Модуль 11.1. Метод простой итерации (конспект с доказательством)

Теоремы об условиях сходимости и оценках сходимости. Выбор оптимального параметра, оптимальная оценка сходимости. Влияние числа обусловленности на сходимость метода. Расчет параметра метода на основе оценок собственных чисел, оптимальный выбор параметра и оценка погрешности метода

Общий случай

Рассмотрим СЛАУ (систему линейных алгебраических уравнений) вида

$$Ax = b, (11.1)$$

где $x \in \mathbb{R}^n$, $b \in \mathbb{R}^n$, $A(n \times n)$, $\det A \neq 0$ (невырожденная матрица).

Через x^* обозначим точное решение системы, $x^* \in \mathbb{R}^n$.

Методом простой итерации называют явный стационарный итерационный метод

$$\frac{x^{(s+1)} - x^{(s)}}{\tau} + Ax^{(s)} = b \tag{11.2}$$

где τ – число (постоянный параметр метода), $x^{(0)} \in \mathbb{R}^n$ – начальное приближение для запуска итераций (его можно выбирать любым), $s=0,1,\ldots$ – номер шага метода.

Запись метода в виде (11.2) называется *канонической*. Для расчетов вместо (11.2) используется формула

$$x^{(s+1)} = x^{(s)} + \tau \cdot (b - Ax^{(s)}) = x^{(s)} - \tau \cdot r^{(s)}$$
(11.3)

где $r^{(s)} = Ax^{(s)} - b$ – невязка СЛАУ на текущем приближении $x^{(s)}$.

Основные свойства метода описывают следующие теоремы.

Теорема 1. При решении СЛАУ (11.1) **методом простой итерации** (11.2) оценка погрешности метода на шаге s имеет вид

$$\|z^{(s)}\|_{2} \le \|G(\tau)\|_{2}^{s} \|z^{(0)}\|_{2}$$
 (11.4)

достаточным условием сходимости метода является условие

$$\parallel G(\tau) \parallel_2 < 1. \tag{11.5}$$

Здесь $z^{(s)} = x^{(s)} - x^*$ — погрешность метода на шаге s, $z^{(0)} = x^{(0)} - x^*$ — погрешность метода на начальном шаге, $G(\tau) = E - \tau A$ — переходная матрица метода, $\|G(\tau)\|_2$ — норма переходной матрицы, подчиненная евклидовой норме вектора, $\|G(\tau)\|_2^s$ — норма переходной матрицы, подчиненная евклидовой норме вектора и возведенная в степень s, $\|z^{(s)}\|_2$ и $\|z^{(0)}\|_2$ — евклидова норма векторов.

Доказательство

Выясним, как связаны $z^{(s)}$ и $z^{(0)}$. Запишем метод (11.2) в виде (11.3)

$$x^{(s+1)} = x^{(s)} + \tau \cdot (b - Ax^{(s)}) \tag{1}$$

Вычтем слева и справа x^* (это точное решение (11.1)), используем $b = Ax^*$:

$$x^{(s+1)} - x^* = x^{(s)} - x^* + \tau \cdot (Ax^* - Ax^{(s)})$$
 (2)

Напомним, что погрешностью метода на шаге s называют разность приближенного и точного решений: $z^{(s)} = x^{(s)} - x^*$. Аналогично, погрешность метода на шаге s+1 есть $z^{(s+1)} = x^{(s+1)} - x^*$.

Перепишем (2) в обозначениях погрешностей:

$$z^{(s+1)} = z^{(s)} - \tau \cdot Az^{(s)} = (E - \tau A) z^{(s)}$$
(3)

Введем обозначение

$$G(\tau) = E - \tau A. \tag{4}$$

Матрицу $G(\tau)$ называют **переходной матрицей метода:** она показывает, как связаны погрешности на текущем и следующем шаге:

$$z^{(s+1)} = G(\tau) z^{(s)} \tag{5}$$

На основе (5) выясним, как связана $z^{(s+1)}$ с начальной погрешностью:

$$z^{(s+1)} = G(\tau)z^{(s)} = (G(\tau))^2 z^{(s)} = \dots = (G(\tau))^{s+1} z^{(0)}$$
(6)

(погрешности $z^{(s+1)}$ и $z^{(0)}$ связывает переходная матрица $G(\tau)$, возведенная в степень s+1). Поэтому для погрешности на шаге s справедливо

$$z^{(s)} = (G(\tau))^s z^{(0)}$$
(7)

