Transaction Prediction System

Northwestern

Team 16: Junyi Chen, Fuqian Zou, Ananya Rattan Khurana

Problem Statement

Dillard's faces critical inventory and procurement challenges in today's competitive retail market, requiring a predictive model to optimize demand forecasting and drive data-driven decision making.

Predict Transaction Amount to Optimize Inventory and Enhance Operational Efficiency

- Determine the factors driving transaction amounts and their impact on sales performance.
- Analyze demand fluctuations across months, stores, and SKUs to identify trends and patterns.
- Assess the influence of department, brand, sale date, and pricing strategies on transaction behavior.
- Explore how SKU characteristics, store location, and historical demand contribute to monthly sales variability.

Entity Relationship

STRINFO (Store Information) Description:

city, state, and zip code help identify the location details of each store.

PK – Primary key FK – Foreign key

SKSTINFO (Stock Store Information)

Description: Links products (SKU) to stores and contains cost and retail price of products in specific stores.

SKUINFO (Stock Keeping Unit Information)

Description: Product/SKU info like department, class ID, UPC, color, size, brand etc

Columns description (key columns)

Attribute	Description	Value Types 26.25, 44.00,	
AMT	Total amount of the transaction charge to the customer		
CITY	City where the store is located	ST. LOUIS, TAMPA,	
COST	The cost of the stock item	9.00, 15.00,	
DEPT Department where the stock item belong		800, 801, 1100,	
DEPTDESC Description of the department		CLINIQUE, LESLIE,	
ORGPRICE Original price of the item stock		75.00, 44.00,	
QUANTITY	Item quantity of the transaction	1, 2, 3,	
RETAIL	The retail price of the stock item	19.75, 34.00,	
SALEDATE	Sale date of the item stock	2005-01-20, 2005-06-02,	
KU Stock Keeping Unit number of the stock item		4757355, 2128748,	
SPRICE	Sale price of the item stock	26.25, 65.00,	
STATE	State where the store is located	FL, MO, AR,	
STORE	Store Number	2, 3, 4, 100,	
STYPE	Type of the transaction (Return or Purchase)	P, R	

DEPTINFO (Department Information)

Description: Dept-Store wise info. This table is crucial for organizing products under various department categories.

Technical Architecture

Northwestern 4

Exploratory Data Analysis

Insights:

- 1. Cost and retail price are positively correlated.
- 2. There are seasonal patterns in total sales. Total sales are highest in December.
- 3. Texas, Florida, Arkansas have the most number of stores.
- 4. Total sales in Texas and Florida is significantly higher than other states.

Data Cleaning

- 1. Check data types: Converted date to datetime type
- 2. Correct typos and errors: Removed blank space after string
- 3. Check duplicate rows: No duplicate rows in the dataset
- 4. **Check missing values:** Imputed missing values with mean/median
- 5. **Detect outliers:** Found outliers that are more than 3 standard deviations away from the mean and dropped/imputed outliers

	dept	deptdesc	bool			dept	deptdesc	bool
0	800	CLINIQUE	0		0	800	CLINIQUE	0
1	801	LESLIE	0		1	801	LESLIE	0
2	1100	GARY F	0	\rightarrow	2	1100	GARY F	0
3	1107	JACQUES	0		3	1107	JACQUES	0
4	1202	CABERN	0		4	1202	CABERN	0

Northwestern 6

Feature Selection

Response	Numeric Predictors (Standardized)		Categorical Predictors (One-hot encoded)		
	Cost	The cost of the stock item	Month	Extracted month from saledate and dropped data in August 2025 to avoid double counting monthly sales in August	
Monthly sales of sku in the store	Retail	The retail price of the stock item	Color_category	The color of the stock item. Most frequent colors were categorized to major types (black, white, red, blue, etc.)	
	Packsize	The quantity of item per pack	State	State where the store is located	

Model Training

Split the dataset into 80% for training and 20% for testing.

