Step	Algorithm: $C := AB + C$
1a	$\{C = \widehat{C} $
	$A \to \left(\frac{A_T}{A_B}\right), C \to \left(\frac{C_T}{C_B}\right)$ where A_T has 0 rows, C_T has 0 rows
2	$\left\{ \left(\frac{C_T}{C_B} \right) = \left(\frac{A_T B + \widehat{C}_T}{\widehat{C}_B} \right) \right\}$
3	while $m(A_T) < m(A)$ do
2,3	$\left\{ \left(\frac{C_T}{C_B} \right) = \left(\frac{A_T B + \widehat{C}_T}{\widehat{C}_B} \right) \land m(A_T) < m(A) \right\}$
5a	Determine block size b $ \left(\frac{A_T}{A_B}\right) \to \left(\frac{A_0}{A_1}\right), \left(\frac{C_T}{C_B}\right) \to \left(\frac{C_0}{C_1}\right) $ where A_1 has b rows, C_1 has b rows
6	$ \left\{ \begin{array}{c} \begin{pmatrix} C_0 \\ C_1 \\ C_2 \end{pmatrix} = \begin{pmatrix} A_0 B + \widehat{C}_0 \\ \widehat{C}_1 \\ \widehat{C}_2 \end{pmatrix} \right. $
8	$C_1 := A_1 B + C_1$
7	$ \left\{ \begin{pmatrix} C_0 \\ C_1 \\ C_2 \end{pmatrix} = \begin{pmatrix} A_0B + \widehat{C}_0 \\ A_1B + \widehat{C}_1 \\ \widehat{C}_2 \end{pmatrix} \right\} $
5b	$\left(\frac{A_T}{A_B}\right) \leftarrow \left(\frac{A_0}{A_1}\right), \left(\frac{C_T}{C_B}\right) \leftarrow \left(\frac{C_0}{C_1}\right)$
2	$\left\{ \qquad \left(\frac{C_T}{C_B} \right) = \left(\frac{A_T B + \hat{C}_T}{\hat{C}_B} \right) \right\}$
	endwhile
2,3	$\left\{ \left(\frac{C_T}{C_B} \right) = \left(\frac{A_T B + \widehat{C}_T}{\widehat{C}_B} \right) \land \neg (m(A_T) < m(A)) \right\}$
1b	$\left\{C := AB + \widehat{C}\right)$

Step	Algorithm: $C := AB + C$
1a	{
4	where
2	
3	while do
2,3	
	Determine block size b
5a	
	where
6	
8	
7	
5b	
2	
	endwhile
2,3	
1b	{

Step	Algorithm: $C := AB + C$	
1a	$\{C = \widehat{C}$	
4	where	
2		>
3	while do	
2,3		>
	Determine block size b	
5a		
	where	
6		>
8		
7		>
5b		
2	$igg igg\{$	>
	endwhile	
2,3	$\left\{ \begin{array}{c} \\ \\ \end{array} \right. \wedge \neg (\begin{array}{c} \\ \end{array} \right.$	>
1b	$\left\{C := AB + \widehat{C}\right)$	

Step	Algorithm: $C := AB + C$	
1a	${C = \widehat{C}}$	
4	where	
2	$\left\{ \left(\frac{C_T}{C_B} \right) = \left(\frac{A_T B + \hat{C}_T}{\hat{C}_B} \right) \right.$	
3	while do	
2,3	$\left\{ \begin{array}{c} \left(\frac{C_T}{C_B}\right) = \left(\frac{A_T B + \widehat{C}_T}{\widehat{C}_B}\right) \wedge \end{array} \right.$	
	Determine block size b	
5a		
	where	
6		
U		
8		
		Ì
7	{	}
5b		
2	$\left\{ \qquad \left(\frac{C_T}{C_B} \right) = \left(\frac{A_T B + \widehat{C}_T}{\widehat{C}_B} \right) \right.$	
	endwhile	
2,3	$\left\{ \left(\frac{C_T}{C_B} \right) = \left(\frac{A_T B + \widehat{C}_T}{\widehat{C}_B} \right) \land \neg () \right\}$	
1b	$\left\{C := AB + \widehat{C}\right)$	

