Computergraphik 1 2. Teil: Bildverarbeitung

Bildverbesserung

Themen jetzt gleich

- Rauschen, Entropie
- Bildverbesserung
 - Punktbasiert
 - Flächenbasiert
 - Kantenbasiert

Was ist Rauschen?

- Rauschen n(m,n) ist eine nicht-wiederholbare Veränderung der Bildfunktion.
- Unkorreliertes Rauschen:

```
Additiv -g(m,n)=f(m,n)+n(m,n)
```

- Ursache: z.B. Quantenrauschen
- Charakterisierung von n:
 - Beschreibbar über eine Verteilungsfunktion:
 - Gleichverteilung
 - Normalverteilung
 - Erwartungswert E(n)=0

Normalverteilung vs. Gleichverteilung

Beschreibung von Rauschen

- Charakterisierung im Frequenzbereich, z.B.
 - Weißes Rauschen: Alle Frequenzen mit gleicher Amplitude.
 - Rosa Rauschen: Amplitude im niederfrequenten Bereich höher.
 - Farbiges Rauschen: Variierende Amplitude.
- Signal-Rausch-Verhältnis (SNR: Signal-to-Noise-Ratio)
 - $= SNR_{max} = \max_{m,n} [f(m,n)] / avg[n(m,n)]$
 - $SNR_{\varnothing} = avg[f(m,n)] / avg[n(m,n)].$
 - SNR kann auch objektabhängig bestimmt werden

Weißes vs. Rosa Rauschen

Impulsrauschen

- Einzelne Pixel sind gestört.
- Störung ist maximal (d.h. Pixel ist entweder schwarz oder weiß; Salt-and-Pepper-Noise)

Histogramm

Häufigkeit H(g) der Grauwerte $g=\{0,1,...,N-1\}$ in einem Bild.

Normiertes Histogramm

- Normierung nach Anzahl der Pixel eines Bildes (Größe MxN): $H_{norm}(g) = H(g) / (M \cdot N)$
- Ein normiertes Histogramm gibt für jeden Grauwert g die Wahrscheinlichkeit an, dass ein beliebiges Pixel diesen Grauwert hat.

Informationsgehalt

Messbare Einheit von Information mit intuitiver Bedeutung.

- **1. Ansatz:** Information I(E) eines Grauwerts E ist umso höher, je größer die Gesamtanzahl N der verwendeten Grauwerte ist:
 - $-I_{N}(E)=N.$
 - Informationsgehalt ist unabhängig davon, welcher Grauwert aus der Liste $E=\{E_0,E_1,...,E_{N-1}\}$ übermittelt wurde.
 - Für m-wertige Symbole kann eine Informationseinheit für einen Grauwert als $\log_m I_N(E)$ definiert werden.
 - Beispiel:
 - Anzahl der Grauwerte: 256
 - Informationsgehalt jedes Grauwerts: 256
 - Symbol: Bit (2-wertig)
 - Informationseinheit: log₂256 = 8

Informationsgehalt

- Nachteil: Informationsgehalt eines häufig vorkommenden Grauwerts ist genauso groß wie die eines selten vorkommenden Werts.
- Information I(E) eines Pixelwerts E unter Berücksichtigung der Häufigkeit von E:
 - Umgekehrt proportional zur Wahrscheinlichkeit P(E) des Eintreffens.
 - Logarithmus zur Basis n (n Wertigkeit der Informationseinheit)

$$I(E) = \log_n 1/P(E) = -\log_n P(E)$$

- Zur Repräsentation der Information I(E) werden I(E) Informationseinheiten benötigt.
- Beispiel für Bits:
 - Wahrscheinlichkeit für Eintreffen von E sei 0.5
 - $-I(E) = \log_2 2 = 1.$

Informationsgehalt einer Pixelfolge

- Grauwertbereich $\{g_0, g_1, ..., g_{N-1}\}$
- Wahrscheinlichkeiten $\{P(g_0), ..., P(g_{N-1})\}$
- Informationsgehalt einer Folge der Länge k Wahrscheinlichkeit des Auftretens gewichtet mit Informationsgehalt:

$$-k \times P(g_0) \times \log_2 P(g_0) - k \times P(g_1) \times \log_2 P(g_1) - k \times P(g_2) \times \log_2 P(g_2)..$$

$$= -k \sum_{i=0}^{N-1} P(g_i) \times \log_2 P(g_i)$$

Durchschnittlicher Informationsgehalt = Entropie:

$$Entropie(P) = -\sum_{i=0}^{N-1} P(g_i) \operatorname{dog}_2 P(g_i)$$

 Das normierte Histogramm kann als Schätzung für P verwendet werden.

Bildverbesserung

 Verbesserung von Bildeigenschaften zur besseren Wahrnehmbarkeit oder zur Vorbereitung von Analyseschritten.

