<pre>import warnings # ignore warnings import pandas as pd # data manipulation import numpy as np # linear algebra import matplotlib.pyplot as plt # plots import seaborn as sns # plots warnings.filterwarnings("ignore") Load Datset</pre>
LOAG Datset In []: df=pd.read_csv("/content/drive/MyDrive/Datasets/insurence_clearv2.csv") In []: df.head() In []: age sex bmi children smoker region charges medical_problem 0
3 32 male 28.880 0 no northwest 3866.85520 light 4 31 female 25.740 0 no southeast 3756.62160 light def dataset(): return df.drop(["charges"], axis="columns"), df.charges.values X, y=dataset()
Split data In []: from sklearn.model_selection import train_test_split X_train, X_test, Y_train, Y_test=train_test_split(X,
Data preprocessing • MinMaxScaler It consists of adjusting the data on a scale from 0 to 1. With the aim that the variables are comparable to each other. • OneHotEncoding It is used for qualitative variables. For example the geographical location or the color of a car. It consists of creating several fictitious variables according to the number of categorical variables. Where a 1 is indicated if said observation belongs to the class. It's similar thing with truth tables if you're familiar with programming.
Data transform from sklearn.preprocessing import MinMaxScaler,OneHotEncoder from sklearn.compose import make_column_transformer from sklearn.pipeline import Pipeline
tf_columnns=make_column_transformer((MinMaxScaler(), ["age", "bmi", "children"]),
• Underfitting: It is due to the lack of variables; therefore, it does not perform well with training and validation data. Due to the lack of variables to consider.
 Perfect Fit: The model yielded excellent results for both the training and validation data. Overfitting: Occurs due to outliers and an excessive number of variables. where the model performs well for the training data. But it is unable to adapt to data that it has never seen. Linear Regression
-20 -10 10 20 30 40 50 60
A simple linear regression consists of finding the best straight line that fits the set of data. Its mathematical formula is the following: $y = mx + b$ • y the variable to predict • m represents the variable • x the weight of the coefficient • x the intercept But in this case we will use a multiple linear regression model, where the best hyperplane that fits the data will be found. Because we are dealing with 2 or more predictor variables.
The formula is very similar to the simple one with the difference that more coefficients are added accordingly to the number of variables. It has the advantage that it is easy to interpret. It has the disadvantage of requiring a scale adjustment so that the variables can be compared with each other. [1]: [In [1]:
<pre>return Pipeline([("transform",tf_colummns),("model",model)]) in []:</pre>
ColumnTransformer(transformers=[('minmaxscaler',
O.9716253882910304 Im_pipeline.score(X_test,Y_test) # evaluate with test data Out[]: 0.9739106480840141 Ideal Selection of Numbers of Estimators
← Underfitting Overfitting → Best Fit Test Error
Model "complexity"
We will use the MSE (mean square error) as a metric, which measures the average error between the value predicted by the model and the original value. It is very sensitive to outliers, which gives us a more realistic view of the error between predictions. Also, in the Characteristics Engineering section, I was in charge of treating outliers, which is why I consider it to be a good metric. We will use this metric to select the ideal range of number of estimators for the GradientBoosting and XGBoost algorithms. • We select the ideal range of estimators that does not show symptoms of overfitting, where it reaches a point where the model only improves on the training data. While for the test ones there is no significant improvement, for which there is no reason to use more estimators, if the no longer a significant improvement.
from sklearn.metrics import mean_squared_error Assembler Algorithms Assembler + + + + + + + + + + + + + + + + + + +
ELJ.
