Алгебра и Геометрия.

Nº	Вопрос	Ответ
1	Матрица	Матрица размеров $m \times n$ - совокупность $m * n$ чисел, расположенных в виде таблицы из m строк n столбцов
2	Равенство матриц	Две матрицы A и B называются равными, если они имеют одинаковые размеры и равные соответствующие элементы.
3	Типы матриц	 Прямоугольная Матрица-строка Матрица-столбец Квадратная Диагональная Верхнетреугольная Нижнетреугольная Единичнаяёц
4	Сумма матриц	Пусть $A=(a_{ij})$ и $B=(b_{ij})$ - матрицы одинаковых размеров $m\times n$. Матрица $C=(c_{ij})$ тех же размеров $m\times n$ называется суммой матриц A и B , если ее элементы равны сумме соответствующих элементов матриц A и B : $c_{ij}=a_{ij}+b_{ij}$ $i=1,,m,$ $j=1,,n$
5	Произведение матрицы на число	Произведением матрицы $A=(a_{ij})$ на число λ называется матрица $C=(c_{ij})$ тех же размеров, что и матрица A ,каждый элемент которой равен произведениею числа λ на соответствующий элемент матрицы $A: c_{ij} = \lambda a_{ij} \ i=1,,m, \ j=1,n$
6	Свойства линейных операций над матрицами	1. $A + B = B + A$ 2. $A + (B + C) = (A + B) + C$ 3. $A + O = A$ 4. $A + (-A) = 0$ 5. $\alpha(A + B) = \alpha A + \alpha B$ 6. $(\alpha + \beta)A = \alpha A + \beta A$ 7. $(\alpha\beta)A = \alpha(\beta A)$ 8. $1 \cdot A = A$
7	Произведение матриц	Пусть даны матрицы $A=(a_{ij})$ размеров $m\times p$ и $B=(b_{ij})$ размеров $p\times n$. Матрицу $C=(c_{ij})$ размеров $m\times n$, элементы которой вычисляются по формуле $c_{ij}=a_{i1}b_{1j}+a_{i2}b_{2j}++a_{ip}b_{lj}$ $i=1,,m$ $j=1,,n$ называют произведением матриц A и B . Операция произведения определена только для

		согласованных матриц, у которых число столбцов матрицы A равно числу строк матрицы B .
8	Перестановочная матрица	Матрицы A и B называются перестановочными, если $A \bullet B = B \bullet A$
9	Свойства операции умножения	1. $(AB)C = A(BC)$ 2. $A(B+C) = AB+AC$ 3. $(A+B)C = AC + BC$ 4. $\lambda(AB) = (\lambda A)B$
10	Степень матрицы	Для любой квадратной матрицы определено произведение $A \cdot A$. Поэтому можно говорить о целой неотрицательной степени матрицы , определяя последовательно $A^0 = E A^1 = A$ $A^2 = A \cdot A A^3 = A^2 \cdot A \text{и т.д.}$
11	Многочлен от матрицы	Выражение вида $P_m(A) = a_0 E + a_1 A + a_2 A^2 + + a_m A^m \text{ называется}$ многочленом от матрицы.
12	Транспонированная матрица	Для любой матрицы A транспонированной матрицей называется матрица A^T , которая получается из матрицы A заменой строк столбцами, а столбцов строками.
13	Операция транспонирования	Чтобы по данной матрице A получить матрицу A^T , нужно первую строку матрицы A записать как первый столбец матрицы A^T вторую строку матрицы A записать, как второй столбец матрицы A^T и т.д. Эта операция называется транспонированием матрицы A
14	Свойства операции транспонирования	1. $(\lambda A)^{T} = \lambda A^{T}$ 2. $(A + B)^{T} = A^{T} + B^{T}$ 3. $(A \cdot B)^{T} = A^{T} \cdot B^{T}$ 4. $(A^{T})^{T} = A$
15	Блочные матрицы	Числовая матрица A размеров $m \times n$ разделенная горизонтальными и вертикальными линиям на блоки называется блочной матрицей. Элементами блочной матрицы являются матрицы
16	Произведение блочной матрицы	Произведением $C = A \cdot B$ согласованных блочных матриц A и B называется блочная матрица $C = (c_{ij})$, блоки которой вычисляются по следующей формуле $C_{ij} = A_{i1}B_{1j} + A_{i2}B_{2j} + + A_{is}B_{sj}$
17	Согласованные блочные	Блочные матрицы A и B называются

