

Europäisch s Patentamt Europ an Patent Office Office européen des br vets

(11) EP 1 108 790 A2

(12)

EUROPEAN PATENT APPLICATION

(43) Date of publication: 20.06.2001 Bulletin 2001/25

(21) Application number: 00127688.0

(22) Date of filing: 18.12.2000

(51) Int CI.7: **C12Q 1/68**, C07H 21/04, C12N 15/63, C07K 14/34, C12R 1/15, G06F 17/00, C12R 1/13, G01N 33/50

(84) Designated Contracting States:

AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU

MC NL PT SE TR

Designated Extension States:

AL LT LV MK RO SI

(30) Priority: 16.12.1999 JP 37748499 07.04.2000 JP 2000159162 03.08.2000 JP 2000280988

- (83) Declaration under Rule 28(4) EPC (expert solution)
- (71) Applicant: KYOWA HAKKO KOGYO CO., LTD. Chiyoda-ku, Tokyo 100-8185 (JP)
- (72) Inventors:
 - Nakagawa, Satochi,
 c/o Kyowa Hakko Kogyo Co.,Ltd.
 Machida-shi, Tokyo 194-8533 (JP)
 - Mizoguchi, Hiroshi,
 c/o Kyowa Hakko Kogyo Co.,Ltd.
 Machida-shi, Tokyo 194-8533 (JP)

- Ando, Seiko, c/o Kyowa Hakko Kogyo Co., Ltd. Machida-shi, Tokyo 194-8533 (JP)
- Hayashi, Mikiro,
 c/o Kyowa Hakko Kogyo Co.,Ltd.
 Machida-shi, Tokyo 194-8533 (JP)
- Ochiai, Keiko, c/o Kyowa Hakko Kogyo Co.,Ltd. Machida-shi, Tokyo 194-8533 (JP)
- Yokoi, Haruhiko, c/o Kyowa Hakko Kogyo Co.,Ltd. Machida-shi, Tokyo 194-8533 (JP)
- Tateishi, Naoko,
 c/o Kyowa Hakko Kogyo Co.,Ltd.
 Machida-shi, Tokyo 194-8533 (JP)
- Senoh, Akihiro, c/o Kyowa Hakko Kogyo Co.,Ltd. Machida-shi, Tokyo 194-8533 (JP)
- Ikeda, Masato, c/o Kyowa Hakko Kogyo Co.,Ltd. Machida-shi, Tokyo 194-8533 (JP)
- Ozaki, Akio, c/o Kyowa Hakko Kogyo Co., Ltd. Hofu-shi, Yamaguchi 747-8522 (JP)
- (74) Representative: VOSSIUS & PARTNER Siebertstrasse 4 81675 München (DE)

(54) Novel polynucleotides

(57) Novel polynucleotides derived from microorganisms belonging to coryneform bacteria and fragments thereof, polypeptides encoded by the polynucleotides and fragments thereof, polynucleotide arrays

comprising the polynucleotides and fragments thereof, recording media in which the nucleotide sequences of the polynucleotide and fragments thereof have been recorded which are readable in a computer, and use of them.

D scription

15

20

25

30

35

BACKGROUND OF THE INVENTION

5 1. Field of the Invention

[0001] The present invention relates to novel polynucleotides derived from microorganisms belonging to coryneform bacteria and fragments thereof, polypeptides encoded by the polynucleotides and fragments thereof, polynucleotide arrays comprising the polynucleotides and fragments thereof, computer readable recording media in which the nucleotide sequences of the polynucleotide and fragments thereof have been recorded, and use of them as well as a method of using the polynucleotide and/or polypeptide sequence information to make comparisons.

2. Brief Description of the Background Art

[0002] Coryneform bacteria are used in producing various useful substances, such as amino acids, nucleic acids, vitamins, saccharides (for example, ribulose), organic acids (for example, pyruvic acid), and analogues of the above-described substances (for example, N-acetylamino acids) and are very useful microorganisms industrially. Many mutants thereof are known.

[0003] For example, Corynebacterium glutamicum is a Gram-positive bacterium identified as a glutamic acid-producing bacterium, and many amino acids are produced by mutants thereof. For example, 1,000,000 ton/year of L-glutamic acid which is useful as a seasoning for umami (delicious taste), 250,000 ton/year of L-lysine which is a valuable additive for livestock feeds and the like, and several hundred ton/year or more of other amino acids, such as L-arginine, L-proline, L-glutamine, L-tryptophan, and the like, have been produced in the world (*Nikkei Bio Yearbook 99*, published by Nikkei BP (1998)).

