In [1]: import pandas as pd
data=pd.read_csv("/home/placement/Downloads/Titanic Dataset.csv")

In [2]: data.describe()

Out[2]:

	Passengerld	Survived	Pclass	Age	SibSp	Parch	Fare
count	891.000000	891.000000	891.000000	714.000000	891.000000	891.000000	891.000000
mean	446.000000	0.383838	2.308642	29.699118	0.523008	0.381594	32.204208
std	257.353842	0.486592	0.836071	14.526497	1.102743	0.806057	49.693429
min	1.000000	0.000000	1.000000	0.420000	0.000000	0.000000	0.000000
25%	223.500000	0.000000	2.000000	20.125000	0.000000	0.000000	7.910400
50%	446.000000	0.000000	3.000000	28.000000	0.000000	0.000000	14.454200
75%	668.500000	1.000000	3.000000	38.000000	1.000000	0.000000	31.000000
max	891.000000	1.000000	3.000000	80.000000	8.000000	6.000000	512.329200

```
In [3]: data.info()
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 891 entries, 0 to 890
        Data columns (total 12 columns):
                           Non-Null Count Dtype
             Column
              -----
                                           ----
             PassengerId 891 non-null
          0
                                           int64
             Survived
         1
                           891 non-null
                                           int64
         2
             Pclass
                           891 non-null
                                           int64
                           891 non-null
          3
             Name
                                           obiect
          4
             Sex
                           891 non-null
                                           obiect
          5
             Age
                           714 non-null
                                           float64
             SibSp
                           891 non-null
                                           int64
         7
                           891 non-null
                                           int64
             Parch
                           891 non-null
                                           obiect
             Ticket
         9
             Fare
                           891 non-null
                                           float64
                           204 non-null
                                           obiect
         10
             Cabin
         11 Embarked
                           889 non-null
                                           obiect
        dtypes: float64(2), int64(5), object(5)
        memory usage: 83.7+ KB
In [4]: data.isna().sum()
Out[4]: PassengerId
                          0
        Survived
                          0
        Pclass
                          0
        Name
                          0
        Sex
                          0
                        177
        Age
        SibSp
                          0
        Parch
                          0
        Ticket
                          0
        Fare
                          0
        Cabin
                        687
```

Embarked

dtype: int64

2

In [5]: data.head(10)

Out[8]: array([1, 0, 3, 4, 2, 5, 8])

Out[5]:

	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	NaN	S
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	C85	С
2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	NaN	S
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	C123	S
4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	NaN	S
5	6	0	3	Moran, Mr. James	male	NaN	0	0	330877	8.4583	NaN	Q
6	7	0	1	McCarthy, Mr. Timothy J	male	54.0	0	0	17463	51.8625	E46	S
7	8	0	3	Palsson, Master. Gosta Leonard	male	2.0	3	1	349909	21.0750	NaN	S
8	9	1	3	Johnson, Mrs. Oscar W (Elisabeth Vilhelmina Berg)	female	27.0	0	2	347742	11.1333	NaN	S
9	10	1	2	Nasser, Mrs. Nicholas (Adele Achem)	female	14.0	1	0	237736	30.0708	NaN	С

```
In [6]: data['Pclass'].unique()
Out[6]: array([3, 1, 2])
In [7]: data['Survived'].unique()
Out[7]: array([0, 1])
In [8]: data['SibSp'].unique()
```

```
In [9]: |data['Parch'].unique()
Out[9]: array([0, 1, 2, 5, 3, 4, 6])
In [10]: data['Age'].unique()
Out[10]: array([22. , 38. , 26. , 35. ,
                                          nan, 54. , 2. , 27. , 14. ,
               4. , 58.
                         , 20. , 39. , 55. , 31.
                                                   , 34.
                                                         , 15.
                         , 40. , 66. , 42. , 21. , 18.
                         , 65. , 28.5 , 5. , 11.
                                                  , 45.
               49. , 29.
                                                          , 17.
               16. , 25.
                         , 0.83, 30. , 33. , 23. , 24.
                                                          , 46.
               71. , 37. , 47. , 14.5 , 70.5 , 32.5 , 12.
                                                         , 50.
               51. , 55.5 , 40.5 , 44. , 1. , 61.
                                                  , 56.
               45.5 , 20.5 , 62. , 41. , 52. , 63. , 23.5 , 0.92, 43. ,
               60. , 10. , 64. , 13. , 48. , 0.75, 53. , 57. , 80. ,
               70. , 24.5 , 6. , 0.67, 30.5 , 0.42, 34.5 , 74. ])
```

In [11]: datal=data.drop(['PassengerId','Name','Ticket','Cabin','SibSp','Parch'],axis=1)
 datal

Out[11]:

