

Advanced Algorithms

String matching

Suffix trees & suffix arrays

Boris Klemz · WS20

(based on slides by D. Wagner)

The "Ctrl+F" problem

STRING MATCHING

Input: Strings T (text) and P (pattern) over an alphabet Σ s.t. |P|, $|\Sigma| \leq |T|$.

Task: Find all occurrences of P in T.

Example:

$$\Sigma = \{\mathsf{a},\mathsf{b},\mathsf{c}\} \qquad P = \mathsf{cbc} \qquad T = \left[\begin{smallmatrix} \mathsf{c} & \mathsf{b} & \mathsf{c} \\ \mathsf{c} & \mathsf{c} & \mathsf{c} & \mathsf{c} \\ \mathsf{c} & \mathsf{c} & \mathsf{c} & \mathsf{c} \\ \mathsf{c} & \mathsf{c} & \mathsf{c} \\ \mathsf{c} & \mathsf{c} & \mathsf{c} & \mathsf{c} \\ \mathsf{c} & \mathsf{c} & \mathsf{c} & \mathsf{c} \\ \mathsf{c} & \mathsf{c} & \mathsf{c} \\ \mathsf{c} & \mathsf{c} & \mathsf{c}$$

Applications:

- Searching a text document / e-book.
- Searching a particular pattern in a DNA sequence.
- Internet search engines: determine whether a page is relavent to the user query.

Notation

We assume T and P to be encoded as arrays with n = |T| entries $T[1], T[2], \ldots, T[n]$ and m = |P| entries $P[1], P[2], \ldots, P[m]$, respectively.

T[i,j] with $1 \le i \le j \le n$ denotes the substring of T formed by T[i], T[i+1], ..., T[j].

Each substring T[i, j] is called an **infix** of T. If i = 1, then T[i, j] is also called **prefix** of T. If j = n, then T[i, j] is also called **suffix** of T.

Algorithmic complexity

Occurrences of (prefixes of) P may overlap.

 \Rightarrow A simple left-to-right traversal of T is not sufficient to find all occurrences of P!

Observation. String Matching can be solved in $\mathcal{O}(nm)$ time.

Theorem. String Matching can be solved in $\mathcal{O}(n+m)$ time, and this time bound is optimal. [Knuth, Morris, Pratt'77]

Often, many queries P_1, P_2, P_3, \ldots are performed on the same text T.

Our goal: Design a data structure to store T such that each query P_i can be answered in time independent of n.

We will see two such data structures: suffix trees and suffix arrays.

Suffix trees (I)

T = abcababca

Idea: Represent T as a search tree.

A Σ -tree is a rooted tree S=(V,E) whose edges are labeled with strings over Σ such that for each $v\in V$

- the labels of the edges that lead to the children of v start with pairwise distinct elements of Σ ;
- lacksquare if v is not the root, then v has $\neq 1$ children.

Notation:

- $\overline{v} =$ concatenation of the labels encountered on the path from the root to v;
- $d(v) = |\overline{v}|$ is the string depth of v;
- **S contains** a string α if there is a $v \in V$ and a string β such that $\overline{v} = \alpha \beta$;
- lacksquare words(S) = set of all strings contained in S.

$$\overline{v} = babca$$

$$d(v) = |\overline{v}| = 5$$

S contains $\alpha = b$ a b since there is a $v \in V$ with $\overline{v} = \alpha \beta$ where $\beta = c$ a.

Suffix trees (II)

A suffix tree S of T is a Σ -tree that contains exactly the infixes of T, that is, $words(S) = \{T[i,j] \mid 1 \le i \le j \le n\}$.

Lemma. For each leaf v of S, the infix \overline{v} is a suffix of T.

Proof. Denote $\overline{v} = T[i, j]$ and assume j < n.

 \overline{v} is a prefix of T[i, n]. Let u be a vertex such that T[i, n] is a prefix of \overline{u} .

 \Rightarrow the path from the root to v is a subpath of the path from the root to u.

 $\Rightarrow v$ is not a leaf; a contradiction.

Suffix trees (II)

A suffix tree S of T is a Σ -tree that contains exactly the infixes of T, that is, $words(S) = \{T[i,j] \mid 1 \le i \le j \le n\}$.

Lemma. For each leaf v of S, the infix \overline{v} is a suffix of T.

Remark. The converse is not true since a suffix can be a prefix of another suffix.

Fix: Append a symbol $\$ \notin \Sigma$ to $T \Rightarrow$ the leafs correspond bijectively to the suffixes.

Suffix trees (II)

A suffix tree S of T is a Σ -tree that contains exactly the infixes of T, that is, $words(S) = \{T[i,j] \mid 1 \le i \le j \le n\}$.

