

Groupe produit-Groupe quotient Factorisation des morphismes

I. Groupe produit

Théorème

Soient (E,*) et (F,\perp) deux groupes.

L'ensemble $E \times F = \{(a,b) \mid a \in E, b \in F\}$ muni de la loi de composition \otimes suivante :

Pour $(a,b) \in E \times F$, $(a',b') \in E \times F$, $(a,b) \otimes (a',b') = (a*a',b \perp b')$

est un groupe appelé groupe produit direct des groupes (E,*) et (F,\perp) .

Preuve. à faire en exercice.

Exemples

1) Le groupe $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$, appelé groupe de Klein, est le groupe direct des groupes $(\mathbb{Z}/2\mathbb{Z},+)$ et $(\mathbb{Z}/2\mathbb{Z},+)$.

Donner la table de Cayley du groupe de Klein

2) Ω_n^2 est le groupe direct des groupes (Ω_n,\times) et (Ω_n,\times) où $\Omega_n=\left\{z\in\mathbb{C}\ /\ z^n=1\right\}$

Donner la table de Cayley du groupe ${\Omega_2}^2$

II. Groupe quotient

Pour simplifier la présentation (éviter de parler des sous-groupes distingués) on se place dans la suite dans le cas où la loi de composition « * » est commutative.

Soit (G,*) un groupe **abélien** et (H,*) un sous-groupe de (G,*).

On définit sur G la relation binaire suivante :

Pour $(x, y) \in G^2$, $x R y si et seulement si <math>(x * y^{-1}) \in H$

Propriété et définition

La relation R est une relation d'équivalence sur G.

L'ensemble quotient $G/R = \{\overline{x} \mid x \in G\}$ est noté G/H où $\overline{x} = \{y \in G \mid x R y\}$

Preuve.

Vérifier que R est réflexive, symétrique et transitive

Remarques (importantes)

1)
$$a \in G/H \Leftrightarrow \exists x_a \in G, a = \overline{x_a}$$

Idem
$$b \in G/H \Leftrightarrow \exists x_b \in G, b = \overline{x_b}$$

de plus si
$$x'_a \in G$$
 tel que $a = \overline{x_a} = \overline{x'_a}$ et $x'_b \in G$ tel que $b = \overline{x_b} = \overline{x'_b}$

Alors on a $(x_a * x'_a^{-1}) \in H$ et $(x_b * x'_b^{-1}) \in H$ D'où $(x_a * x'_a^{-1}) * (x_b * x'_b^{-1}) \in H$ car (H, *) est un groupe.

Et puisque la loi « * » est commutative, alors $(x_a * x_b) * (x'_a * x'_b)^{-1} \in H$

C'est-à-dire
$$\overline{x_a * x_b} = \overline{x'_a * x'_b}$$

Ainsi on peut définir une loi de composition interne dans G/H notée aussi « $\ast\,\,$ » par :

Pour
$$\overline{x_a} \in G/H$$
 et $\overline{x_b} \in G/H$, $\overline{x_a} * \overline{x_b} = \overline{x_a * x_b}$

2) La propriété ci-dessus est encore vrai si la loi « * » n'est pas commutative et en supposant que (H,*) est un sous-groupe distingué de (G,*), c'est-à-dire, si pour tout

$$\forall a \in G, \forall h \in H, (a * h * a^{-1}) \in H$$

Théorème

Soient (G,*) un groupe **abélien** et (H,*) un sous-groupe de (G,*), alors l'ensemble (G/H,*) est un groupe abélien.

De plus l'application canonique $\pi: G \to G/H$ définie par $\forall x \in G, \pi(x) = x$ est un homomorphisme surjectif

Preuve. à faire en exercice

Exemple

Soit $n \in \mathbb{N}^*$, $(\mathbb{Z},+)$ est un groupe abélien et $(n\mathbb{Z},+)$ est un sous-groupe de $(\mathbb{Z},+)$.