Оценим $\left\| z^{(s)} \, \right\|_2$ — евклидову норму погрешности метода на шаге s . В силу

согласованности нормы матрицы и евклидовой нормы вектора запишем

В силу аксиомы нормы

$$\left\| \left(G(\tau) \right)^{s} \right\|_{2} = \underbrace{\left\| G(\tau) \cdot G(\tau) \dots G(\tau) \right\|_{2}}_{s \ pas} \leq \underbrace{\left\| G(\tau) \right\|_{2} \cdot \left\| G(\tau) \right\|_{2} \dots \left\| G(\tau) \right\|_{2}}_{s \ pas} = \left\| G(\tau) \right\|_{2}^{s}$$

$$(9)$$

В неравенстве (8) $\| \left(G(\tau) \right)^{s} \|_{2}$ есть евклидова норма переходной матрицы

G(au) , возведенной в степень s , то есть $(G(au))^s$. В неравенстве (9) $\|G(au)\|_2^s$ есть «евклидова норма» переходной матрицы G(au) , возведенная в степень s .

Из (8) и (9) получаем

Оценка (11.4) доказана, и достаточным условием сходимости метода (11.2) является условие (11.5).

Если
$$\|G(\tau)\|_2 < 1$$
, то при $s \to +\infty$ $\|G(\tau)\|_2^s \to 0$ и $\|z^{(s)}\|_2 \to 0$.

Рассмотрим сходимость метода простой итерации для систем (11.1) с симметричной положительно определенной матрицей.

Теорема 2. При решении СЛАУ (11.1) с *симметричной, положительно определенной* матрицей $A = A^T > 0$ методом простой итерации (11.2) оценка погрешности метода на шаге s имеет вид

$$\|z^{(s)}\|_{2} \le (\max\{|1-\lambda_{1}\tau|, |1-\lambda_{n}\tau|\})^{s} \|z^{(0)}\|_{2}$$
 (11.6)

необходимым и достаточным условием сходимости метода является

$$\tau \in (0, \frac{2}{\lambda_n}) \tag{11.7}$$

Здесь $z^{(s)}=x^{(s)}-x^*$ — погрешность метода на шаге s, $z^{(0)}=x^{(0)}-x^*$ — погрешность метода на начальном шаге, $0<\lambda_1\leq ... \leq \lambda_n$ — собственные числа матрицы $A=A^T>0$ (они положительны и упорядочены), λ_1 — минимальное из них, λ_n — максимальное из них.

Комментарии

1) Выражение в круглых скобках (см. (11.6)) есть норма переходной матрицы $G(\tau)$, подчиненная евклидовой норме вектора:

$$\|G(\tau)\|_{2} = \max\{\left|1 - \lambda_{1}\tau\right|, \left|1 - \lambda_{n}\tau\right|\}$$
(11.8)

Запись (11.8) следует из того, что собственные числа матрицы G(au) можно выразить через собственные числа матрицы A как

$$\lambda_i(G) = 1 - \tau \cdot \lambda_i(A), i = 1,...n$$

и норма симметричной матрицы G(au), подчиненная евклидовой норме вектора, определяется модулями ее «крайних» собственных чисел, а именно

$$\left| \lambda_{1}(G) \right| = \left| 1 - \lambda_{1}(A) \cdot \tau \right|, \left| \lambda_{n}(G) \right| = \left| 1 - \lambda_{n}(A) \cdot \tau \right|.$$

2) условия сходимости (11.7) получены из условия $\|G(\tau)\|_2 < 1$ как решение системы следующих двух неравенств:

$$\left| 1 - \lambda_1 \tau \right| < 1, \left| 1 - \lambda_n \tau \right| < 1.$$

Доказательство

Покажем, что (11.6) выполняется при любом выборе параметра метода и условие (11.7) является достаточным для сходимости.

Рассмотрим собственные числа матрицы $G(\tau) = E - \tau A$.

Так как E и A симметричны, матрица $G(\tau)$ также симметрична и ее собственные числа действительны. Собственные числа матрицы A обозначим через λ_i , i=1,...n, собственные векторы A обозначим через v_i , i=1,...n: $Av_i=\lambda_i v_i$, i=1,...n.

В силу симметричности и положительной определенности A все ее собственные числа положительны, их можно упорядочить: $0 < \lambda_1 \le ... \le \lambda_n$.

Очевидно, что
$$G(\tau)v_i=(E-\tau A)v_i=v_i-\tau \lambda_i v_i=(1-\tau \lambda_i)v_i$$
 .

