Tabella D. La probabilità percentuale $P_A \tilde{\chi}^2 \geqslant \tilde{\chi}_0^{-2}$) di ottenere na valore di $\tilde{\chi}^2 \geqslant \tilde{\chi}_0^{-2}$ in una esperienza con d gradi di libertà, come una funzione di d e $\tilde{\chi}_0^{-2}$. (I bianchi indicaño probabilità minori di 0.05 percento).

	ž.¹																
ď	0	0	5 1	.0	1.5	2.0	2.5	3.0	3.5	4.0	4.5	5.0	5.5	6.0	8.0	10.0	_
1	100		8	32	22	16	11	8.3	6.1	4.6	3.4	2.5	1,9	1.4	0.5	0.2	,
2	100) 6	1	37	22	14	8.2	5.0	3.0	1.8	1.1	0.7		0.2	0.5	0.2	
3	100) (8	39	21	11	5.8	2.9	1.5	0.7				-	_		
4	10	ο.	74	41	20	9.2	4.0	1.7	0.7	0.3				_	_	_	
9	10	0	78	42	19	7.5	2.9	1.0	0.4	0.1		_	_	_	_	_	
	0) (0.2	0.4	0.0	5 0.1	3 1.0	1.2	1.4	1.0	5 1.8	3 2.0	2.2	2.4	2.6	2.8	3.0
		00	65	53	44	1 37	32	27	24	21	18	3 16	14	12	11	9.4	8.3
		00	82	67	5:	5 4:	37	30	25	20	17	1 14	11	9.1	7.4	6.1	5.0
		00	90	7				. 31	24	1 1	9 14	1 11	8.6	6.6	5.0	3.8	2.9
		00	94	8				_				39.	2 6.6	4.8	3.4	2.4	1.7
	5 1	00	96	8	5 7	0 5	5 47	2 3	1 2	2 1	6 1	1 7	.5 5.	3.5	2.3	1.6	1.0
		00	98	8			7 4				4 9	.5 6	.2 4.0	0 2.5	1.6	1.0	0.6
		00	99				9 4		0 2	-			.1 3.			0.7	0.4
		100	99				0 4						.2 2				0.2
		100	99										.5 1.				0.1
	10	100	100	5	95	82 (53 4	4 2	9 1	7	10 5	5.5 2	1.9 1.	5 0.	8 0.4	0.2	0.1
	11	100	100	9	96	83	64 4	4 :	28 1	6	9.1	4.8	2.4 1	2 0.	6 0.3	0.1	0.1
	12	100	100	- 3	96	84	65	15	28 1	16	8.4	4.2	2.0 0	.9 0.	4 0.2	0.1	
	13	100	100)	97	86	66	45	27	15	7.7	3.7	1.7 0	.7 0.	3 0.1	0.1	_
	14	100	100			87							1.4 0				-
	15	100	100)	98	88	68	45	26	14	6.5	2.9	1.2	5 0	.2 0.1	ı —	-
	16	100	10	0	98	89	69	45	26	13	6.0	2.5	1.0	0.4 0	.1 -	. —	_
	17	100	10	0	99	90	70	45	25	12	5.5		0.8 -0		.1 -	_	_
	18	100	10	0	99	90	70	46	25	12	5.1).1 —	-	_
	19	100	10	0	99	91	71	46	25	11	4.7).1 —		_
	20	100	10	00	99	92	72	46	24	11	4.3	1.5	0.5	0.1 -		- 7	_
	22	100	10	00	99	93	73	46	23	10	3.7	1.2		0.1			_
	24	10) 10	00	100	94	74	46	23	9.2	₹.2	0.9		0.1			_
	26	10	0 1	00	100		75	46	22	8.5	27	0.7	0.2	- ;			-
	28	10	0 1	00	100		76	46	21	7.8	2.3	0.6	0.1	_			_
	30	10	0 1	00	100	96	77	47	21	7.2	2.0	0.5	1.0	_			-

Tabella A. La probabilità percentuale, $P(\text{entro } t\sigma) = \int_{x}^{x} \frac{dx}{dx} f_{x,\sigma}(x) dx$, come una funzione di t.

