小学期数学建模课程

Dürer 魔方

数学与统计学院 李换琴

Dürer 魔方

2020/6/28

数学建模

德国著名的艺术家 Albrecht Dürer(1471-1521)于1514年 曾铸造了一枚名为"Melen cotia I"的铜币。这枚铜币的 画面上充满了数学符号、数 学数字和几何图形。左图就 是铜币右上角的图案。

报纸: 请根据格子中已有数字,构造一个Dürer魔方.

6	55	-36	2
4	-38	14	47
9	3	48	-33
8	7	1	11

如何构造Dürer魔方?

是不是给定其中任意7个数就可以构造一个Dürer魔方? 能否随心所欲构造Dürer魔方?

Dürer魔方

定义:如果4×4数字方,它的每一行、每一列、每一对角线、田字小方块及四个顶角上的数字之和都为一确定的数,则称这个数字方为 Durer 魔方。

例如

1	10	17	20
11	26	5	6
16	3	14	15
20	09	12	7

是一个和为48的Durer 魔方.

1	1	1	1
1	1	1	1
1	1	1	1
1	1	1	1

Dürer魔方有多少个? 如何构造所有的Dürer魔方?

和为4的Durer 魔方.

2020/6/28 数学建模

2

定义:如果4×4数字方,它的每一行、每一列、每一对角线及每个小方块上的数字之和都为一确定的实数,则称这个数字方为 Durer 魔方。

B =	1	10	17	20
	11	26	5	6
	16	3	14	15
	20	09	12	7

Albrecht Dürer's Magic Square

Dürer魔方

	16	3	2	13
	5	10	11	8
A=	9	6	7	12
	4	15	14	1

设A,B是任意两个Dürer 魔方, 定义: A+B, kA (k为实数)

如何构造所有的Dürer魔方?

A+B 是Dürer魔方吗? ✓

对任意实数k,kA 是Dürer魔方吗?✓

2020/6/28 数学建模

3

Dürer魔方空间

任意两个Dürer魔方的任意的线性 组合仍是Dürer魔方。

Dürer魔方 \longleftrightarrow 4阶方阵记 $D=\{A=(a_{ij})\in R^{4\times 4}|A$ 为Dürer魔方}则D是线性空间 $\mathbb{R}^{4\times 4}$ 的子空间.

Albrecht Dürer's Magic Square

16	3	2	13
5	10	11	8
9	6	7	12
4	15	14	1

如何构造所有的Dürer魔方?

求出D的一组基,基的任意 线性组合就构成了所有 Dürer魔方.

2020/6/28

设*A*,*B*是任意两个 Dürer 魔方,

A+B 是Dürer魔方吗?√

对任意实数k,kA 是Dürer魔方吗?√

4

回顾线性空间的相关概念

数学建模

1、线性空间的判定

2要素:集合V,数域F;2种运算:加法,数乘要求:线性运算封闭且满足8条运算规则

2、线性子空间的判定

设W是线性空间V的非空子集,则W为V的子空间的充要条件是W对V中的线性运算封闭.

3 、线性空间的基、维数,向量的坐标

V中一组线性无关的向量 $\alpha_1, \alpha_2, \dots, \alpha_n, \forall \alpha \in V$,有 $\alpha = x_1\alpha_1 + x_2\alpha_2 + \dots + x_n\alpha_n \quad (x_i \in F, i = 1, 2, \dots, n)$ 则称 $\alpha_1, \alpha_2, \dots, \alpha_n$ 为V的一个基,V的维数 $\dim(V) = n$. $x = (x_1, x_2, \dots, x_n)^T$ 为 α 在基 $\alpha_1, \alpha_2, \dots, \alpha_n$ 下的坐标.

例如
$$(1) \varepsilon_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \varepsilon_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \varepsilon_3 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$
是线性空间R³的一个基.

(2)
$$A_1 = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$$
, $A_2 = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$, $A_3 = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$, $A_4 = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$

是线性空间R^{2×2}的一个基.

(3)齐次线性方程组Ax=0的全部解向量构成R"的子空间.

$$S = \{x \mid Ax = 0\} = span\{\xi_1, \dots, \xi_{n-r}\},\$$

其中 ξ_1, \dots, ξ_{n-r} 是Ax = 0的基础解系.