	Survived	Pclass	Sex	Age	Fare	Embarked
0	0	3	male	22.0	7.2500	S
1	1	1	female	38.0	71.2833	С
2	1	3	female	26.0	7.9250	S
3	1	1	female	35.0	53.1000	S
4	0	3	male	35.0	8.0500	S
886	0	2	male	27.0	13.0000	S
887	1	1	female	19.0	30.0000	S
888	0	3	female	NaN	23.4500	S
889	1	1	male	26.0	30.0000	С
890	0	3	male	32.0	7.7500	Q

891 rows × 6 columns

```
In [12]: data1['Sex']=data1['Sex'].map({'male':0,'female':1})
```

In [13]: data1

Out[13]:

	Survived	Pclass	Sex	Age	Fare	Embarked
0	0	3	0	22.0	7.2500	S
1	1	1	1	38.0	71.2833	С
2	1	3	1	26.0	7.9250	S
3	1	1	1	35.0	53.1000	S
4	0	3	0	35.0	8.0500	S
886	0	2	0	27.0	13.0000	S
887	1	1	1	19.0	30.0000	S
888	0	3	1	NaN	23.4500	S
889	1	1	0	26.0	30.0000	С
890	0	3	0	32.0	7.7500	Q

891 rows × 6 columns

In [14]: data2=data1.fillna(data1.median())

/tmp/ipykernel_6350/3414091449.py:1: FutureWarning: The default value of numeric_only in DataFrame.median i
s deprecated. In a future version, it will default to False. In addition, specifying 'numeric_only=None' is
deprecated. Select only valid columns or specify the value of numeric_only to silence this warning.
 data2=data1.fillna(data1.median())

In [15]: data2

Out[15]:

	Survived	Pclass	Sex	Age	Fare	Embarked
0	0	3	0	22.0	7.2500	S
1	1	1	1	38.0	71.2833	С
2	1	3	1	26.0	7.9250	S
3	1	1	1	35.0	53.1000	S
4	0	3	0	35.0	8.0500	S
886	0	2	0	27.0	13.0000	S
887	1	1	1	19.0	30.0000	S
888	0	3	1	28.0	23.4500	S
889	1	1	0	26.0	30.0000	С
890	0	3	0	32.0	7.7500	Q

891 rows × 6 columns

In [16]: data2.isna().sum()

Out[16]: Survived 0 Pclass 0 Sex Age Fare Embarked dtype: int64

In [17]: import seaborn as sns
import matplotlib.pyplot as plt
sns.boxplot(data2.Age)

Out[17]: <Axes: >


```
In [20]: data2.describe()
```

Out[20]:

	Survived	Pclass	Sex	Age	Fare
count	891.000000	891.000000	891.000000	891.000000	891.000000
mean	0.383838	2.308642	0.352413	29.361582	32.204208
std	0.486592	0.836071	0.477990	13.019697	49.693429
min	0.000000	1.000000	0.000000	0.420000	0.000000
25%	0.000000	2.000000	0.000000	22.000000	7.910400
50%	0.000000	3.000000	0.000000	28.000000	14.454200
75%	1.000000	3.000000	1.000000	35.000000	31.000000
max	1.000000	3.000000	1.000000	80.000000	512.329200

```
In [21]: data2['Age'].unique()
Out[21]: array([22. , 38. , 26. , 35. , 28. , 54. , 2. , 27. , 14. ,
               4. , 58. , 20. , 39.
                                     , 55. , 31. , 34. , 15. , 8. ,
                        , 66. , 42. , 21. , 18.
                                                 , 3.
                        , 28.5 , 5. , 11. , 45.
                                                  , 17.
                                                        , 32.
                                                 , 46.
              25. , 0.83, 30. , 33. , 23. , 24.
              37. , 47. , 14.5 , 70.5 , 32.5 , 12.
                                                 , 9. , 36.5 , 51.
              55.5 , 40.5 , 44. , 1. , 61. , 56. , 50. , 36.
              20.5 , 62. , 41. , 52. , 63. , 23.5 , 0.92, 43. , 60. ,
              10. , 64. , 13. , 48. , 0.75, 53. , 57. , 80. , 70. ,
              24.5 , 6. , 0.67, 30.5 , 0.42, 34.5 , 74. ])
```

Out[22]:

	Survived	Pclass	Sex	Fare	Embarked
Age					
0.42	1	1	1	1	1
0.67	1	1	1	1	1
0.75	2	2	2	2	2
0.83	2	2	2	2	2
0.92	1	1	1	1	1
70.00	2	2	2	2	2
70.50	1	1	1	1	1
71.00	2	2	2	2	2
74.00	1	1	1	1	1
80.00	1	1	1	1	1

88 rows × 5 columns

```
In [23]: data2['Pclass']=data2['Pclass'].map({1:'F',2:'S',3:'T'})
```

In [24]: data2

Out[24]:

