

## Deep Learning

**Automatic Differentiation** 

#### Logistics

- Homework 1 due today
- Homework 2 out today, due in 2 weeks
- Today: Backpropogation/autograd.
  - Should be useful for homework 2!

## What's on the Menu today?

- Recap
- Recap of freshman calculus
- Dive into chain rule
- Computational Graph & Reverse-mode differentiation (i.e. chain rule on steroids)

DIY: Useful tricks

# Recap

#### Last time: ReLU activation

 Modern deep networks usually use some variant of the rectified linear unit activation:

$$\sigma(x) = \max(x, 0)$$



- This still shares some inspiration with sigmoid: it is "off" when the input is negative.
- Since it does not saturate on the positive end, it has a much larger range of "learning".

#### Last Time: ReLU activation MLP

A more modern MLP looks like:



ReLU networks are piecewise linear

#### Last Time: Cross-Entropy Loss

• Input 1: a *distribution* over the *C* possible output classes

$$p = (p_1, ..., p_C),$$
  $\sum_{i=1}^{C} p_i = 1$ 

• Input 2: the true class value as a 1-hot vector:

$$y = (0, ..., 1, ..., 0)$$

The cross-entropy loss is:

$$\ell(p, y) = \sum_{i} -1[y = i]\log(p_i)$$
$$= -\log(p_{correct\ class})$$

#### Today: Automatic Differentiation



- We need to compute gradients  $\nabla_{W_i} \mathcal{L}(W_1, W_2, W_3)$
- You could code this up by hand for this network, but it would be a pain.
- Every time you change the network, you'd have to change the code!

## Right matrix-multiplies

 In math class, you usually multiply matrices on the left:

Mv

• In this lecture, we will multiply matrices on the right:

vM

 We do this to easily accommodate batch dimensions.

## Right matrix-multiplies



A matrix  $M \in \mathbb{R}^{n \times m}$  takes inputs in  $\mathbb{R}^n$  and produces outputs in  $\mathbb{R}^m$ .

# Recap of freshman calculus

## What is a derivative, really?

- Let  $f: \mathbb{R}^a \to \mathbb{R}^b$ . Then the derivative is  $D[f](x) \in \mathbb{R}^{a \times b}$
- The derivative at x is a linear map (i.e. a matrix), whose inputs and outputs are the same dimension as f.



#### Special case: Gradients

- $f(x_1, x_2, x_3) = x_1 x_2 + x_3$
- $\nabla f(x_1, x_2, x_3) = (x_2, x_1, 1)$
- Technically, we should actually write:

$$\nabla f(x_1, x_2, x_3) = \begin{bmatrix} x_2 \\ x_1 \\ 1 \end{bmatrix}$$

• This is a  $3\times1$  matrix, because f takes 3 dimensional inputs and has 1 dimensional outputs.

#### Derivative Formula

The derivative has the formula:

$$D[f](x)_{ij} = \frac{df_j}{dx_i}(x)$$

- $f_j$  is the  $j^{th}$  coordinate of f.
- What is the derivative of  $f(x) = (x_1^2, x_1 x_2 x_3)$ , which takes  $\mathbb{R}^3$  to  $\mathbb{R}^2$ ?
- Answer:

$$D[f](x) = \begin{bmatrix} 2x_1 & x_2x_3 \\ 0 & x_1x_3 \\ 0 & x_1x_2 \end{bmatrix}$$

## Another Example

• 
$$f(x_1, x_2) = (x_2^2, x_1 + x_2, x_1x_2)$$

• 
$$f_1(x_1, x_2) = x_2^2$$

• 
$$f_2(x_1, x_2) = x_1 + x_2$$

• 
$$f_3(x_1, x_2) = x_1 x_2$$

• The derivative is  $2\times3$ :

$$D[f](x) = \begin{bmatrix} ? & ? & ? \\ ? & ? & ? \end{bmatrix}$$

Answer:

$$D[f](x) = \begin{bmatrix} 0 & 1 & x_2 \\ 2x_2 & 1 & x_1 \end{bmatrix}$$

# Chain Rule

#### The Chain Rule

In calculus we all learned:

$$(g \circ f)'(x) = f'(x)g'(f(x))$$

• In higher dimensions, we have a matrix statement:

$$D[g \circ f](x) = D[f](x)D[g](f(x))$$

Let's check the dimensions match:



•  $D[f] \in \mathbb{R}^{a \times b}$  and  $D[g] \in \mathbb{R}^{b \times c}$ .  $D[g \circ f] \in \mathbb{R}^{a \times c}$ .

