Chapter 2 Data Preprocessing

CISC 4631

Outline

- General data characteristics
- Data cleaning
- Data integration and transformation
- Data reduction
- Summary

CISC 4631

Types of Data Sets

Record

- Relational records
- Data matrix, e.g., numerical matrix, crosstabs
- Document data: text documents: term-frequency vector
- Transaction data

Graph

- World Wide Web
- Social or information networks
- Molecular Structures

Ordered

- Spatial data: maps
- Temporal data: time-series
- Sequential Data: transaction sequences
- Genetic sequence data

		beam	coach	y sia	bal	SCOTE	jame	11 W.	ost	imeout	RESSON
Γ	Document 1	3	0	5	D	2	6	0	2	В	2
	Document 3	Ш	- /-	ш	22	3	ш	Ш	25	ш	п
	Document 3	П	7	ш	ы	7	22	2	ы	35	ш

TID	Items
1	Bread, Coke, Milk
2	Beer, Bread
3	Beer, Coke, Diaper, Milk
4	Beer, Bread, Diaper, Milk
5	Coke, Diaper, Milk

CISC 4631

3

Discrete vs. Continuous Attributes

Discrete Attribute

- Has only a finite or countably infinite set of values
- E.g., zip codes, profession, or the set of words in a collection of documents
- Sometimes, represented as integer variables
- Note: Binary attributes are a special case of discrete attributes

Continuous Attribute

- Has real numbers as attribute values
- Examples: temperature, height, or weight
- Practically, real values can only be measured and represented using a finite number of digits
- Continuous attributes are typically represented as floatingpoint variables

CISC 4631

Important Characteristics of Structured Data

- Dimensionality
 - Curse of dimensionality
- Sparsity
 - Only presence counts
- Resolution
 - Patterns depend on the scale
- Similarity
 - Distance measure

Mining Data Descriptive Characteristics

- Motivation
 - □ To better understand the data: central tendency, variation and spread
- Data dispersion characteristics
 - □ median, max, min, quantiles, outliers, variance, etc.

CISC 4631

Measuring the Central Tendency

- Mean (algebraic measure) (sample vs. population):
 - Weighted arithmetic mean:
 - □ Trimmed mean: chopping extreme values

$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i \qquad \qquad \sim = \frac{\sum x}{N}$$

$$\sim = \frac{\sum x}{N}$$

$$\overline{x} = \frac{\sum_{i=1}^{n} w_i x_i}{\sum_{i=1}^{n} w_i}$$

Measuring the Central Tendency

- Median: A holistic measure
 - Middle value if odd number of values, or average of the middle two values otherwise
- Estimated by interpolation (for grouped data):
 - Group data in intervals according to x_i and record data frequency (number of unique data values).
 - Pick median interval, containing the median frequency.
 - L_1 is the lower boundary of the median interval, N is the number of values in data set. (freq)₁ is the sum of frequency of all the intervals that are lower than the median interval, freq_{median} is the frequency of the median interval, and width is the width of the median interval

$$median = L_1 + (\frac{N/2 - (\sum freq)_l}{freq_{median}}) width$$

9

Measuring the Central Tendency

- Mode
 - Value that occurs most frequently in the data
 - □ Unimodal, bimodal, trimodal
 - □ Empirical formula for unimodal frequency curves that are moderately skewed (asymmetrical):

$$mean - mode = 3 \times (mean - median)$$

Measuring the Dispersion of Data

- The degree to which numerical data tend to spread is called the dispersion or variance of the data.
- Common measures:
 - Range
 - Interquartile range
 - □ Five-number summary: min, Q₁, M, Q₃, max
 - Standard deviation.

Range, Quartiles, Outliers

- Range: difference between min. and max.
- Quartiles: Q₁ (25th percentile), Q₃ (75th percentile)
 - □ The kth percentile of a set of data in numerical order is the value x_i having the property that k percent of the data entries lie at or below x_i.
 - Median is Q₂.
- Inter-quartile range: IQR = Q₃ Q₁
- Five number summary: min, Q₁, M(Median), Q₃, max
- Outlier: usually, a value falling at least 1.5 x IQR above the Q3 or below Q1.

