Ce document vient du site http://www.iana.org

Rubrique /assignments/ethernet-numbers

ETHER TYPES

(last updated 13 March 2006)

Many of the networks of all classes are Ethernets (10Mb) or Experimental Ethernets (3Mb). These systems use a message "type" field in much the same way the ARPANET uses the "link" field.

If you need an Ether Type, contact:

IEEE Registration Authority IEEE Standards Department 445 Hoes Lane Piscataway, NJ 08854

Phone +1 732 562 3813 Fax: +1 732 562 1571

Email: <ieee-registration-authority@ieee.org>
http://standards.ieee.org/regauth/index.html

The following list of EtherTypes is contributed unverified information from various sources. Another list of EtherTypes is maitained by Michael A. Patton and is accessible at:

<URL:http://www.cavebear.com/CaveBear/Ethernet/>
<URL:ftp://ftp.cavebear.com/pub/Ethernet-codes>

Assignments:

Ethernet		Exp. E	thernet	Description	References
decimal	 Hex	decima	l octal		
0000	0000-05DC		_	IEEE802.3 Length	Field [XEROX]
0257	0101-01FF	r –	_	Experimental	[XEROX]
0512	0200	512	1000	XEROX PUP (see 02	A00) [8, XEROX]
0513	0201	_	_	PUP Addr Trans (s	see 0A01)[XEROX]
	0400			Nixdorf	[XEROX]
1536	0600	1536	3000	XEROX NS IDP	[133, XEROX]
	0660			DLOG	[XEROX]
	0661			DLOG	[XEROX]
2048	0800	513	1001	Internet IP (IPv	4) [IANA]
2049	0801	_	_	X.75 Internet	[XEROX]
2050	0802	_	_	NBS Internet	[XEROX]
2051	0803	_	_	ECMA Internet	[XEROX]

2052	0804	_	-	Chaosnet	[XEROX]
2053	0805	_	_	X.25 Level 3	[XEROX]
2054	0806	_	_	ARP	[IANA]
2055	0807	_	_	XNS Compatability	[XEROX]
2056	0808	_	_		FC1701]
		_		-	-
2076	081C	_	_	Symbolics Private	[DCP1]
2184	0888-088A	_	_	Xyplex	[XEROX]
2304	0900	_	-	Ungermann-Bass net debugr	[XEROX]
2560	0A00	_	_	Xerox IEEE802.3 PUP	[XEROX]
2561	0A01	_	_	PUP Addr Trans	[XEROX]
2989	OBAD	_	_	Banyan VINES	[XEROX]
2990	0BAE		_	_	FC1701]
		_	_		
2991	0BAF				FC1701]
4096	1000	_	_	Berkeley Trailer nego	[XEROX]
4097	1001-100F	_	_	Berkeley Trailer encap/IP	[XEROX]
5632	1600	_	_	Valid Systems	[XEROX]
16962	4242	_	_	PCS Basic Block Protocol	[XEROX]
21000	5208	_	_	BBN Simnet	[XEROX]
24576	6000	_	_	DEC Unassigned (Exp.)	[XEROX]
				= = = = = = = = = = = = = = = = = = = =	
24577	6001	-	_	DEC MOP Dump/Load	[XEROX]
24578	6002	_	_	DEC MOP Remote Console	[XEROX]
24579	6003	_	-	DEC DECNET Phase IV Route	[XEROX]
24580	6004	_	_	DEC LAT	[XEROX]
24581	6005	_	_	DEC Diagnostic Protocol	[XEROX]
24582	6006	_	_	DEC Customer Protocol	[XEROX]
24583	6007	_	_	DEC LAVC, SCA	[XEROX]
24584		_	_		-
	6008-6009	_		DEC Unassigned	[XEROX]
24586	6010-6014	_	-	3Com Corporation	[XEROX]
25944	6558	_	-	Trans Ether Bridging [R	FC1701]
25945	6559	_	-	Raw Frame Relay [R	FC1701]
28672	7000	_	_	Ungermann-Bass download	[XEROX]
28674	7002	_	_	=	[XEROX]
28704	7020-7029	_	_	LRT	[XEROX]
28720	7030	_	_	Proteon	[XEROX]
					-
28724	7034	-	_	Cabletron	[XEROX]
32771	8003	_	_		1,DT15]
32772	8004	_	-	Cronus Direct [13	1,DT15]
32773	8005	_	-	HP Probe	[XEROX]
32774	8006	_	_	Nestar	[XEROX]
32776	8008	_	_	AT&T	[XEROX]
	8010	_	_	Excelan	
32784					[XEROX]
32787	8013	_	-	SGI diagnostics	[AXC]
32788	8014	_	-	SGI network games	[AXC]
32789	8015	_	-	SGI reserved	[AXC]
32790	8016	_	-	SGI bounce server	[AXC]
32793	8019	_	-	Apollo Domain	[XEROX]
32815	802E	_	_	Tymshare	[XEROX]
32816	802F	_	_	Tigan, Inc.	[XEROX]
32821	8035	_	_		48, JXM]
32822	8036	_	_	Aeonic Systems	[XEROX]
32824	8038	-	-	DEC LANBridge	[XEROX]
32825	8039-803C	-	-	DEC Unassigned	[XEROX]
32829	803D	_	-	DEC Ethernet Encryption	[XEROX]
32830	803E	_	_	DEC Unassigned	[XEROX]
32831	803F	_	_	DEC LAN Traffic Monitor	[XEROX]
32832	8040-8042	_	_	DEC Unassigned	[XEROX]
32836	8044	_	_	Planning Research Corp.	[XEROX]
J20J0	0077			rraining research corp.	

