Министерство образования Республики Беларусь

Учреждение образования БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИНФОРМАТИКИ И РАДИОЭЛЕКТРОНИКИ

Факультет компьютерных систем и сетей

Кафедра электронных вычислительных машин

Дисциплина: Схемотехника

ЛАБОРАТОРНАЯ РАБОТА № 2 на тему

ИССЛЕДОВАНИЕ ХАРАКТЕРИСТИК ПОЛЕВОГО ТРАНЗИСТОРА

Выполнили: студенты гр. 050504 Чеботарёв В.С. Мороз А.Н. Проверил: ассист. каф. ЭВМ Жук Д. С.

1 ЦЕЛЬ РАБОТЫ

Целью работы является:

- получение передаточной характеристики полевого транзистора в схеме с общим истоком;
- получение зависимости сопротивления канала полевого транзистора от напряжения затвор-исток;
- получение семейства выходных характеристик полевого транзистора в схеме с общим истоком;
 - исследование работы транзисторного каскада с общим истоком.

2 ИСХОДНЫЕ ДАННЫЕ

В состав лабораторного стенда входят:

- базовый лабораторный стенд;
- лабораторный модуль Lab5A для исследования характеристик полевого транзистора типа КП303B (рисунок 2.1).

Рис 2.1. — Внешний вид модуля Lab5A для исследования характеристик полевого транзистора

Рис. 2.2. – Принципиальная электрическая схема для исследования характеристик полевого транзистора

3 ХОД РАБОТЫ

3.1 Получение передаточной характеристики полевого транзистора в схеме с общим истоком

Для получения передаточной характеристики нужно подключить схему на рисунке 3.1.1.

Рисунок 3.1.1 – Схема подключения полевого транзистора для получения передаточной характеристики

При установке значения напряжения питания стока Ec, равным 5 В, получим график зависимости выходного тока I_C транзистора от входного напряжения U_{3M} .

ПЕРЕДАТОЧНАЯ ХАРАКТЕРИСТИКА

Рисунок 3.1.2 – График зависимости выходного тока I_C транзистора от входного напряжения U_{3u}

Изменяя напряжение источника ЭДС затвора E_3 и, установив значение тока стока I_C примерно равным 0,01 мA, получим значение напряжения отсечки затвор-исток $U_{3u.otc}$ = -1.23B.

Изменяя напряжение источника ЭДС затвора E_3 и, установив значение напряжения затвор-исток U_{3H} равным 0 В, получим начальное значение тока стока $I_{CHAH} = 2.87$ мА.

Далее вычислим значение коэффициента k, учитывающего конструктивные и технологические параметры транзистора, по формуле:

$$k = \frac{I_{\text{C.HAY}}}{(U_{\text{3M OTC}})^2} = \frac{2.87 \text{ MA}}{(-1.23)^2} = 1.897 * 10^{-3}$$

Изменяя напряжение источника ЭДС затвора E_3 , установим значение напряжения затвор-исток U_{3H} сначала равным $U_{3H,1} = -0.1$ В, а затем равным $U_{3H,2} = +0.1$ В, получим значения тока стока $I_{C,1} = 2.48$ мА и $I_{C,2} = 3.30$ мА.

Вычислим значение крутизны передаточной характеристики полевого транзистора в окрестности точки U3H = 0 В по формуле:

$$S = \frac{I_{\text{C.2}} - I_{\text{C.1}}}{U_{\text{3H.2}} - U_{\text{3H.1}}} = \frac{3.30 \text{ MA} - 2,48 \text{ MA}}{0.1 \text{ B} - (-0.1) \text{ B}} = 4.1 \text{ MCM}$$

3.2 Получение зависимости сопротивления канала полевого транзистора от напряжения затвор-исток

Для получения зависимости сопротивления канала полевого транзистора от напряжения затвор-исток нужно подключить схему на рисунке 3.2.1.

Рисунок 3.2.1 — Схема подключения полевого транзистора для исследования зависимости сопротивления канала

График зависимости сопротивления канала R_K полевого транзистора от напряжения затвор-исток U_{3M} представлен на рисунке 3.2.2.

Рисунок 3.2.2 — График зависимости сопротивления канала R_K полевого транзистора от напряжения затвор-исток U_{3M}

Изменяя напряжение источника ЭДС затвора E_3 , установим значение тока стока I_C примерно равным 0,01 мА. Получим значение сопротивления $R_{K.MAKC}$ = 368.2 кОм, соответствующее напряжению $U_{3M.OTC}$ = -1.19 В (закрытое состояние транзистора).

Изменяя напряжение источника ЭДС затвора, установим значение напряжения затвор-исток равным 0 В. Получим значение сопротивления $\mathbf{R}_{K.MUH} = 1.4$ кОм, соответствующее напряжению $\mathbf{U}_{3U} = 0$ В (открытое состояние транзистора).

3.3 Получение семейства выходных характеристик полевого транзистора в схеме с общим истоком

На рисунке 3.3.1 представлены графики зависимостей тока стока I_C от напряжения сток-исток U_{CM} , полученные при плавном изменении напряжения на стоке транзистора от 0 до 10 В и фиксированных значениях напряжения источника ЭДС затвора $U_{3M} = -1.5$ В; -1.0 В; -0.5 В; 0 В; +0.5 В.

Рисунок 3.3.1 — Графики зависимостей тока стока I_C от напряжения сток-исток U_{CU}

Получим соответствующие значения ток стока Ic, при фиксированном напряжении сток-исток, равном $U_{CH} = 5$ B.

