

TECNICAS DIGITALES III

Facultad Regional Córdoba

LA INSTRUMENTACIÓN VIRTUAL

Agenda

- -¿De que hablamos cuando hablamos de instrumentación virtual?.
- -¿LabView como software de desarrollo para instrumentos virtuales.
- Librerías PyVisa para desarrollo de instrumentos virtuales.

Paradigma de la instrumentación virtual

Un instrumento virtual es aquel cuya funcionalidad es determinada por software.

Table 5-1. Pin Functions

PIN		TYPE	DESCRIPTION
NAME	NO.	ITPE	DESCRIPTION
R	1	0	Logic Data Output from RS-485 Receiver
RE	2	I	Receive Enable (active low)
DE	3	I	Driver Enable (active high)
D	4	I	Logic Data Input to RS-485 Driver
GND	5	_	Device Ground Pin
Α	6	I/O	RS-422 or RS-485 Data Line
В	7	I/O	RS-422 or RS-485 Data Line
V _{CC}	8	_	Power Input. Connect to 5-V Power Source.

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)(1)

		MIN	MAX	UNIT
V _{CC}	Supply Voltage ⁽²⁾		7	V
	Voltage range at any bus terminal	-10	15	V
VI	Enable input voltage		5.5	V
	Continuous Total power Dissipation	See D	issipation Ratin	g Table
T _A	Operating free-air temperature range	0	70	°C
T _{stg}	Storage temperature range	65	150	°C

6.2 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

			MIN	TYP	MAX	UNIT
V _{CC}	Supply Voltage		4.75	5	5.25	V
V _I or V _{IC}	Voltage at any buss terminal (sep	Voltage at any buss terminal (separately or common mode)			12	V
V _{IH}	High-level input voltage	D, DE, and RE	2			V
V _{IL}	Low-level input voltage	D, DE, and RE			0.8	V
V _{ID}	Differential input voltage ⁽¹⁾				±12	V
	High-level output current	Driver			-60	mA
ІОН		Receiver			-400	μA
		Driver			60	m A
IOL	Low-level output current	Receiver			8	mA
T _A	Operating free-air temperature		0		70	°C

6.5 Electrical Characteristics - Driver

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CO	NDITIONS	MIN	TYP ⁽¹⁾	MAX	UNIT
V _{IK}	Input clamp voltage	I _I = -18 mA				-1.5	٧
V _{OH}	High-level output voltage	V _{IH} = 2 V, V _{IL} = 0.8 V, I _{OH} = -33 mA			3.7		٧
V _{OL}	Low-level output voltage	V _{IH} = 2 V, V _{IL} = 0.8 V, I _{OH} = 33 mA			1.1		٧
V _{OD1}	Differential output voltage	I _O = 0				2V _{OD2}	V
IVI	Differential output voltage	RL = 100 Ω, see Figur	re 7-1	2	2.7		V
V _{OD2}	Differential output voltage	RL = 54 Ω, see Figure	7-1	1.5	2.4	-1.5 2V ₀₀₂ ±0.2 3 ±0.2 1 -0.8 20 -400 -250 500	V
Δ V _{OD}	Change in magnitude of differential output voltage ⁽²⁾					±0.2	٧
Voc	Common-mode output voltage(3)	RL = 54 Ω or 100 Ω , s			3	٧	
Δ V _{oc}	Change in magnitude of common-mode output voltage ⁽²⁾				±0.2	٧	
	Outrat	Output disabled ⁽⁴⁾	V _O = 12 V			1	mA
I _O	Output current	Output disabled	V _O = -7 V			-0.8	mA
I _{IH}	High-level input current	V _I = 2.4 V				20	μА
I _{IL}	Low-level input current	V _I = 0.4 V				-400	μΑ
		V _O = -7 V				-250	
los	Short-circuit output current	V _O = V _{CC}				250	mA
		V _O = 12 V				500	
	Cumply surrent (total paskage)	No load	Outputs enabled		35	50	A
Icc	Supply current (total package)	No load	Outputs disabled		26	40	mA

6.6 Electrical Characteristics - Receiver

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CO	NDITIONS	MIN	TYP (1)	MAX	UNIT
V _{IT+}	Positive-going input threshold voltage	V _O = 2.7 V, I _O = -0.4 r	V _O = 2.7 V, I _O = -0.4 mA			0.2	V
V _{IT} _	Negative-going input threshold voltage	V _O = 0.5 V, I _O = 8 mA		-0.2			٧
V _{hys}	Input hysteresis voltage (V _{IT} + - V _{IT-})				50		mV
VIK	Enable clamp voltage	I _I = -18 mA	I _I = -18 mA			-1.5	٧
V _{OH}	High-level output voltage	V _{ID} = 200 mV, I _{OH} = -4	400 μA See Figure 7-2	2.7			V
V _{OL}	Low-level output voltage	V _{ID} = 200 mV, I _{OH} = 8	V _{ID} = 200 mV, I _{OH} = 8 mA See Figure 7-2			0.45	٧
loz	High-impedance-state output current	V _O = 0.4 V to 2.4 V	V _O = 0.4 V to 2.4 V			±20	μA
	Line input current	Other input = 0 V(2)	V _I = 12 V			0.2 -1.5	mA
4	Line input current	Other input = 0 V(=)	V _I = -7 V				mA
I _{IH}	High-level enable input current	V _{IH} = 2.7 V	•			20	μA
I _{IL}	Low-level enable input current	V _{IL} = 0.4 V	V _{IL} = 0.4 V			-100	μA
rį	Input resistance			12			kΩ
los	Short-circuit output current			-15		-85	mA

6.6 Electrical Characteristics – Receiver (continued)

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CON	DITIONS	MIN	TYP ⁽¹⁾	MAX	UNIT
L Supply	Supply current (total package)	No load	Outputs enabled		35	50	mA
Icc	Supply current (total package)		Outputs disabled		26	40	IIIA

- All typical values are at V_{CC} = 5 V, TA = 25°C.
- (2) This applies for both power on and power off. Refer to ANSI Standard EIA/TIA-422-B for exact conditions.

