10/593791 IAP9 Rec'd PCT/PTO 22 SEP 2006

ATTACHMENT A

Claims 1 - 28: (Cancelled)

- 29. (New) A propylene copolymer composition comprising:
 - A) from 50% to 80% by weight of a propylene copolymer comprising from 0.05 to 0.99% by weight of at least one alpha olefin comprising from 2 to 10 carbon atoms, with the proviso that the alpha olefin is not propylene; and
 - B) from 20% to 50% by weight of one propylene copolymer comprising from about 7.01 to about 20.0 % by weight of at least one alpha olefin comprising from 2 to 10 carbon atoms, with the proviso that the alpha olefin is not propylene;

said propylene copolymer composition further comprising:

- (i) a MFR $(230^{\circ}\text{C}/2.16 \text{ kg})$ from about 1 to about 20 g/10 min; and
- (ii) a tensile E modulus according to ISO 527-2:1993 from about 400 to about 800 MPa.
- 30. (New) The propylene copolymer composition as claimed in claim 29, further comprising a melting point from 143°C to 150°C.
- 31. (New) The propylene copolymer composition as claimed in claim 29, further comprising a haze according to ASTM D 1003 from 25% to 40% without adding clarifying agents.
- 32. (New) The propylene copolymer composition as claimed in claim 29, produced using a catalyst system comprising at least one metallocene compound of formula (I),

wherein

Mis zirconium, hafnium or titanium;

- are, identical or different and are independently Х of one another, hydrogen, halogen, -R, -OR, - OSO_2CF_3 , -OCOR, -SR, $-NR_2$ or $-PR_2$, wherein R is a branched C₁-C₂₀-alkyl $C_3 - C_{20}$ or linear or cycloalkyl, wherein the C_1-C_{20} alkyl or C_3-C_{20} cycloalkyl may be substituted by at least one C_1 - $C_{10}\text{-alkyl}$ radical, or R is a $C_6\text{-}C_{20}\text{-aryl},\ C_7\text{-}C_{20}\text{-}$ alkylaryl or C₇-C₂₀-arylalkyl, wherein comprise at least one heteroatom of groups 13-17 of the Periodic Table of Elements, or R may comprise at least one unsaturated bond, or two X radicals may be joined to one another;
- L is a divalent bridging group selected from the group consisting of a C_1 - C_{20} -alkylidene radical, a C_3 - C_{20} -cycloalkylidene radical, a C_6 - C_{20} -arylidene radical, a C_7 - C_{20} -alkylarylidene radical and a C_7 - C_{20} -arylalkylidene radical, which may comprise at least one heteroatom of groups 13-17 of the Periodic Table of Elements, or a silylidene group comprising up to 5 silicon atoms;

 R^1 is a linear or branched C_1 - C_{20} -alkyl or C_3 - C_{20} -cycloalkyl, wherein the C_1 - C_{20} alkyl or C_3 - C_{20} cycloalkyl may be substituted by at least one C_1 - C_{10} -alkyl radical, or R is a C_6 - C_{20} -aryl, C_7 - C_{20} -alkylaryl or C_7 - C_{20} -arylalkyl, wherein R may comprise at least one heteroatom of groups 13-17 of the Periodic Table of Elements, and R may comprise at least one unsaturated bond;

 R^2 is $-C(R^3)_2R^4$;

or different \mathbb{R}^3 identical and are are, а linear independently of one another, orbranched C_1-C_{20} -alkyl or C_3-C_{20} -cycloalkyl, wherein the C_1-C_{20} alkyl or C_3-C_{20} cycloalkyl may be substituted by at least one C_1 - C_{10} -alkyl radical, or R is a $C_6-C_{20}-aryl$, $C_7-C_{20}-alkylaryl$ or $C_7-C_{20}-alkylaryl$ arylalkyl, wherein R may comprise at least one heteroatom of groups 13-17 of the Periodic Table of Elements, and R may comprise at least one unsaturated bond, or two R3 radicals may be joined to form a saturated or unsaturated C_3-C_{20} -ring;

