

УНИВЕРСИТЕТ ИТМО

Факультет программной инженерии и компьютерной техники

Вычислительная математика

Малышева Татьяна Алексеевна, к.т.н., доцент tamalysheva@itmo.ru

Санкт-Петербург, 2025

Трудоемкость дисциплины: 108 часов (3 з.е.)

Курс включает:

- 1. Лекции 16 часов;
- 2. Лабораторные занятия 32 часа;
- 3. СРС 55,2 часов.

<u>Оценочные средства текущего контроля</u> успеваемости:

- 1. Лабораторные работы №1, №2, №3, №4, №5, №6
- 2. Контрольные работы №1, №2

Оценочное средство промежуточной аттестации: ЗАЧЕТ

Баллы таблицы БаРС:

Оценочные средства	Минимальный балл	Максимальный балл
Лабораторная работа №1 «Решение систем линейных алгебраических уравнений»	6	9
Лабораторная работа №2 «Численное решение нелинейных уравнений и их систем»	6	11
Лабораторная работа №3 «Численное интегрирование»	6	9
Лабораторная работа №4 «Аппроксимация функций»	6	9
Лабораторная работа №5 «Интерполяция функций»	7	11
Лабораторная работа №6 «Решение задачи Коши для ОДУ»	7	11
Контрольная работа №1 (по темам лекций №1-3)	5	10
Контрольная работа №2 (по темам лекций №4-6)	5	10

Команда преподавателей:

- 1. Малышева Татьяна Алексеевна,
- 2. Рыбаков Степан Дмитриевич,
- 3. Машина Екатерина Алексеевна,
- 4. Наумова Надежда Александровна,
- 5. Бострикова Дарья Константиновна.

Задачей изучения дисциплины «Вычислительная математика» является формирование у студента необходимых знаний:

- о вычислительной математике как о разделе высшей математики;
- о классификации численных методов;
- о причинах возникновения погрешностей и их учете при оценке результата вычислений;
- об основах численных методах линейной алгебры, о решении нелинейных уравнений и систем, о приближении функций, об основах дифференцирования и интегрирования функций;

В результате лабораторных занятий студент должен уметь:

- выбрать численный метод, которым необходимо воспользоваться при решении конкретной задачи;
- написать программное приложение, реализующее данный метод;
- адекватно оценить полученные результаты.

Численные методы—приближенные способы решения типовых задач математики, которые наиболее часто встречаются на практике.

Примеры типовых задач - численное решение уравнений, систем, численные дифференцирование и интегрирование и др.

Численные методы сводят решение задачи к выполнению конечного числа арифметических действий над числами.

Главная задача численных методов - получить приближенное решение задачи с *заданной степенью точности*, или, по крайней мере, оцениваемой точностью.

Когда применяются численные методы?

Когда задача трудно решается точными аналитическими методами. Когда перед нами стоит сложная задача, например математической физики.

Обобщенная схема математического моделирования

Погрешности вычислений

Абсолютная и относительная погрешности

Абсолютная погрешность:

$$\Delta a^* = |a^* - a|$$

где a^* – приближенное значение числа a.

Точное число заключено в границах:

$$a = a^* \pm \Delta a^*$$
 или $a^* - \Delta a^* \le a \le a^* + \Delta a^*$.

Предельная абсолютная погрешность(граница абсолютной погрешности) Δ_a :

$$\Delta a^* \leq \Delta_a$$

Относительная погрешность:

$$\delta a^* = \left| \frac{a^* - a}{a^*} \right|$$

Предельная относительная погрешность (граница относительной погрешности) δ_a :

$$\delta a^* \leq \delta_a$$

Так как значение точного числа a неизвестно, то часто пользуются приближенными оценками предельных погрешностей:

$$\delta_a \approx \frac{\Delta_a}{|a^*|} \Delta_a \approx |a^*| \delta_a$$

Вычислительная погрешность

Проведение численных расчётов на компьютере неизбежно связано с погрешностью округления, которые возникают в силу *ограниченности разрядной сетки компьютера* при представлении в нем вещественных чисел.

В современных компьютерах реализован стандарт двоичной арифметики IEEE. Стандарт предусматривает два основных типа чисел с плавающей точкой: числа одинарной и двойной точности.

Тип	Длина	Знак	Мантисса	Порядок
Одинарная	4 байта	1 бит	23 бита	8 битов
точность	4 Odvila	TONI	25 OMTa	о оитов
Двойная	8 байтов	1 бит	52 битов	11 битов
точность	о оаитов			

Хранение в компьютере в логарифмическом виде — мантисса и порядок: $x=\pm m\cdot a^p$, где m — мантисса, p — порядок, a — основание степени.

Мантисса записывается в нормализованной форме: 2.578·10² Компьютерное представление: **2.578E+02.**

Вычислительная погрешность

Точность	Одинарная	Двойная
Наименьшее значение (UFL), порог машинного нуля	≈10 ⁻³⁸	≈10 ⁻³⁰⁸
Наибольшее значение (OFL), порог переполнения	≈10 ⁺³⁸	≈10 ⁺³⁰⁸
Машинное эпсилон (ε _{маш}), машинная погрешность	≈10 ⁻⁸	≈10 ⁻¹⁶

Свойства численных методов

- Устойчивость. Решение задачи y^* называется устойчивым по исходным данным x^* , если оно зависит от исходных данных непрерывным образом. Это означает, что малому изменению исходных данных соответствует малое изменение решения. Алгоритм считается устойчивым, если он обеспечивает нахождение существующего и единственного решения при различных исходных данных.
- Сходимость. Численное решение задачи должно стремиться к точному решению задачи.

Алгоритм сходится, если последовательность приближений

$$x_0, x_1, \dots, x_n \to x^*$$
 , $n \to \infty$, $\lim_{n \to \infty} x_n = x^*$

■ **Корректность**. Численные методы применяются к корректно поставленным задачам.

Задача называется поставленной корректно, если выполняются следующие условия:

- 1) решение задачи существует и единственно при любых допустимых исходных данных.
- 2) решение устойчиво по отношению к малым изменениям исходных данных.

