Document made available under the Patent Cooperation Treaty (PCT)

International application number: PCT/JP05/005922

International filing date: 29 March 2005 (29.03.2005)

Document type: Certified copy of priority document

Document details: Country/Office: JP

Number: 2004-102084

Filing date: 31 March 2004 (31.03.2004)

Date of receipt at the International Bureau: 21 April 2005 (21.04.2005)

Remark: Priority document submitted or transmitted to the International Bureau in

compliance with Rule 17.1(a) or (b)

日本国特許庁 JAPAN PATENT OFFICE

31. 3. 2005

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出 願 年 月 日
Date of Application:

2004年 3月31日

出 願 番 号 Application Number:

特願2004-102084

[ST. 10/C]:

[JP2004-102084]

出 願 人

大陽日酸株式会社

Applicant(s):

特許庁長官 Commissioner, Japan Patent Office 2005年 2月 2日


```
特許願
【書類名】
              J17955A1
【整理番号】
              平成16年 3月31日
【提出日】
              特許庁長官
                      殿
【あて先】
              F25J 3/04
【国際特許分類】
                                      日本酸素株式会社内
【発明者】
              東京都港区西新橋1丁目16番7号
   【住所又は居所】
              中村 守光
   【氏名】
                                      日本酸素株式会社内
【発明者】
               東京都港区西新橋1丁目16番7号
   【住所又は居所】
               川井 雅人
   【氏名】
【特許出願人】
               000231235
   【識別番号】
               日本酸素株式会社
   【氏名又は名称】
 【代理人】
               100064908
   【識別番号】
   【弁理士】
               志賀 正武
   【氏名又は名称】
 【選任した代理人】
               100108578
    【識別番号】
    【弁理士】
                   詔男
                高橋
    【氏名又は名称】
 【選任した代理人】
                100089037
    【識別番号】
    【弁理士】
                    隆
    【氏名又は名称】
                渡邊
  【選任した代理人】
                100101465
     【識別番号】
     【弁理士】
                    正和
     【氏名又は名称】
                青山
  【選任した代理人】
                100094400
     【識別番号】
     【弁理士】
                鈴木 三義
     【氏名又は名称】
  【選任した代理人】
                 100107836
     【識別番号】
     【弁理士】
                   和哉
     【氏名又は名称】
                 西
  【選任した代理人】
                 100108453
     【識別番号】
     【弁理士】
                     靖彦
     【氏名又は名称】
                 村山
   【手数料の表示】
                 008707
      【予納台帳番号】
                 21,000円
      【納付金額】
   【提出物件の目録】
                 特許請求の範囲
      【物件名】
                 明細書 1
      【物件名】
                  図面 1
      【物件名】
```

要約書 1

【物件名】

【包括委任状番号】 9706458

【書類名】特許請求の範囲

【請求項1】

空気液化分離装置の原料空気を精製する温度スイング吸着法を用いた原料空気精製装置 の再起動方法であって、

原料空気精製装置の停止後、吸着工程を行っていた第1吸着塔においては、その出入口弁を閉じるとともに大気開放弁を開き、この第1吸着塔内のガスを放出した後、大気開放弁を閉じた状態とし、

再生工程を行っていた第2吸着塔においては、停止時点における再生工程の経過時間 t 1 が、以下の式を満たす場合、

- $t_1 < t_2 (R_1 / R_2) \times (t_2 t_3)$
- t 1 は再生工程の経過時間(分)
- t 2 は再生工程時間(分)
- t 3 は加圧ステップ時間(分)
- R₁ はパージガス流量 (Nm³ /時間)
- R 2 は原料空気流量 (Nm³/時間)

その全ての弁を閉じた状態とし、これらの状態を維持し、

再起動直前に第1吸着塔に原料空気を流入させ、吸着工程に必要な圧力まで第1吸着塔内を加圧し、再起動直後に、原料空気精製装置から空気分離部への精製空気流を遮断したまま、第1吸着塔においては吸着工程を、第2吸着塔においては再生工程を、共に最初から行った後、精製空気を空気分離部に流入させることを特徴とする原料空気精製装置の再起動方法。

【請求項2】

再起動後、精製空気を空気分離部に流入させるまで、吸着塔の再生工程に必要なパージガス量に相当する原料空気量で吸着工程を行う請求項1記載の原料空気精製装置の再起動方法。

【請求項3】

原料空気精製装置に供給される原料空気の温度が5~45℃、圧力が400~1000kPa(絶対圧)である請求項1記載の原料空気精製装置の再起動方法。

【書類名】明細書

【発明の名称】原料空気精製装置の再起動方法

【技術分野】

本発明は、空気液化分離装置における原料空気中の水分、二酸化炭素などの不純物を除 去する原料空気精製装置の迅速な再起動方法に関するものである。

【背景技術】

空気液化分離装置とは、原料空気を液化し、これを蒸留して窒素と酸素などに分離する 装置である。この蒸留を行う際、低温で凝固して配管などを閉塞させる物質である水分、 二酸化炭素などの不純物を原料空気から除去する、前処理と称する工程が原料空気精製装 置において行われる。この前処理として、並列して置かれた二つ以上の吸着塔を用いる温 度スイング吸着法が一般に用いられている。この吸着塔には、原料空気が流入する上流側 に活性アルミナ、シリカゲル、ゼオライトなどの水分を吸着する吸着剤が充填され、下流 側にNa-X型ゼオライトなどの二酸化炭素を吸着する吸着剤が充填されている。温度ス イング吸着法とは、この吸着塔を用いて、原料空気から水分、二酸化炭素などの不純物を 低い温度において吸着して除去する吸着工程と、吸着剤から不純物を高い温度において脱 着して除去し、吸着剤を再生する再生工程を交互に行う手法である。

