ACCQ204 14 Décembre 2015

Cours 2

Enseignant: Aslan Tchamkerten Crédit: Rita Ibrahim & Wenceslas Godel

Codes linéaires

1 Le besoin de structure

Shannon promet l'existence de codes très bons mais il ne nous dit rien sur comment les construire.

<u>Idée</u>: Se restreindre à une classe de codes dont la complexité de codage ou décodage est faible.

Code sur un alphabet $[q] = \{1, 2, \dots, q\}$

$$C: [q]^k \longrightarrow [q]^n$$

La mise en mémoire requiert: $n \times q^k$! Prohibitif (chaque message comporte n bits).

Idée: Imposer de la structure sur C pour limiter la mémoire.

Definition 1 Soit \mathbb{F}_q un corps.

C est un code linéaire si c'est un sous-espace vectoriel de $\mathbb{F}_q^n.$ On le note $[n,k,d]_q.$

Remarque À partir de maintenant tous les codes que l'on va étudier seront des codes linéaires.

2 Rappels sur le corps finis

Theorem 2 Tout corps fini a cardinalité p^s où p est un nombre entier et $s \ge 1$ entier.

Exemple 3
$$\mathbb{F} = (\{0,1\},+,\cdot)$$
 $\mathbb{F} = (\{0,1,\ldots,p-1\},+_p,\cdot_p)$ Les opérations sont réalisées modulo p .

Theorem 4 $\forall q = p^s \exists ! \ corps \ avec \ q \ \'el\'ements (sans \ compter \ les \ isomorphismes).$

Theorem 5 Tout corps fini a un élément π , appelé élément "primitif" de \mathbb{F} t.q. $S = \{0, \pi^0, \pi^1, \dots, \pi^{q-2}\}.$

2.1 Polyômes et corps finis

Definition 6 Étant donné \mathbb{F}_q , on définit $\mathbb{F}_q[X] = \{\sum_{i=0}^{\infty} \alpha_i X^i, \alpha_i \in \mathbb{F}_q\}.$

Definition 7 $P(X) = \sum_{i=1}^{d} \alpha_i X^i, \alpha_d \neq 0, d \text{ est le degré de } P(X).$

Exemple 8 $\mathbb{F}_q[X]$ avec les lois d'addition et de multiplication est un anneau.

Definition 9 $\alpha \in \mathbb{F}_q$ est une racine de P(X) si $P(\alpha) = 0$.

Theorem 10 (Fondamental de l'algèbre) Un polynôme non nul de degré d a au plus d racines (peu importe \mathbb{F}_q).

Definition 11 $P(X) \in \mathbb{F}_q[X]$ est dit "irréductible" si pour tout $Q_1(X), Q_2(X) \in \mathbb{F}_q[X]$ tq. $Q_1(X) \cdot Q_2(X) = P(X)$, on a $min(deg(Q_1), deg(Q_2)) = 0$.

Exemple 12 $X^2 + X + 1$ irréductible sur \mathbb{F}_2 . $X^2 + 1 = (X + 1) \cdot (X + 1)$ n'est pas irréductible sur \mathbb{F}_2 .

3 Extensions d'un corps

$$\begin{split} & \mathbb{F}_q \overset{extension}{\longrightarrow} F_{q^m} \overset{isomorphe}{\longleftrightarrow} \mathbb{F}_q^m. \\ & \mathbb{F}_q^m = \{(\alpha_0, \alpha_1, \dots, \alpha_{m-1}) : \alpha_i \in F_q \forall i, \text{avec les règles d'addition} + \text{et de multiplication} \cdot \} \\ & + : (\alpha_0, \alpha_1, \dots, \alpha_{m-1}) \times (\beta_0, \beta_1, \dots, \beta_{m-1}) \longmapsto (\alpha_0 + \beta_0, \alpha_1 + \beta_1, \dots, \alpha_{m-1} + \beta_{m-1}) \\ & \text{L'addition des polyômes revient à l'addition des vecteurs.} \end{split}$$

 \cdot : multiplication des polyômes modulo E(X) où E(X) est un polynôme irréductible de degré m. Cela assure que l'on reste dans l'ensemble des polyômes de degré m-1 et que chaque élément a un inverse. Parfois \mathbb{F}_q^m est noté $\mathbb{F}_q/E(X)$.

