1. Properties of GD functions

Interior GD functions are defined as scalings and translations of a "canonical" GD function $\phi(x)$. Assuming that the polynomial degree p is odd, let $\ell_j(x)$ be the (p+1) Lagrange functions defined using equispaced nodal points x_i such that

$$\{x_0,\ldots,x_p\}=\{-(a-1),\ldots,a\}\,,\qquad a=\frac{p+1}{2}.$$

This choice of nodal points ensures that the interval [0,1] lies is the middle of $[x_0,x_p]$. We define the canonical GD function $\phi(x)$ piecewise on the intervals I_0, \ldots, I_{2p-2} , where $I_j = [-(p-1) + j, -p + j]$

$$\phi(x) = \begin{cases} \ell_j(x-j), & x \in I_j \\ 0 & \text{otherwise} \end{cases}.$$

Symbolic computations then yield the following lemma:

Lemma 1. Let ϕ be the canonical GD function. For $p = 1, 3, \dots, 75$,

- (1) $\int_{-\infty}^{\infty} \phi^2 \le \int_{-\infty}^{\infty} \phi = 1$ (2) The GD basis functions satisfy

$$\sum_{j=-p}^{p} \left| \int \phi_0(x) \phi_0(x-j) \right| \le 2.$$

(3) For any degree p polynomial u(x),

$$\int_{-\infty}^{\infty} u\phi_i = u(0).$$

Proof. We use symbolic software to verify the first part (1) and (2). The equality in (1) can be shown directly. Because supp $(\phi) = [-(p-1), p-1], \int_{-\infty}^{\infty} \phi(x) =$ $\int_{-(p-1)}^{p-1} \phi(x)$. By the definition of $\phi(x)$,

$$\int_{-(p-1)}^{(p-1)} \phi(x) = \sum_{j=0}^p \int_{I_j} \ell_j(x - x_j) = \int_0^1 \sum_{j=0}^p \ell_j(x) = \int_0^1 1 = 1.$$

To prove (3), we first show that $\int_{-(p-1)}^{p-1} x^k \phi = 0$ for $0 < k \le p$. For k > 0 odd, this holds by the symmetry of $\phi(x)$ across 0. For $0 < k \le p$ even, this condition is equivalent to

$$\int_{-(p-1)}^{p-1} x^k \phi_i(x) = 2 \int_0^{p-1} x^k \phi_i(x) = \sum_{j=0}^a \int_0^1 \ell_j(x) (x-j)^k = 0.$$

which we verify for p = 1, ..., 75 using symbolic software. Then, (3) follows from (1) and a Taylor representation of u(x) around x=0.

$$u(x) = u(0) + u'(0)x + u''(0)x^{2} + \dots + u^{(p)}(0)x^{p}.$$

We conjecture that Lemma 1 holds for all p > 0 odd. A translation and scaling of ϕ then provides the following corollary:

Corollary 1. Let x_i be equispaced points with spacing h, and let $\phi_i(x) = \phi((x - x_j)/h)$ be the GD function at x_i . For any degree p polynomial u(x),

$$\frac{1}{h} \int_{-\infty}^{\infty} u \phi_i = u(x_i).$$

2. Accuracy and energy stability of the lumped GD mass matrix

Using Lemma 1, we can show that the lumped GD mass matrix is high order accurate in the following sense:

Lemma 2. Let \widetilde{M} denote the non-symmetric lumped GD mass matrix. Then, $\widetilde{M}^{-1}Q$ is a (p+1) order accurate approximation to the first derivative.

Proof. Let u(x) be a degree p polynomial with GD coefficients $u_i = u(x_i)$. Since the GD basis can reproduce polynomials of degree p, $\delta u = M^{-1}Qu$ are the GD coefficients of the exact derivative $\frac{\partial u}{\partial x}\Big|_{x_i}$.

The lumped GD mass matrix $\widetilde{\boldsymbol{M}}$ is (p+1) order accurate if $\widetilde{\boldsymbol{M}}\boldsymbol{\delta u} = \boldsymbol{Qu}$ as well. Since $\boldsymbol{\delta u}$ is again polynomial, high order accuracy is ensured if $\boldsymbol{Mu} = \widetilde{\boldsymbol{Mu}}$ for all coefficients \boldsymbol{u} which correspond to polynomials of degree p. Since the boundary rows of \boldsymbol{M} and $\widetilde{\boldsymbol{M}}$ are identical, $(\boldsymbol{Mu})_i = (\widetilde{\boldsymbol{Mu}})_i$ for all indices i corresponding to boundary GD functions. For \boldsymbol{u} polynomial and i corresponding to interior GD functions, Corollary 1 guarantees $(\boldsymbol{Mu})_i = (\widetilde{\boldsymbol{Mu}})_i$.