32838	8046	_	_	AT&T	[XEROX]
32839	8047	_	_		[XEROX]
32841	8049		_		[XEROX]
32859	805B	_	_	1	[XEROX]
32860	805C	_	_	-	[XEROX]
32861	805D	_	_		[XEROX]
32864	8060		_		[XEROX]
32866	8062	_	_		[XEROX]
32869	8065		_	——————————————————————————————————————	[XEROX]
32870	8066	_	_		[XEROX]
32871	8067	_	_		[XEROX]
32872	8068	_	_	-	
32873	8069	_	_	<u> </u>	[XEROX]
32874	806A	_	_		[XEROX]
				-	[XEROX]
32876	806C	-	_	3	[XEROX]
32877	806D	-	_		[XEROX]
32878	806E-8077	-	_		[XEROX]
32890	807A	_	_		[XEROX]
32891	807B	_	_		[XEROX]
32892	807C	_	-	Merit Internodal	[HWB]
32893	807D-807F	_	-		[XEROX]
32896	8080	_	_		[XEROX]
32897	8081-8083	_	-		[XEROX]
32923	809B	-	-		[XEROX]
32924	809C-809E	-	-	4	[XEROX]
32927	809F	_	_		[XEROX]
32931	80A3	-	-	±	[XEROX]
32932	80A4-80B3	-	_		[XEROX]
32960	80C0-80C3	-	-	DCA Data Exchange Cluster	
32964	80C4	-	-		[XEROX]
32965	80C5	-	-	2 2	[XEROX]
32966	80C6	-	-		[XEROX]
32967	80C7	-	-	Applitek Corporation	[XEROX]
32968	80C8-80CC	-	-		[XEROX]
32973	80CD-80CE	-	-	Harris Corporation	[XEROX]
32975	80CF-80D2	-	-	-	[XEROX]
32979	80D3-80D4	-	-	Rosemount Corporation	[XEROX]
32981	80D5	-	-	IBM SNA Service on Ether	[XEROX]
32989	80DD	-	-	Varian Associates	[XEROX]
32990	80DE-80DF	-	-	Integrated Solutions TRFS	[XEROX]
32992	80E0-80E3	-	-	Allen-Bradley	[XEROX]
32996	80E4-80F0	-	-	Datability	[XEROX]
33010	80F2	-	_	Retix	[XEROX]
33011	80F3	_	_	AppleTalk AARP (Kinetics)	[XEROX]
33012	80F4-80F5	-	-	Kinetics	[XEROX]
33015	80F7	-	-	Apollo Computer	[XEROX]
33023	80FF-8103	-	-	Wellfleet Communications	[XEROX]
33031	8107-8109	_	_	Symbolics Private	[XEROX]
33072	8130	_	_	Hayes Microcomputers	[XEROX]
33073	8131	_	_	VG Laboratory Systems	[XEROX]
33074	8132-8136				[XEROX]
33079	8137-8138	_	_	-	[XEROX]
33081	8139-813D	_	_		[XEROX]
	8148				[XEROX]
	8149			Network Computing Devices	
	814A				[XEROX]
33100	814C	_	_	SNMP	[JKR1]