	матрицы	согласованными , если разбиение матрицы $A = (A_{ik})$ на блоки совпадает с разбиением матрицы $B = (B_{kj})$ по строкам.
18	Индуктивное определение определителя	Пусть A - квадратная матрица порядка n . Определитель квадратной матрицы A - это число $\det A$, которое ставится в соответствие матрице и вычисляется по ее элементам согласно следующим правилам. 1. Определитель матрицы $A = (a_{11})$ порядка $n=1$ называется единственный элемент этой матрицы: $\det(a_{11}) = a_{11}$ 2. Определителем матрицы A порядка $n>1$ называется число $\det A = (-1)^{1+1}a_{11}M_{11} + (-1)^{1+2}a_{12}M_{12} + + (-1)^{1+n}a_{1n}M_{1n}$, где M_{1j} - определитель квадратной матрицы порядка $n-1$ полученной из A вычеркиванием первой строки и j столбца
19	Дополнительный минор	Дополнительным минором M_{ij} элемента a_{ij} матрицы A называется определитель матрицы порядка $n-1$ полученной из матрицы A вычеркиванием i строки j столбца
20	Алгебраическое дополнение	Алгебраическим дополнением A_{ij} элемента a_{ij} матрицы A называется дополнительный минор M_{ij} этого элемента, умноженный на $(-1)^{i+j}$: $A_{ij} = (-1)^{i+j} M_{ij}$
21	Формула разложения определителя по элементам строки(столбца)	Определитель матрицы A равен сумме произведений элементов произвольной строки(столбца) умноженных на их алгебраическое дополнения: $\det A = \sum_{k=1}^{n} (-1)^{i+k} a_{ik} M_{ik} = \sum_{k=1}^{n} a_{ik} A_{ik}$ $\det A = \sum_{k=1}^{n} (-1)^{k+j} a_{kj} M_{kj} = \sum_{k=1}^{n} a_{kj} A_{kj}$
22	Свойства определителей	 Для любой квадратной матрицы det A = det(A^T) Из этого свойства следует, что столбцы и строки определителя "равноправны": любое свойство, верное для столбцов, будет верным для строк. Если в определителе один из столбцов нулевой (все элементы столбца равны нулю), то определитель равен нулю. При перестановке двух столбцов определитель меняет знак на

_		
		 противоположный 4. Если в определителе имеются два одинаковых столбца, то он равен нулю 5. Если определитель имеет два пропорциональных столбца, то он равен нулю . 6. При умножении всех элементов одного столбца определителя на число определитель умножается на это число . 7. Если ј -й столбец определителя представляется в виде суммы двух столбцов а ј b ј , то определитель равен сумме двух определителей, у которых ј -ми столбцами являются а ј и b ј соответственно, а остальные столбцы одинаковы . 8. Определитель линеен по любому столбцу . 9. Определитель не изменится, если к элементам одного столбца прибавить соответствующие элементы другого столбца, умноженные на одно и то же число . 10. Сумма произведений элементов какого-либо столбца определителя на алгебраические дополнения соответствующих элементов другого столбца равна нулю ∑ a_{ki} • A_{kj} = 0 i ≠ j
23	Элементарные преобразования	 Перестановка двух строк(столбцов) местами Умножение всех элементов Прибавление к элементам одного столбца(строки) на одно и тоже число столбца(строки) соответствующих элементов другого столбца(строки) на одно и тоже число. Матрица В , полученная из исходной матрицы А путем конечного числа элементарных преобразований, называется эквивалентной . Это обозначается А ~ В
24	Метод Гаусса приведение матрицы к ступ. виду	1. В первом столбце выбрать элемент, отличный от нуля (ведущий элемент). Строку с ведущим элементом (ведущая строка), если она не первая, переставить на место первой строки (преобразование І типа). Если в первом столбце нет ведущего (все элементы равны нулю), то исключаем этот столбец, и продолжаем поиск ведущего элемента в оставшейся части матрицы. Преобразования заканчиваются, если исключены все столбцы или в оставшейся

