

网络空间地图课程设计

1. 背景

- 网络空间发展
 - 互联网空间化 (Cyberspace)
 - 继陆、海、空、太空后第五大疆域
 - 网络空间呈现复杂多元化趋势
 - CyberSecurity
 - CyberPolitics
 - ...
 - 网络空间平行地理空间
 - 地理空间——地理测绘
 - 地理资源
 - 地理地图
 - 网络空间——网络空间测绘
 - 网络空间资源? 网络空间地图?

存在的问题

2. 网络空间资源模型

- 网络空间资源定义
 - 在网络空间中,使用网络空间手段,能够探测和感知的 IP化实体
- 探测手段
 - 主动测量和被动测量,例如ping等
 - 参考一些主流的平台和工具:
 - Nmap (Shodan: https://www.shodan.io/; Zoomeye)
 - Zmap (推荐) (Censys: https://censys.io/)
 - ...
 - 目标:
 - 获取所有IP空间存在资源的总和

2. 网络空间资源模型

清章大学 Tsinghua University

- 分类
 - 基础设施
 - 交换设备(路由器,交换机等)
 - 接入设备(服务器、打印机、手机等)
 - 网络服务
 - 网站、DNS等
 - 工业控制系统
 - P2P, CDN等
- 可视化手段:
 - 树状图
 - 圆饼图(推荐)

- 整体目标:
 - 通过可视化手段将抽象的网络空间具象化
- 地图研究方法:
 - 地理坐标系+拓扑地图坐标系
 - IP坐标系

- 地理坐标系绘制
 - 本质是将网络空间资源映射到 地理空间中
 - 缺陷:
 - 难以层次化展现网络空间的本质
 - 难以直观揭示网络空间本源特征

DNS服务器绘制

- 拓扑坐标系绘制
 - AS层面、路由器层、IP层, 从多层次展现网络空间
 - 缺陷:
 - 拓扑结构不稳定导致地图背板不 恒定 カロイエチ

如何结合这两种坐标系的优势?

- 基于IP的坐标系
 - IP向量
 - 一维可视化
 - 二维可视化
 - Scan (相邻IP不相邻,不相邻IP会聚合)
 - Snake Scan (不相邻IP会聚合)
 - Z Curve (出现IP跳跃)

1D:

2D:0

Scan

Snake Scan

Z curve

Hilbert Curve

区域性、可伸缩性

3 网络空间坐标系研究

- 网络空间坐标系研究
 - 基于Hilbert的IP二维空间

■ 可伸缩性:解决多尺度展示网络空间的问题

■ 聚合性: 使得一维相邻的IP块在二维空间中必相邻

3 网络空间坐标系研究

- 绘制方法-网络空间地图
 - 目标一:可视化IP地址空间
 - 多尺度展现网络空间资源
 - 展示区域有代表性网络空间资源

GIS比例尺	GIS标注信息	CyberGis比例尺	CyberGis标注信息
1000公里	国家	/16	大AS
500公里	省	/20	大ISP网,小AS
100公里	市	/24	小ISP网,城域网
30公里	县	/28	小城域网,局域网(AP 局域网、自组网、物联 网)
5米	街道	/32	IP地址及属性(端口,服务,链路,终端节点等)

3 网络空间坐标系研究

■ 实现 IP地址空间可视化

- AS层可视化
 - 整个IP地址空间
 - 一个像素点代表/20
- ISP层可视化
 - 16个A类地址 (/8)
 - 一个像素点代表/24
- 网络层可视化
 - 1个A类地址 (/8)
 - 一个像素点代表/28
- IP层可视化
 - 1个C类地址 (/24)
 - 一个网格代表一个IP

- 数据来源:
 - IP分配五大机构(IANA)
 - 参考一些主流的平台和工具:
 - Censys
 - Ipinfo.io
 - Maxmind
 - **...**

- 配色方法
- 标注方法

■ 数据格式

[起始IP,终止IP,配色R,配色G,配色B,比例尺,IP描述]

4 任务

鼓励新发现,鼓励创新!

测绘过程中有困难可以在网络学堂随时提问!