Это означает, что $G(\tau)$ имеет такие же собственные векторы, как A, и собственными числами $G(\tau)$ являются $\lambda_i(G) = 1 - \tau \lambda_i$, i = 1,...n.

С учетом того, что собственные числа G(au) действительны, получим

$$\|G(\tau)\|_{2} = \max_{i=1,\dots,n} |\lambda_{i}(G)| = \max_{i=1,\dots,n} |1 - \tau\lambda_{i}| = \max\{|1 - \tau\lambda_{1}|, |1 - \tau\lambda_{n}|\}$$
 (11)

(максимум модуля собственных чисел матрицы $G(\tau)$ определяется ее максимальным или ее минимальным собственным числом и в итоге зависит от минимального и максимального собственных чисел матрицы A).

Из (11.4) и (11) следует (11.6).

Покажем, что условие (11.7) является достаточным для сходимости.

По теореме 1 для сходимости метода достаточно выполнения неравенства

$$\|G(\tau)\|_{2} < 1$$
,

что приводит к условию

$$\|G(\tau)\|_{2} = \max\{|1 - \tau\lambda_{1}|, |1 - \tau\lambda_{n}|\} < 1$$
 (12)

Чтобы выбрать параметр τ , решим систему, состоящую из двух неравенств:

$$\begin{cases}
|1 - \tau \cdot \lambda_1| < 1, \\
|1 - \tau \cdot \lambda_n| < 1
\end{cases}$$
(13)

Раскрывая модули, запишем

$$-1 < 1 - \tau \cdot \lambda_1 < 1,$$

$$-1 < 1 - \tau \cdot \lambda_n < 1$$
.

Учитывая положительность собственных чисел, получим $0 < \tau < \frac{2}{\lambda_1}$, $0 < \tau < \frac{2}{\lambda_n}$.

Так как $\lambda_1 \leq \lambda_n$, решением (13) является более сильное ограничение

$$0<\tau<\frac{2}{\lambda_n}.$$

Таким образом, при выполнении условия (11.7), то есть выборе параметра $\tau \in (0,\frac{2}{\lambda_n})$, выполнено ограничение $\parallel G(\tau) \parallel_2 < 1$ и метод (11.2) сходится с оценкой (11.6).

Покажем, как доказывать необходимость. Доказательство основано на том, что оценка (8), а именно

$$\|z^{(s)}\|_{2} = \|(G(\tau))^{s} z^{(0)}\|_{2} \le \|(G(\tau))^{s}\|_{2} \|z^{(0)}\|_{2}$$

использует евклидову норму вектора и подчиненную ей («евклидову») норму матрицы. Оценку (8) нельзя улучшить: найдется такое начальное приближение, для которого (8) выполняется как равенство:

Для «евклидовых» норм симметричных матриц G(au) и $(G(au))^S$ верно

$$\left\| \left(G(\tau) \right)^{s} \right\|_{2} = \left\| G(\tau) \right\|_{2}^{s} \tag{15}$$

Поэтому при $au
otin (0, \frac{2}{\lambda_n})$ получим $\|G(au)\|_2 \ge 1$ и соответственно

$$\left\|\left(G(au)
ight)^{s}
ight\|_{2}\geq 1$$
. Тогда при решении СЛАУ (11.1) найдется такое начальное

приближение $x^{(0)}$, у которого такая погрешность $z^{(0)}$, что на каждом шаге метода (11.2) выполняется

$$\|z^{(s)}\|_{2} \ge \|z^{(0)}\|_{2}$$
 (16)

и сходимость метода отсутствует.

Комментарии

Неравенство (16) следует из того, что

$$\left\| \, z^{(s)} \, \right\|_2 = \left\| \, (G(\tau))^s \, z^{(0)} \, \right\|_2 = \left\| \, (G(\tau))^s \, \right\|_2 \left\| \, z^{(0)} \, \right\|_2 = \left\| \, G(\tau) \, \, \right\|_2^s \left\| \, z^{(0)} \right\|_2,$$

$$\text{где} \, \left\| \, G(\tau) \, \right\|_2 \geq 1 \, .$$

Равенство (15) вытекает из того, что
$$\rho\left(G\right) = \max_{i=1,n} \left| \ \lambda_i(G) \ \right|$$

$$\rho\left(G^s\right) = \max_{i=1,n} \left| \ \lambda_i(G^s) \ \right|, \ \lambda_i(G^s) = \left[\lambda_i(G)\right]^s, i=1,...n, \ \rho(G^s) = \left[\rho(G)\right]^s$$

$$\left\| \ G \ \right\|_2 = \rho(G), \ \left\| \ G^s \ \right\|_2 = \rho(G^s) = \left[\rho(G)\right]^s = \left\| \ G \ \right\|_2^s.$$