Remarque Si $|\mathbb{F}_q| < \infty$, \exists des polyômes irréductibles de n'importe quel degré.

4 Retour aux codes linéaires

Definition 13 Le rang d'une matrice $\in \mathbb{F}_q^{k \times n}$ est le nombre <u>maximal</u> de lignes (ou colonnes) indépendantes.

Definition 14 Une matrice est dite de rang plein si son rang est min(k, n).

Theorem 15 Si $S \subset \mathbb{F}_q^n$ est un sous espace-linéaire

- 1. $|S| = q^k, k \ge 1$, k étant la dimension de S.
- 2. $\exists v_1, v_2, \dots, v_k \in S$ appelés base de S tq. $\forall x \in S$,

$$x = \sum_{1}^{k} a_i vi = (a_1, a_2, \dots, a_k) \cdot G$$

$$avec \ G = \begin{pmatrix} v_1 \\ v_2 \\ \vdots \\ v_k \end{pmatrix} \ appel\'ee \ matrice \ "g\'en\'eratrice" \ de \ S.$$

- 3. $\exists H \ matrice \in \mathbb{F}_q^{(n-k)\times n} \ de \ rang \ plein \ tq. \ H \cdot x^T = 0, \forall x \in S$ $H \ étant \ la \ matrice \ de \ parité.$
- $4. \ G \bot H \Leftrightarrow G \cdot H^T = 0.$

Lemma 16 Soit $k \leq n$ G une matrice $k \times n$ génératrice de S_1 , H une matrice de parité de dimension $(n-k) \times n$ du sous-espace S_2 tq. $G \cdot H^T = 0$. G et H sont supposées de rang plein.

Alors
$$S_1 = S_2$$
.

Preuve

- 1. $S_1 \subseteq S_2$ $c \in S_1 \Rightarrow \exists y \in \mathbb{F}_q^n \text{ tq. } c = y \cdot G \Rightarrow c \cdot H^T = y \cdot G \cdot H^T = 0 \text{ car } G \cdot H^T = 0$ $\Rightarrow c \in S_2$.
- 2. $S_2 \subseteq S_1$ H est de rang plein $\Rightarrow dim(Ker(H)) = n - dim(Im(H))$. Or $Ker(H) = S_2$ et dim(Im(H)) = n - k. Donc $dim(Ker(H)) = k \Rightarrow dim(S_2) = k$. De plus G de rang plein $\Rightarrow dim(S_1) = k$. $\xrightarrow{1} S_1 = S_2$.

Exemple 17

$$G = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 & 1 & 1 & 1 \end{pmatrix}$$

$$H = \begin{pmatrix} 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 & 1 & 0 & 0 \end{pmatrix}$$

$$G \cdot H^T = 0.$$

Conséquence 18 Tout code linéaire $[n, k, d]_q$ peut-être représenté avec: $min(n \cdot k, (n-k) \cdot n) = \mathcal{O}(n^2) \neq exp(\mathcal{O}(n))!$

Complexité du codage: $C(m) = m \cdot G$, où m est un vecteur-ligne de taille k et G une matrice de taille $k \times n$. La complexité est en $\mathcal{O}(k \times n)$.

5 Distance minimale d'un code linéaire

Proposition 19 Pour un code $C[n, k, d]_q$, $d = \min_{c \neq 0 \in C} wt(C)$.

Preuve $d \triangleq \min_{x,y \in C, x \neq y} \Delta(x,y) = \min_{x,y \in C, x \neq y} \Delta(x-y,0)$ Or $\Delta(x-y,0) = wt(x-y)$. Donc $d = \min_{c \in C, c \neq 0} wt(c)$.

En effet, la borne inférieure de la quantité $\Delta\left(x-y,0\right)$ est atteinte car si l'on prend deux éléments, on peut toujours arriver à obtenir c. Par exemple, on choisit x=c,y=0.

