Petit Dejeuner de la Finance Paris, Nov 27, 2002

Empirical Aspects of Dispersion Trading in U.S. Equity Markets

Marco Avellaneda Courant Institute of Mathematical Sciences, New York University & Gargoyle Strategic Investments

What is Dispersion Trading?

- Sell index option, buy options on index components ("sell correlation")
- Buy index option, sell options on index components ("buy correlation")

Motivation: to profit from price differences in volatility markets using index options and options on individual stocks

Opportunities: Market segmentation, temporary shifts in correlations between assets, idiosyncratic news on individual stocks

Index Arbitrage versus Dispersion Trading

Index Arbitrage:

Reconstruct an index product (ETF) using the component stocks

Dispersion Trading:

Reconstruct an index option using options on the component stocks

Main U.S. indices and sectors

- Major Indices: SPX, DJX, NDX
 SPX, DJA, OOO, (F. 1)
 - SPY, DIA, QQQ (Exchange-Traded Funds)
- Sector Indices:

Semiconductors: SMH, SOX

Biotech: BBH, BTK Pharmaceuticals: PPH, DRG

Financials: BKX, XBD, XLF, RKH

Oil & Gas: XNG, XOI, OSX

High Tech, WWW, Boxes: MSH, HHH, XBD, XCI

Retail: RTH

NASDAQ-100 Index (NDX) and ETF (QQQ)

- QQQ ~ 1/40 * NDX
- Capitalization-weighted
- QQQ trades as a stock
- •QQQ options: largest daily traded volume in U.S.

Sector Exchange Traded Funds

~ 20 - 40 stocks in same sector

Weightings by:

- capitalization
- equal-dollar
- equal-stock

SOX
ALTR
AMAT
AMD
INTC
KLAC
LLTC
LSCC
LSI
MOT
MU
NSM
NVLS
RMBS
TER
TXN
XLNX

XNG	
APA	
APC	
BR	
BRR	
EEX	
ENE	
EOG	
EPG	
KMI	
NBL	
NFG	
OEI	
PPP	
STR	
WMB	

-
AHC
BP
CHV
COC.B
XOM
KMG
OXY
P
REP
RD
SUN
TX
TOT
UCL
MRO

Index Option Arbitrage (Dispersion Trading)

- Takes advantage of differences in implied volatilities of index options and implied volatilities of individual stock options
- Main source of arbitrage: correlations between asset prices vary with time due to corporate events, earnings, and "macro" shocks
- Full or partial index reconstruction

Profit-loss scenarios for a dispersion trade in a single day

Scenario 1

Stock P/L: - 2.30 Index P/L: - 0.01 Total P/L: - 2.41

Scenario 2

Stock P/L: +9.41 Index P/L: - 0.22 Total P/L: +9.18

First approximation to hedging: "Intrinsic Value Hedge"

$$I = \sum_{i=1}^{M} w_i S_i$$
 $w_i = \text{number of shares, scaled by ``divisor''}$

$$K = \sum_{j=1}^{M} w_i K_i \quad \Rightarrow \quad$$

 $\max(I - K, 0) \le \sum_{j=1}^{M} w_i \max(S_i - K_i, 0)$

$$C_I(I,K,T) \leq \sum_{j=1}^{M} w_i C_i(S_i,K_i,T)$$

IVH: use index weights for option hedge

IVH: premium from index is less than premium from components "Super-replication"

Makes sense for deep-in-the-money options

Intrinsic-Value Hedging is `exact' only if stocks are perfectly correlated

$$I(T) = \sum_{i=1}^{M} w_i S_i(T) = \sum_{i=1}^{M} w_i F_i e^{\sigma_i N_i - \frac{1}{2} \sigma_i^2 T}$$

$$\rho_{ij} \equiv 1 \implies N_i \equiv N = \text{standardized normal}$$

Solve for
$$X$$
 in : $K = \sum_{i=1}^{M} w_i F_i e^{\sigma_i X - \frac{1}{2}\sigma_i^2 T}$

Set: $K_i = F_i e^{\sigma_i X - \frac{1}{2} \sigma_i^2 T}$ \therefore

 $\frac{1}{2}\sigma_i^2 T$ Jamshidian (1989)
for pricing bond
options in 1-factor
model

