Project Report

On

Cab fare Prediction

INDEX

Outliers)

1.1 Problem Statement

You are a cab rental start-up company. You have successfully run the pilot project and now want to launch your cab service across the country. You have collected the historical data from your pilot project and now have a requirement to apply analytics for fare prediction. You need to design a system that predicts the fare amount for a cab ride in the city.

1.2 Data

Understanding of data is the very first and important step in the process of finding solution of any business problem. Here in our case our company has provided a data set with following features, we need to go through each and every variable of it to understand and for better functioning.

Size of Dataset Provided: - 16067 rows, 7 Columns (including dependent variable)

Missing Values: Yes Outliers Presented: Yes

Below mentioned is a list of all the variable names with their meanings:

Variable s	Description			
fare_amount	Fare amount			
pickup_datetime	Cab pickup date with time			
pickup_longitude	Pickup location longitude			
pickup_latitude	Pickup location latitude			
dropoff_longitude	Drop location longitude			
dropoff_latitude	Drop location latitude			
passenger_count	Number of passengers sitting in the cab			

Methodology

Pre-Processing

When we required to build a predictive model, we require to look and manipulate the data before we start modelling which includes multiple preprocessing steps such as exploring the data, cleaning the data as well as visualizing the data through graph and plots, all these steps is combined under one shed which is **Exploratory Data Analysis**, which includes following steps:

- Data exploration and Cleaning
- Missing values treament
- Outlier Analysis
- Feature Selection
- Features Scaling
 - o Skewness and Log transformation
- Visualization

➤ Modelling

Once all the Pre-Processing steps has been done on our data set, we will now further move to our next step which is modelling. Modelling plays an important role to find out the good inferences from the data. Choice of models depends upon the problem statement and data set. As per our problem statement and dataset, we will try some models on our preprocessed data and post comparing the output results we will select the best suitable model for our problem. As per our data set following models need to be tested:

- Linear regression
- Decision Tree
- Random forest.
- Gradient Boosting
- ❖ We have also used hyper parameter tunings to check the parameters on which our model runs best. Following are two techniques of hyper parameter tuning we have used:
 - o Random Search CV
 - o Grid Search CV

Model Selection

The final step of our methodology will be the selection of the model based on the different output and results shown by different models. We have multiple parameters which we will study further in our report to test whether the model is suitable for our problem statement or not.

Pre-Processing

3.1 Data exploration and Cleaning (Missing Values and Outliers)

The very first step which comes with any data science project is data exploration and cleaning which includes following points as per this project:

- a. Separate the combined variables.
- b. As we know we have some negative values in fare amount so we have to remove those values.
- c. Passenger count would be max 6 if it is a SUV vehicle not more than that. We have to remove the rows having passengers counts more than 6 and less than 1.
- d. There are some outlier figures in the fare (like top 3 values) so we need to remove those.
- e. Latitudes range from -90 to 90. Longitudes range from -180 to 180. We need to remove the rows if any latitude and longitude lies beyond the ranges.

3.2 Creating some new variables from the given variables.

Here in our data set our variable name pickup_datetime contains date and time for pickup. So we tried to extract some important variables from pickup_datetime:

- Year
- Month
- Date
- Day of Week
- Hour
- Minute

Also, we tried to find out the distance using the haversine formula which says:

The **haversine formula** determines the great-circle distance between two points on a sphere given their longitudes and latitudes. Important in navigation, it is a special case of a more general formula in spherical trigonometry, the law of haversines, that relates the sides and angles of spherical triangles.

So our new extracted variables are:

- fare_amount
- pickup_datetime
- pickup_longitude
- pickup_latitude
- dropoff_longitude
- dropoff_latitude
- passenger_count
- year
- Month
- Date
- Day of Week
- Hour
- Minute
- Distance

3.3 **Selection of variables**

Now as we know that all above variables are of now use so we will drop the redundant variables:

- pickup_datetime
- pickup_longitude
- pickup_latitude
- dropoff_longitude
- dropoff_latitude
- Minute

3.4 Some more data exploration

In this report we are trying to predict the fare prices of a cab rental company. So here we have a data set of 16067 observations with 8 variables including one dependent variable.

3.4.1 Below are the names of Independent variables:

passenger_count, year, Month, Date, Day of Week, Hour, distance

Our Dependent variable is: fare_amount

3.4.2 Uniqueness in Variable

We need to look at the unique number in the variables which help us to decide whether the variable is categorical or numeric. So, by using python script 'nunique' we tried to find out the unique values in

each variable. We have also added the table below:

3.4.3 Dividing the variables into two categories basis their data types:

<u>Continuous variables</u> - 'fare_amount', 'distance'.

Categorical Variables - 'year', 'Month', 'Date', 'Day of Week', 'Hour', 'passenger_count'

3.5 **Feature Scaling**

Skewness is asymmetry in a statistical distribution, in which the curve appears distorted or skewed either to the left or to the right. Skewness can be quantified to define the extent to which a distribution differs from a normal distribution. Here we tried to show the skewness of our variables and we find that our target variable absenteeism in hours having is one sided skewed so by using **log transform** technique we tried to reduce the skewness of the same. As our continuous variables appears to be normally distributed so we don't need to use feature scaling techniques like normalization and standardization for the same.

Modelling

After a thorough preprocessing, we will use some regression models on our processed data to predict the target variable. Following are the models which we have built –

- Linear Regression
- Decision Tree
- Random Forest
- Gradient Boosting

Before running any model, we will split our data into two parts which is train and test data. Here in our case we have taken 80% of the data as our train data. Below is the snipped image of the split of train test.

4.1 Linear Regression

Multiple linear regression is the most common form of linear regression analysis. Multiple regression is an extension of simple linear regression. It is used as a predictive analysis, when we want to predict the value of a variable based on the value of two or more other variables. The variable we want to predict is called the dependent variable (or sometimes, the outcome, target or criterion variable).

4.2 Decision Tree

A tree has many analogies in real life, and turns out that it has influenced a wide area of machine learning, covering both classification and regression. In decision analysis, a decision tree can be used to visually and explicitly represent decisions and decision making. As the name goes, it uses a tree-like model of decisions.

Below is the screenshot of the query we executed and the result shown, we will compare the results of each model in a combined table later on.

4.3 Random Forest

Random forests or random decision forests are an ensemble learning method for classification, regression and other task, that operate by constructing a multitude of decision trees at training time and outputting the class that is the mode of the classes (classification) or mean prediction (regression) of the individual trees. Random decision forests correct for decision trees' habit of overfitting to their training set.

Random forest builds multiple decision trees and merges them together to get a more accurate and stable prediction.

4.4 Gradient Boosting

Gradient boosting is a machine learning technique for regression and classification problems, which produces a prediction model in the form of an ensemble of weak prediction models, typically decision trees. It builds the model in a stage-wise fashion like other boosting methods do, and it generalizes them by allowing optimization of an arbitrary differentiable loss function.

4.5 Hyper Parameters Tunings for optimizing the results

Model hyperparameters are set by the data scientist ahead of training and control implementation aspects of the model. The weights learned during training of a linear regression model are parameters while the number of trees in a random forest is a model hyperparameter because this is set by the data scientist. Hyperparameters can be thought of as model settings. These settings need to be tuned for each problem because the best model hyperparameters for one particular dataset will not be the best across all datasets. The process of hyperparameter tuning (also called hyperparameter optimization) means finding the combination of hyperparameter values for a machine learning model that performs the best - as measured on a validation dataset - for a problem.

Here we have used two hyper parameters tuning techniques

- Random Search CV
- Grid Search CV
- 1. **Random Search CV**: This algorithm set up a grid of hyperparameter values and select random combinations to train the model and score. The number of search iterations is set based on time/resources.
- 2. **Grid Search CV**: This algorithm set up a grid of hyperparameter values and for each combination, train a model and score on the validation data. In this approach, every single combination of hyperparameters values is tried which can be very inefficient.

Conclusion

5.1 Model Evaluation

The main concept of looking at what is called residuals or difference between our predictions f(x[I,]) and actual outcomes y[i].

In general, most data scientists use two methods to evaluate the performance of the model:

I. **RMSE** (Root Mean Square Error): is a frequently used measure of the difference between values predicted by a model and the values actually observed from the environment that is being modelled.

$$RMSE \square \sqrt{\frac{\sum_{i=1}^{n} (X_{obs,i} - X_{mo \ del,i})^{2}}{n}}$$

- II. **R Squared(R^2):** is a statistical measure of how close the data are to the fitted regression line. It is also known as the coefficient of determination, or the coefficient of multiple determination for multiple regression. In other words, we can say it explains as to how much of the variance of the target variable is explained.
- III. We have shown both train and test data results, the main reason behind showing both the results is to check whether our data is overfitted or not.

Below table shows the model results before applying hyper tuning:

Model Name	RMSE		R Squ	uared
	Train	Test	Train	Test
`Linear Regression	0.27	0.25	0.74	0.77
Decision Tree	0.30	0.28	0.70	0.70
Random Forest model	0.09	0.23	0.96	0.79
Gradient Boosting	0.22	0.22	0.82	0.81

Below table shows results post using hyper parameter tuning techniques:

Model Name	<u>Parameter</u>	RMSE (Test)	R Squared (Test)
D. J. G. J. CV	Random Forest	0.24	0.79
Random Search CV	Gradient Boosting	0.25	0.77
Crid Saarah CV	Random Forest	0.23	0.80
Grid Search CV	Gradient Boosting	0.24	0.79

Above table shows the results after tuning the parameters of our two best suited models i.e. Random Forest and Gradient Boosting. For tuning the parameters, we have used Random Search CV and Grid Search CV under which we have given the range of n_estimators, depth and CV folds.

5.2 Model Selection

On the basis RMSE and R Squared results a good model should have least RMSE and max R Squared value. So, from above tables we can see:

- From the observation of all RMSE Value and R-Squared Value we have concluded that,
- Both the models- Gradient Boosting Default and Random Forest perform comparatively well while comparing their RMSE and R-Squared value.
- After this, I chose Random Forest CV and Grid Search CV to apply cross validation technique and see changes brought about by that.
- After applying tunings Random forest model shows best results compared to gradient boosting.
- So finally, we can say that Random forest model is the best method to make prediction for this project with highest explained variance of the target variables and lowest error chances with parameter tuning technique Grid Search CV.

