Содержание

1		словой образ и числа Гау-Ю. Определения и уже имею- еся результаты	1
2	Классификация числе Гау- Ю для матриц размера 3×3		4
3	Кла	ассификация чисел Гау-Ю для матриц размера $4 imes 4$	4
	3.1	Матрица является нормальной	6
	3.2	Матрица унитарно эквивалентна матрице с 2 блоками размера 1×1 и с одним блоком 2×2	6
	3.3	Матрица унитрано эквивалентна матрице, состоящей из двух блоков 2×2	6
	3.4	Матрица унитарно эквивалентна матрице с блоками 1×1 и 3×3	7
	3.5	Матрица не унитарно эквивалентна матрице с меньшими бло-	
		ками	7
4	Примеры вчисления числового образа и чисел Гау-Ю для		
	мат	риц малых размерностей	8
	4.1	Матрицы размера 3×3	8
	4.2	Матрицы размера 4×4	8
5	Отн	хрытые вопросы	9
	5.1		9
	5.2		9

1 Числовой образ и числа Гау-Ю. Определения и уже имеющиеся результаты

Рассмотрим векторное пространство размерности n над полем комплексных чисел с эрмитовым скалярным произведением $<\eta,\ \xi>=\sum\limits_{i=1}^n\eta_i\bar{\xi_i}.$ Пусть дана матрица $A\in\mathbb{C}^{n\times n},$ определим для нее числовой образ

$$W(A) = \{ \langle Ax, x \rangle \mid \langle x, x \rangle = 1 \}.$$

Из [1, Теорема 1.3] мы знаем, что это будет выпуклое компактное подмножество в \mathbb{C} .

Также определим для неё число Гау-Ю k(A) как максимальное количество таких ортонормированных векторов $\{x_1,\ldots,x_j\}$, что $< Ax_j,x_j>$ лежит на границе W(A).

Пусть V— такая матрица $k \times n$, что $V^*V = I_k$. Тогда определим k на k компрессию матрицы A как V^*AV . Заметим, что k(A) можно определить как максимальный размер k на k компрессии, у которой все диагональные элементы лежат на границе числового образа.

Перечислим основные факты о числовом образе и числе Гау-Ю:

- **1.1** [1, Теорема 1.2]Пусть дана матрица A размерности n. Тогда для числового образа этой матрицы верны следующие факты:
 - (a) Пусть $\alpha, \beta \in \mathbb{C}$, I единичная матрица размера n. Тогда верен следующий факт: $W(\alpha A + \beta I) = \alpha W(A) + \beta$.
 - (b) Пусть U унитарная матрица размера n, тогда $W(U^*AU = W(A)$.
- **1.2** [1, Теорема 1.4] Пусть матрица $A \in \mathbb{C}^{2 \times 2}$ и λ_1, λ_2 ее собственные значения. Тогда W(A) эллиптический диск с фокусами λ_1, λ_2 и длиной малой оси $\{\operatorname{tr}(A^*A) |\lambda_1|^2 |\lambda_2|^2\}^{\frac{1}{2}}$.

Доказательство. Приведем легкое доказательство этого факта, взятое из статьи [4]. Пусть W(A) — числовой образ матрицы A размера 2×2 .

Пусть A - нормальная матрица. Тогда она унитарно эквивалентна диагональной матрице с собственными значениями на диагонали $D(\lambda_1, \lambda_1)$. В силу факта **1.1.b** числовые образы данных матриц совпадают, и мы имеем:

$$W(A) = W(D) = \{\lambda_1 |x_1|^2 + \lambda_2 |x_2|^2 : x_1, x_2 \in \mathbb{C}, |x_1|^2 + |x_2|^2 = 1\}$$

Это будет отрезок, на который можно смотреть как на эллипс и фокусами в λ_1 и λ_2 и длиной меньшей оси, равной 0. В случае, когда матрица не нормальна, заменим ее на A-(tr(A))I/2, где I - единичная матрица. Числовой образ параллельно перенесется на (tr(A))/2, в силу пункта **1.1.а**. Теперь tr(A)=0.