Рассмотрим выбор оптимального параметра

Теорема 3. При решении СЛАУ (11.1) с *симметричной, положительно определенной* матрицей $A = A^T > 0$ методом простой итерации (11.2) оптимальным является

$$\tau_{opt}^* = \frac{2}{\lambda_1 + \lambda_n} \tag{11.9}$$

для которого оценка погрешности метода на шаге S имеет вид

$$\|z^{(s)}\|_{2} \le \left(\frac{\mu_{A} - 1}{\mu_{A} + 1}\right)^{s} \|z^{(0)}\|_{2}$$
 (11.10)

Здесь $z^{(s)}=x^{(s)}-x^*$ — погрешность метода на шаге s, $z^{(0)}=x^{(0)}-x^*$ — погрешность метода на начальном шаге, $0<\lambda_1\leq ... \leq \lambda_n$ — собственные числа матрицы $A=A^T>0$ (они положительны и упорядочены), λ_1 — минимальное из них, λ_n — максимальное из них.

Через μ_A обозначено число обусловленности матрицы A, определяемое на основе нормы матрицы, подчиненной евклидовой норме вектора (далее кратко — число обусловленности, определяемое на основе евклидовой нормы):

$$\mu_A = ||A||_2 ||A^{-1}||_2 = \frac{\lambda_n}{\lambda_1}$$
(11.11)

Комментарии

Оптимальным считается такое значение τ , при котором метод (11.2) сходится и оценка погрешности метода на шаге s является наилучшей. В данном случае для отыскания оптимального τ ставится задача минимизации

$$\|G(\tau)\|_{2} \to \min_{\tau \in \left(0, \frac{2}{\lambda_{n}}\right)} \tag{11.12}$$

Минимум функционала $\left\| G\left(au \right) \right\|_2$ достигается при $\tau_{opt}^* = \frac{2}{\lambda_1 + \lambda_n}$.

Минимальным значением является $\left\| G\left(au_{opt}^* \right) \right\|_2$, и в ходе доказательства теоремы эта величина будет найдена как

$$\min_{\tau \in R} \|G(\tau)\|_{2} = \min_{\tau \in R} \max \left\{ \left| 1 - \lambda_{1}\tau \right|, \left| 1 - \lambda_{n}\tau \right| \right\} =
= \max \left\{ \left| 1 - \lambda_{1}\tau_{opt}^{*} \right|, \left| 1 - \lambda_{n}\tau_{opt}^{*} \right| \right\} =
= \max \left\{ \left| 1 - \frac{\lambda_{1} \cdot 2}{\lambda_{1} + \lambda_{n}} \right|, \left| 1 - \frac{\lambda_{n} \cdot 2}{\lambda_{1} + \lambda_{n}} \right| \right\} = \frac{\mu_{A} - 1}{\mu_{A} + 1}$$
(11.13)

откуда следует (11.10).

Доказательство

Рассмотрим принцип, в соответствии с которым метод (11.2) с параметром (11.9) считается оптимальным.

При решении СЛАУ (11.1) с матрицей $A = A^T > 0$ методом простой итерации (11.2) при любом выборе параметра au для погрешности метода верна оценка

где в силу симметричности матрицы G(au) для ее нормы выполняется

$$\|G(\tau)\|_{2} = \max\{|1 - \tau \lambda_{1}|, |1 - \tau \lambda_{n}|\}$$
 (18)

Для заданной матрицы $A=A^T>0$ оптимальным назовем такое значение τ , при котором норма переходной матрицы $\| \ G(\tau) \ \|_2$ минимальна и тем самым согласно (17) гарантирована наиболее высокая скорость убывания погрешности метода.

Чтобы найти оптимальное значение au, записывают задачу оптимизации

$$\|G(\tau)\|_{2} = \max\{|1 - \tau \cdot \lambda_{1}|, |1 - \tau \cdot \lambda_{n}|\} \underset{\tau \in R}{\longrightarrow} \min$$

$$\tag{19}$$

(читается так: нужно найти минимальное значение функционала, определяемого по формуле (18) и зависящего от τ , при условии, что τ принимает любые действительные значения; а также найти τ , при котором достигается указанный выше минимум).