Lemma. For each leaf v of S, the infix \overline{v} is a suffix of T.

Remark. The converse is not true since a suffix can be a prefix of another suffix.

Fix: Append a symbol $\$ \notin \Sigma$ to $T \Rightarrow$ the leafs correspond bijectively to the suffixes.

Let i denote the leaf of S where $\bar{i} = T[i, n]$.

Let S_i denote

- the *i*th suffix T[i, n] of T;
- \blacksquare the path from the root of S to i.

Suffix trees (III)

Implementation details:

- Each edge is labeled with an infix T[i,j]. It suffices to store the indices i and j. $\Rightarrow S$ requires $\mathcal{O}(n)$ space since #leafs = #suffixes = n.
- At each vertex v with k children, the edges leading to these children are stored in an array of length k sorted by the first letter of their labels.

 \rightarrow allows for binary search!

Searching in suffix trees

Correctness. Each occurrence of P is a prefix of exactly one suffix of T. We report all suffixes with P as a prefix. Running time. $\mathcal{O}(m \log |\Sigma| + k)$ where k is the number of leafs in the subtree rooted at v.

Construction a suffix tree

Task. Given a string T with n = |T| over alphabet Σ , construct a suffix tree S for T. **Idea.** Construct Σ -trees N_1, N_2, \ldots, N_n s.t. N_i contains the suffixes S_1, S_2, \ldots, S_i . **Initialisation.** N_1 consists of a single edge labeled S_1 .

Constructing N_{i+1} from N_i . Search the longest prefix P of S_{i+1} contained in N_i .

Case 1. P ends in the middle of an edge e. Subdivide e and attach a new edge.

Case 2. P ends at a vertex v. Attach a new edge, then re-sort the neighbors of v.

Running time.

$$\mathcal{O}\Big(\big((n-1)+(n-2)+\cdots+1\big)\log|\Sigma|+n|\Sigma|\Big)\subseteq\mathcal{O}(n^2\log|\Sigma|)$$

It is also possible to construct suffix trees in $\mathcal{O}(n)$ time

- directly, e.g., with an algorithm by Farach (1997); or
- indirectly, by first constructing a **suffix array**, e.g., with an algorithm by Kärkkäinen and Sanders (2003).

Suffix arrays

A suffix array A of a text T with n = |T| stores a permutation of the indices $\{1, 2, \ldots, n\}$ s.t. $S_{A[i]}$ is the ith smallest suffix of T in lexicographical order.

T with n=|T| indices $\{1,2,\ldots,n\}$ is suffix of T in $S_{A[i-1]} < S_{A[i]}$ for each $1 < i \le n$

Convention. \$ is the smallest letter.

Properties.

- The entries of A correspond to a lexicographical sorting of the suffixes of T.
- The entries of *A* corresponds to the order in which the leafs of a suffix tree *S* of *T* are encoutered by a DFS that chooses the next edge according to the lexicographical order.

T = abcababca\$ A = 10946157283 \$aaaabbbcca\$ \$bbbaccaaaabbbaccaaaaacbbbaaccaaaabbbaaccaaaabbaaccaaaabbaaacabaaabbca
<math>\$c\$baaacbaaabcaaaabcaa

Searching in suffix arrays

return r

Observation. The occurrences of a pattern P in T form an interval in A.

Idea. Find the left and the right boundary of the interval via two binary searches.

Report all entries in the interval!

```
FINDRIGHTBOUNDARY (A, P)
  A' \leftarrow A
  while |A'| > 1 do
       i \leftarrow \lceil (|A'| + 1)/2 \rceil.
       if P < S_{A[i]}[1, m] then
         A' \leftarrow A'[1, i-1] (left half)
       else
          A' \leftarrow A'[i, |A'|] (right half)
                                                                                   P = a b
  r \leftarrow \text{index of } A'[1] \text{ in } A.
  if P is no prefix of A[r] then
       return "no match";
                                        Each lexicographic comparisons can be done in time \mathcal{O}(m).
```

 \Rightarrow The k occurrences of P can be found in $\mathcal{O}(m \log n + k)$ time.

T = abcababca

Constructing suffix arrays – first attempt

Task. Given a string T with n = |T| over alphabet Σ , construct a suffix array A for T. Idea.

- If $n \in \mathcal{O}(1)$ use brute-force.
- Otherwise, dissect *T* into triples.
- Interpret the triples as letters over an alphabet $\Sigma' \subseteq \Sigma^3$.
- Interpret T as a string R over Σ' with $|R| = \lceil n/3 \rceil$.
- Recurse!

$$R = [y \ a \ b] [b \ a \ d] [a \ b \ b] [a \ $^{\ }]$$

padding

Problem. But how can a suffix array for R be used to create a suffix array for T?

