

T1040(**E**)(J29)T

NATIONAL CERTIFICATE MATHEMATICS N6

(16030186)

29 July 2019 (X-Paper) 09:00–12:00

Calculators may be used.

This question paper consists of 5 pages and a formula sheet of 7 pages.

(16030186) -2-

DEPARTMENT OF HIGHER EDUCATION AND TRAINING REPUBLIC OF SOUTH AFRICA

NATIONAL CERTIFICATE MATHEMATICS N6 TIME: 3 HOURS MARKS: 100

INSTRUCTIONS AND INFORMATION

- 1. Answer ALL the questions.
- 2. Read ALL the questions carefully.
- 3. Number the answers according to the numbering system used in this question paper.
- 4. Keep subsections of questions together.
- 5. Round off ALL calculations to THREE decimal places.
- 6. Use the correct symbols and units.
- 7. Start each NEW question on a new page.
- 8. Write neatly and legibly.

(16030186) -3-

QUESTION 1

1.1 Given: $z = x^2 + 2xy + y^2$

Prove that
$$x \frac{\partial z}{\partial x} + y \frac{\partial z}{\partial y} = 2z$$
 (3)

1.2 Given: $x = \sqrt{t}$; $y = \frac{1}{\sqrt{t}}$

Determine $\frac{d^2y}{dx^2}$ in terms of t

(3) **[6]**

QUESTION 2

Determine $\int y dx$ if:

$$2.1 y = x^2 e^{3x} (3)$$

$$y = \cos^5 \frac{x}{5} \tag{4}$$

$$2.3 y = \tan^3 x \sec x (3)$$

$$2.4 y = \frac{1}{9 - 4x - x^2} (4)$$

2.5
$$y = \frac{1}{ab} \tan^{-1} \frac{bx}{a}$$
 (4) [18]

QUESTION 3

Use partial fractions to calculate the following integrals:

3.1
$$\int \frac{8x^2 - 2x + 3}{2x^3 - 2x^2 + x - 1} dx$$

3.2
$$\int \frac{(3x+2)(2x-3)}{(3x+2)^2 - (2x-3)^2} dx$$
 (2 × 6) [12]

(16030186) -4-

QUESTION 4

Determine the general solution of each of the following:

$$4.1 \qquad \frac{dy}{dx} = \tan x - y \cot x$$

 (2×6) [12]

QUESTION 5

- 5.1. Draw the graphs of $y = \sin x$ and $y = \cos x$ for $0 \le x \le \pi$. Show the area bounded by the curves from $x = \frac{\pi}{2}$ to $x = \pi$. Show the representative strip that you will use to calculate the bounded area. (3)
 - 5.1.2 Calculate the area described in QUESTION 5.1.1. (4)
 - 5.1.3 Calculate the x-coordinate of the centroid of the area described in QUESTION 5.1.1. (6)
- 5.2 Draw the graph of $x^2 + y^2 = 25$. Show the area in the first quadrant of the graph between the x-axis and the y-axis. Show the representative strip that you will use to calculate the volume of the solid generated when this area rotates about the x-axis. (2)
 - 5.2.2 Calculate the volume generated when the area described in QUESTION 5.2.1 rotates about the x-axis. (3)
 - 5.2.3 Calculate the x-coordinate of the centre of gravity of the solid generated when the area in QUESTION 5.2.1 rotates about the x-axis. (4)
- 5.3 Neatly draw the graph of $y = -x^2 + 3x 2$. Show the area bounded by the graph and the x-axis. Show the representative strip that you will use to calculate the area. (2)
 - 5.3.2 Calculate the area described in QUESTION 5.3.1. (3)
 - 5.3.3 Calculate the second moment of area about the y-axis of the area in QUESTION 5.3.1 and express the answer in terms of area. (4)

(16030186) -5-

5.4 5.4.1 A semicircular plate with a radius of 5 m is immersed in water with its wider end lying at the water level.

Draw a neat sketch of the plate and show the representative strip/element that you will use to calculate the depth of the centre of pressure on the plate.

