Introduction to Matrix Algebra and Multiple Regression with R

February 13, 2019

Multiple regression: Model and Regression Function

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \ldots + \beta_K X_K + U,$$
 X_1, X_2, \ldots, X_K are regressors,
 $\beta_0, \beta_1, \ldots, \beta_K$ are the population parameters and U is the unobservable error term, $E(U) = 0$

If we assume that $E(U|X_1, X_2, ..., X_K) = E(U)$ the population regression function (line/hyperplane) is

$$E(Y|X_1, X_2, ..., X_k) = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + ... + \beta_k X_K$$

Interpretation of β_1 and of β_0

- β_1 gives the change in $E(Y|X_1, X_2, ..., X_K)$ caused by a change in X_1 when $X_2, ..., X_K$ are held fixed at some values, $x_2, ..., x_K$.
- ▶ Thus, β_1 is the marginal/partial effect of X_1 on Y when we keep X_2, \ldots, X_K fixed at some arbitrary values. In short, the "effect" of X_1 "controlling" for X_2, \ldots, X_K .
- ▶ The intercept, β_0 , is the expected value of Y when all x_1, x_2, \ldots, x_K equal zero.

LS Estimation

Consider K=2 Link: regression plane

$$E(Y|X_1, X_2) = \beta_0 + \beta_1 X_1 + \beta_2 X_2$$

$$\min_{\beta_0, \beta_1, \beta_2} \sum_{i=1}^{n} (Y_i - (\beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i}))^2$$

We will not derive the estimators $\hat{\beta}_0$, $\hat{\beta}_1$ and $\hat{\beta}_2$. It just becomes a lot of algebra. Using matrix algebra for the general case is more straightforward (on coming slides). Predicted (fitted) values are

$$\hat{E}(Y_i|X_{1i},X_{2i}) = \hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 X_{1i} + \hat{\beta}_2 X_{2i}$$

and the residuals are

$$\hat{U}_i = Y_i - \hat{Y}_i$$

Example

Use the Prestige data again and now run a regression of the following model

prestige =
$$\beta_0 + \beta_1 income + \beta_2 women + U$$

▶ What is the predicted prestige average (\hat{Y}) if income is held constant at the sample average and the proportion women is 25 %?

Henceforth

The rest of the lecture aims to use matrix algebra in R and at the same time learn about Multiple regression

Matrices and vectors

$$A_{3,2} = \begin{pmatrix} a_{1,1} & a_{1,2} \\ a_{2,1} & a_{2,2} \\ a_{3,1} & a_{3,2} \end{pmatrix} \qquad B_{3,2} = \begin{pmatrix} b_{1,1} & b_{1,2} \\ b_{2,1} & b_{2,2} \\ b_{3,1} & b_{3,2} \end{pmatrix}$$
$$V_3 = \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix}$$

Addition

$$A_{3,2}+B_{3,2} = \begin{pmatrix} a_{1,1} & a_{1,2} \\ a_{2,1} & a_{2,2} \\ a_{3,1} & a_{3,2} \end{pmatrix} + \begin{pmatrix} b_{1,1} & b_{1,2} \\ b_{2,1} & b_{2,2} \\ b_{3,1} & b_{3,2} \end{pmatrix} = \begin{pmatrix} a_{1,1}+b_{1,1} & a_{1,2}+b_{1,2} \\ a_{2,1}+b_{2,1} & a_{2,2}+b_{2,2} \\ a_{3,1}+b_{3,1} & a_{3,2}+b_{3,2} \end{pmatrix}$$

$$A_{3,2} + V_3 = \begin{pmatrix} a_{1,1} & a_{1,2} \\ a_{2,1} & a_{2,2} \\ a_{3,1} & a_{3,2} \end{pmatrix} + \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix} = \begin{pmatrix} a_{1,1} + v_1 & a_{1,2} + v_1 \\ a_{2,1} + v_2 & a_{2,2} + v_2 \\ a_{3,1} + v_3 & a_{3,2} + v_3 \end{pmatrix}$$

