Spectral analysis of high-dimensional time series with applications to the mean-variance frontier

ALEXANDER AUE

Department of Statistics & GGAM

University of California, Davis

aaue@ucdavis.edu

A. Introduction

- High-dimensional statistics & random matrix theory
- The sample covariance matrix
- Results for the empirical spectral distribution in the i.i.d. case
- Existing literature on the dependent case

A. Introduction

- High-dimensional statistics & random matrix theory
- The sample covariance matrix
- Results for the empirical spectral distribution in the i.i.d. case
- Existing literature on the dependent case

B. Spectral Theory for Linear Time Series

- Eigenvalue distribution of sample covariance matrix
- Eigenvalue distribution of symmetrized sample autocovariance matrix
- Proof techniques for MA(1) case

A. Introduction

- High-dimensional statistics & random matrix theory
- The sample covariance matrix
- Results for the empirical spectral distribution in the i.i.d. case
- Existing literature on the dependent case

B. Spectral Theory for Linear Time Series

- Eigenvalue distribution of sample covariance matrix
- Eigenvalue distribution of symmetrized sample autocovariance matrix
- Proof techniques for MA(1) case

C. ESTIMATION OF QUADRATIC FORMS FOR TIME SERIES

- Uses spectral theory results
- Applies to mean-variance frontier estimation in finance
- Uses thresholding and cross-validation approach
- Empirical results

A. Introduction

- High-dimensional statistics & random matrix theory
- The sample covariance matrix
- Results for the empirical spectral distribution in the i.i.d. case
- Existing literature on the dependent case

B. Spectral Theory for Linear Time Series

- Eigenvalue distribution of sample covariance matrix
- Eigenvalue distribution of symmetrized sample autocovariance matrix
- Proof techniques for MA(1) case

C. ESTIMATION OF QUADRATIC FORMS FOR TIME SERIES

- Uses spectral theory results
- Applies to mean-variance frontier estimation in finance
- Uses thresholding and cross-validation approach
- Empirical results

D. Conclusions

RANDOM MATRIX THEORY (RMT)

- Origins of RMT
 - Initially used in physics to study quantum phenomena of heavy atoms
 - Energy levels of a system described by eigenvalues of Hamiltonian operator
 - Explicit calculations only possible for low-energy levels but not for high-energy levels
 - Wigner (1955, 1958): Energy levels described by eigenvalues of random matrix

RANDOM MATRIX THEORY (RMT)

- Origins of RMT
 - Initially used in physics to study quantum phenomena of heavy atoms
 - Energy levels of a system described by eigenvalues of Hamiltonian operator
 - Explicit calculations only possible for low-energy levels but not for high-energy levels
 - Wigner (1955, 1958): Energy levels described by eigenvalues of random matrix
- Applications of RMT in statistics
 - Include problems in dimension reduction, hypothesis testing, clustering, regression analysis and covariance estimation
 - Much of the literature covers the behavior of the sample covariance matrix and the
 - * behavior of the bulk spectrum: empirical spectral distribution
 - * behavior of the edge of the spectrum: extreme (largest/smallest) eigenvalues
 - * distribution of spacings of eigenvalues
 - * behavior of eigenvectors
 - Paul & A (2014), review paper

ASYMPTOTIC SETTING

- Connecting dimension with sample size
 - Suppose X is a $p \times n$ matrix with real- or complex-valued entries and independent columns
 - Specify that p = p(n) and that

$$\lim_{n \to \infty} \frac{p}{n} = \gamma \in (0, \infty) \tag{1}$$

Asymptotic Setting

- Connecting dimension with sample size
 - Suppose X is a $p \times n$ matrix with real- or complex-valued entries and independent columns
 - Specify that p = p(n) and that

$$\lim_{n \to \infty} \frac{p}{n} = \gamma \in (0, \infty) \tag{2}$$

- Wigner matrices
 - Used as model for spectra of heavy atoms
 - Here p = n such that $X_{ij} = \overline{X}_{ji}$ (symmetric/Hermitian; diagonal always real-valued)
 - \bullet X_{ij} independent, standardized; diagonal variances often different from off-diagonal variances

Asymptotic Setting

- Connecting dimension with sample size
 - Suppose X is a $p \times n$ matrix with real- or complex-valued entries and independent columns
 - Specify that p = p(n) and that

$$\lim_{n \to \infty} \frac{p}{n} = \gamma \in (0, \infty) \tag{3}$$

- Wigner matrices
 - Used as model for spectra of heavy atoms
 - Here p = n such that $X_{ij} = \overline{X}_{ji}$ (symmetric/Hermitian; diagonal always real-valued)
 - \bullet X_{ij} independent, standardized; diagonal variances often different from off-diagonal variances
- Wishart matrices
 - Naturally arise as $\mathbf{X}\mathbf{X}^{\top}$
 - Note again the close connection to $\mathbf{S} = n^{-1}\mathbf{X}\mathbf{X}^{\top}$

How to Study Eigenvalues

- Goal is to understand large-sample behavior of eigenvalues
 - Eigenvalues of Wigner and Wishart matrices are real
 - ullet But underlying matrix space is changing with p and n
 - No accumulation of degrees of freedom

