

esempio:

$$\beta: |R^2 \rightarrow |R|$$
 $\beta(x) = ||x||_{L} = |x_1| + |x_2|$ $D = |R^2|$ $x_2 \uparrow$

$$\mathcal{E}(d) = \{x \in D \mid \mathcal{E}(x) \leq d\} = \{x \in |R^2| ||x||_4 \leq 4\}$$

e Jempio:

$$\cdot \mathcal{E}(x) = ||x||_2^2 \qquad D = |R^2|$$

$$\mathcal{A}(d) = \left\{ x \in \mathbb{R}^2 \mid |x||_2^2 \leq 1 \right\} = \left\{ x \in \mathbb{R}^2 \mid x_1^2 + x_2^2 \leq 1 \right\}$$

$$\mathcal{L}(f(x^{\circ})) = \{x \in F \mid \mathcal{J}(x) \leq \mathcal{J}(x^{\circ})\}$$

PROP:

Se
$$\exists d \in \mathbb{R}$$
 $\exists d \in \mathbb{R}$ $\exists d \in \mathbb{R}$

allora 3 un punto di minimo globale di f si F.

DIMOSTRAZIONE

Consideriamo il problema

$$\pm$$
 $\exists x^* \in \mathcal{L}(d)$ A.c $\mathcal{L}(x^*) \leq \mathcal{L}(x)$ $\forall x \in \mathcal{L}(d)$

