温度的本质

$$\frac{1}{\varepsilon_k} = \frac{1}{2}mv^2 = \frac{3}{2}kT$$

气体的温度是气体分子平均平动动能的量度

$$T = \frac{2}{3} \frac{\varepsilon_k}{k}$$

小结:

一个系统的温度T:

$$\beta \equiv \frac{1}{k_{\rm B}T} = \frac{\mathrm{d} \ln \Omega}{\mathrm{d} E},$$

正则系综:

$$P(\epsilon) \propto e^{-\beta \epsilon}$$

定义: $\beta \equiv \frac{1}{k_{\rm B}T}$

波尔兹曼分布

 $e^{-\beta\epsilon}$ 波尔兹曼因子

外场中粒子分布

在外场中分子数密度分布: 玻尔兹曼分布

数能
$$n = n_0 e^{-mgh/kT} = n_0 e^{-\varepsilon_p/kT}$$

离心势能: $\varepsilon_p = -\int_0^r mr\omega^2 dr = -\frac{1}{2}mr^2\omega^2$

$$n(r) = n_0 e^{mr^2 \omega^2/2kT}$$
 () 离心机 转轴处的粒子数 $p = nkT$ \Rightarrow $p(r) = p_0 e^{mr^2 \omega^2/2kT}$ 转轴处的压强

玻尔兹曼分布和台风眼

台风眼内气压低 风和日丽,一片宁静

$$p = nkT \quad \Rightarrow \quad p(r) = p_0 e^{mr^2 \omega^2 / 2kT}$$

麦克斯韦(Maxwell)

麦克斯韦方程

$$\nabla \cdot \mathbf{E} = \frac{\rho}{\varepsilon_0}$$

$$\nabla \cdot \mathbf{B} = 0$$

$$\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$$

$$\nabla \times \mathbf{B} = \mu_0 \mathbf{J} + \mu_0 \varepsilon_0 \frac{\partial \mathbf{E}}{\partial t}$$

麦克斯韦-玻尔兹曼分布

分子的动能

$$\frac{1}{2}mv_x^2 + \frac{1}{2}mv_y^2 + \frac{1}{2}mv_z^2 = \frac{1}{2}mv^2,$$

x方向: 速度的分布介于 v_x 和 v_x + dv_x 之间为 $f(v_x)dv_x$

速度分布函数正比于玻尔兹曼因子

$$f(v_x) \propto e^{-mv_x^2/2k_BT}$$
.

麦克斯韦速度分布函数

归一化:
$$\int_{-\infty}^{\infty} f(v_x) \, \mathrm{d}v_x = 1$$

计算积分:
$$\int_{-\infty}^{\infty} e^{-mv_x^2/2k_B T} dv_x = \sqrt{\frac{\pi}{m/2k_B T}} = \sqrt{\frac{2\pi k_B T}{m}},$$

因此:

$$f(v_x) = \sqrt{\frac{m}{2\pi k_{\rm B}T}} e^{-mv_x^2/2k_{\rm B}T}$$

 v_{i}

麦克斯韦速度分布函数

计算期望值:

$$\langle v_x \rangle = \int_{-\infty}^{\infty} v_x f(v_x) \, dv_x = 0,$$

$$\langle |v_x| \rangle = 2 \int_{0}^{\infty} v_x f(v_x) \, dv_x = \sqrt{\frac{2k_B T}{\pi m}},$$

$$\langle v_x^2 \rangle = \int_{-\infty}^{\infty} v_x^2 f(v_x) \, dv_x = \frac{k_B T}{m}.$$

麦克斯韦速度分布函数

速度的三个分量独立

分子的速度在 (v_x, v_y, v_z) 和 $(v_x + dv_x, v_y + dv_y, v_z + dv_z)$ 之间的比例为:

$$f(v_x) dv_x f(v_y) dv_y f(v_z) dv_z$$

$$\propto e^{-mv_x^2/2k_BT} dv_x e^{-mv_y^2/2k_BT} dv_y e^{-mv_z^2/2k_BT} dv_z$$

$$= e^{-mv^2/2k_BT} dv_x dv_y dv_z.$$

_{归一化后} 麦克斯韦速度分布函数

$$f(\vec{v}) = \left(\frac{m}{2\pi k_B T}\right)^{\frac{3}{2}} e^{-mv^2/2k_B T}$$

分子的速率分布

对应速度空间 半径为v,厚度dv的体积 $4\pi v^2 dv$

定义分子速率在v及v+dv之间的比例为F(v)dv,

麦克斯韦速率分布: $F(v) = 4\pi v^2 \left(\frac{m}{2\pi kT}\right)^{\frac{3}{2}} e^{-mv^2/2kT} v_x$

麦克斯韦速度分布和速率分布

麦克斯韦速度分布:
$$f(\vec{v}) = \left(\frac{m}{2\pi kT}\right)^{\frac{3}{2}} e^{-mv^2/2kT}$$

麦克斯韦速率分布:
$$F(v) = 4\pi v^2 \left(\frac{m}{2\pi kT}\right)^{\frac{3}{2}} e^{-mv^2/2kT}$$

