

MODEL ODPOWIEDZI I SCHEMAT OCENIANIA KONKURS CHEMICZNY DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH WOJEWÓDZTWA MAZOWIECKIEGO

ETAP REJONOWY 2021/2022

Uczeń maksymalnie może zdobyć 40 punktów.

OGÓLNE UWAGI DOTYCZĄCE OCENIANIA:

- 1. Każdy poprawny sposób rozwiązania przez ucznia zadań powinien być uznawany za prawidłowy i oceniany maksymalną liczbą punktów.
- 2. Treść i zakres odpowiedzi ucznia powinny wynikać z polecenia i być poprawne pod względem merytorycznym i wyczerpujące.
- 3. Do zredagowania odpowiedzi uczeń używa poprawnej i powszechnie stosowanej terminologii naukowej. Nie punktuje się odpowiedzi niejednoznacznych.
- 4. Jeżeli w jakiejkolwiek części rozwiązania zadania uczeń przedstawia więcej niż jedną metodę i zawiera ona błąd, nie uznaje się wówczas rozwiązania zadania w tej części.
- 5. Za odpowiedzi w zadaniach przyznaje się wyłącznie punkty całkowite. Nie stosuje się punktów ułamkowych.
- 6. Jeśli w odpowiedzi do zadania znajdują się dwie odpowiedzi: poprawna i niepoprawna, to uczeń nie otrzymuje punktu za to zadanie.
- 7. Wykonywanie obliczeń na wielkościach fizycznych powinno odbywać się z zastosowaniem rachunku jednostek.

ODPOWIEDZI I ROZWIĄZANIA ZADAŃ

Zadania 1.- 8. (0-9)

1	2	3	4	5	6	7.1	7.2	8.
A	D	A	A	D	В	A	D	A

Za każdą poprawną odpowiedź – 1 pkt

Zadanie 9. (0-3)

9,7 % H₃PO₄

Obliczenie początkowej masy kwasu H₃PO₄ w roztworze:

 $200 \text{ g roztworu} \cdot 6,08\% = 12,16 \text{ g H}_3PO_4$

Obliczenie masy kwasu H₃PO₄ powstałego w reakcji P₄O₁₀ z wodą:

284 g
$$P_4O_{10}$$
 — 4 · 98 g H_3PO_4
5,68 g P_4O_{10} — x , $x = 7.84$ g

Obliczenie sumarycznej masy kwasu H₃PO₄ w roztworze:

$$12,16 g + 7,84 g = 20 g H_3 PO_4$$

Obliczenie stężenia procentowego kwasu H₃PO₄:

$$200 \text{ g roztworu} + 5,68 \text{ g } P_4O_{10} = 205,68 \text{ g roztworu}$$

$$C_p = (20 \text{ g} : 205,68 \text{ g}) \cdot 100\% = 9,72\% \approx 9,7\%$$

Za poprawną metodę i poprawne obliczenie stężenia procentowego kwasu oraz podanie wyniku z poprawną jednostką i odpowiednim zaokrągleniem – 3 pkt
Za poprawną metodę i poprawne obliczenie stężenia procentowego kwasu oraz podanie wyniku z błędną jednostką (lub bez jednostki) i/lub nieodpowiednim zaokrągleniem – 2 pkt
Za podanie błędnego wyniku będącego efektem błędu obliczeniowego, ale zastosowanie poprawnej metody (podanie poprawnych jednostek, odpowiednie zaokrąglenie wyniku) – 2 pkt
Za poprawne obliczenie sumarycznej masy kwasu, bez obliczenia stężenia kwasu – 2 pkt
Za poprawne obliczenie jedynie początkowej masy kwasu w roztworze – 1 pkt
Za podanie poprawnego wyniku ale zastosowanie niepoprawnej metody – 0 pkt
Za brak odpowiedzi lub podanie niepoprawnego wyniku – 0 pkt

Zadanie 10. (0-1)

	Doświadczenie I.	Doświadczenie II.	Doświadczenie III.	Doświadczenie IV.
Metal	Mn	Ni	Cu	Ca
Temperatura początkowa	23 °C			
Temperatura końcowa	47 °C	39 °C	23 °C	71 °C
Zmiana temperatury	(+) 24 °C	(+) 16 °C	0 °C (brak zmiany)	(+)48 °C

Za poprawne wypełnienie wszystkich wierszy tabeli -1 pkt Za błędne wypełnienie wierszy tabeli -0 pkt

Zadanie 11. (0-1)

Przeprowadzone reakcje były procesami egzotermicznymi, ponieważ wydzieliło się w ich trakcie ciepło (energia na sposób ciepła)

Za podanie poprawnej odpowiedzi oraz poprawne jej uzasadnienie – 1 pkt Za dobrą odpowiedź ale błędne jej uzasadnienie – 0 pkt Za błędną odpowiedź i błędne jej uzasadnienie – 0 pkt