Construction of suffix arrays - overview

Shortened notation: $T = t_0 t_1 \dots t_{n-1}$ and $x \equiv z(y)$ is a shorthand for $x \mod y = z$.

ConstructSuffixArray(T)

if $n = \mathcal{O}(1)$ then construct A in $\mathcal{O}(1)$ time.

using the idea from the previous slide!

else

sort $S_1 \cup S_2$ into an array A_{12} use A_{12} to sort S_0 into an array A_0 merge A_{12} with A_0

For simplicity, we assume $n \equiv 0(3)$.

```
\mathcal{S}_0 = 	ext{suffixes} with index i \equiv 0(3) \mathcal{S}_1 = 	ext{suffixes} with index i \equiv 1(3) \mathcal{S}_2 = 	ext{suffixes} with index i \equiv 2(3)
```

$$S(T) = \text{suffixes of } T =$$

S_0	yabbadabbado
S_1	abbadabbado
S_2	bbadabbado
S_3	badabbado
S_4	adabbado
S_5	dabbado
S_6	abbado
S_7	bbado
S_8	bado
S_9	a d o
S_{10}	d o
S_{11}	0

Step 1: sorting $S_1 \cup S_2$

Shortened notation: $T = t_0 t_1 \dots t_{n-1}$ and $x \equiv z(y)$ is a shorthand for $x \mod y = z$.

Dissect S_1 and S_2 into triples and concatenate them:

R = [abb][ada][bba][dos][bba][dab][bad][oss]

 $\mathcal{S}_0 = ext{suffixes with index } i \equiv 0(3)$ $\mathcal{S}_1 = ext{suffixes with index } i \equiv 1(3)$ $\mathcal{S}_2 = ext{suffixes with index } i \equiv 2(3)$

$$R_1 = [t_1t_2t_3][t_4t_5t_6]... = [abb][ada][bba][do\$]$$
 $R_2 = [t_2t_3t_4][t_5t_6t_7]... = [bba][dab][bad][o\$\$]$

 $\mathcal{S}(T) = \text{suffixes of } T =$ yabbadabbado abbadabbado S_2 bbadabbado S_3 badabbado adabbado S_5 dabbado S_6 abbado S₇ bbado S_8 bado S_9 a d o S_{10} d o S_{11} 0

Step 1: sorting $S_1 \cup S_2$

 $S_i < S_j \Leftrightarrow S_i \$ < S_j \$ \Leftrightarrow S_i \$ \dots < S_j \$ \dots$ since the positions of the first \$ symbols in the strings $S_k(R)$ are pairwise distinct.

Shortened notation: $T = t_0 t_1 \dots t_{n-1}$ and $x \equiv z(y)$ is a shorthand for $x \mod y = z$.

Dissect S_1 and S_2 into triples and concatenate them:

$$R = [abb][ada][bba][do$][bba][dab][bad][o$$]$$

Observation. $\mathcal{S}(R)$ corresponds bijectively to $\mathcal{S}_1 \cup \mathcal{S}_2$

$$S_i \leftrightarrow [t_i t_{i+1} t_{i+2}][t_{i+3} t_{i+4} t_{i+5} \dots]$$

and a sorting of $\mathcal{S}(R)$ corresponds to a sorting of $\mathcal{S}_1 \cup \mathcal{S}_2$.

$$S_0 = \text{suffixes with index } i \equiv 0(3)$$

$$\mathcal{S}_1 = \mathsf{suffixes} \; \mathsf{with} \; \mathsf{index} \; i \equiv 1(3)$$

$$S_2 = \text{suffixes with index } i \equiv 2(3)$$

$$\mathcal{S}(T) = \text{suffixes of } T =$$

, ,	
S_0	yabbadabbado
S_1	abbadabbado
S_2	bbadabbado
S_3	badabbado
S_4	adabbado
S_5	dabbado
S_6	abbado
S_7	bbado
S_8	bado
S_9	a d o
S_{10}	d o
S_{11}	0

Sorting S(R)

Sort the "letters" (= triples) of R via RADIXSORT. This can be done in time

$$\mathcal{O}(3(\frac{2}{3}n+|\Sigma|))\subseteq\mathcal{O}(n)$$
 ConstructSuffixArray(R')
#digits #objects alphabet size

Replace each triple of R with its rank \rightarrow string R' with alphabet size $\leq \frac{2}{3}n \leq n$.

