

Compression Assistor

CASPR (CARDIAC ASSISTANCE, SAFETY, AND PREVENTIVE RESEARCH) INC.

TEAM 2

ANGELINE AGUINALDO — BME NICHOLAS KLAUSNER — BME ALEXANDER LY - MEM

ADVISORS

DR. RYSZERD LEC JOHN ALAMIA MARCO JANKO

Items to Discuss

Mission Statement Problem Overview Project Objective Technical Activity Experimental Testing Results Future Work Questions References

Mission Statement of the Compression Assistor

The Compression Assistor will increase the potential to preserve life through manual CPR, improve the accuracy of CPR chest compressions through real-time feedback during the procedure, and minimize injury imposed by CPR.

Figure 1. Cardiopulmonary Resusciation (CPR) diagram

http://www.arthursclipart.org/medical/respiratory/cpr%202.gif

What Happens During CPR?

- Manually contract ventricles of the heart
- Allow blood flow throughout the body
- Combination of rescue breathing and chest compressions
- Sustains oxygenation to the brain

American Red Cross Standard Guidelines

For

First Aid/CPR/AED Response

100 compressions/minute

30 Compressions

- ± 2 inches for an adult
- ± 1.5 inches for a child
- ± 0.5 inches for an infant

2 Rescue Breaths

Problem Overview

- It is likely that conditions are not met on site of cardiac emergency
- Accuracy and efficiency of CPR is compromised due to lack of feedback during the procedure
- With inaccurate CPR technique, chances of survival fall 7-10% every minute defibrillation is delayed

Project Objective

Provide real-time feedback to the medical responder during the procedure

Display—

Number of compressions

Compression rate

Depth of compressions

Cost efficient and accurate

Figure 2. Compression Assistor Prototype

Important Features to Consider

Accurate

Stable

Calibrated

Durable

Weather Resistant

Washable

Flexible

Adjustable for each responder

Portable

Upgradable

Features of Focus for the Compressions Assistor

Adjust for each responder

- Glove design is universal
- One size fits all

Washable

• Glove is machine washable

Upgradable

Entire device can be easily taken apart

Stable

- Fastener covers entire surface area of accelerometer case
- Allows for optimal stability of the accelerometer
- Minimizes noisy signal

Calibrated

- Includes acceleration threshold in code
- Negates gravitational acceleration

Technical Activities

- 1) Programming the Accelerometer
- 2) Designing the Glove
- 3) Implementing the Graphic User Interface (GUI)

Programming the Accelerometer

Figure #. Signal flow of Compression Assistor

Programming the Accelerometer

```
Transform datain into frequency domain via FFT and shift output (A)
    so that zero-frequency amplitude is in the middle of the array
    (instead of the beginning)
    fft(datain);
    fftshift(A);
    Convert datain of type datain type to type dataout type
for j = 1 : N
   if iomega array(j) ~= 0
       A(j) = A(j) * (iomega array(j) ^ iomega exp);
    else
       A(j) = complex(0.0,0.0);
    end
end
   Shift new frequency-amplitude array back to MATLAB format and
    transform back into the time domain via the inverse FFT.
   ifftshift(A);
datain = ifft(A);
    Remove zeros that were added to datain in order to pad to next
   biggerst power of 2 and return dataout.
if size1 > size2
    dataout = real(datain(1:size1,size2));
else
    dataout = real(datain(size1,1:size2));
end
return
```

Figure #. Sample code of the *Compression Assistor*

Figure #. Graph of acceleration from the *Compression Assistor*MATLAB program

Designing the Glove

Universal Design

- **Left-handedness**
 - **Right-handedness**
- One Size Fits All
 - Fabric is **stretchable** and flexible

Figure 3. Left and right handed capabilities for glove design

Implementing the Graphic User Interface (GUI)

Toggle button that initiates the program

Duration of procedure

15

Acceleration from VideoPoint

Figure #. Actual acceleration imposed on ADXL335 Accelerometer during Trial 1

Acceleration Comparison Table				
Trial	Acceleration (VideoPoint)	Acceleration (MATLAB)		Percent Error / 100
1	0.72144	(0.729	0.01037037
2	0.632072	0.	.6535	0.032789594
3	0.69039	0.	.6947	0.006204117
4	0.721442	0.	.7238	0.003257806
5	0.62937	0.	.5901	0.066548043
6	0.554042	0.	.5866	0.055502898
		Average Percent Error / 100	0	0.029112138

Figure #. Actual acceleration imposed on ADXL335 Accelerometer

Experimental Testing Results

Compression Assistor can accurately detect acceleration with a 2.91% error.

Demonstration

Future Work

Performs necessary compressions for CPR without rescue breaths

Functions

Detect electrical activity of the heart

Give cardiopulmonary compressions

Display number of compressions

Display duration of procedure

Perform 3 types of CPR: (1) infant, (2), child, (3) adult

Future Work

Similar benefits to Compression Assistor—

- **Consistent compression** performance
- Improve accuracy of CPR
- Minimize injury to the patient during the procedure

References

[1] "American Red Cross First Aid/CPR/AED Participant's Manual," [Online]. Available: https://www.naz.edu/campus-safety/documents/CPR-AED-First%20Aid-Participants Manual.pdf

[2] "CPR Statistics," [Online]. Available: http://www.heart.org/HEARTORG/CPRAndECC/WhatisCPR/CPRFactsandStats/CPR-Statistics UCM 307542 Article.jsp

Questions?

THANK YOU FOR ATTENDING OUR PRESENTATION