Target case study

Target is one of the world's most recognized brands and one of America's leading retailers. Target makes itself a preferred shopping destination by offering outstanding value, inspiration, innovation and an exceptional guest experience that no other retailer can deliver.

This business case has information of 100k orders from 2016 to 2018 made at Target in Brazil. Its features allow viewing an order from multiple dimensions: from order status, price, payment and freight performance to customer location, product attributes and finally reviews written by customers.

1. Exploratory Analysis

(a) . Customer Data Analysis Query:

```
select *
from `target_sql.customers`
limit 10
```

Row /	customer_id	customer_unique_id	customer_zip_code_prefix	customer_city	customer_state
1	0735e7e4298a2ebbb46649346	fcb003b1bdc0df64b4d065d9b	59650	acu	RN
2	903b3d86e3990db01619a4ebe	46824822b15da44e983b021d	59650	acu	RN
3	38c97666e962d4fea7fd6a83e	b6108acc674ae5c99e29adc10	59650	acu	RN
4	77c2f46cf580f4874c9a5751c2	402cce5c0509000eed9e77fec	63430	ico	CE
5	4d3ef4cfffb8ad4767c199c36a	6ba00666ab7eada5ceec279b2	63430	ico	CE
6	3000841b86e1fbe9493b52324	796a0b1a21f597704057184a1	63430	ico	CE
7	3c325415ccc7e622c66dec4bc	05d1d2d9f0161c5f397ce7fc77	63430	ico	CE
8	04f3a7b250e3be964f01bf22bc	c34585a0276ecc5e4fb03de75	63430	ico	CE
9	894202b8ef01f4719a4691e79	01a4fe5fc00bbdb0b0a4af5a53	63430	ico	CE
10	9d715b9fb75a9d081c14126c0	8f399f3b7ace8e6245422c9e1f	63430	ico	CE

(b) Time period of Data

Query:

```
select min(order_purchase_timestamp) first_order_purchased,
max(order_purchase_timestamp) last_order_purchased
from _\target_sql.orders\target_
limit 10
```

Query Results:

Row	first_order_purchased	last_order_purchased	
1	2016-09-04 21:15:19 UTC	2018-10-17 17:30:18 UTC	

From above, it is clear that data is collected from year September-2016 to October-2018

(c) Cities and States of customers ordered during the given period.

Query:

```
select distinct customer_state, customer_city,
from <u>`target_sql.customers`</u>
limit 10
```

Row /	customer_state	customer_city //
1	RN	acu
2	CE	ico
3	RS	ipe
4	CE	ipu
5	SC	ita
6	SP	itu
7	SP	jau
8	MG	luz
9	SP	poa
10	MG	uba

2. In-depth Exploration

(a) Trend on e-commerce in Brazil

Query:

```
select
extract(year from order_purchase_timestamp) as year,
extract (month from order_purchase_timestamp) as month,
count(order_id) orders_count
from <u>`target_sql.orders`</u>
group by 1,2
order by 1,2,3
```

Query Result:

Row	year //	month	orders_count
1	2016	9	4
2	2016	10	324
3	2016	12	1
4	2017	1	800
5	2017	2	1780
6	2017	3	2682
7	2017	4	2404
8	2017	5	3700
9	2017	6	3245
10	2017	7	4026
11	2017	8	4331
12	2017	9	4285
13	2017	10	4631
14	2017	11	7544

It is noticed that there is significant increase in orders count from year 2016 to 2018, which shows that there is a growth in trend of e-commerce in Brazil.

(b) What time do Brazilian customers tend to buy (Dawn, Morning, Afternoon or Night)?

Query:

```
select
case
when shopping_hours >= 0 and shopping_hours < 6 then 'dawn'
when shopping_hours >= 6 and shopping_hours < 12 then 'morning'
when shopping_hours >= 12 and shopping_hours < 18 then 'afternoon'
when shopping_hours >= 18 and shopping_hours < 23 then 'night'
end as timing, count(order_id) as orders_count
from
(select order_id,
extract(hour from order_purchase_timestamp) as shopping_hours
from __target_sql.orders_) t1
group by timing
order by orders_count</pre>
```

Query Result:

Row /	timing	1.	orders_count //
1	null		4123
2	dawn		4740
3	morning		22240
4	night		29977
5	afternoon		38361

It is clear from above that people in Brazil tend to shop more frequently in the afternoon, as the highest count of orders are in the afternoon with 38,361 orders.

