Exo7

Trigonométrie

Exercices de Jean-Louis Rouget. Retrouver aussi cette fiche sur www.maths-france.fr

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours

Exercice 1 *IT

Résoudre dans \mathbb{R} puis dans $[0,2\pi]$ les équations suivantes :

- 1. $\sin x = 0$,
- 2. $\sin x = 1$,
- 3. $\sin x = -1$,
- 4. $\cos x = 1$,
- 5. $\cos x = -1$,
- 6. $\cos x = 0$,
- 7. $\tan x = 0$,
- 8. $\tan x = 1$.

Correction ▼ [005063]

Exercice 2 *IT

Résoudre dans \mathbb{R} puis dans $[0,2\pi]$ les équations suivantes :

- 1. $\sin x = \frac{1}{2}$,
- 2. $\sin x = -\frac{1}{\sqrt{2}}$,
- 3. $\tan x = -1$,
- 4. $\tan x = \frac{1}{\sqrt{3}}$,
- 5. $\cos x = \frac{\sqrt{3}}{2}$,
- 6. $\cos x = -\frac{1}{\sqrt{2}}$.

Correction ▼ [005064]

Exercice 3 **IT

Résoudre dans \mathbb{R} puis dans I les équations suivantes :

- 1. $\sin(2x) = \frac{1}{2}$, $I = [0, 2\pi]$,
- 2. $\sin\left(\frac{x}{2}\right) = -\frac{1}{\sqrt{2}}, I = [0, 4\pi],$
- 3. tan(5x) = 1, $I = [0, \pi]$,
- 4. $cos(2x) = cos^2 x$, $I = [0, 2\pi]$,
- 5. $2\cos^2 x 3\cos x + 1 = 0$, $I = [0, 2\pi]$,
- 6. $\cos(nx) = 0 \ (n \in \mathbb{N}^*),$
- 7. $|\cos(nx)| = 1$,
- 8. $\sin(nx) = 0$,
- 9. $|\sin(nx)| = 1$,
- 10. $\sin x = \tan x$, $I = [0, 2\pi]$,

- 11. $\sin(2x) + \sin x = 0$, $I = [0, 2\pi]$,
- 12. $12\cos^2 x 8\sin^2 x = 2$, $I = [-\pi, \pi]$.

Correction ▼ [005065]

Exercice 4 **IT

Résoudre dans I les inéquations suivantes :

- 1. $\cos x \le \frac{1}{2}$, $I = [-\pi, \pi]$,
- 2. $\sin x \ge -\frac{1}{\sqrt{2}}$, $I = \mathbb{R}$,
- 3. $\cos x > \cos \frac{x}{2}$, $I = [0, 2\pi]$,
- 4. $\cos^2 x \ge \cos(2x)$, $I = [-\pi, \pi]$,
- 5. $\cos^2 x \le \frac{1}{2}$, $I = [0, 2\pi]$,
- 6. $\cos \frac{x}{3} \le \sin \frac{x}{3}$, $I = [0, 2\pi]$.

Correction ▼ [005066]

Exercice 5 *I

Calculer $\cos \frac{\pi}{8}$ et $\sin \frac{\pi}{8}$.

Correction ▼ [005067]

Exercice 6 *I

 $\overline{\text{Calculer }\cos\frac{\pi}{12}\text{ et }\sin\frac{\pi}{12}}.$

Correction ▼ [005068]

Exercice 7 ***

Montrer que $\sum \cos(a_1 \pm a_2 \pm ... \pm a_n) = 2^n \cos a_1 \cos a_2 ... \cos a_n$ (la somme comporte 2^n termes).

Correction ▼ [005069]

Exercice 8 ***I

- 1. Calculer $\prod_{k=1}^{n} \cos\left(\frac{a}{2^k}\right)$ pour a élément donné de $]0,\pi[$ (penser à $\sin(2x)=2\sin x\cos x$).
- 2. Déterminer $\lim_{n\to+\infty} \sum_{k=1}^n \ln\left(\cos\left(\frac{a}{2^k}\right)\right)$.

Correction ▼ [005070]

Exercice 9 **

Résoudre dans \mathbb{R} l'équation $2^{4\cos^2 x + 1} + 16.2^{4\sin^2 x - 3} = 20$.

Correction ▼ [005071]

Exercice 10 ***

Soit a un réel distinct de $\frac{1}{\sqrt{3}}$ et $-\frac{1}{\sqrt{3}}$.

- 1. Calculer $tan(3\theta)$ en fonction de $tan \theta$.
- 2. Résoudre dans \mathbb{R} l'équation :

$$\frac{3x - x^3}{1 - 3x^2} = \frac{3a - a^3}{1 - 3a^2}$$

On trouvera deux méthodes, l'une algébrique et l'autre utilisant la formule de trigonométrie établie en 1).

Correction ▼ [005072]

Exercice 11 ****

On veut calculer $S = \tan 9^{\circ} - \tan 27^{\circ} - \tan 63^{\circ} + \tan 81^{\circ}$.

- 1. Calculer tan(5x) en fonction de tan x.
- 2. En déduire un polynôme de degré 4 dont les racines sont tan 9°, —tan 27°, —tan 63° et tan 81° puis la valeur de *S*.

Correction ▼ [005073]

Exercice 12 ***

Combien l'équation

$$\tan x + \tan(2x) + \tan(3x) + \tan(4x) = 0$$
,

possède-t-elle de solutions dans $[0, \pi]$?

Correction ▼ [005074]

Exercice 13 **I

On veut calculer $\cos \frac{2\pi}{5}$ et $\sin \frac{2\pi}{5}$. Pour cela, on pose $a = 2\cos \frac{2\pi}{5}$, $b = 2\cos \frac{4\pi}{5}$ et $z = e^{2i\pi/5}$.

- 1. Vérifier que $a = z + z^4$ et $b = z^2 + z^3$.
- 2. Vérifier que $1 + z + z^2 + z^3 + z^4 = 0$.
- 3. En déduire un polynôme de degré 2 dont les racines sont a et b puis les valeurs exactes de $\cos \frac{2\pi}{5}$ et $\sin \frac{2\pi}{5}$.

Correction ▼ [005075]

Exercice 14 **I

Calculer une primitive de chacune des fonctions suivantes :

- 1. $x \mapsto \cos^2 x$,
- 2. $x \mapsto \cos^4 x$,
- 3. $x \mapsto \sin^4 x$,
- 4. $x \mapsto \cos^2 x \sin^2 x$,
- 5. $x \mapsto \sin^6 x$,
- 6. $x \mapsto \cos x \sin^6 x$.
- 7. $x \mapsto \cos^5 x \sin^2 x$,
- 8. $x \mapsto \cos^3 x$.

Correction ▼ [005076]

Exercice 15 **

Calculer $I = \int_{\pi/6}^{\pi/3} \cos^4 x \sin^6 x \, dx$ et $J = \int_{\pi/6}^{\pi/3} \cos^4 x \sin^7 x \, dx$.

Correction ▼ [005077]

Exercice 16 **

Démontrer les identités suivantes, en précisant à chaque fois leur domaine de validité :

- $1. \ \frac{1-\cos x}{\sin x} = \tan \frac{x}{2},$
- 2. $\sin\left(x \frac{2\pi}{3}\right) + \sin x + \sin\left(x + \frac{2\pi}{3}\right) = 0$,
- 3. $\tan\left(\frac{\pi}{4} + x\right) + \tan\left(\frac{\pi}{4} x\right) = \frac{2}{\cos(2x)}$,
- 4. $\frac{1}{\tan x} \tan x = \frac{2}{\tan(2x)}$.

Exercice 17 ***

Soit k un réel distinct de -1 et de 1.

- 1. Etudier les variations de $f_k: x \mapsto \frac{\sin x}{\sqrt{1-2k\cos x+k^2}}$.
- 2. Calculer $\int_0^{\pi} f_k(x) dx$.

Correction ▼ [005079]

Exercice 18 ***I

Calculer les sommes suivantes :

- 1. $\sum_{k=0}^{n} \cos(kx)$ et $\sum_{k=0}^{n} \sin(kx)$, $(x \in \mathbb{R} \text{ et } n \in \mathbb{N} \text{ donnés})$.
- 2. $\sum_{k=0}^{n} \cos^2(kx)$ et $\sum_{k=0}^{n} \sin^2(kx)$, $(x \in \mathbb{R} \text{ et } n \in \mathbb{N} \text{ donnés})$.
- 3. $\sum_{k=0}^{n} \binom{n}{k} \cos(kx)$ et $\sum_{k=0}^{n} \binom{n}{k} \sin(kx)$, $(x \in \mathbb{R} \text{ et } n \in \mathbb{N} \text{ donnés})$.

Correction ▼ [005080]

Exercice 19 ***

Résoudre le système $\begin{cases} \cos a + \cos b + \cos c = 0 \\ \sin a + \sin b + \sin c = 0 \end{cases}$ où a, b et c sont trois réels.

Correction ▼ [005081]

Exercice 20 **

Montrer que $\cos^4 \frac{\pi}{8} + \cos^4 \frac{3\pi}{8} + \cos^4 \frac{5\pi}{8} + \cos^4 \frac{7\pi}{8} = \frac{3}{2}$.

