Mat347 Tutorial 15

Separable and inseparable field extensions

The Frobenius map

4. Find a K such that σ_p is not onto. Solution: Consider the field $F_p(t)$. Claim: There is no $\frac{f}{g}$ such that $(\frac{f}{g})^p = t$.

Proof. $deg(\frac{f}{g})^p) = pdeg(f) - pdeg(g) = p(deg(f) - deg(g)) = 1$ This is impossible. Therefore, $\nexists \frac{f}{g} \in F_p(t)$ s.t. $\sigma_p(\frac{f}{g}) = t$

5. Let p be prime. Let $f(x) = x^p - t \in F_p(t)[x]$. Is f separable? Let K be a splitting field of f over $F_p(t)$. Describe $Aut(K/F_p(t))$. Solution: $f'(x) = px^{p-1} = 0$. Then consider a root α such that $f(\alpha) = 0$. Then $f'(\alpha) = 0 \Rightarrow$ multiplicity of α is not one. Therefore, it is not separable.

Let K be a splitting field of f over $F_p(t)$. It's easy to see that K is not Galois over $F_p(t)$ since f is not separable. (Check proposition from book). Indeed, let α be the solution of f(x), then $\alpha^p - t = 0 \Rightarrow t = \alpha^p \Rightarrow x^p - t = x^p - \alpha^p = (x - \alpha)^p$. Then by U.F.D we can see that α is the only solution of $x^p - t$. Then $K = F_p(t)(\alpha)$.

 $\forall \sigma \in Aut(K/F_p(t)), \ \sigma(\alpha)$ is a root of $\sigma(f)(x) = f(x)$, and we just show f(x) only has one root, thus $\sigma(\alpha) = \alpha$. Then $Aut(K/F_p(t)) = Aut(F_p(t)(\alpha)/F_p(t)) = 1$.

Claim: $x^p - t$ is irreducible

Proof. Suppose x^p-t is reducible, then $x^p-t=f(x)g(x)$, in the splitting field, we know $x^p-t=(x-\alpha)^p$ for some α and a field is U.F.D, then we can say $f(x)=(x-\alpha)^r$ for some r such that $1\leq r\leq p-1$. Since $f(x)\in F_p(t)[x]\Rightarrow \alpha^r\in F_p(t)$. Then since $gcd(r,p)=1,\ \exists x,y$ such that rx+py=1. We have $\alpha^r\in F_p(t), \alpha^p\in F_p(t)$. Thus $\alpha^{rx}\alpha^{py}\in F_p(t)\Rightarrow \alpha^{rx+py}=\alpha\in F_p(t)$. Then this means $\exists \alpha\in F_p(t)$ such that $\alpha^p-t=0$, contradicts the result that we get above.

6. Prove that if $f \in K[x]$ then f' = 0 if and only if there exists $g \in K[x]$ such that $f(x) = g(x^p)$.

Proof. One direction is obvious.

Now suppose f' = 0, then assume $f(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0$

$$\Rightarrow na_n x^{n-1} + (n-1)a_{n-1} x^{n-2} + \dots + a_1 = 0$$

$$\Rightarrow n = pk, p \nmid n-1, n-2, \dots, n-(p-1)$$

$$\Rightarrow a_{n-1}, a_{n-2}, \dots, a_{n-(p-1)} = 0$$

$$\Rightarrow a_n, a_{n-p}, a_{n-2p}, \dots, a_{n-(k-1)p} \neq 0$$

$$\Rightarrow f = a_n x^{pk} + a_{n-p} x^{p(k-1)} + a_{n-2p} x^{p(k-2)} + \dots + a_p x^p + a_0$$

$$\Rightarrow f = q(x^p) \text{ for some g}$$

7. Prove that K is perfect if and only if $\sigma_p \in Aut(K)$ (that is, if every element of K is a p^{th} power in K).

Proof. (\Rightarrow)