How to Study Eigenvalues

- Goal is to understand large-sample behavior of eigenvalues
 - Eigenvalues of Wigner and Wishart matrices are real
 - \bullet But underlying matrix space is changing with p and n
 - No accumulation of degrees of freedom
- Empirical spectral distribution (ESD)
 - For any $N \times N$ matrix **Y** with eigenvalues $\lambda_1, \ldots, \lambda_N \in \mathbb{C}$ defined as $N^{-1} \sum_{\ell=1}^N \delta_{\lambda_\ell}$
 - For Hermitian Y this gives a mapping

$$F_{\mathbf{Y}} \colon \mathbb{R} \to [0, 1], \ x \mapsto \frac{1}{N} \sum_{\ell=1}^{N} \mathbf{1}_{\{\lambda_{\ell} \le x\}},$$

called the ESD of Y

- The ESD is the fundamental object to conduct large-sample analysis in RMT
- Linear spectral statistics (LSS) $\int g(x)dF_{\mathbf{Y}}(x)$ can be understood in terms of ESD

SPECTRUM OF SAMPLE COVARIANCE MATRIX

- A simple example
 - Take n=10 observations of p=10 dimensional centered Gaussian random vectors with identity population covariance matrix $\Sigma = \mathbf{I}_{10}$
 - Population eigenvalues are $\ell_1 = \cdots = \ell_{10} = 1$
 - Sample eigenvalues $\hat{\ell}_1, \dots, \hat{\ell}_{10}$ of **S** show an extreme spread
 - A typical sample would give

```
0.003, \quad 0.036, \quad 0.095, \quad 0.160, \quad 0.300, \quad 0.510, \quad 0.780, \quad 1.120, \quad 1.400, \quad 3.070
```

with variation over three orders of magnitude

• Could conclude from sample that population eigenvalues are different from each other

- A simple example
 - Take n=10 observations of p=10 dimensional centered Gaussian random vectors with identity population covariance matrix $\Sigma = \mathbf{I}_{10}$
 - Population eigenvalues are $\ell_1 = \cdots = \ell_{10} = 1$
 - Sample eigenvalues $\hat{\ell}_1, \dots, \hat{\ell}_{10}$ of **S** show an extreme spread
 - A typical sample would give

```
0.003, \quad 0.036, \quad 0.095, \quad 0.160, \quad 0.300, \quad 0.510, \quad 0.780, \quad 1.120, \quad 1.400, \quad 3.070
```

with variation over three orders of magnitude

- Could conclude from sample that population eigenvalues are different from each other
- Two immediate questions
 - Does this phenomenon go away with larger n, p?
 - If not, what explains this disconnect between population and sample eigenvalues?

- \bullet Assumptions
 - Let $X_t = (X_{1t}, \dots, X_{pt})^{\top}$, $t = 1, \dots, n$, be observed
 - The entries X_{jt} are iid such that $\mathbb{E}[X_{11}] = 0$, $\mathbb{E}[|X_{11}|^2] = 1$ and $\mathbb{E}[|X_{11}|^4] < \infty$

- Assumptions
 - Let $X_t = (X_{1t}, \dots, X_{pt})^{\top}$, $t = 1, \dots, n$, be observed
 - The entries X_{jt} are iid such that $\mathbb{E}[X_{11}] = 0$, $\mathbb{E}[|X_{11}|^2] = 1$ and $\mathbb{E}[|X_{11}|^4] < \infty$
- Under (3), the ESD \hat{F} converges almost surely to a nonrandom limiting distribution F_{γ}
 - If $\gamma \leq 1$, the limiting distribution is continuous with density

$$f_{\gamma}(\lambda) = \frac{1}{2\pi\gamma} \sqrt{\frac{(b-\lambda)(\lambda-a)}{\lambda^2}} \mathbf{1}_{[a,b]}(\lambda),$$

where $a = (1 - \sqrt{\gamma})^2$ and $b = (1 + \sqrt{\gamma})^2$

• If $\gamma > 1$, the limiting distribution is a mixture of a point mass at 0 with weight $1 - 1/\gamma$ and the density f_{γ} with weight $1/\gamma$

- Assumptions
 - Let $X_t = (X_{1t}, \dots, X_{pt})^{\top}$, $t = 1, \dots, n$, be observed
 - The entries X_{jt} are iid such that $\mathbb{E}[X_{11}] = 0$, $\mathbb{E}[|X_{11}|^2] = 1$ and $\mathbb{E}[|X_{11}|^4] < \infty$
- Under (3), the ESD \hat{F} converges almost surely to a nonrandom limiting distribution F_{γ}
 - If $\gamma \leq 1$, the limiting distribution is continuous with density

$$f_{\gamma}(\lambda) = \frac{1}{2\pi\gamma} \sqrt{\frac{(b-\lambda)(\lambda-a)}{\lambda^2}} \mathbf{1}_{[a,b]}(\lambda),$$

where $a = (1 - \sqrt{\gamma})^2$ and $b = (1 + \sqrt{\gamma})^2$

- If $\gamma > 1$, the limiting distribution is a mixture of a point mass at 0 with weight $1 1/\gamma$ and the density f_{γ} with weight $1/\gamma$
- Consequences
 - Spreading of the eigenvalues of S around the eigenvalues of Σ even in the limit
 - If $p/n \to 0$, the largest and smallest eigenvalue converge to 1 and classical results are retained

• MP law densities for different choices of $\gamma = \lim_{n \to \infty} \frac{p}{n}$

STIELTJES TRANSFORMS

- Background
 - Used extensively for determining limit behavior of ESD
 - Role in RMT similar to that of Fourier transform in probability theory

