AM41UD Coursework

Sowmya Perumalla ID: 210295656

August 8, 2022

1 Abstract

Churn is a problem that affects practically every sector. However, given that many people think the telecoms sector has peaked, it is particularly pertinent to that industry. In order to reduce customer churn rates and effectively compete in the current environment of intense competition, many teles are realizing the need of improving customer experience and service. Understanding the causes of churn in the telecom industry is crucial for doing this.

Lu's Communications has a huge problem with churn (loss of customers to competition). It is expensive to acquire new customers and therefore retaining existing customers is much more appealing.

To address this issue, we used classification Machine Learning Algorithms such as logistic regression, Naive Bayes, K-Nearest Neighbor, Random Forest, Gradient boosting classification and SVM on Lu's Communications dataset.

After executing all the above-mentioned algorithms Random Forest Classifier is showing promising results in terms of overall accuracy, precision, Recall, and F1 Score.

Contents

1	Abstract	2
2	Introduction 2.1 Data Collection:	4 4
3	Exploratory data analysis 3.1 Target Feature Analysis 3.2 Numerical Features Analysis 3.2.1 Tenure Feature Analysis 3.2.2 Monthly Cost Feature Analysis 3.3 Categorical Features Analysis 3.3.1 Gender Feature Analysis 3.3.2 Partner Feature Analysis 3.3.3 Dependents Feature Analysis 3.3.4 Senior Feature Analysis 3.3.5 Location and Survey Feature Analysis	66 66 67 77 77 88 99 10
4	Initial hypothesis	11
5	Data Pre-Processing5.1 Handling outliers5.2 Handling missing values5.3 Handling the different scales of the data5.4 Feature Selection5.5 Class Imbalance	
6	Developing and testing Machine learning Models6.1Splitting Data6.2Evaluation metrics to evaluate model6.3Logistic Regression model6.4K Nearest Neighbor Classification6.5Random forest Classifier6.6Naive Bayes6.7Support Vector Machine Classifier6.8Gradient Boosting Classifier	12 13 13 14 14 14 14 14
7	Conclusion	15
\mathbf{A}	Appendix	18

2 Introduction

Customer churn is a real and challenging problem across all service industries, and can be expensive too. Some customer churn is inevitable, although it is possible to predict customers likely to churn in advance and mitigate the problem with incentives. There could be many reasons for customer churn, Lu's communication has a huge churn ratio is due to losing customers to competitors which needs to be addressed at correct time. The core objective is to find a targeted approach to identify in advance customers who are likely to churn accurately, such that loss incurred due to invalid prediction are reduced.

As part of this report, various classifier models are tried for high accuracy and recall score by using evaluation metrics to support robustness of the best fit model identified.

2.1 Data Collection:

Lu's communication has provided the data in CSV format. However, this data is not perfect: it may contain outliers, missing values and irrelevant (not related to churn) information. Moving forward need to deal and analyse the provided data.

2.2 Data Preparation:

Given dataset contains in total 7350 records and 11 features. After reading the dataset we came to know that there are 2 numerical features those are monthlycost and Tenure, where as Customer id, gender, location, partner, dependents, senior, package, survey and Class are Categorical values as most of them are binary classified and location contains string.

Here we considered "Class" feature as a target or dependent feature as our main objective is to find the root cause of the churn, So "class" is binary class feature which tells about whether customer is churned or not.

Rest of the columns (gender,,customerid,location,partner,dependents,senior,package,survey) are considered as independent features.

Summary model's Performance							
Feature	Feature Description		Value				
Customer id	Unique Id	Categorical	Unique numbers				
Gender	Male or Female	Categorical	Male or female				
Partner	0=no patner and 1=patner	Categorical	0 or1				
Dependents	0=no dependent and 1=depen-	Categorical	0,1 and Un-				
	dent		known				
senior	0=not senior and 1=senior	Categorical	0 or 1				
Tenure	It tells about tenure of customer	Numerical	Min=-4.6 and				
	with company in months		Max=30				
senior	0=not senior and 1=senior	Categorical	0 or 1				
Monthly cost	package cost	Numerical	Min=26				
			Max=47				
Package	Packge type	Categorical	1,2,3,4				
Survey	rating given by customers	Categorical	1,2,3,4,5,6,7,8,9,10				
Location	Location Customers location		Names of states				
Class	Class It tell about customer churned or		churned is 1 not				
	not		churned is 0				

Ran	<pre><class 'pandas.core.frame.dataframe'=""> RangeIndex: 7350 entries, 0 to 7349</class></pre>		customer_id 0 gender 0 :								
Dat #	a columns (tota Column	l 11 columns): Non-Null Count	Dtype	location	0			partner	senior	Tenure	package
9	customer id	7350 non-null	object	partner	0	col	ınt	6752.000000	6752.000000	6752.000000	6752.000000
1	gender location	7350 non-null 7350 non-null	object object	dependents	0	me	an	0.547393	0.173134	8.722439	2.427725
3	partner dependents	7350 non-null 7350 non-null	int64 object	senior -	0	5	std	0.497786	0.378391	6.408113	1.152222
5	senior	7350 non-null	int64	Tenure	0	n	nin	0.000000	0.000000	-4.690416	1.000000
6 7	Tenure monthly_cost		float64 object	monthly_cost	7283	2	5%	0.000000	0.000000	3.000000	1.000000
8 9	package survey	7350 non-null 7350 non-null	int64 object	package	9 9	50	0%	1.000000	0.000000	8.000000	2.000000
10 dty		7301 non-null , int64(3), obje	object ect(7)	survey Class	49	7	5%	1.000000	0.000000	14.000000	4.000000
mem Non	ory usage: 631. e	8+ KB		dtype: int64	,,	m	ax	1.000000	1.000000	30.000000	4.000000

Above images tells about the summary of the data types of features and null values in the each feature we can see that monthly cost feature have 7283 and Class feature has 49 missing values in the data set.

Before proceeding into EDA we have to handel null values and duplicates if any in the dataset.

We found that there are "598" duplicates based on the customer ID as it is mentioned as customer unique id we removed the all the duplicate row in dataset, So after deleting dataset contains 6752 records

To handle NaN values in "monthly cost" we used "package" column, against each package we filled the monthly price of each package in monthly cost feature.

Monthly cost of the package are given by Lu's Communication but there is one missing value for the fourth package which is interpolated and considered as £47/month. Considered that second add-ons as £2 each and 1st time add-on as £3. There for package 4 is considered as £40 + £2 (Internet speed ad-on) +£2 (Tv-additional)+£3 (Landline talks ad-on).

Whereas NaN rows in "Class" feature are deleted. After deleting the Nan we finally have 6704 records in dataset.

3 Exploratory data analysis

Before we start EDA we found that there are few special charters in "Class" feature those are converted Churn-YES to analyse properly.

3.1 Target Feature Analysis

Above plot for the Count of churn Yes and No. It tells that there are total 4778 customers not churned and 1926 customers are churned. We can see that about 28 percentage of customers are endup churning.

3.2 Numerical Features Analysis

3.2.1 Tenure Feature Analysis

We used Kernel-Density-Estimation plot in order to visualise the probability distributions of the variables.

Above tenure plot for monthly Tenure tells that the customers tenure between 0 to 5 months are more likely to churn. And we also see that there are few outliers which are negative tenure in months.

3.2.2 Monthly Cost Feature Analysis

We used Kernel-Density-Estimation plot for monthly cost feature in order to visualise the probability distributions of the variables.

From above KDE plot we can tell that customer churn is getting decreased as the monthly cost is increasing. We see that the more churn is happening at package "1" of £26.

3.3 Categorical Features Analysis

3.3.1 Gender Feature Analysis

Figure 1: Visualization of Gender count and count against Class

Figure 2: Visualization of Gender vs Tenure and Gender vs Monthly cost

From the Figure 1 and figure 2 we can say that gender doesn't show much effect on target class. As the count of both gender are same.

3.3.2 Partner Feature Analysis

Figure 3: Visualization of partner count and count against Class

Figure 4: Visualization of partner vs Tenure and partner vs Monthly cost

From Figure 3 plot we observe that customers with no partners are end up churning-up more. We can also say that from Figure 4 customers with no partners and tenure between 0 to 5 months are churning up more.

3.3.3 Dependents Feature Analysis

Figure 5: Visualization of dependents count and count against Class

Figure 6: Visualization of dependents vs Tenure and partner vs Monthly cost

From Figure 5 plot we observe that customers with no dependents are more likely churning-up more. We can also say that from Figure 6 customers with no dependents and tenure between 0 to 5 months are churning up more. And also we can see there are few "Unknown" class in dependents which need to be handled in the Data-pre processing.

