This document was typeset by using SATySF_I.

Italics correction and kerning:
$$(F^n)(F) = \left(G\frac{Mm}{R^2}\right)^{n+1}$$
, Big math: $\left(\frac{A}{B} + C\right)$, parentheses: $\left(\left((A) + B\right) + C\right)$, $\left\{\left\{\{A\} + B\right\} + C\right\}$, radical: $2\sqrt{3} + \frac{2}{\sqrt{5}} + \frac{1}{\sqrt{x^2 + 1}}$. The solution of the equation $ax^2 + bx + c = 0$ as to x is $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$. Multiplex radicals: $\sqrt{\sqrt{\sqrt{\sqrt{2}}}}$, limits: $\lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^n = e$, fraction superscript: $e^{\frac{x}{2}}$, sub-superscript: a_{n-1}^2b , sub-superscript correction: a_1^n , f_1^2 , big operator: $\sum_{n=1}^\infty \frac{1}{n^2} = \frac{\pi^2}{6}$, integral: $\int_0^1 \sqrt{1 - x^2} \, \mathrm{d}x$, texts contained in formulae: $\frac{\mathrm{Hoge}}{2} + \sqrt{\mathrm{Piyo}}$, tuple: $\langle x, y, z \rangle$.

$$\frac{\int_0^a x \, dx \int_0^{\sqrt{a^2 - x^2}} r \sqrt{x^2 + r^2} \, dr}{\int_0^a dx \int_0^{\sqrt{a^2 - x^2}} r \sqrt{x^2 + r^2} \, dr} = \frac{2a}{5}$$

Script: $\mathcal{ABCMNOPQRXYZ}$, bold script: $\mathcal{ABCMNOPQRXYZ}$, Fraktur: $\mathfrak{ABCMNOPQRXYZ}$ of Fraktur: $\mathfrak{ABCMNOPQRXYZ}$ obc.

Typing rule is defined as follows:

$$\frac{(\Gamma(x) \equiv \tau)}{\Gamma \vdash x : \tau} \qquad \frac{\Gamma[x \mapsto \tau_1] \vdash M : \tau_2}{\Gamma \vdash (\lambda x : \tau_1. \ M) : \tau_1 \to \tau_2}$$

$$\frac{\Gamma \vdash M : \tau_1 \to \tau_2 \qquad \Gamma \vdash N : \tau_1}{\Gamma \vdash MN : \tau_2}$$

$$\frac{A \qquad \frac{B \qquad C}{D}}{E}$$

The quick brown fox jumps over the lazy dog