Intro to Deep Neural Networks: MILP and Backpropagation

CS771: Introduction to Machine Learning
Phyush Rai

Limitation of Linear Models

■ Linear models: Output produced by taking a linear combination of input features

■ A basic unit of the form $y = f(w^T x)$ is known as the "Perceptron" (not to be confused with the Perceptron "algorithm", which learns a linear classification model)

Although can kernelize to make them nonlinear

This can't however learn nonlinear functions or nonlinear decision boundaries

Neural Networks: Multi-layer Perceptron (MLP)

- An MLP is a network containing several Perceptron units across many layers
- An MLP consists of an input layer, an output layer, and one or more hidden layers

Input layer units/nodes denote the original features of input x_n

MLP is also called feedforward fully-connected network

Illustration: Neural Net with Single Hidden Layer

lacktriangle Compute K pre-activations for each input $oldsymbol{x}_n$

A linear model with learnable weight vec
$$\mathbf{w}_k$$
 $\mathbf{z}_{nk} = \mathbf{w}_k^\mathsf{T} \mathbf{x}_n = \sum_{d=1}^D w_{dk} x_{nd}$ $(k = 1, 2, ..., K)$

Apply nonlinear activation on each pre-act

Called a hidden unit
$$h_{nk}=g(z_{nk})$$
 $(k=1,2,...,K)$

lacktriangle Apply a linear model with $m{h}_n$ acting as features

A linear model with learnable weight vec
$$oldsymbol{v}$$
 Score of the input $oldsymbol{S_n} = oldsymbol{v}^{\mathsf{T}} h_n = \sum_{k=1}^K v_k h_{nk}$

Finally, output is produced as

Score converted to the actual prediction
$$\hat{y}_n = o(s_n)$$

Loss: $\mathcal{L}(\boldsymbol{W}, \boldsymbol{v}) = \sum_{n=1}^{N} \ell(y_n, \hat{y}_n) \mathcal{X}_{n1}$

Last layer activation function o can be an identify function too (e.g., for regression, $\hat{y}_n = s_n$) or sigmod/softmax/sign etc Hidden layer activation function gmust be nonlinear w_{12} w_{21} w_{22} w_{31}

Neural Nets: A Compact Illustration

Will denote a linear combination of inputs followed by a nonlinear operation on the result

■ Note: Hidden layer pre-act z_{nk} and post-act h_{nk} will be shown together for brevity

■ Denoting $\mathbf{W} = [\mathbf{w}_1, \mathbf{w}_2, ..., \mathbf{w}_K]$, $\mathbf{w}_k \in \mathbb{R}^D$, $\mathbf{h}_n = g(\mathbf{W}^\mathsf{T} \mathbf{x}_n) \in \mathbb{R}^K$ (K = 2, D = 3) above). Note: g applied elementwise on pre-activation vector $\mathbf{z}_n = \mathbf{W}^\mathsf{T} \mathbf{x}_n$ cs771: Intro to ML

Activation Functions: Some Common Choices

ReLU and Leaky ReLU are among the most popular ones (also efficient to compute)

Helps fix the dead neuron problem of ReLU when a is a negative number

Leaky ReLU

1

0

-1

-1

0

1

 $y = \mathbf{v}^{\mathsf{T}} (g(\mathbf{W}^{\mathsf{T}} x))$ $= \mathbf{v}^{\mathsf{T}} \mathbf{W}^{\mathsf{T}} x$

Still linear

Imp: Without nonlinear activation, a deep neural network is equivalent to a linear model no matter how many layers we use

Most activation functions are monotonic but there exist some non-monotonic activation functions as well

are

ReLU (Rectified Linear Unit): h = max(0, a)

Leaky ReLU: $h = \max(\beta a, a)$ (e.g., Swish: $a \times \sigma(\beta a)$) where β is a small postive number

MLP Can Learn Any Nonlinear Function

1.0 - Sigmoid 1 - Sigmoid 2 (Shifhed) - Sigmoid 2 (Shifhed) - Sigmoid 2 - Sigmoid 2 - Sigmoid 2 - Sigmoid 2 - Sigmoid 3 - Sigmoid 2 - Sigmoid 3 - Sigm

■ An MLP can be seen as a composition of multiple linear models combined nonlinearly