3.3.4 Senior Feature Analysis

Figure 7: Visualization of Senior count and count against Class

Figure 8: Visualization of senior vs Tenure and partner vs Monthly cost

From the above figure 7 says that there more non senior customers and they are churned more. From figure 8 we can observe that non seniors from tenure 0 to 5 months are end up churning more.

3.3.5 Location and Survey Feature Analysis

Figure 9: Location feature visualizations

Figure 9 tells that there are more customers in greater london area and churn is also more in the greater london area.

Figure 10: Visualization of survey feature

figure 10 says that customers who gave the survey ratings from 0 to 5 are churned up more than 5 to 10. And also observed few "No-reply" rows which need to be handled later.

4 Initial hypothesis

Based on EDA my initial hypothesis is as follows:

H0:Null Hypothesis: Customers with no dependents and less tenure are more likely to churn

Alternate Hypothesis: Customers with no dependents and less tenure are not churning.

5 Data Pre-Processing

Data pre-processing is data mining technique which is used to convert the raw data into useful data.

5.1 Handling outliers

Observed there few negative entries in the **Tenure** feature which was replaced by "0" months in dataset.

5.2 Handling missing values

Survey Feature: Observed there are 507 records which are having "no reply" in the Survey feature. There are many ways to fill the categorical missing values but we chooses to fill up with "mode" of that feature.

Dependents Feature: Observed that there are **2067** records which are having **Unknown**. We used Logistic regression model to predict the values of the "Unknown" in dependents column. We considered **Gender**, **partner**, **senior**, **Tenure**, **Class** are used as independent feature and **Dependents** feature as target value.

5.3 Handling the different scales of the data

We used **Normalization** on the feature "Tenure and "Monthly charges". Normalization is technique which changes the numerical values of column to 0 to 1 so that it improves the numerical stability of model and reduces the training if the data is large. We Converted male and female in gender feature to binary class(i.e Female=0 and male = 1)

5.4 Feature Selection

Feature selection is very important as it reduces the number of input variables to improve the model performance.

Location: In location feature we observed that "Greater London" is having more churn and more customers, so we created dummies for Greater london and rest of states as non greater london in dataset. **Customer id**: Customer id feature is the removed as it is unique value and there will not be any relation between the target and the feature.

To remove less significant association features with target value we used **P** value test. Test results are as follows:

	coef	std err	t	P> t	[0.025	0.975]
const	0.7123	0.041	17.470	0.000	0.632	0.792
gender	0.0041	0.007	0.609	0.543	-0.009	0.017
partner	-0.0679	0.008	-8.244	0.000	-0.084	-0.052
dependents	-0.4766	0.009	-55.949	0.000	-0.493	-0.460
senior	-0.0825	0.011	-7.633	0.000	-0.104	-0.061
Tenure	-0.3715	0.017	-21.650	0.000	-0.405	-0.338
monthly_cost	-0.1766	0.190	-0.931	0.352	-0.549	0.195
package	0.0412	0.063	0.657	0.512	-0.082	0.164
survey	-0.0620	0.002	-38.377	0.000	-0.065	-0.059
location_Greater London	0.3867	0.021	18.653	0.000	0.346	0.427
location_Non london area	0.3256	0.021	15.744	0.000	0.285	0.366
Omnibus:	355.252	======= Durbin-W	======= atson:		2.022	
Prob(Omnibus):	0.000		era (JB):	831.467		
Skew:	0.328	Prob(JB)	, ,	2.81e-181		
Kurtosis:	4.596	Cond. No		4.15e+16		
Kurtosis:	4.596	Cond. No ======	========	4 ========	.15e+16	

Based on the above p values we removed **gender and package** feature as there p values ξ = 0.05 which tells that they are less significant.

5.5 Class Imbalance

We observed that there is class imbalance between churn=1926 and not churn=4778 in the labeled "Class" feature. This may effect the model performance. So before we feed it into model we upsampled churn class by using random sampling.

6 Developing and testing Machine learning Models

6.1 Splitting Data

Splitting the data into training and testing so that we can train the model by using the training data and test the model using test data. Here we split the data into 80:20 ratio(i.e, 80 percentage of records are for training and 20 percentage for testing). To split the data we used **test train split**, which will split the data by choosing randomly.

6.2 Evaluation metrics to evaluate model

In Binary classification model there many ways to evaluate the model but most effective metrics is Confusion matrix.

Based on the confusion matrix we can calculate the accuracy, precision, recall, F1 score and etc.

Confusion Matrix Confusion matrix comprises of TP,TN,FP and FN.

TP:When actual positive and predicted positive

TN:When actual Negative and predicted Negative

FP:When actual Negative and predicted positive

FN:When actual positive and predicted Negative

		ACTUAL VALUES				
		Positive	Negative			
PREDICTED VALUES	Positive	TP	FP			
PREDICTE	Negative	FN	TN			

Accuracy: Accuracy is ration of correctly predicted by total no. of predictions.

$$Accuracy = \frac{TP + TN}{TP + TN + FP + FN}$$

Precision:It measures correctness in the prediction.

$$Precision = \frac{TP}{TP + FP}$$

Precision:It measures actual observations which are predicted correctly.

$$Recall = \frac{TP}{TP + FN}$$

F1 Score:It is hormonic mean of precision and recall.

F1-Score =
$$2*\frac{(Recall*Precision)}{(Recall + Precision)}$$

6.3 Logistic Regression model

Logistic model is mostly commonly used binary classification algorithm as exactly predicts the binary class outputs. It perform good when the data is linearly separable and it ll interpet model

13

coefficient which tell about the importance of the features in dataset

Logistic Regression						
Data	Data Accuracy Precision Recall F1 Score					
Test Data	89.33%	89.86%	89.68%	89.77%		

6.4 K Nearest Neighbor Classification

KNN Classification model is widely used classification algorithm as it is very simple and it classifies the data point based on the similarity in the group of neighbouring data points.

KNN model					
Data	Accuracy	Precision	Recall	F1 Score	
Test Data	91.47%	93.53%	89.88%	90.67%	

6.5 Random forest Classifier

Random forest Classifier is a bootstrapping algorithm with decision tree model. It assumes number of cases in training set and samples of cases taken at random. It is based on the majority voting. Hence it give better accuracy by overcoming over-fitting issue which we observe in decision tree.

Random Forest model						
Data Accuracy Precision Recall F1 Score						
Test Data	94.61%	93.92%	95.89%	94.89%		

6.6 Naive Bayes

Navie Bayes is a classification algorithm based on bayes theorem with an assumption of Independence among algorithms. It is widely used model for the binary and multi classification

Naive Bayes						
Data	Accuracy	Precision	Recall	F1 Score		
Test Data	89.07%	89.33%	89.78%	89.56%		

6.7 Support Vector Machine Classifier

SVM algoritm uses classifies the data within the degree of polarity

Support Vector Machine Classifier						
Data	Accuracy	Precision	Recall	F1 Score		
Test Data	90.22%	91.17%	89.98%	90.57%		

6.8 Gradient Boosting Classifier

This model is group weak learner models one among them is decision tree. This model is very effective in high dimensional data also.

Gradient Boosting Classifier						
Data	Data Accuracy Precision Recall F1 Score					
Test Data	92.89%	93.45%	92.89%	93.17%		

7 Conclusion

After fitting and testing the data in all above mentioned models, We got different accuracy's , precision ,Recall and F1 score. The summary of all the models will give us the change to get into conclusion in terms of the evaluation metrics.

Summary model's Performance							
Model/Algorithm	Accuracy	Precision	Recall	F1 Score			
Logistic Regression	89.33%	89.86%	89.68%	89.77%			
KNN	91.47%	93.53%	89.88%	90.67%			
Random Forest	94.61%	93.92%	95.89%	94.89%			
Naive Bayes	89.07%	89.33%	89.78%	89.56%			
Support Vector Machine	90.22%	91.17%	89.98%	90.57%			
Gradient Boosting	92.89%	93.45%	92.89%	93.17%			

From the above table we can say that **Random Forest** algorithm give more accuracy, precision, recall and F1 Score. For the data we need more Recall percentage as it minimize the False Negative. If the Recall score is more it says that there are less False Negative which means less miss-prediction of likely to churn customer as not.

