

7.2.3 铬的重要化合物 (二)

- 铬酸盐除K+、Na+、NH₄ 盐外,一般均难溶于水。
 K₂CrO₄是黄色晶体。
- 重铬酸盐大都溶于水 K₂Cr₂O₇ 是橙红色晶体, 不易潮解, 常用作化学 分析的基准物。
- Cr₂O₇²⁻和CrO₄²⁻在溶液中存在如下平衡
 2CrO₄²⁻+2H⁺→2HCrO₄ →Cr₂O₇²⁻+H₂O
 (費)

pH≤1.2: Cr(VI)100%以Cr₂O₇2-形式存在;

pH≥11: Cr(VI)100%以CrO₄2-形式存在。

● 在重铬酸盐溶液中加入Ba²⁺、Pb²⁺、Ag⁺盐时,生成 铬酸盐沉淀

$$Cr_2O_7^2 + 2Ba^{2+} + H_2O \rightarrow 2BaCrO_4$$
 $+2H^+$ $-$ (柠檬黄)
 $Cr_2O_7^2 + 2Pb^{2+} + H_2O \rightarrow 2PbCrO_4$ $+2H^+$ $-$ (铬黄)
 $Cr_2O_7^{2-} + 4Ag^+ + H_2O \rightarrow 2Ag_2CrO_4$ $+2H^+$ (砖红)

大学化学

重铬酸盐在酸性溶液中有强氧化性

$$Cr_2O_7^{2-} + 3SO_3^{2-} + 8H^+ \longrightarrow 3SO_4^{2-} + 2Cr^{3+} + 4H_2O$$
 $Cr_2O_7^{2-} + 3H_2S + 8H^+ \longrightarrow 3S + 2Cr^{3+} + 7H_2O$
 $Cr_2O_7^{2-} + 6I^- + 14H^+ \longrightarrow 3I_2 + 2Cr^{3+} + 7H_2O$
 $K_2Cr_2O_7(s) + 14HCl(浓) \longrightarrow 3Cl_2 + 2CrCl_3 + 2KCl + 7H_2O$
 $Cr_2O_7^{2-} + 6Fe^{2+} + 14H^+ \longrightarrow 6Fe^{3+} + 2Cr^{3+} + 7H_2O$
 $Cr_2O_7^{2-} + 3Sn^{2+} + 14H^+ \longrightarrow 3Sn^{4+} + 2Cr^{3+} + 7H_2O$

$$2Cr_2O_7^{2-} + 3C_2H_5OH + 16H^+ \rightarrow$$

 $4Cr^{3+} + 3CH_3COOH + 11H_2O$

重铬酸钾能将乙醇氧化成乙酸,本身颜色由橙变绿,可用于检查人呼吸出来的气体或血液中是否含有酒精,从而判断司机是否酒后驾车。

过去化学实验室所用"洗液"是由重铬酸盐饱和溶液与浓硫酸配制而成。

若"洗液"由暗红色变为绿色,即Cr(VI)已转变为Cr(III),洗液失效。

大学化学

CrO₄-的鉴定

$$CrO_4^{2-} + Pb^{2+} \rightarrow PbCrO_4$$
 (黄色)

乙醚

● Cr₂O₇²⁻ 的鉴定

$$Cr_2O_7^2 + 4H_2O_2 + 2H^+$$

(蓝色)

大学化学

