NUM cvičné příklady pHabala 2019

NUM: Cvičné příklady—numerická matematika

Všechny úlohy by měly být řešitelné bez pomoci kalkulačky. Ale použít je můžete.

Úlohy označené symbolem (+) jsou teoretičtějšího rázu a mohou se objevit u ústní zkoušky nebo v teoretické otázce písemky.

Aproximace.

- **a0a.** Najděte aproximační vzorec pro funkci $\ln(x)$ na okolí bodu a=1 s chybou $O(h^4)$.
- **a0b.** Najděte lineární aproximaci pro funkci $\frac{1}{x}$ na okolí bodu a=2.
- **a0c.** Najděte aproximační vzorec pro funkci $\operatorname{arctg}(x)$ na okolí bodu a=0 s chybou $O(h^3)$.
- **a1a.** Pomocí lineární aproximace odhadněte $\sqrt{4.5}$.
- **a1b.** Pomocí kvadratické aproximace odhadněte $e^{0.4}$.
- **a1c.** Pomocí kvadratické aproximace odhadněte $\cos(\pi + 0.5)$.

Integrály.

- i0a. Vysvětlete obrázkem a odvoďte vzorce pro obdélníkovou metodu pro odhad určitého integrálu.
- i0b. Vysvětlete obrázkem a odvoďte vzorec pro lichoběžníkovou metodu pro odhad určitého integrálu.
- i**0c.** Vysvětlete pojem řád metody pro metody numerické integrace. Uveďte řád metody pro metody obdélníkovou, lichoběžníkovou a Simpsonovu.
- i0d. Pomocí metody řádu 3 jsme vytvořili odhad integrálu s počtem dělení n = 100 a máme důvod se domnívat, že jeho chyba je omezena číslem $e_n = 0.01$. Odhadněte, jaká asi bude chyba odhadu, když jej vytvoříme s počtem dělení n = 200.

Jaký počet dělení máme použít, chceme-li mít chybu $\varepsilon = 0.0001$?

i0e. Pomocí lichoběžníkové metody jsme vytvořili odhad integrálu s počtem dělení n = 100 a máme důvod se domnívat, že jeho chyba je omezena číslem $e_n = 0.016$. Odhadněte, jaká asi bude chyba odhadu, když jej vytvoříme s počtem dělení n = 200.

Jaký počet dělení máme použít, chceme-li mít chybu $\varepsilon = 0.001$?

- **i1a.** Odhadněte pomocí obdélníkové metody integrál $\int_{0}^{2} \sqrt{x} \, dx$ s počtem dělení n=2.
- **i1b.** Odhadněte pomocí obdélníkové metody integrál $\int_{2}^{6} \frac{1}{2}x 1 dx$ s krokem h = 2.
- **i2a.** Odhadněte pomocí lichoběžníkové metody integrál $\int_{0}^{2} \sqrt{x} \, dx$ s krokem h = 1.
- **i2b.** Odhadněte pomocí lichoběžníkové metody integrál $\int_{2}^{6} \frac{1}{2}x 1 dx$ s počtem dělení n = 2.

Kořeny funkcí.

- **k0a.** Vysvětlete pojem řád iterační metody pro hledání kořene funkce či pevného bodu. Uveďte řád metody pro bisekci a Newtonovu metodu.
- **k0b.** Pomocí iterační metody řádu 2 jsme vytvořili odhady x_6 , x_7 čísla r. Máme důvod si myslet, že chyby jsou přibližně $E_6 = 0.01$, $E_7 = 0.0003$.

Odhadněte, kolik asi bude chyba E_8 další iterace.

- k1a. Napište algoritmus metody bisekce pro hledání kořenů. Vysvětlete obrázkem.
- **k1b.** Aplikujte metodu bisekce pro hledání kořenů na tuto úlohu: Hledáme řešení rovnice $x^2 = x + 1$ na intervalu (0, 4).

Předveďte první tři kroky iterace.

