SYDE 556/750

Simulating Neurobiological Systems Lecture 3: Representations

Andreas Stöckel

January 14 & 16 & 21, 2020

cell activity

behavior

ongoing

NEF Principle 1: Representation

NEF Principle 1 – Representation

Groups ("populations", or "ensembles") of neurons *represent* represent values via nonlinear encoding and linear decoding.

Lossless Codes

Encoding: $\mathbf{a} = f(\mathbf{x})$

Decoding: $\mathbf{x} = f^{-1}(\mathbf{a})$

Binary numbers: Nonlinear encoding, linear decoding

- ▶ Represent a natural number between 0 and $2^n 1$ as n binary digits.
- ► Nonlinear encoding

$$a_i = (f(x))_i = \begin{cases} 1 & \text{if } x - 2^i \lfloor \frac{x}{2^i} \rfloor > 2^{i-1}, \\ 0 & \text{otherwise}. \end{cases}$$

► Linear decoding

ecoding
$$x=f^{-1}(\mathbf{a})=\sum_{i=0}^{n-1}2^ia_i=\mathbf{Fa}=\begin{pmatrix}1&2&\dots&2^{n-1}\end{pmatrix}\begin{pmatrix}a_0\\a_1\\\vdots\\a_{n-1}\end{pmatrix}$$
 .

► This is a **distributed code** . But, **not robust** against additive noise!

Lossy codes

► Lossy code

Inverse f^{-1} does not exist, instead approximate the represented value

Encoding:
$$\mathbf{a} = f(\mathbf{x})$$

Decoding: $\mathbf{x} \approx g(\mathbf{a})$

- Examples
 - Audio, image, and video coding schemes (MP3, JPEG, H.264)
 - Basis transformation onto first n principal components (PCA)
 - ► Neural Representations

Tuning curves (I)

Tuning curves (II)

Preferred Directions in Higher Dimensions: Representing 2D Values

Decoding Without Taking Noise Into Account

Sources of Noise in Biological Neural Networks

- Axonal jitterActive axonal spike propagation
- ► Vesicle release failure 10-30% of pre-synaptic events cause post-synaptic current
- Neurotransmitter per vesicle
 Varying amounts of neurotransmitter
- ► Ion channel noise Ion-channels are "binary", stochastic
- Thermal noise
- Network effects
 Simple, noise-free inhibitory/excitatory
 networks produce irregular spike trains

► How to model? Gaussian noise

NEF Principle 0: Noise

NEF Principle 0 – Noise

Biological neural systems are subject to significant amounts of noise from various sources. Any analysis of such systems must take the effects of noise into account.

Decoding Noisy A Without Taking Noise Into Account

Decoding Noisy A Accounting for Noise

Summary: Building a model of neural representation (Encoding)

Encoding

- ► Select *d*, possible range $\mathbf{x} \in \mathbb{X}$, usually $\mathbb{X} = \{\mathbf{x} \mid ||\mathbf{x}|| \le r, \mathbf{x} \in \mathbb{R}^d\}$ (r = 1)
- ► Select number of neurons *n*
- Select tuning curves, maximum rates $\Rightarrow \mathbf{e}_i, \ \alpha_i, \ J_i^{\text{bias}}$
 - ightharpoonup Sample e_i from unit-sphere
 - Uniformly distribute x-intercept, maximum rate
- Encoding equation:

$$a_i(\mathbf{x}) = G[\alpha_i \langle \mathbf{e}_i, \mathbf{x} \rangle + J_i^{\text{bias}}]$$

Summary: Building a model of neural representation (Decoding)

Decoding

- ► Uniformly sample *N* samples from \mathbb{X} , $\mathbf{X} = (\mathbf{x}_1, \dots, \mathbf{x}_N)$
- ▶ Compute **A**, where $(\mathbf{A})_{ik} = a_i(\mathbf{x}_k)$
- Decoder computation:

$$\mathbf{D}^{\mathsf{T}} = \left(\mathbf{A}\mathbf{A}^{\mathsf{T}} + N\sigma^{2}\mathbf{I}\right)^{-1}\mathbf{A}\mathbf{X}^{\mathsf{T}}$$

Decoding equation:

$$\hat{\mathbf{X}} = \mathbf{D}\mathbf{A}$$

Analysing Sources of Errors

Example: Horizontal Eye Position (1D)

Example: Horizontal Eye Position (1D) (cont.)

- ► Step 1: System Description
 - ► What is being represented?
 - x is the horizontal eye position
 - ► What is the tuning curve shape?
 - ▶ Linear, low $\tau_{\rm ref}$, high $\tau_{\rm RC}$
 - ▶ $e_i \in \{1, -1\}$
 - ightharpoonup Firing rates up to $300 \, \mathrm{s}^{-1}$

- ► Step 2: Design Specification
 - Range of values

$$ightharpoonup X = [-60, 60]$$

- Amount of noise
 - ▶ About 20% of $max(\mathbf{A})$
- ► Step 3: Implementation
 - Choose tuning curve parameters
 - Compute decoders

Example: Arm Movements (2D)

Example: Arm Movements (2D) (cont.)

- Experiment by Georgopoulos et al., 1982
- ightharpoonup Preferred arm movement directions e_i
- ▶ Idea: Population Vectors, decode using

$$\hat{\mathbf{x}} = \sum_{i=1}^{n} a_i(\mathbf{x}) \mathbf{e}_i = \mathbf{E} \mathbf{A}$$

- Good direction estimate
- Cannot reconstruct magnitude

The NEF does not use population vectors!

Example: Arm Movements (2D) (cont.)

- ► Step 1: System Description
 - ► What is being represented?
 - x the movement direction (or hand position)
 - ► What is the tuning curve shape?
 - Bell-shaped
 - ► Encoders are randomly distributed along the unit circle
 - ► Firing rates up to 60 s⁻¹

- ► Step 2: Design Specification
 - Range of values

- Amount of noise
 - ▶ About 20% of $\max(\mathbf{A})$
- ► Step 3: Implementation
 - Choose tuning curve parameters
 - Compute decoders

Example: Higher Dimensional Representation

▶ Axis aligned, must choose $\mathbf{e}_i \in \{[1,0,0],[-1,0,0],\dots,[0,0,-1]\}$

- ► Same as three 1D populations
- Slightly lower precision
- **Encoders affect accuracy**

Image sources

Title slide

"The Ultimate painting." Author: Clark Richert.

From Wikimedia.