Если $\tau \not\in (0,\frac{2}{\lambda_n})$, норма переходной матрицы не обеспечивает сходимости:

 $\|G(au)\|_2 \ge 1$. Поэтому минимальное значение функционала можно искать только

для сходящихся методов, то есть при $\tau \in (0, \frac{2}{\lambda_n})$, и заменить задачу (19) задачей

$$\|G(\tau)\|_{2} = \max\{|1 - \tau \cdot \lambda_{1}|, |1 - \tau \cdot \lambda_{n}|\} \xrightarrow{\tau \in (0, \frac{2}{\lambda_{n}})} \min$$

$$(20)$$

Тем не менее, в данном случае удобнее решить задачу без ограничений на параметр τ , то есть задачу (19), и потом проверить найденное решение на соответствие условиям сходимости.

Решим (19) графически, записав ее в следующих обозначениях:

$$\Phi(\tau) \to \min_{\tau \in R} \tag{21}$$

где $\Phi(\tau) = \max\{ \varphi_1(\tau), \varphi_2(\tau) \}$,

$$\varphi_1(\tau) = |1 - \tau \cdot \lambda_1|$$

$$\varphi_2(\tau) = |1 - \tau \cdot \lambda_n|$$

Для $\varphi_1(\tau), \varphi_2(\tau)$ раскроем модули и получим

$$\varphi_1(\tau) = \begin{cases} 1 - \tau \cdot \lambda_1, & ecnu \quad \tau \leq \frac{1}{\lambda_1} \\ \tau \cdot \lambda_1 - 1, & ecnu \quad \tau \geq \frac{1}{\lambda_1} \end{cases} \qquad \varphi_2(\tau) = \begin{cases} 1 - \tau \cdot \lambda_n, & ecnu \quad \tau \leq \frac{1}{\lambda_n} \\ \tau \cdot \lambda_n - 1, & ecnu \quad \tau \geq \frac{1}{\lambda_n} \end{cases}$$

Функции $\varphi_1(\tau), \varphi_2(\tau)$ показаны на графике зеленым и синим цветом. Красным цветом показана $\Phi(\tau)$ как максимум из указанных двух.

Функции $\varphi_1(\tau), \varphi_2(\tau)$ принимают одинаковые значения при двух значениях аргумента: при $\tau=0$, когда $\varphi_1(0)=\varphi_2(0)=1$, и при некотором положительном $\tau=\tau^*$, которое расположено между точками, в которых $\varphi_1(\tau), \varphi_2(\tau)$ обращаются в ноль.

Поэтому
$$au= au^*$$
 не меньше, чем $\dfrac{1}{\lambda_n}$ и не больше, чем $\dfrac{1}{\lambda_1}$

Значение au^* можно найти из условия $\ arphi_1(au^*) = arphi_2(au^*)$, которое принимает вид

$$1 - \tau^* \lambda_1 = \tau^* \lambda_n - 1. \tag{22}$$

и позволяет найти $\tau^* = \frac{2}{\lambda_1 + \lambda_n}$ и

$$\varphi_{1}(\tau^{*}) = \varphi_{2}(\tau^{*}) = 1 - \frac{2\lambda_{1}}{\lambda_{1} + \lambda_{n}} = \frac{\lambda_{n} - \lambda_{1}}{\lambda_{n} + \lambda_{1}} = \frac{\frac{\lambda_{n}}{\lambda_{1}} - 1}{\frac{\lambda_{n}}{\lambda_{1}} + 1} = \frac{\mu_{A} - 1}{\mu_{A} + 1}$$
(23)

Здесь через $\,\mu_A\,$ обозначено число обусловленности матрицы $\,A\,$, а именно

$$\mu_A = ||A||_2 ||A^{-1}||_2 = \frac{\lambda_n}{\lambda_1}$$

Запишем, как устроена функция $\Phi(\tau) = \max\{ \varphi_1(\tau), \varphi_2(\tau) \}$, см. график:

$$\Phi(\tau) = \begin{cases}
\varphi_2(\tau) = 1 - \tau \lambda_n, & ecnu \quad \tau \le 0 \\
\varphi_1(\tau) = 1 - \tau \lambda_1, & ecnu \quad 0 \le \tau \le \tau^* \\
\varphi_2(\tau) = \tau \lambda_n - 1, & ecnu \quad \tau \ge \tau^*
\end{cases}$$
(24)

Минимальное значение arPhi(au) достигается при $au= au^*$, причем

$$\Phi(\tau^*) = \frac{\mu_A - 1}{\mu_A + 1} \tag{25}$$

Решением задачи (19) является $\tau = \tau^*$, причем минимально возможная норма переходной матрицы составит

$$\|G(\tau^*)\|_2 = \frac{\mu_A - 1}{\mu_A + 1} \tag{26}$$

Завершим доказательство формальными проверками.

