DAFTAR ISI

DAFTA	AR ISI	i
DAFTA	AR TABEL	ii
BAB 1.	PENDAHULUAN	1
1.1.	Latar Belakang	1
1.2.	Rumusan Masalah	1
1.3.	Tujuan	1
1.4.	Luaran yang Diharapkan	2
1.5.	Kegunaan	2
BAB 2.	TINJAUAN PUSTAKA	2
2.1.	Sinar UV	2
2.2.	Sunscreen	2
2.3.	Pengujian Efektivitas Bahan Aktif Tabir surya	3
2.4.	Penelitian Sebelumnya	4
BAB 3.	METODE PENELITIAN	5
3.1.	Desain Penelitian dan Tahapan Penelitian	5
3.2.	Prosedur Penelitian	5
3.3.	Indikator Capaian	7
3.4.	Analisis Pengolahan Data dan Penyimpulan Hasil Penelitian	8
BAB 4.	Biaya dan Jadwal Kegiatan	8
4.1.	Anggaran Biaya	8
4.2.	Jadwal Kegiatan	8
DAFTA	AR PUSTAKA	8
LAMP	RAN	11
Lam	piran 1. Biodata Ketua, Anggota, dan Dosen Pendamping	11
Lam	piran 2. Justifikasi Anggaran Kegiatan	18
Lam	piran 3. Susunan Organisasi Tim Peneliti dan Pembagian Tugas	20
Lam	piran 4. Surat Pernyataan Ketua Pelaksana	21

DAFTAR TABEL

Tabel 2.1. Keefektifan Tabir Surya Berdasarkan Nilai SPF	3
Tabel 2.2. Kategori Penilaian Tabir Surya	
Tabel 3.1. Variasi Kombinasi Zat Aktif	
Tabel 3.2. Formula Basis Krim Tabir Surya	5
Tabel 3.3. Nilai EE x I pada perhitungan SPF (Sayre et al, 1979)	6
Tabel 3.4. Fluks Eritema dan Pigmentasi Tabir Surya (Rahardhian et al, 2019)	7
Tabel 4.1. Tabel Anggaran Biaya	8
Tabel 4.2. Tabel Jadwal Kegiatan	8

BAB 1. PENDAHULUAN

1.1. Latar Belakang

Indonesia, terutama Jakarta, menerima paparan sinar matahari selama kurang lebih 11 - 12 jam setiap harinya dengan intensitas sinar yang berbeda – beda (Time and Date AS, 2020). Lama paparan dan intensitas sinar matahari memengaruhi kesehatan kulit manusia karena sinar matahari memancarkan energi yang bermanfaat untuk tubuh namun juga berbahaya untuk kesehatan kulit. Sinar matahari memancarkan energi dalam bentuk energi elektromagnetik dan yang paling berbahaya adalah sinar ultraviolet (UV). Sinar UV merupakan faktor risiko utama dari kanker kulit (American Cancer Society, 2017). Meskipun hanya sedikit sinar UV yang dipancarkan ke bumi, sinar ini tetap adalah penyebab utama kerusakan pada kulit. Oleh sebab itu, solusi dalam menangani masalah sinar UV adalah tabir surya.

Produk tabir surya adalah produk penting untuk menjaga kulit agar terlindungi dari sinar UV. Bahan aktif tabir surya terbagi menjadi dua, yakni bahan aktif organic, seperti Oktil Metoksisinamat (OMC) dan bahan aktif inorganic, seperti Zink Oksida (ZnO) dan Titanium Dioksida (TiO). Bahan aktif tersebut bekerja dengan mekanisme berbeda. Bahan aktif organik bekerja dengan menyerap radiasi UV sedangkan bahan aktif inorganik bekerja dengan memantulkan radiasi UV (Gabros, Nessel, dan Zito, 2020). Kedua jenis memberi efek sama namun dengan mekanisme yang berbeda. Akan tetapi, bahan – bahan tersebut dilaporkan memiliki potensi toksisitas, salah satunya adalah potensi neurotoksik. Berdasarkan penelitian, OMC berpotensi menyebabkan penurunan kerja *motor* dan *spatial learning* (Axelstad et al, 2011). ZnO menunjukkan adanya potensi toksisitas, namun pada beberapa penelitian ZnO belum menunjukkan penyerapan zat melalui kulit yang signifikan (Axelstad et al, 2011; Osmond dan Mccal, 2010). TiO menunjukkan potensi toksisitas jangka panjang namun perlu penelitian lebih lanjut sehingga masih dianggap aman (Skojac et al, 2011).

Penggunaan kombinasi bahan aktif dengan mekanisme kerja berbeda dapat memberikan efek sinergis yang memungkinkan peningkatan efektivitas (Lademann, 2005). Oleh karena itu, penggunaan kombinasi bahan aktif dapat memberikan efek yang sama dengan bahan tunggal meski pada dosis yang lebih rendah dibandingkan saat bahan tunggal. Kombinasi bahan aktif menyebabkan dosis lebih rendah yang memungkinkan pengurangan potensi efek samping. Berdasarkan hal tersebut, perlu diketahui efektivitas masing – masing bahan aktif organic dan inorganic dibandingkan campuran dari bahan – bahan tersebut pada berbagai dosis sehingga diketahui hasil yang optimal.

1.2. Rumusan Masalah

Bagaimana analisis efektivitas bahan aktif organil Oktil Metoksisinamat dengan inorganic Zink Oksida dan Titanium Dioksida serta campurannya?

1.3. Tujuan

1.3.1 Tujuan Umum

- a. Mengetahui analisis efektivitas bahan aktif organik Oktil Metoksisinamat dengan inorganic Zink Oksida dan Titanium Dioksida serta kombinasinya
 - 1.3.2 Tujuan Khusus
- Mengetahui analisis efektivitas bahan aktif organik Oktil Metoksisinamat, inorganik Zink Oksida dan Titanium Dioksida serta kombinasinya pada dosis tertentu dengan uji SPF
- b. Mengetahui analisis efektivitas bahan aktif organik Oktil Metoksisinamat dan inorganik Zink Oksida dan Titanium Dioksida serta kombinasia pada dosis tertentu dengan uji persentase transmisi eritema dan pigmentasi

1.4. Luaran yang Diharapkan

Luaran yang diharapkan pada penelitian ini adalah

- a. Laporan kemajuan,
- b. Laporan akhir dan
- c. Artikel ilmiah terkait penelitian.

1.5. Kegunaan

- a. Masyarakat dapat mengetahui bahan tabir surya yang paling baik untuk kulit
- b. Menjadi referensi dalam pemilihan bahan aktif formulasi tabir surya dengan menggunakan bahan aktif organik Oktil Metoksisinamat atau inorganic Zink Oksida atau campurannya dalam memberikan hasil perlindungan terbaik

BAB 2. TINJAUAN PUSTAKA

2.1. Sinar UV

Sinar UV terbagi menjadi 3 tipe, yakni UVA, UVB, dan UVC (American Cancer Society, 2017). UVA menyebabkan kerusakan kulit jangka panjang karena memengaruhi penuaan kulit dan kerusakan DNA. Efek kerusakan yang berhubungan dengan penuaan adalah kerutan pada kulit. UVA meningkatkan faktor risiko kanker kulit karena memengaruhi kerusakan DNA. Sinar UVB memiliki energi yang lebih tinggi daripada UVA dan mampu merusak langsung DNA. Sinar ini adalah penyebab utama *sunburn* (kulit terbakar). UVB adalah penyebab kanker kulit pada umumnya. Sinar UVC memiliki energi yang lebih tinggi daripada UVA dan UVB. Akan tetapi, sinar UVC tidak mencapai ke bumi karena sudah terpenetrasi gas di atmosfer, yakni lapisan Ozon (O₃). Berdasarkan uraian tersebut, sinar UVA dan UVB paling banyak berperan pada kerusakan pada kulit. Akan tetapi jika terjadi penipisan atau hilangnya lapisan ozon, sinar UVC juga dapat menyebabkan kerusakan kulit.

2.2. Sunscreen

Tabir surya adalah substansi dengan kandungan bahan aktif yang mampu mengabsorbsi atau memantulkan sinar UVA dan UVB. Bahan aktif terbagi menjadi dua jenis yakni bahan aktif organik dan bahan aktif inorganik. Penelitian ini menggunakan Oktil Metoksisinamat sebagai bahan aktif organic serta Zink Oksida dan Titanium Oksida sebagai bahan aktif inorganik untuk dilakukan perbandingan efektivitas dan efek sinergis campuran bahan aktif. Kombinasi ini diperbolehkan

berdasarkan *Electronic Code of Federal Regulations* (Office of the Federal Register, 2020).

2.2.1. Oktil Metoksisinamat

Oktil Metoksisinamat (OMC) disebut juga Oktinoxate atau Ethylhexyl Methoxycinnamate. Zat ini adalah salah satu dari bahan aktif organik tabir surya. Zat ini berupa cairan kental tidak berwarna hingga kuning terang atau pucat dan tidak berbau. Larut dalam alcohol, propilen glicol monomiristat, dan berbagai macam minyak, serta tidak larut dalam air (National Center for Biotechnology Information, 2020). Berdasarkan Peraturan Kepala Badan Pengawas Obat dan Makanan (2019), konsentrasi maksimum dari Oktil Metoksisinamat adalah 10%.

2.2.2. Zink Oksida

Zink oksida (ZnO) adalah salah satu dari bahan aktif tabir surya inorganik. ZnO berupa serbuk amorf yang sangat halus, berwarna putih atau putih kekuniangan, tidak berbau, dan lambat laun menyerap CO₂ dari udara. ZnO tidak larut dalam air dan etanol tetapi larut dalam asam encer (Farmakope Indonesia V). Berdasarkan Peraturan Kepala Badan Pengawas Obat dan Makanan (2019), konsentrasi maksimum dari ZnO adalah 25%. Menurut Rosyidi et al (2018), penambahan ZnO dapat mempengaruhi pH sediaan menjadi lebih besar sehingga perlu ditambahkan asam malat untuk menurunkan pH. Hal ini dilakukan karena menurut Rosyidi et al (2018), pH memengaruhi derajat efektivitas tabir surya.

2.2.3. Titanium Dioksida

Titanium Dioksida (TiO) adalah salah satu bahan aktif tabir surya inorganic. TiO berupa serbuk kristal putih tidak berbau, tidak berasa, dan pH 7,5 (National Center for Biotechnology Information, 2021). Tidak larut dalam air dan pelarut organic namun larut dalam asam sulfat panas terkonsentrasi dan asam fluoride. Berdasarkan Peraturan Kepala Badan Pengawas Obat dan Makanan (2019), konsentrasi maksimum dari TiO adalah 25%.

