С. В. Востоков, Б. М. Беккер

ВЫДЕЛЕННЫЕ ИЗОГЕНИИ ДЛЯ ФОРМАЛЬНЫХ ГРУПП В ЛОКАЛЬНЫХ ПОЛЯХ С МАЛЫМ ВЕТВЛЕНИЕМ

1. Ввеление

При получении явного закона взаимности для формальных групп, определенных над кольцом векторов Витта, возникла необходимость использования так называемых выделенных изогений (см. [1]). Простейший тип выделенных изогений существует в группах Любина-Тейта, которые наиболее близки к мультипликативной формальной группе. А именно, для любого ряда f(x) с коэффициентами из кольца целых локального поля, $f(x) \equiv x^q \mod \pi$, $f'(0) = \pi$, где π – простой элемент локального поля, а q – порядок поля вычетов, найдется единственная формальная группа F(x,y), для которой ряд f(x) будет ее изогенией: $F \circ f = f \circ F$.

При переходе к формальным группам над кольцом векторов Витта оказалось, что не для всякого ряда f(x), который дает эндоморфизм Фробениуса на поле вычетов, найдется формальная группа F(x,y) с изогенией f(x).

О. Демченко доказал, что для заданной формальной группы можно построить другую формальную группу с выделенной изогенией, удовлетворяющей нужному свойству (см. [2]).

В настоящей работе мы обобщаем результат Демченко на произвольную формальную группу, определенную над кольцом целых локального поля с индексом ветвления меньшим характеристики поля вычетов. Мы активно используем при этом явную классификацию формальных групп, полученную в работе [3].

2. Обозначения и известные результаты

ullet K — локальное поле с простым элементом π ,

Работа выполнена при финансовой поддержке фонда Р $\Phi\Phi$ И 04-01-00082 и SFB 478, Münster, "Geometrische Strukturen".

- \mathcal{O} кольцо целых элементов поля K,
- \overline{K} поле вычетов характеристики p,
- T подполе инерции поля K,
- $\mathcal{O}_T \simeq W(\overline{K})$ кольцо векторов Витта,
- $q = p^f = \operatorname{card} \overline{K}$,
- e = (K : T) индекс ветвления поля K,
- σ автоморфизм Фробениуса поля $T\colon \sigma(a)\equiv a \bmod p$ для любого $a\in \mathcal{O}_T$,
- Δ оператор Фробениуса на модуле $K[[X]]:\Delta X^m=X^{pm}$,
- $\mathcal{O}_T[[\Delta]]'$ некоммутативное кольцо, совпадающее с $\mathcal{O}_T[[\Delta]]$ как левый \mathcal{O}_T -модуль и имеющее соотношение $\Delta^m a = \sigma^m(a)\Delta$ для любого $a \in \mathcal{O}_T$,
- $T[[\Delta]]'$ аналогичное некоммутативное кольцо, построенное на левом T-модуле $T[[\Delta]]$,
- F(X,Y) одномерная формальная группы над \mathcal{O}_K ,
- $\lambda(X)$ логарифм F(X,Y).

Мы будем использовать следующие известные результаты. Пусть $\mathfrak A$ – свободная коммутативная $\mathbb Z_p$ -алгебра.

Утверждение 1. Пусть F(X,Y) – формальная группа над $\mathfrak A$ с логарифмом $\lambda(X)=X+c_2X^2+c_3X^3+\ldots$, $c_i\in \mathrm{Quot}\,\mathfrak A$. Тогда ряд $\lambda_p(X)=X+c_pX^p+c_{2p}X^{2p}+\ldots$ определяет формальную группу $F_p(X,Y)=\lambda_p^{-1}(\lambda_p(X)+\lambda_p(Y))$ над $\mathfrak A$, строго изоморфную группе F(X,Y) (см. [4]).

Замечание. Формальная группа $F_p(X,Y)$ называется p-типической формальной группой.

Пусть F(X,Y) — формальная группа над кольцом $\mathfrak A$ конечной высоты h с логарифмом $\lambda(X)$. Тогда логарифм $\lambda_p(X)$ p-типической формальной группы $F_p(X,Y)$, изоморфной F(X,Y), можно записать в виде

$$\lambda_p(X) = \Lambda(\Delta)(X),$$

где $\Lambda(\Delta) = 1 + c_1 \Delta + c_2 \Delta^2 + \ldots \in K[[\Delta]]$ и $\Delta^m X = X^{pm}$.

Утверждение 2. Логарифм $\lambda_p(X) = \Lambda(\Delta)(X)$ можно представить в виде

$$\Lambda(\Delta) = v(\Delta) \cdot u(\Delta)^{-1},$$

$$\overline{i\partial e \ u(\Delta) = p - a_1 \Delta - a_2 \Delta^2 - \ldots \in \mathcal{O}_T[[\Delta]]'},$$

$$a_1, \ldots, a_{h-1} \in p\mathcal{O}_T, \quad a_h \in \mathcal{O}_T^*,$$

$$v(\Delta) = p + b_1 \Delta + b_2 \Delta^2 + \ldots \in K[[\Delta]].$$

 Πpu этом $\bigcup_i p^{-i}\mathcal{O}_K[[\Delta]]$, т.е. существует константа с такая, что $p^cv(\Delta)\in\mathcal{O}_K[[\Delta]]$, точнее

$$p^l/\pi^l \cdot v(\Delta) \in \mathcal{O}_K[[\Delta]], \qquad l = \left[\log_p \frac{pl}{p-1}\right].$$

Ряд $F_p(X,Y)=\lambda^{-1}(\lambda_p(X)+\lambda_p(Y))$ является формальной группой над \mathcal{O}_K , строго изоморфной группе (X,Y), а именно, ряд

$$E_p(X) = (\lambda^{-1} \circ \lambda_p)(X) : F \to F_p$$

задает строгий изоморфизм (см. [3, предложение 1.4.1]).

Замечание 1. Умножение рядов $v(\Delta) \cdot u(\alpha)^{-1}$ происходит по следующему правилу:

$$(b_i \Delta^i)(a_j' \Delta^j) = b_i \sigma^i(a_j') \Delta^{i+j}, \qquad b_i \in K, \quad a_j' \in T.$$

3. Классификационная теорема для формальных групп над кольцом \mathcal{O}_K в случае "малого ветвления" (e < p)

Утвер ждение 3. 1. Ряд $\lambda(X) = \Lambda(\Delta)(X), \ \Lambda(\Delta) \in 1+K[[\Delta]]\Delta$, является логарифмом р-типической формальной группы над \mathcal{O}_K тогда и только тогда, когда $\Lambda = v \cdot u^{-1}$ для некоторого $u \in p + \mathcal{O}_T[[\Delta]]'\Delta$ $u \ v \in p + \pi \mathcal{O}_K[[\Delta]]\Delta$.

- 2. Пусть F и F' формальные группы над \mathcal{O}_K с логарифмами $\lambda(X)=(v\cdot u^{-1})(X)$ и $\lambda'(X)=(v'\cdot u'^{-1})(X)$, соответственно. Тогда $F\sim F'\Leftrightarrow u'=u\varepsilon,\ v'=v+g\cdot u$ для некоторых $\varepsilon\in 1+\mathcal{O}_T[[\Delta]]'\Delta$, $g\in\pi\mathcal{O}_K[[\Delta]]\Delta$.
- 3. В каждом классе строго изоморфных формальных групп над \mathcal{O}_K конечной высоты h существует единственная формальная группа $F_{ah}(X)$ с логарифмом Артина-Хассе $\lambda_{ah}(X)=\Lambda(\Delta)(X)$, где

$$\Lambda(\Delta) = v \cdot u^{-1}, \qquad u = p - a_1 \Delta - \dots - a_h \Delta^h,$$

$$a_1, \dots, a_{h-1} \in p\mathcal{O}_T, \qquad a_h \in \mathcal{O}_T^*,$$

$$v = p + \pi b_1 \Delta + \dots + \pi b_h \Delta^h, \qquad b_i \in \mathcal{O}_K,$$

$$\operatorname{Tr}_{K/T} \pi b_i = 0$$

(см. [3, теорема 6.3.1]).

Пусть F(X,Y) - p-типическая формальная группа над \mathcal{O}_K с логарифмом $\lambda(X) = (v \cdot u^{-1})(X)$, где $u = p - a_h B \Delta^h$, $B \in 1 + \mathcal{O}_T[[\Delta]]'\Delta$ и пусть $\lambda_1(X) = (v_1 \cdot u_1^{-1})(X)$, где $v_1 = a_h^{-1} v a_h$, $u_1 = u^{\sigma^h} \cdot B^{-1}$.