Zadanie 12. (0-1)

$Me + 2HCl \rightarrow MeCl_2 + H_2$

Za podanie poprawnego, zbilansowanego równania reakcji – 1 pkt Za poprawne równanie ale błędnie zbilansowane – 0 pkt Za niepoprawne równanie – 0 pkt

Zadanie 13. (0-1)

Miedź jest metalem (pół)szlachetnym i nie reaguje z kwasami (kwasami słabo utleniającymi / kwasami beztlenowymi)

lub

Miedź jest mniej aktywna od wodoru (znajduje się za wodorem w szeregu aktywności metali), więc nie wypiera wodoru z roztworów kwasów

Za poprawne wyjaśnienie odpowiedzi -1 pkt Za błędne wyjaśnienie lub brak odpowiedzi -0 pkt

Zadanie 14. (0-1)

Ca, Mn, Ni, Cu

Za prawidłową kolejność metali – 1 pkt Za błędną kolejność metali – 0 pkt Za brak odpowiedzi – 0 pkt

Zadanie 15. (0-1)

Reakcja nie jest możliwa, gdyż nikiel nie jest aktywniejszy od manganu, (więc nie wyprze go z roztworu jego soli)

lub

Reakcja nie jest możliwa, gdyż nikiel leży prawo od manganu w szeregu aktywności metali

Za poprawną ocenę i poprawne uzasadnienie – 1 pkt Za błędną ocenę i/lub błędne uzasadnienie – 0 pkt

Zadanie 16. (0-1)

NOHSO₄

Za podanie poprawnego wzoru – 0 pkt Za brak wzoru lub za wzór niepoprawny – 0 pkt

Zadanie 17. (0-1)

$$MgCO_3 + 2H^+ \longrightarrow Mg^{2+} + CO_2 + H_2O$$

Za poprawne, zbilansowane równanie reakcji – 1 pkt Za poprawne równanie reakcji ale błędnie zbilansowane – 0 pkt Za błędne równanie reakcji – 0 pkt

Zadanie 18. (0-2)

183,2 cm³ roztworu H₂SO₄

$$MgCO_3 + H_2SO_4 \rightarrow MgSO_4 + CO_2 + H_2O$$

Obliczenie masy kwasu:

84 g MgCO₃ — 98 g H₂SO₄
16,8 g MgCO₃ —
$$x$$

 $x = 19,6$ g

Obliczenie masy roztworu H₂SO₄:

$$19,6 \text{ g H}_2\text{SO}_4: 10\% = 196 \text{ g roztworu}$$

Obliczenie objętości roztworu H₂SO₄:

196 g roztworu : 1,07 g·cm⁻³ = 183,2 cm³ roztworu

Za poprawną metodę, poprawne obliczenia i poprawny wynik wraz z jednostką -2 pkt Za poprawne obliczenie jedynie masy kwasu -1 pkt

Za podanie błędnego wyniku będącego efektem błędu obliczeniowego, ale zastosowanie poprawnej metody – 1 pkt

Za podanie błędnego wyniku, zastosowanie błędnej metody lub brak odpowiedzi – 0 pkt

Zadanie 19. (0-1)

D, F, E, B, C, A

Za podanie poprawnej kolejności etapów – 1 pkt Za podanie błędnej kolejności – 0 pkt

Zadanie 20.1. (0-1)

Uczeń chciał mieć pewność, że cała masa wody krystalizacyjnej odparowała

Za poprawne podanie uzasadnienia – 1 pkt Za błędne uzasadnienie – 0 pkt

Zadanie 20.2. (0-2)

$$x = 7$$

Obliczenie masy hydratu:

$$46,211 \text{ g} - 21,564 \text{ g} = 24,647 \text{ g}$$

Obliczenie masy MgSO₄:

$$33,601 - 21,564 g = 12,037 g$$

Obliczenie masy wody:

$$24,647 \text{ g} - 12,037 \text{ g} = 12,610 \text{ g}$$

Obliczenie ilości (wyrażonej w molach) MgSO₄ i H₂O

 $n_{\text{MgSO4}} = 12,037 \text{ g} : 120 \text{ g} \cdot \text{mol}^{-1} \approx 0.1 \text{ mol}$

 $n_{\rm H2O} = 12,610 \text{ g} : 18 \text{ g} \cdot \text{mol}^{-1} \approx 0,7 \text{ mol}$

 $n_{\text{MgSO4}}: n_{\text{H2O}} = 0.1:0.7 = 1:7$, stad **MgSO**₄·7H₂O

Za poprawną metodę, poprawne obliczenia i poprawny wynik – 2 pkt

Za podanie błędnego wyniku będącego efektem błędu obliczeniowego, ale zastosowanie poprawnej metody – 1 pkt