Finally, I used this method to predict the target variable for the test data file shared in the problem statement. Results that I found are attached with my submissions.

5.3 Some more visualization facts:

1. Number of passengers and fare

We can see in below graph that single passengers are the most frequent travelers, and the highest fare also seems to come from cabs which carry just 1 passenger.

2. Date of month and fares

The fares throughout the month mostly seem uniform.

3. Hours and Fares

- During hours 6 PM to 11PM the frequency of cab boarding is very due to peak hours
- Fare prices during 2PM to 8PM is bit high compared to all other time might be due to high demands.

4. Week Day and fare

• Cab fare is high on Friday, Saturday and Monday, may be during weekend and first day of the working day they charge high fares because of high demands of cabs.

5. Impact of Day on the Number of Cab rides:

Observation: The day of the week does not seem to have much influence on the number of cabs ride

NOTE:

Since the missing values are less, I have skipped the entire column in python but in R (for the sake of project) I have imputed the missing values.

R CODE

R code: # Cab Fare Prediction rm(list = ls())setwd("C:/Users/Welcome/Desktop/Cab prediction-Projects") ##loading Libraries x = c("ggplot2", "corrgram", "DMwR", "usdm", "caret", "randomForest", "e1071", "DataCombine", "doSNOW", "inTrees", "rpart.plot", "rpart", 'MASS', 'xgboost', 'stats') #load Packages lapply(x, require, character.only = TRUE)rm(x)# The details of data attributes in the dataset are as follows: # pickup_datetime - timestamp value indicating when the cab ride started. # pickup_longitude - float for longitude coordinate of where the cab ride started. # pickup latitude - float for latitude coordinate of where the cab ride started. # dropoff_longitude - float for longitude coordinate of where the cab ride ended. # dropoff_latitude - float for latitude coordinate of where the cab ride ended. # passenger_count - an integer indicating the number of passengers in the cab ride. # loading datasets train = read.csv("train_cab.csv", header = T, na.strings = c(" ", "", "NA")) test = read.csv("test.csv") test_pickup_datetime = test["pickup_datetime"] # Structure of data str(train) str(test) summary(train) summary(test) head(train,5) head(test,5)

Exploratory Data Analysis # Changing the data types of variables train\$fare_amount = as.numeric(as.character(train\$fare_amount)) train\$passenger_count=round(train\$passenger_count)

##############

Removing values which are not within desired range(outlier) depending upon basic understanding of dataset.

```
# 1. Fare amount has a negative value, which doesn't make sense. A price amount cannot be -ve and also cannot
be 0. So we will remove these fields.
train[which(train$fare_amount < 1 ),]</pre>
nrow(train[which(train$fare_amount < 1 ),])</pre>
train = train[-which(train$fare_amount < 1),]
#2.Passenger_count variable
for (i in seq(4,11,by=1)){
 print(paste('passenger count above ',i,nrow(train[which(train$passenger count > i),])))
# so 20 observations of passenger_count is consistently above from 6,7,8,9,10 passenger_counts, let's check
them.
train[which(train$passenger_count > 6),]
# Also we need to see if there are any passenger_count==0
train[which(train$passenger_count < 1),]
nrow(train[which(train$passenger count < 1),])
# We will remove these 58 observations and 20 observation which are above 6 value because a cab cannot hold
these number of passengers.
train = train[-which(train$passenger_count < 1),]
train = train[-which(train$passenger_count > 6),]
# 3.Latitudes range from -90 to 90.Longitudes range from -180 to 180.Removing which does not satisfy these
ranges
print(paste('pickup_longitude above 180=',nrow(train[which(train$pickup_longitude > 180),])))
print(paste('pickup longitude above -180=',nrow(train[which(train$pickup longitude < -180 ),])))
print(paste('pickup_latitude above 90=',nrow(train[which(train$pickup_latitude > 90),])))
print(paste('pickup_latitude above -90=',nrow(train[which(train$pickup_latitude < -90 ),])))
print(paste('dropoff longitude above 180=',nrow(train[which(train$dropoff longitude > 180),])))
print(paste('dropoff_longitude above -180=',nrow(train[which(train$dropoff_longitude < -180),])))
print(paste('dropoff_latitude above -90=',nrow(train[which(train$dropoff_latitude < -90 ),])))
print(paste('dropoff_latitude above 90=',nrow(train[which(train$dropoff_latitude > 90),])))
# There's only one outlier which is in variable pickup_latitude. So we will remove it with nan.
# Also we will see if there are any values equal to 0.
nrow(train[which(train$pickup_longitude == 0),])
nrow(train[which(train$pickup_latitude == 0),])
```

```
nrow(train[which(train$dropoff_longitude == 0),])
nrow(train[which(train$pickup_latitude == 0),])
# there are values which are equal to 0. we will remove them.
train = train[-which(train$pickup latitude > 90),]
train = train[-which(train\pickup_longitude == 0),]
train = train[-which(train$dropoff_longitude == 0),]
# Make a copy
df=train
# train=df
#############
                              Missing Value Analysis
                                                                 ################
missing\_val = data.frame(apply(train, 2, function(x) \{ sum(is.na(x)) \}))
missing_val$Columns = row.names(missing_val)
names(missing_val)[1] = "Missing_percentage"
missing val$Missing percentage = (missing val$Missing percentage/nrow(train)) * 100
missing_val = missing_val[order(-missing_val$Missing_percentage),]
row.names(missing_val) = NULL
missing\_val = missing\_val[,c(2,1)]
missing_val
unique(train$passenger_count)
unique(test$passenger_count)
train[,'passenger_count'] = factor(train[,'passenger_count'], labels=(1:6))
test[,'passenger_count'] = factor(test[,'passenger_count'], labels=(1:6))
# 1.For Passenger_count:
# Actual value = 1
# Mode = 1
# KNN = 1
train$passenger_count[1000]
train$passenger_count[1000] = NA
getmode <- function(v) {
 uniqv <- unique(v)
 uniqv[which.max(tabulate(match(v, uniqv)))]
}
# Mode Method
```

```
# We can't use mode method because data will be more biased towards passenger_count=1
# 2.For fare_amount:
# Actual value = 18.1,
# Mean = 15.117,
# Median = 8.5,
# KNN = 18.28
sapply(train, sd, na.rm = TRUE)
# fare_amount pickup_datetime pickup_longitude
                 4635.700531
# 435.968236
                                   2.659050
# pickup_latitude dropoff_longitude dropoff_latitude
# 2.613305
                2.710835
                               2.632400
# passenger_count
# 1.266104
train$fare amount[1000]
train$fare_amount[1000]= NA
# Mean Method
mean(train\$fare\_amount, na.rm = T)
#Median Method
median(train$fare_amount, na.rm = T)
# kNN Imputation
train = knnImputation(train, k = 181)
train$fare amount[1000]
train$passenger_count[1000]
sapply(train, sd, na.rm = TRUE)
# fare_amount pickup_datetime pickup_longitude
                 4635.700531
# 435.661952
                                   2.659050
# pickup_latitude dropoff_longitude dropoff_latitude
# 2.613305
                2.710835
                               2.632400
# passenger_count
# 1.263859
sum(is.na(train))
str(train)
```

getmode(train\$passenger_count)

```
summary(train)
df1=train
# train=df1
###############################
                                        Outlier Analysis
                                                                  ###############################
# We Will do Outlier Analysis only on Fare amount just for now and we will do outlier analysis after feature
engineering laitudes and longitudes.
# Boxplot for fare_amount
pl1 = ggplot(train,aes(x = factor(passenger_count),y = fare_amount))
pl1 + geom_boxplot(outlier.colour="red", fill = "grey",outlier.shape=18,outlier.size=1,
notch=FALSE)+ylim(0,100)
# Replace all outliers with NA and impute
vals = train[,"fare_amount"] %in% boxplot.stats(train[,"fare_amount"])$out
train[which(vals),"fare amount"] = NA
#lets check the NA's
sum(is.na(train$fare_amount))
#Imputing with KNN
train = knnImputation(train,k=3)
# lets check the missing values
sum(is.na(train$fare_amount))
str(train)
df2=train
# train=df2
#####################################
                                 Feature Engineering
                                                                   # 1.Feature Engineering for timestamp variable
# we will derive new features from pickup datetime variable
# new features will be year,month,day_of_week,hour
#Convert pickup_datetime from factor to date time
train$pickup_date = as.Date(as.character(train$pickup_datetime))
train$pickup_weekday = as.factor(format(train$pickup_date,"%u"))# Monday = 1
train$pickup_mnth = as.factor(format(train$pickup_date,"%m"))
train$pickup_yr = as.factor(format(train$pickup_date,"%Y"))
```

```
pickup time = strptime(train$pickup datetime,"%Y-%m-%d %H:%M:%S")
train$pickup_hour = as.factor(format(pickup_time,"%H"))
#Add same features to test set
test$pickup_date = as.Date(as.character(test$pickup_datetime))
test$pickup_weekday = as.factor(format(test$pickup_date,"%u"))# Monday = 1
test$pickup_mnth = as.factor(format(test$pickup_date,"%m"))
test$pickup yr = as.factor(format(test$pickup date,"%Y"))
pickup_time = strptime(test$pickup_datetime,"%Y-%m-%d %H:%M:%S")
test$pickup_hour = as.factor(format(pickup_time,"%H"))
sum(is.na(train))# there was 1 'na' in pickup_datetime which created na's in above feature engineered variables.
train = na.omit(train) # we will remove that 1 row of na's
train = subset(train, select = -c(pickup_datetime, pickup_date))
test = subset(test,select = -c(pickup_datetime,pickup_date))
# Now we will use month, weekday, hour to derive new features like sessions in a day, seasons in a
year, week: weekend/weekday
\# f = function(x)
# if ((x >= 5) & (x <= 11)){
    return ('morning')
# }
# if ((x >= 12) & (x <= 16)){
   return ('afternoon')
# }
# if ((x >= 17) & (x <= 20)){
    return ('evening')
#
# if ((x >= 21) & (x <= 23)){
   return ('night (PM)')
  }
#
# if ((x \ge 0) & (x < 4))
   return ('night (AM)')
# }
# }
# 2.Calculate the distance travelled using longitude and latitude
deg_to_rad = function(deg){
```

```
(\text{deg * pi}) / 180
haversine = function(long1,lat1,long2,lat2){
 #long1rad = deg_to_rad(long1)
 phi1 = deg_to_rad(lat1)
 #long2rad = deg_to_rad(long2)
 phi2 = deg_to_rad(lat2)
 delphi = deg to rad(lat2 - lat1)
 dellamda = deg_to_rad(long2 - long1)
 a = \sin(\frac{delphi}{2}) * \sin(\frac{delphi}{2}) + \cos(\frac{ghi1}{2}) * \cos(\frac{ghi2}{2}) *
  sin(dellamda/2) * sin(dellamda/2)
 c = 2 * atan2(sqrt(a), sqrt(1-a))
 R = 6371e3
 R * c / 1000 #1000 is used to convert to meters
}
# Using haversine formula to calculate distance fr both train and test
train$dist =
haversine(train$pickup_longitude,train$pickup_latitude,train$dropoff_longitude,train$dropoff_latitude)
test$dist = haversine(test$pickup_longitude,test$pickup_latitude,test$dropoff_longitude,test$dropoff_latitude)
# We will remove the variables which were used to feature engineer new variables
train = subset(train, select = -c(pickup_longitude, pickup_latitude, dropoff_longitude, dropoff_latitude))
test = subset(test,select = -c(pickup_longitude,pickup_latitude,dropoff_longitude,dropoff_latitude))
str(train)
summary(train)
Feature selection
                                                                   ###################################
numeric_index = sapply(train,is.numeric) #selecting only numeric
numeric data = train[,numeric index]
cnames = colnames(numeric_data)
#Correlation analysis for numeric variables
corrgram(train[,numeric index],upper.panel=panel.pie, main = "Correlation Plot")
```

