Category Theory

Swayam Chube

April 24, 2023

Contents

1	Intr	oduction and Elementary Definitions	2
	1.1	Preliminary Definitions	2
	1.2	Adjoints	2

Chapter 1

Introduction and Elementary Definitions

1.1 Preliminary Definitions

Definition 1.1 (Category). A category $\mathscr A$ consists of

- 1. a collection $ob(\mathscr{A})$ of objects
- 2. for each $A, B \in ob(\mathscr{A})$ a collection $\mathscr{A}(A, B)$ of morphisms from A to B
- 3. for each A, B, $C \in ob(\mathscr{A})$, a composition function

$$\circ: \mathscr{A}(B,C) \times \mathscr{A}(A,B) \to \mathscr{A}(A,C)$$

mapping $(g, f) \mapsto g \circ f$.

4. for each $A \in ob(\mathscr{A})$, an element id_A of $\mathscr{A}(A,A)$ called the identity on A.

satisfying the following:

associativity: for each $f \in \mathcal{A}(A, B)$, $g \in \mathcal{A}(B, C)$ and $h \in \mathcal{A}(C, D)$, we have $(h \circ g) \circ f = h \circ (g \circ f)$

identity: for each $f \in \mathcal{A}(A, B)$, we have $f \circ id_A = f = id_B \circ f$

Set is the category of sets with morphisms as set maps.

Definition 1.2 (Functor). Let \mathscr{A} and \mathscr{B} be categories. A functor $F: \mathscr{A} \to \mathscr{B}$ consists of

- a function $ob(\mathscr{A}) \to ob(B)$ written as $A \mapsto F(A)$
- for each $A, A' \in \mathcal{A}$, a function $\mathcal{A}(A, A') \to \mathcal{B}(F(A), F(A'))$, written as $f \mapsto F(f)$

satisfying the following axioms

covariancy: $F(f' \circ f) = F(f') \circ F(f)$ whenever $A \xrightarrow{f} A' \xrightarrow{f'} A''$ in \mathscr{A}

identity consistency: $F(id_A) = id_{F(A)}$ whenever $A \in \mathscr{A}$

Such a functor is sometimes also called a **covariant functor**.

Let \mathbf{Top}_* denote the category of topological spaces equipped with a basepoint. Let π be the map that maps a pointed topological space (X, x_0) to its fundamental group $\pi(X, x_0)$. We claim that this is a covariant functor. Let $\phi: (X, x_0) \to (Y, y_0)$ be a continuous function. One knows from algebraic topology that the

above continuous map induces a homomorphism ϕ_* : $\pi(X, x_0) \to \pi(Y, y_0)$ given by $[f] \mapsto [\phi \circ f]$. It is not hard to see that this is a covariant functor.

Definition 1.3 (Contravariant Functor). Let \mathscr{A} and \mathscr{B} be categories. A contravariant functor from \mathscr{A} to \mathscr{B} is a functor $F : \mathscr{A}^{\mathrm{op}} \to \mathscr{B}$.

Let **Top** be the category of topological spaces. For a topological space X, let C(X) denote the ring of continuous functions $X \to \mathbb{R}$. That is, $C(X) \in \mathbf{Ring}$. We claim that C(X) is a contravariant functor from **Top** to **Ring**. Indeed, let $f: X \to Y$ be a continuous function. Then, we have the following commutative diagram:

$$X \xrightarrow{f} Y$$

$$\downarrow^{g}$$

$$\mathbb{R}$$

The continuous function f induces a map $f_*: C(Y) \to C(X)$ given by $g \mapsto g \circ f$. It is not hard to see now that the functor C is a contravariant functor from **Top** to **Ring** which maps a morphism f to a morphism f_* .

Definition 1.4 (Presheaf). A presheaf is a contravariant functor from \mathscr{A} to **Set**. That is, a functor $F: \mathscr{A}^{\mathrm{op}} \to \mathbf{Set}$.

Let X be a topological space and let $\mathcal{O}(X)$ denote the category of open subsets of X with inclusion morphisms. This gives $\mathcal{O}(X)$ the structure of a poset. Consider now the map $F: \mathcal{O}(X)^{\operatorname{op}} \to \mathbf{Set}$ given by

$$F(U) = \{\text{continuous functions } U \to \mathbb{R}\}$$

That this is a functor follows from the fact that if $U \subseteq V$, then the restriction of a continuous function $f: V \to \mathbb{R}$ to U is continuous.

Definition 1.5. A functor $F : \mathscr{A} \to \mathscr{B}$ is *faithful* if for each $A, A' \in \mathscr{A}$, the map $\mathscr{A}(A, A') \to \mathscr{B}(F(A), F(A'))$ given by $f \mapsto F(f)$ is injective.

Similarly, it is said to be *full* if the map is surjective.

Definition 1.6 (Natural Transformation). Let \mathscr{A} and \mathscr{B} be categories and let $F,G:\mathscr{A} \longrightarrow \mathscr{B}$ be functors. A *natural transformation* $\alpha: F \to G$ is a family $\left(F(A) \xrightarrow{\eta_A} G(A)\right)_{A \in \mathscr{A}}$ of maps in \mathscr{B} such that for every map $A \xrightarrow{f} A'$ in \mathscr{A} , the following diagram commutes

$$F(A) \xrightarrow{F(f)} F(A')$$

$$\eta_A \downarrow \qquad \qquad \downarrow \eta_{A'}$$

$$G(A) \xrightarrow{G(f)} G(A')$$

The maps η_A are called the *components* of η . When η_A is an isomorphism for all $A \in \mathscr{A}$, then η is said to be a natural isomorphism.

Consider **CRing**, the category of commutative rings and **Mon**, the category of monoids. Consider the covariant functor M_n : **CRing** \to **Mon** that maps a commutative ring R to the monoid $M_n(R)$ of $n \times n$ matrices with entries from R.

Consider now the forgetful functor U: **CRing** \rightarrow **Mon** that maps a ring R to its multiplicative monoid. It is not hard to see that \det_n is a natural transformation from $M_n \rightarrow U$.

1.2 Adjoints

Definition 1.7. Let \mathscr{A} and \mathscr{B} be categories with $F: \mathscr{A} \to \mathscr{B}$ and $G: \mathscr{B} \to \mathscr{A}$ be functors. Then F is said to be *left adjoint* to G and G is said to be *right adjoint* to G if for all G is an adjoint to G and G is a natural isomorphism