OSNOVE UMETNE INTELIGENCE 2022/23

verjetnostno sklepanje z bayesovskimi mrežami odvisnosti in neodvisnosti pri sklepanju ekvivalenca bayesovskih mrež

Pridobljeno znanje s prejšnjih predavanj

razporejanje opravil

- časovne omejitve, resursi
- razširitev PDDL za zapis akcij s trajanji in rabo resursov (DURATION, CONSUME, USE)
- izračun kritične poti, najbolj zgodnjega začetka (ES), najbolj poznega začetka (LS), časovne rezerve (slack)
- upoštevanje resursov vodi v kombinatoričen problem, možen je hevrističen algoritem
- algoritem najmanjše časovne rezerve

verjetnostno sklepanje z bayesovskimi mrežami

- definicija z popolno verjetnostno porazdelitvijo
- definicija s pogojnimi verjetnostmi dogodkov, izračun verjetnosti dogodkov

Izračun verjetnosti dogodka

- s pogojnimi verjetnostmi preprosteje izračunamo verjetnost dogodka iz popolne verjetnostne porazdelitve
- primer: kakšna je verjetnost $P(V \sim St \ Se \ A \ K)$? $P(V \sim St \ Se \ A \ K) = P(V) \cdot P(\sim St \ Se \ A \ K|V) = P(V) \cdot P(\sim St \ |V) \cdot P(Se|V \sim St) \cdot P(A|V \sim St \ Se) \cdot P(K|V \sim St \ Se \ A)$
- zaradi neodvisnosti, podanih v mreži, velja:

$$P(\sim St|V) = P(\sim St)$$

$$P(A|V \sim St Se) = P(A|Se)$$

$$P(K|V \sim St Se A) = P(K|Se)$$

torej:

$$P(V \sim St \ Se \ A \ K) = P(V) \cdot P(\sim St \ Se \ A \ K|V) =$$

= $P(V) \cdot P(\sim St) \cdot P(Se|V \sim St) \cdot P(A|Se) \cdot P(K|Se)$
= $0.001 \cdot 0.98 \cdot 0.9 \cdot 0.95 \cdot 0.9 = 0.00075$

v splošnem velja:

$$P(X_1 X_2 \dots X_n) = \prod_{i=1}^n P(X_i | star\check{s}i(X_i))$$

Pregled

IV. VERJETNOSTNO SKLEPANJE z bayesovskimi mrežami

- definicija
- izračun verjetnosti dogodkov
- vprašanja pri verjetnostnem sklepanju
- odvisnosti v bayesovski mreži
- neodvisnosti v bayesovski mreži
- ekvivalenca bayesovskih mrež

Verjetnostno sklepanje

- do sedaj: definiranje mreže s podajanjem pogojnih verjetnosti
- vendar: upoštevanje evidence (podanih informacij o dogodkih, ki so resnični), lahko vpliva na izračun verjetnosti
 ostalih dogodkov v mreži
- demo: https://www.bayesserver.com/examples/networks/sprinkler

Verjetnostno sklepanje

- dve smeri sklepanja:

 - **vzročno** (od vzrokom k posledicam): npr. P(A | V St) = ? **diagnostično** (od posledic k vzrokom): npr. P(V | A) = ?

Odvisnosti v mreži

skupni prednik (divergentno vozlišče):

- alarm in klic sta **odvisna**; če vemo, da je eden od njiju resničen, vpliva to tudi na naše verjetje o resničnosti drugega (če se je sprožil alarm, se je verjetno izvedel tudi klic); $P(A|K) \neq P(A)$, $P(K|A) \neq P(K)$
- vendar: poznavanje resničnosti prednika *senzor* omogoči, da *alarm* in *klic* obravnavamo kot **neodvisna** (vemo, da se je sprožil *senzor*, torej se je z določeno verjetnost tudi sprožil *alarm* in z določeno (neodvisno) verjetnostjo izvedel tudi *klic*; P(A|Se|K) = P(A|Se), P(K|SeA) = P(K|Se)

skupni naslednik (konvergentno vozlišče):

vlom in strela sta medseboj neodvisna (vedenje, da se je zgodil vlom, ne vpliva na verjetje o dogodku strele)

$$P(V|St) = P(V), P(St|V) = P(St)$$

vendar: poznavanje resničnosti tega, da se je sprožil *senzor* povzroči, da dogodka *vlom* in *strela* postaneta **odvisna**; ker sta oba vzroka za sproženje *senzorja*, velja, da resničnost enega zmanjšuje verjetnost drugega in obratno $P(V|St|Se) \neq P(V|Se), P(St|V|Se) \neq P(St|Se)$

