MSE for Gulf of Bothnia herring

$\label{eq:max_cond} \mbox{Max Cardinale (SLU), modified from code} \\ \mbox{provided by Iago Mosqueira for WKREBUILD and WKNEWREF} \\ \mbox{}$

19 August, 2024

Contents

1	Gulf of Bothnina herring	2			
	1.1 Load models created by Create FLR stock objects for MSE.R file and attributes (created by				
	MSE_reference points_estimation_best case.R file				
	1.2 OMs conditioning, defining FLStocks, FLSRs and SS3 refpts				
2	Get Brps and add Blim to refpts	6			
3	Change rpts for the for the reduced R0 model and fix the units	6			
	3.1 Coerce SRRs to ab beyholt	6			
	3.2 Create FLoms				
	3.3 Extend to the future				
	3.4 Add SR deviances, same across OMs, and add those to OMs				
	3.5 F and SSB deviances for shortcut and STF	7			
4	MP setup	8			
	4.1 Setup standard ICES advice rule	8			
	4.2 Compute MSE performances	10			
5	MSE Performance plots and tables	11			
	5.1 MSE Table	16			
	5.2 MSE kobe plot				
	5.3 Trajectories plot for each OM				
	5.4 Plotting single trajectories and medians for each OMs				
	5.5 Select best HCR target and trigger combination	27			
6	Estimate Blim with different methods as the minimum SSB level that resulted in a				
	recruitment higher that the median and fractions of B0	27			
7	Calculate ABI MSY for the selected scenario	28			

1 Gulf of Bothnina herring

GOB herring model has been developed in 2021 and reviewed by a benchmark. The latest update was run by WGBFAS in April 2024. Two different Operative Models (OMs) will be tested, a reference case (OM1; latest model accepted at WGBFAS in April 2024) and an alternative model (OM2), which assumes a reduced productivity of the stock, with R0 as XX% of the original R0 from there reference case. Reference points will be estimated separately for each OM and as an ensamble of the two OMs.

1.1 Load models created by Create FLR stock objects for MSE.R file and attributes (created by MSE reference points estimation best case.R file

Load libraries

```
library(mse)
library(FLRef)
library(FLBRP)
library(progressr)
# handlers(global=TRUE)
library(doFuture)
library(r4ss)
library(ss3diags)
library(ss3om)
library(icesTAF)
library(parallel)
library(mseviz)
library(dplyr)
# devtools::install_github('mebrooks/stockrecruit/StockRecruitSET',
# build_opts = c('--no-resave-data', '--no-manual'))
```

Get the libraries specifications

```
sessionInfo()
  R version 4.2.3 (2023-03-15 ucrt)
  Platform: x86 64-w64-mingw32/x64 (64-bit)
  Running under: Windows 10 x64 (build 22631)
  Matrix products: default
   locale:
   [1] LC_COLLATE=English_United Kingdom.utf8
   [2] LC_CTYPE=English_United Kingdom.utf8
   [3] LC_MONETARY=English_United Kingdom.utf8
   [4] LC_NUMERIC=C
   [5] LC_TIME=English_United Kingdom.utf8
   attached base packages:
   [1] parallel stats
                           graphics grDevices utils
                                                         datasets methods
   [8] base
   other attached packages:
    [1] dplyr 1.1.4
                             mseviz 0.2.6.9008
                                                  patchwork 1.2.0
    [4] icesTAF_4.2.0
                             ss3om 0.5.2.9005
                                                  ss3diags 1.10.2
    [7] r4ss_1.49.3
                             FLRef_1.10.4
                                                  FLSRTMB 1.1.4.9014
   [10] mse_2.2.3.9252
                             progressr_0.14.0
                                                  data.table_1.15.4
```

```
[13] doFuture_1.0.1
                          future_1.34.0
                                               foreach_1.5.2
[16] FLBRP_2.5.9.9022
                          FLasher_0.7.1.9221
                                               FLFishery_0.3.8.9009
[19] ggplotFL_2.7.0.9133
                          ggplot2_3.4.4
                                               FLCore_2.6.20.9204
[22] iterators_1.0.14
                          lattice_0.20-45
                                               knitr_1.48
loaded via a namespace (and not attached):
 [1] jsonlite_1.8.8
                         viridisLite_0.4.2
                                             stats4_4.2.3
[4] yaml_2.3.10
                         ggrepel 0.9.5
                                             globals 0.16.3
[7] pillar_1.9.0
                                             TAF 4.2.0
                         glue_1.7.0
[10] digest_0.6.36
                         colorspace_2.1-1
                                             cowplot_1.1.3
[13] htmltools_0.5.8.1
                         Matrix_1.6-5
                                             pkgconfig_2.0.3
[16] listenv_0.9.1
                         purrr_1.0.2
                                             xtable_1.8-4
[19] corpcor_1.6.10
                                             svglite_2.1.3
                         scales 1.3.0
[22] tibble_3.2.1
                         generics_0.1.3
                                             withr_3.0.1
[25] furrr_0.3.1
                         TMB_1.9.14
                                             cli_3.6.3
[28] magrittr_2.0.3
                         evaluate_0.24.0
                                             data.tree_1.1.0
[31] fansi_1.0.6
                         parallelly_1.38.0
                                             MASS_7.3-58.2
[34] xml2_1.3.6
                         tools_4.2.3
                                             gh_1.4.1
                                             stringr_1.5.1
[37] formatR_1.14
                         lifecycle_1.0.4
                                             compiler_4.2.3
[40] munsell_0.5.1
                         kableExtra_1.4.0
[43] systemfonts_1.1.0
                         tinytex_0.52
                                             rlang_1.1.4
[46] grid_4.2.3
                         rstudioapi_0.16.0
                                             rmarkdown_2.27
[49] gtable_0.3.5
                         codetools_0.2-19
                                             roxygen2_7.3.2
[52] R6_2.5.1
                                             fastmap_1.2.0
                         gridExtra_2.3
[55] future.apply_1.11.2 utf8_1.2.4
                                             stringi 1.8.4
[58] Rcpp_1.0.13
                         vctrs 0.6.5
                                             tidyselect_1.2.1
[61] xfun_0.46
                         coda_0.19-4.1
```