Superposition of two linear models = Nonlinear model

Two sigmoids (blue and orange) can be combined via a shift and a subtraction operation to result in a nonlinear separation boundary

Likewise, more than two sigmoids can be combined to learn even more sophisticated separation boundaries

Nonlinear separation boundary

Examples of some basic NN/MLP architectures

Single Hidden Layer and Single Output

 \blacksquare One hidden layer with K nodes and a single output (e.g., scalar-valued regression or

Single Hidden Layer and Multiple Outputs

■ One hidden layer with K nodes and a vector of C outputs (e.g., vector-valued regression or multi-class classification or multi-label classification)

Multiple Hidden Layers (One/Multiple Outputs)

 Most general case: Multiple hidden layers with (with same or different number of hidden nodes in each) and a scalar or vector-valued output

Each hidden layer uses a nonlinear activation function g (essential, otherwise the network can't learn nonlinear functions and reduces to a linear model)

Note: Nonlinearity g is applied elementwise on its inputs so $h_n^{(\ell)}$ has the same size as vector $W^{(\ell)}h_n^{(\ell-1)}$

The Bias Term

■ Each layer's pre-activations $\boldsymbol{z}_n^{(\ell)}$ have a an add bias term $\boldsymbol{b}^{(\ell)}$ (has the same size as $\boldsymbol{z}_n^{(\ell)}$ and $\boldsymbol{h}_n^{(\ell)}$) as well

$$\boldsymbol{z}_n^{(\ell)} = \boldsymbol{W}^{(\ell)^{\mathsf{T}}} \boldsymbol{h}_n^{(\ell-1)} + \boldsymbol{b}^{(\ell)}$$

$$\boldsymbol{h}_n^{(\ell)} = g(\boldsymbol{z}_n^{(\ell)})$$

- Bias term increases the expressiveness of the network and ensures that we have nonzero activations/preactivations even if this layer's input is a vector of all zeros
- lacktriangle Note that the bias term is the same for all inputs (does not depend on n)
- The bias term $\boldsymbol{b}^{(\ell)}$ is also learnable

Neural Nets are Feature Learners

lacktriangle Hidden layers can be seen as $\underline{\mathsf{learning}}$ a feature rep. $\phi(x_n)$ for each input x_n

Also note that neural nets are faster than kernel methods at test time since kernel methods need to store the training examples at test time whereas neural nets do not

■ Recall the prediction rule for a kernel method (e.g., kernel SVM)

$$y_n = \mathbf{w}^{\mathsf{T}} \, \phi(\mathbf{x}_n)$$
 OR $y_n = \sum_{i=1}^N \alpha_n k(\mathbf{x}_i, \mathbf{x}_n)$

- It's like a one hidden layer NN with
 - Pre-defined N features $\{k(x_i, x_n)\}_{i=1}^N$ acting as feature vector h_n
 - $\{\alpha_i\}_{n=1}^N$ are learnable output layer weights
- It's also like a one hidden layer NN with
 - Pre-defined M features $\phi(x_n)$ (M being size of feature mapping ϕ) acting as feature vector h_n
 - ullet $w \in \mathbb{R}^M$ are learnable output layer weights
- Both kernel methods and deep neural networks extract new features from the inputs
 - For kernel methods, the features are pre-defined via the kernel function
 - For deep NN, the features are learned by the network
- Note: Kernels can also be learned from data ("kernel learning") in which case kernel methods and deep neural nets become even more similar in spirit © CS771: Intro to ML

Features Learned by a Neural Network $W^{(\ell)} = [w_1^{(\ell)}, w_2^{(\ell)}, ..., w_{K_\ell}^{(\ell)}]$ is $W^{(\ell)} = [w_1^{(\ell)}, w_2^{(\ell)}, ..., w_{K_\ell}^{(\ell)}]$ is

between layer $\ell-1$ and ℓ

 $\mathbf{w}_{k}^{(\ell)} \in \mathbb{R}^{K_{\ell-1}}$ denotes "feature detector" for feature k of layer ℓ