Odvisnosti v mreži

veriga

- *vlom* in *alarm* sta **odvisna**; poznavanje resničnosti enega od njiju vpliva na naše verjetje o resničnosti drugega
- vendar: če vemo, da je resničen tudi *senzor*, postaneta *vlom* in *alarm* **neodvisna**: poznavanje resničnosti spremenljivke *alarm* ni pogojena s poznavanjem *vloma* in obratno
- pravimo, da vozlišče senzor *blokira* vpliv vozlišča *vlom* na vozlišče *alarm*

pravilo lahko posplošimo na daljše verige:

Primer

- sklepanje lahko uporabimo na našem primeru:
 - vlom je sam po sebi malo verjeten dogodek
 - denimo, da prejmemo opozorilni klic
 - zaradi prejetega klica se verjetnost proženja senzorja poveča (in ravno tako verjetnost alarma)
 - ker vlom sproža senzor, se poveča tudi verjetnost vlomu
 - ali: izvemo, da je doma bila nevihta s strelami; ker je strela možen vzrok za proženje senzorja, se verjetnost vloma zmanjša

Vaja

podana je naslednja bayesovska mreža:

• a in c naj bosta redka dogodka in vse povezave v mreži naj predstavljajo vzročnost med dogodki (torej npr. $P(b|a) \gg P(b|\sim a)$). Brez računanja oceni relacije (<, > ali =) med naslednjimi verjetnostmi:

a) P(a): P(a|c) P(a) = P(a|c)

b) P(a): P(a|d) P(a) < P(a|d)

c) P(a|d): P(a|cd) P(a|d) > P(a|cd)

d) P(d|bc): P(d|abc) P(d|bc) = P(d|abc)

Primeri

- modeliranje na spletu:
 - https://demo.bayesfusion.com/bayesbox.html
 - https://www.bayesserver.com/examples/networks/asia
- namizna aplikacija BayesFusion GeNle (brezplačna akademska verzija):
 - https://www.bayesfusion.com/downloads/

Pregled

IV. VERJETNOSTNO SKLEPANJE z bayesovskimi mrežami

- definicija
- izračun verjetnosti dogodkov
- vprašanja pri verjetnostnem sklepanju
- odvisnosti v bayesovski mreži
- določanje neodvisnosti v bayesovski mreži
 - nenasledniki
 - ovojnica Markova
 - d-ločevanje
- izražanje in računanje verjetnosti v bayesovski mreži
- ekvivalenca bayesovskih mrež

Neodvisnost od nenaslednikov

- dosedanje pravilo o blokiranju odvisnosti v verigah lahko posplošimo:
 - če so **podani starši** vozlišča X $(B_1 ... B_m)$, je X **neodvisen samo od svojih nenaslednikov** (torej od predhodnikov staršev: $A_1 ... A_n$) $P(X|A_1 ... A_n B_1 ... B_m C_1 ... C_k) = P(X|B_1 ... B_m C_1 ... C_k)$
- pozor:
 - zgornje velja le, če so podani **vsi** starši $B_1, ..., B_m$
 - zgornje velja le, če so podani **samo** starši $B_1, ..., B_m$.
 - če so podana tudi druga vozlišča, je potrebno upoštevati tudi njihove neposredne ali posredne vplive
 - primer:

Neodvisnost v mreži

- $P(C|BDF) \neq P(C|BD)$
- čeprav je F nenaslednik od C, vpliva na to, da je E bolj verjeten in zato C manj verjeten
- pravilo o neodvisnosti od nenaslednikov velja torej samo, če so podani izključno starši vozlišča C

