

Probabilistic Graphical Models in Bioinformatics

Lecture 5: Learning in Bayesian networks

Review by example: analysis of pollution, climate and health data, 2018.

- 50 million observations
- 24 variables
 - various air pollutants (O3, PM_{2.5}, PM₁₀, SO₂, NO₂, CO)
 - geography (latitude, longitude, latitude, region and zone type)
 - climate (wind speed and direction, temperature, rainfall, solar radiation)
 - demography and mortality rates.

Yellow nodes: discrete Blue nodes: Gaussian

Green nodes: conditional linear Gaussians

Learning Bayesian networks

Motivation for learning

Learning tasks

- parameter estimation
- structure learning

Learning general Bayesian networks

	Known structure	Unknown structure
Fully observable	Global decomposition	Ş
Partially observable	?	,

Question: examples of fully and partially observable data for the following network?

Parameter estimation

- Assumptions in this section:
 - the network structure is fixed.
 - Data set is fully observed
- Two main approaches for parameter estimation task
 - Maximum likelihood estimation
 - Bayesian estimation (don't confuse with Bayesian networks)

The thumbtack example

• Possible outcomes: head/tail

- Suppose X follows Bernoulli distribution with an unknown parameter $P(X = H) = \theta$.
- Data: out of M=100 tosses, 35 come up heads.
- Our intuition suggests the best estimate 0.35.
- Question: why $\theta = 0.1$ does not seem plausible?
- How to formalize this intuition?
 - Optimize for θ which makes data more likely

Classical statistical inference

• Statistical inference is the act of generalizing from a sample to a population with calculated degree of certainty.

Parameters and Statistics

 It is essential that we draw distinctions between parameters and statistics

	Parameters	Statistics
Source	Population	Sample
Calculated?	No	Yes
Constants?	Yes	No
Examples	μ, σ, <i>p</i>	\bar{x} , s , \hat{p}

Maximum likelihood principle

- Likelihood function:
 - $\mathcal{L}(\theta:D) = P(D:\theta)$

 $\mathcal{L}(\theta:D)$ is denoted differently than $P(D:\theta)$ to emphasize 1) likelihood is a function of θ (so data D is fixed in the likelihood function) 2) likelihood is not density or probability mass function.

Maximum likelihood estimate:

$$\hat{\theta}_{ML} = \arg \max_{\theta} \mathcal{L}(\theta; D) = \arg \max_{\theta} P(D; \theta)$$

• Often much easier to work with log-likelihood function, $\ell(\theta; D) = \log \mathcal{L}(\theta; D)$

$$\widehat{\theta}_{ML} = \arg\max_{\theta} \ell(\theta; D)$$

The thumbtack example-continued

• Data: we observe the sequence of outcomes H, T, T, H, H.

• Likelihood function:

$$L(\theta:\langle H,T,T,H,H\rangle) = P(\langle H,T,T,H,H\rangle:\theta) = \theta^3(1-\theta)^2.$$

ML- Bernoulli distribution

- Data: M[1] heads & M[0] tails
- Likelihood function:

•
$$\mathcal{L}(\theta; D) = \theta^{M[1]} (1 - \theta)^{M[0]}$$

- Log-likelihood:
 - $\ell(\theta:D) = M[1] \log \theta + M[0] \log(1-\theta)$

$$\frac{\partial \ell(\theta)}{\partial \theta} = \frac{M[1]}{\theta} - \frac{M[0]}{1 - \theta} = 0 \text{ results in } \hat{\theta}_{ML} = \frac{M[1]}{M[1] + M[0]}$$

Maximum Likelihood-Gaussian distribution

• Data: given observations $x_1, ..., x_n$ are normally distributed with the mean μ and the variance σ^2 :

$$p(x:\mu,\sigma) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

Likelihood function

$$\mathcal{L}(\mu, \sigma) = \prod_{i=1}^{n} p(x_i : \mu, \sigma) = \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x_i - \mu)^2}{2\sigma^2}}$$

The log-likelihood is

$$\ell(\mu, \sigma) = \sum_{i=1}^{n} \log p(x_i : \mu, \sigma) = -\frac{1}{2} n \log(2\pi\sigma^2) - \sum_{i=1}^{n} \frac{(x_i - \mu)^2}{2\sigma^2}$$

MLE solution:

$$\frac{\partial \ell(\mu, \sigma)}{\partial \mu} = 0 \implies \hat{\mu} = \frac{1}{n} \sum_{i=1}^{n} x_i \qquad \frac{\partial \ell(\mu, \sigma)}{\partial \sigma^2} = 0 \implies \hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^{n} (x_i - \hat{\mu})^2$$

• Data: suppose that X is a multinomial random variable that can take values $x^1, ..., x^K$. The multinomial distribution has k parameters $\Theta = (\theta_1, ..., \theta_K)$ such that

$$P(x:\Theta) = \theta_k \quad \text{if } x = x_k$$
 s.t. $\sum_k \theta_k = 1$

• Data: $\langle M[1], ..., M[K] \rangle$, such that M[k] is number of times the value x^k appears in the data.

