PSC 202 SYRACUSE UNIVERSITY

INTRODUCTION TO POLITICAL ANALYSIS

EXAM REVIEW, BIVARIATE HYPOTHESIS TESTING PART 3

STUDENT HOURS

- Next Monday: 9-11
- 530 Eggers or Zoom
 - Zoom info on syllabus

ANNOUNCEMENT

- No in-person sections on November 19
 - Friday before Thanksgiving break
 - Instead: Take-home assignment

TODAY

- Exam Review
- Bivariate hypothesis testing

EXAM

- Monday: Exam #2
 - Bring a calculator (no phone etc.)
 - Allowed to bring one single-page letter-size
 (8.5x11) sheet with you. What you put on it is up to you, but it has to be your own sheet (we'll collect it)
- If you take exam at CDR, please sign up now!
- No new problem set this week
 - Problem set 6 is due on Friday
 - Please type it

EXAM

- Material covered
 - Everything from Sep 29 (More Sampling and Surveys) to Oct 25 (More Bivariate Hypothesis Testing)

RESEARCH PROCESS

- Formulate research question
- Propose explanation/theory, hypotheses
- Data collection process
- Use data to evaluate hypotheses
- Reassess explanation

STUDY GUIDE

- Random sampling error
 - What is the standard error? Where does it come from and how can we compute it?
 - What is a 95% confidence interval? How can we compute it? How do we interpret it?

RECAP

$$SE = \frac{s}{\sqrt{n}}$$

- SE: Standard error of the sample mean
 - A measure of how much random sampling error we have
- s: sample standard deviation
- n: sample size

RECAP

95% CI =
$$\bar{x} \pm (1.96 \times SE)$$

- We draw a large number of random samples from population
- Do the confidence interval for each
- 95% of those intervals will contain the population mean μ

STUDY GUIDE

- Formulate research question
- Propose explanation/theory, hypotheses
- Data collection process
- Use data to evaluate hypotheses
- Reassess explanation

HYPOTHESES AND THEORY

- Explanation/Theory: (Simplified) description of how social reality works
- Hypotheses: Statements what, if the theory is true, we should observe in our data

GOOD HYPOTHESES

- Involves two variables
 - dependent and independent variable
- Relationship between the variables is clearly specified and measurable
- Unit of analysis is clear
- Hypothesis is testable
 - falsifiable

CAUSALITY

- Most of our theories: relationship between a single cause (independent variable) and a single effect (dependent variable)
- simple"bivariate" relationship (involves 2 variables)

HURDLES TO CAUSALITY

- Is there a credible causal mechanism that connects X to Y?
- Can we rule out the possibility that Y could cause X?
- Is there covariation between X and Y?
- Have we controlled for all confounding variables (Z) that might make the association between X and Y spurious?

EMPIRICAL STUDIES

- Two ways to do empirical studies:
 - Qualitative, small N
 - Quantitative, large N
 - N=number of observations

QUALITATIVE STUDIES

- Talked about two forms of qualitative studies
 - Case study
 - Comparative case study

CASE STUDY

- Key technique: "Process tracing"
 - Method to identify the causal relationship in a particular case though detailed examination of each step in the causal chain

COMPARATIVE CASE STUDY

- Method of difference
 - Cases where dependent variable is different between cases
 - Identify independent variable that is different among cases in the same way as DV is
- Method of agreement
 - Cases where dependent variable is same between cases
 - Identify independent variable that is also the same among cases

QUANT AND QUAL

- Strength and weakness of small-n studies relative to large-n studies
 - Internal validity
 - External validity

QUANT: BIVARIATE RELATIONSHIPS

Independent Variable

<u> </u>		Nominal/Ordinal	Interval
ependent Variable	Nominal/Ordinal	Cross-Tabulation	Not In This Class
Depende	Interval	Mean Comparison	Correlation Coefficient, Linear Regression

CROSS-TABULATIONS

Independent Variable

	IV Value 1	IV Value 2	Total
D V	% In Column	% In Column	% Of Total
Value 1	(# Cases)	(# Cases)	(# In Row)
D V	% In Column	% In Column	% Of Total
Value 2	(# Cases)	(# Cases)	(# In Row)
Total	100%	100%	100%
	(# In Column)	(# In Column)	(# Total)

CROSS-TABULATIONS

Gender

	Male	Female	Total
Approve	44.0% (11)	52.4% (22)	49.2% (33)
Do Not Approve	56.0% (14)	47.6% (20)	50.8%
Total	100%	100% (42)	100% (67)

TERMINOLOGY

 Zero-order relationship: relationship between two variables, without controlling for any other factors

ZERO-ORDER RELATIONSHIP

Gender

		311GC1	
	Male	Female	Total
Approve	44.0% (11) 8.4	52.4% (22)	49.2% (33)
Do Not Approve	56.0% (14)	47.6% (20)	50.8% (34)
Total	100% (25)	100% (42)	100% (67)

BIVARIATE RELATIONSHIPS

Independent Variable

le		Nominal/Ordinal	Interval
ependent Variable	Nominal/Ordinal	Cross-Tabulation	Not In This Class
Depende	Interval	Mean Comparison	Correlation Coefficient, Linear Regression

MEAN COMPARISON TABLE

	Average of DV	Frequency
IV Value 1	Mean of DV for IV Value 1	# Cases IV Value 1
IV Value 2	Mean of DV for IV Value 2	# Cases IV Value 2
Total	Mean of DV overall	# Cases overall

ZERO-ORDER RELATIONSHIP

	Mean Thermo	meter	Frequency
Female	57.9	7.9	54
Male	50.0		27
Total	55.6		81

BIVARIATE RELATIONSHIPS

Independent Variable

le		Nominal/Ordinal	Interval
ependent Variable	Nominal/Ordinal	Cross-Tabulation	Not In This Class
Depende	Interval	Mean Comparison	Correlation Coefficient, Linear Regression

CORRELATION

• Intercept: 55

• Slope = Rise over run = -2.6/1 = -2.6

• Thermometer Score = 55 - 2.6 * Hours/Day

REGRESSION EQUATION

- Thermometer score = 55 2.6 * Hours/Day
- General form: y = a + b * x
 - y: dependent variable
 - a: intercept
 - b: slope
 - x: independent variable

SLOPE

- y = a + b * x
 - Interpretation of slope: For every one unit increase in x, y changes by b units
 - Interpretation of intercept: When x=0, y takes the value a

- Thermometer Score = 55 2.6 * Hours/Day
- What is the expected thermometer score of someone who studies 6 hours per day?

• Thermometer Score = 55 - 2.6 * 6 = 39.4

- Income/year = 10000 + 2000 * Years of Education
- What does the 10000 tell us?
- What does the 2000 tell us?
- How much money is someone with 16 years of education expected to earn?

• Income/year = 100000 + 2000 * 16 = 42000

STUDY GUIDE

• Questions?