МЕТОДЫ РЕШЕНИЯ СИСТЕМ ЛИНЕЙНЫХ АЛГЕБРАИЧЕСКИХ УРАВНЕНИЙ

Рассмотрим систему п линейных алгебраических уравнений с п неизвестными:

В векторно-матричном виде: Ax = b,

где: A — матрица системы, x — вектор неизвестных, b — вектор правых частей:

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{pmatrix} x = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} \qquad b = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix}$$

Решение задачи

Система линейных алгебраических уравнений может:

- 1) Не иметь решений.
- 2) Иметь бесконечное множество решений.
- 3) Иметь единственное решение.

Если система линейных уравнений имеет хотя бы одно решение, то ее называют *совместной*.

Система линейных уравнений, не имеющая решений, называется *несовместной*.

Система, имеющая единственное решение, называется определенной.

Система, имеющая множество решений, называется неопределенной.

Теорема Кронекера-Капелли

Система линейных алгебраических уравнений совместна тогда и только тогда, когда ранг матрицы системы равен рангу расширенной матрицы системы, т.е. rang(A)=rang(A|B).

- 1. Если rangA ≠ rang(A|B), то СЛАУ несовместна (не имеет решений).
- 2. Если rangA = rang(A|B)<n, то СЛАУ является неопределённой (имеет бесконечное количество решений).
- 3. Если rangA = rang(A | B) = n, то СЛАУ является определённой (имеет единственное решение).

МЕТОДЫ РЕШЕНИЯ ЛИНЕЙНЫХ СИСТЕМ

ПРЯМЫЕ (ТОЧНЫЕ)

ИТЕРАЦИОННЫЕ (ПРИБЛИЖЕННЫЕ)

ПРЯМЫЕ МЕТОДЫ используют конечные соотношения (формулы) для вычисления неизвестных. Они дают решение за конечное число арифметических операций. Эти методы сравнительно просты и наиболее универсальны, т. е. пригодны для решения широкого класса линейных систем.

Иногда прямые методы называют *точными*, имея в виду, что при отсутствии ошибок в исходных данных и при выполнении элементарных операций результат будет точным. Однако, при реализации метода на ЭВМ неизбежны ошибки округления и, как следствие, наличие вычислительной погрешности.

Прямые методы

Недостатки:

- требуют хранения в оперативной памяти компьютера сразу всей матрицы, и при больших значениях п расходуется много места в памяти.
- не учитывают структуру матрицы при большом числе нулевых элементов в разреженных матрицах (например, клеточных или ленточных); эти элементы занимают место в памяти машины, и над ними проводятся арифметические действия.
- происходит накапливание погрешностей в процессе решения, поскольку вычисления на любом этапе используют результаты предыдущих операций.
 Применяются для систем (n < 1000) с плотно заполненной с матрицей и не близким к нулю определителем.

Прямые методы. Правило Крамера

Формулы Крамера. Используется для систем размерностью n=2, 3.

Каждое неизвестное представляется в виде отношения определителей

(детерминантов).
$$x_j = \frac{\det A_j}{\det A}, \quad j = 1, ..., n$$

 $det A_j$ — определитель матрицы, получаемой заменой j-го столбца матрицы A столбцом правых частей b

$$x_1=rac{\Delta_{x_1}}{\Delta}$$
, $x_2=rac{\Delta_{x_2}}{\Delta}$, $x_3=rac{\Delta_{x_3}}{\Delta}$,..., $x_n=rac{\Delta_{x_n}}{\Delta}$,

$$\Delta = \begin{vmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{vmatrix} \Delta_{x_1} = \begin{vmatrix} b_1 & a_{12} & \dots & a_{1n} \\ b_2 & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ b_n & a_{n2} & \dots & a_{nn} \end{vmatrix} \Delta_{x_2} = \begin{vmatrix} a_{11} & b_1 & \dots & a_{1n} \\ a_{21} & b_2 & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{n1} & b_n & \dots & a_{nn} \end{vmatrix} \dots \Delta_{x_n} = \begin{vmatrix} a_{11} & a_{12} & \dots & b_1 \\ a_{21} & a_{22} & \dots & b_2 \\ \dots & \dots & \dots & \dots \\ a_{n1} & b_n & \dots & a_{nn} \end{vmatrix}$$

Трудоемкость метода. Для реализации метода Крамера требуется примерно 2/3 n⁴ арифметических операций.

При n=100 потребуется совершить 10^{158} операций.

Много это или сойдет для человека/ЭВМ?

Карл Фридрих Гаусс

(1777-1855 гг., немецкий математик, механик, физик, астроном, геодезист)

Основан на приведении матрицы системы к треугольному виду так, чтобы ниже ее главной диагонали находились только нулевые элементы.

Прямой ход метода Гаусса состоит в последовательном исключении неизвестных из уравнений системы. Сначала с помощью первого уравнения исключается x_1 из всех последующих уравнений системы. Затем с помощью второго уравнения исключается x_2 из третьего и всех последующих уравнений и т.д.

Этот процесс продолжается до тех пор, пока в левой части последнего (n-го) уравнения не останется лишь один член с неизвестным x_n , т. е. матрица системы будет приведена к треугольному виду.

Обратный ход метода Гаусса состоит в последовательном вычислении искомых неизвестных: решая последнее уравнение, находим неизвестное x_n . Далее,, из предыдущего уравнения вычисляем x_{n-1} и т. д. Последним найдем x_1 из первого уравнения.

Метод имеет много различных вычислительных схем.

Рассмотрим наиболее распространенную схему единственного деления.

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1,$$

$$a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2,$$

$$a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nn}x_n = b_n.$$
(1)

Прямой ход:

<u>Шаг 1 (считаем</u> $a_{11} \neq 0$):

Исключим x_1 из второго уравнения: умножим первое уравнение на $(-a_{21}/a_{11})$ и прибавим ко второму.

Исключим x_1 из третьего уравнения: умножим первое уравнение на $(-a_{31}/a_{11})$ и прибавим к третьему...

