1

EE23BTECH11212 - MANUGUNTA MEGHANA SAI*

Question: A circuit containing a 80mH inductor and a $60\mu F$ capacitor in series is connected to a 230V, 50Hz supply. A resistance of 15Ω is connected in series. Obtain the average power transferred to each element of the circuit, and the total power absorbed.

Fig. 1. LCR Circuit

Solution: In Fig. 1 the following information is provided:

Symbol	Value	Description
L	80mH	Inductance
С	$60 \mu F$	Capacitance
R	15 Ω	Resistance
V_{rms}	230 V	Voltage
f	50 Hz	Frequency
ω	$2\pi f = 100\pi$	Angular Frequency
φ	-	Phase difference between current and voltage
$I_{ m rms}$	-	rms value of current
V_m	-	Maximum voltage
I_m	-	Maximum current
P_m	-	Maximum Power

TABLE I GIVEN PARAMETERS

Applying Kirchoff's Voltage Law in the Fig. 2

Fig. 2. s domain circuit

$$V(s) = RI(s) + sLI(s) + \frac{1}{sC}I(s)$$
(1)

$$V(s) = RI(s) + sLI(s) + \frac{1}{sC}I(s)$$

$$= I(s)\left(R + sL + \frac{1}{sC}\right)$$
(2)

$$I(s) = \frac{V(s)}{\left(R + sL + \frac{1}{sC}\right)} \tag{3}$$

$$H(s) = \frac{V(s)}{I(s)} \tag{4}$$

$$H(s) = R + sL + \frac{1}{sC} \tag{5}$$

Substituting s with $j\omega$

$$H(j\omega) = R + j\omega L + \frac{1}{j\omega C} \tag{6}$$

$$\Rightarrow |H(j\omega)| = \sqrt{R^2 + \left(\omega L - \frac{1}{\omega C}\right)^2} \tag{7}$$

Let the input voltage be:

$$V = V_m \sin(\omega t) \tag{8}$$

Let the current at a given instant be:

$$I = I_m \sin(\omega t - \phi) \tag{9}$$

Instantaneous power is given by:

$$P = VI \tag{10}$$

$$P = V_m \sin(\omega t) \times I_m \sin(\omega t - \phi) \tag{11}$$

Average power is given by:

$$P_{av} = \frac{W}{T} \tag{12}$$

$$dW = Pdt (13)$$

Integrating on both sides

$$W = V_m I_m \int_0^T \sin(\omega t) \sin(\omega t - \phi) dt$$
 (14)

$$= V_m I_m \int_0^T \sin(\omega t) (\sin(\omega t) \cos(\phi) - \cos(\omega t) \sin(\phi)) dt$$
 (15)

$$= V_m I_m \int_0^T (\sin(\omega t))^2 \cos(\phi) dt - V_m I_m \int_0^T \sin(\omega t) \cos(\omega t) \sin(\phi) dt$$
 (16)

$$=V_m I_m \int_0^T \frac{1 - \cos(2\omega t)}{2} \cos(\phi) dt - V_m I_m \int_0^T \sin(2\omega t) \sin(\phi) dt$$
 (17)

After solving the integral we get,

$$W = \frac{1}{2} V_m I_m T \cos \phi \tag{18}$$

Relation between V_{rms} and V_m :

$$V_{\rm rms} = \frac{V_m}{\sqrt{2}} \tag{19}$$

Relation between I_{rms} and I_m :

$$I_{\rm rms} = \frac{I_m}{\sqrt{2}} \tag{20}$$

a) The average power dissipated in a RLC circuit is given by :

$$P = V_{rms}I_{rms}cos(\phi) \tag{21}$$

The phase difference is given by:

$$tan\left(\phi\right) = \frac{\frac{1}{\omega C} - \omega L}{R} \tag{22}$$

After substituting the values from Table I:

$$tan\left(\phi\right) = 1.86\tag{23}$$

Rms value of current I_{rms} is given by :

$$I_{rms} = \frac{V_{rms}}{R} = \frac{230}{15} = 15.33A \tag{24}$$

Now, susbtituting the value of ϕ , I_{rms} and values from Table I in (21) we obtain the total power:

$$P_{av} = 789.62W (25)$$

b) Average power transferred to the capacitor, P_C : For a capacitor the phase angle is:

$$\phi = \frac{\pi}{2} \tag{26}$$

$$\cos(\phi) = 0 \tag{27}$$

$$P_C = 0 (28)$$

c) Average power transferred to the inductor, P_L : For an inductor the phase angle is:

$$\phi = -\frac{\pi}{2} \tag{29}$$

$$\cos(\phi) = 0 \tag{30}$$

$$P_L = 0 (31)$$

d) Average Power transferred to the resistor, P_R :

$$P_{avg} = P_R + P_C + P_L \tag{32}$$

$$P_R = P_{avg} - P_C - P_L \tag{33}$$

$$P_R = 789.62 - 0 - 0 \tag{34}$$

$$P_R = 789.62W (35)$$

Fig. 3. |H(j/omega)| vs ω

Bandwidth is defined as the range of frequencies, where power ranges from its maximium value to half of its maximum value.

$$I_{rms} = \frac{V_{rms}}{|H(j\omega)|} \tag{36}$$

At maximum power, $|H(j\omega)|$ will be minimum,

$$|H(j\omega)| = R \tag{37}$$

$$I_m = \frac{V_{rms}}{R} \tag{38}$$

when, power is half of the maximum value of power

$$P = \frac{P_m}{2} \tag{39}$$

$$P = \frac{P_m}{2} \tag{39}$$

$$I_{rms} = \frac{I_m}{\sqrt{2}} \tag{40}$$

$$|H(j\omega)| = \sqrt{2}R\tag{41}$$

$$|H(j\omega)| = \sqrt{2}R$$

$$\sqrt{R^2 + \left(\omega L - \frac{1}{\omega C}\right)^2} = \sqrt{2}R$$

$$\left(\omega L - \frac{1}{\omega C}\right)^2 = R^2$$
(41)
$$(42)$$

$$\left(\omega L - \frac{1}{\omega C}\right)^2 = R^2 \tag{43}$$

This equation has 2 roots, ω_1 and ω_2 :

$$\omega_{1} = -\frac{R}{2L} + \sqrt{\frac{R^{2}}{4R} + \frac{1}{LC}}$$

$$\omega_{2} = \frac{R}{2L} + \sqrt{\frac{R^{2}}{4R} + \frac{1}{LC}}$$
(44)

$$\omega_2 = \frac{R}{2L} + \sqrt{\frac{R^2}{4R} + \frac{1}{LC}} \tag{45}$$

Thus Bandwidth of circuit is:

$$\omega_2 - \omega_1 = \frac{R}{L} = 187.5$$

$$f = \frac{\omega_2 - \omega_1}{2\pi} = 29.85$$
(46)

$$f = \frac{\omega_2 - \omega_1}{2\pi} = 29.85\tag{47}$$