

Sprawozdanie - projekt JESS Program do obliczania ustawien pieca emalierskiego

Autor	Tomasz Piętka
Przedmiot	Inżynieria wiedzy i systemy
	ekspertowe
Identyfikator	IW- IS-NS-2014/2015
przedmioty	
Rok akademicki	Semestr VII 2014/2015
Wersja	1.0
Data	22/5/2015

Spis treści

Opis problemu – piec emalierski i proces wypalania emalii	3
Reprezentacja zmiennych	6
Rozmyta baza wiedzy	10
Implementacja	13
Scenariusze wnioskowania	15
Podsumowanie i wnioski	18

Opis problemu - piec emalierski i proces wypalania emalii

Proces wypalania emalii to proces w którym:

- następuje zeszkliwienie masy emalierskiej
- powiązanie masy emalierskiej z bazą metalu, z którego wykonany jest wyrób przeznaczony do emaliowania.
- produktem koncowym wypalania jest na przykład naczynie metalowe, z warstwą emalii przeznaczonej do kontaktu z żywnością.

Proces odbywa się w piecu tunelowym, który składa się z 3 stref:

- podgrzewanie zakres temperatur 30-780 stopni C
- wypalanie zakres wypalania 780-860 stopni C
- chłodzenie zakres temperatur 30-780 stopni C

Wyroby emaliowane umieszcza się w koszach na 3 ponowych półkach, które zawieszone są na taśmociągu łańcuchowym, który przemieszcza się przez wszystkie z 3 stref pieca emalierskiego z zadaną prędkością tak aby uzyskać optymalne warunki wypalania zgodne z procesem technologicznym.

Ustawienie prędkości taśmociągu zależy od:

1. Zastosowanej emalii. Rodzaje emalii:

- 1.1. **Emalia Gruntowa** warstwa szkliwa, która ma za zadanie związać się z bazą metalową. Zawiera tlenki metali ciężkich i nie nadaje się do kontaktu z żywnością. Charakteryzuje się najwyższymi zakresami temperatury wypalania. Emalia ta jest dobrana do materiału, z którego wykonany jest wyrób według parametru współczynnika rozszerzalności który musi być zbliżony.
- 1.2. **Emalia Kryjąca** druga warstwa szkliwa nakładana na warstwę emalii gruntowej. Nadaje się do kontaktu z żywnością i dodatkowo jest warstwą dekoracyjną. Charakteryzuje się średnimi zakresami temperatury wypalania.
- 1.3. **Zdobienie** motywy zdobnicze nakładane kalkomanią lub metodą sitodruku na wyroby poemaliowane. Spełnia tylko rolę dekoracyjną. Charakteryzuje się niskimi zakresami temperatury wypalania.
- 2. Czasu, który wyrób spędzi w strefie wypalania.

Proces technologiczny wypalania emalii zakłada, że:

- 2.1. Im wyższa temperatura pieca, tym krótszy czas wypalania dla poszczególnych etapów emaliowania.
- 2.2. Przed wykonaniem procesu znamy czas, który powinien spędzić dany wyrób, aby proces zakończył się otrzymaniem wyrobu zgodnego z wymaganiami.
- 3. Półki, które znajdują się na koszu

Im wyżej położony wyrób tym niższa temperatura wypalania.

4. Współczynnika rozszerzalności cieplnej bazy materiału z którego wykonany jest wyrób.

Proces technologiczny zakłada wypalanie emalii na wyrobach:

- 4.1. Żeliwnych charakteryzujących się najniższymi współczynnikami rozszerzalności.
- 4.2. Stalowych charakteryzujących się średnimi współczynnikami rozszerzalności.
- 4.3. Alumioniowych charakteryzujących się najwyższymi współczynnikami rozszerzalności.

Definicja problemu:

Ideą ćwieczenia jest dobranie odpowiedniej prędkości taśmociągu pieca, tak aby można było równocześniee wypalać wyroby o wybranym współczynniku rozszerzalności, ale będących na różnych etapach procesu technologicznego.

Czyli wyroby żeliwne nie mogą być mieszane ze stalowymi bądź aluminiowymi i wice wersa.

Natomiast wyroby na przykład stalowe będące na etapie pokrywania emalią gruntową mogą być mieszane z wyrobami stalowymi będącymi na etapie pokrywania emalią kryjącą i zdobienia. Ma to uzasadnienie ekonomiczne oraz wykorzystuje fakt rozkładu temperatur w piecu na poszczególnych półkach kosza.