Значение au^* далее называем оптимальным и обозначаем au^*_{opt} .

Метод (11.2) с параметром (11.9) является сходящимся, потому что au_{opt}^* соответствует условиям сходимости (11.7):

$$\tau_{opt}^* = \frac{2}{\lambda_1 + \lambda_n} \in (0, \frac{2}{\lambda_n}). \tag{27}$$

Для погрешности метода (11.2) при любом выборе параметра верна оценка (11.4), и при выборе параметра au^*_{opt} запишем:

$$\|z^{(s)}\|_{2} \le \|G(\tau_{opt}^{*})\|_{2}^{s} \|z^{(0)}\|_{2}$$
 (28)

При выборе параметра au_{opt}^* норма переходной матрицы является минимальной и в силу (26)

$$\|G(\tau_{opt}^*)\|_2 = \frac{\mu_A - 1}{\mu_A + 1}.$$
 (29)

Через μ_A обозначено число обусловленности матрицы A , а именно $\mu_A=\parallel A\parallel_2\parallel A^{-1}\parallel_2=rac{\lambda_n}{\lambda_1}$

Из (28) и (29) следует оценка (11.10):

$$\|z^{(s)}\|_{2} \le \left(\frac{\mu_{A} - 1}{\mu_{A} + 1}\right)^{s} \|z^{(0)}\|_{2}.$$
 (30)

Так как для любой невырожденной матрицы число обусловленности μ_A не меньше 1, получим

$$0 \le \frac{\mu_A - 1}{\mu_A + 1} \le 1 \tag{31}$$

При
$$s o \infty \ \left(\dfrac{\mu_A - 1}{\mu_A + 1} \right)^s o 0$$
 и погрешность метода $\left\| \ z^{(s)} \ \right\|_2 o 0$.

Комментарии (после доказательства)

- 1) Чтобы найти оптимальный параметр au_{opt}^* , нужно знать минимальное и максимальное собственные числа матрицы A .
- 2) Если $\mu_A \approx 1$, то $\left(\frac{\mu_A 1}{\mu_A + 1}\right) \approx 0$ и метод сходится быстро. Если $\mu_A >> 1$, то

 $\left(\frac{\mu_A - 1}{\mu_A + 1}\right) \approx 1$ и сходимость медленная. Чем выше число обусловленности матрицы A , тем медленнее сходится метод.

3) Существуют такие начальные приближения $x^{(0)} \in \mathbb{R}^n$, для которых

$$\left\|z^{(s)}\right\|_2 = \left(\frac{\mu_A - 1}{\mu_A + 1}\right)^s \left\|z^{(0)}\right\|_2$$
, и это означает, что оценку (1.10) нельзя улучшить.

Построение метода на основе оценок собственных чисел

Рассмотрим СЛАУ (11.1) с **симметричной, положительно определенной матрицей**. Как следует из Теоремы 2, чтобы построить сходящийся метод простой итерации, нужно знать максимальное собственное число (см. (11.7)), чтобы оценить погрешность метода — знать минимальное и максимальное собственные числа (см. (11.6)).

Покажем, как построить сходящийся метод на основе оценок собственных чисел.

Пусть собственные числа матрицы $A = A^T > 0$ неизвестны, но известны их оценки, а именно, положительные числа $M_{\min} > 0$ и $M_{\max} > 0$, такие, что

$$\lambda_i(A) \in [M_{\min}, M_{\max}], i = 1,...n.$$

Тогда для λ_1 и λ_n – минимального и максимального собственных чисел – верно

$$0 < M_{\min} \le \lambda_1 \le \lambda_n \le M_{\max} \tag{11.14}$$

(оценку вида (11.14) называют оценкой границ спектра).

