Tutorial 0: What is Calculus

Contents

A Preview of Calculus	2
The Area Problem	2
The Tangent Problem	4
Applications of calculus in computer science	5

A Preview of Calculus

- It is concerned with change and motion; it deals with quantities that approach other quantities.
- We would like to be able to analyze quantities or processes that are undergoing continuous change.
- For example, if a stone falls 10 feet each second we could easily tell how fast it is falling at any time the stone falls faster and faster, its speed changing at each instant.
- In studying calculus, we will learn how to model (or describe) such instantaneously changing processes and how to find the cumulative effect of these changes.
- Calculus revolves around two key problems involving the graphs of functions
 - The area problem
 - The tangent problem
 - o And an unexpected relationship between them.

The Area Problem

• Finding the area of a circle with inscribed regular polygons.

- Let A_n be the area of the inscribed regular polygon of n sides.
- As n increases, it appears that A_n gets closer and closer to the area of the circle.
- We say that the area A of the circle is the limit of the areas of the inscribed polygons, and we write

$$A = \lim_{n \to \infty} A_n$$

• Later, by indirect reasoning, it was proofed that the area of the circle: $A = \pi r^2$.

• Finding the area under the curve

o We approximate such an area by areas of rectangles.

- o If we approximate the area A of the region under the graph of f by using n rectangles R_1,R_2,\ldots,R_n , then the approximate area is $A_n=R_1+R_2+\cdots+R_n$
- O Now imagine that we increase the number of rectangles (as the width of each one decreases) and calculate A as the limit of these sums of areas of rectangles: $A = \lim_{n \to \infty} A_n$
- The area problem is the central problem in the branch of calculus called integral calculus.

The Tangent Problem

• How to find an equation of the tangent line L to a curve with equation y = f(x) at a given point P.

- \circ To find the function of the line L, we need its slope m.
- \circ But, to find the slope m, we need two points.
- To get around the problem we need an approximation to m by taking a nearby point Q on the curve and computing the slope m_{PQ} of the secant line PQ.
- As Q approaches P, the secant line PQ rotates and approaches the tangent line L as its limiting position.

 \circ This means that the slope m_{PQ} of the secant line becomes closer and closer to the slope m of the tangent line. We write $m=\lim_{Q\to P}m_{PQ}$

- \circ We say that m is the limit of m_{PQ} as Q approaches P along the curve.
- If P is the point (a, f(a)) and Q is the point (x, f(x)), then

Because x approaches a as a approaches a, an equivalent expression for the slope of the tangent line is

$$\therefore m = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}$$

• The tangent problem has given rise to the branch of calculus called differential calculus.

Applications of calculus in computer science

- 1. Scientific computing: writing software programs and libraries for solving problems/equations involving integrals and differentiations.
 - a. Examples: Matlab, Scipy
- 2. Computer graphics and simulations
 - a. Examples: Fourier transformers, wavelet
- 3. Optimization:
 - a. Gradient Descent algorithm
- 4. Automation:

similar to robotics, automation can require quantifying a lot of human behavior.