Lab 6

Lay Kuan Loh

July 2, 2013

Naive Bayes

Column: Type A or B

Row: Characteristic traits of slugs

Type A = 15

Type B = 10

 X_1 :

	0 (No fluffy tail)	1 (Fluffy tail)	MLE Estimates	
0 (Type B)	7	8	0.28	0.32
1 (Type A)	3	7	0.12	0.28

 X_2 :

	0 (Black ears)	1 (Green ears)	MLE Estimators	
0 (Type B)	13	2	0.69	0.08
1 (Type A)	8	2	0.32	0.08

 X_3 :

	0 (No spots)	1 (Spots)	MLE Estimators	
0 (Type B)	10	5	0.40	0.20
1 (Type A)	7	3	0.28	0.12

 X_4 :

	0 (No extra tongue)	1 (Extra tongue)	MLE Estimators	
0 (Type B)	10	5	0.40	0.20
1 (Type A)	7	3	0.28	0.12

Testing on the last row:

$$\hat{Y} = \arg\max_{y} \hat{\mathbb{P}}(X|Y)\hat{\mathbb{P}}(Y) = \arg\max_{y} \hat{\mathbb{P}}(X_1|Y)\hat{\mathbb{P}}(X_2|Y)\hat{\mathbb{P}}(X_3|Y)\hat{\mathbb{P}}(X_4|Y)$$

$$\begin{array}{lll} \mathbb{P}(X,Y=0) & = & \hat{\mathbb{P}}(X_1=0|Y=0)\hat{\mathbb{P}}(X_2=0|Y=0)\hat{\mathbb{P}}(X_3=0|Y=0)\hat{\mathbb{P}}(X_4=1|Y=0)\hat{\mathbb{P}}(Y=0) \\ & = & \frac{0.28}{0.60}\frac{0.40}{0.60}\frac{0.20}{0.60}0.60 \\ & = & 0.0715 \\ \mathbb{P}(X,Y=1) & = & \hat{\mathbb{P}}(X_1=0|Y=1)\hat{\mathbb{P}}(X_2=0|Y=1)\hat{\mathbb{P}}(X_3=0|Y=1)\hat{\mathbb{P}}(X_4=1|Y=1)\hat{\mathbb{P}}(Y=1) \\ & = & \frac{0.12}{0.40}\frac{0.32}{0.40}\frac{0.28}{0.40}\frac{0.12}{0.40}0.40 \\ & = & 0.02016 \\ & \Rightarrow & Y=0 \\ & q & SAME \end{array}$$

$$\begin{array}{lll} \mathbb{P}(X,Y=0) & = & \hat{\mathbb{P}}(X_1=1|Y=0)\hat{\mathbb{P}}(X_2=0|Y=0)\hat{\mathbb{P}}(X_3=0|Y=0)\hat{\mathbb{P}}(X_4=0|Y=0)\hat{\mathbb{P}}(Y=0) \\ & = & \frac{0.32}{0.60}\frac{0.69}{0.60}\frac{0.40}{0.60}\frac{0.40}{0.60}0.60 \\ & = & 0.164 \\ \mathbb{P}(X,Y=1) & = & \hat{\mathbb{P}}(X_1=1|Y=1)\hat{\mathbb{P}}(X_2=0|Y=1)\hat{\mathbb{P}}(X_3=0|Y=1)\hat{\mathbb{P}}(X_4=0|Y=1)\hat{\mathbb{P}}(Y=1) \\ & = & \frac{0.28}{0.40}\frac{0.32}{0.40}\frac{0.28}{0.40}\frac{0.28}{0.40}0.40 \\ & = & 0.10976 \\ & \Rightarrow & Y=0 \\ & & DIFFERENT \end{array}$$

$$\begin{array}{lll} \mathbb{P}(X,Y=0) & = & \hat{\mathbb{P}}(X_1=0|Y=0)\hat{\mathbb{P}}(X_2=0|Y=0)\hat{\mathbb{P}}(X_3=1|Y=0)\hat{\mathbb{P}}(X_4=1|Y=0)\hat{\mathbb{P}}(Y=0) \\ & = & \frac{0.28}{0.60}\frac{0.69}{0.60}\frac{0.20}{0.60}\frac{0.20}{0.60}0.60 \\ & = & 0.0358 \\ \mathbb{P}(X,Y=1) & = & \hat{\mathbb{P}}(X_1=0|Y=1)\hat{\mathbb{P}}(X_2=0|Y=1)\hat{\mathbb{P}}(X_3=1|Y=1)\hat{\mathbb{P}}(X_4=1|Y=1)\hat{\mathbb{P}}(Y=1) \\ & = & \frac{0.12}{0.40}\frac{0.32}{0.40}\frac{0.28}{0.12}\frac{0.12}{0.40}0.40 \\ & = & 0.02016 \\ & \Rightarrow & Y=0 \\ & SAME \end{array}$$

