Number Theory Quiz IV

RDB

August 10, 2021

Problem 1 What is the smallest positive integer x such that x is divisible by 4 and x + 1 is divisible by 7?

Solution 1

This is equivalent to the system

$$x = 0 \pmod{4}$$
$$x = -1 \pmod{7}.$$

Particular solutions to the individual equations are $x_1 = 0$ and $x_2 = 6$, respectively. Therefore, a particular simultaneous solution is

$$x_0 = 0 \cdot 7 \cdot 7^{-1} + 6 \cdot 4 \cdot 4^{-1},$$

where 7^{-1} is the inverse of $7 \mod 4$, and 4^{-1} is the inverse of $4 \mod 7$. The latter is 2, so

$$x_0 = 6 \cdot 4 \cdot 2 = 48.$$

By the CRT, every other solution is of the form

$$x = 48 + t4 \cdot 7 = 48 + 28t$$
.

So the smallest *positive* solution is 48 - 28 = 20.

Problem 2 Fix distinct primes p and q. Prove:

- 1. There exists some nonnegative x such that x is divisible by p and x+2 is divisible by q.
- 2. That you can take $0 \le x < pq^2$.

Solution 2

1. By the Chinese Remainder Theorem, the system

$$x = 0 \pmod{p}$$
$$x = -2 \pmod{q}$$

has infinitely many solutions, all of the form $x_0 + pqt$ for some integer t. Taking t to be large enough gives $x_0 \ge 0$.

2. In fact, since $x_1=0$ and $x_2=q-2$ is a particular solution to the above equations, we can take

$$x_0 = x_2 p p^{-1},$$

where p^{-1} is the inverse of $p \mod q$. Whatever this is, it is less than q, so

$$0 \le x_0 = (q-2)pp^{-1} < qpq = pq^2.$$