Primer Examen de Física

Prof. Misael Solorza Guzmán

12 de septiembre de 2019

Nombre del Alumno:	Fecha:
I. Instrucciones. Seleccione la respuesta correcta prespuesta si es necesario)	oara cada pregunta y marque su elección <u>solo una</u> . (Justifique su
 Conjunto de puntos que registra un cuerpo en a a) Cinemática b) Dinámica c) Patícul 	
 Representa todo cuerpo por su masa pero sin c a) Cinemática b) Dinámica c) Patícul 	
no existe un agente extraño que lo cambie. (su estado de reposo o de movimiento rectilineo uniforme mientras Valor 1%) era ley de Newton c) Segunda ley de Newton d) Tercera
4. Estudia únicamente la geometría del movimien a) Dinámica b) Cinemática c) Patícul	- ,
5. Estudia el movimiento de los cuerpos en relacimiento. (Valor 1%)a) Dinámica b) Cinemática c) Patícul	ón con las causas que condicionan uno u otro caracter de movi- a d) Trayectoria
6. Es una fuerza que representa por la reacción de a) Tensión b) Fuerza Normal c) Fuerz	e un cuerpo por la acción de otro. (Valor 1%) ta de fricción d) Peso
(Valor 1%)	na reacción en igual magnitud y dirección pero de sentido opuesto. era ley de Newton c) Segunda ley de Newton d) Tercera
8. Es una fuerza que se presenta de oponer un cue a) Tensión b) Fuerza Normal c) Fuerz	erpo al movimiento. (Valor 1%) va de fricción d) Peso
9. Ley que enuncia: El cambio en el estado de e	quilibrio es proporcional a sus fuerzas aplicadas e inversamente

(Valor 1%)

proporcional a su masa y dirigido en la dirección de la resultante de las fuerzas.

- 10. Notación científica y resultado en unidades mKs de $\frac{(5,12\times10^3 \text{ ft})(4,2\times10^7 \text{ in})}{1,8\times10^{12} \text{ min}}$. (Valor 1%) a) $1.52\times10^{-2} \text{ m}^2/\text{s}$ b) $1.52\times10^{-3} \text{ m}^2/\text{s}$ c) $1.52\times10^{-4} \text{ m}^2/\text{s}$ d) $1.52\times10^{-5} \text{ m}^2/\text{s}$

lev de Newton

II. Instrucciones. Lea con cuidado y contesta correctamente los problemas siguientes.

- 1. Una paracaidista, después de saltar, cae 52.0 m sin fricción. Cuando se abre el paracaídas, ella decelera a razón de $2.10\frac{\mathrm{m}}{\mathrm{s}^2}$ y llega al suelo a una velocidad de $2.90\frac{\mathrm{m}}{\mathrm{s}}$. (a) ¿Cuánto tiempo estuvo la paracaidista en el aire? (b) ¿A qué altura comenzó la caída? (Valor 20%)
- 2. En la siguiente figura, A es un bloque de 4.4 Kg y B es un bloque de 2.6 Kg. Los coeficientes de fricción estática y cinética entre A y la mesa son de 0.18 y 0.15, respectivamente.

- a) Determine la masa mínima del bloque C que debe colocarse sobre A para evitar que se deslice. (Valor 15%)
- b) El bloque C es levantado súbitamente de A. ¿Cuál es la aceleración del bloque A? (Valor 15%)
- 3. Un cono hueco gira alrededor de su eje. Una bola se deplaza con rapidez constante de v=4 $\frac{\mathrm{m}}{\mathrm{s}}$ paralelamente al eje y perfora el cono en los puntos "A" y "B". Determine la mínima rapidez angular del cono para que "AB" (Valor 20%) sea paralelo al eje. $(R = \pi m)$

4. Se lanzan proyectiles a una distancia horizontal R del borde de un acantilado de altura h de manera tal que aterrizan a una distancia horizontal x del fondo del acantilado. Si queremos que x sea tan pequeña como es posible, ¿comó ajustaríamos ϕ_0 y v_0 suponiendo que v_0 pueda ser variada desde cero hasta un valor máximo finito $v_{\text{máx}}$ y que ϕ_0 puede ser variado continuamente? Sólo permite una colisión con el suelo, ver figura. (Valor 20%)