$$\mathbb{P}(X,Y=0) = \hat{\mathbb{P}}(X_1 = 1|Y=0)\hat{\mathbb{P}}(X_2 = 1|Y=0)\hat{\mathbb{P}}(X_3 = 1|Y=0)\hat{\mathbb{P}}(X_4 = 1|Y=0)\hat{\mathbb{P}}(Y=0) \\
= \frac{0.32}{0.60} \frac{0.08}{0.60} \frac{0.20}{0.60} \frac{0.20}{0.60} 0.60 \\
= 0.004741 \\
\mathbb{P}(X,Y=1) = \hat{\mathbb{P}}(X_1 = 1|Y=1)\hat{\mathbb{P}}(X_2 = 1|Y=1)\hat{\mathbb{P}}(X_3 = 1|Y=1)\hat{\mathbb{P}}(X_4 = 1|Y=1)\hat{\mathbb{P}}(Y=1) \\
= \frac{0.28}{0.40} \frac{0.08}{0.40} \frac{0.12}{0.40} \frac{0.12}{0.40} 0.40 \\
= 0.00504 \\
\Rightarrow Y = 1 \\
SAME$$

$$\begin{array}{lll} \mathbb{P}(X,Y=0) & = & \hat{\mathbb{P}}(X_1=1|Y=0)\hat{\mathbb{P}}(X_2=0|Y=0)\hat{\mathbb{P}}(X_3=0|Y=0)\hat{\mathbb{P}}(X_4=1|Y=0)\hat{\mathbb{P}}(Y=0) \\ & = & \frac{0.32}{0.60}\frac{0.69}{0.60}\frac{0.40}{0.60}\frac{0.20}{0.60}0.60 \\ & = & 0.082 \\ \mathbb{P}(X,Y=1) & = & \hat{\mathbb{P}}(X_1=1|Y=1)\hat{\mathbb{P}}(X_2=0|Y=1)\hat{\mathbb{P}}(X_3=0|Y=1)\hat{\mathbb{P}}(X_4=1|Y=1)\hat{\mathbb{P}}(Y=1) \\ & = & \frac{0.28}{0.40}\frac{0.32}{0.40}\frac{0.28}{0.40}\frac{0.12}{0.40}0.40 \\ & = & 0.047 \\ & \Rightarrow & Y=0 \\ & SAME \end{array}$$

Success Rate: 80%

Laplace Smoothing

Column: Type A or B

Row: Characteristic traits of slugs

Type A = 17

Type B = 12

 X_1 :

	0 (No fluffy tail)	1 (Fluffy tail)
0 (Type B)	8	9
1 (Type A)	4	8

 X_2 :

	0 (Black ears)	1 (Green ears)
0 (Type B)	14	3
1 (Type A)	9	3

 X_3 :

	0 (No spots)	1 (Spots)
0 (Type B)	11	6
1 (Type A)	8	4

 X_4 :

	0 (No extra tongue)	1 (Extra tongue)
0 (Type B)	11	6
1 (Type A)	8	4

Testing on the last row:

$$\hat{Y} = \arg\max_{y} \hat{\mathbb{P}}(X|Y)\hat{\mathbb{P}}(Y) = \arg\max_{y} \hat{\mathbb{P}}(X_1|Y)\hat{\mathbb{P}}(X_2|Y)\hat{\mathbb{P}}(X_3|Y)\hat{\mathbb{P}}(X_4|Y)$$

$$\begin{array}{lll} \mathbb{P}(X,Y=0) & = & \hat{\mathbb{P}}(X_1=0|Y=0)\hat{\mathbb{P}}(X_2=0|Y=0)\hat{\mathbb{P}}(X_3=0|Y=0)\hat{\mathbb{P}}(X_4=1|Y=0)\hat{\mathbb{P}}(Y=0) \\ & = & \frac{8}{17}\frac{14}{17}\frac{1}{17}\frac{6}{17}\frac{17}{29} \\ & = & 0.0519 \\ \\ \mathbb{P}(X,Y=1) & = & \hat{\mathbb{P}}(X_1=0|Y=1)\hat{\mathbb{P}}(X_2=0|Y=1)\hat{\mathbb{P}}(X_3=0|Y=1)\hat{\mathbb{P}}(X_4=1|Y=1)\hat{\mathbb{P}}(Y=1) \\ & = & \frac{4}{12}\frac{9}{12}\frac{8}{12}\frac{4}{12}\frac{12}{29} \\ & = & 0.023 \\ & \Rightarrow & Y=1 \\ q & DIFFERENT \end{array}$$

