Let's Grow More (LGMVIP) - "DATA SCIENCE INTERN" **LGMVIP JULY-22 AUTHOR - ADITYA RAJ BEGINNER LEVEL TASK** TASK-1- Iris Flowers Classification ML Project: This particular ML project is usually referred to as the "Hello World" of Machine Learning. The iris flowers dataset contains numeric attributes, and it is perfect for beginners to learn about supervised ML algorithms, mainly how to load and handle data. Also, since this is a small dataset, it can easily fit in memory without requiring special transformations or scaling capabilities. Dataset link: http://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data Importing the Required Libraries In [1]: **import** pandas **as** pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns %matplotlib inline import sklearn from sklearn.model_selection import train_test_split from sklearn.metrics import classification_report, accuracy_score from sklearn.svm import SVC import warnings warnings.filterwarnings("ignore") Reading the dataset data_link = "http://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data" iris_data = pd.read_csv("http://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data") iris_data.head() 5.1 3.5 1.4 0.2 Iris-setosa Out[2]: **0** 4.9 3.0 1.4 0.2 Iris-setosa **1** 4.7 3.2 1.3 0.2 Iris-setosa **2** 4.6 3.1 1.5 0.2 Iris-setosa **3** 5.0 3.6 1.4 0.2 Iris-setosa **4** 5.4 3.9 1.7 0.4 Iris-setosa In [3]: iris_data.columns Index(['5.1', '3.5', '1.4', '0.2', 'Iris-setosa'], dtype='object') Changng column names for better understanding In [4]: columns = ['sepal_length', 'sepal_width', 'petal_length', 'petal_width', 'class'] iris_data.columns = columns iris_data.head() sepal_length sepal_width petal_length petal_width Out[4]: class 0.2 Iris-setosa 4.7 3.2 1.3 1 0.2 Iris-setosa 2 4.6 3.1 1.5 0.2 Iris-setosa 3 5.0 3.6 1.4 0.2 Iris-setosa 5.4 3.9 0.4 Iris-setosa **EDA** on Dataset In [5]: iris_data.shape (149, 5)Out[5]: In [6]: iris_data.info() <class 'pandas.core.frame.DataFrame'> RangeIndex: 149 entries, 0 to 148 Data columns (total 5 columns): Non-Null Count Dtype Column # ----sepal_length 149 non-null 0 float64 sepal_width 149 non-null float64 petal_length 149 non-null float64 petal_width 149 non-null float64 149 non-null 4 class object dtypes: float64(4), object(1) memory usage: 5.9+ KB iris_data.describe() Out[7]: $sepal_length \quad sepal_width \quad petal_length \quad petal_width$ 149.000000 149.000000 149.000000 149.000000 count mean 5.848322 3.051007 3.774497 1.205369 0.828594 0.433499 1.759651 0.761292 std 4.300000 2.000000 1.000000 min 0.100000 25% 5.100000 2.800000 1.600000 0.300000 **50**% 4.400000 1.300000 5.800000 3.000000 6.400000 3.300000 5.100000 1.800000 **75**% 7.900000 4.400000 6.900000 2.500000 max # Checking missing values iris_data.isnull().sum() sepal_length Out[8]: sepal_width petal_length 0 petal_width 0 class dtype: int64 Visualizations plt.figure(figsize = (12, 8)) sns.boxplot(data = iris_data, width = 0.5, fliersize = 5) plt.show() sepal_length sepal_width petal length petal_width In [10]: # Checking correlation corr = iris_data.corr() sepal_length sepal_width petal_length petal_width Out[10]: -0.103784 0.871283 0.816971 sepal_length 1.000000 sepal_width -0.103784 1.000000 -0.415218 -0.350733 -0.415218 petal_length 0.871283 1.000000 0.962314 petal_width 0.816971 -0.350733 0.962314 1.000000 In [11]: # PLotting it into Heatmap plt.figure(figsize = (12, 8)) sns.heatmap(corr, annot = True) plt.show() -0.1 0.87 0.82 - 0.8 - 0.6 sepal_width -0.1 -0.42 -0.35 0.4 - 0.2 0.87 -0.42 0.96 0.0 - -0.2 0.82 -0.35 0.96 petal_length sepal_width sepal_length petal_width From the heatmap we can see the correlation between different features that can affect an iris_data listing. There's correlation among sepal_length to reveiws to petal_width. petal_length and petal_width gives almost the same. In [12]: # Violin Plot sns.violinplot(y='class', x='sepal_length', data=iris_data, inner='quartile') sns.violinplot(y='class', x='sepal_width', data=iris_data, inner='quartile') sns.violinplot(y='class', x='petal_length', data=iris_data, inner='quartile') sns.violinplot(y='class', x='petal_width', data=iris_data, inner='quartile') Iris-setosa Iris-versicolor Iris-virginica sepal_length Iris-setosa

Iris-versicolor Iris-virginica 2.5 2.0 3.0 3.5 4.5 sepal_width Iris-setosa lris-versicolor Iris-virginica petal_length Iris-versicolor Iris-virginica 0.5 1.0 2.0 2.5 petal width From above violin plot, we can say that Iris-Setosa class is having a smaller petal length and petal width compared to other. Building the Model Data Splitting In [13]: X = iris_data.drop(['class'], axis = 1) y = iris_data['class'] In [14]: X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) In [15]: model = []model.append(('SVC', SVC(gamma = 'auto'))) In [16]: model = SVC(gamma = 'auto') model.fit(X_train, y_train) SVC(gamma='auto') Out[16]: Making predictions In [17]: prediction = model.predict(X_test) In [18]: # Printing Accuracy Score and Classification Report for our model print('Test Accuracy Score is: ', accuracy_score(y_test, prediction)) print('Classification Report: ', classification_report(y_test, prediction)) Classification Report: precision recall f1-score support Iris-setosa 1.00 1.00 1.00 10 Iris-versicolor 1.00 0.78 0.88 9 Iris-virginica 0.85 0.92 11

0.93

0.93

0.93

accuracy

macro avg

weighted avg

Conclusion

Thanku!!

0.95

0.94

0.93

0.93

30

30

30

For the model we built, the accuracy score is 0.93 that is our predictions are 93% accurate.