Redes de computadores

Camada de rede (parte 2)

Prof. Luís Eduardo Tenório Silva luis.silva@garanhuns.ifpe.edu.br

Sumário

- Endereçamento IPv4
- Classe de endereçamento IPv4
- Tipos de transmissão
- Endereços reservado
- Máscara de rede
- Tipos de endereço
- Máscara de sub-rede
- VLSM

Endereçamento IPv4

- Todo host conectado a uma rede possui um endereço IP que o identifica;
- Endereço formado por 32 bits, divididos em 4 grupos (separado por pontos) de 8 bits (octeto)
 - » Base binária: 11000000 . 10111100 . 10110100 . 10110101
 - » Base decimal: 192.188.180.181
- Cada octeto pode possuir 256 valores possíveis:
 - » 28 = 256 valores (0 à 255)

Endereçamento IPv4

Conversão binário para decimal

1	1	0	0	0	0	0	0
X	Х	Х	Х	Х	Х	X	Х
2 ⁷	2 ⁶	2 ⁵	24	23	2 ²	21	20
128	64	0	0	0	0	0	0

Soma: 128 + 64 + 0 + 0 + 0 + 0 + 0 + 0 = 192

Classe de endereços IPv4

Classes	1º Octeto	2º Octeto	3º Octeto	4º Octeto	Valor do 1º octeto
Classe A	Rede	Host	Host	Host	0 à 127
Classe B	Rede	Rede	Host	Host	128 à 191
Classe C	Rede	Rede	Rede	Host	192 à 223
Classe D	-	-	-	-	224 à 239
Classe E	-	-	-	-	240 à 247

Tipos de transmissão

- Unicast: Transmissão 1 para 1;
- Multicast: Transmissão de 1 para vários;
- Broadcast: Transmissão de 1 para todos (de uma mesma rede);
- **Anycast**: Transmissão de 1 para qualquer um (que esteja mais perto).

Endereços reservados

- Endereços não roteáveis na internet;
- Definidos pela RFC 1918;

Tipo	Endereço de rede	1º endereço	Último endereço
This Host	0.0.0.0/8	-	-
Classe A LAN	10.0.0.0/8	10.0.0.1	10.255.255.255
Classe B LAN	172.16.0.0/12	172.16.0.1	172.31.255.255
Classe C LAN	192.168.0.0/16	192.168.0.1	192.168.255.255
Loopback	127.0.0.0/8	127.0.0.1	127.255.255.255
APIPA	169.254.0.0/16	169.254.0.1	169.254.255.255
Classe D Multicast	224.0.0.0/4	224.0.0.1	239.255.255.255
Classe E Reservado	240.0.0.0/4	240.0.0.1	254.255.255.255
Broadcast Global	<u>-</u>	255.255.255	-

Endereços reservados

- Redes privadas:
 - » 10.0.0.0 à 10.255.255.255 1 Rede Classe A
 - » 172.16.0.0 à 172.31.255.255 16 Redes Classe B
 - » 192.168.0.0 à 192.168.255.255 256 redes Classe C
- Loopback (identifica a própria máquina e para testes da pilha TCP/IP)
 - » 127.0.0.0 à 127.255.255.255 1 Rede Classe A
- Endereçamento automático (APIPA Automatic Private IP Addressing)
 - » 169.254.0.0 à 169.254.255.255 1 Rede classe B

Endereços reservados

- Como definir a parte de rede e de host de um endereço IPv4?
 - » Através da máscara de rede

Máscara de rede

- Endereço utilizado para distinguir a parte de rede e a parte de host;
 - » Todos os bits da parte de rede são definidos como 1
 - » Todos os bits da parte de host são definidos como 0;

Ex:

- » 10.30.20.5 Classe A. 1º octeto pertencente à rede
- » Máscara de rede:
 - · Binário: 11111111.00000000.00000000.00000000
 - · Decimal: 255.0.0.0
 - · Abreviação: /8
- » Endereço de rede: 10.0.0.0/8 (endereço cuja parte de host é igual a 0)

