Package 'WeightedROC'

October 12, 2022

Maintainer Toby Dylan Hocking <toby.hocking@r-project.org>

Author Toby Dylan Hocking
Version 2020.1.31
License GPL-3
<pre>URL https://github.com/tdhock/WeightedROC</pre>
BugReports https://github.com/tdhock/WeightedROC/issues
Title Fast, Weighted ROC Curves
Description Fast computation of Receiver Operating Characteristic (ROC) curves and Area Under the Curve (AUC) for weighted binary classification problems (weights are example-specific cost values).
Suggests ROCR, pROC, PRROC, microbenchmark, glmnet, testthat, ggplot2, GsymPoint, geometry
NeedsCompilation no
Repository CRAN
Date/Publication 2020-02-01 08:40:02 UTC
R topics documented:
WeightedAUC
Index

2 WeightedAUC

WeightedAUC

WeightedAUC

Description

Calculate the exact area under the ROC curve.

Usage

```
WeightedAUC(tpr.fpr)
```

Arguments

tpr.fpr

Output of WeightedROC: data.frame with the true positive rate (TPR) and false positive rate (FPR).

Value

Numeric scalar.

Author(s)

Toby Dylan Hocking

Examples

```
library(WeightedROC)
## Compute the AUC for this weighted data set.
y \leftarrow c(0, 0, 1, 1, 1)
w \leftarrow c(1, 1, 1, 4, 5)
y.hat <- c(1, 2, 3, 1, 1)
tp.fp <- WeightedROC(y.hat, y, w)</pre>
(wauc <- WeightedAUC(tp.fp))</pre>
## For the un-weighted ROCR example data set, verify that our AUC is
## the same as that of ROCR/pROC.
if(require(microbenchmark) && require(ROCR) && require(pROC)){
  data(ROCR.simple, envir=environment())
  microbenchmark(WeightedROC={
    tp.fp <- with(ROCR.simple, WeightedROC(predictions, labels))</pre>
    wroc <- WeightedAUC(tp.fp)</pre>
  }, ROCR={
    pred <- with(ROCR.simple, prediction(predictions, labels))</pre>
    rocr <- performance(pred, "auc")@y.values[[1]]</pre>
  }, pROC={
    proc <- pROC::auc(labels ~ predictions, ROCR.simple, algorithm=2)</pre>
  }, times=10)
  rbind(WeightedROC=wroc, ROCR=rocr, pROC=proc) #same
```

WeightedROC 3

```
}
## For the un-weighted pROC example data set, verify that our AUC is
## the same as that of ROCR/pROC.
data(aSAH, envir=environment())
table(aSAH$s100b)
if(require(microbenchmark)){
 microbenchmark(WeightedROC={
    tp.fp <- with(aSAH, WeightedROC(s100b, outcome))</pre>
   wroc <- WeightedAUC(tp.fp)</pre>
 }, ROCR={
   pred <- with(aSAH, prediction(s100b, outcome))</pre>
    rocr <- performance(pred, "auc")@y.values[[1]]</pre>
   proc <- pROC::auc(outcome ~ s100b, aSAH, algorithm=2)</pre>
 }, times=10)
 rbind(WeightedROC=wroc, ROCR=rocr, pROC=proc)
}
```

WeightedROC

WeightedROC

Description

Compute a weighted ROC curve.

Usage

```
WeightedROC(guess, label,
    weight = rep(1, length(label)))
```

Arguments

guess Numeric vector of scores.

1abel True positive/negative labels. A factor with 2 unique values, or integer/numeric

with values all in 0=negative,1=positive or 1=negative,2=positive or -1=negative,1=positive.

weight Positive weights, by default 1.

Value

data.frame with true positive rate (TPR), false positive rate (FPR), weighted false positive count (FP), weighted false negative count (FN), and threshold (smallest guess classified as positive).