Исключим x_1 из последнего уравнения: умножим первое уравнение на $(-a_{n1}/a_{11})$ и прибавим к последнему. Получим равносильную систему уравнений (2) :

$$a_{11}x_1 + a_{12}x_2 + a_{13}x_3 + \dots + a_{1n}x_n = b_1,$$

$$a_{22}^{(1)}x_2 + a_{23}^{(1)}x_3 + \dots + a_{2n}^{(1)}x_n = b_2^{(1)},$$

$$a_{32}^{(1)}x_2 + a_{33}^{(1)}x_3 + \dots + a_{3n}^{(1)}x_n = b_3^{(1)},$$

$$a_{n2}^{(1)}x_2 + a_{n3}^{(1)}x_3 + \dots + a_{nn}^{(1)}x_n = b_n^{(1)}$$

(2)
$$a_{ij}^{(1)} = a_{ij} - \frac{a_{i1}}{a_{11}} a_{1j}$$
, $i, j = 2, 3 \dots n$
 $b_i^{(1)} = b_i - \frac{a_{i1}}{a_{11}} b_1$, $i = 2, 3 \dots n$

<u>Шаг 2:</u>

Исключим x_2 из третьего уравнения: умножим второе уравнение на $(-\frac{a'_{32}}{a'_{22}})$ и прибавим к третьему (и т.д. для следующих уравнений)

Исключим x_2 из последнего уравнения: умножим второе уравнение на $(-\frac{a'_{n2}}{a'_{22}})$ и прибавим к последнему.

Получим:

$$a_{11}x_{1} + a_{12}x_{2} + a_{13}x_{3} + \dots + a_{1n}x_{n} = b_{1},$$

$$a_{22}^{(1)}x_{2} + a_{23}^{(1)}x_{3} + \dots + a_{2n}^{(1)}x_{n} = b_{2}^{(1)},$$

$$a_{33}^{(2)}x_{3} + \dots + a_{3n}^{(2)}x_{n} = b_{3}^{(2)}$$

$$a_{n3}^{(2)}x_{3} + \dots + a_{nn}^{(2)}x_{n} = b_{n}^{(2)}$$

$$(3)$$

$$a_{ij}^{(2)} = a_{ij}^{(1)} - \frac{a_{i2}^{(1)}}{a_{22}^{(1)}} a_{2j}^{(1)}$$
, $i, j = 3, 4 \dots n$ $b_i^{(2)} = b_i^{(1)} - \frac{a_{i2}^{(1)}}{a_{22}^{(1)}} b_2^{(1)}$, $i = 3, 4 \dots n$

Продолжим до тех пор, пока матрица системы (3) не примет треугольный вид (4):

$$a_{11}x_{1} + a_{12}x_{2} + a_{13}x_{3} + \dots + a_{1n}x_{n} = b_{1},$$

$$a_{22}^{(1)}x_{2} + a_{23}^{(1)}x_{3} + \dots + a_{2n}^{(1)}x_{n} = b_{2}^{(1)},$$

$$a_{33}^{(2)}x_{3} + \dots + a_{3n}^{(2)}x_{n} = b_{3}^{(2)}$$

$$a_{nn}^{(n-1)}x_{n} = b_{n}^{(n-1)}$$

$$(4)$$

Матрица системы (4) имеет треугольный вид \rightarrow конец *прямого хода*.

Требование: Если в процессе исключения неизвестных, коэффициенты:

$$a_{11}$$
, a_{22}^1 , a_{33}^2 = 0,

тогда необходимо соответственным образом переставить уравнения системы.

Перестановка уравнений должна быть предусмотрена в вычислительном алгоритме при его реализации на компьютере.

Обратный ход:

$$x_n = \frac{b_n^{(n-1)}}{a_{nn}^{(n-1)}}$$

......

$$x_{2} = \frac{1}{a_{22}^{(1)}} (b_{2}^{(1)} - a_{23}^{(1)} x_{3} - \dots - a_{2n}^{(1)} x_{n})$$

$$x_{1} = \frac{1}{a_{11}} (b_{1} - a_{12} x_{2} - a_{13} x_{3} - \dots - a_{1n} x_{n})$$

Трудоемкость метода. Для реализации метода Гаусса требуется примерно 2/3 n³ операций для прямого хода и n² операций для обратного хода.

Общее количество операций: $2/3 \text{ n}^3 + \text{n}^2$.

Блок-схема метода Гаусса

Первый цикл с переменной цикла i реализует прямой ход, а второй — обратный ход метода.

i — номер неизвестного, которое исключается из оставшихся n-1 уравнений при прямом ходе (а также номер уравнения, из которого исключается x_i) и номер неизвестного, которое определяется из i - го уравнения при обратном ходе;

k — номер уравнения, из которого исключается неизвестное x_i при прямом ходе;

j — номер столбца при прямом ходе и номер уже найденного неизвестного при обратном ходе.

Метод Гаусса. Пример 1

Рассмотрим алгоритм решения линейной системы методом Гаусса для случая трех уравнений:

$$\begin{cases} 10x_1 - 7x_2 = 7 \\ -3x_1 + 2x_2 + 6x_3 = 4 \\ 5x_1 - x_2 + 5x_3 = 6 \end{cases}$$

Исключим x_1 из второго и третьего уравнений. Для этого сначала умножим первое уравнение на 0.3 и результат прибавим ко второму, а затем умножим первое же уравнение на -0.5 и результат прибавим к третьему. Получим:

$$\begin{cases} 10x_1 - 7x_2 &= 7\\ -0.1x_2 + 6x_3 &= 6.1\\ 2.5x_2 + 5x_3 &= 2.5 \end{cases}$$

Исключим x_2 из третьего уравнения (заметим, что ведущий элемент a_{22} мал, поэтому было бы лучше переставить второе и третье уравнения). Однако мы проводим сейчас вычисления в рамках точной арифметики и погрешности округлений не опасны, поэтому продолжим исключение. Умножим второе уравнение на 25 и результат сложим с третьим уравнением. Получим систему в треугольном виде:

$$\begin{cases} 10x_1 - 7x_2 &= 7\\ -0.1x_2 + 6x_3 &= 6.1\\ 155x_3 &= 155 \end{cases}$$

На этом заканчивается прямой ход метода Гаусса.

