M9 Buffer

Mix the following:

Reagent	Amount Needed to make: 1L of 1X stock	Amount Needed to make: 3L of 1X stock
KH₂PO₄	3 g	9 g
Na₂HPO₄	6 g	18 g
NaCl	5 g	15 g
dH₂O	up to 1L	up to 3 L

To make 3 L of 1X Stock

- 1. First measure all reagents into 2.5 L distilled water in a 4 L beaker and fully dissolve. Then bring volume to total of 3 L in a graduated cylinder.
- 2. Filter Sterilize using the vacuum filtration systems into 500 mL bottles (6 bottles total) (Thermo- 0.45 uM, Rapid Flow PES)
- 3. Autoclave on liquid cycle, 30 minutes (Make sure to loosen the cap only a little, to maintain final volume).
- 4. When the M9 is cool, add: MgSO4, filter-sterilized; add 0.5 ml for 500 mL of M9

4 L of 4X M9 Stock

1. Mix the following:

Reagent	Amount Needed: 4X Stock to make 4 L
KH2PO4	48 g
Na2HPO4	96 g
NaCl	80 g
dH ₂ O	up to 4 L

About 32 L of 1X M9 is required per week during maximum Sorter use. Make a minimum Total of 12 L of 4X Stock at a time and use one filter. This batch of 4X Stock should last at least 1.5 weeks. Also be sure to have 1 L of 1X M9 in 250 ml bottles on the shelf at all times.

- a. Measure all reagents into **3.0 L of distilled water** in a 4 L beaker and fully dissolve. Then bring the volume to total of 4 L in a graduated cylinder, and mix thoroughly.
- 2. Transfer the 4X stock to 500 mL bottles using filter sterilization, measuring exactly. Filter Sterilize using the vacuum filtration systems (Thermo 0.45 uM, Rapid Flow PES).
- 3. Repeat step 1 to make a total of 12 L of 4X Stock. Make sure you have 24 empty 500 ml bottles available.
- 4. To complement the 4X M9 stocks, prepare 1500 ml of sterile distilled water, premeasured into 2 L glass bottles.
- 5. Autoclave filtered M9 and 1500 mL water on the liquid cycle, 30 minutes sterilization.
 - a. Make sure to loosen the cap only a little on glass bottles, to maintain final volume.
- 6. When the M9 is cool, add:
 - a. MgSO₄, (1 M, filter sterilized): 2 ml for 500 ml of 4X Stock
- 7. To make a 1X M9 working stock of 2 L, mix one of the bottles of 500 ml of 4X Stock with the bottle of 1500 ml sterile water.

Potassium Phosphate Buffer, 1M pH6

Mix the following:

Reagent	Amount Needed
KH ₂ PO ₄	136.1 g
кон	17.99 g
dH₂O	up to 1 L

- 1. Filter Sterilize into a 1L Sterile Bottle using the vacuum filtration systems (EMD- 0.22 uM, Express-Plus).
- 2. Store in 1 L aliquots.

S Basal

Mix the following:

Reagent	Amount Needed
NaCl, 5 M	20 ml
Potassium Phosphate Buffer, 1 M pH 6	50 ml
Cholesterol, 5 mg/ml in ethanol	1 ml
dH ₂ O	930 mL

Autoclave on liquid cycle for 30 minutes. Note that the solution will be cloudy

S Medium

- 1. Make each component below according to the recipe.
- 2. Using sterile technique, mix the following:

Reagent	Amount Needed
5 M NaCl	40
Potassium Citrate, 1 M pH 6	20 ml
Trace Metals Solution	20 ml
CaCl ₂ , 1 M	6 ml
MgSO₄ 1 M	6 ml
Phosphate Buffer, 1 M pH6	20 ml
dH ₂ O	1886

- 3. Filter sterilize using a 0.22 µm filter in 499.5 ml aliquots.
- 4. Using good sterile technique, add 0.5 ml of cholesterol (5 mg/ml on EtOH) to each aliquot.

