Offshore Wind Results and Analysis

Morgan Browning
08 August, 2019

Contents

1	Purpose	1
2	Setup	1
3	Scenarios	1
4	LCOE	2
5	Offshore Wind	2
	5.1 Capacity Buildout	2
	5.2 Total Capacity	
	5.3 Output	
	5.4 Regions	
6	0.114 1.111	8
	6.1 Baseline Production	8
	6.2 All Scenarios	
	6.3 Emissions Cap	10
	6.4 Cost Reductions	
	6.5 Heatmaps	
	6.6 TEST	

1 Purpose

This document functions as an all-inclusive working directory for synthesis and graphical analysis of the results from the offshore wind research of Morgan Browning, an ORISE Fellow at the U.S. Environmental Protection Agency's Office of Research and Development.

This documents and its contents are not finalized nor are intended for publication. It is annotated primarily for ease of reproducability. Graphs are provided with many variations to meet criteria of different publication and presentation platforms.

2 Setup

Sets global knit options and loads the setup and data import scripts for the project.

Three scripts are loaded into this markdown document to allow for analysis of the data. The setup script loads the library, creates generalized functions, and creates global variables for color scales and factors. The data script loads the excel spreadsheet with all of the results data and performs the majority of data munging. The results script creates charts, graphs, and tables. This report functions as the annotated synthesis of the data and results.

3 Scenarios

The nested parametric sensitivity analysis was built on combinations of two sets of scenarios:

- 1. Electric sector CO_2 emissions caps, as a linear decrease to a given % decrease from 2010 emissions by 2050
- 2. Cost reductions of offshore wind, as a linear decrease to a given % decrease from 2010 costs by 2035, then level costs to 2050

4 LCOE

EIA's AEO 2019 provides the following values for the estimated levelized cost of electricity (capacity-weighted average) for new generation resources entering service in 2023 (2018 \$/MWh). Offshore wind has the highest total LCOE by a large margin. The second most expensive technology is biomass.

Table 1: Estimated LCOE capacity-weighted average for new generation resources entering service in 2023 (2018\$/MWh)

Plant Type	Capacity Factor (%)	Levelized capital cost	Levelized fixed O&M	Levelized variable O&M	Levelized transmission cost	Total system LCOE	Levelized tax credit	Total LCOE including tax credit
Dispatchable technologies								
Conventional CC	87	8.1	1.5	32.3	0.9	42.8	NA	42.8
Advanced CC	87	7.1	1.4	30.7	1.0	40.2	NA	40.2
Advanced CT	30	17.2	2.7	54.6	3.0	77.5	NA	77.5
Geothermal	90	24.6	13.3	0.0	1.4	39.4	-2.5	36.9
Biomass	83	37.3	15.7	37.5	1.5	92.1	NA	92.1
Non-dispatchable technologies								
Wind, onshore	44	27.8	12.6	0.0	2.4	42.8	-6.1	36.6
Wind, offshore	45	95.5	20.4	0.0	2.1	117.9	-11.5	106.5
Solar PV	29	37.1	8.8	0.0	2.9	48.8	-11.5	37.6
Hydroelectric	75	29.9	6.2	1.4	1.6	39.1	NA	39.1

Note:

U.S. EIA Annual Energy Outlook 2019

5 Offshore Wind

5.1 Capacity Buildout

Cumulative and new addition offshore wind capacity across all nine census regions, by cost and emissions reduction scenario.

5.2 Total Capacity

Total offshore wind capacity across all nine census regions in 2050, by cost and emissions reduction scenario.

2050 Offshore Wind Capacity

Table 2: Offshore Wind Total Installed Capacity (GW): 2050

Emissions Reduction (%)	Cost Reduction $(\%)$				
	40	50	60	70	80
BAU	2.5	248.1	635.3	706.4	738.6
30	2.5	247.9	635.2	706.4	738.6
40	2.1	268.0	635.2	706.4	738.6
50	4.4	310.9	636.7	706.4	738.6
60	13.2	367.3	638.0	706.4	738.6
70	14.9	421.4	641.3	709.6	738.7
80	24.9	435.4	656.5	723.1	746.0

5.3 Output

Total offshore wind electricity output across all nine census regions, by cost and emissions reduction scenario.

5.4 Regions

Cumulative and new addition offshore wind capacity by region.

Table 3: Offshore Wind Total Output (PJ): 2050

Emissions Reduction (%)	Cost Reduction (%)				
	40	50	60	70	80
BAU	42.3	3845.4	8962.0	9848.8	10204.0
30	43.4	3841.7	8960.8	9848.5	10204.0
40	36.0	4139.4	8960.8	9848.5	10204.0
50	75.3	4758.1	8977.9	9848.5	10204.0
60	221.0	5562.3	8992.0	9848.5	10204.0
70	250.4	6315.4	9034.2	9880.0	10205.3
80	409.6	6502.2	9235.0	10008.3	10287.1

Cumulative and new addition offshore wind capacity by region, emissions reduction, and cost reduction.

Table 4: Average Installed Capacity (GW) $\,$

Region	2050 Total
R4	0.67000
R6	9.56000
R1	29.88514
R2	73.21452
R9	93.38871
R7	96.97286
R3	110.37893
R5	169.72857

Table 5: Average Electricity Output (PJ)

Region	2050 Total
R4	5.85375
R6	68.65600
R1	96.99500
R2	224.66953
R9	284.79601
R3	326.76062
R7	485.47903
R5	526.62200

6 Grid Mix

6.1 Baseline Production

Grid mix without any offshore wind cost reduction or emissions cap.

6.2 All Scenarios

Complete Set

Parsed Set

Electricity Production by Process

6.3 Emissions Cap

BAU emissions

30% emissions reduction

40% emissions reduction

50% emissions reduction

60% emissions reduction

70% emissions reduction

80% emissions reduction

6.4 Cost Reductions

40% cost reduction

50% cost reduction

60% cost reduction

70% cost reduction

80% cost reduction

6.5 Heatmaps

Electricity Produced by Process: 2050

Electricity Produced by Process: 2050

Electricity Produced by Process: 2050

Electricity Produced by Process: 2050

6.6 **TEST**

500

Cost Reduction Scenarios Percentage decrease from 2010 offshore wind CAPEX costs Cost Reduction (%) 75 50 25 2020 Year Cost Reduction Scer **Emissions Reductio Emissions Reductio** Percentage decrease fro Scenarios as overall % Scenarios as overall % Emissions (Mt) CO₂ Emissions (Mt) Cost Reduction (%) 2000 2000 75 1500 1500 50 1000 1000 25 500 500 C02 0 Year Year Year Cost Reduction Scenarios Cost Reduction Scenarios Percentage decrease from 2010 offshore Percentage decrease from 2010 offshore Cost Reduction (%) Cost Reduction (%) 100 75 75 50 50 25 25 0 0 2020 Year Year **Emissions Reduction Scenarios Emissions Reduction Scenarios** Scenarios as overall % reduction of 201 Scenarios as overall % reduction of 201 CO2 Emissions (Mt) CO2 Emissions (Mt) 2000 2000 1500 1500 1000 1000

Year

500

0

Year