Pour
$$(a,b) \in \mathbb{Z}^2$$
, $a \equiv b [n] \Leftrightarrow n | (b-a) \Leftrightarrow \exists k \in \mathbb{Z}, b-a = k n \Leftrightarrow (a-b) \in n\mathbb{Z}$

 $(\mathbf{Z}/n\mathbf{Z},+)$ est le groupe quotient muni de la loi additive définie par :

Pour
$$x \in \mathbb{Z}/n\mathbb{Z}$$
 et $y \in \mathbb{Z}/n\mathbb{Z}$, $x + y = x + y$

III. Factorisation des morphismes

Théorème

Soient (G,*) un groupe et (H,*) un sous-groupe distingué de (G,*), alors l'ensemble (G/H,*) est un groupe.

De plus l'application canonique $\pi: G \to G/H$ définie par $\forall x \in G, \pi(x) = x$ est un homomorphisme surjectif

Théorème

Soient (G,*) et (F,\perp) deux groupes et $\varphi:G\to F$ un morphisme de groupes, Alors $(Ker\varphi,*)$ est un sous-groupe distingué de (G,*).

Preuve. à faire en exercice

Théorème d'isomorphisme

Soient (G,*) et (F,\bot) deux groupes et $\varphi:G\to F$ un morphisme de groupes, Alors il existe un morphisme bijectif (c-à-d isomorphisme) $\widetilde{\varphi}:G/\ker\varphi\to \mathrm{Im}(\varphi)$ vérifiant : $\varphi=i\circ\widetilde{\varphi}\circ\pi$ où $\pi:G\to G/\ker\varphi$, $\forall x\in G,\ \pi(x)=x$ et $i:\mathrm{Im}(\varphi)\to F$, $\forall x\in\mathrm{Im}(\varphi),\ i(x)=x$

$$\begin{array}{ccc} G & \stackrel{\varphi}{\rightarrow} & F \\ \pi \downarrow & & \uparrow i \\ G/\operatorname{Ker}\varphi \underset{\tilde{\varphi}}{\rightarrow} \operatorname{Im}(\varphi) \end{array}$$

Preuve. à faire en exercice

Définition

Soient (G,*) et (F,\bot) deux groupes, on dit que (G,*) et (F,\bot) sont isomorphes, s'il existe un morphisme bijectif $\varphi:G\to F$, on note alors $G\approx F$

Exemples

1) Soit $\varphi: (\mathbf{R}, +) \to (\mathbf{C}^*, \times)$ définie par $\forall \theta \in \mathbf{R}, \varphi(\theta) = e^{i\theta}$ φ est un morphisme de groupes,

$$Ker \varphi = \{2k\pi / k \in \mathbf{Z}\} \stackrel{not\'e}{=} 2\pi \mathbf{Z}$$
 et

 $\operatorname{Im}(\varphi) = \left\{ e^{i\theta} / \theta \in \mathbf{R} \right\} = \left\{ z \in \mathbf{C} / |\mathbf{z}| = 1 \right\}$: ensemble des complexes de module 1.

D'où d'après le théorème d'isomorphisme, on a $\mathbf{R}/2\pi\mathbf{Z} \approx \{z \in \mathbf{C}/|\mathbf{z}| = 1\}$

2) $Ln:(]0,+\infty[,\times)\to(\mathbf{R},+)$ est un isomorphisme de groupes donc $]0,+\infty[\approx\mathbf{R}]$

Théorème (caractérisation des groupes cycliques)

Soit (G,*) un groupe cyclique

- a) Si G est infini alors G est isomorphe à ${\bf Z}$
- b) Si G est fini et ord(G) = n alors G est isomorphe à $\mathbb{Z}/n\mathbb{Z}$

Preuve.

(G,*) est un groupe cyclique d'où il existe $a \in G$ tel que $G = \langle a \rangle = \{a^k / k \in \mathbb{Z}\}.$

On considère $\varphi: (\mathbf{Z},+) \to (G,*)$ définie par : $\forall k \in \mathbf{Z}, \varphi(k) = a^k$

 φ est un morphisme de groupes et d'après le théorème d'isomorphisme $\mathbf{Z}/\mathit{Ker} \varphi \approx \mathrm{Im}(\varphi)$

Or $Im(\varphi) = G$ d'où $\mathbb{Z}/Ker\varphi \approx G$ (1)