Proposition 20 Pour un code $[n,k,d]_q$ de matrice de parité H, d est le nombre de colonnes linéairement dépendantes (preuve: $Hc^T=0$ pour tout élément dans le code et donc le c de poids minimal correspondra au nombre minimal de colonnes linéairement dépendantes).

6 Code de Hamming

Definition 21 Pour tout entier $r \geq 2$ un code de Hamming (binaire) a pour matrice de parité H_r telle que :

$$H_r = \left(\begin{array}{ccccccc} 1 & 0 & 1 & 0 & 1 & . & 1 \\ 0 & 1 & 1 & 0 & 0 & . & 1 \\ 0 & 0 & 0 & 1 & 1 & . & 1 \\ . & . & . & . & . & . & . & 1 \end{array}\right)$$

où la $i^{\grave{e}me}$ colonne est la représentation de i en binaire ($1 \leq i \leq 2^r-1$) sur r bits. Donc r=n-k, i.e., k=n-r.

Proposition 22 Pour tout $r \geq 2$ le code de Hamming a distance minimale égale à 3.

Preuve Les colonnes de la matrice sont deux à deux indépendantes, donc $d \ge 3$. De plus $H_r^1 + H_r^2 + H_r^3 = 0$ et donc d = 3.

Observation 23 (Code et borne de Hamming) Par la borne de Hamming

$$|C| \cdot \operatorname{Vol}(n, \lfloor \frac{d-1}{2} \rfloor) \le 2^n$$

Pour d = 3 on a

$$|C| \le 2^n \cdot \frac{1}{n+1}$$

 $car \operatorname{Vol}(n,1) = n + 1$. Il suit que

$$\log_2(|C|) \le n - \log_2(n+1).$$

Pour le code de Hamming,

$$n = 2^r - 1 \Rightarrow r = \log_2(n+1)$$

et donc

$$\log_2 |C| = k = n - r = n - \log_2(n+1).$$

On déduis que les codes de Hamming atteignent la borne de Hamming.

Observation 24 Un code atteignant la borne de Hamming est dit parfait. Il existe d'autres codes parfait, par exemple, le code $[n, 1, n]_2$, ainsi que d'autres codes du a Golay.

6.1 Décodage code de Hamming

- 1. Algo 1 : MAP. la complexité est en $2^{O(n)}$! (besoin de lister tous les mots codes).
- 2. Algo 2 : Dans le cas où une erreur se produit au maximum par mot code envoyé on a y=C+e avec

$$e = \begin{pmatrix} 0 \\ \cdot \\ 0 \\ 1 \\ 0 \\ \cdot \\ \cdot \\ 0 \end{pmatrix}$$

Alors

$$Hy = Hc + He = He$$

ce qui correspond à la i^{eme} colonne de H (i étant la position du 1 dans e et donc de l'erreur dans y).

Complexité: $O(n \log_2(n))$ (un seul calcul matriciel à faire).

Remarque: Hy est appelé le syndrôme de y.

7 Codes MDS: maximum distance separable

Rappel: la borne du singleton nous dit que pour tout code

$$d \le n - k + 1 \Rightarrow r + \delta \le 1 \Rightarrow r \le 1 - \delta$$
.

Definition 25 Un code est dit MDS (maximum distance separable) si d = n - k + 1.

Proposition 26 Si un code est MDS alors tout ensemble de k coordonnées les mots codes restrincts à ces coordonnés sont distinctes (i.e. les k composantes de tout mot code définissent le mot code).

Preuve Voir preuve borne de Singleton. ■

Definition 27 Soit C un code avec q^k mots codes sur \mathbb{F}_q et de longueur n. Soit J un sous-ensemble de $\{1,2,..,n\}$ de coordonnées. J est un ensemble d'information si pour tout mot code, les composantes de J le détermine entièrement.

Corollary 28 Pour un code MDS, tout J avec |J| = k est un ensemble d'information.

Conjecture 1 Tout code linéaire $[n, k]_q$ MDS satisfait $n \le q+1$ si 1 < k < q sauf si q est pair et k = 3 ou k = q - 1 auquel cas on a $n \le q + 2$.