Линейная алгебра: Определители

17 марта 2021

Напоминание: обратимые матрицы

Определение

Для матрицы $A \in M_n(\mathbb{R})$ матрица $C \in M_n(\mathbb{R})$ называется обратной, если выполняется равенство AC = E = CA. В этом случае матрица A называется обратимой.

Такая матрица C не обязательно существует, но если существует, то единственна. Тогда обратная матрица обозначается A^{-1} .

Матричные равенства

Обе части матричного равенства можно умножать на одну и ту же матрицу с одной стороны. Например, если $A,B\in M_{m\times n}(\mathbb{R})$, $C\in M_{l\times m}(\mathbb{R})$ и $D\in M_{n\times k}(\mathbb{R})$, то из равенства

$$A = B$$

следуют равенства

$$CA = CB$$
 u $AD = BD$.

Матричные равенства

Обе части матричного равенства можно умножать на одну и ту же матрицу с одной стороны. Например, если $A,B\in M_{m\times n}(\mathbb{R})$, $C\in M_{l\times m}(\mathbb{R})$ и $D\in M_{n\times k}(\mathbb{R})$, то из равенства

$$A = B$$

следуют равенства

$$CA = CB$$
 u $AD = BD$.

Заметим, что если даже l=m=n, то нельзя домножать разные части равенства с разных сторон (умножение матриц не коммутативно). Так из равенства A=B вообще говоря не следует равенство CA=BC.

Пусть теперь A — обратимая $n\times n$ матрица и $B=A^{-1}$ — обратная к ней. Тогда выполнено равенство AB=E. Будем домножать это равенство на матрицы элементарных преобразований T_1,\dots,T_k слева. Получим:

$$T_1AB = T_1E = T_1;$$

 $T_2T_1AB = T_2T_1;$
 \vdots
 $T_k \dots T_1AB = T_k \dots T_1.$

При этом возьмем матрицы T_1,\dots,T_k такими, чтобы матрица $T_k\dots T_1A$ была каноническим ступенчатым видом матрицы A.

Заметим, что все матрицы элементарных преобразований обратимы, то есть для каждой T_i существует T_i^{-1} . Матрица T_i^{-1} – это матрица обратного элементарного преобразования.

Случай 1. В каноническом ступенчатом виде A есть нулевая строка. То есть у матрицы $T_k \dots T_1 A$ есть нулевая строка. Тогда у матрицы $T_k \dots T_1 AB = T_k \dots T_1$ есть нулевая строка. Получаем, что в следующих матрицах также есть нулевая строка:

$$T_k \dots T_1 A B = T_k \dots T_1;$$

$$T_k \dots T_1 A B T_1^{-1} = T_k \dots T_1 T_1^{-1} = T_k \dots T_2;$$

$$\vdots$$

$$T_k \dots T_1 A B T_1^{-1} \dots T_k^{-1} = E.$$

Получаем противоречие. Значит, если в каноническом ступенчатом виде матрицы A есть нулевая строка, то A не обратима.

Заметим, что все матрицы элементарных преобразований обратимы, то есть для каждой T_i существует T_i^{-1} . Матрица T_i^{-1} – это матрица обратного элементарного преобразования.

Случай 1. В каноническом ступенчатом виде A есть нулевая строка. То есть у матрицы $T_k \dots T_1 A$ есть нулевая строка. Тогда у матрицы $T_k \dots T_1 AB = T_k \dots T_1$ есть нулевая строка. Получаем, что в следующих матрицах также есть нулевая строка:

$$T_k \dots T_1 A B = T_k \dots T_1;$$

$$T_k \dots T_1 A B T_1^{-1} = T_k \dots T_1 T_1^{-1} = T_k \dots T_2;$$

$$\vdots$$

$$T_k \dots T_1 A B T_1^{-1} \dots T_k^{-1} = E.$$

Получаем противоречие. Значит, если в каноническом ступенчатом виде матрицы A есть нулевая строка, то A не обратима.

Случай 2. В каноническом ступенчатом виде A нет нулевой строки. Тогда канонический ступенчатый вид матрицы A – это единичная матрица. То есть $T_k \dots T_1 A = E$. Значит,

$$T_k \dots T_1 = T_k \dots T_1 AB = EB = B = A^{-1}.$$

Алгоритм. Для вычисления обратной к матрице A нужно составить следующую матрицу $n \times 2n$: (A|E). Далее с этой матрицей надо делать элементарные преобразования строк, пока не получится матрица (E|X). (Преобразования нужно делать такие, чтобы левая часть привелась к каноническому ступенчатому виду.)

Ответом будет получившаяся справа матрица X. Если канонический ступенчатый вид A не равен E, то обратной к A не существует.

$$(A|E) \xrightarrow{\mathbf{ЭП \ ctpok}} (E|X) \Rightarrow X = A^{-1}$$

Найдём обратную к матрице $A=\begin{pmatrix}1&2\\3&7\end{pmatrix}$. Для этого составляем матрицу $\begin{pmatrix}1&2&|&1&0\\3&7&|&0&1\end{pmatrix}$ и делаем элементарные преобразования строк так, чтобы привести левую часть к каноническому ступенчатому виду.

