Python results Hamaker coefficients for perpendicular [6,5], [9,0], [9,1], [9,3], and [29,0] cylinders in water using retarded and non-retarded formulations.

JC Hopkins

May 13, 2014

Abstract

Comparison of contributions of Matsubara sums to the retarded formulation for Hamaker coefficient, $\mathcal{A}^{(0)}$. I choose to use [6,5], a semiiconductor, and [9,3], a semimetal, as examples. All caluclations are for identical pairs of CNTs in water with a mutual angle of $\pi/2$.

Equations correspond to those in version 4 of Rudi's report.

Contents

1	CNTs 1.1 [6,5] Dielectric response spectrum, dispersion spectrum, and anisotrop	1 py
_	measure	1
2	[9,0] dielectric response spectrum, dispersion spectrum, and anisotropy measure	2
3	$\left[9,1\right]$ dielectric response spectrum, dispersion spectrum, and anisotropy measure	2
4	$\left[9,3\right]$ dielectric response spectrum, dispersion spectrum, and anisotropy measure	3
5	$\left[29,0\right]$ dielectric response spectrum, dispersion spectrum, and anisotropy measure	4
6	$ \begin{array}{llllllllllllllllllllllllllllllllllll$	6

7	Semi-conductor [9,1]	8
	7.1 [9,1] terms of Matsubara sum	8
	7.2 [9,1] Log-log plot of $\mathcal{A}^{(0)}$ and $\mathcal{A}^{(2)}$	9
	7.3 [9,1] Semi-log plot of $\mathcal{A}^{(0)}$ and $\mathcal{A}^{(2)}$	10
8	First results for semi-metal [9,3]	11
	8.1 [9,3] terms of unmodified Matsubara sum $\dots \dots \dots$	11
	8.2 [9,3] terms of modified Matsubara sum with $\mathcal{A}(n=0)=0$	13
	8.3 [9,3] Log-log plot of unmodified A	14
	8.4 [9,3] Log-log plot of modified $A(n=0)=0$	15
	8.5 [9,3] Semi-log plot of unmodified A	16
	8.6 [9,3] Semi-log plot of modified $A(n=0)=0$	17
9	Semi-conductor [29,0]	18
	9.1 [29,0] terms of Matsubara sum \dots	18
	9.2 [29,0] Log-log plot of $\mathcal{A}^{(0)}$ and $\mathcal{A}^{(2)}$	19
	9.3 [29,0] Semi-log plot of $\mathcal{A}^{(0)}$ and $\mathcal{A}^{(2)}$	20
10	An example plot of knee: $\mathcal{A}^{(0)}$ for [9,3]	21
11	Plots of how each Matsubara term contributes to $\mathcal{A}_n^{(0)}(\ell)$ 11.1 Plots for visualizing and comparing gradients for different CNT's	23 23
12	Fully Retarded	23
	12.1 $\mathcal{A}^{(0)}$ for [6,5], [9,1], and [29,0] in water	23
	12.2 Hamaker 2: $\mathcal{A}^{(2)}$ for [6,5], [9,1], and [29,0] in water	25
	12.3 Total Hamaker: $A = A^{(0)} + A^{(2)}$ for [6,5], [9,1], and [29,0] in	
	water	27
13	Table of published results	28
14	Table of python results	28
15	Table of Gecko Hamaker results	29

1 CNTs

1.1 [6,5] Dielectric response spectrum, dispersion spectrum, and anisotropy measure

From the imaginary part of the dielectric response function of the carbon nanotubes,

we compute the London dispersion spectrum by the Kramers-Kronig transform:

$$\epsilon(i\zeta_n) = 1 + \frac{\pi}{2} \int_0^\infty dw \, \frac{\epsilon''(\omega)\omega}{\omega^2 + \zeta^2} \tag{1}$$

Relative anisotropy measures in the parallel and perpendicular direction are given by

$$\Delta_{\perp} = \frac{\epsilon^{c}_{\perp} - \epsilon_{m}}{\epsilon^{c}_{\perp} + \epsilon_{m}} \qquad \Delta_{\parallel} = \frac{\epsilon^{c}_{\parallel} - \epsilon_{m}}{\epsilon_{m}}.$$
 (2)

Figure 1: (a) Imaginary dielectric response spectrum, (b) dispersion spectrum and anisotropy measure (inset)

Ratio of anisotropy measure:

$$a_{1,2}(i\omega_n) = \frac{2\Delta_{\perp}^{(1,2)}(i\omega_n)}{\Delta_{\parallel}^{(1,2)}(i\omega_n)} = 2\frac{(\epsilon^c_{\perp}^{(1,2)}(i\omega_n) - \epsilon_m(i\omega_n))\epsilon_m(i\omega_n)}{(\epsilon^c_{\perp}^{(1,2)}(i\omega_n) + \epsilon_m(i\omega_n))(\epsilon^c_{\parallel}^{(1,2)}(i\omega_n) - \epsilon_m(i\omega_n))}$$
(3)

For interactions between identical CNTs, we set $a_1 = a_2$.

2 [9,0] dielectric response spectrum, dispersion spectrum, and anisotropy measure

Relative anisotropy measures in the parallel and perpendicular direction are given by

$$\Delta_{\perp} = \frac{\epsilon^{c}_{\perp} - \epsilon_{m}}{\epsilon^{c}_{\perp} + \epsilon_{m}} \qquad \Delta_{\parallel} = \frac{\epsilon^{c}_{\parallel} - \epsilon_{m}}{\epsilon_{m}}.$$
 (4)

Ratio of anisotropy measures

$$a_{1,2}(i\omega_n) = \frac{2\Delta_{\perp}^{(1,2)}(i\omega_n)}{\Delta_{\parallel}^{(1,2)}(i\omega_n)} =$$

$$2 \left(\epsilon_{\perp}^{c}(1,2)(i\omega_n) - \epsilon_m(i\omega_n) \right) \epsilon_m(i\omega_n) \frac{1}{(\epsilon_{\perp}(1,2)(i\omega_n) + \epsilon_m(i\omega_n))(\epsilon_{\parallel}(1,2)(i\omega_n) - \epsilon_m(i\omega_n))(5)}$$

