Cheatsheet WuS

Nicolas Wehrli

June 2023

1 Grundbegriffe

1.1 Wahrscheinlichkeitsraum

Axiome von Kolmogorov

Das Tuple $(\Omega, \mathcal{A}, \mathbb{P})$ ist ein **Wahrscheinlichkeitsraum** mit

- I. Grundraum Ω mit $\Omega \neq \emptyset$, wobei $\omega \in \Omega$ ein Elementarereignis ist.
- II. σ -Algebra $\mathcal{A} \subseteq \mathcal{P}(\Omega)$ wobei gilt:
 - 1. $\Omega \in \mathcal{A}$
 - 2. $A \in \mathcal{A} \implies A^{\complement} \in \mathcal{A}$
 - 3. $A_1, A_2, \dots \in \mathcal{A} \implies \bigcup_i A_i \in \mathcal{A}$
- III. Wahrscheinlichkeitsmass \mathbb{P} auf (Ω, \mathcal{A}) ist eine Abbildung $\mathbb{P} : \mathcal{A} \mapsto [0, 1]$, wobei gilt:
 - 1. $\mathbb{P}(\Omega) = 1$
 - 2. $A_1, A_2, \dots \in \mathcal{A}, \forall i \neq j : A_i \cap A_j = \emptyset$ $\Longrightarrow \mathbb{P}(\bigcup_i A_i) = \sum_{i=1}^{\infty} \mathbb{P}(A_i)$

De-Morgan

Sei $(A_i)_{i\geq 1}$ eine Folge von beliebigen Mengen. Dann gilt

$$\left(\bigcup_{i=1}^{\infty} A_i\right)^{\complement} = \bigcap_{i=1}^{\infty} (A_i)^{\complement}$$

Daraus folgt

- 1. $A_1, A_2, \dots \in \mathcal{A} \implies \bigcap_{i=1}^{\infty} A_i \in \mathcal{A}$
- 2. $A, B \in \mathcal{A} \implies (A \cup B), (A \cap B) \in \mathcal{A}$

und für $A, B \in \mathcal{A}$

- 1. $\mathbb{P}(A^{\complement}) = 1 \mathbb{P}(A)$
- 2. $A \subseteq B \implies \mathbb{P}(A) < \mathbb{P}(B)$
- 3. $\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B) \mathbb{P}(A \cap B)$

Sei $A_1, A_2, \dots \in \mathcal{A}$, dann gilt:

Union Bound

$$\mathbb{P}\left(\bigcup_{i=1}^{\infty} A_i\right) \le \sum_{i=1}^{\infty} \mathbb{P}(A_i)$$

Siebformel

$$\mathbb{P}\left(\bigcup_{i=1}^{n} A_{i}\right) = \sum_{k=1}^{n} \sum_{1 \leq i_{1} < \dots < i_{k} \leq n} \mathbb{P}(A_{i_{1}} \cap \dots \cap A_{i_{k}})$$

Atome

Sei Ω nicht leer und diskret. Sei \mathcal{F} eine beliebige σ -Algebra über Ω .

Eine nichtleere Menge $A \in \mathcal{F}$ heisst **atomare** Mengee von \mathcal{F} falls für alle $B \in \mathcal{F}$ gilt:

$$B \subseteq A \implies B = \emptyset \lor B = A$$

(Intuitiv: A ist die kleinste nichtleere Menge bezüglich der Inklusion in \mathcal{F})

Die Menge der atomaren Mengen von $\mathcal F$ bezeichnen wir mit $\operatorname{Atom}(\mathcal F).$

Jedes Element von \mathcal{F} lässt sich als abzählbare Vereinigung von Elementen aus $Atom(\mathcal{F})$ schreiben.

1.2 Bedingte Wahrscheinlichkeiten

Sei $(\Omega, \mathcal{A}, \mathbb{P})$ ein Wahrscheinlichkeitsraum.

Bedingte Wahrscheinlichkeit

Sei $A, B \in \mathcal{A}$ und $\mathbb{P}(B) > 0$, dann ist die bedingte Wahrscheinlichkeit von A gegeben B

$$\mathbb{P}(A|B) = \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}$$

Satz der totalen Wahrscheinlichkeit

Sei $(B_i)_{i\in I}$ eine Partition von Ω . Dann gilt für jedes beliebige $A\in\mathcal{A}$

$$\mathbb{P}(A) = \sum_{i: \ \mathbb{P}(B_i) > 0} \mathbb{P}(A|B_i)\mathbb{P}(B_i)$$

Satz von Bayes

Aus der Definition der bedingten W'keit folgt sofort die Bayessche Formel, welche den Zusammenhang zwischen $\mathbb{P}(A|B)$ und $\mathbb{P}(B|A)$ beschreibt:

$$\mathbb{P}(B|A) = \frac{\mathbb{P}(A|B)\mathbb{P}(B)}{\mathbb{P}(A)}$$

Mit dem Satz der totalen W'keit können wir $\mathbb{P}(A)$ umschreiben und kommen auf folgende Form:

Sei $(B_i)_{i\in I}$ eine **Partition** von Ω . Dann gilt für jedes beliebige $A\in\mathcal{A},\mathbb{P}(A)>0$

$$\mathbb{P}(B_i|A) = \frac{\mathbb{P}(A|B_i) \cdot \mathbb{P}(B_i)}{\sum_{j: \ \mathbb{P}(B_j) > 0} \mathbb{P}(A|B_j) \cdot \mathbb{P}(B_j)}$$

Intuition Bayessche Statistik

In dieser Form würde man A als das **eingetretene Ereignis** und die B_i als die verschiedene **Hypothesen** verstehen.

