

Fig. 1

Fig. 1A

Fig. 2

Fig. 3

Fig. 4

Fig. 5

7	9	5	4	3	7
9	4	7	7	5	n
2	2	9	3	<i>L</i>	4
4	<i>L</i>	3	9	2	5
e	5	7	7	4	9
7	3	4	5	9	7
	1	1	1	1	ᠸᢇ
S1	S 2	S3	S4	S 2	9S

Fig. 7

9		9			
4					
2 4		7		2	
7					
2		2			
3				3	
-		1			
9					
2 4 6 1 3		4		4	
7					
7		7			
2				5	
ε.		ω			
-					
9		9		9	
2 4 6 1 3					
7		7			
7				2	
2		2			
3					
-		_		1	
Full	Kate	Half	Rate	Low	Rate

Fig. 8

	\rfloor				
4					
7		7		2	
n				3	
_		_			
4		4		4	
7					
3		3			
-					
2 4					
7		2		<u> </u>	
m					
-		-			
Full	Kate	Half	Rate	Low	Rate

Fig. 9

Parallel	Upper	∞	10	12	14	6	11	3	8	10	12 14 9 1	14	6		3	8	10 12	12	14	6	11	3
Transmission	Band																					
	Lower	1	3	5	7	2	4	9	1	3	2	7	7	4	9	1	3	5	7	2	4	9
	Band																					

Fig. 10

Algorithm for OFDM+CP	
CP	
×	
Rx multi-path 1	
Rx multi-path 2	
Rx multi-path 3	
CP Removal	

Fig. 11

TX Sylmod TX Sylmod Rx multi-path 1 Fx multi-path 2 Rx multi-path 2 Fx multi-path 3 Relevant tail and multi-path 4 Fx multi-path 4 Signal after adding relevant tail to the start Fx multi-path 4

Fig. 12

Algorithm for OFDIM+Partial CP+ZP	M+Parial CP+ZP
0.	Partial
	Symbol
Τ̈́	
Rx multi-path 1	
Rx multi-path 2	
Rx multi-path 3	
Relevant	
tail and	
multi-path	
Signal after	
removing CP and	
adding relevant	

Fig. 13