Если оба собственных значения матриы A равны 0, тогда матрица A унитарно эквивалентна матрице $B=\begin{pmatrix} 0 & b \\ 0 & 0 \end{pmatrix}$. Следоавтельно

$$W(A) = W(B) = \{bx_1x_2 : x_1, x_2 \in \mathbb{C}, |x_1|^2 + |x_2|^2 = 1\}$$

таким образом, это окружность, который можно рассмотреть как эллипс с фокусами в 0 и |b| как длинной меньшей оси. Пусть у A собственные значения равны a и -a. Заменив A на A/a, можем считать, что a=1. Так как наша матрица не нормальна, она будет унитарна эквивалентна матрице $B=\begin{pmatrix} 1 & 2c \\ 0 & -1 \end{pmatrix}, c>0$. Пусть $C=\{(A+A^*)+\gamma(A-A^*)\}/2$, где $\gamma=\sqrt{1+c^2}/c$. Тогда оба собсвенных значения матрицы C равны 0. По предыдущему пункту числовой образ матрицы C — окружность с центром в 0 и с радиусом $\sqrt{1+c^2}$. Заметим, что $x+iy\in W(A)\Leftrightarrow x+i\gamma y\in W(C)$. Так как граница C задается $\{\sqrt{1+c^2}\cos t+ic\sin t: t\in \mathbb{R}\}$. Тогда граница W(A) задается $\{\sqrt{1+c^2}\cos t+ic\sin t: t\in \mathbb{R}\}$.

- **1.3** [1, Теорема 3.2] Если A унитарно эквивалентна $A_1 \oplus A_2$, то $W(A) = conv\{W(A_1) \cup W(A_2)\}$. Кроме того, по следствию из [1, Теоремы 3.3] если A нормальная, тогда $W(A) = conv(\sigma(A))$ выпуклый многоугольник.
- **1.4** [1, Теорема 3.3] W(A) выпуклый многоугольник с вершинами $\mu_1, \ldots, \mu_k \iff A$ унитарно эквивалентна $diag(\mu_1, \ldots, \mu_k) \oplus B$, где B такая матрица, что $W(B) \subset conv\{\mu_1, \ldots, \mu_k\}$.
- **1.5** [3, Предложение 2.4] Если граница числового образа $\partial W(A)$ содержит в себе часть прямой, то $k(A) \geq 3$. Если $\partial W(A)$ содержит 2 параллельных отрезка, то $k(A) \geq 4$.
- **1.6** [2, Выкладки на странице 2] Назовём матрицу A почти нормальной, если A унитарно эквивалентна $A_n \oplus A_a$, где A_n нормальная, а A_a унитарно эквивалентна матрице

$$\begin{pmatrix} a_{11} & 0 & 0 & \dots & \beta_1 \\ 0 & a_{22} & 0 & \dots & \beta_2 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & a_{n-1,n-1} & \beta_{n-1} \\ 0 & 0 & \dots & 0 & \mu \end{pmatrix}.$$

Матрицу A_a назовём "чистой" почти нормальной матрицой. [2, теорема 1] Если A — "чистая" почти нормальная матрица, то k(A) = 2.

- **1.7** [3, Предложение 2.8] Для матрицы $A \in \mathbb{C}^{2 \times 2}, A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ следующие условия эквивалентны:
 - (a) $a \in \partial W(A)$
 - (b) $\exists \beta \in [0, 2\pi) : be^{-i\beta} + \bar{c}e^{i\beta} = 0$
 - (c) |b| = |c|
 - (d) $d \in \partial W(A)$
- 1.8 [2, теорема 3] Пусть A почти нормальная матрица, т.е. A унитарно эквивалетна $A_n \oplus A_a$, тогда $k(A) = l_n + l_a$, где за l_n обозначили количество собственных значений матрицы A_n , лежащих в $\partial W(A)$ (считающее их кратность). А $l_a = 0$, 2, или 1. Первый случай происходит, когда $W(A_a) \subset \operatorname{Int}(W(A))$. Второй когда существуют 2 различные касательные параллельные прямые, которые проходят через точки, принадлежащие W(A). Третий во всех остальных случаях.
- **1.9** [3, Лемма 2.9] Если $A = A_1 \oplus A_2$ и $W(A_1)$ содержится в $\mathrm{Int}(W(A_2)),$ то $k(A) = k(A_2).$

2 Классификация числе Гау- Ю для матриц размера 3×3

В [3] дана классификация видов числового образа и k(A) для матриц A размера 3×3 :

