

Année Universitaire 2019/2020

Filière : SMPC (S1) Département de chimie

Session normale: 08/01/2020 Examen de thermochimie (1h30min)

Nom et Prénom : C.N.E :	Nº Examen :
Exercice I	
Dans un récipient aux parois adiabatiques contenant $n_1 = 4$ moles d'eau ajoute $n_2 = 1$ mole de glace (H_2O_5) à $T_2 = 273$ K $(T_2 = T_{fusion}(H_2O))$. Lorsque mélange final est composé de l'eau liquide à la température T_{eq} . On donne : $Cp(H_2O,\ell) = 75$ J.mole ⁻¹ .K ⁻¹ ; $L_f(H_2O) = 6000$ J.mole ⁻¹ à $T_f(H_2O) = 6000$	ue l'équilibre est atteint, le
1- Donner l'expression de la quantité de chaleur cédée (Q ₁) par l'eau (H ₂ O ₁ O ₂ O ₂ O ₂ O ₃ O ₄ O ₄ O ₄ O ₅ O ₅ O ₆	(Teg)
$R_1 = n_1 \cdot Cp(H_2O_1 \cdot L) \cdot (Teq - T_1)$ $R_1 = H \cdot Cp(H_2O_1 \cdot L) \cdot (Teq - T_1)$	
ta at a	
2- Donner l'expression de la quantité de chaleur reçue (Q_2) par la glace (H_2 . Q_2 . Q_3 . Q_4 . Q_4 . Q_4 . Q_4 . Q_5 . Q_5 . Q_6 .	car Tg = Tg
Яд = If + СР(H2O, e) (Тед - Те).	
3- En déduire l'expression de la température T_{eq} du mélange final et calcula de la transformation de faut dans un récupient aux $R_1 + R_2 = 0$ $D_1 \cdot P_2 \cdot P_3 \cdot P_4 \cdot P_4 \cdot P_5 \cdot P_6 \cdot $	ler sa valeur. _par ois adia batiques = f+.nzcp(HzO,e)(Teg-Tg)
$Teg = \frac{Cp(H_2O_1 \ell)[4T_1 + T_f] - Lf}{5Cp(H_2O_1 \ell)}$	
5 x 75 x (4 x 298 + 273) - 60 5 x 75 x (4 x 298 + 273) - 60	00

Exercice II

On considere la reaction d'nydrogenation du benzene fiquide à $1-298$ K et $1-13$ tim:
$C_6H_6(\ell) + 3 H_2(g) \rightarrow C_6H_{12}(\ell) ; \Delta H_r^{\circ} = -205 \text{ kJ.mole}^{-1}$
1- Calculer la variation d'énergie interne ΔU_r° de cette réaction à T = 298 K.
Ora AH, = AUn + RT An(gaz) = D. D.U. = AHz - RT An (O, S)
$\Delta n(q) = n_{e} - 1 - (3+1) = -3 (9.5)$
$\Delta L_{2}^{0} = \Delta H_{1}^{0} + 3RT = \Delta U_{2}^{0} = -205 + (3 \times 8, 31 \times 10^{-3} \times 298)$
0,5) DU2 = -197,6Kg mole
2- a-Calculer l'enthalpie standard de formation ΔH° _f de C ₆ H ₆ (ℓ) à 298°K, sachant que l'enthalpie
standard de formation de $C_6H_{12}(\ell)$ est $\Delta H^{\circ}_{f}(C_6H_{12}(\ell)) = -156 \text{ kJ.mole}^{-1}$.
- AUO - AUO
JAH° (C6H6, l) = AH° (C6H12, l) - AH° = 156 + 205 = 49 kg mole -1 (0,5)
= -106 + 200 = H. 9 K. j. male (919)
b- Calculer l'enthalpie standard de formation ΔH° _f de C ₆ H ₆ (l) à 298°K, en utilisant les énergies d liaison. La molécule C ₆ H ₆ est constituée de 6 liaisons C-H, 3 liaisons C-C et 3 liaisons C=C.
On donne à $T = 298$ °K et $P = 1$ atm :
Les chaleurs latentes : L_{Vap} (C ₆ H ₆) = +34 kJ.mole ⁻¹ ; L_{Sub} (C) = +717 kJ.mole ⁻¹
Les énergies de liaison (kJ.mole ⁻¹): $E(H-H) = -435$; $E(C-H) = -415$; $E(C-C) = -344$; $E(C=C) = -615$
$6.C(s) + 3.H_{2}(g) \longrightarrow C_{6}.H_{6}(l)$
SHECCHOO 1 100 H
(15) 6Ls(c)] -3E(H-H) [C6H6)
6C(g) + 6H(g) CoH6(g)
Et (C8.46,9)
Apartin du cycle on troub:
Mf. (.Cg. He, le) = b Lg. (.C.) (HH) + . b L (CC) +
$\Delta H_{f}(C_{g}H_{g},\ell) = 6L_{g}(C) - 3E_{(H-H)} + 6E_{(C-H)} + 3E_{(C-C)} + 3E_{(C$
SHg. (.C. H.,,l) = (.6x +117) + (.5x 4.55) - (.6x.4.15) - (3x 34.4)
$-(3\times6.15)-34$
$(O_{+}S_{-})$
$\Delta H_{f}^{\circ}(C_{c}H_{6},l) = (6x717) + (3x435) - (6x415) - (3x344)$ $0.5)$ $\Delta H_{f}^{\circ}(C_{c}H_{6},l) = 206 \text{ Kg. mole}^{-1}$

