method for inhibiting cardiac hypertrophy in a mammal comprising administering to the mammal (a) a PRO polypeptide, (b) an agonist of a PRO polypeptide, or (c) an antagonist of a PRO polypeptide, wherein cardiac hypertrophy in said mammal is inhibited, and wherein said agonist or antagonist may be an anti-PRO antibody. Preferably, the mammal is human and the cardiac hypertrophy has been induced by myocardial infarction.

In yet another embodiment, the invention provides a method for stimulating cardiac hypertrophy in a mammal comprising administering to the mammal (a) a PRO polypeptide, (b) an agonist of a PRO polypeptide, or (c) an antagonist of a PRO polypeptide, wherein cardiac hypertrophy in said mammal is stimulated, and wherein said agonist or antagonist may be an anti-PRO antibody. Preferably, the mammal is human who suffers from congestive heart failure.

In yet another embodiment, the invention provides a method for inhibiting angiogenesis induced by a PRO polypeptide in a mammal comprising administering a therapeutically effective amount of an anti-PRO antibody to the mammal. Preferably, the mammal is a human, and more preferably the mammal has a tumor or a retinal disorder.

In yet another embodiment, the invention provides a method for stimulating angiogenesis induced by a PRO polypeptide in a mammal comprising administering a therapeutically effective amount of a PRO polypeptide to the mammal. Preferably, the mammal is a human, and more preferably angiogenesis would promote tissue regeneration or wound healing.

In yet another embodiment, the invention provides a method for modulating (e.g., inhibiting or stimulating) endothelial cell growth in a mammal comprising administering to the mammal a PRO21, PRO181, PRO205, PRO214, PRO221, PRO229, PRO231, PRO238, PRO241, PRO247, PRO256, PRO258, PRO263, PRO265, PRO295, PRO321, PRO322, PRO337, PRO363, PRO365, PRO444, PRO533, PRO697, PRO720, PRO725, PRO771, PRO788, PRO791, PRO819, PRO827, PRO828, PRO836, PRO846, PRO865, PRO1005, PRO1006, PRO1007, PRO1025, PRO1029, PRO1054, PRO1071, PRO1075, PRO1079, PRO1080, PRO1114, PRO1131, PRO1155, PRO1160, PRO1184, PRO1186, PRO1190, PRO1192, PRO1195, PRO1244, PRO1272, PRO1273, PRO1274, PRO1279, PRO1283, PRO1286, PRO1306, PRO1309, PRO1325, PRO1329, PRO1347, PRO1356, PRO1376, PRO1382, PRO1411, PRO1412, PRO1419, PRO1474, PRO1477, PRO1488, PRO1508, PRO1550,

PRO1556, PRO1760, PRO1782, PRO1787, PRO1801, PRO1868, PRO1887, PRO1890, PRO3438, PRO3444, PRO4302, PRO4324, PRO4333, PRO4341, PRO4342, PRO4353, PRO4354, PRO4356, PRO4371, PRO4405, PRO4408, PRO4422, PRO4425, PRO4499, PRO5723, PRO5725, PRO5737, PRO5776, PRO6006, PRO6029, PRO6071, PRO7436, PRO9771, PRO9821, PRO9873, PRO10008, PRO10096, PRO19670, PRO20040, PRO20044, PRO21055, PRO21384 or PRO28631 polypeptide, agonist or antagonist thereof, wherein endothelial cell growth in said mammal is modulated.

5

10

15

20

25

30

35

In yet another embodiment, the invention provides a method for modulating (e.g., inhibiting or stimulating) smooth muscle cell growth in a mammal comprising administering to the mammal a PRO162, PRO181, PRO182, PRO195, PRO204, PRO221, PRO230, PRO256, PRO258, PRO533, PRO697, PRO725, PRO738, PRO826, PRO836, PRO840, PRO846, PRO865, PRO982, PRO1025, PRO1029, PRO1071, PRO1080, PRO1083, PRO1134, PRO1160, PRO1182, PRO1184, PRO1186, PRO1192, PRO1265, PRO1274, PRO1279, PRO1283, PRO1306, PRO1308, PRO1309, PRO1325, PRO1337, PRO1338, PRO1343, PRO1376, PRO1387, PRO1411, PRO1412, PRO1415, PRO1434, PRO1474, PRO1488, PRO1550, PRO1556, PRO1567, PRO1600, PRO1754, PRO1758, PRO1760, PRO1787, PRO1865, PRO1868, PRO1917, PRO1928, PRO3438, PRO3562, PRO4302, PRO4333, PRO4345, PRO4353, PRO4354, PRO4405, PRO4408, PRO4430, PRO4503, PRO5725, PRO6714, PRO9771, PRO9820, PRO9940, PRO10096, PRO21055, PRO21184 or PRO21366 polypeptide, agonist or antagonist thereof, wherein endothelial cell growth in said mammal is modulated.

In yet another embodiment, the invention provides a method for modulating (e.g., inducing or reducing) cardiac hypertrophy in a mammal comprising administering to the mammal a PRO21 polypeptide, agonist or antagonist thereof, wherein cardiac hypertrophy in said mammal is modulated.

In yet another embodiment, the invention provides a method for modulating (e.g., inducing or reducing) endothelial cell apoptosis in a mammal comprising administering to the mammal a PRO4302 polypeptide, agonist or antagonist thereof, wherein cardiac hypertrophy in said mammal is modulated.

In yet another embodiment, the invention provides a method for modulating (e.g., stimulating or inhibiting) angiogenesis in a mammal comprising administering a therapeutically effective amount of a PRO1376 or PRO1449 polypeptide, agonist or antagonist thereof to the mammal, wherein said angiogenesis is modulated.

In yet another embodiment, the invention provides a method for modulating (e.g., inducing or reducing) angiogenesis by modulating (e.g., inducing or reducing) endothelial cell tube formation in a mammal comprising administering to the mammal a PRO178, PRO195, PRO228, PRO301, PRO302, PRO532, PRO724, PRO730, PRO734, PRO793, PRO871, PRO938, PRO1012, PRO1120, PRO1139, PRO1198, PRO1287, PRO1361, PRO1864, PRO1873, PRO2010, PRO3579, PRO4313, PRO4527, PRO4538, PRO4553, PRO4995, PRO5730, PRO6008, PRO7223, PRO7248 or PRO7261 polypeptide, agonist or antagonist thereof, wherein endothelial cell tube formation in said mammal is modulated.

In other embodiments of the present invention, the invention provides an isolated nucleic acid molecule comprising a nucleotide sequence that encodes a PRO polypeptide.

In one aspect, the isolated nucleic acid molecule comprises a nucleotide sequence having at least about 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97% or 98%

nucleic acid sequence identity and alternatively at least about 99% nucleic acid sequence identity to (a) a DNA molecule encoding a PRO polypeptide having a full-length amino acid sequence as disclosed herein, an amino acid sequence lacking the signal peptide as disclosed herein, an extracellular domain of a transmembrane protein, with or without the signal peptide, as disclosed herein or any other specifically defined fragment of the full-length amino acid sequence as disclosed herein, or (b) the complement of the DNA molecule of (a).

5

10

15

20

25

30

35

In other aspects, the isolated nucleic acid molecule comprises a nucleotide sequence having at least about 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97% or 98% nucleic acid sequence identity and alternatively at least about 99% nucleic acid sequence identity to (a) a DNA molecule comprising the coding sequence of a full-length PRO polypeptide cDNA as disclosed herein, the coding sequence of a PRO polypeptide lacking the signal peptide as disclosed herein, the coding sequence of an extracellular domain of a transmembrane PRO polypeptide, with or without the signal peptide, as disclosed herein or the coding sequence of any other specifically defined fragment of the full-length amino acid sequence as disclosed herein, or (b) the complement of the DNA molecule of (a).

In a further aspect, the invention provides an isolated nucleic acid molecule comprising a nucleotide sequence having at least about 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97% or 98% nucleic acid sequence identity and alternatively at least about 99% nucleic acid sequence identity to (a) a DNA molecule that encodes the same mature polypeptide encoded by any of the human protein cDNAs deposited with the ATCC as disclosed herein, or (b) the complement of the DNA molecule of (a).

Another aspect of the present invention provides an isolated nucleic acid molecule comprising a nucleotide sequence encoding a PRO polypeptide which is either transmembrane domain-deleted or transmembrane domain-inactivated, or is complementary to such encoding nucleotide sequence, wherein the transmembrane domain(s) of such polypeptide are disclosed herein. Therefore, soluble extracellular domains of the herein described PRO polypeptides are contemplated.

Another embodiment is directed to fragments of a PRO polypeptide coding sequence, or the complement thereof, that may find use as, for example, hybridization probes, for encoding fragments of a PRO polypeptide that may optionally encode a polypeptide comprising a binding site for an anti-PRO antibody or as antisense oligonucleotide probes. Such nucleic acid fragments are usually at least about 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150, 160, 170, 180, 190, 200, 250, 300, 350, 400, 450, 500, 600, 700 or 800 nucleotides in length and alternatively at least about 1000 nucleotides in length, wherein in this context the term "about" means the referenced nucleotide sequence length plus or minus 10% of that referenced length. It is noted that novel fragments of a PRO polypeptide-encoding nucleotide sequence may be determined in a routine manner by aligning the PRO polypeptide-encoding nucleotide sequence with other known nucleotide sequences using any of a number of well known sequence alignment programs and determining which PRO polypeptide-encoding nucleotide sequences are contemplated herein. Also contemplated are the PRO polypeptide fragments encoded by these nucleotide molecule fragments, preferably those PRO polypeptide fragments that comprise a binding site for an anti-PRO antibody.

In another embodiment, the invention provides an isolated PRO polypeptide encoded by any of the isolated

nucleic acid sequences hereinabove identified.

In a certain aspect, the invention provides an isolated PRO polypeptide comprising an amino acid sequence having at least about 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97% or 98% amino acid sequence identity and alternatively at least about 99% amino acid sequence identity to a PRO polypeptide having a full-length amino acid sequence as disclosed herein, an amino acid sequence lacking the signal peptide as disclosed herein, an extracellular domain of a transmembrane protein, with or without the signal peptide, as disclosed herein or any other specifically defined fragment of the full-length amino acid sequence as disclosed herein.

In a further aspect, the invention provides an isolated PRO polypeptide comprising an amino acid sequence having at least about 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97% or 98% amino acid sequence identity and alternatively at least about 99% amino acid sequence identity to an amino acid sequence encoded by any of the human protein cDNAs deposited with the ATCC as disclosed herein.

In a specific aspect, the invention provides an isolated PRO polypeptide without the N-terminal signal sequence and/or the initiating methionine and that is encoded by a nucleotide sequence that encodes such an amino acid sequence as hereinbefore described. Processes for producing the same are also herein described, wherein those processes comprise culturing a host cell comprising a vector which comprises the appropriate encoding nucleic acid molecule under conditions suitable for expression of the PRO polypeptide and recovering the PRO polypeptide from the cell culture.

Another aspect of the invention provides an isolated PRO polypeptide which is either transmembrane domain-deleted or transmembrane domain-inactivated. Processes for producing the same are also herein described, wherein those processes comprise culturing a host cell comprising a vector which comprises the appropriate encoding nucleic acid molecule under conditions suitable for expression of the PRO polypeptide and recovering the PRO polypeptide from the cell culture.

In yet another embodiment, the invention provides agonists and antagonists of a native PRO polypeptide as defined herein. In a particular embodiment, the agonist or antagonist is an anti-PRO antibody or a small molecule.

In a further embodiment, the invention provides a method of identifying agonists or antagonists to a PRO polypeptide which comprise contacting the PRO polypeptide with a candidate molecule and monitoring a biological activity mediated by said PRO polypeptide. Preferably, the PRO polypeptide is a native PRO polypeptide.

In a still further embodiment, the invention provides a composition of matter comprising a PRO polypeptide, or an agonist or antagonist of a PRO polypeptide as herein described, or an anti-PRO antibody, in combination with a carrier. Optionally, the carrier is a pharmaceutically acceptable carrier.

Another embodiment of the present invention is directed to the use of a PRO polypeptide, or an agonist or antagonist thereof as hereinbefore described, or an anti-PRO antibody, for the preparation of a medicament useful in the treatment of a condition which is responsive to the PRO polypeptide, an agonist or antagonist thereof or an anti-PRO antibody.

10

5

15

20

25

30

35

In additional embodiments of the present invention, the invention provides vectors comprising DNA encoding any of the herein described polypeptides. Host cells comprising any such vector are also provided. By way of example, the host cells may be CHO cells, *E. coli*, yeast, or Baculovirus-infected insect cells. A process for producing any of the herein described polypeptides is further provided and comprises culturing host cells under conditions suitable for expression of the desired polypeptide and recovering the desired polypeptide from the cell culture.

In other embodiments, the invention provides chimeric molecules comprising any of the herein described polypeptides fused to a heterologous polypeptide or amino acid sequence. Example of such chimeric molecules comprise any of the herein described polypeptides fused to an epitope tag sequence or a Fc region of an immunoglobulin.

In yet another embodiment, the invention provides an antibody which specifically binds to any of the above or below described polypeptides. Optionally, the antibody is a monoclonal antibody, humanized antibody, antibody fragment or single-chain antibody.

In yet other embodiments, the invention provides oligonucleotide probes useful for isolating genomic and cDNA nucleotide sequences or as antisense probes, wherein those probes may be derived from any of the above or below described nucleotide sequences.

4. Brief Description of the Drawings

5

10

15

20

25

30

35

Figure 1 shows a nucleotide sequence (SEQ ID NO:1) of a native sequence PRO181 cDNA, wherein SEQ ID NO:1 is a clone designated herein as "DNA23330-1390".

Figure 2 shows the amino acid sequence (SEQ ID NO:2) derived from the coding sequence of SEQ ID NO:1 shown in Figure 1.

Figure 3 shows a nucleotide sequence (SEQ ID NO:3) of a native sequence PRO178 cDNA, wherein SEQ ID NO:3 is a clone designated herein as "DNA23339-1130".

Figure 4 shows the amino acid sequence (SEQ ID NO:4) derived from the coding sequence of SEQ ID NO:3 shown in Figure 3.

Figure 5 shows a nucleotide sequence (SEQ ID NO:5) of a native sequence PRO444 cDNA, wherein SEQ ID NO:5 is a clone designated herein as "DNA26846-1397".

Figure 6 shows the amino acid sequence (SEQ ID NO:6) derived from the coding sequence of SEQ ID NO:5 shown in Figure 5.

Figure 7 shows a nucleotide sequence (SEQ ID NO:7) of a native sequence PRO195 cDNA, wherein SEQ ID NO:7 is a clone designated herein as "DNA26847-1395".

Figure 8 shows the amino acid sequence (SEQ ID NO:8) derived from the coding sequence of SEQ ID NO:7 shown in Figure 7.

Figure 9 shows a nucleotide sequence (SEQ ID NO:9) of a native sequence PRO182 cDNA, wherein SEQ ID NO:9 is a clone designated herein as "DNA27865-1091".

Figure 10 shows the amino acid sequence (SEQ ID NO:10) derived from the coding sequence of SEQ ID

NO:9 shown in Figure 9.

5

10

15

20

25

30

35

Figure 11 shows a nucleotide sequence (SEQ ID NO:11) of a native sequence PRO205 cDNA, wherein SEQ ID NO:11 is a clone designated herein as "DNA30868-1156".

Figure 12 shows the amino acid sequence (SEQ ID NO:12) derived from the coding sequence of SEQ ID NO:11 shown in Figure 11.

Figure 13 shows a nucleotide sequence (SEQ ID NO:13) of a native sequence PRO204 cDNA, wherein SEQ ID NO:13 is a clone designated herein as "DNA30871-1157".

Figure 14 shows the amino acid sequence (SEQ ID NO:14) derived from the coding sequence of SEQ ID NO:13 shown in Figure 13.

Figure 15 shows a nucleotide sequence (SEQ ID NO:15) of a native sequence PRO1873 cDNA, wherein SEQ ID NO:15 is a clone designated herein as "DNA30880".

Figure 16 shows the amino acid sequence (SEQ ID NO:16) derived from the coding sequence of SEQ ID NO:15 shown in Figure 15.

Figure 17 shows a nucleotide sequence (SEQ ID NO:17) of a native sequence PRO214 cDNA, wherein SEQ ID NO:17 is a clone designated herein as "DNA32286-1191".

Figure 18 shows the amino acid sequence (SEQ ID NO:18) derived from the coding sequence of SEQ ID NO:17 shown in Figure 17.

Figure 19 shows a nucleotide sequence (SEQ ID NO:19) of a native sequence PRO221 cDNA, wherein SEQ ID NO:19 is a clone designated herein as "DNA33089-1132".

Figure 20 shows the amino acid sequence (SEQ ID NO:20) derived from the coding sequence of SEQ ID NO:19 shown in Figure 19.

Figure 21 shows a nucleotide sequence (SEQ ID NO:21) of a native sequence PRO228 cDNA, wherein SEQ ID NO:21 is a clone designated herein as "DNA33092-1202".

Figure 22 shows the amino acid sequence (SEQ ID NO:22) derived from the coding sequence of SEQ ID NO:21 shown in Figure 21.

Figure 23 shows a nucleotide sequence (SEQ ID NO:23) of a native sequence PRO229 cDNA, wherein SEQ ID NO:23 is a clone designated herein as "DNA33100-1159".

Figure 24 shows the amino acid sequence (SEQ ID NO:24) derived from the coding sequence of SEQ ID NO:23 shown in Figure 23.

Figure 25 shows a nucleotide sequence (SEQ ID NO:25) of a native sequence PRO230 cDNA, wherein SEQ ID NO:25 is a clone designated herein as "DNA33223-1136".

Figure 26 shows the amino acid sequence (SEQ ID NO:26) derived from the coding sequence of SEQ ID NO:25 shown in Figure 25.

Figure 27 shows a nucleotide sequence (SEQ ID NO:27) of a native sequence PRO7223 cDNA, wherein SEQ ID NO:27 is a clone designated herein as "DNA34385".

Figure 28 shows the amino acid sequence (SEQ ID NO:28) derived from the coding sequence of SEQ ID NO:27 shown in Figure 27.

Figure 29 shows a nucleotide sequence (SEQ ID NO:29) of a native sequence PRO241 cDNA, wherein SEQ ID NO:29 is a clone designated herein as "DNA34392-1170".

Figure 30 shows the amino acid sequence (SEQ ID NO:30) derived from the coding sequence of SEQ ID NO:29 shown in Figure 29.

Figure 31 shows a nucleotide sequence (SEQ ID NO:31) of a native sequence PRO263 cDNA, wherein SEQ ID NO:31 is a clone designated herein as "DNA34431-1177".

5

10

15

20

25

30

35

Figure 32 shows the amino acid sequence (SEQ ID NO:32) derived from the coding sequence of SEQ ID NO:31 shown in Figure 31.

Figure 33 shows a nucleotide sequence (SEQ ID NO:33) of a native sequence PRO321 cDNA, wherein SEQ ID NO:33 is a clone designated herein as "DNA34433-1308".

Figure 34 shows the amino acid sequence (SEQ ID NO:34) derived from the coding sequence of SEQ ID NO:33 shown in Figure 33.

Figure 35 shows a nucleotide sequence (SEQ ID NO:35) of a native sequence PRO231 cDNA, wherein SEQ ID NO:35 is a clone designated herein as "DNA34434-1139".

Figure 36 shows the amino acid sequence (SEQ ID NO:36) derived from the coding sequence of SEQ ID NO:35 shown in Figure 35.

Figure 37 shows a nucleotide sequence (SEQ ID NO:37) of a native sequence PRO238 cDNA, wherein SEQ ID NO:37 is a clone designated herein as "DNA35600-1162".

Figure 38 shows the amino acid sequence (SEQ ID NO:38) derived from the coding sequence of SEQ ID NO:37 shown in Figure 37.

Figure 39 shows a nucleotide sequence (SEQ ID NO:39) of a native sequence PRO247 cDNA, wherein SEQ ID NO:39 is a clone designated herein as "DNA35673-1201".

Figure 40 shows the amino acid sequence (SEQ ID NO:40) derived from the coding sequence of SEQ ID NO:39 shown in Figure 39.

Figure 41 shows a nucleotide sequence (SEQ ID NO:41) of a native sequence PRO256 cDNA, wherein SEQ ID NO:41 is a clone designated herein as "DNA35880-1160".

Figure 42 shows the amino acid sequence (SEQ ID NO:42) derived from the coding sequence of SEQ ID NO:41 shown in Figure 41.

Figure 43 shows a nucleotide sequence (SEQ ID NO:43) of a native sequence PRO258 cDNA, wherein SEQ ID NO:43 is a clone designated herein as "DNA35918-1174".

Figure 44 shows the amino acid sequence (SEQ ID NO:44) derived from the coding sequence of SEQ ID NO:43 shown in Figure 43.

Figure 45 shows a nucleotide sequence (SEQ ID NO:45) of a native sequence PRO265 cDNA, wherein SEQ ID NO:45 is a clone designated herein as "DNA36350-1158".

Figure 46 shows the amino acid sequence (SEQ ID NO:46) derived from the coding sequence of SEQ ID NO:45 shown in Figure 45.

Figure 47 shows a nucleotide sequence (SEQ ID NO:47) of a native sequence PRO21 cDNA, wherein SEQ

ID NO:47 is a clone designated herein as "DNA36638-1056".

5

15

20

25

30

Figure 48 shows the amino acid sequence (SEQ ID NO:48) derived from the coding sequence of SEQ ID NO:47 shown in Figure 47.

Figure 49 shows a nucleotide sequence (SEQ ID NO:49) of a native sequence PRO295 cDNA, wherein SEQ ID NO:49 is a clone designated herein as "DNA38268-1188".

Figure 50 shows the amino acid sequence (SEQ ID NO:50) derived from the coding sequence of SEQ ID NO:49 shown in Figure 49.

Figure 51 shows a nucleotide sequence (SEQ ID NO:51) of a native sequence PRO302 cDNA, wherein SEQ ID NO:51 is a clone designated herein as "DNA40370-1217".

Figure 52 shows the amino acid sequence (SEQ ID NO:52) derived from the coding sequence of SEQ ID NO:51 shown in Figure 51.

Figure 53 shows a nucleotide sequence (SEQ ID NO:53) of a native sequence PRO301 cDNA, wherein SEQ ID NO:53 is a clone designated herein as "DNA40628-1216".

Figure 54 shows the amino acid sequence (SEQ ID NO:54) derived from the coding sequence of SEQ ID NO:53 shown in Figure 53.

Figure 55 shows a nucleotide sequence (SEQ ID NO:55) of a native sequence PRO337 cDNA, wherein SEQ ID NO:55 is a clone designated herein as "DNA43316-1237".

Figure 56 shows the amino acid sequence (SEQ ID NO:56) derived from the coding sequence of SEQ ID NO:55 shown in Figure 55.

Figure 57 shows a nucleotide sequence (SEQ ID NO:57) of a native sequence PRO7248 cDNA, wherein SEQ ID NO:57 is a clone designated herein as "DNA44195".

Figure 58 shows the amino acid sequence (SEQ ID NO:58) derived from the coding sequence of SEQ ID NO:57 shown in Figure 57.

Figure 59 shows a nucleotide sequence (SEQ ID NO:59) of a native sequence PRO846 cDNA, wherein SEQ ID NO:59 is a clone designated herein as "DNA44196-1353".

Figure 60 shows the amino acid sequence (SEQ ID NO:60) derived from the coding sequence of SEQ ID NO:59 shown in Figure 59.

Figure 61 shows a nucleotide sequence (SEQ ID NO:61) of a native sequence PRO1864 cDNA, wherein SEQ ID NO:61 is a clone designated herein as "DNA45409-2511".

Figure 62 shows the amino acid sequence (SEQ ID NO:62) derived from the coding sequence of SEQ ID NO:61 shown in Figure 61.

Figure 63 shows a nucleotide sequence (SEQ ID NO:63) of a native sequence PRO363 cDNA, wherein SEQ ID NO:63 is a clone designated herein as "DNA45419-1252".

Figure 64 shows the amino acid sequence (SEQ ID NO:64) derived from the coding sequence of SEQ ID NO:63 shown in Figure 63.

Figure 65 shows a nucleotide sequence (SEQ ID NO:65) of a native sequence PRO730 cDNA, wherein SEQ ID NO:65 is a clone designated herein as "DNA45624-1400".

Figure 66 shows the amino acid sequence (SEQ ID NO:66) derived from the coding sequence of SEQ ID NO:65 shown in Figure 65.

Figure 67 shows a nucleotide sequence (SEQ ID NO:67) of a native sequence PRO365 cDNA, wherein SEQ ID NO:67 is a clone designated herein as "DNA46777-1253".

Figure 68 shows the amino acid sequence (SEQ ID NO:68) derived from the coding sequence of SEQ ID NO:67 shown in Figure 67.

5

10

15

20

25

30

35

Figure 69 shows a nucleotide sequence (SEQ ID NO:69) of a native sequence PRO532 cDNA, wherein SEQ ID NO:69 is a clone designated herein as "DNA48335".

Figure 70 shows the amino acid sequence (SEQ ID NO:70) derived from the coding sequence of SEQ ID NO:69 shown in Figure 69.

Figure 71 shows a nucleotide sequence (SEQ ID NO:71) of a native sequence PRO322 cDNA, wherein SEQ ID NO:71 is a clone designated herein as "DNA48336-1309".

Figure 72 shows the amino acid sequence (SEQ ID NO:72) derived from the coding sequence of SEQ ID NO:71 shown in Figure 71.

Figure 73 shows a nucleotide sequence (SEQ ID NO:73) of a native sequence PRO1120 cDNA, wherein SEQ ID NO:73 is a clone designated herein as "DNA48606-1479".

Figure 74 shows the amino acid sequence (SEQ ID NO:74) derived from the coding sequence of SEQ ID NO:73 shown in Figure 73.

Figure 75 shows a nucleotide sequence (SEQ ID NO:75) of a native sequence PRO7261 cDNA, wherein SEQ ID NO:75 is a clone designated herein as "DNA49149".

Figure 76 shows the amino acid sequence (SEQ ID NO:76) derived from the coding sequence of SEQ ID NO:75 shown in Figure 75.

Figure 77 shows a nucleotide sequence (SEQ ID NO:77) of a native sequence PRO533 cDNA, wherein SEQ ID NO:77 is a clone designated herein as "DNA49435-1219".

Figure 78 shows the amino acid sequence (SEQ ID NO:78) derived from the coding sequence of SEQ ID NO:77 shown in Figure 77.

Figure 79 shows a nucleotide sequence (SEQ ID NO:79) of a native sequence PRO724 cDNA, wherein SEQ ID NO:79 is a clone designated herein as "DNA49631-1328".

Figure 80 shows the amino acid sequence (SEQ ID NO:80) derived from the coding sequence of SEQ ID NO:79 shown in Figure 79.

Figure 81 shows a nucleotide sequence (SEQ ID NO:81) of a native sequence PRO734 cDNA, wherein SEQ ID NO:81 is a clone designated herein as "DNA49817".

Figure 82 shows the amino acid sequence (SEQ ID NO:82) derived from the coding sequence of SEQ ID NO:81 shown in Figure 81.

Figure 83 shows a nucleotide sequence (SEQ ID NO:83) of a native sequence PRO771 cDNA, wherein SEQ ID NO:83 is a clone designated herein as "DNA49829-1346".

Figure 84 shows the amino acid sequence (SEO ID NO:84) derived from the coding sequence of SEO ID

NO:83 shown in Figure 83.

5

15

20

25

30

35

Figure 85 shows a nucleotide sequence (SEQ ID NO:85) of a native sequence PRO2010 cDNA, wherein SEQ ID NO:85 is a clone designated herein as "DNA50792".

Figure 86 shows the amino acid sequence (SEQ ID NO:86) derived from the coding sequence of SEQ ID NO:85 shown in Figure 85.

Figure 87 shows a nucleotide sequence (SEQ ID NO:87) of a native sequence PRO871 cDNA, wherein SEQ ID NO:87 is a clone designated herein as "DNA50919-1361".

Figure 88 shows the amino acid sequence (SEQ ID NO:88) derived from the coding sequence of SEQ ID NO:87 shown in Figure 87.

Figure 89 shows a nucleotide sequence (SEQ ID NO:89) of a native sequence PRO697 cDNA, wherein SEQ ID NO:89 is a clone designated herein as "DNA50920-1325".

Figure 90 shows the amino acid sequence (SEQ ID NO:90) derived from the coding sequence of SEQ ID NO:89 shown in Figure 89.

Figure 91 shows a nucleotide sequence (SEQ ID NO:91) of a native sequence PRO1083 cDNA, wherein SEQ ID NO:91 is a clone designated herein as "DNA50921-1458".

Figure 92 shows the amino acid sequence (SEQ ID NO:22) derived from the coding sequence of SEQ ID NO:91 shown in Figure 91.

Figure 93 shows a nucleotide sequence (SEQ ID NO:93) of a native sequence PRO725 cDNA, wherein SEQ ID NO:93 is a clone designated herein as "DNA52758-1399".

Figure 94 shows the amino acid sequence (SEQ ID NO:94) derived from the coding sequence of SEQ ID NO:93 shown in Figure 93.

Figure 95 shows a nucleotide sequence (SEQ ID NO:95) of a native sequence PRO720 cDNA, wherein SEQ ID NO:95 is a clone designated herein as "DNA53517-1366-1".

Figure 96 shows the amino acid sequence (SEQ ID NO:96) derived from the coding sequence of SEQ ID NO:95 shown in Figure 95.

Figure 97 shows a nucleotide sequence (SEQ ID NO:97) of a native sequence PRO738 cDNA, wherein SEQ ID NO:97 is a clone designated herein as "DNA53915-1258".

Figure 98 shows the amino acid sequence (SEQ ID NO:98) derived from the coding sequence of SEQ ID NO:97 shown in Figure 97.

Figure 99 shows a nucleotide sequence (SEQ ID NO:99) of a native sequence PRO865 cDNA, wherein SEQ ID NO:99 is a clone designated herein as "DNA53974-1401".

Figure 100 shows the amino acid sequence (SEQ ID NO:100) derived from the coding sequence of SEQ ID NO:99 shown in Figure 99.

Figure 101 shows a nucleotide sequence (SEQ ID NO:101) of a native sequence PRO840 cDNA, wherein SEQ ID NO:101 is a clone designated herein as "DNA53987-1438".

Figure 102 shows the amino acid sequence (SEQ ID NO:102) derived from the coding sequence of SEQ ID NO:101 shown in Figure 101.

Figure 103 shows a nucleotide sequence (SEQ ID NO:103) of a native sequence PRO1080 cDNA, wherein SEQ ID NO:103 is a clone designated herein as "DNA56047-1456".

Figure 104 shows the amino acid sequence (SEQ ID NO:104) derived from the coding sequence of SEQ ID NO:103 shown in Figure 103.

Figure 105 shows a nucleotide sequence (SEQ ID NO:105) of a native sequence PRO1079 cDNA, wherein SEQ ID NO:105 is a clone designated herein as "DNA56050-1455".

5.

10

15

20

25

30

35

Figure 106 shows the amino acid sequence (SEQ ID NO:106) derived from the coding sequence of SEQ ID NO:105 shown in Figure 105.

Figure 107 shows a nucleotide sequence (SEQ ID NO:107) of a native sequence PRO793 cDNA, wherein SEQ ID NO:107 is a clone designated herein as "DNA56110-1437".

Figure 108 shows the amino acid sequence (SEQ ID NO:108) derived from the coding sequence of SEQ ID NO:107 shown in Figure 107.

Figure 109 shows a nucleotide sequence (SEQ ID NO:109) of a native sequence PRO788 cDNA, wherein SEQ ID NO:109 is a clone designated herein as "DNA56405-1357".

Figure 110 shows the amino acid sequence (SEQ ID NO:110) derived from the coding sequence of SEQ ID NO:109 shown in Figure 109.

Figure 111 shows a nucleotide sequence (SEQ ID NO:111) of a native sequence PRO938 cDNA, wherein SEQ ID NO:111 is a clone designated herein as "DNA56433-1406".

Figure 112 shows the amino acid sequence (SEQ ID NO:112) derived from the coding sequence of SEQ ID NO:111 shown in Figure 111.

Figure 113 shows a nucleotide sequence (SEQ ID NO:113) of a native sequence PRO1012 cDNA, wherein SEQ ID NO:113 is a clone designated herein as "DNA56439-1376".

Figure 114 shows the amino acid sequence (SEQ ID NO:114) derived from the coding sequence of SEQ ID NO:113 shown in Figure 113.

Figure 115 shows a nucleotide sequence (SEQ ID NO:115) of a native sequence PRO1477 cDNA, wherein SEQ ID NO:115 is a clone designated herein as "DNA56529-1647".

Figure 116 shows the amino acid sequence (SEQ ID NO:116) derived from the coding sequence of SEQ ID NO:115 shown in Figure 115.

Figure 117 shows a nucleotide sequence (SEQID NO:117) of a native sequence PRO1134 cDNA, wherein SEQ ID NO:117 is a clone designated herein as "DNA56865-1491".

Figure 118 shows the amino acid sequence (SEQ ID NO:118) derived from the coding sequence of SEQ ID NO:117 shown in Figure 117.

Figure 119 shows a nucleotide sequence (SEQ ID NO:119) of a native sequence PRO162 cDNA, wherein SEQ ID NO:119 is a clone designated herein as "DNA56965-1356".

Figure 120 shows the amino acid sequence (SEQ ID NO:120) derived from the coding sequence of SEQ ID NO:119 shown in Figure 119.

Figure 121 shows a nucleotide sequence (SEQ ID NO:121) of a native sequence PRO1114 cDNA, wherein

SEQ ID NO:121 is a clone designated herein as "DNA57033-1403-1".

5

10

15

20

25

30

35

Figure 122 shows the amino acid sequence (SEQ ID NO:122) derived from the coding sequence of SEQ ID NO:121 shown in Figure 121.

Figure 123 shows a nucleotide sequence (SEQ ID NO:123) of a native sequence PRO828 cDNA, wherein SEQ ID NO:123 is a clone designated herein as "DNA57037-1444".

Figure 124 shows the amino acid sequence (SEQ ID NO:124) derived from the coding sequence of SEQ ID NO:123 shown in Figure 123.

Figure 125 shows a nucleotide sequence (SEQ ID NO:125) of a native sequence PRO827 cDNA, wherein SEQ ID NO:125 is a clone designated herein as "DNA57039-1402".

Figure 126 shows the amino acid sequence (SEQ ID NO:126) derived from the coding sequence of SEQ ID NO:125 shown in Figure 125.

Figure 127 shows a nucleotide sequence (SEQ ID NO:127) of a native sequence PRO1075 cDNA, wherein SEQ ID NO:127 is a clone designated herein as "DNA57689-1385".

Figure 128 shows the amino acid sequence (SEQ ID NO:128) derived from the coding sequence of SEQ ID NO:127 shown in Figure 127.

Figure 129 shows a nucleotide sequence (SEQ ID NO:129) of a native sequence PRO1007 cDNA, wherein SEQ ID NO:129 is a clone designated herein as "DNA57690-1374".

Figure 130 shows the amino acid sequence (SEQ ID NO:130) derived from the coding sequence of SEQ ID NO:129 shown in Figure 129.

Figure 131 shows a nucleotide sequence (SEQ ID NO:131) of a native sequence PRO826 cDNA, wherein SEQ ID NO:131 is a clone designated herein as "DNA57694-1341".

Figure 132 shows the amino acid sequence (SEQ ID NO:132) derived from the coding sequence of SEQ ID NO:131 shown in Figure 131.

Figure 133 shows a nucleotide sequence (SEQ ID NO:133) of a native sequence PRO819 cDNA, wherein SEQ ID NO:132 is a clone designated herein as "DNA57695-1340".

Figure 134 shows the amino acid sequence (SEQ ID NO:134) derived from the coding sequence of SEQ ID NO:133 shown in Figure 133.

Figure 135 shows a nucleotide sequence (SEQ ID NO:135) of a native sequence PRO1006 cDNA, wherein SEQ ID NO:135 is a clone designated herein as "DNA57699-1412".

Figure 136 shows the amino acid sequence (SEQ ID NO:136) derived from the coding sequence of SEQ ID NO:135 shown in Figure 135.

Figure 137 shows a nucleotide sequence (SEQ ID NO:137) of a native sequence PRO982 cDNA, wherein SEQ ID NO:137 is a clone designated herein as "DNA57700-1408".

Figure 138 shows the amino acid sequence (SEQ ID NO:138) derived from the coding sequence of SEQ ID NO:137 shown in Figure 137.

Figure 139 shows a nucleotide sequence (SEQ ID NO:139) of a native sequence PRO1005 cDNA, wherein SEQ ID NO:139 is a clone designated herein as "DNA57708-1411".

Figure 140 shows the amino acid sequence (SEQ ID NO:140) derived from the coding sequence of SEQ ID NO:139 shown in Figure 139.

Figure 141 shows a nucleotide sequence (SEQ ID NO:141) of a native sequence PRO791 cDNA, wherein SEQ ID NO:141 is a clone designated herein as "DNA57838-1337".

Figure 142 shows the amino acid sequence (SEQ ID NO:142) derived from the coding sequence of SEQ ID NO:141 shown in Figure 141.

5

10

15

20

25

30

35

Figure 143 shows a nucleotide sequence (SEQ ID NO:143) of a native sequence PRO1071 cDNA, wherein SEQ ID NO:143 is a clone designated herein as "DNA58847-1383".

Figure 144 shows the amino acid sequence (SEQ ID NO:144) derived from the coding sequence of SEQ ID NO:143 shown in Figure 43.

Figure 145 shows a nucleotide sequence (SEQ ID NO:145) of a native sequence PRO1415 cDNA, wherein SEQ ID NO:145 is a clone designated herein as "DNA58852-1637".

Figure 146 shows the amino acid sequence (SEQ ID NO:146) derived from the coding sequence of SEQ ID NO:145 shown in Figure 145.

Figure 147 shows a nucleotide sequence (SEQ ID NO:147) of a native sequence PRO1054 cDNA, wherein SEQ ID NO:147 is a clone designated herein as "DNA58853-1423".

Figure 148 shows the amino acid sequence (SEQ ID NO:148) derived from the coding sequence of SEQ ID NO:147 shown in Figure 147.

Figure 149 shows a nucleotide sequence (SEQ ID NO:149) of a native sequence PRO1411 cDNA, wherein SEQ ID NO:149 is a clone designated herein as "DNA59212-1627".

Figure 150 shows the amino acid sequence (SEQ ID NO:150) derived from the coding sequence of SEQ ID NO:149 shown in Figure 149.

Figure 151 shows a nucleotide sequence (SEQ ID NO:151) of a native sequence PRO1184 cDNA, wherein SEQ ID NO:151 is a clone designated herein as "DNA59220-1514".

Figure 152 shows the amino acid sequence (SEQ ID NO:152) derived from the coding sequence of SEQ ID NO:151 shown in Figure 151.

Figure 153 shows a nucleotide sequence (SEQ ID NO:153) of a native sequence PRO1029 cDNA, wherein SEQ ID NO:153 is a clone designated herein as "DNA59493-1420".

Figure 154 shows the amino acid sequence (SEQ ID NO:154) derived from the coding sequence of SEQ ID NO:153 shown in Figure 153.

Figure 155 shows a nucleotide sequence (SEQID NO:155) of a native sequence PRO1139 cDNA, wherein SEQ ID NO:155 is a clone designated herein as "DNA59497-1496".

Figure 156 shows the amino acid sequence (SEQ ID NO:156) derived from the coding sequence of SEQ ID NO:155 shown in Figure 155.

Figure 157 shows a nucleotide sequence (SEQ ID NO:157) of a native sequence PRO1190 cDNA, wherein SEQ ID NO:157 is a clone designated herein as "DNA59586-1520".

Figure 158 shows the amino acid sequence (SEQ ID NO:158) derived from the coding sequence of SEQ

ID NO:157 shown in Figure 157.

5

10

15

20

25

30

35

Figure 159 shows a nucleotide sequence (SEQ ID NO:159) of a native sequence PRO1309 cDNA, wherein SEQ ID NO:159 is a clone designated herein as "DNA59588-1571".

Figure 160 shows the amino acid sequence (SEQ ID NO:160) derived from the coding sequence of SEQ ID NO:159 shown in Figure 159.

Figure 161 shows a nucleotide sequence (SEQ ID NO:161) of a native sequence PRO836 cDNA, wherein SEQ ID NO:161 is a clone designated herein as "DNA59620-1463".

Figure 162 shows the amino acid sequence (SEQ ID NO:162) derived from the coding sequence of SEQ ID NO:161 shown in Figure 161.

Figure 163 shows a nucleotide sequence (SEQ ID NO:163) of a native sequence PRO1025 cDNA, wherein SEQ ID NO:163 is a clone designated herein as "DNA59622-1334".

Figure 164 shows the amino acid sequence (SEQ ID NO:164) derived from the coding sequence of SEQ ID NO:163 shown in Figure 163.

Figure 165 shows a nucleotide sequence (SEQ ID NO:165) of a native sequence PRO1131 cDNA, wherein SEQ ID NO:165 is a clone designated herein as "DNA59777-1480".

Figure 166 shows the amino acid sequence (SEQ ID NO:166) derived from the coding sequence of SEQ ID NO:165 shown in Figure 165.

Figure 167 shows a nucleotide sequence (SEQ ID NO:167) of a native sequence PRO1182 cDNA, wherein SEQ ID NO:167 is a clone designated herein as "DNA59848-1512".

Figure 168 shows the amino acid sequence (SEQ ID NO:168) derived from the coding sequence of SEQ ID NO:167 shown in Figure 167.

Figure 169 shows a nucleotide sequence (SEQ ID NO:169) of a native sequence PRO1155 cDNA, wherein SEQ ID NO:169 is a clone designated herein as "DNA59849-1504".

Figure 170 shows the amino acid sequence (SEQ ID NO:170) derived from the coding sequence of SEQ ID NO:169 shown in Figure 169.

Figure 171 shows a nucleotide sequence (SEQ ID NO:171) of a native sequence PRO1186 cDNA, wherein SEQ ID NO:171 is a clone designated herein as "DNA60621-1516".

Figure 172 shows the amino acid sequence (SEQ ID NO:172) derived from the coding sequence of SEQ ID NO:171 shown in Figure 171.

Figure 173 shows a nucleotide sequence (SEQ ID NO:173) of a native sequence PRO1198 cDNA, wherein SEQ ID NO:173 is a clone designated herein as "DNA60622-1525".

Figure 174 shows the amino acid sequence (SEQ ID NO:174) derived from the coding sequence of SEQ ID NO:173 shown in Figure 173.

Figure 175 shows a nucleotide sequence (SEQ ID NO:175) of a native sequence PRO1265 cDNA, wherein SEQ ID NO:175 is a clone designated herein as "DNA60764-1533".

Figure 176 shows the amino acid sequence (SEQ ID NO:176) derived from the coding sequence of SEQ ID NO:175 shown in Figure 175.

Figure 177 shows a nucleotide sequence (SEQ ID NO:177) of a native sequence PRO1361 cDNA, wherein SEQ ID NO:177 is a clone designated herein as "DNA60783-1611".

Figure 178 shows the amino acid sequence (SEQ ID NO:178) derived from the coding sequence of SEQ ID NO:177 shown in Figure 177.

Figure 179 shows a nucleotide sequence (SEQ ID NO:179) of a native sequence PRO1287 cDNA, wherein SEQ ID NO:179 is a clone designated herein as "DNA61755-1554".

5

10

15

20

25

30

35

Figure 180 shows the amino acid sequence (SEQ ID NO:180) derived from the coding sequence of SEQ ID NO:179 shown in Figure 179.

Figure 181 shows a nucleotide sequence (SEQ ID NO:181) of a native sequence PRO1308 cDNA, wherein SEQ ID NO:181 is a clone designated herein as "DNA62306-1570".

Figure 182 shows the amino acid sequence (SEQ ID NO:182) derived from the coding sequence of SEQ ID NO:181 shown in Figure 181.

Figure 183 shows a nucleotide sequence (SEQ ID NO:183) of a native sequence PRO4313 cDNA, wherein SEQ ID NO:183 is a clone designated herein as "DNA62312-2558".

Figure 184 shows the amino acid sequence (SEQ ID NO:184) derived from the coding sequence of SEQ ID NO:183 shown in Figure 183.

Figure 185 shows a nucleotide sequence (SEQ ID NO:185) of a native sequence PRO1192 cDNA, wherein SEQ ID NO:185 is a clone designated herein as "DNA62814-1521".

Figure 186 shows the amino acid sequence (SEQ ID NO:186) derived from the coding sequence of SEQ ID NO:185 shown in Figure 185.

Figure 187 shows a nucleotide sequence (SEQ ID NO:187) of a native sequence PRO1160 cDNA, wherein SEQ ID NO:187 is a clone designated herein as "DNA62872-1509".

Figure 188 shows the amino acid sequence (SEQ ID NO:188) derived from the coding sequence of SEQ ID NO:187 shown in Figure 187.

Figure 189 shows a nucleotide sequence (SEQ ID NO:189) of a native sequence PRO1244 cDNA, wherein SEQ ID NO:189 is a clone designated herein as "DNA64883-1526".

Figure 190 shows the amino acid sequence (SEQ ID NO:190) derived from the coding sequence of SEQ ID NO:189 shown in Figure 189.

Figure 191 shows a nucleotide sequence (SEQ ID NO:191) of a native sequence PRO1356 cDNA, wherein SEQ ID NO:191 is a clone designated herein as "DNA64886-1601".

Figure 192 shows the amino acid sequence (SEQ ID NO:192) derived from the coding sequence of SEQ ID NO:191 shown in Figure 191.

Figure 193 shows a nucleotide sequence (SEQ ID NO:193) of a native sequence PRO1274 cDNA, wherein SEQ ID NO:193 is a clone designated herein as "DNA64889-1541".

Figure 194 shows the amino acid sequence (SEQ ID NO:194) derived from the coding sequence of SEQ ID NO:193 shown in Figure 193.

Figure 195 shows a nucleotide sequence (SEO ID NO:195) of a native sequence PRO1272 cDNA, wherein

SEQ ID NO:195 is a clone designated herein as "DNA64896-1539".

5

10

15

20

25

30

35

Figure 196 shows the amino acid sequence (SEQ ID NO:196) derived from the coding sequence of SEQ ID NO:195 shown in Figure 195.

Figure 197 shows a nucleotide sequence (SEQ ID NO:197) of a native sequence PRO1412 cDNA, wherein SEQ ID NO:197 is a clone designated herein as "DNA64897-1628".

Figure 198 shows the amino acid sequence (SEQ ID NO:198) derived from the coding sequence of SEQ ID NO:197 shown in Figure 197.

Figure 199 shows a nucleotide sequence (SEQ ID NO:199) of a native sequence PRO1286 cDNA, wherein SEQ ID NO:199 is a clone designated herein as "DNA64903-1553".

Figure 200 shows the amino acid sequence (SEQ ID NO:200) derived from the coding sequence of SEQ ID NO:199 shown in Figure 199.

Figure 201 shows a nucleotide sequence (SEQ ID NO:201) of a native sequence PRO1347 cDNA, wherein SEQ ID NO:201 is a clone designated herein as "DNA64950-1590".

Figure 202 shows the amino acid sequence (SEQ ID NO:202) derived from the coding sequence of SEQ ID NO:201 shown in Figure 201.

Figure 203 shows a nucleotide sequence (SEQ ID NO:203) of a native sequence PRO1273 cDNA, wherein SEQ ID NO:203 is a clone designated herein as "DNA65402-1540".

Figure 204 shows the amino acid sequence (SEQ ID NO:204) derived from the coding sequence of SEQ ID NO:203 shown in Figure 203.

Figure 205 shows a nucleotide sequence (SEQ ID NO:205) of a native sequence PRO1283 cDNA, wherein SEQ ID NO:205 is a clone designated herein as "DNA65404-1551".

Figure 206 shows the amino acid sequence (SEQ ID NO:206) derived from the coding sequence of SEQ ID NO:205 shown in Figure 205.

Figure 207 shows a nucleotide sequence (SEQ ID NO:207) of a native sequence PRO1279 cDNA, wherein SEQ ID NO:207 is a clone designated herein as "DNA65405-1547".

Figure 208 shows the amino acid sequence (SEQ ID NO:208) derived from the coding sequence of SEQ ID NO:207 shown in Figure 207.

Figure 209 shows a nucleotide sequence (SEQ ID NO:209) of a native sequence PRO1306 cDNA, wherein SEQ ID NO:209 is a clone designated herein as "DNA65410-1569".

Figure 210 shows the amino acid sequence (SEQ ID NO:210) derived from the coding sequence of SEQ ID NO:209 shown in Figure 209.

Figure 211 shows a nucleotide sequence (SEQ ID NO:211) of a native sequence PRO1195 cDNA, wherein SEQ ID NO:211 is a clone designated herein as "DNA65412-1523".

Figure 212 shows the amino acid sequence (SEQ ID NO:212) derived from the coding sequence of SEQ ID NO:211 shown in Figure 211.

Figure 213 shows a nucleotide sequence (SEQ ID NO:213) of a native sequence PRO4995 cDNA, wherein SEQ ID NO:213 is a clone designated herein as "DNA66307-2661".

Figure 214 shows the amino acid sequence (SEQ ID NO:214) derived from the coding sequence of SEQ ID NO:213 shown in Figure 213.

Figure 215 shows a nucleotide sequence (SEQ ID NO:215) of a native sequence PRO1382 cDNA, wherein SEQ ID NO:215 is a clone designated herein as "DNA66526-1616".

5

Figure 216 shows the amino acid sequence (SEQ ID NO:216) derived from the coding sequence of SEQ ID NO:215 shown in Figure 215.

Figure 217 shows a nucleotide sequence (SEQ ID NO:217) of a native sequence PRO1325 cDNA, wherein SEQ ID NO:217 is a clone designated herein as "DNA66659-1593".

Figure 218 shows the amino acid sequence (SEQ ID NO:218) derived from the coding sequence of SEQ ID NO:217 shown in Figure 217.

Figure 219 shows a nucleotide sequence (SEQ ID NO:219) of a native sequence PRO1329 cDNA, wherein SEQ ID NO:219 is a clone designated herein as "DNA66660-1585".

Figure 220 shows the amino acid sequence (SEQ ID NO:220) derived from the coding sequence of SEQ ID NO:219 shown in Figure 219.

15

20

10

Figure 221 shows a nucleotide sequence (SEQ ID NO:221) of a native sequence PRO1338 cDNA, wherein SEQ ID NO:221 is a clone designated herein as "DNA66667-1596".

Figure 222 shows the amino acid sequence (SEQ ID NO:222) derived from the coding sequence of SEQ ID NO:221 shown in Figure 221.

Figure 223 shows a nucleotide sequence (SEQ ID NO:223) of a native sequence PRO1337 cDNA, wherein SEQ ID NO:223 is a clone designated herein as "DNA66672-1586".

Figure 224 shows the amino acid sequence (SEQ ID NO:224) derived from the coding sequence of SEQ ID NO:223 shown in Figure 223.

Figure 225 shows a nucleotide sequence (SEQ ID NO:225) of a native sequence PRO1343 cDNA, wherein SEQ ID NO:225 is a clone designated herein as "DNA66675-1587".

25

30

Figure 226 shows the amino acid sequence (SEQ ID NO:226) derived from the coding sequence of SEQ ID NO:225 shown in Figure 225.

Figure 227 shows a nucleotide sequence (SEQ ID NO:227) of a native sequence PRO1376 cDNA, wherein SEQ ID NO:227 is a clone designated herein as "DNA67300-1605".

Figure 228 shows the amino acid sequence (SEQ ID NO:228) derived from the coding sequence of SEQ ID NO:227 shown in Figure 227.

Figure 229 shows a nucleotide sequence (SEQ ID NO:229) of a native sequence PRO1434 cDNA, wherein SEQ ID NO:229 is a clone designated herein as "DNA68818-2536".

Figure 230 shows the amino acid sequence (SEQ ID NO:230) derived from the coding sequence of SEQ ID NO:229 shown in Figure 229.

35

Figure 231 shows a nucleotide sequence (SEQ ID NO:231) of a native sequence PRO3579 cDNA, wherein SEQ ID NO:231 is a clone designated herein as "DNA68862-2546".

Figure 232 shows the amino acid sequence (SEQ ID NO:232) derived from the coding sequence of SEQ

ID NO:231 shown in Figure 231.

5

15

20

25

30

35

Figure 233 shows a nucleotide sequence (SEQ ID NO:233) of a native sequence PRO1387 cDNA, wherein SEQ ID NO:233 is a clone designated herein as "DNA68872-1620".

Figure 234 shows the amino acid sequence (SEQ ID NO:234) derived from the coding sequence of SEQ ID NO:233 shown in Figure 233.

Figure 235 shows a nucleotide sequence (SEQ ID NO:235) of a native sequence PRO1419 cDNA, wherein SEQ ID NO:235 is a clone designated herein as "DNA71290-1630".

Figure 236 shows the amino acid sequence (SEQ ID NO:236) derived from the coding sequence of SEQ ID NO:235 shown in Figure 235.

Figure 237 shows a nucleotide sequence (SEQ ID NO:237) of a native sequence PRO1488 cDNA, wherein SEQ ID NO:237 is a clone designated herein as "DNA73736-1657".

Figure 238 shows the amino acid sequence (SEQ ID NO:238) derived from the coding sequence of SEQ ID NO:237 shown in Figure 237.

Figure 239 shows a nucleotide sequence (SEQ ID NO:239) of a native sequence PRO1474 cDNA, wherein SEQ ID NO:239 is a clone designated herein as "DNA73739-1645".

Figure 240 shows the amino acid sequence (SEQ ID NO:240) derived from the coding sequence of SEQ ID NO:239 shown in Figure 239.

Figure 241 shows a nucleotide sequence (SEQ ID NO:241) of a native sequence PRO1508 cDNA, wherein SEQ ID NO:241 is a clone designated herein as "DNA73742-1662".

Figure 242 shows the amino acid sequence (SEQ ID NO:242) derived from the coding sequence of SEQ ID NO:241 shown in Figure 241.

Figure 243 shows a nucleotide sequence (SEQ ID NO:243) of a native sequence PRO1754 cDNA, wherein SEQ ID NO:243 is a clone designated herein as "DNA76385-1692".

Figure 244 shows the amino acid sequence (SEQ ID NO:244) derived from the coding sequence of SEQ ID NO:243 shown in Figure 243.

Figure 245 shows a nucleotide sequence (SEQ ID NO:245) of a native sequence PRO1550 cDNA, wherein SEQ ID NO:245 is a clone designated herein as "DNA76393-1664".

Figure 246 shows the amino acid sequence (SEQ ID NO:246) derived from the coding sequence of SEQ ID NO:245 shown in Figure 245.

Figure 247 shows a nucleotide sequence (SEQ ID NO:247) of a native sequence PRO1758 cDNA, wherein SEQ ID NO:247 is a clone designated herein as "DNA76399-1700".

Figure 248 shows the amino acid sequence (SEQ ID NO:248) derived from the coding sequence of SEQ ID NO:247 shown in Figure 247.

Figure 249 shows a nucleotide sequence (SEQ ID NO:249) of a native sequence PRO1917 cDNA, wherein SEQ ID NO:249 is a clone designated herein as "DNA76400-2528".

Figure 250 shows the amino acid sequence (SEQ ID NO:250) derived from the coding sequence of SEQ ID NO:249 shown in Figure 249.

Figure 251 shows a nucleotide sequence (SEQ ID NO:251) of a native sequence PRO1787 cDNA, wherein SEQ ID NO:251 is a clone designated herein as "DNA76510-2504".

Figure 252 shows the amino acid sequence (SEQ ID NO:252) derived from the coding sequence of SEQ ID NO:251 shown in Figure 251.

Figure 253 shows a nucleotide sequence (SEQ ID NO:253) of a native sequence PRO1556 cDNA, wherein SEQ ID NO:253 is a clone designated herein as "DNA76529-1666".

5

10

15

20

25

30

35

Figure 254 shows the amino acid sequence (SEQ ID NO:254) derived from the coding sequence of SEQ ID NO:253 shown in Figure 253.

Figure 255 shows a nucleotide sequence (SEQ ID NO:255) of a native sequence PRO1760 cDNA, wherein SEQ ID NO:255 is a clone designated herein as "DNA76532-1702".

Figure 256 shows the amino acid sequence (SEQ ID NO:256) derived from the coding sequence of SEQ ID NO:255 shown in Figure 255.

Figure 257 shows a nucleotide sequence (SEQ ID NO:257) of a native sequence PRO1567 cDNA, wherein SEQ ID NO:257 is a clone designated herein as "DNA76541-1675".

Figure 258 shows the amino acid sequence (SEQ ID NO:258) derived from the coding sequence of SEQ ID NO:257 shown in Figure 257.

Figure 259 shows a nucleotide sequence (SEQ ID NO:259) of a native sequence PRO1600 cDNA, wherein SEQ ID NO:259 is a clone designated herein as "DNA77503-1686".

Figure 260 shows the amino acid sequence (SEQ ID NO:260) derived from the coding sequence of SEQ ID NO:259 shown in Figure 259.

Figure 261 shows a nucleotide sequence (SEQ ID NO:261) of a native sequence PRO1868 cDNA, wherein SEQ ID NO:261 is a clone designated herein as "DNA77624-2515".

Figure 262 shows the amino acid sequence (SEQ ID NO:262) derived from the coding sequence of SEQ ID NO:261 shown in Figure 261.

Figure 263 shows a nucleotide sequence (SEQ ID NO:263) of a native sequence PRO1890 cDNA, wherein SEQ ID NO:263 is a clone designated herein as "DNA79230-2525".

Figure 264 shows the amino acid sequence (SEQ ID NO:264) derived from the coding sequence of SEQ ID NO:263 shown in Figure 263.

Figure 265 shows a nucleotide sequence (SEQ ID NO:265) of a native sequence PRO1887 cDNA, wherein SEQ ID NO:265 is a clone designated herein as "DNA79862-2522".

Figure 266 shows the amino acid sequence (SEQ ID NO:265) derived from the coding sequence of SEQ ID NO:265 shown in Figure 265.

Figure 267 shows a nucleotide sequence (SEQ ID NO:267) of a native sequence PRO4353 cDNA, wherein SEQ ID NO:267 is a clone designated herein as "DNA80145-2594".

Figure 268 shows the amino acid sequence (SEQ ID NO:268) derived from the coding sequence of SEQ ID NO:267 shown in Figure 267.

Figure 269 shows a nucleotide sequence (SEQ ID NO:269) of a native sequence PRO1782 cDNA, wherein

SEQ ID NO:269 is a clone designated herein as "DNA80899-2501".

5

15

20

25

30

35

Figure 270 shows the amino acid sequence (SEQ ID NO:270) derived from the coding sequence of SEQ ID NO:269 shown in Figure 269.

Figure 271 shows a nucleotide sequence (SEQID NO:271) of a native sequence PRO1928 cDNA, wherein SEQ ID NO:271 is a clone designated herein as "DNA81754-2532".

Figure 272 shows the amino acid sequence (SEQ ID NO:272) derived from the coding sequence of SEQ ID NO:271 shown in Figure 271.

Figure 273 shows a nucleotide sequence (SEQ ID NO:273) of a native sequence PRO1865 cDNA, wherein SEQ ID NO:273 is a clone designated herein as "DNA81757-2512".

Figure 274 shows the amino acid sequence (SEQ ID NO:274) derived from the coding sequence of SEQ ID NO:273 shown in Figure 273.

Figure 275 shows a nucleotide sequence (SEQ ID NO:275) of a native sequence PRO4341 cDNA, wherein SEQ ID NO:275 is a clone designated herein as "DNA81761-2583".

Figure 276 shows the amino acid sequence (SEQ ID NO:276) derived from the coding sequence of SEQ ID NO:275 shown in Figure 275.

Figure 277 shows a nucleotide sequence (SEQ ID NO:277) of a native sequence PRO6714 cDNA, wherein SEQ ID NO:277 is a clone designated herein as "DNA82358-2738".

Figure 278 shows the amino acid sequence (SEQ ID NO:278) derived from the coding sequence of SEQ ID NO:277 shown in Figure 277.

Figure 279 shows a nucleotide sequence (SEQ ID NO:279) of a native sequence PRO5723 cDNA, wherein SEQ ID NO:279 is a clone designated herein as "DNA82361".

Figure 280 shows the amino acid sequence (SEQ ID NO:280) derived from the coding sequence of SEQ ID NO:279 shown in Figure 279.

Figure 281 shows a nucleotide sequence (SEQ ID NO:281) of a native sequence PRO3438 cDNA, wherein SEQ ID NO:281 is a clone designated herein as "DNA82364-2538".

Figure 282 shows the amino acid sequence (SEQ ID NO:282) derived from the coding sequence of SEQ ID NO:281 shown in Figure 281.

Figure 283 shows a nucleotide sequence (SEQ ID NO:283) of a native sequence PRO6071 cDNA, wherein SEQ ID NO:283 is a clone designated herein as "DNA82403-2959".

Figure 284 shows the amino acid sequence (SEQ ID NO:284) derived from the coding sequence of SEQ ID NO:283 shown in Figure 283.

Figure 285 shows a nucleotide sequence (SEQ ID NO:285) of a native sequence PRO1801 cDNA, wherein SEQ ID NO:285 is a clone designated herein as "DNA83500-2506".

Figure 286 shows the amino acid sequence (SEQ ID NO:286) derived from the coding sequence of SEQ ID NO:285 shown in Figure 285.

Figure 287 shows a nucleotide sequence (SEQ ID NO:287) of a native sequence PRO4324 cDNA, wherein SEQ ID NO:287 is a clone designated herein as "DNA83560-2569".

Figure 288 shows the amino acid sequence (SEQ ID NO:288) derived from the coding sequence of SEQ ID NO:287 shown in Figure 287.

Figure 289 shows a nucleotide sequence (SEQ ID NO:289) of a native sequence PRO4333 cDNA, wherein SEQ ID NO:289 is a clone designated herein as "DNA84210-2576".

Figure 290 shows the amino acid sequence (SEQ ID NO:290) derived from the coding sequence of SEQ ID NO:289 shown in Figure 289.

5

10

15

20

25

30

35

Figure 291 shows a nucleotide sequence (SEQ ID NO:291) of a native sequence PRO4405 cDNA, wherein SEQ ID NO:291 is a clone designated herein as "DNA84920-2614".

Figure 292 shows the amino acid sequence (SEQ ID NO:292) derived from the coding sequence of SEQ ID NO:291 shown in Figure 291.

Figure 293 shows a nucleotide sequence (SEQ ID NO:293) of a native sequence PRO4356 cDNA, wherein SEQ ID NO:293 is a clone designated herein as "DNA86576-2595".

Figure 294 shows the amino acid sequence (SEQ ID NO:294) derived from the coding sequence of SEQ ID NO:293 shown in Figure 293.

Figure 295 shows a nucleotide sequence (SEQ ID NO:295) of a native sequence PRO3444 cDNA, wherein SEQ ID NO:295 is a clone designated herein as "DNA87997".

Figure 296 shows the amino acid sequence (SEQ ID NO:296) derived from the coding sequence of SEQ ID NO:295 shown in Figure 295.

Figure 297 shows a nucleotide sequence (SEQ ID NO:297) of a native sequence PRO4302 cDNA, wherein SEQ ID NO:297 is a clone designated herein as "DNA92218-2554".

Figure 298 shows the amino acid sequence (SEQ ID NO:298) derived from the coding sequence of SEQ ID NO:297 shown in Figure 297.

Figure 299 shows a nucleotide sequence (SEQ ID NO:299) of a native sequence PRO4371 cDNA, wherein SEQ ID NO:299 is a clone designated herein as "DNA92233-2599".

Figure 300 shows the amino acid sequence (SEQ ID NO:300) derived from the coding sequence of SEQ ID NO:299 shown in Figure 299.

Figure 301 shows a nucleotide sequence (SEQ ID NO:301) of a native sequence PRO4354 cDNA, wherein. SEQ ID NO:301 is a clone designated herein as "DNA92256-2596".

Figure 302 shows the amino acid sequence (SEQ ID NO:302) derived from the coding sequence of SEQ ID NO:301 shown in Figure 301.

Figure 303 shows a nucleotide sequence (SEQ ID NO:303) of a native sequence PRO5725 cDNA, wherein SEQ ID NO:303 is a clone designated herein as "DNA92265-2669".

Figure 304 shows the amino acid sequence (SEQ ID NO:304) derived from the coding sequence of SEQ ID NO:303 shown in Figure 303.

Figure 305 shows a nucleotide sequence (SEQ ID NO:305) of a native sequence PRO4408 cDNA, wherein SEQ ID NO:305 is a clone designated herein as "DNA92274-2617".

Figure 306 shows the amino acid sequence (SEQ ID NO:306) derived from the coding sequence of SEQ

ID NO:305 shown in Figure 305.

5

10

15

20

25

30

35

Figure 307 shows a nucleotide sequence (SEQ ID NO:307) of a native sequence PRO9940 cDNA, wherein SEQ ID NO:307 is a clone designated herein as "DNA92282".

Figure 308 shows the amino acid sequence (SEQ ID NO:308) derived from the coding sequence of SEQ ID NO:307 shown in Figure 307.

Figure 309 shows a nucleotide sequence (SEQ ID NO:309) of a native sequence PRO5737 cDNA, wherein SEQ ID NO:309 is a clone designated herein as "DNA92929-2534-1".

Figure 310 shows the amino acid sequence (SEQ ID NO:310) derived from the coding sequence of SEQ ID NO:309 shown in Figure 309.

Figure 311 shows a nucleotide sequence (SEQ ID NO:311) of a native sequence PRO4425 cDNA, wherein SEQ ID NO:311 is a clone designated herein as "DNA93011-2637".

Figure 312 shows the amino acid sequence (SEQ ID NO:312) derived from the coding sequence of SEQ ID NO:311 shown in Figure 311.

Figure 313 shows a nucleotide sequence (SEQ ID NO:313) of a native sequence PRO4345 cDNA, wherein SEQ ID NO:313 is a clone designated herein as "DNA94854-2586".

Figure 314 shows the amino acid sequence (SEQ ID NO:314) derived from the coding sequence of SEQ ID NO:313 shown in Figure 313.

Figure 315 shows a nucleotide sequence (SEQ ID NO:315) of a native sequence PRO4342 cDNA, wherein SEQ ID NO:315 is a clone designated herein as "DNA96787-2534-1".

Figure 316 shows the amino acid sequence (SEQ ID NO:316) derived from the coding sequence of SEQ ID NO:315 shown in Figure 315.

Figure 317 shows a nucleotide sequence (SEQ ID NO:317) of a native sequence PRO3562 cDNA, wherein SEQ ID NO:317 is a clone designated herein as "DNA96791".

Figure 318 shows the amino acid sequence (SEQ ID NO:318) derived from the coding sequence of SEQ ID NO:317 shown in Figure 317.

Figure 319 shows a nucleotide sequence (SEQ ID NO:319) of a native sequence PRO4422 cDNA, wherein SEQ ID NO:319 is a clone designated herein as "DNA96867-2620".

Figure 320 shows the amino acid sequence (SEQ ID NO:320) derived from the coding sequence of SEQ ID NO:319 shown in Figure 319.

Figure 321 shows a nucleotide sequence (SEQ ID NO:321) of a native sequence PRO5776 cDNA, wherein SEQ ID NO:321 is a clone designated herein as "DNA96872-2674".

Figure 322 shows the amino acid sequence (SEQ ID NO:322) derived from the coding sequence of SEQ ID NO:321 shown in Figure 321.

Figure 323 shows a nucleotide sequence (SEQ ID NO:323) of a native sequence PRO4430 cDNA, wherein SEQ ID NO:323 is a clone designated herein as "DNA96878-2626".

Figure 324 shows the amino acid sequence (SEQ ID NO:324) derived from the coding sequence of SEQ ID NO:323 shown in Figure 323.

Figure 325 shows a nucleotide sequence (SEQ ID NO:325) of a native sequence PRO4499 cDNA, wherein SEQ ID NO:325 is a clone designated herein as "DNA96889-2641".

Figure 326 shows the amino acid sequence (SEQ ID NO:326) derived from the coding sequence of SEQ ID NO:325 shown in Figure 325.

Figure 327 shows a nucleotide sequence (SEQ ID NO:327) of a native sequence PRO4503 cDNA, wherein SEQ ID NO:327 is a clone designated herein as "DNA100312-2645".

5

10

15

20

25

30

35

Figure 328 shows the amino acid sequence (SEQ ID NO:328) derived from the coding sequence of SEQ ID NO:327 shown in Figure 327.

Figure 329 shows a nucleotide sequence (SEQ ID NO:329) of a native sequence PRO10008 cDNA, wherein SEQ ID NO:329 is a clone designated herein as "DNA101921".

Figure 330 shows the amino acid sequence (SEQ ID NO:330) derived from the coding sequence of SEQ ID NO:329 shown in Figure 329.

Figure 331 shows a nucleotide sequence (SEQ ID NO:331) of a native sequence PRO5730 cDNA, wherein SEQ ID NO:331 is a clone designated herein as "DNA101926".

Figure 332 shows the amino acid sequence (SEQ ID NO:332) derived from the coding sequence of SEQ ID NO:331 shown in Figure 331.

Figure 333 shows a nucleotide sequence (SEQ ID NO:333) of a native sequence PRO6008 cDNA, wherein SEQ ID NO:333 is a clone designated herein as "DNA102844".

Figure 334 shows the amino acid sequence (SEQ ID NO:334) derived from the coding sequence of SEQ ID NO:333 shown in Figure 333.

Figure 335 shows a nucleotide sequence (SEQ ID NO:335) of a native sequence PRO4527 cDNA, wherein SEQ ID NO:335 is a clone designated herein as "DNA103197".

Figure 336 shows the amino acid sequence (SEQ ID NO:336) derived from the coding sequence of SEQ ID NO:335 shown in Figure 335.

Figure 337 shows a nucleotide sequence (SEQ ID NO:337) of a native sequence PRO4538 cDNA, wherein SEQ ID NO:337 is a clone designated herein as "DNA103208".

Figure 338 shows the amino acid sequence (SEQ ID NO:338) derived from the coding sequence of SEQ ID NO:337 shown in Figure 337.

Figure 339 shows a nucleotide sequence (SEQ ID NO:339) of a native sequence PRO4553 cDNA, wherein SEQ ID NO:339 is a clone designated herein as "DNA103223".

Figure 340 shows the amino acid sequence (SEQ ID NO:340) derived from the coding sequence of SEQ ID NO:339 shown in Figure 339.

Figure 341 shows a nucleotide sequence (SEQ ID NO:341) of a native sequence PRO6006 cDNA, wherein SEQ ID NO:341 is a clone designated herein as "DNA105782-2693".

Figure 342 shows the amino acid sequence (SEQ ID NO:342) derived from the coding sequence of SEQ ID NO:341 shown in Figure 341.

Figure 343 shows a nucleotide sequence (SEO ID NO:343) of a native sequence PRO6029 cDNA, wherein

SEQ ID NO:343 is a clone designated herein as "DNA105849-2704".

5

10

15

20

25

30

35

Figure 344 shows the amino acid sequence (SEQ ID NO:344) derived from the coding sequence of SEQ ID NO:343 shown in Figure 343.

Figure 345 shows a nucleotide sequence (SEQ ID NO:345) of a native sequence PRO9821 cDNA, wherein SEQ ID NO:345 is a clone designated herein as "DNA108725-2766".

Figure 346 shows the amino acid sequence (SEQ ID NO:346) derived from the coding sequence of SEQ ID NO:345 shown in Figure 345.

Figure 347 shows a nucleotide sequence (SEQ ID NO:347) of a native sequence PRO9820 cDNA, wherein SEQ ID NO:347 is a clone designated herein as "DNA108769-2765".

Figure 348 shows the amino acid sequence (SEQ ID NO:348) derived from the coding sequence of SEQ ID NO:347 shown in Figure 347.

Figure 349 shows a nucleotide sequence (SEQ ID NO:349) of a native sequence PRO9771 cDNA, wherein SEQ ID NO:349 is a clone designated herein as "DNA119498-2965".

Figure 350 shows the amino acid sequence (SEQ ID NO:350) derived from the coding sequence of SEQ ID NO:349 shown in Figure 349.

Figure 351 shows a nucleotide sequence (SEQ ID NO:351) of a native sequence PRO7436 cDNA, wherein SEQ ID NO:351 is a clone designated herein as "DNA119535-2756".

Figure 352 shows the amino acid sequence (SEQ ID NO:352) derived from the coding sequence of SEQ ID NO:351 shown in Figure 351.

Figure 353 shows a nucleotide sequence (SEQ ID NO:353) of a native sequence PRO10096 cDNA, wherein SEQ ID NO:353 is a clone designated herein as "DNA125185-2806".

Figure 354 shows the amino acid sequence (SEQ ID NO:354) derived from the coding sequence of SEQ ID NO:353 shown in Figure 353.

Figure 355 shows a nucleotide sequence (SEQ ID NO:355) of a native sequence PRO19670 cDNA, wherein SEQ ID NO:355 is a clone designated herein as "DNA131639-2874".

Figure 356 shows the amino acid sequence (SEQ ID NO:356) derived from the coding sequence of SEQ ID NO:355 shown in Figure 355.

Figure 357 shows a nucleotide sequence (SEQ ID NO:357) of a native sequence PRO20044 cDNA, wherein SEQ ID NO:357 is a clone designated herein as "DNA139623-2893".

Figure 358 shows the amino acid sequence (SEQ ID NO:358) derived from the coding sequence of SEQ ID NO:357 shown in Figure 357.

Figure 359 shows a nucleotide sequence (SEQ ID NO:359) of a native sequence PRO9873 cDNA, wherein SEQ ID NO:359 is a clone designated herein as "DNA143076-2787".

Figure 360 shows the amino acid sequence (SEQ ID NO:360) derived from the coding sequence of SEQ ID NO:359 shown in Figure 359.

Figure 361 shows a nucleotide sequence (SEQ ID NO:361) of a native sequence PRO21366 cDNA, wherein SEQ ID NO:361 is a clone designated herein as "DNA143276-2975".

Figure 362 shows the amino acid sequence (SEQ ID NO:362) derived from the coding sequence of SEQ ID NO:361 shown in Figure 361.

Figure 363 shows a nucleotide sequence (SEQ ID NO:363) of a native sequence PRO20040 cDNA, wherein SEQ ID NO:363 is a clone designated herein as "DNA164625-2890".

Figure 364 shows the amino acid sequence (SEQ ID NO:364) derived from the coding sequence of SEQ ID NO:363 shown in Figure 363.

Figure 365 shows a nucleotide sequence (SEQ ID NO:365) of a native sequence PRO21184 cDNA, wherein SEQ ID NO:365 is a clone designated herein as "DNA167678-2963".

Figure 366 shows the amino acid sequence (SEQ ID NO:366) derived from the coding sequence of SEQ ID NO:365 shown in Figure 365.

Figure 367 shows a nucleotide sequence (SEQ ID NO:367) of a native sequence PRO21055 cDNA, wherein SEQ ID NO:367 is a clone designated herein as "DNA170021-2923".

Figure 368 shows the amino acid sequence (SEQ ID NO:368) derived from the coding sequence of SEQ ID NO:367 shown in Figure 367.

Figure 369 shows a nucleotide sequence (SEQ ID NO:369) of a native sequence PRO28631 cDNA, wherein SEQ ID NO:369 is a clone designated herein as "DNA170212-3000".

Figure 370 shows the amino acid sequence (SEQ ID NO:370) derived from the coding sequence of SEQ ID NO:369 shown in Figure 369.

Figure 371 shows a nucleotide sequence (SEQ ID NO:371) of a native sequence PRO21384 cDNA, wherein SEQ ID NO:371 is a clone designated herein as "DNA177313-2982".

Figure 372 shows the amino acid sequence (SEQ ID NO:372) derived from the coding sequence of SEQ ID NO:371 shown in Figure 371.

Figure 373 shows a nucleotide sequence (SEQ ID NO:373) of a native sequence PRO1449 cDNA, wherein SEQ ID NO:373 is a clone designated herein as "DNA64908-1163-1".

Figure 374 shows the amino acid sequence (SEQ ID NO:374) derived from the coding sequence of SEQ ID NO:373 shown in Figure 373.

Figure 375 shows wholemount in situ hybridization results on mouse embryos using a mouse orthologue of PRO1449 which has about 78% amino acid identity with PRO1449. The results show that PRO1449 orthologue is expressed in the developing vasculature. The cross-section further shows expression in endothelial cells and progenitors of endothelial cells.

Figure 376 shows that a PRO1449 orthologue having about 78% amino acid identity with PRO1449 is expressed in vasculature of many inflamed and diseased tissues, but is very low, or lacking, in normal adult vessels.

Figure 377 shows that a PRO1449 orthologue having about 78% amino acid identity with PRO1449 induces ectopic vessels in the eyes of chicken embryos.

35

5

10

15

20

25

30

5. <u>Detailed Description of the Invention</u>

5.1. Definitions

5

10

15

20

25

30

35

The phrases "cardiovascular, endothelial and angiogenic disorder", "cardiovascular, endothelial and angiogenic dysfunction", "cardiovascular, endothelial or angiogenic dysfunction" are used interchangeably and refer in part to systemic disorders that affect vessels, such as diabetes mellitus, as well as diseases of the vessels themselves, such as of the arteries, capillaries, veins, and/or lymphatics. This would include indications that stimulate angiogenesis and/or cardiovascularization, and those that inhibit angiogenesis and/or cardiovascularization. Such disorders include, for example, arterial disease, such as atherosclerosis, hypertension, inflammatory vasculitides, Reynaud's disease and Reynaud's phenomenon, aneurysms, and arterial restenosis; venous and lymphatic disorders such as thrombophlebitis, lymphangitis, and lymphedema; and other vascular disorders such as peripheral vascular disease, cancer such as vascular tumors, e.g., hemangioma (capillary and cavernous), glomus tumors, telangiectasia, bacillary angiomatosis, hemangioendothelioma, angiosarcoma, haemangiopericytoma, Kaposi's sarcoma, lymphangioma, and lymphangiosarcoma, tumor angiogenesis, trauma such as wounds, burns, and other injured tissue, implant fixation, scarring, ischemia reperfusion injury, rheumatoid arthritis, cerebrovascular disease, renal diseases such as acute renal failure, and osteoporosis. This would also include angina, myocardial infarctions such as acute myocardial infarctions, cardiac hypertrophy, and heart failure such as CHF.

"Hypertrophy", as used herein, is defined as an increase in mass of an organ or structure independent of natural growth that does not involve tumor formation. Hypertrophy of an organ or tissue is due either to an increase in the mass of the individual cells (true hypertrophy), or to an increase in the number of cells making up the tissue (hyperplasia), or both. Certain organs, such as the heart, lose the ability to divide shortly after birth. Accordingly, "cardiac hypertrophy" is defined as an increase in mass of the heart, which, in adults, is characterized by an increase in myocyte cell size and contractile protein content without concomitant cell division. The character of the stress responsible for inciting the hypertrophy, (e.g., increased preload, increased afterload, loss of myocytes, as in myocardial infarction, or primary depression of contractility), appears to play a critical role in determining the nature of the response. The early stage of cardiac hypertrophy is usually characterized morphologically by increases in the size of myofibrils and mitochondria, as well as by enlargement of mitochondria and nuclei. At this stage, while muscle cells are larger than normal, cellular organization is largely preserved. At a more advanced stage of cardiac hypertrophy, there are preferential increases in the size or number of specific organelles, such as mitochondria, and new contractile elements are added in localized areas of the cells, in an irregular manner. Cells subjected to long-standing hypertrophy show more obvious disruptions in cellular organization, including markedly enlarged nuclei with highly lobulated membranes, which displace adjacent myofibrils and cause breakdown of normal Z-band registration. The phrase "cardiac hypertrophy" is used to include all stages of the progression of this condition, characterized by various degrees of structural damage of the heart muscle, regardless of the underlying cardiac disorder. Hence, the term also includes physiological conditions instrumental in the development of cardiac hypertrophy, such as elevated blood pressure, aortic stenosis, or myocardial infarction.

"Heart failure" refers to an abnormality of cardiac function where the heart does not pump blood at the rate

needed for the requirements of metabolizing tissues. The heart failure can be caused by a number of factors, including ischemic, congenital, rheumatic, or idiopathic forms.

"Congestive heart failure" (CHF) is a progressive pathologic state where the heart is increasingly unable to supply adequate cardiac output (the volume of blood pumped by the heart over time) to deliver the oxygenated blood to peripheral tissues. As CHF progresses, structural and hemodynamic damages occur. While these damages have a variety of manifestations, one characteristic symptom is ventricular hypertrophy. CHF is a common end result of a number of various cardiac disorders.

5

10

15

20

25

30

35

"Myocardial infarction" generally results from atherosclerosis of the coronary arteries, often with superimposed coronary thrombosis. It may be divided into two major types: transmural infarcts, in which myocardial necrosis involves the full thickness of the ventricular wall, and subendocardial (nontransmural) infarcts, in which the necrosis involves the subendocardium, the intramural myocardium, or both, without extending all the way through the ventricular wall to the epicardium. Myocardial infarction is known to cause both a change in hemodynamic effects and an alteration in structure in the damaged and healthy zones of the heart. Thus, for example, myocardial infarction reduces the maximum cardiac output and the stroke volume of the heart. Also associated with myocardial infarction is a stimulation of the DNA synthesis occurring in the interstice as well as an increase in the formation of collagen in the areas of the heart not affected.

As a result of the increased stress or strain placed on the heart in prolonged hypertension due, for example, to the increased total peripheral resistance, cardiac hypertrophy has long been associated with "hypertension". A characteristic of the ventricle that becomes hypertrophic as a result of chronic pressure overload is an impaired diastolic performance. Fouad *et al.*, J. Am. Coll. Cardiol., 4: 1500-1506 (1984); Smith *et al.*, J. Am. Coll. Cardiol., 5: 869-874 (1985). A prolonged left ventricular relaxation has been detected in early essential hypertension, in spite of normal or supranormal systolic function. Hartford *et al.*, Hypertension, 6: 329-338 (1984). However, there is no close parallelism between blood pressure levels and cardiac hypertrophy. Although improvement in left ventricular function in response to antihypertensive therapy has been reported in humans, patients variously treated with a diuretic (hydrochlorothiazide), a β-blocker (propranolol), or a calcium channel blocker (diltiazem), have shown reversal of left ventricular hypertrophy, without improvement in diastolic function. Inouye *et al.*, Am. J. Cardiol., 53: 1583-7 (1984).

Another complex cardiac disease associated with cardiac hypertrophy is "hypertrophic cardiomyopathy". This condition is characterized by a great diversity of morphologic, functional, and clinical features (Maron et al., N. Engl. J. Med., 316: 780-789 (1987); Spirito et al., N. Engl. J. Med., 320: 749-755 (1989); Louie and Edwards, Prog. Cardiovasc. Dis., 36: 275-308 (1994); Wigle et al., Circulation, 92: 1680-1692 (1995)), the heterogeneity of which is accentuated by the fact that it afflicts patients of all ages. Spirito et al., N. Engl. J. Med., 336: 775-785 (1997). The causative factors of hypertrophic cardiomyopathy are also diverse and little understood. In general, mutations in genes encoding sarcomeric proteins are associated with hypertrophic cardiomyopathy. Recent data suggest that β-myosin heavy chain mutations may account for approximately 30 to 40 percent of cases of familial hypertrophic cardiomyopathy. Watkins et al., N. Engl. J. Med., 326: 1108-1114 (1992); Schwartz et al, Circulation, 91: 532-540 (1995); Marian and Roberts, Circulation, 92: 1336-1347 (1995); Thierfelder et al., Cell, 77: 701-712

5

10

15

20

25

30

35

(1994); Watkins et al., Nat. Gen., 11: 434-437 (1995). Besides β-myosin heavy chain, other locations of genetic mutations include cardiac troponin T, alpha topomyosin, cardiac myosin binding protein C, essential myosin light chain, and regulatory myosin light chain. See, Malik and Watkins, Curr. Opin. Cardiol., 12: 295-302 (1997).

Supravalvular "aortic stenosis" is an inherited vascular disorder characterized by narrowing of the ascending aorta, but other arteries, including the pulmonary arteries, may also be affected. Untreated aortic stenosis may lead to increased intracardiac pressure resulting in myocardial hypertrophy and eventually heart failure and death. The pathogenesis of this disorder is not fully understood, but hypertrophy and possibly hyperplasia of medial smooth muscle are prominent features of this disorder. It has been reported that molecular variants of the elastin gene are involved in the development and pathogenesis of aortic stenosis. U.S. Patent No. 5,650,282 issued July 22, 1997.

"Valvular regurgitation" occurs as a result of heart diseases resulting in disorders of the cardiac valves. Various diseases, like rheumatic fever, can cause the shrinking or pulling apart of the valve orifice, while other diseases may result in endocarditis, an inflammation of the endocardium or lining membrane of the atrioventricular orifices and operation of the heart. Defects such as the narrowing of the valve stenosis or the defective closing of the valve result in an accumulation of blood in the heart cavity or regurgitation of blood past the valve. If uncorrected, prolonged valvular stenosis or insufficiency may result in cardiac hypertrophy and associated damage to the heart muscle, which may eventually necessitate valve replacement.

The treatment of all these, and other cardiovascular, endothelial and angiogenic disorders, which may or may not be accompanied by cardiac hypertrophy, is encompassed by the present invention.

The terms "cancer", "cancerous", and "malignant" refer to or describe the physiological condition in mammals that is typically characterized by unregulated cell growth. Examples of cancer include but are not limited to, carcinoma including adenocarcinoma, lymphoma, blastoma, melanoma, sarcoma, and leukemia. More particular examples of such cancers include squamous cell cancer, small-cell lung cancer, non-small cell lung cancer, gastrointestinal cancer, Hodgkin's and non-Hodgkin's lymphoma, pancreatic cancer, glioblastoma, cervical cancer, ovarian cancer, liver cancer such as hepatic carcinoma and hepatoma, bladder cancer, breast cancer, colon cancer, colorectal cancer, endometrial carcinoma, salivary gland carcinoma, kidney cancer such as renal cell carcinoma and Wilms' tumors, basal cell carcinoma, melanoma, prostate cancer, vulval cancer, thyroid cancer, testicular cancer, esophageal cancer, and various types of head and neck cancer. The preferred cancers for treatment herein are breast, colon, lung, melanoma, ovarian, and others involving vascular tumors as noted above.

The term "cytotoxic agent" as used herein refers to a substance that inhibits or prevents the function of cells and/or causes destruction of cells. The term is intended to include radioactive isotopes (e.g., ¹³¹I, ¹²⁵I, ⁹⁰Y, and ¹⁸⁶Re), chemotherapeutic agents, and toxins such as enzymatically active toxins of bacterial, fungal, plant, or animal origin, or fragments thereof.

A "chemotherapeutic agent" is a chemical compound useful in the treatment of cancer. Examples of chemotherapeutic agents include alkylating agents, folic acid antagonists, anti-metabolites of nucleic acid metabolism, antibiotics, pyrimidine analogs, 5-fluorouracil, cisplatin, purine nucleosides, amines, amino acids, triazol nucleosides, or corticosteroids. Specific examples include Adriamycin, Doxorubicin, 5-Fluorouracil,

Cytosine arabinoside ("Ara-C"), Cyclophosphamide, Thiotepa, Busulfan, Cytoxin, Taxol, Toxotere, Methotrexate, Cisplatin, Melphalan, Vinblastine, Bleomycin, Etoposide, Ifosfamide, Mitomycin C, Mitoxantrone, Vincreistine, Vinorelbine, Carboplatin, Teniposide, Daunomycin, Carminomycin, Aminopterin, Dactinomycin, Mitomycins, Esperamicins (see U.S. Pat. No. 4,675,187), Melphalan, and other related nitrogen mustards. Also included in this definition are hormonal agents that act to regulate or inhibit hormone action on tumors, such as tamoxifen and onapristone.

5

10

15

20

25

30

35

A "growth-inhibitory agent" when used herein refers to a compound or composition that inhibits growth of a cell, such as an Wnt-overexpressing cancer cell, either in vitro or in vivo. Thus, the growth-inhibitory agent is one which significantly reduces the percentage of malignant cells in S phase. Examples of growth-inhibitory agents include agents that block cell cycle progression (at a place other than S phase), such as agents that induce G1 arrest and M-phase arrest. Classical M-phase blockers include the vincas (vincristine and vinblastine), taxol, and topo II inhibitors such as doxorubicin, daunorubicin, etoposide, and bleomycin. Those agents that arrest G1 also spill over into S-phase arrest, for example, DNA alkylating agents such as tamoxifen, prednisone, dacarbazine, mechlorethamine, cisplatin, methotrexate, 5-fluorouracil, and ara-C. Further information can be found in The Molecular Basis of Cancer, Mendelsohn and Israel, eds., Chapter 1, entitled "Cell cycle regulation, oncogenes, and antineoplastic drugs" by Murakami et al. (WB Saunders: Philadelphia, 1995), especially p. 13. Additional examples include tumor necrosis factor (TNF), an antibody capable of inhibiting or neutralizing the angiogenic activity of acidic or basic FGF or hepatocyte growth factor (HGF), an antibody capable of inhibiting or neutralizing the coagulant activities of tissue factor, protein C, or protein S (see, WO 91/01753, published 21 February 1991), or an antibody capable of binding to HER2 receptor (WO 89/06692), such as the 4D5 antibody (and functional equivalents thereof) (e.g., WO 92/22653).

"Treatment" is an intervention performed with the intention of preventing the development or altering the pathology of a cardiovascular, endothelial, and angiogenic disorder. The concept of treatment is used in the broadest sense, and specifically includes the prevention (prophylaxis), moderation, reduction, and curing of cardiovascular, endothelial, and angiogenic disorders of any stage. Accordingly, "treatment" refers to both therapeutic treatment and prophylactic or preventative measures, wherein the object is to prevent or slow down (lessen) or ameliorate a cardiovascular, endothelial, and angiogenic disorder such as hypertrophy. Those in need of treatment include those already with the disorder as well as those prone to have the disorder or those in whom the disorder is to be prevented. The disorder may result from any cause, including idiopathic, cardiotrophic, or myotrophic causes, or ischemia or ischemic insults, such as myocardial infarction.

"Chronic" administration refers to administration of the agent(s) in a continuous mode as opposed to an acute mode, so as to maintain the initial effect, such as an anti-hypertrophic effect, for an extended period of time.

"Mammal" for purposes of treatment refers to any animal classified as a mammal, including humans, domestic and farm animals, and zoo, sports, or pet animals, such as dogs, horses, cats, cows, sheep, pigs, etc. Preferably, the mammal is human.

Administration "in combination with" one or more further therapeutic agents includes simultaneous (concurrent) and consecutive administration in any order.

5

10

15

20

25

30

35

The phrase "cardiovascular, endothelial or angiogenic agents" refers generically to any drug that acts in treating cardiovascular, endothelial, and angiogenic disorders. Examples of cardiovascular agents are those that promote vascular homeostasis by modulating blood pressure, heart rate, heart contractility, and endothelial and smooth muscle biology, all of which factors have a role in cardiovascular disease. Specific examples of these include angiotensin-II receptor antagonists; endothelin receptor antagonists such as, for example, BOSENTAN™ and MOXONODINTM; interferon-gamma (IFN-γ); des-aspartate-angiotensin I; thrombolytic agents, e.g., streptokinase, urokinase, t-PA, and a t-PA variant specifically designed to have longer half-life and very high fibrin specificity, TNK t-PA (a T103N, N117Q, KHRR(296-299)AAAA t-PA variant, Keyt et al., Proc. Natl. Acad. Sci. <u>USA</u>, 91: 3670-3674 (1994)); inotropic or hypertensive agents such as digoxigenin and β-adrenergic receptor blocking agents, e.g., propranolol, timolol, tertalolol, carteolol, nadolol, betaxolol, penbutolol, acetobutolol, atenolol, metoprolol, and carvedilol; angiotensin converting enzyme (ACE) inhibitors, e.g., quinapril, captopril, enalapril, ramipril, benazepril, fosinopril, and lisinopril; diuretics, e.g., chlorothiazide, hydrochlorothiazide, hydroflumethazide, methylchlothiazide, benzthiazide, dichlorphenamide, acetazolamide, and indapamide; and calcium channel blockers, e.g., diltiazem, nifedipine, verapamil, nicardipine. One preferred category of this type is a therapeutic agent used for the treatment of cardiac hypertrophy or of a physiological condition instrumental in the development of cardiac hypertrophy, such as elevated blood pressure, aortic stenosis, or myocardial infarction.

"Angiogenic agents" and "endothelial agents" are active agents that promote angiogenesis and/or endothelial cell growth, or, if applicable, vasculogenesis. This would include factors that accelerate wound healing, such as growth hormone, insulin-like growth factor-I (IGF-I), VEGF, VIGF, PDGF, epidermal growth factor (EGF), CTGF and members of its family, FGF, and TGF-α and TGF-β.

"Angiostatic agents" are active agents that inhibit angiogenesis or vasculogenesis or otherwise inhibit or prevent growth of cancer cells. Examples include antibodies or other antagonists to angiogenic agents as defined above, such as antibodies to VEGF. They additionally include cytotherapeutic agents such as cytotoxic agents, chemotherapeutic agents, growth-inhibitory agents, apoptotic agents, and other agents to treat cancer, such as anti-HER-2, anti-CD20, and other bioactive and organic chemical agents.

In a pharmacological sense, in the context of the present invention, a "therapeutically effective amount" of an active agent such as a PRO polypeptide or agonist or antagonist thereto or an anti-PRO antibody, refers to an amount effective in the treatment of a cardiovascular, endothelial or angiogenic disorder in a mammal and can be determined empirically.

As used herein, an "effective amount" of an active agent such as a PRO polypeptide or agonist or antagonist thereto or an anti-PRO antibody, refers to an amount effective for carrying out a stated purpose, wherein such amounts may be determined empirically for the desired effect.

The terms "PRO polypeptide" and "PRO" as used herein and when immediately followed by a numerical designation refer to various polypeptides, wherein the complete designation (i.e., PRO/number) refers to specific polypeptide sequences as described herein. The terms "PRO/number polypeptide" and "PRO/number" wherein the term "number" is provided as an actual numerical designation as used herein encompass native sequence polypeptides and polypeptide variants (which are further defined herein). The PRO polypeptides described herein

may be isolated from a variety of sources, such as from human tissue types or from another source, or prepared by recombinant or synthetic methods.

A "native sequence PRO polypeptide" comprises a polypeptide having the same amino acid sequence as the corresponding PRO polypeptide derived from nature. Such native sequence PRO polypeptides can be isolated from nature or can be produced by recombinant or synthetic means. The term "native sequence PRO polypeptide" specifically encompasses naturally-occurring truncated or secreted forms of the specific PRO polypeptide (e.g., an extracellular domain sequence), naturally-occurring variant forms (e.g., alternatively spliced forms) and naturally-occurring allelic variants of the polypeptide. In various embodiments of the invention, the native sequence PRO polypeptides disclosed herein are mature or full-length native sequence polypeptides comprising the full-length amino acids sequences shown in the accompanying figures. Start and stop codons are shown in bold font and underlined in the figures. However, while the PRO polypeptide disclosed in the accompanying figures are shown to begin with methionine residues designated herein as amino acid position 1 in the figures, it is conceivable and possible that other methionine residues located either upstream or downstream from the amino acid position 1 in the figures may be employed as the starting amino acid residue for the PRO polypeptides.

15

10

5

The PRO polypeptide "extracellular domain" or "ECD" refers to a form of the PRO polypeptide which is essentially free of the transmembrane and cytoplasmic domains. Ordinarily, a PRO polypeptide ECD will have less than 1% of such transmembrane and/or cytoplasmic domains and preferably, will have less than 0.5% of such domains. It will be understood that any transmembrane domains identified for the PRO polypeptides of the present invention are identified pursuant to criteria routinely employed in the art for identifying that type of hydrophobic domain. The exact boundaries of a transmembrane domain may vary but most likely by no more than about 5 amino acids at either end of the domain as initially identified herein. Optionally, therefore, an extracellular domain of a PRO polypeptide may contain from about 5 or fewer amino acids on either side of the transmembrane domain/extracellular domain boundary as identified in the Examples or specification and such polypeptides, with or without the associated signal peptide, and nucleic acid encoding them, are comtemplated by the present invention.

25

30

20

The approximate location of the "signal peptides" of the various PRO polypeptides disclosed herein are shown in the present specification and/or the accompanying figures. It is noted, however, that the C-terminal boundary of a signal peptide may vary, but most likely by no more than about 5 amino acids on either side of the signal peptide C-terminal boundary as initially identified herein, wherein the C-terminal boundary of the signal peptide may be identified pursuant to criteria routinely employed in the art for identifying that type of amino acid sequence element (e.g., Nielsen et al., Prot. Eng., 10:1-6 (1997) and von Heinje et al., Nucl. Acids Res., 14:4683-4690 (1986)). Moreover, it is also recognized that, in some cases, cleavage of a signal sequence from a secreted polypeptide is not entirely uniform, resulting in more than one secreted species. These mature polypeptides, where the signal peptide is cleaved within no more than about 5 amino acids on either side of the C-terminal boundary of the signal peptide as identified herein, and the polynucleotides encoding them, are contemplated by the present invention.

35

"PRO polypeptide variant" means an active PRO polypeptide as defined above or below having at least about 80% amino acid sequence identity with a full-length native sequence PRO polypeptide sequence as disclosed

herein, a PRO polypeptide sequence lacking the signal peptide as disclosed herein, an extracellular domain of a PRO polypeptide, with or without the signal peptide, as disclosed herein or any other fragment of a full-length PRO polypeptide sequence as disclosed herein. Such PRO polypeptide variants include, for instance, PRO polypeptides wherein one or more amino acid residues are added, or deleted, at the N- or C-terminus of the full-length native amino acid sequence. Ordinarily, a PRO polypeptide variant will have at least about 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97% or 98% amino acid sequence identity and alternatively at least about 99% amino acid sequence identity to a full-length native sequence PRO polypeptide sequence as disclosed herein, a PRO polypeptide sequence lacking the signal peptide as disclosed herein, an extracellular domain of a PRO polypeptide, with or without the signal peptide, as disclosed herein or any other specifically defined fragment of a full-length PRO polypeptide sequence as disclosed herein. Ordinarily, PRO variant polypeptides are at least about 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 150 or 200 amino acids in length and alternatively at least about 300 amino acids in length, or more.

5

10

15

20

25

30

35

"Percent (%) amino acid sequence identity" with respect to the PRO polypeptide sequences identified herein is defined as the percentage of amino acid residues in a candidate sequence that are identical with the amino acid residues in a PRO sequence, after aligning the sequences and introducing gaps, if necessary, to achieve the maximum percent sequence identity, and not considering any conservative substitutions as part of the sequence identity. Alignment for purposes of determining percent amino acid sequence identity can be achieved in various ways that are within the skill in the art, for instance, using publicly available computer software such as BLAST, BLAST-2, ALIGN, ALIGN-2 or Megalign (DNASTAR) software. Those skilled in the art can determine appropriate parameters for measuring alignment, including any algorithms needed to achieve maximal alignment over the full-length of the sequences being compared. For purposes herein, however, % amino acid sequence identity values are obtained as described below by using the sequence comparison computer program ALIGN-2, wherein the complete source code for the ALIGN-2 program is provided in Table 1. The ALIGN-2 sequence comparison computer program was authored by Genentech, Inc., and the source code shown in Table 1 has been filed with user documentation in the U.S. Copyright Office, Washington D.C., 20559, where it is registered under U.S. Copyright Registration No. TXU510087. The ALIGN-2 program is publicly available through Genentech, Inc., South San Francisco, California or may be compiled from the source code provided in Table 1. The ALIGN-2 program should be compiled for use on a UNIX operating system, preferably digital UNIX V4.0D. All sequence comparison parameters are set by the ALIGN-2 program and do not vary.

For purposes herein, the % amino acid sequence identity of a given amino acid sequence A to, with, or against a given amino acid sequence B (which can alternatively be phrased as a given amino acid sequence A that has or comprises a certain % amino acid sequence identity to, with, or against a given amino acid sequence B) is calculated as follows:

100 times the fraction X/Y

where X is the number of amino acid residues scored as identical matches by the sequence alignment program

ALIGN-2 in that program's alignment of A and B, and where Y is the total number of amino acid residues in B. It will be appreciated that where the length of amino acid sequence A is not equal to the length of amino acid sequence B, the % amino acid sequence identity of A to B will not equal the % amino acid sequence identity of B to A. As examples of % amino acid sequence identity calculations, Tables 2-3 demonstrate how to calculate the % amino acid sequence identity of the amino acid sequence designated "Comparison Protein" to the amino acid sequence designated "PRO".

Unless specifically stated otherwise, all % amino acid sequence identity values used herein are obtained as described above using the ALIGN-2 sequence comparison computer program. However, % amino acid sequence identity may also be determined using the sequence comparison program NCBI-BLAST2 (Altschul et al., Nucleic Acids Res., 25:3389-3402 (1997)). The NCBI-BLAST2 sequence comparison program may be downloaded from http://www.ncbi.nlm.nih.gov or otherwise obtained from the National Institute of Health, Bethesda, MD. NCBI-BLAST2 uses several search parameters, wherein all of those search parameters are set to default values including, for example, unmask = yes, strand = all, expected occurrences = 10, minimum low complexity length = 15/5, multipass e-value = 0.01, constant for multi-pass = 25, dropoff for final gapped alignment = 25 and scoring matrix = BLOSUM62.

In situations where NCBI-BLAST2 is employed for amino acid sequence comparisons, the % amino acid sequence identity of a given amino acid sequence A to, with, or against a given amino acid sequence B (which can alternatively be phrased as a given amino acid sequence A that has or comprises a certain % amino acid sequence identity to, with, or against a given amino acid sequence B) is calculated as follows:

20

25

30

35

5

10

15

100 times the fraction X/Y

where X is the number of amino acid residues scored as identical matches by the sequence alignment program NCBI-BLAST2 in that program's alignment of A and B, and where Y is the total number of amino acid residues in B. It will be appreciated that where the length of amino acid sequence A is not equal to the length of amino acid sequence B, the % amino acid sequence identity of A to B will not equal the % amino acid sequence identity of B to A.

In addition, % amino acid sequence identity may also be determined using the WU-BLAST-2 computer program (Altschul et al., Methods in Enzymology, 266:460-480 (1996)). Most of the WU-BLAST-2 search parameters are set to the default values. Those not set to default values, i.e., the adjustable parameters, are set with the following values: overlap span = 1, overlap fraction = 0.125, word threshold (T) = 11, and scoring matrix = BLOSUM62. For purposes herein, a % amino acid sequence identity value is determined by dividing (a) the number of matching identical amino acids residues between the amino acid sequence of the PRO polypeptide of interest having a sequence derived from the native PRO polypeptide and the comparison amino acid sequence of interest (i.e., the sequence against which the PRO polypeptide of interest is being compared which may be a PRO variant polypeptide) as determined by WU-BLAST-2 by (b) the total number of amino acid residues of the PRO polypeptide of interest. For example, in the statement "a polypeptide comprising an amino acid sequence A which

5

10

15

20

25

30

35

has or having at least 80% amino acid sequence identity to the amino acid sequence B", the amino acid sequence A is the comparison amino acid sequence of interest and the amino acid sequence B is the amino acid sequence of the PRO polypeptide of interest.

"PRO variant polynucleotide" or "PRO variant nucleic acid sequence" means a nucleic acid molecule which encodes an active PRO polypeptide as defined below and which has at least about 80% nucleic acid sequence identity with a nucleotide acid sequence encoding a full-length native sequence PRO polypeptide sequence as disclosed herein, a full-length native sequence PRO polypeptide sequence lacking the signal peptide as disclosed herein, an extracellular domain of a PRO polypeptide, with or without the signal peptide, as disclosed herein or any other fragment of a full-length PRO polypeptide sequence as disclosed herein. Ordinarily, a PRO variant polynucleotide will have at least about 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97% or 98% nucleic acid sequence identity and alternatively at least about 99% nucleic acid sequence identity with a nucleic acid sequence encoding a full-length native sequence PRO polypeptide sequence as disclosed herein, a full-length native sequence PRO polypeptide sequence lacking the signal peptide as disclosed herein, an extracellular domain of a PRO polypeptide, with or without the signal sequence, as disclosed herein or any other fragment of a full-length PRO polypeptide sequence as disclosed herein. Variants do not encompass the native nucleotide sequence.

Ordinarily, PRO variant polynucleotides are at least about 30, 60, 90, 120, 150, 180, 210, 240, 270, 300, 450, or 600 nucleotides in length and alternatively at least about 900 nucleotides in length, or more.

"Percent (%) nucleic acid sequence identity" with respect to the PRO polypeptide-encoding nucleic acid sequences identified herein is defined as the percentage of nucleotides in a candidate sequence that are identical with the nucleotides in a PRO polypeptide-encoding nucleic acid sequence, after aligning the sequences and introducing gaps, if necessary, to achieve the maximum percent sequence identity. Alignment for purposes of determining percent nucleic acid sequence identity can be achieved in various ways that are within the skill in the art, for instance, using publicly available computer software such as BLAST, BLAST-2, ALIGN, ALIGN-2 or Megalign (DNASTAR) software. Those skilled in the art can determine appropriate parameters for measuring alignment, including any algorithms needed to achieve maximal alignment over the full-length of the sequences being compared. For purposes herein, however, % nucleic acid sequence identity values are obtained as described below by using the sequence comparison computer program ALIGN-2, wherein the complete source code for the ALIGN-2 program is provided in Table 1. The ALIGN-2 sequence comparison computer program was authored by Genentech, Inc., and the source code shown in Table 1 has been filed with user documentation in the U.S. Copyright Office, Washington D.C., 20559, where it is registered under U.S. Copyright Registration No. TXU510087. The ALIGN-2 program is publicly available through Genentech, Inc., South San Francisco, California or may be compiled from the source code provided in Table 1. The ALIGN-2 program should be compiled for use on a UNIX operating system, preferably digital UNIX V4.0D. All sequence comparison parameters are set by the ALIGN-2 program and do not vary.

For purposes herein, the % nucleic acid sequence identity of a given nucleic acid sequence C to, with, or against a given nucleic acid sequence D (which can alternatively be phrased as a given nucleic acid sequence C that

has or comprises a certain % nucleic acid sequence identity to, with, or against a given nucleic acid sequence D) is calculated as follows:

100 times the fraction W/Z

5

10

15

20

25

where W is the number of nucleotides scored as identical matches by the sequence alignment program ALIGN-2 in that program's alignment of C and D, and where Z is the total number of nucleotides in D. It will be appreciated that where the length of nucleic acid sequence C is not equal to the length of nucleic acid sequence D, the % nucleic acid sequence identity of C to D will not equal the % nucleic acid sequence identity of D to C. As examples of % nucleic acid sequence identity calculations, Tables 4-5 demonstrate how to calculate the % nucleic acid sequence identity of the nucleic acid sequence designated "Comparison DNA" to the nucleic acid sequence designated "PRODNA".

Unless specifically stated otherwise, all % nucleic acid sequence identity values used herein are obtained as described above using the ALIGN-2 sequence comparison computer program. However, % nucleic acid sequence identity may also be determined using the sequence comparison program NCBI-BLAST2 (Altschul et al., Nucleic Acids Res., 25:3389-3402 (1997)). The NCBI-BLAST2 sequence comparison program may be downloaded from http://www.ncbi.nlm.nih.gov. or otherwise obtained from the National Institute of Health, Bethesda, MD. NCBI-BLAST2 uses several search parameters, wherein all of those search parameters are set to default values including, for example, unmask = yes, strand = all, expected occurrences = 10, minimum low complexity length = 15/5, multi-pass e-value = 0.01, constant for multi-pass = 25, dropoff for final gapped alignment = 25 and scoring matrix = BLOSUM62.

In situations where NCBI-BLAST2 is employed for sequence comparisons, the % nucleic acid sequence identity of a given nucleic acid sequence C to, with, or against a given nucleic acid sequence D (which can alternatively be phrased as a given nucleic acid sequence C that has or comprises a certain % nucleic acid sequence identity to, with, or against a given nucleic acid sequence D) is calculated as follows:

100 times the fraction W/Z

30

where W is the number of nucleotides scored as identical matches by the sequence alignment program NCBI-BLAST2 in that program's alignment of C and D, and where Z is the total number of nucleotides in D. It will be appreciated that where the length of nucleic acid sequence C is not equal to the length of nucleic acid sequence D, the % nucleic acid sequence identity of C to D will not equal the % nucleic acid sequence identity of D to C.

35

In addition, % nucleic acid sequence identity values may also be generated using the WU-BLAST-2 computer program (Altschul et al., Methods in Enzymology, 266:460-480 (1996)). Most of the WU-BLAST-2 search parameters are set to the default values. Those not set to default values, i.e., the adjustable parameters, are set with the following values: overlap span = 1, overlap fraction = 0.125, word threshold (T) = 11, and scoring matrix = BLOSUM62. For purposes herein, a % nucleic acid sequence identity value is determined by dividing (a)

the number of matching identical nucleotides between the nucleic acid sequence of the PRO polypeptide-encoding nucleic acid molecule of interest having a sequence derived from the native sequence PRO polypeptide-encoding nucleic acid and the comparison nucleic acid molecule of interest (i.e., the sequence against which the PRO polypeptide-encoding nucleic acid molecule of interest is being compared which may be a variant PRO polynucleotide) as determined by WU-BLAST-2 by (b) the total number of nucleotides of the PRO polypeptide-encoding nucleic acid molecule of interest. For example, in the statement "an isolated nucleic acid molecule comprising a nucleic acid sequence A which has or having at least 80% nucleic acid sequence identity to the nucleic acid sequence B", the nucleic acid sequence A is the comparison nucleic acid molecule of interest and the nucleic acid sequence B is the nucleic acid sequence of the PRO polypeptide-encoding nucleic acid molecule of interest.

10

5

In other embodiments, PRO variant polynucleotides are nucleic acid molecules that encode an active PRO polypeptide and which are capable of hybridizing, preferably under stringent hybridization and wash conditions, to nucleotide sequences encoding the full-length PRO polypeptide as shown in the specification herein and accompanying figures. PRO variant polypeptides may be those that are encoded by a PRO variant polynucleotide.

15

"Isolated", when used to describe the various polypeptides disclosed herein, means a polypeptide that has been identified and separated and/or recovered from a component of its natural environment. Preferably, the isolated polypeptide is free of association with all components with which it is naturally associated. Contaminant components of its natural environment are materials that would typically interfere with diagnostic or therapeutic uses for the polypeptide, and may include enzymes, hormones, and other proteinaceous or non-proteinaceous solutes. In preferred embodiments, the polypeptide will be purified (1) to a degree sufficient to obtain at least 15 residues of N-terminal or internal amino acid sequence by use of a spinning cup sequenator, or (2) to homogeneity by SDS-PAGE under non-reducing or reducing conditions using Coomassie blue or, preferably, silver stain. Isolated polypeptide includes polypeptide in situ within recombinant cells, since at least one component of the PRO natural environment will not be present. Ordinarily, however, isolated polypeptide will be prepared by at least one purification step.

25

30

20

An "isolated" nucleic acid molecule encoding a PRO polypeptide or an "isolated" nucleic acid molecule encoding an anti-PRO antibody is a nucleic acid molecule that is identified and separated from at least one contaminant nucleic acid molecule with which it is ordinarily associated in the natural source of the PRO-encoding nucleic acid or the natural source of the anti-PRO-encoding nucleic acid. Preferably, the isolated nucleic acid is free of association with all components with which it is naturally associated. An isolated PRO-encoding nucleic acid molecule or an isolated anti-PRO-encoding nucleic acid molecule is other than in the form or setting in which it is found in nature. Isolated nucleic acid molecules therefore are distinguished from the PRO-encoding nucleic acid molecule or from the anti-PRO-encoding nucleic acid molecule as it exists in natural cells. However, an isolated nucleic acid molecule encoding a PRO polypeptide or an isolated nucleic acid molecule encoding an anti-PRO antibody includes PRO-nucleic acid molecules or anti-PRO-nucleic acid molecules contained in cells that ordinarily express PRO polypeptides or anti-PRO antibodies where, for example, the nucleic acid molecule is in a chromosomal location different from that of natural cells.

35

The term "control sequences" refers to DNA sequences necessary for the expression of an operably linked

5

10

15

20

25

30

35

coding sequence in a particular host organism. The control sequences that are suitable for prokaryotes, for example, include a promoter, optionally an operator sequence, and a ribosome binding site. Eukaryotic cells are known to utilize, for example, promoters, polyadenylation signals, and enhancers.

Nucleic acid is "operably linked" when it is placed into a functional relationship with another nucleic acid sequence. For example, DNA for a presequence or secretory leader is operably linked to DNA for a PRO polypeptide if it is expressed as a preprotein that participates in the secretion of the polypeptide; a promoter or enhancer is operably linked to a coding sequence if it affects the transcription of the sequence; or a ribosome binding site is operably linked to a coding sequence if it is positioned so as to facilitate translation. Generally, "operably linked" means that the DNA sequences being linked are contiguous, and, in the case of a secretory leader, contiguous and in the same reading frame. However, enhancers do not have to be contiguous. Linking is accomplished by ligation at convenient restriction sites. If such sites do not exist, synthetic oligonucleotide adaptors or linkers are used in accordance with conventional practice.

"Stringency" of hybridization reactions is readily determinable by one of ordinary skill in the art, and generally is an empirical calculation dependent upon probe length, washing temperature, and salt concentration. In general, longer probes require higher temperatures for proper annealing, while shorter probes need lower temperatures. Hybridization generally depends on the ability of denatured DNA to reanneal when complementary strands are present in an environment below their melting temperature. The higher the degree of desired homology between the probe and hybridizable sequence, the higher the relative temperature that can be used. As a result, it follows that higher relative temperatures would tend to make the reaction conditions more stringent, while lower temperatures less so. For additional details and explanation of stringency of hybridization reactions, see, Ausubel et al., Current Protocols in Molecular Biology (Wiley Interscience Publishers, 1995).

"Stringent conditions" or "high-stringency conditions", as defined herein, may be identified by those that:
(1) employ low ionic strength and high temperature for washing, for example, 0.015 M sodium chloride/0.0015 M sodium citrate/0.1% sodium dodecyl sulfate at 50°C; (2) employ during hybridization a denaturing agent, such as formamide, for example, 50% (v/v) formamide with 0.1% bovine serum albumin/0.1% Ficoll/0.1% polyvinylpyrrolidone/50mM sodium phosphate buffer at pH 6.5 with 750 mM sodium chloride, 75 mM sodium citrate at 42°C; or (3) employ 50% formamide, 5 x SSC (0.75 M NaCl, 0.075 M sodium citrate), 50 mM sodium phosphate (pH 6.8), 0.1% sodium pyrophosphate, 5 x Denhardt's solution, sonicated salmon sperm DNA (50 µg/ml), 0.1% SDS, and 10% dextran sulfate at 42°C, with washes at 42°C in 0.2 x SSC (sodium chloride/sodium citrate) and 50% formamide at 55°C, followed by a high-stringency wash consisting of 0.1 x SSC containing EDTA at 55°C.

"Moderately-stringent conditions" may be identified as described by Sambrook et al., Molecular Cloning:

A Laboratory Manual (New York: Cold Spring Harbor Press, 1989), and include the use of washing solution and hybridization conditions (e.g., temperature, ionic strength, and % SDS) less stringent than those described above. An example of moderately stringent conditions is overnight incubation at 37°C in a solution comprising: 20% formamide, 5 x SSC (150 mM NaCl, 15 mM trisodium citrate), 50 mM sodium phosphate (pH 7.6), 5 x Denhardt's solution, 10% dextran sulfate, and 20 mg/ml denatured sheared salmon sperm DNA, followed by washing the filters

in 1 x SSC at about 37-50°C. The skilled artisan will recognize how to adjust the temperature, ionic strength, etc. as necessary to accommodate factors such as probe length and the like.

The modifier "epitope-tagged" when used herein refers to a chimeric polypeptide comprising a PRO polypeptide fused to a "tag polypeptide". The tag polypeptide has enough residues to provide an epitope against which an antibody can be made, yet is short enough such that it does not interfere with activity of the polypeptide to which it is fused. The tag polypeptide preferably also is fairly unique so that the antibody does not substantially cross-react with other epitopes. Suitable tag polypeptides generally have at least six amino acid residues and usually between about 8 and 50 amino acid residues (preferably, between about 10 and 20 amino acid residues).

5

10

15

20

25

30

35

"Active" or "activity" in the context of PRO variants refers to form(s) of PRO proteins that retain the biologic and/or immunologic activities of a native or naturally-occurring PRO polypeptide.

"Biological activity" in the context of a molecule that antagonizes a PRO polypeptide that can be identified by the screening assays disclosed herein (e.g., an organic or inorganic small molecule, peptide, etc.) is used to refer to the ability of such molecules to bind or complex with the PRO polypeptide identified herein, or otherwise interfere with the interaction of the PRO polypeptide with other cellular proteins or otherwise inhibits the transcription or translation of the PRO polypeptide. Particularly preferred biological activity includes cardiac hypertrophy, activity that acts on systemic disorders that affect vessels, such as diabetes mellitus, as well as diseases of the arteries, capillaries, veins, and/or lymphatics, and cancer.

The term "antagonist" is used in the broadest sense, and includes any molecule that partially or fully blocks, inhibits, or neutralizes one or more of the biological activities of a native PRO polypeptide disclosed herein, for example, if applicable, its mitogenic or angiogenic activity. Antagonists of a PRO polypeptide may act by interfering with the binding of a PRO polypeptide to a cellular receptor, by incapacitating or killing cells that have been activated by a PRO polypeptide, or by interfering with vascular endothelial cell activation after binding of a PRO polypeptide to a cellular receptor. All such points of intervention by a PRO polypeptide antagonist shall be considered equivalent for purposes of this invention. The antagonists inhibit the mitogenic, angiogenic, or other biological activity of PRO polypeptides, and thus are useful for the treatment of diseases or disorders characterized by undesirable excessive neovascularization, including by way of example tumors, and especially solid malignant tumors, rheumatoid arthritis, psoriasis, atherosclerosis, diabetic and other retinopathies, retrolental fibroplasia, agerelated macular degeneration, neovascular glaucoma, hemangiomas, thyroid hyperplasias (including Grave's disease), corneal and other tissue transplantation, and chronic inflammation. The antagonists also are useful for the treatment of diseases or disorders characterized by undesirable excessive vascular permeability, such as edema associated with brain tumors, ascites associated with malignancies, Meigs' syndrome, lung inflammation, nephrotic syndrome, pericardial effusion (such as that associated with pericarditis), and pleural effusion. In a similar manner, the term "agonist" is used in the broadest sense and includes any molecule that mimics a biological activity of a native PRO polypeptide disclosed herein. Suitable agonist or antagonist molecules specifically include agonist or antagonist antibodies or antibody fragments, fragments, or amino acid sequence variants of native PRO polypeptides, peptides, small organic molecules, etc.

A "small molecule" is defined herein to have a molecular weight below about 500 daltons.

5

10

15

20

25

30

35

The term "PRO polypeptide receptor" as used herein refers to a cellular receptor for a PRO polypeptide, ordinarily a cell-surface receptor found on vascular endothelial cells, as well as variants thereof that retain the ability to bind a PRO polypeptide.

"Antibodies" (Abs) and "immunoglobulins" (Igs) are glycoproteins having the same structural characteristics. While antibodies exhibit binding specificity to a specific antigen, immunoglobulins include both antibodies and other antibody-like molecules that lack antigen specificity. Polypeptides of the latter kind are, for example, produced at low levels by the lymph system and at increased levels by myelomas. The term "antibody" is used in the broadest sense and specifically covers, without limitation, intact monoclonal antibodies, polyclonal antibodies, multispecific antibodies (e.g., bispecific antibodies) formed from at least two intact antibodies, and antibody fragments, so long as they exhibit the desired biological activity.

"Native antibodies" and "native immunoglobulins" are usually heterotetrameric glycoproteins of about 150,000 daltons, composed of two identical light (L) chains and two identical heavy (H) chains. Each light chain is linked to a heavy chain by one covalent disulfide bond, while the number of disulfide linkages varies among the heavy chains of different immunoglobulin isotypes. Each heavy and light chain also has regularly spaced intrachain disulfide bridges. Each heavy chain has at one end a variable domain (V_H) followed by a number of constant domains. Each light chain has a variable domain at one end (V_L) and a constant domain at its other end; the constant domain of the light chain is aligned with the first constant domain of the heavy chain, and the light-chain variable domain is aligned with the variable domain of the heavy chain. Particular amino acid residues are believed to form an interface between the light- and heavy-chain variable domains.

The term "variable" refers to the fact that certain portions of the variable domains differ extensively in sequence among antibodies and are used in the binding and specificity of each particular antibody to and for its particular antigen. However, the variability is not evenly distributed throughout the variable domains of antibodies. It is concentrated in three segments called complementarity-determining regions (CDRs) or hypervariable regions both in the light-chain and the heavy-chain variable domains. The more highly conserved portions of variable domains are called the framework regions (FR). The variable domains of native heavy and light chains each comprise four FR regions, largely adopting a β-sheet configuration, connected by three CDRs, which form loops connecting, and in some cases forming part of, the β-sheet structure. The CDRs in each chain are held together in close proximity by the FR regions and, with the CDRs from the other chain, contribute to the formation of the antigen-binding site of antibodies. See, Kabat et al., NIH Publ. No.91-3242, Vol. I, pages 647-669 (1991). The constant domains are not involved directly in binding an antibody to an antigen, but exhibit various effector functions, such as participation of the antibody in antibody-dependent cellular toxicity.

"Antibody fragments" comprise a portion of an intact antibody, preferably the antigen-binding or variable region of the intact antibody. Examples of antibody fragments include Fab, Fab', F(ab')₂, and Fv fragments; diabodies; linear antibodies (Zapata et al., <u>Protein Eng., 8(10)</u>: 1057-1062 (1995)); single-chain antibody molecules; and multispecific antibodies formed from antibody fragments.

Papain digestion of antibodies produces two identical antigen-binding fragments, called "Fab" fragments, each with a single antigen-binding site, and a residual "Fc" fragment, whose name reflects its ability to crystallize

readily. Pepsin treatment yields an F(ab')₂ fragment that has two antigen-combining sites and is still capable of cross-linking antigen.

"Fv" is the minimum antibody fragment that contains a complete antigen-recognition and -binding site. This region consists of a dimer of one heavy- and one light-chain variable domain in tight, non-covalent association. It is in this configuration that the three CDRs of each variable domain interact to define an antigen-binding site on the surface of the V_H - V_L dimer. Collectively, the six CDRs confer antigen-binding specificity to the antibody. However, even a single variable domain (or half of an Fv comprising only three CDRs specific for an antigen) has the ability to recognize and bind antigen, although at a lower affinity than the entire binding site.

5

10

15

20

25

30

35

The Fab fragment also contains the constant domain of the light chain and the first constant domain (CH1) of the heavy chain. Fab' fragments differ from Fab fragments by the addition of a few residues at the carboxy terminus of the heavy chain CH1 domain including one or more cysteines from the antibody hinge region. Fab'-SH is the designation herein for Fab' in which the cysteine residue(s) of the constant domains bear a free thiol group. $F(ab')_2$ antibody fragments originally were produced as pairs of Fab' fragments that have hinge cysteines between them. Other chemical couplings of antibody fragments are also known.

The "light chains" of antibodies (immunoglobulins) from any vertebrate species can be assigned to one of two clearly distinct types, called kappa (κ) and lambda (λ), based on the amino acid sequences of their constant domains.

Depending on the amino acid sequence of the constant domain of their heavy chains, immunoglobulins can be assigned to different classes. There are five major classes of immunoglobulins: IgA, IgD, IgE, IgG, and IgM; and several of these may be further divided into subclasses (isotypes), e.g., IgG1, IgG2, IgG3, IgG4, IgA, and IgA2. The heavy-chain constant domains that correspond to the different classes of immunoglobulins are called α , δ , ϵ , and μ , respectively. The subunit structures and three-dimensional configurations of different classes of immunoglobulins are well known.

The term "monoclonal antibody" as used herein refers to an antibody obtained from a population of substantially homogeneous antibodies, *i.e.*, the individual antibodies comprising the population are identical except for possible naturally-occurring mutations that may be present in minor amounts. Monoclonal antibodies are highly specific, being directed against a single antigenic site. Furthermore, in contrast to conventional (polyclonal) antibody preparations that typically include different antibodies directed against different determinants (epitopes), each monoclonal antibody is directed against a single determinant on the antigen. In addition to their specificity, the monoclonal antibodies are advantageous in that they are synthesized by the hybridoma culture, uncontaminated by other immunoglobulins. The modifier "monoclonal" indicates the character of the antibody as being obtained from a substantially homogeneous population of antibodies, and is not to be construed as requiring production of the antibody by any particular method. For example, the monoclonal antibodies to be used in accordance with the present invention may be made by the hybridoma method first described by Kohler *et al.*, Nature, 256: 495 (1975), or may be made by recombinant DNA methods (*see*, *e.g.*, U.S. Patent No. 4,816,567). The "monoclonal antibodies" may also be isolated from phage antibody libraries using the techniques described in Clackson *et al.*, Nature, 352: 624-628 (1991) and Marks *et al.*, J. Mol. Biol., 222: 581-597 (1991), for example.

The monoclonal antibodies herein specifically include "chimeric" antibodies (immunoglobulins) in which a portion of the heavy and/or light chain is identical with or homologous to corresponding sequences in antibodies derived from a particular species or belonging to a particular antibody class or subclass, while the remainder of the chain(s) is identical with or homologous to corresponding sequences in antibodies derived from another species or belonging to another antibody class or subclass, as well as fragments of such antibodies, so long as they exhibit the desired biological activity. U.S. Patent No. 4,816,567; Morrison et al., Proc. Natl. Acad. Sci. USA, 81: 6851-6855 (1984).

5

10

15

20

25

30

35

"Humanized" forms of non-human (e.g., murine) antibodies are chimeric immunoglobulins, immunoglobulin chains, or fragments thereof (such as Fv, Fab, Fab', F(ab')2, or other antigen-binding subsequences of antibodies) that contain minimal sequence derived from non-human immunoglobulin. For the most part, humanized antibodies are human immunoglobulins (recipient antibody) in which residues from a CDR of the recipient are replaced by residues from a CDR of a non-human species (donor antibody) such as mouse, rat or rabbit having the desired specificity, affinity, and capacity. In some instances, Fv FR residues of the human immunoglobulin are replaced by corresponding non-human residues. Furthermore, humanized antibodies may comprise residues that are found neither in the recipient antibody nor in the imported CDR or framework sequences. These modifications are made to further refine and maximize antibody performance. In general, the humanized antibody will comprise substantially all of at least one, and typically two, variable domains, in which all or substantially all of the CDR regions correspond to those of a non-human immunoglobulin and all or substantially all of the FR regions are those of a human immunoglobulin sequence. The humanized antibody preferably also will comprise at least a portion of an immunoglobulin constant region (Fc), typically that of a human immunoglobulin. For further details, see Jones et al., Nature, 321: 522-525 (1986); Reichmann et al., Nature, 332: 323-329 (1988); and Presta, Curr. Op. Struct. Biol., 2: 593-596 (1992). The humanized antibody includes a PRIMATIZED™ antibody wherein the antigen-binding region of the antibody is derived from an antibody produced by immunizing macaque monkeys with the antigen of interest.

"Single-chain Fv" or "sFv" antibody fragments comprise the V_H and V_L domains of an antibody, wherein these domains are present in a single polypeptide chain. Preferably, the Fv polypeptide further comprises a polypeptide linker between the V_H and V_L domains that enables the sFv to form the desired structure for antigen binding. For a review of sFv see, Pluckthun in <u>The Pharmacology of Monoclonal Antibodies</u>, <u>Vol. 113</u>, Rosenburg and Moore, eds. (Springer-Verlag: New York, 1994), pp. 269-315.

The term "diabodies" refers to small antibody fragments with two antigen-binding sites, which fragments comprise a heavy-chain variable domain (V_H) connected to a light-chain variable domain (V_L) in the same polypeptide chain (V_H - V_L). By using a linker that is too short to allow pairing between the two domains on the same chain, the domains are forced to pair with the complementary domains of another chain and create two antigen-binding sites. Diabodies are described more fully in, for example, EP 404,097; WO 93/11161; and Hollinger et al., Proc. Natl. Acad. Sci. USA, 90: 6444-6448 (1993).

An "isolated" antibody is one that has been identified and separated and/or recovered from a component of its natural environment. Contaminant components of its natural environment are materials that would interfere

with diagnostic or therapeutic uses for the antibody, and may include enzymes, hormones, and other proteinaceous or nonproteinaceous solutes. In preferred embodiments, the antibody will be purified (1) to greater than 95% by weight of antibody as determined by the Lowry method, and most preferably more than 99% by weight, (2) to a degree sufficient to obtain at least 15 residues of N-terminal or internal amino acid sequence by use of a spinning cup sequenator, or (3) to homogeneity by SDS-PAGE under reducing or nonreducing conditions using Coomassie blue or, preferably, silver stain. Isolated antibody includes the antibody in situ within recombinant cells, since at least one component of the antibody's natural environment will not be present. Ordinarily, however, isolated antibody will be prepared by at least one purification step.

5

10

15

20

25

30

35

An antibody that "specifically binds to" or is "specific for" a particular polypeptide or an epitope on a particular polypeptide is one that binds to that particular polypeptide or epitope on a particular polypeptide without substantially binding to any other polypeptide or polypeptide epitope.

The word "label" when used herein refers to a detectable compound or other composition that is conjugated directly or indirectly to the antibody so as to generate a "labeled" antibody. The label may be detectable by itself (e.g., radioisotope labels or fluorescent labels) or, in the case of an enzymatic label, may catalyze chemical alteration of a substrate compound or composition that is detectable. Radionuclides that can serve as detectable labels include, for example, I-131, I-123, I-125, Y-90, Re-188, At-211, Cu-67, Bi-212, and Pd-109. The label may also be a non-detectable entity such as a toxin.

By "solid phase" is meant a non-aqueous matrix to which an antibody of the present invention can adhere. Examples of solid phases encompassed herein include those formed partially or entirely of glass (e.g., controlled pore glass), polysaccharides (e.g., agarose), polyacrylamides, polystyrene, polyvinyl alcohol and silicones. In certain embodiments, depending on the context, the solid phase can comprise the well of an assay plate; in others it is a purification column (e.g., an affinity chromatography column). This term also includes a discontinuous solid phase of discrete particles, such as those described in U.S. Patent No. 4,275,149.

A "liposome" is a small vesicle composed of various types of lipids, phospholipids and/or surfactant that is useful for delivery of a drug (such as the PRO polypeptide or antibodies thereto disclosed herein) to a mammal. The components of the liposome are commonly arranged in a bilayer formation, similar to the lipid arrangement of biological membranes.

As used herein, the term "immunoadhesin" designates antibody-like molecules that combine the binding specificity of a heterologous protein (an "adhesin") with the effector functions of immunoglobulin constant domains. Structurally, the immunoadhesins comprise a fusion of an amino acid sequence with the desired binding specificity that is other than the antigen recognition and binding site of an antibody (i.e., is "heterologous"), and an immunoglobulin constant domain sequence. The adhesin part of an immunoadhesin molecule typically is a contiguous amino acid sequence comprising at least the binding site of a receptor or a ligand. The immunoglobulin constant domain sequence in the immunoadhesin may be obtained from any immunoglobulin, such as IgG-1, IgG-2, IgG-3, or IgG-4 subtypes, IgA (including IgA-1 and IgA-2), IgE, IgD, or IgM.

As shown below, Table 1 provides the complete source code for the ALIGN-2 sequence comparison computer program. This source code may be routinely compiled for use on a UNIX operating system to provide

the ALIGN-2 sequence comparison computer program.

5

10

In addition, Tables 2-5 show hypothetical exemplifications for using the below described method to determine % amino acid sequence identity (Tables 2-3) and % nucleic acid sequence identity (Tables 4-5) using the ALIGN-2 sequence comparison computer program, wherein "PRO" represents the amino acid sequence of a hypothetical PRO polypeptide of interest, "Comparison Protein" represents the amino acid sequence of a polypeptide against which the "PRO" polypeptide of interest is being compared, "PRO-DNA" represents a hypothetical PRO-encoding nucleic acid sequence of interest, "Comparison DNA" represents the nucleotide sequence of a nucleic acid molecule against which the "PRO-DNA" nucleic acid molecule of interest is being compared, "X", "Y", and "Z" each represent different hypothetical amino acid residues and "N", "L" and "V" each represent different hypothetical nucleotides.

Table 1

```
/*
* C-C increased from 12 to 15
* Z is average of EQ
* B is average of ND
* match with stop is _M; stop-stop = 0; J (joker) match = 0
#define _M
                       /* value of a match with a stop */
      _day[26][26] = {
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z */
int
        /* A */
/* B */
/* C */
/* D */
/* E */
/* F */
/* G */
/* H */
/* I */
/* J */
/* K */
/* L */
/* M */
/* N */
/* O */
/* P */
/* Q */
/* R */
/* S */
/* T */
/* Ū */
/* ¥ ×/
/* W */
/* X */
/* Y */
/* Z */
```

Table 1 (cont')

```
*/
#include <stdio.h>
#include <ctype.h>
#define MAXJMP
                                16
                                           /* max jumps in a diag */
#define MAXGAP
                                24
                                           /* don't continue to penalize gaps larger than this */
#define JMPS
                                 1024
                                           /* max imps in an path */
#define MX
                                4
                                           /* save if there's at least MX-1 bases since last jmp */
#define DMAT
                                3
                                           /* value of matching bases */
                                           /* penalty for mismatched bases */
/* penalty for a gap */
#define DMIS
                                0
#define DINSO
                                8
#define DINS1
                                           /* penalty per base */
/* penalty for a gap */
#define PINSO
                                8
#define PINS1
                                           /* penalty per residue */
struct jmp {
                                                      /* size of jmp (neg for dely) */
/* base no. of jmp in seq x */
/* limits seq to 2^16-1 */
           short
                                n[MAXJMP];
           unsigned short
                                x[MAXJMP];
};
struct diag {
                                                      /* score at last jmp */
                                score;
           long
                                offset,
                                                      /* offset of prev block */
                                                      /* current jmp index */
           short
                                ijmp;
                                                      /* list of jmps */
           struct jmp
                                jp;
};
struct path {
                                           /* number of leading spaces */
                     n[JMPS];
           short
                                           /* size of jmp (gap) */
           int
                     x[JMPS];
                                           /* loc of jmp (last elem before gap) */
};
char
                      *ofile;
                                                      /* output file name */
char
                      *namex[2];
                                                      /* seq names: getseqs() */
char
                      *prog;
*seqx[2];
                                                      /* prog name for err msgs */
char
                                                                /* seqs: getseqs() */
                                                      /* best diag: nw( ) */
int
                      dmax;
                                                     /* final diag */
/* set if dna: main() */
int
                     dmax0;
int
                     dna:
                                                      /* set if penalizing end gaps */
int
                     endgaps;
                                                      /* total gaps in seqs */
                     gapx, gapy;
len0, len1;
int
int
                                                      /* seq lens */
                                                      /* total size of gaps */
int
                     ngapx, ngapy;
                                                      /* max score: nw() */
int
                     smax;
                                                      /* bitmap for matching */
int
                      *xbm;
long
                     offset;
                                                      /* current offset in jmp file */
struct
                                                      /* holds diagonals */
          diag
                      *dx:
          path
                                                      /* holds path for seqs */
struct
                     pp[2];
                     *calloc(), *malloc(), *index(), *strcpy(); *getseq(), *g_calloc();
char
char
```

```
/* Needleman-Wunsch alignment program
  * usage: progs file1 file2
       where file1 and file2 are two dna or two protein sequences.
       The sequences can be in upper- or lower-case an may contain ambiguity Any lines beginning with ',', '>' or '<' are ignored Max file length is 65535 (limited by unsigned short x in the jmp struct)
       A sequence with 1/3 or more of its elements ACGTU is assumed to be DNA
       Output is in the file "align.out"
  * The program may create a tmp file in /tmp to hold info about traceback.
  * Original version developed under BSD 4.3 on a vax 8650
 #include "nw.h"
 #include "day.h"
                 static
};
                  \begin{array}{l} \textbf{pbval}[26] = \{ \\ \hline 1, \ 2 \mid (1 < < (\text{'D'-'A'})) \mid (1 < < (\text{'N'-'A'})), \ 4, \ 8, \ 16, \ 32, \ 64, \\ 128, \ 256, \ 0xFFFFFFFF, \ 1 < < 10, \ 1 < < 11, \ 1 < < 12, \ 1 < < 13, \ 1 < < 14, \\ 1 < < 15, \ 1 < < 16, \ 1 < < 17, \ 1 < < 18, \ 1 < < 19, \ 1 < < 20, \ 1 < < 21, \ 1 < < 22, \\ 1 < < 23, \ 1 < < 24, \ 1 < < 25 \mid (1 < < (\text{'E'-'A'})) \mid (1 < < (\text{'Q'-'A'})) \end{array} 
static
};
main(ac, av)
                                                                                                                                                                                                   main
                 int
                 char
                                  *av∏;
{
                 prog = av[0];
                 if (ac! = 3) {
                                 fprintf(stderr, "usage: %s file1 file2\n", prog);
fprintf(stderr, "where file1 and file2 are two dna or two protein sequences.\n");
fprintf(stderr, "The sequences can be in upper- or lower-case\n");
fprintf(stderr, "Any lines beginning with ';' or '<' are ignored\n");
fprintf(stderr, "Output is in the file \"align.out\"\n");
                                 exit(1);
                 namex[0] = av[1];
                 namex[1] = av[2];
                seqx[0] = getseq(namex[0], &len0);
seqx[1] = getseq(namex[1], &len1);
xbm = (dna)? _dbval : _pbval;
                 endgaps = 0;
                                                                                   /* 1 to penalize endgaps */
                 ofile = "align.out";
                                                                                   /* output file */
                                                  /* fill in the matrix, get the possible jmps */
                 nw();
                                                 /* get the actual jmps */
/* print stats, alignment */
                 readjmps();
                print():
                 cleanup(0);
                                                  /* unlink any tmp files */
}
```

```
/* do the alignment, return best score: main()
* dna: values in Fitch and Smith, PNAS, 80, 1382-1386, 1983
* pro: PAM 250 values
* When scores are equal, we prefer mismatches to any gap, prefer
 * a new gap to extending an ongoing gap, and prefer a gap in seqx
* to a gap in seq y.
 */
nw()
                                                                                                                                             nw
                                  *px, *py;
*ndely, *dely;
ndelx, delx;
           char
                                                                      /* seqs and ptrs */
           int
                                                          /* keep track of dely */
           int
                                                          /* keep track of delx */
                                                          /* for swapping row0, row1 */
           int
                                   *tmp;
           int
                                   mis;
                                                          /* score for each type */
                                                          /* insertion penalties */
           int
                                   ins0, ins1;
           register
                                   id;
                                                          /* diagonal index */
           register
                                                          /* jmp index */
                                   ij;
                                   *col0, *col1;
           register
                                                          /* score for curr, last row */
           register
                                   xx, yy;
                                                          /* index into seqs */
           dx = (struct diag *)g_calloc("to get diags", len0+len1+1, sizeof(struct diag));
          ndely = (int *)g_calloc("to get ndely", len1+1, sizeof(int));
dely = (int *)g_calloc("to get dely", len1+1, sizeof(int));
col0 = (int *)g_calloc("to get col0", len1+1, sizeof(int));
col1 = (int *)g_calloc("to get col1", len1+1, sizeof(int));
ins0 = (dna)? DINSO;
           ins1 = (dna)? DINS1 : PINS1;
           smax = -10000;
           if (endgaps) {
                      for (col0[0] = dely[0] = -ins0, yy = 1; yy < = len1; yy++) { col0[yy] = dely[yy] = col0[yy-1] - ins1;
                                  ndely[yy] = yy;
                      col0[0] = 0;
                                              /* Waterman Bull Math Biol 84 */
           else
                      for (yy = 1; yy <= len1; yy++)
dely[yy] = -ins0;
           /* fill in match matrix
           for (px = seqx[0], xx = 1; xx <= len0; px++, xx++) {
                      /* initialize first entry in col
                      if (endgaps) {
                                  if (xx == 1)
                                              col1[0] = delx = -(ins0 + ins1);
                                              col1[0] = delx = col0[0] - ins1;
                                  ndelx = xx;
                      élse {
                                  col1[0] = 0;
                                  delx = -ins0;
                                  ndelx = 0;
                      }
```

```
...nw
for (py = seqx[1], yy = 1; yy <= len1; py++, yy++) {
    mis = col0[yy-1];
           if (dna)
                       mis += (xbm[*px-'A']&xbm[*py-'A'])? DMAT : DMIS;
           else
                       mis += _day[*px-'A'][*py-'A'];
           /* update penalty for del in x seq;
* favor new del over ongong del
            * ignore MAXGAP if weighting endgaps
           if (endgaps | | ndely[yy] < MAXGAP) {
    if (col0[yy] - ins0 > = dely[yy]) {
        dely[yy] = col0[yy] - (ins0 + ins1);
    }
                                  ndely[yy] = 1;
                      } else {
                                  dely[yy] -= ins1;
                                  ndely[yy]++;
           } else {
                      if (col0[yy] - (ins0 + ins1) >= dely[yy]) {
                                  dely[yy] = col0[yy] - (ins0 + ins1);
                                  ndely[yy] = 1;
                      } else
                                  ndely[yy]++;
           }
           /* update penalty for del in y seq;
* favor new del over ongong del
           } else {
                                 delx -= ins1;
                                 ndelx++;
           } else {
                      if (col1[yy-1] - (ins0+ins1) >= delx) {
    delx = col1[yy-1] - (ins0+ins1);
    ndelx = 1;
                      } else
                                 ndelx++;
           }
           /* pick the maximum score; we're favoring
            * mis over any del and delx over dely
```

```
...nw
                           id = xx - yy + len1 - 1;
if (mis > = delx && mis > = dely[yy])
                           coll[yy] = mis;
else if (delx > = dely[yy]) {
    coll[yy] = delx;
    ij = dx[id].ijmp;
                                        if (++ij > = MAXIMP) {
                                                                 writejmps(id);

ij = dx[id].ijmp = 0;
                                                                  dx[id].offset = offset;
                                                                  offset += sizeof(struct jmp) + sizeof(offset);
                                                     }
                                       dx[id].jp.n[ij] = ndelx;
dx[id].jp.x[ij] = xx;
dx[id].score = delx;
                          }
else {
| coll[yy] = dely[yy];
| ij = dx[id].ijmp;
| if (dx[id].jp.n[0] && (!dna || (ndely[yy] >= MAXJMP
| && xx > dx[id].jp.x[ij]+MX) || mis > dx[id].score+DINSO)) {
                                                    dx[id].ijmp++;
if (++ij > = MAXJMP) {
                                                                 writejmps(id);

ij = dx[id].ijmp = 0;

dx[id].offset = offset;
                                                                 offset += sizeof(struct jmp) + sizeof(offset);
                                                    }
                                       dx[id].jp.n[ij] = -ndely[yy];
                                       dx[id].jp.x[ij] = xx;

dx[id].score = dely[yy];
                          f(xx) = 100 & yy < 101 
                                       /* last col
                                        #/
                                       if (endgaps)
                                                    col1[yy] -= ins0+ins1*(len1-yy);
                                       if (col1[yy] > smax) {
                                                    smax = coll[yy];
                                                    dmax = id;
                                       }
                          }
             if (endgaps && xx < len0)
             coll[yy-1] -= ins0+ins1*(len0-xx);

if (col1[yy-1] > smax) {

smax = col1[yy-1];

dmax = id;
             tmp = col0; col0 = col1; col1 = tmp;
(void) free((char *)ndely);
(void) free((char *)dely);
(void) free((char *)col0);
(void) free((char *)col1);
                                                                }
```

Table 1 (cont')

print

```
/*
  * print() -- only routine visible outside this module
  * getmat() - trace back best path, count matches: print()
  * pr_align() - print alignment of described in array p[]: print()
* dumpblock() - dump a block of lines with numbers, stars: pr_align()
  * nums() - put out a number line: dumpblock()
 * putline() - put out a line (name, [num], seq, [num]): dumpblock()
* stars() - -put a line of stars: dumpblock()
* stripname() -- strip any path and prefix from a sequame
 #include "nw.h"
 #define SPC
 #define P_LINE
#define P_SPC
                        256
                                     /* maximum output line */
                                     /* space between name or num and seq */
 extern
             _day[26][26];
            olen;
                                     /* set output line length */
 FILE
             *fx;
                                     /* output file */
print()
            int
                        lx, ly, firstgap, lastgap;
                                                             /* overlap */
             \begin{array}{l} \mbox{if } ((\mbox{fx} = \mbox{fopen(ofile, "w")}) = = 0) \ \{ \\ \mbox{fprintf(stderr, "%s: can't write %s\n", prog, ofile);} \end{array} 
                         cleanup(1);
            fprintf(fx, "<first sequence: %s (length = %d)\n", namex[0], len0); fprintf(fx, "<second sequence: %s (length = %d)\n", namex[1], len1);
            olen = 60;
            lx = len0:
            ly = len1;
            firstgap = lastgap = 0;
            /* leading gap in x */
            if (dmax0 < len0 - 1) {
                                                 /* trailing gap in x */
                        lastgap = len0 - dmax0 - 1;
                        lx -= lastgap;
            else if (dmax0 > len0 - 1) { /* trailing gap in y */ lastgap = dmax0 - (len0 - 1);
                        ly -= lastgap;
            getmat(lx, ly, firstgap, lastgap);
            pr_align();
}
```

Table 1 (cont')

getmat

```
* trace back the best path, count matches
static
getmat(lx, ly, firstgap, lastgap)
            int
                         lx, ly;
                                                               /* "core" (minus endgaps) */
            int
                         firstgap, lastgap;
                                                               /* leading trailing overlap */
{
            int
                                      nm, i0, i1, siz0, siz1;
            char
                                      outx[32];
                                     pct;
n0, n1;
            double
            register
            register char
                                      *p0, *p1;
            /* get total matches, score */
            i0 = i1 = siz0 = siz1 = 0;
           p0 = seqx[0] + pp[1].spc;
p1 = seqx[1] + pp[0].spc;
n0 = pp[1].spc + 1;
n1 = pp[0].spc + 1;
            nm = 0;
while (*p0 && *p1) {
                         if (siz0) {
                                     p1++;
                                      n1++;
                                      siz0-;
                         else if (siz1) {
                                     p0++;
                                     n0++;
                                      siz1-;
                         élse {
                                      if (xbm[*p0-'A']&xbm[*p1-'A'])
                                     nm + +;
if (n0 + + = = pp[0].x[i0])
                                     siz0 = pp[0].n[i0++];
if (n1++==pp[1].x[i1])
siz1 = pp[1].n[i1++];
                                     p0++;
                                      p1++;
                         }
            }
           /* pct homology:

* if penalizing endgaps, base is the shorter seq
             * else, knock off overhangs and take shorter core
            if (endgaps)
                         lx = (len0 < len1)? len0 : len1;
            else
           else

lx = (lx < ly)? lx : ly;

pct = 100.*(double)nm/(double)lx;

fprintf(fx, "\n");

fprintf(fx, "< %d match%s in an overlap of %d: %.2f percent similarity\n",

nm, (nm == 1)? "" : "es", lx, pct);
```

```
fprintf(fx, "< gaps in first sequence: %d", gapx);
                                                                                                                  ...getmat
          if (gapx) {
                     (void) sprintf(outx, " (%d %s%s)",
                               ngapx, (dna)? "base": "residue", (ngapx == 1)? "": "s");
                     fprintf(fx, "%s", outx);
          fprintf(fx, ", gaps in second sequence: %d", gapy);
          if (gapy) {
                    }
if (dna)
                     fprintf(fx,
                     "\n < score: %d (match = %d, mismatch = %d, gap penalty = %d + %d per base)\n",
                     smax, DMAT, DMIS, DINSO, DINS1);
          else
                    fprintf(fx, "\n < score: %d (Dayhoff PAM 250 matrix, gap penalty = %d + %d per residue)\n",
                    smax, PINSO, PINS1);
          if (endgaps)
                    fprintf(fx.
                    "<endgaps penalized. left endgap: %d %s%s, right endgap: %d %s%s\n", firstgap, (dna)? "base": "residue", (firstgap == 1)? "": "s", lastgap, (dna)? "base": "residue", (lastgap == 1)? "": "s");
          else
                     fprintf(fx, " < endgaps not penalized\n");
}
 static
                    nm;
                                         /* matches in core - for checking */
 static
                                         /* lengths of stripped file names */
                    lmax;
static
                    ij[2];
                                         /* jmp index for a path */
 static
                    nc[2];
                                         /* number at start of current line */
 static
                    ni[2];
                                         /* current elem number - for gapping */
static
                    siz[2];
 static char
                     *ps[2];
                                         /* ptr to current element */
 static char
                     *po[2];
                                         /* ptr to next output char slot */
                    out[2][P_LINE];
star[P_LINE];
 static char
                                        /* output line */
 static char
                                         /* set by stars() */
 * print alignment of described in struct path pp[] */
static
pr_align( )
                                                                                                                   pr align
          int
                                         /* char count */
                              nn:
          int
                              more;
          register
                              i;
          if (nn > \overline{lmax})
                              lmax = nn:
                    nc[i] = 1;
                    ni[i] = 1;
                    siz[i] = ij[i] = 0;
                   ps[i] = seqx[i];
po[i] = out[i];
                                                            }
```

```
Table 1 (cont')
          for (nn = nm = 0, more = 1; more; ) {
    for (i = more = 0; i < 2; i++) {
                                                                                                                  ...pr align
                                * do we have more of this sequence?
                                */
                                if (!*ps[i])
                                          continue;
                                more++;
                               if (pp[i].spc) {     /* leading space */
     *po[i]++ = ' ';
                                          pp[i].spc--;
                               else if (siz[i]) {    /* in a gap */
    *po[i]++ = '-';
    siz[i]--;
                               }
else {
                                                    /* we're putting a seq element */
                                         * are we at next gap for this seq?
                                         if (ni[i] == pp[i].x[ij[i]]) {
                                                    * we need to merge all gaps
                                                    * at this location
                                                   siz[i] = pp[i].n[ij[i]++];

while (ni[i] == pp[i].x[ij[i]])

siz[i] += pp[i].n[ij[i]++];
                                         }
ni[i]++;
                               }
                    po[i] = out[i];
                               nn = 0;
                     }
          }
}
* dump a block of lines, including numbers, stars: pr_align()
static
dumpblock()
                                                                                                                dumpblock
{
          register i;
         for (i = 0; i < 2; i++)
*po[i]-- = '(0)';
```

Table 1 (cont')

```
...dumpblock
                               putline(i);

if (i == 0 && *out[1])

fprintf(fx, star);
                                          stars();
                                          mms(i);
                      }
           }
}
 * put out a number line: dumpblock()
*/
static
nums(ix)
                                                                                                                          nums
           int
                               /* index in out[] holding seq line */
{
                               nline[P_LINE];
           char
           register
           register char
                                *pn, *px, *py;
          for (pn = nline, i = 0; i < lmax+P_SPC; i++, pn++)
*pn = ' ';
          if (i\%10 == 0) | (i == 1 && nc[ix] != 1)) {

    j = (i < 0)? -i : i;

    for <math>(px = pr; j; j /= 10, px-)

    *px = j%10 + '0';
                                          if (i < 0)
                                                    *px = '-';
                               }
else
                                          *pn = ' ';
                               i++;
                     }
          }
*pn = '\0';
nc[ix] = i;
          for (pn = nline; *pn; pn++)
(void) putc(*pn, fx);
(void) putc('\n', fx);
}
* put out a line (name, [num], seq, [num]): dumpblock()
static
putline(ix)
                                                                                                                       putline
```

{

int

ix;

```
...putline
             int
             register char
                                      *px;
             for (px = namex[ix], i = 0; *px && *px != ':'; px++, i++)
             (void) putc(*px, fx);
for (; i < \lmax+P_SPC; i++)
(void) putc(' ', fx);
             /* these count from 1:
              * ni[] is current element (from 1)

* nc[] is number at start of current line
            }
 * put a line of stars (seqs always in out[0], out[1]): dumpblock() */
static
stars()
                                                                                                                                                  stars
{
                                     *p0, *p1, cx, *px;
             register char
            if (!*out[0] || (*out[0] == ' ' && *(po[0]) == ' ') ||
!*out[1] || (*out[1] == ' ' && *(po[1]) == ' '))
    return;
             px = star;
            for (i = lmax + P_SPC; i; i-)
*px++ = ' ';
            for (p0 = out[0], p1 = out[1]; *p0 && *p1; p0++, p1++) { if (isalpha(*p0) && isalpha(*p1)) {
                                     if (xbm[*p0-'A']&xbm[*p1-'A']) {
    cx = '*';
    nm++;
                                     else if (|dna && _day[*p0-'A'][*p1-'A'] > 0)

cx = '. \ddot{};
                                     else
                                                 cx = ' ';
                         }
else
                                     cx = ' ':
                         *px++=cx;
            }
*px++ = '\n';
*px = '\0';
}
```

stripname

```
* cleanup() -- cleanup any tmp file
* getseq() -- read in seq, set dna, len, maxlen
 * g_calloc() -- calloc() with error checkin

* readjmps() -- get the good jmps, from tmp file if necessary

* writejmps() -- write a filled array of jmps to a tmp file: nw()
 #include "nw.h"
#include < sys/file.h>
char
             *jname = "/tmp/homgXXXXXX";
                                                                          /* tmp file for jmps */
FILE
int
            cleanup();
                                                                          /* cleanup tmp file */
long
            lseek();
 * remove any tmp file if we blow
cleanup(i)
                                                                                                                                            cleanup
            int
                        i;
            if (fj)
                        (void) unlink(jname);
            exit(i);
}
 * read, return ptr to seq, set dna, len, maxlen
* skip lines starting with ';', '<', or '>'
 * seq in upper or lower case
char
getseq(file, len)
                                                                                                                                              getseq
                        *file;
            char
                                     /* file name */
                        *len;
                                    /* seq len */
{
            char
                                    line[1024], *pseq;
                                    *px, *py;
natgc, tlen;
            register char
            FILE
                                     *fp;
            if ((fp = fopen(file, "r")) == 0) {
    fprintf(stderr, "%s: can't read %s\n", prog, file);
          for (px = line; *px! = '\n'; px++)
if (isupper(*px) || islower(*px))
tlen++;
           if ((pseq = malloc((unsigned)(tlen+6))) == 0) {
fprintf(stderr, "%s: malloc() failed to get %d bytes for %s\n", prog, tlen+6, file);
           pseq[0] = pseq[1] = pseq[2] = pseq[3] = '\0';
```

```
...getseq
          py = pseq + 4;
*len = tlen;
          rewind(fp);
         for (px = line; *px != '\n'; px++) {
                              if (isupper(*px))
                                        *py++ = *px;
                              else if (islower(*px))
                              *py++ = toupper(*px);
if (index("ATGCU",*(py-1)))
                                        natgc++;
                   }
          *py++ = '\0';
*py = '\0';
         (void) fclose(fp);
dna = natgc > (tlen/3);
return(pseq+4);
}
char
                                                                                                                  g_calloc
g_calloc(msg, nx, sz)
                   *msg;
          char
                                        /* program, calling routine */
                                        /* number and size of elements */
          int
                   nx, sz;
{
          char
                              *px, *calloc();
          if ((px = calloc((unsigned)nx, (unsigned)sz)) == 0) {
                              fprintf(stderr, "%s: g_calloc() failed %s (n=%d, sz=%d)\n", prog, msg, nx, sz);
                   }
          return(px);
}
* get final jmps from dx[] or tmp file, set pp[], reset dmax: main() */
readjmps()
                                                                                                               readjmps
                              fd = -1;
                              siz, i0, i1;
         int
         register i, j, xx;
         if (fj) {
                   (void) fclose(fj);
                   if ((fd = open(jname, O_RDONLY, 0)) < 0) {
    fprintf(stderr, "%s: can't open() %s\n", prog, jname);</pre>
                              cleanup(1);
         for (i = i0 = i1 = 0, dmax0 = dmax, xx = len0; ; i++) {
                   while (1) {
    for (j = dx[dmax].ijmp; j >= 0 && dx[dmax].jp.x[j] >= xx; j-)
```

```
...readjmps
                                       if (j < 0 && dx[dmax].offset && fj) {
      (void) lseek(fd, dx[dmax].offset, 0);
      (void) read(fd, (char *)&dx[dmax].jp, sizeof(struct jmp));
      (void) read(fd, (char *)&dx[dmax].offset, sizeof(dx[dmax].offset));
      dx[dmax].ijmp = MAXJMP-1;
}</pre>
                                        élse
                                                     break;
                          }
if (j >= 0) {
    siz = dx[dmax].jp.n[j];
    xx = dx[dmax].jp.x[j];
    **max += siz;
                                       if (siz < 0) {
     pp[1].n[i1] = -siz;</pre>
                                                                              /* gap in second seq */
                                                     xx += siz;
/* id = xx - yy + len1 - 1
                                                     */
                                                     pp[1].x[i1] = xx - dmax + len1 - 1;
                                                     gapy++;
                                                    ngapy -= siz;
/* ignore MAXGAP when doing endgaps */
                                                    siz = (-siz < MAXGAP | | endgaps)? -siz : MAXGAP;
                                                     i1++;
                                       gapx++;
                                                     ngapx += siz;
/* ignore MAXGAP when doing endgaps */
                                                     siz = (siz < MAXGAP | | endgaps)? siz : MAXGAP;
                                                    i0++;
                                       }
                          }
else
                                       break;
            }
             /* reverse the order of jmps
            for (j = 0, i0--; j < i0; j++, i0--) \{

i = pp[0].n[j]; pp[0].n[j] = pp[0].n[i0]; pp[0].n[i0] = i;

i = pp[0].x[j]; pp[0].x[j] = pp[0].x[i0]; pp[0].x[i0] = i;
            for (j = 0, i1-; j < i1; j++, i1-) {
i = pp[1].n[j]; pp[1].n[j] = pp[1].n[i1]; pp[1].n[i1] = i;
i = pp[1].x[j]; pp[1].x[j] = pp[1].x[i1]; pp[1].x[i1] = i;
            if (fd > = 0)
                          (void) close(fd);
            if (fj) {
                          (void) unlink(jname);
                          \dot{\mathbf{f}}_{\mathbf{j}} = 0;
                         offset = 0:
                                                    }
                                                                                                        }
```

Table 2

5 % amino acid sequence identity =

(the number of identically matching amino acid residues between the two polypeptide sequences as determined by ALIGN-2) divided by (the total number of amino acid residues of the PRO polypeptide) = 5 divided by 15 = 33.3%

10 <u>Table 3</u>

PRO XXXXXXXXXX (Length = 10 amino acids)

Comparison Protein XXXXXYYYYYYZZYZ (Length = 15 amino acids)

% amino acid sequence identity =

(the number of identically matching amino acid residues between the two polypeptide sequences as determined by ALIGN-2) divided by (the total number of amino acid residues of the PRO polypeptide) = 5 divided by 10 = 50%

Table 4

20 PRO-DNA NNNNNNNNNNNNNN (Length = 14 nucleotides)

Comparison DNA NNNNNLLLLLLLLLL (Length = 16 nucleotides)

% nucleic acid sequence identity =

(the number of identically matching nucleotides between the two nucleic acid sequences as determined by ALIGN-

2) divided by (the total number of nucleotides of the PRO-DNA nucleic acid sequence) =

6 divided by 14 = 42.9%

Table 5

PRO-DNA NNNNNNNNNNN (Length = 12 nucleotides)

30 Comparison DNA NNNNLLLVV (Length = 9 nucleotides)

% nucleic acid sequence identity =

(the number of identically matching nucleotides between the two nucleic acid sequences as determined by ALIGN-

2) divided by (the total number of nucleotides of the PRO-DNA nucleic acid sequence) =

35 4 divided by 12 = 33.3%

5.2. Compositions and Methods of the Invention

5.2.1. PRO Variants

5

10

15

20

25

In addition to the full-length native sequence PRO polypeptides described herein, it is contemplated that PRO variants can be prepared. PRO variants can be prepared by introducing appropriate nucleotide changes into the PRO DNA, and/or by synthesis of the desired PRO polypeptide. Those skilled in the art will appreciate that amino acid changes may alter post-translational processes of the PRO polypeptide such as changing the number or position of glycosylation sites or altering the membrane anchoring characteristics.

Variations in the native full-length sequence PRO polypeptide or in various domains of the PRO polypeptide described herein, can be made, for example, using any of the techniques and guidelines for conservative and non-conservative mutations set forth, for instance, in U.S. Patent No. 5,364,934. Variations may be a substitution, deletion or insertion of one or more codons encoding the PRO polypeptide that results in a change in the amino acid sequence of the PRO polypeptide as compared with the native sequence PRO polypetide. Optionally the variation is by substitution of at least one amino acid with any other amino acid in one or more of the domains of the PRO polypeptide. Guidance in determining which amino acid residue may be inserted, substituted or deleted without adversely affecting the desired activity may be found by comparing the sequence of the PRO polypeptide with that of homologous known protein molecules and minimizing the number of amino acid sequence changes made in regions of high homology. Amino acid substitutions can be the result of replacing one amino acid with another amino acid having similar structural and/or chemical properties, such as the replacement of a leucine with a serine, i.e., conservative amino acid replacements. Insertions or deletions may optionally be in the range of about 1 to 5 amino acids. The variation allowed may be determined by systematically making insertions, deletions or substitutions of amino acids in the sequence and testing the resulting variants for activity exhibited by the full-length or mature native sequence.

In particular embodiments, conservative substitutions of interest are shown in Table 6 under the heading of preferred substitutions. If such substitutions result in a change in biological activity, then more substantial changes, denominated exemplary substitutions in Table 6, or as further described below in reference to amino acid classes, are introduced and the products screened.

Table 6

	Original	Exemplary	Preferred
	<u>Residue</u>	Substitutions	Substitutions
	Ala (A)	val; leu; ile	val
5	Arg (R)	lys; gln; asn	lys
	Asn (N)	gln; his; lys; arg	gln
	Asp (D)	glu	glu
	Cys (C)	ser	ser
	Gln (Q)	asn	asn
10	Glu (E)	asp	asp
	Gly (G)	pro; ala	ala
	His (H)	asn; gln; lys; arg	arg
	Пе (І)	leu; val; met; ala; phe;	•
		norleucine	leu
15	Leu (L)	norleucine; ile; val;	
		met; ala; phe	ile
	Lys (K)	arg; gln; asn	arg
	Met (M)	leu; phe; ile	leu
	Phe (F)	leu; val; ile; ala; tyr	leu
20	Pro (P)	ala	ala
	Ser (S)	thr	thr
	Thr (T)	ser	ser
	Trp (W)	tyr; phe	tyr
	Tyr (Y)	trp; phe; thr; ser	phe
25	Val (V)	ile; leu; met; phe;	
		ala; norleucine	leu

Substantial modifications in function or immunological identity of the PRO polypeptide are accomplished by selecting substitutions that differ significantly in their effect on maintaining (a) the structure of the polypeptide backbone in the area of the substitution, for example, as a sheet or helical conformation, (b) the charge or hydrophobicity of the molecule at the target site, or (c) the bulk of the side chain. Naturally occurring residues are divided into groups based on common side-chain properties:

- (1) hydrophobic: norleucine, met, ala, val, leu, ile;
- (2) neutral hydrophilic: cys, ser, thr;
- (3) acidic: asp, glu;

30

40

- 35 (4) basic: asn, gln, his, lys, arg;
 - (5) residues that influence chain orientation: gly, pro; and
 - (6) aromatic: trp, tyr, phe.

Non-conservative substitutions will entail exchanging a member of one of these classes for another class. Such substituted residues also may be introduced into the conservative substitution sites or, more preferably, into the remaining (non-conserved) sites.

The variations can be made using methods known in the art such as oligonucleotide-mediated (site-directed) mutagenesis, alanine scanning, and PCR mutagenesis. Site-directed mutagenesis [Carter et al., Nucl. Acids Res., 13:4331 (1986); Zoller et al., Nucl. Acids Res., 10:6487 (1987)], cassette mutagenesis [Wells et al., Gene, 34:315 (1985)], restriction selection mutagenesis [Wells et al., Philos. Trans. R. Soc. London SerA, 317:415

(1986)] or other known techniques can be performed on the cloned DNA to produce the PRO variant DNA.

Scanning amino acid analysis can also be employed to identify one or more amino acids along a contiguous sequence. Among the preferred scanning amino acids are relatively small, neutral amino acids. Such amino acids include alanine, glycine, serine, and cysteine. Alanine is typically a preferred scanning amino acid among this group because it eliminates the side-chain beyond the beta-carbon and is less likely to alter the main-chain conformation of the variant [Cunningham and Wells, Science, 244: 1081-1085 (1989)]. Alanine is also typically preferred because it is the most common amino acid. Further, it is frequently found in both buried and exposed positions [Creighton, The Proteins, (W.H. Freeman & Co., N.Y.); Chothia, J. Mol. Biol., 150:1 (1976)]. If alanine substitution does not yield adequate amounts of variant, an isoteric amino acid can be used.

