# Facultad de Filosofía,

### Educación y

#### Ciencias Humanas



#### Práctica calificada 1

Curso: Lógica y Argumentación

Sección: 8

Nombre y apellidos: LUZ MARIA GOHEZ ALARCON

## Parte I. Sintaxis y semántica de LC

[6 puntos]

Desarrolla los siguientes:

A) Indica cuáles de las siguientes secuencias de símbolos son mal formadas. Además, debes indicar qué error se comete en cada una de ellas (0.75 puntos c/u).

a. 
$$\neg (\neg R \land \neg (\neg P \neg (\neg S \lor \neg (Q \equiv T))))$$

**b.** 
$$((\neg P \lor \neg (T \equiv \neg S)) \supset ((Q \lessdot \neg R) \lor \neg Q))$$

c. 
$$\neg (\neg (R \lor (\neg (\neg (S \equiv Q) \land P))) \supset (S \lor \neg T))$$

**d.** 
$$((P \land \neg Q) \equiv \neg R) \supset (\neg S \equiv \neg (P \lor T))$$

| Secuencia<br>mal formada | Error cometido                                                                                                                                     |
|--------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|
| а                        | solo hay 3 simbolos y en la formula encontramos 4 parentesis de abertura y 4 de cierre, ese seria el error, porque esta sobrepasando en parentesis |
| Ь                        | Encontramos un símbolo que no pertenece at a trobeto los símbolos de la L.C                                                                        |
| С                        | De igual Formo se encuentra y símbolos<br>y se encuentra 5 parentesis de abortura y<br>s de cierre, lo cual estaria de mas. ese<br>seria el error. |

B) Construye el árbol sintáctico de la fórmula bien formada. Además, señala cuál es su operador principal, cuál es su grado de complejidad y cuántas subfórmulas tiene. (1.75 puntos)

| Fórmula bien formada | Árbol sintáctico                                                                                  |
|----------------------|---------------------------------------------------------------------------------------------------|
|                      | P' FQ R' 5 (POT)  (POTQ) FR FS FICENT)  ((PATQ) ETR) (TS ET (PVT))  ((CPATQ) = TR) (TS = T (PVT)) |
|                      | Operador principal: > Grado de complejidad: 4 Cantidad de subfórmulas: 15                         |

C) Elabora un modelo y un contramodelo para la fórmula bien formada. Debes consignar el cálculo lineal de valores de la fila correspondiente (1 punto c/u):

| Modelo |   |   | lo |   | Cálculo                     |
|--------|---|---|----|---|-----------------------------|
| P      | Q | R | S  | T | (((PN-1Q)=-R) (-15=-(PVT))) |
| V      | V | M | F  | V | VE FUV FU V VF V FVVV       |

| Contramodelo |   |   |   |   | Cálculo                    |  |
|--------------|---|---|---|---|----------------------------|--|
| P            | Q | R | S | T | (((PN7Q)=7R) (75=7 (PVT))) |  |
| F            | F | V | F | V | FFVFV FV E VFF FFVV        |  |

# Parte II. Tablas de verdad y conceptos semánticos

[8 puntos]

Considera las siguientes reglas extra para el conector  $\propto$  que se añaden a la LC:

Reglas de formación extra

rf5. Si  $\phi$  y  $\psi$  son fbf's, entonces  $(\phi \# \psi)$  es una fbf.

Reglas de interpretación extra

ri7. 
$$U(\phi \# \psi) = V \sin U(\phi) = F \text{ y } U(\psi) = V$$

A continuación, desarrolla los siguientes ítems:

V

A) Crea la tabla de verdad compartida por  $\phi$  y  $\psi$ . Debes consignar, como mínimo, todos los valores de los conectores lógicos. (2 puntos)

Considera las siguientes afirmaciones:

a.  $(\phi \supset \neg \chi)$  implica a  $(\phi \land \neg \chi)$ . b. Si  $\psi$  es tautológica e implica a  $\omega$ , entonces  $\phi : (\psi \land \omega)$  es válido.

A continuación, señala si expresan propiedades cumplidas por cualquier fórmula en LC o no. Justifica tu respuesta. (3 puntos c/u)

|    | ¿Expresa una<br>propiedad de la<br>LC?                                                                                                                             | Justificación                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| a. | Implica<br>yaque<br>existe<br>V-F.                                                                                                                                 | No impliese V F  OIX (CO) -X (O) ATX)  V V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V F F V |
| b. | ty y W<br>Es<br>Valido<br>ya que<br>tautologica<br>y al asumir<br>que W 10<br>puede ser<br>Es valido, no<br>puede ser<br>Es valido, no<br>puede ser<br>previse y y | Des mushão                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |