Line Drivers/Receivers

LM1488 quad line driver

general description

The LM1488 is a quad line driver which converts standard DTL/TTL input logic levels through one stage of inversion to output levels which meet EIA Standard No. RS-232C and CCITT Recommendation V. 24.

features

t Have been

Current limited output

±10 mA typ

■ Power-off source impedance

 300Ω min

- Simple slew rate control with external capacitor
- Flexible operating supply-range
- Inputs are DTL/TTL compatible

schematic and connection diagrams

typical applications

RS232C Data Transmission

*OPTIONAL FOR NOISE FILTERING

4

absolute maximum ratings (Note 1)

```
Supply Voltage
                                                         +15V 🞺 🗥
   ٧<sup>+</sup>
   v-
                                                         -15V N 641
Input Voltage (V<sub>IN</sub>)
                                          -15V \leq V_{IN} \leq 7.0V
                                                         ±15Vpresection
Output Voltage
Power Derating (Note 2)
                                                     1000 mW<sub>10 dis</sub> ,
(Package Limitation, J Package)
                                                    6.7 mW/°C
Derating above T_A = +25^{\circ}C (1/\theta_{JA})
                                                 0°C to +75°C
Operating Temperature Range
                                             -65°C to +175°C
Storage Temperature Range
                                                         300°C
Lead Temperature (Soldering, 10 sec)
```

electrical characteristics (Note 3)

PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
Logic "0" Input Current	V _{IN} = 0V			-1.0	-1.3	mΑ
Logic "1" Input Current	V _{IN} = +5.0V			.005	10.0	μΑ -
High Level Output Voltage	$R_L = 3.0k\Omega$ $V_{IN} = 0.8V$	$\begin{cases} V^{+} = 9 \text{ OV} \\ V^{-} = -9.0 \text{V} \end{cases}$ $V^{+} = 13.2 \text{V}$ $V^{-} = -13.2 \text{V}$	6.0 9.0	7.0 10.5		v v
Low Level Output Voltage	$R_L = 3.0k\Omega$ $V_{IN} = 1.9V$	$\begin{cases} V^{+} = 9.0V \\ V^{-} = -9.0V \\ V^{+} = 13.2V \end{cases}$	-6.0	6.8		v
		V' = 13.2V V' = -13.2V	-9.0	-10.5		V
High Level Output Short-Circuit Current	$V_{OUT} = 0V$ $V_{IN} = 0.8V$		-6.0	-10 0	-12.0	mA
Low Level Output Short-Circuit Current	$V_{OUT} = 0V$ $V_{IN} = 1.9V$		6.0	10.0	12.0	mA
Output Resistance	$V^{+} = V^{-} = 0V$ $V_{OUT} = \pm 2V$		300			Ω
Positive Supply Current (Output Open)	V _{IN} = 1.9V V _{IN} = 0.8V	$\begin{cases} V^{+} = 9.0V, V^{-} = -9.0V \\ V^{+} = 12V, V^{-} = -12V \\ V^{+} = 15V, V^{-} = -15V \\ V^{+} = 9.0V, V^{-} = -9.0V \\ V^{+} = 12V, V^{-} = -15V \\ V^{+} = 15V, V^{-} = -15V \end{cases}$		15.0 19.0 25.0 4.5 5.5 8.0	20.0 25.0 34.0 6.0 7.0 12.0	mA mA mA mA mA
Negative Supply Current (Output Open)	V _{IN} = 1.9V	$\begin{cases} V^{+} = 9.0V, V^{-} = -9.0V \\ V^{+} = 12V, V^{-} = -12V \\ V^{+} = 15V, V^{-} = -15V \\ V^{+} = 9.0V, V^{-} = -9.0V \end{cases}$		-13.0 -18.0 -25.0 001	-17.0 -23.0 -34.0 -1.0	mA mA mA
	$V_{IN} = 0.8V$	$V^{+} = 12V, V^{-} = -12V$ $V^{+} = 15V, V^{-} = -15V$,	001 01	-1.0 -2.5	mA mA
Power Dissipation	$V^{+} = 9.0V, V^{-} = -9.0V$ $V^{+} = 12V, V^{-} = -12V$			252 444	333 576	mW mW
Propagation Delay to "1" (t _{pd1})	$R_L = 3.0 \text{ k}\Omega$ $C_L = 15 \text{ pF}, T_A = 25^{\circ}\text{C}$			230	350	ns
Propagation Delay to "0" (t _{pd0})	R _L = 3.0 kΩ	C _L = 15 pF, T _A = 25°C	:	70	175	ns
Rise Time (t _r)	_	C _L = 15 pF, T _A = 25°C	:	75	100	ns
Fall Time (t _f)	$R_L = 3.0 \text{ k}\Omega$	C _L = 15 pF, T _A = 25°C		40	75	ns

Note 1: Voltage values shown are with respect to network ground terminal. Positive current is defined as current into the referenced pin.

Note 2: The maximum junction temperature of the LM1488 is 150°C. For operating at elevated temperatures the cavity Dual-In-Line Package (J) must be derated based on a thermal resistance of 85°C/W, junction to ambient.

Note 3: These specifications apply for $V^{\dagger}=+9.0V\pm1\%$, $V^{-}=-9.0V\pm1\%$, $T_{A}=0^{\circ}C$ to $+75^{\circ}C$ unless otherwise noted. All typicals are for $V^{\dagger}=9.0V$, $V^{-}=-9.0V$, and $T_{A}=25^{\circ}C$.

applications

By connecting a capacitor to each driver output the slew rate can be controlled utilizing the output current limiting characteristics of the LM1488. For a set slew rate the appropriate capacitor value may be calculated using the following relationship.

$$C = I_{SC} (\Delta T / \Delta V)$$

where C is the required capacitor, I_{SC} is the short circuit current value, and $\Delta V/\Delta T$ is the slew rate.

RS232C specifies that the output slew rate must not exceed 30V per microsecond. Using the worst case output short circuit current of 12 mA in the above equation, calculations result in a required capacitor of 400 pF connected to each output.

typical applications (con't)

DTL/TTL-to-MOS Translator

DTL/TTL-to-HTL Translator

DTL/TTL-to-RTL Translator

ac load circuit

switching time waveforms

typical performance characteristics

Output Voltage and Current-Limiting Characteristics

