Lecture 11: Selecting prior information

Professor Ilias Bilionis

The principle of maximum entropy for discrete random variables

Prequel to the principle of maximum entropy

- You have a discrete random variable X.
- You know what values it takes, say $x_1, ..., x_N$.
- You also have some testable information about it.

• The principle of maximum entropy states that we should assign to *X* the probability distribution that maximizes the entropy subject to the constraints imposed by the testable information.

Mathematical definition of testable information

$$F[f_{k}(X)] = f_{k}$$

$$k = 1, ..., K$$

$$k = 1, ..., K$$

Is this definition broad enough?

I = "the expected value of X is μ "

$$F[X] = h$$

$$K=1, f(x)=x, f=h.$$

Is this definition broad enough?

I = "the expected value of X is μ and the variance of X is σ^2 "

Mathematical statement of the principle of maximum entropy

You should assign to X me pmf
$$p(x)$$
 not $\max \left\{ H[p(X)] \right\} = \max \left\{ -\sum_{i=1}^{p(X_i)} \log p(x_i) \right\}$

subject to
$$F[f_k(X)] = f_k, \text{ for } k = 1, \dots, k$$

$$\prod_{i=1}^{N} f_k(x_i) p(x_i)$$
and
$$\prod_{i=1}^{N} p(x_i) = 1$$

The general solution to the maximum entropy problem

• *X* takes *N* different values (no other constraints)

- X takes two values 0 and 1.
- $\mathbb{E}[X] = \theta$.

- X takes values $0,1,2,\ldots,N$.
- $\mathbb{E}[X] = \mu$.
- X is the number of successful trials in N sequential experiments (potentially correlated)/

• X takes values 0,1,2,...

- $\mathbb{E}[X] = \mu$.
- X is the number of successful trials in an infinite number of sequential experiments (potentially correlated).

