Enačbe

October 23, 2017

$$\sqrt{x + \frac{x}{x^2 - 1}} = x\sqrt{\frac{x}{x^2 - 1}}$$

vsakič ko imamo v enačbi kakšne ulomke,
racionalne,
logaritmske funkcije oz. krkšne kol funkcije ki niso povsod definirane moramo najprej najti definicisko območje.

poglejmo najprej $x\sqrt{\frac{x}{x^2-1}}$ x je definiran povsod tako da tukaj nebo problema. $\sqrt{\frac{x}{x^2-1}}$ kvadratni koren je pa definiran če je tisto znotraj nenegativno število oz. $\frac{x}{x^2-1} \geq 0$ zračunamo $\frac{x}{x^2-1} \geq 0$

$$\frac{x}{x^2 - 1} \ge 0 \implies \frac{x}{(x - 1)(x + 1)} \ge 0$$

opomba: tukaj nemoremo kar pomnožiti z x^2-1 saj ne
enakost pri množenju z negativnim številom obrne smer mi pa še nevemo k
daj je negativno in kdaj pozitivno

najprej zračunamo vse ničle in pole in jih označimo na številsko premico pri nas so to x=0,x=1,x=-1

ker so vsi poli in ničle lihe stopnje se predznak vedno spremeni. Sedaj vidimo da bo desna funkcija definirana ko bo $x \in (-1,0] \cup (1,\infty)$. Isto nardimo še za levo stran:

$$x + \frac{x}{x^2 - 1} \ge 0 \implies \frac{x(x^2 - 1) + x}{x^2 - 1} \ge 0 \implies \frac{(x - 1)(x + 1)}{(x - 1)(x + 1)} \ge 0$$

ponovno označimo vse ničle in poli (spet so vsi lihi zato se predznak vedno spremeni)

vzamemo sedaj presek definicijskih območij (v tem primeru sta oba enaka) in si ga nekam zabeležimo (rabm ga bomo pozneje)

poglejmo si sedaj spet enačbo

$$\sqrt{x + \frac{x}{x^2 - 1}} = x\sqrt{\frac{x}{x^2 - 1}}$$

v teh primerih vedno poskušamo enačbo preoblikovati v tako obliko da bo koren na eni strani vse ostalo pa na drugi

$$\sqrt{x+\frac{x}{x^2-1}}=x\sqrt{\frac{x}{x^2-1}} \quad \backslash \sqrt{\frac{x}{x^2-1}} \text{ to lahko naredimo ko } \sqrt{\frac{x}{x^2-1}}\neq 0 \Leftrightarrow x\neq 0$$

$$\sqrt{\frac{x}{\frac{x}{x^2-1}}+\frac{\frac{x}{x^2-1}}{\frac{x}{x^2-1}}}=x$$

$$\sqrt{x^2-1+1}=x$$

$$\sqrt{x^2}=x \implies |x|=x \Leftrightarrow x>0$$

poglejmo še za

za lažjo predstavo sta tukaj grafa funkcij

$$\sqrt{\frac{x}{x^2 - 1}} = 0$$

takrat namreč nesmomo deliti saj deljenje z 0 ni definirano. Ampak to je nič samo ko je x=0 (to so preverili ko smo iskali ničle in pole vstavimo x=0 v enačbo in preverimo če jo reši.

Ko vstavimo x=0 v enačbo dobimo 0=0 kar je vredu dobili smo odgovor da x reši enačbo ko $x\geq 0$ poglejmo sedaj kdaj je ta rešitev v našem definicijskem območju. Definicijsko območje je bilo $(-1,0]\cup (1,\infty)$ in x je v definicijskem območju ko je $x=0 \lor x \in (1,\infty)$ in to naše rešitev

