

Statistik I

Einheit 4: Visualisierung

07.11.2024 | Prof. Dr. Stephan Goerigk

Wiederholung Einheit 3 - Was können wir schon?

- Kenntnis der Skalennveaus
- Kenntnis univariater Deskriptivstatistiken
- Wissen, wann welche Deskriptivstatistiken gerechnet werden sollten

Kompetenzen:

- Berechnen von absoluten/relativen Häufigkeiten und Darstelltung in Häufigkeitstabelle
- Berechnen von Summen und Notation mit Summenzeichen.
- Berechnen von Modus, Mittelwert (mehrere Gruppen, aus Häufigkeitstabelle), Median, Spannweite, Varianz, Standardabweichung, Quantile, Quartilabstand

Agenda für Heute:

Ziel: Effiziente Beschreibung von 2 Variablen (bivariate Statistik)

Was wir danach kennen werden:

- Eigenschaften unterschiedlicher statistischer Graphen
- Situationen in denen diese eingesetzt werden sollten

Was wir danach können werden:

• Graphen für 2 oder mehr Variablen erstellen

Graphen

Wann nutzen wir Graphen?

Univariat:

- Verteilungen einer Variable visualisieren
 - o Histogramm (numerische Variable; zeigt Häufigkeiten)
 - o Balkendiagramm (kategoriale Variable; zeigt Häufigkeiten)
 - o Boxplot (zumindest ordinale Variable; zeigt Median und IQR)

Multivariat:

- Ausprägung einer Variable innerhalb Kategorien einer anderen Variable (Gruppenvergleich)
 - o Balkendiagramm (Höhe des Balkens = stat. Kennwert einer Gruppe, z.B. Mittelwert)
 - o Boxplot (zumindest ordinale Variable; zeigt Median und IQR einer Gruppe)
- Gemeinsames Variieren von 2 (kontinuierlichen) Variablen
 - Streudiagramm (Punkt = Messwertpaar 2er Variablen für 1 Person im Datensatz)

Graphen

Univariat (haben wir bereits gelernt)

Histogramm für numerische Variablen:

- X-Achse: Ausprägungen der Variablen
- Y-Achse: Absolute/relative Häufigkeiten dieser Ausprägungen

Balkendiagramm für kategoriale Variablen:

- X-Achse: Ausprägungen der Variablen
- Y-Achse: Absolute/relative Häufigkeiten dieser Ausprägungen

Graphen

Bivariat

- Wir wissen nun, wie wir Häufigkeiten (N) in Histogrammen und Balkendiagrammen dastellen können
- Manchmal wollen wir jedoch auch andere Statistiken darstellen (z.B. Mittelwert)
- Häufiger Anwendungsfall: Vergleich der Ausprägung einer Variable in 2 Gruppen

Beispiel: Grübelneigung in Gruppe A (Depression) und B (Keine Depression)

Graphen

Bivariat (nun haben wir 2 Variablen, Grübeln + Gruppe)

- 2 Gruppen auch im Histogramm darstellbar
- Y-Achse = N
- X-Achse = Merkmalsausprägungen
- Gruppen als Farben codiert
- Maß der zentralen Tendenz abschätzbar, aber nicht eindeutig

Graphen

Bivariat (nun haben wir 2 Variablen, Grübeln + Gruppe)

- Balkendiagramm ist übersichtlicher
- Y-Achse = numerisch (oft AV)
- X-Achse = kategorial (oft UV)
- Balkenhöhe = Mittelwert

Graphen

Bivariat - nun haben wir 2 Variablen, Grübeln (numerisch) + Gruppe (Kategorie)

- Balkendiagramm ist übersichtlicher
- Y-Achse = numerisch (oft AV)
- X-Achse = kategorial (oft UV)
- Balkenhöhe = Mittelwert
- Auch 3 oder mehr Gruppen sind darstellbar
- Nicht verwechseln: Immer noch ein bivariat (aber Gruppe hat 3 Stufen)

Graphen

Bivariat (nun haben wir 2 Variablen, Grübeln + Gruppe)

Boxplot:

- Alternative zum Balkendiagramm
- Y-Achse = numerisch (oft AV)
- X-Achse = kategorial (oft UV)
- Mittellinie = Median
- ullet Median o auch für Ordinalskala geeignet

