An Analysis for High Speed Propeller-Nacelle Aerodynamic Performance Prediction

Volume II—User's Manual

T. Alan Egolf, Olof L. Anderson, David E. Edwards, and Anton J. Landgrebe

CONTRACTS NAS3-20961, NAS3-22142, and NAS3-22257 DECEMBER 1988

(NASA-CR-4199-Vcl-2) AN ANALYSIS FOR HIGH N89-15897 SPEED PROPELLER-NACELLE AERCDYNABIC PERPORNANCE PREDICTION. VOLUME 2: USER'S EANUAL (United Technologies Besearch Unclas Center) 307 p CSCL 01A H1/02 0189711

NASA Contractor Report 4199

An Analysis for High Speed Propeller-Nacelle Aerodynamic Performance Prediction

Volume II—User's Manual

T. Alan Egolf, Olof L. Anderson, David E. Edwards, and Anton J. Landgrebe United Technologies Research Center East Hartford, Connecticut

Prepared for Lewis Research Center under Contracts NAS3-20961, NAS3-22142, and NAS3-22257

and Space Administration

Scientific and Technical Information Division

SUMMARY

A user's manual for the computer program developed for the prediction of propeller-nacelle performance reported in Volume I, "An Analysis for High Speed Propeller-Nacelle Aerodynamic Performance Prediction - Theory and Initial Application" is presented. The manual describes the computer program mode of operation requirements, input structure, input data requirements and the program output. In addition, it provides the user with documentation of the internal program structure and software used in the computer program as it relates to the theory presented in Volume I. Sample input data setups are provided along with selected printout of the program output for one of the sample setups.

PRECEDING PAGE BLANK NOT FILMED

TABLE OF CONTENTS

<u>Pa</u>	ge
SUMMARY i	ii
INTRODUCTION	1
DESCRIPTION OF THE PROGRAM OPERATION	2
Input Mode Control	4
Propeller Portion	5
Major Input Features	5
Setup	8
Optional Generalized Wake Geometry Input Coefficients	17
Optional Input Wake Geometry	19
Description of Propeller Solution Output	20
Description of Failure Modes	24
Nacelle Portion	27
General Features of the Program	28
Description of Input	32
Description of the Output	41
Description of Failure Modes	45
begeription of furiate model of the transfer o	
DETAILED PROGRAM DOCUMENTATION	50
Propeller Program	51
List of Subroutines	51
Portion	56
Labeled Common Blocks Used in the Propeller Portion	96
Nacelle Program	.09
List of Subroutines and External Functions	.10
	13
200012p02011 01 2021011111	.45
APPENDICES	
A - Sample Input Setups	47
B - Example of PANPER Analysis Program Output	252
C - List of Symbols	270
	276
FIGURES	278

INTRODUCTION

The purpose of this manual is to provide the user with sufficient documentation to run the computer code for the propeller-nacelle performance analysis (PANPER) developed by the United Technologies Research Center (UTRC) under contract to the NASA Lewis Research Center. The computer analysis is capable of predicting the performance for high speed propeller-nacelle configurations for either single or coaxial counter-rotating propellers for either an internal flow condition (wind tunnel) or external flow conditions (free flight). The analysis was developed by combining and modifying existing propeller performance prediction capabilities applicable to the high speed flight problem with an existing axisymmetric through flow analysis modified to calculate external flow problems. The resulting combined analysis couples the separate solution procedures by including in each solution portion in a consistent manner the appropriate effects due to the respective portions of the two solution procedures. The basic program structure is shown in the flow diagram of figure 1. The propeller performance solution is obtained including the influence of the nacelle body, and the flow field and nacelle performance are calculated including the influence of the work done by the propeller on the fluid. Either of the performance solutions (propeller or nacelle) can be obtained without the other if so desired. The technical aspects of the solution procedure are detailed in reference (1) and will not be explained here. This manual has been written under the assumption that the reader has read the technical report (reference 1) and is familiar with the theoretical features of the analysis.

This manual consists of two major portions: 1) a description of the setup and input data required to run the computer code; and 2) documentation of the internal program software as it relates to the technical aspects of the analysis.

The input portion is broken into three sections, describing the basic program setup requirements and program mode operation, the propeller related setup and input and the nacelle related setup and input, in this order. The documentation portion consists of two sections which describe the subroutines and labeled common blocks used in the computer program for the propeller and nacelle portions of the analysis, respectively.

DESCRIPTION OF THE PROGRAM OPERATION

This section is intended to describe the general features, program setup and input data of the PANPER computer program in sufficient detail so that the program can be operated successfully by the user. Input to this program consists of three parts; the program mode control data, propeller data and nacelle data, in this order. The input data for each of these parts will be described in the following subsections.

The first subsection describes the various modes that the program will operate in and the input control switches. Special attention should be paid to these mode switches since this program may in effect solve one of three problems:

- (1) Propeller Lifting Line Analysis only
- (2) Nacelle Analysis only
- (3) Combined Propeller-Nacelle Analysis

The second and third subsections present a detailed description of the input, output and diagnostics of the Propeller Lifting Line Analysis and Nacelle Analysis portions of the program, respectively.

The computer program was written and developed in FORTRAN V Computer Language for use on a UNIVAC 1110 computer. Before execution of the PANPER Program, fourteen files must be assigned in the JCL RUNSTREAM. Information about these files is given in Table (I). Sample Runstreams for three cases are presented in Appendix A, and selected output for the second case is presented in Appendix B.

TABLE I

PANPER FILE ASSIGNMENTS

Unit No.	Array Name	Length (WDS)	No Block	Subroutine	Purpose	Program Mode
NDRUM=8	F(NEQ, 3, IST)	LNGT3=3,000	IS=100	SOLVI	Store viscous solution	NOPPF=0,1
JDRUM=9	Q(19, IST)	ISL=1900	1S=100	COORST	Store duct geometry	NOPPF=0,1
CDRUM=10	FF(7,2,1ST)	IFFS=3400	IROW=10	FORCE	Store blade forces	NOPPF=0,1
LDRUM=11	AFF (LNGT2)	LNGT2=6600	IST/30+1	SOLVI	Store matrix coef.	NOPPF=0,1
IWAKE=12						
JDBLD=13	See BLDOUT	556	IROW=10	BLDOUT	Store lifting line geometry dimensionless	NOPPF=0,1
NCALV=14	CINP(4, IST)	LCALV=400	IS=100	CALINV	Store inviscid solution	NOPPF=0,1
JDBLDD=16	See BLDOUT	556	IROW=10	BLDOUT	Store lifting line geometry dimensional	NOPPF=0,1
20	See WAKCOR	300	IROW-2	WAKCOR	Wake displacement effect	NOPPF=-1,1
1	GCDIMZ, GCDIMT, GCDIMR	180	180	SETMAT	Lifting line geometry influence coefficient	NOPPF=-1,1
2	GCDIMZ, GCDIMT, GCDIMR	180	180	SETMAT	Lifting line geometry influence coéfficient	NOPPF=-1,1
m	GCDIMZ, GCDIMT, GCDIMR	180	180	SETMAT	Lifting line geometry influence coefficient	NOPPF=-1,1
4	GCDIMZ, GCDIMT, GCDIMR	180	180	SETMAT	Lifting line geometry influence coefficient	NOPPF=-1,1
30	See REDMAT	360	360	REDMAT	Save matrix coefficient lifting line	NOPPF=-1,1

Input Mode Control

This subsection describes the mode control input data card required to operate the PANPER Program. Information from this card will determine which mode of operation the PANPER Program will perform in. On this card the Mode of operation control information is read in as described below:

Name	Column	Format	Comments
NØPPF	1-2	12	NØPPF = -1, The propeller analysis is performed without including the nacelle effects calculated directly from the nacelle portion of the program. NØPPF = 0, The nacelle analysis is performed uncoupled from the propeller lifting line code. The blade forces may be considered through input. NØPPF = 1, The propeller and nacelle analysis is performed through coupling of the nacelle portion and the propeller lifting line portion of the code.
NØPPC	2-4	12	Indicates number of passes through the viscous flow algorithm of the nacelle portion and the propeller portion. See reference 1, Section entitled: Description of the Combined Analysis Solution Procedure.

It should be observed that for NØPPF = 0, the propeller data will not be read in and for NØPPF = 1, the nacelle data will not be read in. Descriptions of the propeller and nacelle data are given in the following subsections of this section. Samples of this card can be seen in Appendix A. Finally, it must be noted that NØPPC is a cycle counter on the number of passes through the viscous propeller-nacelle flow solution. It may be desirable to cycle through the viscous flow solution and propeller solution until the propeller blade forces do not significantly change. However, experience to date has not demonstrated a necessity to perform this cycle for propeller performance applications.

Propeller Portion

Major Input Features

The major input features consist of four basic groups of input data along with the appropriate program control data. These four groups of data are blade geometry, airfoil characteristics, inflow properties and the wake geometry. In the following subsections, these groups of input are described in some detail so that the user will understand their importance.

Blade Lifting Line Geometry

The geometric description of the blade lifting line representation of the blade is of primary importance for obtaining the most accurate solutions given the assumptions inherent in the analysis. The hub-pitch axis centered cartesian coordinates for each lifting line segment boundary must be input (XSB, YSB, ZSB) consistent with the input blade twist distribution (THET) so that the program can correctly rotate this geometry about the pitch axis for the required blade angle. The coordinates for the definition of the blade tip for the tip Mach cone calculations (XMC, YMC, ZMC) must also be input consistent with the twist distribution. For counter rotating coaxial propellers, each set of coordinates is input referenced to its respective hub and pitch axis centers. The technical description of this coordinate system is detailed in reference 1, see figure 2. The selection of the blade segmentation is of primary importance in regions of severe loading gradients. For these regions (generally the tip of the blade) finer segmentation is required as compared with regions of weak gradients.

Propeller Blade Airfoil Characteristics

To calculate the blade airloading, it is necessary to specify the distribution of airfoil type along the blade radius. There are three different sets of airfoil data available in this analysis: two sets of NACA 16 series isolated airfoil data, whose characteristics are described in reference 1, and one cascade airfoil data set for NACA 65 series, also described in the above noted reference. The user specifies the use of these airfoil data sets by specifying the radial location which denotes the outer boundary of the region (RADCAS) for which it is desired to use the cascade data set. Outboard of this region, the distribution of the identification number (23 or 24) for the isolated airfoil data sets is input through the airfoil type designation number distribution input (AIRN). If desired, it is possible to model the cascade effects on the isolated airfoil data by application of an analytical cascade correction (CASCAD). This model is also described in reference 1. The use of this model may be desirable for two

reasons: first, if the inboard section of the propeller blades is not adequately modeled with NACA 65 series airfoil sections, and second, if the cascade influence extends beyond the region where the NACA 65 series airfoil types apply.

Once the distribution of airfoil type and cascade regions are determined for the design under consideration, the particular airfoil characteristics are defined by additional input. These characteristics are: the design lift coefficient (DECL), the thickness to chord ratio (TØVC), and the chord (CØRD).

Inflow Properties at the Blade Row

This analysis allows the user the ability to describe the noninduced inflow properties at the propeller blade rows if run independent from the nacelle portion of the analysis. It is therefore possible to prescribe the nacelle's influence (or any desired influence) on the inflow conditions at the propeller blades without running the nacelle portion of the analysis. This may be desirable if the variation of the nacelle's influence is small for slight changes in the propeller designs. The inflow properties are the axial (VØVO) and radial (URVO) noninduced inflow velocity ratio distributions, and the density (DENS) and speed of sound (SØUN) ratio distributions along the blade radius. These distributions scale the respective freestream values to define the local inflow conditions at the blade rows.

Wake Model Description

The description of an accurate wake geometry for the flight condition under investigation is of primary importance for accurate predictions of the induced inflow solution and the resulting propeller blade air loading. The wake models available have been described in detail in the technical section of reference 1; however, a brief review of the applicable wake models for the different flight regions follows.

For static thrust conditions, the generalized wake model should be used (figure 3). It has been clearly demonstrated to be the most accurate model available and is necessary for accurate performance solutions. Wake rollup modeling must also be used for this flight condition (figure 4). In low speed flight conditions, the classical (figure 3) or modified classical wake model (standard model for high speed flights) is probably sufficient for reasonable performance predictions; however, it is clear that the wake model must have some of the features of the generalized wake model (radial contraction, in particular). Because of this, it is possible to use the generalized wake model for nonzero flight speed conditions. In this case the generalized wake model will have the inflow velocity distribution superimposed on it to describe the wake geometry. Thus, with careful selection of the input generalized wake coefficients, it is possible to model a low speed wake geometry if

the required characteristics are known. Wake rollup modeling should probably be used for these flight conditions. For high speed flight conditions, the wake is carried away from the propeller so rapidly that it is doubtful that any model other than the classical or modified classical wake will be required. Generally no wake rollup modeling is required at these flight speeds.

Similar considerations must be given to the influence of the nacelle on the wake geometry. For static thrust conditions, the nacelle influence cannot be modeled by using the nacelle portion of the analysis. However, if the displacement of the wake due to the presence of the nacelle is known, it can be modeled through the wake geometry input option. For all other flight conditions, the nacelle's influence can be included directly in the analysis.

If it is desired for any reason to use a wake model which is not geometrically compatible with the basic wake models available, the wake geometry can be input in cylindrical coordinate form. This allows for a wide range of possible wake modeling capabilities in this analysis.

Detailed Description of Propeller Data Input and Setup

Standard Input Data and Setup

The propeller input data is grouped into 3 distinct data sets, the first set consists of input data which describes the propeller analysis modeling options, freestream flight conditions and primary propeller characteristics. The second set of data defines the physical location of the blade lifting line segment boundaries and the coordination used to define the location of the tip Mach cone. These items are referenced to their respective centers of rotation. The third set of data is used to describe the local blade element flight inflow properties (based on the freestream flight condition) and secondary blade characteristics. This data set consists of interpolation tables for the required items. All of these input data sets are described in the following subsections. For coaxial propellers, the second and third data sets are repeated for the second propeller following all of the data sets for the first propeller. Two sample propeller input data decks are listed in Appendix A (case 1 and case 3) for an isolated propeller mode and a combined coaxial propeller-nacelle mode. Each data set is initiated by a header card with an alphanumeric label in card columns 1 through 6 (left justified) and terminated by a card with the alphanumeric label END in card columns 1 through 3. Within a given data set, there is no ordering dependency for the input items and if duplicity of the item occurs, the last value read will be used. All numbers are input in FORTRAN floating point or exponential format.

Data Set I

The header card for this data set consists of the characters INPUT in card columns 1 through 5. The input data required for this data set is input one card at a time following the header card. Each card has a label and value punched on it. The label designates the item and the value for that item follows the label on the card. The label is an alphanumeric, three to six character name, left justified in card columns 1 through 6, with the input value following in a FORTRAN E20.8 format (columns 7 through 26). The description of the labels and corresponding input data items are listed below. For items with the numeric characters 1 or 2 on the end of the label, the 1 and 2 designate the first and second propeller quantities respectively for a coaxial condition. If the input item is omitted, a value of 0.0 is used internally.

Input Label

Description

BLADE1, BLADE2

Blade number per propeller

CASCAD

Option switch to use an analytical cascade correction on isolated airfoil data, a value of 1.0 requests the model based on flat plate theory, a value of 2.0 uses a model based on empirical correlations of reference 44 in Volume I.

Description

CBWAKE

Option control for including the effects of compressibility on the induced velocity calculation from the bound lifting line vortex (this model is of questionable validity). A value of 1.0 sets this option, a value of 2.0 sets this option but the bound influence on the blade generating the effect is neglected. Should use 0.0.

CNSECT

Fraction of the chord measured from the leading edge, used to determine the tip Mach cone intersection location on the blade for the Evvard tip correction, generally the trailing edge (1.0) is used. A zero input sets this value to 1.0.

CØFLØW

Option control for overriding the limitation that the wake and bound vortex compressibility effects be applied only when the section Mach numbers are greater than 1.0. (This model is of questionable validity.) An input value of 1.0 engages this option. Should use 0.0, see section entitled: Compressibility Considerations for Induced Velocity, of reference 1.

CØMPRS

Option control for including the effects of compressibility on the induced velocity calculation from the trailing wake geometry. A value of 1.0 sets this option. This option should be used.

CPI

Requested power coefficient for performance iteration. A zero value assumes no iteration. This iteration option will not work for coaxial propellers.

CTI

Requested thrust coefficient for performance iteration. A zero value assumes no iteration. This iteration option will not work for coaxial propellers. The power iteration will override this option if both are requested.

DCPDT

The derivative of power coefficient with respect to blade angle. If the power coefficient iteration is requested and this value is nonzero, the input value is used to determine the second iteration blade angle value, otherwise a change of 1.5 degrees in blade angle is used for the second iteration.

Description

DCTDT

The derivative of thrust coefficient with respect to blade angle. If the thrust coefficient iteration is requested and this value is nonzero, the input value is used to determine the second iteration blade angle value, otherwise a change of 1.5 degrees in blade angle is used for the second iteration.

DEBUG

Intermediate print option control, generally not used (0.0). A value of 1.0 requests printout of many quantities associated with the geometry transformations, geometric influence coefficients, circulation matrix and intermediate aerodynamic quantities. A value of 2.0 requests a full debug printout and should not be used.

DENSTY

Freestream air density (slugs/ft³)

DFRNAC

Input skin friction drag (lb_f) due to the nacelle. Included in the performance calculation if input A positive value is opposite the direction of positive thrust.

DPRNAC

Input pressure drag (lbf) due to the nacelle. Included in the performance calculation if input. A positive value is opposite the direction of positive thrust.

DPSI

Maximum size of the azimuth increment (degrees) allowed to define the wake geometry and azimuthal interval in either single or coaxial mode. The program internally calculates the actual value.

EVAARD

Option switch to request tip relief model. An input value of 1.0 requests tabled values for the Evvard model be used, a value of 2.0 requests that a functional form for the Evvard model be used which is slightly different than the tabled values, a value of 3.0 requests that conical flow theory be used with a variable Mach number distribution, while a value of 4.0 uses a fixed Mach number.

G400

Option switch to couple via an external file to an aeroelastic response analysis. If nonzero, the value identifies the device unit number to be used.

Description

HUBQ1, HUBQ2

Input hub torque $(ft-lb_f)$. This input value will be included in the performance calculations and performance iteration loops. A positive value represents a power loss which the engine must overcome. However, the fluid does not sense this loss.

PRINTI

Option to delete vector input listing, nonzero to perform this function.

PRMAT

Geometric Influence Coefficient print option, generally not used (0.0). A value of 1.0 requests the printout of the geometric influence coefficients used to compute the induced velocity in both the cylindrical coordinate system and the blade element coordinate system.

PRNTØP

Option to delete performance printout of spanwise distribution quantities, nonzero to perform this function.

PRØPT

Wake geometry print option, generally not used (0.0). A value of 1.0 requests that the wake coordinates be printed.

PRØPNM

Number of propeller blade rows (1 or 2).

RAD1, RAD2

Input blade radius (along the pitch axis), this value may not be the true radius if the blade is swept off of the pitch axis (ft).

RDCAS1, RDCAS2

Outermost fraction of the blade radius for which the cascade airfoil data will be applied. If zero no cascade airfoil data is used.

RDTRN1, RDTRN2

Maximum radius to which the airfoil transition interpolation model can be applied. This value is also the flag which requests this option.

REV

Number of revolutions of wake geometry used to model the actual wake. The value chosen should be sufficient in length to approximately model an infinite wake's influence. Low flight speeds require a larger number of revolutions of wake geometry than high speed conditions. For high speed conditions use 2.0.

Description

RØLUP1, RØLUP2

Option switch to model trailing wake rollup. A nonzero value requests that the input value represents the number of outer filaments to be rolled up into the tip vortex filament at a specified azimuth position behind the blade. When this model is requested, the remaining filaments are implicitly rolled up into a remaining or root vortex. See figure 4. The value to use should correspond to the maximum circulation location.

RPMRF1, RPMRF2

Reference rpm for twist increment due to steady airloads.

RPM1, RPM2

Propeller rotation speed (rpm).

SKINØP

Option switch which requests a skewed flow drag model. An input value of 1.0 requests this option.

SØUND

Freestream speed of sound (fps).

STACK

Fraction of chord measured from the leading edge to define the position of the lifting line on each blade element, generally the quarter chord line is used (0.25).

STN

Number of inflow stations per blade. Maximum of 15. Generally at least 10 are used.

TAUEXP

Exponent for airfoil transition interpolation function.

THETA1, THETA2

Input reference blade angle (degrees). This reference angle rotates the input twist distribution about the pitch axis. If the performance iteration is requested this value will be changed internally and the input value is the first iteration value. Positive leading edge up.

Description

TRUCI1, TRUCI2

Azimuth position behind the blades for which the root rollup occurs, a zero value assumes rollup starts immediately at the blade. Because there is generally no root vortex formed, a large value should be input when rollup is requested (degrees).

TRUCT1, TRUCT2

Azimuth position behind the blades for which the tip rollup occurs, a zero input assumes rollup starts immediately at the blades (degrees).

TYPCAS

Option switch to select cascade type. An input of 0.0 requests no cascade data be used. A value of 1.0 uses the correlation from reference ____, while a value of 2.0 requests the correlation of reference

VIMØM1, VIMØM2

Input momentum induced velocity, used to define the wake geometry. If a performance iteration is requested, this value is internally corrected to match the resultant performance (fps).

VKTAS

Freestream flight velocity (knots).

VØRCØR

Fraction of the blade radius to define a vortex core for geometric influence coefficient calculations. Generally 10 percent of the chord is used.

WAKEØP

Option control for wake model selection. A zero value requests the standard wake model (modified classical wake) defined by the momentum-induced velocity and the radially varying input axial inflow velocity distribution be used. A value of 1.0 requests a wake model defined by the flight velocity and momentum input velocity be used (classical wake). A value of 2.0 requests that the wake geometry be input to the analysis and a value of 3.0 requests that the wake coefficients for the generalized wake model be input.

WAKNAC

Option control for including the effects of the nacelle on the wake geometry through the use of a displacement correction to the requested wake model. The option generally requires that WAKEOP = 1.0 so that double accounting of the nacelle's influence on the wake geometry does not occur. An input value of

Description

1.0 requests this option. If the standard wake model (WAKEØP = 0.0) is requested with this option, the program execution will be terminated because of this double accounting of the nacelle's influence. If it is actually desired to use the standard wake model, this feature can be overridden by adding to the program input, immediately following the input data, a card with the alphanumeric characters ØVER in card columns 1 to 4.

ZHUB

Nondimensional (radius of propeller one) displacement between the propeller disc centers for coaxial propellers. A positive value places the second propeller behind the first. Must be consistent with input for nacelle portion of the analysis.

Data Set II

The header card label for this data set is BLADE, in card columns 1 through 5. The first input after the header card must be the integer value for the number of blade segment boundaries, free field format. Following this input card, the data items are input. For each set of blade segment boundary items (STN+1), a labeled header card is input with the alphanumeric labels described below, followed by the free field formatted vector * (root to tip) on the next card for the item in question. For the tip Mach cone definition quantities, this format is identical but the vector item is replaced by a single value. All of these items should be input.

Input Label

Description

XSB

Input cartesian coordinate vector, X, inboard to outboard, to define the blade lifting line segment boundaries. Nondimensionalized by the blade segment radius boundary value (RAD1). Maximum of 16 boundaries (15 segments).

YSB

Input cartesian coordinate, Y, to define the blade lifting line segment boundaries, nondimensionalized by the last segment boundary value (RAD1). Maximum of 16 boundaries (15 segments).

^{*} Free field format consists of a series of numbers (Fortran floating point or exponential) separated by commas. If more than 80 card columns are needed for an input vector, the vector continues on the following card.

Inp	ut	La	bel

Description

ZSB

Input cartesian coordinate, Z, to define the blade lifting line segment boundaries. Nondimensionalized by the last segment boundary value (RAD1). Maximum of 16 boundaries (15 segments).

XMC

Input cartesian coordinate, X, to define the blade leading edge tip location for the tip Mach cone definition. Nondimensionalized as noted above.

YMC

Input cartesian coordinate, Y, to define the blade tip location for the tip Mach cone definition. Nondimensionalized as noted above.

ZMC

Input cartesian coordinate, Z, to define the blade tip location for the tip Mach cone definition. Nondimensionalized as noted above.

Data Set III

The header card for this data set is labeled VARDAT. The input interpolation tables for each item in this data set are input with a header card with the label for the particular item on it, followed on the next card by the integer number of interpolation stations in free field format (minimum of 4, maximum of 20). The independent vector (non-dimensional X-wise coordinate) for the particular item follows on the next card (root to tip) in free field format. The dependent vector values then start on a new card following the independent vector in the corresponding order. An example of the format for one input item follows:

Format

Label

(Alphanumeric)

N

(Integer)

 X_1 , X_2 , X_3 , ..., X_n

(Floating Point)

 $Y_1, Y_2, Y_3, ..., Y_n$

(Floating Point)

The required input items are described below.

Description

AIRN

Airfoil type designation number distribution. There are only two values for input, 23.0 which requests the Manoni airfoil data tables and 24.0 which requests the NACA airfoil data tables (reference 1). Because the values used internally are computed by interpolation from this input vector and then converted to integer values, the input values of 23.1 and 24.1 are generally used to guarantee that the integer values of 23 and 24 are used internally. These values start at the hub even if the cascade data is used.

CØRD

Chord distribution in feet.

THET

Built in blade twist distribution in degrees. Leading edge up (direction of positive rotation) is positive.

DECL

Design lift coefficient distribution.

TØVC

Airfoil thickness to chord ratio distribution.

DENS

Local blade row density to freestream density ratio distribution. Overridden if Nacelle portion of the analysis is used.

SØUN

Local blade row to freestream speed of sound ratio distribution. Overridden if Nacelle portion of the analysis is used.

URVO

Local blade row radial inflow velocity to freestream velocity ratio distribution. Overridden if Nacelle portion of the analysis is used.

vøvo

Local blade row axial inflow velocity to freestream velocity ratio distribution. Overridden if Nacelle portion of the analysis is used.

BETA

Dynamic twist distribution, internally scaled by the ratio of rpm to reference rpm squared. Incrementally added to static twist distribution, degrees.

Optional Generalized Wake Geometry Input Coefficients (WAKEOP = 3.0)

In order to maintain flexibility with regard to the generalized wake model, the generalized wake geometry equations are included in a separate subroutine which requires the input of a set of generalized wake coefficients if this model is requested. In this subroutine the input wake parameters are applied to the wake equations to compute the wake filament coordinates. The input instructions for the wake geometry subroutine (RWZW7) are included herein.

The wake equations for the generalized wake model, containing the input generalized wake coefficients, and graphs showing the applicable wake regions of the equations are presented in figure 5 (in which program symbols are used). The designations r=0 and r=1 indicate nondimensional radial coordinates at the axis of rotation and at a distance of one propeller radius from the axis of rotation, respectively. The wake representation is also explained in reference 2; however, for the wake equations therein: (1) AK30 and AK31 are not included, (2) it is assumed that AK10 is zero and (3) the axial coordinate for the tip vortex and the vortex sheet extension to r=1 is relative to the blade tip instead of the propeller hub.

Input for Generalized Wake Geometry

Card No.	Column	Program Symbol	Description of Input Item
1	9-10	IØPT	Option for the vortex sheet boundary within a wake azimuth of 360./BL and the blade (fixed point, right adjusted). Normally, set IØPT = 1 to establish a parabolic vortex sheet boundary through: (1) the origin of the outermost vortex sheet filament at the blade, (2) the rolled up tip filament coordinates at an azimuth of 360./BL and (3) the intersection of the vortex sheet at an azimuth of 360./BL and the tip vortex boundary. IF IØPT = 0, a linear vortex sheet boundary is established between (1) and (3) above. See reference 2 for more detail.
	11-20	A	Curve fit constant, A, in the tip vortex radial coordinate equation (see figure 5).
	21-30	LAMBDA	Curve fit constant, LAMBDA, in the tip vortex radial coordinate equation (see figure 5).

No.	Column	Symbol Symbol	Description of Input Item
	31-40	PHINPO	Wake aximuth angle, PHINPO, that separates the axial velocity regions AK20 and AK30 for the vortex sheet extension to r = 0, degrees (see figure 5).
	41-50	PHINP1	Wake azimuth angle, PHINPl, that separates the axial velocity regions AK21 and AK31 for the vortex sheet extension r = 1, degrees (see figure 5).
2	1-10	AK1T	Axial velocity of the tip vortex between the blade and the passage of the following blade at wake azimuth 360./BL (nondimensionalized by rotor tip speed; negative down).
	11-20	AK2T	Axial velocity of the tip vortex after the passage of the following blade at the wake azimuth 360./BL (nondimensionalized by rotor tip speed; negative down).
	21-30	AK 10	Axial velocity of the vortex sheet extension to the center of rotation in the wake azimuth region between the blade and the passage of the following blade at the wake azimuth 360./BL (nondimensionalized by rotor tip speed; negative down).
	31-40	AK20	Axial velocity of the vortex sheet extension to the center of rotation in the wake azimuth region between the passage of the following blade at the wake azimuth 360./BL and the wake azimuth PHINPO (nondimensionalized by tip speed; negative down).
	41-50	AK30	Axial velocity of the vortex sheet extension to the center of rotation following the wake azimuth PHINPO (nondimensionalized by tip speed; negative down).
	51-60	AK11	Axial velocity of the vortex sheet extension to r = 1 in the wake azimuth region between the blade and the passage of the following blade at the wake azimuth 360./BL (nondimensionalized by rotor tip speed; negative down).

Program

Card

Card		Program	
No.	Column	Symbol	Description of Input Item
	61-70	AK21	Axial velocity of the vortex sheet extension to r = 1 in the wake azimuth region between the passage of the following blade at the wake azimuth 360./BL and the wake azimuth PHINPl (nondimensionalized by tip speed; negative down).
	71-80	AK31	Axial velocity of the vortex sheet extension to r = 1 following the wake azimuth PHINPl (nondimensionalized by tip speed; negative down).

Optional Input Wake Geometry (WAKE P = 2.0)

If desired, an arbitrary wake geometry model may be used in the analysis by input of the complete wake geometry. The only constraints for the wake model are that the description of the geometry is assumed identical for each blade (a required assumption in the solution procedure) and that the coordinates be input in the cylindrical coordinate system for equally spaced wake azimuth positions consistent with the blade azimuth increment and inflow station boundaries. This model allows for the most exact description of the wake geometry, if known, given the inherent assumptions of the analysis. The description of the input format follows.

The wake geometry is input in separate sets for each trailing wake filament, inboard to outboard. Each set contains subsets for each revolution of wake geometry requested. Each subset will start with a new card. and axial coordinates are paired (radial, axial) for the trailing wake segment boundary for each wake azimuth position (wake age) starting at the youngest and ending with the oldest wake segment boundary. Thus, the wake azimuth position is implicitly assumed to be consistent with the input blade azimuth (DPSI) increment and the number of trailing segments must be constant with the number of wake revolutions. The FORTRAN format used is 10F8.4 for each card of data. There are KTØT (number of trailing filament) sets of cards. Each set of cards contains NTØT (number of wake revolutions) subsets, with each subset containing JTØT1 (number of wake azimuth positions per revolution + 1) pairs of wake coordinates. Because each subset of data will contain a complete definition of a revolution of wake geometry, the first coordinate pair of each subset will be identical to the last coordinate pair of the previous revolution, excepting the first subset. The total number of input data pairs is then (KTØT)x(NTØT)x(JTØTl). For a typical high speed condition using two revolutions of wake, 12 segment boundaries and a blade azimuth increment of 15 degrees, the number of pairs would be (12)x(2)x(25) = 600 or 1200 single values.

Description of Propeller Solution Output

The propeller output section can be broken into three distinct portions, initial, intermediate and final output. The program user has a large number of print options which control the amount of intermediate output. The initial and final output are not optional. The descriptions of the output quantities are presented in the following sections. A sample printout for selected portions of the propeller solution portion is presented in Appendix B. It should be noted that in the description to follow there is only one propeller and propeller position for a single propeller configuration. For coaxial propellers the intermediate output is repeated for each propeller.

Initial Output

During the reading of the propeller input data, the data as read in is immediately printed out. This information is entitled: PRINTOUT OF INITIAL DATA AS READ IN, and if the program execution terminates during the reading of an input data item, the user will see the item which was last read before program termination. This feature has two advantages: first, if an incorrect item is attempted to be read in, the user can quickly determine the incorrect item; and second, a complete listing of the propeller input data as used in the analysis is available for later review if desired. This output section always occurs during the input of the propeller data. If the combined analysis (propeller and nacelle) mode is being used, this output occurs long before (precedes the nacelle inviscid solution) the other portions of the propeller output. This feature can be partially suppressed if desired by the input control, PRINTI. This option will suppress the vector printout quantities if requested.

The next output for this initial output is a section entitled: PROGRAM INPUT SUMMARY, and consists of the input data displayed in a structured format. The propeller modeling options used for the particular execution are listed in the following form. The integer value of the input modeling option is displayed with a brief description of the model used. The freestream conditions are listed next, (VKTAS, SØUND, DENSTY) followed by the propeller operating characteristics (PRØPNM, BLADEN, RPM, ZHUB). The parameters which define the wake and blade geometry segmentation are displayed next (STN, STACK, DPSI, REV, CNSECT) followed by the propeller characteristics (RAD1, HUBQ1, THETA1, RDCAS1, VIMØM1) of each propeller. The printout of the propeller characteristics includes: the blade lifting line segment boundaries coordinates (XSB, YSB, ZSB, BETA); the inflow station coordinates and the blade properties at the segment centers as interpolated from the input distributions (AIRN, CØRD, THET, DECL, TØVC, VØVO, URVO, SØUN, DENS).

Intermediate

The intermediate output is described below. Generally it is limited to the minimum amount possible since most of the output is repeated in the final output section. The intermediate output is repeated for each iteration in blade angle. If there is no performance iteration it is printed only once for the input blade angle. This output is entitled: PROGRAM OUTPUT FOR PROPELLER PERFORMANCE ITERATION NUMBER X.

The first output data for this section is not optional; it consists of a table of the blade lifting line segment center and boundary coordinates for the reference blade angle and the blade angle value in degrees. The coordinates are listed in cartesian and cylindrical form for the centers and boundaries. Following this table, the coordinates for the definition of the tip Mach cone location are listed in cartesian form for the blade angle in question. If no optional printouts are requested, the wake transport velocity distribution is printed as a function of blade radial location. If optional printouts are requested this print does not follow immediately, but occurs later in the output. All other output for the intermediate portion is optional. The input option controls (in parentheses) and the respective descriptions of the output follow (output labels in parentheses if not noted).

The output of the trailing wake geometry coordinates (PRØPT) is presented in the cylindrical coordinate system and tabulated as a function of wake azimuth position and blade radial position. This output is entitled: WAKE COORDINATES. The radial coordinates are tabulated first, starting with the values at the blade and ending with the oldest element. A table of the axial coordinates is then presented in the same format.

The printout (PRMAT) of the summed geometric influence coefficients for each inflow station at each propeller position for each propeller as a function of the appropriate inflow station and propeller position of each propeller is presented in the cylindrical coordinate system and in the blade element coordinate system. This printout is entitled: CYLINDRICAL GEOMETRIC INFLUENCE COEFFICIENTS or BLADE ELEMENT GEOMETRIC INFLUENCE COEFFICIENTS. The propeller and propeller position indices are so noted on the printout, while the inflow station indices are not, since the values are presented for the inboard station to the outboard station for each propeller and propeller position.

For detailed intermediate output (DEBUG) the following extensive list of items is presented in the same format as noted above for the propeller, propeller position and inflow station indices. Generally this printout should not be used. A section of detailed blade element properties consisting of the magnitude (if it applies) and unit vector direction cosines in the cylindrical coordinate system is output for each of the following: the blade segment

lifting (SB, ALSRAD, ALSPHI, ALSAXL), input chord (CINPUT, ALCIRD, ALCIPH, ALCIAX), the normalwise unit vector (ALNRAD, ALNPHI, ALNAXL), the blade element chord nondimensionalized by blade radius (CHØRD, ALCRAD, ALCPHI, ALCAXL), input blade element thickness to chord ratio (TØVERC, ALTIRD, ALTIPH, ALTIAX), the blade element thickness to chord ratio magnitude only (THK) and the blade element design lift coefficient (DESCLP). This section is entitled: DETAILED BLADE ELEMENT ØUPUT. The next section consists of detailed blade element velocities and unit vector direction cosines (VTØT, ALVRAD, ALVPHI, ALVAXL) in the cylindrical coordinate system along with the direction cosines in the blade element coordinate system (VS, VC, VN) and the angle of attack (ALPHAN), and inplane aerodynamic skew angle (SKEW), all computed without including the propeller induced velocities, entitled: DETAILED VELOCITY RELATED OUTPUT (EXCLUDING INDUCED VELOCITY TERMS). The indices associated with the internal program "DO LOOPS" for the geometric influence calculations are then output, along with the cosine and sine functions for the respective inflow stations inplane lag angle and propeller azimuth position and a counter rotation flag with each line of output marked: INTERMEDIATE OUTPUT. Following this output, the normalwise blade element geometric influence coefficients are printed in the circulation matrix form for each propeller at each propeller position for each inflow station. The title of the output is: GEOMETRIC INFLUENCE COEFFICIENT. Following this output some untitled cascade related items are listed. The chord-to-gap ratios (TAU) and gap-to-chord ratios (SIGMA) are listed along with the geometric angle between the propeller direction of rotation and the local blade element chordwise vector (THETAG) which represents the compliment of the cascade stagger angle. Tip Mach cone quantities (untitled) are then output. The Mach cone angle is listed and then the angle between the blade tip and the location of the specified fraction of the blade chord for each inflow station is listed. The tip Mach number value is listed next. The station location index (NSTAT) for the intersection of the Mach cone and the fraction of the blade chord is listed and the resulting Evaard Tip Relief correction factor (XKCØNE) for each blade inflow station is The blade element Mach number (SMACH) and the total Mach number (CMACH) distributions are listed along with the blade element geometric angle of attack (excluding induced terms) distribution in radians (ALPHA). Following this output, the linearized lift curve slope (AA), an aerodynamic quantity (D = $\frac{8 \text{ R}}{\text{ac}}$), the matrix constant vector (CØNST) and the blade element geometric blade angle (THETA) in degrees are listed. The induced velocity component distributions (VIN, VIC, VIS) in the blade element coordinate system at each inflow station of each propeller for each propeller position are presented due to each propeller, followed by the total of both propellers for each inflow station (VINT, VICT, VIST), entitled: DETAILED INDUCED VELOCITY This output is followed by the total velocity magnitude (VTØT), the blade element angle of attack (ALPHA), the blade element aerodynamic skew angle (SKEW) and blade element inflow angle (PHI) distributions which include the induced velocities. It is titled: DETAILED VELOCITY RELATED OUTPUT.

The above output starting from the Mach cone correction and ending with the inflow angle is repeated for each iteration of the nonlinear circulation matrix solution. The intermediate circulation solution output consists of the nonlinear correction quantities (CØRPHI, CØRVEL, CØRCL) used in the solution technique, the resulting corrected constant vector of the circulation matrix (CØNHSD), the actual correction vector (CFDP), the uncorrected constant vector (CØNST), the current angle of attack (ALPHA), and previous angle of attack (SAVALP), the current lift coefficient (CLSAV), the current circulation (CIRC) and previous circulation (SAVCIR), and the current normalwise induced velocity (VIN) for each inflow station for each propeller position of each propeller for each iteration of the matrix solution. Once the final circulation iteration solution is obtained, the final lift, drag and minimum drag coefficients are printed (CLSAV, CDSAV, CDO). Following this output the total blade forces are listed in terms of the magnitude and direction cosines (FTØT, ALFRAD, ALFPHI, ALFAXL) and the respective lift and drag components of the force (FLTØT, ALFLRD, ALFLPH, ALFLAX, FDTØT, ALFDRD, ALFDPH, ALFDAX). This output is marked: DETAILED BLADE FORCE SUMMARY.

Final Output

The final output consists of tabled values of many of the output items listed in the intermediate printout and integrated performance quantities. This output section is entitled: PROPELLER PERFORMANCE. It is repeated for each performance iteration and presented for each propeller for each propeller position as a function of blade inflow station location (X/R). The description of each of the tabulated items is included on the printout of Appendix B and will not be described here. It is labeled: BLADE SPANWISE VARYING QUANTITIES. Only the descriptions of the sections of integrated quantities will be presented. The first of these integrated sections is labeled BLADE CHARACTERISTICS and contains the blade characteristics for each propeller position for each propeller; thrust per blade (lb,), torque per blade (ft-1b_f), power per blade (ft-lb_f/sec) and horsepower per blade (hp). Following this section of integrated quantities, the combined (all blades, both propellers) instantaneous values of thrust and power for each propeller position are presented. It is titled: INSTANTANEOUS TOTAL PROPELLER PERFOR-MANCE FOR PROPELLER POSITION X. This is followed by a section of integrated values averaged over all propeller positions for each propeller, entitled: INTEGRATED PROPELLER CHARACTERISTICS FOR PROPELLER X. This section contains the total thrust (lb_f), thrust coefficient (T/n^2D^4), forward velocity

(knots), torque (ft-lb_f), power coefficient (P/pn³D⁵), advance ratio (Vm/ Ω R), profile torque (ft-lb_f), propeller efficiency (CTXJ/Cp), reference blade angle (degrees), induced torque (ft-lb_f), power (ft-lb_f/sec), horse-power (hp) and the momentum induced velocity (fps). The combined propeller performance follows if coaxial propellers are used. This output is followed by the nacelle and combined nacelle-propeller quantities. These items for the nacelle are the pressure and skin friction drag (lb_f), the respective drag coefficients and the combined drag and drag coefficients using the same units and definitions as used for the propellers. The combined nacelle and propeller thrust, thrust coefficient, power and power coefficient and efficiency then follow. Following this output, the force components per blade per unit span are presented in the cylindrical coordinate system (lb_f/ft) for each propeller, and labeled: FORCE PER BLADE PER UNIT SPAN.

Description of Failure Modes

Generally, if the input data is correct and reasonable for the flight condition being investigated, the propeller solution procedure will not fail. To help assist the user in running the computer program, certain failures which could occur because of incorrect data setup or incorrect data values are checked internally by the computer program. If the input is incorrect, diagnostic output will occur to inform the user and allow him to make the required corrections.

General Input Format

As noted in the section describing the input data setup, certain labelling formats have been specified for the input data. If these formats are violated, explicit output diagnostics will not generally be printed; however, program termination will occur immediately with the last item which was attempted to be read in printed as the last output. Termination on the input of these labels will occur for the following reasons:

- (1) Data set labels not in the required order
- (2) Data set labels mispunched
- (3) Input item labels mispunched
- (4) Missing END labels for the data sets

Missing Input Data

Assuming all of the input data is read in correctly, the program then checks for missing input that is required for successful program execution. The following diagnostic messages could occur if certain data is missing. Explanations of the messages are noted, if required, for clarity.

(1) "PROPELLER DISK DISPLACEMENT NOT INPUT, EXECUTION TERMINATED"

This message informs the user that the hub displacement between the propellers was not input in the coaxial mode of operation.

- (2) "RPM NOT INPUT, EXECUTION TERMINATED"
- (3) "SOUND NOT INPUT, EXECUTION TERMINATED"

This message informs the user that the freestream value of the speed of sound was not input.

(4) "DENSITY NOT INPUT, EXECUTION TERMINATED"

This message informs the user that the freestream value of the density of air was not input.

