微型专题

例 1 A [一般活泼的金属和活泼的非金属容易形成离子键,非金 属元素的原子间容易形成共价键。又因为含有离子键的化合物 是离子化合物,全部由共价键形成的化合物是共价化合物,所以 含有共价键的离子化合物是②③④,①中只有离子键,⑤⑥①中 只有共价键,答案选A。]

变式1 B [含有离子键的化合物一定是离子化合物, A 正确; 全部由共价键形成的化合物是共价化合物,含有共价键的化合物 不一定是共价化合物,例如 NaOH 等,B错误; 12 号元素与8号 元素分别是 Mg、O,二者能形成 AB型离子化合物,即 MgO,C正 确;镁离子的电子式为:Mg2+,D正确。]

例 2 A

变式 2 A

例 3 C [A 项, BF3 中形成三个共用电子对, 硼原子最外层只有 6 个电子,未达到8电子结构,错误;B项,H2O中氢原子最外层只 有2个电子,错误;C项,SiCl4中Si与Cl形成4个共用电子对,两 种原子的最外层均达到8电子结构,正确;D项,PCl5中P不符合 8电子结构,错误。

变式 3 A [AsH3 中的 H、BF3 中的 B、BeCl2 中的 Be 均未达到 8 电子稳定结构, XeF₂ 中的 Xe、PCl₅ 中的 P、BrF₃ 中的 Br、ClO₂

中的 CI 最外层电子数均超过了 8。]

例 4 C

变式 4 A [水降温结冰属于物理变化,化学键不变,A 项正确; 水电解得到氧气与氢气属于化学变化,有旧化学键的断裂与新化 学键的形成,B项错误;金刚石加热熔化共价键被破坏,C项错误; NaOH 溶于水电离出钠离子和氢氧根离子,离子键被破坏,D项

错误。 「由几种短周期元素的原子半径及其化合价可推知:

列 5 D	[由几种短局	期元系) D(C)	and the second	The second second	A(F)	
K(Na)	J(Mg) I(Al)	A A	G(P)		E(Cl)	

则常温下 Mg与 O2 反应生成 MgO。A、I、J 的离子具有相同的电 子层结构,离子半径由大到小的顺序是 F->Mg2+>Al3+,即 (A>J>I),G(P)元素的单质存在红磷、白磷等多种同素异形体, A、B、C正确; Mg在CO2中燃烧生成碳(即D)的单质, D错误。]

例 6 C [离子晶体中含有离子键,离子键在熔融状态下被破坏,电 变式 5 D 离出自由移动的阴、阳离子,所以离子晶体在熔融状态下能够导

电,这是判断某晶体是否为离子晶体的实验依据。]

变式 6 D [A 项, CH4 是由分子构成的共价化合物,在固态时 属于分子晶体,NH4Cl是由NH4和Cl-构成的离子化合物,固态 时属于离于晶体,错误; B项, $MgCl_2$ 中只有离子键,错误; C项,冰熔化时,水分子之间的氢键部分破坏,但水分子内的 H-O 键不会断裂,错误; D项,金刚石属于原子晶体,NaCl属于离子晶体,而NaCl>H $_2O$,正确。

例

考题精选 1. D

2. C [BF₃ 中 B 原子没有达到 8 电子稳定结构, A 项错误; 18 g H_2O 和 D_2O 的中子数分别是 $8N_A$ 、 $\frac{18}{20} \times 10N_A = 9N_A$,B 项错误; 78 g Na_2O_2 的物质的量是 1 mol, 晶体中所含离子数目为 $3N_A$,C 项正确; 氯气与 NaOH 反应生成氯化钠、次氯酸钠和水,有离子键、极性键和非极性键的断裂,有离子键、极性键的形成,没有非极性键的形成,D 项错误

3. A $[A \, \overline{\eta}, ight]$ (A) $[A \, \overline{\eta}, ight]$ (B) $[A \, \overline{\eta}, igh$

4. D [12 C 和14 C 质子数相同,中子数不同,二者互为同位素,A 正确;甲烷和丁烷分子通式相同,分子组成相差三个 CH2 原子团,互为同系物,B 正确;乙醇和二甲醚分子式相同,结构不同,二者互为同分异构体,C 正确;同素异形体研究对象是单质,而 Na2 O 和 Na2 O 2 属于化合物, D 错误]

5. A 6. C 7. C

H₃PO₄ (4)(NH₄)₂SO₄ 离子晶体 (5)①Al³⁺ ②NH₃

(6) Na· + \cdot S· + ·Na \longrightarrow Na⁺[: \dot{S} :]²-Na⁺

解析 A原子最外层电子数是次外层电子数的 2 倍, A 为 C, 由短周期元素的位置关系可知 C 为 N, B 为 Al, D 为 P, E 为 S, 以此分析解答。(1) E 是 S, 在周期表中位于第 3 周期 VI A 族。(2) 元素 A 的最高价氧化物是 CO₂, 电子式为: O:: C:: O:. D 是 P.

原子结构示意图为(+15)285。(3)N和P位于同一主族,非金属

性:N>P,则两种元素最高价氧化物对应水化物的酸性强弱: $HNO_3>H_3PO_4$ 。(4) NH_3 和 H_2SO_4 化合生成的正盐的化学式为 $(NH_4)_2SO_4$,其晶体类型为离子晶体。(5) ①Al 位于第 3 周期,第 3 周期的简单离子半径最小的是 Al^{3+} ;②C 为 N,D 为 P,N 和 P位于同一主族,由于 NH_3 分子间存在氢键,则简单氢化物沸点较高的是 NH_3 。(6) Na_2S 为离子化合物,用电子式表示 Na_2S 的形成过程为:

Na. + · S· + · Na → Na⁺[:S:]²-Na⁺。 专题 2 化学反应与能量转化