

Alan Stiven Camacho Restrepo



### **CONTENIDO**

### INTRODUCCIÓN

Reinforcement Learning y sus aplicaciones.

#### **METODOLOGÍA**

Construcción del entorno del juego y algoritmos de machine learning.

#### **PROBLEMA**

Planteamiento del problema, marco teórico, objetivo general y específicos.

#### **RESULTADOS**

**O4** Gráficos y videos.

#### **CONCLUSIONES**

Perspectivas y problemas a mejorar.

## ¿Qué es el Reinforcement Learning?



- Aprendizaje supervisado y no-supervisado.
- ¿Hay una manera de crear un agente que aprenda a jugar por sí mismo?
- Agentes y recompensas.
- Usos más frecuentes.

# APLICACIONES DEL RL



# 02 **PLANTEAMIENTO** DEL **PROBLEMA**

#### **OBJETIVO GENERAL**

Construir un algoritmo de deep learning que permita que el juego de la culebra se juegue por sí misma.

#### **OBJETIVO ESPECIFICOS**

- 🗅 🏻 Entorno del juego.
- Agente.
- Recompensas.
- Visualización del juego.



- □ Estado.
- Acción.
- □ Recompensa.
- Nuevo estado.

**Return:** R1 + 
$$\gamma$$
 R2 +  $\gamma^2$  R3 + ...

$$\gamma \longrightarrow \text{Discount factor.}$$
(Entre 0 y 1)

Maximizar la función Return permite llegar a la recompensa más alta.

### **Policy function:**

$$\pi(s):S->A$$

 Hallar la función que permita tomar una acción a en un estado
 s para que la función return se maximize.



### Q-FUNCTION

$$Q(s,a) = r(s,a) + \gamma \max_{a} Q(s',a)$$
 El mejor Return



La acción más óptima en el estado s es la dada por el valor máximo de Q.

Policy function

**Q-function** 

#### LA META PRINCIPAL DE LA FUNCIÓN POLICY

Hallar una función que permita saber qué acción **a** se debe tomar en el estado **s** de tal forma que el agente tome el camino más óptimo a su destino. (Proceso iterativo)



# 03 METODOLOGÍA



Entorno de la culebra.

Acciones: Seguir derecho = 0

Derecha = 1 Izquierda = 2

Recompensas: Comer alimento = + 10

Chocar = -10

De lo contrario = 0

#### **ESTADO DE LA CULEBRA**



Peligro seguir derecho Peligro derecha Peligro izquierda Dirección izquierda Dirección derecha Dirección arriba Dirección abajo Comida izquierda Comida derecha Comida arriba Comida abajo

Tamaño del estado = (11,)

### ESTRUCTURA DE LAS REDES NEURONALES

Capa de entrada Estados de la culebra (11,)



#### Capa de salida

Valores de la función Q para ese estado de entrada

Capas ocultas

Ajustar los pesos ω

#### **IIMPLEMENTACIÓN**



Uso de **dos** redes neuronales con la misma estructura.

- Se inicializan los pesos aleatoriamente.
- Los pesos ω de la RN2 cambian constantemente aplicando gradiente descendiente.
- ☐ Cada C iteraciones:
  - Generar los y targets con la RN1. Actualizar  $\omega'$  con  $\omega$ . (Soft update)





#### **ALGORITMO**

```
1 Initialize memory buffer D with capacity N
 2 Initialize Q-Network with random weights w
 3 Initialize target \hat{Q}-Network with weights w^- = w
 4 for episode i = 1 to M do
       Receive initial observation state S_1
       for t = 1 to T do
 6
           Observe state S_t and choose action A_t using an \epsilon-greedy policy
           Take action A_t in the environment, receive reward R_t and next state S_{t+1}
 8
           Store experience tuple (S_t, A_t, R_t, S_{t+1}) in memory buffer D
 9
           Every C steps perform a learning update:
10
           Sample random mini-batch of experience tuples (S_i, A_i, R_i, S_{i+1}) from D
11
           Set y_j = R_j if episode terminates at step j+1, otherwise set y_i = R_j + \gamma \max_{a'} \hat{Q}(s_{j+1}, a')
12
           Perform a gradient descent step on (y_j - Q(s_j, a_j; w))^2 with respect to the Q-Network weights w
13
           Update the weights of the \hat{Q}-Network using a soft update
14
       end
15
16 end
```









$$\gamma = 0.995$$

2 Capas ocultas con 64 neuronas.















$$\gamma = 0.8$$

1 Capa oculta con 256 neuronas.













$$\gamma$$
 = 0.9

2 Capas ocultas con 64 neuronas.





#### **CONCLUSIONES Y PERSPECTIVAS**

| 01                                                                                           | 02                                                                                                                                 | 03                                                                                   | 04                                                                                       |
|----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|
| Se construyó una<br>red neuronal que<br>permitió que la<br>culebra se jugara<br>por sí sola. | El entorno, las<br>recompensas, los<br>estados y las<br>acciones de la<br>culebra fueron<br>óptimos para jugar<br>parte del juego. | Se pudo crear un<br>entorno gráfico para<br>la visualización del<br>juego entrenado. | Con las redes<br>entrenadas no se<br>pudo completar el<br>juego entero de la<br>culebra. |

- El reinforcement learning es un algoritmo que permite que un agente aprenda, pero es complejo saber las condiciones iniciales que debe tener el algoritmo para que haya muy buenos resultados.
- Se propone mejorar los parámetros con gráficas dependientes de las condiciones, y con las estructuras de las redes.
- Se propone usar algoritmos como los genéticos.

#### REFERENCIAS

- B Ravi Kiran , Ibrahim Sobh, Deep Reinforcement Learning for Autonomous Driving: A Survey.
- https://neptune.ai/blog/reinforcement-learning-applications
- https://github.com/AleksaC/gym-snake
- Curso de Reinforcement learning de Coursera:

https://www.coursera.org/learn/unsupervised-learning-recommenders-reinforcement-learning?specialization=machine-learning-introduction

# THANKS!









Please keep this slide for attribution.