		 части матрицы все элементы нулевые. 2. Разделить все элементы ведущей строки на ведущий элемент (преобразование II типа). Если ведущая строка последняя, то на этом преобразования следует закончить. 3. К каждой строке, расположенной ниже ведущей, прибавить ведущую строку, умноженную соответственно на такое число, чтобы элементы, стоящие под ведущим, оказались равными нулю (преобразование III типа). 4. Исключив из рассмотрения строку и столбец, на пересечении которых стоит ведущий элемент, перейти к пункту 1, в котором все описанные действия применяются к оставшейся части матрицы.
25	Теорема о приведении к ступенчатому виду	Любую матрицу при помощи элементарных преобразований ее строк можно привести к ступенчатому виду.
26	Следствие о приведении матрицы к простейшему виду	Любую матрицу при помощи элементарных преобразований ее строк и столбцов можно привести к простейшему виду.
27	Элементарная матрица	Квадратную матрицу, полученную из единичной при помощи конечного числа элементарных преобразований, будем называть элементарной
28	Элементарные преобразования как умножение матриц	Элементарные преобразования можно представить как процесс умножения данной матрицы на элементарные матрицы.
29	Теорема о приведении матрицы к простейшему виду	Для любой матрицы A размеров $m \times n$ существуют такие элементарные матрицы S и T m —го и n —го порядков соответственно, что матрица $\Lambda = S \cdot A \cdot T$ имеет простейший вид. Матрицы S и T будем называть элементарными преобразующими матрицами
30	Нахождение элементарных преобразующих матриц	 Приписав к матрице A размеров m × n справа и снизу единичные матрицы E_m и E_n соответственно, составить блочную матрицу Д Е_m При помощи элементарных преобразований, выполняемых над строками и столбцами

		блочной матрицы, привести ее левый верхний блок A к простейшему виду. При этом блочная матрица преобразуется к виду $\left(\begin{array}{c c} \Lambda & S \\ \hline T & \end{array} \right)$
31	Метод приведения определителя к треугольному виду	 При помощи элементарных преобразований привести определитель к треугольному виду Вычислить определитель треугольного вида, перемножая его элементы, стоящие на главной диагонали.
32	Метод понижения порядка определителя	 При помощи элементарного преобразования III типа нужно в одном столбце (или одной строке) сделать равными нулю все элементы за исключением одного. Разложить определитель по этому столбцу (строке) и получить определитель меньшего порядка, чем исходный.
33	Теорема об определителе произведения матриц	Пусть A и B - квадратные матрицы одного и того же порядка. Тогда $\det AB = \det A \cdot \det B$. То есть определитель произведения квадратных матриц равен произведению их определителей.
34	Обратная матрица	Пусть A квадратная матрица порядка n . Матрица A^{-1} , удовлетворяющая вместе с заданной матрицей A равенствам: $A^{-1} \bullet A = A \bullet A^{-1} = E$ называется обратной.
35	Теорема о существовании и единственности обратной матрицы	$A = \begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \cdots & a_{nn} \end{pmatrix}$ определитель которой отличен от нуля, имеет обратную матрицу и притом только одну: $A^{-1} = \frac{1}{\det A} \begin{pmatrix} A_{11} & A_{21} & \cdots & A_{n1} \\ A_{12} & A_{22} & \cdots & A_{n2} \\ \vdots & \vdots & \ddots & \vdots \\ A_{1n} & A_{2n} & \cdots & A_{nn} \end{pmatrix} = \frac{1}{\det A} A^+,$ где A^+ - матрица, транспонированная для матрицы, составленной из алгебраических дополнений