Similar to

 $\max(I(T) - K,0) = \sum_{i=1}^{M} w_i \max(S_i(T) - K_i,0) \quad \forall T$

IVH: Hedge with ``equal-delta'' options

$$K_{i} = F_{i}e^{\sigma_{i}X\sqrt{T} - \frac{1}{2}\sigma_{i}^{2}T} \qquad \therefore \qquad X = \frac{1}{\sigma_{i}\sqrt{T}}\ln\left(\frac{K_{i}}{F_{i}}\right) + \frac{1}{2}\sigma_{i}\sqrt{T}$$

$$-X = \frac{1}{\sigma_{i}\sqrt{T}}\ln\left(\frac{F_{i}}{K_{i}}\right) - \frac{1}{2}\sigma_{i}\sqrt{T} = d_{2}$$

$$N(d_{2}) = \text{constant}$$

$$\log - \text{moneyness} \approx \text{constant}$$

$$\text{Deltas} \approx \text{constant}$$

What happens after you enter a trade: Risk/return in hedged option trading

Unhedged call option

Hedged option

Profit-loss for a hedged single option position (Black –Scholes)

$$P/L \approx \theta \cdot (n^2 - 1) + NV \cdot \frac{d\sigma}{\sigma}$$

$$\theta$$
 = time - decay (dollars), $n = \frac{\Delta S}{S\sigma\sqrt{\Delta t}}$, NV = normalized Vega = $\sigma\frac{\partial C}{\partial \sigma}$

 $n \sim$ standardized move

Gamma P/L for an Index Option

Assume $d\sigma = 0$

Index Gamma P/L = $\theta_I (n_I^2 - 1)$

$$n_I = \sum_{i=1}^M \frac{p_i \sigma_i}{\sigma_I} n_i$$

$$n_I = \sum_{i=1}^{M} \frac{p_i \sigma_i}{\sigma_I} n_i \qquad p_i = \frac{w_i S_i}{\sum_{i=1}^{M} w_i S_j}$$

$$\sigma_I^2 = \sum_{ij=1}^M p_i p_j \sigma_i \sigma_j \rho_{ij}$$

Index P/L =
$$\theta_I \sum_{i=1}^{M} \frac{p_i^2 \sigma_i^2}{\sigma_I^2} (n_i^2 - 1) + \theta_I \sum_{i \neq j} \frac{p_i p_j \sigma_i \sigma_j}{\sigma_I^2} (n_i n_j - \rho_{ij})$$

Gamma P/L for Dispersion Trade

 i^{th} stock P/L $\approx \theta_i \cdot (n_i^2 - 1)$

Dispersion Trade P/L $\approx \sum_{i=1}^{M} \left(\theta_i + \frac{p_i^2 \sigma_i^2}{\sigma_i^2} \theta_I\right) \left(n_i^2 - 1\right) + \theta_I \sum_{i \neq i} \frac{p_i p_j \sigma_i \sigma_j}{\sigma_i^2} \left(n_i n_j - \rho_{ij}\right)$

diagonal term: realized single-stock movements vs. implied volatilities

off-diagonal term: realized cross-market movements vs. implied correlation

Introducing the Dispersion Statistic

$$D^{2} = \sum_{i=1}^{N} p_{i} (X_{i} - Y)^{2}$$

$$X_{i} = \frac{\Delta S_{i}}{S_{i}}, \quad Y = \frac{\Delta I}{I}$$

$$X_i = \frac{\Delta S_i}{S_i}, \quad Y = \frac{\Delta I}{I}$$

$$D^{2} = \sum_{i=1}^{N} p_{i} \sigma_{i}^{2} n_{i}^{2} - \sigma_{I}^{2} n_{I}^{2}$$

$$\begin{split} \text{P/L} &= \sum_{i=1}^{N} \theta_i \left(n_i^2 - 1 \right) + \theta_I \left(n_I^2 - 1 \right) \\ &= \sum_{i=1}^{N} \theta_i n_i^2 + \theta_I n_I^2 - \Theta \qquad \Theta \equiv \sum_{i=1}^{N} \theta_i + \theta_I \\ &= \sum_{i=1}^{N} \theta_i n_i^2 + \frac{\theta_I}{\sigma_I^2} \sum_{i=1}^{N} p_i \sigma_i^2 n_i^2 - \frac{\theta_I}{\sigma_I^2} \sum_{i=1}^{N} p_i \sigma_i^2 n_i^2 + \theta_I n_I^2 - \Theta \\ &= \sum_{i=1}^{N} \left(\frac{\theta_I p_i \sigma_i^2 n_i^2}{\sigma_I^2} + \theta_i \right) n_i^2 - \frac{\theta_I}{\sigma_I^2} D^2 - \Theta \end{split}$$

