Physical Attacks and Countermeasures

lyakhovs@oregonstate.edu

CS 579/ECE 599, February 28, 2022

About Me: Stan Lyakhov

- TA for this course
- Graduate student at OSU in Dr. Immler's lab
- Formerly Multiparty Computation (MPC) with Mike Rosulek
- Work primarily on voltage fault injection and side channel analysis
- Fun fact: I grew up next to Technion (where DFA was proposed)

Physical/Hardware Security (Part 1)

Non-invasive Attacks

(source: "STELLAR: A Generic EM Side-Channel Attack [...]")

- Eavesdrop signals from crypto hardware
- Massive data analysis + AI ('big data')
- Statistics that make you happy ³
- Mostly Differential Power Analysis (DPA)
- Plus micro-architectural (timing) attacks

Semi-invasive Attacks

(source: "Studying EM Pulse Effects on Superscalar Microarchitectures at ISA Level")

- Fault injection: change data/control flow
- Voltage, clock glitches; lasers
- High voltage/short rise EM pulses
- Differential Fault Analysis (DFA)

Corresponding countermeasures

What is Differential Fault Analysis (DFA)?

- Goal: extract a secret key by corrupting the state of a cipher
- Introduced for symmetric ciphers by Biham and Shamir in 1997
- Proposed using a laser or "cutting wires"
- Showed attack on DES/3DES (before AES was standardized)

Review: Advanced Encryption Standard

- Three variants (AES128, AES192, AES256) with different key lengths
- · Research interest in attacking all three
- Today: focusing on AES128
- AES Visualization: https://www.cryptool.org/en/cto/aes-animation
- AES Step-by-step tool: https://www.cryptool.org/en/cto/aes-step-by-step

AES Key Schedule

- Recall: only the first KeyAdd xors with the key itself
- Key schedule creates subsequent keys using original
- Transformations between keys are:
 - Predicatable
 - Invertible
- Can recover original key if we find 10th round key

DFA: Basic Idea

- 1. Observe output of encryption (no fault)
- 2. Observe output of an encryption with a strategically placed fault
- 3. Gain information by looking at the difference/comparing the two

Fault Models: what can an attacker do?

- The fault model dictates what the attacker is capable of
- Consists of two main parts: location control and value control

Fault Models: what can an attacker do?

- The fault model dictates what the attacker is capable of
- Consists of two main parts: location control and value control
- What if we can set a specific value at a specific location?

Fault Models: what can an attacker do?

- The fault model dictates what the attacker is capable of
- Consists of two main parts: location control and value control
- What if we can set a specific value at a specific location?
 - Target KeyAdd: set some key bit to 0
 - Check if faulty ciphertext changes from non-faulty
 - Need 128 faults (at each bit position)

Simple DFA

- Inputs: Two similar plaintexts
- For each bit position *i* of the key:
 - Glitch: Set bit at position *i* to 0
 - Compare: Are the outputs different?

Simple DFA

- Inputs: Two similar plaintexts
- For each bit position *i* of the key:
 - Glitch: Set bit at position *i* to 0
 - Compare: Are the outputs different?

- Faulty ciphertexts required: 128
- Pros: simple algorithm
- Cons: unreasonable fault model

- Fault model: any **single byte** in round 9 changed to any value
- Extract 4 bytes of key (K^r) at a time

- Inputs (1 byte apart): $v \oplus glitch = v'$
- MixColumns

- Inputs (1 byte apart): $v \oplus glitch = v'$
- MixColumns
- Intermediate (unknown): m, m'

- *Inputs (1 byte apart):* $v \oplus \text{glitch} = v'$
- MixColumns
- Intermediate (unknown): m, m'
- KeyAdd K⁹
- SBOX
- ShiftRows
- KeyAdd K¹⁰

- *Inputs (1 byte apart):* $v \oplus \text{glitch} = v'$
- MixColumns
- Intermediate (unknown): m, m'
- KeyAdd K⁹
- SBOX
- ShiftRows
- KeyAdd K¹⁰
- Outputs (known): c, c'

• m (and m') is completely unknown. Can we get from c to m?