Trace Metals Solution

- 1. Dissolve 3.06 g Trace Metals Mix (US Biological, cat # N1010) into 1 L of dH2O.
 - a. Stir with heat until completely solubilized.
- 2. Aliquot 100 ml into amber PDPE bottles.
- 3. Autoclave on liquid cycle for 30 minutes, using the large autoclave on the left.
 - a. Be careful to just place the cap on top of the bottle
 - i. If you screw the cap, the bottle could deform during autoclaving

Potassium Citrate, 1 M pH 6

1. Mix the following:

Reagent	Amount Needed
Citric Acid Monohydrate	20 g
Tri-potassium Citrate Monohydrate	293.5 g
dH ₂ O	up to 1 L

2. Autoclave on liquid cycle for 30 minutes.

Freezing Solution

1. Mix the following — dissolve the Glycerol in water first, then mix in other reagents.

Reagent	Amount Needed
Potassium phosphate buffer, 1 M pH 6	100 ml
NaCl, 5 M	40 ml
Glycerol, 100%	600 ml
dH ₂ O	up to 2 L

- 2. Divide into 200 ml aliquots in 250 mL glass square bottles.
- 3. Autoclave on liquid cycle for 30 minutes.
- 4. IMMEDIATELY BEFORE USE: Add MgSO4 to a final concentration of 0.3 mM (e.g. for 200 ml of freezing solution, add 60 μl of 1 M MgSO4).

Bleach Solution

Reagent	Amount Needed for 10 ml	Amount Needed for 200 ml
NaOCI (from Fisher, cat #SS290-1)	2 ml	40 ml
NaOH Pellets*	0.2 g	4 g
dH ₂ O	up to 10 ml	up to 200 ml

^{*} NOTE: If using a 10 M NaOH solution, add 0.5 ml to 10 ml Total Bleach Solution.

Store at 4°C

Horvitz Super Broth

1. Mix the following in a 6 L Erlenmeyer flask:

Reagent	Amount Needed
Tryptone	30 g
yeast extract	60 g
Glycerol, 100%	10 ml
dH ₂ O	2.25 L

- a. Be careful to be accurate when measuring the glycerol
- b. Add glycerol after the water.
- 2. Pipette broth solution up and down 2-3 times to remove glycerol from the inside of the pipetter.
- 3. Autoclave on liquid cycle for 30 minutes.
- 4. Once the media is cool, add 250 ml of sterile super broth potassium phosphate buffer (0.17M KH2PO4, 0.72M K2HPO4) for a total of 2.5 L.

5X Horvitz Super Broth

1. Mix the following:

Reagent	Amount Needed
Tryptone	30 g
yeast extract	60 g
Glycerol, 100%	10 ml
dH ₂ O	up to 450 ml

- a. Be careful to be accurate when measuring the gylcerol.
- b. Add glycerol after the water.
- 2. Pipette broth solution up and down 2-3 times to remove glycerol from the inside of the pipetter.
- 3. Autoclave on liquid cycle for 30 minutes.
- 4. Once the media is cool, add 50 ml of sterile 5X super broth potassium phosphate buffer (0.85M KH2PO4, 3.56M K2HPO4).

Super Broth Potassium Phosphate Buffer

1. Mix the following:

Reagent	Amount Needed
KH₂PO₄	46.2 g
K₂HPO₄	250.8 g
dH₂O	up to 2 L

2. Filter Sterilize into a 500 mL Sterile Bottle using the vacuum filtration systems (EMD- 0.22 uM, Express-Plus). Store in 500 ml aliquots.