Предложение 1. Пусть e < p.

- 1. Ряд $\lambda_1(X)$ является логарифмом формальной группы $F_1(X,Y)$ над \mathcal{O}_K .
- 2. Ряд $\left[p/a_h\right]_{F,F_1}=(\lambda_1^{-1}\cdot p/a_h\cdot \lambda)(X)$ задает гомоморфизм формальной группы F в формальную группу F_1 над \mathcal{O}_K такой, что

$$[p/a_h]_{F,F_1}(X) \equiv X^{p^h} \mod \pi.$$

3. Пусть $F_{ah}(x,Y)$ — канонический представитель для F(x,Y) в классе строго изоморфных формальных групп над \mathcal{O}_K с логарифмом Артина-Хассе $\lambda_{ah}(X)=(v_{ah}(\Delta)\cdot u_{ah}(\Delta)^{-1})(X)$ (см. утверждение 3). Тогда ряд

$$\lambda_{ah}^{(1)}(X) = (a_h^{-1} \cdot v_{ah} \cdot (u_{ah} \cdot a_h)^{-1})(X)$$

является логарифмом Артина-Хассе канонического представителя $F_{ab}^{(1)}(X,Y)$ для формальной группы $F_1(X,Y)$.

Доказательство. 1. Ясно, что $u_1 = u^{\sigma^h} B^{-1} \in p + \mathcal{O}_T[[\Delta]]'\Delta$, поэтому ряд $\lambda_1(X)$ является логарифмом формальной группы над \mathcal{O}_K , согласно утверждению 3.

2. а) Пусть $u_1' = B u^{\sigma^h} B^{-1} = B u_1$, тогда ряд $F_1' = (\lambda_1')^{-1} (\lambda_1'(X) + \lambda_1'(Y))$, где $\lambda_1'(X) = (v_1/u_1')(X)$ является формальной группой над \mathcal{O}_K , строго изоморфной F_1 , т.к. $B \equiv 1 \mod \Delta$ (см. утверждение 3). Из определения v_1 следует: $p/a_h \cdot v = v_1 \cdot p/a_h$, откуда ряд

$$[p/a_h]_{F,F_1'}(X) = (\lambda_1')^{-1} \frac{p}{a_h} \cdot \lambda$$

задает гомоморфизм из F в F_1' (см. [3, предложение 4.5.1]). Формальные группы F_1' и F_1 строго изоморфны, поэтому

$$\left[\frac{p}{a_h}\right]_{F,F_1} = [1]_{F_1',F_1} \circ \left[\frac{p}{a_h}\right]_{F,F_1'} \in \mathcal{O}_K[[X]].$$

б) Докажем теперь, что

$$\left[\frac{p}{a_h}\right]_{F,F_1}(X) \equiv X^{p^h} \bmod \pi. \tag{1}$$

Действительно, из определения ряда $u(\Delta)$ следует, что $p/a_h=a_h^{-1}u+B\Delta^h$, и, значит

$$\frac{p}{a_h}\lambda(X) = \left(\frac{p}{a_h} \cdot v \cdot u^{-1}\right)(X) = \left(v_1 \cdot \frac{p}{a_h} \cdot u^{-1}\right)(X) = \\
= (v_1 \cdot (a_h^{-1}u + B\Delta^h) \cdot u^{-1})(X) = \\
= (a_h^{-1}v)(X) + (v_1B\Delta^h \cdot u^{-1})(X) = \\
= (v_1Bu^{-\sigma^h})(X^{\Delta^h}) = (v_1u_1^{-1})(X^{p^h}) = \lambda_1(X^{p^h}) \bmod \pi,$$

т.к. $\Delta^h u^{-1} = u^{-\sigma^h} \Delta^h$. Но

$$\left(\left[\lambda_1 \cdot \frac{p}{a_h}\right]_{F,F_1}\right)(X) = \frac{p}{h}(X) \equiv \lambda_1(X^{p^h}) \mod \pi.$$

Наше сравнение (1) следует теперь из известного факта для рядов f, g из кольца $\mathcal{O}_K[[X]]$:

$$f \equiv g \mod \pi \Leftrightarrow \lambda(f) \equiv \lambda(g) \mod \pi$$
.