- m (and m') is completely unknown. Can we get from c to m?
- $m = ISBOX(\text{unshift}(c \oplus K^{10})) \oplus K^9$

- m (and m') is completely unknown. Can we get from c to m?
- $m = ISBOX(\text{unshift}(c \oplus K^{10})) \oplus K^9$
- $m' = ISBOX(\text{unshift}(c' \oplus K^{10})) \oplus K^9$

```
m \oplus m' = \operatorname{mixcol}(v) \oplus \operatorname{mixcol}(v')
= \operatorname{mixcol}(v) \oplus \operatorname{mixcol}(v \oplus \operatorname{glitch})
= \operatorname{mixcol}(v) \oplus \operatorname{mixcol}(v) \oplus \operatorname{mixcol}(\operatorname{glitch})
= \operatorname{mixcol}(\operatorname{glitch})
```



```
\begin{aligned} \operatorname{mixcol}(\operatorname{glitch}) &= m \oplus m' \\ &= ISBOX(\operatorname{unshift}(c' \oplus K^{10})) \oplus K^9 \oplus ISBOX(\operatorname{unshift}(c \oplus K^{10})) \oplus K^9 \\ &= ISBOX(\operatorname{unshift}(c' \oplus K^{10})) \oplus ISBOX(\operatorname{unshift}(c \oplus K^{10})) \end{aligned}
```

Computing all possibilities of mixcol(glitch)

- Let x = 1 to 255
- Note: all multiplication is galois field multiplication!

$$m \oplus m' = \text{mixcol} \times \text{glitch} = \begin{bmatrix} 2 \times x & 0 & 0 & 0 \\ x & 0 & 0 & 0 \\ x & 0 & 0 & 0 \\ 3 \times x & 0 & 0 & 0 \end{bmatrix}$$

Only 255 possibilities for mixcol(glitch)! Can precomute

Plan of attack

- Guess K^{10}
- $\blacksquare \ m \oplus m' = ISBOX(\text{unshift}(c' \oplus K^{10})) \oplus ISBOX(\text{unshift}(c \oplus K^{10}))$
- If $m \oplus m'$ does not equal to mixcol(glitch) for some x
- K^{10} cannot be the correct key!

$$m \oplus m' = \text{mixcol(glitch)} = \begin{bmatrix} 2 \times x & 0 & 0 & 0 \\ x & 0 & 0 & 0 \\ x & 0 & 0 & 0 \\ 3 \times x & 0 & 0 & 0 \end{bmatrix}$$

Plan of attack: Problem

• Guess K^{10}

- ...

Plan of attack: Problem

- Guess K^{10}
- ...
- **Problem**: K^{10} is 128 bits long! Are we guessing the whole thing?

Plan of attack: Problem

- Guess K^{10}
- ...
- **Problem**: K^{10} is 128 bits long! Are we guessing the whole thing?
- **Solution**: No, only guess part of K^{10} (the 4 bytes that differ)

$$\begin{bmatrix} 2 \times x & 0 & 0 & 0 \\ x & 0 & 0 & 0 \\ x & 0 & 0 & 0 \\ 3 \times x & 0 & 0 & 0 \end{bmatrix}$$

Attacking Partial K^{10}

- $m_0 \oplus m_0' = ISBOX(c_0 \oplus K_0) \oplus ISBOX(c_0' \oplus K_0)$
- $m_1 \oplus m'_1 = ISBOX(c_{13} \oplus K_{13}) \oplus ISBOX(c'_{13} \oplus K_{13})$
- $m_2 \oplus m_2' = ISBOX(c_{10} \oplus K_{10}) \oplus ISBOX(c_{10}' \oplus K_{10})$
- $m_3 \oplus m_3' = ISBOX(c_7 \oplus K_7) \oplus ISBOX(c_7' \oplus K_7)$

Revised Plan of Attack

- Guess K_0, K_{13}, K_{10}, K_7
- Let $m_c \oplus m_c' = [m_0 \oplus m_0', m_{13} \oplus m_{13}', m_{10} \oplus m_{10}', m_7 \oplus m_7']^T$
- If $m_c \oplus m_c'$ does not equal to **first column** of mixcol(glitch) for some x
- K_0 , K_{13} , K_{10} , K_7 can't all be the correct bytes!

$$\operatorname{mixcol(glitch)}[0] = \begin{bmatrix} 2 \times x \\ x \\ x \\ 3 \times x \end{bmatrix}$$

- We started with 2³² possible bytes
- After filtering impossible values, we are left with around $2^{10} \approx 1036$ possibilities

