Introducción al momento angular (rotaciones)

El operador \hat{L} será el encargado de realizar las rotaciones. Por el álgebra visto en la mecánica clásica sabemos que, dado un vector \bm{v} y una matriz ortogonal R se tiene

$$v' = Rv$$
 con $|v'| = |v|$

у

$$|\boldsymbol{v}|^2 = V^t V = (V^t R^t)(RV)$$
 pues $R^t R = RR^t = \mathbb{1}$

puesto que es una matriz ortogonal. Una matriz ortogonal tiene tres parámetros independientes. Luego se cumplen

Clausura

$$(R_1R_2)(R_1R_2)^t = R_1R_2R_2^tR_1^t = \mathbb{1}$$

• El producto de dos matrices ortogonales es otra matriz ortogonal (aquella que cumple $R^rR = 1$). Asociatividad

$$R_1(R_2R_3) = (R_1R_2)R_3$$

• Existencia de identidad

$$R.1 = 1R = R$$

Existencia de inversa

$$R\,R^{-1}=R^{-1}R=\mathbb{1}\qquad \mathrm{con}\;R^{-1}\equiv R^t$$

Esto define un grupo de matrices ortogonales que realiza rotaciones y se denomina SO(3). Las rotaciones son un grupo respecto a la multiplicación.

1.0.1 No conmutatividad de las rotaciones clásicas

Las rotaciones finitas no conmutan. Luego, el grupo de las rotaciones será un grupo abeliano

$$R_z(\varphi) = \begin{pmatrix} \cos(\varphi) & -\sin(\varphi) & 0\\ \sin(\varphi) & \cos(\varphi) & 0\\ 0 & 0 & 1 \end{pmatrix}$$

$$R_x(\varphi) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos(\varphi) & -\sin(\varphi) \\ 0 & \sin(\varphi) & \cos(\varphi) \end{pmatrix}$$

$$R_y(\varphi) = \begin{pmatrix} \cos(\varphi) & 0 & \sin(\varphi) \\ 0 & 1 & 0 \\ -\sin(\varphi) & 0 & \cos(\varphi) \end{pmatrix}$$

Figura 0.1

Si reemplazamos $\cos(\epsilon) \approx 1 - \epsilon^2/2$ y $\sin(\epsilon) \approx \epsilon$ hasta orden dos. Se puede ver que las rotaciones, en torno a ejes diferentes, sólo conmutan a

orden uno (ϵ) de manera que una rotación infinitesimal $d\varphi$ conmuta pero una rotación finita φ no lo hace.

En efecto, hasta orden 2 se tienen

$$\begin{split} R_z(\epsilon) &= \begin{pmatrix} 1-\epsilon^2/2 & -\epsilon & 0 \\ \epsilon & 1-\epsilon^2/2 & 0 \\ 0 & 0 & 1 \end{pmatrix} \\ R_x(\epsilon) &= \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1-\epsilon^2/2 & -\epsilon \\ 0 & \epsilon & 1-\epsilon^2/2 \end{pmatrix} \end{split}$$

$$R_y(\epsilon) = \begin{pmatrix} 1 - \epsilon^2/2 & 0 & \epsilon \\ 0 & 1 & 0 \\ -\epsilon & 0 & 1 - \epsilon^2/2 \end{pmatrix}$$

Entonces, se ve que

$$R_x(\epsilon)R_y(\epsilon)-R_y(\epsilon)R_x(\epsilon)=\begin{pmatrix}0&-\epsilon^2&0\\\epsilon^2&0&0\\0&0&0\end{pmatrix}$$

o bien

$$[R_x(\epsilon),R_y(\epsilon)]=R_z(\epsilon)-\mathbb{1}$$

Como el conmutador es diferente de cero el grupo de las rotaciones es un grupo no abeliano. La velocidad angular se define ω/dt de modo que eso justifica que los vectores velocidad angular puedan sumarse en mecánica. Esto es lo que sucedía en el caso clásico. Veamos ahora qué le pasa a los kets ante rotaciones.

1.1 Rotaciones cuánticas

Para las rotaciones cuánticas suponemos la existencia de un operador D_R que las realiza, que convierte $|\alpha\rangle \rightarrow |\alpha\rangle_R$ con $|\alpha\rangle_R = D(R) |\alpha\rangle$ postulándose una forma del tipo

$$D(\hat{n}, d\phi) = 1 - i \frac{\mathbf{J} \cdot \hat{n}}{\hbar} d\phi,$$

para una rotación infinitesimal o bien

$$D(\hat{n},\theta) = \lim_{N \to \infty} \left(1 - \frac{iJ_z \theta}{\hbar N} \right)^N = e^{-i \boldsymbol{J} \cdot \hat{n} \theta / \hbar},$$

para rotación finita.

Otro modo de ver esto, es considerando

$$D_R(\; \hat{\boldsymbol{n}}, \boldsymbol{\theta} + d\boldsymbol{\theta}) = D_R(\; \hat{\boldsymbol{n}}, \boldsymbol{\theta}) D_R(\; \hat{\boldsymbol{n}}, d\boldsymbol{\theta}) = D_R(\; \hat{\boldsymbol{n}}, \boldsymbol{\theta}) \left[\mathbb{1} - \frac{i}{\hbar} d\boldsymbol{\theta} \; \boldsymbol{J} \cdot \; \hat{\boldsymbol{n}} \right]$$

de modo que

$$\frac{D_R(\; \hat{\boldsymbol{n}}, \boldsymbol{\theta} + d\boldsymbol{\theta}) - D_R(\; \hat{\boldsymbol{n}}, \boldsymbol{\theta})}{d\boldsymbol{\theta}} = \frac{i}{\hbar} \; \boldsymbol{J} \cdot \; \hat{\boldsymbol{n}} D_R(\; \hat{\boldsymbol{n}}, \boldsymbol{\theta})$$

lo que conduce a

$$\frac{\partial}{\partial \boldsymbol{\theta}} D_R(\, \hat{\boldsymbol{n}}, \boldsymbol{\theta}) = -\frac{i}{\hbar} \, \boldsymbol{J} \cdot \, \hat{\boldsymbol{n}} \, D_R(\, \hat{\boldsymbol{n}}, \boldsymbol{\theta})$$

y, usando la condición de contorno de que $D_R(\,\hat{n},0)=\mathbbm{1}$ se tiene

$$D_R(\hat{n}, \theta) = e^{-i/\hbar \theta(\boldsymbol{J} \cdot \hat{\boldsymbol{n}})},$$

junto con la relación de conmutación $[J_i, J_j] = i\hbar \epsilon_{ijk} J_k$.

 \hat{D} es, como se dijo, el operador de las rotaciones y \hat{J} es un momento angular general. Se postula de esta forma para que \hat{D} cumpla las mismas propiedades que R y la misma relación de conmutación (lo cual los hace pertenecer al mismo álgebra)

$$R_xR_y-R_yR_x=R_z(\epsilon^2)-\mathbb{1}$$

$$D(\hat{x}, \epsilon)D(\hat{y}, \epsilon) - D(\hat{y}, \epsilon)D(\hat{x}, \epsilon) = D(\hat{z}, \epsilon^2) - D(\mathbb{1})$$

de modo que la cuenta lleva a

$$J_x J_y - J_y J_x = i\hbar J_z$$

la cual generalizando se llega a

$$[J_i, J_j] = i\hbar \epsilon_{ijk} J_k \tag{1.1}$$

que son las relaciones de conmutación generales para momento angular \hat{J} . Esto vale para cualquier rotación, lo cual es más amplio que si es solo L, el momento angular.