Máscara de rede

Valores padrões

» Classe A:

Decimal: 255.0.0.0

· Binário: 11111111.00000000.00000000.00000000

· Abreviação: /8

» Classe B:

· Decimal: 255.255.0.0

· Binário: 11111111111111111100000000.00000000

· Abreviação: /16

» Classe C:

Decimal: 255.255.255.0 → /24

· Binário: 11111111111111111111111111100000000

· Abreviação: /32

Máscara de rede

Classes	1º Octeto	2º Octeto	3º Octeto	4º Octeto	Valor do 1º octeto	Máscara de rede
Α	Rede	Host	Host	Host	0 à 127	255.0.0.0 (/8)
В	Rede	Rede	Host	Host	128 à 191	255.255.0.0 (/16)
С	Rede	Rede	Rede	Host	192 à 223	255.255.255.0 (/24)
D	-	-	-	-	224 à 239	-
Е	-	-	-	-	240 à 247	-

• Ex:

- » 192.168.0.3 → /24
- » 222.10.5.1 → /24
- » 143.12.155.1 → /16
- » 10.0.5.1 → /8

Tipos de endereço

- Endereço de rede: Endereço cuja porção de host é igual a 0.
 - » Identifica a rede de um grupo de hosts
- Endereço de host: Endereço de host dentro de uma rede.
 - » Identifica um host dentro de uma rede
- Endereço de broadcast: Endereço cuja porção de host seja 1.
 - » Identifica todos os hosts de uma rede;

Tipos de endereço

- 192.168.0.50/24
 - » Endereço do host: 192.168.0.50/24
 - » Endereço de rede: 192.168.0.0/24
 - » Endereço de broadcast: 192.168.0.255/24
- Quantos hosts eu posso ter na rede 192.168.0.0/24?

 - » Bits na parte de host: 8
 - $^{\circ}$ 2⁸ 2 = 254 (192.168.0.1/32 à 192.168.0.254/32)

- Divide uma rede em redes menores
- Dado a rede 192.168.0.0/24
 - » Dividir o endereço em 4 redes
 - » Qual o endereço de rede de cada uma das novas redes?
 - » Qual o intervalo de endereços de host de cada uma das novas redes?
 - » Qual o endereço broadcast de cada uma das novas redes?

- Divida o endereço em 4 sub-redes
 - » Número de sub-redes:
 - \cdot 2^x >= 4 sub-redes
 - \cdot X = 2 (bits que serão deslocados a direita)
 - » Logo
 - $192.168.0.0/24 \rightarrow 192.168.0.0/26$

- Qual o endereço de rede de cada uma das novas redes?
 - » Descobrir o número de saltos
 - \cdot /26 → 1111111111111111111111111111111111 → 255.255.255.**192**
 - \cdot Saltos = 256 192 = 64
 - » Logo
 - · 192.168.0.**0**/26
 - · 192.168.0.**64**/26
 - · 192.168.0.**128**/26
 - · 192.168.0.**192**/26

- Qual o intervalo de endereços de hosts de cada uma das novas redes?
 - 192.168.0.0/26 192.168.0.1/26 a 192.168.0.62/26
 - 192.168.0.64/26 192.168.0.65/26 a 192.168.0.126/26
 - » $192.168.0.128/26 \rightarrow 192.168.0.$ **129**/26 a 192.168.0.**190**/26
 - 9 192.168.0.192/26 \rightarrow 192.168.0.**192**/26 a 192.168.0.**254**/26

- Qual o endereço de broadcast de cada um das novas redes?
 - $192.168.0.0/26 \rightarrow 192.168.0.63/26$
 - 192.168.0.64/26 192.168.0. **127**/26
 - 192.168.0.128/26 → 192.168.0.**191**/26
 - 9 192.168.0.192/26 \rightarrow 192.168.0.**255**/26

