vanet-routing-compare.cc

User's Guide

1. Motivation and Background

The ns-3 simulator provides a rich set of modules which support various networking simulation scenarios. Effective simulation of a vehicular ad hoc network (VANET) requires models that capture the highly dynamic wireless, propagation and mobility characteristics.

We describe here an *ns-3* script, *vanet-routing-compare.cc*, that uniquely combines several *ns-3* modules and examples to assist the VANET simulation developer. Most notably, we draw from the following *ns-3* examples:

- [R.1] ./examples/routing/manet-routing.compare.cc:
 Runs DSDV, AODV, OLSR, or DSR routing protocols in a typical random waypoint model using 802.11b.
- [R.2] /src/propagation/model/itu-r-1411-los-propagation-loss-model.cc:

 Models Recommendation ITU P.1441 propagation loss model, suitable for addressing propagation methods for short-range outdoor systems in the 300 MHz to 100 GHz, making it a suitable contender for 802.111p VANET simulations.
- [R.3] ./src/mobility/examples/ns2-mobility-trace.cc: Loads ns2 mobility trace files (which may, for example, be generated from SUMO)
- [R.4] ./src/wave/examples/wave-simple-80211p.cc: Models 802.11p/WAVE message transmission and receipt between two nodes.

Individually, each example contributes some capability, but none provides everything desired in a VANET simulation. For example, [R.1] simulates routing protocols, but does so in a MANET environment using a Random Waypoint (RWP) model and 802.11b Wi-Fi settings. Furthermore, the scenario is absent assumed Basic Safety Messages (BSMs) and utilizes the Friis propagation loss model.

We contend that more-realistic VANET routing protocol simulation can be achieved with the following: 1) realistic vehicular mobility traces; 2) a propagation loss model suitable to VANET conditions (e.g.. ITU R-1411); 3) background data (i.e. safety messages) contending for the channel along with routing data; and 4) routing protocols better-suited for VANET (e.g. GPSR). Thus, the *ns-3* script, *vanet-routing-compare.cc*, combines the modules and examples above, allowing parameter customization in order to model various VANET scenarios.

2. Parameters

The following parameters may be used when running a VANET routing simulation:

Parameter	Meaning	Values	Default	Example
CSVfileName	The name of the CSV output file name	<string></string>	vanet-routing.output.csv	./wafrun "scratch/vanet-routing- compareCSVfileName=AODV.csv"
totaltime	Simulation end time	<double></double>	300.01	./wafrun "scratch/vanet-routing- comparetotaltime=100"
nodes	Number of nodes (i.e. vehicles)	<int></int>	156	./wafrun "scratch/vanet-routing- comparenodes=51"
sinks	Number of routing sinks	<int></int>	10	./wafrun "scratch/vanet-routing- comparesinks=25"
txp	Transmit power (dB)	<double></double>	7.5	./wafrun "scratch/vanet-routing- comparetxp=20"
traceMobility	Enable mobility tracing	<boolean></boolean>	FALSE	./wafrun "scratch/vanet-routing- comparetraceMobility=1"
protocol	Routing protocol	1=OLSR; 2=AODV; 3=DSDV; 4=DSR	2 (AODV)	./wafrun "scratch/vanet-routing- compareprotocol=4"
lossModel	Propagation loss model	1=Friis; 2=ItuR1411Los; 3=TwoRayGround; 4=LogDistance	2 (ITU R-1411)	./wafrun "scratch/vanet-routing- comparelossModel=3"
phyMode	Wifi Phy mode	802.11p PHY mode settings	OfdmRate6MbpsBW10M Hz	
80211Mode	802.11 mode (i.e. b/p)	1=802.11p; 2=802.11b		./wafrun "scratch/vanet-routing- compare80211Mode=2"
traceFile	Ns2 movement trace file	ns-2 mobility trace file	./scratch/ct-unterstrass- 1day.filt.5.adj.mov	./wafrun "scratch/vanet-routing- comparetraceFile=trace.out"
logFile	Mobility log file	<string></string>	ct-unterstrass- 1day.filt.5.adj.log	./wafrun "scratch/vanet-routing- comparelogFile=mobility.log"
mobility	Mobility model	1=trace; 2=RWP		./wafrun "scratch/vanet-routing- comparemobility=2"
rate	Data rate for routing data	<see default=""></see>	2048bps	./wafrun "scratch/vanet-routing- comparerate=4048bps"
phyMode_b	Phy mode 802.11b	<see default=""></see>	DsssRate11Mbps	•
speed	Node speed (m/s)	<int></int>	20	./wafrun "scratch/vanet-routing- comparespeed=15"
pause	Node pause (s)	<int></int>	0	./wafrun "scratch/vanet-routing- comparepause=3"
verbose	Output	0=quiet; 1=verbose	0	./wafrun "scratch/vanet-routing- compareverbose=1"
sinknode	WAVE Rx sink node	<int></int>	14	./wafrun "scratch/vanet-routing- comparesinknode=0"
bsm	(WAVE) BSM size (bytes)	<int></int>	200	./wafrun "scratch/vanet-routing- comparebsm=175"
interval	(WAVE) BSM interval (s)	<double></double>	0.1	./wafrun "scratch/vanet-routing- compareinterval=1.0"
scenario	Predefined scenarios	1=Realistic,Zurich; 2=51 nodes, RWP, 100s; 3=101 nodes, RWP, 10s	1	./wafrun "scratch/vanet-routing- comparescenario=2"

