ПЕРВІСНА. ВИЗНАЧЕНИЙ ІНТЕГРАЛ

Дидактична картотека

С. І. Голобородько, м. Харків

Пропоновані завдання можуть стати вчителеві у пригоді під час вивчення теми «Первісна. Визначений інтеграл», організації повторення знань із теми, підготовки учнів для складання ДПА, ЗНО.

Тема. ПЕРВІСНА. ОСНОВНА ВЛАСТИВІСТЬ ПЕРВІСНОЇ. ПРАВИЛА ЗНАХОДЖЕННЯ ПЕРВІСНИХ

Мета виконання завдань: домогтися свідомого розуміння учнями означення первісної, основної властивості первісних; формувати вміння використовувати для знаходження первісних відповідних правил.

1. Чи правильно, що функція F(x) є первісною для функції f(x)? Поставте позначку «так» або «ні» у відповідній клітинці таблиці.

№ 3/п	Умова	Та або	
1	$F(x) = x^3 - 2x^2 + 4$, $f(x) = 3x^2 - 4x$		
2	$F(x) = 5x^5, \ f(x) = \frac{5}{6}x^6$		
3	$F(x) = \sin x, \ f(x) = -\cos x$		
4	$F(x) = 15\cos x, \ f(x) = -15\sin x$		
5	$F(x) = \frac{1}{2\sqrt{x}} + 5, f(x) = \sqrt{x}$		
6	$F(x) = \operatorname{tg} x + x, \ f(x) = \frac{1}{\cos^2 x} + 1$		
7	$F(x) = \frac{1}{x} + 3$, $f(x) = -\frac{1}{x^2}$		
8	$F(x) = e^{2x+1} + x$, $f(x) = 2e^{2x+1} + 1$		
9	$F(x) = \sqrt{1-x^2}$, $f(x) = -\frac{x}{\sqrt{1-x^2}}$		
10	$F(x) = \cos\left(\frac{1}{3}x - \frac{\pi}{4}\right), \ f(x) = -\sin\left(\frac{1}{3}x - \frac{\pi}{4}\right)$		
11	$F(x) = x^2 - \ln x^3$, $f(x) = 2x - \frac{3}{x}$		
12	$F(x) = 3^{x^2+x}, f(x) = (2x+1) \cdot 3^{x^2+x} \cdot \ln 3$		

Завдання на встановлення відповідності

1. Установіть відповідність між функцією f(x) (1-4) і первісною для неї F(x) (А-Д).

1	$f(x) = 20 + 6x^3$	A	$F(x) = 5x^4 + 3x^2$
2	$f(x) = 20x + 6x^2$	Б	$F(x) = 20x + 1,5x^4$
3	$f(x) = 20x^3 + 6x$	В	$F(x) = 4x^5 + 6x$
4	$f(x) = 20x^4 + 6$	Γ	$F(x) = 10x^2 + 2x^3$
		Д	$F(x) = 40x^{\frac{1}{2}} + 6$

2. Установіть відповідність між функцією f(x) (1-4) та графіком функції (А-Д), яка МОЖЕ бути первісною заданої функції.

1	$f(x) = 3x^2$	A	
2	$f(x) = 3^x$	Б	
3	f(x)=3	В	

» Тестові завдання

Варіант 1

1. Функція

$$F(x) = 6\sin 2x - 1$$

є первісною функції f(x). Знайдіть функцію f(x).

A	Б
$f(x) = -12\cos 2x$	$f(x) = 6\cos 2x$
В	Γ
$f(x) = 12\cos 2x$	$f(x) = -3\cos 2x - x + C$
Д	
$f(x) = -6\cos 2x - x + C$	

2. Функція

$$F(x) = \cos 4x - \sin 6$$

є первісною функції f(x). Знайдіть функцію f(x).

A	Б
$f(x) = -4\sin 4x - \cos 6$	$f(x) = -\sin 4x - \cos 6$
В	Γ
$f(x) = -4\sin 4x$	$f(x) = \frac{1}{4}\sin 4x - x\sin 6 + C$
Д	
$f(x) = \frac{1}{4}\sin 4x + \cos 6 + C$	

3. Функція

$$F(x) = 5^{6x-1} + x$$

є первісною функції f(x). Знайдіть функцію f(x).