10

15

5

5.2.2. <u>Modifications of PRO Polypeptides</u>

Covalent modifications of PRO polypeptides are included within the scope of this invention. One type of covalent modification includes reacting targeted amino acid residues of a PRO polypeptide with an organic derivatizing agent that is capable of reacting with selected side chains or the N- or C- terminal residues of the PRO polypeptide. Derivatization with bifunctional agents is useful, for instance, for crosslinking the PRO polypeptide to a water-insoluble support matrix or surface for use in the method for purifying anti-PRO antibodies, and vice-versa. Commonly used crosslinking agents include, e.g., 1,1-bis(diazoacetyl)-2-phenylethane, glutaraldehyde, N-hydroxysuccinimide esters, for example, esters with 4-azidosalicylic acid, homobifunctional imidoesters, including disuccinimidyl esters such as 3,3'-dithiobis(succinimidylpropionate), bifunctional maleimides such as bis-N-maleimido-1,8-octane and agents such as methyl-3-[(p-azidophenyl)dithio]propioimidate.

20

Other modifications include deamidation of glutaminyl and asparaginyl residues to the corresponding glutamyl and aspartyl residues, respectively, hydroxylation of proline and lysine, phosphorylation of hydroxyl groups of seryl or threonyl residues, methylation of the α -amino groups of lysine, arginine, and histidine side chains [T.E. Creighton, <u>Proteins: Structure and Molecular Properties</u>, W.H. Freeman & Co., San Francisco, pp. 79-86 (1983)], acetylation of the N-terminal amine, and amidation of any C-terminal carboxyl group.

25

Another type of covalent modification of the PRO polypeptide included within the scope of this invention comprises altering the native glycosylation pattern of the polypeptide. "Altering the native glycosylation pattern" is intended for purposes herein to mean deleting one or more carbohydrate moieties found in the native sequence PRO polypeptide (either by removing the underlying glycosylation site or by deleting the glycosylation by chemical and/or enzymatic means), and/or adding one or more glycosylation sites that are not present in the native sequence PRO polypeptide. In addition, the phrase includes qualitative changes in the glycosylation of the native proteins, involving a change in the nature and proportions of the various carbohydrate moieties present.

30

Addition of glycosylation sites to the PRO polypeptide may be accomplished by altering the amino acid sequence. The alteration may be made, for example, by the addition of, or substitution by, one or more serine or threonine residues to the native sequence PRO polypeptide (for O-linked glycosylation sites). The PRO amino acid sequence may optionally be altered through changes at the DNA level, particularly by mutating the DNA encoding the PRO polypeptide at preselected bases such that codons are generated that will translate into the desired amino

35

acids.

Another means of increasing the number of carbohydrate moieties on the PRO polypeptide is by chemical or enzymatic coupling of glycosides to the polypeptide. Such methods are described in the art, e.g., in WO 87/05330 published 11 September 1987, and in Aplin and Wriston, <u>CRC Crit. Rev. Biochem.</u>, pp. 259-306 (1981).

5

Removal of carbohydrate moieties present on the PRO polypeptide may be accomplished chemically or enzymatically or by mutational substitution of codons encoding for amino acid residues that serve as targets for glycosylation. Chemical deglycosylation techniques are known in the art and described, for instance, by Hakimuddin, et al., Arch. Biochem. Biophys., 259:52 (1987) and by Edge et al., Anal. Biochem., 118:131 (1981). Enzymatic cleavage of carbohydrate moieties on polypeptides can be achieved by the use of a variety of endo- and exo-glycosidases as described by Thotakura et al., Meth. Enzymol., 138:350 (1987).

10

Another type of covalent modification of the PRO polypeptide comprises linking the PRO polypeptide to one of a variety of nonproteinaceous polymers, e.g., polyethylene glycol (PEG), polypropylene glycol, or polyoxyalkylenes, in the manner set forth in U.S. Patent Nos. 4,640,835; 4,496,689; 4,301,144; 4,670,417; 4,791,192 or 4,179,337.

15

The PRO polypeptide of the present invention may also be modified in a way to form a chimeric molecule comprising the PRO polypeptide fused to another, heterologous polypeptide or amino acid sequence.

In one embodiment, such a chimeric molecule comprises a fusion of the PRO polypeptide with a protein transduction domain which targets the PRO polypeptide for delivery to various tissues and more particularly across the brain blood barrier, using, for example, the protein transduction domain of human immunodeficiency virus TAT protein (Schwarze *et al.*, 1999, Science 285: 1569-72).

20

25

30

In another embodiment, such a chimeric molecule comprises a fusion of the PRO polypeptide with a tag polypeptide which provides an epitope to which an anti-tag antibody can selectively bind. The epitope tag is generally placed at the amino- or carboxyl- terminus of the PRO polypeptide. The presence of such epitope-tagged forms of the PRO polypeptide can be detected using an antibody against the tag polypeptide. Also, provision of the epitope tag enables the PRO polypeptide to be readily purified by affinity purification using an anti-tag antibody or another type of affinity matrix that binds to the epitope tag. Various tag polypeptides and their respective antibodies are well known in the art. Examples include poly-histidine (poly-His) or poly-histidine-glycine (poly-His-gly) tags; the flu HA tag polypeptide and its antibody 12CA5 [Field et al., Mol. Cell. Biol., 8:2159-2165 (1988)]; the c-myc tag and the 8F9, 3C7, 6E10, G4, B7 and 9E10 antibodies thereto [Evan et al., Molecular and Cellular Biology, 5:3610-3616 (1985)]; and the Herpes Simplex virus glycoprotein D (gD) tag and its antibody [Paborsky et al., Protein Engineering, 3(6):547-553 (1990)]. Other tag polypeptides include the Flag-peptide [Hopp et al., BioTechnology, 6:1204-1210 (1988)]; the KT3 epitope peptide [Martin et al., Science, 255:192-194 (1992)]; an α-tubulin epitope peptide [Skinner et al., I. Biol. Chem., 266:15163-15166 (1991)]; and the T7 gene 10 protein peptide tag [Lutz-Freyermuth et al., Proc. Natl. Acad. Sci. USA, 87:6393-6397 (1990)].

35

In an alternative embodiment, the chimeric molecule may comprise a fusion of the PRO polypeptide with an immunoglobulin or a particular region of an immunoglobulin. For a bivalent form of the chimeric molecule (also referred to as an "immunoadhesin"), such a fusion could be to the Fc region of an IgG molecule. The Ig fusions

preferably include the substitution of a soluble (transmembrane domain deleted or inactivated) form of a PRO polypeptide in place of at least one variable region within an Ig molecule. In a particularly preferred embodiment, the immunoglobulin fusion includes the hinge, CH2 and CH3, or the hinge, CH1, CH2 and CH3 regions of an IgG1 molecule. For the production of immunoglobulin fusions see also, U.S. Patent No. 5,428,130 issued June 27, 1995.

5

10

15

20

5.2.3. Preparation of the PRO Polypeptide

The present invention provides newly identified and isolated nucleotide sequences encoding polypeptides referred to in the present application as PRO polypeptides. In particular, cDNAs encoding PRO polypeptides have been identified and isolated, as disclosed in further detail in the Examples below. It is noted that proteins produced in separate expression rounds may be given different PRO numbers but the UNQ number is unique for any given DNA and the encoded protein, and will not be changed. However, for sake of simplicity, in the present specification the protein encoded by the PRO DNA as well as all further native homologues and variants included in the foregoing definition of PRO polypeptides, will be referred to as "PRO" regardless of their origin or mode of preparation.

The description below relates primarily to production of PRO polypeptides by culturing cells transformed or transfected with a vector containing nucleic acid encoding PRO polypeptides. It is, of course, contemplated that alternative methods that are well known in the art may be employed to prepare the PRO polypeptide. For instance, the PRO polypeptide sequence, or portions thereof, may be produced by direct peptide synthesis using solid-phase techniques. See, e.g., Stewart et al., Solid-Phase Peptide Synthesis (W.H. Freeman Co.: San Francisco, CA, 1969); Merrifield, J. Am. Chem. Soc., 85: 2149-2154 (1963). In vitro protein synthesis may be performed using manual techniques or by automation. Automated synthesis may be accomplished, for instance, with an Applied Biosystems Peptide Synthesizer (Foster City, CA) using manufacturer's instructions. Various portions of the PRO polypeptide may be chemically synthesized separately and combined using chemical or enzymatic methods to produce the full-length PRO polypeptide.

5.2.3.1. Isolation of DNA Encoding PRO Polypeptides

25

DNA encoding the PRO polypeptide may be obtained from a cDNA library prepared from tissue believed to possess the mRNA encoding the PRO polypeptide and to express it at a detectable level. Accordingly, DNAs encoding the human PRO polypeptide can be conveniently obtained from cDNA libraries prepared from human tissues, such as described in the Examples. The gene encoding the PRO polypeptide may also be obtained from a genomic library or by oligonucleotide synthesis.

30

Libraries can be screened with probes (such as antibodies to the PRO polypeptide or oligonucleotides of at least about 20-80 bases) designed to identify the gene of interest or the protein encoded by it. Screening the cDNA or genomic library with the selected probe may be conducted using standard procedures, such as described in Sambrook et al., supra. An alternative means to isolate the gene encoding the PRO polypeptide is to use PCR methodology. Sambrook et al., supra; Dieffenbach et al., PCR Primer: A Laboratory Manual (New York: Cold

Spring Harbor Laboratory Press, 1995).

5

10

15

20

25

30

35

The Examples below describe techniques for screening a cDNA library. The oligonucleotide sequences selected as probes should be of sufficient length and sufficiently unambiguous that false positives are minimized. The oligonucleotide is preferably labeled such that it can be detected upon hybridization to DNA in the library being screened. Methods of labeling are well known in the art, and include the use of radiolabels like ³²P-labeled ATP, biotinylation, or enzyme labeling. Hybridization conditions, including moderate stringency and high stringency, are provided in Sambrook et al., supra.

Sequences identified in such library screening methods can be compared and aligned to other known sequences deposited and available in public databases such as GenBank or other private sequence databases. Sequence identity (at either the amino acid or nucleotide level) within defined regions of the molecule or across the full-length sequence can be determined through sequence alignment using computer software programs such as ALIGN, DNAstar, and INHERIT, which employ various algorithms to measure homology.

Nucleic acid having protein coding sequence may be obtained by screening selected cDNA or genomic libraries using the deduced amino acid sequence disclosed herein for the first time, and, if necessary, using conventional primer extension procedures as described in Sambrook et al., supra, to detect precursors and processing intermediates of mRNA that may not have been reverse-transcribed into cDNA.

5.2.3.2. Selection and Transformation of Host Cells

Host cells are transfected or transformed with expression or cloning vectors described herein for PRO polypeptide production and cultured in conventional nutrient media modified as appropriate for inducing promoters, selecting transformants, or amplifying the genes encoding the desired sequences. The culture conditions, such as media, temperature, pH, and the like, can be selected by the skilled artisan without undue experimentation. In general, principles, protocols, and practical techniques for maximizing the productivity of cell cultures can be found in Mammalian Cell Biotechnology: A Practical Approach, M. Butler, ed. (IRL Press, 1991) and Sambrook et al., supra.

Methods of transfection are known to the ordinarily skilled artisan, for example, CaPO₄ treatment and electroporation. Depending on the host cell used, transformation is performed using standard techniques appropriate to such cells. The calcium treatment employing calcium chloride, as described in Sambrook et al., supra, or electroporation is generally used for prokaryotes or other cells that contain substantial cell-wall barriers. Infection with Agrobacterium tumefaciens is used for transformation of certain plant cells, as described by Shaw et al., Gene, 23: 315 (1983) and WO 89/05859 published 29 June 1989. For mammalian cells without such cell walls, the calcium phosphate precipitation method of Graham and van der Eb, Virology, 52:456-457 (1978) can be employed. General aspects of mammalian cell host system transformations have been described in U.S. Patent No. 4,399,216. Transformations into yeast are typically carried out according to the method of Van Solingen et al., J. Bact., 130: 946 (1977) and Hsiao et al., Proc. Natl. Acad. Sci. (USA), 76: 3829 (1979). However, other methods for introducing DNA into cells, such as by nuclear microinjection, electroporation, bacterial protoplast fusion with intact cells, or polycations, e.g., polybrene or polyomithine, may also be used. For various techniques for

5

10

15

20

25

30

35

transforming mammalian cells, see, Keown et al., Methods in Enzymology, 185: 527-537 (1990) and Mansour et al., Nature, 336: 348-352 (1988).

Suitable host cells for cloning or expressing the DNA in the vectors herein include prokaryote, yeast, or higher eukaryote cells. Suitable prokaryotes include, but are not limited to, eubacteria, such as Gram-negative or Gram-positive organisms, for example, Enterobacteriaceae such as E. coli. Various E. coli strains are publicly available, such as E. coli K12 strain MM294 (ATCC 31,446); E. coli X1776 (ATCC 31,537); E. coli strain W3110 (ATCC 27,325); and K5 772 (ATCC 53,635). Other suitable prokaryotic host cells include Enterobacteriaceae such as Escherichia, e.g., E. coli, Enterobacter, Erwinia, Klebsiella, Proteus, Salmonella, e.g., Salmonella typhimurium, Serratia, e.g., Serratia marcescans, and Shigella, as well as Bacilli such as B. subtilis and B. licheniformis (e.g., B. licheniformis 41P disclosed in DD 266,710 published 12 April 1989), Pseudomonas such as P. aeruginosa, and Streptomyces. These examples are illustrative rather than limiting. Strain W3110 is one particularly preferred host or parent host because it is a common host strain for recombinant DNA product fermentations. Preferably, the host cell secretes minimal amounts of proteolytic enzymes. For example, strain W3110 may be modified to effect a genetic mutation in the genes encoding proteins endogenous to the host, with examples of such hosts including E. coli W3110 strain 1A2, which has the complete genotype tonA; E. coli W3110 strain 9E4, which has the complete genotype tonA ptr3; E. coli W3110 strain 27C7 (ATCC 55,244), which has the complete genotype tonA ptr3 phoA E15 (argF-lac)169 degP ompT kan'; E. coli W3110 strain 37D6, which has the complete genotype ton Aptr 3 pho AE15 (argF-lac) 169 degP ompT rbs7 ilvG kan'; E. coli W3110 strain 40B4, which is strain 37D6 with a non-kanamycin resistant degP deletion mutation; and an E. coli strain having mutant periplasmic protease disclosed in U.S. Patent No. 4,946,783 issued 7 August 1990. Alternatively, in vitro methods of cloning, e.g., PCR or other nucleic acid polymerase reactions, are suitable.

In addition to prokaryotes, eukaryotic microbes such as filamentous fungi or yeast are suitable cloning or expression hosts for vectors encoding the PRO polypeptide. Saccharomyces cerevisiae is a commonly used lower eukaryotic host microorganism. Others include Schizosaccharomyces pombe (Beach and Nurse, Nature, 290: 140 [1981]; EP 139,383 published 2 May 1985); Kluyveromyces hosts (U.S. Patent No. 4,943,529; Fleer et al., Bio/Technology, 9: 968-975 (1991)) such as, e.g., K. lactis (MW98-8C, CBS683, CBS4574; Louvencourt et al., J. Bacteriol., 737 [1983]), K. fragilis (ATCC 12,424), K. bulgaricus (ATCC 16,045), K. wickeramii (ATCC 24,178), K. waltii (ATCC 56,500), K. drosophilarum (ATCC 36,906; Van den Berg et al., Bio/Technology, 8: 135 (1990)), K. thermotolerans, and K. marxianus; yarrowia (EP 402,226); Pichia pastoris (EP 183,070; Sreekrishna et al., J. Basic Microbiol., 28: 265-278 [1988]); Candida; Trichoderma reesia (EP 244,234); Neurospora crassa (Case et al., Proc. Natl. Acad. Sci. USA, 76: 5259-5263 [1979]); Schwanniomyces such as Schwanniomyces occidentalis (EP 394,538 published 31 October 1990); and filamentous fungi such as, e.g., Neurospora, Penicillium, Tolypocladium (WO 91/00357 published 10 January 1991), and Aspergillus hosts such as A. nidulans (Ballance et al., Biochem. Biophys. Res. Commun., 112: 284-289 [1983]; Tilburn et al., Gene, 26: 205-221 [1983]; Yelton et al., Proc. Natl. Acad. Sci. USA, 81: 1470-1474 [1984]) and A. niger (Kelly and Hynes, EMBO J., 4: 475-479 [1985]). Methylotropic yeasts are suitable herein and include, but are not limited to, yeast capable of growth on methanol selected from the genera consisting of Hansenula, Candida, Kloeckera, Pichia, Saccharomyces,

5

10

15

20

25

30

35

Torulopsis, and Rhodotorula. A list of specific species that are exemplary of this class of yeasts may be found in C. Anthony, The Biochemistry of Methylotrophs, 269 (1982).

Suitable host cells for the expression of nucleic acid encoding glycosylated PRO polypeptides are derived from multicellular organisms. Examples of invertebrate cells include insect cells such as Drosophila S2 and Spodoptera Sf9, as well as plant cells. Examples of useful mammalian host cell lines include Chinese hamster ovary (CHO) and COS cells. More specific examples include monkey kidney CV1 line transformed by SV40 (COS-7, ATCC CRL 1651); human embryonic kidney line (293 or 293 cells subcloned for growth in suspension culture, Graham et al., J. Gen. Virol., 36: 59 (1977)); Chinese hamster ovary cells/-DHFR (CHO, Urlaub and Chasin, Proc. Natl. Acad. Sci. USA, 77:4216 (1980)); mouse sertoli cells (TM4, Mather, Biol. Reprod., 23:243-251 (1980)); human lung cells (W138, ATCC CCL 75); human liver cells (Hep G2, HB 8065); and mouse mammary tumor (MMT 060562, ATCC CCL51). The selection of the appropriate host cell is deemed to be within the skill in the art.

5.2.3.3. Selection and Use of a Replicable Vector

The nucleic acid (e.g., cDNA or genomic DNA) encoding the PRO polypeptide may be inserted into a replicable vector for cloning (amplification of the DNA) or for expression. Various vectors are publicly available. The vector may, for example, be in the form of a plasmid, cosmid, viral particle, or phage. The appropriate nucleic acid sequence may be inserted into the vector by a variety of procedures. In general, DNA is inserted into an appropriate restriction endonuclease site(s) using techniques known in the art. Vector components generally include, but are not limited to, one or more of a signal sequence if the sequence is to be secreted, an origin of replication, one or more marker genes, an enhancer element, a promoter, and a transcription termination sequence. Construction of suitable vectors containing one or more of these components employs standard ligation techniques that are known to the skilled artisan.

The PRO polypeptide may be produced recombinantly not only directly, but also as a fusion polypeptide with a heterologous polypeptide, which may be a signal sequence or other polypeptide having a specific cleavage site at the N-terminus of the mature protein or polypeptide. In general, the signal sequence may be a component of the vector, or it may be a part of the DNA encoding the PRO polypeptide that is inserted into the vector. The signal sequence may be a prokaryotic signal sequence selected, for example, from the group of the alkaline phosphatase, penicillinase, lpp, or heat-stable enterotoxin II leaders. For yeast secretion the signal sequence may be, e.g., the yeast invertase leader, alpha factor leader (including Saccharomyces and Kluyveromyces α-factor leaders, the latter described in U.S. Patent No. 5,010,182), or acid phosphatase leader, the C. albicans glucoamylase leader (EP 362,179 published 4 April 1990), or the signal described in WO 90/13646 published 15 November 1990. In mammalian cell expression, mammalian signal sequences may be used to direct secretion of the protein, such as signal sequences from secreted polypeptides of the same or related species, as well as viral secretory leaders.

Both expression and cloning vectors contain a nucleic acid sequence that enables the vector to replicate in one or more selected host cells. Such sequences are well known for a variety of bacteria, yeast, and viruses. The origin of replication from the plasmid pBR322 is suitable for most Gram-negative bacteria, the 2μ plasmid origin

is suitable for yeast, and various viral origins (SV40, polyoma, adenovirus, VSV, or BPV) are useful for cloning vectors in mammalian cells.

Expression and cloning vectors will typically contain a selection gene, also termed a selectable marker. Typical selection genes encode proteins that (a) confer resistance to antibiotics or other toxins, e.g., ampicillin, neomycin, methotrexate, or tetracycline, (b) complement auxotrophic deficiencies, or (c) supply critical nutrients not available from complex media, e.g., the gene encoding D-alanine racemase for Bacilli.

5

10

15

20

25

30

35

An example of suitable selectable markers for mammalian cells are those that enable the identification of cells competent to take up the nucleic acid encoding the PRO polypeptide such as DHFR or thymidine kinase. An appropriate host cell when wild-type DHFR is employed is the CHO cell line deficient in DHFR activity, prepared and propagated as described by Urlaub et al., Proc. Natl. Acad. Sci. USA, 77: 4216 (1980). A suitable selection gene for use in yeast is the trp1 gene present in the yeast plasmid YRp7. Stinchcomb et al., Nature, 282: 39 (1979); Kingsman et al., Gene, 7: 141 (1979); Tschemper et al., Gene, 10: 157 (1980). The trp1 gene provides a selection marker for a mutant strain of yeast lacking the ability to grow in tryptophan, for example, ATCC No. 44076 or PEP4-1. Jones, Genetics, 85: 12 (1977).

Expression and cloning vectors usually contain a promoter operably linked to the nucleic acid sequence encoding the PRO polypeptide to direct mRNA synthesis. Promoters recognized by a variety of potential host cells are well known. Promoters suitable for use with prokaryotic hosts include the β-lactamase and lactose promoter systems (Chang et al., Nature, 275: 615 (1978); Goeddel et al., Nature, 281: 544 (1979)), alkaline phosphatase, a tryptophan (trp) promoter system (Goeddel, Nucleic Acids Res., 8: 4057 (1980); EP 36,776), and hybrid promoters such as the tac promoter (deBoer et al., Proc. Natl. Acad. Sci. USA, 80: 21-25 (1983)). Promoters for use in bacterial systems also will contain a Shine-Dalgarno (S.D.) sequence operably linked to the DNA encoding the PRO polypeptide.

Examples of suitable promoting sequences for use with yeast hosts include the promoters for 3-phosphoglycerate kinase (Hitzeman et al., J. Biol. Chem., 255: 2073 (1980)) or other glycolytic enzymes (Hess et al., J. Adv. Enzyme Reg., 7: 149 (1968); Holland, Biochemistry, 17: 4900 (1978)), such as enolase, glyceraldehyde-3-phosphate dehydrogenase, hexokinase, pyruvate decarboxylase, phosphofructokinase, glucose-6-phosphate isomerase, 3-phosphoglycerate mutase, pyruvate kinase, triosephosphate isomerase, phosphoglycerate mutase, and glucokinase.

Other yeast promoters that are inducible promoters having the additional advantage of transcription controlled by growth conditions are the promoter regions for alcohol dehydrogenase 2, isocytochrome C, acid phosphatase, degradative enzymes associated with nitrogen metabolism, metallothionein, glyceraldehyde-3-phosphate dehydrogenase, and enzymes responsible for maltose and galactose utilization. Suitable vectors and promoters for use in yeast expression are further described in EP 73,657.

PRO nucleic acid transcription from vectors in mammalian host cells is controlled, for example, by promoters obtained from the genomes of viruses such as polyoma virus, fowlpox virus (UK 2,211,504 published 5 July 1989), adenovirus (such as Adenovirus 2), bovine papilloma virus, avian sarcoma virus, cytomegalovirus, a retrovirus, hepatitis-B virus, and Simian Virus 40 (SV40); by heterologous mammalian promoters, e.g., the actin

promoter or an immunoglobulin promoter; and by heat-shock promoters, provided such promoters are compatible with the host cell systems.

Transcription of a DNA encoding the PRO polypeptide by higher eukaryotes may be increased by inserting an enhancer sequence into the vector. Enhancers are cis-acting elements of DNA, usually about from 10 to 300 bp, that act on a promoter to increase its transcription. Many enhancer sequences are now known from mammalian genes (globin, elastase, albumin, α -fetoprotein, and insulin). Typically, however, one will use an enhancer from a eukaryotic cell virus. Examples include the SV40 enhancer on the late side of the replication origin (bp 100-270), the cytomegalovirus early promoter enhancer, the polyoma enhancer on the late side of the replication origin, and adenovirus enhancers. The enhancer may be spliced into the vector at a position 5' or 3' to the sequence coding for PRO polypeptides, but is preferably located at a site 5' from the promoter.

5

10

15

20

25

30

35

Expression vectors used in eukaryotic host cells (yeast, fungi, insect, plant, animal, human, or nucleated cells from other multicellular organisms) will also contain sequences necessary for the termination of transcription and for stabilizing the mRNA. Such sequences are commonly available from the 5' and, occasionally 3', untranslated regions of eukaryotic or viral DNAs or cDNAs. These regions contain nucleotide segments transcribed as polyadenylated fragments in the untranslated portion of the mRNA encoding the PRO polypeptide.

Still other methods, vectors, and host cells suitable for adaptation to the synthesis of the PRO polypeptide in recombinant vertebrate cell culture are described in Gething *et al.*, Nature, 293: 620-625 (1981); Mantei *et al.*, Nature, 281: 40-46 (1979); EP 117,060; and EP 117,058.

5.2.3.4. Detecting Gene Amplification/Expression

Gene amplification and/or expression may be measured in a sample directly, for example, by conventional Southern blotting, Northern blotting to quantitate the transcription of mRNA (Thomas, Proc. Natl. Acad. Sci. USA, 77:5201-5205 (1980)), dot blotting (DNA analysis), or in situ hybridization, using an appropriately labeled probe, based on the sequences provided herein. Alternatively, antibodies may be employed that can recognize specific duplexes, including DNA duplexes, RNA duplexes, and DNA-RNA hybrid duplexes or DNA-protein duplexes. The antibodies in turn may be labeled and the assay may be carried out where the duplex is bound to a surface, so that upon the formation of duplex on the surface, the presence of antibody bound to the duplex can be detected.

Gene expression, alternatively, may be measured by immunological methods, such as immunohistochemical staining of cells or tissue sections and assay of cell culture or body fluids, to quantitate directly the expression of gene product. Antibodies useful for immunohistochemical staining and/or assay of sample fluids may be either monoclonal or polyclonal, and may be prepared in any mammal. Conveniently, the antibodies may be prepared against a native-sequence PRO polypeptide or against a synthetic peptide based on the DNA sequences provided herein or against exogenous sequence fused to DNA encoding the PRO polypeptide and encoding a specific antibody epitope.

5.2.3.5. Purification of PRO Polypeptides

Forms of PRO polypeptides may be recovered from culture medium or from host cell lysates. If

membrane-bound, it can be released from the membrane using a suitable detergent solution (e.g., TRITON-XTM 100) or by enzymatic cleavage. Cells employed in expression of nucleic acid encoding the PRO polypeptide can be disrupted by various physical or chemical means, such as freeze-thaw cycling, sonication, mechanical disruption, or cell-lysing agents. It may be desired to purify the PRO polypeptide from recombinant cell proteins or polypeptides. The following procedures are exemplary of suitable purification procedures: by fractionation on an ion-exchange column; ethanol precipitation; reverse phase HPLC; chromatography on silica or on a cation-exchange resin such as DEAE; chromatofocusing; SDS-PAGE; ammonium sulfate precipitation; gel filtration using, for example, Sephadex G-75; protein A Sepharose columns to remove contaminants such as IgG; and metal chelating columns to bind epitope-tagged forms of the PRO polypeptide. Various methods of protein purification may be employed and such methods are known in the art and described, for example, in Deutscher, Methods in Enzymology, 182 (1990); Scopes, Protein Purification: Principles and Practice (Springer-Verlag: New York, 1982). The purification step(s) selected will depend, for example, on the nature of the production process used and the particular PRO polypeptide produced.

5.2.4. <u>Uses of PRO Polypeptides</u>

5

10

15

20

25

30

35

5.2.4.1. Assays for Cardiovascular, Endothelial, and Angiogenic Activity

Various assays can be used to test the polypeptide herein for cardiovascular, endothelial, and angiogenic activity. Such assays include those provided in the Examples below.

Assays for testing for endothelin antagonist activity, as disclosed in U.S. Pat. No. 5,773,414, include a rat heart ventricle binding assay where the polypeptide is tested for its ability to inhibit iodinized endothelin-1 binding in a receptor assay, an endothelin receptor binding assay testing for intact cell binding of radiolabeled endothelin-1 using rabbit renal artery vascular smooth muscle cells, an inositol phosphate accumulation assay where functional activity is determined in Rat-1 cells by measuring intra-cellular levels of second messengers, an arachidonic acid release assay that measures the ability of added compounds to reduce endothelin-stimulated arachidonic acid release in cultured vascular smooth muscles, *in vitro* (isolated vessel) studies using endothelium from male New Zealand rabbits, and *in vivo* studies using male Sprague-Dawley rats.

Assays for tissue generation activity include, without limitation, those described in WO 95/16035 (bone, cartilage, tendon); WO 95/05846 (nerve, neuronal), and WO 91/07491 (skin, endothelium).

Assays for wound-healing activity include, for example, those described in Winter, <u>Epidermal Wound Healing</u>, Maibach, HI and Rovee, DT, eds. (Year Book Medical Publishers, Inc., Chicago), pp. 71-112, as modified by the article of Eaglstein and Mertz, <u>J. Invest. Dermatol.</u>, <u>71</u>: 382-384 (1978).

An assay to screen for a test molecule relating to a PRO polypeptide that binds an endothelin B_1 (ETB₁) receptor polypeptide and modulates signal transduction activity involves providing a host cell transformed with a DNA encoding endothelin B_1 receptor polypeptide, exposing the cells to the test candidate, and measuring endothelin B_1 receptor signal transduction activity, as described, e.g., in U.S. Pat. No. 5,773,223.

There are several cardiac hypertrophy assays. *In vitro* assays include induction of spreading of adult rat cardiac myocytes. In this assay, ventricular myocytes are isolated from a single (male Sprague-Dawley) rat,

essentially following a modification of the procedure described in detail by Piper et al., "Adult ventricular rat heart muscle cells" in Cell Culture Techniques in Heart and Vessel Research, H.M. Piper, ed. (Berlin: Springer-Verlag, 1990), pp. 36-60. This procedure permits the isolation of adult ventricular myocytes and the long-term culture of these cells in the rod-shaped phenotype. Phenylephrine and Prostaglandin F_{2a} (PGF_{2a}) have been shown to induce a spreading response in these adult cells. The inhibition of myocyte spreading induced by PGF_{2a} or PGF_{2a} analogs (e.g., fluprostenol) and phenylephrine by various potential inhibitors of cardiac hypertrophy is then tested.

5

10

15

20

25

30

35

One example of an *in vivo* assay is a test for inhibiting cardiac hypertrophy induced by fluprostenol *in vivo*. This pharmacological model tests the ability of the PRO polypeptide to inhibit cardiac hypertrophy induced in rats (e.g., male Wistar or Sprague-Dawley) by subcutaneous injection of fluprostenol (an agonist analog of PGF_{2a}). It is known that rats with pathologic cardiac hypertrophy induced by myocardial infarction have chronically elevated levels of extractable PGF_{2a} in their myocardium. Lai et al., Am. J. Physiol. (Heart Circ. Physiol.), 271: H2197-H2208 (1996). Accordingly, factors that can inhibit the effects of fluprostenol on myocardial growth *in vivo* are potentially useful for treating cardiac hypertrophy. The effects of the PRO polypeptide on cardiac hypertrophy are determined by measuring the weight of heart, ventricles, and left ventricle (normalized by body weight) relative to fluprostenol-treated rats not receiving the PRO polypeptide.

Another example of an *in vivo* assay is the pressure-overload cardiac hypertrophy assay. For *in vivo* testing it is common to induce pressure-overload cardiac hypertrophy by constriction of the abdominal aorta of test animals. In a typical protocol, rats (e.g., male Wistar or Sprague-Dawley) are treated under anesthesia, and the abdominal aorta of each rat is narrowed down just below the diaphragm. Beznak M., Can. J. Biochem. Physiol., 33: 985-94 (1955). The aorta is exposed through a surgical incision, and a blunted needle is placed next to the vessel. The aorta is constricted with a ligature of silk thread around the needle, which is immediately removed and which reduces the lumen of the aorta to the diameter of the needle. This approach is described, for example, in Rossi et al., Am. Heart J., 124: 700-709 (1992) and O'Rourke and Reibel, P.S.E.M.B., 200: 95-100 (1992).

In yet another *in vivo* assay, the effect on cardiac hypertrophy following experimentally induced myocardial infarction (MI) is measured. Acute MI is induced in rats by left coronary artery ligation and confirmed by electrocardiographic examination. A sham-operated group of animals is also prepared as control animals. Earlier data have shown that cardiac hypertrophy is present in the group of animals with MI, as evidenced by an 18% increase in heart weight-to-body weight ratio. Lai *et al.*, *supra*. Treatment of these animals with candidate blockers of cardiac hypertrophy, *e.g.*, the PRO polypeptide, provides valuable information about the therapeutic potential of the candidates tested. One further such assay test for induction of cardiac hypertrophy is disclosed in U.S. Pat. No. 5,773,415, using Sprague-Dawley rats.

For cancer, a variety of well-known animal models can be used to further understand the role of the genes identified herein in the development and pathogenesis of tumors, and to test the efficacy of candidate therapeutic agents, including antibodies and other antagonists of native PRO polypeptides, such as small-molecule antagonists. The *in vivo* nature of such models makes them particularly predictive of responses in human patients. Animal models of tumors and cancers (e.g., breast cancer, colon cancer, prostate cancer, lung cancer, etc.) include both non-recombinant and recombinant (transgenic) animals. Non-recombinant animal models include, for example,

rodent, e.g., murine models. Such models can be generated by introducing tumor cells into syngeneic mice using standard techniques, e.g., subcutaneous injection, tail vein injection, spleen implantation, intraperitoneal implantation, implantation under the renal capsule, or orthopin implantation, e.g., colon cancer cells implanted in colonic tissue. See, e.g., PCT publication No. WO 97/33551, published September 18, 1997. Probably the most often used animal species in oncological studies are immunodeficient mice and, in particular, nude mice. The observation that the nude mouse with thymic hypo/aplasia could successfully act as a host for human tumor xenografts has lead to its widespread use for this purpose. The autosomal recessive nu gene has been introduced into a very large number of distinct congenic strains of nude mouse, including, for example, ASW, A/He, AKR, BALB/c, B10.LP, C17, C3H, C57BL, C57, CBA, DBA, DDD, I/st, NC, NFR, NFS, NFS/N, NZB, NZC, NZW, P, RIII, and SJL. In addition, a wide variety of other animals with inherited immunological defects other than the nude mouse have been bred and used as recipients of tumor xenografts. For further details see, e.g., The Nude Mouse in Oncology Research, E. Boven and B. Winograd, eds. (CRC Press, Inc., 1991).

5

10

15

20

25

30

35

The cells introduced into such animals can be derived from known tumor/cancer cell lines, such as any of the above-listed tumor cell lines, and, for example, the B104-1-1 cell line (stable NIH-3T3 cell line transfected with the *neu* protooncogene); *ras*-transfected NIH-3T3 cells; Caco-2 (ATCC HTB-37); or a moderately well-differentiated grade II human colon adenocarcinoma cell line, HT-29 (ATCC HTB-38); or from tumors and cancers. Samples of tumor or cancer cells can be obtained from patients undergoing surgery, using standard conditions involving freezing and storing in liquid nitrogen. Karmali *et al.*, Br. J. Cancer, 48: 689-696 (1983).

Tumor cells can be introduced into animals such as nude mice by a variety of procedures. The subcutaneous (s.c.) space in mice is very suitable for tumor implantation. Tumors can be transplanted s.c. as solid blocks, as needle biopsies by use of a trochar, or as cell suspensions. For solid-block or trochar implantation, tumor tissue fragments of suitable size are introduced into the s.c. space. Cell suspensions are freshly prepared from primary tumors or stable tumor cell lines, and injected subcutaneously. Tumor cells can also be injected as subdermal implants. In this location, the inoculum is deposited between the lower part of the dermal connective tissue and the s.c. tissue.

Animal models of breast cancer can be generated, for example, by implanting rat neuroblastoma cells (from which the *neu* oncogene was initially isolated), or *neu*-transformed NIH-3T3 cells into nude mice, essentially as described by Drebin *et al.* Proc. Nat. Acad. Sci. USA, 83: 9129-9133 (1986).

Similarly, animal models of colon cancer can be generated by passaging colon cancer cells in animals, e.g., nude mice, leading to the appearance of tumors in these animals. An orthotopic transplant model of human colon cancer in nude mice has been described, for example, by Wang et al., Cancer Research, 54: 4726-4728 (1994) and Too et al., Cancer Research, 55: 681-684 (1995). This model is based on the so-called "METAMOUSETM" sold by AntiCancer, Inc., (San Diego, California).

Tumors that arise in animals can be removed and cultured *in vitro*. Cells from the *in vitro* cultures can then be passaged to animals. Such tumors can serve as targets for further testing or drug screening. Alternatively, the tumors resulting from the passage can be isolated and RNA from pre-passage cells and cells isolated after one or more rounds of passage analyzed for differential expression of genes of interest. Such passaging techniques can

be performed with any known tumor or cancer cell lines.

For example, Meth A, CMS4, CMS5, CMS21, and WEHI-164 are chemically induced fibrosarcomas of BALB/c female mice (DeLeo et al., J. Exp. Med., 146: 720 (1977)), which provide a highly controllable model system for studying the anti-tumor activities of various agents. Palladino et al., J. Immunol., 138: 4023-4032 (1987). Briefly, tumor cells are propagated in vitro in cell culture. Prior to injection into the animals, the cell lines are washed and suspended in buffer, at a cell density of about $10x10^6$ to $10x10^7$ cells/ml. The animals are then infected subcutaneously with 10 to 100 µl of the cell suspension, allowing one to three weeks for a tumor to appear.

In addition, the Lewis lung (3LL) carcinoma of mice, which is one of the most thoroughly studied experimental tumors, can be used as an investigational tumor model. Efficacy in this tumor model has been correlated with beneficial effects in the treatment of human patients diagnosed with small-cell carcinoma of the lung (SCCL). This tumor can be introduced in normal mice upon injection of tumor fragments from an affected mouse or of cells maintained in culture. Zupi et al., Br. J. Cancer, 41: suppl. 4, 30 (1980). Evidence indicates that tumors can be started from injection of even a single cell and that a very high proportion of infected tumor cells survive. For further information about this tumor model see, Zacharski, Haemostasis, 16: 300-320 (1986).

15

10

5

One way of evaluating the efficacy of a test compound in an animal model with an implanted tumor is to measure the size of the tumor before and after treatment. Traditionally, the size of implanted tumors has been measured with a slide caliper in two or three dimensions. The measure limited to two dimensions does not accurately reflect the size of the tumor; therefore, it is usually converted into the corresponding volume by using a mathematical formula. However, the measurement of tumor size is very inaccurate. The therapeutic effects of a drug candidate can be better described as treatment-induced growth delay and specific growth delay. Another important variable in the description of tumor growth is the tumor volume doubling time. Computer programs for the calculation and description of tumor growth are also available, such as the program reported by Rygaard and Spang-Thomsen, Proc. 6th Int. Workshop on Immune-Deficient Animals, Wu and Sheng eds. (Basel, 1989), p. 301. It is noted, however, that necrosis and inflammatory responses following treatment may actually result in an increase in tumor size, at least initially. Therefore, these changes need to be carefully monitored, by a combination of a morphometric method and flow cytometric analysis.

25

30

20

Further, recombinant (transgenic) animal models can be engineered by introducing the coding portion of the PRO gene identified herein into the genome of animals of interest, using standard techniques for producing transgenic animals. Animals that can serve as a target for transgenic manipulation include, without limitation, mice, rats, rabbits, guinea pigs, sheep, goats, pigs, and non-human primates, e.g., baboons, chimpanzees and monkeys. Techniques known in the art to introduce a transgene into such animals include pronucleic microinjection (U.S. Patent No. 4,873,191); retrovirus-mediated gene transfer into germ lines (e.g., Van der Putten et al., Proc. Natl. Acad. Sci. USA, 82: 6148-615 (1985)); gene targeting in embryonic stem cells (Thompson et al., Cell, 56: 313-321 (1989)); electroporation of embryos (Lo, Mol. Cell. Biol., 3: 1803-1814 (1983)); and sperm-mediated gene transfer. Lavitrano et al., Cell, 57: 717-73 (1989). For a review, see for example, U.S. Patent No. 4,736.866.

35

For the purpose of the present invention, transgenic animals include those that carry the transgene only in part of their cells ("mosaic animals"). The transgene can be integrated either as a single transgene, or in

concatamers, e.g., head-to-head or head-to-tail tandems. Selective introduction of a transgene into a particular cell type is also possible by following, for example, the technique of Lasko et al., Proc. Natl. Acad. Sci. USA, 89: 6232-636 (1992). The expression of the transgene in transgenic animals can be monitored by standard techniques. For example, Southern blot analysis or PCR amplification can be used to verify the integration of the transgene. The level of mRNA expression can then be analyzed using techniques such as in situ hybridization, Northern blot analysis, PCR, or immunocytochemistry. The animals are further examined for signs of tumor or cancer development.

5

10

15

20

25

30

35

Alternatively, "knock-out" animals can be constructed that have a defective or altered gene encoding a PRO polypeptide identified herein, as a result of homologous recombination between the endogenous gene encoding the PRO polypeptide and altered genomic DNA encoding the same polypeptide introduced into an embryonic cell of the animal. For example, cDNA encoding a particular PRO polypeptide can be used to clone genomic DNA encoding that polypeptide in accordance with established techniques. A portion of the genomic DNA encoding a particular PRO polypeptide can be deleted or replaced with another gene, such as a gene encoding a selectable marker that can be used to monitor integration. Typically, several kilobases of unaltered flanking DNA (both at the 5' and 3' ends) are included in the vector. See, e.g., Thomas and Capecchi, Cell, 51: 503 (1987) for a description of homologous recombination vectors. The vector is introduced into an embryonic stem cell line (e.g., by electroporation) and cells in which the introduced DNA has homologously recombined with the endogenous DNA are selected. See, e.g., Li et al., Cell, 69: 915 (1992). The selected cells are then injected into a blastocyst of an animal (e.g., a mouse or rat) to form aggregation chimeras. See, e.g., Bradley, in Teratocarcinomas and Embryonic Stem Cells: A Practical Approach, E. J. Robertson, ed. (IRL: Oxford, 1987), pp. 113-152. A chimeric embryo can then be implanted into a suitable pseudopregnant female foster animal and the embryo brought to term to create a "knock-out" animal. Progeny harboring the homologously recombined DNA in their germ cells can be identified by standard techniques and used to breed animals in which all cells of the animal contain the homologously recombined DNA. Knockout animals can be characterized, for instance, by their ability to defend against certain pathological conditions and by their development of pathological conditions due to absence of the PRO polypeptide.

The efficacy of antibodies specifically binding the PRO polypeptides identified herein, and other drug candidates, can be tested also in the treatment of spontaneous animal tumors. A suitable target for such studies is the feline oral squamous cell carcinoma (SCC). Feline oral SCC is a highly invasive, malignant tumor that is the most common oral malignancy of cats, accounting for over 60% of the oral tumors reported in this species. It rarely metastasizes to distant sites, although this low incidence of metastasis may merely be a reflection of the short survival times for cats with this tumor. These tumors are usually not amenable to surgery, primarily because of the anatomy of the feline oral cavity. At present, there is no effective treatment for this tumor. Prior to entry into the study, each cat undergoes complete clinical examination and biopsy, and is scanned by computed tomography (CT). Cats diagnosed with sublingual oral squamous cell tumors are excluded from the study. The tongue can become paralyzed as a result of such tumor, and even if the treatment kills the tumor, the animals may not be able to feed themselves. Each cat is treated repeatedly, over a longer period of time. Photographs of the tumors will be taken daily during the treatment period, and at each subsequent recheck. After treatment, each cat undergoes another CT

scan. CT scans and thoracic radiograms are evaluated every 8 weeks thereafter. The data are evaluated for differences in survival, response, and toxicity as compared to control groups. Positive response may require evidence of tumor regression, preferably with improvement of quality of life and/or increased life span.

In addition, other spontaneous animal tumors, such as fibrosarcoma, adenocarcinoma, lymphoma, chondroma, or leiomyosarcoma of dogs, cats, and baboons can also be tested. Of these, mammary adenocarcinoma in dogs and cats is a preferred model as its appearance and behavior are very similar to those in humans. However, the use of this model is limited by the rare occurrence of this type of tumor in animals.

Other in vitro and in vivo cardiovascular, endothelial, and angiogenic tests known in the art are also suitable herein.

10

15

20

25

30

35

5

5.2.4.2. <u>Tissue Distribution</u>

The results of the cardiovascular, endothelial, and angiogenic assays herein can be verified by further studies, such as by determining mRNA expression in various human tissues.

As noted before, gene amplification and/or gene expression in various tissues may be measured by conventional Southern blotting, Northern blotting to quantitate the transcription of mRNA (Thomas, <u>Proc. Natl. Acad. Sci. USA</u>, 77:5201-5205 (1980)), dot blotting (DNA analysis), or *in situ* hybridization, using an appropriately labeled probe, based on the sequences provided herein. Alternatively, antibodies may be employed that can recognize specific duplexes, including DNA duplexes, RNA duplexes, and DNA-RNA hybrid duplexes or DNA-protein duplexes.

Gene expression in various tissues, alternatively, may be measured by immunological methods, such as immunohistochemical staining of tissue sections and assay of cell culture or body fluids, to quantitate directly the expression of gene product. Antibodies useful for immunohistochemical staining and/or assay of sample fluids may be either monoclonal or polyclonal, and may be prepared in any mammal. Conveniently, the antibodies may be prepared against a native-sequence PRO polypeptide or against a synthetic peptide based on the DNA sequences provided herein or against exogenous sequence fused to PRO DNA and encoding a specific antibody epitope. General techniques for generating antibodies, and special protocols for *in situ* hybridization are provided hereinbelow.

5.2.4.3. Antibody Binding Studies

The results of the cardiovascular, endothelial, and angiogenic study can be further verified by antibody binding studies, in which the ability of anti-PRO antibodies to inhibit the effect of the PRO polypeptides on endothelial cells or other cells used in the cardiovascular, endothelial, and angiogenic assays is tested. Exemplary antibodies include polyclonal, monoclonal, humanized, bispecific, and heteroconjugate antibodies, the preparation of which will be described hereinbelow.

Antibody binding studies may be carried out in any known assay method, such as competitive binding assays, direct and indirect sandwich assays, and immunoprecipitation assays. Zola, <u>Monoclonal Antibodies: A Manual of Techniques</u> (CRC Press, Inc., 1987), pp.147-158.

Competitive binding assays rely on the ability of a labeled standard to compete with the test sample analyte for binding with a limited amount of antibody. The amount of target protein in the test sample is inversely proportional to the amount of standard that becomes bound to the antibodies. To facilitate determining the amount of standard that becomes bound, the antibodies preferably are insolubilized before or after the competition, so that the standard and analyte that are bound to the antibodies may conveniently be separated from the standard and analyte that remain unbound.

Sandwich assays involve the use of two antibodies, each capable of binding to a different immunogenic portion, or epitope, of the protein to be detected. In a sandwich assay, the test sample analyte is bound by a first antibody that is immobilized on a solid support, and thereafter a second antibody binds to the analyte, thus forming an insoluble three-part complex. See, e.g., U.S. Pat. No. 4,376,110. The second antibody may itself be labeled with a detectable moiety (direct sandwich assays) or may be measured using an anti-immunoglobulin antibody that is labeled with a detectable moiety (indirect sandwich assay). For example, one type of sandwich assay is an ELISA assay, in which case the detectable moiety is an enzyme.

For immunohistochemistry, the tissue sample may be fresh or frozen or may be embedded in paraffin and fixed with a preservative such as formalin, for example.

5.2.4.4. Cell-Based Tumor Assays

5

10

15

20

25

30

35

Cell-based assays and animal models for cardiovascular, endothelial, and angiogenic disorders, such as tumors, can be used to verify the findings of a cardiovascular, endothelial, and angiogenic assay herein, and further to understand the relationship between the genes identified herein and the development and pathogenesis of undesirable cardiovascular, endothelial, and angiogenic cell growth. The role of gene products identified herein in the development and pathology of undesirable cardiovascular, endothelial, and angiogenic cell growth, e.g., tumor cells, can be tested by using cells or cells lines that have been identified as being stimulated or inhibited by the PRO polypeptide herein. Such cells include, for example, those set forth in the Examples below.

In a different approach, cells of a cell type known to be involved in a particular cardiovascular, endothelial, and angiogenic disorder are transfected with the cDNAs herein, and the ability of these cDNAs to induce excessive growth or inhibit growth is analyzed. If the cardiovascular, endothelial, and angiogenic disorder is cancer, suitable tumor cells include, for example, stable tumor cell lines such as the B104-1-1 cell line (stable NIH-3T3 cell line transfected with the *neu* protooncogene) and *ras*-transfected NIH-3T3 cells, which can be transfected with the desired gene and monitored for tumorigenic growth. Such transfected cell lines can then be used to test the ability of poly- or monoclonal antibodies or antibody compositions to inhibit tumorigenic cell growth by exerting cytostatic or cytotoxic activity on the growth of the transformed cells, or by mediating antibody-dependent cellular cytotoxicity (ADCC). Cells transfected with the coding sequences of the genes identified herein can further be used to identify drug candidates for the treatment of cardiovascular, endothelial, and angiogenic disorders such as cancer.

In addition, primary cultures derived from tumors in transgenic animals (as described above) can be used in the cell-based assays herein, although stable cell lines are preferred. Techniques to derive continuous cell lines from transgenic animals are well known in the art. See, e.g., Small et al., Mol. Cell. Biol., 5: 642-648 (1985).

5.2.4.5. Gene Therapy

Described below are methods and compositions whereby disease symptoms may be ameliorated. Certain diseases are brought about, at least in part, by an excessive level of gene product, or by the presence of a gene product exhibiting an abnormal or excessive activity. As such, the reduction in the level and/or activity of such gene products would bring about the amelioration of such disease symptoms.

Alternatively, certain other diseases are brought about, at least in part, by the absence or reduction of the level of gene expression, or a reduction in the level of a gene product's activity. As such, an increase in the level of gene expression and/or the activity of such gene products would bring about the amelioration of such disease symptoms.

10

5

In some cases, the up-regulation of a gene in a disease state reflects a protective role for that gene product in responding to the disease condition. Enhancement of such a target gene's expression, or the activity of the target gene product, will reinforce the protective effect it exerts. Some disease states may result from an abnormally low level of activity of such a protective gene. In these cases also, an increase in the level of gene expression and/or the activity of such gene products would bring about the amelioration of such disease symptoms.

15

The PRO polypeptides described herein and polypeptidyl agonists and antagonists may be employed in accordance with the present invention by expression of such polypeptides *in vivo*, which is often referred to as gene therapy.

20

There are two major approaches to getting the nucleic acid (optionally contained in a vector) into the patient's cells: in vivo and ex vivo. For in vivo delivery the nucleic acid is injected directly into the patient, usually at the sites where the PRO polypeptide is required, i.e., the site of synthesis of the PRO polypeptide, if known, and the site (e.g., wound) where biological activity of the PRO polypeptide is needed. For ex vivo treatment, the patient's cells are removed, the nucleic acid is introduced into these isolated cells, and the modified cells are administered to the patient either directly or, for example, encapsulated within porous membranes that are implanted into the patient (see, e.g., U.S. Pat. Nos. 4,892,538 and 5,283,187). There are a variety of techniques available for introducing nucleic acids into viable cells. The techniques vary depending upon whether the nucleic acid is transferred into cultured cells in vitro, or transferred in vivo in the cells of the intended host. Techniques suitable for the transfer of nucleic acid into mammalian cells in vitro include the use of liposomes, electroporation, microinjection, transduction, cell fusion, DEAE-dextran, the calcium phosphate precipitation method, etc. Transduction involves the association of a replication-defective, recombinant viral (preferably retroviral) particle with a cellular receptor, followed by introduction of the nucleic acids contained by the particle into the cell. A commonly used vector for ex vivo delivery of the gene is a retrovirus.

30

35

25

The currently preferred in vivo nucleic acid transfer techniques include transfection with viral or non-viral vectors (such as adenovirus, lentivirus, Herpes simplex I virus, or adeno-associated virus (AAV)) and lipid-based systems (useful lipids for lipid-mediated transfer of the gene are, for example, DOTMA, DOPE, and DC-Chol; see, e.g., Tonkinson et al., Cancer Investigation, 14(1): 54-65 (1996)). The most preferred vectors for use in gene therapy are viruses, most preferably adenoviruses, AAV, lentiviruses, or retroviruses. A viral vector such as a retroviral vector includes at least one transcriptional promoter/enhancer or locus-defining element(s), or other

elements that control gene expression by other means such as alternate splicing, nuclear RNA export, or post-translational modification of messenger. In addition, a viral vector such as a retroviral vector includes a nucleic acid molecule that, when transcribed in the presence of a gene encoding the PRO polypeptide, is operably linked thereto and acts as a translation initiation sequence. Such vector constructs also include a packaging signal, long terminal repeats (LTRs) or portions thereof, and positive and negative strand primer binding sites appropriate to the virus used (if these are not already present in the viral vector). In addition, such vector typically includes a signal sequence for secretion of the PRO polypeptide from a host cell in which it is placed. Preferably the signal sequence for this purpose is a mammalian signal sequence, most preferably the native signal sequence for the PRO polypeptide. Optionally, the vector construct may also include a signal that directs polyadenylation, as well as one or more restriction sites and a translation termination sequence. By way of example, such vectors will typically include a 5' LTR, a tRNA binding site, a packaging signal, an origin of second-strand DNA synthesis, and a 3' LTR or a portion thereof. Other vectors can be used that are non-viral, such as cationic lipids, polylysine, and dendrimers.

In some situations, it is desirable to provide the nucleic acid source with an agent that targets the target cells, such as an antibody specific for a cell-surface membrane protein or the target cell, a ligand for a receptor on the target cell, etc. Where liposomes are employed, proteins that bind to a cell-surface membrane protein associated with endocytosis may be used for targeting and/or to facilitate uptake, e.g., capsid proteins or fragments thereof tropic for a particular cell type, antibodies for proteins that undergo internalization in cycling, and proteins that target intracellular localization and enhance intracellular half-life. The technique of receptor-mediated endocytosis is described, for example, by Wu et al., J. Biol. Chem., 262: 4429-4432 (1987); and Wagner et al., Proc. Natl. Acad. Sci. USA, 87: 3410-3414 (1990). For a review of the currently known gene marking and gene therapy protocols, see, Anderson et al., Science, 256: 808-813 (1992). See also WO 93/25673 and the references cited therein.

Suitable gene therapy and methods for making retroviral particles and structural proteins can be found in, e.g., U.S. Pat. No. 5,681,746.

25

5

10

15

20

5.2.4.6. Use of Gene as a Diagnostic

This invention is also related to the use of the gene encoding the PRO polypeptide as a diagnostic. Detection of a mutated form of the PRO polypeptide will allow a diagnosis of a cardiovascular, endothelial, and angiogenic disease or a susceptibility to a cardiovascular, endothelial, and angiogenic disease, such as a tumor, since mutations in the PRO polypeptide may cause tumors.

30

35

Individuals carrying mutations in the genes encoding a human PRO polypeptide may be detected at the DNA level by a variety of techniques. Nucleic acids for diagnosis may be obtained from a patient's cells, such as from blood, urine, saliva, tissue biopsy, and autopsy material. The genomic DNA may be used directly for detection or may be amplified enzymatically by using PCR (Saiki et al., Nature, 324: 163-166 (1986)) prior to analysis. RNA or cDNA may also be used for the same purpose. As an example, PCR primers complementary to the nucleic acid encoding the PRO polypeptide can be used to identify and analyze the PRO polypeptide mutations. For example, deletions and insertions can be detected by a change in size of the amplified product in comparison to the normal

genotype. Point mutations can be identified by hybridizing amplified DNA to radiolabeled RNA encoding the PRO polypeptide, or alternatively, radiolabeled antisense DNA sequences encoding the PRO polypeptide. Perfectly matched sequences can be distinguished from mismatched duplexes by RNase A digestion or by differences in melting temperatures.

5

Genetic testing based on DNA sequence differences may be achieved by detection of alteration in electrophoretic mobility of DNA fragments in gels with or without denaturing agents. Small sequence deletions and insertions can be visualized by high resolution gel electrophoresis. DNA fragments of different sequences may be distinguished on denaturing formamidine gradient gels in which the mobilities of different DNA fragments are retarded in the gel at different positions according to their specific melting or partial melting temperatures. See, e.g., Myers et al., Science, 230: 1242 (1985).

10

Sequence changes at specific locations may also be revealed by nuclease protection assays, such as RNase and S1 protection or the chemical cleavage method, for example, Cotton *et al.*, <u>Proc. Natl. Acad. Sci. USA</u>, <u>85</u>: 4397-4401 (1985).

15

Thus, the detection of a specific DNA sequence may be achieved by methods such as hybridization, RNase protection, chemical cleavage, direct DNA sequencing, or the use of restriction enzymes, e.g., restriction fragment length polymorphisms (RFLP), and Southern blotting of genomic DNA.

5.2.4.7. Use to Detect PRO Polypeptide Levels

In addition to more conventional gel-electrophoresis and DNA sequencing, mutations can also be detected by *in situ* analysis.

20

Expression of nucleic acid encoding the PRO polypeptide may be linked to vascular disease or neovascularization associated with tumor formation. If the PRO polypeptide has a signal sequence and the mRNA is highly expressed in endothelial cells and to a lesser extent in smooth muscle cells, this indicates that the PRO polypeptide is present in serum. Accordingly, an anti-PRO polypeptide antibody could be used to diagnose vascular disease or neovascularization associated with tumor formation, since an altered level of this PRO polypeptide may be indicative of such disorders.

25

A competition assay may be employed wherein antibodies specific to the PRO polypeptide are attached to a solid support and the labeled PRO polypeptide and a sample derived from the host are passed over the solid support and the amount of label detected attached to the solid support can be correlated to a quantity of the PRO polypeptide in the sample.

30

5.2.4.8. Chromosome Mapping

The sequences of the present invention are also valuable for chromosome identification. The sequence is specifically targeted to and can hybridize with a particular location on an individual human chromosome. Moreover, there is a current need for identifying particular sites on the chromosome. Few chromosome marking reagents based on actual sequence data (repeat polymorphisms) are presently available for marking chromosomal location. The mapping of DNAs to chromosomes according to the present invention is an important first step in

35

correlating those sequences with genes associated with disease.

5

10

15

20

25

30

35

Briefly, sequences can be mapped to chromosomes by preparing PCR primers (preferably 15-25 bp) from the cDNA. Computer analysis for the 3'- untranslated region is used to rapidly select primers that do not span more than one exon in the genomic DNA, thus complicating the amplification process. These primers are then used for PCR screening of somatic cell hybrids containing individual human chromosomes. Only those hybrids containing the human gene corresponding to the primer will yield an amplified fragment.

PCR mapping of somatic cell hybrids is a rapid procedure for assigning a particular DNA to a particular chromosome. Using the present invention with the same oligonucleotide primers, sublocalization can be achieved with panels of fragments from specific chromosomes or pools of large genomic clones in an analogous manner. Other mapping strategies that can similarly be used to map to its chromosome include *in situ* hybridization, prescreening with labeled flow-sorted chromosomes, and preselection by hybridization to construct chromosomespecific cDNA libraries.

Fluorescence in situ hybridization (FISH) of a cDNA clone to a metaphase chromosomal spread can be used to provide a precise chromosomal location in one step. This technique can be used with cDNA as short as 500 or 600 bases; however, clones larger than 2,000 bp have a higher likelihood of binding to a unique chromosomal location with sufficient signal intensity for simple detection. FISH requires use of the clones from which the gene encoding the PRO polypeptide was derived, and the longer the better. For example, 2,000 bp is good, 4,000 bp is better, and more than 4,000 is probably not necessary to get good results a reasonable percentage of the time. For a review of this technique, see, Verma et al., Human Chromosomes: a Manual of Basic Techniques (Pergamon Press, New York, 1988).

Once a sequence has been mapped to a precise chromosomal location, the physical position of the sequence on the chromosome can be correlated with genetic map data. Such data are found, for example, in V. McKusick, Mendelian Inheritance in Man (available online through Johns Hopkins University Welch Medical Library). The relationship between genes and diseases that have been mapped to the same chromosomal region is then identified through linkage analysis (coinheritance of physically adjacent genes).

Next, it is necessary to determine the differences in the cDNA or genomic sequence between affected and unaffected individuals. If a mutation is observed in some or all of the affected individuals but not in any normal individuals, then the mutation is likely to be the causative agent of the disease.

With current resolution of physical mapping and genetic mapping techniques, a cDNA precisely localized to a chromosomal region associated with the disease could be one of between 50 and 500 potential causative genes. (This assumes 1 megabase mapping resolution and one gene per 20 kb).

5.2.4.9. Screening Assays for Drug Candidates

This invention encompasses methods of screening compounds to identify those that mimic the PRO polypeptide (agonists) or prevent the effect of the PRO polypeptide (antagonists). Screening assays for antagonist drug candidates are designed to identify compounds that bind or complex with the PRO polypeptide encoded by the genes identified herein, or otherwise interfere with the interaction of the encoded polypeptides with other

cellular proteins. Such screening assays will include assays amenable to high-throughput screening of chemical libraries, making them particularly suitable for identifying small molecule drug candidates.

The assays can be performed in a variety of formats, including protein-protein binding assays, biochemical screening assays, immunoassays, and cell-based assays, which are well characterized in the art.

All assays for antagonists are common in that they call for contacting the drug candidate with a PRO polypeptide encoded by a nucleic acid identified herein under conditions and for a time sufficient to allow these two components to interact.

5

10

15

20

25

30

35

In binding assays, the interaction is binding and the complex formed can be isolated or detected in the reaction mixture. In a particular embodiment, the PRO polypeptide encoded by the gene identified herein or the drug candidate is immobilized on a solid phase, e.g., on a microtiter plate, by covalent or non-covalent attachments. Non-covalent attachment generally is accomplished by coating the solid surface with a solution of the PRO polypeptide and drying. Alternatively, an immobilized antibody, e.g., a monoclonal antibody, specific for the PRO polypeptide to be immobilized can be used to anchor it to a solid surface. The assay is performed by adding the non-immobilized component, which may be labeled by a detectable label, to the immobilized component, e.g., the coated surface containing the anchored component. When the reaction is complete, the non-reacted components are removed, e.g., by washing, and complexes anchored on the solid surface are detected. When the originally non-immobilized component carries a detectable label, the detection of label immobilized on the surface indicates that complexing occurred. Where the originally non-immobilized component does not carry a label, complexing can be detected, for example, by using a labeled antibody specifically binding the immobilized complex.

If the candidate compound interacts with but does not bind to a particular PRO polypeptide encoded by a gene identified herein, its interaction with that polypeptide can be assayed by methods well known for detecting protein-protein interactions. Such assays include traditional approaches, such as, e.g., cross-linking, coimmunoprecipitation, and co-purification through gradients or chromatographic columns. In addition, proteinprotein interactions can be monitored by using a yeast-based genetic system described by Fields and co-workers (Fields and Song, Nature (London), 340: 245-246 (1989); Chien et al., Proc. Natl. Acad. Sci. USA, 88: 9578-9582 (1991)) as disclosed by Chevray and Nathans, Proc. Natl. Acad. Sci. USA, 89: 5789-5793 (1991). Many transcriptional activators, such as yeast GALA, consist of two physically discrete modular domains, one acting as the DNA-binding domain, the other one functioning as the transcription-activation domain. The yeast expression system described in the foregoing publications (generally referred to as the "two-hybrid system") takes advantage of this property, and employs two hybrid proteins, one in which the target protein is fused to the DNA-binding domain of GALA, and another, in which candidate activating proteins are fused to the activation domain. The expression of a GAL1-lacZ reporter gene under control of a GAL4-activated promoter depends on reconstitution of GAL4 activity via protein-protein interaction. Colonies containing interacting polypeptides are detected with a chromogenic substrate for β-galactosidase. A complete kit (MATCHMAKERTM) for identifying protein-protein interactions between two specific proteins using the two-hybrid technique is commercially available from Clontech. This system can also be extended to map protein domains involved in specific protein interactions as well as to pinpoint amino acid residues that are crucial for these interactions.

Compounds that interfere with the interaction of a gene encoding a PRO polypeptide identified herein and other intra- or extracellular components can be tested as follows: usually a reaction mixture is prepared containing the product of the gene and the intra- or extracellular component under conditions and for a time allowing for the interaction and binding of the two products. To test the ability of a candidate compound to inhibit binding, the reaction is run in the absence and in the presence of the test compound. In addition, a placebo may be added to a third reaction mixture, to serve as positive control. The binding (complex formation) between the test compound and the intra- or extracellular component present in the mixture is monitored as described hereinabove. The formation of a complex in the control reaction(s) but not in the reaction mixture containing the test compound indicates that the test compound interferes with the interaction of the test compound and its reaction partner.

10

5

If the PRO polypeptide has the ability to stimulate the proliferation of endothelial cells in the presence of the co-mitogen ConA, then one example of a screening method takes advantage of this ability. Specifically, in the proliferation assay, human umbilical vein endothelial cells are obtained and cultured in 96-well flat-bottomed culture plates (Costar, Cambridge, MA) and supplemented with a reaction mixture appropriate for facilitating proliferation of the cells, the mixture containing Con-A (Calbiochem, La Jolla, CA). Con-A and the compound to be screened are added and after incubation at 37°C, cultures are pulsed with ³H-thymidine and harvested onto glass fiber filters (phD; Cambridge Technology, Watertown, MA). Mean ³H-thymidine incorporation (cpm) of triplicate cultures is determined using a liquid scintillation counter (Beckman Instruments, Irvine, CA). Significant ³(H)-thymidine incorporation indicates stimulation of endothelial cell proliferation.

20

25

30

15

To assay for antagonists, the assay described above is performed; however, in this assay the PRO polypeptide is added along with the compound to be screened and the ability of the compound to inhibit ³⁻(H)thymidine incorporation in the presence of the PRO polypeptide indicates that the compound is an antagonist to the PRO polypeptide. Alternatively, antagonists may be detected by combining the PRO polypeptide and a potential antagonist with membrane-bound PRO polypeptide receptors or recombinant receptors under appropriate conditions for a competitive inhibition assay. The PRO polypeptide can be labeled, such as by radioactivity, such that the number of PRO polypeptide molecules bound to the receptor can be used to determine the effectiveness of the potential antagonist. The gene encoding the receptor can be identified by numerous methods known to those of skill in the art, for example, ligand panning and FACS sorting. Coligan et al., Current Protocols in Immun., 1(2): Chapter 5 (1991). Preferably, expression cloning is employed wherein polyadenylated RNA is prepared from a cell responsive to the PRO polypeptide and a cDNA library created from this RNA is divided into pools and used to transfect COS cells or other cells that are not responsive to the PRO polypeptide. Transfected cells that are grown on glass slides are exposed to the labeled PRO polypeptide. The PRO polypeptide can be labeled by a variety of means including iodination or inclusion of a recognition site for a site-specific protein kinase. Following fixation and incubation, the slides are subjected to autoradiographic analysis. Positive pools are identified and sub-pools are prepared and re-transfected using an interactive sub-pooling and re-screening process, eventually yielding a single clone that encodes the putative receptor.

35

As an alternative approach for receptor identification, the labeled PRO polypeptide can be photoaffinitylinked with cell membrane or extract preparations that express the receptor molecule. Cross-linked material is

resolved by PAGE and exposed to X-ray film. The labeled complex containing the receptor can be excised, resolved into peptide fragments, and subjected to protein micro-sequencing. The amino acid sequence obtained from micro-sequencing would be used to design a set of degenerate oligonucleotide probes to screen a cDNA library to identify the gene encoding the putative receptor.

5

In another assay for antagonists, mammalian cells or a membrane preparation expressing the receptor would be incubated with the labeled PRO polypeptide in the presence of the candidate compound. The ability of the compound to enhance or block this interaction could then be measured.

10

The compositions useful in the treatment of cardiovascular, endothelial, and angiogenic disorders include, without limitation, antibodies, small organic and inorganic molecules, peptides, phosphopeptides, antisense and ribozyme molecules, triple-helix molecules, etc., that inhibit the expression and/or activity of the target gene product.

15

More specific examples of potential antagonists include an oligonucleotide that binds to the fusions of immunoglobulin with a PRO polypeptide, and, in particular, antibodies including, without limitation, poly- and monoclonal antibodies and antibody fragments, single-chain antibodies, anti-idiotypic antibodies, and chimeric or humanized versions of such antibodies or fragments, as well as human antibodies and antibody fragments. Alternatively, a potential antagonist may be a closely related protein, for example, a mutated form of the PRO polypeptide that recognizes the receptor but imparts no effect, thereby competitively inhibiting the action of the PRO polypeptide.

20

25

30

Another potential PRO polypeptide antagonist is an antisense RNA or DNA construct prepared using antisense technology, where, e.g., an antisense RNA or DNA molecule acts to block directly the translation of mRNA by hybridizing to targeted mRNA and preventing protein translation. Antisense technology can be used to control gene expression through triple-helix formation or antisense DNA or RNA, both of which methods are based on binding of a polynucleotide to DNA or RNA. For example, the 5' coding portion of the polynucleotide sequence, which encodes the mature PRO polypeptides herein, is used to design an antisense RNA oligonucleotide of from about 10 to 40 base pairs in length. A DNA oligonucleotide is designed to be complementary to a region of the gene involved in transcription (triple helix - see, Lee et al., Nucl. Acids Res., 6:3073 (1979); Cooney et al., Science, 241: 456 (1988); Dervan et al., Science, 251:1360 (1991)), thereby preventing transcription and the production of the PRO polypeptide. A sequence "complementary" to a portion of an RNA, as referred to herein, means a sequence having sufficient complementarity to be able to hybridize with the RNA, forming a stable duplex; in the case of double-stranded antisense nucleic acids, a single strand of the duplex DNA may thus be tested, or triplex helix formation may be assayed. The ability to hybridize will depend on both the degree of complementarity and the length of the antisense nucleic acid. Generally, the longer the hybridizing nucleic acid, the more base mismatches with an RNA it may contain and still form a stable duplex (or triplex, as the case may be). One skilled in the art can ascertain a tolerable degree of mismatch by use of standard procedures to determine the melting point of the hybridized complex. The antisense RNA oligonucleotide hybridizes to the mRNA in vivo and blocks translation of the mRNA molecule into the PRO polypeptide (antisense - Okano, Neurochem., 56:560 (1991); Oligodeoxynucleotides as Antisense Inhibitors of Gene Expression (CRC Press: Boca Raton, FL, 1988).

35 ·

The antisense oligonucleotides can be DNA or RNA or chimeric mixtures or derivatives or modified versions thereof, single-stranded or double-stranded. The oligonucleotide can be modified at the base moiety, sugar moiety, or phosphate backbone, for example, to improve stability of the molecule, hybridization, etc. The oligonucleotide may include other appended groups such as peptides (e.g., for targeting host cell receptors in vivo), or agents facilitating transport across the cell membrane (see, e.g., Letsinger, et al., 1989, Proc. Natl. Acad. Sci. U.S.A. 86:6553-6556; Lemaitre, et al., 1987, Proc. Natl. Acad. Sci. U.S.A. 84:648-652; PCT Publication No. WO88/09810, published December 15, 1988) or the blood-brain barrier (see, e.g., PCT Publication No. WO89/10134, published April 25, 1988), hybridization-triggered cleavage agents (see, e.g., Krol et al., 1988, BioTechniques 6:958-976) or intercalating agents (see, e.g., Zon, 1988, Pharm. Res. 5:539-549). To this end, the oligonucleotide may be conjugated to another molecule, e.g., a peptide, hybridization triggered cross-linking agent, transport agent, hybridization-triggered cleavage agent, etc.

5

10

15

20

25

30

35

The antisense oligonucleotide may comprise at least one modified base moiety which is selected from the group including but not limited to 5-fluorouracil, 5-bromouracil, 5-chlorouracil, 5-iodouracil, hypoxanthine, xanthine, 4-acetylcytosine, 5-(carboxyhydroxylmethyl) uracil, 5-carboxymethylaminomethyl-2-thiouridine, 5-carboxymethylaminomethyluracil, dihydrouracil, beta-D-galactosylqueosine, inosine, N6-isopentenyladenine, 1-methylguanine, 1-methylguanine, 2-methylguanine, 2-methylguanine, 3-methylcytosine, 5-methylcytosine, N6-adenine, 7-methylguanine, 5-methylaminomethyluracil, 5-methoxyaminomethyl-2-thiouracil, beta-D-mannosylqueosine, 5'-methoxycarboxymethyluracil, 5-methoxyuracil, 2-methylthio-N6-isopentenyladenine, uracil-5-oxyacetic acid (v), wybutoxosine, pseudouracil, queosine, 2-thiocytosine, 5-methyl-2-thiouracil, 2-thiouracil, 4-thiouracil, 5-methyluracil, uracil-5-oxyacetic acid methylester, uracil-5-oxyacetic acid (v), 5-methyl-2-thiouracil, 3-(3-amino-3-N-2-carboxypropyl) uracil, (acp3)w, and 2,6-diaminopurine.

The antisense oligonucleotide may also comprise at least one modified sugar moiety selected from the group including but not limited to arabinose, 2-fluoroarabinose, xylulose, and hexose.

In yet another embodiment, the antisense oligonucleotide comprises at least one modified phosphate backbone selected from the group consisting of a phosphorothioate, a phosphorodithioate, a phosphoramidate, a phosphoramidate, a methylphosphonate, an alkyl phosphotriester, and a formacetal or analog thereof.

In yet another embodiment, the antisense oligonucleotide is an α-anomeric oligonucleotide. An α-anomeric oligonucleotide forms specific double-stranded hybrids with complementary RNA in which, contrary to the usual β-units, the strands run parallel to each other (Gautier, et al., 1987, Nucl. Acids Res. 15:6625-6641). The oligonucleotide is a 2'-0-methylribonucleotide (Inoue, et al., 1987, Nucl. Acids Res. 15:6131-6148), or a chimeric RNA-DNA analogue (Inoue, et al., 1987, FEBS Lett. 215:327-330).

Oligonucleotides of the invention may be synthesized by standard methods known in the art, e.g., by use of an automated DNA synthesizer (such as are commercially available from Biosearch, Applied Biosystems, etc.). As examples, phosphorothicate oligonucleotides may be synthesized by the method of Stein, et al. (1988, Nucl. Acids Res. 16:3209), methylphosphonate oligonucleotides can be prepared by use of controlled pore glass polymer supports (Sarin, et al., 1988, Proc. Natl. Acad. Sci. U.S.A. 85:7448-7451), etc.

The oligonucleotides described above can also be delivered to cells such that the antisense RNA or DNA may be expressed *in vivo* to inhibit production of the PRO polypeptide. When antisense DNA is used, oligodeoxyribonucleotides derived from the translation-initiation site, e.g., between about -10 and +10 positions of the target gene nucleotide sequence, are preferred.

5

Antisense RNA or DNA molecules are generally at least about 5 bases in length, about 10 bases in length, about 15 bases in length, about 20 bases in length, about 25 bases in length, about 30 bases in length, about 35 bases in length, about 40 bases in length, about 45 bases in length, about 50 bases in length, about 55 bases in length, about 60 bases in length, about 65 bases in length, about 70 bases in length, about 75 bases in length, about 80 bases in length, about 85 bases in length, about 90 bases in length, about 95 bases in length, about 100 bases in length, or more.

10

Potential antagonists further include small molecules that bind to the active site, the receptor binding site, or growth factor or other relevant binding site of the PRO polypeptide, thereby blocking the normal biological activity of the PRO polypeptide. Examples of small molecules include, but are not limited to, small peptides or peptide-like molecules, preferably soluble peptides, and synthetic non-peptidyl organic or inorganic compounds.

15

Additional potential antagonists are ribozymes, which are enzymatic RNA molecules capable of catalyzing the specific cleavage of RNA. Ribozymes act by sequence-specific hybridization to the complementary target RNA, followed by endonucleolytic cleavage. Specific ribozyme cleavage sites within a potential RNA target can be identified by known techniques. For further details *see*, *e.g.*, Rossi, <u>Current Biology</u>, <u>4</u>: 469-471 (1994), and PCT publication No. WO 97/33551 (published September 18, 1997).

20

While ribozymes that cleave mRNA at site specific recognition sequences can be used to destroy target gene mRNAs, the use of hammerhead ribozymes is preferred. Hammerhead ribozymes cleave mRNAs at locations dictated by flanking regions which form complementary base pairs with the target mRNA. The sole requirement is that the target mRNA have the following sequence of two bases: 5'-UG-3'. The construction and production of hammerhead ribozymes is well known in the art and is described more fully in Myers, 1995, Molecular Biology and Biotechnology: A Comprehensive Desk Reference, VCH Publishers, New York, (see especially Figure 4, page 833) and in Haseloff and Gerlach, 1988, Nature, 334:585-591, which is incorporated herein by reference in its entirety.

30

25

Preferably the ribozyme is engineered so that the cleavage recognition site is located near the 5' end of the target gene mRNA, i.e., to increase efficiency and minimize the intracellular accumulation of non-functional mRNA transcripts.

35

The ribozymes of the present invention also include RNA endoribonucleases (hereinafter "Cech-type ribozymes") such as the one which occurs naturally in *Tetrahymena thermophila* (known as the IVS, or L-19 IVS RNA) and which has been extensively described by Thomas Cech and collaborators (Zaug, et al., 1984, Science, 224:574-578; Zaug and Cech, 1986, Science, 231:470-475; Zaug, et al., 1986, Nature, 324:429-433; published International patent application No. WO 88/04300 by University Patents Inc.; Been and Cech, 1986, Cell, 47:207-216). The Cech-type ribozymes have an eight base pair active site that hybridizes to a target RNA sequence

whereafter cleavage of the target RNA takes place. The invention encompasses those Cech-type ribozymes that target eight base-pair active site sequences that are present in the target gene.

As in the antisense approach, the ribozymes can be composed of modified oligonucleotides (e.g., for improved stability, targeting, etc.) and should be delivered to cells that express the target gene in vivo. A preferred method of delivery involves using a DNA construct "encoding" the ribozyme under the control of a strong constitutive pol III or pol II promoter, so that transfected cells will produce sufficient quantities of the ribozyme to destroy endogenous target gene messages and inhibit translation. Because ribozymes, unlike antisense molecules, are catalytic, a lower intracellular concentration is required for efficiency.

Nucleic acid molecules in triple-helix formation used to inhibit transcription should be single-stranded and composed of deoxynucleotides. The base composition of these oligonucleotides is designed such that it promotes triple-helix formation via Hoogsteen base-pairing rules, which generally require sizeable stretches of purines or pyrimidines on one strand of a duplex. For further details see, e.g., PCT publication No. WO 97/33551, supra.

These small molecules can be identified by any one or more of the screening assays discussed hereinabove and/or by any other screening techniques well known for those skilled in the art.

15

5

10

5.2.4.10. Types of Cardiovascular, Endothelial, and Angiogenic Disorders to be Treated

The PRO polypeptides, or agonists or antagonists thereto, that have activity in the cardiovascular, angiogenic, and endothelial assays described herein, and/or whose gene product has been found to be localized to the cardiovascular system, are likely to have therapeutic uses in a variety of cardiovascular, endothelial, and angiogenic disorders, including systemic disorders that affect vessels, such as diabetes mellitus. Their therapeutic utility could include diseases of the arteries, capillaries, veins, and/or lymphatics. Examples of treatments hereunder include treating muscle wasting disease, treating osteoporosis, aiding in implant fixation to stimulate the growth of cells around the implant and therefore facilitate its attachment to its intended site, increasing IGF stability in tissues or in serum, if applicable, and increasing binding to the IGF receptor (since IGF has been shown in vitro to enhance human marrow erythroid and granulocytic progenitor cell growth).

25

20

The PRO polypeptides or agonists or antagonists thereto may also be employed to stimulate crythropoiesis or granulopoiesis, to stimulate wound healing or tissue regeneration and associated therapies concerned with regrowth of tissue, such as connective tissue, skin, bone, cartilage, muscle, lung, or kidney, to promote angiogenesis, to stimulate or inhibit migration of endothelial cells, and to proliferate the growth of vascular smooth muscle and endothelial cell production. The increase in angiogenesis mediated by the PRO polypeptide or agonist would be beneficial to ischemic tissues and to collateral coronary development in the heart subsequent to coronary stenosis. Antagonists are used to inhibit the action of such polypeptides, for example, to limit the production of excess connective tissue during wound healing or pulmonary fibrosis if the PRO polypeptide promotes such production. This would include treatment of acute myocardial infarction and heart failure.

35

30

Moreover, the present invention provides the treatment of cardiac hypertrophy, regardless of the underlying cause, by administering a therapeutically effective dose of the PRO polypeptide, or agonist or antagonist thereto. If the objective is the treatment of human patients, the PRO polypeptide preferably is recombinant human PRO

polypeptide (rhPRO polypeptide). The treatment for cardiac hypertrophy can be performed at any of its various stages, which may result from a variety of diverse pathologic conditions, including myocardial infarction, hypertrophic cardiomyopathy, and valvular regurgitation. The treatment extends to all stages of the progression of cardiac hypertrophy, with or without structural damage of the heart muscle, regardless of the underlying cardiac disorder.

5

10

15

20

25

30

35

The decision of whether to use the molecule itself or an agonist thereof for any particular indication, as opposed to an antagonist to the molecule, would depend mainly on whether the molecule herein promotes cardiovascularization, genesis of endothelial cells, or angiogenesis or inhibits these conditions. For example, if the molecule promotes angiogenesis, an antagonist thereof would be useful for treatment of disorders where it is desired to limit or prevent angiogenesis. Examples of such disorders include vascular tumors such as haemangioma, tumor angiogenesis, neovascularization in the retina, choroid, or cornea, associated with diabetic retinopathy or premature infant retinopathy or macular degeneration and proliferative vitreoretinopathy, rheumatoid arthritis, Crohn's disease, atherosclerosis, ovarian hyperstimulation, psoriasis, endometriosis associated with neovascularization, restenosis subsequent to balloon angioplasty, scar tissue overproduction, for example, that seen in a keloid that forms after surgery, fibrosis after myocardial infarction, or fibrotic lesions associated with pulmonary fibrosis.

If, however, the molecule inhibits angiogenesis, it would be expected to be used directly for treatment of the above conditions.

On the other hand, if the molecule stimulates angiogenesis it would be used itself (or an agonist thereof) for indications where angiogenesis is desired such as peripheral vascular disease, hypertension, inflammatory vasculitides, Reynaud's disease and Reynaud's phenomenon, aneurysms, arterial restenosis, thrombophlebitis, lymphangitis, lymphedema, wound healing and tissue repair, ischemia reperfusion injury, angina, myocardial infarctions such as acute myocardial infarctions, chronic heart conditions, heart failure such as congestive heart failure, and osteoporosis.

If, however, the molecule inhibits angiogenesis, an antagonist thereof would be used for treatment of those conditions where angiogenesis is desired.

Specific types of diseases are described below, where the PRO polypeptide herein or agonists or antagonists thereof may serve as useful for vascular-related drug targeting or as therapeutic targets for the treatment or prevention of the disorders. Atherosclerosis is a disease characterized by accumulation of plaques of intimal thickening in arteries, due to accumulation of lipids, proliferation of smooth muscle cells, and formation of fibrous tissue within the arterial wall. The disease can affect large, medium, and small arteries in any organ. Changes in endothelial and vascular smooth muscle cell function are known to play an important role in modulating the accumulation and regression of these plaques.

Hypertension is characterized by raised vascular pressure in the systemic arterial, pulmonary arterial, or portal venous systems. Elevated pressure may result from or result in impaired endothelial function and/or vascular disease.

Inflammatory vasculitides include giant cell arteritis, Takayasu's arteritis, polyarteritis nodosa (including the microangiopathic form), Kawasaki's disease, microscopic polyangiitis, Wegener's granulomatosis, and a variety

of infectious-related vascular disorders (including Henoch-Schonlein prupura). Altered endothelial cell function has been shown to be important in these diseases.

Reynaud's disease and Reynaud's phenomenon are characterized by intermittent abnormal impairment of the circulation through the extremities on exposure to cold. Altered endothelial cell function has been shown to be important in this disease.

5

10

15

20

25

30

35

Aneurysms are saccular or fusiform dilatations of the arterial or venous tree that are associated with altered endothelial cell and/or vascular smooth muscle cells.

Arterial restenosis (restenosis of the arterial wall) may occur following angioplasty as a result of alteration in the function and proliferation of endothelial and vascular smooth muscle cells.

Thrombophlebitis and lymphangitis are inflammatory disorders of veins and lymphatics, respectively, that may result from, and/or in, altered endothelial cell function. Similarly, lymphedema is a condition involving impaired lymphatic vessels resulting from endothelial cell function.

The family of benign and malignant vascular tumors are characterized by abnormal proliferation and growth of cellular elements of the vascular system. For example, lymphangiomas are benign tumors of the lymphatic system that are congenital, often cystic, malformations of the lymphatics that usually occur in newborns. Cystic tumors tend to grow into the adjacent tissue. Cystic tumors usually occur in the cervical and axillary region. They can also occur in the soft tissue of the extremities. The main symptoms are dilated, sometimes reticular, structured lymphatics and lymphocysts surrounded by connective tissue. Lymphangiomas are assumed to be caused by improperly connected embryonic lymphatics or their deficiency. The result is impaired local lymph drainage. Griener et al., Lymphology, 4: 140-144 (1971).

Another use for the PRO polypeptides herein or agonists or antagonists thereto is in the prevention of tumor angiogenesis, which involves vascularization of a tumor to enable it to growth and/or metastasize. This process is dependent on the growth of new blood vessels. Examples of neoplasms and related conditions that involve tumor angiogenesis include breast carcinomas, lung carcinomas, gastric carcinomas, esophageal carcinomas, colorectal carcinomas, liver carcinomas, ovarian carcinomas, thecomas, arrhenoblastomas, cervical carcinomas, endometrial carcinoma, endometrial hyperplasia, endometriosis, fibrosarcomas, choriocarcinoma, head and neck cancer, nasopharyngeal carcinoma, laryngeal carcinomas, hepatoblastoma, Kaposi's sarcoma, melanoma, skin carcinomas, hemangioma, cavernous hemangioma, hemangioblastoma, pancreas carcinomas, retinoblastoma, astrocytoma, glioblastoma, Schwannoma, oligodendroglioma, medulloblastoma, neuroblastomas, rhabdomyosarcoma, osteogenic sarcoma, leiomyosarcomas, urinary tract carcinomas, thyroid carcinomas, Wilm's tumor, renal cell carcinoma, prostate carcinoma, abnormal vascular proliferation associated with phakomatoses, edema (such as that associated with brain tumors), and Meigs' syndrome.

Age-related macular degeneration (AMD) is a leading cause of severe visual loss in the elderly population. The exudative form of AMD is characterized by choroidal neovascularization and retinal pigment epithelial cell detachment. Because choroidal neovascularization is associated with a dramatic worsening in prognosis, the PRO polypeptide or agonist or antagonist thereto is expected to be useful in reducing the severity of AMD.

Healing of trauma such as wound healing and tissue repair is also a targeted use for the PRO polypeptides herein or their agonists or antagonists. Formation and regression of new blood vessels is essential for tissue healing and repair. This category includes bone, cartilage, tendon, ligament, and/or nerve tissue growth or regeneration, as well as wound healing and tissue repair and replacement, and in the treatment of burns, incisions, and ulcers. A PRO polypeptide or agonist or antagonist thereof that induces cartilage and/or bone growth in circumstances where bone is not normally formed has application in the healing of bone fractures and cartilage damage or defects in humans and other animals. Such a preparation employing a PRO polypeptide or agonist or antagonist thereof may have prophylactic use in closed as well as open fracture reduction and also in the improved fixation of artificial joints. De novo bone formation induced by an osteogenic agent contributes to the repair of congenital, traumainduced, or oncologic, resection-induced craniofacial defects, and also is useful in cosmetic plastic surgery.

5

10

15

20

25

30

35

PRO polypeptides or agonists or antagonists thereto may also be useful to promote better or faster closure of non-healing wounds, including without limitation pressure ulcers, ulcers associated with vascular insufficiency, surgical and traumatic wounds, and the like.

It is expected that a PRO polypeptide or agonist or antagonist thereto may also exhibit activity for generation or regeneration of other tissues, such as organs (including, for example, pancreas, liver, intestine, kidney, skin, or endothelium), muscle (smooth, skeletal, or cardiac), and vascular (including vascular endothelium) tissue, or for promoting the growth of cells comprising such tissues. Part of the desired effects may be by inhibition or modulation of fibrotic scarring to allow normal tissue to regenerate.

A PRO polypeptide herein or agonist or antagonist thereto may also be useful for gut protection or regeneration and treatment of lung or liver fibrosis, reperfusion injury in various tissues, and conditions resulting from systemic cytokine damage. Also, the PRO polypeptide or agonist or antagonist thereto may be useful for promoting or inhibiting differentiation of tissues described above from precursor tissues or cells, or for inhibiting the growth of tissues described above.

A PRO polypeptide or agonist or antagonist thereto may also be used in the treatment of periodontal diseases and in other tooth-repair processes. Such agents may provide an environment to attract bone-forming cells, stimulate growth of bone-forming cells, or induce differentiation of progenitors of bone-forming cells. A PRO polypeptide herein or an agonist or an antagonist thereto may also be useful in the treatment of osteoporosis or osteoarthritis, such as through stimulation of bone and/or cartilage repair or by blocking inflammation or processes of tissue destruction (collagenase activity, osteoclast activity, etc.) mediated by inflammatory processes, since blood vessels play an important role in the regulation of bone turnover and growth.

Another category of tissue regeneration activity that may be attributable to the PRO polypeptide herein or agonist or antagonist thereto is tendon/ligament formation. A protein that induces tendon/ligament-like tissue or other tissue formation in circumstances where such tissue is not normally formed has application in the healing of tendon or ligament tears, deformities, and other tendon or ligament defects in humans and other animals. Such a preparation may have prophylactic use in preventing damage to tendon or ligament tissue, as well as use in the improved fixation of tendon or ligament to bone or other tissues, and in repairing defects to tendon or ligament tissue. De novo tendon/ligament-like tissue formation induced by a composition of the PRO polypeptide herein or

agonist or antagonist thereto contributes to the repair of congenital, trauma-induced, or other tendon or ligament defects of other origin, and is also useful in cosmetic plastic surgery for attachment or repair of tendons or ligaments. The compositions herein may provide an environment to attract tendon- or ligament-forming cells, stimulate growth of tendon- or ligament-forming cells, induce differentiation of progenitors of tendon- or ligament-forming cells, or induce growth of tendon/ligament cells or progenitors ex vivo for return in vivo to effect tissue repair. The compositions herein may also be useful in the treatment of tendinitis, carpal tunnel syndrome, and other tendon or ligament defects. The compositions may also include an appropriate matrix and/or sequestering agent as a carrier as is well known in the art.

5

10

15

20

25

30

35

The PRO polypeptide or its agonist or antagonist may also be useful for proliferation of neural cells and for regeneration of nerve and brain tissue, i.e., for the treatment of central and peripheral nervous system disease and neuropathies, as well as mechanical and traumatic disorders, that involve degeneration, death, or trauma to neural cells or nerve tissue. More specifically, a PRO polypeptide or its agonist or antagonist may be used in the treatment of diseases of the peripheral nervous system, such as peripheral nerve injuries, peripheral neuropathy and localized neuropathies, and central nervous system diseases, such as Alzheimer's, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, and Shy-Drager syndrome. Further conditions that may be treated in accordance with the present invention include mechanical and traumatic disorders, such as spinal cord disorders, head trauma, and cerebrovascular diseases such as stroke. Peripheral neuropathies resulting from chemotherapy or other medical therapies may also be treatable using a PRO polypeptide herein or agonist or antagonist thereto.

Ischemia-reperfusion injury is another indication. Endothelial cell dysfunction may be important in both the initiation of, and in regulation of the sequelae of events that occur following ischemia-reperfusion injury.

Rheumatoid arthritis is a further indication. Blood vessel growth and targeting of inflammatory cells through the vasculature is an important component in the pathogenesis of rheumatoid and sero-negative forms of arthritis.

A PRO polypeptide or its agonist or antagonist may also be administered prophylactically to patients with cardiac hypertrophy, to prevent the progression of the condition, and avoid sudden death, including death of asymptomatic patients. Such preventative therapy is particularly warranted in the case of patients diagnosed with massive left ventricular cardiac hypertrophy (a maximal wall thickness of 35 mm or more in adults, or a comparable value in children), or in instances when the hemodynamic burden on the heart is particularly strong.

A PRO polypeptide or its agonist or antagonist may also be useful in the management of atrial fibrillation, which develops in a substantial portion of patients diagnosed with hypertrophic cardiomyopathy.

Further indications include angina, myocardial infarctions such as acute myocardial infarctions, and heart failure such as congestive heart failure. Additional non-neoplastic conditions include psoriasis, diabetic and other proliferative retinopathies including retinopathy of prematurity, retrolental fibroplasia, neovascular glaucoma, thyroid hyperplasias (including Grave's disease), corneal and other tissue transplantation, chronic inflammation, lung inflammation, nephrotic syndrome, preeclampsia, ascites, pericardial effusion (such as that associated with pericarditis), and pleural effusion.

In view of the above, the PRO polypeptides or agonists or antagonists thereof described herein, which are shown to alter or impact endothelial cell function, proliferation, and/or form, are likely to play an important role in the etiology and pathogenesis of many or all of the disorders noted above, and as such can serve as therapeutic targets to augment or inhibit these processes or for vascular-related drug targeting in these disorders.

5

10

15

20

25

30

35

5.2.4.11. Administration Protocols, Schedules, Doses, and Formulations

The molecules herein and agonists and antagonists thereto are pharmaceutically useful as a prophylactic and therapeutic agent for various disorders and diseases as set forth above.

Therapeutic compositions of the PRO polypeptides or agonists or antagonists are prepared for storage by mixing the desired molecule having the appropriate degree of purity with optional pharmaceutically acceptable carriers, excipients, or stabilizers (Remington's Pharmaceutical Sciences, 16th edition, Osol, A. ed. (1980)), in the form of lyophilized formulations or aqueous solutions. Acceptable carriers, excipients, or stabilizers are nontoxic to recipients at the dosages and concentrations employed, and include buffers such as phosphate, citrate, and other organic acids; antioxidants including ascorbic acid and methionine; preservatives (such as octadecyldimethylbenzyl ammonium chloride; hexamethonium chloride; benzalkonium chloride, benzethonium chloride; phenol, butyl or benzyl alcohol; alkyl parabens such as methyl or propyl paraben; catechol; resorcinol; cyclohexanol; 3-pentanol; and m-cresol); low molecular weight (less than about 10 residues) polypeptides; proteins, such as serum albumin, gelatin, or immunoglobulins; hydrophilic polymers such as polyvinylpyrrolidone; amino acids such as glycine, glutamine, asparagine, histidine, arginine, or lysine; monosaccharides, disaccharides, and other carbohydrates including glucose, mannose, or dextrins; chelating agents such as EDTA; sugars such as sucrose, mannitol, trehalose or sorbitol; salt-forming counter-ions such as sodium; metal complexes (e.g., Zn-protein complexes); and/or non-ionic surfactants such as TWEENTM, PLURONICSTM or polyethylene glycol (PEG).

Additional examples of such carriers include ion exchangers, alumina, aluminum stearate, lecithin, serum proteins, such as human serum albumin, buffer substances such as phosphates, glycine, sorbic acid, potassium sorbate, partial glyceride mixtures of saturated vegetable fatty acids, water, salts, or electrolytes such as protamine sulfate, disodium hydrogen phosphate, potassium hydrogen phosphate, sodium chloride, zinc salts, colloidal silica, magnesium trisilicate, polyvinyl pyrrolidone, cellulose-based substances, and polyethylene glycol. Carriers for topical or gel-based forms of agonist or antagonist include polysaccharides such as sodium carboxymethylcellulose or methylcellulose, polyvinylpyrrolidone, polyacrylates, polyoxyethylene-polyoxypropylene-block polymers, polyethylene glycol, and wood wax alcohols. For all administrations, conventional depot forms are suitably used. Such forms include, for example, microcapsules, nano-capsules, liposomes, plasters, inhalation forms, nose sprays, sublingual tablets, and sustained-release preparations. The PRO polypeptides or agonists or antagonists will typically be formulated in such vehicles at a concentration of about 0.1 mg/ml to 100 mg/ml.

Another formulation comprises incorporating a PRO polypeptide or agonist or antagonist thereof into formed articles. Such articles can be used in modulating endothelial cell growth and angiogenesis. In addition, tumor invasion and metastasis may be modulated with these articles.

PRO polypeptides or agonists or antagonists to be used for *in vivo* administration must be sterile. This is readily accomplished by filtration through sterile filtration membranes, prior to or following lyophilization and reconstitution. PRO polypeptides ordinarily will be stored in lyophilized form or in solution if administered systemically. If in lyophilized form, the PRO polypeptide or agonist or antagonist thereto is typically formulated in combination with other ingredients for reconstitution with an appropriate diluent at the time for use. An example of a liquid formulation of a PRO polypeptide or agonist or antagonist is a sterile, clear, colorless unpreserved solution filled in a single-dose vial for subcutaneous injection. Preserved pharmaceutical compositions suitable for repeated use may contain, for example, depending mainly on the indication and type of polypeptide:

- a) PRO polypeptide or agonist or antagonist thereto;
- b) a buffer capable of maintaining the pH in a range of maximum stability of the polypeptide or other molecule in solution, preferably about 4-8;
- a detergent/surfactant primarily to stabilize the polypeptide or molecule against agitation-induced aggregation;
- d) an isotonifier;
- e) a preservative selected from the group of phenol, benzyl alcohol and a benzethonium halide, e.g., chloride; and
 - f) water

5

10

15

20

25

30

35

If the detergent employed is non-ionic, it may, for example, be polysorbates (e.g., POLYSORBATETM (TWEENTM) 20, 80, etc.) or poloxamers (e.g., POLOXAMERTM 188). The use of non-ionic surfactants permits the formulation to be exposed to shear surface stresses without causing denaturation of the polypeptide. Further, such surfactant-containing formulations may be employed in aerosol devices such as those used in a pulmonary dosing, and needleless jet injector guns (see, e.g., EP 257,956).

An isotonifier may be present to ensure isotonicity of a liquid composition of the PRO polypeptide or agonist or antagonist thereto, and includes polyhydric sugar alcohols, preferably trihydric or higher sugar alcohols, such as glycerin, erythritol, arabitol, xylitol, sorbitol, and mannitol. These sugar alcohols can be used alone or in combination. Alternatively, sodium chloride or other appropriate inorganic salts may be used to render the solutions isotonic.

The buffer may, for example, be an acetate, citrate, succinate, or phosphate buffer depending on the pH desired. The pH of one type of liquid formulation of this invention is buffered in the range of about 4 to 8, preferably about physiological pH.

The preservatives phenol, benzyl alcohol and benzethonium halides, e.g., chloride, are known antimicrobial agents that may be employed.

Therapeutic PRO polypeptide compositions generally are placed into a container having a sterile access port, for example, an intravenous solution bag or vial having a stopper pierceable by a hypodermic injection needle. The formulations are preferably administered as repeated intravenous (i.v.), subcutaneous (s.c.), or intramuscular (i.m.) injections, or as aerosol formulations suitable for intranasal or intrapulmonary delivery (for intrapulmonary delivery see, e.g., EP 257,956).

PRO polypeptides can also be administered in the form of sustained-released preparations. Suitable examples of sustained-release preparations include semipermeable matrices of solid hydrophobic polymers containing the protein, which matrices are in the form of shaped articles, e.g., films, or microcapsules. Examples of sustained-release matrices include polyesters, hydrogels (e.g., poly(2-hydroxyethyl-methacrylate) as described by Langer et al., J. Biomed. Mater. Res., 15: 167-277 (1981) and Langer, Chem. Tech., 12: 98-105 (1982) or poly(vinylalcohol)), polylactides (U.S. Patent No. 3,773,919, EP 58,481), copolymers of L-glutamic acid and gamma ethyl-L-glutamate (Sidman et al., Biopolymers, 22: 547-556 (1983)), non-degradable ethylene-vinyl acetate (Langer et al., supra), degradable lactic acid-glycolic acid copolymers such as the Lupron Depot™ (injectable microspheres composed of lactic acid-glycolic acid copolymer and leuprolide acetate), and poly-D-

10 (-)-3-hydroxybutyric acid (EP 133.988).

5

15

20

25

30

35

While polymers such as ethylene-vinyl acetate and lactic acid-glycolic acid enable release of molecules for over 100 days, certain hydrogels release proteins for shorter time periods. When encapsulated proteins remain in the body for a long time, they may denature or aggregate as a result of exposure to moisture at 37°C, resulting in a loss of biological activity and possible changes in immunogenicity. Rational strategies can be devised for protein stabilization depending on the mechanism involved. For example, if the aggregation mechanism is discovered to be intermolecular S-S bond formation through thio-disulfide interchange, stabilization may be achieved by modifying sulfhydryl residues, lyophilizing from acidic solutions, controlling moisture content, using appropriate additives, and developing specific polymer matrix compositions.

Sustained-release PRO polypeptide compositions also include liposomally entrapped PRO polypeptides. Liposomes containing the PRO polypeptide are prepared by methods known per se: DE 3,218,121; Epstein et al., Proc. Natl. Acad. Sci. USA, 82: 3688-3692 (1985); Hwang et al., Proc. Natl. Acad. Sci. USA, 77: 4030-4034 (1980); EP 52,322; EP 36,676; EP 88,046; EP 143,949; EP 142,641; Japanese patent application 83-118008; U.S. Patent Nos. 4,485,045 and 4,544,545; and EP 102,324. Ordinarily the liposomes are of the small (about 200-800 Angstroms) unilamellar type in which the lipid content is greater than about 30 mol. % cholesterol, the selected proportion being adjusted for the optimal therapy.

The therapeutically effective dose of a PRO polypeptide or agonist or antagonist thereto will, of course, vary depending on such factors as the pathological condition to be treated (including prevention), the method of administration, the type of compound being used for treatment, any co-therapy involved, the patient's age, weight, general medical condition, medical history, etc., and its determination is well within the skill of a practicing physician. Accordingly, it will be necessary for the therapist to titer the dosage and modify the route of administration as required to obtain the maximal therapeutic effect. If the PRO polypeptide has a narrow host range, for the treatment of human patients formulations comprising human PRO polypeptide, more preferably native-sequence human PRO polypeptide, are preferred. The clinician will administer the PRO polypeptide until a dosage is reached that achieves the desired effect for treatment of the condition in question. For example, if the objective is the treatment of CHF, the amount would be one that inhibits the progressive cardiac hypertrophy associated with this condition. The progress of this therapy is easily monitored by echo cardiography. Similarly, in patients with hypertrophic cardiomyopathy, the PRO polypeptide can be administered on an empirical basis.

With the above guidelines, the effective dose generally is within the range of from about 0.001 to about 1.0 mg/kg, more preferably about 0.01-1.0 mg/kg, most preferably about 0.01-0.1 mg/kg.

For non-oral use in treating human adult hypertension, it is advantageous to administer the PRO polypeptide in the form of an injection at about 0.01 to 50 mg, preferably about 0.05 to 20 mg, most preferably 1 to 20 mg, per kg body weight, 1 to 3 times daily by intravenous injection. For oral administration, a molecule based on the PRO polypeptide is preferably administered at about 5 mg to 1 g, preferably about 10 to 100 mg, per kg body weight, 1 to 3 times daily. It should be appreciated that endotoxin contamination should be kept minimally at a safe level, for example, less than 0.5 ng/mg protein. Moreover, for human administration, the formulations preferably meet sterility, pyrogenicity, general safety, and purity as required by FDA Office and Biologics standards.

10

15

5

The dosage regimen of a pharmaceutical composition containing the PRO polypeptide to be used in tissue regeneration will be determined by the attending physician considering various factors that modify the action of the polypeptides, e.g., amount of tissue weight desired to be formed, the site of damage, the condition of the damaged tissue, the size of a wound, type of damaged tissue (e.g., bone), the patient's age, sex, and diet, the severity of any infection, time of administration, and other clinical factors. The dosage may vary with the type of matrix used in the reconstitution and with inclusion of other proteins in the pharmaceutical composition. For example, the addition of other known growth factors, such as IGF-I, to the final composition may also affect the dosage. Progress can be monitored by periodic assessment of tissue/bone growth and/or repair, for example, X-rays, histomorphometric determinations, and tetracycline labeling.

20

The route of PRO polypeptide or antagonist or agonist administration is in accord with known methods, e.g., by injection or infusion by intravenous, intramuscular, intracerebral, intraperitoneal, intracerobrospinal, subcutaneous, intraocular, intraarticular, intrasynovial, intrathecal, oral, topical, or inhalation routes, or by sustained-release systems as noted below. The PRO polypeptide or agonist or antagonists thereof also are suitably administered by intratumoral, peritumoral, intralesional, or perilesional routes, to exert local as well as systemic therapeutic effects. The intraperitoneal route is expected to be particularly useful, for example, in the treatment of ovarian tumors.

25

If a peptide or small molecule is employed as an antagonist or agonist, it is preferably administered orally or non-orally in the form of a liquid or solid to mammals.

30

Examples of pharmacologically acceptable salts of molecules that form salts and are useful hereunder include alkali metal salts (e.g., sodium salt, potassium salt), alkaline earth metal salts (e.g., calcium salt, magnesium salt), ammonium salts, organic base salts (e.g., pyridine salt, triethylamine salt), inorganic acid salts (e.g., hydrochloride, sulfate, nitrate), and salts of organic acid (e.g., acetate, oxalate, p-toluenesulfonate).

35

For compositions herein that are useful for bone, cartilage, tendon, or ligament regeneration, the therapeutic method includes administering the composition topically, systemically, or locally as an implant or device. When administered, the therapeutic composition for use is in a pyrogen-free, physiologically acceptable form. Further, the composition may desirably be encapsulated or injected in a viscous form for delivery to the site of bone, cartilage, or tissue damage. Topical administration may be suitable for wound healing and tissue repair. Preferably, for bone and/or cartilage formation, the composition would include a matrix capable of delivering the

5

10

15

20

25

.30

35

protein-containing composition to the site of bone and/or cartilage damage, providing a structure for the developing bone and cartilage and preferably capable of being resorbed into the body. Such matrices may be formed of materials presently in use for other implanted medical applications.

The choice of matrix material is based on biocompatibility, biodegradability, mechanical properties, cosmetic appearance, and interface properties. The particular application of the compositions will define the appropriate formulation. Potential matrices for the compositions may be biodegradable and chemically defined calcium sulfate, tricalcium phosphate, hydroxyapatite, polylactic acid, polyglycolic acid, and polyanhydrides. Other potential materials are biodegradable and biologically well-defined, such as bone or dermal collagen. Further matrices are comprised of pure proteins or extracellular matrix components. Other potential matrices are nonbiodegradable and chemically defined, such as sintered hydroxyapatite, bioglass, aluminates, or other ceramics. Matrices may be comprised of combinations of any of the above-mentioned types of material, such as polylactic acid and hydroxyapatite or collagen and tricalcium phosphate. The bioceramics may be altered in composition, such as in calcium-aluminate-phosphate and processing to alter pore size, particle size, particle shape, and biodegradability.

One specific embodiment is a 50:50 (mole weight) copolymer of lactic acid and glycolic acid in the form of porous particles having diameters ranging from 150 to 800 microns. In some applications, it will be useful to utilize a sequestering agent, such as carboxymethyl cellulose or autologous blood clot, to prevent the polypeptide compositions from disassociating from the matrix.

One suitable family of sequestering agents is cellulosic materials such as alkylcelluloses (including hydroxyalkylcelluloses), including methylcellulose, ethylcellulose, hydroxypropylcellulose, hydroxypropylcellulose, hydroxypropylcellulose, and carboxymethylcellulose, one preferred being cationic salts of carboxymethylcellulose (CMC). Other preferred sequestering agents include hyaluronic acid, sodium alginate, poly(ethylene glycol), polyoxyethylene oxide, carboxyvinyl polymer, and poly(vinyl alcohol). The amount of sequestering agent useful herein is 0.5-20 wt%, preferably 1-10 wt%, based on total formulation weight, which represents the amount necessary to prevent desorption of the polypeptide (or its antagonist) from the polymer matrix and to provide appropriate handling of the composition, yet not so much that the progenitor cells are prevented from infiltrating the matrix, thereby providing the polypeptide (or its antagonist) the opportunity to assist the osteogenic activity of the progenitor cells.

5.2.4.12. Combination Therapies

The effectiveness of the PRO polypeptide or an agonist or antagonist thereof in preventing or treating the disorder in question may be improved by administering the active agent serially or in combination with another agent that is effective for those purposes, either in the same composition or as separate compositions.

For example, for treatment of cardiac hypertrophy, PRO polypeptide therapy can be combined with the administration of inhibitors of known cardiac myocyte hypertrophy factors, e.g., inhibitors of α-adrenergic agonists such as phenylephrine; endothelin-1 inhibitors such as BOSENTANTM and MOXONODINTM; inhibitors to CT-1

(U.S. Pat. No. 5,679,545); inhibitors to LIF; ACE inhibitors; des-aspartate-angiotensin I inhibitors (U.S. Pat. No. 5,773,415), and angiotensin II inhibitors.

For treatment of cardiac hypertrophy associated with hypertension, the PRO polypeptide can be administered in combination with β-adrenergic receptor blocking agents, e.g., propranolol, timolol, tertalolol, carteolol, nadolol, betaxolol, penbutolol, acetobutolol, atenolol, metoprolol, or carvedilol; ACE inhibitors, e.g., quinapril, captopril, enalapril, ramipril, benazepril, fosinopril, or lisinopril; diuretics, e.g., chlorothiazide, hydrochlorothiazide, hydroflumethazide, methylchlothiazide, benzthiazide, dichlorphenamide, acetazolamide, or indapamide; and/or calcium channel blockers, e.g., diltiazem, nifedipine, verapamil, or nicardipine. Pharmaceutical compositions comprising the therapeutic agents identified herein by their generic names are commercially available, and are to be administered following the manufacturers' instructions for dosage, administration, adverse effects, contraindications, etc. See, e.g., Physicians' Desk Reference (Medical Economics Data Production Co.: Montvale, N.J., 1997), 51th Edition.

5

10

15

20

25

30

Preferred candidates for combination therapy in the treatment of hypertrophic cardiomyopathy are β-adrenergic-blocking drugs (e.g., propranolol, timolol, tertalolol, carteolol, nadolol, betaxolol, penbutolol, acetobutolol, atenolol, metoprolol, or carvedilol), verapamil, difedipine, or diltiazem. Treatment of hypertrophy associated with high blood pressure may require the use of antihypertensive drug therapy, using calcium channel blockers, e.g., diltiazem, nifedipine, verapamil, or nicardipine; β-adrenergic blocking agents; diuretics, e.g., chlorothiazide, hydrochlorothiazide, hydroflumethazide, methylchlothiazide, benzthiazide, dichlorphenamide, acetazolamide, or indapamide; and/or ACE-inhibitors, e.g., quinapril, captopril, enalapril, ramipril, benazepril, fosinopril, or lisinopril.

For other indications, PRO polypeptides or their agonists or antagonists may be combined with other agents beneficial to the treatment of the bone and/or cartilage defect, wound, or tissue in question. These agents include various growth factors such as EGF, PDGF, $TGF-\alpha$ or $TGF-\beta$, IGF, FGF, and CTGF.

In addition, PRO polypeptides or their agonists or antagonists used to treat cancer may be combined with cytotoxic, chemotherapeutic, or growth-inhibitory agents as identified above. Also, for cancer treatment, the PRO polypeptide or agonist or antagonist thereof is suitably administered serially or in combination with radiological treatments, whether involving irradiation or administration of radioactive substances.

The effective amounts of the therapeutic agents administered in combination with the PRO polypeptide or agonist or antagonist thereof will be at the physician's or veterinarian's discretion. Dosage administration and adjustment is done to achieve maximal management of the conditions to be treated. For example, for treating hypertension, these amounts ideally take into account use of diuretics or digitalis, and conditions such as hyper- or hypotension, renal impairment, etc. The dose will additionally depend on such factors as the type of the therapeutic agent to be used and the specific patient being treated. Typically, the amount employed will be the same dose as that used, if the given therapeutic agent is administered without the PRO polypeptide.

5.2.4.13. Articles of Manufacture

An article of manufacture such as a kit containing the PRO polypeptide or agonists or antagonists thereof useful for the diagnosis or treatment of the disorders described above comprises at least a container and a label. Suitable containers include, for example, bottles, vials, syringes, and test tubes. The containers may be formed from a variety of materials such as glass or plastic. The container holds a composition that is effective for diagnosing or treating the condition and may have a sterile access port (for example, the container may be an intravenous solution bag or a vial having a stopper pierceable by a hypodermic injection needle). The active agent in the composition is the PRO polypeptide or an agonist or antagonist thereto. The label on, or associated with, the container indicates that the composition is used for diagnosing or treating the condition of choice. The article of manufacture may further comprise a second container comprising a pharmaceutically-acceptable buffer, such as phosphate-buffered saline, Ringer's solution, and dextrose solution. It may further include other materials desirable from a commercial and user standpoint, including other buffers, diluents, filters, needles, syringes, and package inserts with instructions for use. The article of manufacture may also comprise a second or third container with another active agent as described above.

15

5

10

5.2.5. Antibodies

Some of the most promising drug candidates according to the present invention are antibodies and antibody fragments that may inhibit the production or the gene product of the genes identified herein and/or reduce the activity of the gene products.

5.2.5.1. Polyclonal Antibodies

20

25

Methods of preparing polyclonal antibodies are known to the skilled artisan. Polyclonal antibodies can be raised in a mammal, for example, by one or more injections of an immunizing agent and, if desired, an adjuvant. Typically, the immunizing agent and/or adjuvant will be injected in the mammal by multiple subcutaneous or intraperitoneal injections. The immunizing agent may include the PRO polypeptide or a fusion protein thereof. It may be useful to conjugate the immunizing agent to a protein known to be immunogenic in the mammal being immunized. Examples of such immunogenic proteins include, but are not limited to, keyhole limpet hemocyanin, serum albumin, bovine thyroglobulin, and soybean trypsin inhibitor. Examples of adjuvants that may be employed include Freund's complete adjuvant and MPL-TDM adjuvant (monophosphoryl Lipid A or synthetic trehalose dicorynomycolate). The immunization protocol may be selected by one skilled in the art without undue experimentation.

30

5.2.5.2. Monoclonal Antibodies

The anti-PRO antibodies may, alternatively, be monoclonal antibodies. Monoclonal antibodies may be prepared using hybridoma methods, such as those described by Kohler and Milstein, Nature, 256:495 (1975). In a hybridoma method, a mouse, hamster, or other appropriate host animal is typically immunized with an

5

10

15

20

25

30

35

immunizing agent to elicit lymphocytes that produce or are capable of producing antibodies that will specifically bind to the immunizing agent. Alternatively, the lymphocytes may be immunized in vitro.

The immunizing agent will typically include the PRO polypeptide or a fusion protein thereof. Generally, either peripheral blood lymphocytes ("PBLs") are used if cells of human origin are desired, or spleen cells or lymph node cells are used if non-human mammalian sources are desired. The lymphocytes are then fused with an immortalized cell line using a suitable fusing agent, such as polyethylene glycol, to form a hybridoma cell. Goding, Monoclonal Antibodies: Principles and Practice (New York: Academic Press, 1986), pp. 59-103. Immortalized cell lines are usually transformed mammalian cells, particularly myeloma cells of rodent, bovine, and human origin. Usually, rat or mouse myeloma cell lines are employed. The hybridoma cells may be cultured in a suitable culture medium that preferably contains one or more substances that inhibit the growth or survival of the unfused, immortalized cells. For example, if the parental cells lack the enzyme hypoxanthine guanine phosphoribosyl transferase (HGPRT or HPRT), the culture medium for the hybridomas typically will include hypoxanthine, aminopterin, and thymidine ("HAT medium"), which substances prevent the growth of HGPRT-deficient cells:

Preferred immortalized cell lines are those that fuse efficiently, support stable high-level expression of antibody by the selected antibody-producing cells, and are sensitive to a medium such as HAT medium. More preferred immortalized cell lines are murine myeloma lines, which can be obtained, for instance, from the Salk Institute Cell Distribution Center, San Diego, California and the American Type Culture Collection, Manassas, Virginia. Human myeloma and mouse-human heteromyeloma cell lines also have been described for the production of human monoclonal antibodies. Kozbor, <u>J. Immunol.</u>, <u>133</u>:3001 (1984); Brodeur *et al.*, <u>Monoclonal Antibody Production Techniques and Applications</u> (Marcel Dekker, Inc.: New York, 1987) pp. 51-63.

The culture medium in which the hybridoma cells are cultured can then be assayed for the presence of monoclonal antibodies directed against the PRO polypeptide. Preferably, the binding specificity of monoclonal antibodies produced by the hybridoma cells is determined by immunoprecipitation or by an *in vitro* binding assay, such as radioimmunoassay (RIA) or enzyme-linked immunoabsorbent assay (ELISA). Such techniques and assays are known in the art. The binding affinity of the monoclonal antibody can, for example, be determined by the Scatchard analysis of Munson and Pollard, Anal. Biochem., 107:220 (1980).

After the desired hybridoma cells are identified, the clones may be subcloned by limiting dilution procedures and grown by standard methods. Goding, *supra*. Suitable culture media for this purpose include, for example, Dulbecco's Modified Eagle's Medium and RPMI-1640 medium. Alternatively, the hybridoma cells may be grown *in vivo* as ascites in a mammal.

The monoclonal antibodies secreted by the subclones may be isolated or purified from the culture medium or ascites fluid by conventional immunoglobulin purification procedures such as, for example, protein A-Sepharose, hydroxylapatite chromatography, gel electrophoresis, dialysis, or affinity chromatography.

The monoclonal antibodies may also be made by recombinant DNA methods, such as those described in U.S. Patent No. 4,816,567. DNA encoding the monoclonal antibodies of the invention can be readily isolated and sequenced using conventional procedures (e.g., by using oligonucleotide probes that are capable of binding specifically to genes encoding the heavy and light chains of murine antibodies). The hybridoma cells of the

invention serve as a preferred source of such DNA. Once isolated, the DNA may be placed into expression vectors, which are then transfected into host cells such as simian COS cells, Chinese hamster ovary (CHO) cells, or myeloma cells that do not otherwise produce immunoglobulin protein, to obtain the synthesis of monoclonal antibodies in the recombinant host cells. The DNA also may be modified, for example, by substituting the coding sequence for human heavy- and light-chain constant domains in place of the homologous murine sequences (U.S. Patent No. 4,816,567; Morrison et al., supra) or by covalently joining to the immunoglobulin coding sequence all or part of the coding sequence for a non-immunoglobulin polypeptide. Such a non-immunoglobulin polypeptide can be substituted for the constant domains of an antibody of the invention, or can be substituted for the variable domains of one antigen-combining site of an antibody of the invention to create a chimeric bivalent antibody.

10

5

The antibodies may be monovalent antibodies. Methods for preparing monovalent antibodies are well known in the art. For example, one method involves recombinant expression of immunoglobulin light chain and modified heavy chain. The heavy chain is truncated generally at any point in the Fc region so as to prevent heavy-chain crosslinking. Alternatively, the relevant cysteine residues are substituted with another amino acid residue or are deleted so as to prevent crosslinking.

15

In vitro methods are also suitable for preparing monovalent antibodies. Digestion of antibodies to produce fragments thereof, particularly Fab fragments, can be accomplished using routine techniques known in the art.

forms of non-human (e.g., murine) antibodies are chimeric immunoglobulins, immunoglobulin chains, or fragments

thereof (such as Fv, Fab, Fab', F(ab')₂, or other antigen-binding subsequences of antibodies) that contain minimal sequence derived from non-human immunoglobulin. Humanized antibodies include human immunoglobulins

at least one, and typically two, variable domains, in which all or substantially all of the CDR regions correspond to those of a non-human immunoglobulin, and all or substantially all of the FR regions are those of a human immunoglobulin consensus sequence. The humanized antibody preferably also will comprise at least a portion of

an immunoglobulin constant region (Fc), typically that of a human immunoglobulin. Jones et al., Nature, 321: 522-525 (1986); Riechmann et al., Nature, 332: 323-329 (1988); Presta, Curr. Op. Struct. Biol., 2:593-596 (1992).

The anti-PRO antibodies may further comprise humanized antibodies or human antibodies. Humanized

5.2.5.3. Human and Humanized Antibodies

20

(recipient antibody) in which residues from a CDR of the recipient are replaced by residues from a CDR of a non-human species (donor antibody) such as mouse, rat, or rabbit having the desired specificity, affinity, and capacity. In some instances, Fv framework residues of the human immunoglobulin are replaced by corresponding non-human residues. Humanized antibodies may also comprise residues that are found neither in the recipient antibody nor in the imported CDR or framework sequences. In general, the humanized antibody will comprise substantially all of

. .

25

30

35

Methods for humanizing non-human antibodies are well known in the art. Generally, a humanized antibody has one or more amino acid residues introduced into it from a source that is non-human. These non-human amino acid residues are often referred to as "import" residues, which are typically taken from an "import" variable domain. Humanization can be essentially performed following the method of Winter and co-workers (Jones et al., Nature, 321: 522-525 (1986); Riechmann et al., Nature, 332: 323-327 (1988); Verhoeyen et al., Science, 239: 1534-

113

1536 (1988)), by substituting rodent CDRs or CDR sequences for the corresponding sequences of a human antibody. Accordingly, such "humanized" antibodies are chimeric antibodies (U.S. Patent No. 4,816,567), wherein substantially less than an intact human variable domain has been substituted by the corresponding sequence from a non-human species. In practice, humanized antibodies are typically human antibodies in which some CDR residues and possibly some FR residues are substituted by residues from analogous sites in rodent antibodies.

Human antibodies can also be produced using various techniques known in the art, including phage display libraries. Hoogenboom and Winter, J. Mol. Biol., 227: 381 (1991); Marks et al., J. Mol. Biol., 222: 581 (1991). The techniques of Cole et al. and Boerner et al. are also available for the preparation of human monoclonal antibodies. Cole et al., Monoclonal Antibodies and Cancer Therapy, Alan R. Liss, p. 77 (1985) and Boerner et al., J. Immunol., 147(1): 86-95 (1991). Similarly, human antibodies can be made by introducing human immunoglobulin loci into transgenic animals, e.g., mice in which the endogenous immunoglobulin genes have been partially or completely inactivated. Upon challenge, human antibody production is observed that closely resembles that seen in humans in all respects, including gene rearrangement, assembly, and antibody repertoire. This approach is described, for example, in U.S. Patent Nos. 5,545,807; 5,545,806; 5,569,825; 5,625,126; 5,633,425; and 5,661,016, and in the following scientific publications: Marks et al., Bio/Technology, 10: 779-783 (1992); Lonberg et al., Nature, 368: 856-859 (1994); Morrison, Nature, 368: 812-813 (1994); Fishwild et al., Nature Biotechnology, 14: 845-851 (1996); Neuberger, Nature Biotechnology, 14: 826 (1996); Lonberg and Huszar, Intern. Rev. Immunol., 13: 65-93 (1995).

5.2.5.4. Bispecific Antibodies

20

5

10

15

Bispecific antibodies are monoclonal, preferably human or humanized, antibodies that have binding specificities for at least two different antigens. In the present case, one of the binding specificities is for the PRO polypeptide, the other one is for any other antigen, and preferably for a cell-surface protein or receptor subunit.

25

Methods for making bispecific antibodies are known in the art. Traditionally, the recombinant production of bispecific antibodies is based on the co-expression of two immunoglobulin heavy-chain/light-chain pairs, where the two heavy chains have different specificities. Milstein and Cuello, Nature, 305: 537-539 (1983). Because of the random assortment of immunoglobulin heavy and light chains, these hybridomas (quadromas) produce a potential mixture of ten different antibody molecules, of which only one has the correct bispecific structure. The purification of the correct molecule is usually accomplished by affinity chromatography steps. Similar procedures are disclosed in WO 93/08829, published 13 May 1993, and in Traunecker et al., EMBO J., 10: 3655-3659 (1991).

30

Antibody variable domains with the desired binding specificities (antibody-antigen combining sites) can be fused to immunoglobulin constant-domain sequences. The fusion preferably is with an immunoglobulin heavy-chain constant domain, comprising at least part of the hinge, CH2, and CH3 regions. It is preferred to have the first heavy-chain constant region (CH1) containing the site necessary for light-chain binding present in at least one of the fusions. DNAs encoding the immunoglobulin heavy-chain fusions and, if desired, the immunoglobulin light chain, are inserted into separate expression vectors, and are co-transfected into a suitable host organism. For further

35

details of generating bispecific antibodies, see, for example, Suresh et al., Methods in Enzymology, 121: 210 (1986).

5.2.5.5. Heteroconjugate Antibodies

5

10

15

20

25

30

Heteroconjugate antibodies are composed of two covalently joined antibodies. Such antibodies have, for example, been proposed to target immune-system cells to unwanted cells (U.S. Patent No. 4,676,980), and for treatment of HIV infection. WO 91/00360; WO 92/200373; EP 03089. It is contemplated that the antibodies may be prepared *in vitro* using known methods in synthetic protein chemistry, including those involving crosslinking agents. For example, immunotoxins may be constructed using a disulfide-exchange reaction or by forming a thioether bond. Examples of suitable reagents for this purpose include iminothiolate and methyl-4-mercaptobutyrimidate and those disclosed, for example, in U.S. Patent No. 4,676,980.

5.2.5.6. Effector Function Engineering

It may be desirable to modify the antibody of the invention with respect to effector function, so as to enhance, e.g., the effectiveness of the antibody in treating cancer. For example, cysteine residue(s) may be introduced into the Fc region, thereby allowing interchain disulfide bond formation in this region. The homodimeric antibody thus generated may have improved internalization capability and/or increased complement-mediated cell killing and antibody-dependent cellular cytotoxicity (ADCC). See, Caron et al., J. Exp. Med., 176: 1191-1195 (1992) and Shopes, J. Immunol., 148: 2918-2922 (1992). Homodimeric antibodies with enhanced anti-tumor activity may also be prepared using heterobifunctional cross-linkers as described in Wolff et al., Cancer Research, 53: 2560-2565 (1993). Alternatively, an antibody can be engineered that has dual Fc regions and may thereby have enhanced complement lysis and ADCC capabilities. See, Stevenson et al., Anti-Cancer Drug Design, 3: 219-230 (1989).

5.2.5.7. <u>Immunoconjugates</u>

The invention also pertains to immunoconjugates comprising an antibody conjugated to a cytotoxic agent such as a chemotherapeutic agent, toxin (e.g., an enzymatically active toxin of bacterial, fungal, plant, or animal origin, or fragments thereof), or a radioactive isotope (i.e., a radioconjugate).

Chemotherapeutic agents useful in the generation of such immunoconjugates have been described above. Enzymatically active toxins and fragments thereof that can be used include diphtheria A chain, nonbinding active fragments of diphtheria toxin, exotoxin A chain (from *Pseudomonas aeruginosa*), ricin A chain, abrin A chain, modeccin A chain, alpha-sarcin, *Aleurites fordii* proteins, dianthin proteins, *Phytolaca americana* proteins (PAPI, PAPII, and PAP-S), momordica charantia inhibitor, curcin, crotin, sapaonaria officinalis inhibitor, gelonin, mitogellin, restrictocin, phenomycin, enomycin, and the tricothecenes. A variety of radionuclides are available for the production of radioconjugated antibodies. Examples include ²¹²Bi, ¹³¹I, ¹³¹In, ⁹⁰Y, and ¹⁸⁶Re.

Conjugates of the antibody and cytotoxic agent are made using a variety of bifunctional protein-coupling agents such as N-succinimidyl-3-(2-pyridyldithiol) propionate (SPDP), iminothiolane (IT), bifunctional derivatives

of imidoesters (such as dimethyl adipimidate HCl), active esters (such as disuccinimidyl suberate), aldehydes (such as glutaraldehyde), bis-azido compounds (such as bis (p-azidobenzoyl) hexanediamine), bis-diazonium derivatives (such as bis-(p-diazoniumbenzoyl)-ethylenediamine), diisocyanates (such as tolyene 2,6-diisocyanate), and bis-active fluorine compounds (such as 1,5-difluoro-2,4-dinitrobenzene). For example, a ricin immunotoxin can be prepared as described in Vitetta et al., Science, 238: 1098 (1987). Carbon-14-labeled 1-isothiocyanatobenzyl-3-methyldiethylene triaminepentaacetic acid (MX-DTPA) is an exemplary chelating agent for conjugation of radionucleotide to the antibody. See, WO94/11026.

In another embodiment, the antibody may be conjugated to a "receptor" (such as streptavidin) for utilization in tumor pretargeting wherein the antibody-receptor conjugate is administered to the patient, followed by removal of unbound conjugate from the circulation using a clearing agent and then administration of a "ligand" (e.g., avidin) that is conjugated to a cytotoxic agent (e.g., a radionucleotide).

5.2.5.8. <u>Immunoliposomes</u>

5

10

15

20

25

30

The antibodies disclosed herein may also be formulated as immunoliposomes. Liposomes containing the antibody are prepared by methods known in the art, such as described in Epstein et al., Proc. Natl. Acad. Sci. USA, 82: 3688 (1985); Hwang et al., Proc. Natl. Acad. Sci. USA, 77: 4030 (1980); and U.S. Pat. Nos. 4,485,045 and 4,544,545. Liposomes with enhanced circulation time are disclosed in U.S. Patent No. 5,013,556.

Particularly useful liposomes can be generated by the reverse-phase evaporation method with a lipid composition comprising phosphatidylcholine, cholesterol, and PEG-derivatized phosphatidylethanolamine (PEG-PE). Liposomes are extruded through filters of defined pore size to yield liposomes with the desired diameter. Fab' fragments of the antibody of the present invention can be conjugated to the liposomes as described in Martin *et al.*, J. Biol. Chem., 257: 286-288 (1982) via a disulfide-interchange reaction. A chemotherapeutic agent (such as Doxorubicin) is optionally contained within the liposome. *See*, Gabizon *et al.*, J. National Cancer Inst., 81(19): 1484 (1989).

5.2.5.9. Pharmaceutical Compositions of Antibodies

Antibodies specifically binding a PRO polypeptide identified herein, as well as other molecules identified by the screening assays disclosed hereinbefore, can be administered for the treatment of various disorders as noted above and below in the form of pharmaceutical compositions.

If the PRO polypeptide is intracellular and whole antibodies are used as inhibitors, internalizing antibodies are preferred. However, lipofections or liposomes can also be used to deliver the antibody, or an antibody fragment, into cells. Where antibody fragments are used, the smallest inhibitory fragment that specifically binds to the binding domain of the target protein is preferred. For example, based upon the variable-region sequences of an antibody, peptide molecules can be designed that retain the ability to bind the target protein sequence. Such peptides can be synthesized chemically and/or produced by recombinant DNA technology. See, e.g., Marasco et al., Proc. Natl. Acad. Sci. USA, 90: 7889-7893 (1993).

5

10

15

20

25

30

35

The formulation herein may also contain more than one active compound as necessary for the particular indication being treated, preferably those with complementary activities that do not adversely affect each other. Alternatively, or in addition, the composition may comprise an agent that enhances its function, such as, for example, a cytotoxic agent, cytokine, chemotherapeutic agent, or growth-inhibitory agent. Such molecules are suitably present in combination in amounts that are effective for the purpose intended.

The active ingredients may also be entrapped in microcapsules prepared, for example, by coacervation techniques or by interfacial polymerization, for example, hydroxymethylcellulose or gelatin-microcapsules and poly-(methylmethacylate) microcapsules, respectively, in colloidal drug delivery systems (for example, liposomes, albumin microspheres, microemulsions, nano-particles, and nanocapsules) or in macroemulsions. Such techniques are disclosed in Remington's <u>Pharmaceutical Sciences</u>, supra.

The formulations to be used for *in vivo* administration must be sterile. This is readily accomplished by filtration through sterile filtration membranes.

Sustained-release preparations may be prepared. Suitable examples of sustained-release preparations include semipermeable matrices of solid hydrophobic polymers containing the antibody, which matrices are in the form of shaped articles, e.g., films, or microcapsules. Examples of sustained-release matrices include polyesters, hydrogels (for example, poly(2-hydroxyethyl-methacrylate), or poly(vinylalcohol)), polylactides (U.S. Pat. No. 3,773,919), copolymers of L-glutamic acid and γ ethyl-L-glutamate, non-degradable ethylene-vinyl acetate, degradable lactic acid-glycolic acid copolymers such as the LUPRON DEPOT TM (injectable microspheres composed of lactic acid-glycolic acid copolymer and leuprolide acetate), and poly-D-(-)-3-hydroxybutyric acid. While polymers such as ethylene-vinyl acetate and lactic acid-glycolic acid enable release of molecules for over 100 days, certain hydrogels release proteins for shorter time periods. When encapsulated antibodies remain in the body for a long time, they may denature or aggregate as a result of exposure to moisture at 37°C, resulting in a loss of biological activity and possible changes in immunogenicity. Rational strategies can be devised for stabilization depending on the mechanism involved. For example, if the aggregation mechanism is discovered to be intermolecular S-S bond formation through thio-disulfide interchange, stabilization may be achieved by modifying sulfhydryl residues, lyophilizing from acidic solutions, controlling moisture content, using appropriate additives, and developing specific polymer matrix compositions.

5.2.5.10. Methods of Treatment using the Antibody

It is contemplated that the antibodies to a PRO polypeptide may be used to treat various cardiovascular, endothelial, and angiogenic conditions as noted above.

The antibodies are administered to a mammal, preferably a human, in accord with known methods, such as intravenous administration as a bolus or by continuous infusion over a period of time, by intramuscular, intraperitoneal, intracerobrospinal, subcutaneous, intra-articular, intrasynovial, intrathecal, oral, topical, or inhalation routes. Intravenous administration of the antibody is preferred.

Other therapeutic regimens may be combined with the administration of the antibodies of the instant invention as noted above. For example, if the antibodies are to treat cancer, the patient to be treated with such

antibodies may also receive radiation therapy. Alternatively, or in addition, a chemotherapeutic agent may be administered to the patient. Preparation and dosing schedules for such chemotherapeutic agents may be used according to manufacturers' instructions or as determined empirically by the skilled practitioner. Preparation and dosing schedules for such chemotherapy are also described in Chemotherapy Service, Ed., M.C. Perry (Williams & Wilkins: Baltimore, MD, 1992). The chemotherapeutic agent may precede, or follow administration of the antibody, or may be given simultaneously therewith. The antibody may be combined with an anti-estrogen compound such as tamoxifen or EVISTATM or an anti-progesterone such as onapristone (see, EP 616812) in dosages known for such molecules.

If the antibodies are used for treating cancer, it may be desirable also to administer antibodies against other tumor-associated antigens, such as antibodies that bind to one or more of the ErbB2, EGFR, ErbB3, ErbB4, or VEGF receptor(s). These also include the agents set forth above. Also, the antibody is suitably administered serially or in combination with radiological treatments, whether involving irradiation or administration of radioactive substances. Alternatively, or in addition, two or more antibodies binding the same or two or more different antigens disclosed herein may be co-administered to the patient. Sometimes, it may be beneficial also to administer one or more cytokines to the patient. In a preferred embodiment, the antibodies herein are co-administered with a growth-inhibitory agent. For example, the growth-inhibitory agent may be administration of the antibody of the present invention. However, simultaneous administration or administration of the antibody of the present invention first is also contemplated. Suitable dosages for the growth-inhibitory agent are those presently used and may be lowered due to the combined action (synergy) of the growth-inhibitory agent and the antibody herein.

In one embodiment, vascularization of tumors is attacked in combination therapy. The anti-PRO polypeptide antibody and another antibody (e.g., anti-VEGF) are administered to tumor-bearing patients at therapeutically effective doses as determined, for example, by observing necrosis of the tumor or its metastatic foci, if any. This therapy is continued until such time as no further beneficial effect is observed or clinical examination shows no trace of the tumor or any metastatic foci. Then TNF is administered, alone or in combination with an auxiliary agent such as alpha-, beta-, or gamma-interferon, anti-HER2 antibody, heregulin, anti-heregulin antibody, D-factor, interleukin-1 (IL-1), interleukin-2 (IL-2), granulocyte-macrophage colony stimulating factor (GM-CSF), or agents that promote microvascular coagulation in tumors, such as anti-protein C antibody, anti-protein S antibody, or C4b binding protein (see, WO 91/01753, published 21 February 1991), or heat or radiation.

Since the auxiliary agents will vary in their effectiveness, it is desirable to compare their impact on the tumor by matrix screening in conventional fashion. The administration of anti-PRO polypeptide antibody and TNF is repeated until the desired clinical effect is achieved. Alternatively, the anti-PRO polypeptide antibody is administered together with TNF and, optionally, auxiliary agent(s). In instances where solid tumors are found in the limbs or in other locations susceptible to isolation from the general circulation, the therapeutic agents described herein are administered to the isolated tumor or organ. In other embodiments, a FGF or PDGF antagonist, such as an anti-FGF or an anti-PDGF neutralizing antibody, is administered to the patient in conjunction with the anti-PRO

polypeptide antibody. Treatment with anti-PRO polypeptide antibodies preferably may be suspended during periods of wound healing or desirable neovascularization.

For the prevention or treatment of cardiovascular, endothelial, and angiogenic disorder, the appropriate dosage of an antibody herein will depend on the type of disorder to be treated, as defined above, the severity and course of the disease, whether the antibody is administered for preventive or therapeutic purposes, previous therapy, the patient's clinical history and response to the antibody, and the discretion of the attending physician. The antibody is suitably administered to the patient at one time or over a series of treatments.

For example, depending on the type and severity of the disorder, about 1 μ g/kg to 50 mg/kg (e.g., 0.1-20 mg/kg) of antibody is an initial candidate dosage for administration to the patient, whether, for example, by one or more separate administrations, or by continuous infusion. A typical daily or weekly dosage might range from about 1 μ g/kg to 100 mg/kg or more, depending on the factors mentioned above. For repeated administrations over several days or longer, depending on the condition, the treatment is repeated or sustained until a desired suppression of disorder symptoms occurs. However, other dosage regimens may be useful. The progress of this therapy is easily monitored by conventional techniques and assays, including, for example, radiographic tumor imaging.

15

5

10

5.2.5.11. Articles of Manufacture with Antibodies

An article of manufacture containing a container with the antibody and a label is also provided. Such articles are described above, wherein the active agent is an anti-PRO antibody.

5.2.5.12. Diagnosis and Prognosis of Tumors using Antibodies

20

If the indication for which the antibodies are used is cancer, while cell-surface proteins, such as growth receptors over expressed in certain tumors, are excellent targets for drug candidates or tumor (e.g., cancer) treatment, the same proteins along with PRO polypeptides find additional use in the diagnosis and prognosis of tumors. For example, antibodies directed against the PRO polypeptides may be used as tumor diagnostics or prognostics.

25

For example, antibodies, including antibody fragments, can be used qualitatively or quantitatively to detect the expression of genes including the gene encoding the PRO polypeptide. The antibody preferably is equipped with a detectable, e.g., fluorescent label, and binding can be monitored by light microscopy, flow cytometry, fluorimetry, or other techniques known in the art. Such binding assays are performed essentially as described above.

30

In situ detection of antibody binding to the marker gene products can be performed, for example, by immunofluorescence or immunoelectron microscopy. For this purpose, a histological specimen is removed from the patient, and a labeled antibody is applied to it, preferably by overlaying the antibody on a biological sample. This procedure also allows for determining the distribution of the marker gene product in the tissue examined. It will be apparent to those skilled in the art that a wide variety of histological methods are readily available for in situ detection.

35

The following Examples are offered for illustrative purposes only, and are not intended to limit the scope of the present invention in any way.

The disclosures of all patent and literature references cited in the present specification are hereby incorporated by reference in their entirety.

EXAMPLES

5

10

15

20

25

30

35

Commercially available reagents referred to in the Examples were used according to manufacturer's instructions unless otherwise indicated. The source of those cells identified in the following Examples, and throughout the specification, by ATCC accession numbers is the American Type Culture Collection, Manassas, VA. Unless otherwise noted, the present invention uses standard procedures of recombinant DNA technology, such as those described hereinabove and in the following textbooks: Sambrook et al., supra; Ausubel et al., Current Protocols in Molecular Biology (Green Publishing Associates and Wiley Interscience, N.Y., 1989); Innis et al., PCR Protocols: A Guide to Methods and Applications (Academic Press, Inc.: N.Y., 1990); Harlow et al., Antibodies: A Laboratory Manual (Cold Spring Harbor Press: Cold Spring Harbor, 1988); Gait, Oligonucleotide Synthesis (IRL Press: Oxford, 1984); Freshney, Animal Cell Culture, 1987; Coligan et al., Current Protocols in Immunology, 1991.

6.1. EXAMPLE 1: Extracellular Domain Homology Screening to Identify Novel Polypeptides and cDNA Encoding Therefor

The extracellular domain (ECD) sequences (including the secretion signal sequence, if any) from about 950 known secreted proteins from the Swiss-Prot public database were used to search EST databases. The EST databases included public databases (e.g., Dayhoff, GenBank), and proprietary databases (e.g. LIFESEQ*, Incyte Pharmaceuticals, Palo Alto, CA). The search was performed using the computer program BLAST or BLAST-2 (Altschul et al., Methods in Enzymology, 266:460-480 (1996)) as a comparison of the ECD protein sequences to a 6 frame translation of the EST sequences. Those comparisons with a BLAST score of 70 (or in some cases, 90) or greater that did not encode known proteins were clustered and assembled into consensus DNA sequences with the program "phrap" (Phil Green, University of Washington, Seattle, WA).

Using this extracellular domain homology screen, consensus DNA sequences were assembled relative to the other identified EST sequences using phrap. In addition, the consensus DNA sequences obtained were often (but not always) extended using repeated cycles of BLAST or BLAST-2 and phrap to extend the consensus sequence as far as possible using the sources of EST sequences discussed above.

Based upon the consensus sequences obtained as described above, oligonucleotides were then synthesized and used to identify by PCR a cDNA library that contained the sequence of interest and for use as probes to isolate a clone of the full-length coding sequence for a PRO polypeptide. Forward and reverse PCR primers generally range from 20 to 30 nucleotides and are often designed to give a PCR product of about 100-1000 bp in length. The probe sequences are typically 40-55 bp in length. In some cases, additional oligonucleotides are synthesized when the consensus sequence is greater than about 1-1.5 kbp. In order to screen several libraries for a full-length clone, DNA from the libraries was screened by PCR amplification, as per Ausubel et al., Current Protocols in Molecular

<u>Biology</u>, with the PCR primer pair. A positive library was then used to isolate clones encoding the gene of interest using the probe oligonucleotide and one of the primer pairs.

The cDNA libraries used to isolate the cDNA clones were constructed by standard methods using commercially available reagents such as those from Invitrogen, San Diego, CA. The cDNA was primed with oligo dT containing a NotI site, linked with blunt to SalI hemikinased adaptors, cleaved with NotI, sized appropriately by gel electrophoresis, and cloned in a defined orientation into a suitable cloning vector (such as pRKB or pRKD; pRK5B is a precursor of pRK5D that does not contain the SfiI site; see, Holmes et al., Science, 253:1278-1280 (1991)) in the unique XhoI and NotI sites.

6.2. EXAMPLE 2: Isolation of cDNA Clones by Amylase Screening

6.2.1. Preparation of oligo dT primed cDNA library

5

10

15

20

25

30

mRNA was isolated from a human tissue of interest using reagents and protocols from Invitrogen, San Diego, CA (Fast Track 2). This RNA was used to generate an oligo dT primed cDNA library in the vector pRK5D using reagents and protocols from Life Technologies, Gaithersburg, MD (Super Script Plasmid System). In this procedure, the double stranded cDNA was sized to greater than 1000 bp and the Sall/NotI linkered cDNA was cloned into XhoI/NotI cleaved vector. pRK5D is a cloning vector that has an sp6 transcription initiation site followed by an SfiI restriction enzyme site preceding the XhoI/NotI cDNA cloning sites.

6.2.2. Preparation of random primed cDNA library

A secondary cDNA library was generated in order to preferentially represent the 5' ends of the primary cDNA clones. Sp6 RNA was generated from the primary library (described above), and this RNA was used to generate a random primed cDNA library in the vector pSST-AMY.0 using reagents and protocols from Life Technologies (Super Script Plasmid System, referenced above). In this procedure the double stranded cDNA was sized to 500-1000 bp, linkered with blunt to NotI adaptors, cleaved with SfiI, and cloned into SfiI/NotI cleaved vector. pSST-AMY.0 is a cloning vector that has a yeast alcohol dehydrogenase promoter preceding the cDNA cloning sites and the mouse amylase sequence (the mature sequence without the secretion signal) followed by the yeast alcohol dehydrogenase terminator, after the cloning sites. Thus, cDNAs cloned into this vector that are fused in frame with amylase sequence will lead to the secretion of amylase from appropriately transfected yeast colonies.

6.2.3. Transformation and Detection

DNA from the library described in paragraph 2 above was chilled on ice to which was added electrocompetent DH10B bacteria (Life Technologies, 20 ml). The bacteria and vector mixture was then electroporated as recommended by the manufacturer. Subsequently, SOC media (Life Technologies, 1 ml) was added and the mixture was incubated at 37°C for 30 minutes. The transformants were then plated onto 20 standard 150 mm LB plates containing ampicillin and incubated for 16 hours (37°C). Positive colonies were scraped off the plates and the DNA was isolated from the bacterial pellet using standard protocols, e.g., CsCl-gradient. The purified DNA was then carried on to the yeast protocols below.

The yeast methods were divided into three categories: (1) Transformation of yeast with the plasmid/cDNA combined vector; (2) Detection and isolation of yeast clones secreting amylase; and (3) PCR amplification of the insert directly from the yeast colony and purification of the DNA for sequencing and further analysis.

The yeast strain used was HD56-5A (ATCC-90785). This strain has the following genotype: MAT alpha, ura3-52, leu2-3, leu2-112, his3-11, his3-15, MAL⁺, SUC⁺, GAL⁺. Preferably, yeast mutants can be employed that have deficient post-translational pathways. Such mutants may have translocation deficient alleles in sec71, sec72, sec62, with truncated sec71 being most preferred. Alternatively, antagonists (including antisense nucleotides and/or ligands) which interfere with the normal operation of these genes, other proteins implicated in this post translation pathway (e.g., SEC61p, SEC72p, SEC62p, SEC63p, TDJ1p or SSA1p-4p) or the complex formation of these proteins may also be preferably employed in combination with the amylase-expressing yeast.

5

10

15

20

25

30

35

Transformation was performed based on the protocol outlined by Gietz et al., Nucl. Acid. Res., 20:1425 (1992). Transformed cells were then inoculated from agar into YEPD complex media broth (100 ml) and grown overnight at 30°C. The YEPD broth was prepared as described in Kaiser et al., Methods in Yeast Genetics, Cold Spring Harbor Press, Cold Spring Harbor, NY, p. 207 (1994). The overnight culture was then diluted to about 2 x 10⁶ cells/ml (approx. OD₆₀₀=0.1) into fresh YEPD broth (500 ml) and regrown to 1 x 10⁷ cells/ml (approx. OD₆₀₀=0.4-0.5).

The cells were then harvested and prepared for transformation by transfer into GS3 rotor bottles in a Sorval GS3 rotor at 5,000 rpm for 5 minutes, the supernatant discarded, and then resuspended into sterile water, and centrifuged again in 50 ml falcon tubes at 3,500 rpm in a Beckman GS-6KR centrifuge. The supernatant was discarded and the cells were subsequently washed with LiAc/TE (10 ml, 10 mM Tris-HCl, 1 mM EDTA pH 7.5, 100 mM Li₂OOCCH₃), and resuspended into LiAc/TE (2.5 ml).

Transformation took place by mixing the prepared cells (100 μ l) with freshly denatured single stranded salmon testes DNA (Lofstrand Labs, Gaithersburg, MD) and transforming DNA (1 μ g, vol. < 10 μ l) in microfuge tubes. The mixture was mixed briefly by vortexing, then 40% PEG/TE (600 μ l, 40% polyethylene glycol-4000, 10 mM Tris-HCl, 1 mM EDTA, 100 mM Li₂OOCCH₃, pH 7.5) was added. This mixture was gently mixed and incubated at 30°C while agitating for 30 minutes. The cells were then heat shocked at 42°C for 15 minutes, and the reaction vessel centrifuged in a microfuge at 12,000 rpm for 5-10 seconds, decanted and resuspended into TE (500 μ l, 10 mM Tris-HCl, 1 mM EDTA pH 7.5) followed by recentrifugation. The cells were then diluted into TE (1 ml) and aliquots (200 μ l) were spread onto the selective media previously prepared in 150 mm growth plates (VWR).

Alternatively, instead of multiple small reactions, the transformation was performed using a single, large scale reaction, wherein reagent amounts were scaled up accordingly.

The selective media used was a synthetic complete dextrose agar lacking uracil (SCD-Ura) prepared as described in Kaiser *et al.*, Methods in Yeast Genetics, Cold Spring Harbor Press, Cold Spring Harbor, NY, p. 208-210 (1994). Transformants were grown at 30°C for 2-3 days.

The detection of colonies secreting amylase was performed by including red starch in the selective growth media. Starch was coupled to the red dye (Reactive Red-120, Sigma) as per the procedure described by Biely et

al., Anal. Biochem., 172:176-179 (1988). The coupled starch was incorporated into the SCD-Ura agar plates at a final concentration of 0.15% (w/v), and was buffered with potassium phosphate to a pH of 7.0 (50-100 mM final concentration).

The positive colonies were picked and streaked across fresh selective media (onto 150 mm plates) in order to obtain well isolated and identifiable single colonies. Well isolated single colonies positive for amylase secretion were detected by direct incorporation of red starch into buffered SCD-Ura agar. Positive colonies were determined by their ability to break down starch resulting in a clear halo around the positive colony visualized directly.

6.2.4. Isolation of DNA by PCR Amplification

When a positive colony was isolated, a portion of it was picked by a toothpick and diluted into sterile water (30 µl) in a 96 well plate. At this time, the positive colonies were either frozen and stored for subsequent analysis or immediately amplified. An aliquot of cells (5 µl) was used as a template for the PCR reaction in a 25 µl volume containing: 0.5 µl Klentaq (Clontech, Palo Alto, CA); 4.0 µl 10 mM dNTP's (Perkin Elmer-Cetus); 2.5 µl Kentaq buffer (Clontech); 0.25 µl forward oligo 1; 0.25 µl reverse oligo 2; 12.5 µl distilled water. The sequence of the forward oligonucleotide 1 was:

5'-TGTAAAACGACGGCCAGT<u>TAAATAGACCTGCAATTATTAATCT</u>-3' (SEQ ID NO:382)
The sequence of reverse oligonucleotide 2 was:

5'-CAGGAAACAGCTATGACCACCTGCACACCTGCAAATCCATT-3' (SEQ ID NO:383)

PCR was then performed as follows	PCR	was	then	performed	as	follows
-----------------------------------	-----	-----	------	-----------	----	---------

5

10

15

30

	a.		Denature	92°C,	5 minutes
20	ъ.	3 cycles of:	Denature	92°C,	30 seconds
			Anneal	59°C,	30 seconds
			Extend	72°C,	60 seconds
	c.	3 cycles of:	Denature	92°C,	30 seconds
			Anneal	57°C,	30 seconds
25			Extend	72°C,	60 seconds
	d.	25 cycles of:	Denature	92°C,	30 seconds
			Anneal	55°C,	30 seconds
			Extend	72°C,	60 seconds
	e.		Hold	4°C	

The underlined regions of the oligonucleotides annealed to the ADH promoter region and the amylase region, respectively, and amplified a 307 bp region from vector pSST-AMY.0 when no insert was present. Typically, the first 18 nucleotides of the 5' end of these oligonucleotides contained annealing sites for the sequencing primers. Thus, the total product of the PCR reaction from an empty vector was 343 bp. However, signal sequence-fused cDNA resulted in considerably longer nucleotide sequences.

Following the PCR, an aliquot of the reaction (5 µl) was examined by agarose gel electrophoresis in a 1% agarose gel using a Tris-Borate-EDTA (TBE) buffering system as described by Sambrook *et al.*, *supra*. Clones resulting in a single strong PCR product larger than 400 bp were further analyzed by DNA sequencing after purification with a 96 Qiaquick PCR clean-up column (Qiagen Inc., Chatsworth, CA).

5

10

15

20

6.3. EXAMPLE 3: Isolation of cDNA Clones Using Signal Algorithm Analysis

Various polypeptide-encoding nucleic acid sequences were identified by applying a proprietary signal sequence finding algorithm developed by Genentech, Inc., (South San Francisco, CA) upon ESTs as well as clustered and assembled EST fragments from public (e.g., GenBank) and/or private (LIFESEQ®, Incyte Pharmaceuticals, Inc., Palo Alto, CA) databases. The signal sequence algorithm computes a secretion signal score based on the character of the DNA nucleotides surrounding the first and optionally the second methionine codon(s) (ATG) at the 5'-end of the sequence or sequence fragment under consideration. The nucleotides following the first ATG must code for at least 35 unambiguous amino acids without any stop codons. If the first ATG has the required amino acids, the second is not examined. If neither meets the requirement, the candidate sequence is not scored. In order to determine whether the EST sequence contains an authentic signal sequence, the DNA and corresponding amino acid sequences surrounding the ATG codon are scored using a set of seven sensors (evaluation parameters) known to be associated with secretion signals. Use of this algorithm resulted in the identification of numerous polypeptide-encoding nucleic acid sequences.

6.4. EXAMPLE 4: Isolation of cDNA clones Encoding Human PRO Polypeptides

Using the techniques described in Examples 1 to 3 above, numerous full-length cDNA clones were identified as encoding PRO polypeptides as disclosed herein. These cDNAs were then deposited under the terms of the Budapest Treaty with the American Type Culture Collection, 10801 University Blvd., Manassas, VA 20110-2209, USA (ATCC) as shown in Table 7 below.

	<u>Material</u>	ATCC Dep. No.	Deposit Date
25	23330-1390	209775	4/14/1998
	23339-1130	209282	9/18/1997
	26846-1397	203406	10/27/1998
	26847-1395	209772	4/14/1998
	27865-1091	209296	9/23/1997
30	30868-1156	1437-PTA	3/2/2000
	30871-1157	209380	10/16/1997
	32286-1191	209385	10/16/1997
	33089-1132	209262	9/16/1997
	33092-1202	209420	10/28/1997

	33100-1159	209377	10/16/1997
	33223-1136	209264	9/16/1997
	34392-1170	209526	12/10/1997
	34431-1177	209399	10/17/1997
5	34433-1308	209719	3/31/1998
	34434-1139	209252	9/16/1997
	35600-1162	209370	10/16/1997
	35673-1201	209418	10/28/1997
	35880-1160	209379	10/16/1997
10	35918-1174	209402	10/17/1997
	36350-1158	209378	10/16/1997
	36638-1056	209456	11/12/1997
	38268-1188	209421	10/28/1997
	40370-1217	209485	11/21/1997
15	40628-1216	209432	11/7/1997
	43316-1237	209487	11/21/1997
	44196-1353	209847	5/6/1998
	45409-2511	203579	1/12/1999
	45419-1252	209616	2/5/1998
20	46777-1253	209619	2/5/1998
	48336-1309	209669	3/11/1998
	48606-1479	203040	7/1/1998
	49435-1219	209480	11/21/1997
	49631-1328	209806	4/28/1998
25	50919-1361	209848	5/6/1998
	50920-1325	209700	3/26/1998
	50921-1458	209859	5/12/1998
	52758-1399	209773	4/14/1998
	53517-1366-1	209802	4/23/1998
30	53915-1258	209593	1/21/1998
	53974-1401	209774	4/14/1998
	53987-1438	209858	5/12/1998
	56047-1456	209948	6/9/1998
	56050-1455	203011	6/23/1998
35	56110-1437	203113	8/11/1998
	56405-1357	209849	5/6/1998
	56433-1406	209857	5/12/1998

	56439-1376	209864	5/14/1998
	56529-1647	203293	9/29/1998
	56865-1491	203022	6/23/1998
	56965-1356	209842	5/6/1998
5	57033-1403-1	209905	5/27/1998
	57037-1444	209903	5/27/1998
	57039-1402	209777	4/14/1998
	57689-1385	209869	5/14/1998
	57690-1374	209950	6/9/1998
10	57694-1341	203017	6/23/1998
	57695-1340	203006	6/23/1998
	57699-1412	203020	6/23/1998
	57700-1408	203583	1/12/1999
	57708-1411	203021	6/23/1998
15	57838-1337	203014	6/23/1998
	58847-1383	209879	5/20/1998
	58852-1637	203271	9/22/1998
	58853-1423	203016	6/23/1998
	59212-1627	203245	9/9/1998
20	59220-1514	209962	6/9/1998
	59493-1420	203050	7/1/1998
	59497-1496	209941	6/4/1998
	59586-1520	203288	9/29/1998
	59588-1571	203106	8/11/1998
25	59620-1463	209989	6/16/1998
	59622-1334	209984	6/16/1998
	59777-1480	203111	8/11/1998
	59848-1512	203088	8/4/1998
	59849-1504	209986	6/16/1998
30	60621-1516	203091	8/4/1998
	60622-1525	203090	8/4/1998
	60764-1533	203452	11/10/1998
	60783-1611	203130	8/18/1998
	61755-1554	203112	8/11/1998
35	62306-1570	203254	9/9/1998
	62312-2558	203836	3/9/1999
	62814-1521	203093	8/4/1998

	62872-1509	203100	8/4/1998
	64883-1526	203253	9/9/1998
	64886-1601	203241	9/9/1998
	64889-1541	203250	9/9/1998
5	64896-1539	203238	9/9/1998
	64897-1628	203216	9/15/1998
	64903-1553	203223	9/15/1998
	64908-1163-1	203243	9/9/1998
	64950-1590	203224	9/15/1998
10	65402-1540	203252	9/9/1998
	65404-1551	203244	9/9/1998
	65405-1547	203476	11/17/1998
	65410-1569	203231	9/15/1998
	65412-1523	203094	8/4/1998
15	66307-2661	431-PTA	7/27/1999
	66526-1616	203246	9/9/1998
	66659-1593	203269	9/22/1998
	66660-1585	203279	9/22/1998
	66667-1596	203267	9/22/1998
20	66672-1586	203265	9/22/1998
	66675-1587	203282	9/22/1998
	67300-1605	203163	8/25/1998
	68818-2536	203657	2/9/1999
	68862-2546	203652	2/9/1999
25	68872-1620	203160	8/25/1998
	71290-1630	203275	9/22/1998
	73736-1657	203466	11/17/1998
	73739-1645	203270	9/22/1998
	73742-1662 .	203316	10/6/1998
30	76385-1692	203664	2/9/1999
	76393-1664	203323	10/6/1998
	76399-1700	203472	11/17/1998
	76400-2528	203573	1/12/1999
	76510-2504	203477	11/17/1998
35	76529-1666	203315	10/6/1998
	76532-1702	203473	11/17/1998
	76541-1675	203409	10/27/1998

	77503-1686	203362	10/20/1998
	77624-2515	203553	12/22/1998
	79230-2525	203549	12/22/1998
	79862-2522	203550	12/22/1998
5	80145-2594	204-PTA	6/8/1999
	80899-2501	203539	12/15/1998
	81754-2532	203542	12/15/1998
	81757-2512	203543	12/15/1998
	81761-2583	203862	3/23/1999
10	82358-2738	510-PTA	8/10/1999
	82364-2538	203603	1/20/1999
	82403-2959	2317-PTA	8/1/2000
	83500-2506	203391	10/29/1998
	83560-2569	203816	3/2/1999
15	84210-2576	203818	3/2/1999
	84920-2614	203966	4/27/1999
	86576-2595	203868	3/23/1999
	92218-2554	203834	3/9/1999
	92233-2599	134-PTA	5/25/1999
20	92256-2596	203891	3/30/1999
	92265-2669	256-PTA	6/22/1999
	92274-2617	203971	4/27/1999
	92929-2534-1	203586	1/12/1999
	93011-2637	20-PTA	5/4/1999
25	94854-2586	203864	3/23/1999
	96787-2534-1	203589	1/12/1999
	96867-2620	203972	4/27/1999
	96872-2674	550-PTA	8/17/1999
	96878-2626	23-PTA	5/4/1999
30	96889-2641	119-PTA	5/25/1999
	100312-2645	44-PTA	5/11/1999
	105782-2693	387-PTA	7/20/1999
	105849-2704	473-PTA	8/3/1999
	108725-2766	863-PTA	10/19/1999
35	108769-2765	861-PTA	10/19/1999
	119498-2965	2298-PTA	7/25/2000
	119535-2756	613-PTA	8/31/1999

	125185-2806	1031-PTA	12/7/1999
	131639-2874	1784-PTA	4/25/2000
	139623-2893	1670-PTA	4/11/2000
	143076-2787	1028-PTA	12/7/1999
5	143276-2975	2387-PTA	8/8/2000
	164625-2890	1535-PTA	3/21/2000
	167678-2963	2302-PTA	7/25/2000
	170021-2923	1906-PTA	5/23/2000
	170212-3000	2583-PTA	10/10/2000
10	177313-2982	2251-PTA	7/19/2000

15

20

25

30

35

These deposits were made under the provisions of the Budapest Treaty on the International Recognition of the Deposit of Microorganisms for the Purpose of Patent Procedure and the Regulations thereunder (Budapest Treaty). This assures maintenance of a viable culture of the deposit for 30 years from the date of deposit. The deposits will be made available by ATCC under the terms of the Budapest Treaty, and subject to an agreement between Genentech, Inc. and ATCC, which assures permanent and unrestricted availability of the progeny of the culture of the deposit to the public upon issuance of the pertinent U.S. patent or upon laying open to the public of any U.S. or foreign patent application, whichever comes first, and assures availability of the progeny to one determined by the U.S. Commissioner of Patents and Trademarks to be entitled thereto according to 35 USC § 122 and the Commissioner's rules pursuant thereto (including 37 CFR § 1.14 with particular reference to 886 OG 638).

The assignee of the present application has agreed that if a culture of the materials on deposit should die or be lost or destroyed when cultivated under suitable conditions, the materials will be promptly replaced on notification with another of the same. Availability of the deposited material is not to be construed as a license to practice the invention in contravention of the rights granted under the authority of any government in accordance with its patent laws.

6.5 EXAMPLE 5: Isolation of cDNA clones Encoding Human PRO1873, PRO7223, PRO7248,

PRO730, PRO532, PRO7261, PRO734, PRO771, PRO2010, PRO5723,

PRO3444, PRO9940, PRO3562, PRO10008, PRO5730, PRO6008,

PRO4527, PRO4538 and PRO4553

DNA molecules encoding the PRO1873, PRO7223, PRO7248, PRO730, PRO532, PRO7261, PRO734, PRO771, PRO2010, PRO5723, PRO3444, PRO9940, PRO3562, PRO10008, PRO5730, PRO6008, PRO4527, PRO4538 and PRO4553 polypeptides shown in the accompanying figures were obtained through GenBank.

6.6. EXAMPLE 6: Use of PRO as a Hybridization Probe

The following method describes use of a nucleotide sequence encoding PRO as a hybridization probe.

DNA comprising the coding sequence of full-length or mature PRO (as shown in accompanying figures) or a fragment thereof is employed as a probe to screen for homologous DNAs (such as those encoding naturally-occurring variants of PRO) in human tissue cDNA libraries or human tissue genomic libraries.

Hybridization and washing of filters containing either library DNAs is performed under the following highstringency conditions. Hybridization of radiolabeled probe derived from the gene encoding PRO polypeptide to the filters is performed in a solution of 50% formamide, 5x SSC, 0.1% SDS, 0.1% sodium pyrophosphate, 50 mM sodium phosphate, pH 6.8, 2x Denhardt's solution, and 10% dextran sulfate at 42°C for 20 hours. Washing of the filters is performed in an aqueous solution of 0.1x SSC and 0.1% SDS at 42°C.

DNAs having a desired sequence identity with the DNA encoding full-length native sequence can then be identified using standard techniques known in the art.

6.7. EXAMPLE 7: Expression of PRO in E. coli

5

10

15

20

25

30

35

This example illustrates preparation of an unglycosylated form of PRO by recombinant expression in E. coli.

The DNA sequence encoding PRO is initially amplified using selected PCR primers. The primers should contain restriction enzyme sites which correspond to the restriction enzyme sites on the selected expression vector. A variety of expression vectors may be employed. An example of a suitable vector is pBR322 (derived from E. coli; see, Bolivar et al., Gene, 2:95 (1977)) which contains genes for amplified sequences are then ligated into the vector is digested with restriction enzyme and dephosphorylated. The PCR amplified sequences are then ligated into the vector. The vector will preferably include sequences which encode for an antibiotic resistance gene, a trp promoter, a poly-His leader (including the first six STII codons, poly-His sequence, and enterokinase cleavage site), the PRO coding region, lambda transcriptional terminator, and an argU gene.

The ligation mixture is then used to transform a selected *E. coli* strain using the methods described in Sambrook *et al.*, *supra*. Transformants are identified by their ability to grow on LB plates and antibiotic resistant colonies are then selected. Plasmid DNA can be isolated and confirmed by restriction analysis and DNA sequencing.

Selected clones can be grown overnight in liquid culture medium such as LB broth supplemented with antibiotics. The overnight culture may subsequently be used to inoculate a larger scale culture. The cells are then grown to a desired optical density, during which the expression promoter is turned on.