	814D			BIIN	[XEROX]
	814E			BIIN	[XEROX]
	814F			Technically Elite Concept	[XEROX]
	8150			Rational Corp	[XEROX]
	8151-8153			Qualcomm	[XEROX]
	815C-815E			Computer Protocol Pty Ltd	[XEROX]
	8164-8166			Charles River Data System	[XEROX]
	817D			XTP	[XEROX]
	817E			SGI/Time Warner prop.	[XEROX]
	8180			HIPPI-FP encapsulation	[XEROX]
	8181			STP, HIPPI-ST	[XEROX]
	8182			Reserved for HIPPI-6400	[XEROX]
	8183			Reserved for HIPPI-6400	[XEROX]
	8184-818C			Silicon Graphics prop.	[XEROX]
	818D			Motorola Computer	[XEROX]
	819A-81A3			Qualcomm	[XEROX]
	81A4			ARAI Bunkichi	[XEROX]
	81A5-81AE			RAD Network Devices	[XEROX]
	81B7-81B9			Xyplex	[XEROX]
	81CC-81D5			Apricot Computers	[XEROX]
	81D6-81DD				[XEROX]
	81E6-81EF			Polygon	[XEROX]
	81F0-81F2			Comsat Labs	[XEROX]
	81F3-81F5			SAIC	[XEROX]
	81F6-81F8			VG Analytical	[XEROX]
	8203-8205			Quantum Software	[XEROX]
	8221-8222			Ascom Banking Systems	[XEROX]
	823E-8240			Advanced Encryption Syste	[XEROX]
	827F-8282			Athena Programming	[XEROX]
	8263-826A			Charles River Data System	[XEROX]
	829A-829B			Inst Ind Info Tech	[XEROX]
	829C-82AB			Taurus Controls	[XEROX]
	82AC-8693			Walker Richer & Quinn	[XEROX]
	8694-869D			Idea Courier	[XEROX]
	869E-86A1			Computer Network Tech	[XEROX]
	86A3-86AC			Gateway Communications	[XEROX]
	86DB			SECTRA	[XEROX]
	86DE			Delta Controls	[XEROX]
	86DD			IPv6	[IANA]
34543	86DF	-	-	ATOMIC []	Postel]
	86E0-86EF			Landis & Gyr Powers	[XEROX]
	8700-8710			Motorola	[XEROX]
34667	876B	-	-	TCP/IP Compression [R]	FC1144]
34668	876C	-	-	IP Autonomous Systems [R]	FC1701]
34669	876D	-	-	Secure Data [R]	FC1701]
	880B			PPP	[IANA]
	8847			MPLS Unicast	[Rosen]
	8848			MPLS Multicast	[Rosen]
	8A96-8A97			Invisible Software	[XEROX]
36864	9000	-	_	Loopback	[XEROX]
36865	9001	-	_	3Com(Bridge) XNS Sys Mgmt	[XEROX]
36866	9002	-	_		[XEROX]
36867	9003	-	-	3Com(Bridge) loop detect	[XEROX]
65280	FF00	-	_	BBN VITAL-LanBridge cache	[XEROX]
	FF00-FF0F			ISC Bunker Ramo	[XEROX]
65535	FFFF	-	_	Reserved [RI	FC1701]

The standard for transmission of IP datagrams over Ethernets and Experimental Ethernets is specified in [RFC894] and [RFC895] respectively.

NOTE: Ethernet 48-bit address blocks are assigned by the IEEE.