Обратный ход состоит в последовательном вычислении x_3, x_2, x_1

$$x_3 = \frac{155}{155} = 1$$
 $x_2 = \frac{6x_3 - 6,1}{0.1} = -1$ $x_1 = \frac{7x_2 + 7}{10} = 0$

Подстановкой в исходную систему легко убедиться, что (0, -1,1) и есть ее решение.

Метод Гаусса. Пример 2

Изменим коэффициенты исходной системы:

$$\begin{cases} 10x_1 - 7x_2 = 7 \\ -3x_1 + 2,099x_2 + 6x_3 = 3,901 \\ 5x_1 - x_2 + 5x_3 = 6 \end{cases}$$

Здесь изменены коэффициент при x_2 и правая часть второго уравнения.

Вычисления проведем в рамках арифметики с плавающей точкой, сохраняя пять разрядов числа.

$$\begin{cases} 10x_1 - 7x_2 &= 7\\ -0.001x_2 + 6x_3 &= 6.001\\ 2.5x_2 + 5x_3 &= 2.5 \end{cases}$$

Следующий шаг исключения проводим при малом ведущем элементе (-0.001). Чтобы исключить x_2 из третьего уравнения, надо умножить второе уравнение на 2500. При умножении $6{,}001 \cdot 2500 = 15002{,}5$ при округлении до пяти разрядов \Rightarrow 15 003.

$$15003 + 2,5 = 15005,5 \rightarrow 15006$$

$$\begin{cases} 10x_1 - 7x_2 &= 7 \\ -0,001x_2 + 6x_3 = 6,001 & x_3 = \frac{15006}{15005} = 1,0001 & x_2 = \frac{6,001x_3 - 6,1}{0,001} = -0,4 & x_1 = \frac{7x_2 + 7}{10} = 0,42 \\ 15005x_3 = 15006 & x_3 = \frac{15006}{15005} = 1,0001 & x_4 = \frac{6,001x_3 - 6,1}{0,001} = -0,4 & x_4 = \frac{7x_2 + 7}{10} = 0,42 \end{cases}$$

Вычисления проводились с округлением до пяти разрядов по аналогии с процессом вычислений на компьютере. В результате этого было получено решение (0.42, -0.4, 1.0001) вместо (0, -1, 1). Такая большая неточность результатов объясняется малой величиной ведущего элемента.

Прямые методы. Метод Гаусса с выбором главного элемента

Чтобы избежать вычислительной погрешности при значениях ведущих элементов, близких к нулю по абсолютной величине, применяется метод Гаусса с выбором главного элемента.

Эта схема является одной из модификаций метода Гаусса.

Идеей метода Гаусса с выбором главного элемента является такая перестановка уравнений, чтобы на k-ом шаге исключения ведущим элементом a_{ii} оказывался наибольший по модулю элемент k-го столбца.

Т.е. на очередном шаге k в уравнениях, начиная от k до последнего (i=k,k+1,...,n) в столбце k выбирают максимальный по модулю элемент и **строки** i и k меняются местами. Это выбор главного элемента «по столбцу».

Выбор главного элемента «по строке» - на очередном шаге k в строке k, начиная со столбца k (j=k,k+1,...,n) справа выбирается максимальный по модулю элемент. Столбцы j и k меняются местами.

Прямые методы. Метод Гаусса с выбором главного элемента

Выбор главного элемента «по столбцу»:

$$\begin{pmatrix} 2 & 2 & 4 \\ 6 & 9 & 3 \\ 3 & 8 & 2 \end{pmatrix} \begin{pmatrix} 7 \\ 5 \\ 1 \end{pmatrix} \rightarrow \begin{pmatrix} 6 & 9 & 3 \\ 2 & 2 & 4 \\ 3 & 8 & 2 \end{pmatrix} \begin{pmatrix} 5 \\ 7 \\ 1 \end{pmatrix} \rightarrow \begin{pmatrix} 6 & 9 & 3 \\ -3, 5 - 0, 5 \\ 1, 5 \end{pmatrix}$$

$$\rightarrow \begin{pmatrix} 6 & 9 & 3 \\ -3, 5 - 0, 5 \\ 1 & -3 \end{pmatrix} \begin{pmatrix} 5 \\ 1, 5 \\ -5, 5 \end{pmatrix}$$

$$\rightarrow \begin{pmatrix} 6 & 9 & 3 \\ -3, 5 - 0, 5 \\ 1 & -3 \end{pmatrix} \begin{pmatrix} 5 \\ 1, 5 \\ -5, 5 \end{pmatrix}$$

Выбор главного элемента «по строке»:

$$\begin{pmatrix} 2 & 2 & 4 \\ 6 & 1 & 3 \\ 3 & 8 & 2 \end{pmatrix} \begin{pmatrix} 7 \\ 5 \\ 1 \end{pmatrix} \rightarrow \begin{pmatrix} 4 & 2 & 2 \\ 1 & 6 \\ 2 & 8 & 3 \end{pmatrix} \begin{pmatrix} 7 \\ 5 \\ 1 \end{pmatrix} \rightarrow \begin{pmatrix} 4 & 2 & 2 \\ -4,5 & 0,5 \\ -2 & -7 \end{pmatrix} \begin{pmatrix} 7 \\ -0,25 \\ 2,5 \end{pmatrix}$$

$$\rightarrow \begin{pmatrix} 4 & 2 & 2 \\ -4,5 & 0,5 \\ -2 & -7 \end{pmatrix} \begin{pmatrix} 7 \\ -0,25 \\ 2,5 \end{pmatrix}$$

Метод Гаусса с выбором главного элемента. Пример 3

$$\begin{cases} 10x_1 - 7x_2 = 7 \\ -3x_1 + 2,099x_2 + 6x_3 = 3,901 \\ 5x_1 - x_2 + 5x_3 = 6 \end{cases} \begin{cases} 10x_1 - 7x_2 = 7 \\ -0,001x_2 + 6x_3 = 6,001 \\ 2,5x_2 + 5x_3 = 2,5 \end{cases}$$

До исключения x_2 из третьего уравнения переставим уравнения системы:

$$\begin{cases} 10x_1 - 7x_2 = 7 \\ \mathbf{2}, \mathbf{5}x_2 + 5x_3 = 2,5 \\ -\mathbf{0}, \mathbf{001}x_2 + 6x_3 = 6,001 \end{cases}$$
 выбор главного элемента «по столбцу» : **2,5**

Исключим теперь x_2 из третьего уравнения, получим: $6{,}002x_3=6{,}002$

Отсюда находим
$$x_3=1$$
. Далее: $x_2=\frac{2,5-5x_3}{2,5}=-1$ $x_1=\frac{7x_2+7}{10}=0$

Таким образом, в результате перестановки уравнений, т. е. выбора наибольшего по модулю из оставшихся в данном столбце элементов, погрешность решения в рамках данной точности исчезла.