#ANOVA for categorical variables with target numeric variable

```
#aov_results = aov(fare_amount ~ passenger_count * pickup_hour * pickup_weekday,data = train)
aov_results = aov(fare_amount ~ passenger_count + pickup_hour + pickup_weekday + pickup_mnth +
pickup_yr,data = train)
summary(aov_results)
# pickup_weekdat has p value greater than 0.05
train = subset(train, select=-pickup_weekday)
#remove from test set
test = subset(test,select=-pickup_weekday)
Feature Scaling
#Normality check
# qqnorm(train$fare_amount)
# histogram(train$fare_amount)
library(car)
# dev.off()
par(mfrow=c(1,2))
qqPlot(train$fare_amount)
                                         # qqPlot, it has a x values derived from gaussian distribution, if data
is distributed normally then the sorted data points should lie very close to the solid reference line
truehist(train$fare amount)
                                         # truehist() scales the counts to give an estimate of the probability
density.
lines(density(train$fare_amount)) # Right skewed
                                                 # lines() and density() functions to overlay a density plot
on histogram
#Normalisation
print('dist')
train[,'dist'] = (train[,'dist'] - min(train[,'dist']))/
  (max(train[,'dist'] - min(train[,'dist'])))
# #check multicollearity
# library(usdm)
```

```
# vif(train[,-1])
# vifcor(train[,-1], th = 0.9)
set.seed(1000)
tr.idx = createDataPartition(train$fare_amount,p=0.75,list = FALSE) # 75% in trainin and 25% in Validation
Datasets
train_data = train[tr.idx,]
test_data = train[-tr.idx,]
rmExcept(c("test","train","df",'df1','df2','df3','test_data','train_data','test_pickup_datetime'))
#Error metric used to select model is RMSE
##############
                    Linear regression
                                           ###############################
lm_model = lm(fare_amount ~.,data=train_data)
summary(lm_model)
str(train_data)
plot(lm model$fitted.values,rstandard(lm model),main = "Residual plot",
  xlab = "Predicted values of fare amount",
  ylab = "standardized residuals")
lm_predictions = predict(lm_model,test_data[,2:6])
qplot(x = test_data[,1], y = lm_predictions, data = test_data, color = I("blue"), geom = "point")
regr.eval(test_data[,1],lm_predictions)
# mae
         mse
                rmse
                        mape
# 3.5303114 19.3079726 4.3940838 0.4510407
                             Decision Tree
#################
                                               Dt model = rpart(fare amount ~ ., data = train data, method = "anova")
```

```
summary(Dt_model)
#Predict for new test cases
predictions_DT = predict(Dt_model, test_data[,2:6])
qplot(x = test_data[,1], y = predictions_DT, data = test_data, color = I("blue"), geom = "point")
regr.eval(test_data[,1],predictions_DT)
# mae
         mse
                rmse
                        mape
# 1.8981592 6.7034713 2.5891063 0.2241461
                               Random forest
##############
                                                    rf_model = randomForest(fare_amount ~.,data=train_data)
summary(rf_model)
rf_predictions = predict(rf_model,test_data[,2:6])
qplot(x = test_data[,1], y = rf_predictions, data = test_data, color = I("blue"), geom = "point")
regr.eval(test_data[,1],rf_predictions)
# mae
         mse
                rmse
                        mape
# 1.9053850 6.3682283 2.5235349 0.2335395
#############
                   Improving Accuracy by using Ensemble technique ---- XGBOOST
train_data_matrix = as.matrix(sapply(train_data[-1],as.numeric))
test data data matrix = as.matrix(sapply(test data[-1],as.numeric))
xgboost_model = xgboost(data = train_data_matrix,label = train_data$fare_amount,nrounds = 15,verbose =
FALSE)
summary(xgboost_model)
xgb_predictions = predict(xgboost_model,test_data_data_matrix)
qplot(x = test_data[,1], y = xgb_predictions, data = test_data, color = I("blue"), geom = "point")
```

```
regr.eval(test_data[,1],xgb_predictions)
# mae
         mse
                 rmse
                         mape
# 1.6183415 5.1096465 2.2604527 0.1861947
                              Finalizing and Saving Model for later use
##############
# In this step we will train our model on whole training Dataset and save that model for later use
train_data_matrix2 = as.matrix(sapply(train[-1],as.numeric))
test_data_matrix2 = as.matrix(sapply(test,as.numeric))
xgboost_model2 = xgboost(data = train_data_matrix2,label = train$fare_amount,nrounds = 15,verbose =
FALSE)
# Saving the trained model
saveRDS(xgboost_model2, "./final_Xgboost_model_using_R.rds")
# loading the saved model
super_model <- readRDS("./final_Xgboost_model_using_R.rds")</pre>
print(super_model)
# Lets now predict on test dataset
xgb = predict(super_model,test_data_matrix2)
xgb_pred = data.frame(test_pickup_datetime, "predictions" = xgb)
# Now lets write(save) the predicted fare_amount in disk as .csv format
write.csv(xgb_pred,"xgb_predictions_R.csv",row.names = FALSE)
```

PYTHON CODE

```
In [1]:
        import os
        import pandas as pd
        import numpy as np
        import matplotlib.pyplot as plt
        import seaborn as sns
        from sklearn.tree import DecisionTreeRegressor
        from sklearn.ensemble import RandomForestRegressor
        from sklearn.ensemble import GradientBoostingRegressor
        from sklearn.linear model import LinearRegression
        from sklearn.model_selection import train_test_split
        from sklearn.metrics import mean squared error
        from sklearn.metrics import r2 score
        from pprint import pprint
        from sklearn.model selection import GridSearchCV
        %matplotlib inline
```

In [2]: os.chdir("C:/Users/Welcome/Desktop/Cab prediction-Project")

```
In [3]: train = pd.read_csv("train_cab.csv",na_values={"pickup_datetime":"43"})
test = pd.read_csv("test.csv")
```

In [4]: train.head()

Out[4]:

	fare_amount	pickup_datetime	pickup_longitude	pickup_latitude	dropoff_longitude	dropoff_la
0	4.5	2009-06-15 17:26:21 UTC	-73.844311	40.721319	-73.841610	40.7
1	16.9	2010-01-05 16:52:16 UTC	-74.016048	40.711303	-73.979268	40.7
2	5.7	2011-08-18 00:35:00 UTC	-73.982738	40.761270	-73.991242	40.7
3	7.7	2012-04-21 04:30:42 UTC	-73.987130	40.733143	-73.991567	40.7
4	5.3	2010-03-09 07:51:00 UTC	-73.968095	40.768008	-73.956655	40.7
4						>

```
In [5]:
         test.head()
Out[5]:
             pickup_datetime pickup_longitude
                                             pickup_latitude dropoff_longitude dropoff_latitude passen
                  2015-01-27
          0
                                  -73.973320
                                                  40.763805
                                                                  -73.981430
                                                                                  40.743835
                13:08:24 UTC
                  2015-01-27
          1
                                  -73.986862
                                                  40.719383
                                                                  -73.998886
                                                                                  40.739201
                13:08:24 UTC
                  2011-10-08
          2
                                  -73.982524
                                                  40.751260
                                                                  -73.979654
                                                                                  40.746139
                11:53:44 UTC
                  2012-12-01
          3
                                  -73.981160
                                                  40.767807
                                                                  -73.990448
                                                                                  40.751635
                21:12:12 UTC
                  2012-12-01
                                  -73.966046
                                                  40.789775
                                                                  -73.988565
                                                                                  40.744427
                21:12:12 UTC
         print("shape of training data is: ",train.shape)
In [6]:
         shape of training data is: (16067, 7)
In [7]:
         print("shape of test data is: ",test.shape)
         shape of test data is: (9914, 6)
         train.dtypes
In [8]:
Out[8]: fare amount
                                  object
         pickup datetime
                                  object
         pickup_longitude
                                 float64
         pickup latitude
                                 float64
         dropoff longitude
                                 float64
         dropoff latitude
                                 float64
         passenger count
                                 float64
         dtype: object
In [9]:
         test.dtypes
Out[9]: pickup datetime
                                  object
         pickup longitude
                                 float64
         pickup_latitude
                                 float64
         dropoff longitude
                                 float64
         dropoff_latitude
                                 float64
         passenger count
                                   int64
         dtype: object
```