5X Super Broth Potassium Phosphate Buffer

1. Mix the following:

Reagent	Amount Needed
KH ₂ PO ₄	5.78 g
K₂HPO₄	31.35 g
dH₂O	up to 50 ml

2. Autoclave on liquid cycle for 30 minutes.

50X TAE

1. Mix the following:

Reagent	Amount Needed
Tris Base	242 g
EDTA, 0.5 M pH 8	100 ml
Glacial Acetic Acid	57.1 ml
dH₂O	up to 1 L

- a. Be very careful when pipetting the glacial acetic acid, as it is very caustic.
- b. Use a GLASS pipette

EDTA, 0.5 M

1. Mix the following:

Reagent	Amount Needed
EDTA, disodium salt	93 g
NaOH pellets	~10 g
dH ₂ O	up to 500 mL

- 2. Add EDTA powder to ~450 ml of dH2O with stirring and monitoring the pH.
- 3. Slowly add the NaOH pellets until the solution is pH 8.
- 4. Bring the volume up to 500 ml.
- 5. Filter sterilize with 0.2 μm filter.

LB Miller Broth

1. Mix the following:

Reagent	Amount Needed
Tryptone	10 g
yeast extract	5 g
NaCl	10 g
dH₂O	up to 1 L

- 2. Autoclave on liquid cycle for 30 minutes.
- 3. Once the media is cooled after autoclaving, you can add antibiotics (if needed):

Antibiotic	Stock	Dilution	Final Concentration	Volume Added to 500 ml of Media
Ampicillin	100 mg/ml	1:1000	100 μg/ml	0.5 ml
Kanamycin	50 mg/ml	1:1000	50 μg/ml	0.5 ml
Chloramphenicol	50 mg/ml	1:3333	15 μg/ml	0.15 ml

4. Store media with antibiotics at 4°C.

LB Miller Agar

1. Mix the following:

Reagent	Amount Needed
Tryptone	10 g
yeast extract	5 g
NaCl	10 g
Agar	15 g
dH ₂ O	up to 1 L

- 2. Autoclave on liquid cycle for 30 minutes.
- 3. Once the media is out of the autoclave, place it in a 55°C oven for 1 hour.
- 4. After the media is cooled down to 55°C, you can either pour right away, or add the antibiotic of your choice:

Antibiotic	Stock	Dilution	Final Concentration	Vol Added to 500 ml of Media
Ampicillin	100 mg/ml	1:1000	100 μg/ml	0.5 ml
Kanamycin	50 mg/ml	1:1000	50 μg/ml	0.5 ml
Chloramphenicol	50 mg/ml	1:3333	15 μg/ml	0.15 ml

a. Make sure to mix well after adding the antibiotic and then pour.

Sodium Acetate (NaOAc), 3M, pH 5.2

1. Mix the following:

Reagent	Amount Needed
Sodium Acetate Trihydrate	204 g
dH ₂ O	400 ml

a. Make sure you are using sodium acetate trihydrate

- 2. pH the solution with glacial acetic acid to pH 5.2
- 3. Adjust final volume to 500 ml.
- 4. Store in glass bottles in 100 ml aliquots.

MgSO4, 1M Solution

- 1. To make 500 ml, completely dissolve 123.24 g of MgSO4 heptahydrate (FW = 246.48) in 450 ml distilled, MilliQ water.
 - a. Make sure you are using MgSO4 heptahydrate.
- 2. Transfer to a graduated cylinder and bring up to final volume.
- 3. Filter sterilize into a 500 ml Filter Bottle using the disposable vacuum filtration systems (Thermo-Fisher Nalgene 0.22 uM, Rapid Flow Filter).

CaCl2, 1M Solution

1. To make 500 ml, completely dissolve 55.49 g of CaCl2 anhydrous (FW = 110.98) in 450 ml distilled, MilliQ water.

a. Make sure you are using CaCl2

- 2. Transfer to a graduated cylinder and bring up to final volume.
- 3. Filter sterilize into a 500 ml Filter Bottle using the disposable vacuum filtration systems (Thermo-Fisher Nalgene 0.22 uM, Rapid Flow Filter).

