Copyright Notice

These slides are distributed under the Creative Commons License.

<u>DeepLearning.Al</u> makes these slides available for educational purposes. You may not use or distribute these slides for commercial purposes. You may make copies of these slides and use or distribute them for educational purposes as long as you cite <u>DeepLearning.Al</u> as the source of the slides.

For the rest of the details of the license, see https://creativecommons.org/licenses/by-sa/2.0/legalcode

Feature Engineering, Transformation and Selection

Welcome

Feature Engineering

Introduction to Preprocessing

"Coming up with features is difficult, time-consuming, and requires expert knowledge. Applied machine learning often requires careful engineering of the features and dataset."

Andrew Ng

Outline

- Squeezing the most out of data
- The art of feature engineering
- Feature engineering process

Squeezing the most out of data

- Making data useful before training a model
- Representing data in forms that help models learn
- Increasing predictive quality
- Reducing dimensionality with feature engineering

Art of feature engineering

Typical ML pipeline

Key points

- Feature engineering can be difficult and time consuming, but also very important to success
- Squeezing the most out of data through feature engineering enables models to learn better
- Concentrating predictive information in fewer features enables more efficient use of compute resources
- Feature engineering during training must also be applied correctly during serving

Feature Engineering

Preprocessing Operations

Outline

- Main preprocessing operations
- Mapping raw data into features
- Mapping numeric values
- Mapping categorical values
- Empirical knowledge of data

Main preprocessing operations

Data cleansing

Feature tuning

Representation transformation

Feature extraction

Feature construction

Mapping raw data into features

Raw Data

```
0: {
  house_info : {
  num_rooms : 6
  num_bedrooms : 3
  street_name: "Shorebird Way"
  num_basement_rooms: -1
...
  }
  Raw data doesn't
  come to us as feature
  vectors
```

Feature Engineering

Feature Vector

```
Process of creating features from raw data is feature engineering

9.321,
-2.20,
1.01,
0.0,
```

Mapping categorical values

Street names

{'Charleston Road', 'North Shoreline Boulevard', 'Shorebird Way', 'Rengstorff Avenue'}

Raw Data

Feature Vector

```
0: {
  house_info : {
  num_rooms : 6
  num_bedrooms : 3
  street_name: "Shorebird Way"
  num_basement_rooms: -1
...
  }
}
```

String Features can be handled with one-hot encoding

Feature Engineering

One-hot encoding
This has a 1 for "Shorebird way" and 0 for all others

```
street_name feature=
[0,0, ..., 0, 1, 0, ..., 0]
```

Categorical Vocabulary

```
# From a vocabulary list
vocabulary feature column = tf.feature column.categorical column with vocabulary list(
                           key=feature name,
                           vocabulary list=["kitchenware", "electronics", "sports"])
# From a vocabulary file
vocabulary_feature_column = tf.feature_column.categorical_column_with_vocabulary_file(
                            key=feature_name,
                            vocabulary file="product class.txt",
                            vocabulary size=3)
```

Empirical knowledge of data

Text - stemming, lemmatization, TF-IDF, n-grams, embedding lookup

Images - clipping, resizing, cropping, blur, Canny filters, Sobel filters, photometric distortions

Key points

- Data preprocessing: transforms raw data into a clean and training-ready dataset
- Feature engineering maps:
 - Raw data into feature vectors
 - Integer values to floating-point values
 - Normalizes numerical values
 - Strings and categorical values to vectors of numeric values
 - Data from one space into a different space

Feature Engineering

Feature Engineering Techniques

Outline

- Feature Scaling
- Normalization and Standardization
- Bucketizing / Binning
- Other techniques

Feature engineering techniques

Numerical Range

 Scaling
 Normalizing
 Standardizing

Grouping

BucketizingBag of words

Scaling

- Converts values from their natural range into a prescribed range
 - E.g. Grayscale image pixel intensity scale is [0,255]
 usually rescaled to [-1,1]

```
image = (image - 127.5) / 127.5
```

