

Reactive Transport in the Hydrosphere

Department of Earth Sciences, Faculty of Geosciences, Utrecht University

Lecturers: Lubos Polerecky and Karline Soetaert

Illustrations, narration and video editing: Renee Hageman Additional contributions: Dries Bonte, University Ghent Audio effects: mixkit.co

Rate laws for . . .

Chemical reactions

- Irreversible
- Reversible
- Enzyme-catalyzed (metabolic)
- Substrate limitation
- Substrate inhibition
- Rate saturation

Large-scale models

Partitioning between phases

- Mineral dissolution / precipitation
- Gas exchange

Ecological interactions

Grazing, predator-prey type

Transport

Rate laws for ecological interactions

General form RESOURCE NUTRIENT PREY

 $Interaction = maxRate \cdot WORKER \cdot RateLimitation \cdot RateInhibition$

Workers do not interact with each other

ALGAE

PREDATOR

More workers = more work

 $NutrientUptakeRate = r \cdot ALGAE \cdot RateLimitingTerm$

 $PredationRate = r \cdot PREDATOR \cdot RateLimitingTerm$

WORKER

Ecological interactions

General form

Examples

 $Interaction = maxRate \cdot WORKER \cdot RateLimitation \cdot RateInhibition$

- Limitation by the resource
- Etc.

- Presence of competitors
- Inhibitor, Pollution, Etc.

$$NitrateUptake = r \cdot \frac{[NO3]}{[NO3] + K_{NO3}} \cdot \frac{K_{NH3}}{[NH3] + K_{NH3}} \cdot ALGAE$$

Lumping of multiple growth-inhibiting factors

Impact of the effects is lumped:

K = ecosystem carrying capacity (maximum size that the population can reach given abundant resources)

Inhibition term

Logistic growth model:

$$\frac{dN}{dt} = r \cdot N \cdot \left(1 - \frac{N}{K}\right)$$

Population size of the worker

Logistic growth model

$$\frac{dN}{dt} = r \cdot N \cdot \left(1 - \frac{N}{K}\right)$$

Logistic growth model

$$\frac{dN}{dt} = r \cdot N \cdot \left(1 - \frac{N}{K}\right)$$

 $K \rightarrow K_{new}$ due to, e.g., habitat destruction

Predator-prey interactions – Lotka-Volterra model

Predator-prey interactions - Lotka-Volterra model

$$\frac{dN}{dt} = r_i \cdot N \cdot \left(1 - \frac{N}{K}\right) - \alpha \cdot N \cdot M$$

$$\frac{dM}{dt} = \gamma \cdot \alpha \cdot N \cdot M - m \cdot M$$

Reactive Transport in the Hydrosphere

Department of Earth Sciences, Faculty of Geosciences, Utrecht University

Lecturers: Lubos Polerecky and Karline Soetaert

Illustrations, narration and video editing: Renee Hageman Additional contributions: Dries Bonte, University Ghent Audio effects: mixkit.co

