

AD-A259 378

TATION PAGE

Form Approved
OMB No. 0704-0188

(2)

It is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Avenue, Washington, DC 20503.

1. SUBJECT AREA	2. DATE	3. REPORT TYPE AND DATES COVERED	
	12/15/92	Technical Report	
4. TITLE AND SUBTITLE		5. FUNDING NUMBERS	
Electrical, Magnetic and Spectroscopic Properties of (TTF) ₅ Fe(NO ₃) ₃		N00014-92-J-1637	
6. AUTHOR(S)		8. PERFORMING ORGANIZATION REPORT NUMBER	
Young I. Kim and William E. Hatfield		Technical Report 46	
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)		10. SPONSORING / MONITORING AGENCY REPORT NUMBER	
Department of Chemistry - Campus Box 3290 The University of North Carolina at Chapel Hill Chapel Hill, NC 27599-3290		S DTIC ELECTE JAN 12 1993	
9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)		11. SUPPLEMENTARY NOTES	
Department of the Navy Office of the Chief of Naval Research 800 N. Quincy Street, Code 1513:RDL Arlington, VA 22217-5000		Accepted for publication in INORGANICA CHIMICA ACTA	
12a. DISTRIBUTION AVAILABILITY STATEMENT		12b. DISTRIBUTION CODE	
Distribution Unlimited			
13. ABSTRACT (Maximum 200 words)			
<p>Tetrathiafulvalene, TTF, reacts with Fe(NO₃)₃•9H₂O to yield a dark purple charge-transfer compound with the formula (TTF)₅Fe(NO₃)₃. The effective magnetic moment at room temperature of 0.6 B. M., the temperature independent paramagnetism in the range 77-300 K, and the absence of an EPR signal attributable to iron, indicates low-spin iron(II), with electron transfer from TTF. The g values of the parallel and perpendicular EPR lines, [(T, g, g_⊥), (300 K, 2.007, 2.010), (77K, 2.009, 2.013)], and the line widths indicate that the odd electron resides on, and is delocalized over several TTFS. The conductivity at room temperature is 17 S cm⁻¹, and the temperature dependence of the resistivity indicates semiconducting behavior of a complex nature.</p>			
14. SUBJECT TERMS		15. NUMBER OF PAGES	
tetrathiafulvalene magnetic moment electrical conductivity electroparamagnetic resonance iron(III) compound		14	
16. PRICE CODE			
17. SECURITY CLASSIFICATION OF REPORT	18. SECURITY CLASSIFICATION OF THIS PAGE	19. SECURITY CLASSIFICATION OF ABSTRACT	20. LIMITATION OF ABSTRACT
Unclassified	Unclassified	Unclassified	Unlimited

NSN 7540-01-290-5500

Standard Form 108 Rev 2-89
GSA GEN. REG. NO. 27, 14 CFR Part 102

93 1 11 005

OFFICE OF NAVAL RESEARCH

Contract N00014-92-J-1637

R&T Code 4135007---08

TECHNICAL REPORT NO. 46

Accession For	/	
NTIS	GRANT	<input type="checkbox"/>
DDAG	LAB	<input type="checkbox"/>
Unclassified		
Justification		
By		
Distribution/		
Availability Codes		
Dist	Avail and/or Special	
P-1		

Electrical, Magnetic and Spectroscopic Properties of

DTIC QUALITY ASSURED

by

Young I. Kim and William E. Hatfield

The Department of Chemistry, The University of North Carolina at Chapel Hill, North Carolina, 27599-3290, U.S.A.

Prepared for Publication in

INORGANICA CHIMICA ACTA

Reproduction in whole or in part is permitted for any purpose of the United States Government

*This document has been approved for public release and sale, its distribution is unlimited.

*This statement should also appear in Item 3 of Document Control Data - DD Form 1473. Copies of the form are available from the cognizant contract administrator.