基:
$$\xi_1, \dots, \xi_{n-r}$$
; $\dim(S) = n - r(A)$

如何求Dürer魔方空间的基?

2020/6/28

数学建模

如何求Dürer魔方空间的基?

思想:找一组线性无关的Dürer魔方,且任一Dürer魔方可由这组魔方线性表示。

类似于n维空间的基本单位向量组,利用0和1来构造和为1的最简单的Durer魔方。

Q ₁ =	1	0	0	0
	0	0	1	0
	0	0	0	1
	0	1	0	0

Dürer魔方空间

6

Dürer魔方空间

得到8个Dürer魔方

$$Q_1 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \end{bmatrix} Q_2 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} Q_3 = \begin{bmatrix} 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix} Q_4 = \begin{bmatrix} 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

$$Q_5 = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} Q_6 = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} Q_7 = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \end{bmatrix} Q_8 = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix}$$

1在第一行中有4种取法,第二行中的1有两种取法。当第二行的1也取定后,第三、四行的1就完全定位了,故共有8个不同的最简方阵,称为基本魔方 $Q_1,...,Q_8$

$$Q_{1} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \end{bmatrix} Q_{2} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} Q_{3} = \begin{bmatrix} 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix} Q_{4} = \begin{bmatrix} 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} Q_{5} = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} Q_{5} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \end{bmatrix} Q_{7} = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \end{bmatrix} Q_{8} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix}$$

 $\therefore Q_1, Q_2, \dots, Q_7$ 线性无关。

<mark>问题:</mark>能否说 Q_1,Q_2,\cdots,Q_7 就是一组基?

Dürer魔方空间

$$Q_1,Q_2,\cdots,Q_7$$
是基 \longleftrightarrow $(1)Q_1,Q_2,\cdots,Q_7$ 线性无天 (2) 任 \to Durer魔方可由 Q_1,Q_2,\cdots,Q_7 线性表示

设A是任一Durer魔方,其和为S, 取 r_1, \dots, r_7 , 使 $r_1 + \dots + r_7 = S$ 则A可以表示为 $r_1Q_1 + \cdots + r_7Q_7$.

 \leftarrow 任一Durer魔方可由 Q_1,Q_2,\cdots,Q_n 线性表示.

即 Q_1,Q_2,\cdots,Q_r 是durer魔方空间的一个基.

2020/6/28

Dürer魔方空间

利用基 $Q_1,...,Q_7$ 构造Dürer魔方

任取一组实数 r_1, r_2, \dots, r_n

$$D = r_1 Q_1 + r_2 Q_2 + r_3 Q_3 + r_4 Q_4 + r_5 Q_5 + r_6 Q_6 + r_7 Q_7$$

$$= \frac{\begin{vmatrix} r_1 + r_2 & r_6 & r_5 + r_7 & r_3 + r_4 \\ r_3 + r_5 & r_4 + r_7 & r_1 + r_6 & r_2 \\ r_4 + r_6 & r_2 + r_5 & r_3 & r_1 + r_7 \\ \hline r_7 & r_1 + r_3 & r_2 + r_4 & r_5 + r_6 \end{vmatrix}$$
 就是一个durer魔方。

至此,我们可以随心所欲构造Durer魔方了.

例如取 $r_1 = 8, r_2 = 8, r_3 = 7, r_4 = 6, r_5 = -2, r_6 = 3, r_7 = 4$ 就得到版画上的durer魔方。

2020/6/28 数学建模 11

Dürer魔方空间

16	3	2	13	
5	10	11	8	
9	6	7	12	
4	15	14)	1	

解得
$$r_1 = 8, r_2 = 8, r_3 = 7, r_4 = 6, r_5 = -2, r_6 = 3, r_7 = 4$$

$$D = 8Q_1 + 8Q_2 + 7Q_3 + 6Q_4 - 2Q_5 + 3Q_6 + 4Q_7$$

故版画上的Durer魔方在该基下的坐标为 $(8,8,7,6,-2,3,4)^{\mathrm{T}}$

练习 请构造一个和为20的Dürer魔方.

是否还有其它方法求durer魔方的基?

