This is page xiii
Printer: Opaque this

Contents

P	reface	to the	Second Edition	vii
P	reface	to the	First Edition	xi
1	Intro	duction	L	1
2	Over	view of	Supervised Learning	9
	2.1	Introd	uction	9
	2.2	Variab	le Types and Terminology	9
	2.3		imple Approaches to Prediction:	
			Squares and Nearest Neighbors	11
		2.3.1		11
		2.3.2		14
		2.3.3	-	16
	2.4	Statist	ical Decision Theory	18
	2.5		Methods in High Dimensions	22
	2.6		ical Models, Supervised Learning	
			nction Approximation	28
		2.6.1	A Statistical Model	
			for the Joint Distribution $Pr(X,Y)$	28
		2.6.2	Supervised Learning	29
		2.6.3	Function Approximation	29
	2.7		ured Regression Models	$\frac{23}{32}$
	2.1	271	Difficulty of the Problem	32

	2.8	Classe	es of Restricted Estimators	3
		2.8.1	Roughness Penalty and Bayesian Methods 3	4
		2.8.2		4
		2.8.3		5
	2.9	Model	Selection and the Bias-Variance Tradeoff 3	7
	Bibli			9
		0 1		
3	Linea	ar Meth	ods for Regression 4	
	3.1	Introd		3
	3.2	Linear		4
		3.2.1	Example: Prostate Cancer 4	9
		3.2.2	The Gauss–Markov Theorem 5	1
		3.2.3	Multiple Regression	
			1 0	2
		3.2.4	1 1	6
	3.3	Subset		7
		3.3.1		7
		3.3.2	±	8
		3.3.3	Forward-Stagewise Regression 6	
		3.3.4	± \	1
	3.4	Shrink	age Methods	1
		3.4.1		1
		3.4.2		8
		3.4.3	Discussion: Subset Selection, Ridge Regression	
				9
		3.4.4	8 8	3
	3.5	Metho		9
		3.5.1	1 1	9
		3.5.2	*	0
	3.6		sion: A Comparison of the Selection	
			0	2
	3.7	-		34
	3.8	More o	9	6
		3.8.1	9 9	6
		3.8.2	0	9
		3.8.3		9
		3.8.4	1	0
		3.8.5		1
		3.8.6	Pathwise Coordinate Optimization 9	
	3.9	-	ntational Considerations	
	Bibli	ographic	e Notes	
	Exer	cises		4

Contents	xv
----------	----

4	Linea	r Methods for Classification	101
	4.1	Introduction	101
	4.2	Linear Regression of an Indicator Matrix	103
	4.3	Linear Discriminant Analysis	106
		4.3.1 Regularized Discriminant Analysis	112
		4.3.2 Computations for LDA	113
		4.3.3 Reduced-Rank Linear Discriminant Analysis	113
	4.4	Logistic Regression	119
		4.4.1 Fitting Logistic Regression Models	120
		4.4.2 Example: South African Heart Disease	122
		4.4.3 Quadratic Approximations and Inference	124
		4.4.4 L_1 Regularized Logistic Regression	125
		4.4.5 Logistic Regression or LDA?	127
	4.5	Separating Hyperplanes	129
		4.5.1 Rosenblatt's Perceptron Learning Algorithm	130
		4.5.2 Optimal Separating Hyperplanes	132
	Biblio	ographic Notes	135
	Exerc	cises	135
5	Basis	Expansions and Regularization	139
	5.1	Introduction	139
	5.2	Piecewise Polynomials and Splines	141
		5.2.1 Natural Cubic Splines	144
		5.2.2 Example: South African Heart Disease (Continued	l)146
		5.2.3 Example: Phoneme Recognition	148
	5.3	Filtering and Feature Extraction	150
	5.4	Smoothing Splines	151
		5.4.1 Degrees of Freedom and Smoother Matrices	153
	5.5	Automatic Selection of the Smoothing Parameters	156
		5.5.1 Fixing the Degrees of Freedom	158
		5.5.2 The Bias-Variance Tradeoff	158
	5.6	Nonparametric Logistic Regression	161
	5.7	Multidimensional Splines	162
	5.8	Regularization and Reproducing Kernel Hilbert Spaces .	167
		5.8.1 Spaces of Functions Generated by Kernels	168
		5.8.2 Examples of RKHS	170
	5.9	Wavelet Smoothing	174
		5.9.1 Wavelet Bases and the Wavelet Transform	176
		5.9.2 Adaptive Wavelet Filtering	179
	Biblio	ographic Notes	181
		cises	181
	Appe	endix: Computational Considerations for Splines	186
		Appendix: B -splines	186
		Appendix: Computations for Smoothing Splines	189

