Лабораторная работа № 4

ИССЛЕДОВАНИЕ ЭВОЛЮЦИИ НЕЛИНЕЙНОЙ ДИССИПАТИВНОЙ ДИНАМИЧЕСКОЙ СИСТЕМЫ

Цель работы: получить навык численного исследования динамики нелинейной диссипативной динамической системы, обладающей странным аттрактором.

Задание на лабораторную работу

Рассматривается нелинейная двухпараметрическая автономная динамическая система

$$\frac{dx}{dt} = f(x, y, z; a, b),$$

$$\frac{dy}{dt} = g(x, y, z; a, b),$$

$$\frac{dz}{dt} = h(x, y, z; a, b).$$

Функции f, g, h выбираются в соответствии с номером варианта по таблице 4.1. Для заданной системы выполнить следующие задания.

- 1) Определить области изменения параметров a и b, в которых данная динамическая система является диссипативной.
- 2) Определить стационарные точки диссипативной системы.
- 3) Исследовать стационарные точки на асимптотическую устойчивость по первому приближению.
- 4) Определить значения параметров a и b, при которых в системе появляется странный аттрактор.
- 5) Написать вычислительную программу на языке программирования Си++, реализующую процедуру численного интегрирования исходной диссипативной системы по методу Рунге-Кутта 4-го порядка точности.
- 6) С использованием вычислительной программы провести серию вычислительных экспериментов, демонстрирующих различные виды динамики системы. Построить траектории системы в окрестности стационарных точек. Определить численно значения параметров *а* и *b*, при которых в системе существует странный аттрактор и при которых система переходит в режим автоколебаний.

Отчетность

По результатам решения задачи составить отчет по лабораторной работе, который должен содержать постановку решаемой задачи, аналитический расчет стационарных точек и анализ их устойчивости, описание численного алгоритма решения системы, результаты проведенных в соответствии с заданием вычислительных экспериментов и графики траекторий системы для всех характерных режимов, анализ полученных результатов и выводы по работе.

Таблица 4.1

№ варианта	f(x,y,z;a,b)	g(x,y,z;a,b)	h(x, y, z; a, b)
1	у	Z	$ax + by - z - x^3$
2	a(y-x)	by - xz	-3z + xy
3	5(x-z)	by + xz	$az + \frac{1}{3}xy$
4	y - 3x + ayz	by + z - xz	-9z + 2xy
5	4x - byz	ay + xz	x - 5z + xy
6	у	Z	$-x + ay + bz + x^2$
7	a(y-x)	bx + y - xz	$-\frac{8}{3}z + xy$
8	9(y-x)	ax - y - xz	bz + xy
9	0.2x + yz	ax + by - xz	-z-xy
10	a(x+y)	-y + axz	b-axy
11	ax + y	-x - 0.4y + 5xz	bz - 5xy
12	ax + by - yz	x	$-z+y^2$
13	a(y-x)	bx - 2xz	$e^{xy}-\frac{5}{2}z$
14	-x + y + yz	-x - y + axz	z + bxy
15	у	ay + (1-z)x	$bz + x^2$