

Plano de Ensino para o Ano Letivo de 2020

	IDE	ENTIFICAÇÃO		
Disciplina:	Código da Disciplina:			
Engenharia Assistida por Computador - CAE			ECA514	
Course:				
Computer Aided Engineering ¿	CAE			
Materia:				
Periodicidade: Anual	Carga horária total:	80	Carga horária sema	anal: 00 - 00 - 02
Curso/Habilitação/Ênfase:	•	•	Série:	Período:
Engenharia de Controle e Automação			6	Noturno
Engenharia de Controle e Automação			5	Diurno
Professor Responsável: Titulação - Gradu		Titulação - Graduaç	ção	Pós-Graduação
Marcelo Otavio dos Santos Engenheiro		Engenheiro Me	cânico	Doutor
Professores:	Titulação - Gradua		ção	Pós-Graduação
Gelson Freitas Miori Engenheiro M		Engenheiro Me	cânico	Doutor
Marcelo Otavio dos Santos Enge		Engenheiro Me	Engenheiro Mecânico	
OBJE	TIVOS - Conhec	imentos, Habili	dades, e Atitude	

OBJETIVOS - Connecimentos, Habilidades, e Atitudes

Conhecimentos:

- C1 Critérios de resistência e segurança em projetos mecânicos.
- C2 Método dos deslocamentos Análise Matricial de Estruturas.
- C3 Métodos numéricos aplicados ao projeto de estruturas e elementos de máquinas - Método dos Elementos Finitos (MEF)
- C4 Operação de software comercial de CAE (Engenharia assistida por computador)

Habilidades:

- H1 Integração dos diversos modelos matemáticos na Mecânica dos Sólidos.
- H2 Desenvolver a sensibilidade e o espírito crítico ao analisar o comportamento de uma estrutura.
- H3 Associar os modelos estruturais às estruturas reais na Engenharia.
- H4 Compreender o método de cálculo estrutural utilizado computacionalmente.
- H5 Trabalhar em equipe.
- H6 Análises estruturais: lineares e não lineares, térmicas, estáticas e dinâmicas, regime estacionário e transiente.

Atitudes:

- Al Ter visão sistêmica e interdisciplinar na solução de problemas de engenharia.
- A2 Análise crítica se os objetivos da modelagem foram atingidos.
- A3 Responsabilidade pela segurança de estruturas e componentes projetados.

2020-ECA514 página 1 de 9

EMENTA

Revisão de Mecânica dos Sólidos. Introdução ao Método dos Elementos Finitos: formulação de elementos 1D, 2D e 3D. Técnicas numéricas de solução de problemas em regime permanente, transitório e de autovalor. Critérios de convergência. Aplicações da engenharia assistida por computador (CAE): conceito de computador como ferramenta de desenvolvimento, avaliação e otimização de projetos. Projeto de componentes de máquinas assistido por computador. Análise de tensões, deformações e deslocamentos provenientes de esforços aplicados sobre um componente mecânico obtidos através de simulação em software comercial. Comparação do método numérico com o método experimental através do uso de extensômetros elétricos.

SYLLABUS

Review of Solid Mechanics. Introduction to the Finite Element Method: formulation of 1D, 2D and 3D elements. Numerical problem solving techniques in permanent, transient and eigenvalue regimes. Convergence criteria. Applications of computer-aided engineering (CAE): computer concept as a development and evaluation tool and design optimization. Computer aided machine components design. Stresses, strain and deformation analysis from applied loads on a mechanical part obtained from simulation software. Comparison of the numerical method with the experimental method through the use of strain gages.

TEMARIO

ESTRATÉGIAS ATIVAS PARA APRENDIZAGEM - EAA

Aulas de Laboratório - Sim

LISTA DE ESTRATÉGIAS ATIVAS PARA APRENDIZAGEM

- Peer Instruction (Ensino por pares)
- Sala de aula invertida
- Design Thinking
- Project Based Learning
- Problem Based Learning

METODOLOGIA DIDÁTICA

Uso de técnicas de aprendizagem ativa em sala de aula:

- Aula invertida
- Peer Instruction
- PBL (Problem-Based Learning)

Aula expositiva com apoio de recurso áudio-visual.

Uso de software comercial de simulação CAE em laboratório de informática.

Uso do Laboratório de Mecânica dos Sólidos para realização de experimentos práticos.