NUM cvičné příklady pHabala 2019

k1c. Aplikujte metodu bisekce pro hledání kořenů na tuto úlohu: Hledáme řešení rovnice $\frac{1}{x} = x - 2$ na intervalu $\langle 1, 9 \rangle$.

Předveďte první tři kroky iterace.

k2a. Napište algoritmus Newtonovy metody pro hledání kořenů. Vysvětlete obrázkem.

k2b. Aplikujte Newtonovu metodu pro hledání kořenů na tuto úlohu: Hledáme řešení rovnice $x^2 = x + 1$, iniciační odhad je $x_0 = 0$.

Předveďte první dva kroky iterace.

k2c. Aplikujte Newtonovu metodu pro hledání kořenů na tuto úlohu: Hledáme řešení rovnice $\frac{1}{x} = x - 2$, iniciační odhad je $x_0 = 1$.

Předveďte první dva kroky iterace.

k2d. Sestavte pomocí Newtonovy metody iterační schéma, které by mělo najít číslo x splňující $x^3 = A$ (tedy počítáme $\sqrt[3]{A}$).

k2e. Sestavte pomocí Newtonovy metody iterační schéma, které by mělo najít číslo x splňující $e^{-x} = x$.

k2f(+). Odvoďte obecný vzorec Newtonovy metody pro hledání kořene.

k3a. Napište algoritmus metody přímé iterace pro hledání pevného bodu funkce. Uveďte, jak odhadnout konvergenci. Vysvětlete, jak a k čemu se používá relaxace.

k3b. Aplikujte metodu pevného bodu na tuto úlohu: Hledáme řešení rovnice $x^2 = x + 1$, iniciační odhad je $x_0 = 3$.

Předveďte první dva kroky iterace.

Odhadněte, zda chování na okolí x_0 vypadá optimisticky.

k3c. Aplikujte metodu pevného bodu na tuto úlohu: Hledáme řešení rovnice $\frac{1}{x} = x - 2$, iniciační odhad je $x_0 = 3$.

Předveďte první dva kroky iterace.

Odhadněte, zda chování na okolí x_0 vypadá optimisticky.

 $\mathbf{k3d}(+)$. U iterací 3b a 3c napište obecný relaxovaný iterační vzorec a pak najděte optimální λ pro zadané x_0 .

Diferenciální rovnice.

d0a. Vysvětlete pojem řád metody pro metody řešení počátečních úloh u diferenciálních rovnic. Uveďte řád metody pro Eulerovu metodu. Jakého řádu je jedna z velmi populárních kvalitních metod typu Runge-Kutta?

d0b. Je dána počáteční úloha y' = f(x, y), $y(x_0) = y_0$. Pomocí jisté metody řádu 2 jsme nalezli odhad řešení na intervalu $\langle x_0, x_0 + T \rangle$ s krokem h a máme důvod se domnívat, že globální chyba je přibližně 0.0027.

Jaká bude asi chyba odhadu řešení, které získáme s krokem $\frac{1}{3}h$?

Jaký asi bude vhodný krok, chceme-li chybu 0.00001?

d0c. Je dána počáteční úloha y' = f(x, y), $y(x_0) = y_0$. Pomocí jisté metody řádu 4 jsme nalezli odhad řešení na intervalu $\langle x_0, x_0 + T \rangle$ s krokem h a máme důvod se domnívat, že globální chyba je přibližně 0.004.

Jaká bude asi chyba odhadu řešení, které získáme s krokem $\frac{1}{2}h$?

d1a. Je dána počáteční úloha y'=x+y, y(1)=13. Sestavte iterační rovnice pro nalezení přibližného řešení na intervalu $\langle 1,5\rangle$ s krokem h=1 pomocí Eulerovy metody.

Spočítejte první tři body.

d1b. Je dána počáteční úloha y' = 2xy, y(1) = 3. Sestavte iterační rovnice pro nalezení přibližného řešení na intervalu $\langle 1, 3 \rangle$ s počtem dělení n = 4 pomocí Eulerovy metody. Spočítejte první tři body.