Correction ▼ [005082]

Exercice 21 ***

- 1. Résoudre dans \mathbb{R} l'équation $\cos(3x) = \sin(2x)$.
- 2. En déduire les valeurs de $\sin x$ et $\cos x$ pour x élément de $\left\{\frac{\pi}{10}, \frac{\pi}{5}, \frac{3\pi}{10}\right\}$.

Correction ▼ [005083]

Correction de l'exercice 1 A

- 1. $\sin x = 0 \Leftrightarrow x \in \pi \mathbb{Z}$. De plus, $\mathscr{S}_{[0,2\pi]} = \{0, \pi, 2\pi\}$.
- 2. $\sin x = 1 \Leftrightarrow x \in \frac{\pi}{2} + 2\pi \mathbb{Z}$. De plus, $\mathscr{S}_{[0,2\pi]} = \left\{\frac{\pi}{2}\right\}$.
- 3. $\sin x = -1 \Leftrightarrow x \in -\frac{\pi}{2} + 2\pi \mathbb{Z}$. De plus, $\mathcal{S}_{[0,2\pi]} = \left\{\frac{3\pi}{2}\right\}$.
- 4. $\cos x = 1 \Leftrightarrow x \in 2\pi \mathbb{Z}$. De plus, $\mathscr{S}_{[0,2\pi]} = \{0,2\pi\}$.
- 5. $\cos x = -1 \Leftrightarrow x \in \pi + 2\pi \mathbb{Z}$. De plus, $\mathscr{S}_{[0,2\pi]} = {\pi}$.
- 6. $\cos x = 0 \Leftrightarrow x \in \frac{\pi}{2} + \pi \mathbb{Z}$. De plus, $\mathcal{S}_{[0,2\pi]} = \left\{ \frac{\pi}{2}, \frac{3\pi}{2} \right\}$.
- 7. $\tan x = 0 \Leftrightarrow x \in \pi \mathbb{Z}$. De plus, $\mathscr{S}_{[0,2\pi]} = \{0,\pi,2\pi\}$.
- 8. $\tan x = 1 \Leftrightarrow x \in \frac{\pi}{4} + \pi \mathbb{Z}$. De plus, $\mathscr{S}_{[0,2\pi]} = \left\{ \frac{\pi}{4}, \frac{5\pi}{4} \right\}$.

Correction de l'exercice 2 A

- 1. $\sin x = \frac{1}{2} \Leftrightarrow x \in \left(\frac{\pi}{6} + 2\pi\mathbb{Z}\right) \cup \left(\frac{5\pi}{6} + 2\pi\mathbb{Z}\right)$. De plus, $\mathscr{S}_{[0,2\pi]} = \left\{\frac{\pi}{6}, \frac{5\pi}{6}\right\}$.
- 2. $\sin x = -\frac{1}{\sqrt{2}} \Leftrightarrow x \in \left(-\frac{\pi}{4} + 2\pi\mathbb{Z}\right) \cup \left(-\frac{3\pi}{4} + 2\pi\mathbb{Z}\right)$. De plus, $\mathscr{S}_{[0,2\pi]} = \left\{-\frac{\pi}{4}, -\frac{3\pi}{4}\right\}$.
- 3. $\tan x = -1 \Leftrightarrow x \in -\frac{\pi}{4} + \pi \mathbb{Z}$. De plus, $\mathscr{S}_{[0,\pi]} = \left\{ \frac{3\pi}{4} \right\}$.
- 4. $\tan x = \frac{1}{\sqrt{3}} \Leftrightarrow x \in \frac{\pi}{6} + \pi \mathbb{Z}$. De plus, $\mathscr{S}_{[0,\pi]} = \left\{ \frac{\pi}{6} \right\}$.
- 5. $\cos x = \frac{\sqrt{3}}{2} \Leftrightarrow x \in \left(-\frac{\pi}{6} + \pi \mathbb{Z}\right) \cup \left(\frac{\pi}{6} + \pi \mathbb{Z}\right)$. De plus, $\mathscr{S}_{[0,2\pi]} = \left\{\frac{\pi}{6}, \frac{11\pi}{6}\right\}$.
- 6. $\cos x = -\frac{1}{\sqrt{2}} \Leftrightarrow x \in \left(-\frac{3\pi}{4} + \pi\mathbb{Z}\right) \cup \left(\frac{3\pi}{4} + \pi\mathbb{Z}\right)$. De plus, $\mathscr{S}_{[0,2\pi]} = \left\{\frac{3\pi}{4}, \frac{5\pi}{4}\right\}$.

Correction de l'exercice 3

- 1. $\sin(2x) = \frac{1}{2} \Leftrightarrow 2x \in \left(\frac{\pi}{6} + 2\pi\mathbb{Z}\right) \cup \left(\frac{5\pi}{6} + 2\pi\mathbb{Z}\right) \Leftrightarrow x \in \left(\frac{\pi}{12} + \pi\mathbb{Z}\right) \cup \left(\frac{5\pi}{12} + \pi\mathbb{Z}\right)$. De plus, $\mathscr{S}_{[0,2\pi]} = \left\{\frac{\pi}{12}, \frac{5\pi}{12}, \frac{13\pi}{12}, \frac{17\pi}{12}\right\}$.
- 2. $\sin \frac{x}{2} = -\frac{1}{\sqrt{2}} \Leftrightarrow \frac{x}{2} \in \left(\frac{5\pi}{4} + 2\pi\mathbb{Z}\right) \cup \left(\frac{7\pi}{4} + 2\pi\mathbb{Z}\right) \Leftrightarrow x \in \left(\frac{5\pi}{2} + 4\pi\mathbb{Z}\right) \cup \left(\frac{7\pi}{2} + 4\pi\mathbb{Z}\right)$. De plus, $\mathscr{S}_{[0,4\pi]} = \left\{\frac{5\pi}{2}, \frac{7\pi}{2}\right\}$.
- 3. $\tan(5x) = 1 \Leftrightarrow 5x \in \frac{\pi}{4} + \pi\mathbb{Z} \Leftrightarrow x \in \frac{\pi}{20} + \frac{\pi}{5}\mathbb{Z}$. De plus, $\mathscr{S}_{[0,\pi]} = \left\{\frac{\pi}{20}, \frac{\pi}{4}, \frac{9\pi}{20}, \frac{13\pi}{20}, \frac{17\pi}{20}\right\}$.
- 4. $\cos(2x) = \cos^2 x \Leftrightarrow \cos(2x) = \frac{1}{2}(1 + \cos(2x)) \Leftrightarrow \cos(2x) = 1 \Leftrightarrow 2x \in 2\pi\mathbb{Z} \Leftrightarrow x \in \pi\mathbb{Z}$. De plus, $\mathscr{S}_{[0,2\pi]} = \{0,\pi,2\pi\}$.
- 5. $2\cos^2 x 3\cos x + 1 = 0 \Leftrightarrow (2\cos x 1)(\cos x 1) = 0 \Leftrightarrow \cos x = \frac{1}{2} \text{ ou } \cos x = 1 \Leftrightarrow x \in \left(-\frac{\pi}{3} + 2\pi\mathbb{Z}\right) \cup \left(\frac{\pi}{3} + 2\pi\mathbb{Z}\right) \cup 2\pi\mathbb{Z}. \text{ De plus, } \mathscr{S}_{[0,2\pi]} = \left\{0, \frac{\pi}{3}, \frac{5\pi}{3}, 2\pi\right\}.$
- 6. $\cos(nx) = 0 \Leftrightarrow nx \in \frac{\pi}{2} + \pi \mathbb{Z} \Leftrightarrow x \in \frac{\pi}{2n} + \frac{\pi}{n} \mathbb{Z}$.
- 7. $|\cos(nx)| = 1 \Leftrightarrow nx \in \pi \mathbb{Z} \Leftrightarrow x \in \frac{\pi}{n} \mathbb{Z}$.
- 8. $\sin(nx) = 0 \Leftrightarrow nx \in \pi\mathbb{Z} \Leftrightarrow x \in \frac{\pi}{n}\mathbb{Z}$.
- 9. $|\sin(nx)| = 1 \Leftrightarrow nx \in \frac{\pi}{2} + \pi \mathbb{Z} \Leftrightarrow x \in \frac{\pi}{2n} + \frac{\pi}{n} \mathbb{Z}$.
- 10. $\sin x = \tan x \Leftrightarrow \sin x \frac{\sin x}{\cos x} = 0 \Leftrightarrow \sin x \frac{\cos x 1}{\cos x} = 0 \Leftrightarrow \sin x = 0 \text{ ou } \cos x = 1 \Leftrightarrow x \in \pi \mathbb{Z}$. De plus, $\mathscr{S}_{[0,2\pi]} = \{0, \pi, 2\pi\}$.
- 11.