以下、図1により、このような原料空気精製装置の定常運転時における操作の一例を説 明する。この例では、吸着塔5aが吸着工程、吸着塔5bが再生工程を行っているものと する。図1は、空気液化分離装置の原料空気の前処理部分の一例を示す構成図である。先 ず、大気から取り込まれた原料空気が、原料空気圧縮機1により所定の圧力(400~1 000kPa(以下、本明細書における圧力は全て絶対圧を示す。))に圧縮された後、 冷却装置2により冷却(5~45℃)される。この際、発生する凝縮水はドレインセパレ ーター3により排出される。次に、弁4aを経て、圧縮された原料空気が冷却温度におけ る飽和水分を含んだまま吸着塔5aに流入し、この原料空気中の水分、二酸化炭素などの 不純物が、吸着塔5a内の吸着剤により吸着される。続いて弁6a、18を経て、精製さ れた原料空気がライン7を介して空気分離部8に流入する。

吸着工程を行っている吸着塔5aにおいて、吸着剤の吸着成分の飽和領域は、原料空気 が流入する上流側から下流側に向かって進行する。従って、精製空気中の不純物濃度が空 気分離部へ送ガスされた際に問題となる限界値に達する前に、吸着工程を終了する。

吸着工程の終了後、再生工程が開始される。再生工程は減圧、加熱、冷却および加圧の 4つのステップからなる。減圧ステップにおいて、弁4a、6aが閉じられ、大気開放弁 9 aが開かれる。結果、吸着塔 5 a内に保持されていたガスがサイレンサー1 0 を介して 大気へ放出され、吸着塔5a内の圧力が大気圧まで減少する。

次の加熱ステップにおいて、弁12、14aが開かれる。結果、空気分離部8からの排 ガスの一部がパージガスとして、ライン11を介して加熱設備13に流入し、150~2 50℃に加熱された後、弁14aを通って吸着塔5aに流入する。この加熱パージガスの 流入により吸着剤が加熱され、これにより、吸着剤に吸着されている水分、二酸化炭素な どの不純物が吸着剤から脱着し、パージガス流とともに流出する。

図2は、再生工程を行っている吸着塔5a内のパージガスの位置的温度変化の一例を模 式的に示すグラフである。図2(a)に示すように、加熱パージガスの流入により、吸着 塔5a内に温度が高い領域(ヒートゾーン)が生じる。このヒートゾーンはパージガス流 に従って徐々に大気開放弁9a側に向かって移動する。加熱ステップが終了すると、冷却 ステップに移行される。冷却ステップでは、弁12が閉じられ、弁15が開かれる。結果 、パージガスが加熱設備13を通らずに、低温状態で吸着塔5aに直接流入する。このパージガスにより吸着剤が冷却される。また、図2(b)、(c)、(d)に示されるように、ヒートゾーンは低温のパージガス流に押され、大気開放弁9a側に移動し、やがて吸着塔5a内から押し出される。これにより、不純物が吸着剤から完全に追い出されるとともに、吸着剤の温度が次回の吸着工程に適した温度となる。なお、図2の例は、吸着塔5bが再生工程を行った場合も同様である。

[0008]

図3は、定常運転時において、再生工程を行っている吸着塔5 a 内のパージガスの時間的温度変化の一例を示すグラフである。吸着塔5 a には、下層側に水分吸着剤、上層側に二酸化炭素吸着剤が積層されているものとする。図中、実線で表した二酸化炭素吸着剤の最上部での温度は、加熱ステップに入ると、吸着塔5 a 上部からの加熱されたパージガスの流入に伴って急激に上昇し、冷却ステップへ入ったところで急下降する。破線で表したパージガス流の下流に位置する二酸化炭素吸着剤と水分吸着剤の境界部分での温度は、加熱ステップに入ってからしばらくして、なだらかに上昇をはじめ、一定温度を保った後、冷却ステップに入ってからしばらくして、なだらかに上昇をはじめ、一定温度を保った後、さらに下流(大気開放弁9 a 側)に位置する水分吸着剤最下部を出たところ(パージガスの流出部)での温度は、冷却ステップに入ってしばらく経過した後、なだらかに上昇・下降していく。なお、図3の例は、吸着塔5 b が再生工程を行った場合も同様である。

[0009]

このように冷却ステップ中に水分吸着剤の温度が計画値まで上がり、かつ、吸着工程の開始までに原料空気供給温度近くまで温度が下がるようにするため、パージガスの量と加熱設備のヒーター容量、加熱と冷却の時間配分などが決められている。

