מבוא וסדר ראשון

הגדרות כלליות

- $F(x, y, y', \dots, y^{(n)}) = 0$ מד"ר: קשר מהצורה
 - סדר: סדר הנגזרת הגבוהה ביותר.
- מעלה: החזקה של הנגזרת מהסדר הגבוה ביותר (לאחר שהמשוואה פולינומיאלית בנגזרות).
- תנאי התחלה: מד"ר מסדר n דורשת n תנאי מסדר סמדי. פתרון פרטי.
- $a_n(x)y^{(n)} + \cdots + a_0(x)y = R(x)$ לינאריות: אם ניתן לכתוב כ-
- ,(G(x,y)=C) פתרון: כללי (עם קבועים), פרטי (עם ת"ה), סתום סינגולרי (לא נובע מהכללי).
- y'=f(x,y) משפט קיום ויחידות (פיקארד): לבעיית התחלה ulletרציפות פתרון (x_0,y_0), רציפות במלבן רציפות אם f,f_y' אם $y(x_0)=y_0$

משוואות פריקות (Separable)

- M(x)dx+N(y)dy=0 או y'=f(x)g(y) צורה:
 - $\int \frac{dy}{g(y)} = \int f(x)dx + C$:פתרון:
- המאפסים אפרד פתרונות קבועים שובה: יש לבדוק בנפרד פתרונות הערה אשובה: יש לבדוק בנפרד הערה הערה השובה: יש לבדוק ב את $g(y_0)$, שכן ייתכן שהם "הולכים לאיבוד" בחלוקה.

משוואות הומוגניות

- . y'=f(y/x) פ צורה: z=y/x אוואה הופכת פתרון: הצבה y'=z'x+z המשוואה הופכת פתרון: הצבה לפריקה: $\frac{dz}{f(z)-z}=\frac{dx}{x}$

משוואות "כמעט הומוגניות"

 $(a_1x+b_1y+c_1)dx+(a_2x+b_2y+c_2)dy=0$ צורה.

- מצא נק' חיתוך ((x_0,y_0) הצב ($(a_1b_2 \neq a_2b_1)$ הצב X, Y -ב. המשוואה הופכת המשוואה . $x = X + x_0, y = Y + y_0$
- המשוואה $.t=a_1x+b_1y$ הצב ($a_1b_2=a_2b_1$). המשוואה הופכת לפריקה.

משוואות מדויקות

- M(x,y)dx + N(x,y)dy = 0 צורה: •
- $rac{\partial M}{\partial y}=rac{\partial N}{\partial x}$ אם ורק אם מדויקת •
- הוא והפתרון הוא $\phi(x,y)$ הוא פוטנציאל הפתרון הוא פתרון אם מדויקת, אם מדויקת $.\phi(x,y) = C$
- : חשב: y וחשב: x וחשב: y ואינטגרל על אינטגרל על אינטגרל על פני אינטגרל שני

$$\phi(x,y) = \int M(x,y) dx + \int N(x,y) dy$$

 $\phi(x,y)=C$ התעלם מהאיברים שחוזרים פעמיים. הפתרון הוא

(μ) גורם אינטגרציה

מטרה. הופך משוואה לא מדויקת למדויקת.

- $\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right)=f(x)\Rightarrow \mu(x)=e^{\int f(x)\,dx}$ האם •
- $\frac{1}{M}\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right)=g(y)\Rightarrow \mu(y)=e^{\int g(y)\,dy}$ אם המשוואה הומוגנית אז $\mu=\frac{1}{Mx+Ny}$ כאשר •

משוואות לינאריות מסדר ראשון

- .y'+P(x)y=Q(x) צורה: $\mu(x)=e^{\int P(x)dx}$. $\mu(x)=e^{\int P(x)dx}$
- $y(x)=rac{1}{\mu(x)}\left(\int \mu(x)Q(x)dx+C
 ight)$ הפתרון הכללי:
 - $y(x) = y_h(x) + y_p(x)$ מבנה: •

משוואת ברנולי

- $(t \neq 0, 1)$, $y' + P(x)y = Q(x)y^t$ צורה: •
- בתרון: הצבה $z=y^{1-t}$ הופכת את המשוואה ללינארית: z' + (1-t)P(x)z = (1-t)Q(x)

מד"ר מסדר שני

הורדת סדר (מקרים מיוחדים)

