## **Least Squares**

Stephen Boyd

EE103 Stanford University

October 28, 2017

#### **Outline**

Least squares problem

Solution of least squares problem

## Least squares problem

- lacktriangle suppose  $m \times n$  matrix A is tall, so Ax = b is over-determined
- for most choices of b, there is no x that satisfies Ax = b
- ightharpoonup residual r = Ax b
- ▶ least squares problem: choose x to minimize  $||Ax b||^2$
- ▶  $||Ax b||^2$  is the *objective function*
- $ightharpoonup \hat{x}$  is a *solution* of least squares problem if

$$||A\hat{x} - b||^2 \le ||Ax - b||^2$$

for any n-vector x

- idea:  $\hat{x}$  makes residual as small as possible, if not 0
- also called regression (in data fitting context)

## Least squares problem

- $\hat{x}$  called *least squares approximate solution* of Ax = b
- $ightharpoonup \hat{x}$  is sometimes called 'solution of Ax = b in the least squares sense'
  - this is very confusing
  - never say this
  - do not associate with people who say this

- $\hat{x}$  need not (and usually does not) satisfy  $A\hat{x} = b$
- lacktriangle but if  $\hat{x}$  does satisfy  $A\hat{x}=b$ , then it solves least squares problem

## **Column interpretation**

- ightharpoonup suppose  $a_1, \ldots, a_n$  are columns of A
- ▶ then

$$||Ax - b||^2 = ||(x_1a_1 + \dots + x_na_n) - b||^2$$

- so least squares problem is to find a linear combination of columns of A that is closest to b
- ightharpoonup if  $\hat{x}$  is a solution of least squares problem, the *m*-vector

$$A\hat{x} = \hat{x}_1 a_1 + \dots + \hat{x}_n a_n$$

is closest to b among all linear combinations of columns of A

## **Row interpretation**

- ightharpoonup suppose  $\tilde{a}_1^T,\ldots,\tilde{a}_m^T$  are rows of A
- lacktriangle residual components are  $r_i = \tilde{a}_i^T x b_i$
- least squares objective is

$$||Ax - b||^2 = (\tilde{a}_1^T x - b_1)^2 + \dots + (\tilde{a}_m^T x - b_m)^2$$

the sum of squares of the residuals

- so least squares minimizes sum of squares of residuals
  - solving Ax=b is making all residuals zero
  - least squares attempts to make them all small

- ightharpoonup Ax = b has no solution
- $||Ax b||^2 = (2x_1 1)^2 + (x_2 x_1)^2 + (2x_2 + 1)^2$
- least squares approximate solution is  $\hat{x} = (1/3, -1/3)$  (say, via calculus)
- $\|A\hat{x} b\|^2 = 2/3$  is smallest posible value of  $\|Ax b\|^2$
- e.g., with  $\tilde{x} = (1/2, -1/2)$ ,  $A\tilde{x} b = (0, -1, 0)$ , and  $||A\tilde{x} b||^2 = 1$
- ▶  $A\hat{x} = (2/3, -2/3, -2/3)$  is linear combination of columns of A closest to b

#### **Outline**

Least squares problem

Solution of least squares problem

# Solution of least squares problem

- ▶ we make one assumption: *A has independent columns*
- lacktriangle this implies that Gram matrix  $A^TA$  is invertible
- unique solution of least squares problem is

$$\hat{x} = (A^T A)^{-1} A^T b = A^{\dagger} b$$

• cf.  $x = A^{-1}b$ , solution of square invertible system Ax = b

#### **Derivation via calculus**

define

$$f(x) = ||Ax - b||^2 = \sum_{i=1}^{m} \left(\sum_{j=1}^{n} A_{ij}x_j - b_i\right)^2$$

ightharpoonup solution  $\hat{x}$  satisfies

$$\frac{\partial f}{\partial x_k}(\hat{x}) = \nabla f(\hat{x})_k = 0, \quad k = 1, \dots, n$$

- taking partial derivatives we get  $\nabla f(x)_k = \left(2A^T(Ax-b)\right)_k$
- ▶ in matrix-vector notation:  $\nabla f(\hat{x}) = 2A^T(A\hat{x} b) = 0$
- lacktriangle so  $\hat{x}$  satisfies normal equations  $(A^TA)\hat{x}=A^Tb$
- ▶ and therefore  $\hat{x} = (A^T A)^{-1} A^T b$

#### **Direct verification**

- ▶ let  $\hat{x} = (A^T A)^{-1} A^T b$ , so  $A^T (A \hat{x} b) = 0$
- ightharpoonup for any n-vector x we have

$$||Ax - b||^{2} = ||(Ax - A\hat{x}) + (A\hat{x} - b)||^{2}$$

$$= ||A(x - \hat{x})||^{2} + ||A\hat{x} - b||^{2} + 2(A(x - \hat{x}))^{T}(A\hat{x} - b)$$

$$= ||A(x - \hat{x})||^{2} + ||A\hat{x} - b||^{2} + 2(x - \hat{x})^{T}A^{T}(A\hat{x} - b)$$

$$= ||A(x - \hat{x})||^{2} + ||A\hat{x} - b||^{2}$$

- so for any x,  $||Ax b||^2 \ge ||A\hat{x} b||^2$
- $\blacktriangleright$  if equality holds,  $A(x-\hat{x})=0,$  which implies  $x=\hat{x}$  since columns of A are independent

## **Computing least squares approximate solutions**

- ▶ compute QR factorization of A: A = QR ( $2mn^2$  flops) (exists since columns of A are independent)
- to compute  $\hat{x} = A^{\dagger}b = R^{-1}Q^Tb$ 
  - form  $Q^Tb$  (2mn flops)
  - compute  $\hat{x} = R^{-1}(Q^T b)$  via back substitution  $(n^2 \text{ flops})$
- ▶ total complexity 2mn² flops

- lacktriangle identical to algorithm for solving Ax=b for square invertible A
- lacktriangle but when A is tall, gives least squares approximate solution

#### **Outline**

Least squares problem

Solution of least squares problem

Examples

## **Advertising purchases**

- m demographics groups we want to advertise to
- $ightharpoonup v^{
  m des}$  is m-vector of target views or impressions
- lacktriangleright n-vector s gives spending on n channels
- lacktriangledown m imes n matrix R gives demographic reach of channels
- ▶  $R_{ij}$  is number of views per dollar spent (in 1000/\$)
- ightharpoonup v = Rs is m-vector of views across demographic groups
- $||v^{\text{des}} Rs||/\sqrt{m}$  is RMS deviation from desired views
- we'll use least squares spending  $\hat{s}=R^{\dagger}v^{\mathrm{des}}$  (need not be  $\geq 0)$

# **Example**

$$m = 10, n = 3$$



# Least squares advertising purchases

with 
$$v^{\text{des}} = 10^3 \times 1$$
,  $\hat{s} = (62, 100, 1443)$ 