[0010]

ついで、加圧ステップにおいて、弁14a、15および大気開放弁9aが閉じられ、弁17aが開かれる。結果、吸着工程を行っている吸着塔5bからの精製空気の一部が、ライン7、ライン16を介して吸着塔5aに戻され、次の吸着工程に必要な圧力まで吸着塔5aを加圧する。

$[0\ 0\ 1\ 1]$

加圧ステップの終了時には、弁17aが閉じられ、弁4a、6aが再び開かれ、吸着塔5aにおいて、吸着工程が再び開始される。例えば、2塔式の場合なら、減圧ステップから加圧ステップの終了までの再生工程の時間と、吸着工程の時間は対応し、各工程に要する時間は2~4時間である。この場合、吸着塔5a、5bを交互に切り替えることで、精製された原料空気が連続して空気分離部8へ送られる。

[0012]

通常、空気液化分離装置は、起動の際、空気分離部8内を常温から極低温に冷やすのに 長時間かかるため、頻繁な停止は行わず連続運転を行っている。しかし、空気液化分離装 置は、何らかの理由によって緊急停止したり、保安点検のために計画停止を行うことがあ り、原料空気精製装置も同時に緊急停止したり、計画停止させることがある。

[0013]

定常運転をしていた原料空気精製装置が停止した場合、吸着塔を封止して維持したとしても、停止時間が長時間に渡ると、吸着工程を行っていた吸着塔5a内で、水分、二酸化炭素などの不純物が拡散する。従って、再起動後に吸着工程をそのまま停止時点から行うと不純物が破過する場合があり、精製空気中の不純物濃度が定常運転時よりも増加し、限界値を超える可能性が生じる。

[0014]

一方、再生工程を行っていた吸着塔 5 b 内では、原料空気精製装置が長時間停止した場合、吸着剤の再生のために導入された熱が、伝熱により外部へ放出されることがある。従って、再起動後に再生工程を停止時点から行うと、加熱不足により吸着剤の再生が不十分となり、切り替え後の吸着工程において、精製空気中の不純物濃度が定常運転時よりも増加する可能性が生じる。

[0015]

上記の問題を解決するため、従来では、原料空気精製装置の再起動後、空気分離部 8 への送ガスを行う前に、単独再生運転を行っていた。この単独再生運転とは、原料空気圧縮機 1 から吸着塔 5 a に流入する原料空気流量を、定常運転時よりも減らして低負荷の状態にし、原料空気精製装置と空気分離部間の弁 1 8 を閉じた上で、吸着塔 5 a から流出した精製空気を吸着塔 5 b に流入させ、吸着工程および再生工程を各 1 回以上行う操作である。この単独再生運転により、各吸着塔内の吸着剤の状態を定常運転時の状態に戻すことができる。

[0016]

また、緊急停止ではなく計画停止を行った場合など、単独再生運転以外の方法が、特開2002-168561号公報に開示されている。この先行出願明細書の段落0029において、「休止中の吸着塔内の吸着材が空気分離部S2で得られた窒素ガスによって再生され、これによって吸着精製装置12の精製効率の低下が防止されるようになっている」と記載されており、停止している吸着精製装置(原料空気精製装置)に窒素ガスを流し続け、原料空気精製装置の精製効率の低下を防止する方法が記載されている。

【特許文献1】特開2002-168561号公報

【発明の開示】

【発明が解決しようとする課題】

[0017]

しかしながら、吸着工程、再生工程に要する時間は各々2~4時間であるため、例えば2塔切り替え式では準備操作に要する時間は少なくとも4時間となり、この間は空気液化分離装置への送ガスを行うことができないから、空気液化分離装置の再起動が遅れるという問題があった。

[0018]

本発明は、上記従来技術の問題点に鑑み、原料空気精製装置の迅速な再起動方法を提供することを目的とする。

【課題を解決するための手段】

[0019]

かかる課題を解決するため、

請求項1にかかる発明は、空気液化分離装置の原料空気を精製する温度スイング吸着法を用いた原料空気精製装置の再起動方法であって、

原料空気精製装置の停止後、吸着工程を行っていた第1吸着塔においては、その出入口弁を閉じるとともに大気開放弁を開き、この第1吸着塔内のガスを放出した後、大気開放弁を閉じた状態とし、

再生工程を行っていた第2吸着塔においては、停止時点における再生工程の経過時間 t 1 が、以下の(1)式を満たす場合、

- $t_1 < t_2 (R_1 / R_2) \times (t_2 t_3) \cdots (1)$
- (1) 式において、
- t」は再生工程の経過時間(分)
- t₂ は再生工程時間(分)
- t3は加圧ステップ時間(分)
- R₁ はパージガス流量 (Nm³ /時間)
- R 2 は原料空気流量 (Nm³/時間)

その全ての弁を閉じた状態とし、これらの状態を維持し、

再起動直前に第1吸着塔に原料空気を流入させ、吸着工程に必要な圧力まで第1吸着塔内を加圧し、再起動直後に原料空気精製装置から空気分離部への精製空気流を遮断したまま、第1吸着塔においては吸着工程を、第2吸着塔においては再生工程を、共に最初から行った後、精製空気を空気分離部に流入させることを特徴とする原料空気精製装置の再起動方法である。