		элементов матрицы А
36	Матричное уравнение $AX = B$	Если определитель матрицы отличен от нуля, то матричное уравнение имеет единственное решение $X = A^{-1}B$
37	Матричное уравнение $YA = B$	Если определитель матрицы отличен от нуля, то матричное уравнение имеет единственное решение $Y = BA^{-1}$
38	Первый способ нахождения обратной матрицы.	 Вычислить определитель данной матрицы. Если det A = 0, то обратной матрицы не существует Составить матрицу (A_{ij}) из алгебраических дополнений элементов матрицы A Транспонируем матрицу (A_{ij}) получаем присоединенную матрицу A⁺ Найти обратную матрицу разделив все элементы присоединенной матрицы на определитель det A
39	Второй способ нахождения обратной матрицы.	 Составить блочную матрицу (A E), приписав к матрице единичную того же порядка При помощи элементарных преобразований, выполняемых над строками матрицы (A E) привести ее к простейшему виду Л. При этом блочная матрица приводится в виду (Л S). Если Л = E то блок S равен обратной матрице, иначе обратной матрицы не существует.
40	Линейная комбинация	Столбец A называется линейной комбинацией столбцов $A_1, A_2,, A_k$ одинаковых размеров, если $A = a_1A_1 + a_2A_2 + + a_kA_k$, где $a_1, a_2,, a_k$ некоторые числа (коэффициенты разложения).
41	Система столбцов	Набор из $A_1, A_2,, A_k$ столбцов называется системой столбцов.
42	Линейно зависимая система	Система из k столбцов A_1 , A_2 ,, A_k называется линейно зависимой , если существуют такие числа $a_1, a_2,, a_k$, не все равные нулю одновременно, что $a_1A_1 + a_2A_2 + + a_kA_k = 0$
43	Линейно независимая система	Система из k столбцов $A_1, A_2,, A_k$ называется линейно независимой , если равенство $a_1A_1 + a_2A_2 + + a_kA_k = 0$

		возможно только при $a_1 = a_2 = = a_k = 0$
44	Свойства линейно зависимых и линейно независимых столбцов	 Если в систему столбцов входит нулевой столбец, то она линейно зависима. Если в системе столбцов имеется два одинаковых столбца, то она линейно зависима Если в системе столбцов имеется два пропорциональных столбца, то она линейно зависима. Система из k > 1 столбцов линейно зависима, тогда и только тогда, когда один из столбцов есть линейная комбинация остальных Любые столбцы, входящие в линейно независимую систему, образуют линейно независимую подсистему. Система столбцов, содержащая линейно зависимую подсистему, линейно зависимая. Если система столбцов A₁, A₂,, A_k - линейно независима, а после присоединения к ней столбца A - оказывается линейно зависимой, то столбец A можно разложить по столбцам A₁, A₂,, A_k, и притом единственным образом.
45	Минор.	Минором k — го порядка матрицы A называется определитель матрицы k — го порядка, образованной элементами, стоящими на пересечении произвольно выбранных k строк и k столбцов матрицы A
46	Базисный минор	В матрице A размеров $m \times n$ минор r — го порядка называется базисным , если он отличен от нуля, а все миноры $(r+1)$ порядка равны нулю или их вообще не существует.
47	Теорема о базисном миноре	В произвольной матрице A каждый столбец(строка) является линейной комбинацией столбцов(строк), в которых расположен базисный минор.
48	Ранг матрицы	Ранг матрицы - это порядок базисного минора.
49	Теорема о ранге матрицы	Ранг матрицы равен максимальному числу линейно-независимых строк этой матрицы.
50	Теорема о ранге произведения матриц	Ранг произведения матриц не превышает ранга сомножителей: $rg(AB) \leq min\{rg\ A,\ rg\ B\}$
51	Теорема о ранге суммы матриц	Ранг суммы матриц не превышает сумма рангов слагаемых: $rg(A+B) \le rg \ A + rg \ B$