11

Durer 魔方
$$\leftrightarrow$$

$$\begin{pmatrix} y_1 & y_2 & y_3 & y_4 \\ y_5 & y_6 & y_7 & y_8 \\ y_9 & y_{10} & y_{11} & y_{12} \\ y_{13} & y_{14} & y_{15} & y_{16} \end{pmatrix}$$

约束条件

$$y_1 + y_2 + y_3 + y_4 = y_5 + y_6 + y_7 + y_8$$

$$= y_9 + y_{10} + y_{11} + y_{12} = y_{13} + y_{14} + y_{15} + y_{16}$$

$$= y_1 + y_5 + y_9 + y_{13} = y_2 + y_6 + y_{10} + y_{14}$$

$$= y_3 + y_7 + y_{10} + y_{15} = y_4 + y_8 + y_{12} + y_{16}$$

$$= y_1 + y_4 + y_{13} + y_{16}$$

Durer魔方 空间与方程 组*Ay=*0的解 空间同构

$$= y_1 + y_4 + y_{13} + y_{16} = y_1 + y_2 + y_5 + y_6 = y_3 + y_4 + y_7 + y_8 = y_9 + y_{10} + y_{13} + y_{14} = y_{10} + y_{12} + y_{15} + y_{16}$$
 $\Rightarrow r(A) = 9$

$$= y_1 + y_6 + y_{11} + y_{16} = y_4 + y_7 + y_{10} + y_{13}$$

自由未知量为7个,因此4阶Durer魔方空间的维数为7.

[b,c]=rref(A)				变量	序号	<u>1</u>			
1	. 2	3	4	5	6	7	9	11	
(y1 y2 1) y5 y6 y6 y9 y10 y y13 y14 y B=null(A,'r') 求得一个基础	$y_{15} y_{16}$	ј В	0	0 -1 1 0 1 0 -1 0	1 0 0 -1 -1 0 1 0	-1 0 1 1 1 1 -1 0	0 0 0 1 1 0 0	0 0 0 1 0 1 0 0	0 1 0 0 0 0 1 0
For i=1:7 reshape(B(:,i end	i),4,4)		0 0 0 0 0	1 0 0 0 0 0	0 -1 1 0 0 0	0 1 0 1 0 0	0 1 0 0 1 0	0 0 0 0 0 1	0 0 0 0 0 0

求得durer原	魔方空间的一	-个基为
----------	--------	------

1			0	0	1	-1	0	1	-1	0	0
1	$-\frac{1}{1} P_1$	0	0	-1	0	P . 1	0	0	0	P 0	0
-1			0	1	0 -1	0	0	0	1	³ -1	0
-1	1	0	0	0	0	0	0	-1		1	0
_1	1	Λ	-	^			^		_		
_1	1		1	0		1	U	0	1	0	0
0	1 P ₄	0	0 0	0	1 P	0	0	0	0 /	0	1 0
1	-1 4	1	0	0	1 P	0	1	0	0	⁶ 1	0
1	0	0	0	1	0	0	0		0	0	0

0	0	1	0	
1	0	D 0	0	任取一组实数 $k_1, k_2, k_3, k_4, k_5, k_6, k_7$,就得到一个durer魔方
0	1	0	0	살셔지 소 麻수
0	0	0	1	就侍到一个durer魔力

 $D = k_1 P_1 + k_2 P_2 + k_3 P_3 + k_4 P_4 + k_5 P_5 + k_6 P_6 + k_7 P_7$

可见: durer魔方的基不唯一; Q_1,Q_2,\cdots,Q_7 称为标准基. $\frac{Q_1}{2020/6/28}$ 数学建模

由前面讨论,我们得到了durer魔方空间的基,从而 给定7个数 r_1, \dots, r_7 ,就可以确定一个Dürer魔方.

$$D = \begin{pmatrix} r_1 + r_2 & r_6 & r_5 + r_7 & r_3 + r_4 \\ r_3 + r_5 & r_4 + r_7 & r_1 + r_6 & r_2 \\ r_4 + r_6 & r_2 + r_5 & r_3 & r_1 + r_7 \\ r_7 & r_1 + r_3 & r_2 + r_4 & r_5 + r_6 \end{pmatrix}$$

				1				
6					6	55	-36	2
		14						
		14			4	-38	14	47
(40			۲	30		7/
9		48			9	3	48	-33
	_				7	3	40	-33
8	7		11		0	7	4	4.4
				I	8	/	T	11

1. 知道四方格中任意7个数就可以确定一个 Dürer 魔方吗?

