→ Ethan Enrique Verduzco Pérez | A01066955

```
import pandas as pd
import numpy as np
from sklearn.cluster import KMeans
from sklearn.decomposition import PCA
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn import preprocessing
from sklearn.preprocessing import MinMaxScaler
from sklearn.tree import DecisionTreeClassifier
from sklearn.model selection import train test split
from sklearn import metrics
from sklearn.metrics import confusion_matrix
from sklearn.metrics import roc curve
from sklearn.model selection import KFold
from sklearn.svm import SVR
from sklearn.tree import export graphviz
from six import StringIO
from IPython.display import Image
import pydotplus
from sklearn.model selection import cross validate
def cross_validation(model, _X, _y, _cv=5):
      scoring = ['accuracy', 'precision', 'recall', 'f1']
     results = cross validate(estimator=model,
                               X = X
                               y = _y
                               cv= cv,
                               scoring=_scoring,
                               return train score=True)
      return {"Training Accuracy scores": results['train accuracy'],
              "Mean Training Accuracy": results['train accuracy'].mean()*100,
              "Training Precision scores": results['train precision'],
              "Mean Training Precision": results['train precision'].mean(),
              "Training Recall scores": results['train recall'],
              "Mean Training Recall": results['train recall'].mean(),
              "Training F1 scores": results['train f1'],
              "Mean Training F1 Score": results['train f1'].mean(),
              "Validation Accuracy scores": results['test accuracy'],
              "Mean Validation Accuracy": results['test accuracy'].mean()*100,
              "Validation Precision scores": results['test precision'],
              "Mean Validation Precision": results['test precision'].mean(),
              "Validation Recall scores": results['test recall'],
              "Mean Validation Recall": results['test recall'].mean(),
```

```
"Validation F1 scores": results['test_f1'],
"Mean Validation F1 Score": results['test_f1'].mean()
}
```

▼ Datos

```
df = pd.read_csv('/content/water_potability (1).csv')
df.head(5)
```

3654 10
5359 15
5213 16
5516 18
0813 11
4.308 2.885 3.606 3.266 3.410

df.describe()

	ph	Hardness	Solids	Chloramines	Sulfate	Conductivity
count	2785.000000	3276.000000	3276.000000	3276.000000	2495.000000	3276.000000
mean	7.080795	196.369496	22014.092526	7.122277	333.775777	426.205111
std	1.594320	32.879761	8768.570828	1.583085	41.416840	80.824064
min	0.000000	47.432000	320.942611	0.352000	129.000000	181.483754
25%	6.093092	176.850538	15666.690297	6.127421	307.699498	365.734414
50%	7.036752	196.967627	20927.833607	7.130299	333.073546	421.884968
75%	8.062066	216.667456	27332.762127	8.114887	359.950170	481.792304
max	14.000000	323.124000	61227.196008	13.127000	481.030642	753.342620

df.isnull().sum()

ph	491
Hardness	0
Solids	0

[#] Función obtenida de

[#] https://www.section.io/engineering-education/how-to-implement-k-fold-cross-validat

```
Chloramines 0
Sulfate 781
Conductivity 0
Organic_carbon 0
Trihalomethanes 162
Turbidity 0
Potability 0
dtype: int64
```

Llenamos los valores faltantes con la media de los datos

```
df['ph'].fillna(value=df['ph'].mean(), inplace=True)
df['Sulfate'].fillna(value=df['Sulfate'].mean(), inplace=True)
df['Trihalomethanes'].fillna(value=df['Trihalomethanes'].mean(), inplace=True)
df.isnull().sum()
                        0
    ph
    Hardness
                        0
    Solids
                        0
    Chloramines
                        0
    Sulfate
                        0
    Conductivity
    Organic carbon
                        0
    Trihalomethanes
                        0
    Turbidity
                        0
    Potability
                        0
    dtype: int64
```

