In [1]: import numpy as np
 import pandas as pd
 import matplotlib.pyplot as plt
 from sklearn.linear_model import LinearRegression
 from sklearn.tree import DecisionTreeClassifier
 from sklearn.model_selection import train_test_split
 from sklearn.metrics import r2_score,explained_variance_score,mean_absolute_er
 from math import sqrt
 import seaborn as sns
%matplotlib inline

Out[2]:

	gender	race/ ethnicity	parental level of education	lunch	test preparation course	math score	reading score	writing score
0	female	group B	bachelor's degree	standard	none	72	72	74
1	female	group C	some college	standard	completed	69	90	88
2	female	group B	master's degree	standard	none	90	95	93
3	male	group A	associate's degree	free/ reduced	none	47	57	44
4	male	group C	some college	standard	none	76	78	75
94	female	group B	some college	standard	none	79	86	92
95	male	group C	associate's degree	free/ reduced	completed	78	81	82
96	male	group B	some high school	standard	completed	65	66	62
97	female	group E	some college	standard	completed	63	72	70
98	female	group D	some college	free/ reduced	none	58	67	62

99 rows × 8 columns

In [3]: print(student.shape)
student.head()

(99, 8)

Out[3]:

	gender	race/ ethnicity	parental level of education	lunch	test preparation course	math score	reading score	writing score
0	female	group B	bachelor's degree	standard	none	72	72	74
1	female	group C	some college	standard	completed	69	90	88
2	female	group B	master's degree	standard	none	90	95	93
3	male	group A	associate's degree	free/ reduced	none	47	57	44
4	male	group C	some college	standard	none	76	78	75

In [4]: student.isnull()

Out[4]:

	gender	race/ ethnicity	parental level of education	lunch	test preparation course	math score	reading score	writing score
0	False	False	False	False	False	False	False	False
1	False	False	False	False	False	False	False	False
2	False	False	False	False	False	False	False	False
3	False	False	False	False	False	False	False	False
4	False	False	False	False	False	False	False	False
94	False	False	False	False	False	False	False	False
95	False	False	False	False	False	False	False	False
96	False	False	False	False	False	False	False	False
97	False	False	False	False	False	False	False	False
98	False	False	False	False	False	False	False	False

99 rows × 8 columns

```
In [5]: student.isnull().sum()
Out[5]: gender
                                        0
        race/ethnicity
                                        0
        parental level of education
                                        0
        lunch
                                        0
        test preparation course
                                        0
        math score
                                        0
        reading score
                                        0
        writing score
                                        0
        dtype: int64
In [6]: student.shape
Out[6]: (99, 8)
```

In [7]: #visualizing data using seaborn pairplot
EDWARD=sns.pairplot(student)

C:\Users\HP\anaconda3\Lib\site-packages\seaborn\axisgrid.py:118: UserWarning:
The figure layout has changed to tight
 self._figure.tight_layout(*args, **kwargs)

In [8]: student.columns

```
X=np.array(student[['math score', 'reading score']])
         Y=np.array(student['writing score'])
Out[9]: array([[72, 72],
                 [69, 90],
                 [90, 95],
                 [47, 57],
                 [76, 78],
                 [71, 83],
                 [88, 95],
                 [40, 43],
                 [64, 64],
                 [38, 60],
                 [58, 54],
                 [40, 52],
                 [65, 81],
                 [78, 72],
                 [50, 53],
                 [69, 75],
                 [88, 89],
                 [18, 32],
                 [46, 42],
                 [54, 58],
                 [66, 69],
                 [65, 75],
                 [44, 54],
                 [69, 73],
                 [74, 71],
                 [73, 74],
                 [69, 54],
                 [67, 69],
                 [70, 70],
                 [62, 70],
                 [69, 74],
                 [63, 65],
                 [56, 72],
                 [40, 42],
                 [97, 87],
                 [81, 81],
                 [74, 81],
                 [50, 64],
                 [75, 90],
                 [57, 56],
                 [55, 61],
                 [58, 73],
                 [53, 58],
                 [59, 65],
                 [50, 56],
                 [65, 54],
                 [55, 65],
                 [66, 71],
                 [57, 74],
                 [82, 84],
                 [53, 55],
```

