QF632-2025-W1

Number of participants: 41

1. Which of the following is an example of unstructured data?

37 correct answersout of 40

out of 40 respondents

What is the primary distinguishing feature of a dataframe compared to a generic 2D matrix?

×

34 correct answers out of 37 respondents

Which of the following best describes a scenario for using a while loop instead of a for loop?

34 correct answers out of 38 respondents

What is the defining 4. characteristic of a recursive function?

25 correct answers out of 39 respondents

time-series analysis on repeated measurements for each subject across multiple time points. Converting the dataset into long format would be advantageous because:

A researcher wants to run

26 correct answers out of 31 respondents

What is the primary purpose of performing one-hot encoding on a categorical variable?

33 correct answers out of 34 respondents

	To reduce the dimensionality of the dataset.	0%	0 votes
✓	To represent each category with a separate binary feature (column), thus making it numeric.	97%	33 votes
	To convert text data into continuous numeric ranges.	0%	0 votes
	To compress continuous variables into a single categorical feature.	3%	1 vote

Which statement bestsummarizes the difference between one-hot encoding and label encoding?

25 correct answersout of 31 respondents

0%

×

features for each category, whereas label encoding replaces each category with a single integer label.

Both methods always reduce the overall number of columns needed in the dataset.

Why is it important to split 8. the dataset into training, validation, and test sets?

To increase the overall size of the dataset for training	0%	0 votes
To ensure that performance metrics are estimated on unseen data and to reduce overfitting	0%	0 votes
To reduce the computational cost of the training process	0%	0 votes
To merge different datasets for a larger training set	0%	0 votes

What does hyperparameter tuning involve in the context of training a supervised model?

Adjusting the internal model weights during training by minimizing the loss function	0%	0 votes
Searching for the best configuration of settings (like learning rate, regularization strength, or network	0%	0 votes
architecture) that control the training process Evaluating the final model on the test dataset	0%	0 votes
Preprocessing the dataset for better performance	0%	0 votes

Which property is most essential for a loss function to be effectively minimized using gradient descent?

	Boundedness between 0 and 1	0%	0 votes
▽	Differentiability	0%	0 votes
	Invariance to feature scaling	0%	0 votes
	Non-convexity	0%	0 votes

Which loss function is designed to combine the robustness of MAE with the smooth differentiability of MSE, making it less sensitive to outliers?

Log-Cosh Loss	0%	0 votes
Huber Loss	0%	0 votes
Cross-Entropy Loss	0%	0 votes
Quantile Loss	0%	0 votes