Блок-схема метод Гаусса с выбором главного элемента

l — номер наибольшего по абсолютной величине элемента матрицы в столбце с номером i (т. е. среди элементов a_{ii} , ..., a_{mi} ,..., a_{ni});

m — текущий номер элемента, с которым происходит сравнение;

Выбор главного элемента осуществляется по столбцу

Погрешности решения

Решения, получаемые с помощью прямых методов, обычно содержат погрешности, которые возникают из-за погрешностей округлений при выполнении операций над числами с плавающей точкой. В ряде случаев эти погрешности могут быть значительными.

Существуют две величины, характеризующие степень отклонения полученного решения от точного:

абсолютная погрешность $\Delta x = x - x^*$,

где x — точное решение, x^* — решение, вычисленное по методу Гаусса.

невязка $r = Ax^* - b$,

разность между левой и правой частями уравнений при подстановке в них решения \boldsymbol{x}^* .

В практических расчетах контроль точности решения осуществляется с помощью невязки (погрешность же обычно вычислить невозможно, поскольку неизвестно точное решение).

Метод Гаусса с выбором главного элемента дает малые невязки.

Определитель

Из курса линейной алгебры известно, что определитель треугольной матрицы равен произведению диагональных элементов.

Определитель <u>после</u> приведения матрицы A к треугольному виду вычисляется по формуле:

$$detA = (-1)^k \prod_{i=1}^n a_{ii}$$

k – число перестановок строк (или столбцов) матрицы при ее приведении к треугольному виду (для получения ненулевого или максимального по модулю ведущего элемента на каждом этапе исключения).

Знак определителя меняется на противоположный при перестановке его столбцов или строк.

Другие прямые методы

Метод Халецкого (метод квадратных корней) используется для симметрично и положительно определенной матрицы А. Схема устойчива и требует вдвое меньше арифметических операций, чем метод Гаусса.

Метод прогонки используется при решении краевых задач для дифференциальных уравнений.

Схема Жордана — система приводится к диагональному виду (а не к треугольному), но облегчается обратный ход.

Метод оптимального исключения удобен при построчном вводе матрицы системы в оперативную память.

Клеточные методы могут использоваться для решения больших систем, когда матрица и вектор правых частей целиком не помещаются в оперативной памяти.

МЕТОДЫ РЕШЕНИЯ ЛИНЕЙНЫХ СИСТЕМ

ПРЯМЫЕ (ТОЧНЫЕ)

ИТЕРАЦИОННЫЕ (ПРИБЛИЖЕННЫЕ)

ИТЕРАЦИОННЫЕ МЕТОДЫ

- это методы последовательных приближений.
- 1. Задается некоторое начальное приближение.
- 2. С помощью определенного алгоритма проводится один цикл вычислений итерация. В результате итерации находят новое приближение.
- 3. Итерации выполняются до получения решения с требуемой точностью.

Итерационные методы дают возможность построить последовательность векторов $\vec{x}^{(0)}, \ \vec{x}^{(1)}, ..., \vec{x}^{(k)}$, пределом которой должно быть точное решение $\vec{x}^{(*)}$:

$$\vec{x}^{(*)} = \lim_{k \to \infty} \vec{x}^{(k)}$$

Построение последовательности заканчивается, как только достигается желаемая точность.

Итерационные методы

Достоинства:

- требуют хранения в памяти машины не всей матрицы системы, а лишь нескольких векторов с *п* компонентами.
 Иногда элементы матрицы можно совсем не хранить, а вычислять их по мере необходимости.
- погрешности не накапливаются, поскольку точность вычислений в каждой итерации определяется лишь результатами предыдущей итерации и практически не зависит от ранее выполненных вычислений.

Недостатки:

 Алгоритмы итерационных методов более сложные по сравнению с прямыми методами.

Рассмотрим систему линейных уравнений с невырожденной матрицей $(\det A \neq 0)$:

$$\begin{cases}
a_{11}x_1 + a_{12}x_2 + \dots + a_{1n} x_n = b_1, \\
a_{21}x_1 + a_{22}x_2 + \dots + a_{2n} x_n = b_2 \\
\dots \dots \\
a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nn} x_n = b_n
\end{cases} (5)$$

Приведем систему уравнений к виду (6), выразив неизвестные $x_1, x_2, ..., x_n$ соответственно из первого, второго и т.д. уравнений системы (5):

$$\begin{cases} x_1 = -\frac{a_{12}}{a_{11}} x_2 - \frac{a_{13}}{a_{11}} x_3 - \dots - \frac{a_{1n}}{a_{11}} x_n + \frac{b_1}{a_{11}} \\ x_2 = -\frac{a_{21}}{a_{22}} x_1 - \frac{a_{23}}{a_{22}} x_3 - \dots - \frac{a_{2n}}{a_{22}} x_n + \frac{b_2}{a_{22}} \\ \dots \dots \\ x_n = -\frac{a_{n1}}{a_{nn}} x_1 - \frac{a_{n2}}{a_{nn}} x_2 - \dots - \frac{a_{n-1n-1}}{a_{nn}} x_{n-1} + \frac{b_n}{a_{nn}} \end{cases}$$
(6)

Обозначим:

$$c_{ij} = egin{cases} 0, & \text{при } i = j \ -rac{a_{ij}}{a_{ii}}, & \text{при } i
eq j \end{cases}$$

$$d_i = \frac{b_i}{a_{ii}}$$
 $i = 1, 2, ..., n$

Тогда получим:

$$\begin{cases} x_1 = c_{11}x_1 + c_{12}x_2 + \dots + c_{1n}x_n + d_1 \\ x_2 = c_{21}x_1 + c_{22}x_2 + \dots + c_{2n}x_n + d_2 \\ \dots \dots \\ x_n = c_{n1}x_1 + c_{n2}x_2 + \dots + c_{nn}x_n + d_n \end{cases}$$

Или в векторно-матричном виде: $\mathbf{x} = \mathbf{C}\mathbf{x} + \mathbf{D}$, где x — вектор неизвестных, C — матрица коэффициентов преобразованной системы размерности n^*n , D — вектор правых частей преобразованной системы.