2.3. Pengujian Efektivitas Bahan Aktif Tabir surya

2.3.1. Uji Sun Protection Factor

Efektivitas tabir surya dapat ditunjukkan melalui nilai sun protection factor (SPF). SPF adalah jumlah energi UV yang dibutuhkan untuk mencapai Dosis Eritema Minimal (DEM) pada kulit yang dilindungi oleh tabir surya, dibagi dengan jumlah energi UV yang dibutuhkan untuk mencapai DEM pada kulit yang tidak diberikan perlindungan (Pratama dan Zulkarnain, 2015). DEM adalah jangka waktu terendah atau dosis radiasi sinar UV yang dibutuhkan untuk menyebabkan eritema (Wood dan Murphy, 2000). DEM juga adalah nilai yang menunjukkan Sensitivitas akut individu terhadap sinar UV. Pengukuran nilai SPF dapat dilakukan secara in vitro dengan analisis serapan larutan pengenceran tabir surya secara spektrofotometeri UV – Vis (Pratama dan Zulkarnain, 2015). Berikut adalah tabel efektivitas tabir surya berdasarkan nilai SPF (Widyawati et al, 2019).

Tabel 2.1. Keefektifan Tabir Surya Berdasarkan Nilai SPF

SPF	Kategori Proteksi Tabir Surya
-----	-------------------------------

2 – 4	Proteksi minimal
4 – 6	Preoteksi sedang
6 – 8	Proteksi ekstra
8 – 15	Proteksi maksimal
≥ 15	Proteksi ultra

2.3.2. Uji Persentase Transmisi Eritema (%Te) dan Persentase Transmisi Pigmentasi (%Tp)

Transmisi eritema (%Te) adalah nilai yang menunjukkan efektivitas tabir surya terhadap sinar UV B, sedangkan Transmisi pigmentasi (%Tp) adalah nilai yang menunjukkan efektivitas tabir surya terhadap sinar UV A (Widyawati, 2019). Kedua pengujian ini dilakukan menggunakan Spektrofotometer UV – Vis pada panjang gelombang yang menimbulkan eritema dan yang menimbulkan pigmentasi. Menurut (Rahardhian et al, 2019), panjang gelombang yang dapat menimbulkan eritema adalah 292,5 – 317,5 nm dan panjang gelombang yang dapat menimbulkan pigmentasi yaitu pada 322,5 – 372,5 nm. Pengukuran dilakukan setiap interval 5 nm. Setelah itu dihitung persentase transmisi eritema dan pigmentasi. Berikut adalah kategori penilaian tabir surrya berdasarkan %Te dan %Tp (Widyawati et al, 2019).

Kategori Rentang sinar UV yang ditransmisi (5) Penilaian %Te %Tp 3 - 40Sunblock <1 Proteksi Ekstra 1 - 642 - 86Suntan Standar 6 - 1245 - 8610 - 18 **Fast Tanning** 45 - 86

Tabel 2.2. Kategori Penilaian Tabir Surya

2.4. Penelitian Sebelumnya

Penelitian sebelumnya dilakukan oleh El-Boury et al pada tahun 2007 dengan judul *Effect of the combination of organic and inorganic filters on the Sun Protection Factor (SPF) determined by in vitro method.* Pada penelitiannya, dilakukan pengujian kombinasi bahan aktif organic terhadap bahan aktif inorganic pada dosis maksimum yang diperbolehkan masing – masing bahan. Uji efektivitas bahan aktif dilakukan *in vitro* melalui uji SPF. Bahan aktif dalam sediaan krim disebarkan pada plat polumetilmetakrilat kemudian diuji menggunakan alat UV *Transmitance Analyzer UV1000S.* Hasil yang diperoleh pada pengujian tunggal dosis maksimum bahan aktif ZnO adalah SPF 7,14 ± 1,22, TiO adalah 37.65±3.90, dan OMC adalah SPF 12,09 ± 1,20. Prediksi awal SPF kombinasi adalah jumlah dari nilai SPF dua bahan aktif saat tunggal. Akan tetapi, berdasarkan hasil pengujian in vitro, terjadi kenaikkan nilai SPF dari prediksi awal. Hal ini menunjukkan kombinasi dua bahan aktif organik dan inorganik dapat meningkatkan efektivitas SPF.

BAB 3. METODE PENELITIAN

3.1. Desain Penelitian dan Tahapan Penelitian

Desain Penelitian menggunakan metode eksperimental untuk mengetahui jawaban terhadap rumusan masalah. Penelitian dilakukan pada beberapa tahapan utama, yakni studi literatur, preparasi alat dan bahan, pembuatak krim *sunscreen*, kemudian uji SPF, %Te, dan %Tp, serta diakhiri dengan proses pengolahan, analisis, dan penarikkan kesimpulan data.

3.2. Prosedur Penelitian

3.2.1. Pembuatan Krim Suncreen

Basis krim tabir surya dibuat dengan bahan aktif pada variasi konsentrasi yang telah ditentukan. Selain variasi konsentrasi, dibuat juga konsentrasi zat tunggal berdasarkan variasi tersebut.

1 40 01 011				
Komposisi	Variasi 1	Variasi 2	Variasi 3	
ZnO	12,5%	-	12,5%	
TiO	-	12,5%	12,5%	
OMC	5%	5%	-	

Tabel 3.1 Variasi Kombinasi Zat Aktif

Basis krim dapat berasal dari krim yang sudah jadi atau formulasi basis krim sendiri. Formulasi diadaptasi berdasarkan penelitian Rosyidi et al (2018). Pembuatan sediaan krim dilakukan dengan peleburan OMC, asam stearat, setil alkohol, dan simetikon di hot plate pada suhu 70°C sampai diperoleh fase minyak. Sorbitol, tween 80, TEA, dan akuades dipanaskan di hot plate pada suhu 70°C sampai lebur. Fase minyak dan fase air pada suhu yang sama dicampurkan bersamaan ke dalam mortar panas dan diaduk konstan hingga terbentuk masa krim berwarna putih. Setelah mortar dingin, ZnO atau TiO yang telah diayak dan asam malat ditambahkan kemudian diaduk hingga homogen.

