Laboratorio di Fisica 1 R8: Misura di $|\vec{g}|$ mediante rotolamento puro

Gruppo 17: Bergamaschi Riccardo, Graiani Elia, Moglia Simone 19/03/2024 - 9/04/2024

Sommario

Il gruppo di lavoro ha misurato indirettamente il modulo del campo gravitazionale locale (g) studiando il moto di rotolamento di un corpo rigido.

0 Materiali e strumenti di misura utilizzati

Strumento di misura	Soglia	Portata	Sensibilità
Due fototraguardi con contatore di impulsi	1 μs	99 999 999 µs	1 μs
Metro a nastro	$0.1\mathrm{cm}$	$300.0\mathrm{cm}$	$0.1\mathrm{cm}$
Calibro ventesimale	$0.05\mathrm{mm}$	$150.00\mathrm{mm}$	$0.05\mathrm{mm}$
Bilancia di precisione	0.01 g	$4200.00{ m g}$	$0.01\mathrm{g}$

Altro	Descrizione/Note	
Brugola	Utile per cambiare la distanza tra i fototraguardi	
Cellulare	Necessario per rilevare l'angolo di inclinazione	
Un campione	Corpo rigido e simmetrico	

1 Esperienza e procedimento di misura

- 1. Pesiamo il corpo con la bilancia di precisione per ottenerne la massa.
- 2. Considerando il campione come una composizione di forme solide note di cui misuriamo tutti i diametri e le altezze necessarie al calcolo del suo momento d'inerzia con il calibro ventesimale.

3. Acceso e impostato adeguatamente il contatore di impulsi, misuriamo 50 volte il tempo di caduta del campione variando l'angolo e le distanze tra i fototraguardi.

Notazione. Indicheremo con $(t_s)_i$ ogni i-esima misura del tempo di caduta $(i \in [0; 50) \cap \mathbb{N})$, mentre con $\overline{t_s}$ il tempo di caduta medio. In particolare:

$$\delta(\overline{t_s}) = \sigma_{\overline{t_s}} = \frac{\sigma_{t_s}}{\sqrt{100}} = \frac{\sigma_{t_s}}{10}.$$

1.1 Analisi dei dati raccolti e conclusioni

Fissato un sistema di riferimento solidale all'apparato di misura, con origine nel punto di partenza del campione, possiamo scrivere la legge del moto del campione, indicando con l la distanza tra i due fototraguardi: $l=\frac{1}{2}a_{cm}t^2$ Ma noi conosciamo anche la forza ed il momento risultanti sul corpo¹: $Mgsin(\theta) - F_s = Ma_{cm} F_s R = I_{cm} \frac{a-cm}{R} MgR^2 sin(\theta) = (I_{cm} + MR^2) a_{cm}$ La norma di \vec{g} misurata indirettamente è allora ricavabile da: $\frac{2l}{t^2} = \frac{MgR^2 sin(\theta)}{(I_{cm} + MR^2)}$ dove l'errore su g segue dalla propagazione degli errori su d_0, \varnothing_s e $\overline{t_s}$ (supponendo gli errori piccoli, casuali e indipendenti).

Di seguito riportiamo gli istogrammi dei tempi e i valori di g così ottenuti. Per confrontare queste misure indirette $(g_A \ e \ g_B)$ con il valore atteso $(g_{\rm attesa} = 9.806 \, {\rm m/s^2})$, valutiamo, per ogni sferetta s, la seguente quantità (adimensionale):

$$\varepsilon_s = \frac{(g_s)_{\text{best}} - g_{\text{attesa}}}{\delta g_s}$$

Allora la misura g_s da noi ottenuta è compatibile con $g_{\rm attesa}$ se e solo se $|\varepsilon_s| \leq 1$; inoltre, dal segno di ε_s è possibile determinare se g_s misurata è una sovrastima $(\varepsilon_s > 0)$ o una sottostima $(\varepsilon_s < 0)$ del valore atteso.

Figura 1: Istogrammi dei dati raccolti (t_A e t_B)

s	$\varnothing_s \text{ (mm)}$	$\overline{t_s}$ (ms)	$g_s (\mathrm{m/s^2})$	ε_s
A	24.62 ± 0.01	503.63 ± 0.02	9.82 ± 0.02	+0.67
В	22.23 ± 0.01	503.93 ± 0.02	9.82 ± 0.02	+0.57

Le misure di g ottenute sono pertanto ampiamente consistenti con il valore atteso.

Osservazione. Dai valori di ε non emerge una differenza significativa fra le due sferette. In particolare, sembra che l'attrito viscoso dell'aria abbia agito in maniera trascurabile (come ci aspettavamo).

 $^{^{1}\}mathrm{con}\ R$ indichiamo la distanza tra il suo centro di massa e il punto di contatto

Tuttavia, dopo una più attenta analisi, è comunque possibile notare una tendenza: in media, la sferetta con raggio maggiore ha percorso la stessa distanza in un tempo leggermente minore. Pertanto, ciò potrebbe suggerire un effetto molto ridotto dell'attrito dell'aria; questa tendenza però non è rispecchiata dai valore di ε , probabilmente a causa di una sovrastima della distanza d_0 . Si noti infatti che, dal segno degli ε , entrambe le misure di g sono risultate sovrastime, mentre, nell'equazione (??), d_0 è al numeratore.