$$\sin(2x) + \sin x = 0 \Leftrightarrow \sin(2x) = \sin(x+\pi) \Leftrightarrow (\exists k \in \mathbb{Z}/2x = x + \pi + 2k\pi) \text{ ou } (\exists k \in \mathbb{Z}/2x = -x + 2k\pi)$$
$$\Leftrightarrow (\exists k \in \mathbb{Z}/x = \pi + 2k\pi) \text{ ou } (\exists k \in \mathbb{Z}/x = \frac{2k\pi}{3})$$

De plus, $\mathscr{S}_{[0,2\pi]} = \{0, \frac{2\pi}{3}, \pi, \frac{4\pi}{3}, 2\pi\}.$

12.

$$12\cos^2 x - 8\sin^2 x = 2 \Leftrightarrow 6\cos^2 x - 4(1 - \cos^2 x) = 1 \Leftrightarrow \cos^2 x = \frac{1}{2} \Leftrightarrow \cos x = \frac{1}{\sqrt{2}} \text{ ou } \cos x = -\frac{1}{\sqrt{2}}$$
$$\Leftrightarrow x \in \left(-\frac{\pi}{4} + \pi\mathbb{Z}\right) \cup \left(\frac{\pi}{4} + \pi\mathbb{Z}\right) \Leftrightarrow x \in \frac{\pi}{4} + \frac{\pi}{2}\mathbb{Z}.$$

Correction de l'exercice 4

- 1. Pour $x \in [-\pi, \pi]$, $\cos x \le \frac{1}{2} \Leftrightarrow x \in [-\pi, -\frac{\pi}{3}] \cup [\frac{\pi}{3}, \pi]$.
- 2. Pour $x \in \mathbb{R}$, $\sin x \ge -\frac{1}{\sqrt{2}} \Leftrightarrow x \in \bigcup_{1 \le T} \left[-\frac{\pi}{4} + 2k\pi, \frac{5\pi}{4} + 2k\pi \right]$.
- 3. Pour $x \in [0, 2\pi]$,

$$\cos x > \cos \frac{x}{2} \Leftrightarrow 2\cos^2 \frac{x}{2} - \cos \frac{x}{2} - 1 > 0 \Leftrightarrow (2\cos \frac{x}{2} + 1)(\cos \frac{x}{2} - 1) > 0 \Leftrightarrow 2\cos \frac{x}{2} + 1 < 0 \text{ et } \cos \frac{x}{2} \neq 1$$

$$\Leftrightarrow \cos \frac{x}{2} < -\frac{1}{2} \text{ et } \frac{x}{2} \notin 2\pi \mathbb{Z} \Leftrightarrow \frac{x}{2} \in \bigcup_{k \in \mathbb{Z}} \left] \frac{2\pi}{3} + 2k\pi, \frac{4\pi}{3} + 2k\pi \right[\text{ et } x \notin 4\pi \mathbb{Z}$$

$$\Leftrightarrow x \in \bigcup_{k \in \mathbb{Z}} \left[\frac{4\pi}{3} + 4k\pi, \frac{8\pi}{3} + 4k\pi \right] \left[\text{ et } x \notin 4\pi \mathbb{Z} \Leftrightarrow x \in \left[\frac{4\pi}{3}, 2\pi \right] \right]$$

- 4. Pour $x \in [-\pi, \pi]$, $\cos^2 x \ge \cos(2x) \Leftrightarrow \frac{1}{2}(1 + \cos(2x)) \ge \cos(2x) \Leftrightarrow \cos(2x) \le 1 \Leftrightarrow x \in [-\pi, \pi]$.
- 5. Pour $x \in [0, 2\pi]$, $\cos^2 x \le \frac{1}{2} \Leftrightarrow -\frac{1}{\sqrt{2}} \le \cos x \le \frac{1}{\sqrt{2}} \Leftrightarrow x \in \left[\frac{\pi}{4}, \frac{3\pi}{4}\right] \cup \left[\frac{5\pi}{4}, \frac{7\pi}{4}\right]$.
- 6. Pour $x \in [0, 2\pi]$,

$$\cos\frac{x}{3} \le \sin\frac{x}{3} \Leftrightarrow \frac{1}{\sqrt{2}}\sin\frac{x}{3} - \frac{1}{\sqrt{2}}\cos\frac{x}{3} \ge 0 \Leftrightarrow \sin\left(\frac{x}{3} - \frac{\pi}{4}\right) \ge 0 \Leftrightarrow \exists k \in \mathbb{Z}/2k\pi \le \frac{x}{3} - \frac{\pi}{4} \le \pi + 2k\pi$$
$$\Leftrightarrow \exists k \in \mathbb{Z}/\frac{3\pi}{4} + 6k\pi \le x \le 3\pi + \frac{3\pi}{4} + 6k\pi \Leftrightarrow \frac{3\pi}{4} \le x \le 2\pi$$

Correction de l'exercice 5 \(\text{cos} \)
$$\frac{1}{\cos^2 \frac{\pi}{8} = \frac{1}{2} \left(1 + \cos(2 \times \frac{\pi}{8}) \right) = \frac{1}{2} \left(1 + \frac{\sqrt{2}}{2} \right) = \frac{2 + \sqrt{2}}{4}, \text{ et puisque } \cos \frac{\pi}{8} > 0,$$

$$\cos\frac{\pi}{8} = \frac{1}{2}\sqrt{2+\sqrt{2}}.$$

De même, puisque $\sin \frac{\pi}{8} > 0$, $\sin \frac{\pi}{8} = \sqrt{\frac{1}{2} \left(1 - \cos(2 \times \frac{\pi}{8})\right)}$ et

$$\sin\frac{\pi}{8} = \frac{1}{2}\sqrt{2-\sqrt{2}}.$$

Correction de l'exercice 6

$$\cos\frac{\pi}{12} = \cos\left(\frac{\pi}{3} - \frac{\pi}{4}\right) = \cos\frac{\pi}{3}\cos\frac{\pi}{4} + \sin\frac{\pi}{3}\sin\frac{\pi}{4} = \frac{\sqrt{6} + \sqrt{2}}{4}.$$

De même,

$$\sin\frac{\pi}{12} = \sin\left(\frac{\pi}{3} - \frac{\pi}{4}\right) = \sin\frac{\pi}{3}\cos\frac{\pi}{4} - \sin\frac{\pi}{3}\sin\frac{\pi}{4} = \frac{\sqrt{6} - \sqrt{2}}{4}.$$

$$\cos \frac{\pi}{12} = \frac{\sqrt{6} + \sqrt{2}}{4}$$
 et $\sin \frac{\pi}{12} = \frac{\sqrt{6} - \sqrt{2}}{4}$.

Correction de l'exercice 7 ▲

Pour *n* naturel non nul, on pose $S_n = \sum e^{i(\pm a_1 \pm ... \pm a_n)}$. • $S_1 = e^{ia_1} + e^{-ia_1} = 2\cos a_1$ • Soit $n \ge 1$. Supposons que $S_n = 2^n \cos a_1 ... \cos a_n$ alors

$$S_{n+1} = \sum e^{i(\pm a_1 \pm \dots \pm a_{n+1})} = e^{ia_{n+1}} \sum e^{i(\pm a_1 \pm \dots \pm a_n)} + e^{-ia_{n+1}} \sum e^{i(\pm a_1 \pm \dots \pm a_n)}$$
$$= 2\cos(a_{n+1})S_n = 2^{n+1}\cos a_1 \dots \cos a_{n+1}.$$

On a montré par récurrence que : $\forall n \geq 1$, $S_n = 2^n \cos a_1 ... \cos a_n$. Ensuite, pour $n \geq 1$, $\sum \cos(\pm a_1 \pm ... \pm a_n) = \text{Re}(S_n) = 2^n \cos a_1 ... \cos a_n$ (et on obtient aussi $\sum \sin(\pm a_1 \pm ... \pm a_n) = \text{Im}(S_n) = 0$).

$$\forall n \in \mathbb{N}^*, \sum \cos(\pm a_1 \pm ... \pm a_n) = 2^n \cos a_1 ... \cos a_n.$$

Correction de l'exercice 8 A

1. Soit $n \in \mathbb{N}^*$. Puisque a est dans $]0, \pi[$ alors, pour tout entier naturel non nul k, $\frac{a}{2^k}$ est dans $]0, \pi[$ et donc $\sin \frac{a}{2^k} \neq 0$. De plus, puisque $\sin \left(\frac{a}{2^{k-1}}\right) = \sin \left(2 \times \frac{a}{2^k}\right) = 2\sin \left(\frac{a}{2^k}\right)\cos \left(\frac{a}{2^k}\right)$, on a :

$$\prod_{k=1}^{n} \cos\left(\frac{a}{2^{k}}\right) = \prod_{k=1}^{n} \frac{\sin\left(\frac{a}{2^{k-1}}\right)}{2\sin\left(\frac{a}{2^{k}}\right)} = \frac{1}{2^{n}} \frac{\sin(a)\sin\left(\frac{a}{2}\right) \dots \sin\left(\frac{a}{2^{n-1}}\right)}{\sin\left(\frac{a}{2^{n-1}}\right)\sin\left(\frac{a}{2^{n}}\right)} = \frac{\sin a}{2^{n}\sin\frac{a}{2^{n}}}.$$

$$\forall a \in]0, \pi[, \forall n \in \mathbb{N}^{*}, \prod_{k=1}^{n} \cos\left(\frac{a}{2^{k}}\right) = \frac{\sin a}{2^{n}\sin\frac{a}{2^{n}}}.$$