SHORT COMMUNICATION

Electrical, magnetic and spectroscopic properties of $(TTF)_5Fe(NO_3)_3$

Young Inn Kim

Department of Chemical Education

The Pusan National University, Pusan 609-735 (Korea)

and

William E. Hatfield*

Department of Chemistry

The University of North Carolina at Chapel Hill

Chapel Hill, North Carolina 27599-3290 USA

Abstract

Tetrathiafulvalene, TTF, reacts with $Fe(NO_3)_3 \cdot 9H_2O$ to yield a dark purple charge-transfer compound with the formula $(TTF)_5Fe(NO_3)_3$. The effective magnetic moment at room temperature of 0.6 B. M., the temperature independent paramagnetism in the range 77-300 K, and the absence of an EPR signal attributable to iron, indicates low-spin iron(II), with electron transfer from TTF. The g values of the parallel and perpendicular EPR lines, [(T, g_{||}, g_⊥), (300 K, 2.007, 2.010), (77 K, 2.009, 2.013)], and the line widths indicate that the odd electron resides on, and is delocalized over several TTFs. The conductivity at room temperature is 17 S cm⁻¹, and the temperature dependence of the resistivity indicates semiconducting behavior of a complex nature.

*Author to whom correspondence should be addressed.

Introduction

Recently it was found that tetrathiafulvalene, TTF, reacts with the metal halides FeCl_3 , FeBr_3 , and the hydrated salts of RuCl_3 , RhCl_3 , and IrCl_4 to form a series of charge-transfer compounds [1]. The compounds formed with iron(III) chloride and iron(III) bromide with the formulas $(\text{TTF})_2\text{FeCl}_3$ and $(\text{TTF})_3\text{FeBr}_3$ were especially interesting in view of the results for $(\text{BEDT-TTF})_2\text{FeCl}_4$ (BEDT is bis(ethylenedithio)tetrathiafulvalene) [2]. The compounds with TTF have much higher electrical conductivities than $(\text{BEDT-TTF})_2\text{FeCl}_4$, and the properties of all three compounds differ markedly. The magnetic susceptibility of $(\text{TTF})_3\text{FeBr}_3$ is nearly constant in the temperature range 4.2 to 300 K, while that of $(\text{TTF})_2\text{FeCl}_3$ increases sharply at low temperature [1]. The room temperature magnetic moments are 4.75 and 5.05 B.M. for $(\text{TTF})_2\text{FeCl}_3$ and $(\text{TTF})_3\text{FeBr}_3$, respectively. The magnetic moment of $(\text{BEDT-TTF})_2\text{FeCl}_4$ is 6.01 B. M., a value that is consistent with high-spin iron(III) and no detectable contribution from the cation [2]. It was shown earlier, that the stoichiometry of the charge-transfer compound formed by the reaction of TTF with complexes of copper(II) halides, depended on the ligand and the halide coordinated to copper(II) [3]. Variation of the counterion of the metal was the next logical step. This research has been undertaken [4], and the product of the reaction of TTF with $\text{Fe}(\text{NO}_3)_3 \cdot 9\text{H}_2\text{O}$ yielded a charge-transfer compound with unusual properties. The preparation and properties of $(\text{TTF})_5\text{Fe}(\text{NO}_3)_3$ are reported here.

Experimental

The charge-transfer compound $(TTF)_5Fe(NO_3)_3$ was obtained as a dark purple microcrystalline precipitate by adding a solution of $Fe(NO_3)_3 \cdot 9H_2O$ in methanol to a solution of excess TTF in methanol under a nitrogen atmosphere. Elemental analyses were performed by Galbraith Laboratories, Inc., Knoxville, TN. Calc.: C 28.21, H 1.60, N 3.30. Found: C 29.11, H 1.61, N 3.60%. Electrical resistivities were measured by the Van der Pauw four-probe d.c. method [5] by using a model 21SC Cyrodine Cryocooler from CTI-Cryogenics in the temperature range 80-300 K. Constant current was applied by using a Keithley model 227 current source and the voltage was measured with a Fluke 8502A multimeter. Magnetic susceptibility measurements were carried out with a Faraday Balance in the temperature range 77 K to room temperature [6]. The data were corrected for temperature independent paramagnetism and the diamagnetism of the constituent atoms using Pascal's constants [7,8]. EPR spectra of powdered samples were obtained with a Varian E-3 X-band spectrometer at 9.5 GHz. The free radical DPPH ($g = 2.0036$) was used as a field marker. Electronic spectra were obtained in the range 200-800 nm by using a Simadzu model UV-240 spectrophotometer and solutions or solid/Nujol mulls of the compound. The samples were mounted between quartz plates. Infrared spectra were obtained by using Nujol mulls on a sodium chloride plate with a Mattson Polaris FT-IR spectrophotometer.