Iterations
They are trees that use weak algorithms, usually decision trees. For GradientBoosting and XGBOOST, each estimator becomes stronger, according to the learning rate provided by the user. Where the predictions are established, to the total average of estimators. They have the advantage that they do not require preprocessing of variables, in this case we will do it to use the same scale as Linear Regression. Gradient Boosting from sklearn.ensemble import GradientBoostingRegressor
<pre>def evaluate(max_depth,lr): estimator_list=[] mse_train_list=[] mse_test_list=[] estimators=np.arange(100,1000, step=2) for estimators in estimators.</pre>
<pre>estimators=np.arange(100,1000,step=2) for estimator in estimators: model=GradientBoostingRegressor(max_depth=max_depth,n_estimators=estimator,learning_rate=1r,random_state=42) model=pipeline_model(model) model.fit(X_train,Y_train) pred_train=model.predict(X_train) pred_test=model.predict(X_test)</pre>
<pre>mse_train=mean_squared_error(Y_train, pred_train) mse_test=mean_squared_error(Y_test, pred_test) estimator_list.append(estimator) mse_test_list.append(mse_test) mse_train_list.append(mse_train)</pre>
return estimator_list,mse_test_list,mse_train_list def dataframe_evaluate_trees(max_depth,lr): n_trees,mse_test,mse_train=evaluate(max_depth=max_depth,lr=lr)
df_evaluate=pd.DataFrame({"n_trees": n_trees, "mse_test":mse_train":mse_train}) return df_evaluate first_evaluete_gbr=dataframe_evaluate_trees(max_depth=3,lr=0.01) second_evaluete_gbr=dataframe_evaluate_trees(max_depth=4,lr=0.01)
Ideal number of estimators def estimators_plot(df_evaluate_1, df_evaluate_2): fig, (ax, ax_1)=plt.subplots(1, 2, figsize=(20, 8))
<pre>ax.set_title("Max depth 3 ") ax.plot(df_evaluate_1["n_trees"],df_evaluate_1["mse_train"],label="Train MSE") ax.plot(df_evaluate_1["n_trees"],df_evaluate_1["mse_test"],label="Test MSE") ax.set_xlabel("n_estimators") ax.set_ylabel("mse") ax_1.set_title("Max depth 4") ax_1.plot(df_evaluate_2["n_trees"],df_evaluate_2["mse_train"],label="Train MSE")</pre>
<pre>ax_1.plot(df_evaluate_2["n_trees"],df_evaluate_2["mse_train"],label="Train MSE") ax_1.plot(df_evaluate_2["n_trees"],df_evaluate_2["mse_test"],label="Test MSE") ax_1.set_xlabel("n_estimators") ax_1.set_ylabel("mse") plt.show()</pre> sns.set_style(style="whitegrid")
estimators_plot(first_evaluete_gbr, second_evaluete_gbr) 1e7
0.5
With a maximum depth of 3 there are fewer symptoms of overfitting, that is, the model is only good for training data, while for test data it does not perform well. A good range of estimators to select is between 320 and 360, since from this amount the MSE does not drastically decrease for the test data, while for the training data it does decrease, which can cause an overfitting. It is n_trees mse_test mse_train 115 330 3.710098e+06 3.227366e+06
116 332 3.692500e+06 3.208361e+06 117 334 3.676926e+06 3.190123e+06 118 336 3.660602e+06 3.171630e+06 119 338 3.644864e+06 3.154494e+06 120 340 3.630640e+06 3.137665e+06 121 342 3.616476e+06 3.120526e+06 122 344 3.602911e+06 3.104378e+06
123 346 3.590603e+06 3.088128e+06 124 348 3.576738e+06 3.071852e+06 125 350 3.564482e+06 3.056335e+06 126 352 3.550895e+06 3.041616e+06 127 354 3.540603e+06 3.027025e+06 128 356 3.527899e+06 3.012596e+06 129 358 3.517946e+06 2.998698e+06
130 360 3.506375e+06 2.984852e+06 Starting from the estimator number 356 there is no longer an improvement for the test data. gbr=GradientBoostingRegressor(max_depth=3, learning_rate=0.01, n_estimators=356,