2020-ECA514 página 2 de 9

CONHECIMENTOS PRÉVIOS NECESSÁRIOS PARA O ACOMPANHAMENTO DA DISCIPLINA

- Desenho técnico mecânico
- Resistência dos Materiais
- Elementos de máquinas
- Dinâmica
- Termodinâmica e Transferência de Calor
- Materiais de construção mecânica

CONTRIBUIÇÃO DA DISCIPLINA

Após a realização da disciplina, o aluno deverá ter adquirido a capacidade de:

- Utilizar uma ferramenta moderna de projeto assistido por computador CAE.
- Aplicar a técnica do Método dos Elementos Finitos para solução de problemas de Engenharia.
- Modelagem de problemas multifísicos.
- Integração das diversas áreas da Engenharia visando o dimensionamento correto de componentes e estruturas.
- Instrumentação de componentes e estruturas através de strain gages, visando a validação dos resultados obtidos numericamente.

BIBLIOGRAFIA

Bibliografia Básica:

ALVES FILHO, Avelino. Elementos finitos: a base da tecnologia CAE. 5. ed. São Paulo, SP: Érica, 2007. 292 p. ISBN 9788571947412.

ALVES FILHO, Avelino. Elementos finitos: a base da tecnologia CAE/Análise dinâmica. 2. ed. São Paulo, SP: Érica, 2009. 301 p. ISBN 9788536500508.

FISH, Jacob; BELYTSCHKO, Ted. Um primeiro curso em elementos finitos. KOURY, Ricardo Nicolau Nassar (Trad.), MACHADO, Luiz (Trad.). Rio de Janeiro, RJ: LTC, 2009. 241 p.

KIM, Nam-Ho; SANKAR, Bhavani V. Introdução à análise e ao projeto em elementos finitos. KURBAN, Amir Elias Abdalla (Trad.). Rio de Janeiro, RJ: LTC, 2011. 353 p.

LOGAN, Daryl L. A first course in the finite element method. Boston: PWS, 1992. 662 p.

Bibliografia Complementar:

ALVES FILHO, Avelino. Elementos finitos: a base da tecnologia CAE/Análise não Linear. São Paulo, SP: Érica, 2012. 320 p.

BATHE, Klaus-Jürgen. Finite element procedures. Upper Saddle River, NJ: Prentice Hall, 1996. 1037 p.

2020-ECA514 página 3 de 9

BUCHANAN, George R. Schaum's outline of theory and problems of finite element analysis. New York: McGraw-Hill, 1995. 264 p

KWON, Young W; BANG, Hyochoong. The finite element method using MATLAB. 2. ed. Boca Raton: CRC, 2000. 607 p.

MOAVENI, Saeed. Finite element analysis: theory and application with ANSYS. New Jersey: Prentice Hall, 1999. 527 p

AVALIAÇÃO (conforme Resolução RN CEPE 16/2014)

Disciplina anual, com trabalhos.

Pesos dos trabalhos:

 $k_1: 1,0 \quad k_2: 1,0$

INFORMAÇÕES SOBRE PROVAS E TRABALHOS

O trabalho T1 corresponde a média das notas dos trabalhos realizados no 10 semestre e o T2 corresponde a média dos trabalhos do 20 semestre.

Estes trabalhos poderão ser realizados individualmente ou em grupo, conforme será definido pelo professor para cada caso.

A sua configuração poderá variar, conforme orientação do professor, obedecendo aos seguintes formatos:

- Solução de um problema de engenharia usando o software de CAE.
- Relatórios de simulação MEF.
- Aplicação da simulação em estudo de caso de engenharia projeto.
- Relatórios de experimentos realizados no Laboratório de Mecânica dos Sólidos.

2020-ECA514 página 4 de 9

Ol	JTRAS INFORMAÇÕES

2020-ECA514 página 5 de 9

SOFTWARES NECESSÁRIOS PARA A DISCIPLINA ANSYS Workbench Vtech Correlate CATMAN HBM Pacote Office