Results and discussion

The electrical resistivity of a powdered sample of $(TTF)_5Fe(NO_3)_3$ was measured from 80 K to 300 K. The resistivity increases with decreasing temperature, but as shown in

Figure 1, the temperature dependence of the logarithm of the resistivity versus $1000/T$ of a powdered sample, pressed into a pellet, is not linear, but forms a smooth convex curve. The results clearly indicate that $(TTF)_5Fe(NO_3)_3$ exhibits semiconducting behavior of a complex nature.

The data can not be fit by the equation $\rho = \rho_0 \exp(E_a/k_B T)$, nor by the mobility model $\rho(t) = A \cdot T^\alpha \exp(E_a/k_B T)$ [9]. The mobility model accounts for thermal activation of charge carriers and the temperature dependence of the mobility of the charge carriers. The plot of $\ln \rho$ vs. $1/T$ is nearly linear in the temperature range 240 to 300 K, and the activation energy was estimated from this asymptote. Least-square fits of the equation $\rho = \rho_0 \exp(E_a/k_B T)$ to the data yield an activation energy $E_a = 0.042$ eV. The low activation energy is consistent with the experimentally measured electrical conductivity at room temperature of 17 S cm^{-1} . This value for σ_{RT} is much greater than the electrical conductivities of $(TTF)_2CuCl_4$ [10] or $(BEDT-TTF)_2FeCl_4$ [2], and similar to those of $(TTF)_nCuCl_2$ ($n = 2$ or $7/3$) [11]. TTF in $(TTF)_2CuCl_4$ is known to be completely ionized, whereas TTF is partially ionized in $(TTF)_nCuCl_2$, and columnar structures are formed in the latter compound. $(BEDT-TTF)_2FeCl_4$ also consists of stacks of completely ionized BEDT-TTF dimer molecules. The relatively high electrical conductivity in $(TTF)_5Fe(NO_3)_3$ indicates that TTF in the compound is partially ionized and stacked to form chains.

Magnetic and spectroscopic properties of $(TTF)_5Fe(NO_3)_3$ also provide evidence of low-dimensional and partially ionized TTF donor molecules in the compound. Electron paramagnetic resonance spectra of a powdered sample were obtained both at room temperature and at 77 K. The EPR spectra exhibit good resolution of parallel ($g_{||}$) and

perpendicular (g_{\perp}) components with the values (T , g_{\parallel} , g_{\perp}) of (300 K, 2.007, 2.010) and (77 K, 2.009, 2.013). The values are very close to g value of TTF^+ ion in solution [12]. This observation indicates that the odd electrons reside on TTF in $(\text{TTF})_5\text{Fe}(\text{NO}_3)_3$. The relatively narrow peak-to-peak linewidths in the EPR spectra (6-7 gauss) in $(\text{TTF})_5\text{Fe}(\text{NO}_3)_3$ also indicates that the interaction along and among TTF stacks are significant [13,14]. A signal attributable to iron metal was not detected, and it may be concluded that the iron ion in $(\text{TTF})_5\text{Fe}(\text{NO}_3)_3$ is in the diamagnetic low-spin octahedral Fe(II) state.

