

ECT 113 Information Technology

Dr. Amina Elhawary

Lecture 2

Problem-Solving and Program Design

what is Problem-Solving?

• **Problem-solving** is the process of identifying an issue, analyzing possible solutions, and implementing the best one to achieve a desired outcome.

Why is it Important?

- Essential for programming and real-world applications.
- Helps in creating efficient and logical solutions.
- Used in artificial intelligence, automation, and data analysis.

Understanding the Problem

- Before solving a problem, it's important to fully understand it.
 - Ask yourself the following questions:
 - 1. What is the problem statement? Clearly define what needs to be solved.
 - 2. What are the inputs? What data is needed?
 - 3. What are the expected outputs? What should the solution produce?
 - 4. Are there any constraints? Time limits, memory limits, etc.
 - 5. What are the possible solutions? Consider different approaches.

Steps for Problem-Solving

- Problem-solving typically follows these steps:
 - 1. Understand the Problem Identify inputs, outputs, and constraints.
- 2. Plan a Solution (Algorithm) Develop a step-by-step approach.
- 3. Represent the Solution (Flowchart & Pseudocode) Visually or textually describe the logic.
- 4. Implement and Test the Solution Convert to code, run tests, and optimize.

An **Algorithm** is a step-by-step sequence of logical instructions designed to solve a specific problem. It takes an input, processes it through a set of well-defined rules, and produces an output.

- Algorithms are generally created independent of underlying languages.
- > Every algorithm should have the following 4 characteristic feature:
- 1. Start
- 2. Input
- 3. Processing
- 4. Output

Example 1:

Write an algorithm that takes two numbers as input and calculates their sum.

Algorithm:

1.Start

2.Input: Read two numbers, A and B.

3. Processing : SUM = A + B

4.Output: SUM = A + B

Example 1 (Cont.):

Input: A = 8, B = 5

Steps Execution:

Step 1: Read A = 8 and B = 5.

Step 2: Compute SUM = 8 + 5 = 13.

Step 3: Print 13.

Output: 13.

Example 2:

Given a list of numbers, find the largest number in the list.

Algorithm:

1.Start

2.Input: Read a list of numbers.

3.Initialize: Set the first number as the maximum.

4.Loop through the remaining numbers in the list:

olf a number is greater than the current maximum, update the maximum

5.Output: Print the maximum number

Example 2 (Cont.):

Input: [12, 45, 7, 89, 23, 56]

Steps Execution:

Step 1: Assume max = 12.

Step 2: Compare 45 > 12, update max = 45.

Step 3: Compare 7 > 45, no change.

Step 4: Compare 89 > 45, update max = 89.

Step 5: Compare 23 > 89, no change.

Step 6: Compare 56 > 89, no change.

Output: 89 (The largest number).

What is Flowchart?

 A Flowchart is a type of diagram that represents an algorithm, workflow or process, showing the steps as boxes of various kinds, and their order by connecting them with arrows.

 This diagrammatic representation illustrates a solution model to a given problem.

Main Symbols for Flowchart

How to Read A

PARTS of a FLOW CHART

Start of Program - Marks the beginning of the program, begin here. Follow the line to get to the next block.

Statement Block - A statement to execute, or a behavior to perform.

Decision Block - A decision point in your program. Ask a simple question, and do different things depending on the answer.

Yes/No (also True/False, etc.) - Answers to the question posed in the decision block. Follow the line labeled with the appropriate answer.

End of Program - Marks the end of the program. If you reach this point, the program is done!

Flowchart?

Example 1:

Design a flowchart that takes two numbers as input and calculates their sum.

Algorithm: Convert Fahrenheit to Celsius

S E UNIVERSITY FOR APPLIED SCIENCE AND TECHNOLOGY

Example 2:

Write an algorithm then design a flowchart that change the temp. from F to celicus. C=5*(F-32)/9

Algorithm:

1.Start

2.Input: the temperature in Fahrenheit (F).

3.Compute: the Celsius temperature using the formula: C=5*(F-32)/9

4. **Print:** the Celsius temperature

5. **Stop**

Flowchart

SAXONY EGYPT UNIVERSITY FOR APPLIED SCIENCE AND TECHNOLOGY

Example 2 (Cont.):

Flowchart

Example 3:

Design a flowchart that display the even number.

THANK YOU

