Navigating Ontology Development with Large Language Models

Javad Saeedizade, Eva Blomqvist

May 26-30 in Hersonissos, Greece ESWC 2024

Llama 2

Meta AI

What is ontology story

An example ontology story from the semantic web course

During each year a number of theatre festivals are held in cities around Italy. In January 2007 ...

Competency questions

When and Where did a certain theatre festival take place?

Research Questions

- 1- To what extent can LLMs create an ontology that meets the Ontology Requirements?
- 2- Which LLMs are suitable for this task?
- 3- What prompting techniques are the most effective?

What is a prompt?

What is a prompting technique?

- Zero-Shot
- Chain of Thoughts (**CoT**)
- Chain of Thoughts Self-Consistency (**CoT-SC**)
- Sub-task Decomposed Prompting Waterfall approach (Waterfall)
- Sub-task Decomposed Prompting Competency Question by Competency Question (CQbyCQ)
- Graph of Thoughts (**GoT**)

Initial Experiment: Phase 1

Which LLMs are suitable for ontology generation?

Initial Experiment: Phase 1

Which LLMs are suitable for ontology generation?

Initial Experiment: Phase 2

Which pair of LLMs and prompts are suitable for ontology generation?

1: Correctness of the Turtle syntax.

Ontology Task 1

- 2: Usage taxonomy (class hierarchy) in the ontology
- 3: Usage of Data Properties (if needed)
- 4: Presence of reification class

Ontology Task 2

- 5: Presence of instances (if needed)
- 6: Establishment of domain or range restriction for properties
- 7: Presence of "EquivalenceClass" restriction
- 8: Semantic coherence of class hierarchy

Result of Initial Experiment

LLMs: GPT-4

Prompting Techniques:

- **CoT** (chain of thoughts)
- **CoT-SC** (Chain of Thoughts Self-Consistency)
- CQbyCQ (Sub-task Decomposed Prompting Competency Question by Competency Question)
- **GoT** (Graph of Thoughts)

Baseline

Baseline: Master's students who took a **semantic web course**

Course: **3** ontology tasks/stories, **15 competency** questions each

10 groups, and 2 students on average in each group

Students submitted each modelling on average **3 times** to pass the lab

The baseline is the **first** and the **last student submissions** of the course.

Evaluation Criteria

Results

Results with a relax criteria

missing one single data/object property

Evaluation: types of CQs

	Theatre Story				Music Story				Hospital Story				
	$\overline{\mathrm{DP}}$	OP	Reif.	Rest.	DP	OP	Reif.	Rest.	DP	OP	Reif.	Rest.	
CQbyCQ	.93	.78	.55	.33	1.0	.94	1.0	1.0	1.0	.94	1.0	0	
CoT	.80	.50	.22	1.0	.80	.78	1.0	1.0	.53	.50	.44	1.0	
$\operatorname{CoT-SC}$.93	.55	0	1.0	.80	.89	1.0	1.0	.53	.66	.66	.33	
GoT	.86	.61	.44	1.0	.80	.94	1.0	1.0	.73	1.0	.66	.66	
Students First Submission	.64	.63	.43	.10	.84	.83	.87	.30	.78	.85	.73	.60	
Students Last Submission	.92	.78	.73	.50	.94	.92	.90	.50	.94	1.0	.90	.60	

DP: Simple data property modeling

OP: Simple object property modeling

Rest.: Restrictions on classes or properties

Complex

Evaluation: types of CQs

	Theatre Story					Mus	ic Stor	y	Hospital Story				
	$\overline{\mathrm{DP}}$	OP	Reif.	Rest.	DP	OP	Reif.	Rest.	DP	OP	Reif.	Rest.	
CQbyCQ	93	.78	.55	.33	\bigcirc 0.D	.94	1.0	1.0	$\bigcirc 1.0$.94	1.0	0	
CoT	.80	.50	.22	$\widehat{1.0}$.80	.78	1.0	1.0	.53	.50	.44	\bigcirc	
$\operatorname{CoT-SC}$.93	.55	0	1.0	.80	.89	1.0	1.0	.53	.66	.66	.33	
GoT	.86	.61	.44	1.0	.80	.94	1.0	1.0	.73	1.0	.66	.66	
Students First Submission	.64	.63	.43	.10	.84	.83	.87	.30	.78	$\sqrt{.85}$	$\sqrt{.73}$.60	
Students Last Submission	.92	.78	.73	.50	.94	.92	.90	.50	.94	1.0	90	.60	

Simple data property modeling
OP: Simple data property modelin

Simple object property modeling

Reif.: Reifications More

Restrictions on classes or properties

Complex

Conclusion

RQ1- To what extent can LLMs create an ontology that meets the Ontology Requirements?

It is possible to generate ontology to meet ontology requirements to the same quality as students generating ontology.

RQ2- Which LLMs are suitable for this task?

RQ3- What prompting techniques are the most effective?

The CQbyCQ prompting using GPT-4 outperformed the first students' submissions.

Students' last lab submissions achieved the highest scores, but the performance of GPT-4 with CQbyCQ prompting was closer to this than the students' first submissions.

Thank you for attending Any questions?

Code and the paper