After culturing the cells for several more hours, the cells can be harvested by centrifugation. The cell pellet obtained by the centrifugation can be solubilized using various agents known in the art, and the solubilized PRO protein can then be purified using a metal chelating column under conditions that allow tight binding of the protein.

PRO may be expressed in *E. coli* in a poly-His tagged form, using the following procedure. The DNA encoding PRO is initially amplified using selected PCR primers. The primers will contain restriction enzyme sites which correspond to the restriction enzyme sites on the selected expression vector, and other useful sequences providing for efficient and reliable translation initiation, rapid purification on a metal chelation column, and proteolytic removal with enterokinase. The PCR-amplified, poly-His tagged sequences are then ligated into an

expression vector, which is used to transform an *E. coli* host based on strain 52 (W3110 fuhA(tonA) lon galE rpoHts(htpRts) clpP(lacIq). Transformants are first grown in LB containing 50 mg/ml carbenicillin at 30°C with shaking until an OD₆₀₀ of 3-5 is reached. Cultures are then diluted 50-100 fold into CRAP media (prepared by mixing 3.57 g (NH₄)₂SO₄, 0.71 g sodium citrate•2H₂O, 1.07 g KCl, 5.36 g Difco yeast extract, 5.36 g Sheffield hycase SF in 500 ml water, as well as 110 mM MPOS, pH 7.3, 0.55% (w/v) glucose and 7 mM MgSO₄) and grown for approximately 20-30 hours at 30°C with shaking. Samples are removed to verify expression by SDS-PAGE analysis, and the bulk culture is centrifuged to pellet the cells. Cell pellets are frozen until purification and refolding.

5

10

15

20

25

30

35

E. coli paste from 0.5 to 1 L fermentations (6-10 g pellets) is resuspended in 10 volumes (w/v) in 7 M guanidine, 20 mM Tris, pH 8 buffer. Solid sodium sulfite and sodium tetrathionate is added to make final concentrations of 0.1M and 0.02 M, respectively, and the solution is stirred overnight at 4°C. This step results in a denatured protein with all cysteine residues blocked by sulfitolization. The solution is centrifuged at 40,000 rpm in a Beckman Ultracentifuge for 30 min. The supernatant is diluted with 3-5 volumes of metal chelate column buffer (6 M guanidine, 20 mM Tris, pH 7.4) and filtered through 0.22 micron filters to clarify. The clarified extract is loaded onto a 5 ml Qiagen Ni ²⁺-NTA metal chelate column equilibrated in the metal chelate column buffer. The column is washed with additional buffer containing 50 mM imidazole (Calbiochem, Utrol grade), pH 7.4. The protein is eluted with buffer containing 250 mM imidazole. Fractions containing the desired protein are pooled and stored at 4°C. Protein concentration is estimated by its absorbance at 280 nm using the calculated extinction coefficient based on its amino acid sequence.

of: 20 mM Tris, pH 8.6, 0.3 M NaCl, 2.5 M urea, 5 mM cysteine, 20 mM glycine and 1 mM EDTA. Refolding volumes are chosen so that the final protein concentration is between 50 to 100 micrograms/ml. The refolding solution is stirred gently at 4°C for 12-36 hours. The refolding reaction is quenched by the addition of TFA to a final concentration of 0.4% (pH of approximately 3). Before further purification of the protein, the solution is filtered through a 0.22 micron filter and acetonitrile is added to 2-10% final concentration. The refolded protein is chromatographed on a Poros R1/H reversed phase column using a mobile buffer of 0.1% TFA with elution with a gradient of acetonitrile from 10 to 80%. Aliquots of fractions with A₂₈₀ absorbance are analyzed on SDS polyacrylamide gels and fractions containing homogeneous refolded protein are pooled. Generally, the properly

The proteins are refolded by diluting the sample slowly into freshly prepared refolding buffer consisting

most compact with their hydrophobic interiors shielded from interaction with the reversed phase resin. Aggregated species are usually eluted at higher acetonitrile concentrations. In addition to resolving misfolded forms of proteins from the desired form, the reversed phase step also removes endotoxin from the samples.

refolded species of most proteins are eluted at the lowest concentrations of acetonitrile since those species are the

Fractions containing the desired folded PRO polypeptide are pooled and the acetonitrile removed using a gentle stream of nitrogen directed at the solution. Proteins are formulated into 20 mM Hepes, pH 6.8 with 0.14 M sodium chloride and 4% mannitol by dialysis or by gel filtration using G25 Superfine (Pharmacia) resins equilibrated in the formulation buffer and sterile filtered.

Many of the PRO polypeptides disclosed herein were successfully expressed as descibed above.

6.8. EXAMPLE 8: Expression of PRO in mammalian cells

5

10

15

20

25

30

35

This example illustrates preparation of a potentially glycosylated form of PRO by recombinant expression in mammalian cells.

The vector, pRK5 (see EP 307,247, published March 15, 1989), is employed as the expression vector. Optionally, the PRO DNA is ligated into pRK5 with selected restriction enzymes to allow insertion of the PRO DNA using ligation methods such as described in Sambrook et al., supra. The resulting vector is called pRK5-PRO.

In one embodiment, the selected host cells may be 293 cells. Human 293 cells (ATCC CCL 1573) are grown to confluence in tissue culture plates in medium such as DMEM supplemented with fetal calf serum and optionally, nutrient components and/or antibiotics. About 10 µg pRK5-PRO DNA is mixed with about 1 µg DNA encoding the VA RNA gene [Thimmappaya et al., Cell, 31:543 (1982)] and dissolved in 500 µl of 1 mM Tris-HCl, 0.1 mM EDTA, 0.227 M CaCl₂. To this mixture is added, dropwise, 500 µl of 50 mM HEPES (pH 7.35), 280 mM NaCl, 1.5 mM NaPO₄, and a precipitate is allowed to form for 10 minutes at 25°C. The precipitate is suspended and added to the 293 cells and allowed to settle for about four hours at 37°C. The culture medium is aspirated off and 2 ml of 20% glycerol in PBS is added for 30 seconds. The 293 cells are then washed with serum free medium, fresh medium is added and the cells are incubated for about 5 days.

Approximately 24 hours after the transfections, the culture medium is removed and replaced with culture medium (alone) or culture medium containing 200 µCi/ml ³⁵S-cysteine and 200 µCi/ml ³⁵S-methionine. After a 12 hour incubation, the conditioned medium is collected, concentrated on a spin filter, and loaded onto a 15% SDS gel. The processed gel may be dried and exposed to film for a selected period of time to reveal the presence of the PRO polypeptide. The cultures containing transfected cells may undergo further incubation (in serum free medium) and the medium is tested in selected bioassays.

In an alternative technique, PRO may be introduced into 293 cells transiently using the dextran sulfate method described by Somparyrac *et al.*, <u>Proc. Natl. Acad. Sci.</u>, 12:7575 (1981). 293 cells are grown to maximal density in a spinner flask and 700 μ g pRK5-PRO DNA is added. The cells are first concentrated from the spinner flask by centrifugation and washed with PBS. The DNA-dextran precipitate is incubated on the cell pellet for four hours. The cells are treated with 20% glycerol for 90 seconds, washed with tissue culture medium, and reintroduced into the spinner flask containing tissue culture medium, 5 μ g/ml bovine insulin and 0.1 μ g/ml bovine transferrin. After about four days, the conditioned media is centrifuged and filtered to remove cells and debris. The sample containing expressed PRO can then be concentrated and purified by any selected method, such as dialysis and/or column chromatography.

In another embodiment, PRO can be expressed in CHO cells. The pRK5-PRO can be transfected into CHO cells using known reagents such as CaPO₄ or DEAE-dextran. As described above, the cell cultures can be incubated, and the medium replaced with culture medium (alone) or medium containing a radiolabel such as ³⁵S-methionine. After determining the presence of a PRO polypeptide, the culture medium may be replaced with serum free medium. Preferably, the cultures are incubated for about 6 days, and then the conditioned medium is harvested.

The medium containing the expressed PRO polypeptide can then be concentrated and purified by any selected method.

Epitope-tagged PRO may also be expressed in host CHO cells. The PRO may be subcloned out of the pRK5 vector. The subclone insert can undergo PCR to fuse in frame with a selected epitope tag such as a poly-His tag into a Baculovirus expression vector. The poly-His tagged PRO insert can then be subcloned into a SV40 driven vector containing a selection marker such as DHFR for selection of stable clones. Finally, the CHO cells can be transfected (as described above) with the SV40 driven vector. Labeling may be performed, as described above, to verify expression. The culture medium containing the expressed poly-His tagged PRO can then be concentrated and purified by any selected method, such as by Ni²⁺-chelate affinity chromatography.

10

5

PRO may also be expressed in CHO and/or COS cells by a transient expression procedure or in CHO cells by another stable expression procedure.

Stable expression in CHO cells is performed using the following procedure. The proteins are expressed as an IgG construct (immunoadhesin), in which the coding sequences for the soluble forms (e.g., extracellular domains) of the respective proteins are fused to an IgG1 constant region sequence containing the hinge, CH2 and CH2 domains and/or as a poly-His tagged form.

15

Following PCR amplification, the respective DNAs are subcloned in a CHO expression vector using standard techniques as described in Ausubel et al., Current Protocols of Molecular Biology, Unit 3.16, John Wiley and Sons (1997). CHO expression vectors are constructed to have compatible restriction sites 5' and 3' of the DNA of interest to allow the convenient shuttling of cDNA's. The vector used in expression in CHO cells is as described in Lucas et al., Nucl. Acids Res., 24:9 (1774-1779 (1996), and uses the SV40 early promoter/enhancer to drive expression of the cDNA of interest and dihydrofolate reductase (DHFR). DHFR expression permits selection for stable maintenance of the plasmid following transfection.

25

20

Twelve micrograms of the desired plasmid DNA is introduced into approximately 10 million CHO cells using commercially available transfection reagents Superfect[®] (Qiagen), Dosper[®] or Fugene[®] (Boehringer Mannheim). The cells are grown as described in Lucas *et al.*, *supra*. Approximately 3 x 10⁷ cells are frozen in an ampule for further growth and production as described below.

30

The ampules containing the plasmid DNA are thawed by placement into a water bath and mixed by vortexing. The contents are pipetted into a centrifuge tube containing 10 ml of media and centrifuged at 1000 rpm for 5 minutes. The supernatant is aspirated and the cells are resuspended in 10 ml of selective media (0.2 µm filtered PS20 with 5% 0.2 µm diafiltered fetal bovine serum). The cells are then aliquoted into a 100 ml spinner containing 90 ml of selective media. After 1-2 days, the cells are transferred into a 250 ml spinner filled with 150 ml selective growth medium and incubated at 37°C. After another 2-3 days, 250 ml, 500 ml and 2000 ml spinners are seeded with 3 x 10⁵ cells/ml. The cell media is exchanged with fresh media by centrifugation and resuspension in production medium. Although any suitable CHO media may be employed, a production medium described in U.S. Patent No. 5,122,469, issued June 16, 1992 may actually be used. A 3L production spinner is seeded at 1.2 x 10⁶ cells/ml. On day 0, the cell number and pH is determined. On day 1, the spinner is sampled and sparging with filtered air is commenced. On day 2, the spinner is sampled, the temperature shifted to 33°C, and 30 ml of 500 g/L

35

glucose and 0.6 ml of 10% antifoam (e.g., 35% polydimethylsiloxane emulsion, Dow Corning 365 Medical Grade Emulsion) taken. Throughout the production, the pH is adjusted as necessary to keep it at around 7.2. After 10 days, or until the viability drops below 70%, the cell culture is harvested by centrifugation and filtering through a 0.22 µm filter. The filtrate is either stored at 4°C or immediately loaded onto columns for purification.

5

For the poly-His tagged constructs, the proteins are purified using a Ni ²⁺-NTA column (Qiagen). Before purification, imidazole is added to the conditioned media to a concentration of 5 mM. The conditioned media is pumped onto a 6 ml Ni ²⁺-NTA column equilibrated in 20 mM Hepes, pH 7.4, buffer containing 0.3 M NaCl and 5 mM imidazole at a flow rate of 4-5 ml/min. at 4°C. After loading, the column is washed with additional equilibration buffer and the protein eluted with equilibration buffer containing 0.25 M imidazole. The highly purified protein is subsequently desalted into a storage buffer containing 10 mM Hepes, 0.14 M NaCl and 4% mannitol, pH 6.8, with a 25 ml G25 Superfine (Pharmacia) column and stored at -80°C.

10

15

Immunoadhesin (Fc-containing) constructs are purified from the conditioned media as follows. The conditioned medium is pumped onto a 5 ml Protein A column (Pharmacia) which has been equilibrated in 20 mM Na phosphate buffer, pH 6.8. After loading, the column is washed extensively with equilibration buffer before elution with 100 mM citric acid, pH 3.5. The eluted protein is immediately neutralized by collecting 1 ml fractions into tubes containing 275 µl of 1 M Tris buffer, pH 9. The highly purified protein is subsequently desalted into storage buffer as described above for the poly-His tagged proteins. The homogeneity is assessed by SDS polyacrylamide gels and by N-terminal amino acid sequencing by Edman degradation.

Many of the PRO polypeptides disclosed herein were successfully expressed as descibed above.

20

25

6.9. EXAMPLE 9: Expression of PRO in Yeast

The following method describes recombinant expression of PRO in yeast.

First, yeast expression vectors are constructed for intracellular production or secretion of PRO from the ADH2/GAPDH promoter. DNA encoding PRO and the promoter is inserted into suitable restriction enzyme sites in the selected plasmid to direct intracellular expression of PRO. For secretion, DNA encoding PRO can be cloned into the selected plasmid, together with DNA encoding the ADH2/GAPDH promoter, a native PRO signal peptide or other mammalian signal peptide, or, for example, a yeast alpha-factor or invertase secretory signal/leader sequence, and linker sequences (if needed) for expression of PRO.

30

Yeast cells, such as yeast strain AB110, can then be transformed with the expression plasmids described above and cultured in selected fermentation media. The transformed yeast supernatants can be analyzed by precipitation with 10% trichloroacetic acid and separation by SDS-PAGE, followed by staining of the gels with Coomassie Blue stain.

U

Recombinant PRO can subsequently be isolated and purified by removing the yeast cells from the fermentation medium by centrifugation and then concentrating the medium using selected cartridge filters. The concentrate containing PRO may further be purified using selected column chromatography resins.

35

Many of the PRO polypeptides disclosed herein were successfully expressed as described above.

6.10. EXAMPLE 10: Expression of PRO in Baculovirus-Infected Insect Cells

5

10

15

20

25

30

35

The following method describes recombinant expression in Baculovirus-infected insect cells.

The sequence coding for PRO is fused upstream of an epitope tag contained within a baculovirus expression vector. Such epitope tags include poly-His tags and immunoglobulin tags (like Fc regions of IgG). A variety of plasmids may be employed, including plasmids derived from commercially available plasmids such as pVL1393 (Novagen). Briefly, the sequence encoding PRO or the desired portion of the coding sequence of PRO (such as the sequence encoding the extracellular domain of a transmembrane protein or the sequence encoding the mature protein if the protein is extracellular) is amplified by PCR with primers complementary to the 5' and 3' regions. The 5' primer may incorporate flanking (selected) restriction enzyme sites. The product is then digested with those selected restriction enzymes and subcloned into the expression vector.

Recombinant baculovirus is generated by co-transfecting the above plasmid and BaculoGoldTM virus DNA (Pharmingen) into *Spodoptera frugiperda* ("Sf9") cells (ATCC CRL 1711) using lipofectin (commercially available from GIBCO-BRL). After 4 - 5 days of incubation at 28°C, the released viruses are harvested and used for further amplifications. Viral infection and protein expression are performed as described by O'Reilley *et al.*, <u>Baculovirus expression vectors: A Laboratory Manual</u>, Oxford: Oxford University Press (1994).

Expressed poly-His tagged PRO can then be purified, for example, by Ni²⁺-chelate affinity chromatography as follows. Extracts are prepared from recombinant virus-infected Sf9 cells as described by Rupert *et al.*, Nature, 362:175-179 (1993). Briefly, Sf9 cells are washed, resuspended in sonication buffer (25 ml Hepes, pH 7.9; 12.5 mM MgCl₂; 0.1 mM EDTA; 10% glycerol; 0.1% NP-40; 0.4 M KCl), and sonicated twice for 20 seconds on ice. The sonicates are cleared by centrifugation, and the supernatant is diluted 50-fold in loading buffer (50 mM phosphate, 300 mM NaCl, 10% glycerol, pH 7.8) and filtered through a 0.45 µm filter. A Ni²⁺-NTA agarose column (commercially available from Qiagen) is prepared with a bed volume of 5 ml, washed with 25 ml of water and equilibrated with 25 ml of loading buffer. The filtered cell extract is loaded onto the column at 0.5 ml per minute. The column is washed to baseline A₂₈₀ with loading buffer, at which point fraction collection is started. Next, the column is washed with a secondary wash buffer (50 mM phosphate; 300 mM NaCl, 10% glycerol, pH 6.0), which elutes nonspecifically bound protein. After reaching A₂₈₀ baseline again, the column is developed with a 0 to 500 mM imidazole gradient in the secondary wash buffer. One ml fractions are collected and analyzed by SDS-PAGE and silver staining or Western blot with Ni²⁺-NTA-conjugated to alkaline phosphatase (Qiagen). Fractions containing the eluted His₁₀-tagged PRO are pooled and dialyzed against loading buffer.

Alternatively, purification of the IgG tagged (or Fc tagged) PRO can be performed using known chromatography techniques, including for instance, Protein A or protein G column chromatography.

Following PCR amplification, the respective coding sequences are subcloned into a baculovirus expression vector (pb.PH.IgG for IgG fusions and pb.PH.His.c for poly-His tagged proteins), and the vector and Baculogold® baculovirus DNA (Pharmingen) are co-transfected into 105 Spodoptera frugiperda ("SP") cells (ATCC CRL 1711), using Lipofectin (Gibco BRL). pb.PH.IgG and pb.PH.His are modifications of the commercially available baculovirus expression vector pVL1393 (Pharmingen), with modified polylinker regions to include the His or Fc tag sequences. The cells are grown in Hink's TNM-FH medium supplemented with 10% FBS (Hyclone). Cells are

incubated for 5 days at 28°C. The supernatant is harvested and subsequently used for the first viral amplification by infecting Sf9 cells in Hink's TNM-FH medium supplemented with 10% FBS at an approximate multiplicity of infection (MOI) of 10. Cells are incubated for 3 days at 28°C. The supernatant is harvested and the expression of the constructs in the baculovirus expression vector is determined by batch binding of 1 ml of supernatant to 25 ml of Ni ²⁺-NTA beads (QIAGEN) for histidine tagged proteins or Protein-A Sepharose CL-4B beads (Pharmacia) for IgG tagged proteins followed by SDS-PAGE analysis comparing to a known concentration of protein standard by Coomassie blue staining.

5

10

15

20

25

30

35

The first viral amplification supernatant is used to infect a spinner culture (500 ml) of Sf9 cells grown in ESF-921 medium (Expression Systems LLC) at an approximate MOI of 0.1. Cells are incubated for 3 days at 28°C. The supernatant is harvested and filtered. Batch binding and SDS-PAGE analysis is repeated, as necessary, until expression of the spinner culture is confirmed.

The conditioned medium from the transfected cells (0.5 to 3 L) is harvested by centrifugation to remove the cells and filtered through 0.22 micron filters. For the poly-His tagged constructs, the protein construct is purified using a Ni ²⁺-NTA column (Qiagen). Before purification, imidazole is added to the conditioned media to a concentration of 5 mM. The conditioned media is pumped onto a 6 ml Ni ²⁺-NTA column equilibrated in 20 mM Hepes, pH 7.4, buffer containing 0.3 M NaCl and 5 mM imidazole at a flow rate of 4-5 ml/min. at 4°C. After loading, the column is washed with additional equilibration buffer and the protein eluted with equilibration buffer containing 0.25 M imidazole. The highly purified protein is subsequently desalted into a storage buffer containing 10 mM Hepes, 0.14 M NaCl and 4% mannitol, pH 6.8, with a 25 ml G25 Superfine (Pharmacia) column and stored at -80°C.

Immunoadhesin (Fc containing) constructs of proteins are purified from the conditioned media as follows. The conditioned media is pumped onto a 5 ml Protein A column (Pharmacia) which has been equilibrated in 20 mM Na phosphate buffer, pH 6.8. After loading, the column is washed extensively with equilibration buffer before elution with 100 mM citric acid, pH 3.5. The eluted protein is immediately neutralized by collecting 1 ml fractions into tubes containing 275 ml of 1 M Tris buffer, pH 9. The highly purified protein is subsequently desalted into storage buffer as described above for the poly-His tagged proteins. The homogeneity of the proteins is verified by SDS polyacrylamide gel (PEG) electrophoresis and N-terminal amino acid sequencing by Edman degradation.

Alternatively, a modified baculovirus procedure may be used incorporating high-5 cells. In this procedure, the DNA encoding the desired sequence is amplified with suitable systems, such as Pfu (Stratagene), or fused upstream (5'-of) of an epitope tag contained with a baculovirus expression vector. Such epitope tags include poly-His tags and immunoglobulin tags (like Fc regions of IgG). A variety of plasmids may be employed, including plasmids derived from commercially available plasmids such as pIE1-1 (Novagen). The pIE1-1 and pIE1-2 vectors are designed for constitutive expression of recombinant proteins from the baculovirus ie1 promoter in stably-transformed insect cells (1). The plasmids differ only in the orientation of the multiple cloning sites and contain all promoter sequences known to be important for ie1-mediated gene expression in uninfected insect cells as well as the hr5 enhancer element. pIE1-1 and pIE1-2 include the translation initiation site and can be used to produce fusion proteins. Briefly, the desired sequence or the desired portion of the sequence (such as the sequence encoding the

5

10

15

20

25

30

35

extracellular domain of a transmembrane protein) is amplified by PCR with primers complementary to the 5' and 3' regions. The 5' primer may incorporate flanking (selected) restriction enzyme sites. The product is then digested with those selected restriction enzymes and subcloned into the expression vector. For example, derivatives of pIE1-1 can include the Fc region of human IgG (pb.PH.IgG) or an 8 histidine (pb.PH.His) tag downstream (3'-of) the desired sequence. Preferably, the vector construct is sequenced for confirmation.

High-5 cells are grown to a confluency of 50% under the conditions of, 27°C, no CO₂, NO pen/strep. For each 150 mm plate, 30 µg of pIE based vector containing the sequence is mixed with 1 ml Ex-Cell medium (Media: Ex-Cell 401 + 1/100 L-Glu JRH Biosciences #14401-78P (note: this media is light sensitive)), and in a separate tube, 100 µl of CellFectin (CellFectIN (GibcoBRL #10362-010) (vortexed to mix)) is mixed with 1 ml of Ex-Cell medium. The two solutions are combined and allowed to incubate at room temperature for 15 minutes. 8 ml of Ex-Cell media is added to the 2 ml of DNA/CellFECTIN mix and this is layered on high-5 cells that have been washed once with Ex-Cell media. The plate is then incubated in darkness for 1 hour at room temperature. The DNA/CellFECTIN mix is then aspirated, and the cells are washed once with Ex-Cell to remove excess CellFECTIN, 30 ml of fresh Ex-Cell media is added and the cells are incubated for 3 days at 28°C. The supernatant is harvested and the expression of the sequence in the baculovirus expression vector is determined by batch binding of 1 ml of supernatent to 25 ml of Ni ²⁺-NTA beads (QIAGEN) for histidine tagged proteins or Protein-A Sepharose CL-4B beads (Pharmacia) for IgG tagged proteins followed by SDS-PAGE analysis comparing to a known concentration of protein standard by Coomassie blue staining.

The conditioned media from the transfected cells (0.5 to 3 L) is harvested by centrifugation to remove the cells and filtered through 0.22 micron filters. For the poly-His tagged constructs, the protein comprising the sequence is purified using a Ni ²⁺-NTA column (Qiagen). Before purification, imidazole is added to the conditioned media to a concentration of 5 mM. The conditioned media is pumped onto a 6 ml Ni ²⁺-NTA column equilibrated in 20 mM Hepes, pH 7.4, buffer containing 0.3 M NaCl and 5 mM imidazole at a flow rate of 4-5 ml/min. at 48°C. After loading, the column is washed with additional equilibration buffer and the protein eluted with equilibration buffer containing 0.25 M imidazole. The highly purified protein is then subsequently desalted into a storage buffer containing 10 mM Hepes, 0.14 M NaCl and 4% mannitol, pH 6.8, with a 25 ml G25 Superfine (Pharmacia) column and stored at -80°C.

Immunoadhesin (Fc containing) constructs of proteins are purified from the conditioned media as follows. The conditioned media is pumped onto a 5 ml Protein A column (Pharmacia) which had been equilibrated in 20 mM Na phosphate buffer, pH 6.8. After loading, the column is washed extensively with equilibration buffer before elution with 100 mM citric acid, pH 3.5. The eluted protein is immediately neutralized by collecting 1 ml fractions into tubes containing 275 ml of 1 M Tris buffer, pH 9. The highly purified protein is subsequently desalted into storage buffer as described above for the poly-His tagged proteins. The homogeneity of the sequence is assessed by SDS polyacrylamide gels and by N-terminal amino acid sequencing by Edman degradation and other analytical procedures as desired or necessary.

Many of the PRO polypeptides disclosed herein were successfully expressed as described above.

6.11. EXAMPLE 11: Preparation of Antibodies that Bind PRO

This example illustrates preparation of monoclonal antibodies which can specifically bind the PRO polypeptide or an epitope on the PRO polypeptide without substantially binding to any other polypeptide or polypeptide epitope.

5

Techniques for producing the monoclonal antibodies are known in the art and are described, for instance, in Goding, *supra*. Immunogens that may be employed include purified PRO, fusion proteins containing PRO, and cells expressing recombinant PRO on the cell surface. Selection of the immunogen can be made by the skilled artisan without undue experimentation.

10

Mice, such as Balb/c, are immunized with the PRO immunogen emulsified in complete Freund's adjuvant and injected subcutaneously or intraperitoneally in an amount from 1-100 micrograms. Alternatively, the immunogen is emulsified in MPL-TDM adjuvant (Ribi Immunochemical Research, Hamilton, MT) and injected into the animal's hind foot pads. The immunized mice are then boosted 10 to 12 days later with additional immunogen emulsified in the selected adjuvant. Thereafter, for several weeks, the mice may also be boosted with additional immunization injections. Serum samples may be periodically obtained from the mice by retro-orbital bleeding for testing in ELISA assays to detect anti-PRO antibodies.

15

After a suitable antibody titer has been detected, the animals "positive" for antibodies can be injected with a final intravenous injection of PRO. Three to four days later, the mice are sacrificed and the spleen cells are harvested. The spleen cells are then fused (using 35% polyethylene glycol) to a selected murine myeloma cell line such as P3X63AgU.1, available from ATCC, No. CRL 1597. The fusions generate hybridoma cells which can then be plated in 96 well tissue culture plates containing HAT (hypoxanthine, aminopterin, and thymidine) medium to inhibit proliferation of non-fused cells, myeloma hybrids, and spleen cell hybrids.

20

The hybridoma cells will be screened in an ELISA for reactivity against PRO. Determination of "positive" hybridoma cells secreting the desired monoclonal antibodies against PRO is within the skill in the art.

25

The positive hybridoma cells can be injected intraperitoneally into syngeneic Balb/c mice to produce ascites containing the anti-PRO monoclonal antibodies. Alternatively, the hybridoma cells can be grown in tissue culture flasks or roller bottles. Purification of the monoclonal antibodies produced in the ascites can be accomplished using ammonium sulfate precipitation, followed by gel exclusion chromatography. Alternatively, affinity chromatography based upon binding of antibody to protein A or protein G can be employed.

6.12. EXAMPLE 12: Purification of PRO Polypeptides Using Specific Antibodies

30

Native or recombinant PRO polypeptides may be purified by a variety of standard techniques in the art of protein purification. For example, pro-PRO polypeptide, mature PRO polypeptide, or pre-PRO polypeptide is purified by immunoaffinity chromatography using antibodies specific for the PRO polypeptide of interest. In general, an immunoaffinity column is constructed by covalently coupling the anti-PRO polypeptide antibody to an activated chromatographic resin.

35

Polyclonal immunoglobulins are prepared from immune sera either by precipitation with ammonium sulfate or by purification on immobilized Protein A (Pharmacia LKB Biotechnology, Piscataway, N.J.). Likewise,

monoclonal antibodies are prepared from mouse ascites fluid by ammonium sulfate precipitation or chromatography on immobilized Protein A. Partially purified immunoglobulin is covalently attached to a chromatographic resin such as CnBr-activated SEPHAROSETM (Pharmacia LKB Biotechnology). The antibody is coupled to the resin, the resin is blocked, and the derivative resin is washed according to the manufacturer's instructions.

Such an immunoaffinity column is utilized in the purification of PRO polypeptide by preparing a fraction from cells containing PRO polypeptide in a soluble form. This preparation is derived by solubilization of the whole cell or of a subcellular fraction obtained via differential centrifugation by the addition of detergent or by other methods well known in the art. Alternatively, soluble PRO polypeptide containing a signal sequence may be secreted in useful quantity into the medium in which the cells are grown.

A soluble PRO polypeptide-containing preparation is passed over the immunoaffinity column, and the column is washed under conditions that allow the preferential absorbance of PRO polypeptide (e.g., high ionic strength buffers in the presence of detergent). Then, the column is eluted under conditions that disrupt antibody/PRO polypeptide binding (e.g., a low pH buffer such as approximately pH 2-3, or a high concentration of a chaotrope such as urea or thiocyanate ion), and PRO polypeptide is collected.

6.13. EXAMPLE 13: Drug Screening

5

10

15

20

25

30

35

This invention is particularly useful for screening compounds by using PRO polypeptides or binding fragment thereof in any of a variety of drug screening techniques. The PRO polypeptide or fragment employed in such a test may either be free in solution, affixed to a solid support, borne on a cell surface, or located intracellularly. One method of drug screening utilizes eukaryotic or prokaryotic host cells which are stably transformed with recombinant nucleic acids expressing the PRO polypeptide or fragment. Drugs are screened against such transformed cells in competitive binding assays. Such cells, either in viable or fixed form, can be used for standard binding assays. One may measure, for example, the formation of complexes between PRO polypeptide or a fragment and the agent being tested. Alternatively, one can examine the diminution in complex formation between the PRO polypeptide and its target cell or target receptors caused by the agent being tested.

Thus, the present invention provides methods of screening for drugs or any other agents which can affect a PRO polypeptide-associated disease or disorder. These methods comprise contacting such an agent with an PRO polypeptide or fragment thereof and assaying (I) for the presence of a complex between the agent and the PRO polypeptide or fragment, or (ii) for the presence of a complex between the PRO polypeptide or fragment and the cell, by methods well known in the art. In such competitive binding assays, the PRO polypeptide or fragment is typically labeled. After suitable incubation, free PRO polypeptide or fragment is separated from that present in bound form, and the amount of free or uncomplexed label is a measure of the ability of the particular agent to bind to PRO polypeptide or to interfere with the PRO polypeptide/cell complex.

Another technique for drug screening provides high throughput screening for compounds having suitable binding affinity to a polypeptide and is described in detail in WO 84/03564, published on September 13, 1984. Briefly stated, large numbers of different small peptide test compounds are synthesized on a solid substrate, such

as plastic pins or some other surface. As applied to a PRO polypeptide, the peptide test compounds are reacted with PRO polypeptide and washed. Bound PRO polypeptide is detected by methods well known in the art. Purified PRO polypeptide can also be coated directly onto plates for use in the aforementioned drug screening techniques. In addition, non-neutralizing antibodies can be used to capture the peptide and immobilize it on the solid support.

This invention also contemplates the use of competitive drug screening assays in which neutralizing antibodies capable of binding PRO polypeptide specifically compete with a test compound for binding to PRO polypeptide or fragments thereof. In this manner, the antibodies can be used to detect the presence of any peptide which shares one or more antigenic determinants with PRO polypeptide.

10

15

20

5

6.14. EXAMPLE 14: Rational Drug Design

The goal of rational drug design is to produce structural analogs of biologically active polypeptide of interest (i.e., a PRO polypeptide) or of small molecules with which they interact, e.g., agonists, antagonists, or inhibitors. Any of these examples can be used to fashion drugs which are more active or stable forms of the PRO polypeptide or which enhance or interfere with the function of the PRO polypeptide in vivo (c.f., Hodgson, Bio/Technology, 9: 19-21 (1991)).

In one approach, the three-dimensional structure of the PRO polypeptide, or of an PRO polypeptide-inhibitor complex, is determined by x-ray crystallography, by computer modeling or, most typically, by a combination of the two approaches. Both the shape and charges of the PRO polypeptide must be ascertained to elucidate the structure and to determine active site(s) of the molecule. Less often, useful information regarding the structure of the PRO polypeptide may be gained by modeling based on the structure of homologous proteins. In both cases, relevant structural information is used to design analogous PRO polypeptide-like molecules or to identify efficient inhibitors. Useful examples of rational drug design may include molecules which have improved activity or stability as shown by Braxton and Wells, <u>Biochemistry</u>, 31:7796-7801 (1992) or which act as inhibitors, agonists, or antagonists of native peptides as shown by Athauda *et al.*, <u>J. Biochem.</u>, <u>113</u>:742-746 (1993).

25

30

35

It is also possible to isolate a target-specific antibody, selected by functional assay, as described above, and then to solve its crystal structure. This approach, in principle, yields a pharmacore upon which subsequent drug design can be based. It is possible to bypass protein crystallography altogether by generating anti-idiotypic antibodies (anti-ids) to a functional, pharmacologically active antibody. As a mirror image of a mirror image, the binding site of the anti-ids would be expected to be an analog of the original receptor. The anti-id could then be used to identify and isolate peptides from banks of chemically or biologically produced peptides. The isolated peptides would then act as the pharmacore.

By virtue of the present invention, sufficient amounts of the PRO polypeptide may be made available to perform such analytical studies as X-ray crystallography. In addition, knowledge of the PRO polypeptide amino acid sequence provided herein will provide guidance to those employing computer modeling techniques in place of or in addition to x-ray crystallography.

6.15. EXAMPLE 15: Stimulation of Endothelial Cell Proliferation (Assay 8)

This assay is designed to determine whether PRO polypeptides of the present invention show the ability to stimulate adrenal cortical capillary endothelial cell (ACE) growth. PRO polypeptides testing positive in this assay would be expected to be useful for the therapeutic treatment of conditions or disorders where angiogenesis would be beneficial including, for example, wound healing, and the like (as would agonists of these PRO polypeptides). Antagonists of the PRO polypeptides testing positive in this assay would be expected to be useful for the therapeutic treatment of cancerous tumors.

Bovine adrenal cortical capillary endothelial (ACE) cells (from primary culture, maximum of 12-14 passages) were plated in 96-well plates at 500 cells/well per 100 microliter. Assay media included low glucose DMEM, 10% calf serum, 2 mM glutamine, and 1X penicillin/streptomycin/fungizone. Control wells included the following: (1) no ACE cells added; (2) ACE cells alone; (3) ACE cells plus VEGF (5 ng/ml); and (4) ACE cells plus FGF (5ng/ml). The control or test sample, (in 100 microliter volumes), was then added to the wells (at dilutions of 1%, 0.1% and 0.01%, respectively). The cell cultures were incubated for 6-7 days at 37°C/5% CO₂. After the incubation, the media in the wells was aspirated, and the cells were washed 1X with PBS. An acid phosphatase reaction mixture (100 microliter; 0.1M sodium acetate, pH 5.5, 0.1% Triton X-100, 10 mM p-nitrophenyl phosphate) was then added to each well. After a 2 hour incubation at 37°C, the reaction was stopped by addition of 10 microliters 1N NaOH. Optical density (OD) was measured on a microplate reader at 405 nm.

The activity of a PRO polypeptide was calculated as the fold increase in proliferation (as determined by the acid phosphatase activity, OD 405 nm) relative to (1) cell only background, and (2) relative to maximum stimulation by VEGF. VEGF (at 3-10 ng/ml) and FGF (at 1-5 ng/ml) were employed as an activity reference for maximum stimulation. Results of the assay were considered "positive" if the observed stimulation was \geq 50% increase over background. VEGF (5 ng/ml) control at 1% dilution gave 1.24 fold stimulation; FGF (5 ng/ml) control at 1% dilution gave 1.46 fold stimulation.

PRO21 tested positive in this assay.

-

5

10

15

20

25

30

35

6.16. EXAMPLE 16: Inhibition of Vascular Endothelial Growth Factor (VEGF) Stimulated Proliferation of Endothelial Cell Growth (Assay 9)

The ability of various PRO polypeptides to inhibit VEGF stimulated proliferation of endothelial cells was tested. Polypeptides testing positive in this assay are useful for inhibiting endothelial cell growth in mammals where such an effect would be beneficial, e.g., for inhibiting tumor growth.

Specifically, bovine adrenal cortical capillary endothelial cells (ACE) (from primary culture, maximum of 12-14 passages) were plated in 96-well plates at 500 cells/well per 100 microliter. Assay media included low glucose DMEM, 10% calf serum, 2 mM glutamine, and 1X penicillin/streptomycin/fungizone. Control wells included the following: (1) no ACE cells added; (2) ACE cells alone; (3) ACE cells plus 5 ng/ml FGF; (4) ACE cells plus 3 ng/ml VEGF; (5) ACE cells plus 3 ng/ml VEGF plus 1 ng/ml TGF-beta; and (6) ACE cells plus 3 ng/ml VEGF plus 5 ng/ml LIF. The test samples, poly-his tagged PRO polypeptides (in 100 microliter volumes), were then added to the wells (at dilutions of 1%, 0.1% and 0.01%, respectively). The cell cultures were

incubated for 6-7 days at 37°C/5% CO₂. After the incubation, the media in the wells was aspirated, and the cells were washed 1X with PBS. An acid phosphatase reaction mixture (100 microliter; 0.1M sodium acetate, pH 5.5, 0.1% Triton X-100, 10 mM p-nitrophenyl phosphate) was then added to each well. After a 2 hour incubation at 37°C, the reaction was stopped by addition of 10 microliters 1N NaOH. Optical density (OD) was measured on a microplate reader at 405 nm.

The activity of PRO polypeptides was calculated as the percent inhibition of VEGF (3 ng/ml) stimulated proliferation (as determined by measuring acid phosphatase activity at OD 405 nm) relative to the cells without stimulation. TGF-beta was employed as an activity reference at 1 ng/ml, since TGF-beta blocks 70-90% of VEGF-stimulated ACE cell proliferation. The results are indicative of the utility of the PRO polypeptides in cancer therapy and specifically in inhibiting tumor angiogenesis. Numerical values (relative inhibition) are determined by calculating the percent inhibition of VEGF stimulated proliferation by the PRO polypeptides relative to cells without stimulation and then dividing that percentage into the percent inhibition obtained by TGF- β at 1 ng/ml which is known to block 70-90% of VEGF stimulated cell proliferation. The results are considered positive if the PRO polypeptide exhibits 30% or greater inhibition of VEGF stimulation of endothelial cell growth (relative inhibition 30% or greater).

PRO247, PRO720 and PRO4302 tested positive in this assay.

5

10

15

20

25

30

35

6.17. EXAMPLE 17: Enhancement of Heart Neonatal Hypertrophy Induced by LIF+ET-1 (Assay 75)

This assay is designed to determine whether PRO polypeptides of the present invention show the ability to enhance neonatal heart hypertrophy induced by LIF and endothelin-1 (ET-1). A test compound that provides a positive response in the present assay would be useful for the therapeutic treatment of cardiac insufficiency diseases or disorders characterized or associated with an undesired level of hypertrophy of the cardiac muscle.

Cardiac myocytes from 1-day old Harlan Sprague Dawley rats (180 μ l at 7.5 x 10⁴/ml, serum < 0.1, freshly isolated) are introduced on day 1 to 96-well plates previously coated with DMEM/F12 + 4%FCS. Test PRO polypeptide samples or growth medium alone (negative control) are then added directly to the wells on day 2 in 20 μ l volume. LIF + ET-1 are then added to the wells on day 3. The cells are stained after an additional 2 days in culture and are then scored visually the next day. A positive in the assay occurs when the PRO polypeptide treated myocytes obtain a score greater than zero. A score of zero represents non-responsive cells whereas scores of 1 or 2 represent enhancement (i.e. they are visually larger on the average or more numerous than the untreated myocytes).

PRO21 polypeptides tested positive in this assay.

6.18. EXAMPLE 18: Detection of Endothelial Cell Apoptosis (FACS) (Assay 96)

The ability of PRO polypeptides of the present invention to induce apoptosis in endothelial cells was tested in human venous umbilical vein endothelial cells (HUVEC, Cell Systems) in gelatinized T175 flasks using HUVEC cells below passage 10. PRO polypeptides testing positive in this assay are expected to be useful for

therapeutically treating conditions where apoptosis of endothelial cells would be beneficial including, for example, the therapeutic treatment of tumors.

On day one, the cells were split [420,000 cells per gelatinized 6 cm dishes - $(11 \times 10^3 \text{ cells/cm}^2 \text{ Falcon}, \text{Primaria})$] and grown in media containing serum (CS-C, Cell System) overnight or for 16 hours to 24 hours.

On day 2, the cells were washed 1x with 5 ml PBS; 3 ml of 0% serum medium was added with VEGF (100 ng/ml); and 30 μ l of the PRO test compound (final dilution 1%) or 0% serum medium (negative control) was added. The mixtures were incubated for 48 hours before harvesting.

The cells were then harvested for FACS analysis. The medium was aspirated and the cells washed once with PBS. 5 ml of 1 x trypsin was added to the cells in a T-175 flask, and the cells were allowed to stand until they were released from the plate (about 5-10 minutes). Trypsinization was stopped by adding 5 ml of growth media. The cells were spun at 1000 rpm for 5 minutes at 4°C. The media was aspirated and the cells were resuspended in 10 ml of 10% serum complemented medium (Cell Systems), 5 μ l of Annexin-FITC (BioVison) added and chilled tubes were submitted for FACS. A positive result was determined to be enhanced apoptosis in the PRO polypeptide treated samples as compared to the negative control.

PRO4302 polypeptide tested positive in this assay.

5

10

15

20

25

30

35

6.19. EXAMPLE 19: Induction of c-fos in HUVEC Cells (Assay 123)

This assay is designed to determine whether PRO polypeptides show the ability to induce c-fos in HUVEC cells. PRO polypeptides testing positive in this assay would be expected to be useful for the therapeutic treatment of conditions or disorders where angiogenesis would be beneficial including, for example, wound healing, and the like (as would agonists of these PRO polypeptides). Antagonists of the PRO polypeptides testing positive in this assay would be expected to be useful for the therapeutic treatment of cancerous tumors.

Human venous umbilical vein endothelial cells (HUVEC, Cell Systems) in growth media (50% Ham's F12 w/o GHT: low glucose, and 50% DMEM without glycine: with NaHCO3, 1% glutamine, 10 mM HEPES, 10% FBS, 10 ng/ml bFGF) were plated on 96-well microtiter plates at a cell density of 5×10^3 cells/well. The day after plating (day 2), the cells were starved for 24 hours by removing the growth media and replacing with serum free media. On day 3, the cells are treated with $100 \,\mu$ l/well test samples and controls (positive control = growth media; negative control = Protein 32 buffer = 10 mM HEPES, 140 mM NaCl, 4% (w/v) mannitol, pH 6.8). One plate of cells was incubated for 30 minutes at 37°C, in 5% CO₂. Another plate of cells was incubated for 60 minutes at 37°C, in 5% CO₂. The samples were removed, and RNA was harvested using the RNeasy 96 kit (Qiagen). Next, the RNA was assayed for c-fos, egr-1 and GAPDH induction using Taqman.

The measure of activity of the fold increase over the negative control (Protein 32/HEPES buffer described above) value was by obtained by calculating the fold increase of the ratio of c-fos to GAPDH in test samples as compared to the negative control. The results are considered positive if the PRO polypeptide exhibits at least a two-fold value over the negative buffer control.

PRO1376 polypeptide tested positive in this assay.

6.20. EXAMPLE 20: Normal Human Iliac Artery Endothelial Cell Proliferation (Assay 138)

This assay is designed to determine whether PRO polypeptides of the present invention show the ability to induce proliferation of human iliac artery endothelial cells in culture and, therefore, function as useful growth factors.

5

On day 0, human iliac artery endothelial cells (from cell lines, maximum of 12-14 passages) were plated in 96-well plates at 1000 cells/well per 100 microliter and incubated overnight in complete media [epithelial cell growth media (EGM, Clonetics), plus supplements: human epithelial growth factor (hEGF), bovine brain extract (BBE), hydrocortisone, GA-1000, and fetal bovine serum (FBS, Clonetics)]. On day 1, complete media was replaced by basal media [EGM plus 1% FBS] and addition of PRO polypeptides at 1%, 0.1% and 0.01%. On day 7, an assessment of cell proliferation was performed by Alamar Blue assay followed by Crystal Violet. Results are expresses as % of the cell growth observed with control buffer.

15

10

The following PRO polypeptides tested positive in this assay: PRO214, PRO238, PRO256, PRO363, PRO365, PRO791, PRO836, PRO1025, PRO1029, PRO1186, PRO1192, PRO1272, PRO1274, PRO1279, PRO1306, PRO1325, PRO1329, PRO1376, PRO1411, PRO1419, PRO1508, PRO1787, PRO1868, PRO1890, PRO4324, PRO4333, PRO4408, PRO4499, PRO5725, PRO6006, PRO9821, PRO9873, PRO10008, PRO10096, PRO19670, PRO20040, PRO20044, PRO21384 and PRO28631.

6.21. EXAMPLE 21: Pooled Human Umbilical Vein Endothelial Cell Proliferation (Assay 139)

On day 0, pooled human umbilical vein endothelial cells (from cell lines, maximum of 12-14 passages)

20

This assay is designed to determine whether PRO polypeptides of the present invention show the ability to induce proliferation of pooled human umbilical vein endothelial cells in culture and, therefore, function as useful growth factors.

25

were plated in 96-well plates at 1000 cells/well per 100 microliter and incubated overnight in complete media [epithelial cell growth media (EGM, Clonetics), plus supplements: human epithelial growth factor (hEGF), bovine brain extract (BBE), hydrocortisone, GA-1000, and fetal bovine serum (FBS, Clonetics)]. On day 1, complete media was replaced by basal media [EGM plus 1% FBS] and addition of PRO polypeptides at 1%, 0.1% and 0.01%. On day 7, an assessment of cell proliferation was performed by Alamar Blue assay followed by Crystal Violet. Results are expresses as % of the cell growth observed with control buffer.

30

35

The following PRO polypeptides tested positive in this assay: PRO181, PRO205, PRO221, PRO229, PRO231, PRO238, PRO241, PRO247, PRO256, PRO258, PRO263, PRO265, PRO295, PRO321, PRO322, PRO337, PRO363, PRO444, PRO533, PRO697, PRO725, PRO771, PRO788, PRO819, PRO827, PRO828, PRO846, PRO865, PRO1005, PRO1006, PRO1007, PRO1025, PRO1054, PRO1071, PRO1075, PRO1079, PRO1080, PRO1114, PRO1131, PRO1155, PRO1160, PRO1184, PRO1190, PRO1192, PRO1195, PRO1244, PRO1272, PRO1273, PRO1279, PRO1283, PRO1286, PRO1306, PRO1309, PRO1325, PRO1329, PRO1347, PRO1356, PRO1376, PRO1382, PRO1412, PRO1419, PRO1474, PRO1477, PRO1488, PRO1550, PRO1556, PRO1760, PRO1782, PRO1787, PRO1801, PRO1868, PRO1887, PRO3438, PRO3444, PRO4302, PRO4324, PRO4341, PRO4342, PRO4353, PRO4354, PRO4356, PRO4371, PRO4405, PRO4422, PRO4425, PRO5723,

PRO5725, PRO5737, PRO5776, PRO6029, PRO6071, PRO7436, PRO9771, PRO10008, PRO10096, PRO21055 and PRO21384.

6.22. EXAMPLE 22: Human Coronary Artery Smooth Muscle Cell Proliferation (Assay 140)

This assay is designed to determine whether PRO polypeptides of the present invention show the ability to induce proliferation of human coronary artery smooth muscle cells in culture and, therefore, function as useful growth factors.

5

10

15

20

25

30

35

On day 0, human coronary artery smooth muscle cells (from cell lines, maximum of 12-14 passages) were plated in 96-well plates at 1000 cells/well per 100 microliter and incubated overnight in complete media [smooth muscle growth media (SmGM, Clonetics), plus supplements: insulin, human epithelial growth factor (hEGF), human fibroblast growth factor (hFGF), GA-1000, and fetal bovine serum (FBS, Clonetics)]. On day 1, complete media was replaced by basal media [SmGM plus 1% FBS] and addition of PRO polypeptides at 1%, 0.1% and 0.01%. On day 7, an assessment of cell proliferation was performed by Alamar Blue assay followed by Crystal Violet. Results are expresses as % of the cell growth observed with control buffer.

The following PRO polypeptides tested positive in this assay: PRO162, PRO181, PRO182, PRO195, PRO204, PRO221, PRO230, PRO256, PRO258, PRO533, PRO697, PRO725, PRO738, PRO826, PRO836, PRO840, PRO846, PRO865, PRO982, PRO1025, PRO1029, PRO1071, PRO1080, PRO1083, PRO1134, PRO1160, PRO1182, PRO1184, PRO1186, PRO1192, PRO1265, PRO1274, PRO1279, PRO1283, PRO1306, PRO1308, PRO1309, PRO1325, PRO1337, PRO1338, PRO1343, PRO1376, PRO1387, PRO1411, PRO1412, PRO1415, PRO1434, PRO1474, PRO1488, PRO1550, PRO1556, PRO1567, PRO1600, PRO1754, PRO1758, PRO1760, PRO1787, PRO1865, PRO1868, PRO1917, PRO1928, PRO3438, PRO3562, PRO4302, PRO4333, PRO4345, PRO4353, PRO4354, PRO4405, PRO4408, PRO4430, PRO4503, PRO5725, PRO6714, PRO9771, PRO9820, PRO9940, PRO10096, PRO21055, PRO21184 and PRO21366.

6.23. EXAMPLE 23: Microarray Analysis to Detect Overexpression of PRO Polypeptides in HUVEC Cells Treated with Growth Factors

This assay is designed to determine whether PRO polypeptides of the present invention show the ability to induce angiogenesis by stimulating endothelial cell tube formation in HUVEC cells.

Nucleic acid microarrays, often containing thousands of gene sequences, are useful for identifying differentially expressed genes in tissues exposed to various stimuli (e.g., growth factors) as compared to their normal, unexposed counterparts. Using nucleic acid microarrays, test and control mRNA samples from test and control tissue samples are reverse transcribed and labeled to generate cDNA probes. The cDNA probes are then hybridized to an array of nucleic acids immobilized on a solid support. The array is configured such that the sequence and position of each member of the array is known. Hybridization of a labeled probe with a particular array member indicates that the sample from which the probe was derived expresses that gene. If the hybridization signal of a probe from a test (exposed tissue) sample is greater than hybridization signal of a probe from a control (normal, unexposed tissue) sample, the gene or genes overexpressed in the exposed tissue are identified. The

implication of this result is that an overexpressed protein in an exposed tissue may be involved in the functional changes within the tissue following exposure to the stimuli (e.g., tube formation).

The methodology of hybridization of nucleic acids and microarray technology is well known in the art. In the present example, the specific preparation of nucleic acids for hybridization and probes, slides, and hybridization conditions are all detailed in U.S. Provisional Patent Application Serial No. 60/193,767, filed on March 31, 2000 and which is herein incorporated by reference.

5

10

15

20

25

30

35

In the present example, HUVEC cells grown in either collagen gels or fibrin gels were induced to form tubes by the addition of various growth factors. Specifically, collagen gels were prepared as described previously in Yang et al., American J. Pathology, 1999, 155(3):887-895 and Xin et al., American J. Pathology, 2001, 158(3):1111-1120. Following gelation of the HUVEC cells, 1X basal medium containing M199 supplemented with 1%FBS, 1X ITS, 2 mM L-glutamine, 50 µg/ml ascorbic acid, 26.5 mM NaHCO₃, 100U/ml penicillin and 100 U/ml streptomycin was added. Tube formation was elicited by the inclusion in the culture media of either a mixture of phorbol myrsitate acetate (50 nM), vascular endothelial cell growth factor (40 ng/ml) and basic fibroblast growth factor (40 ng/ml) ("PMA growth factor mix") or hepatocyte growth factor (40 ng/ml) and vascular endothelial cell growth factor (40 ng/ml) (HGF/VEGF mix) for the indicated period of time. Fibrin Gels were prepared by suspending Huvec (4 x 10⁵ cells/ml) in M199 containing 1% fetal bovine serum (Hyclone) and human fibrinogen (2.5mg/ml). Thrombin (50U/ml) was then added to the fibrinogen suspension at a ratio of 1 part thrombin solution:30 parts fibrinogen suspension. The solution was then layered onto 10 cm tissue culture plates (total volume: 15 ml/plate) and allowed to solidify at 37°C for 20 min. Tissue culture media (10 ml of BM containing PMA (50 nM), bFGF (40ng/ml) and VEGF (40 ng/ml)) was then added and the cells incubated at 37°C in 5%CO₂ in air for the indicated period of time.

Total RNA was extracted from the HUVEC cells incubated for 0, 4, 8, 24, 40 and 50 hours in the different matrix and media combinations using a TRIzol extraction followed by a second purification using RNAeasy Mini Kit (Qiagen). The total RNA was used to prepare cRNA which was then hybridized to the microarrays.

In the present experiments, nucleic acid probes derived from the herein described PRO polypeptide-encoding nucleic acid sequences were used in the creation of the microarray and RNA from the HUVEC cells described above were used for the hybridization thereto. Pairwise comparisons were made using time 0 chips as a baseline. Three replicate samples were analyzed for each experimental condition and time. Hence there were 3 time 0 samples for each treatment and 3 replicates of each successive time point. Therefore, a 3 by 3 comparison was performed for each time point compared against each time 0 point. This resulted in 9 comparisons per time point. Only those genes that had increased expression in all three non-time-0 replicates in each of the different matrix and media combinations as compared to any of the three time zero replicates were considered positive. Although this stringent method of data analysis does allow for false negatives, it minimizes false positives.

PRO178, PRO195, PRO228, PRO301, PRO302, PRO532, PRO724, PRO730, PRO734, PRO793, PRO871, PRO938, PRO1012, PRO1120, PRO1139, PRO1198, PRO1287, PRO1361, PRO1864, PRO1873,

PRO2010, PRO3579, PRO4313, PRO4527, PRO4538, PRO4553, PRO4995, PRO5730, PRO6008, PRO7223, PRO7248 and PRO7261 tested positive in this assay.

6.24. EXAMPLE 24: In situ Hybridization

In situ hybridization is a powerful and versatile technique for the detection and localization of nucleic acid sequences within cell or tissue preparations. It may be useful, for example, to identify sites of gene expression, analyze the tissue distribution of transcription, identify and localize viral infection, follow changes in specific mRNA synthesis, and aid in chromosome mapping.

In situ hybridization was performed following an optimized version of the protocol by Lu and Gillett, Cell Vision, 1: 169-176 (1994), using PCR-generated ³³P-labeled riboprobes. Briefly, formalin-fixed, paraffinembedded human tissues were sectioned, deparaffinized, deproteinated in proteinase K (20 g/ml) for 15 minutes at 37°C, and further processed for in situ hybridization as described by Lu and Gillett, supra. A (³³-P)UTP-labeled antisense riboprobe was generated from a PCR product and hybridized at 55°C overnight. The slides were dipped in Kodak NTB2TM nuclear track emulsion and exposed for 4 weeks.

6.24.1. ³³P-Riboprobe synthesis

 $6.0 \,\mu\text{l}$ (125 mCi) of ³³P-UTP (Amersham BF 1002, SA < 2000 Ci/mmol) were speed-vacuum dried. To each tube containing dried ³³P-UTP, the following ingredients were added:

2.0 µl 5x transcription buffer

1.0 µl DTT (100 mM)

2.0 μ l NTP mix (2.5 mM: 10 μ l each of 10 mM GTP, CTP & ATP + 10 μ l H₂O)

 $1.0 \mu l \text{ UTP } (50 \mu M)$

5

10

15

20

25

30

35

1.0 µl RNAsin

1.0 μ l DNA template (1 μ g)

1.0 μl H₂O

1.0 μ l RNA polymerase (for PCR products T3 = AS, T7 = S, usually)

The tubes were incubated at 37°C for one hour. A total of 1.0 μ l RQ1 DNase was added, followed by incubation at 37°C for 15 minutes. A total of 90 μ l TE (10 mM Tris pH 7.6/1 mM EDTA pH 8.0) was added, and the mixture was pipetted onto DE81 paper. The remaining solution was loaded in a MICROCON-50TM ultrafiltration unit, and spun using program 10 (6 minutes). The filtration unit was inverted over a second tube and spun using program 2 (3 minutes). After the final recovery spin, a total of 100 μ l TE was added, then 1 μ l of the final product was pipetted on DE81 paper and counted in 6 ml of BIOFLUOR Π^{TM} .

The probe was run on a TBE/urea gel. A total of 1-3 μ l of the probe or 5 μ l of RNA Mrk III was added to 3 μ l of loading buffer. After heating on a 95°C heat block for three minutes, the gel was immediately placed on ice. The wells of gel were flushed, and the sample was loaded and run at 180-250 volts for 45 minutes. The gel was wrapped in plastic wrap (SARANTM brand) and exposed to XAR film with an intensifying screen in a -70°C freezer one hour to overnight.

6.24.2. ³³P-Hybridization

6.24.2.1. Pretreatment of frozen sections

The slides were removed from the freezer, placed on aluminum trays, and thawed at room temperature for 5 minutes. The trays were placed in a 55°C incubator for five minutes to reduce condensation. The slides were fixed for 10 minutes in 4% paraformaldehyde on ice in the fume hood, and washed in 0.5 x SSC for 5 minutes, at room temperature (25 ml 20 x SSC + 975 ml SQ H_2O). After deproteination in 0.5 μ g/ml proteinase K for 10 minutes at 37°C (12.5 μ l of 10 mg/ml stock in 250 ml prewarmed RNAse-free RNAse buffer), the sections were washed in 0.5 x SSC for 10 minutes at room temperature. The sections were dehydrated in 70%, 95%, and 100% ethanol, 2 minutes each.

10

15

20

25

30

5

6.24.2.2. Pretreatment of paraffin-embedded sections

The slides were deparaffinized, placed in SQ H_2O , and rinsed twice in 2 x SSC at room temperature, for 5 minutes each time. The sections were deproteinated in 20 μ g/ml proteinase K (500 μ l of 10 mg/ml in 250 ml RNase-free RNase buffer; 37°C, 15 minutes) for human embryo tissue, or 8 x proteinase K (100 μ l in 250 ml Rnase buffer, 37°C, 30 minutes) for formalin tissues. Subsequent rinsing in 0.5 x SSC and dehydration were performed as described above.

6.24.2.3. Prehybridization

The slides were laid out in a plastic box lined with Box buffer (4 x SSC, 50% formamide) - saturated filter paper. The tissue was covered with 50 μ l of hybridization buffer (3.75 g dextran sulfate + 6 ml SQ H₂O), vortexed, and heated in the microwave for 2 minutes with the cap loosened. After cooling on ice, 18.75 ml formamide, 3.75 ml 20 x SSC, and 9 ml SQ H₂O were added, and the tissue was vortexed well and incubated at 42°C for 1-4 hours.

6.24.2.4. Hybridization

 1.0×10^6 cpm probe and $1.0 \mu l$ tRNA (50 mg/ml stock) per slide were heated at 95°C for 3 minutes. The slides were cooled on ice, and 48 μl hybridization buffer was added per slide. After vortexing, 50 μl ³³P mix was added to 50 μl prehybridization on the slide. The slides were incubated overnight at 55°C.

6.24.2.5. Washes

Washing was done for 2x10 minutes with 2xSSC, EDTA at room temperature (400 ml 20 x SSC + 16 ml 0.25 M EDTA, V_f =4L), followed by RNAseA treatment at 37°C for 30 minutes (500 μ l of 10 mg/ml in 250 ml Rnase buffer = 20 μ g/ml), The slides were washed 2 x10 minutes with 2 x SSC, EDTA at room temperature. The stringency wash conditions were as follows: 2 hours at 55°C, 0.1 x SSC, EDTA (20 ml 20 x SSC + 16 ml EDTA, V_f =4L).

6.24.2.6. Oligonucleotides

In situ analysis was performed on three of the DNA sequences disclosed herein. The primers used to generate the probes and/or the probes employed for these analyses are as follows:

DNA33100-p1: 5'GGA TTC TAA TAC GAC TCA CTA TAG GGC CGG GTG GAG GTG GAA CAG AAA 3' (SEQ ID NO:375)

DNA33100-p2: 5' CTA TGA AAT TAA CCC TCA CTA AAG GGA CAC AGA CAG AGC CCC ATA CGC

3' (SEQ ID NO:376)

DNA34431-p1: 5'GGA TTC TAA TAC GAC TCA CTA TAG GGC CAG GGA AAT CCG GAT GTC TC

3' (SEQ ID NO:377)

10 DNA34431-p2: 5' CTA TGA AAT TAA CCC TCA CTA AAG GGA GTA AGG GGA TGC CAC CGA GTA

3' (SEQ ID NO:378)

DNA38268-p1: 5'GGA TTC TAA TAC GAC TCA CTA TAG GGC CAG CTA CCC GCA GGA GGA GG

3' (SEQ ID NO:379)

DNA38268-p2: 5'CTA TGA AAT TAA CCC TCA CTA AAG GGA TCC CAG GTG ATG AGG TCC AGA

15 3' (SEQ ID NO:380)

5

20

25

DNA64908 probe: 5'CCATCTCGGAGACCTTTGTGCAGCGTGTATACCAGCCTTACCTCACCA

AATACTĠTGGGAAGTTACTGGTGCCAGGGATGGGAGGGACAAAGCCCAT CTGCAGATGGGACGCGCTGCCTGTCTAAGGAGGGGCCCTCCCGGTGGCC

CCAACCCCACAGCAGGAGTGGACAGCA3' (SEQ ID NO:381)

6.24.2.7. Results

In situ analysis was performed and the results from these analyses are as follows:

6.24,2.7.1. <u>DNA33100-1159 (PRO229) (Scavenger-R/CD6 homologTNF motif)</u>

A specific positive signal was observed in mononuclear phagocytes (macrophages) of fetal and adult spleen, liver, lymph node and thymus. All other tissues were negative.

5

6.24.2.7.2. <u>DNA34431-1177 (PRO263) (CD44)</u>

A specific positive signal was observed in human fetal tissues and placenta over mononuclear cells, with strong expression in epithelial cells of the adrenal cortex. All adult tissues were negative.

6.24.2.7.3. <u>DNA38268-1188 (PRO295) (Integrin)</u>

A specific positive signal was observed in human fetal ganglion cells, fetal neurons, adult adrenal medulla and adult neurons. All other tissues were negative.

6.24.2.7.4. <u>DNA64908-1163-1 (PRO1449)</u>

A specific positive signal was observed in the developing vasculature (from E7-E11), in endothelial cells and in progenitors of endothelial cells in wholemount in situ hybridizations of mouse embryos (Figure 375). Specific expression was also observed in a subset of blood vessels and epidermis from E12 onward. A mouse orthologue of PRO1449 which has about 78% amino acid identity with PRO1449 was used as the probe.

15

10

In normal adult tissues, expression was low to absent. When present, expression was confined to the vasculature (Figure 376). Figure 376 further shows that highest expression in adult tissues was observed regionally in vessels running within the white matter of the brain. Elevated expression was also observed in vasculature of many inflamed and diseased tissues, including, but not limited to, tumor vasculature.

20

Following electroporation of the mouse orthologue of PRO1449 into the choroid layer in the eyes of chicken embryos, new vessel formation was observed in the electroporated eye (top right), but not in the control side from the same embryo (top left), or an embryo that was electroporated with a control cDNA (bottom right) (Figure 377).

25

The foregoing written specification is considered to be sufficient to enable one skilled in the art to practice the invention. The present invention is not to be limited in scope by the construct(s) deposited, since the deposited embodiment(s) is/are intended as single illustration(s) of certain aspects of the invention and any constructs that are functionally equivalent are within the scope of this invention. The deposit of material(s) herein does not constitute an admission that the written description herein contained is inadequate to enable the practice of any aspect of the invention, including the best mode thereof, nor is it to be construed as limiting the scope of the claims to the specific illustrations that it represents. Indeed, various modifications of the invention in addition to those shown and described herein will become apparent to those skilled in the art from the foregoing description and fall within the scope of the appended claims.

30

WHAT IS CLAIMED IS:

5

10

15

20

25

30

35

1. An isolated nucleic acid molecule having at least 80% nucleic acid sequence identity to a nucleotide sequence that encodes an amino acid sequence selected from the group consisting of the amino acid sequence shown in Figure 2 (SEQ ID NO:2), Figure 4 (SEQ ID NO:4), Figure 6 (SEQ ID NO:6), Figure 8 (SEQ ID NO:8), Figure 10 (SEQ ID NO:10), Figure 12 (SEQ ID NO:12), Figure 14 (SEQ ID NO:14), Figure 16 (SEQ ID NO:16), Figure 18 (SEQ ID NO:18), Figure 20 (SEQ ID NO:20), Figure 22 (SEQ ID NO:22), Figure 24 (SEQ ID NO:24), Figure 26 (SEQ ID NO:26), Figure 28 (SEQ ID NO:28), Figure 30 (SEQ ID NO:30), Figure 32 (SEQ ID NO:32), Figure 34 (SEQ ID NO:34), Figure 36 (SEQ ID NO:36), Figure 38 (SEQ ID NO:38), Figure 40 (SEQ ID NO:40), Figure 42 (SEQ ID NO:42), Figure 44 (SEQ ID NO:44), Figure 46 (SEQ ID NO:46), Figure 48 (SEQ ID NO:48), Figure 50 (SEQ ID NO:50), Figure 52 (SEQ ID NO:52), Figure 54 (SEQ ID NO:54), Figure 56 (SEQ ID NO:56), Figure 58 (SEQ ID NO:58), Figure 60 (SEQ ID NO:60), Figure 62 (SEQ ID NO:62), Figure 64 (SEQ ID NO:64), Figure 66 (SEQ ID NO:66), Figure 68 (SEQ ID NO:68), Figure 70 (SEQ ID NO:70), Figure 72 (SEQ ID NO:72), Figure 74 (SEQ ID NO:74), Figure 76 (SEQ ID NO:76), Figure 78 (SEQ ID NO:78), Figure 80 (SEQ ID NO:80), Figure 82 (SEQ ID NO:82), Figure 84 (SEQ ID NO:84), Figure 86 (SEQ ID NO:86), Figure 88 (SEQ ID NO:88), Figure 90 (SEQ ID NO:90), Figure 92 (SEQ ID NO:92), Figure 94 (SEQ ID NO:94), Figure 96 (SEQ ID NO:96), Figure 98 (SEQ ID NO:98), Figure 100 (SEQ ID NO:100), Figure 102 (SEQ ID NO:102), Figure 104 (SEQ ID NO:104), Figure 106 (SEQ ID NO:106), Figure 108 (SEQ ID NO:108), Figure 110 (SEQ ID NO:110), Figure 112 (SEQ ID NO:112), Figure 114 (SEQ ID NO:114), Figure 116 (SEQ ID NO:116), Figure 118 (SEQ ID NO:118), Figure 120 (SEQ ID NO:120), Figure 122 (SEQ ID NO:122), Figure 124 (SEQ ID NO:124), Figure 126 (SEQ ID NO:126), Figure 128 (SEQ ID NO:128), Figure 130 (SEQ ID NO:130), Figure 132 (SEQ ID NO:132), Figure 134 (SEQ ID NO:134), Figure 136 (SEQ ID NO:136), Figure 138 (SEQ ID NO:138), Figure 140 (SEQ ID NO:140), Figure 142 (SEQ ID NO:142), Figure 144 (SEQ ID NO:144), Figure 146 (SEQ ID NO:146), Figure 148 (SEQ ID NO:148), Figure 150 (SEQ ID NO:150), Figure 152 (SEQ ID NO:152), Figure 154 (SEQ ID NO:154), Figure 156 (SEQ ID NO:156), Figure 158 (SEQ ID NO:158), Figure 160 (SEQ ID NO:160), Figure 162 (SEQ ID NO:162), Figure 164 (SEQ ID NO:164), Figure 166 (SEQ ID NO:166), Figure 168 (SEQ ID NO:168), Figure 170 (SEQ ID NO:170), Figure 172 (SEQ ID NO:172), Figure 174 (SEQ ID NO:174), Figure 176 (SEQ ID NO:176), Figure 178 (SEQ ID NO:178), Figure 180 (SEQ ID NO:180), Figure 182 (SEQ ID NO:182), Figure 184 (SEO ID NO:184), Figure 186 (SEQ ID NO:186), Figure 188 (SEQ ID NO:188), Figure 190 (SEQ ID NO:190), Figure 192 (SEQ ID NO:192), Figure 194 (SEQ ID NO:194), Figure 196 (SEQ ID NO:196), Figure 198 (SEQ ID NO:198), Figure 200 (SEQ ID NO:200), Figure 202 (SEQ ID NO:202), Figure 204 (SEQ ID NO:204), Figure 206 (SEQ ID NO:206), Figure 208 (SEQ ID NO:208), Figure 210 (SEQ ID NO:210), Figure 212 (SEQ ID NO:212), Figure 214 (SEQ ID NO:214), Figure 216 (SEQ ID NO:216), Figure 218 (SEQ ID NO:218), Figure 220 (SEQ ID NO:220), Figure 222 (SEQ ID NO:222), Figure 224 (SEQ ID NO:224), Figure 226 (SEQ ID NO:226), Figure 228 (SEQ ID NO:228), Figure 230 (SEQ ID NO:230), Figure 232 (SEQ ID NO:232), Figure 234 (SEQ ID NO:234), Figure 236 (SEQ ID NO:236), Figure 238 (SEQ ID NO:238), Figure 240 (SEQ ID NO:240), Figure 242 (SEQ ID NO:242), Figure 244 (SEQ ID NO:244), Figure 246 (SEQ ID NO:246), Figure

248 (SEQ ID NO:248), Figure 250 (SEQ ID NO:250), Figure 252 (SEQ ID NO:252), Figure 254 (SEQ ID NO:254), Figure 256 (SEQ ID NO:256), Figure 258 (SEQ ID NO:258), Figure 260 (SEQ ID NO:260), Figure 262 (SEQ ID NO:262), Figure 264 (SEQ ID NO:264), Figure 266 (SEQ ID NO:266), Figure 268 (SEQ ID NO:268), Figure 270 (SEQ ID NO:270), Figure 272 (SEQ ID NO:272), Figure 274 (SEQ ID NO:274), Figure 276 (SEQ ID NO:276), Figure 278 (SEQ ID NO:278), Figure 280 (SEQ ID NO:280), Figure 282 (SEQ ID NO:282), Figure 284 (SEQ ID NO:284), Figure 286 (SEQ ID NO:286), Figure 288 (SEQ ID NO:288), Figure 290 (SEQ ID NO:290), Figure 292 (SEQ ID NO:292), Figure 294 (SEQ ID NO:294), Figure 296 (SEQ ID NO:296), Figure 298 (SEQ ID NO:298), Figure 300 (SEQ ID NO:300), Figure 302 (SEQ ID NO:302), Figure 304 (SEQ ID NO:304), Figure 306 (SEQ ID NO:306), Figure 308 (SEQ ID NO:308), Figure 310 (SEQ ID NO:310), Figure 312 (SEQ ID NO:312), Figure 314 (SEQ ID NO:314), Figure 316 (SEQ ID NO:316), Figure 318 (SEQ ID NO:318), Figure 320 (SEQ ID NO:320), Figure 322 (SEQ ID NO:322), Figure 324 (SEQ ID NO:324), Figure 326 (SEQ ID NO:326), Figure 328 (SEQ ID NO:328), Figure 330 (SEQ ID NO:330), Figure 332 (SEQ ID NO:332), Figure 334 (SEQ ID NO:334), Figure 336 (SEQ ID NO:336), Figure 338 (SEQ ID NO:338), Figure 340 (SEQ ID NO:340), Figure 342 (SEQ ID NO:342), Figure 344 (SEQ ID NO:344), Figure 346 (SEQ ID NO:346), Figure 348 (SEQ ID NO:348), Figure 350 (SEQ ID NO:350), Figure 352 (SEQ ID NO:352), Figure 354 (SEQ ID NO:354), Figure 356 (SEQ ID NO:356), Figure 358 (SEQ ID NO:358), Figure 360 (SEQ ID NO:360), Figure 362 (SEQ ID NO:362), Figure 364 (SEQ ID NO:364), Figure 366 (SEQ ID NO:366), Figure 368 (SEQ ID NO:368), Figure 370 (SEQ ID NO:370), Figure 372 (SEQ ID NO:372) and Figure 374 (SEQ ID NO:374).

20

25

30

35

5

10

15

An isolated nucleic acid molecule having at least 80% nucleic acid sequence identity to a nucleotide sequence selected from the group consisting of the nucleotide sequence shown in Figure 1 (SEQ ID NO:1), Figure 3 (SEQ ID NO:3), Figure 5 (SEQ ID NO:5), Figure 7 (SEQ ID NO:7), Figure 9 (SEQ ID NO:9), Figure 11 (SEQ ID NO:11), Figure 13 (SEQ ID NO:13), Figure 15 (SEQ ID NO:15), Figure 17 (SEQ ID NO:17), Figure 19 (SEQ ID NO:19), Figure 21 (SEQ ID NO:21), Figure 23 (SEQ ID NO:23), Figure 25 (SEQ ID NO:25), Figure 27 (SEQ ID NO:27), Figure 29 (SEQ ID NO:29), Figure 31 (SEQ ID NO:31), Figure 33 (SEQ ID NO:33), Figure 35 (SEQ ID NO:35), Figure 37 (SEQ ID NO:37), Figure 39 (SEQ ID NO:39), Figure 41 (SEQ ID NO:41), Figure 43 (SEQ ID NO:43), Figure 45 (SEQ ID NO:45), Figure 47 (SEQ ID NO:47), Figure 49 (SEQ ID NO:49), Figure 51 (SEQ ID NO:51), Figure 53 (SEQ ID NO:53), Figure 55 (SEQ ID NO:55), Figure 57 (SEQ ID NO:57), Figure 59 (SEQ ID NO:59), Figure 61 (SEQ ID NO:61), Figure 63 (SEQ ID NO:63), Figure 65 (SEQ ID NO:65), Figure 67 (SEQ ID NO:67), Figure 69 (SEQ ID NO:69), Figure 71 (SEQ ID NO:71), Figure 73 (SEQ ID NO:73), Figures 75A-75B (SEQ ID NO:75), Figure 77 (SEQ ID NO:77), Figure 79 (SEQ ID NO:79), Figure 81 (SEQ ID NO:81), Figure 83 (SEQ ID NO:83), Figure 85 (SEQ ID NO:85), Figure 87 (SEQ ID NO:87), Figure 89 (SEQ ID NO:89), Figure 91 (SEQ ID NO:91), Figure 93 (SEQ ID NO:93), Figure 95 (SEQ ID NO:95), Figure 97 (SEQ ID NO:97), Figure 99 (SEQ ID NO:99), Figure 101 (SEQ ID NO:101), Figure 103 (SEQ ID NO:103), Figure 105 (SEQ ID NO:105), Figure 107 (SEQ ID NO:107), Figure 109 (SEQ ID NO:109), Figure 111 (SEQ ID NO:111), Figure 113 (SEQ ID NO:113), Figure 115 (SEQ

5

10

15

20

25

30

35

ID NO:115), Figure 117 (SEQ ID NO:117), Figure 119 (SEQ ID NO:119), Figure 121 (SEQ ID NO:121), Figure 123 (SEQ ID NO:123), Figure 125 (SEQ ID NO:125), Figure 127 (SEQ ID NO:127), Figure 129 (SEQ ID NO:129), Figure 131 (SEQ ID NO:131), Figure 133 (SEQ ID NO:133), Figure 135 (SEQ ID NO:135), Figure 137 (SEQ ID NO:137), Figure 139 (SEQ ID NO:139), Figure 141 (SEQ ID NO:141), Figure 143 (SEQ ID NO:143), Figure 145 (SEQ ID NO:145), Figure 147 (SEQ ID NO:147), Figure 149 (SEQ ID NO:149), Figure 151 (SEQ ID NO:151), Figure 153 (SEQ ID NO:153), Figure 155 (SEQ ID NO:155), Figure 157 (SEQ ID NO:157), Figure 159 (SEQ ID NO:159), Figure 161 (SEQ ID NO:161), Figure 163 (SEQ ID NO:163), Figure 165 (SEQ ID NO:165), Figure 167 (SEQ ID NO:167), Figure 169 (SEO ID NO:169), Figure 171 (SEO ID NO:171), Figure 173 (SEQ ID NO:173), Figure 175 (SEQ ID NO:175), Figure 177 (SEQ ID NO:177), Figure 179 (SEQ ID NO:179), Figure 181 (SEQ ID NO:181), Figure 183 (SEQ ID NO:183), Figure 185 (SEQ ID NO:185), Figure 187 (SEQ ID NO:187), Figure 189 (SEQ ID NO:189), Figure 191 (SEQ ID NO:191), Figure 193 (SEQ ID NO:193), Figure 195 (SEQ ID NO:195), Figure 197 (SEQ ID NO:197), Figure 199 (SEQ ID NO:199), Figure 201 (SEQ ID NO:201), Figure 203 (SEQ ID NO:203), Figure 205 (SEQ ID NO:205), Figure 207 (SEQ ID NO:207), Figure 209 (SEQ ID NO:209), Figure 211 (SEO ID NO:211), Figure 213 (SEO ID NO:213), Figure 215 (SEQ ID NO:215), Figure 217 (SEQ ID NO:217), Figure 219 (SEQ ID NO:219), Figure 221 (SEQ ID NO:221), Figure 223 (SEQ ID NO:223), Figure 225 (SEQ ID NO:225), Figure 227 (SEQ ID NO:227), Figure 229 (SEQ ID NO:229), Figure 231 (SEQ ID NO:231), Figure 233 (SEQ ID NO:233), Figure 235 (SEQ ID NO:235), Figure 237 (SEQ ID NO:237), Figure 239 (SEQ ID NO:239), Figure 241 (SEQ ID NO:241), Figure 243 (SEQ ID NO:243), Figure 245 (SEQ ID NO:245), Figure 247 (SEO ID NO:247), Figure 249 (SEQ ID NO:249), Figure 251 (SEQ ID NO:251), Figure 253 (SEO ID NO:253), Figure 255 (SEO ID NO:255), Figure 257 (SEQ ID NO:257), Figure 259 (SEQ ID NO:259), Figure 261 (SEQ ID NO:261), Figure 263 (SEQ ID NO:263), Figure 265 (SEQ ID NO:265), Figure 267 (SEQ ID NO:267), Figure 269 (SEQ ID NO:269), Figure 271 (SEQ ID NO:271), Figure 273 (SEQ ID NO:273), Figure 275 (SEQ ID NO:275), Figure 277 (SEQ ID NO:277), Figure 279 (SEQ ID NO:279), Figure 281 (SEQ ID NO:281), Figure 283 (SEQ ID NO:283), Figure 285 (SEQ ID NO:285), Figure 287 (SEQ ID NO:287), Figures 289A-289B (SEQ ID NO:289), Figure 291 (SEQ ID NO:291), Figure 293 (SEQ ID NO:293), Figure 295 (SEQ ID NO:295), Figure 297 (SEQ ID NO:297), Figure 299 (SEQ ID NO:299), Figure 301 (SEQ ID NO:301), Figure 303 (SEQ ID NO:303), Figure 305 (SEQ ID NO:305), Figure 307 (SEQ ID NO:307), Figure 309 (SEQ ID NO:309), Figures 311A-311B (SEQ ID NO:311), Figure 313 (SEQ ID NO:313), Figure 315 (SEQ ID NO:315), Figure 317 (SEQ ID NO:317), Figure 319 (SEQ ID NO:319), Figure 321 (SEQ ID NO:321), Figure 323 (SEQ ID NO:323), Figure 325 (SEQ ID NO:325), Figure 327 (SEQ ID NO:327), Figure 329 (SEQ ID NO:329), Figure 331 (SEQ ID NO:331), Figure 333 (SEQ ID NO:333), Figure 335 (SEQ ID NO:335), Figure 337 (SEQ ID NO:337), Figure 339 (SEQ ID NO:339), Figure 341 (SEQ ID NO:341), Figure 343 (SEQ ID NO:343), Figure 345 (SEO ID NO:345), Figure 347 (SEQ ID NO:347), Figure 349 (SEQ ID NO:349), Figures 351A-351B (SEQ ID NO:351), Figure 353 (SEQ ID NO:353), Figure 355 (SEQ ID NO:355), Figure 357 (SEQ ID NO:357), Figure 359 (SEQ ID NO:359), Figure 361 (SEQ ID NO:361), Figure 363 (SEQ ID NO:363), Figure 365 (SEQ ID NO:365), Figure 367 (SEQ ID NO:367), Figure 369 (SEQ ID NO:369), Figure 371 (SEQ ID NO:371) and Figure 373 (SEQ ID NO:373).

5

10

15

20

25

30

35

3. An isolated nucleic acid molecule having at least 80% nucleic acid sequence identity to a nucleotide sequence selected from the group consisting of the full-length coding sequence of the nucleotide sequence shown in Figure 1 (SEQ ID NO:1), Figure 3 (SEQ ID NO:3), Figure 5 (SEQ ID NO:5), Figure 7 (SEQ ID NO:7), Figure 9 (SEQ ID NO:9), Figure 11 (SEQ ID NO:11), Figure 13 (SEQ ID NO:13), Figure 15 (SEQ ID NO:15), Figure 17 (SEQ ID NO:17), Figure 19 (SEQ ID NO:19), Figure 21 (SEQ ID NO:21), Figure 23 (SEQ ID NO:23), Figure 25 (SEQ ID NO:25), Figure 27 (SEQ ID NO:27), Figure 29 (SEQ ID NO:29), Figure 31 (SEQ ID NO:31), Figure 33 (SEQ ID NO:33), Figure 35 (SEQ ID NO:35), Figure 37 (SEQ ID NO:37), Figure 39 (SEQ ID NO:39), Figure 41 (SEQ ID NO:41), Figure 43 (SEQ ID NO:43), Figure 45 (SEQ ID NO:45), Figure 47 (SEQ ID NO:47), Figure 49 (SEQ ID NO:49), Figure 51 (SEQ ID NO:51), Figure 53 (SEQ ID NO:53), Figure 55 (SEQ ID NO:55), Figure 57 (SEQ ID NO:57), Figure 59 (SEQ ID NO:59), Figure 61 (SEQ ID NO:61), Figure 63 (SEQ ID NO:63), Figure 65 (SEQ ID NO:65), Figure 67 (SEQ ID NO:67), Figure 69 (SEQ ID NO:69), Figure 71 (SEQ ID NO:71), Figure 73 (SEQ ID NO:73), Figures 75A-75B (SEQ ID NO:75), Figure 77 (SEQ ID NO:77), Figure 79 (SEQ ID NO:79), Figure 81 (SEQ ID NO:81), Figure 83 (SEQ ID NO:83), Figure 85 (SEQ ID NO:85), Figure 87 (SEQ ID NO:87), Figure 89 (SEQ ID NO:89), Figure 91 (SEQ ID NO:91), Figure 93 (SEQ ID NO:93), Figure 95 (SEQ ID NO:95), Figure 97 (SEQ ID NO:97), Figure 99 (SEQ ID NO:99), Figure 101 (SEQ ID NO:101), Figure 103 (SEQ ID NO:103), Figure 105 (SEQ ID NO:105), Figure 107 (SEQ ID NO:107), Figure 109 (SEQ ID NO:109), Figure 111 (SEQ ID NO:111), Figure 113 (SEQ ID NO:113), Figure 115 (SEQ ID NO:115), Figure 117 (SEQ ID NO:117), Figure 119 (SEQ ID NO:119), Figure 121 (SEQ ID NO:121), Figure 123 (SEQ ID NO:123), Figure 125 (SEQ ID NO:125), Figure 127 (SEQ ID NO:127), Figure 129 (SEQ ID NO:129), Figure 131 (SEQ ID NO:131), Figure 133 (SEQ ID NO:133), Figure 135 (SEQ ID NO:135), Figure 137 (SEQ ID NO:137), Figure 139 (SEQ ID NO:139), Figure 141 (SEQ ID NO:141), Figure 143 (SEQ ID NO:143), Figure 145 (SEQ ID NO:145), Figure 147 (SEQ ID NO:147), Figure 149 (SEQ ID NO:149), Figure 151 (SEQ ID NO:151), Figure 153 (SEQ ID NO:153), Figure 155 (SEQ ID NO:155), Figure 157 (SEQ ID NO:157), Figure 159 (SEQ ID NO:159), Figure 161 (SEQ ID NO:161), Figure 163 (SEQ ID NO:163), Figure 165 (SEQ ID NO:165), Figure 167 (SEQ ID NO:167), Figure 169 (SEQ ID NO:169), Figure 171 (SEQ ID NO:171), Figure 173 (SEQ ID NO:173), Figure 175 (SEQ ID NO:175), Figure 177 (SEQ ID NO:177), Figure 179 (SEQ ID NO:179), Figure 181 (SEQ ID NO:181), Figure 183 (SEQ ID NO:183), Figure 185 (SEQ ID NO:185), Figure 187 (SEQ ID NO:187), Figure 189 (SEQ ID NO:189), Figure 191 (SEQ ID NO:191), Figure 193 (SEQ ID NO:193), Figure 195 (SEQ ID NO:195), Figure 197 (SEQ ID NO:197), Figure 199 (SEQ ID NO:199), Figure 201 (SEQ ID NO:201), Figure 203 (SEQ ID NO:203), Figure 205 (SEQ ID NO:205), Figure 207 (SEQ ID NO:207), Figure 209 (SEQ ID NO:209), Figure 211 (SEQ ID NO:211), Figure 213 (SEQ ID NO:213), Figure 215 (SEQ ID NO:215), Figure 217 (SEQ ID NO:217), Figure 219 (SEQ ID NO:219), Figure 221 (SEQ ID NO:221), Figure 223 (SEQ ID NO:223), Figure 225 (SEQ ID NO:225), Figure 227 (SEQ ID NO:227), Figure 229 (SEQ ID NO:229), Figure 231 (SEQ ID NO:231), Figure 233 (SEQ ID NO:233), Figure 235 (SEQ ID NO:235), Figure 237 (SEQ ID NO:237), Figure 239 (SEQ ID NO:239), Figure 241 (SEQ ID NO:241), Figure 243 (SEQ ID NO:243), Figure 245 (SEQ ID NO:245), Figure 247 (SEQ ID NO:247), Figure 249 (SEQ ID NO:249), Figure 251 (SEQ ID NO:251), Figure

253 (SEQ ID NO:253), Figure 255 (SEQ ID NO:255), Figure 257 (SEQ ID NO:257), Figure 259 (SEQ ID NO:259), Figure 261 (SEQ ID NO:261), Figure 263 (SEQ ID NO:263), Figure 265 (SEQ ID NO:265), Figure 267 (SEQ ID NO:267), Figure 269 (SEQ ID NO:269), Figure 271 (SEQ ID NO:271), Figure 273 (SEQ ID NO:273), Figure 275 (SEQ ID NO:275), Figure 277 (SEQ ID NO:277), Figure 279 (SEQ ID NO:279), Figure 281 (SEQ ID NO:281), Figure 283 (SEQ ID NO:283), Figure 285 (SEQ ID NO:285), Figure 287 (SEQ ID NO:287), Figures 289A-289B (SEQ ID NO:289), Figure 291 (SEQ ID NO:291), Figure 293 (SEQ ID NO:293), Figure 295 (SEQ ID NO:295), Figure 297 (SEQ ID NO:297), Figure 299 (SEQ ID NO:299), Figure 301 (SEQ ID NO:301), Figure 303 (SEQ ID NO:303), Figure 305 (SEQ ID NO:305), Figure 307 (SEQ ID NO:307), Figure 309 (SEQ ID NO:309), Figures 311A-311B (SEQ ID NO:311), Figure 313 (SEQ ID NO:313), Figure 315 (SEQ ID NO:315), Figure 317 (SEQ ID NO:317), Figure 319 (SEQ ID NO:319), Figure 321 (SEQ ID NO:321), Figure 323 (SEQ ID NO:323), Figure 325 (SEQ ID NO:325), Figure 327 (SEQ ID NO:327), Figure 329 (SEQ ID NO:329), Figure 331 (SEQ ID NO:331), Figure 333 (SEQ ID NO:333), Figure 335 (SEQ ID NO:335), Figure 337 (SEQ ID NO:337), Figure 339 (SEQ ID NO:339), Figure 341 (SEQ ID NO:341), Figure 343 (SEQ ID NO:343), Figure 345 (SEQ ID NO:345), Figure 347 (SEQ ID NO:347), Figure 349 (SEQ ID NO:349), Figures 351A-351B (SEQ ID NO:351), Figure 353 (SEQ ID NO:353), Figure 355 (SEQ ID NO:355), Figure 357 (SEQ ID NO:357), Figure 359 (SEQ ID NO:359), Figure 361 (SEQ ID NO:361), Figure 363 (SEQ ID NO:363), Figure 365 (SEQ ID NO:365), Figure 367 (SEQ ID NO:367), Figure 369 (SEQ ID NO:369), Figure 371 (SEQ ID NO:371) and Figure 373 (SEQ ID NO:373).

- 4. An isolated nucleic acid molecule having at least 80% nucleic acid sequence identity to the full-length coding sequence of the DNA deposited under any ATCC accession number shown in Table 7.
 - 5. A vector comprising the nucleic acid of Claim 1.
- 25 6. A host cell comprising the vector of Claim 5.

5

10

15

30

- 7. The host cell of Claim 6, wherein said cell is a CHO cell.
- 8. The host cell of Claim 6, wherein said cell is an E. coli.
- 9. The host cell of Claim 6, wherein said cell is a yeast cell.
- A process for producing a PRO polypeptide comprising culturing the host cell of Claim 6 under conditions suitable for expression of said PRO polypeptide and recovering said PRO polypeptide from the cell
 culture.

5

10

15

20

25

30

35

11. An isolated polypeptide having at least 80% amino acid sequence identity to an amino acid sequence selected from the group consisting of the amino acid sequence shown in Figure 2 (SEQ ID NO:2), Figure 4 (SEQ ID NO:4), Figure 6 (SEQ ID NO:6), Figure 8 (SEQ ID NO:8), Figure 10 (SEQ ID NO:10), Figure 12 (SEQ ID NO:12), Figure 14 (SEQ ID NO:14), Figure 16 (SEQ ID NO:16), Figure 18 (SEQ ID NO:18), Figure 20 (SEQ ID NO:20), Figure 22 (SEQ ID NO:22), Figure 24 (SEQ ID NO:24), Figure 26 (SEQ ID NO:26), Figure 28 (SEQ ID NO:28), Figure 30 (SEQ ID NO:30), Figure 32 (SEQ ID NO:32), Figure 34 (SEQ ID NO:34), Figure 36 (SEQ ID NO:36), Figure 38 (SEQ ID NO:38), Figure 40 (SEQ ID NO:40), Figure 42 (SEQ ID NO:42), Figure 44 (SEQ ID NO:44), Figure 46 (SEQ ID NO:46), Figure 48 (SEQ ID NO:48), Figure 50 (SEQ ID NO:50), Figure 52 (SEQ ID NO:52), Figure 54 (SEQ ID NO:54), Figure 56 (SEQ ID NO:56), Figure 58 (SEQ ID NO:58), Figure 60 (SEQ ID NO:60), Figure 62 (SEQ ID NO:62), Figure 64 (SEQ ID NO:64), Figure 66 (SEQ ID NO:66), Figure 68 (SEQ ID NO:68), Figure 70 (SEQ ID NO:70), Figure 72 (SEQ ID NO:72), Figure 74 (SEQ ID NO:74), Figure 76 (SEQ ID NO:76), Figure 78 (SEQ ID NO:78), Figure 80 (SEQ ID NO:80), Figure 82 (SEQ ID NO:82), Figure 84 (SEQ ID NO:84), Figure 86 (SEQ ID NO:86), Figure 88 (SEQ ID NO:88), Figure 90 (SEQ ID NO:90), Figure 92 (SEQ ID NO:92), Figure 94 (SEQ ID NO:94), Figure 96 (SEQ ID NO:96), Figure 98 (SEQ ID NO:98), Figure 100 (SEQ ID NO:100), Figure 102 (SEQ ID NO:102), Figure 104 (SEQ ID NO:104), Figure 106 (SEQ ID NO:106), Figure 108 (SEQ ID NO:108), Figure 110 (SEQ ID NO:110), Figure 112 (SEQ ID NO:112), Figure 114 (SEQ ID NO:114), Figure 116 (SEO ID NO:116), Figure 118 (SEQ ID NO:118), Figure 120 (SEQ ID NO:120), Figure 122 (SEQ ID NO:122), Figure 124 (SEQ ID NO:124), Figure 126 (SEQ ID NO:126), Figure 128 (SEQ ID NO:128), Figure 130 (SEO ID NO:130), Figure 132 (SEQ ID NO:132), Figure 134 (SEQ ID NO:134), Figure 136 (SEQ ID NO:136), Figure 138 (SEQ ID NO:138), Figure 140 (SEQ ID NO:140), Figure 142 (SEQ ID NO:142), Figure 144 (SEQ ID NO:144), Figure 146 (SEQ ID NO:146), Figure 148 (SEQ ID NO:148), Figure 150 (SEQ ID NO:150), Figure 152 (SEQ ID NO:152), Figure 154 (SEQ ID NO:154), Figure 156 (SEQ ID NO:156), Figure 158 (SEQ ID NO:158), Figure 160 (SEQ ID NO:160), Figure 162 (SEQ ID NO:162), Figure 164 (SEQ ID NO:164), Figure 166 (SEQ ID NO:166), Figure 168 (SEQ ID NO:168), Figure 170 (SEQ ID NO:170), Figure 172 (SEQ ID NO:172), Figure 174 (SEQ ID NO:174), Figure 176 (SEQ ID NO:176), Figure 178 (SEQ ID NO:178), Figure 180 (SEQ ID NO:180), Figure 182 (SEQ ID NO:182), Figure 184 (SEQ ID NO:184), Figure 186 (SEQ ID NO:186), Figure 188 (SEQ ID NO:188), Figure 190 (SEQ ID NO:190), Figure 192 (SEQ ID NO:192), Figure 194 (SEQ ID NO:194), Figure 196 (SEQ ID NO:196), Figure 198 (SEQ ID NO:198), Figure 200 (SEQ ID NO:200), Figure 202 (SEQ ID NO:202), Figure 204 (SEQ ID NO:204), Figure 206 (SEQ ID NO:206), Figure 208 (SEQ ID NO:208), Figure 210 (SEQ ID NO:210), Figure 212 (SEQ ID NO:212), Figure 214 (SEQ ID NO:214), Figure 216 (SEQ ID NO:216), Figure 218 (SEQ ID NO:218), Figure 220 (SEQ ID NO:220), Figure 222 (SEQ ID NO:222), Figure 224 (SEQ ID NO:224), Figure 226 (SEQ ID NO:226), Figure 228 (SEQ ID NO:228), Figure 230 (SEQ ID NO:230), Figure 232 (SEQ ID NO:232), Figure 234 (SEQ ID NO:234), Figure 236 (SEQ ID NO:236), Figure 238 (SEQ ID NO:238), Figure 240 (SEQ ID NO:240), Figure 242 (SEQ ID NO:242), Figure 244 (SEQ ID NO:244), Figure 246 (SEQ ID NO:246), Figure 248 (SEQ ID NO:248), Figure 250 (SEQ ID NO:250), Figure 252 (SEQ ID NO:252), Figure 254 (SEQ ID NO:254), Figure 256 (SEQ ID

5

10

15

20

25

30

NO:256), Figure 258 (SEQ ID NO:258), Figure 260 (SEQ ID NO:260), Figure 262 (SEQ ID NO:262), Figure 264 (SEQ ID NO:264), Figure 266 (SEQ ID NO:266), Figure 268 (SEQ ID NO:268), Figure 270 (SEQ ID NO:270), Figure 272 (SEQ ID NO:272), Figure 274 (SEQ ID NO:274), Figure 276 (SEQ ID NO:276), Figure 278 (SEQ ID NO:278), Figure 280 (SEQ ID NO:280), Figure 282 (SEQ ID NO:282), Figure 284 (SEQ ID NO:284), Figure 286 (SEQ ID NO:286), Figure 288 (SEQ ID NO:288), Figure 290 (SEQ ID NO:290), Figure 292 (SEQ ID NO:292), Figure 294 (SEQ ID NO:294), Figure 296 (SEQ ID NO:296), Figure 298 (SEQ ID NO:298), Figure 300 (SEQ ID NO:300), Figure 302 (SEQ ID NO:302), Figure 304 (SEQ ID NO:304), Figure 306 (SEQ ID NO:306), Figure 308 (SEQ ID NO:308), Figure 310 (SEQ ID NO:310), Figure 312 (SEQ ID NO:312), Figure 314 (SEQ ID NO:314), Figure 316 (SEQ ID NO:316), Figure 318 (SEQ ID NO:318), Figure 320 (SEQ ID NO:320), Figure 322 (SEQ ID NO:322), Figure 324 (SEQ ID NO:324), Figure 326 (SEQ ID NO:326), Figure 328 (SEQ ID NO:328), Figure 330 (SEQ ID NO:330), Figure 332 (SEQ ID NO:332), Figure 334 (SEQ ID NO:334), Figure 336 (SEQ ID NO:336), Figure 338 (SEQ ID NO:338), Figure 340 (SEQ ID NO:340), Figure 342 (SEQ ID NO:342), Figure 344 (SEQ ID NO:344), Figure 346 (SEQ ID NO:346), Figure 348 (SEQ ID NO:348), Figure 350 (SEQ ID NO:350), Figure 352 (SEQ ID NO:352), Figure 354 (SEQ ID NO:354), Figure 356 (SEQ ID NO:356), Figure 358 (SEQ ID NO:358), Figure 360 (SEQ ID NO:360), Figure 362 (SEQ ID NO:362), Figure 364 (SEQ ID NO:364), Figure 366 (SEQ ID NO:366), Figure 368 (SEQ ID NO:368), Figure 370 (SEQ ID NO:370), Figure 372 (SEQ ID NO:372) and Figure 374 (SEQ ID NO:374).

- 12. An isolated polypeptide having at least 80% amino acid sequence identity to an amino acid sequence encoded by the full-length coding sequence of the DNA deposited under any ATCC accession number shown in Table 7.
 - 13. A chimeric molecule comprising a polypeptide according to Claim 11 fused to a heterologous amino acid sequence.
 - 14. The chimeric molecule of Claim 13, wherein said heterologous amino acid sequence is an epitope tag sequence.
- 15. The chimeric molecule of Claim 13, wherein said heterologous amino acid sequence is a Fc region of an immunoglobulin.
 - 16. An antibody which specifically binds to a polypeptide according to Claim 11.
- The antibody of Claim 16, wherein said antibody is a monoclonal antibody, a humanized antibody or a single-chain antibody.
 - 18. An isolated nucleic acid molecule having at least 80% nucleic acid sequence identity to:

5

10

15

20

25

30

35

(a) a nucleotide sequence encoding the polypeptide shown in Figure 2 (SEQ ID NO:2), Figure 4 (SEQ ID NO:4), Figure 6 (SEQ ID NO:6), Figure 8 (SEQ ID NO:8), Figure 10 (SEQ ID NO:10), Figure 12 (SEQ ID NO:12), Figure 14 (SEQ ID NO:14), Figure 16 (SEQ ID NO:16), Figure 18 (SEQ ID NO:18), Figure 20 (SEQ ID NO:20), Figure 22 (SEQ ID NO:22), Figure 24 (SEQ ID NO:24), Figure 26 (SEQ ID NO:26), Figure 28 (SEQ ID NO:28), Figure 30 (SEQ ID NO:30), Figure 32 (SEQ ID NO:32), Figure 34 (SEQ ID NO:34), Figure 36 (SEQ ID NO:36), Figure 38 (SEQ ID NO:38), Figure 40 (SEQ ID NO:40), Figure 42 (SEQ ID NO:42), Figure 44 (SEQ ID NO:44), Figure 46 (SEQ ID NO:46), Figure 48 (SEQ ID NO:48), Figure 50 (SEQ ID NO:50), Figure 52 (SEQ ID NO:52), Figure 54 (SEQ ID NO:54), Figure 56 (SEQ ID NO:56), Figure 58 (SEQ ID NO:58), Figure 60 (SEQ ID NO:60), Figure 62 (SEQ ID NO:62), Figure 64 (SEQ ID NO:64), Figure 66 (SEQ ID NO:66), Figure 68 (SEQ ID NO:68), Figure 70 (SEQ ID NO:70), Figure 72 (SEQ ID NO:72), Figure 74 (SEQ ID NO:74), Figure 76 (SEQ ID NO:76), Figure 78 (SEQ ID NO:78), Figure 80 (SEQ ID NO:80), Figure 82 (SEQ ID NO:82), Figure 84 (SEQ ID NO:84), Figure 86 (SEQ ID NO:86), Figure 88 (SEQ ID NO:88), Figure 90 (SEQ ID NO:90), Figure 92 (SEQ ID NO:92), Figure 94 (SEQ ID NO:94), Figure 96 (SEQ ID NO:96), Figure 98 (SEQ ID NO:98), Figure 100 (SEQ ID NO:100), Figure 102 (SEQ ID NO:102), Figure 104 (SEQ ID NO:104), Figure 106 (SEQ ID NO:106), Figure 108 (SEQ ID NO:108), Figure 110 (SEQ ID NO:110), Figure 112 (SEQ ID NO:112), Figure 114 (SEQ ID NO:114), Figure 116 (SEQ ID NO:116), Figure 118 (SEQ ID NO:118), Figure 120 (SEQ ID NO:120), Figure 122 (SEQ ID NO:122), Figure 124 (SEQ ID NO:124), Figure 126 (SEQ ID NO:126), Figure 128 (SEQ ID NO:128), Figure 130 (SEQ ID NO:130), Figure 132 (SEQ ID NO:132), Figure 134 (SEQ ID NO:134), Figure 136 (SEQ ID NO:136), Figure 138 (SEQ ID NO:138), Figure 140 (SEQ ID NO:140), Figure 142 (SEQ ID NO:142), Figure 144 (SEQ ID NO:144), Figure 146 (SEQ ID NO:146), Figure 148 (SEQ ID NO:148), Figure 150 (SEQ ID NO:150), Figure 152 (SEQ ID NO:152), Figure 154 (SEQ ID NO:154), Figure 156 (SEQ ID NO:156), Figure 158 (SEQ ID NO:158), Figure 160 (SEQ ID NO:160), Figure 162 (SEQ ID NO:162), Figure 164 (SEQ ID NO:164), Figure 166 (SEQ ID NO:166), Figure 168 (SEQ ID NO:168), Figure 170 (SEQ ID NO:170), Figure 172 (SEQ ID NO:172), Figure 174 (SEQ ID NO:174), Figure 176 (SEQ ID NO:176), Figure 178 (SEQ ID NO:178), Figure 180 (SEQ ID NO:180), Figure 182 (SEQ ID NO:182), Figure 184 (SEQ ID NO:184), Figure 186 (SEQ ID NO:186), Figure 188 (SEQ ID NO:188), Figure 190 (SEQ ID NO:190), Figure 192 (SEQ ID NO:192), Figure 194 (SEQ ID NO:194), Figure 196 (SEQ ID NO:196), Figure 198 (SEQ ID NO:198), Figure 200 (SEQ ID NO:200), Figure 202 (SEQ ID NO:202), Figure 204 (SEQ ID NO:204), Figure 206 (SEQ ID NO:206), Figure 208 (SEQ ID NO:208), Figure 210 (SEQ ID NO:210), Figure 212 (SEQ ID NO:212), Figure 214 (SEQ ID NO:214), Figure 216 (SEQ ID NO:216), Figure 218 (SEQ ID NO:218), Figure 220 (SEQ ID NO:220), Figure 222 (SEQ ID NO:222), Figure 224 (SEQ ID NO:224), Figure 226 (SEQ ID NO:226), Figure 228 (SEQ ID NO:228), Figure 230 (SEQ ID NO:230), Figure 232 (SEQ ID NO:232), Figure 234 (SEQ ID NO:234), Figure 236 (SEQ ID NO:236), Figure 238 (SEQ ID NO:238), Figure 240 (SEQ ID NO:240), Figure 242 (SEQ ID NO:242), Figure 244 (SEQ ID NO:244), Figure 246 (SEQ ID NO:246), Figure 248 (SEQ ID NO:248), Figure 250 (SEQ ID NO:250), Figure 252 (SEQ ID NO:252), Figure 254 (SEQ ID NO:254), Figure 256 (SEQ ID NO:256), Figure 258 (SEQ ID NO:258), Figure 260 (SEQ ID NO:260), Figure 262 (SEQ ID NO:262), Figure 264 (SEQ ID

5

10

15

20

25

30

35

NO:264), Figure 266 (SEQ ID NO:266), Figure 268 (SEQ ID NO:268), Figure 270 (SEQ ID NO:270), Figure 272 (SEQ ID NO:272), Figure 274 (SEQ ID NO:274), Figure 276 (SEQ ID NO:276), Figure 278 (SEO ID NO:278), Figure 280 (SEQ ID NO:280), Figure 282 (SEQ ID NO:282), Figure 284 (SEQ ID NO:284), Figure 286 (SEQ ID NO:286), Figure 288 (SEQ ID NO:288), Figure 290 (SEQ ID NO:290), Figure 292 (SEQ ID NO:292), Figure 294 (SEQ ID NO:294), Figure 296 (SEQ ID NO:296), Figure 298 (SEQ ID NO:298), Figure 300 (SEQ ID NO:300), Figure 302 (SEQ ID NO:302), Figure 304 (SEQ ID NO:304), Figure 306 (SEQ ID NO:306), Figure 308 (SEQ ID NO:308), Figure 310 (SEQ ID NO:310), Figure 312 (SEQ ID NO:312), Figure 314 (SEQ ID NO:314), Figure 316 (SEQ ID NO:316), Figure 318 (SEQ ID NO:318), Figure 320 (SEQ ID NO:320), Figure 322 (SEQ ID NO:322), Figure 324 (SEQ ID NO:324), Figure 326 (SEQ ID NO:326), Figure 328 (SEQ ID NO:328), Figure 330 (SEQ ID NO:330), Figure 332 (SEQ ID NO:332), Figure 334 (SEQ ID NO:334), Figure 336 (SEQ ID NO:336), Figure 338 (SEQ ID NO:338), Figure 340 (SEQ ID NO:340), Figure 342 (SEQ ID NO:342), Figure 344 (SEQ ID NO:344), Figure 346 (SEQ ID NO:346), Figure 348 (SEQ ID NO:348), Figure 350 (SEQ ID NO:350), Figure 352 (SEQ ID NO:352), Figure 354 (SEO ID NO:354), Figure 356 (SEQ ID NO:356), Figure 358 (SEQ ID NO:358), Figure 360 (SEQ ID NO:360), Figure 362 (SEQ ID NO:362), Figure 364 (SEQ ID NO:364), Figure 366 (SEQ ID NO:366), Figure 368 (SEQ ID NO:368), Figure 370 (SEQ ID NO:370), Figure 372 (SEQ ID NO:372) or Figure 374 (SEO ID NO:374), lacking its associated signal peptide;

(b) a nucleotide sequence encoding an extracellular domain of the polypeptide shown in Figure 2 (SEQ ID NO:2), Figure 4 (SEQ ID NO:4), Figure 6 (SEQ ID NO:6), Figure 8 (SEQ ID NO:8), Figure 10 (SEQ ID NO:10), Figure 12 (SEQ ID NO:12), Figure 14 (SEQ ID NO:14), Figure 16 (SEQ ID NO:16), Figure 18 (SEQ ID NO:18), Figure 20 (SEQ ID NO:20), Figure 22 (SEQ ID NO:22), Figure 24 (SEQ ID NO:24), Figure 26 (SEQ ID NO:26), Figure 28 (SEQ ID NO:28), Figure 30 (SEQ ID NO:30), Figure 32 (SEQ ID NO:32), Figure 34 (SEQ ID NO:34), Figure 36 (SEQ ID NO:36), Figure 38 (SEQ ID NO:38), Figure 40 (SEQ ID NO:40), Figure 42 (SEQ ID NO:42), Figure 44 (SEQ ID NO:44), Figure 46 (SEQ ID NO:46), Figure 48 (SEQ ID NO:48), Figure 50 (SEQ ID NO:50), Figure 52 (SEQ ID NO:52), Figure 54 (SEQ ID NO:54), Figure 56 (SEQ ID NO:56), Figure 58 (SEQ ID NO:58), Figure 60 (SEQ ID NO:60), Figure 62 (SEQ ID NO:62), Figure 64 (SEQ ID NO:64), Figure 66 (SEQ ID NO:66), Figure 68 (SEQ ID NO:68), Figure 70 (SEQ ID NO:70), Figure 72 (SEQ ID NO:72), Figure 74 (SEQ ID NO:74), Figure 76 (SEQ ID NO:76), Figure 78 (SEQ ID NO:78), Figure 80 (SEQ ID NO:80), Figure 82 (SEQ ID NO:82), Figure 84 (SEQ ID NO:84), Figure 86 (SEQ ID NO:86), Figure 88 (SEQ ID NO:88), Figure 90 (SEQ ID NO:90), Figure 92 (SEQ ID NO:92), Figure 94 (SEQ ID NO:94), Figure 96 (SEQ ID NO:96), Figure 98 (SEQ ID NO:98), Figure 100 (SEQ ID NO:100), Figure 102 (SEQ ID NO:102), Figure 104 (SEQ ID NO:104), Figure 106 (SEQ ID NO:106), Figure 108 (SEQ ID NO:108), Figure 110 (SEQ ID NO:110), Figure 112 (SEQ ID NO:112), Figure 114 (SEQ ID NO:114), Figure 116 (SEQ ID NO:116), Figure 118 (SEQ ID NO:118), Figure 120 (SEQ ID NO:120), Figure 122 (SEQ ID NO:122), Figure 124 (SEQ ID NO:124), Figure 126 (SEQ ID NO:126), Figure 128 (SEQ ID NO:128), Figure 130 (SEQ ID NO:130), Figure 132 (SEQ ID NO:132), Figure 134 (SEQ ID NO:134), Figure 136 (SEQ ID NO:136), Figure 138 (SEQ ID NO:138), Figure 140 (SEQ ID NO:140), Figure 142 (SEQ ID NO:142), Figure

144 (SEQ ID NO:144), Figure 146 (SEQ ID NO:146), Figure 148 (SEQ ID NO:148), Figure 150 (SEQ ID NO:150), Figure 152 (SEQ ID NO:152), Figure 154 (SEQ ID NO:154), Figure 156 (SEQ ID NO:156), Figure 158 (SEQ ID NO:158), Figure 160 (SEQ ID NO:160), Figure 162 (SEQ ID NO:162), Figure 164 (SEQ ID NO:164), Figure 166 (SEQ ID NO:166), Figure 168 (SEQ ID NO:168), Figure 170 (SEQ ID NO:170), Figure 5 172 (SEQ ID NO:172), Figure 174 (SEQ ID NO:174), Figure 176 (SEQ ID NO:176), Figure 178 (SEQ ID NO:178), Figure 180 (SEQ ID NO:180), Figure 182 (SEQ ID NO:182), Figure 184 (SEQ ID NO:184), Figure 186 (SEQ ID NO:186), Figure 188 (SEQ ID NO:188), Figure 190 (SEQ ID NO:190), Figure 192 (SEQ ID NO:192), Figure 194 (SEQ ID NO:194), Figure 196 (SEQ ID NO:196), Figure 198 (SEQ ID NO:198), Figure 200 (SEQ ID NO:200), Figure 202 (SEQ ID NO:202), Figure 204 (SEQ ID NO:204), Figure 206 (SEQ ID 10 NO:206), Figure 208 (SEQ ID NO:208), Figure 210 (SEQ ID NO:210), Figure 212 (SEQ ID NO:212), Figure 214 (SEQ ID NO:214), Figure 216 (SEQ ID NO:216), Figure 218 (SEQ ID NO:218), Figure 220 (SEQ ID NO:220), Figure 222 (SEQ ID NO:222), Figure 224 (SEQ ID NO:224), Figure 226 (SEQ ID NO:226), Figure 228 (SEQ ID NO:228), Figure 230 (SEQ ID NO:230), Figure 232 (SEQ ID NO:232), Figure 234 (SEQ ID NO:234), Figure 236 (SEQ ID NO:236), Figure 238 (SEQ ID NO:238), Figure 240 (SEQ ID NO:240), Figure 15 242 (SEQ ID NO:242), Figure 244 (SEQ ID NO:244), Figure 246 (SEQ ID NO:246), Figure 248 (SEQ ID NO:248), Figure 250 (SEQ ID NO:250), Figure 252 (SEQ ID NO:252), Figure 254 (SEQ ID NO:254), Figure 256 (SEQ ID NO:256), Figure 258 (SEQ ID NO:258), Figure 260 (SEQ ID NO:260), Figure 262 (SEQ ID NO:262), Figure 264 (SEQ ID NO:264), Figure 266 (SEQ ID NO:266), Figure 268 (SEQ ID NO:268), Figure 270 (SEQ ID NO:270), Figure 272 (SEQ ID NO:272), Figure 274 (SEQ ID NO:274), Figure 276 (SEQ ID 20 NO:276), Figure 278 (SEQ ID NO:278), Figure 280 (SEQ ID NO:280), Figure 282 (SEQ ID NO:282), Figure 284 (SEQ ID NO:284), Figure 286 (SEQ ID NO:286), Figure 288 (SEQ ID NO:288), Figure 290 (SEQ ID NO:290), Figure 292 (SEQ ID NO:292), Figure 294 (SEQ ID NO:294), Figure 296 (SEQ ID NO:296), Figure 298 (SEQ ID NO:298), Figure 300 (SEQ ID NO:300), Figure 302 (SEQ ID NO:302), Figure 304 (SEQ ID NO:304), Figure 306 (SEQ ID NO:306), Figure 308 (SEQ ID NO:308), Figure 310 (SEQ ID NO:310), Figure 25 312 (SEQ ID NO:312), Figure 314 (SEQ ID NO:314), Figure 316 (SEQ ID NO:316), Figure 318 (SEQ ID NO:318), Figure 320 (SEQ ID NO:320), Figure 322 (SEQ ID NO:322), Figure 324 (SEQ ID NO:324), Figure 326 (SEQ ID NO:326), Figure 328 (SEQ ID NO:328), Figure 330 (SEQ ID NO:330), Figure 332 (SEQ ID NO:332), Figure 334 (SEQ ID NO:334), Figure 336 (SEQ ID NO:336), Figure 338 (SEQ ID NO:338), Figure 340 (SEQ ID NO:340), Figure 342 (SEQ ID NO:342), Figure 344 (SEQ ID NO:344), Figure 346 (SEQ ID 30 NO:346), Figure 348 (SEQ ID NO:348), Figure 350 (SEQ ID NO:350), Figure 352 (SEQ ID NO:352), Figure 354 (SEQ ID NO:354), Figure 356 (SEQ ID NO:356), Figure 358 (SEQ ID NO:358), Figure 360 (SEQ ID NO:360), Figure 362 (SEQ ID NO:362), Figure 364 (SEQ ID NO:364), Figure 366 (SEQ ID NO:366), Figure 368 (SEQ ID NO:368), Figure 370 (SEQ ID NO:370), Figure 372 (SEQ ID NO:372) or Figure 374 (SEQ ID NO:374), with its associated signal peptide; or

(c) a nucleotide sequence encoding an extracellular domain of the polypeptide shown in Figure 2 (SEQ ID NO:2), Figure 4 (SEQ ID NO:4), Figure 6 (SEQ ID NO:6), Figure 8 (SEQ ID NO:8), Figure 10 (SEQ ID NO:10), Figure 12 (SEQ ID NO:12), Figure 14 (SEQ ID NO:14), Figure 16 (SEQ ID NO:16), Figure 18

35

5

10

15

20

25

30

35

(SEQ ID NO:18), Figure 20 (SEQ ID NO:20), Figure 22 (SEQ ID NO:22), Figure 24 (SEQ ID NO:24), Figure 26 (SEQ ID NO:26), Figure 28 (SEQ ID NO:28), Figure 30 (SEQ ID NO:30), Figure 32 (SEQ ID NO:32), Figure 34 (SEQ ID NO:34), Figure 36 (SEQ ID NO:36), Figure 38 (SEQ ID NO:38), Figure 40 (SEQ ID NO:40), Figure 42 (SEQ ID NO:42), Figure 44 (SEQ ID NO:44), Figure 46 (SEQ ID NO:46), Figure 48 (SEQ ID NO:48), Figure 50 (SEQ ID NO:50), Figure 52 (SEQ ID NO:52), Figure 54 (SEQ ID NO:54), Figure 56 (SEQ ID NO:56), Figure 58 (SEQ ID NO:58), Figure 60 (SEQ ID NO:60), Figure 62 (SEQ ID NO:62), Figure 64 (SEQ ID NO:64), Figure 66 (SEQ ID NO:66), Figure 68 (SEQ ID NO:68), Figure 70 (SEQ ID NO:70), Figure 72 (SEQ ID NO:72), Figure 74 (SEQ ID NO:74), Figure 76 (SEQ ID NO:76), Figure 78 (SEQ ID NO:78), Figure 80 (SEQ ID NO:80), Figure 82 (SEQ ID NO:82), Figure 84 (SEQ ID NO:84), Figure 86 (SEQ ID NO:86), Figure 88 (SEQ ID NO:88), Figure 90 (SEQ ID NO:90), Figure 92 (SEQ ID NO:92), Figure 94 (SEQ ID NO:94), Figure 96 (SEQ ID NO:96), Figure 98 (SEQ ID NO:98), Figure 100 (SEQ ID NO:100), Figure 102 (SEQ ID NO:102), Figure 104 (SEQ ID NO:104), Figure 106 (SEO ID NO:106), Figure 108 (SEO ID NO:108), Figure 110 (SEQ ID NO:110), Figure 112 (SEQ ID NO:112), Figure 114 (SEQ ID NO:114), Figure 116 (SEQ ID NO:116), Figure 118 (SEQ ID NO:118), Figure 120 (SEQ ID NO:120), Figure 122 (SEQ ID NO:122), Figure 124 (SEQ ID NO:124), Figure 126 (SEQ ID NO:126), Figure 128 (SEQ ID NO:128), Figure 130 (SEQ ID NO:130), Figure 132 (SEQ ID NO:132), Figure 134 (SEQ ID NO:134), Figure 136 (SEQ ID NO:136), Figure 138 (SEQ ID NO:138), Figure 140 (SEO ID NO:140), Figure 142 (SEO ID NO:142), Figure 144 (SEQ ID NO:144), Figure 146 (SEQ ID NO:146), Figure 148 (SEQ ID NO:148), Figure 150 (SEQ ID NO:150), Figure 152 (SEQ ID NO:152), Figure 154 (SEQ ID NO:154), Figure 156 (SEQ ID NO:156), Figure 158 (SEQ ID NO:158), Figure 160 (SEQ ID NO:160), Figure 162 (SEQ ID NO:162), Figure 164 (SEQ ID NO:164), Figure 166 (SEQ ID NO:166), Figure 168 (SEQ ID NO:168), Figure 170 (SEQ ID NO:170), Figure 172 (SEQ ID NO:172), Figure 174 (SEQ ID NO:174), Figure 176 (SEQ ID NO:176), Figure 178 (SEQ ID NO:178), Figure 180 (SEQ ID NO:180), Figure 182 (SEQ ID NO:182), Figure 184 (SEQ ID NO:184), Figure 186 (SEQ ID NO:186), Figure 188 (SEQ ID NO:188), Figure 190 (SEQ ID NO:190), Figure 192 (SEQ ID NO:192), Figure 194 (SEQ ID NO:194), Figure 196 (SEQ ID NO:196), Figure 198 (SEQ ID NO:198), Figure 200 (SEQ ID NO:200), Figure 202 (SEQ ID NO:202), Figure 204 (SEO ID NO:204), Figure 206 (SEO ID NO:206), Figure 208 (SEQ ID NO:208), Figure 210 (SEQ ID NO:210), Figure 212 (SEQ ID NO:212), Figure 214 (SEQ ID NO:214), Figure 216 (SEQ ID NO:216), Figure 218 (SEQ ID NO:218), Figure 220 (SEQ ID NO:220), Figure 222 (SEQ ID NO:222), Figure 224 (SEQ ID NO:224), Figure 226 (SEQ ID NO:226), Figure 228 (SEQ ID NO:228), Figure 230 (SEQ ID NO:230), Figure 232 (SEQ ID NO:232), Figure 234 (SEQ ID NO:234), Figure 236 (SEQ ID NO:236), Figure 238 (SEQ ID NO:238), Figure 240 (SEQ ID NO:240), Figure 242 (SEQ ID NO:242), Figure 244 (SEQ ID NO:244), Figure 246 (SEQ ID NO:246), Figure 248 (SEQ ID NO:248), Figure 250 (SEQ ID NO:250), Figure 252 (SEQ ID NO:252), Figure 254 (SEQ ID NO:254), Figure 256 (SEQ ID NO:256), Figure 258 (SEQ ID NO:258), Figure 260 (SEQ ID NO:260), Figure 262 (SEQ ID NO:262), Figure 264 (SEQ ID NO:264), Figure 266 (SEQ ID NO:266), Figure 268 (SEQ ID NO:268), Figure 270 (SEQ ID NO:270), Figure 272 (SEQ ID NO:272), Figure 274 (SEQ ID NO:274), Figure 276 (SEQ ID NO:276), Figure 278 (SEQ ID NO:278), Figure 280 (SEQ ID NO:280), Figure 282 (SEQ ID NO:282), Figure

284 (SEQ ID NO:284), Figure 286 (SEQ ID NO:286), Figure 288 (SEQ ID NO:288), Figure 290 (SEQ ID NO:290), Figure 292 (SEQ ID NO:292), Figure 294 (SEQ ID NO:294), Figure 296 (SEQ ID NO:296), Figure 298 (SEQ ID NO:298), Figure 300 (SEQ ID NO:300), Figure 302 (SEQ ID NO:302), Figure 304 (SEQ ID NO:304), Figure 306 (SEQ ID NO:306), Figure 308 (SEQ ID NO:308), Figure 310 (SEQ ID NO:310), Figure 312 (SEQ ID NO:312), Figure 314 (SEQ ID NO:314), Figure 316 (SEQ ID NO:316), Figure 318 (SEQ ID NO:318), Figure 320 (SEQ ID NO:320), Figure 322 (SEQ ID NO:322), Figure 324 (SEQ ID NO:324), Figure 326 (SEQ ID NO:326), Figure 328 (SEQ ID NO:328), Figure 330 (SEQ ID NO:330), Figure 332 (SEQ ID NO:332), Figure 334 (SEQ ID NO:334), Figure 336 (SEQ ID NO:336), Figure 338 (SEQ ID NO:338), Figure 340 (SEQ ID NO:340), Figure 342 (SEQ ID NO:342), Figure 344 (SEQ ID NO:344), Figure 346 (SEQ ID NO:346), Figure 348 (SEQ ID NO:348), Figure 350 (SEQ ID NO:350), Figure 352 (SEQ ID NO:352), Figure 354 (SEQ ID NO:354), Figure 356 (SEQ ID NO:356), Figure 358 (SEQ ID NO:358), Figure 360 (SEQ ID NO:360), Figure 362 (SEQ ID NO:362), Figure 364 (SEQ ID NO:364), Figure 366 (SEQ ID NO:366), Figure 368 (SEQ ID NO:368), Figure 370 (SEQ ID NO:370), Figure 372 (SEQ ID NO:372) or Figure 374 (SEQ ID NO:374), lacking its associated signal peptide.

15

20

25

30

35

10

5

19. An isolated polypeptide having at least 80% amino acid sequence identity to:

(a) an amino acid sequence of the polypeptide shown in Figure 2 (SEQ ID NO:2), Figure 4 (SEQ ID NO:4), Figure 6 (SEQ ID NO:6), Figure 8 (SEQ ID NO:8), Figure 10 (SEQ ID NO:10), Figure 12 (SEQ ID NO:12), Figure 14 (SEQ ID NO:14), Figure 16 (SEQ ID NO:16), Figure 18 (SEO ID NO:18), Figure 20 (SEO ID NO:20), Figure 22 (SEQ ID NO:22), Figure 24 (SEQ ID NO:24), Figure 26 (SEO ID NO:26), Figure 28 (SEQ ID NO:28), Figure 30 (SEQ ID NO:30), Figure 32 (SEQ ID NO:32), Figure 34 (SEQ ID NO:34), Figure 36 (SEQ ID NO:36), Figure 38 (SEQ ID NO:38), Figure 40 (SEQ ID NO:40), Figure 42 (SEQ ID NO:42), Figure 44 (SEQ ID NO:44), Figure 46 (SEQ ID NO:46), Figure 48 (SEQ ID NO:48), Figure 50 (SEQ ID NO:50), Figure 52 (SEQ ID NO:52), Figure 54 (SEQ ID NO:54), Figure 56 (SEQ ID NO:56), Figure 58 (SEQ ID NO:58), Figure 60 (SEQ ID NO:60), Figure 62 (SEQ ID NO:62), Figure 64 (SEQ ID NO:64), Figure 66 (SEQ ID NO:66), Figure 68 (SEQ ID NO:68), Figure 70 (SEQ ID NO:70), Figure 72 (SEQ ID NO:72), Figure 74 (SEQ ID NO:74), Figure 76 (SEQ ID NO:76), Figure 78 (SEQ ID NO:78), Figure 80 (SEQ ID NO:80), Figure 82 (SEQ ID NO:82), Figure 84 (SEQ ID NO:84), Figure 86 (SEQ ID NO:86), Figure 88 (SEQ ID NO:88), Figure 90 (SEQ ID NO:90), Figure 92 (SEQ ID NO:92), Figure 94 (SEQ ID NO:94), Figure 96 (SEQ ID NO:96), Figure 98 (SEQ ID NO:98), Figure 100 (SEQ ID NO:100), Figure 102 (SEQ ID NO:102), Figure 104 (SEQ ID NO:104), Figure 106 (SEQ ID NO:106), Figure 108 (SEQ ID NO:108), Figure 110 (SEQ ID NO:110), Figure 112 (SEQ ID NO:112), Figure 114 (SEQ ID NO:114), Figure 116 (SEQ ID NO:116), Figure 118 (SEQ ID NO:118), Figure 120 (SEQ ID NO:120), Figure 122 (SEQ ID NO:122), Figure 124 (SEQ ID NO:124), Figure 126 (SEQ ID NO:126), Figure 128 (SEQ ID NO:128), Figure 130 (SEQ ID NO:130), Figure 132 (SEQ ID NO:132), Figure 134 (SEQ ID NO:134), Figure 136 (SEQ ID NO:136), Figure 138 (SEQ ID NO:138), Figure 140 (SEQ ID NO:140), Figure 142 (SEQ ID NO:142), Figure 144 (SEQ ID NO:144), Figure 146 (SEQ ID NO:146), Figure 148 (SEQ ID NO:148), Figure 150 (SEQ ID NO:150), Figure 152 (SEQ ID

5

10

15

20

25

30

35

NO:152), Figure 154 (SEQ ID NO:154), Figure 156 (SEQ ID NO:156), Figure 158 (SEQ ID NO:158), Figure 160 (SEQ ID NO:160), Figure 162 (SEQ ID NO:162), Figure 164 (SEQ ID NO:164), Figure 166 (SEQ ID NO:166), Figure 168 (SEQ ID NO:168), Figure 170 (SEQ ID NO:170), Figure 172 (SEQ ID NO:172), Figure 174 (SEQ ID NO:174), Figure 176 (SEQ ID NO:176), Figure 178 (SEQ ID NO:178), Figure 180 (SEQ ID NO:180), Figure 182 (SEQ ID NO:182), Figure 184 (SEQ ID NO:184), Figure 186 (SEQ ID NO:186), Figure 188 (SEQ ID NO:188), Figure 190 (SEQ ID NO:190), Figure 192 (SEO ID NO:192), Figure 194 (SEO ID NO:194), Figure 196 (SEQ ID NO:196), Figure 198 (SEQ ID NO:198), Figure 200 (SEQ ID NO:200), Figure 202 (SEQ ID NO:202), Figure 204 (SEQ ID NO:204), Figure 206 (SEQ ID NO:206), Figure 208 (SEQ ID NO:208), Figure 210 (SEQ ID NO:210), Figure 212 (SEQ ID NO:212), Figure 214 (SEQ ID NO:214), Figure 216 (SEQ ID NO:216), Figure 218 (SEQ ID NO:218), Figure 220 (SEQ ID NO:220), Figure 222 (SEO ID NO:222), Figure 224 (SEQ ID NO:224), Figure 226 (SEQ ID NO:226), Figure 228 (SEQ ID NO:228), Figure 230 (SEQ ID NO:230), Figure 232 (SEQ ID NO:232), Figure 234 (SEQ ID NO:234), Figure 236 (SEQ ID NO:236), Figure 238 (SEQ ID NO:238), Figure 240 (SEQ ID NO:240), Figure 242 (SEQ ID NO:242), Figure 244 (SEQ ID NO:244), Figure 246 (SEQ ID NO:246), Figure 248 (SEO ID NO:248), Figure 250 (SEO ID NO:250), Figure 252 (SEQ ID NO:252), Figure 254 (SEQ ID NO:254), Figure 256 (SEQ ID NO:256), Figure 258 (SEQ ID NO:258), Figure 260 (SEQ ID NO:260), Figure 262 (SEQ ID NO:262), Figure 264 (SEQ ID NO:264), Figure 266 (SEQ ID NO:266), Figure 268 (SEQ ID NO:268), Figure 270 (SEQ ID NO:270), Figure 272 (SEQ ID NO:272), Figure 274 (SEQ ID NO:274), Figure 276 (SEQ ID NO:276), Figure 278 (SEQ ID NO:278), Figure 280 (SEQ ID NO:280), Figure 282 (SEQ ID NO:282), Figure 284 (SEQ ID NO:284), Figure 286 (SEQ ID NO:286), Figure 288 (SEQ ID NO:288), Figure 290 (SEQ ID NO:290), Figure 292 (SEQ ID NO:292), Figure 294 (SEQ ID NO:294), Figure 296 (SEQ ID NO:296), Figure 298 (SEQ ID NO:298), Figure 300 (SEQ ID NO:300), Figure 302 (SEQ ID NO:302), Figure 304 (SEQ ID NO:304), Figure 306 (SEQ ID NO:306), Figure 308 (SEQ ID NO:308), Figure 310 (SEQ ID NO:310), Figure 312 (SEQ ID NO:312), Figure 314 (SEQ ID NO:314), Figure 316 (SEQ ID NO:316), Figure 318 (SEQ ID NO:318), Figure 320 (SEQ ID NO:320), Figure 322 (SEQ ID NO:322), Figure 324 (SEQ ID NO:324), Figure 326 (SEQ ID NO:326), Figure 328 (SEQ ID NO:328), Figure 330 (SEQ ID NO:330), Figure 332 (SEQ ID NO:332), Figure 334 (SEQ ID NO:334), Figure 336 (SEQ ID NO:336), Figure 338 (SEQ ID NO:338), Figure 340 (SEQ ID NO:340), Figure 342 (SEQ ID NO:342), Figure 344 (SEQ ID NO:344), Figure 346 (SEQ ID NO:346), Figure 348 (SEQ ID NO:348), Figure 350 (SEQ ID NO:350), Figure 352 (SEQ ID NO:352), Figure 354 (SEQ ID NO:354), Figure 356 (SEQ ID NO:356), Figure 358 (SEQ ID NO:358), Figure 360 (SEQ ID NO:360), Figure 362 (SEQ ID NO:362), Figure 364 (SEQ ID NO:364), Figure 366 (SEQ ID NO:366), Figure 368 (SEQ ID NO:368), Figure 370 (SEQ ID NO:370), Figure 372 (SEQ ID NO:372) or Figure 374 (SEQ ID NO:374), lacking its associated signal peptide;

(b) an amino acid sequence of an extracellular domain of the polypeptide shown in Figure 2 (SEQ ID NO:2), Figure 4 (SEQ ID NO:4), Figure 6 (SEQ ID NO:6), Figure 8 (SEQ ID NO:8), Figure 10 (SEQ ID NO:10), Figure 12 (SEQ ID NO:12), Figure 14 (SEQ ID NO:14), Figure 16 (SEQ ID NO:16), Figure 18 (SEQ ID NO:18), Figure 20 (SEQ ID NO:20), Figure 22 (SEQ ID NO:22), Figure 24 (SEQ ID NO:24), Figure 26

5

10

15

20

25

30

35

(SEQ ID NO:26), Figure 28 (SEQ ID NO:28), Figure 30 (SEQ ID NO:30), Figure 32 (SEQ ID NO:32), Figure 34 (SEQ ID NO:34), Figure 36 (SEQ ID NO:36), Figure 38 (SEQ ID NO:38), Figure 40 (SEQ ID NO:40), Figure 42 (SEQ ID NO:42), Figure 44 (SEQ ID NO:44), Figure 46 (SEQ ID NO:46), Figure 48 (SEQ ID NO:48), Figure 50 (SEQ ID NO:50), Figure 52 (SEQ ID NO:52), Figure 54 (SEQ ID NO:54), Figure 56 (SEQ ID NO:56), Figure 58 (SEQ ID NO:58), Figure 60 (SEQ ID NO:60), Figure 62 (SEQ ID NO:62), Figure 64 (SEQ ID NO:64), Figure 66 (SEQ ID NO:66), Figure 68 (SEQ ID NO:68), Figure 70 (SEQ ID NO:70), Figure 72 (SEQ ID NO:72), Figure 74 (SEQ ID NO:74), Figure 76 (SEQ ID NO:76), Figure 78 (SEQ ID NO:78), Figure 80 (SEQ ID NO:80), Figure 82 (SEQ ID NO:82), Figure 84 (SEQ ID NO:84), Figure 86 (SEQ ID NO:86), Figure 88 (SEQ ID NO:88), Figure 90 (SEQ ID NO:90), Figure 92 (SEQ ID NO:92), Figure 94 (SEQ ID NO:94), Figure 96 (SEQ ID NO:96), Figure 98 (SEQ ID NO:98), Figure 100 (SEQ ID NO:100), Figure 102 (SEQ ID NO:102), Figure 104 (SEQ ID NO:104), Figure 106 (SEQ ID NO:106), Figure 108 (SEQ ID NO:108), Figure 110 (SEQ ID NO:110), Figure 112 (SEQ ID NO:112), Figure 114 (SEQ ID NO:114), Figure 116 (SEQ ID NO:116), Figure 118 (SEQ ID NO:118), Figure 120 (SEQ ID NO:120), Figure 122 (SEQ ID NO:122), Figure 124 (SEQ ID NO:124), Figure 126 (SEQ ID NO:126), Figure 128 (SEQ ID NO:128), Figure 130 (SEQ ID NO:130), Figure 132 (SEQ ID NO:132), Figure 134 (SEQ ID NO:134), Figure 136 (SEQ ID NO:136), Figure 138 (SEQ ID NO:138), Figure 140 (SEQ ID NO:140), Figure 142 (SEQ ID NO:142), Figure 144 (SEQ ID NO:144), Figure 146 (SEQ ID NO:146), Figure 148 (SEQ ID NO:148), Figure 150 (SEQ ID NO:150), Figure 152 (SEQ ID NO:152), Figure 154 (SEQ ID NO:154), Figure 156 (SEQ ID NO:156), Figure 158 (SEQ ID NO:158), Figure 160 (SEQ ID NO:160), Figure 162 (SEQ ID NO:162), Figure 164 (SEQ ID NO:164), Figure 166 (SEQ ID NO:166), Figure 168 (SEQ ID NO:168), Figure 170 (SEQ ID NO:170), Figure 172 (SEQ ID NO:172), Figure 174 (SEQ ID NO:174), Figure 176 (SEQ ID NO:176), Figure 178 (SEQ ID NO:178), Figure 180 (SEQ ID NO:180), Figure 182 (SEQ ID NO:182), Figure 184 (SEQ ID NO:184), Figure 186 (SEQ ID NO:186), Figure 188 (SEQ ID NO:188), Figure 190 (SEQ ID NO:190), Figure 192 (SEQ ID NO:192), Figure 194 (SEQ ID NO:194), Figure 196 (SEQ ID NO:196), Figure 198 (SEQ ID NO:198), Figure 200 (SEQ ID NO:200), Figure 202 (SEQ ID NO:202), Figure 204 (SEQ ID NO:204), Figure 206 (SEQ ID NO:206), Figure 208 (SEQ ID NO:208), Figure 210 (SEQ ID NO:210), Figure 212 (SEQ ID NO:212), Figure 214 (SEQ ID NO:214), Figure 216 (SEQ ID NO:216), Figure 218 (SEQ ID NO:218), Figure 220 (SEQ ID NO:220), Figure 222 (SEQ ID NO:222), Figure 224 (SEQ ID NO:224), Figure 226 (SEQ ID NO:226), Figure 228 (SEQ ID NO:228), Figure 230 (SEQ ID NO:230), Figure 232 (SEQ ID NO:232), Figure 234 (SEQ ID NO:234), Figure 236 (SEQ ID NO:236), Figure 238 (SEQ ID NO:238), Figure 240 (SEQ ID NO:240), Figure 242 (SEQ ID NO:242), Figure 244 (SEQ ID NO:244), Figure 246 (SEQ ID NO:246), Figure 248 (SEQ ID NO:248), Figure 250 (SEQ ID NO:250), Figure 252 (SEQ ID NO:252), Figure 254 (SEQ ID NO:254), Figure 256 (SEQ ID NO:256), Figure 258 (SEQ ID NO:258), Figure 260 (SEQ ID NO:260), Figure 262 (SEQ ID NO:262), Figure 264 (SEQ ID NO:264), Figure 266 (SEQ ID NO:266), Figure 268 (SEQ ID NO:268), Figure 270 (SEQ ID NO:270), Figure 272 (SEQ ID NO:272), Figure 274 (SEQ ID NO:274), Figure 276 (SEQ ID NO:276), Figure 278 (SEQ ID NO:278), Figure 280 (SEQ ID NO:280), Figure 282 (SEQ ID NO:282), Figure 284 (SEQ ID NO:284), Figure 286 (SEQ ID NO:286), Figure 288 (SEQ ID NO:288), Figure 290 (SEQ ID NO:290), Figure

292 (SEQ ID NO:292), Figure 294 (SEQ ID NO:294), Figure 296 (SEQ ID NO:296), Figure 298 (SEQ ID NO:298), Figure 300 (SEQ ID NO:300), Figure 302 (SEQ ID NO:302), Figure 304 (SEQ ID NO:304), Figure 306 (SEQ ID NO:306), Figure 308 (SEQ ID NO:308), Figure 310 (SEQ ID NO:310), Figure 312 (SEQ ID NO:312), Figure 314 (SEQ ID NO:314), Figure 316 (SEQ ID NO:316), Figure 318 (SEQ ID NO:318), Figure 320 (SEQ ID NO:320), Figure 322 (SEQ ID NO:322), Figure 324 (SEQ ID NO:324), Figure 326 (SEQ ID NO:326), Figure 328 (SEQ ID NO:328), Figure 330 (SEQ ID NO:330), Figure 332 (SEQ ID NO:332), Figure 334 (SEQ ID NO:334), Figure 336 (SEQ ID NO:336), Figure 338 (SEQ ID NO:338), Figure 340 (SEQ ID NO:340), Figure 342 (SEQ ID NO:342), Figure 344 (SEQ ID NO:344), Figure 346 (SEQ ID NO:346), Figure 348 (SEQ ID NO:348), Figure 350 (SEQ ID NO:350), Figure 352 (SEQ ID NO:352), Figure 354 (SEQ ID NO:354), Figure 356 (SEQ ID NO:356), Figure 358 (SEQ ID NO:358), Figure 360 (SEQ ID NO:360), Figure 362 (SEQ ID NO:362), Figure 364 (SEQ ID NO:364), Figure 366 (SEQ ID NO:366), Figure 368 (SEQ ID NO:368), Figure 370 (SEQ ID NO:370), Figure 372 (SEQ ID NO:372) or Figure 374 (SEQ ID NO:374), with its associated signal peptide; or

5

10

15

20

25

30

35

(c) an amino acid sequence of an extracellular domain of the polypeptide shown in Figure 2 (SEO ID NO:2), Figure 4 (SEQ ID NO:4), Figure 6 (SEQ ID NO:6), Figure 8 (SEQ ID NO:8), Figure 10 (SEQ ID NO:10), Figure 12 (SEQ ID NO:12), Figure 14 (SEQ ID NO:14), Figure 16 (SEQ ID NO:16), Figure 18 (SEQ ID NO:18), Figure 20 (SEQ ID NO:20), Figure 22 (SEQ ID NO:22), Figure 24 (SEQ ID NO:24), Figure 26 (SEQ ID NO:26), Figure 28 (SEQ ID NO:28), Figure 30 (SEQ ID NO:30), Figure 32 (SEQ ID NO:32), Figure 34 (SEQ ID NO:34), Figure 36 (SEQ ID NO:36), Figure 38 (SEQ ID NO:38), Figure 40 (SEQ ID NO:40), Figure 42 (SEQ ID NO:42), Figure 44 (SEQ ID NO:44), Figure 46 (SEQ ID NO:46), Figure 48 (SEQ ID NO:48), Figure 50 (SEQ ID NO:50), Figure 52 (SEQ ID NO:52), Figure 54 (SEQ ID NO:54), Figure 56 (SEQ ID NO:56), Figure 58 (SEQ ID NO:58), Figure 60 (SEQ ID NO:60), Figure 62 (SEQ ID NO:62), Figure 64 (SEQ ID NO:64), Figure 66 (SEQ ID NO:66), Figure 68 (SEQ ID NO:68), Figure 70 (SEQ ID NO:70), Figure 72 (SEQ ID NO:72), Figure 74 (SEQ ID NO:74), Figure 76 (SEQ ID NO:76), Figure 78 (SEQ ID NO:78), Figure 80 (SEQ ID NO:80), Figure 82 (SEQ ID NO:82), Figure 84 (SEQ ID NO:84), Figure 86 (SEQ ID NO:86), Figure 88 (SEQ ID NO:88), Figure 90 (SEQ ID NO:90), Figure 92 (SEQ ID NO:92), Figure 94 (SEQ ID NO:94), Figure 96 (SEQ ID NO:96), Figure 98 (SEQ ID NO:98), Figure 100 (SEQ ID NO:100), Figure 102 (SEQ ID NO:102), Figure 104 (SEQ ID NO:104), Figure 106 (SEQ ID NO:106), Figure 108 (SEQ ID NO:108), Figure 110 (SEQ ID NO:110), Figure 112 (SEQ ID NO:112), Figure 114 (SEQ ID NO:114), Figure 116 (SEO ID NO:116), Figure 118 (SEQ ID NO:118), Figure 120 (SEQ ID NO:120), Figure 122 (SEQ ID NO:122), Figure 124 (SEQ ID NO:124), Figure 126 (SEQ ID NO:126), Figure 128 (SEQ ID NO:128), Figure 130 (SEQ ID NO:130), Figure 132 (SEQ ID NO:132), Figure 134 (SEQ ID NO:134), Figure 136 (SEQ ID NO:136), Figure 138 (SEQ ID NO:138), Figure 140 (SEQ ID NO:140), Figure 142 (SEQ ID NO:142), Figure 144 (SEO ID NO:144), Figure 146 (SEQ ID NO:146), Figure 148 (SEQ ID NO:148), Figure 150 (SEQ ID NO:150), Figure 152 (SEQ ID NO:152), Figure 154 (SEQ ID NO:154), Figure 156 (SEQ ID NO:156), Figure 158 (SEQ ID NO:158), Figure 160 (SEQ ID NO:160), Figure 162 (SEQ ID NO:162), Figure 164 (SEQ ID NO:164), Figure 166 (SEQ ID NO:166), Figure 168 (SEQ ID NO:168), Figure 170 (SEQ ID NO:170), Figure 172 (SEQ ID

5

10

15

20

25

30

35

NO:172), Figure 174 (SEQ ID NO:174), Figure 176 (SEQ ID NO:176), Figure 178 (SEQ ID NO:178), Figure 180 (SEQ ID NO:180), Figure 182 (SEQ ID NO:182), Figure 184 (SEQ ID NO:184), Figure 186 (SEQ ID NO:186), Figure 188 (SEQ ID NO:188), Figure 190 (SEQ ID NO:190), Figure 192 (SEQ ID NO:192), Figure 194 (SEQ ID NO:194), Figure 196 (SEQ ID NO:196), Figure 198 (SEQ ID NO:198), Figure 200 (SEQ ID NO:200), Figure 202 (SEQ ID NO:202), Figure 204 (SEQ ID NO:204), Figure 206 (SEQ ID NO:206), Figure 208 (SEQ ID NO:208), Figure 210 (SEQ ID NO:210), Figure 212 (SEQ ID NO:212), Figure 214 (SEQ ID NO:214), Figure 216 (SEQ ID NO:216), Figure 218 (SEQ ID NO:218), Figure 220 (SEQ ID NO:220), Figure 222 (SEQ ID NO:222), Figure 224 (SEQ ID NO:224), Figure 226 (SEQ ID NO:226), Figure 228 (SEQ ID NO:228), Figure 230 (SEQ ID NO:230), Figure 232 (SEQ ID NO:232), Figure 234 (SEQ ID NO:234), Figure 236 (SEQ ID NO:236), Figure 238 (SEQ ID NO:238), Figure 240 (SEQ ID NO:240), Figure 242 (SEQ ID NO:242), Figure 244 (SEQ ID NO:244), Figure 246 (SEQ ID NO:246), Figure 248 (SEQ ID NO:248), Figure 250 (SEQ ID NO:250), Figure 252 (SEQ ID NO:252), Figure 254 (SEQ ID NO:254), Figure 256 (SEQ ID NO:256), Figure 258 (SEQ ID NO:258), Figure 260 (SEQ ID NO:260), Figure 262 (SEQ ID NO:262), Figure 264 (SEQ ID NO:264), Figure 266 (SEQ ID NO:266), Figure 268 (SEQ ID NO:268), Figure 270 (SEQ ID NO:270), Figure 272 (SEQ ID NO:272), Figure 274 (SEQ ID NO:274), Figure 276 (SEQ ID NO:276), Figure 278 (SEQ ID NO:278), Figure 280 (SEQ ID NO:280), Figure 282 (SEQ ID NO:282), Figure 284 (SEQ ID NO:284), Figure 286 (SEQ ID NO:286), Figure 288 (SEQ ID NO:288), Figure 290 (SEQ ID NO:290), Figure 292 (SEQ ID NO:292), Figure 294 (SEQ ID NO:294), Figure 296 (SEQ ID NO:296), Figure 298 (SEQ ID NO:298), Figure 300 (SEQ ID NO:300), Figure 302 (SEQ ID NO:302), Figure 304 (SEQ ID NO:304), Figure 306 (SEQ ID NO:306), Figure 308 (SEQ ID NO:308), Figure 310 (SEQ ID NO:310), Figure 312 (SEQ ID NO:312), Figure 314 (SEQ ID NO:314), Figure 316 (SEQ ID NO:316), Figure 318 (SEQ ID NO:318), Figure 320 (SEQ ID NO:320), Figure 322 (SEQ ID NO:322), Figure 324 (SEQ ID NO:324), Figure 326 (SEQ ID NO:326), Figure 328 (SEQ ID NO:328), Figure 330 (SEQ ID NO:330), Figure 332 (SEQ ID NO:332), Figure 334 (SEQ ID NO:334), Figure 336 (SEQ ID NO:336), Figure 338 (SEQ ID NO:338), Figure 340 (SEQ ID NO:340), Figure 342 (SEQ ID NO:342), Figure 344 (SEQ ID NO:344), Figure 346 (SEQ ID NO:346), Figure 348 (SEQ ID NO:348), Figure 350 (SEQ ID NO:350), Figure 352 (SEQ ID NO:352), Figure 354 (SEQ ID NO:354), Figure 356 (SEQ ID NO:356), Figure 358 (SEQ ID NO:358), Figure 360 (SEQ ID NO:360), Figure 362 (SEQ ID NO:362), Figure 364 (SEQ ID NO:364), Figure 366 (SEQ ID NO:366), Figure 368 (SEQ ID NO:368), Figure 370 (SEQ ID NO:370), Figure 372 (SEQ ID NO:372) or Figure 374 (SEQ ID NO:374), lacking its associated signal peptide.

A method for treating a cardiovascular, endothelial or angiogenic disorder in a mammal comprising administering to the mammal a therapeutically effective amount of a polypeptide shown in Figure 2 (SEQ ID NO:2), Figure 4 (SEQ ID NO:4), Figure 6 (SEQ ID NO:6), Figure 8 (SEQ ID NO:8), Figure 10 (SEQ ID NO:10), Figure 12 (SEQ ID NO:12), Figure 14 (SEQ ID NO:14), Figure 16 (SEQ ID NO:16), Figure 18 (SEQ ID NO:18), Figure 20 (SEQ ID NO:20), Figure 22 (SEQ ID NO:22), Figure 24 (SEQ ID NO:24), Figure 26 (SEQ ID NO:26), Figure 28 (SEQ ID NO:28), Figure 30 (SEQ ID NO:30), Figure 32 (SEQ ID NO:32),

5

10

15

20

25

30

35

Figure 34 (SEQ ID NO:34), Figure 36 (SEQ ID NO:36), Figure 38 (SEO ID NO:38), Figure 40 (SEQ ID NO:40), Figure 42 (SEQ ID NO:42), Figure 44 (SEQ ID NO:44), Figure 46 (SEQ ID NO:46), Figure 48 (SEQ ID NO:48), Figure 50 (SEQ ID NO:50), Figure 52 (SEQ ID NO:52), Figure 54 (SEQ ID NO:54), Figure 56 (SEQ ID NO:56), Figure 58 (SEQ ID NO:58), Figure 60 (SEQ ID NO:60), Figure 62 (SEQ ID NO:62), Figure 64 (SEQ ID NO:64), Figure 66 (SEQ ID NO:66), Figure 68 (SEQ ID NO:68), Figure 70 (SEQ ID NO:70), Figure 72 (SEQ ID NO:72), Figure 74 (SEQ ID NO:74), Figure 76 (SEQ ID NO:76), Figure 78 (SEQ ID NO:78), Figure 80 (SEQ ID NO:80), Figure 82 (SEQ ID NO:82), Figure 84 (SEQ ID NO:84), Figure 86 (SEQ ID NO:86), Figure 88 (SEQ ID NO:88), Figure 90 (SEQ ID NO:90), Figure 92 (SEQ ID NO:92), Figure 94 (SEQ ID NO:94), Figure 96 (SEQ ID NO:96), Figure 98 (SEQ ID NO:98), Figure 100 (SEQ ID NO:100), Figure 102 (SEQ ID NO:102), Figure 104 (SEQ ID NO:104), Figure 106 (SEQ ID NO:106), Figure 108 (SEQ ID NO:108), Figure 110 (SEQ ID NO:110), Figure 112 (SEQ ID NO:112), Figure 114 (SEQ ID NO:114), Figure 116 (SEQ ID NO:116), Figure 118 (SEQ ID NO:118), Figure 120 (SEQ ID NO:120), Figure 122 (SEQ ID NO:122), Figure 124 (SEQ ID NO:124), Figure 126 (SEQ ID NO:126), Figure 128 (SEO ID NO:128), Figure 130 (SEQ ID NO:130), Figure 132 (SEQ ID NO:132), Figure 134 (SEQ ID NO:134), Figure 136 (SEQ ID NO:136), Figure 138 (SEQ ID NO:138), Figure 140 (SEQ ID NO:140), Figure 142 (SEQ ID NO:142), Figure 144 (SEQ ID NO:144), Figure 146 (SEQ ID NO:146), Figure 148 (SEQ ID NO:148), Figure 150 (SEQ ID NO:150), Figure 152 (SEQ ID NO:152), Figure 154 (SEQ ID NO:154), Figure 156 (SEQ ID NO:156), Figure 158 (SEQ ID NO:158), Figure 160 (SEQ ID NO:160), Figure 162 (SEO ID NO:162), Figure 164 (SEQ ID NO:164), Figure 166 (SEQ ID NO:166), Figure 168 (SEQ ID NO:168), Figure 170 (SEQ ID NO:170), Figure 172 (SEQ ID NO:172), Figure 174 (SEQ ID NO:174), Figure 176 (SEQ ID NO:176), Figure 178 (SEQ ID NO:178), Figure 180 (SEQ ID NO:180), Figure 182 (SEQ ID NO:182), Figure 184 (SEQ ID NO:184), Figure 186 (SEQ ID NO:186), Figure 188 (SEQ ID NO:188), Figure 190 (SEO ID NO:190), Figure 192 (SEQ ID NO:192), Figure 194 (SEQ ID NO:194), Figure 196 (SEQ ID NO:196), Figure 198 (SEO ID NO:198), Figure 200 (SEQ ID NO:200), Figure 202 (SEQ ID NO:202), Figure 204 (SEQ ID NO:204), Figure 206 (SEQ ID NO:206), Figure 208 (SEQ ID NO:208), Figure 210 (SEQ ID NO:210), Figure 212 (SEQ ID NO:212), Figure 214 (SEQ ID NO:214), Figure 216 (SEQ ID NO:216), Figure 218 (SEQ ID NO:218), Figure 220 (SEQ ID NO:220), Figure 222 (SEQ ID NO:222), Figure 224 (SEQ ID NO:224), Figure 226 (SEQ ID NO:226), Figure 228 (SEQ ID NO:228), Figure 230 (SEQ ID NO:230), Figure 232 (SEQ ID NO:232), Figure 234 (SEQ ID NO:234), Figure 236 (SEQ ID NO:236), Figure 238 (SEQ ID NO:238), Figure 240 (SEQ ID NO:240), Figure 242 (SEQ ID NO:242), Figure 244 (SEQ ID NO:244), Figure 246 (SEQ ID NO:246), Figure 248 (SEQ ID NO:248), Figure 250 (SEQ ID NO:250), Figure 252 (SEQ ID NO:252), Figure 254 (SEQ ID NO:254), Figure 256 (SEQ ID NO:256), Figure 258 (SEQ ID NO:258), Figure 260 (SEQ ID NO:260), Figure 262 (SEQ ID NO:262), Figure 264 (SEQ ID NO:264), Figure 266 (SEQ ID NO:266), Figure 268 (SEQ ID NO:268), Figure 270 (SEQ ID NO:270), Figure 272 (SEQ ID NO:272), Figure 274 (SEQ ID NO:274), Figure 276 (SEQ ID NO:276), Figure 278 (SEQ ID NO:278), Figure 280 (SEQ ID NO:280), Figure 282 (SEQ ID NO:282), Figure 284 (SEQ ID NO:284), Figure 286 (SEQ ID NO:286), Figure 288 (SEQ ID NO:288), Figure 290 (SEQ ID NO:290), Figure 292 (SEQ ID NO:292), Figure 294 (SEQ ID NO:294), Figure 296 (SEQ ID NO:296), Figure

298 (SEQ ID NO:298), Figure 300 (SEQ ID NO:300), Figure 302 (SEQ ID NO:302), Figure 304 (SEQ ID NO:304), Figure 306 (SEQ ID NO:306), Figure 308 (SEQ ID NO:308), Figure 310 (SEQ ID NO:310), Figure 312 (SEQ ID NO:312), Figure 314 (SEQ ID NO:314), Figure 316 (SEQ ID NO:316), Figure 318 (SEQ ID NO:318), Figure 320 (SEQ ID NO:320), Figure 322 (SEQ ID NO:322), Figure 324 (SEQ ID NO:324), Figure 326 (SEQ ID NO:326), Figure 328 (SEQ ID NO:328), Figure 330 (SEQ ID NO:330), Figure 332 (SEQ ID NO:332), Figure 334 (SEQ ID NO:334), Figure 336 (SEQ ID NO:336), Figure 338 (SEQ ID NO:338), Figure 340 (SEQ ID NO:340), Figure 342 (SEQ ID NO:342), Figure 344 (SEQ ID NO:344), Figure 346 (SEQ ID NO:346), Figure 348 (SEQ ID NO:348), Figure 350 (SEQ ID NO:350), Figure 352 (SEQ ID NO:352), Figure 354 (SEQ ID NO:354), Figure 356 (SEQ ID NO:356), Figure 358 (SEQ ID NO:358), Figure 360 (SEQ ID NO:360), Figure 362 (SEQ ID NO:362), Figure 364 (SEQ ID NO:364), Figure 366 (SEQ ID NO:366), Figure 368 (SEQ ID NO:368), Figure 370 (SEQ ID NO:370), Figure 372 (SEQ ID NO:372) or Figure 374 (SEQ ID NO:374), or agonist or antagonist thereof.

21. The method according to Claim 20, wherein the mammal is human.

15

10

5

- 22. The method of Claim 21, wherein the human has suffered myocardial infarction.
- 23. The method of Claim 21, wherein the human has cardiac hypertrophy, trauma, a cancer, or agerelated macular degeneration.

20

- 24. The method of Claim 23, wherein the cardiac hypertrophy is characterized by the presence of an elevated level of PGF_{2n}.
- The method of Claim 20, wherein the polypeptide is administered together with a cardiovascular,
 endothelial or angiogenic agent.
 - 26. The method of Claim 23, wherein the polypeptide is administered following primary angioplasty.
 - 27. The method of Claim 20, wherein the cardiovascular, endothelial or angiogenic disorder is cancer.

30

- 28. The method of Claim 27, wherein the polypeptide is administered in combination with a chemotherapeutic agent, a growth inhibitory agent or a cytotoxic agent.
 - The method of Claim 20, wherein said agonist is an antibody to said polypeptide.

35

30. The method of Claim 20, wherein said antagonist is an antibody to said polypeptide.

5

10

15

20

25

30

35

31. A method for treating a cardiovascular, endothelial or angiogenic disorder in a mammal comprising administering to the mammal a nucleic acid molecule that encodes a polypeptide shown in Figure 2 (SEQ ID NO:2), Figure 4 (SEQ ID NO:4), Figure 6 (SEQ ID NO:6), Figure 8 (SEQ ID NO:8), Figure 10 (SEQ ID NO:10), Figure 12 (SEQ ID NO:12), Figure 14 (SEQ ID NO:14), Figure 16 (SEQ ID NO:16), Figure 18 (SEQ ID NO:18), Figure 20 (SEQ ID NO:20), Figure 22 (SEQ ID NO:22), Figure 24 (SEQ ID NO:24), Figure 26 (SEQ ID NO:26), Figure 28 (SEQ ID NO:28), Figure 30 (SEQ ID NO:30), Figure 32 (SEQ ID NO:32), Figure 34 (SEQ ID NO:34), Figure 36 (SEQ ID NO:36), Figure 38 (SEQ ID NO:38), Figure 40 (SEQ ID NO:40), Figure 42 (SEQ ID NO:42), Figure 44 (SEQ ID NO:44), Figure 46 (SEQ ID NO:46), Figure 48 (SEQ ID NO:48), Figure 50 (SEQ ID NO:50), Figure 52 (SEQ ID NO:52), Figure 54 (SEQ ID NO:54), Figure 56 (SEQ ID NO:56), Figure 58 (SEQ ID NO:58), Figure 60 (SEQ ID NO:60), Figure 62 (SEQ ID NO:62), Figure 64 (SEQ ID NO:64), Figure 66 (SEQ ID NO:66), Figure 68 (SEQ ID NO:68), Figure 70 (SEQ ID NO:70), Figure 72 (SEQ ID NO:72), Figure 74 (SEQ ID NO:74), Figure 76 (SEQ ID NO:76), Figure 78 (SEQ ID NO:78), Figure 80 (SEQ ID NO:80), Figure 82 (SEQ ID NO:82), Figure 84 (SEQ ID NO:84), Figure 86 (SEQ ID NO:86), Figure 88 (SEQ ID NO:88), Figure 90 (SEQ ID NO:90), Figure 92 (SEQ ID NO:92), Figure 94 (SEQ ID NO:94), Figure 96 (SEQ ID NO:96), Figure 98 (SEQ ID NO:98), Figure 100 (SEQ ID NO:100), Figure 102 (SEQ ID NO:102), Figure 104 (SEQ ID NO:104), Figure 106 (SEQ ID NO:106), Figure 108 (SEQ ID NO:108), Figure 110 (SEQ ID NO:110), Figure 112 (SEQ ID NO:112), Figure 114 (SEQ ID NO:114), Figure 116 (SEQ ID NO:116), Figure 118 (SEQ ID NO:118), Figure 120 (SEQ ID NO:120), Figure 122 (SEQ ID NO:122), Figure 124 (SEQ ID NO:124), Figure 126 (SEQ ID NO:126), Figure 128 (SEQ ID NO:128), Figure 130 (SEQ ID NO:130), Figure 132 (SEQ ID NO:132), Figure 134 (SEQ ID NO:134), Figure 136 (SEQ ID NO:136), Figure 138 (SEQ ID NO:138), Figure 140 (SEQ ID NO:140), Figure 142 (SEQ ID NO:142), Figure 144 (SEQ ID NO:144), Figure 146 (SEQ ID NO:146), Figure 148 (SEQ ID NO:148), Figure 150 (SEQ ID NO:150), Figure 152 (SEQ ID NO:152), Figure 154 (SEQ ID NO:154), Figure 156 (SEQ ID NO:156), Figure 158 (SEQ ID NO:158), Figure 160 (SEQ ID NO:160), Figure 162 (SEQ ID NO:162), Figure 164 (SEQ ID NO:164), Figure 166 (SEQ ID NO:166), Figure 168 (SEQ ID NO:168), Figure 170 (SEQ ID NO:170), Figure 172 (SEQ ID NO:172), Figure 174 (SEQ ID NO:174), Figure 176 (SEQ ID NO:176), Figure 178 (SEQ ID NO:178), Figure 180 (SEQ ID NO:180), Figure 182 (SEQ ID NO:182), Figure 184 (SEQ ID NO:184), Figure 186 (SEQ ID NO:186), Figure 188 (SEQ ID NO:188), Figure 190 (SEQ ID NO:190), Figure 192 (SEQ ID NO:192), Figure 194 (SEQ ID NO:194), Figure 196 (SEQ ID NO:196), Figure 198 (SEQ ID NO:198), Figure 200 (SEQ ID NO:200), Figure 202 (SEQ ID NO:202), Figure 204 (SEQ ID NO:204), Figure 206 (SEQ ID NO:206), Figure 208 (SEQ ID NO:208), Figure 210 (SEQ ID NO:210), Figure 212 (SEQ ID NO:212), Figure 214 (SEQ ID NO:214), Figure 216 (SEQ ID NO:216), Figure 218 (SEQ ID NO:218), Figure 220 (SEQ ID NO:220), Figure 222 (SEQ ID NO:222), Figure 224 (SEQ ID NO:224), Figure 226 (SEQ ID NO:226), Figure 228 (SEQ ID NO:228), Figure 230 (SEQ ID NO:230), Figure 232 (SEQ ID NO:232), Figure 234 (SEQ ID NO:234), Figure 236 (SEQ ID NO:236), Figure 238 (SEQ ID NO:238), Figure 240 (SEQ ID NO:240), Figure 242 (SEQ ID NO:242), Figure 244 (SEQ ID NO:244), Figure 246 (SEQ ID NO:246), Figure 248 (SEQ ID NO:248), Figure 250 (SEQ ID NO:250), Figure 252 (SEQ ID NO:252), Figure 254 (SEQ ID NO:254), Figure

256 (SEQ ID NO:256), Figure 258 (SEQ ID NO:258), Figure 260 (SEQ ID NO:260), Figure 262 (SEQ ID NO:262), Figure 264 (SEQ ID NO:264), Figure 266 (SEQ ID NO:266), Figure 268 (SEQ ID NO:268), Figure 270 (SEQ ID NO:270), Figure 272 (SEQ ID NO:272), Figure 274 (SEQ ID NO:274), Figure 276 (SEQ ID NO:276), Figure 278 (SEQ ID NO:278), Figure 280 (SEQ ID NO:280), Figure 282 (SEQ ID NO:282), Figure 284 (SEQ ID NO:284), Figure 286 (SEQ ID NO:286), Figure 288 (SEQ ID NO:288), Figure 290 (SEQ ID NO:290), Figure 292 (SEQ ID NO:292), Figure 294 (SEQ ID NO:294), Figure 296 (SEQ ID NO:296), Figure 298 (SEQ ID NO:298), Figure 300 (SEQ ID NO:300), Figure 302 (SEQ ID NO:302), Figure 304 (SEQ ID NO:304), Figure 306 (SEQ ID NO:306), Figure 308 (SEQ ID NO:308), Figure 310 (SEQ ID NO:310), Figure 312 (SEQ ID NO:312), Figure 314 (SEQ ID NO:314), Figure 316 (SEQ ID NO:316), Figure 318 (SEQ ID NO:318), Figure 320 (SEQ ID NO:320), Figure 322 (SEQ ID NO:322), Figure 324 (SEQ ID NO:324), Figure 326 (SEQ ID NO:326), Figure 328 (SEQ ID NO:328), Figure 330 (SEQ ID NO:330), Figure 332 (SEQ ID NO:332), Figure 334 (SEQ ID NO:334), Figure 336 (SEQ ID NO:336), Figure 338 (SEQ ID NO:338), Figure 340 (SEQ ID NO:340), Figure 342 (SEQ ID NO:342), Figure 344 (SEQ ID NO:344), Figure 346 (SEQ ID NO:346), Figure 348 (SEQ ID NO:348), Figure 350 (SEQ ID NO:350), Figure 352 (SEQ ID NO:352), Figure 354 (SEQ ID NO:354), Figure 356 (SEQ ID NO:356), Figure 358 (SEQ ID NO:358), Figure 360 (SEQ ID NO:360), Figure 362 (SEQ ID NO:362), Figure 364 (SEQ ID NO:364), Figure 366 (SEQ ID NO:366), Figure 368 (SEQ ID NO:368), Figure 370 (SEQ ID NO:370), Figure 372 (SEQ ID NO:372) or Figure 374 (SEQ ID NO:374), or agonist or antagonist thereof.