In der Bayesschen Statistik versucht man die Hypothese zu finden, so dass $\mathbb{P}(B_i|A)$ maximiert wird.

(Wurde in der Vorlesung nicht weiter behandelt)

1

1.3 Unabhängigkeit

Unabhängigkeit von zwei Ereignissen

Zwei Ereignisse $A, B \in \mathcal{A}$ heissen **unabhängig**, wenn

$$\mathbb{P}(A \cap B) = \mathbb{P}(A) \cdot \mathbb{P}(B)$$

- $\mathbb{P}(A) \in \{0,1\} \implies A$ zu jedem Ereignis unabhängig
- A zu sich selbst unabhängig $\implies \mathbb{P}(A) \in \{0, 1\}$
- A, B unabhängig $\implies A, B^{\complement}$ unabhängig

Wenn $\mathbb{P}(A) > 0, \mathbb{P}(B) > 0$ gilt:

A, B unabhängig $\iff \mathbb{P}(A|B) = \mathbb{P}(A) \iff \mathbb{P}(B|A) = \mathbb{P}(B)$

Wir können die Definition der Unabhängigkeit auf beliebige Mengen von Ereignissen erweitern.

Allgemeine Unabhängigkeit

Eine Kollektion von Ereignissen $(A_i; i \in I)$ heisst (stochastisch) unabhängig, wenn

$$J\subseteq I$$
 endlich $\implies \mathbb{P}\left(\bigcap_{i\in J}A_i\right)=\prod_{i\in J}\mathbb{P}(A_i)$

2 Zufallsvariablen

Sei $(\Omega, \mathcal{A}, \mathbb{P})$ ein diskreter Wahrscheinlichkeitsraum.

Zufallsvariable

Eine (reellwertige) **Zufallsvariable** auf Ω ist eine messbare Funktion $X: \Omega \to \mathbb{R}$.

$$X:\Omega \to \mathbb{R}$$
 messbar $\iff \forall x \in \mathbb{R}: X^{-1}(\{x\}) \in \mathcal{A}$

Die Eigenschaft **messbar** ist bezüglich dem Wahrscheinlichkeitsmass \mathbb{P} relevant (i.e. dann ist $\mathbb{P}(X=x):=\mathbb{P}(\{\omega\in\Omega\mid X(\omega)=x\})$ wohldefiniert).

Diese Definition von **messbar** ist für diskrete Ω äquivalent zu derjenigen der Vorlesung, die die rechte Seite vom ' \iff ' für alle abgeschlossenen Teilmengen $B \subset \mathbb{R}$ fordert.

Für die Messbarkeit von X ist nur $X(\Omega) \subseteq \mathbb{R}$ entscheidend und jede Teilmenge $A \subseteq X(\Omega)$ ist abzählbar (da Ω abzählbar). Somit kann $X^{-1}(A)$ als abzählbare Vereinigung von $\bigcup_{x \in A} X^{-1}(\{x\})$ geschrieben werden.

 $(\Longrightarrow X^{-1}(A) \in \mathcal{A} \text{ per Def. } \sigma\text{-Algebra})$

Verteilungsfunktion

Die Verteilungsfunktion ist die Abbildung $F_X : \mathbb{R} \to [0,1]$ definiert durch:

$$F_X(t) := \mathbb{P}(X \le t), \forall t \in \mathbb{R}$$

Die Funktion erfüllt folgende Eigenschaften:

- 1. F_X ist monoton wachsend
- 2. F_X ist rechtsstetig, i.e. $\lim_{h\downarrow 0} F_X(x+h) = F_X(x)$
- 3. $\lim_{x\to-\infty} F_X(x) = 0$ und $\lim_{x\to\infty} F_X(x) = 1$
- 4. $\forall a, b \in \mathbb{R}, a < b : \mathbb{P}(a < X \le b) = F_X(b) F_X(a)$

Linksstetigkeit

Die Verteilungsfunktion ist nicht immer linksstetig. Sei $F_X(a-):=\lim_{h\downarrow 0}F_X(a-h)$ für $a\in\mathbb{R}$ beliebig. Dann gilt:

$$\mathbb{P}(X = a) = F_X(a) - F_X(a-)$$

Intuitiv folgt daraus

- Wenn F_X in einem Punkt $a \in \mathbb{R}$ nicht stetig ist, dann ist die "Sprunghöhe" $F_X(a) F_X(a-)$ gleich der Wahrscheinlichkeit $\mathbb{P}(X=a)$.
- Falls F_X stetig in einem Punkt $a \in \mathbb{R}$, dann gilt $\mathbb{P}(X = a) = 0$.

Unabhängigkeit von Zufallsvariablen

Seien $X_1,...,X_n$ Zufallsvariablen auf einem Wahrscheinlichkeitsraum $(\Omega, \mathcal{A}, \mathbb{P})$. Dann heissen $X_1,...,X_n$ unabhängig, falls

$$\forall x_1,...,x_n \in \mathbb{R}$$
:

$$\mathbb{P}(X_1 \le x_1, ..., X_n \le x_n) = \mathbb{P}(X_1 \le x_1) \cdot ... \cdot \mathbb{P}(X_n \le x_n).$$

Stetig verteilte Zufallsvariablen, Dichte

Eine Zufallsvariable $X:\Omega\to\mathbb{R}$ heisst **stetig**, wenn ihre Verteilungsfunktion F_X wie folgt geschrieben werden kann

$$F_X(a) = \int_{-\infty}^a f(x) dx = \text{ für alle } a \in \mathbb{R}.$$

wobei $f: \mathbb{R} \to \mathbb{R}^+$ eine nicht-negative Funktion ist. f wird dann als **Dichte** von X benannt.

Erwartungswert