Équations aux dérivées partielles –Série 6 SOLUTIONS

Problème 1

1. On injecte un mode de Fourier $u_j^n = G(k)^n e^{2\pi i j k \Delta x}$ dans le schéma afin d'évaluer son facteur d'amplification. Après simplification des termes ceci conduit à:

$$\frac{G(k)^2 - 2G(k) + 1}{\Delta t^2} - (\theta G^2(k) + (1 - 2\theta)G(k) + \theta) \frac{e^{2i\pi k\Delta x} - 2 + e^{-2i\pi k\Delta x}}{\Delta x^2} = 0,
\Leftrightarrow G(k)^2 - 2G(k) + 1 + 4\frac{\Delta t^2}{\Delta x^2} (\theta G^2(k) + (1 - 2\theta)G(k) + \theta) \sin^2(k\pi\Delta x) = 0$$
(1)

En notant $\sigma = \frac{\Delta t^2}{\Delta x^2}$ et $s_k = \sin^2(k\pi\Delta x)$ l'équation devient

$$(1 + 4\theta s_k \sigma)G^2(k) - 2(1 - 2(1 - 2\theta)s_k \sigma)G(k) + 1 + 4\theta s_k \sigma = 0.$$
(2)

Le determinant réduit de cette équation est donné par

$$\Delta = (1 - 2(1 - 2\theta)s_k\sigma)^2 - (1 + 4\theta s_k\sigma)^2 = -4s_k\sigma(1 - s_k\sigma + 4\theta s_k\sigma)$$

Considérons d'abord le cas $\Delta < 0$ ce qui équivaut à $(1 - 4\theta)s_k\sigma < 1$. On voit bien que si $\theta \ge 1/4$ ceci est automatiquement vérifié. Dans le cas $\theta \le 1/4$, ceci a lieu si $\sigma < \frac{1}{1-4\theta}$ ou

$$\frac{\Delta t}{\Delta x} < \sqrt{\frac{1}{1 - 4\theta}}.\tag{3}$$

Si le déterminant est négatif, les racines complexes $G_{1,2}(k)$ de l'équation (2) sont conjuguées et vérifient

$$|G_j(k)|^2 = |G_1(k)G_2(k)| = \frac{1 + 4\theta s_k \sigma}{1 + 4\theta s_k \sigma} = 1 \Rightarrow |G_j(k)| = 1.$$

ce qui prouve que le schéma est stable inconditionnellement si $\theta \geq 1/4$ et sous la condition (3) si $\theta < 1/4$. Dans le cas où les racines de (2) sont réelles, ce qui correspond au cas où $(1-4\theta)s_k\sigma > 1$, le fait que le produit $G_1(k)G_2(k) = 1$ prouve bien qu'il y en a une plus grand en module que 1, donc le schéma est instable.

2. On prouvera l'égalité de l'énergie dans le cas du schéma explicite $\theta = 0$, dans le cas général ceci se faisant, par linéarité, de la même façon. En multipliant le schéma par $u_j^{n+1} - u_j^{n-1}$ et en sommant ensuite sir j on obtient

$$\frac{u_{j}^{n+1} - 2u_{j}^{n} + u_{j}^{n-1}}{\Delta t^{2}} \cdot (u_{j}^{n+1} - u_{j}^{n-1}) - \frac{u_{j+1}^{n} - 2u_{j}^{n} + u_{j-1}^{n}}{\Delta x^{2}} \cdot (u_{j}^{n+1} - u_{j}^{n-1}) = 0,$$

$$\Leftrightarrow \frac{u_{j}^{n+1} - u_{j}^{n} - u_{j}^{n} + u_{j}^{n-1}}{\Delta t} \cdot \frac{u_{j}^{n+1} - u_{j}^{n} + u_{j}^{n} - u_{j}^{n-1}}{\Delta t} - \frac{u_{j+1}^{n} - 2u_{j}^{n} + u_{j-1}^{n}}{\Delta x^{2}} \cdot (u_{j}^{n+1} - u_{j}^{n-1}) = 0,$$

$$\Leftrightarrow \sum_{j=0}^{N} \left[\left(\frac{u_{j}^{n+1} - u_{j}^{n}}{\Delta t} \right)^{2} - \left(\frac{u_{j}^{n} - u_{j}^{n-1}}{\Delta t} \right)^{2} \right] - \sum_{j=0}^{N} \frac{u_{j+1}^{n} - 2u_{j}^{n} + u_{j-1}^{n}}{\Delta x^{2}} \cdot (u_{j}^{n+1} - u_{j}^{n-1}) = 0.$$