[0004] The production of amino acids by *Corynebacterium glutamicum* is mainly carried out by its mutants (metabolic mutants) which have a mutated metabolic pathway and regulatory systems. In general, an organism is provided with various metabolic regulatory systems so as not to produce more amino acids than it needs. In the biosynthesis of L-lysine, for example, a microorganism belonging to the genus *Corynebacterium* is under such regulation as preventing the excessive production by concerted inhibition by lysine and threonine against the activity of a biosynthesis enzyme common to lysine, threonine and methionine, i.e., an aspartokinase, (*J. Biochem., 65*: 849-859 (1969)). The biosynthesis of arginine is controlled by repressing the expression of its biosynthesis gene by arginine so as not to biosynthesize an excessive amount of arginine (*Microbiology, 142*: 99-108 (1996)). It is considered that these metabolic regulatory mechanisms are deregulated in amino acid-producing mutants. Similarly, the metabolic regulation is deregulated in mutants producing nucleic acids, vitamins, saccharides, organic acids and analogues of the above-described substances so as to improve the productivity of the objective product.

[0005] However, accumulation of basic genetic, biochemical and molecular biological data on coryneform bacteria is insufficient in comparison with *Escherichia coli, Bacillus subtilis,* and the like. Also, few findings have been obtained on mutated genes in amino acid-producing mutants. Thus, there are various mechanisms, which are still unknown, of regulating the growth and metabolism of these microorganisms.

[0006] A chromosomal physical map of *Corynebacterium glutamicum* ATCC 13032 is reported and it is known that its genome size is about 3,100 kb (*Mol. Gen. Genet., 252*: 255-265 (1996)). Calculating on the basis of the usual gene density of bacteria, it is presumed that about 3,000 genes are present in this genome of about 3,100 kb. However, only about 100 genes mainly concerning amino acid biosynthesis genes are known in *Corynebacterium glutamicum*, and the nucleotide sequences of most genes have not been clarified hitherto.

[0007] In recent years, the full nucleotide sequence of the genomes of several microorganisms, such as *Escherichia coli*, *Mycobacterium tuberculosis*, yeast, and the like, have been determined (*Science, 277*: 1453-62 (1997); *Nature, 393*: 537-544 (1998); *Nature, 387*: 5-105 (1997)). Based on the thus determined full nucleotide sequences, assumption of gene regions and prediction of their function by comparison with the nucleotide sequences of known genes have been carried out. Thus, the functions of a great number of genes have been presumed, without genetic, biochemical or molecular biological experiments.

[0008] In recent years, moreover, techniques for monitoring expression levels of a great number of genes simultaneously or detecting mutations, using DNA chips, DNA arrays or the like in which a partial nucleic acid fragment of a gene or a partial nucleic acid fragment in genomic DNA other than a gene is fixed to a solid support, have been developed. The techniques contribute to the analysis of microorganisms, such as yeasts, *Mycobacterium tuberculosis, Mycobacterium bovis* used in BCG vaccines, and the like (*Science, 278*: 680-686 (1997); *Proc. Natl. Acad. Sci. USA, 96*: 12833-38 (1999); *Science, 284*: 1520-23 (1999)).

SUMMARY OF THE INVENTION

10

15

20

25

30

40

45

50

55

[0009] An object of the present invention is to provide a polynucleotide and a polypeptide derived from a microorganism of coryneform bacteria which are industrially useful, sequence information of the polynucleotide and the polypeptide, a method for analyzing the microorganism, an apparatus and a system for use in the analysis, and a method for breeding the microorganism.

[0010] The present invention provides a polynucleotide and an oligonucleotide derived from a microorganism belonging to coryneform bacteria, oligonucleotide arrays to which the polynucleotides and the oligonucleotides are fixed, a polypeptide encoded by the polynucleotide, an antibody which recognizes the polypeptide, polypeptide arrays to which the polypeptides or the antibodies are fixed, a computer readable recording medium in which the nucleotide sequences of the polynucleotide and the oligonucleotide and the amino acid sequence of the polypeptide have been recorded, and a system based on the computer using the recording medium as well as a method of using the polynucleotide and/or polypeptide sequence information to make comparisons.

BRIEF DESCRIPTION OF THE DRAWING

[0011] Fig. 1 is a map showing the positions of typical genes on the genome of *Corynebacterium glutamicum* ATCC 13032.

