Classification and Confusion Matrix

Petchara Pattarakijwanich

Introduction to Data Science, 16 September 2022

Goal of this week

- Classification Problem
- Confusion Matrix
 - Accuracy
 - Precision vs Recall
 - Sensitivity vs Specificity
 - F1 Score
- ROC curve

Classification Problems

How to Measure Model Accuracy?

Classification

test data predicted

$$\begin{array}{c|cccc}
x & y & \hat{y} = f(x) \\
\hline
 & 1 & 1 \\
\hline
 & 1 & 0 \\
\hline
 & 0 & 0$$

Confusion Matrix

False Negative

Confusion Matrix

Confusion Matrix

		Predicted condition		Sources: [16][17][18][19][20][21][22][23][24] view·talk·edit	
	Total population = P + N	Positive (PP)	Negative (PN)	Informedness, bookmaker informedness (BM) = TPR + TNR - 1	Prevalence threshold (PT) $= \frac{\sqrt{TPR \times FPR - FPR}}{TPR - FPR}$
Actual condition	Positive (P)	True positive (TP), hit	False negative (FN), type II error, miss, underestimation	True positive rate (TPR), recall, sensitivity (SEN), probability of detection, hit rate, power $= \frac{TP}{P} = 1 - FNR$	False negative rate (FNR), miss rate = FN = 1 - TPR
Actual	Negative (N)	False positive (FP), type I error, false alarm, overestimation	True negative (TN),	False positive rate (FPR), probability of false alarm, fall-out $= \frac{FP}{N} = 1 - TNR$	True negative rate (TNR), specificity (SPC), selectivity = $\frac{TN}{N}$ = 1 - FPR
	Prevalence = P P+N	Positive predictive value (PPV), precision = TP PP = 1 - FDR	False omission rate (FOR) = FN = 1 - NPV	Positive likelihood ratio (LR+) = TPR FPR	Negative likelihood ratio (LR-) = FNR TNR
	Accuracy (ACC) $= \frac{TP + TN}{P + N}$	False discovery rate (FDR) $= \frac{FP}{PP} = 1 - PPV$	Negative predictive value (NPV) = TN PN = 1 - FOR	Markedness (MK), deltaP (Δp) = PPV + NPV - 1	Diagnostic odds ratio (DOR) = $\frac{LR+}{LR-}$
	Balanced accuracy $(BA) = \frac{TPR + TNR}{2}$	$F_{1} \text{ score}$ $= \frac{2PPV \times TPR}{PPV + TPR} = \frac{2TP}{2TP + FP + FN}$	Fowlkes–Mallows index (FM) = √PPV×TPR	Matthews correlation coefficient (MCC) =√TPR×TNR×PPV×NPV -√FNR×FPR×FOR×FDR	Threat score (TS), critical success index (CSI), Jaccard index $= \frac{TP}{TP + FN + FP}$

Accuracy

Accuracy =
$$\frac{TP+TN}{TP+TN+FP+FN}$$
= $\%$ M1Van

Accuracy

Situation where high accuracy may not necessarily be good?

Precision

Precision 30 => FP oin

Precision

Situation where one needs high precision?

	+	(
+	ก _{ำไร}	(«فالا)
_	eg, Co	(17122) 200

	+	ı
+	9	80
-	1	10

Accuracy of 1 Precision for

Sensitivity (onto Recall)

Sensitivity

Situation where one needs high sensitivity?

	+	_
+	2021-132	ล คอวคลอ สราย กรมผ
_	לאברכא ברביל פ	かららっ

connect the second

Specificity

פלאו דלא חבר לד עם האלוואס

Specificity

Situation where one needs high specificity?

	+	~
+	spam ev	Jiou Spam お inane
_	=) 2JONIS SONITA SAMA	Joy Joy

mosm specificity to

F1 Score

$$\frac{1}{F1 - Score} = \frac{1}{2} \left(\frac{1}{Precision} + \frac{1}{Recall} \right)$$

- ancazu Harmonic vos precision & Recall
- คิว Precision น่อ Recall ตัวใดตัวฉางตัว -> Fl งาว
- Precision In Recall Mostonia F1 Asarts

1002 57 Yal 200

מים תבולמי מו

- FP לישוניטצית
- _ ยอมปรอบคนห่องยัช ไม่ยอมโดนสา
- של איס די טאל ארן איס די טאל ארט איס איטאל ארט ארטאל
- FP AM , FN INS
- Sensitivity pa, specificity 122

<u>ดน กรัวโฉนตัว</u>
- รุลโฟว ; ท่านกบว่า นุก ฉษัไม่ท้อง

Receiver Operating Characteristic (ROC) Curve