Waveform Generators

- In the design of electronic systems, the need for signals having standard waveforms sinusoidal, square, triangular, or pulse.
- Systems like computer and control systems require standard signals i.e. clock pulses are needed for timing.
- Communication systems where signals of a variety of waveforms are utilized as information carriers.
- Test and measurement systems where signals, a variety of waveforms, are employed for testing and characterizing electronic devices and circuits.

Waveform Generators

- Sinusoidal Waveform
 - for the generation of sinusoids a **positive-feedback loop** consisting of an amplifier and an RC **frequency-selective network**.
- Generating square, triangular, pulse (etc.) waveforms
 - employ circuit building blocks known as multivibrators.
 - They are three types: the **bistable**, the **astable**, and the **monostable**.

Basic Principles of Sinusoidal Oscillators

 The basic structure of a sinusoidal oscillator consists of an amplifier and a frequency-selective network connected in a positive-feedback loop

Condition for Oscillation

The characteristic equation is

$$1 - L(s) = 0$$

- If at a specific frequency f_0 the loop gain $L = A\beta$ is equal to unity, it follows from that A_f will be infinite.
- That is, at this frequency the circuit will have a finite output for zero input signal. Such a circuit is called as "Oscillator".
- Thus the condition for the feedback loop to provide sinusoidal oscillations of frequency ω_0 is

$$L(j\omega_0) \equiv A(j\omega_0)\beta(j\omega_0) = 1$$

Wien-Bridge Oscillator

- The circuit consists of an op amp connected in the noninverting configuration, with a closed-loop gain of $A = 1 + R_2/R_1$.
- In the feedback path, RC network is connected
- Feedback factor β is given by,

$$\beta = \frac{V_a}{V_o} = \frac{Z_p}{Z_p + Z_p}$$

Analysis

• Impedance of the RC parallel combination

$$Z_{p} = \frac{1}{Y_{p}} = \frac{1}{\frac{1}{R} + j\omega c} = \frac{R}{1 + j\omega RC}$$

Impedance of the RC series combination

$$Z_s = \frac{1}{j\omega c} + R = \frac{1 + j\omega RC}{j\omega C}$$

Hence the feedback factor is

$$\beta = \frac{Z_p}{Z_p + Z_s} = \frac{j\omega RC}{1 - (\omega RC)^2 + j3\omega RC}$$

$$Z_{p} + Z_{s} = \frac{1 - (\omega RC)^{2} + j3\omega RC}{j\omega C (1 + j\omega RC)}$$

Analysis

For the circuit to have oscillations,

$$A\beta = 1$$

• Since A is a real quantity, β must also be a real quantity, hence

$$1 - \left(\omega RC\right)^2 = 0$$

Thus the frequency of oscillation is,

$$f = \frac{1}{2\pi RC}$$

• Then $\beta = 1/3$, leading to A = 3, (since A = 1+ R_2/R_1), $R_2 = 2R_1$.

Example:

• Determine the maximum and minimum frequency of oscillations of a **Wien Bridge Oscillator** circuit having a resistor of $10k\Omega$ and a variable capacitor of 1nF to 1000nF.

Regenerative Comparator

- V_i applied at (-) input terminal and feedback voltage to the (+) input terminal.
- V_i triggers the output Vo every time it exceeds the certain voltage level.
- The voltage levels are called upper (lower) threshold voltage $V_{UT}(V_{LT})$.
- V_{UT} V_{LT} is referred as hysteresis width

Computing Upper Threshold voltages (V_{UT})

- Let Vo = +Vsat: to determine 'Va' i.e. V_{UT} , use superposition
- Case 1: Assuimg $V_{ref} = 0$, voltage across " R_2 " will be $V_a = V_{UT} = \frac{R_2}{R_1 + R_2} V_{sat}$
- Case 2: By considering $V_0 = 0$, then voltage across R_1 will be V_0

$$V_a = \frac{R_1}{R_1 + R_2} V_{ref}$$

By combining the above two cases,

$$V_{UT} = \frac{R_1}{R_1 + R_2} V_{ref} + \frac{R_2}{R_1 + R_2} V_{sat}$$

Computing Lower Threshold voltage (V_{LT})

- Let Vo = -Vsat: to determine V_a i.e. V_{LT} , again use superposition
- Case 1: Assuimg V_{ref} = 0, voltage across "R₂" will be,

$$V_a = -\frac{R_2}{R_1 + R_2} V_{sat}$$

• Case 2: By considering $V_0 = 0$, then voltage across R_1 will be,

$$V_a = \frac{R_1}{R_1 + R_2} V_{ref}$$

By combining the above two cases,

$$V_{LT} = \frac{R_1}{R_1 + R_2} V_{ref} - \frac{R_2}{R_1 + R_2} V_{sat}$$

Asymmetric Square wave

Hysteresis width is

$$V_H = \frac{2R_2}{R_1 + R_2} V_{sat}$$

- Further, if the ref voltage is zero, then symmetric square wave can be obtained.
- Application:
 - slow varying input can be converted in square wave output.
 - Superior to simple zero crossing detector circuit.

Example:

• In the given circuit of Schmitt trigger, $R_2 = 100 \,\Omega$, $R_1 = 50 \,K\Omega$, $V_{ref} = 0 \,V$, $V_{ref} = 100 \,V$, $V_{ref} = 1$

$$V_{UT} = +\frac{R_2}{R_1 + R_2} V_{sat} = 28mV$$

$$V_{H} = \frac{2R_2}{R_1 + R_2} V_{sat} = -56mV$$

$$V_{LT} = -\frac{R_2}{R_1 + R_2} V_{sat} = -28mV$$