(5) "RADIUS NOT INPUT, EXECUTION TERMINATED"

This message informs the user that a blade radius input is missing.

- (6) "DPSI NOT INPUT, EXECUTION TERMINATED"
- (7) "NUMBER OF WAKE REVOLUTIONS NOT INPUT, EXECUTION TERMINATED"
- (8) "NUMBER OF BLADES NOT INPUT, EXECUTION TERMINATED"

Incorrect Data Input

If data is input to the program which is incompatible with the requirements of the computer analysis, diagnostic messages will also occur. The messages are listed below along with explanation, if required.

- (1) "POWER COEFFICIENT ITERATION NOT ALLOWED FOR TWO PROPELLERS, EXECU-
- (2) "THRUST COEFFICIENT ITERATION NOT ALLOWED FOR TWO PROPELLERS, EXECU-TION TERMINATED"
- (3) "COMPRESSIBLE BOUND VORTEX MODEL NOT FUNCTIONAL FOR TWO PROPELLERS, EXECUTION TERMINATED"

This message informs the user that he has requested a combination of modeling options which are not compatible. The compressible bound vortex model was not derived for coaxial propellers, and thus cannot be used for coaxial propeller configurations.

(4) "INPUT ERROR 360/DPSI IS NOT A MULTIPLE OF B. WILL STOP PROGRAM.

JTOT=X, B=X"

This message informs the user that the requested blade azimuth increment is not an integer multiple of 360 degrees. The number of blade azimuth positions (JTOT) and the number of blades (B) that were requested are listed in the locations marked by X respectively.

(5) "***BJTOT IS NOT AN INTEGER MULTIPLE OF THE NUMBER OF PROPELLER DISKS, EXECUTION TERMINATED"

This message informs the user that the number of azimuth intervals between blades is not an integer multiple of the number of propellers. It checks to be sure that for a coaxial configuration, the half blade spacing is an integer multiple of the azimuth increment.

There are also a series of diagnostic messages associated with internal program core allocations. If a combination of input quantities exceeds the internal dimension limits, self-explanatory messages are output which inform the user of the problem, the values input and the allowable limits. Because the messages are self-explanatory, they will not be listed here. The required corrective action will be clear to the user if they do occur.

Nacelle Portion

This section is intended to describe the general features of the nacelle portion of the PANPER program. The technical aspects of this analysis are described in reference 1. The first subsection describes what problems can be solved and what problems cannot be solved. It also describes any special care which should be used in exercising the various options. The second and third subsections present a detailed description of the input which is required in the operation of the computer program and the interpretation of the printed output. Since any complicated computer program may fail due to inconsistencies in the input or failure of the theory, the computer program is provided with self-diagnostics which notify the user of the type of failure. The last subsection deals with these program diagnostics as well as helpful hints to correct problems which may be encountered.

Since this computer program is intended for a wide variety of users, some note should be made of the nomenclature. The term "duct" refers to any flow passage including inlet nozzles, diffusers, or transition ducts or external flow problems where the outer wall is replaced with the appropriate boundary condition. Typically, such ducts may have struts, compressor or propeller blades, inlet guide vanes, or exit guide vanes and these terms are used almost interchangeably in the discussion. Depending on the user, the duct wall dimensions may be referred to as hub and tip walls or inside diameter (ID) and outside diameter (OD) walls respectively. Some users may use the terms centerbody and outerbody when referring to ID and OD walls respectively. The subscript notation, Fortran symbols, and computer printout generally uses the subscript W for either wall without distinction and H and T for hub and tip wall. Finally, the term "slot injection" refers to the injection of flow tangent to the wall at a discrete axial location, while "mass bleed" refers to injection of flow normal to the wall.

General Features of the Program

Types of Fluids

The fluid may be any compressible gas as defined by its thermodynamic properties ρ , c_p , c_v , μ , c_{RL} , c_{RT} . If not otherwise specified, the gas is assumed to be air. The reference conditions for the gas properties must be specified at standard sea-level conditions.

Types of Flow Situations

External or internal, transonic, turbulent, swirling or nonswirling flows may be calculated, including flows with radial total pressure distortion. Two-dimensional flows may be calculated by constructing an annular duct in which the inner to outer radius approaches 1.0.

Geometry Options (IØPT3)

The flow through any axisymmetric duct may be calculated provided that the flow is generally in the axial direction. Duct flows normal to the axis of symmetry or which reverse direction cannot be calculated due to logic limitations in Subroutine COOR. Ducts with sharp discontinuities, such as a step, which produce separation also cannot be calculated.

Provision is made in the program to either read the duct coordinates from input data cards (IØPT3=2), or to calculate the duct coordinates analytically (IØPT3>4) from a few input duct shape parameters. If the duct coordinates are read from input cards, care should be taken that the input coordinates have sufficient smoothness to calculate the first and second derivatives using numerical finite-difference equations. When the second option is used (IØPT3>4), the user must program his own calculation in Subroutine GDUCT. Sample programs (IØPT=1, 3, 4) are given in Subroutine GDUCT for the user's reference. For ducts with no centerbody a zero radius must be specified.

An important restriction to the computer program is that the inlet and exit flow must have no normal pressure gradients produced by streamline curvature, although it may have normal pressure gradients due to swirl. Many ducts do not satisfy this requirement; however, these ducts can still be treated if the duct is extended. For curved annular ducts exhausting to atmosphere, the exit flow may have curvature. This phenomena may be simulated by extending the duct to approximate the curvature of the exit flow.

If the IØPT3=2 option is used, and the number of input points is less than the number of specified streamwise stations, the program smooths the input data and interpolates the required mesh points.

Inlet Flow Options (IØPT1)

The computer program is provided with two methods to describe the inlet flow. When IØPTl=1, the inlet flow is calculated by prescribing the stagnation conditions (P_0 , T_0) on Card No. 6, the inlet Mach number M , the swirl angle α_1 , and the boundary layer parameters δ^* and n, which are the boundary layer displacement thickness and power law velocity profile exponent, on Card No. 5, respectively. The core flow is then calculated from isentropic flow relations, and boundary layers added using power law velocity profile relations. When stagnation conditions are not specified, the calculation assumes sea level conditions.

When IØPT1=2, the inlet flow is prescribed from input data cards which specify the stagnation pressure $\boldsymbol{P}_{\!\scriptscriptstyle O}$, static pressure $\boldsymbol{P}_{\!\scriptscriptstyle O}$, swirl angle $\alpha,$ and stagnation temperature To, as a function of the fractional distance across the inlet. This data need not be specified at equidistant points since a linear interpolation is used to specify the data at the mesh points used in the calculation. If experimental data is not used, care should be taken that the data is self-consistent and that it satisfies the radial equilibrium equation. Since the initial growth of the boundary layer is sensitive to the wall shear stress, data describing the boundary layers should be accurately specified. When this is not possible, boundary layers may be added to each wall by specifying δ^* and n. Special care should be exercised in using the IOPT1=2 option, with or without the feature of adding in the wall boundary layers. If the stress distribution across the duct is not smooth and realistic, numerical instabilities might originate in the inlet flow and grow rapidly to a point where the calculation is terminated. This may take the form of an unrealistically early separation.

When IØPT1=3, the inlet free stream flow is calculated the same as IØPT1=1. The boundary layers on each wall, however, are calculated from Coles' profiles (reference 3) using Function FCØLES. The IØPT1=4 option is the same as the IØPT1=2 option, except that Coles' profiles are used for the boundary layers.

For IØPT1=1, 2, 3, or 4 there are no restrictions on δ^* other than it must be greater than zero and that the transverse grid must be chosen such that at least 5 to 10 mesh points exist for $0 \le Y^+ \le 10$. A printout of $U^+(Y^+)$ is provided by setting IØPT4=0. In absence of other information a value of δ^* of one percent of the inlet height is an adequate approximation for a thin initial boundary layer. If the boundary layer thickness is not small compared to half-height, the correct input value of δ^* must be obtained

from other sources such as data correlation, experimental measurements, etc. Most zero pressure gradient boundary layers follow a 1/7th power law profile and it is recommended that this value be used. For IØPT1=3 or 4 in which Coles' profiles are used, a shape factor is computed from the input values is used δ^* and n. This shape factor is used to compute a wake parameter and a compatible wall stress for use in Coles' profiles. As shown in reference 3, specification of the wake parameter and wall stress uniquely defines the Coles' velocity profile.

Boundary Conditions (Tw, mw)

Either the adiabatic wall or the heat transfer case may be calculated. The program assumes adiabatic walls unless the wall temperature is specified. Any wall temperature distribution may be specified, either on input cards when the duct coordinates are read, or calculated when the duct coordinates are calculated. The case of wall bleed may also be treated in a similar manner; wall bleed flow rate is zero, unless otherwise specified. At the present state of development of the computer code, only the IØPT3=1 option allows a specification of wall temperature as a boundary condition. For all other IØPT3 options adiabatic walls are assumed.

Force Option

Subroutine FØRCE is provided with two options. For IØPT2 \neq 0 and NØPPF = 1, the blade force is calculated from data taken from the propeller lifting line portion of the code. For IØPT2 \neq 0 and NØPPF = 0 the blade forces are read in as input data.

Failure Modes

In the event of failure in the calculation, the program prints an error message called "diagnostic". These "diagnostics" are in addition to the computer diagnostics and are clearly labeled as such. These "diagnostics" terminate the calculation only when very serious. A list of these "diagnostics" appears in a later section. Included with this list is an identifying number for the "diagnostic", the location (Subroutine), and the immediate cause of the failure. Where possible, suggestions are made to correct the calculation.

Debug Options (IDBGN)

Auxiliary printout which was originally used to debug the computer program is available to the user by setting the appropriate IDBGN option. However, the user must refer to the program listing or compilation to determine the meaning of this printout.

Grid Selection

The grid selection parameters appear on the third input card and are given by DDS, KL, JL, KDS. The number of streamwise stations is divided into a coarse grid of JL < 100. The number of streamlines including the wall boundaries is given by KL < 100 points and a fine grid of JL*KDS points. The solution is numerically stable; however, truncation errors may get large if too large a streamwise step size is used. The streamwise step size may be made smaller without recalculating the coordinate system by increasing KDS. It should be noted that computing time is proportional to JL*KDS. The parameter DDS distorts the normal coordinate by placing more streamlines near the wall.

Mesh Distortion

The numerical solution of turbulent boundary layers requires accurate integration of the mean profile in the turbulent mixing layer. For high Reynolds number flows, practical considerations require distributing more mesh points near the wall in some systematic manner. This is done using an exponential transformation given by

$$n(\eta) = \frac{(c+1/2) \exp \left[2 \ln \left(\frac{c+1/2}{c-1/2}\right) (\eta-1/2)\right] - (c-1/2)}{1 + \exp \left[2 \ln \left(\frac{c+1/2}{c-1/2}\right) (\eta-1/2)\right]}$$
(1)

where

$$0 \le n \le 1$$
$$0 < \eta < 1$$

The parameter c is chosen so as to place the first mesh point at approximately $Y^+ = 1$. Then for equal increments in Δn , equation (1) distributes the mesh points Δn so as to place more mesh points near the wall.

Separation

The separation point is determined when the streamwise component of wall stress goes to zero. However, the calculation can continue past the separation point. When the region of reverse flow becomes too large, greater than 2.0 percent, the calculation stops.

Description of Input

This subsection describes the loading of input data cards for running the nacelle portion of the computer program. The input specification follows the convention that a blank or zero value for any parameter implies no action by the computer program. Numbered cards must be loaded. The remaining cards must be loaded only if the proper option is selected. Care should be taken in loading the program because of the input changes depending on the options chosen in the second data card. Multiple cases can be run simply by stacking the cases in order. The last case is followed by two blank cards.

Card No.	1: Title	Card	
Name	Col.	Format	Comments:
TITLE	1-72	12A6*	Any alphanumeric characters.
Card No.	2: Optio	n Card	
Name	Col.	Format	Comments:
IØPT1	1-2	12	(FLØWIN Option) I@PTl=3 The inlet flow is computed by specifying the data on card 5. I@PTl=4 The inlet flow is read from 2xKLL data cards following card 5. I@PTl=9 Laminar flow, inlet flow is calculated using a Blasius profile.
IØPT2	3-4	12	(FØRCE Option) IØPT2=0 No blades or struts exist in the duct and these cards are not loaded. IØPT2=3 The strut forces are input on cards (2xKLL cards following card 3). IØPT2=4 The blade forces are calculated from lifting line theory if NØPPF=1. If NØPPF=0 blade forces are read from data cards.
IØPT3	5-6	12	(GDUCT option) I@PT3=1 Calculate a straight annular duct I@PT3=2 Read coordinates I@PT3=3 Calculate a straight wall annular diffuser I@PT3=4 Do not use I@PT3=5 Calculate curved wall diffuser No. 1. I@PT3=8 Straight walled duct

^{* 12}A6 UNIVAC system 18A4 IBM systems

Card	No.	2:	Option	Card	(Cont	'd)

Name	Col.	Format	Comments:
ІØРТ4	7-8	12	Print solution every IØPT4 stations. For example, if IØPT4=3 every third station is printed. If IØPT4=1 every station is printed. If IØPT4=-1 additional output at each station is printed.
IØPT5	9-10	12	Strut data input (see IØPT2=3) used to calculate strut forces from experimental data measured upstream and downstream of strut. IØPT5=1 Read in required profiles. IØPT5=2 The upstream and downstream strut data cards are identical to the inlet and exit flow cards and need not be loaded.
ІФРТ6	11-12	12	IØPT6=0 Strut force plus thickness effects. IØPT6=1 Strut thickness effects only.
IØPT7	13-14	12	Axisymmetric compressible streamline curvature corrections. 0 = No curvature correction 1 = Curvature correction
1 ØРТ8	15-16	12	WBLEED option. = 0 No Bleed = 1 Bleed OD wall = 2 Bleed ID wall = 3 Bleed OD and ID wall
10РТ9	17-18	12	IØPT9=0 Approximate CØØR calculation. IØPT9=1 Exact CØØR calculation. IØPT9=2 Store CØØR calculation on mass storage device (Unit 9) and stop. IØPT9=3 Read CØØR calculation from mass storage device (Unit 9) and stop. For normal running, set IØPT9=1. Subroutine CØØR is described in a later section.
IØPT10	19-20	12	IØPT10=1 Internal flow problem. IØPT10=0 External flow problem.
IØPT11	21-22	12	<pre>IØPTll=1 External flow problem. IØPTll=0 Internal flow problem.</pre>

Name	Col.	Format	Comments:
IØPT12	23-24	12	Not used.
IØPT13	25-26	12	Not used.
1ØPT14	27-28	12	Not used.
1ØPT15	29-30	12	Start flow calculation at station IOPT15. Default = 1.0.
IØPT16	31-32	12	End flow calculation at station IØPT16. Default = JL.
IØPTl7	33-34	12	Not used.
Card No.	3: Mesh	Parameters	
DDS	1-10	F10.3	Mesh distortion parameter, default determined internally.
KL	11-13	13	Number of streamlines including wall, 2 \leq KL \leq 100.
JL	14-16	13	Number of streamwise stations, JL \leq 100.
KDS	17-19	13	Number of steps per streamwise station. Default = 2.
KLL	20-22	13	Number of streamlines of data input (see IØPT1, IØPT2). If KLL \leq KL, inlet flow is interpolated from KLL inlet data cards on the KL streamlines used for calculating flow. KLL \leq 31.
JLAST	23-25	13	Number of COOR records stored on drum. Used for tape storage of coordinate functions. Not used in this version.
JLPTS	26-28	13	Number of input duct coordinate points, if IOPT3 = 2. Note: If JLPTS < JL, points are smoothed and interpolated. Not used in this version.
LFILE	29-31	13	Case stored on tape file LFILE used for tape storage of coordinate functions. Not used in this version.

Card No. 4: GDUCT

Name Col. Format Comments:

These input cards are read in subroutine GDUCT as programmed by the user.

The following duct geometries (designated as IPT3=1,2,3, and 5) have been programmed (see figure 6).

Card No. 4: (IOPT3=1) Straight Annular Duct

Name	Col.	Format	Comments:
Z 1	1-10	F10.0	Length (ft)
RH1	11-20	F10.0	Centerbody radius (ft)
RT1	21-30	F10.0	Outerbody radius (ft)
TWH	31-40	F10.0	Centerbody wall temperature (deg R)
TWT	41-50	F10.0	Outerbody wall temperature (deg R)
AMWH	51-60	F10.0	Centerbody wall bleed (lb/ft ² sec)
AMWI	61-70	F10.0	Outerbody wall bleed (lb/ft ² sec)

Card No. 4: (IØPT3=2) Arbitrary Duct Input

Name	Col.	Format	Comments:
Z 1	1-10	F10.0	Duct length (ft)
RNOPE	11-20	F10.0	One more than the number of curve fits used for smoothing the input geometry. Default 5.0.
XNOSE	21-30	F10.1	Distance to nacelle nose (ft)

Cards Following Card No. 4: (IØPT3=2) For JLPTS equally spaced points, thus Z(J)=Z1*(J-1)/(JLPTS-1)

Name	Col.	Format	Comments:
R(1,1,J)	1-80	8F10.0	Outerbody radius (ft)
R(2.1I)	1-80	8F10.0	Centerbody radius (ft)

Card No.	. 4: (IØP	(3=3) Straight	Wall Annular Diffuser
Name	Col.	Format	Comments:
Z 1	1-10	F10.0	Duct length (ft)
RHl	11-20	F10.0	Centerbody radius (ft)
RTl	21-30	F10.0	Outerbody radius (ft)
ZTHRO	31-40	F10.0	Length of throat (ft)
ANGH	41-50	F10.0	Centerbody wall angle (deg)
ANGT	51-60	F10.0	Outerbody wall angle (deg)
Card No.	4: (IØP)	3=5) Curved W	Vall Annular Diffuser No. l
Name	Col.	Format	Comments:
Z 1	1-10	F10.0	Duct length (ft)
RTl	11-20	F10.0	Inlet outerbody radius (ft)
RH1	21-30	F10.0	Inlet centerbody radius (ft)
RTL	41-50	F10.0	Exit centerbody radius (ft)
RHL	51-60	F10.0	Exit outerbody radius (ft)
AT	61-70	F10.0	Power outerbody wall AT_2
АН	71-80	F10.0	Power centerbody wall AH_2
Card No.	4: (IØPT	3=6) Not Use	e d
Card No.	5: Inlet	Flow Distrib	oution (See figure 7)
Name	Col.	Format	Comments:
AMS1	1-10	F10.0	Nominal inlet Mach number
ALP1	11-20	F10.0	Nominal swirl angle at hub (deg to axis)
DSH	21-30	F10.0	Boundary layer displacement thickness on hub wall (ft)

Name	Col.	Format	Comments:
DST	31-40	F10.0	Boundary layer displacement thickness on tip wall (ft)
ANH	41-50	F10.0	Power law exponent for hub boundary layer
ANT	51-60	F10.0	Power law exponent for tip boundary layer. For boundary layers of approximately 10 percent of inlet height, nominal values for DSH and DST are 0.0125 times inlet height and ANH, ANT equal to 7.0.

2xKLL Inlet Flow Cards Following Card 5 (Only if IOPT1=4)

Name	Col.	Format	Comments:
BINPUT(1,K)	1-10	F10.0	Fractional distance across duct Y
BINPUT(2,K)	11-j20	F10.0	Total pressure (lb/ft ² abs) P _o
BINPUT(3,K)	21-30	F10.0	Static pressure (lb/ft ² abs) P
BINPUT(4,K)	31-40	F10.0	Swirl angle to axis (deg) α
BINPUT(5,K)	41-50	F10.0	Total temperature (deg R) T _O

The first KLL cards describe the inlet flow. The second KLL cards describe the exit flow. If the exit flow is not known, KLL blank data cards must be used. If $\delta_{\rm H}^{\star}>0$ on Card 5, boundary layers are added according to Card 5.

Blade Row Data Card Following Card 5 (Only if I@PT #0)

This sequence of data cards is repeated for each blade row. This data must be consistent with the propeller input geometry.

Name	Col.	Format	Comments:
ZCLI	1-10	F10.0	Axial location of blade centerline
NBLADE	11-13	13	Number of blades
ISHAPE	14-16	13	Blade shape index

Name	Col.	Format	Comments:
NUM	17-19	13	Number of points defining blade segment boundaries
OMEGZ1	20-29	F10.0	Rotational velocity (rpm)
LROW	30-32	13	Blade row counter
NROW	33-35	13	Number of blade rows

Blade Row Geometry Cards

The blade row geometry cards are read in if the nacelle portion of the program is operating without the propeller portion.

NUM times the blade row geometry cards (root to tip) noted below, follow each blade row data card ($I\emptyset$ PT2 \neq 0, $N\emptyset$ PPF=0)

Name	Col.	Format	Comments:
CONST1(1,K)	1-10	F10.0	Blade radius (ft)
CONST1(2,K)	11-20	F10.0	Chord angle to blade face (deg)
CONST1(3,K)	21-30	F10.0	Chord (ft)
CONST1(4,K)	31-40	F10.0	Thickness/Chord
CONST1(6,K)	41-50	F10.0	Axial location at blade quarter chord (ft)

Arbitrary Strut Thickness Distribution (ISHAPE = 4)

Name	Col.	Format	Comments
KBLADE	1-10	110	No chordwise stations (KBLADE \leq 50)
Chordwise 1	ocation		
Name	Col.	Format	Comments:
X(K)	1-80	8F10.0	Chordwise location
A(K)	1-80	8F10.0	Thickness/maximum thickness distribution

2xKLL Strut Data Cards Following (IØPT5 # 0, IØPT2 = 3)

Name	Col.	Format	Comments:
AINPUT(1,K)	1-10	F10.0	Fractional distance across duct Y
AINPUT(2,K)	11-20	F10.0	Stagnation pressure (lb/ft ² abs) P _o
AINPUT(3,K)	21-30	F10.0	Static pressure (1b/ft ² abs) P
AINPUT(4,K)	31-40	F10.0	Swirl angle to axis (deg) α
AINPUT(5,K)	41-50	F10.0	Stagnation temperature (deg R) T _o
			The first KLL cards describe the inlet flow of the strut row. The second KLL cards describe the exit flow (see Card 2).

Card No. 6: Performance Point

If this card is left blank, the default values shown in parentheses are used.

Name	Col.	Format	Comments:
PRESO	1-10	F10.0	Inlet stagnation pressure (2117. $1b/ft^2$ abs)
TEMPO	11-20	F10.0	Inlet stagnation temperature (519, deg R)
ACI	21-26	F6.0	Clauser constant (0.016)
AKI	27-32	F6.0	Von Karman constant (0.41)
API	33-38	F6.0	Van Driest constant (26.0)
PRTI	39-44	F6.0	Turbulent Prandtl number (0.8)
PRLI	45-50	F6.0	Laminar Prandtl number (0.9)
CPR	51-60	F10.0	Specific heat at constant pressure (5997 ft^2/sec^2)
CVR	61-70	F10.0	Specific heat at constant volume (4283 ft ² /sec ²)

Name	Col.	Format	Comments:
VISCR	71-80	F10.0	Viscosity (0.37E-06 lb/sec ft^2) at Standard Conditions.
Card No. 7:	Wall Blee	d Card	
CDISH	1-10	F10.0	Discharge coefficient for holes (dimensionless) CDISH < 1.0
AHAS	11-20	F10.0	Ratio of hole area to surface area
TTP	21-30	F10.0	Plenum total temperature (°F)
PTP	31-40	F10.0	Plenum total pressure (psta)
XBF	41-50	F10.0	Wall distance - start wall bleed (ft)
XBL	51-60	F10.0	Wall distance - end wall bleed (ft)

Blade Force Card

NUM blade force cards following Card 6 (only if $I\emptyset PT2 \neq 0$ and $N\emptyset PPF \neq 0$). Repeat for each blade row.

Name	Col.	Format	Comments:
FRCI(N,1)	1-10	F10.0	Radial force/span
FRCI(N,2)	11-20	F10.0	Tangential force/span
FRCI(N,3)	21-30	F10.0	Axial force/span
N=1, NUM			

Description of Output

Title Page

The output presented on this page is self-explanatory except for the following variables

$$m_1 = \int_{r_H}^{r_T} g_B \rho U_s dr$$

$$a_1 = \int_{r_H}^{r_T} g_B dr$$

$$\bar{p}_1 = \frac{1}{m_1} \int_{r_H}^{r_T} g_B \rho U_s p_1 dr = PRES1$$

$$\bar{q}_1 = \frac{1}{m_1} \int_{r_H}^{r_T} g_B \rho U_g (1/2 \rho U_1^2) dr = DYNP1$$

$$\bar{M}_{1} = \frac{1}{m_{1}} \int_{\mathbf{r}_{H}}^{\mathbf{r}_{T}} \mathbf{g}_{B} \rho \ \mathbf{U}_{s} \mathbf{M}_{1} d\mathbf{r} = MACH1$$

$$WFL \phi = 32.2 N_B^{m_1}$$

$$USR = m_1/\rho_r/a_1 = U_r$$

REY =
$$r_r U_r/\rho_r/\mu_r$$

Wall Conditions Page

This page presents a table of Z, r_T , m_T , T_T , r_H , m_H , T_H which was calculated in Subroutine GDUCT.

Blade Geometry Page (If IØPT2 ≠ 0)

This page presents a table of blade geometry properties at each discrete point of the lifting line. These properties are radius r_{CL} , stagger angle α_{SL} , chord C_L thickness T/C, and axial location Z_{CL} . Also, the number of blades per row and the blade shape are printed.

Gap Average Inviscid Flow Page

This page presents the solution for the inviscid flow variables across the duct at selected stations depending on IØPT4. A table of values for Y, P_0 , P, α , T_0 , T, M, U, U_s , U_z , U_r , speed of sound a, and P are given. Also printed is the pressure coefficient at the inner wall where

$$c_{PW} = \frac{2}{\gamma M_{\infty}^2} \left[\left(\frac{2 + (\gamma - 1) M_{\infty}^2}{2 + (\gamma - 1) M^2} \right)^{\frac{\gamma}{\gamma - 1}} - 1 \right]$$

where M_{∞} = freestream Mach number.

Inviscid Nacelle Drag Page

This page prints the nacelle pressure drag calculation of the nacelle.

Nacelle Wake Corrections Page (If IØPT2 ≠ 0)

This section indicates the location of the propeller lifting line in the (s, n, ϕ) coordinate system. The flow conditions of the lifting line are also presented. These problems are U_{r_L} , U_{z_L} , ρ_L , a_{z_L} , $\sin(T)$, and $\cos(T)$ where $T = \theta$.

Gap Average Viscous Flow Page

This page presents the solution for the flow variables across the duct at selected streamwise stations depending on IØPT4. A table of values for Y, U_S , U_{ϕ} , α , Π , θ , M, Π_O , θ_O , C_p are given where

$$c_p = (\pi - \pi(0,0))/\bar{q}_1$$

In addition, the wall values for Z, m, $c_{f\phi},$ $c_{fs},$ Q are printed, where $c_{f\phi}$ and c_{fs} are defined by

$$c_{f\phi} = \tau_{n\phi}/\bar{q}_1$$

$$C_{fs} = \tau_{ns}/\bar{q}_1$$

The one-dimensional characteristics of the flow are also given: area ratio A/A_1 , Mach number (isentropic flow) M_1 , incompressible and compressible flow pressure coefficient CPINC and CPCØMP.

Wall Surface Conditions Page

This output page presents a summary of the wall conditions along the length of the duct. This includes Z_H , C_{PH} , C_{FH} , T_{WH} , A_{SH} , Q_{SH} , Z_T , C_{PT} , C_{FT} , T_{WT} , A_{ST} , Q_{ST} .

Wall Radiation Summary Page

This output page presents a summary of information which is useful in computing radiation effects. The wall temperature T_{WH} , T_{WT} , on a differential area dA_H , dA_T , located at point (Z_H, r_H) , (Z_T, r_T) with the sin (wall angle) is given.

Viscous Nacelle Drag Page

This page prints the nacelle pressure drag, pressure drag coefficient, friction drag, and friction drag coefficient of the nacelle.

IDBGØ Pages

Intermediate printouts which were used to debug the program may be called by setting the debug options IDBGØ=1. IDBGØ may be specified on the option input card. The user should refer to the program listing in each subroutine to determine the printout variables.

Debug Print Out	Subroutine - Purpose
IDBGl	TURB - Debug
IDBG2	FCØRCT - Debug
IDBG3	FLØWIN - Debug
IDBG4	Not Used
IDBG5	SØLVI - Debug
IDBG6	CØØR - Debug
IDBG7	FØRCE - Debug
IDBG8	MINVRT - Debug
IDBG9	SMØØTH - Debug
IDBG10	GDUCT - Debug
IDBG11	Not Used
IDBG12	SØLVI - Debug #2
IDBG13	CKINPT - Debug
IDBG14	Set Number of Streamlines
IDBG15	Automatic Step Size Debug, Number of Streamlines Calculated (default = 25)
IDBG16	Suppress Freestream Instability
IDBG17	Not Used
IDBG18	GEØMCL - Debug
IDBG19	WAKCØR - Debug
IDBG20	PERFNA and PERFN2 - Debug

Description of Failure Modes

The nacelle portion of the computer program can diagnose the cause of certain failure modes for this portion of the analysis and a printed message of the following form is given.

DIAGNOSTIC NO. XX FOR ANNULAR DIFFUSER DECK

The number XX identifies the type of failure from the list below.

1) IOPT3 OUTSIDE RANGE OF ALLOWABLE DUCT OPTIONS

This failure occurs in Subroutine ALTMN. The input option must be between $1 \le I\text{ OPT}3 \le 6$.

2) No solution exists in AMFOR

This failure occurs in Subroutine AMFOR. This subroutine solves the Mach number function

$$N = M \left(1 + \frac{\gamma - 1}{2}\right)^{1/2} / (1 + \gamma M^2)$$

for M given N. This function has a maximum at M = 1. Hence

$$N(1) = [2(1 + \gamma)]^{-1/2}$$

Solutions do not exist for values of N > N(1).

3) MASS FLOW EXCEEDS THE MAXIMUM MASS FLOW POSSIBLE

This failure occurs in Subroutine AMINLT which solves the Mach number function

$$N = M \left(1 + \frac{\gamma - 1}{2} M^2\right)^{-\frac{\gamma + 1}{2(\gamma - 1)}}$$

for M given N. This function has a maximum for M = 1 given by

$$N(1) = \left(\frac{\gamma+1}{2}\right)^{-\frac{\gamma+1}{2(\gamma-1)}}$$

corresponding to choked flow.

- 4) Not Used
- 5) FOR BEST RESULTS ADD A STRAIGHT ANNULAR CHANNEL INLET

This diagnostic occurs in Subroutine CØØRl. In the construction of the duct coordinates, it is assumed that the inlet has no curvature as shown in figure 8. This is not a fatal error because small inlet curvatures may be tolerated. In order to avoid problems, the best procedure is to add a straight annular section to the inlet as shown by the dotted line in figure 8.

6) PROGRAM ASSUMES INLET FLOW HAS CURVATURE

This diagnostic occurs in Subroutine COORI. Same as diagnostic 5.

7) WALL CURVATURE IS TOO LARGE AT STATION X.

This diagnostic occurs in Subroutine CØØRl usually with bad input data describing the duct contour resulting in a numerically discontinuous change in wall curvature shown in figure 2.

- 8) Not Used
- 9) GREATER THAN 1. PERCENT NORMAL PRESSURE GRADIENT ERROR RECALCULATE STATIC PRESSURE

This diagnostic occurs in Subroutine ERPIN. This subroutine integrates the radial equilibrium equation

$$P_{T} - P_{H} = \gamma M_{r}^{2} \int_{0}^{1} \left[\frac{-\rho}{V} \frac{\partial V}{\partial n} U_{s}^{2} + \frac{\rho}{R} \frac{\partial R}{\partial n} U_{\phi}^{2} \right] \frac{d\eta}{XY}$$

and compares $(P_T - P_H)$ to that computed for the input inlet flow $(P_T - P_H)_1$. If the error given by

$$E = \left[1 - \frac{P_T - P_H}{(P_T - P_H)_1}\right]$$

is greater than 0.01, the input initial static pressure distribution is replaced by the above pressure equation and the flow is recalculated.

10) Not Used

11) MASS FLOW REQUIRED EXCEEDS MAXIMUM MASS FLOW POSSIBLE

This diagnostic occurs in Subroutine CKINPT. Choked flow may exist in the duct, and this diagnostic will be printed out. The weight flow must be reduced.

12) PRESSURE RISE EXCEEDS PERMISSIBLE PRESSURE RISE

This diagnostic occurs in Subroutine CKINPT. This error occurs with the failure by the deck to properly set up flow entering duct. Check input for errors.

- 13) Not Used
- 14) BOUNDARY LAYER TOO THIN FOR MESH SPACING

This diagnostic occurs in Subroutine FLØWIN. The viscous flow calculation requires a finite initial boundary layer thickness. In addition, it requires enough mesh points to describe the inlet boundary velocity profile. The deck assumes arbitrarily that at least five mesh points are required. Thus, if this diagnostic occurs, increase the number of mesh points, KL, increase the mesh distortion parameter, DDS, or increase the assumed inlet boundary layer thickness. Setting DDS = 0 automatically sets the mesh distortion parameter for turbulent flow.

15) TOTAL PRESSURE IS LESS THAN STATIC PRESSURE

This diagnostic occurs in Subroutine FLØWIN. A check is made on the input data for IØPT1 = 4, to be sure that $P_T > P$.

16) INPUT DATA NOT IN RADIAL EQUILIBRIUM CORRECTIONS APPLIED TO STATIC PRESSURE

This diagnostic occurs in Subroutine FLØWIN. A check is made of the input data for IØPT1 = 4. If the data is not in radial equilibrium, it is assumed that the static pressure is in error, and the other inlet data is correct. Then the static pressure is computed from

$$\frac{d\Pi}{d\eta} = 2 \frac{\gamma}{\gamma - 1} \left[\frac{-1}{XV} \frac{\partial V}{\partial n} \cos^2 \alpha - \frac{1}{XR} \frac{\partial R}{\partial n} \sin^2 \alpha \right] \Pi \left(\begin{pmatrix} \Pi_0 \\ \Pi \end{pmatrix} \right)^{\frac{\gamma - 1}{\gamma}} - 1 \right)^{1/2}$$

with the ID wall static pressure as a boundary condition.

17) INPUT DDS MUST BE SPECIFIED

This diagnostic occurs in Subroutine FNØRM. At this time there is no algorithm to automatically select the mesh distortion parameter DDS for laminar flow.

18) BLADE DATA ERROR IN CKINPT ROUTINE

This diagnostic occurs in Subroutine CKINPT. Blade data input is incorrect. It must be rearranged with increasing Y.

19) NO UNIQUE SOLUTION FROM MINVRT

This diagnostic occurs in Subroutine MINVRT. If the matrix set up to solve the turbulent flow solution is singular, no solution can be obtained. This may occur from numerical truncation error problems.

20) LEADING OR TRAILING EDGE INDEX OF STRUT OUT OF RANGE

This diagnostic occurs in Subroutine SLETE. In order to compute blade forces, the strut must be wholly contained within the duct length. This problem may be eliminated by extending the duct length in a realistic manner as shown in figure 10.

- 21) Not Used
- 22) Not Used
- 23) BOUNDARY LAYER OVERLAP OR TOO LARGE

This diagnostic occurs in Subroutine FLØWIN. For internal flow, the sum of the two boundary layer thicknesses must be less than the duct inlet height. Check input data.

24) SET TOTAL TEMPERATURE, PRESSURE; ANGLE TO VALUE AT EDGE OF BOUNDARY LAYER - CORRECTIONS APPLIED

This diagnostic occurs in Subroutine FLØWIN. For IØPTl = 4, calculated boundary layer profiles are matched to experimentally measured inlet flow. Good matching occurs only if the inlet flow data shows constant $P_{\rm T}$ in the boundary layer region as shown in figure 11 by the dotted line.

25) TRUNCATION ERROR CANNOT BE REDUCED BY STEP SIZE

This diagnostic occurs in Subroutine SØLVI. When the step size KDS is not specified, it is automatically selected by checking the truncation error at each step. When an instability occurs, the program attempts to reduce the truncation error by reducing the streamwise step. If the truncation error cannot be reduced below a minimum value, the calculation stops with this error message.

26) NUMERICAL INSTABILITY

This failure occurs in Subroutine FCØRCT. Temperature and pressure are checked for negative values. Calculation stops with this error.

- 27) Not Used
- 28) Not Used
- 29) SOLUTION REQUIRES REVERSE FLOW, INCREASE WFLOW

This diagnostic occurs in Subroutine CKINPT. For flows with radial pressure gradients, there is a minimum weight flow below which reverse flow exists. This is corrected by increasing weight flow.

- 30) Not Used
- 31) Not Used
- 32) NORMAL COORDINATE OF LIFTING LINE IS NEGATIVE BLADE DATA DOES NOT CORRESPOND TO GEOMETRY OF DUCT

This diagnostic occurs in Subroutine GEØMCL. Blade geometry was inputted incorrectly to program. This will produce a fatal error.

DETAILED PROGRAM DOCUMENTATION

This section is intended to provide sufficient documentation to the user so that the internal operation of the program can be related to the analysis presented in the technical report (Reference 1). It is assumed that the user desiring this information has the required background in aerodynamics and computational fluid dynamics or access to the required technical support to understand the pertinent aspects of the program code as they relate to the theory.

This section contains two major subsections, the propeller solution portion and the nacelle solution portion, respectively. These subsections contain, (1) an alphabetic list of the subroutines and external functions and a brief description of each, (2) a more detailed description of each subroutine in alphabetical order and, (3) a description of the label common blocks and variables used in alphabetical order. Flow charts and figures are provided in the subroutine descriptions where deemed necessary to understand the program structure and technical features.

The subroutines and external functions are all described with the same format using the name of the subroutine with its argument list given as a title. A list of options and FORTRAN symbols used only in the named subroutine are then given. Any special or additional theory used in the subroutine is presented but well known numerical methods are not described.

Propeller Program

Within this section brief descriptions of the subroutines used in the lifting line portion of the analysis are presented followed by the labeled common blocks used in the analysis. The objective of a particular subroutine is noted, along with a list of symbols which are not in labeled common blocks and which are felt to be necessary for the understanding of the particular subroutines in question. These lists of symbols have been kept brief. A brief explanation of the theory is also included for selected subroutines. Generally, descriptions of the options which control the flow of a particular subroutine are also included. The subroutines are presented in alphabetical order. The labeled common blocks used in the analysis are also listed in alphabetical order with brief descriptions of each variable referenced. Brief flow diagrams of the major computational subroutines (GCWAKE, PRØP, SØLVEL and SØLVEN) are included in the description of each of these subroutines.

List of Subroutines

Name	Description
AFFIDC	Calculate blade activity factor and integrated design lift coefficient
AF65A	Calculate cascade airfoil data
AIRFL	Control type of airfoil data to be used
AIRFLT	Airfoil package control routine
AIRFMN	Main airfoil package control routine for inter- facing interpolation, cascade data and isolated airfoil data
AIR23	Control lift and drag calculations for airfoil type number 23
AIR24	Control lift and drag calculations for airfoil type number 24
ASSOC	Test input variable label
AVECTR	Create a column vector from scalar input values
BILINE	Interpolation routine
BLDGEØ	Calculate blade geometry

<u>Name</u>	Description
CALCGC	Calculate geometric influence coefficient
CALWAK	Control flow of wake geometry calculations
CASARF	Control routine for analytical cascade correction
CASDAT	Control selection of type of cascade data
CHKINP	Check input parameters for obvious errors
CLFACT	Calculate lift curve slope factor
сфмвик	Calculate effective displacement of bound vortex
CPITER	Calculate blade angle for next power performance iteration
CR♥SSP	Calculate cross product of two vectors
CSCD1	Cascade airfoil data subroutine (reference)
CTITER	Calculate blade angle for next thrust performance iteration
D Ø TP	Calculate dot product of two vectors
DRAG24	Calculate drag coefficient for airfoil type number 24
DZRØAL	Calculate lift offset due to cascade influence
ELIP2	Approximate Elliptic Integral of second kind
FINAIR	Control final airfoil data calculation
FSQRT	Calculate magnitude of three component vector
FVECTR	Calculate blade forces
GAUSS	Solve system of simultaneous linear equations (direct method)
GCBØUN	Calculate geometric influence coefficients for bound vortex

Name	Description
GCCØRE	Calculate vortex core model
GCFILA	Calculate geometric influence coefficient for trailing vortex filament
GCWAKE	Control basic flow of geometric influence coefficient calculations
G400LD	Calculate lift and drag using linearized airfoil data
INDVEL	Calculate induced velocities
INTIAL	Initialize data and print out selected quantities
ISØAFL	Control selection of isolated airfoil data type
ISØARF	Control isolated airfoil data calculation
LDDATA	Read in propeller data
LIFT24	Calculate lift coefficient for airfoil type number 24
LINEAR	Linear interpolation algorithm
LINTER	Control interpolation of data arrays
MVMULT	Multiply single dimension vector with two dimensional vector
MCØNE	Calculate Evvard Tip Relief Correction
NSTACØ	Calculate Mach cone intersection station index
PAGE	Advance output device to new page
PCHØUT	Punch spanwise distributions of aerodynamic quantities
PERFØR	Calculate propeller performance
PERIØD	Calculate propeller periodicity quantities

Name

Description

PERPRT

Print spanwise distributions of aerodynamic and

geometric quantities

PHICAL

Calculate wake azimuth information

PLABEL

Print a label

PN

Calculate a special function

PRØP

Main propeller subroutine

PRDATA

Print label and vector

PRG400

Write output quantities for aeroelastic response

analysis (reference 12)

PRINTP

Print label and vector

PRTF15

Print label and floating point variable vector,

maximum of 15

PRTF16

Print label and floating point variable vector,

maximum of 16

PRTGCM

Print geometric influence coefficient matrix

PRTI15

Print label and integer index for maximum of 15

integers

PRTI16

Print label and integer index for maximum of 16

integers

PRTLF

Print label field and single floating point

variable

PRTLI

Print single integer and label

PRTRZW

Print radial or axial wake coordinates

PRWZW

Print wake geometry

RDSCAL

Controls read of scalar inputs

RDVECT

Controls read of vector inputs

Description Name Reads a vector string and outputs it to printer READWR RELAXG Relaxation subroutine for circulation solution Read geometric influence coefficient in matrix REDMAT form from disc Input wake geometry from cards RWZWIN Calculate classical or modified classical wake RWZW1 Calculate generalized wake RWZW7 Special function subroutine for cascade data, SBFUNC reference 11 Set up geometric influence coefficient matrix **SETMAT** Solve system of simultaneous equations (indirect SIEDEL method) Control linearized aerodynamic solution SØLVEL Control nonlinear aerodynamic solution SØLVEN SØLVIT Control solution procedure Interpolate with spline fit SPLIN3 Convert design lift coefficient to equivalent STARC camber angle Transfer data from one vector to another STØRE SWPCØR Calculate conical flow theory tip loss Control blade pitch iteration THITER Extrapolate or interpolate on blade pitch angle TITER versus C_T or C_D

Print title information

Interpolation routine

TITLE

UNBAR

Name

Description

UNINT

Interpolation routine

VECTØR

Compute velocity and velocity related quantities

including induced velocities

VVECTR

Compute velocity and velocity related quantities

including induced velocities

WAKMØD

Modify wake geometry due to nacelle influence

WRITGC

Write geometric influence coefficient to disc

ZERØAL

Calculate zero lift angle

ZERØGC

Set influence coefficient matrices to zero

Description of the Subroutines Used in the Propeller Portion

Subroutine AFFIDC (ITØT, DECL, BØD, SCØ, AF, CLI, X, XB, R)

Object

To calculate the blade activity factor and integrated design lift coefficient.

