# Understanding Biometrics



7. Close up: Face Recognition



Dr. Terence Sim







- Human face recognition ability is extremely robust, ≈ 100% accurate and very fast.
  - But only for familiar faces
  - Machines do better for unfamiliar faces under illumination variation
- Babies are born "hard-wired" to recognize faces, i.e. this ability is not learned.
- A grandmother neuron has been detected in monkeys. This neuron fires when the monkey sees the face of another monkey.

#### **Face Recognition by Humans**

- Prosopagnosia is a medical condition in which the patient no longer recognizes a face, although he can detect the face (identify the eyes, nose, etc.)
  - Detection and recognition are separate processes in the brain.
- It is hard to recognize from a film negative.
- It is hard to recognize an upside-down face.
- Other-race effect: harder to recognize someone from another race.
- It is easier to recognize distinctive faces than average ones.







## **Face Recognition by Humans**



Upside down face



## **Face Recognition**

• Who is this?





# Face Recognition



Who is this?



# **Face Recognition**

Who is this?





### Look for him







## **Face Recognition Game**

## Appearance depends on







Age

Illumination



Hairstyle

Pose





#### **Typical architecture**



Adapted from: http://en.wikipedia.org/wiki/Image:Biometric\_system\_diagram.png





- There is no consensus on what features are best.
  - Each vendor has proprietary algorithm.
- No features found to be invariant against all types of appearance variation.
- 3D not better than 2D
- Best performing algorithms use appearance (not geometry).

- Commonly used.
- Captures dominant variations across different faces.
- Original image = weighted sum of eigenfaces.
- Feature = set of weights.









Original image





With 1 eigenface





With 13 eigenfaces





With 25 eigenfaces











Reconstruction
Using unaligned
images



Reconstruction
Using aligned
images

- Eigenfaces sensitive to alignment.
- Example shows the effect of aligning the eyes.











With 11 EFs

## **Typical architecture**



#### **FRVT 2006**

http://www.frvt.org/





#### **FRVT 2006**



- Organized by US NIST.
- 14 teams (from universities and vendors) took part.
- Face recognition performance on still frontal images taken under controlled illumination has improved by an order of magnitude since the FRVT 2002, due to:
  - Improvements in algorithms,
  - Higher resolution imagery (6M pixels)
  - Greater consistency of lighting.
- This experiment (on unfamiliar faces) found that algorithms are capable of human performance levels, and that at false accept rates in the range of 0.05, machines can out-perform humans.





- Uncontrolled lighting is still a problem.
- So is head pose variation.
- Also: facial expression
- Also: elapsed time
  - Time between enrollment and verification
- Also: low image quality