is hydrogen or a linear or branched C_1 - C_{20} -alkyl or C_3 - C_{20} -cycloalkyl, wherein the C_1 - C_{20} alkyl or C_3 - C_{20} cycloalkyl may be substituted by at least one C_1 - C_{10} -alkyl radical, or R is a C_6 - C_{20} -aryl, C_7 - C_{20} -alkylaryl or C_7 - C_{20} -arylalkyl, wherein R may comprise at least one heteroatom of groups 13-17 of the Periodic Table of Elements, and R may comprise at least one unsaturated bond;

T and T' are divalent groups of formula (II), (III), (IV), (V) or (VI),

$$R^{5}$$
 R^{5}
 R^{5}

wherein

the atoms denoted by the symbols * and ** are joined to the atoms of the metallocene compound of formula (I) which are denoted by the same symbol, and

and are different R^5 identical or are, independently of one another, hydrogen, halogen or linear or branched $C_1\text{-}C_{20}\text{-}alkyl$ or cycloalkyl, wherein the $C_1 - C_{20}$ alkyl or $C_3 - C_{20}$ cycloalkyl may be substituted by at least one C_1 - C_{10} -alkyl radical, or R is a C_6 - C_{20} -aryl, C_7 - C_{20} alkylaryl or C_7 - C_{20} -arylalkyl, wherein comprise at least one heteroatom of groups 13-17 of the Periodic Table of Elements, or R may comprise at least one unsaturated bond;

 R^6 are, identical or different and are each independently of one another, halogen or a linear or branched $C_1\text{-}C_{20}\text{-}alkyl$ or $C_3\text{-}C_{20}\text{-}cycloalkyl$,

wherein the C_1 - C_{20} alkyl or C_3 - C_{20} cycloalkyl may be substituted by at least one C_1 - C_{10} -alkyl radical, or R is a C_6 - C_{20} -aryl, C_7 - C_{20} -alkylaryl or C_7 - C_{20} -arylalkyl, wherein R may comprise at least one heteroatom of groups 13-17 of the Periodic Table of Elements, or R may comprise at least one unsaturated bond.

- 33. (New) The propylene copolymer composition as claimed in claim 32, wherein L is $-SiMe_2-$ or $-SiPh_2-$.
- 34. (New) The propylene copolymer composition as claimed in claim 32, wherein R^1 is preferably a linear or branched C_{1} - C_{10} -alkyl group which is unbranched in the α position.
- 35. (New) The propylene copolymer composition as claimed in claim 34, wherein \mathbb{R}^1 is a linear C_1-C_4 -alkyl group.
- 36. (New) The propylene copolymer composition as claimed in claim 35, wherein \mathbb{R}^1 is methyl, ethyl, n-propyl or n-butyl.
- 37. (New) The propylene copolymer composition as claimed in claim 29, wherein the alpha olefin is exclusively ethylene.
- 38. (New) The propylene copolymer composition as claimed in claim 29, further comprising a molar mass distribution $M_{\rm w}/M_{\rm n}$ ranging from 1.5 to 3.5.
- 39. (New) The propylene copolymer composition as claimed in claim 29, wherein the alpha olefin of B) is from about 7.01% to about 9.99% by weight.

