COMP SCI 3004 Operating Systems Tutorial 6

- 1. Consider the traffic deadlock depicted in Figure 7.8.
 - a. Show that the four necessary conditions for deadlock indeed hold in this example.
 - b. State a simple rule that will avoid deadlocks in this system.
- **2.** Consider a system consisting of four resources of the same type that are shared by three processes, each of which needs at most two resources. Show that the system is deadlock-free. How can you extend this to the general case of m resources and n processes?
- **3.** Consider the following snapshot of a system:

	<u>A</u> llocation	$\underline{\mathbf{M}}\mathbf{a}\mathbf{x}$	<u>A</u> vailable
	A B C D	A B C D	A B C D
P_0	$0\ 0\ 1\ 2$	$0\ 0\ 1\ 2$	$1\ 5\ 2\ 0$
P_1	$1\ 0\ 0\ 0$	1750	
P_2	$1\ 3\ 5\ 4$	$2\ 3\ 5\ 6$	
P_3	$0\ 6\ 3\ 2$	$0\ 6\ 5\ 2$	
P_4	$0\ 0\ 1\ 4$	$0\ 6\ 5\ 6$	

Answer the following questions using the banker's algorithm:

- a. What is the content of the matrix Need?
- b. Is the system in a safe state?
- c. If a request from process P_1 arrives for (0,4,2,0), can the request be granted immediately?
- 4. Suppose that you have coded the deadlock-avoidance safety algorithm and now wish to implement the deadlock-detection algorithm. Can you do so by simply using the safety algorithm and redefining $Max_i = Waiting_i + Allocation_i$, where $Waiting_i$ is a vector specifying the resources process i is waiting for, and $Allocation_i$ is as defined in Section 7.5? Explain your answer.