Ovojnica Markova

- prejšnje pravilo lahko še bolj posplošimo
- ovojnica Markova (angl. Markov blanket) zagotavlja neodvisnost opazovanega vozlišča
- če so podani **starši, otroci in starši otrok**, je vozlišče *X* **neodvisno** od vseh ostalih vozlišč

d-ločevanje

- angl. d-separation (direction-dependent separation)
- še večja posplošitev določanja neodvisnih vozlišč
- pravilo: če sta A in B dve vozlišči (spremenljivki) v mreži, sta ti vozlišči neodvisni, če obstaja množica vozlišč E, ki d-ločuje A in B
- to pomeni, da velja:

$$P(A|EB) = P(A|E)$$

kako najdemo množico E, ki d-ločuje vozlišči A in B?

d-ločevanje

- kako najdemo množico E, ki d-ločuje vozlišči A in B?
- množica E d-ločuje vozlišči A in B, če obstaja takšno podano vozlišče X na vsaki (neusmerjeni) poti med A in B, da blokira to pot. Vozlišče X blokira pot na enega od naslednjih načinov:

- 1. X je **divergentno vozlišče** (skupni vzrok, angl. *fork*) iz njega kažeta povezavi v A in B. Tedaj velja $X \in E$.
- 2. X je **zaporedno vozlišče** (bolj neposreden vzrok za B kot za A, angl. serial, chain). Tedaj velja $X \in E$.
- 3. X je **konvergentno vozlišče** (skupna posledica, angl. *converging, collider*) vanj kažeta povezavi iz A in B. Tedaj velja za X in za vse njegove naslednike, da $\notin E$.

d-ločevanje

postopek iskanja množice E, ki d-ločuje A in B:

d-ločevanje: primer

primer: d-ločevanje vozlišč c in d


```
b \in E: \{\{b\}, \{a, b\}, \{b, e\}, \{a, b, e\}\}\

a \in E: \{\{a\}, \{a, b\}, \{a, e\}, \{a, b, e\}\}\

na celi zeleni poti: \{\{a\}, \{b\}, \{a, b\}, \{a, e\}, \{b, e\}, \{a, b, e\}\}\

b \in E: \{\{b\}, \{a, b\}, \{b, e\}, \{a, b, e\}\}\

e \notin E: \{\{\}, \{a\}, \{b\}, \{a, b\}\}\

na celi oranžni poti: \{\{\}, \{a\}, \{b\}, \{a, b\}, \{b, e\}, \{a, b, e\}\}\

E = \{\{a\}, \{b\}, \{a, b\}, \{b, e\}, \{a, b, e\}\}\
```

Izpitna naloga

1. izpitni rok, 30. 1. 2018

4. NALOGA:

Podana je Bayesovska mreža, ki je prikazana na sliki. Predpostavimo, da vse povezave v mreži predstavljajo pozitivno vzročnost med dogodki. Odgovori na naslednja vprašanja:

- a) Kolikšno število verjetnosti je potrebno podati, da je prikazana mreža dobro definirana? Kakšen je prihranek v številu verjetnosti glede na število podatkov v popolni verjetnostni porazdelitvi?
- b) Katera vozlišča so v ovojnici Markova vozlišča c? Zapiši, katera neodvisnost izhaja iz pravila o ovojnici Markova za vozlišče c in kateri pogoji morajo biti za to izpolnjeni?
- pogoji morajo biti za to izpolnjeni? c) Če je možno, čim bolj poenostavi pogojni del v izrazu: P(f|abe). Odgovor utemelji.
- d) Če je možno, čim bolj poenostavi pogojni del v izrazu: P(f|abde). Odgovor utemelji.
- e) Izrazi verjetnost P(d|b) z verjetnostmi, ki so podane v mreži.
- f) Zapiši vse množice vozlišč, ki d-ločujejo vozlišči a in e.

