2. DZ

Pitanje 1

Na što je potrebno paziti prilikom odabira referentnih smjerova struja kod primjene Kirchhoffovog zakona za struje?

Odaberite jedan ili više odgovora:

Referentni smjer možemo izabrati u bilo kojem smjeru. 🗸

Referentni smjer struje se uvijek uzima iz '+' strane izvora u mreži.

Referentni smjer se uvijek odabire u stvarnom smjeru struje.

Kada se jednom odabere referentni smjer, taj smjer se mora poštivati cijelo vrijeme prilikom rješavanja mreže.

Povratna informacija

Točan odgovor je: Referentni smjer možemo izabrati u bilo kojem smjeru., Kada se jednom odabere referentni smjer, taj smjer se mora poštivati cijelo vrijeme prilikom rješavanja mreže..

Pitanje 2

4)

Koja od slijedećih slika je ekvivalentna zadanom dijelu mreže?
Odaberite jedan ili više odgovora: 3) 2)
4)
1) 🗸
Povratna informacija
Točan odgovor je: 1).
Pitanje 3
Koja od slijedećih formula predstavlja ulaznu impedanciju za vremenski nepromjenjiv dvopol, koji u sebi nema nezavisnih izvora, kojemu su početni uvjeti jednaki nuli i koji je u trenutku t=0 spojen na strujni izvor I(s).
Odaberite jedan ili više odgovora:
Y(s)=I(s)/U(s)
Nijedan od ponuđenih.
Z(s)=U(s)/I(s)
Y(s)=U(s)/R + U(s)*s*C+ U(s)/L(s)
Povratna informacija
Točan odgovor je: Z(s)=U(s)/I(s).
Pitanje 3
Da bi odredili Nortonovu struju $I_N(s)$, što sve treba učiniti sa priključnicama promatranog dvopola?
Odaberite jedan ili više odgovora:
dvopol treba biti u praznom hodu
▼ dvopol treba kratko spojiti √
na dvopol treba spojiti Nortonovu admitanciju
na dvopol treba spojiti pomoćni strujni izvor
na dvopol treba spojiti pomoćni naponski izvor
Povratna informacija
Točan odgovor je: dvopol treba kratko spojiti.

Točan odgovor je: 70,7 V.

2. DZ Kirchhoffovi zakoni. Mrežne transformacije. Teoremi mreža.

Zadan je valni oblik struje kroz otpor $i_R(t)$. Odrediti valni oblik struje kroz kapacitet $i_C(t)$ ako je zadano R=1, C=1.

Odaberite jedan ili više odgovora:

3)

4)

▼ 1) **√**

Točan odgovor je: 1).

Izračunaj struju prve konture I1 ako je zadano:

 $R=1\Omega$,

U1= 10 V,

U2= 5 V,

U3 = 1 V.

Odaberite jedan ili više odgovora:

2,5 A

-2,5 A

-8/3 A

-14/3 A **√**

Točan odgovor je: -14/3 A.

Pitanje 5

Ako u nekom čvoru A završavaju 3 grane i ako kroz grane 1 i 2 struje I1 i I2 teku prema čvoru A, dok kroz granu 3 struja I3 teče iz čvora, kako bi tada sve mogao glasiti Kirchhoffov zakon za struje?

Odaberite jedan ili više odgovora:

l1 + l2 + l3 = 0

I1 + I2 - I3 = 0 √

13 = -12 + 11.

I3 = I2 + I1. **√**

Točan odgovor je: 11 + 12 - 13 = 0, 13 = 12 + 11..

Na čemu se fizikalno temelji Kirchhoffov zakon za struje?

Odaberite jedan ili više odgovora:

- Da je zbroj svih apsolutnih vrijednosti struja jednak nuli u svakom trenutku,
- tj. temelji se na samom iskazu Kirchoffovog zakona za struje.
- Temelji se karakteru nestlačivog strujanja. 🗸
- Da je zbroj električnog naboja u nekome čvoru uvijek jednak nuli,
- tj. tvori se na fizičkoj neutralnosti. 🗶
- Ne postoji fizikalno objašnjenje Kirchhoffovog zakona za struje,
- tj. jednadžbe su dobivene empirijskim putem.

Pitanje 2

Koje slike predstavljaju nepravilan spoj?