Найдём обратную к матрице $A=\begin{pmatrix}1&2\\3&7\end{pmatrix}$. Для этого составляем матрицу $\begin{pmatrix}1&2&|&1&0\\3&7&|&0&1\end{pmatrix}$ и делаем элементарные преобразования строк так, чтобы привести левую часть к каноническому ступенчатому виду.

$$\begin{pmatrix} 1 & 2 & | & 1 & 0 \\ 3 & 7 & | & 0 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 2 & | & 1 & 0 \\ 0 & 1 & | & -3 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & | & 7 & -2 \\ 0 & 1 & | & -3 & 1 \end{pmatrix}$$

Найдём обратную к матрице $A=\begin{pmatrix}1&2\\3&7\end{pmatrix}$. Для этого составляем матрицу $\begin{pmatrix}1&2&|&1&0\\3&7&|&0&1\end{pmatrix}$ и делаем элементарные преобразования строк так, чтобы привести левую часть к каноническому ступенчатому виду.

$$\begin{pmatrix} 1 & 2 & | & 1 & 0 \\ 3 & 7 & | & 0 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 2 & | & 1 & 0 \\ 0 & 1 & | & -3 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & | & 7 & -2 \\ 0 & 1 & | & -3 & 1 \end{pmatrix}$$

Ответ получается справа от черты:

$$A^{-1} = \begin{pmatrix} 7 & -2 \\ -3 & 1 \end{pmatrix}$$

Найдём обратную к матрице
$$A = \begin{pmatrix} 1 & 2 & 1 \\ 1 & 1 & 1 \\ 0 & 2 & 0 \end{pmatrix}$$
.

Для этого составляем матрицу (A|E) и делаем элементарные преобразования строк так, чтобы привести левую часть к каноническому ступенчатому виду.

Найдём обратную к матрице
$$A = \begin{pmatrix} 1 & 2 & 1 \\ 1 & 1 & 1 \\ 0 & 2 & 0 \end{pmatrix}$$
.

Для этого составляем матрицу (A|E) и делаем элементарные преобразования строк так, чтобы привести левую часть к каноническому ступенчатому виду.

$$\begin{pmatrix} 1 & 2 & 1 & | & 1 & 0 & 0 \\ 1 & 1 & 1 & | & 0 & 1 & 0 \\ 0 & 2 & 0 & | & 0 & 0 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 2 & 1 & | & 1 & 0 & 0 \\ 0 & -1 & 0 & | & -1 & 1 & 0 \\ 0 & 2 & 0 & | & 0 & 0 & 1 \end{pmatrix} \rightarrow$$

$$\rightarrow \begin{pmatrix} 1 & 2 & 1 & | & 1 & 0 & 0 \\ 0 & -1 & 0 & | & -1 & 1 & 0 \\ 0 & 0 & 0 & | & -2 & 2 & 1 \end{pmatrix}$$

Найдём обратную к матрице
$$A = \begin{pmatrix} 1 & 2 & 1 \\ 1 & 1 & 1 \\ 0 & 2 & 0 \end{pmatrix}$$
.

Для этого составляем матрицу (A|E) и делаем элементарные преобразования строк так, чтобы привести левую часть к каноническому ступенчатому виду.

$$\begin{pmatrix} 1 & 2 & 1 & | & 1 & 0 & 0 \\ 1 & 1 & 1 & | & 0 & 1 & 0 \\ 0 & 2 & 0 & | & 0 & 0 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 2 & 1 & | & 1 & 0 & 0 \\ 0 & -1 & 0 & | & -1 & 1 & 0 \\ 0 & 2 & 0 & | & 0 & 0 & 1 \end{pmatrix} \rightarrow$$

$$\rightarrow \begin{pmatrix} 1 & 2 & 1 & | & 1 & 0 & 0 \\ 0 & -1 & 0 & | & -1 & 1 & 0 \\ 0 & 0 & 0 & | & -2 & 2 & 1 \end{pmatrix}$$

Так как слева получилась матрица с нулевой строкой, матрица A не обратима.

Матричные уравнения

Когда мы решаем уравнения типа ax=b, то ответом служит $x=\frac{b}{a}$. Хочется научиться решать уравнения с матрицами типа AX=B.

Матричные уравнения

Когда мы решаем уравнения типа ax=b, то ответом служит $x=\frac{b}{a}.$

Хочется научиться решать уравнения с матрицами типа AX=B. Чтобы решить это уравнение, хочется поделить обе части на матрицу A. Но такой операции нет. А вот если матрица A квадратная и обратимая, то можно домножить на обратную матрицу A^{-1} слева. Получим:

$$A^{-1}AX = A^{-1}B.$$

Следовательно,

$$X = A^{-1}B.$$

Заметьте, что надо домножать обе части с одной и той же стороны. И если домножить справа, то матрица A не сократится.

Матричные уравнения

Когда мы решаем уравнения типа ax=b, то ответом служит $x=\frac{b}{a}.$

Хочется научиться решать уравнения с матрицами типа AX=B. Чтобы решить это уравнение, хочется поделить обе части на матрицу A. Но такой операции нет. А вот если матрица A квадратная и обратимая, то можно домножить на обратную матрицу A^{-1} слева. Получим:

$$A^{-1}AX = A^{-1}B.$$

Следовательно,

$$X = A^{-1}B.$$

Заметьте, что надо домножать обе части с одной и той же стороны. И если домножить справа, то матрица A не сократится.

Аналогично, если A – квадратная обратимая матрица, то XA=B эквивалентно $X=BA^{-1}.$ А если P и Q – квадратные обратимые матрицы, то PXQ=S эквивалентно $X=P^{-1}SQ^{-1}.$

Определители

Квадратным матрицам $n \times n$ можно приписать очень важную численную характеристику, которая называется определителем данной матрицы.

Обозначение. Определитель матрицы A обозначается $\det A$ или |A|.

Определители

Квадратным матрицам $n \times n$ можно приписать очень важную численную характеристику, которая называется определителем данной матрицы.

Обозначение. Определитель матрицы A обозначается $\det A$ или |A|.