Pregled

IV. VERJETNOSTNO SKLEPANJE z bayesovskimi mrežami

- definicija
- izračun verjetnosti dogodkov
- vprašanja pri verjetnostnem sklepanju
- odvisnosti v bayesovski mreži
- določanje neodvisnosti v bayesovski mreži
 - nenasledniki
 - ovojnica Markova
 - d-ločevanje
- izražanje in računanje verjetnosti v bayesovski mreži
- ekvivalenca bayesovskih mrež

Pravila verjetnostnega sklepanja

1. Verjetnost konjunkcije:

$$P(X_1X_2|C) = P(X_1|C) \cdot P(X_2|X_1C)$$

2. Verjetnost gotovega dogodka:

$$P(X|...X...) = 1$$

3. Verjetnost **nemogočega** dogodka:

$$P(X | ... \sim X ...) = 0$$

4. Verjetnost negacije:

$$P(\sim X|C) = 1 - P(X|C)$$

5. Če pogoj vključuje naslednika Y (vzvratno sklepanje), uporabi posplošeno Bayesovo formulo:

$$P(X|YC) = P(X|C) \cdot \frac{P(Y|XC)}{P(Y|C)}$$

- 6. Če pogoj C **ne vključuje naslednika** od X, potem:
 - a) če X **nima** staršev: P(X|C) = P(X)
 - b) če **ima** X starše S: $P(X|C) = \sum_{s \in stanja \ star \check{s}ev(X)} P(X|S) \cdot P(S|C)$

Primer

Kolikšna je verjetnost, da se je zgodil vlom, če smo prejeli alarmni klic? P(V|K) = ?

uporabimo Bayesovo formulo:

$$P(V|K) = P(V) \cdot \frac{P(K|V)}{P(K)}$$

- P(V) je podan
- P(K|V) = ?pogoj ne vključuje naslednika od K, uporabimo pravilo 6b: $P(K|V) = P(K|Se) \cdot P(Se|V) + P(K|\sim Se) \cdot P(\sim Se|V)$
- P(Se|V) = ?
- P(K) = ?ravno tako uporabimo pravilo 6b: $P(K) = P(K|Se) \cdot P(Se) + P(K|\sim Se) \cdot P(\sim Se)$

Pregled

IV. VERJETNOSTNO SKLEPANJE z bayesovskimi mrežami

- definicija
- izračun verjetnosti dogodkov
- vprašanja pri verjetnostnem sklepanju
- odvisnosti v bayesovski mreži
- določanje neodvisnosti v bayesovski mreži
 - nenasledniki
 - ovojnica Markova
 - d-ločevanje
- izražanje in računanje verjetnosti v bayesovski mreži
- ekvivalenca bayesovskih mrež

Ekvivalenca mrež

Za dve mreži pravimo, da sta ekvivalentni, če je **z verjetnostmi ene mreže možno izraziti vse verjetnosti druge mreže**, tako da mreži še vedno izražata iste odvisnosti

- ideja: vzročno ali diagnostično smer sklepanja lahko obrnemo z Bayesovo formulo
- primeri treh ekvivalentnih mrež:

P(Z), P(X|Y), P(Y|Z) (izrazi prvotne verjetnosti za vajo)

primer neekvivalentne mreže zgornjim:

Ekvivalenca mrež

formalno: mreži sta I-ekvivalentni (I-equivalence, independence-equivalence), če:

- imata enako strukturo (ob ignoriranju usmerjenosti povezav),
- imata ista konvergentna vozlišča.

 opomba: obstajajo tudi ekvivalentne bayesovske mreže, ki ne ustrezajo zgornjim zahtevam (npr. polni grafi – ista neusmerjena struktura a drugačna konvergentna vozlišča, ni neodvisnosti)

Izpitna naloga

2. izpitni rok, 15. 2. 2018

3. NALOGA (25t):

Na spodnji sliki je podana prvotna bayesovska mreža (skrajno levo) in tri mreže, ki so izpeljane iz prvotne (označene z rimskimi številkami). Vsaka spremenjena mreža ima drugače usmerjeno eni ali dve povezavi (spremembe so označene s črtkano puščico). Predpostavimo, da so s prvotno mrežo podane vse verjetnosti, ki so potrebne za definiranje te mreže. Za dve mreži pravimo, da sta *ekvivalentni*, če je z verjetnostmi ene mreže možno izraziti vse verjetnosti druge mreže, tako da mreži še vedno izražata iste odvisnosti.