2. $\forall k \in \mathbb{N}^*$, $\cos\left(\frac{a}{2^k}\right) > 0$ car $\frac{a}{2^k}$ est dans $]0, \frac{\pi}{2}[$. Puis

$$\sum_{k=1}^{n} \ln\left(\cos\left(\frac{a}{2^{k}}\right)\right) = \ln\left(\prod_{k=1}^{n} \cos\left(\frac{a}{2^{k}}\right)\right) = \ln\left(\frac{\sin a}{2^{n} \sin\frac{a}{2^{n}}}\right) = \ln\left(\frac{\sin a}{a}\right) - \ln\left(\frac{\sin\frac{a}{2^{n}}}{\frac{a}{2^{n}}}\right).$$

Maintenant, $\lim_{n\to+\infty} \frac{\sin\frac{a}{2^n}}{\frac{a}{2^n}} = \lim_{x\to 0} \frac{\sin x}{x} = 1$ et donc,

$$\lim_{n \to +\infty} \sum_{k=1}^{n} \ln\left(\cos\left(\frac{a}{2^{k}}\right)\right) = \lim_{n \to +\infty} \left(\ln\left(\frac{\sin a}{a}\right) - \ln\left(\frac{\sin\frac{a}{2^{n}}}{\frac{a}{2^{n}}}\right)\right) = \ln\left(\frac{\sin a}{a}\right).$$

$$\forall a \in]0, \pi[, \lim_{n \to +\infty} \sum_{k=1}^{n} \ln\left(\cos\left(\frac{a}{2^{k}}\right)\right) = \ln\left(\frac{\sin a}{a}\right).$$

Correction de l'exercice 9

 $\overline{\text{Soit } x \in \mathbb{R}}.$

$$\begin{aligned} 2^{4\cos^2 x + 1} + 16.2^{4\sin^2 x - 3} &= 20 \Leftrightarrow 2^{4\cos^2 x + 1} + 16.2^{1 - 4\cos^2 x} = 20 \Leftrightarrow 2^{4\cos^2 x} - 10 + 16 \times 2^{-4\cos^2 x} = 0 \\ &\Leftrightarrow 2^{4\cos^2 x} - 10 + \frac{16}{2^{4\cos^2 x}} = 0 \Leftrightarrow (2^{4\cos^2 x})^2 - 10 \times 2^{4\cos^2 x} + 16 = 0 \\ &\Leftrightarrow 2^{4\cos^2 x} = 2 \text{ ou } 2^{4\cos^2 x} = 8 \Leftrightarrow 4\cos^2 x = 1 \text{ ou } 4\cos^2 x = 3 \\ &\Leftrightarrow \cos x = \frac{1}{2} \text{ ou } \cos x = -\frac{1}{2} \text{ ou } \cos x = \frac{\sqrt{3}}{2} \text{ ou } \cos x = -\frac{\sqrt{3}}{2} \\ &\Leftrightarrow x \in \left(\frac{\pi}{6} + \frac{\pi}{2}\mathbb{Z}\right) \cup \left(\frac{\pi}{3} + \frac{\pi}{2}\mathbb{Z}\right). \end{aligned}$$

Correction de l'exercice 10

1. Tout d'abord, d'après la formule de MOIVRE,

$$\cos(3\theta) + i\sin(3\theta) = (\cos\theta + i\sin\theta)^3 = (\cos^3\theta - 3\cos\theta\sin^2\theta) + i(3\cos^2\theta\sin\theta - \sin^3\theta),$$

et par identification des parties réelles et imaginaires,

$$\forall \theta \in \mathbb{R}, \cos(3\theta) = \cos^3\theta - 3\cos\theta\sin^2\theta \text{ et } \sin(3\theta) = 3\cos^2\theta\sin\theta - \sin^3\theta.$$

Ensuite, $\tan(3\theta)$ et $\tan\theta$ existent $\Leftrightarrow 3\theta \notin \frac{\pi}{2} + \pi\mathbb{Z}$ et $\theta \notin \frac{\pi}{2} + \pi\mathbb{Z} \Leftrightarrow 3\theta \notin \frac{\pi}{2} + \pi\mathbb{Z} \Leftrightarrow \theta \notin \frac{\pi}{6} + \frac{\pi}{3}\mathbb{Z}$. Soit donc $\theta \notin \frac{\pi}{6} + \frac{\pi}{3}\mathbb{Z}$.

$$\tan(3\theta) = \frac{\sin(3\theta)}{\cos(3\theta)} = \frac{3\cos^2\theta\sin\theta - \sin^3\theta}{\cos^3\theta - 3\cos\theta\sin^2\theta} = \frac{3\tan\theta - \tan^3\theta}{1 - 3\tan^2\theta},$$

après division du numérateur et du dénominateur par le réel non nul $\cos^3 \theta$.

$$\forall \theta \in \mathbb{R} \setminus \left(\frac{\pi}{6} + \frac{\pi}{3}\mathbb{Z}\right), \tan(3\theta) = \frac{3\tan\theta - \tan^3\theta}{1 - 3\tan^2\theta}.$$

2. Soit $a \neq \pm \frac{1}{\sqrt{3}}$. **1ère méthode.** a est bien sûr racine de l'équation proposée, ce qui permet d'écrire :

$$\frac{3x - x^3}{1 - 3x^2} = \frac{3a - a^3}{1 - 3a^2} \Leftrightarrow (3x - x^3)(1 - 3a^2) = (1 - 3x^2)(3a - a^3) \text{ (car } \pm \frac{1}{\sqrt{3}} \text{ ne sont pas solution de l'équation)}$$
$$\Leftrightarrow (x - a)((3a^2 - 1)x^2 + 8ax - a^2 + 3) = 0.$$

Le discriminant réduit du trinôme $(3a^2 - 1)x^2 + 8ax - a^2 + 3$ vaut :

$$\Delta' = 16a^2 - (3a^2 - 1)(-a^2 + 3) = 3a^4 + 6a^2 + 3 = (\sqrt{3}(a^2 + 1))^2 > 0.$$

L'équation proposée a donc trois racines réelles :

$$\mathcal{S} = \left\{ a, \frac{4a - \sqrt{3}(a^2 + 1)}{1 - 3a^2}, \frac{4a + \sqrt{3}(a^2 + 1)}{1 - 3a^2} \right\}.$$

2ème méthode. Il existe un unique réel $\alpha \in \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[\setminus \left\{ -\frac{\pi}{6}, \frac{\pi}{6} \right\}$ tel que $a = \tan \alpha$. De même, si x est un réel distinct de $\pm \frac{1}{\sqrt{3}}$, il existe un unique réel $\theta \in \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[\setminus \left\{ -\frac{\pi}{6}, \frac{\pi}{6} \right\}$ tel que $x = \tan \theta$ (à savoir $\alpha = \operatorname{Arctan} a$ et $\theta = \operatorname{arctan} x$). Comme $\pm \frac{1}{\sqrt{3}}$ ne sont pas solution de l'équation proposée, on a :

$$\frac{3x - x^3}{1 - 3x^2} = \frac{3a - a^3}{1 - 3a^2} \Leftrightarrow \frac{3\tan\theta - \tan^3\theta}{1 - 3\tan^2\theta} = \frac{3\tan\alpha - \tan^3\alpha}{1 - 3\tan^2\alpha} \Leftrightarrow \tan(3\theta) = \tan(3\alpha)$$
$$\Leftrightarrow 3\theta \in 3\alpha + \pi\mathbb{Z} \Leftrightarrow \theta \in \alpha + \frac{\pi}{3}\mathbb{Z}.$$

Ceci refournit les solutions $x = \tan \alpha = a$, puis

$$x = \tan\left(\alpha + \frac{\pi}{3}\right) = \frac{\tan\alpha + \tan\frac{\pi}{3}}{1 - \tan\alpha \tan\frac{\pi}{3}} = \frac{a + \sqrt{3}}{1 - \sqrt{3}a} = \frac{(a + \sqrt{3})(1 + \sqrt{3}a)}{1 - 3a^2} = \frac{4a + \sqrt{3}(a^2 + 1)}{1 - 3a^2},$$
 et $x = \tan\left(\alpha - \frac{\pi}{3}\right) = \frac{4a - \sqrt{3}(a^2 + 1)}{1 - 3a^2}.$

Correction de l'exercice 11 A

1. Pour $x \notin \frac{\pi}{10} + \frac{\pi}{5}\mathbb{Z}$,

$$\tan(5x) = \frac{\operatorname{Im}((e^{ix})^5)}{\operatorname{Re}((e^{ix})^5)} = \frac{5\cos^4 x \sin x - 10\cos^2 x \sin^3 x + \sin^5 x}{\cos^5 x - 10\cos^3 x \sin^2 x + 5\cos x \sin^4 x} = \frac{5\tan x - 10\tan^3 x + \tan^5 x}{1 - 10\tan^2 x + 5\tan^4 x},$$

après division du numérateur et du dénominateur par le réel non nul $\cos^5 x$.

