Data Structures & Algorithms

Lecture 3: Sorting

Recap

Recap: Analyzing Running Time

Two components:

- Determine running time as function T(n) of input size n
 - assume elementary operations take constant time
 - focus on worst-case running time
- 2. Characterize rate of growth of T(n)
 - focus on the order of growth ignore all but the most dominant terms
 - use O()-notation

```
O(g(n)) = \{ f(n) : \text{ there exist positive constants } c \text{ and } n_0 \}
such that 0 \le f(n) \le cg(n) for all n \ge n_0 \}
```

T(n) = O(g(n)): The order of growth of the running time T(n) is at most g(n).

also know $\Omega()$ for lower bounds, and $\Theta()$ for tight bounds

Recap: Recursive Algorithms

recursive algorithms are based on reduction:solve a problem based on smaller instances

```
def binary_search(A, v, x=0, y=None):
    if (y == None): y = len(A)
    if (x<y):
        h = (x+y)//2
        if (A[h]<v): return binary_search(A, v, h+1, y)
        else: return binary_search(A, v, x, h)
    else:
        if (A[x] == v): return x
        else: return -1</pre>
```

```
binary_search([1,4,5], 4)
```

Recap: Algorithms

- A complete description of an algorithm consists of three parts:
 - 1. the algorithm, expressed in whatever way is clearest and most concise
 - 2. a proof of the algorithm's correctness
 - For recursive algorithms: mathematical induction
 - Base case, induction hypothesis, induction step
 - □ Standard: $n \rightarrow n+1$ vs. strong induction: $m < n \rightarrow n$
 - 3. a derivation of the algorithm's running time
 - Find recurrence of running time
 - Solve recurrence (today)

Sorting

The sorting problem

Input: a sequence of n numbers $\langle a_1, a_2, ..., a_n \rangle$

Output: a permutation of the input such that $\langle a_{i1} \leq ... \leq a_{in} \rangle$

```
8 1 6 4 0 3 9 5 

0 1 3 4 5 6 8 9
```

- The input is typically stored in arrays
- Numbers ≈ Keys
- Additional information (satellite data) may be stored with keys
- We will study several solutions ≈ algorithms for this problem

Selection Sort

Probably the simplest sorting algorithm ...

Selection-Sort(A, n)

Input: an array A and the number n of elements in A to sort Output: the elements of A sorted into non-decreasing order

- 1. For i = 1 to n-1:
 - A. Set smallest to i
 - B. For j = i + 1 to n
 - i. If A[j] < A[smallest], then set smallest to j
 - C. Swap A[i] with A[smallest]

Selection Sort

```
Selection-Sort(A, n)
```

Input: an array A and the number n of elements in A to sort Output: the elements of A sorted into non-decreasing order

- 1. For i = 1 to n-1:
 - A. Set smallest to i
 - B. For j = i + 1 to n
 - i. If A[j] < A[smallest], then set smallest to j
 - C. Swap A[i] with A[smallest]

Correctness? Loop Invariant Proof ✓
Running time? O(n²)

Insertion Sort

- Like sorting a hand of playing cards:
 - start with empty left hand, cards on table
 - remove cards one by one, insert into correct position

- to find position, compare to cards in hand from right to left
- cards in hand are always sorted

Insertion Sort is

- a good algorithm to sort a small number of elements
- an incremental algorithm

Incremental algorithms

process the input elements one-by-one and maintain the solution for the elements processed so far.

Incremental algorithms

Incremental algorithms

process the input elements one-by-one and maintain the solution for the elements processed so far.

