

指导单位:

DCA

← 云计算开源产业联盟 RPA产业推进方阵

RPA时代

大会时间: 2020年11月27日-28日

大会地点:上海中庚聚龙酒店

HTTP3,为IoT时代保驾护航

陶辉

陶辉

智链达CTO

《深入理解Nginx》作者,极客时间《系统性能优化必知必会》专栏作者,视频课《Web协议详解与抓包实战》《Nginx核心知识100讲》讲师,腾讯云TVP

CONTENTS

- 1 HTTP2遗留问题
 - 2 HTTP3协议概览
 - 3 多合一的QUIC层
 - 4 HTTP3部署应用

HTTP2的遗留问题

HTTP/0.9 -1991


```
$> telnet ashenlive.com 80
(Connection 1 Establishment - TCP Three-Way Handshake)
Connected to xxx.xxx.xxx.xxx
(Request)
GET /my-page.html
(Response in hypertext)
<HTML>
A very simple HTML page
</HTML>
(Connection 1 Closed - TCP Teardown)
```

HTTP/1.0的改进 -1996

- HTTP Header头部
 - 通过Content-Type可以传输各类文件
- Status Code响应码
- HTTP Version版本号
- Method方法扩展

HTTP/1.1的改进-1997

- 增加Host头部
- KeepAlive长连接
- Chunk包体
- 增强内容协商范围
- 增加cache-control

In a default HTTP/1.0 session, the TCP connection will be torn down and re-established between each HTTP GET request.

In a default HTTP/1.1 session, a single TCP connection will be held, open and multiple GET requests will be passed across.

HTTP/2的改进 -2015

- HTTP层的多路复用
 - 资源优先级控制
- 提升编码效率
- 支持服务器推送

队头阻塞问题

建立连接成本过高

- 2重握手
 - TCP握手
 - TLS握手
- 更换IP后断链重连
 - TCP四元组

HTTP Request Over TCP + TLS

HTTP3协议概览

TCP引入的问题

- 有序字符流
- 协议分层
- IP、端口四元组

队头阻塞的解决

连接成本的降低

GOP5 2020 Shanghai

- 基于ConnectionID 的连接迁移
- 握手合并

HTTP Request Over QUIC

HTTP3与UDP协议

www.humanlevel.com

5个RFC

- 1. QUIC: https://tools.ietf.org/html/draft-ietf-quic-transport-32
- 2. QUIC+TLS: https://tools.ietf.org/html/draft-ietf-quic-tls-32
- 3. 丢包重传: https://tools.ietf.org/html/draft-ietf-quic-recovery-32
- 4. QPACK: https://tools.ietf.org/html/draft-ietf-quic-qpack-19
- 5. HTTP3: https://tools.ietf.org/html/draft-ietf-quic-http-32

HTTP3报文

- Packet头部
- TLS头部
- QUIC Frame头部
- HTTP3 Frame头部

TLS1.3

• HTTP消息

UDP Header **Packet Header QUIC Frame Header HTTP3 Frame Header HTTP Message**

QUIC层的实现

Packet头部

GOPS 2020 Shanghai

- Long Packet Header
- Short Packet Header

```
|1|1|T T|X X X X|
           Version (32)
Destination Connection ID (0..160)
| SCID Len (8)
        Source Connection ID (0..160)
10|1|S|R|R|K|P P|
       Destination Connection ID (0..160)
         Packet Number (8/16/24/32)
         Protected Payload (*)
```

QUIC Frame头部

Value	Name	Value	Name		
0x00	PADDING	0x02 - 0x03	ACK	0x15	STREAM_DATA_BLOCKED
0x01	PING	0x08 - 0x0f	STREAM	0x18	NEW_CONNECTION_ID
0x04	RESET_STREAM	0x12-0x13	MAX_STREAMS	0x19	RETRY_CONNECTION_ID
0x05	STOP_SENDING	0x16-0x17	STREAM_BLOCKED	0x1a	PATH_CHALLENGE
0x06	CRYPTO	0x1c-0x1d	CONNECTION_CLOSE	0x1b	PATH_RESPONSE
0x07	NEW_TOKEN	0x11	MAX_STREAM_DATA	0x1e	HANDSHAKE_DONE
0x10	MAX_DATA	0x14	DATA_BLOCKED		