3 [9,1] dielectric response spectrum, dispersion spectrum, and anisotropy measure

Relative anisotropy measures in the parallel and perpendicular direction are given by

$$\Delta_{\perp} = \frac{\epsilon^{c}_{\perp} - \epsilon_{m}}{\epsilon^{c}_{\perp} + \epsilon_{m}} \qquad \Delta_{\parallel} = \frac{\epsilon^{c}_{\parallel} - \epsilon_{m}}{\epsilon_{m}}.$$
 (6)

Figure 2: (a) Imaginary dielectric response spectrum, (b) dispersion spectrum and anistropy measure (inset)

Figure 3: (a) Imaginary dielectric response spectrum, (b) dispersion spectrum and anistropy measure (inset)

Ratio of anisotropy measures

$$a_{1,2}(i\omega_n) = \frac{2\Delta_{\perp}^{(1,2)}(i\omega_n)}{\Delta_{\parallel}^{(1,2)}(i\omega_n)} = 2\frac{(\epsilon^c_{\perp}^{(1,2)}(i\omega_n) - \epsilon_m(i\omega_n))\epsilon_m(i\omega_n)}{(\epsilon^c_{\perp}^{(1,2)}(i\omega_n) + \epsilon_m(i\omega_n))(\epsilon^c_{\parallel}^{(1,2)}(i\omega_n) - \epsilon_m(i\omega_n))}$$
(7)

4 [9,3] dielectric response spectrum, dispersion spectrum, and anisotropy measure

Relative anisotropy measures in the parallel and perpendicular direction are given by

Figure 4: (a) Imaginary dielectric response spectrum, (b) dispersion spectrum and anistropy measure (inset)

$$\Delta_{\perp} = \frac{\epsilon^{c}_{\perp} - \epsilon_{m}}{\epsilon^{c}_{\perp} + \epsilon_{m}} \qquad \Delta_{\parallel} = \frac{\epsilon^{c}_{\parallel} - \epsilon_{m}}{\epsilon_{m}}.$$
 (8)

Ratio of anisotropy measures

$$a_{1,2}(i\omega_n) = \frac{2\Delta_{\perp}^{(1,2)}(i\omega_n)}{\Delta_{\parallel}^{(1,2)}(i\omega_n)} = 2\frac{(\epsilon^c_{\perp}^{(1,2)}(i\omega_n) - \epsilon_m(i\omega_n))\epsilon_m(i\omega_n)}{(\epsilon^c_{\perp}^{(1,2)}(i\omega_n) + \epsilon_m(i\omega_n))(\epsilon^c_{\parallel}^{(1,2)}(i\omega_n) - \epsilon_m(i\omega_n))}$$
(9)

5 [29,0] dielectric response spectrum, dispersion spectrum, and anisotropy measure

Relative anisotropy measures in the parallel and perpendicular direction are given by

$$\Delta_{\perp} = \frac{\epsilon^{c}_{\perp} - \epsilon_{m}}{\epsilon^{c}_{\perp} + \epsilon_{m}} \qquad \Delta_{\parallel} = \frac{\epsilon^{c}_{\parallel} - \epsilon_{m}}{\epsilon_{m}}.$$
 (10)

Ratio of anisotropy measures

$$a_{1,2}(i\omega_n) = \frac{2\Delta_{\perp}^{(1,2)}(i\omega_n)}{\Delta_{\parallel}^{(1,2)}(i\omega_n)} = 2\frac{(\epsilon^c_{\perp}^{(1,2)}(i\omega_n) - \epsilon_m(i\omega_n))\epsilon_m(i\omega_n)}{(\epsilon^c_{\perp}^{(1,2)}(i\omega_n) + \epsilon_m(i\omega_n))(\epsilon^c_{\parallel}^{(1,2)}(i\omega_n) - \epsilon_m(i\omega_n))}$$
(11)

Fully retarded Hamaker Coefficients for Matsubara Sum

Figure 5: (a) Imaginary dielectric response spectrum, (b) dispersion spectrum and anisotropy measure (inset)

6 Semi-conductor [6,5]

6.1 [6,5] terms of Matsubara sum

We write the Hamaker coefficients as,

$$\mathcal{A}^{(0)}(\ell) = \frac{k_B T}{32} \sum_{n=0}^{\infty} \Delta_{1,\parallel} \Delta_{2,\parallel} \, p_n^4(\ell) \, \int_0^{\infty} t dt \, \frac{e^{-2p_n(\ell)\sqrt{t^2+1}}}{(t^2+1)} \tilde{g}^{(0)}(t, a_1(i\omega_n), a_2(i\omega_n))$$
(12)

$$\tilde{g}^{(0)}(t, a_1(i\omega_n), a_2(i\omega_n)) = 2\left[(1+3a_1)(1+3a_2)t^4 + 2(1+2a_1+2a_2+3a_1a_2)t^2 + 2(1+a_1)(1+a_2) \right]$$

and

$$\mathcal{A}^{(2)}(\ell) = \frac{k_B T}{32} \sum_{n=0}^{\infty} \Delta_{1,\parallel} \Delta_{2,\parallel} \, p_n^4(\ell) \, \int_0^{\infty} t dt \, \frac{e^{-2p_n(\ell)\sqrt{t^2+1}}}{(t^2+1)} \tilde{g}^{(2)}(t, a_1(i\omega_n), a_2(i\omega_n), \theta)$$
(13)

with

$$\tilde{g}^{(2)}(t, a_1(i\omega_n), a_2(i\omega_n), \theta) = (1 - a_1)(1 - a_2)(t^2 + 2)^2$$