In [10]: test.describe()

Out[10]:

	pickup_longitude	pickup_latitude	dropoff_longitude	dropoff_latitude	passenger_count
count	9914.000000	9914.000000	9914.000000	9914.000000	9914.000000
mean	-73.974722	40.751041	-73.973657	40.751743	1.671273
std	0.042774	0.033541	0.039072	0.035435	1.278747
min	-74.252193	40.573143	-74.263242	40.568973	1.000000
25%	-73.992501	40.736125	-73.991247	40.735254	1.000000
50%	-73.982326	40.753051	-73.980015	40.754065	1.000000
75%	-73.968013	40.767113	-73.964059	40.768757	2.000000
max	-72.986532	41.709555	-72.990963	41.696683	6.000000

In [11]: train.describe()

Out[11]:

	pickup_longitude	pickup_latitude	dropoff_longitude	dropoff_latitude	passenger_count
count	16067.000000	16067.000000	16067.000000	16067.000000	16012.000000
mean	-72.462787	39.914725	-72.462328	39.897906	2.625070
std	10.578384	6.826587	10.575062	6.187087	60.844122
min	-74.438233	-74.006893	-74.429332	-74.006377	0.000000
25%	-73.992156	40.734927	-73.991182	40.734651	1.000000
50%	-73.981698	40.752603	-73.980172	40.753567	1.000000
75%	-73.966838	40.767381	-73.963643	40.768013	2.000000
max	40.766125	401.083332	40.802437	41.366138	5345.000000

In [12]: train["fare_amount"] = pd.to_numeric(train["fare_amount"],errors = "coerce")

In [13]: train.dtypes

Out[13]: fare_amount float64
 pickup_datetime object
 pickup_longitude float64
 pickup_latitude float64
 dropoff_longitude float64
 dropoff_latitude float64
 passenger_count float64
 dtype: object

In [14]: train.shape

Out[14]: (16067, 7)

In [15]: train.dropna(subset= ["pickup_datetime"])

Out[15]:

	fare_amount	pickup_datetime	pickup_longitude	pickup_latitude	dropoff_longitude	dropc
0	4.5	2009-06-15 17:26:21 UTC	-73.844311	40.721319	-73.841610	
1	16.9	2010-01-05 16:52:16 UTC	-74.016048	40.711303	-73.979268	
2	5.7	2011-08-18 00:35:00 UTC	-73.982738	40.761270	-73.991242	
3	7.7	2012-04-21 04:30:42 UTC	-73.987130	40.733143	-73.991567	
4	5.3	2010-03-09 07:51:00 UTC	-73.968095	40.768008	-73.956655	
5	12.1	2011-01-06 09:50:45 UTC	-74.000964	40.731630	-73.972892	
6	7.5	2012-11-20 20:35:00 UTC	-73.980002	40.751662	-73.973802	
7	16.5	2012-01-04 17:22:00 UTC	-73.951300	40.774138	-73.990095	
8	NaN	2012-12-03 13:10:00 UTC	-74.006462	40.726713	-73.993078	
9	8.9	2009-09-02 01:11:00 UTC	-73.980658	40.733873	-73.991540	
10	5.3	2012-04-08 07:30:50 UTC	-73.996335	40.737142	-73.980721	
11	5.5	2012-12-24 11:24:00 UTC	0.000000	0.000000	0.000000	
12	4.1	2009-11-06 01:04:03 UTC	-73.991601	40.744712	-73.983081	
13	7.0	2013-07-02 19:54:00 UTC	-74.005360	40.728867	-74.008913	
14	7.7	2011-04-05 17:11:05 UTC	-74.001821	40.737547	-73.998060	
15	5.0	2013-11-23 12:57:00 UTC	0.000000	0.000000	0.000000	
16	12.5	2014-02-19 07:22:00 UTC	-73.986430	40.760465	-73.988990	
17	5.3	2009-07-22 16:08:00 UTC	-73.981060	40.737690	-73.994177	
18	5.3	2010-07-07 14:52:00 UTC	-73.969505	40.784843	-73.958732	
19	4.0	2014-12-06 20:36:22 UTC	-73.979815	40.751902	-73.979446	
20	10.5	2010-09-07 13:18:00 UTC	-73.985382	40.747858	-73.978377	
21	11.5	2013-02-12 12:15:46 UTC	-73.957954	40.779252	-73.961250	
22	4.5	2009-08-06 18:17:23 UTC	-73.991707	40.770505	-73.985459	

	fare_amount	pickup_datetime	pickup_longitude	pickup_latitude	dropoff_longitude	dropc
23	4.9	2010-12-06 12:29:00 UTC	-74.000632	40.747473	-73.986672	
24	6.1	2009-12-10 15:37:00 UTC	-73.969622	40.756973	-73.981152	
25	7.3	2011-06-21 16:15:00 UTC	-73.991875	40.754437	-73.977230	
26	NaN	2011-02-07 20:01:00 UTC	0.000000	0.000000	0.000000	
27	4.5	2011-06-28 19:47:00 UTC	-73.988893	40.760160	-73.986445	
28	9.3	2012-05-04 06:11:20 UTC	-73.989258	40.690835	-74.004133	
29	4.5	2013-08-11 00:52:00 UTC	-73.981020	40.737760	-73.980668	
16037	6.5	2012-02-27 21:40:50 UTC	-73.992618	40.723878	-73.977073	
16038	5.7	2010-08-31 10:43:42 UTC	-73.990336	40.718973	-73.956060	
16039	12.9	2010-12-11 16:25:00 UTC	-73.936462	40.794292	-73.948747	
16040	6.5	2014-06-16 00:05:19 UTC	-73.980597	40.744267	-73.979330	
16041	11.0	2014-11-17 21:53:00 UTC	-73.983610	40.747090	-73.961310	
16042	8.5	2015-04-06 21:53:06 UTC	-73.991425	40.749832	-74.000107	
16043	8.5	2011-11-17 10:58:05 UTC	-73.973961	40.764055	-73.986807	
16044	16.5	2013-04-29 03:05:45 UTC	-73.982785	40.731421	-74.011358	
16045	6.5	2013-09-19 23:56:00 UTC	-73.995227	40.733475	-73.984030	
16046	6.0	2014-04-24 01:48:40 UTC	-73.976298	40.753948	-73.993062	
16047	6.1	2010-03-18 11:09:00 UTC	-73.970733	40.758193	-73.979457	
16048	9.7	2012-07-10 17:32:00 UTC	-73.988040	40.774902	-74.005265	
16049	15.7	2012-07-31 12:27:00 UTC	-74.008657	40.715975	-73.975653	
16050	8.5	2013-01-23 07:36:49 UTC	-73.996715	40.742504	-73.977987	
16051	11.5	2014-10-01 20:05:00 UTC	-73.975540	40.755590	-73.944780	
16052	10.0	2014-10-03 22:24:00 UTC	-73.987298	40.722007	-74.000267	

	fare_amount	pickup_datetime	pickup_longitude	pickup_latitude	dropoff_longitude	drope
16053	4.0	2014-09-23 09:49:00 UTC	-73.954977	40.788582	-73.964227	
16054	5.3	2009-11-28 15:58:02 UTC	-73.993929	40.756944	-73.993044	
16055	48.3	2012-09-05 17:34:00 UTC	-73.994077	40.741242	-73.830257	
16056	38.3	2012-12-17 14:59:16 UTC	0.000000	0.000000	0.000000	
16057	5.0	2013-01-31 15:46:00 UTC	-73.963582	40.774242	-73.956525	
16058	5.5	2014-04-19 14:58:57 UTC	-73.974265	40.756048	-73.980885	
16059	5.3	2010-01-03 18:26:00 UTC	-73.973297	40.743768	-73.986060	
16060	22.0	2014-10-01 09:15:00 UTC	-73.954582	40.778047	-74.005982	
16061	10.9	2009-05-20 18:56:42 UTC	-73.994191	40.751138	-73.962769	
16062	6.5	2014-12-12 07:41:00 UTC	-74.008820	40.718757	-73.998865	
16063	16.1	2009-07-13 07:58:00 UTC	-73.981310	40.781695	-74.014392	
16064	8.5	2009-11-11 11:19:07 UTC	-73.972507	40.753417	-73.979577	
16065	8.1	2010-05-11 23:53:00 UTC	-73.957027	40.765945	-73.981983	
16066	8.5	2011-12-14 06:24:33 UTC	-74.002111	40.729755	-73.983877	

16066 rows × 7 columns

```
In [16]: train['pickup_datetime'] = pd.to_datetime(train['pickup_datetime'], format='%
Y-%m-%d %H:%M:%S UTC')
```

9/11/2019

```
In [18]: train.dtypes
Out[18]: fare amount
                                      float64
         pickup datetime
                               datetime64[ns]
         pickup_longitude
                                      float64
         pickup latitude
                                      float64
         dropoff longitude
                                      float64
         dropoff latitude
                                      float64
                                      float64
         passenger count
         year
                                      float64
         Month
                                      float64
         Date
                                      float64
                                      float64
         Day
         Hour
                                      float64
         Minute
                                      float64
         dtype: object
In [19]: | test["pickup datetime"] = pd.to datetime(test["pickup datetime"], format= "%Y-%
         m-%d %H:%M:%S UTC")
In [20]: test['year'] = test['pickup datetime'].dt.year
         test['Month'] = test['pickup_datetime'].dt.month
         test['Date'] = test['pickup datetime'].dt.day
         test['Day'] = test['pickup datetime'].dt.dayofweek
         test['Hour'] = test['pickup datetime'].dt.hour
         test['Minute'] = test['pickup_datetime'].dt.minute
In [21]: test.dtypes
Out[21]: pickup_datetime
                               datetime64[ns]
         pickup_longitude
                                      float64
         pickup latitude
                                      float64
         dropoff longitude
                                      float64
         dropoff_latitude
                                      float64
         passenger_count
                                        int64
         year
                                        int64
         Month
                                        int64
         Date
                                        int64
         Day
                                        int64
         Hour
                                        int64
         Minute
                                        int64
         dtype: object
         train = train.drop(train[train['pickup datetime'].isnull()].index, axis=0)
In [22]:
         print(train.shape)
         print(train['pickup_datetime'].isnull().sum())
         (16066, 13)
```

```
In [23]: train["passenger_count"].describe()
Out[23]: count
                   16011.000000
         mean
                       2.625171
          std
                      60.846021
         min
                       0.000000
          25%
                       1.000000
          50%
                       1.000000
          75%
                       2.000000
         max
                    5345.000000
         Name: passenger_count, dtype: float64
In [24]:
         train = train.drop(train[train["passenger_count"]> 6 ].index, axis=0)
          train = train.drop(train[train["passenger_count"] == 0 ].index, axis=0)
In [25]:
          train["passenger_count"].describe()
In [26]:
Out[26]: count
                   15934.000000
                       1.649581
          mean
                       1.265943
          std
                       0.120000
         min
          25%
                       1.000000
          50%
                       1.000000
          75%
                       2.000000
                       6.000000
         max
         Name: passenger_count, dtype: float64
```