- 5.4.2 Calculate the area moment of the plate about the water level. (6)
- 5.4.3 Calculate the depth of the centre of pressure on the plate if the second moment of area of the plate about the water level is given as 245,437 m⁴ (1) [40]

QUESTION 6

6.1 Calculate the length of the curve $2y = x^2$ between (2,2) and (4,8). (6)

6.2 Calculate the surface area generated, when the curve $x = \frac{1}{9}y^2$ from y = 0 to y = 6 rotates about the x-axis.

[12]

(6)

(2)

TOTAL: 100

(16030186) -1-

MATHEMATICS N6

FORMULA SHEET

Any applicable formula may also be used.

Trigonometry

$$\sin^2 x + \cos^2 x = 1$$

$$1 + \tan^2 x = \sec^2 x$$

$$1 + \cot^2 x = \csc^2 x$$

$$\sin 2A = 2 \sin A \cos A$$

$$\cos 2A = \cos^2 A - \sin^2 A$$

$$\tan 2A = \frac{2 \tan A}{1 - \tan^2 A}$$

$$\sin^2 A = \frac{1}{2} - \frac{1}{2} \cos 2A$$

$$\cos^2 A = \frac{1}{2} + \frac{1}{2} \cos 2A$$

$$sin(A \pm B) = sin A cos B \pm sin B cos A$$

$$\cos (A \pm B) = \cos A \cos B \mp \sin A \sin B$$

$$\tan (A \pm B) = \frac{\tan A \pm \tan B}{1 \mp \tan A \tan B}$$

$$\sin A \cos B = \frac{1}{2} [\sin (A + B) + \sin (A - B)]$$

$$\cos A \sin B = \frac{1}{2} [\sin (A + B) - \sin (A - B)]$$

$$\cos A \cos B = \frac{1}{2} [\cos (A + B) + \cos (A - B)]$$

$$\sin A \sin B = \frac{1}{2} [\cos (A - B) - \cos (A + B)]$$

$$\tan x = \frac{\sin x}{\cos x}$$
; $\sin x = \frac{1}{\csc x}$; $\cos x = \frac{1}{\sec x}$

Copyright reserved

Please turn over

(16030186) -2-

f(x)	$\frac{d}{dx} f(x)$	$\int f(x)dx$
x^{n}	nx ^{n - 1}	$\frac{x^{n+1}}{n+1}+C \qquad (n\neq -1)$
ax^n	$a \frac{d}{dx} x^n$	$a \int x^{n} dx$
e^{ax+b}	$e^{ax+b} \cdot \frac{d}{dx} (ax+b)$	$\frac{e^{ax+b}}{\frac{d}{dx}(ax+b)} + C$
a^{dx+e}	a^{dx+e} . $\ln a \cdot \frac{d}{dx} (dx+e)$	$\frac{a^{dx+e}}{\ln a \cdot \frac{d}{dx} (dx+e)} + C$
ln(ax)	$\frac{1}{ax} \cdot \frac{d}{dx} ax$	$x \ln ax - x + C$
$e^{f(x)}$	$e^{f(x)}\frac{d}{dx}f(x)$	-
$a^{f(x)}$	$a^{f(x)}$. $\ln a \cdot \frac{d}{dx} f(x)$	-
$\ln f(x)$	$\frac{1}{f(x)} \cdot \frac{d}{dx} f(x)$	-
sin ax	$a\cos ax$	$-\frac{\cos ax}{a}+C$
cos ax	-a sin ax	$\frac{\sin ax}{a} + C$
tan ax	$a \sec^2 ax$	$\frac{1}{a}\ln\left[\sec\left(ax\right)\right] + C$
cot ax	$-a \csc^2 ax$	$\frac{1}{a}\ln\left[\sin\left(ax\right)\right] + C$
sec ax	$a \sec ax \tan ax$	$\frac{1}{a}\ln\left[\sec ax + \tan ax\right] + C$
cosec ax	-a cosec ax cot ax	$\frac{1}{a}\ln\left[\tan\left(\frac{ax}{2}\right)\right] + C$

