IIT Jodhpur

Biological Vision and Applications

Module 03-04: More on Bayesian reasoning

Hiranmay Ghosh

Bayesian Inference

Summary

- Hypothesis space: $\mathcal{H} = \{h_1, h_2 \dots h_m\}$
- Observable space: $\mathcal{D} = \{d_1, d_2 \dots d_n\}$
- Prior knowledge:
 - Prior probabilities: $P(h_1), P(h_2), \dots P(h_m)$
 - Conditional probabilities: $P(d_1 \mid h_1), P(d_2 \mid h_1) \dots P(d_n \mid h_m)$
- Observed data: $d \in \mathcal{D}$
- Bayes formula: $P(h_i \mid \mathsf{d}) = \frac{P(\mathsf{d}|h_i).P(h_i)}{P(\mathsf{d})} = \frac{1}{\kappa}.P(\mathsf{d} \mid h_i).P(h_i)$
- Inference by best explanation (abduction):
 - $h^* = \operatorname{argmax}_{h_i \in \mathcal{H}} P(h_i \mid \mathsf{d})$

Prior knowledge and evidence

- Bayesian formula: $P(h_i \mid d) = \frac{1}{\kappa} . P(d \mid h_i) . P(h_i)$
 - \triangleright $P(h_i)$ represents prior belief in h_i
 - \triangleright $P(d \mid h_i)$ represents the evidential strength in support of h_i
 - Posterior belief $P(h_i \mid d)$ is the product of the two terms
- Bayesian inference is a synthesis of prior knowledge and evidence from observation
 - Key advantage over pure data-driven (machine learning) approach
 - Strong prior belief: Takes lots of evidence to offset it
 - Weak prior belief: Susceptible to noisy data

Odds

Compare two hypotheses to find which one is more likely than the other

- Operating in logarithmic space makes the model additive
 - ▶ $\log Odds(h_i, h_j \mid d) = (\log P(h_i) \log P(h_j)) + (\log P(d \mid h_i) \log P(d \mid h_j))$
- h_i is more likely than h_j iff $Odds(h_i, h_j \mid d) > 1$ or $logOdds(h_i, h_j \mid d) > 0$

$$P(Banana) = 0.8, P(Apple) = 0.2$$

			Fruits (A)			
		Banana	Apple			
Color (B)	Red	0.1	0.6			
	Green	0.4	0.2			
	Yellow	0.5	0.2			
	Total	1	1			

•
$$P(B|Y) = 0.4 \times k$$

•
$$P(A|Y) = 0.04 \times k$$

• Odds
$$(B, A \mid Y) = \frac{0.4 \times k}{0.04 \times k} = 10$$

•
$$logOdds(B, A | Y) = log 10 = 1$$

Composite data

- Data item d may be composite: $d = (d_1, d_2, \dots, d_n)$
 - e.g. color, texture, shape
- Combinatorial explosion of data space makes modeling difficult
- Assuming conditional independence

$$P(d \mid h) = P(d_1 \mid h).P(d_2 \mid h)....P(d_n \mid h)$$

• $P(h_i \mid d) = k.P(h_i). \prod_{k=1}^{n} P(d_k \mid h)$

Odds
$$(h_i, h_j \mid d) = \frac{P(h_i)}{P(h_j)} \times \prod_{k=1}^n \frac{P(d_k \mid h_i)}{P(d_k \mid h_j)}$$

logOdds $(h_i, h_j \mid d) = (P(h_i) - P(h_j)) + \sum_{k=1}^n (P(d_k \mid h_i) - P(d_k \mid h_j))$

Advantages of modeling with Elementary data items

- Easier to model the statistical dependency of a hypothesis h_i with an elementary data item d_k than the composite d
 - The data space combinatorially expands with number of elementary items
 - Data becomes sparse there may not be any data available for some rare combinations
- Robust inference can be made with a subset of observations
 - Robust against missing observations
 - ▶ Generally, it is possible to use a few discriminatory data elements
 - Wrong observations have less impact
 - Incremental belief update

Example: Robust inference

- To recognize the object as a car, you need not consider all visual features of a car
 - Robust against occlusions, etc.
- Can it be done with deductive reasoning?

Incremental belief update

- $P(h_i \mid d) = k.P(h_i).P(d \mid h_i)$
- Assume that $d = d_1, d_2 \dots d_k$ represents a data stream
- After d_1 arrives
 - ▶ Posterior: $P(h_i | d_1) = k_1.P(h_i).P(d_1 | h_i)$
 - This posterior becomes the prior for the second observation
- After d₂ arrives
 - Posterior: $P(h_i \mid d_1, d_2) = k_2 . P(h_i \mid d_1) . P(d_2 \mid h_i) = k_{12} . P(h_i) . P(d_1 \mid h_i) . P(d_2 \mid h_i)$
 - ► This posterior becomes the prior for the third observation
- ..
- System updates it's belief incrementally
- In practice, it may be possible to infer even before all data arrives

Emergent knowledge

- We observe d
 - Visual patterns: color, texture, shape
- We infer h
 - Semantic concepts: mountain, river, greenery
- The inferred entities are of different kind than the observed entities
- New knowledge is created
- Paradigm applicable to higher layers of cognition also

Limitation of Bayesian reasoning

- We cannot infer an entity unless we have a model for it
 - Was that fruit really a kiwi?
 - A way to cope up
 - Assume uniform probability distribution (0.33 for each color) to begin with
 - Learn (update probabilities) with experience
- Results are good only if
 - Model (priors, conditionals) is good
 - Data (observation) is good
 - Robust against imperfect models / noisy data

Quiz

Quiz 03-04

End of Module 03-04