Segurança da Informação – GBC083

Prof. Rodrigo Sanches Miani – FACOM/UFU

Apresentação e Plano de Curso

Auditoria e Segurança da Informação (GBC083)

Informações básicas

► Email: miani@ufu.br

- Página do curso:
 - Teams procurar por "GBC083 2024/02" (chave de acesso: tnm327g)
- ▶ Horário de atendimento sala 1B-148:
 - ▶ Terça-feira 15:00 16:30 ou Quarta-feira 14:00 14:50;
 - Outros horários são possíveis! Basta enviar um email para marcar atendimento fora do horário acima.

Apresentação

Prof. Dr. Rodrigo Sanches Miani

- Professor Adjunto da Faculdade de Computação (FACOM) da Universidade Federal de Uberlândia (UFU) desde 2013;
- Membro permanente do Programa de Pós-graduação em Ciência da Computação da FACOM
- Mestrado e Doutorado pela FEEC/Unicamp
- Trabalho na área de segurança desde 2006 (início do mestrado);
- Projetos/parcerias/publicações nacionais/internacionais;
- Atualmente trabalho com sistemas de detecção de intrusão e análise de malware e outros problemas na intersecção – cybersecurity x ciência de dados.

Gostaria de conhecer vocês!

- I. Nome
- 2. Terminando o curso?
- 3. Trabalha? Se sim, onde e qual área?
- 4. Teve algum contato com a área de segurança (acadêmico ou profissional)?

Motivação

Motivação

Motivação

Ou seja, precisamos entender os principais conceitos de segurança.

O foco do curso está na compreensão de **mecanismos** de **segurança criptográficos**. Contudo, a área é ampla e possui diversas ramificações: segurança de redes, segurança de aplicações, políticas de segurança entre outros.

Oportunidades!

- https://www.csoonline.com/article/657598/cybersecurity-workforce-shortage-reaches-4-million-despite-significant-recruitment-drive.html
- Em linhas gerais, existe um grande "gap" de profissionais na área de segurança;
- Esse "gap" gira em torno de 4 milhões de empregos!

Oportunidades!

- Chief Information Security Officer (CISO)
- Analista de Segurança
- Analista de Riscos em Segurança de Informação
- Especialista de Segurança
- Especialista em Vendas de Soluções de Segurança
- Especialista Forense de Segurança em TI
- Pesquisador em Segurança
- Técnico de Respostas a Incidentes em Ciber-segurança
- E por aí vai...

Objetivos

- Conhecer os principais serviços relacionados com a segurança da informação e sua implementação através de técnicas de criptografia;
- Conhecer e entender fundamentos de criptografia.
 Conhecer funcionamento de algoritmos simétricos e assimétricos;
- Adquirir capacidade de escolher técnicas de criptografia conforme a necessidade.

Ementa

- Conceitos de Segurança
- Tipos de Ataques
- Serviços e Mecanismos de Segurança
- Criptografia e Criptoanálise
- Algoritmos simétricos
 - Técnicas clássicas
 - Cifras de bloco
 - Advanced Encryption Standard (AES)
 - Modos de Operação

Ementa

- Cifradores Assimétricos
 - Conceitos e aplicações
 - RSA
- Message Authentication Codes (MAC)
 - Algoritmos Hash
 - Assinaturas digitais
- Infraestrutura de Chave Pública
- Segurança Camada de Aplicação da Arquitetura TCP/IP
- Implementação de Serviços de Segurança

Metodologia

- Aulas expositivas;
- Resolução de exercícios/laboratórios solicitados pelo professor;
- Prova.

Avaliação

- ▶ A nota final será composta pelas seguintes avaliações:
 - NF = média(P)*55% + média(TP)*45%
 - ▶ Provas (P) 2 provas distribuídas ao longo do semestre;
 - Trabalhos Práticos (TP) entre seis trabalhos práticos distribuídos ao longo do semestre. Os trabalhos permitirão que os alunos pratiquem o conteúdo teórico da disciplina;
 - Alguns trabalhos terão pesos diferentes!
 - Importante: o plano da disciplina contempla uma prova de recuperação sobre todo o conteúdo visto durante o semestre. A nota final do aluno após a recuperação será NF = (NR+ NA)/2, onde NA representa a nota do aluno antes da recuperação.

Avaliação – Trabalhos práticos

- Entrega eletrônica usando o Microsoft Teams;
- ▶ Tarefas atrasadas serão penalizadas:
 - ▶ I dia I0% da nota;
 - ▶ 2 a 3 dias 20% da nota;
 - ▶ Entre 4 a 21 dias − 50% da nota;
 - ▶ Mais de 21 dias o TP não será pontuado.

Datas importantes

Semana	Data	Conteúdo
1	10/dez	Apresentação da disciplina
1	11/dez	Tópico 1 - Conceitos de Segurança - Parte 1
2	17/dez	Tópico 1 - Conceitos de Segurança - Parte 2
2	18/dez	Tópico 2 - Princípios de Criptografia
3	04/fev	Revisão - Tópicos 1 e 2
3	05/fev	Tópico 3 - Criptoanálise e ataques
4	11/fev	Tópico 4 - Criptografía simétrica - Técnicas clássicas
4	12/fev	Tópico 5 - Criptografia simétrica - Cifra de bloco - Parte 1
5	18/fev	Tópico 5 - Criptografia simétrica - Cifra de bloco - Parte 2
5	19/fev	Tópico 6 - Criptotrafia simétrica - DES - Parte 1
6	25/fev	Tópico 6 - Criptotrafia simétrica - DES - Parte 2
6	26/fev	Tópico 7 - AES - Parte 1
7	04/mar	Recesso - Carnaval
7	05/mar	Recesso - Carnaval
8	11/mar	Tópico 7 - AES - Parte 2
8	12/mar	Tópico 8 - Modos de cifra de bloco
9	18/mar	Discussão da primeira parte da disciplina - Dúvidas
9	19/mar	P1
10	25/mar	Tópico 9 - Criptografia de chave pública
10	26/mar	Tópico 10 - RSA - Parte 1
11	01/abr	Tópico 10 - RSA - Parte 2
11	02/abr	Tópico 11 - Funções de Hash
12	08/abr	Tópico 12 - Integridade, autenticação e não repúdio
12	09/abr	Tópico 13 - Infraestrutura de chaves públicas - Parte 1
13	15/abr	Tópico 13 - Infraestrutura de chaves públicas - Parte 2
13	16/abr	Tópico 14 - Segurança na camada de transporte - Parte 1
14	22/abr	Tópico 14 - Segurança na camada de transporte - Parte 2
14	23/abr	Aula extra - Tópico a decidir
15	29/abr	Discussão da segunda parte da disciplina - Dúvidas
15	30/abr	P2
16	06/mai	Recuperação
6	07/mai	Encerramento da disciplina

Referências – Bibliografia básica

- Criptografia e segurança de redes. William Stallings 6 ed;
- Modern Cryptography: Theory and Practice Wembo Mao;
- A Graduate Course in Applied Cryptography Dan Boneh e Victor Shoup.
- https://www.youtube.com/@criptografia
 - Canal com todas as aulas do curso!
 - Gravadas durante a pandemia, portanto, não julguem os "parcos" recursos utilizados... ©

