1

Digital Signal Processing

Yash Rajput BM20BTECH11018

CONTENTS

1	Software Installation	1
2	Digital Filter	1
3	Difference Equation	1
4	Z-transform	2
5	Impulse Response	3
6	DFT and FFT	5
7	Exercises	5

Abstract—This manual provides a simple introduction to digital signal processing.

1 Software Installation

Run the following commands

sudo apt-get update sudo apt-get install libffi-dev libsndfile1 python3 -scipy python3-numpy python3-matplotlib sudo pip install cffi pysoundfile

2 Digital Filter

2.1 Download the sound file from

wget https://raw.githubusercontent.com/ gadepall/ EE1310/master/filter/codes/Sound_Noise.wav

2.2 You will find a spectrogram at https: //academo.org/demos/spectrum-analyzer. Upload the sound file that you downloaded in Problem 2.1 in the spectrogram and play. Observe the spectrogram. What do you find? Solution: There are a lot of yellow lines between 440 Hz to 5.1 KHz. These represent the synthesizer key tones. Also, the key strokes are audible along with background noise.

2.3 Write the python code for removal of out of band noise and execute the code.

Solution:

import soundfile as sf from scipy import signal #read .wav file input signal,fs = sf.read('Sound Noise.wav' #sampling frequency of Input signal sampl freq=fs #order of the filter order=4 #cutoff frquency 4kHz cutoff freq=4000.0 #digital frequency Wn=2*cutoff freq/sampl freq # b and a are numerator and denominator polynomials respectively b, a = signal.butter(order, Wn, 'low') #filter the input signal with butterworth filter output signal = signal.filtfilt(b, a, input signal) $#output \ signal = signal.lfilter(b, a,input)$ signal) #write the output signal into .wav file sf.write('Sound_With_ReducedNoise.wav', output signal, fs)

2.4 The output of the python script 2.3 Problem is the audio file Sound With ReducedNoise.wav. Play the file in the spectrogram in Problem 2.2. What do you observe?

Solution: The key strokes as well as background noise is subdued in the audio. Also, the signal is blank for frequencies above 5.1 kHz.

3 DIFFERENCE EQUATION

3.1 Let

$$x(n) = \left\{ \frac{1}{1}, 2, 3, 4, 2, 1 \right\}$$
 (3.1)

Sketch x(n).

3.2 Let

$$y(n) + \frac{1}{2}y(n-1) = x(n) + x(n-2),$$

$$y(n) = 0, n < 0 \quad (3.2)$$

Sketch y(n).

Solution: The following code yields Fig. 3.3.

wget https://github.com/gadepall/EE1310/raw/master/filter/codes/xnyn.py

Fig. 3.2

3.3 Repeat the above exercise using a C code. **Solution:** The following code yields Fig. 3.3.

wget https://github.com/gadepall/EE1310/raw/master/filter/codes/xnyn.py

4 Z-TRANSFORM

4.1 The Z-transform of x(n) is defined as

$$X(z) = \mathbb{Z}\{x(n)\} = \sum_{n=-\infty}^{\infty} x(n)z^{-n}$$
 (4.1)

Show that

$$Z{x(n-1)} = z^{-1}X(z)$$
 (4.2)

and find

$$\mathcal{Z}\{x(n-k)\}\tag{4.3}$$

Fig. 3.3

Solution: From (4.1),

$$Z\{x(n-k)\} = \sum_{n=-\infty}^{\infty} x(n-1)z^{-n}$$

$$= \sum_{n=-\infty}^{\infty} x(n)z^{-n-1} = z^{-1} \sum_{n=-\infty}^{\infty} x(n)z^{-n}$$
(4.4)
$$(4.5)$$

resulting in (4.2). Similarly, it can be shown that

$$\mathcal{Z}\{x(n-k)\} = z^{-k}X(z) \tag{4.6}$$

4.2 Find

$$H(z) = \frac{Y(z)}{X(z)} \tag{4.7}$$

from (3.2) assuming that the Z-transform is a linear operation.