• 
$$f(x) = x^4$$

• 
$$g(y) = \sqrt{y}$$



$$\bullet \ D[f](x) = 4x^3$$

• 
$$D[g](y) = \frac{1}{2\sqrt{y}}$$

• 
$$D[g \circ f](x) = D[f](x)D[g](f(x)) = 2x$$

#### Multiple Inputs

- Suppose f has multiple, multi-dimensional inputs:  $f(X,Y): \mathbb{R}^a \times \mathbb{R}^b \to \mathbb{R}^c$
- The partial derivatives of f with respect to the two arguments are defined analogously:

$$D_X[f](x,y) \in \mathbb{R}^{a \times c}$$

The equation is:

$$D_X[f](x,y)_{ij} = \frac{\partial f_j}{\partial X_i}(x,y)$$

#### Chain rule with multiple inputs

- The chain rule works the same.
- Let  $g: \mathbb{R}^c \to \mathbb{R}^d$  and  $f(X,Y): \mathbb{R}^a \times \mathbb{R}^b \to \mathbb{R}^c$
- The partial derivative is:

$$D_X[g \circ f](x, y) = D_X[f](x, y)D[g](f(x, y))$$



## Re-Using Inputs

$$f(X,Y): \mathbb{R}^a \times \mathbb{R}^a \to \mathbb{R}^b$$
$$g(X) = f(X,2X)$$

• What is D[g]?



#### Re-Using Inputs



$$D_Z[f(Z, 2Z)] = D_X[f](z, z) + 2D_Y[f](z, 2z)$$

• When the inputs split, we need to sum the individual derivatives.

#### More complicated functions

 $g: \mathbb{R}^c \to \mathbb{R}^f$   $f(X,Y): \mathbb{R}^a \times \mathbb{R}^b \to \mathbb{R}^c$   $h(Z,W): \mathbb{R}^d \times \mathbb{R}^e \to \mathbb{R}^b$ 

The function : g(f(X, h(Z, W)))



$$g(K) = K^{2}$$

$$f(X,Y) = XY$$

$$h(Z,W) = Z + W$$



$$g(K) = K^{2}$$

$$f(X,Y) = XY$$

$$h(Z,W) = Z + W$$



$$g(K) = K^{2}$$

$$f(X,Y) = XY$$

$$h(Z,W) = Z + W$$



$$g(K) = K^{2}$$

$$f(X,Y) = XY$$

$$h(Z,W) = Z + W$$



$$g(K) = K^{2}$$

$$f(X,Y) = XY$$

$$h(Z,W) = Z + W$$





# Computational Graph

#### Computational Graph

- Directed Acyclic graph with two kinds of nodes.
- Two kinds of nodes: "operation" nodes and "variable" nodes.
- Each "operation" node represents a function
- Each "variable" node represents either function inputs or outputs (or both)
- The graph is bipartite: variable nodes are only connected to operation nodes, and operation nodes are only connected to variable nodes.
- All source and sink nodes are variable nodes.

## Computational Graph



#### Data held by nodes



- Variable nodes will hold real numbers/vectors/matrices representing the "value" of the variable they represent.
- Operation nodes may hold various arbitrary state needed to implement either the forward or backward passes.

# Backprop: "reverse-mode differentiation"

- Backpropagation is an algorithm for automatically computing the gradient of a function specified by a computation graph.
- It has two phases, the "forward pass" and the "backward pass"

#### Forward pass



- Step 1: Start with seeding the source variable node with some value, say X=3
- Step 2: Look at all the operation nodes for which all inputs have values assigned.
- Step 3: Compute these operations, and assign the output to the output variable nodes. Potentially save some state in the operation node.
- Step 4: Repeat

#### Forward Pass

$$X:3 \longrightarrow f(x) = x^{4} \longrightarrow Y \longrightarrow g(y) = \sqrt{y} \longrightarrow Z$$

$$X \longrightarrow f(x) = x^{4} \longrightarrow Y:81 \longrightarrow g(y) = \sqrt{y} \longrightarrow Z$$

$$X:3 \longrightarrow f(x) = x^{4} \longrightarrow Y:81 \longrightarrow g(y) = \sqrt{y} \longrightarrow Z:9$$

























#### **Backward Pass**

- The backward pass uses the data in the forward pass to compute the gradient of the sink node with respect to every variable node.
- Forward pass propagates from the source variable nodes to the sink variable.
- Backward pass propagates backwards from sink node to source.
- You MUST do a forward pass before the backward pass.

#### **Backward Pass**











# More Complicated Backward Pass



# Backprop is "local"

• Each "operator" node only needs to see its immediate neighbors in order to compute the both the forward and backward passes.

