Lehrstuhl für STEUERUNGS-UND REGELUNGSTECHNIK

Technische Universität München Prof. Dongheui Lee

MACHINE LEARNING IN ROBOTICS

Exercises 4: Unsupervised Clustering

Exercise 1

A team of three differential-drive mobile robots has to reach the three goal positions $g^{(1)}=(4,-0.5),\ g^{(2)}=(7,0.5),\ g^{(3)}=(9,1.5),$ starting from $x^{(1)}=(2,2.5),\ x^{(2)}=(3,2),\ x^{(3)}=(4,2.5).$ The scenario is shown in Figure 1. Assign a goal position to each robot considering that:

- i) Each robot can reach only one goal position.
- ii) We want to minimize the total traveled distance $d_{trav} = \sum_{i=1}^{3} ||x^{(i)} g^{(i)}||$, where $g^{(i)}$ is the goal position assigned to the ith robot.

Figure 1: Robot and goal positions.

Exercise 2

Consider 5 companies that export products (x_1) to different countries (x_2) . In this problem, for each company i, a 2D feature vector is defined as $\mathbf{x}^{(i)} = [x_1^{(i)} \ x_2^{(i)}]^T$. Some observations of \mathbf{x} are summarized in the following table:

company	product	country
i	$x_1^{(i)}$	$x_2^{(i)}$
1	1	1
2	2	3
3	5	7
4	6	5
5	6	7

Cluster those feature vectors using agglomerative clustering.

- a) Calculate the matrix of the initial distances between the clusters (distance of each feature vector from the others) and merge the closest clusters. Use squared Euclidean distance $d(\boldsymbol{x}^{(i)}, \boldsymbol{x}^{(j)}) = \sum_k (x_k^{(i)} x_k^{(j)})^2$ as metric.
- b) Calculate the matrix of the distances between the clusters after the first merging using the *single-linkage* algorithm.
- c) Draw the *Dendrogram* indicating the order in which the merging operations occur. Use the *single-linkage* algorithm.