random_state=42) []: gbr_pipeline=pipeline_model(gbr) []: gbr_pipeline.fit(X_train, Y_train) []: Pipeline(steps=[('transform',
ColumnTransformer(transformers=[('minmaxscaler',
GradientBoostingRegressor(learning_rate=0.01, n_estimators=356, random_state=42))]) []: gbr_pipeline.score(X_train,Y_train) # evaluate with training data []: 0.9784300549237774 []: gbr_pipeline.score(X_test,Y_test) # evaluate with test data
XGBOOST It has the advantage of using GPUs for training, so it creates training faster than other algorithms. from xgboost import XGBRegressor
Selection number of estimators XGBOOST def evaluate(max_depth,lr): estimator_list=[] mse_train_list=[] mse_test_list=[]
<pre>estimators=np.arange(100,1000,step=2) for estimator in estimators: model=XGBRegressor(max_depth=max_depth,n_estimators=estimator,learning_rate=lr,random_state=42,verbosity=0) model=pipeline_model(model) model.fit(X_train,Y_train)</pre>
<pre>pred_train=model.predict(X_train) pred_test=model.predict(X_test) mse_train=mean_squared_error(Y_train, pred_train) mse_test=mean_squared_error(Y_test, pred_test) estimator_list.append(estimator) mse_test_list.append(mse_test)</pre>
return estimator_list.append(mse_train) return estimator_list,mse_test_list,mse_train_list first_evaluete_xgb=dataframe_evaluate_trees(max_depth=3,1r=0.01) second_evaluete_xgb=dataframe_evaluate_trees(max_depth=4,1r=0.01)
estimators_plot(first_evaluete_xgb, second_evaluete_xgb) 1e7
Again with a maximum depth of 3 it will generate better results. The ideal number of trees is between 580 and 600 . Since starting from this quantity there is no significant improvement for the test data. We can allow ourselves the opportunity to use more estimators and not appreciate curve of the overfitting graph. Something that generates a lower MSE since more decision trees were used. If irst_evaluete_xgb.query("n_trees>=580 and n_trees<=600") In terms
240 580 3.010465e+06 2.374972e+06 241 582 3.008327e+06 2.376695e+06 242 584 3.006988e+06 2.368437e+06 243 586 3.005550e+06 2.365191e+06 244 588 3.004151e+06 2.362489e+06 245 590 3.003320e+06 2.359925e+06 246 592 3.002089e+06 2.357800e+06
247 594 3.000733e+06 2.355108e+06 248 596 2.99986e+06 2.351711e+06 249 598 2.999690e+06 2.349483e+06 250 600 2.999683e+06 2.347129e+06 We use a quantity of 596, since starting from this quantity there is no significant improvement. That justifies the use of more estimators. xgb_reg=XGBRegressor(max_depth=3,
learning_rate=0.01,
<pre>xgb_pipeline.fit(X_train,Y_train) # train model pipeline(steps=[('transform',</pre>
<pre>'medical_problem'])]), ('model', XGBRegressor(learning_rate=0.01, n_estimators=596,</pre>
xgb_pipeline.score(X_test,Y_test) # evaluation with test data o.9795791427981901 from sklearn.metrics import r2_score from sklearn.model_selection import cross_val_score class Evaluete():
<pre>definit(self,model,X_data,y_true): self.X_data=X_data self.y_true=y_true self.model=model</pre>
<pre>self.model_model.predict(self.X_data) def mse(self): return mean_squared_error(self.y_true, self.predict) def r2(self):</pre>
<pre>def r2(self): return r2_score(self.y_true, self.predict) def cv_score(self): return cross_val_score(self.model, self.X_data, self.y_true, cv=10).mean()</pre>
<pre>metrics_lm_train=Evaluete(lm_pipeline, X_train, Y_train) metrics_gbr_train=Evaluete(gbr_pipeline, X_train, Y_train) metrics_xgb_train=Evaluete(xgb_pipeline, X_train, Y_train) metrics_lm_test=Evaluete(lm_pipeline, X_test, Y_test) metrics_gbr_test=Evaluete(gbr_pipeline, X_test, Y_test)</pre>