 $_{
m Where}$

$$\begin{split} p_n^2(\ell) &= \epsilon_m (i\omega_n) \frac{\omega_n^2}{c^2} \ell^2, \\ \Delta_\perp &= \frac{\epsilon^c_\perp - \epsilon_m}{\epsilon^c_\perp + \epsilon_m} \qquad \Delta_\parallel = \frac{\epsilon^c_\parallel - \epsilon_m}{\epsilon_m}, \\ a &= \frac{2\Delta_\perp}{\Delta_\parallel} = 2 \frac{(\epsilon^c_\perp - \epsilon_m) \epsilon_m}{(\epsilon^c_\perp + \epsilon_m)(\epsilon^c_\parallel - \epsilon_m)} \end{split}$$

Figure 6: Terms contributing to Matsubara sum as a function of N

For n = 0, we use
$$\mathcal{A}_{n=0}^{(0)}(\ell) = \frac{1}{2} \frac{k_B T}{32} \Delta_{1,\parallel} \Delta_{2,\parallel} \int_0^\infty u^3 du \ e^{-2u} \left[2(1+3a_1)(1+3a_2) \right]$$
 and
$$\mathcal{A}_{n=0}^{(2)}(\ell) = \frac{1}{2} \frac{k_B T}{32} \Delta_{1,\parallel} \Delta_{2,\parallel} \int_0^\infty u^3 du \ e^{-2u} \left[(1-a_1)(1-a_2) \right]$$
 where $u = Ql$. (15)

6.2 [6,5] Log-log plot of
$$\mathcal{A}^{(0)}$$
 and $\mathcal{A}^{(2)}$

$$\mathcal{A}^{(0)}(\ell) = \frac{k_B T}{32} \sum_{n=0}^{\infty} \Delta_{1,\parallel} \Delta_{2,\parallel} \, p_n^4(\ell) \, \int_0^{\infty} t dt \, \frac{e^{-2p_n(\ell)\sqrt{t^2+1}}}{(t^2+1)} \tilde{g}^{(0)}(t, a_1(i\omega_n), a_2(i\omega_n))$$
with

Figure 7: Full result

$$\tilde{g}^{(0)}(t, a_1(i\omega_n), a_2(i\omega_n)) = 2\left[(1+3a_1)(1+3a_2)t^4 + 2(1+2a_1+2a_2+3a_1a_2)t^2 + 2(1+a_1)(1+a_2) \right]$$

$$\mathcal{A}^{(2)}(\ell) = \frac{k_B T}{32} \sum_{n=0}^{\infty} \Delta_{1,\parallel} \Delta_{2,\parallel} \, p_n^4(\ell) \, \int_0^{\infty} t dt \, \frac{e^{-2p_n(\ell)\sqrt{t^2+1}}}{(t^2+1)} \tilde{g}^{(2)}(t, a_1(i\omega_n), a_2(i\omega_n), \theta)$$
with

$$\tilde{g}^{(2)}(t, a_1(i\omega_n), a_2(i\omega_n), \theta) = (1 - a_1)(1 - a_2)(t^2 + 2)^2$$
(18)

6.3 [6,5] Semi-log plot of $\mathcal{A}^{(0)}$ and $\mathcal{A}^{(2)}$

$$\mathcal{A}^{(0)}(\ell) = \frac{k_B T}{32} \sum_{n=0}^{\infty} \Delta_{1,\parallel} \Delta_{2,\parallel} \, p_n^4(\ell) \, \int_0^{\infty} t dt \, \frac{e^{-2p_n(\ell)\sqrt{t^2+1}}}{(t^2+1)} \tilde{g}^{(0)}(t, a_1(i\omega_n), a_2(i\omega_n))$$
with

$$\tilde{g}^{(0)}(t, a_1(i\omega_n), a_2(i\omega_n)) = 2\left[(1+3a_1)(1+3a_2)t^4 + 2(1+2a_1+2a_2+3a_1a_2)t^2 + 2(1+a_1)(1+a_2) \right]$$

$$\mathcal{A}^{(2)}(\ell) = \frac{k_B T}{32} \sum_{n=0}^{\infty} \Delta_{1,\parallel} \Delta_{2,\parallel} \, p_n^4(\ell) \, \int_0^{\infty} t dt \, \frac{e^{-2p_n(\ell)\sqrt{t^2+1}}}{(t^2+1)} \tilde{g}^{(2)}(t, a_1(i\omega_n), a_2(i\omega_n), \theta)$$
with

$$\tilde{g}^{(2)}(t, a_1(i\omega_n), a_2(i\omega_n), \theta) = (1 - a_1)(1 - a_2)(t^2 + 2)^2 \tag{21}$$

7 Semi-conductor [9,1]

7.1 [9,1] terms of Matsubara sum

$$\mathcal{A}^{(0)}(\ell) = \frac{k_B T}{32} \sum_{n=0}^{\infty} \Delta_{1,\parallel} \Delta_{2,\parallel} \, p_n^4(\ell) \, \int_0^{\infty} t dt \, \frac{e^{-2p_n(\ell)\sqrt{t^2+1}}}{(t^2+1)} \tilde{g}^{(0)}(t, a_1(i\omega_n), a_2(i\omega_n))$$
with

$$\tilde{g}^{(0)}(t, a_1(i\omega_n), a_2(i\omega_n)) = 2\left[(1+3a_1)(1+3a_2)t^4 + 2(1+2a_1+2a_2+3a_1a_2)t^2 + 2(1+a_1)(1+a_2) \right]$$

$$\mathcal{A}^{(2)}(\ell) = \frac{k_B T}{32} \sum_{n=0}^{\infty} \Delta_{1,\parallel} \Delta_{2,\parallel} \, p_n^4(\ell) \, \int_0^{\infty} t dt \, \frac{e^{-2p_n(\ell)\sqrt{t^2+1}}}{(t^2+1)} \tilde{g}^{(2)}(t, a_1(i\omega_n), a_2(i\omega_n), \theta)$$
with

$$\tilde{g}^{(2)}(t, a_1(i\omega_n), a_2(i\omega_n), \theta) = (1 - a_1)(1 - a_2)(t^2 + 2)^2$$
(24)