• Homework: prove the MLE estimate for θ_k is $\hat{\theta}_k = \frac{M[k]}{M}$ where $M = \sum_k M[k]$.

ML for Bayesian networks

• Simple case: $X \to Y$

$$L(\boldsymbol{\theta}: \mathcal{D}) = \prod_{m=1}^{M} P(x[m], y[m]: \boldsymbol{\theta}).$$

$$L(\boldsymbol{\theta}: \mathcal{D}) = \prod_{m} P(x[m]: \boldsymbol{\theta}) P(y[m] \mid x[m]: \boldsymbol{\theta}).$$

$$L(\theta:\mathcal{D}) = \left(\prod_{m} P(x[m]:\theta)\right) \left(\prod_{m} P(y[m] \mid x[m]:\theta)\right)$$
 Local likelihoods

Question: write down all parameters.

ML for Bayesian networks

• Simple case: $X \to Y$

$$\begin{split} &\prod_{m} P(y[m] \mid x[m] : \theta_{Y|X}) \\ &= \prod_{m:x[m]=x^0} P(y[m] \mid x[m] : \theta_{Y|X}) \cdot \prod_{m:x[m]=x^1} P(y[m] \mid x[m] : \theta_{Y|X}) \\ &= \left[\prod_{m:x[m]=x^0} P(y[m] \mid x[m] : \theta_{Y|x^0}) \cdot \prod_{m:x[m]=x^1} P(y[m] \mid x[m] : \theta_{Y|x^1}). \\ &\prod_{m:x[m]=x^0} P(y[m] \mid x[m] : \theta_{Y|x^0}) &= \theta_{y^1|x^0}^{M[x^0,y^1]} \cdot \theta_{y^0|x^0}^{M[x^0,y^0]}. \end{split}$$

Decomposability of the likelihood function

ML estimate:
$$\theta_{y^1|x^0} = \frac{M[x^0,y^1]}{M[x^0,y^1] + M[x^0,y^0]} = \frac{M[x^0,y^1]}{M[x^0]},$$

Global Likelihood decomposition

$$L(\boldsymbol{\theta}:\mathcal{D}) = \prod_{m} P_{\mathcal{G}}(\boldsymbol{\xi}[m]:\boldsymbol{\theta})$$

$$= \prod_{m} \prod_{i} P(x_{i}[m] \mid \mathrm{pa}_{X_{i}}[m]:\boldsymbol{\theta})$$

$$= \prod_{i} \left[\prod_{m} P(x_{i}[m] \mid \mathrm{pa}_{X_{i}}[m]:\boldsymbol{\theta}) \right]$$
Only depends on $\theta_{X_{i}|pa_{X_{i}}}(\boldsymbol{\theta})$

Let's define the local likelihood as:

$$L_i(\boldsymbol{\theta}_{X_i|\text{Pa}_{X_i}}:\mathcal{D}) = \prod_m P(x_i[m] \mid \text{pa}_{X_i}[m]:\boldsymbol{\theta}_{X_i|\text{Pa}_{X_i}}).$$

then

$$L(\boldsymbol{\theta}: \mathcal{D}) = \prod_{i} L_{i}(\boldsymbol{\theta}_{X_{i}|Pa_{X_{i}}}: \mathcal{D}),$$

The likelihood decomposes a product of independent terms, one for each CPD in the network!

Conclusion: we can maximize each local likelihood independently.

 The choice of parameters determines how we maximize each of the likelihood functions.

• By table CPDs, we will have $\theta_{x|u}$ for each combination of $x \in Val(X)$ and $u \in Val(U)$.

• For each choice of value for the parents U, we have the following constraint:

$$\sum \theta_{x|u} = 1 \quad \text{ for all } u.$$

$$\hat{\theta}_{x|u} = \frac{M[u,x]}{M[u]}$$
 where $M[u] = \sum_x M[u,x]$.

