Introduction à Python pour l'Économie Appliquée Présentation du cours

Michal W. Urdanivia*

*UGA, Faculté d'Économie, GAEL, e-mail : michal.wong-urdanivia@univ-grenoble-alpes.fr

9 février 2022

Objectifs

Python

- 1. Familiarité avec la programmation avec le langage Python.
 - (i) Concepts fondamentaux autour desquelles s'organise le langage.
 - (ii) Capacité à comprendre un programme écrit en Python.
 - (iii) Modules/bibliothèques populaires : numpy, scipy, pandas, statmodels, scikit-learn, matplotlib, . . .
- 2. Application en économie
 - (i) Analyse numérique de certains modèles classiques de l'économie(Microéconomie, Macroéconomie)
 - (ii) Analyse empirique de certaines questions en économie(e.g., offre de travail, déterminants des salaires, . . .)

Économie appliquée

- Pouvoir utiliser les outils du cours dans d'autres projets(cours en économie, économétrie, mémoires, . . .)
- Remarque : bien que les applications fassent souvent référence à la théorie économique, ce cours n'est pas un cours de théorie.
- Pouvoir s'orienter dans l'ensemble très riche de références pour développer sa maîtrise du langage Python, et d'autres langages utilisés dans le calcul scientifique(R, Julia, ...)

Méthodologie

Apprentissage par la pratique et autoformation

- Vous avez besoin de programmer pour apprendre à programmer :
 - comprendre les programmes/exemples du cours en les executant,
 - comprendre les erreurs qui peuvent être rencontrées.
- Beaucoup de concepts/outils utilisés ne sont pas étudiés avec tout le détail qui leur est accordé par d'autres sources/références.
 - Vous devrez(savoir) les consulter dans certains cas où cela vous sera nécessaire.
 - Certains exercices seront repris d'autres sources.

Matériel

- Notebooks
 - toutes les séances de cours se feront sous la forme de Notebooks Jupyter(voir indications sur Moodle),
 - disponibles ici .
- Recommandé : faire une installation sur un poste personnel.

Plan et références

Thèmes

- 1. Introduction
- 2. Bases : objets, types, boucles, fonctions
- 3. Bases : optimizer, affichage, représentation graphique
- 4. Bases : nombres aléatoires, simulation,
- 5. Bases : workflow, débogage
- 6. Bases : résumé, et vue d'ensemble
- 7. Données : introduction à la bibliothèque pandas
- 8. Données : applications
- 9. Algorithmes: introduction
- 10. Algorithmes : résoudre des équation
- 11. Algorithmes : optimization numérique
- 12. Développements/thèmes avancés.

Remarque : le plan est susceptible d'être modifié au fur et à mesure de l'avancée du cours, et/ou selon les/vos besoins/intérêts.

Références

- Il existe beaucoup de références pour apprendre à programmer en Python,
- Aucune ne vous donnera une connaissance complète du langage
- Elles se différencient souvent selon les publics et spécialités visées(sciences de la donné, économie, informatique, ...)
- Le cours s'appuie sur certaines d'entre elles qui vous seront indiquées dans les séances et en fonction des thèmes pour lesquelles elles sont mobilisées.

Références

- Quelques unes qui reviendront souvent :
 - 1. QuantEcon: https://quantecon.org/
 - 2. Documentation spécifique de Python: https://docs.python.org/3/library/
 - 3. Les sites de documentation des principales bibliothèques(numpy, scipy, pandas, ...)
 - 4. Python course: https://www.python-course.eu/python3_course.php