Lec 8 可微条件与高阶偏导数

8.1 z = f(x, y) 在 $M_0(x_0, y_0)$ 处可微的条件

定理 8.1

若 z = f(x, y) 在 M_0 处可微,则 $f'_x(M_0), f'_y(M_0)$ 存在. 反之未必.

 \Diamond

证明 已知 z = f(x, y) 在 $M_0(x_0, y_0)$ 处可微,则

$$\Delta z = f(x_0 + \Delta x, y_0 + \Delta y) - f(x_0, y_0) = (A\Delta x + B\Delta y) + o(\rho),$$

 $\diamondsuit \Delta y = 0, \mathbb{N}$

$$\Delta z_x = f(x_0 + \Delta x, y_0) - f(x_0, y_0) = A\Delta x + o(|\Delta x|),$$

由此得

$$f'_x(M_0) = \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x, y_0) - f(x_0, y_0)}{\Delta x} = A.$$

同理, 令 $\Delta x = 0$, 则 $f'_{\nu}(M_0) = B$.

即 $\mathrm{d}z|_{M_0} = A\Delta x + B\Delta y = f_x'(M_0)\Delta x + f_y'(M_0)\Delta y \Rightarrow \mathrm{d}z = f_x'(M_0)\Delta x + f_y'(M_0)\Delta y$. 将 f_x' 记为 $\frac{\partial f}{\partial x}$,将 f_y' 记为 $\frac{\partial f}{\partial y}$,则

$$dz = \frac{\partial f}{\partial x} \Delta x + \frac{\partial f}{\partial y} \Delta y = \frac{\partial f}{\partial x} dx + \frac{\partial f}{\partial y} dy.$$

或者写成向量形式

$$dz = \left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right) \begin{pmatrix} dx \\ dy \end{pmatrix}.$$

定理 82

若 f(x,y) 在 M_0 处可微,则 z = f(x,y) 在 M_0 处必连续,反之未必.

 \Diamond

证明 己知
$$\Delta z = f(x_0 + \Delta x, y_0 + \Delta y) - f(x_0, y_0) = f'_x(M_0)\Delta x + f'_y(M_0)\Delta y + o(\rho)$$
, 且 $\Delta x \to 0, \Delta y \to 0$,

时,有

$$f'_x(M_0)\Delta x + f'_y(M_0)\Delta y + o(\rho) \to 0, \quad \rho \to 0,$$

其中
$$\rho = \sqrt{(\Delta x)^2 + (\Delta y)^2}$$
, 因此 $\rho \to 0 \Leftrightarrow \Delta x \to 0, \Delta y \to 0$.

从而 $\lim_{\Delta x \to 0, \Delta y \to 0} \Delta z = 0 \Leftrightarrow z = f(x, y)$ 在 M_0 处连续.

例 8.1 反例 1: $z = f(x,y) = \sqrt{x^2 + y^2}$, 在 $M_0(0,0)$ 处连续. 但因 $f'_x(0,0) = f'_y(0,0)$ 都不存在, 所以 f(x,y) 在 M_0 处不可微.

 \Diamond

例 8.2 反例 2:
$$z = f(x,y) = \begin{cases} \frac{x^2y}{x^4 + y^2}, & (x,y) \neq (0,0), \\ 0, & (x,y) = (0,0). \end{cases}$$
 在 $(0,0)$ 处有 $f'_x(0,0) = f'_y(0,0) = 0$, 但

 $\lim_{(x,y)\to(0,0)} f(x,y)$ 不存在, 所以 f(x,y) 在 (0,0) 处不连续. 由**??**可知 f(x,y) 在 (0,0) 处不可微.

定理 8.3

z=f(x,y) 在 $M_0(x_0,y_0)$ 处可微的充分必要条件是

$$\lim_{\rho \to 0} \frac{\Delta z - f_x'(M_0)\Delta x - f_y'(M_0)\Delta y}{\rho} = 0.$$

证明 若 z = f(x, y) 在 M_0 处可微,则

$$\Delta z = f(x_0 + \Delta x, y_0 + \Delta y) - f(x_0, y_0) = f'_x(M_0)\Delta x + f'_y(M_0)\Delta y + o(\rho),$$