# Forward pass is "local"



The f node doesn't need to know anything Outside this box

#### Backward pass is "local"



The *f* node doesn't need to know anything Outside this box

#### In Code

 Operation nodes have pointers to the input variable nodes and the output variable nodes.

#### def forward(self, x):

- 1. Computes the output of the operation given the input, and assigns this output to all the output nodes.
- 2. Computes and stores relevant state (like the derivative).

#### def backward(self, x):

- 1. Takes input equal to the derivative with respect to the output.
- 2. Multiplies by stored derivatives to compute derivatives with respect to the inputs.









- What should the  $D_X[Z]$  be?
- $Z = x_1^3 x_2$

• 
$$D_X[Z] = \begin{bmatrix} 3x_1^2x_2 \\ x_1^3 \end{bmatrix} = \begin{bmatrix} 36 \\ 8 \end{bmatrix}$$

# Backward Pass: Beyond Scalars



# Backward Pass: Beyond Scalars



#### Even simple functions are operations

$$f(x,y) = x(x+y)^2$$



#### Derivatives of Batched functions

- Given a function  $f: \mathbb{R}^n \to \mathbb{R}^d$ , there is a *batched* function that distributed f along a batch dimension.
- $f_{batched}$ :  $\mathbb{R}^{B \times n} \to \mathbb{R}^{B \times d}$
- $f_{batched}(X)[i] = f(x[i])$
- All the functions on your homework are batched functions.
- To compute derivatives of batched functions, compute derivatives of each individual row.

#### Derivatives of Batched Functions



#### Derivatives of Batched Functions



#### Derivatives of Matrix Functions

- To compute derivatives of a function that takes a matrix input,  $f: \mathbb{R}^{n \times m} \to \mathbb{R}^d$ , unroll the matrix into a vector.
- You will need to reshape the gradient back into the same shape as the matrix.
- To avoid unrolling, use matrix derivatives from HW
  1.

# DIY: useful tricks and more examples

# Simplified Graphs (on HW)

Consider only graphs like:



# Simplified Graphs (on HW)

Consider only graphs like:



# Simplified Graphs (on HW)

Consider only graphs like:



Only need gradients for variables inside layers

## Backward Function (on HW)



Only consider the case  $Z \in \mathbb{R}$ , so that the shape of  $D_X[Z]$  is always the same as X for all variables.

#### np.einsum

- Super-useful function used to express complicated matrix manipulations
- There are good tutorials online: see https://ajcr.net/Basic-guide-to-einsum/

#### np.einsum example

- np.einsum('abc, bad -> ab', X, Y)
- X and Y are both 3-dimensional matrices (tensors).
- X is associated with the string 'abc'
- Y is associated with the string 'bad'
- If X has shape [A, B, C], then Y has shape [B, A, D] for some other D.
- The output is a 2-dimensional tensor of shape [A, B]

#### np.einsum example

np.einsum('abc, bad -> ab', X, Y)

Let Z be the output. Then

• 
$$Z[i,j] = \sum_{k,w} X[i,j,k] \times Y[j,i,w]$$

• We summed over indices not present in Z

# Another example

- np.einsum('abcd, daa, be -> adf', X, Y, Z)
- Inputs X, Y and Z have shapes [A, B, C, D], [D, A, A] and [B, E]
- Output W has shape [A, D, F]
- $W[a,d,f] = \sum_{b,c,e} X[a,b,c,d] \times Y[d,a,a] \times Z[b,e]$

## Some familiar examples

- Z= np.einsum('ij, jk -> ik', X, Y)
- $Z[i,k] = \sum_{j} X[i,j]Y[j,k]$ 
  - Matrix multiplication
- Z= np.einsum('ij-> ji', X)
- Z[j,i] = X[i,j]
  - Matrix transpose
- Z = np.einsum('ii->', X)
- $Z = \sum_{i} X[i, i] = trace(X)$

## Batched matrix multiplication

- $X \in \mathbb{R}^{B \times n}$
- $M \in \mathbb{R}^{B \times n \times m}$
- X is a batch of n dimensional vectors.
- M is a batch of  $n \times m$  matrices.
- We want to compute  $Y \in \mathbb{R}^{B \times m}$ , where the ith row of Y is  $X[i]M[i] \in \mathbb{R}^m$ .
- How to write this?

# Batched matrix multiply

- $X \in \mathbb{R}^{B \times n}$
- $M \in \mathbb{R}^{B \times n \times m}$
- We want to compute  $Y \in \mathbb{R}^{B \times m}$ , where the ith row of Y is  $X[i]M[i] \in \mathbb{R}^m$ .
- $Y[i,j] = \sum_{k} X[i,k]M[i,k,j]$
- Y = np.einsum('ik, ikj -> ij', X, M)

Einsum in general is very good for batched operations.