Figure 8: Full result

7.2 [9,1] Log-log plot of
$$\mathcal{A}^{(0)}$$
 and $\mathcal{A}^{(2)}$

$$\mathcal{A}^{(0)}(\ell) = \frac{k_B T}{32} \sum_{n=0}^{\infty} \Delta_{1,\parallel} \Delta_{2,\parallel} \, p_n^4(\ell) \, \int_0^{\infty} t dt \, \frac{e^{-2p_n(\ell)\sqrt{t^2+1}}}{(t^2+1)} \tilde{g}^{(0)}(t, a_1(i\omega_n), a_2(i\omega_n))$$
with

$$\tilde{g}^{(0)}(t, a_1(i\omega_n), a_2(i\omega_n)) = 2\left[(1+3a_1)(1+3a_2)t^4 + 2(1+2a_1+2a_2+3a_1a_2)t^2 + 2(1+a_1)(1+a_2) \right]$$

$$\mathcal{A}^{(2)}(\ell) = \frac{k_B T}{32} \sum_{n=0}^{\infty} \Delta_{1,\parallel} \Delta_{2,\parallel} \, p_n^4(\ell) \int_0^{\infty} t dt \, \frac{e^{-2p_n(\ell)\sqrt{t^2+1}}}{(t^2+1)} \tilde{g}^{(2)}(t, a_1(i\omega_n), a_2(i\omega_n), \theta)$$
with

Figure 9: Terms contributing to Matsubara sum as a function of N

$$\tilde{g}^{(2)}(t, a_1(i\omega_n), a_2(i\omega_n), \theta) = (1 - a_1)(1 - a_2)(t^2 + 2)^2 \tag{27}$$

7.3 [9,1] Semi-log plot of
$$\mathcal{A}^{(0)}$$
 and $\mathcal{A}^{(2)}$

$$\mathcal{A}^{(0)}(\ell) = \frac{k_B T}{32} \sum_{n=0}^{\infty} \Delta_{1,\parallel} \Delta_{2,\parallel} p_n^4(\ell) \int_0^{\infty} t dt \, \frac{e^{-2p_n(\ell)\sqrt{t^2+1}}}{(t^2+1)} \tilde{g}^{(0)}(t, a_1(i\omega_n), a_2(i\omega_n))$$
with

$$\tilde{g}^{(0)}(t, a_1(i\omega_n), a_2(i\omega_n)) = 2\left[(1+3a_1)(1+3a_2)t^4 + 2(1+2a_1+2a_2+3a_1a_2)t^2 + 2(1+a_1)(1+a_2) \right]$$
and

Figure 10: Full result

$$\mathcal{A}^{(2)}(\ell) = \frac{k_B T}{32} \sum_{n=0}^{\infty} \Delta_{1,\parallel} \Delta_{2,\parallel} \, p_n^4(\ell) \, \int_0^{\infty} t dt \, \frac{e^{-2p_n(\ell)\sqrt{t^2+1}}}{(t^2+1)} \tilde{g}^{(2)}(t, a_1(i\omega_n), a_2(i\omega_n), \theta)$$
with

$$\tilde{g}^{(2)}(t, a_1(i\omega_n), a_2(i\omega_n), \theta) = (1 - a_1)(1 - a_2)(t^2 + 2)^2$$
(30)

8 First results for semi-metal [9,3]

8.1 [9,3] terms of unmodified Matsubara sum

$$\mathcal{A}^{(0)}(\ell) = \frac{k_B T}{32} \sum_{n=0}^{\infty} \Delta_{1,\parallel} \Delta_{2,\parallel} \, p_n^4(\ell) \, \int_0^{\infty} t dt \, \frac{e^{-2p_n(\ell)\sqrt{t^2+1}}}{(t^2+1)} \tilde{g}^{(0)}(t, a_1(i\omega_n), a_2(i\omega_n))$$
(31)

Figure 11: Full result

with

$$\tilde{g}^{(0)}(t, a_1(i\omega_n), a_2(i\omega_n)) = 2\left[(1+3a_1)(1+3a_2)t^4 + 2(1+2a_1+2a_2+3a_1a_2)t^2 + 2(1+a_1)(1+a_2) \right]$$

$$\mathcal{A}^{(2)}(\ell) = \frac{k_B T}{32} \sum_{n=0}^{\infty} \Delta_{1,\parallel} \Delta_{2,\parallel} \, p_n^4(\ell) \, \int_0^{\infty} t dt \, \frac{e^{-2p_n(\ell)\sqrt{t^2+1}}}{(t^2+1)} \tilde{g}^{(2)}(t, a_1(i\omega_n), a_2(i\omega_n), \theta)$$
with

$$\tilde{g}^{(2)}(t, a_1(i\omega_n), a_2(i\omega_n), \theta) = (1 - a_1)(1 - a_2)(t^2 + 2)^2$$
(33)

Figure 12: Full result

8.2 [9,3] terms of modified Matsubara sum with

$$\mathcal{A}(n=0)=0$$

$$\mathcal{A}^{(0)}(\ell) = \frac{k_B T}{32} \sum_{n=0}^{\infty} \Delta_{1,\parallel} \Delta_{2,\parallel} \, p_n^4(\ell) \, \int_0^{\infty} t dt \, \frac{e^{-2p_n(\ell)\sqrt{t^2+1}}}{(t^2+1)} \tilde{g}^{(0)}(t, a_1(i\omega_n), a_2(i\omega_n))$$
(34)

$$\tilde{g}^{(0)}(t, a_1(i\omega_n), a_2(i\omega_n)) = 2\left[(1+3a_1)(1+3a_2)t^4 + 2(1+2a_1+2a_2+3a_1a_2)t^2 + 2(1+a_1)(1+a_2) \right]$$
and

$$\mathcal{A}^{(2)}(\ell) = \frac{k_B T}{32} \sum_{n=0}^{\infty} \Delta_{1,\parallel} \Delta_{2,\parallel} \, p_n^4(\ell) \, \int_0^{\infty} t dt \, \frac{e^{-2p_n(\ell)\sqrt{t^2+1}}}{(t^2+1)} \tilde{g}^{(2)}(t, a_1(i\omega_n), a_2(i\omega_n), \theta)$$
(36)

$$\tilde{g}^{(2)}(t, a_1(i\omega_n), a_2(i\omega_n), \theta) = (1 - a_1)(1 - a_2)(t^2 + 2)^2 \tag{37}$$

