实验 4 鸿蒙 LiteOS-a 内核移植——内存移植

22920212204396 黄子安

一、实验目的

1、给上次移植的 demochip 单板增加内存映射,从而实现内存的移植

二、实验环境

- 1、物理机 Windows11
- 2、虚拟机 Ubuntu18.04

三、实验内容

移植内存首先要做的就是知道内存结构,通过阅读 IMX6ULL 官方的手册可以知道内存的物理基地址为 8000_0000,视频中讲到内存的大小为 512MB,不是手册的 2GB,按照视频的内容进行

Table 2-1. System memory map

Start address	End address	Size	Description MMDC—x16 DDR Controller.	
8000_0000	FFFF_FFFF	2048 MB		
7000_0000	7FFF_FFFF	256 MB	Reserved	
6000_0000	6FFF_FFFF	256 MB	QSPI1 Memory	
5800_0000	5FFF_FFFF	128 MB	EIM Aliased	
5000_0000	57FF_FFFF	128 MB	EIM (NOR/SRAM)	
1000_0000	4FFF_FFFF	1024 MB	Reserved	
0E00_0000	OFFF_FFFF	32 MB	Reserved	
0C00_0000	ODFF_FFFF	32 MB	QSPI1 Rx Buffer	
0900_0000	OBFF_FFFF	48 MB	Reserved	
0800_0000	08FF_FFFF	16 MB	Reserved	
02C0_0000	07FF_FFFF	84 MB	Reserved	
0230_0000	02BF_FFFF	9 MB	Reserved	
0220_0000	022F_FFFF	1 MB	Table 2-4 AIPS-3. See IP listing on the separate ma	
0210_0000	021F_FFFF	1 MB	Table 2-3 AIPS-2. See the IP listing on the separa map.	
0200_0000	0_0000 020F_FFFF		Table 2-2 AIPS-1. See the IP listing on the separate map.	

在内核代码中修改物理基地址和内存的大小,对应的内核文件为openharmony/vendor/democom/demochip/board/include/board.h

```
#define __BOARD_CONFIG_H_
#include "menuconfig.h"
#ifdef __cplusplus
#if __cplusplus
extern "C" {
#endif /* __cplusplus */|
#endif /* __cplusplus */
/* physical memory base and size */
#define DDR_MEM_ADDR 0x80
                                0x80000000
#define DDR_MEM_SIZE
                                0x20000000
#define DDR RAMFS ADDR (DDR MEM ADDR + DDR MEM SIZE)
#define DDR_RAMFS_SIZE 0x4000000 /* 60M for ramfs, 4M for lcd */
/* Peripheral register address base and size */
                         0x40000000
0x20000000
#define PERIPH_PMM_BASE
#define PERIPH_PMM_SIZE
/* GIC base and size : 1M-align */
                       0×A0000000
#define GIC_PHY_BASE
#define GIC_PHY_SIZE
                             0xA0100000
```

IMX6ULL 芯片上设备地址分布比较零散,从 0 到 0x6FFFFFFF 都有分布,期中有很多保留地址没有被使用,如果全部映射完地址空间会不够,因此需要将各个模块单独映射

Start address	End address	Size	Description MMDC—x16 DDR Controller.		
8000_0000	FFFF_FFFF	2048 MB			
7000_0000	7FFF_FFFF	256 MB	Reserved		
6000_0000	6FFF_FFFF	256 MB	QSPI1 Memory		
5800_0000	5FFF_FFFF	128 MB	EIM Aliased		
5000_0000	57FF_FFFF	128 MB	EIM (NOR/SRAM)		
1000_0000	4FFF_FFFF	1024 MB	Reserved		
0E00_0000	OFFF_FFFF	32 MB	Reserved		
0C00_0000	ODFF_FFFF	32 MB	QSPI1 Rx Buffer		
0900_0000	OBFF_FFFF	48 MB	Reserved		
0800_0000	08FF_FFFF	16 MB	Reserved		
02C0_0000	07FF_FFFF	84 MB	Reserved		
0230_0000	02BF_FFFF	9 MB	Reserved		
0220_0000	022F_FFFF	1 MB	Table 2-4 AIPS-3. See IP listing on the separate map		
0210_0000	021F_FFFF	1 MB	Table 2-3 AIPS-2. See the IP listing on the separate map.		
0200_0000	020F_FFFF	1 MB	Table 2-2 AIPS-1. See the IP listing on the separate map.		
0181_0000	01FF_FFFF	8128 KB	Reserved		
0180_C000	0180_FFFF	16 KB	Reserved		