20

15

5

10

- 32. The method of Claim 31, wherein said agonist is an antibody to said polypeptide.
- 33. The method of Claim 31, wherein said antagonist is an antibody to said polypeptide.
- 34. The method of Claim 31, wherein the mammal is human.
- 25
- 35. The method of Claim 31, wherein the nucleic acid molecule is administered via ex vivo gene therapy.
- 36. A method for inhibiting endothelial cell growth in a mammal comprising administering to the mammal a PRO247, PRO720 or PRO4302 polypeptide or agonist thereof, wherein endothelial cell growth in said mammal is inhibited.
- A method for stimulating endothelial cell growth in a mammal comprising administering to the mammal a PRO21, PRO181, PRO205, PRO214, PRO221, PRO229, PRO231, PRO238, PRO241, PRO247,
 PRO256, PRO258, PRO263, PRO265, PRO295, PRO321, PRO322, PRO337, PRO363, PRO365, PRO444, PRO533, PRO697, PRO725, PRO771, PRO788, PRO791, PRO819, PRO827, PRO828, PRO836, PRO846, PRO865, PRO1005, PRO1006, PRO1007, PRO1025, PRO1029, PRO1054, PRO1071, PRO1075, PRO1079.

PRO1080, PRO1114, PRO1131, PRO1155, PRO1160, PRO1184, PRO1186, PRO1190, PRO1192, PRO1195, PRO1244, PRO1272, PRO1273, PRO1274, PRO1279, PRO1283, PRO1286, PRO1306, PRO1309, PRO1325, PRO1329, PRO1347, PRO1356, PRO1376, PRO1382, PRO1411, PRO1412, PRO1419, PRO1474, PRO1477, PRO1488, PRO1508, PRO1550, PRO1556, PRO1760, PRO1782, PRO1787, PRO1801, PRO1868, PRO1887, PRO1890, PRO3438, PRO3444, PRO4302, PRO4324, PRO4333, PRO4341, PRO4342, PRO4353, PRO4354, PRO4356, PRO4371, PRO4405, PRO4408, PRO4422, PRO4425, PRO4499, PRO5723, PRO5725, PRO5737, PRO5776, PRO6006, PRO6029, PRO6071, PRO7436, PRO9771, PRO9821, PRO9873, PRO10008, PRO10096, PRO19670, PRO20040, PRO20044, PRO21055, PRO21384 or PRO28631 polypeptide, or agonist thereof, wherein endothelial cell growth in said mammal is stimulated.

10

5

- 38. A method for inducing cardiac hypertrophy in a mammal comprising administering to the mammal a PRO21 polypeptide or agonist thereof, wherein cardiac hypertrophy in said mammal is induced.
- 39. A method for stimulating angiogenesis induced by a PRO1376 or PRO1449 polypeptide in a mammal comprising administering a therapeutically effective amount of said polypeptide to the mammal, wherein said angiogenesis is stimulated.
 - 40. A method for inducing endothelial cell apoptosis comprising administering to the endothelial cell a PRO4302 polypeptide or agonist thereof, wherein apoptosis in said endothelial cell is induced.

20

25

30

- 41. A method for stimulating smooth muscle cell growth comprising administering to the smooth muscle cell a PRO162, PRO181, PRO182, PRO195, PRO204, PRO221, PRO230, PRO256, PRO258, PRO533, PRO697, PRO725, PRO738, PRO826, PRO836, PRO840, PRO846, PRO865, PRO982, PRO1025, PRO1029, PRO1071, PRO1080, PRO1083, PRO1134, PRO1160, PRO1182, PRO1184, PRO1186, PRO1192, PRO1265, PRO1274, PRO1279, PRO1283, PRO1306, PRO1308, PRO1309, PRO1325, PRO1337, PRO1338, PRO1343, PRO1376, PRO1387, PRO1411, PRO1412, PRO1415, PRO1434, PRO1474, PRO1488, PRO1550, PRO1556, PRO1567, PRO1600, PRO1754, PRO1758, PRO1760, PRO1787, PRO1865, PRO1868, PRO1917, PRO1928, PRO3438, PRO3562, PRO4302, PRO4333, PRO4345, PRO4353, PRO4354, PRO4405, PRO4408, PRO4430, PRO4503, PRO5725, PRO6714, PRO9771, PRO9820, PRO9940, PRO10096, PRO21055, PRO21184 or PRO21366 polypeptide, or agonist thereof, wherein smooth muscle cell growth in said smooth muscle cell is stimulated.
- 42. A method for inducing endothelial cell tube formation comprising administering to the endothelial cell a PRO178, PRO195, PRO228, PRO301, PRO302, PRO532, PRO724, PRO730, PRO734, PRO793, PRO871, PRO938, PRO1012, PRO1120, PRO1139, PRO1198, PRO1287, PRO1361, PRO1864, PRO1873, PRO2010, PRO3579, PRO4313, PRO4527, PRO4538, PRO4553, PRO4995, PRO5730, PRO6008, PRO7223, PRO7248 or PRO7261 polypeptide, or agonist thereof, wherein tube formation in said endothelial cell is induced.

FIGURE 1

 $\tt GCCCACGCGTCCG\underline{ATG} GCGTTCACGTTCGCGGCCTTCTGCTACATGCTGGCGCTGCTGCT$ CACTGCCGCGCTCATCTTCGCCCATTTGGCACATTATAGCATTTGATGAGCTGAAGAC TGATTACAAGAATCCTATAGACCAGTGTAATACCCTGAATCCCCTTGTACTCCCAGAGTA ${\tt CCTCATCCACGCTTTCTTGTGTCATGTTTTTTTTTGTGCAGCAGAGTGGCTTACACTGGG}$ TCTCAATATGCCCCTCTTGGCATATCATATTTGGAGGTATATGAGTAGACCAGTGATGAG TGGCCCAGGACTCTATGACCCTACAACCATCATGAATGCAGATATTCTAGCATATTGTCA GAAGGAAGGATGGTGCAAATTAGCTTTTTATCTTCTAGCATTTTTTTACTACCTATATGG ${\tt CATGATCTATGTTTTGGTGAGCTCT} \underline{{\tt TAG}} {\tt AACAACACAGAAGAATTGGTCCAGTTAAGT}$ GCATGCAAAAAGCCACCAAATGAAGGGATTCTATCCAGCAAGATCCTGTCCAAGAGTAGC ${ t CTGTGGAATCTGATCAGTTACTTTAAAAAATGACTCCTTATTTTTAAATGTTTCCACAT$ TTTTGCTTGTGGAAAGACTGTTTTCATATGTTATACTCAGATAAAGATTTTAAATGGTAT TACGTATAAATTAATATAAAATGATTACCTCTGGTGTTGACAGGTTTGAACTTGCACTTC GAAGCTTTTGTTTATAGGAACTTGTAGGGCTCATTTTGGTTTCATTGAAACAGTATCTAA TTATAAATTAGCTGTAGATATCAGGTGCTTCTGATGAAGTGAAAATGTATATCTGACTAG TGGGAAACTTCATGGGTTTCCTCATCTGTCATGTCGATGATTATATATGGATACATTTAC AAAAATAAAAAGCGGGAATTTTCCCTTCGCTTGAATATTATCCCTGTATATTGCATGAAT GAGAGATTTCCCATATTTCCATCAGAGTAATAAATATACTTGCTTTAATTCTTAAGCATA AGTAAACATGATATAAAAATATATGCTGAATTACTTGTGAAGAATGCATTTAAAGCTATT TTAAATGTGTTTTTTTTTGTAAGACATTACTTATTAAGAAATTGGTTATTATGCTTACTG TTCTAATCTGGTGGTAAAGGTATTCTTAAGAATTTGCAGGTACTACAGATTTTCAAAACT GAATGAGAGAAAATTGTATAACCATCCTGCTGTTCCTTTAGTGCAATACAATAAAACTCT GAAATTAAGACTC

2/392

FIGURE 2

MAFTFAAFCYMLALLLTAALIFFAIWHIIAFDELKTDYKNPIDQCNTLNPLVLPEYLIHA FFCVMFLCAAEWLTLGLNMPLLAYHIWRYMSRPVMSGPGLYDPTTIMNADILAYCQKEGW CKLAFYLLAFFYYLYGMIYVLVSS

Important features: Signal peptide: amino acids 1-20

Type II transmembrane domain: amino acids 11-31

Other transmembrane domain: amino acids 57-77 and 123-143

FIGURE 3

GGCTCAGAGGCCCCACTGGACCCTCGGCTCTTCCTTGGACTTCTTGTGTGTTCTGTGAGC TTCGCTGGATTCAGGGTCTTGGGCATCAGAGGTGAGAGGGTGGGAAGGTCCGCCGCGATG GGGAAGCCCTGGCTGCGTGCGCTACAGCTGCTGCTGCTGGGCGCGCGTCGTGGGCGCGG GCGGGCGCCCCGCGCTGCACCTACACCTTCGTGCTGCCCCCGCAGAAGTTCACGGGCGCT GTGTGCTGGAGCGGCCCCGCATCCACGCGGGGGGCGACGCCGAGGCCGAACGCCAGCGAG CTGGCGGCGCTGCGCATGCGCGTCGGCCGCCACGAGGAGCTGTTACGCGAGCTGCAGAGG GGCCTGAGCGCGCGCCTGGGCCAGTTGCGCGCGCAGCTGCAGCACGAGGCGGGGCCCGGG GCGGGCCCGGGGGCGGATCTGGGGGGCGGAGCCTGCCGCGGCGCGCTGCTCGGGGAG CGCGTGCTCAACGCGTCCGCCGAGGCTCAGCGCGCAGCCGCCCGGTTCCACCAGCTGGAC GAGCGCCTGTGCCCGGGAGGCGCGGGCGGCAGCAGCAGGTCCTGCCGCCACCCCACTG GTGCCTGTGGTTCCGGTCCGTCTTGTGGGTAGCACCAGTGACACCAGTAGGATGCTGGAC CCAGCCCCAGAGCCCCAGAGACCCAGAGACAGCAGGAGCCCATGGCTTCTCCC ATGCCTGCAGGTCACCCTGCGGTCCCCACCAAGCCTGTGGGCCCGTGGCAGGATTGTGCA GAGGCCCGCCAGGCAGGCCATGAACAGAGTGGAGTGTATGAACTGCGAGTGGGCCGTCAC GTAGTGTCAGTATGGTGTGAGCAGCAACTGGAGGGTGGAGGCTGGACTGTGATCCAGCGG AGGCAAGATGGTTCAGTCAACTTCTTCACTACCTGGCAGCACTATAAGGCGGGCTTTGGG $\tt CGGCCAGACGGAGAATACTGGCTGGGCCTTGAACCCGTGTATCAGCTGACCAGCCGTGGG$ GACCATGAGCTGCTGGTTCTCCTGGAGGACTGGGGGGGCCGTGGAGCACGTGCCCACTAT GATGGCTTCTCCCTGGAACCCGAGAGCGACCACTACCGCCTGCGGCTTGGCCAGTACCAT GGTGATGCTGGAGACTCTCTTTCCTGGCACAATGACAAGCCCTTCAGCACCGTGGATAGG GCCTGTGCCCACTCCAACCTCAACGGTGTGTGGCACCACGGCGGCCACTACCGAAGCCGC TACCAGGATGGTGTCTACTGGGCTGAGTTTCGTGGTGGGGCATATTCTCTCAGGAAGGCC ${\tt GCCATGCTCATTCGGCCCCTGAAGCTG}{\tt TGA}{\tt CTCTGTGTTCCTCTGTCCCCTAGGCCCTAG}$ ${\tt AGGACATTGGTCAGCAGGAGCCCAAGTTGTTCTGGCCACACCTTCTTTGTGGCTCAGTGC}$ CAATGTGTCCCACAGAACTTCCCACTGTGGATCTGTGACCCTGGGCGCTGAAAATGGGAC CGGTTTGAGCTCATATCTTATAATAACACAAAGTAGCCAC

FIGURE 4

MGKPWLRALQLLLLLGASWARAGAPRCTYTFVLPPQKFTGAVCWSGPASTRATPEAANAS ELAALRMRVGRHEELLRELQRLAAADGAVAGEVRALRKESRGLSARLGQLRAQLQHEAGP GAGPGADLGAEPAAALALLGERVLNASAEAQRAAARFHQLDVKFRELAQLVTQQSSLIAR LERLCPGGAGGQQQVLPPPPLVPVVPVRLVGSTSDTSRMLDPAPEPQRDQTQRQQEPMAS PMPAGHPAVPTKPVGPWQDCAEARQAGHEQSGVYELRVGRHVVSVWCEQQLEGGGWTVIQ RRQDGSVNFFTTWQHYKAGFGRPDGEYWLGLEPVYQLTSRGDHELLVLLEDWGGRGARAH YDGFSLEPESDHYRLRLGQYHGDAGDSLSWHNDKPFSTVDRDRDSYSGNCALYQRGGWWY HACAHSNLNGVWHHGGHYRSRYQDGVYWAEFRGGAYSLRKAAMLIRPLKL

Signal peptide: Amino acids 1-20

N-glycosylation sites: Amino acids 58-62;145-149

cAMP- and cGMP-dependent protein kinase phosphorylation site:

Amino acids 97-101

Tyrosine kinase phosphorylation site: Amino acids 441-448

N-myristoylation sites:

Amino acids 16-22;23-29;87-93;108-114;121-127;125-131;129-135;187-193;29 3-299;353-359;378-384;445-451;453-459

Cell attachment sequence:
Amino acids 340-343

Fibrinogen beta and gamma chains C-terminal domain signature:

Amino acids 418-431

FIGURE 5

CCCACGCGTCCGGCCCGTGGCCTCGCGTCCATCTTTGCCGTTCTCTCGGACCTGTCACA AAGGAGTCGCGCCGCCGCCGCCCCCCCCCCCCCCGGGGGCCCGGGAGGTAGAGAAGT CTGAGAAACAGCCGAGAGGTTTTCCACCGAGGCCCGCGCTTGAGGGATCTGAAGAGGTTC CTTCTGAGGAGGCTGCGGCTAACAGGGCCCAGAACTGCCATTGGATGTCCAGAATCCCCT AAATAGGATGCAAATTCCTCAACTCCAGGTTATGAAAACAGTACTTGGAAAACTGAAAAC TACCTAAATGATCGTCTTTGGTTGGGCCGTGTTCTTAGCGAGCAGAAGCCTTGGCCAGGG TCTGTTGTTGACTCTCGAAGAGCACATAGCCCACTTCCTAGGGACTGGAGGTGCCGCTAC TACCATGGGTAATTCCTGTATCTGCCGAGATGACAGTGGGAACAGATGACAGTGTTGACAC CCAACAGCAACAGGCCGAGAACAGTGCAGTACCCACTGCTGACACAAGGAGCCAACCACG GGACCCTGTTCGGCCACCAAGGAGGGCCCGAGGACCTCATGAGCCAAGGAGAAAAAACA AAATGTGGATGGGCTAGTGTTGGACACACTGGCAGTAATACGGACTCTTGTAGATAAG<u>TA</u> **A**GTATCTGACTCACGGTCACCTCCAGTGGAATGAAAAGTGTTCTGCCCGGAACCATGACT TTAGGACTCCTTCAGTTCCTTTAGGACATACTCGCCAAGCCTTGTGCTCACAGGGCAAAG GAGAATATTTTAATGCTCCGCTGATGGCAGAGTAAATGATAAGATTTGATGTTTTTGCTT GCTGTCATCTACTTTGTCTGGAAATGTCTAAATGTTTCTGTAGCAGAAAACACGATAAAG CTATGATCTTTATTAGAG

6/392

FIGURE 6

MIVFGWAVFLASRSLGQGLLLTLEEHIAHFLGTGGAATTMGNSCICRDDSGTDDSVDTQQ QQAENSAVPTADTRSQPRDPVRPPRRGRGPHEPRRKKQNVDGLVLDTLAVIRTLVDKO

Signal peptide: amino acids 1-16

Casein kinase II phosphorylation site: amino acids 22-26, 50-54, 113-117

N-myristoylation site: amino acids 18-24, 32-38, 34-40, 35-41, 51-57

7/392

FIGURE 7

CGGACGCGTGGGGAAACCCTTCCGAGAAAACAGCAACAAGCTGAGCTGCTGTGACAGAG GGGAACAAGATGGCGCCCGAAGGGGAGCCTCTGGGTGAGGACCCAACTGGGGCTCCCG CCGCTGCTGCTGACCATGGCCTTGGCCGGAGGTTCGGGGACCGCTTCGGCTGAAGCA TTTGACTCGGTCTTGGGTGATACGGCGTCTTGCCACCGGGCCTGTCAGTTGACCTACCCC TTGCACACCTACCCTAAGGAAGAGGAGTTGTACGCATGTCAGAGAGGGTTGCAGGCTGTTT TCAATTTGTCAGTTTGTGGATGATGGAATTGACTTAAATCGAACTAAATTGGAATGTGAA TCTGCATGTACAGAAGCATATTCCCAATCTGATGAGCAATATGCTTGCCATCTTGGTTGC CAGAATCAGCTGCCATTCGCTGAACTGAGACAAGAACAACTTATGTCCCTGATGCCAAAA ATGCACCTACTCTTTCCTCTAACTCTGGTGAGGTCATTCTGGAGTGACATGATGGACTCC GCACAGAGCTTCATAACCTCTTCATGGACTTTTTATCTTCAAGCCGATGACGGAAAAATA GTTATATTCCAGTCTAAGCCAGAAATCCAGTACGCACCACATTTGGAGCAGGAGCCTACA AATTTGAGAGAATCATCTCTAAGCAAAATGTCCTATCTGCAAATGAGAAATTCACAAGCG CACAGGAATTTTCTTGAAGATGGAGAAAGTGATGGCTTTTTTAAGATGCCTCTCTTTAAC ${ t TCTGGGTGGATTTTAACTACAACTCTTGTCCTCTCGGTGATGGTATTGCTTTGGATTTGT$ TGTGCAACTGTTGCTACAGCTGTGGAGCAGTATGTTCCCTCTGAGAAGCTGAGTATCTAT GGTGACTTGGAGTTTATGAATGAACAAAAGCTAAACAGATATCCAGCTTCTTCTTGTG $\tt CTTGCTCATTCTGAAAT\underline{TTA} AGCATTTTTTTTTTAAAAGACAAGTGTAATAGACATCTAA$ AATTCCACTCCTCATAGAGCTTTTAAAATGGTTTCATTGGATATAGGCCTTAAGAAATCA CTATAAAATGCAAATAAAGTTACTCAAATCTGTG

8/392

FIGURE 8

MAAPKGSLWVRTQLGLPPLLLLTMALAGGSGTASAEAFDSVLGDTASCHRACQLTYPLHT
YPKEEELYACQRGCRLFSICQFVDDGIDLNRTKLECESACTEAYSQSDEQYACHLGCQNQ
LPFAELRQEQLMSLMPKMHLLFPLTLVRSFWSDMMDSAQSFITSSWTFYLQADDGKIVIF
QSKPEIQYAPHLEQEPTNLRESSLSKMSYLQMRNSQAHRNFLEDGESDGFLRCLSLNSGW
ILTTTLVLSVMVLLWICCATVATAVEQYVPSEKLSIYGDLEFMNEQKLNRYPASSLVVVR
SKTEDHEEAGPLPTKVNLAHSEI

Important features: Signal peptide: amino acids 1-31

Transmembrane domain: amino acids 241-260

N-glycosylation site: amino acids 90-93

9/392

FIGURE 9

10/392

FIGURE 10

MKGSIFTLFLFSVLFAISEVRSKESVRLCGLEYIRTVIYICASSRWRRHLEGIPQAQQAE TGNSFQLPHKREFSEENPAQNLPKVDASGEDRLWGGQMPTEELWKSKKHSVMSRQDLQTL CCTDGCSMTDLSALC

Important features: Signal sequence: amino acids 1-18

cAMP- and cGMP-dependent protein kinase phosphorylation site:

amino acids 107-111

N-myristoylation sites: amino acids 3-9,52-58,96-102,125-131

Insulin family signature:
amino acids 121-136

Insulin family proteins: amino acids 28-46

11/392

FIGURE 11

CCCACGCGTCCGGACAAACTGGAGGTGAAAGGAGCTGGTACTGTCCACTGTGCTGTCGGT GCTGAACCTGAGACGCGAGCGGACCAGTTGCTCCAGCACCTGAAGGCAACGCCCTCTTGC ACCCTCTGTGCCCTGTGGGACCCGCTTCACCAACAGGACCCATATCAACTTGACAAAGGA GTGTGGTATCGGACGTGGGAGAGAGTCCTCTGTTTGCCACCTGGGCGCTCATTCAGGCGT ${\tt GGGGGACTTTTGTGACTGTTAAAATAAGGTGAAAAGCAATAAGG\underline{ATG}{\tt TTTAAGTGCTGGT}$ GAGGATATGGCCTTAAATCCTATCAGCCTCTAATGAGATTGCGACATAAGCAGGAAAAA ATCAAGAAAGTTCAAGAGTCAAAGGATTTATGATTCAGGATGGCCCTTTTGGATCTTGTG AAAATAAGTACTGTGGTTTTGGGAAGACACTGTGTTACCAGCAGAGAGACAGGGCAAGCAG AATTCTATGAAAACCACTGTGAAGTGCACAGAGCTGCTTGCCTGAAAAAACAAAAGATTA CCATTGTTCACAATGAAGACTGCTTCTTTAAAGGAGATAAGTGCAAGACTACTGAATACA GCAAGATGAAAAATATGCTATTAGATTTACAAAAATCAAAAATATATTATGCAAGAAAATG AAAATCCTAATGGCGACGACATATCTCGGAAGAAGCTATTGGTGGATCAAATGTTTAAAT AGGAAGAACTTGGCAAGGATCTCTTTGATTGTACTTTGTATGTTCTATTGAAATATGATG ATTTTAATGCTGACAAGCACCTGGCTCTTGAAGAATTTTATAGAGCATTCCAAGTGATCC AGTTGAGTCTGCCAGAAGATCAGAAACTAAGCATCACTGCAGCAACTGTGGGACAAAGTG CTGTTCTGAGCTGTGCCATTCAAGGAACCCTGAGACCTCCCATTATCTGGAAAAGGAACA ATATTATTCTAAATAATTTAGATTTGGAAGACATCAATGACTTTGGAGATGATGGGTCCT TGTATATTACTAAGGTTACCACAACTCACGTTGGCAATTACACCTGCTATGCAGATGGCT ATGAACAAGTCTATCAGACTCACATCTTCCAAGTGAATGTTCCTCCAGTCATCC

12/392

FIGURE 12

MFKCWSVVLVLGFIFLESEGRPTKEGGYGLKSYQPLMRLRHKQEKNQESSRVKGFMIQDG PFGSCENKYCGLGRHCVTSRETGQAECACMDLCKRHYKPVCGSDGEFYENHCEVHRAACL KKQKITIVHNEDCFFKGDKCKTTEYSKMKNMLLDLQNQKYIMQENENPNGDDISRKKLLV DQMFKYFDADSNGLVDINELTQVIKQEELGKDLFDCTLYVLLKYDDFNADKHLALEEFYR AFQVIQLSLPEDQKLSITAATVGQSAVLSCAIQGTLRPPIIWKRNNIILNNLDLEDINDF GDDGSLYITKVTTTHVGNYTCYADGYEQVYQTHIFQVNVPPVI

Signal sequence: Amino acids 1-20

N-glycosylation site: Amino acids 318-322

Tyrosine kinase phosphorylation sites: Amino acids 21-29;211-220

N-myristoylation sites: Amino acids 63-69;83-89;317-323

Prokaryotic membrane lipoprotein lipid attachment site: Amino acids 260-271

13/392

FIGURE 13

TGCCGGGCTGCGGGCGCCTTGACTCTCCCTCCACCCTGCCTCCTCGGGCTCCACTCGTC GCAGCTTCCCGCGTCTCCGGCGCAGCTTCTCAGCGGACGACCCTCTCGCTCCGGGGCTGA GCCCAGTCCCTGGATGTTGCTGAAACTCTCGAGATCATGCGCGGGTTTGGCTGCTTC CCCGCCGGGTGCCACTGCCACCGCCGCCGCCTCTGCTGCCGCCGTCCGCGGGATGCTCAG TAGCCCGCTGCCCGGCCCCCGCGATCCTGTGTTCCTCGGAAGCCGTTTGCTGCTGCAGAG ${\tt TTGCACGAACTAGTC}$ GTGAAGCTCGCTGCTTTCCCTACCTCCTTAAGTGACTGCCAAACGCCCACCGGCTGGAAT TGCTCTGGTTATGATGACAGAGAAAATGATCTCTTCCTCTGTGACACCCAACACCTGTAAA TTTGATGGGGAATGTTTAAGAATTGGAGACACTGTGACTTGCGTCTGTCAGTTCAAGTGC ${\tt AACAATGACTATGTGCCTGTGTGTGGCTCCAATGGGGAGAGCTACCAGAATGAGTGTTAC}$ CTGCGACAGGCTGCATGCAAACAGCAGAGTGAGATACTTGTGGTGTCAGAAGGATCATGT GCCACAGATGCAGGATCAGGATCTGGAGATGGAGTCCATGAAGGCTCTGGAGAAACTAGT ${\tt CAAAAGGAGACATCCACCTGTGATATTTGCCAGTTTGGTGCAGAATGTGACGAAGATGCC}$ GAGGATGTCTGGTGTGTGTAATATTGACTGTTCTCAAACCAACTTCAATCCCCTCTGC GCTTCTGATGGGAAATCTTATGATAATGCATGCCAAATCAAAGAAGCATCGTGTCAGAAA CAGGAGAAAATTGAAGTCATGTCTTTGGGTCGATGTCAAGATAACACAACTACAACTACT AAGTCTGAAGATGGGCATTATGCAAGAACAGATTATGCAGAGAATGCTAACAAATTAGAA GGGAAGTGTGAGCATTCTATCAATATGCAGGAGCCATCTTGCAGGTGTGATGCTGGTTAT ACTGGACAACACTGTGAAAAAAAGGACTACAGTGTTCTATACGTTGTTCCCGGTCCTGTA CGATTTCAGTATGTCTTAATCGCAGCTGTGATTGGAACAATTCAGATTGCTGTCATCTGT CAAAATACAGGGCACTACAGTTCAGACAATACAACAAGAGCGTCCACGAGGTTAATC<u>TAA</u> AGGGAGCATGTTTCACAGTGGCTGGACTACCGAGAGCTTGGACTACACAATACAGTATTA TAGACAAAAGAATAAGACAAGAGATCTACACATGTTGCCTTGCATTTGTGGTAATCTACA ACATTGTCTTGATGTTTTTTCTGTAATGTAAATAAACTATTTATATCACACAATATAGTT TTTTCTTTCCCATGTATTTGTTATATATAATAAATACTCAGTGATGAG

14/392

FIGURE 14

MVLWESPRQCSSWTLCEGFCWLLLLPVMLLIVARPVKLAAFPTSLSDCQTPTGWNCSGY DDRENDLFLCDTNTCKFDGECLRIGDTVTCVCQFKCNNDYVPVCGSNGESYQNECYLRQ AACKQQSEILVVSEGSCATDAGSGSGDGVHEGSGETSQKETSTCDICQFGAECDEDAED VWCVCNIDCSQTNFNPLCASDGKSYDNACQIKEASCQKQEKIEVMSLGRCQDNTTTTTK SEDGHYARTDYAENANKLEESAREHHIPCPEHYNGFCMHGKCEHSINMQEPSCRCDAGY TGQHCEKKDYSVLYVVPGPVRFQYVLIAAVIGTIQIAVICVVVLCITRKCPRSNRIHRQ KQNTGHYSSDNTTRASTRLI

FIGURE 15

 $\tt GGAGCTCAGCCCAGTGGGCAGTCTGAAG{\color{red}\underline{ATG}}GCCAATTACACGCTGGCACCAGAGGATGA$ ATATGATGTCCTCATAGAAGGTGAACTGGAGAGCGATGAGGCAGAGCAATGTGACAAGTA TGACGCCCAGGCACTCTCAGCCCAGCTGGTGCCATCACTCTGCTGTGTTTTGTGAT ${\tt CGGTGTCCTGGACAATCTCCTGGTTGTGCTTATCCTGGTAAAATATAAAGGACTCAAACG}$ ${\tt CGTGGAAAATATCTATCTTCTAAACTTGGCAGTTTCTAACTTGTGTTTCTTGCTTACCCT}$ GCCCTTCTGGGCTCATGCTGGGGGGGGCGATCCCATGTGTAAAATTCTCATTGGACTGTACTT CGTGGGCCTGTACAGTGAGACATTTTTCAATTGCCTTCTGACTGTGCAAAGGTACCTAGT GTTTTTGCACAAGGGCAACTTTTTCTCAGCCAGGAGGAGGGTGCCCTGTGGCATCATTAC AAGTGTCCTGGCATGGGTAACAGCCATTCTGGCCACTTTGCCTGAATACGTGGTTTATAA ACCTCAGATGGAAGACCAGAAATACAAGTGTGCATTTAGCAGAACTCCCTTCCTGCCAGC TGATGAGACATTCTGGAAGCATTTTCTGACTTTAAAAATGAACATTTCGGTTCTTGTCCT CCCCCTATTTATTTTTACATTTCTCTATGTGCAAATGAGAAAAACACTAAGGTTCAGGGA GGCGCCCTACAATATTGCATTTTTCCTGTCCACTTTCAAAGAACACTTCTCCCTGAGTGA $\tt CTGCAAGAGCAGCTACAATCTGGACAAAAGTGTTCACATCACTAAACTCATCGCCACCAC$ CCACTGCTGCATCAACCCTCTCCTGTATGCGTTTCTTGATGGGACATTTAGCAAATACCT CTGCCGCTGTTTCCATCTGCGTAGTAACACCCCACTTCAACCCAGGGGGCAGTCTGCACA AGGCACATCGAGGGAAGAACCTGACCATTCCACCGAAGTGTAAACTAGCATCCACCAAAT GCAAGAAGAATAAACATGGATTTTCATCTTTCTGCATTATTTCATGTAAATTTTCTACAC ATTTGTATACAAAATCGGATACAGGAAGAAAAGGGAGAGGTGAGCTAACATTTGCTAAGC ACTGAATTTGTCTCAGGCACCGTGCAAGGCTCTTTACAAACGTGAGCTCCTTCGCCTCCT ACCACTTGTCCATAGTGTGGATAGGACTAGTCTCATTTCTCTGAGAAGAAAACTAAGGCG $\tt CGGAAATTTGTCTAAGATCACATAACTAGGAAGTGGCAGAACTGATTCTCCAGCCCTGGT$ AGCATTTGCTCAGAGCCTACGCTTGGTCCAGAACATCAAACTCCAAACCCTGGGGACAAA CGACATGAAATAAATGTATTTTAAAACATCTAAAA

16/392

FIGURE 16

MANYTLAPEDEYDVLIEGELESDEAEQCDKYDAQALSAQLVPSLCSAVFVIGVLDNLLVV LILVKYKGLKRVENIYLLNLAVSNLCFLLTLPFWAHAGGDPMCKILIGLYFVGLYSETFF NCLLTVQRYLVFLHKGNFFSARRRVPCGIITSVLAWVTAILATLPEYVVYKPQMEDQKYK CAFSRTPFLPADETFWKHFLTLKMNISVLVLPLFIFTFLYVQMRKTLRFREQRYSLFKLV FAIMVVFLLMWAPYNIAFFLSTFKEHFSLSDCKSSYNLDKSVHITKLIATTHCCINPLLY AFLDGTFSKYLCRCFHLRSNTPLQPRGQSAQGTSREEPDHSTEV

```
Signal sequence:
None

Transmembrane domain:
41-61, 76-96, 109-129, 147-167, 199-219, 237-257, 285-305

7 transmembrane receptor (rhodopsin family):
55-300

N-glycosylation site:
3-6, 205-208

Tyrosine kinase phosphorylation site:
70-76, 171-179, 228-234

N-myristoylation site:
52-57, 136-141, 148-153

G-protein coupled receptors:
55-85, 96-136, 209-220, 235-254, 292-308
```

FIGURE 17

CGGACGCGTGGGCGGACGCGTGGGCGCCCACGGCGCCGCGGGCTGGGGCGGTCGCTTC TTCCTTCTCCGTGGCCTACGAGGGTCCCCAGCCTGGGTAAAGATGGCCCCATGGCCCCCG AAGGGCCTAGTCCCAGCTGTGCTCTGGGGCCTCAGCCTCTTCCTCAACCTCCCAGGACCT ATCTGGCTCCAGCCCTCTCCACCTCCCCAGTCTTCTCCCCCGCCTCAGCCCCATCCGTGT CATACCTGCCGGGGACTGGTTGACAGCTTTAACAAGGGCCTGGAGAGAACCATCCGGGAC AACTTTGGAGGTGGAAACACTGCCTGGGAGGAAGAGAATTTGTCCAAATACAAAGACAGT GAGACCCGCCTGGTAGAGGTGCTGGAGGGTGTGTGCAGCAAGTCAGACTTCGAGTGCCAC CGCCTGCTGGAGCTGAGGAGCTGGTGGAGAGCTGGTGGTTTCACAAGCAGCAGGAG GCCCCGGACCTCTTCCAGTGGCTGTGCTCAGATTCCCTGAAGCTCTGCTGCCCCGCAGGC ACCTTCGGGCCCTCCTGCCTTCCCTGTCCTGGGGGAACAGAGGGCCCTGCGGTGGCTAC GGGCAGTGTGAAGGAGAGGGACACGAGGGGGCAGCGGCACTGTGACTGCCAAGCCGGC TACGGGGGTGAGGCCTGTGGCCAGTGTGGCCTTGGCTACTTTGAGGCAGAACGCAACGCC AGCCATCTGGTATGTTCGGCTTGTTTTGGCCCCTGTGCCCGATGCTCAGGACCTGAGGAA TCAAACTGTTTGCAATGCAAGAAGGGCTGGGCCCTGCATCACCTCAAGTGTGTAGACATT GATGAGTGTGGCACAGAGGGAGCCAACTGTGGAGCTGACCAATTCTGCGTGAACACTGAG GGCTCCTATGAGTGCCGAGACTGTGCCAAGGCCTGCCTAGGCTGCATGGGGGCAGGGCCA GGTCGCTGTAAGAAGTGTAGCCCTGGCTATCAGCAGGTGGGCTCCAAGTGTCTCGATGTG GATGAGTGTGAGACAGGGTGTGTCCGGGAGAGAACAGCAGTGTGAAAACACCGAGGGC GGTTATCGCTGCATCTGTGCCGAGGGCTACAAGCAGATGGAAGGCATCTGTGTGAAGGAG CAGATCCCAGAGTCAGCAGGCTTCTTCTCAGAGATGACAGAAGACGAGTTGGTGGTGCTG TTGGTGTTCACCGCCATCTTCATTGGGGCTGTGGCGGCCATGACTGGCTACTGGTTGTCA GAGCGCAGTGACCGTGTGCTGGAGGGCTTCATCAAGGGCAGATAATCGCGGCCACCACCT GTAGGACCTCCTCCCACCCTGCCCCCAGAGCTTGGGCTGCCCTCCTGCTGGACACT CAGGACAGCTTGGTTTATTTTTGAGAGTGGGGTAAGCACCCCTACCTGCCTTACAGAGCA GCCCAGGTACCCAGGCCCGGGCAGACAAGGCCCCTGGGGTAAAAAGTAGCCCTGAAGGTG GATACCATGAGCTCTTCACCTGGCGGGGACTGGCAGGCTTCACAATGTGTGAATTTCAAA AGTTTTTCCTTAATGGTGGCTGCTAGAGCTTTTGGCCCCTGCTTAGGATTAGGTGGTCCTC ACAGGGGTGGGCCATCACAGCTCCCTCCTGCCAGCTGCATGCTGCCAGTTCCTGTTCTG GGTCTTGGAAAGTTAAAAAAAAAAAAAAAAAAAAAAAA

18/392

FIGURE 18

MAPWPKGLVPAVLWGLSLFLNLPGPIWLQPSPPPQSSPPPQPHPCHTCRGLVDSFNKGL ERTIRDNFGGGNTAWEEENLSKYKDSETRLVEVLEGVCSKSDFECHRLLELSEELVESWW FHKQQEAPDLFQWLCSDSLKLCCPAGTFGPSCLPCPGGTERPCGGYGQCEGEGTRGGSGH CDCQAGYGGEACGQCGLGYFEAERNASHLVCSACFGPCARCSGPEESNCLQCKKGWALHH LKCVDIDECGTEGANCGADQFCVNTEGSYECRDCAKACLGCMGAGPGRCKKCSPGYQQVG SKCLDVDECETEVCPGENKQCENTEGGYRCICAEGYKQMEGICVKEQIPESAGFFSEMTE DELVVLQQMFFGIIICALATLAAKGDLVFTAIFIGAVAAMTGYWLSERSDRVLEGFIKGR

FIGURE 19

GCCCGGGACTGGCGCAAGGTGCCCAAGCAAGGAAAGAAATAATGAAGAGACACATGTGTT AGCTGCAGCCTTTTGAAACACGCAAGAAGGAAATCAATAGTGTGGACAGGGCTGGAACCT ${ t TTACCACGCTTGTTGGAGTAGATGAGGAATGGGCTCGTGATTATGCTGACATTCCAGC { t AT}$ $\underline{\mathbf{G}}$ AATCTGGTAGACCTGTGGTTAACCCGTTCCCTCCATGTGTCTCCTCCTACAAAGTTT TGTTCTTATGATACTGTGCTTTCATTCTGCCAGTATGTGTCCCAAGGGCTGTCTTTGTTC TTCCTCTGGGGGTTTAAATGTCACCTGTAGCAATGCAAATCTCAAGGAAATACCTAGAGA TCTTCCTCCTGAAACAGTCTTACTGTATCTGGACTCCAATCAGATCACATCTATTCCCAA TGAAATTTTTAAGGACCTCCATCAACTGAGAGTTCTCAACCTGTCCAAAAATGGCATTGA GTTTATCGATGAGCATGCCTTCAAAGGAGTAGCTGAAACCTTGCAGACTCTGGACTTGTC CGACAATCGGATTCAAAGTGTGCACAAAAATGCCTTCAATAACCTGAAGGCCAGGGCCAG AATTGCCAACAACCCCTGGCACTGCGACTGTACTCTACAGCAAGTTCTGAGGAGCATGGC GTCCAATCATGAGACAGCCCACAACGTGATCTGTAAAACGTCCGTGTTGGATGAACATGC TGGCAGACCATTCCTCAATGCTGCCAACGACGCTGACCTTTGTAACCTCCCTAAAAAAAC TACCGATTATGCCATGCTGGTCACCATGTTTGGCTGGTTCACTATGGTGATCTCATATGT GGTATATTATGTGAGGCAAAATCAGGAGGATGCCCGGAGACACCTCGAATACTTGAAATC CCTGCCAAGCAGGCAGAAGAAGCAGATGAACCTGATGATATTAGCACTGTGGTA<u>TAG</u>TG TCCAAACTGACTGTCATTGAGAAAGAAAGAAGTAGTTTGCGATTGCAGTAGAAATAAGT CACCCCTTAATTGTACCCCCGATGGTATATTTCTGAGTAAGCTACTATCTGAACATTAGT TAGATCCATCTCACTATTTAATAATGAAATTTATTTTTTTAATTTAAAAGCAAATAAAAG

20/392

FIGURE 20

MNLVDLWLTRSLSMCLLLQSFVLMILCFHSASMCPKGCLCSSSGGLNVTCSNANLKEIPR DLPPETVLLYLDSNQITSIPNEIFKDLHQLRVLNLSKNGIEFIDEHAFKGVAETLQTLDL SDNRIQSVHKNAFNNLKARARIANNPWHCDCTLQQVLRSMASNHETAHNVICKTSVLDEH AGRPFLNAANDADLCNLPKKTTDYAMLVTMFGWFTMVISYVVYYVRQNQEDARRHLEYLK SLPSRQKKADEPDDISTVV

Signal sequence: amino acids 1-33

Transmembrane domain: amino acids 205-220

N-glycosylation site: amino acids 47-51, 94-98

cAMP- and cGMP-dependent protein kinase phosphorylation site: amino acids 199-203

Casein kinase II phosphorylation site: amino acids 162-166, 175-179

N-myristoylation site: amino acids 37-43, 45-51, 110-116

FIGURE 21

 ${\tt CGCCACCACTGCGGCCACCGCCAATGAAACGCCTCCCGCTCCTAGTGGTTTTTTCCACTT}$ TGTTGAATTGTTCCTATACTCAAAATTGCACCAAGACACCTTGTCTCCCAAATGCAAAAT GTGAAATACGCAATGGAATTGAAGCCTGCTATTGCAACATGGGATTTTCAGGAAATGGTG TCACAATTTGTGAAGATGATAATGAATGTGGAAATTTAACTCAGTCCTGTGGCGAAAATG CTAATTGCACTAACACAGAAGGAAGTTATTATTGTATGTGTGTACCTGGCTTCAGATCCA GCAGTAACCAAGACAGGTTTATCACTAATGATGGAACCGTCTGTATAGAAAATGTGAATG CAAACTGCCATTTAGATAATGTCTGTATAGCTGCAAATATTAATAAAACTTTAACAAAAA TCAGATCCATAAAAGAACCTGTGGCTTTGCTACAAGAAGTCTATAGAAATTCTGTGACAG ATCTTTCACCAACAGATATAATTACATATATAGAAATATTAGCTGAATCATCTTCATTAC TAGGTTACAAGAACAACACTATCTCAGCCAAGGACACCCTTTCTAACTCAACTCTTACTG AATTTGTAAAAACCGTGAATAATTTTGTTCAAAGGGATACATTTGTAGTTTGGGACAAGT TATCTGTGAATCATAGGAGAACACATCTTACAAAACTCATGCACACTGTTGAACAAGCTA CTTTAAGGATATCCCAGAGCTTCCAAAAGACCACAGAGTTTGATACAAATTCAACGGATA TAGCTCTCAAAGTTTTCTTTTTTGATTCATATAACATGAAACATATTCATCCTCATATGA ATATGGATGGAGACTACATAAATATATTTCCAAAGAGAAAAGCTGCATATGATTCAAATG GCAATGTTGCAGTTGCATTTTTATATTATAAGAGTATTGGTCCTTTGCTTTCATCATCTG ACAACTTCTTATTGAAACCTCAAAATTATGATAATTCTGAAGAGGGGGAAAGAGTCATAT TAACATTTACATTAAGTCATCGAAAGGTCACAGATAGGTATAGGAGTCTATGTGCATTTT GGAATTACTCACCTGATACCATGAATGGCAGCTGGTCTTCAGAGGGCTGTGAGCTGACAT ACTCAAATGAGACCCACACCTCATGCCGCTGTAATCACCTGACACATTTTGCAATTTTGA TGTCCTCTGGTCCTTCCATTGGTATTAAAGATTATAATATTCTTACAAGGATCACTCAAC TAGGAATAATTATTTCACTGATTTGTCTTGCCATATGCATTTTTACCTTCTGGTTCTTCA GTGAAATTCAAAGCACCAGGACAACAATTCACAAAAATCTTTGCTGTAGCCTATTTCTTG CTGAACTTGTTTCTTGTTGGGATCAATACAAATACTAATAAGCTCTTCTGTTCAATCA TTGCCGGACTGCTACACTACTTCTTTTTAGCTGCTTTTTGCATGGATGTGCATTGAAGGCA TACATCTCTATCTCATTGTTGTGGGTGTCATCTACAACAAGGGATTTTTGCACAAGAATT TTTATATCTTTGGCTATCTAAGCCCAGCCGTGGTAGTTGGATTTTCGGCAGCACTAGGAT ACAGATATTATGGCACAACCAAAGTATGTTGGCTTAGCACCGAAAACAACTTTATTTGGA GTTTTATAGGACCAGCATGCCTAATCATTCTTGTTAATCTCTTGGCTTTTTGGAGTCATCA TAAGGTCTTGTGCAAGAGGAGCCCTCGCTCTTCTGTTCCTTCTCGGCACCACCTGGATCT TTGGGGTTCTCCATGTTGTGCACGCATCAGTGGTTACAGCTTACCTCTTCACAGTCAGCA ATGCTTTCCAGGGGATGTTCATTTTTTTTTTCCTGTGTGTTTTTATCTAGAAAGATTCAAG AAGAATATTACAGATTGTTCAAAAATGTCCCCTGTTGTTTTGGATGTTTAAGGTAAACAT AGAGAATGGTGGATAATTACAACTGCACAAAAATAAAAATTCCAAGCTGTGGATGACCAA TGTATAAAAATGACTCATCAAATTATCCAATTATTAACTACTAGACAAAAAGTATTTTAA ${ t ATCAGTTTTTCTGTTTATGCTATAGGAACTGTAGATAATAAGGTAAAATTATGTATCATA$ TAGATATACTATGTTTTCTATGTGAAATAGTTCTGTCAAAAATAGTATTGCAGATATTT ACACGAGAAGTATATGAATGTCCTGAAGGAAACCACTGGCTTGATATTTCTGTGACTCGT GTTGCCTTTGAAACTAGTCCCCTACCACCTCGGTAATGAGCTCCATTACAGAAAGTGGAA CATAAGAGAATGAAGGGCAGAATATCAAACAGTGAAAAGGGAATGATAAGATGTATTTT GAATGAACTGTTTTTTCTGTAGACTAGCTGAGAAATTGTTGACATAAAATAAAGAATTGA AGAAACACATTTTACCATTTTGTGAATTGTTCTGAACTTAAATGTCCACTAAAACAACTT

22/392

FIGURE 22

MKRLPLLVVFSTLLNCSYTQNCTKTPCLPNAKCEIRNGIEACYCNMGFSGNGVTICEDDN ECGNLTQSCGENANCTNTEGSYYCMCVPGFRSSSNQDRFITNDGTVCIENVNANCHLDNV CIAANINKTLTKIRSIKEPVALLQEVYRNSVTDLSPTDIITYIEILAESSSLLGYKNNTI SAKDTLSNSTLTEFVKTVNNFVQRDTFVVWDKLSVNHRRTHLTKLMHTVEQATLRISQSF QKTTEFDTNSTDIALKVFFFDSYNMKHIHPHMNMDGDYINIFPKRKAAYDSNGNVAVAFL YYKSIGPLLSSSDNFLLKPQNYDNSEEEERVISSVISVSMSSNPPTLYELEKITFTLSHR KVTDRYRSLCAFWNYSPDTMNGSWSSEGCELTYSNETHTSCRCNHLTHFAILMSSGPSIG IKDYNILTRITQLGIIISLICLAICIFTFWFFSEIQSTRTTIHKNLCCSLFLAELVFLVG INTNTNKLFCSIIAGLLHYFFLAAFAWMCIEGIHLYLIVVGVIYNKGFLHKNFYIFGYLS PAVVVGFSAALGYRYYGTTKVCWLSTENNFIWSFIGPACLIILVNLLAFGVIIYKVFRHT AGLKPEVSCFENIRSCARGALALLFLLGTTWIFGVLHVVHASVVTAYLFTVSNAFQGMFIFLFLCVLSRKIQEEYYRLFKNVPCCFGCLR

23/392

FIGURE 23

 ${ t CTCCTCTTAACATACTTGCAGCTAAAACTAAATATTGCTGCTTGGGGGACCTCCTTCTAGC$ CCTTGCCATTTGCACCAGACCTGGATTCCTAGCGTCTCCATCTGGAGTGCGGCTGGTGGG GGGCCTCCACCGCTGTGAAGGGCGGGTGGAGGTGGAACAGAAAGGCCAGTGGGGCACCGT GTGTGATGACGGCTGGGACATTAAGGACGTGGCTGTGTTGTGCCGGGAGCTGGGCTGTGG AGCTGCCAGCGGAACCCCTAGTGGTATTTTGTATGAGCCACCAGCAGAAAAAGAGCAAAA GGTCCTCATCCAATCAGTCAGTTGCACAGGAACAGAAGATACATTGGCTCAGTGTGAGCA AGAAGAAGTTTATGATTGTTCACATGATGAAGATGCTGGGGCATCGTGTGAGAACCCAGA GGGACGCGTGGAAGTGAAGCACCAGAACCAGTGGTATACCGTGTGCCAGACAGGCTGGAG CCTCCGGGCCGCAAAGGTGGTGCCGGCAGCTGGGATGTGGGAGGGCTGTACTGACTCA AAAACGCTGCAACAAGCATGCCTATGGCCGAAAACCCATCTGGCTGAGCCAGATGTCATG CTCAGGACGAGAAGCAACCCTTCAGGATTGCCCTTCTGGGCCCTTGGGGGAAGAACACCTG CAACCATGATGAAGACACGTGGGTCGAATGTGAAGATCCCTTTGACTTGAGACTAGTAGG AGGAGACAACCTCTGCTCTGGGCGACTGGAGGTGCTGCACAAGGGCGTATGGGGCTCTGT GAAGTCCCTCTCCCCTCCTTCAGAGACCGGAAATGCTATGGCCCTGGGGTTGGCCGCAT CTGGCTGGATAATGTTCGTTGCTCAGGGGGGGGGGGCAGTCCCTGGAGCAGTGCCAGCACAG ${\tt ATTTTGGGGGTTTCACGACTGCACCCACCAGGAAGATGTGGCTGTCATCTGCTCAGTG} {\color{red}{\underline{\bf TA}}}$ GTTGGGCATCATCTAATCTGTTGAGTGCCTGAATAGAAGAAAAACACAGAAGAAGGGAGC ATTTACTGTCTACATGACTGCATGGGATGAACACTGATCTTCTTCTGCCCTTGGACTGGG ACTTATACTTGGTGCCCCTGATTCTCAGGCCTTCAGAGTTGGATCAGAACTTACAACATC AGGTCTAGTTCTCAGGCCATCAGACATAGTTTGGAACTACATCACCACCTTTCCTATGTC TCCACATTGCACACAGCAGATTCCCAGCCTCCATAATTGTGTGTATCAACTACTTAAATA TGTTTCTCTGAAGAACTCTGACAAAATACAGATTTTGGTACTGAAAGAGATTCTAGAGGA ${\tt ACGGAATTTTAAGGATAAATTTTCTGAATTGGTTATGGGGTTTCTGAAATTGGCTCTATA}$ ATCTAATTAGATATAAAATTCTGGTAACTTTATTTACAATAATAAAGATAGCACTATGTG TTCAAA

24/392

FIGURE 24

MALLFSLILAICTRPGFLASPSGVRLVGGLHRCEGRVEVEQKGQWGTVCDDGWDIKDVAV LCRELGCGAASGTPSGILYEPPAEKEQKVLIQSVSCTGTEDTLAQCEQEEVYDCSHDEDA GASCENPESSFSPVPEGVRLADGPGHCKGRVEVKHQNQWYTVCQTGWSLRAAKVVCRQLG CGRAVLTQKRCNKHAYGRKPIWLSQMSCSGREATLQDCPSGPWGKNTCNHDEDTWVECED PFDLRLVGGDNLCSGRLEVLHKGVWGSVCDDNWGEKEDQVVCKQLGCGKSLSPSFRDRKC YGPGVGRIWLDNVRCSGEEQSLEQCQHRFWGFHDCTHQEDVAVICSV

Signal sequence: amino acids 1-15

Casein kinase II phosphorylation site:

amino acids 47-51, 97-101, 115-119, 209-213, 214-218, 234-238, 267-271, 294-298, 316-320, 336-340

N-myristoylation site:

amino acids 29-35, 43-49, 66-72, 68-74, 72-78, 98-104, 137-143, 180-186, 263-269, 286-292

Amidation site:

amino acids 196-200

Speract receptor repeated domain signature:

amino acids 29-67, 249-287

FIGURE 25

GGCCCCAGCCCACACCTTCACCAGGGCCCAGGAGCCACCATGTGGCGATGTCCACTGGGG CTACTGCTGTTGCCTGCCTGGCTGGCCACTTGGCTCTGGGTGCCCAGCAGGGTCGTGGG CGCCGGGAGCTAGCACCGGGTCTGCACCTGCGGGGCATCCGGGACGCGGGAGGCCGGTAC TGCCAGGAGCAGGACCTGTGCTGCCGCGGCCGTGCCGACGACTGTGCCCTGCCCTACCTG GGCGCCATCTGTTACTGTGACCTCTTCTGCAACCGCACGGTCTCCGACTGCTGCCCTGAC TTCTGGGACTTCTGCCTCGGCGTGCCACCCCCTTTTCCCCCCGATCCAAGGATGTATGCAT GGAGGTCGTATCTATCCAGTCTTGGGAACGTACTGGGACAACTGTAACCGTTGCACCTGC CAGGAGAACAGGCAGGGCATGGTGGATCCAGACATGATCAAAGCCATCAACCAGGGCAA $\tt CTATGGCTGGCAGGCTGGGAACCACAGCGCCTTCTGGGGCATGACCCTGGA\underline{TGA}_{\tt GGGGCAT}$ TACAGTGCTGAACCCAGGGGAGGTGCTTCCCACAGCCTTCGAGGGCCTCTGAGAAGTGGCC AGCAGCTGTGGCATCCGATCGTGTCTCAATCCATTCTCTGGGACACATGACGCCTGTCCT GTCGCCCCAGAACCTGCTGTCTTGTGACACCCACCAGCAGCAGGGCTGCCGCGGTGGGCG TCTCGATGGTGCCTGGTTCCTGCGTCGCCGAGGGGTGGTGTCTGACCACTGCTACCC CTTCTCGGGCCGTGAACGAGACGAGGCTGGCCCCTGCGCCCCCTGTATGATGCACAGCCG AGCCATGGGTCGGGGCAAGCGCCAGGCCACTGCCCACCACCAGCTATGTTAATAA CAATGACATCTACCAGGTCACTCCTGTCTACCGCCTCGGCTCCAACGACAAGGAGATCAT GAAGGAGCTGATGGAGAATGGCCCTGTCCAAGCCCTCATGGAGGTGCATGAGGACTTCTT CCTATACAAGGGAGGCATCTACAGCCACACGCCAGTGAGCCTTGGGAGGCCAGAGAGATA CCGCCGGCATGGGACCCACTCAGTCAAGATCACAGGATGGGGAGAGGAGACGCTGCCAGA TGGAAGGACGCTCAAATACTGGACTGCGGCCAACTCCTGGGGCCCAGCCTGGGGCGAGAG GGGCCACTTCCGCATCGTGCGCGGCGTCAATGAGTGCGACATCGAGAGCTTCGTGCTGGG CGTCTGGGGCCGCGTGGGCATGGAGGACATGGGTCATCACTGAGGCTGCGGGCACCACGC $\tt GGGGTCCGGCCTGGGATCCAGGCTAAGGGCCGGGGAAGAGGCCCCAATGGGGCGGTGAC$ GGGTTCCGCTGACGCAGCCCCCGCCTGGGAGCCGCGGGCAGGCGAGACTGGCGGAGCCC CAGGCCTCTGGCGCCCCCACTCAAGACTACCAAAGCCAGGACACCTCAAGTCTCCAGCCC ${ t TTGCCCAGGTTGGAGTGCAGTGGCCCATCAGGGCTCACTGTAACCTCCGACTCCTGGGTT$ CAAGTGACCCTCCCACCTCAGCCTCTCAAGTAGCTGGGACTACAGGTGCACCACCACCACC ${ t TGGCTAATTTTGTATTTTTGTAAAGAGGGGGGTCTCACTGTGTTGCCCAGGCTGGTTT$ ${\tt CGAACTCCTGGGCTCAAGCGGTCCACCTGCCTCCCGAAAGTGCTGGGATTGCAGG}$ TGTTTTAAAATAAAACCAAAGTATTGATAAAAAAAA

26/392

FIGURE 26

MWRCPLGLLLLPLAGHLALGAQQGRGRRELAPGLHLRGIRDAGGRYCQEQDLCCRGRAD DCALPYLGAICYCDLFCNRTVSDCCPDFWDFCLGVPPPFPPIQGCMHGGRIYPVLGTYWD NCNRCTCQENRQWHGGSRHDQSHQPGQLWLAGWEPQRLLGHDPG

N-glycosylation site: amino acids 78-82, 161-165

Casein kinase II phosphorylation site: amino acids 80-84, 117-121, 126-130, 169-173, 205-209, 296-300, 411-415

N-myristoylation site: amino acids 21-27, 39-45, 44-50, 104-110, 160-164, 224-230, 269-275, 378-384, 442-448

Amidation site: amino acids 26-30, 318-322

Eukaryotic thiol (cysteine) proteases histidine active site: amino acids 398-409

FIGURE 27

CCCACGCGTCCGGCAGGTTTTTCTTCAAGCCAAGAAGGACACGGATTGGCTGAAGGAGAA AGTGCAGAGCTTGCAGACACTGGCTGCCAACACTCTGCGTTGGCCAAAGCCAACAACGA CACCCTGGAGGATATGAACAGCCAGCTCAACTCATTCACAGGTCAGATGGAGAACATCAC CACTATCTCTCAAGCCAACGAGCAGAACCTGAAAGACCTGCAGGACTTACACAAAGATGC AGAGAATAGAACAGCCATCAAGTTCAACCAACTGGAGGAACGCTTCCAGCTCTTTGAGAC GGATATTGTGAACATCATTAGCAATATCAGTTACACAGCCCACCACCTGCGGACGCTGAC CAGCAATCTAAATGA<u>AGT</u>CAGGACCACTTGCACAGATACCTTACCAAACACACAGATGAT CTGACCTCCTTGAATAATACCCTGGCCAACATCCGTTTGGATTCTGTTTCTCAGGATG CAACAAGATTTGATGAGGTCGAGGTTAGACACTGAAGTAGCCAACTTATCAGTGATTATG GAAGAAATGAAGCTAGTAGACTCCAAGCATGGTCAGCTCATCAAGAATTTTACAATACTA CAAGGTCCACCGGGCCCCAGGGGTCCAAGAGGTGACAGAGGATCCCAGGGACCCCCTGGC CCAACTGGCAACAAGGACAGAAAGGAGAGAGGGGGGGGCCTGGACCACCTGGCCCTGCG GGTGAGAGAGGCCCAATTGGACCAGCTGGTCCCCCCGGAGAGCGTGGCGGCAAAGGATCT AAAGGCTCCCAGGGCCCCAAAGGCTCCCGTGGTTCCCCTGGGAAGCCCGGCCCTCAGGGC CCCAGTGGGGACCCAGGCCCCGGGCCCACCAGGCAAAGAGGGACTCCCCGGCCCTCAG GGCCCTCCTGGCTTCCAGGGACTTCAGGGCACCGTTGGGGAGCCTGGGGTGCCTGGACCT CGGGGACTGCCAGGCTTGCCTGGGGTACCAGGCATGCCAGGCCCCAAGGGCCCCCCGGC CCTCCTGGCCCATCAGGAGCGGTGGTGCCCCTGGCCCTGCAGAATGAGCCAACCCCGGCA CCGGAGGACAATAGCTGCCCGCCTCACTGGAAGAACTTCACAGACAAATGCTACTATTTT ${ t TCAGTTGAGAAAGAAATTTTTGAGGATGCAAAGCTTTTCTGTGAAGACAAGTCTTCACAT$ CTTGTTTTCATAAACACTAGAGAGGAACAGCAATGGATAAAAAAACAGATGGTAGGGAGA GGGACATCTCCAGACTACAAAAATTGGAAAGCTGGACAGCCGGATAACTGGGGTCATGGC CATGGGCCAGGAGAAGACTGTGCTGGGTTGATTTATGCTGGGCAGTGGAACGATTTCCAA TGTGAAGACGTCAATAACTTCATTTGCGAAAAAGACAGGGAGACAGTACTGTCATCTGCA TTA<u>TAA</u>CGGACTGTGATGGGATCACATGAGCAAATTTTCAGCTCTCAAAGGCAAAGGACA TTACTGAAAAAATTGACAGCTAGTGTTTTTTACCATCCGTCATTACCCAAAGACTTGG GAACTAAAATGTTCCCCAGGGTGATATGCTGATTTTCATTGTGCACATGGACTGAATCAC ATAGATTCTCCTCCGTCAGTAACCGTGCGATTATACAAATTATGTCTTCCAAAGTATGGA ACACTCCAATCAGAAAAAGGTTATCATTGGTCGTTGAGTTATGGGAAGAACTTAAGCATA TACTGTGTAAACAGTGCCATACATTTCTAAAATCCCCAAGTGTAGGAAAAATATGCAGACA TACAGATATAGGCCAACTATTAGTAATAATATGAAATATACTTAAAGAGCTTTTAAAA CTTTGTATTTTTGTACAAAAAAAA

28/392

FIGURE 28

MQQDLMRSRLDTEVANLSVIMEEMKLVDSKHGQLIKNFTILQGPPGPRGPRGDRGSQGPPGPTGNKGQKGEKGEPGPPGPAGERGPIGPAGPPGERGKGSKGSQGPKGSRGSPGKPGPQGPTGNKGQKGEKGEPGPPGPAGERGPIGPAGPPGERGKGSKGSQGPKGSRGSPGKPGPQGPSGDPGPPGPGKEGLPGPPGFQGLQGTVGEPGVPGPRGLPGLPGVPGMPGPKGPPGPPGPSGAVVPLALQNEPTPAPEDNSCPPHWKNFTDKCYYFSVEKEIFEDAKLFCEDKSSHLVFINTREEQQWIKKQMVGRESHWIGLTDSERENEWKWLDGTSPDYKNWKAGQPDNWGHGHGPGEDCAGLIYAGQWNDFQCEDVNNFICEKDRETVLSSAL

```
Signal sequence:
```

None

Transmembrane domain:

None

N-glycosylation site:

16-19, 37-40, 213-216

Tyrosine kinase phosphorylation site:

212-220

N-myristoylation site:

97-102, 100-105, 148-153, 267-272, 293-298, 310-315

Cell attachment sequence:

51-53

C-type lectin domain signature:

308-330

Lectin C-type domain:

233-330

Collagen triple helix repeat:

43-102, 127-186

29/392

FIGURE 29

GGACTAATCTGTGGGAGCAGTTTATTCCAGTATCACCCAGGGTGCAGCCACCACCAGGACT AGTGTCTGAGAACATTTACATTATAGATAAGTAGTACATGGTGGATAACTTCTACTTTTA ${\tt GGAGGACTACTCTTCTGACAGTCCTAGACTGGTCTTCTACACTAAGACACC{\tt ATG}{\tt AAGG}}$ AGTATGTGCTCCTATTATTCCTGGCTTTGTGCTCTGCCAAACCCTTCTTTAGCCCTTCAC ACATCGCACTGAAGAATATGATGCTGAAGGATATGGAAGACACAGATGATGATGATG ATGATGATGATGATGATGATGAGGGACAACTCTCTTTTTCCAACAAGAGAGCCAAGAA GCCATTTTTTTCCATTTGATCTGTTTCCAATGTGTCCATTTGGATGTCAGTGCTATTCAC CTCGAATGCTTGATCTTCAAAACAATAAAATTAAGGAAATCAAAGAAAATGATTTTAAAG GACTCACTTCACTTTATGGTCTGATCCTGAACAACAACAAGCTAACGAAGATTCACCCAA AAGCCTTTCTAACCACAAAGAAGTTGCGAAGGCTGTATCTGTCCCACAATCAACTAAGTG AAATACCACTTAATCTTCCCAAATCATTAGCAGAACTCAGAATTCATGAAAATAAAGTTA AGAAAATACAAAAGGACACATTCAAAGGAATGAATGCTTTACACGTTTTGGAAATGAGTG CAAACCCTCTTGATAATAATGGGATAGAGCCAGGGGCATTTGAAGGGGTGACGGTGTTCC ATATCAGAATTGCAGAAGCAAAACTGACCTCAGTTCCTAAAGGCTTACCACCAACTTTAT TGGAGCTTCACTTAGATTATAATAAAATTTCAACAGTGGAACTTGAGGATTTTAAACGAT ACAAAGAACTACAAAGGCTGGGCCTAGGAAACAACAAAATCACAGATATCGAAAATGGGA TTGCAAGAGTGGGAGTAAATGACTTCTGTCCAACAGTGCCAAAGATGAAGAAATCTTTAT ACAGTGCAATAAGTTTATTCAACAACCCGGTGAAATACTGGGAAATGCAACCTGCAACAT ${ t TTCGTTGTGTTTTGAGCAGAATGAGTGTTCAGCTTGGGAACTTTGGAATG{ t TAA}{ t TAATTAG}$ TAATTGGTAATGTCCATTTAATATAAGATTCAAAAATCCCTACATTTGGAATACTTGAAC TCTATTAATAATGGTAGTATTATATATACAAGCAAATATCTATTCTCAAGTGGTAAGTCC ACTGACTTATTTATGACAAGAAATTTCAACGGAATTTTGCCAAACTATTGATACATAAG GGGTTGAGAGAAACAAGCATCTATTGCAGTTTCCTTTTTGCGTACAAATGATCTTACATA AATCTCATGCTTGACCATTCCTTTCTTCATAACAAAAAGTAAGATATTCGGTATTTAAC AAAATTTGTGCTCTTTCATTTGCTGTTAGAAAAACAGAATTAACAAAGACAGTAATGTGA AGAGTGCATTACACTATTCTTATTCTTTAGTAACTTGGGTAGTACTGTAATATTTTTTAAT CATCTTAAAGTATGATTTGATATAATCTTATTGAAATTACCTTATCATGTCTTAGAGCCC GTCTTTATGTTTAAAACTAATTTCTTAAAATAAAGCCTTCAGTAAATGTTCATTACCAAC ATTATTACCTGATTTAAAAATCTCTGTAAAAACGTGTAGTGTTTCATAAAATCTGTAACT CGCATTTTAATGATCCGCTATTATAAGCTTTTAATAGCATGAAAATTGTTAGGCTATATA GAAGAGCCTGGACACTAACAATTCTACACCAAATTGTCTCTTCAAATACGTATGGACTGG ATAACTCTGAGAAACACATCTAGTATAACTGAATAAGCAGAGCATCAAATTAAACAGACA GAAACCGAAAGCTCTATATAAATGCTCAGAGTTCTTTATGTATTTCTTATTGGCATTCAA CATATGTAAAATCAGAAAACAGGGAAATTTTCATTAAAAATATTGGTTTGAAAT

30/392

FIGURE 30

MKEYVLLLFLALCSAKPFFSPSHIALKNMMLKDMEDTDDDDDDDDDDDDDDDDDDDLDNSLFPTRE PRSHFFPFDLFPMCPFGCQCYSRVVHCSDLGLTSVPTNIPFDTRMLDLQNNKIKEIKEND FKGLTSLYGLILNNNKLTKIHPKAFLTTKKLRRLYLSHNQLSEIPLNLPKSLAELRIHEN KVKKIQKDTFKGMNALHVLEMSANPLDNNGIEPGAFEGVTVFHIRIAEAKLTSVPKGLPP TLLELHLDYNKISTVELEDFKRYKELQRLGLGNNKITDIENGSLANIPRVREIHLENNKL KKIPSGLPELKYLQIIFLHSNSIARVGVNDFCPTVPKMKKSLYSAISLFNNPVKYWEMQP ATFRCVLSRMSVQLGNFGM

Signal sequence: amino acids 1-15

N-glycosylation site: amino acids 281-285

N-myristoylation sites: amino acids 129-135, 210-216, 214-220, 237-243, 270-276, 282-288

Leucine zipper pattern: amino acids 154-176

FIGURE 31

GTTCCAGAACTCTCCATCCGGACTAGTTATTGAGCATCTGCCTCTCATATCACCAGTGGC ${ t CATCTGAGGTGTTTCCCTGGCTCTGAAGGGGTAGGCACG} { t ATG} { t GCCAGGTGCTTCAGCCTG}$ GTGTTGCTTCTCACTTCCATCTGGACCACGAGGCTCCTGGTCCAAGGCTCTTTGCGTGCA GAAGAGCTTTCCATCCAGGTGTCATGCAGAATTATGGGGATCACCCTTGTGAGCAAAAAG ${\tt GCGAACCAGCAGCTGAATTTCACAGAAGCTAAGGAGGCCTGTAGGCTGCTGGGACTAAGT}$ GGCTGGGTTGGAGATGGATTCGTGGTCATCTCTAGGATTAGCCCAAACCCCAAGTGTGGG AAAAATGGGGTGGGTGTCCTGATTTGGAAGGTTCCAGTGAGCCGACAGTTTGCAGCCTAT TGTTACAACTCATCTGATACTTGGACTAACTCGTGCATTCCAGAAATTATCACCACCAAA GATCCCATATTCAACACTCAAACTGCAACACAAACAACAGAATTTATTGTCAGTGACAGT ACCTACTCGGTGGCATCCCCTTACTCTACAATACCTGCCCCTACTACTACTCCTCCTGCT CCAGCTTCCACTTCTATTCCACGGAGAAAAAATTGATTTGTGTCACAGAAGTTTTTATG GAAACTAGCACCATGTCTACAGAAACTGAACCATTTGTTGAAAATAAAGCAGCATTCAAG ${ t TTTGGTGCTGCAGCTGGTCTTGGATTTTGCTATGTCAAAAGGTATGTGAAGGCCTTCCCT$ TTTACAAACAAGAATCAGCAGAAGGAAATGATCGAAACCAAAGTAGTAAAGGAGGAGAAG GCCAATGATAGCAACCCTAATGAGGAATCAAAGAAAACTGATAAAAACCCAGAAGAGTCC AAGAGTCCAAGCAAAACTACCGTGCGATGCCTGGAAGCTGAAGTT<u>TAG</u>ATGAGACAGAAA TGAGGAGACACCTGAGGCTGGTTTCTTTCATGCTCCTTACCCTGCCCCAGCTGGGGAA ATCAAAAGGGCCAAAGAACCAAAGAAGAAGTCCACCCTTGGTTCCTAACTGGAATCAGC TCAGGACTGCCATTGGACTATGGAGTGCACCAAAGAGAATGCCCTTCTCCTTATTGTAAC CCTGTCTGGATCCTATCCTCCTACCTCCAAAGCTTCCCACGGCCTTTCTAGCCTGGCTAT GTCCTAATAATATCCCACTGGGAGAAAGGAGTTTTGCAAAGTGCAAGGACCTAAAACATC TCATCAGTATCCAGTGGTAAAAAGGCCTCCTGGCTGTCTGAGGCTAGGTGGGTTGAAAGC CAAGGAGTCACTGAGACCAAGGCTTTCTCTACTGATTCCGCAGCTCAGACCCTTTCTTCA GCTCTGAAAGAGAAACACGTATCCCACCTGACATGTCCTTCTGAGCCCGGTAAGAGCAAA AGAATGGCAGAAAAGTTTAGCCCCTGAAAGCCATGGAGATTCTCATAACTTGAGACCTAA TCTCTGTAAAGCTAAAATAAAGAAATAGAACAAGGCTGAGGATACGACAGTACACTGTCA GCAGGGACTGTAAACACAGACAGGGTCAAAGTGTTTTCTCTGAACACATTGAGTTGGAAT CACTGTTTAGAACACACACACTTACTTTTTCTGGTCTCTACCACTGCTGATATTTTCTCT AGGAAATATACTTTTACAAGTAACAAAAATAAAAACTCTTATAAATTTCTATTTTATCT GAGTTACAGAAATGATTACTAAGGAAGATTACTCAGTAATTTGTTTAAAAAGTAATAAAA TTCAACAAACATTTGCTGAATAGCTACTATATGTCAAGTGCTGTGCAAGGTATTACACTC TGTAATTGAATATTATTCCTCAAAAAATTGCACATAGTAGAACGCTATCTGGGAAGCTAT TTTTTTCAGTTTTGATATTTCTAGCTTATCTACTTCCAAACTAATTTTTATTTTTGCTGA GACTAATCTTATTCATTTTCTCTAATATGGCAACCATTATAACCTTAATTTATTAAC ATACCTAAGAAGTACATTGTTACCTCTATATACCAAAGCACATTTTAAAAGTGCCATTAA CAAATGTATCACTAGCCCTCCTTTTTCCAACAAGAAGGGACTGAGAGATGCAGAAATATT TGTGACAAAAATTAAAGCATTTAGAAAACTT

32/392

FIGURE 32

MARCFSLVLLLTSIWTTRLLVQGSLRAEELSIQVSCRIMGITLVSKKANQQLNFTEAKEA CRLLGLSLAGKDQVETALKASFETCSYGWVGDGFVVISRISPNPKCGKNGVGVLIWKVPV SRQFAAYCYNSSDTWTNSCIPEIITTKDPIFNTQTATQTTEFIVSDSTYSVASPYSTIPA PTTTPPAPASTSIPRRKKLICVTEVFMETSTMSTETEPFVENKAAFKNEAAGFGGVPTAL LVLALLFFGAAAGLGFCYVKRYVKAFPFTNKNQQKEMIETKVVKEEKANDSNPNEESKKT DKNPEESKSPSKTTVRCLEAEV

Signal sequence: amino acids 1-16

Transmembrane domain: amino acids 235-254

N-glycosylation site: amino acids 53-57, 130-134, 289-293

Casein kinase II phosphorylation site: amino acids 145-149, 214-218

Tyrosine kinase phosphorylation site: amino acids 79-88

N-myristoylation site: amino acids 23-29, 65-71, 234-240, 235-239, 249-255, 253-259

33/392

FIGURE 33

GAAAAAAAAAAAAGGGAAGCAAGCTTAGCTGTACACCCTGAGTCTTGCAAAAGCTGCAG ${\tt CCCCACCCAGGAGCAGGGTGGTGGCTGGGGCGATGGTGGACGCCCTGAAGATGTCCC}$ GCTACTGAAGGGGCTGCCCAGTTAGGGAACAGAGTGGCGGGCATGGTGTAGCCTATGG $\tt GTGCTGCTCCTGGTGTCTTCAGTTCTGGCTCTGGAAGAGGTATTGCTGGACACCACCGGA$ GAGACATCTGAGATTGGCTGGCTCACCTACCCACCAGGGGGGGTGGGACGAGGTGAGTGTT CTGGACGACCAGCGACGCCTGACTCGGACCTTTGAGGCATGTCATGTGGCAGGGGCCCCT ${\tt CCAGGCACCGGGCAGACAATTGGTTGCAGACACACTTTGTGGAGCGGCGCGGGGCCCAG}$ ${f AGGGCGCACATTCGACTCCACTTCTCTGTGCGGGCATGCTCCAGCCTGGGTGTGAGCGGC}$ GGCACCTGCCGGGAGACCTTCACCCTTTACTACCGTCAGGCTGAGGAGCCCGACAGCCCT GACAGCGTTTCCTCCTGGCACCTCAAACGTTGGACCAAGGTGGACACAATTGCAGCAGAC GAGAGCTTTCCATCCTCCTCCTCCTCCTCCTCCTCTTCTTCCTCTGCAGCGTGGGCT GTGGGACCCCACGGGGCTGGGCAGCGGGCTGGACTGAACGTCAAAGAGCGGAGC GCCCTGGTCGCTGTCAGGCTCTTCTCCTACACCTGCCCTGCCGTGCTCCGATCCTTTGCT TCCTTTCCAGAGACGCAGGCCAGTGGGGGCCTGGGGGGGCCTCCCTGGTGGCAGCTGTGGGC CCCCCAGGCTGCACTGCAACGGGGAGGGCAAGTGGATGGTAGCTGTCGGGGGCTGCCGC TGCCAGCCTGGATACCAACCAGCACGAGGAGACAAGGCCTGCCAAGCCTGCCCACGGGG CTCTATAAGGCTTCTGCTGGGAATGCTCCCTGCTCACCATGCCCTGCCCGCAGTCACGCT ${\tt CCCAACCCAGCAGCCCCGTTTGCCCCTGCCTGGAGGGCTTCTACCGGGCCAGTTCCGAC}$ CCACCAGAGGCCCCTGCACTGGTCCTCCATCGGCTCCCCAGGAGCTTTGGTTTGAGGTG CAAGGCTCAGCACTCATGCTACACTGGCGCCTGCCTCGGGAGCTGGGGGGTCGAGGGGAC CTGCTCTTCAATGTCGTGTGCAAGGAGTGTGAAGGCCGCCAGGAACCTGCCAGCGGTGGT GGGGGCACTTGTCACCGCTGCAGGGATGAGGTCCACTTCGACCCTCGCCAGAGAGGCCTG ACTGAGAGCCGAGTGTTAGTGGGGGGACTCCGGGCACACGTACCCTACATCTTAGAGGTG CAGGCTGTTAATGGGGTGTCTGAGCTCAGCCCTGACCCTCCAGGCTGCAGCCATCAAT GTCAGCACCAGCCATGAAGTGCCCTCTGCTGTCCCTGTGGTGCACCAGGTGAGCCGGGCA TCCAACAGCATCACGGTGTCCTGGCCGCAGCCCGACCAGACCAATGGGAACATCCTGGAC TATCAGCTCCGCTACTATGACCAGGCAGAAGACGAATCCCACTCCTTCACCCTGACCAGC GAGACCAACACTGCCACCGTGACACAGCTGAGCCCTGGCCACATCTATGGTTTCCAGGTG CGGGCCCGGACTGCCGGCCCACGGCCCCTACGGGGGCAAAGTCTATTTCCAGACACTT $\tt CTGGGGGCTTTGGCCTCCTGCTGGCAGCCATCACCGTGCTGGCGGTCGTCTTCCAG$ CGGAAGCGGCGTGGGACTGGCTACACGGAGCAGCTGCAGCAATACAGCAGCCCAGGACTC GGGGTGAAGTATTACATCGACCCCTCCACCTACGAGGACCCCTGTCAGGCCATCCGAGAA ${\tt CTTGCCCGGGAAGTCGATCCTGCTTATATCAAGATTGAGGAGGTCATTGGGACAGGCTCT}$ GCAGTGCTGGGTCAGTTCCAGCACCCCAACATCCTGCGGCTGGAGGGCGTGGTCACCAAG AGCCGACCCCTCATGGTGCTGACGGAGTTCATGGAGCTTGGCCCCCTGGACAGCTTCCTC AGGCAGCGGGAGGCCAGTTCAGCAGCCTGCAGCTGGTGGCCATGCAGCGGGGAGTGGCT GTGCTGGTGAATAGCCACTTGGTGTGCAAGGTGGCCCGTCTTGGCCACAGTCCTCAGGGC ${\tt CCAAGTTGTTTGCTTCGCTGGGCAGCCCCAGAGGTCATTGCACATGGAAAGCATACTCAT}$ $\tt GTGGGAAGTGATGAGTTATGGAGAACGGCCTTACTGGGACATGAG\underline{TGA}GCAGGAGGTACT$ AAATGCAATAGAGCAGGAGTTCCGGCTGCCCCCGCCTCCAGGCTGTCCTCCTGGATTACA

FIGURE 34

MATEGAAQLGNRVAGMVCSLWVLLLVSSVLALEEVLLDTTGETSEIGWLTYPPGGWDEVS VLDDQRRLTRTFEACHVAGAPPGTGQDNWLQTHFVERRGAQRAHIRLHFSVRACSSLGVS GGTCRETFTLYYRQAEEPDSPDSVSSWHLKRWTKVDTIAADESFPSSSSSSSSSSSAAW AVGPHGAGQRAGLQLNVKERSFGPLTQRGFYVAFQDTGACLALVAVRLFSYTCPAVLRSF ASFPETQASGAGGASLVAAVGTCVAHAEPEEDGVGGQAGGSPPRLHCNGEGKWMVAVGGC RCQPGYQPARGDKACQACPRGLYKASAGNAPCSPCPARSHAPNPAAPVCPCLEGFYRASS DPPEAPCTGPPSAPQELWFEVQGSALMLHWRLPRELGGRGDLLFNVVCKECEGRQEPASG GGGTCHRCRDEVHFDPRQRGLTESRVLVGGLRAHVPYILEVQAVNGVSELSPDPPQAAAI NVSTSHEVPSAVPVVHQVSRASNSITVSWPQPDQTNGNILDYQLRYYDQAEDESHSFTLT SETNTATVTQLSPGHIYGFQVRARTAAGHGPYGGKVYFQTLPQGELSSQLPERLSLVIGS TLGALAFLLLAAITVLAVVFQRKRRGTGYTEQLQQYSSPGLGVKYYIDPSTYEDPCQAIR ELAREVDPAYIKIEEVIGTGSFGEVRQGRLQPRGRREQTVAIQALWAGGAESLQMTFLGR AAVLGQFQHPNILRLEGVVTKSRPLMVLTEFMELGPLDSFLRQREGQFSSLQLVAMQRGV AAAMQYLSSFAFVHRSLSAHSVLVNSHLVCKVARLGHSPQGPSCLLRWAAPEVIAHGKHT HVGSDELWRTALLGHE

signal sequence:

Amino acids 1-31

Transmembrane domains:

Amino acids 217-234;598-618

N-glycosylation site:

Amino acids 481-485

Glycosaminoglycan attachment sites:

Amino acids 249-253;419-423

cAMP- and cGMP-dependent protein kinase phosphorylation

Amino acids 66-70;150-154;624-628

Tyrosine kinase phosphorylation sites:

Amino acids 644-673;664-671

N-myristoylation sites:

Amino acids 10-16;15-21;79-85;99-105;118-124;188-194; 192-198;218-224;250-256;261-267;275-281;276-282;298-304;321-327;328-334;420-426;421-427;440-446;449-455;599-605;626-632; 708-714;766-772;779-785

Amidation site:

Amino acids 693-697

Cell attachment sequences:

Amino acids 310-313;399-402

36/392

FIGURE 35

GCATCCGCAGGTTCCCGCGGACTTGGGGGCGCCCGCTGAGCCCCGGCGCCCCAGAAGAC TTGTGTTTGCCTCCTGCAGCCTCAACCCGGAGGGCAGCGAGGGCCTACCACCATGATCAC TGGTGTGTTCAGCATGCGCTTGTGGACCCCAGTGGGCGTCCTGACCTCGCTGGCGTACTG CCTGCACCAGCGGGGGGCCCTGGCCGAGCTGCAGGAGGCCGATGGCCAGTGTCCGGT CGACCGCAGCCTGCAGAGTTGAAAATGGTGCAGGTCGTGTTTCGACACGGGGCTCGGAG TCCTCTCAAGCCGCTCCCGCTGGAGGAGCAGGTAGAGTGGAACCCCCAGCTATTAGAGGT CCCACCCCAAACTCAGTTTGATTACACAGTCACCAATCTAGCTGGTGGTCCGAAACCATA TTCTCCTTACGACTCTCAATACCATGAGACCACCCTGAAGGGGGGCATGTTTGCTGGGCA TGTGGAAGACATTCCCTTTCTTTCACCAACCTTCAACCCACAGGAGGTCTTTATTCGTTC TCAGAAAGAAGGACCCATCATCATCCACACTGATGAAGCAGATTCAGAAGTCTTGTATCC CAACTACCAAAGCTGCTGGAGCCTGAGGCAGAGAACCAGAGGCCGGAGGCAGACTGCCTC TTTACAGCCAGGAATCTCAGAGGATTTGAAAAAGGTGAAGGACAGGATGGGCATTGACAG TAGTGATAAAGTGGACTTCTTCATCCTCCTGGACAACGTGGCTGCCGAGCAGGCACAA CCTCCCAAGCTGCCCCATGCTGAAGAGATTTGCACGGATGATCGAACAGAGAGCTGTGGA CACATCCTTGTACATACTGCCCAAGGAAGACAGGGAAAGTCTTCAGATGGCAGTAGGCCC ATTCCTCCACATCCTAGAGAGCAACCTGCTGAAAGCCATGGACTCTGCCACTGCCCCCGA CAAGATCAGAAAGCTGTATCTCTATGCGGCTCATGATGTGACCTTCATACCGCTCTTAAT GACCCTGGGGATTTTTGACCACAAATGGCCACCGTTTGCTGTTGACCTGACCATGGAACT TTACCAGCACCTGGAATCTAAGGAGTGGTTTGTGCAGCTCTATTACCACGGGAAGGAGCA GGTGCCGAGAGGTTGCCCTGATGGGCTCTGCCCGCTGGACATGTTCTTGAATGCCATGTC AGTTTATACCTTAAGCCCAGAAAAATACCATGCACTCTGCTCTCAAACTCAGGTGATGGA ${\tt AGTTGGAAATGAAGAG}$ ${\tt TAA}$ ${\tt CTGATTTATAAAAGCAGGATGTGTTGATTTTAAAATAAAGT}$ GCCTTTATACAATG

FIGURE 36

MITGVFSMRLWTPVGVLTSLAYCLHQRRVALAELQEADGQCPVDRSLLKLKMVQVVFRHG ARSPLKPLPLEEQVEWNPQLLEVPPQTQFDYTVTNLAGGPKPYSPYDSQYHETTLKGGMF AGQLTKVGMQQMFALGERLRKNYVEDIPFLSPTFNPQEVFIRSTNIFRNLESTRCLLAGL FQCQKEGPIIIHTDEADSEVLYPNYQSCWSLRQRTRGRRQTASLQPGISEDLKKVKDRMG IDSSDKVDFFILLDNVAAEQAHNLPSCPMLKRFARMIEQRAVDTSLYILPKEDRESLQMA VGPFLHILESNLLKAMDSATAPDKIRKLYLYAAHDVTFIPLLMTLGIFDHKWPPFAVDLT MELYQHLESKEWFVQLYYHGKEQVPRGCPDGLCPLDMFLNAMSVYTLSPEKYHALCSQTQ VMEVGNEE

Signal sequence: amino acids 1-23

cAMP- and cGMP-dependent protein kinase phosphorylation site: amino acids 218-222

Casein kinase II phosphorylation site: amino acids 87-91, 104-108, 320-324

Tyrosine kinase phosphorylation site: amino acids 280-288

N-myristoylation site: amino acids 15-21, 117-123, 118-124, 179-185, 240-246, 387-393

Amidation site: amino acids 216-220

Leucine zipper pattern: amino acids 10-32

Histidine acid phosphatases phosphohistidine signature: amino acids 50-65

FIGURE 37

ACTGCACTCGGTTCTATCGATTGAATTCCCCGGGGATCCTCTAGAGATCCCTCGACCTCG ACCCACGCGTCCGCGGACGCGTGGGCCGGCGGCTGCCAGGAAGAGTCTGCC GAAGGTGAAGGCC<u>ATG</u>GACTTCATCACCTCCACAGCCATCCTGCCCCTGCTGTTCGGCTG ${\tt CCTGGGCGTCTTCGGCCTGCTGCAGTGGGTGCGCGGGAAGGCCTACCTGCG}$ GAATGCTGTGGTGATCACAGGCGCCACCTCAGGGCTGGGCAAAGAATGTGCAAAAGT CTTCTATGCTGCGGGTGCTAAACTGGTGCTCTGTGGCCGGAATGGTGGGGCCCTAGAAGA GGTGACCTTCGACCTCACAGACTCTGGGGCCATAGTTGCAGCAGCAGCTGAGATCCTGCA GTGCTTTGGCTATGTCGACATACTTGTCAACAATGCTGGGATCAGCTACCGTGGTACCAT ${\tt CATGGACACCACAGTGGATGTGGACAAGAGGGTCATGGAGACAAACTACTTTGGCCCAGT}$ TGCTCTAACGAAAGCACTCCTGCCCTCCATGATCAAGAGGAGGCCAAGGCCACATTGTCGC CATCAGCAGCATCCAGGGCAAGATGAGCATTCCTTTTCGATCAGCATATGCAGCCTCCAA GCACGCAACCCAGGCTTTCTTTGACTGTCTGCGTGCCGAGATGGAACAGTATGAAATTGA GGTGACCGTCATCAGCCCCGGCTACATCCACACCAACCTCTCTGTAAATGCCATCACCGC GGATGGATCTAGGTATGGAGTTATGGACACCACACAGCCCAGGGCCGAAGCCCTGTGGA GGTGGCCCAGGATGTTCTTGCTGCTGTGGGGAAGAAGAAGAAGATGTGATCCTGGCTGA ${\tt CTTACTGCCTTCCTTGGCTGTTTATCTTCGAACTCTGGCTCCTGGGCTCTTCTTCAGCCT}$ ${\tt CATGGCCTCCAGGGCCAGAAAAGAGCGGGAAATCCAAGAACTCC}{{\tt TAG}{\tt TACTCTGACCAGCC}}$ AGGGCCAGGGCAGAGCACCCTTTAGGCTTGCTTACTCTACAAGGGACAGTTGCAT TTGTTGAGACTTTAATGGAGATTTGTCTCACAAGTGGGAAAGACTGAAGAAACACATCTC GTGCAGATCTGCTGGCAGAGGACAATCAAAAACGACAACAAGCTTCTTCCCAGGGTGAGG GGAAACACTTAAGGAATAAATATGGAGCTGGGGTTTAACACTAAAAACTAGAAATAAACA TCTCAAACAGTAAAAAAAAAAAAAAGGGCGGCCGCGACTCTAGAGTCGACCTGCAGAAG CTTGGCCGCCATGGCCCAACTTGTTTATTGCAGCTTATAATGGTTAC

39/392

FIGURE 38

MDFITSTAILPLLFGCLGVFGLFRLLQWVRGKAYLRNAVVVITGATSGLGKECAKVFYAA GAKLVLCGRNGGALEELIRELTASHATKVQTHKPYLVTFDLTDSGAIVAAAAEILQCFGY VDILVNNAGISYRGTIMDTTVDVDKRVMETNYFGPVALTKALLPSMIKRRQGHIVAISSI QGKMSIPFRSAYAASKHATQAFFDCLRAEMEQYEIEVTVISPGYIHTNLSVNAITADGSR YGVMDTTTAQGRSPVEVAQDVLAAVGKKKKDVILADLLPSLAVYLRTLAPGLFFSLMASR ARKERKSKNS

Signal sequence:

amino acids 1-21

Transmembrane domain:

amino acids 104-120, 278-292

N-glycosylation site:

amino acids 228-232

Glycosaminoglycan attachment site:

amino acids 47-51

Casein kinase II phosphorylation site:

amino acids 135-139, 139-143, 253-257

Tyrosine kinase phosphorylation site:

amino acids 145-153, 146-153

N-myristoylation site:

amino acids 44-50, 105-111, 238-244, 242-248, 291-297

Amidation site:

amino acids 265-269

Prokaryotic membrane lipoprotein lipid attachment site:

amino acids 6-17

FIGURE 39

GCAAGCCAAGGCGCTGTTTGAGAAGGTGAAGAAGTTCCGGACCCATGTGGAGGAGGGGGGACATTGT $\tt GTACCGCCTCTAC{\color{red} \underline{ATG}} CGGCAGACCATCATCAAGGTGATCAAGTTCATCCTCATCATCTGCTACAC$ CGTCTACTACGTGCACAACATCAAGTTCGACGTGGACTGCACCGTGGACATTGAGAGCCTGACGGG $\tt CTACCGCACCTGTGCCCACCCCCTGGCCACACTCTTCAAGATCCTGGCGTCCTTCTACAT$ ${\tt CAGCCTAGTCATCTACGGCCTCATCTGCATGTACACACTGTGGTGGATGCTACGGCGCTCCCT}$ CAAGAAGTACTCGTTTGAGTCGATCCGTGAGGAGGAGCAGCTACAGCGACATCCCCGACGTCAAGAA $\tt CGACTTCGCCTTCATGCTCACCTCATTGACCAATACGACCCGCTCTACTCCAAGCGCTTCGCCGT$ CTTCCTGTCGGAGGTGAGTGAGAACAAGCTGCGGCAGCTGAACCTCAACAACGAGTGGACGCTGGA CAAGCTCCGGCAGCGCTCACCAAGAACGCGCAGGACAAGCTGGAGCTGCACCTGTTCATGCTCAG ${\tt TGGCATCCCTGACACTGTTTTGACCTGGTGGAGCTGGAGGTCCTCAAGCTGGAGCTGATCCCCGA}$ CGTGACCATCCCGCCCAGCATTGCCCAGCTCACGGGCCTCAAGGAGCTGTGGCTCTACCACACAGC GGCCAAGATTGAAGCGCCTGCGCTGGCCTTCCTGCGCGAGAACCTGCGGGCGCTGCACATCAAGTT CACCGACATCAAGGAGATCCCGCTGTGGATCTATAGCCTGAAGACACTGGAGGAGCTGCACCTGAC GGGCAACCTGAGCGCGGAGAACAACCGCTACATCGTCATCGACGGGCTGCGGGAGCTCAAACGCCT CAAGGTGCTGCGGCTCAAGAGCAACCTAAGCAAGCTGCCACAGGTGGTCACAGATGTGGGCGTGCA CCTGCAGAAGCTGTCCATCAACAATGAGGGCACCAAGCTCATCGTCCTCAACAGCCTCAAGAAGAT GGCGAACCTGACTGAGCTGGAGCTGATCCGCTGCGACCTGGAGCGCATCCCCACTCCATCTTCAG ${\tt CCTCCACAACCTGCAGGAGATTGACCTCAAGGACAACCATCGAGGAGATCATCAG}$ $\tt CTTCCAGCACCTGCCTCACCTGCCTTAAGCTGTGGTACAACCACATCGCCTACATCCCCAT$ CCAGATCGGCAACCTCACCAACCTGGAGCGCCTCTACCTGAACCGCAACAAGATCGAGAAGATCCC $\tt CACCCAGCTCTTCTACTGCCGCAAGCTGCGCTACCTGGACCTCAGCCACAACAACCTGACCTTCCT$ CCCTGCCGACATCGGCCTCCTGCAGAACCTCCAGAACCTAGCCATCACGGCCAACCGGATCGAGAC GCTCCCTCCGGAGCTCTTCCAGTGCCGGAAGCTGCGGGCCCTGCACCTGGGCAACAACGTGCTGCA $\tt GTCACTGCCCTCCAGGGTGGGCGAGCTGACCAACCTGACGCAGATCGAGCTGCGGGGCAACCGGCT$ GGACCTGTTCAACACACTGCCACCCGAGGTGAAGGAGCGGCTGTGGAGGGCTGACAAGGAGCAGGC $\mathtt{C}\underline{\mathbf{TGA}}$ GCGAGGCCGGCCCAGCACAGCAGCAGCAGGCCGCTGCCCAGTCCTCAGGCCCGGAGGGGC AGGCCTAGCTTCTCCCAGAACTCCCGGACAGCCAGGACAGCCTCGCGGCTGGGCAGCAGCCTGGGG CCGCTTGTGAGTCAGGCCAGAGCGAGAGGACAGTATCTGTGGGGCTGGCCCCTTTTCTCCCTCTGA ATCAGGGTCTCCTCCCTGGAGGCCAGCTCTGCCCCAGGGGCTGAGCTGCCACCAGAGGTCCTGGGA ${\tt CCCTCACTTTAGTTCTTGGTATTTATTTTTCTCCATCTCCACCTCCTTCATCCAGATAACTTATA}$ $\hbox{\tt CATTCCCAAGAAGTTCAGCCCAGATGGAAGGTGTTCAGGGAAAGGTGGGCTGCCTTTTCCCCTTG}$ TCCTTATTTAGCGATGCCGCCGGCATTTAACACCCACCTGGACTTCAGCAGAGTGGTCCGGGGCG ${\tt AGGCCTCCAGCTGGAAAGGCCAGGCCTGGAGCTTGCCTCTTCAGTTTTTGTGGCAGTTTTAGTTTT}$ GGGTATTAAAAAGAAAAAAAACTTAAAAAAAAAAAAACACTAACGGCCAGTGAGTTGGAGTCTC ${\tt AGGGCAGGGTGGCAGTTTCCCTTGAGCAAAGCAGCCAGACGTTGAACTGTGTTTCCTTTCCCTGGG}$ $\tt CGCAGGGTGCAGGGTGTCTTCCGGATCTGGTGACCTTGGTCCAGGAGTTCTATTTGTTCCTGGG$ ${\tt CCTGCCTCTCCACGCACAGTGTTAAGGAGCCAAGAGGAGCCACTTCGCCCAGACTTTGTTTCCCCA}$ CCTCCTGCGGCATGGGTGTCCAGTGCCACCGCTGGCCTCCGCTGCTTCCATCAGCCCTGTCGCC ACCTGGTCCTTCATGAAGAGCAGACACTTAGAGGCTGGTCGGGAATGGGGAGGTCGCCCCTGGGAG GGCAGGCGTTGGTTCCAAGCCGGTTCCCGTCCCTGGCGCCTGGAGTGCACACAGCCCAGTCGGCAC ${\tt CTGGTGGCTGGAAGCCAACCTGCTTTAGATCACTCGGGTCCCCACCTTAGAAGGGTCCCCGCCTTA}$ GATCAATCACGTGGACACTAAGGCACGTTTTAGAGTCTCTTGTCTTAATGATTATGTCCATCCGTC TGTCCGTCCATTTGTGTTTTCTGCGTCGTGTCATTGGATATAATCCTCAGAAATAATGCACACTAG $\tt CCTCTGACAACCATGAAGCAAAAATCCGTTACATGTGGGTCTGAACTTGTAGACTCGGTCACAGTA$ TCAAATAAAATCTATAACAGAAAAAAAAAAAAAA

41/392

FIGURE 40

MRQTIIKVIKFILIICYTVYYVHNIKFDVDCTVDIESLTGYRTYRCAHPLATLFKILASF YISLVIFYGLICMYTLWWMLRRSLKKYSFESIREESSYSDIPDVKNDFAFMLHLIDQYDP LYSKRFAVFLSEVSENKLRQLNLNNEWTLDKLRQRLTKNAQDKLELHLFMLSGIPDTVFD LVELEVLKLELIPDVTIPPSIAQLTGLKELWLYHTAAKIEAPALAFLRENLRALHIKFTD IKEIPLWIYSLKTLEELHLTGNLSAENNRYIVIDGLRELKRLKVLRLKSNLSKLPQVVTD VGVHLQKLSINNEGTKLIVLNSLKKMANLTELELIRCDLERIPHSIFSLHNLQEIDLKDN NLKTIEEIISFQHLHRLTCLKLWYNHIAYIPIQIGNLTNLERLYLNRNKIEKIPTQLFYC RKLRYLDLSHNNLTFLPADIGLLQNLQNLAITANRIETLPPELFQCRKLRALHLGNNVLQ SLPSRVGELTNLTQIELRGNRLECLPVELGECPLLKRSGLVVEEDLFNTLPPEVKERLWR ADKEQA

Transmembrane domain:

amino acids 51-75 (type II)

N-glycosylation site:

amino acids 262-266, 290-294, 328-332, 396-400, 432-436, 491-495

cAMP- and cGMP-dependent protein kinase phosphorylation site: amino acids 85-89

Casein kinase II phosphorylation site:

amino acids 91-95, 97-101, 177-181, 253-257, 330-334, 364-368, 398-402, 493-497

N-myristoylation site:

amino acids 173-179, 261-267, 395-401, 441-447

42/392

FIGURE 41

GGGGGAGAAGGCGGCCGAGCCCCAGCTCTCCGAGCACCGGGTCGGAAGCCGCGACCCGAG CCGCGCAGGAAGCTGGGAACCTCGGCGGACCCGGCCCCAACTCACCTGCGC AGGTCACCAGCACCCTCGGAACCCAGAGGCCCGCGCTCTGAAGGTGACCCCCCTGGGGAG TGCCGTCGCCTTGTGGCTTCTGTGCACGCTCGGCCTCCAGGGCACCCAGGCCGGGCCACC GCCCGCGCCCCTGGGCTGCCCGCGGGAGCCGACTGCCTGAACAGCTTTACCGCCGGGGT GCCTGGCTTCGTGCTGGACACCAACGCCTCGGTCAGCAACGGAGCTACCTTCCTGGAGTC CCCCACCGTGCGCGGGGCTGGGACTGCGTGCGCGCCTGCTGCACCCAGAACTGCAA $\tt CTTGGCGCTAGTGGAGCTGCAGCCCGACCGCGGGGAGGACGCCATCGCCGCCTGCTTCCT$ CAACTACCTCACGAGGGAAGTGTACCGCTCCTACCGCCAGCTGCGGACCCAGGGCTTTGG AGGGTCTGGGATCCCCAAGGCCTGGGCAGGCATAGACTTGAAGGTACAACCCCAGGAACC CCTGGTGCTGAAGGATGTGGAAAACACAGATTGGCGCCCTACTGCGGGGTGACACGGATGT CCTGTTCCAGCTGACAGTGACTAGCTCAGACCACCCAGAGGACACGGCCAACGTCACAGT CACTGTGCTGTCCACCAAGCAGACAGACAGACTACTGCCTCGCATCCAACAAGGTGGGTCG CTGCCGGGGCTCTTTCCCACGCTGGTACTATGACCCCACGGAGCAGATCTGCAAGAGTTT CGTTTATGGAGGCTGCTTGGGCAACAAGAACAACTACCTTCGGGAAGAAGAGTGCATTCT AGCCTGTCGGGGTGTGCAAGGTGGGCCTTTGAGAGGCAGCTCTGGGGCTCAGGCGACTTT CCCCCAGGGCCCCTCCATGGAAAGGCGCCATCCAGTGTGCTCTGGCACCTGTCAGCCCAC CCAGTTCCGCTGCAGCAATGGCTGCTGCATCGACAGTTTCCTGGAGTGTGACGACACCCC CAACTGCCCCGACGCCTCCGACGAGGCTGCCTGTGAAAAATACACGAGTGGCTTTGACGA GCTCCAGCGCATCCATTTCCCCAGTGACAAAGGGCACTGCGTGGACCTGCCAGACACAGG ACTCTGCAAGGAGAGCATCCCGCGCTGGTACTACAACCCCTTCAGCGAACACTGCGCCCG $\tt CTTTACCTATGGTGGTTGTTATGGCAACAAGAACAACTTTGAGGAAGAGCAGCAGTGCCT$ ${\tt CGAGTCTTGTCGCGGCATCTCCAAGAAGGATGTGTTTGGCCTGAGGCGGGAAATCCCCAT}$ ${\tt TCCCAGCACAGGCTCTGTGGAGATGGCTGTCACAGTGTTCCTGGTCATCTGCATTGTGGT}$ GGTGGTAGCCATCTTGGGTTACTGCTTCTTCAAGAACCAGAGAAAGGACTTCCACGGACA CCACCACCACCACCCACCCTGCCAGCTCCACTGTCTCCACTACCGAGGACACGGA $\tt CTGGCCCTGCTTCCTGCTTGCCAAGGCAGAGGCCTGGGCTGGGAAAAACTTTGGAACCAG$ ACTCTTGCCTGTTTCCCAGGCCCACTGTGCCTCAGAGACCAGGGCTCCAGCCCCTCTTGG AGAAGTCTCAGCTAAGCTCACGTCCTGAGAAAGCTCAAAGGTTTGGAAGGAGCAGAAAAC CCTTGGGCCAGAAGTACCAGACTAGATGGACCTGCCTGCATAGGAGTTTGGAGGAAGTTG GAGTTTTGTTTCCTCTGTTCAAAGCTGCCTGTCCCTACCCCATGGTGCTAGGAAGAGGAG ${\tt TGGGGTGGTGTCAGACCCTGGAGGCCCCAACCCTGTCCTCCCGAGCTCCTCTTCCATGCT}$ GTGCGCCCAGGGCTGGGAGGAAGGACTTCCCTGTGTAGTTTGTGCTGTAAAGAGTTGCTT TTTGTTTATTTAATGCTGTGGCATGGGTGAAGAGGGGGGGAAGAGGCCTGTTTGGCCTCT CTGTCCTCTTCCCCCAAGATTGAGCTCTCTGCCCTTGATCAGCCCCACCCTG GCCTAGACCAGCAGACCAGGAGAGGCTCAGCTGCATTCCGCAGCCCCACCCCCA AGGTTCTCCAACATCACAGCCCAGCCCACCCACTGGGTAATAAAAGTGGTTTGTGGAAAA ΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑ

FIGURE 42

MAPARTMARARLAPAGIPAVALWLLCTLGLQGTQAGPPPAPPGLPAGADCLNSFTAGVPG FVLDTNASVSNGATFLESPTVRRGWDCVRACCTTQNCNLALVELQPDRGEDAIAACFLIN CLYEQNFVCKFAPREGFINYLTREVYRSYRQLRTQGFGGSGIPKAWAGIDLKVQPQEPLV LKDVENTDWRLLRGDTDVRVERKDPNQVELWGLKEGTYLFQLTVTSSDHPEDTANVTVTV LSTKQTEDYCLASNKVGRCRGSFPRWYYDPTEQICKSFVYGGCLGNKNNYLREEECILAC RGVQGGPLRGSSGAQATFPQGPSMERRHPVCSGTCQPTQFRCSNGCCIDSFLECDDTPNC PDASDEAACEKYTSGFDELQRIHFPSDKGHCVDLPDTGLCKESIPRWYYNPFSEHCARFT YGGCYGNKNNFEEEQQCLESCRGISKKDVFGLRREIPIPSTGSVEMAVTVFLVICIVVVV AILGYCFFKNQRKDFHGHHHHPPPTPASSTVSTTEDTEHLVYNHTTRPL

```
signal sequence:
Amino acids 1-35
```

transmembrane domain:

Amino acids 466-483

N-glycosylation sites:

Amino acids 66-70;235-239;523-527

N-myristoylation sites:

A m i n o a c i d s 29-35;43-49;161-167;212-218;281-287;282-288;285-291; 310-316;313-319;422-428;423-429;426-432

Cell attachment sequence:

Amino acids 193-199

Pancreatic trypsin inhibitor (Kunitz) family signatures: Amino acids 278-298;419-438

44/392

FIGURE 43

CCCACGCGTCCGCACCTCGGCCCCGGGGCTCCGAAGCGGCTCGGGGGGCGCCCTTTCGGTCA ACATCGTAGTCCACCCCTCCCCATCCCCAGCCCCGGGGATTCAGGCTCGCCAGCGCCC ${\tt AGCCAGGGAGCCGGCAAGCGCGATGGGGGCCCCAGCCGCCTCGCTCCTGCT}$ TCCTGCTGTTCGCCTGCTGCGGCGCCCGGCGGGGCCAACCTCTCCCAGGACGACAGCC AGCCCTGGACATCTGATGAAACAGTGGTGGCTGGTGGCACCGTGGTGCTCAAGTGCCAAG TGAAAGATCACGAGGACTCATCCCTGCAATGGTCTAACCCTGCTCAGCAGACTCTCTACT TTGGGGAGAAGAGACCCTTCGAGATAATCGAATTCAGCTGGTTACCTCTACGCCCCACG AGCTCAGCATCAGCAATGTGGCCCTGGCAGACGAGGGCGAGTACACCTGCTCAA TCTTCACTATGCCTGTGCGAACTGCCAAGTCCCTCGTCACTGTGCTAGGAATTCCACAGA AGCCCATCATCACTGGTTATAAATCTTCATTACGGGAAAAAGACACAGCCACCCTAAACT GTCAGTCTTCTGGGAGCAAGCCTGCAGCCCGGCTCACCTGGAGAAAGGGTGACCAAGAAC TCCACGGAGAACCAACCCGCATACAGGAAGATCCCAATGGTAAAACCTTCACTGTCAGCA GCTCGGTGACATTCCAGGTTACCCGGGAGGATGATGGGGGCGAGCATCGTGTGTGA ACCATGAATCTCTAAAGGGAGCTGACAGATCCACCTCTCAACGCATTGAAGTTTTATACA CACCAACTGCGATGATTAGGCCAGACCCTCCCCATCCTCGTGAGGGCCAGAAGCTGTTGC TACACTGTGAGGGTCGCGGCAATCCAGTCCCCCAGCAGTACCTATGGGAGAAGGAGGGCA GTGTGCCACCCTGAAGATGACCCAGGAGAGTGCCCTGATCTTCCCTTTCCTCAACAAGA GTGACAGTGGCACCTACGGCTGCACAGCCACCAGCAACATGGGCAGCTACAAGGCCTACT ACACCCTCAATGTTAATGACCCCAGTCCGGTGCCCTCCTCCTCCAGCACCTACCACGCCA TCATCGGTGGGATCGTGGCTTTCATTGTCTTCCTGCTGCTCATCATGCTCATCTTCCTTG GCCACTACTTGATCCGGCACAAAGGAACCTACCTGACACATGAGGCAAAAGGCTCCGACG ATGCTCCAGACGCGGACACGGCCATCATCAATGCAGAAGGCGGGCAGTCAGGAGGGGACG ${ t ACAAGAAGGAATATTTCATC}$ GTGGGGACTGCTGGGGCCGTCACCAACCCGGACTTGTACAGAGCAACCGCAGGGCCGCCC CTCCCGCTTGCTCCCCAGCCCACCCACCCCCTGTACAGAATGTCTGCTTTGGGTGCGGT AAACA

FIGURE 44

MGAPAASLLLLLLLFACCWAPGGANLSQDDSQPWTSDETVVAGGTVVLKCQVKDHEDSSL QWSNPAQQTLYFGEKRALRDNRIQLVTSTPHELSISISNVALADEGEYTCSIFTMPVRTA KSLVTVLGIPQKPIITGYKSSLREKDTATLNCQSSGSKPAARLTWRKGDQELHGEPTRIQ EDPNGKTFTVSSSVTFQVTREDDGASIVCSVNHESLKGADRSTSQRIEVLYTPTAMIRPD PPHPREGQKLLLHCEGRGNPVPQQYLWEKEGSVPPLKMTQESALIFPFLNKSDSGTYGCT ATSNMGSYKAYYTLNVNDPSPVPSSSSTYHAIIGGIVAFIVFLLLIMLIFLGHYLIRHKG TYLTHEAKGSDDAPDADTAIINAEGGQSGGDDKKEYFI

Signal sequence: amino acids 1-20

Transmembrane domain: amino acids 331-352

N-glycosylation site: amino acids 25-29, 290-294

Casein kinase II phosphorylation site: amino acids 27-31, 35-39, 89-93, 141-145, 199-203, 388-392

N-myristoylation site: amino acids 2-8, 23-29, 156-162, 218-224, 295-301, 298-304, 306-310, 334-340, 360-364, 385-389, 386-390

Prokaryotic membrane lipoprotein lipid attachment site: amino acids 7-18

FIGURE 45

ACTTGCCATCACCTGTTGCCAGTGTGGAAAAATTCTCCCTGTTGAATTTTTTGCACATGG AGGACAGCAGAGAGGGCAACACAGGCTGATAAGACCAGAGACAGCAGGGAGATTATT TTACCATACGCCCTCAGGACGTTCCCTCTAGCTGGAGTTCTGGACTTCAACAGAACCCCA TATTTTATTTCCGTACTTCAGAA<u>ATG</u>GGCCTACAGACCACAAAGTGGCCCAGCCATGGGG CTTTTTTCCTGAAGTCTTGGCTTATCATTTCCCTGGGGCTCTACTCACAGGTGTCCAAAC TCCTGGCCTGCCCTAGTGTGTGCCGCTGCGACAGGAACTTTGTCTACTGTAATGAGCGAA GCTTGACCTCAGTGCCTCTTGGGATCCCGGAGGGCGTAACCGTACTCTACCTCCACAACA ACCAAATTAATAATGCTGGATTTCCTGCAGAACTGCACAATGTACAGTCGGTGCACACGG TCTACCTGTATGGCAACCAACTGGACGAATTCCCCATGAACCTTCCCAAGAATGTCAGAG TTCTCCATTTGCAGGAAAACAATATTCAGACCATTTCACGGGCTGCTCTTGCCCAGCTCT TGAAGCTTGAAGAGCTGCACCTGGATGACAACTCCATATCCACAGTGGGGGTGGAAGACG GGGCCTTCCGGGAGGCTATTAGCCTCAAATTGTTGTTTTTTGTCTAAGAATCACCTGAGCA GTGTGCCTGTTGGGCTTCCTGTGGACTTGCAAGAGCTGAGAGTGGATGAAAATCGAATTG CTGTCATATCCGACATGGCCTTCCAGAATCTCACGAGCTTGGAGCGTCTTATTGTGGACG GGAACCTCCTGACCAACAAGGGTATCGCCGAGGGCACCTTCAGCCATCTCACCAAGCTCA AGGAATTTTCAATTGTACGTAATTCGCTGTCCCACCCTCCTCCCGATCTCCCAGGTACGC ATCTGATCAGGCTCTATTTGCAGGACAACCAGATAAACCACATTCCTTTGACAGCCTTCT AAGGGGTTTTTGATAATCTCTCCAACCTGAAGCAGCTCACTGCTCGGAATAACCCTTGGT TTTGTGACTGCAGTATTAAATGGGTCACAGAATGGCTCAAATATATCCCCTTCATCTCTCA ACGTGCGGGGTTTCATGTGCCAAGGTCCTGAACAAGTCCGGGGGATGGCCGTCAGGGAAT CCCCAAGTACAGCTTCTCCGACCACTCAGCCTCCCACCCTCTCTATTCCAAACCCTAGCA GAAGCTACACGCCTCCAACTCCTACCACATCGAAACTTCCCACGATTCCTGACTGGGATG GCAGAGAAAGAGTGACCCCACCTATTTCTGAACGGATCCAGCTCTCTATCCATTTTGTGA ATGATACTTCCATTCAAGTCAGCTGGCTCTCTCTCTCTCACCGTGATGGCATACAAACTCA CATGGGTGAAAATGGGCCACAGTTTAGTAGGGGGCATCGTTCAGGAGCGCATAGTCAGCG GTGAGAAGCAACCTGAGCCTGGTTAACTTAGAGCCCCGATCCACCTATCGGATTTGTT TAGTGCCACTGGATGCTTTTAACTACCGCGCGGTAGAAGACACCATTTGTTCAGAGGCCA CCACCCATGCCTCCTATCTGAACAACGGCAGCAACACAGCGTCCAGCCATGAGCAGACGA CGTCCCACAGCATGGGCTCCCCCTTTCTGCTGGCGGGGCTTGATCGGGGGGCGCGGTGATAT TTGTGCTGGTGGTCTTGCTCAGCGTCTTTTGCTGGCATATGCACAAAAAGGGGCGCTACA CCAAGAAGGACAACTCCATCCTGGAGATGACAGAAACCAGTTTTCAGATCGTCTCCTTAA ATAACGATCAACTCCTTAAAGGAGATTTCAGACTGCAGCCCATTTACACCCCAAATGGGG GCATTAATTACACAGACTGCCATATCCCCAACAACATGCGATACTGCAACAGCAGCGTGC CAGACCTGGAGCACTGCCATACGTGACAGCCCAGAGGCCCAGCGTTATCAAGGCGGACAAT TAGACTCTTGAGAACACTCGTGTGTGCACATAAAGACACGCAGATTACATTTGATAAA TGTTACACAGATGCATTTGTGCATTTGAATACTCTGTAATTTATACGGTGTACTATATAA TGGGATTTAAAAAAAGTGCTATCTTTTCTATTTCAAGTTAATTACAAACAGTTTTGTAAC TCTTTGCTTTTTAAATCTT

47/392

FIGURE 46

MGLQTTKWPSHGAFFLKSWLIISLGLYSQVSKLLACPSVCRCDRNFVYCNERSLTSVPLG
IPEGVTVLYLHNNQINNAGFPAELHNVQSVHTVYLYGNQLDEFPMNLPKNVRVLHLQENN
IQTISRAALAQLLKLEELHLDDNSISTVGVEDGAFREAISLKLLFLSKNHLSSVPVGLPV
DLQELRVDENRIAVISDMAFQNLTSLERLIVDGNLLTNKGIAEGTFSHLTKLKEFSIVRN
SLSHPPPDLPGTHLIRLYLQDNQINHIPLTAFSNLRKLERLDISNNQLRMLTQGVFDNLS
NLKQLTARNNPWFCDCSIKWVTEWLKYIPSSLNVRGFMCQGPEQVRGMAVRELNMNLLSC
PTTTPGLPLFTPAPSTASPTTQPPTLSIPNPSRSYTPPTPTTSKLPTIPDWDGRERVTPP
ISERIQLSIHFVNDTSIQVSWLSLFTVMAYKLTWVKMGHSLVGGIVQERIVSGEKQHLSL
VNLEPRSTYRICLVPLDAFNYRAVEDTICSEATTHASYLNNGSNTASSHEQTTSHSMGSP
FLLAGLIGGAVIFVLVVLLSVFCWHMHKKGRYTSQKWKYNRGRRKDDYCEAGTKKDNSIL
EMTETSFQIVSLNNDQLLKGDFRLQPIYTPNGGINYTDCHIPNNMRYCNSSVPDLEHCHT

Signal peptide:

amino acids 1-42

Transmembrane domain:

amino acids 542-561

N-glycosylation site:

amino acids 202-206, 298-302, 433-437, 521-525, 635-639, 649-653

Casein kinase II phosphorylation site:

amino acids 204-208, 407-411, 527-531, 593-597, 598-602, 651-655

Tyrosine kinase phosphorylation site:

amino acids 319-328

N-myristoylation site:

amino acids 2-8, 60-66, 149-155, 213-219, 220-226, 294-300, 522-528, 545-551, 633-639

Amidation site:

amino acids 581-585

Leucine zipper pattern:

amino acids 164-186

Phospholipase A2 aspartic acid active site:

amino acids 39-50

FIGURE 47

GCAGCGAGCGCCGGGGCCCTGCCGCCGCAGGGATGTGACCTTCACCGTCGCTTAGC ${\tt CAGGATGACCGGAGCCCGTGTCTCGCGGGGTGCT}$ $\tt CTGACCGCACGCTCCCGGCTGCTAGGCTCCCCGGCACCGGCCTCGCC\underline{ATG}CCGCCACCGC$ CCGGGCCCGCCGCCCTGGGCACTGCGCTTCTGCTGCTCCTGCTGGCTTCCGAGTCTT GCGCCTACCAAGTCTTCGAGGAGGCCAAGCAGGGCCACCTGGAACGGGAGTGCGTGGAGG AGGTGTGCAGCAAAGAGGGGCCAGAGAGGGTGTTCGAGAACGACCCCGAGACGGAGTATT TCTATCCACGATATCAAGAGTGCATGAGAAAATATGGCAGGCCTGAAGAAAAAACCCAG ATTTCGCCAAATGTGTTCAGAACTTGCCTGACCAGTGCACCCCAAACCCTTGTGATAAGA AGGGTACTCATATCTGCCAAGACCTCATGGGCAACTTCTTCTGCGTGTGCACAGATGGCT GGGGAGGCCGGCTCTGTGACAAAGATGTCAATGAGTGTGTCCAGAAGAATGGGGGCTGCA TTGCATCAGACGGCCAGACCTGCCAAGATATCGATGAATGCACAGACTCAGACACCTGTG GGGACGCGCGATGCAAGAACTTGCCAGGCTCCTACTCTTGCCTCTGCGATGAGGGATATA CATACAGCTCCAAGGAGAAGACCTGCCAAGATGTGGACGAGTGCCAGCAGGATCGCTGTG AGCAGACCTGTGTCAACTCCCCAGGCAGCTATACCTGCCACTGTGATGGGCGAGGGGGCC TAAAACTATCCCCAGACATGGATACTTGTGAGGACATCTTACCATGTGTGCCCTTCAGCA TGGCCAAGAGCGTGAAGTCCTTGTACCTGGGCCGCATGTTCAGCGGGACCCCCGTGATTA TTGACCCTGAAGGAGTCCTCTTCTTCGCTGGAGGCCGTTCAGACAGCACCTGGATTGTCC TGGGCCTAAGAGCTGGGCGGCTTGAGCTGCAGCTTCGGTACAATGGCGTTGGGCGCATCA CCAGCAGCGGCCAACCATCAACCACGGCATGTGGCAAACTATCTCCGTGGAAGAGCTGG AACGTAACCTTGTCATCAAGGTCAACAAAGATGCTGTAATGAAGATCGCGGTAGCTGGGG AGCTGTTTCAGCTGGAGAGGGGCCTCTATCACCTGAATCTCACCGTGGGCGGCATTCCCT TCAAGGAGAGTGAGCTCGTCCAGCCGATTAACCCTCGCCTGGATGGGTGCATGAGGAGTT GGAACTGGCTGAACGGGGAAGACAGCGCCATCCAGGAGACAGTCAAGGCAAACACAAAAA ${\tt TGCAGTGCTTCTCTGTGACAGAAAGGGGCTCCTTCTTCCCGGGGAATGGATTTGCTACCT}$ ACAGGCTCAACTACACCCGAACATCGCTGGATGTCGGCACGGAAACCACCTGGGAAGTTA AAGTTGTGGCTCGGATCCGCCCTGCCACGGACACGGGGGTGCTGCTGGCGCTGGTGGGGG ACGACGATGTCGTCATCTCTGTGGCCCTAGTCGACTACCACTCTACAAAGAAGCTCAAGA AGCAGTTGGTGGTCCTGGCAGTTGAGGATGTTGCCCTGGCACTGATGGAAATCAAGGTGT GCGACAGCCAGGAACACACGGTCACTGTCTCCCTGCGGGAGGGTGAGGCCACCCTAGAAG TGGATGGCACAAAGGGCCAGAGTGAAGTGAGCACTGCCCAGCTGCAGGAGCGACTGGACA CACTTAAGACACATCTGCAAGGCTCTGTGCACACCTATGTTGGAGGCCTGCCAGAAGTAT CGGTGATTTCTGCACCCGTCACTGCGTTCTACCGCGGATGCATGACTCTGGAGGTAAACG GGAAAATCCTGGACCTGGATACGGCCTCGTACAAGCACAGTGACATCACCTCCCACTCCT ${ t GCCCGCCTGTGGAGCATGCCACCCCC} { t { t TAG}} { t ACCGAGCTGCAAGAGGGCTCCACACCTAAAG}$ ACAAAAATGAAGCAGGGTTTGGACACACAGCACTGGCTCCTCTCGCATGGTCCTGCAACA GACCTGGTGGGAGCTGGCTGGAAGGGGCTGGCTGGCAGTTTGCAGCAGAA

49/392

FIGURE 48

MPPPPGPAAALGTALLLLLASESSHTVLLRAREAAQFLRPRQRRAYQVFEEAKQGHLER ECVEEVCSKEEAREVFENDPETEYFYPRYQECMRKYGRPEEKNPDFAKCVQNLPDQCTPN PCDKKGTHICQDLMGNFFCVCTDGWGGRLCDKDVNECVQKNGGCSQVCHNKPGSFQCACH SGFSLASDGQTCQDIDECTDSDTCGDARCKNLPGSYSCLCDEGYTYSSKEKTCQDVDECQ QDRCEQTCVNSPGSYTCHCDGRGGLKLSPDMDTCEDILPCVPFSMAKSVKSLYLGRMFSG TPVIRLRFKRLQPTRLLAEFDFRTFDPEGVLFFAGGRSDSTWIVLGLRAGRLELQLRYNG VGRITSSGPTINHGMWQTISVEELERNLVIKVNKDAVMKIAVAGELFQLERGLYHLNLTV GGIPFKESELVQPINPRLDGCMRSWNWLNGEDSAIQETVKANTKMQCFSVTERGSFFPGN GFATYRLNYTRTSLDVGTETTWEVKVVARIRPATDTGVLLALVGDDDVVISVALVDYHST KKLKKQLVVLAVEDVALALMEIKVCDSQEHTVTVSLREGEATLEVDGTKGQSEVSTAQLQ ERLDTLKTHLQGSVHTYVGGLPEVSVISAPVTAFYRGCMTLEVNGKILDLDTASYKHSDITSHSCPPVEHATP

50/392

FIGURE 49

GTCGGGGCGGCTGCGGGCGCAGAGCGGAGATGCAGCGGCTTGGGGCCACCCTGCTGT GCCTGCTGCTGGCGGCGGCGGTCCCCACGGCCCCCGCGCCCGCTCCGACGGCGACCTCGG CTCCAGTCAAGCCCGGCCCGGCTCTCAGCTACCCGCAGGAGGAGGCCCACCCTCAATGAGA TGTTCCGCGAGGTTGAGGAACTGATGGAGGACACGCAGCACAAATTGCGCAGCGCGGTGG AAGAGATGGAGGCAGAAGAAGCTGCTGCTAAAGCATCATCAGAAGTGAACCTGGCAAACT TACCTCCCAGCTATCACAATGAGACCAACACAGACACGAAGGTTGGAAATAATACCATCC ATGTGCACCGAGAATTCACAAGATAACCAACAACCAGACTGGACAAATGGTCTTTTCAG AGACAGTTATCACATCTGTGGGAGACGAAGAAGGCAGAGGAGCCACGAGTGCATCATCG ACGAGGACTGTGGGCCCAGCATGTACTGCCAGTTTGCCAGCTTCCAGTACACCTGCCAGC GTGTCTGGGGTCACTGCACCAAAATGGCCACCAGGGGCAGCAATGGGACCATCTGTGACA ACCAGAGGGACTGCCAGCCGGGGCTGTGCTGTGCCTTCCAGAGAGGCCTGCTGTTCCCTG TGTGCACACCCCTGCCGTGGAGGGCGAGCTTTGCCATGACCCCGCCAGCCGGCTTCTGG ACCTCATCACCTGGGAGCTAGAGCCTGATGGAGCCTTGGACCGATGCCCTTGTGCCAGTG GCCTCCTCTGCCAGCCCACAGCCACAGCCTGGTGTATGTGTGCAAGCCGACCTTCGTGG GGAGCCGTGACCAAGATGGGGAGATCCTGCTGCCCAGAGAGGTCCCCGATGAGTATGAAG TTGGCAGCTTCATGGAGGAGGTGCGCCAGGAGCTGGAGGACCTGGAGAGGAGCCTGACTG AAGAGATGGCGCTGGGGGAGCCTGCGGCTGCCGCTGCACTGCTGGGAGGGGAAGAGA GGTGTGTGCTTTAGGCGTGGGCTGACCAGGCTTCTTCCTACATCTTCTTCCCAGTAAGTT TCCCCTCTGGCTTGACAGCATGAGGTGTTGTGCATTTGTTCAGCTCCCCCAGGCTGTTCT CCAGGCTTCACAGTCTGGTGCTTGGGAGAGTCAGGCAGGGTTAAACTGCAGGAGCAGTTT GCCACCCCTGTCCAGATTATTGGCTGCTTTGCCTCTACCAGTTGGCAGACAGCCGTTTGT TCTACATGGCTTTGATAATTGTTTGAGGGGAGGAGATGGAAACAATGTGGAGTCTCCCTC TGATTGGTTTTGGGGAAATGTGGAGAAGAGTGCCCTGCTTTGCAAACATCAACCTGGCAA AAATGCAACAAATGAATTTTCCACGCAGTTCTTTCCATGGGCATAGGTAAGCTGTGCCTT CAGCTGTTGCAGATGAAATGTTCTGTTCACCCTGCATTACATGTGTTTATTCATCCAGCA GTGTTGCTCAGCTCCTACCTCTGTGCCAGGGCAGCATTTTCATATCCAAGATCAATTCCC TCTCTCAGCACAGCCTGGGGAGGGGGTCATTGTTCTCCTCGTCCATCAGGGATCTCAGAG GCTCAGAGACTGCAAGCTGCCCAAGTCACACAGCTAGTGAAGACCAGAGCAGTTTC ATCTGGTTGTGACTCTAAGCTCAGTGCTCTCTCCACTACCCCACACCAGCCTTGGTGCCA ${\tt CCAAAAGTGCTCCCCAAAAGGAAGGAGAATGGGATTTTTCTTGAGGCATGCACATCTGGA}$ ATTAAGGTCAAACTAATTCTCACATCCCTCTAAAAGTAAACTACTGTTAGGAACAGCAGT ${\tt GTTCTCACAGTGTGGGGCAGCCGTCCTTCTAATGAAGACAATGATATTGACACTGTCCCT}$ CTTTGGCAGTTGCATTAGTAACTTTGAAAGGTATATGACTGAGCGTAGCATACAGGTTAA CCTGCAGAAACAGTACTTAGGTAATTGTAGGGCGAGGATTATAAATGAAATTTGCAAAAT CACTTAGCAGCAACTGAAGACAATTATCAACCACGTGGAGAAAATCAAACCGAGCAGGGC TGTGTGAAACATGGTTGTAATATGCGACTGCGAACACTGAACTCTACGCCACTCCACAAA TGATGTTTTCAGGTGTCATGGACTGTTGCCACCATGTATTCATCCAGAGTTCTTAAAGTT TAAAGTTGCACATGATTGTATAAGCATGCTTTCTTTGAGTTTTAAATTATGTATAAACAT AAAAA

FIGURE 50

MQRLGATLLCLLLAAAVPTAPAPAPTATSAPVKPGPALSYPQEEATLNEMFREVEELMED TQHKLRSAVEEMEAEEAAAKASSEVNLANLPPSYHNETNTDTKVGNNTIHVHREIHKITN NQTGQMVFSETVITSVGDEEGRRSHECIIDEDCGPSMYCQFASFQYTCQPCRGQRMLCTR DSECCGDQLCVWGHCTKMATRGSNGTICDNQRDCQPGLCCAFQRGLLFPVCTPLPVEGEL CHDPASRLLDLITWELEPDGALDRCPCASGLLCQPHSHSLVYVCKPTFVGSRDQDGEILL PREVPDEYEVGSFMEEVRQELEDLERSLTEEMALGEPAAAAAALLGGEEI

Signal sequence:

amino acids 1-19

N-glycosylation site:

amino acids 96-100, 106-110, 121-125, 204-208

Casein kinase II phosphorylation site:

amino acids 46-50, 67-71, 98-102, 135-139, 206-210, 312-316, 327-331

N-myristoylation site:

amino acids 202-208, 217-223

Amidation site:

amino acids 140-144

52/392

FIGURE 51

 $\tt GCCTGTTGCTGATGCTGCCGTGCGGTACTTGTC{\color{red} ATG}GAGCTGGCACTGCGGCGCTCTCCC{\color{red} CCCC} \\$ GTCCCGCGGTGGTTGCTGCTGCCGCTGCTGCTGGGCCTGAACGCAGGAGCTGTCATT GACTGGCCCACAGAGGAGGCAAGGAAGTATGGGATTATGTGACGGTCCGCAAGGATGCC TACATGTTCTGGTGGCTCTATTATGCCACCAACTCCTGCAAGAACTTCTCAGAACTGCCC GAAATTGGGCCCCTTGACAGTGATCTCAAACCACGGAAAACCACCTGGCTCCAGGCTGCC AGTCTCCTATTTGTGGATAATCCCGTGGGCACTGGGTTCAGTTATGTGAATGGTAGTGGT GCCTATGCCAAGGACCTGGCTATGGTGGCTTCAGACATGATGGTTCTCCTGAAGACCTTC TTCAGTTGCCACAAGAATTCCAGACAGTTCCATTCTACATTTTCTCAGAGTCCTATGGA GGAAAAATGGCAGCTGGCATTGGTCTAGAGCTTTATAAGGCCATTCAGCGAGGGACCATC AAGTGCAACTTTGCGGGGGTTGCCTTGGGTGATTCCTGGATCTCCCCTGTTGATTCGGTG GTGTCTAAGGTTGCAGAGCAAGTACTGAATGCCGTAAATAAGGGGCCTCTACAGAGAGGCC ACAGAGCTGTGGGGGAAAGCAGAATGATCATTGAACAGAACACAGATGGGGTGAACTTC TATAACATCTTAACTAAAAGCACTCCCACGTCTACAATGGAGTCGAGTCTAGAATTCACA CAGAGCCACCTAGTTTGTCTTTGTCAGCGCCACGTGAGACACCTACAACGAGATGCCTTA AGCCAGCTCATGAATGGCCCCATCAGAAAGAAGCTCAAAATTATTCCTGAGGATCAATCC TGGGGAGGCCAGGCTACCAACGTCTTTGTGAACATGGAGGAGGACTTCATGAAGCCAGTC ATTAGCATTGTGGACGAGTTGCTGGAGGCAGGGATCAACGTGACGGTGTATAATGGACAG $\tt CTGGATCTCATCGTAGATACCATGGGTCAGGAGGCCTGGGTGCGGAAACTGAAGTGGCCA$ GAACTGCCTAAATTCAGTCAGCTGAAGTGGAAGGCCCTGTACAGTGACCCTAAATCTTTG GAAACATCTGCTTTTGTCAAGTCCTACAAGAACCTTGCTTTCTACTGGATTCTGAAAGCT GGTCATATGGTTCCTTCTGACCAAGGGGACATGGCTCTGAAGATGATGAGACTGGTGACT ${\tt CAGCAAGAA} \underline{{\tt TAG}} {\tt GATGGATGGGGCTGGAGATGAGCTGGTTTGGCGCTTGGGGCACAGAGCT}$ GAGCTGAGGCCGCTGAAGCTGTAGGAAGCGCCATTCTTCCCTGTATCTAACTGGGGCTGT ${\tt GATCAAGAAGGTTCTGACCAGCTTCTGCAGAGGATAAAATCATTGTCTCTGGAGGCAATT}$ TGGAAATTATTTCTGCTTCTTAAAAAAACCTAAGATTTTTTAAAAAATTGATTTGTTTTG ATCAAAATAAAGGATGATAATAGATATTAA

53/392

FIGURE 52

MELALRRSPVPRWLLLLPLLIGLNAGAVIDWPTEEGKEVWDYVTVRKDAYMFWWLYYATN SCKNFSELPLVMWLQGGPGGSSTGFGNFEEIGPLDSDLKPRKTTWLQAASLLFVDNPVGT GFSYVNGSGAYAKDLAMVASDMMVLLKTFFSCHKEFQTVPFYIFSESYGGKMAAGIGLEL YKAIQRGTIKCNFAGVALGDSWISPVDSVLSWGPYLYSMSLLEDKGLAEVSKVAEQVLNA VNKGLYREATELWGKAEMIIEQNTDGVNFYNILTKSTPTSTMESSLEFTQSHLVCLCQRH VRHLQRDALSQLMNGPIRKKLKIIPEDQSWGGQATNVFVNMEEDFMKPVISIVDELLEAG INVTVYNGQLDLIVDTMGQEAWVRKLKWPELPKFSQLKWKALYSDPKSLETSAFVKSYKN LAFYWILKAGHMVPSDQGDMALKMMRLVTQQE

Signal sequence: amino acids 1-25

N-glycosylation site: amino acids 64-68, 126-130, 362-366

cAMP- and cGMP-dependent protein kinase phosphorylation site:

amino acids 101-105

Casein kinase II phosphorylation site: amino acids 204-208, 220-224, 280-284, 284-288, 351-355, 449-453

N-myristoylation site: amino acids 22-28, 76-82, 79-85, 80-86, 119-125, 169-175,

amino acids 22-28, 76-82, 79-85, 80-86, 119-125, 169-1 187-193, 195-201, 331-337, 332-338, 360-366

FIGURE 53

GTCTGTTCCCAGGAGTCCTTCGGCGGCTGTTGTGTCAGTGGCCTGATCGCGATGGGGACA AAGGCGCAAGTCGAGAGGAAACTGTTGTGCCTCTTCATATTGGCGATCCTGTTGTGCTCC CTGGCATTGGGCAGTGTTACAGTGCACTCTTCTGAACCTGAAGTCAGAATTCCTGAGAAT AATCCTGTGAAGTTGTCCTGTGCCTACTCGGGCTTTTCTTCTCCCCCGTGTGGAGTGGAAG TTTGACCAAGGAGACACCACCAGACTCGTTTGCTATAATAACAAGATCACAGCTTCCTAT GAGGACCGGGTGACCTTCTTGCCAACTGGTATCACCTTCAAGTCCGTGACACGGGAAGAC ACTGGGACATACACTTGTATGGTCTCTGAGGAAGGCGGCAACAGCTATGGGGAGGTCAAG GTCAAGCTCATCGTGCTTGTGCCTCCATCCAAGCCTACAGTTAACATCCCCTCCTCTGCC ACCATTGGGAACCGGGCAGTGCTGACATGCTCAGAACAAGATGGTTCCCCACCTTCTGAA TACACCTGGTTCAAAGATGGGATAGTGATGCCTACGAATCCCAAAAGCACCCGTGCCTTC AGCAACTCTTCCTATGTCCTGAATCCCACAACAGGAGAGCTGGTCTTTGATCCCCTGTCA GCCTCTGATACTGGAGAATACAGCTGTGAGGCACGGAATGGGTATGGGACACCCATGACT TCAAATGCTGTGCGCATGGAAGCTGTGGAGCGGAATGTGGGGGGTCATCGTGGCAGCCGTC ${ t CTTGTAACCCTGATTCTCCTGGGAATCTTGGTTTTTGGCATCTGGTTTGCCTATAGCCGA}$ ${\tt AGTGCCCGAAGTGAAGGAGAATTCAAACAGACCTCGTCATTCCTGGTG\underline{TGA}{\tt GCCTGGTCG}$ GCTCACCGCCTATCATCTGCATTTGCCTTACTCAGGTGCTACCGGACTCTGGCCCCTGAT GTCTGTAGTTTCACAGGATGCCTTATTTGTCTTCTACACCCCACAGGGCCCCCTACTTCT TTTCCTACCACTGCTGAGTGGCCTGGAACTTGTTTAAAGTGTTTATTCCCCATTTCTTTG AGGGATCAGGAAGGAATCCTGGGTATGCCATTGACTTCCCTTCTAAGTAGACAGCAAAAA ${\tt AGGTATCTTGAGCTTGGTTCTGGGCTCTTTCCTTGTGTACTGACGACCAGGGCCAGCTGT}$ TCTAGAGCGGGAATTAGAGGCTAGAGCGGCTGAAATGGTTGTTTGGTGATGACACTGGGG TCCTTCCATCTCTGGGGCCCACTCTCTTCTGTCTTCCCATGGGAAGTGCCACTGGGATCC CTCTGCCCTGTCCTGAATACAAGCTGACTGACATTGACTGTGTCTGTGGAAAATGGG AGCTCTTGTTGTGGAGAGCATAGTAAATTTTCAGAGAACTTGAAGCCAAAAGGATTTAAA ACCGCTGCTCTAAAGAAAAGAAAACTGGAGGCTGGGCGCAGTGGCTCACGCCTGTAATCC CAGAGGCTGAGGCAGGCGGATCACCTGAGGTCGGGAGTTCGGGATCAGCCTGACCAACAT GGAGAAACCCTACTGGAAATACAAAGTTAGCCAGGCATGGTGGTGCATGCCTGTAGTCCC

55/392

FIGURE 54

MGTKAQVERKLLCLFILAILLCSLALGSVTVHSSEPEVRIPENNPVKLSCAYSGFSSPRV EWKFDQGDTTRLVCYNNKITASYEDRVTFLPTGITFKSVTREDTGTYTCMVSEEGGNSYG EVKVKLIVLVPPSKPTVNIPSSATIGNRAVLTCSEQDGSPPSEYTWFKDGIVMPTNPKST RAFSNSSYVLNPTTGELVFDPLSASDTGEYSCEARNGYGTPMTSNAVRMEAVERNVGVIV AAVLVTLILLGILVFGIWFAYSRGHFDRTKKGTSSKKVIYSQPSARSEGEFKQTSSFLV

Signal sequence:

amino acids 1-27

Transmembrane domain: amino acids 238-255

N-glycosylation site: amino acids 185-189

cAMP- and cGMP-dependent protein kinase phosphorylation site:

amino acids 270-274

Casein kinase II phosphorylation site: amino acids 34-38, 82-86, 100-104, 118-122, 152-156, 154-158, 193-197, 203-207, 287-291

N-myristoylation site:

amino acids 105-111, 116-122, 158-164, 219-225, 237-243, 256-262

56/392

FIGURE 55

GTTGTGTCCTTCAGCAAAACAGTGGATTTAAATCTCCTTGCACAAGCTTGAGAGCAACAC AATCTATCAGGAAAGAAAGAAAGAAAAAACCGAACCTGACAAAAAAGAAGAAAAAAGAAG AAGAAAAAAATC<u>ATG</u>AAAACCATCCAGCCAAAAATGCACAATTCTATCTCTTGGGCAAT CTTCACGGGGCTGCTCTGTGTCTCTTCCAAGGAGTGCCCGTGCGCAGCGGAGATGC CACCTTCCCCAAAGCTATGGACAACGTGACGGTCCGGCAGGGGGGGAGAGCGCCACCCTCAG GTGCACTATTGACAACCGGGTCACCCGGGTGGCCTGGCTAAACCGCAGCACCATCCTCTA TGCTGGGAATGACAAGTGGTGCCTGGATCCTCGCGTGGTCCTTCTGAGCAACACCCAAAC GCAGTACAGCATCGAGATCCAGAACGTGGATGTGTATGACGAGGGCCCTTACACCTGCTC GGTGCAGACAGCCACCCAAAGACCTCTAGGGTCCACCTCATTGTGCAAGTATCTCC CAAAATTGTAGAGATTTCTTCAGATATCTCCATTAATGAAGGGAACAATATTAGCCTCAC CTGCATAGCAACTGGTAGACCAGAGCCTACGGTTACTTGGAGACACATCTCTCCCAAAGC GGTTGGCTTTGTGAGTGAAGACGAATACTTGGAAATTCAGGGCATCACCCGGGAGCAGTC AGGGGACTACGAGTGCAGTGCCTCCAATGACGTGGCCGCGCCCCGTGGTACGGAGAGTAAA GGTCACCGTGAACTATCCACCATACATTTCAGAAGCCAAGGGTACAGGTGTCCCCGTGGG ACAAAAGGGGACACTGCAGTGTGAAGCCTCAGCAGTCCCCTCAGCAGAATTCCAGTGGTA CAAGGATGACAAAAGACTGATTGAAGGAAAGAAAGGGGTGAAAGTGGAAAACAGACCTTT CCTCTCAAAACTCATCTTCTTCAATGTCTCTGAACATGACTATGGGAACTACACTTGCGT ${\tt GGCCTCCAACAAGCTGGGCCACACCAATGCCAGCATCATGCTATTTGGTCCAGGCGCCGT}$ ${\tt CAGCGAGGTGAGCAACGGCACGTCGAGGAGGGCAGGCTGCGTCTGCCTCTTCT}$ GGTCTTGCACCTGCTTCTCAAATTT<u>TGA</u>TGTGAGTGCCACTTCCCCACCCGGGAAAGGCT GCCGCCACCACCACCACACACACAGCAATGGCAACACCGACAGCAACCAATCAGATA AAAGAATACTTTGGGGGGAAAAGAGTTTTAAAAAAGAAATTGAAAATTGCCTTGCAGATA TTTAGGTACAATGGAGTTTTCTTTTCCCAAACGGGAAGAACACAGCACACCCGGCTTGGA ${\tt CCCACTGCAAGCTGCATCGTGCAACCTCTTTGGTGCCAGTGTGGGCCAAGGGCTCAGCCTC}$ TCTGCCCACAGAGTGCCCCCACGTGGAACATTCTGGAGCTGGCCATCCCAAATTCAATCA GTCCATAGAGACGAACAGAATGAGACCTTCCGGCCCAAGCGTGGCGCTGCGGGCACTTTG

57/392

FIGURE 56

MKTIQPKMHNSISWAIFTGLAALCLFQGVPVRSGDATFPKAMDNVTVRQGESATLRCTID NRVTRVAWLNRSTILYAGNDKWCLDPRVVLLSNTQTQYSIEIQNVDVYDEGPYTCSVQTD NHPKTSRVHLIVQVSPKIVEISSDISINEGNNISLTCIATGRPEPTVTWRHISPKAVGFV SEDEYLEIQGITREQSGDYECSASNDVAAPVVRRVKVTVNYPPYISEAKGTGVPVGQKGT LQCEASAVPSAEFQWYKDDKRLIEGKKGVKVENRPFLSKLIFFNVSEHDYGNYTCVASNK LGHTNASIMLFGPGAVSEVSNGTSRRAGCVWLLPLLVLHLLLKF

FIGURE 57

<u>GCT</u>GCGCCGGCTGCGGCTGCAGGGGAATCCGCTGTGGTGCGGCTGCCAGGCGCGCCCCT GGCGCAGGAAGAGGAAGAGCTGGAAGAGCGGGCTGTGGCCGGGCCCCGCGCCCCTCCGCG GTGCGTCCCGAGTCCCGGCACAGCAGCTGCGAGGGCTGCGGCCTGCAGGCGGTGCCCCG CGGCTTCCCCAGCGACACCCCAGCTCCTGGACCTGAGGCGGAACCACTTCCCCTCGGTGCC CCGAGCGGCCTTCCCCGGNCTGGGCCACCTGGTGTCGCTGCACCTGCAGCACTGCGGCAT CGCGGAGCTGGAAGCGGCCCCTGGCCGGGCTGGGCCGCCTGATCTACCTGTACCTCTC CGACAACCAGCTCGCAGGCCTCAGCGCTGCCCTTGAAGGGGCTCCCCGCCTCGGCTA CCTGTACCTAGAACGCAACCGTTTCCTGCAGGTGCCAGGGGCTGCCNTGCGCGCCCTGCC CAGCCTCTTCTCCCTGCACCTGCAGGACAACGCTGTGGACCGCCTGGCACCTGGGGACCT GGGGAGAACACGGGCCTTGCGCTGGGTCTACCTGAGTGGAAACCGCATCACCGAAGTGTC CCTTGGGGCGCTGGGCCCAGCTCGGGAGCTGGAGAAGCTGCACCTGGACAGGAATCAGCT GCGAGAGGTGCCCACTGGGGCCTTGGAGGGGCTCCCTCCTGGAGCTGCAGCTCTC GGGCAACCCACTCAGGGCCTTGCGTGACGGAGCCTTCCAGCCTGTGGGCAGGTCGCTGCA GCACCTCTTCCTGAACAGCAGTGGCCTGGAGCAGATTTGTCCTGGGGCCTTTTCAGGCCT GCCCAGTCTCAGCCAGCTGGAGCTCATCGACCTCAGCAGCAATCCCTTCCCCTGTGACTG $\tt CGCCACCCCTCCCAATGCCCGTGGCCAGAGGGTGAAGGCTGCAGCTGCTGTTTTGAAGA$ GAGAACCCCCATCAAAGGAAGACAGTGTGGAGCAGATAAGAACATCCTCTTCCCCACATG $\tt GTACCACACTGTGGAGCCCACCTCGCTGTCA\underline{TAG}GCCTGCGGCTCTGAAGGATGGCTTTG$ CCCGCTCCCGCTCTGAGTGGAACCCAAGCTGGGCTCAGAATCTGTAGAGTGAG GCCCCACCAAGGGAAACGACACCCACGGCCTGAGAGCCAGGTGGAGTCCTGCCACTCAGC TGCCTGCCTTTGCTCCCACCCTCTCAAAGAGGTCTCGAGGGGACACTCTGAA GGCACCTGGCTCAGAACCACTGCCATCCAAGGAGCGAGGAGTCCCAGGGCTGAGCAAATG ${\tt CAGCGGGGAGGTCGGCAGTTCCCCTGCTTCCCGATCCTCATTTTCTGCTTCACTTGACTC}$ CTCCAGATAGGAGCTGCTCTCACTGCCCACACTGCTG

59/392

FIGURE 58

LRRLRLQGNPLWCGCQARPLLEWLARARVRSDGACQGPRRLRGEALDALRPWDLRCPGDA AQEEEELEERAVAGPRAPPRGPPRGPGEERAVAPCPRACVCVPESRHSSCEGCGLQAVPR GFPSDTQLLDLRRNHFPSVPRAAFPGLGHLVSLHLQHCGIAELEAGALAGLGRLIYLYLS DNQLAGLSAAALEGAPRLGYLYLERNRFLQVPGAAXRALPSLFSLHLQDNAVDRLAPGDL GRTRALRWVYLSGNRITEVSLGALGPARELEKLHLDRNQLREVPTGALEGLPALLELQLS GNPLRALRDGAFQPVGRSLQHLFLNSSGLEQICPGAFSGLGPGLQSLHLQKNQLRALPAL PSLSQLELIDLSSNPFPCDCQLLPLHRWLTGLNLRVGATCATPPNARGQRVKAAAAVFED CPGWAARKAKRTPASRPSARRTPIKGRQCGADKNILFPTWYHTVEPTSLS

Signal sequence:

None

Transmembrane domain:

None

N-glycosylation site:

325-328

Glycosaminoglycan attachment site:

338-341

Protein kinase C phosphorylation site:

438-440

N-myristoylation site:

166-171, 186-191, 253-258, 286-291, 335-340, 339-344, 450-455

Leucine rich repeat N-terminal domain:

94-123

Leucine Rich Repeat:

125-148, 149-172, 173-196, 197-220, 221-244, 245-268, 269-292, 293-316, 318-341, 343-364, 365-386

Leucine rich repeat C-terminal domain:

374-422

60/392

FIGURE 59

 $\mathtt{CTCCCACGGTGTCCAGCGCCCAGA}$ \mathtt{ATG} $\mathtt{CGGCTTCTGGTCCTGCTATGGGGTTGCCTGCTG}$ CTCCCAGGTTATGAAGCCCTGGAGGGCCCCAGAGGAAATCAGCGGGTTCGAAGGGGACACT GTGTCCCTGCAGTGCACCTACAGGGAAGAGCTGAGGGACCACCGGAAGTACTGGTGCAGG AAGGGTGGGATCCTCTCTCTCTCGCTGCTCTGGCACCATCTATGCAGAAGAAGAAGGCCAG GAGACAATGAAGGGCAGGGTGTCCATCCGTGACAGCCGCCAGGAGCTCTCGCTCATTGTG ACCCTGTGGAACCTCACCCTGCAAGACGCTGGGGAGTACTGGTGTGGGGTCGAAAAACGG GGCCCCGATGAGTCTTTACTGATCTCTCTGTTCGTCTTTCCAGGACCCTGCTGTCCTCCC TCCCCTTCTCCACCTTCCAGCCTCTGGCTACAACACGCCTGCAGCCCAAGGCAAAAGCT CAGCAAACCCAGCCCCCAGGATTGACTTCTCCTGGGCTCTACCCGGCAGCCACCACAGCC AAGCAGGGGAAGACAGGGGCTGAGGCCCCTCCATTGCCAGGGACTTCCCAGTACGGGCAC GAAAGGACTTCTCAGTACACAGGAACCTCTCCTCACCCAGCGACCTCTCCTCCTGCAGGG AGCTCCCGCCCCCATGCAGCTGGACTCCACCTCAGCAGAGGACACCAGTCCAGCTCTC AGCAGTGGCAGCTCTAAGCCCAGGGTGTCCATCCCGATGGTCCGCATACTGGCCCCAGTC CTGGTGCTGAGCCTTCTGTCAGCCGCAGGCCTGATCGCCTTCTGCAGCCACCTGCTC CTGTGGAGAAAGGAAGCTCAACAGGCCACGGAGACACAGAGGAACGAGAAGTTCTGGCTC TCACGCTTGACTGCGGAGGAAAAGGAAGCCCCTTCCCAGGCCCCTGAGGGGGACGTGATC TCGATGCCTCCCCCCACACATCTGAGGAGGAGCTGGGCTTCTCGAAGTTTGTCTCAGCG ACCGATTCCCGAAAGCTTTCCACCTCAGCCTCAGAGTCCAGCTGCCCGGACTCCAGGGCT AGCCCTGGAGCCCAGAGCGGTGGCCTTGCTCTTCCGGCTGGAGACTGGGACATCCCTGAT AGGTTCACATCCCTGGGCAGAGTACCAGGCTGCTGACCCTCAGCAGGGCCAGACAAGGCT CAGTGGATCTGGTCTGAGTTTCAATCTGCCAGGAACTCCTGGGCCTCATGCCCAGTGTCG TTAGTCCCACGGTCTCCTGCATCAGCTGGTGATGAAGAGGAGCATGCTGGGGTGAGACTG GGATTCTGGCTTCTCTTTGAACCACCTGCATCCAGCCCTTCAGGAAGCCTGTGAAAAACG TGATTCCTGGCCCCACCAAGACCCACCAAAACCATCTCTGGGCTTGGTGCAGGACTCTGA ATTCTAACAATGCCCAGTGACTGTCGCACTTGAGTTTGAGGGCCCAGTGGGCCTGATGAAC GCTCACACCCCTTCAGCTTAGAGTCTGCATTTGGGCTGTGACGTCTCCACCTGCCCCAAT AGATCTGCTCTGTCTGCGACACCAGATCCACGTGGGGACTCCCCTGAGGCCTGCTAAGTC CAGGCCTTGGTCAGGTCAGGTGCACATTGCAGGATAAGCCCAGGACCGGCACAGAAGTGG TTGCCTTTNCCATTTGCCCTCCCTGGNCCATGCCTTCTTGCCTTTGGAAAAAATGATGAA GAAAACCTTGGCTCCTTGTCTGGAAAGGGTTACTTGCCTATGGGTTCTGGTGGCTA GAGAGAAAAGTAGAAAACCAGAGTGCACGTAGGTGTCTAACACAGAGGAGAGTAGGAACA GGGCGGATACCTGAAGGTGACTCCGAGTCCAGCCCCCTGGAGAAGGGGTCGGGGGTGGTG GTAAAGTAGCACAACTACTATTTTTTTTTTTTTCCATTATTATTGTTTTTTAAGACAGA ATCTCGTGCTGCCCCAGGCTGGAGTGCAGTGGCACGATCTGCAAACTCCGCCTCCTGG ACACCTGGCTAATTTTTGTACTTTTAGTAGAGATGGGGTTTCACCATGTTGGCCAGGCTG GTCTTGAACTCCTGACCTCAAATGAGCCTCCTGCTTCAGTCTCCCAAATTGCCGGGATTA ${\tt CAGGCATGAGCCACTGTGTCTGGCCCTATTTCCTTTAAAAAGTGAAATTAAGAGTTGTTC}$ TTCACATAATTTGCCGGTGTTCTTTTTACAGAGCAATTATCTTGTATATACAACTTTGTA TCCTGCCTTTTCCACCTTATCGTTCCATCACTTTATTCCAGCACTTCTCTGTGTTTTACA

61/392

FIGURE 60

MRLLVLLWGCLLLPGYEALEGPEEISGFEGDTVSLQCTYREELRDHRKYWCRKGGILFSR CSGTIYAEEEGQETMKGRVSIRDSRQELSLIVTLWNLTLQDAGEYWCGVEKRGPDESLLI SLFVFPGPCCPPSPSPTFQPLATTRLQPKAKAQQTQPPGLTSPGLYPAATTAKQGKTGAE APPLPGTSQYGHERTSQYTGTSPHPATSPPAGSSRPPMQLDSTSAEDTSPALSSGSSKPR VSIPMVRILAPVLVLLSLLSAAGLIAFCSHLLLWRKEAQQATETQRNEKFWLSRLTAEEK EAPSQAPEGDVISMPPLHTSEEELGFSKFVSA

Important features: Signal peptide: amino acids 1-17

Transmembrane domain: amino acids 248-269

N-glycosylation site: amino acids 96-99

Fibrinogen beta and gamma chains C-terminal domain: amino acids 104-113

Ig like V-type domain: amino acids 13-128

62/392

FIGURE 61

 $\tt CGGGCCAGCCTGGGGCCGGCCAGGAACCACCCGTTAAGGTGTCTTCTCTTTAGGGAT$ GGTGAGGTTGGAAAAAGACTCCTGTAACCCTCCTCCAGG<u>ATG</u>AACCACCTGCCAGAAGAC ATGGAGAACGCTCTCACCGGGAGCCAGAGCTCCCATGCTTCTCTGCGCAATATCCATTCC ATATCTGATGTCAGGAGGACTTTCTGTTTGTTTGTCACCTTTTGACCTCTTATTCGTAACA TTACTGTGGATAATAGAGTTAAATGTGAATGGAGGCATTGAGAACACATTAGAGAAGGAG ${ t GTGATGCAGTATGACTATTCTTCATATTTTGATATATTTCTTCTGGCAGTTTTTCGA$ TTTAAAGTGTTAATACTTGCATATGCTGTGTGCAGACTGCGCCATTGGTGGGCAATAGCG TTGACAACGGCAGTGACCAGTGCCTTTTTACTAGCAAAAGTGATCCTTTCGAAGCTTTTC ACGTGGTTCCTGGATTTCAAAGTGTTACCTCAAGAAGCAGAAGAAGAAAACAGACTCCTG ATAGTTCAGGATGCTTCAGAGAGGGCAGCACTTATACCTGGTGGTCTTTCTGATGGTCAG TTTTATTCCCCTCCTGAATCCGAAGCAGGATCTGAAGAAGCTGAAGAAAAACAGGACAGT ${\tt GAGAAACCACTTTTAGAACTA} \underline{{\tt TGA}} {\tt GTACTACTTTTGTTAAATGTGAAAAACCCTCACAGA}$ AAGTCATCGAGGCAAAAAGGGCAGGCAGTGGAGTCTCCCTGTCGACAGTAAAGTTGAAA TGTCATGATTCATCCTCTTCAGTGAGACTGAGCCTGATGTGTTAACAAATAGGTGAAG AAAGTCTTGTGCTGTATTCCTAATCAAAAGACTTAATATTTGAAGTAACACTTTTTTAG ATTTATTTTGTATTTCTTTTTTAACACTCTACATTTCCCTTGTTTTTTAACTCATGCACA TGTGCTCTTTGTACAGTTTTAAAAAGTGTAATAAAATCTGACATGTCAATGTGGCTAGTT TTATTTTTCTTGTTTTGCATTATGTGTATGGCCTGAAGTGTTGGACTTGCAAAAGGGGAA GAAAGGAATTGCGAATACATGTAAAATGTCACCAGACATTTGTATTATTTTTATCATGAA ATCATGTTTTTCTCTGATTGTTCTGAAATGTTCTAAATACTCTTATTTTGAATGCACAAA ATGACTTAAACCATTCATATCATGTTTCCTTTGCGTTCAGCCAATTTCAATTAAAATGAA CTAAATTAAAAA

FIGURE 62

MNHLPEDMENALTGSQSSHASLRNIHSINPTQLMARIESYEGREKKGISDVRRTFCLFVT FDLLFVTLLWIIELNVNGGIENTLEKEVMQYDYYSSYFDIFLLAVFRFKVLILAYAVCRL RHWWAIALTTAVTSAFLLAKVILSKLFSQGAFGYVLPIISFILAWIETWFLDFKVLPQEA EEENRLLIVQDASERAALIPGGLSDGQFYSPPESEAGSEEAEEKQDSEKPLLEL

Important features of the protein: Signal peptide: amino acids 1-20

Transmembrane domains: amino acids 54-72, 100-118, 130-144, 146-166

N-myristoylation sites: amino acids 14-20, 78-84, 79-85, 202-208, 217-223

64/392

FIGURE 63

GCGCCGGGAGCCCATCTGCCCCCAGGGGCACGGGGCGCGGGGGCCCGGCCCCGGCAC ATGGCTGCAGCCACCTCGCGCGCACCCCGAGGCGCCCCAGCTCGCCCGAGGTCCGT CGGAGGCGCCCGGCCCCGGAGCCAAGCAGCAACTGAGCGGGGAAGCGCCCGCGTCCG GGGATCGGG<u>ATG</u>TCCCTCCTCCTCCTCTTGCTAGTTTCCTACTATGTTGGAACCTTG GGGACTCACACTGAGATCAAGAGAGTGGCAGAGGAAAAGGTCACTTTGCCCTGCCACCAT CAACTGGGGCTTCCAGAAAAAGACACTCTGGATATTGAATGGCTGCTCACCGATAATGAA GGGAACCAAAAAGTGGTGATCACTTACTCCAGTCGTCATGTCTACAATAACTTGACTGAG GAACAGAAGGCCCGAGTGGCCTTTGCTTCCAATTTCCTGGCAGGAGATGCCTCCTTGCAG ATTGAACCTCTGAAGCCCAGTGATGAGGGCCGGTACACCTGTAAGGTTAAGAATTCAGGG CGCTACGTGTGGAGCCATGTCATCTTAAAAGTCTTAGTGAGACCATCCAAGCCCAAGTGT GAGTTGGAAGGAGCTGACAGAAGGAAGTGACCTGACTTTGCAGTGTGAGTCATCCTCT GGCACAGAGCCCATTGTGTATTACTGGCAGCGAATCCGAGAGAAAGAGGGAGAGGATGAA CGTCTGCCTCCCAAATCTAGGATTGACTACAACCACCCTGGACGAGTTCTGCTGCAGAAT AGCTGTGTGGTGCGAGTAACTGTACAGTATGTACAAAGCATCGGCATGGTTGCAGGAGCA GTGACAGGCATAGTGGCTGGAGCCCTGCTGATTTTCCTCTTGGTGTGGCTGCTAATCCGA AGGAAAGACAAAGAAAGATATGAGGAAGAAGAGAGACCTAATGAAATTCGAGAAGATGCT GAAGCTCCAAAAGCCCGTCTTGTGAAACCCAGCTCCTCTTCCTCAGGCTCTCGGAGCTCA CTGTCAACTGACGCAGCCCCAGCCAGGGCTGGCCACCCAGGCATACAGCCTAGTGGGG CCAGAGGTGAGAGGTTCTGAACCAAAGAAAGTCCACCATGCTAATCTGACCAAAGCAGAA ${\tt ACCACACCCAGCAGCCAGCCAGAGCAGAGCCTTCCAAACGGTC}{{\tt TGA}}{\tt ATTACAATG}$ GACTTGACTCCCACGCTTTCCTAGGAGTCAGGGTCTTTGGACTCTTCTCGTCATTGGAGC TCAAGTCACCAGCCACACCAGATGAGAGGTCATCTAAGTAGCAGTGAGCATTGCACG GAACAGATTCAGATGAGCATTTTCCTTATACAATACCAAACAAGCAAAAGGATGTAAGCT GATTCATCTGTAAAAAGGCATCTTATTGTGCCTTTAGACCAGAGTAAGGGAAAGCAGGAG ATACCTAAAACTTTTAATGTGGGATATTTTGTATCAGTGCTTTGATTCACAATTTTCAAG AGGAAATGGGATGCTGTTTGTAAATTTTCTATGCATTTCTGCAAACTTATTGGATTATTA GTTATTCAGACAGTCAAGCAGAACCCACAGCCTTATTACACCTGTCTACACCATGTACTG AGCTAACCACTTCTAAGAAACTCCAAAAAAGGAAACATGTGTCTTCTATTCTGACTTAAC TTCATTTGTCATAAGGTTTGGATATTAATTTCAAGGGGAGTTGAAATAGTGGGAGATGGA GAAGAGTGAATGAGTTTCTCCCACTCTATACTAATCTCACTATTTGTATTGAGCCCAAAA TAACTATGAAAGGAGACAAAAATTTGTGACAAAGGATTGTGAAGAGCTTTCCATCTTCAT GATGTTATGAGGATTGTTGACAAACATTAGAAATATATAATGGAGCAATTGTGGATTTCC CCTCAAATCAGATGCCTCTAAGGACTTTCCTGCTAGATATTTCTGGAAGGAGAAAATACA ACATGTCATTTATCAACGTCCTTAGAAAGAATTCTTCTAGAGAAAAAGGGATCTAGGAAT AATTGCAAGACTGGGTGGACTAGAAAGGGAGATTAGATCAGTTTTCTCTTAATATGTCAA GGAAGGTAGCCGGGCATGGTGCCAGGCACCTGTAGGAAAATCCAGCAGGTGGAGGTTGCA GTGAGCCGAGATTATGCCATTGCACTCCAGCCTGGGTGACAGAGCGGGACTCCGTCTC

FIGURE 64

MSLLLLLLVSYYVGTLGTHTEIKRVAEEKVTLPCHHQLGLPEKDTLDIEWLLTDNEGNQ KVVITYSSRHVYNNLTEEQKGRVAFASNFLAGDASLQIEPLKPSDEGRYTCKVKNSGRYV WSHVILKVLVRPSKPKCELEGELTEGSDLTLQCESSSGTEPIVYYWQRIREKEGEDERLP PKSRIDYNHPGRVLLQNLTMSYSGLYQCTAGNEAGKESCVVRVTVQYVQSIGMVAGAVTG IVAGALLIFLLVWLLIRRKDKERYEEEERPNEIREDAEAPKARLVKPSSSSGSRSSRSG SSSTRSTANSASRSQRTLSTDAAPQPGLATQAYSLVGPEVRGSEPKKVHHANLTKAETTP SMIPSQSRAFQTV

