

X Bit Labs IN - Software Training Institute

code.xbitlabs.in - Free Coding Tutorials

Training sessions

Master Tomorrow's skill with Hands-On Learning - with www.xbitlabs.in

1

Date :	Oct 7 2024	Board :	CBSE
Class:	12	Session # :	4
Subject :	Mathematics	Assignment # :	VaA1
Topic :	Vector Algebra	Subtopic(s) :	Scalar Quantities (e.g. Speed), Vector Quantities (e.g. Velocity, Acceleration,
Lecture #:	1		Force), Position Vector, Direction cosines, Types of Vectors

Definition 1 A quantity that has magnitude as well as direction is called a vector.

Position Vectors:

Position vectors are used in mathematics and physics to describe the location of a point in space relative to a reference origin. In a three-dimensional Cartesian coordinate system, a position vector ${f r}$ can be expressed as:

$$\mathbf{r} = x\mathbf{i} + y\mathbf{j} + z\mathbf{k}$$

where:

- ullet x, y, and z are the coordinates of the point,
- i, j, and k are the unit vectors in the directions of the x, y, and z axes, respectively.

Direction Cosines

Consider the position vector \overline{OP} (or \vec{r}) of a point P(x, y, z) as in Fig 10.3. The angles α , β , γ made by the vector \vec{r} with the positive directions of x, y and z-axes respectively, are called its *direction angles*. The cosine values of these angles, i.e., $\cos \alpha$, $\cos \beta$ and $\cos \gamma$ are called *direction cosines* of the vector \vec{r} , and usually denoted by \vec{l} , \vec{m} and \vec{n} , respectively.

From Fig 10.3, one may note that the triangle OAP is right angled, and in it, we have $\cos \alpha = \frac{x}{r}$ (r stands for $|\vec{r}|$). Similarly, from the right angled triangles OBP and OCP, we may write $\cos \beta = \frac{y}{r}$ and $\cos \gamma = \frac{z}{r}$. Thus, the coordinates of the point P may also be expressed as (lr, mr,nr). The numbers lr, mr and nr, proportional to the direction cosines are called as *direction ratios* of vector \vec{r} , and denoted as a, b and c, respectively.

Direction cosines are the cosines of the angles that a vector makes with the coordinate axes in a Cartesian coordinate system. They provide a way to describe the orientation of a vector in three-dimensional space.

Definition

For a vector ${\bf v}$ with components (v_x,v_y,v_z) , the direction cosines are defined as:

- $l = \frac{v_x}{|\mathbf{v}|}$
- $m=rac{v_y}{|\mathbf{v}|}$
- $n = \frac{v_z}{|\mathbf{v}|}$

where $|\mathbf{v}|$ is the magnitude of the vector, calculated as:

$$|\mathbf{v}| = \sqrt{v_x^2 + v_y^2 + v_z^2}$$

Properties

- 1. Range: Each direction cosine l, m, and n can range from -1 to 1, depending on the orientation of the vector in relation to the coordinate axes.
- 2. Normalization: The sum of the squares of the direction cosines equals 1:

$$l^2 + m^2 + n^2 = 1$$

- 3. **Angles**: The angles α , β , and γ that the vector makes with the x, y, and z axes, respectively, are given by:
 - $\cos(\alpha) = l$
 - $\cos(\beta) = m$
 - $\cos(\gamma) = n$

Scalar and vector quantities are fundamental concepts in physics and mathematics that describe different types of measurements. Here's a breakdown of each:

Scalar Quantities

• **Definition**: Scalar quantities are measurements that are fully described by a magnitude (numerical value) alone. They do not have a direction.

• Examples:

• Temperature: 25 degrees Celsius

• Mass: 10 kilograms

• Speed: 60 kilometers per hour

• Distance: 100 meters

• Energy: 50 joules

Vector Quantities

• **Definition**: Vector quantities are measurements that are described by both a magnitude and a direction. This means that to fully define a vector, you need to specify how much (magnitude) and in which way (direction).

• Examples:

• Velocity: 60 kilometers per hour east

• Force: 10 newtons downward

• Acceleration: 9.8 meters per second squared downward

• Displacement: 100 meters north

Key Differences

1. Magnitude and Direction:

- · Scalars have only magnitude.
- · Vectors have both magnitude and direction.

2. Representation:

- Scalars are represented by numbers (e.g., 5 kg).
- Vectors are often represented by arrows, where the length indicates magnitude and the arrowhead indicates direction (e.g., $\mathbf{v} = 30\,\mathrm{m/s\,north}$).

3. Mathematical Operations:

- Scalars can be added, subtracted, multiplied, or divided using regular arithmetic.
- Vectors require vector-specific operations, such as vector addition (using the head-to-tail method) and scalar multiplication.

vector
vector
speed with discotion
vector
scalar
quantity

from
and discotion
magnitude
magnitude

Is velocity constant?