Отметим, что для прямоугольных (не квадратных) матриц определителя не существует. У определителя есть геометрический смысл – ориентированный объём параллелепипеда.

Определитель 1×1 как длина

Начнём с n=1. По определению определитель матрицы A=(a) равен единственному элементу этой матрицы $\det A=a$. Рассмотрим вектор-столбец нашей матрицы (a). Тогда можно сказать, что $\det A$ – это ориентированная длина этого вектора (если вектор направлен по направлению оси, то это его длина, а если против направления оси, то это минус длина).

Возможно, данная интерпретация для матриц 1×1 кажется излишней, но она укладывается в дальнейшую концепцию.

Определитель 2×2 как площадь

Рассмотрим матрицу 2×2 : $A=\begin{pmatrix} a & c \\ b & d \end{pmatrix}$. Рассмотрим векторы-столбцы этой матрицы: $\begin{pmatrix} a \\ b \end{pmatrix}$ и $\begin{pmatrix} c \\ d \end{pmatrix}$.

Определение. Определитель данной матрицы равен ориентированной площади параллелограмма, натянутого на векторы (a,b) и (c,d).

Если минимальный угол от вектора (a,b) до вектора (c,d) – это угол против часовой стрелки, то площадь берётся со знаком плюс, а если по часовой стрелке, то со знаком минус. Если векторы (a,b) и (c,d) коллинеарны, то определитель равен нулю.

• $\det \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{vmatrix} 1 & 0 \\ 0 & 1 \end{vmatrix} = 1$

В самом деле, площадь квадрата, натянутого на (1,0) и (0,1), равна 1. И минимальный угол от (1,0) до (0,1) – это угол против часовой стрелки.

- $\det \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{vmatrix} 1 & 0 \\ 0 & 1 \end{vmatrix} = 1$ В самом деле, площадь квадрата, натянутого на (1,0) и (0,1), равна 1. И минимальный угол от (1,0) до (0,1) – это угол против часовой стрелки.
- $ullet \det egin{pmatrix} 0 & 1 \ 1 & 0 \end{pmatrix} = -1.$ Квадрат будет тот же, но минимальный угол теперь по часовой стрелке.

- $\det \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{vmatrix} 1 & 0 \\ 0 & 1 \end{vmatrix} = 1$ В самом деле, площадь квадрата, натянутого на (1,0) и (0,1), равна 1. И минимальный угол от (1,0) до (0,1) – это угол против часовой стрелки.
- $\det \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} = -1.$ Квадрат будет тот же, но минимальный угол теперь по часовой стрелке.
- $\det \begin{pmatrix} 1 & 0 \\ 1 & 2 \end{pmatrix} = 2$. Действительно, получаем параллелограмм с основанием 1 и высотой 2.

- $\det \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{vmatrix} 1 & 0 \\ 0 & 1 \end{vmatrix} = 1$ В самом деле, площадь квадрата, натянутого на (1,0) и (0,1), равна 1. И минимальный угол от (1,0) до (0,1) – это угол против часовой стрелки.
- $\det \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} = -1.$ Квадрат будет тот же, но минимальный угол теперь по часовой стрелке.
- $\det \begin{pmatrix} 1 & 0 \\ 1 & 2 \end{pmatrix} = 2$. Действительно, получаем параллелограмм с основанием 1 и высотой 2.

Общая формула

$$\det \begin{pmatrix} a & c \\ b & d \end{pmatrix} = ad - bc.$$

Определитель 3×3 как объём

Рассмотрим матрицу 3×3 :

$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$$

Разобъём эту матрицу на векторы-столбцы:

$$v_1 = \begin{pmatrix} a_{11} \\ a_{21} \\ a_{31} \end{pmatrix} \qquad v_2 = \begin{pmatrix} a_{12} \\ a_{22} \\ a_{32} \end{pmatrix} \qquad v_3 = \begin{pmatrix} a_{13} \\ a_{23} \\ a_{33} \end{pmatrix}$$

Определение. Определитель $\det A$ матрицы A – это ориентированный объём параллелепипеда, натянутого на векторы v_1,v_2 и v_3 .

Ориентированный объём

Все тройки векторов, не лежащих в одной плоскости, имеют одну из двух ориентаций: положительную или отрицательную. Тройка $\{e_1,e_2,e_3\}$ имеет положительную ориентацию, если, когда вы смотрите из конца вектора e_3 , то минимальный угол от e_1 до e_2 — это угол против часовой стрелки. Если же при взгляде из конца вектора e_3 минимальный угол от e_1 до e_2 — это угол по часовой стрелке, то тройка $\{e_1,e_2,e_3\}$ имеет отрицательную ориентацию.

Более верно сказать, что тройка имеет положительную ориентацию, если она устроена так же (в смысле предыдущего абзаца), как тройка векторов вдоль осей координат. То есть есть 2 ориентации, а какая из них положительная, какая отрицательная, задаётся тем, как устроены оси.

Определение. Ориентированный объём пареллелепипеда, натянутого на тройку векторов, равен обычному объёму, если тройка ориентирована положительно. Если же тройка векторов ориентирована отрицательно, то ориентированный объём равен минус обычному объёму.