由此得

$$\lim_{\rho \to 0} \frac{\Delta z - f_x'(M_0)\Delta x - f_y'(M_0)\Delta y}{\rho} = \lim_{\rho \to 0} \frac{o(\rho)}{\rho} = 0.$$

反之,若

$$\lim_{\rho \to 0} \frac{\Delta z - f_x'(M_0)\Delta x - f_y'(M_0)\Delta y}{\rho} = 0,$$

则

$$\Delta - (f'_x(M_0)\Delta x + f'_y(M_0)\Delta y) = o(\rho) \Rightarrow \Delta z = f'_x(M_0)\Delta x + f'_y(M_0)\Delta y + o(\rho) = (A\Delta x + B\Delta y) + o(\rho),$$

从而 $f(x,y)$ 在 M_0 处可微.

定理 8.4

z = f(x, y) 在 $M_0(x_0, y_0)$ 处可微的充分必要条件是 $f_x'(x_0, y_0), f_y'(x_0, y_0)$ 存在且连续.

证明 已知 $f'_x(x,y), f'_y(x,y)$ 在 M_0 处存在且连续,则

$$\Delta z = f(x_0 + \Delta x, y_0 + \Delta y) - f(x_0, y_0) = [f(x_0 + \Delta x, y_0 + \Delta y) - f(x_0, y_0 + \Delta y)] + [f(x_0, y_0 + \Delta y)$$

其中 $\theta_1,\theta_2\in(0,1)$. 利用 $f_x'(x,y),f_y'(x,y)$ 的连续性,得

$$\lim_{\Delta x \to 0, \Delta y \to 0} f'_x(x_0 + \theta_1 \Delta x, y_0 + \Delta y) = f'_x(x_0, y_0)$$
$$\lim_{\Delta x \to 0, \Delta y \to 0} f'_y(x_0, y_0 + \theta_2 \Delta y) = f'_y(x_0, y_0),$$

从而

$$f'_x(x_0 + \theta_1 \Delta x, y_0 + \Delta y) = f'_x(x_0, y_0) + \alpha_1, \quad \alpha_1 \to 0, \ (\Delta x \to 0, \Delta y \to 0),$$

 $f'_y(x_0, y_0 + \theta_2 \Delta y) = f'_y(x_0, y_0) + \alpha_2, \quad \alpha_2 \to 0, \ (\Delta x \to 0, \Delta y \to 0),$

即

$$\Delta z = (f'_x(M_0) + \alpha_1)\Delta x + (f'_y(M_0) + \alpha_2)\Delta y = f'_x(M_0)\Delta x + f'_y(M_0)\Delta y + \alpha_1\Delta x + \alpha_2\Delta y,$$

且
$$\lim_{\rho \to 0} \frac{\alpha_1 \Delta x + \alpha_2 \Delta y}{\rho} = \lim_{\rho \to 0} (\alpha_1 \cos \theta + \alpha_2 \sin \theta) = 0$$
, 从而 $\alpha_1 \Delta x + \alpha_2 \Delta y = o(\rho)$, 所以
$$\Delta z = f_x'(M_0) \Delta x + f_y'(M_0) \Delta y + o(\rho) = (A\Delta x + B\Delta y) + o(\rho),$$

从而 f(x,y) 在 M_0 处可微.

例 8.3 反例 3:
$$z = f(x,y) = \begin{cases} (x^2 + y^2) \sin \frac{1}{\sqrt{x^2 + y^2}}, & (x,y) \neq (0,0), \\ 0, & (x,y) = (0,0). \end{cases}$$
 在 $(0,0)$ 处可微, 但 $f'_x(x,y), f'_y(x,y)$ 在 $(0,0)$ 处不连续.

8.2 高阶偏导数

设
$$z = f(x,y) = x^2 + xy + y^2 + x^y + 3x + 4y$$
, 则
$$\frac{\partial z}{\partial x} = 2x + y + yx^{y-1} + 3,$$

$$\frac{\partial z}{\partial y} = x + 2y + x^y \ln x + 4.$$

由此得

$$\frac{\partial^2 z}{\partial y \partial x} = \left(\frac{\partial z}{\partial x}\right)_y' = (2x + y + yx^{y-1} + 3)_y' = 1 + x^{y-1} + yx^{y-1} \ln x,$$

$$\frac{\partial^2 z}{\partial x \partial y} = \left(\frac{\partial z}{\partial y}\right)_x' = (x + 2y + x^y \ln x + 4)_x' = 1 + x^{y-1} + yx^{y-1} \ln x.$$