A	Б
$f(x) = 6 \cdot 5^{6x-1} \ln 5 + 1$	$f(x) = 5^{6x-1} \ln 5 + 1$
В	Γ
$f(x) = 6 \cdot 5^{6x-1} + 1$	$f(x) = \frac{5^{6x-1}}{6\ln 5} + \frac{x^2}{2} + C$
Д	
$f(x) = \frac{5^{6x-1}}{\ln 5} + \frac{x^2}{2} + C$	

4. Знайдіть загальний вигляд первісних функції f(x)=8x-1.

A	Б	В	Γ	Д
$\frac{x^2}{2} - x + C$	$8x^2 - x + C$	$4x^2 + C$	$8x^2 + C$	$4x^2 - x + C$

5. Укажіть функцію F(x), яка є первісною функції $f(x) = \cos x - 5x^4$.

A	Б
$F(x) = -\sin x - 20x^3$	$F(x) = \sin x - 5x^5$
В	Γ
$F(x) = -\sin x - 5x^5$	$F(x) = -\sin x - x^5$
Д	
$F(x) = \sin x - x^5$	

6. Для функції

$$f(x) = \frac{\sqrt{3}}{\sin^2 x}$$

знайдіть первісну F(x), графік якої проходить через точку $C\!\left(-\frac{\pi}{6};\!-3\right)\!.$

A	Б
$F(x) = \sqrt{3} \operatorname{tg} x - 4$	$F(x) = \sqrt{3} \operatorname{tg} x - 2$
В	Γ
$F(x) = -\operatorname{ctg} x + \sqrt{3} - 3$	$F(x) = -\sqrt{3}\operatorname{ctg} x - 6$
Д	
$F(x) = \sqrt{3}\operatorname{ctg} x - 4$	

7. На рисунку зображено графік однієї з первісних функції f(x). Укажіть точку, через яку ОБОВ'ЯЗКОВО проходить графік якоїсь іншої первісної функції f(x).

A	Б	В	Γ	Д
A(-4;0)	B(0;-4)	C(4;0)	D(4;-4)	E(-4;-4)

8. На рисунку зображено графік функції y = f(x). Укажіть функцію y = F(x), яка МОЖЕ бути первісною функції f(x).

A	Б	В	Γ	Д
$y = 2x^2$	y = 2	y = 2x	$y = 2^x$	$y = 2\sqrt{x}$

9. На рисунку зображено графік первісної функції f(x). Яка з наведених нижче функцій МОЖЕ бути функцією y = f(x)?

A	Б	В	Γ	Д
$y = \lg 5$	$y = \lg 0.5$	$y = \lg x$	$y = 5^x$	$y = -0.5x^2$

Варіант 2

1. Функція $F(x) = 9\sin 3x + 2$ є первісною функції f(x). Знайдіть функцію f(x).

	10 ' ' ()
A	Б
$f(x) = 9\cos 3x$	$f(x) = 27\cos 3x$
В	Γ
$f(x) = -27\cos 3x$	$f(x) = -9\cos 3x + 2x + C$
Д	
$f(x) = -3\cos 3x + 2x + C$	

2. Функція

$$F(x) = 8\cos\frac{x}{2} - 3$$

є первісною функції f(x). Знайдіть функцію f(x).

A	Б
$f(x) = 8\sin\frac{x}{2} - 3x + C$	$f(x) = 16\sin\frac{x}{2} - 3x + C$
В	Γ
$f(x) = 4\sin\frac{x}{2}$	$f(x) = -4\sin\frac{x}{2}$
Д	
$f(x) = -8\sin\frac{x}{2}$	

3. Функція $F(x) = 4^{3x+1} + 2x$ є первісною функції f(x). Знайдіть функцію f(x).

A	Б
$f(x) = 4^{3x+1} \ln 4 + 2$	$f(x) = 3 \cdot 4^{3x+1} \cdot \ln 4 + 2x$
В	Γ
$f(x) = 3 \cdot 4^{3x+1} \cdot \ln 4 + 2$	$f(x) = \frac{4^{3x+1}}{3\ln 4} + x^2 + C$
Д	
$f(x) = 4^{3x} + 2$	

4. Знайдіть загальний вигляд первісних функції f(x) = 6x + 7.