52	Теорема необходимое и достаточное условие равенства нулю определителя	Для того чтобы определитель был равен нулю необходимо и достаточно, чтобы один из его столбцов(одна из его строк) был линейной комбинацией остальных столбцов(строк).
53	Метод окаймляющих миноров.	
54	Метод Гаусса	 Привести матрицу к ступенчатому виду В полученной матрице вычислить количество <i>r</i> ненулевых строк.
55	Система <i>т</i> линейных алгебраических уравнений	Системой m линейных алгебраических уравнений с n неизвестными называется система уравнений вида $ \begin{cases} a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n = b_1, \\ a_{21}x_1 + a_{22}x_2 + \cdots + a_{2n}x_n = b_2, \\ \cdots \\ a_{m1}x_1 + a_{m2}x_2 + \cdots + a_{mn}x_n = b_m. \end{cases} $ a_{ij} - коэффициенты системы $b_1, b_2,, b_m$ - свободные члены $x_1, x_2,, x_n$ - неизвестные
56	Решение системы	Решением системы называется упорядоченная совокупность n чисел $(a_1, a_2,, a_n)$ такая, что после замены неизвестных $x_1, x_2,, x_n$ каждое уравнение системы превращается в верное числовое равенство.
57	Совместность несовместность	Система называется совместной, если она имеет хотя бы одно решение. Если система не имеет решений, то она называется несовместной.
58	Однородность неоднородность	Система называется однородной, если все свободные члены равны 0 Система общего вида называется неоднородной
59	Матричная запись	1. Матрица системы $A = \begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \cdots & a_{mn} \end{pmatrix}$ 2. Столбец свободных членов $b = \begin{pmatrix} b_1 \\ \vdots \\ b_m \end{pmatrix}$

		3. Столбец неизвестных $x = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}.$ Матричная запись 1. $Ax = b$ неоднородная 2. $Ax = o$ однородная
60	Правило Крамера	Если определитель Δ матрицы системы n линейных уравнений с n неизвестными отличен от нуля, то система имеет единственное решение, которое находится по формулам $x_i = \frac{\Delta_i}{\Delta}, \ i=1,,n$ где Δ_i - определитель матрицы, полученной из матрицы системы заменой i — го столбца столбцом свободных членов.
61	Теорема Кронекера-Капелли	Система $Ax = b$ совместна тогда и только тогда, когда ранг матрицы системы равен рангу расширенной матрицы системы $rg \ A = rg(A \mid b)$
62	Метод Гаусса решения системы линейных уравнений	 Составить расширенную матрицу системы (A b) Используя элементарные преобразования над строками матрицы привести ее к ступенчатому виду (Ā b̄). Выяснить совместна ли система или нет. Сравнить rg A и rg(A b) Для совместной системы привести матрицу (Ā b̄) к упрощенному виду. Разделяем все переменные на базисные и свободные. Выражаем базисные через свободные.
63	Структура общего решения однородной системы	Однородная система линейных уравнений всегда совместна, так как имеет тривиальное решение . 1. Если $rg A = n$, то тривиальное решение единственное. 2. Если $rg A < n$, то система имеет бесконечно много решений.
64	Свойства решений однородной системы	 Если столбцы ф₁, ф₂,, ф_k – решение однородной системы уравнений, то любая их линейная комбинация a₁φ₁ + a₂φ₂ + + a_kφ_k также является решением однородной системы. Если ранг матрицы однородной системы