List of Symbols

AF Blade activity factor

CLI Integrated design lift coefficient

Theory

The activity factor is defined as

AF =
$$\int_{SCO}^{1} \left(\frac{c}{D}\right) \left(\frac{x}{R}\right)^{3} d\left(\frac{x}{R}\right)$$

where C/D is the blade chord to propeller diameter ratio and x is the spanwise location along the blades.

The integrated design lift coefficient is

CLI = 4(1-sco)
$$\int_{sco}^{1} c_{\ell_d} \left(\frac{x}{R}\right)^2 d\left(\frac{x}{R}\right)$$

where SCØ is the root cutout and $\text{C}_{\mbox{$\ell$d}}$ is the section design lift coefficient.

Subroutine AF65A (Argument List)

Object Compute airfoil lift and drag from cascade correlations.

List of Symbols

Arugment List

AMACH	M ₁	,	Upstream Mach number	(INPUT)
ALP	α [†]	,	Angle of Attack	(INPUT)
TM	t	,	Maximum Airfoil Thickness	(INPUT)
THETA	θ	,	Pitch angle	(INPUT)
СВ	$C_{\mathbf{B}}$,	Design Lift Coefficient	(INPUT)
SØLD	g/c	,	Cascade Solidity	(INPUT)
CL ⁽¹⁾	C _{T.}	,	Lift Coefficient	(OUTPUT)
CD ⁽¹⁾	$c_{\mathbf{L}}^{\mathbf{D}}$,	Drag Coefficient	(OUTPUT)

Cascade Correlation

ALPS	α_{s}	,	Stagger Angle (degrees)
ALP1	α_1	,	Inlet Air Angle (degrees)
PHIC	φ _c	,	Camber Angle
AKDELS	kδs	,	Shape Parameters
AMSIG	M_{σ}	,	Camber Parameter
В	b	,	Exponent
DEL	δ_{oo}	,	Deviation Angle, $\phi_c = 0$
AKDELT	κ _{δt}	,	Thickness Parameter
DELO	δ	,	Deviation Angle (degrees)
AIOO	ioo	,	Incidence Angle, $\phi_c = 0$ (degeees)
AN	n	,	Power
AKIT	K _{it}	,	Thickness Parameter

AIMO	$i_{ exttt{mo}}$,	Minimum Loss Incidence Angle (degrees)
D	D	,	Diffusion Parameter
ZLØSM	$z_{ m sm}$,	Minimum Loss Coefficient
AINCO	i	,	Incidence Angle (degrees)
ZLØSS	z _s	,	Loss Coefficient
DALST	3	,	Stall Angle Correction
ALPH2	α_2	,	Exit Air Angle
RHØCX	(ρυ _α) ₂ /(ρυ _α) ₁	,	Mass Flow Ratio

Additional Symbols

$(\alpha_2, z_s) \rightarrow (c_L, c_D)$

Tl	T_{01}/T_{1}	,	Upstream Total Static Temperatures
AMACH2	M_2	,	Downstream Mach Number
T2	T_{02}^{-}/T_{2}	,	Downstream Total Static Temperature
PO2PO1	P_{02}/P_{01}	,	Total Pressure Ratio
P2P1	P_2/P_1	,	Static Pressure Ratio
FS	FS	,	Streamwise Force Coefficient
FP	<u>F</u> D	,	Tangential Force Coefficient
WS	Ws	,	Streamwise Induced Velocity
WP	w _p	,	Tangential Induced Velocity
ALIND	$\alpha_{\mathbf{i}}^{\mathbf{P}}$,	Induced Flow Angle
ANG	α	,	Angle of Attack

Theory See section of reference l entitled: "Cascade Airfoil Data".

Subroutine AIRFL

Object Controls which type of airfoil data will be used, either isolated data or isolated data corrected for cascade effects.

Options IDL = 0 print title

IDL # 0 obtain airfoil data

ICASDE = 0 obtain isolated airfoil data

ICASDE = 1 obtain isolated airfoil data corrected for cascade
 effects

Subroutine AIRFLT (IQ, IFQ, IDQ, ICASDQ, ALPHQ, THETAQ, TAUBQ, ZMQ, DECLQ, HØBQ, CL3Q, CDQ)

Object

Control combinations of airfoil data characteristics to be obtained.

Options

IDQ = 0 print title

IDQ = 1 obtain C_L and C_D IDQ = 2 obtain C_{T} only

Subroutine AIRFMN (IC, IFL, I, NSTAT, RADCAS, RDTRAN, XMTIP, RSC, SMACH, THK, THETAG, DESCL, SIGMAX, TAU, ALP, CL, CD, FTRAN1, FTRAN2, TAUEXP)

Object

Control calculation of airfoil and cascade data and the interpolation between isolated and cascade data when requested.

Options

NG400 # 0 use linearlzed airfoil data from aeroelastic response analysis (reference 12)

ICAS = 0use isolated airfoil data

ICAS # 0 use cascade data

If cascade data is used, interpolation between cascade data and isolated data is controlled by value of RDTRAN.

Argument List

IC

controls lookup of C_{ℓ} alone or C_{ℓ} and C_{d} , or output of title information IFL airfoil type index blade station index NSTAT blade station limit for tip loss model correction outermost radial location for direct cascade data RADCAS application outermost radial location for direct cascade/isolated airfoil RDTRAN interpolation procedure application XMTIP tip Mach number

RSC radial station SMACH section Mach number THK section thickness ratio

THETAG section geometric pitch angle with the plane of rotation

DESCL section design lift coefficient

SIGMAX section solidity

TAU section gap to chord ratio
ALP section angle of attack

CL section lift coefficient
CD section drag coefficient

FTRAN1 section cascade/airfoil interpolation scaling function value

for C_e

RTRAN1 section cascade/airfoil interpolation scaling function value

for C_d

TAUEXP exponent used in interpolation function

Subroutine AIR23

Object Calculate Manoni airfoil characteristics from internally tabulated data bank using transonic simularity rules.

Options IDL = 1 obtain C_L

IDL = 2 obtain C_D

IDL = 3 dummy feature

Theory

Using transonic simularity rules, empirical data has been reduced to a set of tabulated coefficients which can be used to reconstruct the airfoil characteristics (${\rm C_L}$ and ${\rm C_D}$) for a wide range of parameters.

Subroutine AIR24

Object Control selection of calculation of lift or drag coefficients for the published NACA data.

Options IDL = 1 obtain lift

IDL = 2 obtain drag

IDL = 3 dummy feature

Subroutine ASSØC (*,S,FDUM,S1,S2,X)

Object

To transfer input value of a dummy parameter to its correct allocation if the input label matches one in the argument list. If transfer is made, returns to labeled statement in calling routine.

Argument List

S input label as read

FDUM input dummy parameter

S1,S2 input label list

X allocation for transfer of dummy parameter

Subroutine AVECTR (Al,A2,A3,V)

Object

load three scalars into a vector of length three.

Argument List

Al,A2,A3 input scalars V output vector

Subroutine BILINE (T,I,XI,YI,Z,K)

Object

Bivariant or univariant interpolation on input vectors using various interpolation options.

Options

T(I + 1) = 0 use first table value

T(I + 1) = 1 use linear interpolation

T(I + 1) = 2 use third order interpolation

T(I + 3) = non zero, requests bivariant interpolation

Argument List

T = vector with interpolation data

I = starting location for data table

XI = input x for interpolation

YI = input y for interpolation

Z = output value

K = error code

Theory

Using either bivariant or univariant data, this subroutine will interpolate on the data using standard interpolation schemes as noted above - see listing for more detail.

Subroutine BLDGEØ (IC)

Object

Rotate input lifting line segment geometry to the requested blade angle about the pitch axis and compute the inflow station geometry for this blade angle. Print the table of the lifting line segment and center coordinates.

List of Symbols

IC = print control flag

DRØP = angle between the coordinate origin (hub center) and the axial displacement for the coordinate point in question for blade element center.

DRØØPB = angle between the coordinate origin (hub boundary) and the axial displacement for the coordinate point in question for the blade element boundary.

Theory

Standard geometric operations applied to the input geometry to rotate the coordinates to a different blade angle position.

Subroutine CALCGC (Argument List)

Object

To calculate the geometric influence coefficients for a selected field point in the cylindrical coordinate system.

Options

NCBWAK = 0 no compressibility effects on the bound vortex induced velocity calculation

NCBWAK = 1 compressibility effects included on the bound vortex induced velocity calculations

NCBWAK = 2 compressibility effects included in the bound vortex induced velocity calculation, except for the calculation for the particular blade bound vortex system on itself

IJUNK = 0 no vortex core model

IJUNK = 1 vortex core model used

IDEBUG = 0 no intermediate printout

IDEBUG = 1 intermediate printout

NCØMPRS = 0 no wake compressibility model

NCØMPRS = 1 wake compressibility model used

NCFLØW = 0 wake compressibility applied only on vortex segments from inflow sections with Mach numbers greater than 1.0

NCFLØW = 1 relaxes the above restriction

Argument List

NCØMP = compressible wake option switch

IBIP = blade index

LLINK = blade position index

NBX = number of blades

ITØT = number of blade element segments

LTØT = number of blade positions

KTØT = number of blade element boundaries

MTØT = number of filament segments

KTRUCT = number of filaments for tip vortex rollup model

JTRUCT = wake rollup truncation angle JTRUCI = inboard wake truncation angle DPSIBR = azimuth interval in radians

FS = sign (± 1.0) for axial induced velocity calculation

RSCI = radial location of field point

PHICI = lag angle of field point

ZSCI = axial location of field point CPD = cosine of blade element angle SPD = sine of blade element angle

RSBB = blade element boundary radial position

ZSBB = blade element boundary axial position

PHIBB = blade element boundary azimuth position

CØSLB = blade element boundary cosine of azimuth position SINLB = blade element boundary sine of azimuth position

CMACH = local blade element Mach number
MU = local blade element advance ratio

DTIPM = blade tip Mach number VØRCØR = vortex core radius

Theory

Using the Biot-Savart relationship for the geometric influence coefficients for straight line vortex segments (see Appendix A of reference 1), these coefficients are calculated, summed and stored in cylindrical system form. See the technical approach for the propeller analysis in reference 1.

Subroutine CALWAK (IWK)

Object

Control selection of wake models

Options

IWAK \emptyset P = 0 classical wake geometry IWAK \emptyset P = 1 classical wake geometry

IWAKØP = 2 input geometry

IWAKOP = 3 generalized wake geometry

NACWAK # 0 modify wake geometry by nacelle influence

IPRØPT # 0 print wake geometry

Subroutine CASARF

Object

Controls the calculation procedure for the computation of the isolated airfoil data corrected for cascade effects.

Options

IDL = 1 calculate C_L and correct for cascade influence

IDL = 2 calculate C_D IDL = 3 dummy feature

List of Symbols

CLKFAC = cascade correction scaling factor

THETAZ = geometric blade angle corrected for camber and angle of zero lift

Theory

The lift coefficient is corrected for cascade effects by applying an analytical correction for the cascade influence on flat plates. The details of this correction are presented in reference 1.

Subroutine CASDAT (Argument List)

Object Control selection of cascade data source.

Options ICAS = 0 terminate execution of code

ICAS = 1 cascade data using correlation from reference 13

ICAS = 2 cascade data using model of reference 11

Argument List

ICAS = option switch for type of cascade data

MACH = local section Mach number

AL = local section angle of attack

THK = local section thickness ratio

THET = local section blade angle

DESCLP = local section design lift coefficient

SIG = local section solidity ratio

CL = local section lift coefficient

CD = local section drag coefficient

Subroutine CHKINP

Object

To check input data for correct input values on selected items and make sure items that are necessary for successful execution are input.

Subroutine CLFACT (THETA, TAUB, CLKFAC)

Object

Obtain tabled value of lift curve slope scaling factor for input parameters.

List of Symbols

THETA = geometric blade angle corrected for camber and angle of

zero lift

TAUB = gap-to-chord ratio

CLVFAC = lift curve slope scaling factor

Theory

Table of data for the lift curve slope scaling factor was derived analytically for flat plates by Weinig. The table of data was obtained from reference 4.

Subroutine COMBWK (Argument List)

Object

To compute an effective axial displacement correction on the bound vortex location for incorporating the phase shift of the induced influence of the bound wake on an inflow station.

Argument List

RA = radial location of the midpoint of a bound vortex segment

RB = radial location of the inflow station

DZ = axial location of a bound vortex segment

MU = flight speed divided by tip speed

DTIPM = tip Mach number

DPSI = azimuthal position of bound vortex segment

Z = effective axial displacement

PHI = effective phase angle

Theory

The first real positive root of a transcendental equation is solved by a simple root searching algorithm and a Newton-Raphson iteration procedure. This root represents an effective phase angle associated with the finite delay time for a signal to reach an inflow station point if it originally emanated from a bound vortex source inside a zone of silence of a Mach cone.

Subroutine CPITER (Argument List)

Object

To calculate either a first guess on blade angle or subsequent iterations values for the blade angle when the power performance iteration feature is requested.

Options

NCP = 1 obtain first guess from tabled values

NCP = 2 obtain second value from one of two methods

NCP = 3,...,10 obtain all subsequent values by linear interpolation or extrapolation from previous iteration information

DPDT = 0.0 for NCP = 2 use a new blade angle of ±1.5 degrees from the first iteration value

DPDT # 0.0 for NCP = 2 use DPDT as the linear slope to define the next blade angle

Argument List

ITOT = number of blade elements

BL = number of blades

ZJI = advance ratio

RSC = inflow station segment radial centers

RSB = inflow station boundary radial locations

DESCL = design lift coefficient

BØD = chord over diameter ratio

CPWANT = requested power coefficient

DPDT = input linear slope of the power coefficient versus

blade angle relationship

RAD = blade radius

Theory

Using standard interpolation and extrapolation techniques, the blade angle for each iteration of the power performance iteration is determined. For the first iteration tabled values are used if requested and for the second iteration one of two methods can be used to determine the new blade angle. All subsequent iteration values are obtained using linear extrapolation or interpolation based on previous iteration information.

Subroutine CRØSSP (V,A,R1,R2,R3)

Object

Calculate cross product of two vectors and place results in three scalars.

Subroutine CSCD1 (IND,CB,TH,SOL,ST,RN,AM,ILF,SLF,CL,CD)

Object

Calculate cascade lift and drag coefficients from reference 13.

Argument List

IND = controls selection of airfoil type

CB = section camber

TH = section thickness ratio

SØL = section solidity

ST = section pitch angle

RN = Reynolds number (fixed at 500000)

AM = section angle of attack

CL = section lift coefficient

CD = section drag coefficient

Subroutine CTITER (CTWANT, DCTDT)

Object

To calculate either the first or all subsequent blade angles when the thrust iteration has been requested.

Options

- NCP = 1 use a fixed value of 60.0 degeees for the first guess
- NCP = 2 use one of the two methods to determine the second value
- NCP = 3,..,10 use linear interpolation or extrapolation based on the previous iterations to determine the next value
- DCTDT = 0.0 for NCP = 2 use a new blade angle of ±1.5 degrees from the first iteration value
- DCTDT # 0.0 for NCP = 2 use the value of DCTDT as the linear slope to define the next blade angle

Theory

Using standard interpolation and extrapolation techniques, the blade angle for each iteration of the thrust iteration cycle is determined. For the first iteration, a fixed value is used if requested and for the second iteration one of two methods can be used to determine the new blade angle. All subsequent iterations values are obtained using linear interpolation or extrapolation based on previous iteration information.

Subroutine DØTP (V,A)

Object

Calculate dot product of two vectors, each of length three.

Subroutine DRAG24

Object Cal

Calculate drag coefficient from the NACA airfoil data.

Theory

Using linear interpolation techniques applied to a set of tabulated airfoil drag coefficients which are functions of Mach number, angle of attack, thickness to chord ratio and design lift coefficient, the drag coefficient is found for a specified combination of the above parameters (reference 1).

Subroutine DZRØAL (THSTAR, TAUB, THETAT, DELAØL)

Object

Determine increment in angle of zero lift for cascade correction procedure.

Argument List

THSTAR = effective blade camber angle

TAUB = gap-to-chord ratio THETAT = effective blade angle

DELAØL = increment in angle of zero lift

Theory

Using trivariate interpolation techniques, the increment in the angle of zero lift is determined from a set of tabulated data for double circular arc aifoils (reference 5).

Subroutine ELIP2 (X)

Object

Calculate approximation for elliptic integral of the second kind.

Argument List

X = argument of approximation function

Subroutine FINAIR

Object

Control final calculation procedure for airfoil characteristics.

Options

IDEBUG = 0 no printout

IDEBUG > 0 printout of final values for the airfoil characteristics is requested

ICAS = 0 no cascade airfoil data is used

ICAS # 0 cascade airfoil data is used out to a requested radial location

Function FSQRT (X,Y,Z)

Object

Calculate magnitude of vector of components X, Y, and Z

Theory

 $FSORT = (X^2 + Y^2 + Z^2)^{1/2}$

Argument List

X,Y,Z = components of vector

FSQRT = resultant

Subroutine FVECTR

Object

Calculate components of blade forces at each blade inflow station.

Options

IDEBUG # 0 request printout of component forces

List of Symbols

ALFLC = lift force in the chordwise direction

ALFLN = lift force in the normalwise direction

ALFLS = lift force in the spanwise direction

ALFDC = drag force in the chordwise direction

ALFDN = drag force in the normalwise direction

ALFDS = drag force in the spanwise direction

Theory

Using a calculated blade section lift and drag coefficients and the appropriate aerodynamic quantities, the forces in the blade element coordinate system are calculated and these forces are transformed to the cylindrical coordinate system.

Subroutine GAUSS (Augument List)

Object

Solve a system of simultaneous linear equations in matrix form using a direct solution technique.

Argument List

NRØWM = row dimension of the coefficient matrix

N = number of rows and columns used in the matrix solution

A = coefficient matrix

B = constant vector and on output contains the solution vector

DET = mantissa of the value of the determinant in base ten

IDET = integer power to the base ten of the determinant

LSING = singularity flag

Theory

Using a standard Gauss-Jordan reduction method a system of simultaneous linear equations is solved and the determinant of the matrix is calculated.

Subroutine GCBØUN (RSC,CP,SP,ZSC,RSB,ZSB,PHIB,CØSLB,SINLB,CMACH,MU,TIPM,VCØR)

Object

Calculate geometric influence coefficients at a specified load point for the bound vortex segments which represent the propeller blade lifting line.

Argument List

RSC = radial position of load point at which induced influence is to be calculated

CP = cosine of azimuthal position of load point

SP = sine of azimuthal position of load point

ZSC = axial position of load point

RSB = radial location of bound vortex segment endpoints

PHIB = azimuthal position of bound vortex segment endpoints

CØSLB = cosine of azimuthal position of bound vortex segment endpoints

SINLB = sine of azimuthal position of bound vortex segment endpoints

CMACH = mach number of bound vortex segment endpoints

MU = advance ratio of propeller disk

TIPM = tip mach number of propeller disk

VCØR = vortex core radius

Theory

Uses the potential flow solution for the induced influence of a finite length straight vortex filament, formulated in a cylindrical coordinate system. See Appendix B, Volume I.

Subroutine GCCØRE (IB, IFILA, IDEBUG, IFLAG, RARB, ZAZB, RASQ, RBSQ, CP, DSCA, DSCA, VCØR)

Object

Tabulate induced influence of a vortex segment if the load point is within the core radius.

Argument List

IB = type of vortex segment indicator (bound or trailing)

IFILA = vortex segment number

IDEBUG = debug output trigger

IFLAG = flag

RARB = intermediate geometric quantity needed for the calculation, see Appendix B, Volume I

ZAZB = intermediate geometric quantity needed for the calculation, see Appendix B, Volume I

RASQ = intermediate geometric quantity needed for the calculation, see Appendix B, Volume I

RBSQ = intermediate geometric quantity needed for the calculation, see Appendix B, Volume I

CP = intermediate geometric quantity needed for the calculation, see Appendix B, Volume I

DSCA = intermediate geometric quantity needed for the calculation, see Appendix B, Volume I

DSCA = intermediate geometric quantity needed for the calculation, see Appendix B, Volume I

VCØR = vortex core radius

Theory

If the load point at which the induced influence due to a vortex segment is within a specified core radius, the induced influence is modeled by a solid body rotation model. This removes the singular behavior due to a purely potential flow vortex.

Subroutine GCFILA (K, NCØMPT, IBIWK, LBTØT, LLIWK, RSCI, CP, SP, ZSCI, KTRUCT, JTRUCT, JTRUCI, MTØT, KTØT, LTØT, CØSLB, SINLB, DTIPM, VØRCØR)

Object

Calculate geometric influence coefficients at a specified load point for the trailing vortex segments of a specified filament which represent the wake geometry.

Options

NCØMPT = 0 no compressible wake

NCØMPT # 0 use compressible wake

KTRUCT # 0 wake rollup model used beyond this filament index value

VØRCØR ≠ 0 vortex core option requested

Argument List

= vortex filament index

NCOMPT = option control for compressible wake model

IBIWK = blade index for wake

LBTØT = blade and rotor position index

LLIWK = rotor position index of wake

= radial position of load point RSCI

CP = cosine of azimuthal position of load point

= sine of azimuthal position of load point SP

ZSCI = axial coordinate of load point

KTRUCT = filament index defining boundary for tip vortex rollup model

JTRUCT = filament azimuth position index for wake truncation associated with tip rollup model

JTRUCI = filament azimuth position index for wake truncation for inboard wake

= number of segment endpoints MTØT

KTØT = number of filaments

= number of rotor positions LTØT

CØSLB = cosine of filament azimuth position at blade

SINLB = sine of filament azimuth position at blade

DTIPM = reciprocal of blade tip Mach number

VØRCØR = vortex core radius

Theory

Uses the potential flow solution for finite length straight vortex segment, formulated in a cylindrical coordinate system. See Appendix B, Volume I.

Subroutine GCWAKE

Object Controls flow of the geometric influence coefficient calculations. A flow diagram is presented in figure 12.

Options IWAKOP = 0 standard wake model (modified classical wake)

IWAKØP = 1 classical wake model
IWAKØP = 2 input wake geometry
IWAKØP = 3 generalized wake model

NACWAK # 0 obtain nacelle corrections for wake geometry

IPRØPT # 0 print wake geometry

Subroutine G400LD (I,ALPHA,CL,CD)

Object Calculate lift and drag airfoil characteristics obtained from an external source.

Argument List

I = blade segment index

ALPHA = section angle of attack
CL = section lift coefficient
CD = section drag coefficient

Theory

The lift and drag characteristics for each blade element segment are obtained from an external source by curve fitting a quadratic polymonial about the angle of attack at each station. The lift and drag are reconstructed in this subroutine for use in the solution procedure.

Subroutine INDVEL

Object Compute induced velocities.

Option IDEBUG # 0 print the calculated induced velocities

Theory Reading the stored geometric influence coefficients in a defined order from a disc, the induced velocities are calculated by multiplying and summing over the appropriate indices of the matrix quantities.

Subroutine INTIAL

Object To calculate selected data and printout initial input data.

Subroutine ISØAFL

Object Control selection of type of isolated airfoil data tables to use (Manoni or NACA).

Options IDL = 1 lift only

IDL = 2 drag

IDL = 3 dummy feature

IFL = 23 use Manoni data

IFL = 24 use NACA data

IFL < 23 or > 24 use Manoni data

Subroutine ISØARF

Object Control the flow of isolated airfoil data module.

Options IDL = 0 return to calling routine

IDL = 1 compute lift

IDL = 2 compute drag

Subroutine LDDATA

Object Read in required initial propeller input data and calculate selected data from input quantities.

Subroutine LIFT24

Object Calculate lift coefficient from tabulated airfoil data tables containing the NACA data.

Theory

Using linear interpolation techniques this subroutine computes the lift coefficient from a table of NACA airfoil data which is a function of Mach number, angle of attack, design lift coefficient and thickness to chord ratio (reference 1).

Subroutine LINEAR (Argument List)

Object

Interpolate and extrapolate linearly on an input set of data.

Argument List

NW = print output file number

N = number of data points in the interpolation vectors

XIN = independent data vector

YIN = dependent data vector

XØUT = requested interpolation point

YØUT = interpolated value

LØFF = interpolation flag

Theory

Simple linear interpolation algorithm; if off scale on the low or high end, the flag is set (1 or 2 respectively) and the boundary slope is used to extrapolate to the requested interpolation point.

Subroutine LINTER (Argument List)

Object

Control the interpolation of selected data arrays from input interpolation tables.

Options

NERR = 1 use lower boundary value NERR = 2 use upper boundary value

Argument List

N = number of data points in the interpolation vector

K = number of requested interpolation points

XIN = independent interpolation vector

YIN = dependent interpolation vector

X = vector of requested interpolation points

Y = vector of interpolated values

Subroutine MCØNE (Augument List)

Object

Calculate Evvard Tip Relief Correction.

Options

NEVARD = 0 no correction

NEVARD = 1 used tabled values

NEVARD = 2 use equation

Argument List

NEVARD = option control for method of calculation

IP = propeller index

L = propeller position index

RSC = radial location of inflow station

C = chord

R = propeller radius

ITØT = number of inflow stations

CNSECT = fraction of chord
XMTIP = tip Mach number

NSTAT = station index for boundary for Mach cone intersection

XKCØNE = tip relief correction vector

RTIP = tip radius

Theory

See section of reference l entitled: "Evvard Tip Relief for Propellers".

Subroutine MVMULT (V,M,R1,R2,R3)

Object

Multiply a three by three matrix by a vector of length three. Store the result in three separate scalars.

Argument List

V = vector

M = matrix

R1,R2,R3 = resultant scalars

Subroutine NSTACØ (Argument List)

Object

Calculate Mach Cone intersection station index.

Options

IDEBUG > 0 requests printout of selected data

Argument List

NSTAT = station index where intersection occurs

XMTIP = tip Mach number
IP = propeller index

L = propeller position index

Theory

Using relative geometry the angle XNETA is computed for each station and compared with the Mach cone angle, BETA, until the station where the intersection of the Mach cone with the specified fraction of the blade chord is determined.

Subroutine PAGE (NWRITE)

<u>Object</u>

Print new page.

Argument List

NWRITE = print output file number

Subroutine PCHØUT (NUNIT)

Object

Output spanwise distributions of aerodynamic and geometric quantities to specified output device number.

Argument List

NUNIT = output file number

Subroutine PERFØR

Object

Compute and print out the propeller performance parameters.

Theory

Uses standard integration techniques to obtain the integrated thrust and power from the blades force components in the cylindrical coordinate systems.

Thrust =
$$\int_{Root}^{Tip} F_z cdr$$
 Torque = $\int_{Root}^{Tip} F_{\phi} rcdr$

where

c = chord

F = axial force per unit area

 F_{ϕ} = tangential force per unit area r = local blade radius

Subroutine PERIØD

Object

Calculate propeller disc periodicity and related quantities.

Theory

For single propeller disc configurations, the geometric relationship between the wake and blades is fixed. However, for a coaxial propeller, the geometric relationships are periodic with half-blade spacing if the number of blades and rotational speeds are equal. For unequal blades and/or unequal rotational speed, the relationship defining the periodicity (t) of the wake and blade geometry is

$$t = \frac{2\pi}{b_{\max}(\Omega_1 + \Omega_2)}$$

where Ω_1 and Ω_2 are the rotational speeds of the two propellers, and bmax is the maximum number of blades of the two propellers.

Subroutine PERPRT (NW,L,IP)

Object

Print spanwise distributions of aerodynamic and geometric quantities to a specified output unit.

Argument List

NW = output unit number

L = propeller position index

IP = propeller index

Subroutine PHICAL (MTØT, DPSI)

Object

Compute wake azimuth positions and trigonometric relationships for all propeller azimuth positions.

Argument List

MTØT = number of wake filament segments

DPSI = azimuthal increment

Theory

Using the requested blade azimuth increment, the wake azimuth position and the sine and cosine functions for such are computed and stored. The fact that the sine and cosine functions are periodic is made use of to reduce the actual number of sine and cosine values which are stored.

Subroutine PLABEL (NWRITE, NSLB, NSLF, NSP, NL, LABEL)

Object |

Print a label field.

Argument List

NWRITE = output device number

NSLB = number of lines to skip before label is output NSLF = number of lines to skip after label is output

NSP = number of units of 10 spaces to skip before label is

output

NL = length of label in increments of 6

LABEL = label vector

Function PN (N,R,S)

Object Compute special functions of R and S.

Options N = 0 PN = 1

N = 1 PN = 1 / (R-S)

 $N \ge 2$ $PN = R^{N-2}$

Subroutine PRØP

Object Control sequencing of propeller lifting line solution procedure.

A flow diagram is presented in figure 13.

Options CPI # 0 requests power iteration (overrides thrust iteration)

CTI # 0 requests thrust iteration

Subroutine PRDATA (T, IUNIT, N, X)

Object Output label vector and floating point vector to specified

output unit number using 7A6/8E10.4/8E10.4 format.

Argument List

T = label vector

IUNIT = outut unit number

N = length of floating point vector

X = floating point vector

Subroutine PRG400

Object

Output required velocity quantities to specified unit number in a format compatible with an aeroelastic response analysis (reference 22).

12

Subroutine PRINTP (NWRITE, IFCODE, N, FDATA, LABEL)

Object

Output label vector and floating point vector with specified format of form 7A6,10F9.X.

Argument List

NWRITE = output unit number IFCØDE = format code index

N = length of floating point vector

FDATA = floating point vector

LABEL = label vector

Subroutine PRTF15 (NWRITE, IFCØDE, N, FDATA, LABEL)

<u>Object</u>

Output label vector and floating point vector of specified length to a specified unit number using a format of form 3A6,15F8.X.

Argument List

NWRITE = output unit number

IFCØDE = format code index

N = length of floating point vector

FDATA = floating point vector

LABEL = label vector

Subroutine PRTF16 (NWRITE, IFC DE, N, FDATA, LABEL)

Object

Output label vector and floating point vector of specified length to a specified unit number using a format of form 3A6,16F7.X.

Argument List

NWRITE = output unit number

IFCØDE = format code index

N = length of floating point vector

FDATA = floating point vector

LABEL = label vector

Subroutine PRTGCM (NWRITE, IØP, NRØW, NCØL, GCMAT)

Object

Output two-dimensional influence coefficient matrix to specified unit number, in one of two formats.

Argument List

NWRITE = output unit number

IØP = format option index

NRØW = row dimension of matrix

NCØL = column dimension of matrix

GCMAT = matrix

Options

IP = 0 use format 15F8.5

IP = 1 use format 15F8.3

Subroutine PRTII5 (NWRITE, N, LABEL)

Object

Output to specified unit number a label and integer index with format of form 2A6,17,1418.

Argument List

NWRITE = output unit number

N = length of integer index

LABEL = label vector

Subroutine PRTI16 (NWRITE, N, LABEL)

Object

Output to specified unit number a label vector and integer index with format of form 3A6,16,1517.

Argument List

NWRITE = output unit number

N = length of integer index

LABEL = label vector

Subroutine PRTLF (NWRITE, F, LABEL)

Object Description

Output label vector and single floating point scalar with format of form 5A6,F15.5.

Argument List

NWRITE = output unit number

F = floating point scalar

LABEL = label vector

Subroutine PRTLI (NWRITE, N, LABEL)

Object

Output label vector and single integer value with format of form 5A6, IlO.

Argument List

NWRITE = output unit number

N = integer value LABEL = label vector

Subroutine PRTRZW (NWRITE, RSB, PHI, RZW, MTØT, KTØT, IRZ)

Object

Output floating point vectors to specified unit number with integer indices with specified format.

Options

IRZ = 0 use format of form 16F7.3 IRZ = 1 use format of form 16F7.2

Argument List

NWRITE = output unit number

RSB = floating point vector
PHI = floating point vector
RZW = floating point vector
MTØT = length of column vector

KTØT = length of row vector
IRZ = option for format type

Subroutine PRWZW (RSBB)

Object Control print of wake coordinates.

Argument List

RSBB = blade element segment boundary radius

Subroutine RDSCAL (IVPRNT)

Object Read scalar input parameters necessary to run program.

Options NG400 ≠ 0 read data from external unit source for necessary scalar input for coupling with aeroelastic response analysis (reference 12)

Argument List

IVPRNT = print option for vector input listing

Subroutine RDVECT (IVPRNT)

Object Read vector inputs necessary to run.

Options IVPRNT # 0 no listing of inputs as read in

NG400 # 0 read vector inputs from external source for coupling with aeroelastic response analysis (reference 12)

Argument List

IVPRNT = option flag to terminate listing of input vector as read in

Subroutine READWR (*, NREAD, NWRITE, IT, S, ST, X)

Object

Read input vectors if label fields match.

Argument List

* = return l

NREAD = input unit number NWRITE = output unit number IT = length of vector S = input label field

ST = test label field

X = input vector

Subroutine RELAXG (ITER, ICØV, RELAXF, GAMMA)

Object

Relaxation of circulation solution and convergence flag set in this subroutine.

Argument List

ITER = iteration index ICØV = convergence flag RELAXF = relaxation factor

GAMMA = temporary single dimension variable for solution storage

List of Symbols

CIRC = current circulation stored in this matrix

SAVCIR = previous iteration circulation stored in this matrix

Subroutine REDMAT (Argument List)

Object

Read all geometric influence coefficients from disk and create the geometric influence coefficient matrix.

Argument List

NM = dimension for the maximum number of rows in the matrix

MSIZE = number of rows used in the matrix

GCN = geometric influence coefficient matrix

Subroutine RWZWIN (IWK)

Object Input wake geometry coordinates.

List of Symbols

PHI = wake azimuth position

RW = radial coordinates of wake

ZW = axial coordinates of wake

IWK = wake index number

Subroutine RWZWl (IWK)

Object Compute wake coordinates for classical or modified classical wake model.

Options IWAKOP = 0 use prescribed inflow distribution and the momentum induced velocity to define the wake geometry (modified classical wake)

List of Symbols

PHI = wake azimuth position

RW = radial coordinates of wake

ZW = axial coordinates of wake

IWK = propeller wake index number

VWAKE = propeller wake transport velocity

Theory Classical wake.

VWAKE = -VKTAS*1.688+VIMØM

Modified classical wake

VWAKE = VZERØB(I)+VIMØM

Subroutine RWZW7 (IWK)

Object Compute generalized wake geometry.

Options IMPT = 0 linear fit for wake geometry between tip filament and non-rolled up filaments outboard of the outer

sheet filament

IØPT = 1 parabolic fit for filaments as noted above

List of Symbols

PHI = wake azimuth position

RW = radial coordinates of wake

ZW = axial coordinates of wake

IWK = wake index number

Theory See reference 1.

Function SBFUNC (X)

Object Calculate value of special function.

Argument List

X = specified independent parameter SBFUNC = function value for specified X

Theory

A special function for the stall bucket (reference 11) is tabulated for interpolation on the independent parameter X. Beyond the range of tabulated data, the following function is used.

SBFUNC = e^{X} -2.139

Subroutine SETMAT

Object

Read from a disk in a specified order the geometric influence coefficients and combine them on another disk for the matrix solution algorithm.

List of Symbols

NPRØP = number of propellers

LTØT = number of propeller positions

ITOT = number of inflow stations

MSIZE = matrix row size

GCC = chordwise influence coefficients

CCN = normalwise influence coefficients

GCS = spanwise influence coefficients

Subroutine SØLVEL

<u>Object</u>	Calculate required quantities associated with the propeller aerodynamics and control the linearized solution procedure. A flow diagram is presented in figure 14.
<u>Options</u>	<pre>IDEBUG # 0 print out intermediate quantities NEVARD # 0 use Evvard Tip Relief Correction ICAS # 0 use cascade airfoil data inboard of requested radial</pre>
Theory	See section entitled: "Linearized Aerodynamics" of reference 1.
	Subroutine SØLVEN
<u>Object</u>	Calculate required quantities for propeller aerodynamics and control the nonlinear matrix solution procedure. A flow diagram
	is presented in figure 15.
Options	

Subroutine SØLVIT

Object Control flow of solution procedure.

Options ITYPES = 0 linear aerodynamic solution only

ITYPES = 1 nonlinear aerodynamic solution

Subroutine SPLIN3 (Argument List)

Object Interpolate using spline fit.

Options NWØT = controls calculation of derivatives

Argument List

XDATA = independent interpolation variable vector
YDATA = dependent interpolation variable vector
NDATA = number of interpolation table data points

XIN = vector of requested interpolation table data points
YØUT = interpolation values at the interpolation points
YPRIME = vector of derivatives at the interpolation points

NXY = number of requested interpolation points

NWØT = option control on derivatives

Theory Standard spline fitting technique.

Subroutine STARC (Argument List)

Object Convert design lift coefficient to equivalent camber angle.

Argument List

DECL = design lift coefficient
THSTAR = effective camber angle

Theory Using second order interpolation technique on a prestored table of data, the design lift coefficient is converted to the equivalent camber angle for a double circular arc airfoil.

Subroutine STØRE (I,J,K,X,Y)

Object

Store the vector X into the vector Y where X and Y can be externally dimensioned as three dimensional arrays.

Argument List

I,J,K = dimension limits of the X and Y arrays

X = input vector (array)
Y = output vector (array)

Function SWPCØR (S,CØ,MACH,LAMLE,LAMTE,Y)

Object

Calculate tip loss factor for propeller blade using conical flow theory.

Argument List

S = semispan of wing which is used to approximate swept propeller tip

CØ = midspan chord of wing

MACH = Mach number

LAMLE = leading edge sweep angle LAMTE = trailing edge sweep angle

Y = spanwise position on wing measured from midspan

SWPCOR = scaling result

Theory

Concial flow theory for a thin sweep wing with subsonic leading edge and supersonic trailing edge is used to obtain the three-dimensional section C_{ℓ} . This solution is divided by the equivalent thin wing two-dimensional solution to obtain a scaling function to apply to actual two-dimensional tabulated C_{ℓ} data.

Subroutine THITER

Object

Control selection of C_p or C_T blade angle iteration.

Subroutine TITER (N,T,DQDT,QWANT,QCALC,TØL,IQØK)

Object

Linearly interpolate or extrapolate on input vector to obtain required T at requested Q.

Argument List

N = iteration index
T = output vector

DQDT = initially assumed slope of Q versus T curve

QWANT = requested Q QCALC = input Q vector

TØL = tolerance or solution
IQØK = iteration control flag

Subroutine UNBAR (Argument List)

Object

Bivariant Interpolation on data vector.

Argument List

T = table of bivariant interpolation data (Z vs. X and Y)

IK = starting location of data

XIN = requested interpolation point (X)

YIN = requested interpolation point (Y)

ZZ = interpolated value

KK = interpolation flag

Theory

Use standard bivariant interpolation algorithm with degree choice internally coded.

Subroutine UNINT (Argument List)

Object

Univariant interpolation.

Argument List

NW = print output file number

N = number of interpolation data points

XA = vector of independent interpolation data

YA = vector of dependent interpolation data

X = requested interpolation point

Y = resulting interpolated data values

Z = interpolation flag

Theory

Interpolates over a four point interval using a variation of a 2nd degree interpolation to produce a continuity of slope between adjacent intervals.

Subroutine VECTØR

Object |

Compute velocity related quantities required for propeller aerodynamics.

Options

IDEBUG # 0 printout of selected intermediate quantities

Theory

Using vector algebra, the direction cosines of the local velocity vectors at the blade are calculated neglecting induced velocity terms, along with other related quantities.

Subroutine VVECTR

Object

Compute velocity related quantities for the propeller aerodynamics.

Options

IDEBUG = 0 printout intermediate quantities.

Theory

Using vector algebra, the direction cosines of the local velocity vectors at the blade are compiled including effects along with other related velocity quantities.

Subroutine WAKMØD (KTØT, MTØT, IDEBUG)

Object

Read wake displacement corrections from disk and modify the internally calculated wake geometry.

Options

IDEBUG # 0 printout selected quantities

List of Symbols

PHI = wake azimuth position
RW = radial wake coordinate

ZW = axial wake coordinate

KTØT = number of wake filaments per blade

NTØT = number of wake revolutions

JTØT = number of wake azimuth positions per wake revolution

JTØT1 = JTØT+1

IDEBUG = print option

Theory

See section entitled: Nacelle Influence on Wake Geometry of reference 1.

Subroutine WRITGC (Argument List)

<u>Object</u>

Convert vectors of geometric influence coefficients to the blade coordinate system in the order in which they are calculated and write them to disk for later retrieval.

Options

IPRMAT ≠ 0 printout geometric influence coefficients

Argument List

IX = local blade station index specifying the particular
 blade element station to transform the influence
 coefficients vectors from cylindrical to blade element
 coordinate system

LL = propeller position index

IWK = propeller wake index

IBB = blade index

IP = propeller index

IWRITE = disk number to write influence coefficients onto

Theory

Standard geometric transformation applied to the cylindrical coordinate system influence coefficients to transform them to blade element coordinate system, before storing the disk for later retrieval.

Subroutine ZERØGC (MK,N2,N3,GC)

Object

Set an externally dimensioned three dimensional array to zero.

Argument List

MK,N2,N3 = external dimensions of array GC GC = input array

Subroutine ZERØAL (THSTAR, APZL)

Object

Calculate angle of zero lift for isolated airfoils.

Argument List

THSTAR = effective camber angle APZL = angle of zero lift

Theory

The angle of zero lift is calculated for the requested isolated airfoil type by computing the linear lift curve slope near zero angle of attack and solving for the intercept of the straight line with the resultant linear lift curve slope.

Labeled Common Blocks used in the Propeller Portion

Included herein is a list of the labeled common blocks in alphabetical order used in the propeller portion of the analysis and a description of each variable used in them (NDN designates a non-dimensional number).