K is perfect implies for any irreducible polynomial $f(x) \in K[x]$, f(x) is separable. Thus $f' \neq 0$. Then consider $\alpha \in K$ then $(x^p - \alpha)' = 0 \Rightarrow x^p - \alpha$ is reducible. Then let β be the solution of $x^p - \alpha$, we will have $\beta^p = \alpha$. Then in the splitting field $K(\beta)$ we have $x^p - \alpha = x^p - \beta^p = (x - \beta)^p$. Thus let $x^p - \alpha = g_1(x)g_2(x)$ such that $g_1(x), g_2(x) \in K[x]$. Therefore, $g_1(x) = (x - \beta)^r$ for some r, by similar way as above proof, $\beta^r \in K$, $\beta^p \in K$, and gcd(r, p) = 1, thus $\beta \in K$. Therefore, this means $\forall \alpha \in K, \exists \beta \ s.t. \ \beta^p = \alpha \Rightarrow \sigma_p$ is a bijective homomorphism $K \to K$, thus $\sigma_p \in Aut(K)$ (\Leftarrow)

Suppose $\forall \alpha \in K, \exists \beta \text{ s.t. } \beta^p = \alpha$. Then consider any irreducible function f. If f' = 0, by 6 we will have $f = g(x^p) = a_0 + a_1 x^p + a_2 x^{2p} + a_n x^{np}$, by assumption, $\exists \gamma_i \text{ s.t. } \gamma_i^p = a_i$, we will have $f = \gamma_0^p + \gamma_1^p x^p + \gamma_2^p x^{2p} + \cdots + \gamma_n^p x^{np} = (\gamma_0 + \cdots + \gamma_n x^n)^p$. However this contradicts with f(x) is irreducible, thus $f' \neq 0$. Therefore, $\forall f \in K[x], f' \neq 0$, K is perfect. \Box

8. Prove that every algebraic extension of F_p is perfect.

Proof. From 3 and 7 we can see this easily. \Box

9. Prove that if a finite extension L of K is inseparable, then p divides [L:K].

Proof. Let α be the root of $m_{\alpha,K}(x)$ such that $m_{\alpha,K}(x)$ is not separable. Then $m_{\alpha,K}(x)'=0$. Thus $m_{\alpha,K}(x)=g(x^p)$ for some g(x) such that g(x) is irreducible (otherwise $m_{\alpha,K}(x)$ is reducible). Then by definition $K(\alpha)$ is a subfield of L and $p \mid [K(\alpha) : K] \Rightarrow p \mid [L : k]$

10. Prove that if L is a finite purely inseparable extension of K, then [L:K] is a power of p.

Proof. Claim: If f(x) is irreducible inseparable, then $f(x) = g(x^{p^n})$ such that g is irreducible and separable.

The proof is almost same as q6 plus the induction on if g_i is separable. Then with the claim above, let $\alpha \in L \setminus K$, $f(x) = m_{a,K}(x)$, we can show that \exists irreducible separable

$$g(x) = \prod_{1 \le i \le m} (x - a_i)$$

(by g is separable),

$$f(x) = \prod_{1 \le i \le m} (x^{p^n} - a_i)$$

Now we want to show that $f(x)=(x^{p^n}-a)$ in other word m=1. Okay, let's prove this. First we can say $a_i\notin L\backslash K$. Otherwise g(x) is the minimal polynomial of a_i , but g(x) is separable, contradict with L is a finite purely inseparable extension of K. However, $f(\alpha)=0\Rightarrow \alpha^{p^n}=a_i$ for some i. And $\alpha\in L\Rightarrow \alpha^{p^n}\in L\Rightarrow a_i\in L\Rightarrow a_i\in K\Rightarrow f(x)=(x^{p^n}-a)$ s.t. $a\in K$. Then for anyother $m_{\beta,K}(x)$, we could either show $\beta\in K(\alpha)$ or $m_{\beta,K}(x)$ is irreducible in $K(\alpha)$. Then we simply use the induction, completes the proof.