Reinformcement Learning for Efficient Resource Allocation Between Bayesian Estimation and Operation in Quantum Computer Limited by Low-Frequency Noise

Jan A. Krzywda* and Evert van Nieuwenburg $\langle aQa^L\rangle$ Applied Quantum Algorithms, Lorentz Institute and Leiden Institute of Advanced Computer Science, Leiden University, P.O. Box 9506, 2300 RA Leiden, The Netherlands

I. INTRODUCTION

Intro Uncontrolled drift of Hamiltonian parameters results in temporally correlated noise that affects quantum computation. It

Such drift can be modeled as a unknown term in the Hamiltonian, which if averaged over realisations give rise to a decoherence. In many cases the noise is temporairly correlated, which means that the noise at time t is correlated with the noise at time $t + \tau$.

With temporairly correlated noise, fast fluctuations are crucial for the qubit operation, while slow fluctuations can be used for learning.

 $^{^{*}}$ j.a.krzywda@liacs.leidenuniv.nl