	Variable	
Common Block Name (Object)	Names	Description of Variables

AERDAT (Store Miscellaneous Aerodynamic Quantities)

AA	Linearized lift curve slope (per radian)
DIAG	Diagonal element vector of geometric influence coefficient matrix (per ft.)
CØNST	Constant vector of circulation solution matrix (ft ² /sec)
CMACH	Local total Mach number (NDN)
SMACH	Local section Mach number (NDN, normal to lifting line)
CFDP	Constant vector correction term (ft ² /sec)
SKEW	Aerodynamic skew angle (degrees)

AFDATX (Store Isolated Airfoil Data Package Quantities)

I	Inflow station index
IFL	Airfoil type flag
IDL	C _L , C _D calculation flag
ICASDE	Cascade correction flag
ALPHA	Local angle of attack (degrees)
THET	Local blade angles (degrees)
TAUB	Chord-to-gap ratio (NDN)
ZM	Local Mach number (NDN)
DECL	Design lift coefficient (NDN)
н∅в	Thickness-to-chord ratio (NDN)
ZMCRØM	Critical Mach number (NDN)
CL2	Lift coefficient (NDN)
CL3	Temporary lift coefficient (NDN)
CD	Drag coefficient (NDN)
DCDCL	Change in drag coefficient with
	IITE COETTICIENT UNUNI

	Variable	
Common Block Name	Names	Description of Variables
BIGMAT (Large Storage Matrix, coefficient storage)		
	PHI	Wake segment azimuth angles (degrees)
	CØSPHI	Cosine of wake azimuth angles
	SINPHI	Sine of wake azimuth angles
	RW	Radial coordinate of wake segments (NDN)
	ZW	Axial coordinate of wake segments (NDN)
CASDT (Store Cascade and Airf	oil Related Data)
	SIGMAX	Section cascade solidity, gap- to-chord ratio (NDN)
	THETAG	Geometric angle between section chordwise vector and rotation plane (degrees)
	ТНЕТАВ	Section angle of attack neglecting induced terms (degrees)
	TAUB	Section chord-to-gap ratio (NDN)
CDPER (Store Nacelle Drag Quan	ntities)	
	DFR	Nacelle skin friction drag (lb)
	DPR	Nacelle pressure drag (1b)
CCØM (Store Section Chord Data	a)	
	CHØRD	Blade element section chord length (feet)
	ALCRAD	Blade element section chord length radial direction cosine (NDN)
	ALCPHI	Blade element section chord length tangential direction cosine (NDN)
	ALCAXL	Blade element section chord length axial direction cosine (NDN)

	Variable	
Common Block Name	Names	Description of Variables
CINCOM (Store Input Chord Dat	a)	
	CINPUT	Input chord length (feet)
CLCDDT (Store Circulation Sol	ution and Airfoi	l Characteristics)
	CLSAV	Section lift coefficient (NDN)
	CDSAV	Section drag coefficient (NDN)
	ALPHA	Section angle of attack (degrees)
	PHINSD	Section inflow angle (degrees)
	CDo	Section minimum drag coefficient (NDN)
	CIRC	Section circulation (ft ² /sec)
	SAVGIR	Section circulation from previous iteration (ft ² /sec)
	FTRAN	Interpolation function (NDN)
CØNSTI (Store Input Data)		
	RPM	Propeller rotational velocity (rmp)
	SØUND	Freestream speed of sound (fps)
	DENSTY	Freestream density (slugs/ft ³)
	VIMØM	Momentum induced velocity (fps)
	BL	Number of propeller blades per propeller
	R	Blade radius (feet)
	STN	Number of inflow stations
	THETAO	Blade angle (degrees)
	HUBQ	Hub torque (ft-lb _f)
	DPSI	Blade azimuth increment (degrees)
	REV	Number of wake revolutions
	CPI	Requested power coefficient (NDN)
	TØL	Matrix solution tolerance (NDN)
	CNSECT	Fraction of blade chord measured from leading edge (NDN)
	SCØ	Not used
	RADCAS	Blade radius denoting the end of the cascade region (NDN)

	Variable	
Common Block Name	Names	Description of Variables
John Diotal Hame	- Nume o	Debet 1 per ou 1 variables
	vørcør	Vortex core (NDN)
	DCPDT	Change in power coefficient with
		blade angle (per degree)
	STACK	Position of lifting line as a
		fraction of the blade chord
		measured from the leading edge (NDN)
	CTI	Requested thrust coefficient (NDN)
	DCTDT	Change in thrust coefficient
		with blade angle (per degree)
	ZHUB	Coaxial hub displacement (NDN)
	VKTAS	Freestream velocity (knots)
	TIPM	Tip Mach number (NDN)
	RDTRAN	Interpolation radius limit (NDN)
	RPMREF	Reference rpm for steady load induced twist (rpm)
	DPSIB	Blade spacing azimuth interval (degrees)
	OMEGA	Propeller rotational speed (rad/sec)
	DTIME	Periodic blade/wake geometry
		time interval (sec)
CØNST1 (Store Internal Const.	ants)	
	PI	П
	RC	" π/180 (radial degree)
	R4PI	4π x blade radius (feet)
	ØNØ4PI	1/R4PI (per ft.)
CØNST2 (Store Miscellaneous C	Quantities)	
	DIA	Propeller diameter (feet)
	ØMGR	Propeller tip speed (fps)
	ZMSQ	Freestream Mach number squared (NDN)
	UAX	Freestream velocity (fps)
	ZJI	Freestream advance ratio (NDN)
	MU	Freestream velocity/tip speed (NDN)

	Variable	
Common Block Name	<u>Names</u>	Description of Variables
CONCTA (Chama Image Onti	C1)	
CØNST3 (Store Input Opti	on Scalars)	
	PRØPMN	See description for scalar
	I NOT IN	inputs
	PRMAT	ii ii
	PRØPT	11
	DEBUG	п
	PCHPLT	n
	WAKEØP	11
	WAKNAC	11
	CØMPRS	11
	EVAARD	11
	SKINØP	11
	CASCAD	11
	TYPCAS	11
	CBWAKE	II .
	CØFLØW	11
	TAUEXP	"
CPTHET (Store Performance	e Related Quantiti	es)
	NCP	Performance iteration counter
	I CP Ø K	Performance iteration control flag
	THETO	Blade angle storage vector (degrees)
	CPCALC	Power coefficient storage vector (NDN)
	CTCALC	Thrust coefficient storage vector (NDN)
FCØM (Store Force Data)		
	FTØT	Total force per unit area (1b _f /ft ²)
	ALFRAD	Total force per unit area radial direction cosine (NDN)
	ALFPHI	Total force per unit area tangential direction cosine (NDN)

ALFAXL

Total force per unit area axial

direction cosine (NDN)

	Variable	
Common Block Name	Names	Description of Variables
	FLTØT	Lift force per unit area (lb _f /ft ²)
	ALFLRD	Lift force per unit area radial
		direction cosine (NDN)
	ALFLPH	Lift force per unit area
		tangential direction cosine (NDN)
	ALFAX	Lift force per unit area axial direction cosine (NDN)
	FDT Ø T	Drag force per unit area (H _{ef} /ft ²)
	ALFDRD	Drag force per unit area radial direction cosine (NDN)
	ALFDPH	Drag force per unit area
		tangential direction cosine (NDN)
	ALFDAX	Drag force per unit area axial direction cosine (NDN)
FLIGHT (Store Freestream Qua	ntities)	
	ZMO	Local station rotational Mach number (NDN)
	Z JO	Local station advance ratio (NDN)
FLØWDT (Store Inflow Distrib	ution Data)	
TEPROT (Scote Inflow Sisterio	ation bata,	
	DENS	Section density ratio (NDN)
	søun	Section speed of sound ratio (NDN)
	VØNVO	Section axial inflow velocity ratio (NDN)
	urønvo	Section radial inflow velocity ratio (NDN)
	VZERØ	Section center axial inflow velocity (fps)
	VZERØB	Section boundary axial inflow velocity (fps)
•		

GCDIMD (Store Geometric Influence Coefficients)

GCDIM Radial, tangential and axial geometric influence coefficients (per ft)

Common Block Name	Variable Names	Description of Variables
John Marie	Names	Description of Variables
GCKDAT (Store individual trai coefficients)	ling filament an	nd bound vortex influence
	GCKRTZ	Radial, tangential and axial trailing vortex filament influence coefficients
	GCRTZB	Radial, tangential and axial bound vortex influence coefficients
GEØDAT (Store Blade Geometry	Quantities)	
	RSB	Input x-wise segment boundary coordinate (NDN)
	ZSB	Input axial segment boundary coordinate (NDN)
	YSB	Input y-wise segment boundary coordinate (NDN)
	RSBB	Segment boundary radius (NDN)
	ZSBB	Segment boundary droop (axial) displacement (NDN)
	YSBB	Segment boundary lag displacement (NDN)
	PHIBB	Segment boundary lag angle (degrees)
	RSC	Input segment center radial coordinate (NDN)
	RSCC	Input segment center radial coordinate (NDN) after blade angle rotation
	zscc	Input segment center axial displacement (NDN) after blade angle rotation
	YSCC	Input segment center lag displacement (NDN) after blade angle rotation
	PHICC	Input segment center lag angle (degrees)
	XSBB	Segment boundary x-wise location (NDN)
	XSCC	Segment center x-wise location (NDN)
	COSLB	Cosine of blade segment boundary lag angle
	SINLB	Sine of blade segment boundary lag angle

	Variable	
Common Block Name	Names	Description of Variables
GEØINP (Store Input Interp	oolation Arrays)	
	vønvøx	Axial inflow ratio distribution (NDN)
	CX	Input chord distribution (feet)
	DTHETX	Input pitch angle distribution (degrees)
	TØVERX	Input thickness-to-chord ratio distribution (NDN)
	BETAB	Load induced twist increment at blade segment boundary points (degrees)
	BETAC	Load induced twist increment at blade segment boundary points (degrees)
GEØMØD (Store Design Lift	Coefficient)	
	DESCLP	Section design lift coefficient (NDN)
GEØØUT (Store Blade Section	on Properties)	
	DTHETA	Input section pitch angle (degrees)
	AFØ IL	Section airfoil type (NDN)
	DESCL	Input section design lift coefficients (NDN)
	TØVERC	Section thickness-to-chord ratio (NDN)
	BØD	Section chord-to-diameter ratio (NDN)

		Variable	
Common	Block Name	Names	Description of Variables
C/(OODT	(Store Quentities	from Aeroelastic Res	cronce Analysis)
G4OODI	(Store Quantities	TIOM RELOCIASTIC Res	sponse Analysis/
		NG400	Option flag
		NSEG	Number of blade stations in the response analysis
		XYZCG	Segment center coordinates of blade stations used in the response analysis
		G400CL	Quadratic coefficients for segment C ₂ from the response analysis
		G400CD	Quadratic coefficients for segment C _D from the response analysis
IØUNIT	(Store Standard In	put/Output Unit Numb	pers)
		NREAD	Standard input unit
		NWRITE	Standard print unit
		NPUNCH	Standard punch unit
INTDTl	(Store Indexing Li	mits)	
		ITØT	Number of inflow stations
		KTØT	Number of inflow station
			boundaries
		JTØT	Number of blade azimuth stations
		NREV	Number of revolutions of wake geometry
		NBLØØP	Number of blade loops
		LTØT	Number of propeller positions
		NPRØP	Number of propellers
		MTØT	Number of segment endpoints
		MSIZE	LTØT*JTØT*JTØT
		NBCALC	Number of blade calculations
		HDONDO	Number of brade carculations

IFL

Airfoil type index vector

	Variable	
Common Block Name	Names	Description of Variables
INTDT2 (Store Program Opt	tion Flags)	
	NCØMPR	Wake compressibility flag
	NEV ARD	Evvard Tip Relief flag
	IPRMAT	Matrix print flag
	IPRØPT	Wake geometry print flag
	ncfløw	Section Mach number test flag
	IWAKØP	Wake model flag
	NACWAK	Nacelle wake correction flag
	IVØ RT	Vortex core model flag
	ISKIN	Skewed flow skin friction drag addition flag
	ICASDE	Analytical cascade correction flag
	ICAS	Cascade airfoil flag
	IDEBUG	Intermediate print flag
	NCBWAK	Compressible bound wake flag
	IPCH	Card punch option flag
•	ITYPCS	Cascade option flag
	IBLN	Blade number control flag
IUNITD (Store Disc Unit N	Numbers)	
	IUNIT	Disc unit number storage vector for geometric influence coefficients
	MUNIT	Disc unit number for matrix solution coefficients
MCØNED (Store Tip Mach Co	one Coordinates)	
	XMC	Input tip Mach cone definition coordinate x (NDN)
	YMC	Input tip Mach cone definition coordinate y (NDN)
	ZMC	Input tip Mach cone definition coordinate z (NDN)
	XMCT	Tip Mach cone definition coordinate x (NDN)
	YMCT	Tip Mach cone definition coordinate y (NDN)
	ZMCT	Tip Mach cone definition coordinate z (NDN)

	Variable	
Common Block Name	Names	Description of Variables
MHCØNE (Store Mach Cone Corre	ection Quantitie	s)
	NSTAT	Inflow station index where tip Mach cone intersects specified fraction of chord line
	XKCØNE	Evaard Tip Relief correction factor (NDN)
NØRCØM (Store Section Normal	Data)	
	ALNRAD	Blade element section normal radial direction cosine (NDN)
	ALNPHI	Blade element section normal tangential direction cosine (NDN)
	ALNAXL	Blade element section normal axial direction cosine (NDN)
PHICOM (Store Nacelle Induced	d Wake Azimuthal	Distortion Quantities)
	NPHI	Number of azimuth increments affected by nacelle
	DELPHI	Incremental azimuthal distortion (degrees)
	COSDPH	Cosine of distortion angle
	SINDPH	Sine of distortion angle
RØLL (Storage of Wake Rollup	Quantities)	
	TRUNCT	Tip filament rollup truncation angle (degrees)
	TRUNCI	Inboard filaments truncation angle (degrees)
	RØLLUP	Number of filaments for rollup

	Variable	
Common Block Name	Names	Description of Variables
STACOM (Store Section Span Da	ita)	
	STABAR	Blade element section length (NDN)
	ALSRAD	Blade element section length radial direction cosine (NDN)
	ALSPHI	Blade element section length tangential direction cosine (NDN)
	ALSAXL	Blade element section length axial direction cosine (NDN)
THICKD (Store Thickness Data)	· ·	
	тнк	Blade element thickness (NDN)
UICØM (Store Induced Velocity	,)	
	UIR	Radial induced velocity (fps)
	UIT	Tangential induced velocity (fps)
	UlZ	Axial induced velocity (fps)
UUCØM (Store Input Noninduced	Velocity Data)	
	UR	Radial noninduced velocity (fps)
	UT	Tangential noninduced velocity (fps)
	UZ	Axial noninduced velocity (fps)

Common Block Name	Variable Names	Description of Variables
VCØM (Store Noninduced V	elocity Data)	
	ALPHAN	Noninduced angle of attack (radians)
	VS	Spanwise noninduced velocity direction cosine (NDN)
	VC	Chordwise noninduced velocity direction cosine (NDN)
	VN	Normalwise noninduced velocity direction cosine (NDN)
	VTØT	Total noninduced velocity (fps)
	ALVRAD	Radial noninduced velocity direction cosine (NDN)
	ALVPHI	Tangential noninduced velocity direction cosine (NDN)
	ALVAXL	Axial noninduced velocity direction cosine (NDN)
VIDAT (Store Induced Vel	ocity)	
	VIS	Spanwise induced velocity (fps)
	VIC	Chordwise induced velocity (fps)
	VIN	Normalwise induced velocity (fps)
WAKDAT (Store Wake Rollu	p Data)	
	KTRUCT	Filament station index for rollup
	JTRUCT	Wake azimuth position index for tip rollup
	JTRUCI	Wake azimuth position index for root rollup

Nacelle Program

A detailed description of the nacelle portion of the computer program is given in this section. The subroutines and external functions are described individually in alphabetical order. The labeled common blocks are briefly described along with the FORTRAN variables used in them. Flow charts and figures are provided whenever necessary to understand the objectives and theory for the subroutines or external functions.

List of Subroutines and External Functions

Name Object

ALTMN Control I/O and calculation flow

AMF Compute isentropic nozzle flow

AMFLØ Calculate Mach number from area ratio

AMU Compute molecular viscosity

BATCH Main routine

BILINE Calculate neighboring points on output line

BLDGEO Locate blade centerline

BLDØUT Store blade parameters on drum

BLKDAT Load block data

BLKRED Read data records from mass storage device

BLPARM Compute boundary layer parameters

BPLUSR Compute law of wall integration constant

CALDRM Read inviscid or viscous solution from drum

CALINV Calculate inviscid flow field

CDS Calculate Roberts' mesh distortion parameter

CKINPT Check input data for radial equilibrium

COOR Interpolate coordinates

COURST Control flow of coordinate calculation

COORL Compute approximate coordinates

COMPute coordinate functions

COMPute Schwartz-Christoffel parameters

COOR5 Interpolate wall curvature at station 5

CPLX1 Evaluate Schwartz-Christoffel transform

DAMU Find derivative of molecular viscosity

Name

Object

DRØBRT

Compute derivative of Roberts' transformation

DRØUT

Drum I/O routine

DRUTPE

Transfer data drum to tape

ERPIN

Check normal pressure gradient

FAMACH

Calculate Mach number from velocity

FAVER2

Compute mean flow

FCØLES

Compute Coles velocity profile

FCØRCT

Correct truncation error

FCPLX

Evaluate complex functions

FETA

Calculate distorted mesh

FINTG

Integrate complex functions

FLØWIN

Set inlet flow

FNØRM

Normalize input variables

FØRCE

Compute blade forces

FØRCL

Compute local blade force

FTHIK

Compute blade thickness

GBLADE

Compute blade geometry

GDUCT

Compute duct shape

GEØMCL

Calculate coordinates of lifting line

INITQ

Initialize data file parameters for Q array

INTFRE

Initialize freestream conditions

LØADRR

Loader formatted input

MINVRT

Inverts block matrix

MYTIME

Dummy time trap

Name

Object

ØUTPUT

Print title page

PERFNA

Compute viscous nacelle drag

PERFN2

Compute inviscid nacelle drag

PØIS

Solve Poisson equation

PØISCF

Set initial quantities in solution procedure

PØISØN

Calculate axisymmetric streamline curvature

QINTER

Interpolate curvature

READPF

Read P and F files

READPG

Read variable for curvature calculation

RØBRTS

Compute distorted mesh using Roberts' transformation

RØUND

Round corners on straight wall ducts

SCURVA

Calculate curvature from potential flow solution

SLETE

Find blade control surfaces

SMØØTH

Smooth duct wall contour

SØLVI

Integrate equations of state

SPLIN3

NASA Spline Fit routine

STRESI

Compute initial stress distributions

STRT

Find inlet flow locations

TPRINT

Call CPU time

TURB

Compute turbulent viscosity

UBLAS

Calculate velocity ratio according to Blasius

solution

UCØLES

Compute Coles friction velocity

WAKCOR

Compute nacelle wake corrections

Name Object

WBLEED Calculate perforated wall bleed

WRITPF Store updated potential flow solution

XH Calculate wall length on ID wall

XT Calculate wall length on OD wall

Description of Subroutines and External Functions

This section describes the subroutines and external functions used in the nacelle portion of the analysis. The source name for the main control routine is called BATCH and has the following two entry points: ALTMN and ØFFLNE. The main program determines the entry point ALTMN or ØFFLNE.

Subroutine ALTMN

Object Controls I/O and calculation of flow.

Options

IREADR=0 Card formated input
IREADR=1 Loader formated input
All IOPTO and IDBGO options

Entry Points

ALTMN

Initial loading of first case

ØFFLNE

Not used

List of Symbols

AMACHE = M_1 , Average inlet Mach number (dimensionless)

BBO = B_0 , Inlet blockage (dimensionless)

DZ = ΔZ , Increment in axial length (ft)

IREADR = , Loader format flag

KDSH = KDS , Temporary storage for KDS

P1 = P_1 , Average inlet static pressure (psf)

REYH = N_{Rh} , Reynolds number based on duct height (dimensionless)

T1 = T_1 , Average inlet static temperature (deg R)

Z = Z, Axial length (ft)

Theory

This subroutine controls I/O and the calculation of flow depending on the options selected. A flow chart is shown in figure 16.

Subroutine AMF(AA,AM1,AMG,AM,ACPC,ACPI)

Object Compute isentropic nozzle flow

Options

C5

AMG < 1 Subsonic solution AMG > 1 Supersonic solution

List of Symbols

= A/A_1 , Area ratio AA = $(A/A_1)^{\nabla}$, ∇^{th} guess for area ratio AAI = C_p , Pressure coefficient ACPC = C_{pI} , Incompressible pressure coefficient ACPI , Mach number = MAM = F(M), Function name AMF $= M^{(G)}$, 1st guess for Mach number AMG $= M_2^{\nabla}$, ∇^{th} guess for Mach number AMI $= M_1$, Mach number at station 1 AM1 = P_0/P_1 , Static pressure at station 1 AP2 = P_0/P_2 , Static pressure at station 2 AP2 C1 C2 C3 C4

DAAI = $(dA/dM)^{\nabla}$, Derivative

DAMI = ΔM , Correction to Mach number

ITER = ∇ , Iteration counter

Theory

Fiven the area ratio A/A $_1$ and the inlet Mach number M $_1$, find the exit Mach number M, the pressure coefficient C $_p$, and the incompressible coefficient C $_{pI}$. The exit Mach number M is determined from the one-dimensional isentropic flow relations using Newton's method for determining roots of nonlinear equations. Thus, we setup the iteration cycle

$$(A/A_{i})^{\nu} = \frac{C^{3}}{M^{\nu}} \left(1 + \frac{\gamma^{-1}}{2} (M^{\nu})^{2} \right)^{\frac{1}{2}} \frac{\gamma + 1}{\gamma^{-1}}$$
(1)

$$\left[\frac{d(A/A_1)}{dM}\right]^{\nu} = \left(\frac{A}{A_1}\right)^{\nu} \left\{\frac{C_4 M^{\nu}}{C_5} - \frac{1}{M^{\nu}}\right\}$$
(2)

$$\Delta M = (A/A_1 - (A/A_1)^{\nu}) / \frac{d}{dM} (A/A_1)$$
(3)

$$M^{\nu+1} = M^{\nu} + \Delta M \tag{4}$$

When $|\Delta M| < 10^{-5}$ the iteration has converged and the pressure coefficient may be computed.

$$\frac{P_0}{P_1} = \left(1 + \frac{\gamma - 1}{2} M_1^2\right) \frac{\gamma}{\gamma - 1} \tag{5}$$

$$C_{PI} = I - \left(\frac{A_I}{A}\right)^2 \tag{6}$$

$$C_{P} = \frac{(P/P_{0} - P_{1}/P_{0})}{1 - P_{1}/P_{0}} \tag{7}$$

Subroutine AMFLØ (AA, AM1, AMG, AM, ACPC, ACPI)

Object Calculate Mach number from area ratio

<u>Variables</u>

AA A/A Area ratio

ACPC C_{PC} Compressible pressure coefficient

ACPI $C_{ extsf{PI}}$ Incompressible pressure coefficient

AM Mach number

AMG Flag

AM1 M_1 Mach number at station 1

Theory

The Mach number can be calculated from

$$\frac{A}{A_1} = \frac{M_1}{M} \left(\frac{1 + \frac{\gamma - 1}{2} M^2}{1 + \frac{\gamma - 1}{2} M_1^2} \right)^{\frac{\gamma + 1}{2(\gamma - 1)}}$$
(1)

using Newton's iteration. With M known,

$$C_{PI} = 1 - \left(\frac{A_1}{A}\right)^2 \tag{2}$$

$$\frac{P_{T}}{P_{1}} = \left[1 + \frac{\gamma - 1}{2} M_{1}^{2}\right]^{\frac{\gamma}{\gamma - 1}}$$
(3)

$$\frac{P_{T}}{P} = \left[1 + \frac{\gamma - 1}{2} M^{2}\right]^{\frac{\gamma}{\gamma - 1}} \tag{4}$$

$$C_{PC} = \left(\frac{P}{P_{T}} - \frac{P_{1}}{P_{T}}\right) / \left(1 - \frac{P_{1}}{P_{T}}\right)$$
 (5)

AMG < Subsonic root of (1)

AMG > Supersonic root of (1)

Function AMU(T)

Object Compute molecular viscosity

Options

None

List of Symbols

AMU = μ/μ_r , Ratio of molecular viscosity (dimensionless)

T = Θ , Static temperature ratio (dimensionless)

Theory

The molecular viscosity is computed according to Sutherland's formula (Ref. 6). The working fluid is assumed to be air. Accordingly,

$$\frac{\mu}{\mu_{r}} = \Theta^{3/2} \frac{1 + 198.0/T_{r}}{\Theta + 198.0/T_{r}} \tag{1}$$

Subroutine BLDØUT

Object Write (or read) blade parameters on drum

Entry Points BLDIN

BLDØUT

BLDIND

BLDØUD

BLDBK

List of Symbols

STRI, STR3, STR5, STR7, ISTR8

blade parameters (dimensional)

STR2, STR4, STR6

blade parameters (nondimensional)

Theory

Blade parameters for each row of blades are stored on a drum. This routine will read or write onto that drum.

Main Program BATCH

Object Main program

<u>Variables</u> None

Theory

The main programs calls only subroutines TITLE and ALTMN

Subroutine BILINE (L,RB1,ZB1,RB2,ZB2)

Object

Calculate neighboring points on output line

Options

None

<u>Variables</u>

L , Point number

RB1,ZB1 = \bar{R}_1,\bar{Z}_1 , Point at L-1

RB2,ZB2 = $\overline{R}_2,\overline{Z}_2$, Point at L

Theory

The points are read from an input table.

Subroutine BLDGE®

Object

Locate blade centerline in (n,s) coordinates

Options 0

IPPT2 = 0 No blades in duct

= 1 Blades in duct

List of Symbols

CØMMON BLØCK Variables

Theory

This subroutine uses subroutine FLINE to find the centerline in the (n,s) coordinates. Thus the input data from the blade stacking plane is transformed to the duct plane using subroutine TRBLD and stored in the input data line data block BLNE (I,2) used by subroutine FLINE. The output (n,s) coordinates are then stored in the blade data array CONST(I,L). At the completion of this calculation, the location of the upstream and downstream blade force calculation surfaces are determined by calling subroutine SLETE.

Subroutine BLKDAT

Object Load fixed constants to program.

Options

None

List of Symbols

ACHI = χ , 0.016 (dimensionless)

AKAPPA = K , 0.41 (dimensionless)

APLUS = A^+ , 26.0 (dimensionless)

CPR = C_{nr} , 5997. $(ft^2/sec^2/deg R)$

 $CVR = C_{max}, 4283.(ft^2/sec^2/deg R)$

EP = e , 2.7182818 (dimensionless)

GAMMA = γ , 1.4 (dimensionless)

GASR = R , $1714. (t^2/\sec^2/\deg R)$

GRAVR = g , $32.2 \text{ (ft/sec}^2\text{)}$

PI = π , 3.1415926

PRESR = P_r , 2117. $(ft^2/sec^2/deg R)$

PRL = P_{-1} , 0.72 (dimensionless)

PRT = P_{r_t} , 0.90 (dimensionless)

 $RH \not PR = \rho_r , 0.00238 (slugs/ft^3)$

SNDR = C_r , 1116.0 (ft/sec)

TEMPR = T_r , 519.0 (deg R)

TI = t 0.01745329 (dimensionless)

VISCR = μ_r , 0.37 x 10⁻⁶ (slug/ft/sec)

Values of parameter's defined in CØMMØN/PARAM/ are also included for IBM and CDC computer programs.

Subroutine BLKRED (UNIT, RECSIZ, ADDR, BEGREC, NRECS)

Object

Reads NREC 'records' from file 'UNIT' beginning with record BEGREC. NRECS records are stored as a single block, beginning at ADDR. The Univac 1100 library I/O routine NTRAN is used in this subroutine.

Variables

1	UNIT	=	logical unit#	(Integer)
]	RECSIZ	=	record size in words	(Integer)
]	BEGREC	=	first record to read	(Integer)
]	NRECS	=	# of logical records to read	(Integer)
	מממא	_	bootming address to stone the MDECC C DECCT	7

ADDR = beginning address to store the NRECS & RECSIZ

records read

Theory

BLKRED (with entry BLKWRT) was developed to allow NTRAN compatibility with ANSI standard DEFINE FILE I/O operations. In particular, a call to BLKRED with NRECS = 1 is identical to a random access fortran read.

In order to simulate DEFINE FILE I/O, it is necessary for BLKRED to maintain a list of pointers into the various disk files. The pointer list, DSKLOC, is in a common block |UNITS| which must be allocated in a static (root) segment. The location pointer and read size are used to position the disk for I/O access. After the I/O access, the pointer is positioned accordingly.

BLKRED will issue a diagnostic message and cause program termination if either of two abnormal conditions are detected.

- 1) the record # is negative
- 2) NTRAN returns on error status less than zero (see UNIVAC FORTRAN V library routine NTRAN description on UNIVAC ASCII FORTRAN routine NTRAN\$ description)

Subroutine BLPARM

Object Calculate boundary layer parameters from viscous solution.

Options II = 1 Calculate hub boundary layer
II = 2 Calculate tip boundary layer

List of Symbols

BLC(1, I)	= U	Freestream velocity
BLD(2, I)	= II	Static pressure
BLP(3, I)	= T _o	Total temperature
BLP(4, I)	= T	Static temperature
BLP(5, I)	= M	Mach number
BLP(6, I)	= U _s	Streamwise velocity
BLP(7, I)	= ρ	Density
BLP(8, I)	= Y	Distance from hub
BLP(9, I)	= \Delta*/\Delta_1	Displacement thickness ratio
BLP(10, I)	= 0*/0 ₁	Momentum thickness ratio
BLP(11, I)	= \D'*/\theta*	Shape factor
BLP(12, I)	= N _{\theta}	Reynolds number
CF	= ^C f	Wall Friction Coefficient

Theory

This subroutines determines the momentum thickness θ^{\star} and the displacement thickness Δ^{\star} where

$$\Delta * = \int_{0}^{\infty} \frac{\rho}{\rho_{\infty}} (1 - \frac{U}{U}) dy$$

$$\theta * = \int_{0}^{\infty} \frac{\rho}{\rho_{\infty}} (\frac{U}{U} - \frac{U^{2}}{U^{2}}) dy$$

Function BPLUSR (AKPLUS)

Compute the law of wall integration constant for initial profile. Object

Options None

None

List of Symbols

AKPLUS

, Roughness Reynolds number

BPLUSR

 $B^{+}(K_{c}^{+})$, Integration constant

Theory

The inner layer turbulence model given in FCOLES was integrated to get the constant of integration. A data correlation for $B^+(K_{\stackrel{}{S}}^+)$ is then given by

$$B^{+}(0) = 2.2$$
 , $K_{S}^{+} < 4.1270$ (1)

$$B^{+}$$
 (K_{S}^{+}) = -0.81486 - 1.2070 · ($\ln K_{S}$ - 3.91538) , K_{S}^{+} > 4.1270 (2)

Equation (1) indicates that for K_S^+ < 4.127, the smooth wall model applies.

Subroutine CALDRM

Read inviscid or viscous solution from (drum) Object

Options

NØPT8 = 0 Read inviscid solution

NOPT8 = 1 Read viscous solution

List of Symbols

Viscous flow parameters F

CINP Inviscid flow parameters

Subroutine CALINV

Object Calculate inviscid flow field solution.

Options

Calculate flow from J = JFIRS, JLAS
IF (IØPT15.NE.O) JFIRS=IØPT15
IF (IØPT16.NE.O) JLAS=IØPT16
Calculate only for IØPT1 = 3 or 4
NOPT5 ≠ 0 Error exit

List of Symbols

Same as CKINPT

Variable store on drum	$\underline{\mathbf{K}} = 1, \mathbf{KL}$		
BINP(1, K)	P_{o}	,	Total pressure (psf)
BINP(2, K)	P	,	Static pressure (psf)
BINP(3, K)	α	,	Swirl angle (deg)
BINP(4, K)	T _o	,	Total temperature (deg R)
Additional Variables			
ITERAL	v_{α}	,	Swirl angle iteration number
ERRA	\mathbf{E}_{α}	,	Local error in swirl angle
ERRAM	E _{nd}	,	Maximum error in swirl angle

Theory

Given the swirl angle α , the analysis is identical to subroutine CKINPT. The calculation of the inviscid flow field requires also the solution of the angular momentum equation which is given by

$$RU_{\phi} = R_i U_{\phi_i} \tag{1}$$

where RU is the angular momentum at an arbitrary station and R₁U is the inlet angular momentum which is given. An outer iteration loop is then programmed to solve eqt. (1) to get the swirl angle α . With α known, the inner iteration loop is the same as subroutine CKINPT. This solution is obtained for each streamwise station J = JFIRS, JLAS. The computed solution BINP (4, KL) is stored on a drum.

Function CDS (DDS, DETA)

Object

Calculate Roberts' mesh distortion parameter

Options

None

Input Variables

DDS = Ratio of mesh distortion at wall $\Delta \eta / \Delta n$

DETA = $\Delta \eta$, Mesh size at boundary - uniform mesh Δn . Distorted mesh size at wall

Output Variables

CDS C , Roberts' mesh parameter

Theory

Let
$$c = 1/2 + \epsilon$$
 (1)

Then Roberts' transformation can be written

$$\phi = \left(\frac{1+\epsilon}{\epsilon}\right)^{(2\Delta\eta^{-1})} \tag{2}$$

$$\Delta n = \frac{(1+\epsilon)\phi - \epsilon}{1+\phi} \tag{3}$$

$$\Delta n = \Delta \eta / DDS \tag{4}$$

Eq. (2) through (4) can be solved iteratively for ϵ as follows:

$$\phi = \frac{\Delta n + \epsilon}{1 + \epsilon - \Delta n} \tag{6}$$

$$\epsilon = \left[\phi^{\frac{1}{2\Delta \eta - 1}} - 1 \right]^{-1} \tag{7}$$

Subroutine CDS (Cont'd)

Convergence occurs when

$$\left| \frac{\epsilon^{\nu+1} - \epsilon^{\nu}}{\epsilon^{\nu}} \right| < 1E - 04 \tag{8}$$

Subroutine CKINPT

Object

Check input data for radial equilibrium

Options

 $I\emptyset PT1 \neq 4$ Do not calculate

 $N \not O PT5 \neq 0$ Error exit

IØPT5 = 2 FØRCE data equals FLØWIN data

IJ = 1Inlet flow data

IB = 2Force data

INEX = 1Upstream data

INEX = 2Downstream data

IDBG13 = 1 Debug printout

WFL ØW = 0 Static pressure check only

WFLØW > 0 Pressure check and weight flow iteration

List of Symbols

ERR

Error in interaction

EPS

ε,

Minimum error

 $FG(2, K) \phi(2)$

Equation 4

FG(4, K)

 $\Phi(2)$

Equation 5

ITER

v

Iteration number

PHMAX

Maximum pressure possible

PSI1, PSI2 ψ_1^v , ψ_2^v

Upper and lower bound air stream function

WF

 $\mathbf{w}^{\mathbf{v}^2}$

Weight flow vth iteration

WFLØW

Input weight flow

WMAX

 $\mathbf{w}_{\mathtt{max}}$

Maximum weight flow possible

WMIN W_{min} , Minimum weight flow possible XL X_L , Lower bound on X XM X_M , X for choked flow XU X_U , Upper bound on X X1 X_1^u , Iterative values for X PSIHT,PSIT ψ_T , ψ_T^u , Value of stream function

Theory

Input data for the total pressure, static pressure, swirl angle, and total temperature must satisfy the continuity equation, and the radial momentum equation. If these equations are not satisfied, the static pressure is adjusted. The solution of these equations can be obtained by a transformation of variables. Let

$$X = \left(\frac{\Pi}{\Pi_0}\right)^{\frac{\gamma - 1}{\gamma}} \tag{1}$$

and

$$\mathbf{a}(\eta) = 2 \left\{ -\frac{1}{XV} \frac{\partial V}{\partial n} \cos^2 \alpha + \frac{1}{XR} \frac{\partial R}{\partial n} \sin^2 \alpha \right\}$$
 (2)

then the radial momentum equation becomes

$$\frac{dX}{dt} + \left[a(\eta) + \frac{Y-1}{Y} \frac{d}{d\eta}(\ln \Pi_0)\right] X = a(\eta)$$
(3)

which is an ordinary first order "linear" equation. The solution is given by

$$\phi(\eta) = \exp\left\{ \int_{0}^{\eta} a(Y) dY + \frac{\gamma_{-1}}{\gamma} \ln\left(\frac{\Pi_{0}}{\Pi_{0H}}\right) \right\}$$
(4)

$$\Phi(\eta) = \int_{0}^{\eta} a(Y) \Phi(Y) dY$$
 (5)

$$X = (X_0 + \Phi(\eta))/\phi(\eta)$$
 (6)

where X_{0} is the hub static pressure ratio. The continuity equation becomes

$$\frac{d\Psi}{d\eta} = \frac{\prod_{0} G \cos \alpha}{M_{r} \sqrt{M_{0}}} \chi^{\frac{1}{\gamma - 1}} (1 - \chi)^{1/2}$$
(7)

and

$$\mathbf{W}(\eta) = 2\pi \rho_r c_r r_r^2 \mathbf{g} \Psi(\eta)$$
 (8)

The constant X_0 is determined by the boundary condition

$$w(1) = w (9)$$

using an iteration scheme described below.

First let us examine the function

$$f(X) = X^{\frac{1}{\gamma - 1}} (I - X)^{1/2}$$
 (10)

f(X) has a maximum at

$$\chi = \chi_{\mathsf{m}} = \frac{2}{\gamma + 1} \tag{11}$$

Hence from equation (1)

$$\frac{\prod_{\mathbf{M}}}{\prod_{\mathbf{0}}} = \left(\frac{2}{\gamma + 1}\right)^{\frac{\gamma}{\gamma - 1}} \tag{12}$$

Equation (12) is precisely the condition for choked flow when M=1. Substitution of equation (12) into equation (10) yields an a priori condition for the maximum weight flow possible (i.e., the choked flow condition). For a subsonic solution we then have the condition

$$\frac{2}{\gamma+1} < \chi < 1 \tag{13}$$

Furthermore, it is noted that we can find a priori X_0 such that

$$\frac{2}{\gamma + 1} < X_{L} < X_{O} < X_{\psi} < 1$$

$$f(X_{L}) < f(X_{M})$$

$$f(X_{O}) > 0$$
(14)

by substituting equation (6) into equation (10). Thus X_L and X_U are the bounds for choosing subsonic solutions with no reverse flow. The iteration scheme then consists of narrowing the bounds of X_L and X_U until convergence occurs. This procedure is illustrated in figure 17.

$$X^{V+1} = X_1^{V} + \frac{\Psi - \Psi_1^{V}}{\Psi_2^{V} - \Psi_1^{V}} \quad \left(X_2^{V} - X_1^{V} \right) \tag{15}$$

$$If\left(\Psi^{V+1} < \Psi\right) \quad \chi_{1}^{V} = \chi_{j}^{V} \Psi_{1}^{V} = \Psi$$

$$If\left(\Psi^{V+1} > \Psi\right) \quad \chi_{2}^{V} = \chi_{j}^{V} \Psi_{2}^{V} = \Psi$$
(16)

and ψ^{V} is obtained by integrating equation (7) with $X_{O} = X^{V+1}$ substituted into equation (6). Convergence occurs when

$$\left| X^{V+1} - X^{V} \right| < \xi_0 \tag{17}$$

Once X is known, the static pressure is obtained from (1) and substituted for the input static pressure.

Subroutine $C\phi\phi R(JS,KS)$

Object Controls logic in determining coordinates and interpolates coordinates streamwise.

Options

IØPT9=0 Computes approximate coordinates

IØPT9≠0 Coordinates stored on drum

IPT9=1 Compute exact coordinate functions and store on drum

IØPT9=3 Read coordinates from drum

List of Symbols

DSTEP = ΔS , Streamwise step size (dimensionless)

DX = ΔX , Interpolation between JS and JS-1 stations

DXNEXT = ΔX_N , Interpolation for next step

JDRUM = , Drum unit number

 $JS = , JS^{th}$ station stored on drum

KS = , KSth station interpolated between JS

ZHUB = Z_{rr} , Axial station hub (dimensionless)

 $ZNEXT = Z_{N}$, Next axial station (dimensionless)

 $ZTIP = Z_T$, Axial station Tip (dimensionless)

Theory

Let the streamwise coordinate S be given by

$$S = \Delta S(JS-I) + dS \cdot (KS-I)$$
 (1)

where

$$\Delta S = S_L/(JLAST-I)$$
 (2)

$$dS = \Delta S/KDS \tag{3}$$

Then if station 1 is at JS-1 and station 2 at JS, a simple linear interpolation of the coordinates may be made from those stored on the drum. ZNEXT is the axial location of the KS+1 station.

Subroutine COOP5 (XH, XT, CURVH, CURVT)

Object

Interpolate wall curvature at Station S

Options |

None

<u>Variables</u>

ХН	X _H (S)	•	Arc length ID wall (dimensionless)
XT	X _T (S)	,	Arc length OD wall (dimensionless)
CURVH	K _H (S)	,	Curvature ID wall (dimensionless)
CURVT	K _T (S)	•	Curvature OD wall (dimensionless)
RM(3,J)	X _{HI} (J)	,	Table of X_{H} (dimensionless)
RM(4,J)	K _{HI} (J)	,	Table of K_{H} (dimensionless)
RM(7,J)	X _{TI} (J)	,	Table of X_{T} (dimensionless)
RM(8,J)	$K_{TI}(J)$,	Table of $K_{\overline{1}}$ (dimensionless)

Theory

The values of $X_H(S)$ and $X_T(S)$ are input. Then the tables are searched and the values of $K_H(S)$, $K_T(S)$ are calculated by linear interpolation.

Subroutine CØØRST

Ojbect Controls flow of coordinate calculation

Options None

List of Symbols

DSTEP = $\Delta S = DS$, Streamwise step size (dimensionless)

DX = $\Delta\eta$, Normal coordinate step size (dimensionless)

DY1 = δY , First derivative (dimensionless)

DY2 = $\delta^2 Y$, Second derivative (dimensionless)

ICK = 0,1 , Flag; no overlap, overlap

II = 1,2 , Flag; start integration, continue integration

ISLT1, = , First slot number, second slot number ISLT2

IW1,IW2 = , First slot wall, second slot wall

JCØUNT = , Streamwise station counter

KLHØLD = , Number of streamlines to interpolate

KN = , Number of streamlines to integrate

MSLØT = . Slot counter

NSLØT - Total number of slots

RA(I,J) = R(I,1,J), Temporary storage for wall coordinate

X = X , Normal coordinate (dimensionless)

= X , Interpolation distance (dimensionless) XM , Midpoint of three point difference (dimensionless) **X2** $= x_2$ Y , Function to be interpolated (dimensionless) $= Y(X_r) = Y_1$, Known values of Y (dimensionless) **Y1** Y2 $= Y(X_2) = Y_2$, Known values of Y (dimensionless) $= Y(X_3) = Y_3$, Known values of Y (dimensionless) **Y3** , Axial distance (dimensionless) $ZZ_1,ZZ_2 = Z_1, Z_2$, Location of adjacent slots (dimensionless)

Theory

This subroutine controls the calculation flow for the coordinates according to flow chart figure 18. The basic calculation scheme with slots is to calculate the streamlines through successively larger ducts and storing only those coordinates satisfying the condition $(Z_1 \le Z \ge Z_2)$ as shown in figure 19.

In addition, it was determined that only KN streamlines need be calculated by integration, the remainder up to KL streamlines may be calculated using a parabolic interpolation.

Subroutine CØØR1 (KSS,JSS)

Object Compute approximate coordinate functions.

Theory

This subroutine provides an initial guess from the iterative method described in reference 6 which is used to approximate the coordinate functions and hence determine the numerical grid structure used in the flow analysis.

Subroutine CØØR3(KSS,JSS,LØP)

Object Compute coordinate functions (IØPT9=1,2).

Options

LØP=1 Compute initial constants

LØP=2 Integrate one step

LØP=3 Do not integrate

List of Symbols

AO	=	Ao	, Inlet height W plane (dimensionless)
ALO	=	αο	, Inlet angle W plane (dimensionless)
ANO	-	n _o	, Inlet height Z plane (dimensionless)
SLO	=	s_L^{o}	, Initial coordinate length (dimensionless)
RO	=	ro	, Inlet radius Z plane (dimensionless)
vo	= .	v _o	, Inlet metric scale coefficient (dimensionless)
SO	=	s _o	, Inlet streamwise coordinate (dimensionless)
ХВО	=	χ̈́ο	, Real part of C_1 (dimensionless)
УВО	=	γ̈́ο	, Imaginary part of C_1 (dimensionless)
ZETAO	=	ξo	, Constant of integration (real) (dimensionless)
ETAO	=	η_{0}	, Constant of integration (imaginary) (dimensionless)
Theory			

Using procedures described in reference (6), one can integrate along streamlines to get R, Z, V, S, N at the location of the poles $b_{\rm I}$.