Confusion Matrix of the models:

Figure 11: Confusion Matrix of Logistic Regression and KNN

Figure 12: Confusion Matrix of Random Forest and Naive Bayes

Figure 13: Confusion Matrix of SVM and Gradient Boosting

Feature Importance plot of Random forest model:

From the above plot we can say that Dependents and Survey and Tenure are more important and playing major role in getting the accuracy and recall of model. As my **hypothesis** says Customers with no dependents and less tenure are more likely to churn can be accepted. Finally our model says **Customer with no dependents are more likely to churn**

References

- [1] Medium. 2022. Churn Prediction with Machine Learning. [online] Available at: jhttps://towardsdatascience.com/churn-prediction-with-machine-learning-ca955d52bd8c; [Accessed 8 August 2022].
- [2] Medium. 2022. Customer Churn Analysis: EDA. [online] Available at: jhttps://towardsdatascience.com/customer-churn-analysis-eda-a688c8a166ed; [Accessed 8 August 2022].
- [3] Brownlee, J., 2022. Feature Importance and Selection Feature With Python. XGBoost in [online] Machine Learning Mastery. Available at: ihttps://machinelearningmastery.com/feature-importance-and-feature-selection-withxgboost-in-python/¿ [Accessed 8 August 2022].
- [4] Kaggle.com. 2022. Telco Churn Prediction Feature Engineering[EDA]. [online] Available at: jhttps://www.kaggle.com/code/mechatronixs/telco-churn-prediction-feature-engineering-eda; [Accessed 8 August 2022].
- [5] Medium. 2022. What is a confusion matrix?. [online] Available at: jhttps://medium.com/analytics-vidhya/what-is-a-confusion-matrix-d1c0f8feda5; [Accessed 8 August 2022].

A Appendix

```
In [1]:
         import pandas as pd
         import numpy as np
         import matplotlib.pyplot as plt
         import warnings
         warnings.filterwarnings('ignore')
         from sklearn.linear_model import LinearRegression
         import sklearn.metrics as sm
         import seaborn as sns
         import statsmodels.api as sms
         from scipy import stats
         from sklearn.preprocessing import MinMaxScaler
         from sklearn.impute import SimpleImputer
         from sklearn.model_selection import train_test_split
         from sklearn.metrics import confusion_matrix, accuracy_score
         from sklearn.linear model import LogisticRegression
         from sklearn.neighbors import KNeighborsClassifier
         # import plotly.express as px
In [2]:
         df = pd.read_csv("Group 2 (2).csv")
In [3]:
         del df[df.columns[θ]]
In [4]:
         df.shape
Out[4]: (7350, 11)
In [5]:
         print(df.info())
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 7350 entries, 0 to 7349
        Data columns (total 11 columns):
         #
             Column
                            Non-Null Count Dtype
         0
             customer_id
                            7350 non-null
                                            object
         1
              gender
                            7350 non-null
                                            object
         2
             location
                            7350 non-null
                                            object
         3
              partner
                            7350 non-null
                                            int64
              dependents
                            7350 non-null
                                            object
              senior
                            7350 non-null
                                            int64
         6
              Tenure
                            7350 non-null
                                            float64
              monthly_cost
                            67 non-null
                                            object
                            7350 non-null
                                            int64
             package
         9
              survey
                            7350 non-null
                                            object
         10 Class
                            7301 non-null
         dtypes: float64(1), int64(3), object(7)
         memory usage: 631.8+ KB
In [6]:
         df.head()
                                       location partner dependents senior Tenure monthly_cost package survey
Out[6]:
           customer_id gender
                                                                                                                 Class
         0
                 K3713
                         Male
                                     Hampshire
                                                          Unknown
                                                                            12.0
                                                                                        NaN
                                                                                                          6 Churn=No
                D9048
                                                                            21.0
                                                                                        NaN
                              Greater Manchester
                                                                                                            Churn=No
                 K8227
                       Female
                                  West Yorkshire
                                                          Unknown
                                                                            0.0
                                                                                        NaN
                                                                                                          4 Chum=Yes
                H3533
                                                                                        NaN
                                                                                                   2
         3
                         Male
                                  Greater London
                                                    1
                                                                1
                                                                      1
                                                                            11.0
                                                                                                          4 Chum=No
                 J4501
                         Male
                                  Greater London
                                                    0
                                                                0
                                                                      0
                                                                            7.0
                                                                                        NaN
                                                                                                   4
                                                                                                          2 Chum=Yes
         print(df.isnull().sum())
         customer_id
         gender
         location
         partner
         dependents
         senior
                            0
         Tenure
         monthly_cost
                                                    18
         package
         survey
                            0
        Class
                           49
         dtype: int64
```

```
duplicateRowsDF
           df = df.drop_duplicates(subset=["customer_id"], keep='first')
           df.shape
          (6752, 11)
 Out[8]:
 In [9]:
           df.shape
          (6752, 11)
 Out[9]:
In [10]:
           df.dtypes
          customer_id
                             object
Out[10]:
          gender
                             object
           location
                             object
          partner
                              int64
          dependents
                             object
          senior
                              int64
                            float64
          Tenure
          monthly_cost
                             object
          package
                              int64
                             object
          survey
          Class
                             object
          dtype: object
In [11]: df.describe()
Out[11]:
                     partner
                                   senior
                                               Tenure
                                                          package
           count 6752.000000
                              6752.000000
                                          6752.000000 6752.000000
                     0.547393
                                 0.173134
                                             8.722439
                                                          2.427725
                     0.497786
                                 0.378391
                                             6.408113
                                                          1.152222
             std
                                                          1.000000
            min
                     0.000000
                                 0.000000
                                             -4.690416
            25%
                     0.000000
                                 0.000000
                                             3.000000
                                                          1.000000
            50%
                     1.000000
                                 0.000000
                                             8.0000000
                                                          2.000000
            75%
                     1.000000
                                 0.000000
                                             14.000000
                                                          4.000000
                     1.000000
                                 1.0000000
                                            30.000000
                                                          4.000000
            max
In [12]:
           df['monthly_cost'][df.package==1]=26
           df['monthly_cost'][df.package==2]=34
df['monthly_cost'][df.package==3]=40
           df['monthly_cost'][df.package==4]=47
In [13]:
           df.head()
Out[13]:
              customer_id gender
                                           location
                                                             dependents senior
                                                                                Tenure monthly_cost package
                                                                                                                           Class
                                                    partner
                                                                                                              survey
          0
                   K3713
                            Male
                                         Hampshire
                                                               Unknown
                                                                             0
                                                                                   12.0
                                                                                                  26
                                                                                                                    6 Chum=No
           1
                   D9048
                            Male
                                  Greater Manchester
                                                          1
                                                                      1
                                                                             0
                                                                                   21.0
                                                                                                  47
                                                                                                            4
                                                                                                                    6 Churn=No
          2
                   K8227
                                      West Yorkshire
                                                          0
                                                               Unknown
                                                                             0
                                                                                    0.0
                                                                                                  26
                                                                                                                    4 Chum=Yes
                   H3533
                                                                             1
                                                                                   11.0
                                                                                                            2
                                                                                                                    4 Churn=No
                                      Greater London
                                                                      0
                                                                                    7.0
                                                                                                  47
                    J4501
                                                          0
                                                                                                                    2 Chum=Yes
                                      Greater London
In [14]:
           df = df.dropna()
In [15]:
           df.shape
          (6704, 11)
Out[15]:
In [16]:
           print(df['Class'].value_counts())
          Churn=No
                         4778
          Churn=Yes
                         1911
          Y$e$s$$
                          15
          Name: Class, dtype: int64
                                                    19
In [17]: df['monthly_cost']=df['monthly_cost'].astype(int)
```

duplicateRowsDF = df[df['customer_id'].duplicated()]

```
In [18]: df.shape
Out[18]: (6784, 11)
In [19]:
           churn_numeric = {'Y$e$s$$':'Churn=Yes'}
           df.Class.replace(churn_numeric, inplace=True)
In [20]:
           df.dtypes
Out[20]: customer_id
                            object
                            object
          gender
                            object
int64
          location
          partner
          dependents
                            object
int64
          senior
                           float64
int32
          Tenure
          monthly_cost
          package
                             int64
                            object
          survey
          Class
                            object
          dtype: object
In [21]: print(df['Class'].value_counts())
          Churn=No
                        4778
                       1926
          Churn=Yes
          Name: Class, dtype: int64
In [22]: ax6 = sns.catplot(x="Class", kind="count", data=df)
             5000 -
             4000
             3000 -
             2000 -
            1000
               0 .
                        Chum=No
                                             Chum=Yes
                                    Class
         Numerical data
In [23]:
           sns.kdeplot(data=df, x="Tenure", hue="Class")
          <AxesSubplot:xlabel='Tenure', ylabel='Density'>
Out[23]:
                                                         Class
                                                        Chum=No
            0.04 -
                                                        Chum=Yes
            0.03 -
            0.02 -
            0.01 -
```

0.00

In [24]:

Ó

10

sns.kdeplot(data=df, x="monthly_cost", hue="Class")

 ${\tt Out[24]:} \ \ {\tt <AxesSubplot:xlabel='monthly_cost', ylabel='Density'} \\$

