

Dispositivos Lógicos Programables

© Luis Entrena, Celia López, Mario García, Enrique San Millán

Universidad Carlos III de Madrid

Indice

- Tecnologías de implementación de circuitos programables
- Circuitos programables simples
- Circuitos programables complejos (CPLD, FPGA)

Implementación de circuitos digitales

- Lógica discreta
- Circuitos integrados a medida (ASIC, Application Specific Integrated Circuits)
- Circuitos programables (PLD, Programmable Logic Devices)
 - Simples
 - PROM: Programmable Read Only Memory
 - PLA: Programmable Logic Array
 - PAL: Programmable Array Logic
 - GAL: Generic Array Logic
 - Complejos
 - CPLD: Complex Programmable Logic Device
 - FPGA: Field Programmable Gate Array

Tecnologías

- Transistor MOS de puerta flotante (EPROM-FLASH)
 - Transistores que, al aplicarles sobretensión, pueden mantener su tensión de puerta (conexiones programables)
- Memoria RAM estática (SRAM)
 - La memoria permite implementar funciones lógicas
 - Se usan LUTs (Look-Up Tables) de 4 o 5 entradas
- Antifusibles
 - Al fundirse un antifusible se produce un cortocircuito
 - Los cortocircuitos tienen menor resistencia que los diodosfusibles, proporcionando mayores prestaciones

Circuitos programables simples

PLDs (Programmable Logic Devices)

Entradas + Inversores

Matriz AND Matriz OR Biestables (opcional)

Inversores + Salida

Matrices programables

Matrices programables

Tipos de PLDs

	Matriz AND	Matriz OR
PROM	Fija	Programable
PLA	Programable	Programable
PAL	Programable	Fija
GAL	Programable	Fija

 Notación simplificada para las conexiones

Tipos de PLDs

- Matriz AND fija (decodificador direcciones)
- Matriz OR programable (datos)
- Matriz AND programable
- Matriz OR fija

Bloques de salida

bioques de Salida

Salida registrada

PALs reales

GAL (Generic Array Logic)

Arquitectura como la de las PAL, pero con funciones de salida programables.

Circuitos programables complejos

- CPLD: Complex Programmable Logic Devices
- FPGA: Field Programmable Gate Array
- Diferencias con los PLDs simples
 - Arquitectura
 - Cantidad de recursos lógicos

- Fabricantes de CPLDs/FPGAs
 - Xilinx
 - Altera
 - Actel
 - Atmel
 - Lattice
 - Cypress

CPLD: arquitectura

Altera MAX 7000

Señales globales

Bloques de matrices lógicas (LAB, Logic Array Blocks).

1 LAB = 16 macroceldas

Matriz de interconexión programable (PIA, Programmable Interconnect Array)

Bloques E/S

CPLD: macrocelda

CPLD: matriz de interconexión

Matriz de interconexión global

- Entradas PIA
 - Pines E/S
 - Salidas LABs
- Salidas PIA
 - Entradas LABs

CPLD: resumen de características

- Estructura de PAL con registros y lógica de interconexión
- Capacidad media (hasta 25000 puertas)
- Velocidad media/alta
- Consumo alto
- Tecnología EPROM (reprogramable, no volátil)
- Precio bajo

- La matriz de interconexión global limita el tamaño
- ISP (In-System Programming). JTAG.

FPGAs

- Field Programmable Gate Arrays (Matrices de puertas programables en campo)
- Superan las limitaciones en tamaño de las CPLDs, mediante arquitecturas avanzadas
- Ofrecen mayor variedad de recursos lógicos
 - Lógica combinacional
 - Lógica secuencial
 - Memoria RAM
 - Conformadores de reloj
 - Señales globales
 - Multiplicadores

- Fabricantes
 - Xilinx
 - Altera
 - Actel
 - Atmel

FPGA: celda lógica básica

- Función combinacional:
 - LUT (Look-Up Table): SRAM, volátil

- Función combinacional + Biestable
- Otras variaciones:
 - 2 FC + 1 biestable
 - 2 FC + 2 biestables
- Funcionalidad adicional:
 - Lógica de acarreos
 - FC de 6 u 8 entradas
 - Varias señales de reloj y reset
 - Diferentes configuraciones del biestable: nivel, flanco de subida, flanco de bajada

FPGA: interconexiones

- Interconexiones programables
 - Locales:
 - Abundantes y rápidas
 - Para conectar celdas cercanas
 - Globales
 - Para conectar zonas lejanas

Arquitectura general

FPGA (Xilinx)

Elementos básicos

- Bloques lógicos
- Bloques de E/S
- Matrices de interconexión programables
- Elementos avanzados
 - Memoria RAM
 - Gestores de reloj
 - Multiplicadores

Actel Axcelerator FPGA (antifusibles)

Bibliografía

- Webs de fabricantes:
 - Xilinx: www.xilinx.com
 - Altera: www.altera.com
 - Actel: www.actel.com
 - Lattice: www.latticesemi.com
- "Fundamentos de Sistemas Digitales". Thomas L. Floyd.
 Pearson Prentice Hall
- "Sistemas digitales: principios y aplicaciones", Tocci, Ronald J.
 Pearson Prentice Hall
- "Dispositivos lógicos programables (PLD): diseño práctico de aplicaciones". García Iglesias, José Manuel. RaMa