Subroutine CØØR4

Object Find Schwartz-Christoffel parameters.

Options |

None

List	of	Symbols

AX(1,J)	=	x _H	, Distance along hub wall (dimensionless)
AX(2,J)	=	$x_{\mathbf{r}}$, Distance along tip wall (dimensionless)
AX(3,J)	-	α_{H}	, Wall angle hub (deg)
AX(4,J)	=	$\alpha_{\mathbf{T}}$, Wall angle tip (deg)
AY(1,I,J)	=	$S_{ m H}^{ m v}$, Streamwise coordinate hub (dimensionless)
AY(2,I,J)	=	$X^{\mathbf{H}}_{\mathcal{O}}$, Distance along hub wall (dimensionless)
AY(3,I,J)	=	$v_H^{\prime\prime}$, Metric scale coefficient hub (dimensionless)
AY(4,I,J)	=	\mathtt{R}_{H}^{ν}	, Radius hub (dimensionless)
AY(5,I,J)	=	s_T^{ν}	, Streamwise coordinate tip (dimensionless)
AY(6,I,J)	=	$\mathtt{x}_\mathtt{T}^{\vee}$, Distance along tip wall (dimensionless)
AY(7,I,J)	=	v_T^{ν}	, Metric scale coefficient tip (dimensionless)
AY(8,1,J)	=	$\mathtt{R}^{\vee}_{\mathtt{T}}$, Radius tip (dimensionless)
AERR(1,J)	=	$s_{H}^{\nu+1}s_{H}^{\nu}v$, Error in S _H (dimensionless)
AERR(2,J)	=	$s_{T}^{\vee +1}s_{T}^{\vee \nu}$, Error in $S_{\overline{1}}$ (dimensionless)
AO	-	h _o	, Inlet height W plane (dimensionless)
ALO	-	α_{0}	, Inlet angle W plane (dimensionless)
ANO	=	n _o	, Inlet height Z plane (dimensionless)
SLO	=	sco	, Initial guess of coordinate length (dimensionle

```
RO = r_0 , Inlet radius in Z plane (dimensionless)

VO = V_0 , Inlet metric scale coefficient (dimensionless)

SO = S_0 , Inlet streamwise coordinate (dimensionless)

XBO = \overset{\sim}{X}_0 , Real part of constant C_1 (dimensionless)

YBO = \overset{\sim}{Y}_0 , Imaginary part of constant C_1 (dimensionless)

ZETAO = \xi_0 , Constant of integration (real) (dimensionless)

ETAO = \eta_0 , Constant of integration (imaginary) (dimensionless)
```

Theory

The theory to this subroutine is described in reference (1).

Subroutine CPLX1(X1,Y1,XB1,YB1,N1,N2,LØP)

Ojbect Evaluates Schwatz-Christoffel transform.

Options

LOP=1
$$W_Z = \overset{\circ}{X} + \overset{\circ}{i_Y} = dW/dZ$$

=2 $W_{Z,Z} = \overset{\circ}{X} + \overset{\circ}{i_Y} = d^2W/dZ^2$

List of Symbols

 $N1 = N_1$, Product index

 $N2 = N_2$, Product index

 $N3 = N_1+1$, Product index

X1 = X, X coordinate in Z plane

Y1 = Y, Y coordinate in Z plane

XB1 = \hat{X} , X coordinate in W_Z plane or W_{ZZ} plane

XB2 = $\overset{\circ}{Y}$, Y coordinate in W_Z plane or W_{ZZ} plane

Theory

This subroutine evaluates the real and imaginary parts of the Schwartz-Christoffel transform.

Function DAMU

Object - Find derivative of molecular viscosity with respect to temperature

List of Symbols

T Temperature

D Derivative

Theory

The derivative of the molecular viscosity may be expressed as a function of temperature.

$$D = A2 * (1.5/T - 1/(T+ A1))$$
 (1)

where

$$A1 = 198./T_{F}$$
 (2)

$$A2 = T**1.5 * (1+A1) / (T+A1)$$
 (3)

Function DRØBRT (C, ETA, LØP)

Object

Compute derivative of Roberts' transformation

Options

 $L \emptyset P = 0$ wall - wall boundary

IOP = 1 wall-freestream boundary

 $I \not O P = -1$ freestream-wall boundary

Input Variables

C = C, Distortion parameter

ETA = η , Input variable

LØP , Option

Output Variable

DROBRT = $\partial \eta / \partial \eta$, Output variable

Theory

The transform of the Roberts' Stretching for a distorted mesh is given by

$$\frac{\partial \eta}{\partial n} = \left[4 \text{ c in} \left(\frac{c + 1/2}{c - 1/2} \right) \frac{\phi}{(1 + \phi)^2} \right]^{-1} \tag{1}$$

$$\phi = \exp\left[2 \ln\left(\frac{c + 1/2}{c - 1/2}\right) \left(\eta' - 1/2\right)\right]$$
 (2)

where the options are

$$\frac{\eta' = \eta}{n = n'} \ \, \Big\} \ \, L \phi P = 0 \qquad \, \frac{\eta' = \eta/2}{n = 2n'} \ \, \Big\} \ \, L \phi P = I \qquad \, \frac{\eta' = (I + \eta)/2}{n = 2n' - I} \ \, \Big\} \ \, L \phi P = -I$$

We note that

$$0 \le \eta' \le 1.0 \qquad 0 \le n' \le 1.0 \tag{3}$$

Subroutine DRØUT (UNIT, ADDR, BLØCK)

Object Tape/Drum Read/Write data

Options - Entry Points

DRØUT(UNIT, ADDR, BLØCK)

Write on drum unit UNIT data contained in ADDR containing $BL\emptyset CK$ number of words.

DRMIN(UNIT, ADDR, BLØCK)

Read from drum unit UNIT data contained in ADDR containing $BL\emptyset CK$ number of words.

DREWND (UNIT)

Rewind drum unit UNIT.

DRMBK1 (UNIT, ADDR, BLØCK)

Back space drum one BLØCK and read as in DRMIN.

DRMBK2 (UNIT, ADDR, BLØCK)

Back space drum two BLØCK and read as in DRMIN.

DRIEØUF(UNIT)

Write end of file on unit UNIT (tape only).

TPFILE(UNIT, LFILE)

Find file number LFILE on tape unit UNIT.

Theory

This subroutine is an I/O routine to facilitate conversion of UNIVAC NTRAN I/O routines to other computer systems.

Subroutine DRUTPE(LFILE, JBLØCK, LØPT)

Object Transfers data Drum/Tape or Tape/Drum.

Options

LØPT=1 Transfer data tape to drum

LØPT=2 Transfer data drum to tape

List of Symbols

JBLØCK

Number of records to copy

JDRUM

Drum unit number

JTAPE

, Tape unit number

LFILE

, Tape file number

Theory

This subroutine transfers data using subroutine DRØUT.

Subroutine ERPIN(II)

Object Checks normal pressure gradient for viscous flow

Options

II=1 Check inlet station

II=2 Check J-1 station

II=3 Check J station

List of Symbols

ERPIN

= {

, Error in normal pressure gradient

Theory

At any station in the duct, the normal momentum equation must be satisfied. This subroutine checks the error.

$$\mathcal{E} = \frac{\left[\Pi(1) - \Pi(0)\right] - \int_{0}^{1} \left\{ -\left[\frac{1}{XV} \frac{\partial V}{\partial n}\right] P U_{S}^{2} + \left[\frac{1}{XR} \frac{\partial R}{\partial n}\right] P U_{\phi}^{2}\right\} d_{2}}{\left[\Pi(1) - \Pi(0)\right]}$$
(1)

Function FAMACH (AN)

Object Calculate Mach number from velocity

Variables

AN V/C_o

Velocity/stagnation speed of sound

FAMACH

M

Mach number

Theory

The Mach number can be calculated from

$$\frac{v}{c_o} = M/(1 + \frac{r-1}{2} M^2)^{1/2}$$
 (1)

using Newton's method.

Subroutine FAVER2

Object Solve for mass flow weighted average flow and output parameters.

Options

AAR

None

List of Symbols

= AR

AMA	=	М	, Local Mach number (dimensionless)
AMACHE	=	∿ M	, Area average Mach number (dimensionless)
AMFH	=	(GM/V) _H	, Wall bleed hub (dimensionless)
AMFT	=	(GM/V) _T	, Wall bleed tip (dimensionless)
AMG	=	M _{MID}	, Midpoint Mach number (dimensionless)
AMM	=	M _{MAX}	, Maximum Mach number (dimensionless)
ASH	=	A _{SH}	, Surface area hub wall (dimensionless)
AST	=	A _{ST}	, Surface area tip wall (dimensionless)

, Area ratio (dimensionless)

ATFH = $(GQ/V)_{H}$, Heat flux/length hub (dimensionless)

ATFT = $(GQ/V)_T$, Heat flux/length tip (dimensionless)

 $CFH \phi = C_{FH}J$, Wall friction coefficient hub (dimensionless)

 $CFT \phi = C_{FT}^{J}$, Wall friction coefficient tip (dimensionless)

 ϕ = 1,2,3 for J+1- ϕ station

CPC = Pr/q_1 , Normalizing factor for C_p dimensionless

 $CPC\emptyset MP = C_{PC}$, Pressure coefficient (compressible) (dimensionless)

CPJNC = C_{pt} , Pressure coefficient(incompressible) (dimensionless)

DASH1,DASH2 = ΔA_{SH} , Area increment hub (dimensionless)

DAST1, DAST2 = ΔA_S	T , Area increment tip (dimensionless)
DENTP1, = $\Delta \bar{I}$ DENTP2	, Change in entropy (dimensionless)
DISP = $\overline{\Phi}$, Dissipation function (dimensionless)
DPSTI1, = $\Delta \overline{\psi}$ DPSTI2	, Increment in mass flow (dimensionless)
DQSH1, = ΔQ_T DQSH2	, Increment in heat flow hub (dimensionless)
DQST1, = $\Delta \hat{Q}_{T}$, Increment in heat flow tip (dimensionless)
DTHEO1 = $\Delta \Theta_0$, Increment in total temperature (dimensionless)
PIO = II	, Average total pressure (dimensionless)
PI00 = II ₀₀	, Average inlet total pressure (dimensionless)
$PSI = \overline{\psi}$, Mass flow (dimensionless)
PSIO = $\overline{\psi}_{o}$, Initial mass flow (dimensionless)
QM = 1/2	$(\rho U^2)_{MAX}$, Free stream dynamic pressure (dimensionless)
$QSH = Q_H$, Total heat flow hub (dimensionless)
QST = \tilde{Q}_{T}	, Total heat flow tip (dimensionless)
RØM = ρ _{ma}	x , Free stream density (dimensionless)
RUM = (ρU) _{MAX} , Maximum momentum (dimensionless)
THEO = $\overline{\Theta}_{o}$, Average total temperature (dimensionless)
THEOO = 0	, Inlet average total temperature (dimensionless)
UM = U _{MA}	, Free stream velocity (demensionless)

Theory

The mass flow weighted average quantity $\bar{\boldsymbol{\varphi}}$ is defined by

$$\overline{\phi} = \frac{1}{\overline{\Psi}} \int_0^1 \frac{GPU_S}{V} \phi dn \qquad (1)$$

where

$$\overline{\Psi} = \int_0^1 \frac{GPU_S}{V} dn \tag{2}$$

The area is given by

$$A = \int_0^1 \frac{G}{V} dn$$
 (3)

It is noted that the mass flow weighted averages satisfy certain conditions

$$\frac{d\overline{\Psi}}{dS} = \left(\frac{G\overline{M}}{V}\right)_{T} + \left(\frac{G\overline{M}}{V}\right)_{H} \tag{4}$$

$$\frac{d}{dS} \left(\overline{\Psi} \overline{\Theta}_{O} \right) = \left[\frac{G \widetilde{M} \Theta_{O}}{V} \right]_{T} + \left[\frac{G \widetilde{M} \Theta_{O}}{V} \right]_{H} - \frac{\gamma}{\gamma - 1} \left[\left(\frac{GQ}{V} \right)_{T} - \left(\frac{GQ}{V} \right)_{\dot{H}} \right]$$
(5)

The entropy is related to the dissipation by

$$\frac{d}{dS} \left(\Psi \widetilde{\mathbf{I}} \right) = \left(\frac{G \widetilde{\mathbf{M}} \mathbf{I}}{V} \right)_{\mathsf{T}} + \left(\frac{G \widetilde{\mathbf{M}} \mathbf{I}}{V} \right)_{\mathsf{H}} + \gamma \, \mathsf{M}_{\mathsf{T}} \int_{0}^{1} \frac{G}{\Theta V^{2}} \left[\Sigma_{\mathsf{NS}} \mathsf{E}_{\mathsf{NS}} + \Sigma_{\mathsf{N} \phi} \, \mathsf{E}_{\mathsf{N} \phi} + \Phi_{\mathsf{R}} \right] \mathsf{d} \mathsf{n}$$

$$- \frac{\gamma}{\gamma^{-1}} \int_{0}^{1} \frac{G Q}{V \Theta^{2}} \, \frac{d \Theta}{\mathsf{d} \mathsf{n}} \, \mathsf{d} \mathsf{n} - \frac{\gamma}{\gamma^{-1}} \left[\left(\frac{G Q}{V \Theta} \right)_{\mathsf{T}} - \left(\frac{G Q}{V \Theta} \right)_{\mathsf{H}} \right]$$
(6)

Equation (4) states that the change in mass flow is the net flow crossing the wall boundary. Equation (5) states that the change in total energy flux is the net crossing the boundary walls. Thus, for an adiabatic wall, the mass flow weighted average total temperature is constant. Finally, equation (6) states that the change in entropy flux is the net crossing the boundary plus the change due to the dissipation function and heat fluxes. Then using the definition of entropy we have

$$\frac{\overline{\overline{\Pi}}_{O2}}{\overline{\overline{\Pi}}_{O1}} = \left(\frac{\overline{\Theta}_{O2}}{\Theta_{O1}}\right)^{\frac{\gamma}{\gamma-1}} \exp\left[\overline{I}_2 - \overline{I}_1\right]$$
(7)

and the loss coefficient is given by

$$C_{PL} = \frac{\overline{P}_{01} - \overline{P}_{02}}{\overline{P}_{01} - \overline{P}_{1}} = \frac{1 - P_{02} / \overline{P}_{01}}{1 - \overline{P}_{1} / \overline{P}_{01}} = \frac{1 - \overline{\Pi}_{02} / \overline{\Pi}_{01}}{1 - \overline{\Pi}_{1} / \overline{\Pi}_{01}}$$
(8)

If we now defined the mass flow weighted averages

$$\overline{\Pi}_{0} = \alpha_{r} \int_{0}^{1} \frac{G}{V} \frac{\Pi^{2}}{\sqrt{\Theta}} M \left(1 + \frac{\gamma - 1}{2} M^{2}\right) \frac{\gamma}{\gamma - 1} dn$$
(9)

$$\overline{\Theta}_{0} = a_{r} \int_{0}^{1} \frac{G}{V} \pi \sqrt{\Theta} M \left(1 + \frac{\gamma - 1}{2} M^{2}\right) dn$$
 (10)

$$\overline{\Psi} = a_r \int_0^1 \frac{G}{V} \frac{\pi}{\sqrt{\Theta}} M dn$$
 (11)

This subroutine also calculates some quantities printed in the summary at the end of the viscous calculation.

The pressure coefficient is defined by

$$\bar{C}_{P} = \frac{\bar{\Pi} - \bar{\Pi}_{i}}{\bar{\Pi}_{0i} - \bar{\Pi}_{i}} \tag{12}$$

An effective area \tilde{A} can be defined as the geometrical area minus the blockage caused by the boundary layer. If we define the freestream as the points of maximum velocity across the duct we have by definition

$$\rho_{\infty} \cup_{\infty} A_{eff} = \hat{m} = (\Psi_{T} - \Psi_{H}) N_{B}$$
 (13)

Hence, the blockage B is defined as

$$B = I - A/A_{eff} = I - m/(\rho_{L}U_{L}A)$$
 (14)

The area averaged (effective Mach number) may then be defined by the isentropic flow relations. Thus,

$$\frac{A_{\text{eff}}}{A} = \frac{M_{\text{eff}}}{M} \left[\frac{1 + \frac{\gamma - 1}{2} M_{\infty}^2}{1 + \frac{\gamma - 1}{2} M_{\text{eff}}} \right]^{\frac{1}{2} \frac{\gamma + 1}{\gamma - 1}}$$
(15)

The effectiveness η of the diffuser is based on an ideal isentropic flow with the mass flow weighted average Mach numbers. Thus, the ideal pressure coefficient is given by

$$C_{PI} = \frac{\widetilde{\Pi} - \overline{\Pi}_{i}}{\overline{\Pi}_{oi} - \overline{\Pi}_{i}}$$
 (16)

where

$$\frac{\prod_{0}}{\widetilde{\Pi}} = \left[1 + \frac{\gamma^{-1}}{2} \widetilde{M}^2\right] \frac{\gamma}{\gamma^{-1}} \tag{17}$$

$$\frac{A}{A_1} = \frac{\overline{M}_1}{\widetilde{M}} \left[\frac{1 + \frac{\gamma^{-1}}{2} \widetilde{M}^2}{1 + \frac{\gamma^{-1}}{2} \overline{M}_1^2} \right]^{\frac{1}{2} \frac{\gamma^{+1}}{\gamma^{-1}}}$$
(18)

Then

$$\eta = \overline{C}_{P}/C_{PI} \tag{19}$$

The wall friction coefficient is defined as

$$C_{f} = \sum w / \left(\frac{1}{2} P U^{2}\right)_{MAX} \tag{2D}$$

The wall surface area and heat flow are determined by integrating the equations

$$A_{S} = \int_{0}^{S} \frac{2\pi R}{V} dS$$
 (21)

$$\widetilde{Q}_{S} = \int_{0}^{S} \frac{2\pi R Q}{V} dS$$
 (22)

using the trapezoid rule.

Function FCØLES (Argument List)

Object Compute Coles velocity profile for boundary layer at initial station.

Options

None

List of Symbols

AK = K, Von Karman constant

 $APLS = A^{\dagger}$, Van Driest constant

API = M , Coles shape factor

AKPL = K_{S}^{+} , Roughness Reynolds number

DELT = , Boundary layer thickness

DAMP = D, Damping factor

 $PI = \pi$, 3.14159

Y = Y , Distance from wall

YPLUS = Y^{T} , Universal distance

UPLUS = U⁺, Universal velocity

FCØLES = U_c^{\dagger} , Coles velocity (output)

Theory

This subroutine integrates the differential equation for the inner layer given by

$$\frac{dU^{+}}{dy^{+}} = \frac{2}{1 + \left[1 + 4\kappa^{2}y^{+2}D^{2}\right]^{1/2}}$$
(1)

with the damping factor, references (7, 8), given by

$$D = I - \exp\left(-\frac{Y^{+}}{A^{+}}\right) + \left(I + \frac{K_{S}^{+}}{30Y^{+}}\right) \exp\left(-2.3\frac{Y^{+}}{K_{S}^{+}}\right)$$
 (2)

and adds Coles' wake function (reference 3), given by

$$U_c^{+} = U^{+} + 2 \frac{\tilde{\pi}}{K} \sin^2 \left(\frac{\pi}{2} \frac{Y}{\delta} \right)$$
 (3)

Subroutine FCØRCT

<u>Object</u>	Correct truncation		error
<u>Options</u>	None		
List of S	ymbo1s	<u> </u>	
AMUW	=	μ w/ M	, Wall value of viscosity (dimensionless)
DU	• =	ΔU	, Velocity difference (dimensionless)
EC Ø R	=	(pU)/(pU) _m	, Mass flux ratio (dimensionless
EMB	=	E _m	, Error in Mach number (dimensionless)
EPB	=	Ep	, Error in static pressure (dimensionless)
ERB	=	E _R	, Error in density (dimensionless)
ЕТВ	=	ET	, Error in static temperature (dimensionless)
EUB	=	E _U	, Error in velocity (dimensionless)
EUP	=	E _{UØ}	, Error in swirl velocity (dimensionless)
EUS	=	E _{US}	, Error in streamwise velocity (dimensionless)
EW	=	E w	, Strain

Theory

The point-to-point instability described in reference 6 is minimized by recalculating the stresses and heat flux using central differences rather than centered differences.

Subroutine FCPLX

Object Evaluates complex functions for exact coordinate calculation.

Options

LOPT = 1 Compute and store functions and derivatives

 $L\emptyset PT = 2$ Compute only derivatives

List of Symbols (Note subscript notation for derivatives used)

 $N1,N2 = N_1,N_2$

XS = S

XN = n

 $XSX = S_x = n_y$

 $XSY = S_v = n_v$

XD = D

XZETS = $\xi_S = \eta_n$

 $XETAS = \eta_S = -\xi_n$

 $xxs = x_s = y_n$

 $xys = y_s = x_n$

 $xB1 = \tilde{X} = \xi_{x} = \eta_{y}$

YB1 = $\tilde{Y} = -\xi_y = \eta_x$

 $x_1 = x$

Y1 = y

XDB = D

 $XNZET = n_{\xi}$

 $XNETA = n_{x}$

XV = V

$$XSXX = S_{xx} = n_{xx} = S_{yy}$$

$$XSXY = S_{xy} = n_{yy} = n_{xx}$$

$$XXSS = X_{ss} = y_{ns} = x_{nn}$$

$$xxsn = x_{sn} = y_{nn} = -y_{ss}$$

$$XB2 = \overset{\cong}{X} = \xi_{xx} = \eta_{yx} = -\xi_{xy}$$

YB2 =
$$\tilde{Y} = -\xi_{xy} = -\eta_{yy} = \eta_{xx}$$

$$XZSS = \xi_{SS} = \eta_{SN} = -\xi_{NN}$$

$$XZSN = \xi_{sn} = \eta_{nn} = -\eta_{ss}$$

$$XDBN = \overline{D}_n$$

$$XDBS = \overline{D}_{S}$$

$$XESDN = (\eta_s/\overline{D})_n$$

$$XESDN = (\eta_s/\overline{D})_s$$

$$XZSDN = (\xi_s/\overline{D})_n$$

$$XZSDS = (\xi_s/\overline{D})_s$$

$$XVN = V_n$$

$$xvs = v_s$$

$$XESS = \eta_{ss}$$

$$XESN = \eta_{sn}$$

$$XDIS = D_s$$

$$XDIN = D_n$$

Theory

The theory for evaluating the complex functions and all derivatives is derived in reference (6). With the use of orthogonality relations which are implicit in the theory of complex function, the functions and derivatives may be evaluated. It is noted that this subroutine was programmed to accept multiple sources in the z plane, although only one is used in the present calculation. The derived functions calculated in this subroutine are listed as follows:

$$S = \sum_{I=1}^{NS} \frac{A_{I}}{2} in \left[(x-b_{I})^{2} + y^{2} \right]$$
 (1)

$$n = \sum_{I=1}^{NS} A_{I} \tan^{-1} [y/(x-b_{I})]$$
 (2)

$$S_{x} = \sum_{I=1}^{NS} \frac{A_{I} (x-b_{I})}{\left[(x-b_{I})^{2} + y^{2} \right]}$$
 (3)

$$S_y = \sum_{I=1}^{NS} \frac{A_I y}{\left[(x - b_I)^2 + y^2 \right]}$$
 (4)

$$S_{XX} = \sum_{I=1}^{NS} \frac{A_I}{\left[(X - b_I)^2 + y^2 \right]} \left\{ 1 - \frac{2(X - b_I)^2}{\left[(X - b_I)^2 + y^2 \right]} \right\}$$
 (5)

$$S_{yy} = -\sum_{I=1}^{NS} \frac{A_I 2y(X-b_I)}{\left[(X-b_I)^2 + y^2\right]}$$
 (6)

$$D = -(S_x^2 + S_y^2) (7)$$

$$x_s = -S_x/D \tag{8}$$

$$Y_S = -S_y/D \tag{9}$$

$$\xi_{s} = \xi_{x} \times_{s} + \xi_{y} \times_{s} \tag{10}$$

$$\eta_{s} = \eta_{x} \chi_{s} + \eta_{y} \gamma_{s} \tag{11}$$

$$V = \frac{1}{\left[\xi_{s}^{2} + \xi_{n}^{2}\right]^{1/2}}$$
 (12)

$$D_{S} = -\left[2S_{y}(S_{yx}X_{s} + S_{yy}Y_{s}) + 2S_{x}(S_{xx}X_{s} + S_{xy}Y_{s})\right]$$
(13)

$$D_{n} = -\left[2S_{y}(S_{yx}X_{n} + S_{yy}Y_{n}) + 2S_{x}(S_{xx}X_{n} + S_{xy}Y_{n})\right]$$
(14)

$$x_{ss} = -\left[\frac{s_{xx}x_{s} + s_{xy}x_{s}}{D} - \frac{s_{x}D_{s}}{D^{2}} \right]$$
 (15)

$$X_{sn} = -\left[\frac{(S_{xx}X_n + S_{xy}Y_n)}{D} - \frac{S_xD_n}{D^2}\right]$$
 (16)

$$\xi_{ss} = \xi_{x} X_{ss} + \xi_{xx} X_{s}^{2} + 2\xi_{xy} Y_{s} X_{s} + \xi_{y} Y_{ss} + \xi_{yy} Y_{s}^{2}$$
 (17)

$$\xi_{sn} = \xi_{x} X_{sn} + \xi_{y} Y_{sn} + (\xi_{yy} - \xi_{xx}) Y_{s} X_{s} + \xi_{xy} (X_{s}^{2} - Y_{s}^{2})$$
(18)

$$V_s = -V^5 / [\xi_s \xi_{ss} + \xi_n \xi_{ns}]$$
 (19)

$$V_n = -V^3 / \left[\xi_s \, \xi_{sn} + \xi_n \, \xi_{nn} \right] \tag{20}$$

Numerical accuracy can be significantly improved by ordering the way in which sums and products are made. As an example, the first equation, equation (1), may be written

$$S = \sum_{I=1}^{NS} A_{I} \left\{ \left| X - b_{I} \right| \left[1 + \left(\frac{y}{X - b_{I}} \right)^{2} \right]^{1/2} \right\}$$

$$\left| X - b_{I} \right| > |y|$$

$$= \sum_{T=1}^{NS} A_{I} \left\{ |y| \left[1 + \left(\frac{X - b_{I}}{Y} \right)^{2} \right]^{1/2} \right\}$$

$$|y| > |X - b_{I}|$$

Thus the square root of the sum of squares of O(1) and $S = O(|X-b_I|)$. This rule has been applied to all equations by extracting the order of magnitude of the term from each calculation.

Subroutine FETA (B, ETA, AN, DEDN, D2EDN)

Object

Calculate distorted mesh to be used in Subroutine PØIS

Options

B = 0 Uniform mesh (no stretching) B > 0 Tanh stretching

Variables

B , Constant

ETA n , Transformed Normal Coordinate

AN n , Normal Coordinate

DEDN $\partial \eta / \partial n$

D2EDN $\partial^2 n/\partial n^2$

Theory

This subroutine calculates the distorted mesh that will be used in calculation by subroutine $P\emptyset IS$. The transformation is given by

$$\eta = \tanh [Bn]/\tanh [B] \quad B > 0$$

$$\eta = n \quad B = 0$$
(1)

Subroutine FINTG (IKL)

Object Integrate equations for potential flow.

Options

IKL = Number of streamlines

List of Symbols

IKL

, Number of streamlines

Theory

Four simultaneous ordinary differential equations are integrated using a third order Runge-Kutta numerical integration method. These equations are given in FCPLX and denoted as

$$\frac{dx}{ds} = x_s(x,y)$$

$$\frac{dy}{ds} = y_s(x,y)$$

$$\frac{d\xi}{ds} = \xi_s(x,y)$$

$$\frac{d\eta}{ds} = \eta_s(x,y)$$
(1)

The Runge-Kutta formulas applied to the first equation are

$$B_{11} = \Delta SX_{S}(X,Y)$$

$$B_{12} = \Delta SX_{S}(X + B_{11}/2, Y + B_{21}/2)$$

$$B_{13} = \Delta SX_{S}(X + 2B_{12} - B_{11}, Y + 2B_{22} - B_{21})$$
(2)

$$X(S+\Delta S) = X(S) + (B_{11} + 4B_{12} + B_{13})/6$$
 (3)

Subroutine FLØWIN

Object Setup inlet flow.

Options

IØPT1 = 1 Compute inlet flow If $(T_0=0) P_0=P_r$ and $T_0=T_r$

IØPT1 = 2 Read inlet flow If $(T_o>10.)$ Normalize with T_r and P_r

List of Symbols

BINP(I,J,K)

, Interpolated from BINPUT(IH, J, L)

Theory IOPT1=1

For this option the freestream flow is assumed to be isentropic with a constant freestream Mach number M_{S} and wall boundary layers defined by power-law velocity profiles. Since the swirling flow must be in radial equilibrium, the normal momentum equations must be satisfied together with isentropic relationships of pressure ratio and temperature ratio.

Neglecting curvature in the meridional plane

$$\frac{\partial \Pi}{\partial n} = \frac{\gamma}{R} \frac{\partial R}{\partial n} \Pi M_{\phi}^{2} \tag{1}$$

where

$$M_{\phi}^{2} = M^{2} - M_{s}^{2}$$
 (2)

$$M^{2} = \frac{2}{\partial - 1} \left[\left(\frac{\Pi_{0}}{\Pi} \right)^{\frac{\gamma}{\gamma}} - 1 \right]$$
 (3)

Equation (1) can be integrated with

$$M(0) = M_{S}/\cos(\alpha_{H})$$
 (4)

and

$$\frac{\Pi_0}{\Pi(0)} = \left[1 + \frac{\gamma - 1}{2} \quad M(0)^2\right] \frac{\gamma}{\gamma - 1} \tag{5}$$

as initial conditions using a Runge-Kutta method.

For a given displacement thickness and velocity profile power law, wall boundary layers can be added, assuming collateral boundary layers, such that α is unchanged. Then

$$\Delta = (1+n) \Delta^* \tag{6}$$

$$\frac{U}{U_{\infty}} = \left(\frac{y}{\triangle}\right)^{1/n_2} \tag{7}$$

and

$$\frac{\Theta}{\Theta_{\infty}} = 1 + \sqrt[3]{P_{RL}} \frac{\gamma - 1}{2} M_{\infty}^{2} \left[1 - \left(\frac{U}{U_{\infty}} \right)^{2} \right] + \frac{\Theta_{W} - \Theta_{AW}}{\Theta_{\infty}} \left[1 - \frac{U}{U_{\infty}} \right]$$
(8)

Finally, the inlet mass flow and reference velocity are determined as follows

$$u_r = \frac{N_B}{A} \int_0^1 \frac{G}{V} P U_S \frac{d\eta}{X}$$
(9)

$$\mathbf{w} = \mathbf{g} \, \rho_{\mathbf{r}} \, \mathbf{u}_{\mathbf{r}} \, \mathbf{a}_{\mathbf{r}} \mathbf{A} \tag{10}$$

Theory IOPT1=2

For this option, the input flow is calculated from experimental input data. The input variables selected are spanwise location, total pressure, static pressure, flow angle, and total temperature, since these are the primary measured variables. A simple linear interpolation is used so that for any variable ϕ ,

$$\phi(Y(\eta)) = \phi(Y_1) + \left[\phi(Y_2) - \phi(Y_1)\right] \left[Y(\eta) - Y_1\right] \tag{11}$$

The flow variables are calculated from equations 1 through 7.

If (T > 10), it is assumed that pressure and temperature are given in (psf) and deg R, respectively, and the flow is normalized accordingly. If δ^* is given, it is assumed that boundary layers should be added accordingly to the velocity profile power law above. Finally, the weight flow and reference velocity are determined from equations 9 and 10. A flow chart of this subroutine is presented in figure 20.

Subroutine FNØRM

Object Normalize input variables.

<u>Options</u>

None

List of Symbols

All variables in COMMON blocks

Theory

All input variables are normalized according to the List of Symbols.

Subroutine FØRCE/PRØP

<u>Object</u>	Compute blade	forces
Options		
NØPPF = 1		Radial, axial, and swirl blade forces are defined in propeller portion of program.
$N \not O PPF = 0$		Radial, axial, and swirl blade forces are read from input.
List of Sym	bols	
FRCI(N, 1)		Blade force (radial direction)/span
FRCI(N, 2)		Blade force (phi direction)/span (dimensionless)
FRCI(N, 3)		Blade force (axial direction)/span (nondimension)
FRC(N, 1)		Blade force (radial direction)/span (nondimension)
FRC(N, 2)		Blade force (phi direction)/span (nondimension)
FRC(N, 3)		Blade force (axial direction)/span (nondimensional)
FØRC(3, K)		Blade force (stream direction)/volume (nondimensional)
FØRC(4, K)		Blade force (swirl)/volume (nondimensional)
FLØC(5, N)		cosine of θ
FLØC(6, N)		sine of θ
К		Index of n coordinate
N		Index of points along propeller centerline

Theory

This subroutine is used to calculate the streamwise and swirl blade components for each streamline. It is assumed that the normal component is small. The process has two steps.

- (1st) Calculation of radial, axial, and phi blade force components for each streamline by using linear interpolation of blade points.
- (2nd) Converting radial, axial, phi blade force components to streamwise and swirl blade forces.

Subroutine FØRCL

Object Compute local blade force.

Options None

List of Symbols

GAP = G , Strut gap (dimensionless)

ZLE = Z_{IF} , Location of leading edge (dimensionless)

ZTE = Z_{TF} , Location of trailing edge (dimensionless)

Theory

The chordwise distribution of blade loading (force/volume) is defined by

$$q_{s} = \frac{\mu_{E}}{P_{F_{T}}} \vee \frac{\partial}{\partial S} (C_{P}T)$$
(1)

$$q_{\phi} = \frac{\mu_{E}}{P_{F_{T}^{-}}} \frac{1}{r} \frac{\partial}{\partial \phi} (C_{p}T) \tag{2}$$

$$I - I_r = C_P \ln \left(\frac{I}{T_r} \right) - \ln \left(\frac{P}{P_r} \right)$$
 (3)

In this subroutine, the chordwise loading is assumed uniform.

Function FTHIK (Z, IS, L\P)

Object Compute blade thickness distribution.

Options

IS=1 NASA 5 digit series distribution.

IS=4 Input thickness distribution.

IS=7 65-A series thickness distribution.

L \emptyset P=1 FTHIK = t/t_{max} L \emptyset P=2 FTHIK = $d(t/t_{max})/d(x/c)$

List of Symbols

Z = x/c

, Fractional chordwise distance.

 $FTHIK = t/t_{max}$

, Ratio of thickness to maximum thickness of blade.

Theory

A thickness distribution of the form

$$t/t_{max} = 1.4845 z^{\frac{1}{2}} - .63 z - 1.758z^{2} + 1.4215 z^{3} - .5075z^{4}$$
 (1)

is used to represent aa NASA 5 digit series distribution (IS=1).

For a NASA 65A series distribution or for any arbitrary distribution (IS=4) table data is used to represent the distribution.

Subroutine GBLADE

<u>Object</u>	Compute Blade	Geometry				
Options	None					
List of Symbols						
ALPHS	α	,	Stagger angle to axis (deg)			
CHRD	В	,	(Local) blade chord (dimensionless)			
GAP IRT ISHAPE	G	,	Gap between blades (dimensionless) Index Counter Blade shape (Option)			
NBLADE		,	Number of blades in one row			
NRW		,	Number of blade rows			
NUM		,	Number of points along blade centerline			
PHIC	φ _c	,	Blade camber			
RCLH	R _{CLH}	,	Hub radius of blade centerline			
RCLT	R _{CLT}	,	Tip radius of blade centerline			
SLD	σ	,	Solidity			
THICK	t	,	Local blade thickness			
THICKN	t _n	,	Blade thickness			
THIKM	t/B	,	Maximum thickness/chord			
ZBAR	\overline{z}	,	Axial position with respect to blade			
ZCL	z_{CL}	,	Blade axial centerline			
ZCLX	z _{CLX}	,	Axial distance to blade centerline			
ZKK		,	Fractional distance along chordline			
ZLE	Z _{LE}	,	Blade leading edge			

ZTE	z _{TE}	,	Blade trailing edge
CONST(1, L)	$R_{\mathbf{L}}$,	Radius (input data)
CONST(2, L)	$\alpha_{ m L}$,	Stagger angle (input data)
CONST(3, L)	B _L	,	Chord (input data)
CONST(4, L)	(t/B) _L	,	Thickness to chord ratio (input data)
CONST(5, L)	$\phi_{\mathbf{L}}$,	Camber angle (input data)
CONST(6, L)	z_{CL}	,	Axial distance (input data)
Q(2, L)	R	,	Radius
Q(13, L)	G	,	Gap
Q(14, L)	9G/9n	,	Normal derivative of blade surface
Q(15, L)	3.G/3S	,	Streamwise derivative of blade surface

Theory

This module interpolates blade data with respect to the radius of blades in order to obtain local blade information. The following parameters are interpolated; α , B, t/B, ϕ_{c} , and Z_{CLY} . The blade thickness is then calculated in FTHIK and used to determine G, $\partial G/\partial n$ and $\partial G/\partial s$. A flow chart is given in Fig. 21.

Subroutine GDUCT

Object Compute Duct shape

Options

IØPT3=1 Straight annular duct

IØPT3=2 Read duct shape

IØPT3=3 Straight-wall diffuser

IOPT3=4 NACA curved-wall diffuser

List of Symbols

(As needed by user)

Theory

This subroutine is used to prescribe the duct shape $r_H(Z)$, $r_T(Z)$, wall bleed $\overset{\circ}{m}_H(Z)$, $\overset{\circ}{m}_T(Z)$, and wall temperature $T_H(Z)$, $T_T(Z)$, as required. Since these functions are input, the programmer may write a subroutine for this purpose or read the required information according to IØPT3. In addition, the subroutine computes the reference radius and normalizes the variables r and T. The variable $\overset{\circ}{m}$ is normalized in Subroutine FLØWIN when U_T is calculated.

Input/Output

The user may program any duct shape and wall boundary conditions as required. The output of this subroutine must be $(R(I,K,J),\ I=1,3;\ K=1,2,\ J=1,JL)$ and Z1. Note that all variables are normalized as shown in the sample subprogram described in the Subroutine GDUCT listing and that equally spaced spanwise stations are used. The flowchart (figure 22) should be followed in programming.

Subroutine GEØMCL

Object Calculate coordinates of lifting line.

Options

None

List of Symbols

 $AL = A_{T}$, Slope of lifting line

AM = A_M , Slope of coordinate line

AN1, AN2 = N_1 , N_2 , N coordinate of grid

ANI, ANII = N_{I} , N_{I-1} , N coordinate of lifting line intersection with grid

ANL = N_{T} , N coordinate of input point of lifting line

R1, R2 = R_1 , R_2 , R coordinate of grid line

RI, RI1 = R_I , R_{I-1} , R coordinate of lifting line intersection with grid

RL = $R_{\rm L}$, R coordinate of lifting line input

S1, S2 = S_1 , S_2 , S coordinate of grid

SI, SI1 = S_{I} , S_{I-1} , S coordinate of lifting line intersection with grid

SSL = S_T , S coordinate of lifting line input point

Z1, Z2 = Z_1 , Z_2 , Z coordinate of grid line

ZI, ZII = Z_{I}, Z_{I-1} , Z coordinate of lifting line intersection with grid

 $CONS(1,L) = R_{T}$, Lifting line radius (Local)

 $CONS(2,L) = \alpha_L$, Stagger angle (Local)

 $CONS(3,L) = B_L$, Chord (Local)

 $CONS(4,L) = (t/B)_L$, Thickness/chord (local)

 $CONS(6,L) = Z_{CL}$, Lifting Line Axial Distance (local)

CONS(8,L) n_L Lifting line normal locations CONS(9,L) S_L Lifting line streamwise location

Theory

The equation for the lifting line passing through the points (L, L-1) is approximated by a line given by

$$Z = Z_{L-1} + A_{L}(R - R_{L-1})$$
 (1)

where the slope is given by

$$A_{L} = (Z_{L} - Z_{L-1}) / (R_{L} - R_{L-1})$$
(2)

The streamline coordinate system forms a box around the L-1 mesh point (see figure 23) given by the points (1), (2), (3), (4). If it is assumed that point (5) is known; the object is to find point (6) by successively checking each side of the mesh to determine if the lifting line crosses. Let the index I = 1, 4 represent each side of the box. Then a straight line is passed through the pair of points

- I Points
- 1 (2), (1) $n_1 S$ varies
- 2 (3), (2) $S_2 n$ varies
- 3 (4), (3) $n_2 S$ varies
- 4 (1), (4) $S_1 n$ varies

The equation of the straight line approximating the lifting line is given by

$$Z = Z_{1} + A_{M} \cdot (R - R_{1})$$

$$A_{M} = (Z_{2} - Z_{1}) / (R_{2} - R_{1})$$
(3)

Then the intersection of the lifting line with the coordinate line is given by

$$R_{I} = (Z_{L-1} - A_{L} \cdot R_{L-1} - Z_{1} + A_{M}R_{1}) / (A_{M} - A_{L})$$
(4)

$$Z_{I} = \left[\left(Z_{L-1} - A_{L} \cdot R_{L-1} \right) \cdot A_{M} - \left(Z_{I} - A_{M} \cdot R_{I} \right) \cdot A_{L} \right] / \left(A_{M} - A_{L} \right)$$
 (5)

provided

$$A_{\mathsf{M}} - A_{\mathsf{L}} \neq 0 \tag{6}$$

From figure (23) R,Z will intersect inside the mesh if:

$$R_1 \le R_{\underline{I}} \le R_2 \text{ or } R_2 \le R_{\underline{I}} \le R_1$$
 (7)

and

$$Z_1 \le Z_1 \le Z_2 \text{ or } Z_2 \le Z_1 \le Z_1$$
 (8)

For I = 1 and 3, n is constant and S varies. Thus

$$S_{I} = S_{I} + (R_{I} - R_{I}) / (R_{2} - R_{I}) (S_{2} - S_{I})$$

$$n_{I} = n_{I} \text{ if } I = I$$

$$n_{I} = n_{2} \text{ if } I = 3$$
(9)

Likewise for I = 2 and 4, S is constant and n varies. Thus

$$n_{I} = n_{1} + (R_{I} - R_{I}) / (R_{2} - R_{I}) (n_{2} - n_{I})$$

$$S_{I} = S_{2} \text{ if } I = 2$$

$$S_{I} = S_{1} \text{ if } I = 4$$
(10)

Then R_I , Z_r , S_I , n_I is known for point (6)

From figure 18, it can be seen that if

$$R_{I-1} \le R_{L} \le R_{I} \tag{11}$$

 $\rm R_L$ lies within the grid (1), (2), (3), (4), and L should be advanced. Both n and S vary along the lifting line. If (R_L, Z_L) lies within the grid then n_L, S_L can be determined by the relations

$$S_{L} = S_{I} + (S_{I} - S_{I-I}) / (R_{I} - R_{I-I}) (R_{L} - R_{L-I})$$

$$n_{L} = n_{I-I} + (n_{I} - n_{I-I}) / (R_{I} - R_{I-I}) (R_{L} - R_{L-I})$$
(12)

This procedure can then be repeated for L = 2, NUM

Subroutine INITQ

<u>Object</u>

Initialize data file parameters for Q array

Option

None

Var	i	a	Ъ	1	e	s
-----	---	---	---	---	---	---

BLOCK(1)	JSTEP	, Block (record number)
Q(1,K)	R	, Radius (dimensionless)
Q(2,K)	Z	, Axial distance (dimensionless)
Q(3,K)	∂R/∂n	, Derivative
Q(4,K)	∂R/∂s	, Derivative
Q(5,K)	(cosθ) ² axi	, Axisymmetric flow angle
Q(6,K)	v	, Metric coefficient (dimensionless)
*Q(7,K)	$\partial V/\partial n = (K_s + \Delta K_s)$, Curvature of streamline
Q(8,K)	0V/0s	, Curvature of potential line
Q(9,K)	x	, Distance along streamline (dimensionless)
Q(10,K)	Y	, Duct height (dimensionless)
Q(11,K)	Y/Y _T	, Normalized duct height
Q(12,K)	A	, Duct Area (dimensionless)
Q(13,K)	G	, Gap (dimensionless)
Q(14,K)	∂G/∂n	, Derivative
Q(15,K)	3G/3s	, Derivative
Q(16,K)	9n/9n	, Transformation of normal coordinate

Subroutine INITQ (Cont'd)

<u>Variables</u> (Cont'd)		
Q(17,K)		, Not used
Q(18,K)	n	, Normal coordinate (dimensionless)
Q(19,K)	η	, Transformed coordinate
	K = 1, KL	
QPARM(1)	rr	, Reference radius, (ft)
QPARM(2)		, Not used
QPARM(3)	JL	, Number of streamwise steps
QPARM(4)	KL	, Number of streamlines

Theory

This subroutine initializes the independent variable array BLOCK which is stored on a disc file and sets all parameters QPARM required by the calculation.