$$\forall x \in \mathbb{R} \setminus \left(\frac{\pi}{10} + \frac{\pi}{5}\mathbb{Z}\right), \tan(5x) = \frac{5\tan x - 10\tan^3 x + \tan^5 x}{1 - 10\tan^2 x + 5\tan^4 x}.$$

2. 9° , -27° , -63° et 81° vérifient $\tan(5\times9^{\circ})=\tan(5\times(-27^{\circ}))=\tan(5\times(-63^{\circ}))=\tan(5\times81^{\circ})=1$. On résoud donc l'équation :

$$\tan(5x) = 1 \Leftrightarrow 5x \in \left(\frac{\pi}{4} + \pi\mathbb{Z}\right) \Leftrightarrow x \in \left(\frac{\pi}{20} + \frac{\pi}{5}\mathbb{Z}\right).$$

Les solutions, exprimées en degrés et éléments de] $-90^\circ, 90^\circ$ [, sont $-63^\circ, -27^\circ, 9^\circ, 45^\circ$ et 81° . Ainsi, les cinq nombres $\tan(-63^\circ)$, $\tan(-27^\circ)$, $\tan(9^\circ)$, $\tan(45^\circ)$ et $\tan(81^\circ)$ sont deux à deux distincts et solutions de l'équation $\frac{5X-10X^3+X^5}{1-10X^2+5X^4}=1$ qui s'écrit encore :

$$X^5 - 5X^4 - 10X^3 + 10X^2 + 5X - 1 = 0.$$

Le polynôme $X^5 - 5x^4 - 10X^3 + 10X^2 + 5X - 1$ admet déjà $\tan(45^\circ) = 1$ pour racine et on a

$$X^5 - 5X^4 - 10X^3 + 10X^2 + 5X - 1 = (X - 1)(X^4 - 4X^3 - 14X^2 - 4X + 1).$$

Les quatre nombres $\tan(-63^\circ)$, $\tan(-27^\circ)$, $\tan(9^\circ)$ et $\tan(81^\circ)$ sont ainsi les racines du polynôme $X^4-4X^3-14X^2-4X+1$. Ce dernier peut donc encore s'écrire $(X-\tan(9^\circ))(X+\tan(27^\circ))(X+\tan(63^\circ))(X-\tan(81^\circ))$. L'opposé du coefficient de X^3 à savoir 4 vaut donc également $\tan(9^\circ)-\tan(27^\circ)-\tan(63^\circ)+\tan(81^\circ)$ et on a montré que :

$$\tan(9^\circ) - \tan(27^\circ) - \tan(63^\circ) + \tan(81^\circ) = 4.$$

Correction de l'exercice 12 A

Pour $x \in [0, \pi]$, posons $f(x) = \tan x + \tan(2x) + \tan(3x) + \tan(4x)$.

$$f(x) \text{ existe} \Leftrightarrow \tan x, \ \tan(2x), \ \tan(3x) \text{ et } \tan(4x) \text{ existent}$$

$$\Leftrightarrow (x \notin \frac{\pi}{2} + \pi \mathbb{Z}), \ (2x \notin \frac{\pi}{2} + \pi \mathbb{Z}), \ (3x \notin \frac{\pi}{2} + \pi \mathbb{Z}) \text{ et } (4x \notin \frac{\pi}{2} + \pi \mathbb{Z})$$

$$\Leftrightarrow (x \notin \frac{\pi}{2} + \pi \mathbb{Z}), \ (x \notin \frac{\pi}{4} + \frac{\pi}{2} \mathbb{Z}), \ (x \notin \frac{\pi}{6} + \frac{\pi}{3} \mathbb{Z}) \text{ et } (x \notin \frac{\pi}{8} + \frac{\pi}{4} \mathbb{Z})$$

$$\Leftrightarrow x \notin \left\{ \frac{\pi}{8}, \frac{\pi}{6}, \frac{\pi}{4}, \frac{3\pi}{8}, \frac{\pi}{2}, \frac{5\pi}{8}, \frac{3\pi}{4}, \frac{5\pi}{6}, \frac{7\pi}{8} \right\}.$$

f est définie et continue sur

$$\left[0,\frac{\pi}{8}\right[\cup\left]\frac{\pi}{8},\frac{\pi}{6}\left[\cup\right]\frac{\pi}{6},\frac{\pi}{4}\left[\cup\right]\frac{\pi}{4},\frac{3\pi}{8}\left[\cup\right]\frac{3\pi}{8},\frac{\pi}{2}\left[\cup\right]\frac{\pi}{2},\frac{5\pi}{8}\left[\cup\right]\frac{5\pi}{8},\frac{3\pi}{4}\left[\cup\right]\frac{3\pi}{4},\frac{5\pi}{6}\left[\cup\right]\frac{5\pi}{6},\frac{7\pi}{8}\left[\cup\right]\frac{7\pi}{8},\pi\right].$$

Sur chacun des dix intervalles précédents, f est définie, continue et strictement croissante en tant que somme de fonctions strictement croissantes. La restriction de f à chacun de ces dix intervalles est donc bijective de l'intervalle considéré sur l'intervalle image, ce qui montre déjà que l'équation proposée, que l'on note dorénavant (E), a au plus une solution par intervalle et donc au plus dix solutions dans $[0,\pi]$. Sur $I=\left[0,\frac{\pi}{8}\right[$ ou $I=\left[\frac{7\pi}{8},\pi\right]$, puisque $f(0)=f(\pi)=0$, (E) a exactement une solution dans I. Ensuite, dans l'expression de somme f, une et

une seule des quatre fonctions est un infiniment grand en chacun des nombres considérés ci-dessus, à l'exception de $\frac{\pi}{2}$. En chacun de ces nombres, f est un infiniment grand. L'image par f de chacun des six intervalles ouverts n'ayant pas $\frac{\pi}{2}$ pour borne est donc $]-\infty,+\infty[$ et (E) admet exactement une solution dans chacun de ces intervalles d'après le théorème des valeurs intermédiaires. Ceci porte le total à 6+2=8 solutions. En $\frac{\pi}{2}^-$, $\tan x$ et $\tan(3x)$ tendent vers $+\infty$ tandis que $\tan(2x)$ et $\tan(4x)$ tendent vers 0. f tend donc vers $+\infty$ en $\frac{\pi}{2}^-$, et de même f tend vers $-\infty$ en $\frac{\pi}{2}^+$. L'image par f de chacun des deux derniers intervalles est donc encore une fois $]-\infty,+\infty[$. Finalement,

(E) admet exactement dix solutions dans $[0, \pi]$.

Correction de l'exercice 13

1. D'après les formules d'EULER,

$$z+z^4=e^{2i\pi/5}+e^{8i\pi/5}=e^{2i\pi/5}+e^{-2i\pi/5}=2\cos\frac{2\pi}{5}=a.$$

De même,

$$z^2 + z^3 = e^{4i\pi/5} + e^{6i\pi/5} = e^{4i\pi/5} + e^{-4i\pi/5} = 2\cos\frac{4\pi}{5} = b.$$

2. Puisque $z \neq 1$ et $z^5 = e^{2i\pi} = 1$,

$$1+z+z^2+z^3+z^4=\frac{1-z^5}{1-z}=\frac{1-1}{1-z}=0.$$

3. $a+b=z+z^2+z^3+z^4=-1$ et $ab=(z+z^4)(z^2+z^3)=z^3+z^4+z^6+z^7=z+z^2+z^3+z^4=-1$. Donc,

$$a + b = -1$$
 et $ab = -1$.

Ainsi, a et b sont les solutions de l'équation $X^2+X-1=0$ à savoir les nombres $\frac{-1\pm\sqrt{5}}{2}$. Puisque $\frac{2\pi}{5}\in \left]0,\frac{\pi}{2}\right[$ et $\frac{4\pi}{5}\in \left]\frac{\pi}{2},\pi\right[$, on a a>0 et b>0. Finalement,

$$\cos \frac{2\pi}{5} = \frac{-1+\sqrt{5}}{4}$$
 et $\cos \frac{4\pi}{5} = \frac{-1-\sqrt{5}}{4}$.

Correction de l'exercice 14 ▲

- 1. $\cos^2 x = \frac{1}{2}(1 + \cos(2x))$ et une primitive de $x \mapsto \cos^2 x$ est $x \mapsto \frac{1}{2}(x + \frac{1}{2}\sin(2x))$.
- 2. D'après les formules d'EULER,

$$\cos^4 x = \left(\frac{1}{2}(e^{ix} + e^{-ix})\right)^4 = \frac{1}{16}(e^{4ix} + 4e^{2ix} + 6 + 4e^{-2ix} + e^{-4ix})$$
$$= \frac{1}{16}(2\cos(4x) + 8\cos(2x) + 6) = \frac{1}{8}(\cos(4x) + 4\cos(2x) + 3)$$

Donc, une primitive de la fonction $x \mapsto \cos^4 x$ est $x \mapsto \frac{1}{8} (\frac{1}{4} \sin(4x) + 2\sin(2x) + 3x)$.