Soustavy rovnic.

s0a. Vysvětlete pojem výpočetní náročnost metody.

Uveďte výpočetní náročnost Gaussovy eliminace a zpětného (či dopředného) dosazení. Diskutujte výpočetní náročnost iteračních metod pro řešení soustav.

s0b. Máme metodu pro zpracování matic s výpočetní náročností n^3 . Jestliže pro n=1000 trval běh programu 5 hodin, jak dlouho asi potrvá běh programu pro n = 2000?

s0c. Vysvětlete, jak se řeší soustavy lineárních rovnic pomocí Gaussovy eliminace a zpětné substituce. Diskutujde výpočetní náročnost.

Vysvětlete, jak se řeší soustavy lineárních rovnic pomocí iteračních metod.

s
1a. Uvažujte soustavu
$$\begin{bmatrix} x+y-z=-2,\\ -x&+2z=3,\\ x+y+z=2. \end{bmatrix}$$
Použijte ji k vysvětlení, jak se řeší soustavy lineárních rovnic pomocí Gaussovy eliminace a zpětné

substituce.

s1b. Uvažujte soustavu
$$\begin{bmatrix} x_1 + 2x_2 + x_3 = 0, \\ x_1 + 3x_2 = -2, \\ -2x_1 - 4x_2 = 2. \end{bmatrix}$$

Použijte ji k vysvětlení, jak se řeší soustavy lineárních rovnic pomocí Gaussovy eliminace a zpětné

substituce.
$$\begin{bmatrix} x & -z=1,\\ 2x+y-z=1, & \text{Připravte pro ni iterační schéma pomocí Gauss-Seidelovy}\\ x+2y-z=-1. & \end{bmatrix}$$
 metody.

metody.

Ukažte dva kroky s počátečním vektorem $\vec{x}_0 = (0, 0, 0)$.

(+) Připravte pro ni iterační schéma pomocí Jacobiho metody.

Ukažte dva kroky s počátečním vektorem $\vec{x}_0 = (0, 0, 0)$.

s2b. Uvažujte soustavu
$$\begin{bmatrix} x & +z=2\\ x-y+2z=1. & \text{Připravte pro ni iterační schéma pomocí Gauss-Seidelovy}\\ x+2y+z=1 & \end{bmatrix}$$

metody.

Ukažte dva kroky s počátečním vektorem $\vec{x}_0 = (0, 0, 0)$.

(+) Připravte pro ni iterační schéma pomocí Jacobiho metody.

Ukažte dva kroky s počátečním vektorem $\vec{x}_0 = (0, 0, 0)$.

NUM cvičné příklady pHabala 2019

Řešení

a0a. $\ln(1+h) = h - \frac{1}{2}h^2 + \frac{1}{3}h^3 + O(h^4)$ nebo $\ln(x) = (x-1) - \frac{1}{2}(x-1)^2 + \frac{1}{3}(x-1)^3 + O((x-1)^4)$.

a0b. Vlastně hledáme tečnu. $\frac{1}{x} = \frac{1}{2} - \frac{1}{4}(x-2) + O((x-2)^2)$ nebo $\frac{1}{2+h} = \frac{1}{2} - \frac{1}{4}h + O(h^2)$.

a0c. $arctg(x) = (x - 0) + O(x^3) = x + O(x^3)$ nebo $arctg(h) = arctg(0 + h) = h + O(h^3)$.

a1a. Volba: a = 4. $\sqrt{4+h} \approx 2 + \frac{1}{4}h$, proto $\sqrt{4.5} \approx 2 + \frac{1}{4} \cdot 0.5 = 2.125$.

a1b. Volba: a = 0. $e^h \approx 1 + h + \frac{1}{2}h^2$, proto $e^{0.4} \approx 1 + 0.4 + \frac{1}{2} \cdot 0.16 = 1.48$.

a1c. $\cos(\pi + h) \approx -1 + \frac{1}{2}h^2$, proto $\cos(\pi + 0.5) \approx -1 + \frac{1}{2} \cdot 0.0.25 = -0.875$.

i0c. Pro každý integrál existuje C aby $|E_n| \leq C \frac{1}{n^q}$. Praktická verze: $|E_h| \leq C h^q$.