Формула для определителя 3×3

$$\det \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} = a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} + a_{13}a_{21}a_{32} - a_{13}a_{22}a_{31} - a_{12}a_{21}a_{33} - a_{11}a_{23}a_{32}.$$

В этом выражении 6 слагаемых: три с плюсом и три с минусом. Каждое слагаемое – это произведение 3-х элементов. С плюсом

входят:
$$\begin{pmatrix} a_{11} & \cdot & \cdot \\ \cdot & a_{22} & \cdot \\ \cdot & \cdot & a_{33} \end{pmatrix}$$
 , $\begin{pmatrix} \cdot & a_{12} & \cdot \\ \cdot & \cdot & a_{23} \\ a_{31} & \cdot & \cdot \end{pmatrix}$ и $\begin{pmatrix} \cdot & \cdot & a_{13} \\ a_{21} & \cdot & \cdot \\ \cdot & a_{32} & \cdot \end{pmatrix}$

Слагаемые с минусом:

$$\begin{pmatrix} \cdot & \cdot & a_{13} \\ \cdot & a_{22} & \cdot \\ a_{31} & \cdot & \cdot \end{pmatrix}, \begin{pmatrix} \cdot & a_{12} & \cdot \\ a_{21} & \cdot & \cdot \\ \cdot & \cdot & a_{33} \end{pmatrix} \mathbf{u} \begin{pmatrix} a_{11} & \cdot & \cdot \\ \cdot & \cdot & a_{23} \\ \cdot & a_{32} & \cdot \end{pmatrix}$$

Определитель $n \times n$

Пусть
$$A=egin{pmatrix} a_{11}&\ldots&a_{1n}\ dots&dots&dots\ a_{n1}&\ldots&a_{nn} \end{pmatrix}$$
 . Тогда $\det A$ – это число, равное

сумме со зна̀ками ± 1 всех возможных произведений по одному элементу из каждой строки и (они же) по одному элементу из каждого столбца.

$$\det A = \sum_{\sigma \in S_n} \operatorname{sgn}(\sigma) a_{1\sigma(1)} \cdot \ldots \cdot a_{n\sigma(n)}$$

Здесь суммирование ведётся по всем биекциям

$$\sigma \colon \{1, 2, \dots, n\} \to \{1, 2, \dots, n\}.$$

Причём ${\rm sgn}(\sigma)$ – это $(-1)^k$, где k – количество таких пар $1\leqslant i< j\leqslant n$, что $\sigma(i)>\sigma(j)$.

Определитель $n \times n$

Пусть
$$A=egin{pmatrix} a_{11}&\ldots&a_{1n}\ dots&dots&dots\ a_{n1}&\ldots&a_{nn} \end{pmatrix}$$
 . Тогда $\det A$ – это число, равное

сумме со знаками ± 1 всех возможных произведений по одному элементу из каждой строки и (они же) по одному элементу из каждого столбца.

$$\det A = \sum_{\sigma \in S_n} \operatorname{sgn}(\sigma) a_{1\sigma(1)} \cdot \ldots \cdot a_{n\sigma(n)}$$

Здесь суммирование ведётся по всем биекциям

$$\sigma \colon \{1, 2, \dots, n\} \to \{1, 2, \dots, n\}.$$

Причём ${
m sgn}(\sigma)$ — это $(-1)^k$, где k — количество таких пар $1\leqslant i< j\leqslant n$, что $\sigma(i)>\sigma(j)$.

Определитель имеет смысл n-мерного ориентированного объёма.

Пусть $A\in M_n(\mathbb{R})$ – матрица, тогда на нее можно смотреть как на набор из n столбцов: $A=(A_1|\dots|A_n)$. Тогда определитель $\det(A)$ можно рассматривать как функцию от столбцов матрицы A, то есть $\det(A)=\det(A_1|\dots|A_n)$. Думая таким образом, мы можем сформулировать следующие свойства:

Пусть $A \in M_n(\mathbb{R})$ – матрица, тогда на нее можно смотреть как на набор из n столбцов: $A = (A_1 | \dots | A_n)$. Тогда определитель $\det(A)$ можно рассматривать как функцию от столбцов матрицы A, то есть $\det(A) = \det(A_1 | \dots | A_n)$. Думая таким образом, мы можем сформулировать следующие свойства:

1)
$$\det(A_1|\dots|A_i + A_i'|\dots|A_n) = \\ = \det(A_1|\dots|A_i|\dots|A_n) + \det(A_1|\dots|A_i'|\dots|A_n).$$

Например,

$$\det\begin{pmatrix} 1 & 3 \\ 2 & 7 \end{pmatrix} = \det\begin{pmatrix} \begin{pmatrix} 1 \\ 2 \end{pmatrix} \middle| \begin{pmatrix} 3 \\ 7 \end{pmatrix} \end{pmatrix} =$$

$$= \det\begin{pmatrix} \begin{pmatrix} 1 \\ 2 \end{pmatrix} \middle| \begin{pmatrix} 1 \\ 3 \end{pmatrix} + \begin{pmatrix} 2 \\ 4 \end{pmatrix} \end{pmatrix} = \det\begin{pmatrix} 1 & 1 \\ 2 & 3 \end{pmatrix} + \det\begin{pmatrix} 1 & 2 \\ 2 & 4 \end{pmatrix}$$

2)
$$\det(A_1|...|A_i|...|A_j|...|A_n) = -\det(A_1|...|A_j|...|A_i|...|A_n).$$

То есть если поменять местами два столбца, то определитель изменит знак, например,

$$\det\begin{pmatrix} 1 & 3 \\ 2 & 7 \end{pmatrix} = -\det\begin{pmatrix} 3 & 1 \\ 7 & 2 \end{pmatrix}$$

2)
$$\det(A_1|...|A_i|...|A_j|...|A_n) = -\det(A_1|...|A_j|...|A_i|...|A_n).$$

То есть если поменять местами два столбца, то определитель изменит знак, например,

$$\det\begin{pmatrix} 1 & 3 \\ 2 & 7 \end{pmatrix} = -\det\begin{pmatrix} 3 & 1 \\ 7 & 2 \end{pmatrix}$$

3) $\det(A_1|\dots|0|\dots|A_n)=0$, то есть если у матрицы есть нулевой столбец, то определитель равен нулю.