Define folder with R data files and other additional parameters

```
setwd("~/Max/Commitees/ICES/WGBFAS/2024/GBH")

plan(multisession, workers = 9)

its <- 500
fy <- 2082
iy <- 2024

basecase <- mget(load("Reference_run.rda"))
ROreduced <- mget(load("Reference_run_RO_reduced.rda"))
load("GOB_herring_attributes.rda")</pre>
```

1.2 OMs conditioning, defining FLStocks, FLSRs and SS3 refpts

```
stks <- FLStocks(REF = basecase$stk, RED = R0reduced$stk)
srrs <- FLSRs(REF = basecase$srr, RED = R0reduced$srr)
srps <- list(REF = basecase$rps, RED = R0reduced$rps)
brps <- list(REF = basecase$brp, RED = R0reduced$brp)</pre>
Define functions
```

```
getabSR <- function(stk, srr) {
   ab(fmle(as.FLSR(stk, model = "bevholtSV"), fixed = list(s = params(srr)$s,</pre>
```

```
v = params(srr)$v, spr0 = params(srr)$v/params(srr)$R0)))
}
getBRPs <- function(stk, srr) {
    # COERCE FLSR as beuholt(a,b)
    nsr <- getabSR(stk, srr)

# FIT brps
brp <- brp(FLBRP(stk, sr = nsr))

# EXTRACT brefpts
brps <- remap(refpts(brp), R0 = c("virgin", "rec"), MSY = c("msy", "yield"))
    return(brps)
}</pre>
```

1.2.1 This part is only to hack Blim up to line 160

Load the stock object in FLR

```
stk_single <- readFLSss3(dir = "~/Max/Committees/ICES/WGBFAS/2024/GBH/Reference_run",
    wtatage = TRUE)</pre>
```

Load the SS model and parameters

```
out <- SS_output(dir = "~/Max/Committees/ICES/WGBFAS/2024/GBH/Reference_run",</pre>
    covar = T, printstats = FALSE)
RO <- exp(out$parameters$Value[out$parameters$Label == "SR_LN(RO)"])
s <- out$parameters$Value[out$parameters$Label == "SR_BH_steep"]</pre>
sigmaR <- out$parameters$Value[out$parameters$Label == "SR_sigmaR"]</pre>
rho <- out$parameters$Value[out$parameters$Label == "SR_autocorr"]</pre>
BO <- out$derived quants$Value[out$derived quants$Label == "SSB unfished"]
SSBcv <- out$derived quants$StdDev[out$derived quants$Label ==
    "SSB_2023"]/out$derived_quants$Value[out$derived_quants$Label ==
    "SSB 2023"]
Fcv <- out$derived_quants$StdDev[out$derived_quants$Label ==
    "F 2023"]/out$derived quants$Value[out$derived quants$Label ==
    "F 2023"]
BMSYss <- out$derived_quants$Value[out$derived_quants$Label ==
    "SSB_MSY"]
FMSYss <- out$derived_quants$Value[out$derived_quants$Label ==
    "annF_MSY"]
MSYss <- out$derived_quants$Value[out$derived_quants$Label ==
    "Dead Catch MSY"]
TBOss <- out$derived_quants$Value[out$derived_quants$Label ==
    "Totbio unfished"]
```