- **2.1** Пусть A матрица нормального оператора. Тогда числовой образ A треугольник, прямая или точка. В данном случае k(A) = 3.
- **2.2** Пусть A унитарно эквивалентна матрице

$$\begin{pmatrix} a_1 & 0 & 0 \\ 0 & A_2 \end{pmatrix},$$

- (а) Если числовой образ $W(a_1)$ содержится в $\operatorname{Int}(W(A_2))$, то по пункту 1.2 $W(A) = W(A_2)$, и значит является эллипсом (см. пункт 1.1). Также по пункту 1.8 $k(A) = k(A_2) = 2$.
- (b) Если $W(a_1) \notin \text{Int}(W(A_2))$, то W(A) это выпуклая оболочка эллипса и точки и k(A) = 3.
- **2.3** В оставшихся случаях матрица A унитарно эквивалентна верхнетреугольной и выполняется одно из двух:
 - (a) W(A) это выпуклая оболочка heart-shaped region, и по пункту $1.4\ k(A)=3$, так как числовой образ A содержит сегмент прямой.
 - (b) W(A) овальная фигура, и также по пункту 1.4 k(A) = 3.

Подводя итог, для матриц размера 3×3 у нас появляется теорема

Теорема 2.1. [3, Лемма 2.11] Пусть A матрица размера 3×3 . Тогда k(A) = 2, если числовой образ W(A) либо эллиптический диск, кроме случая, когда у матрицы существует собственный вектор, лежащий на $\partial W(A)$, либо овальная фигура. Во всех остальных случаях k(A) = 3.

3 Классификация чисел Гау-Ю для матриц размера 4×4

Попробуем классифицировать числа Гау-Ю для матриц размара 4×4 . Для начала докажем следующий факт:

Теорема 3.1. Любую матрицу над \mathbb{C} можно привести κ верхнетреугольному виду унитарными преобразованиями.

Доказательство. Докажем по индукции:

(n=2) У любой матрицы размера 2×2 существует собственный вектор (x_1,x_2) единичной длины с некоторым собственным значением λ . Возьмем вектор единичой длины из ортогонального дополнения к нашему собстенному вектору и рассмотрим матрицу:

$$U = \begin{pmatrix} x_1 & y_1 \\ x_2 & y_2 \end{pmatrix}$$

Тогда

$$U^*AU = \begin{pmatrix} \lambda & * \\ 0 & * \end{pmatrix}$$

n-1 верно, рассмотрим n. У любой матрицы $A \in \mathbb{C}^{n \times n}$ существует собственный вектор (x_1, \ldots, x_n) единичной длины с некоторым собственным значением λ_1 . Тогда дополним этот вектор до ортогонального базиса. Построим матрицу:

$$U = \begin{pmatrix} x_1 & * & \dots & * \\ x_2 & * & \dots & * \\ \vdots & \vdots & \ddots & \vdots \\ x_n & * & \dots & * \end{pmatrix}.$$

Тогда матрица U^*AU будет иметь следующий вид:

$$A' = U^*AU = \begin{pmatrix} \lambda_1 & * & \dots & * \\ 0 & & & \\ \vdots & & A_1 & \\ 0 & & & \end{pmatrix}$$

Тогда рассмотрим унитарную матрицу:

$$W = \begin{pmatrix} 1 & 0 & \dots & 0 \\ 0 & & & \\ \vdots & & W_1 & \\ 0 & & & \end{pmatrix}$$

Отсюда

$$W^*A^{'}W = \begin{pmatrix} \lambda_1 & * & \dots & * \\ 0 & \lambda_2 & \dots & * \\ \vdots & \vdots & \ddots & * \\ 0 & \dots & & \lambda_n \end{pmatrix}$$

Для матриц размера 4×4 расмотрим следующие случаи:

3.1 Матрица является нормальной

Пусть A — нормальная матрица. Тогда существует ортонормированный базис \mathbb{C}^4 из собственных векторов A, а значит k(A)=4. Кроме того, числовой образ нормальной матрицы — это многоугольник с вершинами в ее собственных значениях (см. пункт 1.2).

