Algèbre linéaire Chapitre 9

Definition 0.1

Soit V un \mathbb{R} -espace vectoriel. Une application linéaire $T:V\to V$ est appelée une transformation linéaire (ou encore un opérateur linéaire).

Definition 0.2

Soient V un \mathbb{R} -espace vectoriel et $T:V\to V$ une transformation linéaire. On dit que $\lambda\in\mathbb{R}$ est une valeur propre de T s'il existe $v\in V$ non-nul tel que $T(v)=\lambda v$. Aussi, si $\lambda\in\mathbb{R}$ est une valeur propre de T, alors tout vecteur non-nul $v\in V$ tel que $T(v)=\lambda v$ s'appelle un vecteur propre de T correspondant à la valeur propre λ .

Definition 0.3

Soit $A \in M_{n \times n}(\mathbb{R})$. On dit que $\lambda \in \mathbb{R}$ est une valeur propre de A s'il existe $X \in M_{n \times 1}(\mathbb{R})$ non-nul tel que $AX = \lambda X$. Aussi, si $\lambda \in \mathbb{R}$ est une valeur propre de A, alors toute solution non-nulle de $AX = \lambda X$ s'appelle un vecteur propre de A correspondant à la valeur propre λ .

Proposition 0.4

Soient V un \mathbb{R} -espace vectoriel de dimension finie, $T:V\to V$ une transformation linéaire et $A=[T]_{\mathscr{B}}$ la matrice de T par rapport à une base \mathscr{B} de V. Alors $\lambda\in\mathbb{R}$ est une valeur propre de T si et seulement si $\lambda\in\mathbb{R}$ est une valeur propre de A.

Definition 0.5

Soient $A \in M_{n \times n}(\mathbb{R})$ et t une indéterminée. Le polynôme caractéristique de A, noté $c_A(t)$, est le polynôme défini par

$$c_A(t) = \det(A - tI).$$

Proposition 0.6

Soient $A, P \in M_{n \times n}(\mathbb{R})$ et supposons que P soit inversible. Alors $c_A(t) = c_{PAP^{-1}}(t)$.

Definition 0.7

Soit $T: V \to V$ une transformation linéaire d'un \mathbb{R} -espace vectoriel de dimension finie V. On définit le polynôme caractéristique de T par $c_T(t) = c_A(t)$, où $A = [T]_{\mathscr{B}}$ pour une base ordonnée quelconque \mathscr{B} de V.

Definition 0.8

Soient $\phi: V \to V$ une transformation linéaire d'un espace vectoriel V et $\lambda \in \mathbb{R}$ une valeur propre de ϕ . Alors l'espace propre de ϕ associé à λ est le sous-ensemble de V défini par

$$E_{\lambda} = \{ v \in V : \phi(v) = \lambda v \}.$$

De manière similaire, si $\lambda \in \mathbb{R}$ est une valeur propre de la matrice $A \in M_{n \times n}(\mathbb{R})$, alors l'espace propre de A associé à λ est le sous-ensemble de $M_{n \times 1}(\mathbb{R})$ défini par

$$E_{\lambda} = \{ X \in M_{n \times 1}(\mathbb{R}) : AX = \lambda X \}.$$

Proposition 0.9

Le sous-ensemble E_{λ} est un sous-espace vectoriel.

Proposition 0.10

Soient $\phi: V \to V$ une transformation linéaire d'un \mathbb{R} -espace vectoriel de dimension finie V et $\lambda_1, \lambda_2 \in \mathbb{R}$ deux valeurs propres distinctes. Alors $E_{\lambda_1} + E_{\lambda_2} = E_{\lambda_1} \oplus E_{\lambda_2}$. Plus généralement, si $\lambda_1, \ldots, \lambda_r$ sont des valeurs propres distinctes de ϕ et v_1, \ldots, v_r des vecteurs correspondants, alors ces derniers sont linéairement indépendants.

Proposition 0.11

Soit $\phi: V \to V$ une transformation linéaire d'un \mathbb{R} -espace vectoriel V de dimension finie $n \in \mathbb{N}$ et supposons que ϕ possède n valeurs propres distinctes $\lambda_1, \ldots, \lambda_n$. Alors il existe une base \mathscr{B} de V telle que $[\phi]_{\mathscr{B}}$ soit une matrice diagonale.

Definition 0.12

Une transformation linéaire $\phi: V \to V$ d'un \mathbb{R} -espace vectoriel de dimension finie V est diagonalisable s'il existe une base de V formée de vecteurs propres pour ϕ . Aussi, une matrice $A \in M_{n \times n}(\mathbb{R})$ est dite diagonalisable s'il existe $P \in M_{n \times n}(\mathbb{R})$ inversible telle que $P^{-1}AP$ soit diagonale.

