EEEN3006J

Wireless Systems

Dr. Declan Delaney

(declan.delaney@ucd.ie)

Brian Mulkeen

What Do We Want from a Receiver?

Sensitivity

- able to work properly with very low RX power
- but must also work at much higher RX power
 - wanted signal can vary by 70 dB 80 dB
 - Dynamic Range

Selectivity

- able to select the wanted signal
- reject unwanted signals present at input
 - perhaps at much higher power
 - perhaps very close in frequency

Selectivity - Background

- Frequency spectrum scarce resource
 - mostly controlled by (inter)national agencies
- Frequency band for specific purpose
 - e.g. FM radio broadcasting, 3G phones
 - allocated by regulatory agency
 - standards for transmissions within the band
 - so know something about neighbouring signals
- Band usually divided into channels
 - each transmission must fit in one channel
 - so receiver must be able to select one channel
 - channel bandwidth depends on system
 - 12.5 kHz, 25 kHz, up to 5 MHz, 10 MHz...

Selectivity Depends on Filters

- Want to pass wanted signal
 - block unwanted signals at different frequencies
 - but "block" not possible aim to attenuate
 - then amplify wanted signal
- Filters are critical part of radio receiver
 - often band-pass filters, low-pass possible
 - specifications can be challenging
 - especially if want narrow BW at high frequency
 - more difficult if want adjustable...

Filter Specifications

- Specify width of pass-band
 - to some acceptable level of attenuation
 - with some acceptable ripple (gain variation)
- Specify attenuation in stop-band(s)
 - at some specified frequency offset from centre
 - or specify bandwidth at some large attenuation
- Shape factor: ratio of bandwidths

- specify two attenuation values: e.g. 30/3 dB
- example has shape factor 2.0 at 60/6 dB

Filters at RF

Passive filters

- no op-amps, just inductors, capacitors
- or transmission-line segments (RF Electronics)
- or mechanical resonators, SAW, etc.

Demanding specification ⇒ high order

- high complexity, many components
- so high insertion loss (pass-band attenuation)
- cannot use at input to receiver
 - recall noise calculations attenuator at input
 - increased receiver noise temperature, noise power
 - bad for sensitivity need more signal power

Surface Acoustic Wave - SAW

- Acoustic wave (like sound wave)
 - travelling on surface of slab of material
 - usually piezo-electric material:
 - e.g. quartz, Lithium Niobate (LiNbO₃),
 Lithium Tantalate (LiTaO₃)...
- Wave launched by electrodes on surface
 - using piezo-electric effect: voltage -> strain

- Wave received by electrodes same or other
 - also piezo-electric effect: strain -> voltage

SAW Filter Concept

- Simple application acoustic delay line
 - acoustic velocity ~ 3000 m/s to 4000 m/s
 - so wavelength $\sim 10 \ \mu m$ at $300 400 \ MHz$
- Add more electrodes tapped delay line
 - get copies of input, with different delays
 - output is weighted sum of these
 - analogue FIR filter...
 - not feasible with electrical signals too fast

SAW Filter - Transversal

C. K. Campbell

- Uses inter-digitated transducers (IDT)
 - launch and receive with separate IDTs
- This structure can give high performance:
 - BW < 1% of f_{centre} , high stop-band attenuation
- UCD DUBLIN
- but high loss in passband 10 dB to 30 dB
- not suitable for all applications...

SAW Filter - Resonator

C. K. Campbell

- One-port resonator like crystal resonator
 - or LC resonant circuit, with very high Q factor
- Filter based on resonator lower loss (<3 dB)
 - but often more ripple in passband
 - less stop-band attenuation, etc.

- Usable from ~ 10 MHz to GHz region
 - small size, easy to make, but not on silicon!

Simple Receiver Structure

- This example works at fixed frequency
 - receive signal at that one frequency only
- Need amplification for sensitivity
 - RX signal v. small, demod. needs larger signal
- Need filter for selectivity
 - select wanted signal, attenuate all others
- Amplify, Filter which should go first?

More Practical Receiver

- Wide BW filter at start simple, low loss
 - attenuates signals outside band of interest ?
 - gives some protection to first amplifier
- Amplify, but not too much
 - still many signals present, maybe strong signals
- Narrow BW filter select desired signal
 - can afford higher loss after amplification

- Amplify more only one signal now…
 - adjust gain (automatically) to suit signal

Tuned Radio-Frequency (TRF) Receiver

- All processing at frequency of RX signal, f_s
- With high gain, risk of instability
 - leakage of signal back to antenna...
- To vary frequency, need adjustable filter
 - not possible with SAW, transmission line
 - difficult with LC limited Q factor
 - not suitable for narrow BW signal at high freq.

