# Programming for Biology Similarity Searching II –

# Practical search strategies

Bill Pearson wrp@virginia.edu

1

# Protein Evolution and Sequence Similarity

#### **Similarity Searching I**

- · What is Homology and how do we recognize it?
- How do we measure sequence similarity alignments and scoring matrices?
- · DNA vs protein comparison

#### Similarity Searching II

- · More effective similarity searching
  - Smaller databases
  - Appropriate scoring matrices
  - Using annotation/domain information

# Similarity Searching II

- 1. What question to ask?
- 2. What program to use?
- 3. What database to search?
- 4. How to avoid mistakes (what to look out for)
- 5. When to do something different
- 6. More sensitive methods (PSI-BLAST, HMMER)

3

## 1. What question to ask?

- Is there an homologous protein (a protein with a similar structure)?
- Does that homologous protein have a similar function?
- Does XXX genome have YYY (kinase, GPCR, ...)?

#### Questions not to ask:

- Does this DNA sequence have a similar regulatory element (too short – never significant)?
- Does (non-significant) protein have a similar function/modification/antigenic site?

## 2. What program to run?

- What is your query sequence?
  - protein BLAST (NCBI), SSEARCH (EBI)
  - protein coding DNA (EST) –
     BLASTX (NCBI), FASTX (EBI)
  - DNA (structural RNA, repeat family) BLASTN (NCBI), FASTA (EBI)
- Does XXX genome have YYY (protein)?
  - TBLASTN YYY vs XXX genome
  - TFASTX YYY vs XXX genome
- Does my protein contain repeated domains?
  - LALIGN (UVa http://fasta.bioch.virginia.edu)











#### 3. What database to search?

- Search the smallest comprehensive database likely to contain your protein
  - vertebrates human proteins (40,000)
  - fungi S. cerevisiae (6,000)
  - bacteria E. coli, gram positive, etc. (<100,000)</li>
- Search a richly annotated protein set (SwissProt, 450,000)
- Always search NR (> 12 million) LAST
- Never Search "GenBank" (DNA)

11

#### Why smaller databases are better - statistics



$$S' = \lambda S_{raw} - ln K m n$$
  
 $S_{bit} = (\lambda S_{raw} - ln K)/ln(2)$   
 $P(S'>x) = 1 - exp(-e^{-x})$   
 $P(S_{bit} > x) = 1 - exp(-mn2^{-x})$   
 $E(S'>x ID) = P D$ 

#### What is a "bit" score?

- Scoring matrices (PAM250, BLOSUM62, VTML40) contain "log-odds" scores:

  - $s_{i,j}$  (bits) =  $log_2(q_{i,j}/p_ip_j)$  ( $q_{i,j}$  freq. in homologs/  $p_ip_j$  freq. by chance)  $s_{i,j}$  (bits) = 2 -> a residue is  $2^2$ =4-times more likely to occur by homology compared with chance (at one residue)
  - $s_{ij}$  (bits) = -1 -> a residue is  $2^{-1}$  = 1/2 as likely to occur by homology compared with chance (at one residue)
- An alignment score is the maximum sum of  $s_{i,j}$  bit scores across the aligned residues. A 40-bit score is  $2^{40}$  more likely to occur by homology than by chance.
- How often should a score occur by chance? In a 400 \* 400 alignment, there are ~160,000 places where the alignment could start by chance, so we expect a score of 40 bits would occur:  $P(S_{bit} > x) = 1 - exp(-mn2^x) \sim mn2^x + 400 \times 400 \times 2^{-40} = 1.6 \times 10^5 / 2^{40} (10^{13.3}) = 1.5 \times 10^{-7}$  times