A	Б	В	Γ	Д
$\frac{x^2}{2} + 7x + C$	$3x^2 + 7x + C$	$6x^2 + 7x + C$	$3x^2 + C$	$6x^2 + C$

5. Знайдіть загальний вигляд первісних функції $f(x) = \sin 10x$.

A	Б
$\cos 10x + C$	$-\cos 10x + C$
В	Γ
$-\frac{1}{10}\cos 10x + C$	$\frac{1}{10}\cos 10x + C$
Д	
$-10\cos 10x + C$	

6. Для функції

$$f(x) = \frac{1}{\cos^2 x}$$

знайдіть первісну F(x), графік якої проходить через точку $A\!\left(-\frac{\pi}{4};2\right)\!.$

A	Б
$F(x) = \operatorname{tg} x + 1$	$F(x) = -\operatorname{ctg} x + 1$
В	Γ
$F(x) = \operatorname{tg} x + 3$	$F(x) = -\operatorname{ctg} x + 3$
Д	
$F(x) = -\operatorname{tg} x + 1$	

7. На рисунку зображено графік однієї з первісних функції f(x). Укажіть точку, через яку ОБОВ'ЯЗКОВО проходить графік якоїсь іншої первісної функції f(x).

A	Б	В	Γ	Д
P(6;6)	Q(-6;6)	R(6;1)	S(-6;1)	T(1;6)

8. На рисунку зображено графік функції y = f(x). Укажіть функцію y = F(x), яка МОЖЕ бути первісною функції f(x).

A	Б	В	Γ	Д
y = -1	$y = -x^2$	$y = \frac{1}{x}$	y = -x	$y = -\sqrt{x}$

9. На рисунку зображено графік функції y = f(x). Укажіть функцію y = F(x), яка МОЖЕ бути первісною функції f(x).

A	Б	В	Γ	Д
y = 2x	$y = 2^x$	$y = \frac{2}{x}$	$y = 2\sin x$	$y = x^2 + 2$

⇒ Самостійна робота

Варіант 1

1. Функція F(x) є первісною функції

$$f(x) = \cos\frac{x}{6} - \sin 2x.$$

Знайдіть $F(\pi)$, якщо $F(3\pi) = -2$.

2. Функція F(x) є первісною функції

$$f(x) = \frac{3}{\sqrt{2x-1}} - x$$

на проміжку $\left(\frac{1}{2}; +\infty\right)$. Знайдіть F(5), якщо F(1) = -2.

Варіант 2

1. Функція $\mathit{F}(x)$ є первісною функції

$$f(x) = \sin\frac{x}{3} + \cos 4x.$$

Знайдіть $F(\pi)$, якщо $F(2\pi) = -4$.

2. Функція F(x) є первісною функції

$$f(x) = \frac{5}{\left(\frac{x}{2} + 1\right)^2} + 3$$

на проміжку $(-2;+\infty)$. Знайдіть F(3), якщо $F(2)\!=\!0\;.$

НА ДОПОМОГУ ВЧИТЕЛЮ

Тема. ВИЗНАЧЕНИЙ ІНТЕГРАЛ

Мета виконання завдань:

- ✓ сформувати розуміння геометричного змісту визначеного інтеграла;
- удосконалити вміння обчислювати визначений інтеграл:
 - за формулою Ньютона-Лейбніца;
 - із використанням геометричного змісту визначеного інтеграла;
- ✓ удосконалити вміння обчислювати площу криволінійної трапеції, фігури, обмеженої лініями.
- 1. З-поміж наведених укажіть інтеграли, значення яких є додатним числом; від'ємним числом; дорівнює нулю. Номери відповідних інтегралів запишіть у таблицю.

