WE CLAIM:

A method for forming a MOS transistor gate dielectric layer comprising:

5

providing a semiconductor substrate;

forming an oxide layer on the semiconductor substrate;

10

exposing the oxide layer to a high-density nitrogen plasma to incorporate nitrogen into the oxide layer thereby converting the oxide layer to an oxynitride layer; and

15

annealing said oxynitride layer in $N_2\mathcal{O}$ to form an oxynitride layer with a uniform nitrogen concentration profile.

- 20
- 2. The method of claim 1 wherein the exposing the oxide layer to a high-density nitrogen plasma comprises a plasma power level of 700 900 watts.
- 3. The method of claim 1 wherein annealing the oxynitride layer in N_2O comprises rapid thermal annealing at a temperature of $800^{\circ}C$ $1100^{\circ}C$ for 10-60 seconds.

	4. A method of forming a MOS transistor comprising:
5	providing a semiconductor substrate;
	forming a gate dielectric layer on the
	semiconductor substrate wherein the gate
	dielectric layer has a uniform nitrogen
10	concentration;
	forming a conductive layer on said gate
	dielectric layer,
15	forming sidewall structures adjacent to said
	conductive layer; and
•	
	forming source and drain regions in the
	semiconductor substrate adjacent to said sidewall
20	structures.
	5. The method of claim 4 wherein said forming a gate
	dielectric layer with a uniform nitrogen concentration
	comprises:
25	
	forming an oxide layer on the semiconductor
	substrate;
	Subsciace,
	exposing the oxide layer to a high-density
30	nitrogen plasma to incorporate nitrogen into the
	oxide layer thereby converting the oxide layer to
	an oxynitride layer; and

20

annealing said oxynitride layer in N_2O to form an oxynitride layer with a uniform nitrogen concentration profile.

5

- 6. The method of claim 5 wherein the exposing the oxide layer to a high-density nitrogen plasma comprises a plasma power level of 700 900 watts.
- 7. The method of claim 5 wherein annealing the oxynitride layer in N_2O comprises rapid thermal annealing at a temperature of $800^{\circ}C$ $1100^{\circ}C$ for 10-60 seconds.
 - 8. The method of claim 4 wherein said uniform nitrogen concentration is greater than 6 atomic percent.
 - 9. The method of claim 4 wherein gate dielectric layer is less than 40 angstroms thick.
 - 10. The method of claim 4 wherein said uniform nitrogen concentration describes a nitrogen concentration with less than 10% variation across the gate dielectric layer.

10

15

M. A MOS transistor, comprising:

providing a silicon substrate;

a gate dielectric layer on the silicon substrate wherein the gate dielectric layer is less than 40 angstroms thick and wherein the gate dielectric layer has a uniform nitrogen concentration;

a conductive layer on the gate dielectric layer;

sidewall structures adjacent to said conductive layer; and

source and drain regions in the silicon substrate adjacent to the sidewall structures.

- 12. The MOS transistor of claim 10 wherein the uniform nitrogen concentration is greater than 6 atomic percent.
- 13. The MOS transistor of claim 12 wherein the uniform nitrogen concentration has a variation of less than 10% across the gate dielectric layer.

25

20

30