$$(4)$$

Pour calculer le deuxième terme de l'équation (4) on montrera que pour un $v=(v_j)_{j\in\mathbb{Z}}$ périodique, c.a.d. $v_j=v_{j+N},\ j\in\mathbb{Z}$ on a

$$\sum_{j=0}^{N} \frac{u_{j+1}^{n} - 2u_{j}^{n} + u_{j-1}^{n}}{\Delta x^{2}} v_{j} = \sum_{j=0}^{N} \frac{u_{j+1}^{n} - u_{j}^{n}}{\Delta x^{2}} v_{j} - \sum_{j=0}^{N} \frac{u_{j}^{n} - u_{j-1}^{n}}{\Delta x^{2}} v_{j}$$

$$= \sum_{j=0}^{N} \frac{u_{j+1}^{n} - u_{j}^{n}}{\Delta x^{2}} v_{j} - \sum_{l=-1}^{N-1} \frac{u_{l+1}^{n} - u_{l}^{n}}{\Delta x^{2}} v_{l+1} = \sum_{j=0}^{N} \frac{u_{j+1}^{n} - u_{j}^{n}}{\Delta x^{2}} v_{j} - \sum_{l=0}^{N} \frac{u_{l+1}^{n} - u_{l}^{n}}{\Delta x^{2}} v_{l+1}$$

$$= -\sum_{j=0}^{N} \frac{u_{j+1}^{n} - u_{j}^{n}}{\Delta x^{2}} (v_{j+1} - v_{j}) = -a_{\Delta x}(u^{n}, v).$$
(5)

En introduisant le résultat de (5) dans (4) on obtient

$$\sum_{j=0}^{N} \left[\left(\frac{u_j^{n+1} - u_j^n}{\Delta t} \right)^2 - \left(\frac{u_j^n - u_j^{n-1}}{\Delta t} \right)^2 \right] + a_{\Delta x} (u^n, u^{n+1} - u^{n-1}) = 0 \Leftrightarrow E^{n+1} - E^n = 0$$
 (6)

ce qui prouve que l'énergie discrete se conserve.

Problème 2

1. Pour l'étude de la stabilité on cherchera à calculer les valeurs propres de la matrice d'amplification A(k) après avoir injecté $U_j^n = A(k)^n e^{2i\pi jk\Delta x}I$ dans le schéma

$$\frac{1}{2\Delta t} \left[2A(k) - (e^{2i\pi k\Delta x} + e^{-2i\pi k\Delta x})I \right] - \frac{1}{2\Delta x} J(e^{2i\pi k\Delta x} - e^{-2i\pi k\Delta x}) = 0,$$

$$\Leftrightarrow A(k) = \cos(2\pi k\Delta x)I + i\frac{\Delta t}{\Delta x} \sin(2\pi k\Delta x)J$$

Les valeurs propres de A(k), qu'on notera $G_{1,2}(k)$ sont données par

$$G_{1,2}(k) = \cos(2\pi k \Delta x) \pm i \frac{\Delta t}{\Delta x} \sin(2\pi k \Delta x) \tag{7}$$

Celles-ci sont de module inferieur à 1 si $\frac{\Delta t}{\Delta x} \leq 1$.

2. Pour l'étude de la stabilité on cherchera à calculer les valeurs propres de la matrice d'amplification A(k) après avoir injecté $U_j^n = A(k)^n e^{2i\pi jk\Delta x}I$ dans le schéma

$$\frac{1}{\Delta t} \left[A(k) - I \right] - \frac{1}{2\Delta x} J(e^{2i\pi k\Delta x} - e^{-2i\pi k\Delta x}) - \frac{\Delta t}{2\Delta x^2} J^2(e^{2i\pi k\Delta x} - 2 + e^{-2i\pi k\Delta x}) = 0,$$

$$\Leftrightarrow A(k) = I + i \frac{\Delta t}{\Delta x} \sin(2\pi k\Delta x) J + \frac{\Delta t^2}{\Delta x^2} (\cos(2\pi k\Delta x) - 1) J^2$$

Les valeurs propres de A(k), qu'on notera $G_{1,2}(k)$ sont données par

$$G_{1,2}(k) = 1 \pm i \frac{\Delta t}{\Delta x} \sin(2\pi k \Delta x) + \frac{\Delta t^2}{\Delta x^2} (\cos(2\pi k \Delta x) - 1)$$
 (8)

et leur module est

$$|G_{1,2}(k)|^2 = \left(1 + \frac{\Delta t^2}{\Delta x^2}(\cos(2\pi k \Delta x) - 1)\right)^2 + \frac{\Delta t^2}{\Delta x^2}\sin^2(2\pi k \Delta x).$$

Par calcul on déduit que $|G_{1,2}(k)| \le 1$ si $\frac{\Delta t}{\Delta x} \le 1$.