Інтеграли, значення яких є додатним числом	Інтеграли, значення яких є від'ємним числом	Інтеграли, значення яких дорівнює нулю

1	$\int\limits_{-2}^{1}x^{2}dx$	2	$\int_{-1}^{1} x^3 dx$	3	$\int_{1}^{4} \sqrt{x} dx$	4	$\int_{\frac{\pi}{2}}^{\pi} \cos x dx$
5	$\int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \frac{dx}{\cos^2 x}$	6	$\int\limits_{-2}^{-1} (-x) dx$	7	$\int_{1}^{2} e^{x} dx$	8	$\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \sin x dx$
9	$\int_{1}^{2} \left(-\frac{1}{x^{2}}\right) dx$	10	$\int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \frac{dx}{\sin^2 x}$	11	$\int_{-2}^{0} x^5 dx$	12	$\int_{-1}^{1} x dx$
13	$\int_{-4}^{-2} \frac{dx}{x}$	14	$\int_{-3}^{3} x dx$	15	$\int_{1}^{2} 5^{x} dx$	16	$\int\limits_{0}^{1}\cos 2dx$

2. Користуючись графіком функції y = f(x), визначте, які з наведених інтегралів набувають додатних значень, від'ємних значень, дорівнюють нулю.

1	$\int_{-4}^{0} f(x) dx$	2	$\int_{0}^{2} f(x) dx$	3	$\int_{2}^{4} f(x) dx$
4	$\int_{0}^{4} f(x) dx$	5	$\int_{-2}^{2} f(x) dx$	6	$\int_{-4}^{4} f(x) dx$

Тестові завдання

Варіант 1

1. Обчисліть: $\int 4x dx$.

A	Б	В	Γ	Д
50	14	4	28	46

2. Знайдіть

$$\int_{1}^{2} (f(x)-4g(x))dx,$$

$$\int\limits_{-1}^{2} \big(f(x) - 4g(x)\big) dx,$$
 якщо $\int\limits_{-1}^{2} f(x) dx = -3, \int\limits_{-1}^{2} g(x) dx = 2.$

A	Б	В	Γ	Д
-11	11	5	-5	-20

3. Обчисліть площу зафарбованої фігури, зображеної на рисунку.

A	Б	В	Г	Д
$-\ln 3$	3ln3	-3ln3	3	ln3

4. На рисунку зображено графіки функцій

$$y = \frac{\sqrt{x}}{2}$$
 Ta $y = \frac{x}{4}$.

Укажіть формулу для обчислення площі зафарбованої фігури.

A	Б	В
$\int_{0}^{4} \frac{\sqrt{x}}{2} dx$	$\int_{0}^{4} \left(\frac{\sqrt{x}}{2} - \frac{x}{4} \right) dx$	$\int_{0}^{4} \left(\frac{x}{4} - \frac{\sqrt{x}}{2} \right) dx$
Γ	Д	
$\int_{0}^{1} \left(\frac{\sqrt{x}}{2} - \frac{x}{4} \right) dx$	$\int_{0}^{1} \left(\frac{x}{4} - \frac{\sqrt{x}}{2} \right) dx$	

5. На рисунку зображено графік функції y = f(x). Укажіть формулу для обчислення площі зафарбованої фігури.

A	Б
$2\int_{-3}^{0}f(x)dx$	$2\int\limits_{0}^{3}f(x)dx$
В	Γ
$\int_{-3}^{0} f(x)dx - \int_{0}^{3} f(x)dx$	$\int_{0}^{3} f(x)dx - \int_{-3}^{0} f(x)dx$
Д	
$\int_{-3}^{3} f(x) dx$	

6. На рисунку зображено графік функції y = f(x). Серед наведених тверджень укажіть УСІ ПРАВИЛЬНІ.

I. Значення інтеграла $\int f(x)dx$ є від'ємним числом.

II.
$$\int_{5}^{6} f(x) dx > \int_{0}^{2} f(x) dx$$
.

III. Значення інтеграла $\int f(x)dx$ належить проміжку (0;1).

A	Б	В	Γ	Д
I, II	I, II, III	I	I, III	III

Варіант 2

1. Обчисліть: $\int 6x dx$.

A	Б	В	Γ	Д
30	6	39	15	30

2. Знайдіть

$$\int_{-2}^{3} (2f(x)+g(x))dx,$$

$$\int\limits_{-2}^{3} \left(2f(x)+g(x)\right)dx$$
, якщо $\int\limits_{-2}^{3} f(x)dx = 4$, $\int\limits_{-2}^{3} g(x)dx = -9$.