Metoda levých/pravých obdélníků: řád 1. Lichoběž. metoda: řád 2. Simpsonova metoda: řád 4.

i0d. $E_{2n} \approx C \frac{1}{(2n)^3} = \frac{1}{8} C \frac{1}{n^3} \approx \frac{1}{8} E_n$. Proto $E_{200} \approx \frac{1}{8} E_{100} = 0.00125$.

Chceme $0.0001 = E_{100a} \approx \frac{1}{a^3} E_{100} = \frac{1}{a^3} \cdot 0.01$, odtud $a = \sqrt[3]{100}$, tedy chceme $n = 100 \cdot \sqrt[3]{100}$.

i0e. Řád 2. $E_{2n} \approx C_{\frac{1}{(2n)^2}} = \frac{1}{4}C_{\frac{1}{n^3}} \approx \frac{1}{4}E_n$. Proto $E_{200} \approx \frac{1}{4}E_{100} = 0.004$.

Cheeme $0.001 = E_{100a} \approx \frac{1}{a^2} E_{100} = \frac{1}{a^2} \cdot 0.016$, odtud $a = \sqrt{16} = 4$, tedy cheeme n = 400.

i1a. h = 1, body 0, 1, 2. Dvě možnosti.

Levé obdélníky: $I \approx 1 \cdot [\sqrt{0} + \sqrt{1}] = 1$. Pravé obdélníky: $I \approx 1 \cdot [\sqrt{1} + \sqrt{2}] = 1 + \sqrt{2}$.

i1b. n=2, body 2, 4, 6. Dvě možnosti.

Levé obdélníky: $I \approx 2 \cdot [0+1] = 2$. Pravé obdélníky: $I \approx 2 \cdot [1+2] = 6$.

i2a. n=2, body 0,1,2. $I\approx \frac{1}{2}\cdot 1\cdot [\sqrt{0}+2\sqrt{1}+\sqrt{2}]=1+\frac{1}{2}\sqrt{2}$.

i2b. h = 2, body 2, 4, 6. $I \approx \frac{1}{2} \cdot 2 \cdot [0 + 2 \cdot 1 + 2] = 4$.

k0a. Pro konkrétní posloupnost $\{x_k\}$ generovanou metodou řádu q by mělo (přibližně, pro velká k, pokud konverguje) platit $|E_{k+1}| \approx C|E_k|^q$, kde C je speciální hodnota pro tuto posloupnost (nikoliv obecná konstanta metody).

Bisekce: q = 1. Newton: q = 2.

k0b. Mělo by platit $|E_7| \approx C|E_6|^2$ neboli $0.0003 = c \cdot 0.0001$. Odtud $c \approx 3$. Následně $|E_8| \approx c|E_7|^2 \approx 3 \cdot 0.00000009 = 0.00000027.$

k1b. Převod: $x^2 - x - 1 = 0$, $f(x) = x^2 - x - 1$.

Kontrola: f(0) = -1 < 0, f(4) = 11 > 0, v pořádku.

(0) $a_0 = 0$, $f(a_0) < 0$; $b_0 = 4$, $f(b_0) > 0$.

Střed $m_0 = \frac{1}{2}(0+4) = 2$, f(2) = 1 > 0, proto $a_1 = a_0$, $b_1 = m_0$.

(1) $a_1 = 0$, $f(a_1) < 0$; $b_1 = 2$, $f(b_1) > 0$.

Střed $m_1 = 1$, f(1) = -1 < 0, proto $a_2 = m_1$, $b_2 = b_1$.

(2) $a_2 = 1$, $f(a_2) < 0$; $b_2 = 2$, $f(b_2) > 0$.