STIELTJES TRANSFORMS

- Background
 - Used extensively for determining limit behavior of ESD
 - Role in RMT similar to that of Fourier transform in probability theory
- Definition and inversion formula
 - The Stieltjes transform of measure μ on \mathbb{R} is

$$s: \mathbb{C}_+ \to \mathbb{C}_+, \ z \mapsto \int \frac{1}{x-z} d\mu(x),$$

where $\mathbb{C}^+ = \{z \in \mathbb{C} : \Im(z) > 0\}$ is the complex upper half-plane

- s is analytic on \mathbb{C}^+
- If a < b are continuity points of a real probability measure μ , then

$$\mu(a,b] = \frac{1}{\pi} \lim_{v \to 0^+} \int_a^b \Im(s(u+v)) du, \qquad z = u + v$$

RESOLVENTS AND STIELTJES TRANSFORMS

- Need the concept of resolvent
 - Connection between sample covariance matrix **S**, ESD \hat{F} and Stieltjes transform $\hat{s} = s^{\hat{F}}$
 - The resolvent of **S** is

$$\mathbf{R}(z) = (\mathbf{S} - z\mathbf{I})^{-1}, \qquad z \in \mathbb{C}^+$$

Resolvents and Stieltjes Transforms

- Need the concept of resolvent
 - Connection between sample covariance matrix S, ESD \hat{F} and Stieltjes transform $\hat{s} = s^{\hat{F}}$
 - The resolvent of **S** is

$$\mathbf{R}(z) = (\mathbf{S} - z\mathbf{I})^{-1}, \qquad z \in \mathbb{C}^+$$

- Convergence of ESD through convergence of Stieltjes transform
 - The Stieltjes transform of the ESD can be expressed as

$$\hat{s}(z) = \int \frac{1}{\lambda - z} d\hat{F}(\lambda) = \frac{1}{p} \sum_{j=1}^{p} \frac{1}{\lambda_j - z} = \frac{1}{p} \text{tr}[(\mathbf{S} - z\mathbf{I})^{-1}] = \frac{1}{p} \text{tr}[\mathbf{R}(z)]$$

- Univariate and multivariate linear time series have been studied extensively
 - Rather complete picture of strength and weaknesses of ARMA models
 - Many extensions available
 - Ready-to-use computer packages

- Univariate and multivariate linear time series have been studied extensively
 - Rather complete picture of strength and weaknesses of ARMA models
 - Many extensions available
 - Ready-to-use computer packages
- Curse of dimensionality
 - If dimension grows proportionally with the sample size, estimation becomes impossible
 - Assumptions on coefficient matrices are needed
 - Typically through imposing sparsity

- Univariate and multivariate linear time series have been studied extensively
 - Rather complete picture of strength and weaknesses of ARMA models
 - Many extensions available
 - Ready-to-use computer packages
- Curse of dimensionality
 - If dimension grows proportionally with the sample size, estimation becomes impossible
 - Assumptions on coefficient matrices are needed
 - Typically through imposing sparsity
- Few results in the literature
 - Review is given below
 - Existing contributions only touch the surface
 - Most of them are related to spectrum of sample covariance matrix

• Let Z_{jt} be standard normal and define the two processes $X_t^{\text{ind}} = Z_t$ and $X_t^{\text{dep}} = (Z_t + Z_{t-1})/\sqrt{2}$ as well as the sample covariance matrices $\mathbf{S}_{\text{ind}} = \frac{1}{n}\mathbf{X}^{\text{ind}}(\mathbf{X}^{\text{ind}})^*$ and $\mathbf{S}_{\text{dep}} = \frac{1}{n}\mathbf{X}^{\text{dep}}(\mathbf{X}^{\text{dep}})^*$

- Let Z_{jt} be standard normal and define the two processes $X_t^{\text{ind}} = Z_t$ and $X_t^{\text{dep}} = (Z_t + Z_{t-1})/\sqrt{2}$ as well as the sample covariance matrices $\mathbf{S}_{\text{ind}} = \frac{1}{n}\mathbf{X}^{\text{ind}}(\mathbf{X}^{\text{ind}})^*$ and $\mathbf{S}_{\text{dep}} = \frac{1}{n}\mathbf{X}^{\text{dep}}(\mathbf{X}^{\text{dep}})^*$
- Even though $\mathbb{E}[\mathbf{S}^{\text{ind}}] = \mathbb{E}[\mathbf{S}^{\text{dep}}]$, a comparison of eigenvalues (shown with p = 1000, n = 2000) reveals that the limiting behavior of the ESDs \hat{F}^{ind} and \hat{F}^{dep} is different
- How can this time series effect be quantified?

• Empirical spectrum of **S** for n=2000 and p=1000: Independent case

• Empirical spectrum of **S** for n=2000 and p=1000: Independent versus MA(1) case

• Empirical spectrum of **S** for n=2000 and p=1000: Independent versus MA(2) case

OUTLINE

- Goal is to introduce framework that allows for
 - description of linear processes in high-dimension
 - characterization of eigenvalues of sample covariance matrix
 - characterization of eigenvalues of symmetrized autocovariance matrices

LITERATURE REVIEW

- Pfaffel and Schlemm (2011), Theory of Probability and Mathematical Statistics **31**, 313–329 Yao (2012), Statistics & Probability Letters **82**, 22–28
 - Studied the linear time series model

$$X_{jt} = \sum_{t'=0}^{\infty} \alpha_{t'} Z_{j,t-t'},$$

with $(Z_{jt}: t \in \mathbb{Z}) \sim WN(0,1)$ and independent rows Z_1, \ldots, Z_p