2)
$$\det(A_1|...|A_i|...|A_j|...|A_n) = -\det(A_1|...|A_j|...|A_i|...|A_n).$$

То есть если поменять местами два столбца, то определитель изменит знак, например,

$$\det\begin{pmatrix} 1 & 3 \\ 2 & 7 \end{pmatrix} = -\det\begin{pmatrix} 3 & 1 \\ 7 & 2 \end{pmatrix}$$

- 3) $\det(A_1|\dots|0|\dots|A_n)=0$, то есть если у матрицы есть нулевой столбец, то определитель равен нулю.
- 4) $\det(A_1|\dots|A'|\dots|A'|\dots|A_n)=0$, то есть если у матрицы есть два одинаковых столбца, то определитель равен нулю, например

$$\det\begin{pmatrix} 1 & 1 \\ 2 & 2 \end{pmatrix} = 0$$

5) $\det(A_1|\dots|\lambda A_i|\dots|A_n)=\lambda\det(A_1|\dots|A_i|\dots|A_n).$ То есть, если один столбец умножить на одно и то же число, то весь определитель умножится на это число, например,

$$\det\begin{pmatrix} 1 & 3 \\ 2 & 9 \end{pmatrix} = 3 \det\begin{pmatrix} 1 & 1 \\ 2 & 3 \end{pmatrix}$$

Свойства определителя $n \times n$

5) $\det(A_1|\dots|\lambda A_i|\dots|A_n)=\lambda\det(A_1|\dots|A_i|\dots|A_n).$ То есть, если один столбец умножить на одно и то же число, то весь определитель умножится на это число, например,

$$\det\begin{pmatrix} 1 & 3 \\ 2 & 9 \end{pmatrix} = 3 \det\begin{pmatrix} 1 & 1 \\ 2 & 3 \end{pmatrix}$$

6) $\det(A_1|\dots|A_i|\dots|A_j|\dots|A_n)=\det(A_1|\dots|A_i|\dots|A_j+\lambda A_i|\dots|A_n).$ То есть, если к одному столбцу матрицы прибавить другой умноженный на коэффициент, то определитель не изменится, например

$$\det\begin{pmatrix} 1 & 3 \\ 2 & 7 \end{pmatrix} = \det\begin{pmatrix} 1 \\ 2 \end{pmatrix} \begin{vmatrix} 3 \\ 7 \end{pmatrix} =$$

$$= \det\begin{pmatrix} 1 \\ 2 \end{vmatrix} \begin{vmatrix} 3 \\ 7 \end{pmatrix} + 2 \begin{pmatrix} 1 \\ 2 \end{pmatrix} = \det\begin{pmatrix} 1 \\ 2 \end{vmatrix} \begin{vmatrix} 5 \\ 11 \end{pmatrix} =$$

$$= \det\begin{pmatrix} 1 & 5 \\ 2 & 11 \end{pmatrix}$$

Свойства определителя $n \times n$

7) $\det A = \det A^T$. То есть определитель матрицы равен определителю транспонированной матрицы. А значит, все свойства сформулированные выше для столбцов автоматически верны и для строк.

Свойства определителя $n \times n$

- 7) $\det A = \det A^T$. То есть определитель матрицы равен определителю транспонированной матрицы. А значит, все свойства сформулированные выше для столбцов автоматически верны и для строк.
- 8) Определитель треугольной матрицы

$$\det \begin{pmatrix} \lambda_1 & * & \dots & * \\ & \lambda_2 & \dots & * \\ & & \ddots & \vdots \\ & & & \lambda_n \end{pmatrix} = \det \begin{pmatrix} \lambda_1 & & & \\ * & \lambda_2 & & & \\ \vdots & \vdots & \ddots & & \\ * & * & \dots & \lambda_n \end{pmatrix} = \lambda_1 \lambda_2 \dots \lambda_n$$

То есть у треугольной матрицы определитель равен произведению ее диагональных элементов. В частности, $\det E=1$ и $\det(\lambda E)=\lambda^n.$

Вычисление определителя с помощью элементарных преобразований

Свойства 2), 5) и 6) дают информацию как определитель меняется при элементарных преобразованиях столбов (а по свойству 7) и строк тоже). Суммируя всё это, получаем:

- При элементарных преобразованиях I типа определитель не меняется,
- При элементарных преобразованиях II типа определитель меняет знак,
- При элементарных преобразованиях III типа, которое умножает строку/столбец на λ , определитель умножается на λ .

Элементарными преобразованиями строк можно привести матрицу к треугольному виду. А определитель треугольной матрицы можно посчитать по свойству 8). Таким образом, мы получили алгоритм вычисления определителя с помощью элементарных преобразований.

$$\det\begin{pmatrix} 0 & 1 & 1 \\ -1 & 2 & 1 \\ 1 & 1 & -1 \end{pmatrix} = -\det\begin{pmatrix} 1 & 1 & -1 \\ -1 & 2 & 1 \\ 0 & 1 & 1 \end{pmatrix} =$$

$$= -\det\begin{pmatrix} 1 & 1 & -1 \\ 0 & 3 & 0 \\ 0 & 1 & 1 \end{pmatrix} = -3\det\begin{pmatrix} 1 & 1 & -1 \\ 0 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix} =$$

$$= -3\det\begin{pmatrix} 1 & 1 & -1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = -3$$