3.2 Матрица унитарно эквивалентна матрице с 2 блоками размера 1×1 и с одним блоком 2×2

Пусть A унитарно эквивалентна матрице

$$\begin{pmatrix} a_1 & 0 & 0 & 0 \\ 0 & a_2 & 0 & 0 \\ 0 & 0 & a_{33} & a_{34} \\ 0 & 0 & a_{43} & a_{44} \end{pmatrix},$$
 где нижний блок $A_1 = \begin{pmatrix} a_{33} & a_{34} \\ a_{43} & a_{44} \end{pmatrix}$

унитарно эквивалентен верхнетреугольной матрице. По пункту 1.1 $W(A_1)$ является эллипсом с фокусами λ_1 и λ_2 — собственными значениями A_1 и длиной малой оси $\{\operatorname{tr}(A*A) - |\lambda_1| - |\lambda_2|\}$. В зависимости от того, как расположены точки a_1, a_2 и эллипс $W(A_1)$, мы можем сделать выводы о k(A). Если a_1 и a_2 лежат в $\operatorname{Int}(W(A_1))$, то k(A)=2. Иначе $k(A)\geq 3$.

3.3 Матрица унитрано эквивалентна матрице, состоящей из двух блоков 2×2

А унитарно эквивалентна матрице:

$$\begin{pmatrix} A_1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & A_2 \end{pmatrix}.$$

Поскольку числовой образ матриц 2×2 в невырожденном случае является эллипсом (см. пункт 1.1), то числовой образ матрицы A — это выпуклая оболочка 2-х эллипсов. Изучим случаи их взаимного расположения:

- Если $W(A_1)$ содержится в $Int(W(A_2))$ (или наоборот), то k(A) = 2.
- Если $W(A_1)$ и $W(A_2)$ эллипсы одинакового размера, причём один получается из второго параллельным переносом, то W(A) содержит 2 параллельных отрезка и k(A)=4 (см. пункт 1.4).
- Если один эллипс получается из другого гомотетией, поворотом и параллельным переносом, и при этом ни один из них не содержится в другом, то из 1.4 мы знаем, что $k(A) \ge 3$.

3.4 Матрица унитарно эквивалентна матрице с блоками 1×1 и 3×3

Если A унитарно эквивалентна матрице

$$\begin{pmatrix} a_{11} & 0 & 0 & 0 \\ 0 & & & \\ 0 & & A_2 & \\ 0 & & & \end{pmatrix}.$$

где A_2 — матрица размера 3×3 , неприводимая унитарными преобразованиями в сумму меньших блоков, то возможные следующие случаи:

- Если A_2 унитарно эквивалентна "чистой" почти нормальной матрице. Тогда по 1.7 k(A)=3 или 4, в зависимости от того, где лежит a_{11} относительно числового образа матрицы A_2 .
- Если A_2 унитарно эквивалентна верхнетреугольной матрице, то числовой образ A_2 является либо овалом, либо выпуклой оболочкой heart-shaped region (см. классификацию в пункте 2). В данном случаем $k(A) \geq 3$.

3.5 Матрица не унитарно эквивалентна матрице с меньшими блоками

Остался случай, когда матрица A унитарно эквивалентна верхнетреугольной матрице. Рассмотрим следующие возможности:

• Если A унитарно эквивалентна "чистой" почти нормальной матрице, то k(A)=2. (см. пункт 1.5)

$$\begin{pmatrix} a_{11} & 0 & 0 & a_{14} \\ 0 & a_{22} & 0 & a_{24} \\ 0 & 0 & a_{33} & a_{34} \\ 0 & 0 & 0 & a_{44} \end{pmatrix}$$

• А унитарно эквивалентна матрице

$$\begin{pmatrix} a_{11} & 0 & a_{13} & a_{14} \\ 0 & a_{22} & a_{23} & a_{24} \\ 0 & 0 & a_{33} & a_{34} \\ 0 & 0 & 0 & a_{44} \end{pmatrix}$$

• А унитарно эквивалентна матрице

$$\begin{pmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ 0 & a_{22} & a_{23} & a_{24} \\ 0 & 0 & a_{33} & a_{34} \\ 0 & 0 & 0 & a_{44} \end{pmatrix}$$

4 Примеры вчисления числового образа и чисел Гау-Ю для матриц малых размерностей

4.1 Матрицы размера 3×3

(1) Для матриц размера 3×3 вида:

$$A = \begin{pmatrix} 0 & a & 0 \\ 0 & 0 & b \\ c & 0 & 0 \end{pmatrix}$$

в статье [3] получен следующий результат:

Лемма 4.1. [3, Следствие 2.13] Для матриц унитарно эквивалентных матрице A следующие условия эквивалентны:

- $(a) \ k(A) = 3,$
- (b) |a| = |b| = |c|,
- (с) А нормальная матрица
- (d) либо A = 0, либо $\partial W(A)$ содержит отрезок.