Summary of Gamma P/L for Dispersion Trade

Gamma P/L =
$$\sum_{i=1}^{N} \left(\frac{\theta_{I} p_{i} \sigma_{i}^{2} n_{i}^{2}}{\sigma_{I}^{2}} + \theta_{i} \right) n_{i}^{2} - \frac{\theta_{I}}{\sigma_{I}^{2}} D^{2} - \Theta$$
"Idiosyncratic"

Gamma

Dispersion

Gamma

Time-Decay

Example: "Pure long dispersion" (zero idiosyncratic Gamma):

$$\theta_{i} = -\theta_{I} \frac{p_{i} \sigma_{i}^{2}}{\sigma_{I}^{2}} \qquad \Theta = \left| \theta_{I} \left| \left(\frac{\sum_{i} p_{i} \sigma_{i}^{2}}{\sigma_{I}^{2}} - 1 \right) \right| \ge \left| \theta_{I} \left| \left(\frac{\sum_{i} p_{i} \sigma_{i}}{\sigma_{I}^{2}} - 1 \right) \right| > 0$$

25 20 15 10 70 75 80 85 90 95 100 105 110 115 120 125 130 Payoff function for a trade with short index/long options (IVH), 2 stocks

Value function (B&S) for the IVH position as a function of stock prices (2 stocks)

In general: short index IVH is short-Gamma along the diagonal, long-Gamma for ``transversal'' moves

Vega Risk

Sensitivity to volatility: move all single-stock implied volatilities by the same percentage amount

Vega P/L =
$$\sum_{j=1}^{M} \text{Vega}_{j} \Delta \sigma_{j} + \text{Vega}_{I} \Delta \sigma_{I}$$

$$= \sum_{j=1}^{M} (NV)_{j} \frac{\Delta \sigma_{j}}{\sigma_{j}} + (NV)_{I} \frac{\Delta \sigma_{I}}{\sigma_{I}}$$

$$= \left[\sum_{j=1}^{M} (NV)_{j} + (NV)_{I} \right] \frac{\Delta \sigma}{\sigma}$$

$$NV = \text{normalized vega} = \sigma \frac{\partial V}{\partial \sigma}$$

Market/Volatility Risk

- Short Gamma on a perfectly correlated move
- Monotone-increasing dependence on volatility (IVH)

"Rega": Sensitivity to correlation

$$\rho_{ij} \rightarrow \rho_{ij} + \Delta \rho \quad i \neq j$$

$$\sigma_{I}^{2} \rightarrow \sum_{ij=1}^{M} p_{i} p_{j} \sigma_{i} \sigma_{j} \rho_{ij} + \left(\sum_{i \neq j} p_{i} p_{j} \sigma_{i} \sigma_{j}\right) \Delta \rho$$

$$\Delta \sigma_I^2 = \left[\left(\sigma_I^{(1)} \right)^2 - \left(\sigma_I^{(0)} \right)^2 \right] \Delta \rho,$$

$$\Delta \sigma_{I}^{2} = \left[\left(\sigma_{I}^{(1)} \right)^{2} - \left(\sigma_{I}^{(0)} \right)^{2} \right] \Delta \rho, \qquad \sigma_{I}^{(1)} = \sum_{j=1}^{M} p_{j} \sigma_{j}, \qquad \sigma_{I}^{(0)} = \sqrt{\sum_{j=1}^{M} p_{j}^{2} \sigma_{j}^{2}}$$

$$\frac{\Delta \sigma_I}{\sigma_I} = \frac{1}{2} \frac{\left(\sigma_I^{(1)}\right)^2 - \left(\sigma_I^{(0)}\right)^2}{\sigma_I^2} \Delta \rho$$

Correlation P/L =
$$\frac{1}{2} (NV)_I \frac{(\sigma_I^{(1)})^2 - (\sigma_I^{(0)})^2}{\sigma_I^2} \Delta \rho$$
 Rega = $\frac{1}{2} \left(\frac{(\sigma_I^{(1)})^2 - (\sigma_I^{(0)})^2}{\sigma_I^2} \right) \times (NV)_I$

Rega =
$$\frac{1}{2} \left(\frac{\left(\sigma_I^{(1)} \right)^2 - \left(\sigma_I^{(0)} \right)^2}{\sigma_I^2} \right) \times (NV)_I$$

Market/Correlation Sensitivity

- Short Gamma on a perfectly correlated move
- Monotone-decreasing dependence on correlation

Entering a trade...