^{*} Note that Q(7,K) stores either $\rm K_{S}$ or $\rm K_{S}\text{+}\Delta\rm K_{S}\text{.}$

Subroutine INTFRE

Object

Initialize freestream conditions

Options

None

List of Symbols

See CØMMØN BLØCKS

Theory

Data read from file NDRUM is used to set up the freestream conditions for subroutine P0IS.

Subroutine LØADRR

Object Loader formated input

Options

NØPT8=0 Continue reading input NØPT8=1 Stop reading input

List of Symbols

See EQUIVALENCE ARRAYS in subroutine listings.

Theory

This method of reading input permits the changing of one or more input variables. The remaining input variables remain the same as the previous case.

Subroutine MINVRT(A,B,N)

Object Invert NxN matrix.

Options

None

List of Symbols

A = \overline{A} , Augmented \overline{A} matrix

B = \overline{B} , Augmented \overline{B} matric (\overline{A}^{-1}) matrix

N , Number of equations (rows)

M , Number of columns

Theory

The \overline{A} matrix is inverted using the Gauss-Jordan elimination procedure. First the augmented $\overline{A}(N, M)$ is formed including the identity matrix,

$$\frac{\overline{\overline{A}}}{\overline{A}} = (A I) \tag{1}$$

Then the following revision formula is used

$$b_{I-1,J-1} = a_{I,J} - a_{I,J} a_{I,I} / a_{I,I} \left\{ \begin{cases} i < I \le N \\ i < J \le M \end{cases} \right\}$$
 (2)

$$b_{N,J-1} = a_{I,J}/a_{I,I}$$
 $1 < J \le M$ (3)

Note that the $\overline{\overline{B}}$ matrix has one less column than the $\overline{\overline{A}}$ matrix. Then the substitution is made

$$a_{IJ} = b_{IJ} \qquad \qquad 1 \le T \le N \qquad (4)$$

$$1 \le J \le M - 1$$

and repeated until the $\overline{\overline{B}}$ matrix is an NxN or the $\overline{\overline{A}}^-$ matrix.

Subroutine MYTIME

Object Dummy time trap routine

Subroutine ØUTPUT

<u>Object</u>

Print title page

Option

None

List of Symbols

None

Theory

This subroutine prints the title page which records all modifications, dates, and references to changes incorporated into the ADD code.

Subroutine PERFNA

Object Compute viscous nacelle drag

Options

None

List of Symbols

AREAM = A , Maximum cross-sectional area

 $CDFR = C_{DF}$, Friction drag coefficient

CDPR = C_{DP} , Pressure drag coefficient

DFR = D_F , Friction drag (1b)

QREF = Q, Reference dynamic pressure (psf)

RMAX = R, Maximum radius of nacelle

 $AVE(9,1) = P_1$, Initial mass flow average density

 $AVE(4,1) = U_1$, Initial mass flow average velocity

P = P , Static pressure

P1,P2 = Π_1,Π_2 , Static pressure (P/P_r) at prescribed stations

R = R, Local radius

R1,R2 = R_1 , R_2 , Nacelle radius (r_1/r_r) of prescribed stations

S = S , Streamwise coordinates

 $S_1, S_2 = S_1, S_2$, Streamwise coordinate at prescribed stations

Theory

In terms of dimensionless variables used in the analysis, the friction and pressure drag are given by:

$$D_{f} = 2\pi r_{r}^{2} \rho_{r} u_{r}^{2} \int_{S_{1}}^{S_{2}} \sum_{ns} \frac{\partial R}{\partial n} ds$$
 (1)

$$D_{P} = 2\pi r_{r}^{2} P_{r} \left\{ \int_{S_{1}}^{S_{2}} R \Pi \frac{\partial R}{\partial S} ds + \Pi_{1} \frac{R_{1}^{2}}{2} - \Pi_{2} \frac{R_{2}^{2}}{2} \right\}$$
(2)

The corresponding coefficients are given by

$$C_{DP} = D_p / (A_{MAX} Q_r)$$
 (3)

$$C_{DF} = D_f / (A_{MAX} Q_r)$$
 (4)

where

$$A_{MAX} = \pi r_r^2 R_{MAX}^2$$
 (5)

$$Q_r = 1/2 \rho_r u_r^2 \overline{\rho_i} \overline{u_i}^2$$
 (6)

Subroutine PERFN2

Object Compute inviscid nacelle drag

Options

None

List of Symbols

 $DPR = D_{p}$, Pressure drag

P = P , Static Pressure

P1,P2 = P_1 , P_2 , Static pressure (P/P_r) at prescribed stations

R1, R2 = R_1 , R_2 , Nacelle radius (r_1/r_r) at prescribed stations.

S = S , Streamwise coordinate.

 $S_1, S_2 = S_1, S_2$, Streamwise coordinate at prescribed station.

Theory

In terms of the dimensionless variables used in the analysis, the pressure drag is given by;

$$D_{P} = 2\pi r_{r}^{2} P_{r} \left\{ \int_{S_{1}}^{S_{2}} R \Pi \frac{\partial R}{\partial S} ds + \Pi_{1} \frac{R_{1}^{2}}{2} - \Pi_{2} \frac{R_{2}^{2}}{2} \right\}$$
 (1)

Subroutine PØIS (RESM, ITER)

Object

Solve Poisson equation

Option

- IDBGP = 0 No debug printout
 - = 1 Printout residuals
 - = 2 Print solution

List of Symbols

 $P(K,J) = \psi$

, Stream function (dimensionless)

F(K,J) =

, Coefficient (1/PG) (dimensionless)

 $PSI(K) = \psi$

, Iterative guess for J

ITER = ν

, Iteration counter

RLX

, Relaxation factor

 $RESMAX = \varepsilon_{MAX}$

, Maximum residual accepted

RESDM = ε_{M}

, Maximum residual/J station

RESM = ε

, Maximum residual/sweep

Theory

The solution algorithm is described in Reference 1.

References

1. Anderson, O. L. and D. E. Edwards: Extension to an Analysis of Turbulent Swirling Compressible Flow in Axisymmetric Ducts, NASA Contract NAS3-21853, 1981, UTRC Report R81-914720.

Subroutine PØISCF

Object

- (1) Set of coefficients of $\nabla^2 \psi = 0$
- (2) Set boundary conditions on ψ
- (2) Set initial guess for ψ

Options

- IDBG17 = 0 Compressible Flow
 - = 1 Incompressible Flow
- IDBGT = 0 No debug test case
 - = 1 Debug test case
- IDBGP = 0 No debug test printout
 - = 1 Debug printout

Variables

\sim	,	-		121
U	(Τ	٠	K)

, Coordinate functions

FIV(I,L,K)

, Dependent variables for inviscid flow

 $P(K) = \psi_K^J$

- , Stream function at station ${\sf J}$
- $A(K) = GP/V/(d\eta/dn)$
- , Coefficient for au/an

F(K) = 1/G/P

, Coefficient of $\nabla^2 \psi$

G(K) = V/G/P

,Coefficient for velocity calculation

R(K) = P

, Density ratio (ρ/ρ_r)

 $T(K) = \Theta$

, Temperature ratio (T/T_r)

V(K) = V

, Metric coefficient dimensionless

GAP = G

, Gap (g/r)

VMET = V

,Metric coefficient (dimensionless)

 $RH\emptyset = P$

, Density ratio (ρ/ρ_r)

TEM = Θ

Temperature ratio (T/Tr)

 $USO = U_{SO}$

, Upstream constant velocity (u_0/u_r)

Subroutine PØISCF (Cont'd)

USINF	U s∞	,Free stream axial velocity $(u_{s^{\infty}}/u_r)$
UPINF	$\mathbf{U}_{\phi^{\infty}}$,Free stream tangential velocity $u_{\varphi \infty}/u_{\mathtt{r}}$
PSIKL	Ψ_{∞}	,Free stream stream function (dimensionless)
TEMINF	θ_{∞}	,Free stream static temperature ratio (T/T_r)
RHOINF	P_{∞}	,Free stream density ratio (ρ/ρ_r)
AMINF	M_{∞}	Free stream Mach number
PTINF	Π_{∞}	,Free stream total pressure ratio (P_0/P_r)
BLK		,See COMMON/SPCGD/

Theory

This subroutine does the following steps

- (1) Reads coordinate Q file and solution FIV file
- (2) Interpolates the solution to the (η, S) grid
- (3) Calculates the coefficient F = 1/PG
- (4) Calculates coefficients BLK for streamline curvature calculation
- (5) Sets boundary condition on Ψ
- (6) Calculates initial guess for Ψ
- (7) Stores F, BLK, P on disk files

The initial guess is given by the inviscid solution obtained from CALINV. The boundary conditions are given by:

$$\psi(0,s)=0 \tag{1}$$

$$\psi(1,s) = \psi_{\infty} \tag{2}$$

$$\psi(\eta, 0) = U_{so} \int_{0}^{\infty} \left(\frac{GP}{V} / \frac{d\eta}{d\eta} \right)_{s=0} d\eta$$
 (3)

$$\psi(\eta, s_L) = U_{so} \int_{0}^{\eta} \left(\frac{GP}{V} / \frac{d\eta}{dn} \right)_{s=sL} d\eta$$
 (4)

Subroutine PØISØN

Object

Calculate axisymmetric streamline curvature

Options

 $I \phi PT7 = 0$ No curvature corrections

= 1 Curvature correction

IDBG15 = 0 Use input KL streamlines

> 0 Use IDBG15 streamlines

List of Symbols

IRHØ ,Density iteration counter

ITERL ,Maximum number of iterations

KHØLD ,No. ADD code streamlines

KL , No. SCURVA streamlines

RESMAX ,Maximum residual for convergence

Theory

This subroutine is a calling subroutine for subroutines INTFRE, PØISCF, PØIS, and SCURVA.

Subroutine QINTER

Object

Interpolate curvature from PØIS mesh to SØLVI mesh

Options

None

List of Symbols

Q(J,K)

Coordinate functions

Theory

After the curvature and flow angle has been calculated from the potential flow solution, this subroutine interpolates to obtain values at the numerical grid points which will be used in the SØLVI calculation.

Subroutine READPF(J,JJ)

<u>Object</u>

Read P and F files in NIST word blocks

Option

None

List of Symbols

J	J	,Record number
JJ	JJ	,Record number in block N
N	N	,Block number
F	F	,Coefficients of $\nabla^2 \psi = 0$
P	ψ	,Stream function (dimensionless)
NST	= 25	,Number of records per block
NBK		,Number of words to move pointer
NIST		, Number of words per block
NFDRM	= 23	,Coefficient file number F array
NL		,Last block number
NBIST		, Number of words for two records
NMOVE		, Number of words to move pointer

Theory

The entire F and P arrays cannot be kept in core at the same time so that the I/O is arranged to keep fixed blocks in core (Fig. 1). Let (J,K) be a point on the computational mesh and (JJ,KK) the corresponding point in core. Let each record be the Jth line with the number of words in the record given by

$$K = 1,IST$$

If there are NST records per block, then these are NIST words per block,

 $NIST = NST \times IST$

Subroutine READPF(J,JJ) (Cont'd)

Theory (Cont'd)

The solution algorithm requires overlapping blocks as shown on Fig. 1. Hence we have the block number

$$N = (J-2)/(NST-2) + 1$$

and the JJ point in core is given by

$$JJ + J-(N-1) \times (NST-2)$$

This subroutine is coded so that a new block is ready only when N = NL.

Subroutine READPG(J,JJ)

<u>Object</u>

Read variable for curvature calculation

<u>Options</u>

None

List of Symbols

J	= J	,Record number
JJ	= JJ	,Record number in block N
N		,Block number
G		,Streamline coordinate data (see COMMON/SPCFD/)
P		,Stream function
NST	= 25	,Number of records per block
NBK		, Number of words to move pointer
NIST		, Number of words per P block
NGDRM	= 25	,Unit number of G array
NPDRM	= 24	,Unit number for P array
NL		,Last P block number
NBIST		,No. words for 2 P records
NGIST		,No. words for 2 G records
NGL		,Last G record number

Theory

This subroutine reads the P file according to Subroutine READPF but reads only the Jth G record which is kept in core.

Function RØBRTS(C,ETA,LØP)

Object

Compute distorted mesh using Roberts' transformation

Options

 $L \phi P = 0$ Wall - wall boundary

= 1 Wall-free stream boundary

=-1 Free stream-wall boundary

List of Symbols

C = C ,Distortion parameter

ETA = η , Input variable (uniform mesh)

 $L\emptyset P = ,Option$

Output Variable

RØBRTS = n ,Output variable

Theory

The Roberts' transformation for a distorted mesh on both sides is given by

$$n' = \frac{(c+1/2) \exp\left[2 \sin\left(\frac{c+1/2}{c-1/2}\right) \left(\eta'-1/2\right)\right] - (c-1/2)}{1 + \exp\left[2 \sin\left(\frac{c+1/2}{c-1/2}\right) \left(\eta'-1/2\right)\right]}$$
(1)

where

$$0 \le \eta' \le 1.0$$
 $0 \le n' \le 1.0$ (2)

For the different options we have

$$\frac{\eta' = (1 + \eta)/2}{n = 2n' - 1}$$
 \(\text{L}\psi P = -1 \) (5)

C-3

Subroutine RØUND

Object Round corners on straight wall ducts.

List of Symbols

XM

, Axial location

IWALL

, Indicates Hub or Tip Wall

DX

, Stepsize in x direction

Theory

In subroutine GDUCT, if the option I@PT3 = 8 is used then a straight wall is constructed between initial data points. Thus in order to remove discontinuity between wall segments this subroutine is used to round or smooth out the discrete representations of the wall in order for it to appear smooth.

Subroutine SLETE(KSSLE,KSSTE)

Object Find blade control surfaces.

Options

None.

List of Symbols

KSSLE, KSSTE

, Leading edge and trailing edge index

SLE, STE

, Leading and trailing edge coordinates (dimensionless)

ZLEH, ZLET

, Axial distance hub leading and trailing edge

(dimensionless)

ZTEH, ZTET

, Axial distance tip leading and trailing edge (dimensionless)

Theory

The intersection of the leading and trailing edge of the blade with the hub and tip casing are obtained from Subroutine GBLADE. Then the coordinates of the hub and tip boundaries are searched until the proper value of streamwise

coordinates for the leading edge and trailing edge of the blade are found. The coordinate index KSSLE is located just upstream of the blade and the coordinate KSSTE is located just downstream of the blade.

Subroutine SCURVA (IDBU,KHØLD)

<u>Object</u>

Calculate curvature from potential flow solution

Options

IDBU = 0 Update density
> 0 Print SCURVA solution, update curvature

Variables

KHØLD		, No. ADD code streamlines
KL		,No. SCURVA streamlines
Q(J,K)		,Coordinate functions
P(K)	$\psi_{\mathbf{k}}^{\mathbf{J}}$,Stream function a station J (dimensionless)
G(K)	G	,Coefficient for velocity calculation
R(K)	P	, Density Ratio (P/P_r) (dimensionless)
us	U _s	,Streamwise velocity (dimensionless)
UN	$\mathbf{u_n}$,Normal velocity (dimensionless)
U	U	,Total velocity (dimensionless)
COSTH	$\cos^2(\theta)$,(Cosine) 2 of flow angle θ
CURV	ov on	,Curvature of streamline (dimensionless)

Theory

Once the potential flow solution has been obtained from subroutine $P\emptyset IS$, this subroutine will calculate the flow angle and streamline curvature according to Ref. (1).

References

1. Anderson, O.L. and D. E. Edwards, Extension to an Analysis of Turbulent Swirling Compressible Flow in Asixymmetric Ducts, NASA Contract No. NAS3-21851, 1981, UTRC Report R81-914720.

Subroutine SMØØTH (X,J,JX,XB,YB,JXB,JXK)

Object Least squares spline fit smoothing for geometry

Options

None

List of Symbols

JX , Number of input points , Number of output points JXB JXK , Number of spline knots X(J), Input points abscissa Y(J) , Input points ordinate XB(J), Output points abscissa YB(J) , Output points ordinate YPP(J) $= Y_{\tau}$, Second derivative of Y(X)= C(I,J)CK(I,J)YK(I) , Spline coefficients $A(I),B(I) = A_T,B_T$, Constants of Integration

Theory

This subroutine computes the second derivative of the input vector Y(X). With the use of the standard math package ISML routines, (reference $\underline{9}$) it then fits a least square spline to the second derivative with JXK movable knots. The spline equations are then integrated analytically to obtain the output solution vector $\overline{Y}(\overline{X})$ at JXB points. Subroutine SMØTH uses ISML routines ICSFKU, ICSFKV, UERTST.

Subroutine SØLVI

Object Integrate equations of motion for viscous flow.

Options

None

List of Symbols

$$AA(I,J) = a_{I,I}$$
, Element of \overline{A} matrix

$$AB(I,J) = b_{IJ}$$
, Element of \overline{B} matrix

$$AC(I,J) = c_{\overline{IJ}}$$
, Element of \overline{C} matrix

$$AD(I,J) = d_{IJ}$$
, Element of \overline{D} matrix

ADI(I,J) =
$$\left(d_{IJ}^{-1}\right)_{K}$$
, Element of \overline{D}^{-1} matrix

$$AE(I,J,K) = e_{IJ}$$
, Element of \bar{E}^k matrix

AQ(I) =
$$q_{\bar{I}}$$
 , Element of \bar{Q} matrix

AZ(I,K) =
$$Z_I^K$$
 , Element of \overline{Z}^k matrix

CFPH =
$$C_{f\phi H}$$
 , Stress coefficient hub $(2\epsilon_{n\phi}/(\bar{P}_1\bar{U}_1^2))$

CFPT =
$$c_{f\phi T}$$
 , Stress coefficient tip $(-2\epsilon_{n\phi}/(\bar{P}_1\bar{v}_1^2))$

CFST =
$$C_{fSH}$$
 , Stress coefficient hub $(2\varepsilon_{ns}/(\bar{P}_1\bar{U}_1^2))$

CFST =
$$C_{fST}$$
 , Stress coefficient tip $(-2\varepsilon_{ns}/(\bar{P}_1\bar{U}_1^2))$

DAYE =
$$1/4(\bar{\rho} U_1^2)$$
, Mean inlet dynamic pressure (dimensionless)

EENTP =
$$E(I)$$
 , Truncation error (π)

ENREF =
$$\overline{I}_1$$
, Mean inlet entropy

EPRES =
$$E(\pi)$$
, Truncation error (π)

$$ERØTH = \varepsilon(P\Theta)$$
, Truncation error $(P\Theta)$

$$ERØUS = \varepsilon(PU_S)$$
, Truncation error (PU_S)

```
= E(U_{0}^{2})
                                       , Truncation error (U_{ij}^2)
EUPUP
              = E(U_s^2)
                                       , Truncation error (U_s^2)
EUSUS
                                        , Mean inlet reference pressure (dimensionless)
PIREF
                                       , Total pressure (dimensionless)
PIO
                                        , Local pressure coefficient (dimensionless)
PRCEF
              = \quad \stackrel{\rm J}{\psi_{\rm H}}, \psi_{\rm H}^{\rm J-1}
                                        , Wall stream function (hub) (dimensionless)
PSIH1,
PSIH2
              = \quad \psi_{_{\rm T}}^{\rm J}, \psi_{_{\rm T}}^{\rm J-1}
                                        , Wall stream function (tip) (dimensionless)
PSIT1,
PSIT2
              = \overline{P}\overline{U}_{S}(\overline{\theta}_{O} - \overline{\theta})
                                        , Inlet energy flux (dimensionless)
QAVE
              = P_H U_H *3
                                        , Energy flux (hub) (dimensionless)
QWALH
              = P_T U_T^{*3}
                                        , Energy flux (tip) (dimensionless)
QWALT
              = Q/(PU^{*3})
QPLUS
                                        , Universal heat flux (dimensionless)
SIG
                                        , Stress (dimensionless)
                                        , Wall stress (hub) (dimensionless)
SIGWH
                  €WH
                                        , Wall stress (tip) (dimensionless)
SIGWT
                                        , Stanton number (hub) Q_{H}/[\overline{PU}_{S}(\overline{\theta}_{O}-\theta)]
STAH
               = S<sub>tH</sub>
                                        , Stanton number (tip) Q_T/[\overline{P}U_S^-(\overline{\theta}_O-\theta)]
ŞTAT
               = S_{tT}
                                        , Total temperature (dimensionless)
THETAO
TPLUS
                                        , Universal stress (dimensionless)
                                        , Wall temperature (hub, tip) (dimensionless)
              = \theta_{\rm H}, \theta_{\rm T}
TWH, TWT
                                        , Magnitude of velocity (dimensionless)
                                        , Universal velocity (dimensionless)
UPLUS
              = UH,UT
                                        , Friction velocity (hub, tip) (dimensionless)
USH, UST
```

The equations of motion are solved using the method derived in reference 6. A flow diagram is shown in Fig. 24.

Subroutine STRESI

Object Compute initial stress distribution

Options

L0P=1 Store inlet flow stress L0P#1 Do not store inlet flow stress List of Symbols

See COMMON block variables in subroutine listings.

Theory

The initial stress and heat flux distribution is computed from

$$\sum_{\mathsf{ns}} = \left(\frac{\mu_{\mathsf{T}}}{\mu_{\mathsf{f}}}\right) \frac{E_{\mathsf{ns}}}{N_{\mathsf{R}}} \tag{1}$$

$$\sum_{n\phi} = \left(\frac{\mu_E}{\mu_f}\right) \frac{E_{n\phi}}{N_R} \tag{2}$$

$$Q = -\frac{1}{N_R P_{RE}} \left(\frac{\mu_E}{\mu_r} \right) V \frac{\partial \Theta}{\partial \hbar}$$
 (3)

Subroutine STRT

Object Find inlet flow location

Option

None

List of Symbols

ZINLET

, Axial inlet flow location

SINLET

, Streamwise inlet flow location

INLET

, Counter

Theory

Once the axial location of the inlet flow is determined the streamwise location may be found since the axial location at each point in the coordinate system is paired with its streamwise coordinate.

Subroutine TPRINT

Object Calls CPU time.

Subroutine TURB

Object Compute turbulent viscosity

Options

NØPT=0 Initial turbulence model NØPT=1 Subsequent turbulence model

List of Symbols

= μ_T/μ_r , Turbulent viscosity (dimensionless) AMUE

= $(\mu_{T_{\infty}}/\mu_{r})$, Freestream turbulent viscosity (dimensionless) AMUER(K)

= $\mu_{\infty}/\mu_{\mbox{\scriptsize T}}$, Freestream molecular viscosity (dimensionless) AMUM

 $= \mu_{\mathbf{w}}/\mu_{\mathbf{r}}$ **AMUW** , Wall value of molecular viscosity (dimensionless)

 $= (\mu/\mu_r)_{K+\frac{1}{2}}$ **AMUWK** Molecular viscosity (dimensionless)

 $= (\mu_{T_{-}}/\mu_{m})$ AMUO Maximum freestream viscosity (dimensionless)

DELO = **\(\Delta_{\infty} \)** Displacement thickness (dimensionless)

, Velocity finite-difference (dimensionless) DU **=** ∆U

, Velocity derivative (dimensionless) DUDZ = dU/dZ

E = E, Rate of strain (dimensionless)

 $= E_{\infty}$ EM Strain freestream (dimensionless)

 $= E_{\infty H}, E_{\infty T}$ Strain hub, tip, edge of inner layer (dimen-EMH, EMT sionless)

 $= E_{n\phi}$ ENP Swirl rate of strain (dimensionless)

= E_{ns} Streamwise rate of strain (dimensionless) **ENS**

Wall rate of strain (dimensionless) EW $= E_{\tau,\tau}$

Turbulence model function (dimensionless) PHI

RHØM = ρ_∞ Density freestream (dimensionless)

Wall stress (hub) (dimensionless) SIGWH $= \Sigma_{\mathbf{wk}}$ Wall stress (inner layer) (dimensionless) SIGWK Wall stress (tip) (dimensionless) SIGWT TPLUS1, $= T_1^+, T_2^+$ Universal wall stress (dimensionless) TPLUS2 = U_K Magnitude of velocity (dimensionless) UK(K) = U_ Freestream velocity (dimensionless) UM USTARH, $= U_{H}^{*}, U_{T}^{*}$ Friction velocity (hub, tip) (dimensionless) USTART = YDistance across duct (dimensionless) Y Distance across duct (dimensionless) YK Distance to inner layer (hub, tip) (dimensionless) $= Y_H, Y_T$ YMH, YMT YPLUS1, $= Y_1^+, Y_2^+$ Universal distance (dimensionless) YPLUS2

Theory

The turbulence model is described in reference (1) and the resulting equations are described below. Let the eddy viscosity be described by a continuous function

$$\frac{\mu_{\mathsf{E}}}{\mu_{\mathsf{f}}} = \phi \mathsf{E} \tag{1}$$

where

$$E = \sqrt{E_{ns}^2 + E_{n\phi}^2} \tag{2}$$

and

$$\phi = \rho_{w} N_{R} (\kappa y)^{2} \left\{ 1 - \exp \left[\frac{-y + \sqrt{\tau^{+}}}{A^{+}} \right]^{2} \right\} \text{ (inner layer)}$$
(3)

$$\phi = \frac{X N_R \rho_{\infty} U_{\infty} \Delta^*}{E_M} \quad \text{(outer layer)}$$

where \hat{y} is the distance from the wall

$$\widetilde{\mathbf{y}} = |\mathbf{y} - \mathbf{y}_{\mathbf{w}}| \tag{5}$$

A matching point for the inner layer and outer layer exists for each wall denoted \mathbf{Y}_H and \mathbf{Y}_T and with a corresponding strain \mathbf{E}_H and \mathbf{E}_T . Then for the outer layer

$$E_{M} = E_{H} + \frac{E_{T} - E_{H}}{y_{T} - y_{H}} (y - y_{H})$$
 (6)

The turbulent viscosity and thermal conductivity is given by

$$\frac{\mu_{\mathsf{T}}}{\mu_{\mathsf{r}}} = \frac{\mu}{\mu_{\mathsf{r}}} + \frac{\mu_{\mathsf{E}}}{\mu_{\mathsf{r}}} \tag{7}$$

$$\frac{1}{P_{RE}} \frac{\mu_r}{\mu_r} = \frac{1}{P_{LL}} \frac{\mu}{\mu_r} + \frac{1}{P_{RT}} \frac{\mu_E}{\mu_r}$$
(8)

The turbulent flow properties can be calculated at station J-1 because the flow field is known. For station J, it is noted that the turbulent viscosity is a strong function of stress, thus from equation (1),

$$\left(\frac{\mu_{E}}{\mu_{I}}\right)^{2} = N_{R}\phi\Sigma \tag{9}$$

where

$$\Sigma = \sqrt{\sum_{ns}^2 + \sum_{n\phi}^2} \tag{10}$$

Hence,

$$\left(\frac{\mu_{\mathsf{T}}}{\mu_{\mathsf{r}}}\right)^{\mathsf{J}} = \left(\frac{\mu_{\mathsf{T}}}{\mu_{\mathsf{r}}}\right)^{\mathsf{J}-1} + \left[\frac{\partial}{\partial \Sigma} \left(\frac{\mu_{\mathsf{E}}}{\mu_{\mathsf{r}}}\right)\right]^{\mathsf{J}-1} \left(\Sigma^{\mathsf{J}} - \Sigma^{\mathsf{J}-1}\right) \tag{11}$$

$$\left(\frac{1}{P_{RE}} \frac{\mu_r}{\mu_r}\right)^{J} = \left(\frac{1}{P_{RE}} \frac{\mu_r}{\mu_r}\right)^{J-1} + \left[\frac{\partial}{\partial \Sigma} \left(\frac{\mu_E}{\mu_r}\right)\right]^{J-1} \left(\Sigma^{J} - \Sigma^{J-1}\right)$$
(12)

and

$$\left[\frac{\partial}{\partial \Sigma} \left(\frac{\mu_{\rm E}}{\mu_{\rm f}}\right)\right]^{\rm J-I} = \frac{N_{\rm R}}{2E^{\rm J-I}} \tag{13}$$

Finally, it is noted that at the initial station $\tau^+(Y^+)$ in equation 3 is not known, therefore, $\tau^+=1$ is assumed.

Function UBLAS

Object Calculate velocity ratio according to the Blasius solution for the initial flow.

Options

None

Theory

The velocity ratio is determined by interpolations of data block containing Blasius solution to the flow past an axisymmetric shape (reference 10).

Function UCØLES (Argument List)

Object Find friction velocity for the initial profile from Coles law

Options

None

List of Symbols

AK = k, Von Karman constant (dimensionless)

ANUW = v_{ij} , Kinematic viscosity (ft²/sec)

DELT = δ , Boundary layer thickness (ft)

DELTS = δ^* Displacement thickness (ft)

DERR = dE/dU^* , Slope of error function (dimensionless)

ERR = E Error function (dimensionless)

ERRM = ε , Convergence criteria (dimensionless)

ITER = μ . Iterate

ITERL = μ , Maximum number of iterations

UINF = U , Freestream velocity (ft/sec)

 $US = (U^*)^{\vee}$, Guess for friction velocity (ft/sec)

US1: = $(U^*)^1$ Initial guess for U^* (ft/sec)

Theory

The friction velocity is obtained from Coles law using Newton's method

$$E^{\mu} = \frac{U_{\infty}}{(U^{*})^{\mu}} - \left\{ \frac{1}{\kappa} \ln \left[\frac{\delta(U^{*})^{\mu}}{\nu_{w}} \right] + \frac{2.2}{\mu} + 2 \left[\frac{\delta^{*}}{\delta} \frac{U_{\infty}}{(U^{*})^{\mu}} - I \right] \right\}$$
 (1)

$$\left(\frac{dE}{dU^*}\right)^{\mu} = \left(\frac{2\delta^*}{\delta} - 1\right) \frac{U_{\infty}}{\left(U^{*2}\right)^{\mu}} - \frac{1}{\kappa} \frac{\nu_{w}}{\delta^* \left(U^*\right)^{\mu}}$$
(2)

$$(U^*)^{\mu+1} = (U^*)^{\mu} - E^{\mu} / \left(\frac{dE}{dU^*}\right)^{\mu}$$
 (3)

Convergence occurs when

$$|E^{\mu}| < \mathcal{E}$$
 (4)

Subroutine WAKCOR

Compute nacelle wake corrections. Object

Options

S2,S1

None

List of Symbols

, Inviscid flow Mach number AM1,AM2 = M_{k-1} , M_k

, Radial wake correction DRL ΔR_{τ}

DZL , Axial wake correction

, Normal coordinate ETA η

, Wake distance (radians) G(1,J,L) $\psi_{\mathbf{L}}$

, Tangential wake correction G(2,J,L) =Δψ

Partial derivative G(3,J,L) =∂ψ/∂s

. Partial derivative G(4,J,L) =26\ψΔ6

, Radial wake correction G(5,J,L) ΔR

. Axial wake correction G(6,J,L) ΔZ

, Radial location of lifting line streamline RL R_{T}

, S coordinate of mesh

, S coordinate of lifting line streamline SL

= S_J, S_{J-1}

 $TØT1, TØT2 = (T_o/T)_{K-1}, (T_o/T)_K$, Total to static temperature ratio

, Static temperature $= T_{K-1}, T_{K}$ T1, T2

 $= U_{K-1}, U_{K}$, Inviscid flow velocity U1, U2

US1, US2 = $U_{S_{K-1}}$, U_{S_K} , Inviscid flow streamwise velocity

 $= U_{\phi_{K-1}}, U_{\phi_{K}}$, Inviscid flow tangential velocity UP1, UP2

, Metric scale coefficient of \mathbf{L}^{th} streamline $\mathtt{v}_\mathtt{L}$ ٧L

ZL , Axial distance $L^{\mbox{th}}$ streamline J , Index of S coordinate

K , Index of N coordinate

L , Index of L streamline

Theory

To obtain the corrections to the wake geometry due to the nacelle's presence in the flow field, this subroutine integrates the following equations. (formulted in reference 1).

$$\widetilde{\Psi}$$
 (S_J,R_L) = $\Omega \int_{S_1}^{S_J} \frac{ds}{U_S V}$ (1)

$$\Delta \widetilde{\Psi} (S_J, R_L) = \int_{S_L}^{S_J} \frac{U\phi}{RU_S} \frac{ds}{V}$$
 (2)

using the trapezoid rule along the streamlines passing through the point (R_L, Z_L) or (S_L, n_L). The remaining wake corrections are given by

$$\Delta R_{L} = R_{L}(S_{J}) - R_{L} \tag{3}$$

$$\Delta Z_{L} = Z_{L}(S_{J}) - Z_{L}(S_{L}) - \frac{U_{\infty}}{\Omega} \Psi$$
(4)

Labeled Common Blocks Used in The Nacelle Portion

Included herein is an alphabetical list of the labeled common blocks used in the nacelle portion of the analysis and a description of each variable used in them.

COMMON BLOCK NAME (OBJECT)	VARIABLE NAME	DESCRIPTION OF VARIABLES
ACØNS (Blade Data - Dimensionalized)	CØNSTI (1, L) = R _{CL}	Radius of propeller lifting line
	$CONSTI (2, L) = \alpha_s$	Stagger angle
	CØNSTI (3, L) = B	Chord
	CØNSTI (4, L) = t/B	Thickness
	cønsti (5, L)	Not used
	$C\emptyset$ NSTI (6, L) = Z_{CL}	Axial location of propeller lifting line

Subroutine WBLEED

Object

Calculate perforated wall bleed

Options

 $I \not O PT18 = 0$ No wall bleed

= 1 Tip wall bleed

= 2 Hub wall bleed

= 3 Tip/hub wall bleed

PCHEK > 1.0 Flow enters tunnel

< 1.0 Flow leaves tunnel

Input Variables

AHAS = A_h/A_s Ratio of hole area to surface area

CDISH = C Discharge coefficient

 $PTP = P_{TD}$ Plenum total pressure

 $TTP = T_{T}$ Plenum total temperature

Internal Variables

AMTU = M_{TII} Tunnel Mach number

 $GAMMA = \gamma$ Ratio of specific heats

GASR = R Gas constant

PS = P Static pressure (psfa)

 $PT = P_m$ Total pressure (psfa)

 $PSTU = P_{TU}$ Tunnel static pressure (psfa)

PTTU = P____ Tunnel total pressure (psfa)

TSTU = T_{min} Tunnel static temperature (deg R)

TTTU = T_{mmi} Tunnel total temperature (deg R)

RHØR = ε Reference density (slug/ft³)

USR = u_{ij} Reference velocity (ft/sec)

 $PRESR = P_r$ Reference pressure (psfa)

Internal Variables (Cont'd)

TEMPR = T Reference temperature (deg R)

SGN ± 1 Sign convention

Output Variables

RH(9,J) = $(\rho U_n)_H$ Mass bleed hub wall (slugs/ft²/sec)

 $RT(9,J) = (\rho U_n)_T$ Mass bleed tip wall (slugs/ft²/sec)

Theory

If one treats a single hole in a perforated wall as an orifice, then the mass flow can be derived in terms of the plenum stagnation conditions and the local static pressure inside the tunnel Holman (Ref. 1). Then an expression for the mass flow added to the tunnel flow is given by

$$(\rho \cup_{\mathbf{n}})_{\mathbf{w}} = C \frac{A_{\mathbf{h}}}{A_{\mathbf{s}}} \frac{\gamma P_{\mathbf{T}}}{\sqrt{\gamma \chi_{\mathbf{T}}}} \left(\frac{P_{\mathbf{T}}}{P}\right)^{\frac{1+\gamma}{2\gamma}} \left\{ \frac{2}{\gamma - 1} \left[\left(\frac{P_{\mathbf{T}}}{P}\right)^{-1} \right] \right\}^{1/2}$$
(1)

where P_T and T_T are the plenum conditions, P is the local tunnel static pressure, A_h/A_s is the ratio of the hole area to surface area, and C the effective discharge coefficient which is a property of the perforated wall. If the tunnel static pressure is greater than the plenum total pressure, the mass flow bleed is out of the tunnel. Under these conditions, P_T and T_T are taken from the wind tunnel conditions, and P is the plenum pressure which is assumed known.

The mass flow bleed is related to the stream function by

$$-\frac{\partial \Psi}{\partial s} = \frac{G}{V} \frac{(\rho u_n)_W}{\rho_r u_r} \tag{2}$$

Equations (1) and (2) provide the boundary condition for a perforated wall relating two dependent variables ψ and P in terms of the characteristics of the perforated wall and the plenum conditions.

The program checks the options according to the table below.

 $\label{eq:pchek} \text{PCHEK} = P_{\text{TP}}/P_{\text{STU}} > 1.0 \text{ set} \quad P_{\text{T}} = P_{\text{TP}} \\ P = P_{\text{STU}} \\ T_{\text{T}} = T_{\text{TP}} \\ \text{PCHEK} = P_{\text{TP}}/P_{\text{STU}} < 1.0 \text{ set} \quad P_{\text{T}} = P_{\text{STU}} \\ P = P_{\text{TP}} \\ \text{SGN} = 1.0 \\ \text{SGN} = 1.0 \\ \text{-1.0} \\ \text{-1.0}$

Reference

1. Holman, J. P.: Experimental Methods for Engineers. McGraw-Hill Book Co., New York. 1966.

Subroutine WRITPF(JJ)

,JJth station in core

Object

Store updated potential flow solution.

Options

None

List of Symbols

JJ

NST ,No. records per block

NIST ,No. words per block

NPDRN = 24 ,Unit number

P ,Stream function

Theory

The stream function array P(JJ,KK) is arranged in core as described in subroutine READPF, Fig. 1. When an iterative sweep of one block is complete, the new updated solution is written on a disk file. This occurs when JJ = NST-1.

Function XH(J)

Object Calculate wall length on ID wall

Variables

J Wall point no.

XH ΔX_{H} Wall length

Theory

 $\Delta X_{H} = ((R_{HJ} - R_{HJ-1})^{2} + \Delta z^{2})^{1/2}$

Function XT(J)

Object Calculate wall length on OD wall

Variables

J Wall point no.

