Escalamiento Multidimensional

José A. Perusquía Cortés

Análisis Multivariado Semestre 2024 - I

¿De qué va?

Un conjunto de métodos enfocados en reducir la dimensión usando como criterio preservar la "distancia" entre observaciones.

Tipos

Escalamiento multidimensional clásico (lineal)

Escalamiento multidimensional métrico (no lineal)

Escalamiento multidimensional no métrico (no lineal)

Reconstrucción de un mapa a través de las distancias entre ciudades

Distancia en avión

	Atl	Chic	Denv	Hous	LA	Mia	NY	SF	Seat	Wash
Atlanta	_									
Chicago	587	-								
Denver	1212	920	_							
Houston	701	940	879	_						
LA	1936	1745	831	1374	_					
Miami	604	1188	1726	968	2339	_				
NY	748	713	1631	1420	2451	1092	_			
SF	2139	1858	949	1645	347	2594	2571	_		
Seattle	2182	1737	1021	1891	959	2734	2408	678	_	
Wash. DC	543	597	1494	1220	2300	923	205	2442	2329	_

Solución del escalamiento multidimensional clásico

Rotando la solución

Problema similar: identificar las ciudades

_									
587	_								
1212	920	_							
701	940	879	_						
1936	1745	831	1374	_					
604	1188	1726	968	2339	_				
748	713	1631	1420	2451	1092	_			
2139	1858	949	1645	347	2594	2571	_		
2182	1737	1021	1891	959	2734	2408	678	_	
543	597	1494	1220	2300	923	205	2442	2329	_

Ejemplo 1: Ciudades de EE.UU.

Escalamiento Multidimensional Métrico (Clásico)

Construir una matriz de distancias/disimilitudes **D**

1.
$$d_{i,j} \ge 0$$
 para toda $i, j = 1, ..., n$

2.
$$d_{i,i} = 0$$

3.
$$\mathbf{D} = \mathbf{D}^T$$

Fincontrar un conjunto de vectores $\mathbf{y}_1,...,\mathbf{y}_n \in \mathbb{R}^k$ tales que $d_{\mathbf{x}}(i,j) \approx d_{\mathbf{y}}(i,j)$

Observaciones

- 1. \mathbf{D} es euclidiana si existe una configuración tal que $d_{\mathbf{x}}(i,j) = d_{\mathbf{y}}(i,j)$ (no siempre ocurre).
- 2. En ocasiones **D** es una medición con error.

Definición (matriz doblemente centrada)

Sea ${f D}$ una matriz de "distancias" entonces la matriz doblemente centrada está definida como

$$B = HAH$$

donde,

$$\mathbf{A} = -\frac{1}{2}\mathbf{D}\odot\mathbf{D} \qquad a_{ij} = -\frac{d_{ij}^2}{2}$$

Teorema

Sea $\mathbf{D}_{n \times n}$ una matriz de distancias con matriz doblemente centrada $\mathbf{B} = -\frac{1}{2}\mathbf{H}(\mathbf{D}\odot\mathbf{D})\mathbf{H}$ entonces

- 1. Si $\mathbf{D}_{n \times n}$ es euclidiana entonces $\mathbf{B} = (\mathbf{H}\mathbf{X})(\mathbf{H}\mathbf{X})^T$ y así \mathbf{B} es semi-definida positiva.
- 2. Si ${f B}$ es semi-definida positiva con eigenvalores $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_k > 0$ y descomposición espectral ${f B} = {f U} \Lambda {f U}^T$ entonces

$$\mathbf{X} = \mathbf{U}\Lambda^{\frac{1}{2}}$$

es una matriz de datos de dimensión $n \times k$ con matriz euclidiana de distancias \mathbf{D} .

1. La solución no es única (invariante ante cambios de origen, rotaciones y reflexiones)

2.
$$\bar{y} = 0$$

- 3. Robusto ante perturbaciones [e.g. Sibson (1978, 1979, 1981) y Mardia (1978)]
- 4. Si λ_1 y λ_2 son mucho más grandes que los restantes eigenvalores y los elementos de $\mathbf{y}^{(1)}$ y

$$\mathbf{y}^{(2)}$$
 son razonablemente diferentes entonces si $\sum_{k=1}^{2} (y_{ik} - y_{jk})^2 \approx d_{ij}^2$ se tiene una buena

representación en 2 dimensiones

5. Si la matriz es no euclidiana podemos hacer uso de los primeros l eigenvalores positivos y así, se tiene una configuración razonable con $(\mathbf{y}^{(1)},...,\mathbf{y}^{(l)})$

1. Construir la matriz A.

2. Obtener la matriz doblemente centrada **B**.

3. Obtener los \boldsymbol{k} eigenvalores positivos y los eigenvectores asociados.

4. Si k=2 o k=3 se tiene una configuración que se puede graficar.

En R : cmdscale()