Valuation Method I: Weighted Monte Carlo

- Simulate scenarios (paths) for the group of stocks that comprise the index or indices under consideration
- Simulate the cash-flows of options on all the stocks and the index options
- Select weights or probabilities on the scenarios in such a way that all options/forward prices are correctly reproduced by averaging over the paths
- Use ``weighted Monte Carlo'' to derive fair-value of target options and compare with market values

MC with Non-Uniform Probabilities

Avellaneda, Buff, Friedman, Kruk, Grandchamp: IJTAF, 1999

•SDE is used to sample the path space

$$dX = \Sigma \cdot dW + B \cdot dt$$

- •SDE represents Bayesian prior, e.g. subjective probability
- •Reweighted probabilities reflect prices of traded securities Arrow-Debreu probabilities

MC with Non-Uniform Probabilities

Avellaneda, Buff, Friedman, Kruk, Grandchamp: IJTAF, 1999

•SDE is used to sample the path space

$$dX = \Sigma \cdot dW + B \cdot dt$$

- •SDE represents Bayesian prior, e.g. subjective probability
- •Reweighted probabilities reflect prices of traded securities Arrow-Debreu probabilities

Computation of weights: Max-Entropy Method

Determine probabilities by maximizing entropy or minimizing cross-entropy with respect to prior

Maximize
$$H(p) = -\sum_{i=1}^{\nu} p_i \ln p_i$$

Subject to

Market prices of single-stock options
$$\begin{pmatrix} C_1 \\ C_2 \\ * \\ C_N \end{pmatrix} = \begin{pmatrix} g_{11} & * & g_{1\nu} \\ * & * & * \\ g_{N1} & * & g_{N\nu} \end{pmatrix} \cdot \begin{pmatrix} p_1 \\ * \\ * \\ p_{\nu} \end{pmatrix}$$
Risk-neutral pricing probabilities

Valuation Method II: (WKB) Steepest-Descent Approximation

(Avellaneda, Boyer-Olson, Busca, Friz: RISK 2002, C.R.A.S. Paris 2003)

Improvement on Standard Volatility Formula for Index Options

$$\sigma_I^2 = \sum_{j=1}^N p_j^2 \sigma_j^2 + \sum_{i \neq j} p_i p_j \sigma_i \sigma_j \rho_{ij}$$
 (*)

- Assume that the correlation is given
- Use markets on single-stock volatilities taking into account volatility skew
- How can we integrate volatility skew information into (*)?

Steepest-Descent Approximation

- Define a risk-neutral 1-factor model for the index process $\frac{dI}{I} = \sigma_I(I, t)dW + \mu_I(I, t)dt$
- Local index vol= conditional expectation of local variance (rigorous)

$$\sigma_I^2(I,t) = \mathbb{E}\left[\sum_{jk=1}^N \sigma_j(S_j(t),t)\sigma_k(S_k(t),t)\rho_{jk}p_jp_k \left| \sum_{j=1}^N w_jS_j(t) = I \right|\right]$$

■ Approximate this conditional expectation using the most likely stock configuration $(S_1^*,...,S_N^*)$ given that $\sum_i w_i S_i(t) = I$

$$\sigma_I^2(I,t) \cong \sum_{ij=1}^N p_i p_j S_i^* S_j^* \sigma_i \left(S_i^*,t\right) \sigma_j \left(S_j^*,t\right)$$

Gargoyle Dispersion Fund

- Joint venture between Gargoyle Strategic Partners and Marco Avellaneda (manager)
- Started Trading: May 2001
- Uses proprietary system to detect trades and executes electronically and through network of brokers in 5 U.S. exchanges
- 1 FT junior trader, 3 PT senior traders, 1 FT risk manager

Dispersion Fund Performance

Trading Period: 15 months

Cumulative ROI* since inception: 28.33%

Annualized Rate of Return: 22.65%

Annualized Standard Deviation: 26.59%

Worst monthly loss: August 02, -16%

Correlation with S&P 500: 35%

Correlation with VIX Index: - 33%

* After paying brokerage fees and commissions, etc

Conclusions

- Dispersion trading: a form of ``statistical correlation arbitrage''
- Sell correlation by selling index options and buying options on the components
- Buy correlation by buying index options and selling options on the components
- ``Convergence trading'' style.
- Price discovery using model and market data on vol skews
- Sophisticated trading strategy. Potentially very profitable, with moderate (but not low) risk profile.