进一步得

$$\frac{\partial^3 z}{\partial x \partial y \partial x} = \left(\frac{\partial^2 z}{\partial y \partial x}\right)_x' = \left(1 + x^{y-1} + y x^{y-1} \ln x\right)_x' = (y-1)x^{y-2} + y(y-1)x^{y-2} \ln x + y x^{y-2},$$

$$\frac{\partial^3 z}{\partial x^2 \partial y} = \left(\frac{\partial^2 z}{\partial x \partial y}\right)_x' = (1 + x^y \ln x + y)_x' = (y-1)x^{y-2} + y(y-1)x^{y-2} \ln x + y x^{y-2}.$$
对比得知, $\frac{\partial^2 z}{\partial y \partial x}$, $\frac{\partial^2 z}{\partial x \partial y}$, $\frac{\partial^2 z}{\partial x \partial y \partial x}$, $\frac{\partial^2 z}{\partial y \partial x \partial y \partial x}$, 在区域 $D: x > 0$ 中连续, 且

$$\frac{\partial^2 z}{\partial y \partial x} \equiv \frac{\partial^2 z}{\partial x \partial y},$$
$$\frac{\partial^3 z}{\partial x \partial y \partial x} \equiv \frac{\partial^3 z}{\partial x^2 \partial y}.$$

对于 $(x,y) \in D$ 成立.

定理 8.5

若z = f(x,y) 在区域 D 中的高阶偏导数连续,则高阶偏导数与求偏导的顺序无关.

证明 仅证
$$\frac{\partial^2 z}{\partial y \partial x} = \frac{\partial^2 z}{\partial x \partial y}$$
.
任取 $M_0 = (x_0, y_0) \in D, B(M_0, r) \subset D$, 取 $h = \Delta x \neq 0, k = \Delta y \neq 0$, 使得 $(x_0 + h, y_0 + k) \in A$

 $B(M_0,r), \diamondsuit$

$$\varphi(x) = f(x, y_0 + k) - f(x, y),$$

$$\psi(y) = f(x_0 + h, y) - f(x_0, y).$$

是 f(x,y) 分别对于 x 和 y 的偏差分。容易验证,如果 $\varphi(x)$ 和 $\psi(y)$ 分别对 x 和 y 再进行差分,那么差分的结果是都等于 f(x,y) 的二阶混合差分(下列第二个等式的右端)

$$\varphi(x_0 + h) - \varphi(x_0) = \psi(y_0 + k) - \psi(y_0)$$

$$= f(x_0 + h, y_0 + k) - f(x_0 + h, y_0) - f(x_0, y_0 + k) + f(x_0, y_0).$$

由一元函数的微分公式可得

$$\varphi(x_0 + h) - \varphi(x_0) = h\varphi'(x_0 + \theta_1 h)$$

$$= h \left(f'(x_0 + \theta_1 h, y_0 + k) - f'(x_0 + \theta_1 h, y_0) \right)$$

$$= hk f''_{xy}(x_0 + \theta_1 h, y_0 + \eta_1 k),$$

其中 $0 < \theta_1, \eta_1 < 1$ 。类比存在 $0 < \theta_2, \eta_2 < 1$,使得

$$\psi(y+k) - \psi(y_0) = hkf_{yx}''(x_0 + \theta_2 h, y_0 + \eta_2 k).$$

故有

$$f_{xy}''(x_0 + \theta_1 h, y_0 + \eta_1 k) = f_{yx}''(x_0 + \theta_2 h, y_0 + \eta_2 k).$$

令 $(h,k) \rightarrow (0,0)$, 由混合偏导数的连续性即可证明定理。

8.3 例题

例 8.4 证明函数
$$u = \frac{1}{r}, r = \sqrt{x^2 + y^2 + z^2} > 0$$
 满足 Laplace 方程

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} \equiv equiv0, \forall (x, y, z) \neq (0, 0, 0).$$

证明
$$u = (x^2 + y^2 + z^2)^{-\frac{1}{2}} \Rightarrow \frac{\partial u}{\partial x} = -x(x^2 + y^2 + z^2)^{-\frac{3}{2}} \Rightarrow \frac{\partial^2 u}{\partial x^2} = -\frac{(x^2 + y^2 + z^2) - 3x^2}{(x^2 + y^2 + z^2)^{\frac{5}{2}}}.$$
 由