Graphen

Bivariat (nun haben wir 2 Variablen, Grübeln + Gruppe)

Bestandteile Boxplot:

- Mittellinie = Median
- Box = Quartilabstand (IQR, 50% aller Werte)
- Whiskers = maximale Länge von IQR mal 1.5
- Punkte außerhalb der Whiskers = Ausreißer
- Y-Achse = numerisch (oft AV)
- X-Achse = kategorial (oft UV)
- 1 Box pro Gruppe (kann theoretisch auch ungruppiert dargestellt werden)

Graphen

Anleitung zum Boxplot erstellen:

- 1. Berechne den Median, der den Datensatz in zwei Hälften unterteilt
- 2. Berechne IQR und somit die Länge der Box, indem du die Mediane der beiden Datensatz-Hälften berechnest
- 3. Überlege dir eine sinnvolle Skalierung und zeichne die Box mit dem Median darin ein (keine Sorge, die Box ist aufgrund der Rangskalierung nicht immer symmetrisch)
- 4. Berechne die **potentielle** maximale Länge der Whisker, indem du IQR mit 1.5 multiplizierst
- 5. Zeichne die Whisker ein Achtung: Whisker werden nur bis zum letzten Wert eingezeichnet, der noch innerhalb der potenziellen maximalen Länge der Whisker liegt!
- 6. Zeichne eventuelle Ausreißer und Extremwerte ein mit Punkten/Sternchen

Graphen

Aufgabe:

Fertige jeweils ein Balkendiagramm und ein Boxplot für folgenden Gruppenunterschied an:

Intensität im Rating des Tremors (Händezittern) zwischen heroinabhängigen Patienten vor dem Entzug (A) und heroinabhängigen Patienten während des Entzugs (B)

ID	1	2	3	4	5	6	7	8	9	10	11	12
Entzug	Α	Α	Α	Α	Α	Α	В	В	В	В	В	В
Tremor	1	4	6	7	8	9	5	8	12	10	8	9

Graphen (bivariat)

Lösung:

Graphen (bivariat)

Lösung für Gruppe A:

$$egin{aligned} x_{sortiert} &= 1; 4; 6; 7; 8; 9 \ Md &= rac{6+7}{2} = 6.5 \ n \cdot lpha &= 6 \cdot 0.25 = 1.5
ightarrow I_{0.25} = 2 \ n \cdot lpha &= 6 \cdot 0.75 = 4.5
ightarrow I_{0.75} = 5 \ q_{0.25} &= x_{(I_{0.25})} = x_{(2)} = 4 \ q_{0.75} &= x_{(I_{0.75})} = x_{(5)} = 8 \ IQR \cdot 1.5 = 6 \end{aligned}$$

 \rightarrow alle Werte < -2 und > 14 sind Ausreißer. Wir zeichnen jedoch nur bis zu den maximal verfügbaren Werten (1 und 9).

Graphen

Bivariat (2 numerische Variablen)

- Wir können mit Balkendiagramm/Boxplot nun 2 Variablen darstellen: numerisch (Y) + Kategorie (X)
- Was aber, wenn wir 2 numerische Variablen haben?
- → Wir bräuchten sehr viele Balken/Boxen (so viele wie Ausprägungen auf X-Achse)

Beispiel:

Zwei numerische Variablen Nachtschlaf (in Stunden) und Leistung in einem Konzentrationstest (0-150 Punkte)

ID	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Schlaf	6	7	13	8	8	13	9	4	6	7	6	7	13	8	8	13	9	4	6	7
Konzentration	80	69	106	70	57	134	84	5	70	53	35	58	77	53	55	64	91	47	33	87

Graphen

Bivariat (2 numerische Variablen)

Streudiagramm:

- Punktewolke = Wertepaare (Jeder Punkt = 1 Person)
- Y-Achse: numerische Variable (AV, wenn Wirkrichtung angenommen)
- X-Achse: numerische Variable (UV, wenn Wirkrichtung angenommen)
- Trends lassen sich gut erkennen

Graphen

Bivariat (2 numerische Variablen)

Streudiagramm:

- Später können wir auch lineare Zusammenhänge zwischen den Variablen visualisieren
- hier z.B. positiver Zusammenhang (hohe Werte auf X gehen einher mit hohen Werten auf Y)
- Dafür müssen wir noch lernen, wie eine Regressionsgerade berechnet wird

Graphen

Aufgabe:

Erstellen Sie ein Streudiagramm für die beobachtete numerische Lerndauer (in Stunden) und Prüfungsleistung (1-60 Punkte)

ID	1	2	3	4	5	6	7	8	9	10	11	12	13	14
Lerndauer	8	9	15	10	10	15	11	8	9	15	10	10	15	11
Prüfungsleistung	21	30	51	52	44	59	44	28	55	60	20	47	50	32

Graphen

Lösung:

Graphen

Bivariat (2 kategoriale Variablen)

Beispiel:

2 Kategoriale Variablen: (1) Entzugsstatus heroinabhängiger Patienten (während des Entzugs = A, vor dem Entzug = B) und (2) Tremor (ja/nein)

ID	1	2	3	4	5	6	7	8	9	10	11	12
Entzug	Α	Α	Α	Α	Α	Α	В	В	В	В	В	В
Tremor	Ja	Nein	Ja	Ja	Ja	Ja	Nein	Nein	Nein	Ja	Nein	Nein

Graphen

Bivariat (2 kategoriale Variablen)

Balkendiagramm:

- Hier funktioniert wieder das Balkendiagramm
- Y-Achse: absolute/relative Häufigkeiten
- X-Achse: kategoriale Variable (UV, wenn Wirkrichtung angenommen)
- Da uns die Achsen für die Darstellung der unterschiedlichen Ausprägungen ausgehen, müssen wir auf Farben zurückgreifen

Graphen

Zusammenfassung (univariat und bivariat)

Variable1	Variable2	Graph
Numerisch	Keine	Histogramm
Kategorial	Keine	Balkendiagramm (Balken = Häufigkeit)
Kategorial	Numerisch (metrisch)	Balkendiagramm (Balken = Mittelwert)
Kategorial	Numerisch (ordinal)	Boxplot (Linie = Median)
Numerisch	Numerisch	Streudiagramm
Kategorial	Kategorial	Balkendiagramm (Balken = Häufigkeit, Kategorien Variable2 als Farben)

Graphen

Multivariat (mehr als 2 Variablen)

Beispiel:

2 numerische Variablen (AV = Angst, UV = Verschmutzungsintensität) und 1 kategoriale Variable Diagnose (A = Zwangsstörung, B = Keine Zwangsstörung)

ID	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Verschmutzungsintensität	9	10	13	10	10	13	11	7	9	9	12	11	11	10	9	14	11	6	11	9
Diagnose	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	В	В	В	В	В	В	В	В	В	В
Angst	45	58	62	53	54	55	72	50	45	69	5	8	1	24	17	3	7	4	15	8

Graphen

Multivariat (mehr als 2 Variablen)

Mangels weiterer Achsen (als X und Y) behelfen wir uns mit sogenannten Aesthetics (Farben, etc.)

Mit unterschiedlichen Farben und Punktformen:

Mit unterschiedlichen Facetten:

Graphen

Weitere Graphen (nicht prüfungsrelevant)

Violin Plot (ähnliche Verwendung wie Boxplot)

Line Graph (Veränderung über die Zeit bei Messwiederholungen)

Take-aways

- **Graphen** geben uns einen schnellen Überblick über statistische Ergebnisse
- Nützlich zur schnellen **Exploration** von Daten oder als **Visualisierung einer Hypothese** (im Paper)
- Wir können einzelne Verteilungen (univariat) oder Kombinationen von Variablen darstellen (bi-/multivariat)
- Balkendiagramm und Boxplot eigenen sich zur Darstellung von Gruppenunterschieden
- Vorteile Boxplot: Median und IQR auch für ordinale Skalen angemessen, zeigt Ausreißer
- Streudiagramm eignet sich zur Darstellung von Merkmalszusammenhängen zweier numerischer Variablen
- Bei Kombination mehrerer Variablen nutzen wir zusätzlich zu den Achsen Aethetics (Farben, Facetten...)