Normalizamos los datos

```
scaler = MinMaxScaler()
scale = scaler.fit_transform(df)
df_scale = pd.DataFrame(scale, columns = df.columns)
df_scale
```

	ph	Hardness	Solids	Chloramines	Sulfate	Conductivity	Organic_car
0	0.505771	0.571139	0.336096	0.543891	0.680385	0.669439	0.313
1	0.265434	0.297400	0.300611	0.491839	0.581699	0.719411	0.497
2	0.578509	0.641311	0.321619	0.698543	0.581699	0.414652	0.562
3	0.594055	0.605536	0.356244	0.603314	0.647347	0.317880	0.622
4	0.649445	0.484851	0.289922	0.484900	0.514545	0.379337	0.358

▼ Entrena por lo menos 2 algoritmos de clasificación

2000 0 FFFFFF 0 F00010 0 070000 0 000170 0 F01000 0 000010

▼ SVC

```
3274 0.366197 0.664407 0.191490 0.465860 0.581699 0.387157 0.343
```

Preprocessing

```
3276 rows x 10 columns
X = df_scale.drop('Potability', axis=1)
y = df_scale['Potability']
```

▼ Train Test Split

```
from sklearn.model selection import train test split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.20)
У
    0
             0.0
    1
             0.0
             0.0
    3
             0.0
             0.0
    3271
             1.0
    3272
            1.0
    3273
             1.0
    3274
            1.0
             1.0
    3275
    Name: Potability, Length: 3276, dtype: float64
```

Training the Algorithm

To train the kernel SVM, we use the same SVC class of the Scikit-Learn's svm library. The difference lies in the value for the kernel parameter of the SVC class. In the case of the simple SVM we used

"linear" as the value for the kernel parameter. However, for kernel SVM you can use Gaussian,

▼ Calibraciones SVC

▼ 1. Polynomial Kernel

Evaluating the Algorithm

[[375 27]

In the case of polynomial kernel, you also have to pass a value for the degree parameter of the SVC class. This basically is the degree of the polynomial.

```
from sklearn.svm import SVC
svclassifier = SVC(kernel='poly', degree=3)
svclassifier.fit(X_train, y_train)
y_pred1 = svclassifier.predict(X_test)
```

```
metrics.accuracy_score(y_test, y_pred1)
    0.6509146341463414
metrics.accuracy score(y test, y pred1) #porcentaje de prediccion de valores verdader
    0.6509146341463414
metrics.recall_score(y_test,y_pred1) #indica falsos negativos
    0.2047244094488189
metrics.precision score(y test,y pred1) #falsos positivos
    0.6582278481012658
metrics.fl_score(y_test,y_pred1) #media armonica entre recall y presicion
    0.3123123123123123
from sklearn.metrics import classification report, confusion matrix
print(confusion_matrix(y_test, y_pred1))
print(classification report(y test, y pred1))
```

[202 52]]				
	precision	recall	f1-score	support
0.	0 0.65	0.93	0.77	402
1.	0 0.66	0.20	0.31	254
accurac	y		0.65	656
macro av	rg 0.65	0.57	0.54	656
weighted av	rg 0.65	0.65	0.59	656

▼ curva ROC y AUC

```
fpr, tpr, thresholds = roc_curve(y_test, y_pred1)
def plot_roc_curve(fpr, tpr, label = None):
    plt.plot(fpr, tpr, linewidth =2, label=label)
    plt.plot([0,1],[0,1],'k--')
plot_roc_curve(fpr, tpr)
plt.show()
```


Cross Validation

2. Gaussian Kernel

To use Gaussian kernel, you have to specify 'rbf' as value for the Kernel parameter of the SVC class.

```
from sklearn.svm import SVC
svclassifier = SVC(kernel='rbf')
svclassifier.fit(X_train, y_train)

y_pred = svclassifier.predict(X_test)
```

Prediction and Evaluation

```
metrics.accuracy_score(y_test, y_pred)
0.6646341463414634
```

metrics.accuracy_score(y_test, y_pred) #porcentaje de prediccion de valores verdadero 0.6646341463414634

metrics.precision_score(y_test,y_pred) #falsos positivos

0.7361111111111112

from sklearn.metrics import classification_report, confusion_matrix
print(confusion_matrix(y_test, y_pred))
print(classification_report(y_test, y_pred))