3. Проверим сперва, что $u_1' = a_h^{-1} u a_h$. Имеем:

$$u'_{1} = Bu_{1} = Bu^{\sigma^{h}}B^{-1} = B(p - a_{h}^{\sigma^{h}}B^{\sigma^{h}}\Delta^{h})B^{-1} =$$

$$= p - Ba_{h}^{\sigma^{h}}\Delta^{h} = a_{h}^{-1}ua_{h},$$

т.к. $\Delta^h a_h = a_h^{\sigma^h} \Delta^h$.

Пусть $\lambda_{ah}(X) = (v_{ah}/u_{ah})(X)$ — логарифм Артина—Хассе канонического представителя $F_{ah}(X,Y)$ для формальной группы F, тогда $u_{ah} = \varepsilon u$ при некотором $\varepsilon \in 1 + \mathcal{O}_T[[\Delta]]'\Delta$ и $v_{ah} = v + g \cdot u_{ah}$, $g \in \pi \mathcal{O}_K[[\Delta]]\Delta$ (см. утверждение 3).

 $g \in \pi \mathcal{O}_K[[\Delta]] \Delta$ (см. утверждение 3). Покажем, что $u_{ah}^{(1)} := a_h^{-1} u_{ah} a_h$ — знаменатель в логарифме Артина—Хассе для канонического представителя $F_{ah}^{(1)}$ группы F_1 . Действительно, с одной стороны, $u_{ah}^{(1)}$ имеет канонический вид, т.е.

$$u_{ah}^{(1)} = p - a_1'\Delta - \ldots - a_h'\Delta^h$$
, где $a_1',\ldots,a_{h-1}' \in p\mathcal{O}_T$, $a_h' \in \mathcal{O}_T^*$.

Далее,

$$u_{ah}^{(1)} = a_h^{-1} u_{ah} a_h = (a_h^{-1} \varepsilon a_h) (a^{-1} u a_h) = (a_h^{-1} \varepsilon a_h) u_1' = (a^{-1} \varepsilon a_h) B u_1 = \eta \cdot u_1,$$

где $\eta = a_h^{-1} \varepsilon a_h B \in 1 + \mathcal{O}_T[[\Delta]]'\Delta$. Кроме того, из равенства $v_{ah} = v + g \cdot u_{ah}$ при некотором $g \in \pi \mathcal{O}_K[[\Delta]]\Delta$ имеем

$$v_{ah}^{(1)} = a_h^{-1} v_{ah} a_h = a_h^{-1} v a_h + (a_h^{-1} g a_h) (a^{-1} u_{ah} a_h) = v_1 + g' \cdot u_{ah}^{(1)},$$

где $g' \in \pi \mathcal{O}_K[[\Delta]]\Delta$. Ясно, что $v_{ah}^{(1)}$ имеет такой же канонический вид, как и v_{ah} , и при этом из равенств

$$u_{ab}^{(1)} = \eta u_1, \quad v_{ab}^{(1)} = v_1 + g' u_{ab}^{(1)}$$

следует изоморфизм групп с логарифмами

$$\lambda_1(X) = (v_1/u_1)(X) \quad \text{ if } \quad \lambda_{ah}^{(1)}(X) = (v_{ah}^{(1)}/u_{ah}^{(1)})(X),$$

согласно утверждению 3.

Замечание 2. Коэффициент a_h при Δ^h логарифма формальной группы F переходит в $a_h^{\sigma^h}$ для F_1 . Но коэффициент a_h' при Δ^h логарифма F_1' только сравним по модулю $p \colon a_h' \equiv a_h^{\sigma^h} \bmod P$.

Пусть теперь F(X,Y) — произвольная, не обязательно p-типическая, формальная группа над \mathcal{O}_K с логарифмом $\lambda(X)$, и пусть $\lambda_p(X) = (v(\Delta)/u(\Delta))(X)$ — p-типический логарифм, полученный из $\lambda(X)$ (см. утверждение 1), где $u(\Delta) = p - a_1 \Delta - a_2 \Delta^2 - \ldots \in \mathcal{O}_T[[\Delta]]'$. Взяв $c = 1 - a_1/p - \ldots - a_{h-1}/p\Delta^{h-1}$, получим $u'(\Delta) = c^{-1}u = p - a_h B\Delta^h$, где $B \in 1 + \mathcal{O}_T[[\Delta]]'\Delta$. Тогда ряд $\lambda'(X) = (v/u')(X)$ является логарифмом группы F', строго изоморфной группе F (см. утверждение 3).