4.2 Матрицы размера 4×4

1. Вычислим числа Гау-Ю для некоторых матриц специального вида. В работе [2] разобран случай трехдиагональных матриц вида

$$T(a,b,c) = \begin{pmatrix} a & b & 0 & 0 & \dots & 0 \\ c & a & b & 0 & \dots & 0 \\ 0 & c & a & b & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \dots & c & a & b \\ 0 & 0 & \dots & 0 & c & a \end{pmatrix},$$

где $a,b,c\in\mathbb{C}$. Если $bc\neq 0$, то собственные значения T(a,b,c) вычисляются по формуле:

$$\lambda_j = a + 2\sqrt{bc}\cos\left(\frac{j\pi}{n+1}\right), \quad j = 1,\dots, n.$$

И соответствующие собственные вектора x_j тогда имеют вид $(x_1^{(j)},\dots,x_n^{(j)})$, где компоненты вектора вычисляются по формуле

$$x_k^{(j)} = \left(\sqrt{\frac{b}{c}}\right)^k \sin\left(\frac{jk\pi}{n+1}\right).$$

Теорема 4.2. [2, теорема 5] Пусть n — размер матрицы A = T(a,b,c) и $n \geq 3$. Тогда если |b| = |c|, то число Гау-Ю k(A) = n. Иначе $k(A) = \lceil \frac{n}{2} \rceil$.

2. Разберём подробнее пример, подтверждающий теорему 4.1:

Пусть $n=4,\ a=1,\ b=2+i,\ c=\sqrt{5}$ и A=T(a,b,c). Поскольку |b|=5=|c|, то по теореме $4.1\ k(A)=4$. Покажем, что A — нормальная матрица :

$$A = \begin{pmatrix} 1 & 2+i & 0 & 0\\ \sqrt{5} & 1 & 2+i & 0\\ 0 & \sqrt{5} & 1 & 2+i\\ 0 & 0 & \sqrt{5} & 1 \end{pmatrix}$$

$$AA^* = \begin{pmatrix} 1 & \sqrt{5} & 0 & 0\\ 2-i & 1 & \sqrt{5} & 0\\ 0 & 2-i & 1 & \sqrt{5}\\ 0 & 0 & 2-i & 1 \end{pmatrix}$$

$$AA^* = \begin{pmatrix} 6 & \sqrt{5} + 2 + i & \sqrt{5}(2+i) & 0\\ 2 - i + \sqrt{5} & 11 & \sqrt{5} + 2 + i & \sqrt{5}(2+i)\\ \sqrt{5}(2-i) & 2 - i + \sqrt{5} & 11 & \sqrt{5}(2+i) + 1\\ 0 & 0 & \sqrt{5}(2-i) & 6 \end{pmatrix} = A^*A$$

Следовательно, k(A) = 4 (см. пункт 3.1).

5 Открытые вопросы

5.1

Как выглядит числовой образ и чему равняется число Гау-Ю матрицы A размера 4×4 , унитарно эквивалентной матрице

$$\begin{pmatrix} a_{11} & 0 & a_{13} & a_{14} \\ 0 & a_{22} & a_{23} & a_{24} \\ 0 & 0 & a_{33} & a_{34} \\ 0 & 0 & 0 & a_{44} \end{pmatrix}$$

5.2

Как выглядит числовой образ и чему равняется число Гау-Ю матрицы A размера 4×4 , унитарно эквивалентной матрице

$$\begin{pmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ 0 & a_{22} & a_{23} & a_{24} \\ 0 & 0 & a_{33} & a_{34} \\ 0 & 0 & 0 & a_{44} \end{pmatrix}$$

Список литературы

- [1] Lecture notes on Numerical Range. Chi-Kwong Li
- [2] K.A. Camenga, P.X. Rault, T. Sendova , I.M. Spitkovsky, On the Gau–Wu number for some classes of matrices. Linear Algebra Appl. 444 (2014) 254-262
- [3] Kuo-Zhong Wang, P.Y. WU, Diagonals and numerical ranges of weighted shift matrices. Linear Algebra Appl. 438 (1) (2013) 514-532
- [4] Chi-Kwong Li, A simple proof of the elliptical range theorem.
- [5] Mao-Ting Chien, Lina Yeh, On the boundary of the numerical range of a matrix. Applied Mathematics Letters 24 (2011) 620-622.