Boxplot Analysis

- Incorporates the Five-number summary of a distribution:
 - Data is represented with a box

 - The median is marked by a line within the box
 - Whiskers: two lines outside the box extend to Minimum and Maximum
 - plot outlier individually

CISC 4631

15

Visualization of Data Dispersion: 3-D Boxplots

Variance and Standard Deviation

Variance and standard deviation (sample: s,

population:) $s^2 = \frac{1}{n-1} \sum_{i=1}^n (x_i - \overline{x})^2 = \frac{1}{n-1} [\sum_{i=1}^n x_i^2 - \frac{1}{n} (\sum_{i=1}^n x_i)^2]$

$$\uparrow^2 = \frac{1}{N} \sum_{i=1}^n (x_i - \gamma)^2 = \frac{1}{N} \sum_{i=1}^n x_i^2 - \gamma^2$$

- □ Variance: (algebraic, scalable computation)
- □ Standard deviation s (or) is the square root of variance s^2 (or s^2)

CISC 4631 17

Properties of Normal Distribution Curve

- The normal (distribution) curve
 - □ From μ to μ + : contains about 68% of the measurements (μ : mean, : standard deviation)
 - \Box From μ –2 to μ +2 : contains about 95% of it
 - \Box From μ -3 to μ +3 : contains about 99.7% of it

Graphic Displays of Basic Statistical Descriptions

- Boxplot: graphic display of five-number summary
- Histogram: x-axis are values, y-axis repres. frequencies
- Quantile plot: each value x_i is paired with f_i indicating that approximately 100 f_i % of data are $\leq x_i$
- Quantile-quantile (q-q) plot: graphs the quantiles of one univariant distribution against the corresponding quantiles of another
- Scatter plot: each pair of values is a pair of coordinates and plotted as points in the plane

CISC 4631

19

Histogram Analysis

- Graph displays of basic statistical class descriptions
 - Frequency histograms
 - A univariate graphical method
 - Consists of a set of rectangles that reflect the counts or frequencies of the classes present in the given data

Quantile-Quantile (Q-Q) Plot

- Graphs the quantiles of one univariate distribution against the corresponding quantiles of another
- Allows the user to view whether there is a shift in going from one distribution to another

Scatter plot

- Provides a first look at bivariate data to see clusters of points, outliers, etc
- Each pair of values is treated as a pair of coordinates and plotted as points in the plane

Outline

- General data characteristics
- Data cleaning
- Data integration and transformation
- Data reduction
- Summary

CISC 4631

27

Data Cleaning

- No quality data, no quality mining results!
 - Quality decisions must be based on quality data
 - e.g., duplicate or missing data may cause incorrect or even misleading statistics
 - "Data cleaning is the number one problem in data warehousing"—DCI survey
 - Data extraction, cleaning, and transformation comprises the majority of the work of building a data warehouse

CISC 4631

Major Tasks of Data Cleaning

- Data cleaning tasks
 - Fill in missing values
 - Identify outliers and smooth out noisy data
 - Correct inconsistent data
 - Resolve redundancy caused by data integration

CISC 4631

29

Data in the Real World Is Dirty

- incomplete: lacking attribute values, lacking certain attributes of interest, or containing only aggregate data
 - e.g., occupation="" (missing data)
- noisy: containing noise, errors, or outliers
 - □ e.g., Salary="-10" (an error)
- inconsistent: containing discrepancies in codes or names, e.g.,
 - Age="42" Birthday="03/07/1997"
 - Was rating "1,2,3", now rating "A, B, C"
 - discrepancy between duplicate records

CISC 4631

Multi-Dimensional Measure of Data Quality

- A well-accepted multidimensional view:
 - Accuracy
 - Completeness
 - Consistency
 - Timeliness
 - Believability
 - Value added
 - Interpretability
 - Accessibility
- Broad categories:
 - Intrinsic, contextual, and representational.

CISC 4631

31

Missing Data

- Data is not always available
 - E.g., many tuples have no recorded value for several attributes, such as customer income in sales data
- Missing data may be due to
 - equipment malfunction
 - inconsistent with other recorded data and thus deleted
 - data not entered due to misunderstanding
 - certain data may not be considered important at the time of entry
 - not register history or changes of the data
- Missing data may need to be inferred

CISC 4631

How to Handle Missing Data?

