SVKM's

D. J. Sanghvi College of Engineering

Program: B.Tech in Electronics & Academic Year: 2022 Duration: 3 hours

Telecommunication Engineering

Date: 21.01.2023

Time: 09:00 am to 12:00 pm

Subject: Analog Circuit Design (Semester III) Marks: 75

Instructions: Candidates should read carefully the instructions printed on the question paper and on the cover page of the Answer Book, which is provided for their use.

- (1) This question paper contains two pages.
- (2) All Questions are Compulsory.
- (3) All questions carry equal marks.
- (4) Answer to each new question is to be started on a fresh page.
- (5) Figures in the brackets on the right indicate full marks.
- (6) Assume suitable data wherever required, but justify it.
- (7) Draw the neat labelled diagrams, wherever necessary.

Question No.		Max. Marks
Q1 (a)	The biasing circuit of a silicon transistor is shown below fig.1. Determine I_C,V_{CE}	[05]
	V_C and V_B for the transistor?	
	$R_B = 100 \text{ k}\Omega$	
	Fig.1	
Q1 (a)	OR Draw and explain DC load line of Common emitter amplifier. Why Q point should be at the middle of DC load line and stable?	[05]
Q1 (b)	i. What are the factors that affect the stability of an amplifier?ii. Explain different types of coupling methods used in multistage amplifiers	[05] [05]

Q4 (a)	Calculate the lower 3db frequency (f_L) for the BJT amplifier shown in fig.5 below. Amplifier parameters are: $C\pi 1 = C\pi 2 = 15pF$, $C\mu 1 = C\mu 2 = 1pF$, $gm1 = gm2 = 50mA/V$, $Rs = 100\Omega$, $\beta 1 = 100$, $\beta 2 = 150$, $r\pi 1 = r\pi 2 = 1.3K\Omega$, $C_{11} = 10\mu F$, $C_{21} = 5\mu F$, $C_{22} = 10\mu F$, $C_{E1} = C_{E2} = 50\mu F$, $R_{11} = R_{21} = 22K\Omega$, $R_{12} = R_{22} = 47K\Omega$, $R_{C1} = R_{C2} = 8.2K\Omega$, $R_{E1} = R_{E2} = 5K\Omega$, $R_{E1} = 8.2K\Omega$.	[08]
	OR	
Q4 (a)	Draw Cascode amplifier using Bipolar Junction Transistor and derive the expression for Q point, overall voltage gain, input impedance and output impedance.	[08]
Q4 (b)	For the circuit shown in fig. 6 determine the I_{CQ} , V_{CEQ} , V_E , V_C , V_B and small signal voltage gain. Also plot the DC load line and locate Q-point. B=100 $V_{BE}=0.715V$ $V_{BE}=0.715V$	[07]
Q5 (a)	Write a short note on- (Attempt any two.)	
	i) Barkhausen's criteria to sustained oscillation	[05]
	ii) Cross Over Distortion of power amplifier.	[05]
	iii) Darlington emitter follower.	[05]
	iv) Frequency response of RC coupled amplifier.	[05]
Q5 (b)	Explain Different topologies of negative feedback amplifiers.	[05]

All the Best!