Distancia en avión de 10 ciudades de Estados Unidos

	Atl	Chic	Denv	Hous	LA	Mia	NY	SF	Seat	Wash
Atlanta	-									
Chicago	587	_								
Denver	1212	920	_							
Houston	701	940	879	_						
LA	1936	1745	831	1374	_					
Miami	604	1188	1726	968	2339	_				
NY	748	713	1631	1420	2451	1092	_			
SF	2139	1858	949	1645	347	2594	2571	_		
Seattle	2182	1737	1021	1891	959	2734	2408	678	_	
Wash. DC	543	597	1494	1220	2300	923	205	2442	2329	_

Los eigenvalores de **B** están dados por

$$\lambda_{1} = 9582144$$

$$\lambda_{2} = 1686820$$

$$\lambda_{3} = 8157.298$$

$$\lambda_{4} = 1432.87$$

$$\lambda_{5} = 508.6687$$

$$\lambda_{6} = 25.14349$$

$$\lambda_{7} = -6.218108e - 10$$

$$\lambda_{8} = -897.7013$$

$$\lambda_{9} = -5467.577$$

$$\lambda_{10} = -35478.89$$

D no es Euclidiana

lacktriangle Nos quedamos con los 6 eigenvalores positivos y construimos f Y

	•	•		·	
-718.7594	142.99427	35.102499	-1.224963	-7.4094776	1.5046461
-382.0558	-340.83962	29.602228	-8.237885	-12.0242975	-2.3383016
481.6023	-25.28504	53.393802	1.339279	15.6658897	-0.9526963
-161.4663	572.76991	1.452571	-1.762318	-0.6718656	2.7007621
1203.7380	390.10029	-18.635065	14.974864	-3.1692006	-1.6561488
-1133.5271	581.90731	-32.268842	-2.375685	2.9718537	-2.0471878
-1072.2357	-519.02423	-34.341878	-14.253857	6.4473289	0.2709088
1420.6033	112.58920	-7.754755	-18.120276	-0.8054123	0.8695197
1341.7225	-579.73928	-23.650787	5.961453	-1.4286322	0.6143794
-979.6220	-335.47281	-2.899773	23.699388	0.4238136	1.0341183

Podemos quedarnos con las primeras dos columnas

1. Si se tienen similitudes con las siguientes condiciones:

$$S_{ij} \leq S_{ii}$$

$$S_{ij} = S_{ji}$$

Podemos transformarlo a una matriz de disimilitudes

$$d_{ij} = (s_{ii} - 2s_{ij} + s_{jj})^{\frac{1}{2}}$$

- 2. Relación cercana entre el escalamiento multidimensional clásico y los componentes principales
- 3. Se puede considerar la formulación: $d_{\mathbf{x}}(i,j) \approx d_{\mathbf{y}}(i,j) + a$ (additive constant problem)

1. Si ${f D}$ es euclidiana entonces el MDS clásico (o análisis de coordenadas principales) da los mismos resultados que PCA.

2. MDS es más flexible ya que acepta a las observaciones X o a una matriz de distancias/disimilitudes D.

3. MDS es computacionalmente más demandante.

Los eigenvalores de S son:

$$\lambda_1 = 60000.28$$
 $\lambda_2 = 17478.45$
 $\lambda_3 = 9006.942$
 $\lambda_4 = 7511.62$
 $\lambda_5 = 2805.543$

ullet Iguales a los 5 eigenvalores de ${f B}$ distintos de cero

Ejemplo 2: Calificaciones

Aplicando las transformaciones a los alumnos 1, 2, 3, 4, 86, 87 y 88

Alumno	PCA1	PCA2	MDS1	MDS2
1	-66.28	-6.48	-66.28	6.48
2	-63.60	6.79	-63.60	-6.79
3	-62.86	-3.26	-62.86	3.26
4	-44.51	5.65	-44.51	-5.65
86	44.35	7.86	44.35	-7.86
87	62.54	7.58	62.54	-7.58
88	65.93	2.66	65.93	-2.66

ullet Se busca encontrar la constante c más pequeña tal que un conjunto de disimilitudes tengan una representación euclidiana mediante,

$$d_{i,j}^c = d_{i,j} + c \qquad \qquad i \neq j$$

- Problema estudiado por muchos autores (e.g. Messick & Abelson, 1956; Saito, 1978; Cailliez, 1983)
- La solución de Cailliez se utiliza en **R:** cmdscale(...,add=T)
- Por cuestiones numéricas no se puede garantizar que todos los eigenvalores sean no negativos

Los eigenvalores de ${f B}$ al sumarle la constante aditiva c=39.12509

$$\lambda_{1} = 9851759$$

$$\lambda_{2} = 1760672$$

$$\lambda_{3} = 49961.61$$

$$\lambda_{4} = 23925.69$$

$$\lambda_{5} = 22217.78$$

$$\lambda_{6} = 15077.03$$

$$\lambda_{7} = 11721.03$$

$$\lambda_{8} = 7807.841$$

$$\lambda_{9} = 1.55739e - 10$$

$$\lambda_{10} = -5.297162e - 10$$

- El mapa reconstruido con la constante aditiva c=39.12509

Escalamiento Multidimensional Métrico

Ejemplo 3: Rollo suizo

¿De qué va?

