Работа 3.7.1

Скин-эффект

Киркича Андрей, Б01-202, МФТИ

В работе используются: генератор сигналов АКИП–3420, соленоид, намотанный на полый цилиндрический каркас, медный экран в виде полого цилиндра, измерительная катушка, амперметр, вольтметр, двухканальный осциллограф GOS–620, RLC-метр.

Теоретические сведения

Толщина скин-слоя проводника:

$$\delta = \sqrt{\frac{2}{\omega \sigma \mu \mu_0}}. (1)$$

Связь полей внутри и снаружи цилиндра:

$$H_1 = \frac{H_0}{\operatorname{ch}(\alpha h) + \frac{1}{2}\alpha a \operatorname{sh}(\alpha h)}; \quad \alpha = \sqrt{i\omega\sigma\mu_0} = \frac{\sqrt{2}}{\delta}e^{i\pi/4}.$$
 (2)

Отношение амплитуд полей:

$$\frac{|H_1|}{|H_0|} = c \cdot \frac{U}{\nu I} = c\xi. \tag{3}$$

Результаты измерений

Перед началом работы запишем данные установки и вычислим необходимую нам для измерений частоту ν_h по формуле (1), приняв $\delta = h$.

d_{Hap} , mm	$d_{ m cteh},$ mm	$\sigma, \frac{C_{M}}{M}$	$ u_{ m h},\ { m K}\Gamma$ ц	$ u_0$, Гц	А, В
45	1,5	0,08	2,2	22	8

Далее приступим к измерению проводимости разными методами.

Измерение проводимости через отношение амплитуд

Снимем зависимость тока через амперметр и напряжения на вольтметре от частоты, выставляемой на генераторе. Подсчитаем ξ , руководствуясь формулой (3).

u, Гц	22	30	40	50	60	70	80	90	100	110
I, A	$0,\!53$	$0,\!53$	0,52	0,51	0,51	0,40	0,49	$0,\!48$	0,47	0,46
U, B	0,16	0,22	0,29	0,36	0,42	0,47	0,51	$0,\!55$	0,59	0,62
$\xi \cdot 10^{-2}$	1,44	1,43	1,41	1,39	1,37	1,34	1,31	1,28	1,25	1,22

В области частот $\nu \ll \nu_h \ \alpha h \ll 1$. Из формулы (2) получаем:

$$(c\xi)^2 \approx \frac{1}{1+A\nu^2} \quad \Leftrightarrow \quad \frac{1}{\xi^2} = B\nu^2 + c^2$$
, где $B = \pi a h \sigma \mu_0 c$.

Рассчитанное значение индуктивности: $B=(1,7\pm0,3)\cdot 10^{-1}\ 1/\Gamma \mbox{ц}^2$. Значит, $\sigma=(4,2\pm0,7)\cdot 10^7\ {\rm Cm/m}$ и $c=69\pm10$.

Измерение проводимости через разность фаз на низких частотах

Измерим ток и напряжение в зависимости от частоты, параллельно считывая с осциллографа величину фазового сдвига ψ .

$ u$, Γ ц	110	130	150	170	190	210	220	330	440	550	660	770	880	990	1100
I, мА	462	432	421	411	403	395	392	369	355	344	335	326	317	308	299
U, B	620	650	689	720	743	761	768	811	819	814	802	787	768	749	730
$\xi \cdot 10^{-2}$	1,22	1,16	1,09	1,03	0,97	0,92	0,89	0,67	0,52	0,43	0,36	0,31	0,28	0,25	0,22
ϕ , рад	0,98	0,81	0,79	0,63	0,64	0,63	0,72	0,39	0,29	0,22	0,16	0,13	0,11	0,04	0,00
ψ , рад	-0,59	-0,76	-0,79	-0,94	-0,93	-0,94	-0,85	-1,19	-1,28	-1,35	-1,41	-1,45	-1,47	-1,53	-1,57

На основе данных из таблицы строим график на низких частотах.

Согласно формуле $tg\psi=\pi ah\sigma\mu_0\nu$ получаем, что $\sigma=(8,3\pm1,3)\cdot 10^7~{\rm Cm/m}.$

Измерение проводимости через разность фаз на высоких частотах

Повторим измерения для более высоких частот.

ν , Γ ц	1100	1300	1700	2200	2800	3500	4400	5500	7000	8700	11000	14000	17000	22000	28000
I, м A	299	277	249	219	187	157	129	105	84	67	52	39	28	18	9
U, B	730	676	609	532	452	374	303	239	184	140	104	76	57	48	46
$\xi \cdot 10^{-3}$	2,22	1,76	1,40	1,11	0,88	0,69	0,54	0,41	0,32	0,24	0,18	0,14	0,12	0,12	0,19
ϕ , рад	0,00	0,09	0,14	0,26	0,39	0,50	0,86	1,05	1,41	1,42	1,48	1,57	1,69	1,99	2,35
ψ , рад	-1,57	-1,48	-1,43	-1,32	-1,18	-1,07	-0,71	-0,52	-0,16	-0,15	-0,09	0,00	0,12	0,42	0,79

При $\delta \ll h$ выполняется:

$$\psi - \pi/4 = k \cdot \sqrt{\nu}; \quad k = h\sqrt{\pi\mu_0\sigma}.$$

Таким образом, $k=(1,8\pm0,3)\cdot10^{-2}$ рад/ Γ ц, тогда $\sigma=(3,45\pm0,15)\cdot10^{7}$ См/м.

Заключение

В ходе выполнения работы мы проверили формулы для вычисления параметров скин-эффекта в соленоидальной катушке, вычислив отношения магнитных полей как на малых частотах токов, проходящих через катушку, так и на больших.

Литература

- 1. Cивухин Д. В. Общий курс физики. Учеб. пособие: Для вузов. Т. III. Электричество. 6-е издание. М.: ФИЗМАТЛИТ, 2019
- 2. Hикулин М.Г., Попов П.В., Нозик А.А., и др. Лабораторный практикум по общей физике: учеб. пособие. В трёх томах. Т. II. Электричество и магнетизм. 2-е издание. М.: МФТИ, 2019