Applied differential equations

TW244 - Lecture 21

5.1: Spring-mass systems

Prof Nick Hale - 2020

SPRING-MASS SYSTEMS

Spring-mass systems Hooke's law

Hooke's law:

The "restoring forces" exerted by a spring is proportional to the distance by which the spring is elongated (or compressed).

Here k is the *spring constant".

Spring-mass systems Hooke's law: Undamped motion

Undamped motion:

Suppose an object with mass m is attached to a vertical spring:

Spring-mass systems Hooke's law: Undamped motion

Newton's 2nd law of motion:

Therefore

$$m\frac{d^2x}{dt^2} = mg - k(s+x) = \underbrace{mg - ks}_{=0} - kx = -kx.$$

$$\frac{d^2x}{dt^2} + \omega^2x = 0,$$
 where $\omega^2 = \frac{k}{m}.$

x= ept

But we've seen and solved this DE before!

$$X(t) = C_1 \cos(\omega t) + C_2 \sin(\omega t).$$

We find $c_1 \& c_2$ from initial position $x(0) = x_0$ and initial velocity $x'(0) = x_1$.

Spring-mass systems Example

Example: Suppose
$$\omega^2 = \frac{k}{m} = 4$$
, $x(0) = 1, x'(0) = -2$ then $x'' + 4x = 0$ and

$$X(t) = C_1 \cos(2t) + C_2 \sin(2t).$$

Use the initial conditions:

$$x(0) = 1 \implies 1 = c_1 \cos(0) + c_2 \sin(0) \implies c_1 = 1$$

 $x'(0) = -2 \implies -2 = -2c_1 \sin(0) + 2c_2 \sin(0) \implies c_2 = -1$

Therefore

$$x(t) = \cos(2t) - \sin(2t).$$

We have the solution, but in this form it hard to visualize. So we consider...

Spring-mass systems Amplitude-phase form

Amplitude-phase form: In general, we may write

$$X = \sqrt{c_1^2 + c_2^2} \left[\frac{c_1}{\sqrt{c_1^2 + c_2^2}} \cos(\omega t) + \frac{c_2}{\sqrt{c_1^2 + c_2^2}} \sin(\omega t) \right].$$

Then define then angle ϕ so that $\sin\phi=\frac{c_1}{\sqrt{c_1^2+c_2^2}}$ and $\cos\phi=\frac{c_2}{\sqrt{c_1^2+c_2^2}}$ and

$$X = \sqrt{C_1^2 + C_2^2 \left[\sin \phi \cos(\omega t) + \cos \phi \sin(\omega t) \right]} = \sqrt{C_1^2 + C_2^2 \sin(\phi + \omega t)}$$

$$\Rightarrow \left\{X(t) = A\sin(\omega(t-\theta))\right\} : A = \sqrt{c_1^2 + c_2^2}, \quad \theta = \frac{2\pi - \phi}{\omega}, \quad \phi = tan^{-1}\frac{c_1}{c_2} \in [0, 2\pi)^{\dagger}$$

This is simple harmonic motion!

$$\blacksquare$$
 period: $T = \frac{2\pi}{\omega}$

■ amplitude:
$$A = \sqrt{c_1^2 + c_2^2}$$
 ■ frequency: $f = \frac{1}{7} = \frac{\omega}{2\pi}$

phase shift*:
$$\theta$$

TW244: Lecture 21 - 5.1: Spring-mass systems

^{*} By convention the phase shift is always positive.

[†] There are two solutions for $\phi \in [0, 2\pi)$. Choose the one that gives the correct sign for $\sin(\phi)$ and $\cos(\phi)$.

Spring-mass systems Example (cont.)

Example (cont.)

In amplitude-phase form:

$$x(t) = \cos(2t) - \sin(2t)$$

$$= \sqrt{2} \left[\frac{1}{\sqrt{2}} \cos(2t) - \frac{1}{\sqrt{2}} \sin(2t) \right]$$

$$= \sqrt{2} \sin\left(2t + \frac{3\pi}{4}\right)$$

$$= \sqrt{2}\sin\left(2t - \frac{5\pi}{4}\right)$$

$$= \sqrt{2}\sin\left[2(t-\frac{5\pi}{8})\right]$$

- \blacksquare amplitude: $A = \sqrt{2}$
- **period**: $T = \pi$

- frequency: $f = \frac{1}{\pi}$
- phase shift*: $\frac{5\pi}{8}$

cos \$ = 1/2 : \$ = 4

* Observe the phase shift is where the curve passes zero moving upwards.

Spring-mass systems Damped motion

Damped motion:

Suppose now that there is also a linear damping force in the direction opposite to motion (e.g., due to air resistance or friction):

$$m\frac{d^2x}{dt^2} = -kx - \beta \frac{dx}{dt}.^*$$

Therefore

$$x'' + 2\gamma x' + \omega^2 x = 0$$
 with $\omega^2 = \frac{k}{m}$, $2\gamma = \frac{\beta}{m}$.

This is a linear homogeneous DE!

Try $x = e^{pt}$ as a solution (we use p here as m is already used for the mass).

^{*} Convince yourself that the term in red is damping regardless of whether the spring moves up or down.

Spring-mass systems Damped motion

Substituting
$$x = e^{pt}$$
 in to $x'' + 2\gamma x' + \omega^2 x = 0$ gives $p^2 + 2\gamma p + \omega^2 = 0$

$$\implies p = \frac{-2\gamma \pm \sqrt{4\gamma^2 - 4\omega^2}}{2} = -\gamma \pm \sqrt{\gamma^2 - \omega^2}.$$

We shall see that this leads to three cases:

 $\blacksquare \gamma^2 > \omega^2 \implies$ two real roots ("overdamped")

- 6
- \blacksquare $\gamma^2 < \omega^2 \implies$ no real roots ("underdamped")

Examples next time!