Politechnika Częstochowska Katedra Inteligentnych Systemów Informatycznych

Programowanie Niskopoziomowe

LABORATORIUM 5

OPERACJE NA MACIERZACH

dr inż. Bartosz Kowalczyk

Częstochowa, 26 marca 2023

Spis treści

1	Operacje skalarne na macierzach	3
2	Operacje na macierzach	5

1 Operacje skalarne na macierzach

Przekaż do procedury w języku asembler podane macierze. Jeżeli to konieczne, dokonaj konwersji ich elementów. Następnie oblicz wartość podanych wyrażeń:

- 1. (Suma elementów macierzy) $y = \text{sum}(\mathbf{A}) = \sum_{i=0}^{m} \sum_{j=0}^{n} a_{ij}$, gdzie $\mathbf{A} \in \mathbb{Z}^{m,n}$.
- 2. (Iloczyn elementów macierzy) $y = \operatorname{prod}(\mathbf{A}) = \prod_{i=0}^{m} \prod_{j=0}^{n} a_{ij}$, gdzie $\mathbf{A} \in \mathbb{Z}^{m,n}$.
- 3. (Wartość minimalna macierzy) $y = \min(\mathbf{A})$, gdzie $\mathbf{A} \in \mathbb{Z}^{m,n}$.
- 4. (Wartość maksymalna macierzy) $y = \max(\mathbf{A})$, gdzie $\mathbf{A} \in \mathbb{Z}^{m,n}$.
- 5. (Wartość średnia macierzy) $y = \text{avg}(\mathbf{A}) = \frac{\sum\limits_{i=0}^{m}\sum\limits_{j=0}^{n}a_{ij}}{mn}$, gdzie $\mathbf{A} \in \mathbb{Z}^{m,n}$.
- 6. (Suma iloczynów elementów macierzy) $y = \sum_{i=0}^{m} \sum_{j=0}^{n} a_{ij} b_{ij}$, gdzie $\mathbf{A}, \mathbf{B} \in \mathbb{Z}^{m,n}$.
- 7. (Suma elementów na głównej przekątnej macierzy) $y = \text{sum}(\mathbf{A}) = \sum_{i=0}^{d} a_{ii}$, gdzie $\mathbf{A} \in \mathbb{Z}^{m,n}$ oraz $d = \min(m, n)$.
- 8. (Iloczyn elementów na głównej przekątnej macierzy) $y = \operatorname{prod}(\mathbf{A}) = \prod_{i=0}^{d} a_{ii}$, gdzie $\mathbf{A} \in \mathbb{Z}^{m,n}$ oraz $d = \min(m, n)$.
- 9. (Wartość minimalna na głównej przekątnej macierzy) $y = \min(\mathbf{A})$, gdzie $\mathbf{A} \in \mathbb{Z}^{m,n}$ oraz $d = \min(m, n)$.
- 10. (Wartość maksymalna na głównej przekątnej macierzy) $y = \max(\mathbf{A})$, gdzie $\mathbf{A} \in \mathbb{Z}^{m,n}$ oraz $d = \min(m, n)$.
- 11. (Wartość średnia elementów macierzy na głównej przekątnej) $y = \text{avg}(\mathbf{A}) = \frac{\sum_{i=0}^{d} a_{ii}}{d}$, gdzie $\mathbf{A} \in \mathbb{Z}^{m,n}$ oraz $d = \min(m, n)$.
- 12. (Suma iloczynów elementów macierzy na głównych przekątnych) $y = \sum_{i=0}^{d} a_{ii}b_{ii}$, gdzie $\mathbf{A}, \mathbf{B} \in \mathbb{Z}^{m,n}$ oraz $d = \min(m, n)$.
- 13. $y = \sum_{i=0}^{m} \sum_{j=0}^{n} 5a_{ij} 3$, gdzie $\mathbf{A} \in \mathbb{Z}^{m,n}$.
- 14. $y = \sum_{i=0}^{m} \sum_{j=0}^{n} 16a_{ij} + 6$, gdzie $\mathbf{A} \in \mathbb{Z}^{m,n}$.
- 15. $y = \sum_{i=0}^{m} \sum_{j=0}^{n} \frac{a_{ij} + 6}{4}$, gdzie $\mathbf{A} \in \mathbb{Z}^{m,n}$.
- 16. Policz ile elementów parzystych znajduje się w macierzy $\mathbf{A} \in \mathbb{Z}^{m,n}$.