					X = 10		X	X + 10					
<i>t</i>	0.00	0.01	0.62	0.03	0.04	0.05	0.06	007	0.08	0.09			
0.0	0.00	0.80	1.60	2.39	3.19	3.99	4.78	5.58	6.38	7.17			
0.1	7.97	8.76	9.55	10.34	11.13	11.92	12.71	13.50	14.28	15.07			
0.2	15.85	16.63	17.41	18.19	18.97	19.74	20.51	21.28	22.05	22.82			
0.3	23.58	24.34	25.10	25.86	26.61	27.37	28.12	28.86	29.61	30.35			
0.4	31.08	31.82	32.55	33.28	34.01	34.73	35.45	36.16	36.88	37.59			
0.5	38.29	38.99	39.69	40.39	41.08	41.77	42.45	43.13	43.81	44.48			
0.6	45.15	45.81	46.47	47.13	47.78	48.43	49.07	49.71	50.35	50.98			
0.7	51.61	52.23	52.85	53.46	54.07	54.67	55.27	55.87	56.46	57.05			
8.0	57.63	58.21	58.78	59.35	59.91	60.47	61.02	61.57	62.11	62.65			
0.9	63.19	63.72	64.24	64.76	65.28	65.79	66.29	66.80	67.29	67.78			
1.0	68.27	68.75	69.23	69.70	70.17	70.63	71.09	71.54	71.99	72.43			
1.1	72.87	73.30	73.73	74.15	74.57	74.99	75.40	75.80	76.20	76.60			
1.2	76.99 ⁾	77.37	77.75	78.13	78.50	78.87	79.23	79.59	79.95	80.29			
1.3	80.64	80.98	81.32	81.65	81.98	82.30	82.62	82.93	83.24	83.55			
1.4	83.85	84.15	84.44	84.73	185.017	85.29	85.57	85.84	- 86.11	86.38			
1.5	86.64	86.90	87.15	87.40	87.64	87.89	88.12	88.36	88.59	88.82			
1.6	89.04	89.26	89.48	89.69	89.90	90.11	90.31	90.51	90.70	90.90			
1.7	91.09	91.27	91.46	91.64	91.81	91.99	92.16	92.33	92.49	92.65			
1.8	92.81	92.97	93.12	93.28	93.42	93.57	93.71	93.85	93.99	94 12			
1.9	94.26	94.39	94.51	94.64	94.76	94.88	95.00	95.12	95.23	95.34			
2.0	95.45	95.56	95.66	95.76	95.86	95.96	96.06	96.15	96.25	96.34			
2.1	96.43	96.51	96.60	96.68	96.76	96.84	96.92	97.00	97.07	97.15			
2.2	97.22	97.29	97.36	97.43	97.49	97.56	97.62	97.68	97.74	97.80			
2.3	97.86	97.91	97.97	98.02	98.07	98.12	98.17		98.27	98.32			
2.4	98.36	98.40	98.45	98.49	98.53	98.57	98.61	98.65	98.69	98.72			
2.5	98.76	98.79	98.83	98.86	98.89	98.92	98.95	98.98	99.01	99.04			
2.6		99.09	99.12	99.15	99.17	99.20	99.22	99.24	99.26	99.29			
2.7		99.33	99.35	99.37	99.39	99.40	99.42	99.44	99.46	99.47			
2.8		99.50	99.52	99.53	99.55	99.56	99.58	99.59	99.60	99.61			
2.9	99.63	99.64	99.65	99.66	99.67	99.68	99.69	99.70	99.71	99.72			
3.0		_	_	_	_	_	_						
3.5		-	_	_	_	-	_		-				
4.0		_	_	_	-			_	_	-			
4.5		-		_	_		-	1000					
5.0	99.99994	_	_	_	_	_	-	-		A Page State			

Se $(x_1, y_1), ..., (x_N, y_N)$ sono coppie di numeri dati, l'errore sulla variabile x è trascurabile rispetto quello sulla variabile y e gli errori sulla variabile y sono tutti uguali e pari a σ_y allora la miglior linea retta y = A + Bx che si adatta a questi N punti è definita da:

$$A = \frac{1}{\Delta} \left[\left(\sum_{i=1}^{N} x_i^2 \right) \left(\sum_{i=1}^{N} y_i \right) - \left(\sum_{i=1}^{N} x_i \right) \left(\sum_{i=1}^{N} x_i y_i \right) \right]$$

$$B = \frac{1}{\Delta} \left[N \left(\sum_{i=1}^{N} x_i y_i \right) - \left(\sum_{i=1}^{N} x_i \right) \left(\sum_{i=1}^{N} y_i \right) \right]$$

$$\Delta = N \left(\sum_{i=1}^{N} x_i^2 \right) - \left(\sum_{i=1}^{N} x_i \right)^2$$

$$\sigma_A^2 = \left[\frac{\sum_{i=1}^{N} x_i^2}{\Delta} \right] \sigma_y^2$$

$$\sigma_B^2 = \left[\frac{N}{\Delta} \right] \sigma_y^2$$

$$cov = \sigma_{AB} = -\left[\frac{\sum_{i=1}^{N} x_i}{\Delta} \right] \sigma_y^2$$

Se si vincola la retta a passare per l'origine: y = mx si ha:

$$m = \frac{\sum_{i=1}^{N} x_i y_i}{\sum_{i=1}^{N} x_i^2}$$

$$\sigma_m^2 = \frac{\sigma_y^2}{\sum_{i=1}^N x_i^2}$$