The experimentally determined magnetic susceptibilities are 1.61×10^{-4} and 1.70×10^{-4} emu/mole at 300 K and at 80 K, respectively. The magnetic susceptibilities are almost temperature independent in the temperature range of the measurements, with the effective magnetic moments being 0.62 and 0.34 B.M. at 300 K and at 80 K, respectively. Small and temperature-independent magnetic susceptibility, Pauli paramagnetism, is well known in low-dimensional semiconductors [15], and the magnetic susceptibility results, together with the EPR results, are consistent with the conclusion that the unpaired electrons are associated with and delocalized over the $(\text{TTF})_5^+$ radicals. The data reflect large interactions between molecular units in stacked columnar chains.

Electronic spectra of $(\text{TTF})_5\text{Fe}(\text{NO}_3)_3$ show $\lambda_{\max} = 584$ and 442 nm in DMF solution and λ_{\max} at 552, 381, and 317 nm in Nujol mulls. The electronic transitions are comparable to the results found for the charge-transfer compound: TTF-FeX_3 , in which TTF is partially ionized [1]. There are bands at 378 and 560 nm in Nujol mulls of $(\text{TTF})_3\text{FeBr}_3$, with the corresponding bands occurring at 404 and 552 nm for $(\text{TTF})_2\text{FeCl}_3$. There are higher energy bands in the halide salts also, but there is no direct correlation with the band at 317 in the

nitrate salt.

The IR spectrum exhibited a very broad intense band extending from about 1,000 cm⁻¹ to 4,000 cm⁻¹. The intense absorption arises from the band structure of these semiconductors and masks many of the vibrational modes of the compound [16]. Three vibrational bands of TTF were observed in the absorption tail; these occur at 729 cm⁻¹ (ν_{25} , ring SCC bend), 823 cm⁻¹ (ν_{16} , CS stretch), and at 1240 cm⁻¹ (ν_{23} , CCH bend). The bands were assigned by making comparison with those reported for other one-dimensional TTF compounds [17]. The ν_{16} absorption band (823 cm⁻¹) is intermediate between that of TTF⁰ (781 cm⁻¹) and TTF⁺ (836 cm⁻¹), signaling fractional-charge occupation of TTF in (TTF)₅Fe(NO₃)₃ [11].

There is no straight-forward explanation for the low-spin electronic configuration of the iron(II) ion. Coordination by nitrate ions alone would not be expected to lead to low-spin iron(II). This forces the conclusion that the iron(II) ions are associated with sulfur atoms in the TTF stacks. It is possible that the iron(II) ions are bound to sulfur atoms in adjacent stacks, thereby providing a pathway for inter-stack interactions. Such inter-stack interactions are indicated by the narrow EPR line widths. Tomkiewicz and Taranko [14] have shown that in TTF-halides, the EPR line widths run parallel to the inter-stack interactions with narrow line widths indicating stronger interactions and broader line widths indicating weaker inter-stack interactions. Evidence for this final suggestion for coordination of the iron could be obtained from a structural determination by X-ray crystallography. We have not yet obtained crystals of this quality from our experiments.

Acknowledgements

This research was supported in part by the Office of Naval Research. Young Inn Kim thanks Korea Science and Engineering Foundation for financial support.

References

- 1 Y. I. Kim and W. E. Hatfield, Inorg. Chim. Acta., 188 (1991) 15.
- 2 T. Mallah, C. Holles, S. Bott, M. Kurmoo, P. Day, M. Allan, and R. H. Friend, J. Chem. Soc. Dalton Trans., (1990) 859.
- 3 Y. I. Kim and W. E. Hatfield, Inorg. Chim. Acta., 189 (1991) 237.
- 4 Y. I. Kim and W. E. Hatfield, unpublished observations.
- 5 J. L. Van der Pauw, Philips Res. Rept., 13 (1958) 1.
- 6 P. J. Corvan, W. E. Estes, R. R. Weller, and W. E. Hatfield, W. E. Inorg. Chem., 19 (1980) 1297.
- 7 B. N. Figgis and J. Lewis, in J. Lewis and R. L. Wilkins (eds.), Modern Coordination Chemistry, Interscience, New York, 1960, Chap. 6.
- 8 R. R. Weller and W. E. Hatfield, J. Chem. Ed., 56 (1979) 652.
- 9 A. J. Epstein, E. M. Conwell, D. J. Sandman, and J. S. Miller, Solid State Commun., 23 (1977) 355.
- 10 A. R. Siedle, G. A. Candela, T. F. Finnegan, R. P. Van Duyne, T. Cape, G. F. Kokoszka, P. M. Woyciejes, and J. A. Hashmall, Inorg. Chem., 20 (1981) 2635.