Subtraction

$$A_{3,2} - B_{3,2} = \begin{pmatrix} a_{1,1} & a_{1,2} \\ a_{2,1} & a_{2,2} \\ a_{3,1} & a_{3,2} \end{pmatrix} - \begin{pmatrix} b_{1,1} & b_{1,2} \\ b_{2,1} & b_{2,2} \\ b_{3,1} & b_{3,2} \end{pmatrix} = \begin{pmatrix} a_{1,1} - b_{1,1} & a_{1,2} - b_{1,2} \\ a_{2,1} - b_{2,1} & a_{2,2} - b_{2,2} \\ a_{3,1} - b_{3,1} & a_{3,2} - b_{3,2} \end{pmatrix}$$

$$A_{3,2} - V_3 = \begin{pmatrix} a_{1,1} & a_{1,2} \\ a_{2,1} & a_{2,2} \\ a_{3,1} & a_{3,2} \end{pmatrix} - \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix} = \begin{pmatrix} a_{1,1} - v_1 & a_{1,2} - v_1 \\ a_{2,1} - v_2 & a_{2,2} - v_2 \\ a_{3,1} - v_3 & a_{3,2} - v_3 \end{pmatrix}$$

Transpose

$$A'_{3,2} = \begin{pmatrix} a_{1,1} & a_{1,2} \\ a_{2,1} & a_{2,2} \\ a_{3,1} & a_{3,2} \end{pmatrix}' = \begin{pmatrix} a_{1,1} & a_{2,1} & a_{3,1} \\ a_{1,2} & a_{2,2} & a_{3,2} \end{pmatrix}$$

$$V' = \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix}' = \begin{pmatrix} v_1 & v_2 & v_3 \end{pmatrix}$$

▶ Addition Rule: (A + B)' = A' + B'

Matrix multiplication

$$A'_{3,2}B_{3,2} = \begin{pmatrix} a_{1,1} & a_{2,1} & a_{3,1} \\ a_{1,2} & a_{2,2} & a_{3,2} \end{pmatrix} \times \begin{pmatrix} b_{1,1} & b_{1,2} \\ b_{2,1} & b_{2,2} \\ b_{3,1} & b_{3,2} \end{pmatrix} =$$

$$= \begin{pmatrix} \sum_{i=1}^{3} a_{i,1}b_{i,1} & \sum_{i=1}^{3} a_{i,1}b_{i,2} \\ \sum_{i=1}^{3} b_{i,2}a_{i,1} & \sum_{i=1}^{3} a_{i,2}b_{i,2} \end{pmatrix}$$

$$A'_{3,2}V = \begin{pmatrix} a_{1,1} & a_{2,1} & a_{3,1} \\ a_{1,2} & a_{2,2} & a_{3,2} \end{pmatrix} \times \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix} = \begin{pmatrix} \sum_{i=1}^{3} a_{i,1}v_i \\ \sum_{i=1}^{3} a_{i,2}v_i \end{pmatrix}$$

Rules:

- \rightarrow A(B+C)=AB+AC
- \triangleright (A+B)C=AC+BC
- ▶ (AB)' = B'A'

In R, AB is written A% * %B.

Exersice

Consider

$$X_i = \begin{pmatrix} 1 & 2 & 3 \end{pmatrix}$$

and

$$\beta = \begin{pmatrix} 0.5 \\ 1 \\ 2 \end{pmatrix}$$

what is

$$X_i\beta$$
 ?

Exersice

Consider

$$X_i = \begin{pmatrix} 1 & X_{1i} & X_{2i} \end{pmatrix}$$

and

$$\beta = \begin{pmatrix} \beta_0 \\ \beta_1 \\ \beta_2 \end{pmatrix}$$

what is

$$X_i\beta$$
 ?

Extend on the exercise

Consider

$$\mathbf{X} = \begin{pmatrix} 1 & X_{11} & \cdots & X_{K1} \\ 1 & X_{12} & \cdots & X_{K2} \\ \vdots & \vdots & \ddots & \ddots \\ 1 & X_{1n} & \cdots & X_{Kn} \end{pmatrix} = \begin{pmatrix} X_1 \\ X_2 \\ \vdots \\ X_n \end{pmatrix}, \ \beta = \begin{pmatrix} \beta_0 \\ \beta_1 \\ \vdots \\ \beta_K \end{pmatrix}, \ \mathbf{Y} = \begin{pmatrix} Y_1 \\ Y_2 \\ \vdots \\ Y_n \end{pmatrix}, \ \mathbf{U} = \begin{pmatrix} U_1 \\ U_2 \\ \vdots \\ U_n \end{pmatrix}$$