麦克斯韦速率分布

麦克斯韦速率分布:
$$F(v) = 4\pi v^2 \left(\frac{m}{2\pi kT}\right)^{\frac{3}{2}} e^{-mv^2/2kT}$$

分子速率在水和火之间的

模拟的粒子麦克斯韦速率分布

麦克韦尔速率分布

所有速率的分布总和为1

取决于温度和气体分子的摩尔质量

麦克斯韦速率分布

$$F(v) = 4\pi \left(\frac{m}{2\pi kT}\right)^{3/2} v^2 e^{-mv^2/2kT}$$

麦克斯韦尔速率分布随温度的变化

麦克斯韦尔速率分布随温度的变化

不同气体分子的麦克斯韦尔速率分布

最概然速率

麦克斯韦**速率**分布:
$$f(v) = 4\pi v^2 \left(\frac{m}{2\pi kT}\right)^{\frac{3}{2}} e^{-mv^2/2kT}$$

平均速率和方均根速率

麦克斯韦速率分布:
$$F(v) = 4\pi v^2 \left(\frac{m}{2\pi kT}\right)^{\frac{3}{2}} e^{-mv^2/2kT}$$

平均速率:
$$\bar{v} = \int_0^\infty v F(v) \, dv = \sqrt{\frac{8kT}{m}}$$

$$\overline{v^2} = \int_0^\infty v^2 F(v) \, dv = \frac{3kT}{m} \quad \Box \qquad \bar{\varepsilon} = \frac{1}{2} m \overline{v^2} = \frac{3}{2} kT$$

方均根速率:
$$v_{\rm rms}=\sqrt{\overline{v^2}}$$
 $\sqrt{\frac{3kT}{m}}$
$$\overline{\boldsymbol{\varepsilon}_k}=\frac{1}{2}m\overline{v^2}=\frac{3}{2}kT$$

平均速率和方均根速率

平均速率和方均根速率

方均根速率

$$v_{\rm rms} = \sqrt{\frac{3kT}{m}} = \sqrt{\frac{3kT}{M_{\rm mol}/N_A}}$$

$$T = 273K$$
 $k = 1.38 \times 10^{-23} \text{ J/K}$

N₂: 28 g/mol $v_{\rm rms}(N_2) = 493 \; {\rm m/s}$

O₂: 32 g/mol $v_{\rm rms}(O_2) = 461 \; {\rm m/s}$

H₂: 2 g/mol $v_{\rm rms}(H_2) = 1845 \; {\rm m/s}$

空气中声速: 332 m/s

分子速率的测定

f(v):速率分布函数

分子总数N,在v和v+dv之间的分子数

dN = Nf(v) dv

分子的泄流数率

实际从狭缝出来的分子的速率分布和 气体源中随机的速率分布并不相同,英 考虑从狭缝溢出的分子数率(泄流数率)

Effusion phenomenon (泄流现象)

分子的泻流速率

$$oldsymbol{ au}_{effu} = rac{1}{4} n \overline{v}$$

利用此原理可以分离两种不同分子量的物质

泄流出的分子束密度之比

$$\frac{n'_1}{n'_2} = \frac{\tau_1/V}{\tau_2/V} = \frac{\tau_1}{\tau_2} = \frac{n_1}{n_2} \sqrt{\frac{m_2}{m_1}}$$

行星大气与麦克斯韦速率分布

地球有大气层

月球无大气层

行星大气与麦克斯韦速率分布

地球逃逸速度: 11.2km/s

行星大气与麦克斯韦速率分布

$$v_{
m rms} = \sqrt{\frac{3kT}{m}} = \sqrt{\frac{3kT}{M_{
m mol}/N_A}}$$
 $v_{
m escape} = \sqrt{\frac{2GM_{\oplus}}{R_{\oplus}}}$ 星球质量 $F(v)$ $K = \frac{v_{
m escape}}{v_{
m rms}} = \sqrt{\frac{2GM_{\oplus}m}{3R_{\oplus}kT}}$ K , 气体不逃逸 K , 气体逃逸 $V_{
m escape}$

玻尔兹曼-麦克斯韦分布

动能

动能
- 麦克斯韦分布:
$$f(v) = \left(\frac{m}{2\pi kT}\right)^{\frac{3}{2}} e^{-mv^2/2kT} \times \left(4\pi v^2\right)$$
成功 現意面积

$$f(\mathbf{v}) = \left(\frac{m}{2\pi kT}\right)^{\frac{3}{2}} e^{-mv^2/2kT}$$

外场的势能

$$n = n_0 e^{-\varepsilon_p/kT}$$

动能加外场势能

$$\varepsilon = \varepsilon_k + \varepsilon_p = \frac{1}{2}mv^2 + \varepsilon_p$$