A sorting of $\mathcal{S}(R')$ corresponds to a sorting of $\mathcal{S}(R)$ and can be obtained recursively.

$$R = \frac{[abb][ada][bba][do\$]}{[bba][dab][bad][o\$\$]}$$

R' = 1 2 4 6 4 5 3 7

Rank	triple	$S(R) = S_1(R)$	[abb][ada][bba][do\$][bba][dab][bad][o\$\$]
1	[abb]	$S_2(R)$	[ada][bba][do\$][bba][dab][bad][o\$\$]
2	[ada]	$S_3(R)$	[bba][do\$][bba][dab][bad][o\$\$]
3	[bad]	$S_4(R)$	[do\$][bba][dab][bad][o\$\$]
4	[bba]	$S_5(R)$	[bba][dab][bad][o\$\$]
5	[dab]	$S_6(R)$	[dab][bad][o\$\$]
6	[do\$]	$S_7(R)$	[bad][o\$\$]
7	[o\$\$]	$S_8(R)$	[o\$\$]

$$S(R') = S_1(R') \mid 12464537$$
 $S_2(R') \mid 2464537$
 $S_3(R') \mid 464537$
 $S_4(R') \mid 64537$
 $S_5(R') \mid 4537$
 $S_6(R') \mid 537$
 $S_7(R') \mid 37$
 $S_8(R') \mid 7$

Summary of Step 1

Full example.

```
S(T)=
      yabbadabbado
 S_0
      abbadabbado
      bbadabbado
                                      S(R)=
                                                                                            S(R') =
 S_3
       badabbado
                                       S_1(R)
                                               [abb][ada][bba][do$][bba][dab][bad][o$$]
                                                                                                       12464537
      adabbado
                                               [ada][bba][do$][bba][dab][bad][o$$]
                                       S_2(R)
                                                                                              S_2(R')
                                                                                                       2 4 6 4 5 3 7
      dabbado
                                               [bba][do$][bba][dab][bad][o$$]
                                       S_3(R)
                                                                                              S_3(R')
                                                                                                       464537
 S_6
      abbado
                                               [do$][bba][dab][bad][o$$]
                                       S_4(R)
                                                                                              S_4(R')
                                                                                                       64537
 S_7
      bbado
                                               [bba][dab][bad][o$$]
                                       S_5(R)
                                                                                              S_5(R')
                                                                                                       4537
 S_8
      bado
                                               [dab][bad][o$$]
                                       S_6(R)
                                                                                              S_6(R')
                                                                                                       5 3 7
 S_9
      a d o
                                       S_7(R)
                                               [bad][o$$]
                                                                                              S_7(R')
                                                                                                       3 7
      d o
                                       S_8(R)
                                               [o$$]
                                                                                              S_8(R')
```

Rank	triple
1	[abb]
2	[ada]
3	[bad]
4	[bba]
5	[dab]
6	[do\$]
7	[o\$\$]

A_{12} abbadabbado 1 2 4 6 4 5 3 7 adabbado 2 4 6 4 5 3 7 bado bbadabbado 4537 464537 bbado S_5 5 3 7 dabbado S_{10} 6 4 5 3 7 d o S_{11} 0

Running time.

$$T_1(n) = \mathcal{O}(n) + T(\frac{2}{3}n)$$

where T(n) is the time to execute ConstructSuffixArray on a string of length n.

Step 2: sorting S_0

Shortened notation: $T = t_0 t_1 \dots t_{n-1}$ and $x \equiv z(y)$ is a shorthand for $x \mod y = z$.

Each $S_i \in S_0$ can be written as (t_i, S_{i+1}) s.t. $S_{i+1} \in S_1$.

Observation. Let $S_i, S_j \in \mathcal{S}_0$. Then $S_i < S_j$ if and only if

- \blacksquare $t_i < t_j$; or
- $t_i = t_j \text{ and } S_{i+1} < S_{j+1}.$

 $\Rightarrow \mathcal{S}_o$ can be sorted by sorting all tuples (t_i, S_{i+1}) with $i \equiv 0(3)$. This can be done via RADIXSORT in $\mathcal{O}(n)$ time since the ordering of the entries in \mathcal{S}_1 is already implicit in A_{12} .

```
\mathcal{S}_0 = 	ext{suffixes with index } i \equiv 0(3) \mathcal{S}_1 = 	ext{suffixes with index } i \equiv 1(3) \mathcal{S}_2 = 	ext{suffixes with index } i \equiv 2(3)
```

$$S(T) =$$
suffixes of $T =$

S_0	yabbadabbado
S_1	abbadabbado
S_2	bbadabbado
S_3	badabbado
S_4	adabbado
S_5	dabbado
S_6	abbado
S_7	b b a d o
S_8	bado
S_9	a d o
S_{10}	d o
S_{11}	0

Step 3: merging A_{12} and A_0

Shortened notation: $T = t_0 t_1 \dots t_{n-1}$ and $x \equiv z(y)$ is a shorthand for $x \mod y = z$.

