

Floating Point – rounding and operations

These slides adapted from materials provided by the textbook

Floating Point

- Background: Fractional binary numbers
- IEEE floating point standard: Definition
- Example and properties
- Rounding, addition, multiplication
- Floating point in C
- Summary

Floating Point Operations: Basic Idea

- $x +_f y = Round(x + y)$
- $\mathbf{x} \times_{\mathbf{f}} \mathbf{y} = \text{Round}(\mathbf{x} \times \mathbf{y})$
- Basic idea
 - First compute exact result
 - Make it fit into desired precision
 - Possibly overflow if exponent too large
 - Possibly round to fit into frac

Rounding

Rounding Modes (illustrate with \$ rounding)

	\$1.40	\$1.60	\$1.50	\$2.50	-\$1.50
Towards zero	\$1	\$1	\$1	\$2	-\$1
Round down ($-\infty$)	\$1	\$1	\$1	\$2	- \$2
Round up $(+\infty)$	\$2	\$2	\$2	\$3	- \$1
Nearest Even (default)	\$1	\$2	\$ 2	\$2	- \$2

Closer Look at Round-To-Even

Default Rounding Mode

- Hard to get any other kind without dropping into assembly
- All others are statistically biased
 - Sum of set of positive numbers will consistently be over- or underestimated

Applying to Other Decimal Places / Bit Positions

- When exactly halfway between two possible values
 - Round so that least significant digit is even
- E.g., round to nearest hundredth

7.8949999	7.89	(Less than half way)
7.8950001	7.90	(Greater than half way)
7.8950000	7.90	(Half way—round up)
7.8850000	7.88	(Half way—round down)

Rounding Binary Numbers

Binary Fractional Numbers

- "Even" when least significant bit is 0
- "Half way" when bits to right of rounding position = 100...2

Examples

Round to nearest 1/4 (2 bits right of binary point)

```
Value Binary Rounded Action Rounded 2 3/32 10.00011210.002 (<1/2—down) 2 2 3/16 10.00110210.012 (>1/2—up) 2 1/4 2 7/8 10.11100211.002 (1/2—up) 3 2 5/8 10.10100210.102 (1/2—down) 2 1/2
```

Rounding Binary Numbers To Even

Value Binary

Rounded

Action

2 7/8 | 10.1 | 100₂

11.002

(I/2—up)

2 5/8 10.1<mark>0100</mark>2

 10.10_2 (1/2—down)

Creating Floating Point Number

Steps

- Normalize to have leading 1
- Round to fit within fraction

s exp frac

1 4-bits 3-bits

Postnormalize to deal with effects of rounding

Case Study

Convert 8-bit unsigned numbers to tiny floating point format

Example Numbers

128	1000000
15	00001101
17	00010001
19	00010011
138	10001010
63	00111111

Normalize

S	ехр	frac
1	4-bits	3-bits

Requirement

- Set binary point so that numbers of form 1.xxxxx
- Adjust all to have leading one
 - Decrement exponent as shift left

Value	Binary	Fraction	Exponent
128	1000000	1.0000000	7
15	00001101	1.1010000	3
17	00010001	1.0001000	4
19	00010011	1.0011000	4
138	10001010	1.0001010	7
63	00111111	1.1111100	5

Rounding

1.BBGRXXX

Guard bit: LSB of result

Round bit: 1st bit removed

Sticky bit: OR of remaining bits

Round up conditions

- Round = 1, Sticky = $1 \rightarrow > 0.5$
- Guard = 1, Round = 1, Sticky = 0 → Round to even

Value	Fraction	GRS	Incr?	Rounded
128	1.0000000	000	N	1.000
15	1.1010000	100	N	1.101
17	1.0001000	010	N	1.000
19	1.0011000	110	Y	1.010
138	1.0001010	011	Y	1.001
63	1.1111100	111	Y	10.000

Postnormalize

Issue

- Rounding may have caused overflow
- Handle by shifting right once & incrementing exponent

Value	Rounded	Exp	Adjusted	Result
128	1.000	7		128
15	1.101	3		15
17	1.000	4		16
19	1.010	4		20
138	1.001	7		134
63	10.000	5	1.000/6	64

