Slides in S. S.A.D PZ

Ci sono diverse architetture per i sistemi di acquisizione dati, ed ognuna ha dei pregi e dei difetti,.

#Domande esame

A PIU INGRESSI

Dobbiamo comandare il multiplexer in modo da passare da un canale all'altro per poter selezionare l'ingresso. Dopodiché il resto del circuito è simile a quello ad ingresso singolo.

AD INGRESSO

SINGOLO

La differenza tra il circuito a singolo ingresso e quello a più ingressi è che nel sistema a più ingressi la frequenza di campionamento è ripartita su più canali.

$$f = fc$$

$$J_{PerCanole} = N$$

$$ES f_c = 300 MHz = D f_{Pc} = 300 MHz = 100 MHz$$

$$DIFERTO 1 f_{Pc} = 300 MHz = 100 MHz$$

Boudo del convertitore (Nyquist)

$$B = \frac{300MH2}{2} = \left[0, 150MH2\right]$$

=D Nel caso di 3 conoli =D Bu = 50MHz

la Boude Si riduce oll'enmentere du Conoli

Se usiamo questo approccio, i campioni non sono prelevati simultaneamente. Questo vuol dire che i campioni sono riferiti allo stato del sistema in momenti diversi.

Se dobbiamo ad esempio calcolare la potenza, moltiplichiamo la tensione per la corrente. Ma se preleviamo tensione e corrente in due istanti diversi, non possiamo effettuare una corretta misurazione.

Nel caso ideale tutti i campioni sono presi simultaneamente tra loro. Ma questo non è possibile perché abbiamo un singolo sample e hold in uscita al multiplexer, e quindi abbiamo un singolo segnale per volta.

$$P = \frac{1}{N} \sum_{j=1}^{N} V(t_j) \cdot i(t_j)$$

Possiamo risolvere **aggiungendo un sample e hold per ogni canale <u>prima</u> del multiplexer. In
questo modo salviamo il valore del canale e
possiamo permetterci un ritardo nel MUX.**

Ovviamente questa soluzione è più costosa.

La frequenza di campionamento è ancora ripartita, e quindi non abbiamo risolto questo problema: la frequenza utile può risultare bassa.

Campionamento Simultones

Si può risolvere con un sistema di campionamento simultaneo, dove andiamo a **ripetere N volte lo schema iniziale**. In questo modo risolviamo sia il problema della frequenza di campionamento sia il problema della sincronizzazione temporale.

Tempificazione dei componenti

SCHEMI DI ARCHITETTURA DAC

MONOCANALE

MULTICANALE

In questo caso lo schema viene semplicemente ripetuto più volte.

#Domande esame

Perche riassuntivo dei Sistemi acquisizione dati

MULTICANALE "A RISPARHIO"

Con questa soluzione usiamo un singolo DAC e diversi SH che memorizzano l'uscita analogica in successione:

1. Produco un'uscita dal DAC

2. Il primo sh che era in sample va in hold e mantiene la prima uscita.

3. Produco un altro valore dal DAC e mando in hold il secondo sh.

4. E così via per tutte le uscite

I S&H precedenti non vengono modificati perché una volta che sono in hold non memorizzano il segnale in ingresso.

Questa soluzione serve per usare un singolo convertitore DAC.