Step	Algorithm: $C := AB + C$	
1a	$\{C = \widehat{C}\}$	
4	where	
2	$\left\{ \left(\frac{C_T}{C_B} \right) = \left(\frac{A_T B + \widehat{C}_T}{\widehat{C}_B} \right) \right\}$	
3	while $m(A_T) < m(A)$ do	
2,3	$ \left\{ \left(\frac{C_T}{C_B} \right) = \left(\frac{A_T B + \widehat{C}_T}{\widehat{C}_B} \right) \land m(A_T) < m(A) \right\} $	}
	Determine block size b	
5a		
	where	
6		
8		
7		}
5b		
2	$\left\{ \qquad \left(\frac{C_T}{C_B} \right) = \left(\frac{A_T B + \widehat{C}_T}{\widehat{C}_B} \right) \right.$	}
	endwhile	
2,3	$\left\{ \left(\frac{C_T}{C_B} \right) = \left(\frac{A_T B + \widehat{C}_T}{\widehat{C}_B} \right) \land \neg (m(A_T) < m(A)) \right\}$	
1b	$\left\{C := AB + \widehat{C}\right)$	

Step	Algorithm: $C := AB + C$
1a	$\{C = \widehat{C}$
4	$A o \left(\frac{A_T}{A_B}\right), C o \left(\frac{C_T}{C_B}\right)$ where A_T has 0 rows, C_T has 0 rows
2	$\left\{ \left(\frac{C_T}{C_B} \right) = \left(\frac{A_T B + \widehat{C}_T}{\widehat{C}_B} \right) \right\}$
3	while $m(A_T) < m(A)$ do
2,3	$\left\{ \left(\frac{C_T}{C_B} \right) = \left(\frac{A_T B + \widehat{C}_T}{\widehat{C}_B} \right) \land m(A_T) < m(A) \right\}$
	Determine block size b
5a	
	where
6	
8	
7	
5b	
2	$\left\{ \qquad \left(\frac{C_T}{C_B} \right) = \left(\frac{A_T B + \widehat{C}_T}{\widehat{C}_B} \right) \right\}$
	endwhile
2,3	$\left\{ \left(\frac{C_T}{C_B} \right) = \left(\frac{A_T B + \widehat{C}_T}{\widehat{C}_B} \right) \land \neg (m(A_T) < m(A)) \right\}$
1b	$\{C := AB + \widehat{C}\}$

Step	Algorithm: $C := AB + C$
1a	$\{C = \widehat{C}\}$
4	$A o \left(\frac{A_T}{A_B}\right), C o \left(\frac{C_T}{C_B}\right)$ where A_T has 0 rows, C_T has 0 rows
2	$\left\{ \left(\frac{C_T}{C_B} \right) = \left(\frac{A_T B + \hat{C}_T}{\hat{C}_B} \right) \right\}$
3	while $m(A_T) < m(A)$ do
2,3	$\left\{ \left(\frac{C_T}{C_B} \right) = \left(\frac{A_T B + \widehat{C}_T}{\widehat{C}_B} \right) \land m(A_T) < m(A) \right\}$
	Determine block size b
5a	$\left(\frac{A_T}{A_B}\right) \to \left(\frac{A_0}{A_1}\right), \left(\frac{C_T}{C_B}\right) \to \left(\frac{C_0}{C_1}\right)$
	where A_1 has b rows, C_1 has b rows
6	
8	
7	
5b	$\left(\frac{A_T}{A_B}\right) \leftarrow \left(\frac{A_0}{A_1}\right), \left(\frac{C_T}{C_B}\right) \leftarrow \left(\frac{C_0}{C_1}\right)$
2	$\left\{ \qquad \left(\frac{C_T}{C_B} \right) = \left(\frac{A_T B + \widehat{C}_T}{\widehat{C}_B} \right) \right\}$
	endwhile
2,3	$\left\{ \left(\frac{C_T}{C_B} \right) = \left(\frac{A_T B + \widehat{C}_T}{\widehat{C}_B} \right) \land \neg (m(A_T) < m(A)) \right\}$
1b	$\left\{ C := AB + \widehat{C} \right\}$