LITERATURE REVIEW

- Pfaffel and Schlemm (2011), Theory of Probability and Mathematical Statistics **31**, 313–329 Yao (2012), Statistics & Probability Letters **82**, 22–28
 - Studied the linear time series model

$$X_{jt} = \sum_{t'=0}^{\infty} \alpha_{t'} Z_{j,t-t'},$$

with $(Z_{jt}: t \in \mathbb{Z}) \sim WN(0,1)$ and independent rows Z_1, \ldots, Z_p

- Jin et al. (2014), The Annals of Applied Probability 24, 1199–1225
 - Studied the behavior of symmetrized autocovariance matrices in the independent case

LITERATURE REVIEW

- Pfaffel and Schlemm (2011), Theory of Probability and Mathematical Statistics 31, 313–329 Yao (2012), Statistics & Probability Letters 82, 22–28
 - Studied the linear time series model

$$X_{jt} = \sum_{t'=0}^{\infty} \alpha_{t'} Z_{j,t-t'},$$

with $(Z_{jt}: t \in \mathbb{Z}) \sim WN(0,1)$ and independent rows Z_1, \ldots, Z_p

- Jin et al. (2014), The Annals of Applied Probability 24, 1199–1225
 - Studied the behavior of symmetrized autocovariance matrices in the independent case
- Hachem et al. (2005), Markov Processes and Related Fields 11, 629–648
 - Studied the bi-stationary Gaussian process

$$X_{jt} = \sum_{j',t' \in \mathbb{Z}} h(j',t') Z_{j-j',t-t'},$$

with $h \in \ell^1(\mathbb{Z}^2)$ deterministic and $(Z_{jt} : j, t \in \mathbb{Z})$ iid real/complex standard normal

Assumptions for a Simple Time Series

- Study first the MA(1) process $X_t = Z_t + \mathbf{A}_1 Z_{t-1}$ satisfying
 - (A1) \mathbf{A}_1 is a $p \times p$ Hermitian, possibly random, matrix independent of $(Z_t : t \in \mathbb{Z})$
 - (A2) The ESD $F_p^{\mathbf{A}_1}$ of \mathbf{A}_1 converges weakly to a nonrandom probability distribution $F^{\mathbf{A}}$ (almost surely); there is $\bar{\lambda}_{\mathbf{A}} \geq 0$ such that $\|\mathbf{A}_1\| \leq \bar{\lambda}_{\mathbf{A}}$ (almost surely) for large p

Assumptions for a Simple Time Series

- Study first the MA(1) process $X_t = Z_t + \mathbf{A}_1 Z_{t-1}$ satisfying
 - (A1) \mathbf{A}_1 is a $p \times p$ Hermitian, possibly random, matrix independent of $(Z_t : t \in \mathbb{Z})$
 - (A2) The ESD $F_p^{\mathbf{A}_1}$ of \mathbf{A}_1 converges weakly to a nonrandom probability distribution $F^{\mathbf{A}}$ (almost surely); there is $\bar{\lambda}_{\mathbf{A}} \geq 0$ such that $\|\mathbf{A}_1\| \leq \bar{\lambda}_{\mathbf{A}}$ (almost surely) for large p
- Motivation for assumptions
 - Interest is in the spectrum of the covariance matrix S
 - For an MA(1) process, we have $\mathbb{E}[\mathbf{S}] = \mathbf{I} + \mathbf{A}_1 \mathbf{A}_1^*$
 - The moments of the ESD of **S** depend on the trace of polynomials in \mathbf{A}_1 , \mathbf{A}_1^* and $\mathbf{A}_1\mathbf{A}_1^*$
 - (A1) and (A2) ensure that the limiting ESD of S depends only on the limiting ESD of A_1
 - Without these restrictions on A_1 , it is not clear what limit the ESD of S would have

Intuition for MA(1) Processes

• The limiting Stieltjes transform of \hat{F} (ESD of **S**) involves

$$h(\lambda, \nu) = 1 + 2\cos(\nu)\lambda + \lambda^2, \qquad \nu \in [0, 2\pi], \lambda \in \mathbb{R},$$

• $h(\lambda, \cdot)$ is (up to normalization) the spectrum of the scalar MA(1) process $(x_t : t \in \mathbb{Z})$ given by $x_t = z_t + \lambda z_{t-1}, t \in \mathbb{Z}$

Intuition for MA(1) Processes

• The limiting Stieltjes transform of \hat{F} (ESD of **S**) involves

$$h(\lambda, \nu) = 1 + 2\cos(\nu)\lambda + \lambda^2, \qquad \nu \in [0, 2\pi], \lambda \in \mathbb{R},$$

- $h(\lambda, \cdot)$ is (up to normalization) the spectrum of the scalar MA(1) process $(x_t : t \in \mathbb{Z})$ given by $x_t = z_t + \lambda z_{t-1}, t \in \mathbb{Z}$
- ullet The limiting Stieltjes transform of the ESD \hat{F} is determined from the Stieltjes kernel

$$K(z,\nu) = s^{(0)}(z) + 2\cos(\nu)s^{(1)}(z) + s^{(2)}(z), \qquad z \in \mathbb{C}^+, \nu \in [0, 2\pi],$$

where

- $s^{(k)}(z) = \lim_{n\to\infty} \frac{1}{p} \text{tr}[(\mathbf{S}-z\mathbf{I})^{-1}\mathbf{A}_1^k], k=0,1,2$, where the limits exist in an a.s. sense
- $s(z) = s^{(0)}(z)$ is the limiting Stieltjes transform of \hat{F}