3. Scenarios

The following predefined scenarios may be used to set up certain parameters prior to a simulation run.

[Scenario 1] Realistic, Zurich

```
--scenario=1
1=Realistic,Zurich
```

Scenario 1 plays back a realistic vehicular trace file of 156 vehicles over 300 seconds in a 4.6 km x 3.0 km suburban section of Zurich, Switzerland. One vehicle (#14) serves as the WAVE "sink" node (receiving WAVE messages) while the other 155 vehicles transmit 200-byte WAVE BSMs 10 times per second (i.e. total WAVE transmit rate = $155 \times 10 = 1550 \text{ pps}$).

Default parameter modifications:

```
m_traceFile = "./scratch/ct-unterstrass-1day.filt.5.adj.mov";
m_logFile = "ct-unterstrass-1day.filt.5.adj.log";
m_mobility = 1;
m_nNodes = 156;
m_TotalTime = 300.01;
m_nodeSpeed = 0;
m_nodePause = 0;
```

[Scenario 2] 51 nodes using Random Waypoint for 100s

```
--scenario=2
2=51 nodes, RWP, 100s
```

Scenario 2 models 51 nodes using a Random Waypoint model in a 300 m x 1500 m synthetic 4-lane highway. One node serves as the WAVE "sink" node (receiving WAVE messages) while the other 50 nodes transmit 200-byte WAVE BSMs 10 times per second (i.e. total WAVE transmit rate = $50 \times 10 = 500 \text{ WAVE pps}$).

Default parameter modifications:

```
m_traceFile = "";
m_logFile = "";
m_mobility = 2;
m_nNodes = 51;
m_TotalTime = 100.0;
m_nodeSpeed = 20;
m_nodePause = 0;
```

[Scenario 3] 101 nodes using Random Waypoint for 10s

```
--scenario=3
3=101 nodes, RWP, 10s
```

Scenario 2 models 101 nodes using a Random Waypoint model in a 300 m x 1500 m synthetic 4-lane highway. One node serves as the WAVE "sink" node (receiving WAVE messages) while the other 100 nodes transmit 200-byte WAVE BSMs 10 times per second (i.e. total WAVE transmit rate = $100 \times 10 = 1000 \text{ pps}$).

Default parameter modifications:

```
m_traceFile = "";
m_logFile = "";
m_mobility = 2;
m_nNodes = 101;
m_TotalTime = 10.0;
m_nodeSpeed = 1;
m_nodePause = 0;
```