3.

$$\sin^4 x = \left(\frac{1}{2i}(e^{ix} - e^{-ix})\right)^4 = \frac{1}{16}(e^{4ix} - 4e^{2ix} + 6 - 4e^{-2ix} + e^{-4ix})$$
$$= \frac{1}{16}(2\cos(4x) - 8\cos(2x) + 6) = \frac{1}{8}(\cos(4x) - 4\cos(2x) + 3)$$

Donc, une primitive de la fonction $x \mapsto \sin^4 x$ est $x \mapsto \frac{1}{8}(\frac{1}{4}\sin(4x) - 2\sin(2x) + 3x)$.

4. $\cos^2 x \sin^2 x = \frac{1}{4} \sin^2(2x) = \frac{1}{8} (1 - \cos(4x))$ et une primitive de la fonction $x \mapsto \cos^2 x \sin^2 x$ est $x \mapsto \frac{1}{8} (x - \frac{1}{4} \sin(4x))$.

5.

$$\sin^{6} x = \left(\frac{1}{2i}(e^{ix} - e^{-ix})\right)^{6} = -\frac{1}{64}(e^{6ix} - 6e^{4ix} + 15e^{2ix} - 20 + 15e^{-2ix} - 6e^{-4ix} + e^{-6ix})$$

$$= -\frac{1}{64}(2\cos(6x) - 12\cos(4x) + 30\cos(2x) - 20) = \frac{1}{32}(-\cos(6x) + 6\cos(4x) - 15\cos(2x) + 10)$$

Donc, une primitive de la fonction $x\mapsto \sin^6 x$ est $x\mapsto \frac{1}{32}(-\frac{1}{6}\sin(6x)+\frac{3}{2}\sin(4x)-\frac{15}{2}\sin(2x)+10x)$.

- 6. $\cos x \sin^6 x = \sin' x \sin^6 x$ et une primitive de $x \mapsto \cos x \sin^6 x$ est $x \mapsto \frac{1}{7} \sin^7 x$.
- 7. $\cos^5 x \sin^2 x = \cos x (1 \sin^2 x)^2 \sin^2 x = \sin' x \sin^2 x 2 \sin' x \sin^4 x + \sin' x \sin^6 x$ et une primitive de $x \mapsto \cos^5 x \sin^2 x$ est $x \mapsto \frac{1}{3} \sin^3 x \frac{2}{5} \sin^5 x + \frac{1}{7} \sin^7 x$.
- 8. $\cos^3 x = \sin' x \sin' x \sin^2 x$ et une primitive de $x \mapsto \cos^3 x$ est $x \mapsto \sin x \frac{1}{3} \sin^3 x$.

Correction de l'exercice 15

1. Pour x réel, on a :

$$\cos^{4}x \sin^{6}x = \left(\frac{1}{2}(e^{ix} + e^{-ix})\right)^{4} \left(\frac{1}{2i}(e^{ix} - e^{-ix})\right)^{6}$$

$$= -\frac{1}{2^{10}}(e^{4ix} + 4e^{2ix} + 6 + 4e^{-2ix} + e^{-4ix})(e^{6ix} - 6e^{4ix} + 15e^{2ix} - 20 + 15e^{-2ix} - 6e^{-4ix} + e^{-6ix})$$

$$= -\frac{1}{2^{10}}(e^{10ix} - 2e^{8ix} - 3e^{6ix} + 8e^{4ix} + 2e^{2ix} - 12 + 2e^{-2ix} + 8e^{-4ix} - 3e^{-6ix} - 2e^{-8ix} + e^{-10ix})$$

$$= -\frac{1}{2^{9}}(\cos 10x - 2\cos 8x - 3\cos 6x + 8\cos 4x + 2\cos 2x - 6)$$

$$= -\frac{1}{512}(\cos 10x - 2\cos 8x - 3\cos 6x + 8\cos 4x + 2\cos 2x - 6)$$

(Remarque. La fonction proposée était paire et l'absence de sinus était donc prévisible. Cette remarque guidait aussi les calculs intermédiaires : les coefficients de e^{-2ix} , e^{-4ix} ,... étaient les mêmes que ceux de e^{2ix} , e^{4ix} ,...) Par suite,

$$\begin{split} I &= -\frac{1}{512} \left(\left[\frac{\sin 10x}{10} - \frac{\sin 8x}{4} - \frac{\sin 6x}{2} + 2\sin 4x + \sin 2x \right]_{\pi/6}^{\pi/3} - 6\left(\frac{\pi}{3} - \frac{\pi}{6} \right) \right) \\ &= -\frac{1}{512} \left(\frac{1}{10} \left(-\frac{\sqrt{3}}{2} + \frac{\sqrt{3}}{2} \right) - \frac{1}{4} \left(\frac{\sqrt{3}}{2} + \frac{\sqrt{3}}{2} \right) - \frac{1}{2} (0 - 0) + 2 \left(-\frac{\sqrt{3}}{2} - \frac{\sqrt{3}}{2} \right) + \left(\frac{\sqrt{3}}{2} - \frac{\sqrt{3}}{2} \right) - \pi \right) \\ &= -\frac{1}{512} \left(-\frac{\sqrt{3}}{4} - 2\sqrt{3} - \pi \right) = \frac{9\sqrt{3} + 4\pi}{2048}. \end{split}$$

2. Pour x réel, on a

$$\cos^4 x \sin^7 x = \cos^4 x \sin^6 x \sin x = \cos^4 x (1 - \cos^2 x)^3 \sin x$$

= \cos^4 x \sin x - 3 \cos^6 x \sin x + 3 \cos^8 x \sin x - \cos^{10} x \sin x.

Par suite,

$$\begin{split} J &= \left[-\frac{\cos^5 x}{5} + \frac{3\cos^7 x}{7} - \frac{\cos^9 x}{3} + \frac{\cos^{11} x}{11} \right]_{\pi/6}^{\pi/3} \\ &= -\frac{1}{5} \times \frac{1 - 9\sqrt{3}}{32} + \frac{3}{7} \times \frac{1 - 27\sqrt{3}}{128} - \frac{1}{3} \times \frac{1 - 81\sqrt{3}}{512} + \frac{1}{11} \times \frac{1 - 243\sqrt{3}}{2048} \\ &= \frac{1}{2^{11} \times 3 \times 5 \times 7 \times 11} (-14784(1 - 9\sqrt{3}) + 7920(1 - 27\sqrt{3}) - 1540(1 - 81\sqrt{3}) + 105(1 - 243\sqrt{3})) \\ &= \frac{1}{2365440} (-8299 + 18441\sqrt{3}). \end{split}$$

Correction de l'exercice 16 ▲

1. $\tan \frac{x}{2}$ existe si et seulement si $x \notin \pi + 2\pi\mathbb{Z}$ et $\frac{1-\cos x}{\sin x}$ existe si et seulement si $x \notin \pi\mathbb{Z}$. Pour $x \notin \pi\mathbb{Z}$,

$$\frac{1-\cos x}{\sin x} = \frac{2\sin^2\frac{x}{2}}{2\sin\frac{x}{2}\cos\frac{x}{2}} = \tan\frac{x}{2}.$$

2. 1 ère solution. Pour tout réel x,

$$\sin(x - \frac{2\pi}{3}) + \sin x + \sin(x + \frac{2\pi}{3}) = -\frac{1}{2}\sin x - \frac{\sqrt{3}}{2}\cos x + \sin x - \frac{1}{2}\sin x + \frac{\sqrt{3}}{2}\cos x = 0,$$

2 ème solution.

$$\sin\left(x - \frac{2\pi}{3}\right) + \sin x + \sin\left(x + \frac{2\pi}{3}\right) = \operatorname{Im}\left(e^{i\left(x - \frac{2\pi}{3}\right)} + e^{ix} + e^{i\left(x + \frac{2\pi}{3}\right)}\right) = \operatorname{Im}\left(e^{ix}(j^2 + 1 + j)\right) = 0.$$

3. $\tan\left(\frac{\pi}{4}-x\right)$, $\tan\left(\frac{\pi}{4}+x\right)$ et $\frac{2}{\cos(2x)}$ existent si et seulement si $\frac{\pi}{4}-x$, $\frac{\pi}{4}+x$ et 2x ne sont pas dans $\frac{\pi}{2}+\pi\mathbb{Z}$, ce qui équivaut à $x\notin\frac{\pi}{4}+\frac{\pi}{2}\mathbb{Z}$. Donc, pour $x\notin\frac{\pi}{4}+\frac{\pi}{2}\mathbb{Z}$,

$$\tan\left(\frac{\pi}{4} - x\right) + \tan\left(\frac{\pi}{4} + x\right) = \frac{1 - \tan x}{1 + \tan x} + \frac{1 + \tan x}{1 - \tan x} \text{ (pour } x \text{ v\'erifiant de plus } x \notin \frac{\pi}{2} + \pi \mathbb{Z}\text{)}$$

$$= \frac{\cos x - \sin x}{\cos x + \sin x} + \frac{\cos x + \sin x}{\cos x - \sin x} = \frac{(\cos x - \sin x)^2 + (\cos x + \sin x)^2}{\cos^2 x - \sin^2 x} = \frac{2(\cos^2 x + \sin^2 x)}{\cos(2x)}$$

$$= \frac{2}{\cos(2x)} \text{ (ce qui reste vrai pour } x \in \frac{\pi}{2} + \pi \mathbb{Z}\text{)}.$$