A	Б	В	Γ	Д
-5	5	-1	1	-10

3. Обчисліть площу зафарбованої фігури, зображеної на рисунку.

A	Б	В	Γ	Д
$\frac{8}{3}$	$-\frac{8\ln 3}{3}$	$-\frac{8}{3\ln 3}$	$\frac{8}{3\ln 3}$	$\frac{8\ln 3}{3}$

4. На рисунку зображено графіки функцій $y = x^2$ та y = 3x. Укажіть формулу для обчислення площі зафарбованої фігури.

A	Б	В
$\int\limits_{0}^{3}3xdx$	$\int_{0}^{9} (3x-x^{2}) dx$	$\int\limits_{0}^{9} \left(x^{2}-3x\right) dx$
Γ	Д	
$\int_{0}^{3} (x^2 - 3x) dx$	$\int_{0}^{3} (3x-x^{2}) dx$	

5. На рисунку зображено графік функції y = f(x). Укажіть формулу для обчислення площі зафарбованої фігури.

A	Б
$\int_{-1}^{1} f(x) dx$	$\int_{-1}^{0} f(x)dx - \int_{0}^{1} f(x)dx$

В	Г
$\int_0^1 f(x)dx - \int_{-1}^0 f(x)dx$	$2\int_{-1}^{0}f(x)dx$
Д	
$2\int_{0}^{1}f(x)dx$	

6. На рисунку зображено графік функції y = f(x). Серед наведених тверджень укажіть УСІ ПРАВИЛЬНІ.

I.
$$\int_{-1}^{0} f(x) dx < \int_{2}^{4} f(x) dx$$
.

II. Значення інтеграла $\int_{0}^{2} f(x)dx$ належить проміжку (1;2).

III. Значення інтеграла $\int\limits_{2}^{4}f(x)dx$ є додатним числом.

A	Б	В	Γ	Д
III	I, III	II, III	I	I, II, III

▶ Завдання на встановлення відповідності Варіант 1

1. Установіть відповідність між визначеним інтегралом (1-4) та його значенням (А-Д).

1	$\int\limits_{-2}^{1} \bigl(x^2-4x\bigr) dx$	A	-21
2	$\int\limits_{-1}^{2} \left(x^2-6x-5\right) dx$	Б	0,5
3	$\int_{-1}^{1} \left(2x+1\right)^3 dx$	В	9

4	$\int\limits_{-\frac{\pi}{4}}^{\frac{\pi}{8}}\sin 8x dx$	Γ	10
		Д	0,25

Варіант 2 (високий рівень)

1. Установіть відповідність між визначеним інтегралом (1-4) та його значенням (A-Д).

1	$\int_{-4}^{-1} \frac{x^2 - 2x + 1}{x - 1} dx$	A	0,25
2	$\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \sin\left(x - \frac{\pi}{6}\right) \cos\left(x - \frac{\pi}{6}\right) dx$	Б	2,5
3	$\int\limits_{0}^{1} \frac{9 - 4x^{2} + \sqrt{3 - 2x}}{3 - 2x} dx$	В	$-\frac{\sqrt{3}}{4}$
4	$\int_{-1}^{1} \left(1 + \frac{x}{2}\right)^3 dx$	Γ	$3+\sqrt{3}$
		Д	-10,5

2. Установіть відповідність між фігурою (1-4) та інтегралом (A-Д), за яким обчислюють площу цієї фігури.

1	Фігура, обмежена графіками функцій $f(x) = 2x - x^2$ та $g(x) = -3$	A	$\int_{0}^{1} (g(x)-f(x))dx$
2	Фігура, обмежена графіками функцій $f(x) = 2x - x^2, \ g(x) = 1$ та віссю ординат	Б	$\int_{0}^{1} (f(x) - g(x)) dx$
3	Фігура, обмежена графіками функцій $f(x) = 2x - x^2$ та $g(x) = -x$	В	$\int_{1}^{3} (g(x)-f(x))dx$
4	Фігура, обмежена графіками функцій $f(x) = 2x - x^2, \ g(x) = 1$ та прямою $x = 3$	Γ	$\int_{-1}^{3} (f(x) - g(x)) dx$
	-	Д	$\int_{0}^{3} (f(x) - g(x)) dx$

▶ Самостійна робота № 1

Варіант 1

- 1. Обчисліть площу фігури, обмеженої лініями $y = x^2 2$, y = 6 2x.
- **2.** Обчисліть площу фігури, обмеженої графіком функції

$$y = \frac{22}{3} - (x+1)^2$$

і прямими $y = \frac{x}{3}$, x = -1 та x = 1.