Thus, the probability of a 40 bit score in ONE alignment is  $\sim 10^{-7}$ But we did not ONE alignment, we did 4,000, 40,000, 400,000, or 16 million alignments when we searched the database:

```
E(S_{bit} \mid D) = p(40 \text{ bits}) \times database size}
E(40 \mid 4,000) = 10^{-7} \times 4,000 = 4 \times 10^{-4}
                                                                            (significant)
E(40 \mid 40,000) = 10^{-7} \times 4 \times 10^{4} = 4 \times 10^{-3}
                                                                            (not significant)
E(40 \mid 400,000) = 10^{-7} \times 4 \times 10^{5} = 4 \times 10^{-2}
                                                                            (not significant)
E(40 \mid 16 \text{ million}) = 10^{-7} \text{ x } 1.6 \text{ x } 10^{7} = 1.6
                                                                            (not significant)
```

13

# How many "bits" do I need?

```
E(p \mid D) = p(40 \text{ bits}) \times \text{database size}
```

 $E(40 \mid 4,000) = 10^{-8} \times 4,000 = 4 \times 10^{-5}$ (significant)

 $E(40 \mid 40.000) = 10^{-8} \times 4 \times 10^{4} = 4 \times 10^{-4}$ (significant)

 $E(40 \mid 400,000) = 10^{-8} \times 4 \times 10^{5} = 4 \times 10^{-3}$  (not significant)

To get E()  $\sim 10^{-3}$  :

genome (10,000) p ~  $10^{-3}/10^4 = 10^{-7}/160,000 = 40$  bits SwissProt (500,000) p ~  $10^{-3}/10^6 = 10^{-9}/160,000 = 47$  bits Uniprot/NR (10<sup>7</sup>)  $p \sim 10^{-3}/10^7 = 10^{-10}/160,000 = 50$  bits



very significant 10<sup>-50</sup> significant 10<sup>-6</sup>

significant 10-3 not significant

# E()-values when??

- E()-values (BLAST expect) provide accurate statistical estimates of similarity by chance
  - non-random -> not unrelated (homologous)
  - E()-values are accurate (0.001 happens 1/1000 by chance)
  - E()-values factor in (and depend on) sequence lengths and database size
- E()-values are NOT a good proxy for evolutionary distance
  - doubling the length/score SQUARES the E()-value
  - percent identity (corrected) reflects distance (given homology)

15

#### NCBI - selecting sequences with Entrez NCBI/ BLAST/ blastp suite <u>blastn</u> blastp <u>blastx</u> <u>tblastn</u> <u>tblastx</u> BLASTP programs search protein databases using a protein query. more.. Enter Query Sequence Enter accession number, gi, or FASTA sequence @ Query subrange (2) То Or, upload file Choose File no file selected Job Title Align two or more sequences (9) Choose Search Set Database Reference proteins (refseq\_protein) Organism ☐ Exclude + **Entrez Query** Enter an Entrez query to limit search (2) 16

## **Effective Similarity Searching**

- 1. Always search protein databases (possibly with translated DNA)
- Use E()-values, not percent identity, to infer homologyE() < 0.001 is significant in a single search</li>
- 3. Search smaller (comprehensive) databases
- 4. Change the scoring matrix for:
  - short sequences (exons, reads)
  - short evolutionary distances (mammals, vertebrates, aproteobacteria)
  - high identity (>50% alignments) to reduce over-extension
- 5. All methods (pairwise, HMM, PSSM) miss homologs, and find homologs the other methods miss

## Scoring matrices

- Scoring matrices can set the evolutionary lookback time for a search
  - Lower PAM (PAM10/VT10 ... PAM/VT40) for closer (10% ... 50% identity)
  - Higher BLOSUM for higher conservation (BLOSUM50 distant, BLOSUM80 conserved)
- Shallow scoring matrices for short domains/short queries (metagenomics)
  - Matrices have "bits/position" (score/position), 40 aa at 0.45 bits/position (BLOSUM62) means 18 bit ave. score (50 bits significant)
- Deep scoring matrices allow alignments to continue, possibly outside the homologous region

