Survey of DNN Hardware

Hardware are targeting deep learning

- CPU
 - Intel Knights Landing
 - Intel Knight Mill
- GPU
 - PASCAL
 - VOLTA
- System for deep learning
 - Nvidia DGX-1 (2016)
- Cloud Systems for Deep Learning
- SOCs for Deep Learning Inference
- FPGAs for Deep Learning

CPUs Are Targeting Deep Learning

Intel Knights Landing (2016)

- 7 TFLOPS FP32
- 16GB MCDRAM

 400 GB/s
- 245W TDP
- 29 GFLOPS/W (FP32)
- 14nm process

Knights Mill: next gen Xeon Phi "optimized for deep learning"

Intel announced the addition of new vector instructions for deep learning (AVX512-4VNNIW and AVX512-4FMAPS), October 2016

CPUs Are Targeting Deep Learning

Knights Mill

- Intel's codename for a Xeon Phi product specialized in deep learning,
- Initially released in December 2017
- Knights Mill includes optimizations for better utilization of AVX-512 instructions and enables 4-way hyperthreading.
- Single-precision and variableprecision floating-point performance increased.

GPUs Are Targeting Deep Learning

Nvidia PASCAL GP100 (2016)

- 10/20 TFLOPS FP32/FP16
- 16GB HBM 750 GB/s
- 300W TDP
- 33/67 GFLOPS/W (FP32/FP16)
- 16nm process
- 160GB/s NV Link

FP16 support to perform two FP16 operations on a single precision core for faster dep learning computation

Source: Nvidia

GPUs Are Targeting Deep Learning

Nvidia VOLTA GV100 (2017)

- 15 TFLOPS FP32
- 16GB HBM2 900 GB/s
- 300W TDP
- 50 GFLOPS/W (FP32)
- 12nm process
- 300GB/s NV Link2

Tensor Core....

Source: Nvidia

GV100 – "Tensor Core"

Efficient Execution of 4x4 FP16 Multiplication and Addition

Tensor Core....

- 120 TFLOPS (FP16)
- 400 GFLOPS/W (FP16)

Systems for Deep Learning

Nvidia DGX-2 (2018)

- 2 peta FLOPS
- 16× Tesla V100, Dual Xeon
- 512GB GPU Memory
- 12 NVIDIA NVSwitch
- Optimized DL Software
- 7 TB SSD Storage
- Dual 10GbE, 8X 100Gb
- 10000W

Cloud Systems for Deep Learning

Facebook's Deep Learning Machine

- Open Rack Compliant
- Powered by 8 Tesla M40 GPUs
- 2x Faster Training for Faster Deployment
- 2x Larger Networks for Higher Accuracy

Source: Facebook

SOCs for Deep Learning Inference

Nvidia Tegra - Parker

- GPU: 1.5 TeraFLOPS FP16
- 4GB LPDDR4 @ 25.6 GB/s
- 15 W TDP
 (1W idle, <10W typical)</p>
- 100 GFLOPS/W (FP16)
- 16nm process

Xavier: next gen Tegra to be an "Al supercomputer"

Source: Nvidia

Mobile SOCs for Deep Learning

- Samsung Exynos (ARM Mali)
 - Exynos 8 Octa 8890
 - GPU: 0.26 TFLOPS
 - LPDDR4 @ 28.7 GB/s
 - 14nm process
- Source: Wikipedia
- Newer version
 - Exynos 9 Octa 8895 (\$9/\$9+)
 - Exynos 9 Octa 9820 (S10/S10+)

FPGAs for Deep Learning

Intel/Altera Stratix 10

- 10 TFLOPS FP32
- HBM2 integrated
- Up to 1 GHz
- 14nm process
- 80 GFLOPS/W

Xilinx Virtex UltraSCALE+

- DSP: up to 21.2 TMACS
- DSP: up to 890 MHz
- Up to 500Mb On-Chip Memory
- 16nm process