Tabel 3.2. Formula Basis Krim Tabir Sury	a
--	---

	•
Komposisi	Formula A (%)
ZnO, TiO, dan OMC	Berbagai variasi
Setil Alcohol	2
Asam Stearat	13
Tween 80	1
TEA	2
Sorbitol	6
Simetikon	0,2
Asam Malat	0,8
Akuades	Ad 100

3.2.2. Pembuatan Larutan Uji Spektrofotometeri UV – Vis (Pratama dan Zulkarnain, 2015 dan Rosyidi et al, 2018)

Krim seberat 0,5 gram dilarutkan dengan isopropanol ke dalam labu takar 50 mL sambil disaring dengan saringan katun. Larutan induk diambil 1,0 mL

dimasukkan ke labu takar 50 mL dan tambahkan dengan isopropanol sampai batas. Ukur serapan dengan Spektrofotometer. Gunakan isopropanol sebagai blanko.

3.2.3. Uji SPF *In Vitro* Menggunakan Spektrofotometeri UV – Vis (Pratama dan Zulkarnain, 2015)

Pengukuran dilakukan dengan spektrofotometer UV-Vis tiap 5 nm pada rentang panjang gelombang 290 nm sampai 320 nm. Dilakukan tiga kali penentuan tiap poinnya. Aplikasikan persamaan Mansur dan Sayre (Mansur et al, 1986 dan Sayre et al, 1979).

$$SPF = CF \times \sum_{290}^{320} EE(\lambda) \times I(\lambda) \times Abs$$

Keterangan:

CF = Faktor Koreksi, bernilai 10

 $EE(\lambda)$ = *erythema efficiency spectrum*

 $I(\lambda)$ = Spektrum intensitas simulasi *solar* yang terukur pada spektrofotometer terkalibrasi

 Σ EE(λ)×I(λ) = 1,0 (normalized, konstan) diukur tiap 5 nm pada rentang panjang gelombang 290 nm – 320 nm

Abs = Absorbansi

Tabel 3.3. Nilai EE x I pada perhitungan SPF (Sayre et al, 1979)

Panjang gelombang	EE x I (normalized)
290	0,0150
295	0,0817
300	0,2874
305	0,3278
310	0,1864
315	0,0839
320	0,0180
Total	~1

3.2.4. Uji %Te dan %Tp

Pengukuran dilakukan dengan spektrofotometer UV - Vis tiap 5 nm pada rentang panjang gelombang eritema 292,5-317,5 nm dan panjang gelombang pigmentasi 322,5 - 372,5 nm. Dilakukan tiga kali penentuan tiap konsentrasi. Aplikasikan persamaan Cumpelik (1972).

$$\%Te = \frac{Ee}{\Sigma Fe} = \frac{\Sigma(T \times Fe)}{\Sigma Fe}$$

$$\%Tp = \frac{Ep}{\Sigma Fp} = \frac{\Sigma(T \times Fp)}{\Sigma Fp}$$

Keterangan

T = Nilai Transmisi dari A = - log T dengan A = Absorbansi

Te = Nilai Persen Transmisi Eritema

Fe = Fluks Eritema yang Nilainya pada Panjang Gelombang (292,5-317,5 nm) atau Faktor efektivitas eritema

Ee = Banyaknya Fluks Eritema yang Diteruskan oleh Tabir Surya

Tp = Nilai Persen Transmisi Pigmentasi

Fp = Fluks Pigmentasi yang Nilainya pada Panjang Gelombang (322,5 – 372,5 nm) atau faktor efektivitas pigmentasi

Ep = Banyaknya Fluks Pigmentasi yang Diteruskan oleh Tabir Surya

Tabel 3.4. Fluks Eritema dan Pigmentasi Tabir Surya (Rahardhian et al. 2019)

	ct ai, 2017)	
Panjang gelombang (nm)	Fluks Eritema	Fluks Pigmentasi
290 – 295	0,1105	-
295 – 300	0,6720	-
300 - 205	1,0000	-
305 – 310	0,2008	-
310 – 315	0,1364	-
315 – 320	0,1125	-
320 – 325	-	0,1079
325 – 330	-	0,1020
330 – 335	-	0,0936
335 – 340	-	0,0798
340 – 345	-	0,0669
345 - 350	-	0,0570
350 – 355	-	0,0488
355 – 360	-	0,0456
360 - 365	-	0,0356
365 – 370	-	0,0310
370 – 375	-	0,0260
Total	2,2322	2,9264

3.3. Indikator Capaian

3.3.1. Pembuatan Krim Sunscreen

Capaian diperoleh jika krim yang dibuat dari seluruh kombinasi menunjukkan krim halus homogen dengan pH 4,5-6,5.

3.3.2. Uji SPF *In Vitro* Menggunakan Spektrofotometeri UV – Vis (Pratama dan Zulkarnain, 2015)

Capaian diperoleh jika hasil uji SPF menunjukkan nilai yang terdapat pada tabel 2.1. Nilai SPF kombinasi menunjukkan keberagaman variasi nilai.

3.3.3. Uji %Te dan %Tp

Capaian diperoleh jika hasil uji %Te dan %Tp menunjukkan nilai yang terdapat pada tabel 2.2. Nilai %Te dan %Tp kombinasi menunjukkan keberagaman variasi nilai.