In [27]: train["passenger_count"].sort_values(ascending= True)

ut[27]:	8862	0.12
	0	1.00
	9790	1.00
	9791	1.00
	9792	1.00
	9793	1.00
	9794	1.00
	9795	1.00
	9796	1.00
	9797	1.00
	9798	1.00
	9801	1.00
	9804	1.00
	9806	1.00
	9807	1.00
	9808	1.00
	9809	1.00
	9811	1.00
	9812	1.00
	9814	1.00
	9818	1.00
	9819	1.00
	9789	1.00
	9788 9785	1.00 1.00
	9784	1.00
	9754	1.00
	9756	1.00
	9757	1.00
	9758	1.00
	734	NaN
	773	NaN
	788	NaN
	842	NaN
	899	NaN
	941	NaN
	1361	NaN
	1399	NaN
	1400 1459	NaN
	1748	NaN NaN
	1748	NaN
	1851	NaN
	1921	NaN
	1984	NaN
	1987	NaN
	2104	NaN
	2230	NaN
	2378	NaN
	7787	NaN
	7805	NaN
	7847	NaN
	7892	NaN
	7937	NaN
	8007	NaN
	8076	NaN

```
8139
                   NaN
         8259
                   NaN
         8306
                   NaN
         16066
                   NaN
         Name: passenger_count, Length: 15989, dtype: float64
In [28]:
         train = train.drop(train[train['passenger_count'].isnull()].index, axis=0)
         print(train.shape)
         print(train['passenger_count'].isnull().sum())
         (15934, 13)
In [29]:
         train = train.drop(train[train["passenger_count"] == 0.12 ].index, axis=0)
         train.shape
Out[29]: (15933, 13)
```

In [30]: train["fare_amount"].sort_values(ascending=False)

Out[30]:	1015 1072 607 980 1335 1483 6630 14142 12349 12915	54343.00 4343.00 453.00 434.00 180.00 165.00 128.83 108.00 104.67 96.00
	7810 9431 10077 12614 4620 14519 12437 2639 4013 13962 2013	95.00 88.00 87.30 87.00 85.50 82.50 80.75 79.00 77.70 77.15
	2013 6668 8363 10524 11019 13615 15023 1494 4118 9651	77.00 76.80 76.00 75.80 75.33 75.00 73.30 70.00 69.70 66.30
	1427 2780 10002 2486 2039 13032 8 26 69 126 168	1.14 0.01 0.00 -2.50 -2.90 -3.00 NaN NaN NaN
	240 305 350 455 498 667 703 746 836 840 913 1123 1574 1628	NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
	1712	NaN

```
2412
                        NaN
         2458
                        NaN
         8178
                        NaN
         8226
                        NaN
         Name: fare amount, Length: 15933, dtype: float64
In [31]: Counter({False: 15930, True: 3})
         NameError
                                                     Traceback (most recent call last)
         <ipython-input-31-66465da172e0> in <module>
          ----> 1 Counter({False: 15930, True: 3})
         NameError: name 'Counter' is not defined
In [32]: train = train.drop(train[train["fare_amount"]<0].index, axis=0)</pre>
          train.shape
Out[32]: (15930, 13)
In [33]: train["fare amount"].min()
Out[33]: 0.0
In [34]: train = train.drop(train[train["fare_amount"]<1].index, axis=0)</pre>
          train.shape
Out[34]: (15928, 13)
In [35]: train = train.drop(train[train["fare amount"]> 454 ].index, axis=0)
          train.shape
Out[35]: (15926, 13)
In [36]: | train = train.drop(train[train['fare_amount'].isnull()].index, axis=0)
          print(train.shape)
          print(train['fare_amount'].isnull().sum())
          (15902, 13)
In [37]: train["fare amount"].describe()
Out[37]: count
                   15902.000000
                      11.376356
         mean
                      10.814908
         std
         min
                       1.140000
         25%
                       6.000000
         50%
                       8.500000
         75%
                      12.500000
         max
                     453.000000
         Name: fare_amount, dtype: float64
```

```
In [38]: train[train['pickup latitude']<-90]</pre>
          train[train['pickup latitude']>90]
Out[38]:
                 fare_amount pickup_datetime pickup_longitude pickup_latitude dropoff_longitude dropof
                                  2011-07-30
           5686
                         3.3
                                                                 401.083332
                                                                                  -73.951392
                                                  -73.947235
                                                                                                  4
                                    11:15:00
In [39]:
          train = train.drop((train[train['pickup_latitude']<-90]).index, axis=0)</pre>
          train = train.drop((train[train['pickup_latitude']>90]).index, axis=0)
In [40]:
          train[train['pickup longitude']<-180]</pre>
          train[train['pickup longitude']>180]
Out[40]:
             fare_amount pickup_datetime pickup_longitude pickup_latitude dropoff_longitude dropoff_lati
          train[train['dropoff latitude']<-90]</pre>
In [41]:
          train[train['dropoff latitude']>90]
Out[41]:
             fare_amount pickup_datetime pickup_longitude pickup_latitude dropoff_longitude dropoff_lati
          train[train['dropoff longitude']<-180]</pre>
In [42]:
          train[train['dropoff longitude']>180]
Out[42]:
             fare_amount pickup_datetime pickup_longitude pickup_latitude dropoff_longitude dropoff_lati
In [43]:
          train.shape
Out[43]: (15901, 13)
In [44]:
          train.isnull().sum()
Out[44]: fare amount
                                  0
                                  0
          pickup datetime
          pickup longitude
                                  0
          pickup latitude
                                  0
          dropoff_longitude
                                  0
          dropoff latitude
                                  0
          passenger_count
                                  0
                                  0
          year
          Month
                                  0
          Date
                                  0
          Day
                                  0
          Hour
                                  0
                                  0
          Minute
          dtype: int64
```

```
In [45]: test.isnull().sum()
Out[45]: pickup datetime
                               0
         pickup_longitude
                               0
         pickup latitude
                               0
         dropoff longitude
                               0
         dropoff latitude
                               0
         passenger_count
                               0
                               0
         year
                               0
         Month
         Date
                               0
                               0
         Day
         Hour
                               0
         Minute
                               0
         dtype: int64
In [46]: from math import radians, cos, sin, asin, sqrt
In [49]:
         def haversine(lat1, lon1, lat2, lon2):
             lon1=a[0]
             lat1=a[1]
             lon2=a[2]
             lat2=a[3]
In [50]: lon1, lat1, lon2, lat2 = map(radians, [lon1, lat1, lon2, lat2])
         NameError
                                                    Traceback (most recent call last)
         <ipython-input-50-44b3407d432c> in <module>
         ----> 1 lon1, lat1, lon2, lat2 = map(radians, [lon1, lat1, lon2, lat2])
         NameError: name 'lon1' is not defined
In [51]: def haversine(lon1, lat1, lon2, lat2):
           File "<ipython-input-51-1f5e528b4d95>", line 1
             def haversine(lon1, lat1, lon2, lat2):
         SyntaxError: unexpected EOF while parsing
In [52]: from math import radians, cos, sin, asin, sqrt
         def haversine(lon1, lat1, lon2, lat2):
           File "<ipython-input-52-50c3efefd6ad>", line 2
             def haversine(lon1, lat1, lon2, lat2):
         SyntaxError: unexpected EOF while parsing
In [53]:
         import numpy as np
In [54]: import pandas as pd
```

```
In [55]: | def haversine_np(lon1, lat1, lon2, lat2):
           File "<ipython-input-55-b65bd143c952>", line 1
             def haversine_np(lon1, lat1, lon2, lat2):
         SyntaxError: unexpected EOF while parsing
In [56]:
         from math import radians, cos, sin, asin, sqrt
         import numpy as np
In [57]: def haversine np(lon1, lat1, lon2, lat2):
           File "<ipython-input-57-b65bd143c952>", line 1
             def haversine_np(lon1, lat1, lon2, lat2):
         SyntaxError: unexpected EOF while parsing
In [59]: | def haversine_np(lon1, lat1, lon2, lat2):
              lon1, lat1, lon2, lat2 = map(np.radians, [lon1, lat1, lon2, lat2])
             dlon = lon2 - lon1
                   dlat = lat2 - lat1
                 a = \sin(dlat/2)**2 + \cos(lat1) * \cos(lat2) * \sin(dlon/2)**2
                  c = 2 * asin(sqrt(a))
                 km = 6371* c
                  return km
           File "<tokenize>", line 3
             dlon = lon2 - lon1
         IndentationError: unindent does not match any outer indentation level
In [60]:
         from math import radians, cos, sin, asin, sqrt
         def haversine(a):
             lon1=a[0]
             lat1=a[1]
             lon2=a[2]
             lat2=a[3]
             Calculate the great circle distance between two points
             on the earth (specified in decimal degrees)
             # convert decimal degrees to radians
             lon1, lat1, lon2, lat2 = map(radians, [lon1, lat1, lon2, lat2])
             # haversine formula
             dlon = lon2 - lon1
             dlat = lat2 - lat1
             a = \sin(dlat/2)**2 + \cos(lat1) * \cos(lat2) * \sin(dlon/2)**2
             c = 2 * asin(sqrt(a))
             # Radius of earth in kilometers is 6371
             km = 6371*c
             return km
```