[0012] Fig. 2 is electrophoresis showing the results of proteome analyses using proteins derived from (A) *Coryne-bacterium glutamicum* ATCC 13032, (B) FERM BP-7134, and (C) FERM BP-158.

[0013] Fig. 3 is a flow chart of an example of a system using the computer readable media according to the present invention.

[0014] Fig. 4 is a flow chart of an example of a system using the computer readable media according to the present invention.

DETAILED DESCRIPTION OF THE INVENTION

[0015] This application is based on Japanese applications No. Hei. 11-377484 filed on December 16, 1999, No. 2000-159162 filed on April 7, 2000 and No. 2000-280988 filed on August 3, 2000, the entire contents of which are incorporated hereinto by reference.

[0016] From the viewpoint that the determination of the full nucleotide sequence of *Corynebacterium glutamicum* would make it possible to specify gene regions which had not been previously identified, to determine the function of an unknown gene derived from the microorganism through comparison with nucleotide sequences of known genes and amino acid sequences of known genes, and to obtain a useful mutant based on the presumption of the metabolic regulatory mechanism of a useful product by the microorganism, the inventors conducted intensive studies and, as a result, found that the complete genome sequence of *Corynebacterium glutamicum* can be determined by applying the whole genome shotgun method.

[0017] Specifically, the present invention relates to the following (1) to (65):

- (1) A method for at least one of the following:
 - (A) identifying a mutation point of a gene derived from a mutant of a coryneform bacterium,
 - (B) measuring an expression amount of a gene derived from a coryneform bacterium,
 - (C) analyzing an expression profile of a gene derived from a coryneform bacterium,
 - (D) analyzing expression patterns of genes derived from a coryneform bacterium, or
 - (E) identifying a gene homologous to a gene derived from a coryneform bacterium, said method comprising:
 - (a) producing a polynucleotide array by adhering to a solid support at least two polynucleotides selected from the group consisting of first polynucleotides comprising the nucleotide sequence represented by any one of SEQ ID NOS:1 to 3501, second polynucleotides which hybridize with the first polynucleotides under stringent conditions, and third polynucleotides comprising a sequence of 10 to 200 continuous bases of the first or second polynucleotides,
 - (b) incubating the polynucleotide array with at least one of a labeled polynucleotide derived from a coryneform bacterium, a labeled polynucleotide derived from a mutant of the coryneform bacterium or a labeled polynucleotide to be examined, under hybridization conditions,
 - (c) detecting any hybridization, and
 - (d) analyzing the result of the hybridization.

As used herein, for example, the at least two polynucleotides can be at least two of the first polynucleotides, at least two of the second polynucleotides, at least two of the third polynucleotides, or at least two of the first, second and third polynucleotides.

- 5 (2) The method according to (1), wherein the coryneform bacterium is a microorganism belonging to the genus *Corynebacterium*, the genus *Brevibacterium*, or the genus *Microbacterium*.
 - (3) The method according to (2), wherein the microorganism belonging to the genus *Corynebacterium* is selected from the group consisting of *Corynebacterium glutamicum*, *Corynebacterium acetoacidophilum*, *Corynebacterium acetoglutamicum*, *Corynebacterium callunae*, *Corynebacterium herculis*, *Corynebacterium lilium*, *Corynebacterium melassecola*, *Corynebacterium thermoaminogenes*, and *Corynebacterium ammoniagenes*.
 - (4) The method according to (1), wherein the polynucleotide derived from a coryneform bacterium, the polynuce-lotide derived from a mutant of the coryneform bacterium or the polynucleotide to be examined is a gene relating to the biosynthesis of at least one compound selected from an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid, and analogues thereof.
 - (5) The method according to (1), wherein the polynucleotide to be examined is derived from Escherichia coli.
 - (6) A polynucleotide array, comprising:

10

15

20

25

30

35

40

45

at least two polynucleotides selected from the group consisting of first polynucleotides comprising the nucleotide sequence represented by any one of SEQ ID NOS:1 to 3501, second polynucleotides which hybridize with the first polynucleotides under stringent conditions, and third polynucleotides comprising 10 to 200 continuous bases of the first or second polynucleotides, and a solid support adhered thereto.

As used herein, for example, the at least two polynucleotides can be at least two of the first polynucleotides, at least two of the second polynucleotides, at least two of the third polynucleotides, or at least two of the first, second and third polynucleotides.