IEEE Registration Authority c/o Iris Ringel IEEE Standards Department 445 Hoes Lane, P.O. Box 1331 Piscataway, NJ 08855-1331 Phone +1 732 562 3813 Fax: +1 732 562 1571 Email: <i.ringel@ieee.org>

ETHERNET VENDOR ADDRESS COMPONENTS or ORGANIZATIONALLY UNIQUE IDENTIFIERS

Ethernet hardware addresses are 48 bits, expressed as 12 hexadecimal digits (0-9, plus A-F, capitalized). These 12 hex digits consist of the first/left 6 digits (which should match the vendor of the Ethernet interface within the station) and the last/right 6 digits which specify the interface serial number for that interface vendor.

These high-order 3 octets (6 hex digits) are also known as the Organizationally Unique Identifier or OUI.

Ethernet addresses might be written unhyphenated (e.g., 123456789ABC), or with one hyphen (e.g., 123456-789ABC), but should be written hyphenated by octets (e.g., 12-34-56-78-9A-BC).

These addresses are physical station addresses, not multicast nor broadcast, so the second hex digit (reading from the left) will be even, not odd.

At present, it is not clear how the IEEE assigns Ethernet block addresses. Whether in blocks of 2**24 or 2**25, and whether multicasts are assigned with that block or separately. A portion of the vendor block address is reportedly assigned serially, with the other portion intentionally assigned randomly. If there is a global algorithm for which addresses are designated to be physical (in a chipset) versus logical (assigned in software), or globally-assigned versus locally-assigned addresses, some of the known addresses do not follow the scheme (e.g., AA0003; 02xxxx).

Another list of Ethernet vendor address components is maitained by Michael A. Patton and is accessible at:

<URL:http://www.cavebear.com/CaveBear/Ethernet/vendor.html>
<URL:ftp://ftp.cavebear.com/pub/Ethernet-codes>
<URL:gopher://ftp.cavebear.com/00/pub/Ethernet-codes>

00000C Cisco 00000E Fujitsu 00000F NeXT

```
000010 Sytek
00001D Cabletron
000020 DIAB (Data Intdustrier AB)
000022 Visual Technology
00002A TRW
000032 GPT Limited (reassigned from GEC Computers Ltd)
00005A S & Koch
00005E IANA
000065 Network General
00006B MIPS
000077 Interphase Corporation
00007A Ardent
000080 Cray Communications A/S
000089 Cayman Systems Gatorbox
000093 Proteon
00009F Ameristar Technology
0000A2 Wellfleet
0000A3 Network Application Technology 0000A6 Network General (internal assignment, not for products)
0000A7 NCD
                        X-terminals
0000A9 Network Systems
0000AA Xerox
                       Xerox machines
0000B3 CIMLinc
0000B7 Dove
                        Fastnet
0000BC Allen-Bradley
0000C0 Western Digital
0000C5 Farallon phone net card
0000C6 HP Intelligent Networks Operation (formerly Eon Systems)
0000C8 Altos
0000C9 Emulex
                        Terminal Servers
0000D0 Develcon
0000D7 Dartmouth College (NED Router)
0000D8 3Com? Novell?
                      PS/2
0000DD Gould
0000DE Unigraph
0000E2 Acer Counterpoint
0000EF Alantec
0000FD High Level Hardvare (Orion, UK)
000102 BBN
                       BBN internal usage (not registered)
0010D1 BlazeNet
001700 Kabel
       3COM ???
0020AF
0020C9
       Victron
002094
       Cubix
008064 Wyse Technology / Link Technologies
00802B
       IMAC ???
00802D Xylogics, Inc. Annex terminal servers
00808C Frontier Software Development
0080C2 IEEE 802.1 Committee
0080D3 Shiva
00A03E ATM Forum
00AA00 Intel
00DD00 Ungermann-Bass
00DD01 Ungermann-Bass
020701 Racal InterLan
020406 BBN
                       BBN internal usage (not registered)
026086 Satelcom MegaPac (UK)
```

```
02608C 3Com
                       IBM PC; Imagen; Valid; Cisco
02CF1F CMC
                       Masscomp; Silicon Graphics; Prime EXL
080002 3Com (Formerly Bridge)
080003 ACC (Advanced Computer Communications)
080005 Symbolics
                       Symbolics LISP machines
080008 BBN
080009 Hewlett-Packard
08000A Nestar Systems
08000B Unisys
080011 Tektronix, Inc.
080014 Excelan
                       BBN Butterfly, Masscomp, Silicon Graphics
080017 NSC
08001A Data General
08001B Data General
08001E Apollo
080020
                       Sun machines
       Sun
080022
       NBI
080025
       CDC
080026 Norsk Data (Nord)
080027 PCS Computer Systems GmbH
080028 TI
                       Explorer
08002B DEC
08002E Metaphor
08002F Prime Computer Prime 50-Series LHC300
080036 Intergraph
                       CAE stations
080037 Fuji-Xerox
080038 Bull
080039 Spider Systems
080041 DCA Digital Comm. Assoc.
080045 ???? (maybe Xylogics, but they claim not to know this number)
080046 Sony
080047 Sequent
080049 Univation
08004C Encore
08004E BICC
080056 Stanford University
080058 ???
             DECsystem-20
08005A IBM
080067 Comdesign
080068 Ridge
080069 Silicon Graphics
08006E Concurrent Masscomp
080075 DDE (Danish Data Elektronik A/S)
08007C Vitalink TransLAN III
080080 XIOS
080086
       Imagen/QMS
080087 Xyplex
                       terminal servers
080089 Kinetics
                       AppleTalk-Ethernet interface
08008B Pyramid
08008D XyVision
                       XyVision machines
080090 Retix Inc
                       Bridges
484453 HDS ???
800010 AT&T
AA0000 DEC
                       obsolete
AA0001 DEC
                       obsolete
AA0002 DEC
                      obsolete
AA0003 DEC
                      Global physical address for some DEC machines
```