Revised Plan of Attack

- Guess K_0, K_{13}, K_{10}, K_7
- Let $m_c \oplus m_c' = [m_0 \oplus m_0', m_{13} \oplus m_{13}', m_{10} \oplus m_{10}', m_7 \oplus m_7']^T$
- If $m_c \oplus m_c'$ does not equal to **first column** of mixcol(glitch) for some x
- K_0 , K_{13} , K_{10} , K_7 can't all be the correct bytes!

$$\operatorname{mixcol(glitch)}[0] = \begin{bmatrix} 2 \times x \\ x \\ x \\ 3 \times x \end{bmatrix}$$

- We started with 2^{32} possible bytes
- After filtering impossible values, we are left with around $2^{10} \approx 1036$ possibilities

• We can narrow those down to just 1 (more on that later)

Analysis: Revised Plan of Attack

- Given c and c', we can remove from consideration most values of 4 impacted bytes
- Have to bruteforce $\{K_0, K_{13}, K_{10}, K_7\}$, which means $(2^8)^4 = 2^{32}$ possibilities
- Not impossible, but can we do better?

Analysis: Revised Plan of Attack

- Given c and c', we can remove from consideration most values of 4 impacted bytes
- Have to bruteforce $\{K_0, K_{13}, K_{10}, K_7\}$, which means $(2^8)^4 = 2^{32}$ possibilities
- Not impossible, but can we do better?
- Yes! Filter 2 bytes, then 3 bytes, and then 4 bytes at the end

Simple Attack Outline

Simple Attack: Filtering

- Let $m_{c2} = [m_0 \oplus m'_0, m_{13} \oplus m'_{13}]^T$. Iterations: 256×256
- Let $m_{c3} = [\text{filtered}(m_{c2}), m_{10} \oplus m'_{10}]^T$. Iterations: $|\text{filtered}(m_{c2})| \times 256$
- Let $m_{c4} = [\text{filtered}(m_{c3}), m_7 \oplus m_7']^T$. Iterations: $|\text{filtered}(m_{c3})| \times 256$
- Our key candidates $\{K_0, K_{13}, K_{10}, K_7\}_i$ are the keybytes used in filtered (m_{c4})

Filter defined as:

$$m_{c2} \stackrel{?}{=} [2 \times x, x]^T$$

$$m_{c3} \stackrel{?}{=} [2 \times x, x, x]^T$$

$$m_{c4} \stackrel{?}{=} [2 \times x, x, x, 3 \times x]^T$$

Simple Attack: End

- After filtering, we are left with |filtered (m_{c4}) | ≈ 1036 possibilities
- Need one more faulty pair: $p^* \implies (c^*, c^{*\prime})$
- For the remaining candidates, check that $m^* \oplus m^{*'}$ is in $[2 \times x, x, x, 3 \times x]^T$ as well

Simple Attack: End

- After filtering, we are left with |filtered (m_{c4}) | ≈ 1036 possibilities
- Need one more faulty pair: $p^* \implies (c^*, c^{*\prime})$
- For the remaining candidates, check that $m^* \oplus m^{*'}$ is in $[2 \times x, x, x, 3 \times x]^T$ as well

For each remaining key candidates $\{K_0, K_{13}, K_{10}, K_7\} \in \text{filtered}(m_{c4})$ and $x \in 1$ to 255:

Simple Attack: End

- After filtering, we are left with |filtered (m_{c4}) | ≈ 1036 possibilities
- Need one more faulty pair: $p^* \implies (c^*, c^{*\prime})$
- For the remaining candidates, check that $m^* \oplus m^{*'}$ is in $[2 \times x, x, x, 3 \times x]^T$ as well

For each remaining key candidates $\{K_0, K_{13}, K_{10}, K_7\} \in \text{filtered}(m_{c4}) \text{ and } x \in 1 \text{ to } 255$:

$$ISBOX(c_0^* \oplus K_0) \oplus ISBOX(c_0^{*\prime} \oplus K_0) \stackrel{?}{=} 2 \times x$$

 $ISBOX(c_{13}^* \oplus K_{13}) \oplus ISBOX(c_{13}^{*\prime} \oplus K_{13}) \stackrel{?}{=} x$
 $ISBOX(c_{10}^* \oplus K_{10}) \oplus ISBOX(c_{10}^{*\prime} \oplus K_{10}) \stackrel{?}{=} x$
 $ISBOX(c_7^* \oplus K_7) \oplus ISBOX(c_7^{*\prime} \oplus K_7) \stackrel{?}{=} 3 \times x$