Copyright reserved

(16030186) -3-

f(x)	$\frac{d}{dx}f(x)$	$\int f(x) dx$
$\sin f(x)$	$\cos f(x) \cdot f'(x)$	-
$\cos f(x)$	$-\sin f(x) \cdot f'(x)$	-
$\tan f(x)$	$\sec^2 f(x) \cdot f'(x)$	-
$\cot f(x)$	$-\csc^2 f(x) \cdot f'(x)$	-
$\sec f(x)$	$\sec f(x) \tan f(x) \cdot f'(x)$	-
$\csc f(x)$	$-\csc f(x) \cot f(x) \cdot f'(x)$	-
$\sin^{-1}f(x)$	$\frac{f'(x)}{\sqrt{1-[f(x)]^2}}$	-
$\cos^{-1}f(x)$	$\frac{-f'(x)}{\sqrt{1-[f(x)]^2}}$	-
$\tan^{-1} f(x)$	$\frac{f'(x)}{\left[f(x)\right]^2 + 1}$	-
$\cot^{-1} f(x)$	$\frac{-f'(x)}{[f(x)]^2 + I}$	-
$\sec^{-1} f(x)$	$\frac{f'(x)}{f(x)\sqrt{[f(x)]^2-1}}$	-
$\csc^{-1} f(x)$	$\frac{-f'(x)}{f(x)\sqrt{[f(x)]^2-1}}$	-
$\sin^2(ax)$	-	$\frac{x}{2} - \frac{\sin(2ax)}{4a} + C$
$\cos^2(ax)$	-	$\frac{x}{2} + \frac{\sin(2ax)}{4a} + C$
$\tan^2(ax)$	-	$\frac{1}{a}\tan(ax) - x + 6$

(16030186) -4-

$$f(x) \qquad \qquad \frac{d}{dx} f(x) \qquad \qquad \int f(x) \, dx$$

$$\cot^2(ax) \qquad -\frac{1}{a}\cot(ax) - x + C$$

$$\int f(x) g'(x) dx = f(x) g(x) - \int f'(x) g(x) dx$$

$$\int [f(x)]^n f'(x) dx = \frac{[f(x)]^{n+1}}{n+1} + C \qquad (n \neq -1)$$

$$\int \frac{f'(x)}{f(x)} dx = \ln f(x) + C$$

$$\int \frac{dx}{\sqrt{a^2 - b^2 x^2}} = \frac{1}{b} \sin^{-1} \frac{bx}{a} + C$$

$$\int_{a^{2} + b^{2}x^{2}}^{dx} = \frac{1}{ab} \tan^{-1} \frac{bx}{a} + C$$

$$\int a^2 - b^2 x^2 dx = \frac{a^2}{2b} \sin^{-1} \frac{bx}{a} + \frac{x}{2} \sqrt{a^2 - b^2 x^2} + C$$

$$\int \frac{dx}{a^2 - b^2 x^2} = \frac{1}{2ab} \ln \left(\frac{a + bx}{a - bx} \right) + C$$

$$\int x^2 \pm b^2 dx = \frac{x}{2} \sqrt{x^2 \pm b^2} \pm \frac{b^2}{2} \ln \left[x + \sqrt{x^2 \pm b^2} \right] + C$$

$$\int \frac{dx}{\sqrt{b^2 x^2 \pm a^2}} = \frac{1}{b} \ln \left[bx + \sqrt{b^2 x^2 \pm a^2} \right] + C$$

Applications of integration

AREAS

$$A_x = \int_a^b y dx ; A_x = \int_a^b (y_1 - y_2) dx$$

$$A_{y} = \int_{a}^{b} x dy ; A_{y} = \int_{a}^{b} (x_{1} - x_{2}) dy$$

(16030186) -5-

VOLUMES

$$V_x = \pi \int_{0}^{h} y^2 dx$$
; $V_x = \pi \int_{0}^{h} (y_1^2 - y_2^2) dx$; $V_x = 2\pi \int_{0}^{h} xy dy$

$$V_y = \pi \int_0^h x^2 dy$$
; $V_y = \pi \int_0^h \left(x_1^2 - x_2^2\right) dy$; $V_y = 2\pi \int_0^h xy dx$

AREA MOMENTS

$$A_{m-x} = rdA$$
 $A_{m-y} = rdA$

CENTROID

$$\bar{x} = \frac{A_{m-y}}{A} = \frac{\int_{A}^{b} r dA}{A}$$
; $\bar{y} = \frac{A_{m-x}}{A} = \frac{\int_{A}^{b} r dA}{A}$