3.4. Pengolahan Analisis Data dan Penyimpulan Hasil Penelitian

Data diolah dengan menggunakan Microsoft excel berdasarkan perhitungan dan pengaplikasian persamaan pada subbab 3.2 Prosedur Penelitian. Hasil dikategorikan berdasarkan nilai efektivitas pada tabel di tinjauan Pustaka (tabel 2.1 dan tabel 2.2). Dilakukan analisis nilai uji terhadap konsentrasi variasi formula kemudian hasil tersebut dibandingkan antar variasi sehingga diketahui variasi terbaik berdasarkan data.

BAB 4. Biaya dan Jadwal Kegiatan

4.1. Anggaran Biaya

Tabel 4.1. Tabel Anggaran Biaya

No.	Jenis Pengeluaran	Biaya (Rp.)
1	Peralatan yang diperlukan	Rp 1.760.000
2	2 Bahan habis pakai Rp 3.790.00	
3	Perjalanan dalam kota	Rp 1.000.000
4	Lain-lain	Rp 3.450.000
Jumlah		Rp 10.000.000

4.2. Jadwal Kegiatan

Tabel 4.2. Tabel Jadwal Kegiatan

			Bulan			Person
No Kegiatan		1	2	3	4	Penanggung Jawab
1	Persiapan Laboratorium, alat, dan bahan					Cindy Cisilia Rante
2	Pembuatan krim dengan variasi konsentrasi bahan aktif					Cindy Cisilia Rante
3	Uji SPF Tabir surya	Fiona Natania Kurniadi				
4	Uji Transmisi eritema dan pigmentasi Tabir surya	Felicia Natalia Kurniadi		Felicia Natalia Kurniadi		

DAFTAR PUSTAKA

American Cancer Society. 2017. What is Ultraviolet (UV) Radiation. Available at https://amp.cancer.org/cancer/skin-cancer/prevention-and-early-detection/what-is-uv-radiation.html. [Diakses pada 28 Oktober 2020]

Axelstad, M., Boberg, J., Hougaard, K. S., Christiansen, S., Jacobsen, P. R., Mandrup, K. R., Nellemann, C., Lund, S. P., & Hass, U. 2011. Effects of preand postnatal exposure to the UV-filter octyl methoxycinnamate (OMC) on the reproductive, auditory and neurological development of rat offspring. Toxicology and applied pharmacology, 250(3), 278–290. https://doi.org/10.1016/j.taap.2010.10.031.

Badan Pengawas Obat dan Makanan. 2019. Peraturan Badan Pengawas Obat Dan Makanan Nomor 23 Tahun 2019 Tentang Persyaratan Teknis Bahan Kosmetika. [Diakses pada 28 Oktober 2020]

- Cumpelik BM. 1972. Analytical procedure and evaluation of sunscreen. *J Soc Cosmet Chem* 23(6):333-45. [Diakses pada 28 Oktober 2020]
- El-Boury, S & Couteau, Céline & Boulande, L & Paparis, E & Coiffard, Laurence. 2007. Effect of the combination of organic and inorganic filters on the Sun Protection Factor (SPF) determined by in vitro method. *International journal of pharmaceutics*. *340*. *1-5*. Available at: doi 10.1016/j.ijpharm.2007.05.047.
- Gabros S, Nessel TA, Zito PM. 2020. Sunscreens And Photoprotection. Treasure Island (FL): StatPearls Publishing. Available at: https://www.ncbi.nlm.nih.gov/books/NBK537164/. [Diakses pada 28 Oktober 2020]
- Kementerian Kesehatan Republik Indonesia. 2014. Farmakope Indonesia V. Jakarta: Kementerian Kesehatan Republik Indonesia.
- Lademann, J., Schanzer, S., Jacobi, U., Schaefer, H., Pflücker, F., Driller, H., et al. 2005. Synergy effects between organic and inorganic UV filters in sunscreens. *Journal of biomedical optics*, 10(1), 14008. Available at https://doi.org/10.1117/1.1854112. [Diakses pada 28 Oktober 2020]
- Mansur, J.S., Breeder, M.N., Azulay, R.D. 1986. Determinação do fator de proteção solar por espectrofotometria, *An. Bras. Dermatol*, *61*, *121-24*.
- National Center for Biotechnology Information. 2020. PubChem Compound Summary for CID 5355130, Octinoxate. Available at https://pubchem.ncbi.nlm.nih.gov/compound/Octinoxate. [Diakses pada 31 Oktober 2020]
- National Center for Biotechnology Information. 2021. PubChem Compound Summary for CID 26042, Titanium dioxide. Available at https://pubchem.ncbi.nlm.nih.gov/compound/Titanium-dioxide. [Diakses pada 30 Oktober 2020]
- Office of the Federal Register. 2020. Part 35: Sunscreen Drug Products for Over-The-Counter Human Use. *Electronic Code of Federal Regulations Title 21: Food and Drugs*. Available at https://www.ecfr.gov/cgi-bin/text-idx?SID=c3f492ea76ae871bc0778f45e4fd10c4&mc=true&node=pt21.5.352 &rgn=div5#sp21.5.352.b. [Diakses pada 29 Oktober 2020]
- Osmond, M. J., & McCall, M. J. 2010. Zinc oxide nanoparticles in modern sunscreens: an analysis of potential exposure and hazard. *Nanotoxicology*, 4(1), 15–41. https://doi.org/10.3109/17435390903502028
- Pratama, W.A., dan Zulkarnain, A.K. 2015. Uji SPF In Vitro dan sifat fisik beberapa produk tabir surya yang beredar di pasaran. *Majalah Farmaseutika*, *Vol. 11 No. 1.* [Diakses pada 30 Oktober 2020]
- Rahardhian, Muhammad Ryan Radix & Suharsanti, Ririn & Sugihartini, Nining & Lukitaningsih, Endang. 2019. In Vitro Assessment of Total Phenolic, Total Flavonoid and Sunscreen Activities of Crude Ethanolic Extract of Belimbing wuluh (Averrhoa bilimbi) Fruits and Leaves. *Journal pf Global Pharma Technology* 11(04), 308 313. [Diakses pada 30 Oktober 2020]
- Rosyidi, V. A., Ummah, L., dan Kristiningrum, N. 2018. Optimasi Zink Oksida Dan Asam Malat dalam Krim Tabir Surya Kombinasi Avobenzone dan Octyl Methoxycinnamate dengan Desain Faktorial. *e-Jurnal Pustaka Kesehatan 6* (3), 426 432. [Diakses pada 31 Oktober 2020]
- Sayre, R.M., Agin, P.P., Levee, G.J., Marlowe, E. 1979. Comparison of in vivo and in vitro testing of sunscreening formulas. *Photochem. Photobiol*, 29, 559-566.

