Intro ML ML. 7.4. Neural networks for sequence processing

Objectives and schedule

Introduce key concepts about neural networks for sequence processing: RNNs (LSTM), Transformers. Relate with time series models. Intro to natural language processing including LLMs

Goodfellow et al 10, Chollet and Allaire 6,

Gallego and Rios Insua, Arxiv 2303.18223, 2304.00612 in github

For intros

https://www.youtube.com/watch?v=UNmqTiOnRfg Intuitive

https://www.youtube.com/watch?v=6niqTuYFZLQ Intuitive but techie

Presentation by David Arroyo on *DL and natural language processing*

Lab 7.3

- LSTM for time series (autoregression)
- LSTM for dynamic regression
- Sentiment analysis for movie reviews with LSTM
- Text generation with LSTM

CPU and Google Collab (GPU) versions

- Drago, Artemisa
- Your institute, your group HPC installation

RNNs. Motivation

Motivation

- Fully connected NNs can approximate any function....
- But training can be super slow and may require lots of data
- In some domains, lots gained through specific architectures

- In natural language processing, recurrent neural nets (RNNs)
- More generally in sequence processing, RNNs (and successors)

Time series analysis

- Traditional models in time domain: **ARIMA**, exponential smoothing
- Models in frequency domain: Spectral analysis
- State space models: Kalman filter, Hidden Markov models, dynamic linear models (plus non linear and non gaussian extensions)

Check Prado and West (2010) for a comprehensive review

Some typical features in time series

Problems of interest

Objective $\pi(\theta_s|y_{1:t})$ and, specially, $\pi(y_s|y_{1:t})$

Filtering s = t

Prediction s > t

Smoothing s < t

NNs for time series. Nonlinear autoregressions...

Shallow NN

$$y_j = \sum_{i=1}^m \beta_i \psi(x_k \omega_i) + \varepsilon_j$$

$$\min_{\beta, w} \sum_{k=1}^{n} \left(y_k - \sum_{i=1}^{m} \beta_i \psi(x_k \omega_i) \right)^2$$

- Input. Some entries, prior time series observations
- Output, value of time series to be forecast (one step ahead, two steps ahead,....)

Fully connected... theoretically OK, but lot to be gained from special structure

RNNs. Key ideas

- Specialized for sequential data (numbers, words, letters,....)
- Can process sequences much longer than those achievable with fully connected NNs
- More amenable to parallelisation (transformers)
- Each neuron has an 'internal memory' (hidden) to store info about previous entries
- Trained with variants of standard algos: backpropagation through time
- Created in 80's and late 90's, yet their recent successes (as with CNNs) make them ultra-fashionable.
- Latest wave: Transformers (attention is all you need), LLM, Chat-GPT
- Some applications
 - Speech recognition
 - Language modeling and text generation
 - Automatic translation
 - Image description generation
 - + the usual suspects: prices, sales,...

A paradigm change in NLP

- From pre-deep learning
 - Language as a set of elements and rules to be combined
 - Context independent grammars (Chomsky)
 - Closer to artificial languages (programming) than to natural ones
- To statistically based
 - Language as probabilities of word sequences
 - Computing frequencies of words, n-grams,...
 - Closer to natural language
 - Combined with deep NNs, state of the art
 - Almost a commodity (like vision)

Core concepts Recurrence and computational graphs

Computational graphs

Recurrence and unfolded computational graphs

• Dynamical system. Recurrence unfolded

$$s^{(t)} = f(s^{(t-1)}; \boldsymbol{\theta}) \qquad s^{(3)} = f(s^{(2)}; \boldsymbol{\theta}) \qquad (s^{(t-1)})_f - (s^{(t-1)})_f -$$

• Every recurrent function as recurrent NN h (hidden) state

$$\begin{array}{l} \pmb{h}^{(t)} = f(\pmb{h}^{(t-1)}, \pmb{x}^{(t)}; \theta) \\ \pmb{h}^{(t)} = g^{(t)} \left(\pmb{x}^{(t)}, \pmb{x}^{(t-1)}, \pmb{x}^{(t-2)}, \dots, \pmb{x}^{(2)}, \pmb{x}^{(1)} \right) \\ = f(\pmb{h}^{(t-1)}, \pmb{x}^{(t)}; \theta) \end{array} \\ \begin{array}{l} \pmb{h} \\ & \qquad \qquad \qquad \\ & \qquad \qquad \\ & \qquad \qquad \\ & \qquad \qquad \\ & \qquad \qquad \\$$