EJEMPLO 1.1 Operador de rotación para partículas de spin 1/2

Para sistemas de spín 1/2 es

$$D(\hat{n}, \phi) \equiv e^{-i/\hbar S \cdot \hat{n}}$$

El efecto de la rotación se asocia a

$$_{R}\left\langle \alpha\mid S_{x}\mid\alpha\right\rangle _{P}=\left\langle \alpha\mid\,\mathrm{e}^{iS_{z}\phi/\hbar}\;S_{x}\;\,\mathrm{e}^{-iS_{z}\phi/\hbar}\mid\alpha\right\rangle$$

una cosa que podemos considerar como un operador y los kets fijos en el tiempo. La base de autoestados de S_z es

$$S_z\left|+\right> = rac{\hbar}{2}\left|+\right> \hspace{1cm} S_z\left|-\right> = -rac{\hbar}{2}\left|-\right>$$

los operadores S_x, S_y, S_z tienen sus expresiones usuales y evaluando resulta

$$D^{\dagger} \, S_x \, D = \frac{\hbar}{2} \left[(|+\rangle \, \langle -|+|-\rangle \, \langle +|) \cos \phi + i (|+\rangle \, \langle -|-|-\rangle \, \langle +|) \sin \phi \right]$$

que es como si el vector ${\cal S}_x$ se transformase como lo haría un vector. En efecto, se tiene

$$\begin{array}{ll} S_x & \to \operatorname{rotaci\'on} \to & S_x \cos \phi - S_y \sin \phi \\ \\ S_y & \to \operatorname{rotaci\'on} \to & S_y \cos \phi + S_x \sin \phi \end{array}$$

pero

$$S_z \qquad \rightarrow {\rm rotaci\'on} \rightarrow \qquad S_z$$

lo cual se demuestra por conmutación en la expresión del operador.

Se puede ver que ante rotaciones cuánticas $D(\hat{n},\phi)$ los valores de expectación transforman como vectores

$$\begin{pmatrix} \langle S_x' \rangle \\ \langle S_y' \rangle \\ \langle S_z' \rangle \end{pmatrix} = \begin{pmatrix} R(\hat{x}, \phi) \end{pmatrix} \begin{pmatrix} \langle S_x \rangle \\ \langle S_y \rangle \\ \langle S_z \rangle \end{pmatrix}$$

En general $J = (J_x, J_y, J_z)$ se transforma como vector y entonces \hat{J} es un operador vectorial. Consideremos un estado de un sistema de spín 1/2,

$$\begin{split} |\alpha\rangle &= \langle + \mid \alpha\rangle \mid + \rangle + \langle - \mid \alpha\rangle \mid - \rangle \\ D(\hat{z},\phi) \mid \alpha\rangle &= \mathrm{e}^{-iS_z\phi/\hbar} \left< + \mid \alpha\rangle \mid + \rangle + \, \mathrm{e}^{-iS_z\phi/\hbar} \left< - \mid \alpha\rangle \mid - \rangle \\ D(\hat{z},\phi) \mid \alpha\rangle &= \langle + \mid \alpha\rangle \, \, \mathrm{e}^{-i\phi/2} \mid + \rangle + \, \mathrm{e}^{i\phi/2} \left< - \mid \alpha\rangle \mid - \rangle \end{split}$$

Haciendo una rotación de $\phi = 2\pi$ (cosa que debiera dejar al ket incólume) se tiene

$$D(\hat{z}, 2\pi) |\alpha\rangle = -\langle + |\alpha\rangle |+\rangle - \langle - |\alpha\rangle |-\rangle = - |\alpha\rangle$$

Luego, esto es una muestra del carácter no-clásico del spin; una vuelta completa le cambia el signo al ket pero notemos cuidadosamente que el valor de expectación – que es algo físico – no varía. Esto muestra que el ket no puede tener sentido físico.

Se observó en 1975 que el patrón de interferencia se altera con el $-|\alpha\rangle$ de manera que tiene importancia ese signo en el ket.

En la picture se esquematiza. Hay necutrones a la izquierda y un campo magnético \boldsymbol{B} delante de la parted. Se ve en la interferencia que llega con el signo cambiado; le hacen dar una vuelta completa al spin.

1.1.1 Angulos de Euler

Se define una serie de rotaciones

1.
$$R_z(\alpha)$$
 2. $R_{y'}(\beta)$ 3. $R_{z'}(\gamma)$

lo cual equivale a

$$R(\alpha, \beta, \gamma) = R_{z'}(\gamma) R_{y'}(\beta) R_z(\alpha)$$

$$e^{-iJ_{z'}\gamma/\hbar} e^{-iJ_{y'}\beta/\hbar} e^{-iJ_z\alpha/\hbar} |\psi\rangle$$

Pero desconozco cómo operar en los ejes móviles z^\prime, y^\prime así que buscaré es-

Recordemos que en general no se sabe cómo acctúan los operadores sobre un estado general sino sobre autoestados.

Figura 1.2 Los ángulos de Euler son una caracterización de una rotación general en 3D.

cribir las rotaciones de manera que se pueda hacer la cuenta, refiriéndolas a ejes fijos.

$$R_{y'}(\beta) = R_z(\alpha) R_y(\beta) R_z^{-1}(\alpha)$$

$$R_{z'}(\gamma) = R_{y'}(\beta)R_z(\gamma)R_{y'}^{-1}(\beta)$$

siendo estas dos expresiones generales (puede probarse)

$$R(\alpha,\beta,\gamma) = R_{y'}(\beta) R_z(\gamma) \underbrace{R_{y'}^{-1}(\beta) R_{y'}(\beta)}_{\mathbb{1}} R_z(\alpha)$$

$$R(\alpha, \beta, \gamma) = R_z(\alpha) R_u(\beta) R_z^{-1}(\alpha) R_z(\gamma) R_z(\alpha)$$

donde las que son sobre el mismo eje conmutan y entonces,

$$R(\alpha,\beta,\gamma) = R_z(\alpha) R_y(\beta) R_z(\gamma).$$

Rotación equivalente a [1] pero para ejes fijos, puesto que en mecánica cuántica sabemos rotar en torno a ejes fijos.

Los ángulos de Euler son la caracterización de una rotación general en 3D. Entonces nuestra rotación en 3D cuántica será:

$$D(\alpha,\beta,\gamma) = D_z(\alpha) D_y(\beta) D_z(\gamma) = \, \mathrm{e}^{-iJ_z\alpha/\hbar} \, \mathrm{e}^{-iJ_y\beta/\hbar} \, \mathrm{e}^{-iJ_z\gamma/\hbar}$$

La ley de clausura no era tan obvia (el hecho de pedirla) [cuál es?]. No es una trivialidad como sí podrían serlo las otras tres propiedades.

El hecho de que si $R_1R_2=R_3$ se pasaba a los operadores D, de acuerdo con $D(R_1)D(R_2)=D(R_3)$ solamente si los operadores J verificaban la relación de conmutación dada por la Ec. (1.1). La información contenida en dicha relación proporciona todo lo necesario acerca del sistema.