なお、 Nm^3 とは、大気圧、0 \mathbb{C} におけるガス体積を表す単位である。

[0020]

請求項2にかかる発明は、再起動後、精製空気を空気分離部に流入させるまで、吸着塔の再生工程に必要なパージガス流量に相当する原料空気流量を用いて吸着工程を行う請求項1記載の原料空気精製装置の再起動方法である。

[0021]

請求項3にかかる発明は、原料空気精製装置に供給される原料空気の温度が5~45℃、圧力が400~1000kPaである請求項1記載の原料空気精製装置の再起動方法である。

【発明の効果】

[0022]

本発明によれば、原料空気精製装置の停止時点における再生工程の経過時間 t 1 が、上記 (1) 式を満たす場合、1つの吸着塔において、吸着工程もしくは再生工程を1回だけ単独再生運転することにより、両吸着塔を定常運転時の状態に戻すことができるので、再起動から、空気液化分離装置への送ガスまでに要する時間を短縮させることができる。

[0023]

また、本発明によれば、原料空気精製装置の停止時に、吸着工程を行っていた吸着塔内のガスを放出することにより、停止中における不純物の拡散を防止することで、長時間の停止後にも高純度の精製空気を供給することができる。

【発明を実施するための最良の形態】

[0024]

以下、本発明にかかる原料空気精製装置の再起動方法の一実施形態について、図面を用いて詳しく説明する。この説明の中では、原料空気精製装置の停止時に、吸着塔 5 a が吸着工程、吸着塔 5 b が再生工程を行っているものとする。

[0025]

原料空気精製装置の停止後、吸着工程を行っていた吸着塔5aにおいて、その出入口にある弁4a、6aを閉じ、大気開放弁9aを開く。結果、吸着塔5a内に保持されていたガスが原料空気流に対して向流方向に流出する。この時、この流出ガスにともなって吸着剤に吸着されていた不純物が脱着される。このガスの流出および不純物の脱着は吸着塔5a内の温度を低下させる。吸着塔5a内の圧力が大気圧まで減少したら、大気開放弁9aを閉じる。また、原料空気精製装置の停止後、吸着塔5a内の熱は伝熱により外部へ放出されるため、吸着塔5a内の温度は徐々に低下する。原料空気精製装置の再起動後、吸着工程を行っていた吸着塔5aは原料空気の流入により再び加圧されるため、ガスの流出による温度の低下が解消されるが、不純物の脱着もしくは外部への伝熱による温度の低下の効果はそのまま残る。従って、吸着塔5aは原料空気精製装置の停止時点よりも低い温度で吸着工程を開始することになる。

[0026]

一般に、吸着剤の吸着容量は温度の低下に従って増加する。従って、原料空気精製装置の再起動後、吸着塔 5 a 内の吸着剤の吸着容量は停止時点よりも増えており、この増加は、原料空気精製装置の停止中における不純物の拡散を解消するのに十分な効果を有する。

[0027]

一方、再生工程を行っていた吸着塔 5 b において、先ず、吸着塔 5 b に通じているラインにおける全ての弁(4 b、6 b、9 b、1 4 b、1 7 b)を閉じて、吸着塔 5 b を封止する。次に、原料空気精製装置の停止時点における再生工程の経過時間 t 1 が、(1)式を満たすかどうかを判定する。(1)式の右辺は、吸着工程を行っている吸着塔 5 a から流出する精製空気を、パージガスとして用いて吸着塔 5 b において再生工程を最初から行う場合、パージガスを供給するために最低限必要になる吸着塔 5 a 内の吸着剤の吸着容量が、原料空気精製装置の停止後にも確保されることになる吸着工程の経過時間を表す。従って、再生工程の経過時間 t 1 の値が(1)式の右辺の値よりも小さい場合、本発明の再起動方法が適用可能になる。

[0028]

吸着塔5a、5bにおいて上記の操作を行った上で、停止後の原料空気精製装置を維持する。再起動を行う際は、先ず空気圧縮機2を起動し、弁4aを開く。結果、吸着塔5a内が原料空気の流入により吸着工程圧力まで加圧される。加圧の終了後、弁18を閉じたまま、原料空気精製装置から空気分離部8への精製空気流を遮断した状態で、吸着塔5bの再生工程に必要なパージガス流量に相当する原料空気流量(低負荷)で、吸着塔5aにおける吸着工程を最初から行う。その際、弁6a、19を開き、精製された原料空気をライン7、11を介して吸着塔5bに流入させる。

[0029]

吸着塔5aにおいて、再度吸着工程が最初から行われるので、再生工程を挟むことなく、吸着工程が1工程以上行われることになる。従って、吸着塔5aから不純物が破過する可能性が生じる。しかしながら、本発明の再起動方法は、再生工程の経過時間t1が(1)式を満たす場合に適用されるため、吸着塔5bにおいて再生工程を最初から行うために必要な、吸着塔5a内の吸着剤の吸着容量が原料空気精製装置の停止後にも確保される。つまり、停止直後における減圧操作による吸着容量の増加、再起動後の原料空気流量の低負荷化により、吸着工程が1工程以上行われても、不純物が破過することを防ぐことが可能になる。