Data fragmentation & overfitting

- Number of data points used to estimate parameter $\hat{\theta}_{x|u}$ is M[u]
 - Estimated from samples with parent value u
- Data points that do not agree with the parent assignment \boldsymbol{u} play no role in this computation.
- As the number of parents U grows, number of parent assignment grows exponentially:
 - Hence, we may have a very small number of data instances, M[u], to estimate a parameter (data fragmentation)
 - Might results in overfitting.

Overfitting

- Overfitting refers to a model that models the training data too well.
- It happens when the model is too complex.

ML-Gaussian Bayesian networks

• Consider a variable X with parents $\mathbf{U} = \{U_1, ..., U_k\}$ with a linear Gaussian CPD:

$$P(X \mid \boldsymbol{u}) = \mathcal{N} \left(\beta_0 + \beta_1 u_1 + \dots, \beta_k u_k; \sigma^2 \right).$$

- Goal: to learn the parameters $\theta_{X|U} = \langle \beta_0, ..., \beta_k, \sigma \rangle$.
- Log-likelihood: $\ell_X(\boldsymbol{\theta}_{X|\boldsymbol{U}}:\mathcal{D}) = \log L_X(\boldsymbol{\theta}_{X|\boldsymbol{U}}:\mathcal{D})$ $= \sum_{m} \left[-\frac{1}{2} \log(2\pi\sigma^2) \frac{1}{2} \frac{1}{\sigma^2} \left(\beta_0 + \beta_1 u_1[m] + \ldots + \beta_k u_k[m] x[m] \right)^2 \right]$

We need to solve the following equations to obtain the MLE solution

$$\frac{\partial}{\partial \beta_i} \ell(\boldsymbol{\theta}_{X|U} : D) = 0, \ \frac{\partial}{\partial \sigma^2} \ell(\boldsymbol{\theta}_{X|U} : D) = 0$$

ML-Gaussian Bayesian networks 2

The ML solution:

- 1. We estimate means of X and U and covariance matrix of $\{X\} \cup U$ from the data.
- 2. This is the ML estimate of the joint Gaussian.
- 3. Then theorem 7.4 shows the solutions for the equations in the previous slide

Theorem 7.4

Let $\{X,Y\}$ have a joint normal distribution defined in equation (7.3). Then the conditional density

$$p(Y \mid \boldsymbol{X}) = \mathcal{N}\left(\beta_0 + \boldsymbol{\beta}^T \boldsymbol{X}; \sigma^2\right),$$

is such that:

$$\beta_0 = \mu_Y - \Sigma_{YX} \Sigma_{XX}^{-1} \mu_X$$

$$\beta = \Sigma_{XX}^{-1} \Sigma_{YX}$$

$$\sigma^2 = \Sigma_{YY} - \Sigma_{YX} \Sigma_{XX}^{-1} \Sigma_{XY}$$

$$p(\boldsymbol{X},\boldsymbol{Y}) = \mathcal{N}\left(\left(\begin{array}{c} \boldsymbol{\mu}_{\boldsymbol{X}} \\ \boldsymbol{\mu}_{\boldsymbol{Y}} \end{array}\right); \left[\begin{array}{cc} \boldsymbol{\Sigma}_{\boldsymbol{X}\boldsymbol{X}} & \boldsymbol{\Sigma}_{\boldsymbol{X}\boldsymbol{Y}} \\ \boldsymbol{\Sigma}_{\boldsymbol{Y}\boldsymbol{X}} & \boldsymbol{\Sigma}_{\boldsymbol{Y}\boldsymbol{Y}} \end{array}\right]\right)$$

Example- estimation of $P(X \mid U)$

Data:

U	X
80.2	17.0
83.1	45.1
92.5	39.7
85.8	36.5
76.9	43.5
76.1	35.3
83.8	70.2
92.4	67.8
82.4	53.3

$$\hat{\mu} = \begin{pmatrix} 83.69 \\ 45.38 \end{pmatrix}$$

$$\hat{\mu} = \begin{pmatrix} 30.65 & 34.16 \end{pmatrix}$$

$$\beta_0 = -47.91$$

$$\hat{\beta}_1$$
=1.11

$$\hat{\sigma} = 14.38$$

Sketch of the proof

Goal: to find the ML parameters for $P(X \mid u) = \mathcal{N}\left(\beta_0 + \beta_1 u_1 + \dots, \beta_k u_k; \sigma^2\right)$.