	Survived	Pclass	Sex	Age	Fare	Embarked
0	0	Т	0	22.0	7.2500	S
1	1	F	1	38.0	71.2833	С
2	1	Т	1	26.0	7.9250	S
3	1	F	1	35.0	53.1000	S
4	0	Т	0	35.0	8.0500	S
886	0	S	0	27.0	13.0000	S
887	1	F	1	19.0	30.0000	S
888	0	Т	1	28.0	23.4500	S
889	1	F	0	26.0	30.0000	С
890	0	Т	0	32.0	7.7500	Q

891 rows × 6 columns

Out[26]:

	Survived	Sex	Age	Fare	Pclass_F	Pclass_S	Pclass_T	Embarked_C	Embarked_Q	Embarked_S
0	0	0	22.0	7.2500	0	0	1	0	0	1
1	1	1	38.0	71.2833	1	0	0	1	0	0
2	1	1	26.0	7.9250	0	0	1	0	0	1
3	1	1	35.0	53.1000	1	0	0	0	0	1
4	0	0	35.0	8.0500	0	0	1	0	0	1
				•••						
886	0	0	27.0	13.0000	0	1	0	0	0	1
887	1	1	19.0	30.0000	1	0	0	0	0	1
888	0	1	28.0	23.4500	0	0	1	0	0	1
889	1	0	26.0	30.0000	1	0	0	1	0	0
890	0	0	32.0	7.7500	0	0	1	0	1	0

891 rows × 10 columns

In [27]: cor=data2.corr()
cor

Out[27]:

	Survived	Sex	Age	Fare	Pclass_F	Pclass_S	Pclass_T	Embarked_C	Embarked_Q	Embarked_S
Survived	1.000000	0.543351	-0.064910	0.257307	0.285904	0.093349	-0.322308	0.168240	0.003650	-0.155660
Sex	0.543351	1.000000	-0.081163	0.182333	0.098013	0.064746	-0.137143	0.082853	0.074115	-0.125722
Age	-0.064910	-0.081163	1.000000	0.096688	0.323896	0.015831	-0.291955	0.030248	-0.031415	-0.014665
Fare	0.257307	0.182333	0.096688	1.000000	0.591711	-0.118557	-0.413333	0.269335	-0.117216	-0.166603
Pclass_F	0.285904	0.098013	0.323896	0.591711	1.000000	-0.288585	-0.626738	0.296423	-0.155342	-0.170379
Pclass_S	0.093349	0.064746	0.015831	-0.118557	-0.288585	1.000000	-0.565210	-0.125416	-0.127301	0.192061
Pclass_T	-0.322308	-0.137143	-0.291955	-0.413333	-0.626738	-0.565210	1.000000	-0.153329	0.237449	-0.009511
Embarked_C	0.168240	0.082853	0.030248	0.269335	0.296423	-0.125416	-0.153329	1.000000	-0.148258	-0.778359
Embarked_Q	0.003650	0.074115	-0.031415	-0.117216	-0.155342	-0.127301	0.237449	-0.148258	1.000000	-0.496624
Embarked_S	-0.155660	-0.125722	-0.014665	-0.166603	-0.170379	0.192061	-0.009511	-0.778359	-0.496624	1.000000

In [28]: import seaborn as sns
sns.heatmap(cor,vmax=1,vmin=-1,annot=True,linewidths=.5,cmap='bwr')

Out[28]: <Axes: >


```
In [29]: data2.groupby(['Survived']).count()
Out[29]:
                  Sex Age Fare Pclass_F Pclass_S Pclass_T Embarked_C Embarked_Q Embarked_S
          Survived
                                           549
                                                                                   549
                0 549
                      549
                           549
                                   549
                                                   549
                                                              549
                                                                         549
                1 342 342
                           342
                                   342
                                           342
                                                   342
                                                              342
                                                                         342
                                                                                   342
In [30]: y=data2['Survived'] #adding to seperate dataframe the value, we want to predict
         x=data2.drop('Survived',axis=1)#removing the value we want to predict from the original dataframe
In [31]: #divide data into training and testing
         from sklearn.model selection import train test split
         x train,x test,y train,y test = train test split(x,y,test size=0.33,random state=42)
In [32]: from sklearn.linear_model import LogisticRegression
         reg=LogisticRegression()
         reg.fit(x train,y train)
Out[32]:
          ▼ LogisticRegression
          LogisticRegression()
In [33]: y pred=reg.predict(x test)
```

```
In [34]: y_pred
Out[34]: array([0, 0, 0, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0,
               1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0,
               1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1,
               0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1,
               0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0,
               1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 0, 1, 0,
               0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 1,
               0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0,
               0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0,
               1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0,
               0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 1,
               0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0,
               1, 0, 0, 0, 0, 0, 1, 1, 0])
In [35]: from sklearn.metrics import confusion matrix
        confusion matrix(y test,y pred)
Out[35]: array([[154, 21],
               [ 37, 83]])
In [36]: from sklearn.metrics import accuracy score
        accuracy_score(y_test,y_pred)
Out[36]: 0.8033898305084746
In [ ]:
```