实验报告

实验结果一览(完整算法流程在下面)

首先是实验参数,采用mnist数据集,共十个客户端,用自己改的CNN模型,遗忘0号与6号客户端,在强non-iid环境下运行,选取SVD 主方向数为6,Fisher 估计样本数为5,擦除强度0.1

python3 main.py --exp_name mnist_small --dataset mnist --total_num_clients 10 --num_training_iterations 40 -forget_clients 0 --model smallcnn --device cuda --num_workers 0 --lr 0.005 --client_data_distribution dirichlet -num_participating_clients -1 --seed 42 --num_local_epochs 1 --baselines fair_vue --fair_rank_k 8 --fair_tau_mode median
--fair_fisher_batches 5 --fair_erase_scale 0.10 --fair_vue_debug --skip_retraining

结论是遗忘效果可观,但可能存在些许过度损害全局模型的情况

如下是具体实验数据

这是数据在客户端的分布情况,这里类别具体指的是mnist数据集的0-9十个数字

客户端	类别0	类别1	类别2	类别3	类别4	类别5	类别6	类别7	类别8	类别9	合计
0	0	0	1114	0	4541	144	21	2388	0	0	8208
1	0	0	8	27	0	0	71	2034	5476	0	7616
2	6	379	250	1705	0	0	13	20	0	3862	6235
3	1	0	0	16	188	75	0	1681	0	81	2042
4	138	3208	929	0	1112	0	5659	0	0	0	11046
5	2	56	0	4314	0	4	29	0	314	4	4723
6	7	13	0	6	0	5197	1	141	0	1983	7348
7	3187	3083	0	0	0	0	0	0	0	0	6270
8	113	0	3	63	1	1	124	0	61	19	385
9	2469	3	3654	0	0	0	0	1	0	0	6127
类别总样本数	5923	4745	5958	6131	5842	5426	5918	6265	5851	7949	60008

首先是遗忘客户端6的情况,这里直接贴表格:

阶段	Test Accuracy	忘却客户端6精度
Training	0.8083 (80.83%)	76.85%
Retraining	0.7013 (70.13%)	21.39%
FAIR-VUE	0.6548 (65.48%)	14.07%

类别	Training	Retraining	FAIR-VUE
0	0.9776	0.9602	0.9949
1	0.9912	0.9947	0.9683
2	0.9680	0.9729	0.9864
3	0.6931	0.8218	0.1931
4	0.9053	0.9318	0.9104
5	0.7444	0.2298	0.0000
6	0.9729	0.9697	0.9269
7	0.9844	0.9591	0.9757
8	0.0021	0.0041	0.0000
9	0.7948	0.0694	0.4718

客户端	Training	Retraining	FAIR-VUE
0	93.01	93.26	91.93
1	27.82	28.14	27.39
2	76.26	36.66	44.68
3	96.38	91.14	91.38
4	97.46	97.93	94.33
5	63.43	75.42	22.30
6	76.85	21.39	14.07
7	98.39	97.77	97.34
8	75.06	75.06	68.05

客户端	Training	Retraining	FAIR-VUE
9	96.95	96.75	98.94

接下来是遗忘客户端0的情况,调整了遗忘强度:

阶段	Test Accuracy	忘却客户端0自有数据精度
Training	0.8606 (86.06%)	95.46%
Retraining	0.6747 (67.47%)	41.37%
FAIR-VUE	0.7540 (75.40%)	39.23%

类别	Training	Retraining	FAIR-VUE
0	0.9898	0.9959	0.9612
1	0.9956	0.9965	0.9604
2	0.9777	0.9564	0.9157
3	0.9525	0.8733	0.8545
4	0.9318	0.0000	0.0000
5	0.8520	0.0123	0.9574
6	0.9666	0.9186	0.9739
7	0.9874	0.9562	0.8930
8	0.0000	0.0452	0.0000
9	0.9108	0.8454	0.9861

客户端	Training	Retraining	FAIR-VUE
0	95.46	41.37	39.23
1	27.98	29.82	25.12
2	92.75	83.79	93.87
3	97.75	84.23	80.56
4	97.94	85.76	86.45

客户端	Training	Retraining	FAIR-VUE
5	87.55	78.28	75.61
6	87.30	25.68	96.07
7	99.27	99.63	95.69
8	80.78	77.92	77.66
9	98.07	96.26	91.06

总结:

核心目标达成: 忘却成功

FAIR-VUE 成功大幅**抹除了目标客户端的知识贡献**,效果甚至比完整重训练还强,达到了"遗忘"目标,但整体精度下降,且可能影响其他客户端

子空间分解分析

 $[FV-DBG] \ top \ singular \ values=[0.50, \ 0.37, \ 0.19, \ 0.13, \ 0.10, \ 0.07, \ 0.06, \ 0.04]$

[FV-DBG] rho stats: tau=6.42e-02
[FV-DBG] |V_spec|=4, |V_comm|=4
[FV-DBG] ||spec_total||_2=2.036e+00

- 奇异值衰减合理,主方向信息集中;
- 特异子空间4维,占比50%,说明目标客户端在4个方向上与其他客户端存在明显差异;
- 擦除量 ||spec_total||_2=2.036 ,相比前一次 1.113 ,提高了 82%,说明擦除操作更强、更有效;
- 阈值 τ≈0.064, 合理地划分出特异维度。

为什么整体精度下降

test acc 从 0.80 降到 0.65, 是因为:

- 1. 特异空间擦除较强,部分共享知识被连带削弱;
- 2. 未做 fine-tune 纠偏;
- 3. 没有使用共通空间重新投影(V comm重构);
- 4. 擦除比例 (erase_scale) 可能偏高。