Signal sequence: amino acids 1-16

Transmembrane domain: amino acids 232-251

FIGURE 65

AGCGAGGAGGCGCCGCCATTGCCGCTCTCTCGGTGAGCGCAGCCCCGCTCTCCGGGC ${\tt CGGGCCTTCGCGGGCCACCGGCGCC}$ GCTGGTCTTTCTCAACCTCATCTTCTGGGGGGCAGCTGGCATTTTATGCTATGTGGGAGC CTATGTCTTCATCACTTATGATGACTATGACCACTTCTTTGAAGATGTGTACACGCTCAT CCCTGCTGTAGTGATCATAGCTGTAGGAGCCCTGCTTTTCATCATTGGGCTAATTGGCTG $\tt CTGTGCCACAATCCGGGAAAGTCGCTGTGGGACTTGCCACGTTTGTCATCATCCTGCTCTT$ GGTTTTTGTCACAGAAGTTGTTGTAGTGGTTTTTGGGATATGTTTACAGAGCAAAGGTGGA TGCTGCTAGCCGGGCTATTGATTATGTACAGAGACAGCTGCATTGTTGTGGAATTCACAA CTACTCAGACTGGGAAAATACAGATTGGTTCAAAGAAACCAAAAACCAGAGTGTCCCTCT TAGCTGCTGCAGAGAGACTGCCAGCAATTGTAATGGCAGCCTGGCCCACCCTTCCGACCT CTATGCTGAGGGGTGTGAGGCTCTAGTAGTGAAGAAGCTACAAGAAATCATGATGCATGT GATCTGGGCCGCACTGGCATTTGCAGCTATTCAGCTGCTGGGCCATGCTGTGTGCAT CGTGTTGTGCAGAAGGAGTAGAGATCCTGCTTACGAGCTCCTCATCACTGGCGGAACCTA $\mathtt{TGCA} \underline{\mathtt{TAG}}\mathtt{TTGACAACTCAAGCCTGAGCTTTTTGGTCTTGTTCTGATTTGGAAGGTGAATT$ GAGCAGGTCTGCTGTTGGCCTCTGGAGTTCATTTAGTTAAAGCACATGTACACTGGT GTTGGACAGAGCAGCTTGGCTTTTCATGTGCCCACCTACTTACCTACTACCTGCGACTTT CTTTTTCCTTGTTCTAGCTGACTCTTCATGCCCCTAAGATTTTAAGTACGATGGTGAACG TTCTAATTTCAGAACCAATTGCGAGTCATGTAGTGTGGTAGAATTAAAGGAGGACACGAG CCTGCTTCTGTTACCTCCAAGTGGTAACAGGACTGATGCCGAAATGTCACCAGGTCCTTT CAGTCTTCACAGTGGAGAACTCTTGGCCAAAGGTTTTTGCGGGGAGGAGGAGGAAACCAG $\tt CTTTCTGGTTAAGGTTAACACCAGATGGTGCCCCTCATTGGTGTCCTTTTAAAAAATATT$ TACTGTAGTCCAATAAGATAGCAGCTGTACAAAATGACTAAAATAGATTGTAGGATCATA TGGCGTATATCTTGGTTCATCTTCAAAATCAGAGACTGAGCTTTGAAACTAGTGGTTTTT AATCAAAGTTGGCTTTATAGGAGGAGTATAATGTATGCACTACTGTTTTAAAAGAATTAG TGTGAGTGTGTTTTGTATGAATGAGCCCATTCATGGTAAGTCTTAAGCTTGTTGGAAAT AATGTACCCATGTAGACTAGCAAAATAGTATGTAGATGTGATCTCAGTTGTAAATAGAAA

67/392

FIGURE 66

MGQCGITSSKTVLVFLNLIFWGAAGILCYVGAYVFITYDDYDHFFEDVYTLIPAVVIIAV GALLFIIGLIGCCATIRESRCGLATFVIILLLVFVTEVVVVVLGYVYRAKVENEVDRSIQ KVYKTYNGTNPDAASRAIDYVQRQLHCCGIHNYSDWENTDWFKETKNQSVPLSCCRETAS NCNGSLAHPSDLYAEGCEALVVKKLQEIMMHVIWAALAFAAIQLLGMLCACIVLCRRSRD PAYELLITGGTYA

Signal peptide:

none

Type II transmembrane domain: 11-38

_

Other transmembrane domains: 48-68, 87-107, 208-235

N-glycosylation site:

127-131, 152-156, 167-171, 183-187

Tyrosine kinase phosphorylation site: 236-244

N-myristoylation site:

5-11, 68-74, 71-77, 226-232

Prokaryotic membrane lipoprotein lipid attachment site: 62-73, 221-232

Transmembrane 4 family proteins: 7-35, 56-106

68/392

FIGURE 67

 $\tt GCGGCACCTGGAAG\underline{ATG}CGCCCATTGGCTGGTGGCCTGCTCAAGGTGGTGTTCGTGGTCT$ TCGCCTCCTTGTGTGCCTGGTATTCGGGGGTACCTGCTCGCAGAGCTCATTCCAGATGCAC $\tt CCCTGTCCAGTGCTGCCTATAGCATCCGCAGCATCGGGGAGAGGCCTGTCCTCAAAGCTC$ CAGTCCCCAAAAGGCAAAAATGTGACCACTGGACTCCCTGCCCATCTGACACCTATGCCT ACAGGTTACTCAGCGGAGGTGGCAGAAGCAAGTACGCCAAAATCTGCTTTGAGGATAACC TACTTATGGGAGAACAGCTGGGAAATGTTGCCAGAGGAATAAACATTGCCATTGTCAACT GACCGATGACAAAGTTTATTCAGAGTGCTGCTCCAAAATCCCTGCTCTTCATGGTGACCT ATGACGACGGAAGCACAAGACTGAATAACGATGCCAAGAATGCCATAGAAGCACTTGGAA TGGAACTCCCTTCCGAAATTCAGAGAGAAAAGATCAACCACTCTGATGCTAAGAACAACA $\texttt{GATATTCTGGCTGGCCTGCAGAGATCCAGATAGAAGGCTGCATACCCAAAGAACGAAGC}\underline{\textbf{T}}$ **GA**CACTGCAGGGTCCTGAGTAAATGTGTTCTGTATAAACAAATGCAGCTGGAATCGCTCA ${\tt AGAATCTTATTTTCTAAATCCAACAGCCCATATTTGATGAGTATTTTGGGTTTGTTGTA}$ AACCAATGAACATTTGCTAGTTGTATCAAATCTTGGTACGCAGTATTTTTATACCAGTAT AAA

FIGURE 68

MRPLAGGLLKVVFVVFASLCAWYSGYLLAELIPDAPLSSAAYSIRSIGERPVLKAPVPKR QKCDHWTPCPSDTYAYRLLSGGGRSKYAKICFEDNLLMGEQLGNVARGINIAIVNYVTGN VTATRCFDMYEGDNSGPMTKFIQSAAPKSLLFMVTYDDGSTRLNNDAKNAIEALGSKEIR NMKFRSSWVFIAAKGLELPSEIQREKINHSDAKNNRYSGWPAEIQIEGCIPKERS

Signal sequence: amino acids 1-20

N-glycosylation sites: amino acids 120-124, 208-212

Glycosaminoglycan attachment site: amino acids 80-84

N-myristoylation sites: amino acids 81-87, 108-114, 119-125

70/392

FIGURE 69

ACACAACTTTACACCTGAATGAACGCCAAACCTCTATGGATATATAAAGGGAAGCTTGAG GAGGAATTTCACAGTTACAGTGCAGAAGCAGAAGCAAAAGAATTAACCAGCTCTTCAGTC ${\tt AAGCAAATCCTCTACTCACC} \underline{{\tt ATG}} {\tt CTTCCTCCTGCCATTCATTTCTATCTCCTTCCCCTTG}$ CATGCATCCTAATGAAAAGCTGTTTGGCTTTTAAAAAATGATGCCACAGAAATCCTTTATT CACATGTGGTTAAACCTGTTCCAGCACACCCCAGCAGCAACAGCACGTTGAATCAAGCCA GAAATGGAGGCAGCATTTCAGTAACACTGGACTGGATCGGAACACTCGGGTTCAAGTGG GTTGCCGGGAACTGCGTTCCACCAAATACATCTCTGATGGCCAGTGCACCAGCATCAGCC CTCTGAAGGAGCTGGTGTGTGCTGGCGAGTGCTTGCCCCTGCCAGTGCTCCCTAACTGGA TTGGAGGAGGCTATGGAACAAAGTACTGGAGCAGGAGGAGCTCCCAGGAGTGGCGGTGTG TCAATGACAAAACCCGTACCCAGAGAATCCAGCTGCAGTGCCAAGATGGCAGCACACGCA CCTACAAAATCACAGTAGTCACTGCCTGCAAGTGCAAGAGGTACACCCGGCAGCACAACG AGTCCAGTCACAACTTTGAGAGCATGTCACCTGCCAAGCCAGTCCAGCATCACAGAGAGC $\tt GGAAAAGAGCCAGCAAATCCAGCAAGCACAGCATGAGT{\color{red}{TAG}} AACTCAGACTCCCATAACT$ AGACTTACTAGTAACCATCTGCTTTACAGATTTGATTGCTTGGAAGACTCAAGCCTGCCA $\tt CTGCTGTTTTCTCACTTGAAAGTATATGCTTTCTGCTTTGATCAAACCCAGCAAGCTGTC$ TTAAGTATCAGGACCTTCTTTGGGAATAGTTTTTCCTTTTAAAGTTTTTCAAGATGTAGG TATATCCATGAATGCAATTTGCATTTAAATTCCACGTATCCCTGTAGTTTAAATTCCTCA TTGGTCTTAAAAGACTGTTGATACTATAAACATCAGTGGAATCAATTATATTTTAAAACA GAAAAGGGCTT

71/392

FIGURE 70

MLPPAIHFYLLPLACILMKSCLAFKNDATEILYSHVVKPVPAHPSSNSTLNQARNGGRHF SNTGLDRNTRVQVGCRELRSTKYISDGQCTSISPLKELVCAGECLPLPVLPNWIGGGYGT KYWSRRSSQEWRCVNDKTRTQRIQLQCQDGSTRTYKITVVTACKCKRYTRQHNESSHNFE SMSPAKPVQHHRERKRASKSSKHSMS

Signal sequence: 1-23

Transmembrane domain: None

N-glycosylation site: 47-50, 173-176

cAMP- and cGMP-dependent protein kinase phosphorylation site:

125-128, 166-169, 195-198

N-myristoylation site: 64-69, 87-92, 115-120, 116-121, 150-155

72/392

FIGURE 71

CCCAGGCTCTAGTGCAGGAGGAGAAGGAGGAGGAGGAGGAGGTGGAGATTCCCAGTTAAA AGGCTCCAGAATCGTGTACCAGGCAGAGAACTGAAGTACTGGGGCCTCCTCCACTGGGTC $\tt CGAATCAGTAGGTGACCCCGCCCCTGGATTCTGGAAGACCTCACC \underline{ATG}GGACGCCCCCGA$ CCTCGTGCGGCCAAGACGTGGATGTTCCTGCTCTTGCTGGGGGGGAGCCTGGGCAGGACAC TCCAGGGCACAGGAGACAAGGTGCTGGGGGGTCATGAGTGCCAACCCCATTCGCAGCCT TGGCAGGCGGCCTTGTTCCAGGGCCAGCAACTACTCTGTGGCGGTGTCCTTGTAGGTGGC AACTGGGTCCTTACAGCTGCCCACTGTAAAAAACCGAAATACACAGTACGCCTGGGAGAC CACAGCCTACAGAATAAAGATGGCCCAGAGCAAGAAATACCTGTGGTTCAGTCCATCCCA CACCCCTGCTACAACAGCAGCGATGTGGAGGACCACAACCATGATCTGATGCTTCTTCAA CTGCGTGACCAGGCATCCCTGGGGTCCAAAGTGAAGCCCATCAGCCTGGCAGATCATTGC ACCCAGCCTGGCCAGAAGTGCACCGTCTCAGGCTGGGGCACTGTCACCAGTCCCCGAGAG AATTTTCCTGACACTCTCAACTGTGCAGAAGTAAAAATCTTTCCCCAGAAGAAGTGTGAG GACACGTGCCAGGGCGATTCTGGAGGCCCCCTGGTGTGTGATGGTGCACTCCAGGGCATC ACATCCTGGGGCTCAGACCCCTGTGGGAGGTCCGACAAACCTGGCGTCTATACCAACATC TGCCGCTACCTGGACTGGATCAAGAAGATCATAGGCAGCAAGGGC<u>TGA</u>TTCTAGGATAAG CACTAGATCTCCCTTAATAAACTCACAACTCTCTGGTTC

FIGURE 72

MGRPRPRAAKTWMFLLLLGGAWAGHSRAQEDKVLGGHECQPHSQPWQAALFQGQQLLCGG VLVGGNWVLTAAHCKKPKYTVRLGDHSLQNKDGPEQEIPVVQSIPHPCYNSSDVEDHNHD LMLLQLRDQASLGSKVKPISLADHCTQPGQKCTVSGWGTVTSPRENFPDTLNCAEVKIFP QKKCEDAYPGQITDGMVCAGSSKGADTCQGDSGGPLVCDGALQGITSWGSDPCGRSDKPG VYTNICRYLDWIKKIIGSKG

Important Features: Signal peptide: amino acids 1-23

Transmembrane domain: amino acids 51-71

N-glycosylation site: amino acids 110-113

Serine proteases, trypsin family, histidine active site: amino acids 69-74 and 207-217

Tyrosine kinase phosphorylation site: amino acids 182-188

Kringle domain proteins motif:
amino acids 205-217

74/392

FIGURE 73

CCGGCCTCTCCAATGGCAAATGTGTGTGGCTGGAGGCGAGCGCGAGGCTTTCGGCAAAGG CAGTCGAGTGTTTGCAGACCGGGGCGAGTCCTGTGAAAGCAGATAAAAGAAAACATTTAT TAACGTGTCATTACGAGGGGAGCGCCCGGCCGGGGCTGTCGCACTCCCCGCGGAACATTT GGCTCCCTCCAGCTCCGAGAGAGAGAAGAAGAAGAGCGGAAAAGAGGCAGATTCACGTCG TTTCCAGCCAAGTGGACCTGATCGATGGCCCTCCTGAATTTATCACGATATTTGATTTAT TAGCGATGCCCCCTGGTTTGTGTTTACGCACACACGCGCGCACACAAGGCTCTGGCTCG $\tt CTTCCCTCCTCGTTTCCAGCTCCTGGGCGAATCCCACATCTGTTTCAACTCTCCGCCGA$ GGGCGAGCAGGAGCGAGTGTCTCGAATCTGCGAGTGAAGAGGGACGAGGGAAAAGAAA CAAAGCCACAGACGCAACTTGAGACTCCCGCATCCCAAAAGAAGCACCAGATCAGCAAAA AAAGAAG<u>ATG</u>GGCCCCCGAGCCTCGTGCTGTGCTGTCCGCAACTGTGTTCTCCCT GCTGGGTGGAAGCTCGGCCTTCCTGTCGCACCACCGCCTGAAAGGCAGGTTTCAGAGGGA GGGTTCCATGCAGGTGATGAACAAGACCCGGCGCATCATGGAGCAGGGCGGGGCGCACTT CATCAACGCCTTCGTGACCACACCCATGTGCTGCCCCTCACGCTCCTCCATCCTCACTGG CAAGTACGTCCACAACCACAACACCTACACCAACAATGAGAACTGCTCCTCGCCCTCCTG GCAGGCACAGCACGAGAGCCGCACCTTTGCCGTGTACCTCAATAGCACTGGCTACCGGAC AGCTTTCTTCGGGAAGTATCTTAATGAATACAACGGCTCCTACGTGCCACCCGGCTGGAA GGAGTGGGTCGGACTCCTTAAAAACTCCCGCTTTTATAACTACACGCTGTGTCGGAACGG GGTGAAAGAGAAGCACGGCTCCGACTACTCCAAGGATTACCTCACAGACCTCATCACCAA ${ t TGACAGCGTGAGCTTCTTCCGCACGTCCAAGAAGATGTACCCGCACAGGCCAGTCCTCAT$ GGTCATCAGCCATGCAGCCCCCACGGCCCTGAGGATTCAGCCCCACAATATTCACGCCT CTTCCCAAACGCATCTCAGCACATCACGCCGAGCTACAACTACGCGCCCAACCCGGACAA ACACTGGATCATGCGCTACACGGGGCCCATGAAGCCCATCCACATGGAATTCACCAACAT GCTCCAGCGGAAGCGCTTGCAGACCCTCATGTCGGTGGACGACTCCATGGAGACGATTTA CAACATGCTGGTTGAGACGGGCGAGCTGGACAACACGTACATCGTATACACCGCCGACCA CGGTTACCACATCGGCCAGTTTGGCCTGGTGAAAGGGAAATCCATGCCATATGAGTTTGA CATCAGGGTCCCGTTCTACGTGAGGGGCCCCAACGTGGAAGCCGGCTGTCTGAATCCCCA CATCGTCCTCAACATTGACCTGGCCCCCACCATCCTGGACATTGCAGGCCTGGACATACC TGCGGATATGGACGGGAAATCCATCCTCAAGCTGCTGGACACGGAGCGGCCGGTGAATCG GTTTCACTTGAAAAAGAAGATGAGGGTCTGGCGGGACTCCTTCTTGGTGGAGAGAGGCAA GCTGCTACACAAGAGACAATGACAAGGTGGACGCCCAGGAGGAGAACTTTCTGCCCAA GTACCAGCGTGTGAAGGACCTGTGTCAGCGTGCTGAGTACCAGACGGCGTGTGAGCAGCT GGGACAGAAGTGGCAGTGTGTGGAGGACGCCACGGGGAAGCTGAAGCTGCATAAGTGCAA GGGCCCCATGCGGCTGGGCGGCAGCAGGCCCTCTCCCAACCTCGTGCCCAAGTACTACGG GCAGGCCAGCCTGCACCTGTGACAGCGGGGACTACAAGCTCAGCCTGGCCGGACG CCGGAAAAAACTCTTCAAGAAGAAGTACAAGGCCAGCTATGTCCGCAGTCGCTCCATCCG CTCAGTGGCCATCGAGGTGGACGGCAGGGTGTACCACGTAGGCCTGGGTGATGCCGCCCA GCCCCGAAACCTCACCAAGCGGCACTGGCCAGGGGCCCCTGAGGACCAAGATGACAAGGA TGGTGGGGACTTCAGTGGCACTGGAGGCCTTCCCGACTACTCAGCCGCCAACCCCATTAA AGTGACACCTCGGTGCTACATCCTAGAGAACGACACAGTCCAGTGTGACCTGGACCTGTA CAAGTCCCTGCAGGCCTGGAAAGACCACAAGCTGCACATCGACCACGAGATTGAAACCCT GCAGAACAAATTAAGAACCTGAGGGAAGTCCGAGGTCACCTGAAGAAAAAGCGGCCAGA AGAATGTGACTGTCACAAAATCAGCTACCACACCCAGCACAAAGGCCGCCTCAAGCACAG AGGCTCCAGTCTGCATCCTTTCAGGAAGGGCCTGCAAGAGAAGGACAAGGTGTGGCTGTT GCGGGAGCAGAAGCAAGAAAACTCCGCAAGCTGCTCAAGCGCCTGCAGAACAACGA CACGTGCAGCATGCCAGGCCTCACGTGCTTCACCCACGACAACCAGCACTGGCAGACGGC

75/392

GCCTTTCTGGACACTGGGGCCTTTCTGTGCCTGCACCAGCGCCAACAATAACACGTACTG GTGCATGAGGACCATCAATGAGACTCACAATTTCCTCTTCTGTGAATTTGCAACTGGCTT CCTAGAGTACTTTGATCTCAACACAGACCCCTACCAGCTGATGAATGCAGTGAACACACT GGACAGGGATGTCCTCAACCAGCTACACGTACAGCTCATGGAGCTGAGGAGCTGCAAGGG ATACAGGCAGTTTCAGCGTCGAAAGTGGCCAGAAATGAAGAGACCTTCTTCCAAATCACT GGGACAACTGTGGGAAGGCTGGGAAGGT<u>TAA</u>GAAACAACAGAGGTGGACCTCCAAAAACA ${\tt TCTGGAGGATAACCAGCAGGAGCAGAGATAACTTCAGGAAGTCCATTTTTGCCCCTGCTT}$ TTGCTTTGGATTATACCTCACCAGCTGCACAAAATGCATTTTTTCGTATCAAAAAGTCAC CTTGGAAATTTCTCCCAAGGGCGAAAGTCATTGGAATTTTTAAATCATAGGGGAAAAGCA ${\tt GTCCTGTTCTAAATCCTCTTATTCTTTTGGTTTGTCACAAAGAAGAAGAACTAAGAAGCAGG}$ ACAGAGGCAACGTGGAGAGGCTGAAAACAGTGCAGAGACGTTTGACAATGAGTCAGTAGC ACAAAAGAGATGACATTTACCTAGCACTATAAACCCTGGTTGCCTCTGAAGAAACTGCCT TCATTGTATATGTGACTATTTACATGTAATCAACATGGGAACTTTTAGGGGAACCTAA ${\tt TAAGAAATCCCAATTTTCAGGAGTGGTGGTGTCAATAAACGCTCTGTGGCCAGTGTAAAA}$ GAAAAA

FIGURE 74

MGPPSLVLCLLSATVFSLLGGSSAFLSHHRLKGRFQRDRRNIRPNIILVLTDDQDVELGS
MQVMNKTRRIMEQGGAHFINAFVTTPMCCPSRSSILTGKYVHNHNTYTNNENCSSPSWQA
QHESRTFAVYLNSTGYRTAFFGKYLNEYNGSYVPPGWKEWVGLLKNSRFYNYTLCRNGVK
EKHGSDYSKDYLTDLITNDSVSFFRTSKKMYPHRPVLMVISHAAPHGPEDSAPQYSRLFP
NASQHITPSYNYAPNPDKHWIMRYTGPMKPIHMEFTNMLQRKRLQTLMSVDDSMETIYNM
LVETGELDNTYIVYTADHGYHIGQFGLVKGKSMPYEFDIRVPFYVRGPNVEAGCLNPHIV
LNIDLAPTILDIAGLDIPADMDGKSILKLLDTERPVNRFHLKKKMRVWRDSFLVERGKLL
HKRDNDKVDAQEENFLPKYQRVKDLCQRAEYQTACEQLGQKWQCVEDATGKLKLHKCKGP
MRLGGSRALSNLVPKYYGQGSEACTCDSGDYKLSLAGRRKKLFKKKYKASYVRSRSIRSV
AIEVDGRVYHVGLGDAAQPRNLTKRHWPGAPEDQDDKDGGDFSGTGGLPDYSAANPIKVT
HRCYILENDTVQCDLDLYKSLQAWKDHKLHIDHEIETLQNKIKNLREVRGHLKKKRPEEC
DCHKISYHTQHKGRLKHRGSSLHPFRKGLQEKDKVWLLREQKRKKKLRKLLKRLQNNDTC
SMPGLTCFTHDNQHWQTAPFWTLGPFCACTSANNNTYWCMRTINETHNFLFCEFATGFLE
YFDLNTDPYQLMNAVNTLDRDVLNQLHVQLMELRSCKGYKQCNPRTRNMDLDGGSYEQYR
QFQRRKWPEMKRPSSKSLGQLWEGWEG

Important features: Signal peptide: amino acids 1-17

Sulfatases signature 1: amino acids 86-99

Homologous region to sulfatase: amino acids 87-106, 133-146, 216-229, 291-320, 365-375

N-glycosylation sites:

amino acids 65-69, 112-116, 132-136, 149-153, 171-175, 198-202, 241-245, 561-565, 608-612, 717-721, 754-758, 764-768

FIGURE 75

CCCACGCGTCCGCCCACGCGTCCGGTGGACTATGGGCCAGTTTTTGTGCAAGAACCAGAT GATATTATTTTTCCAACTGATTCTGATGAAAAGAAGGTAGCATTGAATTGTGAAGTTCGT GGCAATCCAGTTCCCAGTTACAGATGGCTTCGAAATGGAACAGAAATAGATCTGGAAAGT GATTATCGCTACAGTTTGATAGATGGCACCTTCATTATAAGCAATCCAAGTGAAGCAAAG GATTCTGGTCATTATCAGTGTTTAGCAACCAACACTGTGGGGAGTATTCTTAGTAGAGAA GCTACACTGCAGTTTGCCTATCTGGGAAATTTTAGTGGCCGGACAAGAAGTGCAGTCTCT GTGAGGGAAGGCCAGGGTGTCGTTCTG<u>ATG</u>TGCTCTCCTCCGCCACATTCACCAGAGATC ATCTATAGCTGGGTATTTAATGAGTTCCCTTCCTTTGTGGCGGAAGACAGCCGGCGGTTC ATCTCCCAGGAGACAGCCAACCTTTATATTTCTAAAGTCCAAACATCAGATGTTGGCAGC TATATTTGTCTGGTGAAAAACACAGTGACGAATGCTAGAGTCCTTAGTCCTCCAACGCCA CTCACTCTGCGTAATGATGGTGTGATGGGAGAATATGAGCCGAAAATTGAGGTCCATTTT ${\tt CCTTTCACGGTTACAGCTGCTAAAGGAACAACTGTTAAGATGGAATGCTTTGCACTTGGC}$ AACCCCGTTCCAACAATCACATGGATGAAGGTTAATGGTTATATTCCTAGTAAGGCACGT $\tt CTGCGGAAATCTCAGGCGGTGCTGGAAATACCGAATGTACAGCTGGATGATGCAGGCATT$ TATGAGTGCAGAGCTGAAAACTCACGTGGAAAAAATTCCTTTCGTGGACAATTACAAGTA TACACCTACCCACACTGGGTAGAAAAACTGAATGATACTCAGTTAGACAGTGGGAGCCCT CTCCGATGGGAATGTAAGGCTACTGGAAAACCCAGACCCACGTATCGTTGGCTGAAGAAT GGAGTACCCCTCACCCTCAGAGTAGGGTTGAGATGGTTAATGGAGTATTGATGATCCAC AATGTGAATCAGTGCTGGAATGTATCAGTGTTTGGCTGAAAATAAGTATGGAGCC ATTTACGCTAGTGCTGAGCTGAAGATTCTAGCTTCAGCTCCCACTTTTGCACTGAATCAA CTGAAGAAAACAATAATTGTTACCAAAGACCAAGAAGTTGTCATAGAGTGCAAACCCCAA GGCTCTCCAAAACCAACCATCTCTTGGAAGAAAGGAGACAGAGCAGTTAGAGAAAACAAA AGAATAGCTATTCTTCCAGACGGGAGTCTACGGATCCTAAATGCTTCCAAATCAGACGAG GGAAAGTACGTTTGCCGAGGGGAAAACGTCTTTGGTTCTGCTGAAAT

78/392

FIGURE 76

MCSPPPHSPEIIYSWVFNEFPSFVAEDSRRFISQETGNLYISKVQTSDVGSYICLVKNTV
TNARVLSPPTPLTLRNDGVMGEYEPKIEVHFPFTVTAAKGTTVKMECFALGNPVPTITWM
KVNGYIPSKARLRKSQAVLEIPNVQLDDAGIYECRAENSRGKNSFRGQLQVYTYPHWVEK
LNDTQLDSGSPLRWECKATGKPRPTYRWLKNGVPLSPQSRVEMVNGVLMIHNVNQSDAGM
YQCLAENKYGAIYASAELKILASAPTFALNQLKKTIIVTKDQEVVIECKPQGSPKPTISW
KKGDRAVRENKRIAILPDGSLRILNASKSDEGKYVCRGENVFGSAE

Signal sequence:

None

Transmembrane domain:

None

N-glycosylation site: 182-185, 234-237, 325-328

Tyrosine kinase phosphorylation site: 328-334

N-myristoylation site: 50-55, 150-155, 239-244, 250-255

Immunoglobulin domain: 2-56, 100-156, 189-245, 281-338

79/392

FIGURE 77

GCTCCCAGCCAAGAACCTCGGGGCCGCTGCGCGGTGGGGAGGAGTTCCCCGAAACCCGGC CGCTAAGCGAGGCCTCCTCCCCGCAGATCCGAACGGCCTGGGCGGGGTCACCCCGGCT GGGACAAGAAGCCGCCGCCTGCCTGCCCGGGCCCGGGGAGGGGGCTGGGGCTGGGGCCGG TGCTCGGGTGTCTTGGGCACCTACCCGTGGGGCCCGTAAGGCGCTACTATATAAGGCTGC CGGCCCGGAGCCGCCGCCGTCAGAGCAGGAGCGCTGCGTCCAGGATCTAGGGCCACGA CCATCCCAACCCGGCACTCACAGCCCCGCAGCGCATCCCGGTCGCCGCCCAGCCTCCCGC ACCCCCATCGCCGGAGCTGCGCCGAGAGCCCCAGGGAGGTGCCATGCGGAGCGGGTGTGT GGTGGTCCACGTATGGATCCTGGCCGGCCTCTGGCTGGCCGTGGCCGGGCGCCCCCTCGC CTTCTCGGACGCGGGGCCCCACGTGCACTACGGCTGGGGCGACCCCATCCGCCTGCGGCA CCTGTACACCTCCGGCCCCCACGGGCTCTCCAGCTGCTTCCTGCGCATCCGTGCCGACGG CGTCGTGGACTGCGCGCGGGGCCAGAGCGCGCACAGTTTGCTGGAGATCAAGGCAGTCGC TCTGCGGACCGTGGCCATCAAGGGCGTGCACAGCGTGCGGTACCTCTGCATGGGCGCCGA CGGCAAGATGCAGGGGCTGCTTCAGTACTCGGAGGAAGACTGTGCTTTCGAGGAGGAGAT CCGCCCAGATGGCTACAATGTGTACCGATCCGAGAAGCACCGCCTCCCGGTCTCCCTGAG CAGTGCCAAACAGCGGCAGCTGTACAAGAACAGAGGCTTTCTTCCACTCTCATTTCCT GCCCATGCTGCCCATGGTCCCAGAGGAGCCTGAGGACCTCAGGGGCCACTTGGAATCTGA CATGTTCTCTCGCCCCTGGAGACCGACAGCATGGACCCATTTGGGCTTGTCACCGGACT GGAGGCCGTGAGGAGTCCCAGCTTTGAGAAG<u>TAA</u>CTGAGACCATGCCCGGGCCTCTTCAC TGCTGCCAGGGGCTGTGGTACCTGCAGCGTGGGGGACGTGCTTCTACAAGAACAGTCCTG AGTCCACGTTCTGTTTAGCTTTAGGAAGAACATCTAGAAGTTGTACATATTCAGAGTTT TCCATTGGCAGTGCCAGTTTCTAGCCAATAGACTTGTCTGATCATAACATTGTAAGCCTG TAGCTTGCCCAGCTGCTGGCCCGGGCCCCATTCTGCTCCCTCGAGGTTGCTGGACAAGCT GCTGCACTGTCTCAGTTCTGCTTGAATACCTCCATCGATGGGGAACTCACTTCCTTTGGA AAAATTCTTATGTCAAGCTGAAATTCTCTAATTTTTTCTCATCACTTCCCCAGGAGCAGC CAGAAGACAGGCAGTAGTTTTAATTTCAGGAACAGGTGATCCACTCTGTAAAACAGCAGG TAAATTTCACTCAACCCCATGTGGGAATTGATCTATATCTCTACTTCCAGGGACCATTTG CCCTTCCCAAATCCCTCCAGGCCAGAACTGACTGGAGCAGGCATGGCCCACCAGGCTTCA GGAGTAGGGGAAGCCTGGAGCCCCACTCCAGCCCTGGGACAACTTGAGAATTCCCCCTGA GGCCAGTTCTGTCATGGATGCTGTCCTGAGAATAACTTGCTGTCCCGGTGTCACCTGCTT CCATCTCCCAGCCCACCAGCCCTCTGCCCACCTCACATGCCTCCCCATGGATTGGGGCCT CCCAGGCCCCCACCTTATGTCAACCTGCACTTCTTGTTCAAAAATCAGGAAAAGAAAAG ATTTGAAGACCCCAAGTCTTGTCAATAACTTGCTGTGGGAAGCAGCGGGGGAAGACCTA GAGGTTTGTTTTGTATATTAAAATGGAGTTTGTTTGT

FIGURE 78

MRSGCVVVHVWILAGLWLAVAGRPLAFSDAGPHVHYGWGDPIRLRHLYTSGPHGLSSCFL RIRADGVVDCARGQSAHSLLEIKAVALRTVAIKGVHSVRYLCMGADGKMQGLLQYSEEDC AFEEEIRPDGYNVYRSEKHRLPVSLSSAKQRQLYKNRGFLPLSHFLPMLPMVPEEPEDLR GHLESDMFSSPLETDSMDPFGLVTGLEAVRSPSFEK

Signal peptide:
amino acids 1-22

Casein kinase II phosphorylation site: amino acids 78-82, 116-120, 190-194, 204-208

N-myristoylation site: amino acids 15-21, 54-60, 66-72, 201-207

Prokaryotic membrane lipoprotein lipid attachment site: amino acids 48-59

81/392

FIGURE 79

GCCCTGGGGGCTGACAGTCGGCAAAGTTTGGCCCGAAGAGGAAGTGGTCTCAAACCCCGGCAGGTG GCCGAGACCCGGGGGCTTCAGGAGCCGGCCCCGGGAGAAAGAGTGCGGCGGCGGACGAGAAAACA ACTCCAAAGTTGGCGAAAGGCACCGCCCCTACTCCCGGGGCTGCCGCCGCCCCCCGGCCCCCAGCCC ATCCAGACCGGATTATTTTTCCAAATCATGCTTGTGAGGACCCCCCAGCAGTGCTCTTAGAAGTGC AGGGCACCTTACAGAGGCCCCTGGTCCGGGACAGCCGCACCTCCCCTGCCAACTGCACCTGGCTCA TCCTGGGCAGCAAGGAACAGACTGTCACCATCAGGTTCCAGAAGCTACACCTGGCCTGTGGCTCAG AGCGCTTAACCCTACGCTCCCCTCTCCAGCCACTGATCTCCCTGTGTGAGGCACCTCCCAGCCCTC TGCAGCTGCCCGGGGGCAACGTCACCATCACTTACAGCTATGCTGGGGCCAGAGCACCCATGGGCC AGGGCTTCCTGCTCCTACAGCCAAGATTGGCTGATGTGCCTGCAGGAAGAGTTTCAGTGCCTGA ${ t ACCACCGCTGTGTATCTGCTGTCCAGCGCTGTGATGGGGTTGATGCCTGTGGCGATGGCTCTGATG}$ ${ t ATGTCACCTTGGAGGACTTCTATGGGGTCTTCTCCTCTCTGGATATACACACCTAGCCTCAGTCT}$ ${\tt CCCACCCCAGTCCTGCCATTGGCTGGACCCCCATGATGGCCGGCGGCTGGCCGTGCGCTTCA}$ ${\tt CAGCCCTGGACTTGGGGCTTTGGAGATGCAGTGTGTGTATGACGGCCCTGGGCCCCCTGAGAGCT}$ CCCGACTACTGCGTAGTCTCACCCACTTCAGCAATGGCAAGGCTGTCACTGTGGAGACACTGTCTG GCCAGGCTGTTGTGTCCTACCACACAGTTGCTTGGAGCAATGGTCGTGGCTTCAATGCCACCTACC ATGTGCGGGGCTATTGCTTGCCTTGGGACAGACCCTGTGGCTTAGGCTCTGGCCTGGGAGCTGGCG AAGGCCTAGGTGAGCGCTGCTACAGTGAGGCACAGCGCTGTGACGGCTCATGGGACTGTGCTGACG ${\tt GCACAGATGAGGAGGACTGCCCAGGCTGCCCACCTGGACACTTCCCCTGTGGGGCTGCTGGCACCT}$ ${\tt CAGATGAGAGACGCTGTCGGCATTGCCAGCCTGGCAATTTCCGATGCCGGGACGAGAAGTGCGTGT}$ ${\tt ATGAGACGTGGGGTGTGCGATGGGCAGCCAGACTGTGCGGACGGCAGTGATGAGTGGGACTGCTCCT}$ TCATCGCCCTGGGCTGCACCTGCAAGCTCTATGCCATTCGCACCCAGGAGTACAGCATCTTTGCCC ${\tt CCCTCTCCCGGATGGAGGCTGAGATTGTGCAGCAGCAGCAGCCCCCTTCCTACGGGCAGCTCATTG}$ CCCAGGGTGCCATCCCACCTGTAGAAGACTTTCCTACAGAGAATCCTAATGATAACTCAGTGCTGG GCAACCTGCGTTCTCTGCTACAGATCTTACGCCAGGATATGACTCCAGGAGGTGGCCCAGGTGCCC GCCGTCGTCAGCGGGGCCGCTTGATGCGACGCCTGGTACGCCGTCTCCGCCGCTGGGGCTTGCTCC AGCAGGCACCCCACTGCCCATCAAGGCTCCCCTCCCATCTGCTAGCACGTCTCCAGCCCCCACTA CTGTCCCTGAAGCCCCAGGGCCACTGCCCTCACTGCCCCTAGAGCCATCACTATTGTCTGGAGTGG TGCAGGCCCTGCGAGGCCGCCTGTTGCCCAGCCTGGGGCCCCCAGGACCAACCCGGAGCCCCCTG GACCCCACACAGCAGTCCTGGCCCTGGAAGATGAGGACGATGTGCTACTGGTGCCACTGGCTGAGC TCCACCACTTCCTTCCCTGTCCCTGGATTTCAGGGACTTGGTGGGCCTCCCGTTGACCCTATGTAG $\tt CTGCTATAAAGTTAAGTGTCCCTCAGGCAGGGGAGAGGGCTCACAGAGTCTCCTCTGTACGTGGCCA$ $\tt TGGCCAGACCCCAGTCCCTTCACCACCACCTGCTCCCCACGCCACCACTTTGGGTGGCTGTT$ TTTAAAAAGTAAAGTTCTTAGAGGATCATAGGTCTGGACACTCCATCCTTGCCAAACCTCTACCCA AAAGTGGCCTTAAGCACCGGAATGCCAATTAACTAGAGACCCTCCAGCCCCCAAGGGGAGGATTTG $\tt GGCAGAACCTGAGGTTTTGCCATCCACAATCCCTCCTACAGGGCCTGGCTCACAAAAAGAGTGCAA$ ${\tt CAAATGCTTCTATTCCATAGCTACGGCATTGCTCAGTAAGTTGAGGTCAAAAATAAAGGAATCATA}$ CATCTC

82/392

FIGURE 80

MLLATLLLLLGGALAHPDRIIFPNHACEDPPAVLLEVQGTLQRPLVRDSRTSPANCTWL ILGSKEQTVTIRFQKLHLACGSERLTLRSPLQPLISLCEAPPSPLQLPGGNVTITYSYAG ARAPMGQGFLLSYSQDWLMCLQEEFQCLNHRCVSAVQRCDGVDACGDGSDEAGCSSDPFP GLTPRPVPSLPCNVTLEDFYGVFSSPGYTHLASVSHPQSCHWLLDPHDGRRLAVRFTALD LGFGDAVHVYDGPGPPESSRLLRSLTHFSNGKAVTVETLSGQAVVSYHTVAWSNGRGFNA TYHVRGYCLPWDRPCGLGSGLGAGEGLGERCYSEAQRCDGSWDCADGTDEEDCPGCPPGH FPCGAAGTSGATACYLPADRCNYQTFCADGADERRCRHCQPGNFRCRDEKCVYETWVCDG QPDCADGSDEWDCSYVLPRKVITAAVIGSLVCGLLLVIALGCTCKLYAIRTQEYSIFAPL SRMEAEIVQQQAPPSYGQLIAQGAIPPVEDFPTENPNDNSVLGNLRSLLQILRQDMTPGG GPGARRQRGRLMRRLVRRLRRWGLLPRTNTPARASEARSQVTPSAAPLEALDGGTGPAR EGGAVGGQDGEQAPPLPIKAPLPSASTSPAPTTVPEAPGPLPSLPLEPSLLSGVVQALRG RLLPSLGPPGPTRSPPGPHTAVLALEDEDDVLLVPLAEPGVWVAEAEDEPLLT

Important features: Signal peptide: amino acids 1-16

Transmembrane domain: amino acids 442-462

LDL-receptor class A (LDLRA) domain proteins: amino acids 411-431, 152-171, 331-350 and 374-393

FIGURE 81

CTTCTGTGCTGTTCCTTCTTGCCTCTAACTTGTAAACAAGACGTACTAGGACGATGCTAA TGGAAAGTCACAAACCGCTGGGTTTTTGAAAGGATCCTTGGGACCTCATGCACATTTGTG ${\tt GAAACTGGATGGAGAGATTTGGGGAAGC} \underline{{\tt ATG}} {\tt GACTCTTTAGCCAGCTTAGTTCTCTGTGG}$ AGTCAGCTTGCTCCTTTCTGGAACTGTGGAAGGTGCCATGGACTTGATCTTGATCAATTC CCTACCTCTTGTATCTGATGCTGAAACATCTCTCACCTGCATTGCCTCTGGGTGGCGCCC CCATGAGCCCATCACCATAGGAAGGGACTTTGAAGCCTTAATGAACCAGCACCAGGATCC GCTGGAAGTTACTCAAGATGTGACCAGAGAATGGGCTAAAAAAGTTGTTTGGAAGAGAGA AAAGGCTAGTAAGATCAATGGTGCTTATTTCTGTGAAGGGCGAGTTCGAGGAGAGGCAAT GACTGTGGACAAGGGAGATAACGTGAACATATCTTTCAAAAAGGTATTGATTAAAGAAGA AGATGCAGTGATTTACAAAAATGGTTCCTTCATCCATTCAGTGCCCCGGCATGAAGTACC TGATATTCTAGAAGTACACCTGCCTCATGCTCAGCCCCAGGATGCTGGAGTGTACTCGGC CAGGTATATAGGAGGAAACCTCTTCACCTCGGCCTTCACCAGGCTGATAGTCCGGAGATG TGAAGCCCAGAAGTGGGGACCTGAATGCAACCATCTCTGTACTGCTTGTATGAACAATGG TGTCTGCCATGAAGATACTGGAGAATGCATTTGCCCTCCTGGGTTTATGGGAAGGACGTG AGAGGGATGCAAGTCTTATGTGTTCTGTCTCCCTGACCCCTATGGGTGTTCCTGTGCCAC AGGCTGGAAGGGTCTGCAGTGCAATGAAGCATGCCACCCTGGTTTTTACGGGCCAGATTG TAAGCTTAGGTGCAGCTGCAACAATGGGGAGATGTGTGATCGCTTCCAAGGATGTCTCTG CTCTCCAGGATGGCAGGGCTCCAGTGTGAGAGAGAGGCATACCGAGGATGACCCCAAA GATAGTGGATTTGCCAGATCATATAGAAGTAAACAGTGGTAAATTTAATCCCATTTGCAA AGCTTCTGGCTGGCCGCTACCTACTAATGAAGAAATGACCCTGGTGAAGCCGGATGGGAC AGTGCTCCATCCAAAAGACTTTAACCATACGGATCATTTCTCAGTAGCCATATTCACCAT CCACCGGATCCTCCCCCTGACTCAGGAGTTTGGGTCTGCAGTGTGAACACAGTGGCTGG GATGGTGGAAAAGCCCTTCAACATTTCTGTTAAAGTTCTTCCAAAGCCCCTGAATGCCCC AAACGTGATTGACACTGGACATAACTTTGCTGTCATCAACATCAGCTCTGAGCCTTACTT TGGGGATGGACCAATCAAATCCAAGAAGCTTCTATACAAACCCGTTAATCACTATGAGGC TTGGCAACATATTCAAGTGACAAATGAGATTGTTACACTCAACTATTTGGAACCTCGGAC AGAATATGAACTCTGTGCAACTGGTCCGTCGTGGAGAGGGTGGGGAAGGGCATCCTGG CCTGCCTAAAAGTCAGACCACTCTAAATTTGACCTGGCAACCAATATTTCCAAGCTCGGA AGATGACTTTTATGTTGAAGTGGAGAGAGGTCTGTGCAAAAAAGTGATCAGCAGAATAT TAAAGTTCCAGGCAACTTGACTTCGGTGCTACTTAACAACTTACATCCCAGGGAGCAGTA CGTGGTCCGAGCTAGAGTCAACACCAAGGCCCAGGGGGAATGGAGTGAAGATCTCACTGC TTGGACCCTTAGTGACATTCTTCCTCCTCAACCAGAAAACATCAAGATTTCCAACATTAC ACACTCCTCGGCTGTGATTTCTTGGACAATATTGGATGGCTATTCTATTTCTTCTATTAC TATCCGTTACAAGGTTCAAGGCAAGAATGAAGACCAGCACGTTGATGTGAAGATAAAGAA TGCCACCATCATTCAGTATCAGCTCAAGGGCCTAGAGCCTGAAACAGCATACCAGGTGGA CATTTTTGCAGAGAACAACATAGGGTCAAGCAACCCAGCCTTTTCTCATGAACTGGTGAC CCTCCCAGAATCTCAAGCACCAGCGGACCTCGGAGGGGGGGAAGATGCTGCTTATAGCCAT CCTTGGCTCTGCAATGACCTGCCTGACTGTTGTTTGCCTTTCTGATCATATTGCA ATTGAAGAGGCAAATGTGCAAAGGAGAATGGCCCAAGCCTTCCAAAACGTGAGGGAAGA ACCAGCTGTGCAGTTCAACTCAGGGACTCTGGCCCTAAACAGGAAGGTCAAAAACAACCC AGATCCTACAATTTATCCAGTGCTTGACTGGAATGACATCAAATTTCAAGATGTGATTGG GGAGGGCAATTTTGGCCAAGTTCTTAAGGCGCGCATCAAGAAGGATGGGTTACGGATGGA TGCTGCCATCAAAAGAATGAAAGAATATGCCTCCAAAGATGATCACAGGGACTTTGCAGG AGAACTGGAAGTTCTTTGTAAACTTGGACACCATCCAAACATCATCAATCTCTTAGGAGC

84/392

ATGTGAACATCGAGGCTACTTGTACCTGGCCATTGAGTACGCGCCCCATGGAAACCTTCT GGACTTCCTTCGCAAGAGCCGTGTGCTGGAGACGGACCCAGCATTTGCCATTGCCAATAG CACCGCGTCCACACTGTCCTCCCAGCAGCTCCTTCACTTCGCTGCCGACGTGGCCCGGGG CATGGACTACTTGAGCCAAAAACAGTTTATCCACAGGGATCTGGCTGCCAGAAACATTTT AGTTGGTGAAAACTATGTGGCAAAAATAGCAGATTTTGGATTGTCCCGAGGTCAAGAGGT GTACGTGAAAAAGACAATGGGAAGGCTCCCAGTGCGCTGGATGGCCATCGAGTCACTGAA TTACAGTGTGTACACAACCAACAGTGATGTATGGTCCTATGGTGTGTTACTATGGGAGAT TGTTAGCTTAGGAGGCACACCCTACTGCGGGATGACTTGTGCAGAACTCTACGAGAAGCT GCCCCAGGGCTACAGACTGGAGAAGCCCCTGAACTGTGATGATGAGGTGTATGATCTAAT GAGACAATGCTGGCGGGAGAAGCCTTATGAGAGGCCATCATTTGCCCCAGATATTGGTGTC CTTAAACAGAATGTTAGAGGAGCGAAAGACCTACGTGAATACCACGCTTTATGAGAAGTT ${\tt TACTTATGCAGGAATTGACTGTTCTGCTGAAGAAGCGGCC} \underline{{\tt TAG}} {\tt GACAGAACATCTGTATA}$ CCCTCTGTTTCCCTTTCACTGGCATGGGAGACCCTTGACAACTGCTGAGAAAACATGCCT CTGCCAAAGGATGTGATATAAGTGTACATATGTGCTGGAATTCTAACAAGTCATAGGT TCCCTCACCTGTAGCATGCCAGTCCCGTTTCATTTAGTCATGTGACCACTCTGTCTTGTG TTTCCACAGCCTGCAAGTTCAGTCCAGGATGCTAACATCTAAAAATAGACTTAAATCTCA TTGCTTACAAGCCTAAGAATCTTTAGAGAAGTATACATAAGTTTAGGATAAAATAATGGG ATTTTCTTTTCTCTCTGGTAATATTGACTTGTATATTTTAAGAAATAACAGAAAGCC TGGGTGACATTTGGGAGACATGTGACATTTATATATTGAATTAATATCCCTACATGTATT GCACATTGTAAAAAGTTTTAGTTTTGATGAGTTGTGAGTTTACCTTGTATACTGTAGGCA

85/392

FIGURE 82

MDSLASLVLCGVSLLLSGTVEGAMDLILINSLPLVSDAETSLTCIASGWRPHEPITIGRD FEALMNQHQDPLEVTQDVTREWAKKVVWKREKASKINGAYFCEGRVRGEAIRIRTMKMRQ QASFLPATLTMTVDKGDNVNISFKKVLIKEEDAVIYKNGSFIHSVPRHEVPDILEVHLPH AQPQDAGVYSARYIGGNLFTSAFTRLIVRRCEAQKWGPECNHLCTACMNNGVCHEDTGEC ICPPGFMGRTCEKACELHTFGRTCKERCSGQEGCKSYVFCLPDPYGCSCATGWKGLQCNE ${ t ACHPGFYGPDCKLRCSCNNGEMCDRFQGCLCSPGWQGLQCEREGIPRMTPKIVDLPDHIE}$ VNSGKFNPICKASGWPLPTNEEMTLVKPDGTVLHPKDFNHTDHFSVAIFTIHRILPPDSG VWVCSVNTVAGMVEKPFNISVKVLPKPLNAPNVIDTGHNFAVINISSEPYFGDGPIKSKK LLYKPVNHYEAWQHIQVTNEIVTLNYLEPRTEYELCVQLVRRGEGGEGHPGPVRRFTTAS IGLPPPRGLNLLPKSQTTLNLTWQPIFPSSEDDFYVEVERRSVQKSDQQNIKVPGNLTSV LLNNLHPREQYVVRARVNTKAQGEWSEDLTAWTLSDILPPQPENIKISNITHSSAVISWT ILDGYSISSITIRYKVQGKNEDQHVDVKIKNATIIQYQLKGLEPETAYQVDIFAENNIGS ${\tt SNPAFSHELVTLPESQAPADLGGGKMLLIAILGSAGMTCLTVLLAFLIILQLKRANVQRR}$ ${\tt MAQAFQNVREEPAVQFNSGTLALNRKVKNNPDPTIYPVLDWNDIKFQDVIGEGNFGQVLK}$ ARIKKDGLRMDAAIKRMKEYASKDDHRDFAGELEVLCKLGHHPNIINLLGACEHRGYLYL AIEYAPHGNLLDFLRKSRVLETDPAFAIANSTASTLSSQQLLHFAADVARGMDYLSQKQF IHRDLAARNILVGENYVAKIADFGLSRGQEVYVKKTMGRLPVRWMAIESLNYSVYTTNSD VWSYGVLLWEIVSLGGTPYCGMTCAELYEKLPQGYRLEKPLNCDDEVYDLMRQCWREKPY ERPSFAQILVSLNRMLEERKTYVNTTLYEKFTYAGIDCSAEEAA

```
Signal sequence: 1-38
```

Transmembrane domain:

750-770

534-537

N-glycosylation site:

140-143, 158-161, 399-402, 438-441, 464-467, 560-563, 596-599, 649-652, 691-694, 930-933, 1011-1014, 1104-1107

cAMP- and cGMP-dependent protein kinase phosphorylation site:

Tyrosine kinase phosphorylation site: 149-156, 808-816, 1094-1102

N-myristoylation site:

18-23, 98-103, 187-192, 196-201, 270-275, 286-291, 295-300, 420-425, 595-600, 984-989, 1036-1041, 1041-1046, 1115-1120

Prokaryotic membrane lipoprotein lipid attachment site: 882-892

86/392

EGF-like domain cysteine pattern signature: 240-251, 287-298, 329-340

Tyrosine protein kinases specific active-site signature: 960-972

Protein kinase domain: 824-1092

Fibronectin type III domain: 444-529, 543-626, 639-724

EGF-like domain: 220-251, 268-298

laminin_EGF Laminin EGF-like (Domains III and V):
219-268

Immunoglobulin domain:

156-193

Zinc finger: 295-313

Receptor tyrosine kinase: 844-868, 869-898, 936-982, 986-1024, 1025-1052, 1052-1088

FIGURE 83

GAAAGCAGCGAGTTGGCAGAGCAGGGCTGCATTTCCAGCAGGAGCTGCGAGCACAGTGCT ${\tt GGCTCACAACAAG}$ ${\tt ATG}$ ${\tt CTCAAGGTGTCAGCCGTACTGTGTGTGTGCAGCCGCTTGGTG}$ TAATTTTCTGGATGATAAACAATGGCTCACCACAATCTCTCAGTATGACAAGGAAGTCGG ACAGTGGAACAAATTCCGAGACGAAGTAGAGGATGATTATTTCCGCACTTGGAGTCCAGG AAAACCCTTCGATCAGGCTTTAGATCCAGCTAAGGATCCATGCTTAAAGATGAAATGTAG TCGCCATAAAGTATGCATTGCTCAAGATTCTCAGACTGCAGTCTGCATTAGTCACCGGAG GCTTACACACAGGATGAAAGAAGCAGGAGTAGACCATAGGCAGTGGAGGGGTCCCATATT ATCCACCTGCAAGCAGTGCCCAGTGGTCTATCCCAGCCCTGTTTGTGGTTCAGATGGTCA TACCTACTCTTTTCAGTGCAAACTAGAATATCAGGCATGTGTCTTAGGAAAACAGATCTC AGTCAAATGTGAAGGACATTGCCCATGTCCTTCAGATAAGCCCACCAGTACAAGCAGAAA TGTTAAGAGAGCATGCAGTGACCTGGAGTTCAGGGAAGTGGCAAACAGATTGCGGGACTG . GTTCAAGGCCCTTCATGAAAGTGGAAGTCAAAACAAGAAGACAAAAACATTGCTGAGGCCTGAGAGAAGCAGATTCGATACCAGCATCTTGCCAATTTGCAAGGACTCACTTGGCTGGAT GTTTAACAGACTTGATACAAACTATGACCTGCTATTGGACCAGTCAGAGCTCAGAAGCAT TTACCTTGATAAGAATGAACAGTGTACCAAGGCATTCTTCAATTCTTGTGACACATACAA GGACAGTTTAATATCTAATAATGAGTGGTGCTACTGCTTCCAGAGACAGCAAGACCCACC TTGCCAGACTGAGCTCAGCAATATTCAGAAGCGGCAAGGGGTAAAGAAGCTCCTAGGACA GTATATCCCCCTGTGTGATGAAGATGGTTACTACAAGCCAACACAATGTCATGGCAGTGT TGGACAGTGCTGGTGTTGACAGATATGGAAATGAAGTCATGGGATCCAGAATAAATGG TGTTGCAGATTGTGCTATAGATTTTGAGATCTCCGGAGATTTTGCTAGTGGCGATTTTCA ${f T}{f T}{f G}{f A}{f T}{f T}{f G}{f A}{f C}{f A}{f C}{f A}{f A}{f T}{f C}{f A}{f A}{f A}{f T}{f T}{f C}{f A}{f A}{f$ CCTATTTAAAATTATCTTCCTCCCAATAACAAAATGATTCTAAACCTCACATATATTTT GTATAATTATTTGAAAAATTGCAGCTAAAGTTATAGAACTTTATGTTTAAATAAGAATCA TTTGCTTTGAGTTTTTATATTCCTTACACAAAAAGAAAATACATATGCAGTCTAGTCAGA CAAAATAAAGTTTTGAAGTGCTACTATAATAAATTTTTCACGAGAACAAACTTTGTAAAT CTTCCATAAGCAAAATGACAGCTAGTGCTTGGGATCGTACATGTTAATTTTTTGAAAGAT AATTCTAAGTGAAATTTAAAATAAATTAATTTTTAATGACCTGGGTCTTAAGGATTTAGG AAAAATATGCATGCTTTAATTGCATTTCCAAAGTAGCATCTTGCTAGACCTAGATGAGTC

FIGURE 84

MLKVSAVLCVCAAAWCSQSLAAAAAVAAAGGRSDGGNFLDDKQWLTTISQYDKEVGQWNK FRDEVEDDYFRTWSPGKPFDQALDPAKDPCLKMKCSRHKVCIAQDSQTAVCISHRRLTHR MKEAGVDHRQWRGPILSTCKQCPVVYPSPVCGSDGHTYSFQCKLEYQACVLGKQISVKCE GHCPCPSDKPTSTSRNVKRACSDLEFREVANRLRDWFKALHESGSQNKKTKTLLRPERSR FDTSILPICKDSLGWMFNRLDTNYDLLLDQSELRSIYLDKNEQCTKAFFNSCDTYKDSLI SNNEWCYCFQRQQDPPCQTELSNIQKRQGVKKLLGQYIPLCDEDGYYKPTQCHGSVGQCW CVDRYGNEVMGSRINGVADCAIDFEISGDFASGDFHEWTDDEDDEDDIMNDEDEIEDDDE DEGDDDDGGDDHDVYI

Important features: Signal peptide: amino acids 1-16

Leucine zipper pattern: amino acids 246-267

N-myristoylation sites: amino acids 357-362, 371-376 and 376-381

Thyroglobulin type-1 repeat proteins: amino acids 353-365 and 339-352

89/392

FIGURE 85

 ${\tt CCCACGCGTCCGGCACTGCAGTCTCCAGCCTGAGCC}{\tt ATG}{\tt GGCCGCCGAGCCCTCCTGCTC}$ ${ t TCGGTTCTCTACTTCCAACAGAAGGTTGATCATTTTGGATTTAATACTGTGAAAACTTTT$ AATCAGCGGTACCTAGTAGCTGATAAATACTGGAAGAAAAATGGTGGATCAATACTTTTC TACACTGGTAATGAAGGGGACATTATCTGGTTTTGTAATAACACGGGGTTCATGTGGGAT GTGGCTGAGGAACTGAAAGCTATGTTGGTGTTTGCTGAACATCGATACTATGGAGAGTCT CTCCCCTTTGGTGACAACTCATTCAAGGATTCCAGACACTTGAATTTCCTGACATCAGAA CAAGCTCTGGCTGATTTTGCAGAGTTAATCAAACACTTGAAAAGAACAATCCCAGGAGCT GAAAATCAACCTGTCATTGCCATAGGAGGCTCCTATGGTGGCATGCTTGCCGCCTGGTTT AGGATGAAATATCCTCATATGGTAGTTGGAGCTCTTGCAGCTTCTGCCCCTATCTGGCAG TTTGAGGATTTAGTACCTTGTGGTGTATTTATGAAGATCGTAACTACAGATTTTAGGAAA AGCGGTCCACATTGTTCAGAGAGCATCCACAGGTCCTGGGATGCCATTAATCGACTCTCA AATACTGGCAGTGGTTTGCAGTGGCTTACTGGAGCCCTTCACTTATGCAGCCCATTAACT TCTCAGGACATCCAACATTTGAAAGACTGGATCTCTGAAACCTGGGTGAATCTGGCAATG GTGGACTATCCTTATGCCTCTAACTTTTTACAGCCTTTGCCTGCTTGGCCTATCAAGGTA GTGTGCCAGTATTTGAAAAATCCCAATGTATCTGATTCACTGCTGCTGCAGAATATTTTC CAAGCTCTGAATGTATATTACAATTATTCGGGCCAGGTGAAATGCCTGAATATTTCAGAG ACAGCAACTAGCAGTCTGGGAACACTGGGTTGGAGCTATCAGGCCTGCACAGAAGTAGTC GAACTTTCTGATGACTGTTTTCAACAGTGGGGTGTGAGACCAAGGCCCTCCTGGATCACT ACTATGTATGGAGGCAAAACATTAGTTCACACACAAACATTGTTTTCAGCAATGGTGAA CTAGACCCCTGGTCAGGAGGTGGAGTAACTAAGGATATCACAGACACTCTGGTTGCAGTC ACCATCTCAGAGGGGGCCCACCACTTAGATCTCCGCACCAAGAATGCCTTGGATCCTATG TCTGTGCTGTTAGCCCGCTCCTTGGAAGTTAGACATATGAAGAATTGGATCAGAGATTTC ${\tt TATGACAGTGCGGGAAAGCAGCAC} \underline{{\tt TGA}} {\tt GAAACTTTTGATTGTTTTCAATTTCTTTTTA}$ TGTTCACACCACCACATTCCCATTCACTTTGATTTTCTACATGTAATTACCTTCTTTTGT TTATCATTAGATTTGATGGGGCCAAAGTTGAGATAGAATAGAGGGTGATGACGGTAAGAG CAAGTGTCCCATGAATGTGATTTCCTGGGTTCTCACTGTCCTTTGCACCACGTCTAGGAA GAATCTTCTTGATAGCTCTCCCACACCATCAGTGGCCCTCATAACTGGAGTAGAGTTCCT GGTTGCTTTTCATAAGAGGGAGAGTTACTTTC

90/392

FIGURE 86

MGRRALLLLLLSFLAPWATIALRPALRALGSLHLPTNPTSLPAVAKNYSVLYFQQKVDHF GFNTVKTFNQRYLVADKYWKKNGGSILFYTGNEGDIIWFCNNTGFMWDVAEELKAMLVFA EHRYYGESLPFGDNSFKDSRHLNFLTSEQALADFAELIKHLKRTIPGAENQPVIAIGGSY GGMLAAWFRMKYPHMVVGALAASAPIWQFEDLVPCGVFMKIVTTDFRKSGPHCSESIHRS WDAINRLSNTGSGLQWLTGALHLCSPLTSQDIQHLKDWISETWVNLAMVDYPYASNFLQP LPAWPIKVVCQYLKNPNVSDSLLLQNIFQALNVYYNYSGQVKCLNISETATSSLGTLGWS YQACTEVVMPFCTNGVDDMFEPHSWNLKELSDDCFQQWGVRPRPSWITTMYGGKNISSHT NIVFSNGELDPWSGGGVTKDITDTLVAVTISEGAHHLDLRTKNALDPMSVLLARSLEVRH MKNWIRDFYDSAGKQH

```
Signal sequence:
1-18

Transmembrane domain:
None

N-glycosylation site:
47-50, 101-104, 317-320, 336-339, 345-348, 415-418

Glycosaminoglycan attachment site:
433-436

N-myristoylation site:
178-183, 181-186, 182-187, 198-203, 339-344, 434-439

Amidation site:
1-4

alpha/beta hydrolase fold:
115-372
```

91/392

FIGURE 87

GGCGGCGTCCGTGAGGGGCTCCTTTGGGCAGGGGTAGTGTTTGGTGTCCCTGTCTTGCGT GATATTGACAAACTGAAGCTTTCCTGCACCACTGGACTTAAGGAAGAGTGTACTCGTAGG CGGACAGCTTTAGTGGCCGGCCGGCCGCTCTCATCCCCCGTAAGGAGCAGAGTCCTTTGT ${ t ACTGACCAAG}$ ${ t ACTGACCAAG}$ ${ t ACTGACCAAGGAAGG}$ ${ t CCCACGAATGGGAAGG}$ ${ t TTTATT}$ GAAAACTACAGCTGGAGATATTGACATAGAGTTGTGGTCCAAAGAAGCTCCTAAAGCTTG CAGAAATTTTATCCAACTTTGTTTGGAAGCTTATTATGACAATACCATTTTTCATAGAGT TGTGCCTGGTTTCATAGTCCAAGGCGGAGATCCTACTGGCACAGGGAGTGGTGGAGAGTC TATCTATGGAGCGCCATTCAAAGATGAATTTCATTCACGGTTGCGTTTTAATCGGAGAGG ACTGGTTGCCATGGCAAATGCTGGTTCTCATGATAATGGCAGCCAGTTTTTCTTCACACT GGGTCGAGCAGATGAACTTAACAATAAGCATACCATCTTTGGAAAGGTTACAGGGGATAC AGTATATAACATGTTGCGACTGTCAGAAGTAGACATTGATGATGACGAAAGACCACATAA TCCACACAAAATAAAAAGCTGTGAGGTTTTGTTTAATCCTTTTGATGACATCATTCCAAG GGAAATTAAAAGGCTGAAAAAAGAGAAACCAGAGGAGGAAGTAAAGAAATTGAAACCCAA AGGCACAAAAATTTTAGTTTACTTTCATTTGGAGAGGAAGCTGAGGAAGAAGAGAGGAGGA AGTAAATCGAGTTAGTCAGAGCATGAAGGCAAAAGCAAAAGTAGTCATGACTTGCTTAA GGATGATCCACATCTCAGTTCTGTTCCAGTTGTAGAAAGTGAAAAGGTGATGCACCAGA TTTAGTTGATGATGAGAGATGAAAGTGCAGAGCATGATGAATATATTGATGGTGATGA AAAGAACCTGATGAGAGAAAGAATTGCCAAAAAATTAAAAAAGGACACAAGTGCGAATGT TGCAGCAAAACAAGCAGAAAAAAGAAGTGAAGAGGAAGAAGCCCCTCCAGATGGTGCTGT TGCCGAATACAGAAGAAAAGCAAAAGTATGAAGCTTTGAGGAAGCAACAGTCAAAGAA GGGAACTTCCCGGGAAGATCAGACCCTTGCACTGCTGAACCAGTTTAAATCTAAACTCAC TCAAGCAATTGCTGAAACACCTGAAAATGACATTCCTGAAACAGAAGTAGAAGATGATGA AGGATGGATGTCACATGTACTTCAGTTTGAGGATAAAAGCAGAAAAGTGAAAGATGCAAG CATGCAAGACTCAGATACATTTGAAATCTATGATCCTCGGAATCCAGTGAATAAAAGAAG TGATAACCAGAACTTGCTGGAAATGTGCCTACAATGGCCTTGTAACAGCCATTGTTCCCA ACAGCATCACTTAGGGGTGTGAAAAGAAGTATTTTTGAACCTGTTGTCTGGTTTTGAAAA ACAATTATCTTGTTTTGCAAATTGTGGAATGATGTAAGCAAATGCTTTTGGTTACTGGTA ТССАСААААААААААААААААААААААА

92/392

FIGURE 88

MSNIYIQEPPTNGKVLLKTTAGDIDIELWSKEAPKACRNFIQLCLEAYYDNTIFHRVVPG
FIVQGGDPTGTGSGGESIYGAPFKDEFHSRLRFNRRGLVAMANAGSHDNGSQFFFTLGRA
DELNNKHTIFGKVTGDTVYNMLRLSEVDIDDDERPHNPHKIKSCEVLFNPFDDIIPREIK
RLKKEKPEEEVKKLKPKGTKNFSLLSFGEEAEEEEEEVNRVSQSMKGKSKSSHDLLKDDP
HLSSVPVVESEKGDAPDLVDDGEDESAEHDEYIDGDEKNLMRERIAKKLKKDTSANVKSA
GEGEVEKKSVSRSEELRKEARQLKRELLAAKQKKVENAAKQAEKRSEEEEAPPDGAVAEY
RREKQKYEALRKQQSKKGTSREDQTLALLNQFKSKLTQAIAETPENDIPETEVEDDEGWM
SHVLQFEDKSRKVKDASMQDSDTFEIYDPRNPVNKRRREESKKLMREKKERR

Important features: Signal peptide: amino acids 1-21

N-glycosylation sites: amino acids 109-112 and 201-204

Cyclophilin-type peptidyl-prolyl cis-trans isomerase signature: amino acids 49-66

Homologous region to Cyclophilin-type peptidyl-prolyl cistrans isomerase: amino acids 96-140, 49-89 and 22-51

FIGURE 89

 ${\tt CCCGGCTCCGCTCTGCCCCTCGGGGTCGCGCCCACGATGCTGCAGGGCCCTGG}$ CCTCTTTGGCCAGCCCGACTTCTCCTACAAGCGCAGCAATTGCAAGCCCATCCCGGTCAA ${\tt CCTGCAGCTGTGCCACGGCATCGAATACCAGAACATGCGGCTGCCCAACCTGCTGGGCCA}$ CGAGACCATGAAGGAGGTGCTGGAGCAGGCCGGCGCTTGGATCCCGCTGGTCATGAAGCA GTGCCACCCGGACACCAAGAAGTTCCTGTGCTCGCTCTTCGCCCCCGTCTGCCTCGATGA CCTAGACGAGACCATCCAGCCATGCCACTCGCTCTGCGTGCAGGTGAAGGACCGCTGCGC CCCGGTCATGTCCGCCTTCGGCTTCCCCTGGCCCGACATGCTTGAGTGCGACCGTTTCCC GGAAGCTCCAAAGGTATGTGAAGCCTGCAAAAATAAAAATGATGATGACAACGACATAAT GGAAACGCTTTGTAAAAATGATTTTGCACTGAAAATAAAAGTGAAGGAGATAACCTACAT CAACCGAGATACCAAAATCATCCTGGAGACCAAGAGCAAGACCATTTACAAGCTGAACGG TGTGTCCGAAAGGACCTGAAGAAATCGGTGCTGTGGCTCAAAGACAGCTTGCAGTGCAC CTGTGAGGAGATGAACGACATCAACGCGCCCTATCTGGTCATGGGACAGAAACAGGGTGG $\tt CTCCCGCAGCATCCGCAAGCTGCAGTGC\underline{TAG} TCCCGGCATCCTGATGGCTCCGACAGGCC$ ${\tt TGCTCCAGAGCACGGCTGACCATTTCTGCTCCGGGATCTCAGCTCCCGTTCCCCAAGCAC}$ ${\tt ACTCCTAGCTGCAGTCTCAGCCTGGGCAGCTTCCCCCTGCCTTTTGCACGTTTGCAT}$ CCCCAGCATTTCCTGAGTTATAAGGCCACAGGAGTGGATAGCTGTTTTCACCTAAAGGAA AAGCCCACCCGAATCTTGTAGAAATATTCAAACTAATAAAATCATGAATATTTTAA

FIGURE 90

MLQGPGSLLLLFLASHCCLGSARGLFLFGQPDFSYKRSNCKPIPVNLQLCHGIEYQNMRL PNLLGHETMKEVLEQAGAWIPLVMKQCHPDTKKFLCSLFAPVCLDDLDETIQPCHSLCVQ VKDRCAPVMSAFGFPWPDMLECDRFPQDNDLCIPLASSDHLLPATEEAPKVCEACKNKND DDNDIMETLCKNDFALKIKVKEITYINRDTKIILETKSKTIYKLNGVSERDLKKSVLWLK DSLQCTCEEMNDINAPYLVMGQKQGGELVITSVKRWQKGQREFKRISRSIRKLQC

Important features: Signal peptide: amino acids 1-20

Cysteine rich domain, homolgous to frizzled N terminus: amino acids 6-153

FIGURE 91

GGAAGGGGAGGAGCAGACACAGGCACAGGCCGGTGAGGGACCTGCCCAGACCTGGAG ${\tt GGTCTCGCTCTGTCACACAGGCTGGAGTGCAGTGGTGATCTTGGCTCATCGTAACCTC}$ ${\tt CACCTCCCGGGTTCAAGTGATTCTCATGCCTCAGCCTCCCGAGTAGCTGGGATTACAGGT}$ ${\tt GGTGACTTCCAAGAGTGACTCCGTCGGAGGAAA} \underline{{\tt ATG}} {\tt ACTCCCCAGTCGCTGCTGCAGACG}$ f ACACTGTTCCTGCTGAGTCTGCTCTTCCTGGTCCAAGGTGCCCACGGCAGGGGCCACAGGGAAGACTTTCGCTTCTGCAGCCAGCGGAACCAGACACAGGAGCAGCCTCCACTACAAA CCCACACCAGACCTGCGCATCTCCATCGAGAACTCCGAAGAGGCCCTCACAGTCCATGCC CCTTTCCCTGCAGCCCACCCTGCTTCCCGATCCTTCCCTGACCCCAGGGGCCTCTACCAC TTCTGCCTCTACTGGAACCGACATGCTGGGAGATTACATCTTCTCTATGGCAAGCGTGAC TTCTTGCTGAGTGACAAAGCCTCTAGCCTCCTCTGCTTCCAGCACCAGGAGGAGAGCCTG ${\tt GCTCAGGGCCCCCGCTGTTAGCCACTTCTGTCACCTCCTGGTGGAGCCCTCAGAACATC}$ AGCCTGCCCAGTGCCGCCAGCTTCACCTTCTCCTTCCACAGTCCTCCCCACACGGCCGCT CAGAGCCTGGAGTCGAAACTGACCTCTGTGAGATTCATGGGGGACATGGTGTCCTTCGAG GAGGACCGGATCAACGCCACGGTGTGGAAGCTCCAGCCCACAGCCGGCCTCCAGGACCTG CACATCCACTCCCGGCAGGAGGAGGAGCAGAGCGAGATCATGGAGTACTCGGTGCTGCTG CTGGTGGACTTCAGCAGCCAAGCCCTGTTCCAGGACAAGAATTCCAGCCAAGTCCTGGGT GAGAAGGTCTTGGGGATTGTGGTACAGAACACCAAAGTAGCCAACCTCACGGAGCCCGTG GTGCTCACTTTCCAGCACCAGCTACAGCCGAAGAATGTGACTCTGCAATGTGTTCTGG GTTGAAGACCCCACATTGAGCAGCCCGGGGCATTGGAGCAGTGCTGGGTGTGAGACCGTC AGGAGAGAAACCCCAAACATCCTGCTTCTGCAACCACTTGACCTACTTTGCAGTGCTGATG GTCTCCTCGGTGGAGGTGGACGCCGTGCACAAGCACTACCTGAGCCTCCTCCTACGTG GGCTGTGTCGTCTGGCCTGGCCTGCCTTGTCACCATTGCCGCCTACCTCTGCTCCAGG GTGCCCCTGCCGTGCAGGAGGAAACCTCGGGACTACACCATCAAGGTGCACATGAACCTG $\tt CTTTCCTGGATGGGCCTCGAGGGGTACAACCTCTACCGACTCGTGGTGGAGGTCTTTGGC$ ${\tt ACCTATGTCCCTGGCTACCTCAAGCTGAGCGCCATGGGCCTGGGGCTTCCCCATCTTT}$ ${\tt CATAGGACTCCAGAGGGCGTCATCTACCCTTCCATGTGCTGGATCCGGGACTCCCTGGTC}$ AGCTACATCACCAACCTGGGCCTCTTCAGCCTGGTGTTTCTGTTCAACATGGCCATGCTA GCCACCATGGTGGTGCAGATCCTGCGGCTGCGCCCCACACCCCAAAAGTGGTCACATGTG TTTGCTTCTGGCACCTTCCAGCTTGTCGTCCTCTACCTTTTCAGCATCATCACCTCCTTC CAAGGCTTCCTCATCTTCATCTGGTACTGGTCCATGCGGCTGCAGGCCCGGGGTGGCCCC TCCCCTCTGAAGAGCAACTCAGACAGCGCCAGGCTCCCCATCAGCTCGGGCAGCACCTCG ${\tt TCCAGCCGCATC}_{{\tt TAG}}{\tt GCCTCCAGCCCACCTGCCCATGTGATGAAGCAGAGATGCGGCCTC}$ GTCGCACACTGCCTGTGGCCCCGAGCCAGGCCCAGCCCCAGGCCAGTCAGCCGCAGACT AAGTGCGCCGCCATGCTGCCTAGGGTACTGTCCCCACATCTGTCCCAACCCAGCTGGAGG ${\tt CCTGGTCTCCTTACAACCCCTGGGCCCAGCCCTCATTGCTGGGGCCAGGCCTTGGAT}$ ${\tt GTTGCTCTGTCTCGTGGTCACCCTGAGGGCACTCTGCATCCTCTGTCATTTTAACCTC}$ AGGTGGCACCCAGGGCGAATGGGGCCCAGGGCCAGAGCCCTGGCGGA

96/392

GGAGAGGCCCTTTGCCAGGAGCACAGCAGCTCGCCTACCTCTGAGCCCAGGCCCCCT CCCTCCCTCAGCCCCCCAGTCCTCCCTCCATCTTCCCTGGGGTTCTCCTCCCCAGG GCCTCCTTGCTCCTTCGTTCACAGCTGGGGGTCCCCGATTCCAATGCTGTTTTTTGGGGA GTGGTTTCCAGGAGCTGCCTGGTGTCTGCTGTAAATGTTTGTCTACTGCACAAGCCTCGG CCTGCCCCTGAGCCAGGCTCGGTACCGATGCGTGGGCTGGGCTAGGTCCCTCTGTCCATC TGGGCCTTTGTATGAGCTGCATTGCCCTTGCTCACCCTGACCAAGCACACGCCTCAGAGG GGCCCTCAGCCTCTCAAGCCCTCTTGTGGCAAGAACTGTGGACCATGCCAGTCCCGT CTGGTTTCCATCCCACCACTCCAAGGACTGAGACTGACCTCCTCTGGTGACACTGGCCTA GAGCCTGACACTCTCCTAAGAGGTTCTCTCCAAGCCCCCAAATAGCTCCAGGCGCCCTCG GCCGCCCATCATGGTTAATTCTGTCCAACAAACACACACGGGTAGATTGCTGGCCTGTTG TAGGTGGTAGGGACACAGATGACCGACCTGGTCACTCCTGCCAACATTCAGTCTGGT ATGTGAGGCGTGCGTGAAGCAAGAACTCCTGGAGCTACAGGGACAGGGAGCCATCATTCC TGCCTGGGAATCCTGGAAGACTTCCTGCAGGAGTCAGCGTTCAATCTTGACCTTGAAGAT GGGAAGGATGTTCTTTTACGTACCAATTCTTTTGTCTTTTGATATTAAAAAGAAGTACA TGTTCATTGTAGAGAATTTGGAAACTGTAGAAGAGAATCAAGAAGAAAAATAAAATCAG

FIGURE 92

MTPQSLLQTTLFLLSLLFLVQGAHGRGHREDFRFCSQRNQTHRSSLHYKPTPDLRISIEN SEEALTVHAPFPAAHPASRSFPDPRGLYHFCLYWNRHAGRLHLLYGKRDFLLSDKASSLL CFQHQEESLAQGPPLLATSVTSWWSPQNISLPSAASFTFSFHSPPHTAAHNASVDMCELK RDLQLLSQFLKHPQKASRRPSAAPASQQLQSLESKLTSVRFMGDMVSFEEDRINATVWKL QPTAGLQDLHIHSRQEEEQSEIMEYSVLLPRTLFQRTKGRSGEAEKRLLLVDFSSQALFQ DKNSSQVLGEKVLGIVVQNTKVANLTEPVVLTFQHQLQPKNVTLQCVFWVEDPTLSSPGH WSSAGCETVRRETQTSCFCNHLTYFAVLMVSSVEVDAVHKHYLSLLSYVGCVVSALACLV TIAAYLCSRVPLPCRKPRDYTIKVHMNLLLAVFLLDTSFLLSEPVALTGSEAGCRASAI FLHFSLLTCLSWMGLEGYNLYRLVVEVFGTYVPGYLLKLSAMGWGFPIFLVTLVALVDVD NYGPIILAVHRTPEGVIYPSMCWIRDSLVSYITNLGLFSLVFLFNMAMLATMVVQILRLR PHTQKWSHVLTLLGLSLVLGLPWALIFFSFASGTFQLVVLYLFSIITSFQGFLIFIWYWS MRLQARGGPSPLKSNSDSARLPISSGSTSSSRI

Important features: Signal peptide: amino acids 1-25

Putative transmembrane domains: amino acids 382-398, 402-420, 445-468, 473-491, 519-537, 568-590 and 634-657

Microbodies C-terminal targeting signal: amino acids 691-693

cAMP- and cGMP-dependent protein kinase phosphorylation sites:

amino acids 198-201 and 370-373

N-glycosylation sites: amino acids 39-42, 148-151, 171-174, 234-237, 303-306, 324-327 and 341-344

G-protein coupled receptors family 2 proteins: amino acids 475-504

FIGURE 93

99/392

FIGURE 94

 ${\tt MKLMVLVFTIGLTLLLGVQAMPANRLSCYRKILKDHNCHNLPEGVADLTQIDVNVQDHFW} \\ {\tt DGKGCEMICYCNFSELLCCPKDVFFGPKISFVIPCNNQ}$

Important features: Signal peptide: amino acids 1-20

N-glycosylation site: amino acids 72-76

Tyrosine kinase phosphorylation site: amino acids 63-71

FIGURE 95

GAATTCCGGGCCCCAGGATGCCAACTTTGAATAGGATGAAGACTACAACTTGTTCCCTTC
TCATCTGCATCTCCCTGCTCCAGCTGATGGTCCCAGTGAATACTGATGAGACCATAGAGA
TTATCGTGGAGAATAAGGTCAAGGAACTTCTTGCCAATCCAGCTAACTATCCCTCCACTG
TAACGAAGACTCTCTCTTGCACTAGTGTCAAGACTATGAACAGATGGGCCTCCTGCCCTG
CTGGGATGACTGCTACTGGGTGTGCTTGTGGCTTTGCCTGTGGATCTTGGGAGATCCAGA
GTGGAGATACTTGCAACTGCCTGTGCTTACTCGTTGACTGGACCACTGCCCGCTGCTGCC
AACTGTCCTAAGAATGAAGAGGTGGAGAACCCAGCTTTGATATGATGAATCTAACAAAAA
CTGCAGTCTCAATTTGGAAATCTGACTCATGTGCCTTTAAATGTGTTCATATTGCCCATT
TACCCTGCTTCTTGAAATGCTTCTTGAAAAAATAAAGACAAATTTGCATGTG

101/392

FIGURE 96

MKTTTCSLLICISLLQLMVPVNTDETIEIIVENKVKELLANPANYPSTVTKTLSCTSVK TMNRWASCPAGMTATGCACGFACGSWEIQSGDTCNCLCLLVDWTTARCCQLS

102/392

FIGURE 97

GAGGCAGAAAGGCAGAAAGGAGAAAATTCAGGATAACTCTCCTGAGGGGTGAGCCAAGCC CTGCCATGTAGTGCACGCAGGACATCAACAACACAGATAACAGGAAATGATCCATTCCC TGTGGTCACTTATTCTAAAGGCCCCAACCTTCAAAGTTCAAGTAGTGAT<u>ATG</u>GATGACTC CACAGAAAGGGAGCAGTCACGCCTTACTTCTTGCCTTAAGAAAAGAGAAGAAATGAAACT GAAGGAGTGTGTTTCCATCCTCCCACGGAAGGAAAGCCCCTCTGTCCGATCCTCCAAAGA CGGAAAGCTGCTGCAACCTTGCTGCTGCACTGTCTTGCTGCCTCACGGTGGT GTCTTCTACCAGGTGGCCGCCCTGCAAGGGGACCTGGCCAGCCTCCGGGCAGAGCTGCA AGCTCCAGCTGTCACCGCGGGACTGAAAATCTTTGAACCACCAGCTCCAGGAGAAGGCAA CTCCAGTCAGAACAGCAGAAATAAGCGTGCCGTTCAGGGTCCAGAAGAACAGTCACTCA AGACTGCTTGCAACTGATTGCAGACAGTGAAACACCAACTATACAAAAAGGATCTTACAC ATTTGTTCCATGGCTTCTCAGCTTTAAAAGGGGAAGTGCCCTAGAAGAAAAAGAGAATAA AATATTGGTCAAAGAAACTGGTTACTTTTTTATATATGGTCAGGTTTTATATACTGATAA GACCTACGCCATGGGACATCTAATTCAGAGGAAGAAGGTCCATGTCTTTGGGGATGAATT GAGTCTGGTGACTTTGTTTCGATGTATTCAAAATATGCCTGAAACACTACCCAATAATTC CTGCTATTCAGCTGGCATTGCAAAACTGGAAGAAGGAGATGAACTCCAACTTGCAATACC AAGAGAAAATGCACAAATATCACTGGATGGAGATGTCACATTTTTTGGTGCATTGAAACT GCTG<u>TGACCTACTTACACCATGTCTGTAGCTATTTTCCTCCCTTTCTCTGTACCTCTAAG</u>

103/392

FIGURE 98

MDDSTEREQSRLTSCLKKREEMKLKECVSILPRKESPSVRSSKDGKLLAATLLLALLSCC LTVVSFYQVAALQGDLASLRAELQGHHAEKLPAGAGAPKAGLEEAPAVTAGLKI FEPPAP GEGNSSQNSRNKRAVQGPEETVTQDCLQLIADSETPTIQKGSYTFVPWLLSFKRGSALEE KENKILVKETGYFFIYGQVLYTDKTYAMGHLIQRKKVHVFGDELSLVTLFRCIQNMPETL PNNSCYSAGIAKLEEGDELQLAIPRENAQISLDGDVTFFGALKLL

Transmembrane domain:

amino acids 47-72

N-glycosylation site: amino acids 124-127, 242-245

cAMP- and cGMP-dependent protein kinase phosphorylation site:

amino acids 33-36, 173-176

N-myristoylation site: amino acids 96-101

TNF family proteins: amino acids 172-206

104/392

FIGURE 99

GCGAGGTGGCGATCGCTGAGAGGCAGGAGGCCGAGGCCGGGCCCGGAG GTGGGGCGCCGCTGGGGCCGGCCCGCACGGCTTCATCTGAGGGCGCACGGCCCGCGACC ${\tt GAGCGTGCGGACTGGCCTCCCAAGCGTGGGGCGACAAGCTGCCGGAGCTGCA} {\tt ATG} {\tt GGCCGGGGCGACAAGCTGCCGGAGCTGCA} {\tt ATG} {\tt GGCCGGGGGCGACAAGCTGCCGGAGCTGCAATGGGCCGGAGCTGCAATGGGGCCGGAGCTGCAATGGGGCCGAGCAATGGAGCTGCAATGGAGCTGCAATGGAGCTGCAATGGAGCTGCAATGGAGCTGCAATGGAGCTGCAATGGAGCTGCAATGGAGCTGCAATGGAGCTGCAATGGAGCTGCAATGGAGAATGGAGAATGGAGAATGGAATGGAGAATGAATGGAGAATGAATGGAATG$ CGGCTGGGGATTCTTGTTTGGCCTCCTGGGCGCCGTGTGGCTGCTCAGCTCGGGCCACGG AGAGGAGCAGCCCCGGAGACAGCGGCACAGAGGTGCTTCTGCCAGGTTAGTGGTTACTT GGATGATTGTACCTGTGATGTTGAAACCATTGATAGATTTAATAACTACAGGCTTTTCCC AAGACTACAAAAACTTCTTGAAAGTGACTACTTTAGGTATTACAAGGTAAACCTGAAGAG GCCGTGTCCTTTCTGGAATGACATCAGCCAGTGTGGAAGAAGGGACTGTGCTGTCAAACC ATGTCAATCTGATGAAGTTCCTGATGGAATTAAATCTGCGAGCTACAAGTATTCTGAAGA AGCCAATAATCTCATTGAAGAATGTGAACAAGCTGAACGACTTGGAGCAGTGGATGAATC TCTGAGTGAGGAAACACAGAAGGCTGTTCTTCAGTGGACCAAGCATGATGATTCTTCAGA TAACTTCTGTGAAGCTGATGACATTCAGTCCCCTGAAGCTGAATATGTAGATTTGCTTCT TAATCCTGAGCGCTACACTGGTTACAAGGGACCAGATGCTTGGAAAATATGGAATGTCAT $\tt CTACGAAGAAACTGTTTTAAGCCACAGACAATTAAAAGACCTTTAAATCCTTTGGCTTC$ ${\tt TGGTCAAGGGACAAGTGAAGAACACTTTTTACAGTTGGCTAGAAGGTCTCTGTGTAGA}$ AAAAAGAGCATTCTACAGACTTATATCTGGCCTACATGCAAGCATTAATGTGCATTTGAG TGCAAGATATCTTTTACAAGAGACCTGGTTAGAAAAGAAATGGGGGACACAACATTACAGA CTTGTATTTTCTCTACTTAATAGAACTAAGGGCTTTATCCAAAGTGTTACCATTCTTCGA GCGCCCAGATTTTCAACTCTTTACTGGAAATAAAATTCAGGATGAGGAAAACAAAATGTT ACTTCTGGAAATACTTCATGAAATCAAGTCATTTCCTTTGCATTTTGATGAGAATTCATT TTTTGCTGGGGATAAAAAGAAGCACACAAACTAAAGGAGGACTTTCGACTGCATTTTAG AAATATTTCAAGAATTATGGATTGTGTTGGTTGTTTTTAAATGTCGTCTGTGGGGAAAGCT TCAGACTCAGGGTTTGGGCACTGCTCTGAAGATCTTATTTTCTGAGAAATTGATAGCAAA TATGCCAGAAAGTGGACCTAGTTATGAATTCCATCTAACCAGACAAGAAATAGTATCATT ATTCAACGCATTTGGAAGAATTTCTACAAGTGTGAAAGAATTAGAAAACTTCAGGAACTT $\tt GTTACAGAATATTCAT \underline{TAA} AGAAAACAAGCTGATATGTGCCTGTTTCTGGACAATGGAGG$ CGAAAGAGTGGAATTTCATTCAAAGGCATAATAGCAATGACAGTCTTAAGCCAAACATTT TATATAAAGTTGCTTTTGTAAAGGAGAATTATATTGTTTTAAGTAAACACATTTTTAAAA ATTGTGTTAAGTCTATGTATAATACTACTGTGAGTAAAAGTAATACTTTAATAATGTGGT ΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑ

FIGURE 100

MGRGWGFLFGLLGAVWLLSSGHGEEQPPETAAQRCFCQVSGYLDDCTCDVETIDRFNNYR LFPRLQKLLESDYFRYYKVNLKRPCPFWNDISQCGRRDCAVKPCQSDEVPDGIKSASYKY SEEANNLIEECEQAERLGAVDESLSEETQKAVLQWTKHDDSSDNFCEADDIQSPEAEYVD LLLNPERYTGYKGPDAWKIWNVIYEENCFKPQTIKRPLNPLASGQGTSEENTFYSWLEGL CVEKRAFYRLISGLHASINVHLSARYLLQETWLEKKWGHNITEFQQRFDGILTEGEGPRR LKNLYFLYLIELRALSKVLPFFERPDFQLFTGNKIQDEENKMLLLEILHEIKSFPLHFDE NSFFAGDKKEAHKLKEDFRLHFRNISRIMDCVGCFKCRLWGKLQTQGLGTALKILFSEKL IANMPESGPSYEFHLTRQEIVSLFNAFGRISTSVKELENFRNLLQNIH

Important features: Signal peptide: amino acids 1-23

N-glycosylation site: amino acids 280-283 and 384-387

Amidation site: amino acids 94-97

Glycosaminoglycan attachment site: amino acids 20-23 and 223-226

Aminotransferases class-V pyridoxal-phosphate: amino acids 216-222

Interleukin-7 proteins:
amino acids 338-343

FIGURE 101

 ${\tt GCCTAGCCAGGCCAAGA} {\tt ATG} {\tt CAATTGCCCCGGTGGTGGGAGGCTGGGAGACCCCTGTGCTT}$ ${\tt GGACGGGACAGGGTCGGGGGACACGCAGGATGAGCCCCGCGACCACTGGCACATTCTTGC}$ TGACAGTGTACAGTATTTCTCCAAGGTACACTCCGATCGGAATGTATACCCATCAGCAG GTGTCCTCTTTGTTCATGTTTTGGAAAGAGAATATTTTAAGGGGGGAATTTCCACCTTACC CAAAACCTGGCGAGATTAGTAATGATCCCATAACATTTAATACAAATTTAATGGGTTACC CAGACCGACCTGGATGGCTTCGATATATCCAAAGGACACCATATAGTGATGGAGTCCTAT ATGGGTCCCCAACAGCTGAAAATGTGGGGAAGCCAACAATCATTGAGATAACTGCCTACA ACTTCCCGTTGCCATATCAAGCAGAATTCTTCATTAAGAATATGAATGTAGAAGAAATGT TGGCCAGTGAGGTTCTTGGAGACTTTCTTGGCGCAGTGAAAAATGTGTGGCAGCCAGAGC GCCTGAACGCCATAAACATCACATCGGCCCTAGACAGGGGTGGCAGGGTGCCACTTCCCA TTAATGACCTGAAGGAGGGCGTTTATGTCATGGTTGGTGCAGATGTCCCGTTTTCTTCTT GTTTACGAGAAGTTGAAAATCCACAGAATCAATTGAGATGTAGTCAAGAAATGGAGCCTG TAATAACATGTGATAAAAAATTTCGTACTCAATTTTACATTGACTGGTGCAAAATTTCAT TGGTTGATAAAACAAAGCAAGTGTCCACCTATCAGGAAGTGATTCGTGGAGAGGGGATTT TACCTGATGGTGGAGAATACAAACCCCCTTCTGATTCTTTGAAAAGCAGAGACTATTACA CGGATTTCCTAATTACACTGGCTGTGCCCTCGGCAGTGGCACTGGTCCTTTTTCTAATAC TTGCTTATATCATGTGCTGCCGACGGGAAGGCCGTGGAAAAGAGAAACATGCAAACACCAG ACATCCAACTGGTCCATCACAGTGCTATTCAGAAATCTACCAAGGAGCTTCGAGACATGT CCAAGAATAGAGAGATAGCATGGCCCCTGTCAACGCTTCCTGTGTTCCACCCTGTGACTG GGGAAATCATACCTCCTTTACACACAGACAACTATGATAGCACAAACATGCCATTGATGC AAACGCAGCAGAACTTGCCACATCAGACTCAGATTCCCCAACAGCAGCAGACTACAGGTAAAT GGTATCCCTGAAGAAAAACTGACTGAAGCAATGAATTTATAATCAGACAATATAGCA GTTACATCACATTTCTTTTCTCTTCCAATAATGCATGAGCTTTTCTGGCATATGTTATGC ATGTTGGCAGTATTAAGTGTATACCAAATAATACAACATAACTTTCATTTTACTAATGTA TTTTTTTGTACTTAAAGCATTTTTGACAATTTGTAAAACATTGATGACTTTATATTTGTT

FIGURE 102

MQLPRWWELGDPCAWTGQGRGTRRMSPATTGTFLLTVYSIFSKVHSDRNVYPSAGVLFVH VLEREYFKGEFPPYPKPGEISNDPITFNTNLMGYPDRPGWLRYIQRTPYSDGVLYGSPTA ENVGKPTIIEITAYNRRTFETARHNLIINIMSAEDFPLPYQAEFFIKNMNVEEMLASEVL GDFLGAVKNVWQPERLNAINITSALDRGGRVPLPINDLKEGVYVMVGADVPFSSCLREVE NPQNQLRCSQEMEPVITCDKKFRTQFYIDWCKISLVDKTKQVSTYQEVIRGEGILPDGGE YKPPSDSLKSRDYYTDFLITLAVPSAVALVLFLILAYIMCCRREGVEKRNMQTPDIQLVH HSAIQKSTKELRDMSKNREIAWPLSTLPVFHPVTGEIIPPLHTDNYDSTNMPLMQTQQNL PHQTQIPQQQTTGKWYP

signal sequence:
Amino acids 1-46

transmembrane domain: Amino acids 319-338

N-glycosylation site: Amino acids 200-204

cAMP- and cGMP-dependent protein kinase phosphorylation site:

Amino acids 23-27

Tyrosine kinase phosphorylation site: Amino acids 43-52

N-myristoylation sites: Amino acids 17-23;112-118;116-122;185-191

108/392

FIGURE 103

CAGAAGAGGGGGCTAGCTGTCTCTGCGGACCAGGGAGACCCCCGCGCCCCCCGGT GTGAGGCGGCCTCACAGGGCCGGGTGGGCTGGCGAGCCGACGCGGCGGCGGAGGAGGCTG TGAGGAGTGTGTGGAACAGGACCCGGGACAGAGGAACCATGGCTCCGCAGAACCTGAGCA CCTTTTGCCTGTTGCTATACCTCATCGGGGCGGTGATTGCCGGACGAGATTTCTATA AGATCTTGGGGGTGCCTCGAAGTGCCTCTATAAAGGATATTAAAAAGGCCTATAGGAAAC TAGCCCTGCAGCTTCATCCCGACCGGAACCCTGATGATCCACAAGCCCAGGAGAAATTCC AGGATCTGGGTGCTTATGAGGTTCTGTCAGATAGTGAGAAACGGAAACAGTACGATA CTTATGGTGAAGAAGGATTAAAAGATGGTCATCAGAGCTCCCATGGAGACATTTTTTCAC ACTTCTTTGGGGATTTTGGTTTCATGTTTGGAGGAACCCCTCGTCAGCAAGACAGAAATA TTCCAAGAGGAAGTGATATTATTGTAGATCTAGAAGTCACTTTGGAAGAAGTATATGCAG AGTGCAATTGTCGGCAAGAGATGCGGACCACCCAGCTGGGCCCTGGGCCCTTCCAAATGA TGGAAGTAGAAATAGAGCCTGGGGTGAGAGACGCCATGGAGTACCCCTTTATTGGAGAAG GTGAGCCTCACGTGGATGGGGAGCCTGGAGATTTACGGTTCCGAATCAAAGTTGTCAAGC ACCCAATATTTGAAAGGAGAGAGATGATTTGTACACAAATGTGACAATCTCATTAGTTG AGTCACTGGTTGGCTTTGAGATGGATATTACTCACTTGGATGGTCACAAGGTACATATTT CCCGGGATAAGATCACCAGGCCAGGAGCGAAGCTATGGAAGAAAGGGGAAGGGCTCCCCA ACTTTGACAACAACAATATCAAGGGCTCTTTGATAATCACTTTTGATGTGGATTTTCCAA AAGAACAGTTAACAGAGGAAGCGAGAGAAGGTATCAAACAGCTACTGAAACAAGGGTCAG TGCAGAAGGTATACAATGGACTGCAAGGATATTGAGAGTGAATAAAATTGGACTTTGTTT TTATTTCAATATGCAAGTTAGGCTTAATTTTTTTTATCTAATGATCATCATGAAATGAAT AAGAGGGCTTAAGAATTTGTCCATTTGCATTCGGAAAAGAATGACCAGCAAAAGGTTTAC TAATACCTCTCCCTTTGGGGATTTAATGTCTGGTGCTGCCGCCTGAGTTTCAAGAATTAA AGCTGCAAGAGGACTCCAGGAGCAAAAGAAACACAATATAGAGGGTTGGAGTTGTTAGCA ATTTCATTCAAAATGCCAACTGGAGAAGTCTGTTTTTTAAATACATTTTGTTGTTATTTTTTA

109/392

FIGURE 104

MAPQNLSTFCLLLLYLIGAVIAGRDFYKILGVPRSASIKDIKKAYRKLALQLHPDRNPDD PQAQEKFQDLGAAYEVLSDSEKRKQYDTYGEEGLKDGHQSSHGDIFSHFFGDFGFMFGGT PRQQDRNIPRGSDIIVDLEVTLEEVYAGNFVEVVRNKPVARQAPGKRKCNCRQEMRTTQL GPGRFQMTQEVVCDECPNVKLVNEERTLEVEIEPGVRDGMEYPFIGEGEPHVDGEPGDLR FRIKVVKHPIFERRGDDLYTNVTISLVESLVGFEMDITHLDGHKVHISRDKITRPGAKLW KKGEGLPNFDNNNIKGSLIITFDVDFPKEQLTEEAREGIKQLLKQGSVQKVYNGLQGY

Important features: Signal peptide: amino acids 1-22

Cell attachment sequence: amino acids 254-257

Nt-dnaJ domain signature: amino acids 67-87

Homologous region to Nt-dnaJ domain proteins: amino acids 26-58

N-glycosylation site: amino acids 5-9, 261-265

Tyrosine kinase phosphorylation site: amino acids 253-260

N-myristoylation site: amino acids 18-24, 31-37, 93-99, 215-221

Amidation site: amino acids 164-168

110/392

FIGURE 105

GGCACGAGGCGGGGGCAGTCGCGGGATGCGCCCGGGAGCCACAGCCTGAGGCCCTCAG GTCTCTGCAGGTGTCGTGGAGGAACCTAGCACCTGCCATCCTCTTCCCCAATTTGCCACT TCCAGCAGCTTTAGCCCATGAGGAGGATGTGACCGGGACTGAGTCAGGAGCCCTCTGGAA GC<u>ATG</u>GAGACTGTGGTGATTGTTGCCATAGGTGTGCTGGCCACCATCTTTCTGGCTTCGT GCTATGATTCTAAGCCCATTGTGGACCTCATTGGTGCCATGGAGACCCAGTCTGAGCCCT CTGAGTTAGAACTGGACGATGTCGTTATCACCAACCCCCACATTGAGGCCATTCTGGAGA ATGAAGACTGGATCGAAGATGCCTCGGGTCTCATGTCCCACTGCATTGCCATCTTGAAGA TTTGTCACACTCTGACAGAGAGCTTGTTGCCATGACAATGGGCTCTGGGGCCAAGATGA AGACTTCAGCCAGTGTCAGCGACATCATTGTGGTGGCCAAGCGGATCAGCCCCAGGGTGG ATGATGTTGTGAAGTCGATGTACCCTCCGTTGGACCCCAAACTCCTGGACGCACGGACGA CGGGAGGCCTGGACTGGATTGACCAGTCTCTGTCGGCTGCTGAGGAGCATTTGGAAGTCC TTCGAGAAGCCCTAGCTTCTGAGCCAGATAAAGGCCTCCCAGGCCCTGAAGGCTTCC TGCAGGAGCAGTCTGCAATT<u>TAG</u>TGCCTACAGGCCAGCAGCTAGCCATGAAGGCCCCTGC ${\tt CACGGCTGGAGAGTTCAGCTGTGTGTGCATAGTAAAGCAGGAGATCCCCGTCAGTTTATG}$ CCTCTTTTGCAGTTGCAAACTGTGGCTGGTGAGTGGCAGTCTAATACTACAGTTAGGGGA GCTCACCTAGTGTTTTCAAGAAAATTGAGCCACCGTCTAAGAAATCAAGAGGTTTCACAT TAAAATTAGAATTTCTGGCCTCTCTCGATCGGTCAGAATGTGTGGCAATTCTGATCTGCA TTTTCAGAAGAGGACAATCAATTGAAACTAAGTAGGGGTTTCTTCTTTTGGCAAGACTTG TACTCTCTCACCTGGCCTGTTTCATTTATTTGTATTATCTGCCTGGTCCCTGAGGCGTCT GGGTCTCTCCTCTCCCTTGCAGGTTTGGGTTTGAAGCTGAGGAACTACAAAGTTGATGAT TTCTTTTTTATCTTTATGCCTGCAATTTTACCTAGCTACCACTAGGTGGATAGTAAATTT ATACTTATGTTTCCCTCAAAAAAAAAAAAAA

111/392

FIGURE 106

METVVIVAIGVLATIFLASFAALVLVCRQRYCRPRDLLQRYDSKPIVDLIGAMETQSEPS ELELDDVVITNPHIEAILENEDWIEDASGLMSHCIAILKICHTLTEKLVAMTMGSGAKMK TSASVSDIIVVAKRISPRVDDVVKSMYPPLDPKLLDARTTALLLSVSHLVLVTRNACHLT GGLDWIDQSLSAAEEHLEVLREAALASEPDKGLPGPEGFLQEQSAI

112/392

FIGURE 107

 ${\tt GCTTCATTTCTCCCGACTCAGCTTCCCACCCTGGGCTTTCCGAGGTGCTTTCGCCGCTGT}$ CCCCACCACTGCAGCCATGATCTCCTTAACGGACACGCAGAAAATTGGAATGGGATTAAC AGGATTTGGAGTGTTTTTCCTGTTCTTTTGGAATGATTCTCTTTTTTGACAAAGCACTACT ATTCAGATTCTTCTCCAAAAACATAAAATGAAAGCTACAGGTTTTTTTCTGGGTGGTGT ATTTGTAGTCCTTATTGGTTGGCCTTTGATAGGCATGATCTTCGAAATTTATGGATTTTT TCTCTTGTTCAGGGGCTTCTTTCCTGTCGTTGTTGGCTTTATTAGAAGAGTGCCAGTCCT TGGATCCCTCCTAAATTTACCTGGAATTAGATCATTTGTAGATAAAGTTGGAGAAAGCAA ${\tt CAATATGGTA}$ ${\tt TAA}$ ${\tt CAACAAGTGAATTTGAAGACTCATTTAAAATATTGTGTTATTATAA}$ AGTCATTTGAAGAATATTCAGCACAAAATTAAATTACATGAAATAGCTTGTAATGTTCTT TACAGGAGTTTAAAACGTATAGCCTACAAAGTACCAGCAGCAAATTAGCAAAGAAGCAGT AAATCCATGTTAATGATGCTTAAGAAACTCTTGAAGGCTATTTGTGTTGTTTTTCCACAA AAGGCTCAGGAGCATCCATAGGCATTTGCTTTTTAGAAGTGTCCACTGCAATGGCAAAAA TATTTCCAGTTGCACTGTATCTCTGGAAGTGATGCATGAATTCGATTGGATTGTGTCATT CAGGGCC

FIGURE 108

MISLTDTQKIGMGLTGFGVFFLFFGMILFFDKALLAIGNVLFVAGLAFVIGLERTFRFFF QKHKMKATGFFLGGVFVVLIGWPLIGMIFEIYGFFLLFRGFFPVVVGFIRRVPVLGSLLN LPGIRSFVDKVGESNNMV

Important features:
Transmembrane domains:
amino acids 12-30 (typeII), 33-52, 69-89 and 93-109

N-myristoylation sites: amino acids 11-16, 51-56 and 116-121

Aminoacyl-transfer RNA synthetases class-II protein: amino acids 49-59

114/392

FIGURE 109

FIGURE 110

MRGTRLALLALVLAACGELAPALRCYVCPEPTGVSDCVTIATCTTNETMCKTTLYSREIV YPFQGDSTVTKSCASKCKPSDVDGIGQTLPVSCCNTELCNVDGAPALNSLHCGALTLLPL LSLRL

Important features: Signal peptide: amino acids 1-17

N-glycosylation site: amino acids 46-49

FIGURE 111

GCGCCGCCAGGCGTAGGCGGGTGGCCCTTGCGTCTCCCGCTTCCTTGAAAAACCCGGCG GGCGAGCGAGGCTGCGGCCGGCCGCCGCCGAGAAGCCTCG $\tt CTCGGCGCCCAAC \underline{ATG} GCGGTGGGCGCTGCGGCCCGCAGCTAACGGCGCTCCTGGCCGC$ CTGGATCGCGGCTGTGGCGGCGACGGCACGCCCCGAGGAGGCCGCGCTGCCGCAGGAGCA GAGCCGGGTCCAGCCCATGACCGCCTCCAACTGGACGCTGGTGATGGAGGGCGAGTGGAT GCTGAAATTTTACGCCCCATGGTGTCCATCCTGCCAGCAGACTGATTCAGAATGGGAGGC TTTTGCAAAGAATGGTGAAATACTTCAGATCAGTGTGGGGAAGGTAGATGTCATTCAAGA ACCAGGTTTGAGTGGCCGCTTCTTTGTCACCACTCTCCCCAGCATTTTTTCATGCAAAGGA TGGGATATTCCGCCGTTATCGTGGCCCAGGAATCTTCGAAGACCTGCAGAATTATATCTT GATGTCTGGAATGGCTGGTCTTTTTAGCATCTCTGGCAAGATATGGCATCTTCACAACTA TTTCACAGTGACTCTTGGAATTCCTGCTTGGTGTTCTTATGTGTTTTTCGTCATAGCCAC CTTGGTTTTTGGCCTTTTTATGGGTCTGGTCTTGGTGGTAATATCAGAATGTTTCTATGT GCCACTTCCAAGGCATTTATCTGAGCGTTCTGAGCAGAATCGGAGATCAGAGGAGGCTCA TAGAGCTGAACAGTTGCAGGATGCGGAGGAGGAAAAGGATGATTCAAATGAAGAAGAAAA CAAAGACAGCCTTGTAGATGATGAAGAAGAAGAAGATCTTGGCGATGAGGATGAAGC AGAGGAAGAAGAGGAGGACAACTTGGCTGCTGGTGTGGATGAGGAGAAGTGAGGC CAATGATCAGGGGCCCCCAGGAGAGGACGGTGTGACCCGGGAGGAAGTAGAGCCTGAGGA GGCTGAAGAAGGCATCTCTGAGCAACCCTGCCCAGCTGACACAGAGGTGGTGGAAGACTC $\tt CTTGAGGCAGCGTAAAAGTCAGCATGCTGACAAGGGACTG\underline{TAG}ATTTAATGATGCGTTTT$ CAAGAATACACCCAAAACAATATGTCAGCTTCCCTTTGGCCTGCAGTTTGTACCAAATC CTTAATTTTTCCTGAATGAGCAAGCTTCTCTTAAAAGATGCTCTCTAGTCATTTGGTCTC ATGGCAGTAAGCCTCATGTATACTAAGGAGAGTCTTCCAGGTGTGACAATCAGGATATAG AAAAACAAACGTAGTGTTGGGATCTGTTTGGAGACTGGGATGGGAACAAGTTCATTTACT TAGGGGTCAGAGAGTCTCGACCAGAGGAGGCCATTCCCAGTCCTAATCAGCACCTTCCAG AGACAAGGCTGCAGGCCCTGTGAAATGAAAGCCAAGCAGGAGCCTTGGCTCCTGAGCATC AATTGCAGGAAACATCAGGCACCACAGTGCATGAAAAATCTTTCACAGCTAGAAATTGAA ${\tt AGGGCCTTGGGTATAGAGAGCAGCTCAGAAGTCATCCCAGCCCTCTGAATCTCCTGTGCT}$ ATGTTTTATTTCTTACCTTTAATTTTTCCAGCATTTCCACCATGGGCATTCAGGCTCTCC ACACTCTTCACTATTATCTCTTGGTCAGAGGACTCCAATAACAGCCAGGTTTACATGAAC TGTGTTTGTTCATTCTGACCTAAGGGGTTTAGATAATCAGTAACCATAACCCCTGAAGCT GTGACTGCCAAACATCTCAAATGAAATGTTGTGGCCATCAGAGACTCAAAAGGAAGTAAG GATTTTACAAGACAGATTAAAAAAAAATTGTTTTGTCCAAAATATAGTTGTTGATTT TTTTTAAGTTTTCTAAGCAATATTTTTCAAGCCAGAAGTCCTCTAAGTCTTGCCAGTAC AAGGTAGTCTTGTGAAGAAAAGTTGAATACTGTTTTGTTTTCATCTCAAGGGGTTCCCTG GGTCTTGAACTAACTAATAACTAAAAAACCACTTCTGATTTTCCTTCAGTGATGTG CTTTTGGTGAAAGAATTAATGAACTCCAGTACCTGAAAGTGAAAGATTTGATTTGTTTC CATCTTCTGTAATCTTCCAAAGAATTATATCTTTGTAAATCTCTCAATACTCAATCTACT GTAAGTACCCAGGGAGGCTAATTTCTTT

FIGURE 112

MAGGRCGPQLTALLAAWIAAVAATAGPEEAALPPEQSRVQPMTASNWTLVMEGEWMLKFY APWCPSCQQTDSEWEAFAKNGEILQISVGKVDVIQEPGLSGRFFVTTLPAFFHAKDGIFR RYRGPGIFEDLQNYILEKKWQSVEPLTGWKSPASLTMSGMAGLFSISGKIWHLHNYFTVT LGIPAWCSYVFFVIATLVFGLFMGLVLVVISECFYVPLPRHLSERSEQNRRSEEAHRAEQ LQDAEEEKDDSNEEENKDSLVDDEEEKEDLGDEDEAEEEEEEDNLAAGVDEERSEANDQG PPGEDGVTREEVEPEEAEEGISEQPCPADTEVVEDSLRQRKSQHADKGL

Important features: Signal peptide: amino acids 1-22

Transmembrane domain: amino acids 191-211

N-glycosylation site: amino acids 46-49

Thioredoxin family proteins: (homologous region to disulfide isomerase) amino acids 56-72

Flavodoxin proteins: amino acids 173-187

118/392

FIGURE 113

GAGGAACCTACCGGTACCGGCCGCGCGCTGTAGTCGCCGGTGTGGCTGCACCTCACCAA TCCCGTGCGCCGCGGCTGGGCCGTCGGAGAGTGCGTGTGCTTCTCTCCTGCACGCGGTGC TTGGGCTCGGCCAGGGTCCGCCGCCAGGGTTTGAGGATGGGGGAGTAGCTACAGGA AGCGACCCGCGATGGCAAGGTATATTTTTTGTGGAATGAAAAGGAAGTATTAGAAATGAG CTGAAGACCATTCACAGATTAATATTTTTGGGGACAGATTTGTGATGCTTGATTCACCCT TGAAGTAATGTAGACAGAAGTTCTCAAATTTGCATATTACATCAACTGGAACCAGCAGTG TAAAGATGACTATATCAGAGACTTGAAAAGGATCATTCTCTGTTTTCTGATAGTGTATAT GGCCATTTTAGTGGGCACAGATCAGGATTTTTACAGTTTACTTGGAGTGTCCAAAACTGC AAGCAGTAGAGAAATAAGACAAGCTTTCAAGAAATTGGCATTGAAGTTACATCCTGATAA ACTCAAAGATGAAGATCTACGGAAAAAGTATGACAAATATGGAGAAAAGGGACTTGAGGA TAATCAAGGTGGCCAGTATGAAAGCTGGAACTATTATCGTTATGATTTTGGTATTTATGA TGATGATCCTGAAATCATAACATTGGAAAGAAGAGAATTTGATGCTGCTGTTAATTCTGG AGAACTGTGGTTTGTAAATTTTTACTCCCCAGGCTGTTCACACTGCCATGATTTAGCTCC CACATGGAGAGACTTTGCTAAAGAAGTGGATGGGTTACTTCGAATTGGAGCTGTTAACTG TGGTGATGATAGAATGCTTTGCCGAATGAAAGGAGTCAACAGCTATCCCAGTCTCTTCAT TTTTCGGTCTGGAATGGCCCCAGTGAAATATCATGGAGACAGATCAAAGGAGAGTTTAGT GAGTTTTGCAATGCAGCATGTTAGAAGTACAGTGACAGAACTTTGGACAGGAAATTTTGT AGGAGGAGATTGTTTGACTTCACAGACACGACTCAGGCTTAGTGGCATGTTGTTTCTCAA CTCATTGGATGCTAAAGAAATATATTTGGAAGTAATACATAATCTTCCAGATTTTGAACT ${\tt ACTTTCGGCAAACACACTAGAGGATCGTTTGGCTCATCATCGGTGGCTGTTATTTTTCA}$ TTTTGGAAAAATGAAAATTCAAATGATCCTGAGCTGAAAAAACTAAAAACTCTACTTAA AAATGATCATATTCAAGTTGGCAGGTTTGACTGTTCCTCTGCACCAGACATCTGTAGTAA TCTGTATGTTTTTCAGCCGTCTCTAGCAGTATTTAAAGGACAAGGAACCAAAGAATATGA AATTCATCATGGAAAGAAGATTCTATATGATATACTTGCCTTTGCCAAAGAAGTGTGAA TTCTCATGTTACCACGCTTGGACCTCAAAATTTTCCTGCCAATGACAAAGAACCATGGCT TGTTGATTTCTTTGCCCCCTGGTGTCCACCATGTCGAGCTTTACTACCAGAGTTACGAAG AGCATCAAATCTTCTTTATGGTCAGCTTAAGTTTGGTACACTAGATTGTACAGTTCATGA GGGACTCTGTAACATGTATAACATTCAGGCTTATCCAACAACAGTGGTATTCAACCAGTC CAACATTCATGAGTATGAAGGACATCACTCTGCTGAACAAATCTTGGAGTTCATAGAGGA TCTTATGAATCCTTCAGTGGTCTCCCTTACACCCACCACCTTCAACGAACTAGTTACACA AGTCTTAATGCCAGAATGGAAAAGAATGGCCCGGACATTAACTGGACTGATCAACGTGGG CAGTATAGATTGCCAACAGTATCATTCTTTTTGTGCCCAGGAAAACGTTCAAAGATACCC TGAGATAAGATTTTTTCCCCCCAAAATCAAATAAAGCTTATCAGTATCACAGTTACAATGG TTGGAATAGGGATGCTTATTCCCTGAGAATCTGGGGTCTAGGATTTTTACCTCAAGTATC CACAGATCTAACACCTCAGACTTTCAGTGAAAAAGTTCTACAAGGGAAAAATCATTGGGT GATTGATTTCTATGCTCCTTGGTGTGGACCTTGCCAGAATTTTGCTCCAGAATTTGAGCT CTTGGCTAGGATGATTAAAGGAAAAGTGAAAGCTGGAAAAGTAGACTGTCAGGCTTATGC TCAGACATGCCAGAAAGCTGGGATCAGGGCCTATCCAACTGTTAAGTTTTATTTCTACGA AAGAGCAAAGAGAAATTTTCAAGAAGAGCAGATAAATACCAGAGATGCAAAAGCAATCGC TGCCTTAATAAGTGAAAAATTGGAAACTCTCCGAAATCAAGGCAAGAGGAATAAGGATGA ACTT**TGA**TAATGTTGAAGATGAAGAAAAGTTTAAAAGAAATTCTGACAGATGACATCAG

GCAGTTGTACTGCCAGAATTATCTACAGCACTGGTGTAAAAGAAGGGTCTGCAAACTTTT TCTGTAAAGGGCCGGTTTATAAATATTTTAGACTTTGCAGGCTATAATATATGGTTCACA CATGAGAACAAGAATAGAGTCATCATGTATTCTTTGTTATTTGCTTTTAACAACCTTTAA AAAATATTAAAACGATTCTTAGCTCAGAGCCATACAAAAGTAGGCTGGATTCAGTCCATG TGAGTCTGCTGTGCTATCTACATAAATGTCTAAGTTGTATAAAGTCCACTTTCCCTTCAC GTTTTTTGGCTGACCTGAAAAGAGGTAACTTAGTTTTTGGTCACTTGTTCTCCTAAAAAT GCTATCCCTAACCATATATTTATATTTCGTTTTAAAAACACCCATGATGTGGCACAGTAA AAGGTTGAAAAAATGCTTTTAATTTTTCACAGCCGAGAAACAGTGCAGCAGTATATGTGC ACACAGTAAGTACACAAATTTGAGCAACAGTAAGTGCACAAATTCTGTAGTTTGCTGTAT CATCCAGGAAAACCTGAGGGAAAAAAATTATAGCAATTAACTGGGCATTGTAGAGTATCC TAAATATGTTATCAAGTATTTAGAGTTCTATATTTTAAAGATATATGTGTTCATGTATTT TCTGAAATTGCTTTCATAGAAATTTTCCCACTGATAGTTGATTTTTGAGGCATCTAATAT TACTTTACAGGTTGTTTTACTGTAGCTTATAATGATACTGTAGTTATTCCAGTTACTAGT TTACTGTCAGAGGGCTGCCTTTTTCAGATAAATATTGACATAATAACTGAAGTTATTTTT ATAAGAAAATCAAGTATATAAATCTAGGAAAGGGATCTTCTAGTTTCTGTGTTTTAGA CTCAAAGAATCACAAATTTGTCAGTAACATGTAGTTGTTTAGTTATAATTCAGAGTGTAC AGAATGGTAAAAATTCCAATCAGTCAAAAGAGGTCAATGAATTAAAAGGCTTGCAACTTT ТТСААААААААААААА

120/392

FIGURE 114

MGVWLNKDDYIRDLKRIILCFLIVYMAILVGTDQDFYSLLGVSKTASSREIRQAFKKLAL KLHPDKNPNNPNAHGDFLKINRAYEVLKDEDLRKKYDKYGEKGLEDNQGGQYESWNYYRY DFGIYDDDPEIITLERREFDAAVNSGELWFVNFYSPGCSHCHDLAPTWRDFAKEVDGLLR IGAVNCGDDRMLCRMKGVNSYPSLFIFRSGMAPVKYHGDRSKESLVSFAMQHVRSTVTEL WTGNFVNSIQTAFAAGIGWLITFCSKGGDCLTSQTRLRLSGMLFLNSLDAKEIYLEVIHN LPDFELLSANTLEDRLAHHRWLLFFHFGKNENSNDPELKKLKTLLKNDHIQVGRFDCSSA PDICSNLYVFQPSLAVFKGQGTKEYEIHHGKKILYDILAFAKESVNSHVTTLGPQNFPAN DKEPWLVDFFAPWCPPCRALLPELRRASNLLYGQLKFGTLDCTVHEGLCNMYNIQAYPTT VVFNQSNIHEYEGHHSAEQILEFIEDLMNPSVVSLTPTTFNELVTQRKHNEVWMVDFYSP WCHPCQVLMPEWKRMARTLTGLINVGSIDCQQYHSFCAQENVQRYPEIRFFPPKSNKAYQ YHSYNGWNRDAYSLRIWGLGFLPQVSTDLTPQTFSEKVLQGKNHWVIDFYAPWCGPCQNF APEFELLARMIKGKVKAGKVDCQAYAQTCQKAGIRAYPTVKFYFYERAKRNFQEEQINTR DAKAIAALISEKLETLRNQGKRNKDEL

Important features: Endoplasmic reticulum targeting sequence: amino acids 744-747

Cytochrome c family heme-binding site signature: amino acids 158-163

Nt-dnaJ domain signature: amino acids 77-96

N-glycosylation site: amino acids 484-487

FIGURE 115

GCGGGCTGTTGACGGCGCTGCG<u>ATG</u>GCTGCCTGCGAGGGCAGGAGAAGCGGAGCTCTCGG TTCCTCTCAGTCGGACTTCCTGACGCCGCCAGTGGGCGGGGCCCCTTGGGCCGTCGCCAC CACTGTAGTCATGTACCCACCGCCGCCGCCGCCGCCTCATCGGGACTTCATCTCGGTGAC GCTGAGCTTTGGCGAGAGCTATGACAACAGCAAGAGTTGGCGGCGGCGCTCGTGCTGGAG ${ t GAAATGGAAGCAACTGTCGAGATTGCAGCGGAATATGATTCTCTTTCCTCCTTGCCTTTCT}$ ${ t GCTTTTCTGTGGACTCCTCTTCTACATCAACTTGGCTGACCATTGGAAAGCTCTGGCTTT$ CAGGCTAGAGGAAGAGCAGAAGATGAGGCCAGAAATTGCTGGGTTAAAACCAGCAAATCC ACCCGTCTTACCAGCTCCTCAGAAGGCGGACACCGACCCTGAGAACTTACCTGAGATTTC GTCACAGAAGACACAAAGACACATCCAGCGGGGACCACCTCACCTGCAGATTAGACCCCC ${ t AAGCCAAGACCTGAAGGATGGGACCCAGGAGGAGGCCACAAAAAGGCAAGAAGCCCCTGT}$ GGATCCCCGCCCGGAAGGAGATCCGCAGAGGACAGTCATCAGCTGGAGGGGAGCGGTGAT CGAGCCTGAGCAGGGCACCGAGCTCCCTTCAAGAAGAGCAGAAGTGCCCACCAAGCCTCC CCTGCCACCGGCCAGGACACAGGGCACACCAGTGCATCTGAACTATCGCCAGAAGGGCGT ${\tt GATTGACGTCTTCCTGCATGCATGGAAAGGATACCGCAAGTTTGCATGGGGCCATGACGA}$ GCTGAAGCCTGTGTCCAGGTCCTTCAGTGAGTGGTTTGGCCTCGGTCTCACACTGATCGA CGCGCTGGACACCATGTGGATCTTGGGTCTGAGGAAGAATTTGAGGAAGCCAGGAAGTG GGTGTCGAAGAAGTTACACTTTGAAAAAGGACGTGGACGTCAACCTGTTTGAGAGCACGAT GAAAGCTGAGGATTTTGGAAATCGGCTAATGCCTGCCTTCAGAACACCATCCAAGATTCC TTACTCGGATGTGAACATCGGTACTGGAGTTGCCCACCCGCCACGGTGGACCTCCGACAG CACTGTGGCCGAGGTGACCAGCATTCAGCTGGAGTTCCGGGAGCTCTCCCGTCTCACAGG GGATAAGAAGTTTCAGGAGGCAGTGGAGAAGGTGACACAGCACATCCACGGCCTGTCTGG GGGCGTATTCACGCTGGGCGCCAGGGCCGACAGCTACTATGAGTACCTGCTGAAGCAGTG GATCCAGGGCGGGAAGCAGGAGACACAGCTGCTGGAAGACTACGTGGAAGCCATCGAGGG ${ t TGTCAGAACGCACCTGCTGCGGCACTCCGAGCCCAGTAAGCTCACCTTTGTGGGGGGAGCT}$ TGCCCACGGCCGCTTCAGTGCCAAGATGGACCACCTGGTGTGCTTCCTGCCAGGGACGCT GGCTCTGGGCGTCTACCACGGCCTGCCCGCCAGCCACATGGAGCTGGCCCAGGAGCTCAT GGAGACTTGTTACCAGATGAACCGGCAGATGGAGACGGGGCTGAGTCCCGAGATCGTGCA CTTCAACCTTTACCCCCAGCCGGGCCGTCGGGACGTGGAGGTCAAGCCAGCAGACAGGCA CAACCTGCTGCGGCCAGAGACCGTGGAGAGCCTGTTCTACCTGTACCGCGTCACAGGGGA CCGCAAATACCAGGACTGGGGGCTGGGAGATTCTGCAGAGCTTCAGCCGATTCACACGGGT CCCCTCGGGTGGCTATTCTTCCATCAACAATGTCCAGGATCCTCAGAAGCCCGAGCCTAG GGACAAGATGGAGAGCTTCTTCCTGGGGGAGACGCTCAAGTATCTGTTCTTGCTCTTCTC CGATGACCCAAACCTGCTCAGCCTGGACGCCTACGTGTTCAACACCGAAGCCCACCCTCT ${\tt GCCTATCTGGACCCCTGCC}$ AGGCACCTTGCTGGGTCTGTGGCATTTTCCAAGGGCCCACGTAGCACCGGCAACCGCCAA GTGGCCCAGGCTCTGAACTGGCTCTGGGCTCCTCCTCGTCTCTGCTTTAATCAGGACACC GTGAGGACAAGTGAGGCCGTCAGTCTTGGTGTGATGCGGGGTGGGCTGGGCCGCTGGAGC CTCCGCCTGCTTCCTCCAGAAGACACGAATCATGACTCACGATTGCTGAAGCCTGAGCAG GTCTCTGTGGGCCGACCAGAGGGGGGCTTCGAGGTGGTCCCTGGTACTGGGGTGACCGAG TGGACAGCCCAGGGTGCAGCTCTGCCCGGGCTCGTGAAGCCTCAGATGTCCCCAATCCAA TACAAGCTGGACTCAGGGATCCTCCTGGCCGCCCCGCAGGGGGCTTGGAGGGCTGGACGG ${\tt CAAGTCCGTCTAGCTCACGGGCCCCTCCAGTGGAATGGGTCTTTTCGGTGGAGATAAAAG}$ TTGATTTGCTCTAACCGCAA

122/392

FIGURE 116

MAACEGRRSGALGSSQSDFLTPPVGGAPWAVATTVVMYPPPPPPPPHRDFISVTLSFGESY DNSKSWRRRSCWRKWKQLSRLQRNMILFLLAFLLFCGLLFYINLADHWKALAFRLEEEQK MRPEIAGLKPANPPVLPAPQKADTDPENLPEISSQKTQRHIQRGPPHLQIRPPSQDLKDG TQEEATKRQEAPVDPRPEGDPQRTVISWRGAVIEPEQGTELPSRRAEVPTKPPLPPARTQ GTPVHLNYRQKGVIDVFLHAWKGYRKFAWGHDELKPVSRSFSEWFGLGLTLIDALDTMWI LGLRKEFEEARKWVSKKLHFEKDVDVNLFESTIRILGGLLSAYHLSGDSLFLRKAEDFGN RLMPAFRTPSKIPYSDVNIGTGVAHPPRWTSDSTVAEVTSIQLEFRELSRLTGDKKFQEA VEKVTQHIHGLSGKKDGLVPMFINTHSGLFTHLGVFTLGARADSYYEYLLKQWIQGGKQE TQLLEDYVEAIEGVRTHLLRHSEPSKLTFVGELAHGRFSAKMDHLVCFLPGTLALGVYHG LPASHMELAQELMETCYQMNRQMETGLSPEIVHFNLYPQPGRRDVEVKPADRHNLLRPET VESLFYLYRVTGDRKYQDWGWEILQSFSRFTRVPSGGYSSINNVQDPQKPEPRDKMESFF LGETLKYLFLLFSDDPNLLSLDAYVFNTEAHPLPIWTPA

Important features of the protein: Transmembrane domain: amino acids 21-40 and 84-105 (type II)

123/392

FIGURE 117

GTGGGATTTATTTGAGTGCAAGATCGTTTTCTCAGTGGTGGTGGAAGTTGCCTCATCGCA GGCAGATGTTGGGGGCTTTGTCCGAACAGCTCCCCTCTGCCAGCTTCTGTAGATAAGGGTT AAAAACTAATATTTATATGACAGAAGAAAAAG<u>ATG</u>TCATTCCGTAAAGTAAACATCATCA TCTTGGTCCTGGCTGTTGCTCTTCTTACTGGTTTTGCACCATAACTTCCTCAGCTTGA GCAGTTTGTTAAGGAATGAGGTTACAGATTCAGGAATTGTAGGGCCTCAACCTATAGACT TCGCTGCATCTGAAGACAGGCTTGGGGGGGCCATTGCAGCTATAAACAGCATTCAGCACA ACACTCGCTCCAATGTGATTTTCTACATTGTTACTCTCAACAATACAGCAGACCATCTCC GGTCCTGGCTCAACAGTGATTCCCTGAAAAGCATCAGATACAAAATTGTCAATTTTGACC $\tt CTAAACTTTTGGAAGGAAAAGTAAAGGAGGATCCTGACCAGGGGGAATCCATGAAACCTT$ TAACCTTTGCAAGGTTCTACTTGCCAATTCTGGTTCCCAGCGCAAAGAAGGCCATATACA TGGATGATGATGTAATTGTGCAAGGTGATATTCTTGCCCTTTACAATACAGCACTGAAGC CAGGACATGCAGCTGCATTTTCAGAAGATTGTGATTCAGCCTCTACTAAAGTTGTCATCC GTGGAGCAGGAAACCAGTACAATTACATTGGCTATCTTGACTATAAAAAGGAAAGAATTC GTAAGCTTTCCATGAAAGCCAGCACTTGCTCATTTAATCCTGGAGTTTTTGTTGCAAACC TGACGGAATGGAAACGACAGAATATAACTAACCAACTGGAAAAATGGATGAAACTCAATG TAGAAGAGGGACTGTATAGCAGAACCCTGGCTGGTAGCATCACAACACCTCCTCTGCTTA TCGTATTTTATCAACAGCACTCTACCATCGATCCTATGTGGAATGTCCGCCACCTTGGTT CCAGTGCTGGAAAACGATATTCACCTCAGTTTGTAAAGGCTGCCAAGTTACTCCATTGGA ATGGACATTTGAAGCCATGGGGAAGGACTGCTTCATATACTGATGTTTGGGAAAAATGGT ATATTCCAGACCCAACAGGCAAATTCAACCTAATCCGAAGATATACCGAGATCTCAAACA ${\tt TAAAG}$ ${\tt TGA}$ ${\tt AACAGAATTTGAACTGTAAGCAAGCATTTCTCAGGAAGTCCTGGAAGATAGC}$ ATGCATGGGAAGTAACAGTTGCTAGGCTTCAATGCCTATCGGTAGCAAGCCATGGAAAAA GATGTGTCAGCTAGGTAAAGATGACAAACTGCCCTGTCTGGCAGTCAGCTTCCCAGACAG ACTATAGACTATAAATATGTCTCCATCTGCCTTACCAAGTGTTTTCTTACTACAATGCTG

124/392

FIGURE 118

MSFRKVNIIILVLAVALFLLVLHHNFLSLSSLLRNEVTDSGIVGPQPIDFVPNALRHAVD GRQEEIPVVIAASEDRLGGAIAAINSIQHNTRSNVIFYIVTLNNTADHLRSWLNSDSLKS IRYKIVNFDPKLLEGKVKEDPDQGESMKPLTFARFYLPILVPSAKKAIYMDDDVIVQGDI LALYNTALKPGHAAAFSEDCDSASTKVVIRGAGNQYNYIGYLDYKKERIRKLSMKASTCS FNPGVFVANLTEWKRQNITNQLEKWMKLNVEEGLYSRTLAGSITTPPLLIVFYQQHSTID PMWNVRHLGSSAGKRYSPQFVKAAKLLHWNGHLKPWGRTASYTDVWEKWYIPDPTGKFNLIRRYTEISNIK

125/392

FIGURE 119

126/392

FIGURE 120

MLPPMALPSVSWMLLSCLILLCQVQGEETQKELPSPRISCPKGSKAYGSPCYALFLSPKS WMDADLACQKRPSGKLVSVLSGAEGSFVSSLVRSISNSYSYIWIGLHDPTQGSEPDGDGW EWSSTDVMNYFAWEKNPSTILNPGHCGSLSRSTGFLKWKDYNCDAKLPYVCKFKD

Important features: Signal peptide: amino acids 1-26

C-type lectin domain signature: amino acids 146-171

FIGURE 121

AAAGTTACATTTTCTCTGGAACTCTCCTAGGCCACTCCCTGCTGATGCAACATCTGGGTT TGGGCAGAAAGGAGGTGCTTCGGAGCCCGCCCTTTCTGAGCTTCCTGGGCCGGCTCTAG AACAATTCAGGCTTCGCTGCGACTCAGACCTCAGCTCCAACATATGCATTCTGAAGAAAG ATGGCTGAGATGGACAGAATGCTTTATTTTGGAAAGAAACAATGTTCTAGGTCAAACTGA ${ t GTCTACCAA}$ ${ t ATG}$ ${ t CAGACTTTCACAATGGTTCTAGAAGAATCTGGACAAGTCTTTTCATG}$ CCTCAGAACCTCTCTGTACTCTCAACCAACATGAAGCATCTCTTGATGTGGAGCCCAGTG ATCGCGCCTGGAGAAACAGTGTACTATTCTGTCGAATACCAGGGGGAGTACGAGAGCCTG GATGTCACTGATGACATCACGGCCACTGTGCCATACAACCTTCGTGTCAGGGCCACATTG GGCTCACAGACCTCAGCCTGGAGCATCCTGAAGCATCCCTTTAATAGAAACTCAACCATC CTTACCCGACCTGGGATGGAGATCACCAAAGATGGCTTCCACCTGGTTATTGAGCTGGAG GAACATGTCAAAATGGTGAGGAGTGGGGGTATTCCAGTGCACCTAGAAACCATGGAGCCA GGGGCTGCATACTGTGAAGGCCCAGACATTCGTGAAGGCCATTGGGAGGTACAGCGCC TTCAGCCAGACAGAATGTGTGGAGGTGCAAGGAGAGGCCATTCCCCTGGTACTGGCCCTG TTTGCCTTTGTTGGCTTCATGCTGATCCTTGTGGTCGTGCCACTGTTCGTCTGGAAAATG GGCCGGCTGCTCCAGTACTCCTGTTGCCCCGTGGTGGTCCTCCCAGACACCTTGAAAATA ACCAATTCACCCCAGAAGTTAATCAGCTGCAGAAGGGAGGAGGTGGATGCCTGTGCCACG CAGGTGAAGCCGAGAACCTGGTCTGCATGACATGGAAACCATGAGGGGACAAGTTGTGTT TCTGTTTTCCGCCACGGACAAGGGATGAGAAGAGTAGGAAGAGCCTGTTGTCTACAAGTC GATGTGACCTCTAGACTGGGGGCTGCCACTTGCTGGCTGAGCAACCCTGGGAAAAGTGAC TTCATCCCTTCGGTCCTAAGTTTTCTCATCTGTAATGGGGGAATTACCTACACACCTGCT AAACACACACACAGAGTCTCTCTCTATATATACACACGTACACATAAATACACCCAGC GAGAGCAGGACATAAATGTATGATGAGAATGATCAAGGACTCTACACACTGGGTGGCTTG GAGAGCCCACTTTCCCAGAATAATCCTTGAGAGAAAAGGAATCATGGGAGCAATGGTGTT GAGTTCACTTCAAGCCCAATGCCGGTGCAGAGGGGAATGGCTTAGCGAGCTCTACAGTAG GTGACCTGGAGGAAGGTCACAGCCACACTGAAAATGGGATGTGCATGAACACGGAGGATC CATGAACTACTGTAAAGTGTTGACAGTGTGTGCACACTGCAGACAGCAGGTGAAATGTAT TTTCTGTTGGTAAAGTACAGAATTCAGCAAATAAAAAGGGCCACCCTGGCCAAAAGCGGT ΑΑΑΑΑΑΑΑΑΑΑΑ

128/392

FIGURE 122

MQTFTMVLEEIWTSLFMWFFYALIPCLLTDEVAILPAPQNLSVLSTNMKHLLMWSPVIAP GETVYYSVEYQGEYESLYTSHIWIPSSWCSLTEGPECDVTDDITATVPYNLRVRATLGSQ TSAWSILKHPFNRNSTILTRPGMEITKDGFHLVIELEDLGPQFEFLVAYWRREPGAEEHV KMVRSGGIPVHLETMEPGAAYCVKAQTFVKAIGRYSAFSQTECVEVQGEAIPLVLALFAF VGFMLILVVVPLFVWKMGRLLQYSCCPVVVLPDTLKITNSPQKLISCRREEVDACATAVM SPEELLRAWIS

Important features: Signal peptide: amino acids 1-29

Transmembrane domain: amino acids 230-255

N-glycosylation sites: amino acids 40-43 and 134-137

Tissue factor proteins homology: amino acids 92-119

Integrins alpha chain protein homology: amino acids 232-262

FIGURE 123

 $\tt CGGACGCGTGGGCCACCTCCGGAACAAGCC{\color{red} \underline{ATG}} GTGGCGGCGACGGTGGCAGCGGCG$ ${\tt TGGCTGCTGCTGCGGCCTGCGCGCAGCAGGAGCAGGACTTCTACGACTTCAAG}$ GCGGTCAACATCCGGGGCAAACTGGTGTCGCTGGAGAAGTACCGCGGATCGGTGTCCCTG GTGGTGAATGTGGCCAGCGAGTGCGGCTTCACAGACCAGCACTACCGAGCCCTGCAGCAG ${\tt CTGCAGCGAGACCTGGGCCCCCACCACTTTAACGTGCTCGCCTTCCCCTGCAACCAGTTT}$ GGCCAACAGGAGCCTGACAGCAACAAGGAGATTGAGAGCTTTGCCCGCCGCACCTACAGT GTCTCATTCCCCATGTTTAGCAAGATTGCAGTCACCGGTACTGGTGCCCATCCTGCCTTC AAGTACCTGGCCCAGACTTCTGGGAAGGAGCCCACCTGGAACTTCTGGAAGTACCTAGTA GCCCCAGATGGAAAGGTGGTAGGGGCTTGGGACCCAACTGTGTCAGTGGAGGAGGTCAGA CCGCGTCTCCTCCACCACCTCATCCCGCCCACCTGTGTGGGGCTGACCAATGCAAAC TCAAATGGTGCTTCAAAGGGAGAGACCCACTGACTCTCCTTTCCTTTACTCTTATGCCATT ${\tt GGTCCCATCATTCTTGTGGGGGGAAAAATTCTAGTATTTTGATTATTTGAATCTTACAGCA}$ ACAAATAGGAACTCCTGGCCAATGAGAGCTCTTGACCAGTGAATCACCAGCCGATACGAA AGGCTTCTGTAAACTGGGACCAATGATTACCTCATAGGGCTGTTGTGAGGATTAGGATGA AATACCTGTGAAAGTGCCTAGGCAGTGCCAGCCAAATAGGAGGCATTCAATGAACATTTT TTGCATATAAACCAAAAAATAACTTGTTATCAATAAAAACTTGCATCCAACATGAATTTC CAGCCGATGATAATCCAGGCCAAAGGTTTAGTTGTTGTTATTTCCTCTGTATTATTTTCT TCATTACAAAAGAAATGCAAGTTCATTGTAACAATCCAAACAATACCTCACGATATAAAA TAAAAATGAAAGTATCCTCCTCAAAAA

130/392

FIGURE 124

MVAATVAAAWLLLWAAACAQQEQDFYDFKAVNIRGKLVSLEKYRGSVSLVVNVASECGFT DQHYRALQQLQRDLGPHHFNVLAFPCNQFGQQEPDSNKEIESFARRTYSVSFPMFSKIAV TGTGAHPAFKYLAQTSGKEPTWNFWKYLVAPDGKVVGAWDPTVSVEEVRPQITALVRKLI LLKREDL

FIGURE 125

CGGACGCGTGGGCGGACGCGTGGGCTGGGTTGGGAGGGGCAGGATGGGAGGG AAAGTGAAGAAAACAGAAAAGGAGAGGGCCAGAGGACTTCTCATACTGGACAG ${\tt AAACCGATCAGGC} \underline{{\tt ATG}} {\tt GAACTCCCCTTCGTCACTCACCTGTTCTTGCCCCTGGTGTTCCT}$ GACAGGTCTCTGCTCCCCCTTTAACCTGGATGAACATCACCCACGCCTATTCCCAGGGCC ACCAGAAGCTGAATTTGGATACAGTGTCTTACAACATGTTGGGGGTGGACAGCGATGGAT GCTGGTGGGCGCCCCTGGGATGGGCCTTCAGGCGACCGGAGGGGGGACGTTTATCGCTG CCCTGTAGGGGGGCCCACAATGCCCCATGTGCCAAGGGCCACTTAGGTGACTACCAACT GGGAAATTCATCTCATCCTGCTGTGAATATGCACCTGGGGATGTCTCTGTTAGAGACAGA ${\tt TGGTGATGGGGGATTCATGGTGAGC\underline{TAA}}{\tt GGAGAGGGTGGTGGCAGTGTCTCTGAAGGTCC}$ ATAAAAGAAAAAGAGAGTGTGGTAAGGGAAAATGGTCTGTGTGGAGGGGTCAAGGAGT TAAAAACCCTAGAAAGCAAAAGGTAGGTAATGTCAGGGAGTAGTCTTCATGCCTCCTTCA ACTGGGAGCATGTTCTGAGGGTGCCCTCCCAAGCCTGGGAGTAACTATTTCCCCCCATCCC CAGGCCTGTGCCCCTCTCTGGTCTCGTGCTTGTGGCAGCTCTGTCTTCAGTTCTGGGATA TGTGCCCGTGTGGATGCTTCATTCCAGCCTCAGGGAAGCCTGGCACCCACTGCCCAACGT GGGCAAAGCGGTATGATGCCTGGCAAAGGGCCTGCATGGCTATCCTCATTGCTACCTAAT GTGCTTGCAAAAGCTCCATGTTTCCTAACAGATTCAGACTCCTGGCCAGGTGTGGTGGCC CACACCTGTAATTCTAGCACTTTGGGAGGCCAAGGTGGGCAGATCACTTGAGGTCAGGAG AAAATTAGCTGGGTGCGCTAGTGCATGCCTGTAATCTCATCTACTCGGGAGGCTAAGACA GGAGACTCTCACTTCAACCCAGGAGGTGGAGGTTGCGGTGAGCCAAGATTGTGCCTCTGC ACTCTAGCGTGGGTGACAGAGTAAGCGAGACTCCATCTCAAAAATAATAATAATAAT TCAGACTCCTTATCAGGAGTCCATGATCTGGCCTGGCACAGTAACTCATGCCTGTAATCC ${\tt CAACATTTTGGGAGGCCAACGCAGGGGTTTGAGACCAGCC}$ TGGGCAACATAGAAAGACCCCATCTCTAAATAAATGTTTTAAAAAT

132/392

FIGURE 126

 ${\tt MELPFVTHLFLPLVFLTGLCSPFNLDEHHPRLFPGPPEAEFGYSVLQHVGGGQRWMLVGAPWDGPSGDRRGDVYRCPVGGAHNAPCAKGHLGDYQLGNSSHPAVNMHLGMSLLETDGDGGFMVS}$

Important features: Signal peptide: amino acids 1-22

Cell attachment sequence: amino acids 70-73

N-glycosylation site: amino acids 98-101

Integrins alpha chain proteins: amino acids 67-81

FIGURE 127

 ${\tt GAGAGGACGAGGTGCCGCTGCCTGGAGAATCCTCCGCTGCCGTCGGCTCCCGGAGCCCAG}$ ${\tt GGACCCCAGCGTTACC}$ CATCCTGCCGTCTTCCTATCCTTACCCGACCTCAGATGCTC CCTTCTGCTCCTGGTAACTTGGGTTTTTACTCCTGTAACAACTGAAATAACAAGTCTTGC TACAGAGAATATAGATGAAATTTTAAACAATGCTGATGTTGCTTTAGTAAATTTTTATGC TGACTGGTGTCGTTTCAGTCAGATGTTGCATCCAATTTTTTGAGGAAGCTTCCGATGTCAT ${\tt TAAGGAAGAATTTCCAAATGAAAATCAAGTAGTGTTTGCCAGAGTTGATTGTGATCAGCA}$ $\tt CTCTGACATAGCCCAGAGATACAGGATAAGCAAATACCCAACCCTCAAATTGTTTCGTAA$ TGGGATGATGAAGAGAGAATACAGGGGTCAGCGATCAGTGAAAGCATTGGCAGATTA CATCAGGCAACAAAAAGTGACCCCATTCAAGAAATTCGGGACTTAGCAGAAATCACCAC TCTTGATCGCAGCAAAAGAAATATCATTGGATATTTTGAGCAAAAGGACTCGGACAACTA TGGGGATGTTTCAAAACCGGAAAGATATAGTGGCGACAACATAATCTACAAACCACCAGG GCATTCTGCTCCGGATATGGTGTACTTGGGAGCTATGACAAATTTTGATGTGACTTACAA TTGGATTCAAGATAAATGTGTTCCTCTTGTCCGAGAAATAACATTTGAAAATGGAGAGGA ATTGACAGAAGAAGGACTGCCTTTTCTCATACTCTTTCACATGAAAGAAGATACAGAAAG TTTAGAAATATTCCAGAATGAAGTAGCTCGGCAATTAATAAGTGAAAAAGGTACAATAAA $\tt CTTTTTACATGCCGATTGTGACAAATTTAGACATCCTCTTCTGCACATACAGAAAACTCC$ CAAAGATGTATTAATTCCTGGAAAACTCAAGCAATTCGTATTTGACTTACATTCTGGAAA ACTGCACAGAGAATTCCATCATGGACCTGACCCAACTGATACAGCCCCAGGAGAGCAAGC CCAAGATGTAGCAAGCAGTCCACCTGAGAGCTCCTTCCAGAAACTAGCACCCAGTGAATA TAGGTATACTCTATTGAGGGATCGAGATGAGCTT<u>TAA</u>AAACTTGAAAAACAGTTTGTAAG CCTTTCAACAGCAGCATCAACCTACGTGGTGGAAATAGTAAACCTATATTTTCATAATTC **ДАДАДАДАДАДАДАДАДАДА**ДА

134/392

FIGURE 128

MHPAVFLSLPDLRCSLLLLVTWVFTPVTTEITSLATENIDEILNNADVALVNFYADWCRF SQMLHPIFEEASDVIKEEFPNENQVVFARVDCDQHSDIAQRYRISKYPTLKLFRNGMMMK REYRGQRSVKALADYIRQQKSDPIQEIRDLAEITTLDRSKRNIIGYFEQKDSDNYRVFER VANILHDDCAFLSAFGDVSKPERYSGDNIIYKPPGHSAPDMVYLGAMTNFDVTYNWIQDK CVPLVREITFENGEELTEEGLPFLILFHMKEDTESLEIFQNEVARQLISEKGTINFLHAD CDKFRHPLLHIQKTPADCPVIAIDSFRHMYVFGDFKDVLIPGKLKQFVFDLHSGKLHREF HHGPDPTDTAPGEQAQDVASSPPESSFQKLAPSEYRYTLLRDRDEL

Important features: Signal peptide: amino acids 1-29

Endoplasmic reticulum targeting sequence: amino acids 403-406

Tyrosine kinase phosphorylation site: amino acids 203-211

Thioredoxin family proteins: amino acids 50-66

135/392

FIGURE 129

GAGCAGGACGGAGCC<u>ATG</u>GACCCCGCCAGGAAAGCAGGTGCCCAGGCCATGATCTGGACT GCAGGCTGGCTGCTGCTGCTTCGCGGAGGGCGCAGGCCCTGGAGTGCTACAGC TGCGTGCAGAAAGCAGATGACGGATGCTCCCCGAACAAGATGAAGACAGTGAAGTGCGCG CCGGGCGTGGACGTCTGCACCGAGGCCGTGGGGGCGGTGGAGACCATCCACGGACAATTC TCGCTGGCAGTGCGGGTTGCGGTTCGGGACTCCCCGGCAAGAATGACCGCGGCCTGGAT CTTCACGGGCTTCTGGCGTTCATCCAGCTGCAGCAATGCGCTCAGGATCGCTGCAACGCC AAGCTCAACCTCGCGGGGGGCGCTCGACCCGGCAGGTAATGAGAGTGCATACCCGCCC AACGGCGTGGAGTGCTACAGCTGTGTGGGCCTGAGCCGGGAGGCGTGCCAGGGTACATCG CCGCCGGTCGTGAGCTGCTACAACGCCAGCGATCATGTCTACAAGGGCTGCTTCGACGGC AACGTCACCTTGACGGCAGCTAATGTGACTGTCCTTGCCTGTCCGGGGGCTGTGTCCAG GATGAATTCTGCACTCGGGATGGAGTAACAGGCCCAGGGTTCACGCTCAGTGGCTCCTGT TGCCAGGGGTCCCGCTGTAACTCTGACCTCCGCAACAAGACCTACTTCTCCCCTCGAATC CCACCCCTTGTCCGGCTGCCCCCTCCAGAGCCCACGACTGTGGCCTCAACCACATCTGTC ACCACTTCTACCTCGGCCCCAGTGAGACCCACATCCACCACCAAACCCATGCCAGCGCCA ACCAGTCAGACTCCGAGACAGGGAGTAGAACACGAGGCCTCCCGGGATGAGGAGCCCAGG TTGACTGGAGGCGCCGCTGGCCACCAGGACCGCAGCAATTCAGGGCAGTATCCTGCAAAA GGGGGCCCCAGCAGCCCCATAATAAAGGCTGTGTGGCTCCCACAGCTGGATTGGCAGCC ${\tt CTTCTGTTGGCCGTGGCTGGTGTCCTACTG} \underline{{\tt TGA}}{\tt GCTTCTCCACCTGGAAATTTCCCT}$ CTCACCTACTTCTCTGGCCCTGGGTACCCCTCTTCTCATCACTTCCTGTTCCCACCACTG GACTGGGCTGGCCCAGCCCTGTTTTTCCAACATTCCCCAGTATCCCCAGCTTCTGCTGC GCTGGTTTGCGGCTTTGGGAAATAAAATACCGTTGTATATATTCTGCCAGGGGTGTTCTA GCTTTTTGAGGACAGCTCCTGTATCCTTCTCATCCTTGTCTCTCCGCTTGTCCTCTTGTG TGGCTCCCCACTCTAAGCACTGCCTCCCCTACTCCCCGCATCTTTGGGGAATCGGTTCCC CATATGTCTTCCTTACTAGACTGTGAGCTCCTCGAGGGGGGGCCCGGTACCCAATTCGCC CTATAGTGAGTCGTA

136/392

FIGURE 130

MDPARKAGAQAMIWTAGWLLLLLLRGGAQALECYSCVQKADDGCSPNKMKTVKCAPGVDV CTEAVGAVETIHGQFSLAVRGCGSGLPGKNDRGLDLHGLLAFIQLQQCAQDRCNAKLNLT SRALDPAGNESAYPPNGVECYSCVGLSREACQGTSPPVVSCYNASDHVYKGCFDGNVTLT AANVTVSLPVRGCVQDEFCTRDGVTGPGFTLSGSCCQGSRCNSDLRNKTYFSPRIPPLVR LPPPEPTTVASTTSVTTSTSAPVRPTSTTKPMPAPTSQTPRQGVEHEASRDEEPRLTGGA AGHQDRSNSGQYPAKGGPQQPHNKGCVAPTAGLAALLLAVAAGVLL

137/392

FIGURE 131

138/392

FIGURE 132

 ${\tt MKIPVLPAVVLLSLLVLHSAQGATLGGPEEESTIENYASRPEAFNTPFLNIDKLRSAFKA} \\ {\tt DEFLNWHALFESIKRKLPFLNWDAFPKLKGLRSATPDAQ}$

FIGURE 133

140/392

FIGURE 134

 ${\tt MGVEIAFASVILTCLSLLAAGVSQVVLLQPVPTQETGPKAMGDLSCGFAGHS}$

FIGURE 135

 ${\tt GGGGAATCTGCAGTAGGTCTGCCGGCG} {\tt ATG} {\tt GAGTGGTGGGCTAGCTCGCCGCTTCGGCTC}$ TGGCTGCTGTTCTTCCTCCTGCCCTCAGCGCAGGGCCCGCCAGAAGGAGTCAGGTTCAAAA TGGAAAGTATTTATTGACCAAATTAACAGGTCTTTGGAGAATTACGAACCATGTTCAAGT CAAAACTGCAGCTGCTACCATGGTGTCATAGAAGAGGGTCTAACTCCTTTCCGAGGAGGC ATCTCCAGGAAGATGATGGCAGAGGTAGTCAGACGGAAGCTAGGGACCCACTATCAGATC ACTAAGAACAGACTGTACCGGGAAAATGACTGCATGTTCCCCTCAAGGTGTAGTGGTGTT GAGCACTTTATTTTGGAAGTGATCGGGCGTCTCCCTGACATGGAGATGGTGATCAATGTA CGAGATTATCCTCAGGTTCCTAAATGGATGGAGCCTGCCATCCCAGTCTTCTCCTTCAGT ÄAGACATCAGAGTACCATGATATCATGTATCCTGCTTGGACATTTTGGGAAGGGGGACCT GCTGTTTGGCCAATTTATCCTACAGGTCTTGGACGGTGGGACCTCTTCAGAGAAGATCTG GTAAGGTCAGCAGCACAGTGGCCATGGAAAAAGAAAAACTCTACAGCATATTTCCGAGGA TCAAGGACAAGTCCAGAACGAGATCCTCTCATTCTTCTGTCTCGGAAAAACCCAAAACTT GTTGATGCAGAATACACCAAAAACCAGGCCTGGAAATCTATGAAAGATACCTTAGGAAAG CCAGCTGCTAAGGATGTCCATCTTGTGGATCACTGCAAATACAAGTATCTGTTTAATTTT CATGTTGGTGATGAGTGGCTAGAATTCTTCTATCCACAGCTGAAGCCATGGGTTCACTAT ATCCCAGTCAAAACAGATCTCTCCAATGTCCAAGAGCTGTTACAATTTGTAAAAGCAAAT GATGATGTAGCTCAAGAGATTGCTGAAAGGGGAAGCCAGTTTATTAGGAACCATTTGCAG ATGGATGACATCACCTGTTACTGGGAGAACCTCTTGAGTGAATACTCTAAATTCCTGTCT TATAATGTAACGAGAAGGAAAGGTTATGATCAAATTATTCCCAAAATGTTGAAAACTGAA ${\tt CTA} \underline{{\tt TAG}} {\tt TAGTCATAGGACCATAGTCCTCTTTGTGGCAACAGATCTCAGATATCCTAC}$ GGTGAGAAGCTTACCATAAGCTTGGCTCCTATACCTTGAATATCTGCTATCAAGCCAAAT ACCTGGTTTTCCTTATCATGCTGCACCCAGAGCAACTCTTGAGAAAGATTTAAAATGTGT CTAATACACTGATATGAAGCAGTTCAACTTTTTGGATGAATAAGGACCAGAAATCGTGAG ATGTGGATTTTGAACCCAACTCTACCTTTCATTTTCTTAAGACCAATCACAGCTTGTGCC TCAGATCATCCACCTGTGAGTCCATCACTGTGAAATTGACTGTGTCCATGTGATGATG ${\tt CCCTTTGTCCCATTATTTGGAGCAGAAAATTCGTCATTTGGAAGTAGTACAACTCATTGC}$ TGGAATTGTGAAATTATTCAAGGCGTGATCTCTGTCACTTTATTTTAATGTAGGAAACCC TATGGGGTTTATGAAAAATACTTGGGGATCATTCTCTGAATGGTCTAAGGAAGCGGTAGC CATGCCATGCAATGATGTAGGAGTTCTCTTTTGTAAAACCATAAACTCTGTTACTCAGGA GGTTTCTATAATGCCACATAGAAAGAGGCCAATTGCATGAGTAATTATTGCAATTGGATT TCAGGTTCCCTTTTTGTGCCTTCATGCCCTACTTCTTAATGCCTCTCTAAAGCCAAA

142/392

FIGURE 136

MEWWASSPLRLWLLLFLLPSAQGRQKESGSKWKVFIDQINRSLENYEPCSSQNCSCYHGV IEEDLTPFRGGISRKMMAEVVRRKLGTHYQITKNRLYRENDCMFPSRCSGVEHFILEVIG RLPDMEMVINVRDYPQVPKWMEPAIPVFSFSKTSEYHDIMYPAWTFWEGGPAVWPIYPTG LGRWDLFREDLVRSAAQWPWKKKNSTAYFRGSRTSPERDPLILLSRKNPKLVDAEYTKNQ AWKSMKDTLGKPAAKDVHLVDHCKYKYLFNFRGVAASFRFKHLFLCGSLVFHVGDEWLEF FYPQLKPWVHYIPVKTDLSNVQELLQFVKANDDVAQEIAERGSQFIRNHLQMDDITCYWE NLLSEYSKFLSYNVTRRKGYDQIIPKMLKTEL

143/392

FIGURE 137

ATTCTCCTAGAGCATCTTTGGAAGCATGAGGCCACGATGCTGCATCTTGGCTCTTGTCTG
CTGGATAACAGTCTTCCTCCTCCAGTGTTCAAAAGGAACTACAGACGCTCCTGTTGGCTC
AGGACTGTGGCTGCCAGCCGACACCCAGGTGTGGGAACAAGATCTACAACCCTTCAGA
GCAGTGCTGTTATGATGATGCCATCTTATCCTTAAAGGAGACCCGCCGCTGTGGCTCCAC
CTGCACCTTCTGGCCCTGCTTTGAGCTCTGCTGTCCCGAGTCTTTTTGGCCCCCAGCAGAA
GTTTCTTGTGAAGTTGAGGGTTCTGGGTATGAAGTCTCAGTGTCACTTATCTCCCATCTC
CCGGAGCTGTACCAGGAACAGGAGGCACGTCCTGTACCCATAAAAACCCCAGGCTCCACT
GGCAGACGGCAGACAAGGGGAGAAGAGACGAAGCAGCTGGACATCGGAGACTACAGTTGA
ACTTCGGAGAGAAGCAACTTGACTTCAGAGGGATGCCTCAATGACATAGCTTTTGGAGAGG
AGCCCAGCTGGGGATGGCCAGACTTCAGGGGAAGAATGCCTTCCTGCTTCATCCCCTTTC
CAGCTCCCCTTCCCGCTGAGAGCCACTTTCATCGGCAATAAAATCCCCCACATTTACCATCT

144/392

FIGURE 138

MRPRCCILALVCWITVFLLQCSKGTTDAPVGSGLWLCQPTPRCGNKIYNPSEQCCYDDAI LSLKETRRCGSTCTFWPCFELCCPESFGPQQKFLVKLRVLGMKSQCHLSPISRSCTRNRR HVLYP

Important features: Signal sequence: amino acids 1-21

N-myristoylation sites: amino acids 33-39, 70-76

FIGURE 139

FIGURE 140

MKFTIVFAGLLGVFLAPALANYNINVNDDNNNAGSGQQSVSVNNEHNVANVDNNNGWDSW NSIWDYGNGFAATRLFQKKTCIVHKMNKEVMPSIQSLDALVKEKKLQGKGPGGPPPKGLM YSVNPNKVDDLSKFGKNIANMCRGIPTYMAEEMQEASLFFYSGTCYTTSVLWIVDISFCG DTVEN

Signal Peptide: amino acids 1-20

N-myristoylation Sites: amino acids 67-72, 118-123, 163-168

Flavodoxin protein homology: amino acids 156-174

147/392

FIGURE 141

GGTCCTTA<u>ATG</u>GCAGCAGCCGCCGCTACCAAGATCCTTCTGTGCCTCCCGCTTCTGCTCC TGCTGTCCGGCTGGTCCCGGGCTGGGCGAGCCGACCCTCACTCTCTTTGCTATGACATCA CCGTCATCCCTAAGTTCAGACCTGGACCACGGTGGTGTGCGGTTCAAGGCCAGGTGGATG AAAAGACTTTTCTTCACTATGACTGTGGCAACAAGACAGTCACACCTGTCAGTCCCCTGG GGAAGAACTAAATGTCACAACGGCCTGGAAAGCACAGAACCCAGTACTGAGAGAGGTGG TGGACATACTTACAGAGCAACTGCGTGACATTCAGCTGGAGAATTACACACCCAAGGAAC CCCTCACCCTGCAGGCAAGGATGTCTTGTGAGCAGAAAGCTGAAGGACACAGCAGTGGAT CTTGGCAGTTCAGTTTCGATGGGCAGATCTTCCTCCTCTTTGACTCAGAGAAGAGAATGT GGACAACGGTTCATCCTGGAGCCAGAAAGATGAAAAGAAAAGTGGGAGAATGACAAGGTTG TGGCCATGTCCTTCCATTACTTCTCAATGGGAGACTGTATAGGATGGCTTGAGGACTTCT TGATGGGCATGGACACCCTGGAGCCAAGTGCAGGAGCACCACTCGCCATGTCCTCAG GCACAACCCAACTCAGGGCCACAGCCACCCTCATCCTTTGCTGCCTCCTCATCATCC TCCCCTGCTTCATCCTCCCTGGCATCTGAGGAGAGTCCTTTAGAGTGACAGGTTAAAGCT $\tt TGCCCACGACCTACGGTGTATGTCCAGTGGCCTCCAGCAGATCATGATGACATCATGGAC$ CCAATAGCTCATTCACTGCCTTGATTCCTTTTGCCAACAATTTTACCAGCAGTTATACCT AACATATTATGCAATTTTCTCTTGGTGCTACCTGATGGAATTCCTGCACTTAAAGTTCTG TCTTTGAATGATCACTTTCTTGCAAATGATATTGTCAGTAAAATAATCACGTTAGAC TTCAGACCTCTGGGGATTCTTTCCGTGTCCTGAAAGAGAATTTTTTAAATTATTTAATAAG AAAAAATTTATATTAATGATTGTTTCCTTTAGTAATTTATTGTTCTGTACTGATATTTAA ATAAAGAGTTCTATTTCCCAAAAAAAAAAAAAAAAA

FIGURE 142

MAAAAATKILLCLPLLLLLSGWSRAGRADPHSLCYDITVIPKFRPGPRWCAVQGQVDEKT FLHYDCGNKTVTPVSPLGKKLNVTTAWKAQNPVLREVVDILTEQLRDIQLENYTPKEPLT LQARMSCEQKAEGHSSGSWQFSFDGQIFLLFDSEKRMWTTVHPGARKMKEKWENDKVVAM SFHYFSMGDCIGWLEDFLMGMDSTLEPSAGAPLAMSSGTTQLRATATTLILCCLLIILPC FILPGI

Important features:
Signal peptide:
amino acids 1-25

Transmembrane domain: amino acids 224-246

N-glycosylation site: amino acids 68-72, 82-86

N-myristoylation site: amino acids 200-206, 210-216

Amidation site: amino acids 77-81

FIGURE 143

AATGTGAGAGGGGCTGATGGAAGCTGATAGGCAGGACTGGAGTGTTAGCACCAGTACTGG ATGTGACAGCAGGCAGAGGAGCACTTAGCAGCTTATTCAGTGTCCGATTCTGATTCCGGC ${\tt AAGGATCCAAGC} \underline{{\tt ATG}} {\tt GAATGCTGCCGTCGGGCAACTCCTGGCACACTGCTCTTTCTG}$ GCTTTCCTGCTCCTGAGTTCCAGGACCGCACGCTCCGAGGAGGACCGGGACGGCCTATGG CTGAGGCGCTGCCTGAGCAGCAAGAGCTGTGAAGGAAGAAATATCCGATACAGAACATGC AGTAATGTGGACTGCCCACCAGAAGCAGGTGATTTCCGAGCTCAGCAATGCTCAGCTCAT AATGATGTCAAGCACCATGGCCAGTTTTATGAATGGCTTCCTGTGTCTAATGACCCTGAC AACCCATGTTCACTCAAGTGCCAAGCCAAAGGAACAACCCTGGTTGTTGAACTAGCACCT AAGGTCTTAGATGGTACGCGTTGCTATACAGAATCTTTGGATATGTGCATCAGTGGTTTA TGCCAAATTGTTGGCTGCGATCACCAGCTGGGAAGCACCGTCAAGGAAGATAACTGTGGG GTCTGCAACGGAGATGGGTCCACCTGCCGGCTGGTCCGAGGGCAGTATAAATCCCAGCTC TCCGCAACCAAATCGGATGATACTGTGGTTGCACTTCCCTATGGAAGTAGACATATTCGC CTTGTCTTAAAAGGTCCTGATCACTTATATCTGGAAACCAAAACCCTCCAGGGGACTAAA GGTGAAAACAGTCTCAGCTCCACAGGAACTTTCCTTGTGGACAATTCTAGTGTGGACTTC CAGAAATTTCCAGACAAAGAGATACTGAGAATGGCTGGACCACTCACAGCAGATTTCATT GTCAAGATTCGTAACTCGGGCTCCGCTGACAGTACAGTCCAGTTCATCTATCAACCC ATCATCCACCGATGGAGGGAGACGGATTTCTTTCCTTGCTCAGCAACCTGTGGAGGAGGT TATCAGCTGACATCGGCTGAGTGCTACGATCTGAGGAGCAACCGTGTGGTTGCTGACCAA TACTGTCACTATTACCCAGAGAACATCAAACCCAAACCCAAGCTTCAGGAGTGCAACTTG GATCCTTGTCCAGCCAGTGACGGATACAAGCAGATCATGCCTTATGACCTCTACCATCCC CAGAGCCGGGCAGTTTCCTGTGTGGAGGAGGACATCCAGGGGCATGTCACTTCAGTGGAA GAGTGGAAATGCATGTACACCCCTAAGATGCCCATCGCGCAGCCCTGCAACATTTTTGAC TGCCCTAAATGGCTGGCACAGGAGTGGTCTCCGTGCACAGTGACATGTGGCCAGGGCCTC AGATACCGTGTGGTCCTCTGCATCGACCATCGAGGAATGCACACAGGAGGCTGTAGCCCA AAAACAAAGCCCCACATAAAAGAGGAATGCATCGTACCCACTCCCTGCTATAAACCCAAA GAGAAACTTCCAGTCGAGGCCAAGTTGCCATGGTTCAAACAAGCTCAAGAGCTAGAAGAA $\tt GGAGCTGCTGTCAGAGGAGCCCTCG\underline{TAA} \tt GTTGTAAAAGCACAGACTGTTCTATATTTG$ AAACTGTTTTGTTTAAAGAAAGCAGTGTCTCACTGGTTGTAGCTTTCATGGGTTCTGAAC AAAAAAAA

