Convex Optimization

Lecture 7 - Applications in Signal Processimg

Instructor: Yuanzhang Xiao

University of Hawaii at Manoa

Fall 2017

Today's Lecture

Statistical Estimation

2 Hypothesis Testing

Filter Design

Outline

Statistical Estimation

2 Hypothesis Testing

Filter Design

Parametric Distribution Estimation

```
p_{x}(y): x \in \mathbb{R}^{n}, y \in \mathbb{R}^{m}
```

- as a function of y: probability distribution of y, indexed by x
- as a function of x: likelihood function for fixed y

parametric distribution estimation:

• given y, choose the "most likely" distribution $p_x(\cdot)$ (i.e., choose x)

Maximum Likelihood Estimation

maximum likelihood estimation:

maximize
$$p_x(y)$$

with optimization variable x

log-likelihood function: (more like to be concave)

$$\ell(x) = \log p_x(y)$$

equivalent formulation:

maximize
$$\ell(x) = \log p_x(y)$$

with optimization variable x

Linear Measurements With IID Noise

linear measurement model:

$$y_i = a_i^T x + v_i, i = 1, ..., m$$

- $x_i \in \mathbb{R}^n$: parameters to be estimated
- $y_i \in \mathbb{R}$: measurement
- $v_i \in \mathbb{R}$: noise

we assume

- *v_i* are independent, identically distributed (IID)
- v_i has probability density function $p(\cdot)$

log-likelihood function:

$$\ell(x) = \log p_x(y) = \log \prod_{i=1}^m p\left(y_i - a_i^T x\right) = \sum_{i=1}^m \log p\left(y_i - a_i^T x\right)$$

Linear Measurements With IID Gaussian Noise

Gaussian noise with zero mean and variance σ^2 :

$$p(z) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{z^2}{2\sigma^2}}$$

log-likelihood function:

$$\ell(x) = -\frac{m}{2}\log(2\pi\sigma^2) - \frac{1}{2\sigma^2}\sum_{i=1}^{m} (y_i - a_i^T x)^2$$
$$= -\frac{m}{2}\log(2\pi\sigma^2) - \frac{1}{2\sigma^2}||Ax - y||_2^2$$

maximum likelihood estimation:

minimize
$$||Ax - y||_2^2$$

Linear Measurements With IID Laplacian Noise

Laplacian noise with zero mean and variance σ^2 :

$$p(z) = \frac{1}{2a} e^{-\frac{|z|}{a}}$$

with a > 0

log-likelihood function:

$$\ell(x) = -m \log(2a) - \frac{1}{a} \sum_{i=1}^{m} |y_i - a_i^T x|$$
$$= -m \log(2a) - \frac{1}{a} ||Ax - y||_1$$

maximum likelihood estimation:

minimize
$$||Ax - y||_1$$

Linear Measurements With IID Uniform Noise

uniformly distributed noise on [-a, a]:

$$p(z) = \begin{cases} \frac{1}{2a} & \text{if } z \in [-a, a] \\ 0 & \text{otherwise} \end{cases}$$

log-likelihood function:

$$\begin{array}{lcl} \ell(x) & = & \left\{ \begin{array}{ll} -m\log(2a) & \text{if } \left|y_i - a_i^T x\right| \leq a, \ i = 1, \ldots, m \\ -\infty & \text{otherwise} \end{array} \right. \\ & = & \left\{ \begin{array}{ll} -m\log(2a) & \text{if } \|Ax - y\|_{\infty} \leq a \\ -\infty & \text{otherwise} \end{array} \right. \end{array}$$

maximum likelihood estimation:

minimize 0 subject to
$$||Ax - y||_{\infty} \le a$$

a feasibility problem

Counting Problems With Poisson Distribution

measurement y is nonnegative integer with Poisson distribution:

$$\operatorname{prob}(y=k) = \frac{e^{-\mu}\mu^k}{k!}$$

- e.g., # of cars passing an intersection, # of traffic accidents
- ullet μ is the average number per unit time

assume
$$\mu = a^T u + b$$

- $u \in \mathbb{R}^n$: explanatory variables
 - e.g., $u = (\text{total traffic flow}, \text{rainfall}, \text{peak hours or not}) \in \mathbb{R}^3$
- $a \in \mathbb{R}^n, b \in \mathbb{R}$: model parameters to be estimated