- Simple, but not best performance
 - use only for fixed-freq., low-spec receiver

Superheterodyne Receiver

- How to select the wanted signal ?
 - at any frequency (or any channel) in band
 - using fixed-frequency filter (e.g. SAW)
- Frequency shifting
 - move the wanted signal to the filter frequency
 - most processing done at fixed frequency
 - called intermediate frequency (IF)
 - only early part of receiver has to work over the range of receive frequencies

Shifting Signal...

- Adjust frequency shift as required
 - to get wanted signal aligned with filter

Shifting Signal...

- To receive a different signal
 - change frequency shift...

Simple Heterodyne Receiver

- Band-select filter pass entire RX band
 - all signals of interest (but must be low loss)
- Some amplification at RF (all signals in band)
- Frequency shift by adjustable amount
 - to get wanted signal to IF
- Channel selection narrow, high-spec filter
 - selects wanted signal only

Amplify – only one signal, adjustable gain

Zero-IF systems (homodyne)

- Reduces circuit complexity (1 conversion) but problems, e.g. lower dynamic range.
- Software defined radio has given it new life.
- Self-Mixing of Reverse LO feed-through:
 - LO component in RF input can return through mixer and be modulated by the LO signal.
 - Components at DC and 2 f_o at IF output.
- No consequence for a heterodyne system, but can cause problems for homodyne systems.

Hetrodyne Receivers (Advantages)

- Channel-selection filter at fixed frequency
 - much easier to build high-spec filter at fixed f_c
 - can choose relatively low frequency
 - so fractional bandwidth higher, also easier
- Band-select filter can often be fixed also
 - change frequency by adjusting oscillator only
- Amplification mostly at IF
 - lower frequency, easier to build amplifier
- Demodulation at lower, fixed frequency
- Frequency shift good for stability

- no very high gain at either frequency
- large signals at demodulator not at same frequency as received signals...

Disadvantages

- Frequency shift brings new problem
 - vulnerable to interference at image frequency
 - can avoid with careful design
- Complexity lots of analogue signal processing
 - most at relatively high frequencies
 - alternatives can get signal to baseband sooner
 - then sample and convert to digital
 - then process digital signals DSP...
- Needs high-spec channel selection BPF
 - cannot be integrated onto IC

- But still widely used, for good performance
 - not usually cheapest solution...

Sensitivity

- For best sensitivity, minimise noise figure
 - so start with high-gain, low-noise amplifier?
- But entire RF spectrum is present at input
 - need filter before amplifier some protection
 - but need low loss, so must be simple filter

- so moderate amplifier gain, maybe adjustable

Dynamic Range

- For sensitivity, need high receiver gain
 - antenna input could be a few μV
 - demodulator typically needs few hundred mV
 - so need overall voltage gain $\sim 10^5$ or more
- But also have to handle larger signals
 - e.g. operating nearer to transmitter
 - reduce distance from 10 km to 10 m, 60 dB increase
 - with a few mV at antenna, same gain?

- Need adjustable gain, to avoid overload
 - automatic gain control AGC

Automatic Gain Control

- Sense signal level at demodulator
 - adjust gain to keep near optimum level
 - only sensing wanted signal (not interferer)
 - often only changing gain after channel select...
 - if demodulation in DSP, sense there, feed back

- RF amplifier handles many signals
 - AGC may adjust its gain
 - but not usually sensing the problems here...

AGC Behaviour

AGC usually acts slowly - responds to average signal level

Avoid reacting to any amplitude modulation of signal...

AGC is feedback control system

- use maximum gain for small input signals
- as input signal increases, keep max. gain
- until signal at demodulator is optimum
- then reduce gain to keep at optimum level...

Dynamic Range

AGC acts to compress the range of signal power variation

Expands dynamic range of receiver

- Receiver must work with wide range of power
 - dynamic range = ratio of max. to min.
 - often need 70 dB or more
- Dynamic range of demodulator limited
 - e.g. 10-bit A/D converter, only 1024 levels
 - if covers 1 V range, quantisation step ∼1 mV
 - max signal 1 Vp-p, min ~20 mVp-p?
 - dynamic range only 34 dB