- Bildeigenschaften:
 - Signal-Rausch-Verhältnis
 - Kontrast
 - Informationsgehalt
- Punktbasierte Methoden
- Flächenbasierte Methoden

Welches Bild ist besser? Warum? Wie ist das messbar?

Pixelbasierte Bildverbesserung

- Abbildung der Grau-/Farbwerte unabhängig von ihrem Ort oder ihrer Zuordnung
 - innerhalb der Grau- bzw. Farbwerte: $g_{neu} = f(g)$ oder $[r_{neu}, g_{neu}, b_{neu}] = [f(r), f(g), f(b)]$
 - von Grauwerten in Farbwerte (Falschfarbdarstellung): $[r_{neu}, g_{neu}, b_{neu}] = [f_1(g), f_2(g), f_3(g)]$
- Qualitätsmerkmal: globaler/lokaler Kontrast, Entropie
- Methoden
 - Monotone Abbildung der Grauwerte
 - Nichtmonotone Grauwertabbildung
 - Falschfarbdarstellung

Nutzung des Grauwertspektrums

Unter-/Überbelichtung

Kontrast

- Globaler Kontrast: Größter Grauwertunterschied im Bild $c_{\mathrm{global}}(f) = [\max_{m,n}(f(m,n))-\min_{m,n}(f(m,n))]/g_{range}.$ mit g_{range} Grauwertbereich
- Lokaler Kontrast: z.B. durchschnittlicher Grauwertunterschied zwischen benachbarten Pixeln

$$c_{\text{local}}(f) = 1/MN \sum_{m} \sum_{n} |f(m,n) - f_{nb}(m,n)|$$

mit $f_{nb}(m,n)$ — durchschnittlicher
Grauwert in der Umgebung
von (m,n) .

Globaler / Lokaler Kontrast

Maximierung des globalen Kontrasts

- Kontrastumfang g_{max} - g_{min} im Verhältnis zum maximalen Wertebereich $w_{min}...w_{max}$ (z.B. 0...255) ist Skalierungsfaktor.
- Transferfunktion

$$g'(g) = (g - g_{\min}) \times \frac{w_{\max} - w_{\min}}{g_{\max} - g_{\min}}$$

$$g_{\max} - g_{\min}$$

$$g_{\min}$$

$$g_{\min}$$

$$g_{\max}$$

$$g_{\max}$$

$$g_{\max}$$

$$g_{\max}$$

Maximierung des globalen Kontrasts

$$g'(g) = (g - g_{\min}) \times \frac{w_{\max} - w_{\min}}{g_{\max} - g_{\min}}, \quad g_{\min} = 100, g_{\max} = 112, w_{\min} = 0, w_{\max} = 255$$

$$g'(g) = (g - 100) \times \frac{255}{12}$$

$$\mathbf{c}_{\text{global}} = 0.083$$

$$\mathbf{c}_{\text{global}} = 0.083$$

Verbesserung des lokalen Kontrasts

- Bild ist zu hell (zu dunkel), aber Grauwertbereich ist nahezu ausgenutzt.
- Nichtlineare, monotone Transferfunktion, z.B. Gammakorrektur:

$$g'(g) = w_{\text{max}} \times \left(\frac{g}{w_{\text{max}}}\right)^{\gamma}$$

Verbesserung des lokalen Kontrasts

Maximierung des Informationsgehalts

- Gibt es eine "optimale" Korrektur?
- Optimal = maximaler Informationsgehalt

Maximaler Informationsgehalt

Entropie ist maximal, falls $P(g_i)$ =const für

i=0,N-1

gesucht: Histogrammtransformation g'(g)

zur Maximierung der Entropie

Annahme:

H(g) ist normiert und kontinuierlich, d.h., $\int H(g)=1$.

Dann existiert die folgende Transferfunktion g':

$$g'(g) = \int_{0...g} H(w) \, \mathrm{d}w$$

Beispiel

Histogrammlinearisierung

Transferfunktion für ein diskretes Histogramm:

$$E[H(g)] = [N_g \cdot \sum_{w=0...g} H(w)] - 1$$
, mit: N_g - Anzahl der Grauwerte.

Beispiel:

Grauwert	0	1	2	3	4	5	6	7
Häufigkeit	50	150	350	250	100	60	30	10
H(g)	0.05	0.15	0.35	0.25	0.10	0.06	0.03	0.01
kumulativ	0.05	0.20	0.55	0.80	0.90	0.96	0.99	1.00
Grauwert	0.4	1.6	4.4	6.4	7.2	7.68	7.92	8.00
aufgerundet	1	2	5	7	8	8	8	8
[] -1	0	1	4	6	7	7	7	7

Keine Linearisierung, sondern von der Häufigkeit abhängige Spreizung.