Recurrence in a simple model. State space model

- A p-variate time series (θ_t) and an m-variate time series Y_t
 - (θ_t) is a Markov chain
 - Given (θ_t) , Y_t independent of other observations and depends only on θ_t

$$\pi(\theta_{0:t}, y_{1:t}) = \pi(\theta_0) \cdot \prod_{j=1}^t \pi(\theta_j | \theta_{j-1}) \pi(y_j | \theta_j)$$

Core concepts: Working with text data

Goodfellow et al 12, Chollet and Allaire 6

For intuitive intro

https://colah.github.io/posts/2014-07-NLP-RNNs-Representations/

Text

Sequence of characters
Sequence of words

Tokenize and vectorize

- Segment text into words, transform each word into a vector
- Segment text into characters, transform each character into a vector
- Extracts n-grams of words or characters, transform each n-gram into a vector

One hot encoding

Unique integer to each word
Word, vector of zeroes, except a 1 for the word
Sparse and high dimensional

Word embeddings

Dense word vectors

Low-dimensional, floating point vectors

Learned from data

Jointly with the main task. Embedding layer

Precomputed or pretrained embeddings. Word2vec, Glove,...

Word embedding. Example

Parametrised function

$$W : \text{words} \rightarrow \mathbb{R}^n$$

Train to predict if a 5 ngram is valid

$$R(W(\text{``cat"}),\ W(\text{``sat"}),\ W(\text{``on"}),\ W(\text{``the"}),\ W(\text{``mat"})) = 1$$

$$R(W(\text{``cat"}),\ W(\text{``sat"}),\ W(\text{``song"}),\ W(\text{``the"}),\ W(\text{``mat"})) = 0$$

BERT trains by 300 bn tokens to predict the next word

- Emerge to process sequences, specially with different length inputs
- Add feedback connections

RNNs: Short-term vs Long-term dependencies

The clouds are in the

RNNs: Short-term vs Long-term dependencies

I grew up in France.... I speak fluent

RNNs. Elman's model

Network updates internal state h updated at each step

$$h_t = f_W(h_{t-1}, x_t)$$

e.g.

$$egin{aligned} h_t &= anh(W_{hh}h_{t-1} + W_{xh}x_t) \ y_t &= W_{hy}h_t \end{aligned}$$

Weights reused at each time:

- learn patterns independently of position
- reduction of number of parameters

RNN. One output per step, recurrence between hidden nodes

RNN: many to one example

Assigning sentiment (-,+) to a tweet

Training: Backprop through time

Unfolding the (computational) graph
Applying backprop
Limiting steps back for stability:
Truncated backprop
SGD or Adam or ...

Problem with Elman's model....

Backprop one step back

$$h_{t} = \tanh(W_{hh}h_{t-1} + W_{xh}x_{t})$$

$$= \tanh\left(\left(W_{hh} \quad W_{hx}\right) \begin{pmatrix} h_{t-1} \\ x_{t} \end{pmatrix}\right)$$

$$= \tanh\left(W \begin{pmatrix} h_{t-1} \\ x_{t} \end{pmatrix}\right)$$

31

Over time

Repeated multiplications by W.

If biggest eigenvalue>1, gradient explosion (gradient clipping) If biggest eigenvalue<1, gradient vanishing (LSTM, GRU)

$$m{W} = m{V} ext{diag}(m{\lambda}) m{V}^{-1}$$
 $m{W}^t = m{\left(V ext{diag}(m{\lambda}) V^{-1}
ight)^t} = m{V} ext{diag}(m{\lambda})^t m{V}^{-1}$

Long Short-term memory (LSTM) NNs

Hochreichter, Schmidhuber

LSTM

- Introduced by Hochreiter y Schmidhuber in 1997 but only used (a lot!!!) in last decade for NLP
- Hidden cells substituted by LSTM cells mitigating vanishing and explosion

