1. A 회사의 표면처리 공정에서 부적합수 데이터를 나타낸 자료이다. (단위 $1000m^2$) 적절한 관리도를 작성하고 공정상태를 판단하라.

군 번호	시료크기	부적합수	UCL	LCL
1	1.0	2	CL + 3*sqrt(CL/1.0)	max(CL-
2	1.0	5	= 8.3023	3*sqrt(CL/1.0), 0)
3	1.0	3		=O
4	1.0	2		
5	1.5	1	CL + 3*sqrt(CL/1.5)	=0
6	1.5	5	= 7.3398	
7	1.5	2		
8	1.5	4		
9	1.5	2		
10	1.5	6		
11	1.5	4		
12	1.2	1	CL + 3*sqrt(CL/1.2)	=0
13	1.2	11	= 7.8453	
14	1.2	3		
15	1.2	8		

시료크기가 다르므로 u 관리도를 사용한다. CL = sum(xi)/sum(ai) = 59/19.3 = 3.057

좌측 관리도에서 보는 바와 같이 부분군 13 에서 관리이탈상태이다. 부분군 13 의 이상원인을 찾고 조치를 취한 후 부분군 13 을 제거한 다음 관리한계를 재계산하면 우측 관리도와 같다.

2. 품질특성치는 정규분포를 따르고 공정이 안정상태에서 평균은 μ 이고 표준편차는 σ 이다. 공정이 안정상태인데 불안정상태라고 판단할 확률이 0.025 가 되도록 \bar{X} 관리도의 관리한계를 정하라.

UCL= μ 0 + L * sigma / sqrt(n) 이므로, $P(x_bar > \mu 0 + L * sigma / sqrt(n) | \mu 0) = 0.0125 가 되는 <math>L$ 을 역산한다. 즉, P(Z>L) = 0.0125 이므로

L = 2.2414

3. n = 4의 $\bar{x} - R$ 관리도에서 $\bar{x} = 18.5$, $\bar{R} = 3.09$ 로 관리상태이다. 지금 공정평균이 15.49 로 변했다고 하면 다음 표본에서 3 시그마 관리한계를 벗어날 확률은 얼마인가?

```
n=4 일 때, d2 = 2.059, A2 = 0.729  
\sigma_{-}hat = 3.09/d2 = 1.5  
UCL = 18.5 + A2 * 3.09 = 20.75  
LCL = 18.5 - A2 * 3.09 = 16.25  

1-\beta = P(X_bar > UCL | \mu=15.49) + P(X_bar < LCL | \mu=15.49)  
= P(Z > (20.75 - 15.49)/1.5) + P(Z < (16.25 - 15.49)/1.5)  
= P(Z > 3.5) + P(Z < 0.5)  
= 0.6917
```

- 4. 어떤 기계제조 회사 가공부품 공정의 품질특성치에 대한 데이터를 수집하였다. 크기 n=4인 시료를 택하여 $\bar{x}-R$ 관리도를 작성하고 데이터를 분석한 결과 $\bar{x}=26.0~mm$, $\bar{R}=1.02~mm$ 이 었다. 다음 물음에 답하라.
 - (a) 군내변동 σ_w^2 를 구하라.
 - (b) $\sigma_{\bar{x}}^2 = 0.225$ 일 때 군간변동 σ_b^2 를 구하라.
 - (c) 관리계수 C_f 를 구하고 평가하라.
- a) n=4 일 때, d2=2.059 ow^2 = (1.02/d2)^2 = 0.2454
- b) $\sigma x_bar^2 = \sigma b^2 + \sigma w^2/n$ $\sigma b^2 = 0.225 0.2454/4$ = 0.1637
- c) Cf = \sigmax_bar / \sigmaw = \sqrt(0.225) / \sqrt(0.2454) = 0.9575 0.8 < 0.9575 < 1.2

따라서, 대체로 관리상태에 있다.