 $\mathbf{W}^{(\ell)}$ collectively represents the K_{ℓ} feature detectors for layer ℓ

feature detector

■ For input \boldsymbol{x}_n , $h_{nk}^{(\ell)} = g(\boldsymbol{w}_k^{(\ell)^{\mathsf{T}}}\boldsymbol{h}_n^{(\ell-1)})$ is the value of feature k in layer ℓ

CS771: Intro to ML

E.g., $\boldsymbol{w}_{100}^{(1)}$ denotes a

feature detector

Why Neural Networks Work Better: Another View 1

- Linear models tend to only learn the "average" pattern
 - E.g., Weight vector of a linear classification model represent average pattern of a class
- Deep models can learn multiple patterns (each hidden node can learn one pattern)
 - Thus deep models can learn to capture more subtle variations that a simpler linear model

Neural Nets: Some Aspects

• Much of the magic lies in the hidden layers

Hidden layers learn and detect good features

Need to consider a few aspects

Number of hidden layers, number of units in each hidden layer

automated technique to do this

- Why bother about many hidden layers and not use a single very wide hidden layer (recall Hornik's universal function approximator theorem)?
- Complex networks (several, very wide hidden layers) or simpler networks (few, moderately wide hidden layers)?
- Aren't deep neural network prone to overfitting (since they contain a huge number of parameters)?

Representational Power of Neural Nets

lacktriangle Consider a single hidden layer neural net with K hidden nodes

- Recall that each hidden unit "adds" a simple function to the overall function
- lacktriangle Increasing K (number of hidden units) will result in a more complex function
- Very large K seems to overfit (see above fig). Should we instead prefer small K?
- No! It is better to use large K and regularize well. Reason/justification:
 - \blacksquare Simple NN with small K will have a few local optima, some of which may be bad
 - \blacksquare Complex NN with large K will have many local optimal, all equally good (theoretical results on this)
- We can also use multiple hidden layers (each sufficiently large) and regularize well

Wide or Deep?

While very wide single hidden layer can approx. any function, often we prefer many, less wide, hidden layers

 Higher layers help learn more directly useful/interpretable features (also useful for compressing data using a small number of features)

Training Deep Neural Networks: The Backpropagation Algorithm

Background: Gradient and Jacobian

- Let y = f(x), where $f: \mathbb{R}^P \to \mathbb{R}^Q$, $x \in \mathbb{R}^P$, $y \in \mathbb{R}^Q$. Denote $y = [f_1(x), ..., f_Q(x)]$
- The gradient of each component $y_i = f_i(x) \in \mathbb{R} \ (i = 1, 2, ..., Q)$ w.r.t. $x \in \mathbb{R}^P$ is

$$\nabla f_i(\boldsymbol{x}) = \frac{\partial y_i}{\partial \boldsymbol{x}} = \begin{bmatrix} \frac{\partial y_i}{\partial x_1} & \dots & \frac{\partial y_i}{\partial x_P} \end{bmatrix} \in \mathbb{R}^{1 \times P}$$
Note: Gradient expressed here as a row vector (has the same length as \boldsymbol{x} which is a column vector) for notational convenience later

■ Likewise, the gradient of whole vector $\mathbf{y} \in \mathbb{R}^Q$ w.r.t. vector $\mathbf{x} \in \mathbb{R}^P$ can be defined using the $Q \times P$ Jacobian matrix J^f whose rows consist of the above gradients

Background: Multivariate Chain Rule of Calculus

■ Let $x \in \mathbb{R}^P$, $y = g(x) \in \mathbb{R}^Q$, $z = f(y) \in \mathbb{R}$, where $g: \mathbb{R}^P \to \mathbb{R}^Q$, $f: \mathbb{R}^Q \to \mathbb{R}$

■ The above can be written as a product of a vector and a matrix

Turns out to be a product of Jacobian of
$$f$$
 and g in that order \odot

$$\frac{\partial z}{\partial x} = \begin{bmatrix} \frac{\partial z}{\partial y_1} & \dots & \frac{\partial z}{\partial y_Q} \end{bmatrix} \times \begin{bmatrix} \frac{\partial y_1}{\partial x} \\ \vdots \\ \frac{\partial y_Q}{\partial x} \end{bmatrix} = \nabla f(y) \times \begin{bmatrix} \nabla g_1(x) \\ \vdots \\ \nabla g_P(x) \end{bmatrix} = \nabla f(y) \times J^g$$