不是的。例如

6	14	48	11
7			
9			
8			

2. 知道哪些位置上的数字,才能唯一确定一个 4阶Dürer 魔方?

知道哪些位置上的数字,可唯一确定一个Dürer 魔方?

Durer 魔方
$$\leftrightarrow$$

$$\begin{pmatrix} y_1 & y_2 & y_3 & y_4 \\ y_5 & y_6 & y_7 & y_8 \\ y_9 & y_{10} & y_{11} & y_{12} \\ y_{13} & y_{14} & y_{15} & y_{16} \end{pmatrix}$$

约束条件

$$y_{1} + y_{2} + y_{3} + y_{4} = y_{5} + y_{6} + y_{7} + y_{8}$$

$$= y_{9} + y_{10} + y_{11} + y_{12} = y_{13} + y_{14} + y_{15} + y_{16}$$

$$= y_{1} + y_{5} + y_{9} + y_{13} = y_{2} + y_{6} + y_{10} + y_{14}$$

$$= y_{3} + y_{7} + y_{10} + y_{15} = y_{4} + y_{8} + y_{12} + y_{16}$$

$$= y_{1} + y_{4} + y_{13} + y_{16} \qquad \Leftrightarrow Ay = 0$$

$$= y_{1} + y_{2} + y_{5} + y_{6} = y_{3} + y_{4} + y_{7} + y_{8}$$

$$= y_{9} + y_{10} + y_{13} + y_{14} = y_{10} + y_{12} + y_{15} + y_{16}$$

$$= y_{1} + y_{6} + y_{10} + y_{16} = y_{4} + y_{7} + y_{10} + y_{13}$$

自由未知量为7个, 因此4阶Durer魔方空间的维数为7.

2020/6/28

[b,c]=rref(A)

独立变量序号

c = 1 2 3 4 5 6 7 9 11

$$\begin{pmatrix} y_1 & y_2 & y_3 & y_4 \\ y_5 & y_6 & y_7 & y_8 \\ y_9 & y_{10} & y_{11} & y_{12} \\ y_{13} & y_{14} & y_{15} & y_{16} \end{pmatrix}$$

自由未知量: $y_8, y_{10}, y_{12}, y_{13}, y_{14}, y_{15}, y_{16}$

知道自由未知量所在位置的数字,就可唯一确定 一个Dürer 魔方。

2020/6/28

数学建模

$$\begin{pmatrix} y_1 & y_2 & y_3 & y_4 \\ y_5 & y_6 & y_7 & y_8 \\ y_9 & y_{10} & y_{11} & y_{12} \\ y_{13} & y_{14} & y_{15} & y_{16} \end{pmatrix}$$

自由变量位置不唯一

思考:如何判定哪7个位置可以作为自由变量?

2020/6/28

数学建模

作业

- 1、编制程序,用户输入n,即可产生一个和为n的Dürer 魔方。
- 2、加工一种食用油需要精炼若干种原料油并把它们混合起来。原料油的来源有两类共5种:植物油VEG1,植物油VEG2,非植物油OIL1,非植物油OIL2,非植物油OIL3。购买每种原料油的价格(英镑/吨)如表1所示,最终产品以150英镑/吨的价格出售。植物油和非植物油需要在不同的生产线上进行精炼。

2020/6/28 数学建模

每月能够精炼的植物油不超过200吨,非植物油不超过250吨; 在精炼过程中,重量没有损失,精炼费用可忽略不计。最终产 品要符合硬度的技术条件。按照硬度计量单位,它必须在3~6 之间。假定硬度的混合是线性的,而原材料的硬度如表2所示。 为使利润最大,应该怎样指定它的月采购和加工计划。

表1 原料油价格(单位:英镑/吨)

原料油	VEG1	VEG2	OIL1	OIL2	OIL3			
价格	110	120	130	110	115			
表2 原料油硬度表								
原料油	VEG1	VEG2	OIL1	OIL2	OIL3			
硬度值	8.8	6.1	2.0	4.2	5.0			
깾	0.0	0.1	2.0	4.2	5.0			