Notes on Combinatorics

Alec Zabel-Mena Text -

January 26, 2021

Chapter 1

Essential Problems

There are some essential problems to discuss, but we first give some counting principles.

Axiom 1.0.1 (The Sum Rule). Suppose S_1, S_2, \ldots, S_m are mutually disjoint finite sets and that $|S_i| = n_i$ for $1 \le i \le n$. There are $n_1 + n_2 + \cdots + n_m = \sum_{i=1}^m n$ ways to select one element from any of the sets S_i

Axiom 1.0.2 (The Product Rule). Suppose S_1, S_2, \ldots, S_m are finite sets, (not necessarily mutually disjoint) for $1 \le i \le n$. Provided that the selections are made independently, there are $n_1 n_2 \ldots n_m =_{i=1}^m n_i$ ways to select one element from the set S_i followed by an element from S_{i+1} .

The following problems can now be discussed, and are all solved by the product rule.

Problem 1. How many ways are there to order n different elements in a given n element set?

Solution. Let S be a set with |S| = n and choose one element $s_1 \in S$ and take $S_1 = S \setminus s_1$, since s_1 is arbitrary, by the sum rule, there are n choices for elements in S Now we need to choose elements from S_1 which has $|S_1| = n - 1$, by the same reasoning, choose $s_2 \in S_2$ and take $S_2 = S_1 \setminus s_2$. Since s_2 was arbitrary, by the sum rule again, there are n - 1 ways to choose elements from S_2 . Continuing along this construction, take $s_i \in S_{i-1}$ and take $S_0 = S_{i-1}s_i \setminus$, by the same reasoning there are n - i ways to choose elements from S_i , where $1 \le i \le n$. Then by the product rule, there are $i = n - i = n(n - 1) \dots 2 \cdot 1 \cdot 0! = n!$ ways to order n elements of S.

Problem 2. How many ways are there to order k elements from an n element set?

Solution. Let S be a set with |S| = n and choose an arbitrary subset $T \subseteq S$ with |T| = k. Now there are n! ways to order the elements of S and (n - k)! ways to order elements from $S \setminus T$, hence there are $\frac{n!}{(n-k)!}$ ways to order k elements of T from S.

Problem 3. How many ways are the to select k elements, regardless of order, from an n element set?

Solution (1). Let S be a set with |S| = n and $T \subseteq S$ with |T| = k. We have there are n! ways to order the elements of S, k! ways to order the elements of T and $\frac{n!}{(n-k)!}$ ways to order the elements of $S \setminus T$. Now since order is irrelevant, the ordering of the elements of T does not matter. Hence there are $\binom{n}{k} = \frac{n!}{k!(n-k)!}$ ways to select k elements from S in no particular order.

There is an another way of arriving to this solution.

Definition 1.0.1. We define the falling factorial power $x^{\underline{k}}$, of x is the product

$$x^{\underline{k}} = x(x-1)(x-2)\dots(x-k+1) = \prod_{i=1}^{k-1} x - i$$
 (1.1)

We define the **rising factorial power** of x to be

$$x^{\bar{k}} = x(x+1)(x+2)\dots(x+k-1) = \prod_{i=1}^{k-1} x - i$$
 (1.2)

Ande we define $n^{\underline{0}=n^{\bar{0}}=0!=1}$.

Solution (2). Notice that $\frac{n!}{(n-k)!} = n(n-1)\dots(n-k+1) = n^{\underline{k}} = n^{\overline{k}}$ and $n^{\underline{n}} = 1^{\overline{n}} = n!$. So there are $\frac{n^{\underline{k}}}{k!} = \frac{n!}{k!(n-k)!} = \binom{n}{k}$ ways to choose k elements from S in no particular order.

Remark. Note that this solution is not unique.