Tenure

20

30

Gender:

```
In [25]: print(df['gender'].value_counts())
          Male
                     3380
          Female 3324
Name: gender, dtype: int64
In [26]:
           sns.catplot(x="gender", kind="count", data=df)
Out[26]: cseaborn.axisgrid.FacetGrid at 0xieabbb20280>
             3500
             3000 -
             2500
             2000
             1500
            1000 -
              500 -
                           Male
                                               Female
                                     gender
In [27]:
           sns.catplot(x="gender", kind="count", hue="Class", data=df)
Out[27]: <seaborn.axisgrid.FacetGrid at 0xleaba3d25e0>
             2500 -
             2000 -
            1500 -
                                                                 Class
                                                                Chum=No
                                                                 Chum=Yes
             1000 -
              500 -
                0
                          Male
                                              Female
                                    gender
In [28]:
           sns.violinplot(x="gender", y="monthly_cost", hue="Class", data=df, palette="muted", split=True)
```

Out[28]: <AxesSubplot:xlabel='gender', ylabel='monthly_cost'>

In [29]: sns.violinplot(x="gender", y="Tenure",hue="Class", data=df,palette="muted", split=True)

Out[29]: <AxesSubplot:xlabel='gender', ylabel='Tenure'>

Partner

In [30]: print(df['partner'].value_counts())

3037

Name: partner, dtype: int64

In [31]: sns.catplot(x="partner", kind="count", data=df)

Out[31]: <seaborn.axisgrid.FacetGrid at 0xleabbdfe430>

In [32]: sns.catplot(x="partner", kind="count", hue="Class", data=df)

Out[32]: <seaborn.axisgrid.FacetGrid at 0xleabbcd57f0>

In [33]: sns.violinplot(x="partner", y="monthly_cost",hue="Class", data=df,palette="muted", split=True)

Out[33]: <AxesSubplot:xlabel='partner', ylabel='monthly_cost'>

In [34]: sns.violinplot(x="partner", y="Tenure", hue="Class", data=df, palette="muted", split=True)

Out[34]: <AxesSubplot:xlabel='partner', ylabel='Tenure'>

Dependents

In [37]: sns.catplot(x="dependents", kind="count", hue="Class", data=df)

Out[37]: <seaborn.axisgrid.FacetGrid at 0xleabc085be0>

In [38]: sns.violinplot(x="dependents", y="monthly_cost", hue="Class", data=df, palette="muted", split=True)

Out[38]: <AxesSubplot:xlabel='dependents', ylabel='monthly_cost'>

In [39]: sns.violinplot(x="dependents", y="Tenure", hue="Class", data=df,palette="muted", split=True)

Out[39]: <AxesSubplot:xlabel='dependents', ylabel='Tenure'>

1000 -

0 -

```
Seniors
In [40]: print(df['senior'].value_counts())
              5546
              1158
         Name: senior, dtype: int64
In [41]:
          sns.catplot(x="senior", kind="count", data=df)
Out[41]: <seaborn.axisgrid.FacetGrid at 0xleabd1703a0>
            5000
            4000 -
          불 3000
            2000
```

In [42]: sns.catplot(x="senior", kind="count", hue="Class", data=df)

senior

i

Out[42]: <seaborn.axisgrid.FacetGrid at 0x1eabd180820>

In [43]: sns.violinplot(x="senior", y="monthly_cost", hue="Class", data=df, palette="muted", split=True)

Out[43]: <AxesSubplot:xlabel='senior', ylabel='monthly_cost'>

In [44]: sns.violinplot(x="senior", y="Tenure", hue="Class", data=df,palette="muted", split=True)

Out[44]: <AxesSubplot:xlabel='senior', ylabel='Tenure'>

Location

In [45]: sns.catplot(x="location", kind="count", data=df,height=6, aspect=3)

Out[45]: <seaborn.axisgrid.FacetGrid at 0xleabd3e8a90>

In [46]: sns.catplot(x="location", kind="count", hue="Class", data=df,height=6, aspect=3)

Out[46]: <seaborn.axisgrid.FacetGrid at 0x1eabd3e0190>


```
sns.violinplot(x="location", y="monthly_cost",hue="Class", data=df,palette="muted", split=True)
Out[47]: <AxesSubplot:xlabel='location', ylabel='monthly_cost'>
                                                  Chum=No
            60 -
                                                      Chum=Yes
            10
                                             MENT WHITE PARTY
                                    location
In [48]:
           sns.violinplot(x="location", y="Tenure", hue="Class", data=df, palette="muted", split=True)
Out[48]: <AxesSubplot:xlabel='location', ylabel='Tenure'>
                                                        Class
                                                      Chum=No
                                                      Chum=Yes
             20
             10
            -10
                                      location
         Survey
In [49]: print(df['survey'].value_counts())
                      1090
          6
          5
                       956
                       865
          7
          2
                       654
                       625
          4
         1
                       568
                       539
          No reply
                       507
                       476
          8
          0
                       218
                       177
          10
                        29
          Name: survey, dtype: int64
In [50]: sns.catplot(x="survey", kind="count", data=df)
          <seaborn.axisgrid.FacetGrid at 0xleabdaa44c0>
Out[50]:
            1000
             800
             400
             200
```

0

2 3 8

1 5 survey 7No reply9

ò

```
In [51]:
            sns.catplot(x="survey", kind="count", hue="Class", data=df)
Out[51]: <seaborn.axisgrid.FacetGrid at 0x1eabdd56730>
              1000
               800
               600
                                                                      Class
                                                                      Chum-No
                                                                      Chum-Yes
               400
              200
                                   8
                                       1 5
                                               7No reply9
                                                          o
                                       survey
In [52]:
            sns.violinplot(x="survey", y="monthly_cost",hue="Class", data=df,palette="muted", split=True)
Out[52]: <AxesSubplot:xlabel='survey', ylabel='monthly_cost'>
              55
              50
              45
           monthly
              35
              30
              20
                      Churn-Yes
                                                  7 No reply 9
In [53]:
            sns.violinplot(x="survey", y="Tenure",hue="Class", data=df,palette="muted", split=True)
Out[53]: <AxesSubplot:xlabel='survey', ylabel='Tenure'>
               40 -
                                                             Class
                                                             Chum=No
               20
               10
             -10
              -20
                                                   7 No reply 9
                                                                ò
          H0:people who dont have dependents are churning more.
          Data pre processing
In [54]:
           churn_numeric = {'Churn=Yes':1, 'Churn=No':0,'Y$e$s$$':1}
df.Class.replace(churn_numeric, inplace=True)
            df.gender.replace({'Female':0,'Male':1},inplace=True)
In [55]:
           df=df.replace(['West Midlands', 'Greater Manchester', 'West Yorkshire', 'Kent', 'Hampshire', 'Essex', 'Lancashire', 'Merse
df=pd.get_dummies(df,columns=['location'])
```

customer id gender partner dependents senior Tenure monthly cost package survey Class

Out[55]:

location_Greater

London

location_Non

london area

	cust	omer_id	gender	partner	dependents	senior	Tenure	monthly_cost	package	survey	Class	location_Greater London	location_No london are
	0	K3713	- 1	0	Unknown	0	12.0	26	- 1	6	0	0	
	1	D9048	1	1	1	0	21.0	47	4	6	0	0	
	2	K8227	0	0	Unknown	0	0.0	26	1	4	1	0	
	3	H3533	1	1	1	1	11.0	34	2	4	0	1	
	4	J4501	1	0	0	0	7.0	47	4	2	1	1	
	***	-		-	-	-			-	-	***		
37	7344	13187	1	13	Unknown	0	0.0	26	1	6	1	1	
	7345	H7244	0	0	0	0	1.0	26	- 1	1	1	1	
	7347	15775	1	1	1	0	16.0	47	4	2	0	1	
9	7348	E9984	0	0	1	0	17.0	26	1	4	1	1	
	7349	F2835	1	0	1	0	13.0	34	2	7	0	0	
6	704 rows	× 12 colu	umns										
	df.group	by('dep	endents')['Clas	s'].value_c	ounts()							
	dependent 0	s Class	s 97	23									
8		Θ	51	13									
1	1	9	278										
ţ	Unknown	9	148										
		1	58	32									
1	Name: Cla	ss, dty	pe: int6	14									
	df.gende df.loc[d				emale':1}, : re'] = 0	inplace	=True)						
	<pre>df['Tenure']=df['Tenure'].astype(int) # df['dependents']=df['dependents'].astype(int) # df['survey']=df['survey'].astype(int) df['Class']=df['Class'].astype(int) df['monthly_cost']=df['monthly_cost'].astype(int) df['location_Greater London']=df['location_Greater London'].astype(int) df['location_Non london area']=df['location_Non london area'].astype(int)</pre>												
	<pre>df['Tenure'] = MinMaxScaler().fit_transform(np.array(df['Tenure']).reshape(-1,1)) df['monthly_cost'] = MinMaxScaler().fit_transform(np.array(df['monthly_cost']).reshape(-1,1)) # view normalized data display(df)</pre>												

	customer_id	gender	partner	dependents	senior	Tenure	monthly_cost	package	survey	Class	location_Greater London	location_Non london area
0	K3713	1	0	Unknown	0	0.400000	0.000000	1	6	0	0	1
1	D9048	1	10	: 1	0	0.700000	1.000000	4	6	0	0	
2	K8227	0	0	Unknown	0	0.000000	0.000000	1	4	1	0	1
3	H3533	1	1	1	1	0.366667	0.380952	2	4	0	1	0
4	J4501	1	0	0	0	0.233333	1.000000	4	2	1	1	0
***			-			-		-	-			-
7344	13187	1	1	Unknown	0	0.000000	0.000000	1	6	1	1	0
7345	H7244	0	0	0	0	0.033333	0.000000	<u>1</u>	1	1	1.	.0
7347	15775	1	1	1	0	0.533333	1.000000	4	2	0	1	0
7348	E9984	0	0	1	0	0.566667	0.000000	1	4	1	1	0
7349	F2835	1	0		0	0.433333	0.380952	2	7	0	0	1

6704 rows × 12 columns

```
In [60]: df1_test=df[df['dependents'] == "Unknown"] df2_train=df[df['dependents'] != "Unknown"] #df2_main df1_test.shape, df2_train.shape 29
```

```
Out[60]:
In [61]:
            df2_train['dependents']=df2_train['dependents'].astype(int)
            classifier = LogisticRegression()
            classifier.fit(df2 train[['gender', 'partner', 'senior', 'Tenure', 'Class']], df2_train['dependents'])
pred=classifier.predict(df1_test[['gender', 'partner', 'senior', 'Tenure', 'Class']])
            pred
           array([1, 0, 1, ..., 1, 1, 0])
Out[61]:
In [62]:
            df1_test['dependents']=pred
            df1_test
Out[62]:
                                                                                                                      location_Greater
                                                                                                                                          location_Non
                  customer_id gender partner dependents senior
                                                                      Tenure monthly_cost package survey Class
                                                                                                                               London
                                                                                                                                           london area
              0
                        K3713
                                              0
                                                           1
                                                                  0 0.400000
                                                                                    0.000000
                                                                                                             6
                                                                                                                   0
                                                                                                                                     0
               2
                        K8227
                                    0
                                              0
                                                           0
                                                                  0.000000
                                                                                    0.000000
                                                                                                                                     0
              5
                        K3269
                                    0
                                                           1
                                                                  0 0.600000
                                                                                    0.000000
                                                                                                             3
                                                                                                                   0
                                                                                                                                    0
                                                                                                                                                     1
              7
                        E1851
                                              0
                                                                  0
                                                                     0.066667
                                                                                    0.000000
                                                                                                                   0
                                                                                                                                     0
               8
                        H3588
                                    0
                                                           0
                                                                  0 0.400000
                                                                                    0.666667
                                                                                                                                                     0
           7334
                        D4511
                                                           1
                                                                  0 0.566667
                                                                                    1.000000
                                                                                                             7
                       G4484
                                              0
                                                           1
                                                                  0.000000
                                                                                    0.000000
                                                                                                             7
                                                                                                                   0
                                                                                                                                     0
           7337
           7341
                        C8964
                                    0
                                                           1
                                                                     0.766667
                                                                                    0.666667
                                                                                                     3
                                                                                                             4
                                                                                                                   0
                                                                                                                                                     0
           7342
                        D1975
                                    0
                                                           1
                                                                  0 0.300000
                                                                                    0.380952
                                                                                                             7
                                                                                                                   0
                                                                                                                                     0
                                                                                                                                                     1
                        13187
                                                                  0.000000
                                                                                    0.000000
                                                                                                             6
          2067 rows × 12 columns
In [63]:
            df=pd.concat([df2_train,df1_test])
            df=df.drop(['customer_id'], axis=1)
In [64]:
            df = df.reset_index(drop=True)
            df
Out[64]:
                                                                                                               location_Greater
                                                                                                                                   location_Non london
                                                          Tenure monthly_cost package
                                                                                          survey
                                                                                                  Class
                                                                                                                       London
                                                                                                                                                  area
               0
                                                     0 0.700000
                                                                       1.000000
                                                                                               6
                                                                                                      0
                                                                                                                             0
                                                                                                                                                     1
               1
                                 1
                                             1
                                                     1 0.366667
                                                                       0.380952
                                                                                               4
                                                                                                      0
                                                                                                                             1
                                                                                                                                                     0
              2
                                0
                                             0
                                                     0 0.233333
                                                                       1.000000
                                                                                               2
                                                                                                                             1
                                                                                                                                                     0
              3
                       0
                                1
                                             0
                                                                                                      0
                                                                                                                             0
                                                                                                                                                     1
                                                     0 0.533333
                                                                       1.000000
                                                                                       4
                                                                                               8
               4
                       1
                                0
                                             1
                                                     0 0.6333333
                                                                       0.000000
                                                                                               8
                                                                                                      0
                                                                                                                             0
                                                                                                                                                     1
           6699
                                             1
                                                     0 0.566667
                                                                       1.000000
                                                                                                      0
                       0
                                0
                                                     0.000000
                                                                       0.000000
                                                                                               7
                                                                                                      0
                                                                                                                             0
           6700
                                             1
                                                                                                                                                     0
                                                                                               4
           6701
                       0
                                             1
                                                     0 0.766667
                                                                       0.666667
                                                                                       3
                                                                                                      0
                       0
                                                                                       2
                                                                                               7
                                                                                                                             0
           6702
                                1
                                             1
                                                     0 0.300000
                                                                       0.380952
                                                                                                      0
           6703
                                             0
                                                     0.000000
                                                                       0.000000
                                                                                               6
                                                                                                                                                     0
          6704 rows × 11 columns
In [65]:
            df['survey'] = df['survey'].replace(['No reply'],df['survey'].mode())
In [66]:
            df['dependents']=df['dependents'].astype(int)
df['survey']=df['survey'].astype(int)
In [67]:
            df
                                                       30
                                                                                                               location Greater
Out[67]:
                                                                                                                                   location_Non london
                 gender partner dependents senior
                                                          Tenure monthly_cost package survey Class
                                                                                                                       London
```