- .z'=y'' ,z(x)=y' הצב (F(x,y',y'')=0) אורה ב: חסר פורה 1: הער מתקבלת מד"ר מסדר 1, F(x,z,z')=0 הפתרון הסופי הוא $.y(x) = \int z(x)dx + C_2$
- y''=y''=z, ואז z(y)=y' הצב (F(y,y',y'')=0). אורה 2: חסר מתקבלת מד"ר מסדר 1, $F(y,z,zrac{dz}{dy})=0$ אחר מציאת. $zrac{dz}{dy}$ $\frac{dy}{dx} = z(y)$ את פותרים, z(y)

מד"ר לינארית, מקדמים קבועים - הומוגנית

.ay'' + by' + cy = 0 צורה.

- $ar^2 + br + c = 0$ משוואה אופיינית:
 - $oldsymbol{:}r_1,r_2$ הפתרון $y_h(x)$ תלוי בשורשים ullet
- $y_h(x) = C_1 e^{r_1 x} + C_2 e^{r_2 x}$.1. ממשיים ושונים:
 - $y_h(x) = (C_1 + C_2 x)e^{rx}$.2 ממשי כפול:
 - :($r=lpha\pm ieta$) מרוכבים צמודים .3
 - $y_h(x) = e^{\alpha x} (C_1 \cos(\beta x) + C_2 \sin(\beta x))$
- על ריבוי בעל האופיינית בעל המשוואה האופיינית בעל ריבוי פורש הרחבה לסדר כל שורש r $(C_1+C_2x+\cdots+$ תורם לפתרון ההומוגני איבר מהצורה k $.C_k x^{k-1})e^{rx}$

מד"ר לינארית, מקדמים קבועים - לא הומוגנית

.ay'' + by' + cy = R(x) צורה.

 $y(x) = y_h(x) + y_p(x)$ פתרון כללי: • y_p איטת הניחוש המושכל (מקדמים לא ידועים) למציאת

בנה קבוצה, R(x) ניית קבוצת הניחוש (S): בהתבסס על אגף ימין R(x), בנה קבוצה

הכוללת את כל הפונקציות שמופיעות ב-R(x) וכל הנגזרות Sהרלחי חלויות-ליוארים שלהו השחמש בטבלה הראהי

הבלוני ונלויות-לינאו יונ שלהן. השונמש בטבלה הבאה:		
אז קבוצת הניחוש S מכילה את האיברים	אם $R(x)$ מכיל איבר מהצורה אם	
$\{x^n, x^{n-1}, \dots, x, 1\}$	(פולינום) $P_n(x)$	
$\{e^{\alpha x}\}$	$e^{\alpha x}$	
$\{\sin(\beta x),\cos(\beta x)\}$	$\cos(eta x)$ או $\sin(eta x)$	
שילובים (לפי מכפלות)		
$\{x^n e^{\alpha x}, \dots, e^{\alpha x}\}$	$P_n(x)e^{\alpha x}$	
$\{e^{\alpha x}\sin(\beta x), e^{\alpha x}\cos(\beta x)\}$	$e^{\alpha x}\sin(\beta x)$	
$ \{x^k \sin(\beta x), x^k \cos(\beta x) \mid k = 0, \dots, n\} $	$P_n(x)\sin(\beta x)$	
$\begin{cases} x^k e^{\alpha x} \sin(\beta x), x^k e^{\alpha x} \cos(\beta x) \mid \\ k = 0 & n \end{cases}$	$P_n(x)e^{\alpha x}\sin(\beta x)$	

- כל כל אינוף לינארי אירוף הפרטי הפתרון הפרטי הפתרון הפתרון .2 (A,B,C...) אידועים לא ידועים S עם מקדמים האיברים האיברים
- 3. בדיקת תהודה (Resonance) ותיקון: אם איבר כלשהו בניחוש הראשוני y_p הוא גם פתרון של המשוואה ההומוגנית (y_h), קיימת תהודה. התיקון: יש להכפיל את כל הניחוש ב- x^k , כאשר k היא החזקה השלמה החיובית הנמוכה ביותר שמבטלת את כל החפיפות y_h עם

שיטת האופרטור המפרק.

• שלב 1: פירוק האופרטור. כותבים את המשוואה כ:

$$(D-r_1)(D-r_2)y = \frac{R(x)}{a}$$

. כאשר $D=rac{d}{dx}$ הם שורשי המשוואה האופיינית.