Za podanie poprawnego wyniku, lecz zastosowanie błędnej metody lub brak odpowiedzi – 0 pkt

Zadanie 20.3. (0-2)

- 1. Zawyżona
- 2. Brak wpływu
- 3. Zaniżona
- 4. Brak wpływu

Za cztery poprawne oceny – 2 pkt
Za trzy lub dwie poprawne oceny – 1 pkt
Za jedną poprawną ocenę, brak poprawnych ocen lub brak odpowiedzi – 0 pkt

Zadanie 21. (0-1)

 \mathbf{C}

Za wskazanie poprawnej odpowiedzi – 1 pkt Za wskazanie niepoprawnej odpowiedzi – 0 pkt

Zadanie 22. (0-1)

1P

2F

Za poprawną ocenę dwóch zdań – 1 pkt Za poprawną ocenę jednego zdania lub nieudzielenie odpowiedzi – 0 pkt

Zadanie 23. (0-2)

Równanie reakcji 1: $2Zn(BrO_3)_2 \rightarrow 2ZnO + 2Br_2 + 5O_2$

Równanie reakcji 2: $Ba_3N_2 + 6H_2O \rightarrow 3Ba(OH)_2 + 2NH_3$

Za podanie dwóch zbilansowanych równań reakcji -2 pkt Za podanie jednego zbilansowanych równania reakcji -1 pkt Za podanie niezbilansowanych równań reakcji -0 pkt Za brak poprawnych równań -0 pkt

Zadanie 24. (0-2)

Obserwacje	Wnioski		
Kawałek sodu porusza się	Sód ma gęstość mniejszą od gęstości wody		
po powierzchni wody i	i / lub		
stopniowo zmniejsza się	Sód reaguje z wodą		
	W wyniku reakcji powstaje roztwór o odczynie		
Roztwór w krystalizatorze	zasadowym		
zabarwia się na malinowo.	i / lub		
	powstaje wodorotlenek (sodu)/zasada		
Wydziela się bezbarwny			
gaz, który spala się z	W reakcji powstaje wodór		
charakterystycznym dźwiękiem.			
D (1 (1)	W reakcji wydziela się energia na sposób ciepła		
Roztwór w krystalizatorze	i/lub		
ogrzewa się.	reakcja sodu z wodą jest egzotermiczna		

Za podanie czterech poprawnych wniosków – 2 pkt Za podanie trzech lub dwóch poprawnych wniosków – 1 pkt Za odpowiedź nie spełniającą powyższych kryteriów – 0 pkt

Zadanie 25. (0-1)

$$S^{2-} + Cu^{2+} \rightarrow CuS$$

Za podanie poprawnego, zbilansowanego równania reakcji – 1 pkt Za brak odpowiedzi lub błędne równanie reakcji – 0 pkt

Zadanie 26.1. (0-1)

Ponieważ przereagowała całkowita ilość siarczku sodu.

lub

Ponieważ w roztworze nie było już siarczku sodu.

lub

inna poprawna merytorycznie odpowiedź, wskazująca na to, że reagentem limitującym / ograniczającym (determinującym masę otrzymanego osadu) w omawianej reakcji był siarczek sodu.

Za poprawne uzasadnienie – 1 pkt Za błędne uzasadnienie – 0 pkt

Zadanie 26.2. (0-1)

 \mathbf{C}

Za wskazanie poprawnego rysunku – 1 pkt Za wskazanie niepoprawnego rysunku lub brak odpowiedzi – 0 pkt

Zadanie 26.3. (0-1)

B

Za wskazanie poprawnego wykresu – 1 pkt Za wskazanie niepoprawnego wykresu lub brak odpowiedzi – 0 pkt

Zadanie 27.1. (0-1)

KOH(aq)

Obserwacje w probówce 1.	Obserwacje w probówce 2.		
Brak zmian	Osad roztwarza się (rozpuszcza się, znika)		

Za poprawne wskazanie wzoru odczynnika i podanie poprawnych obserwacji – 1 pkt Za odpowiedź niespełniającą powyższych kryteriów – 0 pkt

Zadanie 27.2 (0-1)

Równanie reakcji wybranego odczynnika z Mg(OH)₂:

Reakcja nie zachodzi

Równanie reakcji wybranego odczynnika z Zn(OH)₂:

$$2KOH + Zn(OH)_2 \rightarrow K_2[Zn(OH)_4]$$

Za poprawne wskazanie braku reakcji w przypadku $Mg(OH)_2$ i poprawne (zbilansowane) równanie reakcji $Zn(OH)_2$ z KOH-1 pkt Za odpowiedź niespełniającą powyższych kryteriów – 0 pkt