Analysis of an Esophageal cancer dataset

Exam: Network-based Data Analysis

Gloria Lugoboni

13 June 2024

Selected dataset and motivation

Series GSE199967

Query DataSets for GSE199967

Status Public on Apr 03, 2022

Title Tumor tissues vs normal tissues from 21 cases ESCA

Organism Homo sapiens

Experiment type Expression profiling by array

Summary Transcriptional profiling of tumor tissues and normal tissues from ESCA.

Overall design Tumor tissues vs normal tissues. Biological replicates: 21.

Platforms (1) GPL6480 Agilent-014850 Whole Human Genome Microarray 4x44K G4112F

(Probe Name version)

- Esophageal cancer (ESCA) is among the 10 highest mortality cancers worldwide
- 5-year overall survival (OS) of circa 20%
- High probability of developing metastasis and resistance to chemo-radiotherapy

Methods

More in detail:

- Clustering:
 - K-means clustering
 - Hierarchical Clustering
- Supervised Learning methods
 - Random Forest
 - o LDA
 - LASSO and Ridge
 - o SCUDO
- Functional enrichment analyses
 - Over-Representation Analysis gProfiler DAVID
 - Network-based Analysis

 pathfindR
 enrichNet

 STRING

Results - PCA

Figure 1: **Principal Component Analysis**. (a) PCA plot in two dimensions, x-axes: PC1, y-axes: PC2, (b) PCA plot in three dimensions, x-axes: PC1, y-axes: PC2, z-axis: PC3. Controls are shown in light blue while tumors are shown in red.

Results - Unsupervised clustering

Figure 2: Cluster analysis. K-mean clustering, axes: Coordinates for the variables extracted from the first and the second PC

Results - Unsupervised clustering

Figure 3: Cluster analysis. (a) Hierarchical clustering, x-axes: Identified clusters, y-axes: Height. k=2, (b) Hierarchical clustering, x-axes: Sample type (Tumor or Control), y-axes: Height. k=6.

Results - Feature selection with LIMMA

Figure 4: Feature selection with LIMMA. x-axis: Log2 Fold Change, y-axis: -Log10 p-value. The significative genes, highlighted in green, were selected based on thresholds on the p-value (0.05) and the log fold change (1.5).

Results - Supervised learning methods

Figure 5: **Performance plot of the supervised models.**(a) All models except SCUDO. x-axis: accuracy, y-axis: model name. (b) All models. x-axis: accuracy, y-axis: model name.

Among all, random forest showed the highest accuracy, equal to 0.9683333, followed directly by Ridge with an accuracy of 0.9658333.

Results - Supervised learning methods

Figure 6: Distribution of the out-of-bag (OOB) score over the total number of trees used to train the RF model.

OOB score: number of wrongly classificated observations. The lower, the more accurate the model is.

Results - Supervised learning methods

Figure 7: Variable importance distribution in Random Forest.

Figure 8: gProfiler for RF most important variables

Figure 23: gProfiler for LIMMA most important variables

Sublist	Category	Ierm		Genes	Count	<u>%</u>	P-Value	Benjamir
	UP_KW_CELLULAR_COMPONENT	Extracellular matrix	RT		10	11,6	2,1E-6	5,7E-5
	INTERPRO	Pept M10A Zn BS	RI	=	4	4,7	2,6E-5	3,9E-3
	INTERPRO	Hemopexin CS	RT		4	4,7	3,8E-5	3,9E-3
	UP_KW_CELLULAR_COMPONENT	Secreted	RI		23	26,7	4,3E-5	5,8E-4
	GOTERM_CC_DIRECT	extracellular space	RI		21	24,4	6,6E-5	1,1E-2
	UP_SEQ_FEATURE	REPEAT:Hemopexin 3	RI	=	4	4,7	8,9E-5	1,4E-2
	UP_SEQ_FEATURE	REPEAT: Hemopexin 4	RT		4	4,7	8,9E-5	1,4E-2
	INTERPRO	M10A MMP	RT	=	4	4,7	9,8E-5	3,9E-3
	INTERPRO	Hemopexin-like repeat	RI		4	4,7	9,8E-5	3,9E-3
	INTERPRO	Pept M10A	RI	=	4	4,7	9,8E-5	3,9E-3
	INTERPRO	Pept M10 metallopeptidase	RI		4	4,7	9,8E-5	3,9E-3
7	INTERPRO	Hemopexin-like dom	RT	=	4	4,7	9,8E-5	3,9E-3
	UP_SEQ_FEATURE	REPEAT:Hemopexin 1	RI		4	4,7	1,0E-4	1,4E-2
	UP_SEQ_FEATURE	REPEAT:Hemopexin 2	RT	=	4	4,7	1,0E-4	1,4E-2
	GOTERM_MF_DIRECT	serine-type endopeptidase activity	RI		7	8,1	1,1E-4	1,7E-2
	INTERPRO	Hemopexin-like dom sf	RI	=	4	4,7	1,1E-4	3,9E-3
	SMART	<u>HX</u>	RI	=	4	4,7	1,9E-4	1,1E-2
	INTERPRO	Peptidase Metallo	RI	=	4	4,7	2,0E-4	6,1E-3