In pseudocode:

IncAlg(A)

- // incremental algorithm which computes the solution of a problem with input $A = \{x_1, ..., x_n\}$
- 1. initialize: compute the solution for $\{x_1\}$
- 2. **for** j = 2 **to** n
- 3. **do** compute the solution for $\{x_1,...,x_j\}$ using the (already computed) solution for $\{x_1,...,x_{i-1}\}$

Insertion Sort

Insertion-Sort(A)

- // incremental algorithm that sorts array A[1..n] in non-decreasing order
- initialize: sort A[1]
- 2. **for** j = 2 **to** A.length
- 3. **do** sort A[1..j] using the fact that A[1.. j-1] is already sorted

Insertion Sort

Insertion-Sort(A)

// incremental algorithm that sorts array A[1..n] in non-decreasing order

```
    initialize: sort A[1]
```

2. **for**
$$j = 2$$
 to A.length

3. **do** key =
$$A[j]$$

4.
$$i = j - 1$$

5. **while**
$$i > 0$$
 and $A[i] > key$

6. **do**
$$A[i+1] = A[i]$$

7.
$$i = i - 1$$

8.
$$A[i + 1] = key$$

Insertion Sort is an in place algorithm: the numbers are rearranged within the array with only constant extra space.

Correctness

Loop invariant

At the start of each iteration of the "outer" **for** loop (indexed by j) the subarray A[1..j-1] consists of the elements originally in A[1..j-1] but in sorted order.

Insertion-Sort(A)

```
    initialize: sort A[1]
    for j = 2 to A.length
    do key = A[j]
    i = j -1
    while i > 0 and A[i] > key
    do A[i+1] = A[i]
    i = i -1
    A[i +1] = key
```

Loop invariant

At the start of each iteration of the "outer" **for** loop (indexed by j) the subarray A[1..j-1] consists of the elements originally in A[1..j-1] but in sorted order.

Initialization

Just before the first iteration, $j = 2 \rightarrow A[1..j-1] = A[1]$, which is the element originally in A[1], and it is trivially sorted.

Insertion-Sort(A)

```
    initialize: sort A[1]
    for j = 2 to A.length
    do key = A[j]
    i = j -1
    while i > 0 and A[i] > key
    do A[i+1] = A[i]
    i = i -1
    A[i +1] = key
```

Loop invariant

At the start of each iteration of the "outer" **for** loop (indexed by j) the subarray A[1..j-1] consists of the elements originally in A[1..j-1] but in sorted order.

Maintenance

Strictly speaking need to prove loop invariant for "inner" **while** loop. Instead, note that body of **while** loop moves A[j-1], A[j-2], A[j-3], and so on, by one position to the right until proper position of key is found (which has value of A[j]) \rightarrow invariant maintained.

Insertion-Sort(A)

```
    initialize: sort A[1]
    for j = 2 to A.length
    do key = A[j]
    i = j -1
    while i > 0 and A[i] > key
    do A[i+1] = A[i]
    i = i -1
    A[i +1] = key
```

Loop invariant

At the start of each iteration of the "outer" **for** loop (indexed by j) the subarray A[1..j-1] consists of the elements originally in A[1..j-1] but in sorted order.

Termination

The outer **for** loop ends when j > n; this is when $j = n+1 \rightarrow j-1 = n$. Plug n for j-1 in the loop invariant \rightarrow the subarray A[1..n] consists of the elements originally in A[1..n] in sorted order.

Another sorting algorithm

using a different paradigm ...

A divide-and-conquer sorting algorithm.

Divide

the problem into a number of subproblems that are smaller instances of the same problem.

Conquer

the subproblems by solving them recursively. If they are small enough, solve the subproblems as base cases.

Combine

the solutions to the subproblem into the solution for the original problem.

Divide-and-conquer

D&CAlg(A)

- // divide-and-conquer algorithm that computes the solution of a problem with input $A = \{x_1, ..., x_n\}$
- 1. **if** # elements of A is small enough (for example 1)
- 2. **then** compute Sol (the solution for A) brute-force
- 3. else
- 4. split A in, for example, 2 non-empty subsets A₁ and A₂
- 5. $Sol_1 = D\&CAlg(A_1)$
- 6. $Sol_2 = D\&CAlg(A_2)$
- 7. compute Sol (the solution for A) from Sol₁ and Sol₂
- 8. **return** Sol

```
Merge-Sort(A)
```

