Exercises Boundary Conditions in lattice Boltzmann method

Goncalo Silva

Department of Mechanical Engineering Instituto Superior Técnico (IST) Lisbon, Portugal

Exercise I:

Poiseuille flow with bounceback walls

• Governing equation:

$$\nu \frac{\partial u_{x}}{\partial y} = -a_{x}$$

Reynolds number:

$$Re = \frac{U_{max}(y_{top} - y_{bottom})}{\nu}$$

Velocity solution:

$$u_x(y) = -\frac{1}{2\nu}a_x(y-y_{bottom})(y-y_{top})$$

BounceBack walls location:

$$\begin{cases} y_{bottom} = 0.5 \\ y_{top} = NY - 0.5 \end{cases}$$

• Body force (acceleration) magnitude:

$$a_{x} = \frac{8u_{max}\nu}{(y_{top} - y_{bottom})^{2}}$$

Input parameters

- $m{N}_{steps}
 ightarrow ext{Number of time steps to achieve steady-state}$
- NY → Number of nodes along the channel height
- Re → Flow Reynolds number
- $\omega \to \text{Relaxation frequency (LBM parameter)}$
- U_{max} → Maximum velociy (proportional to Mach number)

Questions

- Question 1: Implement Bounceback BC
- Question 2: Fix Re = 10 and $\omega = 1$
 - Question 2.1 For NY = 16, what is U_{max} and $||L_2||_{\infty}$?
 - Question 2.2 For NY = 32, what is U_{max} and $||L_2||_{\infty}$?
 - Question 2.3 Estimate the convergence rate

Hint:
$$\alpha = \ln \left(\frac{\|L_2\|_{\infty}(u_M)}{\|L_2\|_{\infty}(u_N)} \right) / \ln \left(\frac{N}{M} \right)$$

Questions

- Question 3 Fix Re = 10 and NY = 16
 - Question 3.1 What is $\|L_2\|_{\infty}$ for $\omega=1$, $\omega=1.7$, $\omega=0.5$, $\omega=0.2$ and $\omega=\frac{32}{20+\sqrt{208}}$?
 - Question 3.2 For each of the above ω values, compute the momentum imbalance ΔF between the applied force and the friction force at walls. Comment the results.

Hint:
$$\mathbf{F}_{wall} + \mathbf{F}_{prop} = \Delta \mathbf{F}$$

$$\mathbf{F}_{wall} = -2 \frac{\Delta x}{\Delta t} \sum_{\mathbf{x}_b \in S} \sum_{\alpha} \mathbf{c}_{\alpha} \tilde{f}_{\alpha}(\mathbf{x}, t)$$

$$\mathbf{F}_{prop} = \sum_{\mathbf{x}_b \in V} a_X$$

Exercise II:

Poiseuille flow with Zou He walls

• Governing equation:

$$\nu \frac{\partial u_{x}}{\partial y} = -a_{x}$$

Reynolds number:

$$Re = \frac{U_{max}(y_{top} - y_{bottom})}{\nu}$$

Velocity solution:

$$u_{x}(y) = -\frac{1}{2\nu}a_{x}(y - y_{bottom})(y - y_{top})$$

Zou He walls location:

$$\begin{cases} y_{bottom} = 1 \\ y_{top} = NY \end{cases}$$

Body force (acceleration) magnitude:

$$a_{x} = \frac{8u_{max}\nu}{(y_{top} - y_{bottom})^{2}}$$

Input parameters

- ullet $N_{steps}
 ightarrow N$ umber of time steps to achieve steady-state
- NY → Number of nodes along the channel height
- Re → Flow Reynolds number
- $\omega \to \text{Relaxation frequency (LBM parameter)}$
- U_{max} → Maximum velociy (proportional to Mach number)

Questions

- Question 1: Implement Zou He BC
- Question 2: Fix Re = 10 and $\omega = 1$
 - Question 2.1 For NY = 16, what is U_{max} and $||L_2||_{\infty}$?
 - Question 2.2 For NY = 32, what is U_{max} and $||L_2||_{\infty}$?
 - Question 2.3 Discuss the solutions accuracy
- Question 3 Fix Re = 10 and NY = 16
 - Question 3.1 What is $||L_2||_{\infty}$ for $\omega=1,~\omega=1.7,~\omega=0.5,~\omega=0.2$?

