MATLAB 教學講義-2

Advanced Intelligent Robot and System Lab, EE, NCKU

建立系統

- tf 建立轉移函數 (以多項式表示)
 - num=[20]; % 分子
 - den=[2 2 5]; % 分母
 - sys1=tf(num,den);
- zpk 建立轉移函數 (以極、零、增益 表示)
 - z=[20]; % 零點
 - p=[2 2 5]; % 極點
 - sys2=zpk(z,p,1);

建立系統

parallel 並聯 (sys1 與 sys2 並聯)

- sysp=parallel(sys1,sys2);
- **series** 串聯(sys1 與 sys2 串聯)

- syss=series(sys1,sys2);
- feedback 回授(G與H)
 - sysf=feedback(G,H,-1);

取得系統參數

- tfdata 取得轉移函數資料
 - [num_all,den_all]=tfdata(sysf,'v');
 - %將資料存放在 num_all,den_all
- zpkdata 取得極、零、增益資料
 - [z_all,p_all,k_all]=zpkdata(sysf,'v');
 - %將資料存放在 z_all,p_all,k_all
- get 將資訊顯示在Command windows

EX.1

• 建立sys1= $\frac{1}{S+1}$

- 與sys2= $\frac{(S-20)}{(S-2)^2(S-5)}$
- 將sys1與sys2並聯
- 將sys1與sys2串聯
- 將sys1做單位回授
- 利用tfdata、zpkdata與get取得sys1單位回授後的系統資訊

輸入函數

- 設定時間
 - t=0:0.1:10;
 - % 設定起始時間:時間間隔:終止時間
- impulse 輸入脈衝函數
 - [y_impulse,t]=impulse(sysf,t);
 - % 輸入一個脈衝函數到 sysf
- step 輸入步階函數
 - [y_step,t]=step(sysf,t);
 - % 輸入一個步階函數到 sysf

基本繪圖

繪圖指令對MATLAB來說是一個非常重大的環節,也是我們用來表達輸出的主要方式

MATLAB具有很好的視覺化工具、基本的 2-D繪圖

基本繪圖

- 最基本的2-D繪圖指令
 - plot(x,y, ' LinSpec ')
 - %x,y 爲圖形上的x,y座標
 - %LinSpec 可用來設定色彩、線條樣式和點的標記樣式

LinSpec的參數

b blue

g green

r red

c cyan

m magenta

y yellow

k black

point

o circle

x x-mark

+ plus

* star

s square

d diamond

v triangle (down)

^ triangle (up)

< triangle (left)

> triangle (right)

p pentagram

h hexagram

- solid

: dotted

-. dashdot

-- dashed

進階繪圖

- figure 建立一個繪圖視窗
 - figure(1)
- subplot(mnp)
- %表示在figure中有m*n個圖,p為該圖的位置
 - subplot(211)
 - subplot(212)
- hold on 可將圖形保留到下一次輸出
- grid 將圖畫上格線

進階繪圖

- 標記(xlabel、ylabel、zlabel)
 - xlabel('Time(sec)');
 - % 對X軸做標記 定義X軸的物理意義
- 文字內容(text)
 - text(2,0.5,'text')
 - % 在指定的座標上 標示記號

進階繪圖

- 附註(legend)
 - legend('Step response','Impulse response')
 - % 在圖形中產生一個方塊的註解
- 標題(title)
 - title('Response Plot')
 - % 將標題放在目前圖框的正上方

EX2.

- 畫出sys1的單位脈衝響應與單位步階響應
 - 設定色彩、線條樣式和點的標記樣式
 - ●時間範圍、時間間隔
 - 利用 figure 、 subplot 、 hold on
 - 標記、文字內容、附註、標題

HOMEWORK2

- 考慮下圖的系統求取30秒的步階響應及u的輸出響應 結果
- (1)M-file
- (2)simulink