# Where do scoring matrices come from?

| F | Pam          | 40         |            |     |            |    |    | Р | am | 250 |    |    |    |   |   |
|---|--------------|------------|------------|-----|------------|----|----|---|----|-----|----|----|----|---|---|
|   | Α            | R          | N          | D   | E          | I  | L  |   | Α  | R   | N  | D  | Е  | I | L |
| I | 8            |            |            |     |            |    |    | A | 2  |     |    |    |    |   |   |
| F | R <b>-</b> 9 | 12         |            |     |            |    |    | R | -2 | 6   |    |    |    |   |   |
| 1 | <b>1</b> –4  | <b>-</b> 7 | 11         |     |            |    |    | N | 0  | 0   | 2  |    |    |   |   |
| Ι | -4           | -13        | 3          | 11  |            |    |    | D | 0  | -1  | 2  | 4  |    |   |   |
| Ε | -3           | -11        | -2         | 4   | 11         |    |    | E | 0  | -1  | 1  | 3  | 4  |   |   |
| ] | -6           | -7         | -7         | -10 | <b>-</b> 7 | 12 |    | I | -1 | -2  | -2 | -2 | -2 | 5 |   |
| Ι | -8           | -11        | <b>-</b> 9 | -16 | -12        | -1 | 10 | L | -2 | -3  | -3 | -4 | -3 | 2 | 6 |

$$\lambda S_{i,j} = \log_b(\frac{q_{i,j}}{p_i p_j})$$

 $\begin{array}{ll} q_{ij} : \text{replacement frequency at PAM40, } 250 \\ q_{R:N~(~40)} = 0.000435 & p_R = 0.051 \\ q_{R:N~(250)} = 0.002193 & p_N = 0.043 \\ \textbf{l}_2 ~S_{ij} = \textbf{lg}_2 ~(q_{ij}/p_ip_j) & \textbf{l}_e ~S_{ij} = \textbf{ln}(q_{ij}/p_ip_j) & p_Rp_N = 0.002193 \\ \textbf{l}_2 ~S_{R:N(~40)} = \textbf{lg}_2 ~(0.000435/0.00219) = -2.333 \\ \textbf{l}_2 = 1/3; ~S_{R:N(~40)} = -2.333/\textbf{l}_2 = -7 \\ \textbf{l} ~S_{R:N(250)} = \textbf{lg2} ~(0.002193/0.002193) = ~0 \end{array}$ 