3. Evolution of E-commerce orders in the Brazil region

(i) Month on Month orders by States Query:

```
select month, customer_state, count(order_id) orders_count
from
(select c.customer_state,o.order_id,
extract(month from order_purchase_timestamp) as month,
from <u>`target_sql.customers`</u> c inner join <u>`target_sql.orders`</u> o
on c.customer_id = o.customer_id) t1
group by 1,2
order by 1,2
limit 10
```

Row /	month /	customer_state	orders_count //
1	1	AC	8
2	1	AL	39
3	1	AM	12
4	1	AP	11
5	1	BA	264
6	1	CE	99
7	1	DF	151
8	1	ES	159
9	1	GO	164
10	1	MA	66

(ii) Distribution of customers across the states in Brazil

Query:

```
select customer_state, No_of_customers
from
(select c.customer_state,
count(o.order_id) No_of_customers
from _\target_sql.customers_\target_sql.orders_\target_\target_\target_\target_\target_\target_\target_\target_\target_\target_\target_\target_\target_\target_\target_\target_\target_\target_\target_\target_\target_\target_\target_\target_\target_\target_\target_\target_\target_\target_\target_\target_\target_\target_\target_\target_\target_\target_\target_\target_\target_\target_\target_\target_\target_\target_\target_\target_\target_\target_\target_\target_\target_\target_\target_\target_\target_\target_\target_\target_\target_\target_\target_\target_\target_\target_\target_\target_\target_\target_\target_\target_\target_\target_\target_\target_\target_\target_\target_\target_\target_\target_\target_\target_\target_\target_\target_\target_\target_\target_\target_\target_\target_\target_\target_\target_\target_\target_\target_\target_\target_\target_\target_\target_\target_\target_\target_\target_\target_\target_\target_\target_\target_\target_\target_\target_\target_\target_\target_\target_\target_\target_\target_\target_\target_\target_\target_\target_\target_\target_\target_\target_\target_\target_\target_\target_\target_\target_\target_\target_\target_\target_\target_\target_\target_\target_\target_\target_\target_\target_\target_\target_\target_\target_\target_\target_\target_\target_\target_\target_\target_\target_\target_\target_\target_\target_\target_\target_\target_\target_\target_\target_\target_\target_\target_\target_\target_\target_\target_\target_\target_\target_\target_\target_\target_\target_\target_\target_\target_\target_\target_\target_\target_\target_\target_\target_\target_\target_\target_\target_\target_\target_\target_\target_\target_\target_\target_\target_\target_\target_\target_\target_\target_\target_\target_\target_\target_\target_\target_\target_\target_\target_\target_\target_\target_\target_\target_\target_\target_\target_\target_\target_\target_\target_\target_\target_\t
```

Row /	customer_state	h	No_of_customer
1	AC		81
2	AL		413
3	AM		148
4	AP		68
5	BA		3380
6	CE		1336
7	DF		2140
8	ES		2033
9	GO		2020
10	MA		747

4. Mean & Sum of price and freight value by customer state

Query:

```
select c.customer_state,
round(avg(price),2) as mean_price,
round(sum(price),2) as sum_price,
round(avg(freight_value),2) as mean_freight_value,
round(sum(freight_value),2) as sum_freight_value
from __target_sql.order_items__i inner join __target_sql.orders__i o
on i.order_id = o.order_id
inner join __target_sql.customers__i c
on o.customer_id = c.customer_id
group by c.customer_state
order by mean_price desc , mean_freight_value
limit 10
```

Row /	customer_state	mean_price	sum_price	mean_freight_value	sum_freight_value
1	PB	191.48	115268.08	42.72	25719.73
2	AL	180.89	80314.81	35.84	15914.59
3	AC	173.73	15982.95	40.07	3686.75
4	RO	165.97	46140.64	41.07	11417.38
5	PA	165.69	178947.81	35.83	38699.3
6	AP	164.32	13474.3	34.01	2788.5
7	PI	160.36	86914.08	39.15	21218.2
8	TO	157.53	49621.74	37.25	11732.68
9	RN	156.97	83034.98	35.65	18860.1
10	CE	153.76	227254.71	32.71	48351.59

5. Analysis on sales, freight and delivery time

(a) Days between purchasing, delivering and estimated delivery.

