Curs 12b: Prorietățile de închidere pentru limbajele independente de context

10 mai 2022

Teoremă: Clasa limbajelor independente de context este închisă la reuniune, concatenare, iterația Kleene.

Demonstrație: Fie L_1 și L_2 limbaje independente de context, $L_1 = L(G_1)$, $L_2 = L(G_2)$, $G_1 = (N_1, T_1, S_1, P_1)$, $G_2 = (N_2, T_2, S_2, P_2)$ gramatici independente de context. Presupunem că $N_1 \cap N_2 = \emptyset$ (dacă nu, putem redenumi neterminalele)

1 Închidere la reuniune

Construim $G = (N_1 \cup N_2 \cup \{S\}, T_1 \cup T_2, S, P_1 \cup P_2 \cup \{S \to S_1 | S_2\})$ unde $S \notin N_1, S \notin N_2$. $L(G) = L_1 \cup L_2$ și G este independent de context. $w \in L(G) \iff S \Rightarrow_G^* w \iff S \Rightarrow_G^* w \iff S \Rightarrow_G S_1 \Rightarrow_{G_1}^* wsau \iff S \Rightarrow_{G_2} w$ Deci $L_1 \cup L_2$ este independentă de context. \square

2 Închiderea la concatenare

Construim $G = (N_1 \cup N_2 \cup \{S\}, T_1 \cup T_2, S, P_1 \cup P_2 \cup \{S \to S_1S_2\})$ unde $S \notin N_1, S \notin N_2$. $w \in L(G) \iff S \Rightarrow_G^* w \iff S \Rightarrow_G S_1S_2 \Rightarrow^* w \iff \exists w_1, w_2, S_1 \Rightarrow_G^* w 1 \neq i S_2 \Rightarrow_G^* w 2$ unde $w_1w_2 = w$. Din construcție $\begin{cases} S1 \Rightarrow_G^* w_1 \iff S_1 \Rightarrow_{G_1}^* w 1 \\ S2 \Rightarrow_G^* w_2 \iff S_2 \Rightarrow_{G_2}^* w 2 \end{cases} \Rightarrow w \in L_1L_2$ Cum G este independentă de context $\Rightarrow L_1L_2$ este independentă de context. \square

3 Iterația Kleene

Construim $G = (N_1 \cup \{S\}, T_1, S, P_1 \cup \{S \to \lambda | SS_1\}), \text{ cu } S \notin N_1. \ w \in L(G) \iff S \Rightarrow_G^* w \iff S \Rightarrow_G^* \underbrace{S_1, S_1, \dots, S_1}_{nori} \Rightarrow_G^* w \iff w = w_1 w_2 \dots w_n \text{ cu } S_1 \Rightarrow_{G_1}^* w_i, i = \{1, 2, \dots, n\} \iff w \in L_1^* \text{ since } S \Rightarrow_G^* w \iff w \in L_1^* \text{ since }$

G este independent de context $\Rightarrow L_1^*$ este independent de context. \square

Fie V, W alfabete.

Teoremă: $\varphi: v \longrightarrow P(W^*)$ a. î. $\varphi(a)$ este independentă de context pentru $\forall a \in V$. (substituție independentă de context).

Fie $L \subseteq V^*$ un limbaj independent de context.

Atunci $\varphi(L)$ este limbaj independent de context.

Demonstrație: Fie G = (N, T, S, P) o gramatică independentă de context pentru L.

Deci L(G) = L.

Definim $G_a = (N_a, W, S_a, P_a)$ gramatică independentă de context a. î. $L(G_a) = \varphi(a), \forall a \in V$. Construim gramatica G' = (N', W, S, P') unde $N' = N \cup \{S_a | a \in V\} \cup \bigcup_{a \in V} (N_a \setminus \{S_a\})$ $P' = \bigcup_{a \in V} P_a \cup \{x \to \alpha' | x \to \alpha \in P \text{ si } \alpha' \text{ este obținut din } \alpha \text{ înlocuind operațiile lui a cu}$ $S_a, \forall a \in V\}$.

ex: $\alpha = aaAb$ și $\alpha' = S_aS_aAS_b$.

Avem: $w \in L(G') \iff S \Rightarrow_{G'}^* w \iff S \Rightarrow_{G'}^* S_{a_1} S_{a_2} ... S_{a_k} \Rightarrow^* w \iff w \in \varphi(a_1) \varphi(a_2) ... \varphi(a_k) \iff w \in \varphi(a_1 ... a_k) \text{ unde } S \Rightarrow_{G'}^* a_1 ... a_k.$

Deci $w \in L(G') \iff w \in \varphi(L)$ și G' este independente de context \Rightarrow clasa limbajelor independente de context este închisă la substituții independente de context.

Teoremă: Familia limbajelor independente de context este închisă la morfisme inverse.

$$R:V^*\to U^*, R^{-1}:U^*\to 2^{V^*}, R^{-1}(x)=\{y|R(y)=x\}\ R(xy)=R(x)R(y)$$

Observații: R^{-1} nu este substituție $R^{-1}(xy) \neq R^{-1}(x)R^{-1}(y)$

Demonstrație: $R:V^* \to U^*, L \subseteq U^*$ independent de context.

Fie A independente de context $L = L(A), A = (Q, U, \Gamma, \delta, q_0, z_0, F), R^{-1}(L) = \bigcup_{x \in L} R^{-1}(x)$. Să se demonstreze că $R^{-1}(L)$ independent de context.

Construin
$$A' = (Q', V, \Gamma, \delta', (q_0, \lambda), x_0, F \times \{\lambda\})$$

$$Q' = Q \times \{x \in U^* | \exists a \in Va..R(a) = zx, z \in U^*\}$$

 $a \to xyzt$

 $b \to xxyy$

i)
$$\delta'((q, x), \lambda, A) = \{((p, x), \alpha) | (p, \alpha) \in \delta(q, \lambda, A)\}, q \in Q, A \in \Gamma$$

ii)
$$\delta'((q, a, x), \lambda, A) = \{((p, x), \alpha) | (p, \alpha) \in \delta(q, a, A)\}, a \in U$$

$$\mathrm{iii})\delta'((q,\lambda),a,y)=\{((q,R(a),y)\},a\in V.$$

Afirmatie: $L(A') = R^{-1}(L(A))$

"
$$\supseteq$$
 " Fie $w = a_1...a_n, a_i \in Va...R(w) \in L(A).R(w) = R(a_1)...R(a_n) = w_1...w_n \in L(A)$

$$(q_0, w_1, ..., w_n, z_0) \vdash_A^* (q_1, w_2, ..., w_n, \alpha_1) \vdash_A^* (q_2, w_3, ...w_n, \alpha_2) \vdash_A^* ... \vdash_A^* (q_n, \lambda, \alpha_n), q_n \in F$$

Avem:

$$((q_0, \lambda), a_1, ..., a_n, z_0) \vdash_{A'}^* ((q_0, w_1), a_2, ..., a_n, z_0) \vdash_{A'}^*$$

$$((q_1, \lambda), a_2, ..., a_n, \alpha_1) \vdash_{A'}^* ((q_1, w_2), a_3, ..., a_n, \alpha_1) \vdash_{A'}^*$$

$$((q_2, \lambda), a_3, ..., a_n, \alpha_1) \vdash_{A'}^* \vdash_{A'}^* ((q_n, \lambda), \lambda, \alpha_n), q_n \in F \times \{\lambda\}$$

deci $w \in L(A')$.