then we can write the regression models for each observation combined like

$$\mathbf{Y} = \mathbf{X}\beta + \mathbf{U}$$

which is equivalent to

$$\begin{pmatrix} Y_1 \\ Y_2 \\ \vdots \\ Y_n \end{pmatrix} = \begin{pmatrix} X_1 \\ X_2 \\ \vdots \\ X_n \end{pmatrix} \begin{pmatrix} \beta_0 \\ \beta_1 \\ \vdots \\ \beta_K \end{pmatrix} + \begin{pmatrix} U_1 \\ U_2 \\ \vdots \\ U_n \end{pmatrix}$$

The inverse and the identity Matrix

Consider a square matrix, e.g.

$$A = \begin{pmatrix} a_{1,1} & a_{1,2} \\ a_{2,1} & a_{2,2} \end{pmatrix}.$$

lf

$$AB = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix},$$

then, by definition, B is the inverse of A denoted A^{-1} . The matrix on the right-hand side is called the identity matrix denoted

$$I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
.

Example

The function solve(A) give the inverse of matrix A in R. Find the inverse of

$$\mathbf{X} = \begin{pmatrix} 5 & 4 \\ 3 & 7 \end{pmatrix}$$

and control

$$\mathbf{X}\mathbf{X}^{-1} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

Also compute XI and $I\beta$ where

$$\beta = \begin{pmatrix} 2.5 \\ 1.5 \end{pmatrix}$$

Symmetric and diagonal matrices

A symmetric matrix A has elements $a_{i,j} = a_{j,i}$, e.g.

$$\mathbf{A} = \begin{pmatrix} 5 & 3 & 1 \\ 3 & 7 & 2 \\ 1 & 2 & 1 \end{pmatrix}$$

A **diagonal matrix** B is a symmetric matrix but all $b_{i,j} = 0$, $i \neq j$, the identity matrix is one example and a different example is this matrix:

$$\mathbf{B} = \begin{pmatrix} 5 & 0 & 0 \\ 0 & 7 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Rule:

▶ If A is symmetric then A=A'

Matrix operations in R

Consider two $n \times m$ matrices A and B and a vector V of length n

Opearation	In R
Addition	A+B and $A+V$
Subtraction	A-B and $A-V$
transpose	t(A)
Multiplication	t(A) %*%B and $t(A)%*%V$
Hadamard product	A*B and $A*V$
Inverse of a square matrix C	solve(C)
Diagonal of a square matrix C	diag(C)

Gradient

A gradient is a vector including all first order partial derivatives of a multivariate function $f(x_1, x_2, ..., x_K) = f(\mathbf{x})$:

$$g = \frac{\partial f(\mathbf{x})}{\partial \mathbf{x}} = \begin{bmatrix} \frac{\partial f(\mathbf{x})}{\partial x_1} \\ \frac{\partial f(\mathbf{x})}{\partial x_2} \\ \vdots \\ \frac{\partial f(\mathbf{x})}{\partial x_k} \end{bmatrix} = \begin{bmatrix} f_1 \\ f_2 \\ \vdots \\ f_k \end{bmatrix}$$

Two Rules:

- $ightharpoonup rac{\partial V' \mathbf{x}}{\partial \mathbf{x}} = V$ where both \mathbf{x} and V are vectors
- $\frac{\partial \mathbf{x}' A \mathbf{x}}{\partial \mathbf{x}} = 2A \mathbf{x}$ where A is a symmetric matrix

Link: Examples of the two rules

Rules useful for LS-derivations

- 1. (A + B)' = A' + B'
- 2. A(B + C) = AB + AC
- 3. (A + B)C = AC + BC
- 4. (AB)' = B'A'
- 5. $(A^{-1})' = (A')^{-1}$
- 6. If A is symmetric then A=A'
- 7. $V_1'V_2 = V_2'V_1$, if V_1 and V_2 are two vectors of the same length
- 8. $\frac{\partial V' \mathbf{x}}{\partial \mathbf{x}} = V$ where both \mathbf{x} and V are vectors
- 9. $\frac{\partial \mathbf{x}' A \mathbf{x}}{\partial \mathbf{x}} = 2A \mathbf{x}$ where A is a symmetric matrix
- 10. cAB = AcB = ABc where A and B are matrices or vectors and c is a single value (scalar)

