EKSPLORACJA DANYCH LISTA NR 3 29 IV 2025

ZADANIE 1 Klasyfikacja na bazie modelu regresji liniowej

a) Analizowane dane

Ramka danych iris{pakiet datasets}. Mamy K=3 klasy oraz p=4 zmienne objaśniające $\mathbf{X}=(PL,PW,SL,SW)$.

b) Podział danych na zbiór uczący i testowy

Podziel losowo dane na część uczącą (ang. learning set) i testową (ang. test set), np. w proporcji: 2/3 – zbiór uczący, 1/3 – zbiór testowy.

c) Konstrukcja klasyfikatora i wyznaczenie prognoz

Zastosuj model regresji liniowej do konstrukcji klasyfikatora na podstawie danych uczących i wyznacz prognozowane etykietki klas dla przypadków ze zbioru uczącego oraz przypadków ze zbioru testowego.

d) Ocena jakości modelu

Wyznacz macierz pomyłek (ang. confusion matrix) oraz błąd klasyfikacji na zbiorze uczącym oraz zbiorze testowym. Spróbuj zilustrować/zbadać czy w tym przypadku obserwujemy zjawisko maskowania klas, o którym była mowa na wykładzie.

e) Budowa modelu liniowego dla rozszerzonej przestrzeni cech

Powtórz konstrukcję modelu i ocenę jego dokładności (kroki c)-d)), tym razem budując model regresji po uzupełnieniu wyjściowych cech o składniki wielomianowe stopnia 2 (tzn.: PL^2 , PW^2 , SL^2 , SW^2 , $PL \cdot PW$, $PL \cdot SW$, $PL \cdot SL$, $PW \cdot SL$, $PW \cdot SW$, $SL \cdot SW$). Porównaj dokładność klasyfikacji dla obu przypadków i zinterpretuj otrzymane wyniki.

ZADANIE 2 Porównanie metod klasyfikacji

a) Wybór i zapoznanie się z danymi

Zadanie wykonujemy dla jednego (wybranego) zbioru danych. Do wyboru są następujące dane:

- Glass {biblioteka mlbench}
- Wine {biblioteka HDclassif}
- PimaIndiansDiabetes2 {biblioteka mlbench}
- Vehicle {biblioteka mlbench}
- Sonar {biblioteka mlbench}

Na wstępie proszę uważnie zapoznać się z opisem wybranego zbioru danych. Należy m.in. ustalić:

- Ile mamy zmiennych (cech) i przypadków?
- Ile mamy klas (grup) i która zmienna zawiera informacje o przynależności obiektu do konkretnej klasy (tzw. etykietki klas)?
- Czy występują jakieś specyficzne/nietypowe własności danych (np. brakujące lub nietypowe wartości, niestandardowe kodowanie niektórych wartości, itp.)?
- Czy wszystkie zmienne mają prawidłowo przypisane typy (w szczególności, czy zmienna zawierająca etykietki klas jest zmienną typu factor)?

¹Opis danych jest dostępny w dokumentacji dołączonej do odpowiedniego R-pakietu. Bardziej szczegółowy opis można znaleźć również na stronie http://archive.ics.uci.edu/ml/ (repozytorium UCI).

b) Cel analizy

Celem analizy jest zastosowanie poznanych algorytmów klasyfikacji i szczegółowe porównanie ich dokładności. Porównanie to powinno uwzględniać przynajmniej następujące algorytmy:

- metoda k-najbliższych sąsiadów (k-Nearest Neighbors),
- drzewa klasyfikacyjne (classification trees),
- naiwny klasyfikator bayesowski (naïve Bayes classifier).

Poniżej umieszczone są informacje nt. zagadnień, które powinny zostać uwzględnione w analizie.

c) Wstępna analiza danych

Wykorzystując poznane metody analizy opisowej, zbadaj najważniejsze własności danych, w tym:

- Jak wygląda rozkład klas w analizowanym zbiorze i czy obserwujemy istotne dysproporcje w liczebności poszczególnych grup? Jaki błąd klasyfikacji otrzymalibyśmy przypisując wszystkie obiekty do (jednej) najczęściej występującej klasy?
- Czy obserwujemy istotne różnice w zmienności (wariancji) poszczególnych cech, co może oznaczać konieczność zastosowania standaryzacji w przypadku niektórych algorytmów klasyfikacyjnych?
- Które zmienne charakteryzują się najlepszymi zdolnościami dyskryminacyjnymi/predykcyjnymi (tzn. najlepiej separują obiekty należące do różnych klas)?

d) Ocena dokładności klasyfikacji i porównanie metod

- Porównaj dokładność klasyfikacji rozważanych algorytmów, dzieląc oryginalny zbiór danych (w odpowiedniej proporcji) na zbiór uczący (learning set) i zbiór testowy (test set). Do oceny dokładności wykorzystaj macierz pomyłek (confusion matrix) oraz błąd klasyfikacji. Szczegółowo zinterpretuj otrzymane wyniki. W szczególności porównaj błędy klasyfikacji na zbiorze uczącym i testowym.
- Do porównania metod wykorzystaj następnie wybrany, bardziej zaawansowany schemat oceny dokładności, np. wielokrotny podział na zbiór uczący i testowy, metodę cross-validation lub schemat typu bootstrap². Porównaj wnioski dotyczące skuteczności metod z tymi otrzymanymi na podstawie pojedynczego podziału na zbiór uczący i testowy.

e) Różne parametry i różne podzbiory cech

Przeprowadzając porównanie dokładności klasyfikacji (patrz podpunkt d), uwzględnij:

- różne kombinacje (podzbiory) zmiennych wykorzystanych do konstrukcji klasyfikatorów, w szczególności wszystkie zmienne oraz wybrany podzbiór zmiennych o najlepszej zdolności dyskryminacyjnej. Wskazówka: do wyboru "najbardziej obiecujących" kombinacji zmiennych można wykorzystać wnioski otrzymane w podpunkcie c).
- różny dobór parametrów dla poszczególnych metod (np. różną liczbę sąsiadów w metodzie k-NN, różne parametry dla algorytmu konstrukcji drzew klasyfikacyjnych itp.)

f) Końcowe wnioski – podsumowanie

Na podstawie przeprowadzonej analizy, spróbuj odpowiedzieć na następujące pytania:

- Dla jakiego podzbioru zmiennych predykcyjnych i dla jakich parametrów poszczególnych metod otrzymujemy najlepsze wyniki?
- Która z metod klasyfikacyjnych daje lepsze, a które gorsze rezultaty w przypadku analizowanych danych?
- Czy wybór schematu oceny dokładności miał istotny wpływ na wnioski dotyczące skuteczności metod?

²Mile widziane jest porównanie wyników dla różnych schematów