Sea-Bird Scientific 13431 NE 20th Street Bellevue, WA 98005 USA +1 425-643-9866 seabird@seabird.com www.seabird.com

SENSOR SERIAL NUMBER: 2318 CALIBRATION DATE: 07-Feb-24

SBE 37 CONDUCTIVITY CALIBRATION DATA PSS 1978: C(35,15,0) = 4.2914 Siemens/meter

COEFFICIENTS:

BATH TEMP (° C)	BATH SAL (PSU)	BATH COND (S/m)	INSTRUMENT OUTPUT (Hz)	INSTRUMENT COND (S/m)	RESIDUAL (S/m)
(0)	(1 00)	(0/111)	0011 01 (112)	00110 (0/111)	(0/111)
22.0000	0.0000	0.00000	2591.14	0.00000	0.00000
0.9999	34.6179	2.96061	5188.92	2.96058	-0.00003
4.4999	34.5988	3.26621	5385.74	3.26628	0.00007
14.9999	34.5595	4.24342	5970.65	4.24330	-0.00012
18.4999	34.5515	4.58701	6162.97	4.58708	0.00007
24.0000	34.5429	5.14243	6461.27	5.14247	0.00004
29.0000	34.5385	5.66192	6727.93	5.66189	-0.00002
32.5000	34.5353	6.03251	6911.70	6.03254	0.00003

 $f = Instrument\ Output(Hz) * sqrt(1.0 + WBOTC * t) / 1000.0$

t = temperature (°C); p = pressure (decibars); δ = CTcor; ϵ = CPcor;

Conductivity (S/m) = $(g + h * f^2 + i * f^3 + j * f^4) / (1 + \delta * t + \epsilon * p)$

Residual (Siemens/meter) = instrument conductivity - bath conductivity

