Gabarito da primeira prova de bases matemática turma B

8 de agosto de 2017

1. Siga o roteiro indicado abaixo:

- (a) Primeiro prove a seguinte proposição: Se n^3 é par, então n é par.
- (b) Segundo, use o resultado do item acima para mostrar que $\sqrt[3]{2}$ é irracional.
- (c) Assumindo o resultado expresso no item anterior, é possível afirmar que o supremo do conjunto $A = \{q \in \mathbb{Q}_+ | q^3 < 2\}$ existe nos reais \mathbb{R} ? Justifique com base em teoremas vistos em sala de aula.
 - (a) Vamos provar a contrapositiva: se n é împar, então n^3 é împar. Se n é împar, então pode ser escrito na forma n=2k+1, com $k\in\mathbb{Z}$. Logo, $n^3=(2k+1)^3=2(4k^3+6k^2)+1$. Como $4k^3+6k^2\in\mathbb{Z}$, n^3 é împar.
 - (b) Vamos provar por redução ao absurdo. Suponha que $\sqrt[3]{2} \in \mathbb{Q}$. Então é da forma $\sqrt[3]{2} = p/q$, irredutível, com $p,q \in \mathbb{Z}, q \neq 0$. Então $p^3 = 2q^3$, e assim p^3 é par, e pelo item (a), p é par. Assim, p é da forma p = 2k, com $k \in \mathbb{Z}$. Substituindo, $2q^3 = 8k^3 \Rightarrow q^3 = 2(2k^3)$. Como $2k^3 \in \mathbb{Z}, q^3$ é par, e assim q é par. Logo, p e q são pares, portanto têm um divisor comum 2, e entramos em contradição com p/q ser irredutível. (c) O conjunto A é não-vazio, pois $0 \in A$. Além disso, o conjunto A é limitado superiormente, pois, por exemplo, $2 \in \mathbb{Q}_+$ é uma cota superior. Pelo axioma de completude,

existe $s = \sup A$, o supremo de A, pertencente aos reais. De fato, chamamos $s = \sqrt[3]{2}$.

2. Siga o roteiro indicado abaixo.

- (a) Prove $\wp(A) \cap \wp(B) = \wp(A \cap B)$, em que A e B são conjuntos quaisquer.
- (b) Sejam $A \subset \mathbb{N}$ e $B \subset \mathbb{N}$ tais que $\wp(A) \cap \wp(B) = \{X \subset \mathbb{N} | 1 \notin X\}$. Determine as condições sobre A e B de modo que $A \neq B$. Você pode assumir a propriedade expressa no item anterior.
 - $(\mathbf{a})x \in \wp\left(A\right) \cap \wp\left(B\right) \Leftrightarrow (x \in \wp\left(A\right)) \wedge (x \in \wp\left(B\right)) \Leftrightarrow (x \subset A) \wedge (x \subset B) \Leftrightarrow x \subset A \cap B \Leftrightarrow x \in \wp\left(A \cap B\right).$
 - (b) Considere $C = A \cap B$. Então, por (a), $\wp(C) = \{X \subset \mathbb{N} | 1 \notin X\}$. Assim, C contem como subconjuntos todos os subconjuntos de \mathbb{N} que não contêm a unidade. Assim, $\mathbb{N} \setminus \{1\} \subset C$. Por outro lado, os subconjuntos de C são aqueles que não contêm a unidade, portanto $C = \mathbb{N} \setminus \{1\}$. Desse modo, temos $A \cap B = \mathbb{N} \setminus \{1\}$. Podemos ter, portanto, $A = \mathbb{N}$ e $B = \mathbb{N} \setminus \{1\}$ ou $A = \mathbb{N} \setminus \{1\}$ e $B = \mathbb{N}$.

- 3. Fazendo referência aos axiomas de corpo ordenado que se encontram no anexo dessa prova, justifique as passagens utilizadas na demonstração de: se $x \neq 0$, então $x^2 > 0$. Em particular, 1 > 0. Demonstração: se x > 0, então $x^2 = x \cdot x > 0$. Se x < 0, então (-x)(-x) > 0. Como $x^2 = (-x)(-x)$, então $x^2 > 0$. Como $1 \neq 0$, $1^2 > 0$. Mas $1^2 = 1$. Então 1 > 0.
 - (a) Na implicação "se x > 0, então $x^2 = x \cdot x > 0$ " usamos R2 com y = x.
 - (b) Por R2, com x < 0, x + (-x) < -x + 0. Assim, -x + 0 > 0 = x + (-x), onde usamos A5. Por A4, -x + 0 = -x > 0. Pela propriedade demonstrada em (a), temos $(-x)^2 > 0$.
 - (c) De M4, temos $1 \neq 0$, e de (b) e (c) segue que $1^2 > 0$. Por outro lado, de M4, $1^2 = 1 \cdot 1 = 1$. Logo, 1 > 0.
- 4. Siga o roteiro indicado:
 - (a) Se $X = \{x | p(x)\}, X_1 = \{x | p_1(x)\}$ e $X_2 = \{x | p_2(x)\},$ prove que $X \cap (X_1 \cup X_2) = (X \cap X_1) \cup (X \cap X_2)$ utilizando tabela verdade.
 - (b) Prove por indução que $X \cap (X_1 \cup X_2 \cup \cdots \cup X_n) = (X \cap X_1) \cup (X \cap X_2) \cup \cdots \cup (X \cap X_n)$. (a) Temos $X_1 \cup X_2 = \{x | p_1(x) \lor p_2(x)\}$. Logo, $X \cap (X_1 \cup X_2) = \{x | p(x) \land (p_1(x) \lor p_2(x))\}$. Pela tabela verdade,

$$p(x) \land (p_1(x) \lor p_2(x)) \Leftrightarrow (p(x) \land p_1(x)) \lor (p(x) \land p_2(x))$$

Assim, $X \cap (X_1 \cup X_2) = \{x | (p(x) \wedge p_1(x)) \vee (p(x) \wedge p_2(x))\} = \{x | p(x) \wedge p_2(x)\} \cup \{x | p(x) \wedge p_1(x)\} = X \cap (X_1 \cup X_2) = (X \cap X_1) \cup (X \cap X_2)$

(b)No item (a) provamos o caso base. Agora vamos assumir a hipótese de indução, de que vale

$$X \cap (X_1 \cup X_2 \cup \cdots \cup X_n) = (X \cap X_1) \cup (X \cap X_2) \cup \cdots \cup (X \cap X_n) .$$

Então, por associatividade de \cup , temos $X \cap (X_1 \cup X_2 \cup \cdots \cup X_{n+1}) = X \cap ((X_1 \cup X_2 \cup \cdots \cup X_n) \cup (X_{n+1}))$. Por (a), temos

$$X \cap ((X_1 \cup X_2 \cup \cdots \cup X_n) \cup (X_{n+1})) = (X \cap (X_1 \cup X_2 \cup \cdots \cup X_n)) \cup (X \cap X_{n+1})$$

Pela hipótese de indução,

$$(X \cap (X_1 \cup X_2 \cup \cdots \cup X_n)) \cup (X \cap X_{n+1}) = (X \cap X_1) \cup (X \cap X_2) \cup \cdots \cup (X \cap X_n) \cup (X \cap X_{n+1}).$$

Logo, a propriedade vale para todo $n \in \mathbb{N}$.