2020-ECA514 página 6 de 9

APROVAÇÕES

2020-ECA514 página 7 de 9

	PROGRAMA DA DISCIPLINA	
Nº da	Conteúdo	EAA
semana		
1 L	Não tem aula.	0
2 L	Apresentação da disciplina. Revisão de conceitos de Resistência	1% a 10%
	dos Materiais. Tensões e Deformações. Fator de Segurança.	
	Critérios de Resistência.	
3 L	Engenharia Auxiliada por Computador (CAE) - Introdução ao Método	1% a 10%
	dos Elementos Finitos. Conceitos e Definições. Tipos de	
	Elementos. Exemplo de solução de problema no software comercial	
	ANSYS MECHANICAL.	
4 L	O lo Elemento - a Mola. Rigidez do elemento e rigidez da	1% a 10%
	estrutura. Exercícios.	
5 L	As Barras de treliça. Transformações de coordenadas. Sistema	61% a 90%
	local e global. Problema 1 Treliça 3D.	
6 L	O Elemento de Viga. Superposição de comportamentos. Apresentação	61% a 90%
	do software ANSYS MECHANICAL. Funcionalidades e recursos do	
	software. Problema 2: Comparação Analítico x Numérico.	
7 L	Problema 3: Pórtico 3D. Diagramas de esforços internos.	61% a 90%
	Verificação a Flambagem. Modos de vibrar e frequências naturais.	
	Otimização do pórtico.	
8 L	ATIVIDADE 1	91% a
		100%
9 L	SEMANA DE PROVAS P1	0
10 L	Elementos bidimensionais. Interpolações. Teoria da elasticidade.	61% a 90%
	Estado duplo de tensões. Graus de liberdade. Formulação do	
	elemento linear e do elemento parabólico.	
11 L	Problema 4: Chapa com concentrador de tensões (Elemento 2D).	61% a 90%
	Elementos triangular e quadrilátero. Refino de malha.	
	Convergência de resultados. Estrutura com simetria.	
12 L	Problema 5: Pinhão-cremalheira (elemento 2D). Problema 6: Lata	61% a 90%
	sob pressão (elemento de casca). Qualidade da malha. Critérios de	
	convergência. Simetria.	
13 L	Problema 6: Ponta de eixo (elemento 3D). Qualidade da malha.	61% a 90%
	Critérios de convergência. Tipos de contato.	
14 L	Problema 7: Carcaça de bomba (elemento 3D). Análise	61% a 90%
	termo-estrutural em regime estacionário. Problema 8: Mecanismo	
	biela-manivela - dinâmica de corpo rígido.	
15 L	SMILE 2019	0
16 L	Problema 9: Dispositivo de máquina-ferramenta (elem. 3D). Análise	61% a 90%
	termo- estrutural em regime transiente. Contatos.	
17 L	ATIVIDADE 2	0
18 L	SEMANA DE PROVAS P2	0
19 L	SEMANA DE PROVAS P2	0
20 L	ATENDIMENTO	0
21 L	SEMANA DE PROVAS PS1	0
22 L	Problema 10: Avaliação de vida em fadiga de componente mecânico.	61% a 90%

2020-ECA514 página 8 de 9

INSTITUTO MAUÁ DE TECNOLOGIA

23 L	Problema 11. Modelagem de estruturas fabricadas de materiais	61%	а	90%
	compósitos.			
24 L	PROJETO (aula 1): Uso da simulação numérica para solução de	91%	а	
	problemas de engenharia. Apresentação e diretrizes.	100%		
25 L	PROJETO (aula 2): Desenvolvimento do projeto.	91%	а	
		100%		
26 L	PROJETO (aula 3): Desenvolvimento e fechamento do projeto.	91%	а	
		100%		
27 L	ATIVIDADE 3: Apresentação e entrega final do Projeto.	91%	а	
		100%		
28 L	SEMANA DE PROVAS P3	0		
29 L	EXTENSOMETRIA ELÉTRICA. Teoria, aplicação e boas práticas.	91%	а	
		100%		
30 L	Experimento 1 (aula 1): Medições de deformações em estruturas com	91%	а	
	concentradores de tensões clássicos.	100%		
31 L	Experimento 1 (aula 2): Simulação das estruturas medidas em	91%	a	
	laboratório. Comparação dos métodos: analítico x experimental x	100%		
	numérico.			
32 L	Experimento 2 (aula 1): Preparação da superfície / Colagem do	91%	а	
	extensômetro (strain gage SG)/ Soldagem dos fios / Ligações.	100%		
33 L	Experimento 2 (aula 2): Solicitação da estrutura. Medições das	91%	а	
	deformações (SG). Medições dos deslocamentos (flecha). Cálculos	100%		
	analíticos.			
34 L	Experimento 2 (aula 3): Simulação numérica da estrutura medida no	91%	а	
	laboratório.	100%		
35 L	ATIVIDADE 4: Entrega do relatório. Comparação dos métodos	91%	а	
	análitico x experimental x numérico para solução de problema de	100%		
	engenharia.			
36 L	SEMANA DE PROVAS P4	0		
37 L	SEMANA DE PROVAS P4	0		
38 L	SEMANA DE PROVAS P4	0		
39 L	ATENDIMENTO	0		
40 L	SEMANA DE PROVAS PS2	0		
41 L	SEMANA DE PROVAS PS2	0		
Legenda	: T = Teoria, E = Exercício, L = Laboratório			

2020-ECA514 página 9 de 9