- Ignore the tuple: usually done when class label is missing (when doing classification)—not effective when the % of missing values per attribute varies considerably
- Fill in the missing value manually: tedious + infeasible?
- Fill in it automatically with
 - □ a global constant : e.g., "unknown", a new class?!
 - the attribute mean
 - the attribute mean for all samples belonging to the same class: smarter
 - the most probable value: inference-based such as Bayesian formula or decision tree (**Prediction**)

CISC 4631

33

Noisy Data

- Noise: random error or variance in a measured variable
- Incorrect attribute values may due to
 - faulty data collection instruments
 - data entry problems
 - data transmission problems
 - technology limitation
 - inconsistency in naming convention

How to Handle Noisy Data?

- Binning
 - first sort data and partition into (equal-frequency) bins
 - then one can smooth by bin means, smooth by bin median, smooth by bin boundaries, etc.
- Regression
 - smooth by fitting the data into regression functions
- Clustering
 - detect and remove outliers
- Combined computer and human inspection
 - detect suspicious values and check by human (e.g., deal with possible outliers)

CISC 4631

Simple Discretization Methods: Binning

- Equal-width (distance) partitioning
 - Divides the range into N intervals of equal size: uniform grid
 - □ if A and B are the lowest and highest values of the attribute, the width of intervals will be: W = (B A)/N.
 - The most straightforward, but outliers may dominate presentation
 - Skewed data is not handled well
- Equal-depth (frequency) partitioning
 - Divides the range into N intervals, each containing approximately same number of samples
 - Good data scaling
 - Managing categorical attributes can be tricky

CISC 4631

Binning Methods for Data Smoothing

- Sorted data for price (in dollars): 4, 8, 9, 15, 21, 21, 24, 25, 26, 28, 29, 34
- * Partition into equal-frequency (equi-depth) bins:
 - Bin 1: 4, 8, 9, 15
 - Bin 2: 21, 21, 24, 25
 - Bin 3: 26, 28, 29, 34
- * Smoothing by bin means:
 - Bin 1: 9, 9, 9, 9
 - Bin 2: 23, 23, 23, 23
 - Bin 3: 29, 29, 29, 29
- * Smoothing by bin boundaries:
 - Bin 1: 4, 4, 4, 15
 - Bin 2: 21, 21, 25, 25
 - Bin 3: 26, 26, 26, 34

CISC 4631

Outline

- General data characteristics
- Data cleaning
- Data integration and transformation
- Data reduction
- Summary

CISC 4631

Data Integration

- Data integration:
 - Combines data from multiple sources into a coherent store
- Schema integration: e.g., A.cust-id ≡ B.cust-#
 - Integrate metadata from different sources
- Entity identification problem:
 - Identify real world entities from multiple data sources, e.g., Bill Clinton = William Clinton
- Detecting and resolving data value conflicts
 - For the same real world entity, attribute values from different sources are different
 - Possible reasons: different representations, different scales, e.g., metric vs. British units

CISC 4631 41

Handling Redundancy in Data Integration

- Redundant data occur often when integration of multiple databases
 - Object identification: The same attribute or object may have different names in different databases
 - Derivable data: One attribute may be a "derived" attribute in another table, e.g., annual revenue
- Careful integration of the data from multiple sources may help reduce/avoid redundancies and inconsistencies and improve mining speed and quality
- Redundant attributes may be able to be detected by correlation analysis

Correlation Analysis (Numerical Data)

 Correlation coefficient (also called Pearson's product moment coefficient)

$$r_{p,q} = \frac{\sum (p - \overline{p})(q - \overline{q})}{(n - 1) \uparrow_{p} \uparrow_{q}} = \frac{\sum (pq) - n \overline{pq}}{(n - 1) \uparrow_{p} \uparrow_{q}}$$

where n is the number of tuples, p and q are the respective means of p and q, p and q are the respective standard deviation of p and q, and (pq) is the sum of the pq cross-product.