150/392

FIGURE 144

MECCRRATPGTLLLFLAFLLLSSRTARSEEDRDGLWDAWGPWSECSRTCGGGASYSLRRC LSSKSCEGRNIRYRTCSNVDCPPEAGDFRAQQCSAHNDVKHHGQFYEWLPVSNDPDNPCS LKCQAKGTTLVVELAPKVLDGTRCYTESLDMCISGLCQIVGCDHQLGSTVKEDNCGVCNG DGSTCRLVRGQYKSQLSATKSDDTVVALPYGSRHIRLVLKGPDHLYLETKTLQGTKGENS LSSTGTFLVDNSSVDFQKFPDKEILRMAGPLTADFIVKIRNSGSADSTVQFIFYQPIIHR WRETDFFPCSATCGGGYQLTSAECYDLRSNRVVADQYCHYYPENIKPKPKLQECNLDPCP ASDGYKQIMPYDLYHPLPRWEATPWTACSSSCGGGIQSRAVSCVEEDIQGHVTSVEEWKC MYTPKMPIAQPCNIFDCPKWLAQEWSPCTVTCGQGLRYRVVLCIDHRGMHTGGCSPKTKP HIKEECIVPTPCYKPKEKLPVEAKLPWFKQAQELEEGAAVSEEPS

Important features: Signal peptide: amino acids 1-25

N-glycosylation site: amino acids 251-254

Thrombospondin 1: amino acids 385-399

von Willebrand factor type C domain proteins: amino acids 385-399, 445-459 and 42-56

FIGURE 145

GGAGGAGGGGGGGCGCGGCCCAGCCCAGAGCCCCGGGCACCAGCACGGACTCT CTCTTCCAGCCCAGGTGCCCCCACTCTCGCTCCATTCGGCGGGAGCACCCAGTCCTGTA ${\tt CGCCAAGGAACTGGTCCTGGGGGCACC}$ CTTCTGTTGCTGCTGGGGTCTGTGCCTGCTACCGACGCCCGCTCTGTGCCCCTGAAG GCCACGTTCCTGGAGGATGTGGCGGGTAGTGGGGAGGCCGAGGGCTCGTCGGCCTCCTCC CCGAGCCTCCCGCCACCCTGGACCCCGGCCCTCAGCCCCACATCGATGGGGCCCCAGCCC ACAACCCTGGGGGGCCCATCACCCCCCACCAACTTCCTGGATGGGATAGTGGACTTCTTC $\tt CGCCAGTACGTGATGCTGATGCTGTGGTGGGCTCCCTGGCCTTTCTGCTGATGTTCATC$ GTCTGTGCCGCGGTCATCACCCGGCAGAAGCAGAAGGCCTCGGCCTATTACCCATCGTCC TTCCCCAAGAAGAAGTACGTGGACCAGAGTGACCGGGCCCGGGGCCCCCGGGCCTTCAGT GAGGTCCCCGACAGAGCCCCCGACAGCAGGCCCGAGGAAGCCCTGGATTCCTCCCGGCAG CTCCAGGCCGACATCTTGGCCGCCACCAGAACCTCAAGTCCCCCACCAGGGCTGCACTG GGCGGTGGGGACGGAGCCAGGATGGTGGAGGGCAGGGGGCGCAGAGGAAGAGGAGAAGGGC AGCCAGGAGGGGACCAGGAAGTCCAGGGACATGGGGTCCCAGTGGAGACACCAGAGGCG CAGGAGGAGCCGTGCTCAGGGGTCCTTGAGGGGGCTGTGGTGGCCGGTGAGGGCCAAGGG GAGCTGGAAGGGTCTCTCTTGTTAGCCCAGGAAGCCCAGGGACCAGTGGGTCCCCCCGAA ${\tt AGCCCCTGTGCTTGCAGCAGTGTCCACCCCAGTGTC}$ CCTGACTGTCGGGCCCCCAAGTGGTCACCTCCCCGTGTATGAAAAGGCCTTCAGCCCTGA CTGCTTCCTGACACTCCCTCGTGGCCTCCCTGTGGTGCCAATCCCAGCATGTGCTGATT CTACAGCAGGCAGAAATGCTGGTCCCCGGTGCCCCGGAGGAATCTTACCAAGTGCCATCA TCCTTCACCTCAGCAGCCCCAAAGGGCTACATCCTACAGCACAGCTCCCCTGACAAAGTG AGGGAGGCACGTGTCCCTGTGACAGCCAGGATAAAACATCCCCCAAAGTGCTGGGATTA CAGGCGTGAGCCACCGTGCCCGGCCCAAACTACTTTTTAAAACAGCTACAGGGTAAAATC ${ t CTGCAGCACCCACTCTGGAAAATACTGCTCTTAATTTTCCTGAAGGTGGCCCCCTGTTTC}$ TAGTTGGTCCAGGATTAGGGATGTGGGGTATAGGGCATTTAAATCCTCTCAAGCGCTCTC AATGAATGGAACTCTTCCTGTCTGGCCTCCAAAGCAGCCTAGAAGCTGAGGGGCTGTGTT TGAGGGGACCTCCACCCTGGGGAAGTCCGAGGGGCTGGGGGAAGGGTTTCTGACGCCCAGC CTGGAGCAGGGGGCCCTGGCCACCCCTGTTGCTCACACATTGTCTGGCAGCCTGTGTC ${\tt CACAATATTCGTCAGTCCTCGACAGGGAGCCTGGGCTCCGTCCTGCTTTAGGGAGGCTCT}$ GGCAGGAGGTCCTCCCCCCATCCCATCTGGGGCTCCCCCAACCTCTGCACAGCTCT

152/392

FIGURE 146

MVSAAAPSLLILLLLLGSVPATDARSVPLKATFLEDVAGSGEAEGSSASSPSLPPPWTP ALSPTSMGPQPTTLGGPSPPTNFLDGIVDFFRQYVMLIAVVGSLAFLLMFIVCAAVITRQ KQKASAYYPSSFPKKKYVDQSDRAGGPRAFSEVPDRAPDSRPEEALDSSRQLQADILAAT QNLKSPTRAALGGGDGARMVEGRGAEEEEKGSQEGDQEVQGHGVPVETPEAQEEPCSGVL EGAVVAGEGQGELEGSLLLAQEAQGPVGPPESPCACSSVHPSV

Signal peptide: amino acids 1-25

Transmembrane domain: amino acids 94-118

N-myristoylation site: amino acids 18-24, 40-46, 46-52, 145-151, 192-198, 193-199, 211-217, 238-244, 242-248

153/392

FIGURE 147

GAAAGACGTGGTCCTGACAGACAGACAATCCTATTCCCTACCAAAATGAAGATGCTGCTG
CTGCTGTGTTTTGGGACTGACCCTAGTCTGTGTCCATGCAGAAAAGAAGACTAGTTCTACGGGA
AGGAACTTTAATGTAGAAAAGATTAATGGGGAATGGCATACTATTATCCTGGCCTCTGAC
AAAAGAGAAAAGATAGAAGAACATGGCAACTTTAGACTTTTTCTGGAGCAAATCCATGTC
TTGGAGAATTCCTTAGTTCTTAAAGTCCATACTGTAAGAGATGAAGAGTGCTCCGAATTA
TCTATGGTTGCTGACAAAACAGAAAAAGGCTGGTGAATATTCTTGTGACGTATGATGATTC
AATACATTTACTATACCTAAGACAGACTATGATAACTTTCTTATGGCTCACCTCATTAAC
GAAAAGGATGGGGAAACCTTCCAGCTGATGGGGCTCTATGGCCGAGAACCAGATTTGAGT
TCAGACATCAAGGAAAGGTTTGCACAACTATGTGAGGAGACCAGATTTAGAGT
ATCATTGACCTATCCAATGCCAATCGCTGCCTCCAGGCCCGAGAATGAAGAATGGCCTGA
GCCTCCAGTGTTGAGTGGACACTTCTCACCAGGACTCCACCATCATCCCTTCCTATCCAT
ACAGCATCCCCAGTATAAAATTCTGTGATCTGCATTCCATCCTTTCCACTGAGAAGTCCA
ATTCCAGTCTATCAACATGTTACCTAGGATACCTCATCAAGAATCAAAGACTTCTTTAAA
TTTCTCTTTTGATACACCCTTGACAATTTTTCATGAAATTATTCCTCTTTCCTGTTCAATAA
ATGATTACCCTTGCACTTAA

154/392

FIGURE 148

MKMLLLLCLGLTLVCVHAEEASSTGRNFNVEKINGEWHTIILASDKREKIEEHGNFRLFL EQIHVLENSLVLKVHTVRDEECSELSMVADKTEKAGEYSVTYDGFNTFTIPKTDYDNFLM AHLINEKDGETFQLMGLYGREPDLSSDIKERFAQLCEEHGILRENIIDLSNANRCLQARE

155/392

FIGURE 149

GAGGGAGGACAGGGAGGAGGAGGAGGAGGAGGAGGAGAGCAGAGCAAG ${\tt GAG} \underline{\textbf{ATG}} {\tt AAGTTCCAGGGGCCCCTGGCCTGCCTGCCTGGCCAGTGGG}$ GAGGCTGGCCCCTGCAGAGCGGAGAGGAAAGCACTGGGACAAATATTGGGGAGGCCCTT GGACATGGCCTGGGAGACGCCCTGAGCGAAGGGGTGGGAAAGGCCATTGGCAAAGAGGCC GGAGGGCCAGCTGGCTCTAAAGTCAGTGAGGCCCCTTGGCCAAGGGACCAGAGAAGCAGTT GGCACTGGAGTCAGGCAGGTTCCAGGCTTTGGCGCAGCAGATGCTTTGGGCAACAGGGTC GGGGAAGCAGCCCATGCTCTGGGAAACACTGGGCACGAGATTGGCAGACAGGCAGAAGAT GTCATTCGACACGGAGCAGATGCTGTCCGCGGGCTCCTGGCAGGGGGGTGCCTGGCCACAGT GGTGCTTGGGAAACTTCTGGAGGCCATGGCATCTTTGGCTCTCAAGGTGGCCTTGGAGGC CAGGGCCAGGCCAATCCTGGAGGTCTGGGGACTCCGTGGGTCCACGGATACCCCGGAAAC TCAGCAGGCAGCTTTGGAATGAATCCTCAGGGAGCTCCCTGGGGTCAAGGAGGCAATGGA GGGCCACCAAACTTTGGGACCAACACTCAGGGAGCTGTGGCCCAGCCTGGCTATGGTTCA GTGAGAGCCAGCAACCAGAATGAAGGGTGCACGAATCCCCCACCATCTGGCTCAGGTGGA GGCTCCAGCAACTCTGGGGGAGGCAGCGGCTCACAGTCGGGCAGCAGTGGCAGTGGCAGC AGCAGCAGTGGCGGCAGCAGTGGCAGCAGTGGCAGCAGTGGCAACAGTGGTGGC AGCAGAGGTGACAGCGGCAGTGAGTCCTCCTGGGGATCCAGCACCGGCTCCTCCGGC AACCACGGTGGGAGCGGCGGAGGAAATGGACATAAACCCGGGTGTGAAAAGCCAGGGAAT GAAGCCCGCGGGAGCGGGAATCTGGGATTCAGGGCTTCAGAGGACAGGGAGTTTCCAGC

156/392

FIGURE 150

Signal peptide: amino acids 1-21

N-glycosylation site: amino acids 265-269

Glycosaminoglycan attachment site: amino acids 235-239, 237-241, 244-248, 255-259, 324-328, 388-392

Casein kinase II phosphorylation site: amino acids 26-30, 109-113, 259-263, 300-304, 304-308

N-myristoylation site:

```
amino acids 17-23, 32-38, 42-48, 50-56, 60-66, 61-67, 64-70, 74-80, 90-96, 96-102, 130-136, 140-146, 149-155, 152-158, 155-161, 159-165, 163-169, 178-184, 190-196, 194-200, 199-205, 218-224, 236-242, 238-244, 239-245, 240-246, 245-251, 246-252, 249-252, 253-259, 256-262, 266-272, 270-276, 271-277, 275-281, 279-285, 283-289, 284-290, 287-293, 288-294, 291-297, 292-298, 295-301, 298-304, 305-311, 311-317, 315-321, 319-325, 322-328, 323-329, 325-331, 343-349, 354-360, 356-362, 374-380, 381-387, 383-389, 387-393, 389-395, 395-401
```

Cell attachment sequence:

amino acids 301-304

FIGURE 151

CGGCCACAGCTGGCATGCTCTGCCTGATCGCCATCCTGCTGTATGTCCTCGTCCAGTACC TCGTGAACCCCGGGGTGCTCCGCACGGACCCCAGATGTCAAGAAT<u>ATG</u>AACACGTGGCTG CTGTTCCTCCCCTGTTCCCGGTGCAGGTGCAGACCCTGATAGTCGTGATCATCGGGATG CTCGTGCTCCTGCTGGACTTTCTTGGCTTGGTGCACCTGGGCCAGCTGCTCATCTTCCAC ATCTACCTGAGTATGTCCCCCACCCTAAGCCCCCGATCCCCCAAGGCTGGGTGGTCAGA GCTGCTCATCTTACACCTCTACTTGAGTATGTCCCTAACCCTGAGCCCCCCACGCCTGGG GCCAĞAGTCTTTGTCCCCCGTGTGCGCATGTGTTCAGGGTCAGCCTCTCCCAGAAGTGAG ATCATGGACAAAAAGGGCAAATCACAGGAAGAAATTAAATCCATGAGGACCCAGCAGGCC AAGTTTAAAATGTTCAGAGACAATGGAATGGAATCTATTAGGCAAGAACAGGACATTATG AAATAAGGACAGGTGGACTTCCAAAAACACAAGTAGAAATTCTAACAATGAAATATATTA CAGTGGGCACAGCGGTAGGCGGTCAGTCATGTTGCTGAACGACGGAGGGTAAACTCCCCA GCCCCAAGAAAACCTGTGTTGGAAGTAACAACAACCTCCCTGCTCCTGGCACCAGCCGTT ${\tt TTGGTCATGGTGGGCCAGCTGCAAAGCGTCTTCCATTCTCTGGGCAGTGGTGGCCCCGAG}$ GCTGTGGCCTCTCAGGGGGTTTCTGTGGACACGGGCAGCAGAGTGTGTCCAGGCCAGCCC ${\tt CCAAGAATGCCCTGCTCCTGACAGCTTGGCCAACCCCTGGTCAGGGCAGAGGGAGTTGGG}$ GAACGCCCAGCTCAGAATGAACACACCCCACCAAGAGCCTCCTTGTTCATAACCACAGGT AAAAAAAAAA

FIGURE 152

MNTWLLFLPLFPVQVQTLIVVIIGMLVLLLDFLGLVHLGQLLIFHIYLSMSPTLSPRSPQ GWVVRAAHLTPLLEYVPNPEPPTPGARVFVPRVRMCSGSASPRSEIMDKKGKSQEEIKSM RTQQAQQEAELTPRPAGVVPGA

159/392

FIGURE 153

 ${\tt AACTGGAAGGAAAGAAAGGTCAGCTTTGGCCCAG} \underline{{\tt ATG}} {\tt TGGTTACCCCTTGGTCTCC}$ TGTCTTTATGTCTTTCTCCTCTTCCTATTCTGTCATCTCCCTCACTTAAGTCTCAGGCCT GTCAGCAGCTCCTGTGGACATTGCCATCCCCTCTGGTAGCCTTCAGAGCAAACAGGACAA CCTATGTTATGGATGTTTCCACCAACCAGGGTAGTGGCATGGAGCACCGTAACCATCTGT GCTTCTGTGATCTCTATGACAGAGCCACTTCTCCACCTCTGAAATGTTCCCTGCTCTGAA TCCTCCTCCCAAGTCTGTTCTCTTATTGTCAACCTCAGCACAACAGGCTGGCGCCAATGG CATTACAGAGAAAGCAATCTGTGTGGGCTAGTGGGCAGATTACCATGCAAGCCCCAGGAGA AATGGAGGAGCTTTGTAGCCACCTCCCTGTCAGCCAGTATTAACATGTCCCCCTTCCCCCT GCCCCGCCGTAGATTCAGGACATTCGCCCCTGTGTGCCACCAAACCAGGACTTTCCCCTT GGCTTGGCATCCCTGGCTCTCCTGGTACCCAGCAAGACGTCTGTTCCAGGGCAGTGTA GCATCTTTCAAGCTCCGTTACTATGGCGATGGCCATGATGTTACAATCCCACTTGCCTGA ATAATCAAGTGGGAAGGGAAGCAGAGGGAAATGGGGCCATGTGAATGCAGCTGCTCTGT TCTCCCTACCCTGAGGAAAAACCAAAGGGAAGCAACAGGAACTTCTGCAACTGGTTTTTA TCGGAAAGATCATCCTGCCTGCAGATGCTGTTGAAGGGGCACAAGAAATGTAGCTGGAGA AGATTGATGAAAGTGCAGGTGTGTAAGGAAATAGAACAGTCTGCTGGGAGTCAGACCTGG AATTCTGATTCCAAACTCTTTATTACTTTGGGAAGTCACTCAGCCTCCCCGTAGCCATCT CCAGGGTGACGGAACCCAGTGTATTACCTGCTGGAACCAAGGAAACTAACAATGTAGGTT ACTAGTGAATACCCCAATGGTTTCTCCAATTATGCCCATGCCACCAAAACAATAAAACAA AATTCTCTAACACTGAAA

160/392

FIGURE 154

 ${\tt MWLPLGLLSLCLSPLPILSSPSLKSQACQQLLWTLPSPLVAFRANRTTYVMDVSTNQGSG} \\ {\tt MEHRNHLCFCDLYDRATSPPLKCSLL}$

161/392

FIGURE 155

 ${\tt CAGGAGCGACGTCACCGCC} \underline{{\tt ATG}} {\tt GCAGGCATCAAAGCTTTGATTAGTTTGTCCTTTGGAGG}$ AGCAATCGGACTGATGTTTTTGATGCTTGGATGTGCCCTTCCAATATACAACAAATACTG GCCCCTCTTTGTTCTATTTTTTTACATCCTTTCACCTATTCCATACTGCATAGCAAGAAG AACGGGCATTGTCGTGTCAGCTTTTGGACTCCCTATTGTATTTGCCAGAGCACATCTGAT TGAGTGGGGAGCTTGTGCACTTGTTCTCACAGGAAACACAGTCATCTTTGCAACTATACT ${\tt AGGCTTTTCTTGGTCTTTGGAAGCAATGACGACTTCAGCTGGCAGCAGTGG} {\tt TGA} {\tt AAAGA}$ AATTACTGAACTATTGTCAAATGGACTTCCTGTCATTTGTTGGCCATTCACGCACACAGG AGATGGGGCAGTTAATGCTGAATGGTATAGCAAGCCTCTTGGGGGGTATTTTAGGTGCTCC CTTCTCACTTTTATTGTAAGCATACTATTTTCACAGAGACTTGCTGAAGGATTAAAAGGA TTTTCTCTTTTGGAAAAGCTTGACTGATTTCACACTTATCTATAGTATGCTTTTTGTGGT ATATGCAATGTTAAACACTTTTTTAATGTAATCATTTGCATTGGTTAGGAATTCAGAATT CCGCCGGCTCTATTACTGGTCAAGTACATCTTTTCTCTTAAAATTATTTAGCCTCCATTA TTACAAAAATTATAAAAATAAGTTTTCAGTCAGTCAGGATGACATCACTCCCAATGTTA TGCAGACATACAGACGGTTGGCATACGTTATAGACTGTATACTCAGTGCAAATATAGCTG CATTTATACCTCAGAGGGGCCAAGTGTTAATGCCCATGCCCTCCGTTAAGGGTTGTTGGT TTTACTGGTAGACAGATGTTTTGTGGATTGAAAATTATTTTATGGAATTGCTACAGAGGA GTGCTTTTCTTCTCAATTGTTAGAAGAATTTATGTTAAACTTTAAGGTAAGGGTGTAAAA ACATTTTTGAGATAAGGTTTTTATTTATGTTTATTTTTTGTTAGAGTGAGTTGCAATGTGG GAAGAAATGACATTGAAATTCCAGTTTTTGAATCCTGTTTCTATTTAAAGTGAAATTTG CTGATGAGGGACAGTTGTATGTTTGCATCATATATGCCAGAAAACCTTCCTGCTTCCT CCTTTTGACTTATTTGGTATGTTGTATATATTACATAAAATAACTTTTCAAATATAGTTT AATAACACTTAGAAGTGTTTACTTACCTGGAAAATAATTGCTATGCCGTACATTCAGAGT GCCCCTCCCCTGCAAGGCCTTGCCATGATTAACAAGTAACTTGTTAGTCTTACAGATAA TTCATGCATTAACAGTTTAAGATTTAGACCATGGTAATAGTAGTTCTTATTCTCTAAGGT TATATCATATGTAATTTAAAAGTATTTTTAAGACAAGTTTCCTGTATACCTCTGAACTGT TTTGATTTTGAGTTCATCATGATAGATCTGCTGTTTCCTTATAAAAGGCATTTGTTGTGT GAGTTAATGCAAAGTAGCCAAGTCCAGCTATATAGCAGCTTCAGAAACATACCTGACCAA AAAATTCCCAGTAACCAGGCATGATCAATTTATAGTGGTCGTTTACATCTAATAATTATC AGGACTTTTTTCAGGAGTGGGTTATAAAAACATTCAAGTTGGTCTGACAGTATTTTGTTA AGGATATTTGTTTGTATGTTTATTCAGTATACTTACATAAAAATTATTTCGCCATCAGCC AAAACTCAGTAATCATGACAGCTGTCTGTTGTTTTTTTGAAGTTTATTTCTCAAGAAAATG GGAATAAATTTGGGATTTGTTCAGCTTTTTTACTAAAGATGCCTAAAGCCACAGGTTTTA TTGCCTAACTTAAGCCATGACTTTTAGATATGAGATGACGGGAAGCAGGACGAAATATCG GCGTGTGGCTGGAGCCTTCCCACTGGAGGCTGAAAGTGGCTTGTGGTATTATAATGTTCA GATTTCAAGAGGAAGGTGCAGGTACACATGAGTTAGAGAGCTGGTGAGACAGTTGGGAAC TCTTTGTGCTTGTGATCTACTGGACTTTTTTTTTTGCAGGAAGTGCATTCTCTGGTCCTTC AGACTTTTTCTAACAGCTGCGTATTATTTCTATATACTAATTGCATTGGCAGCATTGTGT ${\tt CTTTGACCTTGTATACTAGCTTGACATAGTGCTGTCTCTGATTTCTAGGCTAGTTACTTG}$ AGATATGAATTTTCCATAGAATATGCACTGATACAACATTACCATTCTTCTATGGAAAGA

FIGURE 156

MAGIKALISLSFGGAIGLMFLMLGCALPIYNKYWPLFVLFFYILSPIPYCIARRLVDDTD AMSNACKELAIFLTTGIVVSAFGLPIVFARAHLIEWGACALVLTGNTVIFATILGFFLVF GSNDDFSWQQW

FIGURE 157

GTTTCTCATAGTTGGCGTCTTCTAAAGGAAAAACACTAAAATGAGGAACTCAGCGGACCG CCGAGTGGCCCGAGGTGTCTGAGGGGGCTGGGGCAAAGGTGAAAGAGTTTCAGAACAAGCT TCCTGGAACCCATGACCCATGAAGTCTTGTCGACATTTATACCGTCTGAGGGTAGCAGCT CGAAACTAGAAGAAGTGGAGTGTTGCCAGGGACGGCAGTATCTCTTTGTGTGACCCTGGC ${\tt GGCCTATGGGACGTTGGCTTCAGACCTTTGTGATACACC} {\tt ATG} {\tt CTGCGTGGGACGATGACG}$ GCGTGGAGAGGAATGAGGCCTGAGGTCACACTGGCTTGCCTCCTAGCCACAGCAGGC TGCTTTGCTGACTTGAACGAGGTCCCTCAGGTCACCGTCCAGCCTGCGTCCACCGTCCAG AAGCCCGGAGGCACTGTGATCTTGGGCTGCGTGGTGGAACCTCCAAGGATGAATGTAACC TGGCGCCTGAATGGAAAGGAGCTGAATGGCTCGGATGATGCTCTGGGTGTCCTCATCACC CACGGGACCCTCGTCATCACTGCCCTTAACAACCACACTGTGGGACGGTACCAGTGTGTG GCCCGGATGCCTGCGGGGGCTGTGGCCAGCCAGCCACTGTGACACTAGCCAATCTC CAGGACTTCAAGTTAGATGTGCAGCACGTGATTGAAGTGGATGAGGGAAACACAGCAGTC ATTGCCTGCCACCTGCCTGAGAGCCACCCCAAAGCCCAGGTCCGGTACAGCGTCAAACAA GAGTGGCTGGAGGCCTCCAGAGGTAACTACCTGATCATGCCCTCAGGGAACCTCCAGATT GTGAATGCCAGCCAGGAGGACGAGGCCATGTACAAGTGTGCAGCCTACAACCCAGTGACC CAGGAAGTGAAAACCTCCGGCTCCAGCGACAGGCTACGTGTGCGCCGCTCCACCGCTGAG GCTGCCCGCATCATCTACCCCCCAGAGGCCCAAACCATCATCGTCACCAAAGGCCAGAGT CTCATTCTGGAGTGTGGCCAGTGGAATCCCACCCCCACGGGTCACCTGGGCCAAGGAT GGGTCCAGTGTCACCGGCTACAACAAGACGCGCTTCCTGCTGAGCAACCTCCTCATCGAC ACCACCAGCGAGGAGGACTCAGGCACCTACCGCTGCATGGCCGACAATGGGGTTGGGCAG CCCGGGGCAGCGGTCATCCTACAATGTCCAGGTGTTTGAACCCCCTGAGGTCACCATG GAGCTATCCCAGCTGGTCATCCCCTGGGGCCAGAGTGCCAAGCTTACCTGTGAGGTGCGT CGCCTCCGGCTCTCCCGCAGGGCCCTGCGCGTGCTCAGCATGGGGCCTGAGGACGAAGGC GTCTACCAGTGCATGGCCGAGAACGAGGTTGGGAGCGCCCATGCCGTAGTCCAGCTGCGG ACCTCCAGGCCAAGCATAACCCCAAGGCTATGGCAGGATGCTGAGCTGGCTACTGGCACA CCTCCTGTATCACCCTCCAAACTCGGCAACCCTGAGCAGATGCTGAGGGGGCCAACCGGCG CTCCCCAGACCCCAACGTCAGTGGGGCCTGCTTCCCCGAAGTGTCCAGGAGAGAAGGGG TCATATGAACTGGTGTGGCGGCCTCGGCATGAGGGCAGTGGCCGGGCGCCAATCCTCTAC TATGTGGTGAAACACCGCAAGCAGGTCACAAATTCCTCTGACGATTGGACCATCTCTGGC ${ t ATTCCAGCCAACCAGCACCGCCTGACCCTCACCAGACTTGACCCCGGGAGCTTGTATGAA}$ GTGGAGATGGCAGCTTACAACTGTGCGGGAGAGGGCCAGACAGCCATGGTCACCTTCCGA ACTGGACGGCCCCAAACCCGAGATCATGGCCAGCAAAGAGCAGCAGATCCAGAGAGAC GACCCTGGAGCCAGTCCCCAGAGCAGCCAGCCAGACCACGGCCGCCTCTCCCCCCCA GAAGCTCCCGACAGGCCCACCATCTCCACGGCCTCCGAGACCTCAGTGTACGTGACCTGG ATTCCCCGTGGGAATGGTGGGTTCCCAATCCAGTCCTTCCGTGTGGAGTACAAGAAGCTA AAGAAAGTGGGAGACTGGATTCTGGCCACCAGCGCCATCCCCCATCGCGGCTGTCCGTG GAGATCACGGGCCTAGAGAAAGGCACCTCCTACAAGTTTCGAGTCCGGGCTCTGAACATG $\tt CTGGGGGAGAGCCCAGCGCCCCTCTCGGCCCTACGTGGTGTCGGGCTACAGCGGT$ CGCGTGTACGAGAGGCCCGTGGCAGGTCCTTATATCACCTTCACGGATGCGGTCAATGAG ACCACCATCATGCTCAAGTGGATGTACATCCCAGCAAGTAACAACAACACCCCAATCCAT GGCTTTTATATCTATTATCGACCCACAGACAGTGACAATGATAGTGACTACAAGAAGGAT ATGGTGGAAGGGGACAAGTACTGGCACTCCATCAGCCACCTGCAGCCAGAGACCTCCTAC GACATTAAGATGCAGTGCTTCAATGAAGGAGGGGAGAGCGAGTTCAGCAACGTGATGATC TGTGAGACCAAAGCTCGGAAGTCTTCTGGCCAGCCTGGTCGACTGCCACCCCCAACTCTG GCCCCACCACAGCCGCCCCTTCCTGAAACCATAGAGCGGCCGGTGGGCACTGGGGCCATG GTGGCTCGCTCCAGCGACCTGCCCTATCTGATTGTCGGGGTCGTCCTGGGCTCCATCGTT ${ t CTCATCATCGTCACCTTCATCCCCTTCTGCTTGTGGAGGGCCTGGTCTAAGCAAAAACAT }$ ACAACAGACCTGGGTTTTCCTCGAAGTGCCCTTCCACCCTCCTGCCCGTATACTATGGTG ${\tt CCATTGGGAGGACTCCCAGGCCACCAGGCCAGTGGACAGCCCTACCTCAGTGGCATCAGT}$

164/392

GGACGGCCTGTGCTAATGGGATCCACATGAATAGGGGCTGCCCCTCGGCTGCAGTGGGC TACCCGGGCATGAAGCCCCAGCAGCACTGCCCAGGCGAGCTTCAGCAGCAGAGTGACACC AGCAGCCTGCTGAGGCAGACCCATCTTGGCAATGGATATGACCCCCAAAGTCACCAGATC TCCACTCACCAGCTGCTGCAGGCCCCATCACGACTGCTGCCAACGCCAGGAGCAGCCTGCT GCTGTGGGCCAGTCAGGGGTGAGGAGAGCCCCCGACAGTCCTGTCCTGGAAGCAGTGTGG GACCCTCCATTTCACTCAGGGCCCCCATGCTGCTTGGGCCTTGTGCCAGTTGAAGAGGTG GACAGTCCTGACTCCTGCCAAGTGAGTGGAGGAGACTGGTGTCCCCAGCACCCCGTAGGG GCCTACGTAGGACAGGAACCTGGAATGCAGCTCTCCCCGGGGCCACTGGTGCGTGTGTCT TTTGAAACACCACCTCTCACAATT<u>TAG</u>GCAGAAGCTGATATCCCAGAAAGACTATATATT TGGAGAGACATAAGGAGTCCTACCCGTTGAGGTTGGAGAGGGAAAATAAAGAAGCTGCCA CCTAACAGGAGTCACCCAGGAAAGCACCGCACAGGCTGGCGCGGGACAGACTCCTAACCT GGGGCCTCTGCAGTGGCAGGCGAGGCTGCAGGAGGCCCACAGATAAGCTGGCAAGAGGAA GGATCCCAGGCACATGGTTCATCACGAGCATGAGGGAACAGCAAGGGGCACGGTATCACA GCCTGGAGACACCCACACAGATGGCTGGATCCGGTGCTACGGGAAACATTTTCCTAAGAT GCCCATGAGAACAGACCAAGATGTGTACAGCACTATGAGCATTAAAAAACCTTCCAGAAT TAGTCTTCCCTGTAAAA

FIGURE 158

 ${ t MLRGTMTAWRGMRPEVTLACLLLATAGCFADLNEVPQVTVQPASTVQKPGGTVILGCVVE:}$ PPRMNVTWRLNGKELNGSDDALGVLITHGTLVITALNNHTVGRYQCVARMPAGAVASVPA TVTLANLQDFKLDVQHVIEVDEGNTAVIACHLPESHPKAQVRYSVKQEWLEASRGNYLIM PSGNLQIVNASQEDEGMYKCAAYNPVTQEVKTSGSSDRLRVRRSTAEAARIIYPPEAQTI IVTKGQSLILECVASGIPPPRVTWAKDGSSVTGYNKTRFLLSNLLIDTTSEEDSGTYRCM ADNGVGQPGAAVILYNVQVFEPPEVTMELSQLVIPWGQSAKLTCEVRGNPPPSVLWLRNA VPLISSQRLRLSRRALRVLSMGPEDEGVYQCMAENEVGSAHAVVQLRTSRPSITPRLWQD AELATGTPPVSPSKLGNPEQMLRGQPALPRPPTSVGPASPKCPGEKGQGAPAEAPIILSS PRTSKTDSYELVWRPRHEGSGRAPILYYVVKHRKQVTNSSDDWTISGIPANQHRLTLTRL DPGSLYEVEMAAYNCAGEGQTAMVTFRTGRRPKPEIMASKEQQIQRDDPGASPQSSSQPD HGRLSPPEAPDRPTISTASETSVYVTWIPRGNGGFPIQSFRVEYKKLKKVGDWILATSAI PPSRLSVEITGLEKGTSYKFRVRALNMLGESEPSAPSRPYVVSGYSGRVYERPVAGPYIT FTDAVNETTIMLKWMYIPASNNNTPIHGFYIYYRPTDSDNDSDYKKDMVEGDKYWHSISH LQPETSYDIKMQCFNEGGESEFSNVMICETKARKSSGQPGRLPPPTLAPPQPPLPETIER PVGTGAMVARSSDLPYLIVGVVLGSIVLIIVTFIPFCLWRAWSKQKHTTDLGFPRSALPP SCPYTMVPLGGLPGHQASGQPYLSGISGRACANGIHMNRGCPSAAVGYPGMKPQQHCPGE LQQQSDTSSLLRQTHLGNGYDPQSHQITRGPKSSPDEGSFLYTLPDDSTHQLLQPHHDCC QRQEQPAAVGQSGVRRAPDSPVLEAVWDPPFHSGPPCCLGLVPVEEVDSPDSCQVSGGDW CPQHPVGAYVGQEPGMQLSPGPLVRVSFETPPLTI

Signal peptide: amino acids 1-30

Transmembrane domain: amino acids 16-30 (type II), 854-879

FIGURE 159

CCCACGCGTCCGCCCACGCGTCCGCCCACGCGTCCGCCCACGCGTCCG CCCACGCGTCCGCCCACGCGTCCGGTGCAAGCTCGCGCGCACACTGCCTGGTGGAGGGA GCGAATGGCAGGCTGTTTCCGCGGAGTAAAAGGTGGCGCCGGTCAGTGGTCGTTTCCAAT GACGGACATTAACCAGACTGTCAGATCCTGGGGAGTCGCGAGCCCCGAGTTTGGAGTTTT GCTCGGGCTCCGGCACGTAGTTGGGAAACTTGCGGGTCCTAGAAGTCGCCTCCCCGCCTT GCCGGCCGCCTTGCAGCCCGAGCCGAGCAGCAAAGTGAGACATTGTGCGCCTGCCAGA TCCGCCGGCCGCGCCCGGGCTCCCCCGGAAACACAGAGGGGTCTTCTCTCGCCCTGCA TATAATTAGCCTGCACACAAAGGGAGCAGCTGAATGGAGGTTGTCACTCTCTGGAAAAGG ATTTCTGACCGAGCGCTTCCAATGGACATTCTCCAGTCTCTCTGGAAAGATTCTCGCTAA **TG**GATTTCCTGCTGCTCGGTCTCTGTCTATACTGGCTGCTGAGGAGGCCCTCGGGGGTGG TCTTGTGTCTGGGGGGCCTGCTTTCAGATGCTGCCCGCCGCCCCCAGCGGGTGCCCGC AGCTGTGCCGGTGCGAGGGGCGCTGCTGTACTGCGAGGCGCTCAACCTCACCGAGGCGC CCCACAACCTGTCCGGCCTGCGGGCTTGTCCCTGCGCTACAACAGCCTCTCGGAGCTGC GCGCCGGCCAGTTCACGGGGTTAATGCAGCTCACGTGGCTCTATCTGGATCACAATCACA TCTGCTCCGTGCAGGGGGACGCCTTTCAGAAACTGCGCCGAGTTAAGGAACTCACGCTGA GTTCCAACCAGATCACCCAACTGCCCAACACCACCTTCCGGCCCATGCCCAACCTGCGCA GCGTGGACCTCTCGTACAACAAGCTGCAGGCGCTCGCGCCCGACCTCTTCCACGGGCTGC GGAAGCTCACCACGCTGCATATGCGGGCCAACGCCATCCAGTTTGTGCCCGTGCGCATCT TCCAGGACTGCCGCAGCCTCAAGTTTCTCGACATCGGATACAATCAGCTCAAGAGTCTGG CGCGCAACTCTTTCGCCGGCTTGTTTAAGCTCACCGAGCTGCACCTCGAGCACAACGACT GGAGGAACAAGGTGGCCATTGTGGTCAGCTCGCTGGACTGGGTTTGGAACCTGGAGAAAA TGGACTTGTCGGGCAACGAGATCGAGTACATGGAGCCCCATGTGTTCGAGACCGTGCCGC ACCTGCAGTCCCTGCAGCTGGACTCCAACCGCCTCACCTACATCGAGCCCCGGATCCTCA ACTCTTGGAAGTCCCTGACAAGCATCACCCTGGCCGGGAACCTGTGGGATTGCGGGCGCA ACGTGTGTGCCCTAGCCTCGTGGCTCAGCAACTTCCAGGGGCGCCTACGATGGCAACTTGC AGTGCGCCAGCCCGGAGTACGCACAGGGCGAGGACGTCCTGGACGCCGTGTACGCCTTCC ACCTGTGCGAGGATGGGGCCGAGCCCACCAGCGGCCACCTGCTCTCGGCCGTCACCAACC AGCACGACGCACATTCGAGCCTGCCACCGTGGCTCTTCCAGGCGCGAGCACGCCGAGA ACGCCGTGCAGATCCACAAGGTGGTCACGGGCACCATGGCCCTCATCTTCTCCTTCA GACAGTGCTTTGTCACGCAGCGCAGGAAGCAAAAGCAGAACAGACCATGCATCAGATGG TGGTGATCAACGAGTATGGCTCGTGTACCTGCCACCAGCAGCCCGCGAGGGAATGCG AGGTG<u>TGA</u>TTGTCCCAGTGGCTCTCAACCCATGCGCTACCAAATACGCCTGGGCAGCCGG GACGGCCGGCGGCACCAGGCTGGGGTCTCCTTGTCTGTGCTCTGATATGCTCCTTGAC TGAAACTTTAAGGGGATCTCTCCCAGAGACTTGACATTTTAGCTTTATTGTGTCTTAAAA ACAAAAGCGAATTAAAACACAACAAAAAACCCCCACCCCACACCTTCAGGACAGTCTATC TTAAATTTCATATGAGAACTCCTTCCTCCCTTTGAAGATCTGTCCATATTCAGGAATCTG AGAGTGTAAAAAAGGTGGCCATAAGACAGAGAGAGAATAATCGTGCTTTGTTTTATGCTA CTCCTCCCACCCTGCCCATGATTAAACATCATGTATGTAGAAGATCTTAAGTCCATACGC ATTTCATGAAGAACCATTGGAAAGAGGAATCTGCAATCTGGGGAGCTTAAGAGCAAATGAT

167/392

GACCATAGAAAGCTATGTTCTTACTTTGTGTGTGTGTCTGTATGTTTCTGCGTTGTGTGT CTTTGTAGGCAAGCAAACGTTGTCTACACAAACGGGAATTTAGCTCACATCATTTCATGC ATTATCTTTAAGCTTCAAGAAACTTGCTCTGACCCCTCTAAGCAAACTACTAAGCATTTA CTAATCTCATTATGCTGTGCTATCTGAAAAGAACTTAAGGCCACAATTCACGTCTCGTCC TGGGCATTGTGATGGATTGACCCTCCATTTGCAGTACCTTCCCAGCTGATTAAAGTTCAG CAGTGGTATTGAGGTTTTTCGAATATTTATATAGAAAAAAGTCTTTTCACATGACAAAT GACACTCTCACACCAGTCTTAGCCCTAGTAGTTTTTTAGGTTGGACCAGAGGAAGCAGGT TAAATGAGACCTGTCCTCTGCTGCACTCAGAAAAAATAGGCAGTCCCTGATGCTCAGATC TTAGCCTTGATATTAATAGTTGAGACCACCTACCCACAATGCAGCCTATACTCCCAAGAC TACAAAGTTACCATCGCAAAGGAAAGGTTATTCCAGTAAAAGGAAATAGTTTTCTCAACC ATTTAAAAATATTCTTCTGAACTCATCAAAGTAGAAGAGCCCCCAACCTTTTCTCTCTGC CTTCAAGAAGGCAGACATTTGGTATGATTTAGCATCAACACACATTTATGAGTATATGT ACAGATCTCTGGTAGGATTAGGGGCCACTTGTGTTTCCGGCTTATTTTAGTCGACTTGTC AGCAAGTTTGATGCCTAGTCTATCTGACATGGCCCAGTAGAACAGGGCATTGATGGATCA CATGAGATGGTAGAAGGAACATCACCACATACCCCTCTCACAGAGAAAATTATCAAAGAA CCAGAAATTATATCTGTTTTGGAGCAAGAGTGTCATAATGTTTCAGGGTAGTCAAAATAA ACATAAATTATCTCCTCTAGATGAGTGGCGATGTTGGCTGATTTGGGTCTGCCATTGACA GAATGTCAAATAAAAGGAATTAGCTAGAATATGACCATTAAATGTGCTTCTGAAATATA TTTTGAGATAGGTTTAGAATGTCA

FIGURE 160

MDFLLLGLCLYWLLRRPSGVVLCLLGACFQMLPAAPSGCPQLCRCEGRLLYCEALNLTEA PHNLSGLLGLSLRYNSLSELRAGQFTGLMQLTWLYLDHNHICSVQGDAFQKLRRVKELTL SSNQITQLPNTTFRPMPNLRSVDLSYNKLQALAPDLFHGLRKLTTLHMRANAIQFVPVRI FQDCRSLKFLDIGYNQLKSLARNSFAGLFKLTELHLEHNDLVKVNFAHFPRLISLHSLCL RRNKVAIVVSSLDWVWNLEKMDLSGNEIEYMEPHVFETVPHLQSLQLDSNRLTYIEPRIL NSWKSLTSITLAGNLWDCGRNVCALASWLSNFQGRYDGNLQCASPEYAQGEDVLDAVYAF HLCEDGAEPTSGHLLSAVTNRSDLGPPASSATTLADGGEGQHDGTFEPATVALPGGEHAE NAVQIHKVVTGTMALIFSFLIVVLVLYVSWKCFPASLRQLRQCFVTQRRKQKQKQTMHQM AAMSAQEYYVDYKPNHIEGALVIINEYGSCTCHQQPARECEV

169/392

FIGURE 161

GGCCGCCTGGAATTGTGGGAGTTGTGTCTGCCACTCGGCTGCCGGAGGCCGAAGGTCCGT ${\tt GACT} \underline{\textbf{ATG}} {\tt GCTCCCCAGAGCCTGCCTTCATCTAGGATGGCTCCTCTGGGCATGCTTGG}$ GCTGCTGATGGCCGCCTGCTTCACCTTCTGCCTCAGTCATCAGAACCTGAAGGAGTTTGC CCTGACCAACCCAGAGAAGAGCACCAAAGAAACGGAGAGAAAAGAAACCAAAGCCGA GGAGGAGCTGGATGCCGAAGTCCTGGAGGTGTTCCACCCGACGCATGAGTGGCAGGCCCT TCAGCCAGGGCAGGCTGTCCCTGCAGGATCCCACGTACGGCTGAATCTTCAGACTGGGGA AAGAGAGGCAAAACTCCAATATGAGGACAAGTTCCGAAATAATTTGAAAGGCAAAAGGCT GGATATCAACACCAACACCTACACATCTCAGGATCTCAAGAGTGCACTGGCAAAATTCAA GCTCTTCCGCCCCATTGAGGAACTGAAGAAAGACTTTGATGAGCTGAATGTTGTCATTGA GACTGACATGCAGATCATGGTACGGCTGATCAACAAGTTCAATAGTTCCAGCTCCAGTTT GGAAGAGAAGATTGCTGCGCTCTTTGATCTTGAATATTATGTCCATCAGATGGACAATGC GCAGGACCTGCTTTCCTTTGGTGGTCTTCAAGTGGTGATCAATGGGCTGAACAGCACAGA GCCCCTCGTGAAGGAGTATGCTGCGTTTGTGCTGGGCGCTGCCTTTTCCAGCAACCCCAA GGTCCAGGTGGAGGCCATCGAAGGGGGAGCCCTGCAGAAGCTGCTGGTCATCCTGGCCAC GGAGCAGCCGCTCACTGCAAAGAAGAAGTCCTGTTTGCACTGTGCTCCCTGCTGCGCCA CTTCCCCTATGCCCAGCGGCAGTTCCTGAAGCTCGGGGGGCTGCAGGTCCTGAGGACCCT GGTGCAGGAGAAGGGCACGGAGGTGCTCGCCGTGCGCGTGGTCACACTGCTCTACGACCT GGTCACGGAGAAGATGTTCGCCGAGGAGGAGGCTGAGCCCAGGAGATGTCCCCAGA GAAGCTGCAGCAGTATCGCCAGGTACACCTCCTGCCAGGCCTGTGGGAACAGGGCTGGTG CGAGATCACGGCCCACCTCCTGGCGCTGCCCGAGCATGATGCCCGTGAGAAGGTGCTGCA GACACTGGGCGTCCTCCTGACCACCTGCCGGGACCGCTACCGTCAGGACCCCCAGCTCGG CAGGACACTGGCCAGCCTGCAGGCTGAGTACCAGGTGCTGGCCAGCCTGGAGCTGCAGGA TGGTGAGGACGAGGGCTACTTCCAGGAGCTGCTGGGCTCTGTCAACAGCTTGCTGAAGGA GCTGAGA<u>TGA</u>GGCCCCACACCAGGACTGGACTGGGATGCCGCTAGTGAGGCTGAGGGGTG CCAGCGTGGGTGGGCTCTCAGGCAGGAGGACATCTTGGCAGTGCTGGCCTTGGCCATTAA

FIGURE 162

MAPQSLPSSRMAPLGMLLGLLMAACFTFCLSHQNLKEFALTNPEKSSTKETERKETKAEE ELDAEVLEVFHPTHEWQALQPGQAVPAGSHVRLNLQTGEREAKLQYEDKFRNNLKGKRLD INTNTYTSQDLKSALAKFKEGAEMESSKEDKARQAEVKRLFRPIEELKKDFDELNVVIET DMQIMVRLINKFNSSSSSLEEKIAALFDLEYYVHQMDNAQDLLSFGGLQVVINGLNSTEP LVKEYAAFVLGAAFSSNPKVQVEAIEGGALQKLLVILATEQPLTAKKKVLFALCSLLRHF PYAQRQFLKLGGLQVLRTLVQEKGTEVLAVRVVTLLYDLVTEKMFAEEEAELTQEMSPEK LQQYRQVHLLPGLWEQGWCEITAHLLALPEHDAREKVLQTLGVLLTTCRDRYRQDPQLGR TLASLQAEYQVLASLELQDGEDEGYFQELLGSVNSLLKELR

Important features: Signal peptide: amino acids 1-29

Hypothetical YJL126w/YLR351c/yhcX family protein: amino acids 364-373

N-glycosylation site: amino acids 193-197, 236-240

N-myristoylation site: amino acids 15-21, 19-25, 234-240, 251-257, 402-408, 451-457

Homologous region SLS1 protein: amino acids 68-340

FIGURE 163

CAGAGAGGGGGCTTTGGGAATTGTCCAGCAGAAACAGAGAAGTCTGAGGTGGTGTCAAGA ${\tt CAAAAG} \underline{\textbf{ATG}} \texttt{CTTCAGCTTTGGAAACTTGTTCTCCTGTGCGGCGTGCTCACTGGGACCTCA}$ GAGTCTCTTCTTGACAATCTTGGCAATGACCTAAGCAATGTCGTGGATAAGCTGGAACCT GTTCTTCACGAGGGACTTGAGACAGTTGACAATACTCTTAAAGGCATCCTTGAGAAACTG AAGGTCGACCTAGGAGTGCTTCAGAAATCCAGTGCTTGGCAACTGGCCAAGCAGAAGGCC CAGGAAGCTGAGAAATTGCTGAACAATGTCATTTCTAAGCTGCTTCCAACTAACACGGAC GATGGCAAAGGCCTTAACCTGAGCTTCCCTGTCACCGCGAATGTCACTGTGGCCGGGCCC ATCATTGGCCAGATTATCAACCTGAAAGCCTCCTTGGACCTCCTGACCGCAGTCACAATT GAAACTGATCCCCAGACACCAGCCTGTTGCCGTCCTGGGAGAATGCGCCAGTGACCCA ACCAGCATCTCACTTTCCTTGCTGGACAAACACAGCCAAATCATCAACAAGTTCGTGAAT AGCGTGATCAACACGCTGAAAAGCACTGTATCCTCCCTGCTGCAGAAGGAGATATGTCCA CTGATCCGCATCTTCATCCACTCCCTGGATGTGAATGTCATTCAGCAGGTCGTCGATAAT ${\tt CCTCAGCACAAACCCAGCTGCAAACCCTCATC} \underline{{\tt TGA}} {\tt AGAGGACGAATGAGGAGGACCACT}$ GGAAGCTGCTGCCACCACCTAACCAGCGTGAAAGCCTGAGTCCCACCAGAAGGACCTTCC CAGATACCCCTTCTCCTCACAGTCAGAACAGCAGCCTCTACACATGTTGTCCTGCCCCTG GCAATAAAGGCCCATTTCTGCACCCTTAA

172/392

FIGURE 164

MLQLWKLVLLCGVLTGTSESLLDNLGNDLSNVVDKLEPVLHEGLETVDNTLKGILEKLKV DLGVLQKSSAWQLAKQKAQEAEKLLNNVISKLLPTNTDIFGLKISNSLILDVKAEPIDDG KGLNLSFPVTANVTVAGPIIGQIINLKASLDLLTAVTIETDPQTHQPVAVLGECASDPTS ISLSLLDKHSQIINKFVNSVINTLKSTVSSLLQKEICPLIRIFIHSLDVNVIQQVVDNPQ HKTQLQTLI

Important features:

Signal peptide:

1-15

Transmembrane domain:

none

N-glycosylation site:

124-128, 132-136

N-myristoylation site:

12-18, 16-22, 26-32, 101-107, 122-128, 141-147

Leucine zipper pattern:

44-66

FIGURE 165

GCAGTCAGAGACTTCCCCTGCCCCTCGCTGGGAAAGAACATTAGGAATGCCTTTTAGTGC CTTGCTTCCTGAACTAGCTCACAGTAGCCCGGCGGCCCAGGGCAATCCGACCACATTTCA $\tt CTCTCACCGCTGTAGGAATCCAG{\color{blue}ATG}CAGGCCAAGTACAGCAGCACGAGGGACATGCTGG$ ATGATGATGGGGACACCACCATGAGCCTGCATTCTCAAGCCTCTGCCACAACTCGGCATC CAGAGCCCCGGCGCACAGAGCACAGGGCTCCCTCTTCAACGTGGCGACCAGTGGCCCTGA ${\tt CCCTGCTGACTTTGTGCTTGGTGCTGATAGGGCTGGCAGCCCTGGGGGCTTTTGTTTT}$ TAGGAAATACGTCCCAAGAGTTGCAATCTCTTCAAGTCCAGAATATAAAGCTTGCAGGAA GTCTGCAGCATGTGGCTGAAAAACTCTGTCGTGAGCTGTATAACAAAGCTGGAGCACACA GGTGCAGCCCTTGTACAGAACAATGGAAATGGCATGGAGACAATTGCTACCAGTTCTATA AAGACAGCAAAAGTTGGGAGGACTGTAAATATTTCTGCCTTAGTGAAAACTCTACCATGC TGAAGATAAACAAACAAGAAGACCTGGAATTTGCCGCGTCTCAGAGCTACTCTGAGTTTT TCTACTCTTATTGGACAGGGCTTTTGCGCCCTGACAGTGGCAAGGCCTGGCTGTGGATGG ATGGAACCCCTTTCACTTCTGAACTGTTCCATATTATAATAGATGTCACCAGCCCAAGAA GCAGAGACTGTGTGGCCATCCTCAATGGGATGATCTTCTCAAAGGACTGCAAAGAATTGA AGCGTTGTGTGTGAGAGAGGGCAGGAATGGTGAAGCCAGAGAGCCTCCATGTCCCCC CTGAAACATTAGGCGAAGGTGAC<u>TGA</u>TTCGCCCTCTGCAACTACAAATAGCAGAGTGAGC CAGGCGGTGCCAAAGCAAGGGCTAGTTGAGACATTGGGAAATGGAACATAATCAGGAAAG ACTATCTCTCTGACTAGTACAAAATGGGTTCTCGTGTTTCCTGTTCAGGATCACCAGCAT TTCTGAGCTTGGGTTTATGCACGTATTTAACAGTCACAAGAAGTCTTATTTACATGCCAC CAACCAACCTCAGAAACCCATAATGTCATCTGCCTTCTTGGCTTAGAGATAACTTTTAGC TCTCTTTCTTCAATGTCTAATATCACCTCCCTGTTTTCATGTCTTCCTTACACTTGGT GGAATAAGAAACTTTTTGAAGTAGAGGAAATACATTGAGGTAACATCCTTTTCTCTGACA GTCAAGTAGTCCATCAGAAATTGGCAGTCACTTCCCAGATTGTACCAGCAAATACACAAG GAATTCTTTTTGTTTGTTTCAGTTCATACTAGTCCCTTCCCAATCCATCAGTAAAGACCC CATCTGCCTTGTCCATGCCGTTTCCCAACAGGGATGTCACTTGATATGAGAATCTCAAAT CTCAATGCCTTATAAGCATTCCTTCCTGTGTCCATTAAGACTCTGATAATTGTCTCCCCT CCATAGGAATTTCTCCCAGGAAAGAAATATATCCCCCATCTCCGTTTCATATCAGAACTAC CGTCCCCGATATTCCCTTCAGAGAGATTAAAGACCAGAAAAAAGTGAGCCTCTTCATCTG CACCTGTAATAGTTTCAGTTCCTATTTTCTTCCATTGACCCATATTTATACCTTTCAGGT ACTGAAGATTTAATAATAATAATGTAAATACTGTGAAAAA

174/392

FIGURE 166

MQAKYSSTRDMLDDDGDTTMSLHSQASATTRHPEPRRTEHRAPSSTWRPVALTLLTLCLV LLIGLAALGLLFFQYYQLSNTGQDTISQMEERLGNTSQELQSLQVQNIKLAGSLQHVAEK LCRELYNKAGAHRCSPCTEQWKWHGDNCYQFYKDSKSWEDCKYFCLSENSTMLKINKQED LEFAASQSYSEFFYSYWTGLLRPDSGKAWLWMDGTPFTSELFHIIIDVTSPRSRDCVAIL NGMIFSKDCKELKRCVCERRAGMVKPESLHVPPETLGEGD

FIGURE 167

 $\tt CTCAGG\underline{ATG}AGGGGGAATCTGGCCCTGGTGGGCGTTCTAATCAGCCTGGCCTTCCTGTCA$ CTGCTGCCATCTGGACATCCTCAGCCGGCTGGCGATGACGCCTGCTCTGTGCAGATCCTC GTCCCTGGCCTCAAAGGGGATGCGGGAGAGAGAGGGAGACAAAGGCGCCCCCGGACGGCCT GGAAGAGTCGGCCCCACGGGAGAAAAGGAGACATGGGGGACAAAGGACAGAAAGGCAGT GTGGGTCGTCATGGAAAAATTGGTCCCATTGGCTCTAAAGGTGAGAAAGGAGATTCCGGT CGCAAGGCCATCGGGGAGATGGACAACCAGGTCTCTCAGCTGACCAGCGAGCTCAAGTTC ATCAAGAATGCTGTCGCCGGTGTGCGCGAGACGGAGAGCAAGATCTACCTGCTGGTGAAG GAGGAGAAGCGCTACGCGGACGCCCAGCTGTCCTGCCAGGGCCGCGGGGGCACGCTGAGC ATGCCCAAGGACGAGGCTGCCAATGGCCTGATGGCCGCATACCTGGCGCAAGCCGGCCTG GCCCGTGTCTTCATCGGCATCAACGACCTGGAGAAGGAGGGCGCCTTCGTGTACTCTGAC CACTCCCCCATGCGGACCTTCAACAAGTGGCGCAGCGGTGAGCCCAACAATGCCTACGAC GAGGAGGACTGCGTGGAGATGGTGGCCTCGGGCGGCTGGAACGACGTGGCCTGCCACACC ${\tt ACCATGTACTTCATGTGAGGTTTGACAAGGAGAACATG} {\tt TGA} {\tt GCCTCAGGCTGGGGCTGC}$ AAACTGAGAAAATGGCCTATGCTTAAGAGGAAAATGAAAGTGTTCCTGGGGTGCTGTCTC TGAAGAAGCAGAGTTTCATTACCTGTATTGTAGCCCCCAATGTCATTATGTAATTATTACC CAGAATTGCTCTTCCATAAAGCTTGTGCCTTTGTCCAAGCTATACAATAAAATCTTTAAG

176/392

FIGURE 168

MRGNLALVGVLISLAFLSLLPSGHPQPAGDDACSVQILVPGLKGDAGEKGDKGAPGRPGR VGPTGEKGDMGDKGQKGSVGRHGKIGPIGSKGEKGDSGDIGPPGPNGEPGLPCECSQLRK AIGEMDNQVSQLTSELKFIKNAVAGVRETESKIYLLVKEEKRYADAQLSCQGRGGTLSMP KDEAANGLMAAYLAQAGLARVFIGINDLEKEGAFVYSDHSPMRTFNKWRSGEPNNAYDEE DCVEMVASGGWNDVACHTTMYFMCEFDKENM

FIGURE 169

AGTGACTGCAGCCTTCCTAGATCCCCTCCACTCGGTTTCTCTCTTTTGCAGGAGCACCGGC AGCACCAGTGTGTGAGGGGAGCAGGCAGCGGTCCTAGCCAGTTCCTTGATCCTGCCAGAC $\tt CACCCAGCCCCGGCACAGAGCTGCTCCACAGGCACC\underline{ATG} AGGATCATGCTGCTATTCAC$ GGAGGTGGTTCCTGGCGGGGGCCGCAGCAAGAGGGATCCAGATCTCTACCAGCTGCTCCA GAGACTCTTCAAAAGCCACTCATCTCTGGAGGGATTGCTCAAAGCCCTGAGCCAGGCTAG ACTTATGGGCAAGAGGGCGTCCAGCCAGAGGGAAAGACAGGACCTTTCTTACCTTCAGT GAGGGTTCCTCGGCCCCTTCATCCCAATCAGCTTGGATCCACAGGAAAGTCTTCCCTGGG ${\tt AACAGAGGAGCCAGAGACCTTTA} \underline{{\tt TAA}} {\tt GACTCTCCTACGGATGTGAATCAAGAGAACGTCCC}$ CAGCTTTGGCATCCTCAAGTATCCCCCGAGAGCAGAATAGGTACTCCACTTCCGGACTCC TGGACTGCATTAGGAAGACCTCTTTCCCTGTCCCAATCCCCAGGTGCGCACGCTCCTGTT ACCCTTTCTCTTCTCTTGTAACATTCTTGTGCTTTGACTCCTTCTCCATCTTTTC TACCTGACCCTGGTGTGGAAACTGCATAGTGAATATCCCCAACCCCAATGGGCATTGACT ${\tt GTAGAATACCCTAGAGTTCCTGTAGTGTCCTACATTAAAAATATAATGTCTCTCTATT}$ AAAAAAAAAA

178/392

FIGURE 170

MRIMLLFTAILAFSLAQSFGAVCKEPQEEVVPGGGRSKRDPDLYQLLQRLFKSHSSLEGL LKALSQASTDPKESTSPEKRDMHDFFVGLMGKRSVQPEGKTGPFLPSVRVPRPLHPNQLG STGKSSLGTEEQRPL

Important features: Signal peptide: amino acids 1-18

Tyrosine kinase phosphorylation site: amino acids 36-45

N-myristoylation site: amino acids 33-39, 59-65

Amidation site: amino acids 90-94

Leucine zipper pattern: amino acids 43-65

Tachykinin family signature: amino acids 86-92

FIGURE 171

TGGCCTCCCCAGCTTGCCAGGCACAAGGCTGAGCGGGAGGAAGCGAGAGGCATCTAAGCA $\tt GGCAGTGTTTTGCCTTCACCCCAAGTGACC\underline{ATG} AGAGGTGCCACGCGAGTCTCAATCATG$ $\tt CTCCTCCTAGTAACTGTGTCTGACTGTGTGTGATCACAGGGGCCTGTGAGCGGGATGTC$ CAGTGTGGGGCAGGCACCTGCTGTGCCATCAGCCTGTGGCTTCGAGGGCTGCGGATGTGC ACCCCGCTGGGGCGGGAAGGCGAGGAGTGCCACCCGGCAGCCAAAGGTCCCCTTCTTC AGGAAACGCAAGCACCACCTGTCCTTGCTTGCCCAACCTGCTGTGCTCCAGGTTCCCG ${\tt GACGGCAGGTACCGCTGCTCCATGGACTTGAAGAACATCAATTTT}{{\tt TAG}{\tt GCGCTTGCCTGG}}$ TCTCAGGATACCCACCATCCTTTTCCTGAGCACAGCCTGGATTTTTATTTCTGCCATGAA ACCCAGCTCCCATGACTCCCCAGTCCCTACACTGACTACCCTGATCTCTCTTGTCTAGT ACGCACATATGCACACAGGCAGACATACCTCCCATCATGACATGGTCCCCAGGCTGGCCT TCAGGCTGCCAGAGAGGTGGTAAATGGCAGAAAGGACATTCCCCCTCCCCTCCCCAGGTG ACCTGCTCTCTTCCTGGGCCCTGCCCCTCTCCCCACATGTATCCCTCGGTCTGAATTAG ACATTCCTGGGCACAGGCTCTTGGGTGCATTGCTCAGAGTCCCAGGTCCTGGCCTGACCC TCAGGCCCTTCACGTGAGGTCTGTGAGGACCAATTTGTGGGTAGTTCATCTTCCCTCGAT TGGTTAACTCCTTAGTTTCAGACCACAGACTCAAGATTGGCTCTTCCCAGAGGGCAGCAG ACAGTCACCCCAAGGCAGGTGTAGGGAGCCCAGGGAGGCCAATCAGCCCCCTGAAGACTC TGGTCCCAGTCAGCCTGTGGCCTTGTGGCCTGTGACCTTCTGCCAGAATTGTCA TGCCTCTGAGGCCCCCTCTTACCACACTTTACCAGTTAACCACTGAAGCCCCCAATTCCC ACAGCTTTTCCATTAAAATGCAAATGGTGGTGGTTCAATCTAATCTGATATTGACATATT AGAAGGCAATTAGGGTGTTTCCTTAAACAACTCCTTTCCAAGGATCAGCCCTGAGAGCAG GTTGGTGACTTTGAGGAGGGCAGTCCTCTGTCCAGATTGGGGTGGGAGCAAGGGACAGGG AGCAGGGCAGGGGCTGAAAGGGGCACTGATTCAGACCAGGGAGGCAACTACACCAACA TGCTGGCTTTAGAATAAAGCACCAACTGAAAAA

180/392

FIGURE 172

 ${\tt MRGATRVSIMLLLVTVSDCAVITGACERDVQCGAGTCCAISLWLRGLRMCTPLGREGEEC} \\ {\tt HPGSHKVPFFRKRKHHTCPCLPNLLCSRFPDGRYRCSMDLKNINF}$

Signal peptide: amino acids 1-19

Tyrosine kinase phosphorylation site: amino acids 88-95

N-myristoylation sites: amino acids 33-39, 35-41, 46-52

FIGURE 173

TCCTCCAGGACCCAAGTTTCTTCACCATGGGGATGTGGTCCATTGGTGCAGGAGCCCTGG GGGCTGCTTGGCATTGCTGCTTGCCAACACAGACGTGTTTCTGTCCAAGCCCCAGA AAGCGGCCCTGGAGTACCTGGAGGATATAGACCTGAAAACACTGGAGAAGGAACCAAGGA CTTTCAAAGCAAAGGAGCTATGGGAAAAAAATGGAGCTGTGATTATGGCCGTGCGGAGGC CAGGCTGTTTCCTCTGTCGAGAGGAAGCTGCGGATCTGTCCTCCCTGAAAAGCATGTTGG ACCAGCTGGGCGTCCCCCTCTATGCAGTGGTAAAGGAGCACATCAGGACTGAAGTGAAGG ${ t ATTTCCAGCCTTATTTCAAAGGAGAAATCTTCCTGGATGAAAAGAAAAAGTTCTATGGTC}$ CACAAAGGCGGAAGATGATGTTATGGGATTTATCCGTCTGGGAGTGTGGTACAACTTCT TCCGAGCCTGGAACGGAGGCTTCTCTGGAAACCTGGAAGGAGAAGGCTTCATCCTTGGGG GAGTTTTCGTGGTGGGATCAGGAAAGCAGGGCATTCTTCTTGAGCACCGAGAAAAAGAAT TTGGAGACAAAGTAAACCTACTTTCTGTTCTGGAAGCTGCTAAGATGATCAAACCACAGA $\tt CTTTGGCCTCAGAGAAAAAA{\underline{TGA}} \tt TTGTGTGAAACTGCCCAGCTCAGGGATAACCAGGGAC$ ATTCACCTGTGTTCATGGGATGTATTGTTTCCACTCGTGTCCCTAAGGAGTGAGAAACCC ATTTATACTCTACTCTCAGTATGGATTATTAATGTATTTTAATATTCTGTTTAGGCCCAC TAAGGCAAAATAGCCCCAAAACAAGACTGACAAAAATCTGAAAAACTAATGAGGATTATT AAGCTAAAACCTGGGAAATAGGAGGCTTAAAATTGACTGCCAGGCTGGGTGCAGTGGCTC ACACCTGTAATCCCAGCACTTTGGGAGGCCAAGGTGAGCAAGTCACTTGAGGTCGGGAGT TCGAGACCAGCCTGAGCAACATGGCGAAACCCCGTCTCTACTAAAAATACAAAATCACC $\tt CGGGTGTGGCAGGCAGCTAGTCCCAGCTACCCGGGAGGCTGAGGCAGGAGAATCA$ CTTGAACCTGGGAGGTGGAGGTTGCGGTGAGCTGAGATCACACCACTGTATTCCAGCCTG GGTGACTGAGACTCTAACTAA

182/392

FIGURE 174

MSFLQDPSFFTMGMWSIGAGALGAAALALLLANTDVFLSKPQKAALEYLEDIDLKTLEKE PRTFKAKELWEKNGAVIMAVRRPGCFLCREEAADLSSLKSMLDQLGVPLYAVVKEHIRTE VKDFQPYFKGEIFLDEKKKFYGPQRRKMMFMGFIRLGVWYNFFRAWNGGFSGNLEGEGFI LGGVFVVGSGKQGILLEHREKEFGDKVNLLSVLEAAKMIKPQTLASEKK

FIGURE 175

GACAGTGGAGGGCAGTGGAGAGGCCGCGCTGTCCTGCTGTCACCAAGAGCTGGAGACAC ${\tt CATCTCCCACCGAGAGTC} \underline{{\tt ATG}} {\tt GCCCCATTGGCCCTGCACCTCCTCGTCCTCGTCCCCATC}$ CTCCTCAGCCTGGTGGCCTCCCAGGACTGGAAGGCTGAACGCAGCCAAGACCCCTTCGAG AAATGCATGCAGGATCCTGACTATGAGCAGCTGCTCAAGGTGGTGACCTGGGGGCTCAAT GCCAAGGTGCTCAGCGATGCTGGACACAAGGTCACCATCCTGGAGGCAGATAACAGGATC GGGGGCCGCATCTTCACCTACCGGGACCAGAACACGGGCTGGATTGGGGAGCTGGGAGCC ATGCGCATGCCCAGCTCTCACAGGATCCTCCACAAGCTCTGCCAGGGCCTGGGGCTCAAC CTGACCAAGTTCACCCAGTACGACAAGAACACGTGGACGGAGGTGCACGAAGTGAAGCTG ${\tt CGCAACTATGTGGTGGAGAAGGTGCCCGAGAAGCTGGGCTACGCCTTGCGTCCCCAGGAA}$ AAGGGCCACTCGCCCGAAGACATCTACCAGATGGCTCTCAACCAGGCCCTCAAAGACCTC AAGGCACTGGGCTGCAGAAAGGCGATGAAGAAGTTTGAAAGGCACACGCTCTTGGAATAT CTTCTCGGGGAGGGGAACCTGAGCCGGCCGGCCGTGCAGCTTCTGGGAGACGTGATGTCC GAGGATGGCTTCTTCTATCTCAGCTTCGCCGAGGCCCTCCGGGCCCACAGCTGCCTCAGC AGCTCGCTGTCCGGGCTTGTGCTGTTGAACGCGCCCGTGGTGGCGATGACCCAGGGACCG CACGATGTGCACGTGCAGATCGAGACCTCTCCCCCGGCGCGGAATCTGAAGGTGCTGAAG GCCGACGTGGTGCTGCTGACGGCGAGCGGACCGGCGGTGAAGCGCATCACCTTCTCGCCG CCGCTGCCCCCCCACATGCAGGAGGCGCTGCGGAGGCTGCACTACGTGCCGGCCACCAAG GTGTTCCTAAGCTTCCGCAGGCCCTTCTGGCGCGAGGAGCACATTGAAGGCGGCCACTCA AACACCGATCGCCCGTCGCGCATGATTTTCTACCCGCCGCCGCGCGAGGGCGCGCTGCTG CTGGCCTCGTACACGTGGTCGGACGCGGCGGCAGCGTTCGCCGGCTTGAGCCGGGAAGAG GCGTTGCGCTTGGCGCTCGACGACGTGGCGGCATTGCACGGGCCTGTCGTGCGCCAGCTC TGGGACGGCACCGGCGTCGTCAAGCGTTGGGCGGAGGACCAGCACAGCCAGGGTGGCTTT GTGGTACAGCCGCCGGCGCTCTGGCAAACCGAAAAGGATGACTGGACGGTCCCTTATGGC CGCATCTACTTTGCCGGCGAGCACACCGCCTACCCGCACGGCTGGGTGGAGACGGCGGTC AAGTCGGCGCTGCGCCCCCCATCAAGATCAACAGCCGGAAGGGGCCTGCATCGGACACG GCCAGCCCGAGGGGCACGCATCTGACATGGAGGGGCAGGGGCATGTGCATGGGGTGGCC AGCAGCCCTCGCATGACCTGGCAAAGGAAGAAGGCAGCCACCCTCCAGTCCAAGGCCAG TTATCTCTCCAAAACACGACCCACACGAGGACCTCGCAT<u>TAA</u>AGTATTTTCGGAAAAAA

FIGURE 176

MAPLALHLUVLVPILLSLVASQDWKAERSQDPFEKCMQDPDYEQLLKVVTWGLNRTLKPQ RVIVVGAGVAGLVAAKVLSDAGHKVTILEADNRIGGRIFTYRDQNTGWIGELGAMRMPSS HRILHKLCQGLGLNLTKFTQYDKNTWTEVHEVKLRNYVVEKVPEKLGYALRPQEKGHSPE DIYQMALNQALKDLKALGCRKAMKKFERHTLLEYLLGEGNLSRPAVQLLGDVMSEDGFFY LSFAEALRAHSCLSDRLQYSRIVGGWDLLPRALLSSLSGLVLLNAPVVAMTQGPHDVHVQ IETSPPARNLKVLKADVVLLTASGPAVKRITFSPPLPRHMQEALRRLHYVPATKVFLSFR RPFWREEHIEGGHSNTDRPSRMIFYPPPREGALLLASYTWSDAAAAFAGLSREEALRLAL DDVAALHGPVVRQLWDGTGVVKRWAEDQHSQGGFVVQPPALWQTEKDDWTVPYGRIYFAG EHTAYPHGWVETAVKSALRAAIKINSRKGPASDTASPEGHASDMEGQGHVHGVASSPSHD LAKEEGSHPPVQGQLSLQNTTHTRTSH

Signal peptide: amino acids 1-21

FIGURE 177

CCGGGGAGGGGCCCGTCCCGCCCTCCCCGTCTCCCCGCCCCTCCCCGTCCCTC CCGCTGTCCGGAGCCCCACAGGACGGCATCAGAATTAATGTAACTACACTGAAAGATGAT GGGGACATATCTAAACAGCAGGTTGTTCTTAACATAACCTATGAGAGTGGACAGGTGTAT GTAAATGACTTACCTGTAAATAGTGGTGTAACCCGAATAAGCTGTCAGACTTTGATAGTG AAGAATGAAAATCTTGAAAATTTGGAGGAAAAAGAATATTTTGGAATTGTCAGTGTAAGG ATTTTAGTTCATGAGTGGCCTATGACATCTGGTTCCAGTTTGCAACTAATTGTCATTCAA GAAGAGGTAGTAGAGATTGATGGAAAACAAGTTCAGCAAAAGGATGTCACTGAAATTGAT AAAAAAGAAAGTGTTAGTTCACTGCAAACCACTAGCCAGTATCTTATCAGGAATGTGGAA ACCACTGTAGATGAAGATGTTTTACCTGGCAAGTTACCTGAAACTCCTCTCAGAGCAGAG ${\tt AGGTTCTGGAGCAACGTTTTCCCAGTATTCTTTCAGTTTT} \underline{{\tt TGA}} {\tt ACATCATGGTGGTTGGA}$ ATTACAGGAGCAGCTGTGGTAATAACCATCTTAAAGGTGTTTTTCCCAGTTTCTGAATAC AAAGGAATTCTTCAGTTGGATAAAGTGGACGTCATACCTGTGACAGCTATCAACTTATAT CCAGATGGTCCAGAGAAAAGAGCTGAAAACCTTGAAGATAAAACATGTATTTAAAACGCC ATCTCATATCATGGACTCCGAAGTAGCCTGTTGCCTCCAAATTTGCCACTTGAATATAAT TTTCTTTAAATCGTT

186/392

FIGURE 178

MEGAPPGSLALRLLLFVALPASGWLTTGAPEPPPLSGAPQDGIRINVTTLKDDGDISKQQ VVLNITYESGQVYVNDLPVNSGVTRISCQTLIVKNENLENLEEKEYFGIVSVRILVHEWP MTSGSSLQLIVIQEEVVEIDGKQVQQKDVTEIDILVKNRGVLRHSNYTLPLEESMLYSIS RDSDILFTLPNLSKKESVSSLQTTSQYLIRNVETTVDEDVLPGKLPETPLRAEPPSSYKV MCQWMEKFRKDLCRFWSNVFPVFFQFLNIMVVGITGAAVVITILKVFFPVSEYKGILQLD KVDVIPVTAINLYPDGPEKRAENLEDKTCI

Signal peptide: 1-23

Transmembrane domain: 266-284

Leucine zipper pattern: 155-177

N-glycosylation site: 46-50, 64-68, 166-170, 191-195

Motif name: N-myristoylation site: 3-9, 42-48, 273-279

187/392

FIGURE 179

CTCCTTAGGTGGAAACCCTGGGAGTAGAGTACTGACAGCAAAGACCGGGAAAGACCATAC GTCCCCGGGCAGGGGTGACAACAGGTGTCATCTTTTTGATCTCGTGTGTGGCTGCCTTCC TATTTCAAGGAAAGACGCCAAGGTAATTTTGACCCAGAGGAGCAATGATGTAGCCACCTC CTAACCTTCCCTTCTTGAACCCCCAGTTATGCCAGGATTTACTAGAGAGTGTCAACTCAA $\tt CCAGCAAGCGGCTCCTTCGGCTTAACTTGTGGTTGGAGGAGAACCTTTGTGGGGCTGC$ GTTCTCTTAGCAGTGCTCAGAAGTGACTTGCCTGAGGGTGGACCAGAAGAAAGGAAAGGT CCCCTCTTGCTGTTGGCTGCACATCAGGAAGGCTGTGATGGGGAATGAAGGTGAAAACTTG GAGATTTCACTTCAGTCATTGCTTCTGCCTGCAAGATCATCCTTTAAAAGTAGAGAAGCT GCTCTGTGTGGTGGTTAACTCCAAGAGGCAGAACTCGTTCTAGAAGGAAATGGATGCAAG CAGCTCCGGGGGCCCCAAACGCATGCTTCCTGTGGTCTAGCCCAGGGAAGCCCTTCCGTG GGGGCCCCGGCTTTGAGGGATGCCACCGGTTCTGGACGCATGGCTGATTCCTGA<u>ATG</u>ATG ATGGTTCGCCGGGGGCTGCTTGCGTGGATTTCCCGGGTGGTGGTTTTGCTGGTGCTCCTC TGCTGTGCTATCTCTGTCCTGTACATGTTGGCCTGCACCCCAAAAGGTGACGAGGAGCAG CTGGCACTGCCCAGGGCCAACAGCCCCACGGGGAAGGAGGGGGTACCAGGCCGTCCTTCAG GAGTGGGAGGAGCACCACCGCAACTACGTGAGCAGCCTGAAGCGGCAGATCGCACAGCTC AAGGAGGAGCTGCAGGAGGAGGAGCTGAGCAGCTAGGAATGGGCAGTACCAAGCCAGCGAT GCTGCTGGCCTGGGTCTGGACAGGAGCCCCCCAGAGAAAACCCAGGCCGACCTCCTGGCC TTCCTGCACTCGCAGGTGGACAAGGCAGAGGTGAATGCTGGCGTCAAGCTGGCCACAGAG TATGCAGCAGTGCCTTTCGATAGCTTTACTCTACAGAAGGTGTACCAGCTGGAGACTGGC CTTACCCGCCACCCCGAGGAGAAGCCTGTGAGGAAGGACAAGCGGGATGAGTTGGTGGAA GCCATTGAATCAGCCTTGGAGACCCTGAACAATCCTGCAGAGAACAGCCCCAATCACCGT CCTTACACGGCCTCTGATTTCATAGAAGGGATCTACCGAACAGAAAGGGACAAAGGGACA TTGTATGAGCTCACCTTCAAAGGGGACCACAAACACGAATTCAAACGGCTCATCTTATTT CGACCATTCAGCCCCATCATGAAAGTGAAAAATGAAAAGCTCAACATGGCCAACACGCTT ATCAATGTTATCGTGCCTCTAGCAAAAAGGGTGGACAAGTTCCGGCAGTTCATGCAGAAT AAAGAAGAAATAAATGAAGTCAAAGGAATACTTGAAAACACTTCCAAAGCTGCCAACTTC ${f AGGAACTTTACCTTCATCCAGCTGAATGGAGAATTTTCTCGGGGAAAGGGACTTGATGTT}$ GGAGCCCGCTTCTGGAAGGAAGCAACGTCCTTCTCTTTTTCTGTGATGTGGACATCTAC TTCACATCTGAATTCCTCAATACGTGTAGGCTGAATACACAGCCAGGGAAGAAGGTATTT TATCCAGTTCTTTTCAGTCAGTACAATCCTGGCATAATATACGGCCACCATGATGCAGTC ${\tt CCTCCCTTGGAACAGCAGCTGGTCATAAAGAAGGAAACTGGATTTTGGAGAGACTTTGGA}$ ${ t TTTGGGATGACGTGTCAGTATCGGTCAGACTTCATCAATATAGGTGGGTTTGATCTGGAC$ ATCAAAGGCTGGGGCGGAGAGGATGTGCACCTTTATCGCAAGTATCTCCACAGCAACCTC ATAGTGGTACGGACGCCTGTGCGAGGACTCTTCCACCTCTGGCATGAGAAGCGCTGCATG GACGAGCTGACCCCGAGCAGTACAAGATGTGCATGCAGTCCAAGGCCATGAACGAGGCA TCCCACGGCCAGCTGGGCATGCTGGTGTTCAGGCACGAGATAGAGGCTCACCTTCGCAAA CAGAAACAGAAGACAAGTAGCAAAAAAACA<u>TGA</u>ACTCCCAGAGAAGGATTGTGGGAGACA CTTTTTCTTTCCTTTTGCAATTACTGAAAGTGGCTGCAACAGAGAAAAGACTTCCATAAA GGACGACAAAAGAATTGGACTGATGGGTCAGAGATGAGAAAGCCTCCGATTTCTCTCTGT TGGGCTTTTTACAACAGAAATCAAAATCTCCGCTTTGCCTGCAAAAGTAACCCAGTTGCA CCCTGTGAAGTGTCTGACAAAGGCAGAATGCTTGTGAGATTATAAGCCTAATGGTGTGGA GGTTTTGATGGTGTTTACAATACACTGAGACCTGTTGTTTTTGTGTGCTCATTGAAATATT CATGATTTAAGAGCAGTTTTGTAAAAAATTCATTAGCATGAAAGGCAAGCATATTTCTCC TCATATGAATGAGCCTATCAGCAGGGCTCTAGTTTCTAGGAATGCTAAAATATCAGAAGG CAGGAGAGAGATAGGCTTATTATGATACTAGTGAGTACATTAAGTAAAATAAAATGGAC CAGAAAAGAAAGAAACCATAAATATCGTGTCATATTTTCCCCAAGATTAACCAAAAATA

188/392

TGCACTTTTTTTCCCTTGTGAGTTATAGTCTGCTTATTTAATTACCACTTTGCAAGCCTT ACAAGAGAGCACAAGTTGGCCTACATTTTTATATTTTTTTAAGAAGATACTTTGAGATGCA TTATGAGAACTTTCAGTTCAAAGCATCAAATTGATGCCATATCCAAGGACATGCCAAATG AATACAGACGTACAGATACTTTCTCTGAAGAGTATTTTCGAAGAGGAGCAACTGAACACT GGAGGAAAAGAAAATGACACTTTCTGCTTTACAGAAAAGGAAACTCATTCAGACTGGTGA TATCGTGATGTACCTAAAAGTCAGAAACCACATTTTCTCCTCAGAAGTAGGGACCGCTTT CTTACCTGTTTAAATAAACCAAAGTATACCGTGTGAACCAAACAATCTCTTTTCAAAACA TATATATTGTGAAAGATCAATCCATCTGCCAGAATCTAGTGGGATGGAAGTTTTTGCT ACATGTTATCCACCCCAGGCCAGGTGGAAGTAACTGAATTATTTTTTAAATTAAGCAGTT CTACTCAATCACCAAGATGCTTCTGAAAATTGCATTTTATTACCATTTCAAACTATTTTT CACCAGATGCATGAGCTAATTATCTCTTTTGAGTCCTTGCTTCTGTTTGCTCACAGTAAAC TCATTGTTTAAAAGCTTCAAGAACATTCAAGCTGTTGGTGTTTAAAAAATGCATTGTAT TGATTTGTACTGGTAGTTTATGAAATTTAATTAAAACACAGGCCATGAATGGAAGGTGGT ATTGCACAGCTAATAAAATATGATTTGTGGATATGAA

189/392

FIGURE 180

MMMVRRGLLAWISRVVVLLVLLCCAISVLYMLACTPKGDEEQLALPRANSPTGKEGYQAV LQEWEEQHRNYVSSLKRQIAQLKEELQERSEQLRNGQYQASDAAGLGLDRSPPEKTQADL LAFLHSQVDKAEVNAGVKLATEYAAVPFDSFTLQKVYQLETGLTRHPEEKPVRKDKRDEL VEAIESALETLNNPAENSPNHRPYTASDFIEGIYRTERDKGTLYELTFKGDHKHEFKRLI LFRPFSPIMKVKNEKLNMANTLINVIVPLAKRVDKFRQFMQNFREMCIEQDGRVHLTVVY FGKEEINEVKGILENTSKAANFRNFTFIQLNGEFSRGKGLDVGARFWKGSNVLLFFCDVD IYFTSEFLNTCRLNTQPGKKVFYPVLFSQYNPGIIYGHHDAVPPLEQQLVIKKETGFWRD FGFGMTCQYRSDFINIGGFDLDIKGWGGEDVHLYRKYLHSNLIVVRTPVRGLFHLWHEKR CMDELTPEQYKMCMQSKAMNEASHGQLGMLVFRHEIEAHLRKQKQKTSSKKT

FIGURE 181

TGGTGTTTGCTGGCTCCAGCAGGGCCAGGAGGCCAGCCTGCAGCCTGGTGCTCCAGACTGA TGTCACCCGGGCCGAGTGCTGTGCCTCCGGCAACATTGACACCGCCTGGTCCAACCTCAC CCACCCGGGGAACAAGATCAACCTCCTCGGCTTCTTGGGCCTTGTCCACTGCCTTCCCTG CAAAGATTCGTGCGACGGCGTGGAGTGCGGCCCGGGCAAGGCGTGCCGCATGCTGGGGGG CCACCCGGACCTGAGCGTCATGTACCGGGGCCGCTGCCGCAAGTCCTGTGAGCACGTGGT GTGCCCGCGGCCACAGTCGTGCGTCGTGGACCAGACGGCAGCGCCCACTGCGTGGTGTG TCGAGCGCCCCTGCCCTGTGCCCTCCAGCCCCGGCCAGGAGCTTTGCGGCAACAACAA CGTCACCTACATCTCCTCGTGCCACATGCGCCAGGCCACCTGCTTCCTGGGCCGCTCCAT CGGCGTGCGCCACGCGGCAGCTGCGCAGGCACCCCTGAGGAGCCGCCAGGTGGTGAGTC ${ t TGCAGAAGAGAAGAGAACTTCGTG}{ t TGA}{ t GCCTGCAGGACAGGCCTGGGCCTGGTGCCCGA}$ GGCCCCCATCATCCCCTGTTATTTATTGCCACAGCAGAGTCTAATTTATATGCCACGGA CACTCCTTAGAGCCCGGATTCGGACCACTTGGGGATCCCAGAACCTCCCTGACGATATCC CGGACACTGAGCGCCTGATTTAGGGCCCTTCTCTAGGATGCCCCAGCCCCTACCCTAAGA CTACTATCAAGAGGGCTGGGCATTCTCTGCTGGTAATTCCTGAAGAGGCATGACTGCTTT TCTCAGCCCCAAGCCTCTAGTCTGGGTGTGTACGGAGGGTCTAGCCTGGGTGTGTACGGA GGTGAGTACGGAGGGTCTAGCCTGGGTGTGTATGGAGGATCTAGCCTGGGTGAGTATGGA GGGTCTAGCCTGGGTGAGTATGGAGGGTCTAGCCTG GGTGAGTATGGAGGGTCTAGCCTGGGTGTGTATGGAGGGTCTAGCCTGGGTGAGTATGGA GGGTCTAGCCTGGGTGTGTACGGAGGGTCTAGTCTGAGTGCGTGTGGGGACCTCAGAACA CTGTGACCTTAGCCCAGCAAGCCAGGCCCTTCATGAAGGCCAAGAAGGCTGCCACCATTC CCTGCCAGCCCAAGAACTCCAGCTTCCCCACTGCCTCTGTGTGCCCCTTTGCGTCCTGTG AAGGCCATTGAGAAATGCCCAGTGTGCCCCCTGGGAAAGGGCACGGCCTGTGCTCCTGAC ACGGGCTGTGCTTGGCCACAGAACCACCCAGCGTCTCCCCTGCTGCTGTCCACGTCAGTT ACTGTGTCCGGCGGAGCCAAGTCCACTCTGGGGGAGCTCTGGCGGGGACCACGGGCCACT GCTCACCCACTGGCCCCGAGGGGGGTGTAGACGCCAAGACTCACGCATGTGTGACATCCG GAGTCCTGGAGCCGGGTGTCCCAGTGGCACCACTAGGTGCCTGCTGCCTCCACAGTGGGG TTCACACCCAGGGCTCCTTGGTCCCCCACAACCTGCCCGGCCAGGCCTGCAGACCCAGA AACACGGAGGATATCCAGCTTCCCCGGTCTGGGGTGAGGAATGTGGGGAGCTTGGGCATC $\tt CTCCTCCAGCCTCCAGCCCCCAGGCAGTGCCTTACCTGTGGTGCCCAGAAAAGTGCC$ ${\tt CCTAGGTTGGTGGGTCTACAGGAGCCTCAGCCAGGCAGCCCACCCTGGGGCCCTG}$ CCTCACCAAGGAAATAAAGACTCAAGCCATAAAAAAAA

191/392

FIGURE 182

MRPGAPGPLWPLPWGALAWAVGFVSSMGSGNPAPGGVCWLQQGQEATCSLVLQTDVTRAE CCASGNIDTAWSNLTHPGNKINLLGFLGLVHCLPCKDSCDGVECGPGKACRMLGGRPRCE CAPDCSGLPARLQVCGSDGATYRDECELRAARCRGHPDLSVMYRGRCRKSCEHVVCPRPQ SCVVDQTGSAHCVVCRAAPCPVPSSPGQELCGNNNVTYISSCHMRQATCFLGRSIGVRHA GSCAGTPEEPPGGESAEEEENFV

Important features:
Signal peptide:
amino acids 1-20

N-glycosylation sites: amino acids 73-77, 215-219

Osteonectin domain proteins: amino acids 97-130, 169-202

192/392

FIGURE 183

CACTCATTCATTCCAAAGGGTCTCTCAAGGCAATGGTAATGTGCAAGGAGGTGATACCTA AATGAATGACCAAAAGAACATGCTTCTGCTTTTGTGTGTCTCCTACATTTTAGACATTTG TTTGTTTCTCTTGGTAGCCTTTAAATTCCTTGAAGCCCAGGACCATGTCTCACTTACCTT TGTGTTTCCACTAGTCTACCTCCTGGAATTGGCAGATACTCAGTGAAAGCCTGTGA AATAAGTGATGTCTATTTCTAGCATATTATTCTGAGATTTAATGATAGATTTAGTGATTG TTCAACTTCATTCTCAAAATTAGGTCCTGAGTTAACTAATAATTACCTTTGAAATGTGTG TGATTCAGTTCCATTGCATTGATTTTTGTTCTCAGAAGCCAAGGTTTCCCATGAAAAATC ATTCCCACTTGAATTGGGCTGTGATTCTTGCTGCGTTTAAGTAAAGGAAGCCTCTTGGTT CTAGTTCTGCAAACTTACACACTGAACTGGGACAAGTTTTTGTTTAGAGTAATGGCTGGG AAAAGAGGAACCTTTCATTTATTCAGAAGTCAAAAACAAAGGCCTCCCAGCCACCTGGA GATGTTTTGTTGCAGACACCAGCCTGGCTCTGTCTTTATGCCTAACAATTGAGCATCCAG TCTTCTTTGTGCTGGGACCATTGCTCAGCTCTGCAAGGGGAAAAGAGGGAAAAGCCAGA GCTGCCAGGCTTCTTGCACTGGGGCCGGGGGAGGGTTCCTGGGAAGCAGGTGCTCTCTGG CTTCTTGGTACGTGAGGCTCTCGGAGCTGCCTCTCTCTGACCCTCAGGTCCTCACCGAG TTTGCTCCAGGAGTATATTGAAAACATACCCAGTGCTCTCTCAAGCACCCACTGCTTAGA GGGCCCAGATTTCTTTTCCTTCTTTCCCTTGCAGAGCTGGAGACTGCATCGGGCATCTGG TGTTTAAACTAAACAGGAAAACTGACTAAAGGTCCACAGTGCTCATTGTGTAGACTAGCT GCCCTCCGATGGTGCTCTGATTATCAGTGGTTCCAGTGCAGGGCCTGTCACTAAACAGG CCTCACTTCCTCTTGGGGGCTTTCCCATGGGAGGTGTGGCTTTTTACTCTACATGGAAA TGACTCTCTGCAGCCACAGAACACAGTCATTTTCTGAATTATCCCAGTCTCTCATGCGCC CTGGATTCCTCCAGATGCCTTATATCTCTTGTGCAAAGTTGTCTAAAATTTGGTTCCCAG CTTCCAAGCCTTGCCTTTTGGCCTTCCTGGAAGTATTTTTGTTGATGAGTCGTCTGTCAT TATTCTCTAAAATGATTTGCTTTTGTTTCTTTCATTCCTATTTCCACCCCACATATACA CACATGCTTCT<u>TAA</u>CTTAGGGGATTACATGCCAATAAATCTATTGTTGAAAATGCACTAA TACTATCGCAAAGACGAAAATTCACAGGCTGAACCGTTGTAAGTCCATATGCTCCTCAAC TTACATGTGTGATGGAGTTATGCCCAAATAAGTCCATCGTCAAGTTGAAAAATCAAAATC AAGCCATCTTAGGTTGAGGACCATTTGTTTGTACCTCCAAAGATGTCATATCTTTAAACA TACTCCCTAGCTTTTCTTTTTACTTTTTTTTTTTTTTTAAAGTAATTATAGAATCACAGAAAGTT **GCAAAAA**

193/392

FIGURE 184

 ${\tt MGALIISGSSAGPVTKQASLPPWGLSHGRCGFLLYMEMTLCSHRTQSFSELSQSLMRPGFLQMPYISCAKLSKIWFPASKPCLLAFLEVFLLMSRLSLFSKMICFLFLSFLFPPHIYTHAS}$

Important features of the protein: Signal peptide: amino acids 1-41

Transmembrane domain: amino acids 88-107

Casein kinase II phosphorylation site: amino acids 47-50

N-myristoylation site: amino acids 24-29

194/392

FIGURE 185

AACTCAAACTCCTCTCTGGGAAAACGCGGTGCTTGCTCCTCCCGGAGTGGCCTTGGCA GGGTGTTGGAGCCCTCGGTCTGCCCCGTCCGGTCTCTGGGGCCAAGGCTGGGTTTCCCTC ${f \underline{ATG}}$ TATGGCAAGAGCTCTACTCGTGCGGTGCTTCTTCTCCTTGGCATACAGCTCACAGCT CTTTGGCCTATAGCAGCTGTGGAAATTTATACCTCCCGGGTGCTGGAGGCTGTTAATGGG ACAGATGCTCGGTTAAAATGCACTTTCTCCAGCTTTGCCCCTGTGGGTGATGCTCTAACA GTGACCTGGAATTTTCGTCCTCTAGACGGGGGACCTGAGCAGTTTGTATTCTACTACCAC ATAGATCCCTTCCAACCCATGAGTGGGCGGTTTAAGGACCGGGTGTCTTGGGATGGGAAT CCTGAGCGGTACGATGCCTCCATCCTTCTCTGGAAACTGCAGTTCGACGACAATGGGACA TACACCTGCCAGGTGAAGAACCCACCTGATGTTGATGGGGGTGATAGGGGAGATCCGGCTC ${\tt AGCGTCGTGCACACTGTACGCTTCTCTGAGATCCACTTCCTGGCTCTGGCCATTGGCTCT}$ GCCTGTGCACTGATGATCATAATAGTAATTGTAGTGGTCCTCTTCCAGCATTACCGGAAA AAGCGATGGGCCGAAAGAGCTCATAAAGTGGTGGAGATAAAATCAAAAGAAGAGGAAAGG $\tt CTCAACCAAGAGAAAAAGGTCTCTGTTTATTTAGAAGACACAGAC\underline{TAA}CAATTTTAGATG$ GAAGCTGAGATGATTTCCAAGAACAAGAACCCTAGTATTTCTTGAAGTTAATGGAAACTT TTCTTTGGCTTTTCCAGTTGTGACCCGTTTTCCAACCAGTTCTGCAGCATATTAGATTCT AGACAAGCAACACCCCTCTGGAGCCAGCACAGTGCTCCTCCATATCACCAGTCATACACA GCCTCATTATTAAGGTCTTATTTAATTTCAGAGTGTAAATTTTTTCAAGTGCTCATTAGG TTTTATAAACAAGAAGCTACATTTTTGCCCTTAAGACACTACTTACAGTGTTATGACTTG TATACACATATATTGGTATCAAAGGGGATAAAAGCCAATTTGTCTGTTACATTTCCTTTC ACGTATTTCTTTTAGCAGCACTTCTGCTACTAAAGTTAATGTGTTTACTCTCTTTCCTTC ${\tt CCACATTCTCAATTAAAAGGTGAGCTAAGCCTCCTCGGTGTTTCTGATTAACAGTAAATC}$ ATCTTGTTTTACTGAATTTCTTTCAATATTCCAGGTGATAGATTTTTGTCG

FIGURE 186

MYGKSSTRAVLLLLGIQLTALWPIAAVEIYTSRVLEAVNGTDARLKCTFSSFAPVGDALT VTWNFRPLDGGPEQFVFYYHIDPFQPMSGRFKDRVSWDGNPERYDASILLWKLQFDDNGT YTCQVKNPPDVDGVIGEIRLSVVHTVRFSEIHFLALAIGSACALMIIIVIVVVLFQHYRK KRWAERAHKVVEIKSKEEERLNQEKKVSVYLEDTD

196/392

FIGURE 187

197/392

FIGURE 188

 ${\tt MKFLAVLVLLGVSIFLVSAQNPTTAAPADTYPATGPADDEAPDAETTAAATTATTAAPTTATTAASTTARKDIPVLPKWVGDLPNGRVCP}$

198/392

FIGURE 189

GAGCGAAC<u>ATG</u>GCAGCGCGTTGGCGGTTTTGGTGTCTCTCTGTGACCATGGTGGTGGCGC TGCTCATCGTTTGCGACGTTCCCTCAGCCTCTGCCCAAAGAAGAAGAAGAAGATGGTGTTAT GAGACAAGTTCCGTCGCCTTGTGAAAGCCCCACCGAGAAATTACTCCGTTATCGTCATGT AGATCCTGGCAAACTCCTGGCGATACTCCAGTGCATTCACCAACAGGATATTTTTTGCCA TGGTGGATTTTGATGAAGGCTCTGATGTATTTCAGATGCTAAACATGAATTCAGCTCCAA CTTTCATCAACTTTCCTGCAAAAGGGAAACCCAAACGGGGTGATACATATGAGTTACAGG TGCGGGGTTTTTCAGCTGAGCAGATTGCCCGGTGGATCGCCGACAGAACTGATGTCAATA TTAGAGTGATTAGACCCCCAAATTATGCTGGTCCCCTTATGTTGGGATTGCTTTTGGCTG TTATTGGTGGACTTGTGTATCTTCGAAGAAGTAATATGGAATTTCTCTTTAATAAAACTG GATGGGCTTTTGCAGCTTTGTGTTTTTGTGCTTGCTATGACATCTGGTCAAATGTGGAACC ATATAAGAGGACCACCATATGCCCATAAGAATCCCCACACGGGACATGTGAATTATATCC ATGGAAGCAGTCAAGCCCAGTTTGTAGCTGAAACACACATTGTTCTTCTGTTTAATGGTG GAGTTACCTTAGGAATGGTGCTTTTATGTGAAGCTGCTACCTCTGACATGGATATTGGAA AGCGAAAGATAATGTGTGTGGCTGGTATTGGACTTGTTGTATTATTCTTCAGTTGGATGC TCTCTATTTTTAGATCTAAATATCATGGCTACCCATACAGCTTTCTGATGAGTTAAAAAG GTCCCAGAGATATATAGACACTGGAGTACTGGAAATTGAAAAACGAAAATCGTGTGTT TGAAAAGAAGAATGCAACTTGTATATTTTGTATTACCTCTTTTTTTCAAGTGATTTAAAT AGTTAATCATTTAACCAAAGAAGATGTGTGTGTGCCTTAACAAGCAATCCTCTGTCAAAAT CTGAGGTATTTGAAAATAATTATCCTCTTAACCTTCTCTCCCAGTGAACTTTATGGAAC ATTTAATTTAGTACAATTAAGTATATTATAAAAATTGTAAAACTACTACTTTGTTTTAGT TAGAACAAAGCTCAAAACTACTTTAGTTAACTTGGTCATCTGATTTTATATTGCCTTATC CAAAGATGGGGAAAGTAAGTCCTGACCAGGTGTTCCCACATATGCCTGTTACAGATAACT ACATTAGGAATTCATTCTTAGCTTCTTCATCTTTGTGTGGATGTGTATACTTTACGCATC TTTCCTTTTGAGTAGAGAAATTATGTGTGTCATGTGGTCTTCTGAAAATGGAACACCATT CTTCAGAGCACACGTCTAGCCCTCAGCAAGACAGTTGTTTCTCCTCCTCCTTGCATATTT AATACAGGATTATAATTTCTGCTTGAGTATGGTGTTAACTACCTTGTATTTAGAAAGATT TCAGATTCATTCCATCTCCTTAGTTTTCTTTTAAGGTGACCCATCTGTGATAAAAATATA GCTTAGTGCTAAAATCAGTGTAACTTATACATGGCCTAAAATGTTTCTACAAATTAGAGT TTGTCACTTATTCCATTTGTACCTAAGAGAAAAATAGGCTCAGTTAGAAAAGGACTCCCT TCACGAGGTCAGGAGTTCGAGACCATCCTGGCCAACATGGTGAAACCCCGTCTCTACTAA AAATATAAAAATTAGCTGGGTGTGGTGGCAGGAGCCTGTAATCCCAGCTACACAGGAGGC TGAGGCACGAGAATCACTTGAACTCAGGAGATGGAGGTTTCAGTGAGCCGAGATCACGCC

199/392

FIGURE 190

MAARWRFWCVSVTMVVALLIVCDVPSASAQRKKEMVLSEKVSQLMEWTNKRPVIRMNGDK FRRLVKAPPRNYSVIVMFTALQLHRQCVVCKQADEEFQILANSWRYSSAFTNRIFFAMVD FDEGSDVFQMLNMNSAPTFINFPAKGKPKRGDTYELQVRGFSAEQIARWIADRTDVNIRV IRPPNYAGPLMLGLLLAVIGGLVYLRRSNMEFLFNKTGWAFAALCFVLAMTSGQMWNHIR GPPYAHKNPHTGHVNYIHGSSQAQFVAETHIVLLFNGGVTLGMVLLCEAATSDMDIGKRK IMCVAGIGLVVLFFSWMLSIFRSKYHGYPYSFLMS

Signal peptide: amino acids 1-29

Transmembrane domains: amino acids 183-205, 217-237, 217-287, 301-321

200/392

FIGURE 191

GAGAGAGTCAGCCTGGCAGAGAGACTCTGAAATGAGGGATTAGAGGTGTTCAAGGAGCA AGAGCTTCAGCCTGAAGACAAGGGAGCAGTCCCTGAAGACGCTTCTACTGAGAGGTCTGC $C\underline{ATG}$ GCCTCTTTGGCCTCCAACTTGTGGGCTACATCCTAGGCCTTCTGGGGCTTTTGGG CACACTGGTTGCCATGCTGCTCCCCAGCTGGAAAACAAGTTCTTATGTCGGTGCCAGCAT CATCACCCAGTGTGACATCTATAGCACCCTTCTGGGCCTGCCCGCTGACATCCAGGCTGC CCAGGCCATGATGGTGACATCCAGTGCAATCTCCTCCCTGGCCTGCATTATCTCTGTGGT GGGCATGAGATGCACAGTCTTCTGCCAGGAATCCCGAGCCAAAGACAGAGTGGCGGTAGC TCATGGGATCCTACGGGACTTCTACTCACCACTGGTGCCTGACAGCATGAAATTTGAGAT TGGAGAGGCTCTTTACTTGGGCATTATTTCTTCCCTGTTCTCCCTGATAGCTGGAATCAT CCTCTGCTTTTCCTGCTCATCCCAGAGAAATCGCTCCAACTACTACGATGCCTACCAAGC CCAACCTCTTGCCACAAGGAGCTCTCCAAGGCCTGGTCAACCTCCCAAAGTCAAGAGTGA GTTCAATTCCTACAGCCTGACAGGGTATGTGTGAAGAACCAGGGGCCAGAGCTGGGGGGT GGCTGGGTCTGTGAAAAACAGTGGACAGCACCCCGAGGGCCACAGGTGAGGGACACTACC AAGGCAGAAATGGGGGCTAGTGTAACAGCATGCAGGTTGAATTGCCAAGGATGCTCGCCA TGCCAGCCTTTCTGTTTTCCTCACCTTGCTGCTCCCCTGCCCTAAGTCCCCAACCCTCAA CTTGAAACCCCATTCCCTTAAGCCAGGACTCAGAGGATCCCTTTGCCCTCTGGTTTACCT GGCTTTTGTGGGCATTGCTCTAACCTACTTCTCAAGCTTCCCTCCAAAGAAACTGATTGG CCCTGGAACCTCCATCCCACTCTTGTTATGACTCCACAGTGTCCAGACTAATTTGTGCAT GAACTGAAATAAAACCATCCTACGGTATCCAGGGAACAGAAAGCAGGATGCAGGATGGGA GGACAGGAAGGCAGCCTGGGACATTTAAAAAAATA

201/392

FIGURE 192

MASLGLQLVGYILGLLGTLVAMLLPSWKTSSYVGASIVTAVGFSKGLWMECATHSTG ITQCDIYSTLLGLPADIQAAQAMMVTSSAISSLACIISVVGMRCTVFCQESRAKDRVAVA GGVFFILGGLLGFIPVAWNLHGILRDFYSPLVPDSMKFEIGEALYLGIISSLFSLIAGII LCFSCSSQRNRSNYYDAYQAQPLATRSSPRPGQPPKVKSEFNSYSLTGYV

Important features of the protein: Signal peptide: amino acids 1-24

Transmembrane domains: amino acids 82-102, 117-140, 163-182

N-glycosylation site: amino acids 190-193

PMP-22 / EMP / MP20 family proteins: amino acids 46-59

202/392

FIGURE 193

203/392

FIGURE 194

 ${\tt MAPRGCIVAVFAIFCISRLLCSHGAPVAPMTPYLMLCQPHKRCGDKFYDPLQHCCYDDAV} \\ {\tt VPLARTQTCGNCTFRVCFEQCCPWTFMVKLINQNCDSARTSDDRLCRSVS}$

Signal peptide: amino acids 1-24

204/392

FIGURE 195

FIGURE 196

MMLHSALGLCLLLVTVSSNLAIAIKKEKRPPQTLSRGWGDDITWVQTYEEGLFYAQKSKK PLMVIHHLEDCQYSQALKKVFAQNEEIQEMAQNKFIMLNLMHETTDKNLSPDGQYVPRIM FVDPSLTVRADIAGRYSNRLYTYEPRDLPLLIENMKKALRLIQSEL

Important features: Signal peptide: amino acids 1-23

N-myristoylation site: amino acids 51-57

206/392

FIGURE 197

GGGGGCGGTGCCTGGAGCACGCGCGCGCGCGCGCAGCGCTCACTCGCACTC AGTCGCGGGAGGCTTCCCCGCGCCGGCCGGCCGCCCGCTCCCCGGCACCAGAAGTTC TGGGGATCCCTGCTCTTCGCTCTCTTCCTGGCTGCGTCCCTAGGTCCGGTGGCAGCCTTC AAGGTCGCCACGCCGTATTCCCTGTATGTCTGTCCCGAGGGGCAGAACGTCACCCTCACC TGCAGGCTCTTGGGCCCTGTGGACAAAGGGCACGATGTGACCTTCTACAAGACGTGGTAC CGCAGCTCGAGGGGGGGGGGCAGCCTGCTCAGAGCGCCGGCCCATCCGCAACCTCACG TTCCAGGACCTTCACCTGCACCATGGAGGCCACCAGGCTGCCAACACCAGCCACGACCTG GCTCAGCGCCACGGGCTGGAGTCGGCCTCCGACCACGATGGCAACTTCTCCATCACCATG CACCACTCGGAGCACAGGGTCCATGGTGCCATGGAGCTGCAGGTGCAGACAGGCAAAGAT ${\tt GCACCATCCAACTGTGTGTGTACCCATCCTCCTCCCAGGATAGTGAAAACATCACGGCT}$ GCAGCCCTGGCTACGGGTGCCTGCATCGTAGGAATCCTCTGCCTCCCCCCTCATCCTGCTC CTGGTCTACAAGCAAAGGCAGGCAGCCTCCAACCGCCGTGCCCAGGAGCTGGTGCGGATG GACAGCAACATTCAAGGGATTGAAAACCCCGGCTTTGAAGCCTCACCACCTGCCCAGGGG ATACCCGAGGCCAAAGTCAGGCACCCCCTGTCCTATGTGGCCCAGCGGCAGCCTTCTGAG TCTGGGCGGCATCTGCTTTCGGAGCCCAGCACCCCCTGTCTCCTCCAGGCCCCGGAGAC GTCTTCTTCCCATCCCTGGACCCTGTCCCTGACTCTCCAAACTTTGAGGTCATCTAGCCC AGCTGGGGGACAGTGGGCTGTTGTGGCTGGGTCTGGGGCAGGTGCATTTGAGCCAGGGCT GGCTCTGTGAGTGGCCTCCTTGGCCTCGGCCCTGGTTCCCTCCTCCTGCTCTGGGCTCA GATACTGTGACATCCCAGAAGCCCAGCCCCTCAACCCCTCTGGATGCTACATGGGGATGC TGGACGCTCAGCCCCTGTTCCAAGGATTTTGGGGTGCTGAGATTCTCCCCTAGAGACCT GAAATTCACCAGCTACAGATGCCAAATGACTTACATCTTAAGAAGTCTCAGAACGTCCAG CCCTTCAGCAGCTCTCGAGACATGAGCCTTGGGATGTGGCAGCATCAGTGGGACA AGATGGACACTGGGCCACCCTCCCAGGCACCAGACACAGGGCACGGTGGAGAGACTTCTC CCCCGTGGCCGCCTTGGCTCCCCCGTTTTGCCCGAGGCTGCTCTTCTGTCAGACTTCCTC TTTGTACCACAGTGGCTCTGGGGCCAGGCCTGCCCACTGGCCATCGCCACCTTCCC CAGCTGCCTCCTACCAGCAGTTTCTCTGAAGATCTGTCAACAGGTTAAGTCAATCTGGGG CTTCCACTGCCTGCATTCCAGTCCCCAGAGCTTGGTGGTCCCGAAACGGGAAGTACATAT ${\tt TGGGGCATGGTGGCCTCCGTGAGCAAATGGTGTCTTGGGCAATCTGAGGCCAGGACAGAT}$ GTGGAGAGGGGCACCTGCCCCGCCCTCCCCATCCCCTACTCCCACTGCTCAGCGCGGG CCATTGCAAGGGTGCCACACATGTCTTGTCCACCCTGGGACACTTCTGAGTATGAAGCG AAGA

207/392

FIGURE 198

MGVPTALEAGSWRWGSLLFALFLAASLGPVAAFKVATPYSLYVCPEGQNVTLTCRLLGPV DKGHDVTFYKTWYRSSRGEVQTCSERRPIRNLTFQDLHLHHGGHQAANTSHDLAQRHGLE SASDHHGNFSITMRNLTLLDSGLYCCLVVEIRHHHSEHRVHGAMELQVQTGKDAPSNCVV YPSSSQDSENITAAALATGACIVGILCLPLILLLVYKQRQAASNRRAQELVRMDSNIQGI ENPGFEASPPAQGIPEAKVRHPLSYVAQRQPSESGRHLLSEPSTPLSPPGPGDVFFPSLD PVPDSPNFEVI

Signal peptide:
amino acids 1-28

Transmembrane domain: amino acids 190-216

208/392

FIGURE 199

209/392

FIGURE 200

MDSLRKMLISVAMLGAGAGVGYALLVIVTPGERRKQEMLKEMPLQDPRSREEAARTQQLL LATLQEAATTQENVAWRKNWMVGGEGGASGRSP

Signal peptide:
amino acids 1-18

210/392

FIGURE 201

GACAGCTGTGTCTCGATGGAGTAGACTCTCAGAACAGCGCAGTTTGCCCTCCGCTCACGC AGAGCCTCTCCGTGGCTTCCGCACCTTGAGCATTAGGCCAGTTCTCCTCTTCTCTAAT CCATCCGTCACCTCTCCTGTCATCCGTTTCCATGCCGTGAGGTCCATTCACAGAACACAT $\texttt{CC}\underline{\textbf{ATG}}\texttt{GCTCTCATGCTCAGGTTTGGTTCTGAGTCTCCTCAAGCTGGGATCAGGGCAGTGGC}$ AGGTGTTTGGGCCAGACAAGCCTGTCCAGGCCTTGGTGGGGGAGGACGCAGCATTCTCCT GTTTCCTGTCTCCTAAGACCAATGCAGAGGCCATGGAAGTGCGGTTCTTCAGGGGCCAGT TCTCTAGCGTGGTCCACCTCTACAGGGACGGGAAGGACCAGCCATTTATGCAGATGCCAC AGTATCAAGGCAGGACAAAACTGGTGAAGGATTCTATTGCGGAGGGGCGCATCTCTCTGA GGCTGGAAAACATTACTGTGTTGGATGCTGGCCTCTATGGGTGCAGGATTAGTTCCCAGT $\tt CTTACTACCAGAAGGCCATCTGGGAGCTACAGGTGTCAGCACTGGGCTCAGTTCCTCTCA$ TTTCCATCACGGGATATGTTGATAGAGACATCCAGCTACTCTGTCAGTCCTCGGGCTGGT TCCCCCGGCCCACAGCGAAGTGGAAAGGTCCACAAGGACAGGATTTGTCCACAGACTCCA GGACAAACAGAGACATGCATGGCCTGTTTGATGTGGAGATCTCTCTGACCGTCCAAGAGA ACGCCGGGAGCATATCCTGTTCCATGCGGCATGCTCATCTGAGCCGAGAGGTGGAATCCA GGGTACAGATAGGAGATACCTTTTTCGAGCCTATATCGTGGCACCTGGCTACCAAAGTAC TGGGAATACTCTGCTGTGGCCTATTTTTTGGCATTGTTGGACTGAAGATTTTCTTCTCCA AATTCCAGTGGAAAATCCAGGCGGAACTGGACTGGAGAAGAAGCACGGACAGGCAGAAT TGAGAGACGCCCGGAAACACGCAGTGGAGGTGACTCTGGATCCAGAGACGGCTCACCCGA AGCTCTGCGTTTCTGATCTGAAAACTGTAACCCATAGAAAAGCTCCCCAGGAGGTGCCTC ACTCTGAGAAGAGTTTACAAGGAAGAGTGTGGTGGCTTCTCAGAGTTTCCAAGCAGGGA AACATTACTGGGAGGTGGACGGAGGACACAATAAAAGGTGGCGCGTGGGAGTGTGCCGGG ATGATGTGGACAGGAGGAAGGAGTACGTGACTTTGTCTCCCGATCATGGGTACTGGGTCC TCAGACTGAATGGAGAACATTTGTATTTCACATTAAATCCCCGTTTTATCAGCGTCTTCC CCAGGACCCCACCTACAAAAATAGGGGTCTTCCTGGACTATGAGTGTGGGACCATCTCCT TCTTCAACATAAATGACCAGTCCCTTATTTATACCCTGACATGTCGGTTTGAAGGCTTAT ${ t TGAGGCCCTACATTGAGTATCCGTCCTATAATGAGCAAAATGGAACTCCCATAGTCATCT}$ GCCCAGTCACCCAGGAATCAGAGAAAGAGGCCTCTTGGCAAAGGGCCTCTGCAATCCCAG AGACAAGCAACAGTGAGTCCTCCTCACAGGCCAACCACGCCCTTCCTCCCCAGGGGTGAAA AGTTTGCTCTCACTCCATCTGGCTAAGTGATCTTGAAATACCACCTCTCAGGTGAAGAAC CGTCAGGAATTCCCATCTCACAGGCTGTGGTGTAGATTAAGTAGACAAGGAATGTGAATA ATGCTTAGATCTTATTGATGACAGAGTGTATCCTAATGGTTTGTTCATTATATTACACTT TCAGTAAAAAA

211/392

FIGURE 202

MALMLSLVLSLLKLGSGQWQVFGPDKPVQALVGEDAAFSCFLSPKTNAEAMEVRFFRGQF SSVVHLYRDGKDQPFMQMPQYQGRTKLVKDSIAEGRISLRLENITVLDAGLYGCRISSQS YYQKAIWELQVSALGSVPLISITGYVDRDIQLLCQSSGWFPRPTAKWKGPQGQDLSTDSR TNRDMHGLFDVEISLTVQENAGSISCSMRHAHLSREVESRVQIGDTFFEPISWHLATKVL GILCCGLFFGIVGLKIFFSKFQWKIQAELDWRRKHGQAELRDARKHAVEVTLDPETAHPK LCVSDLKTVTHRKAPQEVPHSEKRFTRKSVVASQSFQAGKHYWEVDGGHNKRWRVGVCRD DVDRRKEYVTLSPDHGYWVLRLNGEHLYFTLNPRFISVFPRTPPTKIGVFLDYECGTISF FNINDQSLIYTLTCRFEGLLRPYIEYPSYNEQNGTPIVICPVTQESEKEASWQRASAIPE TSNSESSSQATTPFLPRGEM

Signal peptide: amino acids 1-17

Transmembrane domain: amino acids 239-255

212/392

FIGURE 203

FIGURE 204

MGGLLLAAFLALVSVPRAQAVWLGRLDPEQLLGPWYVLAVASREKGFAMEKDMKNVVGVV VTLTPENNLRTLSSQHGLGGCDQSVMDLIKRNSGWVFENPSIGVLELWVLATNFRDYAII FTQLEFGDEPFNTVELYSLTETASQEAMGLFTKWSRSLGFLSQ

Signal peptide:
amino acids 1-20

214/392

FIGURE 205

FIGURE 206

MKTLFLGVTLGLAAALSFTLEEEDITGTWYVKAMVVDKDFPEDRRPRKVSPVKVTALGGG KLEATFTFMREDRCIQKKILMRKTEEPGKYSAYGGRKLMYLQELPRRDHYIFYCKDQHHG GLLHMGKLVGRNSDTNREALEEFKKLVQRKGLSEEDIFTPLQTGSCVPEH

Important features: Signal peptide: amino acids 1-17

216/392

FIGURE 207

GTTCCGCAGATGCAGAGGTTGAGGTGGCTGCGGGACTGGAAGTCATCGGGCAGAGGTCTC ${\tt ACAGCAGCCAAGGAACCTGGGGCCCGCTCCTCCCCCCTCCAGGCC{\tt ATG}{\tt AGGATTCTGCAG}}$ TTAATCCTGCTTGCTCTGGCAACAGGGCTTGTAGGGGGAGAGACCAGGATCATCAAGGGG TTCGAGTGCAAGCCTCACTCCCAGCCCTGGCAGGCAGCCCTGTTCGAGAAGACGCGGCTA $\tt CTCTGTGGGGGGACGCTCATCGCCCCCAGATGGCTCCTGACAGCAGCCCACTGCCTCAAG$ CCCCGCTACATAGTTCACCTGGGGCAGCACAACCTCCAGAAGGAGGAGGGCTGTGAGCAG ACCCGGACAGCCACTGAGTCCTTCCCCCACCCGGCTTCAACAACAGCCTCCCCAACAAA GACCACCGCAATGACATCATGCTGGTGAAGATGGCATCGCCAGTCTCCATCACCTGGGCT GTGCGACCCCTCACCCTCACGCTGTGTCACTGCTGGCACCAGCTGCCTCATTTCC GGCTGGGGCAGCACGTCCAGCCCCAGTTACGCCTGCCTCACACCTTGCGATGCGCCAAC ATCACCATCATTGAGCACCAGAAGTGTGAGAACGCCTACCCCGGCAACATCACAGACACC ATGGTGTGTGCCAGCGTGCAGGAAGGGCCAAGGACTCCTGCCAGGGTGACTCCGGGGGGC CCTCTGGTCTGTAACCAGTCTCTTCAAGGCATTATCTCCTGGGGCCAGGATCCGTGTGCG ATCACCCGAAAGCCTGGTGTCTACACGAAAGTCTGCAAATATGTGGACTGGATCCAGGAG ${\tt ACGATGAAGAACAAT} \underline{{\tt TAG}} {\tt ACTGGACCCACCCACCACCACCACCCATCACCTCCATTTCCACT}$ TGGTGTTTGGTTCCTGTTCACTCTGTTAATAAGAAACCCTAAGCCAAGACCCTCTACGAA CATTCTTTGGGCCTCCTGGACTACAGGAGATGCTGTCACTTAATAATCAACCTGGGGTTC GAAATCAGTGAGACCTGGATTCAAATTCTGCCTTGAAATATTGTGACTCTGGGAATGACA ACACCTGGTTTGTTCTCTGTTGTATCCCCAGCCCCAAAGACAGCTCCTGGCCATATATCA AAAA

FIGURE 208

MRILQLILLALATGLVGGETRIIKGFECKPHSQPWQAALFEKTRLLCGATLIAPRWLLTA AHCLKPRYIVHLGQHNLQKEEGCEQTRTATESFPHPGFNNSLPNKDHRNDIMLVKMASPV SITWAVRPLTLSSRCVTAGTSCLISGWGSTSSPQLRLPHTLRCANITIIEHQKCENAYPG NITDTMVCASVQEGGKDSCQGDSGGPLVCNQSLQGIISWGQDPCAITRKPGVYTKVCKYV DWIQETMKNN

Important features: Signal peptide: amino acids 1-18

Serine proteases, trypsin family, histidine active site: amino acids 58-63

N-glycosylation sites: amino acids 99-102, 165-168, 181-184, 210-213

Glycosaminoglycan attachment site: amino acids 145-148

Kringle domain proteins: amino acids 197-209, 47-64

Serine proteases, trypsin family, histidine protein: amino acids 199-209, 47-63, 220-243

Apple domain proteins: amino acids 222-249, 189-222

218/392

FIGURE 209

GCGGCCACACGCAGCTAGCCGGAGCCCGGACCAGGCGCCTGTGCCTCCTCCTCCTCCTC AGCAACAGGTTCCAAGGAGGGAAGGCGTTCGGCTTGCTCAAAGCCCGGCAGGAGAGGAGG CTGGCCGAGATCAACCGGGAGTTTCTGTGTGACCAGAAGTACAGTGATGAAGAGAACCTT CCAGAAAAGCTCACAGCCTTCAAAGAGAAGTACATGGAGTTTGACCTGAACAATGAAGGC GAGATTGACCTGATGTCTTTAAAGAGGATGATGGAGAAGCTTGGTGTCCCCAAGACCCAC CTGGAGATGAAGAAGATGATCTCAGAGGTGACAGGGGGGTCAGTGACACTATATCCTAC CGAGACTTTGTGAACATGATGCTGGGGAAACGGTCGGCTGTCCTCAAGTTAGTCATGATG ATTGCTAGCCTGCCC<u>TGA</u>GGACCCCGCCTGGACTCCCCAGCCTTCCCACCCCATACCTCC CATTGAGGGTTTGTTTTGTGTTTTCATCAATGTCTTTGTAAAGCACAAATTATCTGCCTTA TCCCCGCTCCCTGTGCAGAAGGGCTGATATCAAACCAAAAACTAGAGGGGGCAGGGCCAG GGCAGGGAGGCTTCCAGCCTGTGTTCCCCTCACTTGGAGGAACCAGCACTCTCCATCCTT TCAGAAAGTCTCCAAGCCAAGTTCAGGCTCACTGACCTGGCTCTGACGAGGACCCCAGGC CACTCTGAGAAGACCTTGGAGTAGGGACAAGGCTGCAGGGCCTCTTTCGGGTTTCCTTGG ACAGTGCCATGGTTCCAGTGCTCTGGTGTCACCCAGGACACAGCCACTCGGGGCCCCGCT GCCCCAGCTGATCCCCACTCATTCCACACCTCTTCTCATCCTCAGTGATGTGAAGGTGGG AAGGAAAGGAGCTTGGCATTGGGAGCCCTTCAAGAAGGTACCAGAAGGAACCCTCCAGTC CTGCTCTCTGGCCACACCTGTGCAGGCAGCTGAGAGGCAGCGTGCAGCCCTACTGTCCCT TACTGGGGCAGAGGGCTTCGGAGGCAGAAGTGAGGCCTGGGGTTTGGGGGGAAAGGT CAGCTCAGTGCTGTTCCACCTTTTAGGGAGGATACTGAGGGGACCAGGATGGGAGAATGA GGAGTAAAATGCTCACGGCAAAGTCAGCAGCACTGGTAAGCCAAGACTGAGAAATACAAG

219/392

FIGURE 210

MSGELSNRFQGGKAFGLLKARQERRLAEINREFLCDQKYSDEENLPEKLTAFKEKYMEFD LNNEGEIDLMSLKRMMEKLGVPKTHLEMKKMISEVTGGVSDTISYRDFVNMMLGKRSAVL KLVMMFEGKANESSPKPVGPPPERDIASLP

220/392

FIGURE 211

FIGURE 212

MRRLLLVTSLVVVLLWEAGAVPAPKVPIKMQVKHWPSEQDPEKAWGARVVEPPEKDDQLV VLFPVQKPKLLTTEEKPRGQGRGPILPGTKAWMETEDTLGRVLSPEPDHDSLYHPPPEED QGEERPRLWVMPNHQVLLGPEEDQDHIYHPQ

222/392

FIGURE 213

CAGGCAGAAGCCAAAGACCCAGCAAGAGAAGGCAGAGGCTAAGACCCATCCCGTATC TGCTCTCCTGAAATAATTCTGGAGTCATGCCTGAAATGCCAGAGGACATGGAGCAGGAGG AAGTTAACATCCCTAATAGGAGGGTTCTGGTTACTGGTGCCACTGGGCTTCTTGGCAGAG CTGTACACAAAGAATTTCAGCAGAATAATTGGCATGCAGTTGGCTGTGGTTTCAGAAGAG CAAGACCAAAATTTGAACAGGTTAATCTGTTGGATTCTAATGCAGTTCATCACATCATTC ATGATTTTCAGCCCCATGTTATAGTACATTGTGCAGCAGAGAGAAGACCAGATGTTGTAG AAAATCAGCCAGATGCTGCCTCTCAACTTAATGTGGATGCTTCTGGGAATTTAGCAAAGG AAGCAGCTGCTGTTGGAGCATTTCTCATCTACATTAGCTCAGATTATGTATTTGATGGAA CAAATCCACCTTACAGAGAGAGACATACCAGCTCCCCTAAATTTGTATGGCAAAACAA AATTAGATGGAGAAAAGGCTGTCCTGGAGAACAATCTAGGAGCTGCTGTTTTGAGGATTC CTATTCTGTATGGGGAAGTTGAAAAGCTCGAAGAAAGTGCTGTGACTGTTATGTTTGATA AAGTGCAGTTCAGCAACAAGTCAGCAAACATGGATCACTGGCAGCAGAGGTTCCCCACAC CAATTAAGGGAACCTTTCACTGGTCTGGCAATGAACAGATGACTAAGTATGAAATGGCAT GTGCAATTGCAGATGCCTTCAACCTCCCCAGCAGTCACTTAAGACCTATTACTGACAGCC $\tt CTGTCCTAGGAGCACAACGTCCGAGAAATGCTCAGCTTGACTGCTCCAAATTGGAGACCT$ TGGGCATTGGCCAACGAACACCATTTCGAATTGGAATCAAAGAATCACTTTGGCCTTTCC TCATTGACAAGAGATGGAGACAAACGGTCTTTCAT<u>TAG</u>TTTATTTGTGTTGGGTTCTTTT TTTTTTTAAATGAAAAGTATAGTATGTGGCACTTTTTAAAGAACAAAGGAAATAGTTTTG TATGAGTACTTTAATTGTGACTCTTAGGATCTTTCAGGTAAATGATGCTCTTGCACTAGT GAAATTGTCTAAAGAAACTAAAGGGCAGTCATGCCCTGTTTGCAGTAATTTTTCTTTTTA TCATTTTGTTTGTCCTGGCTAAACTTGGAGTTTGAGTATAGTAAATTATGATCCTTAAAT ATTTGAGAGTCAGGATGAAGCAGATCTGCTGTAGACTTTTCAGATGAAATTGTTCATTCT CGTAACCTCCATATTTTCAGGATTTTTTGAAGCTGTTGACCTTTTCATGTTGATTATTTTA AATTGTGTGAAATAGTATAAAAATCATTGGTGTTCATTATTTGCTTTGCCTGAGCTCAGA TCAAAATGTTTGAAGAAAGGAACTTTATTTTTGCAAGTTACGTACAGTTTTTATGCTTGA GATATTTCAACATGTTATGTATATTGGAACTTCTACAGCTTGATGCCTCCTGCTTTTATA TTGAATGCAAACGTGTATTTTTTAATAATATAAATATAACTGTCCTTTTCATCCCATGTT GCCGCTAAGTGATATTTCATATGTGTGGTTATACTCATAATAATGGGCCTTGTAAGTCTT TTCACCATTCATGAATAATAATAATATGTACTGCTGGCATGTAATGCTTAGTTTTCTTG TTTAATATGTATTGAAATAAAACACAATAAAATT

223/392

FIGURE 214

MPEMPEDMEQEEVNIPNRRVLVTGATGLLGRAVHKEFQQNNWHAVGCGFRRARPKFEQVN LLDSNAVHHIIHDFQPHVIVHCAAERRPDVVENQPDAASQLNVDASGNLAKEAAAVGAFL IYISSDYVFDGTNPPYREEDIPAPLNLYGKTKLDGEKAVLENNLGAAVLRIPILYGEVEK LEESAVTVMFDKVQFSNKSANMDHWQQRFPTHVKDVATVCRQLAEKRMLDPSIKGTFHWS GNEQMTKYEMACAIADAFNLPSSHLRPITDSPVLGAQRPRNAQLDCSKLETLGIGQRTPF RIGIKESLWPFLIDKRWRQTVFH

Signal peptide: amino acids 1-30

Transmembrane domain: amino acids 105-127

N-glycosylation site: amino acids 197-201

N-myristoylation site: amino acids 303-309

Short-chain dehydrogenases/reductases family proteins: amino acids 18-30

FIGURE 215

GTGAATGTGAGGGTTTGATGACTTTCAGATGTCTAGGAACCAGAGTGGGTGCAGGGGCCC ${\tt CAGGCAGGCTGATTCTTGGGCGGAGGAGAGTAGGGTAAAGGGTTCTGCATGAGCTCCTT}$ AAAGGACAAAGGTAACAGAGCCAGCGAGAGAGCTCGAGGGGAGACTTTGACTTCAAGCCA ${\tt CAGAATTGGTGGAAGTGTGCGCCGCCGCCGCCGCCGTCGCTCCTGCAGCGCTGTCGACCTA}$ GCCGCTAGCATCTTCCCGAGCACCGGGATCCCGGGGTAGGAGGCGACGCGGGCGAGCACC ${\tt AGCGCCAGCCGGCTGCCCACACGGCTCACC}$ TCCGCGGTGCCGGCCGTGCTGGTCCTCACGCTGCCGGGGCTGCCCGTCTGGGCACAG AACGACACGGAGCCCATCGTGCTGGAGGGCAAGTGTCTGGTGGTGCGACTCGAACCCG GCCACGGACTCCAAGGGCTCCTCTTCCTCCCCGCTGGGGATATCGGTCCGGGCGGCCAAC TCCAAGGTCGCCTTCTCGGCGGTGCGGAGCACCAACCACGAGCCATCCGAGATGAGCAAC AAGACGCGCATCATTTACTTCGATCAGATCCTGGTGAATGTGGGTAATTTTTTCACATTG GAGTCTGTCTTTGTAGCACCAAGAAAAGGAATTTACAGTTTCAGTTTTCACGTGATTAAA GTCTACCAGAGCCAAACTATCCAGGTTAACTTGATGTTAAATGGAAAACCAGTAATATCT GCCTTTGCGGGGGACAAAGATGTTACTCGTGAAGCTGCCACGAATGGTGTCCTGCTCTAC ${\tt CAGTATTCCACGTTTTCTGGCTTTCTGGTGTTCCCCCTA} {\tt TAG} {\tt GATTCAATTTCTCCATGA}$ TGTTCATCCAGGTGAGGGATGACCCACTCCTGAGTTATTGGAAGATCATTTTTTCATCAT ${\tt TGGATTGATGTCTTTATTGGTTTCTCATGGGTGGATATGGATTCTAAGGATTCTAGCCT}$ TTGGGACTCTAAGCAGATAATACCTATGCTTAAATGTAACAGTCAAAAGCTGTCTGCAAG ACTTATTCTGAATTTCATTTCCTGGGATTACTGAATTAGTTACAGATGTGGAATTTTATT TGTTTAGTTTTAAAAGACTGGCAACCAGGTCTAAGGATTAGAAAACTCTAAAGTTCTGAC TTCAATCAACGGTTAGTGTGATACTGCCAAAGAACTGTATACTGTGTTAATATATTGATT ATATTTGTTTTTATTCCTTTGGAATTAGTTTGTTTGGTTCTTGTAAAAAACTTGGATTTT TAGTTGTATTTTAATTGTATATGTGAAAGAGTCATATTTTCCAAGTTATATTTTCTAAGA AGAAGAATAGATCATAAATCTGACAAGGAAAAAGTTGCTTACCCAAAATCTAAGTGCTCA ATCCCTGAGCCTCAGCAAAACAGCTCCCCTCCGAGGGAAATCTTATACTTTATTGCTCAA CGTAGACATGACCACTTTATTAACTGGTGGTGGGATGCTGTTGTTTCTAATTATACCTAT TTTTCAAGGCTTCTGTTGTATTTGAAGTATCATCTGGTTTTTGCCTTAACTCTTTAAATTG TATATATTTATCTGTTTAGCTAATATTAAATTCAAATATCCCATATCTAAATTTAGTGCA TAAAGATTAATATGTTAAAAAAA

FIGURE 216

MGSGRRALSAVPAVLLVLTLPGLPVWAQNDTEPIVLEGKCLVVCDSNPATDSKGSSSSPL GISVRAANSKVAFSAVRSTNHEPSEMSNKTRIIYFDQILVNVGNFFTLESVFVAPRKGIY SFSFHVIKVYQSQTIQVNLMLNGKPVISAFAGDKDVTREAATNGVLLYLDKEDKVYLKLE KGNLVGGWQYSTFSGFLVFPL

Signal peptide: amino acids 1-27

226/392

FIGURE 217

 $\tt CGGCAACCAGCCGCCACCACCGCTGCCACTGCCGGGGCC\underline{ATG}TTCGCTC$ ${\tt TGGGCTTGCCCTTGTTGGTGCTCTTGGTGGCCTCGGTCGAGAGCCATCTGGGGGGTTCTGG}$ GGCCCAAGAACGTCTCGCAGAAAGACGCCGAGTTTGAGCGCACCTACGTGGACGAGGTCA ACAGCGAGCTGGTCAACATCTACACCTTCAACCATACTGTGACCCGCAACAGGACAGAGG GCGTGCGTGTCTGTGAACGTCCTGAACAAGCAGAAGGGGGCGCCGTTGCTGTTTGTGG TCCGCCAGAAGGAGGCTGTGTGTCCTTCCAGGTGCCCCTAATCCTGCGAGGGATGTTTC AGCGCAAGTACCTCTACCAAAAAGTGGAACGAACCCTGTGTCAGCCCCCCCACCAAGAATG AGTCGGAGATTCAGTTCTTCTACGTGGATGTGTCCACCCTGTCACCAGTCAACACCACAT ACCAGCTCCGGGTCAGCCGCATGGACGATTTTGTGCTCAGGACTGGGGAGCAGTTCAGCT TCAATACCACAGCACAGCCCCAGTACTTCAAGTATGAGTTCCCTGAAGGCGTGGACT CGGTAATTGTCAAGGTGACCTCCAACAAGGCCTTCCCCTGCTCAGTCATCTCCATTCAGG ATGTGCTGTGTCCTGTGACGACCACACGTAGCCTTCATCGGCATGTACCAGA CGATGACCAAGAAGGCGGCCATCACCGTACAGCGCAAAGACTTCCCCAGCAACAGCTTTT ATGTGGTGGTGGTGAAGACCGAAGACCAAGCCTGCGGGGGCTCCCTGCCTTTCTACC CCTTCGCAGAAGATGAACCGGTCGATCAAGGGCACCGCCAGAAAACCCTGTCAGTGCTGG TGTCTCAAGCAGTCACGTCTGAGGCATACGTCAGTGGGATGCTCTTTTGCCTGGGTATAT TTCTCTCTTTTACCTGCTGACCGTCCTCCTGGCCTGCTGGGAGAACTGGAGGCAGAAGA AGAAGACCCTGCTGGTGGCCATTGACCGAGCCTGCCCAGAAAGCGGTCACCCTCGAGTCC TGGCTGATTCTTTTCCTGGCAGTTCCCCTTATGAGGGTTACAACTATGGCTCCTTTGAGA ATGTTTCTGGATCTACCGATGGTCTGGTTGACAGCGCTGGCACTGGGGACCTCTCTTACG GTTACCAGGGCCGCTCCTTTGAACCTGTAGGTACTCGGCCCCGAGTGGACTCCATGAGCT CTGTGGAGGAGGATGACTACGACACTTGACCGACATCGATTCCGACAAGAATGTCATTC GCACCAAGCAATACCTCTATGTGGCTGACCTGGCACGGAAGGACAAGCGTGTTCTGCGGA AAAAGTACCAGATCTACTTCTGGAACATTGCCACCATTGCTGTCTTCTATGCCCTTCCTG TGGTGCAGCTGGTGATCACCTACCAGACGGTGGTGAATGTCACAGGGAATCAGGACATCT GCTACTACAACTTCCTCTGCGCCCACCCACTGGGCAATCTCAGCGCCTTCAACAACATCC TCAGCAACCTGGGGTACATCCTGCTGGGGCTGCTTTTCCTGCTCATCATCCTGCAACGGG AGATCAACCACAACCGGGCCCTGCTGCGCAATGACCTCTGTGCCCTGGAATGTGGGATCC ${\tt CCAAACACTTTGGGCTTTTCTACGCCATGGGCACAGCCCTGATGATGGAGGGGCTGCTCA}$ GTGCTTGCTATCATGTGTGCCCCAACTATACCAATTTCCAGTTTGACACATCGTTCATGT ACATGATCGCCGGACTCTGCATGCTGAAGCTCTACCAGAAGCGGCACCCGGACATCAACG TGGTCTTTGGCAAAGGGAACACGGCGTTCTGGATCGTCTTCTCCATCATTCACATCATCG CCACCCTGCTCCTCAGCACGCAGCTCTATTACATGGGCCGGTGGAAACTGGACTCGGGGA TCTTCCGCCGCATCCTCCACGTGCTCTACACAGACTGCATCCGGCAGTGCAGCGGGCCGC CCTATGGGCTTATCATGCGCCCCAATGATTTCGCTTCCTACTTGTTGGCCATTGGCATCT GCAACCTGCTCCTTTACTTCGCCTTCTACATCATCATGAAGCTCCGGAGTGGGGAGAGGA TCAAGCTCATCCCCCTGCTCTGCATCGTTTGCACCTCCGTGGTCTGGGGGCTTCGCGCTCT TCTTCTTCCAGGGACTCAGCACCTGGCAGAAAACCCCTGCAGAGTCGAGGGAGCACA ACCGGGACTGCATCCTCGACTTCTTTGACGACCACGACATCTGGCACTTCCTCCT CCATCGCCATGTTCGGGTCCTTCCTGGTGTTGCTGACACTGGATGACGACCTGGATACTG TGCAGCGGGACAAGATCTATGTCTTC<u>TAG</u>CAGGAGCTGGGCCCTTCGCTTCACCTCAAGG GGCCCTGAGCTCCTTTGTGTCATAGACCGGTCACTCTGTCGTGCTGTGGGGATGAGTCCC AGCACCGCTGCCCAGCACTGGATGGCAGCAGGACAGCCAGGTCTAGCTTAGGCTTGGCCT ${\tt GGGACAGCCATGGGGTGGCATGGAACCTTGCAGCTGCCCTCTGCCGAGGAGCAGGCCTGC}$ TCCCCTGGAACCCCCAGATGTTGGCCAAATTGCTGCTTTCTTCTCAGTGTTGGGGCCTTC

227/392

CACCCTCCCCATTTCATGCCTTGCATTTTGCCCGTCCTCCCCCACAATGCCCCAGCCT GGGACCTAAGGCCTCTTTTTCCTCCCATACTCCCACTCCAGGGCCTAGTCTGGGGCCTGA ATCTCTGTCCTGTATCAGGGCCCCAGTTCTCTTTGGGCTGTCCCTGGCTGCCATCACTGC CCATTCCAGTCAGCCAGGATGGATGGGGGTATGAGATTTTGGGGGGTTGGCCAGCTGGTGC CAGACTTTTGGTGCTAAGGCCTGCAAGGGGCCTGGGGCAGTGCGTATTCTCTTCCCTCTG ACCTGTGCTCAGGGCTGGCTCTTTAGCAATGCGCTCAGCCCAATTTGAGAACCGCCTTCT GATTCAAGAGGCTGAATTCAGAGGTCACCTCTTCATCCCATCAGCTCCCAGACTGATGCC GTCTTGCCAAACCCCAGCTGGTGGCCTTTCAGTGCCATTGACACTGCCCAAGAATGTCCA GGGGCAAAGGAGGATGATACAGAGTTCAGCCCGTTCTGCCTCCACAGCTGTGGGCACCC ${\tt CAGTGCCTACCTTAGAAAGGGGCTTCAGGAAGGGATGTGCTGTTTCCCTCTACGTGCCCA}$ GTCCTAGCCTCGGCTCTAGGACCCAGGGCTGGCTTCTAAGTTTCCGTCCAGTCTTCAGGCA AGTTCTGTGTTAGTCATGCACACACATACCTATGAAACCTTGGAGTTTACAAAGAATTGC CCCAGCTCTGGCCACCCTGGTCCTTGGATCCCCTTCGTCCCACCTGGTCCA $\tt CCCCAGATGCTGAGGATGGGGAGCTCAGGCGGGGCCTCTGCTTTGGGGATGGGAATGTG$ TTTTTCTCCCAAACTTGTTTTTATAGCTCTGCTTGAAGGGCTGGGAGATGAGGTGGGTCT

228/392

FIGURE 218

MFALGLPFLVLLVASVESHLGVLGPKNVSQKDAEFERTYVDEVNSELVNIYTFNHTVTRN
RTEGVRVSVNVLNKQKGAPLLFVVRQKEAVVSFQVPLILRGMFQRKYLYQKVERTLCQPP
TKNESEIQFFYVDVSTLSPVNTTYQLRVSRMDDFVLRTGEQFSFNTTAAQPQYFKYEFPE
GVDSVIVKVTSNKAFPCSVISIQDVLCPVYDLDNNVAFIGMYQTMTKKAAITVQRKDFPS
NSFYVVVVVKTEDQACGGSLPFYPFAEDEPVDQGHRQKTLSVLVSQAVTSEAYVSGMLFC
LGIFLSFYLLTVLLACWENWRQKKKTLLVAIDRACPESGHPRVLADSFPGSSPYEGYNYG
SFENVSGSTDGLVDSAGTGDLSYGYQGRSFEPVGTRPRVDSMSSVEEDDYDTLTDIDSDK
NVIRTKQYLYVADLARKDKRVLRKKYQIYFWNIATIAVFYALPVVQLVITYQTVVNVTGN
QDICYYNFLCAHPLGNLSAFNNILSNLGYILLGLLFLLIILQREINHNRALLRNDLCALE
CGIPKHFGLFYAMGTALMMEGLLSACYHVCPNYTNFQFDTSFMYMIAGLCMLKLYQKRHP
DINASAYSAYACLAIVIFFSVLGVVFGKGNTAFWIVFSIIHIIATLLLSTQLYYMGRWKL
DSGIFRRILHVLYTDCIRQCSGPLYVDRMVLLVMGNVINWSLAAYGLIMRPNDFASYLLA
IGICNLLLYFAFYIIMKLRSGERIKLIPLLCIVCTSVVWGFALFFFFQGLSTWQKTPAES
REHNRDCILLDFFDDHDIWHFLSSIAMFGSFLVLLTLDDDLDTVQRDKIYVF

Important features of the protein: Signal peptide:

amino acids 1-18

Transmembrane domains:

amino acids 292-317, 451-470, 501-520, 607-627, 751-770

Leucine zipper pattern:

amino acids 497-518

N-glycosylation sites:

amino acids 27-30, 54-57, 60-63, 123-126, 141-144, 165-168, 364-367, 476-479, 496-499, 572-575, 603-606, 699-702

FIGURE 219

AATTTTTCACCAGAGTAAACTTGAGAAACCAACTGGACCTTGAGTATTGTACATTTTGCC ${\tt TCGTGGACCCAAAGGTAGCAATCTGAAAC} \underline{{\tt ATG}} {\tt AGGAGTACGATTCTACTGTTTTGTCTTC}$ TGGCTCCGGATCAGGGAACACTACCAAACCAACAGCAGTCAAATCAGGTCTTTCCTTCTT TAAGTCTGATACCATTAACACAGATGCTCACACTGGGGCCAGATCTGCATCTGTTAAATC ${\tt TACAACAGCAACTGCACCCACATGTGTTACCAATTTTTGTCACACAACTTGGAGCCCAGGCCAGGCCCCAGGCCCAGGCCCAGGCCCAGGCCCAGGCCCAGGCCCAGGCCCAGGCCCAGGCCCAGGCCCAGGCCCAGGCCCAGGCCCAGGCCAGGCCCAGGCCCAGGCCCAGGCCCAGGCCCAGGCCCAGGCCCAGGCCCAGGCCCAGGCCCAGGCCAGGCCCAGGCCCAGGCCCAGGCCCAGGCCCAGGCCCAGGCCCAGGCCCAGGCCCAGGCCCAGGCCAGGCCCAGGCCCAGGCCAGGCCAGGCCCAGGCCCAGGCCCAGGCCCAGGCCCAGGCCCAGGCCCAGGCCCAGGCCCAGGCCCAGGCCAGGCCAGGCCCAGGCCCAGGCCCAGGCCCAGGCCCAGGCCCAGGCCAGGCCCAGGCCCAGGCCCAGGCCAGGCCCAGGCCCAGGCCCAGGCCCAGGCCCAGGCCCAGGCCCAGGCCAGGCCAGGCCAGGCCCAGGCCAGGCCAGGCCCAGGCCAGGCCCAGGCCAGGCCCAGGCCAGGCCCAGGCCCAGGCCAGGCCAGGCCCAGGCCCAGGCCCAGGCCCAGGCCCAGGCCCAGGCCCAGGCCCAGGCCCAGGCCCAGGCCAGGCCCAGGCCCAGGCCCAGGCCCAGGCCCAGGCCCAGGCCCAGGCCCAGGCCCAGGCCCAGGCCAGGCCCAGGCCCAGGCCCAGGCCCAGGCCAGGCCCAGGCCCAGGCCCAGGCCCAGGCCCAGGCCCAGGCCCAGGCCCAGGCCCAGGCCCCAGGCCCAGGCCCAGGCCCCAGGCCCAGGCCCAGGCCA$ GCACTATCCTAAGCTCAGAGGAATTGCCACAAATCTTCACGAGCCTCATCATCCATTCCT TGTTCCCGGGAGGCATCCTGCCCACCAGTCAGGCAGGGGCTAATCCAGATGTCCAGGATG GAAGCCTTCCAGCAGGAGGAGCAGGTGTAAATCCTGCCACCCAGGGAACCCCAGCAGGCC GCCTCCCAACTCCCAGTGGCACAGATGACGACTTTGCAGTGACCACCCCTGCAGGCATCC AAAGGAGCACACATGCCATCGAGGAAGCCACCACAGAATCAGCAAATGGAATTCAG<u>TAA</u>G CTGTTTCAAATTTTTTCAACTAAGCTGCCTCGAATTTGGTGATACATGTGAATCTTTATC TAATTTACCTGAAAATATTCTTGAAATTTCAGAAAATATGTTCTATGTAGAGAATCCCAA CTTTTAAAAACAATAATTCAATGGATAAATCTGTCTTTGAAATATAACATTATGCTGCCT

230/392

FIGURE 220

MRSTILLFCLLGSTRSLPQLKPALGLPPTKLAPDQGTLPNQQQSNQVFPSLSLIPLTQML TLGPDLHLLNPAAGMTPGTQTHPLTLGGLNVQQQLHPHVLPIFVTQLGAQGTILSSEELP QIFTSLIIHSLFPGGILPTSQAGANPDVQDGSLPAGGAGVNPATQGTPAGRLPTPSGTDD DFAVTTPAGIQRSTHAIEEATTESANGIQ

Signal peptide:
amino acids 1-16

231/392

FIGURE 221

GACTTTGCTTGAATGTTTACATTTTCTGCTCGCTGTCCTACATATCACAATATAGTGTTC ${ t ACGTTTTGTTAAAACTTTGGGGTGTCAGGAGTTGAGCTTGCTCAGCAAGCCAGC} { t ATG} { t GCT}$ AGGATGAGCTTTGTTATAGCAGCTTGCCAATTGGTGCTGGGCCTACTAATGACTTCATTA ACCGAGTCTTCCATACAGAATAGTGAGTGTCCACAACTTTGCGTATGTGAAATTCGTCCC ${ t TGGTTTACCCCACAGTCAACTTACAGAGAAGCCACCACTGTTGATTGCAATGACCTCCGC}$ ${ t TTAACAAGGATTCCCAGTAACCTCTCTAGTGACACAAGTGCTTCTCTTACAGAGCAAT$ AACATCGCGAAGACTGTGGATGAGCTGCAGCAGCTTTTCAACTTGACTGAACTAGATTTC TCCCAAAACAACTTTACTAACATTAAGGAGGTCGGGCTGGCAAACCTAACCCAGCTCACA ACGCTGCATTTGGAGGAAAATCAGATTACCGAGATGACTGATTACTGTCTACAAGACCTC AGCAACCTTCAAGAACTCTACATCAACCACAACCAAATTAGCACTATTTCTGCTCATGCT TTTGCAGGCTTAAAAAATCTATTAAGGCTCCACCTGAACTCCAACAAATTGAAAGTTATT GATAGTCGCTGGTTTGATTCTACACCCAACCTGGAAATTCTCATGATCGGAGAAAACCCT GTGATTGGAATTCTGGATATGAACTTCAAACCCCTCGCAAATTTGAGAAGCTTAGTTTTG GCAGGAATGTATCTCACTGATATTCCTGGAAATGCTTTGGTGGGTCTGGATAGCCTTGAG AGCCTGTCTTTTTATGATAACAAACTGGTTAAAGTCCCTCAACTTGCCCTGCAAAAAGTT CCAAATTTGAAATTCTTAGACCTCAACAAAAACCCCATTCACAAAATCCAAGAAGGGGAC TTCAAAAATATGCTTCGGTTAAAAGAACTGGGAATCAACAATATGGGCGAGCTCGTTTCT GTCGACCGCTATGCCCTGGATAACTTGCCTGAACTCACAAAGCTGGAAGCCACCAATAAC CCTAAACTCTCTTACATCCACCGCTTGGCTTTCCGAAGTGTCCCTGCTCTGGAAAGCTTG CTGCGTGAGATCAGTATCCATAGCAATCCCCTCAGGTGTGACTGTGTGATCCACTGGATT AACTCCAACAAAACCAACATCCGCTTCATGGAGCCCCTGTCCATGTTCTGTGCCATGCCG CCCGAATATAAAGGGCACCAGGTGAAGGAAGTTTTAATCCAGGATTCGAGTGAACAGTGC CTCCCAATGATATCTCACGACAGCTTCCCAAATCGTTTAAACGTGGATATCGGCACGACG GTTTTCCTAGACTGTCGAGCCATGGCTGAGCCAGAACCTGAAATTTACTGGGTCACTCCC ATTGGAAATAAGATAACTGTGGAAACCCTTTCAGATAAATACAAGCTAAGTAGCGAAGGT ACCTTGGAAATATCTAACATACAAATTGAAGACTCAGGAAGATACACATGTGTTGCCCAG AATGTCCAAGGGGCAGACACTCGGGTGGCAACAATTAAGGTTAACGGGACCCTTCTGGAT GGTACCCAGGTGCTAAAAATATACGTCAAGCAGACAGAATCCCATTCCATCTTAGTGTCC TGGAAAGTTAATTCCAATGTCATGACGTCAAACTTAAAATGGTCGTCTGCCACCATGAAG ATTGATAACCCTCACATAACATATACTGCCAGGGTCCCAGTCGATGTCCATGAATACAAC CTAACGCATCTGCAGCCTTCCACAGATTATGAAGTGTGTCTCACAGTGTCCAATATTCAT CAGCAGACTCAAAAGTCATGCGTAAATGTCACAACCAAAAATGCCGCCTTCGCAGTGGAC ATCTCTGATCAAGAAACCAGTACAGCCCTTGCTGCAGTAATGGGGGTCTATGTTTGCCGTC ATTAGCCTTGCGTCCATTGCTGTGTACTTTGCCAAAAGATTTAAGAGAAAAAACTACCAC CACTCATTAAAAAAGTATATGCAAAAAACCTCTTCAATCCCACTAAATGAGCTGTACCCA CCACTCATTAACCTCTGGGAAGGTGACAGCGAGAAAGACAAGATGGTTCTGCAGACACC ${ t AAGCCAACCCAGGTCGACACCCAGAAGCTATTACATGTGG} { t { t TAA}} { t { t CTCAGAGGATATTTT}}$ GCTTCTGGTAGTAAGGAGCACAAAGACGTTTTTGCTTTATTCTGCAAAAGTGAACAAGTT GAAGACTTTTGTATTTTTGACTTTGCTAGTTTGTGGCAGAGTGGAGAGGACGGGTGGATA TTTCAAATTTTTTTAGTATAGCGTATCGCAAGGGTTTGACACGGCTGCCAGCGACTCTAG GCTTCCAGTCTGTGTTTGGTTTTATTCTTATCATTATTATGATTGTTATTATTATTA TTTTATTTTAGTTGTTGTGCTAAACTCAATAATGCTGTTCTAACTACAGTGCTCAATAAA ΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑ

232/392

FIGURE 222

MARMSFVIAACQLVLGLLMTSLTESSIQNSECPQLCVCEIRPWFTPQSTYREATTVDCND LRLTRIPSNLSSDTQVLLLQSNNIAKTVDELQQLFNLTELDFSQNNFTNIKEVGLANLTQ LTTLHLEENQITEMTDYCLQDLSNLQELYINHNQISTISAHAFAGLKNLLRLHLNSNKLK VIDSRWFDSTPNLEILMIGENPVIGILDMNFKPLANLRSLVLAGMYLTDIPGNALVGLDS LESLSFYDNKLVKVPQLALQKVPNLKFLDLNKNPIHKIQEGDFKNMLRLKELGINNMGEL VSVDRYALDNLPELTKLEATNNPKLSYIHRLAFRSVPALESLMLNNNALNAIYQKTVESL PNLREISIHSNPLRCDCVIHWINSNKTNIRFMEPLSMFCAMPPEYKGHQVKEVLIQDSSE QCLPMISHDSFPNRLNVDIGTTVFLDCRAMAEPEPEIYWVTPIGNKITVETLSDKYKLSS EGTLEISNIQIEDSGRYTCVAQNVQGADTRVATIKVNGTLLDGTQVLKIYVKQTESHSIL VSWKVNSNVMTSNLKWSSATMKIDNPHITYTARVPVDVHEYNLTHLQPSTDYEVCLTVSN IHQQTQKSCVNVTTKNAAFAVDISDQETSTALAAVMGSMFAVISLASIAVYFAKRFKRKN YHHSLKKYMQKTSSIPLNELYPPLINLWEGDSEKDKDGSADTKPTQVDTSRSYYMW

Important features: Signal peptide:

Amino acids 1-25

Transmembrane domain:

Amino acids 508-530

N-glycosylation sites:

Amino acids 69-73;96-100;106-110;117-121;385-389;517-521; 582-586;611-615

Tyrosine kinase phosphorylation site:

Amino acids 573-582

N-myristoylation sites:

Amino acids 16-22;224-230;464-470;637-643;698-704

FIGURE 223

CAACCATGCAAGGACAGGGCAGGAGAAGAGGAACCTGCAAAGACATATTTTGTTCCAAA<u>A</u> $\underline{\textbf{TG}} \textbf{GCATCTTACCTTTATGGAGTACTCTTTGCTGTTGGCCTCTGTGCTCCAATCTACTGTG}$ TGTCCCCGGCCAATGCCCCAGTGCATACCCCCGCCCTTCCTCCACAAAGAGCACCCCTG $\tt CCTCACAGGTGTATTCCCTCAACACCGACTTTGCCTTCCGCCTATACCGCAGGCTGGTTT$ TGGAGACCCCGAGTCAGAACATCTTCTTCTCCCCTGTGAGTGTCTCCACTTCCCTGGCCA TGCTCTCCCTTGGGGCCCACTCAGTCACCAAGACCCAGATTCTCCAGGGCCTGGGCTTCA TGACTGTTCCCAGCAAAGACCTGACCTTGAAGATGGGAAGTGCCCTCTTCGTCAAGAAGG AGCTGCAGCTGCAGGCAAATTTCTTGGGCAATGTCAAGAGGCTGTATGAAGCAGAAGTCT TTTCTACAGATTTCTCCAACCCCTCCATTGCCCAGGCGAGGATCAACAGCCATGTGAAAA AGAAGACCCAAGGGAAGGTTGTAGACATAATCCAAGGCCTTGACCTTCTGACGGCCATGG TTCTGGTGAATCACATTTTCTTTAAAGCCAAGTGGGAGAAGCCCTTTCACCTTGAATATA CAAGAAAGAACTTCCCATTCCTGGTGGGCGAGCAGGTCACTGTGCAAGTCCCCATGATGC ACCAGAAAGAGCAGTTCGCTTTTGGGGTGGATACAGAGCTGAACTGCTTTGTGCTGCAGA TGGATTACAAGGGAGATGCCGTGGCCTTCTTTGTCCTCCCTAGCAAGGGCAAGATGAGGC GGTGGATAGAGGTGTTCATCCCCAGATTTTCCATTTCTGCCTCCTACAATCTGGAAACCA TCCTCCCGAAGATGGGCATCCAAAATGCCTTTGACAAAAATGCTGATTTTTCTGGAATTG CAAAGAGAGACTCCCTGCAGGTTTCTAAAGCAACCCACAAGGCTGTGCTGGATGTCAGTG AAGAGGCCACTGAGGCCACCAGCTACCACCAAGTTCATAGTCCGATCGAAGGATG GTCCCTCTTACTTCACTGTCTCCTTCAATAGGACCTTCCTGATGATGATTACAAATAAAG $\tt CCACAGACGGTATTCTCTTTCTAGGGAAAGTGGAAAATCCCACTAAATCC\underline{TAG}{GTGGGAA}$ ATGGCCTGTTAACTGATGGCACATTGCTAATGCACAAGAAATAACAAACCACATCCCTCT TTCTGTTCTGAGGGTGCATTTGACCCCAGTGGAGCTGGATTCGCTGGCAGGGATGCCACT TCCAAGGCTCAATCACCAAACCATCAACAGGGACCCCAGTCACAAGCCAACACCCCATTAA $\tt CCCCAGTCAGTGCCCTTTTCCACAAATTCTCCCAGGTAACTAGCTTCATGGGATGTTGCT$ GGGTTACCATATTTCCATTCCTTGGGGCTCCCAGGAATGGAAATACGCCAACCCAGGTTA GGCACCTCTATTGCAGAATTACAATAACACATTCAATAAAACTAAAATATGAATTCAAAA AAA

FIGURE 224

MASYLYGVLFAVGLCAPIYCVSPANAPSAYPRPSSTKSTPASQVYSLNTDFAFRLYRRLV LETPSQNIFFSPVSVSTSLAMLSLGAHSVTKTQILQGLGFNLTHTPESAIHQGFQHLVHS LTVPSKDLTLKMGSALFVKKELQLQANFLGNVKRLYEAEVFSTDFSNPSIAQARINSHVK KKTQGKVVDIIQGLDLLTAMVLVNHIFFKAKWEKPFHLEYTRKNFPFLVGEQVTVQVPMM HQKEQFAFGVDTELNCFVLQMDYKGDAVAFFVLPSKGKMRQLEQALSARTLIKWSHSLQK RWIEVFIPRFSISASYNLETILPKMGIQNAFDKNADFSGIAKRDSLQVSKATHKAVLDVS EEGTEATAATTTKFIVRSKDGPSYFTVSFNRTFLMMITNKATDGILFLGKVENPTKS

Signal peptide:
amino acids 1-20

FIGURE 225

GGGAGAGAGGATAAATAGCAGCGTGGCTTCCCTGGCTCCTCTCTGCATCCTTCCCGACCT ${\tt TCCCAGCAAT} \underline{{\tt ATG}} {\tt CATCTTGCACGTCTGGTCGGCTCCTGCTCCTTCTGCTACTGGG}$ GGCCCTGTCTGGATGGCCGCCAGCGATGACCCCATTGAGAAGGTCATTGAAGGGATCAA CCGAGGGCTGAGCAATGCAGAGAGAGAGGGCCAAGGCCCTGGATGGCATCAACAGTGG AATCACGCATGCCGGAAGGGAAGTGGAGAAGGTTTTCAACGGACTTAGCAACATGGGGAG CCACACCGGCAAGGAGTTGGACAAAGGCGTCCAGGGGCTCAACCACGGCATGGACAAGGT TGCCCATGAGATCAACCATGGTATTGGACAAGCAGGAAAGGAAGCAGAGAAGCTTGGCCA TGGGGTCAACAACGCTGCTGGACAGGCCGGGAAGGAAGCAGACAAAGCGGTCCAAGGGTT CCACACTGGGGTCCACCAGGCTGGGAAGGAAGCAGAGAAACTTGGCCAAGGGGTCAACCA TGCTGCTGACCAGGCTGGAAAGGAAGTGGAGAAGCTTGGCCAAGGTGCCCACCATGCTGC TGGCCAGGCCGGGAAGGAGCTGCAGAATGCTCATAATGGGGTCAACCAAGCCAGCAAGGA GGCCAACCAGCTGCTGAATGGCAACCATCAAAGCGGATCTTCCAGCCATCAAGGAGGGGC CACAACCACGCCGTTAGCCTCTGGGGCCTCAGTCAACACGCCTTTCATCAACCTTCCCGC TTTCTGAAATCCCTGAAGGGGGTTGTACTGGGATTTGTGAATAAACTTGATACACCA

236/392

FIGURE 226

MHLARLVGSCSLLLLLGALSGWAASDDPIEKVIEGINRGLSNAEREVGKALDGINSGITH AGREVEKVFNGLSNMGSHTGKELDKGVQGLNHGMDKVAHEINHGIGQAGKEAEKLGHGVN NAAGQAGKEADKAVQGFHTGVHQAGKEAEKLGQGVNHAADQAGKEVEKLGQGAHHAAGQA GKELQNAHNGVNQASKEANQLLNGNHQSGSSSHQGGATTTPLASGASVNTPFINLPALWR SVANIMP

Important features of the protein: Signal peptide: amino acids 1-25

Homologous region to circumsporozoite (CS) repeats: amino acids 35-225

237/392

FIGURE 227

GAAGTAGAGGTGTTGTGCTGAGCGGCGCTCGGCGAACTGTGTGGACCGTCTGCTGGGACT TCGTCTCGGGGCCACCTGTTTGCTGGGCTTCAGTTTCCTGCTCCTCGTCATCTCTTCTGA TGGACATAATGGGCTTGGAAAGGGTTTTGGAGATCATATTCATTGGAGGACACTGGAAGA TGGGAAGAAGAAGCAGCTGCCAGTGGACTGCCCCTGATGGTGATTATTCATAAATCCTG GTGTGGAGCTTGCAAAGCTCTAAAGCCCAAATTTGCAGAATCTACGGAAATTTCAGAACT CTCCCATAATTTTGTTATGGTAAATCTTGAGGATGAAGAGGGAACCCAAAGATGAAGATTT CAGCCCTGACGGGGGTTATATTCCACGAATCCTTTTTCTGGATCCCAGTGGCAAGGTGCA TCCTGAAATCATCAATGAGAATGGAAACCCCAGCTACAAGTATTTTTATGTCAGTGCCGA GCAAGTTGTTCAGGGGATGAAGGAAGCTCAGGAAAGGCTGACGGGTGATGCCTTCAGAAA ${\tt GAAACATCTTGAAGATGAATTG} \underline{{\tt TAA}} {\tt CATGAATGTGCCCCTTCTTTCATCAGAGTTAGTGT}$ TCTGGAAGGAAAGCAGCAGGGAAGGGAATATTGAGGAATCATCTAGAACAATTAAGCCGA ${\tt CCAGGAAACCTCATTCCTACCTACACTGGAAGGAGCGCTCTCACTGTGGAAGAGTTCTGC}$ TAACAGAAGCTGGTCTGCATGTTTGTGGATCCAGCGGAGAGTGGCAGACTTTCTTCTCCT TTTCCCTCTCACCTAAATGTCAACTTGTCATTGAATGTAAAGAATGAAACCTTCTGACAC AAAA