- // divide-and-conquer algorithm that sorts array A[1..n]
- 1. **if** A.length = 1
- 2. **then** compute Sol (the solution for A) brute-force
- 3. else
- 4. split A in 2 non-empty subsets A₁ and A₂
- 5. $Sol_1 = Merge-Sort(A_1)$
- 6. $Sol_2 = Merge-Sort(A_2)$
- 7. compute Sol (the solution for A) from Sol₁ en Sol₂

```
Merge-Sort(A)
// divide-and-conquer algorithm that sorts array A[1..n]
    if A.length == 1
        then skip
2.
3.
        else
           n = A.length ; n_1 = [n/2]; n_2 = [n/2];
4.
            copy A[1.. n₁] to auxiliary array A₁[1.. n₁]
            copy A[n_1+1..n] to auxiliary array A<sub>2</sub>[1.. n_2]
           Merge-Sort(A<sub>1</sub>)
5.
6.
           Merge-Sort(A<sub>2</sub>)
           Merge(A, A_1, A_2)
7.
```


Merging

Correctness?

Efficiency

Analysis of Insertion Sort

```
Insertion-Sort(A)

1. initialize: sort A[1]

2. for j = 2 to A.length

3. do key = A[j]

4. i = j -1

5. while i > 0 and A[i] > key

6. do A[i+1] = A[i]

7. i = i -1

8. A[i +1] = key
```

- Get as tight a bound as possible on the worst case running time.
 - lower and upper bound for worst case running time

Upper bound: Analyze worst case number of elementary operations

Lower bound: Give "bad" input example

Analysis of Insertion Sort

```
Insertion-Sort(A)

1. initialize: sort A[1] O(1)

2. for j = 2 to A.length

3. do key = A[j]
4. i = j -1

5. while i > 0 and A[i] > key
6. do A[i+1] = A[i]
7. i = i -1

8. A[i+1] = key

O(1)

O(1)

O(1)

O(1)

O(1)
```

Upper bound: Let T(n) be the worst case running time of InsertionSort on an array of length n. We have

$$T(n) = O(1) + \sum_{j=2}^{n} \{ O(1) + (j-1) \cdot O(1) + O(1) \} = \sum_{j=2}^{n} O(j) = O(n^2)$$

Lower bound: Array sorted in de-creasing order $\rightarrow \Omega(n^2)$

The worst case running time of InsertionSort is $\Theta(n^2)$.

Analysis of Merge Sort

```
Merge-Sort(A)
// divide-and-conquer algorithm that sorts array A[1..n]
    if A.length = 1
                                                                          O(1)
2.
       then skip
3.
       else
           n = A.length; n_1 = floor(n/2); n_2 = ceil(n/2);
4.
                                                                          O(1)
           copy A[1.. n_1] to auxiliary array A<sub>1</sub>[1.. n_1]
5.
                                                                          O(n)
6.
           copy A[n_1+1..n] to auxiliary array A<sub>2</sub>[1.. n_2]
                                                                          O(n)
           Merge-Sort(A_1); Merge-Sort(A_2)
7.
                                                                          O(n)
           Merge(A, A_1, A_2)
8.
                                        T(|n/2|) + T([n/2])
```

MergeSort is a recursive algorithm

running time analysis leads to recursion

Analysis of Merge Sort

Let T(n) be the worst case running time of MergeSort on an array of length n. We have

$$T(n) = \begin{cases} O(1) & \text{if } n = 1 \\ \hline T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + \Theta(n) & \text{if } n > 1 \end{cases}$$
 frequently omitted since it often written as $2T(n/2)$ (nearly) always holds

$$\rightarrow$$
 T(n) = 2 T(n/2) + Θ (n)

Master theorem

$$\rightarrow$$
 T(n) = Θ (n log n)

Tips

- Analysis of recursive algorithms: find the recursion and solve
- Analysis of loops: summations
- Some standard recurrences and sums:

■
$$T(n) = 2T(n/2) + \Theta(n)$$
 → $T(n) = \Theta(n \log n)$

$$\sum_{i=1}^{n} i = \frac{1}{2} n(n+1) = \Theta(n^2)$$

$$\sum_{i=1}^{n} i^2 = \Theta(n^3)$$

Rate of growth

Merge Sort 6 x 10⁹ 2500 x faster!