Figure 13: David chart for RF most important variables

Extracellular matrix organization, peptidase activity and proteases activity

UP_KW_CELLULAR_COMPONENT	Secreted	RT	65	27,4	8,7E- 14	3,0E-12
GOTERM_CC_DIRECT	extracellular region	RT	60	25,3	6,5E- 12	1,6E-9
GOTERM_CC_DIRECT	extracellular space	RT	55	23,2	2,2E- 11	1,9E-9
GOTERM_CC_DIRECT	extracellular exosome	RT	60	25,3	2,3E- 11	1,9E-9
UP_KW_MOLECULAR_FUNCTION	Muscle protein	RI i	11	4,6	2,3E-9	1,4E-7
UP_KW_CELLULAR_COMPONENT	Extracellular matrix	RT _	16	6,8	5,6E-7	9,8E-6
GOTERM_MF_DIRECT	extracellular matrix structural constituent	RT =	11	4,6	6,7E-7	1,7E-4
GOTERM_MF_DIRECT	serine-type endopeptidase activity	RT =	13	5,5	1,0E-6	1,7E-4
INTERPRO	Actin CS	RT =	6	2,5	1,1E-6	5,7E-4
UP_SEQ_FEATURE	REGION:Head	RI =	9	3,8	1,2E-6	8,6E-4
UP_SEQ_FEATURE	REGION:Tail	RI =	9	3,8	1,5E-6	8,6E-4
INTERPRO	Actin/actin-like_CS	RT =	6	2,5	1,9E-6	5,7E-4
GOTERM_CC_DIRECT	stress fiber	RT =	9	3,8	3,7E-6	2,3E-4
INTERPRO	IF conserved	RT =	8	3,4	5,7E-6	1,1E-3
UP_SEQ_FEATURE	REGION:Linker 12	RT =	8	3,4	5,7E-6	2,0E-3
UP_SEQ_FEATURE	REGION:Coil 1B	RI =	8	3,4	9,5E-6	2,0E-3
UP_SEQ_FEATURE	REGION:Coil 1A	RI =	8	3,4	1,0E-5	2,0E-3
UP_SEQ_FEATURE	REGION:Linker 1	RT =	8	3,4	1,0E-5	2,0E-3
UP_KW_DOMAIN	Signal	RT	84	35,4	1,3E-5	3,1E-4
GOTERM_BP_DIRECT	keratinization	RT =	8	3,4	1,5E-5	1,7E-2
INTERPRO	CC144C-like CC dom	RT =	6	2,5	1,6E-5	2,4E-3
UP_SEQ_FEATURE	DOMAIN:IF rod	RI =	8	3,4	1,8E-5	2,9E-3
INTERPRO	IF rod dom	RI 🖀	8	3,4	1,9E-5	2,4E-3
UP_SEQ_FEATURE	PROPEP:Activation peptide	RI =	8	3,4	2,0E-5	2,9E-3
GOTERM_MF_DIRECT	actin binding	RT =	15	6,3	2,3E-5	2,6E-3
UP_KW_CELLULAR_COMPONENT	Intermediate filament	RT =	8	3,4	2,6E-5	3,1E-4
GOTERM_BP_DIRECT	epidermis development	RT =	8	3,4	2,7E-5	1,7E-2
INTERPRO	Actin	RI =	6	2,5	3,5E-5	3,5E-3
SMART	Filament	RT =	8	3,4	5,1E-5	3,1E-3
SMART	ACTIN	RI =	6	2,5	6,1E-5	3,1E-3
UP_SEQ_FEATURE	REGION:Coll 2	RT =	7	3,0	6,6E-5	8,5E-3
UP_KW_LIGAND	Calcium	RT =	24	10,1	7,9E-5	1,8E-3
GOTERM_BP_DIRECT	intermediate filament organization	RT =	7	3,0	9,3E-5	3,9E-2
UP_KW_MOLECULAR_FUNCTION	<u>Actin-binding</u>	RI =	13	5,5	9,9E-5	3,0E-3
UP_KW_DISEASE	Palmoplantar keratoderma	RT 🖥	6	2,5	1,0E-4	4,6E-3

Extracellular matrix and peptidase activity.
Palmoplantar keratoderma

Figure 18: David chart from selected genes using LIMMA

Statistic and functional enrichment retrieved from STRING networks.

STRING networks						
	Random	LDA	Lasso	SCUDO	LIMMA	
	Forest					
Expected number of edges	26	1354	192	2179	116	
Number of interaction	103	4948	271	6635	449	
PPI enrichment p-value	<1.0e-16	<1.0e-16	4.14e-08	<1.0e-16	<1.0e-16	
Pathway	Degradation	DNA repli-	DNA repli-	DNA repli-	Degradation	
	of the ex-	cation	cation	cation	of the ex-	
	tracellular				tracellular	
	matrix				matrix	
Biological Process	Serine-type	DNA repli-	Regulation	DNA repli-	Extracellular	
	endopep-	cation,	of DNA	cation	matrix as-	
	tidase	removal of	replication	preinitia-	sembly;	
	activity;	RNA primer		tion complex	Positive	
	Regulation	5,5223		assembly	regulation	
	of replication				of exit from	
					mitosis	
					· ·	

Figure 9: Clusters obtained from RF STRING-network. In red, cluster 1, with a total number of gene equal to 19 (genes regulating replication). In yellow, is cluster 2, with a total number of genes equal to 18 (gene regulating extracellular matrix degradation). Overall number of nodes: 94

Figure 10: PathFindR enrichment chart on important variables extracted from the Random Forest model. Result obtained selecting Reactome as geneset.

Discussion

- This analysis aims to find the set of variables that better distinguish esophageal cancer patients respect control ones.
- It was possible to observe that for certain models, the most important variables represent genes that are differentially expressed.
- The functional enrichment analysis highlighted terms and pathways related to matrix degradation and DNA replication.
- It has been shown in several studies that an enhanced activity of matrix metalloproteinases (MMPs) plays an important role in esophageal carcinogenesis.
- Aberrant cell proliferation is a well-known hallmark of cancer.
- Thanks to this study, it was possible to observe a similarity in the functions associated with the list genes extracted using LIMMA, a well-known feature selection method used to analyze microarray data, and supervised learning methods, like random forest.

Thank you for the attention!