Query:

```
select extract(year from order_purchase_timestamp) as year,
date_diff(order_delivered_carrier_date,order_purchase_timestamp,day) as d1,
date_diff(order_estimated_delivery_date,order_delivered_carrier_date,day) as d2,
date_diff(order_estimated_delivery_date,order_purchase_timestamp,day) as d3
from `target_sql.orders`
```

Row	year //	d1 //	d2 //	d3 //
1	2017	9	41	50
2	2018	2	3	6
3	2017	6	37	44
4	2016	22	31	54
5	2016	33	23	56
6	2016	18	35	54
7	2016	39	16	56
8	2018	1	40	41
9	2018	1	2	3
10	2018	0	2	3

- d1 Days between order delivered carrier date and order purchase time stamp.
- d2 Days between order estimated delivery date and order delivered carrier.
- d3 Days between order estimated delivery date and order purchase time stamp.

(b) Average days between purchasing, delivering and estimated delivery.

Query:

```
select year,
round(avg(d1),2) as A,
round(avg(d2),2) as B,
round(avg(d3),2) as C
from(select extract(year from order_purchase_timestamp) as year,
date_diff(order_delivered_carrier_date,order_purchase_timestamp,day) as d1,
date_diff(order_estimated_delivery_date,order_delivered_carrier_date,day) as d2,
date_diff(order_estimated_delivery_date,order_purchase_timestamp,day) as d3
from __target_sql.orders__) as t1
group by t1.year
order by year
```

Query Results:

Row /	year //	Α //	В //	C /
1	2016	13.75	40.78	54.55
2	2017	2.95	20.93	24.35
3	2018	2.52	19.45	22.42

Here we have the average no. of days in given years.

- A Average days between order delivered carrier date and order purchase time stamp.
- B Average days between order estimated delivery date and order delivered carrier.
- C Average days between order estimated delivery date and order purchase time stamp.

(c) Time to delivery & diff estimated delivery.

Query:

```
select order_id,
date_diff(order_delivered_customer_date,order_purchase_timestamp,hour) as time_to_delivery,
date_diff(order_estimated_delivery_date,order_delivered_customer_date,hour) as diff_estimated_delivery
from _`target_sql.orders`
```

Row	order_id //	time_to_delivery	diff_estimated_delivery
1	770d331c84e5b214bd9dc70a1	168	1088
2	1950d777989f6a877539f5379	722	-310
3	2c45c33d2f9cb8ff8b1c86cc28	743	681
4	dabf2b0e35b423f94618bf965f	181	1065
5	8beb59392e21af5eb9547ae1a	262	989
6	65d1e226dfaeb8cdc42f66542	853	397
7	c158e9806f85a33877bdfd4f60	565	228
8	b60b53ad0bb7dacacf2989fe2	311	-133
9	c830f223aae08493ebecb52f2	309	298
10	a8aa2cd070eeac7e4368cae3d	173	24

(d) Group data by state, take mean of freight value, time to delivery, diff estimated delivery.

Query:

```
select c.customer_state,
round(avg(freight_value),2) mean_freight_value,
round(avg(date_diff(order_delivered_customer_date,order_purchase_timestamp,day)),2) as time_to_delivery,
round(avg(date_diff(order_estimated_delivery_date,order_delivered_customer_date,day)),2) as diff_estimated_delivery
from __target_sql.orders__o inner join __target_sql.customers__c
on o.customer_id = c.customer_id
inner join __target_sql.order_items__oi
on o.order_id = oi.order_id
group by customer_state
limit 10
```

Row /	customer_state	mean_freight_value	time_to_delivery	diff_estimated_delivery
1	MT	28.17	17.51	13.64
2	MA	38.26	21.2	9.11
3	AL	35.84	23.99	7.98
4	SP	15.15	8.26	10.27
5	MG	20.63	11.52	12.4
6	PE	32.92	17.79	12.55
7	RJ	20.96	14.69	11.14
8	DF	21.04	12.5	11.27
9	RS	21.74	14.71	13.2
10	SE	36.65	20.98	9.17

(e) Sorting Data

> States with highest freight value Query:

```
select c.customer_state,
round(avg(freight_value),2) mean_freight_value
from `target_sql.orders` o inner join `target_sql.customers` c
on o.customer_id = c.customer_id
inner join `target_sql.order_items` oi
on o.order_id = oi.order_id
group by customer_state
order by mean_freight_value desc
limit 10
```

Row /	customer_state	mean_freight_va
1	RR	42.98
2	PB	42.72
3	RO	41.07
4	AC	40.07
5	PI	39.15
6	MA	38.26
7	TO	37.25
8	SE	36.65
9	AL	35.84
10	PA	35.83

> States with lowest freight values Query:

```
select c.customer_state,
round(avg(date_diff(order_delivered_customer_date,order_purchase_timestamp,day)),2) as time_to_delivery
from `target_sql.orders` o inner join `target_sql.customers` c
on o.customer_id = c.customer_id
inner join `target_sql.order_items` oi
on o.order_id = oi.order_id
group by customer_state
order by time_to_delivery asc
limit 10
```

Row /	customer_state	11	mean_freight_value
1	SP		15.15
2	PR		20.53
3	MG		20.63
4	RJ		20.96
5	DF		21.04
6	SC		21.47
7	RS		21.74
8	ES		22.06
9	GO		22.77
10	MS		23.37

> States with the lowest average time to delivery.