- 11 M. B. Inoue, M. Inoue, Q. Fernando, and K. W. Nebesny, Inorg. Chem. **25** (1986) 3976.
- 12 F. Wudl, G. M. Smith, and E. J. Hufnagel, J. Chem. Soc. Chem. Commun. (1970) 1453.
- 13 R. B. Somoano, A. Gupta, and V. Hadek, J. Chem. Phys., **63** (1975) 4970.
- 14 Y. Tomkiewicz and A. R. Taranko, Phys. Rev. B., **18** (1978) 733.
- 15 J. S. Miller and A. J. Epstein, Prog. Inorg. Chem., **20** (1976) 1.
- 16 M. J. Rice, L. Peitronero, and P. Briesch, P. Solid State Commun., **21** (1977) 757.
- 17 R. Bozio, I. Zanon, A. Girlando, and C. Pecile, C. J. Chem Phys., **71** (1979) 2282.

Figure Caption

Figure 1. A plot of $\ln \rho$ versus $1000/T$ (T in units of K) for $(\text{TTF})_5\text{Fe}(\text{NO}_3)_3$.

TECHNICAL REPORT DISTRIBUTION LIST, GENERAL

<u>No.</u> <u>Copies</u>	<u>No.</u> <u>Copies</u>				
Office of Naval Research Chemistry Division, Code 1113 800 North Quincy Street Arlington, VA 22217-5000	3	Dr. Ronald L. Atkins Chemistry Division (Code 385) Naval Weapons Center China Lake, CA 93555-6001	1		
Commanding Officer Naval Weapons Support Center Attn: Dr. Bernard E. Douda Crane, IN 47522-5050	1	Chief of Naval Research Special Assistant for Marine Corps Matters Code 00MC 800 North Quincy Street Arlington, VA 22217-5000	1		
Dr. Richard W. Drisko Naval Civil Engineering Laboratory Code L52 Port Hueneme, California 93043	1	Dr. Bernadette Eichinger Naval Ship Systems Engineering Station Code 053 Philadelphia Naval Base Philadelphia, PA 19112	1		
Defense Technical Information Center Building 5, Cameron Station Alexandria, Virginia 22314	2 <u>high</u> <u>quality</u>	David Taylor Research Center Dr. Eugene C. Fischer Annapolis, MD 21402-5067	1	Dr. Sachio Yamamoto Naval Ocean Systems Center Code 52 San Diego, CA 92152-5000	1
Dr. James S. Murday Chemistry Division, Code 6100 Naval Research Laboratory Washington, D.C. 20375-5000	1	David Taylor Research Center Dr. Harold H. Singerman Annapolis, MD 21402-5067 ATTN: Code 283	1		

Abstract Distribution List

Professor O. T. Beachley, Jr.
Department of Chemistry
State University of New York
Buffalo, NY 14214

Dr. Alan Berry
Chemistry Division, Code 6120
Naval Research Laboratory
4555 Overlook Ave. SW
Washington, DC 20375-5000

Professor Jerald S. Bradshaw
Department of Chemistry
Brigham Young University
Provo, UT 84602

Professor Ronald Breslow
Department of Chemistry
Columbia University
New York , NY 10027

Dr. Duncan W. Brown
Advanced Technology Materials, Inc.
520-B Danbury Rd.
New Milford, CT 06776

Professor Herbert C. Brown
Purdue University
Department of Chemistry
West Lafayette, IN 47907