- (7) A polynucleotide comprising the nucleotide sequence represented by SEQ ID NO:1 or a polynucleotide having a homology of at least 80% with the polynucleotide.
- (8) A polynucleotide comprising any one of the nucleotide sequences represented by SEQ ID NOS:2 to 3431, or a polynucleotide which hybridizes with the polynucleotide under stringent conditions.
- (9) A polynucleotide encoding a polypeptide having any one of the amino acid sequences represented by SEQ ID NOS:3502 to 6931, or a polynucleotide which hybridizes therewith under stringent conditions.
- (10) A polynucleotide which is present in the 5' upstream or 3' downstream of a polynucleotide comprising the nucleotide sequence of any one of SEQ ID NOS:2 to 3431 in a whole polynucleotide comprising the nucleotide sequence represented by SEQ ID NO:1, and has an activity of regulating an expression of the polynucleotide.
- (11) A polynucleotide comprising 10 to 200 continuous bases in the nucleotide sequence of the polynucleotide of any one of (7) to (10), or a polynucleotide comprising a nucleotide sequence complementary to the polynucleotide comprising 10 to 200 continuous based.
- (12) A recombinant DNA comprising the polynucleotide of any one of (8) to (11).
- (13) A transformant comprising the polynucleotide of any one of (8) to (11) or the recombinant DNA of (12).
 - (14) A method for producing a polypeptide, comprising:

culturing the transformant of (13) in a medium to produce and accumulate a polypeptide encoded by the polynucleotide of (8) or (9) in the medium, and recovering the polypeptide from the medium.

- (15) A method for producing at least one of an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid, and analogues thereof, comprising:
- culturing the transformant of (13) in a medium to produce and accumulate at least one of an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid, and analogues thereof in the medium, and recovering the at least one of the amino acid, the nucleic acid, the vitamin, the saccharide, the organic acid, and analogues thereof from the medium.
- (16) A polypeptide encoded by a polynucleotide comprising the nucleotide sequence selected from SEQ ID NOS: 2 to 3431.
 - (17) A polypeptide comprising the amino acid sequence selected from SEQ ID NOS:3502 to 6931.
 - (18) The polyp ptide according to (16) or (17), wherein at least one amino acid is deleted, replaced, inserted or

added, said polypeptides having an activity which is substantially the same as that of the polypeptide without said at least one amino acid deletion, replacement, insertion or addition.

- (19) A polypeptide comprising an amino acid sequence having a homology of at least 60% with the amino acid sequence of the polypeptide of (16) or (17), and having an activity which is substantially the same as that of the polypeptide.
- (20) An antibody which recognizes the polypeptide of any one of (16) to (19).
- (21) A polypeptide array, comprising:

5

10

15

20

25

30

35

40

45

50

at least one polypeptide or partial fragment polypeptide selected from the polypeptides of (16) to (19) and partial fragment polypeptides of the polypeptides, and a solid support adhered thereto.

- (22) A polypeptide array, comprising:
 - at least one antibody which recognizes a polypeptide or partial fragment polypeptide selected from the polypeptides of (16) to (19) and partial fragment polypeptides of the polypeptides, and a solid support adhered thereto.
- (23) A system based on a computer for identifying a target sequence or a target structure motif derived from a coryneform bacterium, comprising the following:
 - (i) a user input device that inputs at least one nucleotide sequence information selected from SEQ ID NOS:1 to 3501, and target sequence or target structure motif information;
 - (ii) a data storage device for at least temporarily storing the input information;
 - (iii) a comparator that compares the at least one nucleotide sequence information selected from SEQ ID NOS: 1 to 3501 with the target sequence or target structure motif information, recorded by the data storage device for screening and analyzing nucleotide sequence information which is coincident with or analogous to the target sequence or target structure motif information; and
 - (iv) an output device that shows a screening or analyzing result obtained by the comparator.
 - (24) A method based on a computer for identifying a target sequence or a target structure motif derived from a coryneform bacterium, comprising the following:
 - (i) inputting at least one nucleotide sequence information selected from SEQ ID NOS:1 to 3501, target sequence information or target structure motif information into a user input device;
 - (ii) at least temporarily storing said information;
 - (iii) comparing the at least one nucleotide sequence information selected from SEQ ID NOS:1 to 3501 with the target sequence or target structure motif information; and
 - (iv) screening and analyzing nucleotide sequence information which is coincident with or analogous to the target sequence or target structure motif information.
 - (25) A system based on a computer for identifying a target sequence or a target structure motif derived from a coryneform bacterium, comprising the following:
 - (i) a user input device that inputs at least one amino acid sequence information selected from SEQ ID NOS: 3502 to 7001, and target sequence or target structure motif information;
 - (ii) a data storage device for at least temporarily storing the input information;
 - (iii) a comparator that compares the at least one amino acid sequence information selected from SEQ ID NOS: 3502 to 7001 with the target sequence or target structure motif information, recorded by the data storage device for screening and analyzing amino acid sequence information which is coincident with or analogous to the target sequence or target structure motif information; and
 - (iv) an output device that shows a screening or analyzing result obtained by the comparator.
- (26) A method based on a computer for identifying a target sequence or a target structure motif derived from a coryneform bacterium, comprising the following:
 - (i) inputting at least one amino acid sequence information selected from SEQ ID NOS:3502 to 7001, and target sequence information or target structure motif information into a user input device;