EJEMPLO 1.2 Ejercicio 7

Consideramos

$$|a\rangle_R = e^{-i/\hbar S_z \varphi} |\alpha\rangle$$

y se pide el valor medio $\langle S_x \rangle_R$ que será

$$_{R}\left\langle \alpha\,|\,S_{x}\,|\,\alpha\right\rangle _{R}=\left\langle \alpha|\,\operatorname{e}^{i/\hbar\,S_{z}\varphi}\,S_{x}\,\operatorname{e}^{-i/\hbar\,S_{z}\varphi}\left|\alpha\right\rangle$$

y podemos usar la expresión de S_x de la guía primera con lo cual, operando, resulta

$$\left\langle S_{x}\right\rangle _{R}=\frac{\hbar}{2}\left\langle \alpha|\left(\cos\varphi(|+\rangle\left\langle -|+|-\rangle\left\langle +|\right)+i\sin\varphi(|+\rangle\left\langle -|-|-\rangle\left\langle +|\right)\right)|\alpha\right\rangle$$

o bien

$$\left\langle S_{x}\right\rangle _{R}=\left\langle S_{x}\right\rangle \cos \varphi -\left\langle S_{y}\right\rangle \sin \varphi$$

y vemos que el valor medio del estado rotado es proyección de los valores medios de los estados no rotados.

La parte b) fija el ángulo de la rotación en $\varphi = 2\pi$, luego

$$|\alpha\rangle_{P} = e^{-i/\hbar 2\pi S_z} |\alpha\rangle$$

y, incorporando una constante de normalización c, se tiene

$$e^{-i/\hbar 2\pi S_z} c(a \mid +\rangle + b \mid -\rangle) = c(e^{-i\pi} a \mid +\rangle + e^{i\pi} b \mid -\rangle) = -|\alpha\rangle$$

y entonces vemos que rotar en 2π ha hecho aparece un signo menos.

EJEMPLO 1.3 Ejercicio 8

La parte a) está hecha en el libro de Sakurai. La parte b) pide

$$e^{-i/\hbar \, \mathbf{S} \cdot \, \hat{\mathbf{n}} \, \phi} = \sum_{n=0}^{\infty} \, \frac{(-i)^n}{n!} \phi^2 \left(\frac{1}{2}\right)^n (\boldsymbol{\sigma} \cdot \, \hat{n})^n$$

donde

$$\mathbf{S} \cdot \hat{\mathbf{n}} = \frac{\hbar}{2} \boldsymbol{\sigma} \cdot \hat{n}$$

y uso representación +-. Se tiene

$$\sum_{n=0}^{\infty} \, \frac{(-i)^n}{n!} \left(\frac{\phi}{2}\right)^n (\boldsymbol{\sigma} \cdot \, \hat{n})^n$$

que con n=0 da $\pmb{\sigma}\cdot\,\hat{n}=1$ y con n=1 y
a tenemos el producto escalar entre $\pmb{\sigma}$ y $\,\hat{n}.$ Con n=2 es

$$(\sigma \cdot a)(\sigma \cdot b) = ab + i\sigma(a \times b)$$

y con n=3 es similar a n=1 mientras que n=4 es similar a n=2. Vemos que

$$\sigma \cdot \hat{n} = \begin{cases} 1 & \text{par} \\ \sigma \cdot n & \text{impar} \end{cases}$$

Entonces, la sumatoria puede dividirse en dos

$$\sum_{n=0}^{\infty} \, \frac{(-i)^{2n}}{(2n)!} \left(\frac{\phi}{2}\right)^{2n} + \sum_{n=0}^{\infty} \, \frac{(-i)^{2n+1}}{(2n+1)!} \left(\frac{\phi}{2}\right)^n \left(\boldsymbol{\sigma} \cdot \, \hat{\boldsymbol{n}}\right)$$

que da

$$\mathbb{1}\cos\left(\frac{\phi}{2}\right) - i\,\sin\left(\frac{\phi}{2}\right)(\boldsymbol{\sigma}\cdot\hat{\boldsymbol{n}}). \tag{1.2}$$

Finalmente, el operador de rotación en la representación $|+\rangle$, $|-\rangle$ es

$$D(\; \hat{n}, \phi) = \begin{pmatrix} \cos\left(\frac{\phi}{2}\right) - i\sin\left(\frac{\phi}{2}\right)n_z & -(n_y + in_x)\sin\left(\frac{\phi}{2}\right) \\ \\ (n_y - in_x)\sin\left(\frac{\phi}{2}\right) & \cos\left(\frac{\phi}{2}\right) + i\sin\left(\frac{\phi}{2}\right)n_z \end{pmatrix}$$

La parte d) involucra primeramente una rotación alrededor de \hat{y} en β (lo saco de \hat{z}) y en segundo lugar una rotación alrededor de \hat{z} en α . Recordemos que las rotaciones no conmutan.

Entonces, usando las expresiones anteriores de la rotación (1.2) resulta

$$D_R(z,\alpha)D_R(y,\beta)\left|+\right\rangle = \cos\left(\frac{\beta}{2}\right)\left|+\right\rangle + \,\mathrm{e}^{i\alpha} : \sin\left(\frac{\beta}{2}\right)\left|-\right\rangle.$$

Si roto primero en \hat{z} no lo saco en z y no sirve a los efectos. Esto por la no conmutatividad.

EJEMPLO 1.4 Ejercicio 2

La parte a) son cuentas fáciles (de las que le hubieran gustado a Piuselli). La parte b) implica

$$U = \frac{a_0 + i\boldsymbol{\sigma} \cdot \boldsymbol{a}}{a_0 - i\boldsymbol{\sigma} \cdot \boldsymbol{a}} = \frac{(a_0 + i\boldsymbol{\sigma} \cdot \boldsymbol{a})^2}{a_0^2 + |\boldsymbol{a}|^2}$$

donde hemos multiplicado arriba y abajo por el factor $a_0+i{\pmb\sigma}\cdot{\pmb a}$. Entonces, expandiendo el cuadrado

$$U=(a_0^2-|\boldsymbol{a}|^2)\frac{\mathbb{1}+2ia_0(\boldsymbol{\sigma}\cdot\boldsymbol{a})}{a_0^2+|\boldsymbol{a}|^2}$$

y las relaciones que se piden salen desde aquí.

1.1.2 Autoestados y autovalores de J

Partimos de

$$[J_i,J_i]=i\hbar\epsilon_{ijR}J_R$$

y tomamos $J^2 = J_x^2 + J_y^2 + J_z^2$ aprovechando que

$$[J^2, J] = 0,$$

siendo esto último muy importante y probándose por evaluación directa. Lleva a

$$[J^2, J_i^n] = 0$$
 con $i = x, y, z$ $n \in \mathbb{N}$

Se eligen J^2, J_z como observables que conmutan

$$J^{2} |a,b\rangle = a |a,b\rangle$$
 $J_{z} |a,b\rangle = b |a,b\rangle$

siendo a autovalor de J^2 y b de J_z .