Professor Steven L. Buchwald
Department of Chemistry
Massachusetts Institute of Technology
Cambridge, MA 02139

Professor Cynthia J. Burrows
Department of Chemistry
State University of New York
Stony Brook, NY 11794-3400

Dr. Roque J. Calvo
Executive Secretary
The Electrochemical Society
10 South Main St.
Pennington, NJ 08534-2896

Professor Peter Chen
Department of Chemistry
Harvard University
Cambridge, MA 02138

Professor N. John Cooper
Department of Chemistry
University of Pittsburgh
Pittsburgh, PA 15260

Professor Anthony W. Czarnik
Department of Chemistry
Ohio State University
120 West 18th Ave.
Columbus, OH 43210-1173

Professor Peter Dervan
Department of Chemistry
California Institute of Technology
Pasadena, CA 91125

Professor Francois N. Diederich
Department of Chemistry
University of California
405 Hilgard Ave.
Los Angeles, CA 90024

Professor Dennis A. Dougherty
Department of Chemistry
California Institute of Technology
Pasadena, CA 91125

Professor Kenneth M. Doxsee
Department of Chemistry
University of Oregon
Eugene, OR 97403

Dr. Regis J. Ebner, Jr.
Director of Finance
Materials Research Society
9800 McKnight Rd., Ste. #27
Pittsburgh, PA 15237

Professor Margaret C. Etter
Department of Chemistry
University of Minnesota
207 Pleasant St., S.E.
Minneapolis, MN 55455

Professor Wilmer K. Fife
Department of Chemistry
Indiana University-Purdue University at
Indianapolis
1125 East 38th St.
PO Box 647
Indianapolis, IN 46223

Professor Samuel H. Gellman
Department of Chemistry
1101 University Ave.
Madison, WI 53706

Professor Andrew D. Hamilton
Department of Chemistry
University of Pittsburgh
Pittsburgh, PA 15260

Professor William E. Hatfield
Department of Chemistry
University of North Carolina
Chapel Hill, NC 27514

Dr. Kelvin Higa
Chemistry Division
Research Department
Naval Weapons Center
China Lake, CA 93555

Professor Kenneth D. Karlin
Merry Hall 146
The Johns University
34th & Charles Streets
Baltimore, MD 21218

Professor Arthur E. Martell
Department of Chemistry
Texas A&M University
College Station, TX 77843-3255

Professor Thomas J. McCarthy
Department of Polymer Science
University of Massachusetts
Rm. 701 Graduate Research Center
Amherst, MA 01003

Dr. Stephen W. McElvany
Code 6113, Chemistry Division
Naval Research Laboratory
Washington, DC 20375-5000

Professor Lisa McElwee-White
Department of Chemistry
The Leland Stanford Junior University
Stanford, CA 94305

Dr. Theodore G. Pavlopoulos
Naval Ocean Systems Center
Code 521 (B-111)
San Diego, CA 92152-5000

Professor William S. Rees, Jr.
Chemistry Division
The Florida State University
Tallahassee, FL 32306-3006

Professor Peter Schultz
Department of Chemistry
University of California
Berkeley, CA 94720

Dr. Alok Singh
Center for Bio/Molecular Science
Engineering
Department of the Navy
Naval Research Laboratory, Code 6090
Washington, DC 20375-5000

Dr. Michael L. Sinnott
University of Bristol
School of Chemistry
Cantock's Close
Bristol
ENGLAND BS8 1TS

Dr. Timothy M. Swager
Department of Chemistry
University of Pennsylvania
Philadelphia, PA 19104-6323

Professor Richard L. Wells
Department of Chemistry
Duke University
Durham, NC 27706

Professor Jeffrey D. Winkler
Department of Chemistry
The University of Pennsylvania
133 South 36th St.
Philadelphia, PA 19104-3246

Professor Jeffrey D. Zubkowski
Department of Chemistry
Jackson State University
PO Box 17910, 1400 Lynch St.
Jackson, MS 39217