

工程图学与计算机绘图一复习课

### **ॐ** 考试题型



- ❖ 共9题左右,范围: 1-4章, 6-8章。主要包括:
- 1. 点线面投影;
- 2. 平面基本体的截交线、曲面基本体的截交线、相贯线;
- 3. 补全组合体三视图:
- 4. 补全组合体三视图并标注尺寸、或者零件图标注尺寸;
- 5. 全剖视图或半剖视图、断面图;
- 6. 标准件和常用件的画法及有关计算;
- 7. 零件图的尺寸标注和技术要求。





### 点、线、平面的投影

### **♪** 直线投影



#### 垂直线





#### 水平线





#### 一般位置线





### **♪** 平面投影





### . 熟悉特殊位置直线和平面的名称和投影特征



### ❖特殊位置直线:

- 正垂线、侧垂线、铅垂线
- ■正平线、侧平线、水平线

### ❖特殊位置平面

- 正垂面、侧垂面、铅垂面
- 正平面、侧平面、水平面

熟练掌握各特殊位置直线和平面的投影特征, 尤其是积聚性和真实性

### ÷ 例2-9(1)p15



❖ 画出直线的第三面投影,判断其为何种位置直线



### ÷ 例2-16(1)p19



❖ 画出平面的第三面投影,判断其为何种位置平面







2-19 已知直线EF在AB、CD两平行线确定的平面内, 试求其水平投影。



2-19 已知直线EF在AB、CD两平行线确定的平面内, 试求其水平投影。







#### 2-29 求直线与平面的交点,并分辨可见性。

#### 2-29 求直线与平面的交点,并分辨可见性。









2-32 求一般位置平面与铅垂面的交线,并分辨可见性。

2-32 求一般位置平面与铅垂面的交线,并分辨可见性。

















### 基本体的截交线相贯线



#### 熟练掌握各种基本体投影特征以及表面取点方法







### ● 圆锥表面上取点 —— 一般位置点

# HANGI OF OTANZI WITH

### 已知圆锥表面上点的投影1'、2', 求其它两面投影。

◆辅助素线法
过锥顶作一条素线。

### **◆**辅助圆法





### ❖ 立体表面交线——截交线



### 求截交线

### 熟练掌握平面体和圆柱的截断

平面截断平面体 平面截断棱柱 平面截断棱锥 平面截断回转体 平面截断圆柱

### ፟ 3-9 (1) 完成下列立体的第三投影







### ፟ 3-9 (1) 完成下列立体的第三投影





























### : 圆柱的截断



## 由于截平面与圆柱轴线的相对位置不同,截交线有三种不同的形状。





### **:** 圆锥的截断







### 例3: 求左视图





























### ♪ 立体表面交线——相贯线



### 求相贯线

·平面体和回转体相贯

相贯线

两回转体相贯

两圆柱面正相贯



熟练掌握平面体和圆柱相贯及两圆柱正相贯的画法

### 例: 求作主视图







### 求作主视图





### • 两圆柱相贯的作图步骤:





### (1) 求特殊点:

直接定出相贯线的最左点A和最右点B、最前点C和最后点D的三面投影。

(2) 求一般点: 在已知相贯线的水平 投影上任取两点1、 2, , 找出侧面重影点 1"、2", 然后作出正 面投影1'、2'。

### (3) 光滑连相贯线

### • 完成后的投影图





### **:** 圆直径变化对相贯线的影响



### ·相贯线投影的近似画法



当两正交圆柱直径相差较大时,其相贯线的投影可用圆弧



三点画圆弧

以大圆柱半径为半径画弧











### 补全组合体三视图及尺寸标注

# ♪ 相邻表面位置关系——相切与相交



## 两形体表面,相切处无线,相交处有线。





























#### 上次作业



#### 4-17 在三视图上标注尺寸(尺寸数值由图上1:1量取,并取整数)。









4-17 在三视图上标注尺寸(尺寸数值由图上1:1量取,并取整数)。











#### 4-18 补画第三视图,并标注尺寸。











4-18 补画第三视图,并标注尺寸。



#### 工程图学与计算机绘图一复习课





# 全剖视图或半剖视图、断面图

## : 剖视图的种类



## 1. 全剖视

用剖切面完全地剖开物体所得的剖视图。

## 适用范围:

外形较简 单,内形较复 杂,而图形又 对称时。



# 2. 半剖视



## 解决办法:



### · 半剖视的适用范围





## 适用范围:

内、外形都 需要表达,而形 状又对称或基本 对称时。

## ••

#### 剖视图与剖视图的区别:







断面图是面的投影, 仅画出断面的形状;