Связь определителя с произведением

Для определителя верны следующие формулы

- 1. det(AB) = det(A) det(B)
- 2. $\det(A^{-1}) = \det(A)^{-1}$
- 3. Пусть $A\in M_n(\mathbb{R})$, $C\in M_m(\mathbb{R})$ и $B\in M_{n imes m}(\mathbb{R})$, тогда

$$\det \begin{pmatrix} A & B \\ 0 & C \end{pmatrix} = \det A \cdot \det C$$

Оказывается, что определитель является единственной функцией $\varphi\colon M_n(\mathbb{R}) \to \mathbb{R}$ такой, что

1.
$$\varphi(AB) = \varphi(A)\varphi(B)$$

2.
$$\varphi \begin{pmatrix} 1 & & & \\ & \ddots & & \\ & & 1 & \\ & & & \lambda \end{pmatrix} = \lambda$$

Миноры и алгебраические дополнения

Пусть $A\in M_n(\mathbb{R})$ с элементами a_{ij} . Рассмотрим матрицу $D_{ij}\in M_{n-1}(\mathbb{R})$, полученную из A вычеркиванием i-ой строки и j-го столбца. Определитель матрицы D_{ij} обозначается M_{ij} и называется \underline{ij} -ым минором матрицы A. Число $(-1)^{i+j}M_{ij}$ называется алгебраическим дополнением элемента a_{ij} и обозначается A_{ij} .

Миноры и алгебраические дополнения

Пусть $A\in M_n(\mathbb{R})$ с элементами a_{ij} . Рассмотрим матрицу $D_{ij}\in M_{n-1}(\mathbb{R})$, полученную из A вычеркиванием i-ой строки и j-го столбца. Определитель матрицы D_{ij} обозначается M_{ij} и называется \underline{ij} -ым минором матрицы A. Число $(-1)^{i+j}M_{ij}$ называется алгебраическим дополнением элемента a_{ij} и обозначается A_{ij} . Представим матрицу A в виде:

$$A = \begin{pmatrix} X_{ij} & \vdots & Y_{ij} \\ \vdots & \vdots & \ddots & \vdots \\ * & \dots & a_{ij} & \dots & * \\ Z_{ij} & \vdots & W_{ij} \end{pmatrix}$$

Миноры и алгебраические дополнения

Пусть $A\in M_n(\mathbb{R})$ с элементами a_{ij} . Рассмотрим матрицу $D_{ij}\in M_{n-1}(\mathbb{R})$, полученную из A вычеркиванием i-ой строки и j-го столбца. Определитель матрицы D_{ij} обозначается M_{ij} и называется \underline{ij} -ым минором матрицы A. Число $(-1)^{i+j}M_{ij}$ называется алгебраическим дополнением элемента a_{ij} и обозначается A_{ij} . Представим матрицу A в виде:

$$A = \begin{pmatrix} X_{ij} & \vdots & Y_{ij} \\ \vdots & \vdots & \ddots & \vdots \\ * & \ddots & a_{ij} & \dots & * \\ Z_{ij} & \vdots & W_{ij} \end{pmatrix}$$

Тогда
$$D_{ij}=\begin{pmatrix} X_{ij}&Y_{ij}\\Z_{ij}&W_{ij} \end{pmatrix},\ M_{ij}=\det\begin{pmatrix} X_{ij}&Y_{ij}\\Z_{ij}&W_{ij} \end{pmatrix}$$
 и $A_{ij}=(-1)^{i+j}\det\begin{pmatrix} X_{ij}&Y_{ij}\\Z_{ij}&W_{ij} \end{pmatrix}$

Разложение определителя по строке/столбцу

Есть 2 похожие формулы, которые сводят вычисление определителя порядка n к вычислению n определителей порядка n-1.

ullet Формула разложения по i-ой строке: $\det A = \sum\limits_{j=1}^n a_{ij} A_{ij}.$

Разложение определителя по строке/столбцу

Есть 2 похожие формулы, которые сводят вычисление определителя порядка n к вычислению n определителей порядка n-1.

- ullet Формула разложения по i-ой строке: $\det A = \sum\limits_{j=1}^n a_{ij} A_{ij}.$
- Формула разложения по j-му столбцу: $\det A = \sum_{i=1}^{n} a_{ij} A_{ij}$.

Разложение определителя по строке/столбцу

Есть 2 похожие формулы, которые сводят вычисление определителя порядка n к вычислению n определителей порядка n-1.

- Формула разложения по i-ой строке: $\det A = \sum_{j=1}^n a_{ij} A_{ij}$.
- ullet Формула разложения по j-му столбцу: $\det A = \sum_{i=1}^n a_{ij} A_{ij}$.

Эти формулы отличаются только тем, по какому индексу ведётся суммирование. В первой формуле элементы a_{ij} при изменяющемся j пробегают всю i-ю строку. А во второй — весь j-й столбец.

