Landscape Net

An Application of the Landscape Theory in Machine Learning for Eigenvalue Counting

> Li Chen Joint work with Wei Wang

> > MIT

May 6, 2020

Introduction

Code available at

https://github.com/nehcili/Wave-Localization

Mathematical Setting

- Space: $L^2(\mathbb{Z} \cap [0, 1000])$.
- Hamiltonian: $-\Delta_{\mathbb{Z}} + V$ with periodic boundary condition.
- Properties of V:
 - **1** V(x) are iid distributions for $x \in \mathbb{Z} \cap [0, 1000]$,
 - ② $V \ge 0$

Objective

Accurately and efficiently approximate the eigenvalue counting

 $N_V(E) = \#$ of eigenvalues of $-\Delta_{\mathbb{Z}} + V$ less or equal to E

Introduction

Method

We develop a neural net architecture which attempts to generalize the landscape box counting (c.f. David, G., Filoche, M., Mayboroda, S.)

Machine Learning

Introduction

- Suppose that a set of features $x \in \mathbb{R}^n$ determines certain quantity $t \in \mathbb{R}$ via t = F(x) for some F. Assume also that x is generated through some random process.
- We would like to approximate F. We need 3 things:
 - A loss function to minimize. We choose a (distance) function $I: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ which quantify the error and set

$$L_0(f) := \mathbb{E}_x[I(f(x),t)]$$

Think
$$I(x, y) = (x - y)^2$$
.

② We choose a function space parameterized by \mathbb{R}^m

$$\{f_{\theta}: \theta \in \mathbb{R}^m\}$$

on which we minimize L_0 . I.e. we select

$$f_{\theta_0} = \operatorname{argmin}_{\theta} L_0(f_{\theta})$$

Minimization scheme.

Empirical loss

• In practice, given observed training data $(x_1, t_1), ..., (x_N, t_N)$, we minimize the empirical error

$$L(f) := \frac{1}{N} \sum_{i=1}^{N} I(f(x_i), t_i)$$

- Common choices of I(x, y):
 - 1 L¹ norm: mean absolute error
 - ② Square of L^2 norm: mean squared error
 - **3** $(x-y)/y \times 100\%$: mean absolute percent error
- When *N* is large, minimizing *L* is very difficult numerically. So we will need a suitable minimization scheme.

Architecture: choice of function space

 For a deep neural net, its function spaces consists of functions of the form

$$f_1 \circ f_2 \circ \cdots \circ f_n$$

where each f_i is a simpler function. Each f_i is called a layer

- Two common and simplest layers are
 - Dense layer
 - Convolution layer

Dense layer

- input: $x \in \mathbb{R}^n$, output $y \in \mathbb{R}^m$.
- Parameters:
 - **1** W is a $m \times n$ matrix. The weight matrix
 - 2 $b \in \mathbb{R}^m$ is the basis vector
 - **3** An activation function σ (e.g. Heaviside, max(0,·))
- Action

$$y = \sigma(Ax + b)$$

Convolution layer

- A convolution layer is a dense layer. But sparse.
- input: $x \in \mathbb{R}^n$, output $y \in \mathbb{R}^m$.
- Parameters:
 - **1** $k, s \in \mathbb{Z} > 0$ are the kernel size and stride, respectively.
 - ② A is a $m \times n$ matrix. In the i-th row, all entries but $A_{i,si},...,A_{i,si+k-1}$ are zero. Moreover, every row of A is equal upto a shift (by integer multiples of s).
 - **3** $b \in \mathbb{R}^m$ is the basis vector
 - **4** An activation function σ (e.g. Heaviside, max(0,·))
- Action

$$y = \sigma(Ax + b)$$

cartoon: https://github.com/vdumoulin/conv_arithmetic

Training: minimization scheme

To minimize

$$L(f) := \frac{1}{N} \sum_{i=1}^{N} I(f(x_i), t_i),$$

we perform gradient descend on θ (from f_{θ}). In practice, computing the gradient with all training data is costly and a stochastic version is used:

- Iterate over training data until convergence (each iteration is an epoch)
- For each epoch, divide the training data into batches, where each batch contains a small amount of training data. We iterate over the batches.
- 3 For each batch, perform gradient descent.

Summary

Training time	Training error	Test error	Trainable Params
1 hour	pprox 1 to 2	\approx 2 to 3	≈ 77,000

Training/Testing

- We trained 300 sets of data where each set consists of 100 tuples: (features, targets). $N=300\times100$ for error computation.
- A feature is some combinations of the original potential V, the landscape potential W (and its derivative), the energy E.
 A target is the true eigenvalue counting.
- We tested on 30 sets of independent data. $N=30\times 100$ for error computation.