	gender	partner	dependents	senior	Tenure	monthly_cost	package	survey	Class	location_Greater London	location_Non lon
0	1	1	1	0	0.700000	1.000000	- 4	6	0	0	
1	1	1	1	1	0.366667	0.380952	2	4	0	1	
2	1	0	0	0	0.233333	1.000000	4	2	1	1	
3		1	0	0	0.533333	1.000000	4	8	0	0	
4		0	1		0.633333	0.000000	1	8	0	0	
		_	-	-	_	-	_	-		-	
6699		1	1	0	0.566667	1.000000	4	7	0	1	
6700		0	1		0.000000	0.000000	1	7	0	0	
6701	0	1	1	0	0.766667	0.666667	3	4	0	1	
6702	2 0	1	1	0	0.300000	0.380952	2	7	0	0	
6703	1	1	0	0	0.000000	0.000000	1	6	1	1	
x = y = # 50 x =	df.drop	(['Class ss'] Ls.OLS r constant		to add	a consta	nt.					
x = y = # 51 x = moderness	df.drope df['Clas tatsmodel sm.add_d	(['Class ss'] Ls.OLS r constant OLS(y,x) odel.fit	requires us t(x) t() sry())								
x = y = # Si x = moderesi prin	df.drope df['Class tatsmodes sm.add_ lel = sm.0 ults = mo nt(result	(['Class ss'] Ls.OLS r constant OLS(y,x) odel.fit ts.summa	requires us t(x) t() sry())	S Regre:	ssion Res						
x = y = # Si x = mode resi prin	df.drope df['Cla: sm.add_ lel = sm.(sults = m nt(result	(['Class ss'] Ls.OLS r constant OLS(y,x) odel.fit ts.summa	requires us t(x) t() sry())	S Regres	ssion Res	ults		(0.625		
x = y = # Si x = mode resi prii	df.drope df['Cla: sm.add el = sm.(sults = m nt(result	(['Class ss'] Ls.OLS r constant OLS(y,x) odel.fit ts.summa	requires us t(x) t() ary())	S Regres	ssion Res R-squa Adj. R	ults ired:		(9.625 9.625		
x = y = # 50 x = moder resignment.	df.drope df['Cla: tatsmode: sm.add_cle! = sm.dc. de! = sm.t cults = mc. nt(result	(['Class ss'] Ls.OLS r constant OLS(y,x) odel.fit ts.summa	requires us t(x) t() ory())	Class OLS	R-squa Adj. R F-stat	ults red: :-squared: :istic:		(0.625		
x = y = # Si x = mode rest print Dep. Mode Meth	df.drope df['Cla: sm.add_ ell = sm.d ults = m nt(result	(['Class ss'] Ls.OLS r constant OLS(y,x) odel.fit ts.summa	requires us t(x) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c	Class OLS	R-squa Adj. R F-stat Prob (ults ired:		6	9.625 9.625 1241.		
x = y = # Si x = mode resi pri: Dep. Mode Meth Date Time	df.drope df['Cla: sm.add_ ell = sm.d ults = m nt(result	(['Class ss'] Ls.OLS r constant OLS(y,x) odel.fit ts.summa	requires us t(x) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c	Class OLS Squares ug 2022	R-squa Adj. R F-stat Prob (Log-Li	ults ired: i-squared: istic: F-statistic)		-96	0.625 0.625 1241. 0.00		
x = y = moderess print Dep. Mode Metholate Time No. (Df R)	df.drope df['Cla: sm.add_del = sm.del el = sm.tresult ults = me nt(result Variable el: od: el: Observat Residuals	(['Class ss'] Ls.OLS r constant OLS(y,x) odel.fit ts.summa e:	requires us t(x) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c	Class OLS Squares ig 2022 9:08:07 6704 6694	R-squa Adj. R F-stat Prob (Log-Li AIC:	ults ired: i-squared: istic: F-statistic)		-96	0.625 0.625 1241. 0.00 07.01		
x = y = moderess print Dep. Mode Meth Date Time No. (Df R) Df M	df.drope df['Cla: tatsmode: sm.add_cle! = sm.d ults = mc nt(result) . Variable !: odd: !: Observat: tesiduals	(['Class ss'] Ls.OLS r constant OLS(y,x) odel.fit ts.summa e:	requires us t(x) t() out bt() out out out out out out out out out out	Class OLS Squares ig 2022 9:08:07 6704 6694 9	R-squa Adj. R F-stat Prob (Log-Li AIC:	ults ired: i-squared: istic: F-statistic)		-96	0.625 0.625 1241. 0.00 07.01 1834.		
x = y = model resident print p	df.drope df['Cla: tatsmode: sm.add_ ele! = sm.d ults = mc nt(result) . Variable el: cod: e: cod: e: cod: e: esiduals todel: ariance T;	(['Class ss'] Ls.OLS r constant OLS(y,x) odel.fit ts.summa e: : : : : : : : : : : : : : : : : :	requires us t(x) t() ory()) Least S Mon, 08 Au 09	Class OLS Squares ug 2022 9:08:07 6704 6694 9	R-squa Adj. R F-stat Prob (Log-Li AIC: BIC:	red: t-squared: istic: F-statistic) kelihood:	t	-96 1	3.625 3.625 1241. 0.00 37.01 1834. 1902.		
x = y = model rest print Dep. Mode Meth Date Time No. (Of R. Df M. Cova	df.drope df['Cla: tatsmode: sm.add_ ele! = sm.d ults = mc nt(result) . Variable el: cod: e: cod: e: cod: e: esiduals todel: ariance T;	(['Class ss'] Ls.OLS r constant OLS(y,x) odel.fit ts.summa e: : : : : : : : : : : : : : : : : :	requires us t(x) (c) (c) (c) (c) (d) (c) (d) (d) (d) (e) (e) (e) (e) (e) (e) (e) (e) (e) (e	Class OLS Squares ug 2022 9:08:07 6704 6694 9	R-squa Adj. R F-stat Prob (Log-Li AIC: BIC:	red: d-squared: d-stic: f-statistic) kelihood:	t	-96 1	3.625 3.625 1241. 0.00 37.01 1834. 1902.	0.975]	
x = y = # Si x = moderess print Dep. Mode Moth Date Time No. (df.drope df['Cla: sm.add of the sm. add of the sm.	(['Class ss'] Ls.OLS r constant OLS(y,x) odel.fit ts.summa e: ions: : ype:	requires us t(x) t() OLS Least S Mon, 08 Au	Class OLS Squares 19:08:07 6704 6694 9 nrobust	R-squa Adj. R F-stat Prob (Log-Li AIC: BIC:	red: squared: cistic: F-statistic) kelihood:	: P> t	-9e	9.625 9.625 1241. 9.00 97.01 1834. 1902.	0.975]	
x = y = # Si x = moderess print Dep. Mode Meth Date Time Def R Mo. Cova Cons'	df.drope df['Cla: tatsmode: sm.add_(el= sm.del= sm.t(result) el= sm.t(result) . Variable: e: Observat: desiduals stodel: ariance T;	(['Class ss'] Ls.OLS r constant OLS(y,x) odel.fit ts.summa e: ions: : ype:	requires us t(x) t() ols Least S Mon, 08 Au 09	Class OLS Squares ug 2022 9:08:07 6704 6694 9 nrobust coef	R-squa Adj. R F-stat Prob (Log-Li AIC: BIC:	red: t-squared: istic: F-statistic) kelihood:	P> 1	-96 1 1	9.625 9.625 1241. 9.00 97.01 1834. 1902. [0.025	0.975] 0.792	
x = y = # Si x = x moderess print Mode Meth Date Time Cova ====	df.drope df['Cla: tatsmode: sm.add_cle! = sm.d cults = mc nt(result) . Variable: :: cod: :: cod: :: cod: :: cod: cod: c	(['Class ss'] Ls.OLS r constant OLS(y,x) odel.fit ts.summa e: ions: : ype:	requires us t(x) t() organis=1) requires us t(x) t() organis=1) organis=1) requires us t(x) organis=1) organis=1) requires us t(x) organis=1) o	Class OLS Squares ug 2022 9:08:07 6704 6694 9 nrobust coef	R-squa Adj. R F-stat Prob (Log-Li AIC: BIC:	red: t-squared: istic: F-statistic) kelihood:	P> 1	-96 1 1 1 1 1 1 1 1	0.625 0.625 1241. 0.00 37.01 1834. 1902. [0.025	0.975] 0.792 0.017	
x = y = # Si x = moderess print Dep. Mode Meth Date Time No. Covar Covar Covar Cons's gend Covar Cons's gend Covar Covar Covar Covar Covar Covar C	df.drope df['Cla: tatsmode: sm.add_cle! = sm.d cults = mc nt(result) . Variable: :: cod: :: cod: :: cod: :: cod: cod: c	(['Class ss'] Ls.OLS r constant OLS(y,x) odel.fit ts.summa e: ions: : ype:	requires us t(x) t() ory()) Least S Mon, 08 Au 09	Class OLS Squares ug 2022 9:08:07 6704 6694 9 nrobust coef	R-squa Adj. R F-stat Prob (Log-Li AIC: BIC:	red: t-squared: istic: F-statistic) kelihood: t 17.470 0.689 8 -8.244	P> 1	-96 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	9.625 9.625 1241. 9.00 97.01 1834. 1902. [0.025	0.975] 0.792	
x = y = # Si x = x moderess print Mode Meth Date Time No. Cova = = = Cova gend part	df.drope df['Cla: sm.add_ ell = sm.d dults = mont(result) variable el: cod: el: cod: el: cod: el: elsiduals todel: eriance T	(['Class ss'] Ls.OLS r constant OLS(y,x) odel.fit ts.summa e: ions: : ype:	requires us t(x) (c) (c) (d) (d) (d) (e) (e) (e) (e) (e) (e) (e) (e)	Class OLS Squares ug 2022 9:08:07 6704 6694 9 nrobust coef	R-squa Adj. R F-stat Prob (Log-Li AIC: BIC: std err	red:squared: istic: F-statistic) kelihood: t 17.470 0.609 -8.244 -55.949	P> 1 0.06 0.54 0.06	-96 11 12 13 13 13 13 13 13 13 13 13 13 13 13 13	0.625 0.625 1241. 0.00 37.01 1834. 1902. [0.025 0.632 -0.009 -0.084	0.975] 0.792 0.017 -0.052	
x = y = moderess print Dep. Mode Meth Date Time Time Time Cova Consigend Gert	df.drope df['Cla: tatsmode: sm.add_(el= sm.(el= sm.(el	(['Class ss'] Ls.OLS r constant OLS(y,x) odel.fit ts.summa e: : : : : : : : : : : : : : : : : :	requires us t(x) t() OLS Least S Mon, 08 Au 09 non	Class OLS Squares ols 2022 9:08:07 6704 6694 9 nrobust coef .7123 .0041 .0679 .4766	R-squa Adj. R F-stat Prob (Log-Li AIC: BIC: std err 0.041 0.007 0.008	red: -squared: -squared: -istic: F-statistic) kelihood: 17.470 0.609 0.8.244 -55.949 -7.633	P> 1 0.96 0.54 0.96 0.96	-96 11 12 13 13 13 13 13 13 13 13 13 13 13 13 13	0.625 0.625 1241. 0.00 97.01 1834. 1902. [0.025 -0.632 -0.084 -0.493	0.975] 0.792 0.017 -0.052 -0.460	
x = y = moderess moderess print Dep. Mode Meth Date Time Time Topf R M Cova consigend part depe	df.drope df['Cla: sm.add del = sm.del: sw.add el = sm.del: sw.add el = sm.del: sw.add el = sm.del: sw.add el = sm.del: sc.: sc.: Observat: del: sc.: sc.: sc.: sc.: sc.: sc.: sc.: sc.	(['Class ss'] Ls.OLS r constant OLS(y,x) odel.fit ts.summa e: : : : : : : : : : : : : : : : : :	requires us t(x) t() ols Least S Mon, 08 Au 09 nor	Class OLS Squares 19:08:07 6704 6694 9 nrobust coef 77123 .0041 .0679 .4766	R-squa Adj. R F-stat Prob (Log-Li AIC: BIC: std err 0.041 0.007 0.008 0.009 0.011	tults tred: t-squared: tistic: F-statistic) kelihood: 17.470 0.609 8 -8.244 -55.949 1 -7.633 7 -21.650	P> 1 0.06 0.54 0.06 0.06 0.06 0.06 0.06	-96 -96 -96 -96 -96 -96 -96 -96 -96 -96	9.625 9.625 1241. 9.89 97.01 1834. 1992. [9.025 -0.099 -0.084 -0.493 -0.104	0.975] 0.792 0.017 -0.052 -0.469 -0.061	
x = y = moderess moderess print Dep. Mode Meth Date Time Time Too of R Of M Cova consigend part depe	df.drope df['Cla: tatsmode: sm.add_(el= sm.del= sm.t(result) el= sm.t(result) . Variable: :: Observat: desiduals stodel: ariance T; st der cherence result	(['Class ss'] Ls.OLS r constant OLS(y,x) odel.fit ts.summa e: : : : : : : : : : : : : : : : : :	requires us t(x) t() sry()) OLS Mon, 08 Au 09 nor	Class OLS Squares ug 2022 9:08:07 6704 6694 9 nrobust coef .7123 .0041 .0679 .4766 .0825 .3715	R-squa Adj. R F-stat Prob (Log-Li AIC: BIC: std err 0.041 0.007 0.008 0.009 0.011	red: t-squared: istic: F-statistic) kelihood: 17.470 0.609 8.244 9.55.949 17.633 7.1650 9.931	P> 1 0.06 0.54 0.06 0.06 0.06	-96 -96 -98 -98 -98 -98 -98 -98 -98 -98 -98 -98	9.625 9.625 1241. 9.99 97.91 1834. 1992. [9.925 -0.632 -0.984 -0.493 -0.104 -0.495	0.975] 0.792 0.017 -0.052 -0.469 -0.061 -0.338	