实现最小系统移植需要完成串口和中断控制器的地址映射,他们的地址信息 如下

Start address	End address	Size			Description		
0180_8000	0180_BFFF	16 KB		BCH	ВСН		
0180_6000	0180_7FFF	8 KB		GPMI	GPMI		
0180_4000	0180_5FFF	32 KB		APBH	APBH DMA		
0180_0000	0180_3FFF	16 KB		Reser	Reserved		
0120_0000	017F_FFFF	6 MB		Reser	Reserved		
0110_0000	011F_FFFF	1 MB	1 MB		eserved		
0100_0000	010F_FFFF	1 MB		Reser	Reserved		
00F0_0000	00FF_FFFF	1 MB		Reser	Reserved		
00E0_0000	00EF_FFFF	1 MB		(per_r	(per_m) configuration port		
00D0_0000	00DF_FFFF	1 MB		(cpu)	(cpu) configuration port		
00C0_0000	00CF_FFFF	1 MB		GPV_	GPV_1 PL301		
00B0_0000	00BF_FFFF	1 MB		GPV_	GPV_0 PL301 configuration port		
00A0_8000	00AF_FFFF	992 KB		Reser	Reserved		
00A0_0000	00A0_7FFF	32 KB		ARM	ARM Peripherals: GIC400 Only visible to ARM core(s)		
009C_0000	009F_FFFF	256 K	В	Reser	Reserved		
0203_4000	0203_7FFF				ASRC	16 KB	
0203_0000	0203_3FFF				SAI3	16 KB	
0202_C000	0202_FFFF				SAI2	16 KB	
0202_8000	0202_BFFF		AIPS-1 (via S		SAI1	16 KB	
0202_4000	0202_7FFF		Glob,Module EN		ESAI	16 KB	
0202_0000	0202_3FFF				UART1	16 KB	
0201_C000	0201_FFFF				Reserved for SDMA internal registers	16 KB	

这里为了一次性移植两个设备,将内存的大小开得稍微大一些,能够覆盖到串口

```
#endif /* _cplusplus */
#endif /* _cplusplus */
/* physical memory base and size */
#define DDR_MEM_ADDR
                                   0x80000000
#define DDR_MEM_SIZE
                                    0x20000000
#define DDR_RAMFS_ADDR (DDR_MEM_ADDR + DDR_MEM_SIZE)
#define DDR_RAMFS_SIZE 0x4000000 /* 60M for ramfs, 4M for lcd */
#define LCD_FB_BASE (DDR_RAMFS_ADDR + DDR_RAMFS_SIZE)
#define LCD_FB_SIZE 0x400000 /* 4M */
/* Peripheral register address base and size */
#define PERIPH_PMM_BASE 0x00a000000 //GIC base address
#define PERIPH PMM SIZE 0x02300000 //
#define PERIPH PMM SIZE
                                   0x02300000 //
/* GIC base and size : 1M-align */
#define GIC_PHY_BASE 0xA0000000
#define GIC_PHY_SIZE 0xA0100000
#define KERNEL_VADDR_BASE 0x40000000
#define KERNEL_VADDR_SIZE DDR_MEM_SIZE
                                 DDR_MEM_ADDR
0x2000000
#define SYS_MEM_BASE
#define SYS_MEM_SIZE_DEFAULT
                                   (SYS_MEM_BASE + SYS_MEM_SIZE_DEFAULT)
#define SYS_MEM_END
```

使用 make 命令编译下确保可以编译通过

```
book@hza-virtual-machine:~/openharmony/kernel/liteos_a$ make clean
make[1]: 进入目录"/home/book/openharmony/kernel/liteos_a/arch/arm/arm"
make[1]: 离开目录"/home/book/openharmony/kernel/liteos_a/platform"
make[1]: 离开目录"/home/book/openharmony/kernel/liteos_a/platform"
make[1]: 离开目录"/home/book/openharmony/kernel/liteos_a/platform"
make[1]: 进入目录"/home/book/openharmony/kernel/liteos_a/kernel/common"
make[1]: 离开目录"/home/book/openharmony/kernel/liteos_a/kernel/common"
make[1]: 进入目录"/home/book/openharmony/kernel/liteos_a/kernel/base"
make[1]: 离开目录"/home/book/openharmony/kernel/liteos_a/kernel/base"
make[1]: 离开目录"/home/book/openharmony/vendor/democom/demochip/board"
make[1]: 离开目录"/home/book/openharmony/vendor/democom/demochip/board"
```

```
book@hza-virtual-machine:~/openharmony/kernel/liteos_a$ make -j 16
make[1]: 进入目录"/home/book/openharmony/kernel/liteos_a/
/home/book/openharmony/kernel/liteos_a/Kconfig
/home/book/openharmony/kernel/liteos_a/Kconfig
mv -f /home/book/openharmony/kernel/liteos_a/include/generated/autoconf.h /home
/book/openharmony/kernel/liteos_a/platform/include/menuconfig.h
make[1]: 离开目录"/home/book/openharmony/kernel/liteos_a"
make[1]: 进入目录"/home/book/openharmony/kernel/liteos_a/arch/arm/arm"
src/startup/reset_vector_up.S:138:2: warning: deprecated since v7, use 'dsb'
mcr p15, 0, r0, c7, c10, 4 @ DSB

src/startup/reset_vector_up.S:139:2: warning: deprecated since v7, use 'isb'
mcr p15, 0, r0, c7, c5, 4 @ ISB

make[1]: 离开目录"/home/book/openharmony/kernel/liteos_a/arch/arm/arm"
make[1]: 进入目录"/home/book/openharmony/kernel/liteos_a/platform"
make[1]: 离开目录"/home/book/openharmony/kernel/liteos_a/platform"
make[1]: 进入目录"/home/book/openharmony/kernel/liteos_a/kernel/common"
```

四、实验心得

本次实验移植了 Liteos-a 的内存,主要是为了下次实验铺垫移植串口,大概对 imx6ull 的内存映射结构有初步的了解,为后续学习操作系统对内存管理做了一定铺垫。