Tutorial Sheet I

- Q1) Let w = (2 + i) z 2i. Find the triangle onto which the triangle with vertices $z_1 = -2 + i$, $z_2 = -2 + 2i$, $z_3 = 2 + i$ is mapped.
- Q2) Let w = f(z) = (3 + 4i) z 2 + i
- (a) Find the image of the disk |z-1| < 1
- (b) Find the image of the line x = t, y = 1 2t, for $-\infty < t < \infty$
- (c) Find the image of the half-plane Im(z) > 1
- Q3) Show that under the transformation $w = e^z$ a rectangular region $a \le x \le b$, $c \le y \le d$ is mapped into an angular region $e^a \le r \le e^b$, $c \le \theta \le d$. Draw the domain in the xy plane and the range in the r- θ plane. Hence find the image of the square $-1 \le x, y \le 1$.
- Q4) Sketch the region onto which the sector $r \le 1$, $0 \le \theta \le \pi/4$ is mapped by the transformation $w = z^2$
- Q5) Does $\lim_{z\to 0} \left(\frac{z}{z}\right)^2$ exists? If it exists find the limit or else show that the limit does not exist.
- Q6) Find the $\lim_{z\to\infty} \frac{4z^2}{(1-z)^2}$.
- Q7) Use the definition of derivatives to find the derivative of $f(z) = \frac{2z+1}{z-1}$.
- Q8) Express the function $f(z) = z^5 + z^{-5}$ in polar form $u(r, \theta) + i v(r, \theta)$. Hence deduce if f(z) is analytic or not.
- Q9) w = f(z) = u(x, y) + i v(x, y). If f(z) is analytic everywhere and $u(x, y) = e^x \cos y$, find v(x, y). Is w(u, v) a harmonic function?
- Q10) Show that $u(x, y) = 2x x^3 + 3xy^2$ is harmonic. Find its harmonic conjugate. Find a corresponding analytic function such that f(0) = 0.
- Q11) Is $\overline{\ln z} = \ln \overline{z}$?
- Q12) Under what condition is exp(iz) = exp(iz)?
- Q13) Show that the set of values of $\log(i^{1/2})$ is $\left(n + \frac{1}{4}\right)\pi i$ $(n = 0, \pm 1, \pm 2, \ldots)$ and that the same is

true of $(1/2) \log i$. But the set of values of $\log(i^2)$ is not the same as the set of values of $2 \log i$. Give an explanation for the difference.

- Q14) Recall that in the class we did that the general power of z = x + iy is given by $z^c = e^{c \ln z}$. Since $\ln z$ is a multiple valued function, z^c is also multivalued. The principle value of z^c is z^c . Use this to find the principle value of z^c is z^c . Use this to find the principle value of z^c is z^c .
- Q15) Find the Maclaurin series expansion of the function $f(z) = \frac{z}{z^4 + 16}$.
- Q16) Show that when 0 < |z| < 4, $\frac{1}{4z z^2} = \frac{1}{4z} + \sum_{n=0}^{\infty} \frac{z^n}{4^{n+2}}$