Coerce FLSR as bevholt(a,b) from SS

```
nsr <- ab(fmle(as.FLSR(stk, model = "bevholtSV"), fixed = list(s = s,
    v = B0, spr0 = B0/R0)))
    Nelder-Mead direct search function minimizer
    function value for initial parameters = -27.508534
    Scaled convergence tolerance is 4.09909e-07</pre>
```

```
Stepsize computed as 0.100000
Exiting from Nelder Mead minimizer

1 function evaluations used
```

Fit brps as single stock to hack Blim for the oms list. Blim set as 32% of B0

2 Get Brps and add Blim to refpts

```
brps <- lapply(srps, rbind, Blim = brps_single$Blim)</pre>
```

3 Change rpts for the for the reduced R0 model and fix the units

```
brps$RED[1] <- brpred[5]
brps$RED[2] <- brpred[4]
brps$RED[4] <- brpred[2]
brps$RED[5] <- brpred[1]
brps$RED[6] <- brpred[7]

brps["RED"]$RED@units <- brps["REF"]$REF@units</pre>
```

3.1 Coerce SRRs to ab beyholt

```
nsrs <- Map(function(x, y) getabSR(x, y), x = stks, y = srrs)
    Nelder-Mead direct search function minimizer
function value for initial parameters = -31.613710
    Scaled convergence tolerance is 4.71081e-07
Stepsize computed as 0.100000
Exiting from Nelder Mead minimizer
    1 function evaluations used
    Nelder-Mead direct search function minimizer
function value for initial parameters = -31.613710
    Scaled convergence tolerance is 4.71081e-07
Stepsize computed as 0.100000
Exiting from Nelder Mead minimizer
    1 function evaluations used</pre>
```

3.2 Create FLoms

```
oms <- Map(function(x, y, z) FLom(stock = x, sr = y, refpts = z),
    x = stks, y = srrs, z = brps)</pre>
```

3.3 Extend to the future

```
oms <- lapply(oms, function(x) propagate(fwdWindow(x, end = fy),
    its))</pre>
```

3.4 Add SR deviances, same across OMs, and add those to OMs

3.5 F and SSB deviances for shortcut and STF

sdevs <- shortcut_devs(oms[[1]], Fcv = Fcv, Fphi = 0.423, SSBcv = SSBcv)</pre>

4 MP setup

4.1 Setup standard ICES advice rule

```
arule <- mpCtrl(list(

# (est)imation method: shortcut.sa + SSB deviances
est = mseCtrl(method=shortcut.sa,
    args=list(SSBdevs=sdevs$SSB)),

# hcr: hockeystick (fbar ~ ssb | lim, trigger, target, min)
hcr = mseCtrl(method=hockeystick.hcr,
    args=list(lim=0, trigger=trigger, target=target,
    min=0, metric="ssb", output="fbar")),

# (i)mplementation (sys)tem: tac.is (C ~ F) + F deviances
# rec as GM ignoring last 2 years
isys = mseCtrl(method=tac.is,
    args=list(recyrs=-2, fmin=0, Fdevs=sdevs$F))
))</pre>
```

Plotting the HCR

```
setwd("~/Max/Commitees/ICES/WGBFAS/2024/GBH")
plot_hockeystick.hcr(arule$hcr, labels = c(trigger = "Btrigger",
    target = "Ftarget")) + xlab("SSB (t)") + ylab(expression(bar(F))) +
    ggtitle("HCR")
```


