Comparison of extreme values of different climate model simulations and observations

Mickey Warner

30 Oct 2017

Introduction

CanCM4 simulation classes (with R = 10 replicates each):

- 1. Decadal
- 2. Historical
- 3. Control

Observations over U.S. interpolated from weather stations

Factors:

- Variable Total Precipitation (pr) or Average Maximum Temperature (tasmax)
- 2. Season Winter or Summer
- 3. Decade 1962–1971 or 1990–1999
- 4. Region California or USA

Locations

Figure: Left: CanCM4 simulation grid cells. Center: Observation locations. Right: method for computing weighted sum or average for CanCM4 to make values comparable with observations.

Extremes

For r.v. X and large threshold u, the exceedance Y=X-u, for X>u, approximately follows the generalized Pareto distribution (GPD), which has density

$$f_Y(y) = \frac{1}{\sigma} \left(1 + \xi \frac{y}{\sigma} \right)_+^{-1/\xi - 1}$$

Data processing

Two objectives before performing the analysis:

- 1. Make climate simulations comparable to observations
- 2. Get near-independent random variables for model fitting

These are accomplished by

- 1. Taking weighted sums (pr) or weighted averages (tasmax)
- 2. Computing anomalies based on DLMs, and
- 3. Declustering

Weighted sum or average

Figure: Left: CanCM4 simulation grid cells. Center: Observation locations. Right: method for computing weighted sum or average for CanCM4 to make values comparable with observations.

DLM-based anomaly

Extremal index (declustering)

The extremal index θ is the inverse of the limiting mean cluster size

It can be estimated using interexceedance times, $T_i = S_{i+1} - S_i$, with a log-likelihood of

$$l(\theta, p; \mathbf{T}) = m_1 \log(1 - \theta p^{\theta}) + (N - 1 - m_1) \{ \log(\theta) + \log(1 - p^{\theta}) \}$$
$$+ \theta \log(p) \sum_{i=1}^{N-1} (T_i - 1)$$

p is the probability of not exceeding the threshold

Declustering

Likelihood

Replicate i, observation j, exceedances $Y_{ij} = X_{ij} - u$, and keep only those $Y_i > 0$. These have likelihood

$$L(\mathbf{y}; \boldsymbol{\sigma}, \boldsymbol{\xi}, \boldsymbol{\zeta}) = \prod_{i=1}^{R} \left[(1 - \zeta_i)^{n_i - k_i} \zeta_i^{k_i} \prod_{j=1}^{k_i} \frac{1}{\sigma_i} \left(1 + \xi_i \frac{y_{ij}}{\sigma_i} \right)_+^{-1/\xi_i - 1} \right]$$

 n_i is the number of X_{ij} 's k_i is the number of Y_{ij} 's ζ_i is the probability of exceeding the threshold

Priors

These priors complete the hierarchical model formulation. Greek letters are random variables while English letters are fixed.

$$\sigma_{i}|\alpha, \beta \sim Gamma(\alpha, \beta)$$

$$\xi_{i}|\xi, \tau^{2} \sim Normal(\xi, \tau^{2})$$

$$\zeta_{i}|\mu, \eta \sim Beta(\mu\eta, (1-\mu)\eta)$$

$$\alpha_{\sigma} \sim Gamma(a_{\alpha}, b_{\alpha}) \qquad \beta_{\sigma} \sim Gamma(a_{\beta}, b_{\beta})$$

$$\xi \sim Normal(m, s^{2}) \qquad \tau^{2} \sim Gamma(a_{\tau}, b_{\tau})$$

$$\mu \sim Beta(a_{\mu}, b_{\mu}) \qquad \eta \sim Gamma(a_{\eta}, b_{\eta})$$

Return level

For a distribution G, the return level x_m is the solution to

$$G(x_m) = 1 - \frac{1}{m}.$$

The value x_m is exceeded on average once every m observations.

For the GPD, the return level is given by

$$x_m = u + \frac{\sigma}{\xi} \left[(m\zeta\theta)^{\xi} - 1 \right]$$

Bhattacharyya distance

Bhattacharyya coefficient

$$BC(p,q) = \int_{\mathcal{X}} \sqrt{p(x)q(x)} dx$$

Bhattacharyya distance

$$D_B(p,q) = -\log BC(p,q).$$

 D_B is computed between parameters in the replicates (and observations) and parameters in the hierarchy.

la a	Pr		Tasmax		
log o	Winter	Summer	Winter	Summer	
0 1 2 3 4 5			0 1 2 3 4	5	,
1962	0	0	0	•	Obs. Hist. Dec. Cont.
CA 1990	0	•	•	0	- Obs Hist Dec Cont.
1962 USA	•	0	0	1 + 0 +	- Obs Hist Dec Cont.
USA 1990	1 1 0	0	•	•	- Obs Hist Dec Cont.
		0 1 2 3 4	5	0 1 2 3 4	1 5

Next

Bivariate analysis using simple Pareto processes