

National standard (Mandatory)

GB 66666 部分代替

数字电影 LED影厅 技术要求和测量方法

Digital cinema—LED screen—
Technical requirements and test methods

()

(本稿完成日期: 2023-05-01)

目次

E	ンカ	7	II
		· 	
		<u></u>	
		围	
2	规	范性引用文件	1
3	术	语和定义	1
4	缩	略语	2
5	技	术要求	2
6	测:	量方法	2
	6.1	测量设备	2
	6.2	Signal of measurement	3
	6.3	Measurement conditions and measurement requirements	3
	6.4	The measurement of the optical system of stereoscopic projection	3

目 次

前言

本文件按照GB/T 1.1—2020《标准化工作导则 第1部分:标准化文件的结构和起草规则》的规定起草。

请注意本文件的某些内容可能涉及专利。本文件的发布机构不承担识别这些专利的责任。 本文件由国家电影局归口。

本文件起草单位:中国电影科学技术研究所(中央宣传部电影技术质量检测所)、深圳市时代华影科技股份有限公司、深圳市洲明科技股份有限公司、中影光峰激光影院技术(北京)有限公司、利亚德光电股份有限公司。

本文件主要起草人:李娜、董强国、刘知一、张伟、龚波、高五峰、高峰、高峰、张辉、王景宇、贾波、周永业、董志刚、张鹏昊、张硕。

引言

无。

数字电影#LED影厅#技术要求和测量方法

范围

本文件规定了数字电影LED影厅的技术要求及相应的测量方法。

本文件适用于数字电影LED影厅的运行维护、检测认证、质量监督、技术管理和相关设备的安装、调试、验收和维护。

2 规范性引用文件

下列文件对于本文件的应用是必不可少的。 凡是注日期的引用文件,仅注日期的版本适用于本文件。 凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。

GY/T 311—2017 电影院视听环境技术要求和测量方法

GY/T 312—2017 电影 录音控制室、室内影厅B环电声响应规范和测量

SJ/T 11141—2017 发光二极管(LED)显示屏通用规范

3 术语和定义

下列术语和定义适用于本文件。

ISO和IEC用于标准化的术语数据库地址如下:

- 一ISO在线浏览平台: 位于https://www.iso.org/obp
- —IEC Electropedia: 位于https://www.electropedia.org

下列术语和定义适用于本文件。

3. 1

数字电影影厅 ; LED digital LED cinema

采用数字电影技术,使用LED显示屏放映电影的影厅。

3. 2

显示屏 ; LED LED display screen

以LED像素显示文字、图像及视频等信息的装置,通常包括LED屏体及显示控制系统等基本组成成分,也可包括辅助系统等,可采用一体式或分体式结构。

[定义: , 第3.1条]

3. 3

像素 ; pixel

LED显示屏的最小成像单元。 注:通常由红色、绿色、蓝色发光二极管组成,每个发光二极管可视为亚像素。

[定义: , 第3.6条]

3.4

电光转换函数 -; electro-optic transfer function

显示设备的输入编码值与光输出之间的函数关系。

3.5

立体放映消光比 ; stereoscopic extinction ratio

左眼(右眼)图像亮度对串扰光和环境光的抗扰能力。

注1: 左眼(右眼)图像亮度与串扰光和环境光的比,用: 1方式表示。

4 缩略语

下列缩略语适用于本文件。

IMB 集成媒体模块(Integrated Media Block)

HDR 高动态范围(High Dynamic Range)

LED 发光二极管(Light-Emitting Diode)

SDR 标准动态范围(Standard Dynamic Range)

5 技术要求

数字电影LED影厅技术要求应符合表1的规定。

表1 — 数字电影LED影厅技术要求

序号	参数	要求				测量方法
1	中心亮度(cd/m ²)	目标 a	标准值	审片 室	影院	见条6.4.1
İ		Α	48,0	±3,5	±10,2	
İ		В	24,0	±1,8	±5,1	
İ		C	15,5	±1,1	±3,3	
2	luminance difference ratio	shall not be more than 5 %			见条6.4.2	
	side luminance uniformity	(should be): 75 % to 90 % of centre luminance			见条6.4.3	
4	centre white chromaticity	(should be): x = 0,314 ± 0,006, y = 0,351 ± 0,006				见条6.4.4

^a Filmmakers can prepare content that is optimized for any or each of the targets, and such content should always be clearly identified as to the intended playback luminance.

6 测量方法

6.1 测量设备

6.1.1 亮度计

The spectroradiometer shall comply with the requirements specified in GY/T 311—2017, 第4.5.

6.1.2 Photometer

Screen luminance shall be measured with a spot photometer having the spectral luminance response of the standard observer (photopic vision), as defined in SJ/T 11141—2017. The acceptance angle of the photometer shall be 2° or less. The lower limit of the measuring range shall be 0,01 cd/m² or better. The photometer response to luminance variation over time shall be to properly integrate any such variation occurring at frequencies at or above 24 Hz and display the arithmetic mean value.