Definiremos los operadores de subida y de bajada

$$J_{\pm} \equiv J_x \pm J_y$$

que verifican

$$[J_+,J_-]=2\hbar J_z \qquad [J_z,J_+]=\pm \hbar J_+ \qquad [J_+,J^2]=0$$

Entonces, queremos ver quiénes son a, b. Haciendo operar, se tiene

$$\begin{split} J^2(J_\pm\,|a,b\rangle) &= J_\pm J^2\,|a,b\rangle = a J_\pm\,|a,b\rangle \longrightarrow J_\pm\,|a,b\rangle = \Box\,|a,b\rangle \\ &\qquad (J_z J_\pm - J_\pm J_z)\,|a,b\rangle = \pm \hbar J_\pm\,|a,b\rangle \\ &\qquad J_z(J_\pm\,|a,b\rangle) = (b\pm\hbar)(J_\pm\,|a,b\rangle) \longrightarrow J_\pm\,|a,b\rangle = \Box\,|a,b\pm\hbar\rangle \\ &\qquad J_\pm\,|a,b\rangle = c_\pm\,|a,b\pm\hbar\rangle \\ &\qquad J_\pm\,|a,b\rangle = c_\pm\,|a,b\rangle = c_-\,|a,b-\hbar\rangle \end{split}$$

de manera que J_+ sube el J_z en una unidad de \hbar y J_- baja el J_z en una unidad de \hbar . Entonces,

$$J_{\pm}\left|a,b\right\rangle = C_{\pm}\left|a,b\pm\hbar\right\rangle$$

donde C_{\pm} es una constante de normalización. Para averiguarla tenemos que tomar $(J_{+})^{*}=J_{-}$. Empecemos

$$\begin{split} J_{+}J_{-} &= J_{x}^{2} + iJ_{y}J_{x} - iJ_{x}J_{y} + J_{y}^{2}, \qquad J_{-}J_{+} = J_{x}^{2} - iJ_{y}J_{x} + iJ_{x}J_{y} + J_{y}^{2} \\ \\ J^{2} &= J_{z}^{2} + \frac{1}{2}(J_{+}J_{-} + J_{-}J_{+}), \qquad J^{2} - J_{z}^{2} = \frac{1}{2}(J_{+}J_{+}^{\dagger} + J_{+}^{\dagger}J_{+}) \\ \\ \langle a, b \, | \, J^{2} - J_{z}^{2} \, | \, a, b \rangle &= 1/2 \, \langle a, b \, | \, J_{+}J_{+}^{\dagger} + J_{+}^{\dagger}J_{+} \, | \, a, b \rangle \end{split}$$

$$\begin{split} \left(a-b^2\right)\left\langle a,b\,|\,a,b\right\rangle &=1/2\left[\left\langle a,b\,\left|\,J_{+}J_{+}^{\dagger}\,\right|a,b\right\rangle +\left\langle a,b|J_{+}^{\dagger}\right|J_{+}\left|a,b\right\rangle\right] \\ \left(a-b^2\right)\left\langle a,b\,|\,a,b\right\rangle &=|J_{+}^{\dagger}\left|a,b\right\rangle|^2\geq0, \qquad \Rightarrow a\geq b^2 \end{split}$$

Esto significa que hay cota máxima para b. Como

$$J_{+}|a,b_{M}\rangle=0,$$

debe dar el ket nulo puesto que no se puede seguir subiendo. No sé qué le hace al ket la siguiente combinación de operadores

$$J_{-}J_{+}\left|a,b_{M}\right\rangle = 0$$

pero se puede evaluar del siguiente modo;

$$\begin{split} J_{-}J_{+} &= J_{x}^{2} + J_{y}^{2} + i[J_{x},J_{y}] = J^{2} - J_{z}^{2} - \hbar J_{z} \\ & (J^{2} - J_{z}^{2} - \hbar J_{z}) \left| a,b_{M} \right\rangle = 0 \\ & (a - b_{M}^{2} - \hbar b_{M}) \left| a,b_{M} \right\rangle = 0 \\ & a = b_{M}(b_{M} - \hbar) \\ & J_{-} \left| a,b_{m} \right\rangle = 0 \end{split}$$

y como no puede seguir bajando debe dar el ket nulo

$$\begin{split} J_{+}J_{-}\,|a,b_{m}\rangle &= 0\\ \\ J_{+}J_{-} &= J^{2} - J_{z}^{2} + \hbar J_{z}\\ \\ (J^{2} - J_{z}^{2} + \hbar J_{z})\,|a,b_{m}\rangle &= (a - b_{m}^{2} + \hbar b_{m})\,|a,b_{m}\rangle = 0\\ \\ b_{M}(b_{M} + \hbar) &= b_{m}(b_{m} - \hbar) \end{split}$$

tiene solución $b_M-b_m=-\hbar$ si $b_M+b_m\neq 0$ pero esto es absurdo de manera que $b_M=b_m.$ Entonces

$$-b_m = b_M$$
 \Rightarrow $-b_M \le b \le b_M$

Luego, para valor a fijo

$$|a,b_m\rangle \longrightarrow |a,b_M\rangle$$

y como J_+ sube de a un \hbar será

$$b_M = b_m + n\hbar$$

Puede llegar desde uno a otro con J_+ .

y entonces

$$b_M = \frac{n\hbar}{2} = \frac{n}{2}\hbar = j\hbar$$

y se da que j es entero o semientero.

Definiremos

$$b_M \equiv j\hbar$$
 $a \equiv j(j+1)\hbar^2$ $-j\hbar \le b \le j\hbar$

pero como $b/\hbar = m$

$$b_M \equiv j\hbar$$
 $a \equiv j(j+1)\hbar^2$ $-j \le m \le j$

$$m=(-j,-j+1,-j+2,...,j-1,j) \qquad 2j+1 \text{valores de } m$$

esta es la degeneración del estado L^2 . En resumen

$$J^{2} |j,m\rangle = j(j+1)\hbar^{2} |j,m\rangle \qquad J_{z} |j,m\rangle = m\hbar |j,m\rangle,$$

todo lo cual salió de la relación de conmutación.

1.1.3 La normalización de J_+

Nos falta aún la normalización.

$$J_{\perp} |j,m\rangle = c_{\perp} |j,m+1\rangle$$
 $J_{\perp}^{\dagger} = J_{\perp}$

Usando la ortonormalidad de los estados se ve que

$$\langle j,m \,|\, J_-J_+ \,|\, j,m \rangle = \left\langle j,m \,\Big|\, J_+^\dagger J_+ \,\Big|\, j,m \right\rangle = |c_+|^2$$

$$\langle j, m | J^2 - J_z^2 - \hbar J_z | j, m \rangle = j(j+1)\hbar^2 - m^2\hbar^2 - \hbar^2 m = |c_\perp|^2$$

y como puedo fijar la fase en la unidad, se tiene

$$\begin{split} c_{+} &= \hbar \sqrt{j(j+1) - m(m+1)} = \hbar \sqrt{(j-m)(j+m+1)} \\ & \langle j, m \, | \, J_{+}J_{-} \, | \, j, m \rangle = \langle j, m \, | \, J_{-}^{\dagger}J_{-} \, | \, j, m \rangle = |c_{-}|^{2} \\ & = j(j+1)\hbar^{2} - m^{2}\hbar^{2} + m\hbar^{2} = |c_{-}|^{2} \\ c_{-} & = \hbar \sqrt{j(j+1) - m(m-1)} = \hbar \sqrt{(j+m)(j-m+1)} \end{split}$$

Finalmente, se tienen

$$J_+\left|j,m\right>=\hbar\sqrt{(j-m)(j+m+1)}\left|j,m+1\right>$$

У

$$J_{-}\left|j,m\right\rangle = \hbar\sqrt{(j+m)(j-m+1)}\left|j,m-1\right\rangle$$

Se ve que los estados más bajos o más altos se aniquilan

$$J_{-}|j,-j\rangle = 0 J_{+}|j,j\rangle = 0$$

Los elementos de matriz de J^2, J_z, J_+ serán, si se asume normalización de $|j,m\rangle$,

$$\begin{split} \left\langle j',m' \left| \, J^2 \right| j,m \right\rangle &= j(j+1)\hbar^2 \delta_{jj'} \delta_{m'm} \\ \left\langle j',m' \left| \, J_z \right| j,m \right\rangle &= m\hbar \delta_{jj'} \delta_{m'm} \end{split}$$

Y además

$$\langle j',m'\,|\,J_{\pm}\,|\,j,m\rangle = \sqrt{(j\mp m)(j\pm m+1)}\hbar\delta_{jj'}\delta_{m',m\pm 1}$$

que no es diagonal, aunque por poco. Los $|j',m'\rangle$ no son autoestados de $J_\pm.$

