

Índice

- OS-Tree
- 2. AVD
- 3. Distance-Based Indexing Methods

(Overlapped-Split tree)

OS-Tree

Hiperplanos paralelos que limitan las coberturas

- Puntos de datos (S)
- Puntos de entrenamiento (T)

1) Elegir los puntos que componen los subconjuntos S_{al} y S_{ar}

Buscamos el plano ortogonal a la dirección de la mayor variación de los datos.

PCA!

2) Elegir un plano de partición I_a para la celda correspondiente a a.

Minimizar el grado en que las regiones de Voronoi se superponen al lado contrario

SVM!

1) Elegir los puntos que componen los subconjuntos S_{al} y S_{ar}

2) Elegir un plano de partición I_a para la celda correspondiente a a

Support Vector Machine (SVM)

Support Vector Machine (SVM)

Support Vector Machine (SVM)

Tipo de SVM	Kernel de Mercer	Descripción
Función de base radial (RBF) o gaussiana	$K(x_1,x_2) = \exp\!\left(-rac{\ x_1-x_2\ ^2}{2\sigma^2} ight)$	Aprendizaje de una clase. σ representa la anchura del kernel.
Lineal	$K(x_1,x_2) = x_1^T x_2$	Aprendizaje de dos clases.
Polinómica	$K(x_1,x_2) = \left(x_1^T x_2 + 1 ight)^ ho$	ho representa el orden del polinomio.
Sigmoide	$K(x_1,x_2) = anhig(eta_0 x_1^{T} x_2 + eta_1ig)$	Representa un kernel de Mercer solo para determinados valores eta_0 y eta_1 .

Probabilidad de Fallo

$$\frac{|S|}{|T|}$$
 Cuando $|T|$ es grande

Este algoritmo es útil una cantidad media de dimensiones (10 - 30)

En estas dimensiones hay una buena aproximación

k vecinos más cercanos

- □ Overlap region
- Query point
- Data point
- -- Voronoi diagram

ϵ -nearest neighbor $(\epsilon$ -NN)

Candidato a vecino más cercano

Vecino más cercano real:

El punto p es ϵ -NN de q si: $d(q, o') \le (1 + \epsilon) \cdot d(q, o)$

AVD

(Approximate Voronoi Diagram)

Voronoi Diagram

Revisar los hijos de todos los nodos internos

Verificar si son WSP

Revisar los hijos de todos los nodos internos

Verificar si son WSP

Revisar los hijos de todos los nodos internos

Verificar si son WSP

 ${a,b,c},{g,h,i,j}$

Revisar los hijos de todos los nodos internos

Verificar si son WSP

$${a,b,c},{g,h,i,j}$$

 ${d,e,f},{g,h,i,j}$

Revisar los hijos de todos los nodos internos

Verificar si son WSP

