Gradient descent revisited

Geoff Gordon & Ryan Tibshirani Optimization 10-725 / 36-725

Gradient descent

Recall that we have $f: \mathbb{R}^n \to \mathbb{R}$, convex and differentiable, want to solve

$$\min_{x \in \mathbb{R}^n} f(x),$$

i.e., find x^* such that $f(x^*) = \min f(x)$

Gradient descent: choose initial $x^{(0)} \in \mathbb{R}^n$, repeat:

$$x^{(k)} = x^{(k-1)} - t_k \cdot \nabla f(x^{(k-1)}), \quad k = 1, 2, 3, \dots$$

Stop at some point

Interpretation

At each iteration, consider the expansion

$$f(y) \approx f(x) + \nabla f(x)^{T} (y - x) + \frac{1}{2t} ||y - x||^{2}$$

Quadratic approximation, replacing usual $\nabla^2 f(x)$ by $\frac{1}{t}I$

$$f(x) + \nabla f(x)^T (y-x) \qquad \qquad \text{linear approximation to } f$$

$$\frac{1}{2t} \|y-x\|^2 \qquad \qquad \text{proximity term to } x \text{, with weight } 1/(2t)$$

Choose next point $y=x^+$ to minimize quadratic approximation

$$x^+ = x - t\nabla f(x)$$

Blue point is x, red point is x^+

Outline

Today:

- How to choose step size t_k
- Convergence under Lipschitz gradient
- Convergence under strong convexity
- Forward stagewise regression, boosting

Fixed step size

Simply take $t_k=t$ for all $k=1,2,3,\ldots$, can diverge if t is too big. Consider $f(x)=(10x_1^2+x_2^2)/2$, gradient descent after 8 steps:

Can be slow if t is too small. Same example, gradient descent after 100 steps:

Same example, gradient descent after 40 appropriately sized steps:

This porridge is too hot! – too cold! – juuussst right. Convergence analysis later will give us a better idea

Backtracking line search

A way to adaptively choose the step size

- First fix a parameter $0 < \beta < 1$
- Then at each iteration, start with t = 1, and while

$$f(x - t\nabla f(x)) > f(x) - \frac{t}{2} ||\nabla f(x)||^2,$$

update $t = \beta t$

Simple and tends to work pretty well in practice

Interpretation

For us
$$\Delta x = -\nabla f(x)$$
, $\alpha = 1/2$

Backtracking picks up roughly the right step size (13 steps):

Here $\beta=0.8$ (B & V recommend $\beta\in(0.1,0.8))$

Exact line search

At each iteration, do the best we can along the direction of the gradient,

$$t = \underset{s>0}{\operatorname{argmin}} \ f(x - s\nabla f(x))$$

Usually not possible to do this minimization exactly

Approximations to exact line search are often not much more efficient than backtracking, and it's not worth it

Convergence analysis

Assume that $f:\mathbb{R}^n \to \mathbb{R}$ is convex and differentiable, and additionally

$$\|\nabla f(x) - \nabla f(y)\| \le L\|x - y\|$$
 for any x, y

I.e., ∇f is Lipschitz continuous with constant L>0

Theorem: Gradient descent with fixed step size $t \leq 1/L$ satisfies

$$f(x^{(k)}) - f(x^*) \le \frac{\|x^{(0)} - x^*\|^2}{2tk}$$

I.e., gradient descent has convergence rate O(1/k)

I.e., to get $f(x^{(k)}) - f(x^*) \le \epsilon$, need $O(1/\epsilon)$ iterations

Proof

Key steps:

• ∇f Lipschitz with constant $L \Rightarrow$

$$f(y) \le f(x) + \nabla f(x)^T (y - x) + \frac{L}{2} ||y - x||^2$$
 all x, y

• Plugging in $y = x - t\nabla f(x)$,

$$f(y) \le f(x) - (1 - \frac{Lt}{2})t \|\nabla f(x)\|^2$$

• Letting $x^+ = x - t\nabla f(x)$ and taking $0 < t \le 1/L$,

$$f(x^{+}) \leq f(x^{\star}) + \nabla f(x)^{T} (x - x^{\star}) - \frac{t}{2} \|\nabla f(x)\|^{2}$$
$$= f(x^{\star}) + \frac{1}{2t} (\|x - x^{\star}\|^{2} - \|x^{+} - x^{\star}\|^{2})$$

Summing over iterations:

$$\sum_{i=1}^{k} (f(x^{(i)}) - f(x^{*})) \le \frac{1}{2t} (\|x^{(0)} - x^{*}\|^{2} - \|x^{(k)} - x^{*}\|^{2})$$
$$\le \frac{1}{2t} \|x^{(0)} - x^{*}\|^{2}$$