De plus $Ker\varphi$ est un sous-groupe du groupe (\mathbb{Z} ,+) d'où il existe $n \in \mathbb{N}$, $Ker\varphi = n\mathbb{Z}$

- a) Si n = 0 alors $\mathbb{Z}/Ker\varphi = \mathbb{Z}/\{0\} \approx \mathbb{Z}$ (car $x R y \Leftrightarrow (x y) \in \{0\} \Leftrightarrow x = y$) D'où d'après (1) on a : $\mathbb{Z} \approx G$, (G est donc infini)
 - Si $n \neq 0$ alors $\mathbb{Z}/Ker\varphi = \mathbb{Z}/n\mathbb{Z}$

D'où d'après (1) on a : $\mathbb{Z}/n\mathbb{Z} \approx G$, (G est donc fini et ord(G) = n)

Conséquence

Deux groupes cycliques de même ordre sont isomorphes

Exemples

1) Soit $\Omega_n = \left\{z \in \mathbb{C} \ / \ z^n = 1\right\}$, on sait que (Ω_n, \times) est un groupe cyclique d'ordre n engendré par $e^{\frac{2i\pi}{n}}$ d'où $\mathbb{Z}/n\mathbb{Z} \approx \Omega_n$,

En particulier on a $\Omega_3 = \left\{1, j, j^2\right\}$ où $j = e^{\frac{2i\pi}{3}}$ et $\mathbb{Z}/3\mathbb{Z} \approx \Omega_3$

2) Dans S_3 l'ensemble des permutations de $\{1,2,3\}$, on note $A_3 = \{Id,\sigma,\sigma^2\}$ où $\sigma = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}$ (A_3,\circ) est un groupe cyclique d'ordre 3 car $\sigma^2 \neq Id$ et $\sigma^3 = Id$

D'où $\mathbb{Z}/3\mathbb{Z} \approx A_3$ et d'après 1) on a donc $\mathbb{Z}/3\mathbb{Z} \approx A_3 \approx \Omega_3$

3) Soit $G = \{3^n / n \in \mathbb{Z}\}$, (G, \times) est un groupe cyclique infini d'où $G \approx \mathbb{Z}$ idem $2\mathbb{Z} \approx \mathbb{Z}$

Théorème de Cayley (caractérisation des groupes finis)

Soit $n \in \mathbb{N}^*$ on note S_n l'ensemble des permutations de $\{1, ..., n\}$

Si (G,*) est un groupe fini tel que ord(G) = n, alors G est isomorphe à un sous-groupe de S_n .

Preuve.

Exemples

- 1) $(\mathbb{Z}/3\mathbb{Z},+)$ est un groupe fini d'ordre 3 et d'après l'exemple 2) ci-dessus on a : $\mathbb{Z}/3\mathbb{Z} \approx A_3$ où (A_3,\circ) est un sous-groupe de S_3 l'ensemble des permutations de $\{1,2,3\}$. Idem $\Omega_3 \approx A_3$ où $\Omega_3 = \{z \in \mathbb{C} \ / \ z^3 = 1\}$.
- 2) Le groupe de Klein $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$ est d'ordre 4 donc il est isomorphe à un sous-groupe de S_4 . Il faut noté que le groupe $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$ n'est pas isomorphe au groupe $\mathbb{Z}/4\mathbb{Z}$ car $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$ n'est pas un groupe cyclique puisque pour tout élément $(a,b) \in \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$, $(a,b) \neq (0,0)$, ord((a,b)) = 2 car 2(a,b) = (0,0). alors que $\mathbb{Z}/4\mathbb{Z}$ est un groupe cyclique.
- 3) Dans S_4 , on considère les éléments suivants :

$$Id = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \end{pmatrix}; \ \sigma_1 = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \end{pmatrix}; \ \sigma_2 = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 4 & 1 & 2 \end{pmatrix} \text{ et } \sigma_3 = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 3 & 2 & 1 \end{pmatrix}$$

On note $G = \{Id, \sigma_1, \sigma_2, \sigma_3\}$ alors (G, \circ) est un sous-groupe de (S_4, \circ) et $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z} \approx G$.