In [61]: train

Out[61]:

	fare_amount	pickup_datetime	pickup_longitude	pickup_latitude	dropoff_longitude	dropo
0	4.5	2009-06-15 17:26:21	-73.844311	40.721319	-73.841610	
1	16.9	2010-01-05 16:52:16	-74.016048	40.711303	-73.979268	
2	5.7	2011-08-18 00:35:00	-73.982738	40.761270	-73.991242	
3	7.7	2012-04-21 04:30:42	-73.987130	40.733143	-73.991567	
4	5.3	2010-03-09 07:51:00	-73.968095	40.768008	-73.956655	
5	12.1	2011-01-06 09:50:45	-74.000964	40.731630	-73.972892	
6	7.5	2012-11-20 20:35:00	-73.980002	40.751662	-73.973802	
7	16.5	2012-01-04 17:22:00	-73.951300	40.774138	-73.990095	
9	8.9	2009-09-02 01:11:00	-73.980658	40.733873	-73.991540	
10	5.3	2012-04-08 07:30:50	-73.996335	40.737142	-73.980721	
11	5.5	2012-12-24 11:24:00	0.000000	0.000000	0.000000	
12	4.1	2009-11-06 01:04:03	-73.991601	40.744712	-73.983081	
13	7.0	2013-07-02 19:54:00	-74.005360	40.728867	-74.008913	
14	7.7	2011-04-05 17:11:05	-74.001821	40.737547	-73.998060	
15	5.0	2013-11-23 12:57:00	0.000000	0.000000	0.000000	
16	12.5	2014-02-19 07:22:00	-73.986430	40.760465	-73.988990	
17	5.3	2009-07-22 16:08:00	-73.981060	40.737690	-73.994177	
18	5.3	2010-07-07 14:52:00	-73.969505	40.784843	-73.958732	
19	4.0	2014-12-06 20:36:22	-73.979815	40.751902	-73.979446	
20	10.5	2010-09-07 13:18:00	-73.985382	40.747858	-73.978377	
21	11.5	2013-02-12 12:15:46	-73.957954	40.779252	-73.961250	
22	4.5	2009-08-06 18:17:23	-73.991707	40.770505	-73.985459	
23	4.9	2010-12-06 12:29:00	-74.000632	40.747473	-73.986672	

	fare_amount	pickup_datetime	pickup_longitude	pickup_latitude	dropoff_longitude	(
24	6.1	2009-12-10 15:37:00	-73.969622	40.756973	-73.981152	
25	7.3	2011-06-21 16:15:00	-73.991875	40.754437	-73.977230	
27	4.5	2011-06-28 19:47:00	-73.988893	40.760160	-73.986445	
28	9.3	2012-05-04 06:11:20	-73.989258	40.690835	-74.004133	
29	4.5	2013-08-11 00:52:00	-73.981020	40.737760	-73.980668	
30	5.5	2014-02-19 16:03:00	-73.976075	40.752422	-73.981082	
32	31.9	2009-01-09 16:10:00	-73.873027	40.773883	-73.984545	
16036	10.5	2010-08-17 11:34:00	-73.990103	40.729750	-73.978462	
16037	6.5	2012-02-27 21:40:50	-73.992618	40.723878	-73.977073	
16038	5.7	2010-08-31 10:43:42	-73.990336	40.718973	-73.956060	
16039	12.9	2010-12-11 16:25:00	-73.936462	40.794292	-73.948747	
16040	6.5	2014-06-16 00:05:19	-73.980597	40.744267	-73.979330	
16041	11.0	2014-11-17 21:53:00	-73.983610	40.747090	-73.961310	
16042	8.5	2015-04-06 21:53:06	-73.991425	40.749832	-74.000107	
16043	8.5	2011-11-17 10:58:05	-73.973961	40.764055	-73.986807	
16044	16.5	2013-04-29 03:05:45	-73.982785	40.731421	-74.011358	
16045	6.5	2013-09-19 23:56:00	-73.995227	40.733475	-73.984030	
16046	6.0	2014-04-24 01:48:40	-73.976298	40.753948	-73.993062	
16047	6.1	2010-03-18 11:09:00	-73.970733	40.758193	-73.979457	
16048	9.7	2012-07-10 17:32:00	-73.988040	40.774902	-74.005265	
16049	15.7	2012-07-31 12:27:00	-74.008657	40.715975	-73.975653	
16050	8.5	2013-01-23 07:36:49	-73.996715	40.742504	-73.977987	
16051	11.5	2014-10-01 20:05:00	-73.975540	40.755590	-73.944780	

dropc

	fare_amount	pickup_datetime	pickup_longitude	pickup_latitude	dropoff_longitude	dropo
16052	10.0	2014-10-03 22:24:00	-73.987298	40.722007	-74.000267	
16053	4.0	2014-09-23 09:49:00	-73.954977	40.788582	-73.964227	
16054	5.3	2009-11-28 15:58:02	-73.993929	40.756944	-73.993044	
16055	48.3	2012-09-05 17:34:00	-73.994077	40.741242	-73.830257	
16056	38.3	2012-12-17 14:59:16	0.000000	0.000000	0.000000	
16057	5.0	2013-01-31 15:46:00	-73.963582	40.774242	-73.956525	
16058	5.5	2014-04-19 14:58:57	-73.974265	40.756048	-73.980885	
16059	5.3	2010-01-03 18:26:00	-73.973297	40.743768	-73.986060	
16060	22.0	2014-10-01 09:15:00	-73.954582	40.778047	-74.005982	
16061	10.9	2009-05-20 18:56:42	-73.994191	40.751138	-73.962769	
16062	6.5	2014-12-12 07:41:00	-74.008820	40.718757	-73.998865	
16063	16.1	2009-07-13 07:58:00	-73.981310	40.781695	-74.014392	
16064	8.5	2009-11-11 11:19:07	-73.972507	40.753417	-73.979577	
16065	8.1	2010-05-11 23:53:00	-73.957027	40.765945	-73.981983	

15901 rows × 13 columns

In [62]: train['distance'] = train[['pickup_longitude','pickup_latitude','dropoff_longi
tude','dropoff_latitude']].apply(haversine,axis=1)

In [63]: test['distance'] = test[['pickup_longitude','pickup_latitude','dropoff_longitu
de','dropoff_latitude']].apply(haversine,axis=1)

In [64]: train.head()

Out[64]:

	fare_amount	pickup_datetime	pickup_longitude	pickup_latitude	dropoff_longitude	dropoff_la
0	4.5	2009-06-15 17:26:21	-73.844311	40.721319	-73.841610	40.7
1	16.9	2010-01-05 16:52:16	-74.016048	40.711303	-73.979268	40.7
2	5.7	2011-08-18 00:35:00	-73.982738	40.761270	-73.991242	40.7
3	7.7	2012-04-21 04:30:42	-73.987130	40.733143	-73.991567	40.7
4	5.3	2010-03-09 07:51:00	-73.968095	40.768008	-73.956655	40.7
4						•

In [65]: test.head()

Out[65]:

	pickup_datetime	pickup_longitude	pickup_latitude	dropoff_longitude	dropoff_latitude	passen
0	2015-01-27 13:08:24	-73.973320	40.763805	-73.981430	40.743835	
1	2015-01-27 13:08:24	-73.986862	40.719383	-73.998886	40.739201	
2	2011-10-08 11:53:44	-73.982524	40.751260	-73.979654	40.746139	
3	2012-12-01 21:12:12	-73.981160	40.767807	-73.990448	40.751635	
4	2012-12-01 21:12:12	-73.966046	40.789775	-73.988565	40.744427	
4						•

In [66]: train.nunique()

Out[66]: fare_amount 459 pickup_datetime 15856 pickup_longitude 13672 pickup_latitude 14110 dropoff_longitude 13763 dropoff_latitude 14136 passenger_count 7 year 7 Month 12 Date 31 Day 7 24 Hour Minute 60 distance 15448 dtype: int64

```
In [67]: test.nunique()
Out[67]: pickup_datetime
                               1753
         pickup_longitude
                               9124
                               9246
         pickup_latitude
         dropoff_longitude
                               9141
         dropoff_latitude
                               9360
         passenger_count
                                  6
                                  7
         year
         Month
                                 12
         Date
                                 31
         Day
                                  7
                                 24
         Hour
         Minute
                                 60
         distance
                               9830
         dtype: int64
```

In [68]: train['distance'].sort_values(ascending=False)

Out[68]:	9147	8667.542104
	8647	8667.497512
	2397	8667.454421
	472	8667.304968
	11653	8666.701504
	13340	8666.613646
	10215	8666.584706
	4597	8666.566030
	10458	8665.976222
	10672	8665.702390
	10488	8665.555634
	1260	8665.268588
	4278	8665.223767
	6188	8664.191488
	12983	8664.131808
	6302	8663.039123
	12705	8661.362152
	14197	8657.136619
	15783	8656.714168
	15749	6028.926779
	2280	6026.494216
	5864	5420.988959
	7014	4447.086698
	10710	129.950482
	14536	129.560455
	11619	127.509261
	12228	123.561157
	5663	101.094619
	1684	99.771579
	3075	97.985088
	7684	0.000000
	4298	0.000000
	13143	0.000000
	3128	0.000000
	8645	0.000000
	8377	0.000000
	4240	0.000000
	2447	0.000000
	4367	0.000000
	11565	0.000000
	13081	0.000000
	13062	0.000000
	4454	0.000000
	13013	0.000000
	13015	0.000000
	808	0.000000
	6462	0.000000
	799	0.000000
	4430	0.000000
	10783	0.000000
	13037	0.000000
	14485	0.000000
	15524	0.000000
	9342	0.000000
	13045	0.000000
		0.000000
	13050	0.000000

```
      11593
      0.000000

      2346
      0.000000

      8331
      0.000000

      1637
      0.000000
```