XT ΔX_{T} Wall length

Theory

 $\Delta X_{T} = ((R_{TJ} - R_{TJ-1})^{2} + (Z_{TJ} - Z_{TJ-1})^{2})^{1/2}$

COMMON BLOCK NAME (OBJECT)	VARIABLE NAME	DESCRIPTION OF VARIABLES
ACØNS (Blade Data - Dimensional)	CØNSTI (7, L)	Not used
	\emptyset MEGZI = Ω	Propeller rotational velocity
	NUM	Number of blade rows
	L = 1, 2	
ACØNX (Blade Data - Nondimensional)	CØNST (1, L)	Radius of propeller lifting line (dimensionless)
	CØNST (2, L)	Stagger angle (dimensionless)
	CØNST (3, L)	Chord (dimensionless)
	CØNST (4, L)	Thickness
	CØNST (5, L)	Not used
	CØNST (6, L)	Axial location of lifting line (dimensionless)
	CØNST (7, L)	Not used
	CØNST (8, L)	Normal location of lifting line
	CØNST (9, L)	Streamwise location of lifting line
	L = 1,2	
	ØM EGZ	Rotational velocity (dimensionless)
	NUMX	Number of propellers
ADPS (Coordinate	DPSI(K)	Radial coordinate (dimensionless)
for Slot Calcula- tions)	K = 1, KL	
AINV (Store Inviscid	CINP (1, K)	Total pressure inviscid flow
Flow Variables)	CINP (2, K)	Static pressure inviscid flow
	CINP (3, K)	Swirl angle

COMMON BLOCK NAME (OBJECT)	VARIABLE NAME	DESCRIPTION OF VARIABLES
	CINP (4, K)	Total temperature inviscid flow
	K = 1, KL	
AKK (Complex Coor-dinate)	M1	Flags for DEBUG printout
dinate)	м2	See Subroutine FCPLX
AMATRX (Matrix Inver-sion)	$AD(I,J) = d_{IJ}$	Element of D matrix
SION	$ADI(I,J) = \tilde{d}_{IJ}$	Element of D ⁻¹ matrix
APLØT (Store Variables for Plotting)	$W(1, J) = Z_{H}$	Axial distance (hub) (dimen- sionless)
	$W(2, J) = Z_{T}$	Axial distance (tip) (dimension-less)
	$W(3, J) = C_{PH}$	Pressure coefficient (hub) (dimensionless)
	$W(4, J) = C_{PT}$	Pressure coefficient (tip) (dimensionless)
	$W(5, J) = C_{FSH}$	Friction coefficient (hub) (dimensionless)
	$W(6, J) = C_{FST}$	Friction coefficient (tip) (dimensionless)
BCPLX (Complex Vari-	$A(1,I) = A_{i}$	Source strength (dimensionless)
ables)	$A(2,I) = b_i$	Location of pole (dimensionless)
	$A(3,I) = \alpha_{i}$	Wall angle change (deg)
	$A(4,I) = r_{i}$	Radius in z plane (dimension-less)
	$A(5,I) = \phi_{i}$	Angle in z plane (radians)
	$A(6,I) = \bar{X}_{i}$	Relative x distance in z plane (dimensionless)

COMMON BLOCK NAME (OBJECT)	VARIABLE NAME	DESCRIPTION OF VARIABLES
BCPLX (Complex Varibles)	$A(7,I) = \overline{Y}_{i}$	Relative Y distance in z plane (dimensionless)
	$B(1,I,K) = \Delta SX_S$	Change in coordinate x (dimen-sionless)
	$B(2,J,K) = \Delta SY_S$	Change in coordinate y (dimen-sionless)
	$B(3,I,K) = \Delta S \xi_{S}$	Change in coordinate ξ (dimensionless)
	$B(4,I,K) = \Delta Sn_S$	Change in coordinate η (dimen-sionless)
	X(1,K) = S	Streamwise coordinate (dimen- sionless)
	X(2,K) = n	Normal coordinate (dimension-less)
	X(3,K) = X	X coordinate in z plane (dimen- sionless)
•	X(4,K) = Y	Y coordinate in z plane (dimen- sionless)
	$X(5,K) = \xi$	ξ - coordinate in w plane (dimensionless)
	$X(6,K) = \eta$	η - coordinate in w plane (dimen-sionless)
	$X(7,K) = \xi_{s}$	Streamwise derivative of ξ (dimensionless)
	$X(8,K) = \eta_s$	Streamwise derivative of n (dimensionless)

COMMON BLOCK NAME (OBJECT)	VARIABLE NAME	DESCRIPTION OF VARIABLES
	$X(9,K) = X(S+\Delta S)$	Coordinates at station S+DS
	$X(10,K) = Y(S+\Delta S)$	Coordinates at station S+DS
	$X(11,K) = \xi(S+DS)$	Coordinates at station S+DS
	$X(12,K) = \eta(S+DS)$	Coordinates at station S+DS
	X(13,K) = Y	Metric scale coefficients (dimensionless)
	$X(14,K) = \xi_{SS}$	Second derivative of ξ (dimensionless)
	$X(15,K) = \xi_{sn}$	Cross derivative of ξ (dimensionless)
	$X(16,K) = V_n$	Normal derivative of V (dimen-sionless)
	$X(17,K) = V_{s}$	Streamwise derivative of V (dimensionless)
BLEED (wall bleed)		
	AHAS $= A_h/A_s$	Ratio of hole area to surface area
	CDISH = C	Discharge coefficient
	PTP = P _{TP}	Plenum total pressure
	$TTP = T_{\overline{T}}$	Plenum total temperature
втнік		
	KBLADE	, Number of points
	XK(I) = X _I	, Fractional chordwise distance
	$YK(I) = Y_I$, Thickness/Chord

I = 1, KBLADE

COMMON BLOCK NAME (OBJECT)	VARIABLE NAME	DESCRIPTION OF VARIABLES
CCPLX (Parameters for Complex Trans- form)	$NPTS = N_p$	Number of singularities in complex transformation
Tormy	NSØURC = N _S	Number of sources in z plane
		Absolute magnitude of largest term
		Absolute magnitude of largest term
	\emptyset RDER3 = 0_3	Absolute magnitude of largest term
	$SLO = S_{LO}$	Length of streamwise coordinate
	XDS = S	Step size for complex integration
	XDN = S	Step size for complex integration

COMMON BLOCK NAME (OBJECT)	VARIAB	LE :	NAME	DESCRIPTION OF VARIABLES
CINF (Parameters for Poisson Equation)	AMINF	-	M _∞	Freestream Mach number
	AN(K)	. <u>.</u>	$^{\mathbf{n}}\mathbf{k}$	Transverse coordinate
	DEDN(K)	=	(dn/dn) _k	Transverse coordinate stretching
	D2EDN(K) =	$(d^2\eta/dn^2)_k$	Transverse coordinate stretching
	PINF	=	Π_{∞}	Freestream static pressure (dimensioniess)
	PSIKL	=	$\Psi_{oldsymbol{\omega}}$	Freestream stream function (dimensionless)
	PTINF	=	Π_{∞}	Freestream total pressure (dimensionless)
	RHØINF	=	P_{∞}	Freestream density (dimensionless)
	RØTINF	=	$P_{o^{\infty}}$	Freestream total density (dimensionless)
	TEMINF	=	⊕ _	Freestream static temperature (dimensionless)
	TTINF	=	$\Theta_{_{\mathcal{O}_{\infty}}}$	Freestream total temperature (dimensionless)
	UINF	=	u_	Freestream velocity (dimensionless)
	UPINF	=	$v_{\phi^{\infty}}$	Freestream tangential velocity (dimensionless)
	USINF	=	U _{s∞}	Freestream streamwise velocity (dimensionless)
	uuo	=	v_{o}	Reference velocity
				(dimensionless)
	vvo	=	v _o	Reference metric coefficient

COMMON BLOCK NAME (OBJECT)	VARIAB	SLE NAME	DESCRIPTION OF VARIABLES
CØNST (Flow Constants)	$ACHI = \chi$		Clauser constant (0.016)
	AKAPPA =	K	von Karman constant (0.41)
	APLUS =	¥+	van Driest constant (26.0)
	CPR =	C pr	Specific heat at constant pressure (5997.0 ft ² /sec ² /deg R)
	CVR =	C _{vr}	Specific heat at constant volume (3283.0 ft ² /sec ² /deg R)
	EP =	0 e	2.7182818
	GAMMA =	α	Ratio of specific heats (1.4)
	GASR =	R -	Gas constant (1714.0 ft ² /sec ² /deg R)
	GRAVR		Gravitational constants (32.2 ft/sec ²)
	PI =	π	3.1415926
	PRESR =	P _r	Reference static pressure (psfa)
	PRL =	Pr	Prandtl number laminar 0.70
	PRT =	Pr T	Prandt1 number turbulent 0.72
	RHØR =	Pr	Reference density (slugs/ft ³)
	SNDR =	C r	Reference speed of sound (1116.0 ft/sec)
	TEMPR =	Tr	Reference temperature (deg Raukine)
	TI		(0.1745329 radians/deg)
	VISCR =	^μ r	Reference molecular viscosity (0.370×10^{-6})

COMMON BLOCK NAME (OBJECT)	VARIABLE NAME	DESCRIPTION OF VARIABLES
CORE (Coordinate		
Functions)	Q(1,K) = R	Radius (dimensionless)
	Q(2,K) = Z	Axial distance (dimensionless
	$Q(3,K) = \partial R/\partial n$	Normal derivative of radius (dimensionless)
	$Q(4,K) = \partial R/\partial S$	Streamwise derivative of radius (dimensionless)
	$Q(5,K) = \partial^2 R/\partial n/\partial S$	Second derivative of radius (dimensionless)
	Q(6,K) = V	Metric scale coefficient (dimensionless)
	$Q(7,K) = \partial V/\partial n$	Curvature of potential line (dimensionless)
	$Q(8,K) = \partial V/\partial S$	Curvature of streamline (dimensionless)
	$Q(9,K) = \partial^2 V/\partial n/\partial S$	Second derivative of metric scale coefficient (dimensionless)
	Q(10,K) = Y	Physical distance across duct (dimensionless)
	$Q(11,K) = Y/Y_{T}$	Fractional distance across duct (dimensionless)
	Q(12,K) = A	Area between adjacent stream- lines (dimensionless)
	Q(13,K) = G	Gap between blade surfaces (dimensionless)
	$Q(14,K) = \partial G/\partial n$	Normal derivative of blade surface (dimensionless)

COMMON BLOCK NAME (OBJECT)	VARIABLE NAME	DESCRIPTION OF VARIABLES
	$Q(15,K) = \partial G/\partial S$	Streamwise derivative of blade surface (dimensionless)
	$Q(16,K) = \partial \eta/\partial n$	Transform of normal coordinate (dimensionless)
	$Q(17,K) = \partial^2 \eta / \partial n^2$	Second derivative (dimensionless)
	Q(18,K) = n	Normal coordinate (dimensionless)
	$Q(19,K) = \eta$	Transformed normal coordinate (dimensionless)
	K = 1,KL	Number of streamlines (dimensionless)

COMMON BLOCK NAME (OBJECT)	VARIABLE NAME	DESCRIPTION OF VARIABLES
CORE 2* (Wall Value of		
Coordinate Functions)	$R\emptyset(1,K) = R$	Radius (dimensionless)
	$R\emptyset(2,K) = dR/dZ$	Derivative of radius (dimen- sionless)
	$R\emptyset(3,K) = d^2R/dZ^2$	Second derivative of radius (dimensionless)
	$R\emptyset(4,K) = Z$	Axial distance (dimensionless)
	$R\emptyset(5,K) = V$	Metric scale coefficient (dimensionless)
	$R\emptyset(6,K) = dY/dS$	Derivative of metric scale coefficient (dimensionless)
	$R\emptyset(7,K) = Y_{T}$	Distance across duct (dimen- sionless)
	$R\emptyset(8,K) = S$	Streamwise coordinate (dimen-sionless)
	$R\emptyset(9,K) = M$	Mass flow bleed (dimensionless)
	$R\phi(10,K) = \Theta_W$	Wall temperature (dimensionless)
	RØS(I) = RØ(I,K)	Dummy Storage Vector
* Note: Actually three	arrays defined where \emptyset to	akes on the value H, M, T
		\emptyset = H, Hub wall
		= M, Mean line
		= T, Tip wall
DERIV (Force Functions)	$DF(1,K) = \left[H_{s}/XV\right]_{K-\frac{1}{2}}^{J}$	Streamwise blade force/volume (dimensionless)
	$DF(2,K) = \left[H_{\phi}/XV\right]_{K-\frac{1}{2}}^{J}$	Tangential blade force/volume (dimensionless)
	$DF(3,K) = \left[\Phi_{B}/XV\right]_{K^{-1}2}^{J}$	Total pressure loss/volume (dimensionless)

COMMON BLOCK NAME (OBJECT)	VARIABLE NAME	DESCRIPTION OF VARIABLES
	$DF(4,K) = \left[X\right]_{K-\frac{1}{2}}^{J}$	Coordinate distortion (dimensionless)
	$DF(5,K) = \left[\frac{H}{S} / XV\right]_{K^{-\frac{1}{2}}}^{J-1}$	Streamwise blade force/volume (dimensionless)
	$DF(6,K) = \left[H_{\phi}/XV\right]_{K^{-1}_{2}}^{J-1}$	Tangential blade force/volume (dimensionless)
	$DF(7,K) = \left[\Phi_B/Xy\right]_{K^{-1}_2}^{J-1}$	Total pressure loss/volume (dimensionless)
	$DF(8,K) = \left[X\right]_{K-\frac{1}{2}}^{J-1}$	Coordinate distortion (dimen-sionless)
DRED1 (Store Flow Variables)	BLØCK (I)	Grid structure variables
variables)	I1 = 19 * KL + 35	
	I = 1, I1	
DRED2 (Store Flow Variables)	BLØCK1 (I)	Grid structure variables
variables	I1 = 19 * KL + 35	
	I = 1, I1	
DUCØUT (Wall Coordinates)	$R(1,1,J) = R_{T}(Z_{J})$	Radius of hub (dimensionless)
coordinates)	$R(2,1,J) = R_{H}(Z_{J})$	Radius of tip (dimensionless)
	$R(1,2,J) = {\stackrel{O}{m}}_{T}(Z_{J})$	Mass flow of tip bleed (dimension-less)
	$R(2,2,J) = m_{H}(Z_{J})$	Mass flow of hub bleed (dimen- sionless)
	$R(1,3,J) = \Theta_{H}(Z_{J})$	Wall temperature of tip (dimensionless)
	$R(2,3,J) = \Theta_{T}(Z_{J})$	Wall temperature of hub (dimensionless)
	$R(1,4,J) = Z_J$	Axial location of hub
	$R(2,4,J) = Z_J$	Axial location of tip

COMMON BLOCK NAME (OBJECT)	VARIA	ABLE NAME	DESCRIPTION OF VARIABLES
DUCTIN (Input Functions)	BINI(L)	= BINPUT(I,J,K)	, see CØMMØN/SPIØ/
	I	= 1,5	
	J	= 1,2	
	K	= 1,KLL	
	L	= 5*(K-1)+I+(J-1)	*5*KLL
	DUCTI(I) I	= 1,15	, Arbitrary duct geometry parameters
	RD1I(L)	= R(1,1,L)*RADR	, Tip wall coordinates (ft)
	RD2I(L)	= R(1,2,L)*RADR	, Hub wall coordinates (ft)
	ZD1I(L)	= R(1,4,L)*RADR	, Tip wall coordinates (ft)
	ZD2I(L)	= $R(2,4,L)$ *RADR	, Hub wall coordinates (ft)
	L	= 1, JL	
DUCTIX (Input Functions)	AINI (L)	= AINDUCT (I,J,K)	, See CØMMØN/SPIØX/
	L	= 1, JL	, Number of Streamwise stations
EBLAD (Blade Row Parameter)	NR ∮ W	, Maxi Rows	mum number of propeller
	LRØW	, Indi	cates propeller row
	LBLD	, Not	used
	NBLADE	, Numb	er of blades in propeller

COMMON BLOCK NAME (OBJECT)	VARIABLE NAME	DESCRIPTION OF VARIABLES
FCØR (Truncation Error Estimates)	$EAP = E_{U\emptyset}$	Error in swirl velocity (dimensionless)
	$EAS = E_{US}$	Error in streamwise velocity (dimensionless)
	EEN = E _I	Error in entropy (dimensionless)
	$EPO = E_{PO}$	Error in total pressure (dimensionless)
	$ESI = E_{\psi}$	Error in stream function (dimensionless)
	$ETO = E_{TO}$	Error in total temperature (dimensionless)

COMMON BLOCK NAI	ME 	VAR	IABLE NAME	DESCRIPTION OF VARIABLES
FIVC (Inviscid Flow	FIV(1,L,K)	-	¥	Stream function (dimensionless)
Variables I/O)	FIV(2,L,K)	-	U s	Streamwise velocity (dimensionless)
	FIV(3,L,K)	•	u _ф	Tangential velocity (dimensionless)
	FIV(4,L,K)	=	п	Static pressure (dimensionless)
	FIV(5,L,K)	-	I	Entropy (dimensionless)
	FIV(6,L,K)	•	•	Static temperature (dimensionles
	FIV(7,L.K)	-	P	Density (dimensionless)
	FIV(8,L,K)	-	M	Mach number
	FIV(9,L,K)	-		
	FIV(10,L,K)	-		
	L=1	@	J-1 station	
	L=2	@	J station	
	L=3	@	J+1 station	
	K=1,KL		streamlines	
	FIPARM(1)	=	$ ho_{ m r}$	Reference density (slugs/ft ³)
	FIPARM(2)	-	T _r	Reference temperature (deg R)
	FIPARM(3)	•	Pr	Reference pressure (psfa)
	FIPARM(4)	=	g	Gravitational constant (ft/sec ²
	FIPARM(5)	•	$_{\mathbf{r}}^{\mathbf{\mu}}$	Reference viscosity (slugs/ft/sec)
	FIPARM(6)	•	c _p	Specific heat constant pressure (ft ² /sec ² /deg)
	FIPARM(7)	-	c _v	Specific heat constant volume (ft ² /sec ² /deg)
	FIPARM(8)	-	R	Gas constant (ft ² /sec ² /deg)

COMMON BLOCK NAME (OBJECT)	VA	RIABLI	E NAME	DESCRIPTION OF VARIABLES
	FIPARM(9)	-	PrT	Prandtl number (turbulent)
	FIPARM(10)			
	FIPARM(11)	=	$\mathtt{u_r}$	Reference velocity (ft/sec)
	FIPARM(12)		NØPT7	Number of stations stored in inviscid solver
	FIPARM(13)			
	FIPARM(14)		IØPT15	First station
	FIPARM(15)		IØPT16	Last station

COMMON BLOCK NAME (OBJECT)	VARIABLE NAME	DESCRIPTION OF VARIABLES
FLAGS (Flags)	$N\emptyset PT\emptyset \emptyset = 1,28$	Flags to regulate calculation flow (see subroutines)
FLØWI (Flow Input	$FG(1,K) = \alpha$	Inlet swirl angle (deg)
Functions)	$FG(2,K) = \Pi_{o}$	Inlet stagnation pressure (dimensionless)
	FG(3,K) = 0	Inlet stagnation temperature (dimensionless)
	FG(4,K) = M	Inlet Mach number (dimensionless)
	$FG(5,K) = P_0$	<pre>Inlet stagnation density (dimen- sionless)</pre>
	FG(6,K) = U	Inlet magnitude of velocity (dimensionless)
	K = 1, KL	Number of streamlines
FØRS (Blade Force Variables)	$FØRC(1,K) = H_s$	Streamwise force/area (dimen-sionless)
	$FØRC(2,K) = H_{\phi}$	Swirl force/area (dimensionless)
	$FØRC(3,K) = \Xi_{s}$	Streamwise force/span (dimen-sionless)
	$FØRC(4,K) = \mathcal{I}_{\phi}$	Swirl force/span (dimension-less)
	$F \phi_{RC}(5,K) = \Phi_{B}$	Blade dissipation/area (dimen-sionless)
	FORC(6,K) =	Blade dissipation/span (dimen-sionless)

COMMON BLOCK NAME (OBJECT)	VARIABLE NAME	DESCRIPTION OF VARIABLES
FORS2 (Blade Force Varia	ables)	
	$FF(1,I,K) = \mathring{M}$	Inviscid Mach number (dimen- sionless)
	$FF(2,1,K) = \hat{\Pi}$	Inviscid static pressure (dimensionless)
	$FF(3,1,K = \stackrel{\wedge}{\theta})$	Inviscid static temperature (dimensionless)
	$FF(4,I,K) = \stackrel{\wedge}{\theta}_{0}$	Inviscid total temperature (dimensionless)
	$FF(5,I,K) = \hat{\Pi}_{o}$	Inviscid total pressure (dimensionless)
	$FF(6,I,K) = \stackrel{\wedge}{P}$	Inviscid density (dimen- sionless)
	$FF(7,I,K) = \hat{U}_{S}$	Inviscid streamwise velocity (dimensionless)
	$FF(8,1,K) = \hat{U}_{\phi}$	Absolute swirl velocity (dimensionless)
	$FF(9,1,K) = \mathring{V}_{\phi}$	Relative swirl velocity (dimensionless)
	$FF(10,I,K) = \hat{U}_{B}$	Blade velocity (dimen-sionless)
	$FF(11,I,K) = \overset{\wedge}{\alpha}$	Absolute angle to axis (deg)
	$FF(12,I,K) = \hat{\beta}$	Relative angle to axis (deg)
	$FF(13,I,K) = \hat{I}$	Inviscid flow entropy (dimensionless)
	$FF(14,I,K) = \mathring{U}$	Magnitude of relative inviscid flow velocity (dimensionless)
	221	(dTHISHOTOHITESS)

(Continued)

COMMON BLOCK NAME (OBJECT)	VARIABLE NA	<u>ME</u>	DESCRIPTION OF VARIABLES
FORS2 (Blade Force Variables)			
	FF(15,1,K)	$=\hat{Z}_{B}$	Loss coefficient (dimensionless)
	FF(15,2,K)	$= \Delta \hat{\mathbf{I}}_{\mathbf{B}}$	Blade entropy rise (dimensionless)
	FF(16,I,K)	= ψ	Stream function (dimensionless)
	FF(17,1,K)	= C _L	Lift coefficient (dimensionless)
	FF(17,2,K)	= C _D	Drag coefficient (dimensionless)
	I	= 1	Upstream of blade row
	I	= 2	Downstream of blade row
	K	= 1, KL	Number of streamlines

COMMON BLOCK NAME (OBJECT)	VAR	IABLE NAME	DESCRIPTION OF VARIABLES
	К :	= 1,KL	Number of streamlines (dimen- sionless)
FUNC (Dependent Flow	F(1,I,K)	= ψ	Stream function (dimensionless)
Variables)	F(2,1,K)	= U _S	Streamwise velocity (dimension-less)
	F(3,I,K)	= U _{\$\phi\$}	Swirl velocity (dimensionless)
	F(4,I,K)	= N	Static pressure (dimensionless)
	F(5,I,K)	= I	Entropy (dimensionless)
	F(6,1,K)	= 0	Static temperature (dimension-less)
	F(7,1,K)	= P	Density (dimensionless)
	F(8,1,K)	= Σ_{ns}	Streamwise stress (dimension-less)
	F(9,I,K)	$= \sum_{\mathbf{n}\phi}$	Swirl stress (dimensionless)
	F(10,I,K)) = Q	Heat flux (dimensionless)
	I	= 1	Inlet conditions
	I	= 2	S=S
	I	= 3	S=S+dS
	K	= 1, KL	Number of streamlines
INTINP (Integer Input	IØPTØ	= 1, 17	Input/Output options
Variables)	IDBGØ	= 1, 23	Debug printout options
	ISHAPE		Blade shape option
	JL		Number of streamwise stations
	KDS		Number of steps per streamwise station
	KL		Number of streamlines

COMMON BLOCK NAME (OBJECT)

VARIABLE NAME

DESCRIPTION OF VARIABLES

KLL

Number of input data streamlines

NB

Number of blades

INTPAR (Parameter
Variables)

These variables are treated as PARAMETER statements in UNIVAC programs and as integer variables in IBM or CDC programs.

Parameters for Solution Arrays

PARAMETER IST = 100

PARAMETER IS = 100

PARAMETER NEO = 10

PARAMETER NBCH = 5

PARAMETER NBCT = 5

PARAMETER NBH1 = NBCH+1 = 6

PARAMETER NEQD = 2*NEQ = 20

Parameters for Slots

PARAMETER ISLØT = 15

PARAMETER ISL ϕ T2 = 2*ISL ϕ T = 30

PARAMETER IS1 = 6*ISLØT+2 = 92

PARAMETER IS2 = 2*IS+IS1 = 292

Parameters for Coordinate Arrays

PARAMETER ISM = 19*IST = 1900

PARAMETER ISL = ISM+35 = 1935

PARAMETER IS3 = ISM+2 = 1902

PARAMETER IS4 = IS3+10 = 1912

PARAMETER IS5 = IS4+10 = 1922

PARAMETER IS6 = IS5+10 = 1932

Parameters for Matrix Inversion

PARAMETER KKLP = 30

PARAMETER LNGTØ = NEQ*NEG*KKLP+NEQ*KKLP = 3300

PARAMETER LNGT1 = NEQ*NEQ*KKLP+1 = 3001

PARAMETER LNGT2 = 2*LNGT0 = 6600

PARAMETER LNGT3 = 3*IST*NEQ = 3000

COMMON BLOCK NAME (OBJECT)

VARIABLE NAME

DESCRIPTION OF VARIABLES

Parameters for Force Variables

PARAMETER IFFS = 34*IST = 3400

Parameters for Smooth

PARAMETER ISSD = 20

PARAMETER ISSD1 = ISSD+1 = 21

PARAMERER ISSD2 = ISSD1+ISSD = 41

PARAMETER ISSD3 = ISSD2+ISSD = 61

REALIN (Real

Input Variables)

ACI = χ Clauser constant

AKI = K von Karman constant

ALP1 = α_1 Inlet swirl angle hub (deg to

z axis)

AMS1 = M, Inlet Mach number (dimensionless)

ANH = n_{H} Power law of hub boundary layer

ANT = n_m Power law of tip boundary layer

 $API = A^{\dagger}$ van Driest constant

CPRI = C_{p_r} Specific heat constant pressure $(ft^2/sec^2/deg R)$

CVRI = C_{V} Specific heat constant volume $(ft^2/sec^2/deg R)$

DDS = Mesh distortion parameter

DSHI = δ_{H}° Displacement thickness hub (ft)

DSTI = $\delta_{\mathbf{r}}$ Displacement thickness tip (ft)

PRESO = P_{01} Inlet stagnation pressure

 $PRLI = P_{RI.}$ Prandtl number laminar

PRTI = P_{RT} Prandtl number turbulent

COMMON BLOCK NAME (OBJECT)	VAR	IABLE NAME	DESCRIPTION OF VARIABLES
	TEMPO	= T ₀₁	Inlet stagnation temperature (deg R)
	VISCRI	= μ _r	Molecular viscosity reference (1b/sec ft ³)
REALIX (Real Input Variables)	ALPHSI	= α_{CH}	Blade stagger angle hub (deg to z axis)
	ALPSMI	= α_{CM}	Blade stagger angle mid (deg to z axis)
	ALPSTI	= α_{CT}	Blade stagger angle tip (deg to z axis)
	CØRDHI	= B _H	Blade chord hub (ft)
	CØRDMI	= B _µ	Blade chord midpoint (ft)
	CØRDTI	= B _T	Blade chord tip (ft)
	PHICHI	= φ _{CH}	Blade camber hub (deg)
	PHICMI	= ϕ_{CM}	Blade camber midpoint (deg)
	PHICTI	= ϕ_{CT}	Blade camber tip (deg)
	RCLHI	= r _{CLH}	Hub radius of blade centerline (ft)
	RCLMI	= r _{CLM}	Midpoint radius of blade center- line (ft)
	RCLTI	= r _{CLT}	Tip radius of blade centerline (ft)
	тнікні	$= t_H/B_H$	Blade thickness to chord ratio hub (dimensionless)

COMMON BLOCK NAME (OBJECT)	VARIABLE NAME	DESCRIPTION OF VARIABLES
	THIKMI = t_{M}/B_{M}	Blade thickness to chord ratio midpoint (dimensionless)
	THIKTI = t_T/B_T	Blade thickness to chord ratio tip (dimensionless)
	ZCLHI = Z _{CLH}	Blade Axial location of center- line (Hub)
	$ZCLMI = Z_{CLM}$	Blade axial location of center- line (Midpoint)
	ZCLTI = Z _{CLT}	Blade axial location of center- line (Tip)
	ZCLI = Z _{CL}	Blade centerline location (ft)
SPCFD (Variables	$F(K,J) = 1/(P V)_K^J$	Coefficients of Poisson equation
in Poisson Equation)	$P(K,J) = \Psi_K^J$	Stream function
SPCGD (Variables	$F(K) = 1/(P V)_{K}$	Coefficient of Poisson equation
for Streamline Curvature)	$G(K) = V/(G)_{K}$	Coefficient for velocity
	P(K) = K	Density ratio (ρ/ρ_r)
	T(K) = K	Temperature ratio (T/T_r)
	$V(K) = V_K$	Metric coefficient
SPIØ (Flow Variables)	$AVE(1,J) = \overline{Z}$	Average axial location (dimen- sionless)
	AVE(2,J) = AR	Area ratio (dimensionless)
	$AVE(3,J) = \psi$	Mass flow (dimensionless)
	$AVE(4,J) = \overline{U}_{S}$	Average streamwise velocity (dimensionless)
	$AVE(5,J) = \overline{U}_{\emptyset}$	Average swirl velocity (dimensionless)

COMMON BLOCK NAME (OBJECT)	VARIABLE NAME	DESCRIPTION OFVARIABLES
	$AVE(6,J) = \Pi$	Average entropy (dimensionless)
	$AVE(7,J) = \overline{I}$	Average entropy (dimensionless)
	$AVE(8,J) = \overline{\theta}$	Average static temperature (dimensionless)
	$AVE(9,J) = \overline{\rho}$	Average density (dimensionless)
	$AVE(10,J) = \overline{M}$	Average Mach number (dimen-sionless)
	$AVE(11,J) = \overline{\Pi}_{o}$	Average total pressure (dimen-sionless)
	$AVE(12,J) = \overline{\theta}_0$	Average total temperature (dimensionless)
	$AVE(13,J) = \overline{C}p$	Average pressure coefficient (dimensionless)
	$AVE(14,J) = \overline{C}p_1$	Average total pressure loss (dimensionless)
	AVE(15,J) = Z	Diffuser effectiveness (dimen- sionless)
	AVE(16,J) = B	Blockage (dimensionless)
	AVE(17,J) = \mathring{M} J = 1,JL	Area average Mach number (dimensionless)
	BINPUT(1,J,K) = Y	Spanwise location (dimension-less)
	BINPUT(2,J,K) = Π_0	Total pressure (lb/ft abs)
	$BINPUT(3,J,K) = \Pi$	Static pressure (lb/ft ² abs)
	$BINPUT(4,J,K) = \alpha$	Swirl angle (deg to axis)

COMMON BLOCK NAME (OBJECT)	VARIABLE NAME	DESCRIPTION OF VARIABLES
	BINPUT(5,J,K) = Θ_0	Total temperature (deg R)
	J = 1	Inlet flow
	J = 2	Exit flow
	K = 1, KLL	Number of spanwise stations
SPIØX (Flow Variables)	AINPUT(1,J,K) = Y	Spanwise location (dimensionless)
	AINPUT(2,J,K) = Π_0	Total pressure (1b/ft ² abs)
	$AINPUT(3,J,K) = \Pi$	Static pressure (1b/ft abs)
	AINPUT(4,J,K) = α	Swirl angle (deg to axis)
	AINPUT(5,J,K) = Θ_0	Total temperature (deg R)
	J = 1	Upstream of blade row (dimen- sionless)
	J = 2	Downstream of blade row (dimensionless)
	K = 1, KLL	Number of spanwise stations
STRMES (Poisson	BPØIS = B	Stretching parameter
Stretching Parameter)	BPØISI = B _I	Input stretching parameter

COMMON BLOCK NAME
(OBJECT)
STRES (Functions of
Orthogonal Coordinates)

VARIABLE NAME

DESCRIPTION OF VARIABLES

$$G(1,K) = \begin{bmatrix} G/V \end{bmatrix}_{K-\frac{1}{2}}^{J}$$

$$G(2,K) = \begin{bmatrix} XY \end{bmatrix}_{K-\frac{1}{2}}^{J}$$

$$G(3,K) = \left[G(XV)\right]_{K-\frac{1}{2}}^{J}$$

$$G(4,K) = \left[\frac{1}{XV} \frac{\partial V}{\partial n}\right]_{K-\frac{1}{2}}^{J}$$

G(5,K) =
$$\left[\frac{1}{XR} \frac{\partial R}{\partial n}\right]_{K-\frac{1}{2}}^{J}$$

$$G(6,K) = \left[\frac{1}{XR} \frac{\partial R}{\partial S}\right]_{K=\frac{1}{2}}^{J}$$

G(7,K) =
$$\left[\frac{V}{XG} \frac{\partial}{\partial D} \left(\frac{G}{V}\right)\right]_{K=\frac{1}{2}}^{J}$$

G(8,K) =
$$\left[\frac{\mathbf{v}}{\mathbf{X}\mathbf{G}} \frac{\partial}{\partial \mathbf{n}} \left(\frac{\mathbf{G}}{\mathbf{V}} \right) - \frac{1}{\mathbf{X}\mathbf{Y}} \frac{\partial \mathbf{V}}{\partial \mathbf{n}} \right]_{\mathbf{K} - \frac{1}{2}}^{\mathbf{J}}$$

G(9,K) =
$$\left[\frac{V}{XG}\frac{\partial}{\partial n}\left(\frac{G}{V}\right) - \frac{1}{XR}\frac{\partial R}{\partial n}\right]_{K-\frac{1}{2}}^{J}$$

$$G(9+I,K) = G(I,K) @ J-1, I=1,9$$

K = 1, KL

SVARB (Parameters and Variables)

ALPHS = α

Stagger angle to axis (deg)

ALPLUM =

Not used in this version

AMACHR = M

Reference Mach number (dimensionless)

Sioni

 $AMACH1 = \overline{M}_1$

Average inlet Mach number (dimensionless)

AMPLUM =

Not used in this version

 $AMPLUS = M^+$

Mass flow bleed parameter

(dimensionless)

 $APRES1 = \overline{P}_1$

Average inlet static pressure

(dimensionless)

AREA1 = A

Inlet area (ft²)

 $AREAR = A_{r}$

Reference area (ft²)

COMMON BLOCK NAME (OBJECT)	VARI	IABLE NAME	DESCRIPTION OF VARIABLES
	ATEMP1	$= \bar{T}_1$	Average inlet static pressure (dimensionless)
	CHØRD	= B	Local strut chord (dimension-less)
	DETA	= Δη	Step size in normal coordinate (dimensionless)
	DMPULS	$= \Delta m^+$	Step size in asymptotic constant table (m^+) (dimensionless)
	DPLUSM	= ΔP^+	Step size in asymptotic constant table (p^+) (dimensionless)
	DS	= ΔS	Streamwise step size between stations (dimensionless)
	DSH	$= \Delta_{\mathbf{H}}^{\star}$	Displacement thickness hub (dimensionless)
	DSS	= dS	Streamwise step size (dimension-less)
	DST	$= \Delta_{\mathbf{T}}^{\star}$	Displacement thickness tip (dimensionless)
	DZ	= ΔZ	Axial step size (dimensionless)
	DYNP1	= Q ₁	Average inlet dynamic pressure (dimensionless)
	GAP	= G	Gap between blades (dimensionless)
	GMR1	$= (\gamma^{-1}) M_r^2$	
	GMR2	$= \gamma M_r^2$	
	JLAST	=	Number of streamwise stations
	JLPTS	=	Number of input wall points
	JSEP	=	Number of stations to last calculated point

KMH

Hub matching point

COMMON BLOCK NAME (OBJECT)	<u>VARI</u>	ABLE NAME	DESCRIPTION OF VARIABLES
	KMT	=	Tip matching point
	КМО	=	Not used in this version
	KSEP	=	Not used in this version
	LM	=	Size of table of constants for inner layer (dimensionless)
	LMM	=	Midpoint of table of constants for inner layer (dimensionless)
	PHIC	=	Blade camber (deg)
	PLUSM	=	Not used in this version
	PPLUS	= P ⁺	Pressure gradient parameter (dimensionless)
	RADR	= r _r	Reference radius of blade centerline (dimensionless)
	REY	= N _R	Reynolds number P _r R _r U _r /U _r
	RHØR	= P _r	Reference density (slugs/ft ³)
	SL	= S _L	Length of duct in streamline coordinates (dimensionless)
	SØLD	= σ	Solidity (dimensionless)
	THICK	= t	Local blade thickness (dimen-sionless)
	USTARH	= U _H *	Friction velocity hub (dimen-sionless)
	USTART	= U [*] T	Friction velocity tip (dimen-sionless)
	USR	= U _r	Reference radius (dimensionless)
	WFLØ	=	Weight flow (lb/sec)
	YPLUSM	=	Matching point for table asymptotic constants (dimension-less)

COMMON BLOCK NAME (OBJECT)	<u>VARI</u>	ABLE NAME	DESCRIPTION OF VARIABLES
	ZLE	=	Axial location of blade trailing edge (demensionless)
	ZTE	=	Axial location of blade leading edge (dimensionless)
	Z1	=	Duct axial length (dimension-less)
SVARBX (Blade Variables)	ALPSH	= α _H	Hub stagger angle to axis (deg)
	ALPSM	= α _M	Midpoint stagger angle to axis (deg)
	ALPST	= α _T	Tip stagger angle to axis (deg)
	CHØRDH	= B _H	Blade chord hub (dimensionless)
	CHØRDM	= B _M	Blade chord midpoint (dimension-less)
	CHØRDT	= B _T	Blade chord tip (dimensionless)
	PHICH	= φ _{CH}	Blade camber - hub (deg)
	PHICM	= φ _{CM}	Blade camber - midpoint (deg)
	PHICT	=	Blade camber - tip (deg)
	RCLM	= R _{CLM}	Midpoint radius of blade center (dimensionless)
	RCLT	= R _{CLT}	Tip radius of blade centerline (dimensionless)
	RCLH	= R CLH	Midpoint radius of blade center (dimensionless)
	тніскн	= t _H	Blade thickness hub (dimension-less)
	THICKM	= t _M	Blade thickness midpoint (dimensionless)
	THICKT	= t _T 243	Blade thickness tip (dimension-less)

COMMON BLOCK NAME (OBJECT)	VARIABLE NAME		DESCRIPTION OF VARIABLES	
	ZCLH	= Z _{CLH}	Hub axial location of blade center line	
	ZCLM	= Z _{CLM}	Midpoint axial location of blade centerline	
	ZCLT	= Z _{CLT}	Tip axial location of blade centerline	
	ZCL	= Z _{CL}	Axial distance to blade center- line (dimensionless)	
TITLIN (Input Title)	TITLE(12)	a (11) J-1	Any alphanumeric characters	
TURBS (Turbulent Viscosity and Conduc- tivity)	DHF(1,K)	$= \frac{\partial \Sigma}{\partial \Sigma} \left(\frac{\mu J}{\mu E} \right) K^{-1} \Sigma$	Derivative of viscosity	
	DHF(2,K)	$= (\mu_{\rm T}/\mu_{\rm r})_{\rm K-\frac{1}{2}}^{\rm J-1}$	Turbulent viscosity (dimensionless)	
	DPF(1,K)	=		
	DPF(2,K)	$= \left(\frac{1}{P_{RE}} \frac{\mu_r}{\mu_r}\right)_{K-1}^{J-1}$	l Turbulent conductivity (dimen- sionless)	

K = 1, KL

List of Flags NØPTØ

Flag Name	Purpose
NØPT1=0	Setup initial flow
NØPT1=1	Calculate flow at station J
NØPT2=1	Adiabatic wall
NØPT2=2	Wall heat transfer
NØPT3=1	Compute and store coordinate functions
NØPT3=2	Compute local coordinate functions
NØPT4=0	Duct with centerbody
NØPT4=1	Duct with no centerbody
*NØPT5=0	Continue calculating
NØPTS>0	Stop calculating
NØPT6	Not used
NØPT7=1	Flow separated from tip wall
NØPT7=2	Flow separated from hub wall
NØPT8=0	Read inviscid flow variables
NØPT8=1	Read viscous flow variables
NØPT9=0	Full complex function calculation
NØPT9=1	Shorten complex function calculation
NØPT10=	Counts number of cases calculated
NØPT11=0	Computer graphics I/O
NØTP11=1	Batch I/O

^{*}NØPT5 is given a value to locate error in program In addition, a diagnostic message is printed.

NØPT13 FCPLX flag

NØPT14=0 UNIVAC

NØPT14=1 IBM

NØTP15=0 Integrate along S to obtain streamline

NØPT15=1 Integrate along n to obtain streamline

NØPT16 Station counter

NØPT17=0 No blade force calculation

NØPT17=1 Compute blade force

NØPT18=0 Turbulent flow

NØPT18=1 Laminar flow

NØPT19=INFL1 NFLO iteration in subroutine FLØWIN

NØPT20=0 Optimize KDS

NØPT20=1 Fix KDS

NØPT21=0 Greater than critical Reynolds number

NØPT21=1 Less than critical Reynolds number

NØPT22=0 Stator

NØPT22=1 Rotor

NØPT22=2 Propeller

APPENDIX A

Sample Input Setups

The input data to three sample cases is shown in this section to demonstrate how the input data must be structured in order for the PANPER analysis program to operate correctly. To illustrate the setup of the data input for certain modes of operation of the PANPER program, three different setups are shown. The three setups are:

- (1) Isolated Propeller Configuration
- (2) Combined Propeller-Nacelle Configuration
- (3) Combined Coaxial Propeller-Nacelle Configuration

The job control language (JCL) and the sample data input for each of these configurations are shown in Tables (II), (III), and (IV), respectively. The JCL commands are for a UNIVAC 1110 operating system. An isolated nacelle configuration is essentially the same as the second configuration (Table III) with the appropriate changes in the mode control input and the removal of the propeller input data.

