BLM1011 BİLGİSAYAR BİLİMLERİNE GİRİŞ

GR.2, 3(ONLÍNE)
2021-2022 GÜZ YARIYILI
DR.ÖĞR.ÜYESİ GÖKSEL BİRİCİK

Tarihçe

Bilgisayar (Hesaplamanın) Tarihçesi

Mekanik Dönem Öncesi

Mekanik Dönem

Elektro-Mekanik Bilgisayarlar

Elektronik Sayısal Bilgisayarlar (1. jenerasyon)

Transistörlü 2. jenerasyon Bilgisayarlar

Tümdevreli 3. Jenerasyon Bilgisayarlar

Mekanik Dönem Öncesi Hesaplama

Elde ne varsa o

Parmaklar

Taşlar

Çizikli kemikler

Duvara, kuma, taşa çizikler, izler, "sayılar"

Mekanik Dönem

Abacus: Bilinen en eski abaküs M.Ö. 300 yılında Babil'liler tarafından kullanılmıştır.

Hâlâ kullanımda!

Mekanik Dönem

Pascaline, Blaise Pascal 1642. Babasının vergi hesapları için mekanik TOPLAMA makinesi

Adımlı Hesaplayıcı, Leibnitz, 1674. 10luk tabanda dört işlem

Dokuma Tezgahı, Jacquard, 1804

Mekanik Dönem

FARK MAKINASI — ANALITIK MAKINE, CHARLES BABBAGE, 1822-1871

Augusta Ada Byron King, Lovelace Kontesi (1815-1852)

Romantik şair Lord Byron'un kızı

"Üretilmemiş" Analitik makine için Bernoulli sayılarını hesaplayan ilk "bilgisayar programını" yazdı.

19 yaşında!

İlk alt programı ve ilk döngüyü yarattı.

Babbage'ın aksine, tüm çalışmalarını belgeyerek kayıt altına aldı.

Diagram for the computation by the Engine of the Numbers of Bernoulli. See Note G. (page 722 et seq.)