 $S_0 = \text{suffixes with index } i \equiv 0(3)$ $\mathcal{S}_1 = \mathsf{suffixes} \; \mathsf{with} \; \mathsf{index} \; i \equiv 1(3)$

 $S_2 = \text{suffixes with index } i \equiv 2(3)$

Each $S_i \in \mathcal{S}_0$ can be written as (t_i, S_{i+1}) s.t. $S_{i+1} \in \mathcal{S}_1$

and as (t_i, t_{i+1}, S_{i+2}) s.t. $S_{i+2} \in S_2$.

Observation. Sei $S_i \in S_0$.

- Let $S_i \in \mathcal{S}_1$. Then $S_i < S_i$ if and only if
 - \blacksquare $t_i < t_j$; or
 - $lack t_i = t_i$ and $S_{i+1} < S_{j+1}$ where $S_{j+1} \in \mathcal{S}_2$.
- Let $S_i \in \mathcal{S}_2$. Then $S_i < S_i$ if and only if
 - \blacksquare $t_i < t_j$; or
 - $t_i = t_i \text{ und } t_{i+1} < t_{j+1}; \text{ or } t_i = t_i \text{ and } t_{i+1} < t_{j+1}; \text{ or } t_i = t_i \text{ and } t_{i+1} < t_{j+1}; \text{ or } t_i = t_i \text{ and } t_{i+1} < t_{j+1}; \text{ or } t_i = t_i \text{ and } t_{i+1} < t_{j+1}; \text{ or } t_i = t_i \text{ and } t_{i+1} < t_{j+1}; \text{ or } t_i = t_i \text{ and } t_{i+1} < t_{j+1}; \text{ or } t_{i+1}; \text{ or } t_{i+1} < t_{j+1}; \text{ or } t_{i$
 - $t_i t_{i+1} = t_j t_{j+1}$ und $S_{i+2} < S_{j+2}$ where $S_{j+2} \in S_1$.

Since the ordering of $S_1 \cup S_2$ is already implicit in A_{12} , we can perform these comparisons in $\mathcal{O}(1)$ time.

 $\Rightarrow A_{12}$ and A_0 can be merged as in MergeSort to obtain A.

Construction of suffix arrays — summary

ConstructSuffixArray(T)

if $n = \mathcal{O}(1)$ then construct A in $\mathcal{O}(1)$ time.

else

sort $S_1 \cup S_2$ into an array A_{12} use A_{12} to sort S_0 into an array A_0 merge A_{12} with A_0

Total running time:

$$T(n) = egin{cases} \mathcal{O}(1), & \text{falls } n = \mathcal{O}(1) \\ \mathcal{O}(n) + T(\frac{2}{3}n), & \text{sonst} \end{cases}$$

$$\Rightarrow T(n) \in \mathcal{O}(n)$$

$$\mathcal{O}(n) + T(\frac{2}{3}n)$$

$$\mathcal{O}(n)$$

$$\mathcal{O}(n)$$

Summary and discussion

Let T over alphabet Σ where n = |T|.

Lemma. A suffix array for T can be used to compute a LCP array and a suffix tree of T in $\mathcal{O}(n)$ time. (without proof)

Theorem. A suffix tree for T can computed in $\mathcal{O}(n)$ time and space. It can be used to answer String Matching queries of length m in $\mathcal{O}(m \log |\Sigma| + k)$ time.

Theorem. A suffix array for T can computed in $\mathcal{O}(n)$ time and space. It can be used to answer String Matching queries of length m in $\mathcal{O}(m \log n + k)$ time.

Remark. The suffix array is a simpler and more compact alternative to the suffix tree.

The suffix tree (and the suffix array + LCP array) have several additional applications:

- Finding the longest repeated substring
- Finding the longest common substring of two strings.
- ...

Literature and references

The content of this presentation is based on Dorothea Wagner's slides for a lecture on "String-Matching: Suffixbäume" as part of the course "Algorithmen II" held at KIT WS 13/14. Most figures and examples were taken from these slides.

Literature:

- Simple Linear Work Suffix Array Construction. Kärkkäinen and Sanders, ICALP'03
- Optimal suffix tree construction with large alphabets. Farach, FOCS'97
- Algorithms on Strings, Trees and Sequences: Computer Science and Computational Biology. Gusfield, 1999, Cambridge University Press