Mathematical Proof

John Shea

February 15, 2019

Assignment #6

Question 1

Theorem 1. If A is a set and $\{B_i|i \in I\}$ is an indexed family of sets. $A \times (\bigcup_{i \in I} B_i) = \bigcup_{i \in I} (A \times B)$.

Proof. Suppose $(a,b) \in A \times (\cup_{i \in I} B_i)$. Then $a \in A$ and $b \in \cup_{i \in I}$. so $A \times (\cup_{i \in I} B_i) \subseteq \cup_{i \in I} (A \times B)$.

Suppose $(x,y) \in \bigcup_{i \in I} (A \times B)$. Then $x \in So, \bigcup_{i \in I} (A \times B) \subseteq A \times (\bigcup_{i \in I} B_i)$. Therefore $A \times (\bigcup_{i \in I} = \bigcup_{i \in I})(A \times B)$.

Question 2

Theorem 2.

Proof.

a $S^{-1} \circ R$

 $S = \{(4,a), (4,d), (5,b), (5,c)\}$, and is a relation from B to C, so $S^{-1} = \{(a,4), (d,4), (b,5), (c,5)\}$ and is a relation from C to B. $R = \{(1,b), (2,a), (2,b), (2,c), (3,d)\}$ and is a relation from A to C. Therefore $S^{-1} \circ R = \{(1,5), (2,4), (2,5)\}$ and is a relation from A to B. This results because we now have a relation that begins in A, connects through C and arrives at B. The final relation $S^{-1} \circ R$ becomes a set of ordered pairs that have elements of A as the first coordinate and elements of B as the second.

b $R^{-1} \circ S$

 $R = \{(1,b), (2,a), (2,b), (2,c), (3,d)\}$ and is a relation from A to C, $Rso^{-1} = \{(b,1), (a,2), (b,2), (c,2), (d,3) \text{ and is a relation from } C \text{ to } A.$ $S = \{(4,a), (4,d), (5,b), (5,c)\}$ and is a relation from B to C. Therefore $R^{-1} \circ S$ is a relation from B to A. This results because we now have a relation that begins in B, connects through C and arrives at A. The final relation $R^{-1} \circ S$ becomes a set of ordered pairs that have elements of B as the first coordinate and elements of A as the second.

Question 3

Theorem 3.

Proof.

a $R = Dom(R) \times Ran(R)$

Suppose $A = \{1, 2, 3\}$ and $B = \{a, b, c\}$ and $R = \{(1, a), (2, b), (3, c)\}$. Then R is a relation from A to B. In this scenario, $Dom(R) = \{1, 2, 3\}$ and $Ran(R) = \{a, b, c\}$. The Cartesian product of Dom(R) and Ran(R) would feature all possible combinations of the two sets. Hence, $Dom(R) \times Ran(R) = \{(1, a), (1, b), (1, c), (2, a), (2, b), (2, c), (3, a), (3, b), (3, c)\}$. Therefore, R does not necessarily equal $Dom(R) \times Ran(R)$, and the statement $R = Dom(R) \times Ran(R)$ is untrue. It would be true to state that $R \subseteq Dom(R) \times Ran(R)$.

b $(R \cap S)^{-1} = R^{-1} \cap S^{-1}$

Suppose $(b,a) \in (R \cap S)^{-1}$. Then $(a,b) \in R \cap S$. For any $(a,b) \in R, (b,a) \in R^{-1}$ and for any $(a,b) \in S, (b,a) \in S^{-1}$. Hence, $(b,a) \in R^{-1}$ and S^{-1} , and consequently $(b,a) \in R^{-1} \cap S^{-1}$. Therefore, $(R \cap S)^{-1} \subseteq R^{-1} \cap S^{-1}$

Suppose $(b,a) \in R^{-1} \cap S^{-1}$. Then $(b,a) \in R^{-1}$ and $(b,a) \in S^{-1}$. Hence, $(a,b) \in R$ and $(a,b) \in S$, which means $(a,b) \in (R \cap S)$. Hence, $(b,a) \in (R \cap S)^{-1}$. Therefore, $R^{-1} \cap S^{-1} \subseteq (R \cap S)^{-1}$. Taken together this proves that $(R \cap S)^{-1} = R^{-1} \cap S^{-1}$.

Question 4

Question 5

Question 6