• שלב 2: פתרון מדורג.

 $.g(x) = (D - r_2)y$:וא) הגדר

טכניקות נוספות

שימוש בקשר ההופכי: אם המשוואה y'=f(x,y) מסובכת, נסוulletלפתור את עבור $\frac{dx}{dy} = \frac{1}{f(x,y)}$ עבור את לפתור את .x(y)-הופכת ללינארית

משוואת קלרו

- y = xy' + f(y') צורה: •
- y = Cx + f(C) : פתרון כלליי
- (p = y' פתרון המערכת (עם פתרון סינגולרי: פתרון

$$\begin{cases} y = xp + f(p) \\ x + f'(p) = 0 \end{cases}$$

אינטגרלים נפוצים

האינטגרל (ללא קבוע C)	הפונקציה
$\frac{x^{n+1}}{n+1} (n \neq -1)$	$\int x^n dx$
$\ln x $	$\int \frac{1}{x} dx$
$\frac{1}{a}e^{ax}$	$\int e^{ax} dx$
$-\frac{1}{a}\cos(ax)$	$\int \sin(ax) dx$
$\frac{1}{a}\sin(ax)$	$\int \cos(ax) dx$
$\frac{1}{a} \arctan\left(\frac{x}{a}\right)$	$\int \frac{1}{x^2 + a^2} dx$
$\arcsin\left(\frac{x}{a}\right)$	$\int \frac{1}{\sqrt{a^2 - x^2}} dx$
$x \ln(x) - x$	$\int \ln(x) dx$
$-\ln \cos(x) $	$\int \tan(x) dx$
tan(x)	$\int \sec^2(x) dx$

זהויות טריגונומטריות

- $\sin^2(x) + \cos^2(x) = 1 \bullet$
- $\tan^2(x) + 1 = \sec^2(x) \bullet$
- $\cot^2(x) + 1 = \csc^2(x) \bullet$
- $\sin(2x) = 2\sin(x)\cos(x) \bullet$
- $\cos(2x) = \cos^2(x) \sin^2(x) \quad \bullet$
 - $\cos(2x) = 2\cos^2(x) 1 \bullet$ $\cos(2x) = 1 - 2\sin^2(x) \bullet$
- $\cos(x \pm y) = \cos(x)\cos(y) \mp \bullet$ $\sin(x)\sin(y)$

 $\sin(x \pm y) = \sin(x)\cos(y) \pm \bullet$

 $\sin^2(x) = \frac{1 - \cos(2x)}{2} \bullet$

 $\cos^2(x) = \frac{1 + \cos(2x)}{2} \bullet$

 $\cos(x)\sin(y)$

שיטות אינטגרציה

• אינטגרציה בחלקים:

$\int u \, dv = uv - \int v \, du$

• שיטת ההצבה (שינוי משתנה):

$$\int f(g(x))g'(x) dx = \int f(u) du, \quad u = g(x)$$

שימושי כאשר חלק מהאינטגרנד הוא נגזרת של ביטוי פנימי.

- $rac{P(x)}{Q(x)}$ שברים חלקיים: לחישוב אינטגרל של פונקציה רציונלית ullet(Q קטנה ממעלת P (כאשר מעלת)
- -או ריבועיים איר ברק את המכנה Q(x) לגורמים לינאריים וQ(x)פריקים.
 - (ב) רשום את השבר כסכום של שברים חלקיים:
 - $\frac{A}{ax+b}$ תורם: (ax+b) תורם: $-\frac{A_1}{ax+b}+\cdots+\frac{A_k}{(ax+b)^k}$ תורם: $(ax+b)^k$ תורם: $-\frac{Ax+B}{ax^2+bx+c}$ תורם: $-\frac{Ax+B}{ax^2+bx+c}$
- ע"י השוואת מונים או הצבת (ג) מצא את הקבועים (A,B,\ldots) ערכי x נוחים.

- בתרון $g'-r_1g=rac{R(x)}{a}$ במדר מסדר מסדר מסדר (ב) C_1 יכיל קבוע g(x)
- y(x) אם המד"ר השנייה: $y'-r_2y=g(x)$ הפתרון (ג) $.C_2$ הוא הפתרון הכללי המבוקש ויכיל קבוע נוסף

מד"ר לינארית, מקדמים כלליים

$$y'' + P(x)y' + Q(x)y = R(x)$$
 צורה.