Model	Reason for Choice		
Multiple Linear Regression	Simple and interpretable model for understanding the linear relationships between features and sales amount.		
Ridge Regression	Add L2 regularization to prevent overfitting by penalizing large coefficients, especially when multicollinearity exists among predictors.		
Lasso Regression	Add L1 regularization to encourage sparsity, making it useful for feature selection and simplifying the model.		
LightGBM	Gradient-boosting model optimized for speed and efficiency, suitable for handling large datasets and capturing non-linear relationships.		
XGBoost	Another gradient-boosting model known for its high performance and advanced regularization techniques, effective in handling non-linear and complex datasets.		

Model Evaluation

Model	R-squared	Mean Squared Error	
Multiple Linear Regression	0.631	292.905	
Ridge Regression	0.631	292.905	
Lasso Regression	0.631	293.055	
LightGBM	0.758	192.572	
XGBoost	0.753	195.986	

Best model

ROI- Driving 27,400.20% Returns at Dillard's

Cost Reduction

- Achieved a 50% reduction in overstock and stockout rates, resulting in annual savings of \$102.36M and \$51.18M, respectively.
- Lowered storage costs and minimized markdown risks.
- Optimized working capital by aligning inventory with demand.

Revenue Growth

- Recovered \$153.54M annually by preventing revenue losses due to overstock and stockout scenarios.
- Enabled strategic promotions and peak period optimization. Enhanced cross-selling with accurate SKU-level alignment.

Operational Efficiency

- Automated forecasting with LightGBM (R²=0.7575), streamlining procurement.
- Improved supply chain and vendor coordination for cost-effective operations.

Model Application and Recommendation

• **Adjust Inventory**: Allocate inventory dynamically, ensuring high-demand SKUs are stocked in sufficient quantities while limiting low-demand SKU purchases.

• Target Promotions:

- For low-demand SKUs: Launch store-specific promotions, bundle offers, or discounts to stimulate sales. Encourage personalized campaigns
- For high-demand SKUs: Optimize pricing strategies to maximize revenue without discouraging purchases.
- **Real-Time Updates**: Integrate the model with real-time sales data to make quick adjustments in restocking and promotional efforts.

Strategy Examples—Target Promotions

Low-Demand SKUs

Scenario: A store identifies through the model that SKU Z (a high-end kitchen appliance) has consistently low sales.

Action Plan:

- **Bundle Offer:** Combine SKU Z with a popular SKU (e.g., a cooking pan) at a discounted price to encourage sales.
- **Localized Discounts:** Offer 20% off SKU Z in stores with historically low sales for kitchen appliances.
- Marketing Campaign: Create targeted advertisements for SKU Z, emphasizing its unique features and limited-time pricing.

Outcome: Increased sales for SKU Z while creating perceived value for customers through bundling and discounts.

High-Demand SKUs

Scenario: SKU A (a best selling smartphone) is predicted to sell out during the holiday season.

Action Plan:

- Dynamic Pricing: Slightly increase SKU A's price during peak demand periods while staying competitive to maximize margins.
- **Stock Prioritization:** Ensure adequate stock in high-performing stores based on historical sales data.
- **Upselling:** Offer complementary accessories (e.g., phone cases, chargers) as add-ons with SKU A purchases.

Outcome: Optimized profit margins and improved customer experience through the availability of both the main product and complementary items.

Strategy Examples—Real Time Updates

Scenario:

During a promotional weekend, real-time sales data indicates that SKU B (a popular snack) is selling out faster than anticipated in urban stores.

Action Plan:

- **Dynamic Restocking:** Use the sales model to prioritize SKU B's restocking in urban stores from nearby distribution centers.
- **Adjust Promotions:** Temporarily pause promotional discounts on SKU B in urban stores to slow demand and maintain stock.
- **Redistribution:** Transfer excess SKU B stock from suburban stores, where demand is lower, to urban stores.

Outcome: Prevented stockouts in high-demand areas and reduced inventory waste in low-demand areas.

Conclusion

The sales prediction model delivers a data-driven solution for optimizing inventory and enhancing retail operations. It enables precise demand forecasting at the SKU level, helping businesses:

- Minimize overstock and stockouts to reduce costs.
- Tailor promotions and pricing strategies to **boost revenue**.
- Streamline operations with **automated workflows** and scalable processes.
- Make informed, real-time decisions based on actionable insights.

Appendix

Github: https://github.com/NUMLDS/MLDS-400-2024-Team16

Northwestern 15