- 40. (New) The propylene copolymer composition as claimed in claim 29, wherein the alpha olefin of B) is from about 8.0% to about 9.6% by weight.
- 41. (New) The propylene polymer composition as claimed in claim 29, wherein the MFR is from 6 to 12 g/10min.
- 42. (New) The propylene polymer composition as claimed in claim 29, wherein the tensile E modulus is from 550 to 750 MPa
- 43. (New) A process for producing at least one fiber, film or molding comprising
 - A) from 50% to 80% by weight of a propylene copolymer comprising from 0.05 to 0.99% by weight of at least one alpha olefin comprising from 2 to 10 carbon atoms, with the proviso that the alpha olefin is not propylene; and
 - B) from 20% to 50% by weight of one propylene copolymer comprising from about 7.01 to about 20.0 % by weight of at least one alpha olefin comprising from 2 to 10 carbon atoms, with the proviso that the alpha olefin is not propylene;

said propylene copolymer composition further comprising:

- (i) a MFR $(230 \,^{\circ}\text{C}/2.16 \,^{\circ}\text{kg})$ from about 1 to about 20 g/10 min; and
- (ii) a tensile E modulus according to ISO 527-2:1993 from about 400 to about 800 MPa.
- 44. (New) A film comprising a propylene copolymer composition comprising:

- A) from 50% to 80% by weight of a propylene copolymer comprising from 0.05 to 0.99% by weight of at least one alpha olefin comprising from 2 to 10 carbon atoms, with the proviso that the alpha olefin is not propylene; and
 - B) from 20% to 50% by weight of one propylene copolymer comprising from about 7.01 to about 20.0% by weight of at least one alpha olefin comprising from 2 to 10 carbon atoms, with the proviso that the alpha olefin is not propylene;

wherein A) and B) are obtained using a catalyst system comprising at least one metallocene compound, and the propylene copolymer composition further comprises a MFR from about 1 to about 20 and a tensile E modulus from about 400 to about 800 MPa; and

the film has a haze less than about 10.0% and a dart impact greater than about 150 gms for a 1 mil thick film.

- 45. (New) The film according to claim 44 further comprising a melting point of between about 143°C to about 150°C.
- 46. (New) The film according to claim 44, wherein the film has a haze less than about 5% for a 1 mil thick film.
- 47. (New) The film according to claim 44, wherein the film has a dart impact greater than about 200 gm for a 1 mil thick film.
- 48. (New) The film according to claim 44, wherein the tensile E modulus of the propylene copolymer composition is from about 550 to about 750 MPa.

- 49. (New) The film according to claim 44, wherein the film further comprises a WVTR greater than about $11.6 \, \text{gm/m2-day}$.
- 50. (New) The film according to claim 44, wherein the film further comprises a OTR greater than about 3875 gm/m2-day.
- 51. (New) The film according to claim 44, wherein the film further comprises a CO2TR greater than about 19,375 cc/m2-day.
- 52. (New) The film according to claim 44, wherein the film further comprises a hexane extractables not greater than about 2.6%, and xylene solubles less than about 30%.
- 53. (New) The film according to claim 44, wherein the metallocene compound is of formula (I):

wherein

Mis zirconium, hafnium or titanium;

x are, identical or different and are independently of one another, hydrogen, halogen, -R, -OR, $-OSO_2CF_3$, -OCOR, -SR, $-NR_2$ or $-PR_2$, wherein R is a linear or branched C_1-C_{20} -alkyl or C_3-C_{20} -

cycloalkyl, wherein the C_1 - C_{20} alkyl or C_3 - C_{20} cycloalkyl may be substituted by at least one C_1 - C_{10} -alkyl radical, or R is a C_6 - C_{20} -aryl, C_7 - C_{20} -alkylaryl or C_7 - C_{20} -arylalkyl, wherein R may comprise at least one heteroatom of groups 13-17 of the Periodic Table of Elements, or R may comprise at least one unsaturated bond, or two X radicals may be joined to one another;