The general least squares estimator

To obtain the least squares estimator one minimise the sum of the squared residuals also called Residual sum of squares (RSS). Note

$$RSS = \sum_{i=1}^{n} U_i^2 = \mathbf{U}'\mathbf{U} = (\mathbf{Y} - \mathbf{X}\beta)'(\mathbf{Y} - \mathbf{X}\beta)$$

and with some matrix algebra Link: here

$$(\mathbf{Y} - \mathbf{X}\beta)'(\mathbf{Y} - \mathbf{X}\beta) =$$

$$\mathbf{Y}'\mathbf{Y} - 2\mathbf{Y}'\mathbf{X}\beta + \beta'\mathbf{X}'\mathbf{X}\beta$$

Now take the first order condition for minimising RSS w.r.t. β

$$\frac{\partial \mathbf{U}'\mathbf{U}}{\partial \beta} = -2(\mathbf{Y}'\mathbf{X})' + 2\mathbf{X}'\mathbf{X}\beta = \mathbf{0}$$

The general least squares estimator

$$-2(\mathbf{Y}'\mathbf{X})' + 2\mathbf{X}'\mathbf{X}\beta = \mathbf{0} \Leftrightarrow$$

$$\mathbf{X}'\mathbf{X}\beta = \mathbf{X}'\mathbf{Y} \Leftrightarrow$$

$$\beta = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{Y}$$

thus

$$\hat{\beta} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{Y} \tag{1}$$

is the least squares estimator.

Exercise

▶ Use the Prestige data in the car package and compute the Least squares estimator given by (1), with help of matrix algebra operators in R.

prestige =
$$\beta_0 + \beta_1 income + \beta_2 women + U$$

Hypothesis testing

The Im() function in R tests the following hypotheses for each single coefficient

$$H_0: \beta_k = 0, \ H_a: \beta_k \neq 0$$

For example for the model:

$$prestige = \beta_0 + \beta_1 income + \beta_2 women + U$$

$$H_0: \beta_1 = 0, \ H_a: \beta_1 \neq 0$$

means that we test

- ▶ the null-hypothesis (H_0) : income has no effect on prestige
- ▶ against the alternative hypothesis (H_a): income has an effect on prestige

The LS estimator: Small sample inference

lf

- 1. $U|X \sim N(0, \sigma^2)$
- 2. And we sample (X_i, Y_i) , i = 1, ..., n such that $U_1, U_2, ..., U_n$ are iid link about iid, then

$$T = \frac{\hat{\beta}_k - \beta_k}{\sqrt{S^2((\mathbf{X}'\mathbf{X})^{-1})_{(k+1)(k+1)}}} \sim t_{n-K-1},$$

where $S^2 = \sum_{i=1}^n \hat{U}_i^2/(n-K-1)$, K is the number of regressors (X-variables) and $((\mathbf{X}'\mathbf{X})^{-1})_{(k+1)(k+1)}$ is the ((k+1),(k+1)) element of $(\mathbf{X}'\mathbf{X})^{-1}$

R and many other statistical packages are using this T-statistic as the default way to test:

$$H_0: \beta_k = 0, \ H_a: \beta_k \neq 0$$

The LS estimator: Small sample inference

The assumptions

- 1. $U|X \sim N(0, \sigma^2)$
- 2. Sampling (X_i, Y_i) , i = 1, ..., n such that $U_1, U_2, ..., U_n$ are iid

imply

- U is normally distributed, i.e. we assume we know the population distribution of the unexplained part of Y!?
- ▶ Homoskedasticity: $V(U|X) = V(U) = \sigma^2$
 - ► For example if, Y is wage and X is age, then we assume that the wage-dispersion is constant across different age groups
- ▶ The sampling is independent
 - ► This more or less rules out time-series data, for which it is difficult to assume that the random errors for the same unit or individual are not dependent over time. $Cov(U_1, U_2) \neq 0$

The LS estimator: Large sample inference

If we have a large sample size, large n, we don't have to assume:

- ▶ Normal *U*
- Homoskedasticity
- ▶ Independence $Cov(U_1, U_2) = 0$

Next Lecture

- ► Large sample T-testing
- More about the concepts of homo- and heteroskedastic random error U
- Joint hypothesis testing
- ► Non-linear regression curves