6.7 Switching Characteristics - Driver

V_{CC} = 5 V, T_A = 25°C

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
t _{d(OD)}	Differential-output delay time	R _I = 60 Ω, See Figure 7-3		40	60	ns
t _{t(OD)}	Differential-output transition time	RL = 60 Ω, See Figure 7-3		65	95	ns
t _{PZH}	Output enable time to high level	R _L = 110 Ω, See Figure 7-4		55	90	ns
t _{PZL}	Output enable time to low level	R _L = 110 Ω, See Figure 7-5		30	50	ns
t _{PHZ}	Output disable time form high level	R _L = 110 Ω, See Figure 7-4		85	130	ns
t _{PLZ}	Output disable time from low level	R _L = 110 Ω, See Figure 7-5		20	40	ns

6.8 Switching Characteristics - Receiver

 $V_{CC} = 5 \text{ V}, C_1 = 15 \text{ pF}, T_A = 25^{\circ}\text{C}$

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
t _{PLH}	Propagation delay time, low-to-high- level output	V _{ID} = -1.5 V to 1.5 V, See Figure 7-6		21	35	ns
t _{PHL}	Propagation delay time, high-to-low- level output			23	35	ns
t _{PZH}	Output enable time to high level	See Figure 7-7		10	30	ns
t _{PZL}	Output enable time to low level			12	30	ns
t _{PHZ}	Output disable time from high level	Con Figure 7.7		20	35	ns
t _{PLZ}	Output disable time from low level	See Figure 7-7		17	25	ns

USB (Universal Serial Bus)

• USB 1.0/Low-Speed: 1,5 Megabits por segundo (Mbps)

• USB 1.1/Full-Speed: 12 Mbps

• USB 2.0/Hi-Speed: 480 Mbps

• USB 3.0/SuperSpeed: 5 Gbps

SUPERSPEED

• USB 3.1/SuperSpeed: 10 Gbps

SUPERSPEED+

CERTIFIED USB

10 Gbps

https://www.usb.org/documents

USB (Universal Serial Bus)

Ventajas de la instrumentación virtual

Flexibilidad: Fácilmente se pueden agregar funciones, como filtros, datos, combinar datos etc. Es posible desarrollar una gran variedad de sistemas definidos por usuario que sean capaces de satisfacer las necesidades especificas de una aplicación, ya sea científica o industrial.

Capacidad de almacenamiento: La instrumentación virtual permite utilizar la capacidad de almacenamiento de las computadoras actuales para almacenar datos, esto habilita la posibilidad de aplicar post procesamiento y algoritmos avanzados de análisis.

Capacidad de visualización: Los monitores de computadora, así como las actuales placas de video presentan mas calidad de imagen que las pantallas clásicas de los instrumentos, además es posible de dotarlas de otras cualidades como acercamientos, marcas de datos etc.

Instrumentación tradicional vs instrumentación virtual.

Lenguajes de programación.

Lenguajes de programación convencionales. C, C++, Python, Java, Qt

Herramientas gráficas. LabView

VISA

Virtual instrument software architecture (VISA) Arquitectura de software para instrumentos virtuales: Es una interfaz de programación (API) ampliamente usada en la industria de medición y verificación para comunicarse con instrumentos desde la computadora.

La arquitectura de software de un VISA está diseñada para proporcionar una interfaz unificada para programar diferentes instrumentos virtuales, lo que hace que sea más fácil para los desarrolladores de software trabajar con varios tipos de instrumentos de medición en un entorno de laboratorio o investigación.

VISA

Interfaz de programación de aplicaciones (API): Este componente proporciona una interfaz que permite a los programadores interactuar con el instrumento virtual. La API puede estar diseñada para diferentes lenguajes de programación y suele incluir funciones para configurar el instrumento, enviar comandos de medición y recibir datos de medición.

Capa de controlador: La capa de controlador es responsable de comunicarse con el hardware de la computadora y con el instrumento físico (si lo hay). Esta capa puede incluir controladores de dispositivo específicos del fabricante, que permiten que el VISA se comunique con el instrumento físico.

Capa de aplicación: La capa de aplicación es la parte del software que se encarga de realizar las mediciones y el procesamiento de datos. Esta capa utiliza la API y la capa de controlador para enviar y recibir comandos y datos al instrumento virtual y al hardware de la computadora.

LabView

PyVISA

Implementación Virtual

- Estructura jerárquica y escalable, basada en state machine.
- Código flexible con posibilidad de anexar nuevas etapas.
- Parámetros de comunicaciones configurables.