- L is a divalent bridging group selected from the group consisting of a C_1 - C_{20} -alkylidene radical, a C_3 - C_{20} -cycloalkylidene radical, a C_6 - C_{20} -arylidene radical, a C_7 - C_{20} -alkylarylidene radical and a C_7 - C_{20} -arylalkylidene radical, which may comprise at least one heteroatom of groups 13-17 of the Periodic Table of Elements, or a silylidene group comprising up to 5 silicon atoms;
- is a linear or branched C_1 - C_{20} -alkyl or C_3 - C_{20} -cycloalkyl, wherein the C_1 - C_{20} alkyl or C_3 - C_{20} -cycloalkyl may be substituted by at least one C_1 - C_{10} -alkyl radical, or R is a C_6 - C_{20} -aryl, C_7 - C_{20} -alkylaryl or C_7 - C_{20} -arylalkyl, wherein R may comprise at least one heteroatom of groups 13-17 of the Periodic Table of Elements, and R may comprise at least one unsaturated bond;
- R^2 is $-C(R^3)_2R^4$;
- each \mathbb{R}^3 different and are are, identical or independently of one another, a linear branched C_1 - C_{20} -alkyl or C_3 - C_{20} -cycloalkyl, wherein the C_1-C_{20} alkyl or C_3-C_{20} cycloalkyl may substituted by at least one $C_1\text{-}C_{10}\text{-}alkyl$ radical, or R is a C_6-C_{20} -aryl, C_7-C_{20} -alkylaryl or C_7-C_{20} arylalkyl, wherein R may comprise at least one

heteroatom of groups 13-17 of the Periodic Table of Elements, and R may comprise at least one unsaturated bond, or two R^3 radicals may be joined to form a saturated or unsaturated C_3-C_{20} -ring;

is hydrogen or a linear or branched C_1 - C_{20} -alkyl or C_3 - C_{20} -cycloalkyl, wherein the C_1 - C_{20} alkyl or C_3 - C_{20} cycloalkyl may be substituted by at least one C_1 - C_{10} -alkyl radical, or R is a C_6 - C_{20} -aryl, C_7 - C_{20} -alkylaryl or C_7 - C_{20} -arylalkyl, wherein R may comprise at least one heteroatom of groups 13-17 of the Periodic Table of Elements, and R may comprise at least one unsaturated bond;

T and T' are divalent groups of formula (II), (III), (IV), (V) or (VI),

wherein

the atoms denoted by the symbols * and ** are joined to the atoms of the metallocene compound of formula (I) which are denoted by the same symbol, and

- R^5 are, identical or different and are each independently of one another, hydrogen, halogen or a linear or branched C_1 - C_{20} -alkyl or C_3 - C_{20} -cycloalkyl, wherein the C_1 - C_{20} alkyl or C_3 - C_{20} cycloalkyl may be substituted by at least one C_1 - C_{10} -alkyl radical, or R is a C_6 - C_{20} -aryl, C_7 - C_{20} -alkylaryl or C_7 - C_{20} -arylalkyl, wherein R may comprise at least one heteroatom of groups 13-17 of the Periodic Table of Elements, or R may comprise at least one unsaturated bond;
- different and are R^6 identical orare, independently of one another, halogen or a linear branched C_1 - C_{20} -alkyl or C_3 - C_{20} -cycloalkyl, or wherein the C_1 - C_{20} alkyl or C_3 - C_{20} cycloalkyl may be substituted by at least one C₁-C₁₀-alkyl radical, or R is a C_6-C_{20} -aryl, C_7-C_{20} -alkylaryl or C_7-C_{20} arylalkyl, wherein R may comprise at least one heteroatom of groups 13-17 of the Periodic Table of Elements, or R may comprise at least one unsaturated bond.
- 54. (New) The propylene copolymer composition as claimed in claim 53, wherein L is $-SiMe_2-$ or $-SiPh_2-$.
- 55. (New) The propylene copolymer composition as claimed in claim 53, wherein R^1 is preferably a linear or branched C_{1} C_{10} -alkyl group which is unbranched in the α position.