QUIC Stream Frame头部

HTTP3 Frame头部

Туре	意义	Туре	意义	Туре	意义
0x00	DATA	0x04	SETTINGS	0x0d	MAX_PUSH_ID
0x01	HEADERS	0x05	PUSH_PROMISE		
0x03	CANCEL_PUSH	0x07	GOAWAY		

QPACK与视频压缩

QPACK编码

- 99项静态表
- 解决HOL的动态表:编码效率VS阻塞容忍
- 静态Huffman编码

TLS1.2到TLS1.3

- 密钥交换(移除静态密码,支持前向保密性)
 - DHE / ECDHE(Elliptic-curve Diffie-Hellman): X25519, X448
 - PSK-only
 - PSK with ECDHE/DHE
- 身份验证算法
 - RSA
 - 椭圆曲线
 - ECDSA
 - EdDSA
 - PSK (<u>TLS Pre-Shared Key</u>)
- 对称加密算法
 - AEAD算法

更快的握手

AEAD算法

- Authenticated Encryption with Associated Data
 - 完整性
 - 机密性
 - 不可篡改
- 块加密
 - AES-GCM
 - AES-CCM
- 流加密
 - ChaCha20-Poly1305

CCM模式

GOP5 2020 Shanghai

counter with cipher block chaining message authentication code

- 1. CBC: Auth Tag加密 (authenticate-then-encrypt)
- 2. CTR:消息加密

TLS1.3与QUIC的耦合

TLS Handshake	TLS Alerts	QUIC Applications (h3, etc.)						
QUIC Transport (streams, reliability, congestion, etc.)								
QUIC Packet Protection								

TLS头部


```
Long Header:
+-+-+-+-+-+-+
|1|1|T T|E E E E|
Version -> Length Fields
Short Header:
+-+-+-+-+-+-+
|0|1|S|E E E E E|
Destination Connection ID (0/32..144)
Common Fields:
[Protected Payload (8/16/24)]
Sampled part of Protected Payload (128)
Protected Payload Remainder (*)
```


HTTP3协议应用

HTTP3应用情况

- 截止2020.10.20号,已发布32个草案
- W3Techs近1年HTTP3站点统计
- 协议升级
 - Alt-Svc: h3=":50781"
- chrome启用http3
 - --enable-quic --quic-version=h3-29
- firefox启用http3
 - network.http.http3.enabled

Nginx流控指令(1) - http{} server{}

- quic_initial_max_data
 - 连接上飞行中的报文数量,默认为16*65536,可以由MAX_DATA帧改变
- quic_initial_max_stream_data_bidi_local
 - 双向stream本地端的初始流控值,默认65536
- quic_initial_max_stream_data_bidi_remote
 - 双向Stream远端的初始流控值,默认65536
- quic_initial_max_stream_data_uni
 - 单向Stream的初始流控值,默认65536
- quic_initial_max_streams_bidi
 - 双向Stream的最大并发数,默认16,可以由MAX_STREAM帧改变
- quic_initial_max_streams_uni
 - 单向Stream的最大并发数,默认16

Nginx QUIC 指令 (2) - http{} server{}

- quic_max_idle_timeout
 - 最大空闲时间,单位毫秒,Nginx默认60000,0表示关闭功能
- quic_max_ack_delay
 - 延迟确认的最大值,默认(也是RFC推荐)25毫秒
- quic_max_packet_size
 - 默认65527,不能小于1200字节
- quic_ack_delay_exponent
 - 将ACK确认帧中,将ACK时延按2的倍数扩大。默认值3(RFC推荐),不允许超过20
- quic_active_migration
 - 是否支持客户端迁移连接,默认为1表示开启
- quic_retry
 - 防止流量放大攻击时,可以通过retry功能强制要求客户端开启TOKEN地址验证功能。默认关闭off

Nginx指令(3)-http{} server{}

- http3_max_field_size
 - HTTP QPACK头部的大小限制
- http3_max_table_capacity
 - 设置动态表容量
 - SETTINGS_QPACK_MAX_TABLE_CAPACITY帧可以修改其值
 - 与HTTP2中的SETTINGS_HEADER_TABLE_SIZE帧功能一致
- http3_max_blocked_streams
 - QPACK动态表会阻塞Stream,该值可以定义允许最大阻塞住的Stream数量,
 - 一旦超出,会立刻向客户端返回QPACK解压失败错误

HTTP3普及面临的挑战

Thanks

高效运维社区 开放运维联盟

荣誉出品