b.	2	Variables acted upon.	Variables receiving results.	Indication of change in the value on any Variable.	Statement of Results.	Data.			Working Variables.										Result Variables.		
cumber of Operation	Nature of Operation					1V ₁ O 0 0 1	1V ₂ 0 0 0 2	1V ₃ O 0 0 4	°V40000	°V ₅	°V ₆ ○ 0 0 0 0 0	°V7 00 00 0	eys 00000	°V ₉ ○ 0 0 0 0	°V ₁₀ ○ 0 0 0 0	0V ₁₁ ○ 0 0 0	6V ₁₂ O 0 0 0	°¥₁₃ ○ 0 0 0 0	B ₁ in a decimal O ₁₆ A ₁ fraction.	B ₃ in a decimal O fraction.	v ₂₃ ov ₂₄
-													ш	ш				L			
1	×	V2 ×1V3	1V4, 1V5, 1V6		= 2 n		2	n	2n	2 n	2 n						-		H 1 100	28	2 10000
2			2V4		= 2 n - 1	1		***	2n-1												
3	+	V ₅ +1V ₁	2V5	$ \begin{cases} 1V_{\delta} = 2V_{\delta} \\ 1V_{1} = 1V_{1} \end{cases} $ $ \begin{cases} 2V = 0V \end{cases} $	2 n + 1	1	•••	***		2n+1						2n - 1		and restricted at			50
4	+	$V_5 \div {}^2V_4$	ıv ₁₁	2V4 = 0V4	$\begin{vmatrix} =\frac{2}{2}\frac{1}{n+1} & \dots & \\ 1 & 2n-1 \end{vmatrix}$			***	0	0	1444					2n+1	1	and the same of			
5	+	V11+1V2	2V ₁₁	$\left\{ \begin{array}{l} {}^{1}V_{11} = {}^{2}V_{11} \\ {}^{1}V_{2} = {}^{1}V_{2} \end{array} \right\}$	$=\overline{2}\cdot\overline{2n+1}$	THE SHALL	2			***		***		***		$\frac{1}{2} \cdot \frac{2n-1}{2n+1}$		and the second			
6	- 1	V13-TV11	1V ₁₃	$\left\{ \begin{smallmatrix} 2V_{11} = 0V_{11} \\ 0V_{13} = {}^{1}V_{13} \end{smallmatrix} \right\}$	$=-\frac{1}{2}\cdot\frac{2^{n}-1}{2^{n}+1}=\Lambda_{0}$							***				0		$-\frac{1}{2}\cdot\frac{2n-1}{2n+1}=\Lambda_0$			
7	- 1	V ₃ - 1V ₁	¹ V ₁₀	$\left\{ {}^{1}V_{3} = {}^{1}V_{3} \\ {}^{1}V_{1} = {}^{1}V_{1} \\ \right\}$	= n - 1 (= 3)	1		n	***				***		n-1		- Imure	as interest articles			and his
8	+	V2 +0V2	ıv,	$\left\{ \begin{array}{l} 1V_2 = 1V_2 \\ 0V = 1V \end{array} \right\}$	= 2 + 0 = 2		2					2					1		-	100	-
9	+	V6+1V7	3V ₁₁	$ \begin{cases} {}^{1}V_{2} = {}^{1}V_{2} \\ {}^{0}V_{7} = {}^{1}V_{7} \\ {}^{1}V_{6} = {}^{1}V_{6} \\ {}^{0}V_{11} = {}^{3}V_{11} \end{cases} $	$=\frac{2n}{2}=\Lambda_1\dots$						2 n	2				$\frac{2 n}{2} = \Lambda_1$			Salt W	100	1 10 10
10	×	V21×3V11	ı _{V₁₂}	$ \left\{ \begin{matrix} {}^{1}V_{21} = {}^{1}V_{21} \\ {}^{3}V_{11} = {}^{3}V_{11} \end{matrix} \right\} $	$= B_1 \cdot \frac{2n}{2} = B_1 A_1 \cdot \dots \cdot \dots \cdot \dots \cdot \dots \cdot \dots \cdot \dots \cdot \dots \cdot \dots \cdot \dots \cdot $											$\frac{2}{2n} = \Lambda_1$	$B_1, \frac{2\pi}{2} = B_1 A_1$		-		
11	+	V19+1V19	2V ₁₃	$\left\{ {}^{1}V_{12} = {}^{0}V_{12} \atop {}^{1}V_{13} = {}^{2}V_{13} \right\}$	$= -\frac{1}{2} \cdot \frac{2n-1}{2n+1} + B_1 \cdot \frac{2n}{2} \dots$										***	2	0	[1 2n-1 , 2n]	B ₁		-
12	- 1	V ₁₀ -1V ₁	2V ₁₀	$\left\{ {}^{1}V_{10} = {}^{2}V_{10} \atop {}^{1}V_{1} = {}^{1}V_{1} \right\}$	$= n - 2 (= 2) \dots$	1									n-2			$\left\{ -\frac{1}{2} \cdot \frac{2n-1}{2n+1} + B_1 \cdot \frac{2n}{2} \right\}$	E		
13 (Activities and the															-		-
14		No. of the last of	² V ₆	$ \left\{ \begin{matrix} {}^{1}V_{6} = {}^{2}V_{6} \\ {}^{1}V_{1} = {}^{1}V_{1} \\ {}^{1}V_{1} = {}^{1}V_{1} \\ {}^{1}V_{7} = {}^{2}V_{7} \end{matrix} \right\} $	= 2n - 1			•••	***		2n-1	1						The Tangon			-
15	14 1		and the second second	CON. ON. 3	2n-1		***	***	***		9 - 1	3	2n - 1						12.03	129	Let en
100		·V ₆ ······	.vs	17 2V _ 2V ($= \frac{3}{2n 2n - 1}$					***	2n-1		3			$2n \ 2n - 1$					
16	CX	V ₈ × °V ₁₁	.v ₁₁	$\begin{cases} {}^{1}V_{8} = {}^{0}V_{8} \\ {}^{3}V_{11} = {}^{4}V_{11} \\ {}^{2}V_{6} = {}^{3}V_{6} \end{cases}$	$= \frac{1}{2} \cdot \frac{1}{3} \dots$			***	***				0			2. 3	1	and the state of		UEAL	Colo liza
17		V 12V	av.	$\begin{cases} {}^{2}V_{6} = {}^{3}V_{6} \\ {}^{1}V_{1} = {}^{1}V_{1} \\ {}^{2}V_{7} = {}^{3}V_{7} \end{cases}$	= 2 # - 2	1	""		***		2n-2										
10	1	1 + 17	ıv	$\begin{cases} {}^{1}V_{1} = {}^{1}V_{1} \\ {}^{3}V_{6} = {}^{3}V_{6} \end{cases}$	$= \frac{2n}{2} \cdot \frac{2n-1}{3} \dots$ $= 2n-2 \dots$ $= 3+1=4 \dots$ $= \frac{2n-2}{4} \dots$ $= \frac{2n}{2} \cdot \frac{2n-1}{3} \cdot \frac{2n-2}{4} = \Lambda_3$ $= B_3 \cdot \frac{2n}{3} \cdot \frac{2n-1}{3} \cdot \frac{2n-2}{3} = B_3 \Lambda$	1.			***	""	9- 0	4		2n - 2		$\left\{\frac{2n}{2} \cdot \frac{2n-1}{3} \cdot \frac{2n-2}{3}\right\}$				STORY OF	
19		117	51/	$\begin{cases} {}^{3}V_{7} = {}^{3}V_{7} \end{cases}$ $\begin{cases} {}^{1}V_{9} = {}^{0}V_{9} \end{cases}$	$= \frac{4}{2n 2n - 1 2n - 2}$		1	***			2n-2		***	4	***	2 3 A3 3		Charles of the last of	-	Teleplan .	Level of the
20	10000	V 9 X V 11	δV ₁₁	$\begin{bmatrix} 4V_{11} = 5V_{11} \end{bmatrix}$ $\begin{bmatrix} 1V_{22} = 1V_{22} \end{bmatrix}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							***		0					Curre V	-	1 2 1
21	×	1V22×5V11	°V ₁₂	$\left\{ \begin{smallmatrix} 1 V_{22} = 1 V_{22} \\ 0 V_{12} = \begin{smallmatrix} 2 V_{12} \end{smallmatrix} \right\}$	$= B_3 \cdot \frac{2n}{2} \cdot \frac{2n-1}{3} \cdot \frac{2n-2}{3} = B_3 \Lambda$		****	***	***	***	***	***			***	0	B ₃ A ₃			Ba	The second