		равен r , то система имеет $n-r$ линейно независимых решений.
65	Фундаментальная система решений	Любая совокупность $n-r$ линейно независимых решений $\phi_1, \phi_2,, \phi_{n-r}$ однородной системы называется фундаментальной системой решений
66	Теорема об общем решении однородной системы	Если $\varphi_1, \varphi_2,, \varphi_{n-r}$ — фундаментальная система решений однородной системы уравнений, то столбец $x = C_1 \varphi_1 + C_2 \varphi_2 + + C_{n-r} \varphi_{n-r}$ при любых значениях произвольных постоянных $C_1, C_2,, C_{n-r}$ также является решением системы, и, наоборот, для каждого решения x этой системы найдутся такие значения произвольных постоянных $C_1, C_2,, C_{n-r}$, при которых это решение x удовлетворяет равенств $x = C_1 \varphi_1 + C_2 \varphi_2 + + C_{n-r} \varphi_{n-r}$
67	Алгоритм решения однородной системы.	 1 – 5 действий выполнить из алгоритма Гаусса. Найти ФСР ф₁, ф₂,, ф_{n-r} Записать общее решение однородной системы по формуле.
68	Свойства решений неоднородной системы	 Разность двух решений <i>x</i> и <i>y</i> неоднородной системы есть решение однородной системы. Пусть <i>x^H</i> решение неоднородной системы. Тогда любое решение <i>x</i> неоднородной системы можно представить в виде
69	Теорема о структуре общего решения неоднородной системы.	Пусть x^H - решение неоднородной системы, а $\phi_1, \phi_2,, \phi_{n-r}$ - фундаментальная система решений соответствующей однородной системы уравнений. Тогда столбец $x = x^H + C_1\phi_1 + C_2\phi_2 + + C_{n-r}\phi_{n-r}$ при любых значениях произвольных постоянных $C_1, C_2,, C_{n-r}$ - является решением неоднородной системы, и, наоборот, для каждого решения x этой системы найдутся такие значения произвольных постоянных $C_1, C_2,, C_{n-r}$, при которых это решение x удовлетворяет равенству $x = x^H + C_1\phi_1 + C_2\phi_2 + + C_{n-r}\phi_{n-r}$
70	Алгоритм решения неоднородной системы	1. 1-5 выполнить первые 5 пунктов метода Гаусса.

		 Найти частное решение x^H неоднородной системы, положив все свободные переменные равными нулю. Составить ФСР φ₁, φ₂,, φ_{n-r} ее решений. Записать общее решение неоднородной системы по формуле x = x^H + C₁φ₁ + C₂φ₂ + + C_{n-r}φ_{n-r}
71	Характеристическая матрица	Пусть A — числовая квадратная матрица n — го порядка. Матрица $A - \lambda E$ называется характеристической для A .
72	Характеристический многочлен.	Определитель характеристической матрицы $\Delta_A(\lambda) = \det(A - \lambda E)$ называется характеристическим многочленом матрицы A
73	Собственный вектор	Пусть A - числовая квадратная матрица n — го порядка. Ненулевой столбец x , удовлетворяющий условию $Ax = \lambda x$ называется собственным вектором матрицы A
74	Собственное значение	Число λ называется собственным значением матрицы A
75	Характеристическое уравнение	Уравнение $\Delta_A(\lambda) = 0$ называется характеристическим уравнением матрицы A
76	Теорема о собственных значениях матрицы.	Все корни характеристического уравнения и только они являются собственными значениями матрицы.
77	Свойства собственных векторов	 Собственные векторы, соответствующие различным собственным значениям, линейно независимы. Ненулевая линейная комбинация собственных векторов, соответствующих одному собственному значению, является собственная вектором, соответствующим тому же собственному значению Пусть (A – λE)⁺ - присоединенная матрица для характеристической матрицы. Если λ₀ – собственное значение матрицы A то любой ненулевой столбец матрицы (A – λE)⁺ является собственным вектором, соответствующим собственному значению λ₀
78	Спектр	Спектр - совокупность собственных значений
79	Алгоритм нахождения собственных векторов и	1. Составить характеристический многочлен матрицы $\Delta_A(\lambda) = det(A - \lambda E)$