[[383 [201	19] 53]]	precision	recall	f1-score	support
	0.0 1.0	0.66 0.74	0.95 0.21	0.78 0.33	402 254
	curacy ro avg ed avg	0.70 0.69	0.58 0.66	0.66 0.55 0.60	656 656


```
fpr, tpr, thresholds = roc_curve(y_test, y_pred)
def plot_roc_curve(fpr, tpr, label = None):
    plt.plot(fpr, tpr, linewidth =2, label=label)
    plt.plot([0,1],[0,1],'k--')
plot_roc_curve(fpr, tpr)
plt.show()
```


Cross Validation

```
SVC_result = cross_validation(svclassifier, X, y, 5)
print(SVC_result)
{'Training Accuracy scores': array([0.71564885, 0.70431133, 0.71423121, 0.721480
```

▼ 3. Sigmoid Kernel

To use the sigmoid kernel, you have to specify 'sigmoid' as value for the kernel parameter of the SVC class.

```
from sklearn.svm import SVC
svclassifier = SVC(kernel='sigmoid')
svclassifier.fit(X_train, y_train)

y_pred = svclassifier.predict(X_test)
```

Prediction and Evaluation

```
metrics.accuracy_score(y_test, y_pred)
```

0.6128048780487805

/usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318:
 _warn_prf(average, modifier, msg_start, len(result))
0.0

metrics.fl_score(y_test,y_pred) #media armonica entre recall y presicion
0.0

from sklearn.metrics import classification_report, confusion_matrix
print(confusion_matrix(y_test, y_pred))
print(classification_report(y_test, y_pred))

```
[[402
         0]
 [254
         0]]
               precision
                              recall f1-score
                                                    support
                     0.61
                                1.00
                                            0.76
                                                        402
          0.0
          1.0
                     0.00
                                0.00
                                            0.00
                                                        254
                                            0.61
                                                        656
    accuracy
                     0.31
                                0.50
                                            0.38
                                                        656
   macro avq
weighted avg
                     0.38
                                0.61
                                            0.47
                                                        656
```

```
/usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318:
    _warn_prf(average, modifier, msg_start, len(result))
/usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318:
    _warn_prf(average, modifier, msg_start, len(result))
/usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318:
    _warn_prf(average, modifier, msg_start, len(result))
```

curva ROC y AUC

```
fpr, tpr, thresholds = roc_curve(y_test, y_pred)
def plot roc curve(fpr, tpr, label = None):
```

```
plt.plot(fpr, tpr, linewidth =2, label=label)
  plt.plot([0,1],[0,1],'k--')
plot_roc_curve(fpr, tpr)
plt.show()
```


SVC result = cross validation(svclassifier, X, y, 5)

Cross Validation

```
print(SVC result)
    /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318:
      warn prf(average, modifier, msg start, len(result))
    /usr/local/lib/python3.7/dist-packages/sklearn/metrics/ classification.py:1318:
      _warn_prf(average, modifier, msg_start, len(result))
    /usr/local/lib/python3.7/dist-packages/sklearn/metrics/ classification.py:1318:
      warn prf(average, modifier, msg start, len(result))
    /usr/local/lib/python3.7/dist-packages/sklearn/metrics/ classification.py:1318:
       warn prf(average, modifier, msg start, len(result))
    {'Training Accuracy scores': array([0.60992366, 0.60969096, 0.60969096, 0.610072
    /usr/local/lib/python3.7/dist-packages/sklearn/metrics/ classification.py:1318:
       warn prf(average, modifier, msg start, len(result))
```

Decision Tree Classifier

▼ División de los datos en entrenamiento y prueba

```
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state
```

▼ Clasificador

```
tree = DecisionTreeClassifier()
#Entrenamiento del modelo
model tree = tree.fit(X train, y train)
```

▼ Predicción de etiquetas

```
y pred = model tree.predict(X test)
```

▼ Evaluación

matriz_plot = metrics.ConfusionMatrixDisplay(confusion_matrix=matriz, display_labels=
matriz_plot.plot()
plt.show()

