Grafos - Introdução

Pedro Ribeiro

DCC/FCUP

2021/2022

Conceito

Definição de Grafo

Formalmente, um grafo é:

- Um conjunto de nós/vértices (V).
- Um conjunto de ligações/arestas/arcos (E), que consistem em pares de vértices

- $V = \{1, 2, 3, 4, 5, 6\}$
- $E = \{(1,6), (1,3), (3,6), (3,4), (2,5)\}$

Para que servem os grafos?

- Os grafos são úbiquos na Ciência de Computadores e estão presentes, implicita ou explicitamente, em muitos algoritmos.
- Podem ser usados para representar uma multiplicidade de coisas.

Redes com existência física

• Redes de estradas

Redes com existência física

• Redes de transportes públicos (ex: metro, comboio)

Redes com existência física

• Redes de energia eléctrica

Redes com existência física

• Redes de computadores

Redes Sociais

• Facebook (outros ex: Twitter, e-emails, co-autoria de artigos, ...)

Redes de Software

• Depêndencia entre módulos (outros: estado, fluxo de informação, ...)

Redes Biológicas

 Rede metabólica (outros exemplos: proteínas, transcrição, cerebrais, cadeias alimentares, redes filogenéticas, ...)

Outros Grafos

• Rede semântica (outros exemplos: links entre páginas, ...)

- Grafo dirigido/direcionado/digrafo cada ligação tem um nó de partida (origem) e um nó de chegada fim (ordem interessa!).
 Normalmente nos desenhos usam-se setas para indicar a direção
- Grafo não dirigido não existe partida e chegada, apenas uma ligação

Grafo Dirigido

Grafo Não Dirigido

- Grafo pesado a cada ligação está associado um valor (pode ser uma distância, um custo, ...)
- Grafo não pesado não existem valores associados a cada arco

Grafo Pesado

Grafo Não Pesado

- Grau de um nó número de ligações desse nó
- Em grafos dirigidos pode distinguir-se entre **grau de entrada** e **grau de saída**

1 tem grau 2 2 tem grau 1 3 tem grau 3 4 tem grau 1 5 tem grau 1 6 tem grau 2

- Nó adjacente/vizinho: dois nós são adjacentes se tiverem uma ligação entre si
- Grafo trivial: grafo sem arestas e com um único nó
- Laço ou lacete (self-loop): ligação de um nó a si próprio
- Grafo simples: nó sem laços e sem ligações repetidas em E (em DAA vamos usar (quase) sempre grafos simples)
- Multigrafo: grafo que permite ligações repetidas (múltiplas)
- **Grafo denso:** com muitas ligações quando comparadas com o máximo possível de ligações |E| da ordem de $\mathcal{O}(|V|^2)$
- **Grafo esparso:** com poucas ligações quando comparadas com o máximo possivel de ligações |E| de ordem inferior a $\mathcal{O}(|V|^2)$

 Caminho: sequência alternada de nós e arestas, de tal modo que dois nós sucessivos são ligados por uma aresta. Tipicamente em grafos simples indicam-se só os nós para definir um caminho.

- Ciclo: caminho que começa e termina no mesmo nó (ex: para o grafo de cima, $1 \rightarrow 6 \rightarrow 4 \rightarrow 3 \rightarrow 1$ é um ciclo)
- Grafo acíclico: grafo sem ciclos

- Tamanho de um caminho: número de arestas num caminho
- **Custo** de caminho: se for um grafo pesado podemos falar no custo, que é a soma dos pesos das arestas
- Distância: tamanho/custo do menor caminho entre dois nós
- Diâmetro de um grafo: distância máxima entre dois nós de um grafo

	1	2	3	4	5	6
1	0	2	1	2	3	1
2	2	0	2	1	1	1
3	1	2	0	1	3	2
4	2	1	1	0	2	1
5	3	1	3	2	0	2
6	1	1	2	1	2	0

Distâncias entre nós

- Componente conexa: Subconjunto de nós onde existe pelo menos um caminho entre cada um deles
- Grafo conexo: Grafo com apenas uma componente conexa (existe caminho de todos para todos)

Grafo com duas componentes conexas: $\{1, 3, 4, 6\}$ e $\{2, 5\}$

- Subgrafo: subconjunto de nós e arestas entre eles
- Grafo completo: existem ligações entre todos os pares de nós
- Clique: subgrafo que é completo
- Triângulo: clique de 3 nós

Exemplo de subgrafos: $\{1,3\}$, $\{1,6,2\}$, $\{2,4,5,6\}$, etc Exemplo de clique: $\{2,4,6\}$ (é um triângulo)

- Árvore: grafo simples, conexo e acíclico (se tem n nós, então terá n-1 arestas)
- Floresta: conjunto de múltiplas árvores disconexas

Representação de Grafos

Como representar um grafo?

- Matriz de Adjacências: matriz de $|V| \times |V|$ onde a entrada (i,j) indica se existe uma ligação entre o nó i e j (se for um grafo pesado podemos indicar o peso)
- Lista de Adjacências: cada nó guarda uma lista contendo os seus vizinhos (se for grafo pesado temos de guardar pares (destino,peso))

	1	2	3	4	5	6		
1			Χ			Х		
2				Х	Х	Х		
3	Х			Х				
4		Х	Х			Х		
5		Х						
6	Х	Х		Х				
M-+: A -l:								

Matriz de Adjacências

1: 3, 6

2: 4, 5, 6

3: 1, 4

4: 2, 3, 6

5: 2

6: 1, 2, 4

Lista de Adjacências

Representação de Grafos

Algumas Vantagens/Desvantagens:

Matriz de Adjacências:

- ▶ Muito simples de implementar
- lacktriangle Rápida para ver se existe ligação entre dois nós $\mathcal{O}(1)$
- ▶ Lenta para percorrer nós adjacentes $\mathcal{O}(|\mathbf{V}|)$
- ▶ Elevado desperdício de memória (em grafos esparsos) $\mathcal{O}(|\mathbf{V}|^2)$
- ► Grafo pesado implica apenas armazenar peso na matriz
- lacktriangle Adicionar/remover ligações é só mudar célula da matriz $\mathcal{O}(1)$

Lista de Adjacências:

- ► Lenta para ver se existe ligação entre nós u e v $\mathcal{O}(\mathbf{grau}(\mathbf{u}))$
- ▶ Rápida para percorrer nós adjacentes $\mathcal{O}(\mathbf{grau}(\mathbf{u}))$
- ▶ Memória bem aproveitada $\mathcal{O}(|\mathbf{V}| + |\mathbf{E}|)$
- ► Grafo pesado implica adicionar um campo à lista
- ▶ Remover ligação (u, v) implica percorrer a lista O(grau(u)) Nota: podemos usar por exemplo BSTs (set/map) para melhorar eficiência da pesquisa/remoção para O(log grau(u))

Aqiu ficam algum sites interessantes com grafos disponíveis:

- Network Repository: http://networkrepository.com/
- Konect: http://konect.cc/
- SNAP: https://snap.stanford.edu/data/

Data & Network Collections. Find and interactively VISUALIZE and EXPLORE hundreds of network data

Grafos Bipartidos

 Um grafo bipartido é um grafo cujos nós podem ser divididos em dois conjuntos disjuntos U e V tal que cada aresta liga um nó de U a um nó em V

 Muitas redes reais são o resultado de projeções (ex: atores e filmes, doenças e genes)

Outros tipos de Grafos: Multilayer / Multiplex

• Os grafos podem ter várias camadas (layers)

Outros tipos de Grafos: Redes Temporais

• Os grafos podem mudar ao longo do tempo

Redes Complexas (Network Science / Graph Mining)

A minha área de investigação principal

Alguns dos algoritmos que vamos dar em DAA

Pesquisas de um grafo:

- Em **profundidade** DFS $(\mathcal{O}(|V| + |E|))$ com lista de adjacências) Alguns exemplos de aplicação:
 - Descobrir componentes conexos / Flood-Fill
 - Descobrir ciclos
 - Ordenação topológica
 - ► Descobrir pontos de articulação e/ou pontes
 - Descobrir componentes fortemente conexos
 - ► Saber se um grafo é bipartido
 - Pesquisa exaustiva de caminhos
- Em largura BFS $(\mathcal{O}(|V|+|E|)$ com lista de adjacências) Alguns exemplos de aplicação:
 - Quase todas as aplicações de DFS
 - Descobrir caminho mínimo entre dois pontos (num grafo não pesado)

Alguns dos algoritmos que vamos dar em DAA

Pesquisas em profundidade e largura:

Pedro Ribeiro (DCC/FCUP)

Alguns dos algoritmos que vamos dar em DAA

Ponto de articulação:

Alguns dos algoritmos que vamos dar em DAA

Componentes fortemente conexos:

Alguns dos algoritmos que vamos dar em DAA

Árvores Mínimas de Suporte

Uma **árvore de suporte** é um subgrafo conexo que é uma árvore e que contém todos os vértices do grafo. Uma **árvore mínima de suporte** é uma árvore de suporte onde a soma dos pesos das arestas é mínima.

- Algoritmo de Prim
 - Algoritmo greedy que adiciona um nó de cada vez
 - ▶ Complexidade temporal: $\mathcal{O}(|E|\log|V|)$ com uma fila de prioridade
- Algoritmo de Kruskal
 - ► Algoritmo greedy que adiciona uma aresta de cada vez
 - ▶ Complexidade temporal: $\mathcal{O}(|E|\log |E|)$ com conjuntos disjuntos

Alguns dos algoritmos que vamos dar em DAA

Árvore Mínima de Suporte:

Alguns dos algoritmos que vamos dar em DAA

Caminhos mínimos

- Algoritmo de Dijkstra Distância de um nó para todos os outros (não funciona em grafos com pesos negativos)
 - ▶ Um "mix" de greedy com programação dinâmica
 - ▶ Complexidade temporal: O(|E|log|V|) com uma fila de prioridade
- Algoritmo de Bellman-Ford Distância de um nó para todos os outros (funciona em grafos com pesos negativos)
 - Parecido com Dijkstra mas sempre com "relaxamento" de todas as arestas
 - ▶ Complexidade temporal: $\mathcal{O}(|E| \times |V|)$ com conjuntos disjuntos
- Algoritmo de Floyd-Warshall Distâncias entre todos os nós
 - ▶ Usa ideias de programação dinâmica
 - ▶ Complexidade temporal: $\mathcal{O}(|V|^3)$

Alguns dos algoritmos que vamos dar em DAA

Caminho mínimo entre dois pontos:

Alguns dos algoritmos que vamos dar em DAA

Fluxos máximos

Problema de optimização que envolve descobrir fluxo máximo (não excedendo capacidades das arestas) entre dois nós.

Exemplos de aplicações:

- Bipartite matching
- Mínima cobertura de caminhos
- Número de caminhos sem nós e/ou arestas comuns

O algoritmo que vamos dar:

- Algoritmo de Edmonds-Karp
 Uma implementação do algoritmo de Ford-Fulkerson
 - ▶ Ir descobrindo augmenting paths com sucessivas pesquisas em largura
 - ▶ Complexidade temporal: $\mathcal{O}(|V| \times |E|^2)$

Alguns dos algoritmos que vamos dar em DAA

Fluxo máximo:

Figure 1a - Maximum Flow in a network