Step	Algorithm: $C := AB + C$
1a	$\{C = \widehat{C}$
4	$A o \left(\frac{A_T}{A_B}\right), C o \left(\frac{C_T}{C_B}\right)$ where A_T has 0 rows, C_T has 0 rows
2	$\left\{ \left(\frac{C_T}{C_B} \right) = \left(\frac{A_T B + \widehat{C}_T}{\widehat{C}_B} \right) \right\}$
3	while $m(A_T) < m(A)$ do
2,3	$\left\{ \left(\frac{C_T}{C_B} \right) = \left(\frac{A_T B + \widehat{C}_T}{\widehat{C}_B} \right) \land m(A_T) < m(A) \right\}$
5a	Determine block size b $ \left(\frac{A_T}{A_B}\right) \to \left(\frac{A_0}{A_1}\right), \left(\frac{C_T}{C_B}\right) \to \left(\frac{C_0}{C_1}\right) $ where A_1 has b rows, C_1 has b rows
6	$ \left\{ \begin{array}{c} \begin{pmatrix} C_0 \\ C_1 \\ C_2 \end{pmatrix} = \begin{pmatrix} A_0 B + \widehat{C}_0 \\ \widehat{C}_1 \\ \widehat{C}_2 \end{pmatrix} \right. $
8	
7	
5b	$\left(\frac{A_T}{A_B}\right) \leftarrow \left(\frac{A_0}{A_1}\right), \left(\frac{C_T}{C_B}\right) \leftarrow \left(\frac{C_0}{C_1}\right)$
2	$\left\{ \qquad \left(\frac{C_T}{C_B} \right) = \left(\frac{A_T B + \hat{C}_T}{\hat{C}_B} \right) \right\}$
	endwhile
2,3	$\left\{ \left(\frac{C_T}{C_B} \right) = \left(\frac{A_T B + \widehat{C}_T}{\widehat{C}_B} \right) \land \neg (m(A_T) < m(A)) \right\}$
1b	$\left\{C := AB + \widehat{C}\right)$

Step	Algorithm: $C := AB + C$
1a	$\{C = \widehat{C}$
4	$A o \left(\frac{A_T}{A_B}\right), C o \left(\frac{C_T}{C_B}\right)$ where A_T has 0 rows, C_T has 0 rows
2	$\left\{ \left(\frac{C_T}{C_B} \right) = \left(\frac{A_T B + \widehat{C}_T}{\widehat{C}_B} \right) \right\}$
3	while $m(A_T) < m(A)$ do
2,3	$\left\{ \left(\frac{C_T}{C_B} \right) = \left(\frac{A_T B + \widehat{C}_T}{\widehat{C}_B} \right) \land m(A_T) < m(A) \right\}$
5a	Determine block size b $ \left(\frac{A_T}{A_B}\right) \to \left(\frac{A_0}{A_1}\right), \left(\frac{C_T}{C_B}\right) \to \left(\frac{C_0}{C_1}\right) $ where A_1 has b rows, C_1 has b rows
6	$ \left\{ \begin{pmatrix} C_0 \\ C_1 \\ C_2 \end{pmatrix} = \begin{pmatrix} A_0 B + \widehat{C}_0 \\ \widehat{C}_1 \\ \widehat{C}_2 \end{pmatrix} \right\} $
	$ \left\{ \begin{pmatrix} C_0 \\ C_1 \\ C_2 \end{pmatrix} = \begin{pmatrix} A_0B + \widehat{C}_0 \\ A_1B + \widehat{C}_1 \\ \widehat{C}_2 \end{pmatrix} \right\} $
5b	$\left(\frac{A_T}{A_B}\right) \leftarrow \left(\frac{A_0}{A_1}\right), \left(\frac{C_T}{C_B}\right) \leftarrow \left(\frac{C_0}{C_1}\right)$
2	$\left\{ \qquad \left(\frac{C_T}{C_B} \right) = \left(\frac{A_T B + \hat{C}_T}{\hat{C}_B} \right) \right\}$
	endwhile
2,3	$\left\{ \left(\frac{C_T}{C_B} \right) = \left(\frac{A_T B + \widehat{C}_T}{\widehat{C}_B} \right) \land \neg (m(A_T) < m(A)) \right\}$
1b	$\left\{C := AB + \widehat{C}\right)$