Střed $m_2 = 1.5$, f(1.5) = -0.25 < 0, proto $a_3 = m_2$, $b_3 = b_2$.

k1c. Převod: $\frac{1}{x} - x + 2 = 0$, $f(x) = \frac{1}{x} - x + 2$. Kontrola: f(1) = 2 > 0, $f(9) = \frac{1}{9} - 7 < 0$, v pořádku.

(0) $a_0 = 1$, $f(a_0) > 0$; $b_0 = 9$, $f(b_0) < 0$.

Střed $m_0 = \frac{1}{2}(1+9) = 5$, $f(5) = \frac{1}{5} - 3 < 0$, proto $a_1 = a_0$, $b_1 = m_0$.

(1) $a_1 = 1$, $f(a_1) > 0$; $b_1 = 5$, $f(b_1) < 0$.

Střed $m_1 = 3$, $f(3) = \frac{1}{3} - 1 < 0$, proto $a_2 = a_1$, $b_2 = m_1$.

(2) $a_2 = 1$, $f(a_2) > 0$; $b_2 = 3$, $f(b_2) < 0$.

Střed $m_2 = 2$, $f(2) = \frac{1}{2} > 0$, proto $a_3 = m_2$, $b_3 = b_2$.

k2b. Převod: $x^2 - x - 1 = 0$, $f(x) = x^2 - x - 1$, pak f'(x) = 2x - 1. $x_{k+1} = x_k - \frac{x_k^2 - x_k - 1}{2x_k - 1} = \frac{x_k^2 + 1}{2x_k - 1}$. $x_0 = 0$, $x_1 = -1$, $x_2 = -\frac{2}{3}$, ...

k2c. Převod: $\frac{1}{x} - x + 2 = 0$, $f(x) = \frac{1}{x} - x + 2$, pak $f'(x) = -\frac{1}{x^2} - 1$. $x_{k+1} = x_k - \frac{\frac{1}{x_k} - x_k + 2}{-\frac{1}{x_k^2} - 1} = \frac{2x_k + 2x_k^2}{1 + x_k^2}$. $x_0 = 1$, $x_1 = 2$, $x_2 = \frac{12}{5}$, ...

NUM cvičné příklady pHabala 2019

k2d.
$$f(x) = x^3 - A$$
, pak $f'(x) = 3x^2$ a tedy $x_{k+1} = x_k - \frac{x_k^3 - A}{3x_k^2} = \frac{1}{3} (2x_k + \frac{A}{x_k^2})$.

k2e.
$$f(x) = e^{-x} - x$$
, pak $f'(x) = -e^{-x} - 1$ a tedy $x_{k+1} = x_k - \frac{e^{-x_k} - x_k}{-e^{-x_k} - 1} = x_k + \frac{e^{-x_k} - x_k}{e^{-x_k} + 1} = \frac{x_k + 1}{1 + e^{x_k}}$.

k3b. Převod na pevný bod: například $x^2 - 1 = x$, tedy $\varphi = x^2 - 1$.

Iterace: $x_{k+1} = \varphi(x_k) = x_k^2 - 1$. $x_0 = 3, x_1 = 3^2 - 1 = 8, x_2 = 8^2 - 1 = 63, \dots$

Hodně napoví $\varphi'(x) = 2x$, pro x = 3 vyjde $\varphi'(3) = 6 \ge 1$, to nevypadá dobře.

Alternativní převod na pevný bod: $x = \sqrt{x+1}$, tedy $\varphi = \sqrt{x+1}$.

Iterace: $x_{k+1} = \varphi(x_k) = \sqrt{x_k + 1}$. $x_0 = 3, x_1 = \sqrt{3+1} = 2, x_2 = \sqrt{2+1} = \sqrt{3}, \dots$

Hodně napoví $\varphi'(x) = \frac{1}{2\sqrt{x+1}}$, pro x = 3 vyjde $\varphi'(3) = \frac{1}{4} < 0$, to vypadá nadějně. Druhá otázka je, zda φ zobrazuje nějaký interval I okolo x=3 do sebe, buď by se to prozkoumalo, nebo se prostě zkusí tato nadějná iterace.