Figure 13: Full result

8.3 [9,3] Log-log plot of unmodified A

$$\mathcal{A}^{(0)}(\ell) = \frac{k_B T}{32} \sum_{n=0}^{\infty} \Delta_{1,\parallel} \Delta_{2,\parallel} \, p_n^4(\ell) \, \int_0^{\infty} t dt \, \frac{e^{-2p_n(\ell)\sqrt{t^2+1}}}{(t^2+1)} \tilde{g}^{(0)}(t, a_1(i\omega_n), a_2(i\omega_n))$$
with

$$\tilde{g}^{(0)}(t, a_1(i\omega_n), a_2(i\omega_n)) = 2\left[(1+3a_1)(1+3a_2)t^4 + 2(1+2a_1+2a_2+3a_1a_2)t^2 + 2(1+a_1)(1+a_2) \right]$$

$$\mathcal{A}^{(2)}(\ell) = \frac{k_B T}{32} \sum_{n=0}^{\infty} \Delta_{1,\parallel} \Delta_{2,\parallel} \, p_n^4(\ell) \, \int_0^{\infty} t dt \, \frac{e^{-2p_n(\ell)\sqrt{t^2+1}}}{(t^2+1)} \tilde{g}^{(2)}(t, a_1(i\omega_n), a_2(i\omega_n), \theta)$$
with

$$\tilde{g}^{(2)}(t, a_1(i\omega_n), a_2(i\omega_n), \theta) = (1 - a_1)(1 - a_2)(t^2 + 2)^2 \tag{40}$$

Figure 14: Full result

8.4 [9,3] Log-log plot of modified
$$A(n=0) = 0$$

$$\mathcal{A}^{(0)}(\ell) = \frac{k_B T}{32} \sum_{n=0}^{\infty} \Delta_{1,\parallel} \Delta_{2,\parallel} \, p_n^4(\ell) \, \int_0^{\infty} t dt \, \frac{e^{-2p_n(\ell)\sqrt{t^2+1}}}{(t^2+1)} \tilde{g}^{(0)}(t, a_1(i\omega_n), a_2(i\omega_n))$$
with

$$\tilde{g}^{(0)}(t, a_1(i\omega_n), a_2(i\omega_n)) = 2\left[(1+3a_1)(1+3a_2)t^4 + 2(1+2a_1+2a_2+3a_1a_2)t^2 + 2(1+a_1)(1+a_2) \right]$$

$$\mathcal{A}^{(2)}(\ell) = \frac{k_B T}{32} \sum_{n=0}^{\infty} \Delta_{1,\parallel} \Delta_{2,\parallel} \, p_n^4(\ell) \, \int_0^{\infty} t dt \, \frac{e^{-2p_n(\ell)\sqrt{t^2+1}}}{(t^2+1)} \tilde{g}^{(2)}(t, a_1(i\omega_n), a_2(i\omega_n), \theta)$$
with

$$\tilde{g}^{(2)}(t, a_1(i\omega_n), a_2(i\omega_n), \theta) = (1 - a_1)(1 - a_2)(t^2 + 2)^2 \tag{43}$$

Figure 15: Full result

8.5 [9,3] Semi-log plot of unmodified A

$$\mathcal{A}^{(0)}(\ell) = \frac{k_B T}{32} \sum_{n=0}^{\infty} \Delta_{1,\parallel} \Delta_{2,\parallel} \, p_n^4(\ell) \, \int_0^{\infty} t dt \, \frac{e^{-2p_n(\ell)\sqrt{t^2+1}}}{(t^2+1)} \tilde{g}^{(0)}(t, a_1(i\omega_n), a_2(i\omega_n))$$
with

$$\tilde{g}^{(0)}(t, a_1(i\omega_n), a_2(i\omega_n)) = 2\left[(1+3a_1)(1+3a_2)t^4 + 2(1+2a_1+2a_2+3a_1a_2)t^2 + 2(1+a_1)(1+a_2) \right]$$

$$\mathcal{A}^{(2)}(\ell) = \frac{k_B T}{32} \sum_{n=0}^{\infty} \Delta_{1,\parallel} \Delta_{2,\parallel} \, p_n^4(\ell) \, \int_0^{\infty} t dt \, \frac{e^{-2p_n(\ell)\sqrt{t^2+1}}}{(t^2+1)} \tilde{g}^{(2)}(t, a_1(i\omega_n), a_2(i\omega_n), \theta)$$
(45)

$$\tilde{g}^{(2)}(t, a_1(i\omega_n), a_2(i\omega_n), \theta) = (1 - a_1)(1 - a_2)(t^2 + 2)^2 \tag{46}$$

Figure 16: Full result

8.6 [9,3] Semi-log plot of modified A(n=0)=0

$$\mathcal{A}^{(0)}(\ell) = \frac{k_B T}{32} \sum_{n=0}^{\infty} \Delta_{1,\parallel} \Delta_{2,\parallel} \, p_n^4(\ell) \, \int_0^{\infty} t dt \, \frac{e^{-2p_n(\ell)\sqrt{t^2+1}}}{(t^2+1)} \tilde{g}^{(0)}(t, a_1(i\omega_n), a_2(i\omega_n))$$
with

$$\tilde{g}^{(0)}(t, a_1(i\omega_n), a_2(i\omega_n)) = 2\left[(1+3a_1)(1+3a_2)t^4 + 2(1+2a_1+2a_2+3a_1a_2)t^2 + 2(1+a_1)(1+a_2) \right]$$

$$\mathcal{A}^{(2)}(\ell) = \frac{k_B T}{32} \sum_{n=0}^{\infty} \Delta_{1,\parallel} \Delta_{2,\parallel} \, p_n^4(\ell) \, \int_0^{\infty} t dt \, \frac{e^{-2p_n(\ell)\sqrt{t^2+1}}}{(t^2+1)} \tilde{g}^{(2)}(t, a_1(i\omega_n), a_2(i\omega_n), \theta)$$
with

$$\tilde{g}^{(2)}(t, a_1(i\omega_n), a_2(i\omega_n), \theta) = (1 - a_1)(1 - a_2)(t^2 + 2)^2 \tag{49}$$

