

Tutorium 4

Algorithmen I SS 14

Institut für Theoretische Informatik

Heaps

Eine baumartige Datenstruktur:

- Die Wurzel jedes Subtrees ist in der Ordnungsrelation größer als alle Elemente unter ihm.
- Häufige Ordnungen auf Heaps:
 - kleiner-gleich: min-Heap
 - größer-gleich: max-Heap

Im weiteren betrachten wir nur Binäre Heaps

Heap Operationen

- Wurzel betrachten in $\mathcal{O}(1)$
 - in min-Heaps: das Minimum
 - in max-Heaps: das Maximum
- Heap Eigenschaft herstellen in $\mathcal{O}(n)$
- Heap reparieren in $\mathcal{O}(\log n)$

Daraus folgt:

- Einfügen in $\mathcal{O}(\log n)$
- Wurzel extrahieren in $\mathcal{O}(\log n)$

Implementierung

Im Computer effizient als Array darstellbar:

 $\Rightarrow \text{Traversierung des Baums?}$

Baumnavigation in Array Darstellung

leftChild(i): heap[2 * i]

rightChild(i): heap[2 * i + 1]

parent(i): heap[$\lfloor i/2 \rfloor$]

Ein Heap der Höhe h hat mindestens 2^{h-1} und maximal $2^h - 1$ Elemente

Ein Heap mit n Elementen hat die Höhe $\lceil \log_2(n) \rceil$