- If r_{p,q} > 0, p and q are positively correlated (p's values increase as q's). The higher, the stronger correlation.
- $r_{p,q} = 0$: independent; $r_{pq} < 0$: negatively correlated

CISC 4631

Correlation Analysis (Categorical Data)

2 (chi-square) test

$$t^2 = \sum \frac{(Observed - Expected)^2}{Expected}$$

- The larger the ² value, the more likely the variables are related
- The cells that contribute the most to the ² value are those whose actual count is very different from the expected count
- Correlation does not imply causality
 - # of hospitals and # of car-theft in a city are correlated
 - Both are causally linked to the third variable: population

X² (chi-square) Test

2 term-category independency test:

$$E(i,j) = \frac{\displaystyle\sum_{a \in \{w, \neg w\}} O(a,j) \times \displaystyle\sum_{b \in \{c, \neg c\}} O(i,b)}{N}$$

	C	$\neg c$	
W	40	80	120
$\neg W$	60	320	380
	100	400	500 (N)

$$\mathsf{t}^{\,\,2}_{\,\,w,c} = \sum_{i \in \{w,\neg w\}} \sum_{j \in \{c,\neg c\}} \frac{(O(i,j) - E(i,j))^{\,2}}{E(i,j)} \quad \text{A 2-way contingency table}$$

CISC 4631

45

Chi-Square Calculation: An Example

Like science fiction	Play chess 250(90)	Not play chess 200(360)	Sum (row) 450
Not like science fiction	50(210)	1000(840)	1050
Sum(col.)	300	1200	1500

 ² (chi-square) calculation (numbers in parenthesis are expected counts calculated based on the data distribution in the two categories)

$$t^2 = \frac{(250 - 90)^2}{90} + \frac{(50 - 210)^2}{210} + \frac{(200 - 360)^2}{360} + \frac{(1000 - 840)^2}{840} = 507.93$$

 It shows that like_science_fiction and play_chess are correlated in the group

CISC 4631

Data Transformation

- A function that maps the entire set of values of a given attribute to a new set of replacement values s.t. each old value can be identified with one of the new values
- Methods
 - Smoothing: Remove noise from data
 - Aggregation: Summarization (annual total), data cube construction
 - Generalization: Concept hierarchy climbing (street -> city)
 - Normalization: Scaled to fall within a small, specified range
 - min-max normalization
 - z-score normalization
 - normalization by decimal scaling
 - Attribute/feature construction
 - New attributes constructed from the given ones

CISC 4631

47

Min-max Normalization

Min-max normalization: to [new_min_A, new_max_A]

$$v' = \frac{v - min_A}{max_A - min_A} (new _ max_A - new _ min_A) + new _ min_A$$

Ex. Let income range \$12,000 to \$98,000 normalized to [0.0, 1.0]. Then \$73,000 is mapped to

$$\frac{73,600-12,000}{98,000-12,000}(1.0-0)+0=0.716$$

If a future input falls outside of the original data range?

ZISC 4631 48

Z-score Normalization

- = Z-score normalization (μ : mean, : standard deviation): $v' = \frac{v \frac{\lambda}{2}}{\frac{1}{2}}$
 - \Box Ex. Let $\mu = 54,000$, = 16,000. Then

$$\frac{73,600 - 54,000}{16,000} = 1.225$$

When actual min. and max.
 values are unknown or
 there is outliers.

CISC 4631

49

Decimal Normalization

Normalization by decimal scaling

$$v' = \frac{v}{10}$$

Where j is the smallest integer such that Max(|'|) < 1

-986 to 917 => -0.986 to 0.917

CISC 4631

Outline

- General data characteristics
- Data cleaning
- Data integration and transformation
- Data reduction
- Summary

CISC 4631

51

Data Reduction

- Why data reduction?
 - A database/data warehouse may store terabytes of data
 - Complex data analysis/mining may take a very long time to run on the complete data set
- Data reduction: Obtain a reduced representation of the data set that is much smaller in volume but yet produce the same (or almost the same) analytical results

CISC 4631

Dimensionality Reduction

- Curse of dimensionality
 - When dimensionality increases, data becomes increasingly sparse
 - Density and distance between points, which is critical to clustering, outlier analysis, becomes less meaningful
 - The possible combinations of subspaces will grow exponentially
- Dimensionality reduction
 - Avoid the curse of dimensionality
 - Help eliminate irrelevant features and reduce noise
 - Reduce time and space required in data mining
 - Allow easier visualization