- (ii) at least temporarily storing said information;
- (iii) comparing the at least one amino acid sequence information selected from SEQ ID NOS:3502 to 7001 with the target sequence or target structure motif information; and
- (iv) screening and analyzing amino acid sequence information which is coincident with or analogous to the target sequence or target structure motif information.
- (27) A system based on a computer for determining a function of a polypeptide encoded by a polynucleotide having a target nucleotide sequence derived from a coryneform bacterium, comprising the following:
 - (i) a user input device that inputs at least one nucleotide sequence information selected from SEQ ID NOS:2 to 3501, function information of a polypeptide encoded by the nucleotide sequence, and target nucleotide sequence information;
 - (ii) a data storage device for at least temporarily storing the input information;
 - (iii) a comparator that compares the at least one nucleotide sequence information selected from SEQ ID NOS: 2 to 3501 with the target nucleotide sequence information, and determining a function of a polypeptide encoded by a polynucleotide having the target nucleotide sequence which is coincident with or analogous to the polynucleotide having at least one nucleotide sequence selected from SEQ ID NOS:2 to 3501; and
 - (iv) an output devices that shows a function obtained by the comparator.
- (28) A method based on a computer for determining a function of a polypeptide encoded by a polypeptide encoded by a polypeptide having a target nucleotide sequence derived from a coryneform bacterium, comprising the following:
 - (i) inputting at least one nucleotide sequence information selected from SEQ ID NOS:2 to 3501, function information of a polypeptide encoded by the nucleotide sequence, and target nucleotide sequence information; (ii) at least temporarily storing said information;
 - (iii) comparing the at least one nucleotide sequence information selected from SEQ ID NOS:2 to 3501 with the target nucleotide sequence information; and
 - (iv) determining a function of a polypeptide encoded by a polynucleotide having the target nucleotide sequence which is coincident with or analogous to the polynucleotide having at least one nucleotide sequence selected from SEQ ID NOS:2 to 3501.
- (29) A system based on a computer for determining a function of a polypeptide having a target amino acid sequence derived from a coryneform bacterium, comprising the following:
 - (i) a user input device that inputs at least one amino acid sequence information selected from SEQ ID NOS: 3502 to 7001, function information based on the amino acid sequence, and target amino acid sequence information;
 - (ii) a data storing device for at least temporarily storing the input information;
 - (iii) a comparator that compares the at least one amino acid sequence information selected from SEQ ID NOS: 3502 to 7001 with the target amino acid sequence information for determining a function of a polypeptide having the target amino acid sequence which is coincident with or analogous to the polypeptide having at least one amino acid sequence selected from SEQ ID NOS:3502 to 7001; and
 - (iv) an output device that shows a function obtained by the comparator.
- (30) A method based on a computer for determining a function of a polypeptide having a target amino acid sequence derived from a coryneform bacterium, comprising the following:
 - (i) inputting at least one amino acid sequence information selected from SEQ ID NOS:3502 to 7001, function information based on the amino acid sequence, and target amino acid sequence information;
 - (ii) at least temporarily storing said information;
 - (iii) comparing the at least one amino acid sequence information selected from SEQ ID NOS:3502 to 7001 with the target amino acid sequence information; and
 - (iv) determining a function of a polypeptide having the target amino acid sequence which is coincident with or analogous to the polypeptide having at least one amino acid sequence selected from SEQ ID NOS:3502 to 7001.
- (31) The system according to any one of (23), (25), (27) and (29), wherein a coryneform bacterium is a microor-

5

10

15

20

25

30

35

40

45

50

ganism of the genus Corynebacterium, the genus Brevibacterium, or the genus Microbacterium.