	собственных значений	2. Найти все различные корни $\lambda_1,,\lambda_k$ характеристического уравнения $\Delta_A(\lambda)=0$ 3. Для корня $\lambda=\lambda_1$ найти ФСР $\phi_1,\phi_2,,\phi_{n-r}$ $(A-\lambda E)x=o$ 4. Записать линейно независимые собственные векторы матрицы A , отвечающие собственному значению λ_1 : $s_1=C_1\phi_1,\ s_2=C_2\phi_2,,s_{n-r}=C_{n-r}\phi_{n-r}$ совокупность всех собственных векторов, отвечающих собственному значению λ_1 образуют ненулевые столбцы вида $s=C_1\phi_1++C_{n-r}\phi_{n-r}$
80	Свойства характеристического многочлена	1. Характеристический многочлен квадратной матрицы A n — го порядка может быть представлен в виде $\Delta_A(\lambda) = (-1)^n (\lambda - \lambda_1)^{n_1} (\lambda - \lambda_2)^{n_2} \bullet \dots \bullet (\lambda - \lambda_k)^{n_k}$ 2.
81	Подобные матрицы	Квадратные матрицы A и B называются подобными, если существует такая невырожденная матрица S , что $B = S^{-1}AS$
82	Преобразование подобия	Преобразование матрицы A по формуле $S^{-1}AS$ называется преобразованием подобия, а матрица S — преобразующей.
83	Теорема о приведении матрицы к диагональному виду.	Для того, чтобы квадратная матрица A n — го порядка приводилась к диагональному виду $\Lambda = S^{-1}AS$, необходимо и достаточно, чтобы она имела n линейно независимых собственных векторов.
84	Алгоритм преобразования подобия	 Найти <i>п</i> линейно независимых собственных векторов s₁,, s_n матрицы A Из собственных векторов s₁,, s_n составить преобразующую матрицу S = (s₁,, s_n) По собственным значениям матрицы A составить матрицу Λ = diag(λ₁,, λ_n) - диагональный вид матрицы.

85	Многочлен второй степени	Многочленом второй степени от n переменных $x_1,,x_n$ называется выражение вида $p_2(x) = \sum_{i=1}^n \sum_{j=1}^n a_{ij} x_i x_j + \sum_{i=1}^n b_i x_i + c_0$ a_{ij},b,c_0 — коэффициенты многочлена a_{ij} — старшие коэффициенты b_i — коэффициенты линейных членов c_0 — свободный член
86	Однородный многочлен	Многочлен второй степени называется однородным, если $p_2(\lambda x) = \lambda^2 p_2(x)$, когда отсутствуют линейные члены и свободный член $(b_1 = b_2 = = b_n = 0, \ c_0 = 0)$
87	Квадратичная форма переменных	Квадратичной формой переменных $x_1,,x_n$ называется однородный многочлен второй степени $q(x) = \sum_{i=1}^n \sum_{j=1}^n a_{ij} x_i x_j$ коэффициенты которого удовлетворяют условиям симметричности $a_{ij} = a_{ji} \ i = 1,,n,\ j = 1,,n$
88	Матрица квадратичной формы	Симметрическая матрица $A = (a_{ij})$, составленная из коэффициентов квадратичной формы, называется матрицей квадратичной формы Дискриминант - определитель матрицы квадратичной формы. Ранг квадратичной формы - ранг матрицы квадратичной формы.
89	Матричная запись квадратичной формы	Квадратичную форму можно записать в виде $q(x) = x^{T} A x$
90	Линейная замена переменных	Пусть переменные $x_1,, x_n$ (старые) заменяются на переменные $y_1,, y_n$ (новые) по формулам $ \begin{cases} x_1 = s_{11}y_1 + + s_{1n}y_n \\ \vdots \\ x_n = s_{n1}y_1 + + s_{nn}y_n \end{cases} $ где s_{ij} — некоторые числа. Каждая старая переменная является линейной формой новых переменных. Такая замена называется линейной
91	Матрица линейной замены	Матрица $A = (a_{ij})$, составленная из коэффициентов линейной замены s_{ij} , называется матрицей линейной замены