Step	Algorithm: $C := AB + C$
1a	$\left\{ C = \widehat{C} \right\}$
4	$A o \left(\frac{A_T}{A_B}\right), C o \left(\frac{C_T}{C_B}\right)$ where A_T has 0 rows, C_T has 0 rows
2	$\left\{ \left(\frac{C_T}{C_B} \right) = \left(\frac{A_T B + \hat{C}_T}{\hat{C}_B} \right) \right\}$
3	while $m(A_T) < m(A)$ do
2,3	$\left\{ \left(\frac{C_T}{C_B} \right) = \left(\frac{A_T B + \widehat{C}_T}{\widehat{C}_B} \right) \land m(A_T) < m(A) \right\}$
5a	Determine block size b $ \left(\frac{A_T}{A_B}\right) \to \left(\frac{A_0}{A_1}\right), \left(\frac{C_T}{C_B}\right) \to \left(\frac{C_0}{C_1}\right) $ where A_1 has b rows, C_1 has b rows
6	$ \left\{ \begin{array}{c} \begin{pmatrix} C_0 \\ C_1 \\ C_2 \end{array} \right) = \begin{pmatrix} A_0 B + \widehat{C}_0 \\ \widehat{C}_1 \\ \widehat{C}_2 \end{array} \right) $
8	$C_1 := A_1 B + C_1$
7	$ \left\{ \begin{pmatrix} C_0 \\ C_1 \\ C_2 \end{pmatrix} = \begin{pmatrix} A_0B + \widehat{C}_0 \\ A_1B + \widehat{C}_1 \\ \widehat{C}_2 \end{pmatrix} \right\} $
5b	$\left(\frac{A_T}{A_B}\right) \leftarrow \left(\frac{A_0}{A_1}\right), \left(\frac{C_T}{C_B}\right) \leftarrow \left(\frac{C_0}{C_1}\right)$
2	$\left\{ \qquad \left(\frac{C_T}{C_B} \right) = \left(\frac{A_T B + \widehat{C}_T}{\widehat{C}_B} \right) \right.$
	endwhile
2,3	$\left\{ \left(\frac{C_T}{C_B} \right) = \left(\frac{A_T B + \widehat{C}_T}{\widehat{C}_B} \right) \land \neg (m(A_T) < m(A)) \right\}$
1b	$\left\{ C := AB + \widehat{C} \right) $

Algorithm: $C := AB + C$
$A \to \left(\frac{A_T}{A_B}\right), C \to \left(\frac{C_T}{C_B}\right)$ where A_T has 0 rows, C_T has 0 rows
while $m(A_T) < m(A)$ do
Determine block size b
$ \left(\frac{A_T}{A_B}\right) \to \left(\frac{A_0}{A_1}\right), \left(\frac{C_T}{C_B}\right) \to \left(\frac{C_0}{C_1}\right) $ where A_1 has b rows, C_1 has b rows
$C_1 := A_1 B + C_1$
$\left(\frac{A_T}{A_B}\right) \leftarrow \left(\frac{A_0}{A_1}\right), \left(\frac{C_T}{C_B}\right) \leftarrow \left(\frac{C_0}{C_1}\right)$
endwhile

Algorithm: C := AB + C

$$A \to \left(\frac{A_T}{A_B}\right), C \to \left(\frac{C_T}{C_B}\right)$$

where A_T has 0 rows, C_T has 0 rows while $m(A_T) < m(A)$ do

Determine block size b

$$\left(\frac{A_T}{A_B}\right) \to \left(\frac{A_0}{A_1}\right), \left(\frac{C_T}{C_B}\right) \to \left(\frac{C_0}{C_1}\right)$$

where A_1 has b rows, C_1 has b rows

$$C_1 := A_1 B + C_1$$

$$\left(\frac{A_T}{A_B}\right) \leftarrow \left(\frac{A_0}{A_1}\right), \left(\frac{C_T}{C_B}\right) \leftarrow \left(\frac{C_0}{C_1}\right)$$

endwhile