- Skocaj, M., Filipic, M., Petkovic, J., & Novak, S. 2011. Titanium dioxide in our everyday life; is it safe?. *Radiology and oncology*, 45(4), 227–247. https://doi.org/10.2478/v10019-011-0037-0
- Time and Date AS. 2020. Current Local Time in Jakarta, Jakarta Special Capital Region, Indonesia. Available at: https://www.timeanddate.com/worldclock/indonesia/jakarta. [Diakses pada 10 November 2020]
- Tranggono, R. I. S. 2007. Buku Pegangan Ilmu Pengetahuan Kosmetik. Gramedia Pustaka Utama. Jakarta
- Widyawati, Erni., Ayuningtyas, N. D., Pitarisa, A. P. 2019. Penentuan Nilai SPF Ekstrak dan Losio Tabir Surya Ekstrak Etanol Daun Kersen (*Muntingia calabura* L.) Dengan Metode Spektrofotomtri UV Vis. *Jurnal Riset Kefarmasian Indonesia* 1(3), 189 202.
- Wood, C. & Murphy, E. 2000. Sunscreen Efficacy. *Glob. Cosmet. Ind., Duluth,* v.167: 38-44.

LAMPIRAN

Lampiran 1. Biodata Ketua, Anggota, dan Dosen Pendamping

1. Biodata Ketua Kelompok

A. Identitas Diri

No.	Nama Lengkap	Felicia Natalia Kurniadi
1.	Jenis Kelamin	Perempuan
2.	Program Studi	Farmasi
3.	NIM	1706034565
4.	Tempat dan Tanggal lahir	Jakarta, 3 Desember 1998
5.	E-mail	felicianatalia0312@gmail.com
6.	Nomor telepon/HP	087775153777

B. Riwayat Pendidikan

	SD	SMP	SMA
Nama Institusi	Tarsisius 1	Tarsisius 1	Tarsisius 1
Jurusan	-	-	IPA
Tahun Masuk- Lulus	2005-2011	2011-2014	2014-2017

C. Pemakalah Seminar Ilmiah (Oral Presentation)

No.	Nama Pertemuan Ilmiah / Seminar	Judul Artikel Ilmiah	Waktu dan Tempat
1.	-	-	-

D. Penghargaan dalam 5 tahun Terakhir (dari pemerintah, asosiasi, atau institusi lainnya)

No.	Jenis Penghargaan	Institusi Pemberi Penghargaan	Tahun
1.	Juara II LKIR ke-48 LIPI bidang IPSK	e la	
2.	Juara III <i>Academic Game</i> 18 th IPSF APPS 2019	IPSF APPS	2019
3.	Juara I <i>Poster Competition</i> 18 th IPSF APPS 2019	IPSF APPS	2019
4.	Juara III IPSF Online Inter- Regional Industry Skill Event Production 2020	IPSF	2020

	Juara III IPSF APRO <i>Online</i>		
5.	Clinical Skill Event 2020 –	IPSF APRO	2020
	Advanced Level		

Semua data yang saya isikan dan tercantum dalam biodata ini adalah benar dan dapat dipertanggungjawabkan secara hukum. Apabila di kemudian hari ternyata dijumpai ketidaksesuaian dengan kenyataan, saya sanggup menerima sanksi.

Demikian biodata ini saya buat dengan sebenarnya untuk memenuhi salah satu persyaratan dalam pengajuan PKM-Riset Eksakta.

Depok, 14 Februari 2021

Pengusul,

(Felicia Natalia Kurniadi)

Biodata Anggota Kelompok 1

A. Identitas Diri

No.	Nama Lengkap	Fiona Natania Kurniadi
1.	Jenis Kelamin	Perempuan
2.	Program Studi	Farmasi
3.	NIM	1806194145
4.	Tempat dan Tanggal lahir	Jakarta, 7 Juni 2000
5.	E-mail	fiona070600@gmail.com
6.	Nomor telepon/HP	087775153800

B. Riwayat Pendidikan

	SD	SMP	SMA
Nama Institusi	Tarsisius 1	Tarsisius 1	Tarsisius 1
Jurusan	-	-	IPA
Tahun Masuk- Lulus	2006-2012	2012-2015	2015-2018

C. Pemakalah Seminar Ilmiah (Oral Presentation)

No.	Nama	Pertemuan	Judul Artikel Ilmiah	Waktu dan Tempat
	Ilmiah / S	eminar		
-	1		-	-

D. Penghargaan dalam 5 tahun Terakhir (dari pemerintah, asosiasi, atau institusi lainnya)

No.	Jenis Penghargaan	Institusi Pemberi Penghargaan	Tahun
1.	Juara II LKIR ke-48 LIPI bidang IPSK	LIPI	2016
2.	Mahasiswa berprestasi IPK terbaik Angkatan 2018	Fakultas Faramasi UI	2020

Semua data yang saya isikan dan tercantum dalam biodata ini adalah benar dan dapat dipertanggungjawabkan secara hukum. Apabila di kemudian hari ternyata dijumpai ketidaksesuaian dengan kenyataan, saya sanggup menerima sanksi.