Elektro-Mekanik Bilgisayarlar

Sayım Makinesi, Herman Hollerith, 1880

Harvard Mark I, Howard Aiken, 1943

Elektronik Bilgisayarlar

Atanasoff-Berry Computer – ABC, 1939

Bletchley Park Colossus, 1943

ENIAC – Electronic Numerical Integrator and Computer, 1946

Transistörlü Bilgisayarlar

AT&T Bell Laboratuvarında William Shockley, John Bardeen ve Walter Brattain taradından bulundu.

Büyük vakum tüplerini küçük, güvenilir, az güç harcayan katı devre elemanları ile değiştirdi.

2. jenerasyon bilgisayarlarda delikli kartlar yanında manyetik teypler kullanılmaya başlandı.

UNIVAC, 1951

IBM 701, 1953

Tümleşik Devreli Bilgisayarlar

DEC PDP-1, 1960

IBM 7090 (o zamanki en hızlı bilgisayar)

DEC PDP-12 (Programmed Data Processor)

- PDP-8 ve LINC olmak üzere iki farklı bilgisayar içermektedir.
- İki farklı moda sahip Tek bir merkezi işlemciye sahiptir. İşlemcinin her iki modu için farklı bir instruction seti vardır.

Mikroişlemci Çağı — 1970-...

1970'de intel tüm CPU'yu tek bir çipe sığdırdı, ilk mikroişlemci olan 4004'ü üretti.

2300 transistor, ENIAC'la aynı işlem gücü

Dünyanın ilk ticari dinamik belleği, 1024 byte (1KB) Intel 1103 üretildi.

Mainframe Bilgisayarlar

1950'lerin sonları ile 1970'ler arasında çeşitli üreticiler tarafından üretilmiştir.

- IBM ve 7 cüceler
- Burroughs, UNIVAC, NCR, Control Data, Honeywell, General Electric and RCA, ...

IBM firmasının market üzerindeki etkinliği önce 700/7000 serisi sonrasında da 360 serisi cihazları üretmesi ile artmıştır.

1970'lerin başlarında piyasadaki küçülme şirket sayısını azaltmıştır.

1980'lerde mini-bilgisayarlar etkin olmaya başlamıştır.

2012 NASA son mainframe bilgisayarını kapatmıştır.

IBM hala mainframe üretimine devam etmektedir.