try to estimate how traffic accidents depend on various variables

Counting Problems With Poisson Distribution

m measurements: $(u_i, y_i), i = 1, \ldots, m$

likelihood function:

$$\prod_{i=1}^{m} \frac{(a^{T}u_{i} + b)^{y_{i}} e^{-(a^{T}u_{i} + b)}}{y_{i}!}$$

log-likelihood function:

$$\ell(x) = \sum_{i=1}^{m} \left[y_i \log(a^T u_i + b) - (a^T u_i + b) - \log(y_i!) \right]$$

maximum likelihood estimation:

maximize
$$\sum_{i=1}^{m} \left[y_i \log(a^T u_i + b) - (a^T u_i + b) \right]$$

with optimization variables $a \in \mathbb{R}^n$ and $b \in \mathbb{R}$

Nonparametric Distribution Estimation

- a random variable X with values in finite set $\{\alpha_1, \ldots, \alpha_n\}$
 - distribution of X characterized by $p \in \mathbb{R}^n$, where $\operatorname{prob}(X = \alpha_k) = p_k, \ k = 1, \dots, n$

nonparametric distribution estimation:

- estimate the distribution p
- base on prior information, observations, measurements, etc.

Prior Information

prior information \Rightarrow constraints on p

examples of prior information that result in linear constraints:

- mean: $\mathbf{E}(X) = \alpha \Rightarrow \sum_{i=1}^{n} \alpha_i \mathbf{p}_i = \alpha$
- second moment: $\mathbf{E}(X^2) = \beta \Rightarrow \sum_{i=1}^n \alpha_i^2 p_i = \beta$
- $\operatorname{prob}(X \ge 0) \le 0.2 \Rightarrow \sum_{i:\alpha_i \ge 0} p_i \le 0.2$

examples of prior information that result in nonlinear constraints:

variance: (concave in p)

$$var(X) = E(X^{2}) - [E(X)]^{2} = \sum_{i=1}^{n} \alpha_{i}^{2} p_{i} - \sum_{i=1}^{n} (\alpha_{i} p_{i})^{2}$$

Kullback-Leiber divergence from distribution q: (convex in p)

$$\sum_{i=1}^n p_i \log(p_i/q_i)$$

Maximum Likelihood Estimation

prior information represented by $p \in \mathcal{P}$

- ullet ${\mathcal P}$ results from the prior information discussed earlier
- $\mathcal{P} \subseteq \{p: \mathbf{1}^T p = 1, p \geq 0\}$

observations:

- N independent samples
- the number of samples with value α_i is k_i

log-likelihood function

$$\ell(p) = \log \prod_{i=1}^n p_i^{k_i} = \sum_{i=1}^n k_i \log(p_i)$$

maximum likelihood estimation:

$$\begin{array}{ll} \mathsf{maximize} & \ell(p) = \sum_{i=1}^n k_i \log(p_i) \\ \mathsf{subject to} & p \in \mathcal{P} \end{array}$$

Other Problems

the distribution with the minimum expected value of a function:

minimize
$$\sum_{i=1}^n f(\alpha_i)p_i$$
 subject to $p \in \mathcal{P}$

where $f(\cdot)$ can be any function (even nonconvex)

the distribution with minimum K-L divergence from q:

minimize
$$\sum_{i=1}^n p_i \log(p_i/q_i)$$
 subject to $p \in \mathcal{P}$

• $q = \frac{1}{n}1$: find the most random distribution

Outline

Statistical Estimation

2 Hypothesis Testing

Filter Design

Hypothesis Testing

- a random variable X with values in finite set $\{\alpha_1, \ldots, \alpha_n\}$
 - distribution of X parameterized by $\theta \in \{\theta_1, \dots, \theta_m\}$
 - matrix $P \in \mathbb{R}^{n \times m}$ with

$$p_{ij} = \operatorname{prob}\left(X = \alpha_i | \theta = \theta_j\right)$$

observe samples of X, then estimate θ

- θ : hypothesis \Rightarrow hypothesis testing
- θ : events \Rightarrow event detection

note the difference from nonparametric distribution estimation: P is known in hypothesis testing

Detector

detector: a random variable $\hat{\theta}$ with distribution depending on X

 $T \in \mathbb{R}^{m \times n}$ with

$$t_{ji} = \operatorname{prob}\left(\hat{\theta} = \theta_j | X = \alpha_i\right)$$

