<u>ממן 11</u>

: הוכח או הפרך: $A=\left\{\frac{1}{2},\frac{1}{4},\frac{1}{8}...\right\}=\left\{\frac{1}{2^n}|n\in\mathbb{N}\right\}$ הוכח או הפרך: הוכח או הפרך:

א. A קבוצה אינסופית: הטענה נכונה

.
$$B = \left\{ \frac{1}{2^{n+1}} \middle| n \in \mathbb{N} \right\}$$
תהי קבוצה B מך ש

$$x=rac{1}{2^n}$$
יהי $x\in A$ כך ש $x\in A$ יהי

$$x=rac{1}{2^n}$$
יהי $x\in A$ לכן יהי $x\in \mathbb{N}$ יהי $x\in A$ יהי $x\in A$ יהי לכן $\left(\sqrt[n]{\frac{1}{2^x}}\right)^{-(n+1)}=rac{1}{2^{n+1}}\in B$ לכן

 $(-(n+1)\sqrt{y})^{-n} \in A$ לכן, על פי הכלל שהגדרנו, האיבר

$$\left(\sqrt[-n]{\binom{-(n+1)}{\sqrt{y}}^{-n}}\right)^{-(n+1)} = \left(\sqrt[-(n+1)]{y}\right)^{-(n+1)} = y$$
 כדי לאמת את ההתאמה נכון.

Bויהי ויהי m,n מותאמים לאותו איבר ב. $z \in \mathbb{N}$ יהיו יהיו $m,n \in A$

$$\left(\sqrt[-z]{m}
ight)^{-(z+1)}=\left(\sqrt[-z]{n}
ight)^{-(z+1)}$$
, לכן, $\sqrt[-z]{m}=\sqrt[-z]{n}$ $m=n$

ולכן ההתאמה היא חד-חד-ערכית.

 $B \sim A$ לכן,

נוסף על כך, $A\subseteq B$ כי לכל $x\in A$ מותאם האיבר שלאחריו, שנמצא ב $x\in A$ כי לכל $A\subseteq B$

 $B \nsubseteq A$, ולכן $y \notin B$ ש

 $.B \sim A \&\& B \subset A$ לכן,

A אינסופית

$$\frac{1}{2^x} \in A$$
 נתאים $x \in \mathbb{N}$ לכל : \mathbb{N} ל לואים בין A נתאים ב.

לפי הגדרת A, לכל $x \in \mathbb{N}$ מותאם $x \in A$, לכן ההתאמה נכונה בהכרח.

נוכיח שלא קיימים שני איברים באחת הקבוצות, שלהם מותאם איבר נוסף:

:Aיהי $x,y\in\mathbb{N}$. נניח שx,y שייכים לאותו איבר ב

$$\frac{1}{2^x} = \frac{1}{2^y}$$
 לכן, לפי הכלל שהגדרנו: $2^y = 2^x$

$$x In 2 = y In 2$$

$$x = y$$

לכן, A ו₪ שקולות

ג. כל התאמה בין A ל \mathbb{N} היא חד-חד-ערכית: הטענה שגויה.

 $x \neq 1$ נגדיר התאמה בין A ל \mathbb{N} : לכל $x \in \mathbb{N}$ נתאים $\frac{1}{2^x} \in A$ נגדיר התאמה בין

 $1\in\mathbb{N}$ לכן, לכל איבר בA מותאם איבר ב \mathbb{N} , אך לא לכל איבר בל איבר בA מותאם איבר בל מותאם ארבר ששייך לל.

. ד. קיימת התאמה חד-חד-ערכית בין $\mathbb N$ ל $\mathbb N$ המתאימה את 1 ל $\frac14$: הטענה נכונה $\mathbb B=\{2x|x\in\mathbb N\}$

נגדיר התאמה בין $x \in \mathbb{N}$ לכל $x \in \mathbb{N}$ וגם $x \in \mathbb{N}$ נתאים $x \in \mathbb{N}$ וגם $x \in \mathbb{N}$ נתאים $x \in \mathbb{N}$ נתאים $x \in \mathbb{N}$ וגם $x \in \mathbb{N}$ נתאים בין $x \in \mathbb{N}$

 $rac{1}{4}\in A$ יותאם $1\in\mathbb{N}$ לכן, עבור

. אחד.
 $\mathbf{x} \in \mathbf{A}$ מותאם $x \in B$ אחד, וכן לכל
 $\mathbf{x} \in \mathbf{A}$ מותאם לפי לפי ההתאמה לפי

<u>שאלה 2:</u>

 $2x \in A$ גם $x \in A$ וכי לכל $1 \in A$ גם \mathbb{N} גם המספרים הטבעיים $X \in A$ גם לכל אם קבוצה חלקית לקבוצת המספרים הטבעיים און כי

- . א. הוכח שהקבוצה Aו היא חלקית ל $B=\{2x|x\in A\}$ א.
 - :B ⊆ Aנוכיח ש.a

 $B \nsubseteq A$ נניח בשלילה

 $x \in B$ יהי

 $x \in B \&\& x \notin A$ לכן

לכן $2x \in A \&\& (x \notin A \&\& 2x \notin A)$ לכן

:Bל A נגדיר התאמה חד-חד-ערכית בין $A{\sim}B$. נגדיר התאמה ה

 $.2x \in B$ נתאים $x \in A$ לכל

 $2x \in B$ ע כך עה היטב: יהי מוגדרת בצורה בצורה בצורה מוגדרת היטב: יהי $\frac{y}{2} \in A$ מותאם לפי הכלל. נוכיח נכונות ההתאמה: יהי $y \in B$

ג. נגדיר מחדש $A\subseteq \mathbb{N}$ כך ש $A\in A$ וגם לכל $x\in A$ גם $x\in A$. השינוי בנתון $A\subseteq \mathbb{N}$ לא רלוונטי לסעיף א' וכן מקיים את התנאי בסעיף ב' (הלוא – אם איננו מתחלק ב2 כשלם, מנתו אינה שייכת לקבוצת הטבעיים \mathbb{N} .

$A \cap B \sim A$ שאלה 4: תהיינה A, B קבוצות. נתון ש

A לכן A אינסופית.

```
A \neq B לכן A \neq B לפי ההנחה קיימת קבוצה חלקית לA \cap B \subset A לפי ההנחה קיימת קבוצה חלקית לA \cap B \subset A לכן נגדיר A \cap B \subset A יהי A \neq B לפי טענת עזר A \neq B \cap B \subset A נניח בשלילה A \cap B \not\subset A וגם A \cap B \subset A לכן A \cap B \subset A וגם A \cap B \subset A וזוהי סתירה! מכונה.
```

 $A\cap B\!\sim\! A$ וגם $A\cap B\subset A$ לכן מתקיים ולכן A קבוצה אינטופית – הטענה נכונה.

- ב. אם $B \neq B$ אזי A קבוצה אינסופית.
- ג. אם A סופית אזי $A \subseteq A$. הטענה נכונה: $\frac{\text{הוכחה:}}{\text{הוכחה:}}$ נניח בשלילה $A \nsubseteq B$. $x \in A$ יהי $x \in A$ לכן מתקיים $x \in A \& x \notin B$ לפי הנתונים $x \in A \land B \sim A$ לכן צריך להתקיים $A \land A$