Odaberite jedan ili više odgovora:

- □ b, d
- sve slike su moguće
- ا ⊿
- 🗹 h 🇸
- \Box a, b, c, d

Pitanje 3

Mreža ne smije istovremeno sadržavati nezavisne i zavisne izvore, da bi je se moglo nadomjestiti ekvivalentnim sklopom.

Odaberite jedan odgovor:

- netočno
 √
- točno

Jednadžba konturnih struja za konturu sa strujom 12 imat će oblik:

Odaberite jedan ili više odgovora:

- 12*(R3+R4+R5+R7) = E5-E4-E3
- I1*(R3+R4) + I2*(R3+R4+R5+R7) = E5-E4-E3 ✓
- 11*(R3+R4) I2*(R3+R4+R5+R7)= E5-E4-E3
- -I1*(R3+R4) + I2*(R3+R4+R5+R7)= E5-E4-E3
- 11*(R3+R4) + 12*(R3+R4+R5+R7) = E3+E4-E5

Pitanje 5

Pod kojim uvjetom se može koristiti teorem supstitucije?

Odaberite jedan ili više odgovora:

- Pod uvjetom da mreža nema aktivnih elemenata.
- Pod uvjetom da mreža ima višeznačna rješenja.
- Pod uvjetom da mreža ima jednoznačno rješenje. 🗸
- Pod uvjetom da mreža nema pasivnih elemenata.

Pitanje 1 Netočno Tekst pitanja Na čemu se fizikalno temelji Kirchhoffov zakon za struje? Odaberite jedan ili više odgovora: Da je zbroj svih apsolutnih vrijednosti struja jednak nuli u svakom trenutku, tj. temelji se na samom iskazu Kirchoffovog zakona za struje. Temelji se karakteru nestlačivog strujanja. Da je zbroj električnog naboja u nekome čvoru uvijek jednak nuli, tj. tvori se na fizičkoj neutralnosti. 🗶 Ne postoji fizikalno objašnjenje Kirchhoffovog zakona za struje, tj. jednadžbe su dobivene empirijskim putem. Povratna informacija Točan odgovor je: Temelji se karakteru nestlačivog strujanja.. Pitanje 2 Netočno i₋(t) $i_{\triangleright}(t)$ $i_{L}(t)$ i (t) 1) 2) 3) 4) Tekst pitanja Zadan je valni oblik struje kroz otpor $i_R(t)$. Odrediti valni oblik struje kroz induktivitet $i_L(t)$ ako je zadano R=1, L=1. Odaberite jedan ili više odgovora: 3) 2) Povratna informacija

Točan odgovor je: 2).

Pitanje 3

Netočno

Tekst pitanja

Zadan je valni oblik napona na otporu $u_R(t)$. Odrediti valni oblik napona na induktivitetu $u_L(t)$ ako je zadano R=1, L=1.

Odaberite jedan ili više odgovora:

2) 🗶	
□ ₄₎	
3)	
□ 1)	

Povratna informacija

Točan odgovor je: 1).

Pitanje 4

Točno

Tekst pitanja

Snaga na otporu od 1 k Ω iznosi:				
Odaberite jedan ili više odgovora:				
P=144 W				
P=12 mW				
P=12 W				
P=144 mW √				
P=1200 W				
Povratna informacija				
Točan odgovor je: P=144 mW.				
Pitanje 5 Netočno				
15V 5Ω b				
Tekst pitanja				
Ako su potencijali čvorova Ua=10 V i Ub=30 V, koliko iznosi struja kroz granu?				
Odaberite jedan ili više odgovora:				
□ I= -1 A				
I=0 A				
□ I=2 A				
□ I= -3 A				
▼ I=1 A 🗶				
Povratna informacija				
Točan odgovor ie: I= -1 A.				

2. DZ Kirchhoffovi zakoni. Mrežne transformacije. Teoremi mreža.

Kako se promjeni Teveninov otpor između stezaljki a i b ako se R1 poveća?