Eylül 2019'da z15 tanıtıldı.

Kişisel Bilgisayarlar

Olivetti Programma 101 (Perottina – P101) 1965, 3200\$

IBM 5100, 1975

Apple 1, 1976

IBM PC / MS-DOS, 1981

Commodore 64, 1982

- Tüm zamanların en çok satan kişisel bilgisayarı
- 16 bit grafikler, 64KB bellek ile IBM PC'den daha performansliydi

Süper Bilgisayarlar

Karmaşık problemlerin, birden fazla makina üzerinde, eş zamanlı olarak (paralel) çözülmesini sağlayan, bilgisayar kümeleri

Virtualization (sanallaştırma) ve parallel computing (paralel hesaplama)

IBM Blu Gene/P, 164.000 işlemci

Fugaku: 158,976 node, her node'da Fujitsu A64FX CPU (48+4 core), her node'da 32GB bellek, her 16 node'a 1.6TB SSD disk, 150PB ortak depolama, 442PFLOPS – 2 EFLOPS

Bilgisayar

von Neumann Mimarisi

Günümüz bilgisayar mimarisinin temeli

Program ve data tarafından paylaşılan tek bellek

Giriş/Çıkış, bellek ve Aritmetik Birim Merkezi İşlem Birimi tarafından idare edilir.

İkili (Binary) veri ile çalışır.

Bilgisayar Organizasyonu

Donanım

- Bilgisayarın fiziksel bölümü
- Monitor, klavye, fare
- Entegreler, kartlar
- Kablolar
- 0

Yazılım

- Bilgisayarın mantıksal bölümü
- Programlar: Bilgisayarın gerçekleştireceği komutlar

Bilgisayar Organizasyonu

Bilgisayar Sisteminin Bileşenleri

Bilgisayar Donanımı

Merkezi İşlem Birimi(Central Processing Unit): Bilgisayarın beynidir 😊 İki ana bölümden oluşur:

- Kontrol Birimi(Control Unit CU). İşlem akışını kontrol eder, komutları yerine getirir
- Aritmetik-Lojik Birimi(Arithmetic Logic Unit ALU): Toplama, çıkarma, karar verme vs. işlerini yapar
- Ayrıca yazmaç (register), tampon bellek (cache), veri yolu (bus) ve saat (clock) barındırır.

Ana Bellek (Main Memory)

İkincil Bellek (Secondary Storage)

Giriş Birimleri(Input Devices)

Çıkış Birimleri(Output Devices)

Bellek Hiyerarşisi

Ana Bellek

Rasgele Erişimli Bellek (Random Access Memory)

Herbiri 1 byte'lık hücrelerden oluşur.

Her bellek hücresinin adresi vardır.

Bu adreslerde veri veya komut saklanır.

Saklanan bilgiler 0 ve 1'lerden oluşur.

İkili sistem kullanıldığı için bellekte saklama ve adresleme de 2'nin kuvvetlerine göredir.

- 1 kilobyte = 1024 byte(2¹⁰)
- 1 megabyte = 1,048,576 byte(2²⁰)
- 1 gigabyte = 1,073,741,824 byte(2³⁰)
- 1 terabyte = 1,099,511,627,776 byte(2⁴⁰)

Bilgisayar kapatıldığında bilgiler silinir (volatile).

İkincil Bellek

Bilgiler kalıcıdır.

Rasgele veya sıralı erişim olabilir.

Manyetik Disk sürücüleri

• Harddisk, floppy disk, teyp, ...

Optik sürücüler

• CD, DVD ..

Flash sürücüler

SSD, Flash, Secure Digital, ...

Tape motion

Birimler

Bellek Birimleri:

- RAM(Random Access Memory)
 - Rasgele erişim mümkün
 - Okuma/yazma yapılabilir
- ROM(Read Only Memory)
 - Rasgele erişim mümkün
 - Sadece okuma yapılabilir
 - Genel olarak ana kartta bilgisayar ilk açıldığında gerekli komutları saklar.

Giriş/Çıkış Birimleri:

- Dışardan bilgisayara veri aktarımı
 - Klavye, fare, tarayıcı..
- Bilgisayardan dışarıya bilgi aktarımı
 - Monitör, yazıcı ...