Magnitude of vectors:

To find the magnitude (or length) of a vector, you can use the following formula, depending on the vector's dimension.

In 2D

For a vector ${f v}$ with components (v_x,v_y) , the magnitude is calculated as:

$$|\mathbf{v}| = \sqrt{v_x^2 + v_y^2}$$

In 3D

For a vector ${f v}$ with components (v_x,v_y,v_z) , the magnitude is calculated as:

$$|\mathbf{v}| = \sqrt{v_x^2 + v_y^2 + v_z^2}$$

Example Calculation

Example 1 (2D Vector):

If
$$\mathbf{v} = (3, 4)$$
:

$$|\mathbf{v}| = \sqrt{3^2 + 4^2} = \sqrt{9 + 16} = \sqrt{25} = 5$$

Example 2 (3D Vector):

If
$$\mathbf{v} = (1, 2, 2)$$
:

$$|\mathbf{v}| = \sqrt{1^2 + 2^2 + 2^2} = \sqrt{1 + 4 + 4} = \sqrt{9} = 3$$

Key Points

- The magnitude of a vector is always a non-negative value.
- · It represents the length of the vector in space.
- You can use the Pythagorean theorem for the calculation in both 2D and 3D.

Constructing Vectors from Coordinates in 2D and 3D:

To write a vector from coordinates, you simply express the vector in terms of its components along each axis. Here's how you can do it:

In 2D

If you have a point with coordinates (x, y), the corresponding vector \mathbf{v} from the origin (0, 0) to the point (x, y) can be written as:

$$\mathbf{v} = x\mathbf{i} + y\mathbf{j}$$

where:

- i is the unit vector in the x-direction.
- **j** is the unit vector in the y-direction.

Example (2D)

For the point (3, 4):

$$\mathbf{v} = 3\mathbf{i} + 4\mathbf{j}$$

In 3D

If you have a point with coordinates (x, y, z), the corresponding vector \mathbf{v} from the origin (0, 0, 0) to the point (x, y, z) can be written as:

$$\mathbf{v} = x\mathbf{i} + y\mathbf{j} + z\mathbf{k}$$

where:

- i is the unit vector in the x-direction.
- **j** is the unit vector in the y-direction.
- **k** is the unit vector in the z-direction.

Example (3D)

For the point (1, 2, 3):

$$\mathbf{v} = 1\mathbf{i} + 2\mathbf{j} + 3\mathbf{k}$$

Types of Vectors:

1. Zero Vector

Definition: A vector with a magnitude of zero and no specific direction.

• Notation: Usually represented as 0.

• Example: $\mathbf{0} = 0\mathbf{i} + 0\mathbf{j} + 0\mathbf{k}$ in 3D.

2. Unit Vector

• Definition: A vector with a magnitude of one, used to indicate direction.

• Notation: Often represented with a hat, e.g., $\hat{\mathbf{u}}$.

• **Example**: To convert a vector \mathbf{v} into a unit vector, divide it by its magnitude:

$$\hat{\mathbf{u}} = \frac{\mathbf{v}}{|\mathbf{v}|}$$

$$\overrightarrow{AB} = [a] + [b] \hat{J}$$
 $|\overrightarrow{AB}| = [a] + [b] \hat{J}$
 $|\overrightarrow{AB}| = [a] + [b] = [a]$
 $|\overrightarrow{AB}| = [a] + [a]$
 $|\overrightarrow{AB}| = [a]$

3. Coinitial Vectors

- **Definition**: Vectors that originate from the same point (or the same initial point).
- Example: If $\mathbf{v_1} = 2\mathbf{i} + 3\mathbf{j}$ and $\mathbf{v_2} = 4\mathbf{i} + 5\mathbf{j}$, both vectors can be represented as starting from the same origin.

4. Collinear Vectors

- Definition: Vectors that lie along the same line, regardless of their magnitude or direction.
- Example: Vectors ${f a}=2{f i}+4{f j}$ and ${f b}=4{f i}+8{f j}$ are collinear because ${f b}=2{f a}$.

5. Equal Vectors

- Definition: Vectors that have the same magnitude and direction.
- Example: If $\mathbf{v_1} = 3\mathbf{i} + 2\mathbf{j}$ and $\mathbf{v_2} = 3\mathbf{i} + 2\mathbf{j}$, then $\mathbf{v_1} = \mathbf{v_2}$.

6. Negative of a Vector

- Definition: A vector that has the same magnitude as the original vector but points in the opposite direction.
- Notation: If \mathbf{v} is a vector, its negative is denoted as $-\mathbf{v}$.
- Example: If $\mathbf{v} = 5\mathbf{i} + 3\mathbf{j}$, then $-\mathbf{v} = -5\mathbf{i} 3\mathbf{j}$.

