Solution - Homework 4: Lectures 7 & 8

CS 440: Programming Languages and Translators, Spring 2020

Lecture 7: Regular Expressions, part 2

- 1. (Regular expression matching even number of a's or of b's):
 - b*(ab*ab*)* | a*(ba*ba*)* The first disjunct looks for some number of pairs of a's, with possible b's before, between, and after the a's. The second disjunct is similar.
- 2. (Regular expression for comments of the form /* */)

The two ends of the regular expression are easy: $[\t]^*/\$ and $*'[\t]^*$. The $[\t]^*$ match zero or more whitespace characters and we use backslashes before the stars to keep them from being interpreted as Kleene stars. For the middle part,

- Symbols that aren't stars are no problem; we can use [^*\r] (anything but a star or carriage return we're looking at comments that fit on one line).
- If we see a star, it might lead to the terminating */ or it might not.
 - To match the stars just before the ending */, we can use $**$ (zero or or more stars).
 - For stars that don't lead to the ending */, we can have $**"[^*/\r]$ (one or more stars followed by something not a star, slash, or return).

So altogether, the expression is

Pleasantly, $([^*\r] | *^*[^*/r])$ * can be simplified to just $(*^*[^*/\r])$ * (some optional stars followed by an interior symbol), so the whole expression can also be $[\t]$ */ $(*^*[^*\r])$ ***\/[\\t]*.

Programming Assignment (Lecture 7)

3. (Extend the regular expression matcher with (...)* and [...])

```
-- We treat exp* as (exp exp*|empty)
match (re_star @(RE_star rexp)) input =
    match (RE_or [ RE_and [rexp, re_star], RE_empty ]) input

match (RE_in_set set) (head_inp : input')
    | head_inp `elem` set = Just input' -- head symbol in set?
match (RE_in_set _) _ = Nothing -- if not, fail
```

4. (Capture matching string for regular expression)

See attached files HW_04_Capture_soln.hs and HW_04_Capture_Tests.hs. To test, you can :load HW_04_Capture_Tests; it will import the capture solutions file.

Lecture 8: Finite State Automata

5. (DFAs & NFA for even a's or even b's)

DFA1 for b*(ab*ab*)*.

5a. Start and accepting state 0a

State 0: We've seen an even number of a's

State 1: We've seen an odd number of a's

State	a	b
0a	1	0
1a	0	1

DFA2 for a*(ba*ba*)*.

Symmetric to DFA1; start & accepting state 0b.

States 0b, 1b (represent even/odd number of b's respectively).

State	a	b
0b	0	1
1b	1	0

5c. (NFA combining parts (a) and (b)) New start state is S; accepting states are 0a and 0b.

State	ε	a	b
S	0a, 0b	•	
0a	•	1	0
1a	•	0	1
0b	•	0	1
1b		1	0

6. (Convert NFA to DFA)

Original NFA. Start state A, accepting state G.

State	ε	х	У	z
A	В	C	F	
В	D		Н	G
C	Н	C	A	
D		D, E	Е	
E	D	D		E
F		G		G
G		С	Е	F
Н	С	Н		Н

6a. After removing error states D, E. Start state A, accepting state G.

State	ε	х	У	Z
A	В	C	F	
В			Н	G
C	Н	C	A	
F		G		G
G		C		F
H	C	Н		Н

6b. After taking ε -closure. Start state AB, accepting state G. Notation: AB and CH stand for states that combine the various states: $\{A, B\}$ and $\{C, H\}$. CHF means two arrows: one to CH and one to $\{F\}$

State	х	У	z
AB	СН	CH, F	G
СН	СН	AB	СН
F	G		G
G	СН		F

Some explanation: $A \to_{\mathcal{E}} B$ tells us we need a state AB. We don't need a state B because there aren't any transitions that go to B, just to A (and hence B). But if we had had $C \to_{\mathbf{Y}} B$ instead of $C \to_{\mathbf{Y}} A$, we would have needed a separate state B. Since $C \to_{\mathcal{E}} H \to_{\mathcal{E}} C$, we don't need either state alone, just CH.

6.c After converting to set-of-states DFA and adding error state.

Start state AB, accepting states G and CGH. (Empty transitions go to an implicit error state.)

State	х	У	Z
AB	СН	CFH	G
СН	СН	AB	СН
F	G		G
G	СН		F
CFH	CGH	AB	CGH
CGH	СН	AB	CFH