▼ curva ROC y AUC

```
fpr, tpr, thresholds = roc_curve(y_test, y_pred)
def plot_roc_curve(fpr, tpr, label = None):
    plt.plot(fpr, tpr, linewidth =2, label=label)
    plt.plot([0,1],[0,1],'k--')
plot_roc_curve(fpr, tpr)
plt.show()
```



```
from sklearn.metrics import classification_report, confusion_matrix
print(confusion_matrix(y_test, y_pred))
print(classification_report(y_test, y_pred))
```

[[363 222] [222 176]]

[222 1/0]]	precision	recall	f1-score	support
0	0.62	0.62	0.62	585
1	0.44	0.44	0.44	398
accuracy			0.55	983
macro avg	0.53	0.53	0.53	983
weighted avg	0.55	0.55	0.55	983

Cross Validation

▼ Calibración 2

metrics.precision_score(y_test,y_pred) #falsos positivos

0.6517857142857143

metrics.fl_score(y_test,y_pred) #media armonica entre recall y presicion

0.28627450980392155

matriz = metrics.confusion_matrix(y_test,y_pred)
matriz

[[546 391

matriz_plot = metrics.ConfusionMatrixDisplay(confusion_matrix=matriz, display_labels=
matriz_plot.plot()
plt.show()

from sklearn.metrics import classification_report, confusion_matrix
print(confusion_matrix(y_test, y_pred))
print(classification_report(y_test, y_pred))

[325	73]]				
[0 2 0	, •]]	precision	recall	f1-score	support
	0	0.63	0.93	0.75	585
	1	0.65	0.18	0.29	398
aco	curacy			0.63	983
macı	ro avg	0.64	0.56	0.52	983
weighte	ed avg	0.64	0.63	0.56	983

```
fpr, tpr, thresholds = roc_curve(y_test, y_pred)
def plot_roc_curve(fpr, tpr, label = None):
    plt.plot(fpr, tpr, linewidth =2, label=label)
    plt.plot([0,1],[0,1],'k--')
plot_roc_curve(fpr, tpr)
plt.show()
```



```
decision_tree_result = cross_validation(tree, X, y, 5)
print(decision_tree_result)
```

{'Training Accuracy scores': array([0.62519084, 0.62914918, 0.6474628, 0.648607

▼ Calibración 3

metrics.precision_score(y_test,y_pred) #falsos positivos

0.5616438356164384

metrics.fl_score(y_test,y_pred) #media armonica entre recall y presicion

0.17409766454352443

matriz = metrics.confusion_matrix(y_test,y_pred)
matriz

matriz_plot = metrics.ConfusionMatrixDisplay(confusion_matrix=matriz, display_labels=
matriz_plot.plot()
plt.show()

from sklearn.metrics import classification_report, confusion_matrix
print(confusion_matrix(y_test, y_pred))
print(classification_report(y_test, y_pred))

[[553 [357	32] 41]]				
		precision	recall	f1-score	support
	0	0.61	0.95	0.74	585
	1	0.56	0.10	0.17	398
ac	curacy			0.60	983
mac	ro avg	0.58	0.52	0.46	983
weight	ed avg	0.59	0.60	0.51	983

```
fpr, tpr, thresholds = roc_curve(y_test, y_pred)
def plot_roc_curve(fpr, tpr, label = None):
    plt.plot(fpr, tpr, linewidth =2, label=label)
    plt.plot([0,1],[0,1],'k--')
plot_roc_curve(fpr, tpr)
plt.show()
```



```
decision_tree_result = cross_validation(tree, X, y, 5)
print(decision_tree_result)

{'Training Accuracy scores': array([0.62290076, 0.62190004, 0.63487219, 0.646699]
```

Análisis de Resultados

Después de analizar llevar a cabo el proceso de normalización de datos, entrenamiento de los modelos, calibración de los hiperparámetros de los modelos, la evaluación y la validación cruzada, fue posible determinar que el método de clasificación que mejor se adapta a los datos es el de Support Vector Classifier, con los siguientes hiperparámetros:

kernel='rbf'

En el que obtuvimos los siguientes resultados:

precision_score de 0.74 y un accuracy mayor a 0.65 de igual manera, siendo el algoritmo de clasificación con los mejores resultados.

Productos pagados de Colab - Cancela los contratos aquí

✓ 0 s se ejecutó 23:00

×