 \blacksquare More generally, let $w \in \mathbb{R}^P$, $x = h(w) \in \mathbb{R}^Q$, $y = g(x) \in \mathbb{R}^R$, $z = f(y) \in \mathbb{R}^S$

Product of the 3 Jacobians in that order (simple!
$$\odot$$
)
$$\frac{\partial \mathbf{z}}{\partial \mathbf{w}} = J^f \times J^g \times J^h \in \mathbb{R}^{S \times P}$$

Note that chain rule for scalar variables w, x, y, z is defined in a similar way as $\frac{\partial z}{\partial x} = f'(y)g'(x)h'(w)$

Backpropagation (Backprop)

- Backprop is gradient descent with multivariate chain rule for derivatives
- Consider a two hidden layer neural network

$$\mathcal{L}(\mathbf{W}^{(1)}, \mathbf{W}^{(2)}, \mathbf{v}) = \sum_{n=1}^{N} \ell(y_n, \hat{y}_n) = \sum_{n=1}^{N} \ell_n$$

- We wish to minimize the loss
- The gradient based updates will be

$$v = v - \eta \frac{\partial \mathcal{L}}{\partial v}$$
 $W^{(i)} = W^{(i)} - \eta \frac{\partial \mathcal{L}}{\partial W^{(i)}}$ $(i = 1,2)$

- Since $\mathcal{L} = \sum_{n=1}^N \ell_n$, we need to compute $\frac{\partial \ell_n}{\partial v}$ and $\frac{\partial \ell_n}{\partial w^{(i)}}$ (i=1,2)
- Assume output activation o as identity $(\hat{y}_n = v^T h_n^{(2)})$ $\frac{\partial \ell_n}{\partial v} = \frac{\partial \ell_n}{\partial \hat{v}_n} \frac{\partial \hat{y}_n}{\partial v} = \ell'(y_n, \hat{y}_n) h_n^{(2)}$

Backpropagation in detail

• Let's now look at $\frac{\partial \ell_n}{\partial \boldsymbol{w}^{(2)}}$ where $\ell_n = \ell(y_n, \hat{y}_n)$ and $\hat{y}_n = \boldsymbol{v}^{\mathsf{T}} \boldsymbol{h}_n^{(2)}$

$$\frac{\partial \ell_n}{\partial \boldsymbol{W}^{(2)}} = \frac{\partial \ell_n}{\partial \hat{y}_n} \frac{\partial \hat{y}_n}{\partial \boldsymbol{W}^{(2)}} = \ell'(y_n, \hat{y}_n) \frac{\partial \hat{y}_n}{\partial \boldsymbol{W}^{(2)}}$$

$$\frac{\partial \hat{y}_n}{\partial W^{(2)}} = \frac{\partial \hat{y}_n}{\partial h_n^{(2)}} \frac{\partial h_n^{(2)}}{\partial W^{(2)}} + \frac{\partial \hat{y}_n}{\partial v} \frac{\partial v}{\partial W^{(2)}}$$

■ Since v doesn't depend on $W^{(2)}$, $\frac{\partial v}{\partial w^{(2)}} = 0$ Using transpose since we assume gradient to

Jacobian of size
$$\frac{1 \times K_2 \times K_1}{\partial \boldsymbol{W}^{(2)}} = \ell'(y_n, \hat{y}_n) \frac{\partial \hat{y}_n}{\partial \boldsymbol{h}_n^{(2)}} \frac{\partial \boldsymbol{h}_n^{(2)}}{\partial \boldsymbol{W}^{(2)}} = \ell'(y_n, \hat{y}_n) \boldsymbol{v}^{\mathsf{T}} \frac{\partial \boldsymbol{h}_n^{(2)}}{\partial \boldsymbol{W}^{(2)}}$$

Jacobian of size
$$K_2 \times K_2 \times K_1$$

$$\frac{\partial \boldsymbol{h}_{n}^{(2)}}{\partial \boldsymbol{W}^{(2)}} = \frac{\partial \boldsymbol{h}_{n}^{(2)}}{\partial \boldsymbol{z}_{n}^{(2)}} \frac{\partial \boldsymbol{z}_{n}^{(2)}}{\partial \boldsymbol{W}^{(2)}} = \operatorname{diag}\left(g'\left(\boldsymbol{z}_{n1}^{(2)}\right), \dots, g'\left(\boldsymbol{z}_{nK_{2}}^{(2)}\right)\right) \frac{\partial \boldsymbol{z}_{n}^{(2)}}{\partial \boldsymbol{W}^{(2)}}$$