Figure 17: Full result

9 Semi-conductor [29,0]

9.1 [29,0] terms of Matsubara sum

$$\mathcal{A}^{(0)}(\ell) = \frac{k_B T}{32} \sum_{n=0}^{\infty} \Delta_{1,\parallel} \Delta_{2,\parallel} \, p_n^4(\ell) \, \int_0^{\infty} t dt \, \frac{e^{-2p_n(\ell)\sqrt{t^2+1}}}{(t^2+1)} \tilde{g}^{(0)}(t, a_1(i\omega_n), a_2(i\omega_n))$$
with

$$\tilde{g}^{(0)}(t, a_1(i\omega_n), a_2(i\omega_n)) = 2\left[(1+3a_1)(1+3a_2)t^4 + 2(1+2a_1+2a_2+3a_1a_2)t^2 + 2(1+a_1)(1+a_2) \right]$$
 and

$$\mathcal{A}^{(2)}(\ell) = \frac{k_B T}{32} \sum_{n=0}^{\infty} \Delta_{1,\parallel} \Delta_{2,\parallel} \, p_n^4(\ell) \int_0^{\infty} t dt \, \frac{e^{-2p_n(\ell)\sqrt{t^2+1}}}{(t^2+1)} \tilde{g}^{(2)}(t, a_1(i\omega_n), a_2(i\omega_n), \theta)$$
with

$$\tilde{g}^{(2)}(t, a_1(i\omega_n), a_2(i\omega_n), \theta) = (1 - a_1)(1 - a_2)(t^2 + 2)^2$$
(52)

Figure 18: Full result

9.2 [29,0] Log-log plot of
$$\mathcal{A}^{(0)}$$
 and $\mathcal{A}^{(2)}$

$$\mathcal{A}^{(0)}(\ell) = \frac{k_B T}{32} \sum_{n=0}^{\infty} \Delta_{1,\parallel} \Delta_{2,\parallel} \, p_n^4(\ell) \, \int_0^{\infty} t dt \, \frac{e^{-2p_n(\ell)\sqrt{t^2+1}}}{(t^2+1)} \tilde{g}^{(0)}(t, a_1(i\omega_n), a_2(i\omega_n))$$
with

$$\tilde{g}^{(0)}(t, a_1(i\omega_n), a_2(i\omega_n)) = 2\left[(1+3a_1)(1+3a_2)t^4 + 2(1+2a_1+2a_2+3a_1a_2)t^2 + 2(1+a_1)(1+a_2) \right]$$
 and

$$\mathcal{A}^{(2)}(\ell) = \frac{k_B T}{32} \sum_{n=0}^{\infty} \Delta_{1,\parallel} \Delta_{2,\parallel} \, p_n^4(\ell) \, \int_0^{\infty} t dt \, \frac{e^{-2p_n(\ell)\sqrt{t^2+1}}}{(t^2+1)} \tilde{g}^{(2)}(t, a_1(i\omega_n), a_2(i\omega_n), \theta)$$
with

Figure 19: Full result

$$\tilde{g}^{(2)}(t, a_1(i\omega_n), a_2(i\omega_n), \theta) = (1 - a_1)(1 - a_2)(t^2 + 2)^2$$
(55)

9.3 [29,0] Semi-log plot of $\mathcal{A}^{(0)}$ and $\mathcal{A}^{(2)}$

$$\mathcal{A}^{(0)}(\ell) = \frac{k_B T}{32} \sum_{n=0}^{\infty} \Delta_{1,\parallel} \Delta_{2,\parallel} \, p_n^4(\ell) \, \int_0^{\infty} t dt \, \frac{e^{-2p_n(\ell)\sqrt{t^2+1}}}{(t^2+1)} \tilde{g}^{(0)}(t, a_1(i\omega_n), a_2(i\omega_n))$$
with

$$\tilde{g}^{(0)}(t, a_1(i\omega_n), a_2(i\omega_n)) = 2\left[(1+3a_1)(1+3a_2)t^4 + 2(1+2a_1+2a_2+3a_1a_2)t^2 + 2(1+a_1)(1+a_2) \right]$$

Figure 20: Full result

$$\mathcal{A}^{(2)}(\ell) = \frac{k_B T}{32} \sum_{n=0}^{\infty} \Delta_{1,\parallel} \Delta_{2,\parallel} \, p_n^4(\ell) \, \int_0^{\infty} t dt \, \frac{e^{-2p_n(\ell)\sqrt{t^2+1}}}{(t^2+1)} \tilde{g}^{(2)}(t, a_1(i\omega_n), a_2(i\omega_n), \theta)$$
with

$$\tilde{g}^{(2)}(t, a_1(i\omega_n), a_2(i\omega_n), \theta) = (1 - a_1)(1 - a_2)(t^2 + 2)^2$$
(58)

Knee in plots of $\mathcal{A}^{(0)}$ as a function of separation

10 An example plot of knee: $A^{(0)}$ for [9,3]

$$\mathcal{A}^{(0)}(\ell) = \frac{k_B T}{32} \sum_{n=0}^{\infty} \Delta_{1,\parallel} \Delta_{2,\parallel} \, p_n^4(\ell) \, \int_0^{\infty} t dt \, \frac{e^{-2p_n(\ell)\sqrt{t^2+1}}}{(t^2+1)} \tilde{g}^{(0)}(t, a_1(i\omega_n), a_2(i\omega_n))$$
(59)

Figure 21: $\mathcal{A}^{(0)}$ as a function of separation appears to have a knee near 36 nm.