- (32) The method according to any one of (24), (26), (28) and (30), wherein a coryneform bacterium is a microorganism of the genus *Corynebacterium*, the genus *Brevibacterium*, or the genus *Microbacterium*.
- (33) The system according to (31), wherein the microorganism belonging to the genus *Corynebacterium* is selected from the group consisting of *Corynebacterium glutamicum*, *Corynebacterium acetoacidophilum*, *Corynebacterium acetoglutamicum*, *corynebacterium callunae*, *corynebacterium herculis*, *Corynebacterium lilium*, *Corynebacterium melassecola*, *Corynebacterium thermoaminogenes*, and *Corynebacterium ammoniagenes*.
- (34) The method according to (32), wherein the microorganism belonging to the genus Corynebacterium is selected from the group consisting of Corynebacterium glutamicum, Corynebacterium acetoacidophilum, Corynebacterium acetoglutamicum, Corynebacterium callunae, Corynebacterium herculis, Corynebacterium lilium, Corynebacterium melassecola, Corynebacterium thermoaminogenes, and Corynebacterium ammoniagenes.
- (35) A recording medium or storage device which is readable by a computer in which at least one nucleotide sequence information selected from SEQ ID NOS:1 to 3501 or function information based on the nucleotide sequence is recorded, and is usable in the system of (23) or (27) or the method of (24) or (28).
- (36) A recording medium or storage device which is readable by a computer in which at least one amino acid sequence information selected from SEQ ID NOS:3502 to 7001 or function information based on the amino acid sequence is recorded, and is usable in the system of (25) or (29) or the method of (26) or (30).
 (37) The recording medium or storage device according to
- (35) or (36), which is a computer readable recording medium selected from the group consisting of a floppy disc, a hard disc, a magnetic tape, a random access memory (RAM), a read only memory (ROM), a magneto-optic disc (MO). CD-ROM, CD-R, CD-RW, DVD-ROM, DVD-RAM and DVD-RW.
 - (38) A polypeptide having a homoserine dehydrogenase activity, comprising an amino acid sequence in which the Val residue at the 59th in the amino acid sequence of homoserine dehydrogenase derived from a coryneform bacterium is replaced with an amino acid residue other than a Val residue.
- 25 (39) A polypeptide comprising an amino acid sequence in which the Val residue at the 59th position in the amino acid sequence as represented by SEQ ID NO:6952 is replaced with an amino acid residue other than a Val residue.
 (40) The polypeptide according to (38) or (39), wherein the Val residue at the 59th position is replaced with an Ala residue.
 - (41) A polypeptide having pyruvate carboxylase activity, comprising an amino acid sequence in which the Pro residue at the 458th position in the amino acid sequence of pyruvate carboxylase derived from a coryneform bacterium is replaced with an amino acid residue other than a Pro residue.
 - (42) A polypeptide comprising an amino acid sequence in which the Pro residue at the 458th position in the amino acid sequence represented by SEQ ID NO:4265 is replaced with an amino acid residue other than a Pro residue. (43) The polypeptide according to (41) or (42), wherein the Pro residue at the 458th position is replaced with a Ser residue.
 - (44) The polypeptide according to any one of (38) to (43), which is derived from Corynebacterium glutamicum.
 - (45) A DNA encoding the polypeptide of any one of (38) to (44).
 - (46) A recombinant DNA comprising the DNA of (45).
 - (47) A transformant comprising the recombinant DNA of (46).
 - (48) A transformant comprising in its chromosome the DNA of (45).
 - (49) The transformant according to (47) or (48), which is derived from a coryneform bacterium.
 - (50) The transformant according to (49), which is derived from Corynebacterium glutamicum.
 - (51) A method for producing L-lysine, comprising:
 - culturing the transformant of any one of (47) to (50) in a medium to produce and accumulate L-lysine in the medium, and
 - recovering the L-lysine from the culture.
 - (52) A method for breeding a coryneform bacterium using the nucleotide sequence information represented by SEQ ID NOS:1 to 3431, comprising the following:
 - (i) comparing a nucleotide sequence of a genome or gene of a production strain derived a coryneform bacterium which has been subjected to mutation breeding so as to produce at least one compound selected from an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid, and analogous thereof by a fermentation method, with a corresponding nucleotide sequence in SEQ ID NOS:1 to 3431;
 - (ii) identifying a mutation point present in the production strain based on a result obtained by (i);
 - (iii) introducing the mutation point into a coryneform bacterium which is free of the mutation point; and
 - (iv) examining productivity by the fermentation method of the compound selected in (i) of the coryneform

5

10

30

35

40

45

50

bacterium obtained in (iii).