En el subespacio angular de j, m vale la completitud

$$\sum_{j} \sum_{m=-j}^{j} |j, m\rangle \langle j, m| = 1,$$

pero para especificar bien el estado necesito de ciertos sistemas un número más, mínimamente, que es el de la energía

$$\sum_{k} \sum_{j} \sum_{m=-j}^{j} |k, j, m\rangle \langle k, j, m| = 1.$$

1.1.4 Elementos de matriz de $\mathcal{D}(R)$

Ahora queremos ver cual es la forma de los elementos de matriz de $\mathcal{D}(R)$

$$\mathcal{D}(R) = e^{i \mathbf{J} \cdot \vec{n} \phi / \hbar}$$

siendo que $\mathcal{D}(R)$ tiene por efecto rotar el sistema físico. Cuando $\hat{n}=\hat{z}$ es fácil, pero en caso contrario no sabemos cómo opera. Lo primero que hay que notar es que

$$\langle j',m'\,|\,\mathcal{D}(R)\,|\,j,m\rangle \propto \delta_{jj'}$$

porque $[J^2, J_i] = 0$ y entonces $[J^2, J_i^n] = 0$ y

$$\mathcal{D}(R) = f(J_i) \longrightarrow [J^2, \mathcal{D}(R)] = 0$$

у

$$\mathcal{D}_{m'm}^{(j)} = \langle j, m' \mid e^{i \boldsymbol{J} \cdot \vec{n} \phi / \hbar} \mid j, m \rangle$$

es una matriz para cada j fijo con $\{(2j+1)\times(2j+1)=\text{dimensión}\}$

$$\mathcal{D}(R)\left|j,m\right\rangle = \sum_{m'}\left|j,m'\right\rangle \left\langle j,m'\right| \, \mathrm{e}^{i\boldsymbol{J}\cdot\vec{n}\phi/\hbar}\left|j,m\right\rangle = \sum_{m'}\mathcal{D}_{m'm}^{(j)}(R)\left|j,m'\right\rangle$$

pero las rotaciones no cambian el j, $\mathcal{D}(R)$ conecta estados con la misma $j y \mathcal{D}(R) \in (2j+1) \times (2j+1)$

$$\mathcal{D}(R)\left|j,m\right\rangle = \sum_{m'} \mathcal{D}_{m'm}^{(j)}(R)\left|j,m'\right\rangle$$

donde $\mathcal{D}_{m'm}^{(j)}(R)$ son las funciones de Wigner. La matriz de $\mathcal{D}(R)$ (no caracterizada por un único j) puede ponerse en forma diagonal por bloques, lo cual surge de considerar la aplicación sobre $\alpha |j,m\rangle + \beta |j,m'\rangle$

$$\begin{split} \mathcal{D}_{(R)} \left| \gamma \right\rangle &= \alpha \left| j_1, m_1 \right\rangle + \beta \left| j_2, m_2 \right\rangle \\ j' \quad j'' \quad j''' \\ \\ \mathcal{D}(R) &= \left(\begin{array}{ccc} \square & 0 & 0 \\ 0 & \square & 0 \\ 0 & 0 & \square \end{array} \right) \begin{array}{c} j' \\ j'' \\ j''' \end{array} \end{split}$$

con cada bloque de $(2j_q+1)\times(2j_q+1)$ con q=1,2,..., pero siendo cada bloque irreducible. Cada bloque es un grupo; en efecto, las matrices de rotación con j fijo forman un grupo. $\mathcal{D}_{m'm}^{(j)}(R)$ son los elementillos de la matriz.

$$|j,m\rangle \underset{\text{Rotación}}{\longrightarrow} \mathcal{D}(R)\,|j,m\rangle = \sum_{m'} \mathcal{D}_{m'm}^{(j)}(R)\,|j,m'\rangle$$

donde el $\mathcal{D}_{m'm}^{(j)}(R)$ es la amplitud de hallar al $|j,m\rangle$ rotado en $|j,m'\rangle$. La matriz lo que hace es hacer que varíen las proyecciones del ket sobre la base, pero conservando el valor de j.

Hay un dibujito pedorro en la carpeta P37.

1.1.5 Forma explícita del operador $\mathcal{D}(R)$

Los ángulos de Euler permitieron caracterizar la rotación más general. Entonces

$$\mathcal{D}_{m'm}^{(j)} = \left\langle j, m' \mid e^{-iJ_z \alpha/\hbar} e^{-iJ_y \beta/\hbar} e^{-iJ_z \gamma/\hbar} \mid j, m \right\rangle$$

donde acá sabemos qué es lo que hacen los que están a los lados, porque ya lo calculamos, y entonces

$$\mathcal{D}_{m'm}^{(j)} = e^{-i(-m'\alpha + m\gamma)} \underbrace{\left\langle j, m' \mid e^{-iJ_y\beta/\hbar} \mid j, m \right\rangle}_{d_{m'm}^{(j)}}$$

siendo el primer factor una fase. En los $d_{m'm}^{(j)}$, que son un subconjunto de las funciones de Wigner, está la dificultad de la cuenta.

1.2 Formalismo de spinores de Pauli

Apropiado para trabajar con sistemas de spín 1/2, que es lo más básico para los sistemas con momento angular. Estos sistemas son casos particulares de momento angular,

$$j = \frac{1}{2}$$
 $m = -\frac{1}{2}, +\frac{1}{2}$

y se definen los spinores χ_+ como

$$|J_z;+\rangle \equiv |+\rangle \equiv \begin{pmatrix} 1 \\ 0 \end{pmatrix} \equiv \chi_+ \qquad \qquad |J_z;-\rangle \equiv |-\rangle \equiv \begin{pmatrix} 0 \\ 1 \end{pmatrix} \equiv \chi_-$$

Acá hay una diferencia con lo que hay en la carpeta que lo meto dentro de un entorno de ejemplo para trabajarlo más adelante

EJEMPLO 2.1 Representación de Pauli

La representación de Pauli es una forma de escribir los kets. Podría usar otras muchas representaciones (incluso un espacio de kets con vectores de tres componentes o más). Es la misma física pero con diferente formalismo (que no es físico).

$$\begin{array}{ll} J_{-}\left|-\right\rangle = 0 & J_{+}\left|-\right\rangle = \hbar\left|+\right\rangle \\ J_{+}\left|+\right\rangle = 0 & J_{-}\left|+\right\rangle = \hbar\left|-\right\rangle \end{array}$$

y entonces tenemos

$$\begin{split} |+\rangle &\equiv \Psi_+ \equiv \begin{pmatrix} 1 \\ 0 \end{pmatrix} &\qquad |-\rangle \equiv \Psi_- \equiv \begin{pmatrix} 0 \\ 1 \end{pmatrix} \\ \langle +| \equiv \Psi_+^\dagger \equiv (\ 1\ 0\) &\qquad \langle -| \equiv \Psi_-^\dagger \equiv (\ 0\ 1\) \end{split}$$

Podemos juntar en una esperice de matriz los operadores J,

$$\begin{pmatrix} ++&+-\\ -+&-- \end{pmatrix}$$

Se puede ver que

$$\left\langle +\left| J_{y}\right| +\right\rangle =\frac{i}{2}\left\langle +\left| J_{-}-J_{+}\right| +\right\rangle =0$$

$$\langle - | J_y | - \rangle = \frac{i}{2} \langle - | J_- - J_+ | - \rangle = 0$$

mientras que los cruzados

$$\left\langle +\left|\,J_{y}\,\right|-\right\rangle =\frac{i}{2}\left\langle +\left|\,J_{-}-J_{+}\,\right|-\right\rangle =-i\frac{\hbar}{2}$$

$$ra{\left\langle -\left|J_{y}\right|+
ight
angle }=rac{i}{2}\left\langle -\left|J_{-}-J_{+}\right|+
ight
angle =irac{\hbar}{2}$$