CISC 4631

53

Dimensionality Reduction Techniques

- Feature selection
 - □ Select *m* from *n* features, *m n*
 - Remove irrelevant, redundant features
 - Saving in search space
- Feature transformation
 - Form new features (a) in a new domain from original features (f)

Feature Selection

- Redundant features
 - duplicate much or all of the information contained in one or more other attributes
 - E.g., purchase price of a product and the amount of sales tax paid
- Irrelevant features
 - contain no information that is useful for the data mining task at hand
 - E.g., students' ID is often irrelevant to the task of predicting students' GPA

CISC 4631 55

Feature Selection

- Problem illustration
 - □ Full set
 - Empty set
 - Enumeration

CISC 4631

Feature Selection (2)

- Goodness metrics
 - Dependency: dependence on classes
 - Distance: separating classes
 - Information: entropy
 - Consistency:
 - Inconsistency Rate #inconsistencies/N
 - Example: (F1, F2, F3) and (F1,F3)
 - Both sets have 2/6 inconsistency rate
 - Accuracy (classifier based): 1 errorRate

F 1	F 2	F 3	С
0	0	1	1
0	0	1	0
0	0	1	1
1	0	0	1
1	0	0	0
1	0	0	0

CISC 4631

57

Feature Subset Selection Techniques

- Brute-force approach:
 - Try all possible feature subsets as input to data mining algorithm
- Embedded approaches:
 - Feature selection occurs naturally as part of the data mining algorithm
- Filter approaches:
 - Features are selected before data mining algorithm is run
- Wrapper approaches:
 - Use the data mining algorithm as a black box to find best subset of attributes

CISC 4631

Data Compression

- String compression
 - There are extensive theories and well-tuned algorithms
 - Typically lossless
 - But only limited manipulation is possible without expansion
- Audio/video compression
 - Typically lossy compression, with progressive refinement
 - Sometimes small fragments of signal can be reconstructed without reconstructing the whole

Data Reduction Method: Clustering

- Partition data set into clusters based on similarity, and store cluster representation (e.g., centroid and diameter) only
- Can be very effective if data is organized into distinct clusters but not if data is "smeared".
- Can have hierarchical clustering and be stored in multidimensional index tree structures
- There are many choices of clustering definitions and clustering algorithms
- Cluster analysis will be studied in depth later

CISC 4631

63

Data Reduction Method: Sampling

- Sampling: obtaining a small sample s to represent the whole data set N
- Allow a mining algorithm to run in complexity that is potentially sub-linear to the size of the data
- Key principle: Choose a representative subset of the data
 - Simple random sampling may have very poor performance in the presence of skew
 - Develop adaptive sampling methods, e.g., stratified sampling.
- Note: Sampling may not reduce database I/Os (page at a time)

CISC 4631

Types of Sampling

- Simple random sampling (SRS)
 - There is an equal probability of selecting any particular item
- Sampling without replacement (SRSWOR)
 - Once an object is selected, it is removed from the population
- Sampling with replacement (SRSWR)
 - A selected object is not removed from the population
- Cluster sample
 - □ First get **M** clusters, then SRS **s** clusters, **s < M**.
- Stratified sampling:
 - Partition the data set, and draw samples from each partition (proportionally, i.e., approximately the same percentage of the data)
 - Used in conjunction with skewed data

CISC 4631

65

Data Reduction: Discretization

- Three types of attributes:
 - □ Nominal values from an unordered set, e.g., color, profession
 - Ordinal values from an ordered set, e.g., military or academic rank
 - Numerical real numbers, e.g., integer or real numbers
- Discretization:
 - Divide the range of a numerical attribute into intervals
 - Some classification algorithms only accept categorical attributes.
 - Reduce data size by discretization
 - Prepare for further analysis