5. 다음 표에는 화학공정의 출력물 농도에 관한 20 개의 관측치가 있다. 1 시간 간격으로 1 개 관측치를 추출하였다. I-MR 관리도를 작성하고 관리상태를 판정하라.

관측번호	농도	관측번호	농도
1	102.0	11	101.3
2	94.8	12	98.7
3	98.3	13	101.1
4	98.4	14	98.4
5	102.0	15	97.0
6	98.5	16	96.7
7	99.0	17	100.3
8	97.7	18	101.4
9	100.0	19	97.2
10	98.1	20	101.0

1 개를 추출하지만, 속성값은 n=2 일 때를 활용한다. d2=1.128, D4=3.267, D3=0.000

개별 값 관리도

이동범위 관리도


```
i1 = [102.0, 94.8, 98.3, 98.4, 102.0, 98.5, 99.0, 97.7, 100.0, 98.1]
i2 = [101.3, 98.7, 101.1, 98.4, 97.0, 96.7, 100.3, 101.4, 97.2, 101.0]
con_i = np.concatenate([i1, i2])

R = np.abs(np.diff(con_i))
```

```
cl_r = np.mean(R)
ucl_r = D4 * cl_r
lcl_r = D3 * cl_r
```

```
cl_i = np.mean(con_i)
ucl_i = cl_i + 3 * cl_r / d2
lcl_i = cl_i - 3 * cl_r / d2
```

개별 값, 이동범위 모두 관리이탈상태를 검출하지 않는다. 따라서, 공정은 대체로 관리상태에 있다.

6. 5 번의 농도자료에 대해 $\lambda = 0.2, L = 3$ 의 EWMA 관리도를 작성하고 관리상태를 판정하라.


```
R = np.abs(np.diff(con_i))
sigma_hat = np.mean(R) / d2
z = np.zeros(20)
z[0] = con_i[0]
for index, xi in enumerate(con_i[1:], start=1):
    z[index] = lambd * xi + (1- lambd) * z[index-1]
cl = np.full(20, z[0])

var_z = np.zeros(20)
for i in range (1, 21):
    var_z[i-1]=((sigma_hat**2)*lambd*(1-(1-lambd)**(2*i)))/(n * (2-lambd))
ucl = cl + 3 * np.sqrt(var_z)
lcl = cl - 3 * np.sqrt(var_z)
```

UCL 이상점의 관측의 index: [none] LCL 이상점의 관측의 index: [4 7 8 9 10 11 12 14 15 16 17 18 19 20] 관리이탈상태가 다수 검출되었다.

7. 5 번의 농도자료에 대해 참조값은 K = 1, 결정구간은 H = 10을 사용하여 CUSUM 관리도를 작성하고 관리상태를 판정하라.

 μ 0 는 편의상, #5 번 농도 값 분포의 평균을 사용하겠다. μ 0 = 99.095

C_minus 의 축적 기준은 C(i) = min(wi + C(i-1))를 활용했다.

```
y = con_i - mu0 - K

w = mu0 - con i - K
```


예시) C_minus 축적

```
c_minus = np.zeros(20)
c_minus[0] = min(w[0], 0)
for i in range(1, 20):
    if w[i] > 0:
        if (c_minus[i-1]+w[i])>=0:
            c_minus[i]=0
        elif (c_minus[i-1]+w[i])<0:
            c_minus[i] = w[i] + c_minus[i-1]
    elif w[i] <= 0:
        c_minus[i] = w[i] + c_minus[i-1]</pre>
```

UCL 이상점의 관측의 index: []

LCL 이상점의 관측의 index: [5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20] 관리이탈상태가 다수 검출되었다.

