	Course Title	Course Instructor	Course Text	Course Description and Main Content	Course Grade
1	Geometry	Xiang Ma	Analytic Geometry by Chengye You	Analytic geometry in R^3 including quadratic curves and quadratic surfaces, basic projective geometry	88
2	Mathematical Analysis(I)	Jiazhong Yang	Mathematical Analysis (Volume One) by Shengjian Wu	Set of real numbers, sequence and limit, continuity, differential and indefinite integral	93.5
3	Advanced Algebra I (Honor)	Jinpeng An	Linear Algebra (2nd Edition) by K. Hoffman and R. Kunze	Linear space, linear maps, dual space, and determinants of linear maps	94
4	Mathematical Analysis(II)	Jiazhong Yang	Mathematical Analysis (Volume Two) by Shengjian Wu	Riemann integral, improper integral, number series, function sequence and function series, power series, Fourier series	92
5	Advanced Algebra II (Honor)	Jinpeng An	Linear Algebra (2nd Edition) by K. Hoffman and R. Kunze	Characteristic values, invariant subspaces, Jordan forms, inner product spaces and bilinear forms	93
6	Probability Theory	Yanxia Ren	Introduction to Probability Theory by Xianping Li	Event and sample space, probability, random variables and distributions, characteristic functions, and an introduction to law of large numbers and central limit theorem	91
7	Mathematical Analysis(III)	Baoxiang Wang	Mathematical Analysis (Volume Three) by Shengjian Wu	Riemann integral, improper integral, number series, function sequence and function series, power series, Fourier series	94
8	Algebra(I) (Honor)	Liang Xiao	Abstract Algebra by D. Dummit, R. Foote	Definitions and properties of groups, rings, modules, fields, and Galois theory	96
9	Functions of Real Variables	Shiwu Yang	Real Analysis by Stein	Basic set theory, Lebesgue measure, measurable functions, Lebesgue integral, differential and integral revisit, and L^{p} spaces	96
10	Ordinary Differential Equations	Weigu Li	Ordinary Differential Equations by Bin Liu	Methodsto solve ODE and systems of linear ODE, the existence and uniqueness of solution, the influence of initial value and parameters on the solution, topics with respect to boundary values	97
11	Theory of Functions of a Complex Variable (Honor)	Hanlong Fang	Complex Analysis by Stein	Holomorphic functions (Cauchy's integral theorem and related topics, Laurent series, residue), conformal mapping, and proof of prime theorem	95
12	Functional Analysis	Zhifei Zhang	Lecture Notes on Functional Analysis (Volume One) by Gongqing Zhang and Yuanqu Lin	Metric spaces, linear operators and linear forms, compact operators and Fredholm operators (basic category theory, derived functors)	99
13	Algebra II (Honor)	Enlin Yang	Commutative Algebra by M. F. Atiyah, I. G. MacDonald, Introduction to Homological Algebra by Charles A. Weibel	Introduce commutative algebra (covering Atiyah's book), and homological algebra	94
14	Mathematical Modeling	Zhennan Zhou	Methods of Mathematical ModellingContinuous Systems and Differential Equation by T. Witelski and M. Bowen	An introduction to mathematical modelling using ordinary and partial differential equations.	89
15	Algebraic Geometry I (Graduate)	Zhiyu Tian	Algebraic Geometry by R. Hartshorne	An introduction to the theory of schemes and cohomology, covering part of Chapter 2 and Chapter 3 of GTM52.	88
16	Homology Theory (Graduate)	Houhong Fan	<i>Homology</i> by Boju Jiang, <i>Algebraic Topology</i> by Allen Hatcher	Homology and cohomology theory, covering simplicial homology, CM complexes, and Poincare duality	P (due to COVID- 19)
17	Topology	Wenyuan Yang	Topology by J.R.Munkres, Lecture Notes on Foundations of Topology by Chengye You	Topological space and continuity, topological properties, quotient space and closed surfaces, homotopy and fundamental group, covering space	94
18	Differential Manifolds and Topology (Honor)	Yi Liu	An Introduction to Differential Manifold by Huanwei Chen	Introduction to differential manifolds and vector space, Whitney theorem, Stocks formula, de Rham cohomology and its relationship with singular homology and intersection number.	93
19	Basic Theory of Numbers	Jun Yu	Primes of the Form x2+ny2: Fermat, Class Field Theory, and Complex Multiplication by David A. Cox	The work of Lagrange, Legendre and Gauss on quadratic reciprocity and the genus theory of quadratic forms, basic algebraic number theory and class field theory.	86

20	Modular Form and Number Theory (Graduate)	Jun Yu	Introduction to Modular Forms by Wenwei Li	Modular curves with level structures, modular forms, Hecke operators, and L-functions	95
21	Lie Groups and Lie Algebras (Graduate)	Xiaomeng Xu	Lie Groups, Lie Algebras, and Representations, Lie Groups Beyond an Introduction	Introduce the machinery of roots, weights and the Weyl group in the representation of Lie algebra, structure theory of semisimple Lie algebras, and construction of the representations of compact Lie	90
22	Fiber Bundles and Characteristic Classes (Graduate)	Zhiqiang Bao	Characteristic Classes by Milnor	Introduction to characteristic classes, with detailed studies of Stiefel-Whitney classes, Chern classes, Pontrjagin classes, and the Euler class.	96
23	Algebraic Geometry II (Graduate)	Zhiyu Tian	Algebraic Geometry by R. Hartshorne	An introduction to the theory of schemes and cohomology, covering Serre duality, cohomology and base change, theorem on formal functions, basics of algebraic curves and surfaces.	93.5
24	Introduction to Differentiable Manifolds	Bo Dai	Introduction to Manifolds and Geometry by Jiaqiang Mei	Differentiable manifolds, differential forms, and connection	97