Homework Assignment 2 Loss Functions and Support Vector Machines

Lecturer: Kyunghyun Cho

February 8, 2018

1. Equivalence of negative log probability and logistic loss After replacing the label set from $\{0,1\}$ to $\{-1,1\}$, we introduced the log loss

$$D_{\log}(y, \mathbf{x}; M) = \frac{1}{\log 2} \log(1 + \exp(-s(y, \mathbf{x}; M))),$$

as an alternative to the logistic regression distance function above. Show that these two are equivalent up to a constant multiplication for logistic regression.

2. Hinge loss gradients Unlike the log loss, the hinge loss, defined below, is not differentiable everywhere:

$$D_{\text{hinge}}(y, \mathbf{x}; M) = \max(0, 1 - s(y, \mathbf{x}; M)).$$

Does it mean that we cannot use a gradient-based optimization algorithm for finding a solution that minimizes the hinge loss? If not, what can we do about it?

3. Model Selection Consider that we are learning a logistic regression M^1 and a perceptron M^2 , and we have three datasets: a training set D_{train} , a validation set D_{val} , and a test set D_{test} .

The two models are iteratively optimized on D_{train} over T steps, and now we have T logistic regression parameter configurations $M_1^1, M_2^1, \dots, M_T^1$ and T perceptron configurations $M_1^2, M_2^2, \dots, M_T^2$.

We now evaluate the expected cost for all the 2T models on training set, validation set, and test set. So we have 6T quantities $\tilde{R}^i_{\text{train},t}$, $\tilde{R}^i_{\text{val},t}$, $\tilde{R}^i_{\text{test},t}$ where i=1,2 and $t=1,\ldots,T$.

Which i and t should we pick as the best model?

4. Image Recovery & Numerical Stability Programming Assignment: Please download