Beispiel

Warum wurde die Entropie kleiner?

Beispiel

Histogrammlinearisierung

Histogrammlinearisierung

Problem

Histogrammlinearisierung - Varianten

- Adaptive Histogram Equalisation (AHE)
 - Histogramm wird an jedem Punkt für eine vorgegebene Umgebung erstellt.
 - Linearisierung nach diesem Histogramm
 - Nur der Grauwert des betreffenden Punkts wird modifiziert
- Contrast Limited Adaptive Histogram Equalisation (CLAHE):
 - wie AHE, aber Kontrastverstärkung nur bis zu einem gewissen Maximum.
 - verhindert die bei AHE vorkommende Kontrastverstärkung im Bildhintergrund.

Adaptive Histogrammlinearisierung

Kontrastlimitierte AHE

Nichtmonotone Grauwertabbildung

Zwei Grauwertfenster in einem Bild.

- Erzeugt künstliche Kanten.
- Grenzen von Maxima der Transferfunktion nicht immer erkennbar.

Eine Zuordnung zwischen Helligkeit und ursprünglichem Grauwert ist nicht mehr herstellbar.

Analoge Variante: Solarisation

- Lange bekannter chemischer Effekt bei der Negativoder Positiventwicklung
- Entsteht durch zus. Belichtung während der Entwicklung
 - z.B.: jemand betritt unangemeldet die Dunkelkammer
- Bewirkt nichtmonotone Schwärzungskurve
- Schwer zu steuern in der analogen Photographie
- Fotos oben von 1938, 1950 http://www.bsz-bw.de/eu/hoepffner-schoffers/

Farbe zur Kontrastverstärkung

- Es können wesentlich mehr Farb- als Grauwerte unterschieden werden.
- Kontrastverstärkung durch drei nicht-lineare, nicht-monotone Abbildungsfunktionen der Grauwerte: redi(g), greeni(g) bluei(g)

Beispiel

Achtung:
Nichtlineare
Transformationen
erzeugen
künstliche Kanten.

LMU München – Medieninformatik – Butz/Hoppe – Computergrafik 1 – SS2009

Was sollten Sie bis hierhin gelernt haben?

- Punktbasierte Verfahren werden über eine Transferfunktion zwischen Grauwerten (Farbwerten) definiert.
- Grauwerttransformationen
 - monoton: linear, γ-Korrektur, Histogrammlinearisierung
 - Nicht monoton: Stufentransformation, Falschfarbdarstellung.
- Erfolg kann an kontrastbasierten Maßzahlen ermittelt werden.
- Objektabhängige Bildverbesserung erfordert Zusatzwissen.

Flächenbasierte Bildverbesserung

- Rauschen kann durch Integration einer Signalfolge mit (nahezu) konstantem Signal reduziert werden.
- Konstante Signalfolge:
 - Integration über eine zeitliche Folge.
 - Integration über eine homogene Fläche.
- Lineare verschiebungsinvariante Operatoren
 - Konvolutionsmethoden
 - Filterung im Frequenzraum

Zeitliche Folge

Annahmen

- Aufnahme mehrerer Bilder g_i , i=1,I über einen gegebenen Zeitraum.
- Bild verändert sich über den Zeitraum nicht (keine Bewegung, keine Beleuchtungsänderung).
- Erwartungswert E des Rauschens n ist 0.
- Näherung an die unverrauschte Funktion f:
 - $E\{g(m,n)\} = E\{f(m,n)\} + E\{n(m,n)\}$ $= E\{f(m,n)\} + 0 = f(n,n)$
 - Abschätzung von E{g(m,n)} durch Integration über die Bilder.

Beispiel

- Einzelne Aufnahme mit normalverteiltem Rauschen (SNR≈1.2).
- Addition von 10 bzw. 50 Aufnahmen.

Integration über die Fläche

• Falls für eine Reihe von Bildpunkten $(p_0,...,p_n)$ gilt, dass $f(p_i)$ =const, dann kann Rauschen n mit $E\{n\}$ =0 durch Addition der gemessenen Funktionswerte $g(p_i)$ reduziert werden.

Annahmen:

- Bild besteht aus homogenen Bereichen.
- Benachbarte Punkte haben den gleichen Grauwert.
- Rauschunterdrückung:
 - Mittelwertbildung über vorgegebene Nachbarschaft.

Mittelwertbildung durch Konvolution

Konvolutionskern: Gleichmäßige Gewichtung der Pixel in einer gegebenen Nachbarschaft

3x3 Boxcar-Filter

1/9	1/9	1/9
1/9	1/9	1/9
1/9	1/9	1/9

Filterkern

7x7 Boxcar-Filter

Beobachtung: Kanten werden degradiert.

Grund: Annahme konstanter

Funktionswerte ist nicht wahr.

