# Лабораторная работа № 13

Имитационное моделирование

Королёв Иван

## Содержание

| 1  | Цель работы                        | 5  |
|----|------------------------------------|----|
| 2  | Задание                            | 6  |
| 3  | Теоретическое введение             | 7  |
| 4  | Выполнение лабораторной работы     | 8  |
|    | 4.1 Анализ сети Петри              | 8  |
|    | 4.2 Выполнение лабораторной работы | 9  |
|    | 4.3 Пространство состояний         | 10 |
| 5  | Выводы                             | 15 |
| Сг | писок литературы                   | 16 |

# Список иллюстраций

| 4.1 | Дерево достижимости         | <br> | 8  |
|-----|-----------------------------|------|----|
| 4.2 | Модель сети Петри           | <br> | 9  |
| 4.3 | В Декларации                | <br> | 10 |
| 4.4 | Граф пространства состояний | <br> | 11 |

# Список таблиц

## 1 Цель работы

Необходимо выполнить задание для самостоятельного выполнения. Провести анализ сети Петри с помощью дерева достижимости, промоделировать сеть Петри и вычислить пр-во состояний, сформулировать отчёт и построитиь граф пр-ва состояний.

## 2 Задание

- 1. Используя теоретические методы анализа сетей Петри, провести анализ сети (с помощью построения дерева достижимости). Определить, является ли сеть безопасной, ограниченной, сохраняющей, имеются ли тупики.
- 2. Промоделировать сеть Петри с помощью CPNTools.
- 3. Вычислить пространство состояний. Сформировать отчёт о пространстве состояний и проанализировать его. Построить граф пространства состояний.

# 3 Теоретическое введение

Сеть Петри — математический объект, используемый для моделирования динамических дискретных систем, предложенный Карлом Петри в 1962 году.

## 4 Выполнение лабораторной работы

## 4.1 Анализ сети Петри

Построим дерево достижимости (рис. 4.1).



Рис. 4.1: Дерево достижимости

Можем увидеть, что представленная сеть:

• безопасна, поскольку в каждой позиции количество фишек не превышает 1;

- ограничена, так как существует такое целое k, что число фишек в каждой позиции не может превысить k (в данном случае k=1);
- сеть не имеет тупиков;
- сеть не является сохраняющей, так как при переходах t5 и t6 количество фишек меняется.

### 4.2 Выполнение лабораторной работы

Моделируем сеть Петри, добавляем позиции, переход и дуги. Далее, в меню задаём новые декларации модели: типы фишек, начальные значения позиций, выражения для дуг. После этого задаем типы фишка и указываем начальные значения мультимножеств. (рис. 4.2), (рис. 4.3).



Рис. 4.2: Модель сети Петри

```
    ► History
    ▼ Declarations
    ► Standard declarations
    ▼ memory
    ▼ colset RAM = unit with mem;
    ▼ colset B1 = unit with storage1;
    ▼ colset B2 = unit with storage2;
    ▼ colset B1xB2 = product B1*B2;
    ▼ var ram:RAM;
    ▼ var b1:B1;
    ▼ var b2:B2;
    ► Monitors
    petri-net
```

Рис. 4.3: Декларации

## 4.3 Пространство состояний

Граф пространства состояний, их всего 5 (4.4).



Рис. 4.4: Граф пространства состояний

#### Из отчета можно увидеть:

- есть 5 состояний и 10 переходов между ними, strongly connected components (SCC) graph содержит 1 вершину и 0 переходов.
- Затем указаны границы значений для каждого элемента: состояние Р1 всегда заполнено 1 элементом, а остальные содержат максимум 1 элемент, минимум – 0.
- Также указаны границы в виде мультимножеств.
- Маркировка home для всех состояний, так как в любую позицию мы можем попасть из любой другой маркировки.
- Маркировка dead равная None, так как нет состояний, из которых переходов быть не может.
- В конце указано, что бесконечно часто могут происходить переходы Т1, Т2, Т3, Т4, но не обязательно, также состояние Т5 необходимо для того, чтобы система не попадала в тупик, а состояние Т6 происходит всегда, если доступно.

### State Space

Nodes: 5

Arcs: 10

Secs: 0

Status: Full

### Scc Graph

Nodes: 1

Arcs: 0

Secs: 0

### **Boundedness Properties**

### Best Integer Bounds

|            | Upper | Lower |
|------------|-------|-------|
| petri'P1 1 | 1     | 1     |
| petri'P2 1 | 1     | 0     |
| petri'P3 1 | 1     | 0     |
| petri'P4 1 | 1     | 0     |
| petri'P5 1 | 1     | 0     |
| petri'P6 1 | 1     | 0     |

#### Best Upper Multi-set Bounds

| petri'P1 | 1 | 1`memory   |
|----------|---|------------|
| petri'P2 | 1 | 1`storage1 |
| petri'P3 | 1 | 1`storage2 |
| petri'P4 | 1 | 1`storage1 |
| petri'P5 | 1 | 1`storage2 |

| Best Lower Multi-set Bounds |               |  |  |  |  |
|-----------------------------|---------------|--|--|--|--|
| petri'P1 1                  | 1`memory      |  |  |  |  |
| petri'P2 1                  | empty         |  |  |  |  |
| petri'P3 1                  | empty         |  |  |  |  |
| petri'P4 1                  | empty         |  |  |  |  |
| petri'P5 1                  | empty         |  |  |  |  |
| petri'P6 1                  | empty         |  |  |  |  |
|                             |               |  |  |  |  |
|                             |               |  |  |  |  |
| Home Properties             |               |  |  |  |  |
|                             |               |  |  |  |  |
|                             |               |  |  |  |  |
|                             | Home Markings |  |  |  |  |
| All                         |               |  |  |  |  |
|                             |               |  |  |  |  |
|                             |               |  |  |  |  |
| Liveness Properties         |               |  |  |  |  |
|                             |               |  |  |  |  |
| Doad Markings               |               |  |  |  |  |
| Dead Markings None          |               |  |  |  |  |
| NOTIC                       |               |  |  |  |  |
| Dead Transition Instances   |               |  |  |  |  |
| None                        |               |  |  |  |  |
|                             |               |  |  |  |  |
| Live Transition Inst        | ances         |  |  |  |  |
| All                         |               |  |  |  |  |
|                             |               |  |  |  |  |

petri'P6 1 1 (storage1,storage2)

### Fairness Properties

| <br> | <br> |
|------|------|

| petri'T1 1 | No Fairness |
|------------|-------------|
| petri'T2 1 | No Fairness |
| petri'T3 1 | No Fairness |
| petri'T4 1 | No Fairness |
| petri'T5 1 | Just        |
| petri'T6 1 | Fair        |

## 5 Выводы

Выполнил задание для самостоятельного выполнения. Провел анализ сети Петри с помощью дерева достижимости, промоделировал сеть Петри и вычислил пр-во состояний, сформулировал отчёт и построил граф пр-ва состояний.

# Список литературы