- y_1 שלב 1: מציאת פתרון הומוגני •
- $1 + P(x) + Q(x) = 0 \implies y_1 = e^x$ אם -
- $1 P(x) + Q(x) = 0 \implies y_1 = e^{-x}$ אם -
 - $P(x) + xQ(x) = 0 \implies y_1 = x$ אם -
- $m^2 + mP(x) + Q(x) = 0 \implies y_1 = e^{mx}$ אם -
 - :(הורדת סדר) y_2 מציאת •

$$y_2(x) = y_1(x) \int \frac{e^{-\int P(x)dx}}{y_1(x)^2} dx$$

 $y_h = C_1 y_1 + C_2 y_2$:הפתרון הכומוגני הכללי הואני

• שלב 3: פתרון לא-הומוגני (וריאציית פרמטרים) הפתרון הפרטי הוא :כאשר, $y_p = u_1 y_1 + u_2 y_2$

$$u'_1(x) = -\frac{y_2 R}{W(y_1, y_2)}$$
$$u'_2(x) = \frac{y_1 R}{W(y_1, y_2)}$$

פתרון בעזרת טורים

(נק' רגולרית): $x_0=0$ שיטה. מציאת פתרון סביב

- $y''=\sum_{n=0}^{\infty}a_nx^n$:הנחת הפתרון: .1 $y''=\sum_{n=2}^{\infty}n(n-1)a_nx^{n-2}$.2 הצבה במד"ר וסידור לפי חזקות .2 $y' = \sum_{n=1}^{\infty} n a_n x^{n-1}$

 - a_n בין קשר בין קשר מקדמים השוואת מסיגה: .3
 - $a_1 = y'(0)$, $a_0 = y(0)$ לפי לפי מקדמים מקדמים.
 - $y(x) = a_0 \cdot y_{\mathrm{even}}(x) + a_1 \cdot y_{\mathrm{odd}}(x)$.5. פתרון כללי:

טורי טיילור שימושיים (סביב 0)

טור חזקות	פונקציה
$\sum_{k=0}^{\infty} \frac{x^k}{k!}$	e^x
$\sum_{k=0}^{\infty} \frac{(-1)^k x^{2k+1}}{(2k+1)!}$	sin(x)
$\sum_{k=0}^{\infty} \frac{(-1)^k x^{2k}}{(2k)!}$	$\cos(x)$
$\sum_{k=0}^{\infty} \frac{x^{2k+1}}{(2k+1)!}$	sinh(x)
$\sum_{k=0}^{\infty} \frac{x^{2k}}{(2k)!}$	$\cosh(x)$
$\sum_{k=0}^{\infty} x^k$	$\frac{1}{1-x}$

טור חזקות	פונקציה
$\sum_{k=0}^{\infty} (-1)^k x^k$	$\frac{1}{1+x}$
$\sum_{k=1}^{\infty} \frac{(-1)^{k-1} x^k}{k}$	ln(1+x)
$-\sum_{k=1}^{\infty} \frac{x^k}{k}$	ln(1-x)
$\sum_{k=0}^{\infty} \frac{(-1)^k x^{2k+1}}{2k+1}$	arctan(x)
$\sum_{k=1}^{\infty} kx^{k-1}$	$\frac{1}{(1-x)^2}$
$\sum_{k=0}^{\infty} \binom{\alpha}{k} x^k$	$(1+x)^{\alpha}$

משוואת אוילר-קושי

- $.ax^2y'' + bxy' + cy = 0$ צורה: •
- הינדיציאלית מובילה מובילה $y=x^m$ פתרון: נחש פתרון: פתרון: הצבה $y=x^m$ m עבור (עזר)

$$am(m-1) + bm + c = 0$$

- m_1, m_2 הפתרון תלוי בשורשי המשוואה העזר, \bullet
- $y(x) = C_1 |x|^{m_1} + C_2 |x|^{m_2}$.1. ממשיים ושונים:
 - $y(x) = (C_1 + C_2 \ln |x|)|x|^m$.2
 - :($m=lpha\pm ieta$) מרוכבים צמודים:

$$y(x) = |x|^{\alpha} \left[C_1 \cos(\beta \ln|x|) + C_2 \sin(\beta \ln|x|) \right]$$