Interesting Numbers

{single,double}

Description	ехр	frac	Numeric Value
Zero	0000	0000	0.0
Smallest Pos. Denorm.	0000	0001	$2^{-\{23,52\}} \times 2^{-\{126,1022\}}$
■ Single $\approx 1.4 \times 10^{-45}$			
■ Double $\approx 4.9 \times 10^{-324}$			
Largest Denormalized	0000	1111	$(1.0 - \varepsilon) \times 2^{-\{126,1022\}}$
■ Single $\approx 1.18 \times 10^{-38}$			
■ Double $\approx 2.2 \times 10^{-308}$			
Smallest Pos. Normalized	0001	0000	1.0 x $2^{-\{126,1022\}}$
Just larger than largest denor	nalized		
One	0111	0000	1.0
Largest Normalized	1110	1111	$(2.0 - \varepsilon) \times 2^{\{127,1023\}}$
One	0111		

Single ≈ 3.4×10^{38}

Double $\approx 1.8 \times 10^{308}$

FP Multiplication

- $-(-1)^{s1} M1 2^{E1} x (-1)^{s2} M2 2^{E2}$
- Exact Result: (-1)^s M 2^E
 - Sign s: s1 ^ s2
 - Significand M: M1 x M2
 - Exponent E: E1 + E2

Fixing

- If M ≥ 2, shift M right, increment E
- If E out of range, overflow
- Round M to fit frac precision

Implementation

Biggest chore is multiplying significands

Floating Point Addition

- - Assume E1 > E2
- Exact Result: (-1)^s M 2^E
 - Sign s, significand M:
 - Result of signed align & add
 - Exponent E: E1

Get binary points lined up
E1-E2

Fixing

- If M ≥ 2, shift M right, increment E
- ■if M < 1, shift M left k positions, decrement E by k
- Overflow if E out of range
- Round M to fit **frac** precision

Mathematical Properties of FP Add

Compare to those of Abelian Group

Closed under addition?

Yes

- But may generate infinity or NaN
- Commutative?

Yes

Associative?

No

- Overflow and inexactness of rounding
- (3.14+1e10)-1e10 = 0, 3.14+(1e10-1e10) = 3.14
- 0 is additive identity?

Yes

Every element has additive inverse?

Almost

Yes, except for infinities & NaNs

Monotonicity

Almost

- a ≥ b ⇒ a+c ≥ b+c?
 - Except for infinities & NaNs

Mathematical Properties of FP Mult

Compare to Commutative Ring

Closed under multiplication?

Yes

- But may generate infinity or NaN
- Multiplication Commutative?

Yes

Multiplication is Associative?

- No
- Possibility of overflow, inexactness of rounding
- Ex: (1e20*1e20) *1e-20=inf, 1e20*(1e20*1e-20) = 1e20

Yes

1 is multiplicative identity?

No

- Multiplication distributes over addition?
 - Possibility of overflow, inexactness of rounding
 - 1e20*(1e20-1e20)=0.0, 1e20*1e20 1e20*1e20 = NaN

Monotonicity

- a ≥ b & c ≥ 0 ⇒ a * c ≥ b *c?
 - Except for infinities & NaNs

Almost

Floating Point

- Background: Fractional binary numbers
- IEEE floating point standard: Definition
- Example and properties
- Rounding, addition, multiplication
- Floating point in C
- Summary

Floating Point in C

- C Guarantees Two Levels
 - •float single precision
 - **double** double precision
- Conversions/Casting
 - Casting between int, float, and double changes bit representation
 - double/float → int
 - Truncates fractional part
 - Like rounding toward zero
 - Not defined when out of range or NaN: Generally sets to TMin
 - int → double
 - Exact conversion, as long as int has ≤ 53 bit word size
 - int → float
 - Will round according to rounding mode

Floating Point Puzzles

For each of the following C expressions, either:

- Argue that it is true for all argument values
- Explain why not true

```
int x = ...;
float f = ...;
double d = ...;
```

Assume neither **d** nor **f** is NaN

```
• x == (int)(float) x
• x == (int) (double) x
• f == (float)(double) f
• d == (double)(float) d
• f == -(-f);
\cdot 2/3 == 2/3.0
• d < 0.0 \Rightarrow ((d*2) < 0.0)
\cdot d > f \Rightarrow -f > -d
• d * d >= 0.0
• (d+f)-d == f
```

Summary

- IEEE Floating Point has clear mathematical properties
- Represents numbers of form M x 2^E
- One can reason about operations independent of implementation
 - As if computed with perfect precision and then rounded
- Not the same as real arithmetic
 - Violates associativity/distributivity
 - Makes life difficult for compilers & serious numerical applications programmers