Name: distance, Length: 15901, dtype: float64

```
In [69]: train=train.drop(train[train['distance']==0].index,axis=0)
```

```
In [70]: train=train.drop(train[train['distance']>130].index,axis=0)
```

In [71]: train.shape

Out[71]: (15424, 14)

In [72]: train.head()

Out[72]:

	fare_amount	pickup_datetime	pickup_longitude	pickup_latitude	dropoff_longitude	dropoff_la
0	4.5	2009-06-15 17:26:21	-73.844311	40.721319	-73.841610	40.7
1	16.9	2010-01-05 16:52:16	-74.016048	40.711303	-73.979268	40.7
2	5.7	2011-08-18 00:35:00	-73.982738	40.761270	-73.991242	40.7
3	7.7	2012-04-21 04:30:42	-73.987130	40.733143	-73.991567	40.7
4	5.3	2010-03-09 07:51:00	-73.968095	40.768008	-73.956655	40.7
4						•

In [73]: drop = ['pickup_datetime', 'pickup_longitude', 'pickup_latitude','dropoff_long
 itude', 'dropoff_latitude', 'Minute']
 train = train.drop(drop, axis = 1)

In [74]: train.head()

Out[74]:

	fare_amount	passenger_count	year	Month	Date	Day	Hour	distance
0	4.5	1.0	2009.0	6.0	15.0	0.0	17.0	1.030764
1	16.9	1.0	2010.0	1.0	5.0	1.0	16.0	8.450134
2	5.7	2.0	2011.0	8.0	18.0	3.0	0.0	1.389525
3	7.7	1.0	2012.0	4.0	21.0	5.0	4.0	2.799270
4	5.3	1.0	2010.0	3.0	9.0	1.0	7.0	1.999157

```
In [75]:
         train.dtypes()
                                                    Traceback (most recent call last)
         <ipython-input-75-2c798b256679> in <module>
         ----> 1 train.dtypes()
         TypeError: 'Series' object is not callable
In [76]:
         train.dtypes
Out[76]: fare amount
                             float64
         passenger_count
                             float64
                             float64
         vear
         Month
                             float64
         Date
                             float64
                             float64
         Day
         Hour
                             float64
         distance
                             float64
         dtype: object
In [77]:
         train['passenger_count']=train["passenger_count"].astype('int64')
In [78]: | train['year']=train["year"].astype('int64')
In [81]:
         train['Month'] = train['Month'].astype('int64')
         train['Date'] = train['Date'].astype('int64')
         train['Day'] = train['Day'].astype('int64')
         train['Hour'] = train['Hour'].astype('int64')
In [82]: train.dtypes
Out[82]: fare amount
                             float64
                               int64
         passenger_count
                               int64
         year
         Month
                               int64
         Date
                               int64
         Day
                               int64
         Hour
                               int64
         distance
                             float64
         dtype: object
         drop_test = ['pickup_datetime', 'pickup_longitude', 'pickup_latitude', 'dropoff
In [83]:
          _longitude', 'dropoff_latitude', 'Minute']
         test = test.drop(drop test, axis = 1)
```

```
In [84]: test.head()
```

Out[84]:

	passenger_count	year	Month	Date	Day	Hour	distance
0	1	2015	1	27	1	13	2.323259
1	1	2015	1	27	1	13	2.425353
2	1	2011	10	8	5	11	0.618628
3	1	2012	12	1	5	21	1.961033
4	1	2012	12	1	5	21	5.387301

```
In [86]: test.dtypes
```

Out[86]: passenger_count int64
year int64
Month int64
Date int64
Day int64
Hour int64
distance float64
dtype: object

In [87]: plt.figure(figsize=(15,7))
 sns.countplot(x="passenger_count", data=train)

Out[87]: <matplotlib.axes._subplots.AxesSubplot at 0x8fdf470>


```
In [88]: plt.figure(figsize=(15,7))
    plt.scatter(x=train['passenger_count'], y=train['fare_amount'], s=10)
    plt.xlabel('No. of Passengers')
    plt.ylabel('Fare')
    plt.show()
```



```
In [89]: plt.figure(figsize=(15,7))
    plt.scatter(x=train['Date'], y=train['fare_amount'], s=10)
    plt.xlabel('Date')
    plt.ylabel('Fare')
    plt.show()
```



```
In [90]: plt.figure(figsize=(15,7))
    train.groupby(train["Hour"])['Hour'].count().plot(kind="bar")
    plt.show()
```



```
In [91]: plt.figure(figsize=(15,7))
   plt.scatter(x=train['Hour'], y=train['fare_amount'], s=10)
   plt.xlabel('Hour')
   plt.ylabel('Fare')
   plt.show()
```



```
In [92]: plt.figure(figsize=(15,7))
    sns.countplot(x="Day", data=train)
```

Out[92]: <matplotlib.axes._subplots.AxesSubplot at 0xca63ac8>


```
In [93]: plt.figure(figsize=(15,7))
    plt.scatter(x=train['Day'], y=train['fare_amount'], s=10)
    plt.xlabel('Day')
    plt.ylabel('Fare')
    plt.show()
```



```
In [94]: plt.figure(figsize=(15,7))
    plt.scatter(x=train['distance'],y=train['fare_amount'],c="g")
    plt.xlable('Distance')
    plt.ylable('Fare')
    plt.show()
```

AttributeError: module 'matplotlib.pyplot' has no attribute 'xlable'


```
In [95]: plt.figure(figsize=(15,7))
    plt.scatter(x = train['distance'],y = train['fare_amount'],c = "g")
    plt.xlabel('Distance')
    plt.ylabel('Fare')
    plt.show()
```


fare_amount

AttributeError: module 'matplotlib.pyplot' has no attribute 'ylable'


```
In [97]: for i in['fare_amount', 'distance']:
    print(i)
    sns.displot(train[i],bins='auto',color='green')
    plt.title("Distribution for Variable"+i)
    plt.ylable("Density")
    plt.show()
```

fare_amount

```
In [98]: for i in ['fare_amount', 'distance']:
    print(i)
    sns.distplot(train[i],bins='auto',color='green')
    plt.title("Distribution for Variable "+i)
    plt.ylabel("Density")
    plt.show()
```

fare_amount

distance


```
In [99]: train['fare_amount']=np.log1p(train['fare_amount'])
In [100]: train['distance']=np.log1p(train['distance'])
```

fare_amount

AttributeError: module 'matplotlib.pyplot' has no attribute 'ylable'


```
In [104]: for i in ['fare_amount', 'distance']:
    print(i)
    sns.distplot(train[i],bins='auto',color='green')
    plt.title("Distribution for Variable "+i)
    plt.ylabel("Density")
    plt.show()
```

fare_amount

distance


```
In [105]: sns.displot(test['distance'],bins='auto',color='green')
   plt.title("Distribution for Variable" +i)
   plt.ylabel("Density")
   plt.show()
```