238/392

FIGURE 228

METRPRLGATCLLGFSFLLLVISSDGHNGLGKGFGDHIHWRTLEDGKKEAAASGLPLMVI IHKSWCGACKALKPKFAESTEISELSHNFVMVNLEDEEEPKDEDFSPDGGYIPRILFLDP SGKVHPEIINENGNPSYKYFYVSAEQVVQGMKEAQERLTGDAFRKKHLEDEL

Signal peptide: Amino acids 1-23

Thioredoxin family proteins Homology Block: Amino acids 58-75

239/392

FIGURE 229

CTTTTCCCTCCGACGCCCACGCTGCCCAGACATTCCGGCTGCCGGGTCTGGAGAGCTC CCCGAACCCCTCCGCGGAGAGGAGCGAGGCGGCGCCAGGGTGGCCCCCGGGGCGCGCTTG GTCTCGGAGAAGCGGGGACGAGGCCGGAGGATGAGCGACTGAGGGCGACGCGGCACTGA CGCGAGTTGGGGCCGCGACTACCGGCAGCTGACAGCGCGATGAGCGACTCCCCAGAGACG $\tt CCCTAGCCCGGTGTGCGCGCCAGGCGGAGCGCGCAGGTGGGGCTGTTAGTGGTCC$ GCCCCACGCGGTCGCCGGCCGGCCCAGGATGGGCGCTGGCAACCCGGGCCCGCGCCCGC CGCTGCTACCCCTGCGCCCGCTGCGAGCCCGGCGTCCGGCCCCGCGCCCTCATGGA CGGCGGCTCCCGGCGCGCGCGCCCCCGGGCTGTGAATGCGACTCGCCCCTCGGC GGCAGTTGGCGCGCTCTCCAGTTCCCTCCTGGTCACCTGCTGCCTGATGGTGGCTCTGTG CAGTCCGAGCATCCCGCTGGAGAAGCTGGCCCAGGCACCAGAGCAGCCGGGCCAGGAGAA TGAGCCGTGGAGCAAGCTGAAGCAGGCCTGGGTCTCCCAGGGCGGGGGGCGCCAAGGCCGG GGATCTGCAGGTCCGGCCCGCGGGGGACACCCCGCAGGCGGAAGCCCTGGCCGCAGCCGC CCAGGACGCGATTGGCCCGGAACTCGCGCCCCACGCCCGAGCCACCCGAGGAGTACGTGTA CCCGGACTACCGTGGCAAGGGCTGCGTGGACGAGAGCGGCTTCGTGTACGCGATCGGGGA GAAGTTCGCGCCGGGCCCTCGGCCTGCCCGTGCCTGTGCACCGAGGAGGGCCGCTGTG CGCGCAGCCCGAGTGCCCGAGGCTGCACCCGCGCTGCATCCACGTCGACACGAGCCAGTG CTGCCCGCAGTGCAAGGAGGAAGAACTACTGCGAGTTCCGGGGCAAGACCTATCAGAC TTTGGAGGAGTTCGTGGTGTCTCCATGCGAGAGGTGTCGCTGTGAAGCCAACGGTGAGGT GCTATGCACAGTGTCAGCGTGTCCCCAGACGGAGTGTGTGGACCCTGTGTACGAGCCTGA TCAGTGCTGTCCCATCTGCAAAATGGTCCAAACTGCTTTGCAGAAACCGCGGTGATCCC TGCTGGCAGAGAAGTGAAGACTGACGAGTGCACCATATGCCACTGTACTTATGAGGAAGG CACATGGAGAATCGAGCGGCAGGCCATGTGCACGAGACATGAATGCAGGCAAATG<u>TAG</u>AC GCTTCCCAGAACACAAACTCTGACTTTTTCTAGAACATTTTACTGATGTGAACATTCTAG ATGACTCTGGGAACTATCAGTCAAAGAAGACTTTTGATGAGGAATAATGGAAAATTGTTG GTACTTTTCCTTGATAACAGTTACTACAACAGAAGGAAATGGATATATTTCAAAA AGTACACAAAAGTACACTATTATATATCAAATGTATTTCTATAATCCCTCCATTAGAGAG CTTATATAAGTGTTTTCTATAGATGCAGATTAAAAATGCTGTGTCTCAACCGTCAAAAA ΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑ

FIGURE 230

MPSSTAMAVGALSSSLLVTCCLMVALCSPSIPLEKLAQAPEQPGQEKREHATRDGPGRVN ELGRPARDEGGSGRDWKSKSGRGLAGREPWSKLKQAWVSQGGGAKAGDLQVRPRGDTPQA EALAAAAQDAIGPELAPTPEPPEEYVYPDYRGKGCVDESGFVYAIGEKFAPGPSACPCLC TEEGPLCAQPECPRLHPRCIHVDTSQCCPQCKERKNYCEFRGKTYQTLEEFVVSPCERCR CEANGEVLCTVSACPQTECVDPVYEPDQCCPICKNGPNCFAETAVIPAGREVKTDECTIC HCTYEEGTWRIERQAMCTRHECRQM

Important features of the protein: Signal peptide: amino acids 1-27

Transmembrane domain: amino acids 11-30

Glycosaminoglycan attachment site: amino acids 80-83

N-myristoylation sites: amino acids 10-15, 102-107, 103-108

Cell attachment sequence: amino acids 114-117

EGF-like domain cysteine pattern signature: amino acids 176-187

FIGURE 231

GGCCGGACGCCTCCGCGTTACGGGATGAATTAACGGCGGGTTCCGCACGGAGGTTGTGAC GTCACAGGTGGGAGGCTGGAACTATCAGGCTGAAAAACAGAGTGGGTACTCTCTTCTGGG AAGCTGGCAACAAATGGATGATGTGATAT<u>ATG</u>CATTCCAGGGGAAGGGAAATTGTGGTGC ${\tt TTCTGAACCCATGGTCAATTAACGAGGCAGTTTCTAGCTACTGCACGTACTTCATAAAGC}$ AGGACTCTAAAAGCTTTGGAATCATGGTGTCATGGAAAGGGATTTACTTTATACTGACTC TGTTTTGGGGAAGCTTTTTTGGAAGCATTTTCATGCTGAGTCCCTTTTTACCTTTGATGT ${ t TACCTGTGGCATTATTGGAGACCATGTTTGGTGTAAAAGTGATTATAACTGGGGATGCAT$ TTGTTCCTGGAGAAGAAGTGTCATTATCATGAACCATCGGACAAGAATGGACTGGATGT TCCTGTGGAATTGCCTGATGCGATATAGCTACCTCAGATTGGAGAAAATTTGCCTCAAAG CGAGTCTCAAAGGTGTTCCTGGATTTGGTTGGGCCATGCAGGCTGCCTGTCTTCA ATATTCACGAACCACTTCAACTCCTCATATTCCCAGAAGGGACTGATCTCACAGAAAACA GCAAGTCTCGAAGTAATGCATTTGCTGAAAAAAATGGACTTCAGAAATATGAATATGTTT TACATCCAAGAACTACAGGCTTTACTTTTGTGGTAGACCGTCTAAGAGAAGGTAAGAACC TTGATGCTGTCCATGATATCACTGTGGCGTATCCTCACAACATTCCTCAATCAGAGAAGC ACCTCCTCCAAGGAGACTTTCCCAGGGAAATCCACTTTCACGTCCACCGGTATCCAATAG ACACCCTCCCCACATCCAAGGAGGACCTTCAACTCTGGTGCCACAAACGGTGGGAAGAGA AAGAAGAGAGCTGCGTTCCTATCAAGGGGAGAAGAATTTTTATTTTACCGGACAGA GTGTCATTCCACCTTGCAAGTCTGAACTCAGGGTCCTTGTGGTCAAATTGCTCTCTATAC TGTATTGGACCCTGTTCAGCCCTGCAATGTGCCTACTCATATATTTGTACAGTCTTGTTA AGTGGTATTTTATAATCACCATTGTAATCTTTGTGCTGCAAGAGAGAATATTTGGTGGAC TGGAGATCATAGAACTTGCATGTTACCGACTTTTACACAAACAGCCACATTTAAATTCAA ${\tt AGAAAAATGAG}{\underline{{\tt TAA}}}{\tt GATTATAAGGTTTGCCATGTGAAAACCTAGAGCATATTTTGGAAAT$ GTTCTAAACCTTTCTAAGCTCAGATGCATTTTTTGCATGACTATGTCGAATATTTCTTACT GCCATCATTATTTGTTAAAGATATTTTGCACTTAATTTTGTGGGAAAAATATTGCTACAA TTTTTTTTAATCTCTGAATGTAATTTCGATACTGTGTACATAGCAGGGAGTGATCGGGGT GAAATAACTTGGGCCAGAATATTATTAAACAATCATCAGGCTTTTAAA

FIGURE 232

MHSRGREIVVLLNPWSINEAVSSYCTYFIKQDSKSFGIMVSWKGIYFILTLFWGSFFGSI
FMLSPFLPLMFVNPSWYRWINNRLVATWLTLPVALLETMFGVKVIITGDAFVPGERSVII
MNHRTRMDWMFLWNCLMRYSYLRLEKICLKASLKGVPGFGWAMQAAAYIFIHRKWKDDKS
HFEDMIDYFCDIHEPLQLLIFPEGTDLTENSKSRSNAFAEKNGLQKYEYVLHPRTTGFTF
VVDRLREGKNLDAVHDITVAYPHNIPQSEKHLLQGDFPREIHFHVHRYPIDTLPTSKEDL
QLWCHKRWEEKEERLRSFYQGEKNFYFTGQSVIPPCKSELRVLVVKLLSILYWTLFSPAM
CLLIYLYSLVKWYFIITIVIFVLQERIFGGLEIIELACYRLLHKQPHLNSKKNE

Important features of the protein: Signal peptide: amino acids 1-22

Transmembrane domains: amino acids 44-63, 90-108, 354-377

243/392

FIGURE 233

CGGCTCGAGTGCAGCTGTGGGGAGATTTCAGTGCATTGCCTCCCCTGGGTGCTCTTCATC ${\tt TTGGATTTGAAAGTTGAGAGCAGC} \underline{{\tt ATG}} \\ {\tt TTTTGCCCACTGAAACTCATCCTGCTGCCAGTG}$ TTACTGGATTATTCCTTGGGCCTGAATGACTTGAATGTTTCCCCCGCCTGAGCTAACAGTC CATGTGGGTGATTCAGCTCTGATGGGATGTGTTTTCCAGAGCACAGAAGACAAATGTATA TTCAAGATAGACTGGACTCTGTCACCAGGAGAGCACGCCAAGGACGAATATGTGCTATAC TATTACTCCAATCTCAGTGTGCCTATTGGGCGCTTCCAGAACCGCGTACACTTGATGGGG GACATCTTATGCAATGATGGCTCTCTCCTGCTCCAAGATGTGCAAGAGGCTGACCAGGGA ACCTATATCTGTGAAATCCGCCTCAAAGGGGGAGAGCCAGGTGTTCAAGAAGGCGGTGGTA ATGGGATGTGTTTTCCAGAGCACAGAAGTGAAACACGTGACCAAGGTAGAATGGATATTT TCAGGACGCGCGCAAAGGAGGAGATTGTATTTCGTTACTACCACAAACTCAGGATGTCT GTGGAGTACTCCCAGAGCTGGGGCCACTTCCAGAATCGTGTGAACCTGGTGGGGGACATT TTCCGCAATGACGGTTCCATCATGCTTCAAGGAGTGAGGGAGTCAGATGGAGGAAACTAC ACCTGCAGTATCCACCTAGGGAACCTGGTGTTCAAGAAAACCATTGTGCTGCATGTCAGC ${\tt CCGGAAGAGCCTCGAACACTGGTGACCCCGGCAGCCCTGAGGCCTCTGGTCTTGGGTGGT}$ AATCAGTTGGTGATCATTGTGGGAATTGTCTGTGCCACAATCCTGCTGCTCCCTGTTCTG ATATTGATCGTGAAGAAGACCTGTGGAAATAAGAGTTCAGTGAATTCTACAGTCTTGGTG AAGAACACGAAGAAGACTAATCCAGAGATAAAAGAAAAACCCTGCCATTTTGAAAGATGT GAAGGGGAGAAACACATTTACTCCCCAATAATTGTACGGGAGGTGATCGAGGAAGAA CCAAGTGAAAAATCAGAGGCCACCTACATGACCATGCACCCAGTTTGGCCTTCTCTGAGG TCAGATCGGAACAACTCACTTGAAAAAAGTCAGGTGGGGGAATGCCAAAAACACAGCAA GCCTTT<u>TGA</u>GAAGAATGGAGAGTCCCTTCATCTCAGCAGCGGTGGAGACTCTCTCCTGTG TGTGTCCTGGGCCACTCTACCAGTGATTTCAGACTCCCGCTCTCCCAGCTGTCCTCCTGT CTCATTGTTTGGTCAATACACTGAAGATGGAGAATTTGGAGCCTGGCAGAGAGACTGGAC AGCTCTGGAGGAACAGGCCTGCTGAGGGGGAGGGGGAGCATGGACTTGGCCTCTGGAGTGGG ACACTGGCCCTGGGAACCAGGCTGAGCTGAGTGGCCTCAAACCCCCCGTTGGATCAGACC CTCCTGTGGGCAGGGTTCTTAGTGGATGAGTTACTGGGAAGAATCAGAGATAAAAACCAA CCCAAATCAA

244/392

FIGURE 234

MFCPLKLILLPVLLDYSLGLNDLNVSPPELTVHVGDSALMGCVFQSTEDKCIFKIDWTLS
PGEHAKDEYVLYYYSNLSVPIGRFQNRVHLMGDILCNDGSLLLQDVQEADQGTYICEIRL
KGESQVFKKAVVLHVLPEEPKELMVHVGGLIQMGCVFQSTEVKHVTKVEWIFSGRRAKEE
IVFRYYHKLRMSVEYSQSWGHFQNRVNLVGDIFRNDGSIMLQGVRESDGGNYTCSIHLGN
LVFKKTIVLHVSPEEPRTLVTPAALRPLVLGGNQLVIIVGIVCATILLLPVLILIVKKTC
GNKSSVNSTVLVKNTKKTNPEIKEKPCHFERCEGEKHIYSPIIVREVIEEEEPSEKSEAT
YMTMHPVWPSLRSDRNNSLEKKSGGGMPKTQQAF

245/392

FIGURE 235

246/392

FIGURE 236

MKKVLLLITAILAVAVGFPVSQDQEREKRSISDSDELASGFFVFPYPYPFRPLPPIPFPR FPWFRRNFPIPIPESAPTTPLPSEK

Important features of the protein: Signal peptide: amino acids 1-17

Homologous region to B3-hordein: amino acids 47-85

FIGURE 237

 ${\tt TCGCC} {\tt \underline{ATG}} {\tt GCCTCTGCCGGAATGCAGATCCTGGGAGTCGTCCTGACACTGCTGGGCTGGG}$ TGAATGGCCTGGTCTCCTGTGCCCTGCCCATGTGGAAGGTGACCGCTTTCATCGGCAACA GCATCGTGGTGGCCCAGGTGGTGGGGGGGGCCTGTGGATGTCCTGCGTGGTGCAGAGCA CCGGCCAGATGCAGGTGTACGACTCACTGCTGGCGCTGCCACAGGACCTGCAGG CTGCACGTGCCCTCTGTGTCATCGCCCTCCTTGTGGCCCTGTTCGGCTTGCTGGTCTACC TTGCTGGGGCCAAGTGTACCACCTGTGTGGAGGAGAAGGATTCCAAGGCCCGCCTGGTGC TCACCTCTGGGATTGTCTTTGTCATCTCAGGGGTCCTGACGCTAATCCCCGTGTGCTGGA CGGCGCATGCCATCATCCGGGACTTCTATAACCCCCTGGTGGCTGAGGCCCAAAAGCGGG GGTTGCTGTGCTGCACTTGCCCCTCGGGGGGGTCCCAGGGCCCAGCCATTACATGGCCC GCTACTCAACATCTGCCCCTGCCATCTCTCGGGGGCCCTCTGAGTACCCTACCAAGAATT ${ t ACGTC} { t TGA} { t CGTGGAGGGGAATGGGGGCTCCGCTGGCGCTAGAGCCATCCAGAAGTGGCAG}$ TGCCCAACAGCTTTGGGATGGGTTCGTACCTTTTGTTTCTGCCTCCTGCTATTTTTCTTT TGACTGAGGATATTTAAAATTCATTTGAAAACTGAGCCAAGGTGTTGACTCAGACTCTCA CTTAGGCTCTGCTGTTTCTCACCCTTGGATGATGGAGCCAAAGAGGGGGATGCTTTGAGAT TCTGGATCTTGACATGCCCATCTTAGAAGCCAGTCAAGCTATGGAACTAATGCGGAGGCT GCTTGCTGTGCTGCCTTGCAACAAGACAGACTGTCCCCAAGAGTTCCTGCTGCTGG GGGCTGGGCTTCCCTAGATGTCACTGGACAGCTGCCCCCCATCCTACTCAGGTCTCTGGA GCTCCTCTCTCACCCCTGGAAAAACAAATCATCTGTTAACAAAGGACTGCCCACCTCCG GAACTTCTGACCTCTGTTTCCTCCGTCCTGATAAGACGTCCACCCCCAGGGCCAGGTCC TCTCACCCCCTTTACACTCACATTTTTATCAAATAAAGCATGTTTTGTTAGTGCA

248/392

FIGURE 238

MASAGMQILGVVLTLLGWVNGLVSCALPMWKVTAFIGNSIVVAQVVWEGLWMSCVVQSTG QMQCKVYDSLLALPQDLQAARALCVIALLVALFGLLVYLAGAKCTTCVEEKDSKARLVLT SGIVFVISGVLTLIPVCWTAHAIIRDFYNPLVAEAQKRELGASLYLGWAASGLLLLGGGL LCCTCPSGGSQGPSHYMARYSTSAPAISRGPSEYPTKNYV

Transmembrane domains:

amino acids 8-30 (type II), 82-102, 121-140, 166-186

FIGURE 239

250/392

FIGURE 240

MKITGGLLLLCTVVYFCSSSEAASLSPKKVDCSIYKKYPVVAIPCPITYLPVCGSDYITY GNECHLCTESLKSNGRVQFLHDGSC

Signal peptide: amino acids 1-19

251/392

FIGURE 241

252/392

FIGURE 242

MAASPARPAVLALTGLALLLLLCWGPGGISGNKLKLMLQKREAPVPTKTKVAVDENKAKE FLGSLKRQKRQLWDRTRPEVQQWYQQFLYMGFDEAKFEDDITYWLNRDRNGHEYYGDYYQ RHYDEDSAIGPRSPYGFRHGASVNYDDY

Signal peptide: amino acids 1-30

253/392

FIGURE 243

 $\mathtt{CTCCATTAAACCACCACCAGCTCCCCAAGCCACCCCTTCAGCC}$ $\mathtt{AAGTTCCTGCTCCT}$ ATGTGTGAGTAACACCCCAGGATACTGCAGGACATGTTGCCACTGGGGGGAGACAGCATT CCTACCACAGCTCATCGGTAACCACTGGCAATCAAGGAGAAGAAACACACAAAGGAAAGA CAAGAAGCAACAAACGACCGTAACATCA<u>TAA</u>TAACCACTGCTATCGCCTCCACCAACTCA GAGAAATATCATTTCCACAGTTCCAATTCCTCCTACATTGCTGAGTACTAGCCAAGGCTC CTCTTTATGGGGCAGATATCTATAGCCAACCCCAAAACTTCTGTCTTCTATCATTCTGTC ATTCATCTAGTAACTAATTTGGAGTTTGTATCTATCTTACGAGAACAATCATCATGCAGA TTCGTCCACAGGGGATCTGTCAGTTTGGGTCCTCCAAATGAAAAATGTCAAGACAGAATT GGACATGCAAAAGATTGACTGGGAGAACACACCTCTGATGGACAAAGGTGAGACAGAGCA GCCACAGGCAGGGAGAGCCTTCAGACTGCAACGCTGGCCTGATACGTGTCAAAGGAGAGA GGGATAGAGGAGGATTGAATAGAAGGAGACTAAGACTGCAGCTCTAAGAAAGTCTCAGCC AAACAGATGGGGAGGCCCAAAGCAAGGCTTGCCCCTCAGAGGAGCTCACGCAGGGCAGGA ATAGCCAGGTTCTCATATCCCAGGGGTTCAGACTTGGCTGAGAACAGCCCCTGGAGAACA TGGGGTGACTGCTACCATAGGTCTGGAAGTATGAGGCTGTCCACCAACTATCCCCTTGAA GCAAGTTCTCTTGAAAGGAAATCTAAACAGTGCACCCCCATGGCTGCCACGGAGTATAAG TATTTATTTATTCATTTGAGTAACAAAGCAGACAGAATACATAGCCACCATTGGTAGTAC ACCCCAAAAGCAAGGATGGCATGATGCTGGTGACTCAAACGTGCCTACTCATGGTGTCAA ATTGGCATAATCCTCTTGGGAAGCTGTGTGGAAATAAGCACAGAGAAGCAGAACTCTAAT TGCTTAATCCACTAAACATTACTTCTGGGAATTGGCTCATCATAAATTATCCAAGAGAAA GCACAAAGTTATGGGCACAAAGGTTTTCCATATAATATTATTTAAAATGCTGAGAAAATG TTTATAGAATAATGGAACATAATAACATTATTCAAAATTGCATTTATGCTATAGTTGTCA AAGCAGAATTATGCATAAATTTCCTCTTACAGTTCGATGCCCATTAGTTTTATATAACAT TTATTTGACACGTACTGACTTCTATCTGAGAAGAACAAACCAAAACACTCAGGCCTAAAT AATTAAAAACGGTCCTAAAAACTAGCAAACCAGATAAGAAAAGATGTTAATGCCCATTCC CTAACTTATGTCTTAGACCAAAATTAATTCTAGATGGTTTTAAAATGACAGTGTAAAAGT AAAGTATTAAAAGATTGTGTGGTCAAATATTCAATTTAAGAGCAAGGAAATTCTTATAAA TATAACAATAGAGGCAGAACTCATGTAAGAATAAATTGATTAGGTGGTATTAAATATTAA GAGTTCATTCCTTTTTGTTTATAAATACTCTTCCGTCATATGAATAGTATTCATTTGTAT ACTGGTTTGTTGATGGACATTTGGGTTGTTCCCAGTTTATGGCTATTACAAATAAAGCTT CTATGAACATTTATGTACA

254/392

FIGURE 244

MKFLLLVLAALGFLTQVIPASAGGSKCVSNTPGYCRTCCHWGETALFMCNASRKCCISYS FLPKPDLPQLIGNHWQSRRRNTQRKDKKQQTTVTS

Important features of the protein: Signal peptide: amino acids 1-16

Transmembrane domain: amino acids 1-22

N-glycosylation site: amino acids 50-53

cAMP- and cGMP-dependent protein kinase phosphorylation site: amino acids 79-82

N-myristoylation site: amino acids 23-28

255/392

FIGURE 245

GGAGAGAGGCGCGGGTGAAAGGCGCATTGATGCAGCCTGCGGCGGCCTCGGAGCGCGG CGGAGCCAGACGCTGACCACGTTCCTCCTCGGTCTCCTCCGCCTCCAGCTCCGCGCTG CCCGGCAGCCGGAGCCATGCGACCCCAGGGCCCCGCCGCCTCCCCGCAGCGGCTCCGCG GCCTCCTGCTGCTGCTGCTGCAGCTGCCCGCGCGCGTCGAGCGCCTCTGAGATCCCCA AGGGGAAGCAAAAGGCGCAGCTCCGGCAGAGGGAGGTGGTGGACCTGTATAATGGAATGT GCTTACAAGGGCCAGCAGGAGTGCCTGGTCGAGACGGGAGCCCTGGGGCCAATGTTATTC CGGGTACACCTGGGATCCCAGGTCGGGATGGATTCAAAGGAGAAAAGGGGGAATGTCTGA GGGAAAGCTTTGAGGAGTCCTGGACACCCAACTACAAGCAGTGTTCATGGAGTTCATTGA ATTATGGCATAGATCTTGGGAAAATTGCGGAGTGTACATTTACAAAGATGCGTTCAAATA AGCGTTGGTATTTCACATTCAATGGAGCTGAATGTTCAGGACCTCTTCCCATTGAAGCTA TAATTTATTTGGACCAAGGAAGCCCTGAAATGAATTCAACAATTAATATTCATCGCACTT CTTCTGTGGAAGGACTTTGTGAAGGAATTGGTGCTGGATTAGTGGATGTTGCTATCTGGG GCATCATTATTGAAGAACTACCAAAA<u>TAA</u>ATGCTTTAATTTTCATTTGCTACCTCTTTTT TTATTATGCCTTGGAATGGTTCACTTAAATGACATTTTAAATAAGTTTATGTATACATCT GAATGAAAAGCAAAGCTAAATATGTTTACAGACCAAAGTGTGATTTCACACTGTTTTTAA AGAATACTTTCTTCATAGTCACATTCTCTCAACCTATAATTTGGAATATTGTTGTGGTCT TTTGTTTTTTCTCTTTAGTATAGCATTTTTAAAAAAATATAAAAGCTACCAATCTTTGTAC

256/392

FIGURE 246

MRPQGPAASPQRLRGLLLLLLQLPAPSSASEIPKGKQKAQLRQREVVDLYNGMCLQGPA GVPGRDGSPGANVIPGTPGIPGRDGFKGEKGECLRESFEESWTPNYKQCSWSSLNYGIDL GKIAECTFTKMRSNSALRVLFSGSLRLKCRNACCQRWYFTFNGAECSGPLPIEAIIYLDQ GSPEMNSTINIHRTSSVEGLCEGIGAGLVDVAIWVGTCSDYPKGDASTGWNSVSRIIIEE LPK

Signal peptide:
amino acids 1-30

Transmembrane domain: amino acids 195-217

FIGURE 247

 $\mathsf{GGCGGGCCGGGACGGGC}$ CCCACGGCTGTCTGCACTGCCACAGCAACTTCTCCAAGAAGTTCTCCTTCTACCGCCACC ATGTGAACTTCAAGTCCTGGTGGGTGGGCGACATCCCCGTGTCAGGGGGCGCTGCTCACCG ACTGGAGCGACGACGATGAAGGAGCTGCACCTGGCCATCCCCGCCAAGATCACCCGGG AGAAGCTGGACCAAGTGGCGACAGCAGTGTACCAGATGATGGATCAGCTGTACCAGGGGA AGATGTACTTCCCCGGGTATTTCCCCAACGAGCTGCGAAACATCTTCCGGGAGCAGGTGC ACCTCATCCAGAACGCCATCATCGAAAGGCACCTGGCACCAGGCAGCTGGGGAGGAGGGC AGCTCTCCAGGGAGGGACCCAGCCTAGCACCTGAAGGATCAATGCCATCACCCCGCGGGG ${\tt ACCTCCCC}{\color{blue}{\textbf{TAA}}}{\tt GTAGCCCCCAGAGGCGCTGGGGAGTGTTGCCACCGCCCTCCCCTGAAGTT}$ TGCTCCATCTCACGCTGGGGGTCAACCTGGGGACCCCTTCCCTCCGGGCCATGGACACAC ATACATGAAAACCAGGCCGCATCGACTGTCAGCACCGCTGTGGCATCTTCCAGTACGAGA CCATCTCCTGCAACAACTGCACAGACTCGCACGTCGCCTGCTTTGGCTATAACTGCGAGT AGGGCTCAGGCATCACCCCACCCGTGCCAGGGCCCTACTGTCCCTGGGGTCCCAGGCTC TCCTTGGAGGGGGCTCCCCGCCTTCCACCTGGCTGTCATCGGGTAGGGCGGGGCCGTGGG TTCAGGGGCGCACCACTTCCAAGCCTGTGTCCCACAGGTCCTCGGCGCAGTGGAAGTCAG AACACAGGCAGTGTGTGTGTGAGCACCTCGTGGGTGAGTATGTGTGGGGCACAGGCTG GCTCCCTCAGCTCCCACGTCCTAGAGGGGGCTCCCGAGGAGGTGGAACCTCAACCCAGCTC TGCGCAGGAGGCGGCTGCAGTCCTTTTCTCCCTCAAAGGTCTCCGACCCTCAGCTGGAGG CGGGCATCTTTCCTAAAGGGTCCCCATAGGGTCTGGTTCCACCCCATCCCAGGTCTGTGG TCAGAGCCTGGGAGGGTTCCCTACGATGGTTAGGGGTGCCCCATGGAGGGGCTGACTGCC CCACATTGCCTTTCAGACAGGACACGAGCATGAGGTAAGGCCGCCCTGACCTGGACTTCA GGGGGAGGGGTAAAGGGAGAGAGGGGGGGGGCTAGGGGGGTCCTCTAGATCAGTGGGGGC ACTGCAGGTGGGGCTCTCCCTATACCTGGGACACCTGCTGGATGTCACCTCTGCAACCAC ACCCATGTGGTGGTTTCATGAACAGACCACGCTCCTCTGCCTTCTCCTGGCCTGGGACAC ACAGAGCCACCCGGCCTTGTGAGTGACCCAGAGAAGGGGAGGCCTCGGGAGAAGGGGTGC TCGTAAGCCAACACCAGCGTGCCGGGCCTGCACACCCTTCGGACATCCCAGGCACGAGG GTGTCGTGGATGTGGCCACACATAGGACCACACGTCCCAGCTGGGAGGAGGCCTGGGG CCCCCAGGGAGGGAGGCAGGGGGGGGGGGACATGGAGGCTGAGGCAGCCTCGTCTCCCC GCAGCCTGGTATCGCCAGCCTTAAGGTGTCTGGAGCCCCCACACTTGGCCAACCTGACCT TGGAAGATGCTGCTGAGTGTCTCAAGCAGCACTGACAGCAGCTGGGCCTGCCCCAGGGCA ACGTGGGGGCGGAGACTCAGCTGGACAGCCCCTGCCTGTCACTCTGGAGCTGGGCTGCTG GGGAGGGAGGGATGGGGTGGGCTGTGCGCAGCATCAGCGCCTGGGCAGGTCCGCAGAG CTGCGGGATGTGATTAAAGTCCCTGATGTTTCTC

258/392

FIGURE 248

MALLLCLVCLTAALAHGCLHCHSNFSKKFSFYRHHVNFKSWWVGDIPVSGALLTDWSDDT MKELHLAIPAKITREKLDQVATAVYQMMDQLYQGKMYFPGYFPNELRNIFREQVHLIQNA IIERHLAPGSWGGGQLSREGPSLAPEGSMPSPRGDLP

Signal peptide:
amino acids 1-15

FIGURE 249

TGGCTGCGCGCTCTCTCGTCGCTCGCTCTCTTCTAGAGCCGAGGGACCCGG TGGCCTCGTCGCTCAGCCCCTATTTCGGCACCAAGACTCGCTACGAGGATGTCAACCCCG TGCTATTGTCGGGCCCCGAGGCTCCGTGGCGGGACCCTGAGCTGCTGGAGGGGACCTGCA CCCCGGTGCAGCTGGTCGCCCTCATTCGCCACGGCACCCGCTACCCCACGGTCAAACAGA TCCGCAAGCTGAGGCAGCTGCACGGGTTGCTGCAGGCCCGCGGGTCCAGGGATGGCGGGG CTAGTAGTACCGGCAGCCGCGACCTGGGTGCAGCGCTGGCCGACTGGCCTTTGTGGTACG CGGACTGGATGGACGGCAGCTAGTAGAGAAGGGACGGCAGGATATGCGACAGCTGGCGC TGCGTCTGGCCTCGCTCTTCCCGGCCCTTTTCAGCCGTGAGAACTACGGCCGCCTGCGGC TCATCACCAGTTCCAAGCACCGCTGCATGGATAGCAGCGCCCCTTCCTGCAGGGGCTGT GGCAGCACTACCACCCTGGCTTGCCGCCGCCGGACGTCGCAGATATGGAGTTTGGACCTC CAACAGTTAATGATAAACTAATGAGATTTTTTGATCACTGTGAGAAGTTTTTAACTGAAG ${ t TAGAAAAAATGCTACAGCTCTTTATCACGTGGAAGCCTTCAAAACTGGACCAGAAATGC}$ AGAACATTTTAAAAAAAGTTGCAGCTACTTTGCAAGTGCCAGTAAATGATTTAAATGCAG ATTTAATTCAAGTAGCCTTTTTCACCTGTTCATTTGACCTGGCAATTAAAGGTGTTAAAT CTCCTTGGTGTGATGTTTTTGACATAGATGATGCAAAGGTATTAGAATATTTAAATGATC TGAAACAATATTGGAAAAGAGGATATGGGTATACTATTAACAGTCGATCCAGCTGCACCT TGTTTCAGGATATCTTTCAGCACTTGGACAAAGCAGTTGAACAGAAACAAAGGTCTCAGC CAATTTCTTCTCCAGTCATCCTCCAGTTTGGTCATGCAGAGACTCTTCTTCCACTGCTTT CTCTCATGGGCTACTTCAAAGACAAGGAACCCCTAACAGCGTACAATTACAAAAAACAAA TGCATCGGAAGTTCCGAAGTGGTCTCATTGTACCTTATGCCTCGAACCTGATATTTGTGC TTTACCACTGTGAAAATGCTAAGACTCCTAAAGAACAATTCCGAGTGCAGATGTTATTAA ATGAAAAGGTGTTACCTTTGGCTTACTCACAAGAAACTGTTTCATTTTATGAAGATCTGA AGAACCACTACAAGGACATCCTTCAGAGTTGTCAAACCAGTGAAGAATGTGAATTAGCAA ${\tt GGGCTAACAGTACATCTGATGAACTA}{\tt TGA}{\tt GTAACTGAAGAACATTTTTAATTCTTTAGGA}$ ATCTGCAATGAGTGATTACATGCTTGTAATAGGTAGGCAATTCCTTGATTACAGGAAGCT ${\tt TTTATATTACTTGAGTATTTCTGTCTTTTCACAGAAAAACATTGGGTTTCTCTCTGGGTT}$ TGGACATGAAATGTAAGAAAAGATTTTTCACTGGAGCAGCTCTCTTAAGGAGAAACAAAT CTATTTAGAGAAACAGCTGGCCCTGCAAATGTTTACAGAAATGAAATTCTTCCTACTTAT ATAAGAAATCTCACACTGAGATAGAATTGTGATTTCATAATAACACTTGAAAAGTGCTGG AGATTGTTCTGCAGTTCTCTCTTTTTCCTCAGGTAGGACAGCTCTAGCATTTTCTTAA TCAGGAATATTGTGGTAAGCTGGGAGTATCACTCTGGAAGAAAGTAACATCTCCAGATGA GAATTTGAAACAAGAAACAGAGTGTTGTAAAAGGACACCTTCACTGAAGCAAGTCGGAAA GTACAATGAAAATAATATTTTTGGTATTTATTTATGAAATATTTGAACATTTTTTCAAT AATTCCTTTTTACTTCTAGGAAGTCTCAAAAGACCATCTTAAATTATTATATGTTTGGAC AATTAGCAACAAGTCAGATAGTTAGAATCGAAGTTTTTCAAATCCATTGCTTAGCTAACT TTTTCATTCTGTCACTTGGCTTCGATTTTTATATTTTCCTATTATATGAAATGTATCTTT TGGTTGTTTGTTTCTTTCTTTGTAAATAGTTCTGAGTTCTGTCAAATGCCGTG

260/392

FIGURE 250

MLRAPGCLLRTSVAPAAALAAALLSSLARCSLLEPRDPVASSLSPYFGTKTRYEDVNPVL LSGPEAPWRDPELLEGTCTPVQLVALIRHGTRYPTVKQIRKLRQLHGLLQARGSRDGGAS STGSRDLGAALADWPLWYADWMDGQLVEKGRQDMRQLALRLASLFPALFSRENYGRLRLI TSSKHRCMDSSAAFLQGLWQHYHPGLPPPDVADMEFGPPTVNDKLMRFFDHCEKFLTEVE KNATALYHVEAFKTGPEMQNILKKVAATLQVPVNDLNADLIQVAFFTCSFDLAIKGVKSP WCDVFDIDDAKVLEYLNDLKQYWKRGYGYTINSRSSCTLFQDIFQHLDKAVEQKQRSQPI SSPVILQFGHAETLLPLLSLMGYFKDKEPLTAYNYKKQMHRKFRSGLIVPYASNLIFVLY HCENAKTPKEQFRVQMLLNEKVLPLAYSQETVSFYEDLKNHYKDILQSCQTSEECELARA NSTSDEL

Important features: Signal sequence amino acids 1-30

N-glycosylation sites: amino acids 242-246, 481-485

N-myristoylation sites. amino acids 107-113, 113-119, 117-123, 118-124, 128-134

Endoplasmic reticulum targeting sequence: amino acids 484-489

FIGURE 251

TGGCGGAGAGATCAGAAGCCTCTTCCCCAAGCCGAGCCAACCTCAGCGGGGACCCGGGCT GCGCTTGGGCTCTTGACAGCTGGAGTATCAGCCTTGGAAGTATATACGCCAAAAGAAATC TTCGTGGCAAATGGTACACAAGGGAAGCTGACCTGCAAGTTCAAGTCTACTAGTACGACT GGCGGGTTGACCTCAGTCTCCTGGAGCTTCCAGCCAGAGGGGGCCGACACTACTGTGTCG TTTTTCCACTACTCCCAAGGGCAAGTGTACCTTGGGAATTATCCACCATTTAAAGACAGA TTTATACACAATGGCACCTATATCTGTGATGTCAAAAACCCTCCTGACATCGTTGTCCAG CCTGGACACATTAGGCTCTATGTCGTAGAAAAAGAGAATTTGCCTGTGTTTCCAGTTTGG GTAGTGGTGGCATAGTTACTGCTGTGGTCCTAGGTCTCACTCTGCTCATCAGCATGATT CTGGCTGTCCTCTATAGAAGGAAAAACTCTAAACGGGATTACACTGGCTGCAGTACATCA GAGAGTTTGTCACCAGTTAAGCAGGCTCCTCGGAAGTCCCCCTCCGACACTGAGGGTCTT GTAAAGAGTCTGCCTTCTGGATCTCACCAGGGCCCAGTCATATATGCACAGTTAGACCAC TCCGGCGGACATCACAGTGACAAGATTAACAAGTCAGAGTCTGTGGTGTATGCGGATATC CGAAAGAAT<u>TAA</u>GAGAATACCTAGAACATATCCTCAGCAAGAAACAAAACCAAACTGGAC TCTCGTGCAGAAAATGTAGCCCATTACCACATGTAGCCTTGGAGACCCAGGCAAGGACAA GTACACGTGTACTCACAGAGGGAGAGAAAGATGTGTACAAAGGATATGTATAAATATTCT ATTTAGTCATCCTGATATGAGGAGCCAGTGTTGCATGATGAAAAGATGGTATGATTCTAC ATATGTACCCATTGTCTTGCTGTTTTTGTACTTTTCTTTTCAGGTCATTTACAATTGGGAG ATTTCAGAAACATTCCTTTCACCATCATTTAGAAATGGTTTGCCTTAATGGAGACAATAG CAGATCCTGTAGTATTTCCAGTAGACATGGCCTTTTAATCTAAGGGCTTAAGACTGATTA GTCTTAGCATTTACTGTAGTTGGAGGATGGAGATGCTATGATGGAAGCATACCCAGGGTG GCCTTTAGCACAGTATCAGTACCATTTATTTGTCTGCCGCTTTTAAAAAATACCCATTGG CTATGCCACTTGAAAACAATTTGAGAAGTTTTTTTGAAGTTTTTTCTCACTAAAATATGGG GCAATTGTTAGCCTTACATGTTGTGTAGACTTACTTTAAGTTTGCACCCTTGAAATGTGT CATATCAATTCTGGATTCATAATAGCAAGATTAGCAAAGGATAAATGCCGAAGGTCACT TCATTCTGGACACAGTTGGATCAATACTGATTAAGTAGAAAATCCAAGCTTTGCTTGAGA ACTTTTGTAACGTGGAGAGTAAAAAGTATCGGTTTTA

262/392

FIGURE 252

MAASAGAGAVIAAPDSRRWLWSVLAAALGLLTAGVSALEVYTPKEIFVANGTQGKLTCKF KSTSTTGGLTSVSWSFQPEGADTTVSFFHYSQGQVYLGNYPPFKDRISWAGDLDKKDASI NIENMQFIHNGTYICDVKNPPDIVVQPGHIRLYVVEKENLPVFPVWVVVGIVTAVVLGLT LLISMILAVLYRRKNSKRDYTGCSTSESLSPVKQAPRKSPSDTEGLVKSLPSGSHQGPVI YAQLDHSGGHHSDKINKSESVVYADIRKN

Signal peptide:
amino acids 1-37

Transmembrane domain: amino acids 161-183

263/392

FIGURE 253

CGAGGCTGGTGGGAAGAGCCGAG<u>ATG</u>GCGGCAGCCAGCGCTGGGGCAACCCGGCTGCTC CTGCTCTTGCTGATGGCGGTAGCAGCGCCCAGTCGAGCCCGGGGCAGCGGCTGCCGGGCC GGGACTGGTGCGCGAGGGCTGGGGCGGAAGGTCGAGAGGCCGAGGCCTGTGGCACGGTG GGGCTGCTGGAGCACTCATTTGAGATCGATGACAGTGCCAACTTCCGGAAGCGGGGC TCACTGCTCTGGAACCAGCAGGATGGTACCTTGTCCCTGTCACAGCGGCAGCTCAGCGAG GAGGAGCGGGCCGACTCCGGGATGTGGCAGCCCTGAATGGCCTGTACCGGGTCCGGATC ${\tt CCAAGGCGACCCGGGGCCCTGGATGGCCTGGAAGCTGGTGGCTATGTCTCCTCCTTTGTC}$ CCTGCGTGCTCCCTGGTGGAGTCGCACCTGTCGGACCAGCTGACCCTGCACGTGGATGTG GCCGGCAACGTGGTGGCGTGTCGGTGGTGACGCACCCCGGGGGCTGCCGGGGCCATGAG GTGGAGGACGTGGAGCTGTTCAACACCTCGGTGCAGCTGCAGCCGCCCACCACA GCCCCAGGCCCTGAGACGGCCGCCTTCATTGAGCGCCTGGAGATGGAACAGGCCCAGAAG GCCAAGAACCCCCAGGAGCAGAAGTCCTTCTTCGCCAAATACTGGATGTACATCATTCCC GTCGTCCTGTTCCTCATGATGTCAGGAGCGCCAGACACCGGGGGCCAGGGTGGGGGTGGG TTAAAAACATCGACGATACATTGAAATGTGTGAACGTTTTGAAAAGCTACAGCTTCCAGC ACTGCTCACTTGATACGTTATTCAGAAACCCAAGGAATGGCTGTCCCCATCCTCATGTGG CTGTGTGGAGCTCAGCTGTTGTGTGGCAGTTTATTAAACTGTCCCCCAGATCGACACG CAAAAAAAA

264/392

FIGURE 254

MAAASAGATRLLLLLLMAVAAPSRARGSGCRAGTGARGAGAEGREGEACGTVGLLLEHSF EIDDSANFRKRGSLLWNQQDGTLSLSQRQLSEEERGRLRDVAALNGLYRVRIPRRPGALD GLEAGGYVSSFVPACSLVESHLSDQLTLHVDVAGNVVGVSVVTHPGGCRGHEVEDVDLEL FNTSVQLQPPTTAPGPETAAFIERLEMEQAQKAKNPQEQKSFFAKYWMYIIPVVLFLMMS GAPDTGGQGGGGGGGGGGGGGGGCCCVPPSL

Signal peptide: amino acids 1-24

Transmembrane domain: amino acids 226-243

FIGURE 255

GCGACGCGCGGGCGGGCGAGAGGAAACGCGGCCCGGGCCCGGGCCCTGGAGA <u>TG</u>GTCCCCGGCGCGCGGGCTGGTGTTGTCTCGTGCTCTGGCTCCCCGCGTGCGTCGCGG CCCACGGCTTCCGTATCCATGATTATTTGTACTTTCAAGTGCTGAGTCCTGGGGACATTC GATACATCTTCACAGCCACACCTGCCAAGGACTTTGGTGGTATCTTTCACACAAGGTATG AGCAGATTCACCTTGTCCCCGCTGAACCTCCAGAGGCCTGCGGGGAACTCAGCAACGGTT ATGACAGCTTCTACGTGGAGATGATCCAGGACAGTACCCAGCGCACAGCTGACATCCCCG CCCTCTTCCTGCTCGGCCGAGACGGCTACATGATCCGCCGCTCTCTGGAACAGCATGGGC TGCCATGGGCCATCATTTCCATCCCAGTCAATGTCACCAGCATCCCCACCTTTGAGCTGC ${\tt TGCAACCGCCCTGGACCTTCTGG}$ ${\tt TAG}$ ${\tt AAGAGTTTGTCCCACATTCCAGCCATAAGTGACT}$ CTGAGCTGGGAAGGGGAAACCCAGGAATTTTGCTACTTGGAATTTGGAGATAGCATCTGG GGACAAGTGGAGCCAGGTAGAGGAAAAGGGTTTGGGCGTTGCTAGGCTGAAAGGGAAGCC ACACCACTGGCCTTCCCCTTCCCCAGGGCCCCCAAGGGTGTCTCATGCTACAAGAAGAGGC AAGAGACAGGCCCCAGGGCTTCTGGCTAGAACCCGAAACAAAAGGAGCTGAAGGCAGGTG GCCTGAGAGCCATCTGTGACCTGTCACACTCACCTGGCTCCAGCCTCCCCTACCCAGGGT CTCTGCACAGTGACCTTCACAGCAGTTGTTGGAGTGGTTTAAAGAGCTGGTGTTTGGGGA CTCAATAAACCCTCACTGACTTTTTAGCAATAAAGCTTCTCATCAGGGTTGCAAAAAAA ΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑ

266/392

FIGURE 256

MVPGAAGWCCLVLWLPACVAAHGFRIHDYLYFQVLSPGDIRYIFTATPAKDFGGIFHTRY EQIHLVPAEPPEACGELSNGFFIQDQIALVERGGCSFLSKTRVVQEHGGRAVIISDNAVD NDSFYVEMIQDSTQRTADIPALFLLGRDGYMIRRSLEQHGLPWAIISIPVNVTSIPTFEL LQPPWTFW

Signal peptide:
amino acids 1-20

FIGURE 257

CTCGCTTCTTCTGGATGGGGGCCCAGGGGGCCCAGGAGAGTATAAAGGCGATGTGG
AGGGTGCCCGGCACCAGACCCAGACGCCCAGTCACAGGCGAGAGCCCTGGGATGCACCGGCCA
GAGGCCATGCTGCTGCTCACGCTTGCCCTCCTGGGGGGGCCCCACCTGGGCAGGAAG
ATGTATGGCCCTGGAGAGGCAAGTATTTCAGCACCACTGAAGACTACGACCATGAAATC
ACAGGGCTGCGGGTGTCTGTAGGTCTTCTCCTGGTGAAAAGTGTCCAGGTGAAACTTGGA
GACTCCTGGGACGTGAAACTGGGAGCCTTAGGTGGGAATACCCAGGAAGTCACCCTGCAG
CCAGGCGAATACATCACAAAAGTCTTTGTCGCCTTCCAAGCTTTCCTCCGGGGTATGGTC
ATGTACACCAGCAAGAGCCGCTATTTCTATTTTTGGGAAGCTTGATGGCCAGATCTCCTCT
GCCTACCCCAGCCAAGAGGGCCAGGTGCTGGTGGGCCATCTATGGCCAGTATCAACTCCTT
GGCATCAAGAGCATTGGCTTTGAATGGAATTATCCACTAGAGGAGCCGACCACTGAGCCA
CCAGTTAATCTCACATACTCAGCAAACTCACCCGTGGGTCGCTAGGGTGGGGTATGGGGC
CATCCGAGCTGAGGCCATCTGTGTGGTGGTGGTGGTACTGGAGTAACTGAGTCGGG
ACGCTGAATCTGAATCCACCAATAAATAAAGCTTCTGCAGAAAA

268/392

FIGURE 258

MHRPEAMLLLTLALLGGPTWAGKMYGPGGGKYFSTTEDYDHEITGLRVSVGLLLVKSVQ VKLGDSWDVKLGALGGNTQEVTLQPGEYITKVFVAFQAFLRGMVMYTSKDRYFYFGKLDG QISSAYPSQEGQVLVGIYGQYQLLGIKSIGFEWNYPLEEPTTEPPVNLTYSANSPVGR

Signal peptide: amino acids 1-22

269/392

FIGURE 259

CAGACATGCCTCAGTCACTGGCTCTGAGCCTCCTTATCCTGGTTCTGGCCTTTGGCATCC
CCAGGACCCAAGGCAGTGATGGAGGGGCTCAGGACTGTTGCCTCAAGTACAGCCAAAGGA
AGATTCCCGCCAAGGTTGTCCGCAGCTACCGGAAGCAGGAACCAAGCTTAGGCTGCTCCA
TCCCAGCTATCCTGTTCTTGCCCCGCAAGCGCTCTCAGGCAGAGCTATGTGCAGACCCAA
AGGAGCTCTGGGTGCAGCAGCTGATGCAGCATCTGGACAAGACCCATCCCCACAGAAAC
CAGCCCAGGGCTGCAGGAAGGACAGGGGGGCCTCCAAGACTGGCAAGAAAGGAAAGGGCT
CCAAAAGGCTGCAAGAAGGACTGAGCGGTCACAGACCCCTAAAGGGCCATAGCCCAGTGAGC
AGCCTGGAGCCCTGGAGACCCCACCAGCCTCACCAGCGCTTGAAGCCTAAACCCAAGATG
CAAGAAGGAGGCTATGCTCAGGGGCCCTGGAGCACCCCATGCTGGCCTTGCCACAC
TCTTTCTCCTGCTTTAACCACCCCATCTGCATTCCCAGCTCTACCCTGCATGGCT
GCCCACAGCAGGCCAGGTCCAGAGAGACCCAGGAGAGCTCTCCCAGGGAGCATGAGA
GGAGGCAGCAGGACTGTCCCCTTGAAGGAGAATCATCAGGACCCTGGACCTGATACGGCT
CCCCAGTACACCCCACCTCTTCCTTGTAAATATGATTTATACCTAACTGAATAAAAAAGCT
GTTCTGTCTTCCCNCCCA

FIGURE 260

MAQSLALSLLILVLAFGIPRTQGSDGGAQDCCLKYSQRKIPAKVVRSYRKQEPSLGCSIP AILFLPRKRSQAELCADPKELWVQQLMQHLDKTPSPQKPAQGCRKDRGASKTGKKGKGSK GCKRTERSQTPKGP

Important features of the protein: Signal peptide: amino acids 1-17

cAMP- and cGMP-dependent protein kinase phosphorylation site: amino acids 67-71

N-myristoylation sites: amino acids 17-23, 23-29, 27-33, 108-114, 118-124, 121-127

Amidation site: amino acids 112-116

Small cytokines:
amino acids 51-91

271/392

FIGURE 261

GGGACTACAAGCCGCGCGCGCGCTGCCGCTGGCCCTCAGCAACCCTCGAC<u>ATG</u>GCGCTGA GGCGGCCACCGCGACTCCGGCTCTGCGCTCGGCTGACTTCTTCCTGCTGCTGCTTT TCAGGGGCTGCCTGATAGGGGCTGTAAATCTCAAATCCAGCAATCGAACCCCAGTGGTAC ${f AGGAATTTGAAAGTGTGGAACTGTCTTGCATCATTACGGATTCGCAGACAAGTGACCCCA}$ GGATCGAGTGGAAGAAATTCAAGATGAACAAACCACATATGTGTTTTTTGACAACAAAA TTCAGGGAGACTTGGCGGGTCGTGCAGAAATACTGGGGAAGACATCCCTGAAGATCTGGA ATGTGACACGGAGAGACTCAGCCCTTTATCGCTGTGAGGTCGTTGCTCGAAATGACCGCA AGGAAATTGATGAGATTGTGATCGAGTTAACTGTGCAAGTGAAGCCAGTGACCCCTGTCT GTAGAGTGCCGAAGGCTGTACCAGTAGGCAAGATGGCAACACTGCACTGCCAGGAGAGTG AGGGCCACCCCGGCCTCACTACAGCTGGTATCGCAATGATGTACCACTGCCCACGGATT CCAGAGCCAATCCCAGATTTCGCAATTCTTCTTTCCACTTAAACTCTGAAACAGGCACTT TGGTGTTCACTGCTGTTCACAAGGACGACTCTGGGCAGTACTACTGCATTGCTTCCAATG ACGCAGGCTCAGCCAGGTGTGAGGAGCAGGAGATGGAAGTCTATGACCTGAACATTGGCG GAATTATTGGGGGGGTTCTGGTTGTCCTTGCTGTACTGGCCCTGATCACGTTGGGCATCT GCTGTGCATACAGACGTGGCTACTTCATCAACAATAAACAGGATGGAGAAAGTTACAAGA ACCCAGGGAAACCAGATGGAGTTAACTACATCCGCACTGACGAGGAGGGCGACTTCAGAC $A CAAGTCATCGTTTGTGATC\underline{TGA}GACCCGCGGTGTGGCTGAGAGCGCACAGAGCGCACGT$ GCACATACCTCTGCTAGAAACTCCTGTCAAGGCAGCGAGAGCTGATGCACTCGGACAGAG ${\tt CTAGACACTCATTCAGAAGCTTTTCGTTTTTGGCCAAAGTTGACCACTACTCTTACTC}$ TAACAAGCCACATGAATAGAAGAATTTTCCTCAAGATGGACCCGGTAAATATAACCACAA GGAAGCGAAACTGGGTGCGTTCACTGAGTTGGGTTCCTAATCTGTTTCTGGCCTGATTCC CGCATGAGTATTAGGGTGATCTTAAAGAGTTTGCTCACGTAAACGCCCGTGCTGGGCCCT GTGAAGCCAGCATGTTCACCACTGGTCGTTCAGCAGCACGACAGCACCATGTGAGATGG CGAGGTGGCTGGACAGCACCAGCAGCGCGCATCCCGGCGGGAACCCCAGAAAAGGCTTCTTAC ${ t ACAGCAGCCTTACTTCATCGGCCCACAGACACCACCGCAGTTTCTTCTTAAAGGCTCTGC}$ TGATCGGTGTTGCAGTGTCCATTGTGGAGAAGCTTTTTGGATCAGCATTTTGTAAAAACA ACCAAAATCAGGAAGGTAAATTGGTTGCTGGAAGAGGGATCTTGCCTGAGGAACCCTGCT TGTCCAACAGGGTGTCAGGATTTAAGGAAAACCTTCGTCTTAGGCTAAGTCTGAAATGGT ${ t ACTGAAATATGCTTTTCTATGGGTCTTGTTTATTTTATAAAATTTTACATCTAAATTTTTT}$ GCTAAGGATGTATTTTGATTATTGAAAAGAAAATTTCTATTTAAACTGTAAATATATTGT CATACAATGTTAAATAACCTATTTTTTTAAAAAAGTTCAACTTAAGGTAGAAGTTCCAAG CTACTAGTGTTAAATTGGAAAATATCAATAATTAAGAGTATTTTACCCAAGGAATCCTCT ${\tt CATGGAAGTTTACTGTGATGTTCCTTTTCTCACACAAGTTTTAGCCTTTTTCACAAGGGA}$ ACTCATACTGTCTACACATCAGACCATAGTTGCTTAGGAAACCTTTAAAAATTCCAGTTA AGCAATGTTGAAATCAGTTTGCATCTCTTCAAAAGAAACCTCTCAGGTTAGCTTTGAACT GCCTCTTCCTGAGATGACTAGGACAGTCTGTACCCAGAGGCCACCCAGAAGCCCTCAGAT GTACATACACAGATGCCAGTCAGCTCCTGGGGTTGCGCCAGGCGCCCCCGCTCTAGCTCA ${\tt CCCAGTGAGCTTTACTCACGTGGCCCTTGCTTCATCCAGCACAGCTCTCAGGTGGGCACT}$ GCAGGGACACTGGTGTCTTCCATGTAGCGTCCCAGCTTTGGGCTCCTGTAACAGACCTCT GTTTAATTATTTGTTAAGATTGTCTAAGGCCAAAGGCAATTGCGAAATCAAGTCTGTCAA GTACAATAACATTTTTAAAAGAAAATGGATCCCACTGTTCCTCTTTGCCACAGAGAAAGC ACCCAGACGCCACAGGCTCTGTCGCATTTCAAAACAAACCATGATGGAGTGGCGGCCAGT CCAGCCTTTTAAAGAACGTCAGGTGGAGCAGCCAGGTGAAAGGCCTGGCGGGGAGGAAAG ${ t TGAAACGCCTGAATCAAAAGCAGTTTTCTAATTTTTGACTTTAAATTTTTCATCCGCCGGA}$

272/392

FIGURE 262

MALRRPPRLRLCARLPDFFLLLLFRGCLIGAVNLKSSNRTPVVQEFESVELSCIITDSQT SDPRIEWKKIQDEQTTYVFFDNKIQGDLAGRAEILGKTSLKIWNVTRRDSALYRCEVVAR NDRKEIDEIVIELTVQVKPVTPVCRVPKAVPVGKMATLHCQESEGHPRPHYSWYRNDVPL PTDSRANPRFRNSSFHLNSETGTLVFTAVHKDDSGQYYCIASNDAGSARCEEQEMEVYDL NIGGIIGGVLVVLAVLALITLGICCAYRRGYFINNKQDGESYKNPGKPDGVNYIRTDEEG DFRHKSSFVI

Important features of the protein: Signal peptide: amino acids 1-30

Transmembrane domain: amino acids 243-263

N-glycosylation sites: amino acids 104-107, 192-195

cAMP- and cGMP-dependent protein kinase phosphorylation site: amino acids 107-110

Casein kinase II phosphorylation site: amino acids 106-109, 296-299

Tyrosine kinase phosphorylation site: amino acids 69-77

N-myristoylation sites: amino acids 26-31, 215-220, 226-231, 243-248, 244-249, 262-267

274/392

FIGURE 263

CCAGGACCAGGGCGCACCGGCTCAGCCTCTCACTTGTCAGAGGCCGGGGAAGAAGCAA AGCGCAACGGTGTGGTCCAAGCCGGGGCTTCTGCTTCGCCTCTAGGACATACACGGGACC CCCTAACTTCAGTCCCCCAAACGCGCACCCTCGAAGTCTTGAACTCCAGCCCCGCACATC CACGCGCGCACAGGCGCGGCAGGCGGCCGGAAGGCGATGCGCGCAGGGGG TCGGGCAGCTGGGCTCGGCCGGGAGTAGGGCCCGGCAGGGAGGCAGGGAGGCTGCAT ATTCAGAGTCGCGGGCTGCGCCCTGGGCAGAGGCCGCCCTCGCTCCACGCAACACCTGCT GCTGCCACCGCGCGATGAGCCGCGTGGTCTCGCTGCTGCTGGGCGCCGCGCTGCTCT ${\tt GCGGCCACGGAGCCTTCTGCCGCCGCGTGGTCAGCGGCCAAAAGGTGTGTTTTGCTGACT}$ TCAAGCATCCCTGCTACAAAATGGCCTACTTCCATGAACTGTCCAGCCGAGTGAGCTTTC AGGAGGCACGCCTGGCTTGTGAGAGTGAGGGAGGAGTCCTCCTCAGCCTTGAGAATGAAG CAGAACAGAAGTTAATAGAGAGCATGTTGCAAAACCTGACAAAACCCGGGACAGGGATTT CTGATGGTGATTTCTGGATAGGGCTTTGGAGGAATGGAGATGGGCAAACATCTGGTGCCT GCCCAGATCTCTACCAGTGGTCTGATGGAAGCAATTCCCAGTACCGAAACTGGTACACAG CTGGCCTTGGGGGTCCCTACCTTTACCAGTGGAATGATGACAGGTGTAACATGAAGCACA , ATTATATTTGCAAGTATGAACCAGAGATTAATCCAACAGCCCTGTAGAAAAGCCTTATC TTACAAATCAACCAGGAGACACCCATCAGAATGTGGTTGTTACTGAAGCAGGTATAATTC ${\tt CCAATCTAATTTATGTTGTTATACCAACAATACCCCTGCTCTTACTGATACTGGTTGCTT}$ TTGGAACCTGTTGTTTCCAGATGCTGCATAAAAGTAAAGGAAGAACAAAAACTAGTCCAA AACTCATTGACTTGGTTCCAGAATTTTGTAATTCTGGATCTGTATAAGGAATGGCATCAG AACAATAGCTTGGAATGGCTTGAAATCACAAAGGATCTGCAAGATGAACTGTAAGCTCCC CCTTGAGGCAAATATTAAAGTAATTTTTATATGTCTATTATTTCATTTAAAGAATATGCT GTGCTAATAATGGAGTGAGACATGCTTATTTTGCTAAAGGATGCACCCAAACTTCAAACT TCAAGCAAATGAAATGGACAATGCAGATAAAGTTGTTATCAACACGTCGGGAGTATGTGT GTTAGAAGCAATTCCTTTATTTCTTTCACCTTTCATAAGTTGTTATCTAGTCAATGTAA TGTATATTGTATTGAAATTTACAGTGTGCAAAAGTATTTTACCTTTGCATAAGTGTTTGA TAAAAATGAACTGTTCTAATATTTATTTTTTTTTTTGGCATCTCATTTTTCAATACATGCTCTT ATAGAAAAAGTTTGTTTTCTCGAAATAATTCATCTTTCAGCTTCTCTGCTTTTTGGTCAAT GTCTAGGAAATCTCTTCAGAAATAAGAAGCTATTTCATTAAGTGTGATATAAACCTCCTC AAACATTTTACTTAGAGGCAAGGATTGTCTAATTTCAATTGTGCAAGACATGTGCCTTAT AATTATTTTTAGCTTAAAATTAAACAGATTTTGTAATAATGTAACTTTGTTAATAGGTGC ATAAACACTAATGCAGTCAATTTGAACAAAAGAAGTGACATACACAATATAAATCATATG TCTTCACACGTTGCCTATATAATGAGAAGCAGCTCTCTGAGGGTTCTGAAATCAATGTGG TCCCTCTTGCCCACTAAACAAGATGGTTGTTCGGGGTTTGGGATTGACACTGGAGGC AGATAGTTGCAAAGTTAGTCTAAGGTTTCCCTAGCTGTATTTAGCCTCTGACTATATTAG TATACAAAGAGGTCATGTGGTTGAGACCAGGTGAATAGTCACTATCAGTGTGGAGACAAG CACAGCACAGACATTTTAGGAAGGAAAGGAACTACGAAATCGTGTGAAAATGGGTTTGG AACCCATCAGTGATCGCATATTCATTGATGAGGGGTTTGCTTGAGATAGAAAATGGTGGCT CCTTTCTGTCTTATCTCCTAGTTTCTTCAATGCTTACGCCTTGTTCTTCTCAAGAGAAAG TTGTAACTCTCTGGTCTTCATATGTCCCTGTGCTCCTTTTAACCAAATAAAGAGTTCTTG

FIGURE 264

MSRVVSLLLGAALLCGHGAFCRRVVSGQKVCFADFKHPCYKMAYFHELSSRVSFQEARLA CESEGGVLLSLENEAEQKLIESMLQNLTKPGTGISDGDFWIGLWRNGDGQTSGACPDLYQ WSDGSNSQYRNWYTDEPSCGSEKCVVMYHQPTANPGLGGPYLYQWNDDRCNMKHNYICKY EPEINPTAPVEKPYLTNQPGDTHQNVVVTEAGIIPNLIYVVIPTIPLLLLILVAFGTCCF QMLHKSKGRTKTSPNQSTLWISKSTRKESGMEV

Important features of the protein: Signal peptide: amino acids 1-21

Transmembrane domain: amino acids 214-235

N-glycosylation sites: amino acids 86-89 and 255-258

cAMP- and cGMP-dependent protein kinase phosphorylation site: amino acids 266-269

N-myristoylation sites: amino acids 27-32, 66-71, 91-96, 93-98, 102-107, 109-114, 140-145 and 212-217

276/392

FIGURE 265

TCCTGGCATGCCCTGCCACAGCCACTGGGCCCGAAGTTGCTCAGCCTGAAGTAGACACCA CCCTGGGTCGTGTGCGAGGCCGGCAGGTGGGCCGTGAAGGGCACAGACCGCCTTGTGAATG TCTTTCTGGGCATTCCATTTGCCCAGCCGCCACTGGGCCCTGACCGGTTCTCAGCCCCAC ACCCAGCACAGCCCTGGGAGGGTGTGCGGGATGCCAGCACTGCGCCCCCAATGTGCCTAC AAGACGTGGAGAGCATGAACAGCAGCAGATTTGTCCTCAACGGAAAACAGCAGATCTTCT ${\tt CCGTTTCAGAGGACTGCCTGGTCCTCAACGTCTATAGCCCAGCTGAGGTCCCCGCAGGGT}$ CCGGTAGGCCGGTCATGGTATGGGTCCATGGAGGCGCTCTGATAACTGGCGCTGCCACCT CCTACGATGGATCAGCTCTGGCTGCCTATGGGGATGTGGTCGTGGTTACAGTCCAGTACC GCCTTGGGTCCTTGGCTTCTTCAGCACTGGAGATGAGCATGCACCTGGCAACCAGGGCT TCCTAGATGTGGTAGCTGCTTTGCGCTGGGTGCAAGAAACATCGCCCCCTTCGGGGGTG ACCTCAACTGTGTCACTGTCTTTGGTGGATCTGCCGGTGGGAGCATCATCTCTGGCCTGG TCCTGTCCCCAGTGGCTGCAGGGCTGTTCCACAGAGCCATCACAGAGTGGGGTCATCA CCACCCAGGGATCATCGACTCTCACCCTTGGCCCCTAGCTCAGAAAATCGCAAACACCT CTGTCTTCCCCAAAAGCCCCAAGGAACTCCTGAAGGAGAAGCCCTTCCACTCTGTGCCCT TCCTCATGGGTGTCAACAACCATGAGTTCAGCTGGCTCATCCCCAGGGGCTGGGGTCTCC TGGATACAATGGAGCAGATGAGCCGGGAGGACATGCTGGCCATCTCAACACCCGTCTTGA CCAGTCTGGATGTGCCCCCTGAGATGATGCCCACCGTCATAGATGAATACCTAGGAAGCA ACTCGGACGCACAAGCCAAATGCCAGGCGTTCCAGGAATTCATGGGTGACGTATTCATCA ATGTTCCCACCGTCAGTTTTTCAAGATACCTTCGAGATTCTGGAAGCCCTGTCTTTTTCT ATCATGGGGCCGAGGTGCTTTTGTGTTCGGAGGTCCCTTCCTCATGGACGAGAGCTCCC GCCTGGCCTTTCCAGAGGCCACAGAGGAGGAGAAGCAGCTAAGCCTCACCATGATGGCCC AGTGGACCCACTTTGCCCGGACAGGGGACCCCCAATAGCAAGGCTCTGCCTCCTTGGCCCC AATTCAACCAGGCGGAACAATATCTGGAGATCAACCCAGTGCCACGGGCCGGACAGAAGT TCAGGGAGGCCTGGATGCAGTTCTGGTCAGAGACGCTCCCCAGCAAGATACAACAGTGGC ACCAGAAGCAGAACAGGAAGGCCCAGGAGGACCTCTGAGGCCAGGCCTGAACCTTCT TGGCTGGGGCAAACCACTCTTCAAGTGGTGGCAGAGTCCCAGCACGGCAGCCCGCCTCTC CCCCTGCTGAGACTTTAATCTCCACCAGCCCTTAAAGTGTCGGCCGCTCTGTGACTGGAG TTATGCTCTTTTGAAATGTCACAAGGCCGCCTCCCACCTCTGGGGCATTGTACAAGTTCT TCCCTCTCCCTGAAGTGCCTTTCCTGCTTTCTTCGTGGTAGGTTCTAGCACATTCCTCTA GCTTCCTGGAGGACTCACTCCCCAGGAAGCCTTCCCTGCCTTCTCTGGGCTGTGCGGCCC CCCCTCAGAGGAGCTCTCTCAAAATGGGGATTAGCCTAACCCCACTCTGTCACCCACAC ATATGGGAATGGCAGCTGCTGAACTTGAACCCAGAGCCTTCAGGTGCCAAAGCCATACTC AGGCCCCCACCGACATTGTCCACCCTGGCCAGAAGGGTGCATGCCAATGGCAGAGACCTG GGATGGGAGAAGTCCTGGGGCGCCAGGGGATCCAGCCTAGAGCAGACCTTAGCCCCTGAC TAAGGCCTCAGACTAGGGCGGGAGGGGTCTCCTCCTCTCTGCTGCCCAGTCCTGGCCCCT GCACAAGACAACAGAATCCATCAGGGCCATGAGTGTCACCCAGACCTGACCCTCACCAAT TCCAGCCCTGACCCTCAGGACGCTGGATGCCAGCTCCCAGCCCCAGTGCCGGGTCCTCC ACAGCAGGACAGGCCAGGGGAGGCATCTGGACCAGGGCATCCGTCGGGCTATTGTCACA GAGAAAAGAAGAGACCCACCCACTCGGGCTGCAAAAGGTGAAAAGCACCAAGAGGTTTTC

277/392

 ${\tt AGATGGAAGTGAGAGGTGACAGTGTGCTGCTGCTGCTCACAGCCCTCGCTTGCTCTCCCT}$ ${\tt GCCGCCTCTGCCTGGGCTCCCACTTTGGCAGCACTTGAGGAGCCCTTCAACCCGCCGCTG}$ GAGGTGCGGAGGGAGAGGGCGCGGGCAGCGCTTGCGGGCCAG CACAGCGCCCAGTCCCATCGACCACCCAAGGGCTGAGGAGTGCGGGTGCACAGCGCGGGA TCCTGAGTCTGGTGGGGACTTGGAGAACCTTTATGTCTAGCTAAGGGATTGTAAATACAC CGATGGGCACTCTGTATCTAGCTCAAGGTTTGTAAACACACCAATCAGCACCCTGTGTCT AGCTCAGTGTTTGTGAATGCACCAATCCACACTCTGTATCTGGCTACTCTGGTGGGGACT TGGAGAACCTTTGTGTCCACACTCTGTATCTAGCTAATCTAGTGGGGATGTGGAGAACCT TTGTGTCTAGCTCAGGGATCGTAAACGCACCAATCAGCACCCTGTCAAAACAGACCACTT GCAGGCTGCCTGAGCCAGCAGTGACAACCCCCCTCGGGTCCCCTCCCACGCCGTGGAAGC TTTGTTCTTTCGCTCTTTGCAATAAATCTTGCTACTGCCCAAAA

278/392

FIGURE 266

MERAVRVESGVLVGVVCLLLACPATATGPEVAQPEVDTTLGRVRGRQVGVKGTDRLVNVF
LGIPFAQPPLGPDRFSAPHPAQPWEGVRDASTAPPMCLQDVESMNSSRFVLNGKQQIFSV
SEDCLVLNVYSPAEVPAGSGRPVMVWVHGGALITGAATSYDGSALAAYGDVVVVTVQYRL
GVLGFFSTGDEHAPGNQGFLDVVAALRWVQENIAPFGGDLNCVTVFGGSAGGSIISGLVL
SPVAAGLFHRAITQSGVITTPGIIDSHPWPLAQKIANTLACSSSSPAEMVQCLQQKEGEE
LVLSKKLKNTIYPLTVDGTVFPKSPKELLKEKPFHSVPFLMGVNNHEFSWLIPRGWGLLD
TMEQMSREDMLAISTPVLTSLDVPPEMMPTVIDEYLGSNSDAQAKCQAFQEFMGDVFINV
PTVSFSRYLRDSGSPVFFYEFQHRPSSFAKIKPAWVKADHGAEGAFVFGGPFLMDESSRL
AFPEATEEEKQLSLTMMAQWTHFARTGDPNSKALPPWPQFNQAEQYLEINPVPRAGQKFR
EAWMQFWSETLPSKIQQWHQKQKNRKAQEDL

Important features of the protein: Signal peptide: amino acids 1-27

Transmembrane domain: amino acids 226-245

N-glycosylation site: amino acids 105-109

N-myristoylation sites:

amino acids 10-16, 49-55, 62-68, 86-92, 150-156, 155-161, 162-168, 217-223, 227-233, 228-234, 232-238, 262-268, 357-363, 461-467

Prokaryotic membrane lipoprotein lipid attachment site: amino acids 12-23

Carboxylesterases type-B serine active site: amino acids 216-232

FIGURE 267

 ${\tt TGTCGCCTGGCCTCGCC} \underline{{\tt ATG}} {\tt CAGACCCCGCGAGCGTCCCCTCCCGGCCCTCCTG}$ $\tt CTTCTGCTGCTACTGGGGGGCGCCCCACGGCCTCTTTCCTGAGGAGCCGCCGCCGCTT$ AGCGTGGCCCCAGGGACTACCTGAACCACTATCCCGTGTTTGTGGGCAGCGGGCCCGGA CGCCTGACCCCCGCAGAAGGTGCTGACGACCTCAACATCCAGCGAGTCCTGCGGGTCAAC AGGACGCTGTTCATTGGGGACAGGGACAACCTCTACCGCGTAGAGCTGGAGCCCCCCACG TCCACGGAGCTGCGGTACCAGAGGAAGCTGACCTGGAGATCTAACCCCAGCGACATAAAC GTGTGTCGGATGAAGGGCAAACAGGAGGGCGAGTGTCGAAACTTCGTAAAGGTGCTGCTC CTTCGGGACGAGTCCACGCTCTTTGTGTGCGGTTCCAACGCCTTCAACCCGGTGTGCGCC AACTACAGCATAGACACCCTGCAGCCCGTCGGAGACAACATCAGCGGTATGGCCCGCTGC CCGTACGACCCCAAGCACGCCAATGTTGCCCTCTTCTCTGACGGGATGCTCTTCACAGCT ACTGTTACCGACTTCCTAGCCATTGATGCTGTCATCTACCGCAGCCTCGGGGACAGGCCC ACCCTGCGCACCGTGAAACATGACTCCAAGTGGTTCAAAGAGCCTTACTTTGTCCATGCG GTGGAGTGGGGCAGCCATGTCTACTTCTTCTTCCGGGAGATTGCGATGGAGTTTAACTAC ${ t CTGGAGAAGGTGGTGTCCCGCGTGGCCCGAGTGTGCAAGAACGACGTGGGAGGCTCC}$ \cdot CCCCGCGTGCTGGAGAAGCAGTGGACGTCCTTCCTGAAGGCGCGGCTCAACTGCTCTGTA $\tt CCCGGAGACTCCCATTTCTACTTCAACGTGCTGCAGGCTGTCACGGGCGTGGTCAGCCTC$ GGGGGCCGGCCCTGGCCGTTTTTTCCACGCCCAGCAACAGCATCCCTGGCTCG GCTGTCTGCGCCTTTGACCTGACACAGGTGGCAGCTGTGTTTGAAGGCCGCTTCCGAGAG CAGAAGTCCCCCGAGTCCATCTGGACGCCGGTGCCGGAGGATCAGGTGCCTCGACCCCGG CCCGGGTGCTGCGCAGCCCCCGGGATGCAGTACAATGCCTCCAGCGCCTTGCCGGATGAC ${ t ATCCTCAACTTTGTCAAGACCCACCCTCTGATGGACGAGGCGGTGCCCTCGCTGGGCCAT}$ GCGCCCTGGATCCTGCGGACCCTGATGAGGCACCAGCTGACTCGAGTGGCTGTGGACGTG GGAGCCGGCCCTGGGGCAACCAGACCGTTGTCTTCCTGGGTTCTGAGGCGGGGACGGTC CTCAAGTTCCTCGTCCGGCCCAATGCCAGCACCTCAGGGACGTCTGGGCTCAGTGTCTTC CTGGAGGAGTTTGAGACCTACCGGCCGGACAGGTGTGGACGGCCCGGCGGTGGCGAGACA CCCCGCTGCGTGGTCCGAGTGCCTGTGGCTCGCTGCCAGCAGTACTCGGGGTGTATGAAG AACTGTATCGGCAGTCAGGACCCCTACTGCGGGTGGGCCCCCGACGGCTCCTGCATCTTC CTCAGCCCGGGCACCAGAGCCGCCTTTGAGCAGGACGTGTCCGGGGCCAGCACCTCAGGC TTAGGGGACTGCACAGGACTCCTGCGGGGCCAGCCTCTCCGAGGACCGCGCGGGGCTGGTG ${\tt TCGGTGAACCTGGTAACGTCGTCGGTGGCGGCCTTCGTGGTGGGAGCCGTGGTGTCC}$ GGCTTCAGCGTGGGCTGGTTCGTGGGCCTCCGTGAGCGGCGGAGCTGGCCCGGCGCAAG GTTCCCCCGGAGGCCCTGCTGGCCCCCTGATGCAGAACGGCTGGGCCAAGGCCACGCTG CTGCAGGGCGGGCCCACGACCTGGACTCGGGGCTGCTGCCCACGCCCGAGCAGACGCCG CTGCCGCAGAAGCGCCTGCCCACTCCGCACCCGCACCCCCACGCCCTGGGCCCCCGCGCC CCCGCCCGGGCCCCGAGCAGCCCCCCCGCGCCTGGGGAGCCGACCCCCGACGCCGCCTC TATGCTGCCCGGCCCGGCCGCCCTCCCACGCCGACTTCCCGCTCACCCCCCACGCCAGC CCGGACCGCCGGCGGGTGTCCGCGCCCACGGGCCCCTTGGACCCAGCCTCAGCCGCC GATGGCCTCCCGCGCCCTGGAGCCCCCCGACGGCCAGCCTGAGGAGGCCACTGGGC CCCCACGCCCTCCGGCCGCCACCCTGCGCCGCACCCACACGTTCAACAGCGGCGAGGCC ATGCCTTGGCAGTGCCAGCCACGGGAACCAGGAGCGAGAGACGCCGGGG

280/392

281/392

FIGURE 268

MQTPRASPPRPALLLLLLLLGGAHGLFPEEPPPLSVAPRDYLNHYPVFVGSGPGRLTPAE GADDLNIQRVLRVNRTLFIGDRDNLYRVELEPPTSTELRYQRKLTWRSNPSDINVCRMKG KQEGECRNFVKVLLLRDESTLFVCGSNAFNPVCANYSIDTLQPVGDNISGMARCPYDPKH ANVALFSDGMLFTATVTDFLAIDAVIYRSLGDRPTLRTVKHDSKWFKEPYFVHAVEWGSH VYFFFREIAMEFNYLEKVVVSRVARVCKNDVGGSPRVLEKQWTSFLKARLNCSVPGDSHF YFNVLQAVTGVVSLGGRPVVLAVFSTPSNSIPGSAVCAFDLTQVAAVFEGRFREQKSPES IWTPVPEDQVPRPRPGCCAAPGMQYNASSALPDDILNFVKTHPLMDEAVPSLGHAPWILR TLMRHQLTRVAVDVGAGPWGNQTVVFLGSEAGTVLKFLVRPNASTSGTSGLSVFLEEFET YRPDRCGRPGGGETGQRLLSLELDAASGGLLAAFPRCVVRVPVARCQQYSGCMKNCIGSQ DPYCGWAPDGSCIFLSPGTRAAFEQDVSGASTSGLGDCTGLLRASLSEDRAGLVSVNLLV TSSVAAFVVGAVVSGFSVGWFVGLRERRELARRKDKEAILAHGAGEAVLSVSRLGERRAQ GPGGRGGGGGGGGGGVPPEALLAPLMQNGWAKATLLQGGPHDLDSGLLPTPEQTPLPQKRL PTPHPHPHALGPRAWDHGHPLLPASASSSLLLLAPARAPEQPPAPGEPTPDGRLYAARPG RASHGDFPLTPHASPDRRRVVSAPTGPLDPASAADGLPRPWSPPPTGSLRRPLGPHAPPA ATLRRTHTFNSGEARPGDRHRGCHARPGTDLAHLLPYGGADRTAPPVP

Important features of the protein: Signal peptide: amino acids 1-25

Transmembrane domains:

amino acids 318-339, 598-617

N-glycosylation sites. amino acids 74-78, 155-159, 167-171, 291-295, 386-390, 441-445, 462-466

Glycosaminoglycan attachment sites: amino acids 51-55, 573-577

cAMP- and cGMP-dependent protein kinase phosphorylation site: amino acids 102-106

N-myristoylation sites:

amino acids 21-27, 50-56, 189-195, 333-339, 382-388, 448-454, 490-496, 491-497, 508-514, 509-515, 531-537, 558-564, 569-575, 574-580, 580-586, 610-616, 643-649, 663-669, 666-672, 667-673, 668-674, 669-675, 670-676, 868-874, 879-885

282/392

FIGURE 269

FIGURE 270

 ${\tt MKLSGMFLLLSLALFCFLTGVFSQGGQVDCGEFQDPKVYCTRESNPHCGSDGQTYGNKCAFCKAIVKSGGKISLKHPGKC}$

Important features of the protein: Signal peptide: amino acids 1-23

N-myristoylation sites: amino acids 26-32, 52-58, 56-62, 69-75

Kazal serine protease inhibitors family signature: amino acids 40-63

FIGURE 271

 ${\tt AACTTCTAC} \underline{{\tt ATG}} {\tt GGCCTCCTGCTGCTGGTGCTCTTCCTCAGCCTCCTGCCGGTGGCCTAC$ ACCATCATGTCCCTCCCACCCTCCTTTGACTGCGGGCCGTTCAGGTGCAGAGTCTCAGTT GCCCGGGAGCACCTCCCCGAGGCAGTCTGCTCAGAGGGCCTCGGCCCAGAATTCCA GTTCTGGTTTCATGCCAGCCTGTAAAAGGCCATGGAACTTTGGGTGAATCACCGATGCCA ${\tt TTTAAGAGGGTTTTCTGCCAGGATGGAAATGTTAGGTCGTTCTGTGTCTGCGCTGTTCAT$ ${\tt TTCAGTAGCCACCAGCCACCTGTGGCCGTTGAGTGCTTGAAA} {\tt TGA} {\tt GGAACTGAGAAAATT}$ AATTTCTCATGTATTTTCTCATTTATTATTAATTTTTAACTGATAGTTGTACATATTT GGGGGTACATGTGATATTTGGATACATGTATACAATATAATGATCAAATCAGGGTAAC TCAAGCGATTCTCATGCCTCCACCTCCCAAGTAGCTGGGACTACAGGCATGCACCACAAT GCCCAACTAATTTTTGTATTTTTAGTAGAGACGGGGTTTTGCCATGTTGCCCAGGCTGGC CTTGAACTCCTGGCCTCAAACAATCCACTTGCCTCGGCCTCCCAAAGTGTTATGATTACA GGCGTGAGCCACCGTGCCTGGCCTAAACATTTATCTTTTCTTTGTGTTTGGGAACTTTGAA ATTATACAATGAATTATTGTTAACTGTCATCTCCCTGCTGTGCTATGGAACACTGGGACT CTCTCTATCCTTCCCAACCTCTGATCACCTCATTCTACTCTACCTCCATGAGATCCAC TTTTTTAGCTCCCACATGTGAGTAAGAAAATGCAATATTTGTCTTTCTGTGCCTGGCTTA TTTCACTTAACATAATGACTTCCTGTTCCATCCATGTTGCTGCAAATGACAGGATTTCGT TCTTAATTTCAATTAAAATAACCACACATGGCAAAAA

FIGURE 272

MGLLLLVLFLSLLPVAYTIMSLPPSFDCGPFRCRVSVAREHLPSRGSLLRGPRPRIPVLV SCQPVKGHGTLGESPMPFKRVFCQDGNVRSFCVCAVHFSSHQPPVAVECLK

Important features of the protein: Signal peptide: amino acids 1-18

N-myristoylation site: amino acids 86-92

Zinc carboxypeptidases, zinc-binding region 2 signature: amino acids 68-79

286/392

FIGURE 273

TTCTGAAGTAACGGAAGCTACCTTGTATAAAGACCTCAACACTGCTGACC<u>ATG</u>ATCAGCG CAGCCTGGAGCATCTTCCTCATCGGGACTAAAATTGGGCTGTTCCTTCAAGTAGCACCTC TATCAGTTATGGCTAAATCCTGTCCATCTGTGTGTCGCTGCGATGCGGGTTTCATTTACT GTAATGATCGCTTTCTGACATCCATTCCAACAGGAATACCAGAGGATGCTACAACTCTCT ACCTTCAGAACAACCAAATAAATAATGCTGGGATTCCTTCAGATTTGAAAAACTTGCTGA AAGTAGAAAGAATATACCTATACCACAACAGTTTAGATGAATTTCCTACCAACCTCCCAA AGTATGTAAAAGAGTTACATTTGCAAGAAAATAACATAAGGACTATCACTTATGATTCAC TTTCAAAAATTCCCTATCTGGAAGAATTACATTTAGATGACAACTCTGTCTCTGCAGTTA GCATAGAAGAGGGAGCATTCCGAGACAGCAACTATCTCCGACTGCTTTTCCTGTCCCGTA ATCACCTTAGCACAATTCCCTGGGGTTTGCCCAGGACTATAGAAGAACTACGCTTGGATG ATAATCGCATATCCACTATTTCATCACCATCTCTTCAAGGTCTCACTAGTCTAAAACGCC TGGTTCTAGATGGAAACCTGTTGAACAATCATGGTTTAGGTGACAAAGTTTTCTTCAACC TAGTTAATTTGACAGAGCTGTCCCTGGTGCGGAATTCCCTGACTGCTGCACCAGTAAACC TTCCAGGCACAAACCTGAGGAAGCTTTATCTTCAAGATAACCACATCAATCGGGTGCCCC CAAATGCTTTTTCTTATCTAAGGCAGCTCTATCGACTGGATATGTCCAATAATAACCTAA GTAATTTACCTCAGGGTATCTTTGATGATTTGGACAATATAACACAACTGATTCTTCGCA ACAATCCCTGGTATTGCGGGTGCAAGATGAAATGGGTACGTGACTGGTTACAATCACTAC CTGTGAAGGTCAACGTGCGTGGGCTCATGTGCCAAGCCCCAGAAAAGGTTCGTGGGATGG CTATTAAGGATCTCAATGCAGAACTGTTTGATTGTAAGGACAGTGGGATTGTAAGCACCA TTCAGATAACCACTGCAATACCCAACACAGTGTATCCTGCCCAAGGACAGTGGCCAGCTC CAGTGACCAAACAGCCAGATATTAAGAACCCCAAGCTCACTAAGGATCAACAAACCACAG GGAGTCCCTCAAGAAAAACAATTACAATTACTGTGAAGTCTGTCACCTCTGATACCATTC ATATCTCTTGGAAACTTGCTCTACCTATGACTGCTTTGAGACTCAGCTGGCTTAAACTGG GCCATAGCCCGGCATTTGGATCTATAACAGAAACAATTGTAACAGGGGAACGCAGTGAGT ACTTGGTCACAGCCCTGGAGCCTGATTCACCCTATAAAGTATGCATGGTTCCCATGGAAA CCAGCAACCTCTACCTATTGATGAAACTCCTGTTTGTATTGAGACTGAAACTGCACCCC ACCCCAATTTACCTTTGGCTGCCATCATTGGTGGGGCTGTGGCCCTGGTTACCATTGCCC TTCTTGCTTTAGTGTTTGGTATGTTCATAGGAATGGATCGCTCTTCTCAAGGAACTGTG CATATAGCAAAGGAGAGAAGAAAGGATGACTATGCAGAAGCTGGCACTAAGAAGGACA ACTCTATCCTGGAAATCAGGGAAACTTCTTTTCAGATGTTACCAATAAGCAATGAACCCA AAAACAATCACAGTGAAAGCAGTAGTAACCGAAGCTACAGAGACAGTGGTATTCCAGACT CAGATCACTCACACTCATGATGCTGAAGGACTCACAGCAGACTTGTGTTTTTGGGTTTTTT AAACCTAAGGGAGGTGATGGT

287/392

FIGURE 274

MISAAWSIFLIGTKIGLFLQVAPLSVMAKSCPSVCRCDAGFIYCNDRFLTSIPTGIPEDA
TTLYLQNNQINNAGIPSDLKNLLKVERIYLYHNSLDEFPTNLPKYVKELHLQENNIRTIT
YDSLSKIPYLEELHLDDNSVSAVSIEEGAFRDSNYLRLLFLSRNHLSTIPWGLPRTIEEL
RLDDNRISTISSPSLQGLTSLKRLVLDGNLLNNHGLGDKVFFNLVNLTELSLVRNSLTAA
PVNLPGTNLRKLYLQDNHINRVPPNAFSYLRQLYRLDMSNNNLSNLPQGIFDDLDNITQL
ILRNNPWYCGCKMKWVRDWLQSLPVKVNVRGLMCQAPEKVRGMAIKDLNAELFDCKDSGI
VSTIQITTAIPNTVYPAQGQWPAPVTKQPDIKNPKLTKDQQTTGSPSRKTITITVKSVTS
DTIHISWKLALPMTALRLSWLKLGHSPAFGSITETIVTGERSEYLVTALEPDSPYKVCMV
PMETSNLYLFDETPVCIETETAPLRMYNPTTTLNREQEKEPYKNPNLPLAAIIGGAVALV
TIALLALVCWYVHRNGSLFSRNCAYSKGRRRKDDYAEAGTKKDNSILEIRETSFQMLPIS
NEPISKEEFVIHTIFPPNGMNLYKNNHSESSSNRSYRDSGIPDSDHSHS

Important features of the protein: Signal peptide:

amino acids 1-28

Transmembrane domain:

amino acids 531-552

N-glycosylation sites:

amino acids 226-229, 282-285, 296-299, 555-558, 626-629, 633-636

Tyrosine kinase phosphorylation site:

amino acids 515-522

N-myristoylation sites:

amino acids 12-17, 172-177, 208-213, 359-364, 534-539, 556-561, 640-645

Amidation site:

amino acids 567-570

Leucine zipper pattern:

amino acids 159-180

Phospholipase A2 aspartic acid active site:

amino acids 34-44

288/392

FIGURE 275

AGGGCCCGCGGGTGGAGAGAGCGACGCCCGAGGGGA<u>TG</u>GCGGCAGCGTCCCGGAGCGCCT TCTTCCAGCTGCAGCTGCAGGAGTTCATCAACGAGCGCGGCGTACTGGCCAGTGGGCGGC CTTGCGAGCCCGGCTGCCGGACTTTCTTCCGCGTCTGCCTTAAGCACTTCCAGGCGGTCG TCTCGCCCGGACCCTGCACCTTCGGGACCGTCTCCACGCCGGTATTGGGCACCAACTCCT ${\tt TCGCTGTCCGGGACGACAGTAGCGGGGGGGGGGGGGGCGCAACCCTCTCCAACTGCCCTTCAATT}$ TCACCTGGCCGGGTACCTTCTCGCTCATCATCGAAGCTTGGCACGCCCAGGAGACGACC TGCGGCCAGAGGCCTTGCCACCAGATGCACTCATCAGCAAGATCGCCATCCAGGGCTCCC TAGCTGTGGGTCAGAACTGGTTATTGGATGAGCAAACCAGCACCCTCACAAGGCTGCGCT ${\tt ACTCTTACCGGGTCATCTGCAGTGACAACTACTATGGAGACAACTGCTCCCGCCTGTGCA}$ TGCCCGGTTGGACTGGGGAATATTGCCAACAGCCTATCTGTCTTTCGGGCTGTCATGAAC AGAATGGCTACTGCAGCAAGCCAGAGTGCCTCTGCCGCCCAGGCTGGCAGGGCCGGC TGTGTAACGAATGCATCCCCCACAATGGCTGTCGCCACGGCACCTGCAGCACTCCCTGGC AATGTACTTGTGATGAGGGCTGGGGAGGCCTGTTTTGTGACCAAGATCTCAACTACTGCA CCCACCACTCCCCATGCAAGAATGGGGCAACGTGCTCCAACAGTGGGCAGCGAAGCTACA CCTGCACCTGTCGCCCAGGCTACACTGGTGTGGACTGTGAGCTGGAGCTCAGCGAGTGTG ACAGCAACCCCTGTCGCAATGGAGGCAGCTGTAAGGACCAGGAGGATGGCTACCACTGCC TGTGTCCTCCGGGCTACTATGGCCTGCACTGTGAACACACCCTTGAGCTGCGCCGACT CCCCTGCTTCAATGGGGGCTCCTGCCGGGAGCGCAACCAGGGGGCCAACTATGCTTGTG AATGTCCCCCAACTTCACCGGCTCCAACTGCGAGAAGAAGTGGACAGGTGCACCAGCA ACCCCTGTGCCAACGGGGGACAGTGCCTGAACCGAGGTCCAAGCCGCATGTGCCGCTGCC GTCCTGGATTCACGGGCACCTACTGTGAACTCCACGTCAGCGACTGTGCCCGTAACCCTT GCGCCCACGGTGGCACTTGCCATGACCTGGAGAATGGGCTCATGTGCACCTGCCCTGCCG GCTTCTCTGGCCGACGCTGTGAGGTGCGGACATCCATCGATGCCTGTGCCTCGAGTCCCT GCTTCAACAGGGCCACCTGCTACACCGACCTCTCCACAGACACCTTTGTGTGCAACTGCC ${\tt CTTATGGCTTTGTGGGCAGCCGCTGCGAGTTCCCCGTGGGCTTGCCGCCCAGCTTCCCCT}$ GGGTGGCCGTCTCGCTGGGTGTGGGGCTGGCAGTGCTGGTACTGCTGGCATGGTGG CAGTGGCTGTGCGGCTGCGGCTTCGACGGCCGGACGACGCAGCAGCAGCAAGCCATGA ACAACTTGTCGGACTTCCAGAAGGACAACCTGATTCCTGCCGCCCAGCTTAAAAACACAA ACCAGAAGAAGGAGCTGGAAGTGGACTGTGGCCTGGACAAGTCCAACTGTGGCAAACAGC AAAACCACACTTGGACTATAATCTGGCCCCAGGGCCCCTGGGGCGGGGGACCATGCCAG GAAAGTTTCCCCACAGTGACAAGAGCTTAGGAGAGAGGCGCCACTGCGGTTACACAGTG AAAAGCCAGAGTGTCGGATATCAGCGATATGCTCCCCCAGGGACTCCATGTACCAGTCTG TGTGTTTGATATCAGAGGAGGAGTGATGATGTGTCATTGCCACGGAGGTATAAGGCAGGA

289/392

FIGURE 276

MAAASRSASGWALLLLVALWQQRAAGSGVFQLQLQEFINERGVLASGRPCEPGCRTFFRV CLKHFQAVVSPGPCTFGTVSTPVLGTNSFAVRDDSSGGGRNPLQLPFNFTWPGTFSLIIE AWHAPGDDLRPEALPPDALISKIAIQGSLAVGQNWLLDEQTSTLTRLRYSYRVICSDNYY GDNCSRLCKKRNDHFGHYVCQPDGNLSCLPGWTGEYCQQPICLSGCHEQNGYCSKPAECL CRPGWQGRLCNECIPHNGCRHGTCSTPWQCTCDEGWGGLFCDQDLNYCTHHSPCKNGATC SNSGQRSYTCTCRPGYTGVDCELELSECDSNPCRNGGSCKDQEDGYHCLCPPGYYGLHCE HSTLSCADSPCFNGGSCRERNQGANYACECPPNFTGSNCEKKVDRCTSNPCANGGQCLNR GPSRMCRCRPGFTGTYCELHVSDCARNPCAHGGTCHDLENGLMCTCPAGFSGRRCEVRTS IDACASSPCFNRATCYTDLSTDTFVCNCPYGFVGSRCEFPVGLPPSFPWVAVSLGVGLAV LLVLLGMVAVAVRQLRLRRPDDGSREAMNNLSDFQKDNLIPAAQLKNTNQKKELEVDCGL DKSNCGKQQNHTLDYNLAPGPLGRGTMPGKFPHSDKSLGEKAPLRLHSEKPECRISAICS PRDSMYQSVCLISEERNECVIATEV

Important features of the protein: Signal peptide: amino acids 1-26

Transmembrane domain:

amino acids 530-552

N-glycosylation sites: amino acids 108-112, 183-187, 205-209, 393-397, 570-574, 610-614

Glycosaminoglycan attachment site: amino acids 96-100

Tyrosine kinase phosphorylation site: amino acids 340-347

N-myristoylation sites:

amino acids 42-48, 204-210, 258-264, 277-283, 297-303, 383-389, 415-421, 461-467, 522-528, 535-541, 563-569, 599-605, 625-631

Amidation site: amino acids 471-475

Aspartic acid and asparagine hydroxylation site: amino acids 339-351

EGF-like domain cysteine pattern signature: amino acids 173-185, 206-218, 239-251, 270-282, 310-322, 348-360, 388-400, 426-438, 464-476, 506-518

Calcium-binding EGF-like: amino acids 224-245, 255-276, 295-316, 333-354, 373-394,

290/392

FIGURE 277

TTTCGGTTTCTTCCAAGATTCCTGGCCTTCCCTCGACGGAGCCGGGCCCAGTGCGGGGGC GCAGGGCGCGGGAGCTCCACCTCCTCGGCTTTCCCTGCGTCCAGAGGCTGGCATGGCGCG CCTCCTCTCCGGCCGCCGTCTCCCGGTCCCTGGCGAAAGCCATTGAGACACCAGCTGG ACGTCACGCGCCGGAGCATGTCTGGGAGTCAGAGCGAGGTGGCTCCATCCCCGCAGAGTC CGCGGAGCCCCGAG<u>ATG</u>GGACGGGACTTGCGGCCCGGGTCCCGCGTGCTCCTGC TTCTGCTCCTGCTGGTGTACCTGACTCAGCCAGGCAATGGCAACGAGGGCAGCGTCACTG GAAGTTGTTATTGTGGTAAAAGAATTTCTTCCGACTCCCCGCCATCGGTTCAGTTCATGA ATCGTCTCCGGAAACACCTGAGAGCTTACCATCGGTGTCTATACTACACGAGGTTCCAGC TCCTTTCCTGGAGCGTGTGTGGGGGCAACAAGGACCCATGGGTTCAGGAATTGATGAGCT GTCTTGATCTCAAAGAATGTGGACATGCTTACTCGGGGGATTGTGGCCCACCAGAAGCATT TACTTCCTACCAGCCCCCCAATTCCTCAGGCCTCAGAGGGGGCATCTTCAGATATCCACA ${\tt CCCCTGCCCAGATGCTCCACCTTGCAGTCCACTCAGCGCCCCACCCTCCCAGTAG}$ GATCACTGTCCTCGGACAAAGAGCTCACTCGTCCCAATGAAACCACCATTCACACTGCGG CTGGTCCCACAGCCAGGACATCAGCCACAGTGCCAGTCCTGTGCCTCCTGGCCATCATCT TCATCCTCACCGCAGCCCTTTCCTATGTGCTGTGCAAGAGGAGGAGGGGGGCAGTCACCGC CCAAGAATGGAAGCTTGTGAGGGTAAACTGTGGCTTATTCTTACAAAAAGTGTAATAAAG

FIGURE 278

MGRDLRPGSRVLLLLLLLLLVYLTQPGNGNEGSVTGSCYCGKRISSDSPPSVQFMNRLRK HLRAYHRCLYYTRFQLLSWSVCGGNKDPWVQELMSCLDLKECGHAYSGIVAHQKHLLPTS PPISQASEGASSDIHTPAQMLLSTLQSTQRPTLPVGSLSSDKELTRPNETTIHTAGHSLA AGPEAGENQKQPEKNAGPTARTSATVPVLCLLAIIFILTAALSYVLCKRRRGQSPQSSPD LPVHYIPVAPDSNT

Important features of the protein:

Signal peptide:

1-26

Transmembrane domain:

204-223

N-glycosylation site:

168-172

cAMP- and cGMP-dependent protein kinase phosphorylation site: 42-46

N-myristoylation site: 29-35, 32-38, 36-42, 156-162

Amidation site:

40-44

292/392

FIGURE 279

CGGCACGCACCACCATGCGCTCCTGCTGCTCCTCTGCTGCTGCTGCGGAGTAGTGGA TTTCGCCAGAAGTTTGAGTATCACTACTCCTGAAGAGATGATTGAAAAAGCCAAAGGGGA AACTGCCTATCTGCCATGCAAATTTACGCTTAGTCCCGAAGACCAGGGACCGCTGGACAT CGAGTGGCTGATATCACCAGCTGATAATCAGAAGGTGGATCAAGTGATTATTTTATATTC TGGAGACAAAATTTATGATGACTACTATCCAGATCTGAAAGGCCGAGTACATTTTACGAG TAATGATCTCAAATCTGGTGATGCATCAATAAATGTAACGAATTTACAACTGTCAGATAT TGGCACATATCAGTGCAAAGTGAAAAAAGCTCCTGGTGTTGCAAATAAGAAGATTCATCT GGTAGTTCTTGTTAAGCCTTCAGGTGCGAGATGTTACGTTGATGGATCTGAAGAAATTGG AAGTGACTTTAAGATAAAATGTGAACCAAAAGAAGGTTCACTTCCATTACAGTATGAGTG GCAAAAATTGTCTGACTCACAGAAAATGCCCACTTCATGGTTAGCAGAAATGACTTCATC TGTTATATCTGTAAAAAATGCCTCTTCTGAGTACTCTGGGACATACAGCTGTACAGTCAG AAACAGAGTGGGCTCTGATCAGTGCCTGTTGCGTCTAAACGTTGTCCCTCCTTCAAATAA CGATATCAGGGAAGATGTGCCACCTCCAAAGAGCCGTACGTCCACTGCCAGAAGCTACAT CGGCAGTAATCATTCATCCCTGGGGTCCATGTCTCCTTCCAACATGGAAGGATATTCCAA GACTCAGTATAACCAAGTACCAAGTGAAGACTTTGAACGCACTCCTCAGAGTCCGACTCT GACTACTGAAGAATCTGAAGTATTGTATTATTTGACTTTATTTTAGGCCTCTAGTAAAGA CTTAAATGTTTTTAAAAAAAGCACAAGGCACAGAGATTAGAGCAGCTGTAAGAACACAT CTACTTTATGCAATGGCATTAGACATGTAAGTCAGATGTCATGTCAAAATTAGTACGAGC CAAATTCTTTGTTAAAAAACCCTATGTATAGTGACACTGATAGTTAAAAGATGTTTTATT ATATTTCAATAACTACCACTAACAAATTTTTAACTTTTCATATGCATATTCTGATATGT GGTCTTTTAGGAAAAGTATGGTTAATAGTTGATTTTTCAAAGGAAATTTTAAAATTCTTA CGTTCTGTTTAATGTTTTTGCTATTTAGTTAAATACATTGAAGGGAAATACCCGTTCTTT TCCCCTTTTATGCACACAACAGAAACACGCGTTGTCATGCCTCAAACTATTTTTATTTG CAACTACATGATTTCACACAATTCTCTTAAACAACGACATAAAATAGATTTCCTTGTATA TAAATAACTTACATACGCTCCATAAAGTAAATTCTCAAAGGTGCTAGAACAAATCGTCCA CTTCTACAGTGTTCTCGTATCCAACAGAGTTGATGCACAATATATAAATACTCAAGTCCA ATATTAAAAACTTAGGCACTTGACTAACTTTAATAAAATTTCTCAAACTATATCAATATC TAAAGTGCATATATTTTTTAAGAAAGATTATTCTCAATAACTTCTATAAAAATAAGTTTG ATGGTTTGGCCCATCTAACTTCACTACTATTAGTAAGAACTTTTAACTTTTAATGTGTAG TAAGGTTTATTCTACCTTTTTCTCAACATGACACCAACACAATCAAAAACGAAGTTAGTG AGGTGCTAACATGTGAGGATTAATCCAGTGATTCCGGTCACAATGCATTCCAGGAGGAGG TACCCATGTCACTGGAATTGGGCGATATGGTTTATTTTTTCTTCCCTGATTTGGATAACC AAATGGAACAGGAGGAGGATAGTGATTCTGATGGCCATTCCCTCGATACATTCCTGGCTT TTTTCTGGGCAAAGGGTGCCACATTGGAAGAGGTGGAAATATAAGTTCTGAAATCTGTAG GGAAGAACACATTAAGTTAATTCAAAGGAAAAAATCATCATCTATGTTCCAGATTTCT CATTAAAGACAAAGTTACCCACAACACTGAGATCACATCTAAGTGACACTCCTATTGTCA GGTCTAAATACATTAAAAACCTCATGTGTAATAGGCGTATAATGTATAACAGGTGACCAA TGTTTTCTGAATGCATAAAGAAATGAATAAACTCAAACAGTACTTCCTAAACAACTTC AACCAAAAAAGACCAAAACATGGAACGAATGGAAGCTTGTAAGGACATGCTTGTTTAGT CCAGTGGTTTCCACAGCTGGCTAAGCCAGGAGTCACTTGGAGGCTTTTAAATACAAAACA TTGGAGCTGGAGGCCATTATCCTTAGCAAACTAATGCAGAAACAGAAAATCAACTACCGC ATGTTCTCACTTATAAGTGGGAGGTAATGATAAGAACTTATGAACACAAAGAAGGAAACA ATAGACATTGGAGTCTATTTGAGAGGGGAGGGTGGGAGAAGGAAAAGGAGCAGAAAAGAT AACTATTGAGTACTGCCTTCACACCTGGGTGATGAAATAATATGTACAACAAATCCCTGT GACACATGTTTACCTATGGAACAACCTTCATGTGTATCCCTAAACCTAAAATAAAAGTT

293/392

FIGURE 280

MALLLCFVLLCGVVDFARSLSITTPEEMIEKAKGETAYLPCKFTLSPEDQGPLDIEWLIS PADNQKVDQVIILYSGDKIYDDYYPDLKGRVHFTSNDLKSGDASINVTNLQLSDIGTYQC KVKKAPGVANKKIHLVVLVKPSGARCYVDGSEEIGSDFKIKCEPKEGSLPLQYEWQKLSD SQKMPTSWLAEMTSSVISVKNASSEYSGTYSCTVRNRVGSDQCLLRLNVVPPSNKAGLIA GAIIGTLLALALIGLIIFCCRKKRREEKYEKEVHHDIREDVPPPKSRTSTARSYIGSNHS SLGSMSPSNMEGYSKTQYNQVPSEDFERTPQSPTLPPAKFKYPYKTDGITVV

Signal sequence. amino acids 1-19

Transmembrane domain: amino acids 236-257

N-glycosylation sites: amino acids 106-110, 201-205, 298-302

Tyrosine kinase phosphorylation sites: amino acids 31-39, 78-85, 262-270

N-myristoylation sites: amino acids 116-122, 208-214, 219-225, 237-243, 241-247, 245-251, 296-302

Myelin P0 protein: amino acids 96-125

294/392

FIGURE 281

 ${\tt TGCATCAGTGCCCAGGCAAGCCCAGGAGTTGACATTTCTCTGCCCAGCC} {\tt ATG} {\tt GGCCTCAC}$ CCTGCTCTTGCTGCTCCTGGGACTAGAAGGTCAGGGCATAGTTGGCAGCCTCCCTGA GGTGCTGCAGGCACCCGTGGGAAGCTCCATTCTGGTGCAGTGCCACTACAGGCTCCAGGA TGTCAAAGCTCAGAAGGTGTGGTGCCGGTTCTTGCCGGAGGGGTGCCAGCCCCTGGTGTC CTCAGCTGTGGATCGCAGAGCTCCAGCGGGCAGGCGTACGTTTCTCACAGACCTGGGTGG GGGCCTGCTGCAGGTGGAAATGGTTACCCTGCAGGAAGAGGATGCTGGCGAGTATGGCTG ${\tt CATGGTGGATGGGGCCCAGGGTCTCTGAACATACTGCC}$ CCCAGAGGAAGAAGAGACCCATAAGATTGGCAGTCTGGCTGAGAACGCATTCTCAGA CCCTGCAGGCAGTGCCAACCCTTTGGAACCCAGCCAGGATGAGAAGAGCATCCCCTTGAT $\tt CTGGGGTGCTGTTGCTGGTAGGTCTGCTGGTGGCAGCGGTGGTGCTGTTTGCTGTGAT$ GGCCAAGAGGAAACAAGAATCCCTCCTCAGTGGTCCACCACGTCAG<u>TGA</u>CTCTGGACCGG CTGCTGAATTGCCTTTGGATGTACCACACATTAGGCTTGACTCACCACCTTCATTTGACA ATACCACCTACACCAGCCTACCTCTTGATTCCCCATCAGGAAAACCTTCACTCCCAGCTC CATCCTCATTGCCCCCTCTACCTCCTAAGGTCCTGGTCTGCTCCAAGCCTGTGACATATG CCACAGTAATCTTCCCGGGAGGGAACAAGGGTGGAGGGACCTCGTGTGGGCCAGCCCAGA ATCCACCTAACAATCAGACTCCATCCAGCTAAGCTGCTCATCACACTTTAAACTCATGAG GACCATCCCTAGGGGTTCTGTGCATCCATCCAGCCAGCTCATGCCCTAGGATCCTTAGGA TATCTGAGCAACCAGGGACTTTAAGATCTAATCCAATGTCCTAACTTTACTAGGGAAAGT GACGCTCAGACATGACTGAGATGTCTTGGGGAAGACCTCCCTGCACCCAACTCCCCCACT

295/392

FIGURE 282

MGLTLLLLLLGLEGQGIVGSLPEVLQAPVGSSILVQCHYRLQDVKAQKVWCRFLPEGCQ PLVSSAVDRRAPAGRRTFLTDLGGGLLQVEMVTLQEEDAGEYGCMVDGARGPQILHRVSL NILPPEEEETHKIGSLAENAFSDPAGSANPLEPSQDEKSIPLIWGAVLLVGLLVAAVVL FAVMAKRKQESLLSGPPRQ

Important features of the protein: Signal peptide: amino acids 1-15

Transmembrane domain: amino acids 161-181

N-myristoylation sites: amino acids 17-23, 172-178

Amidation site: amino acids 73-79

296/392

FIGURE 283

297/392

FIGURE 284

 ${\tt MGLFMIIAILLFQKPTVTEQLKKCWNNYVQGHCRKICRVNEVPEALCENGRYCCLNIKEL} \\ {\tt EACKKITKPPRPKPATLALTLQDYVTIIENFPSLKTQST}$

Important features of the protein:

Signal peptide:

None

Transmembrane domain:

None

cAMP- and cGMP-dependent protein kinase phosphorylation site: 64-68

298/392

FIGURE 285

GATGGCGCAGCCACAGCTTCTGTGAGATTCGATTTCTCCCCAGTTCCCCTGTGGGTCTGA GGGGACCAGAAGGGTGAGCTACGTTGGCTTTCTGGAAGGGGAGGCTATATGCGTCAATTC CCTGCTGTTCCAGGCCTTACCTGCTGGGCACTAACGGCGGAGCCAGGATGGGGACAGAAT AAAGGAGCCACGACCTGTGCCACCAACTCGCACTCAGACTCTGAACTCAGACCTGAAATC TTCTCTTCACGGGAGGCTTGGCAGTTTTTCTTACTCCTGTGGTCTCCAGATTTCAGGCCT AAGATGAAAGCCTCTAGTCTTGCCTTCAGCCTTCTCTCTGCTGCGTTTTATCTCCTATGG ACTCCTTCCACTGGACTGAAGACACTCAATTTGGGAAGCTGTGTGATCGCCACAAACCTT CAGGAAATACGAAATGGATTTTCTGAGATACGGGGCAGTGTGCAAGCCAAAGATGGAAAC ATTGACATCAGAATCTTAAGGAGGACTGAGTCTTTGCAAGACACAAAGCCTGCGAATCGA TGCTGCCTCCTGCGCCATTTGCTAAGACTCTATCTGGACAGGGTATTTAAAAACTACCAG ACCCCTGACCATTATACTCTCCGGAAGATCAGCAGCCTCGCCAATTCCTTTCTTACCATC AAGAAGGACCTCCGGCTCTCATGCCCACATGACATGCCATTGTGGGGAGGAAGCAATG AAGAAATACAGCCAGATTCTGAGTCACTTTGAAAAGCTGGAACCTCAGGCAGCAGTTGTG AGTGATGCTGCTAAGAATATTCGAGGTCAAGAGCTCCAGTCTTCAATACCTGCAGAG GAGGCATGACCCCAAACCACCATCTCTTTACTGTACTAGTCTTGTGCTGGTCACAGTGTA TCTTATTTATGCATTACTTGCTTCCTTGCATGATTGTCTTTATGCATCCCCAATCTTAAT CTTTAAAAAAATTCACAGATTATATTTATAACCTGACTAGAGCAGGTGATGTATTTTTAT ACAGTAAAAAAAAAACCTTGTAAATTCTAGAAGAGTGGCTAGGGGGGTTATTCATTTG TATTCAACTAAGGACATATTTACTCATGCTGATGCTCTGTGAGATATTTGAAATTGAACC AATGACTACTTAGGATGGGTTGTGGAATAAGTTTTGATGTGGAATTGCACATCTACCTTA AAAAAAAAA

FIGURE 286

MKASSLAFSLLSAAFYLLWTPSTGLKTLNLGSCVIATNLQEIRNGFSEIRGSVQAKDGNI DIRILRRTESLQDTKPANRCCLLRHLLRLYLDRVFKNYQTPDHYTLRKISSLANSFLTIK KDLRLSHAHMTCHCGEEAMKKYSQILSHFEKLEPQAAVVKALGELDILLQWMEETE

300/392

FIGURE 287

 ${\tt AATGCCCC} \underline{{\tt ATG}} {\tt CGCACCCCACAGCTCGCGCTCCTGCAAGTGTTCTTTCTGGTGTTCCCCG}$ ATGGCGTCCGGCCTCAGCCCTCTTCCTCCCCATCAGGGGCAGTGCCCACGTCTTTGGAGC TGCAGCGAGGGACGGATGGCGGAACCCTCCAGTCCCCTTCAGAGGCGACTGCAACTCGCC CGGCCGTGCCTGGACTCCCTACAGTGGTCCCTACTCTCGTGACTCCCTCGGCCCCTGGGA ATAGGACTGTGGACCTCTTCCCAGTCTTACCGATCTGTGTCTGTGACTTGACTCCTGGAG CCTGCGATATAAATTGCTGCTGCGACAGGGACTGCTATCTTCTCCATCCGAGGACAGTTT TCTCCTTCTGCCTTCCAGGCAGCGTAAGGTCTTCAAGCTGGGTTTGTGTAGACAACTCTG TTATCTTCAGGAGTAATTCCCCGTTTCCTTCAAGAGTTTTCATGGATTCTAATGGAATCA GGCAGTTTTGTGTCCATGTGAACAACTCAAACTTAAACTATTTCCAGAAGCTTCAAAAGG TCAATGCAACCAACTTCCAGGCCCTGGCTGCAGAGTTTGGAGGCGAATCATTCACTTCAA TCCCCAAGTGGTCTGTAATAAGCTTGCTGAGACAACCTGCAGGAGTTGGAGCTGGGGGAC TCTGTGCTGAAAGCAATCCTGCAGGTTTCCTAGAGAGTAAAAGTACAACTTGCACTCGTT TTTTCAAGAACCTGGCTAGTAGCTGTACCTTGGATTCAGCCCTCAATGCTGCCTCTTACT ATAACTTCACAGTCTTAAAGGTTCCAAGAAGCATGACTGATCCACAGAATATGGAGTTCC AGGTTCCTGTAATACTTACCTCACAGGCTAATGCTCCTCTGTTGGCTGGAAACACTTGTC AGAATGTAGTTTCTCAGGTCACCTATGAGATAGAGACCAATGGGACTTTTGGAATCCAGA AAGTTTCTGTCAGTTTGGGACAAACCAACCTGACTGTTGAGCCAGGCGCTTCCTTACAGC AACACTTCATCCTTCGCTTCAGGGCTTTTCAACAGAGCACAGCTGCTTCTCTCACCAGTC TAAGTTACTCAATGACCCTCTTACAGAGCCAGGGTAATGGAAGTTGCTCTGTTAAAAGAC ATGAAGTGCAGTTTGGAGTGAATGCAATATCTGGATGCAAGCTCAGGTTGAAGAAGGCAG ACTGCAGCCACTTGCAGCAGGAGATTTATCAGACTCTTCATGGAAGGCCCAGACCAGAGT ATGTTGCCATCTTTGGTAATGCTGACCCAGCCCAGAAAGGAGGGTGGACCAGGATCCTCA ACAGGCACTGCAGCATTTCAGCTATAAACTGTACTTCCTGCTGTCTCATACCAGTTTCCC TGGAGATCCAGGTATTGTGGGCATATGTAGGTCTCCTGTCCAACCCGCAAGCTCATGTAT CAGGAGTTCGATTCCTATACCAGTGCCAGTCTATACAGGATTCTCAGCAAGTTACAGAAG TATCTTTGACAACTCTTGTGAACTTTGTGGACATTACCCAGAAGCCACAGCCTCCAAGGG GCCAACCCAAAATGGACTGGAAATGGCCATTCGACTTCTTTCCCTTCAAAGTGGCATTCA GCAGAGGAGTATTCTCTCAAAAATGCTCAGTCTCTCCCATCCTTATCCTGTGCCTCTTAC ${\tt TACTTGGAGTTCTCAACCTAGAGACTATG} \underline{{\tt TGA}} {\tt AGAAAAGAAAATAATCAGATTTCAGTTT}$ TCCCTATGAGAAACTCTGAGGCAGCCACTTATCTTGGCTAAATAGAACCTCACCTGCTCA TGACCAGAGAGCATTTAGGATAATAGATGACCTAACTGAAGGAATCCTTGTATATGAAAG

301/392

FIGURE 288

MRTPQLALLQVFFLVFPDGVRPQPSSSPSGAVPTSLELQRGTDGGTLQSPSEATATRPAV PGLPTVVPTLVTPSAPGNRTVDLFPVLPICVCDLTPGACDINCCCDRDCYLLHPRTVFSF CLPGSVRSSSWVCVDNSVIFRSNSPFPSRVFMDSNGIRQFCVHVNNSNLNYFQKLQKVNA TNFQALAAEFGGESFTSTFQTQSPPSFYRAGDPILTYFPKWSVISLLRQPAGVGAGGLCA ESNPAGFLESKSTTCTRFFKNLASSCTLDSALNAASYYNFTVLKVPRSMTDPQNMEFQVP VILTSQANAPLLAGNTCQNVVSQVTYEIETNGTFGIQKVSVSLGQTNLTVEPGASLQQHF ILRFRAFQQSTAASLTSPRSGNPGYIVGKPLLALTDDISYSMTLLQSQGNGSCSVKRHEV QFGVNAISGCKLRLKKADCSHLQQEIYQTLHGRPRPEYVAIFGNADPAQKGGWTRILNRH CSISAINCTSCCLIPVSLEIQVLWAYVGLLSNPQAHVSGVRFLYQCQSIQDSQQVTEVSL TTLVNFVDITQKPQPPRGQPKMDWKWPFDFFPFKVAFSRGVFSQKCSVSPILILCLLLLG VLNLETM

Important features of the protein: Signal peptide: amino acids 1-22

Transmembrane domains: amino acids 484-505, 581-600

N-glycosylation sites: amino acids 78-82, 165-169, 179-185, 279-285, 331-337, 347-351, 410-414, 487-491

N-myristoylation sites: amino acids 30-36, 41-47, 124-130, 232-238, 236-242, 409-415

Prokaryotic membrane lipoprotein lipid attachment site: amino acids 420-431

302/392

FIGURE 289

CGCGGAGCCCTGCGCTGGGAGGTGCACGGTGTGCACGCTGGACTGGACCCCCATGCAACC AAAG<u>ATG</u>GCTTTAAAAGTGCTACTAGAACAAGAGAAAACGTTTTTCACTCTTTTAGTATT ACTAGGCTATTTGTCATGTAAAGTGACTTGTGAATCAGGAGACTGTAGACAGCAAGAATT CAGGGATCGGTCTGGAAACTGTGTTCCCTGCAACCAGTGTGGGCCAGGCATGGAGTTGTC TAAGGAATGTGGCTTCGGCTATGGGGAGGATGCACAGTGTGTGACGTGCCGGCTGCACAG GTTCAAGGAGGACTGGGGCTTCCAGAAATGCAAGCCCTGTCTGGACTGCGCAGTGGTGAA CCGCTTTCAGAAGGCAAATTGTTCAGCCACCAGTGATGCCATCTGCGGGGGACTGCTTGCC AGGATTTTATAGGAAGACGAAACTTGTCGGCTTTCAAGACATGGAGTGTGTGCCTTGTGG AGACCCTCCTCCTTACGAACCGCACTGTGCCAGCAAGGTCAACCTCGTGAAGATCGC GTCCACGGCCTCCAGCCCACGGGACACGGCGCTGGCTGCCGTTATCTGCAGCGCTCTGGC CACCGTCCTGCTGCTCATCCTCTGTGTCATCTATTGTAAGAGACAGTTTATGGA GAAGAAACCCAGCTGGTCTCTGCGGTCGCAGGACATTCAGTACAACGGCTCTGAGCTGTC GTGTTTTGACAGACCTCAGCTCCACGAATATGCCCACAGAGCCTGCTGCCAGTGCCGCCG CTGCAGCCCAACCCGGCGACTCTTGGTTGTGGGGTGCATTCTGCAGCCAGTCTTCAGGC AAGAAACGCAGGCCCAGCCGGGGAGATGGTGCCGACTTTCTTCGGATCCCTCACGCAGTC CATCTGTGGCGAGTTTTCAGATGCCTGGCCTCTGATGCAGAATCCCATGGGTGGTGACAA TGTTCCAGTCCAGTCTCATTCTGAAAACTTTACAGCAGCTACTGATTTATCTAGATATAA TCAGGAGAGTGGCGCTGTCATCCACCCAGCCACTCAGACGTCCCTCCAGGAAGCTTAAAG AACCTGCTTCTTTCTGCAGTAGAAGCGTGTGCTGGAACCCAAAGAGTACTCCTTTGTTAG AAACTGACGCCATTTGAAGCCTTTCAGCCAGTTGCTTCTGAGCCAGACCAGCTGTAAGCT GAAACCTCAATGAATAACAAGAAAAGACTCCAGGCCGACTCATGATACTCTGCATCTTTC CTACATGAGAAGCTTCTCTGCCACAAAAGTGACTTCAAAGACTGATGGGTTGAGCTGGCA GCCTATGAGATTGTGGACATATAACAAGAAACAGAAATGCCCTCATGCTTATTTTCATGG CATACCGCCTATGAAATATCAGATAAATTACCTTAGCTTTTATGTAGAATGGGTTCAAAA GTGAGTGTTTCTATTTGAGAAGGACACTTTTTCATCATCTAAACTGATTCGCATAGGTGG TTAGAATGGCCCTCATATTGCCTGCCTAAATCTTGGGTTTATTAGATGAAGTTTACTGAA TCAGAGGAATCAGACAGAGGAGGATAGCTCTTTCCAGAATCCACACTTCTGACCTCAGCC TCGGTCTCATGAACACCCGCTGATCTCAGGAGAACACCTGGGCTAGGGAATGTGGTCGAG AAAGGGCAGCCCATTGCCCAGAATTAACACATATTGTAGAGACTTGTATGCAAAGGTTGG CATATTTATATGAAAATTAGTTGCTATAGAAACATTTGTTGCATCTGTCCCTCTGCCTGA GCTTAGAAGGTTATAGAAAAAGGGTATTTATAAACATAAATGACCTTTTACTTGCATTGT ATCTTATACTAAAGGCTTTAGAAATTACAACATATCAGGTTCCCCTACTACTGAAGTAGC CTTCCGTGAGAACACACCACATGTTAGGACTAGAAGAAAATGCACAATTTGTAGGGGTTT GGATGAAGCAGCTGTAACTGCCCTAGTGTAGTTTGACCAGGACATTGTCGTGCTCCTTCC AATTGTGTAAGATTAGTTAGCACATCATCTCCTACTTTAGCCATCCGGTGTTGGATTTAA GAGGACGGTGCTTCTTTCTATTAAAGTGCTCCATCCCCTACCATCTACACATTAGCATTG TCTCTAGAGCTAAGACAGAAATTAACCCCGTTCAGTCACAAAGCAGGGAATGGTTCATTT ACTCTTAATCTTTATGCCCTGGAGAGACCTACTTGAACAGGGCATATTTTTTAGACTTC TGAACATCAGTATGTTCGAGGGTACTATGATATTTTGGTTTGGAATTGCCCTGCCCAAGT CACTGTCTTTTAACTTTAAACTGAATATTAAAATGTATCTGTCTTTCCT

303/392

FIGURE 290

MALKVLLEQEKTFFTLLVLLGYLSCKVTCESGDCRQQEFRDRSGNCVPCNQCGPGMELSK ECGFGYGEDAQCVTCRLHRFKEDWGFQKCKPCLDCAVVNRFQKANCSATSDAICGDCLPG FYRKTKLVGFQDMECVPCGDPPPPYEPHCASKVNLVKIASTASSPRDTALAAVICSALAT VLLALLILCVIYCKRQFMEKKPSWSLRSQDIQYNGSELSCFDRPQLHEYAHRACCQCRRD SVQTCGPVRLLPSMCCEEACSPNPATLGCGVHSAASLQARNAGPAGEMVPTFFGSLTQSI CGEFSDAWPLMQNPMGGDNISFCDSYPELTGEDIHSLNPELESSTSLDSNSSQDLVGGAV PVQSHSENFTAATDLSRYNNTLVESASTQDALTMRSQLDQESGAVIHPATQTSLQEA

Important features of the protein: Signal peptide:
Amino acids 1-25

Transmembrane domain:

Amino acids 169-192

N-glycosylation sites: Amino acids 105-109; 214-218; 319-323; 350-354; 368-372; 379-383

cAMP- and cGMP-dependent protein kinase phosphorylation sites: Amino acids 200-204; 238-242

Tyrosine kinase phosphorylation site: Amino acids 207-214

N-myristoylation sites: Amino acids 55-61; 215-221; 270-276

Prokaryotic membrane lipoprotein lipid attachment site: Amino acids 259-270

TNFR/NGFR family cysteine-rich region proteins: Amino acids 89-96

FIGURE 291

CCTGGAGCCGGAAGCGCGGCTGCAGCAGGCGAGGCTCCAGGTGGGGTCGGTTCCGCATC CAGCCTAGCGTGTCCACGATGCGGCTGGGCTCCGGGACTTTCGCTACCTGTTGCGTAGCG TCTGCCAGAGCGGAACACGGAGCGGAGCCCCAGCGCCCGAACCCTCGGCTGGAGCCAGT TCTAACTGGACCACGCTGCCACCACCTCTCTTCAGTAAAGTTGTTATTGTTCTGATAGAT GCCTTGAGAGATGATTTTGTGTTTTGGGTCAAAGGGTGTGAAATTTATGCCCTACACAACT TACCTTGTGGAAAAAGGAGCATCTCACAGTTTTGTGGCTGAAGCAAAGCCACCTACAGTT ACTATGCCTCGAATCAAGGCATTGATGACGGGGAGCCTTCCTGGCTTTGTCGACGTCATC AGGAACCTCAATTCTCCTGCACTGCTGGAAGACAGTGTGATAAGACAAGCAAAGCAGCT GGAAAAAGAATAGTCTTTTATGGAGATGAAACCTGGGTTAAATTATTCCCAAAGCATTTT GTGGAATATGATGGAACAACCTCATTTTTCGTGTCAGATTACACAGAGGTGGATAATAAT GTCACGAGGCATTTGGATAAAGTATTAAAAAAGAGGAGATTGGGACATATTAATCCTCCAC TACCTGGGGCTGGACCACATTGGCCACATTTCAGGGCCCAACAGCCCCCTGATTGGGCAG AAGCTGAGCGAGATGGACAGCGTGCTGATGAAGATCCACACCTCACTGCAGTCGAAGGAG AGAGAGACGCCTTTACCCAATTTGCTGGTTCTTTGTGGTGACCATGGCATGTCTGAAACA GGAAGTCACGGGGCCTCCTCCACCGAGGAGGTGAATACACCTCTGATTTTAATCAGTTCT GCGTTTGAAAGGAAACCCGGTGATATCCGACATCCAAAGCACGTCCAATAGACGGATGTG GCTGCGACACTGGCGATAGCACTTGGCTTACCGATTCCAAAAGACAGTGTAGGGAGCCTC CTATTCCCAGTTGTGGAAGGAAGACCAATGAGAGAGCAGTTGAGATTTTTACATTTGAAT ACAGTGCAGCTTAGTAAACTGTTGCAAGAGAATGTGCCGTCATATGAAAAAGATCCTGGG TTTGAGCAGTTTAAAATGTCAGAAAGATTGCATGGGAACTGGATCAGACTGTACTTGGAG GAAAAGCATTCAGAAGTCCTATTCAACCTGGGCTCCAAGGTTCTCAGGCAGTACCTGGAT GCTCTGAAGACGCTGAGCTTGTCCCTGAGTGCACAAGTGGCCCAGTTCTCACCCTGCTCC TGCTCAGCGTCCCACAGGCACTGCACAGAAAGGCTGAGCTGGAAGTCCCACTGTCATCTC CTGGGTTTTCTCTGCTCTTTTATTTGGTGATCCTGGTTCTTTCGGCCGTTCACGTCATTG GCCTTTCGTTTACCAGACTCTGGTTGAACACCTGGTGTGTGCCAAGTGCTGGCAGTGCCC TGGACAGGGGCCTCAGGGAAGGACGTGGAGCAGCCTTATCCCAGGCCTCTGGGTGTCCC GACACAGGTGTTCACATCTGTGCTGTCAGGTCAGATGCCTCAGTTCTTGGAAAGCTAGGT TCCTGCGACTGTTACCAAGGTGATTGTAAAGAGCTGGCGGTCACAGAGGAACAAGCCCCC CAGCTGAGGGGGTGTGAATCGGACAGCCTCCCAGCAGAGGTGTGGGAGCTGCAGCTGA GGGAAGAGAGACAATCGGCCTGGACACTCAGGAGGGTCAAAAGGAGACTTGGTCGCACC CGGACGTTTTCTGTTGGAATTCTTAGTCCTTGGCCTCGGACACCTTCATTCGTTAGCTGG GGAGTGGTGAGGCAGTGAAGAAGAGGCGGATGGTCACACTCAGATCCACAGAGCCCA GGATCAAGGGACCCACTGCAGTGGCAGCAGGACTGTTGGGCCCCCACCCCAACCCTGCAC AGCCCTCATCCCCTCTTGGCTTGAGCCGTCAGAGGCCCTGTGCTGAGTGTCTGACCGAGA CACTCACAGCTTTGTCATCAGGGCACAGGCTTCCTCGGAGCCAGGATGATCTGTGCCACG CTGCACACAGTATGTAGTTACCAAAAGAATAAACGGCAATAATTGAGAAAAAAA

305/392

FIGURE 292

MRLGSGTFATCCVAIEVLGIAVFLRGFFPAPVRSSARAEHGAEPPAPEPSAGASSNWTTL PPPLFSKVVIVLIDALRDDFVFGSKGVKFMPYTTYLVEKGASHSFVAEAKPPTVTMPRIK ALMTGSLPGFVDVIRNLNSPALLEDSVIRQAKAAGKRIVFYGDETWVKLFPKHFVEYDGT TSFFVSDYTEVDNNVTRHLDKVLKRGDWDILILHYLGLDHIGHISGPNSPLIGQKLSEMD SVLMKIHTSLQSKERETPLPNLLVLCGDHGMSETGSHGASSTEEVNTPLILISSAFERKP GDIRHPKHVQ

Important features of the protein: Signal peptide: amino acids 1-34

Transmembrane domain: amino acids 58-76

N-glycosylation sites: amino acids 56-60, 194-198

N-myristoylation sites: amino acids 6-12, 52-58, 100-106, 125-131, 233-239, 270-276, 275-281, 278-284

Amidation site: amino acids 154-158

Cell attachment sequence: amino acids 205-208

306/392

FIGURE 293

AGCCAGGCAGCATCACAGCGGGAGGAGCTGTCCCAGGTGGCCCAGCTCAGCAATGGCA ${\tt ATGGGGGTCCCCAGAGTCATTCTGCTCTGCCTCTTTGGGGCTGCGCTCTGCCTGACAGGG}$ TCCCAAGCCCTGCAGTGCTACAGCTTTGAGCACACCTACTTTGGCCCCCTTTGACCTCAGG GCCATGAAGCTGCCCAGCATCTCCTGTCCTCATGAGTGCTTTGAGGCTATCCTGTCTCTG GACACCGGGTATCGCGCGCGCTGACCCTGGTGCGGAAGGGCTGCTGGACCGGGCCTCCT GCGGGCCAGACGCAATCGAACCCGGACGCGCTGCCGCCAGACTACTCGGTGGTGCGCGGC TGCACAACTGACAAATGCAACGCCCACCTCATGACTCATGACGCCCTCCCCAACCTGAGC CAAGCACCCGACCCGACGCTCAGCGGCGCCGAGTGCTACGCCTGTATCGGGGTCCAC CAGGATGACTGCGCTATCGGCAGGTCCCGACGAGTCCAGTGTCACCAGGACCAGACCGCC TGCTTCCAGGGCAGTGGCAGAATGACAGTTGGCAATTTCTCAGTCCCTGTGTACATCAGA ACCTGCCACCGGCCCTCCTGCACCACCGAGGGCACCACCAGCCCTGGACAGCCATCGAC CTCCAGGGCTCCTGTGAGGGGTACCTCTGCAACAGGAAATCCATGACCCAGCCCTTC ACCAGTGCTTCAGCCACCACCCCTCCCGAGCACTACAGGTCCTGGCCCTGCTCCCCA GTCCTCCTGCTGGGGGCTCTCAGCA<u>TAG</u>ACCGCCCCTCCAGGATGCTGGGGACAGGGC TCACACACCTCATTCTTGCTGCTTCAGCCCCTATCACATAGCTCACTGGAAAATGATGTT . AAAGTAAGAATTGCAAAA

FIGURE 294

MAMGVPRVILLCLFGAALCLTGSQALQCYSFEHTYFGPFDLRAMKLPSISCPHECFEAIL SLDTGYRAPVTLVRKGCWTGPPAGQTQSNPDALPPDYSVVRGCTTDKCNAHLMTHDALPN LSQAPDPPTLSGAECYACIGVHQDDCAIGRSRRVQCHQDQTACFQGSGRMTVGNFSVPVY IRTCHRPSCTTEGTTSPWTAIDLQGSCCEGYLCNRKSMTQPFTSASATTPPRALQVLALL LPVLLLVGLSA

Important features of the protein: Signal peptide: amino acids 1-19

Transmembrane domain: amino acids 233-251

N-glycosylation sites: amino acids 120-124, 174-178

N-myristoylation sites: amino acids 15-21, 84-90

308/392

FIGURE 295

309/392

FIGURE 296

MVMLLLLLSALAGLFGAAEGQAFHLGKCPNPPVQENFDVNKYLGRWYEIEKIPTTFENG RCIQANYSLMENGKIKVLNQELRADGTVNQIEGEATPVNLTEPAKLEVKFSWFMPSAPY WILATDYENYALVYSCTCIIQLFHVDFAWILARNPNLPPETVDSLKNILTSNNIDVKKM TVTDQVNCPKLS

```
Signal sequence:
1-16
N-glycosylation site:
65-68
98-101
cAMP- and cGMP-dependent protein kinase phosphorylation
site:
175-178
N-myristoylation site:
13-18
16-21
Lipocalin proteins:
36-47
120-130
Lipocalin / cytosolic fatty-acid binding proteins:
41-185
```

FIGURE 297

GGGTGATTGAACTAAACCTTCGCCGCACCGAGTTTGCAGTACGGCCGTCACCCGCACCGC TGCCTGCTTGCGGTTGGAGAAATCAAGGCCCTACCGGGCCTCCGTAGTCACCTCTCTATA $\tt GTGGGCGTGGCCGGGGTGACCCTGCCGGAGCCTCCGCTGCCAGCGAC{\color{red} ATG}{\color{blue} TTCA}$ AGGTAATTCAGAGGTCCGTGGGGCCAGCCAGCCTGAGCTTGCTCACCTTCAAAGTCTATG CAGCACCAAAAAAGGACTCACCTCCCAAAAATTCCGTGAAGGTTGATGAGCTTTCACTCT ACTCAGTTCCTGAGGGTCAATCGAAGTATGTGGAGGAGGCAAGGAGCCAGCTTGAAGAAA GCATCTCACAGCTCCGACACTATTGCGAGCCATACACAACCTGGTGTCAGGAAACGTACT CCCAAACTAAGCCCAAGATGCAAAGTTTGGTTCAATGGGGGTTAGACAGCTATGACTATC TCCAAAATGCACCTCCTGGATTTTTTCCGAGACTTGGTGTTATTGGTTTTTGCTGGCCTTA TTGGACTCCTTTTGGCTAGAGGTTCAAAAATAAAGAAGCTAGTGTATCCGCCTGGTTTCA TGGGATTAGCTGCCTCCTCTATTATCCACAACAAGCCATCGTGTTTGCCCCAGGTCAGTG GGGAGAGATTATATGACTGGGGTTTACGAGGATATATAGTCATAGAAGATTTGTGGAAGG AGAACTTTCAAAAGCCAGGAAATGTGAAGAATTCACCTGGAACTAAG<u>TAG</u>AAAACTCCAT GCTCTGCCATCTTAATCAGTTATAĠGTAAACATTGGAAACTCCATAGAATAAATCAGTAT TTCTACAGAAAATGGCATAGAAGTCAGTATTGAATGTATTAAATTGGCTTTCTTCA GGAAAAACTAGACCAGACCTCTGTTATCTTCTGTGAAATCATCCTACAAGCAAACTAACC TGGAATCCCTTCACCTAGAGATAATGTACAAGCCTTAGAACTCCTCATTCTCATGTTGCT AAAAAAA

311/392

FIGURE 298

MFKVIQRSVGPASLSLLTFKVYAAPKKDSPPKNSVKVDELSLYSVPEGQSKYVEEARSQL EESISQLRHYCEPYTTWCQETYSQTKPKMQSLVQWGLDSYDYLQNAPPGFFPRLGVIGFA GLIGLLLARGSKIKKLVYPPGFMGLAASLYYPQQAIVFAQVSGERLYDWGLRGYIVIEDL WKENFQKPGNVKNSPGTK

Important features: Signal peptide: Amino acids 1-23

Transmembrane domain: Amino acids 111-130

cAMP- and cGMP-dependent protein kinase phosphorylation site: Amino acids 26-30

Tyrosine kinase phosphorylation site: Amino acids 36-44

N-myristoylation sites: Amino acids 124-130;144-150;189-195

312/392

FIGURE 299

CCGCTGAGATGTACGAACTTCCGGTTCTCCGGGCAGCTGCCACTGCTGTAGCTTCTGCCA CCTGCCACGACCGGGCCTCTCCCTGGCGTTTGGTCACCTCTGCTTCATTCTCCACCGCGC CTATGGTCCCTCTTGGAGCCAGCGTGGCGGGCCTGGCGGCTCCCGGGTGGTGAGAGAGCG GTCCGGGAACGATGAAGGCCTCGCAGTGCTGCTGCTGTCTCAGCCACCTCTTGGCTTCCG CCGAGGCCGCCAGGTCTTGGGCCTCCTGACCCTAGACCACGGACATTACCGCCGCTGC GAGGGAAGGCCGGGGAAGGCTCGGTGGGTGGCGGCCTTGCTGTGAGCCCCAACCCTGGCG ACAAGCCCATGACCCAGCGGGCCCTGACCGTGTTGATGGTGGTGAGCGGCGCGGTGCTGG TGTACTTCGTGGTCAGGACGGTCAGGATGAGAAGAAGAAACCGAAAGACTAGGAGATATG GAGTTTTGGACACTAACATAGAAAATATGGAATTGACACCTTTAGAACAGGATGATGAGG ${\tt ATGATGACAACACGTTGTTTGATGCCAATCATCCTCGAAGA} {\tt TAA} {\tt GAATGTGCCTTTTGAT}$ GAAAGAACTTTATCTTTCTACAATGAAGAGTGGAATTTCTATGTTTAAGGAATAAGAAGC CACTATATCAATGTTGGGGGGGTATTTAAGTTACATATATTTTAACAACCTTTAATTTGC TGTTGCAATAAATACCGTATCCTTTTATTATATCTTTATATGTATAGAAGTACTCTATTA ATGGGCTCAGAGATGTTGGGGATAAAGTATACTGTAATAATTTATCTGTTTGAAAATTAC TATAAAACGGTGTTTTCTGGTCGGTTTTTGTTTCCTGCTTACCATATGATTGTAAATTGT TTTATGTATTAATCAGTTAATGCTAATTATTTTTGCTGATGTCATATGTTAAAGAGCTAT AAATTCCAACAACCAACTGGTGTGTAAAAATAATTTAAAATTTCCTTTACTGAAAGGTAT TTCCCATTTTTGTGGGGAAAAGAAGCCAAATTTATTACTTTGTGTTTGGGGTTTTTAAAAT AAAAAAA

313/392

FIGURE 300

MKASQCCCCLSHLLASVLLLLLPELSGPLAVLLQAAEAAPGLGPPDPRPRTLPPLPPGP TPAQQPGRGLAEAAGPRGSEGGNGSNPVAGLETDDHGGKAGEGSVGGGLAVSPNPGDKPM TQRALTVLMVVSGAVLVYFVVRTVRMRRRNRKTRRYGVLDTNIENMELTPLEQDDEDDDN TLFDANHPRR

Signal peptide: amino acids 1-28

Transmembrane domain: amino acids 124-140

N-glycosylation site: amino acids 83-87

N-myristoylation sites: amino acids 69-75, 78-84, 81-87, 97-103, 103-109, 106-112, 157-160

314/392

FIGURE 301

CTCGGCTGGATTTAAGGTTGCCGCTAGCCGCCTGGGAATTTAAGGGACCCACACTACCTT ${\tt CCCGAAGTTGAAGGCAAGCGGTGATTGTTTGTAGACGGCGCTTTGTC} {\tt ATG} {\tt GGACCTGTGC}$ GGTTGGGAATATTGCTTTTCCTTTTTTTGGCCGTGCACGAGGCTTGGGCTGGGATGTTGA AGGAGGAGGACGATGACACAGAACGCTTGCCCAGCAAATGCGAAGTGTGTAAGCTGCTGA GCACAGAGCTACAGGCGGAACTGAGTCGCACCGGTCGATCTCGAGAGGTGCTGGAGCTGG GGCAGGTGCTGGATACAGGCAAGAGGAAGAGACACGTGCCTTACAGCGTTTCAGAGACAA GGCTGGAAGAGCCTTAGAGAATTTATGTGAGCGGATCCTGGACTATAGTGTTCACGCTG AGCGCAAGGGCTCACTGAGATATGCCAAGGGTCAGAGTCAGACCATGGCAACACTGAAAG GCCTAGTGCAGAAGGGGGTGAAGGTGGATCTGGGGATCCCTCTGGAGCTTTGGGATGAGC CCAGCGTGGAGGTCACATACCTCAAGAAGCAGTGTGAGACCATGTTGGAGGAGTTTGAAG ACATTGTGGGAGACTGGTACTTCCACCATCAGGAGCAGCCCCTACAAAATTTTCTCTGTG AAGGTCATGTGCTCCCAGCTGCTGAAACTGCATGTCTACAGGAAACTTGGACTGGAAAGG AGATCACAGATGGGGAAGAAAACAGAAGGGGAGGAAGAGCAGGAGGAGGAAGAGAAG AGGAGGAAGAGGAGGGGAGACAAGATGACCAAGACAGGAAGCCACCCCAAACTTGACC ${\tt GAGAAGATCTT} \underline{{\tt TGA}} {\tt CCCTTGCCTTTGAGCCCCCAGGAGGGGAAGGGATCATGGAGAGCCC}$ CCAAGCTTGTAGCTGTTCTCCCCATCTAACCTCAGGCAAGATCCTGGTGAAACAGCATG ACATGGCTTCTGGGGTGGAGGTGGGGGTGGAGGTCCTGCTCCTAGAGATGAACTCTATC CAGCCCCTTAATTGGCAGGTGTATGTGCTGACAGTACTGAAAGCTTTCCTCTTTAACTGA TCCCACCCCAAAAGTCAGCAGTGGCACTGGAGCTGTGGGCTTTGGGGAAGTCACT TAGCTCCTTAAGGTCTGTTTTTAGACCCTTCCAAGGAAGAGGCCAGAACGGACATTCTCT GCGATCTATATACATTGCCTGTATCCAGGAGGCTACACCACCAGCAAACCGTGAAGGAGAA ACTTAAGCTCAATGTAACCCAGAGCCCACCATATAGTTTTATAGGTGCTCAACTTTCTAT

FIGURE 302

MGPVRLGILLFLFLAVHEAWAGMLKEEDDDTERLPSKCEVCKLLSTELQAELSRTGRSRE VLELGQVLDTGKRKRHVPYSVSETRLEEALENLCERILDYSVHAERKGSLRYAKGQSQTM ATLKGLVQKGVKVDLGIPLELWDEPSVEVTYLKKQCETMLEEFEDIVGDWYFHHQEQPLQ NFLCEGHVLPAAETACLQETWTGKEITDGEEKTEGEEEQEEEEEEEEGGDKMTKTGSH PKLDREDL

Important features of the protein: Signal peptide: amino acids 1-21

cAMP- and cGMP-dependent protein kinase phosphorylation site: amino acids 106-110

N-myristoylation site: amino acids 115-121

Amidation site: amino acids 70-74

316/392

FIGURE 303

FIGURE 304

MMRCCRRCCCRQPPHALRPLLLLPLVLLPPLAAAAAGPNRCDTIYQGFAECLIRLGDSM GRGGELETICRSWNDFHACASQVLSGCPEEAAAVWESLQQEARQAPRPNNLHTLCGAPVH VRERGTGSETNQETLRATAPALPMAPAPPLLAAALAYLLRPLA

Signal peptide: Amino acids 1-35

Transmembrane domain: Amino acids 141-157

N-myristoylation site: Amino acids 127-133

Prokaryotic membrane lipoprotein lipid attachment site: Amino acids 77-88

318/392

FIGURE 305

FIGURE 306

MGWTMRLVTAALLLGLMMVVTGDEDENSPCAHEALLDEDTLFCQGLEVFYPELGNIGCKV VPDCNNYRQKITSWMEPIVKFPGAVDGATYILVMVDPDAPSRAEPRQRFWRHWLVTDIKG ADLKKGKIQGQELSAYQAPSPPAHSGFHRYQFFVYLQEGKVISLLPKENKTRGSWKMDRFLNRFHLGEPEASTQFMTQNYQDSPTLQAPRGRASEPKHKTRQR

Important features of the protein: Signal peptide: amino acids 1-22

N-glycosylation site: amino acids 169-173

Tyrosine kinase phosphorylation site: amino acids 59-68

N-myristoylation sites: amino acids 54-60, 83-89, 130-136

Phosphatidylethanolamine signature: amino acids 113-157

320/392

FIGURE 307

AAGGAGCAGCCGCAAGCACCAAGTGAGAGGCATGAAGTTACAGTGTGTTTCCCTTTGGC TCCTGGGTACAATACTGATATTGTGCTCAGTAGACAACCACGGTCTCAGGAGATGTCTGA TTTCCACAGACATGCACCATATAGAAGAGAGTTTCCAAGAAATCAAAAGAGCCATCCAAG CTAAGGACACCTTCCCAAATGTCACTATCCTGTCCACATTGGAGACTCTGCAGATCATTA AGCCCTTAGATGTGTGCTGCGTGACCAAGAACCTCCTGGCGTTCTACGTGGACAGGGTGT TCAAGGATCATCAGGAGCCAAACCCCAAAATCTTGAGAAAAATCAGCAGCATTGCCAACT CTTTCCTCTACATGCAGAAAACTCTGCGGCAATGTCAGGAACAGAGGCAGTGTCACTGCA GGCAGGAAGCCACCAATGCCACCAGAGTCATCCATGACAACTATGATCAGCTGGAGGTCC ACGCTGCTGCCATTAAATCCCTGGGAGAGCTCGACGTCTTTCTAGCCTGGATTAATAAGA ATCATGAAGTAATGTTCTCAGCT<u>TGA</u>TGACAAGGAACCTGTATAGTGATCCAGGGATGAA CACCCCTGTGCGGTTTACTGTGGGAGACAGCCCACCTTGAAGGGGAAGGAGATGGGGAA GGCCCCTTGCAGCTGAAAGTCCCACTGGCTGGCCTCAGGCTGTCTTATTCCGCTTGAAAA TAGGCAAAAAGTCTACTGTGGTATTTGTAATAAACTCTATCTGCTGAAAGGGCCTGCAGG ${\tt CCATCCTGGGAGTAAAGGGCTGCCTTCCCATCTAATTTATTGTAAAGTCATATAGTCCAT}$ GTCTGTGATGTGAGCCAAGTGATATCCTGTAGTACACATTGTACTGAGTGGTTTTTCTGA ATAAATTCCATATTTTTACCTATGA

FIGURE 308

MKLQCVSLWLLGTILILCSVDNHGLRRCLISTDMHHIEESFQEIKRAIQAKDTFPNVTIL STLETLQIIKPLDVCCVTKNLLAFYVDRVFKDHQEPNPKILRKISSIANSFLYMQKTLRQ CQEQRQCHCRQEATNATRVIHDNYDQLEVHAAAIKSLGELDVFLAWINKNHEVMFSA

Signal sequence: amino acids 1-18

N-glycosylation sites: amino acids 56-60, 135-139

cAMP- and cGMP-dependent protein kinase phosphorylation site: amino acids 102-106

N-myristoylation site: amino acids 24-30

Actinin-type actin-binding domain signature 1: amino acids 159-169

322/392

FIGURE 309

GTCGACCCACGCGTCCGAAGCTGCTGGAGCCACGATTCAGTCCCCTGGACTGTAGATAAA GACCCTTTCTTGCCAGGTGCTGAGACAACCACACT<u>ATG</u>AGAGGCACTCCAGGAGACGCTG ATGGTGGAGGAGGGCCGTCTATCAATCAATCACTGTTGCTGTTATCACATGCAAGTATC TGTGTTTGTATTGTGAGAAGGTTGGAGAACAGCCCACATTGCAGCTAAAAGAGCAGAAGA CTGGTAGGACCTCCACCCTTGAGTCTGTGGCCTTCCCGGACTGGTTCATTGCCTCCTCCA AGAGAGACCAGCCCATCATTCTGACTTCAGAACTTGGGAAGTCATACAACACTGCCTTTG AATTAAATATAAATGAC**TGA**ACTCAGCCTAGAGGTGGCAGCTTGGTCTTTGTCTTAAAGT TTCTGGTTCCCAATGTGTTTTCGTCTACATTTTCTTAGTGTCATTTTCACGCTGGTGCTG AGACAGGAGCAAGGCTGCTGTTATCATCTCATTTTATAATGAAGAAGAAGCAATTACTTC ATAGCAACTGAAGAACAGGATGTGGCCTCAGAAGCAGGAGAGCTGGGTGGTATAAGGCTG TCCTCTCAAGCTGGTGCTGTAGGCCACAAGGCATCTGCATGAGTGACTTTAAGACTCA AAGACCAAACACTGAGCTTTCTTCTAGGGGTGGGTATGAAGATGCTTCAGAGCTCATGCG CGTTACCCACGATGGCATGACTAGCACAGAGCTGATCTCTGTTTCTGTTTTGCTTTATTC CCTCTTGGGATGATATCATCCAGTCTTTATATGTTGCCAATATACCTCATTGTGTGTAAT TGCTTCAGAGCTCATGCGCGTTACCCACGATGGCATGACTAGCACAGAGCTGATCTCTGT TTCTGTTTTGCTTTATTCCCTCTTGGGATGATATCATCCAGTCTTTATATGTTGCCAATA TACCTCATTGTGTGTAATAGAACCTTCTTAGCATTAAGACCTTGTAAACAAAAATAATTC

323/392

FIGURE 310

MRGTPGDADGGGRAVYQSITVAVITCKYPEALEQGRGDPIYLGIQNPEMCLYCEKVGEQPTLQLKEQKIMDLYGQPEPVKPFLFYRAKTGRTSTLESVAFPDWFIASSKRDQPIILTSELGKSYNTAFELNIND

Signal sequence:
amino acids 1-17

N-myristoylation site: amino acids 10-16

Cell attachment sequence: amino acids 36-39

FIGURE 311

GGGCCCTGAGCCAGGAGATCACCCGCGACTTCAACCTCCTGCAGGTCTCGGAGCCCTCGG AGCCATGTGTGAGATACCTGCCCAGGCTGTACCTGGACATACACAATTACTGTGTGCTGG ACAAGCTGCGGGACTTTGTGGCCCTCGCCCCCGTGTTGGAAAGTGGCCCAGGTAGATTCCT TGAAGGACAAAGCACGGAAGCTGTACACCATCATGAACTCGTTCTGCAGGAGAGATTTGG TATTCCTGTTGGATGACTGCAATGCCTTGGAATACCCAATCCCAGTGACTACGGTCCTGC ${\tt CAGATCGTCAGCGC} {\color{blue}{\textbf{TAA}}} {\color{blue}{\textbf{GGGAACTGAGACCCAGAGAAACCCCAAGAGAACTAAAGTTAT}}$ GTCAGCTACCCAGACTTAATGGGCCAGAGCCATGACCCTCACAGGTCTTGTGTTAGTTGT ATCTGAAACTGTTATGTATCTCTCTACCTTCTGGAAAACAGGGCTGGTATTCCTACCCAG GAACCTCCTTTGAGCATAGAGTTAGCAACCATGCTTCTCATTCCCTTGACTCATGTCTTG CCAGGATGGTTAGATACACAGCATGTTGATTTGGTCACTAAAAAGAAGAAAAGGACTAAC ${ t AAGCTTCACTTTTATGAACAACTATTTTGAGAACATGCACAATAGTATGTTTTTATTACT}$ GGTTTAATGGAGTAATGGTACTTTTATTCTTTGATAGAAACCTGCTTACATTTAACC AAGCTTCTATTATGCCTTTTTCTAACACAGACTTTCTTCACTGTCTTTCATTTAAAAAGA AATTAATGCTCTTAAGATATATTTTACGTAGTGCTGACAGGACCCACTCTTTCATTGA AAGGTGATGAAAATCAAATAAAGAATCTCTTCACATGGA

FIGURE 312

MRTPGPLPVLLLLLAGAPAARPTPPTCYSRMRALSQEITRDFNLLQVSEPSEPCVRYLPR LYLDIHNYCVLDKLRDFVASPPCWKVAQVDSLKDKARKLYTIMNSFCRRDLVFLLDDCNA LEYPIPVTTVLPDRQR

Important features of the protein: Signal peptide: amino acids 1-19

Tyrosine kinase phosphorylation site: amino acids 60-69

N-myristoylation site: amino acids 16-22

FIGURE 313

GAGCGACGCTGTCTCTAGTCGCTGATCCCAAATGCACCGGCTCATCTTTGTCTACACTCT AATCTGCGCAAACTTTTGCAGCTGTCGGGACACTTCTGCAACCCCGCAGAGCGCATCCAT CAAAGCTTTGCGCAACGCCAACCTCAGGCGAGATGACTTGTACCGAAGAGATGAGACCAT CCAGGTGAAAGGAAACGGCTACGTGCAGAGTCCTAGATTCCCGAACAGCTACCCCAGGAA CCTGCTCCTGACATGGCGGCTTCACTCTCAGGAGAATACACGGATACAGCTAGTGTTTGA CAATCAGTTTGGATTAGAGGAAGCAGAAAATGATATCTGTAGGTATGATTTTGTGGAAGT TGAAGATATATCCGAAACCAGTACCATTATTAGAGGACGATGGTGGGACACAAGGAAGT TCCTCCAAGGATAAAATCAAGAACGAACCAAATTAAAATCACATTCAAGTCCGATGACTA CTTTGTGGCTAAACCTGGATTCAAGATTTATTATTCTTTGCTGGAAGATTTCCAACCCGC AGCAGCTTCAGAGACCAACTGGGAATCTGTCACAAGCTCTATTTCAGGGGGTATCCTATAA CTCTCCATCAGTAACGGATCCCACTCTGATTGCGGATGCTCTGGACAAAAAATTGCAGA ATTTGATACAGTGGAAGATCTGCTCAAGTACTTCAATCCAGAGTCATGGCAAGAAGATCT TGAGAATATGTATCTGGACACCCCTCGGTATCGAGGCAGGTCATACCATGACCGGAAGTC AAAAGTTGACCTGGATAGGCTCAATGATGATGCCAAGCGTTACAGTTGCACTCCCAGGAA TTACTCGGTCAATATAAGAGAAGAGCTGAAGTTGGCCAATGTGGTCTTCTTTCCACGTTG ${\tt CCTCCTCGTGCAGCGCTGTGGAGGAAATTGTGGCTGTGGAACTGTCAACTGGAGGTCCTG}$ CACATGCAATTCAGGGAAAAACCGTGAAAAAGTATCATGAGGTATTACAGTTTGAGCCTGG CCACATCAAGAGGGGGGTAGAGCTAAGACCATGGCTCTAGTTGACATCCAGTTGGATCA $\tt CCATGAACGATGCGATTGTATCTGCAGCTCAAGACCACCTCGA\underline{TAA}\underline{G}AGAATGTGCACAT$ CCTTACATTAAGCCTGAGAGAA

327/392

FIGURE 314

MHRLIFVYTLICANFCSCRDTSATPQSASIKALRNANLRRDDLYRRDETIQVKGNGYVQS PRFPNSYPRNLLLTWRLHSQENTRIQLVFDNQFGLEEAENDICRYDFVEVEDISETSTII RGRWCGHKEVPPRIKSRTNQIKITFKSDDYFVAKPGFKIYYSLLEDFQPAAASETNWESV TSSISGVSYNSPSVTDPTLIADALDKKIAEFDTVEDLLKYFNPESWQEDLENMYLDTPRY RGRSYHDRKSKVDLDRLNDDAKRYSCTPRNYSVNIREELKLANVVFFPRCLLVQRCGGNC GCGTVNWRSCTCNSGKTVKKYHEVLQFEPGHIKRRGRAKTMALVDIQLDHHERCDCICSS RPPR

Signal peptide: amino acids 1-18

N-glycosylation site: amino acids 270-274

cAMP- and cGMP-dependent protein kinase phosphorylation site: amino acids 262-266

Tyrosine kinase phosphorylation site: amino acids 256-265

N-myristoylation sites: amino acids 94-100, 186-192, 297-303, 298-304

TonB-dependent receptor proteins signature 1: amino acids 1-56

FIGURE 315

CGGCTCGAGGCTCCCGCCAGGAGAAAGGAACATTCTGAGGGGAGTCTACACCCTGTGGAG CTCAAGATGGTCCTGAGTGGGGCGCTGTGCTTCCGAATGAAGGACTCGGCATTGAAGGTG GGTGAAGAGATCAGCGTGGTCCCCAATCGGTGGCTGGATGCCAGCCTGTCCCCCGTCATC CTGGGTGTCCAGGGTGGAAGCCAGTGCCTGTCATGTGGGGTGGGGCAGGAGCCGACTCTA ACACTAGAGCCAGTGAACATCATGGAGCTCTATCTTGGTGCCAAGGAATCCAAGAGCTTC ACCTTCTACCGGCGGACATGGGGCTCACCTCCAGCTTCGAGTCGGCTGCCTACCCGGGC TGGTTCCTGTGCACGGTGCCTGAAGCCGATCAGCCTGTCAGACTCACCCAGCTTCCCGAG ${\tt AATGGTGGCTGGAATGCCCCCATCACAGACTTCTACTTCCAGCAGTGTGAC{\color{red}{\bf TAG}}{\tt GGCAAC}}$ ${\tt GTGCCCCCAGAACTCCCTGGGCAGAGCCAGCTCGGGTGAGGGGTGAGTGGAGGAGACCCC}$ ATGGCGGACAATCACTCTCTCTGCTCTCAGGACCCCCACGTCTGACTTAGTGGGCACCTG ACCACTTTGTCTTCTGGTTCCCAGTTTGGATAAATTCTGAGATTTGGAGCTCAGTCCACG GTCCTCCCCCACTGGATGGTGCTACTGCTGTGGAACCTTGTAAAAACCATGTGGGGTAAA $\tt CTGCTTAATGGTAACTGACAAGTGTTACCCTGAGCCCGCAGGCCAACCCATCCCCAGTT$ ${\tt AGGGAGGTGGTCATAGAGTCAGGGATCTATGGCCCTTGGCCCAGCCCCACCCCCTTCCCT}$ TTAATCCTGCCACTGTCATATGCTACCTTTCCTATCTCTTCCCTCATCATCTTGTTGTGG GCATGAGGAGGTGGTGATGTCAGAAGAAATGGCTCGAGCTCAGAAGATAAAAGATAAGTA GGGTATGCTGATCCTCTTTTAAAAACCCAAGATACAATCAAAATCCCAGATGCTGGTCTC TATTCCCATGAAAAAGTGCTCATGACATATTGAGAAGACCTACTTACAAAGTGGCATATA TTGCAATTTATTTTAATTAAAAGATACCTATTTATATATTTCTTTATAGAAAAAGTCTG GAAGAGTTTACTTCAATTGTAGCAATGTCAGGGTGGTGGCAGTATAGGTGATTTTTCTTT TAATTCTGTTAATTTATCTGTATTTCCTAATTTTTCTACAATGAAGATGAATTCCTTGTA TAAAAATAAGAAAAGAAATTAATCTTGAGGTAAGCAGAGCAGACATCATCTCTGATTGTC CTCAGCCTCCACTTCCCCAGAGTAAATTCAAATTGAATCGAGCTCTGCTGCTCTGGTTGG TTGTAGTAGTGATCAGGAAACAGATCTCAGCAAAGCCACTGAGGAGGAGGCTGTGCTGAG TTTGTGTGGCTGGAATCTCTGGGTAAGGAACTTAAAGAACAAAAATCATCTGGTAATTCT TTCCTAGAAGGATCACAGCCCCTGGGATTCCAAGGCATTGGATCCAGTCTCTAAGAAGGC TGCTGTACTGGTTGAATTGTGTCCCCCTCAAATTCACATCCTTCTTGGAATCTCAGTCTG ATGAAGGTAGACCTAAATTCAATATGACTGGTTTCCTTGTATGAAAAGGAGAGGACACAG AGACAGAGGAGACGCGGGGAAGACTATGTAAAGATGAAGGCAGAGATCGGAGTTTTGCAG CCACAAGCTAAGAAACACCAAGGATTGTGGCAACCATCAGAAGCTTGGAAGAGGCAAAGA AGAATTCTTCCCTAGAGGCTTTAGAGGGATAACGGCTCTGCTGAAACCTTAATCTCAGAC TTCCAGCCTCCTGAACGAAGAAGAATAAATTTCGGCTGTTTTAAGCCACCAAGGATAAT TGGTTACAGCAGCTCTAGGAAACTAATACAGCTGCTAAAATGATCCCTGTCTCCTCGTGT TTACATTCTGTGTGTCCCCTCCCACAATGTACCAAAGTTGTCTTTTGTGACCAATAGAA TATGGCAGAAGTGATGGCATGCCACTTCCAAGATTAGGTTATAAAAGACACTGCAGCTTC GGGGGAAGCTAGCTGCCATGCTATGAGCAGGCCTATAAAGAGACTTACGTGGTAAAAAAT GAAGTCTCCTGCCCACAGCCACATTAGTGAACCTAGAAGCAGAGACTCTGTGAGATAATC GATGTTTGTTGTTTTAAGTTGCTCAGTTTTGGTCTAACTTGTTATGCAGCAATAGATAAA TAATATGCAGAGAAAGAG

FIGURE 316

MVLSGALCFRMKDSALKVLYLHNNQLLAGGLHAGKVIKGEEISVVPNRWLDASLSPVILG VQGGSQCLSCGVGQEPTLTLEPVNIMELYLGAKESKSFTFYRRDMGLTSSFESAAYPGWF LCTVPEADQPVRLTQLPENGGWNAPITDFYFQQCD