	coef	std err	t	P> t	[0.025	0.975]
const	0.7123	0.041	17.470	0.000	0.632	0.792
gender	0.0041	0.007	0.609	0.543	-0.009	0.017
partner	-0.0679	0.008	-8.244	0.000	-0.084	-0.052
dependents	-0.4766	0.009	-55.949	0.000	-0.493	-0.460
senior	-0.0825	0.011	-7.633	0.000	-0.104	-0.061
Tenure	-0.3715	0.017	-21.650	0.000	-0.405	-0.338
monthly_cost	-0.1766	0.190	-0.931	0.352	-0.549	0.195
package	0.0412	0.063	0.657	0.512	-0.082	0.164
survey	-0.0620	0.002	-38.377	0.000	-0.065	-0.059
location Greater London	0.3867	0.021	18.653	0.000	0.346	0.427
location_Non london area	0.3256	0.021	15.744	0.000	0.285	0.366

Omnibus:	355.252	Durbin-W	atson:		2.022	

Prob(Omnibus): 0.000 Jarque-Bera (JB): 831.467 Prob(JB): 2.81e-181 Kurtosis: 4.596 Cond. No. 4.15e+16

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The smallest eigenvalue is 1.41e-28. This might indicate that there are strong multicollinearity problems or that the design matrix is singular.

```
In [70]: df = df.drop(columns=['gender', 'package'])
In [73]: df
```

Out[73]: partner dependents senior Tenure monthly_cost survey Class location_Greater London location_Non london area 0 1 1 0 0.700000 1.000000 0 0 1 1 1 1 1 0.366667 0.380952 0 1 0 0 0.233333331 1.000000 1 2 0 0 2 1 0 3 1 0 0 0.533333 1.000000 8 0 0

				_					100		
	6701	1	- 1		0.766667	0.666667	4	0	. 1		0
	6702	1	1	0	0.300000	0.380952	7	0	0		1
	6703	1	0	0	0.000000	0.000000	6	1	1		0
	6704 rov	vs × 9 c	columns								
[n [74]:	45.44										
	df.dty	rpes									
Out[74]:	partner depende senior Tenure	ents		fl	int64 int32 int64 oat64						
	monthly survey Class locatio	214000000	rter London		oat64 int32 int32 int32						
	locatio dtype:		london area	3	int32						
In [75]:	# #df[# # vi	'month	Ly_cost'] = malized dat	- MinMa					vey']).reshape(-1,1)) if['monthly_cost']).r		
In [76]:	df.dty	pes									
Out[76]:	senior Tenure monthly survey Class locatio	ents y_cost on_Grea on_Non	rter London london area	fl fl	int64 int32 int64 oat64 oat64 int32 int32 int32 int32						
In [77]:	print(df['Cl	ass'].value	_count	s())						
	1 19	778 926 Class,	dtype: into	54							
In [78]:	df_maj	or=df[.utils impo df.Class==0 df.Class==1	9]	ample						
	df_min	ority_	upsampled =	resam	ple(df_m	inor, replace	=True,r	_samp	les=4778,random_state	=30)	
			=pd.concat(minority_upsa nts())	mpled])			
	1 47	778 778 Class,	dtype: into	54							
In [79]:	df_ups	amp_ML									
Out[79]:		artner	dependents	senior	Tenure	monthly_cost	survey	Class	location_Greater London	location_Non london are	
	0	1	1		0.700000	1.000000	6		0		1
	1	1	1	1		0.380952	4		1		0
	3	1	0		0.533333	1.000000	8		0		1
	-			-				-			-

partner dependents senior Tenure monthly_cost survey Class location_Greater London location_Non london area

7

0

0

1

0

0

0.000000

1.000000

0.000000

0 0.633333

0 0.566667

0.000000

0 0.633333

0 0.133333

-32

0.000000

1.0000000

0

6699

6700

0

	33	0	U	0 (1.000001	1.000000		3.		0
59	141	0	0	0 (0.066667	1.000000	5	1	1	0
30	154	1	0	1 (0.466667	0.380952	0	1	0	11
955	56 rows	× 9 colum	ins							
y	=df_ups =df_ups	amp_ML.dr	rop(['Cla Class']	ss'],	exis=1)				on London area'],axis=1) 0.20,random_state=30)	
81]: x	.dtype:									
de se Te mo su lo		Greater Non londo		in floo floo in in	nt64 nt32 nt64 nt64 nt64 nt32 nt32 nt32					
		istic =		_						
82]: Lo	gistic	Regression	n()							
83]: m	odelLog	istic.co	ef_							
83]: ar		-0.840712: -0.638845:				91039, -4.269 60583]])	768 ,	-0.694635	55,	
	_pred= _pred	modelLog	istic.pre	dict()	(_test)					
84]: ar	ray([1	0, 1,	, 0, 0,	0])						
pr pr pr co pr as as as as as	rint('Fri	ccuracy: Precision: Recall: %. Plecall: According to the conficulty of the conficult	%.2f%%' : %.2f%%' 2f%%' % %.2f%%' % = confusi ze=(5,3)) () usionmatr redicted ctual Lab nfusion M klabels([% (acc % (pr (reca) % (f1_ on_mat ix, ar Label' latrix '0','1	curacy_sci recision_ il_score(score(y_ trix(y_te not=True) - logist '])	atrix, accura ore(y_test, y y_test, y_pre test, y_pred) st, y_pred) , fmt='g', ax ic Regression	_pred) y_pred) * 100 * 100 = ax)	* 100)) () * 100)) (0))	ion_score, recall_score, f	1_score

Tenure monthly_cost survey Class location_Greater London location_Non london area