• Since $f(x^{(k)})$ is nonincreasing,

$$f(x^{(k)}) - f(x^*) \le \frac{1}{k} \sum_{i=1}^{k} (f(x^{(i)}) - f(x^*)) \le \frac{\|x^{(0)} - x^*\|^2}{2tk}$$

Convergence analysis for backtracking

Same assumptions, $f:\mathbb{R}^n\to\mathbb{R}$ is convex and differentiable, and ∇f is Lipschitz continuous with constant L>0

Same rate for a step size chosen by backtracking search

Theorem: Gradient descent with backtracking line search satisfies

$$f(x^{(k)}) - f(x^*) \le \frac{\|x^{(0)} - x^*\|^2}{2t_{\min}k}$$

where $t_{\min} = \min\{1, \beta/L\}$

If β is not too small, then we don't lose much compared to fixed step size (β/L vs 1/L)

Strong convexity

Strong convexity of f means for some d > 0,

$$\nabla^2 f(x) \succeq dI \quad \text{for any } x$$

Better lower bound than that from usual convexity:

$$f(y) \geq f(x) + \nabla f(x)^T (y-x) + \frac{d}{2} \|y-x\|^2 \quad \text{all} \ x,y$$

Under Lipschitz assumption as before, and also strong convexity:

Theorem: Gradient descent with fixed step size $t \le 2/(d+L)$ or with backtracking line search search satisfies

$$f(x^{(k)}) - f(x^*) \le c^k \frac{L}{2} ||x^{(0)} - x^*||^2$$

where 0 < c < 1

I.e., rate with strong convexity is $O(c^k)$, exponentially fast!

I.e., to get $f(x^{(k)}) - f(x^*) \le \epsilon$, need $O(\log(1/\epsilon))$ iterations

Called linear convergence, because looks linear on a semi-log plot:

(From B & V page 487)

Constant c depends adversely on condition number L/d (higher condition number \Rightarrow slower rate)

How realistic are these conditions?

How realistic is Lipschitz continuity of ∇f ?

- This means $\nabla^2 f(x) \leq LI$
- E.g., consider $f(x) = \frac{1}{2} \|y Ax\|^2$ (linear regression). Here $\nabla^2 f(x) = A^T A$, so ∇f Lipschitz with $L = \sigma_{\max}^2(A) = \|A\|^2$

How realistic is strong convexity of f?

- Recall this is $\nabla^2 f(x) \succeq dI$
- E.g., again consider $f(x) = \frac{1}{2} \|y Ax\|^2$, so $\nabla^2 f(x) = A^T A$, and we need $d = \sigma_{\min}^2(A)$
- If A is wide, then $\sigma_{\min}(A)=0$, and f can't be strongly convex (E.g., A=
- Even if $\sigma_{\min}(A)>0$, can have a very large condition number $L/d=\sigma_{\max}(A)/\sigma_{\min}(A)$

Practicalities

Stopping rule: stop when $\|\nabla f(x)\|$ is small

- Recall $\nabla f(x^*) = 0$
- If f is strongly convex with parameter d, then

$$\|\nabla f(x)\| \le \sqrt{2d\epsilon} \implies f(x) - f(x^*) \le \epsilon$$

Pros and cons:

- Pro: simple idea, and each iteration is cheap
- Pro: Very fast for well-conditioned, strongly convex problems
- Con: Often slow, because interesting problems aren't strongly convex or well-conditioned
- Con: can't handle nondifferentiable functions

Forward stagewise regression

Let's stick with $f(x) = \frac{1}{2} ||y - Ax||^2$, linear regression

A is $n \times p$, its columns $A_1, \ldots A_p$ are predictor variables

Forward stagewise regression: start with $x^{(0)} = 0$, repeat:

- Find variable i such that $|A_i^Tr|$ is largest, for $r=y-Ax^{(k-1)}$ (largest absolute correlation with residual)
- Update $x_i^{(k)} = x_i^{(k-1)} + \gamma \cdot \mathrm{sign}(A_i^T r)$

Here $\gamma>0$ is small and fixed, called learning rate

This looks kind of like gradient descent

Steepest descent

Close cousin to gradient descent, just change the choice of norm. Let q,r be complementary (dual): 1/q+1/r=1

Updates are $x^+ = x + t \cdot \Delta x$, where

$$\Delta x = \|\nabla f(x)\|_r \cdot u$$
$$u = \underset{\|v\|_q \le 1}{\operatorname{argmin}} \nabla f(x)^T v$$

- If q=2, then $\Delta x=-\nabla f(x)$, gradient descent
- If q=1, then $\Delta x=-\partial f(x)/\partial x_i\cdot e_i$, where

$$\left|\frac{\partial f}{\partial x_i}(x)\right| = \max_{j=1,\dots n} \left|\frac{\partial f}{\partial x_j}(x)\right| = \|\nabla f(x)\|_{\infty}$$