k3c. Převod na pevný bod: například $\frac{1}{x}+2=x$, tedy $\varphi=\frac{1}{x}+2$. Iterace: $x_{k+1}=\varphi(x_k)=\frac{1}{x_k}+2$. $x_0=3, x_1=\frac{1}{3}+2=\frac{7}{3}, x_2=\frac{3}{7}+2=\frac{17}{7}, \ldots$ Hodně napoví $\varphi'(x)=-\frac{1}{x^2}$, pro x=3 vyjde $|\varphi'(3)|=\frac{1}{9}<1$, což je nadějné. Druhá otázka ale je, zda φ zobrazuje nějaký interval I okolo x=3 do sebe, buď by se to prozkoumalo, nebo se prostě zkusí tato nadějná iterace.

Alternativní převod na pevný bod: $x = \frac{1}{x-2}$, tedy $\varphi = \frac{1}{x-2}$.

Iterace: $x_{k+1} = \varphi(x_k) = \frac{1}{x_k - 2}$. $x_0 = 3$, $x_1 = \frac{1}{3-2} = 1$, $x_2 = \frac{1}{1-2} = -1$, ... Hodně napoví $\varphi'(x) = \frac{-1}{(x-2)^2}$, pro x = 3 vyjde $|\varphi'(3)| = 1$, to nevypadá dobře (ale zase ne moc špatně). Experiment napoví.

k3d(+).

Re: k3b. Iterace: $x_{k+1} = \lambda(x_k^2 - 1) + (1 - \lambda)x_k$.

$$\varphi'_{\lambda}(3) = 0 \implies \lambda_{\text{opt}} = -\frac{1}{5}.$$

Alternativa: Iterace: $x_{k+1} = \lambda \sqrt{x_k + 1} + (1 - \lambda)x_k$.

$$\varphi'_{\lambda}(3) = 0 \implies \lambda_{\text{opt}} = \frac{4}{3}.$$

Re: k3c. Iterace: $x_{k+1} \stackrel{3}{=} \lambda \left(\frac{1}{x_k} + 2\right) + (1 - \lambda)x_k$.

$$\varphi'_{\lambda}(3) = 0 \implies \lambda_{\text{opt}} = \frac{9}{10}.$$

 $\varphi_{\lambda}'(3) = 0 \implies \lambda_{\text{opt}} = \frac{9}{10}.$ Alternativa: Iterace: $x_{k+1} = \lambda_{\frac{1}{x_k-2}} + (1-\lambda)x_k.$

$$\varphi_{\lambda}'(3) = 0 \implies \lambda_{\text{opt}} = \frac{1}{2}.$$

d0b. Dle řádu metody by měla chyba přibližně splňovat $E_h \approx ch^2$. Proto

$$E_{h/3} \approx c \left(\frac{1}{3}h\right)^2 = \frac{1}{9}ch^2 = \frac{1}{9} \cdot 0.0027 = 0.0003.$$

Cheeme $0.00001 = E_{ah} = a^2 E_h = a^2 \cdot 0.0027$, odtud $a = \frac{1}{\sqrt{270}}$, tedy cheeme krok $\frac{h}{\sqrt{270}}$.

d0c. Dle řádu metody by měla chyba přibližně splňovat $E_h \approx ch^4$. Proto

$$E_{h/2} \approx c(\frac{1}{2}h)^4 = \frac{1}{16}ch^2 = \frac{1}{16} \cdot 0.004 = 0.00025.$$

d1a. Hlavní iterační rovnice je $y_{k+1} = y_k + h \cdot f(x_k, y_k)$. Krok je zadán, z něj máme počet dělení n=4. Schéma:

(0)
$$x_0 = 1$$
, $y_0 = 13$.

(1)
$$x_{k+1} = x_k + 1$$
, $y_{k+1} = y_k + 1 \cdot (x_k + y_k) = x_k + 2y_k$ pro $i = 0, \dots, 3$.

