

Inteligência Artificial Aplicada

UniSenai PR-São José dos Pinhais

Estudo de agentes que recebem percepções do ambiente e executam ações (RUSSELL; NORVIG, 2013).

Categoria	Descrição	Algoritmos/técnicas	Exemplos de aplicação	
Métodos de busca	Encontram soluções em um espaço de estados.	BFS, A*	GPS traçando a melhor rota.	
Raciocínio temporal	Modelam eventos ao longo do tempo.	Cadeias de Markov, Redes Bayesianas	Previsão do tempo, reconhecimento de fala.	
Lógica fuzzy	Lida com incertezas e valores intermediários.	Conjuntos fuzzy, Inferência fuzzy	Controle de temperatura em ar-condicionado.	
Representação do conhecimento	informações para fomada (4		Diagnóstico médico, sistemas especialistas.	
Modelos de aprendizado	Ajustam pesos para Iodelos de aprendizado identificar padrões em dados.		Reconhecimento facial, chatbots.	

Busca em largura (BFS – Breadth-First Search)

Busca em largura (BFS – Breadth-First Search)

- Ideia principal: explora todos os nós em um nível antes de avançar para o próximo.
- Aplicações: navegação em mapas, resolução de quebra-cabeças.

Grafo

- Estrutura de dados composta por vértices (nós) e arestas (conexões entre os nós);
- Pode ser direcionado (as arestas têm uma direção) ou não direcionado (as arestas não têm direção).

Árvore

• Tipo especial de grafo que é conexo (todos os nós estão conectados) e sem ciclos (não há caminhos que voltam ao mesmo nó);

• Em uma árvore, há um nó raiz a partir do qual a busca começa.

Fila (queue)

• Estrutura de dados que segue o princípio **FIFO** (*First In, First Out*): o primeiro elemento a entrar é o primeiro a sair.

Matriz de adjacência

	0	1	2	3	
0	0	1	1	1	
1	1	0	0	1	
2	1	0	0	1	
3	1	1	1	0	

- Estrutura de dados usada para representar grafos;
- Em grafos não ponderados:
 - 1: Há uma aresta entre i e j;
 - 0: Não há uma aresta.

Matriz de adjacência

	0	1	2	3	
0	0	1	1	1	
1	1	0	0	1	
2	1	0	0	1	
3	1	1	1	0	

- Em grafos ponderados:
- O valor pode ser o peso da aresta;
- Um valor especial (ex: infinito) indica ausência de aresta.

1 - Inicialização

- 1. Escolha um nó inicial (raiz);
- 2. Crie uma fila vazia e adicione o nó inicial a ela;
- 3. Marque o nó inicial como visitado.

2 - Exploração

- 1. Enquanto a fila não estiver vazia:
- i. Remova o primeiro nó da fila;
- ii. Processe o nó (por exemplo, imprima-o ou verifique se é o alvo);
- iii. Adicione todos os vizinhos não visitados à fila e marque-os como visitados.

3 - Término

1. O algoritmo termina quando a fila estiver vazia, ou seja, todos os nós alcançáveis a partir do nó inicial foram visitados.

BFS - 1

Dado o grafo não ponderado a seguir, <u>encontre o caminho do nó A até o nó E</u> utilizando o algoritmo BFS.

BFS - 2

Dado o grafo não ponderado a seguir, <u>encontre o caminho a partir do nó A</u> utilizando o algoritmo BFS.

BFS - 3

Elabore o grafo e utilize o algoritmo BFS para demonstrar o caminho para percorrer todos os bairros, nos seguintes pontos de partida: a) Centro; b) Iná;

e c) Campo Largo da Roseira.

	Centro	Afonso Pena	São Domingos	Costeira	Guatupê	Braga	Iná	Boneca do Iguaçu	Campo Largo da Roseira
Centro	0	1	0	1	0	0	0	1	0
Afonso Pena	1	0	1	0	1	0	0	0	0
São Domingos	0	1	0	0	0	1	0	0	0
Costeira	1	0	0	0	1	0	1	0	0
Guatupê	0	1	0	1	0	0	0	0	1
Braga	0	0	1	0	0	0	0	0	0
Iná	0	0	0	1	0	0	0	0	0
Boneca do Iguaçu	1	0	0	0	0	0	0	0	0
Campo Largo da Roseira	0	0	0	0	1	0	0	0	0