Hiring Process Analysis

A sample project using MS Excel

Peter Archer 17/03/2025

Outline

Project Description & Metrics Setting

Approach and Tools used

Outcome & results

Next Steps

Interesting knowledge points and formulas

References

Draw insights out of historical data for hiring department to work upon.

Hiring process is the fundamental and the most important function of a company. Here, the MNCs get to know about the major underlying trends about the hiring process. Trends such as: number of rejections, number of interviews, types of jobs, vacancies etc. are important for a company to analyse before hiring freshers or any other individual.

To answer the 5 questions:

- Hiring: Process of intaking of people into an organization for different kinds of positions, including genders.
- Average Salary: Adding all the salaries for a select group of employees and then dividing the sum by the number of employees in the group.
- 3. Class Intervals: The class interval is the difference between the upper class limit and the lower class limit.
- 4. Charts and Plots: This is one of the most important part of analysis to visualize the data.
- 5. Charts: Use different charts and graphs to perform the task representing the data.

Approach

- Data saved in MS Excel & converted into a table
- 2. Data cleaned: Outliers, blanks & duplicates
- 3. Pivot Tables were created to get aggregations
- 4. Pivot Charts were created to visualise insights

Tools used

- Statistics Dealing with outliers
 IQR and Z-scores methods
- ♦ MS Excel

Formulas, Pivot Tables & Charts

Task 1:

Hiring: Process of intaking of people into an organization for different kinds of positions.

Your task:

How many males and females are Hired?

Genders	Count of Intake
Male	2562
Female	1854
Don't want to say	278
Grand Total	4694

Task 2:

Average Salary: Adding all the salaries for a select group of employees and then dividing the sum by the number of employees in the group.

Your task:

What is the average salary offered in this company?

Task 3:

Class Intervals: The class interval is the difference between the upper class limit and the lower class limit.

Your task:

Draw the class intervals for salary in the company?

number of bins	9
Class width	11019

Class_width =ROUNDUP((MAX(Salary_Column) - MIN(Salary_Column)) / Num_of_bins, 0)

Class 1	11,819.00
Class 2	22,838.00
Class 3	33,857.00
Class 4	44,876.00
Class 5	55,895.00
Class 6	66,914.00
Class 7	77,933.00
Class 8	88,952.00
Class 9	99,971.00
Class 10	110,990.00

Task 4:

Charts and Plots: This is one of the most important part of analysis to visualize the data.

Your task:

Draw Pie Chart / Bar Graph (or any other graph) to show proportion of people working different department?

Departments	Percentage of Intake
Operations Department	39.26%
Service Department	28.36%
Sales Department	10.33%
Production Department	5.24%
Purchase Department	4.90%
Marketing Department	4.30%
Finance Department	3.75%
General Management	2.36%
Human Resource Department	1.49%
Grand Total	100.00%

Task 5:

Charts: Use different charts and graphs to perform the task representing the data.

Your task:

Represent different post tiers using chart/graph?

Post name	Count of Intake
C9	26.4%
C5	25.2%
17	13.5%
15	10.9%
16	7.2%
В9	6.5%
C8	4.1%
I1	3.2%
Don't Want To Say	2.3%
14	0.7%
M6	0.0%
N6	0.0%
Grand Total	100.0%

Interesting knowledge points & formulas

Detecting outliers

There are several ways to detecting outliers:

- 1. <u>IQR method (Interquartile range)</u>
- Calculate Q1 (25th percentile) and Q3 (75th percentile).
- Compute IQR = Q3 Q1.
- Define lower bound = Q1 1.5 * IQR and upper bound = Q3 + 1.5 * IQR.
- Any salary outside this range is considered an outlier.
- 2. Z-Scores method
- Calculate the **mean** (μ) and **standard deviation** (σ).
- Compute **Z-score** for each salary:

$$Z = \frac{\text{Salary} - \mu}{\sigma}$$

Salaries with |Z| > 2 (or another chosen threshold) are outliers.

Determining class intervals

There are several ways to determine class intervals, but Sturges' Rule is commonly used:

If normally a number between 5 to 10 is not sufficient, this Sturges' Rule can come to play:

```
Number of Classes = 1 + 3.3 \log(\text{Total Salaries})
```

$$\label{eq:ClassWidth} \text{Class Width} = \frac{\text{Max Salary} - \text{Min Salary}}{\text{Number of Classes}}$$

Example formula in Excel:

```
=IF(A2 <= MIN(G:G) + $B$2, "Class 1",
IF(A2 <= MIN(G:G) + 2 * $B$2, "Class 2",
IF(A2 <= MIN(G:G) + 3 * $B$2, "Class 3",
...)))
```

Assumptions

This analysis aims to answer questions from the data user.

Communications between data generators and data users are key to data analysis.

References

Source of dataset from Google:

https://docs.google.com/spreadsheets/d/1gAq5sK8L2e7rCP000KaNo7gqx6tfnVOk/edit?usp=sharing&ouid=109356424617551323871&rtpof=true&sd=true)

Click below to view this file and Excel file on

My GitHub