Solution: Applying (4.6) in (3.2),

$$Y(z) + \frac{1}{2}z^{-1}Y(z) = X(z) + z^{-2}X(z)$$
 (4.8)

$$\implies \frac{Y(z)}{X(z)} = \frac{1 + z^{-2}}{1 + \frac{1}{2}z^{-1}} \tag{4.9}$$

4.3 Find the Z transform of

$$\delta(n) = \begin{cases} 1 & n = 0 \\ 0 & \text{otherwise} \end{cases}$$
 (4.10)

and show that the Z-transform of

$$u(n) = \begin{cases} 1 & n \ge 0 \\ 0 & \text{otherwise} \end{cases}$$
 (4.11)

is

$$U(z) = \frac{1}{1 - z^{-1}}, \quad |z| > 1 \tag{4.12}$$

Solution: It is easy to show that

$$\delta(n) \stackrel{\mathcal{Z}}{\rightleftharpoons} 1 \tag{4.13}$$

and from (4.11),

$$U(z) = \sum_{n=0}^{\infty} z^{-n}$$
 (4.14)

$$=\frac{1}{1-z^{-1}}, \quad |z| > 1 \tag{4.15}$$

using the fomula for the sum of an infinite geometric progression.

4.4 Show that

$$a^n u(n) \stackrel{\mathcal{Z}}{\rightleftharpoons} \frac{1}{1 - az^{-1}} \quad |z| > |a| \tag{4.16}$$

Solution:

$$\mathcal{Z}\lbrace a^{n}u(n)\rbrace = \sum_{n=-\infty}^{\infty} a^{n}u(n)z^{-n}$$
 (4.17)

$$= \sum_{n=-\infty}^{\infty} u(n) (az^{-1})^n$$
 (4.18)

$$=\sum_{n=-\infty}^{\infty} (az^{-1})^n$$
 (4.19)

$$=\frac{1}{1-az^{-1}}\tag{4.20}$$

4.5 Let

$$H(e^{j\omega}) = H(z = e^{j\omega}).$$
 (4.21)

Plot $|H(e^{j\omega})|$. Comment. $H(e^{j\omega})$ is known as the *Discret Time Fourier Transform* (DTFT) of x(n).

Solution: The graph is symmetric and periodic it is attending high of value 4 and minimum between (0 - 0.5). From uniformly spaced samples it produces a function of frequency that is a periodic summation of the continuous Fourier transform of the original continuous function

The following code plots Fig. 4.5.

wget https://raw.githubusercontent.com/ gadepall/EE1310/master/**filter**/codes/dtft. py

Fig. 4.5: $|H(e^{j\omega})|$

5 IMPULSE RESPONSE

5.1 Find an expression for h(n) using H(z), given that

$$h(n) \stackrel{\mathcal{Z}}{\rightleftharpoons} H(z) \tag{5.1}$$

and there is a one to one relationship between h(n) and H(z). h(n) is known as the *impulse response* of the system defined by (3.2).

Solution: From (4.9),

$$H(z) = \frac{1}{1 + \frac{1}{2}z^{-1}} + \frac{z^{-2}}{1 + \frac{1}{2}z^{-1}}$$
 (5.2)

$$\implies h(n) = \left(-\frac{1}{2}\right)^n u(n) + \left(-\frac{1}{2}\right)^{n-2} u(n-2)$$
(5.3)

using (4.16) and (4.6).

5.2 Sketch h(n). Is it bounded? Convergent?

Solution: Yes, it is bounded and convergent. We can clearly see in the plot it is not tending to infinite and remain finite.

The following code plots Fig. 5.2.

wget https://raw.githubusercontent.com/gadepall/EE1310/master/filter/codes/hn.py

5.3 The system with h(n) is defined to be stable if

$$\sum_{n=-\infty}^{\infty} h(n) < \infty \tag{5.4}$$

Is the system defined by (3.2) stable for the impulse response in (5.1)?

