Robin Ferrari 2585277 Vladislav Lasmann 2593078

<u>Aufgabe 3</u>

Der auf Aufruf extrap_cmd input.res führt zu folgendem Output: 12.1926+1.12512e-05*(p^2)*log2^1(p)

Modell: 12.1926+1.12512e-05 * n^2 * log_2(n)

Daraus ergibt sich: $O(n^2 \log_2(n))$

Und es gilt: $O(n^2 \log_2(n)) \le O(n^3) \forall n \in \mathbb{N}_0$

Beweis:

$$\lim_{n\to\infty} \frac{n^2 \log_2(n)}{n^3} = \lim_{n\to\infty} \frac{\frac{\log(n)}{\log(2)}}{n} = \lim_{n\to\infty} \frac{\log(n)}{\log(2) n} = \frac{\infty}{\infty} \Rightarrow \frac{(l'Hospital)}{n} \quad \lim_{n\to\infty} \frac{n^2 \log_2(n)}{n^3} = \lim_{n\to\infty} \frac{\frac{1}{n}}{\log(2)} = \lim_{n\to\infty} \frac{1}{n \log(2)} = 0$$

Somit wächst $O(n^3)$ schneller als $O(n^2 \log_2(n))$