MqCl2, 1M Solution

1. To make 500 ml, completely dissolve 101.65 g of MgCl2 hexahydrate (FW = 203.3) in 450 ml distilled, MilliQ water.

a. Make sure you are using MgCl2 hexahydrate

- 2. Transfer to a graduated cylinder and bring up to final volume.
- 3. Filter sterilize into a 500 ml Filter Bottle using the disposable vacuum filtration systems (Thermo-Fisher Nalgene 0.22 uM, Rapid Flow Filter).

KCI, 1M Solution

- 1. To make 500 ml, completely dissolve 37.28 g of KCl (FW = 74.55) in 450 ml distilled, MilliQ water.
- 2. Transfer to a graduated cylinder and bring up to final volume.
- 3. Filter sterilize into a 500 ml Filter Bottle using the disposable vacuum filtration systems (Thermo-Fisher Nalgene 0.22 uM, Rapid Flow Filter).

NaCl, 5M Solution

- 1. To make 1 L, completely dissolve 292.2 g of NaCl (FW = 58.44) in 900 ml distilled, MilliQ water.
 - a. This will take a long time and you will need to bring the volume up to almost a full liter before the NaCl will dissolve.
- 2. Transfer to a graduated cylinder and bring up to final volume.
- 3. This is stored without sterilizing.

Orange G 6X Gel Loading Dye

1. Make a 6X stock (0.9%) by adding the Orange G dye to the glycerol in a 15 ml conical tube and shaking to mix completely.

Reagent	Amount Needed
Orange G dye	45 mg
30% Glycerol (filter sterilized)	10.0 ml

2. Aliquot 1 ml each into pre-labeled 1.7 ml tubes and store at room temperature or at -20C.

TE buffer

1. Mix the following:

Reagent	Amount Needed to make 500 ml	Amount needed to make 200 ml
1M Tris (pH 8)	5 ml	2ml
0.5M EDTA (pH 8)	1 ml	0.4 ml
dH ₂ O	494 ml	197.6 ml

2. Aliquot 10 ml each into 15 ml conical tubes.

Tris, 1M, pH 8

Reagent	Amount needed
Tris Base	121.14 g
HCI	~ 80 - 85 ml
dH ₂ O	up to 1L

- 1. Dissolve Tris Base in 800 ml dH2O, while monitoring pH.
- 2. Slowly add HCl until the solution is pH 8
- 3. Bring final volume to 1L
- 4. Aliquot 200 ml into 250 ml bottles
- 5. Autoclave on liquid cycle, 30 minutes

2X Lysis Buffer

Reagent	Amount Needed	Final Concentration
KCI, 1M	100 mL	100 mM
Tris pH 8.2, 1M	20 mL	20 mM
MgCl ₂ , 1M	5 mL	5 mM
IGEPAL	9 mL	0.9%
Tween20	9 mL	0.9%
Gelatin	200 mg	0.02%
dH ₂ O	up to 1 L	-

Just before use, add 20 μ l of 20 mg/mL Proteinase K((in water, store in frozen aliquots) per 1 mL 2X lysis buffer (or 2 μ l of pK plus 198 μ l 2X lysis buffer).

Soft Agar Freezing Buffer

1. Place a 1 L glass beaker on a scale and add:

Reagent	Amount needed
glycerol	300 g
agar	4 g
M9	up to 950 ml

- a. You must use a glass beaker to heat the solution enough to dissolve the agar.
- 2. Add stir bar and heat/stir to dissolve agar.
 - a. This may take a long time; need to heat up to 200°C-215°C.
- 3. Allow solution to cool (still warm, but cool enough to handle).
- 4. Transfer to graduated cylinder and bring up 1 L.
- 5. Return solution to glass beaker and stir to mix.
- 6. Transfer back to graduated cylinder and pour into to glass bottles, 100 ml per bottle. Autoclave 20 min.
- 7. Store at room temperature

Cholesterol, for NGMA

unfiltered but sterile 5 mg/mL cholesterol in ethanol

- 1. Take an autoclaved sterile 250 mL bottle
- 2. Add 1 g of powdered cholesterol to the bottle
- 3. Add 200 mL of 100% ethanol to the bottle
- 4. Cap and shake to resuspend
- 5. Store at room temperature on the reagents shelf for up to six months