Simple Attack: End

- After filtering, we are left with |filtered (m_{c4}) | ≈ 1036 possibilities
- Need one more faulty pair: $p^* \implies (c^*, c^{*\prime})$
- For the remaining candidates, check that $m^* \oplus m^{*'}$ is in $[2 \times x, x, x, 3 \times x]^T$ as well

For each remaining key candidates $\{K_0, K_{13}, K_{10}, K_7\} \in \text{filtered}(m_{c4}) \text{ and } x \in 1 \text{ to } 255$:

$$ISBOX(c_0^* \oplus K_0) \oplus ISBOX(c_0^{*\prime} \oplus K_0) \stackrel{?}{=} 2 \times x$$

 $ISBOX(c_{13}^* \oplus K_{13}) \oplus ISBOX(c_{13}^{*\prime} \oplus K_{13}) \stackrel{?}{=} x$
 $ISBOX(c_{10}^* \oplus K_{10}) \oplus ISBOX(c_{10}^{*\prime} \oplus K_{10}) \stackrel{?}{=} x$
 $ISBOX(c_7^* \oplus K_7) \oplus ISBOX(c_7^{*\prime} \oplus K_7) \stackrel{?}{=} 3 \times x$

 $\approx 98\%$ of the time, the equations will hold for just a single candidate

Simple Attack Algorithm

Simple Attack Algorithm: Preparation

- 1. Compute $D = \text{mixcol}(\text{glitch}) = [2 \times x, x, x, 3 \times x]^T$ for every $x \in 1$ to 255
- 2. Encrypt some plaintext p and observe the output c
- 3. Inject fault in the first byte in the 9^{th} round to get c'
- 4. Encrypt another plaintext p^* and observe the output c^*
- 5. Inject another fault in the same place to get $c^{*\prime}$

Simple Attack Algorithm: Filtering

- 1. For each $K_0 \in 0$ to 255 and $K_{13} \in 0$ to 255, and $x \in 1$ to 255
 - 1.1 $ISBOX(K_0 \oplus c_0) \oplus ISBOX(K_0 \oplus c_0') \stackrel{?}{=} D[x, 0]$
 - 1.2 $ISBOX(K_{13} \oplus c_{13}) \oplus ISBOX(K_{13} \oplus c'_{13}) \stackrel{?}{=} D[x, 1]$
 - 1.3 If both are true, add candidates $\{K_0, K_{13}\}$ to group K_{c2}
- **2.** For each $K_{10} \in 0$ to 255, and $\{K_0, K_{13}\} \in K_{c2}$, and $x \in 1$ to 255
 - 2.1 $ISBOX(K_0 \oplus c_0) \oplus ISBOX(K_0 \oplus c_0') \stackrel{?}{=} D[x, 0]$
 - 2.2 $ISBOX(K_{13} \oplus c_{13}) \oplus ISBOX(K_{13} \oplus c'_{13}) \stackrel{?}{=} D[x, 1]$
 - 2.3 $ISBOX(K_{10} \oplus c_{10}) \oplus ISBOX(K_{10} \oplus c'_{10}) \stackrel{?}{=} D[x, 2]$
 - 2.4 If so, add candidates $\{K_0, K_{13}, K_{10}\}$ to group K_{c3}
- 3. For each $K_7 \in 0$ to 255, and $\{K_0, K_{13}, K_{10}\} \in K_{c3}$, and $x \in 1$ to 255
 - 3.1 $ISBOX(K_0 \oplus c_0) \oplus ISBOX(K_0 \oplus c'_0) \stackrel{?}{=} D[x, 0]$
 - 3.2 $ISBOX(K_{13} \oplus c_{13}) \oplus ISBOX(K_{13} \oplus c'_{13}) \stackrel{?}{=} D[x, 1]$
 - 3.3 $ISBOX(K_{10} \oplus c_{10}) \oplus ISBOX(K_{10} \oplus c'_{10}) \stackrel{?}{=} D[x, 2]$
 - 3.4 $ISBOX(K_7 \oplus c_7) \oplus ISBOX(K_7 \oplus c_7') \stackrel{?}{=} D[x, 3]$
 - 3.5 If so, add candidates $\{K_0, K_{13}, K_{10}, K_7\}$ to group K_{c4}