3. Обчисліть площу фігури, обмеженої лініями $y = \sin x$, $y = 2\cos x$, $x = \frac{\pi}{2}$, $x = \pi$.

Варіант 2

- **1.** Обчисліть площу фігури, обмеженої лініями $y = x^2 3$, y = 2x + 5.
- 2. Обчисліть площу фігури, обмеженої графіком функції

$$y = \frac{25}{3} - (x+2)^2$$

і прямими $y = \frac{2x}{3}$, x = -2 та x = -1.

3. Обчисліть площу фігури, обмеженої лініями $y = 2\sin x$, $y = -3\sin x$, $x = -\frac{\pi}{3}$, $x = 2\pi$.

⇒ Самостійна робота № 2

Варіант 1

1. Обчисліть

$$\int_{0}^{5} f(x)dx,$$

використовуючи зображений на рисунку графік лінійної функції y = f(x).

Ще не придбали нашу чудову книгу?

Ми та ваші колеги дуже рекомендуємо!

Маленькі секрети учительського успіху. Навчаємо з радістю (Автор В. І. Садкіна)

144 с., укр. мова, формат А5, м'яка ламінована обкладинка

Це книга про правду... про правду шкільного життя у всьому його різноманітті.

У книзі два розділи «Школа офлайн» та «Школа онлайн». У першому йдеться про традиційні шкільні проблеми, у другому на суд читача винесено інноваційні смаколики.

Відгуки:

«Супер-книжка для вчителів-практиків, особливо для тих, хто розпочинає свою діяльність! Радитиму своїм колегам!»

«Враження від книги неймовірні! З такими викладачами, як автор, навчання у школі дійсно не перетворювалися б на нудну рутину. Прочитала швидко і легко, написано з гумором, якого іноді так не вистачає. Книга надихнула на творчий підхід, більшість порад уже взяла на озброєння ;)»

«Мабуть, найкраща книга для молодих спеціалістів! Має зручні широкі береги, де зручно занотовувати власні думки. Раджу всім!»

«Книга, що читається на одному диханні, і яка обов'язково стане настільною. Стільки чудових ідей і порад! Такі книги справді надихають, окрилюють, бо іноді просто руки опускаються — настільки набридли безглузді "реформи" та "зміни" у сфері освіти. Щиро вдячна Вікторії Іванівні. Чекаємо наступну книгу!»

Обов'язково замовте! Корисність гарантовано!

Замовлення можна зробити: за тел.: (057) 731-96-35, (067) 572-30-37; на сайті: http://book.osnova.com.ua. Вартість поштової доставки — 12,95 грн.

OCHOB[►]

- 2. Обчисліть: $\int_{-4}^{-1} \sqrt{x^2 + 6x + 9} \, dx.$
- 3. Знайдіть значення параметра $a\ (a>0)$, при якому площа фігури, обмеженої графіком функції

$$u = ax^2 + 1$$

і прямими

$$x=1, x=2, y=0,$$

дорівнює
$$\frac{22}{15}$$
.

Варіант 2

1. На рисунку зображено графік лінійної функції

$$y = f(x)$$
.

Обчисліть:

$$\int_{0}^{6} f(x)dx.$$

- **2.** Обчисліть: $\int_{-1}^{4} \sqrt{x^2 2x + 1} \, dx$.
- 3. Знайдіть значення параметра $a\ (a>0)$, при якому площа фігури, обмеженої графіком функції

$$y = ax^2 + 2$$

і прямими

$$x = -2$$
, $x = -1$, $y = 0$,

дорівнює $\frac{31}{12}$.

ЛІТЕРАТУРА

Захарійченко Ю. О. Повний курс математики в тестах / Ю. О. Захарійченко, О. В. Школьний, Л. І. Захарійченко, О. В. Школьна. — Х. : Ранок, 2013.