- 17. Policz ile elementów nieparzystych znajduje się w macierzy $\mathbf{A} \in \mathbb{Z}^{m,n}$.
- 18. Policz ile elementów podzielnych przez 4 znajduje się w macierzy $\mathbf{A} \in \mathbb{Z}^{m,n}$.
- 19. Policz ile elementów większych od 0 znajduje się w macierzy $\mathbf{A} \in \mathbb{Z}^{m,n}$.
- 20. Policz ile elementów z przedziału $a_{ij} \in (-10, 10)$ znajduje się w macierzy $\mathbf{A} \in \mathbb{Z}^{m,n}$.
- 21. Policz ile elementów parzystych znajduje się na głównej przekątnej macierzy $\mathbf{A} \in \mathbb{Z}^{m,n}$.
- 22. Policz ile elementów nieparzystych znajduje się na głównej przekątnej macierzy $\mathbf{A} \in \mathbb{Z}^{m,n}$.
- 23. Policz ile elementów podzielnych przez 4 znajduje się na głównej przekątnej macierzy $\mathbf{A} \in \mathbb{Z}^{m,n}$.
- 24. Policz ile elementów większych od 0 znajduje się na głównej przekątnej macierzy $\mathbf{A} \in \mathbb{Z}^{m,n}$.
- 25. Policz ile elementów z przedziału $a_{ij} \in [20, 30]$ znajduje się na głównej przekątnej macierzy $\mathbf{A} \in \mathbb{Z}^{m,n}$.

Implementację powyższych funkcji należy rozważyć w następujących scenariuszach:

- 1. Macierze A i B przechowują liczby typu short, wartość zwracana y typu short.
- 2. Macierze A i B przechowują liczby typu short, wartość zwracana y typu int.
- 3. Macierze A i B przechowują liczby typu short, wartość zwracana y typu int64.
- 4. Macierze A i B przechowują liczby typu int, wartość zwracana y typu int.
- 5. Macierze A i B przechowują liczby typu int, wartość zwracana y typu int64.
- 6. Macierze A i B przechowują liczby typu int64, wartość zwracana y typu int64.

2 Operacje na macierzach

Przekaż do procedury w języku asembler podane macierze. Jeżeli to konieczne, dokonaj konwersji ich elementów. Następnie oblicz wartość podanych wyrażeń:

- 1. Dla każdego elementu macierzy $\mathbf{A} \in \mathbb{Z}^{m,n}$ oblicz: $a_{ij} = 16a_{ij} + 5$.
- 2. Podnieś do kwadratu wszystkie elementy macierzy $\mathbf{A} \in \mathbb{Z}^{m,n}$.
- 3. Dane są macierze \mathbf{A} i $\mathbf{B} \in \mathbb{Z}^{m,n}$. Do każdego elementu macierzy \mathbf{A} dodaj odpowiadający mu element macierzy \mathbf{B} .
- 4. Dane są macierze **A** i **B** $\in \mathbb{Z}^{m,n}$. Oblicz: $a_{ij} = \frac{5a_{ij} + 4b_{ij}}{3}$, gdzie $i \in [0, \dots m]$, $j \in [0, \dots n]$.
- 5. Dane są macierze **A** i **B** $\in \mathbb{Z}^{m,n}$. Oblicz: $a_{ij} = \frac{a_{ij}}{b_{ij}}$, gdzie $b_{ij} \neq 0$, $i \in [0, \dots m]$, $j \in [0, \dots n]$.
- 6. Dane są macierze **A** i **B** $\in \mathbb{Z}^{m,n}$. Oblicz: $a_{ij} = a_{ij}\%b_{ij}$, gdzie $b_{ij} \neq 0$, $i \in [0, \dots m]$, $j \in [0, \dots n]$.
- 7. Dokonaj transpozycji macierzy $\mathbf{A} \in \mathbb{Z}^{m,n}$ do macierzy $\mathbf{Y} \in \mathbb{Z}^{n,m}$, tj. $\mathbf{Y} = \mathbf{A}^T \Rightarrow y_{ji} = a_{ij}$.
- 8. Wyzeruj in situ elementy macierzy $\mathbf{A} \in \mathbb{Z}^{m,n}$ o parzystych indeksach.
- 9. Wyzeruj in situ elementy macierzy $\mathbf{A} \in \mathbb{Z}^{m,n}$ o nieparzystych indeksach.
- 10. Wyzeruj *in situ* elementy macierzy $\mathbf{A} \in \mathbb{Z}^{m,n}$ znajdujące się na głównej przekątnej, tj. gdzie indeksy i = j.
- 11. Wyzeruj *in situ* elementy macierzy $\mathbf{A} \in \mathbb{Z}^{m,n}$ znajdujące się poniżej głównej przekątnej, tj. gdzie indeksy i > j.
- 12. Wyzeruj in situ elementy macierzy $\mathbf{A} \in \mathbb{Z}^{m,n}$ znajdujące się powyżej głównej przekątnej, tj. gdzie indeksy i < j.
- 13. Wyzeruj in situ co drugi element macierzy $\mathbf{A} \in \mathbb{Z}^{m,n}$, tak aby macierz wynikowa przypominała szachownicę.
- 14. Dane są macierze \mathbf{A} i $\mathbf{Y} \in \mathbb{Z}^{m,n}$. Przepisz macierz \mathbf{A} do macierzy \mathbf{Y} , przy czym wyzeruj elementy o parzystych indeksach.
- 15. Dane są macierze \mathbf{A} i $\mathbf{Y} \in \mathbb{Z}^{m,n}$. Przepisz macierz \mathbf{A} do macierzy \mathbf{Y} , przy czym wyzeruj elementy o nieparzystych indeksach.
- 16. Dane są macierze **A** i $\mathbf{Y} \in \mathbb{Z}^{m,n}$. Przepisz macierz **A** do macierzy **Y**, przy czym wyzeruj elementy znajdujące się na głównej przekątnej, tj. gdzie indeksy i = j.
- 17. Dane są macierze **A** i $\mathbf{Y} \in \mathbb{Z}^{m,n}$. Przepisz macierz **A** do macierzy **Y**, przy czym wyzeruj elementy znajdujące się poniżej głównej przekatnej, tj. gdzie indeksy i > j.

