SQL





# **Database Management Systems**

Database management systems (DBMS) are important, heavily used, and interesting!

A table is a collection of records, which are rows that have a value for each column

|                                     |          |           | ,           | - |                                       |
|-------------------------------------|----------|-----------|-------------|---|---------------------------------------|
| A <b>table</b> has columns and rows | Latitude | Longitude | Name        |   | A <b>column</b> has a name and a type |
| co cumis and rows                   | 38       | 122       | Berkeley    |   | Traine and a type                     |
| A row has a value for each column   | 42       | 71        | Cambridge   |   |                                       |
| Tor cach colamn                     | 45       | 93        | Minneapolis |   |                                       |
|                                     |          |           |             |   |                                       |

The Structured Query Language (SQL) is perhaps the most widely used programming language SQL is a *declarative* programming language

4

## **Declarative Programming**

### In declarative languages such as SQL & Prolog:

- •A "program" is a description of the desired result
- The interpreter figures out how to generate the result

#### In imperative languages such as Python & Scheme:

- A "program" is a description of computational processes
- The interpreter carries out execution/evaluation rules

#### Cities:

| latitude | longitude | name        |
|----------|-----------|-------------|
| 38       | 122       | Berkeley    |
| 42       | 71        | Cambridge   |
| 45       | 93        | Minneapolis |

| 2 1 | reate table cities as  |                   |                    |       |
|-----|------------------------|-------------------|--------------------|-------|
|     | select 38 as latitude, | 122 as longitude, | "Berkeley" as name | union |
|     | select 42,             | 71,               | "Cambridge"        | union |
|     | select 45,             | 93,               | "Minneapolis";     |       |
|     |                        |                   |                    |       |

| region     | name        |
|------------|-------------|
| west coast | Berkeley    |
| other      | Minneapolis |
| other      | Cambridge   |

```
select "west coast" as region, name from cities where longitude >= 115 union
select "other", name from cities where longitude < 115;</pre>
```

Structured Query Language (SQL)

### **SQL** Overview

The SQL language is an ANSI and ISO standard, but DBMS's implement custom variants

- A select statement creates a new table, either from scratch or by projecting a table
- •A create table statement gives a global name to a table
- ·Lots of other statements exist: analyze, delete, explain, insert, replace, update, etc.
- Most of the important action is in the select statement



Today's theme:

# Getting Started with SQL

Install sqlite (version 3.8.3 or later): http://sqlite.org/download.html

Use sqlite online: <a href="mailto:code.cs61a.org/sql">code.cs61a.org/sql</a>

8

## **Selecting Value Literals**

A select statement always includes a comma-separated list of column descriptions

A column description is an expression, optionally followed by as and a column name select [expression] as [name], [expression] as [name];

Selecting literals creates a one-row table

The union of two select statements is a table containing the rows of both of their results

```
select "delano" as parent, "herbert" as child;union
select "abraham"
                         . "barack"
                                              union
select "abraham"
                         . "clinton"
                                              union
select "fillmore"
                         , "abraham"
                                              union
select "fillmore"
                         , "delano"
                                              union
                         , "grover"
select "fillmore"
                                              union
select "eisenhower"
                         , "fillmore";
```



9

## Naming Tables

SQL is often used as an interactive language

The result of a **select** statement is displayed to the user, but not stored

A **create table** statement gives the result a name

create table [name] as [select statement];

#### create table parents as select "delano" as parent, "herbert" as child union union select "abraham" , "clinton" union select "fillmore" , "abraham" union select "fillmore" , "delano" union select "fillmore" , "grover" union select "eisenhower" , "fillmore";

#### Parents:

| parent     | child    |
|------------|----------|
| abraham    | barack   |
| abraham    | clinton  |
| delano     | herbert  |
| fillmore   | abraham  |
| fillmore   | delano   |
| fillmore   | grover   |
| eisenhower | fillmore |



### Select Statements Project Existing Tables

A **select** statement can specify an input table using a **from** clause

A subset of the rows of the input table can be selected using a where clause

An ordering over the remaining rows can be declared using an order by clause

Column descriptions determine how each input row is projected to a result row





# Arithmetic in Select Expressions

In a select expression, column names evaluate to row values

Arithmetic expressions can combine row values and constants

select chair, single + 2 \* couple as total from lift;

| chair | total |
|-------|-------|
| 101   | 6     |
| 102   | 6     |
| 103   | 6     |





### **Discussion Question**

Given the table **ints** that describes how to sum powers of 2 to form various integers

```
create table ints as
```

```
select "zero" as word, 0 as one, 0 as two, 0 as four, 0 as eight union
select "one"
                                                                  union
select "two"
                                                                  union
select "three"
                                                                  union
select "four"
                                                                  union
select "five"
                                                                  union
select "six"
                                                                  union
select "seven"
                                                                  union
select "eight"
                                                                  union
select "nine"
```

(A) Write a select statement for a two-column (B) Write a select statement for the table of the word and value for each integer word names of the powers of two

| word  | value |
|-------|-------|
| zero  | 0     |
| one   | 1     |
| two   | 2     |
| three | 3     |
| three | 3     |

(Demo)

| word  |
|-------|
| one   |
| two   |
| four  |
| eight |
|       |