Local logical address for systems running ${\tt DECNET}$

AA0004 DEC

Ethernet

The CFxxxx Series

RFC 2153 describes a method of usings a "pseudo OUI" for certain purposes when there is no appropriate regular OUI assigned. These are listed here.

CF0001 Data Comm for Business

[McCain]

ETHERNET MULTICAST ADDRESSES

An Ethernet multicast address consists of the multicast bit, the 23-bit vendor component, and the 24-bit group identifier assigned by the vendor. For example, DEC is assigned the vendor component 08-00-2B, so multicast addresses assigned by DEC have the first 24-bits 09-00-2B (since the multicast bit is the low-order bit of the first byte, which is "the first bit on the wire").

Another list of Ethernet multicast addresses is maitained by Michael A. Patton and is accessible at:

<URL:http://www.cavebear.com/CaveBear/ether-codes.html>
<URL:ftp://ftp.cavebear.com/pub/Ethernet-codes>
<URL:gopher://ftp.cavebear.com/00/pub/Ethernet-codes>

Type

Address	Field	Usage
Multicast Addresses:		
01-00-5E-00-00-00- 01-00-5E-7F-FF-FF	0800	Internet Multicast [RFC1112]
01-00-5E-80-00-00- 01-00-5E-FF-FF-FF	????	Internet reserved by IANA
01-80-C2-00-00-00	-802-	Spanning tree (for bridges)
09-00-02-04-00-01?	8080?	Vitalink printer
09-00-02-04-00-02?	8080?	Vitalink management
09-00-09-00-00-01	8005	HP Probe
09-00-09-00-00-01	-802-	HP Probe
09-00-09-00-00-04	8005?	HP DTC
09-00-1E-00-00-00	8019?	Apollo DOMAIN
09-00-2B-00-00-00	6009?	DEC MUMPS?
09-00-2B-00-00-01	8039?	DEC DSM/DTP?
09-00-2B-00-00-02	803B?	DEC VAXELN?
09-00-2B-00-00-03	8038	DEC Lanbridge Traffic Monitor (LTM)
09-00-2B-00-00-04	3333	DEC MAP End System Hello
09-00-2B-00-00-05	3333	DEC MAP Intermediate System Hello
09-00-2B-00-00-06	803D?	DEC CSMA/CD Encryption?
09-00-2B-00-00-07	8040?	DEC NetBios Emulator?
09-00-2B-00-00-0F	6004	DEC Local Area Transport (LAT)
09-00-2B-00-00-1x	3333	DEC Experimental
09-00-2B-01-00-00	8038	DEC LanBridge Copy packets (All bridges)
09-00-2B-01-00-01	8038	DEC LanBridge Hello packets (All local bridges)