[0030]

一方、吸着塔 5 b において、再生工程を最初から行う。大気開放弁 9 b を開き、吸着塔 5 b 内のガスを放出し、大気圧まで減圧する。その後、加熱、冷却および加圧の各ステップを行う。なお、原料空気精製装置の停止時点において、再生工程の減圧ステップが既に終了していた場合、再起動時に吸着塔 5 b は既に減圧された状態であるので、加熱ステップから再生工程を開始することになる。この際、吸着塔 5 a における吸着工程時間は加熱ステップから開始した再生工程時間に対応した時間になる。このように再生工程を最初から行うことにより、加熱された吸着剤が、停止中の放熱により温度が低下して再生不良になったとしても、吸着剤を全て加熱再生することが可能になる。

[0031]

吸着塔5a、5bにおいて、吸着工程および再生工程が終了した後、各工程を切り替え、原料空気流量を定常運転時に戻すとともに、弁19を閉じて弁18を開き、空気分離部8への送ガスを開始する。

[0032]

このような原料空気精製装置の再起動方法では、従来の単独再生運転のように、再起動後、吸着工程および再生工程を各1回以上行う必要がなく、再起動から空気分離部8への送ガスまでに要する時間が1工程分だけで済むため、極めて経済的である。

【実施例】

[0033]

以下、実施例により、本発明をさらに詳しく説明する。本発明は、下記実施例に何ら制限されるものではない。なお、以下の実施例および比較例において、原料空気精製装置の停止時に、吸着塔5aが吸着工程を、吸着塔5bが再生工程を行っているものとする。

[0034]

本発明の効果を判断するため、シミュレーションを行った。

例えば、吸着塔におけるガスの流出入がない停止期間において、吸着塔内のガスの濃度や温度の分布は時間の経過とともに均一化する。このような状況を模擬できるように、このシミュレーションでは、吸着塔内の物質収支および熱収支の計算式中に、軸方向ガス分散および軸方向熱伝導を考慮した。すなわち、停止中におけるガスの濃度分布の変化を、濃度分布を推進力とする拡散および温度分布に基づく対流として、停止中におけるガスの温度分布の変化を、温度分布を推進力とする伝熱として表現した。そして、再起動後の吸着工程の終了時点で得られる、吸着塔内の精製空気の流出部における二酸化炭素濃度を計算した。また、この結果を定常運転中に吸着工程を行っている吸着塔内の精製空気の流出部における二酸化炭素濃度と比較した。なお、シミュレーションの詳細は、日本酸素技報No. 22,13-18(2003)に開示されている。

[0035]

[実施例1]

図1に示された空気液化分離装置を想定し、シミュレーションを行った。本シミュレー ションで用いた各操作条件を以下に示す。

水分吸着剤:プロカタリーゼ社製活性アルミナ(層高:0.88m)

二酸化炭素吸着剤:グレース社製Na-Xゼオライト(層高:0.65m)

原料空気圧力: 620kPa

原料空気温度:40℃

パージガス率 (パージガス流量/原料空気流量):40%

加熱ガス温度:200℃ 吸着工程時間:120分

再生工程時間:120分(減圧ステップ:3分、加熱ステップ:43分、冷却ステップ: 62分、加圧ステップ:12分)

上記の各操作条件において、本発明の再起動方法が適用できる範囲を(1)式を用いて 計算した。

 $t_1 < 120分-0.40×(120分-12分) = 76.8分$

計算結果から、再生工程の経過時間 t が 7 6.8 分未満であれば、本発明の再起動方法 が適用可能であることが明らかとなった。そこで、再生工程の開始から70分後に原料空 気精製装置が停止したものとした。

原料空気精製装置の停止後、再生工程を行っていた吸着塔5bを、全ての弁を閉じた状 態で維持し、一方、吸着工程を行っていた吸着塔5aを、吸着塔5a内を減圧した後、全 ての弁を閉じた状態で維持したものとした。本シミュレーションでは、72時間経過後、 再起動に先立ち、吸着塔5a内を原料空気により620kPaまで加圧し、その後、吸着 工程を低負荷の状態で最初から行ったものとした。一方、吸着塔5bにおいて、再起動後 、再生工程を吸着塔5aから流出する精製空気をパージガスとして用いて最初から行った ものとした。

図4は、上記条件に従って行われた吸着工程が終了した時点における、吸着塔5a内の 二酸化炭素濃度分布を示すグラフである。なお、基準吸着工程とは、定常運転時の吸着工 程終了時点における吸着塔5a内の二酸化炭素濃度分布のことである。結果、精製空気の 流出部 (層高:1.53m) において、基準吸着工程の二酸化炭素濃度が約1.7ppm 、上記条件における吸着塔5aの二酸化炭素濃度が約1.3ppmであった。この結果は 、定常運転時と比べて、再起動後に吸着塔5aから流出する精製空気中の二酸化炭素濃度 が低いことを示すとともに、この精製空気をパージガスとして用いて再生工程を行った吸 着塔5bにおいて、全ての吸着剤が適切に加熱再生されたことを示す。従って、各工程の 終了後、定常運転を開始し、空気分離部8への送ガスを行うことが可能になる。