剖视图是体的投 影,剖切面之后的结 构应全部投影画出。



断面图



剖视图

## · 断面图的种



断面图 { 移出断面图 重合断面图

### 1. 移出断面图

画在视图之外的断面图称为移出断面图。







移出断 面图的轮廓 线用<mark>粗实线</mark> 绘制。



# ▶ 2、重合断面图



# 重合断面图不加任何标注。























## 螺纹紧固件及其连接的画法





#### 1. 外螺纹的画法

(1) 不剖









(1) 剖

通孔

剖面线画到小径处



 $D_1 \approx 0.85$ 

(2) 不剖



不通孔

螺纹中止线

大径画 3/4圆

倒角圆省略不画

内部线条



一律为细虚线 螺纹小径和螺纹终 止线用粗实线绘制 大径用细实线绘

57



#### 内、外螺纹连接的画法



剖视图:连接部分应按外螺纹的画法绘制,

其余部分仍按各自的画法绘制。

旋合部分按外螺纹画







#### 3) 螺栓连接的画图步骤









#### 5)螺栓连接的比例画法

螺栓连接的比例画法,主要<mark>以螺栓公称直径为依据</mark>。画 法参照螺栓、螺母、垫圈的比例画法。

- 6)螺栓连接的简化画法
- (2)画螺栓连接时应注意的问题
  - 1)  $d_0 = 1.1d$  ——被连接件的孔径必须大于螺栓的大径。
  - **2)**在螺栓连接剖视图中,被连接零件的接触面(投影图上为线)画到螺栓大径处。
  - **3)**螺母及螺栓的六角头的三个 视图应符合投影关系。
  - **4)**螺纹终止线画到垫圈之下、被连接两零件接触面之上。









- 3. 双头螺柱连接及其连接画法
- (1) 双头螺柱连接常用的紧固件: 双头螺柱、螺母、垫圈。
- (2) 用于: 1) 被连接件之一较厚, 不适合加工成<mark>通孔;</mark> 2) 并且要求连接力较大。
- (3) 双头螺柱连接:下部似螺钉连接,上部似螺栓连接。
- (4) 旋入端完全旋入螺纹孔中, 即:图上旋入端的终止线应与螺 纹孔口的端面平齐。













## 齿轮啮合的画法及有关计算



#### 圆柱齿轮



- 1.标准直齿圆柱齿轮各部分的名称和尺寸关系
- (1) 齿顶圆(直径 $d_a$ )
- (2) 齿根圆(直径 $d_f$ )
- (3) 分度圆(直径d)

标准齿轮该圆的圆周上齿厚与齿槽宽相等:

s = e

#### (4) 齿距 (P)

分度圆上两个相邻齿对 应点间的弧长,标准齿轮:

s=e, p=s+e



- (5) 齿 高 (h) 齿顶高 (h<sub>a</sub>) 齿根高 (h<sub>f</sub>) h=h<sub>a</sub>+h<sub>f</sub>
- (6) 模数 (*m*)





模数(m): 设齿轮的齿数为 z,则有

分度圆的周长 =  $\pi d = zP$ 

$$d=z\cdot\frac{P}{\pi}\implies \diamondsuit:P/\pi=m \implies d=mz$$





## (7) 齿轮各部分的尺寸关系

| 名  | 移  | K  | 代号               | 计 算 公 式                                                  | 举 | 例 |
|----|----|----|------------------|----------------------------------------------------------|---|---|
| 模  |    | 数  | m                | $m=P/\pi=d/z$ (应选用标准数值)                                  |   |   |
| 齿  |    | 数  | z                | z=d/m (根据运动要求选定)                                         |   |   |
| 齿  | 顶  | 高  | $h_{\rm a}$      | $h_a=m$                                                  |   |   |
| 齿  | 根  | 高  | $h_{\mathrm{f}}$ | $h_{\rm f}=1.25m \ (h_{\rm f}=1.35m, \pm m \le 1)$       |   |   |
| 齿  |    | 高  | h                | $h = h_{\rm a} + h_{\rm f}$                              |   |   |
| 分度 | 圆  | 直径 | d                | d=mz                                                     |   |   |
| 齿顶 |    | 直径 | a                | $d_{\rm a} = d + 2h_{\rm a}$                             |   |   |
| 齿根 | 圆  | 直径 | $d_{\mathrm{f}}$ | $d_{\rm f}=d-2h_{\rm f}$                                 |   |   |
| 齿  |    | 距  | P                | $P=\pi m$                                                |   |   |
| 中  | 13 | 距  | a                | $a = \frac{d_1 + d_2}{2} = \frac{m(z_1 + z_2)}{2}$       |   |   |
| 压  | 力  | 角  | a                | $\alpha = 20^{\circ}$ (我国标准规定 $\alpha$ 角为 $20^{\circ}$ ) |   |   |
| 传  | 动  | 比  | i                | $i=n_1/n_2=d_2/d_1=z_2/z_1$ (n为齿轮的转数)                    |   |   |