Result for MA(1) Processes

THEOREM 1: Suppose the MA(1) process $(X_t: t \in \mathbb{Z})$ satisfies assumptions (A1) and (A2). Then, almost surely, \hat{F} converges in distribution to a nonrandom probability distribution F with Stieltjes transform s(z) given by

$$s(z) = \int \left[\frac{1}{2\pi} \int_0^{2\pi} \frac{h(\lambda, \nu)}{1 + cK(z, \nu)} d\nu - z \right]^{-1} dF^{\mathbf{A}}(\lambda), \tag{4}$$

where $K(z, \nu)$ is the unique solution to the nonlinear equation

$$K(z,\nu) = \int h(\lambda,\nu) \left[\frac{1}{2\pi} \int_0^{2\pi} \frac{h(\lambda,\nu')}{1 + cK(z,\nu')} d\nu' - z \right]^{-1} dF^{\mathbf{A}}(\lambda), \tag{5}$$

for $\nu \in [0, 2\pi]$, with $K(z, \nu)$ satisfying the requirement that, for any $\nu \in [0, 2\pi]$, it is the Stieltjes transform of a measure on \mathbb{R} with total mass $\int h(\lambda, \nu) dF^{\mathbf{A}}(\lambda)$.

• Assume Gaussianity of Z_1, \ldots, Z_n

- Assume Gaussianity of Z_1, \ldots, Z_n
- Let $\mathbf{L} = [o:e_1:\cdots:e_{n-1}]$ and $\tilde{\mathbf{L}} = [e_n:e_1:\cdots:e_{n-1}]$ be the $n \times n$ lag operator and its approximating circulant matrix, respectively, where o denotes the n-dimensional zero vector and e_j the jth canonical unit vector. Then, with $\mathbf{X} = [X_1:\cdots:X_n]$ and $\mathbf{Z} = [Z_1:\cdots:Z_n]$,

$$\mathbf{X} = \mathbf{Z} + \mathbf{A}_1 \mathbf{Z} \mathbf{L}$$
 and $\mathbf{X}_1 = \mathbf{Z} + \mathbf{A}_1 \mathbf{Z} \tilde{\mathbf{L}}$,

where X_1 is a redefinition of X such that only the first column is changed to $Z_1 + A_1 Z_n$

- Assume Gaussianity of Z_1, \ldots, Z_n
- Let $\mathbf{L} = [o:e_1:\cdots:e_{n-1}]$ and $\tilde{\mathbf{L}} = [e_n:e_1:\cdots:e_{n-1}]$ be the $n \times n$ lag operator and its approximating circulant matrix, respectively, where o denotes the n-dimensional zero vector and e_j the jth canonical unit vector. Then, with $\mathbf{X} = [X_1:\cdots:X_n]$ and $\mathbf{Z} = [Z_1:\cdots:Z_n]$,

$$\mathbf{X} = \mathbf{Z} + \mathbf{A}_1 \mathbf{Z} \mathbf{L}$$
 and $\mathbf{X}_1 = \mathbf{Z} + \mathbf{A}_1 \mathbf{Z} \tilde{\mathbf{L}}$,

where \mathbf{X}_1 is a redefinition of \mathbf{X} such that only the first column is changed to $Z_1 + \mathbf{A}_1 Z_n$

• Since $\tilde{\mathbf{L}}$ is a circulant matrix, it diagonalizes in the complex Fourier basis $\mathbf{U}_{\tilde{\mathbf{L}}}$.

- Assume Gaussianity of Z_1, \ldots, Z_n
- Let $\mathbf{L} = [o:e_1:\cdots:e_{n-1}]$ and $\tilde{\mathbf{L}} = [e_n:e_1:\cdots:e_{n-1}]$ be the $n \times n$ lag operator and its approximating circulant matrix, respectively, where o denotes the n-dimensional zero vector and e_j the jth canonical unit vector. Then, with $\mathbf{X} = [X_1:\cdots:X_n]$ and $\mathbf{Z} = [Z_1:\cdots:Z_n]$,

$$\mathbf{X} = \mathbf{Z} + \mathbf{A}_1 \mathbf{Z} \mathbf{L}$$
 and $\mathbf{X}_1 = \mathbf{Z} + \mathbf{A}_1 \mathbf{Z} \tilde{\mathbf{L}}_2$

where \mathbf{X}_1 is a redefinition of \mathbf{X} such that only the first column is changed to $Z_1 + \mathbf{A}_1 Z_n$

- ullet Since $\tilde{\mathbf{L}}$ is a circulant matrix, it diagonalizes in the complex Fourier basis $\mathbf{U}_{\tilde{\mathbf{L}}}$.
- Rotating with $\mathbf{U}_{\tilde{\mathbf{L}}}$ and using $\tilde{\mathbf{Z}} = [\tilde{Z}_1 : \cdots : \tilde{Z}_n] = \mathbf{Z}\mathbf{U}_{\tilde{\mathbf{L}}}$, the observations are transformed again into independent vectors $\tilde{X}_1, \ldots, \tilde{X}_n$ given by

$$\tilde{\mathbf{X}} = [\tilde{X}_1 : \cdots : \tilde{X}_n] = \mathbf{X}_1 \mathbf{U}_{\tilde{\mathbf{L}}} = [(\mathbf{I} + \eta_1 \mathbf{A}_1) \tilde{Z}_1 : \cdots : (\mathbf{I} + \eta_n \mathbf{A}_1) \tilde{Z}_n],$$

