Fiche d'exercices projeté orthogonal, trigonométrie

Exercice 1:

Dans un repère orthonormé (O; I, J) on donne les points A(4; 2), B(-2; 1) et C(3; -4).

- 1) Faire une figure que l'on complètera au fur et à mesure de l'exercice.
- 2) Déterminer la nature du triangle ABC.
- **3)** Soit *H* le projeté orthogonal de *A* sur la droite (*BC*). Déterminer les coordonnées de *H*.
- 4) Déterminer une mesure de l'angle \widehat{ABC} arrondie au dixième de degré près.
- **5)** En déduire une mesure de l'angle \widehat{BAC} .
- 6) Déterminer l'aire du triangle ABC.

Exercice 2:

Dans un repère orthonormé (O; I, J) on donne les points A(-6; 1), B(-3; 4) et C(-1; -4).

- 1) Faire une figure que l'on complètera au fur et à mesure de l'exercice.
- 2) Déterminer la nature du triangle *ABC*.
- 3) Déterminer l'aire du triangle ABC.
- **a)** Déterminer une mesure de l'angle \widehat{ABC} arrondie au dixième de degré près.
 - **b)** En déduire une mesure de l'angle \widehat{BCA} .
- **5)** Soit *K* le milieu du segment [*BC*].
 - a) Déterminer les coordonnées de K.
 - b) Déterminer les coordonnées du point D symétrique du point A par rapport au point K.
 - c) Déterminer la nature du quadrilatère *ABDC*.

Exercice 3:

Dans un repère orthonormé (O; I, J) on donne les points A(-1; 2), B(3; 4) et C(1; 0).

- 1) Faire une figure que l'on complètera au fur et à mesure de l'exercice.
- **2)** Déterminer la nature du triangle *ABC*.
- **3)** Soit *H* le projeté orthogonal du point *B* sur la droite (*AC*). Déterminer les coordonnées du point *H*.
- 4) Déterminer une mesure de chacun des angles du triangle ABC (arrondir les résultats au dixième de degré près).
- 5) Déterminer les coordonnées du point *D* symétrique du point *B* par rapport au point *H*.
- 6) Déterminer la nature du quadrilatère ABCD.
- 7) Déterminer l'aire du quadrilatère ABCD.

Solutions

Exercice 1:

1)

- 2) $AB = \sqrt{37}$, $AC = \sqrt{37}$ et $BC = \sqrt{50}$ donc ABC est isocèle en A. $BC^2 = 50$ et $AB^2 + BC^2 = 37 + 37 = 74 \neq 50$ donc, d'après la contraposée du théorème de Pythagore, le triangle ABC n'est pas rectangle.
- 3) Le triangle ABC est isocèle en A donc la hauteur (AH) est également médiane donc H sera le milieu du segment [BC] donc $H\left(\frac{x_B+x_C}{2}; \frac{y_B+y_C}{2}\right)$ donc H(0,5;-1,5).
- 4) Dans le triangle ABH rectangle en H on a : $AB = \sqrt{37}$, $BH = \frac{BC}{2} = \frac{\sqrt{50}}{2}$ donc $\widehat{ABC} = \widehat{ABH} = \cos^{-1}\left(\frac{BH}{AB}\right) = \cos^{-1}\left(\frac{\frac{\sqrt{50}}{2}}{\sqrt{37}}\right) \approx 54,5^{\circ}$.
- 5) Dans un triangle, la somme des angles est égale à 180° donc $\widehat{BAC} = 180 \widehat{ABC} \widehat{ACB}$ mais comme ABC est isocèle en A alors $\widehat{ABC} = \widehat{ACB} \approx 54,5^{\circ}$ et donc $\widehat{BAC} \approx 180 2 \times 54,5 \approx 71^{\circ}$.

6)
$$\mathcal{A}_{ABC} = \frac{\text{base} \times \text{hauteur}}{2} = \frac{BC \times AH}{2} = \frac{\sqrt{50} \times \sqrt{24,5}}{2} = 17,5 \text{ cm}^2.$$

Exercice 2:

1)

2) $AB = \sqrt{18}$, $AC = \sqrt{50}$ et $BC = \sqrt{68}$. $BC^2 = 68$ et $AB^2 + AC^2 = 18 + 50 = 68$ donc, d'après la réciproque du théorème de Pythagore, le triangle ABC est rectangle en A (car $BC^2 = AB^2 + AC^2$).