6.2 Signal of measurement

6.2.1 White field signal

The digital code values of the white field signal is (X'=3 794, Y'=3 960, Z'=3 890).

6.3 Measurement conditions and measurement requirements

Measurement conditions shall meet the following requirements.

- a) All equipment shall be in normal operating status.
- Measurement shall be carried out after the light output of the digital projector stabilizes.
 Digital projector shall project white field signal through the stereoscopic equipment for
 15 min.
- c) The light of the digital projector shall pass through the stereoscopic projection equipment.
- d) When measuring through the stereoscopic glasses they shall be placed in a horizontal state, as a viewer would wear them. No tilt from the horizontal axis is allowed.
- e) All signals shall be output to the digital projector by Media Block. The measurement shall cover all valid screen images.
- f) Measurement location in the auditorium shall comply with the requirements specified in SJ/T 11141—2017,第4.3.
- g) Measurement locations on the screen of Luminance, difference shall comply with the requirements specified in SJ/T 11141—2017,第4.2.
- h) For using dual stereoscopic cinema screenings, both of the digital projectors shall also be turned on and working normally.
- i) The measurement of the optical system of stereoscopic projection should be carried out within the range of the white colour chromaticity coordinates of the centre of the screen.

6.4 The measurement of the optical system of stereoscopic projection

6.4.1 Centre luminance

Measurement procedures.

- a) Open the photometer and make it work normally.
- b) Set the digital projector as the stereoscopic projection mode and use the stereoscopic projection equipment.

- c) The white field signal is simultaneously displayed in the left and right eyes.
- d) Using the photometer to measure and record the left-eye white field centre luminance, L_{lw} L_(lw), and the right-eye white field centre luminance, L_{rw} L_(rw), through the left-eye lens and the right-eye lens of the stereo glasses.
- e) Calculate and record the centre luminance, LL, according to 公式(1):

$$L = \frac{L_{lw} + L_{rw}}{2} L = \text{frac}(L_(lw) + L_(rw))(2)$$
 (1)

式中

式中

*L*L — is the centre luminance;

 L_{lw} L_(lw) — is the centre luminance of the white field of the left-

eye when the left and right eyes simultaneously display

the white field signal;

 L_{rw} L_(rw) — is the centre luminance of the white field of the right-

eye when the left and right eyes simultaneously display

the white field signal.

6.4.2 Luminance difference ratio

Measurement procedures.

- a) Refer to the measurement method of centre luminance, record the left-eye white field centre luminance $L_{lw} L_{(lw)}$ and the right-eye white field centre luminance $L_{lw} L_{(lw)}$.
- b) Calculate and record the luminance difference ratio L_d L_(d) according to 公式(2):