- Benefits
 - Helps neural nets converge faster
 - Do away with NaN errors during training
 - For each feature, the model learns the right weights

Normalization

$$X_{\text{norm}} = \frac{X - X_{\min}}{X_{\max} - X_{\min}}$$

$$X_{\text{norm}} \in [0, 1]$$

Normalization

Standardization (z-score)

- Z-score relates the number of standard deviations away from the mean
- Example:

$$X_{
m std} = rac{X - \mu}{\sigma}$$
 (z-score) $X_{
m std} \sim \mathcal{N}(0,\sigma)$

Standardization (z-score)

Bucketizing / Binning

Date Range	Represented as
< 1960	[1,0,0,0]
>= 1960 but < 1980	[0, 1, 0, 0]
>= 1980 but < 2000	[0, 0, 1, 0]
>= 2000	[0, 0, 0, 1]

Binning with Facets

Other techniques

Dimensionality reduction in embeddings

Principal component analysis (PCA)

- t-Distributed stochastic neighbor embedding (t-SNE)
- Uniform manifold approximation and projection (UMAP)

Feature crossing

TensorFlow embedding projector

- Intuitive exploration of high-dimensional data
- Visualize & analyze
- Techniques
 - o PCA
 - t-SNE
 - UMAP
 - Custom linear projections
- Ready to play
 - @ projector.tensorflow.org

Key points

- Feature engineering:
 - Prepares, tunes, transforms, extracts and constructs features.
- Feature engineering is key for model refinement
- Feature engineering helps with ML analysis

Feature Engineering

Feature Crosses

Outline

- Feature crosses
- Encoding features

Feature crosses

Encoding features

- healthy trees
- sick trees
- ___ Classification boundary

Need for encoding non-linearity

- healthy trees
- sick trees
- ___ Classification boundary

Census dataset

Key points

- Feature crossing: synthetic feature encoding nonlinearity in feature space.
- Feature coding: transforming categorical to a continuous variable.

Preprocessing Data At Scale

Probably not ideal

Python

Java

ML Pipeline

Outline

- Inconsistencies in feature engineering
- Preprocessing granularity
- Pre-processing training dataset
- Optimizing instance-level transformations
- Summarizing the challenges

Preprocessing data at scale

Real-world models: terabytes of data

Large-scale data processing frameworks

Consistent transforms between training & serving

Inconsistencies in feature engineering

Training & serving code paths are different Mobile (TensorFlow Lite) Diverse deployments scenarios Server (TensorFlow Serving) Web (TensorFlow JS) Risks of introducing training-serving skews Skews will lower the performance of your serving model

Preprocessing granularity

Transformations		
Instance-level	Full-pass	
Clipping	Minimax	
Multiplying	Standard scaling	
Expanding features	Bucketizing	
etc.	etc.	

When do you transform?

Pre-processing training dataset

Pros	Cons
Run-once	Transformations reproduced at serving
Compute on entire dataset	Slower iterations

How about 'within' a model?

Transforming within the model

Pros	Cons
Easy iterations	Expensive transforms
Transformation guarantees	Long model latency
	Transformations per batch: skew

Why transform per batch?

- For example, normalizing features by their average
- Access to a single batch of data, not the full dataset
- Ways to normalize per batch
 - Normalize by average within a batch
 - Precompute average and reuse it during normalization

Optimizing instance-level transformations

- Indirectly affect training efficiency
- Typically accelerators sit idle while the CPUs transform
- Solution:
 - Prefetching transforms for better accelerator efficiency

Summarizing the challenges

- Balancing predictive performance
- Full-pass transformations on training data
- Optimizing instance-level transformations for better training efficiency (GPUs, TPUs, ...)

Key points

- Inconsistent data affects the accuracy of the results
- Need for scaled data processing frameworks to process large datasets in an efficient and distributed manner