where $\eta_t = e^{i\nu_t}$ and $\nu_t = 2\pi t/n$

Assumptions for Linear Processes

- Results for MA(q) processes can be proved as above, so focus on the MA(∞) process ($X_t : t \in \mathbb{Z}$) given by $X_t = \sum_{t'=0}^{\infty} \mathbf{A}_{t'} Z_{t-t'}$, let $\mathbf{A} = [\mathbf{A}_0 : \mathbf{A}_1 : \cdots]$. Assume that
 - (A3) The matrices $(\mathbf{A}_t: t \in \mathbb{N}_0)$ are simultaneously diagonalizable random Hermitian matrices, independent of $(Z_t: t \in \mathbb{Z})$ satisfying $\|\mathbf{A}_t\| \leq \bar{\lambda}_{\mathbf{A}_t}$ for all $t \in \mathbb{N}_0$ and large p with

$$\sum_{t=0}^{\infty} \bar{\lambda}_{\mathbf{A}_t} \leq \bar{\lambda}_{\mathbf{A}} < \infty \quad \text{and} \quad \sum_{t=0}^{\infty} t \bar{\lambda}_{\mathbf{A}_t} \leq \bar{\lambda}_{\mathbf{A}}' < \infty$$

(A4) There are continuous functions $f_t: \mathbb{R}^m \to \mathbb{R}$, $t \in \mathbb{N}_0$, such that for every p there is a set of points $\lambda_1, \ldots, \lambda_p \in \mathbb{R}^m$, not necessarily distinct, and a unitary $p \times p$ matrix \mathbf{U} such that

$$f_0(\lambda) = 1$$
 and $\mathbf{U}^* \mathbf{A}_t \mathbf{U} = \operatorname{diag}(f_t(\lambda_1), \dots, f_t(\lambda_p)), \quad \ell \in \mathbb{N}$

(A5) Almost surely, $F_p^{\mathbf{A}}$, the ESD of $\lambda_1, \ldots, \lambda_p$, converges weakly to a nonrandom probability distribution function $F^{\mathbf{A}}$

DISCUSSION OF ASSUMPTIONS

• Simultaneous diagonizability can be relaxed to assuming Toeplitz structure for \mathbf{A}_{ℓ} with entries decaying away from the diagonal at an appropriate rate

DISCUSSION OF ASSUMPTIONS

- Simultaneous diagonizability can be relaxed to assuming Toeplitz structure for \mathbf{A}_{ℓ} with entries decaying away from the diagonal at an appropriate rate
- ARMA(1,1) Example: Let $(X_t: t \in \mathbb{Z})$ be given by

$$\Phi(L)X_t = \Theta(L)Z_t, \qquad t \in \mathbb{Z},$$

where $\Phi(L) = \mathbf{I} - \Phi_1 L$, $\Theta(L) = \mathbf{I} + \Theta_1 L$ such that $\|\Phi_1\| \leq \bar{\phi} < 1$ and $\|\Theta_1\| \leq \bar{\theta} < \infty$, and $(Z_t: t \in \mathbb{Z}) \sim \text{IID}(0, \mathbf{I})$ with finite fourth moments. Then

- $X_t = \mathbf{A}(L)Z_t$ with $\mathbf{A}(L) = \sum_{\ell=0}^{\infty} \mathbf{A}_{\ell}L^{\ell} = \mathbf{\Phi}^{-1}(L)\mathbf{\Theta}(L)$
- Under simultaneous diagonizability, $\mathbf{U}\Phi_1\mathbf{U}^* = \Lambda_{\Phi}$ and $\mathbf{U}\Theta_1\mathbf{U}^* = \Lambda_{\Theta}$ with appropriate matrices $\Lambda_{\Phi} = \operatorname{diag}(\phi_1, \dots, \phi_p)$ and $\Lambda_{\Theta} = \operatorname{diag}(\theta_1, \dots, \theta_p)$ such that $|\phi_j| \leq \bar{\phi}$ and $|\theta_j| \leq \bar{\theta}$
- Each coordinate of the rotated process satisfies

$$\frac{1 + \theta_j L}{1 - \phi_j L} = (1 + \theta_j L) \sum_{\ell=0}^{\infty} (\phi_j L)^{\ell} = 1 + (\theta_j + \phi_j) \sum_{\ell=1}^{\infty} \phi_j^{\ell-1} L^{\ell},$$

and it follows that $\mathbf{A}_{\ell} = \mathbf{U} \operatorname{diag}(f_{\ell}(\lambda_1), \dots, f_{\ell}(\lambda_p)) \mathbf{U}^*$ with $\lambda_j = (\phi_j, \theta_j)' \in \mathbb{R}^2$, $f_0(\lambda_j) = 1$ and $f_{\ell}(\lambda_j) = (\theta_j + \phi_j) \phi_j^{\ell-1}$ for $\ell \in \mathbb{N}$

Result for Linear Processes

• Define $\psi(\lambda, \nu) = \sum_{\ell=0}^{\infty} e^{i\ell\nu} f_{\ell}(\lambda)$ and $h(\lambda, \nu) = |\psi(\lambda, \nu)|^2$