SECOND MOMENT OF AREA

$$I_x = \int_0^b r^2 dA$$
 ; $I_y = \int_0^b r^2 dA$

VOLUME MOMENTS

$$V_{m-x} = \int_{a}^{b} r dV$$
 ; $V_{m-y} = \int_{a}^{b} r dV$

CENTRE OF GRAVITY

$$\bar{x} = \frac{v_{m-y}}{V} = \frac{\int_{0}^{h} r dV}{V}$$
; $\bar{y} = \frac{v_{m-x}}{V} = \frac{\int_{0}^{h} r dV}{V}$

MOMENTS OF INERTIA

 $Mass = Density \times volume$

$$M = \rho V$$

DEFINITION: $I = m r^2$

(16030186) -6-

GENERAL:
$$I = \int_{a}^{b} r^2 dm = \rho \int_{a}^{b} r^2 dV$$

CIRCULAR LAMINA

$$I_z = \frac{1}{2}mr^2$$

$$I = \frac{1}{2} \int_{a}^{b} r^2 dm = \frac{1}{2} \rho \int_{a}^{b} r^2 dV$$

$$I_x = \frac{1}{2}\rho\pi \int_a^b y^4 dx$$
 $I_y = \frac{1}{2}\rho\pi \int_a^b x^4 dy$

CENTRE OF FLUID PRESSURE

$$\overline{\overline{y}} = \frac{\int_{a}^{b} r^2 dA}{\int_{a}^{b} r dA}$$

$$\frac{f(x)}{(ax+b)^n} = \frac{A}{ax+b} + \frac{B}{(ax+b)^2} + \frac{C}{(ax+b)^3} + \dots + \frac{Z}{(ax+b)^n}$$

$$\frac{f(x)}{(ax+b)^3(cx+d)^3} = \frac{A}{ax+b} + \frac{B}{(ax+b)^2} + \frac{C}{(ax+b)^3} + \frac{D}{(cx+d)} + \frac{E}{(cx+d)^2} + \frac{F}{(cx+d)^3}$$

$$\frac{f(x)}{(ax^2 + bx + c)(dx + e)^n} = \frac{Ax + F}{ax^2 + bx + c} + \frac{B}{dx + e} + \frac{C}{(dx + e)^2} + \dots + \frac{Z}{(dx + e)^n}$$

$$A_x = \int_a^b 2\pi y \sqrt{1 + \left(\frac{dy}{dx}\right)^2} \ dx$$

$$A_x = \int_{0}^{x} 2\pi y \sqrt{1 + \left(\frac{dx}{dy}\right)^2} dy$$

(16030186) -7-

$$A_{y} = \int_{a}^{b} 2\pi x \sqrt{1 + \left(\frac{dy}{dx}\right)^{2}} dx$$

$$A_{y} = \int_{d}^{c} 2\pi x \sqrt{1 + \left(\frac{dx}{dy}\right)^{2}} dy$$

$$A_x = \int_{u1}^{u2} 2\pi y \sqrt{\left(\frac{dx}{du}\right)^2 + \left(\frac{dy}{du}\right)^2} \ du$$

$$A_{y} = \int_{u1}^{u2} 2\pi x \sqrt{\left(\frac{dx}{du}\right)^{2} + \left(\frac{dy}{du}\right)^{2}} du$$

$$S = \int_{a}^{b} \sqrt{I + \left(\frac{dy}{dx}\right)^2} \ dx$$

$$S = \int_{0}^{d} \sqrt{1 + \left(\frac{dx}{dy}\right)^2} \ dy$$

$$S = \int_{d}^{u^2} \sqrt{\left(\frac{dx}{du}\right)^2 + \left(\frac{dy}{du}\right)^2} \ du$$

$$\frac{dy}{dx} + Py = Q \quad \therefore ye^{\int P dx} = \int Qe^{\int P dx} dx$$

$$y = Ae^{r_1x} + Be^{r_2x} r_1 \neq r_2$$

$$y = e^{rx}(A + Bx) \quad r_1 = r_2$$

$$y = e^{ax}[A\cos bx + B\sin bx]$$
 $r = a \pm ib$

$$\frac{d^2y}{dx^2} = \frac{d}{d\theta} \left(\frac{dy}{dx} \right) \frac{d\theta}{dx}$$