Diagonal matrix of size $K_2 \times K_2$ with Jacobian (gradient vector) of g along the diagonals

be a row vector

 $\boldsymbol{h}_n^{(1)} = g(\boldsymbol{z}_n^{(1)})$

 $\boldsymbol{h}_n^{(2)} = g(\boldsymbol{z}_n^{(2)})$

 $W^{(2)}$

 $W^{(1)}$

This Jacobian is a tensor of size $K_2 \times K_2 \times K_1$

Backpropagation: Computation Reuse

Summarizing, the required gradients/Jacobians for this network are

(libraries like Tensorflow and Pytorch do so efficiently) ■ Vanishing gradients: $\frac{\partial \boldsymbol{h}_{n}^{(i)}}{\partial \boldsymbol{z}_{n}^{(i)}} = \operatorname{diag}\left(g'\left(z_{n1}^{(i)}\right), ..., g'\left(z_{nK_{i}}^{(i)}\right)\right)$

Gradients in lower layers will have product of many such terms $\frac{\partial h_n^{(i)}}{\partial z^{(i)}}$. If g' is small (e.g., gradient of sigmoid or tanh), the gradient becomes vanishingly small for lower

 \hat{y}_n

 $W^{(2)}$

layers and becomes an issue (thus ReLU and other with non-saturating activations are preferred)

Backpropagation

Backprop iterates between a forward pass and a backward pass

Forward pass computes hidden units and the loss using current values of the network weights \boldsymbol{W} and \boldsymbol{v}

■ Software frameworks such as Tensorflow and PyTorch support this already so you don't need to implement it by hand (so no worries of computing derivatives etc.) 1: Intro to ML

Backpropagation through an example

Consider a single hidden layer MLP

Assuming regression (o = identity), the loss function for this model

$$\mathcal{L} = \frac{1}{2} \sum_{n=1}^{N} \left(y_n - \mathbf{v}^{\top} \mathbf{h}_n \right)^2$$

$$= \frac{1}{2} \sum_{n=1}^{N} \left(y_n - \sum_{k=1}^{K} v_k h_{nk} \right)^2$$

$$= \frac{1}{2} \sum_{n=1}^{N} \left(y_n - \sum_{k=1}^{K} v_k g(\mathbf{w}_k^{\top} \mathbf{x}_n) \right)^2$$

- To use gradient methods for \mathbf{W} , \mathbf{v} , we need gradients.
- \bullet Gradient of $\mathcal L$ w.r.t. $\mathbf v$ is straightforward

$$\frac{\partial \mathcal{L}}{\partial v_k} = -\sum_{n=1}^N \left(y_n - \sum_{k=1}^K v_k g(\mathbf{w}_k^\top \mathbf{x}_n) \right) h_{nk} = \sum_{n=1}^N \mathbf{e}_n h_{nk}$$

ullet Gradient of ${\cal L}$ w.r.t. ${f W}$ requires chain rule

$$\frac{\partial \mathcal{L}}{\partial w_{dk}} = \sum_{n=1}^{N} \frac{\partial \mathcal{L}}{\partial h_{nk}} \frac{\partial h_{nk}}{\partial w_{dk}}$$

$$\frac{\partial \mathcal{L}}{\partial h_{nk}} = -(y_n - \sum_{k=1}^{K} v_k g(\mathbf{w}_k^{\top} \mathbf{x}_n)) v_k = -\mathbf{e}_n v_k$$

$$\frac{\partial h_{nk}}{\partial w_{dk}} = g'(\mathbf{w}_k^{\top} \mathbf{x}_n) x_{nd} \quad \text{(note: } h_{nk} = g(\mathbf{w}_k^{\top} \mathbf{x}_n)\text{)}$$

- Forward prop computes errors e_n using current W, v.

 Backprop updates NN params W, v using grad methods
- Backprop caches many of the calculations for reuse