Oda	aberite jedan ili više odgovora:	ST	a _			
	Ne može se odrediti			R		
V	Poraste		R1			
	Smanji se		Η ,			
	Nijedno od navedenog	T R	b L	R		
	Iznos R1 nema utjecaja na Rt		-			
			E +			
	čemu se fizikalno temelji Kirchhoffov zakon za struje? aberite jedan ili više odgovora:					
□ tj. t	Da je zbroj svih apsolutnih vrijednosti struja jednak nuli u emelji se na samom iskazu Kirchoffovog zakona za struje.		enutku,			
✓	Temelji se karakteru nestlačivog strujanja. ✓					
□ tj. t	Da je zbroj električnog naboja u nekome čvoru uvijek jed vori se na fizičkoj neutralnosti.	lnak nuli,				
□ tj. j	Ne postoji fizikalno objašnjenje Kirchhoffovog zakona za ednadžbe su dobivene empirijskim putem.	a struje,				
Da li se teorem superpozicije može primjenjivati na vremenski promjenjive mreže? Odaberite jedan ili više odgovora:						
	Može, ali samo na mreže koje nemaju zavisne izvore.					
	Ne može.					
	Može, ali samo na mreže koje nemaju početne uvjete.					
V	Može. ✓					

Koja od slijedećih slika je ekvivalentna zadanom dijelu mreže? Z2 ≶ Z1 Z3 Z4 ^//\ Z1 ≶ Z1 } Z2 } 3) 1) 11*Z2 (Z3 Z3 Z4 Z4 $\bigoplus_{\mathfrak{n}}$ 11*Z1 Z1 Z2 § Z2 4) 2) Z1 11*Z2 (Z3 Z3 Z4 Z4 Odaberite jedan ili više odgovora: 3) 2) 1) \checkmark Teveninova ekvivalentna mreža se sastoji od: Odaberite jedan ili više odgovora: paralelnog spoja strujnog izvora i pasivnog dvopola paralelnog spoja naponskog izvora i pasivnog dvopola serijskog spoja strujnog izvora i pasivnog dvopola V serijskog spoja naponskog izvora i pasivnog dvopola 🗸

Što se smatra pod pojmom početni uvjeti?
Odaberite jedan ili više odgovora:

□ Početna struja u kapacitetu i napon na induktivitetu.
□ Početni napon na kapacitetu i početna struja u induktivitetu. ✓
□ Početna struja induktiviteta i kapaciteta.
□ Početni napon na kapacitetu i induktivitetu.

Povratna informacija

Točan odgovor je: Početni napon na kapacitetu i početna struja u induktivitetu...

Pitanje 2

Netočno

Broj bodova: 0,00 od 1,00

Označi pitanje

Tekst pitanja

Koliki je napon U12 ako je XL=XC=R, te ako je vrijednost priključenog napona (frekvencije

f) jednaka U? Odaberite jedan ili više odgovora:

└ (5^1/2)U

U 🗶

□ 2U

0,707U

Povratna informacija

Točan odgovor je: (5^1/2)U.

Pitanje 3

Točno

Broj bodova: 1,00 od 1,00

Označi pitanje

Tekst pitanja

Imitancija dvopola u nadomjesnoj mreži Nortona ili Tevenina dobiva se iz originalne mreže tako da (zaokruži sve ispravne postupke):

Odaberite jedan ili više odgovora:

nezavisni naponski izvor se kratko spoji 🗸

nezavisni strujni izvor se kratko spoji

početni uvjeti se izjednače s nulom 🗸

nezavisni naponski izvor se odspoji

početne uvjete ostavimo kakvi su zadani

zavisne izvore ostavimo nedirnutima 🗸

nezavisni strujni izvor se odspoji 🗸

Povratna informacija

Točan odgovor je: nezavisni naponski izvor se kratko spoji, početni uvjeti se izjednače s nulom, zavisne izvore ostavimo nedirnutima, nezavisni strujni izvor se odspoji.

Pitanje 4

Točno

Broj bodova: 1,00 od 1,00

Označi pitanje

Tekst pitanja

Ako su potencijali čvorova Ua=10 V i Ub=30 V, koliko iznosi struja kroz granu?

Odaberite jedan ili više odgovora:

✓ I= -1 A ✓

✓ I=0 A

✓ I=2 A

✓ I= -3 A

✓ I=1 A

Povratna informacija

Točan odgovor je: I= -1 A.

Pitanje 5

Točno

Broj bodova: 1,00 od 1,00

Označi pitanje

Tekst pitanja

Na što je potrebno paziti prilikom odabira referentnih smjerova struja kod primjene Kirchhoffovog zakona za struje? Odaberite jedan ili više odgovora:

Referentni smjer možemo izabrati u bilo kojem smjeru.

Referentni smjer struje se uvijek uzima iz '+' strane izvora u mreži.

Referentni smjer se uvijek odabire u stvarnom smjeru struje.