以上の結果から、72時間という長時間停止しても、本発明の再起動方法を用いること で、精製空気中の二酸化炭素濃度が定常運転時よりも増加することなく、原料空気精製装 置を再起動できることが明らかとなった。なお、本シミュレーションでは、停止時点とし て再生工程の開始から70分後を設定したが、この停止時点は(1)式の計算結果である 76.8分前であれば、どの時点においても二酸化炭素濃度は定常運転時よりも増加しな いことを、シミュレーションにより確認した。

[0040]

実施例2では、実施例1で用いられた各条件の数値を変更して、シミュレーションを行 [実施例2] った。本シミュレーションで用いられた各操作条件を以下に示す。

水分吸着剤:プロカタリーゼ社製活性アルミナ(層高:0.28m)

7/ ページ:

二酸化炭素吸着剤:グレース社製Na-Xゼオライト(層高:0.32m)

原料空気圧力: 620kPa

原料空気温度:10℃

パージガス率 (パージガス流量/原料空気流量):15%

加熱ガス温度:150℃ 吸着工程時間:240分

再生工程時間:240分(減圧ステップ:6分、加熱ステップ:86分、冷却ステップ:

124分、加圧ステップ:24分)

[0041]

上記の各操作条件において、本発明の再起動方法が適用できる範囲を(1)式を用いて 計算した。

 $t < 240分-0.15 \times (240分-24分) = 207.6分$

計算結果から、再生工程の経過時間が207.6分未満であれば、本発明の再起動方法 が適用可能であることが明らかとなった。そこで、再生工程の開始から205分後に原料 空気精製装置が停止したものとした。その後、実施例1と同様の操作を行い、吸着塔5 a において、吸着工程を低負荷の状態で最初から行ったものとした。一方、吸着塔5bにお いて、再起動後、再生工程を吸着塔5aから流出する精製空気をパージガスとして用いて 最初から行ったものとした。

図5は、上記条件に従って行われた吸着工程が終了した時点における、吸着塔5a内の 二酸化炭素濃度分布を示すグラフである。結果、精製空気の流出部(層高:0.60m) において、基準吸着工程の二酸化炭素濃度が約0.3ppm、上記条件における吸着塔5 aの二酸化炭素濃度が約0.1ppmであった。この結果は、定常運転時と比べて、再起 動後に吸着塔5aから流出する精製空気中の二酸化炭素濃度が低いことを示すとともに、 この精製空気をパージガスとして用いて再生工程を行った吸着塔5bにおいて、全ての吸 着剤が加熱再生されたことを示す。従って、各工程の終了後、定常運転を開始し、空気分 離部8への送ガスを行うことが可能になる。

以上の結果から、72時間という長時間停止しても、本発明の再起動方法を用いること [0043]で、精製空気中の二酸化炭素濃度が定常運転時よりも増加することなく、原料空気精製装 置を再起動できることが明らかとなった。なお、本シミュレーションでは、停止時点とし て再生工程の開始から205分後を設定したが、この停止時点は(1)式の計算結果であ る207.6分前であれば、どの時点においても二酸化炭素濃度は定常運転時よりも増加 しないことを、シミュレーションにより確認した。

[0044]

実施例1における操作条件において、本発明の再起動方法を適用できるのは76.8分 [比較例1] までである。そこで、比較例1として、本発明において、76.8分以降に原料空気精製 装置を停止し、再起動を行った場合に得られる、吸着塔5a内の二酸化炭素濃度を計算し た。本シミュレーションで用いられた各操作条件は、実施例1のものと同じである。

本シミュレーションでは、再生工程開始から90分後に原料空気精製装置が停止したも [0045]のとした。その後、実施例1と同様の操作を行い、吸着塔5aにおいて、吸着工程を低負 荷の状態で最初から行ったものとした。一方、吸着塔5bにおいて、再起動後、再生工程 を吸着塔5aから流出する精製空気をパージガスとして用いて最初から行ったものとした

図6は、上記条件に従って行われた吸着工程が終了した時点における、吸着塔5a内の [0046]二酸化炭素濃度分布を示すグラフである。結果、精製空気の流出部 (層高: 1.53 m) において、基準吸着工程の二酸化炭素濃度が約1.7ppm、上記条件における吸着塔5

aの二酸化炭素濃度が約11.5ppmであった。この結果は、定常運転時と比べて再起 動後に吸着塔5aから流出する精製空気中の二酸化炭素濃度が高いことを示す。また、こ の精製空気をパージガスとして用いて再生工程を行った吸着塔5bに、不純物が流入する ことを示す。従って、(1)式から求めた時間範囲外では、さらに数回の単独再生運転を 実施しなければならないことが明らかとなった。

[0047]

「比較例2]