6	Kerne	el Smoothing Methods	191
	6.1	One-Dimensional Kernel Smoothers	192
		6.1.1 Local Linear Regression	194
		6.1.2 Local Polynomial Regression	197
	6.2	Selecting the Width of the Kernel	198
	6.3	Local Regression in \mathbb{R}^p	200
	6.4	Structured Local Regression Models in \mathbb{R}^p	201
		6.4.1 Structured Kernels	203
		6.4.2 Structured Regression Functions	203
	6.5	Local Likelihood and Other Models	205
	6.6	Kernel Density Estimation and Classification	208
		6.6.1 Kernel Density Estimation	208
		6.6.2 Kernel Density Classification	210
		6.6.3 The Naive Bayes Classifier	210
	6.7	Radial Basis Functions and Kernels	212
	6.8	Mixture Models for Density Estimation and Classification	214
	6.9	Computational Considerations	216
	Bibli	ographic Notes	216
		cises	216
7	$\operatorname{Mod}\epsilon$	el Assessment and Selection	219
	7.1	Introduction	219
	7.2	Bias, Variance and Model Complexity	219
	7.3	The Bias-Variance Decomposition	223
		7.3.1 Example: Bias-Variance Tradeoff	226
	7.4	Optimism of the Training Error Rate	228
	7.5	Estimates of In-Sample Prediction Error	230
	7.6	The Effective Number of Parameters	232
	7.7	The Bayesian Approach and BIC	233
	7.8	Minimum Description Length	235
	7.9	Vapnik–Chervonenkis Dimension	237
		7.9.1 Example (Continued)	239
	7.10	Cross-Validation	241
		7.10.1 K -Fold Cross-Validation	241
		7.10.2 The Wrong and Right Way	
		to Do Cross-validation	245
		7.10.3 Does Cross-Validation Really Work?	
	7.11	Bootstrap Methods	249
		7.11.1 Example (Continued)	252
	7.12	Conditional or Expected Test Error?	254
	Bibli	ographic Notes	257
	Exerc	cises	257
8	Mode	el Inference and Averaging	261
9		Introduction	261

	Contents	xvii
8.2	The Bootstrap and Maximum Likelihood Methods	261
	8.2.1 A Smoothing Example	261
	8.2.2 Maximum Likelihood Inference	265
	8.2.3 Bootstrap versus Maximum Likelihood	267
8.3	Bayesian Methods	267
8.4	Relationship Between the Bootstrap	
	and Bayesian Inference	271
8.5	The EM Algorithm	272
	8.5.1 Two-Component Mixture Model	272
	8.5.2 The EM Algorithm in General	276
	8.5.3 EM as a Maximization–Maximization Procedure	277
8.6	MCMC for Sampling from the Posterior	279
8.7	Bagging	282
	8.7.1 Example: Trees with Simulated Data	283
8.8	Model Averaging and Stacking	288
8.9	Stochastic Search: Bumping	290
	iographic Notes	292
Exer	ccises	293
Addi	tive Models, Trees, and Related Methods	295
9.1	Generalized Additive Models	295
	9.1.1 Fitting Additive Models	297
	9.1.2 Example: Additive Logistic Regression	299
	9.1.3 Summary	304
9.2	Tree-Based Methods	305
	9.2.1 Background	305
	9.2.2 Regression Trees	307
	9.2.3 Classification Trees	308
	9.2.4 Other Issues	310
	9.2.5 Spam Example (Continued)	313
9.3	PRIM: Bump Hunting	317
	9.3.1 Spam Example (Continued)	320
9.4	MARS: Multivariate Adaptive Regression Splines	321
	9.4.1 Spam Example (Continued)	326
	9.4.2 Example (Simulated Data)	
	9.4.3 Other Issues	328
9.5	Hierarchical Mixtures of Experts	329
9.6	Missing Data	332
9.7	Computational Considerations	334
	iographic Notes	334
Exer	cises	335
	ting and Additive Trees	337
10.1	Boosting Methods	337
	10.1.1 Outline of This Chapter	3/10