1

1

0

0

0

Accuracy: 89.33% Precision: 89.86% Recall: 89.68% F1_Score: 89.77%

2855

3987

1195

0

0

0

0

0 0.200000

0 0.033333

0 0.066667

0.000000

0.380952

1.000000

2

1

1

1

```
In [86]: # import statsmodels.api as sm
            # x_train = sm.add_constant(x_train)
            # logit_model=sm.Logit(y_train,x_train)
            # result=logit_model.fit()
            # print(result.summary())
In [87]:
           modelKNN = KNeighborsClassifier(n_neighbors = 20, metric = 'minkowski', p = 2)
            modelKNN.fit(x_train,y_train)
            pred_yknn=modelKNN.predict(x_test)
            pred_yknn
Out[87]: array([1, 0, 1, ..., 0, 0, 0])
In [107...
            print('Accuracy: %.2f%%' % (accuracy_score(y_test, pred_yknn) * 100 ))
            print('Precision: %.2F%%' % (precision_score(y_test, pred_yknn) * 100))
print('Recall: %.2F%%' % (recall_score(y_test, pred_yknn) * 100))
print('F1_Score: %.2F%%' % (f1_score(y_test, pred_yknn) * 100))
            confusionmatrix = confusion_matrix(y_test, pred_yknn)
            plt.figure(figsize=(5,3))
            ax = plt.subplot()
            sns.heatmap(confusionmatrix, annot=True, fmt='g', ax = ax)
ax.set_xlabel('Predicted Label')
            ax.set_ylabel('Actual Label')
ax.set_title('Confusion Matrix - KNN')
            ax.xaxis.set_ticklabels(['0','1'])
ax.yaxis.set_ticklabels(['0','1'])
           Accuracy: 91.47%
           Precision: 93.53%
           Recall: 89.88%
           F1_Score: 91.67%
Out[107... [Text(0, 0.5, '0'), Text(0, 1.5, '1')]
                        Confusion Matrix - KNN
                                                           800
                         852
            Actual Label
                                                           600
                                                           400
                                            897
                                                           200
                          ò
                             Predicted Label
modelrf.fit(x_train, y_train)
            pred_Yrf = modelrf.predict(x_test)
In [108- modelrf.feature_importances_
Out[108... array([0.0593127 , 0.31572086, 0.0416468 , 0.22858003, 0.04276845, 0.29541171, 0.00765033, 0.00890911])
In [113...
            plt.figure(figsize=(12,4))
            plt.bar(x.columns, modelrf.feature_importances_)
            plt.xlabel("Feature")
plt.ylabel("Importance")
Out[113_ Text(0, 0.5, 'Importance')
              0.30 ·
              0.25
            8 0.20
              0.15
              0.10
              0.05
              0.00
                                      dependents
                           partner
                                                                  Tenure
                                                                            monthly cost
                                                                                            surveylocation GreatdotatidonNon london area
                                                     senio
                                                        34
                                                                        Feature
```

```
In [100... print('Accuracy: %.2f%%' % (accuracy_score(y_test, pred_Yrf) * 100 ))
             print('Precision: %.2f%%' % (precision_score(y_test, pred_Yrf) * 100))
print('Recall: %.2f%%' % (recall_score(y_test, pred_Yrf) * 100))
print('F1_Score: %.2f%%' % (f1_score(y_test, pred_Yrf) * 100))
             confusionmatrix = confusion_matrix(y_test, pred_Yrf)
             plt.figure(figsize=(5,3))
             ax = plt.subplot()
             sns.heatmap(confusionmatrix, annot=True, fmt='g', ax = ax)
             ax.set_xlabel('Predicted Label')
             ax.set_ylabel('Actual Label')
             ax.set_title('Confusion Matrix - Random Forest')
             ax.xaxis.set_ticklabels(['0','1'])
ax.yaxis.set_ticklabels(['0','1'])
            Accuracy: 94.61%
            Precision: 93.92%
            Recall: 95.89%
            F1 Score: 94.89%
Out[100_ [Text(0, 0.5, '0'), Text(0, 1.5, '1')]
                   Confusion Matrix - Random Forest
                                                               800
               0
            Actual Label
                                                               600
                                                               400
                           41
                                              957
                                                               200
                           ò
                               Predicted Label
In [91]: from sklearn.naive_bayes import GaussianNB
             modelNB = GaussianNB()
             modelNB.fit(x_train, y_train)
             pred_YNB = modelNB.predict(x_test)
In [104... print('Accuracy: %.2f%%' % (accuracy_score(y_test, pred_YNB) * 100 ))
             print('Precision: %.2f%X' % (precision_score(y_test, pred_YNB) * 100))
print('Recall: %.2f%X' % (recall_score(y_test, pred_YNB) * 100))
             print('F1_Score: %.2f%%' % (f1_score(y_test, pred_YNB) * 100))
             confusionmatrix = confusion_matrix(y_test, pred_YNB)
             plt.figure(figsize=(5,3))
             ax = plt.subplot()
             sns.heatmap(confusionmatrix, annot=True, fmt='g', ax = ax)
             ax.set_xlabel('Predicted Label')
             ax.set_ylabel('Actual Label')
             ax.set_title('Confusion Matrix - Naive Bayes')
             ax.xaxis.set_ticklabels(['0','1'])
ax.yaxis.set_ticklabels(['0','1'])
            Accuracy: 89.07%
            Precision: 89.33%
            Recall: 89.78%
            F1_Score: 89.56%
Out[184... [Text(0, 0.5, '0'), Text(0, 1.5, '1')]
                     Confusion Matrix - Naive Bayes
                                                               800
                          807
                                                               700
            Actual Label
                                                               600
                                                               500
                                                               400
                           102
                                              896
                                                               300
                                                               200
                           Ó
                               Predicted Label
In [93]: from sklearn.svm import SVC
             modelSVC = SVC()
             modelSVC.fit(x_train, y_train)
             pred_YSVC = modelSVC.predict(x_test)
             print('Accuracy: %.2f%%' % (accuracy_score(y_test, pred_YSVC) * 100 ))
print('Precision: %.2f%%' % (precision_score(y_test, pred_YSVC) * 100))
print('Recall: %.2f%%' % (recall_score(y_test, pred_YSVC) * 100))
             print('F1_Score: %.2f%%' % (f1_score(y_test, pred_YSVC) * 100))
```

```
confusionmatrix = confusion_matrix(y_test, pred_YSVC)
            plt.figure(figsize=(5,3))
            ax = plt.subplot()
            sns.heatmap(confusionmatrix, annot=True, fmt='g', ax = ax)
ax.set_xlabel('Predicted Label')
ax.set_ylabel('Actual Label')
            ax.set_title('Confusion Matrix - Support Vector Machines')
ax.xaxis.set_ticklabels(['0','1'])
ax.yaxis.set_ticklabels(['0','1'])
           Accuracy: 90.22%
           Precision: 91.17%
           Recall: 89.98%
           F1_Score: 90.57%
Out[105. [Text(0, 0.5, '0'), Text(0, 1.5, '1')]
             Confusion Matrix - Support Vector Machines
                                                          800
                        827
           Actual Label
                                                          600
                        100
                                                          200
                         Ó
                            Predicted Label
In [95]: from sklearn.ensemble import GradientBoostingClassifier
            modelGB =GradientBoostingClassifier()
            modelGB.fit(x_train, y_train)
            pred_GB = modelGB.predict(x_test)
In [106...
            print('Accuracy: %.2f%%' % (accuracy_score(y_test, pred_GB) * 100 ))
            print('Precision: %.2f%%' % (precision_score(y_test, pred_GB) * 100))
            print('Recall: %.2f%%' % (recall_score(y_test, pred_GB) * 100))
            print('F1_Score: %.2f%%' % (f1_score(y_test, pred_GB) * 100))
            confusionmatrix = confusion_matrix(y_test, pred_GB)
            plt.figure(figsize=(5,3))
            ax = plt.subplot()
            sns.heatmap(confusionmatrix, annot=True, fmt='g', ax = ax)
            ax.set_xlabel('Predicted Label')
            ax.set_ylabel('Actual Label')
            ax.set_title('Confusion Matrix - Gradient Descent Boosting')
            ax.xaxis.set_ticklabels(['0','1'])
ax.yaxis.set_ticklabels(['0','1'])
           Accuracy: 92.89%
           Precision: 93.45%
           Recall: 92.89%
           F1_Score: 93.17%
Out[186- [Text(0, 0.5, '0'), Text(0, 1.5, '1')]
            Confusion Matrix - Gradient Descent Boosting
                                                          800
                        849
           Actual Label
                                                          600
                                                          400
                                          927
                                                          200
                         Ó
                            Predicted Label
 In [ ]:
 In [ ]:
```