Body: (1,13), (2,27), (3,56).

d1b. Hlavní iterační rovnice je $y_{k+1} = y_k + h \cdot f(x_k, y_k)$. Počet dělení n = 4 zadán, odtud krok metody $h = \frac{1}{2}$. Schéma:

$$(0) x_0 = 1, y_0^2 = 3.$$

(1)
$$x_{k+1} = x_k + \frac{1}{2}$$
, $y_{k+1} = y_k + \frac{1}{2} \cdot (2x_k y_k) = (x_k + 1)y_k$ pro $i = 0, \dots, 3$.

Body: (1,3), (1.5,6), (2,15).

s0b. Kubická náročnost znamená, že doba běhu programu je úměrná n^3 , tedy $T_n \approx c n^3$. Pokud nzdvojnásobíme, dostaneme $T_{2n}=c(2n)^3=8cn^3=8T_n$.

Takže pro $n=2000=2\cdot 1000$ se dá čekat běh programu o trvání $8\cdot 5=40$ hodin.

NUM cvičné příklady pHabala 2019

s1a. Krok 1 (GEM): Rozšířenou matici soustavy $\begin{pmatrix} 1 & 1 & -1 & -2 \\ -1 & 0 & 2 & 3 \\ 1 & 1 & 1 & 2 \end{pmatrix}$ pomocí Gausssovy eliminace

y + z = 1 řešíme od poslední k první: Krok 2 (BS): Vzniklou soustavu rovnic

z = 2, y = 1 - z = -1, x = -2 - y + z = 1.

s1b. Krok 1 (GEM): Rozšířenou matici soustavy $\begin{pmatrix} 1 & 2 & 1 & 0 \\ 1 & 3 & 0 & -2 \\ -2 & -4 & 0 & 2 \end{pmatrix}$ pomocí Gausssovy eliminace

převedeme na horní trojúhelníkovou: $\begin{pmatrix} 1 & 2 & 1 & 0 \\ 0 & 1 & -1 & -2 \\ 0 & 0 & 2 & 2 \end{pmatrix}$

Krok 2 (BS): Vzniklou soustavu rovnic $x_2 - x_3 = -2$ řešíme od poslední k první:

 $x_3 = 1, x_2 = -2 + x_3 = -1, x_1 = -2x_2 - x_3 = 1.$

s2a. Soustavu převedeme na tvar $\begin{bmatrix} x=1+z \\ y=1-2x+z. \\ \vdots \end{bmatrix}$

Toto jsou iterační rovnice. Pokud používáme nejnovější hodnoty proměnných, vznikne Gauss-Seidelova iterace. Formálně:

 $x_{k+1} = 1 + z_k$ $\begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \implies \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix} \implies \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix} \implies \cdots$ $y_{k+1} = 1 - 2x_{k+1} + z_k$

Jacobiho metoda provádí update proměnných až na konci iterace, tedy

 $\begin{bmatrix} x_{k+1} = 1 + z_k \\ y_{k+1} = 1 - 2x_k + z_k \\ z_{k+1} = 1 + x_k + 2y_k \end{bmatrix}$ $\begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \implies \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \implies \begin{pmatrix} 2 \\ 0 \\ {}_{A} \end{pmatrix} \implies \cdots$

s2b. Soustavu převedeme na tvar z = 1 - x - 2y

Toto jsou iterační rovnice. Pokud používáme nejnovější hodnoty proměnných, vznikne Gauss-Seidelova iterace. Formálně:

 $\begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \implies \begin{pmatrix} 2 \\ 1 \\ -3 \end{pmatrix} \implies \begin{pmatrix} 5 \\ -2 \\ 0 \end{pmatrix} \implies \cdots$ $y_{k+1} = -1 + x_{k+1} + 2z_k$ $L z_{k+1} = 1 - x_{k+1} - 2y_{k+1}$

Jacobiho metoda provádí update proměnných až na konci iterace, tedy

 $\begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \implies \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix} \implies \begin{pmatrix} 1 \\ 3 \\ 1 \end{pmatrix} \implies \cdots$