3.1: SII ion

The electronic configuration is $1s^22s^22p^63s^23p^3$.

So we have three electrons in the shell, we have to guess how many configurations we could possibly rearrange them. We know that $m_{\ell}=-1,0,1$ and we know $m_s=-1/2,1/2$. We have to distribute 3 electrons into 3×2 slots:

$$C_3^6 = \frac{6 \times 5 \times 4}{3!} = 20. \tag{1}$$

I crudely all the possibilities here, based on Pauli exclusion principle:

	А	В	С	D	E
1		ml		L	S
2	-1	0	1		
3	↑	1	↑	0	1.5
4	↑	1	↑	0	0.5
5	1	1	\downarrow	0	0.5
6	\downarrow	1	↑	0	0.5
7	1	1	\downarrow	0	-0.5
8	↓	1	\downarrow	0	-0.5
9	↓	1	↑	0	-0.5
10	↓	1	\downarrow	0	-1.5
11	$\uparrow \downarrow$	1		-2	-0.5
12	↑↓	1		-2	0.5
13	↑	↑↓		-1	0.5
14	\downarrow	↑↓		-1	-0.5
15		1	↑↓	2	
16		1	↑ ↓	2	0.5
17	↑ ↓		\downarrow	-1	-0.5
18	↑↓		1	-1	0.5
19		↑↓	1	1	0.5
20		↑↓	↓	1	-0.5
21	1		↑↓	1	0.5
22	↓		\uparrow \downarrow	1	-0.5

Figure 1: electron configuration

Of course we need to write into spectroscopic terms like:

$$^{2S+1}\mathcal{L}_{\mathcal{J}}^{p},$$

where $\mathcal{L} \in \{S, P, D, ...\}$ and $p \in \{\text{odd}, \text{blank}\}$, and $\mathcal{J} = S + L$.

Now we examine the total spin and total angular momentum in our list, and we get the last 2 columns in Fig 1.

We follow the procedure taught in the class, and write these possibilities into a cubic:

F	G	Н	I	J
ml \ ms	-1.5	-0.5	0.5	1.5
-2		1	1	
-1		2	2	
0	1	3	3	1
1		2	2	
2		1	1	

After examining all possibilities with symmetric along m_{ℓ} and m_s , we can write down these three:

• The
$$5 \times 2$$
 matrix: $S = 1/2, L = 2, \mathcal{J} = 2 \pm 1/2$, thus $^2\mathrm{D}^{\mathrm{o}}_{3/2,5/2}$

• The
$$3 \times 2$$
 matrix: $S = 1/2, L = 1, \mathcal{J} = 1 \pm 1/2$, thus ${}^{2}P_{1/2,3/2}^{o}$

• The
$$1 \times 4$$
 matrix: $S = 3/2, L = 0, \mathcal{J} = 0 + 3/2$, thus ${}^4S_{3/2}^{o}$

Now we have to construct energy levels. Basically, there are 5 different level (including fine structure splitting) and any pair would be a valid transition. So, we would have $C_2^5 = 5!/3!/2! = 10$ transitions. The question is how we line up these states.

According Hund's rule, the term with maximum multiplicity (2S+1) has the lowest energy. So apparently we have ${}^4S^{\circ}_{3/2}$ to br the lowest. Also, the term with largest L has lowest energy. So we should line up the order as $P \to D \to S$. Third rule says the lowest \mathcal{J} has the lowest energy. Thus, the order in our mind right now should look like:

$$^{2}\mathrm{P}^{\mathrm{o}}_{3/2} \rightarrow ^{2}\mathrm{P}^{\mathrm{o}}_{1/2} \Rightarrow ^{2}\mathrm{D}^{\mathrm{o}}_{5/2} \rightarrow ^{2}\mathrm{D}^{\mathrm{o}}_{3/2} \Rightarrow ^{4}\mathrm{S}^{\mathrm{o}}_{3/2},$$

where bigger arrows indicate larger energy gaps downwardly.

We should be able to draw these 10 transitions in our mind, but strictly speaking:

1.
$${}^{2}P_{3/2}^{o} \rightarrow {}^{2}P_{1/2}^{o}$$

2.
$${}^{2}P_{3/2}^{o} \rightarrow {}^{2}D_{5/2}^{o}$$

3.
$${}^{2}P_{3/2}^{o} \rightarrow {}^{2}D_{3/2}^{o}$$

4.
$${}^{2}P^{o}_{3/2} \rightarrow {}^{4}S^{o}_{3/2}$$

5.
$${}^{2}P_{1/2}^{o} \rightarrow {}^{2}D_{5/2}^{o}$$

6.
$${}^{2}P_{1/2}^{o} \rightarrow {}^{2}D_{3/2}^{o}$$

7.
$${}^{2}P_{1/2}^{o} \rightarrow {}^{4}S_{3/2}^{o}$$

8.
$${}^{2}\mathrm{D}^{\mathrm{o}}_{5/2} \rightarrow {}^{2}\mathrm{D}^{\mathrm{o}}_{3/2}$$

9.
$${}^{2}\mathrm{D}^{\mathrm{o}}_{5/2} \to {}^{4}\mathrm{S}^{\mathrm{o}}_{3/2}$$

10.
$$D_{3/2}^{o} \to {}^{4}S_{3/2}^{o}$$
.

3.2: Draine 4.1:

Those rules we should follow are listed in 6.7.1 in Draine. These are transitioning selection rules:

- 1. Parity must change.
- 2. $\Delta L = 0, \pm 1$
- 3. $\Delta J = 0, \pm 1$, but $J = 0 \rightarrow 0$ is forbidden.
- 4. Only one single-electron wave function $n\ell$ changes, with $\Delta\ell=\pm 1$.
- 5. $\Delta S = 0$: Spin does **not** change.

Notably, violating 5th rule is called semiforbidden or intercombination. And violating any of 1st to 4th rule says to be forbidden.

- 1. CIII: ${}^3P_1^o \rightarrow {}^1S_0$: it fulfills (1, 2, 3, 4) and violates 5, so semi-forbidden.
- 2. OIII: ${}^{1}D_{2} \rightarrow {}^{3}P_{2}$: it violates 1, so forbidden.
- 3. OIII: ${}^1S_0 \rightarrow {}^1D_2$: it violates 1, so forbidden.
- 4. OIII: ${}^5S_2^o \rightarrow {}^3P_1$: it fulfills (1, 2, 3, 4) but violates 5, so semi-forbidden.
- 5. CIV: ${}^{2}P_{3/2}^{o} \rightarrow {}^{2}S_{1/2}$: it fulfills (1, 2, 3, 4, 5), so allowed.
- 6. Ne II: ${}^2P^o_{1/2} \rightarrow {}^2P^o_{3/2}$: it violates 1, so forbidden.
- 7. O I: ${}^{3}S_{1}^{o} \rightarrow {}^{3}P_{2}$: it fulfills (1, 2, 3, 4, 5), so allowed.