Author(s)

Toby Dylan Hocking

4 WeightedROC

Examples

```
## WeightedROC can compute ROC curves for data sets with variable
## weights.
library(WeightedROC)
y \leftarrow c(-1, -1, 1, 1, 1)
w \leftarrow c(1, 1, 1, 4, 5)
y.hat <- c(1, 2, 3, 1, 1)
tp.fp <- WeightedROC(y.hat, y, w)</pre>
if(require(ggplot2)){
  gg <- ggplot()+
    geom_path(aes(FPR, TPR), data=tp.fp)+
    coord_equal()
  print(gg)
}else{
  plot(TPR~FPR, tp.fp, type="1")
## The FN/FP columns can be used to plot weighted error as a
## function of threshold.
error.fun.list <- list(
  FN=function(df)df$FN,
  FP=function(df)df$FP,
  errors=function(df)with(df, FP+FN)
all.error.list <- list()
for(error.type in names(error.fun.list)){
  error.fun <- error.fun.list[[error.type]]</pre>
  all.error.list[[error.type]] <-
    data.frame(tp.fp, error.type, weighted.error=error.fun(tp.fp))
}
all.error <- do.call(rbind, all.error.list)</pre>
fp.fn.colors <- c(FP="skyblue",</pre>
                   FN="#E41A1C"
                   errors="black")
ggplot()+
  scale_color_manual(values=fp.fn.colors)+
  geom_line(aes(threshold, weighted.error, color=error.type),
            data=all.error)
if(require(microbenchmark) && require(ROCR) && require(pROC)){
  data(ROCR.simple, envir=environment())
  ## Compare speed and plot ROC curves for the ROCR example data set.
  microbenchmark(WeightedROC={
    tp.fp <- with(ROCR.simple, WeightedROC(predictions, labels))</pre>
  }, ROCR={
    pred <- with(ROCR.simple, prediction(predictions, labels))</pre>
    perf <- performance(pred, "tpr", "fpr")</pre>
  }, pROC.1={
    proc <- roc(labels ~ predictions, ROCR.simple, algorithm=1)</pre>
  }, pROC.2={
```

WeightedROC 5

```
proc <- roc(labels ~ predictions, ROCR.simple, algorithm=2)</pre>
}, pROC.3={
 proc <- roc(labels ~ predictions, ROCR.simple, algorithm=3)</pre>
}, times=10)
perfDF <- function(p){</pre>
 data.frame(FPR=p@x.values[[1]], TPR=p@y.values[[1]], package="ROCR")
procDF <- function(p){</pre>
  data.frame(FPR=1-p$specificities, TPR=p$sensitivities, package="pROC")
}
roc.curves <- rbind(</pre>
  data.frame(tp.fp[, c("FPR", "TPR")], package="WeightedROC"),
  perfDF(perf),
  procDF(proc))
ggplot()+
  geom_path(aes(FPR, TPR, color=package, linetype=package),
             data=roc.curves, size=1)+
  coord_equal()
## Compare speed and plot ROC curves for the pROC example data set.
data(aSAH, envir=environment())
microbenchmark(WeightedROC={
  tp.fp <- with(aSAH, WeightedROC(s100b, outcome))</pre>
}, ROCR={
 pred <- with(aSAH, prediction(s100b, outcome))</pre>
 perf <- performance(pred, "tpr", "fpr")</pre>
}, pROC.1={
 proc <- roc(outcome ~ s100b, aSAH, algorithm=1)</pre>
}, pROC.2={
 proc <- roc(outcome ~ s100b, aSAH, algorithm=2)</pre>
}, pROC.3={
 proc <- roc(outcome ~ s100b, aSAH, algorithm=3)</pre>
}, times=10)
roc.curves <- rbind(</pre>
  data.frame(tp.fp[, c("FPR", "TPR")], package="WeightedROC"),
 perfDF(perf),
 procDF(proc))
ggplot()+
  geom_path(aes(FPR, TPR, color=package, linetype=package),
             data=roc.curves, size=1)+
  coord_equal()
## Compute a small ROC curve with 1 tie to show the diagonal.
y <- c(-1, -1, 1, 1)
y.hat <- c(1, 2, 3, 1)
microbenchmark(WeightedROC={
  tp.fp <- WeightedROC(y.hat, y)</pre>
}, ROCR={
 pred <- prediction(y.hat, y)</pre>
 perf <- performance(pred, "tpr", "fpr")</pre>
}, pROC.1={
  proc <- roc(y ~ y.hat, algorithm=1)</pre>
}, pROC.2={
```

Weighted ROC

Index

WeightedAUC, 2 WeightedROC, 2, 3