Пусть, наконец,

$$u_1 = (u')^{\sigma^h} \cdot B^{-1}, \quad v_1 = a_h^{-1} v a_h \quad \text{if} \quad \lambda_1(X) = (v_1/u_1)(X)$$

- логарифм группы F_1 .

Теорема 1. Ряд $\left[p/a_h\right]_{F,F_1}(X)=(\lambda_1^{-1}\cdot p/a_h\cdot \lambda)(X)$ задает гомоморфизм над \mathcal{O}_K формальной группы F в группу F_1 . При этом

$$\left[\frac{p}{a_h}\right]_{F,F_1}(X) \equiv f(X^{p^h}) \bmod \pi,$$

при ряде $f(Y) \in Y + \mathcal{O}_K[[Y]]Y$, который задает строгий изоморфизм из F в F'.

Доказательство. Пусть $f(X)\colon F\to F'$ – изоморфизм. Для F' и F_1 гомоморфизм $\left[p/a_h\right]_{F',F_1}(X)$ существует согласно предложению 1. Поэтому $\left[p/a_h\right]_{F',F_1}\circ f=\left[p/a_h\right]_{F,F_1}$ – гомоморфизм над \mathcal{O}_K группы F в F_1 . По предложению 1 имеем

$$\left[\frac{p}{a_h}\right]_{F,F_1} \equiv f(X^{p^h}) \bmod \pi.$$

Следствие. Пусть N — натуральное число. Тогда имеет место последовательность формальных групп $F_0 := F, F_1, \ldots, F_N$ и выделенных изогений $f_0 := f, f_1, \ldots, f_{N-1}$ таких, что

$$F \xrightarrow{f_0} F_1 \xrightarrow{f_1} F_2 \longrightarrow \cdots \longrightarrow F_{N-1} \xrightarrow{f_{N-1}} F_N,$$

 $i\partial e \ f_m(X) \equiv g_m(X^{p^h}) \mod \pi, \ npu \ g_m(Y) \in Y + \mathcal{O}_K[[Y]]Y.$

Замечание 3. Если a_h обозначает коэффициент при Δ^h у ряда $u(\Delta) = p - a_1 \Delta - \cdots$ для p-типической формальной группы, полученной из исходной группы F (см. утверждение 1), то

$$f_m = \left[\frac{p}{a_h^{\sigma^{mh}}}\right]_{F_m, F_{m+1}}$$

И

$$f^{(N)} = f_{N-1} \circ f_{N-2} \circ \cdots \circ f_1 \circ f_0 = \left[\frac{p}{a_h^{1+\sigma^h+\cdots+\sigma^{(N-1)h}}}\right]_{F,F_N}$$

— гомоморфизмы из F_m в F_{m+1} и из F в F_N , соответственно.

Литература

- 1. С. В. Востоков, О. В. Демченко, Явная формула спаривания Γ ильберта для формальных групп Хонды. Зап. научн. семин. ПОМИ **272** (2000), 86–128.
- О. В. Демченко, Новое в отношениях формальных групп Любина-Тейта и формальных групп Хонды. — Алгебра и анализ 10, No. 5 (1998), 77-84.
- 3. М. В. Бондарко, С. В. Востоков, Явная классификация формальных групп над локальными полями. Труды МИАН 241, вып. 2 (2003), 43-67.
- M. Hazewinkel, Formal groups and applications. Springer-Verlag, Berlin et al. (1978).

 $Vostokov\,S.\,\,V.,\,Bekker\,\,B.\,\,M.\,\,Distinguished\,\,isogenies\,for\,formal\,\,groups\,\,in\,\,local\,\,fields\,\,with\,\,small\,\,ramification.$

We prove the existence of distinguished isogenies for formal groups defined over the ring of integers of a local field with ramification index less than the characteristic of the residue field. This generalizes the result of Demchenko for Honda formal groups.

С.-Петербургский государственный университет *E-mail*: sergeivostokov@mail.ru

E-mail: bekker@pdmi.ras.ru

Поступило 15 января 2006