Now complete this assignment #VaA1:

#VaA1:

- 1. Represent graphically a displacement of 40 km, 30° east of north.
- Classify the following measures as scalars and vectors.
 - (i) 10 kg
- (ii) 2 meters north-west (iii) 40°

- (iv) 40 watt
- (v) 10⁻¹⁹ coulomb
- (vi) 20 m/s²
- 3. Classify the following as scalar and vector quantities.
 - (i) time period
- (ii) distance

- (iii) force
 - (iv) velocity
- (v) work done
- In Fig 10.6 (a square), identify the following vectors.
 - (i) Coinitial
- (ii) Equal
- (iii) Collinear but not equal
- 5. Answer the following as true or false.
 - (i) \vec{a} and $-\vec{a}$ are collinear.
 - (ii) Two collinear vectors are always equal in magnitude.

Fig 10.6

- (iii) Two vectors having same magnitude are collinear.
- (iv) Two collinear vectors having the same magnitude are equal.

Scalar and Vector Quantities

- 1. Scalar and Vector Identification:
 - · Classify the following quantities as either scalar or vector: temperature, displacement, mass, and force.
- 2. Speed vs. Velocity:
 - A car travels 100 meters east in 5 seconds. What is its speed and what is its velocity?
- 3. Acceleration:
 - · A train increases its speed from 20 m/s to 60 m/s in 10 seconds. Calculate its average acceleration.
- 4. Force Calculation:
 - If a force of 10 N is applied to an object and it causes an acceleration of $2\,\mathrm{m/s}^2$, what is the mass of the object?

Position Vectors

- 5. Position Vector:
 - Write the position vector for a point located at coordinates (4, -3, 2) in 3D space.
- 6. Magnitude of Position Vector:
 - Calculate the magnitude of the position vector ${f r}=3{f i}-4{f j}+5{f k}.$

Direction Cosines

- 7. Finding Direction Cosines:
 - Given a vector $\mathbf{v} = 2\mathbf{i} + 3\mathbf{j} + 6\mathbf{k}$, calculate its direction cosines.
- 8. Angle with Axes:
 - Determine the angles that the vector $\mathbf{v} = 1\mathbf{i} + 1\mathbf{j} + 1\mathbf{k}$ makes with the x, y, and z axes.

Types of Vectors

- 9. Equal Vectors:
 - ullet Are the vectors ${f a}=4{f i}+2{f j}$ and ${f b}=4{f i}+2{f j}$ equal? Justify your answer.
- 10. Negative of a Vector:
 - If $\mathbf{p} = -5\mathbf{i} + 3\mathbf{j}$, what is $-\mathbf{p}$?
- 11. Coinitial Vectors:
 - ullet Given the vectors ${f u}=3{f i}+2{f j}$ and ${f v}=3{f i}+2{f j}+1{f k}$, are they coinitial? Explain.
- 12. Collinear Vectors:
 - Determine if the vectors $\mathbf{x} = 2\mathbf{i} + 4\mathbf{j}$ and $\mathbf{y} = k\mathbf{i} + 2k\mathbf{j}$ for some scalar k are collinear.

1. Zero Vector:

- What is the magnitude of the zero vector?
- · Is the zero vector a scalar or a vector?

2. Unit Vector:

• Find the unit vector in the direction of $\mathbf{v} = 3\mathbf{i} + 4\mathbf{j}$.

3. Coinitial Vectors:

• If $\mathbf{a} = 2\mathbf{i} + \mathbf{j}$ and $\mathbf{b} = 2\mathbf{i} + 3\mathbf{j}$, are \mathbf{a} and \mathbf{b} coinitial? Explain.

4. Collinear Vectors:

ullet Are the vectors ${f u}=4{f i}+2{f j}$ and ${f v}=2{f i}+1{f j}$ collinear? Justify your answer.

Equal Vectors:

• Determine if $\mathbf{p} = 5\mathbf{i} + 3\mathbf{j}$ and $\mathbf{q} = 5\mathbf{i} + 3\mathbf{j}$ are equal vectors.

6. Negative of a Vector:

• If
$$\mathbf{v} = -2\mathbf{i} + 4\mathbf{j}$$
, what is $-\mathbf{v}$?

7. Magnitude of Vectors:

• Calculate the magnitude of the vector $\mathbf{v} = 6\mathbf{i} - 8\mathbf{j}$.

8. Unit Vector:

- Convert the vector $\mathbf{w} = -1\mathbf{i} + 2\mathbf{j} - 2\mathbf{k}$ into a unit vector.

9. Coinitial and Collinear:

• Given vectors $\mathbf{a} = 3\mathbf{i} + 4\mathbf{j}$ and $\mathbf{b} = k\mathbf{i} + \frac{4}{3}k\mathbf{j}$ for some scalar k, determine if they are coinitial and collinear.

10. Equal and Negative Vectors:

- Let ${f c}=2{f i}-5{f j}$. Find the negative of ${f c}$ and check if $-{f c}$ equals ${f c}$.

End