Normalized steepest descent just takes $\Delta x = u$ (unit q-norm)

Equivalence

Normalized steepest descent with 1-norm: updates are

$$x_i^+ = x_i - t \cdot \operatorname{sign} \left\{ \frac{\partial f}{\partial x_i}(x) \right\}$$

where i is the largest component of $\nabla f(x)$ in absolute value

Compare forward stagewise: updates are

$$x_i^+ = x_i + \gamma \cdot \operatorname{sign}(A_i^T r), \quad r = y - Ax$$

Recall here
$$f(x)=\frac{1}{2}\|y-Ax\|^2$$
, so $\nabla f(x)=-A^T(y-Ax)$ and $\partial f(x)/\partial x_i=-A_i^T(y-Ax)$

Forward stagewise regression is exactly normalized steepest descent under 1-norm

Early stopping and regularization

Forward stagewise is like a slower version of forward stepwise

If we stop early, i.e., don't continue all the way to the least squares solution, then we get a sparse approximation ... can this be used as a form of regularization?

Recall lasso problem:

$$\min_{x \in \mathbb{R}^p} \frac{1}{2} \|y - Ax\|^2 \text{ subject to } \|x\|_1 \le t$$

Solution $x^*(s)$, as function of s, also exhibits varying amounts of regularization

How do they compare?

For some problems (some y, A), with a small enough step size, forward stagewise iterates trace out lasso solution path!

Gradient boosting

Given observations $y=(y_1,\ldots y_n)\in\mathbb{R}^n$, associated predictor measurements $a_i\in\mathbb{R}^p$, $i=1,\ldots n$

Want to construct a flexible (nonlinear) model for y based on predictors. Weighted sum of trees:

$$y_i \approx \hat{y}_i = \sum_{j=1}^m \gamma_j \cdot T_j(a_i), \quad i = 1, \dots n$$

Each tree T_j inputs predictor measurements a_i , outputs prediction. Trees are typically very short

Pick a loss function L that reflects task; e.g., for continuous y, could take $L(y_i,\hat{y}_i)=(y_i-\hat{y}_i)^2$

Want to solve

$$\min_{\gamma \in \mathbb{R}^M} \sum_{i=1}^n L\left(y_i, \sum_{j=1}^M \gamma_j \cdot T_j(a_i)\right)$$

Indexes all trees of a fixed size (e.g., depth = 5), so M is huge

Space is simply too big to optimize

Gradient boosting: combines gradient descent idea with forward model building

First think of minimization as $\min f(\hat{y})$, function of predictions \hat{y} (subject to \hat{y} coming from trees)

Start with initial model, i.e., fit a single tree $\hat{y}^{(0)} = T_0$. Repeat:

• Evaluate gradient g at latest prediction $\hat{y}^{(k-1)}$,

$$g_i = \left[\frac{\partial L(y_i, \hat{y}_i)}{\partial \hat{y}_i}\right]\Big|_{\hat{y}_i = \hat{y}_i^{(k-1)}}, \quad i = 1, \dots n$$

• Find a tree T_k that is close to -g, i.e., T_k solves

$$\min_{T} \sum_{i=1}^{n} (-g_i - T(a_i))^2$$

Not hard to (approximately) solve for a single tree

Update our prediction:

$$\hat{y}^{(k)} = \hat{y}^{(k-1)} + \gamma_k \cdot T_k$$

Note: predictions are weighted sums of trees, as desired!

Lower bound

Remember O(1/k) rate for gradient descent over problem class: convex, differentiable functions with Lipschitz continuous gradients

First-order method: iterative method, updates $x^{(k)}$ in

$$x^{(0)} + \operatorname{span}\{\nabla f(x^{(0)}), \nabla f(x^{(1)}), \dots \nabla f(x^{(k-1)})\}$$

Theorem (Nesterov): For any $k \leq (n-1)/2$ and any starting point $x^{(0)}$, there is a function f in the problem class such that any first-order method satisfies

$$f(x^{(k)}) - f(x^*) \ge \frac{3L||x^{(0)} - x^*||^2}{32(k+1)^2}$$

Can we achieve a rate $O(1/k^2)$? Answer: yes, and more!

References

- S. Boyd and L. Vandenberghe (2004), Convex Optimization, Cambridge University Press, Chapter 9
- T. Hastie, R. Tibshirani and J. Friedman (2009), The Elements of Statistical Learning, Springer, Chapters 10 and 16
- Y. Nesterov (2004), Introductory Lectures on Convex Optimization: A Basic Course, Kluwer Academic Publishers, Chapter 2
- L. Vandenberghe, Lecture Notes for EE 236C, UCLA, Spring 2011-2012