Figure 1: Harvest control rule used in the MSE

Get candidate values for Btrigger & Ftarget creating combinations of based on fraction of B0 (FBx \sim Bx * c(0.30, 0.45, 0.05)) and adding FMSY \sim BMSY * c(0.6, 0.8, 1)

```
frps <- Map(function(x, y) {</pre>
    lapply(seq(30, 55, by = 5), function(i) {
        Fbrp(computeFbrp(x, sr = y, proxy = "bx", x = i, blim = 0.31787))
    })
x = stks, y = nsrs
   Computing Fsb30 with Btgt = Bsb30
     Blim = 0.31787B0
   Computing Fsb35 with Btgt = Bsb35
     Blim = 0.31787B0
   Computing Fsb40 with Btgt = Bsb40
     Blim = 0.31787B0
   Computing Fsb45 with Btgt = Bsb45
     Blim = 0.31787B0
   Computing Fsb50 with Btgt = Bsb50
     Blim = 0.31787B0
  Computing Fsb55 with Btgt = Bsb55
     Blim = 0.31787B0
   Computing Fsb30 with Btgt = Bsb30
     Blim = 0.31787B0
   Computing Fsb35 with Btgt = Bsb35
     Blim = 0.31787B0
   Computing Fsb40 with Btgt = Bsb40
    Blim = 0.31787B0
   Computing Fsb45 with Btgt = Bsb45
     Blim = 0.31787B0
   Computing Fsb50 with Btgt = Bsb50
     Blim = 0.31787B0
   Computing Fsb55 with Btgt = Bsb55
     Blim = 0.31787B0
opts <- Map(function(x, y) {</pre>
    res <- list(target = rep(unlist(lapply(x, "[", 1)), each = 3),</pre>
        trigger = unlist(lapply(seq(0.3, 0.55, by = 0.05), function(i) (c(refpts(y)$SBO) *
            i) * c(0.6, 0.8, 1)))
    res$target <- c(res$target, rep(c(refpts(y)$FMSY), 3))</pre>
```

4.2 Compute MSE performances

Define performances metrics

```
metrics <- list(SB = ssb, F = fbar, C = landings, TC = catch,
   Rec = rec)
stats <- list(medianFmsy = list(~yearMedians(F/FMSY), name = "F/Fmsy",</pre>
   desc = "Median annual F/Fmsy"), medianBmsy = list(~yearMedians(SB/SBMSY),
   name = "B/Bmsy", desc = "Median annual B/Bmsy"), medianCmsy = list(~yearMedians(C/MSY),
   name = "Catch/MSY", desc = "Median Catch/MSY over years"),
   aavC = list(~yearMedians(iav(C)), name = "AAV", desc = "Median annual variation in catches"),
   riskBlim = list(~apply(iterMeans((SB/Blim) < 1), 1, max),
        name = "P3(B<Blim)", desc = "Probability that SSB < Blim"),</pre>
   risk10SB0 = list(~apply(iterMeans((SB/(SB0 * 0.1)) < 1),
        1, mean), name = "P(B<SB0.10)", desc = "Probability that SSB < 10% SB0"),
   P80BMSY = list(~apply(iterMeans((SB/(SBMSY * 0.8)) > 1),
        1, max), name = "B>80Bmsy", desc = "Probability that SSB > 80% x Bmsy"),
   medianSBMSY = list(~yearMedians(SB/SBMSY), name = "SSB/SSB[MSY]",
        desc = "Median annual SSB/SSBmsy"), medianFMSY = list(~yearMedians(F/FMSY),
        name = "F/F[MSY]", desc = "Median annual F/FMSY"))
```

Compute performances, add HCR parameters Btrigger and Ftarget and define long time horizon for evaluation

```
performance(x) <- merge(res, hps, by = "mp")
    return(x)
})

Create MSE performance table
perf <- rbindlist(lapply(plans_perf, performance), idcol = "om")
write.csv(perf, file = "msePerf_data.csv")

Save performances objects
save(oms, plans, plans_perf, file = "plans_oms_new.rda", compress = "xz")

Load performances objects derived from a run made on a 16 cores cluster computer on Linux
load("~/Max/Commitees/ICES/WGBFAS/2024/GBH/MSE/plans_oms_new.rda")</pre>
```