AttributeError: module 'seaborn' has no attribute 'displot'

```
In [106]: sns.distplot(test['distance'],bins='auto',color='green')
    plt.title("Distribution for Variable "+i)
    plt.ylabel("Density")
    plt.show()
```



```
In [107]: test['distance'] = np.log1p(test['distance'])
```

```
In [108]: sns.distplot(test['distance'],bins='auto',color='green')
    plt.title("Distribution for Variable "+i)
    plt.ylabel("Density")
    plt.show()
```



```
In [109]: | X_train, X_test, y_train, y_test = train_test_split( train.iloc[:, train.colum
          ns != 'fare_amount'],
                                   train.iloc[:, 0], test_size = 0.20, random_state = 1)
In [110]: print(X_train.shape)
          (12339, 7)
In [111]:
          print(X_test.shape)
          (3085, 7)
In [113]:
          LR = LinearRegression().fit(X_train,y_train)
In [114]: | pred train LR = LR.predict(X train)
In [115]: pred_test_LR = LR.predict(X_test)
In [116]: RMSE_test_LR = np.sqrt(mean_squared_error(y_test, pred_test_LR))
In [117]: RMSE_train_LR = np.sqrt(mean_squared_error(y_train, pred_train_LR))
In [118]: print("Root Mean Squared Error-Training data="+str(RMSE train LR))
          print("Root Mean Squared Error-Test Data"+str(RMSE test LR))
          Root Mean Squared Error-Training data=0.27531100179673135
          Root Mean Squared Error-Test Data0.24540661786977466
In [119]:
          from sklearn.metrics import r2_score
```

```
In [120]: r2 score(y train, pred train LR)
Out[120]: 0.7495502651880406
In [121]: | r2_score(y_test,pred_test_LR)
Out[121]: 0.7827019104296646
In [122]: DT = DecisionTreeRegressor(max depth=2).fit(X train,y train)
          pred train DT = DT.predict(X train)
In [123]:
          pred test DT = DT.predict(X test)
In [125]:
          RMSE train DT = np.sqrt(mean squared error(y train,pred train DT))
          RMSE test DT = np.sqrt(mean squared error(y test,pred test DT))
In [127]: | print("RMSE-Training="+str(RMSE train DT))
          RMSE-Training=0.29962109020770195
In [128]: | print("RMSE-Training="+str(RMSE_test_DT))
          RMSE-Training=0.2867460617158615
In [130]:
          r2 score(y train, pred train DT)
          r2_score(y_test,pred_test_DT)
Out[130]: 0.7033268167661039
In [131]: RF = RandomForestRegressor(n estimators=200).fit(X train,y train)
In [132]: pred train RF = RF.predict(X train)
In [133]: pred test RF = RF.predict(X test)
In [134]: RMSE_train_RF = np.sqrt(mean_squared_error(y_train, pred_train_RF))
In [135]: RMSE_test_RF = np.sqrt(mean_squared_error(y_test, pred_test_RF))
In [136]: | print("RMSE - Training data = "+str(RMSE train RF))
          print("RMSE - Test data = "+str(RMSE test RF))
          RMSE - Training data = 0.09536265926338224
          RMSE - Test data = 0.23536810226935345
In [137]: | r2_score(y_train,pred_train_RF)
Out[137]: 0.969950991321187
```

```
In [138]: r2_score(y_test, pred_test_RF)
Out[138]: 0.8001157480242431
In [139]: GB = GradientBoostingRegressor().fit(X_train, y_train)
In [141]: pred_train_GB = GB.predict(X_train)
In [142]: | pred_test_GB = GB.predict(X_test)
In [143]: RMSE_train_GB = np.sqrt(mean_squared_error(y_train, pred_train_GB))
In [144]: RMSE_test_GB = np.sqrt(mean_squared_error(y_test, pred_test_GB))
In [145]:
          print("RMSE - Training data ="+str(RMSE train GB))
          print("RMSE - Test data ="+str(RMSE_test_GB))
          RMSE - Training data =0.22754316149645537
          RMSE - Test data =0.22742812508816154
In [147]: | r2_score(y_test, pred_test_GB)
Out[147]: 0.8133741881626637
In [148]: | r2_score(y_train, pred_train_GB)
Out[148]: 0.8289193000175024
```

```
In [149]: from sklearn.ensemble import RandomForestRegressor
          rf = RandomForestRegressor(random state = 42)
          from pprint import pprint
          print("Parameters:\n")
          pprint(rf.get_params())
          Parameters:
          {'bootstrap': True,
            'criterion': 'mse',
            'max depth': None,
            'max features': 'auto',
            'max leaf nodes': None,
            'min impurity decrease': 0.0,
            'min impurity split': None,
            'min_samples_leaf': 1,
            'min_samples_split': 2,
            'min_weight_fraction_leaf': 0.0,
            'n estimators': 'warn',
            'n_jobs': None,
            'oob score': False,
            'random_state': 42,
            'verbose': 0,
            'warm start': False}
          from sklearn.model_selection import train_test_split, RandomizedSearchCV
In [150]:
In [151]: | RRF = RandomForestRegressor(random state = 0)
          n_estimator = list(range(1,20,2))
In [152]: | depth = list(range(1,100,2))
In [153]: rand grid ={"n estimators": n estimator, "max depth":depth}
In [154]: randomcv rf = RandomizedSearchCV(RRF, param distributions = rand grid, n iter=
           5, cv = 5, random_state = 0)
In [156]: randomcv rf = randomcv rf.fit(X train, y train)
In [157]: predictions RRF = randomcv rf.predict(X test)
In [158]: | view_best_params_RRf = randomcv_rf.best_params_
In [159]: | best_model = randomcv_rf.best_estimator_
          best_model=randomcv_rf.best_estimator_
In [160]: | predictions_RRF = best_model.predict(X_test)
In [161]: RRF_rmse = np.sqrt(mean_squared_error(y_test,predictions_RRF))
```

```
In [166]:
          print('Random Search CV Random Forest Regressor Model Performance:')
          print('RMSE = ',RRF rmse)
          Random Search CV Random Forest Regressor Model Performance:
          RMSE = 0.23730781853507238
In [168]:
          gb = GradientBoostingRegressor(random state = 42)
          from pprint import pprint
          print("parameters currently in use\n")
          pprint(gb.get_params())
          parameters currently in use
          {'alpha': 0.9,
            'criterion': 'friedman mse',
            'init': None,
            'learning rate': 0.1,
            'loss': 'ls',
            'max depth': 3,
            'max_features': None,
            'max leaf nodes': None,
            'min_impurity_decrease': 0.0,
            'min impurity split': None,
            'min samples leaf': 1,
            'min samples split': 2,
            'min_weight_fraction_leaf': 0.0,
            'n estimators': 100,
            'n_iter_no_change': None,
            'presort': 'auto',
            'random state': 42,
            'subsample': 1.0,
            'tol': 0.0001,
            'validation fraction': 0.1,
            'verbose': 0,
            'warm_start': False}
In [169]:
          gb = GradientBoostingRegressor(random state = 0)
          n estimator= list(range(1,20,2))
          depth = list(range(1,100,2))
          rand_grid = {"n_estimators": n_estimator,"max_depth": depth}
```

```
In [175]: randomcv gb = RandomizedSearchCV(gb, param distributions = rand grid, n iter =
          5, cv = 5, random state=0)
          randomcv gb = randomcv gb.fit(X train,y train)
          predictions gb = randomcv gb.predict(X test)
          view best params gb = randomcv gb.best params
          best_model = randomcv_gb.best_estimator_
          predictions_gb = best_model.predict(X_test)
          gb_r2 = r2_score(y_test, predictions_gb)
          gb rmse = np.sqrt(mean squared error(y test,predictions gb))
          print('Random Search CV Gradient Boosting Model Performance:')
          print('Best Parameters = ',view_best_params_gb)
          print('R-squared = {:0.2}.'.format(gb r2))
          print('RMSE = ', gb rmse)
          Random Search CV Gradient Boosting Model Performance:
          Best Parameters = {'n_estimators': 15, 'max_depth': 9}
          R-squared = 0.77.
          RMSE = 0.25199340493550487
In [173]:
          randomcv_gb = RandomizedSearchCV(gb, param_distributions = rand_grid, n_iter =
          5, cv = 5, random state=0)
          randomcv gb = randomcv gb.fit(X train,y train)
          predictions_gb = randomcv_gb.predict(X_test)
          view best params gb = randomcv gb.best params
          best_model = randomcv_gb.best_estimator_
          predictions_gb = best_model.predict(X_test
            File "<ipython-input-173-6e04cc40f5e4>", line 6
              predictions gb = best model.predict(X test
          SyntaxError: unexpected EOF while parsing
In [176]:
          randomcv_gb = RandomizedSearchCV(gb, param_distributions = rand_grid, n_iter =
          5, cv = 5, random state=0)
          randomcv gb = randomcv gb.fit(X train,y train)
          predictions_gb = randomcv_gb.predict(X_test)
          view_best_params_gb = randomcv_gb.best_params_
          best model = randomcv gb.best estimator
          predictions_gb = best_model.predict(X_test)
          gb r2 = r2 score(y test, predictions gb)
          gb_rmse = np.sqrt(mean_squared_error(y_test,predictions_gb))
          print('Random Search CV Gradient Boosting Model Performance:')
          print('Best Parameters = ',view_best_params_gb)
          print('R-squared = {:0.2}.'.format(gb_r2))
          print('RMSE = ', gb_rmse)
          Random Search CV Gradient Boosting Model Performance:
          Best Parameters = {'n_estimators': 15, 'max_depth': 9}
          R-squared = 0.77.
          RMSE = 0.25199340493550487
```

```
In [177]: | from sklearn.model selection import GridSearchCV
          regr = RandomForestRegressor(random state = 0)
          n estimator = list(range(11,20,1))
          depth = list(range(5,15,2))
          grid_search = {'n_estimators': n_estimator,'max_depth': depth}
          gridcv_rf = GridSearchCV(regr, param_grid = grid_search, cv = 5)
          gridcv_rf = gridcv_rf.fit(X_train,y_train)
          view best params GRF = gridcv rf.best params
          predictions_GRF = gridcv_rf.predict(X_test)
          GRF_r2 = r2_score(y_test, predictions_GRF)
          GRF rmse = np.sqrt(mean squared error(y test,predictions GRF))
          print('Grid Search CV Random Forest Regressor Model Performance:')
          print('Best Parameters = ',view_best_params_GRF)
          print('R-squared = {:0.2}.'.format(GRF r2))
          print('RMSE = ',(GRF rmse))
          Grid Search CV Random Forest Regressor Model Performance:
          Best Parameters = {'max_depth': 7, 'n_estimators': 18}
          R-squared = 0.8.
          RMSE = 0.23637990451376567
In [179]:
          gb = GradientBoostingRegressor(random state = 0)
          n_estimator = list(range(11,20,1))
          depth = list(range(5,15,2))
          grid_search = {'n_estimators': n_estimator,'max_depth': depth}
          gridcv_gb = GridSearchCV(gb, param_grid = grid_search, cv = 5)
          gridcv_gb = gridcv_gb.fit(X_train,y_train)
          view best params Ggb = gridcv gb.best params
          predictions_Ggb = gridcv_gb.predict(X_test)
          Ggb_r2 = r2_score(y_test, predictions_Ggb)
          Ggb_rmse = np.sqrt(mean_squared_error(y_test,predictions_Ggb))
          print('Grid Search CV Gradient Boosting regression Model Performance:')
          print('Best Parameters = ',view_best_params_Ggb)
          print('R-squared = {:0.2}.'.format(Ggb r2))
          print('RMSE = ',(Ggb_rmse))
          Grid Search CV Gradient Boosting regression Model Performance:
          Best Parameters = {'max_depth': 5, 'n_estimators': 19}
          R-squared = 0.8.
          RMSE = 0.23724212611002213
In [180]: regr = RandomForestRegressor(random state = 0)
          n estimator = list(range(11,20,1))
          depth = list(range(5,15,2))
          grid_search ={"n_estimators":n_estimator, "max_depth": depth}
          gridcv rf = GridSearchCV(regr, param grid = grid search, cv=5)
          gridcv_rf = gridcv_rf.fit(X_train, y_train)
          view best params GRF = gridcv rf.best params
          predictions_GRF_test_Df = gridcv_rf.predict(test)
In [182]: predictions_GRF_test_Df
Out[182]: array([2.36760025, 2.39383317, 1.6809062 , ..., 4.01224357, 3.29348722,
                 2.0360277 ])
```

```
In [183]: test['Predicted_fare']=predictions_GRF_test_Df
In [184]:
           test.head()
Out[184]:
               passenger_count year Month Date Day Hour distance Predicted_fare
                            1 2015
            0
                                        1
                                             27
                                                   1
                                                       13 1.200946
                                                                         2.367600
            1
                            1 2015
                                        1
                                             27
                                                   1
                                                       13 1.231205
                                                                         2.393833
            2
                              2011
                                       10
                                             8
                                                       11 0.481579
                                                                         1.680906
                            1
                                                  5
```

```
In [185]: test.to_csv('test.csv')
```

1

1

5

5

12

12

1.085538

21 1.854312

2.209257

2.815112

2012

1 2012

In []:

3