Luego, el J_y se puede vincular a una matriz σ_2 de acuerdo con

$$J_y = rac{\hbar}{2} egin{pmatrix} 0 & -i \ i & 0 \end{pmatrix} = rac{\hbar}{2} \ \sigma_2$$

y construyo un vector de matrices σ que forma el

$$oldsymbol{S}=rac{\hbar}{2}oldsymbol{\sigma}$$

donde las otras dos matrices aparecen como

$$J_x = \frac{\hbar}{2} \sigma_1$$
 $J_z = \frac{\hbar}{2} \sigma_3$

y donde las propiedades de las matrices de Pauli aparecen más abajo.

$$|\alpha\rangle = \begin{pmatrix} \langle + \mid \alpha \rangle \\ \langle - \mid \alpha \rangle \end{pmatrix}$$
$$\langle \alpha | = (\langle + \mid \alpha \rangle \quad \langle - \mid \alpha \rangle)$$

Para spín 1/2 podemos tomar $\boldsymbol{J} = \boldsymbol{S}$ por la analogía de las relaciones de conmutación. A su vez

$$S = \frac{\hbar}{2}\vec{\sigma}$$
 con $\vec{\sigma} \equiv (\sigma_x, \sigma_y, \sigma_z)$

que es una especie de vector

$$\vec{\sigma} = \begin{bmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \end{bmatrix}$$

Luego esta equivalencia provee expresión de los operadores S_i en términos de matrices de 2×2 , así:

$$\frac{i}{2}[J_--J_+]=J_y=S_y=\frac{\hbar}{2}\sigma_y$$

siendo que los J_y y S_y actúan sobre kets y el σ sobre spinores.

Las matrices de Pauli cumplen las propiedades básicas siguientes

$$\sigma_i^2 = 1$$
 $\sigma_i^{\dagger} = \sigma_i$

$$\begin{split} [\sigma,\sigma_j] &= i2\varepsilon_{ijR}\sigma_R \qquad \{\sigma,\sigma_j\} = \delta_{ij} \\ \sigma_i^n &= \begin{cases} \mathbb{1} & n \text{ par} \\ \sigma_i & n \text{ impar} \end{cases} \end{split}$$

Además,

$$\det (\sigma_i) = -1 \qquad \text{Traza } (\sigma_i) = 0$$

lo que conduce a

$$\det (e^{ia\sigma_i}) = e^{ia \operatorname{Traza}(\sigma)} = 1$$

Vemos, además, que las matrices pertenecen a SU(2) el grupo de matrices unitarias de determinante unitario, y a U(2) el grupo de matrices unitarias con cualquier determinante.

Podemos obtener los estados S_x, S_y que en el análisis cualitativo del experimento de Stern-Gerlach dedujimos se trataba de combinaciones lineales de $|+\rangle, |-\rangle$

$$\begin{split} |S=1/2;S_x=1/2\rangle &= \frac{1}{\sqrt{2}}(|+\rangle + |-\rangle) \\ |S=1/2;S_x=-1/2\rangle &= \frac{1}{\sqrt{2}}(|+\rangle - |-\rangle) \\ |S=1/2;S_y=1/2\rangle &= \frac{1}{\sqrt{2}}(|+\rangle + i \, |-\rangle) \\ |S=1/2;S_y=-1/2\rangle &= \frac{1}{\sqrt{2}}(|+\rangle - i \, |-\rangle) \end{split}$$

Ahora tengo bien definidos los operadores con las matrices. Diagonalizo y listo, obtengo lo de arriba.

$$|+\rangle \equiv |j=1/2, m=1/2\rangle \qquad |-\rangle \equiv |j=1/2, m=-1/2\rangle$$

y también el resultado importante

$$(\vec{\sigma} \cdot \boldsymbol{a})(\vec{\sigma} \cdot \boldsymbol{b}) = (\boldsymbol{a} \cdot \boldsymbol{b}) + i\vec{\sigma} \cdot (\boldsymbol{a} \times \boldsymbol{b})$$
 (2.1)

Esto nos lleva a

$$J_{+} = \frac{\hbar}{2} \begin{pmatrix} 0 & 2 \\ 0 & 0 \end{pmatrix}$$

de forma que

$$J_{+}\left|-\right\rangle = \hbar \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \hbar \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \hbar \left|+\right\rangle,$$

y el círculo se ha cerrado.

Este formalismo se puede aplicar a las rotaciones ahora.

$$\mathcal{D}(\hat{n},\phi) = e^{-i\boldsymbol{J}\cdot\hat{n}\phi/\hbar} = e^{-i\vec{\sigma}\cdot\hat{n}\phi/2}$$

pero

$$(\vec{\sigma} \cdot \hat{n})^n = \begin{cases} \vec{\sigma} \cdot \hat{n} & n \text{ impar} \\ \mathbb{1} & n \text{ par} \end{cases}$$

y escribiendo la serie que implica la exponencial, se tiene

$$\mathrm{e}^{-i\vec{\sigma}\cdot\hat{n}\phi/2} = 1 - i\vec{\sigma}\cdot\hat{n}\,\frac{\phi}{2} - \frac{1}{2!}(\vec{\sigma}\cdot\hat{n})^2\left(\frac{\phi}{2}\right)^2 + \frac{i}{3!}(\vec{\sigma}\cdot\hat{n})^3\left(\frac{\phi}{2}\right)^3 - ...,$$

donde identificamos la serie del coseno, y usando ahora el resultado (2.1) podemos escribir

$$\mathcal{D}(\hat{n},\phi) = \, \mathrm{e}^{-i\vec{\sigma}\cdot\hat{n}\phi/2} = \mathbb{1}\cos\left(\frac{\phi}{2}\right) - i\vec{\sigma}\cdot\hat{n}\sin\left(\frac{\phi}{2}\right),$$

que zes el operador de rotación para sistemas de spin 1/2 (donde $\mathbb{1} \in 2 \times 2$). Todo esto vale para Con esta expresión podemos evaluar $d_{m'm}^{j=1/2}(\beta)$, tomando $\hat{n} = \hat{y}$ en la J = 1/2. fórmula anterior llegamos a que debe valer

$$d^{1/2}(\beta) = \begin{pmatrix} \cos(\beta/2) & -\sin(\beta/2) \\ \sin(\beta/2) & \cos(\beta/2) \end{pmatrix}$$

donde hemos usado los resultados

$$\cos(x) = \sum_{n=0}^{\infty} \frac{(x)^{2n+1}}{(2n+1)!} (-1)^n \qquad \sin(x) = \sum_{n=0}^{\infty} \frac{(x)^{2n}}{(2n)!} (-1)^n$$

En el caso general el operador de rotación para sistemas de spin 1/2 lucirá:

$$\begin{array}{ccc} |+\rangle & |-\rangle \\ \\ \mathcal{D}^{j=1/2}(\alpha,\beta,\gamma) = \left(\begin{array}{ccc} \mathrm{e}^{-\frac{i}{2}(\alpha+\gamma)}\cos\left(\frac{\beta}{2}\right) & -\mathrm{e}^{-\frac{i}{2}(\alpha-\gamma)}\sin\left(\frac{\beta}{2}\right) \\ \mathrm{e}^{-\frac{i}{2}(\gamma-\alpha)}\sin\left(\frac{\beta}{2}\right) & \mathrm{e}^{\frac{i}{2}(\alpha+\gamma)}\cos\left(\frac{\beta}{2}\right) \end{array} \right) |+\rangle \end{array}$$

Usar $|+\rangle = (1;0)$; etc. es utilizar una representación para hacer cálculos. A veces es útil "bajar" a una representación pictórica como esta para hacer ciertos cálculos y luego abstraerse nuevamente.