5 MSE Performance plots and tables

```
ncol = length(unique(perf$mp)) # n colors
perfom1 = perf[perf$om=="REF",]
pbp = plotBPs(perfom1[perfom1$year=="long",],
statistics=c("medianFmsy", "medianBmsy", "medianCmsy", "aavC", "riskBlim", "P80BMSY"),
size=3, target = c(medianFmsy=1,medianBmsy=1, medianCmsy=1),
limit= c(riskBlim=0.05,P80BMSY=0.95),
yminmax = c(0.05, 0.95)) + theme_bw() +
facet wrap(~name,scales = "free y",ncol=2)+
ggtitle(paste0("Performance: Long"))+
ylab("Performance statistics")+
scale_fill_manual(values=ss3col(ncol))+ # USE FLRef::ss3col
theme(axis.text.x=element_blank())+xlab("Candidates")
pbp
ncol = length(unique(perf$mp)) # n colors
perfom2 = perf[perf$om=="RED",]
pbp = plotBPs(perfom2[perfom2$year=="long",],
statistics=c("medianFmsy", "medianBmsy", "medianCmsy", "aavC", "riskBlim", "P80BMSY"),
size=3, target = c(medianFmsy=1, medianBmsy=1, medianCmsy=1),
limit= c(riskBlim=0.05,P80BMSY=0.95),
yminmax = c(0.05, 0.95)) + theme_bw() +
facet wrap(~name,scales = "free y",ncol=2)+
ggtitle(paste0("Performance: Long"))+
ylab("Performance statistics")+
scale_fill_manual(values=ss3col(ncol))+ # USE FLRef::ss3col
theme(axis.text.x=element_blank())+xlab("Candidates")
pbp
ncol = length(unique(perf$mp)) # n colors
pbp = plotBPs(perf[perf$year=="long",],statistics=c("medianFmsy","medianBmsy","medianCmsy", "aavC", "ri
              target = c(medianFmsy=1, medianBmsy=1, medianCmsy=1),
              limit= c(riskBlim=0.05,P80BMSY=0.95),
              yminmax = c(0.05, 0.95)) + theme_bw() +
 facet_wrap(~name,scales = "free_y",ncol=2)+
```


Figure 2: Herring (Clupea harengus) in subdivisions 30 and 31 (Gulf of Bothnia). MSE performance plot for $\mathrm{OM}1$

Figure 3: Herring (Clupea harengus) in subdivisions 30 and 31 (Gulf of Bothnia). MSE performance plot for $\mathrm{OM}2$

```
ggtitle(paste0("Performance: Long"))+
ylab("Performance statistics")+
scale_fill_manual(values=ss3col(ncol))+ # USE FLRef::ss3col
theme(axis.text.x=element_blank())+xlab("Candidates")
pbp
```


Figure 4: Herring (Clupea harengus) in subdivisions 30 and 31 (Gulf of Bothnia). MSE performance plot, ensemble

5.1 MSE Table

5.2 MSE kobe plot

Figure 5: Herring (Clupea harengus) in subdivisions 30 and 31 (Gulf of Bothnia). MSE kobe plot, ensemble

5.3 Trajectories plot for each OM

plot(oms[[1]], plans[[1]])

Figure 6: Herring (Clupea harengus) in subdivisions 30 and 31 (Gulf of Bothnia). Trajectories plot for OM1

Figure 7: Herring (Clupea harengus) in subdivisions 30 and 31 (Gulf of Bothnia). Trajectories plot for OM2

0.0 -

5.4 Plotting single trajectories and medians for each OMs

```
rp = oms$REF@refpts
om1 = window(FLStockR(oms[[1]]@stock), end = 2023)
om1@refpts = FLPar(Fmsy = rp["FMSY"], Bmsy = rp["SBMSY"], Blim = rp["Blim"],
    MSY = rp["MSY"])
stks1 = FLStocks(lapply(plans[[1]], function(x) {
    out = FLStockR(x@om@stock)
    out@refpts = om1@refpts
}))
res1 = FLStocks(c(FLStocks(om1), stks1))
names(res1)[1] = "om1"
med1 = FLStocks(lapply(res1, function(x) {
    iterMedians(x)
}))
rp = oms$RED@refpts
om2 = window(FLStockR(oms[[2]]@stock), end = 2023)
om2@refpts = FLPar(Fmsy = rp["FMSY"], Bmsy = rp["SBMSY"], Blim = rp["Blim"],
    MSY = rp["MSY"])
stks2 = FLStocks(lapply(plans[[2]], function(x) {
    out = FLStockR(x@om@stock)
    out@refpts = om1@refpts
    out
}))
res2 = FLStocks(c(FLStocks(om2), stks2))
names(res2)[1] = "om2"
med2 = FLStocks(lapply(res2, function(x) {
    iterMedians(x)
}))
plotAdvice(med1) + geom_line(linewidth = 0.8) + scale_color_manual(values = c("black",
    sscol(length(stks1)))) + scale_x_continuous(breaks = seq(1960,
    fy, 5)) + theme(axis.text.x = element text(size = 8, angle = 90)) +
    guides(col = guide_legend(ncol = 1))
```