$$\begin{array}{lll} \mathbb{P}(X,Y=0) & = & \hat{\mathbb{P}}(X_1=1|Y=0)\hat{\mathbb{P}}(X_2=0|Y=0)\hat{\mathbb{P}}(X_3=0|Y=0)\hat{\mathbb{P}}(X_4=0|Y=0)\hat{\mathbb{P}}(Y=0) \\ & = & \frac{9}{17}\frac{14}{17}\frac{11}{17}\frac{17}{17}\frac{19}{29} \\ & = & 0.107 \\ \mathbb{P}(X,Y=1) & = & \hat{\mathbb{P}}(X_1=1|Y=1)\hat{\mathbb{P}}(X_2=0|Y=1)\hat{\mathbb{P}}(X_3=0|Y=1)\hat{\mathbb{P}}(X_4=0|Y=1)\hat{\mathbb{P}}(Y=1) \\ & = & \frac{8}{12}\frac{9}{12}\frac{8}{12}\frac{12}{12}\frac{12}{29} \\ & = & 0.092 \\ & \Rightarrow & Y=0 \\ & & DIFFERENT \end{array}$$

$$\begin{array}{lll} \mathbb{P}(X,Y=0) & = & \hat{\mathbb{P}}(X_1=0|Y=0)\hat{\mathbb{P}}(X_2=0|Y=0)\hat{\mathbb{P}}(X_3=1|Y=0)\hat{\mathbb{P}}(X_4=1|Y=0)\hat{\mathbb{P}}(Y=0) \\ & = & \frac{8}{17}\frac{14}{17}\frac{6}{17}\frac{6}{17}\frac{17}{29} \\ & = & 0.48 \\ \mathbb{P}(X,Y=1) & = & \hat{\mathbb{P}}(X_1=0|Y=1)\hat{\mathbb{P}}(X_2=0|Y=1)\hat{\mathbb{P}}(X_3=1|Y=1)\hat{\mathbb{P}}(X_4=1|Y=1)\hat{\mathbb{P}}(Y=1) \\ & = & \frac{4}{12}\frac{9}{12}\frac{4}{12}\frac{1}{12}\frac{12}{29} \\ & = & 0.011 \\ & \Rightarrow & Y=0 \\ & & SAME \end{array}$$

$$\begin{array}{lll} \mathbb{P}(X,Y=0) & = & \hat{\mathbb{P}}(X_1=1|Y=0)\hat{\mathbb{P}}(X_2=1|Y=0)\hat{\mathbb{P}}(X_3=1|Y=0)\hat{\mathbb{P}}(X_4=1|Y=0)\hat{\mathbb{P}}(Y=0) \\ & = & \frac{9}{17}\frac{3}{17}\frac{6}{17}\frac{6}{17}\frac{1}{29} \\ & = & 0.0068 \\ \mathbb{P}(X,Y=1) & = & \hat{\mathbb{P}}(X_1=1|Y=1)\hat{\mathbb{P}}(X_2=1|Y=1)\hat{\mathbb{P}}(X_3=1|Y=1)\hat{\mathbb{P}}(X_4=1|Y=1)\hat{\mathbb{P}}(Y=1) \\ & = & \frac{8}{12}\frac{3}{12}\frac{4}{12}\frac{4}{12}\frac{12}{29} \\ & = & 0.0077 \\ & \Rightarrow & Y=1 \\ & SAME \end{array}$$

$$\begin{array}{lll} \mathbb{P}(X,Y=0) & = & \hat{\mathbb{P}}(X_1=1|Y=0)\hat{\mathbb{P}}(X_2=0|Y=0)\hat{\mathbb{P}}(X_3=0|Y=0)\hat{\mathbb{P}}(X_4=1|Y=0)\hat{\mathbb{P}}(Y=0) \\ & = & \frac{9}{17}\frac{14}{17}\frac{11}{17}\frac{6}{17}\frac{17}{29} \\ & = & 0.0583 \\ \mathbb{P}(X,Y=1) & = & \hat{\mathbb{P}}(X_1=1|Y=1)\hat{\mathbb{P}}(X_2=0|Y=1)\hat{\mathbb{P}}(X_3=0|Y=1)\hat{\mathbb{P}}(X_4=1|Y=1)\hat{\mathbb{P}}(Y=1) \\ & = & \frac{8}{12}\frac{9}{12}\frac{8}{12}\frac{4}{12}\frac{12}{29} \\ & = & 0.046 \\ & \Rightarrow & Y=0 \\ & & DIFFERENT \end{array}$$

Success Rate: 40%

Success rate decreased.

Laplace smoothing is helpful when something always has the change to happen. Harmful if the case where the data really does not exist, but you pretended to see it.

In this case, since we have data for all possible observations, not really useful.