oVirt安装与基本管理

概述

- RHEV vs. oVirt
- ▶ oVirt结构
- ▶ oVirt安装
- 数据中心管理
- ▶ 存储管理
- ▶ 主机管理
- 管理虚拟机资源
- 实时迁移与高可用
- 用户与权限管理
- 备份与恢复

http://www.ovirt.org/

User Documentation

- Quick Start Guide
- oVirt Administration Guide
- oVirt User Guide
- Release notes: oVirt 4.0.5, oVirt 4.0, oVirt 3.6, oVirt 3.5, oVirt 3.4, oVirt 3.3, oVirt 3.2, oVirt 3.1, oVirt 3.0
- Troubleshooting When things go wrong
- About oVirt

Contributed Documentation

- Up and Running with oVirt 4.0 by Jason Brooks (Jbrooks)
- Up and Running with oVirt 3.5 by Jason Brooks (Jbrooks)
- Integrating Gluster storage into oVirt by Robert Middleswarth (Rmiddle)

Developer documentation

- Install nightly snapshot
- Built
- BULL
- Build
- Contributing to the Node project
- Submitting a patch with Gerrit
- The development process
- Release management
- Getting in contact with the oVirt community
- Becoming a maintainer
- oVirt architecture
- Feature Roadmap oVirt 4.0.z (see also old roadmaps for oVirt 3.6 oVirt 3.5, oVirt 3.4, and oVirt 3.3)
- Building a custom user portal
- Building oVirt engine DWH
- · Building oVirt engine Reports

RHEV vs. oVirt

- ▶ oVirt和 RHEV都可以用于服务器虚拟化
- ▶ Red Hat在以oVirt软件为基础发展RHEV
- Red Hat在社区中将其开源软件系列以oVirt进行发布, 早于RHEV的商业上市时间
- ▶ RHEV需要使用Red Hat企业版Linux作为主机操作系统
- ▶ oVirt可以支持任何平台,但没有企业级的支持
- ※ 采用何种解决方案,取决您自己的能力:
 - ▶ 可以使用oVirt或RHEV来配置一个企业级的虚拟化环境
 - ▶ 如果需要对于高级特性的足够技术支持, RHEV还是比oVirt更具有优势

参考:http://searchservervirtualization.techtarget.com/answer/OVirt-vs-RHEV-Are-they-interchangeable

Sander Van Vugt

oVirt 逻辑结构图

◆ oVirt部署要求

- oVirt Engine
- ▶ Host (oVirt节点, Fedora Host, CentOS Host)
- ▶ 存储和网络
- ▶虚拟机部署

oVirt Engine

- ▶ 最低要求:双核CPU、4 GB RAM、25 GB自由空间、1个Gbps网卡
- ▶ 推荐配置:两路4核CPU、16 GB RAM, 50 GB 自由空间、1个Gbps 网卡。
- 低层操作系统的要求:
 - ▶ Fedora 19 至少1 GB RAM和10 GB本地空间
 - ▶ CentOS 6.5至少1 GB RAM和5 GB本地空间
 - ▶ oVirt Engine: 至少3 GB RAM、3 GB本地空间和1-Gbps网卡。
- ▶ 如果想在oVirt引擎服务器上创建 ISO域,还需要至少15GB磁盘空间
- ▶ oVirt引擎必须配置通过oVirt项目软件仓库进行更新,以便使用与操作系统版本匹配的oVirt相关的软件包。
- ▶ 连接到oVirt引擎的客户端(浏览器)

Host (oVirt节点, Fedora Host, CentOS Host)

- ▶ 最低要求: 双核CPU、10 GB RAM、10 GB存储、1个Gbps网卡
- ▶ 推荐配置: 双路CPU、16GB RAM、50 GB存储、2个1-Gbps网卡
- ▶ 支持AMD-V或 Intel VT技术的CPU
- ▶ 每个虚拟机至少1GB内存

存储和网络

- 至少一个支持的存储
 - NFS, iSCSI, FCP, Local, POSIX FS, GlusterFS
 - NFS:一个有效IP地址和export路径
 - ▶ iSCSI: 一个有效IP地址和Target信息
- ▶ oVirt引擎和主机均要有一个静态IP地址
- ▶ DNS服务器:正向和反向解析的资源记录
- ▶ DHCP服务器:为虚拟机分配IP地址

虚拟机部署

▶虚拟机操作系统安装的ISO镜像

演示实验环境的拓扑

主机	角色	LAN	Corosync	Storage
ovirtl	引擎	192.168.1.170		10.0.1.170
tomkvml		192.168.1.171	172.16.1.171	10.0.1.171
tomkvm2	节点	192.168.1.172	172.16.1.172	10.0.1.172
tomnode3	节点	192.168.1.173		
tomstorl	NFS服务器	192.168.1.175		10.0.1.175
zzdcl	域控制器	192.168.1.11		

◆ oVirt引擎安装

- ▶ 操作系统准备
- ▶ 安装oVirt引擎
 - ▶ 标准安装 (通过互联网)
 - ▶ 快速安装 (无互联网或网速慢)
- ▶ 测试引擎的访问

- ◆安装主机
- ▶ 安装 Centos 7节点
- ▶ 安装oVirt Node节点

◆数据中心任务

- ▶ 创建一个新的数据中心
- ▶ 资源的创建、编辑和删除
- 初始化数据中心:恢复过程
- ▶删除一个数据中心
- 改变数据中心版本的兼容性

Data Center 结构图举例

什么是SPM

◆配置Data Domain和ISO_Domain

- ▶ 准备NFS服务器
- ▶ 添加新的Domain
- ▶ 挂载ISO Domain
- ▶ 上传ISO文件
- ▶ 上传原有的KVM虚拟机

◆管理虚拟机资源

- ▶ Windows版的virt-viewer
- ▶ Windows虚拟机
 - virtio驱动程序
- ▶ Linux虚拟机
- ▶虚拟机模板

https://virt-manager.org/download/

◆实时迁移与高可用

- ▶ 动态迁移
- ▶高可用性

◆用户权限管理

- ▶ oVirt平台有两种用户:
 - ▶ 终端用户:使用和管理虚拟机
 - 管理员用户:为终端用户提供大量虚拟机和虚拟架构。
- ▶ oVirt有两种类型的角色:
 - ▶ 管理员角色和用户角色
- ▶ 授权模式
 - ▶ 执行动作的用户
 - 被执行动作的类型
 - 动作被执行的对象

◆备份与恢复

▶备份

```
# engine-backup --mode=backup --file=backup1 --log=backup1.log
Backing up:
- Files
- Engine database 'engine'
Packing into file 'backup1'
Done.
```

> 恢复

- 干净操作系统
- > 安装好oVirt,但运行engine-setup来进行配置

```
# engine-backup --mode=restore --log=restore1.log --file=backup1 --provision-db \
--provision-dwh-db --no-restore-permissions engine-setup
```


总结

- RHEV vs. oVirt
- ▶ oVirt结构
- ▶ oVirt安装
- 数据中心管理
- ▶ 存储管理
- ▶ 主机管理
- 管理虚拟机资源
- 实时迁移与高可用
- ▶ 用户与权限管理
- ▶ 备份与恢复