- 18. Dane są macierze **A** i $\mathbf{Y} \in \mathbb{Z}^{m,n}$. Przepisz macierz **A** do macierzy **Y**, przy czym wyzeruj elementy znajdujące się powyżej głównej przekątnej, tj. gdzie indeksy i < j.
- 19. Dane są macierze \mathbf{A} i $\mathbf{Y} \in \mathbb{Z}^{m,n}$. Przepisz macierz \mathbf{A} do macierzy \mathbf{Y} , przy czym wyzeruj co drugi element, tak aby macierz wynikowa przypominała szachownicę.
- 20. Dana jest macierz $\mathbf{A} \in \mathbb{Z}^{m,n}$ oraz wektor (kolumnowy) $\mathbf{h} \in \mathbb{Z}^n$. Oblicz: $\mathbf{y} = \mathbf{A}\mathbf{h}$, gdzie $\mathbf{y} \in \mathbb{Z}^m$. Uwaga, wynikowy wektor \mathbf{y} jest wektorem kolumnowym.
- 21. Dana jest macierz $\mathbf{A} \in \mathbb{Z}^{m,n}$ oraz wektor (wierszowy) $\mathbf{h} \in \mathbb{Z}^m$. Oblicz: $\mathbf{y} = \mathbf{h}\mathbf{A}$, gdzie $\mathbf{y} \in \mathbb{Z}^n$. Uwaga, wynikowy wektor \mathbf{y} jest wektorem wierszowym.
- 22. Dane są macierze $\mathbf{A} \in \mathbb{Z}^{m,n}$ i $\mathbf{B} \in \mathbb{Z}^{n,o}$. Oblicz: $\mathbf{Y} = \mathbf{AB}$, gdzie $\mathbf{Y} \in \mathbb{Z}^{m,o}$.

Implementację powyższych funkcji należy rozważyć w następujących scenariuszach:

- 1. Macierze ${\bf A}$ i ${\bf B}$ przechowują liczby typu short, macierz wynikowa ${\bf Y}$ typu short.
- 2. Macierze A i B przechowują liczby typu short, macierz wynikowa Y typu int.
- 3. Macierze A i B przechowują liczby typu short, macierz wynikowa Y typu int64.
- 4. Macierze A i B przechowują liczby typu int, macierz wynikowa Y typu int.
- 5. Macierze A i B przechowują liczby typu int, macierz wynikowa Y typu int64.
- 6. Macierze ${\bf A}$ i ${\bf B}$ przechowują liczby typu int
64, macierz wynikowa ${\bf Y}$ typu int
64.