Definition 0.13

Soient $\phi: V \to V$ une transformation linéaire d'un \mathbb{R} -espace vectoriel V de dimension finie $n \in \mathbb{N}$ et $\lambda \in \mathbb{R}$ une valeur propre de ϕ . Comme toute valeur propre de ϕ est racine de $c_{\phi}(t)$, on peut factoriser

$$c_{\phi}(t) = (t - \lambda)^m p(t),$$

où $p(\lambda) \neq 0$ (i.e. $t - \lambda$ ne divise pas p(t)). L'entier m est appelée la multiplicité algébrique de λ . Aussi, la dimension du sous-espace E_{λ} de V est appelée la multiplicité géométrique de λ .

Proposition 0.14

Soient $\phi: V \to V$ une transformation linéaire d'un \mathbb{R} -espace vectoriel V de dimension finie $n \in \mathbb{N}$ et $\lambda \in \mathbb{R}$ une valeur propre de ϕ . Alors la multiplicité géométrique de λ est plus grande ou égale à 1. Aussi, celle-ci est toujours plus petite ou égale à la multiplicité algébrique de λ .

Theorem 0.15

Soit $\phi: V \to V$ une transformation linéaire d'un espace vectoriel V de dimension finie $n \in \mathbb{N}$. Alors ϕ est diagonalisable si et seulement s'il existe $a \in \mathbb{R}$, $\lambda_1, \ldots, \lambda_r \in \mathbb{R}$ distincts et $m_1, \ldots, m_r \in \mathbb{N}$ tels que

$$c_{\phi}(t) = a(t - \lambda_1)^{m_1} \cdots (t - \lambda_r)^{m_r}$$

et $m_i = \dim E_{\lambda_i}$ pour tout $1 \le i \le n$.

Résumé : Soit $\phi: V \to V$ une transformation linéaire d'un \mathbb{R} -espace vectoriel V de dimension finie.

- 1. Calculer $c_{\phi}(t)$.
- 2. Trouver les racines $c_{\phi}(t)$, c'est-à-dire, les valeurs propres de T.
- 3. Si $c_{\phi}(t)$ possède (au moins) un facteur de degré 2 qui n'a pas de racine réelle, alors ϕ n'est pas diagonalisable.
- 4. Pour chaque valeur propre λ de T, trouver dim E_{λ} .
- 5. Pour chaque valeur propre λ de T, comparer dim E_{λ} avec la multiplicité algèbrique de λ . Si ces dernières sont égales, alors ϕ est diagonalisable. Dans le cas contraire, elle ne l'est pas.
- 6. Si ϕ est diagonalisable, alors pour chaque valeur propre λ de T, trouver une base de E_{λ} . La réunion de ces bases est une base (notons-la \mathscr{B}) de V.
- 7. La matrice $[\phi]_{\mathscr{B}}$ est diagonale.

Theorem 0.16 (Théorème fondamental de l'algèbre)

Soit $p(x) \in \mathbb{P}(\mathbb{C})$ un polynôme à coefficients dans \mathbb{C} . Alors p(x) se factorise en un produit de facteurs linéaires, i.e. il existe $\lambda_1, \ldots, \lambda_r \in \mathbb{R}$ et $\mu_1, \ldots, \mu_{2s} \in \mathbb{C}$ tels que

$$p(x) = \pm (t - \lambda_1) \cdots (t - \lambda_r)(t - \mu_1) \cdots (t - \mu_{2s}).$$

De plus, si $\nu = a + ib \in \mathbb{C}$ est une racine de p(x), alors $\bar{\mu} = a - ib$ est également une racine de p(x).

Theorem 0.17 (Critère de diagonalisabilité sur \mathbb{C})

Une transformation linéaire $\phi: V \to V$ d'un \mathbb{C} -espace vectoriel de dimension finie est diagonalisable si et seulement si la multiplicité géométrique de chaque valeur propre de ϕ est égale à sa multiplicité algébrique.

Proposition 0.18

Soit $A \in M_{n \times n}(\mathbb{R})$ une matrice diagonalisable, avec valeurs propres $\lambda_1, \ldots, \lambda_n \in \mathbb{R}$. Alors il existe $P \in M_{n \times n}(\mathbb{R})$ inversible telle que

$$A^k = P \begin{pmatrix} \lambda_1^k & & \\ & \ddots & \\ & & \lambda_n^k \end{pmatrix} P^{-1},$$

ceci pour tout $k \in \mathbb{N}$.