Schemat tunelowego pieca emalierskiego

Poglądowy schemat ułożenia wyrobów na półkach kosza w piecu emalierskim

Reprezentacja zmiennych

Temperatura — to temperatura wypalania emalii. Jednostka to stopień celciusza. Zakres to 780 — 860. Jej zbiory rozmyte zostały ustalone na podstawie 3 rodzajów emalii, z którymi mamy do czynienia w procesie wypalania:

Emalia/Temperatura	Min	Max
Zdobienie	780	820
Kryjaca	800	840
Gruntowa	820	860

		Parametry funkcji			
Nazwa zbioru	Typ funkcji	а	b	С	d
Zdobienie	TrapezoidFuzzySet	780	780	800	820
Kryjaca	TrapezoidFuzzySet	800	810	830	840
Gruntowa	TrapezoidFuzzySet	820	840	860	860

Czas – to czas który wyrób będzie spędzał w piecu. Jednostka to minuta, zakres 20-40. Zbiory rozmyte:

Czas	Min	Max
Krótki	20	30
Średni	25	35
Długi	29	40

		Parametry funkcji			
Nazwa zbioru	Typ funkcji	а	b	С	d
Krótki	TrapezoidFuzzySet	20	20	25	30
Średni	TrapezoidFuzzySet	25	27	29	35
Długi	TrapezoidFuzzySet	29	31	40	40

Półka– jest to półka na której znajduje się emaliowany wyrób. Jednostka to po prostu ustawienie, zakres 1-3. Zbiory rozmyte:

Półka	Min	Max
Pierwsza	1.0	2.0
Druga	1.5	2.0
Trzecia	2.0	3.0

Nazwa		Parametry funkcji			
zbioru	Typ funkcji	а	b	С	d
Krótki	TrapezoidFuzzySet	1.0	1.0	2.0	2.0
Średni	TrapezoidFuzzySet	1.5	1.5	2.5	2.5
Długi	TrapezoidFuzzySet	2.0	2.0	3.0	3.0

Współczynnik rozszerzalności cieplnej– charakterystyka materiału, z którego zbudowany jest emaliowany wyrób. Jednostka to odwrotność kelwina: $[\alpha] = \frac{1}{K}$, zakresy dla których działa program to 10-20. Zbiory rozmyte:

Współczynnik	Min	Max
Niski	10	16
Średni	15	17
Wysoki	16	20

Nazwa		Parametry funkcji			
zbioru	Typ funkcji	а	b	С	d
Niski	TrapezoidFuzzySet	10.0	14.0	15.0	16.0
Średni	TrapezoidFuzzySet	15.0	15.0	16.0	17.0
Wysoki	TrapezoidFuzzySet	16.0	17.0	18.0	20.0

Prędkość taśmociągu – jest to wynik obliczenia. Jednostka to po prostu ustawienie, zakres 1-10. Zbiory rozmyte:

Taśmiociąg	Min	Max
Wolno	1	4
Średnio	3	6
Szybko	5	7
Bardzo Szybko	6	10

		Parametry funkcji		
Nazwa zbioru	Typ funkcji	а	b	С
Wolno	TriangleFuzzySet	1.0	2.0	4.0
Średnio	TriangleFuzzySet	3.0	4.0	6.0
Szybko	TriangleFuzzySet	5.0	6.0	7.0
Bardzo Szybko	TriangleFuzzySet	6.0	8.0	10.0

Rozmyta baza wiedzy

Reguły zostały wyznaczone w następujący sposób. Podstawowy zestaw reguł:

	IF	Then		
	Temperatura			
Reguła Lp	wypalania	Czas	Ustawienia	
1	zdobienie	krotki	srednio	
2	zdobienie	sredni	szybko	
3	zdobienie	dlugi	bszybko	
4	kryjaca	krotki	srednio	
5	kryjaca	sredni	szybko	
6	kryjaca	dlugi	szybko	
7	gruntowa	krotki	wolno	
8	gruntowa	sredni	wolno	
9	gruntowa	dlugi	srednio	