- 1) 齿顶线、齿顶圆——粗实线
- 2) 分度线、分度圆——点画线
- 3) 齿根线、齿根圆——不剖时细实线——可省略不画

——剖时粗实线

4) 齿轮可采用半剖视图或全剖视图 齿根线 粗实线、不可略 齿根线、齿根圆 细实线,可略

#### 。圆柱齿轮啮合画法

- HANGTO DIANZI WHI
- 一对齿轮若要啮合,两者必须模数相等、齿形相同。若皆为标准齿轮,则分度圆相切。
- 1)在平行于齿轮轴线的投影面上的外形视图中,<del>啮合区只用粗实线画出节线</del>,齿顶线和齿根线均不画。
- 2)在投影为圆的视图中, 齿顶圆啮合区可省略。













零件图的尺寸标注和技术要求(粗糙度、公差与配合等)



#### 2. 极限与配合的基本术语定义及概念



#### (1) 零件的尺寸

基本尺寸 通过它应用上、下偏差可算出极限尺寸的尺寸 极限尺寸 一个孔或轴允许的尺寸的两个极端。分为最大极限尺寸和最小极限尺寸。

最大极限尺寸 孔或轴允许的最大尺寸。最小极限尺寸 孔或轴允许的最小尺寸。







#### 极限偏差 指上偏差和下偏差。

最大极限尺寸减其基本尺寸所得的代数差称为上偏差; 最小极限尺寸减其基本尺寸所得的代数差称为下偏差。





尺寸公差(简称公差,用T表示) 最大极限尺寸减最小极限尺寸之差,或上偏差减下偏差之差。是允许尺寸的变动量。

由于最大极限尺寸总是大于最小极限尺寸,上偏差总是大于下偏差,所以它们的代数差值总为正值,一般将正号省略,取其绝对值。即尺寸公差是一个没有符号的绝对值。





### (3) 极限与配合图解(也称公差与配合图解)







#### (4) 基本偏差

A



#### (4) 基本偏差

在极限与配合制中,确定公差带相对零线位置的极限偏差称为基本偏差。它可以是上偏差或下偏差,一般为靠近零线的那个偏差。







#### (5) 零件的配合



<mark>配合</mark> 指基本尺寸相同的相互结合的孔和轴公差带之间的关系。

配合分类: 间隙配合、过盈配合和过渡配合。

**间隙配合** 具有间隙(包括最小间隙等于零)的配合称为间隙配合。



间隙配合图解规律

孔公差带在轴公差带之上





#### 过盈配合 具有过盈(包括最小过盈等于零)的配合。



#### 过渡配合 可能具有间隙或过盈的配合称为过渡配合。







## 标注举例

#### 齿轮毛坯形位公差的识读

- Φ 100h6外圆对孔
   Φ45P7的轴线的径向
   圆跳动公差为
   0.025mm;
   2.Φ100h6外圆的圆度
   公差为0.004mm;
- 3.零件上箭头所指两端面 之间的平行度公差为 0.01mm.







## 标注举例

将指定的粗糙度符号标注在图上。

①左端面:



②小圆柱外表面:



③内孔表面:







#### 将指定的粗糙度符号标注在图上。

#### ①左端面:



②小圆柱外表面:



③内孔表面:







#### 按文字叙述要求标注表面结构代号。



- 1. φ20f7圆柱面表面粗糙度Ra为3.2μm。
- 2. Φ40圆柱右端面表面粗糙度Ra为6. 3μm。
- 3. φ12h9圆柱面表面粗糙度Ra为3. 2μm。
- 4. 右端螺纹表面粗糙度Ra为3.2μm。
- 5. 其余表面粗糙度Ra为12. 5μm

## **注** 注意事项



- 1. 轮廓加深、与辅助区别,注意中心对称轴线
- 2. 注意可见与不可见的区别
- 3. 用尺引线,注意线段长度量取要准确,尤其是宽度尺寸
- 4. 请用铅笔绘图: HB、2B





❖ 教二北楼422

❖ 电话: 18969038369

# 视大家取得好成绩