于 $u = (x^2 + y^2 + z^2)^{-\frac{1}{2}}$ 是关于x, y, z的对称函数,因此有

$$\frac{\partial^2 u}{\partial y^2} = -\frac{(x^2 + y^2 + z^2) - 3y^2}{(x^2 + y^2 + z^2)^{\frac{5}{2}}}, \frac{\partial^2 u}{\partial z^2} = -\frac{(x^2 + y^2 + z^2) - 3z^2}{(x^2 + y^2 + z^2)^{\frac{5}{2}}}.$$

$$\frac{\partial^2 u}{\partial z^2} = -\frac{(x^2 + y^2 + z^2) - 3z^2}{(x^2 + y^2 + z^2)^{\frac{5}{2}}}.$$

从而

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} = -\frac{3(x^2 + y^2 + z^2) - 3(x^2 + y^2 + z^2)}{(x^2 + y^2 + z^2)^{\frac{5}{2}}} = 0.$$

例 8.5 证明 $u = \frac{1}{2a\sqrt{\pi t}}e^{-\frac{x^2}{4a^2t}}, x > 0, t > 0, a > 0$ 常数满足热传导方程

$$\frac{\partial u}{\partial t} = a^2 \frac{\partial^2 u}{\partial x^2}.$$

证明

$$\frac{\partial u}{\partial t} = \frac{(t^{-\frac{1}{2}})'_t}{2a\sqrt{\pi}} e^{-\frac{x^2}{4a^2t}} + \frac{1}{2a\sqrt{\pi}} e^{-\frac{x^2}{4a^2t}} \left(-\frac{x^2}{4a^2t}\right)'_t$$
$$= \frac{1}{2a\sqrt{\pi t}t} e^{-\frac{x^2}{4a^2t}} \left(-1 + \frac{x^2}{2a^2t}\right).$$

且有

$$\frac{\partial u}{\partial x} = \frac{1}{2a\sqrt{\pi t}} e^{-\frac{x^2}{4a^2t}} \left(-\frac{x}{2a^2t} \right),$$

$$\frac{\partial^2 u}{\partial x^2} = \frac{1}{4a\sqrt{\pi t}} e^{-\frac{x^2}{4a^2t}} \left(\frac{x^2}{2a^4t} - \frac{1}{a^2} \right).$$

从而

$$a^2 \frac{\partial^2 u}{\partial x^2} = \frac{\partial u}{\partial t}, \quad \forall t > 0, x \in \mathbb{R}^+.$$

例 8.6 $\forall \phi, \psi \in C^2(I), u = \phi(x - at) + \psi(x + at)$ 满足波动方程

$$\frac{\partial^2 u}{\partial t^2} = a^2 \frac{\partial^2 u}{\partial x^2}.$$

其中 a > 0 为常数

证明 令
$$\begin{cases} v = x - at, \\ w = x + at, \end{cases}$$
 , 则 $u = \phi(v) + \psi(w)$, 且

$$\frac{\partial u}{\partial x} = \phi'(v)\frac{\partial v}{\partial x} + \psi'(w)\frac{\partial w}{\partial x} = \phi'(v) + \psi'(w),$$
$$\frac{\partial u}{\partial t} = \phi'(v)\frac{\partial v}{\partial t} + \psi'(w)\frac{\partial w}{\partial t} = -a\phi'(v) + a\psi'(w).$$

从而

$$\frac{\partial^2 u}{\partial x^2} = \phi''(v)\frac{\partial v}{\partial x} + \psi''(w)\frac{\partial w}{\partial x} = \phi''(v) + \psi''(w),$$
$$\frac{\partial^2 u}{\partial t^2} = \phi''(v)\frac{\partial v}{\partial t} + \psi''(w)\frac{\partial w}{\partial t} = a^2\phi''(v) + a^2\psi''(w).$$

因此有

$$\frac{\partial^2 u}{\partial t^2} = a^2 \frac{\partial^2 u}{\partial x^2}, \quad \forall t > 0, x \in \mathbb{R}.$$

作业 ex9.2:2(7),8,11,15,26,27,28.