JCL AND INPUT DATA SETUP FOR ISOLATED PROPELLER CONFIGURATION

ORIGINAL PAGE IS OF POOR QUALITY

```
.6571..5657..3673..4490..5306..6122..6939..7755
.8571..9388..9796.10
.2863..2903..2980..3004..2977...2926..2891..2829
.2697..2357..1895..1017
                                                      2192..2857..3673..4490..5306..6122..6939..7755
-81271..5386..79756.1.0
-2127..1021..026..04..033..028..025
                                                                                            1.0.1.0.1.0.1.0
URYO
                                                                                                                      1.0.0.3.6.1.
5.0.0.0.3.0.0.0.0.0
                                                                                                                                               1.0.1.0.1.0.1.0
EENS
                                                                                                                                                                        1.0.1.0.1.0.1.0
                                                                                                                                                                                                                                                                                                                 ____392...2857...3673..4490..5306..6122...6939...7755..8571...9388..9796,1.0
456
                                                                                                                                                                                                                                                                                                                                          RAD1 1.020833
THETA1.58.509
DCPDT .3
                                                                                                                                                                                                                                                                                                                                                                                            -. 12999
END
                                                                                                                                                                                                                                                                                                                                                                               2MC
02045
                                                                                                                                                                                                                                                                                                                                                                                                            VARCAT
                                                                                                                                                                                                                                                                                                  BL ADE
```

	ORIGINAL PAGE OF POOR QUALI	IS TY	-	**************************************	.0153517 .0163517 .01
2392.2657.3673.4490.5306.6122.6939.7755 2392.2626.1.23.1.23.1.23.1.23.1.23.1.23.1 3.1.23.1.23.1.23.1.23.1 HE TO STANDARD TO	13.92 2657 3673 4490 5306 6122 6939 7755 2637 2677 2926 2891 2829 2657 2637 2567 2567 2567 2567 2567 2567 2567 2567 2567 2567 2567 2567 2677 2926 2891 2829 2687 2567 3673 4490 5306 6122 6939 7755 2522 2671 3673 4490 5306 6122 6939 7755 2522 2671 3673 4490 5306 6122 6939 7755 2592 2857 3673 4490 5306 6122 6939 7755 2857 3673 4490 5306 6122 6939 7755 2675 9881 9903	192.2857.3673 1921.99489956.1 998599999919 98599999919 VD VD VD VD VD VD VD VD VD VD VD VD VD	3922657367344905306612269357755 55719386979609941.001.1.001 6679759869969941.001.1.001 6011.001.1.001 700FM MOUEL 1 BASELINE 700FM MOUEL 1 BASELINE 700FM MOUEL 1 BASELINE 700FM MOUEL 1 BASELINE 700FM MOUEL 1 BASELINE	### ### ### ### ### ### ### ### ### ##	0153517 015351
1 100/6000/7RX /250 1 100/6000/7RX 1 110/6000/7RX 1 120/6000/7RX 1 120/6000/7RX 1 120/6000/7RX 1 140/7RX 1 150/1000/7RX 1 150/1000/7RX 1 150/1000/7RX 1 150/1000/7RX 1 150/1000/7RX 1 150/1000/7RX 1 150/1000/7RX 1 150/1000/7RX 1 150/1000/7RX 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.0 0.0 0.0 0.0 15.0 0.0	12 25822857367344905306612269397755857193889796.1.0 .0191050179820156860133210095130046230010330000597 .05030470107560181160243210095130046230010330000597 .0551740560430585550631620624630491910273890034893	2 4 C 2 4 C 4 C C C C C C C C C C C C C C C C C C C

JCL AND INPUT DATA FOR COAXIAL PROPELLER-NACELLE CONFIGURATION

10.00	OF Of	RIGINAL PAG E POOR QUA	SE IS ALITY	571,.9388,.9796,1.0	19,165,216,243		
.93889796.1.0 .0177.0271.032	.285736734490530661226939775. -93689000075170188160115 025010006 .285736734490530661226935775 -93889796.1.0 -290329803004297729262891282	.285736734490530661226939775 111.0.77.045102 021020502 .28573673490530661226939775 937889783984797159769981C982	.28573673449053066122693977 .93889796.1.0 .994799649964 .995799649964 .26573673449053066122693977 .93889796.1.0 .946821111872163815	.2857367344905306612269397755 .9388.992.1.02 .03.1.02.1.02 .03.1.02.1.02 .03.1.02.1.03 .03.1.02.1.03 .03.1.03.1.03 .03.1.03.1.03 .03.1.0	1675899123143214181140689006607 12425 1083 1.81	992295736734490530661226939775 57193889796.1.0 11.23.1.23.1.23.1.23.1.23.1.23.1.23.1 11.23.23.285736734490530661226939775	711, 9288, 9796, 11.6 76.U7.07.5 16.U7.07.5 922657.3673.4490.5306.6122.6939.775 791.9388.9796.110 10017.33.5.13.167.195, 218.234 100225.2657.3673.4492.5306.6122.6975.775 711.9386.9796.110 711.5262.1774.145
## 1	8.6720C/TRK/25 9.4C0MP. 10.056000/TRK 12.056000/TRK 13.056000/TRK 14.056000/TRK 15.0710400/TRK 16.0758	ANPER COMP. PANPER COMP. PANPER COMP. PANPER COMP. PANPER COMP.	1.005 1.005 1.005 1.005 1.005 1.0003 1.0003	25.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2	.285736734490530661226939,.77558571,.9388,.9796,1.0 0308033603010211010300240001004601770271032 .089912314321418114068900660719,165216243	2999 NAT P2285736734490530661226939775 7193889796.1.0	1,23,1,23,1,23,1,23,1,23,1,23,1,23,1,23

ORIGINAL PAGE IS OF POOR QUALITY

APPENDIX B

Example of PANPER Analysis Program Output

The purpose of this appendix is to give an example of the printout that is output from the PANPER analysis program for the case. The case which is used to demonstrate this printout is the analysis of a nacelle-propeller configuration (Table III). This type of configuration was used as a test case in reference 1. The entire printout from this sample case will not be included in this appendix but rather specific areas of the printout are listed in order to illustrate the output of the various tasks that the program performs. Printout will be shown for the following tasks:

- (1) Main Program Heading and Output of Initial Propeller Input Data
- (2) Output of the Options and Input Data used in Nacelle Analysis
- (3) Output of the Nacelle Geometry
- (4) Output of the Inviscid Flow Solution (At Axial Station ZH = .76489)
- (5) Output of the Lifting Line Noninduced Inflow Conditions
- (6) Output of the Options and Reference Data used in Propeller Analysis
- (7) Output of Selected Intermediate Calculation Results for the Propeller Analysis
- (8) Output of the Propeller Performance Results
- (9) Output of the Propeller Blade Forces
- (10) Output of the Nacelle Viscous Flow Solution (At Axial Station ZH = .76489)

PROPELLER-NACELLE AERODYMANIC TO TECHNOLOGICS TO THE STATE TO THE STAT	PERFORMANCE PROGRAM BY SEARCH CENTER 379 ARCH CENTER	LANDGREBE (203-727-7358) IPAL INVESTIGATOP (203-727-7188) - PROPELLER INCIPAL INVESTIGATOR (203-727-7224) - NACELLE -727-7207) - NACELLE	(216-438-4000 EXT. 5520)	ALPER PER PER PER PER PER PER PER PER PER					
	PROPELLER-NACELLE AERODYNAHIC UNITED TECHNOLOGIES RE JANUARY 19 FOR NASA LEWIS RESE	UTRC PROJECT MANAGER: A.J. OHPUTER PROGRAM DEVELOPERS: T. A. EGOLF, PRINC O. L. ANDERSON, PR. D. E. EDWARGS (2013	SA PROJECT MANAGER: L. J. BOb	THIS COMPUTER PROGRAM CALCULE FEORESCHENCE, NACELLE PRESSUR FOCKMANCE, NACELLE PRESSUR FOCKMANCE, NACELLE PRESSUR FOCKMORTHER, PRESCHIED FOR ADDULLE CAN PRESCHIED INTERACTION SURPT BLOSS OPERATING WITH CASCADE AIRFOLL DATA FOR ITH CASCADE AIRFOLD AI	SHICH NUPPF = 1 OR THIS HOW OF PERSTICE OF A NACELLE AND PROPELLER AND CHARACTERISTICS OF A NACELLE AND PROPELLER ARE AMALYZED, (SPECIFICALLY, A.D.D. COUPLED AND PROPELLER LIFTING LINE CODE ARE OPERATED COUPLED SEQUENTIALLY).	PRINTOUT OF INITIAL INPUT DATA AS READ IN	0+000000000000000000000000000000000000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	00000000 00000000 00000000 00100000 00111100000 1111100000

1-01	00+6			:		2 •23100+02	00+08866* 0	168610+01	00+08864.00	1 .25060-01	00+08450		00.407687.		1 .21000-01		0 *99350+00	0 -93860-00
0+00 .1000(7+001545	:		٠	.85710+00	.23100+02	.85710+00	40610+01	.85710+00	10-000+9*	00401730		nn+n/ 697*	.85710•00	.22000-01	.85710+00	.99160+00	.85710+00
860+00 .9796 756-01 .1811	396-011247	:			.77550+00	,23100+02	.77550+00	98100+00	.77550+00	.11500+00	14 C	BB-06617.	.28290+00	.77550+00	.25000-01	.77550+00	00+0£066*	.77550•00
15710+00 .93	12912-0189				00+06869*	.23100+02	.69390+00	.21590+01	.69390+00	•16000 •00	00*0010*	00404649	.28910+00	00+06869*	.28500-01	.69390+00	.98810+00	00.09599.
.61220+00 .69390+00 .77550+00 .85710+00 .93860+00 .97960+00 .10000+01 .46230-02 .10330-02 .59760-04 .30470-02 .10756-01 .18116-01 .24321-01	.27389-01-,34893-02-,42912-01-,89396-01-,12477+00-,15459+00				.61220+00	.23100+02	.61220+00	.53690+01	.61220+00	.18800+00	00.000	00.07719*	.29266+00	.61220+00	.33000-01	61220+00	9865U÷00	**1420*60
0 .69390+00					.53060+00	.23100+02	.53060+00	.86590+01	.53060+00	.17000+00		nn-manse.	.29770+00	,53060+00	.40699-01	6.1960+00	00+36486	933066.
					00+00644	.23100+02	00+006 %%*	.11908+02	00+006##*	.75000-01		00+004++	.30640+00	U0+0U6 ***	.45000-01	00+ UU6 ##*	68270+0g	05+0064#*
.44900+00 .53060+00 .13321-01 .95130-02	.63162-01 .62463-01				.36730+00	.23100+02	.36730+00	.15009+02	.36730+00	60000-01		. 36 / 30 +00	.29800+00	.36730+00	.70500-01	.36730+00	.97860+0n	.36730.000
.36730+00 .449 .15686-01 .133	.58505-01 .631				0NS .28570+U0	.23100+02 .23100+02	10MS .2857U+ UD	.17769-01	0NS 28570+C0	26300+00	3N0	.10060+01	.10170+00	10NS . 28570+00	.1000001 .11106+00 .20000-01		.99466.00	ONS .2857(+UD
.28570+00	.56043-01 .5	:			.23920+00	•	23920+00	•	10N STATIC	36700+00	ION STATI	.97960+00	.28630+00 .18950+00 .1	10N STAT	.20500-01	DENS 12 INTERPOLATION STATIO X VECTOR: 239920+00	00+09466*	INTERPOLATION STATIONS VECTOR= .23920+U0 .
23920+00 258 -19105-01	758 • 55174-01 XMC	100000+01	. 204 50 -01	- 12999+00 -VARDAT	AIKN 12 INTERPOL X VECTOR:	CTOR:	12 INTERPOL X VECTOR=	Y VECTOR=	DECL 12 INTERPOLAT X VECTOR:	Y VECTOR=	ORD . 2. INTERPO	A VECTOR:		12 INTERPOLAT X VECTOR=	Y VECTOR=	DENS 12 INTERPOL X VECTOR=	Y VECTOR=	SCUN 12 INTERPOL X VECTOR:

.97960+03 .1 .99390+00 .99910+00 .5	.100CR+01 .9946C+0C .999ZD+0C	. >9560 •00	00+659%6*	G3+02_35°	00409166*	.99810+60	.99830•00	.99850+00	00+00666*
v: •	12 INTERPOLATION STATIONS X VECTOR= .23920+JN .2957u+DR	36730 400	00+00654*	. o ₹U6Ω+CA	.61220+00	00+06869*	.77550+00	.85710+00	.93880+00
	.1040001 .35200+00	.30100+00	.25600+00	00+00972*	.18800+00	.16500+60	.14800+00	.13300+00	.11900+00
12 INTERPOLATION STATIONS			0	7.74 (1.7.17.17.17	00402514	0.460704	00+04527	.85710+00	.93880+00
V.	00+0/022	. 56 / 51: +0.0	23,03%,***	101400000	0013776.				
	10 to 0 0 0 1 .	00+00984.	00-00966.	00+0u566°	.100001.	.1001001	.1001001.	.1001001.	.10010+01
ü	110+61								

ORIGINAL PAGE 18 OF POOR QUALITY

PROPFAN MODEL 1 BASELINE

U12979-

CASE NO.

OPTIONS USED

```
I
Z
Z
                                CASCADE PREDICTED 28 AND ALPH2 FOR BLADE FORCE CALCULATION IN PUT DUCT SHAPE AND WALL CONDITIONS
IN PUT DUCT SHAPE AND WALL CONDITIONS
PRINT BY HESH PCINTS
PRINT BY HESH PCINTS
PRINT BY HESH PCINTS
PRINT BY HESH POWNSIREAM EXIT
UPSTREAM = IN ECT S
OWN SIREAM EXITE
READ 100 PECC OR S
OUT ION NOT STORED ON TAPE LFILE= 0
OU HESH POINTS INTERPOLATED FROM 81 INPUT POINTS
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    664.86 FT/SEC
3.91 FT
1116.05 FT/SEC
4283.00 FT**2/DEG.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  2446.59 LB/SEC

1672+08

8342+08

83792

1628-36 PSF ABS-

512-66 PSF ABS-

8440-00 RPM

17340

17340
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    USR
SNOR
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       PDS : TEN
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           1 H I C K / C H O R D C K / C H O R D C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M O C M 
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    11 11
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    150
051
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            3.262
9
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             PREFECT TO THE PREFECT TO THE PROPERTY TO THE 
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      PROPFAN MODEL 1 BASELINE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            MESH DISTORTION PAPAMETER NUMBER OF MESH POINTS ACROSS DUCT NUMBER OF MESH POINTS ALONG DUCT NUMBER OF STEPS PER STATION HATCHING POINT STATION HATCHING POINT STATION HS1 = .7920
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      NCF POINT

NEIGHT FLOW

REYNOLDS

HEAN INLET DYNAMIC PRESSURE

HEAN INLET STATIC TEMPERATURE PROTON SPEED

AVERAGE INLET MACH NUMBER

INLET REYNOLDS NUMBER

INLET REYNOLDS NUMBER

E CONDITIONS

PRESS TEMPERATURE PROTON SPEED

AVERAGE FACTOR

AVERAGE FACT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 ZCL =
NBLADE
ISHAPE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                CHORD(FT.)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  .7920
.00 DEG.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          STRUT GEOMETRY
STRUT CENTER LINE
NUMBER OF STRUTS
BLADE SHAPE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           ALPS (DEC 0)
777-6608
777-6608
773-67-81-8
677-81-8
677-668
677-668
677-668
677-668
677-668
677-668
677-668
                                                                                                                                                                                         10F14
10P15
10P19
0P11
0P12
0P13
                                                                                                                                                                                                                                                                                                                                                                                                                                                    MESH PARAMETERS
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                PERFORMANCE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        REFERENCE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     RCL(FT.)
2244
2345
375
375
625
7008
7008
10000
10000
```

EUCT OF UMETRY AND WALL CONDITIONS

00000	
DUCTI(5) = DUCTI(10) = DUCTI(15) =	
000000	01111111111111111111111111111111111111
.0000 00CTI(4)	Here the control of t
50CTI(3) = 50CTI(6) = 50CTI(13) = 50CTI(13) = 50CTI(13)	
20.00 • 0000 • 0000	
60CTI(?) = 60CTI(12) = 60CTI(12) =	
DUCTI(1) = 5.4167 DUCTI(1) = .0000	COUDD 2. COUDD

ORIGINAL PAGE OF POOR QUALITY

000				0000			0000	0000				0000	ŏŏŏŏ	0000				0000	0000				0000			0000	0000			0000	~		0000	0000			0000	0000		
	-	1 = 1	-				_	_				:											_				•		·-	_				_				-		
000			000	000			000	000				000	000						000				200			000	200			000			000	000			000	000		
11778+00	15787+0	04404	21264+0	23167+0	77079+0	29018+0	30882+0	32617+0	10 t	36555+0	37335+0	37839+0	38094+0	28 2 4 C 4 C	25046+U	17508+0	37119+0	36671+0	36176+0	3564640	34538+0	33999+0	35504+0	35U82+U	32549+0	32468+0	3251540	37887+D	33133+0	33373+0	33603+0	34062+0	34296+0	34533+0	34772+0	35.74.7+0	35480+0	5713+0		
357	8998	0.546+0	30640+	1187+0	32281+0	32828+0	33376+0	3.592.540	35017+0	35564+0	36111+0	36658+0	37206+0	3775340		0 + 76 6	0 + 1 + 66	048840	41036+0	7136340	2677+0	3224+0	0 + 1 / 1 5	4 2 1 2 4	45413+0	45960+0	70640	7601+0	8148+0	8696+0	924340	0337+0	G884+0	1431+0	1978+17	0 48 202	3620+0	4167+0		
000000000000000000000000000000000000000	000		000		000	UOO	000			0000	000	000					0000	0000	0000		0000				000	000			000	000			000	000			000	000	ı	
	00000	00000	00000		20000	00000	0.000		00000	00000	00000	00000				0000	0000	00000	00000		00000	00000	0.000.0	00000	00000	00000		00000	00000	00000		00000	.00000	•0000	00000		00000	. C 000		110V
• 39088+03 • 39088+03 • 39088+03	+9806	9 L 8 & + 9 D 8 & +	+3876 978	* # # # # # # # # # # # # # # # # # # #	90884	9098+	+ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	9000 9000	90864	9 U 8 R +	+ R 8 U 6	+98D6	* # # # C C C C C C C C C C C C C C C C	9 1 2 2 2 4	+ H 80 5	9098+	9086+	+8806	9088+ 9088+	9008	9 08 6 +	90884	9000	90884	90884	+9800 0000	* 1 CO	9086	9086+	908 R+	+ + + + + + + + + + + + + + + + + + +	9.08 R+	9 J 8 B +	+ ¤ 8 € 6	+ 4 20 20 20 20 20 20 20 20 20 20 20 20 20	+ 22 CC	806	+ 2 P C C C C C C C C C C C C C C C C C C		SCIO FLOM CALCULA
.27357+01 .27904+01 .24451+01	8998+0	7546 00934	064040	1734+0	2281+0	2828+0	2074	0+04**	5017+0	5564+0	6111+0	6658+0	7753+0	0 + 0 0 K K	847+0	9394+0	0+1+66	0488+0	1036+0	2130+0	2677+0	3224+0		4866+0	5413+0	5960+0	7054+07	7601+0	8148+0	8696+0	0+0646	0337+0	0884+0	1431+0	25.26+0	3073+	3620+	416/4 STATI		BEGIN INVISCIO
											1																											UPST		1 1 MF

GRIGINAL PAGE IS OF POOR QUALITY

		11113 11113 11113 11113 11113 11113 11113 11113 11113 11113 11113 11113 11113 11113 11113 11113 11113 11113 111
		22
		######################################
-10 613		7002-01 5 5 6 10 10 10 10 10 10 10 10 10 10
1113		#ALL = .840 11 8618998989898989898989898989898989898989
SCID FLOW		
AVERAGE INVI	MENAULANAUMANAUMANAUMANAUMANAUMANAUMANAUMA	SCID PRESSURE 518.17521 518.117521 518.117521 513.15261 513.1621 5
(AP		1 N V I S V V V V V V V V V V V V V V V V V
177	00000000000000000000000000000000000000	

ORIGINAL PAGE IS OF POOR QUALITY

```
$ 500 to 100 to 
                                             FLOW
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               RL

544646-01

544646-01

113726-01

113857-00

113857-00

129152-00

129152-00

129152-00

129152-00

129152-00

129152-00

129152-00

129152-00

129152-00

129152-00

129152-00

129152-00

129152-00

129152-00

129152-00

129152-00

129152-00

129152-00

129152-00

129152-00

129152-00

129152-00

129152-00

129152-00

129152-00

129152-00

129152-00

129152-00

129152-00

129152-00

129152-00

129152-00

129152-00

129152-00

129152-00

129152-00

129152-00

129152-00

129152-00

129152-00

129152-00

129152-00

129152-00

129152-00

129152-00

129152-00

129152-00

129152-00

129152-00

129152-00

129152-00

129152-00

129152-00

129152-00

129152-00

129152-00

129152-00

129152-00

129152-00

129152-00

129152-00

129152-00

129152-00

129152-00

129152-00

129152-00

129152-00

129152-00

129152-00

129152-00

129152-00

129152-00

129152-00

129152-00

129152-00

129152-00

129152-00

129152-00

129152-00

129152-00

129152-00

129152-00

129152-00

129152-00

129152-00

129152-00

129152-00

129152-00

129152-00

129152-00

129152-00

129152-00

129152-00

129152-00

129152-00

129152-00

129152-00

129152-00

129152-00

129152-00

129152-00

129152-00

129152-00

129152-00

129152-00

129152-00

129152-00

129152-00

129152-00

129152-00

129152-00

129152-00

129152-00

129152-00

129152-00

129152-00

129152-00

129152-00

129152-00

129152-00

129152-00

129152-00

129152-00

129152-00

129152-00

129152-00

129152-00

129152-00

129152-00

129152-00

129152-00

129152-00

129152-00

129152-00

129152-00

129152-00

129152-00

129152-00

129152-00

129152-00

129152-00

129152-00

129152-00

129152-00

129152-00

129152-00

129152-00

129152-00

129152-00

129152-00

129152-00

129152-00

129152-00

129152-00

129152-00

129152-00

129152-00

129152-00

129152-00

129152-00

129152-00

129152-00

129152-00

129152-00

129152-00

129152-00

129152-00

129152-00

129152-00

129152-00

129152-00

129152-00

129152-00

129152-00

129152-00

129152-00

129152-00

129152-00

129152-00

129152-00

129152-
```

************************* **** PRESCRIBED WAKE PROP-FAN PROGRAM CENTER: RESEARCH UNITED TECHNOLOGIES

PROGRAM INFUT SUMMARY

PROPELLER MODELING OPTIONS

SKEWED FLOW SKIN FRICTION URAG ADDITION
MACH CONE (TABLE FOR FOR STANKE EFFECTS USED
NON LINEAR SOLUTION USED
DIRECT SOLUTION USED
DIRECT SOLUTION TECHNIQUE USED
NO COMPRESSIBLE WARE APPLIEU CALY FOR SEGMENT MACHAI
UNIFORM WAKE HODEL USED (NO+VIMOH)
NACELE FRECT SOUN WAKE USED
NACELE FRECT SOUN AME USED
CASCADE AIRFOIL DATA PACKAGE USED INBOARD OF 367 -0000----

\?\?\

POOR

NO MAKE ROLLUP FOR PROPELLER

FREE STREAM CONDITIONS:

SPEED OF SOUND = 1109.2038 FPS COMMON PROPELLER OPERATING CHARACTERISTICS: V= 520.4321 KNOTS

.0018532 SLUGS/CU FT

* *

DE NS 1TY

(NON) 00000. AXIAL DISPLACEMENT BETWEEN PROPELLERS= 8440.00 RPMII **3**0 NO. OF BLADES = -NO. OF PROPELLERS =

BLADE AND WAKE GEOMETRY OPERATING PARAMETERS:

WAKE REVS= 2. 9 ç Q AZI. INCREMENT=15.00 DEG. .250 (NDN) NO. OF INFLOW STA.S. 11. POS. OF LIFTING LINE W.R.T. LEAD. EDGE:

FROPELLER CHARACTERISTICS FOR PROPELLER 1

ENU CASCADE REGION: 3670 (NDM) 58.51 DEG. COLLECTIVE = .000 FT-LBS INITIAL HLB TORUUE= BLADE RADIUS: 1.L21 FT

10

Ð

ELADE SEGPENT BOUNDARY COORDINATES

FOUNDARY NO.

-.0429 -.0030 .00035 .00035 • .6939 .0274 .0010 6122.0492 . 5306 . 0625 . 0095 2857 8560 0180 X/RADIUS Y/RADIUS Z/RADIUS

261

ORIGINAL PAGE 13 OF POOR QUALITY

POOR QUALITY		CENDO ONN THEO
, 0011 (2		N S S S S S S S S S S S S S S S S S S S
¥.	, ~	A A DELS A DELS
200 200 200 200 200 200 200 200	PROPELL	0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
200	NUMBER EGREES FO	60000000000000000000000000000000000000
23.00 mm m	ITERATIO 58.50900.	POSISPENSON/R 2010/N 2010/N 2010/N 30
2.00 x 00	FORMAN Tag of	6000 PC
9998 441 441 4655 46	FOR PROPELLER Quanitties for	22.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2
24 44 44 44 44 44 44 44 44 44 44 44 44 4	C TPUT TRY	CINCAR CI
1	IS .37 SE PROGRAM OU BLAUE, GEOME	PAGE NO. 10 10 10 10 10 10 10 10 10 10 10 10 10
100 000 000 000 000 000 000 000 000 000	TIAL DATA TABLE OF	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
LADE STATIONS LADE CHORD (FT) LADE CHORD (FT) LACKNENS LA	INE TO COMPUTE ISI	00 11 10 10 10 10 10 10 10 10
######################################	-	.

.240 .286 .368 AXIAL WAKE TRANSPORT YELOCITY USED AT PROPELLER DISK (NEGLECTING NACELLE INFLUENCE)
-904.18 -904.18 -904.18 -904.18 -904.18 -904.18 -904.18 -904.18 -904.18 -904.18 -904.18

			00000000 00000000 00000000
			00000000
-10016			7 TERMS 284, 566, 566, 566, 566, 566, 566, 566, 56
7	07 47 40 00 00 00 00 00 00 00 00 00 00 00 00	000-1000 000 000 000 000 000 000 000 000	VELOCIT 266.4641
0853	00 11 1 1 1 1 1 1 1 1 1	1 4 4 1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	1NOUCED 23106111 106815 106815 107817 33.07817 10817 10817 10768
00	### ##################################	**************************************	xCLUUING 11840,1321 100221 10769 30.5191 108161 10806
1.00000	ED BLADE 13 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		PUT STATE ST
: NO	0	0.000 B B B B B B B B B B B B B B B B B	1105.559114 -53381 -68347 -23.7496 27 23.7496 27 -9121 -9121 -9839 0 SEC
DEFINITI	0.000 0.000		107116384 -4817 -4817 -6810 19.9538 -9818 -98538 -98538
ACH CONE	11 00000000000000000000000000000000000		1042-913 1042-913 4242 8843 13-2050 13-2050 9773 9773 9773
, Z F OR M			1014,927, -36,32, -9017, 11,6573, 11,6573, -9772, -06,62
× * ×	00000000000000000000000000000000000000	1 11 7/10/2010 0 // L/10 7/10/2010 0 // L/10 7/10/2010 0 // L/10/2010 7/10/2010 1 // L/10/2010 7/10/2010 1 // L/10/2010	989
	200 000 000 000 000 000 000 000 000 000	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	98.11 98.11 1.0241152 1.0241152 1.0411152 1.0411152 1.0411152 1.0411152 1.0411152 1.0411152 1.0411152 1.0411152 1.0411152 1.0411152 1.0411
:	CALLOCATION OF THE CALLOCATION OF THE CONTRACTION OF THE CONTRACTION OF THE CALLOCATION O	AALLOOGE AALLOOGE AALLOOGE BHATHEAALD C PARCELE BHATHEAALD C PARCELE C PARCE	T NACONTRIBUTE OF THE PART OF

... PROPELLER PERFORMANCE ...

ORIGINAL PAGE IS OF POOR QUALITY

BLADE SPANNISE VARYING QUANTITIES

ROTOR POSITION 1 PROPELLER 1

1.000 000 000 000 000 000 000 000 000 00	1
	Mawaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
19426 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	-23.00 -23.00 -23.00 -35.00 -3
2 4 2 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	M 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
10420926	
1 05514 20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
10862244 10862244 1086244 1086244 108624	45400000000000000000000000000000000000
100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
100 000 000 000 000 000 000 000 000 000	
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	DOCOCK EN A CONTROL OF
SEGMENT NUMBER /BLADE RADIUS CHORD/RADIUS (BLADE ELEMENT) THICKNESS RATIO (INPUT) ELEMENT) CHORD LIFT COEF (INPUT) ELEMENT) CESTON LIFT COEF (INPUT) CESTON LENGTH / BLADE RADIUS CENTRAL INDUCED VELOCITY FPS TANGENTIAL INDUCED VELOCITY FPS CHORDWISE INDUCED VELOCITY FPS CHORDWISE INDUCED VELOCITY FPS CHORDWISE INDUCED VELOCITY FPS TOTAL CHORDWISE VELOCITY FPS TOTAL AXIAL COLOR AXIAL C	CIRCULATION, FT SUZSEC. BLADE ELEMENT INFLOW ANGLE, DEG. BLADE ELEMENT ANG. OF A TTACK, DEG. BLADE ELEMENT HACH NUMBER SECTION SPEED OF SOUND RATIO SECTION SPEED OF SOUND SECTION SECTION SPEED SOUND SECTION SECTION SPEED SOUND

INSTANTE OUS TOTAL PROPELLER PERFORMANCE FOR PROPELLER POSITION .3025+06 HORSEPOWER 239.98 POWER, FT-LB/SEC

BLADE CHARACTERISTICS

PHRUST COEFFICIENT GRADIENT

CHORD CINPUT TOVERC THK DEFSCL SIGNEY THE TAK THE TAK CCC CON CONTRACT CON CONTRACT CON CONTRACT CON CONTRACT CON CONTRACT CONTRA

BLADE SPANNISE VARYING QUANTITIES ROTOR POSITION 1 PROPELLER

SEGMENT NUMBER

CHORD (INDUI) FIG.

CHORD (INDUI) FIG.

CHORD (INDUI) FIG.

CHORD (INDUI) FIG.

THICKNESS RATIO (ELABE ELEMENT)

DESIGN LIFT COEF (BLADE ELEMENT)

DESIGN LIFT COEF (BLADE ELEMENT)

DESIGN LIFT COEF (BLADE ELEMENT)

SECTION CASCADE SOLDITY

BLADE ELEMENT BLADE ANGLE, DEG, TH

SECTION LENGTH / BLADE RELENT)

SECTION LENGTH / BLADE ELEMENT)

SECTION LENGTH / BLADE ELEMENT)

SECTION LENGTH / BLADE FLENT)

RADIAL INDUCED VELOCITY FPS

VINDUCED VELOCITY FPS

VINDUCED

265

ORIGINAL PAGE IS OF POOR QUALITY

5205 3015 3015 4 301 1 6 5 3 0 1	
## 100 I TV VKT VKT BLADE ANGLE 5 000 766 000	
CCOC CCOCEFF RCOEFF RCOEFF	
PROPELLER 1 ENT CP 1.6536 CT+J/CP .6966 EPRESSURE DRAG ENACELLE AND BRAG NACELLE AND BRAG NACELLE AND BRAG ONACELLE AND	
PELLER CHARACTERISTICS FOR PROPELLER 342.2 342.2 342.2 353.3 353.6 353.6 353.6 353.6 550.0	SEC 34 SECONDS
A	HANG PR
INTEGRATED POPULLER NO PROPELLER AND PROPERT AND	ME TO COMPLIE PER ME TO COMPLETE TO

ORIGINAL PAGE IS OF POOR QUALITY

```
E PRESULTANT STATE STATE
```

.76489+6U .70159+6L

ORIGINAL PAGE IS OF POOR QUALITY

```
PRE
                               HE TAPES TO THE TA
         00000
00000
00000
00000
0 PRINTOUT
                        | No. 
                              CALCUL
                                                                                                                                                                                                                                                                                                                                                                                                                                                    96
                                                                                                                                                                                                                                                                                                                                                                                                                                  SOLVÍ
TIME
NUMBER
```

ORIGINAL PAGE IS OF POOR QUALITY

100	מטטט	70240	04175	95477+0	5423+0	93845+0	14749+0	17657+0	17630+0	13165+0	460940	7 4 4 4 1 - 0	791 35-0	25428-0	12007	うくしょくしょく			0 - 2 C O T O		02554-0	0-71/10	0-00030	0 + 4 A O O		7.476	32787-0	20087-0	12751+0	12169+0	15272+0	.58549+0	.32174+0	.58977+0			3455140	24755	1480	55915+0	53371+0	22842+0	16397+0 00000)))	TP= .53179-03
	0000	200	387	545	3582+	01634	4652+	5934	85.49+	1045+	5091	85.32	027	7900-	7707-	200	7470	0 0	5 7 7 Y				000	7000	7007	7696		200	200	6358-	8456-	3985+	71111	0.845	07110	440000	4000	7 4 2 7	1032+	24994	9136+	10284	.10102+01		JODOC EENT
311 1011	ממטטט	16870+0	40868+0	78846+0	10989+0	11646+0	12868+0	13747+0	15289+0	17721+0	19928+0	2018140	70033+0	20321+0	10007	30 4 K 3 + 0	2010040		7125740		0+2+102	0 1 0 2 0 6	0417577	3/00/40	0.4040	1474117	100 mm	36676+0	170 174U	36691+0	37005+0	36736+0	36932+0	3684440	70770	0407672	3674840	36751+0	36753+0	36755+0	36756+0	36 / 56 + 1)	.36757+03		Eurup:
311 Id A	00000	15096+0	42212+0	90921+0	17841+0	33557+0	61786+0	11249+0	20355+0	36706+0	66060+u	11873+0	21316+0	38218+6	6.8 3 R 7 + 0	12107+0	216 2040	775010	0 1 0 0 T 1 0 C 1 0 C 1 C 1 C 1 C 1 C 1 C 1 C 1 C			0414550	0.10000	77777	10669	0 + 30 2 9 7	2000 2000 2000 2000 2000 2000 2000 200	72882+::	13037+0	73484+0	41201+0	23025+0	12642+0	715 52+0	04446	0+27661	67774+0	37779+11	022	10755+0	0+8084	2465+0	a	}	.23017-01
3	14956+01	15128+n	15855+0	24027+0	92241+0	14512+0	32429+0	51127+0	51113+0	51091+0	51072+0	51064+0	51064+0	51064+0	5106 3+0	5106740	7 1 06 1		51057+0		7 1 0 2 4 4 0			1048401		7070		C+ K 10 L 5		51048+0	51048+0	51048+0	51048+0			5 1 0 2 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4	51051+0	51051+0	51051+0	51051+0	51051+0	21021+0	.51051+02 .13779+01		.207-02 EUSUS= .90938-01
OPERTIES	0+0770	0+6680	1556+0	18922+0	80337+0	12796+0	28923+0	5753+0	45743+6	45727+0	5713+0	45707+0	45707+0	5707+0	45707+0	4777	4570540		5707+6			04.09.5		5000 P	11240441	0 4 9 4 9 4 9 4 9 4 9 4 9 4 9 4 9 4 9 4	2000	50.05	26.96	5696+1	5696+0	2696+[]	119695	1+0666 1-666	20700	1000	5698+0	5698+0	5698+0	5598+0	2698+U	267840	.99209+00		FROUS = .21
Αυΐυ Fιφ	56493+	56325+	55536+	52877*	48920+	47850+	493264	43378+	39451+	32194+	24195+	22489+	23331+	22600+	2 3 1 1 4 4	77479+	225234	7.0000	701000 701000		7	770334	71050	*************************************	21865	2201154	14734	72014+	21873+	22030+	21865+	521189+	21740+	**************************************	* C 7 7 C C	いっているのか	22654+	72956+	+25622	22,920+	22.036+	**6477	.22924+00		28U47-03
GAPAVEK	00000	26959-0	17025-0	70607-0	22372-0	55707- 0	12109-0	24956-0	5r:39t-0	10334-0	21495-0	43408-0	63715-0	15650-0	30184-0	C 4 5 0 7 - 0	11265-0		ローつきゃごら		→ 1000 + 000 +	47746+1	0 0 0 0 1 7 1	1 3 5 6 3 4 5	18600+0	7 7 7 7 7 7	() () () () () () () () () ()	2 H 3 7 1 + II	29 F F + U	30427+0	30865+3	51114+0	31253+0	0 + 200 100	2101040		31421+0	51425+E	1427+	31428+0	314245	3143040	. 31430+01 . 31430+01	 	UNCATION ERROR 016-03 EPREST SHE
>	00000	21652-	6 US 4 6 - I	13041-	2 55 9 C-	48132-	88621-	16134-	29195-	52648-	94751-	17036-	3 05 74-	54816-	98089-	17495-	31026-	1002	91119-	150404	23055+	40000	4 6 6 6 7 7	500 500 500 500 500 500 500 500 500 500	763384	A 50 7 0 4	91237+	94927+	97108+	98369+	+98066	+53566	99715+	998414	0000	446666	9985+	+66666	+ 9665	+ 86666	+66666	+ 5 5 5 5	.100000+01		TPL 260 YPLUS

APPENDIX C

List of Symbols

a	transformation variable
A	Area, a/r^2 (dimensionless)
A+	Van Driest constant (26.0)
a _I , b _I	Schwartz-Christoffel parameters
= A	Block tridiagonal matrix (dimensionless)
=k A	Diagonal block matrix (dimensionless)
В	chord, b/r _r (dimensionless)
=k B	Left diagonal block matrix (dimensionless)
С	Speed of sound (ft/sec)
c _{fr}	Wall friction drag coefficient
c _p	Specific heat pressure $(ft^2/sec^2/deg\ R)$
C _p	Pressure drag coefficient
c_{V}	Specific heat volume $(ft^2/sec^2/deg R)$
$D_{\mathbf{Fr}}$	Friction drag
$D_{\mathtt{Pr}}$	Pressure drag
e _{ns}	Streamwise strain (1/sec)
Ens	Streamwise strain, $r_r e_{ns}/u_r$ (dimensionless)
e n¢	Tangential strain (1/sec)
$^{ extsf{E}}_{ extsf{n}_{oldsymbol{\phi}}}$	Tangential strain, $r_r e_{n\phi}/u_r$ (dimensionless)
f	force/span
F	Complex potential (s + in), body force

g_{B}	Gap between blades (ft)
G	Gap between blades, g_B/r_r (dimensionless)
h	Duct height
I	Entropy
m	Mass flow (slugs/sec)
М	Mass flow, $m/(N_B r_r^2 p_r^U r)$ (dimensionless)
М	Mach number, U/C (dimensionless)
O m	Mass flow/area (slugs/ft ² /sec)
m ⁺	Universal mass flow parameter, $m_w^0/(P_w^1U^*)$ (dimensionless)
O M	Mass flow/area, $^{\rm O}_{\rm r}/({\rm P_rU_r})$ (dimensionless)
n	Normal coordinate (dimensionless)
$N_{\overline{B}}$	Number of blades (dimensionless)
N _R	Reynolds number, $r_r^{\rho}r^{U}_r/\mu_r$ (dimensionless)
P	Pressure (1b/ft ²)
Po	Total pressure
$\mathtt{Pr}_{\mathbf{T}}$	Turbulent Prandtl number
Q	Heat flux, $q/(\rho_r U_r C_p T_r)$ (dimensionless)
^q n	Heat flux
r	Radial coordinate
R	Radius, r/r _r (dimensionless)
R	Gas constant $(ft^2/sec^2/deg R)$
s	Streamwise coordinate (dimensionless)

S	Streamwise coordinate, $s/(r_r V_r)$ (dimensionless)
St	Stanton number (dimensionless)
T	Temperature (deg R)
To	Total temperature
ט	Magnitude of velocity or velocity component
\mathtt{v}_{ϕ}	Tangential velocity
v ⁺	Universal velocity, U/U* (dimensionless)
U *	Friction velocity, $\sqrt{\tau\rho}/U_{r}$ (dimensionless)
v	Potential flow velocity (1/V metric scale coefficient)
W	Complex coordinates in duct plan $(r + iz)$
х, у	Distance along S and n coordinates
Y ⁺	Universal distance
z	Axial coordinate
Z	Axial distance, z/r_r (dimensionless)
α	Swirl angle to axis (deg)
Υ	Ratio of specific heats, $C_{\mathrm{p}}/C_{\mathrm{V}}$ (dimensionless)
Δ	Boundary layer thickness, δ/r_{r} (dimensionless)
Δ*	Displacement thickness, δ^*/r_r
_	(dimensionless)

в	Angle of streamline to axis (deg)
Θ	Temperature ratio, T/T_r (dimensionless)
Θ *	Momentum thickness, θ^*/T_r (dimensionless)
ì	$\sqrt{-1}$
I	Entropy, (I-I _n)/R (dimensionless)
κ	von Karman constant (0.41)
λ	Thermal conductivity (1b/sec/deg R)
μ	Viscosity (slugs/ft/sec)
π	3.14159
π	Pressure ratio, p/p_r (dimensionless)
ρ	Density (slugs/ft ³)
Р	Density ratio, $\rho/\rho_{\mathbf{r}}$ (dimensionless)
$\overset{\Sigma}{ ext{ns}}$	Streamwise stress, $T_{ns}/(\rho_r U_r^2)$ (dimensionless)
$\Sigma_{\mathbf{n}\phi}$	Tangential stress, $T_{n\phi}/(\rho_r U_r^2)$ (dimensionless)
^τ ns, ^τ nφ	Stress components
τ+	Stress, $\tau/\tau_{_{\mathbf{W}}}$ (dimensionless)
ф	Tangential coordinate (radians)
$^{\phi}{}_{ m B}$	Blade dissipation function
χ	Clauser constant (0.016) (dimensionless), or Transformation function, dn/dn (dimensionless)
Ψ	Stream function (dimensionless)

Matrix Operators	
T	Transpose
-1	Inverse
Superscripts	
ν	Iteration number
-	Mean or average quantity
Λ	Variables for blade force calculation
1	Deviation from mean quantity
Subscripts	
0	Stagnation conditions
1	Inlet conditions
2	Upstream of strut blade
3	Downstream of strut blade
A	Adiabatic
E	Effective turbulent
Н	Hub conditions
I	Incompressible conditions, singularity index
n	in the direction of the normal
r	Reference conditions, based on standard sea level atmosphere conditions for all thermodynamic quantities. The reference radius r_r is the inlet outer radius, and the velocity is the mean

inlet velocity

Subscripts (Cont'd) s in the streamwise direction T Tip conditions

W Wall conditions

 $_{\infty}$ Free Stream or edge of boundary layer

REFERENCES

- Egolf, T. A., O. L. Anderson, D. E. Edwards, and A. J. Landgrebe: Analysis for High Speed Propeller-Nacelle Aerodynamic Performance Prediction.
 Volume I: Theory and Initial Application.*
- Landgrebe, A. J.: The Wake Geometry of a Hovering Helicopter Rotor and Its Influence on Rotor Performance. Journal of the American Helicopter Society, Vol. 17, No. 4, October 1972. (Also preprint No. 620, 28th Annual National Forum of the American Helicopter Society, May 1972.)
- 3. Coles, D. E.: The Law of the Wake in the Turbulent Boundary Layer. J. Fluid Mech., Vol. 1, pp. 161-260 (1956).
- 4. Wislicenus, G. F.: Fluid Mechanics of Turbomachinery. McGraw-Hill Book Co., Inc., 1947.
- 5. Black, D. M.: Cascade Corrections to Isolated Airfoil Data. Internal Correspondence, Hamilton Standard, AR1401, October 8, 1974.
- Anderson, O. L.: User's Manual for a Finite-Difference Calculation of Turbulent Swirling Compressible Flow in Axisymmetric Ducts with Struts and Slot Cooled Walls-USAAMRDL-TR-74-50, May 1974.
- 7. Van Driest, E. R.: On Turbulence Flow Near a Wall. Journal of Aeronautical Sciences, Vol. 23, November 1956.
- 8. McDonald, H., and R. W. Fish: Practical Calculations of Transitional Boundary Layers. International Journal of Heat and Mass Transfer, Vol. 16, No. 9, pp. 1729-1744, 1973.
- 9. IMSL Library 2 Reference Manual, Edition 6 C. International Mathematical and Statistical Libraries, Inc., 1977.
- 10. Schlicting, H.: Boundary Layer Theory. 6th Edn. McGraw-Hill, New York (1968).
- 11. Mellor, G. L.: A Combined Theoretical and Empirical Method of Axial Compressor Cascade Prediction. Report No. 9, Contract NOO019-69-C-0520, Naval Air Systems Command, May 1970.

^{*}Date and NASA Contractor Report number to be filled in later.

REFERENCES (Cont'd.)

- 12. Bielawa, R. L.: Aeroelastic Analysis for Helicopter Rotor Blades with Time-Variable, Nonlinear Structural Twist and Multiple Structural Redundancy Mathematical Derivation and User's Manual, NASA CR-2638, October 1976.
- 13. Johnson, J. A. and R. O. Bullock: Aerodynamic Design of Axial Flow Compressors. NASA SP 36, 1965.

ORIGINAL PAGE IS OF POOR QUALITY

Figure 1. Flow Diagram of the Combined Propeller-Nacelle Analysis

Figure 2. Cylindrical and Cartesian Coordinate Systems for Propeller Geometry

Figure 3. Computer Wake Representation for One Blade of a Hovering Rotor, Classical and Generalized Distorted Wake Models

Figure 4. Modeling the Wake Rollup with Discrete Vortices

Figure 5. Generalized Wake Geometry Equations Containing Input Wake Constants

IOPT3 = 1 STRAIGHT ANNULAR DUCT

IOPT3 = 3 STRAIGHT WALL ANNULAR DIFFUSER

IOPT3 = 5 CURVED WALL DIFFUSER NO. 1

Figure 6. Preprogrammed Duct Wall Contours

Figure 7. Inlet FLow Distribution

Figure 8. Addition of Straight Annular Channel Inlet

Figure 9. Discontinuous Change in Wall Curvature

Figure 10. Extended Duct Section

Figure 11. Constructing the Inlet Flow

C-4

Figure 12. Flow Diagram of Subroutine GCWAKE

85-4-90-31

Figure 13. Flow Diagram of Subroutine PROP

Figure 14. Flow Diagram of Subroutine SOLVEL

Figure 15. Flow Diagram of Subroutine SOLVEN

Figure 16. Flow Chart for ALTMN

Figure 17. Iteration Procedure

Figure 18. Flow Chart for Subroutine COORST

85-4-90-37

AXIAL COORDINATE Z

Figure 19. Calculating Ducts with Slots

296

Figure 20. Flow Chart for Subroutine Flowin

Figure 21. Flow Chart for GBlade

Figure 22. Flow Chart for Subroutine GDuct

Figure 23. Locating Lifting Line in Steamline Coordinates

Figure 24. Flow Diagram for Subroutine SOLVI

National Aeronautics and Space Administration	Report Docum	entation Pag	ge	
1. Report No. NASA CR-4199	2. Government Acces	ssion No.	3. Recipient's Catal	og No.
4. Title and Subtitle An Analysis for High Speed Pro	nic	5. Report Date November 1988		
Performance Prediction Volume II—User's Manual		6. Performing Organization Code		
7. Author(s)			8. Performing Organ	nization Report No.
T. Alan Egolf, Olof L. Anderson, David E. Edwards, and Anton J. Landgrebe			None 10. Work Unit No.	(E-4399)
9. Performing Organization Name and Ad	dress		535-03-01	
United Technologies Research C Silver Lane		11. Contract or Grant No. NAS3-20961, NAS3-22142, and NAS3-22257		
East Hartford, Connecticut 061 2. Sponsoring Agency Name and Address		13. Type of Report and Period Covered Contractor Report Final		
National Aeronautics and Space Lewis Research Center Cleveland, Ohio 44135-3191		14. Sponsoring Agency Code		
5. Supplementary Notes		-		
A user's manual for the compute in "An Analysis for High Spee Application" is presented. The structure, input data requirement the internal program structure ar	d Propeller-Nacelle Aerod nanual describes the comp s and the program output	lynamic Performa outer program mo In addition, it p	unce Prediction. Volumede of operation required in the result of the user with	me I—Theory and rements, input documentation of
Volume I. Sample input data set the sample setups.				
7. Key Words (Suggested by Author(s))		18. Distribution Sta	atement	
Computer code High speed propeller Aerodynamic performance Propfan		Unclassified – Unlimited Subject Category 02		
9. Security Classif. (of this report)	20. Security Classif. (d	of this page)	21. No of pages	22. Price*
Unclassified		assified	308	A14