Color	Uси, B	Ic, mA
Blue	- 1.5	0
Red	-1.0	0.13
Green	- 0.5	1.14
SkyBlue	0	2.88
Yellow	0.5	5.16

Определим крутизну передаточной характеристики транзистора S при изменении напряжения затвор-исток в диапазоне от -0.5 B до 0.5 B по формуле:

$$S = \frac{\triangle I_{\text{C}}}{\triangle U_{\text{3H}}} = \frac{5,16 - 1,14 \text{ MA}}{0,5 - (-0,5) \text{ B}} = 4,02 \text{ MCM}$$

Построим на графике выходных характеристик транзистора линию нагрузки по двум точкам: точка $E_C = 5$ В на оси абсцисс и точка $I_C = E_C/R_C = 2,645$ мА на оси ординат. График представлен на рисунке 3.3.2.

Рисунок 3.3.2 – Линия нагрузки на графике выходных характеристик

Оценим границы активного режима транзисторного каскада, которые определяются координатами ($I_{C.МАКС}$, $U_{CИ.МИН}$ и $I_{C.МИН}$, $U_{CИ.МАКС}$) точек пересечения линии нагрузки с выходными характеристиками, полученными, соответственно, при значениях напряжения затвор-исток -1,0 В и +0,5 В.

Тогда $\emph{\textbf{I}}_{\emph{C.MИН}}=0,13$ мА, $\emph{\textbf{I}}_{\emph{C.MAKC}}=5,16$ мА, $\emph{\textbf{U}}_{\emph{CИ.МИН}}=3.24$ В, $\emph{\textbf{U}}_{\emph{CИ.МАКС}}=4.91$ В.

Вычислим ток стока $I_{C}^{*} = I_{C.MAKC} - I_{C.MUH} = 2.645$ мА для средней точки активного режима, и определим по передаточной характеристике соответствующее значение напряжения затвор-исток $U_{3\mu}^{*} = -0.08$ В.

3.3 Исследование работы транзисторного каскада с общим истоком

Установим амплитуду напряжения источника входного гармонического напряжения $u_{\textit{ex.m}} = 0$ В, и величину напряжения источника ЭДС стока $E_{\textit{C}} = 5$ В.

В ходе измерений, можно заметить, что расчетная нагрузочная прямая совпадает с прямой, построенной компьютером. Из этого следует, что мы достаточно точно выполнили расчеты и верно построили нагрузочную прямую.

Установим напряжение источника ЭДС затвора E_3 , равное значению $U_{3H}^* = -0.08$ В, полученному ранее в пункте 3.3. Измерим параметры статического режима транзисторного усилителя с общим истоком.

Таблица 1 – Параметры статического режима транзисторного усилителя с общим истоком.

<i>U</i> _{3И} , В	I_C , MA	$U_{\it CИ},$ В
-0.08 B	2.51 мА	4.22 B

Плавно увеличивая амплитуду входного сигнала $u_{ex.m}$, получим максимальный неискаженный выходной сигнал. Полученные сигналы представлены на рисунке 3.5 и рисунке 3.6. В ходе проделанных измерений, мы сопоставили осциллограммы. По ним видно, что они находятся в противофазе.

Рисунок 3.5 – Осциллограмма входного сигнала

Рисунок 3.6 – Осциллограмма выходного сигнала

Измерим значения амплитуд входного U_{BX} и выходного U_{BbIX} сигналов. Получим амплитуду $U_{BXM} = 0.7$ В и амплитуда $U_{BbIXM} = 0.835$ В.

Используя полученные значения амплитуды входного и выходного сигналов, определим коэффициент усиления транзисторного каскада по формуле:

$$K_{y} = U_{BbIX,M} / U_{BX,M} = 1.19$$

Вычислите коэффициент усиления транзисторного каскада по формуле:

$$K_{y} = S * R_{C} = 1.206$$

S – значение крутизны, полученное в пункте 3.3.

При расчете коэффициента усиления мы пренебрегли точностью значения сопротивления цепи. Таким образом, учитывая пренебрежения, а также погрешности и округления, расчетное значение коэффициента усиления получилось приблизительно равно измеренному.

Исследуем, как влияет положение рабочей точки на работу транзисторного каскада с общим истоком. Меняя напряжение источника ЭДС затвора E_3 , и изменяя значение напряжения затвор-исток примерно на 30% от величины U_3u^* , полученной в пункте 3.3, сначала в сторону увеличения (рисунок 3.7 и рисунок 3.8), а затем в сторону уменьшения (рисунок 3.9 и рисунок 3.10).

Рисунок 3.7 – Осциллограмма входного сигнала

Рисунок 3.8 – Осциллограмма выходного сигнала

Рисунок 3.9 – Осциллограмма входного сигнала

Рисунок 3.10 – Осциллограмма выходного сигнала

Амплитуда выходного сигнала меняет свое положения, из-за того, что меняется положение рабочей точки. Смещение рабочей точки также влияет на смещение выходного сигнала.

3 ВЫВОДЫ

В ходе выполнения лабораторной работы были исследованы характеристики полевого транзистора, а именно, определены коэффициент передачи транзистора по постоянному току, передаточной характеристики полевого транзистора в схеме с общим истоком, получена зависимость сопротивления канала полевого транзистора от напряжения затвор-исток, получено семейство выходных характеристик полевого транзистора в схеме с общим истоком, исследована работа транзисторного каскада с общим истоком.