Систему (6) представим в сокращенном виде:

$$x_i = \sum_{j=1}^n c_{ij}x_j + d_i$$
, $i = 1, 2, ..., n$

$$c_{ij} = egin{cases} 0, & \text{при } i = j \ -rac{a_{ij}}{a_{ii}}, & \text{при } i
eq j \end{cases} \qquad d_i = rac{b_i}{a_{ii}} \quad i = 1, 2, \dots, n$$

Рабочая формула метода простой итерации:

$$x_{i}^{(k+1)} = \frac{b_{i}}{a_{ii}} - \sum_{\substack{j=1 \ j \neq i}}^{n} \frac{a_{ij}}{a_{ii}} x_{j}^{k} , \qquad i = 1, 2, ..., n$$

где k — номер итерации.

За начальное (нулевое) приближение выбирают вектор свободных членов: $x^{(0)} = D$ или нулевой вектор: $x^{(0)} = 0$

Следующее приближение:
$$\vec{x}^{(1)}=c\vec{x}^{(0)}+\vec{d}, \ \ \vec{x}^{(2)}=c\vec{x}^{(1)}+\vec{d}$$
 ...
$$\vec{x}^{(k)}=c\vec{x}^{(k-1)}+\vec{d}$$

Итерационные методы. Условия сходимости

Теорема. Достаточным условием сходимости *итерационного процесса* к решению системы при любом начальном векторе $x_i^{(0)}$ является выполнение условия *преобладания диагональных элементов* или доминирование диагонали:

$$|a_{ii}| \geq \sum_{j\neq i} |a_{ij}|, \qquad i=1,2,...,n$$

При этом хотя бы для одного уравнения неравенство должно выполняться строго.

Эти условия являются достаточными для сходимости метода, но они не являются необходимыми, т. е. для некоторых систем итерации сходятся и при нарушении этого условия.

Теорема. Достаточным условием сходимости итерационного метода к решению системы при любом начальном векторе $x_i^{(0)}$ является требование к норме матрицы C:

$$||C||_{1} = \max_{1 \le i \le n} \sum_{j=1}^{n} |c_{ij}| < 1$$

$$||C||_{2} = \max_{1 \le j \le n} \sum_{i=1}^{n} |c_{ij}| < 1$$

$$||C||_{3} = \sum_{i=1}^{n} \sum_{j=1}^{n} c_{ij}^{2} < 1$$

Условие сходимости ||C|| < 1 в этом методе равносильно условию диагонального преобладания.

Итерационные методы. Оценка погрешности

$$\Delta = \|x^* - x^{(k)}\| \le \frac{\|\mathbf{C}\|}{1 - \|\mathbf{C}\|} \|x^{(k)} - x^{(k-1)}\|$$

Для всех компонент вектора Х:

$$\frac{\|\boldsymbol{C}\|}{1-\|\boldsymbol{C}\|} \|x^{(k)} - x^{(k-1)}\| \le \varepsilon$$

Итерационные методы

Критерии окончания итерационного процесса:

Критерий по абсолютным отклонениям, наиболее простой и часто используемый способ — это сравнение между собой соответствующих неизвестных по двум соседним итерациям (k) и (k-1):

$$\max_{1 \le i \le n} \left| x_i^{(k)} - x_i^{(k-1)} \right| \le \varepsilon$$

Критерий по относительным разностям:

$$\max_{1 \le i \le n} \left| \frac{x_i^{(k)} - x_i^{(k-1)}}{x_i^k} \right| \le \varepsilon$$

Критерий по невязке:

$$\max_{1 \le i \le n} \left| r_i^{(k)} = A x_i^{(k)} - b \right| \le \varepsilon$$

Следует особо отметить, что в решении СЛАУ этим методом наиболее сложным и трудоемким является выполнение преобразования системы из вида (5) к виду (6). Эти преобразования должны быть эквивалентными, т.е. не меняющими решения исходной системы и обеспечивающие величину нормы матрицы $\|C\| < 1$ Единого рецепта для выполнения таких преобразований не существует. Здесь в каждом конкретном случае необходимо проявлять творчество!!!!

Достоинства метода:

Является универсальным и простым для реализации на ЭВМ

Недостатки метода:

- Является трудоемким
- Обладает медленной скоростью сходимости

Методом простых итераций с точностью $\varepsilon = 0.01$ решить систему линейных алгебраических уравнений:

$$\begin{cases} 2x_1 + 2x_2 + 10x_3 = 14\\ 10x_1 + x_2 + x_3 = 12\\ 2x_1 + 10x_2 + x_3 = 13 \end{cases}$$

Условие преобладания диагональных элементов не выполняется, так как |2|<|2|+|10|, |1|<|10|+|1|, |1|<|2|+|10|. Переставим уравнения местами так, чтобы выполнялось условие преобладания диагональных элементов:

$$\begin{cases} 10x_1 + x_2 + x_3 = 12 \\ 2x_1 + 10x_2 + x_3 = 13 \\ 2x_1 + 2x_2 + 10x_3 = 14 \end{cases}$$

Выразим из первого уравнения x_1 , из второго x_2 , из третьего x_3 :

$$\begin{cases} x_1 = -0.1x_2 - 0.1x_3 + 1.2 \\ x_2 = -0.2x_1 - 0.1x_3 + 1.3 \\ x_3 = -0.2x_1 - 0.2x_2 + 1.4 \end{cases}$$

$$C = \begin{pmatrix} 0 - 0.1 - 0.1 \\ -0.2 & 0 - 0.1 \\ -0.2 - 0.2 & 0 \end{pmatrix}$$
$$d = \begin{pmatrix} 1.2 \\ 1.3 \\ 1.4 \end{pmatrix}$$

Заметим, что норма преобразованной матрицы:

 $||C||_1 = \max(0,2;0,3;0,4) = 0,4 < 1$, следовательно, условие сходимости выполнено.