- 56. (New) The propylene copolymer composition as claimed in claim 55, wherein R^1 is a linear C_1 - C_4 -alkyl group.
- 57. (New) The propylene copolymer composition as claimed in claim 56, wherein \mathbb{R}^1 is methyl, ethyl, n-propyl or n-butyl.
- 58. (New) The film according to claim 44, wherein the MFR is from about 6 to about 12.
- 59. (New) An article comprising at least one layer of a film comprising a propylene copolymer composition comprising:
 - A) from 50% to 80% by weight of a propylene copolymer comprising from 0.05 to 0.99% by weight of at least one alpha olefin comprising from 2 to 10 carbon atoms, with the proviso that the alpha olefin is not propylene; and
 - B) from 20% to 50% by weight of one propylene copolymer comprising from about 7.01 to about 20.0% by weight of at least one alpha olefin comprising from 2 to 10 carbon atoms, with the proviso that the alpha olefin is not propylene;

wherein A) and B) are obtained using a catalyst system comprising at least one metallocene compound, and the propylene copolymer composition further comprises a MFR from about 1 to about 20 and a tensile E modulus from about 400 to about 800 MPa; and

the film has a haze less than about 10.0% and a dart impact greater than about 150 gms for a 1 mil thick film.

- 60. (New) A laminate comprising at least one layer of a polyolefin film and at least one layer of a film comprising a propylene copolymer composition comprising:
 - A) from 50% to 80% by weight of a propylene copolymer comprising from 0.05 to 0.99% by weight of at least one alpha olefin comprising from 2 to 10 carbon atoms, with the proviso that the alpha olefin is not propylene; and
 - B) from 20% to 50% by weight of one propylene copolymer comprising from about 7.01 to about 20.0% by weight of at least one alpha olefin comprising from 2 to 10 carbon atoms, with the proviso that the alpha olefin is not propylene;

wherein A) and B) are obtained using a catalyst system comprising at least one metallocene compound, and the propylene copolymer composition further comprises a MFR from about 1 to about 20 and a tensile E modulus from about 400 to about 800 MPa; and

the film has a haze less than about 10.0% and a dart impact greater than about 150 gms for a 1 mil thick film.

- 61. (New) A coated article comprising a substrate and a film comprising a propylene copolymer composition comprising:
 - A) from 50% to 80% by weight of a propylene copolymer comprising from 0.05 to 0.99% by weight of at least one alpha olefin comprising from 2 to 10 carbon atoms, with the proviso that the alpha olefin is not propylene; and
 - B) from 20% to 50% by weight of one propylene copolymer comprising from about 7.01 to about 20.0

% by weight of at least one alpha olefin comprising from 2 to 10 carbon atoms, with the proviso that the alpha olefin is not propylene;

wherein A) and B) are obtained using a catalyst system comprising at least one metallocene compound, and the propylene copolymer composition further comprises a MFR from about 1 to about 20 and a tensile E modulus from about 400 to about 800 MPa; and

the film has a haze less than about 10.0% and a dart impact greater than about 150 gms for a 1 mil thick film, wherein the film has been coated onto the substrate.

- 62. (New) A co-extruded, multilayer film comprising at least one layer of a film comprising a propylene copolymer composition comprising:
 - A) from 50% to 80% by weight of a propylene copolymer comprising from 0.05 to 0.99% by weight of at least one alpha olefin comprising from 2 to 10 carbon atoms, with the proviso that the alpha olefin is not propylene; and
 - B) from 20% to 50% by weight of one propylene copolymer comprising from about 7.01 to about 20.0% by weight of at least one alpha olefin comprising from 2 to 10 carbon atoms, with the proviso that the alpha olefin is not propylene;

wherein A) and B) are obtained using a catalyst system comprising at least one metallocene compound, and the propylene copolymer composition further comprises a MFR from about 1 to about 20 and a tensile E modulus from about 400 to about 800 MPa; and

the film has a haze less than about 10.0% and a dart impact greater than about $150~{\rm gms}$ for a 1 mil thick film.

63. (New) The process of claim 43, wherein the molding is a large hollow body.