		1 packet per second, sent by the designated LanBridge
09-00-2B-02-00-00 09-00-2B-02-01-00	???? 803C?	DEC DNA Lev. 2 Routing Layer routers? DEC DNA Naming Service Advertisement?
09-00-2B-02-01-01	803C?	DEC DNA Naming Service Solicitation?
09-00-2B-02-01-02	803E?	DEC DNA Time Service?
09-00-2B-03-xx-xx	????	DEC default filtering by bridges?
09-00-2B-04-00-00	8041? 803A?	DEC Local Area Sys. Transport (LAST)? DEC Argonaut Console?
09-00-2B-23-00-00 09-00-4E-00-00-02?	8137?	Novell IPX
09-00-56-00-00-00-	3333	Stanford reserved
09-00-56-FE-FF-FF		
09-00-56-FF-00-00-	805C	Stanford V Kernel, version 6.0
09-00-56-FF-FF-FF		
09-00-77-00-00-01	3333	Retix spanning tree bridges
09-00-7C-02-00-05	8080?	Vitalink diagnostics
09-00-7C-05-00-01	8080?	Vitalink gateway?
0D-1E-15-BA-DD-06	????	HP
AB-00-00-01-00-00	6001	DEC Maintenance Operation Protocol (MOP) Dump/Load Assistance
AB-00-00-02-00-00	6002	DEC Maintenance Operation Protocol
		(MOP) Remote Console
		1 System ID packet every 8-10 minutes, by every:
		DEC LanBridge
		DEC DEUNA interface
		DEC DELUA interface
		DEC DEQNA interface
		(in a certain mode)
AB-00-00-03-00-00	6003	DECNET Phase IV end node Hello
		packets 1 packet every 15 seconds,
7 D 00 00 04 00 00	6000	sent by each DECNET host
AB-00-00-04-00-00	6003	DECNET Phase IV Router Hello packets 1 packet every 15 seconds, sent by
		the DECNET router
AB-00-00-05-00-00	????	Reserved DEC through
AB-00-03-FF-FF		
AB-00-03-00-00-00	6004	DEC Local Area Transport (LAT) - old
AB-00-04-00-xx-xx	3333	Reserved DEC customer private use
AB-00-04-01-xx-yy	6007	DEC Local Area VAX Cluster groups
		Sys. Communication Architecture (SCA)
CF-00-00-00-00	9000	Ethernet Configuration Test protocol
		(Loopback)
Broadcast Address:		
FF-FF-FF-FF-FF	0600	XNS packets, Hello or gateway search?
II EE EE-EE-EE-EE	0000	6 packets every 15 seconds, per XNS
		station
FF-FF-FF-FF-FF	0800	IP (e.g. RWHOD via UDP) as needed
FF-FF-FF-FF-FF	0804	CHAOS
FF-FF-FF-FF-FF	0806	ARP (for IP and CHAOS) as needed
FF-FF-FF-FF-FF	0BAD	Banyan
FF-FF-FF-FF-FF	1600	VALID packets, Hello or gateway
		search?
		1 packets every 30 seconds, per VALID station
		SCACTOIL

FF-FF-FF-FF-FF 8035 Reverse ARP

FF-FF-FF-FF-FF 807C Merit Internodal (INP)

FF-FF-FF-FF-FF 809B EtherTalk

IANA ETHERNET ADDRESS BLOCK - UNICAST USE

The IANA owns an Ethernet address block which may be used for unicast address assignments or other special purposes.

The IANA may assign unicast global IEEE 802 MAC address from it's assigned OUI (00-00-5E) for use in IETF standard track protocols. The intended usage is for dynamic mapping between IP addresses and IEEE 802 MAC addresses. These IEEE 802 MAC addresses are not to be permanently assigned to any hardware interface, nor is this a substitute for a network equipment supplier getting its own OUI.