Зададим начальное приближение:

$$x^0 = d = \begin{pmatrix} 1,2\\1,3\\1.4 \end{pmatrix}$$

Выполним расчеты по формуле: $x^{k+1} = Cx^k + d$ или:

$$x_1^{k+1} = -0.1x_2^k - 0.1x_3^k + 1.2$$

$$x_2^{k+1} = -0.2x_1^k - 0.1x_3^k + 1.3$$

$$x_3^{k+1} = -0.2x_1^k - 0.2x_2^k + 1.4$$

Для первого приближения получаем:

$$x_1^1 = -0.1 \cdot 1.3 - 0.1 \cdot 1.4 + 1.2 = 0.93$$

 $x_2^1 = -0.2 \cdot 1.2 - 0.1 \cdot 1.4 + 1.3 = 0.92$
 $x_3^1 = -0.2 \cdot 1.2 - 0.2 \cdot 1.3 + 1.4 = 0.9$

Критерий по абсолютным отклонениям:
$$\max\begin{pmatrix} |x_1^1-x_1^0|\\|x_2^1-x_2^0|\\|x_3^1-x_3^0| \end{pmatrix}=\max\begin{pmatrix} 0,27\\0,38\\0,5 \end{pmatrix}=0.5\gg0.01$$

Для второго приближения получаем:

$$x_1^2 = -0.1 \cdot 0.92 - 0.1 \cdot 0.9 + 1.2 = 1.018$$

 $x_2^2 = -0.2 \cdot 0.93 - 0.1 \cdot 0.9 + 1.3 = 1.024$
 $x_3^2 = -0.2 \cdot 0.93 - 0.2 \cdot 0.92 + 1.4 = 1.03$

Критерий по абсолютным отклонениям:
$$\max \begin{pmatrix} |x_1^2 - x_1^1| \\ |x_2^2 - x_2^1| \\ |x_3^2 - x_3^1| \end{pmatrix} = \max \begin{pmatrix} 0,088 \\ 0,104 \\ 0,13 \end{pmatrix} = 0,13 > \varepsilon$$

k	x_1^k	x_2^k	x_3^k	$\max \lvert x_i^{(k)} - x_i^{(k-1)} \rvert$
0	1,200	1,3000	1,4000	-
1	0,9300	0,9200	0,9000	0,5
2	1,0180	1,0240	1,0300	0,13
3	0,9946	0,9934	0,9916	0,0384
4	1,0015	1,0020	1,0024	0,0108
5	0,9996	0,9995	0,9993	0,0031<ε

Приближенное решение задачи: (0,9996; 0,9995; 0,9993). Очевидно, точное решение: (1,1,1)

Филипп Людвиг фон Зейдель (1821-1896 гг., немецкий математик и астроном)

Метод Гаусса-Зейделя является модификацией метода простой итерации и обеспечивает более быструю сходимость к решению систем уравнений.

Так же как и в методе простых итераций строится эквивалентная СЛАУ и за начальное приближение принимается вектор правых частей (как правило, но может быть выбран и нулевой, и единичный вектор): $x_i^0 = (d_1, d_2, \dots, d_n)$.

$$x_{1} = c_{11}x_{1} + c_{12}x_{2} + \dots + c_{1n}x_{n} + d_{1}$$

$$x_{2} = c_{21}x_{1} + c_{22}x_{2} + \dots + c_{2n}x_{n} + d_{2}$$

$$\dots \dots$$

$$x_{n} = c_{n1}x_{1} + c_{n2}x_{2} + \dots + c_{nn}x_{n} + d_{n}$$

Идея метода: при вычислении компонента $x_i^{(k+1)}$ на (k+1)-й итерации используются $x_1^{(k+1)}$, $x_2^{(k+1)}$, ..., $x_{i-1}^{(k+1)}$, уже вычисленные на (k+1)-й итерации.

Значения остальных компонент $x_{i+1}^{(k+1)}$, $x_{i+2}^{(k+1)}$, ..., $x_n^{(k+1)}$ берутся из предыдущей итерации.

Схема для k = 1:

$$x_1^1 \to x_2^0 \quad x_3^0 \quad x_4^0$$
 $x_2^1 \to x_1^1 \quad x_3^0 \quad x_4^0$
 $x_3^1 \to x_1^1 \quad x_2^1 \quad x_4^0$
 $x_4^1 \to x_1^1 \quad x_2^1 \quad x_3^1$

Схема для k = 2:

$$x_1^2 \rightarrow x_2^1 \quad x_3^1 \quad x_4^1$$
 $x_2^2 \rightarrow x_1^2 \quad x_3^1 \quad x_4^1$
 $x_3^2 \rightarrow x_1^2 \quad x_2^2 \quad x_4^1$
 $x_4^2 \rightarrow x_1^2 \quad x_2^2 \quad x_3^2$

Тогда приближения к решению системы методом Зейделя определяются следующей системой равенств:

$$\begin{split} x_1^{(k+1)} &= c_{11} x_1^{(k)} + c_{12} x_2^{(k)} + \dots + c_{1n} x_n^{(k)} + d_1 \\ x_2^{(k+1)} &= c_{21} x_1^{(k+1)} + c_{22} x_2^{(k)} + \dots + c_{2n} x_n^{(k)} + d_2 \\ x_3^{(k+1)} &= c_{31} x_1^{(k+1)} + c_{32} x_2^{(k+1)} + c_{33} x_3^{(k)} \dots + c_{3n} x_n^{(k)} + d_3 \end{split}$$

......