Sensitivity of the landscape potential

• This project first started as an attempt to build a neural net to compute the first *N* eigenvalues given an input potential.

potential
$$\rightarrow N$$
 eigenvalues

• In the same setting, we trained a simple model to predict the first N=20 eigenvalues. The model has the following architecture:

input \mapsto 4 convolution layers \mapsto 3 dense layers \mapsto output

Sensitivity of the landscape potential

- We trained 2 copies of the simple model with two feature and target pairs: using V vs using W as different feature input while keeping the same target (first 20 true eigenvalues) for each case.
- The result is very dramatic. (N = 20 below)

Input	Training time	Training error*	Test error*
V	15 min	pprox 9%	pprox 10%
W = 1/u	15 min	pprox 2%	pprox 2%

^{*} error = mean absolute percent error (i.e. $I(x, y) = (x - y)/y \times 100\%$, y is the true target)

Box counting

- Let W denote the landscape potential and $\Omega = [0, L]^d$ or $[0, L]^d \cap \mathbb{Z}$. Let
 - $N^W(E):=\#$ of cubes on which inf $W\leq E$, among all cubes that tile the domain Ω with side length $E^{-1/2}$,
- For suitable potentials, one can prove that (c.f. David, G., Filoche, M., Mayboroda, S., and Zhang, S., Wang, W.)

$$c_1N^W(c_2E)\leq N_V(E)\leq C_3N^W(C_4E).$$

for suitable constants c_1, c_2, C_3, C_4 .

Box counting

• We can use box counting as a regression model with 2 parameters c_1 and c_2 :

predicted eigenvalue count =
$$c_1 N^W(c_2 E)$$

- Pros of box counting
 - Computationally fast. Time complexity = O(time to compute landscape potential).
 - Scalable: works on arbitrarily large domains. Only has 2 parameters.
 - Already relatively accurate
- Limitation: when used as a regression model, it only has 2 parameters: under fitting.
- So we would like to add some more parameters and pay a bit more time to get a more accurate result.

Generalizing box counting

Introduction

The current box counting can be written as

$$\sum_{\text{cubes}} \Theta(f(W, E) \mid_{\text{cube}}),$$

summed over cubes of side length $E^{-1/2}$ and

- \bullet is the Heaviside function,
- We generalize this expression as

$$\sum_{\text{cubes}} w_{\text{cube}} G(f(W, E) \mid_{\text{cube}})$$

where the sum is summed over cubes that tile the domain and

- **1** G is an activation function (e.g. Heaviside, $max(0, \cdot)$, etc),
- w_{cube} are weights,
- f is to be learned from training on data.
- This is nothing but a dense layer in a neural net!

How to train for *f*?

Introduction

- Observation: if ρ is the true density such that $N_V(E) = \int \rho$, then by picking

 - ② $G(x) = \max(0, x)$
 - $\mathbf{0}$ $w_{\text{cube}} = 1$

our model includes this case. Can we learn something from ρ ?

• Yes! If the Hamiltonian is $-\hbar^2\Delta + V$ (on $L^2(\mathbb{R}^d)$), then

$$\rho(x) = \hbar^{-3} \int dp \, 1_{\{p^2 + W(x) - E < 0\}} \text{ (Weyl term)}$$

$$+ \hbar^{-1} \sum_{i} F_i(V(x), W(x), \nabla W(x)) \int dp \, G_i(p^2 + W(x) - E)$$

$$+ O(\hbar)$$

for some local functions F_i and G_i

We simply follow this format for f.

Decider blocks

• A decider block consists of 3 convolution layers f_1 , f_2 , f_3 with architecture

$$(x_i, V, W, W') \mapsto f_1(x_i) + f_2(V, W, W') \cdot f_3(x_i) = x_{i+1}$$

- where $x_0 = (V E, W E)$.
- We will feed the output of a previous decider block, x_i , to the next decider block as (x_i, V, W, W') .
- Then, We place in series several decider blocks to form the decider block layer, which tries to learn f.

Architecture of the landscape net

Recall that our generalization to box counting iss

$$\sum_{\text{cubes}} w_{\text{cube}} G(f(W,E)\mid_{\text{cube}})$$

- Landscape net. Input = V, W, E
 - input \rightarrow decider blocks layer (this is f)
 - ightarrow convolution layers (this is part of the box counting sum)
 - \rightarrow dense layers (this is part of the box counting sum)
 - \rightarrow output: prediction for $N_V(E)$

Analysis of the model

- As it stands, the current architecture probably can be scaled up. Since we mainly use convolution layers and such layers with stride s reduces the input dimension by a factor of s. Let N denote the input dimension. We will need $\log_s(N)$ layers, each with $k \geq s$ parameters.
- At each layer there is at most kN operations.
- If we have C channels (i.e. number of parallel layers), we have C^2kN operation per layer since every channel sends signal to every other channel.
- In total, we have a time complexity of $O(C^2kN\log_s(N))$ (compared to the O(N) time complexity of box counting).
- For a very rough perspective. The popular image classifier AlexNet has a parameter size/input dimension ratio of 400. Landscape Net has 77.