The address block in IEEE binary is: 0000 0000 0000 0000 0111 1010

In the normal Internet dotted decimal notation this is 0.0.94 since the bytes are transmitted higher order first and bits within bytes are transmitted lower order first.

IEEE CSMA/CD and Token Bus bit transmission order: 00 00 5E

IEEE Token Ring bit transmission order: 00 00 7A

Appearance on the wire (bits transmitted from left to right):

```
0 23 47
| 0000 0000 0000 0000 0111 1010 xxxx xxxx xxxx xxxx xxxx xxxx xxxx |
| Multicast Bit
```

Appearance in memory (bits transmitted right-to-left within octets, octets transmitted left-to-right):

The latter representation corresponds to the Internet standard bit-order, and is the format that most programmers have to deal with. Using this representation, the range of Internet Unicast addresses is:

```
00-00-5E-00-00-00 to 00-00-5E-FF-FF in hex, or 
0.0.94.0.0.0 to 0.0.94.255.255 in dotted decimal
```

The low order 24 bits of these unicast addresses are assigned as follows:

Dotted Decimal Description Reference
-----000.000.000-000.000.255 Reserved [IANA]
000.001.000-000.001.255 Virtual Router Redundancy (VRRP) [RFC3768]

IANA ETHERNET ADDRESS BLOCK - MULTICAST USE

The IANA owns an Ethernet address block which may be used for multicast address asignments or other special purposes.

The address block in IEEE binary is: 0000 0000 0000 0000 0111 1010

In the normal Internet dotted decimal notation this is 0.0.94 since the bytes are transmitted higher order first and bits within bytes are transmitted lower order first.

IEEE CSMA/CD and Token Bus bit transmission order: 00 00 5E

IEEE Token Ring bit transmission order: 00 00 7A

Appearance on the wire (bits transmitted from left to right):

```
0 23 47
| 1000 0000 0000 0000 0111 1010 xxxx xxx0 xxxx xxxx xxxx xxxx |
| Multicast Bit 0 = Internet Multicast
1 = Assigned by IANA for other uses
```

Appearance in memory (bits transmitted right-to-left within octets, octets transmitted left-to-right):

The latter representation corresponds to the Internet standard bit-order, and is the format that most programmers have to deal with. Using this representation, the range of Internet Multicast addresses is:

```
01-00-5E-00-00-00 to 01-00-5E-7F-FF in hex, or 1.0.94.0.0.0 to 1.0.94.127.255.255 in dotted decimal
```

Modified EUI-64 Addresses in the IANA Ethernet Address Block - per [RFC4214]

Modified EUI-64 addresses ([RFC3513], section 2.5.1 and Appendix A) in the IANA Ethernet Address Block are formed by concatenating the

24-bit IANA OUI (00-00-5E) with a 40-bit extension identifier and inverting the "u" bit, i.e., the "u" bit is set to one (1) to indicate universal scope and it is set to zero (0) to indicate local scope.

Modified EUI-64 addresses have the following appearance in memory (bits transmitted right-to-left within octets, octets transmitted left-to-right):

When the first two octets of the extension identifier encode the hexadecimal value 0xFFFE, the remainder of the extension identifier encodes a 24-bit vendor-supplied id as follows:

When the first octet of the extension identifier encodes the hexadecimal value 0xFE, the remainder of the extension identifier encodes a 32-bit IPv4 address as follows:

0		23	31		63
	OUI	0:	xFE	IPv4 address	
0000	000000000000000000000000000000000000000	01011110111	11110 x	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	vv

SNAP PROTOCOL IDS IN THE IANA ETHERNET ADDRESS BLOCK

The Sub-Network Access Protocol (SNAP) header contains 40 bits: 24 bits containing an IEEE-assigned Organizationally Unique Identifier (OUI), and 16 bits containing a Protocol Identifier (PID). The OUIs are the same as those used in the Ethernet Vendor Address Components list above. The IANA's OUI, 00-00-5E, may be used in SNAP headers with the appropriate PID to identify the protocols listed below.