$$x_n^{(k+1)} = c_{n1}x_1^{(k+1)} + c_{n2}x_2^{(k+1)} + \dots + c_{n\,n-1}x_{n-1}^{(k+1)} + c_{nn}x_n^{(k)} + d_n$$

Рабочая формула метода Гаусса-Зейделя:

$$x_i^{(k+1)} = \frac{b_i}{a_{ii}} - \sum_{j=1}^{i-1} \frac{a_{ij}}{a_{ii}} x_j^{k+1} - \sum_{j=i+1}^{n} \frac{a_{ij}}{a_{ii}} x_j^{k} \quad i = 1, 2, ..., n$$

Итерационный процесс продолжается до тех пор, пока:

$$|x_1^{(k)} - x_1^{(k-1)}| \le \varepsilon, \quad |x_2^{(k)} - x_2^{(k-1)}| \le \varepsilon, \quad |x_3^{(k)} - x_3^{(k-1)}| \le \varepsilon$$

Достоинства метода:

- Является универсальным и простым для реализации на ЭВМ.
- Обеспечивает более быструю сходимость (по сравнению с методом постой итерации)

Недостатки метода:

Является трудоемким

Блок-схема метод Гаусса-Зейделя

n — порядок матрицы, ε – погрешность вычислений, a_{ii} b_i – коэффициенты и правые части уравнений системы, x_i – начальные приближения, М – максимально допустимое число итераций, k — порядковый номер итерации; i – номер уравнения, а также переменного, которое вычисляется в соответствующем цикле; номер элемента вида $a_{ij}x_{i}^{(k)}$ или $a_{ij}x_{i}^{(k-1)}$ в правой части соотношения. Итерационный процесс либо прекращается при выполнения условия: $\max_{1 \leq i \leq n} \left| x_i^{(k)} - x_i^{(k-1)}
ight| < arepsilon$, либо при k=M, т.е. итерации не сходятся.

Метод Гаусса-Зейделя. Пример

Методом Гаусса-Зейделя с точностью $\varepsilon = 0.01$ решить систему линейных алгебраических уравнений:

$$\begin{cases} 2x_1 + 2x_2 + 10x_3 = 14\\ 10x_1 + x_2 + x_3 = 12\\ 2x_1 + 10x_2 + x_3 = 13 \end{cases}$$

Приведем систему Ax = b к виду x = Cx + d:

$$\begin{cases} x_1 = -0.1x_2 - 0.1x_3 + 1.2 \\ x_2 = -0.2x_1 - 0.1x_3 + 1.3 \\ x_3 = -0.2x_1 - 0.2x_2 + 1.4 \end{cases}$$

$$C = \begin{pmatrix} 0 - 0.1 - 0.1 \\ -0.2 & 0 - 0.1 \\ -0.2 & -0.2 & 0 \end{pmatrix} d = \begin{pmatrix} 1.2 \\ 1.3 \\ 1.4 \end{pmatrix}$$

Норма матрицы $||C|| = \max(0,2;0,3;0,4) = 0,4 < 1$, условие сходимости выполняется.

Метод Гаусса-Зейделя. Пример

Зададим начальное приближение:

$$x^0 = d = \begin{pmatrix} 1,2\\1,3\\1,4 \end{pmatrix}$$

Выполним расчеты по формуле:

$$x_1^{k+1} = -0.1x_2^k - 0.1x_3^k + 1.2$$

$$x_2^{k+1} = -0.2x_1^{k+1} - 0.1x_3^k + 1.3$$

$$x_3^{k+1} = -0.2x_1^{k+1} - 0.2x_2^{k+1} + 1.4$$

Для первого приближения получаем:

$$x_1^1 = -0.1 \cdot 1.3 - 0.1 \cdot 1.4 + 1.2 = 0.93$$

 $x_2^1 = -0.2 \cdot 0.93 - 0.1 \cdot 1.4 + 1.3 = 0.974$
 $x_3^1 = -0.2 \cdot 0.93 - 0.2 \cdot 0.974 + 1.4 = 1.0192$

$$\max\begin{pmatrix} \begin{vmatrix} x_1^1 - x_1^0 \\ |x_2^1 - x_2^0| \\ |x_3^1 - x_3^0 \end{vmatrix} = \max\begin{pmatrix} 0,27\\ 0,326\\ 0,3808 \end{pmatrix}$$

Метод Гаусса-Зейделя. Пример

k	x_1^k	x_2^k	x_3^k	$\left \max x_i^{(k)} - x_i^{(k-1)} \right $
0	1,200	1,3000	1,4000	-
1	0,9300	0,9740	1,0192	0,3808
2	1,0007	0,9979	1,0028	0,0707
3	0,9997	0,9998	1,0001	0,0027<ε

Как видно, итерационный процесс завершился быстрее, чем в методе простой итерации (5 итераций).

Список литературы:

- 1. Турчак Л.И., П.В. Плотников. Основы численных методов Москва : Физматлит, 2002. 304 с. URL: https://e.lanbook.com/book/2351.
- 2. Волков Е. А. Численные методы: учебное пособие для вузов / Е. А. Волков. 6-е изд., стер. Санкт-Петербург: Лань, 2021. 252 с. URL: https://e.lanbook.com/book/167179
- 3. Бахвалов Н. С. Численные методы : учебник / Н. С. Бахвалов, Н. П. Жидков, Г. М. Кобельков. 9-е изд. Москва : Лаборатория знаний, 2020. 636 с.— URL: https://e.lanbook.com/book/126099.
- 4. Демидович Б. П. Основы вычислительной математики : учебное пособие / Б. П. Демидович, И. А. Марон. 8-е изд., стер. Санкт-Петербург : Лань, 2021. 672 с.

 URL: https://e.lanbook.com/book/167894.
- 5. Малышева Т.А. Лабораторный практикум по вычислительной математике: https://books.ifmo.ru/book/2669/laboratornyy_praktikum_po_vychislitelno y matematike: uchebno-metodicheskoe posobie..htm

Журнал

https://docs.google.com/spreadsheets/d/1v1 f7TtfGpb2kgslF1S2_EfBTboTv8UfGCInD7gOXO Qc/edit?usp=sharing