THEOREM 2: If the linear process $(X_t: t \in \mathbb{Z})$ satisfies (A3)–(A5), then, almost surely, \hat{F} converges weakly to a probability distribution F with Stieltjes transform s(z) determined by the equation

$$s(z) = \int \left[\frac{1}{2\pi} \int_0^{2\pi} \frac{h(\lambda, \nu)}{1 + cK(z, \nu)} d\nu - z \right]^{-1} dF^{\mathbf{A}}(\lambda), \tag{6}$$

where $K(z, \nu)$ is the unique solution to the nonlinear equation

$$K(z,\nu) = \int \left[\frac{1}{2\pi} \int_0^{2\pi} \frac{h(\lambda,\nu')}{1 + cK(z,\nu')} d\nu' - z \right]^{-1} h(\lambda,\nu) dF^{\mathbf{A}}(\lambda)$$
 (7)

for $\nu \in [0, 2\pi]$, with $K(z, \nu)$ satisfying the requirement that, for any $\nu \in [0, 2\pi]$, it is the Stieltjes transform of a measure on \mathbb{R} with total mass $\int h(\lambda, \nu) dF^{\mathbf{A}}(\lambda)$.

• Extensions to symmetrized autocovariance matrices exist

EXAMPLES

• If $\mathbf{A}_t = \mathbf{0}$, $t \in \mathbb{N}$, then $h(\lambda, \nu) \equiv 1$ and (6) reduces to the original Marčenko-Pastur law

EXAMPLES

- If $A_t = 0$, $t \in \mathbb{N}$, then $h(\lambda, \nu) \equiv 1$ and (6) reduces to the original Marčenko-Pastur law
- If $\mathbf{A}_t = \alpha_t \mathbf{I}_p$, $t \in \mathbb{N}$, with $\sum_{t=1}^{\infty} t |\alpha_t| < \infty$, then

$$h(\lambda, \nu) \equiv h(\nu) = |\sum_{t=0}^{\infty} e^{it\nu} \alpha_t|^2$$

is independent of λ and (6) reduces to

$$s(z) = \left[\frac{1}{2\pi} \int_0^{2\pi} \frac{h(\nu)d\nu}{1 + cs(z)h(\nu)} - z \right]^{-1}$$

that is, the linear process case with independent, identically distributed rows

Pfaffel and Schlemm (2011), Probability and Mathematical Statistics 31, 313–329 Yao (2012), Statistics & Probability Letters 82, 22–28

EXAMPLES

- If $A_t = 0$, $t \in \mathbb{N}$, then $h(\lambda, \nu) \equiv 1$ and (6) reduces to the original Marčenko-Pastur law
- If $\mathbf{A}_t = \alpha_t \mathbf{I}_p$, $t \in \mathbb{N}$, with $\sum_{t=1}^{\infty} t |\alpha_t| < \infty$, then

$$h(\lambda, \nu) \equiv h(\nu) = |\sum_{t=0}^{\infty} e^{it\nu} \alpha_t|^2$$

is independent of λ and (6) reduces to

$$s(z) = \left[\frac{1}{2\pi} \int_0^{2\pi} \frac{h(\nu)d\nu}{1 + cs(z)h(\nu)} - z\right]^{-1}$$

that is, the linear process case with independent, identically distributed rows

Pfaffel and Schlemm (2011), Probability and Mathematical Statistics 31, 313–329 Yao (2012), Statistics & Probability Letters 82, 22–28

• Causal ARMA processes included by determining the causal matrix coefficients

FINAL COMMENTS ON THE PROOF

- Arguments used so far do not work because
 - if one constructs the data matrix \mathbf{X} not from a linear process $X_t = \sum_{t'=0}^{\infty} \mathbf{A}_{t'} Z_{t-t'}$, then every column of \mathbf{X} is different from the transformed matrix $\mathbf{X}_{\infty} = \sum_{t'=0}^{\infty} \mathbf{A}_{t} \mathbf{Z} \tilde{\mathbf{L}}^{t}$ and not only the first column as in the MA(1) case
 - for the MA(1) case, one can write the Stieltjes transform $s_p(z)$ as a function of 2p(n+1) variables Z_{tj}^R and Z_{tj}^I , but for linear processes, even for finite p, $s_p(z)$ is a function of infinitely many Z_{tj}^R and Z_{tj}^I

Final Comments on the Proof

- Arguments used so far do not work because
 - if one constructs the data matrix \mathbf{X} not from a linear process $X_t = \sum_{t'=0}^{\infty} \mathbf{A}_{t'} Z_{t-t'}$, then every column of \mathbf{X} is different from the transformed matrix $\mathbf{X}_{\infty} = \sum_{t'=0}^{\infty} \mathbf{A}_{t} \mathbf{Z} \tilde{\mathbf{L}}^{t}$ and not only the first column as in the MA(1) case
 - for the MA(1) case, one can write the Stieltjes transform $s_p(z)$ as a function of 2p(n+1) variables Z_{tj}^R and Z_{tj}^I , but for linear processes, even for finite p, $s_p(z)$ is a function of infinitely many Z_{tj}^R and Z_{tj}^I
- Use approximation through finite-order MA processes $X_t^{q(p)} = \sum_{t'=0}^{q(p)} \mathbf{A}_{t'} Z_{t-t'}$ whose order q(p) is growing with the sample size
 - Obviously $q(p) \to \infty$ is necessary
 - But q(p) cannot grow too fast (same difficulties in transitioning from the Gaussian to the non-Gaussian case as for the linear process itself) or too slow (showing that the limiting ESDs of the linear process and its truncated version are the same becomes an issue)
 - Choose $q(p) = \lceil p^{1/4} \rceil$, with $\lceil \cdot \rceil$ denoting the ceiling function