with

$$\tilde{g}^{(0)}(t, a_1(i\omega_n), a_2(i\omega_n)) = 2\left[(1+3a_1)(1+3a_2)t^4 + 2(1+2a_1+2a_2+3a_1a_2)t^2 + 2(1+a_1)(1+a_2) \right]$$
and

$$\mathcal{A}^{(2)}(\ell) = \frac{k_B T}{32} \sum_{n=0}^{\infty} \Delta_{1,\parallel} \Delta_{2,\parallel} \, p_n^4(\ell) \, \int_0^{\infty} t dt \, \frac{e^{-2p_n(\ell)\sqrt{t^2+1}}}{(t^2+1)} \tilde{g}^{(2)}(t, a_1(i\omega_n), a_2(i\omega_n), \theta)$$
with

$$\tilde{g}^{(2)}(t, a_1(i\omega_n), a_2(i\omega_n), \theta) = (1 - a_1)(1 - a_2)(t^2 + 2)^2 \tag{61}$$

The (ℓ) dependence of the Hamaker coefficients \mathcal{A} is a consequence of (ℓ) dependence of $p_n^2(\ell) = \epsilon_m(i\omega_n) \frac{\omega_n^2}{c^2} \ell^2$

$$\mathcal{A}^{(0)}(\ell) = \frac{k_B T}{32} \sum_{n=0}^{\infty} \Delta_{1,\parallel} \Delta_{2,\parallel} \, p_n^4(\ell) \, \int_0^{\infty} t dt \, \frac{e^{-2p_n(\ell)\sqrt{t^2+1}}}{(t^2+1)} \tilde{g}^{(0)}(t, a_1(i\omega_n), a_2(i\omega_n))$$
with

$$\tilde{g}^{(0)}(t, a_1(i\omega_n), a_2(i\omega_n)) = 2\left[(1+3a_1)(1+3a_2)t^4 + 2(1+2a_1+2a_2+3a_1a_2)t^2 + 2(1+a_1)(1+a_2) \right]$$
(63)

$$\mathcal{A}^{(2)}(\ell) = \frac{k_B T}{32} \sum_{n=0}^{\infty} \Delta_{1,\parallel} \Delta_{2,\parallel} \, p_n^4(\ell) \, \int_0^{\infty} t dt \, \frac{e^{-2p_n(\ell)\sqrt{t^2+1}}}{(t^2+1)} \tilde{g}^{(2)}(t, a_1(i\omega_n), a_2(i\omega_n), \theta)$$
(64)

$$\tilde{g}^{(2)}(t, a_1(i\omega_n), a_2(i\omega_n), \theta) = (1 - a_1)(1 - a_2)(t^2 + 2)^2 \tag{65}$$

 $\zeta_n = 2\pi n k_B T/\hbar$, where n is an integer and the n=0 term is counted with a weight 1/2.

where
$$p_n^2(\ell) = \epsilon_m(i\omega_n) \frac{\omega_n^2}{c^2} \ell^2$$
.

11 Plots of how each Matsubara term contributes to $\mathcal{A}_n^{(0)}(\ell)$

11.1 Plots for visualizing and comparing gradiants for different CNT's

Surface plots for Hamaker Coefficients as function of angle and separation

12 Fully Retarded

12.1 $\mathcal{A}^{(0)}$ for [6,5], [9,1], and [29,0] in water

$$\mathcal{A}^{(0)}(\ell) = \frac{k_B T}{32} \sum_{n=0}^{\infty} \Delta_{1,\parallel} \Delta_{2,\parallel} \, p_n^4(\ell) \, \int_0^{\infty} t dt \, \frac{e^{-2p_n(\ell)\sqrt{t^2+1}}}{(t^2+1)} \tilde{g}^{(0)}(t, a_1(i\omega_n), a_2(i\omega_n))$$
with

$$\tilde{g}^{(0)}(t, a_1(i\omega_n), a_2(i\omega_n)) = 2\left[(1+3a_1)(1+3a_2)t^4 + 2(1+2a_1+2a_2+3a_1a_2)t^2 + 2(1+a_1)(1+a_2) \right]$$
and

Figure 22: $\nabla(\mathcal{A}_n^{(0)}(\ell))$ for [6,5]: derivative of $\mathcal{A}_n^{(0)}(\ell)$ (z-axis) with respect to separation and n (x and y axes. $Max[|\nabla(\mathcal{A}^{(0)})|]$ occurs at $\ell = \ell_{knee}$

$$\mathcal{A}^{(2)}(\ell) = \frac{k_B T}{32} \sum_{n=0}^{\infty} \Delta_{1,\parallel} \Delta_{2,\parallel} \, p_n^4(\ell) \int_0^{\infty} t dt \, \frac{e^{-2p_n(\ell)\sqrt{t^2+1}}}{(t^2+1)} \tilde{g}^{(2)}(t, a_1(i\omega_n), a_2(i\omega_n), \theta)$$
with

$$\tilde{g}^{(2)}(t, a_1(i\omega_n), a_2(i\omega_n), \theta) = (1 - a_1)(1 - a_2)(t^2 + 2)^2 \tag{69}$$

Figure 23: $\nabla(\mathcal{A}_n^{(0)}(\ell))$ for [9,1]: derivative of $\mathcal{A}_n^{(0)}(\ell)$ (z-axis) with respect to separation and n (x and y axes. $Max[|\nabla(\mathcal{A}^{(0)})|]$ occurs at $\ell = \ell_{knee}$

12.2 Hamaker 2: $A^{(2)}$ for [6,5], [9,1], and [29,0] in water

$$\mathcal{A}^{(0)}(\ell) = \frac{k_B T}{32} \sum_{n=0}^{\infty} \Delta_{1,\parallel} \Delta_{2,\parallel} \, p_n^4(\ell) \, \int_0^{\infty} t dt \, \frac{e^{-2p_n(\ell)\sqrt{t^2+1}}}{(t^2+1)} \tilde{g}^{(0)}(t, a_1(i\omega_n), a_2(i\omega_n))$$
with

$$\tilde{g}^{(0)}(t, a_1(i\omega_n), a_2(i\omega_n)) = 2\left[(1+3a_1)(1+3a_2)t^4 + 2(1+2a_1+2a_2+3a_1a_2)t^2 + 2(1+a_1)(1+a_2) \right]$$
and
$$(71)$$