5

10

15

20

25

30

35

40

45

50

55

- (53) The method according to (52), wherein the gene is a gene encoding an enzyme in a biosynthetic pathway or a signal transmission pathway.
- (54) The method according to (52), wherein the mutation point is a mutation point relating to a useful mutation which improves or stabilizes the productivity.
- (55) A method for breading a coryneform bacterium using the nucleotide sequence information represented by SEQ ID NOS:1 to 3431, comprising:
 - (i) comparing a nucleotide sequence of a genome or gene of a production strain derived a coryneform bacterium which has been subjected to mutation breeding so as to produce at least one compound selected from an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid, and analogous thereof by a fermentation method, with a corresponding nucleotide sequence in SEQ ID NOS:1 to 3431;
 - (ii) identifying a mutation point present in the production strain based on a result obtain by (i);
 - (iii) deleting a mutation point from a coryneform bacterium having the mutation point; and
 - (iv) examining productivity by the fermentation method of the compound selected in (i) of the coryneform bacterium obtained in (iii).
- (56) The method according to (55), wherein the gene is a gene encoding an enzyme in a biosynthetic pathway or a signal transmission pathway.
- (57) The method according to (55), wherein the mutation point is a mutation point which decreases or destabilizes the productivity.
- (58) A method for breeding a coryneform bacterium using the nucleotide sequence information represented by SEQ ID NOS:2 to 3431, comprising the following:
 - (i) identifying an isozyme relating to biosynthesis of at least one compound selected from an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid, and analogous thereof, based on the nucleotide sequence information represented by SEQ ID NOS:2 to 3431;
 - (ii) classifying the isozyme identified in (i) into an isozyme having the same activity;
 - (iii) mutating all genes encoding the isozyme having the same activity simultaneously; and
 - (iv) examining productivity by a fermentation method of the compound selected in (i) of the coryneform bacterium which have been transformed with the gene obtained in (iii).
- (59) A method for breeding a coryneform bacterium using the nucleotide sequence information represented by SEQ ID NOS:2 to 3431, comprising the following:
 - (i) arranging a function information of an open reading frame (ORF) represented by SEQ ID NOS:2 to 3431;
 - (ii) allowing the arranged ORF to correspond to an enzyme on a known biosynthesis or signal transmission pathway;
 - (iii) explicating an unknown biosynthesis pathway or signal transmission pathway of a coryneform bacterium in combination with information relating known biosynthesis pathway or signal transmission pathway of a coryneform bacterium;
 - (iv) comparing the pathway explicated in (iii) with a biosynthesis pathway of a target useful product; and
 - (v) transgenetically varying a coryneform bacterium based on the nucleotide sequence information to either strengthen a pathway which is judged to be important in the biosynthesis of the target useful product in (iv) or weaken a pathway which is judged not to be important in the biosynthesis of the target useful product in (iv).
 - (60) A coryneform bacterium, bred by the method of any one of (52) to (59).
- (61) The coryneform bacterium according to (60), which is a microorganism belonging to the genus *Corynebacterium*, the genus *Brevibacterium*, or the genus *Microbacterium*.
- (62) The coryneform bacterium according to (61), wherein the microorganism belonging to the genus Corynebacterium is selected from the group consisting of Corynebacterium glutamicum, Corynebacterium acetogiutamicum, Corynebacterium callunae, Corynebacterium herculis, Corynebacterium lilium, Corynebacterium melassecola, Corynebacterium thermoaminogenes, and Corynebacterium ammoniagenes.
- (63) A method for producing at least one compound selected from an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid and an analogue thereof, comprising:

culturing a coryneform bacterium of any one of (60) to (62) in a medium to produce and accumulate at least

one compound selected from an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid, and analogues thereof;

recovering the compound from the culture.