Wynika to z tego, że temperatura wypalania i czas spędzony w piecu uznaję za najważniejsze parametry w procesie wypalania. Kolejne reguly (od 10 – 63) są rozszerzeniem reguł podstawowych z dodanym trzecim paramentrem – (10 – 36 dodaje parametr półka, w 37-63 parametr współczynnik rozszerzalności cieplnej). Jeśli chodzi o półkę, to im niżej ułożony w piecu wyrób, tym temperatura jest wyższa. Pólka pierwsza jest półką najwyższą, półka 3 najniższą. Stąd szybkość taśmociągu jest dostosowana na podstawie następujących reguł:

	IF			Then
Reguła	Temperatura			
Lp	wypalania	Czas	Pólka	Ustawienia
10	zdobienie	krotki	1	wolno
11	zdobienie	krotki	2	srednio
12	zdobienie	krotki	3	szybko
13	zdobienie	sredni	1	srednio
14	zdobienie	sredni	2	szybko
15	zdobienie	sredni	3	bszybko
16	zdobienie	dlugi	1	szybko
17	zdobienie	dlugi	2	bszybko
18	zdobienie	dlugi	3	bszybko
19	kryjaca	krotki	1	srednio
20	kryjaca	krotki	2	szybko
21	kryjaca	krotki	3	bszybko
22	kryjaca	sredni	1	szybko
23	kryjaca	sredni	2	bszybko
24	kryjaca	sredni	3	bszybko

AGH				
25	kryjaca	dlugi	1	bszybko
26	kryjaca	dlugi	2	bszybko
27	kryjaca	dlugi	3	bszybko
28	gruntowa	krotki	1	wolno
29	gruntowa	krotki	2	srednio
30	gruntowa	krotki	3	szybko
31	gruntowa	sredni	1	srednio
32	gruntowa	sredni	2	szybko
33	gruntowa	sredni	3	szybko
34	gruntowa	dlugi	1	szybko
35	gruntowa	dlugi	2	szybko
36	gruntowa	dlugi	3	bszybko

Podobnie ze współczynnikiem rozszerzalności, im niższy, tym wyrób może znajdować się w piecu dłużej:

	IF			Then
Reguła	Temperatura			THEI
Lp	wypalania	Czas	Wspolczynnik	Ustawienia
37	zdobienie	krotki	niski	wolno
38	zdobienie	krotki	sredni	srednio
39	zdobienie	krotki	wysoki	szybko
40	zdobienie	sredni	niski	srednio
41	zdobienie	sredni	sredni	szybko
42	zdobienie	sredni	wysoki	bszybko
43	zdobienie	dlugi	niski	szybko
44	zdobienie	dlugi	sredni	bszybko
45	zdobienie	dlugi	wysoki	bszybko
46	kryjaca	krotki	niski	srednio
47	kryjaca	krotki	sredni	szybko
48	kryjaca	krotki	wysoki	bszybko
49	kryjaca	sredni	niski	szybko
50	kryjaca	sredni	sredni	bszybko
51	kryjaca	sredni	wysoki	bszybko
52	kryjaca	dlugi	niski	bszybko
53	kryjaca	dlugi	sredni	bszybko
54	kryjaca	dlugi	wysoki	bszybko
55	gruntowa	krotki	niski	wolno
56	gruntowa	krotki	sredni	srednio
57	gruntowa	krotki	wysoki	szybko
58	gruntowa	sredni	niski	srednio
59	gruntowa	sredni	sredni	szybko

AGH

AUII				
60	gruntowa	sredni	wysoki	szybko
61	gruntowa	dlugi	niski	szybko
62	gruntowa	dlugi	sredni	szybko
63	gruntowa	dlugi	wysoki	bszybko

Implementacja

Reguły wnioskowania zostały zaimplementowane w JESS. Reguły znajdują się w pliku fuz.clp, poniżej plik przepuszczony przez silnik reguł, wraz z wyświetleniem faktów.

```
Warning: the JAVA_HOME environment variable is not defined
If Jess fails to start, set this environment variable to
point to your JDK installation directory, then try again.

Jess, the Rule Engine for the Java Platform
Copyright (C) 2008 Sandia Corporation
Jess Version 7.1p2 11/5/2008

This copy of Jess will expire in 130 day(s).
Jess > (batch fuz.clp)
3.8

TRUE
Jess > (facts)
f-0 (MAIN::initial-fact)
f-1 (MAIN::crispTemp 843)
f-2 (MAIN::Temp (Java-Object:nrc.fuzzy.FuzzyValue))
f-3 (MAIN::crispCzas 22)
f-4 (MAIN::crispTaca 2.6)
f-5 (MAIN::crispTaca 2.6)
f-6 (MAIN::crispTaca 2.6)
f-7 (MAIN::crispTaca 2.6)
f-8 (MAIN::crispWsp 10.8)
f-9 (MAIN::Vsp (Java-Object:nrc.fuzzy.FuzzyValue))
f-11 (MAIN::Tasmociag (Java-Object:nrc.fuzzy.FuzzyValue))
For a total of 10 facts in module MAIN.
Jess >
```

