

Introduction to Networks

Table of Contents

- ➤ What's a Network?
- Local Area Network (LAN)
- Common Network Components
- Wide Area Network (WAN)

Table of Contents

- Network Topology
- Physical Network Topologies
 - Bus Topology
 - Star Topology
 - Ring Topology
 - Mesh Topology
 - Tree Topology
 - Hybrid Topology

A **network** is two or more computer systems linked together by some form of the transmission medium that enables them to share information

Provides services like:

- Access to shared files/folders
- Access to printers/scanners
- Email applications
- Database applications
- Web applications
- Voice over IP (VoIP)
- Multimedia conferencing

- **Performance** → Response time
- Data Sharing
- Backup
- Reliability \rightarrow No failures!
- Security → Keep data safe!
- Scalability → New systems can be added
- Software and hardware compatibility

A LAN is a **local** network

- Could be as small as two computers or large, with thousands of devices connected
- Usually restricted to spanning a particular geographic location

A company in a single building is considered as LAN

A company consisting of multiple buildings in the same area is considered as LAN

LAN's size and the distance a LAN can span is not restricted

But it's best to split a big LAN into smaller logical zones known as **workgroups** to make administration easier

3 LANs, each has its own workgroup

A LAN with 3 workgroups

- Node - A point or joint where a connection takes place
 - Can be a computer or device
- **Station** A node on a wireless network
 - PC
 Laptop
 Server
 Switch Smartphone
 etc.

Some examples of Node

- Host
- Requires IP Address
- Can be a client or server
- Workstation ———
- Powerful computer designed for technical or scientific applications
- Used by one person at a time

- Server

 A powerful computer used to store files and run programs centrally
- Client A device that makes request from a server
 - Web Server
- Application Server
- Proxy Server

- DNS Server

- Mail Server

- File Server

- Print Server
- Telephony Server

Common types of servers

- **Segment** - Refers to a specific physical region of a network
 - Typical usage is to describe the link between a computer and a switch
 - Another usage is to refer to a region of the network where all the nodes use the same type of transmission media

Backbone

A fast link between other segments of a network

Transmission Media

- A communication channel between nodes that carries the information from the sender to the receiver
- Data is transmitted through the electromagnetic signals

Cable Properties

Simplex

Half-duplex

Full-duplex

Wide Area Network (WAN)

Wide Area Network (WAN)

A **WAN** is a collection of computers and devices connected by a communications network over a wide geographic area

WANs are commonly connected either through the Internet or special arrangements made with phone companies or other service providers

The Internet is considered the largest WAN in the world

Network topology is the description of the arrangement of **nodes** and **connections** in a network

A **physical topology** details how devices are physically connected

Depends on:

- Office layout
- Troubleshooting techniques
- Cost of installation
- Type of cable used

Logical topology describes the way in which a network transmits information from network/computer to another

It's not the way the network looks or how it is laid out

Bus Topology

Ring Topology

Tree Topology

Star Topology

Mesh Topology

Hybrid Topology

Bus Topology:

Every node is connected in series along a linear path

If backbone fails entire network goes down

Decreased network performance

Not scalable

Star Topology:

Every node in the network is connected to one central switch

If central switch fails entire network goes down

Performance is up to central switch

Ring Topology:

Every node is connected to each other in a circular format.

- Vulnerable to failure
- The more devices added the more communication delay
- To make changes the network should be shut down

Mesh Topology:

A point-to-point connection where nodes are interconnected

Configuration is complex

Expensive

Tree (Hierarchy) Topology:

A network structure that is shaped like a tree with its many

branches

Hard to maintain

If root fails entire network goes down

Hybrid Topology:

A combination of two or more types of physical or logical network topologies working together within the same

THANKS!

Any questions?

You can find me at:

- @David Instructor
- david@clarusway.com

Open System
Interconnection (OSI)
Specifications

Table of Contents

- ► What is OSI Reference Model?
- Layers of OSI Model
- ▶ Data Encapsulation

What is OSI Reference Model?

What is OSI Reference Model?

The **OSI** provides a standard for different computer systems to be able to communicate with each other

Developed by ISO in 1984

What is OSI Reference Model?

- Human-computer interaction layer, where applications can access the network services

- Ensures that data is in a usable format and is where data encryption occurs
- Maintains connections and is responsible for controlling ports and sessions
- Transmits data using transmission protocols including TCP and UDP
- Decides which physical path the data will take
- Defines the format of the data on the network
- Transmits raw bit stream over the physical medium

Layers of the OSI Model

- Physical Layer
- Data Link Layer
- Network Layer
- Transport Layer
- Session Layer
- Presentation Layer
- Application Layer

Application Layer (Layer 7)

- Directly interacts with data from the user
- Software applications (web browsers, email clients, etc.)
 rely on the application layer to initiate communications

Presentation Layer (Layer 6)

- Primarily responsible for preparing data
- Translates, encrypts, and compresses data

Session Layer (Layer 5)

- Responsible for opening and closing communication between the two devices
- The time between when the communication is opened and closed is known as the <u>session</u>
- Synchronizes data transfer

Session of communication

Transport Layer (Layer 4)

- Responsible for end-to-end communication between the two devices
- Takes data (from upper layer) and breaks into <u>segments</u>
- Responsible for flow control and error control

Network Layer (Layer 3)

- Facilitates data transfer between two different networks
- Takes data segments (from upper layer) and breaks into packets

Data Link Layer (Layer 2)

- Facilitates data transfer between two devices on the same network
- Takes data packets (from upper layer) and breaks into frames
- Responsible for flow control and error control

Physical Layer (Layer 1)

Includes physical equipment

```
cables repeaters
modems
transceivers media converters hubs
etc.
```

Data is converted into bit streams

- For two nodes communicate they must use the same protocol
- Each layer (OSI or DoD) communicates with its equivalent layer on the other node via the lower layers of the model
- Each layer provides services for the layer above and uses the services of the layer below

THANKS!

Any questions?

You can find me at:

- @David Instructor
- david@clarusway.com

