

第三爷递矩阵与矩阵的初等变换

本节课主要内容:

- 一、逆矩阵的定义
- 二、可逆矩阵的运算性质

概念的引入:

1、数 在数的运算中, 当数 $a \neq 0$ 时, 有

$$ab = ba = 1$$
, $y = \frac{1}{a}$ 称为 a 的倒数(或称为 a 的逆);也可记为 $b = a^{-1}$

2、矩阵 在矩阵的运算中,单位阵 E相当于数的乘法运算中的1,那么,对于矩阵 A,如果存在一个矩阵 B,有 AB = BA = E,

则矩阵B 称为A的逆矩阵, A 称为可逆矩阵.

定义2.3.1 对矩阵A,若存在矩阵B,使得

$$AB = BA = E$$

则称矩阵A是可逆的,且矩阵B称为A的逆矩阵,

记作 $B = A^{-1}$

例: 设
$$A = \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}, B = \begin{pmatrix} \frac{1}{2} & \frac{1}{2} \\ -\frac{1}{2} & \frac{1}{2} \end{pmatrix},$$

$$\therefore AB = BA = E,$$

:. B是A的一个逆矩阵.

1. 若A是可逆矩阵,则A必为方阵。

证明: 设 B_{sxt} 是 A_{mxn} 的逆矩阵,则

$$(A B)_{m \times t} = (B A)_{s \times n} = E$$

$$\therefore n = s, t = m \qquad m = s, t = n \qquad \therefore m = n = s = t$$

2. 若A是可逆矩阵,则A的逆矩阵是唯一的.

证明: 设B、C都是A的逆矩阵,则

$$AB = BA = E$$
, $AC = CA = E$

从而
$$B = EB = (CA)B = C(AB) = CE = C$$

判别矩阵可逆的方法:

方法一: 用定义进行判断

方法二:

设A、B为同阶方阵,若AB = E,则方阵A和B都可逆, 且 $A^{-1} = B$, $B^{-1} = A$

注:

判断B是否为A的逆矩阵,只需验证 $AB = E \pi BA = E$ 中的一个即可。

逆矩阵的求法一: 定义法

例:
$$\partial A = \begin{pmatrix} 2 & 1 \\ -1 & 0 \end{pmatrix}$$
, 求 A 的逆矩阵.

$$\mathbf{P}$$
: 设 $\mathbf{B} = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ 是 \mathbf{A} 的逆矩阵,

$$\text{II} \qquad AB = \begin{pmatrix} 2 & 1 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \Rightarrow \begin{pmatrix} 2a+c & 2b+d \\ -a & -b \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

$$\Rightarrow \begin{cases} 2a+c=1, \\ 2b+d=0, \\ -a=0, \\ -b=1, \end{cases} \Rightarrow \begin{cases} a=0, \\ b=-1, \\ c=1, \\ d=2. \end{cases}$$

又因为

$$AB$$
 BA (2 1)(0 -1) (0 -1)(2

$$\begin{pmatrix} 2 & 1 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} 0 & -1 \\ 1 & 2 \end{pmatrix} = \begin{pmatrix} 0 & -1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} 2 & 1 \\ -1 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix},$$

所以
$$A^{-1} = \begin{pmatrix} 0 & -1 \\ 1 & 2 \end{pmatrix}.$$

二、可逆矩阵的运算性质

性质1 若A可逆,则 A^{-1} 亦可逆,且 $\left(A^{-1}\right)^{-1}=A$.

性质2 若A可逆,数 $\lambda \neq 0$,则 λA 可逆,且

$$(\lambda A)^{-1} = \frac{1}{\lambda} A^{-1}.$$

性质3 若A,B为同阶方阵且均可逆,则AB亦可逆,且

$$(AB)^{-1} = B^{-1}A^{-1}$$

证明:
$$(AB)(B^{-1}A^{-1}) = A(BB^{-1})A^{-1} = AEA^{-1} = AA^{-1} = E,$$

$$\therefore (AB)^{-1} = B^{-1}A^{-1}.$$

推广
$$(A_1 A_2 \cdots A_m)^{-1} = A_m^{-1} \cdot A_2^{-1} A_1^{-1}$$

$$(A+B)$$
 可逆

例如:

$$A = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \quad B = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \quad C = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}$$

$$A,B$$
可逆,但 $A+B=\begin{pmatrix} 2 & 0 \\ 0 & 0 \end{pmatrix}$ 不可逆

$$A, C$$
可逆, $A + C = \begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix}$ 可逆,但 $A^{-1} + C^{-1} \neq (A + C)^{-1}$

例

设方程A满足 $A^2 - 5A + 6E = 0$,证明: A + 7E可逆, 并求 $(A + 7E)^{-1}$.

证明: 由
$$A^2 - 5A + 6E = 0$$
, 得
$$A^2 - 5A + 7 \times (-12)E = -90E$$
,
$$(A + 7E)[-\frac{1}{90}(A - 12E)] = E$$
, 故 $A + 7E$ 可逆,
$$(A + 7E)^{-1} = -\frac{1}{90}(A - 12E)$$

	/_		. 1
尹以	4	力	不干

唯一解

A可逆

AX = B

 $X = A^{-1}B$

A可逆

XA = B

 $X = BA^{-1}$

$$AXB = C$$

$$A \setminus B$$
都可逆 $AXB = C$ $X = A^{-1}CB^{-1}$

小结

逆矩阵的定义

对矩阵 A ,若存在矩阵 B ,使得 AB = BA = E 则称矩阵 A 是可逆的,且矩阵 B 称为 A 的逆矩阵,记作 $B = A^{-1}$

- 说明 1. 若A是可逆矩阵,则 A必为方阵.
 - 2. 若A是可逆矩阵,则A的逆矩阵是唯一的.

判别矩阵可逆的方法:

方法一: 用定义进行判断

方法二:

设A、B为同阶方阵,若AB = E,则方阵A n B都可逆,

且
$$A^{-1} = B$$
, $B^{-1} = A$

注:

判断B是否为A的逆矩阵,只需验证AB = E和BA = E中的一个即可。

可逆矩阵的运算性质

性质1 若A可逆,则 A^{-1} 亦可逆,且 $\left(A^{-1}\right)^{-1}=A$.

性质2 若A可逆,数 $\lambda \neq 0$,则 λA 可逆,且 $(\lambda A)^{-1} = \frac{1}{\lambda}A^{-1}$

性质3 若A,B为同阶方阵且均可逆,则AB亦可逆,且

推广
$$(A_1 A_2 \cdots A_m)^{-1} = A_m^{-1} \cdot A_2^{-1} A_1^{-1}$$
.