Yazılım Türleri

Sistem yazılımları

- İşletim sistemi,
- Komut satırı (shell),
- Derleyici,
- Editör

Uygulama yazılımları

- Çizim araçları
- Eğitim paketleri
- Internet tarayıcısı
- Oyunlar
- Yazım araçları vb.

Programlama Dilleri

- 1. Nesil: Makine kodu(Machine code)
- 2. Nesil: Assembly diller
- 3. Nesil: Yöntemsel(procedural) diller
- 4. Nesil: Uygulamaya özel diller
- 5. Nesil : Kısıtlı diller

1.Nesil – Makine Kodu

Komutlar 0 ve 1 kullanılarak ifade edilir.

Örnek: İki sayının toplanması için makine kodu:

000000 00001 00010 00110 00000 100000

2.Nesil – Assembly Diller

Makine kodunun anlaşılması zor, hata yapılması kolay

Çözüm : 1950'lerde assembly diller

İkili sayı sistemindeki instructionlar yerine anlaşılır kısaltmalar

- ADD AX, BX
- **MOV** AL, 1

Alt seviye (Low level) diller

Her işlemci ailesi için farklı bir assembly dili var.

• 8086, PowerPC, z390 vb.

Bilgisayar sadece makine kodunu işleyebilir.

Assembly dilinde yazılmış programın makine koduna çevirilmesi gerekir.

Çevirme işlemi **assembler** tarafından yapılır.

Üçüncü Nesil – Yöntemsel Diller

Farklı mimariler için farklı assembly komutları kullanılıyor.

Makine diline göre daha kolay olsa da programlama hala zor.

Çözüm

- 1950'lerde yöntemsel diller
- İngilizce komutlar

Yüksek seviye diller

• Fortran, Algol, Pascal, C, BASIC, ...

İleri Seviye Programlama Dillerinin Gelişimi

```
1950'ler Grace Hopper: Cobol
```

1954 – Bakus & IBM Grubu: Fortran – (Bilimsel programlama)

1968 – N. Wirth : Pascal

1970 – B. Kernighan, D. Ritchie: C – (UNIX işletim sistemi yazılımı)

Nesneye Dayalı Diller

Yazılımlar karmaşıklaştıkça daha efektif kodlama ihtiyacı

Nesneye dayalı programlama ile modüler ve yeniden kullanılabilir kodlar

İş yapan, birbirleriyle haberleşen nesneler(objeler) üzerine kurulu

- Simula, SmallTalk, Ruby, Scala, ...
- Java, C++, C#, ...

1967 – Dahl ve Nygaard (NCC): Simula

1980 – Goldberg (Xerox) : Smalltalk-80

1988 – B. Soustroup : C++

1995 – J. Gosling (SUN) : Java

1995 – OMG: UML (Unified Modelling Language)

Yorumlayıcı (Interpreter) / Derleyici (Compiler)

Compiler (Derleyici): High-level bir dille program yazdığımız kaynak kodun makine koda dönüştürülmesini sağlar

Interpreter (Yorumlayıcı): Program bir seferde değil satır satır derlenir. Bir satır çalıştırıldıktan sonra, bir sonraki satır çalıştırılır

Pek çok programlama dili hem derleyici hem yorumlayıcı ile çalışabilir

Derleyici ile çalışan diller: C, JAVA, C++...

Yorumlayıcı ile çalışan diller: Basic, Lisp, MATLAB, SmallTalk ..

4.Nesil – Uygulama Özel Diller

Rapor üreticiler

Quest, Oracle Reports, RPG II ..

Veritabanı Sorgulama

SQL, Informix-4GL, FOCUS ...

Veri İşleme, Analiz ve Raporlama

MATLAB, Mathematica, PL/SQL...

```
SET clause -{UPDATE country | Expression |

SET clause -{SET population = population + 1} | Statement |

WHERE clause -{WHERE name = 'USA';

Expression | Predicate
```

```
    initialise data, prepare graphics objects, and create the dialog

maleuman :-
 tidy salesman,
  Datyle = [us_caption, us_maximizebox, us_thickframe],
  Botyle = [wo child, wo visible, we tabatop, he pushbutton] ,
  Satyle = [ws child, ws visible, ss left],
  Ostyle - (ws child, ws visible, ws ex clientedue),
  edopeabe( salesman, "Travelling Salesman",
  woopeate( [salesman, 2], button, 'sExhaustive', 420, 8, 80, 22,
  weepeate( [salessen, 4], button, 'Eleuristic', 420, 35, 50,
                                                 420, 60, 00, 22,
  ecoreate( [salesman, 5], button, '#Stop', -
  woopeate( (caleswan, 6), button, 'cClose',
                                                 420, 98, 80, 32,
                                                 10, 415, 480, 25,
  wccreate [ [malessan, 5], static, '',
                                                 10, 10, 400, 400,
  woodeate( [salesman, 9], grafix, "",
  pet buttons | 0, 0, 0, 1 |,
  town graffix,
  window handler! salesman, salesman handler ),
  call dislog | salasman, ],
  tidy salesman.
```