	10.2	Boosting Fits an Additive Model	341
	10.3	Forward Stagewise Additive Modeling	342
	10.4	Exponential Loss and AdaBoost	343
	10.5	Why Exponential Loss?	345
	10.6	Loss Functions and Robustness	346
	10.7	"Off-the-Shelf" Procedures for Data Mining	350
	10.8	Example: Spam Data	352
	10.9	Boosting Trees	353
	10.10	Numerical Optimization via Gradient Boosting	358
		10.10.1 Steepest Descent	358
		10.10.2 Gradient Boosting	359
		10.10.3 Implementations of Gradient Boosting	360
	10.11	Right-Sized Trees for Boosting	361
	10.12	Regularization	364
		10.12.1 Shrinkage	364
		10.12.2 Subsampling	365
	10.13	Interpretation	367
		10.13.1 Relative Importance of Predictor Variables	367
		10.13.2 Partial Dependence Plots	369
	10.14	Illustrations	371
		10.14.1 California Housing	371
		10.14.2 New Zealand Fish	375
		10.14.3 Demographics Data	379
	Biblio	ographic Notes	380
	Exerc	cises	384
11	Neura	al Networks	389
	11.1	Introduction	
	11.2	Projection Pursuit Regression	
	11.3	Neural Networks	392
	11.4	Fitting Neural Networks	395
	11.5	Some Issues in Training Neural Networks	397
		11.5.1 Starting Values	397
		11.5.2 Overfitting	
		11.5.3 Scaling of the Inputs	
		11.5.4 Number of Hidden Units and Layers	
		11.5.5 Multiple Minima	
	11.6	Example: Simulated Data	
	11.7	Example: ZIP Code Data	404
	11.8	Discussion	408
	11.9	Bayesian Neural Nets and the NIPS 2003 Challenge	409
		11.9.1 Bayes, Boosting and Bagging	410
		11.9.2 Performance Comparisons	412
	11.10	Computational Considerations	414
		ographic Notes	415

		Contents	xix
Exer	cises		. 415
12 Supp	ort Vec	tor Machines and	
		riminants	417
12.1	Introdu	action	. 417
12.2	The Su	pport Vector Classifier	. 417
	12.2.1	Computing the Support Vector Classifier	. 420
	12.2.2	Mixture Example (Continued)	
12.3	Suppor	t Vector Machines and Kernels	
	12.3.1	Computing the SVM for Classification	
	12.3.2	The SVM as a Penalization Method	
	12.3.3	Function Estimation and Reproducing Kernels	. 428
	12.3.4	SVMs and the Curse of Dimensionality	
	12.3.5	A Path Algorithm for the SVM Classifier	
	12.3.6	Support Vector Machines for Regression	
	12.3.7	Regression and Kernels	
	12.3.8	Discussion	. 438
12.4	Genera	lizing Linear Discriminant Analysis	. 438
12.5		e Discriminant Analysis	
	12.5.1	Computing the FDA Estimates	. 444
12.6	Penali	zed Discriminant Analysis	
12.7	Mixtur	e Discriminant Analysis	. 449
	12.7.1	Example: Waveform Data	
Bibli	iographic	Notes	
Exer	cises		. 455
13 Prote	ntyne M	ethods and Nearest-Neighbors	459
13.1		action	
13.2		pe Methods	
10.2	13.2.1	K-means Clustering	
	13.2.2	Learning Vector Quantization	
	13.2.3	Gaussian Mixtures	
13.3		est-Neighbor Classifiers	
10.0	13.3.1	Example: A Comparative Study	
	13.3.2	Example: k-Nearest-Neighbors	. 100
		and Image Scene Classification	. 470
	13.3.3	Invariant Metrics and Tangent Distance	
13.4		ve Nearest-Neighbor Methods	
-5.1	13.4.1	Example	
	13.4.2	Global Dimension Reduction	0
	· - · -	for Nearest-Neighbors	. 479
13.5	Compi	utational Considerations	
		Notes	
	cises		. 481