Cholesterol, for HTA

filtered sterile 5 mg/mL cholesterol in ethanol

- 1. Take a 50 mL conical tube.
- 2. Add 125 mg of powdered cholesterol to the tube.
- 3. Add 25 mL of 100% ethanol to the tube.
- 4. Cap and shake to resuspend.
- 5. Aliquot using a 25 mL syringe fitted with a filter (Millipore Millex-LG cat #SLLG025SS).
- 6. Dispense 1 mL of 5 mg/mL cholesterol through the filter into autoclaved sterile 1.7 mL microfuge tubes.
- 7. Cap and store at room temperature for up to six months
- 8. 125 μL of 5 mg/mL cholesterol in ethanol should be added to 500 mL of K medium.

<u>Diluting DNA Ladders, Invitrogen 1 kb Plus</u>

To make 2.5 ml of 0.1 μ g/ μ l working stock from 1 tube of Invitrogen 1 kb Plus DNA Ladder (250 μ l, 1 μ g/ μ l):

- 1. In a 15 ml conical, combine:
 - a. 250 µl Invitrogen 1 kb Plus DNA Ladder
 - b. 417 µl 6X loading dye
 - c. 1,833 µl dH2O
- 2. Cap tube and vortex to mix.
- 3. Aliquot 250 µl into 10 1.7 ml microfuge tubes.
- Store one tube at room temperature and put the remaining aliquots in the DNA ladder box in the -20°C freezer.

Diluting DNA Ladders, NEB 1 kb

To make 10 ml of 0.05 μ g/ μ l working stock from 1 tube of NEB 1 Kb DNA Ladder (1000 μ l, 0.5 μ g/ μ l)

- 1. In a 15 ml conical, combine:
 - a. 1000 µl NEB 1 Kb DNA Ladder
 - b. 1,667 µl 6X loading dye
 - c. 7,333 µl dH2O
- 2. Cap tube and vortex to mix.
- 3. Aliquot 1000 µl into 10 1.7 ml microfuge tubes.
- Store one tube at room temperature and put the remaining aliquots in the DNA ladder box in the -20°C freezer.

NGMA Plates

Pre-autoclave:										
	1 L	2 L	3L	4L	5L	6L	7L	8L	9L	10L
Peptone	2.5 g	5 g	7.5 g	10 g	12.5 g	15 g	17.5 g	20 g	22.5 g	25 g
NaCl	3 g	6 g	9 g	12 g	15 g	18 g	21 g	24 g	27 g	30 g
Agarose	7 g	14 g	21 g	28 g	35 g	42 g	49 g	56 g	63 g	70 g
Agar	10 g	20 g	30 g	40 g	50 g	60 g	70 g	80 g	90 g	100 g
Sterile water	975 ml	1950 ml	2925 ml	3900 ml	4875 ml	5850 ml	6825 ml	7800 ml	8775 ml	9750 ml

Note: dry ingredients can be premeasured into bottles which can then be poured into the MediaClave. Use some of the required water to wash out the bottles into the MediaClave.

Post-autoclave:

	1 L	2 L	3L	4L	5L	6L	7L	8L	9L	10L
1) 1 M KH ₂ PO ₄ (K Phosphate Buffer)	25 ml	50 ml	75 ml	100 ml	125 ml	150 ml	175 ml	200 ml	225 ml	250 ml
2) Cholesterol (5 mg/ml in EtOH)	1 ml	2 ml	3 ml	4 ml	5 ml	6 ml	7 ml	8 ml	9 ml	10 ml
3) 1 M CaCl ₂	1 ml	2 ml	3 ml	4 ml	5 ml	6 ml	7 ml	8 ml	9 ml	10 ml
4) 1 M MgSO ₄	1 ml	2 ml	3 ml	4 ml	5 ml	6 ml	7 ml	8 ml	9 ml	10 ml