Query:

```
select c.customer_state,
round(avg(date_diff(order_delivered_customer_date,order_purchase_timestamp,day)),2) as time_to_delivery
from `target_sql.orders` o inner join `target_sql.customers` c
on o.customer_id = c.customer_id
inner join `target_sql.order_items` oi
on o.order_id = oi.order_id
group by customer_state
order by time_to_delivery asc
limit 10
```

Row /	customer_state	time_to_delivery
1	SP	8.26
2	PR	11.48
3	MG	11.52
4	DF	12.5
5	SC	14.52
6	RJ	14.69
7	RS	14.71
8	GO	14.95
9	MS	15.11
10	ES	15.19

> States with the highest time to delivery.

Query:

```
select c.customer_state,
round(avg(date_diff(order_delivered_customer_date,order_purchase_timestamp,day)),2) as time_to_delivery
from `target_sql.orders` o inner join `target_sql.customers` c
on o.customer_id = c.customer_id
inner join `target_sql.order_items` oi
on o.order_id = oi.order_id
group by customer_state
order by time_to_delivery desc
limit 10
```

Row /	customer_state	time_to_delivery
1	RR	27.83
2	AP	27.75
3	AM	25.96
4	AL	23.99
5	PA	23.3
6	MA	21.2
7	SE	20.98
8	CE	20.54
9	AC	20.33
10	PB	20.12

> States with faster delivery as compared to estimated date. Query:

```
select customer_state
from
(select c.customer_state,
round(avg(date_diff(order_delivered_customer_date,order_purchase_timestamp,day)),2) as time_to_delivery,
round(avg(date_diff(order_estimated_delivery_date,order_delivered_customer_date,day)),2) as diff_estimated_delivery
from __target_sql.orders__o inner join __target_sql.customers__c
on o.customer_id = c.customer_id
inner join __target_sql.order_items__oi
on o.order_id = oi.order_id
group by customer_state) t1
where time_to_delivery < diff_estimated_delivery
order by time_to_delivery desc
limit 5</pre>
```

Row /	customer_state	le
1	MG	
2	PR	
3	SP	

> States with slower delivery as compared to estimated date. Query:

```
select customer_state
from
(select c.customer_state,
round(avg(date_diff(order_delivered_customer_date,order_purchase_timestamp,day)),2) as time_to_delivery,
round(avg(date_diff(order_estimated_delivery_date,order_delivered_customer_date,day)),2) as diff_estimated_delivery
from `target_sql.orders` o inner join `target_sql.customers` c
on o.customer_id = c.customer_id
inner join `target_sql.order_items` oi
on o.order_id = oi.order_id
group by customer_state) t1
where time_to_delivery > diff_estimated_delivery
order by time_to_delivery desc
limit 5
```

Row	customer_state	le .
1	RR	
2	AP	
3	AM	
4	AL	
5	PA	

6. Payment type analysis.

(a) Month over Month count of orders for different payment types.

Query:

```
select payment_type, month, count(order_id) as order_count
from
(select p.payment_type, p.order_id,
extract(month from order_purchase_timestamp) as month,
from `target_sql.payments` p inner join `target_sql.orders` o
on p.order_id = o.order_id) t1
group by 1,2
order by 1,2
limit 10
```

Row /	payment_type	month /	order_count //
1	UPI	1	1715
2	UPI	2	1723
3	UPI	3	1942
4	UPI	4	1783
5	UPI	5	2035
6	UPI	6	1807
7	UPI	7	2074
8	UPI	8	2077
9	UPI	9	903
10	UPI	10	1056

(b) Count of orders based on no. of payment installments.

Query:

```
select payment_installments, count(order_id) as orders_count
from `target_sql.payments`
group by payment_installments
limit 10
```

Row /	payment_installments	orders_count
1	0	2
2	1	52546
3	2	12413
4	3	10461
5	4	7098
6	5	5239
7	6	3920
8	7	1626
9	8	4268
10	9	644