1.2.1 Ejemplo

$$d^{1/2}(\pi/2) = \begin{pmatrix} \sqrt{2}/2 & -\sqrt{2}/2 \\ \sqrt{2}/2 & \sqrt{2}/2 \end{pmatrix}$$

de manera que

$$\begin{split} d^{1/2}(\pi/2)\chi_{+} &= \frac{\sqrt{2}}{2} \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \frac{\sqrt{2}}{2} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \\ d^{1/2}(\pi/2)\chi_{+} &= \frac{\sqrt{2}}{2} (\chi_{+} + \chi_{-}) = \frac{1}{2} \left(|+\rangle + |-\rangle \right) \\ d^{1/2}(\pi/2)\chi_{+} &= |S_{x}; +\rangle \end{split}$$

Este resultado es intuitivamente lógico.

1.2.2 Rotaciones en sistemas con j = 1

Queremos hacer la transformación

$$|S_z, +\rangle \longrightarrow |S_x, +\rangle$$

con una $D(\beta)$. Otra maner es hacer una rotación sobre el eje \hat{y} que rote \hat{z} hacia \hat{x} en $\beta = \pi/2$. Entonces se genera la matriz correspondiente D

$$D^{1/2} = \begin{pmatrix} \cos(\pi/4) & -\sin(\pi/4) \\ \sin(\pi/4) & \cos(\pi/4) \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}$$

Si le aplico la matriz D al estado $|S_z;+\rangle$ paso al $|S_x;+\rangle$. Esto se ve desde

$$\frac{1}{\sqrt{2}}\begin{pmatrix}1 & -1\\1 & 1\end{pmatrix}\begin{pmatrix}1\\0\end{pmatrix} = \frac{1}{\sqrt{2}}\begin{pmatrix}1\\1\end{pmatrix} = \frac{1}{\sqrt{2}}\left(|+\rangle + |-\rangle\right)$$

Ahora tenemos

$$j = 1$$
 $m = -1, 0, 1$

y tendremos

$$|1,1\rangle = \begin{pmatrix} 1\\0\\0 \end{pmatrix} \qquad |1,0\rangle = \begin{pmatrix} 0\\1\\0 \end{pmatrix} \qquad |1,-1\rangle = \begin{pmatrix} 0\\0\\1 \end{pmatrix}$$

y recordando la expresión de ${\cal J}_y$ en términos de escaleras

$$J_y = \frac{J_+ - J_i}{2i}$$

y sabiendo cómo operan los J_+ y J_- sobre la base anterior es posible llenar la matriz de acuerdo con

$$\begin{split} |1\ 1\rangle & |1\ 0\rangle & |1\ -1\rangle \\ J_y = \frac{i\hbar}{\sqrt{2}} \left(\begin{array}{ccc} 0 & -1 & 0 \\ 1 & 0 & -1 \\ 0 & 1 & 0 \end{array} \right) \begin{array}{c} |1\ 1\rangle \\ |1\ 0\rangle \\ |1\ -1\rangle \end{split}$$

Ahora se quiere obtener $e^{-iJ_y\beta/\hbar}$, y podemos empezar con J_y/\hbar

$$\begin{split} \mathrm{e}^{-i\frac{J_y}{\hbar}\beta} &= 1 + -\frac{J_y}{\hbar}\beta + (-i)^2 \left(\frac{J_y}{\hbar}\beta\right)^2 \frac{1}{2!} + (-i)^3 \left(\frac{J_y}{\hbar}\beta\right)^3 \frac{1}{3!} + \dots \\ \mathrm{e}^{-i\frac{J_y}{\hbar}\beta} &= 1 - \frac{J_y}{\hbar}\beta - \frac{1}{2!} \left(\frac{J_y}{\hbar}\beta\right)^2 - \frac{i}{3!} \left(\frac{J_y}{\hbar}\beta\right)^3 + \dots \end{split}$$

Después de probar los primeros elementos se ve la recurrencia y se llega a

$$\left(\frac{J_y}{\hbar}\right)^n = \begin{cases} \left(\frac{J_y}{\hbar}\right) & n \text{ impar} \\ \left(\frac{J_y}{\hbar}\right)^2 & n \text{ par} \end{cases}$$

Sumando y restando un término conveniente se puede ve que la expresión equivale a

$$\mathrm{e}^{-i\frac{J_y}{\hbar}\beta} = 1 - \left(\frac{J_y}{\hbar}\right)^2 (1 - \cos(\beta)) - i\left(\frac{J_y}{\hbar}\right) \sin(\beta) = d^{j-1}(\beta)$$

acá lo vemos como operador (es notación), $d_{m'm}^{j=1}(\beta)$ simboliza la matriz

$$d^{j=1}(\beta) = \begin{pmatrix} \frac{1}{2}(1+\cos(\beta)) & -\frac{1}{\sqrt{2}}\sin(\beta) & \frac{1}{2}(1-\cos(\beta)) \\ \frac{1}{\sqrt{2}}\sin(\beta) & \cos(\beta) & -\frac{1}{\sqrt{2}}\sin(\beta) \\ \frac{1}{2}(1-\cos(\beta)) & \frac{1}{\sqrt{2}}\sin(\beta) & \frac{1}{2}(1+\cos(\beta)) \end{pmatrix} \begin{vmatrix} 1 & 1 \rangle \\ |1 & 0 \rangle \\ |1 & -1 \rangle \end{vmatrix}$$

1.3 Momento angular orbital

$$L = x \times p$$

verifica el álgebra de J,

$$[L_i, L_j] = i\hbar \epsilon_{ijR} L_R \qquad L_i = \epsilon_{ijk} x_j p_k$$

$$L_z = x p_y - y p_x$$

Consideremos ahora una rotación en torno a z, en un $\delta\phi$,

$$\begin{split} \left(1 - \frac{iL_z\delta\phi}{\hbar}\right)|x',y',z'\rangle &= 1 - \frac{iP_y}{\hbar}(x\delta\phi) + \frac{iP_x}{\hbar}(y\delta\phi)|x',y',z'\rangle \\ &= \left[1 - \frac{i}{\hbar}\left(P_yx\delta\phi - P_xy\delta\phi\right)\right]|x',y',z'\rangle \end{split}$$

esto es una traslación en $\hat{x}, \hat{y},$

$$(1-i\frac{L_z}{\hbar}\delta\phi)\left|x',y',z'\right\rangle = \left|x'-y'\delta\phi,y'+x'\delta\phi,z'\right\rangle$$

Esta traslación es debida a una rotación infinitesimal en $\delta\phi$ torno a z entonces genera las rotaciones clásicas en torno a z.

$$\Psi_{\alpha}(\boldsymbol{x}') = \langle x', y', z' \mid \alpha \rangle \underbrace{\longrightarrow}_{\text{Rotamos en } \mathbf{z}} \left\langle x', y', z' \mid 1 - \frac{iL_{z}\delta\phi}{\hbar} \mid \alpha \right\rangle = \langle x' + y'\delta\phi, y' - x'\delta\phi, z' \mid \alpha \rangle$$

y en coordenadas esféricas,

$$\Psi_{\alpha}(\boldsymbol{x}') = \langle r, \theta, \phi \, | \, \alpha \rangle \underbrace{\longrightarrow}_{\text{Rotamos en z}} \langle r, \theta, \phi - \delta \phi \, | \, \alpha \rangle$$

Podemos hallar una expresión para L_z en esféricas:

$$\left\langle r,\theta,\varphi\,\middle|\,1-\frac{L_{z}\delta\phi}{\hbar}\,\middle|\,\alpha\right\rangle\approx\left\langle\phi\,\middle|\,\alpha\right\rangle-\frac{\partial}{\partial\phi}\left\langle\phi\,\middle|\,\alpha\right\rangle\delta\phi$$

identificamos

$$\begin{split} \left\langle \boldsymbol{r} \left| -\frac{iL_z}{\hbar} \right| \alpha \right\rangle &= -\frac{\partial}{\partial \phi} \left\langle \boldsymbol{r} \right| \alpha \right\rangle \\ L_z &= -i\hbar \frac{\partial}{\partial \phi} \end{split}$$

operador L_z en esféricas.