$$L_d = \frac{|L_{lw} - L_{rw}|}{(L_{lw} + L_{rw})/2} \times 100\% L_{d} = \frac{|L_{lw} - L_{rw}|}{(L_{lw} + L_{rw})/2} \times 100\% L_{d} = \frac{|L_{lw} - L_{rw}|}{(L_{lw} + L_{rw})/2} \times 100\% L_{d} = \frac{|L_{lw} - L_{rw}|}{(L_{lw} + L_{rw})/2} \times 100\% L_{d} = \frac{|L_{lw} - L_{rw}|}{(L_{lw} + L_{rw})/2} \times 100\% L_{d} = \frac{|L_{lw} - L_{rw}|}{(L_{lw} + L_{rw})/2} \times 100\% L_{d} = \frac{|L_{lw} - L_{rw}|}{(L_{lw} + L_{rw})/2} \times 100\% L_{d} = \frac{|L_{lw} - L_{rw}|}{(L_{lw} + L_{rw})/2} \times 100\% L_{d} = \frac{|L_{lw} - L_{rw}|}{(L_{lw} + L_{rw})/2} \times 100\% L_{d} = \frac{|L_{lw} - L_{rw}|}{(L_{lw} + L_{rw})/2} \times 100\% L_{d} = \frac{|L_{lw} - L_{rw}|}{(L_{lw} + L_{rw})/2} \times 100\% L_{d} = \frac{|L_{lw} - L_{rw}|}{(L_{lw} + L_{rw})/2} \times 100\% L_{d} = \frac{|L_{lw} - L_{rw}|}{(L_{lw} + L_{rw})/2} \times 100\% L_{d} = \frac{|L_{lw} - L_{rw}|}{(L_{lw} + L_{rw})/2} \times 100\% L_{d} = \frac{|L_{lw} - L_{rw}|}{(L_{lw} + L_{rw})/2} \times 100\% L_{d} = \frac{|L_{lw} - L_{rw}|}{(L_{lw} + L_{rw})/2} \times 100\% L_{d} = \frac{|L_{lw} - L_{rw}|}{(L_{lw} + L_{rw})/2} \times 100\% L_{d} = \frac{|L_{lw} - L_{rw}|}{(L_{lw} + L_{rw})/2} \times 100\% L_{d} = \frac{|L_{lw} - L_{rw}|}{(L_{lw} + L_{rw})/2} \times 100\% L_{d} = \frac{|L_{lw} - L_{rw}|}{(L_{lw} + L_{rw})/2} \times 100\% L_{d} = \frac{|L_{lw} - L_{rw}|}{(L_{lw} + L_{rw})/2} \times 100\% L_{d} = \frac{|L_{lw} - L_{rw}|}{(L_{lw} + L_{rw})/2} \times 100\% L_{d} = \frac{|L_{lw} - L_{rw}|}{(L_{lw} + L_{rw})/2} \times 100\% L_{d} = \frac{|L_{lw} - L_{rw}|}{(L_{lw} + L_{rw})/2} \times 100\% L_{d} = \frac{|L_{lw} - L_{rw}|}{(L_{lw} + L_{rw})/2} \times 100\% L_{d} = \frac{|L_{lw} - L_{rw}|}{(L_{lw} + L_{rw})/2} \times 100\% L_{d} = \frac{|L_{lw} - L_{rw}|}{(L_{lw} + L_{rw})/2} \times 100\% L_{d} = \frac{|L_{lw} - L_{rw}|}{(L_{lw} + L_{rw})/2} \times 100\% L_{d} = \frac{|L_{lw} - L_{rw}|}{(L_{lw} + L_{rw})/2} \times 100\% L_{d} = \frac{|L_{lw} - L_{rw}|}{(L_{lw} + L_{rw})/2} \times 100\% L_{d} = \frac{|L_{lw} - L_{rw}|}{(L_{lw} + L_{rw})/2} \times 100\% L_{d} = \frac{|L_{lw} - L_{rw}|}{(L_{lw} + L_{rw})/2} \times 100\% L_{d} = \frac{|L_{lw} - L_{rw}|}{(L_{lw} + L_{rw})/2} \times 100\% L_{d} = \frac{|L_{lw} - L_{rw}|}{(L_{lw} + L_{rw})/2} \times 100\% L_{d} = \frac{|L_{lw} - L_{rw}|}{(L_{lw} + L_{rw})/2} \times 100\% L_{d} = \frac{|L_{lw} - L_{rw}|}{(L_{lw} + L_{rw})/2} \times$$

式中

式中

 L_d L_(d) — is the luminance difference ratio;

 L_{lw} L_(lw) — is the centre luminance of the white field of the left-

eye when the left and right eyes simultaneously display

the white field signal;

 L_{rw} L_(rw) — is the centre luminance of the white field of the right-

eye when the left and right eyes simultaneously display

the white field signal.

6.4.3 Side luminance uniformity

Measurement procedures.

- a) Open the photometer and make it work normally.
- b) Set the digital projector as the stereoscopic projection mode and use the stereoscopic projection equipment.

- c) The white field signal is simultaneously displayed in the left and right eyes.
- d) Measure the luminance, L_{lw} L_(lw), of white field in the centre of screen and the luminance, L_{ls} L_(ls), of white field of four sides by using photometer through stereoscopic glasses of left-eye.
- e) Measure the luminance, L_{rw} L_(rw), of white field in the centre of screen and the luminance, L_{ls} L_(ls), of white field of four sides by using photometer through stereoscopic glasses of right-eye.
- f) Calculate and record the side luminance uniformity, U_l U_(l) of the upper, lower, left and right edges of the white field of the left-eye according to 公式(3):

$$U_{l} = \frac{L_{ls}}{L_{lw}} \times 100\% \text{U}_{(l)} = \text{frac(L_(ls))(L_(lw))} \times 100\%$$
(3)

式中 $U_l \cup_{lw} \cup_{lw$

g) calculate and record the side luminance uniformity U_r U_(r) of the upper, lower, left and right sides of the white field of the right-eye according to 公式 (4):

$$U_r = \frac{L_{rs}}{L_{rw}} \times 100\% \text{U}_{(r)} = \text{frac(L}_{(rs)})(\text{L}_{(rw)}) \times 100\%$$
 (4)

式中 $U_r U_-(r)$ — is the right-eye side luminance uniformity; — is the centre luminance of the white field of the right-eye when the left and right eyes simultaneously display the white field signal; — is the right-eye luminance of white field of four sides when the left and right eyes simultaneously display the white field signal.

6.4.4 Centre white chromaticity

中

Measurement procedures.

- a) Open the spectroradiometer and make it work normally.
- b) Set the digital projector as the stereoscopic projection mode and use the stereoscopic projection equipment.
- c) The white field signal is simultaneously displayed in the left and right eyes.

d) Using the spectroradiometer to measure and record the centre white chromaticity through the left-eye lens and the right-eye lens of the stereo glasses.

National standard (Mandatory)

LED影厅

GB 66666