1) Разложим определитель $\det \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$ по первой строке.

$$\det\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} = 1 \cdot (-1)^{1+1} \det(4) + 2 \cdot (-1)^{1+2} \cdot \det(3) = 4 - 6 = -2.$$

1) Разложим определитель $\det \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$ по первой строке.

$$\det\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} = 1 \cdot (-1)^{1+1} \det(4) + 2 \cdot (-1)^{1+2} \cdot \det(3) = 4 - 6 = -2.$$

2) Разложим определитель $\det \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \\ -1 & 0 & 1 \end{pmatrix}$ по 2-му столбцу.

$$\det\begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \\ -1 & 0 & 1 \end{pmatrix} = 2(-1)^{1+2} \det\begin{pmatrix} 3 & 1 \\ -1 & 1 \end{pmatrix} + 2(-1)^{2+2} \det\begin{pmatrix} 1 & 3 \\ -1 & 1 \end{pmatrix} + 0(-1)^{3+2} \det\begin{pmatrix} 1 & 3 \\ 3 & 1 \end{pmatrix}.$$

Явная формула обратной матрицы

Пусть $A\in M_n(\mathbb{R})$. Оказывается, что матрица обратима тогда и только тогда, когда $\det A\neq 0$. Тогда можно написать явные формулы для обратной матрицы. Пусть A имеет вид

$$A = \begin{pmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \dots & a_{nn} \end{pmatrix}$$

Составим матрицу \widehat{A} из алгебраических дополнений и обозначим через \widehat{A} транспонированную к ней матрицу, т.е.

$$\widetilde{A} = \begin{pmatrix} A_{11} & \dots & A_{1n} \\ \vdots & \ddots & \vdots \\ A_{n1} & \dots & A_{nn} \end{pmatrix} \qquad \widehat{A} = \begin{pmatrix} A_{11} & \dots & A_{n1} \\ \vdots & \ddots & \vdots \\ A_{1n} & \dots & A_{nn} \end{pmatrix}$$

Матрица \widehat{A} называется присоединенной к матрице A. Тогда

$$A^{-1} = \frac{1}{\det A} \widehat{A}.$$

Найдём обратную к матрице 2×2 в общем виде. Пусть

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}.$$

Тогда

$$\widetilde{A} = \begin{pmatrix} d & -c \\ -b & a \end{pmatrix},$$

$$\widehat{A} = \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}.$$

В итоге получаем

$$A^{-1} = \frac{1}{ad - bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}.$$

Найдём обратную к матрице
$$A = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$
 .

Найдём обратную к матрице $A=\begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$. Данная матрица верхнетреугольна. Поэтому $\det A=1\cdot 1\cdot 1=1$, т. е. $A^{-1}=\widehat{A}$.

Найдём обратную к матрице
$$A = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$
. Данная матрица

верхнетреугольна. Поэтому $\det A = 1 \cdot 1 \cdot 1 = 1$, т. е. $A^{-1} = \widehat{A}$.

$$A_{11} = \begin{vmatrix} 1 & 1 \\ 0 & 1 \end{vmatrix} = 1, \ A_{12} = - \begin{vmatrix} 0 & 1 \\ 0 & 1 \end{vmatrix} = 0, \ A_{13} = \begin{vmatrix} 0 & 1 \\ 0 & 0 \end{vmatrix} = 0,$$

$$A_{21} = -\begin{vmatrix} 1 & 1 \\ 0 & 1 \end{vmatrix} = -1, \ A_{22} = \begin{vmatrix} 1 & 1 \\ 0 & 1 \end{vmatrix} = 1, \ A_{23} = -\begin{vmatrix} 1 & 1 \\ 0 & 0 \end{vmatrix} = 0,$$

$$A_{31} = \begin{vmatrix} 1 & 1 \\ 1 & 1 \end{vmatrix} = 0, \ A_{32} = -\begin{vmatrix} 1 & 1 \\ 0 & 1 \end{vmatrix} = -1, \ A_{33} = \begin{vmatrix} 1 & 1 \\ 0 & 1 \end{vmatrix} = 1.$$

Найдём обратную к матрице $A = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$. Данная матрица

верхнетреугольна. Поэтому $\det A = 1 \cdot 1 \cdot 1 = 1$, т. е. $A^{-1} = \widehat{A}$.

$$A_{11} = \begin{vmatrix} 1 & 1 \\ 0 & 1 \end{vmatrix} = 1, \ A_{12} = - \begin{vmatrix} 0 & 1 \\ 0 & 1 \end{vmatrix} = 0, \ A_{13} = \begin{vmatrix} 0 & 1 \\ 0 & 0 \end{vmatrix} = 0,$$

$$A_{21} = -\begin{vmatrix} 1 & 1 \\ 0 & 1 \end{vmatrix} = -1, \ A_{22} = \begin{vmatrix} 1 & 1 \\ 0 & 1 \end{vmatrix} = 1, \ A_{23} = -\begin{vmatrix} 1 & 1 \\ 0 & 0 \end{vmatrix} = 0,$$

$$A_{31} = \begin{vmatrix} 1 & 1 \\ 1 & 1 \end{vmatrix} = 0, \ A_{32} = -\begin{vmatrix} 1 & 1 \\ 0 & 1 \end{vmatrix} = -1, \ A_{33} = \begin{vmatrix} 1 & 1 \\ 0 & 1 \end{vmatrix} = 1.$$

Итак,

$$\widetilde{A} = \begin{pmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ 0 & -1 & 1 \end{pmatrix}, \qquad A^{-1} = \widehat{A} = \begin{pmatrix} 1 & -1 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{pmatrix}$$

Формулы Крамера

Матрица $A\in M_n(\mathbb{R})$ называется невырожденной, если $\det A\neq 0$. В противном случае она называется вырожденной. Если матрица A невырожденная, то из явных формул для обратной матрицы следует, что

существует
$$A^{-1}$$
. Рассмотрим линейную систему вида $A \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} b_1 \\ \vdots \\ b_n \end{pmatrix}$.

Для краткости будем писать Ax=b. Эта система имеет единственное решение для любой правой части $b\in\mathbb{R}^n$. А именно, $x=A^{-1}b$.