Unsup	ervised	l Learning	485
14.1	Introdu	_	485
14.2	Associa	tion Rules	487
	14.2.1	Market Basket Analysis	488
	14.2.2	The Apriori Algorithm	489
	14.2.3	Example: Market Basket Analysis	492
	14.2.4	Unsupervised as Supervised Learning	495
	14.2.5	Generalized Association Rules	497
	14.2.6	Choice of Supervised Learning Method	499
	14.2.7	Example: Market Basket Analysis (Continued) .	499
14.3	Cluster	Analysis	501
	14.3.1	Proximity Matrices	503
	14.3.2	Dissimilarities Based on Attributes	503
	14.3.3	Object Dissimilarity	505
	14.3.4	Clustering Algorithms	507
	14.3.5	Combinatorial Algorithms	507
	14.3.6	<i>K</i> -means	509
	14.3.7	Gaussian Mixtures as Soft K -means Clustering .	510
	14.3.8	Example: Human Tumor Microarray Data	512
	14.3.9	Vector Quantization	514
	14.3.10	K-medoids	515
	14.3.11	Practical Issues	518
	14.3.12	Hierarchical Clustering	520
14.4	Self-Org	ganizing Maps	528
14.5	Principa	al Components, Curves and Surfaces	534
	14.5.1	Principal Components	534
	14.5.2	Principal Curves and Surfaces	
	14.5.3	Spectral Clustering	544
	14.5.4	Kernel Principal Components	
	14.5.5	Sparse Principal Components	550
14.6	Non-neg	gative Matrix Factorization	553
	14.6.1	Archetypal Analysis	554
14.7	Indepen	ident Component Analysis	
	and Exp	ploratory Projection Pursuit	557
	14.7.1	Latent Variables and Factor Analysis	558
	14.7.2	Independent Component Analysis	560
	14.7.3	Exploratory Projection Pursuit	565
	14.7.4	A Direct Approach to ICA	565
14.8		mensional Scaling	570
14.9		ar Dimension Reduction	
		cal Multidimensional Scaling	572
14.10	The Go	ogle PageRank Algorithm	
		Notes	578
Exerc	ises		579

	Contents	xxi
15 Rand	lom Forests	587
15.1	Introduction	587
15.2	Definition of Random Forests	587
15.3	Details of Random Forests	592
	15.3.1 Out of Bag Samples	
	15.3.2 Variable Importance	
	15.3.3 Proximity Plots	
	15.3.4 Random Forests and Overfitting	596
15.4	Analysis of Random Forests	597
	15.4.1 Variance and the De-Correlation Effect	597
	15.4.2 Bias	600
	15.4.3 Adaptive Nearest Neighbors	601
Bibli	iographic Notes	602
	cises	603
16 Ensei	mble Learning	605
16.1	Introduction	
16.2	Boosting and Regularization Paths	
	16.2.1 Penalized Regression	
	16.2.2 The "Bet on Sparsity" Principle	
	16.2.3 Regularization Paths, Over-fitting and Margins .	613
16.3	Learning Ensembles	616
	16.3.1 Learning a Good Ensemble	617
	16.3.2 Rule Ensembles	
Bibli	lographic Notes	623
Exer	cises	624
17 Undi	rected Graphical Models	625
17.1	Introduction	
17.2	Markov Graphs and Their Properties	
17.3	Undirected Graphical Models for Continuous Variables .	
	17.3.1 Estimation of the Parameters	
	when the Graph Structure is Known	631
	17.3.2 Estimation of the Graph Structure	
17.4	Undirected Graphical Models for Discrete Variables	
	17.4.1 Estimation of the Parameters	
	when the Graph Structure is Known	639
	17.4.2 Hidden Nodes	641
	17.4.3 Estimation of the Graph Structure	642
	17.4.4 Restricted Boltzmann Machines	643
Exer	cises	645
_	-Dimensional Problems: $p \gg N$	649
18.1	When p is Much Bigger than N	649

18.2	Diagona	l Linear Discriminant Analysis	
	and Nea	rest Shrunken Centroids	651
18.3	Linear (Classifiers with Quadratic Regularization	654
	18.3.1	Regularized Discriminant Analysis	656
	18.3.2	Logistic Regression	
		with Quadratic Regularization	657
	18.3.3	The Support Vector Classifier	657
	18.3.4	Feature Selection	658
	18.3.5	Computational Shortcuts When $p \gg N$	659
18.4	Linear (Classifiers with L_1 Regularization	661
	18.4.1	Application of Lasso	
		to Protein Mass Spectroscopy	664
	18.4.2	The Fused Lasso for Functional Data	666
18.5	Classific	ation When Features are Unavailable	668
	18.5.1	Example: String Kernels	
		and Protein Classification	668
	18.5.2	Classification and Other Models Using	
		Inner-Product Kernels and Pairwise Distances .	670
	18.5.3	Example: Abstracts Classification	672
18.6		mensional Regression:	
	-	sed Principal Components	674
	18.6.1	Connection to Latent-Variable Modeling	678
	18.6.2	Relationship with Partial Least Squares	680
	18.6.3	Pre-Conditioning for Feature Selection	681
18.7	Feature	Assessment and the Multiple-Testing Problem	683
	18.7.1	The False Discovery Rate	687
	18.7.2	Asymmetric Cutpoints and the SAM Procedure	690
	18.7.3	A Bayesian Interpretation of the FDR	692
18.8	0	aphic Notes	693
Exerc	ises		694
Refere	ences		699
Autho	r Index		729
\mathbf{Index}			737