OUTLINE

- Goal is to make framework more applicable
 - Estimation of quadratic forms involving sample covariance matrices
 - Lead example: Markowitz portfolio and mean-variance frontier
 - Based on a thresholding and model selection procedure for eigenvalues

Markowitz Portfolio Problem

- Framework for assembling a portfolio of risky assets v_1, \ldots, v_p
 - Assets have expected returns $\mu_1, \ldots \mu_p$ and covariance matrix Σ
 - \bullet For expected portfolio return μ_P choose allocation with smallest risk

Markowitz Portfolio Problem

- Framework for assembling a portfolio of risky assets v_1, \ldots, v_p
 - Assets have expected returns $\mu_1, \ldots \mu_p$ and covariance matrix Σ
 - For expected portfolio return μ_P choose allocation with smallest risk
- Mathematical formulation as quadratic program
 - Solve

$$\min_{w \in \mathbb{R}^p} \frac{1}{2} w' \mathbf{\Sigma} w$$

with linear constraints $w'\mu = \mu_P$ and $w'\mathbf{1} = 1$, where $\mu = (\mu_1, \dots, \mu_p)'$ and $\mathbf{1} = (1, \dots, 1)'$

- If w_{opt} is the solution, then $w'_{opt} \sum w_{opt}$ viewed as function of μ_P is called efficient frontier
- If Σ is invertible, then there is an explicit form of w_{opt}

Markowitz Portfolio Problem

- Framework for assembling a portfolio of risky assets v_1, \ldots, v_p
 - Assets have expected returns $\mu_1, \ldots \mu_p$ and covariance matrix Σ
 - For expected portfolio return μ_P choose allocation with smallest risk
- Mathematical formulation as quadratic program
 - Solve

$$\min_{w \in \mathbb{R}^p} \frac{1}{2} w' \mathbf{\Sigma} w$$

with linear constraints $w'\mu = \mu_P$ and $w'\mathbf{1} = 1$, where $\mu = (\mu_1, \dots, \mu_p)'$ and $\mathbf{1} = (1, \dots, 1)'$

- If w_{opt} is the solution, then $w'_{opt} \sum w_{opt}$ viewed as function of μ_P is called efficient frontier
- If Σ is invertible, then there is an explicit form of w_{opt}
- Common practice: Estimate the expected return vector μ and use S in place of Σ
 - \bullet This can lead to risk underestimation, especially when n and p are comparable
 - Results available in the high-dimensional setting are for independent setting

RISK UNDERESTIMATION

• To highlight the differences between the optimal weights obtained from the population and sample quadratic programs, let

$$w = w_{opt,p}$$
 and $\hat{w} = w_{opt,s}$

the population and sample weights, respectively

RISK UNDERESTIMATION

• To highlight the differences between the optimal weights obtained from the population and sample quadratic programs, let

$$w = w_{opt,p}$$
 and $\hat{w} = w_{opt,s}$

the population and sample weights, respectively

• Then, assuming $p \leq n$ for simplicity,

$$\hat{w}'\mathbf{S}^{-1}\hat{w} \approx N_p(w'\mathbf{\Sigma}^{-1}w - D_p) < w'\mathbf{\Sigma}^{-1}w,$$

where

$$N_p = 1 - \frac{p-2}{n-1},$$

$$D_d = \frac{p}{n} (u_P' \mathbf{Q}^{-1} e_2)^2 \left(1 + \frac{p}{n} e_2' \mathbf{Q}^{-1} e_2\right)^{-1}$$

ALGORITHM: IDEA

• The eigendecomposition of Σ gives

$$\mathbf{Q} = \mathbf{V}' \mathbf{\Sigma}^{-1} \mathbf{V} = \mathbf{V}' \mathbf{U}' \mathbf{\Lambda}^{-1} \mathbf{U} \mathbf{V},$$

ALGORITHM: IDEA

• The eigendecomposition of Σ gives

$$\mathbf{Q} = \mathbf{V}' \mathbf{\Sigma}^{-1} \mathbf{V} = \mathbf{V}' \mathbf{U}' \mathbf{\Lambda}^{-1} \mathbf{U} \mathbf{V},$$

• Perform the following steps:

Step 1: To estimate Λ , utilize that LSD is given by

$$s(z) = \int \left[\frac{1}{2\pi} \int_0^{2\pi} \frac{h(\lambda, \nu)}{1 + cK(z, \nu)} d\nu - z \right]^{-1} dF^{\mathbf{A}}(\lambda), \tag{8}$$

and mimic limiting behavior on sample version, using $\hat{s}(z)$ in place of s(z)

Step 2: Invert (8) to find $\hat{F}^{\mathbf{A}}$: Choose best-fitting spectrum from set of candidate spectra

Step 3: Estimate contribution of columns of UV using projection matrices

PERFORMANCE: MA(2) PROCESS

• p = 1000, n = 3000. "Model Selection" is proposed algorithm; "Naive Estimate" uses $\bf S$ in place of $\bf \Sigma$; "IndShrink" is shrinkage estimation assuming independence

PERFORMANCE: AR(1) PROCESS

- p = 500, n = 2000. Labeling is as before.
- Model misspecification: An AR(1) time series is approximated by an MA(2) time series

D. WRAP-UP

Wrap-Up of Talk

- Learnt about
 - the bulk eigenvalues of sample (auto)covariances from linear processes
 - the difficulties in finding appropriate models for high-dimensional time series
 - Some potential applications
 - One actual application: Mean-variance frontier estimation
- Learnt also that much more work is needed