|            | 1                          | BLOSUM50-10/-2                 | BLOSUM62- | 11/-1 | <b>ህ</b> ጥ40 | -21/-4         | VT10 -23/-4                      |
|------------|----------------------------|--------------------------------|-----------|-------|--------------|----------------|----------------------------------|
|            |                            |                                |           |       |              |                | E(320363) f_id                   |
|            |                            |                                |           | _     |              |                |                                  |
|            | GSTM1_HUMAN                | 1.3e-101 1.00                  |           |       |              | 1.000          | 0 1.000                          |
|            | GSTM4_HUMAN                | 1.9e-89 0.867                  |           |       |              |                | 1.9e-193 0.867                   |
|            | GSTM2_MOUSE<br>GSTM5 HUMAN | 3.0e-87 0.839                  |           |       |              |                | 2.5e-187 0.847<br>7.2e-195 0.912 |
| Class-mu   | GSTM3_HUMAN                | 8.2e-87 0.844                  |           |       |              |                | 1.3e-184 0.844                   |
| Class-IIIu | GSTM1 MOUSE                | 7.0e-83 0.780                  |           |       |              |                |                                  |
|            | GSTM6 MOUSE                |                                |           |       |              |                | 1.3e-161 0.779                   |
|            | GSTM4 MOUSE                |                                |           |       |              |                | 2.1e-158 0.769                   |
|            | GSTM5_MOUSE                | 6.9e-73 0.727                  |           |       |              |                | 3.7e-128 0.727                   |
|            | GSTM3_HUMAN                | 8.2e-73 0.731                  | 6.7e-95 ( | .731  | 3.4e-143     | 0.731          | 8.2e-129 0.731                   |
|            | GSTM2 CHICK                | 9.8e-65 0.656                  | 4 70 94 ( | 656   | 2 00 117     | 0 656          | 1.4e-93 0.675                    |
|            | GSTM2_CHICK<br>GST26 FASHE | 2.9e-44 0.495                  |           |       |              |                |                                  |
|            | GSTM1 DERPT                | 5.2e-42 0.467                  |           |       |              |                |                                  |
|            | GST27 SCHMA                | 2.4e-37 0.467                  |           |       |              |                | 5.1e-20 0.607                    |
|            | _                          |                                |           |       |              |                |                                  |
|            | GSTP1_PIG                  | 2.9e-20 0.327                  |           |       |              | 0.409          |                                  |
| Class-pi   | GSTP1_XENLA                | 5.2e-19 0.333                  |           |       |              | 0.464          |                                  |
| оо         | GSTP2_MOUSE<br>GSTP1 CAEEL | 8.0e-17 0.294<br>1.1e-16 0.324 |           |       |              | 0.395<br>0.706 |                                  |
|            | GSTP1_CAEEL<br>GSTP1 HUMAN | 3.0e-16 0.284                  |           |       |              | 0.467          |                                  |
|            | GSTP1 BUFBU                | 1.2e-14 0.285                  |           |       | 9.7          | 0.588          |                                  |
|            | GSTPA_CAEEL                | 1.1e-13 0.298                  |           |       | 0.002        | 0.400          |                                  |
|            | pmana wayan                | 4 0 10 0 202                   | 2 6: 14 6 |       |              |                |                                  |
|            | PTGD2_MOUSE<br>PTGD2 RAT   | 4.8e-12 0.302<br>4.8e-12 0.302 |           |       |              |                |                                  |
|            |                            | 1.1e-11 0.292                  |           |       |              |                |                                  |
|            | PTGD2_HOLLK                | 9.8e-11 0.304                  |           |       |              |                |                                  |
|            | GSTP2 BUFBU                | 2.0e-10 0.288                  | 2.2e-12 ( | .307  |              |                |                                  |
|            | GST_MUSDO                  | 5.8e-09 0.257                  | 2.3e-11 ( | .251  |              |                |                                  |
|            | GST1_DROME                 | 1.0e-08 0.255                  | 2.9e-10 ( | .237  |              |                |                                  |
|            | GSTA1 MOUSE                | 1.5e-08 0.279                  | 4 9e-11 ( | 264   |              |                |                                  |
|            | GSTA2 HUMAN                | 6.6e-08 0.286                  |           |       |              |                |                                  |
| Class-     | GSTA5 HUMAN                | 7.8e-08 0.275                  |           |       |              |                |                                  |
| alpha      | GSTA2 MOUSE                | 1.1e-07 0.269                  |           |       |              |                |                                  |
| •          | GSTA3_MOUSE                | 1.3e-07 0.278                  | 8.9e-09 ( | .258  |              |                |                                  |
|            | GSTA1_HUMAN                | 3.0e-07 0.272                  | 8.0e-08 ( |       |              |                |                                  |
|            | GST36_CAEEL                | 3.3e-07 0.256                  | 1.1e-08 ( |       |              |                |                                  |
|            | GSTA2_CHICK                | 4.2e-07 0.279                  | 8.0e-08 ( | 266   |              |                |                                  |



