Thème 2 – Distributions de charges & loi de Coulomb

I- Électrisation d'une tige de verre

1- SiO₂: $M = 60.1 \text{ g.mol}^{-1} \text{ et } Z_{tot} = 30 \text{ e}^{-}$.

Quantité de matière de SiO2 dans la tige :

$$n = \frac{m}{M} = \frac{N(\text{SiO}_2)}{\mathcal{N}_A} = \frac{N(e^-)/Z_{tot}}{\mathcal{N}_A}$$

Charge totale des électrons dans la tige :

$$Q(e^{-}) = N(e^{-}) \times (-e) = \frac{Z_{tot} m \mathcal{N}_{A}}{M} \times (-e) = \frac{30 \times (5,0 \times 10^{-3}) \times (6,0 \times 10^{23})}{60,1 \times 10^{-3}} \times (-1,6 \times 10^{-19}) = -2,4 \times 10^{5} \text{ C}$$

2- La tige est initialement électriquement neutre : après avoir arraché des électrons, elle s'est donc chargée positivement.

La charge électronique arrachée est égale à $10^{-12}\% \times Q(e^-) = -2.4 \times 10^{-9} \text{ C}$, donc la tige porte une charge de +2.4 nC.

II- Charge dans un cylindre

1-a- $C.m^{-3}$.

1-b- Distribution uniforme, donc $Q_0 = \rho_0 V_{cvl} = \rho_0 \pi R^2 h$.

 $2-a-C.m^{-2}$.

2b- Distribution non uniforme, donc $Q = \iiint_{cyl} \rho dV = \int_0^R \frac{k}{r} r dr \int_0^{2\pi} d\theta \int_0^h dz = 2\pi kRh$.

III- Un modèle atomique

 $1- C.m^3$.

2-
$$Q = \int_{a}^{+\infty} \frac{K}{r^6} 4\pi r^2 dr = 4\pi K \left[-\frac{1}{3} \frac{1}{r^3} \right]_{a}^{+\infty} = \frac{4\pi K}{3a^3}$$
.

3-
$$Q = -Ze$$
 soit $K = \frac{-3Zea^3}{4\pi} < 0$.

IV- Équilibre d'une charge dans le champ de deux autres

1- Q/2n car les deux boules sont identiques.

2- Les forces exercées par les deux boules fixes s'écrivent :

$$\vec{F}_{O/M} = \frac{q_O q_M}{4\pi \varepsilon_0 x^2} \vec{u}_{O/M} = \frac{Q^2 / 2n}{4\pi \varepsilon_0 x^2} \vec{u}_x$$

$$\vec{F}_{A/M} = \frac{q_A q_M}{4\pi \varepsilon_0 (\ell - x)^2} \vec{u}_{A/M} = \frac{(Q/2n)^2}{4\pi \varepsilon_0 (\ell - x)^2} (-\vec{u}_x)$$

À l'équilibre, on a $\vec{F}_{O/M} + \vec{F}_{A/M} = \vec{0}$, ce qui conduit à : $2n(\ell - x_e)^2 = x_e^2$. La position d'équilibre est nécessairement entre les deux boules fixes situées en O et A, donc $0 < x_e < \ell$. On en déduit que

$$x_e = \frac{\sqrt{2n}}{1 + \sqrt{2n}} \ell .$$

V- Force de Coulomb (1)

Les quatre charges situées dans le plan $(O, \vec{u}_x, \vec{u}_y)$ sont à égale distance a du point O.

Par raison de symétrie, les composantes selon \vec{u}_x des forces $\vec{F}_{A/F}$ et $\vec{F}_{C/F}$ se compensent. De même, les composantes selon \vec{u}_y des forces $\vec{F}_{B/F}$ et $\vec{F}_{D/F}$ se compensent. Pour s'en convaincre, exprimer par exemple les forces $\vec{F}_{B/F}$ et $\vec{F}_{D/F}$:

$$\vec{F}_{B/F} = \frac{1}{4\pi\varepsilon_0} \frac{qQ}{a^2 + b^2} \vec{u}_{B/F} = \frac{1}{4\pi\varepsilon_0} \frac{qQ}{a^2 + b^2} (\cos\alpha \vec{u}_z - \sin\alpha \vec{u}_y)$$

$$\vec{F}_{D/F} = \frac{1}{4\pi\varepsilon_0} \frac{qQ}{a^2 + b^2} \vec{u}_{D/F} = \frac{1}{4\pi\varepsilon_0} \frac{qQ}{a^2 + b^2} (\cos\alpha \vec{u}_z + \sin\alpha \vec{u}_y)$$

La force résultante est donc orientée selon \vec{u}_z . Comme les composantes selon \vec{u}_z de ces quatre forces sont égales, on peut écrire que : $\vec{F} = 4 \times F_{A/F,z} \vec{u}_z = 4 \times \frac{1}{4\pi\varepsilon_0} \frac{qQ}{a^2 + b^2} \cos\alpha\vec{u}_z$.

Avec $\cos \alpha = \frac{b}{\sqrt{a^2 + b^2}}$, on obtient finalement :

$$\vec{F} = \frac{qQ}{\pi \varepsilon_0} \frac{b}{(a^2 + b^2)^{3/2}} \vec{u}_z$$

Application numérique : $\vec{F} = 1,7\vec{u}_z$ (N).

VI- Force de Coulomb (2)

$$\begin{split} \vec{F}_{A/C} &= \frac{1}{4\pi\varepsilon_0} \frac{q^2}{2a^2} \vec{u}_{A/C} = \frac{1}{4\pi\varepsilon_0} \frac{q^2}{2a^2} (\cos\alpha \vec{u}_x + \sin\alpha \vec{u}_y) \\ \vec{F}_{B/C} &= \frac{1}{4\pi\varepsilon_0} \frac{-q^2}{a^2} \vec{u}_{B/C} = \frac{1}{4\pi\varepsilon_0} \frac{-q^2}{a^2} \vec{u}_y \\ \vec{F}_{D/C} &= \frac{1}{4\pi\varepsilon_0} \frac{-q^2}{a^2} \vec{u}_{D/C} = \frac{1}{4\pi\varepsilon_0} \frac{-q^2}{a^2} \vec{u}_x \end{split}$$

 \vec{u}_y α A(q) \vec{u}_x B(-q)

La force totale s'écrit donc avec $\alpha = \pi/4$:

$$\vec{F} = \frac{1}{4\pi\varepsilon_0} \frac{q^2}{a^2} \left[\left(\frac{\cos\alpha}{2} - 1 \right) \vec{u}_x + \left(\frac{\sin\alpha}{2} - 1 \right) \vec{u}_y \right] = \frac{1}{4\pi\varepsilon_0} \frac{q^2}{a^2} \left(\frac{1}{2\sqrt{2}} - 1 \right) (\vec{u}_x + \vec{u}_y)$$

Application numérique : $\|\vec{F}\| = 1,2 \times 10^2 \text{ N}$.