4. Pour $x \notin \frac{\pi}{4}\mathbb{Z}$,

$$\frac{1}{\tan x} - \tan x = \frac{\cos x}{\sin x} - \frac{\sin x}{\cos x} = \frac{\cos^2 x - \sin^2 x}{\sin x \cos x} = \frac{2\cos(2x)}{\sin(2x)} = \frac{2}{\tan(2x)}.$$

Correction de l'exercice 17 ▲

1. • Pour tout réel x, $1 - 2k\cos x + k^2 = (k - \cos x)^2 + \sin^2 x \ge 0$. De plus,

$$1 - 2k\cos x + k^2 = 0 \Rightarrow k - \cos x = \sin x = 0 \Rightarrow x \in \pi \mathbb{Z} \text{ et } k = \cos x \Rightarrow k \in \{-1, 1\},$$
 ce qui est exclu. Donc,

$$\forall k \in \mathbb{R} \setminus \{-1, 1\}, \ \forall x \in \mathbb{R}, \ 1 - 2k\cos x + k^2 > 0.$$

• f_k est donc définie sur \mathbb{R} , dérivable sur \mathbb{R} en vertu de théorèmes généraux, impaire et 2π -périodique. On l'étudie dorénavant sur $[0,\pi]$. Pour $x \in [0,\pi]$, on a :

$$\begin{split} f_k'(x) &= \cos x (1 - 2k\cos x + k^2)^{-1/2} - \frac{1}{2}\sin x (2k\sin x)(1 - 2k\cos x + k^2)^{-3/2} \\ &= (1 - 2k\cos x + k^2)^{-3/2}(\cos x (1 - 2k\cos x + k^2) - k\sin^2 x) \\ &= (1 - 2k\cos x + k^2)^{-3/2}(-k\cos^2 x + (1 + k^2)\cos x - k) \\ &= (1 - 2k\cos x + k^2)^{-3/2}(k\cos x - 1)(k - \cos x) \end{split}$$

$$\forall x \in \mathbb{R}, f'_k(x) = \frac{(k\cos x - 1)(k - \cos x)}{(1 - 2k\cos x + k^2)^{3/2}}.$$

1er cas: |k| < 1 et $k \ne 0$. (si k = 0, $f_k(x) = \sin x$) Pour tout réel x, $(1 - 2k\cos x + k^2)^{-3/2}(k\cos x - 1) < 0$ et $f'_k(x)$ est du signe de $\cos x - k$.

x	0		$\operatorname{Arccos} k$		π
f'(x)		+	0	_	
f	0-		l		0

$$(\operatorname{car} f_k(\operatorname{Arccos} k) = \frac{\sqrt{1-k^2}}{\sqrt{1-2k^2+k^2}} = 1).$$

2ème cas: k > 1. Pour tout réel x, $(1 - 2k\cos x + k^2)^{-3/2}(k - \cos x) > 0$ et $f'_k(x)$ est du signe de $k\cos x - 1$.

x	0	$Arccos \frac{1}{k}$	π
f'(x)	+	0	_
f	0	$\frac{1}{k}$	

$$(\operatorname{car} f_k(\operatorname{Arccos} \frac{1}{k}) = \frac{\sqrt{1 - \frac{1}{k^2}}}{\sqrt{1 - 2 + k^2}} = \frac{1}{k}).$$

3ème cas : k < -1. Pour tout réel x, $(1 - 2k\cos x + k^2)^{-3/2}(k - \cos x) < 0$ et $f'_k(x)$ est du signe de $1 - k\cos x$.

x	0	$Arccos \frac{1}{k}$	π
f'(x)	+	0	_
f	0	$\sqrt{-\frac{1}{k}}$	

$$(\operatorname{car} f_k(\operatorname{Arccos} \frac{1}{k}) = \frac{\sqrt{1 - \frac{1}{k^2}}}{\sqrt{1 - 2 + k^2}} = -\frac{1}{k}).$$

2. Pour $k \in \mathbb{R} \setminus \{-1,1\}$, posons $I_k = \int_0^{\pi} f_k(x) dx$. Si k = 0, $I_k = \int_0^{\pi} \sin x dx = 2$. Sinon,

$$I_k = \frac{1}{k} \int_0^{\pi} \frac{2k \sin x}{2\sqrt{1 - 2k \cos x + k^2}} dx = \frac{1}{k} \left[\sqrt{1 - 2k \cos x + k^2} \right]_0^{\pi}$$
$$= \frac{1}{k} (\sqrt{1 + 2k + k^2} - \sqrt{1 - 2k + k^2}) = \frac{1}{k} (|k + 1| - |k - 1|).$$

Plus précisément, si $k \in]-1,1[\setminus \{0\},I_k=\frac{1}{k}((1+k)-(1-k))=2$, ce qui reste vrai pour k=0. Si k>1, $I_k=\frac{1}{k}((1+k)-(k-1))=\frac{2}{k}$, et enfin, si k<-1, $I_k=\frac{-2}{k}$. En résumé,

Si
$$k \in]-1,1[, I_k = 2 \text{ et si } k \in]-\infty,-1[\cup]1,+\infty[, I_k = \frac{2}{|k|}.$$

Correction de l'exercice 18

1. Soient $n \in \mathbb{N}$ et $x \in \mathbb{R}$. Posons $S_n = \sum_{k=0}^n \cos(kx)$ et $S_n' = \sum_{k=0}^n \sin(kx)$. **1ère solution.**

$$S_n + iS'_n = \sum_{k=0}^n (\cos(kx) + i\sin(kx)) = \sum_{k=0}^n e^{ikx} = \sum_{k=0}^n (e^{ix})^k.$$

Maintenant, $e^{ix} = 1 \Leftrightarrow x \in 2\pi \mathbb{Z}$. Donc,

1er cas. Si $x \in 2\pi\mathbb{Z}$, on a immédiatement $S_n = n+1$ et $S_n' = 0$.

2ème cas. Si $x \notin 2\pi \mathbb{Z}$,

$$S_n + iS_n' = \frac{1 - e^{i(n+1)x}}{1 - e^{ix}} = \frac{e^{i(n+1)x/2}}{e^{ix/2}} \frac{e^{-i(n+1)x/2} - e^{i(n+1)x/2}}{e^{-i(n+1)x/2} + e^{i(n+1)x/2}} = e^{inx/2} \frac{-2i\sin\frac{(n+1)x}{2}}{-2i\sin\frac{x}{2}}$$
$$= e^{inx/2} \frac{\sin\frac{(n+1)x}{2}}{\sin\frac{x}{2}}$$

Par identification des parties réelles et imaginaires, on obtient

$$\sum_{k=0}^{n} \cos(kx) = \begin{cases} \frac{\cos\frac{nx}{2}\sin\frac{(n+1)x}{2}}{\sin\frac{x}{2}} & \text{si } x \notin 2\pi\mathbb{Z} \\ n+1 & \text{si } x \in 2\pi\mathbb{Z} \end{cases} \text{ et } \sum_{k=0}^{n} \sin(kx) = \begin{cases} \frac{\sin\frac{nx}{2}\sin\frac{(n+1)x}{2}}{\sin\frac{x}{2}} & \text{si } x \notin 2\pi\mathbb{Z} \\ 0 & \text{si } x \in 2\pi\mathbb{Z} \end{cases}$$

2ème solution.

$$2\sin\frac{x}{2}\sum_{k=0}^{n}\cos(kx) = \sum_{k=0}^{n}2\sin\frac{x}{2}\cos(kx) = \sum_{k=0}^{n}(\sin(k+\frac{1}{2})x - \sin(k-\frac{1}{2})x)$$

$$= \left(\sin\frac{x}{2} - \sin\frac{-x}{2}\right) + \left(\sin\frac{3x}{2} - \sin\frac{x}{2}\right) + \dots + \left(\sin\frac{(2n-1)x}{2} - \sin\frac{(2n-3)x}{2}\right)$$

$$+ \left(\sin\frac{(2n+1)x}{2} - \sin\frac{(2n-1)x}{2}\right)$$

$$= \sin\frac{(2n+1)x}{2} + \sin\frac{x}{2} = 2\sin\frac{(n+1)x}{2}\cos\frac{nx}{2}$$

et donc, si $x \notin 2\pi \mathbb{Z},...$

2. Soient $n \in \mathbb{N}$ et $x \in \mathbb{R}$. Posons $S_n = \sum_{k=0}^n \cos^2(kx)$ et $S'_n = \sum_{k=0}^n \sin^2(kx)$. On a :

$$S_n + S'_n = \sum_{k=0}^n (\cos^2(kx) + \sin^2(kx)) = \sum_{k=0}^n 1 = n+1,$$

et

$$S_n - S'_n = \sum_{k=0}^n (\cos^2(kx) - \sin^2(kx)) = \sum_{k=0}^n \cos(2kx).$$