Fig. 5.2: h(n) as the inverse of H(z)

Solution: By using h(n) from 5.3

$$h(n) = \left(-\frac{1}{2}\right)^n u(n) + \left(-\frac{1}{2}\right)^{n-2} u(n-2)$$

$$= \sum_{n=-\infty}^{\infty} \left(-\frac{1}{2}\right)^n u(n) + \left(-\frac{1}{2}\right)^{n-2} u(n-2)$$

$$= \sum_{n=-\infty}^{\infty} \left(-\frac{1}{2}\right)^n u(n) + \sum_{n=-\infty}^{\infty} \left(-\frac{1}{2}\right)^{n-2} u(n-2)$$
(5.6)

$$= \sum_{n=-\infty}^{\infty} \left(-\frac{1}{2} \right)^n + \sum_{n=-\infty}^{\infty} \left(-\frac{1}{2} \right)^{n-2}$$
 (5.8)

(5.9)

$$=\frac{2}{3} + \frac{2}{3} < \infty \tag{5.10}$$

5.4 Compute and sketch h(n) using

$$h(n) + \frac{1}{2}h(n-1) = \delta(n) + \delta(n-2), \quad (5.11)$$

This is the definition of h(n).

Solution: The following code plots Fig. 5.4.

Note that this is the same as Fig. 5.2.

$$= h(n) + \frac{1}{2}h(n-1) = \delta(n) + \delta(n-2)$$
(5.12)

$$= H(z) + \frac{1}{2}z^{-1}H(z) = 1 + z^{-2}$$
 (5.13)

$$H(z) = \frac{1}{1 + \frac{1}{2}z^{-1}} + \frac{z^{-2}}{1 + \frac{1}{2}z^{-1}}$$
 (5.14)

$$h(n) = \left(-\frac{1}{2}\right)^n u(n) + \left(-\frac{1}{2}\right)^{n-2} u(n-2) \quad (5.15)$$

wget https://raw.githubusercontent.com/ gadepall/EE1310/master/**filter**/codes/hndef .py

Fig. 5.4: h(n) from the definition

5.5 Compute

(5.7)

$$y(n) = x(n) * h(n) = \sum_{n = -\infty}^{\infty} x(k)h(n - k)$$
 (5.16)

Comment. The operation in (5.16) is known as *convolution*.

Solution: The following code plots Fig. 5.5. Note that this is the same as y(n) in Fig. 3.3.

wget https://raw.githubusercontent.com/gadepall/EE1310/master/**filter**/codes/ynconv.py

5.6 Show that

$$y(n) = \sum_{n=-\infty}^{\infty} x(n-k)h(k)$$
 (5.17)

Fig. 5.5: y(n) from the definition of convolution

6 DFT AND FFT

6.1 Compute

$$X(k) \stackrel{\triangle}{=} \sum_{n=0}^{N-1} x(n)e^{-j2\pi kn/N}, \quad k = 0, 1, \dots, N-1$$
(6.1)

and H(k) using h(n).

6.2 Compute

$$Y(k) = X(k)H(k) \tag{6.2}$$

6.3 Compute

$$y(n) = \frac{1}{N} \sum_{k=0}^{N-1} Y(k) \cdot e^{j2\pi kn/N}, \quad n = 0, 1, \dots, N-1$$
(6.3)

Solution: The following code plots Fig. 5.5. Note that this is the same as y(n) in Fig. 3.3.

wget https://raw.githubusercontent.com/ gadepall/EE1310/master/**filter**/codes/yndft. py

- 6.4 Repeat the previous exercise by computing X(k), H(k) and y(n) through FFT and IFFT.
- 6.5 Wherever possible, express all the above equations as matrix equations.

7 Exercises

Answer the following questions by looking at the python code in Problem 2.3.

7.1 The command

Fig. 6.3: y(n) from the DFT

in Problem 2.3 is executed through the following difference equation

$$\sum_{m=0}^{M} a(m) y(n-m) = \sum_{k=0}^{N} b(k) x(n-k) \quad (7.1)$$

where the input signal is x(n) and the output signal is y(n) with initial values all 0. Replace **signal.filtfilt** with your own routine and verify.

- 7.2 Repeat all the exercises in the previous sections for the above a and b.
- 7.3 What is the sampling frequency of the input signal?

Solution: Sampling frequency(fs)=44.1kHZ.

7.4 What is type, order and cutoff-frequency of the above butterworth filter

Solution: The given butterworth filter is low pass with order=2 and cutoff-frequency=4kHz.

7.5 Modifying the code with different input parameters and to get the best possible output.