N-myristoylation sites:

amino acids 29-34, 30-35, 60-65, 63-68, 73-78, 91-96, 106-111

Interleukin-1 signature:

amino acids 111-131

Interleukin-1 proteins:
amino acids 8-29, 83-120, 95-134, 64-103

330/392

FIGURE 317

FIGURE 318

MELGLGGLSTLSHCPWPRRQPALWPTLAALALLSSVAEASLGSAPRSPAPREGPPPVLAS PAGHLPGGRTARWCSGRARRPPPQPSRPAPPPPAPPSALPRGGRAARAGGPGSRARAAGA RGCRLRSQLVPVRALGLGHRSDELVRFRFCSGSCRRARSPHDLSLASLLGAGALRPPPGS RPVSQPCCRPTRYEAVSFMDVNSTWRTVDRLSATACGCLG

signal sequence:
Amino acids 1-39

N-glycosylation site: Amino acids 202-206

N-myristoylation sites: Amino acids 6-12;67-73;102-108;109-115;119-125

FIGURE 319

GTTGCTATGTTGCCCAGGCTGGTCTTGAAGTGCCTTGACCTCCTAAAGTGTTGGAACCAC AGACGTGAGCCACTCCACCCAGCCTAAAACTTCATCTTCTTTGGATGAGATGAACACTTT TAACAAGAACAGGACTCTATATAAATCGCTGTGGGCTCACCACCTCTAAGGAGGAGCA CTGACTGAAGACAGAAAAATTGATGAACTGAAGAAGACATGGTCCATTATGCCTTACAAA ${\tt CTTACACAGTGCTTTGGGAATTCCAAAGTACTCAGTGGAGAGGGGTGTTTCAGGAGCCGT}$ AGAGCCAGATCGTCATCATGTCGCATTGTGGCTGCTGGGCCTCCTTGCCCTGATGG ACTTGTCTGAAAGCAGCAACTGGGGATGCTATGGAAACATCCAAAGCCTGGACACCCCTG GAGCATCTTGTGGGATTGGAAGACGTCACGGCCTGAACTACTGTGGAGTTCGTGCTTCTG AAAGGCTGGCTGAAATAGACATGCCATACCTCCTGAAATATCAACCCATGATGCAAACCA TTGGCCAAAAGTACTGCATGGATCCTGCCGTGATCGCTGGTGTCTTGTCCAGGAAGTCTC CCGGTGACAAAATTCTGGTCAACATGGGCGATAGGACTAGCATGGTGCAGGACCCTGGCT CTCAAGCTCCCACATCCTGGATTAGTGAGTCTCAGGTTTCCCAGACAACTGAAGTTCTGA CTACTAGAATCAAAGAAATCCAGAGGAGGTTTCCAACCTGGACCCTGACCAGTACCTGA GAGGTGGACTCTGTGCCTACAGTGGGGGTGCTGGCTATGTCCGAAGCAGCCAGGACCTGA GCTGTGACTTCTGCAATGATGTCCTTGCACGAGCCAAGTACCTCAAGAGACATGGCTTCT AACATCTCAGATGAAACCCAAGACCATGATCACATATGCAGCCTCAAATGTTACACAGAT . AAAACTAGCCAAGGGCACCTGTAACTGGGAATCTGAGTTTGACCTAAAAGTCATTAAAAT AACATGAATCCCATTAAAAAAAAAAAAAA

333/392

FIGURE 320

MSALWLLLGLLALMDLSESSNWGCYGNIQSLDTPGASCGIGRRHGLNYCGVRASERLAEI DMPYLLKYQPMMQTIGQKYCMDPAVIAGVLSRKSPGDKILVNMGDRTSMVQDPGSQAPTS WISESQVSQTTEVLTTRIKEIQRRFPTWTPDQYLRGGLCAYSGGAGYVRSSQDLSCDFCN DVLARAKYLKRHGF

Important features of the protein: Signal peptide: amino acids 1-19

N-myristoylation sites: amino acids 23-29, 26-32, 35-41, 45-51, 50-56, 76-82, 156-162

Amidation site: amino acids 40-44

FIGURE 321

GCCTTATAAAGTAGCCTCTGCATCTGCCTGCCTCGGGCAGAGGAGGGCTACCCTGGGGCT GAGAGTTCACCTGTCTCAGGAACCACCTGAGCCCACAGATCCTGTGGGCAGCGGCCAGGG ${\tt CAGCC} \underline{\textbf{ATG}} \texttt{GCTTGGGCAAGTAGGCTGGGCCTGCTGCTGGCACTGCTGCTGGTCG}$ GTGCCTCCACGCCAGGCACCGTGGTCCGACTCAACAAGGCAGCATTGAGCTACGTGTCTG . AAATTGGGAAAGCCCCTCTCCAGCGGGCCCTGCAGGTCACTGTCCCTCATTTCCTGGACT GGAGTGGAGAGGCGCTTCAGCCCACCAGGATCCGGATTCTGAATGTCCATGTGCCCCGCC TCCACCTGAAATTCATTGCTGGTTTCGGAGTGCGCCTGCTGGCAGCAGCTAATTTTACTT TATTCTCGGGCCACGCCAACGAGTTTGATGGCAGTAACAGCACCTCCCACGCGCTGCTGG TCCTGGTGCAGAAGCACATTAAAGCTGTCTTGAGTAACAAGCTGTGCCTGAGCATCTCCA ACCTGGTGCAGGGTGTCAATGTCCACCTGGGCACCTTAATTGGCCTCAACCCCGTGGGTC CTGAGTCCCAGATCCGCTATTCCATGGTCAGTGTGCCCACTGTCACCAGTGACTACATTT CCCTGGAAGTCAATGCTGTTCTCTTCCTGCTGGGCAACCCCATCATCCTGCCCACGGATG TCTCCCAGCAGCTGTTTGACTCTGCGCTCCTGCTGCAGAAGGCCGGTGCCCTCAACC TGGACATCACAGGGCAGCTGAGGTCGGATGACAACCTGCTGAACACCTCTGCTCTGGGCC GGCTCATCCCGGAGGTGGCCCGCCAGTTTCCCGAGCCCATGCCTGTGGTGCTCAAGGTGC CCTTCGTGGAGGTCCTGGCCACAGCCTCCAACTCGGCTTTCCAGTCCCTCTTCTCCCTGG ATGTGGTAGTGAACTTGAGACTCCAGCTCTCTGTGTCCAAGGTGAAGCTTCAGGGGACCA CGTCTGTGCTGGGGGATGTCCAGCTCACGGTGGCCTCCTCCAACGTGGGCTTCATTGATA CAGATCAGGTGCGCACACTGATGGGCACCGTTTTTGAGAAGCCCCTGCTGGACCATCTCA ATGCTCTCTTGGCCATGGGAATTGCCCTCCCTGGTGTGGTCAACCTCCACTATGTTGCCC ${ t CTGAGATCTTTGTCTATGAGGGCTACGTGGTGATATCCAGTGGACTCTTCTACCAGAGC{ t T}$ <u>GA</u>GGCAAGACCACTGGGAGGCCTGAGAGTGGGCCAGCTCGCTGCTCAGGCGAATTTCTCA TTTCAAGCCACTGGGGAAACTGAGGCAAAACCATACTTAGTCATCACCAACAAGCTGGAC CCCACCCCAGGGGGGAGCAGACTGCTCCTCCAGGCTGTATAGACCTGCCCTCTTGCATTA AACAACTTCTCTTGAGCTGC

335/392

FIGURE 322

MAWASRLGLLLALLLPVVGASTPGTVVRLNKAALSYVSEIGKAPLQRALQVTVPHFLDWS GEALQPTRIRILNVHVPRLHLKFIAGFGVRLLAAANFTFKVFRAPEPLELTLPVELLADT RVTQSSIRTPVVSISACSLFSGHANEFDGSNSTSHALLVLVQKHIKAVLSNKLCLSISNL VQGVNVHLGTLIGLNPVGPESQIRYSMVSVPTVTSDYISLEVNAVLFLLGNPIILPTDAT PFVLPRHVGTEGSMATVGLSQQLFDSALLLLQKAGALNLDITGQLRSDDNLLNTSALGRL IPEVARQFPEPMPVVLKVRLGATPVAMLHTNNATLRLQPFVEVLATASNSAFQSLFSLDV VVNLRLQLSVSKVKLQGTTSVLGDVQLTVASSNVGFIDTDQVRTLMGTVFEKPLLDHLNA LLAMGIALPGVVNLHYVAPEIFVYEGYVVISSGLFYOS

Important features of the protein: Signal peptide:
Amino acids 1-20

Transmembrane domain:
Amino acids 217-236

N-glycosylation sites: Amino acids 96-100;151-155;293-297;332-336

N-myristoylation sites: Amino acids 8-14;149-155;189-195;249-255;252-258;283-289

LBP / BPI / CETP family proteins: Amino acids 22-50; 251-287

336/392

FIGURE 323

337/392

FIGURE 324

 $\label{lem:mkalmltlsvllcwvsadirchscykvpvlgcvdrqscrlepgqqcltthaylgkmwvfsnlrcgtpeepcqeafnqtnrklgltynttccnkdncnsagprptpalglvfltslaglglwllh$

Important features of the protein: Signal peptide: amino acids 1-18

N-glycosylation sites: amino acids 77-81, 88-92

N-myristoylation site: amino acids 84-90

Ly-6 / u-PAR domain protein signature: amino acids 85-98

338/392

FIGURE 325

ACGGGCCGCAGCGGCAGTGACGTAGGGTTGGCGCACGGATCCGTTGCGGCTGCAGCTCTG CAGTCGGGCCGTTCCTTCGCCGCCGCCAGGGGTAGCGGTGTAGCTGCGCAGCGTCGCGCG CGCTACCGCACCCAGGTTCGGCCCGTAGGCGTCTGGCAGCCCGGCGCCCATCTTCATCGAG TTTGTTTCTGCTGACCGCGGGCCCTGCCCTGGGCTGGAACGACCCTGACAGAATGTTGCT GCGGGATGTAAAAGCTCTTACCCTCCACTATGACCGCTATACCACCTCCCGCAGGCTGGA TCCCATCCCACAGTTGAAATGTGTTGGAGGCACAGCTGGTTGTGATTCTTATACCCCAAA AGTCATACAGTGTCAGAACAAAGGCTGGGATGGGTATGATGTACAGTGGGAATGTAAGAC GGACTTAGATATTGCATACAAATTTGGAAAAACTGTGGTGAGCTGTGAAGGCTATGAGTC $\tt CTCTGAAGACCAGTATGTACTAAGAGGTTCTTGTGGCTTGGAGTATAATTTAGATTATAC$ AGAACTTGGCCTGCAGAAACTGAAGGAGTCTGGAAAGCAGCACGGCTTTGCCTCTTTCTC CGTGGTACTCCTTGGGATCGCCTTTGTAGTCTATAAGCTGTTCCTGAGTGACGGGCAGTA TTCTCCTCCACCGTACTCTGAGTATCCTCCATTTTCCCACCGTTACCAGAGATTCACCAA CTCAGCAGGACCTCCTCCCCCAGGCTTTAAGTCTGAGTTCACAGGACCACAGAATACTGG CCATGGTGCAACTTCTGGTTTTGGCAGTGCTTTTACAGGACAACAAGGATATGAAAATTC CCCTGGCACGTGGAATAGGGCTTACTCACCCCTTCATGGAGGCTCGGGCAGCTATTCGGT ATGTTCAAACTCAGACACGAAAACCAGAACTGCATCAGGATATGGTGGTACCAGGAGACG ATAAAGTAGAAAGTTGGAGTCAAACACTGGATGCAGAAATTTTGGATTTTTCATCACTTT CTCTTTAGAAAAAAGTACTACCTGTTAACAATTGGGAAAAGGGGGATATTCAAAAGTTCT GTGGTGTTATGTCCAGTGTAGCTTTTTGTATTCTATTATTTGAGGCTAAAAGTTGATGTG TGACAAAATACTTATGTGTTGTATGTCAGTGTAACATGCAGATGTATATTGCAGTTTTTG AAAGTGATCATTACTGTGGAATGCTAAAAATACATTAATTTCTAAAACCTGTGATGCCCT AAGAAGCATTAAGAATGAAGGTGTTGTACTAATAGAAACTAAGTACAGAAAATTTCAGTT TTAGGTGGTTGTAGCTGATGAGTTATTACCTCATAGAGACTATAATATTCTATTTGGTAT TATATTATTTGATGTTTGCTGTTCTTCAAACATTTAAATCAAGCTTTTGGACTAATTATGC TAATTTGTGAGTTCTGATCACTTTTGAGCTCTGAAGCTTTGAATCATTCAGTGGTGGAGA TGGCCTTCTGGTAACTGAATATTACCTTCTGTAGGAAAAGGTGGAAAATAAGCATCTAGA TCATAAGAGGTAAAGGTCAAATTTTTCAACAAAAGTCTTTTAATAACAAAAGCATGCAGT TCTCTGTGAAATCTCAAATATTGTTGTAATAGTCTGTTTCAATCTTAAAAAGAATCA

FIGURE 326

MAAACGPGAAGYCLLLGLHLFLLTAGPALGWNDPDRMLLRDVKALTLHYDRYTTSRRLDP IPQLKCVGGTAGCDSYTPKVIQCQNKGWDGYDVQWECKTDLDIAYKFGKTVVSCEGYESS EDQYVLRGSCGLEYNLDYTELGLQKLKESGKQHGFASFSDYYYKWSSADSCNMSGLITIV VLLGIAFVVYKLFLSDGQYSPPPYSEYPPFSHRYQRFTNSAGPPPPGFKSEFTGPQNTGH GATSGFGSAFTGQQGYENSGPGFWTGLGTGGILGYLFGSNRAATPFSDSWYYPSYPPSYP GTWNRAYSPLHGGSGSYSVCSNSDTKTRTASGYGGTRRR

Signal peptide:
amino acids 1-30

Transmembrane domain: amino acids 171-190

N-glycosylation site: amino acids 172-176

Glycosaminoglycan attachment sites: amino acids 244-248, 259-263, 331-335

Tyrosine kinase phosphorylation site: amino acids 98-106

N-myristoylation sites: amino acids 68-74, 69-75, 131-137, 241-247, 247-253, 266-272, 270-276, 278-284, 312-318

FIGURE 327

GGCACGAGGTGGAAGGCTTTTACAAACAGATTGCTGGCCCCACCCCCCAGAATTTCTCA
TCAGGAGTGGGCAAGACCAATCATTTGCATTTCTGACAAGTTCCCAGGAGCTGCAGCTGC
TGGCCCTGGAACCACACTTTGAGAACCACTGCTTTAGACCAAACACCAAAGGAAGATGCA
GCCACCCTCCTTTACATGTCACAACGCTCAGGGTCCATGAGTACCTCAGGCTGTCCAGCT
GAGCTCCACCTGCAGCAGCCGAGATTCCCGACTCGCTCCACCATTGGGGGCTAGGAGTGA
AGCGTGTCACCATGGCTCATGGCCAGCCAGGAAAGCCTCTCTGCTGTGCGTCTGTG
CAGTTCTTGTTCTTCCCTGGAGGACCTCTTTGGATCGCCTGTGATCTTTGGCCAGGAGACCAG
GTGCCTGGGTCCCTTCCTGGAAGGGGACAAGTTACACACCCCAGCCCCATTTTCCCACCA
ACTTCTACATGCCTTGGGAGAACCTTCTACATGTTGGCTGCCCCCTTCCCCTATTTCAGC
AGTGCCCAGTCCTGCTTATAAACCTGAGGCCTGCTCCCCATACCTTCCCTGTGCAAGTGC
CAGCCGTTATTCCAGGCAGCCCAATGTTGTTGAGGCCAGATGGATTCCTGGAAGCAGCTG
GCCCATGGATGTATCACACGTATTCTAGAAACAGAGAAGAGGTCTTAACCTAATGC
GCCATGGATGTGTCTCATTGTAAACATACCCCTGTCCTTTAGCTGATCTAAGGAGAAG

341/392

FIGURE 328

 ${\tt MVSSWPARKASLLCVCAVLVLPWRTLGSPVILARRPGAWVPSWKGTSYTPQPHFPTNFYMPWENLLHVGCPLPLFQQCPVLLINLRPAPHTFPVQVPAVIPGSPMLLRPDGFLEAAGPWM}$

Signal peptide: amino acids 1-27

cAMP- and cGMP-dependent protein kinase phosphorylation site: amino acids 8-12

342/392

FIGURE 329

FIGURE 330

MQVSTAALAVLLCTMALCNQVLSAPLAADTPTACCFSYTSRQIPQNFIADYFETSSQCSK PSVIFLTKRGRQVCADPSEEWVQKYVSDLELSA

Signal sequence:
1-23

Small cytokines (intercrine/chemokine) C-C subfamily signature:
1-35, 2-36, 10-44, 34-74, 50-90

Small cytokines (intecrine/chemokine):

24-89

FIGURE 331

GGCACGAGGTGAGACTTTAAATGAA<u>ATG</u>TCTCACAAGCTAGGTGATCCAGGTTTTTGTGGT $\tt CTTTGCAACCCTTGTGGTCATTGTGGCCTTGATATTAATCTTCGTGGTGGTCCTCGCCA$ TGGACAGACAACATTCTTGTGTACATAACAATCTGCTCTGTAATCGGCGCGTTTTCAGT CTCCTGTGTGAAGGGCCTGGGCATTGCTATCAAGGAGCTGTTTGCAGGGAAGCCTGTGCT TAATTACCTAAATAGGGCCCTGGATATATTCAACACTTCCATTGTGACTCCAATATATTA TGTATTCTTTACAACATCAGTTTTAACTTGTTCAGCTATTCTTTTTAAGGAGTGGCAAGA TATGCCTGTTGACGATGTCATTGGTACTTTGAGTGGCTTCTTTACAATCATTGTGGGGAT ATTCTTGTTGCATGCCTTTAAAGACGTCAGCTTTAGTCTAGCAAGTCTGCCTGTGTCTTT TAATGAAGAAAGCTTAACCTGTGGAATCGAACACACACTGGTGAAAATGTCTCCCGAAG AAATGGAAATCTGACAGCTTTT<u>TAA</u>GAAAGGTGTAATTAAAGGTTAATCTGTGATTGTTA TGAAGTGAATTTGAATATCATCAGAATGTGTCTGAAAAAACATTGTCCTCAAATAATGTT ${\tt CTTTAAAGGCAATCTTTTAAAGATTTCACTAATTTGGACCAAGAAATTACTTTTCTTGT}$ ATTTAAACAAACAATGGTAGCTCACTAAAATGACCTCAGCACATGACGATTTCTATTAAC ATTTTATTGTTGTAGAAGTATTTTACATTTTCATCCCTTCTCCAAAAGCCGAATGCACTA ATGACAGTTTTAAGTCTATGAAAATGCTTTATTTTTTCATTGGTGATGAAAGTCTGAAAT GTGCATTTGTCATCCCCACTCCATCAATCCCTGACCATGTAAGGCTTTTTTTATTTTAAAA AAACAGAGTTATCCCAATACATTATCCTGTGATTTACCTTACCTACAAAAGTGGCTCCTG GAATGAAGGAACCTCTTTCTTACAAAACAAAAAAAAGGGCAGAAATCACCCCAAGGAACG ATTTCTCAGGTTGAGATGATCACCGTGAATCCGGCTTCCTCTGAGCATTCGATGGCCTTA GTTACCCTAATCCCATGATGCCTGGAACCTTGATTACCGTTTTACATCAGCTCTTGTACT TTTCAGTATATTTCATAATGAGTTATATTGTCATTTAGACTTTGAACAGCTCTGGGAAA TAGAAGACTAGGGTTGTTTCTTAAATTTAGCTCATGTTATAATAAAAAGTTGAAATG

345/392

FIGURE 332

MSHKLGDPGFVVFATLVVIVALILIFVVGPRHGQTNILVYITICSVIGAFSVSCVKGLGI AIKELFAGKPVLRHPLAWILLLSLIVCVSTQINYLNRALDIFNTSIVTPIYYVFFTTSVL TCSAILFKEWQDMPVDDVIGTLSGFFTIIVGIFLLHAFKDVSFSLASLPVSFRKDEKAMN GNLSNMYEVLNNNEESLTCGIEQHTGENVSRRNGNLTAF

Signal sequence:

1-33

Transmembrane domain:

40-60, 70-90, 103-123, 139-159

N-glycosylation site:

103-106, 182-185, 208-211, 215-218

N-myristoylation site:

57-62, 140-145, 181-186, 214-219

346/392

FIGURE 333

AGCAACGACGGCGGCAGGGAGGTCCAGGCGACGCGGGAGCGGCAGCGGAAGGGGGAGGC TGGGCGGCGGCGTTGGCGCTTCTGACGGGGGGGGGGAAATGCTGCTGAACGTGGCG CTGGTGGCTCTGGTGCTGCGGGGCCTACCGGCTGTGGGTGCGCTGGGGGCCGCGGGGT CTGGGGGCCGGGCCGGGCGAGGAGAGCCCCGCCACCTCTCTGCCTCGCATGAAG AAGCGGGACTTCAGCTTGGAGCAGCTGCGCCAGTACGACGGCTCCCGCAACCCGCGCATC GCGGGTCCATATGGAATATTTGCTGGTAGGGATGCCTCCAGAGGACTGGCCACATTTTGC CTAGATAAAGATGCACTTAGAGATGAATATGATGATCTCTCAGATTTGAATGCAGTACAA ATGGAGAGTGTTCGAGAATGGGAAATGCAGTTTAAAGAAAAATATGATTATGTAGGCAGA CTCCTAAAACCAGGAGAAGAACCATCAGAATATACAGATGAAGAAGATACCAAGGATCAC AATAAACAGGAT<u>TGA</u>ACTTTGTAAACAACCAAAGTCAGGGGCCTTCAGAACTGCAATTCT TACTCCCTTTCACAGACTGTCCGGAGTCTTTGGGTTTGATTCACCTGCTGCGAAAAACAT TCAACAAATTGTGTACAAGATAAATTAATCTCACTATGAAGATTTGAATAACTAGACATT ATTTATGCTGCCAAACTCATTTGTTGCAGTTGTTTGTAATGTCTAGTGGGGCTTCATCAT ${\tt CCTGAAAAGAAGGAGACAGGGATTTTTTTAAAGAGCAAGAAAGTCACAATATTACTTCTT}$ TCCTTCCTTTTTCTTTCTTTCTTTCTTTTCTTTTTTAAAATATATTG AAGACAACCAGATATGTATTTGCTACTCAAGTGTACAGATCTCCTCAAGAAACATCAAGG

FIGURE 334

MAAGDGDVKLGTLGSGSESSNDGGSESPGDAGAAAEGGGWAAAALALLTGGGEMLLNVAL VALVLLGAYRLWVRWGRRGLGAGAGAGEESPATSLPRMKKRDFSLEQLRQYDGSRNPRIL LAVNGKVFDVTKGSKFYGPAGPYGIFAGRDASRGLATFCLDKDALRDEYDDLSDLNAVQM ESVREWEMQFKEKYDYVGRLLKPGEEPSEYTDEEDTKDHNKQD

Signal sequence:

None

Transmembrane domain:

45-65

Tyrosine kinase phosphorylation site:

202-210

N-myristoylation site:

11-16, 16-21, 37-42, 38-43, 79-84, 81-86, 83-88, 144-149

Amidation site:

75-78

348/392

FIGURE 335

GACAGGCCGGGGTTACTGTGGCGACCACGAGAGCAGCTTTGGCGCTATGGAGGAGCCCGG GGCTACCCCTCAACCGTATTTGGGGGCTGCTCCTGGAGGAGCTACGCAGGGTTGTGGCAGC ACTGCCTGAAGGTATGAGACCAGATTCTAATCTTTATGGTTTTCCATGGGAATTGGTGAT GGTTAGGAGTCGGCTTTATGTGGGACGAGAGAAAAGCTTGCTCTAATGCTTTCTGGACT AATTGAAGAAAAAGTAAACTACTTGAAAAATTTAGCCTTGTTCAAAAAGAGTATGAAGG CTATGAAGTAGAGTCATCTTTAAAGGATGCCAGCTTTGAGAAGGAGGCCAACAGAAGCACA AAGTTTGGAGGCAACCTGTGAAAAGCTGAACAGGTCCAATTCTGAACTTGAGGATGAAAT ACTCTGTCTAGAAAAAGAGTTAAAAGAAGAGAAATCCAAACATTCTGAACAAGATGAATT GATGGCGGATATTTCAAAAAGGATACAGTCTCTAGAAGATGAGTCAAAATCCCTCAAATC GATAGCAATAAAAGATGCTTTGAATGAAAATTCTCAACTTCAGGAAAGCCAGAAACAGCT TTTGCAAGAAGCTGAAGTATGGAAAGAACAAGTGAGCTGAACCTTAATAAACAGAAAGTAAC GACTCTGACTGAACGCTTGTTAAAGATGAAAGATTGGGCTGCTATGCTTGGAGAAGACAT AACGGATGATGATAACTTGGAATTAGAAATGAACAGTGAATCGGAAAATGGTGCTTACTT AGATAATCCTCCAAAAGGAGCTTTGAAGAAACTGATTCATGCTGCTAAGTTAAATGCTTC TTTAAAAACCTTAGAAGGAGAAAGAAACCAAATTTATATTCAGTTGTCTGAAGTTGATAA AACAAAGGAAGACCTTACAGAGCATATTAAAAATCTTCAGACTCAACAAGCATCTTTGCA GTCAGAAAACACACATTTTGAAAATGAGAATCAGAAGCTTCAACAGAAACTTAAAGTAAT GACTGAATTATATCAAGAAAATGAAATGAAACTCCACAGGAAATTAACAGTAGAGGAAAA TTATCGGTTAGAGAAAGAAGAAACTTTCTAAAGTAGATGAAAAGATCAGCCATGCCAC TGAAGAGCTGGAGACCTATAGAAAGCGAGCCAAAGATCTTGAAGAAGAATTGGAGAGAAC TATTCATTCTTATCAAGGGCAGATTATTTCCCATGAGAAAAAAGCACATGATAATTGGTT ACAAAAATTAACTGAAACAGAGCTTAAATTTGAACTTTTAGAAAAAGATCCTTATGCACT CGATGTTCCAAATACAGCATTTGGCAGAGGCTCACGAGGCCCAGGGAATCCTCTGGACCA TCAGATTACCAATGAAAGAGGAGAATCAAGCTGTGATAGGTTAACCGATCCTCATAGGGC TCCCTCTGACACTGGGTCTCTGTCACCTCCATGGGACCAGGACCGTAGGATGATGTTTCC TCCGCCAGGACAATCATATCCTGATTCAGCCCTTCCTCCACAAAGGCAAGACAGATTTTG TTCTAATTCTGGTAGACTGTCTGGACCAGCAGAACTCAGAAGTTTTAATATGCCTTCTTT GGATAAAATGGATGGGTCAATGCCTTCAGAAATGGAATCCAGTAGAAATGATACCAAAGA TGATCTTGGTAATTTAAATGTGCCTGATTCATCTCTCCCTGCTGAAAATGAAGCCACTGG CCCTGGCTTTGTTCCTCCACCTCTTGCTCCAATCAGAGGTCCATTGTTTCCAGTGGATGC AAGAGGCCCATTCTTGAGAAGAGGACCTCCTTTCCCCCCACCTCCTCCAGGAGCCATGTT TGGAGCTTCTCGAGATTATTTTCCACCAAGGGATTTCCCAGGTCCACCACCTGCTCCATT TGCAATGAGAAATGTCTATCCACCGAGGGGTTTTCCTCCTTACCTTCCCCCAAGACCTGG ATTTTTCCCCCCACCCCCACATTCTGAAGGTAGAAGTGAGTTCCCCCTCAGGTTTGATTCC ACCTTCAAATGAGCCTGCTACTGAACATCCAGAACCACAGCAAGAAACCTGACAATATTT TTGCTCTCTTCAAAAGTAATTTTGACTGATCTCATTTTCAGTTTAAGTAACTGCTGTTAC TTAAGTGATTACACTTTTGCTCAAATTGAAGCTTAATGGAATTATAATTCTCAGGATAGT ATTTTGTAAATAAAGATGATTTAAATATGAATCTTATGAGTAAATTATTTCAATTTTATT TTAGACGGTATAACTATTTCAATTTGATTAATCCACTATTATATAAACAATAGTGGGAGT TTTATATATGTAATCTTTCAGGTGGGGAGGCTTTAAATTCTGAAGTCTGTGTCTTTATGC TTATAGTTGATTTAAAGATTTGTTTGGCATTGATAATAAAAATCAGTAGTTTTTCTAT

FIGURE 336

TGRGYCGDHESSFGAMEEPGATPQPYLGLLLEELRRVVAALPEGMRPDSNLYGFPWELVI CAAVVGFFAVLFFLWRSFRSVRSRLYVGREKKLALMLSGLIEEKSKLLEKFSLVQKEYEG YEVESSLKDASFEKEATEAQSLEATCEKLNRSNSELEDEILCLEKELKEEKSKHSEQDEL MADISKRIQSLEDESKSLKSQVAEAKMTFQIFQMNEERLKIAIKDALNENSQLQESQKQL LQEAEVWKEQVSELNKQKVTFEDSKVHAEQVLNDKESHIKTLTERLLKMKDWAAMLGEDI TDDDNLELEMNSESENGAYLDNPPKGALKKLIHAAKLNASLKTLEGERNQIYIQLSEVDK TKEELTEHIKNLQTQQASLQSENTHFENENQKLQQKLKVMTELYQENEMKLHRKLTVEEN YRLEKEEKLSKVDEKISHATEELETYRKRAKDLEEELERTIHSYQGQIISHEKKAHDNWL AARNAERNLNDLRKENAHNRQKLTETELKFELLEKDPYALDVPNTAFGRGSRGPGNPLDH QITNERGESSCDRLTDPHRAPSDTGSLSPPWDQDRRMMFPPPGQSYPDSALPPQRQDRFC SNSGRLSGPAELRSFNMPSLDKMDGSMPSEMESSRNDTKDDLGNLNVPDSSLPAENEATG PGFVPPPLAPIRGPLFPVDARGPFLRRGPPFPPPPPGAMFGASRDYFPPRDFPGPPPAPF AMRNVYPPRGFPPYLPPRPGFFPPPPHSEGRSEFPSGLIPPSNEPATEHPEPQQET

Signal sequence: None

Transmembrane domain:

54-74

N-glycosylation site: 150-153, 338-341, 636-639

cAMP- and cGMP-dependent protein kinase phosphorylation site: 413-416

Tyrosine kinase phosphorylation site: 414-421

N-myristoylation site: 466-417, 625-630, 697-702

Leucine zipper pattern: 142-163

350/392

FIGURE 337

GGACTGCGGTCTCGGGCAGCA<u>ATG</u>GCCGAGAAGCGCGACACACGGGACTCCGAAGCCCAG TTGGTGGCGTTCTCATTCTTATTCACCGTTATAACTTTCCCAATCTCAATATGGATGTGC ATAAAGATTATAAAAGAGTATGAAAGAGCCATCATCTTTAGATTGGGTCGCATTTTACAA GGAGGAGCCAAAGGACCTGGTTTGTTTTTTATTCTGCCATGCACTGACAGCTTCATCAAA GTGGACATGAGAACTATTTCATTTGATATTCCTCCTCAGGAGATCCTGACAAAGGATTCA GTGACAATTAGCGTGGATGGTGTGGTCTATTACCGCGTTCAGAATGCAACCCTGGCTGTG GCAAATATCACCAACGCTGACTCAGCAACCCGTCTTTTGGCACAAACTACTCTGAGGAAT GTTCTGGGCACCAAGAATCTTTCTCAGATCCTCTCTGACAGAGAAAATTGCACACAAC ATGCAGTCTACTCTGGATGATGCCACTGATGCCTGGGGAATAAAGGTGGAGCGTGTGGAA ATTAAGGATGTGAAACTACCTGTGCAGCTCCAGAGAGCTATGGCTGCAGAAGCAGAAGCG CTGAAAGAAGCCTCCATGGTCATCACTGAATCTCCTGCAGCCCTTCAGCTCCGATACCTG CAGACACTGACCACCATTGCTGCTGAGAAAAACTCAACAATTGTCTTCCCTCTGCCCATA GATATGCTGCAAGGAATCATAGGGGCAAAACACAGCCATCTAGGC<u>TAG</u>TGTAGAGATGAG CGCTAGCCTTCCAAGCATGAAGTCGGGGACCAAATTAGCCTTTAACTCATAAAGAGAGGG TAGGGCTTTTCTTTTTCCATATGTCAATTGTGGTGTTCCCAGAATGTATAGCAGTTATAA AAATAGGTGAAAGAATTGTTAGCTTGTAAATACTGAGAGATTGGTGATTTATATAAGGTA ATCTGTTAGTCTTAAAATAGTTAAAAGTTTGTATTTTTAGATTATTATGTAGGTTAG ATCCCTCTTGTTTTGACTTCCACTGACTCATTCTGAACCCCCTAAGCACCCAGGCCACAG GCAAGAACCTGGGCTGTAACTGCCACCTGACACCGCTGACTGGCTAAATGCTTTGCAGAA AGTGATGACCTTACACCACAACCAGCTTCTCCAGGTCATATGTGCCTTACCTCCAGAAGT $\tt CTTTTTTTTTTTTTTTTTTTTGAGATGGAGTTTCACTCTTGTTGCCCAGGCTGGAGTGCAA$ TAGCATGATCTCGGCTCACTGCAACCTCCGCCTCCTGGGTTCAAGAGATTCTCCTGCCTC AGCCTCCCAGTAGCTGGGATTACAGGCTCATGCCACCATGCCCAGCTAATTTTTGTATT ATTATTATTGTTTTTTAGTAGAGACGGGTTTCACCATGTTGGCCAGGCTAGTCACGAAC TCCTAACCTCAGGTGATCCACCCACCTCTGCCTCCAAAGTGCTGGATTACAGGCTGAGCT AAATCCAGCCGTGTTTCAGAATAATCCTTACTTGAGAGTAGCCATTTTCTTGTGTACTTG TCAGAACTAGAGGAAATAGCCAAGACTAATGAAAAACATTACTCTAACCCTTAAAAGACT TTTAAATTCACTACTAGAGTGGTCATTTTAAAAATACATCCATGTTTTTAACTTATTTTGA GCCTTTCTTTTATGAGTAAATGATTCCTCCTTGTTCTGTCTTTCAAACCAGCTAAATATT TGTCACAAAAGTGACTTTTTTCTCACTGTTGCCTATTTTCATATATCAGGTTTTAAATAG GAATAGCTGAAGGACTAAAATACTTTTTTAAGAGATAACTTCAGGAAACCATTATATTTT ACTATCTGCATGCTGTTAACTGTGGTACACTGTGAAATATGTTGATTACAAACCCATTCA TTACATAGTATAAGGAATTCACAGTATATTGACTATATAGTGTCTAATGACTGGGCAGAT ACTGTCAACTTACAATATCTATATAGAGAGGCTTTAAACTTACCTTACTCATTCTCTATG ATGTATGACTTGATGCTGAAAGAGGAAGCTGGTCAGCTCCTCATGGACAACAAATTCTTA GTCTATAATATTAGGAGACATCTCTAGTTTTGCAAATGTCTGTGAATCTGAGCAACCTGG ACTTCTGCTTACTGGCCAGAAAGCTGGCGGGTGACATTTGTAACATTTCCTCTTTGAGAC AGCTCTCTTTAGCTCAACCACTCTGTCCATCCAGCCAATGGATGTCCTTCCCTGTACCCA ATTCAAGCTTATTTTAGGGAAGCCTTGAAACTACCATGTATCTGGCTCTAGCTGAGTTAT TGAGGATTGAGCCAGTGCAACGTTAAACTCAGTGCACTTACATTTGATTTAAATGATGGT AAACCTTTTCTGAGACTTAGAGTAACAGTACTTTTGGTTCCTTGAGTTCTCCTGTCTCCA GATACCTAAATGACCTTGACTTTTCTGCCTTGTGAATTCGTAGTCCAATCAGCTGAAATT AAATCACTTGGGAGGGACGCATAGAAGGAGCTCTAGGAACACAGTGCCAGTGCAGAAGTT TCTCCAGGTGGCCTCCCTTTCCAACAATGTACATAAAAGTGTATGCACTTTCACT

FIGURE 338

MAEKRDTRDSEAQRLPDSFKDSPSKGLGPCGWILVAFSFLFTVITFPISIWMCIKIIKEY ERAIIFRLGRILQGGAKGPGLFFILPCTDSFIKVDMRTISFDIPPQEILTKDSVTISVDG VVYYRVQNATLAVANITNADSATRLLAQTTLRNVLGTKNLSQILSDREEIAHNMQSTLDD ATDAWGIKVERVEIKDVKLPVQLQRAMAAEAEASREARAKVIAAEGEMNASRALKEASMV ITESPAALQLRYLQTLTTIAAEKNSTIVFPLPIDMLQGIIGAKHSHLG

Signal sequence: 1-45 Transmembrane domain: None N-glycosylation site: 128-131, 135-138, 159-162, 229-232, 264-267 cAMP- and cGMP-dependent protein kinase phosphorylation site: 4-7 N-myristoylation site: 26-31, 278-283, 281-286

SPFH domain/Band 7 family:

39-230

352/392

FIGURE 339

TCTAGAGCCCTCTCCCAACATGGCGGCCTCAGCAAAAAAGAAGAATAAGAAGGGGAAGAC TATCTCCCTAACAGACTTTCTGGCTGAGGATGGGGGTACTGGTGGAGGAAGCACCTATGT TTCCAAACCAGTCAGCTGGGCTGATGAAACGGATGACCTGGAAGGAGATGTTTCGACCAC TTGGCACAGTAACGATGACGATGTGTATAGGGCGCCTCCAATTGACCGTTCCATCCTTCC CACTGCTCCACGGGCTGCTCGGGAACCCAATATCGACCGGAGCCGTCTTCCCAAATCGCC ACCCTACACTGCTTTTCTAGGAAACCTACCCTATGATGTTACAGAAGAGTCAATTAAGGA ATTCTTTCGAGGATTAAATATCAGTGCAGTGCGTTTACCACGTGAACCCAGCAATCCAGA GAGGTTGAAAGGTTTTGGTTATGCTGAATTTGAGGACCTGGATTCCCTGCTCAGTGCCCT GAGTCTCAATGAAGAGTCTCTAGGTAACAGGAGAATTCGAGTGGACGTTGCTGATCAAGC ACAGGATAAAGACAGGGATGATCGTTCTTTTGGCCGTGATAGAAATCGGGATTCTGACAA AACAGATACAGACTGGAGGGCTCGTCCTGCTACAGACAGCTTTGATGACTACCCACCTAG AAGAGGTGATGATAGCTTTGGAGACAAGTATCGAGATCGTTATGATTCAGACCGGTATCG GGATGGGTATCGGGATGGCTATCGGGATGGCCCACGCCGGGATATGGATCGATATGGTGG CCGGGATCGCTATGATGACCGAGGCAGCAGAGACTATGATAGAGGCTATGATTCCCGGAT AGGCAGTGGCAGAAGAGCATTTGGCAGTGGGTATCGCAGGGATGATGACTACAGAGGAGG CGGGGACCGCTATGAAGACCGATATGACAGACGGGATGATCGGTCGTGGAGCTCCAGAGA TGATTACTCTCGGGATGATTATAGGCGTGATGATAGAGGTCCCCCCCAAAGACCCAAACT GAATCTAAAGCCTCGGAGTACTCCTGAAGAAGATGATTCCTCTGCTAGTACCTCCCAGTC CACTCGAGCTGCTTCTATCTTTGGAGGGGCAAAGCCTGTTGACACAGCTGCTAGAGAAAG AGAAGTAGAAGAACGGCTACAGAAGGAACAAGAGAAGTTGCAGCGTCAGTGGAATGAGCC AAAACTAGAACGACGGCCTCGGGAGAGACACCCAAGCTGGCGAAGTGAAGAAACTCAGGA ACGGGAACGGTCGAGGACAGGAAGTGAGTCATCACAAACTGGGACCTCCACCACATCTAG CAGAAATGCACGAAGGAGAGAGTGAGAAGTCTCTAGAAAATGAAACACTCAATAAGGA GGAAGATTGCCACTCTCCAACTTCTAAACCTCCCAAACCTGATCAGCCCCCTAAAGGTAAT GCCAGCCCTCCACCAAAGGAGAATGCTTGGGTGAAGCGAAGTTCTAACCCTCCTGCTCG ATCTCAGAGCTCAGACACAGAGCAGCCAGTCCCCTACAAGTGGTGGGGGAAAAGTAGCTCC AGCTCAACCATCTGAGGAAGGACCAGGAAGGAAGATGAAAATAAAGTAGATGGGATGAA TGCCCCAAAAGGCCAAACTGGGAACTCTAGCCGTGGTCCAGGAGACGGAGGGAACAGAGA CCACTGGAAGGAGTCAGATAGGAAAGATGGCAAAAAGGATCAAGACTCCAGATCTGCACC TGCTCTCTCTGTTGATGGTGAAGATGAAAATGAGGGAAGAATTATGCCGAA<u>TAG</u>ACCTC TACATCCTGTGCTTTTCTCCTAGTTTCTCTCCACCCTGGAACATTCGAGAGCAAATCAAA ACCTCTATCCAGACAAGACAAAATAAAACTCAACATCTCCTGAAGACCTTTCTTACCTTT TTTTAAAAACAAAAAXTGAAATTATTTTGCATGCTGCAGCCTTTAAAGTATTGAAGT AACTGGAGAATTGCCAATACAGCCAGAGAGAAAGGGACTACAGCTTTTTAGAGGAAAAGT TGTGGTGCGTTATGTCACCATGCAGTTGCCAGTGTGATTAGTGCCTAGGGGTCTCATTTA GGTAGAAGGAAAAGTGTGAGATTTCTACCTTTTAGTTTTCATCCTATTGTGGCATATATG AATTCTCAAACATTATCTGAATAAATTTTCCACTCTTGGAAAGGTAGATTTAGCCTCAAG TTGTTCTAGTCTCCAGGAGGCTGCCAGCCCCTCCTCTTATTTAATTCTGAGTTTTGGGGG TTTGAAAAGAAGCTTTTGGGAAGTGATGAGTCATTTTGCACCAGGTAATAGGGGAAAATT GTGTGACCTCCAGCAAACACATGAATGGTTATTTCCTGGAGCCGGAAGCACTTGGGGGTC GTGGTAATTCCCAGTGTTTTCTGTGTCCTAGTTTTACCCTTTCTAAACACTGTCCTTTTT GAAAGTTTTGAATATATCCACATTCTATTGAAACCTTGAAACTAAAAATTTAGACTCTTA TCGTCATCTTAAGTTCTTCATGCTACTCTTAACCTCCCAAAAAGCAGTATCTAAGTCACA TACATGATGTCTTGGGCATTTTCTGAGCCATGGAGAACTCTGAAAGGAAGAATCGCTGCT TTTCTCAAGCAAATCGGTTTCTTGATGTCTTTTGGTTCTCCTTGCCTGCTCCTGATGCTT

353/392

TAGGGACAGGACAGTTAAATTGGGAGCCTTTCTTACAACCTTGATGGGATTTTTCCCCC CAAGTTTCCTTCTCCACTGAAATGCCACACTAATGCTTGTTGGATTCATGAGGTGGCCAG ACCAATGTGTTGTTGTTGTTTTTTTTTTTAAGCTTCCCTTGAGAGAATAAATGGTA ATGGAGAGAATCATTTAACAAGGTCCTGGTTTCTCTTGCAACACAGTAGCTAAACTTGCC TGCTTTTATATGCATTTTTGTAGGGATCAGCTTGGTAGACAGTATTAGCGGAGAAACACC TTGATCTTGGTTTGCAAGCCCTTCTCCCATCAGTCCTAGATTAGGCCCTGTTCAGCCATG CAGGGGTGTTGGTTTATGCGTGCTGCAGCAGTGGGCATAATGAATATAATTTACCCAGTG GACAAAGGTGTGTACCAAGTGAATTTAAATAATTGGTGTGGATTGGCCAGTAGCTAAGAA AACAAACTATTGATTGTAGATAATGAAAAGCTAGGGTTTGCCCTCTTCATGTCTACTCTC CTTCCAAATAGTTATATCCAAAACTGTTTTTCCCTCTCCCCTACCTTGTCCCCCCTATTA AAATAGAAACAGGGATTGATTAATGTCCCGCTCCTGAATACATGTAAAATTTGTACAAAA ATATCTTCTATGAAAATGATTTGTAATCTGTAGACTTATTACCTGGGAGATGTCTTGATG AGTTAAAAAAAAAAAAAACTCTAGAGTCGAGGAATTC

354/392

FIGURE 340

MAASAKKKNKKGKTISLTDFLAEDGGTGGGSTYVSKPVSWADETDDLEGDVSTTWHSNDD DVYRAPPIDRSILPTAPRAAREPNIDRSRLPKSPPYTAFLGNLPYDVTEESIKEFFRGLN ISAVRLPREPSNPERLKGFGYAEFEDLDSLLSALSLNEESLGNRRIRVDVADQAQDKDRD DRSFGRDRNRDSDKTDTDWRARPATDSFDDYPPRRGDDSFGDKYRDRYDSDRYRDGYRDG YRDGPRRDMDRYGGRDRYDDRGSRDYDRGYDSRIGSGRRAFGSGYRRDDDYRGGGDRYED RYDRRDDRSWSSRDDYSRDDYRRDDRGPPQRPKLNLKPRSTPEEDDSSASTSQSTRAASI FGGAKPVDTAAREREVEERLQKEQEKLQRQWNEPKLERRPRERHPSWRSEETQERERSRT GSESSQTGTSTTSSRNARRRESEKSLENETLNKEEDCHSPTSKPPKPDQPLKVMPAPPPK ENAWVKRSSNPPARSQSSDTEQQSPTSGGGKVAPAQPSEEGPGRKDENKVDGMNAPKGQT GNSSRGPGDGGNRDHWKESDRKDGKKDQDSRSAPEPKKPEENPASKFSSASKYAALSVDG EDENEGEDYAE

```
Signal Sequence:
None
Transmembrane domain:
None
N-glycosylation site:
120-123, 448-451, 542-545
Glycosaminoglycan attachment site:
507-510
cAMP- and cGMP-dependent protein kinase phosphorylation
site:
439-442, 486-489
Tyrosine kinase phosphorylation site:
225-233, 264-270
N-myristoylation site:
25-30, 26-31, 28-33, 118-123, 421-426, 428-433, 538-543
Amidation site:
276-279, 522-525, 563-566
Cell attachment sequence:
215-217
Eukaryotic putative RNA-binding region RNP-1 signature:
137-144
RNA recognition motif:
```

98-168

355/392

FIGURE 341

GCGTGGACACCACCTCAGCCCACTGAGCAGGAGTCACAGCACGAAGACCAAGCGCAAAGC GCCAAGCCCAAGGGCATGACCTCATCACAGTGGTTTAAAATTCAGCACATGCAGCCCAGC CCTCAAGCATGCAACTCAGCCATGAAAAACATTAACAAGCACACAAAACGGTGCAAAGAC CTCAACACCTTCCTGCACGAGCCTTTCTCCAGTGTGGCCGCCACCTGCCAGACCCCCAAA ATAGCCTGCAAGAATGGCGATAAAAACTGCCACCAGAGCCACGGGCCCGTGTCCCTGACC ATGTGTAAGCTCACCTCAGGGAAGTATCCGAACTGCAGGTACAAAGAGAAGCGACAGAAC AAGTCTTACGTAGTGGCCTGTAAGCCTCCCCAGAAAAAGGACTCTCAGCAATTCCACCTG ${\tt CTTCAATTCCCTCTCCAGGACTCCGCACCACTCCCCTACACCCCAGAGCATTCTCTTCCCCC}$ ${\tt TCATCTCTTGGGGGCTGTTCCTGGTTCAGCCTCTGGGGAGGCTGAAGCTGACACTCTGG}$ TCCCCAAGAAACAGCAAGCTCAGGTCTGTGGGTTCCCTGGTCTATGCCATTGCACATGTC

FIGURE 342

MAPARAGFCPLLLLLLGLWVAEIPVSAKPKGMTSSQWFKIQHMQPSPQACNSAMKNINK HTKRCKDLNTFLHEPFSSVAATCQTPKIACKNGDKNCHQSHGPVSLTMCKLTSGKYPNCR YKEKRQNKSYVVACKPPQKKDSQQFHLVPVHLDRVL

Important features of the protein

Signal peptide:

1-22

Transmembrane domain:

none

N-glycosylation site:

127-131

cAMP- and cGMP-dependent protein kinase phosphorylation

site:

139-143

N-myristoylation site:

18-24, 32-38

Pancreatic ribonuclease family signature:

65-72

Pancreatic ribonuclease family proteins:

49-93

FIGURE 343

 ${\tt GCATTTGCCACTGGTTGCAGATCAGGCGGACGAGGCGGGAGGCCAGAGCC} {\tt ATGTGGC}$ CTGTGAGAGCCCCAGAGCAGGGTCCCTGACGGTTCAATGCCACTATAAGCAAGGATGGG AGACCTACATTAAGTGGTGCCGAGGGGTGCGCTGGGATACATGCAAGATCCTCATTG AAACCAGAGGGTCGGAGCAAGGAGAGAGAGTGACCGTGTGTCCATCAAGGACAATCAGA AAGACCGCACGTTCACTGTGACCATGGAGGGGGCTCAGGCGAGATGACGCAGATGTTTACT GGTGTGGGATTGAAAGAAGAGGACCTGACCTTGGGACTCAAGTGAAAGTGATCGTTGACC CAGAGGGAGCGCTTCCACAACAGCAAGCTCACCTACCAACAGCAATATGGCAGTGTTCA TCGGCTCCCACAAGAGGAACCACTACATGCTCCTGGTATTTGTGAAGGTGCCCATCTTGC TCATCTTGGTCACTGCCATCCTCTGGTTGAAGGGGTCTCAGAGGGTCCCTGAGGAGCCAG GGGAACAGCCTATCTACATGAACTTCTCCGAACCTCTGACTAAAGACATGGCCACTGAGATGGATCTGCAGAGCCTTCCTGCCCTGGCCACGTTTCCAGAAGAGACTCGGGCTGTG GAAGGAACATCTACGAGTCCTCGGGATGCAGTGACTGAGATAGGGGCCCTGGGCCTCCGC CCTGGCCTTGGAGCTGGTGGGCACCTCCCTGTTCTGCACAGCTCAGGGACTTAGCCAGGT ${\tt CCTCTCCTGAGCCACCATCACCTCCTGGGGTGCCAGCACCTGTTCTCTTGGTCAGGAGCT}$ GTAGAGATGGAGCTCAAGCACTGGACGACTCTGTCCCCACTGCTGGAATAACTCGGGCAC AGAGCATGGGACCAAAGTACAGAAAGAGGTTGGGGGAGACCCCCCCAGCCCTAGACTTCC ATCATTCCGGAGACCAACTCAACACCGTCTTTGCCTGAGAACCTGATATATCCGTGTTTT TAAATTTTTTTTTTTTCTAGCAAAGTTGGGTTTTAATGACTTATGTTCATAGGAAACCTCT CTGATCCCACACACAGGGGGGGTGATTCTGGGATGAGTTCCTGGTTCTAGGGCATGAGGG GCTGGATGGACCCTGTCCCCAGGGAGGACATGGCTCTGAGTCCACAGGGCTGAGGAGGCA ATGGGAACCTCCCTGGCCCGGCCCGGTGCTTGTCCTCCCCCCCTCCCACCTCTTCCTCCTCC TAGCTCCCCAAGCTCCCTGCCTATTCCCCCACCTCCGAGGGGCTGCAGCTTGGGAGCCTC CTCAGCATGACAGCTTGGGTCTCCTCCCCAAAAGAGCCTGTCAGGCCTCAAGAACCACCT ATGTTGAAATCATGTTACTAATGAAAACTGTCCTAGGGAAGTGGTTCTGTCTCCTCACAG GCTTCACCCACGGCGATGAGGCCCTTGAATGTGGTCACTTTGTGCTGTATGGTTGAGGGA CCCTCACACCAAAGGGACCTTCCCATGTGAGATGTGCTCCCGCCCCCACCTGCCCACAAG CAAACACACACATGTTCGGCATGTTGCCCTTTGAACACCCATGAGGACGCCTCCAAC CTGCTCTTGGTTCTAATAGGGAGTACTGACTGTCAGCAGTGGATAAAGGAGAGGGGACCC TCTGGTCCCTAGCATGGCACCCAGAGCCTCCCCTCTTCTTGTCCTTCAGCCAAAGAGAAA CTTTCTCTGACTTTGAACTGAATTTAGGTCTCTGGCCAATGATGGGCCTGAAAATTCCAT AATGGCCAGAGAGAGAGTTCGAGCCCGGCTAAGATCCCCTGAGTCATTCTGTGAGGGAC CAAGACCCACAGTCCACCAGGCCCCAGGGCCCTACCTCCTGGAATGCTTTCCTGGATCCAG CTTCCCGAAGATCCGACCAGACCCAGGGAGGGAGGGAAAGCCA ATGTCATTCTTTTCCCACCGTTTCTTCCTGTTGATATTCAATGAATCCGTCAATCTCTCT

358/392

FIGURE 344

MWLPPALLLLSLSGCFSIQGPESVRAPEQGSLTVQCHYKQGWETYIKWWCRGVRWDTCKI LIETRGSEQGEKSDRVSIKDNQKDRTFTVTMEGLRRDDADVYWCGIERRGPDLGTQVKVI VDPEGAASTTASSPTNSNMAVFIGSHKRNHYMLLVFVKVPILLILVTAILWLKGSQRVPE EPGEQPIYMNFSEPLTKDMAT

Important features of the protein: Signal peptide:
Amino acids 1-17

Transmembrane domain: Amino acids 151-170

N-glycosylation site: Amino acids 190-194

Tyrosine kinase phosphorylation site: Amino acids 95-103

N-myristoylation sites: Amino acids 66-72;125-131

Prokaryotic membrane lipoprotein lipid attachment site: Amino acids 5-16

FIGURE 345

CTGAGCTCCCGGGCTCCGGCAGCGCGCTGGCGGGGCGCCGCATTGCACACTCTGGGGGCG CCGCAGTGTTCGTGGGATGGGGCAGCGGGCTGCAGCTGGCGGCCGGAATCCGCGCGCAGC CCGGGTGCAAGTTCTCTCCTGTTGCCCTGAGTGCCCACTCCCAGGCCCTCTGTATGAGTG ${\tt ACACTTCAGTCTGCC} \underline{\textbf{ATG}} \\ \texttt{GAACCTGGCCCTGCTCTGGCCTGGCTCCTGAGCCTG} \\$ CTGGCGGATTGTCTGAAAGCTGCTCAGTCCCGAGACTTCACAGTGAAAGACATTATCTAC CTCCATCCTTCAACCACACCATATCCTGGTGGATTTAAATGTTTCACCTGTGAAAAGGCA GCAGACAATTATGAGTGCAACCGATGGGCTCCAGACATCTACTGCCCTCGAGAGACCAGA TACTGCTACACTCAGCACACAATGGAAGTCACAGGAAACAGTATCTCAGTCACCAAACGC TGTGTCCCACTGGAAGAGTGCTTATCCACTGGCTGCAGAGACTCCGAGCATGAAGGCCAC AAGGTCTGCACTTCTTGTTGAAGGAAATATCTGTAACTTGCCACTGCCCCGAAATGAA ACTGATGCCACATTTGCCACGACGTCACCTATAAATCAGACAAATGGGCACCCACGCTGT ${ t ATGTCAGTGATAGTGTCCTGCTTGTGGTTGTGGTTAGGGCTCATGTTA{ t TAG}}{ t TGGCTCAGT}$ GGCTCCATGTGTTAATAGCGATCCATGGGGATCTCGATGGTCCACAGACCTGCATGAGTC ATTGGCCTGACAGTAATTACACATGTGAGACACAACACTCTTGGAGGTCATCACAGCCAA GCATTGCCACTTACCATGAGGAATAAATGTTGCTTCATTGTAGCCATTTTGAGTCTAACC CATTCCAAGAAGTAGTTCTGCATTTATCGAGATCTGGGGGTTCTTAATTTGGAAGAATACA TGCATGAGATGCAGTAGGTCCTGAGACTGTAAGATATTAGGAGTATGTTATAGGGGCATG TATAGATGTGGGCTTTTCAGGAGAAAAGTAACCATTGGTTTAAATATAATCATGAGTTCA ${ t TTTGTAGCTTTAGAATTTTAAAACATTGACTCCAAACTGAATGGACTATTTCCTTGGAAA$ ${ t TTCTGACTGAGTCCCTGGAAGAGTAGTAATTCCAACAATTCCAGCCATTTGTTCAATTAA$ ${ t TTTTCCCAACATTCTTCTCCCAGTGCTGGGAATCACATTTCCTCTGTTCTGTGCAGAAGA$ ${\tt CAAAAAGCCAATCATAAAAGTTTGTTATATTTGTGGGGGTGCCTGGAGGAGGATTTTCCT}$ CAACTTAATGGAGCCACTGTCCATAAAGTGGCTGTTATCCCTTCATATAATTGGTGAGAT CAGCCTTCTCCTTGACTTGGCACCTAATTATGCTTCATGAGATCCTAGATTCCACCTGAG TCAATTGTGTCCAGAGCCCCAAACCAGGATGGAGTTGTTTTCCCCAGATATGGGGTTCTA TTCAGCCATAGATAATCTAGACAGAGGATTTCAGAATGAAAGGAAAAATGTGTGGAGATT GTTCATACTGCCAAAGAGCTCCCACTTCCAAATCCCCAGTGACTTTATGGAGAAGATTCT GCATTAAATTGTCTTTCGAATGATGGGGAAGCAAGGCATAATATGCGATGATGAGGAGAA ${ t TTTTAGATATTGCTTTTGAAGTAGATGGTAAAATTTTTTGTCATCCTTCTTGTATTTTTTG$ AAGGCATAACTAGAAACTAAAATATATTCTAAAAAATTCATTATTCTGAACAAAGTGATC AAATTAGAATACATATTTTTCAACAGTGGTAGAGCTTTTAATATATGTTTATTGAAAGTT ATCTATAATACTTGCACCAGTGTTGAAAAAAGTTAACATGTAGGCAAGAGCAATATGTTT GTCTCAAGGATTTTTCCATGGTTTCCTCAGTGATGGTGTCCTGGAATTATTCAGGTGGTG ACCATCACTGGTCTAAGTTTGTGTGCAGGGTTTTTCAGACGTGTTTTTGTGAAACTTGGTA GAACCATGGCTAATAAAGAGGACAGTGTTGTCAGGGTCCATCTGCCCTCCATAGAAAAAT GTCTCTGGCTCATAAAATGAGACTCCCTCAGGGACTAAATATGAACTGACAGCAGTAACT CTGATACAGAATAATCTAAATTGCATCAAATGGCCTTAATTCAGAGTTTGTTAGGCTTAT ${ t CAGTATGTTGCTTTTAATTGGGGTGGGAAAGTAGAGGGGAGAAAGCAAGACATTTATTA}$ AGCACCTCGTATGTGCCAGGCACTATGCTAAGCACTTTACATAAGTTAGGATTAATCCCT GCAAGAATCCTATAAAGAATGTTACTAGCATTTACACTTCCCAAATGAAGGTACCAAAGC TCAAACGCAATGTTGTGAAGCTGTTTCCTTCAGATTTAGGTTATGTGGGATGATGTGGGA TTGAAGAGGAAAGGTGGGATTATCCCCCTAGGAAGACTTTCAGGCCTGACTTCATA GGAATTCATCCATCTTATCATGTGGAGTTTATCTCACCCTGCTGTTGCAGGATGCTATTT

361/392

FIGURE 346

MEPGPALAWLLLLSLLADCLKAAQSRDFTVKDIIYLHPSTTPYPGGFKCFTCEKAADNYE CNRWAPDIYCPRETRYCYTQHTMEVTGNSISVTKRCVPLEECLSTGCRDSEHEGHKVCTS CCEGNICNLPLPRNETDATFATTSPINQTNGHPRCMSVIVSCLWLWLGLML

Important features of the protein:

Signal peptide: 1-22

Transmembrane domain: None

N-glycosylation site: 134-138, 147-151

N-myristoylation site: 45-51, 87-93, 106-112, 124-130

Ly-6 / u-PAR domain protein: 115-128

FIGURE 347

GATCAAGCGCCTTCCTTTCCTCTCCCTACTTGGCCTTTGCCCTAAGCCAAGACCT GGCCATCAGCCTGCAGGGGCCTGCAGAGCCAGCTGCACTTTTTCAGGTATGGGGGA GGGCCAGGCACCATGAAGCCAGTGTGGGTCGCCACCCTTCTGTGGATGCTACTGCTGGTG TTCCCTCTTGGCTTCTCCTGGGGCGTGGGCAGTTCTGCCTACCAGACGGAGGGCGCCTGG GTGCTTGGGAATGAGACGGCAGATGTAGCCTGTGACGGCTACTACAAGGTCCAGGAGGAC ATCATTCTGCTGAGGGAACTGCACGTCAACCACTACCGATTCTCCCTGTCTTGGCCCCGG CTCCTGCCCACAGGCATCCGAGCCGAGCAGGTGAACAAGAAGGGAATCGAATTCTACAGT GATCTTATCGATGCCCTTCTGAGCAGCAACATCACTCCCATCGTGACCTTGCACCACTGG GATCTGCCACAGCTGCTCCAGGTCAAATACGGTGGGTGGCAGAATGTGAGCATGGCCAAC TACTTCAGAGACTACGCCAACCTGTGCTTTGAGGCCTTTGGGGACCGTGTGAAGCACTGG ATCACGTTCAGTGATCCTCGGGCAATGGCAGAAAAAGGCTATGAGACGGGCCACCATGCG GGAATTTCACTGAACTGTGACTGGGGGGAACCTGTGGACATTAGTAACCCCAAGGACCTA GAGGCTGCCGAGAGATACCTACAGTTCTGTCTGGGCTGGTTTGCCAACCCCATTTATGCC GAGATGTCGAGGTTACCGGTGTTCTCACTCCAGGAGAAGAGCTACATTAAAGGCACATCC GATTTCTTGGGATTAGGTCATTTTACTACTCGGTACATCACGGAAAGGAACTACCCCTCC CGCCAGGGCCCAGCTACCAGAACGATCGTGACTTGATAGAGCTGGTTGACCCAAACTGG CCAGATCTGGGGTCTAAATGGCTATATTCTGTGCCATGGGGATTTAGGAGGCTCCTTAAC TTTGCTCAGACTCAATACGGTGATCCTCCCATATATGTGATGGAAAATGGAGCATCTCAA AAATTCCACTGTACTCAATTATGTGATGAGGGGAGAATTCAATACCTTAAAGGATACATA AATGAAATGCTAAAAGCTATAAAAGATGGTGCTAATATAAAGGGGGTATACTTCCTGGTCT GAATTTAACGACAGAAATAAGCCTCGCTATCCAAAGGCTTCAGTTCAATATTACAAGAAG ATTATCATTGCCAATGGGTTTCCCAATCCAAGAGAGGTGGAAAGTTGGTACCTCAAAGCT TTGGAAACTTGCTCTATCAACAATCAGATGCTTGCTGCAGAGCCTTTGCTAAGTCACATG $\tt GTTCTACTAATGCTCCTCCTGAGGAGGCAGAGC\underline{TGA}GACAGGATTATCAATTTTGGAGCT$ TCATAAGAGAATCTTCAGGATCTTCCTCCCTTTTCTGCTTTGAGGGTTTCCATACATTGC ATTTAAGAATTAGAAAATAAAAATAAGCAGAAATTA

363/392

FIGURE 348

MKPVWVATLLWMLLLVPRLGAARKGSPEEASFYYGTFPLGFSWGVGSSAYQTEGAWDQDG KGPSIWDVFTHSGKGKVLGNETADVACDGYYKVQEDIILLRELHVNHYRFSLSWPRLLPT GIRAEQVNKKGIEFYSDLIDALLSSNITPIVTLHHWDLPQLLQVKYGGWQNVSMANYFRD YANLCFEAFGDRVKHWITFSDPRAMAEKGYETGHHAPGLKLRGTGLYKAAHHIIKAHAKT WHSYNTTWRSKQQGLVGISLNCDWGEPVDISNPKDLEAAERYLQFCLGWFANPIYAGDYP QVMKDYIGRKSAEQGLEMSRLPVFSLQEKSYIKGTSDFLGLGHFTTRYITERNYPSRQGP SYQNDRDLIELVDPNWPDLGSKWLYSVPWGFRRLLNFAQTQYGDPPIYVMENGASQKFHC TQLCDEWRIQYLKGYINEMLKAIKDGANIKGYTSWSLLDKFEWEKGYSDRYGFYYVEFND RNKPRYPKASVQYYKKIIIANGFPNPREVESWYLKALETCSINNQMLAAEPLLSHMQMVT EIVVPTVCSLCVLITAVLLMLLRRQS

Important features: Signal peptide: amino acids 1-21

Transmembrane domain: amino acids 541-558

N-glycosylation sites: amino acids 80-84,171-175,245-249

Glycosaminoglycan attachment site: amino acids 72-76

cAMP- and cGMP-dependent protein kinase phosphorylation sites: amino acids 23-27,564-568

Tyrosine kinase phosphorylation sites: amino acids 203-211,347-355,460-468,507-514

N-myristoylation sites: amino acids 44-50,79-85,167-173,225-231,257-263,315-321

Amidation site: amino acids 307-311

Glycosyl hydrolases family 1 active site: amino acids 407-416

Glycosyl hydrolases family 1 N-terminal signature: amino acids 41-56

Motif name Glycosyl hydrolases family: amino acids 37- 67

364/392

FIGURE 349

 ${\tt CGCAAAGCCGCCTCGGGGGGCGCTC}$ GTGTCTCTCTCTGGCCTTGGCCTCTGTGACTATCAGGTCCTCGCGCTGCCGCGCATC CAGGCGTTCAGAAACTCGTTTTCATCTTCTTGGTTTCATCTTAATACCAACGTCATGTCT GGTTCTAATGGTTCCAAAGAAATTCTCACAATAAGGCTCGGACGTCTCCTTACCCAGGT GACTATAAGCCTGTGGAATACACTGCAGTCTCTGTCTTGGCTGGACCCAGGTGGGCAGAT CCTCAGATCAGTGAAAGTAATTTTTCTCCCAAGTTTAACGAAAAGGATGGGCATGTTGAG AGAAAGAGCAAGAATGGCCTGTATGAGATTGAAAATGGAAGACCGAGAAATCCTGCAGGA CGGACTGGACTGGTGGGCCGGGGGCTTTTGGGGCCGATGGGGCCCAAATCACGCTGCAGAT CCCATTATAACCAGATGGAAAAGGGATAGCAGTGGAAATAAAATCATGCATCCTGTTTCT GGGAAGCATATCTTACAATTTGTTGCAATAAAAAGGAAAGACTGTGGAGAATGGGCAATC CCAGGGGGGATGGTCGATCCAGGAGAGAGATTAGTGCCACACTGAAAAGAGAATTTGGT GAGGAAGCTCTCAACTCCTTACAGAAAACCAGTGCTGAGAAGAGAGAAATAGAGGAAAAG TTGCACAAACTCTTCAGCCAAGACCACCTAGTGATATATAAGGGATATGTTGATGATCCT CGAAACACTGATAATGCATGGATGGAGACAGAAGCTGTGAACTACCATGACGAAACAGGT GAGATAATGGATAATCTTATGCTAGAAGCTGGAGATGATGCTGGAAAAGTGAAATGGGTG GACATCAATGATAAACTGAAGCTTTATGCCAGTCACTCTCAATTCATCAAACTTGTGGCT GAGAAACGAGATGCACACTGGAGCGAGGACTCTGAAGCTGACTGCCATGCGTTGTAGCTG ATGGTCTCCGTGTAAGCCAAAGGCCCACAGAGGGGGGCATATACTGAAAAGAAGGCAGTATC ACAGAATTTATACTATAAAAAGGGCAGGGTAGGCCACTTGGCCTATTTACTTTCAAAACA ATTTGCATTTAGAGTGTTTCGCATCAGAATAACATGAGTAAGATGAACTGGAACACAAAA GCATGGCTTAAATTAAATTTAAACAACTAATGCTCTTTGAAGAATCATAATCAGAATAAA GATAAATTCTTGATCAGCTATA

FIGURE 350

MAGRLLGKALAAVSLSLALASVTIRSSRCRGIQAFRNSFSSSWFHLNTNVMSGSNGSKEN SHNKARTSPYPGSKVERSQVPNEKVGWLVEWQDYKPVEYTAVSVLAGPRWADPQISESNF SPKFNEKDGHVERKSKNGLYEIENGRPRNPAGRTGLVGRGLLGRWGPNHAADPIITRWKR DSSGNKIMHPVSGKHILQFVAIKRKDCGEWAIPGGMVDPGEKISATLKREFGEEALNSLQ KTSAEKREIEEKLHKLFSQDHLVIYKGYVDDPRNTDNAWMETEAVNYHDETGEIMDNLML EAGDDAGKVKWVDINDKLKLYASHSQFIKLVAEKRDAHWSEDSEADCHAL

Important features of the protein:

Signal peptide:

1-20

Transmembrane domain:

None

N-glycosylation site:

55-59

cAMP- and cGMP-dependent protein kinase phosphorylation site: 179-183

N-myristoylation site:

53-59, 56-62

mutT domain signature:

215-235

FIGURE 351

CCTCTGTCTGTGCTCCCATCCCAGGGAGTATAGGTGGAGCCCTCCAGAGCCCATGGACAGG GCATGCTGGGGCTGGGCCAGCCCCAGCGGTGTCTCTAAGGCACCCCTGGGATCCCCACTG AGCTGGCCTACTTCAGACAGCCAGGCCCACCCCTCTGGCCCCCTTAGTGTCCAGCTCGT $\tt GGCCCCTTGGCATTTCCACAAGACGCCAAG\underline{ATG}GAGATTCCCATGGGGACCCAGGGCTGC$ CAGGCAGCTCTCTACATCCAGAAGATTCCAGAGCAGCCTCAAAAGAACCAGGACCTTCTC CTGTCAGTCCAGGGTGTCCCAGACACCTTCCAGGACTTCAACTGGTACCTGGGGGAGGAG ACGTACGGAGGCACGAGGCTATTTACCTACATCCCTGGGATACAACGGCCTCAGAGGGAT GGCAGTGCCATGGGACAGCGAGACATCGTGGGCTTCCCCAATGGTTCCATGCTGCTGCGC CGCGCCCAGCCTACAGACAGTGGCACCTACCAAGTAGCCATTACCATCAACTCTGAATGG ACTATGAAGGCCAAGACTGAGGTCCAGGTAGCTGAAAAGAATAAGGAGCTGCCCAGTACA ${\tt CACCTGCCCACCAACGCTGGGATCCTGGCGGCCCACCATCATTGGATCTCTTGCTGCCGGG}$ GCCCTTCTCATCAGCTGCATTGCCTATCTCCTGGTGACAAGGAACTGGAGGGGCCAGAGC CCAGTGCCTTCAGTGACGCCCAGCACATGGATGGCGACCACAGAGAAGCCAGAATTGGGC CCTGCTCATGATGCTGGTGACAACAACATCTATGAAGTGATGCCCTCTCCAGTCCTCCTG GTGTCCCCCATCAGTGACACAAGGTCCATAAACCCAGCCCGGCCCCTGCCCACACCCCCA CACCTGCAGGCGGAGCCAGAAACCACCAGTACCAGCAGGACCTGCTAAACCCCGACCCT $\tt GCCCCTACTGCCAGCTGGTGCCAACTTCC\underline{TGA} \\ \tt TGGGTCCTGGGCCAGGCCAGCCAGGGA$ GAAGACAAGGCCCCAGCCCTCCTCTGGGAGCCTCACACCTGAGACCAGCAGGACAAGGCC ATTGGGGGCTGTGGGGCCATGAGGTGGACTCAGCCAAAGACTCAGCAGCACATGGGGCA GGTGTCCTGGCAGGGGGACAGGAGACTGTAACAGGCCCAGGTCCTTGTGCAGCCCCTGAA TGCACGCCCGCCTTCGGTCTGTTCCTTCAAGCAAGCTGGCCTGGGCCATGTGCCTGTGAA AGGCAGGCTCTGGCCCCTTTCCATGCCAAAGTCCCCCAAGATCTGGATATCTGGGGACAA ATGCCCTACCCCAACTCCACTAGTGACCCTCAGAGTCTTCTCCCCTTAGGACAAGGCAGA CACCCCACCATGCGGGCCTCAGGTGGCAGAGAGGGCCCAGCCTCACAGGCCTGTGGCCCCA AGCCCCTCTCAGAACCTGCTGCCAGCTGCTGGTCTTGGCCCCCACCCTGAATCTTACTGA **GCA**

367/392

FIGURE 352

MEIPMGTQGCFSKSLLLSASILVLWMLQGSQAALYIQKIPEQPQKNQDLLLSVQGVPDTF QDFNWYLGEETYGGTRLFTYIPGIQRPQRDGSAMGQRDIVGFPNGSMLLRRAQPTDSGTY QVAITINSEWTMKAKTEVQVAEKNKELPSTHLPTNAGILAATIIGSLAAGALLISCIAYL LVTRNWRGQSHRLPAPRGQGSLSILCSAVSPVPSVTPSTWMATTEKPELGPAHDAGDNNI YEVMPSPVLLVSPISDTRSINPARPLPTPPHLQAEPENHQYQQDLLNPDPAPYCQLVPTS

Important features of the protein: Signal peptide:
Amino acids 1-32

Transmembrane domain: Amino acids 159-178

N-glycosylation site: Amino acids 104-108

N-myristoylation sites: Amino acids6-12;29-35;55-61;91-97;157-163;165-171

368/392

FIGURE 353

 $\tt CTTCAGAACAGGTTCTCCTTCCCCAGTCACCAGTTGCTCGAGTTAGAATTGTCTGCA{\color{red} \underline{A}}{\color{blue} \underline{T}}{\color{blue} \underline{G}}$ GCCGCCCTGCAGAAATCTGTGAGCTCTTTCCTTATGGGGACCCTGGCCACCAGCTGCCTC $\tt CTTCTCTTGGCCCTCTTGGTACAGGGAGGAGCAGCTGCGCCCATCAGCTCCCACTGCAGG$ CTTGACAAGTCCAACTTCCAGCAGCCCTATATCACCAACCGCACCTTCATGCTGGCTAAG GAGGCTAGCTTGGCTGATAACAACACAGACGTTCGTCTCATTGGGGAGAAACTGTTCCAC GGAGTCAGTATGAGCGCTGCTATCTGATGAAGCAGGTGCTGAACTTCACCCTTGAA GAAGTGCTGTTCCCTCAATCTGATAGGTTCCAGCCTTATATGCAGGAGGTGGTGCCCTTC CTGGCCAGGCTCAGCAACAGGCTAAGCACATGTCATATTGAAGGTGATGACCTGCATATC CAGAGGAATGTGCAAAAGCTGAAGGACACAGTGAAAAAGCTTGGAGAGAGTGGAGAGATC AAAGCAATTGGAGAACTGGATTTGCTGTTTATGTCTCTGAGAAATGCCTGCATT<u>TGA</u>CCA GAGCAAAGCTGAAAAATGAATAACTAACCCCCTTTCCCTGCTAGAAATAACAATTAGATG CCCCAAAGCGATTTTTTTAACCAAAAGGAAGATGGGAAGCCAAACTCCATCATGATGGG TGGATTCCAAATGAACCCCTGCGTTAGTTACAAAGGAAACCAATGCCACTTTTGTTTATA AGACCAGAAGGTAGACTTTCTAAGCATAGATATTTATTGATAACATTTCATTGTAACTGG TGTTCTATACACAGAAAACAATTTATTTTTAAATAATTGTCTTTTTCCATAAAAAAGAT TACTTTCCATTCCTTTAGGGGAAAAAACCCCTAAATAGCTTCATGTTTCCATAATCAGTA CTTTATATTATAAATGTATTATTATTATTATTAAGACTGCATTTTATTATATCATTTT ATTAATATGGATTTATTATAGAAACATCATTCGATATTGCTACTTGAGTGTAAGGCTAA TATTGATATTATGACAATAATTATAGAGCTATAACATGTTTATTTGACCTCAATAAACA CTTGGATATCCC

369/392

FIGURE 354

MAALQKSVSSFLMGTLATSCLLLLALLVQGGAAAPISSHCRLDKSNFQQPYITNRTFMLA KEASLADNNTDVRLIGEKLFHGVSMSERCYLMKQVLNFTLEEVLFPQSDRFQPYMQEVVP FLARLSNRLSTCHIEGDDLHIQRNVQKLKDTVKKLGESGEIKAIGELDLLFMSLRNACI

Important features of the protein: Signal peptide: amino acids 1-33

N-glycosylation sites: amino acids 54-58, 68-72, 97-101

N-myristoylation sites: amino acids 14-20, 82-88

Prokaryotic membrane lipoprotein lipid attachment site: amino acids 10-21

370/392

FIGURE 355

TGGCCTACTGGAAAAAAAAAAAAAAAAAAAAAAGTCACCCGGGCCCGCGGTGGCCACAA CCCGGGCCAGTCGGATCTCAGCCACGGACGGCGTTTCTCGGACCTCAAAGTGTGCGGGGA CGAAGAGTGCAGCATGTTAATGTACCGTGGGAAAGCTCTTGAAGACTTCACGGGCCCTGA TTGTCGTTTTGTGAATTTTAAAAAAGGTGACGATGTATATGTCTACTACAAACTGGCAGG GGGATCCCTTGAACTTTGGGCTGGAAGTGTTGAACACAGTTTTGGATATTTTCCAAAAGA TTTGATCAAGGTACTTCATAAATACACGGAAGAAGAGCTACATATTCCAGCAGATGAGAC TTTAGGATCTTTGGAACTGGAGGACTCTGTACCTGAAGAGTCGAAGAAGCTGAAGAAGT TTCTCAGCACAGAGAAATCTCCTGAGGAGTCTCGGGGGCGTGAACTTGACCCTGTGCC TGAGCCCGAGGCATTCAGAGCTGATTCAGAGGATGGAGAAGGTGCTTTCTCAGAGAGCAC $\tt CGAGGGGCTGCAGGGACAGCCTCAGCTCAGGAGAGCCACCCTCACACCAGCGGTCCTGC$ GGCTAACGCTCAGGGAGTGCAGTCTTCGTTGGACACTTTTGAAGAAATTCTGCACGATAA ATTGAAAGTGCCGGGAAGCGAAAGCAGAACTGGCAATAGTTCTCCTGCCTCGGTGGAGCG GGAGAAGACAGATGCTTACAAAGTCCTGAAAACAGAAATGAGTCAGAGAGGGAAGTGGACA

FIGURE 356

MAAAPGLLFWLFVLGALWWVPGQSDLSHGRRFSDLKVCGDEECSMLMYRGKALEDFTGPD CRFVNFKKGDDVYVYYKLAGGSLELWAGSVEHSFGYFPKDLIKVLHKYTEEELHIPADET DFVCFEGGRDDFNSYNVEELLGSLELEDSVPEESKKAEEVSQHREKSPEESRGRELDPVP EPEAFRADSEDGEGAFSESTEGLQGQPSAQESHPHTSGPAANAQGVQSSLDTFEEILHDK LKVPGSESRTGNSSPASVEREKTDAYKVLKTEMSQRGSGQCVIHYSKGFRWHQNLSLFYK DCF

Important features of the protein: Signal peptide: amino acids 1-22

N-glycosylation site: amino acids 294-298

cAMP- and cGMP-dependent protein kinase phosphorylation site: amino acids 30-34

Tyrosine kinase phosphorylation site: amino acids 67-76

N-myristoylation sites: amino acids 205-211, 225-231, 277-283

Amidation site: amino acids 28-32

372/392

FIGURE 357

ACGCGCCCGGCAGCTGTCCACCGATCCCGGCCACCCCGGCCACCCCCGCGA $\tt GCCC{\color{red} ATG} GAGGCTCCGGGACCCCGCGCCTTGCGGACTGCGCTCTGTGGCGGCTGTTGCTG$ AGCCCTGATCCGCCTGAATATCTGGCCGGCGGTCCAAGGGGCCTGCAAACAGCTGGAGGT CTGTGAGCACTGCGTGGAGGGAGACAGAGCGCGCAATCTCTCCAGCTGCATGTGGGAGCA GAAGACAGTCACAACAGGGAGCCCCCCAGTCCCTGAGGCCCACAGCCCTGGATTTGACGG ${\tt GCTGCACTTCCTCAAGGCCAAGGACACCTACCAGACGCTG{\tt TGA}GTACCTGGCCAGCA}$ GCAAGTACCTGAGTCCCAGCTCACCTCCTGGTTCCTGCCCCACCGTTCCCCTTCAGTACC CAGGGTGCTGTCTCCCATGGGCAAGCCCTCAGGACGGTGACAGCGTGCTCCATGTGAG · CCACACCCCTTTTGTCTCCTCCAGTTGGGGTGTTTCCTTTGTCAGATGTTGGCTGGGACC AGGACTCAGCCTGGGCCAGTCTAGGAGCCCAGCTGAGCCCTCCTGTGTCTTTTCCCTTCA TGCTGCCAGCAGGAAGAACCAGTAGGTGCCAGCCCAGGCAAGCCTGTGGCCCGCGTT TCTGTGGCTGTGGGCAGGAGCTGGGCCTTGTGTCTAGTTGGGTTTTGCTCTGAGAAGGGG AGCTGTGCCTGAGGCCCTCTGTGTGCCGTGTGTGCTGTGGGGCGGGTCGCCACAGCCTGT GAGGCAGTGTCACCTTCCTGAGTGTCCTCTTTGGCCTCTGCAGAATCTGACCCCTTTGGG ${\tt CCTGGACTCCATCCTGAGGGGAAAGGAGGATGCAGAGGGTGGCCTCTGGGCACCCTTGTG}$ GGTAAGCGGGGGGGGGGGGGAAAAACTCTGGCCGCCAGTTTTTTGGCTCCTGCGGGCA CCAAGCAGGCTCAGTGTCTGATGCCTGACATCTCCTCCTGTCCTGGGCCTGGAACCTGCA GCTGAGAAAATCCCTCAACCACCTCGTCTCCTCCATCGCCCCTGCTGGGCCCCCCAGCCT GACAGTGGGTTGTATGCCTGCCTCTTTCCACCAACTGGCCTGGGCACTGCCCCCAAATAA AAAAAAAAAAAAACCA

373/392

FIGURE 358

MEAPGPRALRTALCGGCCCLLLCAQLAVAGKGARGFGRGALIRLNIWPAVQGACKQLEVC EHCVEGDRARNLSSCMWEQCRPEEPGHCVAQSEVVKEGCSIYNRSEACPAAHHHPTYEPK TVTTGSPPVPEAHSPGFDGASFIGGVVLVLSLQAVAFFVLHFLKAKDSTYQTL

Important features of the protein:

Signal peptide:

1-29

Transmembrane domain:

141-160

N-glycosylation site:

71-75, 103-107

Tyrosine kinase phosphorylation site:

164-171

N-myristoylation site:

15-21

374/392

FIGURE 359

375/392

FIGURE 360

MARILLLFLPGLVAVCAVHGIFMDRLASKKLCADDECVYTISLASAQEDYNAPDCRFINV KKGQQIYVYSKLVKENGAGEFWAGSVYGDGQDEMGVVGYFPRNLVKEQRVYQEATKEVPT TDIDFFCE

Important features of the protein:

Signal peptide:

1-14

Transmembrane domain:

None

N-myristoylation site:

84-90

376/392

FIGURE 361

GGCACGAGCCACCACTTACAACCACACACCCTATCCAGAAAC<u>ATG</u>AAGATAAGAAATGCT TGTGCTGTCCTTATTGAAGTACTCCTGTTTATACTTGAAGGAGTTACAGGAGCTCGAAAA ATTTCAACTTTCTCAGGCCCTGGCTCATGGCCGTGCAATCCCAAGTGTGATGGCAGAACT TACAACCCCTCAGAGGAGTGTTGTGTTCATGACACCATCCTGCCCTTTAAGCGGATTAAC CTCTGTGGCCCTAGCTGCACCTACAGGCCCTGCTTTGAGCTCTGCTGTCCTGAGTCCTAT TCATCCCCTATCTCCAGGAACTGTAAAAGCAACAAGATTTTTCATGGAGAAGATATTGAA ${\tt GACAACCAACTTTCTCTTAGGAAAAAAAGTGGTGACCAGCCT} \underline{{\tt TGA}} {\tt GAGTCTGCTTTCTTC}$ $\tt CTGCAAGCACCAGTTCCTGAATGTTCTTACTTGAAGAATGGATACCTGAAGCATTGGGGT$ GCAGTGATATATGTGTCTCATTACAATGCTCCTTTGGATATTGTTTTCCTAAGCATGTGT TGGAATGTTCCCCCATAACTTTCTAAAATTATCCTATTTCAATGCAACTAAAGATAAATG ATCCACAGGACCTTTTCAAGATTTTAGAAGCAGCAAACTATGGCTGAGAGAAAAGACTCT $\tt CTGACCAGGCAAATTGTTCTGCAGTATTCTCCGGGCGTGTAGCTCCCCTGAGTAGTCGCC$ AGGCTGGTCTTGGCTTTGTAATAATACAGCTGCCTTTGAGTCCTCCCTACCCTGTTAGTA ACCCCTTGCCTGCACTGTTGTCCTTACAACCGAAATAAACTGATTAGTTG

377/392

FIGURE 362

MKIRNACAVLIEVLLFILEGVTGARKISTFSGPGSWPCNPKCDGRTYNPSEECCVHDTIL PFKRINLCGPSCTYRPCFELCCPESYSPKKKFIVKLKVHGERSHCSSSPISRNCKSNKIF HGEDIEDNQLSLRKKSGDQP

Important features of the protein:

Signal peptide:

1-23

Transmembrane domain:

None

Glycosaminoglycan attachment site:

31-35

N-myristoylation site:

20-26, 34-40

FIGURE 363

ACACTGGCCAAACAAAACGAAAGCACTCCGTGCTGGAAGTAGGAGGAGAGTCAGGACTC CCAGGACAGAGGGCACAAACTACCCAGCACAGCCCCCTCCGCCCCCTCTGGAGGCTGA AGAGGGATTCCAGCCCTGCCACCCACAGACACGGGCTGACTGGGGTGTCTGCCCCCCTT ${\tt GGGGGGGGCAGCACAGGGCCTCAGGCCTGGGTGCCACCTGGCACCTAGAAG{\tt ATG}{\tt CCTGT}}$ GCCCTGGTTCTTGCTGTCCTTGGCACTGGGCCGAAGCCCAGTGGTCCTTTCTCTGGAGAG GCTTGTGGGGCCTCAGGACGCTACCCACTGCTCTCCGGGCCTCTCCTGCCGCCTCTGGGA CAGTGACATACTCTGCCTGCCTGGGGACATCGTGCCTGCTCCGGGCCCCGTGCTGGCGCC TACGCACCTGCAGACAGAGCTGGTGCTGAGGTGCCAGAAGGAGACCGACTGTGACCTCTG TCTGCGTGTGGCTGTCCACTTGGCCGTGCATGGGCACTGGGAAGAGCCTGAAGATGAGGA AAAGTTTGGAGGAGCAGCTGACTCAGGGGTGGAGGCCTAGGAATGCCTCTCCCAGGC CCAAGTCGTGCTCCTTCCAGGCCTACCCTACTGCCCGCTGCGTCCTGCTGGAGGTGCA AGTGCCTGCTGCCCTTGTGCAGTTTGGTCAGTCTGTGGGCTCTGTGGTATATGACTGCTT CGAGGCTGCCCTAGGGAGTGAGGTACGAATCTGGTCCTATACTCAGCCCAGGTACGAGAA GGAACTCAACCACACAGCAGCTGCCTGCCCTGCCCTGGCTCAACGTGTCAGCAGATGG TGACAACGTGCATCTGGTTCTGAATGTCTCTGAGGAGCAGCACTTCGGCCTCTCCCTGTA CTGGAATCAGGTCCAGGGCCCCCAAAACCCCGGTGGCACAAAAACCTGACTGGACCGCA GATCATTACCTTGAACCACACAGACCTGGTTCCCTGCCTCTGTATTCAGGTGTGGCCTCT GGAACCTGACTCCGTTAGGACGAACATCTGCCCCTTCAGGGAGGACCCCCGCGCACACCA ACCGTGCTCGCTGCCCGCAGAAGCGGCACTGTGCTGGCGGGCTCCGGGTGGGGACCCCTG CCAGCCACTGGTCCCACCGCTTTCCTGGGAGAACGTCACTGTGGACAAGGTTCTCGAGTT CCCATTGCTGAAAGGCCACCCTAACCTCTGTGTTCAGGTGAACAGCTCGGAGAAGCTGCA GCTGCAGGAGTGCTTGTGGGCTGACTCCCTGGGGCCTCTCAAAGACGATGTGCTACTGTT GGAGACACGAGGCCCCCAGGACAACAGATCCCTCTGTGCCTTGGAACCCAGTGGCTGTAC CCTGCAGTCAGGCCAGTGTCTGCAGCTATGGGACGATGACTTGGGAGCGCTATGGGCCTG CCCCATGGACAAATACATCCACAAGCGCTGGGCCCTCGTGTGGCCTGGCCTACTCTT TGCCGCTGCGCTTTCCCTCATCCTCTCAAAAAGGATCACGCGAAAGGGTGGCTGAG GCTCTTGAAACAGGACGTCCGCTCGGGGGGCCGCCGCGAGGGGCCGCGCGCCTCCCT ${\tt CTACTCAGCCGATGACTCGGGTTTCGAGCGCCTGGTGGGGCGCCCTGGGCGTCGGCCCTGTG}$ CCAGCTGCCGCTGGCCGTAGACCTGTGGAGCCGTCGTGAACTGAGCGCGCAGGG GCCCGTGGCTTGGTTTCACGCGCAGCGGCGCCAGACCCTGCAGGAGGGCGGCGTGGTGGT CTTGCTCTCTCCCGGTGCGGTGCGCTGTGCAGCGAGTGGCTACAGGATGGGGTGTC CGGGCCCGGGGCGCACGCCGCACGCCTTCCGCGCCTCGCTCAGCTGCGTGCTGCC CGACTTCTTGCAGGGCCGGGCGCCCGGCAGCTACGTGGGGGGCCTGCTTCGACAGGCTGCT CCACCGGACGCCGTACCCGCCCTTTTCCGCACCGTGCCCGTCTTCACACTGCCCTCCCA ACTGCCAGACTTCCTGGGGGCCCTGCAGCAGCCTCGCGCCCCGCGTTCCGGGCGGCTCCA AGAGAGCGGAGCAAGTGTCCCGGGCCCTTCAGCCAGCCCTGGATAGCTACTTCCATCC CCCGGGGACTCCCGCGCCGGGACGCGGGGTGGGACCAGGGGCGGGACCTGGGGCGGGGAA CGGGACTTAAATAAAGGCAGACGCTGTTTTTCTAAAAAAA

379/392

FIGURE 364

MPVPWFLLSLALGRSPVVLSLERLVGPQDATHCSPGLSCRLWDSDILCLPGDIVPAPGPV
LAPTHLQTELVLRCQKETDCDLCLRVAVHLAVHGHWEEPEDEEKFGGAADSGVEEPRNAS
LQAQVVLSFQAYPTARCVLLEVQVPAALVQFGQSVGSVVYDCFEAALGSEVRIWSYTQPR
YEKELNHTQQLPALPWLNVSADGDNVHLVLNVSEEQHFGLSLYWNQVQGPPKPRWHKNLT
GPQIITLNHTDLVPCLCIQVWPLEPDSVRTNICPFREDPRAHQNLWQAARLRLLTLQSWL
LDAPCSLPAEAALCWRAPGGDPCQPLVPPLSWENVTVDKVLEFPLLKGHPNLCVQVNSSE
KLQLQECLWADSLGPLKDDVLLLETRGPQDNRSLCALEPSGCTSLPSKASTRAARLGEYL
LQDLQSGQCLQLWDDDLGALWACPMDKYIHKRWALVWLACLLFAAALSLILLLKKDHAKG
WLRLLKQDVRSGAAARGRAALLLYSADDSGFERLVGALASALCQLPLRVAVDLWSRRELS
AQGPVAWFHAQRRQTLQEGGVVVLLFSPGAVALCSEWLQDGVSGPGAHGPHDAFRASLSC
VLPDFLQGRAPGSYVGACFDRLLHPDAVPALFRTVPVFTLPSQLPDFLGALQQPRAPRSG
RLQERAEQVSRALQPALDSYFHPPGTPAPGRGVGPGAGPGAGDGT

Signal sequence:

amino acids 1-20

Transmembrane domain:

amino acids 453-475

N-glycosylation sites:

amino acids 118-121, 186-189, 198-201, 211-214, 238-241, 248-251, 334-337, 357-360, 391-394

Glycosaminoglycan attachment site:

amino acids 583-586

cAMP- and cGMP-dependent protein kinase phosphorylation site: amino acids 552-555

N-myristoylation sites:

amino acids 107-112, 152-157, 319-324, 438-443, 516-521, 612-617, 692-697, 696-701, 700-705

380/392

FIGURE 365

AATAGAAGTCCTCAGGACGGGCAGAGGTGGCCGGCGGGCCGGCTGACTGCGCCTCTGC TTTCTTTCCATAACCTTTTCTTTCGGACTCGAATCACGGCTGCTGCGAAGGGTCTAGTTC CGGACACTAGGGTGCCCGAACGCGCTGATGCCCCGAGTGCTCGCAGGGCTTCCCGCTAAC ${\tt CATGCTGCCGCCGCCGCCGCAGCTGCCTTGGCGCTGCTGCTGCTACTGCT}$ GGTGGTGCTGACGCCCCCCGACCGGCGCAAGGCCATCCCCAGGCCCAGATTACCTGCG GCGCGGCTGGATGCGGCTGCTAGCGGAGGGCGAGGGCTGCGCTCCCTGCCGGCCAGAAGA GTGCGCCGCGCGCGGGCTGCCTGGCGGCGAGGGTGCGCGACGCGTGCGGCTGCTG GGAATGCGCCAACCTCGAGGGCCAGCTCTGCGACCTGGACCCCAGTGCTCACTTCTACGG GCACTGCGGCGAGCAGCTTGAGTGCCGGCTGGACACAGGCGGCGACCTGAGCCGCGGAGA GGTGCCGGAACCTCTGTGTGCCTGTCGTTCGCAGAGTCCGCTCTGCGGGTCCGACGGTCA CACCTACTCCCAGATCTGCCGCCTGCAGGAGGCGGCCCGCGCTCGGCCCGATGCCAACCT CACTGTGGCACACCCGGGGCCCTGCGAATCGGGGCCCCAGATCGTGTCACATCCATATGA CACTTGGAATGTGACAGGGCAGGATGTGATCTTTGGCTGTGAAGTGTTTGCCTACCCCAT GGCCTCCATCGAGTGGAGGAAGGATGGCTTGGACATCCAGCTGCCAGGGGATGACCCCCA CATCTCTGTGCAGTTTAGGGGTGGACCCCAGAGGTTTGAGGTGACTGGCTGCAGAT . CCAGGCTGTGCGTCCCAGTGATGAGGGCACTTACCGCTGCCTTGGCCGCAATGCCCTGGG TCAAGTGGAGGCCCCTGCTAGCTTGACAGTGCTCACACCTGACCAGCTGAACTCTACAGG ${\tt TGACGATTACTAC} \underline{{\tt TAG}} {\tt GTCCAGAGCTCTGGCCCATGGGGGTGAGCGGCTATAGTGT}$ ${\tt TCATCCCTGCTCTTGAAAAGACCTGGAAAGGGGAGCAGGGTCCCTTCATCGACTGCTTTC}$ ATGCTGTCAGTAGGGATGATCATGGGAGGCCTATTTGACTCCAAGGTAGCAGTGTGGTAG GATAGAGACAAAAGCTGGAGGAGGGTAGGGAGAGAAGCTGAGACCAGGACCGGTGGGGTA CAAAGGGGCCCATGCAGGAGATGCCCTGGCCAGTAGGACCTCCAACAGGTTGTTTCCCAG GCTGGGGTGGGGCCTGAGCAGACACAGAGGTGCAGCACCAGGATTCTCCACTTCTTCC AGCCCTGCTGGGCCACAGTTCTAACTGCCCTTCCTCCCAGGCCCTGGTTCTTGCTATTTC $\tt CTGGTCCCCAACGTTTATCTAGCTTGTTTGCCCTTTCCCCAAACTCATCTTCCAGAACTT$ TTCCCTCTCCTAAGCCCCAGTTGCACCTACTAACTGCAGTCCCTTTTGCTGTCTGCCG TCTTTTGTACAAGAGAGAACAGCGGAGCATGACTTAGTTCAGTGCAGAGAGATTT

381/392

FIGURE 366

MLPPPRPAAALALPVLLLLLVVLTPPPTGARPSPGPDYLRRGWMRLLAEGEGCAPCRPEE CAAPRGCLAGRVRDACGCCWECANLEGQLCDLDPSAHFYGHCGEQLECRLDTGGDLSRGE VPEPLCACRSQSPLCGSDGHTYSQICRLQEAARARPDANLTVAHPGPCESGPQIVSHPYD TWNVTGQDVIFGCEVFAYPMASIEWRKDGLDIQLPGDDPHISVQFRGGPQRFEVTGWLQI QAVRPSDEGTYRCLGRNALGQVEAPASLTVLTPDQLNSTGIPQLRSLNLVPEEEAESEEN DDYY

Important features of the protein:

Signal peptide:

1-30

Transmembrane domain:

None

N-glycosylation site:

159-163, 183-187, 277-281

Tyrosine kinase phosphorylation site:

244-252

N-myristoylation site:

52-58, 66-72, 113-119, 249-255

Kazal-type serine protease inhibitor domain:

121-168

Immunoglobulin domain:

. 186-255

Insulin-like growth factor binding proteins:

53-90

382/392

FIGURE 367

383/392

FIGURE 368

MERGAGAKLLPLLLLLRATGFTCAQTDGRNGYTAVIEVTSGGPWGDWAWPEMCPDGFFAS GFSLKVEPPQGIPGDDTALNGIRLHCARGNVLGNTHVVESQSGSWGEWSEPLWCRGGAYL VAFSLRVEAPTTLGDNTAANNVRFRCSDGEELQGPGLSWGDFGDWSDHCPKGACGLQTKI QGPRGLGDDTALNDARLFCCRS

Important features of the protein:

Signal peptide:

1-24

Transmembrane domain:

None

N-myristoylation site:

41-47

89-95

156-162

Growth factor and cytokines receptors family signature 2: 103-110

384/392

FIGURE 369

GCCAACACTGGCCAAACCTCGGAGACCGTCCTGCGCTCTCTGGAGACGCGCTGTCCGCGC CCAGGGTGGTGCC<u>ATG</u>TGGGGCGCTCGCCGCTCGTCCTCCTCATCCTGGAACGCCGC GTACTGCCACGGCTGGACGCGCAGGGCGTCTGGCGCATCGGCTTCCAGTGTCCCGA GCGCTTCGACGCCGCGCGCCACCATCTGCTGCGCAGCTGCGCGTTGCGCTACTGCTG TGGCGAGCCTGGCCGGGCGGACAAAGACGCCCCGACGCTCGGCAGTGCCCATCTACGT GCCGTTCCTCATTGTTGGCTCCGTGTTTGTCGCCTTTATCATCTTGGGGTCCCTGGTGGC AGCCTGTTGCTGCAGATGTCTCCGGCCTAAGCAGGATCCCCAGCAGAGCCGAGCCCCAGG GGGTAACCGCTTGATGGAGACCATCCCCATGATCCCCAGTGCCAGCACCTCCCGGGGGTC GTCCTCACGCCAGTCCAGCACAGCTGCCAGTTCCAGCTCCAGCGCCAACTCAGGGGCCCG GGCGCCCCAACAGGTCACAGACCAACTGTTGCTTGCCGGAAGGGACCATGAACAACGT GTATGTCAACATGCCCACGAATTTCTCTGTGCTGAACTGTCAGCAGGCCACCCAGATTGT GCCACATCAAGGGCAGTATCTGCATCCCCCATACGTGGGGTACACGGTGCAGCACGACTC TGTGCCCATGACAGCTGTGCCACCTTTCATGGACGCCTGCAGCCTGGCTACAGGCAGAT TCAGTCCCCTTCCCTCACACCAACAGTGAACAGAAGATGTACCCAGCGGTGACTGTATA ACCGAGAGTCACTGGTGGGTTCCTTTACTGAAGGGAGACGAAGGCAGGGGTGGATTTTCG AGGTGGAAGT

FIGURE 370

MWGARRSSVSSSWNAASLLQLLLAALLAAGARASGEYCHGWLDAQGVWRIGFQCPERFDG GDATICCGSCALRYCCSSAEARLDQGGCDNDRQQGAGEPGRADKDGPDGSAVPIYVPFLI VGSVFVAFIILGSLVAACCCRCLRPKQDPQQSRAPGGNRLMETIPMIPSASTSRGSSSRQ SSTAASSSSSANSGARAPPTRSQTNCCLPEGTMNNVYVNMPTNFSVLNCQQATQIVPHQG QYLHPPYVGYTVQHDSVPMTAVPPFMDGLQPGYRQIQSPFPHTNSEQKMYPAVTV

Important features of the protein:

Signal peptide:

1-33

Transmembrane domain:

54-78

N-glycosylation site:

223-226

cAMP- and cGMP-dependent protein kinase phosphorylation site: 5-8

N-myristoylation site:

3-8, 30-35, 60-65, 86-91, 132-137, 211-216, 268-273

Prokaryotic membrane lipoprotein lipid attachment site: 128-138

386/392

FIGURE 371

CACCAGACAGCACTCCAGCACTCTGTTTGGGGGGCATTCGAAACAGCAAAATCACTCATA AAAGGCAAAAAATTGCAAAAAAAATAGTAATAACCAGCATGGCACTAAATAGACCATGA AAAGACATGTGTGCAGTATGAAAATTGAGACAGGAAGGCAGAGTGTCAGCTTGTTCCA CCTCAGCTGGGA<u>ATG</u>TGCATCAGGCAACTCAAGTTTTTCACCACGGCATGTGTCTGTGAA TGTCCGCAAAACATTCTCTCTCCCCAGCCTTCATGTGTTAACCTGGGGATGATGTGGACC TGGGCACTGTGGATGCTCCCTTCACTCTGCAAATTCAGCCTGGCAGCTCTGCCAGCTAAG CCTGAGAACATTTCCTGTGTCTACTACTATAGGAAAAATTTAACCTGCACTTGGAGTCCA GGAAAGGAAACCAGTTATACCCAGTACACAGTTAAGAGAACTTACGCTTTTGGAGAAAAA CATGATAATTGTACAACCAATAGTTCTACAAGTGAAAATCGTGCTTCGTGCTCTTTTTTC CTTCCAAGAATAACGATCCCAGATAATTATACCATTGAGGTGGAAGCTGAAAATGGAGAT GGTGTAATTAAATCTCATATGACATACTGGAGATTAGAGAACATAGCGAAAACTGAACCA CCTAAGATTTTCCGTGTGAAACCAGTTTTGGGCATCAAACGAATGATTCAAATTGAATGG ATAAAGCCTGAGTTGGCGCCTGTTTCATCTGATTTAAAATACACACTTCGATTCAGGACA GTCAACAGTACCAGCTGGATGGAAGTCAACTTCGCTAAGAACCGTAAGGATAAAAACCAA ACGTACAACCTCACGGGGCTGCAGCCTTTTACAGAATATGTCATAGCTCTGCGATGTGCG GTCAAGGAGTCAAAGTTCTGGAGTGACTGGAGCCAAGAAAAAATGGGAATGACTGAGGAA GAAGCTCCATGTGGCCTGGAACTGTGGAGAGTCCTGAAACCAGCTGAGGCGGATGGAAGA AGGCCAGTGCGGTTGTTATGGAAGAGGCAAGAGGGGCCCCAGTCCTAGAGAAAACACTT GGCTACAACATATGGTACTATCCAGAAAGCAACACTAACCTCACAGAAACAATGAACACT ACTAACCAGCAGCTTGAACTGCATCTGGGAGGCGAGAGCTTTTGGGTGTCTATGATTTCT TATAATTCTCTTGGGAAGTCTCCAGTGGCCACCCTGAGGATTCCAGCTATTCAAGAAAA TCATTCAGTGCATTGAGGTCATGCAGGCCTGCGTTGCTGAGGACCAGCTAGTGGTGAAG TGGCAAAGCTCTGCTCTAGACGTGAACACTTGGATGATTGAATGGTTTCCGGATGTGGAC TCAGAGCCCACCACCCTTTCCTGGGAATCTGTGTCTCAGGCCACGAACTGGACGATCCAG CAAGATAAATTAAAACCTTTCTGGTGCTATAACATCTCTGTGTATCCAATGTTGCATGAC AAAGTTGGCGAGCCATATTCCATCCAGGCTTATGCCAAAGAAGGCGTTCCATCAGAAGGT CCTGAGACCAAGGTGGAGAACATTGGCGTGAAGACGGTCACGATCACATGGAAAGAGATT CCCAAGAGTGAGAAAAGGGTATCATCTGCAACTACACCATCTTTTACCAAGCTGAAGGT GGAAAAGGATTCTGTAAGCACGCCCATAGCGAAGTGGAAAAAAACCCCCAAGCCCCAGATA GATGCTATGGATAGACCTGTTGTAGGCATGGCTCCCCCATCTCATTGTGACTTGCAACCT TTGGGGTTTTGGGGGTTAAATGAGAGTGAAGTGACAGTACCTGAGAGGAGAGTCCTGAGG AAATGGAAGGAGTTGTTA<u>TAA</u>TTTGTCCTGGTTAGGCCCTGAATTGACCTCCCGGGAGCT CCCCGACCATCATTCCCAGGAATGGCGTGCCTGGCTTAAAGAGTGAGGAGGAACAGACCC TGTCACCATGACTTCTACTGCCCCTGCCAAATCATGCTTTTGTTTTTCAGTCCACCTTAT CTCCTGACATCTTAAATACTGGGCAAGGCTTGGATTCTTGCTTAGGCTAAATAATTTTTT CTTATGGTAAAATACACGTAAAATATTTTTCCAGTTTAAACATTTGAAAGTGTACAATTT AGTGGCATTAGAAGCATTCACAATATTGTGCAACCATCACCACTATTTCCAGAACTCTTC TATTTCTGCCCAAATAGAAGCCCTATACCCATTCATTAGTCACTCCCCATTCCTCTCCTC CCACAGCCCCTGGCAACTACCAAACTGCTTTGTGTCTCTATGGATTGCCTATTTTGGATA

387/392

FIGURE 372

MCIRQLKFFTTACVCECPQNILSPQPSCVNLGMMWTWALWMLPSLCKFSLAALPAKPENI SCVYYYRKNLTCTWSPGKETSYTQYTVKRTYAFGEKHDNCTTNSSTSENRASCSFFLPRI TIPDNYTIEVEAENGDGVIKSHMTYWRLENIAKTEPPKIFRVKPVLGIKRMIQIEWIKPE LAPVSSDLKYTLRFRTVNSTSWMEVNFAKNRKDKNQTYNLTGLQPFTEYVIALRCAVKES KFWSDWSQEKMGMTEEEAPCGLELWRVLKPAEADGRRPVRLLWKKARGAPVLEKTLGYNI WYYPESNTNLTETMNTTNQQLELHLGGESFWVSMISYNSLGKSPVATLRIPAIQEKSFQC IEVMQACVAEDQLVVKWQSSALDVNTWMIEWFPDVDSEPTTLSWESVSQATNWTIQQDKL KPFWCYNISVYPMLHDKVGEPYSIQAYAKEGVPSEGPETKVENIGVKTVTITWKEIPKSE RKGIICNYTIFYQAEGGKGFCKHAHSEVEKNPKPQIDAMDRPVVGMAPPSHCDLQPGMNH LASLNLSENGAKSTHLLGFWGLNESEVTVPERRVLRKWKELL

Important features of the protein:

Signal peptide:

1-46

Transmembrane domain:

None

N-glycosylation site:

59-63, 69-73, 99-103, 103-107, 125-129, 198-202, 215-219, 219-223, 309-313, 315-319, 412-416, 427-431, 487-491, 545-549, 563-567

N-myristoylation site:

32-38, 137-143, 483-489, 550-556, 561-567

Amidation site:

274-278

Growth factor and cytokines receptors family signature 1: 62-75

Fibronectin type III domain:

54-144

154-247

388/392

FIGURE 373

CCAGGTCCAACTGCACCTCGGTTCTATCGATTGAATTCCCCCGGGGATCCTCTAGAGATCC CTCGACCTCGACCCACGCGTCCGCCAAGCTGGCCCTGCACGGCTGCAAGGGAGGCTCCTG TGGACAGGCCAGGTGGGCCTCAGGAGGTGCCTCCAGGCGGCCAGTGGGCCTGAGGC CCCAGCAAGGGCTAGGGTCCATCTCCAGTCCCAGGACACAGCAGCGGCCACCATGGCCAC GCCTGGGCTCCAGCAGCATCAGCAGCCCCCAGGACCGGGGGAGGCACAGGTGGCCCCCAC ${\tt CACCCGGAGGAGCAGCTCCTGCCCCTGTCCGGGGG}$ ACCCAGAGGAGAAGGCCACCCCGCCTGGAGGCACAGGCCATGAGGGGCTCTCAGGAGGTG CTGCTGATGTGGCTTTTGGCAGTGGGCGGCACAGAGCACGCCTACCGGCCCGGC GTGTGTACCAGCCTTCCTCACCACCTGCGACGGGCACCGGGCCTGCAGCACCTACCGAA CCATTTATAGGACCGCCTACCGCCGCAGCCCTGGGCTGGCCCTGCCAGGCCTCGCTACG CGTGCTGCCCCGGCTGGAAGAGACCAGCGGGCTTCCTGGGGCCTGTGGAGCAGCAATAT GCCAGCCGCCATGCCGGAACGGAGGGAGCTGTGTCCAGCCTGGCCGCTGCCCTG GCTGTCCCCAGCGCTGCATCAACACCGCCGGCAGTTACTGGTGCCAGTGTTGGGAGGGGC ${\tt CCAACCCGACAGGAGTGGACAGTGCAATGAAGGAAGAGTGCAGAGGCTGCAGTCCAGGG}$ TGGACCTGCTGGAGGAGAAGCTGCAGCTGGTGCTGGCCCCACTGCACAGCCTGGCCTCGC AGGCACTGGAGCATGGGCTCCCGGACCCCGGCAGCCTCCTGGTGCACTCCTTCCAGCAGC GCTCCTGCAAGAAAGACTCGTGACTGCCCAGCGCCCCAGGCTGGACTGAGCCCCTCACGC CGCCCTGCAGCCCCATGCCCCTGCCCAACATGCTGGGGGTCCAGAAGCCACCTCGGGGT GACTGAGCGGAAGGCCAGGCAGGCCTTCCTCCTTTTCCTCCTCCCCTTCCCTCGGGAGG CCCCACCCTGGTTACCCCAACGGCATCCCAAGGCCAGGTGGGCCCTCAGCTGAGGGAAGG TACGAGTTCCCCTGCTGGAGCCTGGGACCCATGGCACAGGCCAGGCAGCCCGGAGGCTGG GTGGGGCCTCAGTGGGGGCTGCTGCCTGACCCCCAGCACAATAAAAATGAAACGTGAAAA GACCTGCAGAAGCTTGGCCGCCATGGCCCAACTTGTTTATTGCAGCTTATAATGGTTACAAAT

FIGURE 374

MTDSPPPGHPEEKATPPGGTGHEGLSGGAADVASGVGSGRHRARLPARPLGCVLSRAHGD PVSESFVQRVYQPFLTTCDGHRACSTYRTIYRTAYRRSPGLAPARPRYACCPGWKRTSGL PGACGAAICQPPCRNGGSCVQPGRCRCPAGWRGDTCQSDVDECSARRGGCPQRCINTAGS YWCQCWEGHSLSADGTLCVPKGGPPRVAPNPTGVDSAMKEEVQRLQSRVDLLEEKLQLVL APLHSLASQALEHGLPDPGSLLVHSFQQLGRIDSLSEQISFLEEQLGSCSCKKDS

390/392

FIGURE 375

Wholemount In Situ with PRO1449 Orthologue

7

PRO1449 is expressed in vasculature of many inflamed and diseased tissues

WO 02/00690 PCT/US01/19692

392/392

FIGURE 377

Mouse orthologue of PRO1449 induces ectopic vessels in the eyes of chicken embryos

(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 3 January 2002 (03.01.2002)

PCT

(10) International Publication Number WO 02/000690 A3

								
(51)		tent Classification7:	C07K 1	4/47,		09/808,689	14 March 2001 (14.03.2001)	US
	C12N 15/12, A61	K 38/17, C07K 16/18	5			09/816,744	22 March 2001 (22.03.2001)	US
	.					09/828,366	5 April 2001 (05.04.2001)	US
(21)	International Ap	plication Number:	PCT/US01/1	19692		09/854,208	10 May 2001 (10.05.2001)	US
						09/854,280	10 May 2001 (10.05.2001)	US
(22)	International Fil	ing Date: 20 June	2001 (20.06.2	2001)		09/866,028	25 May 2001 (25.05.2001)	US
						09/866,034	25 May 2001 (25.05.2001)	US
(25)	Filing Language:		Er	nglish		PCT/US01/17092	25 May 2001 (25.05.2001)	US
				_		09/870,574	30 May 2001 (30.05.2001)	US
(26)	Publication Lang	uage:	Er	nglish		PCT/US01/17443	30 May 2001 (30.05.2001)	US
	_			0		PCT/US01/17800	1 June 2001 (01.06.2001)	US
(30)	Priority Data:							
	60/213,637	23 June 2000 (23.06.2000)	US	(71)		signated States except US): GEN	
	60/219,556	20 July 2000 (20.07.2000)	US			S]; 1 DNA Way, South San Franc	cisco,
	60/220,624	25 July 2000 (25.07.2000)	US		CA 94080-4990 (US).	
	60/220,664	25 July 2000 (25.07.2000)	US				
	PCT/US00/20710	28 July 2000 (28.07.2000)	US	(72)	Inventors; and		
	60/222,695	2 August 2000 (02.08.2000)	US	(75)	Inventors/Applicant	ts (for US only): BAKER, K	évin,
	09/643,657	17 August 2000 (17.08.2000)	US			Indian Run Drive, Darnestown,	
	PCT/US00/23522	23 August 2000 (23.08.2000)	US		20878 (US). FERR	ARA, Napoleone [US/US]; #	#7 0 4,
	PCT/US00/23328	24 August 2000 (24.08.2000)	US			e, San Francisco, CA 94109 (
	60/230,978	7 September 2000 (US		GERBER, Hanspe	ter [CH/US]; #5, 1121 Tenne	essee
	60/000,000	15 September 2000 (15.09.2000)	US		Street, San Francisc	o, CA 94107 (US). GERRITS	SEN,
	09/664,610	18 September 2000 (US		Mary, E. [CA/US];	541 Parrott Drive, San Mateo,	, CA
	09/665,350	18 September 2000 (US		94402 (US). GODD	ARD, Audrey [CA/US]; 110 C	ongo
	60/242,922	24 October 2000 (US			o, CA 94131 (US). GODOW	
	09/709,238	8 November 2000 (08.11.2000)	US			5 Orange Court, Hillsborough,	
	PCT/US00/30952					94010 (US). GURN	EY, Austin, L. [US/US]; 1 De	ebbie
		8 November 2000 (08.11.2000)	US		Lane, Belmont, CA	94002 (US). HILLAN, Kennet	h, J.
	PCT/US00/30873					[GB/US]; 64 Seward	d Street, San Francisco, CA 94	4114
		10 November 2000 (10.11.2000)	US		(US). MARSTERS,	Scot, A. [US/US]; 990 Cherry St	treet,
	PCT/US00/32678						0 (US). PAN, James [CA/US];	
		1 December 2000 (US			Belmont, CA 94002 (US). PAG	
	09/747,259	20 December 2000 (20.12.2000)	US]; 1756 Terrace Drive, Belmont,	
	PCT/US00/34956					94002 (US). STEPH	AN, Jean-Philippe, F. [FR/US];	; 320

[Continued on next page]

C Lansdale Avenue, Millbrae, CA 94030 (US). WATAN-

ABE, Colin, K. [US/US]; 128 Corliss Drive, Moraga,

CA 94556 (US). WILLIAMS, P., Mickey [US/US]; 509

Alto Avenue, Haif Moon Bay, CA 94019 (US). WOOD,

William, I. [US/US]; 35 Southdown Court, Hillsborough,

CA 94010 (US). YE, Weilan [CN/US]; 119 Barkentine

Street, Foster City, CA 94404 (US).

(54) Title: COMPOSITIONS AND METHODS FOR THE DIAGNOSIS AND TREATMENT OF DISORDERS INVOLVING ANGIOGENESIS

US

US

US

US

US

20 December 2000 (20.12.2000)

22 January 2001 (22.01.2001)

28 February 2001 (28.02.2001)

28 February 2001 (28.02.2001)

1 March 2001 (01.03.2001)

9 March 2001 (09.03.2001)

(57) Abstract: Compositions and methods are disclosed for stimulating or inhibiting angiogenesis and/or cardiovascularization in mammals, including humans. Pharmaceutical compositions are based on polypeptides or antagonists thereto that have been identified for one or more of these uses. Disorders that can be diagnosed, prevented, or treated by the compositions herein include trauma such as wounds, various cancers, and disorders of the vessels including atherosclerosis and cardiac hypertrophy. In addition, the present invention is directed to novel polypeptides and to nucleic acid molecules encoding those polypeptides. Also provided herein are vectors and host cells comprising those nucleic acid sequences, chimeric polypeptide molecules comprising the polypeptides of the present invention fused to heterologous polypeptide sequences, antibodies which bind to the polypeptides of the present invention and to methods for producing the polypeptides of the present invention.

05/000690

09/767,609

09/796.498

09/802,706

PCT/US01/06520

PCT/US01/06666

- (74) Agents: AGARWAL, Atulya, R. et al.; c/o GENEN-TECH, INC., MS49, 1 DNA Way, South San Francisco, CA 94080-4990 (US).
- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian

patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:

- -- with international search report
- (88) Date of publication of the international search report: 13 March 2003

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

International Application No PCT/US 01/19692

A. CLASSIFICATION OF SUBJECT MATTER
IPC 7 C12N15/12 C07K14/47 C07K16/18 A61K38/17 According to International Patent Classification (IPC) or to both national classification and IPC **B. FIELDS SEARCHED** Minimum documentation searched (classification system followed by classification symbols) I PC $\,7\,$ C12N C07K $\,$ A61K Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practical, search terms used) EPO-Internal C. DOCUMENTS CONSIDERED TO BE RELEVANT Category ° Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No. WO 99 46281 A (BAKER KEVIN P ; CHEN JIAN (US); GENENTECH INC (US); GURNEY AUSTIN () X,L 1-19 16 September 1999 (1999-09-16) see PR0181 X,L US 5 968 744 A (CORLEY-NEIL C ET AL) 1-19 19 October 1999 (1999-10-19) L: priority. the whole document X WO 99 50405 A (GENETICS INST) 1 - 197 October 1999 (1999-10-07) see pk65_4 and seq.ID's 11 and 12 Χ WO 99 43802 A (KATO SEISHI ; KIMURA TOMOKO 1-19 (JP); PROTEGENE INC (JP); SEKINE SHINGO) 2 September 1999-(1999-09-02) see clone HP02239. X Further documents are listed in the continuation of box C. Patent family members are listed in annex. Special categories of cited documents: "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the "A" document defining the general state of the art which is not considered to be of particular relevance Invention "E" earlier document but published on or after the International "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to Involve an inventive step when the document is taken alone "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art. "O" document referring to an oral disclosure, use, exhibition or document published prior to the international filing date but later than the priority date claimed "&" document member of the same patent family Date of the actual completion of the international search Date of mailing of the International search report 29. 11. 2002 21 August 2002 Name and mailing address of the ISA Authorized officer European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Smalt, R Fax: (+31-70) 340-3016

Category Citation X W0 SC	of document, with Indication, where appropriate, of the relevant passages 99 10363 A (WEI YING FEI ; HUMAN GENOME	Relevant to daim No.
X WO		Helevant to claim No.
) SC:	99 10363 A (WEI YING FEI :HUMAN GENOME	
	IENCES INC (US); ROSEN CRAIG A (US);) March 1999 (1999-03-04) e secreted protein 24	1-19
8	99 33979 A (CHIRON CORP) July 1999 (1999-07-08) e whole document	1-19
2	95 29242 A (CHILDRENS MEDICAL CENTER) November 1995 (1995-11-02) e whole document	
4 (0 335 243 A (HARVARD COLLEGE) October 1989 (1989-10-04) e whole document	
RES NEW MAS MA	LKMAN J: "CLINICAL APPLICATIONS OF SEARCH ON ANGIOGENESIS" FOR ENGLAND JOURNAL OF MEDICINE, THE, SSACHUSETTS MEDICAL SOCIETY, WALTHAM, US,	
28 17! 18	1. 333, no. 26, December 1995 (1995-12-28), pages 57-1763, XP000654557 SN: 0028-4793 e whole document	
STI MA JOU NEV VO 1 1 199	AGSBRUN M: "REGULATORS OF ANGIOGENESIS: IMULATORS, INHIBITORS, AND EXTRACELLULAR TRIX" JRNAL OF CELLULAR BIOCHEMISTRY, LISS, N YORK, NY, US, 1. 47, no. 3, November 1991 (1991-11-01), pages-9-200-, XP000616588 SN: 0730-2312. E whole document	
L P	00 53756 A (BOTSTEIN DAVID;BAKER KEVIN ; GENENTECH INC (US); ASHKENAZI AVI J) September 2000 (2000-09-14) e seq.ID.322; L: priority.	1-19
L INC	00 53751 A (BAKER KEVIN P ;GENENTECH C (US); NAPIER MARY A (US); ASHKENAZI A) September 2000 (2000-09-14)	1-21,23, 27-29, 31,32, 34,35
the	e whole document	34,00
(US	01 00828 A (CORIXA CORP ; FANGER GARY R S); RETTER MARC W (US); WANG TONGTONG) January 2001 (2001-01-04)	1-21,23, 27-29, 31,32, 34,35
se	e seq.ID.327	

	A DOCUMENTO CONSIDERADO TO DE PORTO DA PARA CALLARA	PC1/05 01/19692					
C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT							
Category °	Citation of document, with Indication, where appropriate, of the relevant passages	Relevant to daim No.					
E,L	WO 02 08284 A (FERRARA NAPOLEONE ;STEPHAN JEAN PHILIPPE F (US); WILLIAMS P MICKEY) 31 January 2002 (2002-01-31) See seq.ID's 1 and 120. L: priority.	1-35,37, 41					
		·					
		-					

International application No. PCT/US 01/19692

INTERNATIONAL SEARCH REPORT

Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)	
This International Search Report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:	
1. X Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:	
Although claims 20-34, 37 and 41 are directed to a method of treatment of the human/animal body, the search has been carried out and based on the alleged effects of the compound/composition.	
2. X Claims Nos.: because they relate to parts of the International Application that do not comply with the prescribed requirements to such an extent that no meaningful International Search can be carried out, specifically: see FURTHER INFORMATION sheet PCT/ISA/210	
3. Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).	
Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)	
This International Searching Authority found multiple Inventions in this international application, as follows:	
see additional sheet	
As all required additional search fees were timely paid by the applicant, this International Search Report covers all searchable claims.	
2. As all searchable claims could be searched without effort justifying an additional fee, this Authority-did not invite-payment of any additional fee.	
3. As only some of the required additional search fees were timely paid by the applicant, this international Search Report covers only those claims for which fees were paid, specifically claims Nos.:	
4. X No required additional search fees were timely paid by the applicant. Consequently, this International Search Report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.: 1-35, 37, 41 all partially	
Remark on Protest The additional search fees were accompanied by the applicant's protest. No protest accompanied the payment of additional search fees.	

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

Continuation of Box I.2

Present claims 20-28,31,34,35,37, and 41 relate to products defined by reference to a desirable characteristic or property, namely having (ant)agonistic activity towards the protein(s) of claim 1. The application provides no support within the meaning of Article 6 PCT and/or disclosure within the meaning of Article 5 PCT for any such products. In the present case, the claims so lack support, and the application so lacks disclosure, that a meaningful search is impossible. Independent of the above reasoning, the claims also lack clarity (Article 6 PCT). An attempt is made to define the product by reference to a result to be achieved. Again, this lack of clarity in the present case is such as to render a meaningful search impossible. Consequently, the search of said claims, in as far as the (ant)agonists are concerned, has been carried out for those aspects which appear to be clear, supported and disclosed, namely those parts relating to antibodies directed against the protein(s) of claim1.

The applicant's attention is drawn to the fact that claims, or parts of claims, relating to inventions in respect of which no international search report has been established need not be the subject of an international preliminary examination (Rule 66.1(e) PCT). The applicant is advised that the EPO policy when acting as an International Preliminary Examining Authority is normally not to carry out a preliminary examination on matter which has not been searched. This is the case irrespective of whether or not the claims are amended following receipt of the search report or during any Chapter II procedure.

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

This International Searching Authority found multiple (groups of) inventions in this international application, as follows:

Invention 1: 1-35, 37, 41 all partially

Nucleic acid with at least 80% identity to seq.ID.1 and protein encoded thereby, vector, host cell, method for producing the protein, chimeric protein, antibody, and pharmaceutical compositions.

Inventions 2-187: 1-42, all partially, and as far as applicable

Subject matter as defined for invention 1 above, but limited to the respective nucleic acid sequences 3-373 (odd numbers) and the polypeptides encoded thereby (seq.ID's 4-374, even numbers).

For the sake of conciseness, the first subject matter is explicitly defined, the other subject matters are defined by analogy thereto.

Information on patent family members

				FC1/03	01/19692
Patent document cited in search report		Publication date		Patent family member(s)	Publication date
WO 9946281	Α	16-09-1999	US	6391311 B1	21-05-2002
		· · ·	AŬ	3072199 A	27-09-1999
}			CA	2321677 A1	16-09-1999
}			US	2002127584 A1	12-09-2002
			US	2002094416 A1	18-07-2002
			WO	9946281 A2	16-09-1999
			US	2002156006 A1	24-10-2002
			US	2002169284 A1	14-11-2002
1			ZA	9901937 A	17-04-2000
			EP	1241187 A2	18-09-2002
			ΑU	3075099 A	11-10-1999
{			CA Ep	2322792 A1 1064382 A2	23-09-1999 03-01-2001
1			WO	9947677 A2	23-09-1999
}			US	6455283 B1	24-09-2002
			EP	1241183 A2	18-09-2002
			ŪS	2002072496 A1	13-06-2002
			ÜŠ	2002142961 A1	03-10-2002
			US	2002072067 A1	13-06-2002
1			ÜS	2002072092 A1	13-06-2002
			US	2002072497 A1	13-06-2002
			US	2002103125 A1	01-08-2002
	-		US	2002123463 A1	05-09-2002
			US	2002132252 A1	19-09-2002
			US	2002127576 A1	12-09-2002
			US US	2002132253 A1	19-09-2002
			AU	2002160384 A1 735081 B2	31-10-2002 28-06-2001
			AU	1532499 A	15-06-1999
			CA	2309358 A1	03-06-1999
			EP	1241180 A2	18-09-2002
			ĒΡ	1032667 A2	06-09-2000
			WO	9927098 A2	03-06-1999
1			US	6410708 B1	25-06-2002
			EP	1241185 A2	18-09-2002
1			EΡ	1249491 A2	16-10-2002
			E P	1251139 A2	23-10-2002
1			US	2002161199 A1	31-10-2002
ł	,		EP.	1241179 A2	18-09-2002
1			EP Au	1241186 A2 741133 B2	18-09-2002
			AU	3757099 A	22-11-2001 08-11-1999
		•	CA	2324297 A1	28-10-1999
1			EP	1071773 A1	31-01-2001
}			JΡ	2002512032 T	23-04-2002
}			MO	9954467 A1	28-10-1999
{			ÜS	2002147322 A1	10-10-2002
			EP	1241251 A2	18-09-2002
			US	2002119118 A1	29-08-2002
US 5968744	Α	19-10-1999	US US	2002103342 A1 6348576 B1	01-08-2002 19-02-2002
WO 9950405	A	07-10-1999	 AU	3457299 A	18-10-1999
NO 3330703	^	0, 10 1000	CA	2324492 A1	07-10-1999
			EP	1068307 A1	17-01-2001
1			JΡ	2002509722 T	02-04-2002
			WO	9950405 A1	07-10-1999
L					

Information on patent family members

Patent document cited in search report	Publication date		Patent family member(s)	Publication date
WO 9943802 A	02-09-1999	AU CA EP WO JP	2549399 A 2322711 A1 1056847 A2 9943802 A2 2002506615 T	15-09-1999 02-09-1999 06-12-2000 02-09-1999 05-03-2002
WO 9910363 A	04-03-1999	AU CA EP JP WO US	8921598 A 2302387 A1 1017707 A1 2002532054 T 9910363 A1 6410709 B1 2001016647 A1	16-03-1999 04-03-1999 12-07-2000 02-10-2002 04-03-1999 25-06-2002 23-08-2001
WO 9933979 A	08-07-1999	AU EP JP WO US	1929599 A 1042470 A2 2002511231 T 9933979 A2 2002034800 A1	19-07-1999 11-10-2000 16-04-2002 08-07-1999 21-03-2002
WO 9529242 A	02-11-1995	US AU AU BR CN CZ EHU JP NO US US US US US US US US US US US US US	5639725 A 5792845 A 692865 B2 2461795 A 9507479 A 2188813 A1 1149319 A 9603122 A3 0758390 A1 76095 A2 9512173 T 285501 A 9529242 A1 5885795 A 5733876 A 5776704 A 9503419 A	17-06-1997 11-08-1998 18-06-1998 16-11-1995 16-09-1997 02-11-1995 07-05-1997 14-05-1997 19-02-1997 30-06-1997 26-02-1998 02-11-1995 23-03-1999 31-03-1998 07-07-1998 11-01-1996
EP 0335243 A	04-10-1989	LIS AU AU CA DE DK EP I P WO ZA	4900673 A 96844 T 621358 B2 3433189 A 1331356 A1 68910354 D1 68910354 T2 233390 A 0335243 A2 890954 L 3503641 T 90129 A 8909277 A1 8902270 A	13-02-1990 15-11-1993 12-03-1992 16-10-1989 09-08-1994 09-12-1993 03-03-1994 26-11-1990 04-10-1989 28-09-1989 15-08-1991 10-11-1989 05-10-1989 24-12-1991
WO 0053756 A	14-09-2000	AU AU AU AU AU	1748200 A 1749900 A 2192800 A 2224800 A 2399300 A	19-06-2000 12-07-2000 12-07-2000 28-09-2000 28-09-2000

Information on patent family members

			1 701/03	01/19092
Patent document cited in search report	Publication date		Patent family member(s)	Publication date
WO 0053756 A		AU	2495200 A	28-09-2000
		ΑŬ	2596700 A	28-09-2000
		ΑÜ	2600800 A	28-09-2000
		ΑÜ	2879400 A	31-07-2001
		ΑÜ	2883600 A	28-09-2000
	į.	ΑŬ	3072199 A	27-09-1999
		ΑŬ	3107700 A	28-09-2000
		ΑŬ	3381600 A	28-09-2000
		ΑŬ	3514400 A	28-09-2000
		CA	2321677 A1	16-09-1999
		EP	1173563 A1	23-01-2002
		ĔΡ	1159419 A1	05-12-2001
		ĒΡ	1220905 A2	10-07-2002
		ĒΡ	1135485 A2	26-09-2001
		ĒΡ	1141284 A2	10-10-2001
		EP	1159422 A1	05-12-2001
		ĒΡ	1141289 A2	10-10-2001
		ŨS	2002119130 A1	29-08-2002
		WO	0053753 A2	14-09-2000
		MO	0053754 A1	14-09-2000
		WO	0053755 A2	14-09-2000
		WO	0153486 A1	26-07-2001
		WO	0053756 A2	14-09-2000
		WO	0053757 A2	14-09-2000
		WO	0053758 A2	14-09-2000
		บร	2002127584 A1	12-09-2002
		ขร	2002094416 A1	18-07-2002
		WO	0032221 A2	08-06-2000
		MO	0053750 A1	14-09-2000
		MO	0037638 A2	29-06-2000
		WO	0037640 A2	29-06-2000
		WO	0053751 A1	14-09-2000
		MO	0053752 A2	14-09-2000
		US	2002119118 A1	29-08-2002
		US	2002161199 A1	31-10-2002
		บร	2002156006_A1	24-10-2002
•	•	US.	2002169284 A1	14-11-2002
		US	2002072496 A1	13-06-2002
		us	2002142961 A1	03-10-2002
		US	2002072067 A1	13-06-2002
		US	2002072092 A1	13-06-2002
•		US	2002072497 A1	13-06-2002
		US	2002103125 A1	01-08-2002
WO 0053751 A	14-09-2000	AU	1748200 A	10_06_2000
MO 605375T W	14-03-6000	AU	1749200 A 1749900 A	19-06-2000
		AU	2192800 A	12-07-2000 12-07-2000
		AU	2192800 A 2224800 A	28-09-2000
		AU	2399300 A	28-09-2000
		AU	2495200 A	28-09-2000
		AU	2596700 A	28-09-2000
		AU	2600800 A	28-09-2000
		AU	2879400 A	31-07-2001
		AU	2883600 A	28-09-2000
		AU	3072199 A	27-09-1999
		AU	3107700 A	28-09-2000
		AU	3381600 A	28-09-2000
		ΑŬ	3514400 A	28-09-2000
		ΛV	JULTTUU M	- CO-03-2000
orm PCT/ISA/210 (natent family appey) (July 1992)				

INTERNATIONAL SEARCH REPORT Information on patent family members

Patent document cheful in search report cheful in search report (active member(s) Patent family member(s) Patent family member(s) Patent family member(s)			r 		01/19692
EP 1173563 A1 23-01-2002 EP 1159419 A1 05-12-2001 EP 120905 A2 10-07-2002 EP 1135485 A2 26-09-2001 EP 1141284 A2 10-10-2001 EP 1141289 A2 10-10-2001 EP 1141289 A2 10-10-2001 US 2002119130 A1 29-08-2002 W0 0953753 A2 14-09-2000 W0 0953754 A1 14-09-2000 W0 0953755 A2 14-09-2000 W0 0953756 A2 14-09-2000 W0 0953756 A2 14-09-2000 W0 0953757 A2 14-09-2000 W0 0953758 A2 14-09-2000 W0 0953751 A1 18-07-2002 W0 0953751 A1 18-07-2002 W0 0953751 A1 14-09-2000 W0 0953752 A2 14-09-2000 W0 0953751 A1 14-09-2000 W0 0953751 A1 14-09-2000 W0 0953751 A1 14-09-2000 W0 0953752 A2 14-09-2000 W0 0953751 A1 14-09-2000 W0 0953751 A2 29-06-2000 W0 0953751 A1 14-09-2000 W0 0953751 A1 14-09-2000 W0 0953751 A1 14-09-2000 W0 0953751 A2 14-09-2000 W0 0953751 A2 14-09-2000 W0 0953751 A1 14-09-2000 W0 0953751 A2 14-09-2000 W0 0953751 A1 14-09-2000 W0 0953751 A2 14-09-2000 W0 0953751 A2 14-09-2000 W0 0953751 A1 14-09		Publication date			
FP 1159419 A1 65-12-2001 FP 120905 A2 10-07-2002 FP 1135485 A2 26-09-2001 FP 1141284 A2 10-10-2001 FP 1141284 A2 10-10-2001 FP 1159422 A1 65-12-2001 FP 1141289 A2 10-10-2001 FP 1141289 A2 10-10-2000 W0 0053755 A2 14-09-2000 W0 0053755 A2 14-09-2000 W0 0053755 A2 14-09-2000 W0 0053755 A2 14-09-2000 W0 0053757 A2 14-09-2000 W0 0053758 A2 14-09-2000 W0 0053758 A2 14-09-2000 W0 0053759 A2 14-09-2000 W0 0053750 A1 12-09-2000 W0 0053750 A1 12-09-2000 W0 0053751 A1 14-09-2000 W0 0053751 A1 14-09-2000 W0 0053752 A2 14-09-2000 W0 0053752 A2 14-09-2000 W0 0053751 A1 14-09-2000 W0 0053752 A2 14-09-2000 W0 0053752 A2 14-09-2000 W0 0053754 A1 14-09-2000 W0 0053754 A1 14-09-2000 W0 0053754 A1 14-09-2000 W0 0053750 A1 14-09-2000 W0 005080 A1 14-09-2000 W0	WO 0053751	1		2321677 A1	16-09-1999
EP 1126995 A2 10-07-2002 EP 1135485 A2 26-09-2001 EP 1141284 A2 10-10-2001 EP 1141284 A2 10-10-2001 EP 1141289 A2 10-10-2001 EP 1141289 A2 10-10-2001 EP 1141289 A2 10-10-2001 EP 1141289 A2 10-10-2001 W0 0853753 A2 14-09-2000 W0 0853755 A2 14-09-2000 W0 0953756 A2 14-09-2000 W0 0953756 A2 14-09-2000 W0 0953756 A2 14-09-2000 W0 0953757 A2 14-09-2000 W0 0953757 A2 14-09-2000 W0 0953757 A2 14-09-2000 W0 0953758 A2 14-09-2000 W0 0953758 A2 14-09-2000 W0 0953758 A2 14-09-2000 W0 0953758 A2 14-09-2000 W0 0937638 A2 29-06-2000 W0 0937638 A2 29-06-2000 W0 0937638 A2 29-06-2000 W0 0937638 A2 29-06-2000 W0 093751 A1 14-09-2000 W0 0937640 A2 29-06-2000 W0 093751 A1 14-09-2000 W0 0937640 A2 29-06-2000 W0 0937640 A2 29-06-2000 W0 0937640 A2 29-06-2000 W0 0953751 A1 14-09-2000 W0 2002119118 A1 29-08-2002 US 2002119118 A1 29-08-2002 US 200212918 A1 13-06-2002 US 200212918 A1 13-06-2002 US 2002156906 A1 13-06-2002 US 2002169240 A1 13-06-2002 US 2002072496 A1 13-06-2002 US 2002072497 A1 13-06-2002 US 200200072497 A1 13-06-2002 US 2002072497 A1 13-06-2002 US 20020724			EP	1173563 A1	23-01-2002
EP 1135485 A2 26-09-2001 EP 1141284 A2 10-10-2001 EP 1159422 A1 05-12-2001 EP 1141289 A2 10-10-2001 EP 1141289 A2 10-10-2001 US 2002119130 A1 29-08-2002 W0 0053753 A2 14-09-2000 W0 0053755 A2 14-09-2000 W0 0053755 A2 14-09-2000 W0 0153486 A1 26-07-2001 W0 0953756 A2 14-09-2000 W0 0953756 A1 12-09-2002 US 2002127584 A1 12-09-2002 W0 0953756 A1 14-09-2000 W0 0953756 A1 13-06-2002 W0 0953756 A1 13-06-2002 W0 0953756 A1 13-06-2002 W1 0953756 A1 11-04-2002 W1 0953756 A1 1			EP		05-12-2001
EP 1141284 A2 10-10-2001 EP 115422 A1 05-12-2001 EP 115422 A1 05-12-2001 EP 1141289 A2 10-10-2001 US 2002119130 A1 29-08-2002 W0 0653753 A2 14-09-2000 W0 0653754 A1 14-09-2000 W0 053755 A2 14-09-2000 W0 053756 A2 14-09-2000 W0 053757 A2 14-09-2000 W0 053757 A2 14-09-2000 W0 053757 A2 14-09-2000 W0 053758 A1 12-09-2002 US 2002127584 A1 12-09-2002 W0 0937640 A2 29-06-2000 W0 0937638 A2 29-06-2000 W0 0937638 A2 29-06-2000 W0 0937640 A2 29-06-2000 W0 0937640 A2 29-06-2000 W0 0953751 A1 14-09-2000 W0 053751 A1 14-09-2000 W0 053751 A1 14-09-2000 US 2002119118 A1 29-08-2002 US 2002159284 A1 13-06-2002 US 2002169284 A1 13-11-2002 US 2002169284 A1 13-06-2002 US 2002169284 A1 13-12-2001 US 2			EP		
EP 1159422 A1 65-12-2001 EP 1141289 A2 10-10-2001 US 2002119130 A1 29-08-2002 WO 0853753 A2 14-09-2000 WO 0853753 A2 14-09-2000 WO 0853755 A2 14-09-2000 WO 0853755 A2 14-09-2000 WO 0853756 A2 14-09-2000 WO 0853757 A2 14-09-2000 WO 0853757 A2 14-09-2000 WO 0853757 A2 14-09-2000 WO 0853758 A2 14-09-2000 WO 0853758 A2 14-09-2000 WO 0853758 A2 14-09-2000 WO 0853759 A1 12-09-2000 WO 0853759 A1 12-09-2000 WO 0853759 A1 14-09-2000 WO 0853751 A1 14-09-2000 WO 0853752 A2 14-09-2000 WO 0853752 A2 14-09-2000 WO 0853752 A2 14-09-2000 WO 0853754 A1 13-06-2002 US 2002119118 A1- 29-08-2002 US 2002119118 A1- 29-08-2002 US 2002169284 A1 14-11-2002 US 200217296 A1 13-06-2002 US 2002169284 A1 13-06-2002 US 2002072092 A1 13-06-2002 US 2002072094 A1 13-06-2002 US 2002072095 A1 13-06-2002 US 200208889 A1 14-11-2002 US 200208899 A1 13-10-2002 US 200208990 A2 03-01-2002			EP	1135485 A2	
EP 1141289 A2 16-16-2001 US 2002119130 A1 29-08-2002 W0 0653753 A2 14-09-2000 W0 0653754 A1 14-09-2000 W0 0653755 A2 14-09-2000 W0 0653756 A2 14-09-2000 W0 0653757 A2 14-09-2000 W0 0653757 A2 14-09-2000 W0 0653758 A1 14-19-2000 W0 0653758 A1 14-11-2002 W0 200219118 A1 29-08-2002 W0 200219216 A1 13-06-2002 W0 200219216 A1 13-06-2002 W0 200219216 A1 13-06-2002 W0 2002072497 A1 13-06-2002 W0 2002072497 A1 13-06-2002 W0 0100828 A 04-01-2001 W0 0100828 A 04-01-2002 W0 0100828 A 04-01-2002 W0 0100828 A 04-01-2001 W0 0100828			EP		10-10-2001
US 2002119130 A1					05-12-2001
WC 9653753 A2					
MO					
MO					14-09-2000
WO 0153486 A1 26-07-2001					
W0					
W0 0053757 A2				0153486 A1	
W0					
US 200212784 A1 12-09-2002 US 2002094416 A1 18-07-2002 WO 0932221 A2 08-06-2000 WO 0932221 A2 08-06-2000 WO 093750 A1 14-09-2000 WO 0937640 A2 29-06-2000 WO 093751 A1 14-09-2000 WO 0953751 A1 14-09-2000 WO 0953752 A2 14-09-2000 US 200219118 A1- 29-08-2002 US 200219118 A1- 29-08-2002 US 200216199 A1 31-10-2002 US 2002156006 A1 24-10-2002 US 2002156006 A1 13-06-2002 US 2002156006 A1 13-06-2002 US 2002174296 A1 13-06-2002 US 2002072496 A1 13-06-2002 US 2002072067 A1 13-06-2002 US 2002072067 A1 13-06-2002 US 2002072092 A1 13-06-2002 US 2002072092 A1 13-06-2002 US 2002072097 A1 13-06-2002 US 200201637 A1 14-11-2002 US 200201637 A1 11-04-2002 US 2002016399 A1 16-05-2002 US 2002016399 A1 13-12-2001 AU 7197301 A 05-02-2002 AU 7885201 A 08-01-2002 AU 7885201 A 08-01-2002					
US					
WO 003221 A2 08-06-2000 WO 0053750 A1 14-09-2000 WO 0053750 A1 14-09-2000 WO 0037638 A2 29-06-2000 WO 0053751 A1 A1-09-2000 WO 0053751 A1 A1-09-2000 WO 0053752 A2 A1-09-2000 WO 0053752 A2 A1-09-2000 US 2002119118 A1- 29-08-2002 US 2002161199 A1 A1-10-2002 US 2002169284 A1 A1-11-2002 US 2002169284 A1 A1-11-2002 US 2002072496 A1 33-06-2002 US 2002072496 A1 33-06-2002 US 2002072092 A1 33-06-2002 US 2002072092 A1 33-06-2002 US 2002072092 A1 33-06-2002 US 2002072092 A1 33-06-2002 US 2002072097 A1 33-06-2002 US 2002072092 A1 33-06-2002 A1 33-06-2002 US 2002072093 A1 33-06-2002					
WO 0053750 A1					
WO 0037638 A2					
W0	•				
W0					
WO 0053752 A2					
US 2002119118 A1- 29-08-2002 US 200216199 A1 31-10-2002 US 2002165006 A1 24-10-2002 US 2002169284 A1 14-11-2002 US 2002072496 A1 13-06-2002 US 2002072496 A1 13-06-2002 US 2002072092 A1 13-06-2002 US 2002072497 A1 13-06-2002 US 2002103125 A1 01-08-2002 US 2002103125 A1 01-08-2002 US 2002103125 A1 10-08-2002 US 2002168637 A1 14-11-2002 US 2002168637 A1 14-11-2002 US 2002168637 A1 14-11-2002 US 2002168637 A1 14-11-2002 US 20021037 A1 08-08-2002 US 200201037 A1 10-08-2002 US 200201037 A1 08-08-2002 US 2002052027 A1 02-05-2002					
US 2002165199 A1 31-10-2002 US 2002156066 A1 24-10-2002 US 2002169284 A1 14-11-2002 US 2002072496 A1 13-06-2002 US 2002142961 A1 03-10-2002 US 2002072097 A1 13-06-2002 US 2002072097 A1 13-06-2002 US 2002072097 A1 13-06-2002 US 2002072497 A1 13-06-2002 US 2002072497 A1 13-06-2002 US 2002103125 A1 01-08-2002 US 2002103125 A1 01-08-2002 US 2002103125 A1 01-08-2002 US 2002103125 A1 01-08-2002 US 2002103125 A1 13-01-2001 US 2002103125 A1 13-01-2001 US 2002103125 A2 28-09-2002 UN 300201691 A2 28-09-2002 UN 0 0100828 A2 04-01-2001 US 2002168637 A1 14-11-2002 US 2002168637 A1 14-11-2002 US 2002168637 A1 14-11-2002 US 20021691 T2 21-10-2002 US 20020691 T2 21-10-2002 US 20020691 T3 21-10-2002 US 2002058309 A1 16-05-2002 US 2002058309 A1 16-05-2002 US 2002058309 A1 16-05-2002 US 2002058309 A1 16-05-2002 US 2002052027 A1 02-05-2002 US 2002058309 A1 16-05-2002 US 2002058309 A1 16-05-2002 US 2002058309 A1 17-12-2001 AU 7197301 A 05-02-2002 AU 7885201 A 08-01-2002 WO 0193983 A1 13-12-2001 WO 0193983 A1 13-12-2001					
WO 0100828 A 04-01-2001 AU 5902700 A 31-01-2002 WO 0100828 A 04-01-2001 AU 5902700 A 31-01-2002 EP 1196565 A2 17-04-2002 WO 0208284 A 31-01-2002					
US 2002169284 A1 14-11-2002 US 2002072496 A1 13-06-2002 US 2002142961 A1 03-10-2002 US 2002072067 A1 13-06-2002 US 2002072092 A1 13-06-2002 US 2002072497 A1 13-06-2002 US 2002072497 A1 13-06-2002 US 2002103125 A1 01-08-2002 US 2002103125 A1 01-08-2002 US 2002103125 A1 10-08-2002 US 2002103125 A1 11-04-2002 US 2002103125 A1 11-04-2002 US 2002168637 A1 14-11-2002 US 2002168637 A1 14-11-2002 US 2002168637 A1 14-11-2002 US 200210317 A1 24-01-2002 US 20020691 T2 21-10-2002 US 20021037 A1 08-08-2002 US 2002106743 A1 08-08-2002 US 2002105727 A1 02-05-2002 US 200210573 A1 01-08-2002 US 200210573 A1 01-08-2002 US 2002105727 A1 02-05-2002 US 200210573 A1 01-08-2002 US 2002105723 A1 01-08-2002 US 2002105733 A1 01-08-2002 US 2002105703 A1 01-08-2002 US 2002105703 A1 01-08-2002 US 2002105703 A1 01-08-2002 US 2002058309 A1 13-12-2001 AU 7315001 A 30-01-2002 AU 7385201 A 08-01-2002 US 000690 A2 03-01-2002					
US 2002072496 A1 13-06-2002 US 2002142961 A1 03-10-2002 US 2002072092 A1 13-06-2002 US 2002072092 A1 13-06-2002 US 2002072092 A1 13-06-2002 US 2002072497 A1 13-06-2002 US 2002103125 A1 01-08-2002 US 2002103125 A1 10-08-2002 US 2002103125 A1 01-08-2002 US 2002103125 A1 10-08-2002 US 2002103125 A1 11-04-2002 US 2002168637 A1 11-04-2002 US 2002168637 A1 11-04-2002 US 200206901 T2 21-10-2002 US 2002010317 A1 24-01-2002 US 2002106743 A1 08-08-2002 US 2002106743 A1 08-08-2002 US 2002106743 A1 08-08-2002 US 2002106743 A1 08-08-2002 US 2002102723 A1 01-08-2002 AU 7385201 A 08-01-2002 AU 7385201 A 08-01-2002 WO 0193983 A1 13-12-2001 WO 0200690 A2 03-01-2002			US		
US 2002072067 A1 13-06-2002 US 2002072092 A1 13-06-2002 US 2002072497 A1 13-06-2002 US 2002103125 A1 01-08-2002 US 2002103125 A1 01-08-2002 WO 0100828 A 04-01-2001 AU 5902700 A 31-01-2001 BR 0912069 A 27-08-2002 CN 1367829 T 04-09-2002 EP 1196565 A2 17-04-2002 HU 3201757 A2 28-09-2002 HU 3201757 A2 28-09-2002 WO 0100828 A2 04-01-2001 US 2002168637 A1 14-11-2002 TR 200200691 T2 21-10-2002 WO 0208284 A 31-01-2002 US 2002042367 A1 11-04-2002 US 200210137 A1 24-01-2002 US 2002106743 A1 08-08-2002 US 2002058309 A1 10-05-2002 US 2002058309 A1 10-08-2002 US 200210273 A1 01-08-2002 US 200210273 A1 01-08-2002 AU 6531101 A 17-12-2001 AU 7197301 A 05-02-2002 AU 7315001 A 30-01-2002 AU 7885201 A 08-01-2002			US		13-06-2002
US					
WO 0100828 A 04-01-2001 AU 5902700 A 31-01-2001 BR 0012069 A 27-08-2002 CN 1367829 T 04-09-2002 EP 1196565 AZ 17-04-2002 HU 3201757 AZ 28-09-2002 HU 3201757 AZ 28-09-2002 WO 0100828 A 204-01-2001 US 2002168637 A1 14-11-2002 TR 200200691 TZ 21-10-2002 WO 0208284 A 31-01-2002 US 2002042367 A1 11-04-2002 US 200210137 A1 24-01-2002 US 200210137 A1 24-01-2002 US 2002106743 A1 08-08-2002 US 2002052027 A1 02-05-2002 US 2002052027 A1 02-05-2002 US 20020520309 A1 16-05-2002 US 2002102723 A1 01-08-2002 AU 6531101 A 17-12-2001 AU 7197301 A 05-02-2002 AU 7315001 A 30-01-2002 AU 7385201 A 08-01-2002 AU 7385201 A 08-01-2002 WO 0193983 A1 13-12-2001 WO 0200690 AZ 03-01-2002					
WO 0100828 A. 04-01-2001 AU 5902700 A. 31-01-2001 BR 0012069 A 27-08-2002 CN 1367829 T 04-09-2002 EP 1196565 AZ 17-04-2002 HU 3201757 A2 28-09-2002 NO 20016427 A 25-02-2002 WO 0100828 A2 04-01-2001 US 200216837 A1 14-11-2002 TR 200200691 TZ 21-10-2002 WO 20016427 A 25-02-2002 US 20020160137 A1 14-11-2002 US 20020160137 A1 24-01-2002 US 20020160137 A1 108-08-2002 US 2002052027 A1 02-05-2002 US 2002052027 A1 02-05-2002 US 2002052027 A1 01-08-2002 US 20020520309 A1 16-05-2002 US 2002102723 A1 01-08-2002 AU 6531101 A 17-12-2001 AU 7197301 A 05-02-2002 AU 7315001 A 30-01-2002 AU 7885201 A 08-01-2002 WO 0193983 A1 13-12-2001 WO 0200690 A2 03-01-2002					
WO 0100828 A. 04-01-2001 AU 5902700 A. 31-01-2001 BR 0012069 A 27-08-2002 CN 1367829 T 04-09-2002 EP 1196565 AZ 17-04-2002 HU 3201757 AZ 28-09-2002 NO 20016427 A 25-02-2002 WO 0100828 AZ 04-01-2001 US 2002168637 A1 14-11-2002 TR 200200691 TZ 21-10-2002 WO 0208284 A 31-01-2002 US 2002042367 A1 11-04-2002 US 200210137 A1 24-01-2002 US 2002106743 A1 08-08-2002 US 2002058309 A1 16-05-2002 US 2002058309 A1 16-05-2002 US 2002102723 A1 01-08-2002 US 2002102723 A1 01-08-2002 AU 7315001 A 30-01-2002 AU 7385201 A 08-01-2002 AU 7885201 A 08-01-2002 WO 0193983 A1 13-12-2001 WO 0193983 A1 13-12-2001 WO 0193983 A1 13-12-2001 WO 0193983 A1 13-12-2001					
BR 0012069 A 27-08-2002 CN 1367829 T 04-09-2002 EP 1196565 A2 17-04-2002 HU 3201757 A2 28-09-2002 NO 20016427 A 25-02-2002 WO 0100828 A2 04-01-2001 US 2002168637 A1 14-11-2002 TR 200200691 T2 21-10-2002 WO 0208284 A 31-01-2002 US 2002042367 A1 11-04-2002 US 200210137 A1 24-01-2002 US 2002106743 A1 08-08-2002 US 2002058309 A1 16-05-2002 US 20021058309 A1 16-05-2002 US 2002102723 A1 01-08-2002 AU 6531101 A 17-12-2001 AU 7197301 A 05-02-2002 AU 7885201 A 08-01-2002 AU 7885201 A 08-01-2002 WO 0193983 A1 13-12-2001 WO 0193983 A1 13-12-2001 WO 0193983 A1 13-12-2001			U\$ 	2002103125 A1	01-08-2002
BR 0012069 A 27-08-2002 CN 1367829 T 04-09-2002 EP 1196565 A2 17-04-2002 HU 3201757 A2 28-09-2002 NO 20016427 A 25-02-2002 WO 0100828 A2 04-01-2001 US 2002168637 A1 14-11-2002 TR 200200691 T2 21-10-2002 WO 0208284 A 31-01-2002 US 2002042367 A1 11-04-2002 US 200210137 A1 24-01-2002 US 2002106743 A1 08-08-2002 US 2002058309 A1 16-05-2002 US 20021058309 A1 16-05-2002 US 2002102723 A1 01-08-2002 AU 6531101 A 17-12-2001 AU 7197301 A 05-02-2002 AU 7885201 A 08-01-2002 AU 7885201 A 08-01-2002 WO 0193983 A1 13-12-2001 WO 0193983 A1 13-12-2001 WO 0193983 A1 13-12-2001	WO 0100828. A	04-01-2001	AU	5902700. A.	31-01-2001
CN 1367829 T 04-09-2002 EP 1196565 A2 17-04-2002 HU 3201757 A2 28-09-2002 NO 20016427 A 25-02-2002 WO 0100828 A2 04-01-2001 US 2002168637 A1 14-11-2002 TR 200200691 T2 21-10-2002 WO 0208284 A 31-01-2002 US 2002042367 A1 11-04-2002 US 200210137 A1 24-01-2002 US 2002106743 A1 08-08-2002 US 2002052027 A1 02-05-2002 US 2002058309 A1 16-05-2002 US 2002058309 A1 16-05-2002 US 2002102723 A1 01-08-2002 AU 6531101 A 17-12-2001 AU 7197301 A 05-02-2002 AU 7315001 A 30-01-2002 AU 7885201 A 08-01-2002 AU 7885201 A 08-01-2002 WO 0193983 A1 13-12-2001 WO 0200690 A2 03-01-2002	• • • • • • • • • • • • • • • • • • • •				
HU 3201757 A2 28-09-2002 NO 20016427 A 25-02-2002 WO 0100828 A2 04-01-2001 US 2002168637 A1 14-11-2002 TR 200200691 T2 21-10-2002 US 2002010137 A1 24-01-2002 US 2002106743 A1 08-08-2002 US 2002052027 A1 02-05-2002 US 2002052027 A1 02-05-2002 US 2002058309 A1 16-05-2002 US 2002102723 A1 01-08-2002 US 2002102723 A1 01-08-2002 AU 6531101 A 17-12-2001 AU 7197301 A 05-02-2002 AU 7315001 A 30-01-2002 AU 7885201 A 08-01-2002 WO 0193983 A1 13-12-2001 WO 0200690 A2 03-01-2002				1367829 T	
NO 20016427 A 25-02-2002 W0 0100828 A2 04-01-2001 US 2002168637 A1 14-11-2002 TR 200200691 T2 21-10-2002 US 2002010137 A1 124-01-2002 US 2002010137 A1 24-01-2002 US 2002052027 A1 02-05-2002 US 2002058309 A1 16-05-2002 US 2002102723 A1 01-08-2002 US 2002102723 A1 01-08-2002 AU 6531101 A 17-12-2001 AU 7197301 A 05-02-2002 AU 7315001 A 30-01-2002 AU 7885201 A 08-01-2002 AU 7885201 A 08-01-2002 W0 0193983 A1 13-12-2001 W0 0200690 A2 03-01-2002			EP		17-04-2002
WO 0100828 A2 04-01-2001 US 2002168637 A1 14-11-2002 TR 200200691 T2 21-10-2002 WO 0208284 A 31-01-2002 US 2002042367 A1 11-04-2002 US 2002010137 A1 24-01-2002 US 2002106743 A1 08-08-2002 US 2002052027 A1 02-05-2002 US 2002058309 A1 16-05-2002 US 2002102723 A1 01-08-2002 US 2002102723 A1 01-08-2002 AU 6531101 A 17-12-2001 AU 7197301 A 05-02-2002 AU 7315001 A 30-01-2002 AU 7885201 A 08-01-2002 WO 0193983 A1 13-12-2001 WO 0200690 A2 03-01-2002					
US 2002168637 A1 14-11-2002 TR 200200691 T2 21-10-2002 WO 0208284 A 31-01-2002 US 2002042367 A1 11-04-2002 US 2002010137 A1 24-01-2002 US 2002106743 A1 08-08-2002 US 2002052027 A1 02-05-2002 US 2002058309 A1 16-05-2002 US 2002102723 A1 01-08-2002 AU 6531101 A 17-12-2001 AU 7197301 A 05-02-2002 AU 7315001 A 30-01-2002 AU 7885201 A 08-01-2002 WO 0193983 A1 13-12-2001 WO 0200690 A2 03-01-2002					25-02 - 2002
TR 200200691 T2 21-10-2002 WO 0208284 A 31-01-2002 US 2002042367 A1 11-04-2002 US 2002010137 A1 24-01-2002 US 2002106743 A1 08-08-2002 US 2002052027 A1 02-05-2002 US 2002058309 A1 16-05-2002 US 2002102723 A1 01-08-2002 AU 6531101 A 17-12-2001 AU 7197301 A 05-02-2002 AU 7315001 A 30-01-2002 AU 7885201 A 08-01-2002 WO 0193983 A1 13-12-2001 WO 0200690 A2 03-01-2002					
WO 0208284 A 31-01-2002 US 2002042367 A1 11-04-2002 US 2002010137 A1 24-01-2002 US 2002106743 A1 08-08-2002 US 2002052027 A1 02-05-2002 US 2002058309 A1 16-05-2002 US 2002102723 A1 01-08-2002 AU 6531101 A 17-12-2001 AU 7197301 A 05-02-2002 AU 7315001 A 30-01-2002 AU 7885201 A 08-01-2002 AU 7885201 A 08-01-2002 WO 0193983 A1 13-12-2001 WO 0200690 A2 03-01-2002					
US 2002010137 A1 24-01-2002 US 2002106743 A1 08-08-2002 US 2002052027 A1 02-05-2002 US 2002058309 A1 16-05-2002 US 2002102723 A1 01-08-2002 AU 6531101 A 17-12-2001 AU 7197301 A 05-02-2002 AU 7315001 A 30-01-2002 AU 7885201 A 08-01-2002 WO 0193983 A1 13-12-2001 WO 0200690 A2 03-01-2002			IR 	200200691 T2	21-10-2002
US 2002010137 A1 24-01-2002 US 2002106743 A1 08-08-2002 US 2002052027 A1 02-05-2002 US 2002058309 A1 16-05-2002 US 2002102723 A1 01-08-2002 AU 6531101 A 17-12-2001 AU 7197301 A 05-02-2002 AU 7315001 A 30-01-2002 AU 7885201 A 08-01-2002 WO 0193983 A1 13-12-2001 WO 0200690 A2 03-01-2002	WO 0208284 A	31-01-2002	US	2002042367 A1	11-04-2002
US 2002106743 A1 08-08-2002 US 2002052027 A1 02-05-2002 US 2002058309 A1 16-05-2002 US 2002102723 A1 01-08-2002 AU 6531101 A 17-12-2001 AU 7197301 A 05-02-2002 AU 7315001 A 30-01-2002 AU 7885201 A 08-01-2002 WO 0193983 A1 13-12-2001 WO 0200690 A2 03-01-2002					
US 2002052027 A1 02-05-2002 US 2002058309 A1 16-05-2002 US 2002102723 A1 01-08-2002 AU 6531101 A 17-12-2001 AU 7197301 A 05-02-2002 AU 7315001 A 30-01-2002 AU 7885201 A 08-01-2002 WO 0193983 A1 13-12-2001 WO 0200690 A2 03-01-2002			US		
US 2002102723 A1 01-08-2002 AU 6531101 A 17-12-2001 AU 7197301 A 05-02-2002 AU 7315001 A 30-01-2002 AU 7885201 A 08-01-2002 WO 0193983 A1 13-12-2001 WO 0200690 A2 03-01-2002				2002052027 A1	
AU 6531101 A 17-12-2001 AU 7197301 A 05-02-2002 AU 7315001 A 30-01-2002 AU 7885201 A 08-01-2002 WO 0193983 A1 13-12-2001 WO 0200690 A2 03-01-2002					
AU 7197301 A 05-02-2002 AU 7315001 A 30-01-2002 AU 7885201 A 08-01-2002 WO 0193983 A1 13-12-2001 WO 0200690 A2 03-01-2002					
AU 7315001 A 30-01-2002 AU 7885201 A 08-01-2002 WO 0193983 A1 13-12-2001 WO 0200690 A2 03-01-2002			AU		
AU 7885201 A 08-01-2002 WO 0193983 A1 13-12-2001 WO 0200690 A2 03-01-2002					
WO 0193983 A1 13-12-2001 WO 0200690 A2 03-01-2002					
WO 0200690 A2 03-01-2002					
MO 0508588 45 31-01-5005					
\cdot			MU	U2U8288 A2	31-01-2002

INTERNATIONAL SEARCH REPORT Information on patent family members

		Data Afra II			
Patent document cited in search report	Publication date		Patent family member(s)	Publication date	
WO 0208284 A	· -	WO	0208284 A2	31-01-2002	
No 0200201		ÄŬ	1916701 A	16-07-2001	
		ΑŬ	2055401 A	12-06-2001	
		ΑŬ	6391000 A	19-02-2001	
		ΑÜ	6802801 A	24-09-2001	
		AU	6901800 A	12-06-2001	
		EP	1244784 A2	02-10-2002	
		ĔΡ	1250426 A2	23-10-2002	
•		wo.	0140464 A1	07-06-2001	
		WO	0149715 A2	12-07-2001	
		WO	0140466 A2	07-06-2001	
		WO	0168848 A2	20-09-2001	
		ÜS	2002127584 A1	12-09-2002	
		US	2002094416 A1	18-07-2002	
1		US	2002160374 A1	31-10-2002	
}		US	2002146709 A1	10-10-2002	
\		US	2002132240 A1	19-09-2002	
Į.		US	2002142958 A1	03-10-2002	
1		US	2002150976 A1	17-10-2002	
		US	2002132981 A1	19-09-2002	
		US	2002165143 A1	07-11-2002	
1		US	2002156004 A1	24-10-2002	
		US	2002142419 A1	03-10-2002	
		US	2002102647 A1	01-08-2002	
		US	2002110859 A1	-15-08-2002	
		US	2002142959 A1	03-10-2002	
		US	2002115145 A1	22-08-2002	
ļ		US	2002132768 A1	19-09-2002	
{		US	2002127643 A1	12-09-2002	
		US	2002156006 A1	24-10-2002	
		US	2002169284 A1	14-11-2002	
		US	2002072496 A1	13-06-2002	
		US US	2002142961 A1	03-10-2002	
			2002072067 A1	13-06-2002	
		US US	2002072092 A1 2002072497 A1	13-06-2002	
		US	2002072497 AL- 2002103125- Al-	-13-06-2002- 01-08-2002	
				01-00-2002	
	. =				