比較例2として、本発明において、原料空気精製装置の再起動後、吸着工程および再生 工程を最初からではなく、停止時点以降から再開した場合に得られる、吸着塔5b内の二 酸化炭素濃度を計算した。本シミュレーションで用いられた各操作条件は、実施例1のも のと同じである。

[0048]

本シミュレーションでは、吸着塔5bの再生工程の開始から64分後に原料空気精製装 置が停止したものとした。その後、実施例1と同様の操作を行い、吸着塔5aにおいて、 吸着工程を停止時点から低負荷の状態で吸着工程を再開したものとした。この時、吸着塔 5 a から不純物が破過しないことをシミュレーションにより確認した。一方、吸着塔 5 b において、再起動後、再生工程を停止時点から吸着塔 5 a から流出する精製空気をパージ ガスとして用いて再開したものとした。各工程の終了後、定常運転を開始したものとした

[0049]

0

図7は、上記条件に従って行われた、定常運転開始後、最初の吸着工程が終了した時点 における、吸着塔 5 b 内の二酸化炭素濃度分布を示すグラフである。結果、精製空気の流 出部(層高: 1.53m)において、基準吸着工程の二酸化炭素濃度が約1.7ppm、 上記条件における吸着塔5bの二酸化炭素濃度が約1.9ppmであった。この結果は、 定常運転時と比べて、再起動後に吸着塔5bから流出する精製空気中の二酸化炭素濃度が やや高いことを示す。従って、(1)式から求めた時間範囲内であっても、本発明の再起 動方法から逸脱して原料空気精製装置を再起動すると再生不足となり、定常運転の開始時 に吸着塔5bから不純物が破過することが明らかとなった。

[0050]

「比較例3]

実施例2における操作条件において、本発明の再起動方法を適用できるのは207.6 分までである。そこで、比較例3として、本発明において、207.6分以降に原料空気 精製装置が停止し、再起動を行った場合に得られる、吸着塔5a、5b内の精製空気の流 出部における二酸化炭素濃度を計算した。本シミュレーションで用いられた各操作条件は 、実施例2のものと同じである。

[0051]

本シミュレーションでは、再生工程開始から230分後に原料空気精製装置が停止した ものとした。その後、実施例2と同様の操作を行い、吸着塔5aにおいて、吸着工程を低 負荷の状態で最初から行ったものとした。一方、吸着塔5bにおいて、再起動後、再生工 程を吸着塔5aから流出する精製空気をパージガスとして用いて最初から行ったものとし た。

[0052]

図8は、上記条件に従って行われた吸着工程が終了した時点における、吸着塔5a内の 二酸化炭素濃度分布を示すグラフである。結果、精製空気の流出部(層高: 0.60m) において、基準吸着工程の二酸化炭素濃度が約0.3ppm、上記条件における吸着塔5 aの二酸化炭素濃度が約1.2ppmであった。この結果は、定常運転時と比べて、再起 動後に吸着塔5aから流出する精製空気中の二酸化炭素濃度が高いことを示す。また、こ の精製空気をパージガスとして用いて再生工程を行った吸着塔5bにおいて、吸着剤に不 純物が吸着することを示す。従って、(1)式から求めた時間範囲外では、さらに数回の 単独再生運転を実施しなければならないことが明らかとなった。

「比較例4]

比較例3の結果から、(1)式から求めた時間範囲の限界値から20分以上超えた時点 において、原料空気精製装置が停止すると、再起動後、精製空気中の二酸化炭素濃度が定 常運転時よりも増加することが明らかとなった。そこで、比較例4として、本発明におい て、(1)式から求めた時間範囲の限界値を少し過ぎた時点において、原料空気精製装置 が停止し、再起動を行った場合に得られる、吸着塔5a内の精製空気の流出部における二 酸化炭素濃度を計算した。本シミュレーションで用いられた各操作条件は、実施例2のも のと同じである。

[0053]

本シミュレーションでは、再生工程開始から215分後に原料空気精製装置が停止した ものとした。その後、実施例2と同様の操作を行い、吸着塔5 a において、吸着工程を低 負荷の状態で最初から行ったものとした。一方、吸着塔5bにおいて、再起動後、吸着塔 5 a から流出する精製空気をパージガスとして用いて再生工程を最初から行ったものとし た。

[0054]

図9は、上記条件に従って行われた吸着工程が終了した時点における、吸着塔5a内の 二酸化炭素濃度分布を示すグラフである。結果、精製空気の流出部(層高:0.60m) において、基準吸着工程の二酸化炭素濃度が約0.3ppm、上記条件における吸着塔5 aの二酸化炭素濃度が約0.4ppmであった。この結果は、再起動後の精製空気中の二 酸化炭素濃度は、比較例3と比べると3分の1に低下したが、定常運転時と比べてやや高 いことを示すとともに、この精製空気をパージガスとして用いて再生工程を行った吸着塔 5 b において、吸着剤に不純物が吸着することを示す。従って、10分未満であっても、 (1) 式から求めた時間範囲外で原料空気精製装置が停止した場合、定常運転を行うため には、さらに数回の単独再生運転を実施しなければならないことが明らかとなった。

【図面の簡単な説明】

[0055]