From RNNs to LSTMs

Basic ingredients

Cell state

I) Info to be forgotten. Forget gate

$$f_t = \sigma\left(W_f \cdot [h_{t-1}, x_t] + b_f\right)$$

36

ii) Info to be stored in cell state

$$i_t = \sigma\left(W_i \cdot [h_{t-1}, x_t] + b_i\right)$$

$$\tilde{C}_t = \tanh(W_C \cdot [h_{t-1}, x_t] + b_C)$$

iii) Update cell state

$$C_t = f_t * C_{t-1} + i_t * \tilde{C}_t$$

iv) Decide output

$$o_t = \sigma (W_o [h_{t-1}, x_t] + b_o)$$
$$h_t = o_t * \tanh (C_t)$$

DataLab CSIC

39

LSTM Global scheme

Deep LSTMs

 Deep LSTMs can be created by stacking multiple LSTM layers vertically, with the output sequence of one layer forming the input sequence of the next (in addition to recurrent connections within the same layer)

 Increases the number of parameters - but given sufficient data, performs significantly better than single-layer LSTMs (Graves et al. 2013)

 Dropout usually applied only to non-recurrent edges, including between layers

Gate recurrent unit. GRU

1-D convnets

Transformers and LLMs

Transformers and Large Language Models

- https://www.youtube.com/watch?v=SZorAJ4I-sA Basic intro
- https://www.youtube.com/watch?v= UVfwBqcnbM Detailed non-tech intro
- https://www.youtube.com/watch?v=S27pHKBEp30 Contextual intro

Attention is all you need

https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf http://nlp.seas.harvard.edu/2018/04/03/attention.html

Formal algos for transformers

https://arxiv.org/pdf/2207.09238.pdf

A survey of large language models

https://arxiv.org/pdf/2303.18223.pdf

Eight things to know about large language models

Arxiv:2304.00612

Transformers

Seq2Seq with attention: https://jalammar.github.io/visualizing-neural-machine-translation-mechanics-of-seq2seq-models-with-attention/

Transformer: https://jalammar.github.io/illustrated-transformer/

BERT (and transfer learning) : https://jalammar.github.io/illustrated-bert/

Transformer

Transformer. Encoder

"The animal didn't cross the street because it was too tired"

Transformer-Decoder

Transformer. Self-attention

Embedding of i-th token

 x_i

Query vector

 $q_i = x_i' \gamma_q$

Input

Thinking

Machines

Queries

Embedding

WQ

Key vector

 $k_i = x_i' \gamma_k$

WK

Value vector

 $v_i = x_i' \gamma_v$

Values

Keys

W۷

Output

softmax
$$\left(\frac{qk'}{\sqrt{d_k}}\right)v$$
,

DataLab CSIC

52

Positional encoding

Transformer. Architecture

Final comments

RNNs in Keras. From Lab

```
model <- keras_model_sequential()
model %>%

layer_embedding(input_dim = vocab_size, output_dim = 4) %>%
layer_lstm(4, return_sequences = TRUE, go_backwards=TRUE) %>%
layer_global_average_pooling_1d() %>%
layer_dense(units = 4, activation = "relu") %>%
layer_dense(units = 1, activation = "relu") %>%
layer_dense(units = 1, activation = "sigmoid")
model %>% compile( optimizer = 'adam', loss = 'binary_crossentropy', metrics = list('accuracy'))
history <- model %>% fit( partial_x_train, partial_y_train, epochs = 25, batch_size = 512, validation_data = list(x_val, y_val))
```

RNNs in Keras (R)

```
layer_simple_rnn(....)
layer_lstm(...)
layer_gru(...)
bidirectional(layer_lstm(...))
layer_conv_1d(...)
```

For Transformers get from Hugging Face

https://blogs.rstudio.com/ai/posts/2020-07-30-state-of-the-art-nlp-models-from-r/https://huggingface.co/docs/transformers/index

```
OHE text_tokenizer
Layer_embedding(input_dim,output_dim)
Word2vec, GloVe
```

From fully connected NNs to RNNs for sequences From LSTMs to Transformers

Other NN paradigms next (AEs, VAEs, GANs) as part of unsupervised learning

This evolves rapidly!!!

Some pointers to stay tuned

https://www.reddit.com/r/learnmachinelearning/

https://www.reddit.com/r/MachineLearning/

https://medium.com/topic/machine-learning

See you next week

introml@icmat.es

Stuff at

https://datalab-icmat.github.io/courses_stats.html