c- Comparer les deux valeurs calculées de ΔH° _f (C ₆ H ₆ (l)) (2-a et 2-b) et conclure.
S.H°. (C. Ha. C) \(\pm\) AH°. (C. Ha. C) \(\pi\) Car l'utilisation des energies
C- Comparer les deux valeurs calculées de ΔH°(C6H6 (1)) (2-a et 2-b) et conclure. . Δ.H°. f.(.C6.H6, l.)
) qu'une méthode approximative La viair valeur et sté (GHz)=
49 color

Exercice II

On considère la réaction d'hydrogénation du benzène liquide à $T = 298$ K et $P = 1$ atm:
$C_6H_6(\ell) + 3 H_2(g) \rightarrow C_6H_{12}(\ell)$; $\Delta H_r^{\circ} = -205 \text{ kJ.mole}^{-1}$
1- Calculer la variation d'énergie interne ΔU_r° de cette réaction à $T = 298$ K. $O \cap Calculer la variation d'énergie interne \Delta U_r^{\circ} de cette réaction à T = 298 K. O \cap Calculer la variation d'énergie interne \Delta U_r^{\circ} de cette réaction à T = 298 K. O \cap Calculer la variation d'énergie interne \Delta U_r^{\circ} de cette réaction à T = 298 K.$
$\Delta n(q) = n_{\ell} - 1 - (3+1) = -3 - (9, 2)$ $\Delta n(q) = \Delta u_{0}^{2} + 3RT = \Delta u_{0}^{2} = -205 + (3 \times 8, 31 \times 10^{-3} \times 298)$
$\Delta n(q) = n_{f} - 1 - (3+1) = -3 (0,5)$ $\Delta L l_{2}^{2} = \Delta H_{1}^{2} + 3RT = \Delta U_{1}^{2} = -205 + (3\times8,31\times10^{-3}\times298)$ $\Delta U_{1}^{2} = -197,6K_{1} \text{ mole}^{-1}$
2- a-Calculer l'enthalpie standard de formation ΔH°_{i} de $C_{6}H_{6}(t)$ a 298 K, sachant que l'enthalpie
standard de formation de $C_6H_{12}(\ell)$ est $\Delta H^{\circ}_{f}(C_6H_{12}(\ell)) = -156 \text{ kJ.mole}^{-1}$.
JH° (C6H6, e) = AH° (C6H12, e) - AH° - 156 + 205 = 49 Kj mole - (0,5)
b- Calculer l'enthalpie standard de formation ΔH° _f de C ₆ H ₆ (ℓ) à 298°K, en utilisant les énergies d liaison. La molécule C ₆ H ₆ est constituée de 6 liaisons C-H, 3 liaisons C-C et 3 liaisons C=C. On donne à T = 298°K et P = 1 atm:
Les chaleurs latentes : L_{Vap} (C_6H_6) = + 34 kJ.mole ⁻¹ ; L_{Sub} (C) = + 717 kJ.mole ⁻¹
Les énergies de ligison (k.I. mole ⁻¹): E(H-H)= -435 : E(C-H)= -415 : E(C-C)= -344 ; E(C=C) = -615
6.C(s) + 3.H2 (g) Cc.H6(l)
DH2 (CH6)
6.C(s) + 3.H ₂ (q) \rightarrow C ₆ .H ₆ (l) \rightarrow C ₆ .H ₆ (l)
$6C(g) + 6H(g) \rightarrow C_6H_6(g)$
Eq. (G. H619)
Apartin du cycle on moule:
1) AHg (C6H6) = 6L6(C) - 3 E(H-H) + 6E(C-H) + 3E(C-C) + 3E(C-C) +
(1) 3. Ec=c) - Ly (C6H6)
SH° (CH, 1) = (6x717) + (3x435) - (6x415) - (3x344)
$\Delta H_f^2(C_c H_{c,l}) = (6x717) + (3x435) - (6x415) - (3x344)$ $- (3x615) - 34$ $\Delta H_f^2(C_c H_{c,l}) = 206 \text{ Kg mole}^{-1}$
1 Hg (C6H6, l) = 206 Kg mole
c- Comparer les deux valeurs calculées de $\Delta H^{\circ}_{f}(C_{6}H_{6}(\ell))$ (2-a et 2-b) et conclure.
Δ.H° f(C ₆ H ₆ ,l) + ΔH° f. (C ₆ H ₆ ,l) (an l'utilisation des énergies. S de l'aison pour calculer les chaleurs de réaction n'est qu'une méthode approximative La vraie valeur et ΔH° (C ₆ H ₆ ,l)= 494/10
5) AR LIGHTSOM PAUS CALCULTER MEDICINATEURS OF MACHION MACHION
J qu'une methode approximative ha viaie valeus et Mg (GHz)=