Demikian biodata ini saya buat dengan sebenarnya untuk memenuhi salah satu persyaratan dalam pengajuan PKM-Riset Eksakta.

Depok, 14 Februari 2021

Pengusul,

(Fiona Natania Kurniadi)

2. Biodata Anggota Kelompok 2

B. Identitas Diri

No.	Nama Lengkap	Cindy Cisilia Rante
1.	Jenis Kelamin	Perempuan
2.	Program Studi	Farmasi
3.	NIM	1906404373
4.	Tempat dan Tanggal lahir	Toraja, 11 Agustus 2001
5.	E-mail	cindycisilia11@gmail.com
6.	Nomor telepon/HP	082167346813

B. Riwayat Pendidikan

	SD	SMP	SMA	
Nama Institusi	SD Negeri Entrop	SMP Negeri 5	SMA Negeri 4	
Ivallia ilistitusi	SD Negeri Entrop	Jayapura	Jayapura	
Jurusan			IPA	
Tahun Masuk-	Tahun Masuk- 2011-2014 (Pindah		2017-2019	
Lulus	SD)	2014-2017	2017-2019	

C. Pemakalah Seminar Ilmiah (Oral Presentation)

No.	Nama Pertemuan Ilmiah / Seminar	Judul Artikel Ilmiah	Waktu dan Tempat
-	-	-	-

D. Penghargaan dalam 5 tahun Terakhir (dari pemerintah, asosiasi, atau institusi lainnya)

No.	Jenis Penghargaan	Institusi Pemberi Penghargaan	Tahun
	-	-	-

Semua data yang saya isikan dan tercantum dalam biodata ini adalah benar dan dapat dipertanggungjawabkan secara hukum. Apabila di kemudian hari ternyata dijumpai ketidaksesuaian dengan kenyataan, saya sanggup menerima sanksi.

Demikian biodata ini saya buat dengan sebenarnya untuk memenuhi salah satu persyaratan dalam pengajuan PKM-Riset Eksakta.

Depok, 14 Februari 2021

Pengusul,

Circles

(Cindy Cisilia Rante)

3. Biodata Dosen Pendamping

A. Identitas Diri

No	Nama Lengkap	Ayun Erwina Arifianti, M.Farm., Apt.	
1	Jenis Kelamin	Perempuan	
2	Program Studi	Farmasi	
3	NIP/NIDN	100220910221609891/ 0012068904	
4	Tempat dan Tanggal	Madiun, 12 Juni 1989	
4	lahir	Madiuli, 12 Julii 1989	
5	E-mail	ayun.arifianti@farmasi.ui.ac.id	
6	Nomor telepon/HP	(021)-27608403/ 085710717189	

B. Riwayat Pendidikan

	Sarjana, Profesi	S2/Magister	S3/Doktor	
Nama Institusi	Universitas	Universitas		
Ivama msutusi	Indonesia	Indonesia	-	
Jurusan	Farmasi	Ilmu Kefarmasian	-	
Tahun Masuk- Lulus	2008 – 2012	2015 - 2018	-	

C. Rekam Jejak Tri Dharma PT

C.1. Pendidikan / Pengajaran

No	Nama Mata Kuliah	Wajib / Pilihan	SKS
1	Farmasetika	Wajib	3
2	Teknologi Sediaan Padat	Wajib	4
3	Teknologi Sediaan Setengah Padat dan Cair	Wajib	3
4	Aseptik Dispensing	Wajib	2
5	Mata Kuliah Pengembangan Kepribadian Terintegrasi	Wajib	6
6	Ilmu Biomedik Dasar 1 dan 2	Wajib	4
7	Etika dan Hukum dalam Bidang Kesehatan	Wajib	2
8	Komunikasi Kesehatan	Wajib	2
9	Kolaborasi dan Kerjasama Tim Kesehatan 1	Wajib	2
10	Pengelolaan Bencana	Wajib	2
11	Praktikum Farmasetika	Wajib	1
12	Praktikum Teknologi Sediaan Setengah Padat dan Cair	Wajib	1

13	Praktikum Teknologi Sediaan Padat	Wajib	1
14	Praktikum Farmasi Fisik	Wajib	1
15	Praktikum Sediaan Steril	Wajib	1
16	Teknologi Kosmetik	Pilihan	2
17	Teknologi Nutrasetika	Pilihan	2

C.2. Penelitian

No	Judul Penelitian	Penyandang Dana	Tahun
	Formulasi Mikrosfer Ekstrak	Hibah IRP A,	
1	Anggur Laut sebagai Alternatif	Fakultas Farmasi,	2019
	Bahan Baku Tabir Surya	Universitas Indonesia	

C.3. Pengabdian Kepada Masyarakat

No	Judul Pengabdian Kepada Masyarakat	Penyandang Dana	Tahun
1	-	-	1

Semua data yang saya isikan dan tercantum dalam biodata ini adalah benar dan dapat dipertanggungjawabkan secara hukum. Apabila di kemudian hari ternyata dijumpai ketidaksesuaian dengan kenyataan, saya sanggup menerima sanksi. Demikian biodata ini saya buat dengan sebenarnya untuk memenuhi salah satu persyaratan dalam pengajuan PKM-Riset Eksakta.