Simple Attack Algorithm: End

- 1. For each $\{K_0, K_{13}, K_{10}, K_7\} \in K_{c4}$, and $x \in 1$ to 255
 - 1.1 $ISBOX(K_0 \oplus c_0^*) \oplus ISBOX(K_0 \oplus c_0^{*\prime}) \stackrel{?}{=} D[x, 0]$
 - 1.2 $ISBOX(K_{13} \oplus c_{13}^*) \oplus ISBOX(K_{13} \oplus c_{13}^{*\prime}) \stackrel{?}{=} D[x, 1]$
 - 1.3 $ISBOX(K_{10} \oplus c_{10}^*) \oplus ISBOX(K_{10} \oplus c_{10}^{*\prime}) \stackrel{?}{=} D[x, 2]$
 - 1.4 $ISBOX(K_7 \oplus c_7^*) \oplus ISBOX(K_7 \oplus c_7^{*\prime}) \stackrel{?}{=} D[x, 3]$
 - 1.5 If all are true $\{K_0, K_{13}, K_{10}, K_7\}$, are likely correct keybytes

Converting Simple Attack to Full Attack

Limitations of Simple Attack: leaks 4 out of 16 bytes

- We only showed how to attack the first column to leak 4 bytes.
- Same strategy applies for the rest!
 - We need to inject the glitch in a different place (e.g. in the first entry of the second column)
 - Instead of working with $\{K_0, K_{13}, K_{10}, K_7\}$ we use something else
 - For column 2: $\{K_4, K_1, K_{14}, K_{11}\}$. Can you figure out the rest?

Limitations of Simple Attack: only works on first row glitch

- What if we can't control exactly what single byte is glitched?
 - lacksquare We can tell which column was affected by comparing c and c'
 - Modify D to include possibilities that any of the 4 bytes in the column can be glitched
 - Size of $D: 255 \times 4 = 1020$. Still easy to precomute.

$$\begin{aligned} & \text{glitch}_0 = \begin{bmatrix} 1 \text{ to } 255 & 0 & 0 & 0 \end{bmatrix}^T \\ & \text{glitch}_1 = \begin{bmatrix} 0 & 1 \text{ to } 255 & 0 & 0 \end{bmatrix}^T \\ & \text{glitch}_2 = \begin{bmatrix} 0 & 0 & 1 \text{ to } 255 & 0 \end{bmatrix}^T \\ & \text{glitch}_3 = \begin{bmatrix} 0 & 0 & 0 & 1 \text{ to } 255 \end{bmatrix}^T \end{aligned}$$

$$D = (\text{mixcol} \times \text{glitch}_0) \cup (\text{mixcol} \times \text{glitch}_1)$$
$$\cup (\text{mixcol} \times \text{glitch}_2) \cup (\text{mixcol} \times \text{glitch}_3)$$

- Let's say we did this attack on all 4 columns and got all 16 keybytes
- Now we are done right?

- Let's say we did this attack on all 4 columns and got all 16 keybytes
- Now we are done right?

• We recovered the round 10 key. We want the original key

- We recovered the round 10 key. We want the original key
- Recall: AES key schedule is invertible
- Can find original round key based on round 10 key

Summary: DFA by Piret and Quisquater ('03)

- Need 2 different faults in the same column to recover 4 bytes
- 8 faults total for the entire key
- Can we do it with 1 fault per column instead?
 - We are left with about 2^{10} values per each 4 bytes
 - Guessing $(2^{10})^4 = 2^{40}$ is possible but a little painful if you don't have strong computer
 - Still powerful: going from 128 bit security to 40 bit security

DFA by Saha et al. ('09)

- 1 fault to rule them all: recover key with 1 fault
- Fault injected in 8th round

DFA by Saha et al. ('09)

- 1 fault to rule them all: recover key with 1 fault
- Fault injected in 8th round
- Pro: 1 fault is all you need!
- Con: Must bruteforce 2^{32} keys at the end

DFA by Saha et al. ('09)

References

- Biham and Shamir https://link.springer.com/chapter/10.1007/BFb0052259
- Piret and Quisquater https://eprint.iacr.org/2010/440
- Saha et al. https://eprint.iacr.org/2009/581.pdf