Została zbudowana aplikacja Enamel Burnout w technologii WPF.NET:

Ustawienia zrobione są na elemencie "scroll bar", po wybraniu parametrów programu i wciśnięciu przycisku "Symulacja" następuje zapisanie zmiennych do pliku "fakty.clp" oraz uruchomienie procesu "jessfuzzy.bat" z plikiem wsadowym "fakty.clp".

Następuje wnioskowanie rozmyty, którego efekt zapisany jest do pliku "wyniki.txt" – jest to liczba z dokładnością do jednego miejsca po przecinku która określa szybkość taśmociągi.

Przycisk "wynik" wczytuje tę liczbę do interfejsu i pokazuje ją w polu tekstowym. Poniżej kod przycisku symulacja:

```
private void Button_Click(object sender, RoutedEventArgs e)
{
    Result.Text = "";
    var path = Assembly.GetExecutingAssembly().Location;
    path = path.Remove(path.LastIndexOf(@"\", StringComparison.Ordinal));
    Directory.SetCurrentDirectory(path + @"\bin");
    File.Delete("fakty.clp");
    var streamWriter = new StreamWriter("fakty.clp");
    streamWriter.WriteLine("(defglobal ?*zmTemperatura* = " + TxtBoxTemperatura.Text + " )");
    streamWriter.WriteLine("(defglobal ?*zmCzas* = " + TxtBoxCzas.Text + " )");
    streamWriter.WriteLine("(defglobal ?*zmTaca* = " + TxtTaca.Text + " )");
    streamWriter.WriteLine("(defglobal ?*zmWsp* = " + TxtWspRoz.Text + " )");
    streamWriter.Close();
    Process.Start("jessfuzzy.bat", "fuz.clp");
}
```


Scenariusze wnioskowania

Scenariusz 1 – Emalia kryjąca i gruntowa, czas wypalania niski. Wyrób o niskim współczynniku rozszerzalności cieplnej - żeliwo. Półka druga.

Wynik to prędkość taśmociągu 5.6 która mieści się w zakresie prędkości średnich i szybkich.

Scenariusz 2 - Emalia kryjąca i gruntowa, czas wypalania średni. Wyrób o niskim współczynniku rozszerzalności cieplnej. Półka druga.

Należy przyspieszyć taśmociąg pieca o 0.3 skali ustawienia.

Scenariusz 3 – Wszystkie trzy rodzaje emalii (temperatura 820), czas wypalania średni. Wyrób o średnim współczynniku rozszerzalności cieplnej - stal. Półka niska - pierwsza.

Prędkość pieca to 6.5.

Scenariusz 4 – Zdobienie i emalia kryjąca, czas wypalania średni. Wyrób o wysokim współczynniku rozszerzalności cieplnej - aluminium. Półka wysoka - trzecia.

Bardzo szybko ustawiony piec, ponieważ wymagane są niskie temperatury wypalania.

Podsumowanie i wnioski

Program w zadawalającym stopniu symuluje ustawienie parametrów pieca do wypalania emalii zwanego piecem emalierskim. Dane wyjściowe symulacji były konsultowane z ekspertem technologii emaliowania wyrobów, byłym pracownikiem Olkuskiej Fabryki Naczyń Emaliowanych – Emalia S.A. i spełniają kryteria procesu technologicznego stosowanego w wyżej wymienionym zakładzie.

Cel ćwiczenia jakim było zaprogramowanie reguł pozwalających na optymalizacje procesu wypalania emalii i ekonomii pracy pieca został osiągnięty.

Model to tylko uproszczona symulacja procesu, można rozwijać go dodając dodatkowe parametry techologiczne w celu przystosowania programu do procesu wytwarzania innych wyrobów ceramicznych.

Ćwiczeniem tym udowodniłem, iż silnik reguł JESS nadaje się do modelowania prawdziwych problemów ze świata przemysłu.