Теорема 4. При решении СЛАУ (11.1) с *симметричной, положительно определенной* матрицей $A=A^T>0$ методом простой итерации (11.2) в случае, когда известна оценка границ спектра $0< M_{\min} \le \lambda_1 \le \lambda_n \le M_{\max}$, достаточным условием сходимости метода является

$$\tau \in (0, \frac{2}{M_{max}}) \tag{11.15}$$

Оценка погрешности метода на шаге s имеет вид

$$\|z^{(s)}\|_{2} \le (\max\{|1-\tau M_{\min}|, |1-\tau M_{\max}|\})^{s} \|z^{(0)}\|_{2}$$
 (11.16)

Здесь $z^{(s)}=x^{(s)}-x^*$ — погрешность метода на шаге s, $z^{(0)}=x^{(0)}-x^*$ — погрешность метода на начальном шаге, $0<\lambda_1\leq ... \leq \lambda_n$ — собственные числа матрицы $A=A^T>0$ (они положительны и упорядочены), λ_1 — минимальное из них, λ_n — максимальное из них.

Доказательство

Используем Теорему 2, условие сходимости (11.7) и оценку погрешности (11.6).

Так как $0 < \frac{2}{M_{\max}} < \frac{2}{\lambda_n}$, интервал $(0, \frac{2}{M_{\max}})$ принадлежит области сходимости метода.

Далее для каждого фиксированного значения au очевидна оценка

$$\max \left\{ \, \left| \, 1 - \lambda_{1} \tau \, \left| , \right| \, 1 - \lambda_{n} \tau \, \right| \, \right\} \leq \max_{\lambda \in \left[\lambda_{1}, \lambda_{n} \right]} \left| \, 1 - \lambda \tau \, \right| \leq \max_{\lambda \in \left[M_{\min}, \, M_{\max} \right]} \left| \, 1 - \lambda \tau \, \right|$$

Здесь максимальное из двух неизвестных чисел $|1-\lambda_1 \tau|, |1-\lambda_n \tau|$ оценивается максимальным значением функции $|1-\lambda \tau|$ с аргументом λ , пробегающим отрезок $\lambda \in [\lambda_1, \lambda_n]$, и затем оценивается максимальным значением той же функции $|1-\lambda \tau|$ с аргументом λ ,

пробегающим отрезок $\lambda \in [M_{\min}, M_{\max}]$, который включает в себя и значения λ_1 и λ_n , и отрезок $\lambda \in [\lambda_1, \lambda_n]$.

Известно, что максимальное значение непрерывной функции на отрезке достигается либо на концах отрезка, либо в точке локального максимума. Так как при фиксированном τ функция $\left|1-\lambda\tau\right|$ с аргументом $\lambda\in R$ непрерывна и не имеет локального максимума, максимальное значение функции $\left|1-\lambda\tau\right|$ достигается на концах отрезка. Поэтому

$$\max_{\lambda \in [M_{\min}, M_{\max}]} \left| 1 - \lambda \tau \right| = \max \left\{ \left| 1 - \tau M_{\min} \right|, \left| 1 - \tau M_{\max} \right| \right\}$$

Таким образом, получена оценка

$$\max \left\{ \left| 1 - \lambda_{l} \tau \right|, \left| 1 - \lambda_{n} \tau \right| \right\} \leq \max \left\{ \left| 1 - \tau \cdot M_{\min} \right|, \left| 1 - \tau \cdot M_{\max} \right| \right\}$$
 (11.17)

Подставляя (11.17) в (11.6), получим (11.16).

Выбор оптимального параметра на основе оценок собственных чисел

Рассмотрим СЛАУ (11.1) с симметричной, положительно определенной матрицей. Как следует из Теоремы 3, чтобы построить метод простой итерации с оптимальной оценкой сходимости, нужно знать минимальное и максимальное собственные числа матрицы. Рассмотрим возможности оптимизации на основе оценок собственных чисел.

Пусть собственные числа матрицы $A = A^T > 0$ неизвестны, но известны их оценки, а именно, положительные числа $M_{\min} > 0$ и $M_{\max} > 0$, такие, что

$$\lambda_i(A) \in [M_{\min}, M_{\max}], i = 1,...n$$
.