CISC 4631

Discretization and Concept Hierarchy

- Discretization
 - Reduce the number of values for a given numerical attribute by dividing the range of the attribute into intervals
 - Interval labels can then be used to replace actual data values
 - Supervised vs. unsupervised
 - Split (top-down) vs. merge (bottom-up)
 - Discretization can be performed recursively on an attribute
- Concept hierarchy formation
 - Recursively reduce the data by collecting and replacing low level concepts (such as numeric values for age) by higher level concepts (such as young, middle-aged, or senior)

CISC 4631

Discretization and Concept Hierarchy Generation for Numerical Data

- Typical methods: All the methods can be applied recursively
 - Binning (covered above)
 - Top-down split, unsupervised,
 - Histogram analysis (covered above)
 - Top-down split, unsupervised
 - Clustering analysis (covered above)
 - Either top-down split or bottom-up merge, unsupervised
 - Entropy-based discretization: supervised, top-down split
 - □ Interval merging by χ^2 Analysis: unsupervised, bottom-up merge
 - Segmentation by natural partitioning: top-down split, unsupervised

Entropy-Based Discretization

- In information theory, entropy quantifies, in the sense of an expected value, the information in a message.
- Equivalently, entropy is a measure of the average information content which is missing when the value of the random variable in unknown.
- To discretize a numerical attribute A, the method selects the value of A that has the min. entropy as a split-point, and do this recursively.

CISC 4631 6

Entropy-Based Discretization

 Given a set of samples S, if S is partitioned into two intervals S₁ and S₂ using boundary T, the information gain after partitioning is

$$I(S,T) = \frac{|S_1|}{|S|} Entropy(S_1) + \frac{|S_2|}{|S|} Entropy(S_2)$$

• Entropy is calculated based on class distribution of the samples in the set. Given m classes, the entropy of S_1 is

Entropy
$$(S_1) = -\sum_{i=1}^{m} p_i \log_2(p_i)$$

where p_i is the probability of class i in S_1 .

- The boundary that minimizes the entropy function over all possible boundaries is selected as a binary discretization.
- The process is recursively applied to partitions obtained until some stopping criterion is met.
- Such a boundary may reduce data size and improve classification accuracy.

Interval Merge by χ^2 Analysis

- Merging-based (bottom-up) vs. splitting-based methods
- Merge: Find the best neighboring intervals and merge them to form larger intervals recursively
- ChiMerge [Kerber AAAI 1992, See also Liu et al. DMKD 2002]
 - Initially, each distinct value of a numerical attr. A is considered to be one interval

 - This merge process proceeds recursively until a predefined stopping criterion is met (such as significance level, max-interval, max inconsistency, etc.)

CISC 4631

73

Segmentation by Natural Partitioning

- A simply 3-4-5 rule can be used to segment numeric data into relatively uniform, "natural" intervals.
 - If an interval covers 3, 6, 7 or 9 distinct values at the most significant digit (msd), partition the range into 3 equi-width intervals
 - If it covers 2, 4, or 8 distinct values at the most significant digit, partition the range into 4 intervals
 - If it covers 1, 5, or 10 distinct values at the most significant digit, partition the range into 5 intervals

TSC 4631 74

Concept Hierarchy Generation for Categorical Data

- Specification of a partial/total ordering of attributes explicitly at the schema level by users or experts
 - street < city < state < country</p>
- Specification of a hierarchy for a set of values by explicit data grouping
 - □ {Urbana, Champaign, Chicago} < Illinois
- Specification of a set of attributes, but not their orders.
 - Automatic generation of hierarchies (or attribute levels) by the analysis of the number of distinct values
- Specification of only a partial set of attributes
 - □ E.g., only street < city, not others

Automatic Concept Hierarchy Generation

- Some hierarchies can be automatically generated based on the analysis of the number of distinct values per attribute in the data set
 - The attribute with the most distinct values is placed at the lowest level of the hierarchy
 - Exceptions, e.g., weekday, month, quarter, year

Outline

- General data characteristics
- Data cleaning
- Data integration and transformation
- Data reduction
- Summary

Summary

- Data preparation/preprocessing: A big issue for data mining
- Data description, data exploration, and measure data similarity set the base for quality data preprocessing
- Data preparation includes
 - Data cleaning
 - Data integration and data transformation
 - Data reduction (dimensionality and numerosity reduction)
- A lot a methods have been developed but data preprocessing still an active area of research