3)
$$\mathscr{A}_{ABC} = \frac{\text{base} \times \text{hauteur}}{2} = \frac{AB \times AC}{2} = \frac{\sqrt{18} \times \sqrt{50}}{2} = 15 \text{ cm}^2.$$

4) a) Dans le triangle *ABC* rectangle en *A* on a :
$$AC = \sqrt{50}$$
 et $BC = \sqrt{68}$ donc

$$\widehat{ABC} = \sin^{-1}\left(\frac{AC}{BC}\right) = \sin^{-1}\left(\frac{\sqrt{50}}{\sqrt{68}}\right) \approx 59^{\circ}.$$

b) Dans un triangle la somme des angles est égale à
$$180^{\circ}$$
 donc $\widehat{BCA} = 180 - \widehat{BAC} - \widehat{ABC} \approx 180 - 90 - 59 \approx 31^{\circ}$.

5) a)
$$K\left(\frac{x_B + x_C}{2}; \frac{y_B + y_C}{2}\right) \operatorname{donc} K(-2; 0).$$

b) Si
$$D$$
 est le symétrique de A par rapport à K alors K est le milieu de $[AD]$ donc :

$$K\left(\frac{x_A+x_D}{2}\;;\;\frac{y_A+y_D}{2}\right)$$
 donc $K\left(\frac{-6+x_D}{2}\;;\;\frac{1+y_D}{2}\right)$. Or $K(-2\;;\;0)$ donc on obtient les équations :

$$\frac{-6+x_D}{2}$$
 = -2 et $\frac{1+y_D}{2}$ = 0 donc, à l'aide de produits en croix :

$$-6 + x_D = -2 \times 2 = -4$$
 et $1 + y_D = 0 \times 2 = 0$ donc
 $x_D = -4 + 6 = 2$ et $y_D = 0 - 1 = -1$ donc $D(2; -1)$.

$$x_D = -4 + 6 = 2$$
 et $y_D = 0 - 1 = -1$ donc $D(2; -1)$.

- c) K est le milieu des diagonales [BC] et [AD] (questions précédentes) donc ABDC est un parallélogramme.
 - ABDC est un parallélogramme qui possède un angle droit en A donc c'est un rectangle.
 - ABDC est un parallélogramme qui a deux côtés consécutifs qui ne sont pas de la même longueur donc ce n'est pas un losange (donc ce n'est pas un carré).

Exercice 3:

1)

- 2) $AB = \sqrt{20}$, $AC = \sqrt{8}$ et $BC = \sqrt{20}$ donc ABC est isocèle en B $AB^2 = 20$ et $BC^2 + AC^2 = 20 + 8 = 28$ donc $AB^2 \neq BC^2 + AC^2$ donc, d'après la contraposée du théorème de Pythagore, le triangle ABC n'est pas rectangle.
- 3) Dans le triangle ABC isocèle en B, la hauteur (BH) est aussi la médiane issue de B donc H est le milieu de [AC]

$$H\left(\frac{x_A + x_C}{2}; \frac{y_A + y_c}{2}\right)$$
 donc $H(0; 1)$.

• Dans le triangle ABH rectangle en H on a AB = $\sqrt{20}$ et AH = $\frac{AC}{2} = \frac{\sqrt{8}}{2}$ donc

$$\widehat{BAH} = \widehat{BAC} = \cos^{-1}\left(\frac{AH}{AB}\right) = \cos^{-1}\left(\frac{\frac{\sqrt{8}}{2}}{\sqrt{20}}\right) \approx 71.6^{\circ}.$$

- Dans un triangle la somme des angles est égale à 180° donc $\widehat{ABC} = 180 \widehat{BAC} \widehat{BCA}$ mais comme ABC est isocèle en B alors $\widehat{BAC} = \widehat{BCA} \approx 71.6^{\circ}$ donc $\widehat{ABC} \approx 180 - 2 \times 71.6 \approx 36.8^{\circ}$.
- 5) Si D est le symétrique de B par rapport à H alors H est le milieu de [BD] donc :

$$H\left(\frac{x_B+x_D}{2}; \frac{y_B+y_D}{2}\right)$$
 donc $H\left(\frac{3+x_D}{2}; \frac{4+y_D}{2}\right)$. Or $H(0; 1)$ donc on obtient les équations :

```
\frac{3+x_D}{2} = 0 \text{ et } \frac{4+y_D}{2} = 1 \text{ donc, à l'aide de produits en croix :}
```

$$3 + x_D = 2 \times 0 = 0$$
 et $4 + y_D = 2 \times 1 = 2$ donc
 $x_D = 0 - 3 = -3$ et $y_D = 2 - 4 = -2$ donc $D(-3; -2)$.

- H est le milieu des diagonales [AC] et [BD] (questions précédentes) donc ABCD est un parallélogramme .
 - *ABCD* est un parallélogramme qui ne possède pas d'angle droit en *B* donc ce n'est pas un rectangle (donc ce n'est pas un carré).
 - *ABCD* est un parallélogramme qui a deux côtés consécutifs de même longueur (*AB* et *BC*) donc c'est un losange.