<pre>metrics_gbr_test=Evaluete(gbr_pipeline, X_test, Y_test) metrics_xgb_test=Evaluete(xgb_pipeline, X_test, Y_test) MSE Measures the average error between the original and predicted values. []: mse_lm_train=metrics_lm_train.mse()</pre>
<pre>mse_Im_test=metrics_lm_test.mse() mse_gbr_train=metrics_gbr_train.mse() mse_gbr_test=metrics_ybr_test.mse() mse_xgb_train=metrics_xgb_train.mse() mse_xgb_test=metrics_xgb_test.mse()</pre>
It measures the degree of fit between the original value and the predictions. The closer it is to 1, the closer the original and predicted values will be. r2_lm_train=metrics_lm_train.r2() r2_lm_test=metrics_lm_test.r2()
r2_gbr_train=metrics_gbr_train.r2() r2_gbr_test=metrics_gbr_test.r2() r2_xgb_train=metrics_xgb_train.r2() r2_xgb_test=metrics_xgb_test.r2() Cross Validation
It measures the degree of generalization of the model. It divides the data into several subsets by the amount said by the user. To subsequently obtain the average value of generalization. []: cv_lm_test=metrics_lm_test.cv_score() cv_gbr_test=metrics_gbr_test.cv_score() cv_xgb_test=metrics_xgb_test.cv_score()
Dataframe evaluation []: models_names=["Linear Regression", "Gradient Boosting", "XGBOOST"] mse_train=[mse_lm_train, mse_gbr_train, mse_xgb_train] mse_test=[mse_lm_test, mse_gbr_test, mse_xgb_test] r2 train=[r2 lm train r2 qbr train r2 ygb train]
<pre>r2_train=[r2_lm_train, r2_gbr_train, r2_xgb_train] r2_test=[r2_lm_test, r2_gbr_test, r2_xgb_test] cv=[cv_lm_test, cv_gbr_test, cv_xgb_test] evaluate_df=pd.DataFrame({"Model":models_names,</pre>
<pre>"MSE test":mse_test, "R2 train":r2_train, "R2 test":r2_test, "CV":cv})</pre>
t[]: Model MSE train MSE test R2 train R2 test CV
Model MSE train MSE test R2 train R2 test CV
Model MSE train MSE test R2 train R2 test CV
Model MSE train MSE test R2 train R2 test CV
Model MSE train MSE test R2 train R2 test CV 0 Lines Regiession 1.8628798-06 3.012596-06 0.975825 0.973811 0.965699 1 Cradent Ecossing 3.012596-06 3.527290-06 0.975825 0.979619 0.975825 0.979629 0.97583 2 XGROCHT 2.53171H-06 2.969866-06 0.983157 0.979679 0.974445 Fig. (ax_bar_1, ax_bar_2)=plt.subplots(1, 2, figsize=(20, 8)) ax_bar_1.sel_title("Train MSE") sns.barplot(data=evaluate df, x="Model", y="MSE train", palette="Set2", ax=ax bar 1) ax bar 2.set title("Test MSE") sns.barplot(data=evaluate df, x="Model", y="MSE test", palette="Set2", ax=ax bar 2) plt.show() 1e6 Train MSE
Model Militaria Militari
Much MCE time McCount Results Street Result CV I Inval Newson 1000 900000 100 900000 100 90000 100 90000 100 90000 100 90000 100 90000 100 90000 100 90000 100 90000 100 90000 100 90000 100 90000 100 90000 100 90000 100 90000 100 90000 100 90000 100 90000 100 90000 100 900000 100 900000 100 900000 100 90000 100 90000 100 900000 100 90000 100 90000 100 90000 100 90000 100 90000 100 90
Wild Michael Michael State Rate (State EV) 6 Undergrown ADDRESS 201155 of 20125 (2013) (2014) 1 Section Michael State (State Control State Control State (State Control State Control State Control State (State Control State Control State Control State (State Control State Control
Wind Previous Memory and Memory and Previous Constitution
Section Services and Services of Services (Services) I described to 12000 to 12000 to 12000 (12000
The Control of Section Section Section Control of Section Sect
The state of the s

Load Libraries