

现代密码学

第二十七讲 AES算法简介

信息与软件工程学院

第二十七讲AES算法简介

AES提出的背景

AES算法框架和参数说明

AES标准算法征集

- DES算法由于其密钥较短,难以抵抗现有的攻击,因此不再作为加密标准
- 1997年1月,美国NIST向全世界密码学界发出征集21世纪高级加密标准(AES——Advanced Encryption Standard)算法的公告,并成立了AES标准工作研究室,1997年4月15日的例会制定了对AES的评估标准。

AES算法征集的要求

- (1) AES是公开的;
- (2) AES为对称密钥分组密码体制;
- (3) AES的密钥长度可变,可按需要增大;
- (4) AES适于用软件和硬件实现;
- (5) AES可以自由地使用,或按符合美国国家标准(ANST)策略的条件使用。

算法衡量条件

- •满足以上要求的AES算法,需按下述条件判断优劣
 - •安全性
 - 计算效率
 - 内存要求
 - 使用简便性
 - 灵活性

AES的评审

• 1998年4月15日全面征集AES算法的工作结束。1998年8月20日举行了首届AES讨论会,对涉及14个国家的密码学家所提出的候选AES算法进行了评估和测试,初选并公布了15个被选方案,供大家公开讨论。

CAST-256, RC-6, CRYPTON-128, DEAL-128,

FROG, DFC, LOKI-97, MAGENTA,

MARS, HPC, RIJNDAEL, SAFER+,

SERPENT, E-2, TWOFISH.

· 这些算法设计思想新颖,技术水平先进,算法的强度都超过3-DES,实现速度快于3-DES。

AES的评审(续)

· 1999年8月9日NIST宣布第二轮筛选出的5个候选算法为:

MARS(C.Burwick等,IBM),

RC6TM (R. Rivest等,RSA Lab.),

RIJNDEAL(J. Daemen,比利时),

SERPENT(R. Anderson等,英国、以利时、挪威),

TWOFISH(B. Schneier, 美国)。

· 2000年10月2日,NIST宣布Rijndael作为新的AES

第二十七讲AES算法简介

AES提出的背景

AES算法框架和参数说明

AES算法设计思想

- •设计简单
- 在多个平台上速度快,编码紧凑
- 抵抗所有已知的攻击
- Rijndael没有采用Feistel结构,轮函数由3个不同的可逆均匀变换构成的,称为3个层
 - · 均匀变换是指状态的每个bit都用类似的方法处理

轮函数的3层

- 线性混合层
 - 确保多轮之上的高度扩散;
- 非线性层
 - · 将具有最优的"最坏情况非线性特性"的S盒并行使用;
- 密钥加层
 - 单轮子密钥简单的异或到中间状态上,实现一次性掩盖。

算法说明

- •明文分组可变, 128、192、256比特
- •密钥长度可变,各自可独立指定为128、192、256比特。
- 状态
 - 算法中间的结果也需要分组,称之为状态,状态可以用以字节为元素的矩阵阵列表示,该阵列有4行,列数N_b为分组长度除32
- 种子密钥
 - 以字节为元素的矩阵阵列描述,阵列为4行,列数 N_k 为密钥长度除32

算法说明

• 算法的输入、输出和种子密钥可看成字节组成的一维数组。

• 下标范围

• 输入输出: 0-4N_b-1

• 种子密钥: 0-4N_k-1

$N_b=6和N_k=4的状态密钥阵列$

a_{00}	a_0		$\begin{vmatrix} a \end{vmatrix}$	$\frac{1}{03}$	04	<i>i</i> ₀₅
a_{10}	$/a_1$	$ a /a_1$	$\begin{vmatrix} 2 \end{vmatrix} / a$	$\frac{1}{13}$	14	<i>i</i> ₁₅
a_{20}	A_2	a_1 a_2	$\frac{1}{2}$ a	$\frac{1}{23}$	24	<i>a</i> ₂₅
a_{30}	$/ \mid a_3 \mid$	$ a_3 $	$\begin{vmatrix} 1 & a \end{vmatrix}$	$\frac{1}{33}$ a	34	<i>a</i> ₃₅

k_0)	k_0)1	k	02		k_{03}
k_{10})	$/k_1$	l 1 /	/	12 /	/	k ₁₃
k_{20}		k_2	/	k	22		$k_{23}^{}$
k_{30}		k_{3}	/	k	32		k ₃₃

按此顺序放入和读出

按此顺序放入

分组和阵列中元素对应关系

- 分组下标n
- 阵列位置(i,j)
 - $i=n \mod 4$, j=[n/4]; n=i+4j
- 轮数 N_r 与 N_b 和 N_k 对应关系

	N _b =4	$N_b=6$	$N_b=8$
$N_k=4$	10	12	14
$N_k=6$	12	12	14
N _k =8	14	14	14

感谢聆听! xynie@uestc.edu.cn