- when observe α_i , the detector give $\hat{\theta} = \theta_j$ with probability t_{ji}
- ith column of T, t_i : probability distribution of $\hat{\theta}$ given α_i

T must satisfy

$$t_i \geq 0, \quad \mathbf{1}^T t_i = 1, \quad i = 1, \dots, n$$

Detection Probability Matrix

detection probability matrix: $D = TP \in \mathbb{R}^{m \times m}$, where

$$\begin{aligned} D_{ji} &= & (TP)_{ji} \\ &= & \sum_{k=1}^{n} \operatorname{prob}\left(\hat{\theta} = \theta_{j} | X = \alpha_{k}\right) \operatorname{prob}\left(X = \alpha_{k} | \theta = \theta_{i}\right) \\ &= & \operatorname{prob}\left(\hat{\theta} = \theta_{j} | \theta = \theta_{i}\right) \end{aligned}$$

• detection probabilities denoted by $P^d \in \mathbb{R}^m$ with

$$P_i^d = D_{ii} = \operatorname{prob}\left(\hat{\theta} = \theta_i | \theta = \theta_i\right)$$

• error probabilities denoted by $P^e \in \mathbb{R}^m$ with

$$P_i^e = \sum_{i \neq i} D_{ji} = \operatorname{prob}\left(\hat{\theta} \neq \theta_i | \theta = \theta_i\right)$$

 P^d and P^e are linear in detector T

Optimal Detector Design – Minimax Detector

minimax detector design:

minimize
$$\max_{j} P_{j}^{e}$$

subject to $t_{i} \geq 0, 1^{T} t_{i} = 1, i = 1, \dots, n$

minimize the worst-case error probability

can add many constraints:

• lower bounds on detection probabilities:

$$P_i^d = D_{ii} \ge L_i$$

upper bounds on error probabilities:

$$D_{ji} \leq U_{ji}$$

Optimal Detector Design – Bayes Detector

suppose that there is a prior distribution for the hypotheses $q \in \mathbb{R}^m$

$$q_i = \operatorname{prob}(\theta = \theta_i)$$

Bayes detector design:

minimize
$$q^T P^e$$

subject to $t_i > 0, 1^T t_i = 1, i = 1, ..., n$

minimize the expected error probability

Robust Detector Design – Robust Minimax Detector

suppose that P is not known exactly but $P \in \mathcal{P}$

robust (worst-case) minimax detector design:

$$\begin{array}{ll} \text{minimize} & \max_{j} \sup_{p \in P} P_{j}^{e} \\ \\ \text{subject to} & t_{i} \geq 0, 1^{T} t_{i} = 1, i = 1, \ldots, n \end{array}$$

where
$$P_j^e = 1 - D_{jj}$$

Outline

Statistical Estimation

2 Hypothesis Testing

3 Filter Design

FIR Filters

finite impulse response (FIR) filters:

$$y(t) = \sum_{ au=0}^{n-1} h_{ au} u(t- au), \ t \in \mathbb{Z}$$

- *u*: input signal/sequence
- *y*: output signal/sequence
- h_i: filter coefficients
- n: filter length

Frequency Response

frequency response:

$$H(\omega) = h_0 + h_1 e^{-j\omega} + \dots + h_{n-1} e^{-j(n-1)\omega}$$

= $\sum_{t=0}^{n-1} h_t e^{-j(t-1)\omega}$

- $H(\omega + 2\pi) = H(\omega)$, $H(\omega + \pi) = -H(\omega)$
- need to specify $H(\cdot)$ only in $[0,\pi]$

filter design: choose h so that h and H satisfy certain specifications

Frequency Response - Example

FIR filter h(t) of length n = 21:

frequency response $H(\omega)$:

magnitude $|H(\omega)|$

phase $\angle H(\omega)$

Chebychev Design

Chebychev design:

minimize
$$\max_{\omega \in [0,\pi]} |H(\omega) - H_{\text{des}}(\omega)|$$

with optimization variables $h(0), \ldots, h(n-1)$

- H_{des}: desired frequency response
- convex optimization (may not be easy to solve)

relaxation:

minimize
$$\max_{k=1,\ldots,m} |H(\omega_k) - H_{\text{des}}(\omega_k)|$$

with optimization variables $h(0), \ldots, h(n-1)$

close to the desired frequency response at m sample points

Chebychev Design

Chebychev design as SOCP:

minimize
$$t$$
 subject to $\|A_k h - b_k\| \le t, \ k = 1, \ldots, m$

where

$$A_k = \begin{bmatrix} 1 & \cos \omega_k & \cdots & \cos(n-1)\omega_k \\ 0 & \sin \omega_k & \cdots & \sin(n-1)\omega_k \end{bmatrix}$$

$$b_k = \begin{bmatrix} \operatorname{Re}(H_{\operatorname{des}}(\omega_k)) \\ \operatorname{Im}(H_{\operatorname{des}}(\omega_k)) \end{bmatrix}$$

Lowpass Filter Design

lowpass filter design:

- low frequency $[0, \omega_p]$: magnitude within $[1/\delta_1, \delta_1]$ $1/\delta_1 < |H(\omega)| < \delta_1, \ 0 < \omega < \omega_p$
- high frequency $[\omega_s,\pi]$: magnitude below δ_2

$$|H(\omega)| \leq \delta_2, \ \omega_s \leq \omega \leq \pi$$

Lowpass Filter Design

samples at frequencies $\omega_1, \ldots, \omega_m$

minimum stopband magnitude:

nonconvex due to $1/\delta_1 \leq |H(\omega_k)|$

Lowpass Filter Design – Linear Phase Filters

consider filter h such that

- n = 2N + 1 is odd
- *h* is symmetric: $h_t = h_{n-1-t}, t = 0, ..., n-1$

$$H(\omega) = h_0 + h_1 e^{-j\omega} + \dots + h_{n-1} e^{-j(n-1)\omega}$$

$$= h_N e^{-jN\omega} + \sum_{t=0}^{N-1} h_t e^{-jt\omega} + h_{n-1-t} e^{-j(n-1-t)\omega}$$

$$= h_N e^{-jN\omega} + \sum_{t=0}^{N-1} h_t \left(e^{-jt\omega} + e^{-j(2N-t)\omega} \right)$$

$$= e^{-jN\omega} \left[h_N + \sum_{t=0}^{N-1} h_t \left(e^{-j(t-N)\omega} + e^{-j(N-t)\omega} \right) \right]$$

$$= e^{-jN\omega} \left(h_N + \sum_{t=0}^{N-1} 2h_t \cos(t-N)\omega \right)$$

Lowpass Filter Design – Linear Phase Filters

linear phase filter:

- $H(\omega) = e^{-jN\omega} \tilde{H}(\omega)$
- phase $N\omega$ is linear in frequency
- magnitude is $\tilde{H}(\omega)$
- $\tilde{H}(\omega)$ is real and linear in h

minimum stopband magnitude:

minimize
$$\delta_2$$
 subject to $1/\delta_1 \leq \tilde{H}(\omega_k) \leq \delta_1, \ 0 \leq \omega_k \leq \omega_p$ $\tilde{H}(\omega_k) \leq \delta_2, \ \omega_s \leq \omega_k \leq \pi$

linear program

Lowpass Filter Design – Linear Phase Filters

minimum passband fluctuation:

minimize
$$\delta_1$$
 subject to $\delta_1 \geq 1$
$$1/\delta_1 \leq \tilde{H}(\omega_k) \leq \delta_1, \ 0 \leq \omega_k \leq \omega_p$$
 $\tilde{H}(\omega_k) \leq \delta_2, \ \omega_s \leq \omega_k \leq \pi$

convex optimization (but not LP)

Lowpass Filter Design – Convex Reformulation

suppose that we consider general filters (not linear phase)

change of variables: autocorrelation coefficients:

$$r_t = \sum_{\tau} h_{\tau} h_{\tau+t}$$

where $h_t = 0$ for t < 0 and t > n

- $r_t = r_{-t}$ and $r_t = 0$ for |t| > n
- need to specify $r = (r_0, \dots, r_{n-1}) \in \mathbb{R}^n$
- Fourier transform

$$R(\omega) = \sum_{\tau} r_{\tau} e^{-j\tau\omega} = r_0 + \sum_{t=1}^{n-1} 2r_t \cos \omega t = |H(\omega)|^2$$

convex constraints: $L(\omega)^2 \le R(\omega) \le U(\omega)^2$