Тогда для λ_1 и λ_n – минимального и максимального собственных чисел – верно

$$0 < M_{\min} \le \lambda_1 \le \lambda_n \le M_{\max}$$

и для числа обусловленности $\,\mu_{A}\,$, определяемого на основе евклидовой нормы, верно

$$1 \le \mu_A = \frac{\lambda_n}{\lambda_1} \le \frac{M_{\text{max}}}{M_{\text{min}}} = M \tag{1.18}$$

Теорема 5. При решении СЛАУ (11.1) с *симметричной, положительно определенной* матрицей $A=A^T>0$ **методом простой итерации** в случае, когда известна оценка границ спектра $0< M_{\min} \le \lambda_1 \le \lambda_n \le M_{\max}$, метод (11.2) с параметром

$$\tilde{\tau}^* = \frac{2}{M_{\min} + M_{\max}} \tag{11.19}$$

имеет оптимальные свойства и сходится с оценкой

$$\|z^{(s)}\|_{2} \le \left(\frac{M-1}{M+1}\right)^{s} \|z^{(0)}\|_{2}$$
 (11.20)

Здесь $z^{(s)}=x^{(s)}-x^*$ – погрешность метода на шаге s, $z^{(0)}=x^{(0)}-x^*$ – погрешность метода на начальном шаге, $0<\lambda_1\leq\ldots\leq\lambda_n$ – собственные числа матрицы

 $A=A^T>0$ (они положительны и упорядочены), λ_1 – минимальное из них, λ_n – максимальное из них, число M является верхней оценкой числа обусловленности μ_A (определенного в евклидовой норме).

Доказательство

Используем Теорему 4, условие сходимости (11.15) и оценку погрешности (11.16). Во-первых, значение $au=\widetilde{ au}^*$ принадлежит области сходимости метода:

$$\widetilde{\tau}^* = \frac{2}{M_{\min} + M_{\max}} \in (0, \frac{2}{M_{\max}}) \subset (0, \frac{2}{\lambda_n}).$$

Во-вторых, подстановкой значения $\, au = \widetilde{ au}^{\, *} \,$ можно показать, что

$$\max \{ |1 - \tilde{\tau}^* M_{\min}|, |1 - \tilde{\tau}^* M_{\max}| \} = \frac{M_{\max} - M_{\min}}{M_{\max} + M_{\min}} = \frac{M - 1}{M + 1}$$

поэтому из (11.16) следует (11.20).

Комментарий

Оптимальные свойства метода вытекают из следующих обстоятельств. Рассмотрим класс методов (11.2) с параметром (11.15):

$$\tau \in (0, \frac{2}{M_{\text{max}}})$$

и оценкой погрешности (11.16):

$$\|z^{(s)}\|_{2} \le (\max\{|1-\tau M_{\min}|, |1-\tau M_{\max}|\})^{s} \|z^{(0)}\|_{2}$$

Оптимальным считается такое значение τ , при котором метод сходится и оценка погрешности метода на шаге s (см. (11.16)) является в некотором смысле оптимальной. В данном случае для отыскания оптимального значения τ ставится задача минимизации

$$\max \left\{ \left| 1 - \tau \ M_{\min} \right|, \left| 1 - \tau \ M_{\max} \right| \right\} \xrightarrow{\tau \in \left(0, \frac{2}{M_{\max}}\right)} \min$$
 (11.21)

Используя графики функций $|1-\tau\,M_{\,\mathrm{min}}\,|\,$ и $|1-\tau\,M_{\,\mathrm{max}}\,|\,$ с аргументом $\, au\in R\,$, несложно показать, что минимальное значение функционала достигается при

$$\tau = \tilde{\tau}^* = \frac{2}{M_{\min} + M_{\max}}$$

При этом минимальное значение функционала

$$\max \left\{ \left. \left| 1 - \tau \, M_{\min} \right|, \left| 1 - \tau \, M_{\max} \right| \right\right\}$$

может быть найдено подстановкой значения $\tau = \widetilde{\tau}^*$:

$$\min_{\tau \in R} \max \{ |1 - \tau M_{\min}|, |1 - \tau M_{\max}| \} =$$

$$= \max \{ |1 - \tilde{\tau}^* \cdot M_{\min}|, |1 - \tilde{\tau}^* \cdot M_{\max}| \} = \frac{M - 1}{M + 1}$$
 (11.22)

Комментарий к параграфу 11.1

В формулировках теорем 1-5 погрешность метода на шаге *S* оценивается начальной погрешностью, см. (11.4), (11.6), (11.10), (11.16), 11.20), все оценки в евклидовой норме. В свою очередь, погрешность метода на начальном шаге можно оценить по начальной невязке, используя норму обратной матрицы или ее оценку:

$$\|z^{(0)}\|_2 \le \|A^{-1}\|_2 \cdot \|r^{(0)}\|_2$$
, где $r^{(0)} = Ax^{(0)} - b$ и ее можно вычислить.