# Empirical matrix performance (median results from random alignments)

| Matrix           |      |      |     |
|------------------|------|------|-----|
| VT160 -12/-2     | 23.8 | 0.26 | 192 |
| BLOSUM50 -10/-2  | 25.3 | 0.23 | 217 |
| BLOSUM62* -11/-1 | 28.9 | 0.45 | 111 |
| VT120 -11/-1     | 27.4 | 1.03 | 48  |
| VT80 -11/-1      | 51.9 | 1.55 | 32  |
| PAM70* -10/-1    | 33.8 | 0.64 | 78  |
| PAM30* -9/-1     | 45.5 | 1.06 | 47  |
| VT40 -12/-1      | 72.7 | 2.76 | 18  |
| VT20 -15/-2      | 84.6 | 3.62 | 13  |
| VT10 /16/-2      | 90.9 | 4.32 | 12  |

HMMs can be very "deep"



# Scoring Matrices - Summary

- PAM and BLOSUM matrices greatly improve the sensitivity of protein sequence comparison – low identity with significant similarity
- PAM matrices have an evolutionary model lower number, less divergence – lower=closer; higher=more distant
- BLOSUM matrices are sampled from conserved regions at different average identity – higher=more conservation
- · Shallow matrices set maximum look-back time
- Short alignments (domains, exons, reads) require shallow (higher information content) matrices

25

#### Effective Similarity Searching Using Annotations

- Modern sequence similarity searching is highly efficient, sensitive, and reliable – homologs are homologs
  - similarity statistics are accurate
  - databases are large
  - most queries will find a significant match
- Improving similarity searches
  - smaller databases
  - appropriate scoring matrices for short reads/assemblies
  - appropriate alignment boundaries
- Extracting more information from annotations
  - homologous over extension
  - scoring sub-alignments to identify homologous domains
- All methods (pairwise, HMM, PSSM) miss homologs
  - all methods find genuine homologs the other methods miss









#### Homology, non-homology, and over-extension

- Sequences that share statistically significant sequence similarity are homologous (simplest explanation)
- But not all regions of the alignment contribute uniformly to the score
  - lower identity/Q-value because of non-homology (overextension) ?
  - lower identity/Q-value because more distant relationship (domains have different ages) ?
- · Test by searching with isolated region
  - can the <u>distant domain (?)</u> find closer (significant) homologs?
- Similar (homology) or distinct (non-homology) structure is the gold standard
- · Multiple sequence alignment can obscure over-extension
  - if the alignment is over-extended, part of the alignment is NOT homologous

31

## **Effective Similarity Searching**

- Always search protein databases (possibly with translated DNA)
- Use E()-values, not percent identity, to infer homology
   E() < 0.001 is significant in a single search</li>
- 3. Search smaller (comprehensive) databases
- 4. Change the scoring matrix for:
  - short sequences (exons, reads)
  - short evolutionary distances (mammals, vertebrates, aproteobacteria)
  - high identity (>50% alignments) to reduce over-extension
- 5. All methods (pairwise, HMM, PSSM) miss homologs, and find homologs the other methods miss

### **Effective Similarity Searching Using Annotations**

- Use protein/translated DNA comparisons
- Modern sequence similarity searching is highly efficient, sensitive, and reliable – homologs are homologs
  - similarity statistics are accurate
  - databases are large
  - most queries will find a significant match
- Improving similarity searches
  - smaller databases
  - shallow scoring matrices for short reads/assemblies
  - shallow matrices for high identity alignments
- Extracting more information from annotations
  - homologous over extension
  - scoring sub-alignments to identify homologous domains
- · All methods (pairwise, HMM, PSSM) miss homologs
  - all methods find genuine homologs the other methods miss

## Effective Similarity Searching

- 1. Always search protein databases (possibly with translated DNA)
- Use E()-values, not percent identity, to infer homology
  - E() < 0.001 is significant in a single search
- 3. Search smaller (comprehensive) databases
- 4. Change the scoring matrix for:
  - short sequences (exons, reads)
  - short evolutionary distances (mammals, vertebrates, aproteobacteria)
  - high identity (>50% alignments) to reduce over-extension
- 5. All methods (pairwise, HMM, PSSM) miss homologs, and find homologs the other methods miss