Sorting algorithms

- We focus on running time
- Storage?
 - all sorting algorithms discussed use O(n) storage
 - in place: only constant amount of extra storage

	worst case running time	in place
Selection Sort	Θ(n²)	yes
Insertion Sort	$\Theta(n^2)$	yes
Merge Sort	Θ(n log n)	no

■ in place & O(n log n)? ... later in the course

QuickSort

another divide-and-conquer sorting algorithm...

QuickSort

QuickSort is a divide-and-conquer algorithm

To sort the subarray A[p..r]:

Divide

Partition A[p..r] into two subarrays A[p..q-1] and A[q+1..r], such that each element in A[p..q-1] is \leq A[q] and A[q] is < each element in A[q+1..r].

Conquer

Sort the two subarrays by recursive calls to QuickSort

Combine

No work is needed to combine the subarrays, since they are sorted in place.

□ Divide using a procedure Partition which returns q.

QuickSort

8.

return i+1

```
QuickSort(A, p, r)
                                             Initial call: QuickSort(A, 1, n)
    if p < r
2. then q = Partition(A, p, r)
3.
            QuickSort(A, p, q-1)
4.
             QuickSort(A, q+1, r)
                                             Partition always selects A[r] as
Partition(A, p, r)
                                             the pivot (the element around
1. x = A[r]
                                             which to partition)
2. i = p-1
3. for j = p to r-1
4.
        do if A[i] \le x
5.
              then i = i+1
6.
                    exchange A[i] ↔ A[j]
    exchange A[i+1] \leftrightarrow A[r]
```

Partition

As Partition executes, the array is partitioned into four regions (some may be empty)

Partition(A, p, r) 1. x = A[r] 2. i = p-1 3. for j = p to r-1 4. do if A[j] ≤ x 5. then i = i+1 6. exchange A[i] ↔ A[j] 7. exchange A[i+1] ↔ A[r] 8. return i+1

Loop invariant

- 1. all entries in A[p..i] are ≤ pivot
- 2. all entries in A[i+1..j-1] are > pivot
- 3. A[r] = pivot

Partition

Partition - Correctness

Loop invariant

- 1. all entries in A[p..i] are ≤ pivot
- 2. all entries in A[i+1..j-1] are > pivot
- 3. A[r] = pivot

Initialization

before the loop starts, all conditions are satisfied, since r is the pivot and the two subarrays A[p..i] and A[i+1..j-1] are empty

Maintenance

while the loop is running, if $A[j] \le pivot$, then A[j] and A[i+1] are swapped and then i and j are incremented \rightarrow 1. and 2. hold. If A[j] > pivot, then increment only $j \rightarrow$ 1. and 2. hold.

Partition - Correctness

Loop invariant

- 1. all entries in A[p..i] are ≤ pivot
- 2. all entries in A[i+1..j-1] are > pivot
- 3. A[r] = pivot

Termination

when the loop terminates, j = r, so all elements in A are partitioned into one of three cases:

 $A[p..i] \le pivot$, A[i+1..r-1] > pivot, and A[r] = pivot

Lines 7 and 8 move the pivot between the two subarrays

Running time: $\Theta(n)$ for an n-element subarray

Running Time of Partition and Quicksort

- Partition takes O(n) time
- □ Quicksort takes O(n²) time in the worst case
- Picking a random pivot results in reasonably balanced split on average
 - → Randomized Quicksort takes O(n log n) expected time
- Quicksort is fast in practice
- □ The idea of Partition can be used to find the median of an unsorted sequence of numbers in O(n) time

Recap and preview

Today

- Sorting Algorithms
- Incremental Algorithms, Divide & Conquer Algorithms

Next lecture

□ Does sorting take Θ(n log n) time?