Verhalten an Kanten

Richtungsabhängigkeit des Mittelwertfilters

Transferfunktion (Repräsentation im Frequenzraum).

Auswirkungen

Frequenzraumfilterung

- Filter im Frequenzraum so entwickeln, dass die Artefakte nicht auftauchen können.
- Ideales Tiefpassfilter

$$H_{F_{\text{max}}}(u,v) = \begin{cases} 1 & \text{, falls } u^2 + v^2 \le F_{\text{max}}^2 \\ 0 & \text{, sonst.} \end{cases}$$

Tiefpassfilter zur Rauschunterdrückung

Ringing-Artefakt

Ringing-Artefakt

Bildzeile

Das Ringing-Artefakt entsteht, weil scharfe Kanten durch Wellen aller Frequenzen beschrieben werden.

Fourier-transformierte Zeile

Butterworth-Filter

Frequenzen werden nicht gelöscht, sondern nur abgeschwächt.

Tiefpass-Filter:

$$H(u,v) = \frac{1}{1 + (D(u,v)/D_0)^{2n}}$$

Hochpass-Filter:

$$H(u,v) = \frac{1}{1 + (D_0 / D(u,v))^{2n}}$$

 D_0 : Cutoff-Frequenz,

D(u,v): Frequenz, d.h. Abstand

vom Ursprung

Butterworth vs. Einfacher Tiefpass

Binomialfilter

Eindimensionaler Binomialfilter $B^p = [1 \ 1]^*[1 \ 1]^*...^*[1 \ 1]$ (p-mal):

$$B^{0} = 1^{-1}$$
 . [1]
 $B^{1} = 2^{-1}$. [1 1]
 $B^{2} = 4^{-1}$. [1 2 1]
 $B^{3} = 8^{-1}$. [1 3 3 1]
 $B^{4} = 16^{-1}$. [1 4 6 4 1]

Zweidimensionaler Binomialfilter $\mathbf{B}^p = B^{p*}(B^p)^T$:

$$\mathbf{B}^{2} = 4^{-1} \cdot \begin{bmatrix} 1 \ 2 \ 1 \end{bmatrix}^{T} \cdot 4^{-1} \cdot \begin{bmatrix} 1 \ 2 \ 1 \end{bmatrix} = 16^{-1} \cdot \begin{pmatrix} 1 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 1 \end{pmatrix}$$

$$\left\langle
 \begin{array}{cccc}
 1 & 2 & 1 \\
 2 & 4 & 2 \\
 1 & 2 & 1
 \end{array}
\right\rangle$$

Zweidimensionale Binomialfilter

$$\mathbf{B}^3 = 1/64 \cdot [1\ 3\ 3\ 1]^{\mathrm{T}} \cdot [1\ 3\ 3\ 1] = 1/64 \cdot$$

1	3	3	1
3	9	9	3
3	9	9	3
1	3	3	1

Transferfunktion des Binomialfilters

Weniger Artefakte an Kanten sind zu erwarten.

Filterresultate des Binomialfilters

Butterworth-Filter / Binomialfilter

- Ideales Tiefpassfilter: kompakter Träger im Frequenzraum, aber artefakt-verursachende Ortsraumrepräsentation
- ▶ Butterworth-Filter: kontrolliert monoton fallende Funktion im Frequenzraum, deren Ortsraumrepräsentation ebenfalls monoton fällt.
- Mittelwertfilter: kompakter Träger im Ortsraum, aber artefaktverursachende Frequenzraumrepräsentation
- ► Binomial-Filter: monoton fallende Funktion mit kompaktem Träger im Ortsraum, deren Frequenzraumrepräsentation monoton fällt.

Binomialfilter und Gaußfunktion

- Für immer größere Filterkerne nähert sich das Binomialfilter der Gaußschen Glockenkurve an.
- Der Betrag der Transferfunktion einer solchen Funktion ist wieder eine Gaußsche Glockenkurve.

Filterung mit 2D Gaußfilter

Die Gaußfunktion ist separabel, so dass die Filterung durch zwei 1D Konvolutionen erfolgen kann.

Grenzen

Sogenanntes
Impulsrauschen
(Salt & Pepper
Noise) kann nicht
entfernt werden.

Was sollten Sie gerade gelernt haben?

- Rauschunterdrückung durch Schätzung des Erwartungswerts der Bildfunktion
- Schätzung des Erwartungswerts = zeitliche oder räumliche Integration
- Filter im Orts- und Frequenzraum
- Artefakte bei Orts-/Frequenzraumfiltern

Literatur

- Klaus D. Tönnies: "Grundlagen der Bildverarbeitung", ISBN 3-8273-7155-4
- http://www.pearson-studium.de/main/main.asp?
 page=booksites/
 - selectchapter&isbn=3827371554&PSZielgruppe=Student