By definition of the Gaussian distribution:

$$\ell_X(\boldsymbol{\theta}_{X|\boldsymbol{U}}:\mathcal{D}) = \log L_X(\boldsymbol{\theta}_{X|\boldsymbol{U}}:\mathcal{D})$$

$$= \sum_{m} \left[-\frac{1}{2} \log(2\pi\sigma^2) - \frac{1}{2} \frac{1}{\sigma^2} \left(\beta_0 + \beta_1 u_1[m] + \dots + \beta_k u_k[m] - x[m] \right)^2 \right].$$

We consider the gradient of the log-likelihood with respect to β_0

$$\frac{\partial}{\partial \beta_0} \ell_X(\boldsymbol{\theta}_{X|\boldsymbol{U}} : \mathcal{D}) = \sum_m -\frac{1}{\sigma^2} \left(\beta_0 + \beta_1 u_1[m] + \dots + \beta_k u_k[m] - x[m] \right)$$

$$= -\frac{1}{\sigma^2} \left(M\beta_0 + \beta_1 \sum_m u_1[m] + \dots + \beta_k \sum_m u_k[m] - \sum_m x[m] \right).$$

By equating the equation to 0, and multiplying both sides with $\frac{\sigma^2}{M}$, we get

$$\frac{1}{M} \sum_{m} x[m] = \beta_0 + \beta_1 \frac{1}{M} \sum_{m} u_1[m] + \ldots + \beta_k \frac{1}{M} \sum_{m} u_k[m].$$

Average value of each variable in the data

New notation: $\mathbf{E}_{\mathcal{D}}[X] = \frac{1}{M} \sum_{m} x[m]$

Hence

$$\mathbf{E}_{\mathcal{D}}[X] = \beta_0 + \beta_1 \mathbf{E}_{\mathcal{D}}[U_1] + \ldots + \beta_k \mathbf{E}_{\mathcal{D}}[U_k].$$

Sketch of the proof-2

$$\mathbf{E}_{\mathcal{D}}[X] = \beta_0 + \beta_1 \mathbf{E}_{\mathcal{D}}[U_1] + \ldots + \beta_k \mathbf{E}_{\mathcal{D}}[U_k].$$

Similarly, the equation $0 = \frac{\partial}{\partial \beta_i} \ell_X(\boldsymbol{\theta}_{X|\boldsymbol{U}}:\mathcal{D})$ can be formulated as

$$\operatorname{Cov}_{\mathcal{D}}[X; U_i] = \beta_1 \operatorname{Cov}_{\mathcal{D}}[U_1; U_i] + \ldots + \beta_k \operatorname{Cov}_{\mathcal{D}}[U_k; U_i].$$

Finally, we get the following equation for $\frac{\partial}{\partial \sigma^2} \ell(\boldsymbol{\theta}_{X|U}:D) = 0$

$$\sigma^2 = \mathbf{C}ov_{\mathcal{D}}[X;X] - \sum_i \sum_j \beta_i \beta_j \mathbf{C}ov_{\mathcal{D}}[U_i;U_j]$$

Formulas in theorem 7.4 give the solution to the system of linear equations

Theorem 7.4 Let $\{X,Y\}$ have a joint normal distribution defined in equation (7.3). Then the conditional density

$$p(Y \mid \mathbf{X}) = \mathcal{N}\left(\beta_0 + \boldsymbol{\beta}^T \mathbf{X}; \sigma^2\right),$$

is such that:

$$\beta_0 = \mu_Y - \Sigma_{YX} \Sigma_{XX}^{-1} \mu_X$$

$$\boldsymbol{\beta} = \Sigma_{\boldsymbol{X}\boldsymbol{X}}^{-1} \Sigma_{Y\boldsymbol{X}}$$

$$\sigma^2 = \Sigma_{YY} - \Sigma_{YX} \Sigma_{XX}^{-1} \Sigma_{XY}.$$

Quiz: given the following BN:

1. Write the joint distribution

2. Explain how you compute P(bronc | tub)

- 3. True or False
 - a) $xray \perp bronc$
 - *b*) asia \perp smoke | bronc
 - c) $tub \perp bronc \mid xray$

References

[1] Probabilistic Graphical Models by Daphne Koller & Nir Friedman, chapter 17.

[2] Vitolo, C., Scutari, M., Ghalaieny, M., Tucker, A. and Russell, A., 2018. Modeling air pollution, climate, and health data using Bayesian Networks: A case study of the English regions. Earth and Space Science, 5(4), pp.76-88.