Fouriertransformation – Abtasttheorem

Steffen Walter (1145690) Marvin Gaube (4670273)

Duale Hochschule Baden-Württemberg – Stuttgart Vorlesung: Digitale Bildverarbeitung

16. April 2020

Agenda

- 1 Theoretische Grundlagen
- 2 Praktische Anwendung
- Realisierung
 - Platzhalter
- 4 Fazit

Theoretische Grundlagen

Platzhalter

Abtastung

- Abtastung bedeutet, dass nur die Information an den Gitterpunkten erhalten bleibt
- Mathematisch ist dies eine Multiplikation mit einer Funktion, die nur an den Gitterpunkten ungleich null ist
- Diese Operation lässt sich durchführen, indem wir die Bildfunktion g(x) mit einer Funktion multiplizieren, welche die Summe der an den Gitterpunkten $r_{m,n}$ sitzenden δ -Funktionen darstellt
- Diese Funktion wird in der Literatur oft als Nagelbrettfunktion oder 2D- δ -Kamm bezeichnet

Abtastung

- Eine dichte Abtastung im x-Raum führt zu einem weiten Gitter im k-Raum und umgekehrt. Damit führt die Abtastung zu einer Wiederholung des Bildspektrums an jedem Gittervektor im Fourierraum.
- Es folgt, dass die Abtastung zu einer Reduktion der Auflösung führt, d. h., dass Strukturen von der Größe der Abtastschrittweite oder kleiner verloren gehen.

1D Aliasing-Effekt

Beschreibung

Bei der Abtastung eines Signals mit einer Abtastfrequenz etwas kleiner als die Wellenlänge kommt es zum Aliasing-Effekt. Aus dem hochfrequenten Signal wird ein deutlich niederfrequenteres Signal abgetastet.

Abbildung: Veranschaulichung des Aliasing-Effektes. Quelle [Jähne(2012)]

1D Abtasttheorem

Beschreibung

Das Abtasttheorem formuliert die Bedingung, welche nötig ist um eine Verfälschung des Signals bei der Abtastung zu vermeiden:

- Aus Abbildung ergibt sich $(f_p f_g) f_g \ge 0$
- Daraus lässt sich folgendes Ableiten: $f_p \ge 2f_g$
- f_p ist hierbei die Abtastfrequenz

Abbildung: Bedingungen
Abtasttheorem. Quelle [Lange(2019)]

2D Aliasing-Effekt

2D Abtasttheorem

Praktische Anwendung

Wo kommt das Abtasttheorem zum Einsatz?

Realisierung

Implementierung in MATLAB

Fazit

Platzhalter

Quellen

Bernd Jähne.

Digitale Bildverarbeitung und Bildgewinnung. Springer Vieweg, 2012. ISBN: 978-3-642-04952-1.

Jörg Lange.

Mathematische Grundlagen der Digitalisierung. Springer Vieweg, 2019. ISBN: 978-3-658-26686-8.