Una generalización no lineal del escalamiento clásico en donde se busca preservar las distancias y no solo los productos interiores.

Objetivo

Minimizar una función objetivo conocida coloquialmente como "Stress"

Stress =
$$\frac{1}{2} \sum_{i,j} w_{ij} \left[d_{\mathbf{x}}(i,j) - d_{\mathbf{y}}(i,j) \right]^2$$

• En la práctica, $w_{ij} = 1$ y $w_{ij} = 0$ (valores faltantes).

NLM: Mapeo no-lineal de Sammon (1969)

Stress =
$$\frac{1}{c} \sum_{i,j} \frac{\left[d_{\mathbf{x}}(i,j) - d_{\mathbf{y}}(i,j) \right]^2}{d_{\mathbf{x}}(i,j)} \qquad c = \sum_{i < j} d_{\mathbf{x}}(i,j)$$

- Por lo general, $d_{\mathbf{x}}(i,j)$ es la distancia Euclidiana (no necesariamente).
- Da más importancia a distancias cortas
- Requiere una rutina numérica (quasi-Newton) y de un parámetro "magic" (recomendado entre .3 y .4).
- En R: función sammon en librería MASS

Ejemplo 3: Rollo suizo

Sammon NLM

Escalamiento Multidimensional No Métrico

¿De qué va?

Alternativa menos rígida al MDS utilizando una función monótona desconocida de las distancias/proximidades, i.e.

$$d_{x}(i,j) = f(d_{y}(i,j))$$

- Para el MDS no métrico, construimos $d_{\mathbf{y}}(i,j)$ utilizando solo los rangos de $d_{\mathbf{x}}(i,j)$, e.g. para las ciudades de Estados Unidos usamos:
 - El viaje más corto es entre NY y Washington D.C.
 - El segundo viaje más corto es entre Seattle y Atlanta.

. . .

- El viaje más largo es entre Seattle y Miami

Objetivo

Optimizar la función "stress"

Stress =
$$\sqrt{\frac{\sum_{ij} w_{ij} \left[f(\delta_{\mathbf{x}}(i,j)) - d_{\mathbf{y}}(i,j) \right]^2}{c}}$$

donde

- $\delta_{\mathbf{x}}(i,j)$ son proximidades
- f es una función monótona tal que $f(\delta_{\mathbf{x}}(i,j)) \approx d_{\mathbf{x}}(i,j)$ (distancia Euclidiana)
- c es un factor de escala
- w_{ij} son pesos no negativos como en el escalamiento multidimensional métrico

- Algoritmo dado por Shepard (1962) y Kruskal (1964)
 - 1. Dada una matriz de disimilitudes ${f D}$ ordenar las entradas fuera de la diagonal.
 - 2. Para una configuración k- dimensional, minimizar la función Stress dada por

Stress =
$$\frac{\sum_{i < j} [d_{ij}^* - d_{\mathbf{y}}(i, j)]^2}{\sum_{i < j} d_{\mathbf{y}}(i, j)^2}$$

con respecto a valores d_{ij}^* tal que d_{ij}^* esté relacionada de forma monótona con $d_{\mathbf{x}}(i,j)$, i.e.,

$$d_{\mathbf{x}}(i,j) < d_{\mathbf{x}}(k,l) \Rightarrow d_{ij}^* \leq d_{kl}^*.$$

Consideraciones

- Los valores d_{ij}^st se encuentran a través de una regresión monótona (isotonic regression).
- Requiere de rutinas numéricas.
- lacksquare Para encontrar la dimensión adecuada calcular para cada k

$$S_k = \min Stress^2$$

detenerse hasta que S_k sea pequeño para $k=k_0$ o una regla de dedo de Kruskal donde $S_k \geq 20\,\%$ es pobre, $S_k=10\,\%$ es justo, $S_k \leq 5\,\%$ es bueno y $S_k=0$ es perfecto.

• En **R**: isoMDS/Shepard de la librería MASS utilizando una configuración inicial (e.g. solución clásica).

- Hacer uso de otras distancias, e.g. distancia geodésica en la variedad y no en el espacio
- Si la distancia geodésica es difícil de calcular (común) hacer uso de aproximaciones discretas usando grafos.
- Por ejemplo, Isomap (en R isomap en librería MASS):
 - 1. Conectamos cada punto con sus K vecinos más cercanos (o los que caigan en una bola de radio ϵ).
 - 2. Aproximamos la matriz de distancias geodésicas a través del camino más corto en la red (algoritmo de Dijkstra o Floyd-Warshall)
 - 3. Usamos escalamiento multidimensional clásico en la matriz de distancias.

