

Sardar Patel Institute of Technology

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058, India (Autonomous College Affiliated to University of Mumbai)

Mid Semester Examination

March 2019

Max. Marks: 20

Class: T.E. Course Code: CE64

Semester: VI Branch: Computer Engineering

Duration: 60 Min

Name of the Course: Digital Signal Processing

Instruction:

(1) All questions are compulsory

(2) Draw neat diagrams

(3) Assume suitable data if necessary

Q No			
0.1		Max.	CC
Q.1	Draw the graphical representation of the	Marks	
	 i) Unit step sequence u(n) ii) Right shift the unit step sequence u(n) by one unit in time Perform the signal subtraction operation, sketch resultant signal and infer the conclusion based on resultant signal. 	05	CO
	OR		
Q.1	Determine the finite-duration sequence $x(n)$ from a given sequence $x(n)$ which is a sum of weighted impulse sequence	05	CO1
	$x(n) = 4\delta(n+1) + 8\delta(n) + 6\delta(n-2)$ Also infor the least A as	4	
Q.2	Also infer the length L of a output signal.		
	The impulse response of a linear time-invariant system is $h(n) = \{1, 1/2\}$	05	CO2
	Determine the response of the system to the input signal		
	Also summarize names of the 4 steps involved in the process of Leville 1.		
2.3	Justify the special case when we have the auto complete	05 0	O2
	and infer the significance of value $y(0)$. $x(n) = \{1, 2, 3, 4\}$		
.4	Determine the IDFT of $X(k) = \{3, (2+j), 1, (2-j)\}.$		
	$A(K) = \{3, (2+j), 1, (2-j)\}.$	5 C	03