Appl. No. : 10/565.696

Filing Date: January 24, 2008

AMENDMENTS TO THE CLAIMS

1. (Currently amended) A resin for a resist, comprising structural units (a) derived from an $(\alpha$ -lower alkyl)acrylate ester as a principal component, wherein

said structural units (a) comprise structural units (a1) derived from an (α-lower alkyl)acrylate ester comprising an acid dissociable, dissolution inhibiting group, and structural units (a2-1) derived from an (α-lower alkyl)acrylate ester comprising a lactone-containing monocyclic group, and structural units (a3) derived from an $(\alpha$ -lower alkyl)acrylate ester that comprises a polar group-containing aliphatic hydrocarbon group, wherein

said structural units (a1) comprise structural units (a1-1) derived from an (α-lower alkyl)acrylate ester and represented by a general formula (a1-1) shown below:

[wherein, R represents a hydrogen atom or a lower alkyl group, and R¹¹ represents an acid dissociable, dissolution inhibiting group that comprises a monocyclic aliphatic hydrocarbon group and comprises no polycyclic aliphatic hydrocarbon groups], and wherein

said polar group-containing aliphatic hydrocarbon group is a hydroxyl group-containing aliphatic hydrocarbon group

said structural units (a1) comprise structural units (a1-2) represented by general formula (a1-2) shown below:

$$\begin{pmatrix}
H_2 & R \\
C & C
\end{pmatrix}$$

$$\downarrow C & C$$

$$\downarrow C$$

(wherein, R represents a hydrogen atom or a methyl group, R¹² represents an ethyl group, and X represents a group which, in combination with a carbon atom to which said group R¹² is bonded, forms a group in which one hydrogen atom has been removed from a cyclohexyl group),

said structural units (a2-1) are structural units represented by general formula (VII) shown below:

Appl. No.

: 10/565,696

Filing Date

January 24, 2008

(wherein, R represents a hydrogen atom or a methyl group), and

said structural units (a3) are structural units represented by general formula (VIII) shown below:

(wherein, R represents a hydrogen atom or a methyl group; and n represents an integer of 1, and the hydroxyl group is bonded to position 3 of the adamantyl group).

- 2. (Canceled)
- 3. (Canceled)
- 4. (**Original**) A resin for a resist according to claim 1, wherein said structural units (a) also comprise other structural units (a4) derived from an (α-lower alkyl)acrylate ester that comprises a polycyclic aliphatic hydrocarbon group, which differ from said structural units (a2) and (a3).
- 5. (**Original**) A positive resist composition comprising: (A) a resist resin component that exhibits increased alkali solubility under action of acid, and (B) an acid generator component that generates acid on exposure, wherein

said component (A) comprises a resin for a resist according to claim 1.

6. (**Original**) A positive resist composition according to claim 5, further comprising a nitrogen-containing organic compound.

Appl. No. : 10/565,696

Filing Date: January 24, 2008

7. (Original) A method of forming a resist pattern, comprising the steps of: forming a positive resist film on top of a substrate using a positive resist composition according to claim 5. conducting a selective exposure treatment of said positive resist film, and performing alkali developing to form a resist pattern.

8. (Currently amended) A resin for a resist, comprising structural units (a) derived from an (α-lower alkyl)acrylate ester as a principal component, wherein

said structural units (a) comprise structural units (a1) derived from an (α-lower alkyl)acrylate ester comprising an acid dissociable, dissolution inhibiting group, and structural units (a2) derived from an (α-lower alkyl)acrylate ester comprising a lactone-containing monocyclic or polycyclic group, and structural units (a3) derived from an (α-lower alkyl)acrylate ester that comprises a polar group-containing aliphatic hydrocarbon group, wherein

said structural units (a1) comprise structural units (a1-1-1) derived from a methacrylate ester and represented by a general formula (a1-1-1) shown below:

[wherein, R¹¹ represents an acid dissociable, dissolution inhibiting group that comprises a monocyclic aliphatic hydrocarbon group and comprises no polycyclic aliphatic hydrocarbon groups], and wherein

said polar group-containing aliphatic hydrocarbon group is a hydroxyl group containing aliphatic hydrocarbon group

said structural units (a1) comprise structural units (a1-2-1) represented by general formula (a1-2-1) shown below:

$$\begin{array}{c}
\begin{pmatrix} H_2 \\ C \\ C \end{pmatrix} \\
C = 0 \\
R^{12} \\
C \\
X
\end{array}$$
(a1-2-1)

Appl. No. : 10/565,696

Filing Date: January 24, 2008

(wherein, R¹² represents an ethyl group, and X represents a group which, in combination with a carbon atom to which said group R¹² is bonded, forms a group in which one hydrogen atom has been removed from a cyclohexyl group),

said structural units (a2) are structural units represented by general formula (V) or (VI) shown below:

(wherein, R represents a hydrogen atom or a methyl group);

(wherein, R represents a hydrogen atom or a methyl group), and

said structural units (a3) are structural units represented by general formula (VIII) shown below:

(wherein, R is a hydrogen atom or a methyl group; and n represents an integer of 1, and the hydroxyl group is bonded to position 3 of the adamantyl group).

9. (Canceled)

Appl. No. : 10/565,696 Filing Date : January 24, 2008

10. (Canceled)

- 11. (**Original**) A resin for a resist according to claim 8, wherein said structural units (a) also comprise other structural units (a4) derived from an (α-lower alkyl)acrylate ester that comprises a polycyclic aliphatic hydrocarbon group, which differ from said structural units (a2) and (a3).
- 12. (**Original**) A positive resist composition comprising: (A) a resist resin component that exhibits increased alkali solubility under action of acid, and (B) an acid generator component that generates acid on exposure, wherein

said component (A) comprises a resin for a resist according to claim 8.

- 13. (**Original**) A positive resist composition according to claim 12, further comprising a nitrogen-containing organic compound.
- 14. (**Original**) A method of forming a resist pattern, comprising the steps of: forming a positive resist film on top of a substrate using a positive resist composition according to claim 12, conducting a selective exposure treatment of said positive resist film, and performing alkali developing to form a resist pattern.

15-17. (Canceled)