麦克斯韦-玻尔兹曼分布: $f_{\mathrm{MB}}(\mathbf{r}, \mathbf{v}) = n_0 \left(\frac{m}{2\pi kT}\right)^{\frac{3}{2}} e^{-\varepsilon/kT}$

$$dN = f(\mathbf{r}, \mathbf{v})(dxdydz)(dv_xdv_ydv_z)$$

玻尔兹曼分布

$$p_i \propto e^{-arepsilon_i/(kT)}$$

系统处于第i态的几率和该i态的能量及系统温度T有关

弹簧动能: $E_K = \frac{1}{2}mv^2$

弹簧势能: $E_P = \frac{1}{2}kx^2$

总能量: $E = E_K + E_P = \frac{1}{2}mv^2 + \frac{1}{2}kx^2$

如果一个系统能量为:

$$E = ax^2$$

α:正的常数

x:变量

系统在特定能量 αx^2 的几率P(x)

$$P(x) = \frac{e^{-\beta \alpha x^2}}{\int_{-\infty}^{\infty} e^{-\beta \alpha x^2} dx},$$

$$\langle E \rangle = \int_{-\infty}^{\infty} E P(x) dx$$

$$= \frac{\int_{-\infty}^{\infty} \alpha x^{2} e^{-\beta \alpha x^{2}} dx}{\int_{-\infty}^{\infty} e^{-\beta \alpha x^{2}} dx}$$

$$= \frac{1}{2\beta}$$

$$= \frac{1}{-k_{B}T}.$$

则平均能量

和
$$\alpha$$
无关,等于 $\frac{1}{2}k_{B}T$

在温度
$$T$$
下,分子每一个自由度得平均能量为 $\frac{1}{2}kT$

如果有
$$f$$
个自由度,则能量为: $f \cdot \frac{1}{2} kT$

通过随机碰撞过程可以使得各个自由度之间的能量达到平衡,包括平动、转动、振动等自由度。

如果系统能量由若干个独立的平方项组成

$$E = \sum_{i=1}^{\infty} \alpha_i x_i^2,$$

 α_i 为常数, x_i 为变量,则可推导出

$$\langle E \rangle = \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} E P(x_1, x_2, \dots x_n) dx_1 dx_2 \cdots dx_n.$$

系统的平均能量: $\langle E \rangle = \sum_{i=1}^{n} \alpha_i \langle x_i^2 \rangle = \sum_{i=1}^{n} \frac{1}{2} k_{\rm B} T$

i=1 i=1 = $\frac{n}{2}k_{\mathrm{B}}T.$

(有的时候称作系统的自由度) 如弹簧有两个这种模式

n为系统的平方模式的个数

如果一个系统包含有若干个自由度,系统与热库相连接,温度为T。

则系统的平均能量为:

$$n \times \frac{1}{2}kT$$

每一个自由度的能量均为 $\frac{1}{2}kT$

在温度
$$T$$
下,分子每一个自由度得平均能量为 $\frac{1}{2}kT$ 如果有 f 个自由度,则能量为: $f\cdot \frac{1}{2}kT$

通过随机碰撞过程可以使得各个自由度之间的能量达到平衡,包括平动、转动、振动等自由度。

能量均分定理-单原子分子

单原子分子 He、Ar、Ne、Xe

$$\overline{\varepsilon_k} = \frac{3}{2}kT$$

$$\overline{\varepsilon_k} = \frac{1}{2}m\overline{v^2} = \frac{1}{2}m\overline{v_x^2} + \frac{1}{2}m\overline{v_y^2} + \frac{1}{2}m\overline{v_z^2}$$

平动: 3

转动: 0

振动: 0

总自由度: 3

$$\frac{1}{2}m\overline{v_{x}^{2}} = \frac{1}{2}m\overline{v_{y}^{2}} = \frac{1}{2}m\overline{v_{z}^{2}} = \frac{1}{2}kT$$

能均分定理:在热平衡状态下,物质(气体、液体和固体)分子的每一个自由度

都具有相同的平均动能: kT/2。

双原子分子

三个平动自由度

两个转动自由度

一个振动自由度 (如 弹簧一样,包含两个平方模式)

t=3 r=2 s=1
$$E = \frac{1}{2}mv_x^2 + \frac{1}{2}mv_y^2 + \frac{1}{2}mv_z^2 + \frac{1}{2}I_1w^2 + \frac{1}{2}I_2w^2 + \frac{1}{2}\mu(\dot{\vec{r_1}} - \dot{\vec{r_2}})^2 + \frac{1}{2}k(\dot{\vec{r_1}} - \dot{\vec{r_2}})^2$$

水分子的振动

单原子分子 He Ar Ne Xe 双原子分子 $H_2 \setminus O_2 \setminus N_2$

三原子分子 $H_2O_{\times} CO_{2}_{\times} SO_{2}$

平动: t 转动: r 振动: s

总自由度: t+r+s

$$\overline{\varepsilon_k} = \frac{t + r + s}{2} kT$$

$$\overline{\varepsilon_p} = \frac{s}{2}kT$$

$$\overline{\varepsilon} = \overline{\varepsilon_k} + \overline{\varepsilon_p} = \frac{t + r + 2s}{2}kT$$

振动除动能外,还有势能

能**均分**定理: 在热平衡状态下,物质(气体、液体和固体)分子的每一个自由度

都具有相同的平均动能: kT/2。