Exercice III

Tous les gaz sont supposés parfaits ; On donne : R = 8,31 J. mole 1.K = 0,082 atm .l.mole 1.K = 1

Soit l'équilibre chimique homogène suivant : $SO_2C\ell_2(g) \rightleftharpoons SO_2(g) + C\ell_2(g)$

- 1- Dans un récipient initialement vide de volume V= 42,5 litres, on introduit $n_0 = 1$ mole de $SO_2C\ell_2$. Il s'établit, à $T_1 = 373$ °K, un équilibre entre $SO_2C\ell_2(g)$, $SO_2(g)$ et $C\ell_2(g)$. La pression totale du système à l'équilibre est $P_{eq} = 1$ atm.
 - a- Calculer la variance v relative à ce système et commenter sa valeur.

(1) N = (n-m-2)+q-f=(3-1-1)+2-1=2N = 2 3 Il faut fixer deux parametres intensifs pour (0.5) dé finir comple tement le système

b- En appliquant la loi des gaz parfaits à l'état d'équilibre, calculer le coefficient de dissociation α de SO₂Cl₂.

 $SO_{2} cl_{2} = SO_{2}(q) + Cl_{2}(q) \qquad n_{+}(qaz)$ $N_{+} cl_{2}(q) + Cl_{2}(q) \qquad n_{+}(qaz)$ $N_{+} cl_{2}($

c- Donner l'expression de la constante Kp en fonction de α et $P_{\ell q}$, et calculer sa valeur à T_1 .

O,5. $(R_{cg})_{lg} = (R_{sog})_{lg} = \frac{\alpha}{1+\alpha} R_{cg}$

 $\frac{1}{6} \cdot \frac{1}{5} \cdot \frac{1$

d'où $K_{p} = \begin{pmatrix} P(l_{2})^{2} & -\begin{pmatrix} \alpha \end{pmatrix}^{2} P_{t}^{2} \times (1+\alpha) \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \begin{pmatrix} 1 \end{pmatrix} \begin{pmatrix} 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \begin{pmatrix} 1 \end{pmatrix} \begin{pmatrix} 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \begin{pmatrix} 1 \end{pmatrix} \begin{pmatrix} 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \begin{pmatrix} 1 \end{pmatrix} \begin{pmatrix} 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \begin{pmatrix} 1 \end{pmatrix} \begin{pmatrix} 1 \end{pmatrix} \begin{pmatrix} 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \begin{pmatrix} 1 \end{pmatrix} \end{pmatrix} \begin{pmatrix} 1 \end{pmatrix} \begin{pmatrix} 1 \end{pmatrix} \begin{pmatrix} 1 \end{pmatrix} \begin{pmatrix} 1 \end{pmatrix} \end{pmatrix} \begin{pmatrix} 1 \end{pmatrix} \begin{pmatrix} 1 \end{pmatrix} \begin{pmatrix} 1 \end{pmatrix} \end{pmatrix} \begin{pmatrix} 1 \end{pmatrix} \end{pmatrix} \begin{pmatrix} 1 \end{pmatrix} \begin{pmatrix} 1 \end{pmatrix} \end{pmatrix} \begin{pmatrix} 1 \end{pmatrix} \begin{pmatrix} 1 \end{pmatrix} \end{pmatrix} \end{pmatrix} \begin{pmatrix} 1 \end{pmatrix} \end{pmatrix} \begin{pmatrix} 1 \end{pmatrix} \end{pmatrix} \begin{pmatrix} 1 \end{pmatrix} \end{pmatrix} \end{pmatrix} \begin{pmatrix} 1 \end{pmatrix} \end{pmatrix} \begin{pmatrix} 1 \end{pmatrix} \end{pmatrix} \end{pmatrix} \begin{pmatrix} 1 \end{pmatrix} \end{pmatrix} \end{pmatrix} \begin{pmatrix} 1 \end{pmatrix} \end{pmatrix}$

D Kp = 22 Pt.

 $a T_1 \leq K_p = \frac{(0,39)^2}{1-(0,39)^2} \times 1 = 0,18$