Figure 8: Herring (Clupea harengus) in subdivisions 30 and 31 (Gulf of Bothnia). Trajectories plot for OM1 medians

```
plotAdvice(med2) + geom_line(linewidth = 0.8) + scale_color_manual(values = c("black",
    sscol(length(stks2)))) + scale_x_continuous(breaks = seq(1960,
    fy, 5)) + theme(axis.text.x = element_text(size = 8, angle = 90)) +
    guides(col = guide_legend(ncol = 1))
```


Figure 9: Herring (Clupea harengus) in subdivisions 30 and 31 (Gulf of Bothnia). Trajectories plot for OM2 medians

```
plotAdvice(res1) + scale_color_manual(values = c("black", sscol(length(stks1)))) +
    scale_fill_manual(values = c("black", sscol(length(stks1)))) +
    scale_x_continuous(breaks = seq(1960, fy, 5)) + theme(axis.text.x = element_text(size = 8,
    angle = 90)) + guides(col = guide_legend(ncol = 1))

plotAdvice(res2) + scale_color_manual(values = c("black", sscol(length(stks2)))) +
    scale_fill_manual(values = c("black", sscol(length(stks2)))) +
    scale_x_continuous(breaks = seq(1960, fy, 5)) + theme(axis.text.x = element_text(size = 8,
    angle = 90)) + guides(col = guide_legend(ncol = 1))
```


Figure 10: Herring (Clupea harengus) in subdivisions 30 and 31 (Gulf of Bothnia). Trajectories plot for OM1, all

Figure 11: Herring (Clupea harengus) in subdivisions 30 and 31 (Gulf of Bothnia). Trajectories plot for OM2, all

5.5 Select best HCR target and trigger combination

Table 1: Summary of estimated reference points for reference case model of Gulf of Bothnian herring

	MP	Btrigger	Ftarget
846	FB501	613355	0.218

6 Estimate Blim with different methods as the minimum SSB level that resulted in a recruitment higher that the median and fractions of B0

```
library(StockRecruitSET)
   Loading required package: TMB
   Loading required package: RcppEigen
   Loading required package: bbmle
   Loading required package: stats4
   Attaching package: 'bbmle'
   The following object is masked from 'package:dplyr':
       slice
flsr <- as.FLSR(stk_single)</pre>
S <- an(ssb(flsr))
R <- an(rec(flsr))</pre>
Bpaemp <- calcBlim(S, R, quant = 0.5, type = 1, nmin = 1, AIC = TRUE)</pre>
Blim_emp = round(Bpaemp/(exp(1.645 * SSBcv)), 0)
Blim_emp_defCV = round(Bpaemp/(exp(1.645 * 0.2)), 0)
Blim24 \leftarrow round(B0 * 0.24, 0)
Blim30 <- round(B0 * 0.3, 0)
```

```
### Bloss calculations
Bloss = min(ssb(stk_single))
BpaBloss = Bloss
BlimBloss = BpaBloss/(exp(1.645 * SSBcv))
{\tt Bpaemp}
   [1] 548671
Blim_emp
   [1] 414043
Blim_emp_defCV
   [1] 394847
Blim24
   [1] 294410
Blim30
   [1] 368013
Bloss
   [1] 516727.1
BpaBloss
   [1] 516727.1
BlimBloss
[1] 389937.5
```

7 Calculate ABI MSY for the selected scenario

```
library(FLCore)
stk = plans[["REF"]][["FB501"]]@om@stock
stk <- window(stk, start = 2025, end = 2082)
source("~/Max/Commitees/ICES/WGBFAS/2024/GBH/abi.R")
age = abiAge(brps$REF, ref = "msy", p = 0.9)
pmsy = abiMsy(brps$REF, ref = "msy", p = 0.9)
pt = abistock(stk, age)
abi_stk = abi(stk, brps$REF)
gg = plot(abi_stk)
gg = gg + labs(title = "", subtitle = "", x = "Year", y = "ABI MSY")
load("~/Max/Commitees/ICES/WGBFAS/2024/GBH/plot.Rdata")
gg</pre>
```


Figure 12: Herring (Clupea harengus) in subdivisions 30 and 31 (Gulf of Bothnia). Trajectories plot for ABI MSE for the selected scenario FB501; values over 1 indicates an age structure in line with BMSY