FAIR-VUE 算法流程说明

总体流程(入口到评测)

1. 准备数据与模型

- 读取数据集,按 dirichlet 或 iid 划分到各客户端,创建各自 DataLoader; 测试集也创建好。
- 构建初始全局模型 global model (支持 AllCNN / ResNet18 / SmallCNN (这个是自制的模型))。

2. 联邦训练

- 运行 fed_train 完整训练 num_training_iterations 轮,保存每一轮的各客户端权重到 experiments/<exp_name>/full_training/iteration_t/client_i.pth 。
- 评测训练后整体性能与各客户端精度。

3. 重训练 (baseline)

- 从**保留客户端**(剔除要遗忘的客户端)数据再次训练得到 retrained_global_model;
- 打印整体与遗忘客户端精度。

4. FAIR-VUE (主算法)

• 在 --baselines fair_vue 打开时执行,详见下文。

5. 其他 baseline (可选)

- 代码还保留了 PGA / FedEraser / FedFIM 的钩子;
- 旧的 Legacy Unlearn 已通过开关关闭(默认不跑)。

FAIR-VUE: 实现细节(按代码执行顺序)

A. 解析快照、构造逐轮增量 Δ

• 逐轮读取 full_training/iteration_t/client_i.pth , 并构造每轮每个客户端的更新:

$$\Delta_i^{(t)} = w_i^{(t)} - ar{w}^{(t-1)}$$

其中 $\bar{w}^{(t-1)}$ 是上一轮所有客户端权重均值。

• 将目标客户端的历史增量收集为 target_deltas_list ,其余客户端拼到 other_deltas_list 。

这样每个增量都相对于"上一轮全局",方向稳定,便于比较。

B. 只在"参数空间"操作,屏蔽 Buffers

- 取 param_keys = [name for name, p in fair_model.named_parameters() if p.requires_grad]
- 后续所有展平/回写只对这些 key 生效;BN running_mean/var 不改,避免崩溃。

C. 目标数据上估计 对角 Fisher

- 在目标客户端 DataLoader 上开启求导,计算经验 Fisher 对角矩阵;
- 作为每个参数维度的权重,突出敏感方向,抑制噪声维。

D. Fisher 加权 + 低秩 PCA(SVD)

- 构造加权矩阵 $X_w \in \mathbb{R}^{T \times D_p}$,对每条 Δ 乘 sqrt(Fisher);
- 仅使用参数向量(不含 buffers)拼接;
- 对 X_w 做中心化 SVD,取前 $k=--fair_rank_k$ 个右奇异向量:

$$V \in \mathbb{R}^{D_p imes k}$$

即目标客户端跨轮更新的主方向。

Ε. 方向"特异性"打分 ρ 与阈值 τ

• 对每个基向量 v,计算在其他客户端增量上的平均投影幅度:

$$ho(v) = \mathrm{mean}_{j \in \mathrm{others}} |\langle \Delta_j, v
angle|$$

- 选取 --fair_tau_mode (median / mean) 为阈值 τ,划分:
 - 。 特异子空间 $V_{\mathrm{spec}} = \{v | \rho(v) \leq \tau\}$
 - 。 通用子空间 $V_{
 m comm}$
- 若 $V_{
 m spec}$ 为空,兜底选 1–2 个最小 ho 方向。

F. 低内存投影(避免 OOM,爆显存)

- 对 $V_{ ext{spec}}$ QR 分解得正交基 $Q \in \mathbb{R}^{D_p imes r}$;
- 用公式
 - 。 特异分量: spec(x) = Q @ (Q.T @ x)
 - 通用分量: keep(x) = x spec(x)
- 不显式构造大矩阵 $P = I QQ^{\top}$,仅使用矩阵乘法。

G. 累计特异分量并擦除

- 初始化 spec total = 0;
- 对每轮目标客户端增量:

$$\operatorname{spec}^{(r)} = Q(Q^{\top}\Delta^{(r)})$$

并累加;

• 用强度 erase_scale 从当前模型参数中扣除:

$$\theta_{\text{new}} = \theta_{\text{now}} - \texttt{erase_scale} \cdot \text{spec_total}$$

• 仅回写参数向量,buffers 保留。

H. 评测与调试

- 统一评测整体/客户端/分类别精度;
- 打印遗忘客户端精度;
- 若加 --fair_vue_debug ,打印:
 - 。轮数、Δ规模、Fisher统计;
 - 。 X_w 形状、奇异值;
 - 。 ρ 分布、τ、 $|V_{
 m spec}|$;
 - 。 Q 形状、 $||\operatorname{spec_total}||$ 等。

关键设计与理由

模块	设计目的
Δ 定义	相对于上一轮全局均值,方向稳定,可比较
Fisher 加权	突出敏感维度,抑制噪声
特异/通用分离	通过其他客户端投影度量共享性,自适应阈值
仅操作参数空间	避免改坏 BN 统计量
低秩实现	用 $Q(Q^ op \cdot)$ 代替 $P \cdot$,节省显存
只擦除目标特异分量	避免误伤通用方向
可调强度	通过fair_erase_scale 控制影响范围

可调参数

参数	作用	
fair_rank_k	SVD 主方向数	
fair_tau_mode	阈值模式 median/mean	

参数	作用
fair_fisher_batches	Fisher 估计样本数
fair_erase_scale	擦除强度 (0.2~0.6 推荐)
fair_vue_debug	打印详细中间量

一句话总结

FAIR-VUE 通过 Fisher 加权 PCA 找出目标客户端独有的更新方向,仅在参数空间低秩擦除这些方向上的累计分量,不重训练即可有效遗忘目标知识,同时尽量保持其他客户端与总体性能。