Kernel Computation

Convolution (CONV) Layer

Convert to matrix mult. using the Toeplitz Matrix

Convolution (CONV) Layer

Convert to matrix mult. using the Toeplitz Matrix

Data is repeated

Computational Transforms

Computation Transformations

- Goal: Bitwise same result, but reduce number of operations
- Focuses mostly on compute

Strassen

8 multiplications + 4 additions

7 multiplications + 18 additions

[Cong et al., ICANN, 2014]

Strassen

 Reduce the complexity of matrix multiplication from $\Theta(N_3)$ to $\Theta(N_{2.807})$ by reducing multiplication

Comes at the price of reduced numerical stability and requires significantly more memory

Winograd 1D - F(2,3)

- Targeting convolutions instead of matrix multiply
- Notation: F(size of output, filter size)

$$F(2,3) = \begin{bmatrix} d_0 & d_1 & d_2 \\ d_1 & d_2 & d_3 \end{bmatrix} \begin{bmatrix} g_0 \\ g_1 \\ g_2 \end{bmatrix} \quad = \quad \begin{bmatrix} \mathsf{d}_0 \, \mathsf{g}_0 + \mathsf{d}_0 \, \mathsf{g}_1 + \mathsf{d}_0 \, \mathsf{g}_2 \\ \mathsf{d}_1 \, \mathsf{g}_0 + \mathsf{d}_1 \, \mathsf{g}_1 + \mathsf{d}_1 \, \mathsf{g}_2 \end{bmatrix}$$

6 multiplications + 4 additions

Winograd 1D - F(2,3)

- Targeting convolutions instead of matrix multiply
- Notation: F(size of output, filter size)

input filter
$$F(2,3) = \begin{bmatrix} d_0 & d_1 & d_2 \\ d_1 & d_2 & d_3 \end{bmatrix} \begin{bmatrix} g_0 \\ g_1 \\ g_2 \end{bmatrix} = \begin{bmatrix} m_1 + m_2 + m_3 \\ m_2 - m_3 - m_4 \end{bmatrix}$$

$$m_1 = (d_0 - d_2)g_0 \qquad m_2 = (d_1 + d_2)\frac{g_0 + g_1 + g_2}{2}$$

$$m_4 = (d_1 - d_3)g_2 \qquad m_3 = (d_2 - d_1)\frac{g_0 - g_1 + g_2}{2}$$

4 multiplications + 12 additions + 2 shifts

Winograd 2D - F(2x2, 3x3)

1D Winograd is nested to make 2D Winograd

Filter				Input Fmap				Output Fmap				ap
g 00	g 01	g 02	*	d 00	d 01	d 02	d 03	_		y 00	y 01	
g 10	g ₁₁	g 12		d 10	d 11	d 12	d 13	=		y 10	y 11	
g 20	g 21	g 22		d 20	d 21	d 22	d 23					
				d 30	d 31	d 32	d 33					

Original: 36 multiplications

Winograd: 16 multiplications →2.25 times reduction

Winograd Summary

Winograd is an optimized computation for convolutions

- It can significantly reduce multiplies
 - For example, for 3x3 filter by 2.25X

But, each filter size is a different computation.

FFT Flow

FFT Overview

- Convert filter and input to frequency domain to make convolution a simple multiply then convert back to time domain.
- Convert direct convolution O(N_o²N_f²)
 computation to O(N_o²log₂N_o)
- So note that computational benefit of FFT decreases with decreasing size of filter

[Mathieu et al., ArXiv 2013, Vasilache et al., ArXiv 2014]

cuDNN: Speed up with Transformations

60x Faster Training in 3 Years

AlexNet training throughput on:

CPU: 1x E5-2680v3 12 Core 2.5GHz. 128GB System Memory, Ubuntu 14.04

M40 bar: 8x M40 GPUs in a node, P100: 8x P100 NVLink-enabled

Source: Nvidia

Backup Slides