NO ALUSED
NO AI USED Date Page Coursian Process Regression
Coussian Process Regression
Let us first consider a function as given for
any of In this case, for an example
considering a toy daraset as given
Co 1 of 1(n) - 2(+) OF X-1 0-2 10-2
If I consider the extrapolation at x=4. I can
Net considering any note in this case.
So, we can consider $y = f(a) = [3, 4., 5]$
From the text, I understood that,
For prediction, let us apply a kernel.
For GPR, Kennel is defined as
$k(x,x') = \sqrt{1 - (x-x')^2}$
K(x,x) = 1/2 E = 2
and $K = \left[k(x, x_i) k(x, x_i) k(x, x_i) \right]$
K(x, x) K(x, x) K(x, x)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$K_{*} = [K(x',x), K(x',x_{2}), K(x',x_{2})]$
(*7. *7) y = 1.
$K_{**} = k(x'x')$
HTM N X S (X) NOV N T Y N T T
So, let the predicted function be F(x).
so we define
the best fit of y as y (which is mean ofy)
is defined as
y= k k y and var (y) = k - k k k k