We now show that, for linear symmetric hyperbolic PDEs, the lumped GD mass matrix preserves semi-discrete energy stability. We assume that there are sufficiently many elements relative to the order p. Then, under a reordering of degrees of freedom, the GD mass matrix M is

$$oldsymbol{M} = egin{bmatrix} oldsymbol{A} & oldsymbol{B} \ oldsymbol{B}^T & oldsymbol{C} \end{bmatrix},$$

where A is the sub-matrix consisting of rows and columns of M corresponding to boundary GD functions, and C is the sub-matrix corresponding to interior GD functions. Since M is SPD, the matrices A, C are also SPD. We assume for simplicity that h = 1, such that the lumped mass matrix \widetilde{M} is

$$\widetilde{M} = egin{bmatrix} A & B \ 0 & I \end{bmatrix}.$$

We require that $x^T \widetilde{M} x$ induces a norm on x, which holds if \widetilde{M} is positive definite. For h = 1, we have the following property of C:

Lemma 3. The maximum eigenvalue of |C| is bounded by 2.

Proof. The proof follows directly from bounding the Rayleigh quotient of |C| and using the banded Toeplitz nature of the matrix. Expanding $u^T |C| u$ out and using

symmetry gives

$$egin{aligned} oldsymbol{u}^T \left| oldsymbol{C}
ight| oldsymbol{u} \leq \sum_{i=0}^K \sum_{j=\max(0,i-p)}^{\min(K,i+p)} \left| oldsymbol{u}_i oldsymbol{u}_j
ight| \left| \int \phi_i \phi_j
ight| \\ \leq \sum_{i=0}^K \left(oldsymbol{u}_i^2 \int \phi_i^2 + 2 \sum_{j=i+1}^{\min(K,i+p)} \left| oldsymbol{u}_i oldsymbol{u}_j
ight| \left| \int \phi_i \phi_j
ight|
ight). \end{aligned}$$

Applying Young's inequality bounds this sum from above by

$$\leq \sum_{i=0}^{K} \left(\boldsymbol{u}_{i}^{2} \int \phi_{i}^{2} + \sum_{j=i+1}^{\min(K,i+p)} \left(\boldsymbol{u}_{i}^{2} + \boldsymbol{u}_{j}^{2} \right) \left| \int \phi_{i} \phi_{j} \right| \right) \\
= \sum_{i=0}^{K} \boldsymbol{u}_{i}^{2} \left(\sum_{j=i}^{\min(K,i+p)} \left| \int \phi_{i} \phi_{j} \right| \right) + \sum_{j=i+1}^{i+p} \boldsymbol{u}_{j}^{2} \left| \int \phi_{i} \phi_{j} \right|.$$

Distributing the terms of the latter sum in (1) yields that

$$egin{aligned} oldsymbol{u}^T \left| oldsymbol{C}
ight| oldsymbol{u} & \leq \sum_{i=0}^K oldsymbol{u}_i^2 \left(\sum_{j=\max(i-p,0)}^{\min(K,i+p)} \left| \int \phi_i \phi_j
ight|
ight) \ & \leq \sum_{i=0}^K oldsymbol{u}_i^2 \left(\sum_{j=-p}^p \left| \int \phi_0 \phi_j
ight|
ight) \leq 2 \sum_{i=0}^K oldsymbol{u}_i^2 = 2 oldsymbol{u}^T oldsymbol{u} \end{aligned}$$

where we have used translation invariance of the interior GD basis functions and property (2) of Lemma 1. $\hfill\Box$

We can then show the following:

Lemma 4. The lumped GD mass matrix \widetilde{M} is positive definite in the sense that

$$0 < \boldsymbol{x}^T \widetilde{\boldsymbol{M}} \boldsymbol{x}, \qquad \forall \boldsymbol{x} \in \mathbb{R}^n, \quad \boldsymbol{x} \neq 0.$$

Proof. Let $\boldsymbol{x} = \left[\boldsymbol{u}, \boldsymbol{v}\right]^T$. Using that $\boldsymbol{u}^T \boldsymbol{C} \boldsymbol{u} \leq \boldsymbol{u}^T \left| \boldsymbol{C} \right| \boldsymbol{u}$ and Lemma 4

$$\begin{aligned} 0 < \boldsymbol{x}^T \boldsymbol{M} \boldsymbol{x} &\leq \boldsymbol{u}^T \boldsymbol{A} \boldsymbol{u} + 2 \boldsymbol{u}^T \boldsymbol{B} \boldsymbol{v} + \boldsymbol{v}^T \left| \boldsymbol{C} \right| \boldsymbol{v} \\ &\leq \boldsymbol{u}^T \boldsymbol{A} \boldsymbol{u} + 2 \boldsymbol{u}^T \boldsymbol{B} \boldsymbol{v} + 2 \boldsymbol{v}^T \boldsymbol{v} \\ &\leq 2 \left(\boldsymbol{u}^T \boldsymbol{A} \boldsymbol{u} + \boldsymbol{u}^T \boldsymbol{B} \boldsymbol{v} + \boldsymbol{v}^T \boldsymbol{v} \right) = 2 \boldsymbol{x}^T \widetilde{\boldsymbol{M}} \boldsymbol{x} \end{aligned}$$

Remark. The bound in Lemma 4 is sufficient to show positive definiteness of the non-symmetric lumped GD mass matrix. However, numerical experiments indicate that the maximum eigenvalue λ_{\max} of C achieves a tighter bound $\lambda_{\max} \leq 1$ for all p and K tested.

Ideally, the norms induced by M and \widetilde{M} should also be equivalent and induce equivalent measures of energy. Numerical experiments that this is indeed the case.