Note that the IANA restricts this list to protocols that are ONLY identified in this manner; if a protocol has an EtherType, then SNAP headers identifying that protocol must contain an OUI of 00-00-00, with the EtherType in the PID field.

The SNAP PID assignments using the IANA's OUI are:

Protocol ID		Description	References	
decimal	Hex			
0001	0001	MARS Data Messages (short form)	[RFC2022]	
0002	0002	reserved for future NHRP use	[RFC2332]	
0003	0003	MARS/NHRP Control Messages	[RFC2022, 2332]	
0004	0004	MARS Data Messages (long form)	[RFC2022]	
0005	0005	SCSP - Server Cache Sync Protocol	[RFC2334]	

0006	0006	VRID - Virtual Router MAC Address	[Knight]
0007	0007	L2TP	[RFC3070]
0008	0008	Virtual Private Network ID	[Malis-ID]
0009	0009	MSDP-GRE-Protocol Type	[msdp-ID]

REFERENCES

- [RFC894] Hornig, C., "A Standard for the Transmission of IP Datagrams over Ethernet Networks, STD 41, RFC 894, Symbolics, April 1984.
- [RFC895] Postel, J., "A Standard for the Transmission of IP Datagrams over Experimental Ethernet Networks, STD 42, RFC 895, USC/Information Sciences Institute, April 1984.
- [RFC1112] Deeering, S., "Host Extensions for IP Multicasting", STD 5, RFC 1112, Stanford University, August 1989.
- [RFC1701] Hanks, S., Li, T, Farinacci, D., and P. Traina,
 "Generic Routing Encapsulation", RFC 1701, NetSmiths, Ltd.,
 and cisco Systems, October 1994.
- [RFC2022] Armitage, G., "Support for Multicast over UNI 3.0/3.1 based ATM Networks", RFC 2022, Bellcore, November 1996.
- [RFC2332] Luciani, J., et al, "NBMA Next Hop Resolution Protocol (NHRP)", RFC 2332, April 1998.
- [RFC2334] Luciani, J., et al, "Server Cache Synchronization Protocol (SCSP)", RFC 2334, April 1998.
- [RFC3070] Rawat, V., R. Tio, S. Nanji, and R. Verma, "Layer Two Tunneling Protocol (L2TP) over Frame Relay", RFC 3070, February 2001.
- [RFC3768] R. Hinden, Ed., "Virtual Router Redundancy Protocol (VRRP)", RFC 3768, April 2004.
- [RFC4214] F. Templin, T. Gleeson, M. Talwar, and D. Thaler, "Intra-Site Automatic Tunnel Addressing Protocol (ISATAP)", RFC 4214, October 2005.

PEOPLE

[AXC] Andrew Cherenson <arc@SGI.COM>

[Hinden] Bon Hinden, <hinden@ipsilon.com>, January 1998.

[HWB] Hans-Werner Braun < HWB@MCR.UMICH.EDU>

[IANA] Internet Assigned Numbers Authority, <iana@iana.org>, October 1996.

[JXM] Joseph Murdock <---none--->

[Knight] S. Knight, <steven.knight@ascend.com>, November 1997.

```
[Malis] Andy Malis, <malis@ascend.com>, October 1996.
[Malis-ID] <draft-ietf-ion-multiprotocol-atm-02.txt>, April 1999.
[McCain] John McCain, <jmccain@dcbnet.com>, July 1997.
[msdp-ID] <draft-ietf-msdp-spec-09.txt>, May 2001.
[DCP1] David Plummer <DCP@SCRC-QUABBIN.ARPA>
[Postel] Jon Postel <postel@isi.edu>
[JKR1] Joyce K. Reynolds <jkrey@isi.edu>
[Rosen] Eric Rosen <erosen@cisco.com>
[Verma] Rohit Verma <Rohit_Verma@mw.3com.com>, August 1998.
[XEROX] Neil Sembower <sembower@eso.mc.xerox.com>
[DT15] Daniel Tappan <Tappan@BBN.COM>
```

[]