D'après 1), si $x \in \pi \mathbb{Z}$, on trouve immédiatement,

$$\sum_{k=0}^{n} \cos^2(kx) = n + 1 \text{ et } \sum_{k=0}^{n} \sin^2(kx) = 0,$$

et si $x \notin \pi \mathbb{Z}$,

$$S_n + S'_n = n + 1$$
 et $S_n - S'_n = \frac{\cos(nx)\sin(n+1)x}{\sin x}$,

de sorte que

$$S_n = \frac{1}{2} \left(n + 1 + \frac{\cos(nx)\sin(n+1)x}{\sin x} \right) \text{ et } S'_n = \frac{1}{2} \left(n + 1 - \frac{\cos(nx)\sin(n+1)x}{\sin x} \right).$$

3. Soient $n \in \mathbb{N}$ et $x \in \mathbb{R}$.

$$\left(\sum_{k=0}^{n} C_{n}^{k} \cos(kx)\right) + i \left(\sum_{k=0}^{n} C_{n}^{k} \sin(kx)\right) = \sum_{k=0}^{n} C_{n}^{k} e^{ikx} = \sum_{k=0}^{n} C_{n}^{k} (e^{ix})^{k} 1^{n-k}
= (1 + e^{ix})^{n} = (e^{ix/2} + e^{-ix/2})^{n} e^{inx/2} = 2^{n} \cos^{n} \left(\frac{x}{2}\right) \left(\cos \frac{nx}{2} + i \sin \frac{nx}{2}\right).$$

Par identification des parties réelles et imaginaires, on obtient alors

$$\sum_{k=0}^{n} C_n^k \cos(kx) = 2^n \cos^n\left(\frac{x}{2}\right) \cos\left(\frac{nx}{2}\right) \text{ et } \sum_{k=0}^{n} C_n^k \sin(kx) = 2^n \cos^n\left(\frac{x}{2}\right) \sin\left(\frac{nx}{2}\right).$$

Correction de l'exercice 19 ▲

$$\begin{cases} \cos a + \cos b + \cos c = 0 \\ \sin a + \sin b + \sin c = 0 \end{cases} \Leftrightarrow (\cos a + \cos b + \cos c) + i(\sin a + \sin b + \sin c) = 0 \Leftrightarrow e^{ia} + e^{ib} + e^{ic} = 0$$

$$\Rightarrow |e^{ia} + e^{ib}| = |-e^{ic}| = 1 \Leftrightarrow |e^{ia/2}e^{ib/2}(e^{i(a-b)/2} + e^{-i(a-b)/2})| = 1$$

$$\Leftrightarrow |\cos \frac{a-b}{2}| = \frac{1}{2}$$

$$\Leftrightarrow \frac{a-b}{2} \in \left(\frac{\pi}{3} + \pi\mathbb{Z}\right) \cup \left(-\frac{\pi}{3} + \pi\mathbb{Z}\right) \Leftrightarrow a-b \in \left(\frac{2\pi}{3} + 2\pi\mathbb{Z}\right) \cup \left(-\frac{2\pi}{3} + 2\pi\mathbb{Z}\right)$$

$$\Leftrightarrow \exists k \in \mathbb{Z}, \ \exists \varepsilon \in \{-1,1\}/\ b = a + \varepsilon \frac{2\pi}{3} + 2k\pi.$$

Par suite, nécessairement, $e^{ib}=je^{ia}$ ou $e^{ib}=j^2e^{ia}$. Réciproquement, si $e^{ib}=je^{ia}$ ou encore $b=a+\frac{2\pi}{3}+2k\pi$,

$$e^{ia} + e^{ib} + e^{ic} = 0 \Leftrightarrow e^{ic} = -(e^{ia} + e^{ib}) = -(1+j)e^{ia} = j^2e^{ia} \Leftrightarrow \exists k' \in \mathbb{Z}/c = a - \frac{2\pi}{3} + 2k'\pi$$

et si $e^{ib} = j^2 e^{ia}$ ou encore $b = a - \frac{2\pi}{3} + 2k\pi$,

$$e^{ia}+e^{ib}+e^{ic}=0 \Leftrightarrow e^{ic}=-(e^{ia}+e^{ib})=-(1+j^2)e^{ia}=je^{ia} \Leftrightarrow \exists k'\in\mathbb{Z}/\ c=a+\frac{2\pi}{3}+2k'\pi.$$

$$\mathscr{S} = \{(a, a + \varepsilon \frac{2\pi}{3} + 2k\pi, a - \varepsilon \frac{2\pi}{3} + 2k'\pi), \ a \in \mathbb{R}, \ \varepsilon \in \{-1, 1\}, \ (k, k') \in \mathbb{Z}^2\}.$$

Correction de l'exercice 20 A

$$\cos^4 \frac{\pi}{8} + \cos^4 \frac{3\pi}{8} + \cos^4 \frac{5\pi}{8} + \cos^4 \frac{7\pi}{8} = 2(\cos^4 \frac{\pi}{8} + \cos^4 \frac{3\pi}{8}) = 2(\cos^4 \frac{\pi}{8} + \sin^4 \frac{\pi}{8})$$

$$= 2\left((\cos^2 \frac{\pi}{8} + \sin^2 \frac{\pi}{8})^2 - 2\cos^2 \frac{\pi}{8}\sin^2 \frac{\pi}{8}\right) = 2\left(1 - \frac{1}{2}\sin^2 \frac{\pi}{4}\right)$$

$$= 2(1 - \frac{1}{4}) = \frac{3}{2}$$

Correction de l'exercice 21

1.

$$\cos(3x) = \sin(2x) \Leftrightarrow \cos(3x) = \cos(\frac{\pi}{2} - 2x) \Leftrightarrow (\exists k \in \mathbb{Z}/3x = \frac{\pi}{2} - 2x + 2k\pi) \text{ ou } (\exists k \in \mathbb{Z}/3x = -\frac{\pi}{2} + 2x + 2k\pi)$$

$$\Leftrightarrow (\exists k \in \mathbb{Z}/x = \frac{\pi}{10} + \frac{2k\pi}{5}) \text{ ou } (\exists k \in \mathbb{Z}/x = -\frac{\pi}{2} + 2k\pi)$$

$$\mathscr{S}_{[0,2\pi]} = \left\{ \frac{\pi}{10}, \frac{\pi}{2}, \frac{9\pi}{10}, \frac{13\pi}{10}, \frac{3\pi}{2}, \frac{17\pi}{10} \right\}.$$

2. $\cos(3x) = \text{Re}(e^{3ix}) = \text{Re}((\cos x + i\sin x)^3) = \cos^3 x - 3\cos x \sin^2 x = \cos^3 x - 3\cos x (1 - \cos^2 x) = 4\cos^3 x - 3\cos x$

$$\forall x \in \mathbb{R}, \cos(3x) = 4\cos^3 x - 3\cos x.$$

Par suite,

$$\cos(3x) = \sin(2x) \Leftrightarrow 4\cos^3 x - 3\cos x = 2\sin x \cos x \Leftrightarrow \cos x (4\cos^2 x - 3 - 2\sin x) = 0$$
$$\Leftrightarrow \cos x (-4\sin^2 x - 2\sin x + 1) = 0 \Leftrightarrow (\cos x = 0) \text{ ou } (4\sin^2 x + 2\sin x - 1 = 0).$$

D'après 1), l'équation $4\sin^2 x + 2\sin x - 1 = 0$ admet entre autre pour solutions $\frac{\pi}{10}$ et $\frac{13\pi}{10}$ (car, dans chacun des deux cas, $\cos x \neq 0$), ou encore, l'équation $4X^2 + 2X - 1 = 0$ admet pour solutions les deux nombres **distincts** $X_1 = \sin \frac{\pi}{10}$ et $X_2 = \sin \frac{13\pi}{10}$, qui sont donc les deux solutions de cette équation. Puisque $X_1 > 0$ et que $X_2 < 0$, on obtient

$$X_1 = \frac{-1 + \sqrt{5}}{4}$$
 et $X_2 = \frac{-1 - \sqrt{5}}{4}$.

Donc, (puisque $\sin \frac{13\pi}{10} = -\sin \frac{3\pi}{10}$),

$$\sin\frac{\pi}{10} = \frac{-1+\sqrt{5}}{4}$$
 et $\sin\frac{3\pi}{10} = \frac{1+\sqrt{5}}{4}$.

Ensuite, $\sin \frac{3\pi}{10} = \cos \left(\frac{\pi}{2} - \frac{3\pi}{10}\right) = \cos \frac{\pi}{5}$, et donc

$$\cos \frac{\pi}{5} = \frac{1+\sqrt{5}}{4}.$$

Puis

$$\cos\frac{\pi}{10} = \sqrt{1 - \sin^2\frac{\pi}{10}} = \frac{1}{4}\sqrt{10 + 2\sqrt{5}}$$

et de même

$$\sin\frac{\pi}{5} = \frac{1}{4}\sqrt{10 - 2\sqrt{5}} = \cos\frac{3\pi}{10}$$