Valor esperado y varianza de una variable aleatoria

Jessica Nathaly Pulzara Mora jessica.pulzara@udea.edu.co

Departamento de ingeniería de sistemas

Valor esperado

Sea X una v.a continua (discreta) con f.d.p (f.m.p) $f_X(x)$ (p(x)). La esperanza de X, o el valor esperado de X, o el valor promedio de X, denotado como E[X], se define así:

$$E[X] = \sum_{x} xp(x)$$
, si es v.a discreta
 $E[X] = \int_{-\infty}^{\infty} xf_X(x)dx$, si es v.a continua

- Es usualmente denotado como μ o μ_X .
- Cuando $E[X] < \infty$, se dice que la esperanza existe.
- No existe si la integral no converge a un valor finito.

Propiedades

•
$$E[a] = a$$
.

•
$$E[aX + b] = E[aX] + E[b] = aE[X] + b$$
.

• Si g(X) es función de X, entonces:

$$E[g(X)] = \sum_{x} g(x)p(x)$$
, si es v.a discreta $E[g(X)] = \int_{-\infty}^{\infty} g(x)f_X(x)dx$, si es v.a continua

Varianza

Sea $g(X) = (X - \mu_X)$, la varianza de X, denotada como Var[X] o σ_X^2 o σ^2 , se define así:

$$Var[X] = E[(X - \mu_X)^2] = E[X^2] - (E[X])^2$$

Propiedades

- Var[a] = 0.
- $Var[aX + b] = a^2 Var[X]$.
- La raiz cuadrada de Var[X] se llama Desviación Estándar, se denota como σ.

Ejemplo

Sea X una variable aleatoria que representa el número de clientes que llega a una tienda en un período de 1 hora. Dada la siguiente información:

X								-		
p(x)	0.05	0.10	0.10	0.10	0.20	0.25	0.10	0.05	0.05	-

Hallar el valor esperado y la varianza de la variable aleatoria.

Ejemplo

Sea X una variable aleatoria con f.d.p dada por:

$$f(x) = \begin{cases} kx(1-x) & \text{si } 0 < x < 1 \\ 0 & \text{en otro caso} \end{cases}$$

Calcule E[X] y V[X]

Ejemplo

Un ingeniero estudia la resistencia a la flexión de un material de acero sometido a la tensión. Los datos experimentales le permiten construir el siguiente gráfico de densidad.

Hallar la resistencia media teórica y su desvaición estándar.