Kada se jednom odabere referentni smjer, taj smjer se mora poštivati cijelo vrijeme prilikom rješavanja mreže.

Povratna informacija

Točan odgovor je: Referentni smjer možemo izabrati u bilo kojem smjeru., Kada se jednom odabere referentni smjer, taj smjer se mora poštivati cijelo vrijeme prilikom rješavanja mreže..

Koliki je napon U12 ako je XL=XC=R, te ako je vrijednost priključenog napona (frekvencije f) jednaka U?

Odaberite jedan ili više odgovora:				
	U/2			
	0			
V	(2^1/2)U √			
	U			

Pitanje 2

Ako u nekom čvoru A završavaju 3 grane i ako kroz grane 1 i 2 struje I1 i I2 teku prema čvoru A, dok kroz granu 3 struja I3 teče iz čvora, kako bi tada sve mogao glasiti Kirchhoffov zakon za struje?

Odaberite jedan ili više odgovora:

Pitanje 3

Da bi se mogao primijeniti Teveninov teorem, električna mreža mora biti:

Odaberite jedan ili više odgovora:

građena isključivo od linearnih elemenata

građena od linearnih i nelinearnih elemenata

građena od vremenski nepromjenjivih i vremenski promjenjivih elemenata

građena isključivo od vremenski nepromjenjivih elemenata

Povratna informacija . Pazi DVA TOČNA ODGOVORA!!!

Točan odgovor je: građena isključivo od linearnih elemenata, građena od vremenski nepromjenjivih i vremenski promjenjivih elemenata.

Pitanje 4

Koliko iznosi napon U spoja na slici?

Prilikom korištenja teorema superpozicije, nezavisni izvori u mreži predstavljaju poticaje koji uzrokuje odzive na nekome elementu. Ukupan odziv na tom elementu tada je jednak:

Odaberite jedan odgovor:

Teveninova ekvivalentna mreža se sastoji od:

Odaberite jedan ili više odgovora:

- paralelnog spoja strujnog izvora i pasivnog dvopola
- paralelnog spoja naponskog izvora i pasivnog dvopola
- serijskog spoja strujnog izvora i pasivnog dvopola
- serijskog spoja naponskog izvora i pasivnog dvopola 🗸

Točan odgovor je: serijskog spoja naponskog izvora i pasivnog dvopola.

Nadomjesti mrežu prema Nortonu.

Odaberite jedan ili više odgovora:

- $^{\square}$ 20 Ω 2 A
- \square 30 Ω 2 A
- 6,6 Ω 2 Α 🗶
- \square 30 Ω 0,5 A
- Mreža se ne može nadomjestiti, jer strujni izvor nije moguće transformirati u ekvivalentni naponski izvor.

Točan odgovor je: $20 \Omega 2 A$.

Idealni instrumenti pokazuju U=10 V i I=1 A. Odredi otpor R.

A R V
$\frac{1}{2\Omega}$
Odaberite jedan ili više odgovora:
\Box 6 Ω
\square 24 Ω
$\Box_{2\Omega}$
№ 18 Ω √
\square 12 Ω
Točan odgovor je: 18 Ω .
Na čemu se fizikalno temelji Kirchhoffov zakon za struje? Odaberite jedan ili više odgovora:
Da je zbroj svih apsolutnih vrijednosti struja jednak nuli u svakom trenutku, tj. temelji se na samom iskazu Kirchoffovog zakona za struje.
Temelji se karakteru nestlačivog strujanja.
Da je zbroj električnog naboja u nekome čvoru uvijek jednak nuli, tj. tvori se na fizičkoj neutralnosti. X
Ne postoji fizikalno objašnjenje Kirchhoffovog zakona za struje, tj. jednadžbe su dobivene empirijskim putem.
Točan odgovor je: Temelji se karakteru nestlačivog strujanja
Prilikom korištenja teorema superpozicije na mreže koje sadrže zavisne izvore, vrijedi slijedeće:
Odaberite jedan ili više odgovora:
Teorem se ne može koristiti kod mreža sa zavisnim izvorima.

Zavisne izvore ne gasimo i uzimamo ih uvijek u proračun.

Zavisni izvori nam ne predstavljaju posebne pobude u mreži.

Točan odgovor je: Zavisne izvore ne gasimo i uzimamo ih uvijek u proračun., Zavisni izvori nam ne predstavljaju posebne pobude u mreži..