Observations Subgroup,	bservations in Subgroup, n	A	A	A	B ₃	В		d_2	d_3	d ₄		D ₃		D ₃	D ₃ D ₄
	,	1.880	2.659	•	0.000	3.267	0.7979	1.128	0	.853	.853 0.954	0.954	0.954 0.000	0.954 0.000 3.267	0.954 0.000 3.267 0.000
	w M	1.023	1.954	1.187	0.000	2.568		1.693	0).888		1.588	1.588 0.000	1.588 0.000 2.574	1.588 0.000 2.574 0.000
	4	0.729	1.628		0.000	2.266		2.059	0	.880		1.978	1.978 0.000	1.978 0.000 2.282	1.978 0.000 2.282 0.000
	5	0.577	1.427	0.691	0.000	2.089		2.326	_	0.864		2.257	2.257 0.000	2.257 0.000 2.114	2.257 0.000 2.114 0.000
	6	0.483	1.287		0.030	1.970		2.534		0.848		2.472	2.472 0.000	2.472 0.000 2.004	2.472 0.000 2.004 0.000
	7	0.419	1.182	0.509	0.118	1.882		2.704		0.833		2.645	2.645 0.076	2.645 0.076 1.924	2.645 0.076 1.924 0.078
	00	0.373	1.099		0.185	1.815		2.847			0.820	0.820 2.791	0.820 2.791 0.136	0.820 2.791 0.136 1.864	0.820 2.791 0.136 1.864 0.139
	9	0.337	1.032	0.412	0.239	1.761		2.970			0.808	0.808 2.915	0.808 2.915 0.184	0.808 2.915 0.184 1.816	0.808 2.915 0.184 1.816 0.187
	10	0.308	0.975		0.284	1.716		3.078			0.797	0.797 3.024	0.797 3.024 0.223	0.797 3.024 0.223 1.777	0.797 3.024 0.223 1.777 0.227
	11	0.285	0.927	0.350	0.321	1.679		3.173			0.787	0.787 3.121	0.787 3.121 0.256	0.787 3.121 0.256 1.744	0.787 3.121 0.256 1.744
	12	0.266	0.886		0.354	1.646		3.258			0.778	0.778 3.207	0.778 3.207 0.283	0.778 3.207 0.283	0.778 3.207 0.283
	13	0.249	0.850		0.382	1.618		3.336		0.770		3.285	3.285 0.307	3.285 0.307	3.285 0.307
	14	0.235	0.817		0.406	1.594		3.407		0.762		3.356	3.356 0.328	3.356 0.328	3.356 0.328
	15	0.223	0.789		0.428	1.572		3.472		0.755		3.422	3.422 0.347	3.422 0.347	3.422 0.347
	16	0.212	0.763		0.448	1.552		3.532		0.749		3.482	3.482 0.363	3.482 0.363	3.482 0.363
	17	0.203	0.739		0.466	1.534		3.588		0.743		3.538	3.538 0.378	3.538 0.378	3.538 0.378
	18	0.194	0.718		0.482	1.518		3.640		0.738		3.591	3.591 0.391	3.591 0.391	3.591 0.391
	19	0.187	0.698		0.497	1.503		3.689		0.733		3.640	3.640 0.403	3.640 0.403	3.640 0.403
	20	0.180	0.680		0.510	1.490		3.735		0.729		3.686	3.686 0.415	3.686 0.415	3.686 0.415 1.585
	21	0.173	0.663		0.523	1.477		3.778		0.724		3.730	3.730 0.425	3.730 0.425	3.730 0.425 1.575
	22	0.167	0.647		0.534	1.466		3.819			0.720	0.720 3.771	0.720 3.771 0.434	0.720 3.771 0.434	0.720 3.771 0.434
	23	0.162	0.633		0.545	1.455		3.858			0.716	0.716 3.811	0.716 3.811 0.443	0.716 3.811 0.443	0.716 3.811 0.443 1.557
	24	0.157	0.619		0.555	1.445		3.895			0.712	0.712 3.847	0.712 3.847 0.451	0.712 3.847 0.451	0.712 3.847 0.451 1.548
	25	0.153	0.606		0.565	1.435		3.931		0.709		3.883	3.883 0.459	3.883 0.459	3.883 0.459 1.541
More t	than 25	3/Vn			$1 - 3/\sqrt{2n}$	$1 + 3/\sqrt{2n}$									