Proposition 1. Let $\kappa: \mathcal{X} \to \mathcal{Y}$ be a probability kernel and $\mu \in \mathcal{P}(\mathcal{X})$. Then $\kappa(B \mid x)\delta_x(A) =$ $\kappa \delta_x(A \times B)$ for all $A \in \Sigma_{\mathcal{X}}$ and $B \in \Sigma_{\mathcal{Y}}$.

Proof. This is straight from definition.

Proposition 2. Let $f_1: \mathcal{X}_1 \to \overline{\mathbb{R}}, f_2: \mathcal{X}_2 \to \overline{\mathbb{R}}, \dots$ are measurable. Then

$$f: \prod_{i} \mathcal{X}_{i} \to \overline{\mathbb{R}}$$

$$f: \prod_{i} \mathcal{X}_{i} \to \overline{\mathbb{R}}$$

$$(x_{1}, x_{2}, \dots) \mapsto \limsup_{n \to \infty} \sum_{i=1}^{n} f_{i}(x_{i})$$

is measurable.

Proof. $\sum_{i=1}^{n} f_i \circ c_i$ is measurable since it is a composition of projections, the f_i s and summation which are all measurable.