Exercise III:

Developing Poiseuille flow with Zou He walls and inlet/outlet BC

Velocity inlet solution:

$$(u_x)_{in}(y) = \frac{1}{12\nu}a_x(y_{bottom}^2 - 2y_{bottom}y_{top} + y_{top}^2)$$

where the driving force term is:

$$a_X = \frac{8u_{max}\nu}{(y_{top} - y_{bottom})^2}$$

Velocity outlet solution:

$$\frac{\partial (u_x)_{out}}{\partial y} = 0$$

Input parameters

- ullet $N_{steps}
 ightarrow N$ umber of time steps to achieve steady-state
- NY → Number of nodes along the channel height
- Re → Flow Reynolds number
- $\omega \to \text{Relaxation frequency (LBM parameter)}$
- U_{max} → Maximum velociy (proportional to Mach number)

Questions

- Question 1: Implement Zou He BC at inlet and outlet
- Question 2: Fix Re = 10 and $\omega = 0.9$
 - Question 2.1 For NX = 22 and NY = 22, what is $||L_2||_{\infty}$?
 - Question 2.2 For NX = 32 and NY = 32, what is $||L_2||_{\infty}$?
 - Question 2.3 For NX = 52 and NY = 52, what is $||L_2||_{\infty}$?
- Question 3 Estimate graphically the entrance length L_h for the fully developed condition and compare with semi-analytical solution $\frac{L_h}{W} = 0.05 \times Re$

Hint: In command window of MATLAB execute: plot(1:NX,ux(:,round(NY/2)))

Exercise IV:

Backward facing step flow using Zou He wall boundaries

• Remark I: A comment on the external corner

- Remark I: A comment on the external corner
 - ightarrow Zou He framework does not apply for external corners, the problem remains overspecified, e.g. only unknowns are ρ and f_6

- Remark I: A comment on the external corner
 - ightarrow Zou He framework does not apply for external corners, the problem remains overspecified, e.g. only unknowns are ho and f_6
 - → **Solution:** use bounceback instead

- Remark I: A comment on the external corner
 - ightarrow Zou He framework does not apply for external corners, the problem remains overspecified, e.g. only unknowns are ρ and f_6
 - → **Solution:** use bounceback instead
 - ightarrow Differences? On corners Zou He reduces to bounceback if u=0

• Remark II: A comment on problem geometry

Geometry may be simplified if a parabolic profile is used at inlet

• Influx boundary condition:

$$u_{x}=-rac{1}{2
u}a_{x}(y-y_{bottom})(y-y_{top\ inlet})$$
 $u_{y}=0$

where:

$$ightarrow y_{top inlet} - y_{bottom} = \text{width of the influx boundary}$$

 $ightarrow a_x = \frac{8u_{max}\nu}{(y_{top inlet} - y_{bottom})^2}$

Outflux boundary condition:

$$\frac{\partial u_x}{\partial x} = 0$$
$$u_y = 0$$

Input parameters

- \bullet $N_{steps} \rightarrow$ Number of time steps to achieve steady-state
- Re → Flow Reynolds number
- $\omega \to \text{Relaxation frequency (LBM parameter)}$
- ullet $oxed{U}_{max}
 ightarrow ext{Maximum velociy (proportional to Mach number)}$

Input parameters

Influx width:

$$y_{top\ inlet} = \frac{Re\nu}{U_{max}} + y_{bottom}$$

Geometry width

Influx ratio =
$$\frac{y_{top inlet} - y_{bottom}}{y_{top} - y_{bottom}}$$

Geometry length

$$L_x = L_y = y_{top} - y_{bottom}$$

Questions

- Question 1: Implement Zou He BC at left boundary, i.e. {influx ∪ left wall}
- Question 2: Implement Zou He BC at right boundary, i.e. outflux
- Question 3: Implement Zou He BC at bottom left and top right corners
- Question 4: Set Re=20, $U_{max}=0.1$ and $\omega=0.8$
 - Question 4.1 Set three *Influx ratio* values, e.g. $\frac{1}{3}$, $\frac{1}{2}$ and $\frac{1}{1.2}$?
 - Question 4.2 Discuss the size of recirculation patterns and the location of the outflow boundary?

Exercise V:

Flow around circular cylinder