Endereço de sub-rede	Endereços de Hosts	Endereço de Broadcast
192.168.0.0/26	192.168.0.1/26 à 192.168.0.62/26	192.168.0.63/24
192.168.0.64/26	192.168.0.65/26 à 192.168.0.126/26	192.168.0.127/24
192.168.0.128/26	192.168.0.129/26 à 192.168.0.190/26	192.168.0.191/24
192.168.0.192/26	192.168.0.193/16 à 192.168.0.254/26	192.168.0.255/24

VLSM

- Variable Lenght Subnet Mask Máscara de subrede de tamanho variável;
- Quebra uma rede maior em redes menores de tamanho variável;

VLSM

- Dividir a rede 192.168.100.0/24 em 4 subrede, onde:
 - » Uma subrede possua 20 hosts
 - » Uma subrede possua 120 hosts
 - » Uma subrede possua 60 hosts
 - » Uma subrede possua 6 hosts

- Ordenar as subredes de maneira decrescente por quantidade de hosts:
 - » Subrede 1: 120 hosts
 - » Subrede 2: 60 hosts
 - » Subrede 3: 20 hosts
 - » Subrede 4: 6 hosts

- (Subrede 1) Número de bits na porção de host
 - $^{\circ}$ 2ⁿ 2 >=120
 - » N = 7 (Logo precisamos de 7 bits na porção de host para comportar 120 hosts)
 - » 11111111.11111111.11111111.10000000 → /25 → 255.255.255.128
 - N° de saltos = 256 128 = **128**
- Subrede 1:
 - » Endereço de rede: 192.168.100.0/25
 - » Endereço de host: 192.168.100.1/25 192.168.100.126/25
 - » Endereço de broadcast: 192.168.100.127/25
 - » Número total de hosts: 126 (128 2)

- (Subrede 2) Número de bits na porção de host
 - $^{\circ}$ 2ⁿ 2 >= 60
 - » N = 6 (Logo precisamos de 6 bits na porção de host para comportar 60 hosts)
 - » 11111111.11111111.11111111.11000000 → /26 → 255.255.255.192
 - N° de saltos = 256 192 = **64**
- Subrede 2:
 - » Endereço de rede: 192.168.100.128/26
 - » Endereço de host: 192.168.100.129/26 192.168.100.190/26
 - » Endereço de broadcast: 192.168.100.191/26
 - » Número total de hosts: 62 (64 2)

- (Subrede 3) Número de bits na porção de host
 - $^{\circ}$ 2ⁿ 2 >= 20
 - » N = 5 (Logo precisamos de 5 bits na porção de host para comportar 20 hosts)
 - » 11111111.11111111.1111111.11100000 → /27 → 255.255.255.224
 - N° de saltos = 256 224 = **32**
- Subrede 3:
 - » Endereço de rede: 192.168.100.192/27
 - » Endereço de host: 192.168.100.193/27 192.168.100.222/27
 - » Endereço de broadcast: 192.168.100.223/27
 - » Número total de hosts: 30 (32 2)

- (Subrede 4) Número de bits na porção de host
 - $^{\circ}$ 2ⁿ 2 >= 6
 - » N = 5 (Logo precisamos de 3 bits na porção de host para comportar 6 hosts)
 - » 11111111.1111111111111111111111000 → /29 → 255.255.255.248
 - N° de saltos = 256 248 = **8**
- Subrede 3:
 - » Endereço de rede: 192.168.100.224/29
 - » Endereço de host: 192.168.100.225/29 192.168.100.230/29
 - » Endereço de broadcast: 192.168.100.231/29
 - » Número total de hosts: 6 (8 2)

Endereço de sub-rede	Endereços de Hosts	Endereço de Broadcast
192.168.100.0/25	192.168.100.1/25 à 192.168.100.126/25	192.168.100.127/25
192.168.100.128/26	192.168.100.129/26 à 192.168.100.190/26	192.168.0.191/26
192.168.100.192/27	192.168.100.193/27 à 192.168.100.222/27	192.168.100.223/27
192.168.100.224/29	192.168.100.225/29 à 192.168.0.230/29	192.168.100.231/29
192.168.100.232	-	-

Dúvidas?