Depok, 14 Februari 2021 Pendamping,

(Ayun Erwina Arifianti, M.Farm., Apt.)

Lampiran 2. Justifikasi Anggaran Kegiatan

1. Perlengkapan yang diperlukan

Perlengkapan yang diperlukan	Volume	Harga Satuan (Rp)	Nilai (Rp)
Ayakan mes 60	1 buah	Rp250.000	Rp 250.000
Kertas Whatmann	2 pack	Rp40.000	Rp 80.000
Gelas Ukur 50 mL	2 buah	Rp 50.000	Rp 100.000
Gelas Ukur 10 mL	2 buah	Rp 30.000	Rp 60.000
Beaker glass	8 buah	Rp 25.000	Rp 200.000
Erlenmeyer	8 buah	Rp 30.000	Rp 240.000
Batang pengaduk kaca	3 buah	Rp 10.000	Rp 30.000
Batang pengaduk besi	2 buah	Rp 10.000	Rp 20.000
Sendok	2 buah	Rp 10.000	Rp 20.000
Cawan penguap	2 buah	Rp 50.000	Rp 100.000
Kaca arloji	2 buah	Rp 20.000	Rp 40.000
Pipet ukur 1 mL	3 buah	Rp 40.000	Rp 120.000
Labu ukur 50 mL	4 buah	Rp 50.000	Rp 200.000
Labu ukur 100 mL	3 buah	Rp 100.000	Rp 300.000
SU	SUB TOTAL (1) (Rp)		

2. Bahan Habis Pakai

Barang Habis Pakai	Volume	Harga Satuan (Rp)	Nilai (Rp)
Setil Alkohol	2 kg	Rp 70.000	Rp 140.000
Asam Stearat	3 kg	Rp 40.000	Rp 120.000
Tween 80	2 kg	Rp 110.000	Rp 220.000
TEA	2 kg	Rp 180.000	Rp 360.000
Sorbitol	3 kg	Rp 50.000	Rp 150.000
Simetikon	1 kg	Rp 450.000	Rp 450.000
Asam Malat	2 kg	Rp 100.000	Rp 200.000
Zink Oksida	2 kg	Rp 80.000	Rp 160.000
Oktil Metoksisinamat	2 kg	Rp 350.000	Rp 700.000
Titanium Dioksida	2 kg	Rp 100.000	Rp 200.000
Akuades	20 L	Rp 10.000	Rp 200.000
Sediaan krim jadi	2 kg	Rp 85.000/500	Rp 340.000
(cadangan)	Z Kg	gram	Kp 340.000
Isopropanol	2,5 L	Rp 550.000	Rp 550.000
SUB TO	OTAL (2) (Rp)		Rp 3.790.000

3. Perjalanan dalam kota

Perjalanan	Volume	Harga	Jumlah Biaya	
dalam kota		Satuan (Rp)	(Rp)	
Perjalanan	10	Rp 100.000	Rp 1.000.000	
dalam kota	10	кр 100.000	Kp 1.000.000	
SUB TOTAL (3) (Rp) Rp 1.0				

4. Lain-lain

Lain - lain	Volume	Harga		Jumlah
Laiii - Iaiii	Volume	Satuan (Rp)	Biaya (Rp)
Sewa Alat	1	800.000		800.000
Formulasi	1	800.000		800.000
Sewa Jasa dan Alat				
Pengujian SPF dan				
presentase	1	1.000.000		1.000.000
transmisi eritema				
serta pigmentasi				
Telekomunikasi				
(pulsa, kuota	3	550.000		1.650.000
internet				
SUB TOTAL (4) (Rp)				3.450.000
Total (1+2+3+4)			10.000.000	
		Sepuluh J	luta Rupiah	

Lampiran 3. Susunan Organisasi Tim Peneliti dan Pembagian Tugas

No	Nama / NIM	Program Studi	Bidang Ilmu	Alokasi Waktu (Jam/minggu)	Uraian Tugas
1	Felicia Natalia Kurniadi/1706034565	Farmasi	Farmasi	20 Jam/minggu	Sebagai ketua, bertugas untuk memastikan kinerja tim berjalan dengan baik sesuai
2	Fiona Natania Kurniadi/1806194145	Farmasi	Farmasi	20 Jam/minggu	timeline Sebagai penanggung jawab untuk untuk uji in vitro tabir surya
3	Cindy Cisilia Rante/ 1906404373	Farmasi	Farmasi	20 Jam/minggu	Sebagai penanggung jawab pembuatan dan evaluasi krim

Lampiran 4. Surat Pernyataan Ketua Pelaksana

SURAT PERNYATAAN KETUA PELAKSANA

Yang bertanda tangan di bawah ini:

: Felicia Natalia Kurniadi

: 1706034565

Program Studi: Farmasi

Fakultas

: Farmasi

Dengan ini menyatakan bahwa proposal PKM-RE saya dengan judul Analisis Efektivitas Bahan Aktif Tabir Surya Organik Oktil Metoksisinamat, Inorganik Zink Oksida dan Titanium Dioksida serta Kombinasinya yang diusulkan untuk tahun anggaran 2021 adalah asli karya kami dan belum pernah dibiayai oleh lembaga atau sumber dana lain.

Bilamana di kemudian hari ditemukan ketidaksesuaian dengan pernyataan ini, maka saya bersedia dituntut dan diproses sesuai dengan ketentuan yang berlaku dan mengembalikan seluruh biaya penelitian yang sudah diterima ke kas negara.

Demikian pernyataan ini dibuat dengan sesungguhnya dan dengan sebenarbenarnya.

> Depok, 14 Februari 2021 Yang menyatakan,

Felicia Natalia Kurniadi

NIM. 1706034565