

Can We Detect Failures Without Failure Data? **Uncertainty-Aware Runtime Failure Detection for Imitation Learning Policies**

Chen Xu, Tony Khuong Nguyen, Emma Dixon, Christopher Rodriguez, Patrick Miller, Robert Lee, Paarth Shah, Rares Andrei Ambrus, Haruki Nishimura, Masha Itkina

Motivation

Generative imitation learning policies are prone to failure:

Challenges:

- · High-dimensional action and observation data.
- Demonstration data contain only successful trajectories.
- Diverse failure types occur during deployment.

Solution: A modular two-stage runtime failure detector

- ✓ Extracts scalar scores from high-dimensional data and uses conformal prediction to threshold when to alert failure.
- ✓ Requires no failure training data.
- ✓ Capable of detecting different kinds of failures.

Proposed Framework

- Stage 1: Extract scalar detection scores given data in each rollout.
- Stage 2: Determine detection threshold using conformal prediction band.

- Sequentially detect failures if scores exceed thresholds.
- Alarm is raised under physical changes in the environment.
- Flexible to:
 - Incorporating new scores and thresholding schema.
 - Building on any imitation learning policy.

Stage 2: Sequential Threshold

Desiderata:

- 1. One-class: No failure data is required.
- 2. Light-weighted: Fast inference for real-time robot control.
- 3. Discriminative: Gap in scores between successes/failures. •

Stage 1: Scalar Score Design

Based on SOTA OOD detectors:

- (a) learned data density
- (b) second-order distribution
- (c) one-class discriminator
- (d) post-hoc metrics

- Construct thresholds as a one-sided conformal prediction band.
- Threshold adapt temporally to score variations.
- Theoretically controls false positive rate.

Experimental Results

Physically Meaningful Metric —

Sudden rise in scores indicates failure has occurred.

(a) Simulation-Robomimic

Quantitative Comparison

- Top three: red > blue > green
- Our proposed loapZO performs best in Accuracy.
- No batch sampling: significantly faster than STAC [1].

(b) On-Robot-OOD

References