		Формула линейной замены в матричном виде $x = Sy$
92	Формула изменения матрицы квадратичной формы при линейной невырожденной замене переменных	$q(x) = x^{T} A x = q(Sy) = (Sy)^{T} A S y = y^{T} A y$
93	Канонический вид квадратичной формы	Квадратичная форма имеет канонический вид, если ее матрица диагональная, т.е. имеются только члены с квадратами переменных.
94	Теорема о приведении квадратичной формы к каноническому виду	Любая квадратичная форма может быть приведена к каноническому виду при помощи некоторой линейной невырожденной замены переменных.
95	Метод Лагранжа	 Выбрать ведущую переменную, которая входит в квадратичную форму во второй и в первой степени одновременно и перейти к пункту 2 Если в квадратичной форме нет ведущих переменных, то выбрать пару переменных, произведение которых входит в квадратичную форму с отличным от нуля коэффициентом и перейти к пункту 3 По ведущей переменной выделить полный квадрат. Получим сумму полного квадрата некоторой линейной формы и квадратичной формы. Сделать замену переменных. Перейти к пункту 1 Выбранную пару переменных заменить на разность сумм двух одинаковых переменных, а остальные старые переменные принять за соответствующие новые переменные.
96	Конгруэнтные матрицы	Две квадратные матрицы A и A' одного и того же порядка называются конгруэнтными, если существует такая невырожденная матрица S , что $A' = S^T AS$
97	Главные миноры	Главными минорами квадратной матрицы называются миноры, составленные из ее элементов, стоящих на пересечении строк и столбцов с одинаковыми номерами.
98	Угловые миноры	Угловыми минорами квадратной матрицы A называют следующие главные миноры $\Delta_1 = M^1_{\ 1}$, $\Delta_2 = M_{\ 12}^{\ 12}$ и т.д.

		Если квадратичная форма
99	Метод Якоби	если квадратичная форма $q(x) = \sum_{i=1}^n \sum_{j=1}^n a_{ij} x_i x_j = x^T A x$ имеет ранг $r = rg$ A и ее угловые миноры отличны от нуля, то ее можно привести к каноническому виду $\overline{q}(y) = \lambda_1 y_1^2 + \lambda_2 y_2^2 + + \lambda_r y_r^2$ где $\lambda_i = \frac{\Delta_i}{\Delta_{i-1}}$, $\Delta_0 = 1$. При помощи линейной замены переменных $x = Sy$ с верхней треугольной матрицей S
100	Связь коэффициентов и ранга квадратичной формы	Количество ненулевых коэффициентов в каноническом виде равно рангу $r = rgA$
101	Индекс квадратичной формы	Количество положительных (отрицательных) коэффициентов в каноническом виде называется положительным (отрицательном) индексом квадратичной формы.
102	Сигнатура квадратичной формы	Разность положительного и отрицательного индексов называется сигнатурой
103	Нормальный вид квадратичной формы	Переименуем переменные так, чтобы в сумме $\overline{q}(y) = \lambda_1 y_1^2 + \lambda_2 y_2^2 + + \lambda_r y_r^2 \text{ первыми}$ были p слагаемых с положительными коэффициентами, затем $r-p$ слагаемых с отрицательными коэффициентами. Если сделать замену $y_i = \begin{cases} \overline{z_i} & i \leq r, \\ \overline{\sqrt{ \lambda_i }} & i > r. \end{cases}$ то получим нормальный вид квадратичной формы $\overline{\overline{q}}(z) = z_1^2 + z_2^2 + + z_p^2 - z_{p+1}^2 z_r^2$
104	Закон инерции квадратичных форм	Ранг, положительный и отрицательный индексы, а также сигнатура вещественной квадратичной формы не зависят от действительной невырожденной линейной замены переменных, приводящей квадратичную форму к каноническому виду.
105	Знакоопределенность вещественных квадратичных форм.	1. Вещественная квадратичная форма называется $q(x) = x^T A x$ называется положительно (отрицательно) определенной, если $q(x) > 0$ ($q(x) < 0$) для любых $x \neq 0$. Положительно и отрицательно

		определенные квадратичные формы называются определенными (знакоопределенными) 2. Если неравенство q(x) ≥ 0 (q(x) ≤ 0) выполняется для любых значений x, то квадратичная форма называется неотрицательно (неположительно) определенной. Не отрицательно и не положительно определенные квадратичные формы называются полуопределенными. 3. Если квадратичная форма принимает как положительные, так и отрицательные значения, то она называется неопределенной.
106	Критерий Сильвестра	Для того чтобы квадратичная форма $q(x) = x^T A x$ была неотрицательно определенной, необходимо и достаточно, чтобы все ее угловые миноры были неотрицательны. Для неположительной определенности квадратичной формы необходимо и достаточно, чтобы все главные миноры ее матрицы удовлетворяли условиям: $ (-1)^k M_{j_1,\dots,j_k}^{ i_1,\dots,i_k} \geq 0 $