#### Matrices and Tensors

- A matrix in  $\mathbb{R}^{n \times m}$  is an n by m two dimensional array of real numbers.
  - A "list of lists". The outer list is size n, the inner lists are all size m.
- A tensor in  $\mathbb{R}^{d_1 \times \cdots \times d_n}$  is a  $d_1$  by  $d_2$  by... by  $d_n$  n-dimensional array of real numbers.
  - A "list of lists of ... of lists". Outer list has  $d_1$  elements, inner-most lists all have  $d_n$  elements.
- We say a tensor in  $\mathbb{R}^{a \times b \times c}$  has "shape" [a, b, c].
- We access a tensor via multi-indices: A[0,2,3].

#### **Tensor Contraction**

- Tensor <u>contraction</u> is the g generalization of matrix multiplication.
- Two tensors A and B can be contracted along one dimension if the last entry of A's shape is the same as the first entry of B's shape:
  - A has shape [2, 45, 7] and B has shape [7, 3, 67]
- The output will have shape given by removing the common entry from *A* and *B*'s shape and concatenating the lists:
  - contract(A, B) has shape [2, 45, 3, 67]

#### Tensor Contraction Formula

• If A has shape  $[a_1, ..., a_n, c]$  and b has shape  $[c, b_1, ..., b_m]$ , then  $contract(A, B)[a_1, ..., a_n, b_1, ..., b_m]$  $= \sum_{i=1}^{c} A[a_1, ..., a_n, i] \cdot B[i, b_1, ..., b_m]$ 

• If n=m=1, this is just matrix multiplication:

$$contract(A, B)[a, b] = \sum_{i=1}^{n} A[a, i] \cdot B[i, b]$$

#### Contraction along Many Dimensions

- Contraction along one dimension requires the last dimension of *A* to match the first dimension of *B*.
- Contraction along d dimensions requires the last d dimensions of A to match the first d dimensions of B.
- If shape(A) = [2,5,4,6] and shape(B) = [4,6,8,2], then A and B can be contracted along 2 dimensions.
  - The shape of contract(A, B, 2) is [2,5,8,2].
- This is the tensordot function in numpy.

#### Contraction along Many Dimensions

- If A has shape  $[a_1, \ldots, a_n, c_1, \ldots, c_k]$  and B has shape  $[c_1, \ldots, c_{1=k}, b_1, \ldots, b_m]$ , then contract(A, B, k) has shape  $[a_1, \ldots, a_n, b_1, \ldots, b_m]$ .
- The conctraction is computed by:  $contract(A, B, k)[a_1, ..., a_n, b_1, ..., b_m]$

$$= \sum_{i_1=1}^{c_1} \dots \sum_{i_k=1}^{c_k} A[a_1, \dots, a_n, i_1, \dots i_k] \cdot B[i_1, \dots, i_k, b_1, \dots, b_m]$$

## What is the point of contraction?

- Using tensor contraction, we can write a linear map that takes matrices as both inputs and outputs.
- Let A have shape [2, 3, 4, 5]. Then A specifies a linear map that takes  $2\times3$  matrices as input, and outputs  $4\times5$  matrices:
- A(M) = contract(M, A, 2)
- Tensor contraction allows us to specify linear maps between arbitrary tensor shapes as also tensors of larger shape.

# Derivatives of Tensor-valued functions

- Let  $f: \mathbb{R}^{d_1 \times d_2 \times d_3} \to \mathbb{R}^{a \times b}$ . The derivative is  $D[f](x) \in \mathbb{R}^{d_1 \times d_2 \times d_3 \times a \times b}$
- The derivative is a tensor that can contract all of the dimensions of the input and produce the dimensions of the output:

$$D[f](x): \mathbb{R}^{d_1 \times d_2 \times d_3} \to \mathbb{R}^{a \times b}$$

• The derivative formula:

$$D[f](x)[i,j,k,z,w] = \frac{df_{z,w}}{dx_{i,j,k}}(x)$$

#### Derivatives of Scalar-valued functions

- Let  $f: \mathbb{R}^{d_1 \times d_2 \times d_3} \to \mathbb{R}$ . The derivative is  $D[f](x) \in \mathbb{R}^{d_1 \times d_2 \times d_3 \times 1}$
- In this special case, we will usually drop the  $\times 1$  of D[f](x) to be in  $\mathbb{R}^{d_1 \times d_2 \times d_3}$ .
- The tensor contraction is:  $contract(X, D[f](x)) = sum(X \odot D[f](x))$
- Here 

   is the coordinate-wise product (just normal multiplication in numpy), and sum just adds all the entries.