【図1】本発明における空気液化分離装置の一例を示す構成図である。

【図2】(a)再生工程を行っている吸着塔5a、5b内のパージガスの時間taに おける位置的温度変化を示すグラフである。(b) (a) に示すパージガスの時間 t ь における位置的温度変化を示すグラフである。 (с) (а) に示すパージガスの時 間tcにおける位置的温度変化を示すグラフである。(d)(a)に示すパージガス の時間tdにおける位置的温度変化を示すグラフである。

【図3】再生工程を行っている吸着塔5a、5b内のパージガスの時間的温度変化を 示すグラフである。

【図4】実施例1において、再起動時に行われた吸着工程が終了した時点における吸 着塔5a内の二酸化炭素濃度分布を示すグラフである。

【図5】実施例2において、再起動時に行われた吸着工程が終了した時点における吸 着塔5a内の二酸化炭素濃度分布を示すグラフである。

【図6】比較例1において、再起動時に行われた吸着工程が終了した時点における吸 着塔5a内の二酸化炭素濃度分布を示すグラフである。

【図7】比較例2において、定常運転開始時に行われた吸着工程が終了した時点にお ける吸着塔5b内の二酸化炭素濃度分布を示すグラフである。

【図8】比較例3において、再起動時に行われた吸着工程が終了した時点における吸 着塔5a内の二酸化炭素濃度分布を示すグラフである。

【図9】比較例3において、再起動時に行われた吸着工程が終了した時点における吸 着塔5a内の二酸化炭素濃度分布を示すグラフである。

【符号の説明】

[0056]

5 a 、5 b 吸着塔

8 空気分離部

9 a、9 b 大気開放弁

出証特2005-3005926

【図4】

【図5】

【図8】

【図9】

【書類名】要約書

【要約】

【課題】 原料空気精製装置の迅速な再起動方法を提供する。

【解決手段】 原料空気精製装置の停止後、吸着工程を行っていた吸着塔5aにおいては、その出入口弁を閉じるとともに大気開放弁9aを開き、この吸着塔5a内のガスを放出した後、大気開放弁9aを閉じた状態とし、

再生工程を行っていた吸着塔 5 b においては、停止時点における再生工程の経過時間 t 1 が、以下の式を満たす場合、

- $t_1 < t_2 (R_1 / R_2) \times (t_2 t_3)$
- t 2 は再生工程時間
- t 3 は加圧ステップ時間
- R1 は再生ガス流量
- R 2 は原料空気流量

その全ての弁を閉じた状態とし、これらの状態を維持し、

再起動直前に吸着塔5 a に原料空気を流入させ、吸着工程圧力まで吸着塔5 a 内を加圧し、再起動直後に原料空気精製装置から空気分離部8への精製空気流を遮断したまま、吸着塔5 a においては吸着工程を、吸着塔5 b においては再生工程を最初から行った後、精製空気を空気分離部8に流入させる。

【選択図】

図 1

認定·付加情報

特許出願の番号

特願2004-102084

受付番号

5 0 4 0 0 5 3 8 2 6 0

書類名

特許願

担当官

第六担当上席

0 0 9 5

作成日

平成16年 4月 1日

<認定情報・付加情報>

【特許出願人】

【識別番号】

000231235

【住所又は居所】

東京都港区西新橋1丁目16番7号

【氏名又は名称】

日本酸素株式会社

【代理人】

申請人

【識別番号】

100064908

【住所又は居所】

東京都中央区八重洲2丁目3番1号 志賀国際特

許事務所

【氏名又は名称】

志賀 正武

【選任した代理人】

【識別番号】

100108578

【住所又は居所】

東京都中央区八重洲2丁目3番1号 志賀国際特

許事務所

【氏名又は名称】

高橋 詔男

【選任した代理人】

【識別番号】

100089037

【住所又は居所】

東京都中央区八重洲2丁目3番1号 志賀国際特

許事務所

【氏名又は名称】

渡邊 隆

【選任した代理人】

【識別番号】

100101465

【住所又は居所】

東京都中央区八重洲2丁目3番1号 志賀国際特

許事務所

【氏名又は名称】

青山 正和

【選任した代理人】

【識別番号】

100094400

【住所又は居所】

東京都中央区八重洲2丁目3番1号 志賀国際特

許事務所

【氏名又は名称】

鈴木 三義

2/E

【選任した代理人】

【識別番号】 100107836

【住所又は居所】 東京都中央区八重洲2丁目3番1号 志賀国際特

許事務所

【氏名又は名称】

西 和哉

【選任した代理人】

【識別番号】

100108453

【住所又は居所】

東京都中央区八重洲2丁目3番1号 志賀国際特

許事務所

【氏名又は名称】

村山 靖彦

特願2004-102084

出願人履歴情報

識別番号

[000231235]

1. 変更年月日 1990年 8月16日

[変更理由] 新規登録

住 所 東京都港区西新橋1丁目16番7号

氏 名 日本酸素株式会社

2. 変更年月日 2004年10月 1日

[変更理由] 名称変更 住所変更

住 所 東京都品川区小山一丁目3番26号

氏 名 大陽日酸株式会社