[77, 69],

```
[53, 44],
[88, 78],
[71, 84],
[33, 41],
[82, 85],
[52, 55],
[58, 59],
[ 0, 17],
[79, 74],
[39, 39],
[62, 61],
[69, 80],
[59, 58],
[67, 64],
[45, 37],
[60, 72],
[61, 58],
[39, 64],
[58, 63],
[63, 55],
[41, 51],
[61, 57],
[49, 49],
[44, 41],
[30, 26],
[80, 78],
[61, 74],
[62, 68],
[47, 49],
[49, 45],
[50, 47],
[72, 64],
[42, 39],
[73, 80],
[76, 83],
[71, 71],
[58, 70],
[73, 86],
[65, 72],
[27, 34],
[71, 79],
[43, 45],
[79, 86],
[78, 81],
[65, 66],
[63, 72],
[58, 67]], dtype=int64)
```

```
In [36]: Y
Out[36]: array([74, 88, 93, 44, 75, 78, 92, 39, 67, 50, 52, 43, 73, 70, 58, 78, 86,
                 28, 46, 61, 63, 70, 53, 73, 80, 72, 55, 75, 65, 75, 74, 61, 65, 38,
                 82, 79, 83, 59, 88, 57, 54, 68, 65, 66, 54, 57, 62, 76, 76, 82, 48,
                 68, 42, 75, 87, 43, 86, 49, 58, 10, 72, 34, 55, 71, 59, 61, 37, 74,
                 56, 57, 73, 63, 48, 56, 41, 38, 22, 81, 72, 68, 50, 45, 54, 63, 34,
                 82, 88, 74, 67, 82, 74, 36, 71, 50, 92, 82, 62, 70, 62],
                dtype=int64)
In [37]: print(X.shape)
          (99, 2)
In [38]: |print(Y.shape)
          (99,)
In [40]: dt=DecisionTreeClassifier(random state=15,criterion='entropy', max depth=10)
         dt.fit(X,Y)
Out[40]: DecisionTreeClassifier(criterion='entropy', max_depth=10, random_state=15)
         In a Jupyter environment, please rerun this cell to show the HTML representation or trust
         the notebook.
          On GitHub, the HTML representation is unable to render, please try loading this page
         with nbviewer.org.
In [14]: |X_train, X_test,Y_train,Y_test=train_test_split(X,Y,test_size=0.2,random_state
         print(X_train.shape)
         print(X_test.shape)
         print(Y_train.shape)
         print(Y_test.shape)
          (79, 2)
          (20, 2)
          (79,)
          (20,)
         from sklearn.linear model import LinearRegression
         model=LinearRegression()
In [16]: model.fit(X_train,Y_train)
Out[16]:
          ▼ LinearRegression
          LinearRegression()
```

```
In [17]: Y_pred=model.predict(X_test)
         Y_pred
Out[17]: array([72.23452555, 86.15351459, 61.26809246, 26.33709266, 61.19684632,
                65.28399609, 71.56326874, 87.40103335, 94.55948261, 39.33522627,
                75.30582505, 57.06801775, 58.90972858, 41.34317809, 70.85033312,
                77.91378754, 77.68211903, 42.15110856, 54.78090001, 48.86996951])
In [21]: from sklearn.metrics import accuracy_score,mean_squared_error,r2_score
         mean_absolute_error(Y_test,Y_pred)
Out[21]: 3.2251680709052346
In [22]: mean_absolute_error(Y_test,Y_pred)
Out[22]: 3.2251680709052346
In [23]: r2_score(Y_test,Y_pred)
Out[23]: 0.9600528276799257
In [24]: | student=model.score(X,Y)
         student
Out[24]: 0.9339528080790578
In [25]: | from sklearn.model_selection import GridSearchCV
         model=LinearRegression()
         param_grid={
             'fit_intercept':[True,False],
              'copy X':[True,False],
             'n_jobs':[True,False],
         }
         param_grid
Out[25]: {'fit intercept': [True, False],
           'copy_X': [True, False],
           'n_jobs': [True, False]}
In [26]:
         grid_search=GridSearchCV(model,param_grid,cv=5)
         grid_search
Out[26]:
                    GridSearchCV
           ▶ estimator: LinearRegression
                ► LinearRegression
```