5.Nesil – Kısıtlı (Constraint) Diller

Yapay Zeka uygulamaları için geliştirilen diller

Prolog, Mercury, LISP, ...

Görsel(visiual) diller: Kutu, daire vs. görsel ifadelerle program yazımı

Simulink, LabVIEW, Analytica, Flow..

Sayı Sistemleri

Ondalık (Decimal) Sayı Sistemi

Ondalık sayı sistemi

Hindu Arabic, Arabic olarak ta bilinir.

10 farklı rakam kullanılır.

0, 1, 2, 3, 4, 5, 6, 7, 8 ve 9

Kesirli sayıların gösterimi için <u>nokta işareti</u> kullanılır.

Ondalık sayı sisteminde 543.21 sayısı

• $(5 \times 10^2) + (4 \times 10^1) + (3 \times 10^0) + (2 \times 10^{-1}) + (1 \times 10^{-2})$ şeklinde değerlendirilir.

İkili (Binary) Sayı Sistemi

İkili sayı sisteminde sadece 0 ve 1 rakamları kullanılır.

- İki sayısı «10» şeklinde ifade edilir.
- Ondalık sayı sisteminde olduğu gibi toplamın iki olması durumunda bir sonraki haneye aktarılır.

İkili sayı sistemindeki sayıların yazımı genellikle ondalık sisteme göre daha uzundur.

- Bunun temel nedeni ikilik sistemde her hanenin onluk sisteme göre daha az bilgi ifade edebilmesidir.
- Bundan dolayı ikilik sistemdeki hanelere <u>bit</u> adı verilir. (bit: binary digit)

Sekizlik (Octal) Sayı Sistemi

Sekizlik sayı sisteminde sayılar sadece 8 rakam kullanılarak ifade edilir.

0, 1, 2, 3, 4, 5, 6 ve 7

Sekizlik sayı sisteminde her hane ikilik sayı sistemindeki 3-biti ifade eder. ($2^3 = 8$)

Sekizli sayı sistemi 12-bit, 24-bit ve 36-bit yapısındaki çeşitli işlemcilerde kullanılmıştır.

Örnek: PDP-8, ICL 1900 ve IBM mainframe

Onaltılık (Hexadecimal) Sayı Sistemi

Onaltılık sayı sisteminde sayıların ifade edilmesi için 16 değere ihtiyaç vardır.

- Bunun için 10 rakam ve 6 harften yararlanılır.
- 0, 1, 2, 3, 4, 5, 6, 7, 8, 9
- A, B, C, D, E ve F

Hanelerin kullanımı ondalık sayı sistemi ile aynıdır.

Ondalık sayı sisteminde 256,058 sayısı

- İkilik sayı sisteminde «0011 1110 1000 0011 1010»
- Sekizlik sayı sisteminde «764 072»
- Onaltılık sayı sisteminde «3 E83A» şeklinde yazılır.

Sayı Sistemleri Arasında Geçiş

Matematiksel olarak sayı sistemleri arasındaki geçiş çarpma ve bölme işlemleri ile yapılır.

- Ondalık sayı sisteminde başka sayı sistemine geçerken bölme
- Diğer sayı sistemlerinden Ondalık sisteme geçerken çarpma

Sayı Sistemleri Arasında Geçiş

İkilik, sekizlik ve onaltılık sayı sistemleri arasındaki geçişler daha pratik şekillerde yapılabilir.

Sekizlik sistemdeki her hane, ikilik sistemdeki üç haneye karşılık gelir.

1 000 010 111 100 011

102743

Onaltılık sistemdeki her hane, ikilik sistemde dört haneye karşılık gelir.

1000 0101 1110 0011

85E3

Decimal: 34275