Figure 24: $\nabla(\mathcal{A}_n^{(0)}(\ell))$ for [9,3]: derivative of $\mathcal{A}_n^{(0)}(\ell)$ (z-axis) with respect to separation and n (x and y axes. $Max[|\nabla(\mathcal{A}^{(0)})|]$ occurs at $\ell = \ell_{knee}$

$$\mathcal{A}^{(2)}(\ell) = \frac{k_B T}{32} \sum_{n=0}^{\infty} \Delta_{1,\parallel} \Delta_{2,\parallel} p_n^4(\ell) \int_0^{\infty} t dt \, \frac{e^{-2p_n(\ell)\sqrt{t^2+1}}}{(t^2+1)} \tilde{g}^{(2)}(t, a_1(i\omega_n), a_2(i\omega_n), \theta)$$
with

$$\tilde{g}^{(2)}(t, a_1(i\omega_n), a_2(i\omega_n), \theta) = (1 - a_1)(1 - a_2)(t^2 + 2)^2$$
(73)

Figure 25: $\nabla(\mathcal{A}_n^{(0)}(\ell))$ for [29,0]: derivative of $\mathcal{A}_n^{(0)}(\ell)$ (z-axis) with respect to separation and n (x and y axes. $Max[|\nabla(\mathcal{A}^{(0)})|]$ occurs at $\ell = \ell_{knee}$

12.3 Total Hamaker: $A = A^{(0)} + A^{(2)}$ for [6,5], [9,1], and [29,0] in water

$$\mathcal{A}^{(0)}(\ell) = \frac{k_B T}{32} \sum_{n=0}^{\infty} \Delta_{1,\parallel} \Delta_{2,\parallel} p_n^4(\ell) \int_0^{\infty} t dt \, \frac{e^{-2p_n(\ell)\sqrt{t^2+1}}}{(t^2+1)} \tilde{g}^{(0)}(t, a_1(i\omega_n), a_2(i\omega_n))$$
with

$$\tilde{g}^{(0)}(t, a_1(i\omega_n), a_2(i\omega_n)) = 2\left[(1+3a_1)(1+3a_2)t^4 + 2(1+2a_1+2a_2+3a_1a_2)t^2 + 2(1+a_1)(1+a_2) \right]$$
and

Figure 26: $-\nabla(\mathcal{A}_n^{(0)}(\ell))$ for [6,5] (blue) and [9,3] (red)

$$\mathcal{A}^{(2)}(\ell) = \frac{k_B T}{32} \sum_{n=0}^{\infty} \Delta_{1,\parallel} \Delta_{2,\parallel} \, p_n^4(\ell) \, \int_0^{\infty} t dt \, \frac{e^{-2p_n(\ell)\sqrt{t^2+1}}}{(t^2+1)} \tilde{g}^{(2)}(t, a_1(i\omega_n), a_2(i\omega_n), \theta)$$
with

$$\tilde{g}^{(2)}(t, a_1(i\omega_n), a_2(i\omega_n), \theta) = (1 - a_1)(1 - a_2)(t^2 + 2)^2$$
Tables

13 Table of published results

14 Table of python results

*data from Chirality-dependent properties of carbon nanotubes: electronic structure, optical dispersion properties, Hamaker coefficients and van der

Figure 27: $-\nabla(\mathcal{A}_n^{(0)}(\ell))$ for [9,1] (green) and [29,0] (magenta)

Waals London dispersion interactions Rick F. Rajter, Roger H. French, W.Y. Ching, Rudolf Podgornik and V. Adrian Parsegian RSC Adv., 2013,3, 823-842 DOI: 10.1039/C2RA20083J

15 Table of Gecko Hamaker results

Figure 28: $-\nabla(\mathcal{A}_n^{(0)}(\ell))$ for [6,5] (blue) and [29,0] (magenta)

Table 1: Rajter results from IJMR perpendiuclar cylinders in water (Rajter's spectrum)

CNT	\mathcal{A}^0 [zJ]	\mathcal{A}^2 [zJ]
[6,5]	106	1.9
[9,0]	-	
[9,1]	92.8	3
[9,3]	107	36.2
[29,0]	18.5	0.8

Table 2: Python results, retarded formulation: perpendiuclar cylinders in water,

intersurface distance = 1 nm

CNT	atoms*	radius*[A]	Type*	Geom*	\mathcal{A}^0 (n=0) [zJ]	\mathcal{A}^0 [zJ]	\mathcal{A}^2 [zJ]
[6,5]	364	3.734	sc	chiral	1x5.46	105.46	0.96
[9,0]			semi-metal; in progress				
[9,1]	364	3.734	sc	chiral	1x5.46	93.56	1.56
[9,3]	156	4.234	sm	chiral	1x5.46	83.06	3.23
[29,0]	116	11.352	sc	zigzag	1x5.46	17.73	0.41

Figure 29: $-\nabla(\mathcal{A}_n^{(0)}(\ell))$ for [9,1] (red) and [9,3] (green)

Table 3: Python results, non-retarded formulation: perpendiuclar cylinders in water

CNT	\mathcal{A}^0 [zJ]	\mathcal{A}^2 [zJ]	
[6,5]	126.80	1.16	
[9,0]	semi-metal; in progress		
[9,1]	112.22	1.87	
[9,3]	semi-metal; in progress		
[29,0]	20.93	0.49	

Table 4: Gecko Hamaker results from 2.07, perpendiuclar cylinders in water

CNT	\mathcal{A}^0 [zJ]	\mathcal{A}^2 [zJ]
[6,5]	100	1.04
[9,0]	151	6.96
[9,1]	84.85	1.16
[9,3]	80.66	1.55
[29,0]	17.68	0.22

Figure 30: $\mathcal{A}^{(0)}$ for [6,5], [9,1], and [29,0] in water. No theta dependence

Figure 31: $\mathcal{A}^{(2)}$ for [6,5], [9,1], and [29,0] in water.

Figure 32: $A = A^{(0)} + A^{(2)}$ for [6,5], [9,1], and [29,0] in water