Esta construcción usa que

$$\frac{\partial}{\partial \phi} \left\langle \phi \, | \, \alpha \right\rangle \approx \frac{\left\langle \phi + \delta \phi \, | \, \alpha \right\rangle - \left\langle \phi \, | \, \alpha \right\rangle}{\delta \phi} = \frac{\left\langle \phi \, | \, \alpha \right\rangle - \left\langle \phi - \delta \phi \, | \, \alpha \right\rangle}{\delta \phi}$$

y luego se despeja de la última $\langle \phi - \delta \phi \mid \alpha \rangle$.

Usando

$$L^2 = L_z^2 + \frac{1}{2} \left(L_+ L_- + L_- L_+ \right)$$

se llega a

$$\begin{split} \left\langle r,\theta,\phi\,\right|L^{2}\left|\,\alpha\right\rangle &=-\hbar^{2}\left[\frac{1}{\sin^{2}\theta}\frac{\partial^{2}}{\partial\phi^{2}}+\frac{1}{\sin\theta}\frac{\partial}{\partial\theta}[\sin\theta\frac{\partial}{\partial\theta}]\right]\left\langle r,\theta,\varphi\,\right|\alpha\rangle\\ \\ L^{2}&=-\hbar^{2}r^{2}\nabla_{\theta,\varphi}^{2} \end{split}$$

donde $\nabla^2_{\theta,\varphi}$ es la parte angular del laplaciano en coordenadas esféricas. Esto puede obtenerse también partiendo de

$$L^2 = \mathbf{x}^2 \mathbf{p}^2 - (\mathbf{x} \cdot \mathbf{p})^2 + i\hbar \mathbf{x} \cdot \mathbf{p}$$

Sea un H de partícula, sin spín, sujeta a potencial simétricamente esférico. Sabemos que la función de onda $\Psi_{\alpha}(\mathbf{r}')$ es separable en coordenadas esféricas, entonces:

$$\begin{split} \langle \pmb{r} \, | \, n, l, m \rangle &= R_{nl}(r) Y_l^m(\theta, \phi) \\ \langle \pmb{r} \, | \, n, l, m \rangle &= (\langle r | \otimes \langle \theta, \phi |) (|n, l, m \rangle) = \langle r \, | \, n, l, m \rangle \, \langle \theta, \phi \, | \, l, m \rangle \end{split}$$

Cuando el H es esféricamente simétrico (como en un potencial central) se tiene

$$[H, L_z] = [H, L^2] = 0$$

Trabajaremos solamente en la parte angular $|\theta, \varphi\rangle \equiv |\hat{n}\rangle$

$$\langle \hat{n} | \ell, m \rangle = Y_l^m(\theta, \phi) = Y_l^m(\hat{n})$$

que es la amplitud de hallar $|\ell, m\rangle$ en la dirección \hat{n} .

Podemos vincular ahora los armónicos esféricos con los autoestados de L_{τ}, L^2

$$L_z |\ell, m\rangle = m\hbar |\ell, m\rangle$$

de manera que

$$\left\langle \hat{n} \,|\, L_z \,|\, \ell, m \right\rangle = m \hbar \left\langle \hat{n} \,|\, \ell, m \right\rangle = -i \hbar \frac{\partial}{\partial \phi} \left\langle \hat{n} \,|\, \ell, m \right\rangle$$

y entonces

$$Y_l^m(\theta,\phi) \propto e^{im\phi}.$$

$$L^2 |\ell,m\rangle = l(l+1)\hbar^2 |\ell,m\rangle$$

y de modo ídem

$$\begin{split} \left\langle \hat{n} \left| \, L^2 \, \right| \ell, m \right\rangle &= l(l+1) \hbar^2 \left\langle \hat{n} \, \right| \ell, m \right\rangle \\ (-\hbar^2 r^2 \nabla_{\theta,\phi}^2 + l(l+1) \hbar) \left\langle \hat{n} \, \right| \ell, m \right\rangle &= 0 \end{split}$$

Entonces, con la ortogonalidad

$$\longrightarrow \langle l',m'\,|\,l,m\rangle = \delta_{l'l}\delta_{m'm}$$

y con la completitud

$$\longrightarrow \int d\Omega |\hat{n}\rangle \langle \hat{n}| = 1$$

de manera que llegamos a

$$\int d\Omega \left\langle l',m'\left|\hat{n}\right\rangle \left\langle \hat{n}\left|\,l,m\right\rangle =\delta_{l'l}\delta_{m'm} \qquad \int d\Omega Y_{l}^{m*}(\theta,\phi)Y_{l}^{m}(\theta,\phi) =\delta_{l'l}\delta_{m'm}$$

Podemos hallar una expresión para

$$\langle \hat{n} | L_{\perp} | l, l \rangle = 0$$

$$-i\hbar\,\mathrm{e}^{i\phi}(i\frac{\partial}{\partial\theta}-\cot\theta\frac{\partial}{\partial\phi})\,\langle\hat{n}\,|\,l,l\rangle=0\Rightarrow Y_l^m(\theta,\phi)=c_l\,\mathrm{e}^{il\phi}\sin^l\theta$$

Luego usamos L_{-} para hallar sucesivamente los demás Y_{ℓ}^{m}

$$\frac{\langle \hat{n} \, | \, L_- \, | \, l, m \rangle}{\sqrt{(l+m)(l-m+1)}} = \langle \hat{n} \, | \, l, m-1 \rangle$$

y por este camino se llega a

$$Y_l^m(\theta,\phi) = \frac{(-1)^l}{2^l l!} \sqrt{\frac{(2l+1)(l+m)!}{4\pi(l-m)!}} \, \mathrm{e}^{im\phi} \frac{1}{\sin\theta} \frac{d^{l-m}}{d(\cos^{l-m}\theta)} (\sin\theta)^{2l}$$

con

$$Y_l^{-m}(\theta,\phi) = (-1)(Y_l^m(\theta,\phi))^* \qquad Y_l^0(\theta,\phi) = \sqrt{\frac{2l+1}{4\pi}}P_l(\cos\theta)$$

En el caso de momento angular orbital ℓ no puede ser semientero porque entonces m sería semientero y en una vuelta de 2π

$$e^{im2\pi} = -1$$

entonces ψ no será univaluada

Además,

$$\langle \boldsymbol{x} \mid e^{-iL_z 2\pi/\hbar} \mid \alpha \rangle = \langle \boldsymbol{x} \mid \alpha \rangle$$
 (no hay signo menos)