- a) (4t) Od treh mrež na desni strani je natanko ena ekvivalentna prvotni mreži katera, zakaj?
- b) (7t) Izrazi verjetnosti v ekvivalentni spremenjeni mreži (odgovor iz prejšnje točke) z verjetnostmi iz prvotne mreže.
- c) (7t) Izrazi verjetnost P(abcd~e) z verjetnostmi, ki so podane s prvotno mrežo.
- d) (7t) Katere množice vozlišč d-ločujejo vozlišči c in d v prvotni mreži?

Pregled

IV. VERJETNOSTNO SKLEPANJE z bayesovskimi mrežami

- definicija
- izračun verjetnosti dogodkov
- vprašanja pri verjetnostnem sklepanju
- odvisnosti v bayesovski mreži
- določanje neodvisnosti v bayesovski mreži
 - nenasledniki
 - ovojnica Markova
 - d-ločevanje
- izražanje in računanje verjetnosti v bayesovski mreži
- ekvivalenca bayesovskih mrež

Cilji predmeta

- kaj je umetna inteligenca?
 - kaj si prizadeva?
 - kakšna je definicija?
 - kako dobro nam uspeva doseči te cilje?
 - kakšne so posledice v filozofiji, psihologiji, etiki?
- kaj vse lahko delamo z metodami umetne inteligence?
 - vrste problemov
 - načini reševanja problemov
- kako razumeti medije, literaturo in objave s področja umetne inteligence?

Vsebina predmeta

- strojno učenje:
 - problemski prostor, hipoteze, ocenjevanje učenja
 - gradnja odločitvenih dreves
 - učenje iz šumnih podatkov, rezanje
 - manjkajoči atributi, regresija, naivni Bayes
- reševanje problemov kot preiskovanje grafov
 - neinformirani preiskovalni algoritmi
 - informirani preiskovalni algoritmi
 - lokalno preiskovanje
 - grafi AND/OR, nedeterministično okolje
- igranje iger
- planiranje, razporejanje opravil
- predstavitev negotovega znanja, Bayesovske mreže
- avtomatsko sklepanje

Kam naprej?

63266	Inteligentni sistemi	Marko Robnik Šikonja	Zimski
63267	Umetno zaznavanje	Matej Kristan	Zimski
63268	Razvoj inteligentnih sistemov	Danijel Skočaj	Letni
63251	Uvod v odkrivanje znanj iz podatkov	Blaž Zupan	Letni

modul Inteligentna analiza podatkov

63519	Strojno učenje	Igor Kononenko	Zimski
63520	Uvod v bioinformatiko	Blaž Zupan	Zimski
63510	Umetna inteligenca	Ivan Bratko	Letni
63545B	Analiza omrežij	Lovro Šubelj	Letni

Kam naprej?

magistrski študij RI (smer Podatkovne vede)

63563	Bayesova statistika	Erik Štrumbelj	Zimski
63564	Načela negotovosti	Erik Štrumbelj	Zimski
63514	Obdelava biomedicinskih signalov in slik	Franc Jager	Zimski
63554	Slikovna biometrija	Peter Peer	Zimski
63519	Strojno učenje	Igor Kononenko	Zimski
63562	Strojno učenje za podatkovne vede 2	Marinka Žitnik	Zimski
63520	Uvod v bioinformatiko	Blaž Zupan	Zimski
63565	Uvod v podatkovne vede	Tomaž Curk	Zimski
63551	Iskanje in ekstrakcija podatkov s spleta	Marko Bajec	Letni, Zimski
63545B	Analiza omrežij	Lovro Šubelj	Letni
63561	Globoko učenje	Danijel Skočaj	Letni
63552	Napredne metode računalniškega vida	Matej Kristan	Letni
63555	Obdelava naravnega jezika	Marko Robnik Šikonja	Letni
63566	Strojno učenje za podatkovne vede 1	Blaž Zupan	Letni
63510	Umetna inteligenca	Ivan Bratko	Letni
63560	Velepodatki	Matjaž Kukar	Letni
63543	Visoko zmogljivo računanje	Uroš Lotrič	Letni

Kaj je to "umetna inteligenca"?