Формулы Крамера

Матрица $A\in M_n(\mathbb{R})$ называется невырожденной, если $\det A\neq 0$. В противном случае она называется вырожденной. Если матрица A невырожденная, то из явных формул для обратной матрицы следует, что

существует
$$A^{-1}$$
. Рассмотрим линейную систему вида $A \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} b_1 \\ \vdots \\ b_n \end{pmatrix}$.

Для краткости будем писать Ax=b. Эта система имеет единственное решение для любой правой части $b\in\mathbb{R}^n$. А именно, $x=A^{-1}b$.

Существуют формулы для решения этой системы через определители. Пусть $A=(A_1|\dots|A_n)$. Определим матрицы $B_i=(A_1|\dots|A_{i-1}|b|A_{i+1}|\dots|A_n)$, т.е. B_i получается из A, если в A заменить i-ый столбец A_i на вектор b из правой части системы. При $\det A \neq 0$ система Ax=b имеет единственное решение. Это решение вычисляется по формулам: $x_i=\frac{\det B_i}{\det A}$ (формулы Крамера).

Решим через формулы Крамера систему

$$\begin{cases} x + 2y = 5 \\ 2x - 3y = -4 \end{cases}$$

Решим через формулы Крамера систему

$$\begin{cases} x + 2y = 5\\ 2x - 3y = -4 \end{cases}$$

Имеем

$$A = \begin{pmatrix} 1 & 2 \\ 2 & -3 \end{pmatrix}, \qquad B_1 = \begin{pmatrix} 5 & 2 \\ -4 & -3 \end{pmatrix}, \qquad B_2 = \begin{pmatrix} 1 & 5 \\ 2 & -4 \end{pmatrix}.$$

Решим через формулы Крамера систему

$$\begin{cases} x + 2y = 5\\ 2x - 3y = -4 \end{cases}$$

Имеем

$$A = \begin{pmatrix} 1 & 2 \\ 2 & -3 \end{pmatrix}, \qquad B_1 = \begin{pmatrix} 5 & 2 \\ -4 & -3 \end{pmatrix}, \qquad B_2 = \begin{pmatrix} 1 & 5 \\ 2 & -4 \end{pmatrix}.$$

Отсюда $\det A = -7$, $\det B_1 = -7$, $\det B_2 = -14$.

Решим через формулы Крамера систему

$$\begin{cases} x + 2y = 5\\ 2x - 3y = -4 \end{cases}$$

Имеем

$$A = \begin{pmatrix} 1 & 2 \\ 2 & -3 \end{pmatrix}, \qquad B_1 = \begin{pmatrix} 5 & 2 \\ -4 & -3 \end{pmatrix}, \qquad B_2 = \begin{pmatrix} 1 & 5 \\ 2 & -4 \end{pmatrix}.$$

Отсюда $\det A = -7$, $\det B_1 = -7$, $\det B_2 = -14$. То есть

$$x_1 = \frac{-7}{-7} = 1,$$
 $x_2 = \frac{-14}{-7} = 2.$

Спектр матрицы

Пусть $A \in M_n(\mathbb{R})$, определим спектр матрицы A следующим образом:

$$\operatorname{Spec} A = \{ \lambda \in \mathbb{C} \mid A - \lambda E \text{ не обратима} \}$$

Обратите внимание, что, хотя матрица имеет вещественные коэффициенты, спектр мы рассматриваем комплексный. **Примеры**

1. Пусть $A \in M_n(\mathbb{R})$ – диагональная матрица

$$A = \begin{pmatrix} \lambda_1 & & \\ & \ddots & \\ & & \lambda_n \end{pmatrix}$$

Тогда $\operatorname{Spec} A = \{\lambda_1, \dots, \lambda_n\}.$

2. Пусть
$$A=\begin{pmatrix} 0 & -1 \ 1 & 0 \end{pmatrix} \in M_2(\mathbb{R})$$
. Тогда $\mathrm{Spec} A=\{i,-i\}$.

Подстановка матрицы в многочлен

Пусть $p(x)=a_0+a_1x+\dots a_nx^n$ — многочлен с вещественными коэффициентами, а $A\in M_n(\mathbb{R})$. Тогда можно определить $p(A)=a_0E+a_1A^1+\dots +a_nA^n$, где E — единичная матрица. Множество всех многочленов с вещественными коэффициентами будем обозначать $\mathbb{R}[x]$.

Подстановка матрицы в многочлен

Пусть $p(x)=a_0+a_1x+\dots a_nx^n$ — многочлен с вещественными коэффициентами, а $A\in M_n(\mathbb{R})$. Тогда можно определить $p(A)=a_0E+a_1A^1+\dots +a_nA^n$, где E — единичная матрица. Множество всех многочленов с вещественными коэффициентами будем обозначать $\mathbb{R}[x]$.

Характеристический многочлен

Пусть $A \in M_n(\mathbb{R})$, тогда выражение

$$\chi_A(\lambda) = \det(\lambda E - A) = (-1)^n \det(A - \lambda E)$$

является многочленом от λ степени n и называется характеристическим многочленом для A. Легко посчитать следующие коэффициенты:

$$\chi_A(\lambda) = \lambda^n - \operatorname{tr}(A)\lambda^{n-1} + \ldots + (-1)^n \det(A)$$

Главная польза от характеристического многочлена – его корни и есть спектр матрицы.

Теорема

Для произвольного числа $\lambda \in \mathbb{C}$ верно, что $\lambda \in \operatorname{Spec} A$ тогда и только тогда, когда $\chi_A(\lambda) = 0$.

Также часто используется следующее утверждение.

Теорема (Гамильтона-Кэли)

Если подставить матрицу в её характеристический многочлен, то получим ноль.

$$\chi_A(A) = 0.$$