- (64) The method according to (63), wherein the compound is L-lysine.
- (65) A method for identifying a protein relating to useful mutation based on proteome analysis, comprising the following:

(i) preparing

5

10

15

20

25

30

35

45

50

55

a protein derived from a bacterium of a production strain of a coryneform bacterium which has been subjected to mutation breeding by a fermentation process so as to produce at least one compound selected from an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid, and analogues thereof, and a protein derived from a bacterium of a parent strain of the production strain;

(ii) separating the proteins prepared in (i) by two dimensional electrophoresis;

- (iii) detecting the separated proteins, and comparing an expression amount of the protein derived from the production strain with that derived from the parent strain;
- (iv) treating the protein showing different expression amounts as a result of the comparison with a peptidase to extract peptide fragments;
- (v) analyzing amino acid sequences of the peptide fragments obtained in (iv); and
- (vi) comparing the amino acid sequences obtained in (v) with the amino acid sequence represented by SEQ
- ID NOS:3502 to 7001 to identifying the protein having the amino acid sequences.

As used herein, the term "proteome", which is a coined word by combining "protein" with "genome", refers to a method for examining of a gene at the polypeptide level.

- (66) The method according to (65), wherein the coryneform bacterium is a microorganism belonging to the genus *Corynebacterium*, the genus *Brevibacterium*, or the genus *Microbacterium*.
- (67) The method according to (66), wherein the microorganism belonging to the genus *Corynebacterium* is selected from the group consisting of *Corynebacterium glutamicum*, *Corynebacterium acetoacidophilum*, *Corynebacterium acetoglutamicum*, *Corynebacterium callunae*, *corynebacterium herculis*, *Corynebacterium lilium Corynebacterium melassecola*, *Corynebacterium thermoaminogenes*, and *Corynebacterium ammoniagenes*.
- (68) A biologically pure culture of Corynebacterium glutamicum AHP-3 (FERM BP-7382).
- [0018] The present invention will be described below in more detail, based on the determination of the full nucleotide sequence of coryneform bacteria.
 - 1. Determination of full nucleotide sequence of coryneform bacteria
- [0019] The term "coryneform bacteria" as used herein means a microorganism belonging to the genus Corynebacterium, the genus Brevibacterium or the genus Microbacterium as defined in Bergeys Manual of Determinative Bacteriology, 8: 599 (1974).
 - [0020] Examples include Corynebacterium acetoacidophilum, Corynebacterium acetoglutamicum, Corynebacterium callunae, Corynebacterium glutamicum, Corynebacterium herculis, Corynebacterium lilium, Corynebacterium melassecola, Corynebacterium thermoaminogenes, Brevibacterium saccharolyticum, Brevibacterium immariophilum, Brevibacterium roseum, Brevibacterium thiogenitalis, Microbacterium ammoniaphilum, and the like.
 - [0021] Specific examples include Corynebacterium acetoacidophilum ATCC 13870, Corynebacterium acetoglutamicum ATCC 15806, Corynebacterium callunae ATCC 15991, Corynebacterium glutamicum ATCC 13032, Corynebacterium glutamicum ATCC 13060, Corynebacterium glutamicum ATCC 13826 (prior genus and species: Brevibacterium flavum, or Corynebacterium lactofermentum), Corynebacterium glutamicum ATCC 14020 (prior genus and species: Brevibacterium lactofermentum), Corynebacterium glutamicum ATCC 13869 (prior genus and species: Brevibacterium lactofermentum), Corynebacterium herculis ATCC 13868, Corynebacterium lilium ATCC 15990, Corynebacterium melassecola ATCC 17965, Corynebacterium thermoaminogenes FERM 9244, Brevibacterium saccharolyticum ATCC 14066, Brevibacterium immariophilum ATCC 14068, Brevibacterium roseum ATCC 13825, Brevibacterium thiogenitalis ATCC 19240, Microbacterium ammoniaphilum ATCC 15354, and the like.

- (1) Preparation of genome DNA of coryneform bacteria
- [0022] Coryneform bacteria can be cultured by a conventional method.
- [0023] Any of a natural medium and a synthetic medium can be used, so long as it is a medium suitable for efficient culturing of the microorganism, and it contains a carbon source, a nitrogen source, an inorganic salt, and the like which can be assimilated by the microorganism.
- [0024] In Corynebacterium glutamicum, for example, a BY medium (7 g/l meat extract, 10 g/l peptone, 3 g/l sodium chloride, 5 g/l yeast extract, pH 7.2) containing 1% of glycine and the like can be used. The culturing is carried out at 25 to 35°C overnight.
- [0025] After the completion of the culture, the cells are recovered from the culture by centrifugation. The resulting cells are washed with a washing solution.
 - [0026] Examples of the washing solution include STE buffer (10.3% sucrose, 25 mmol/l Tris hydrochloride, 25 mmol/l ethylenediaminetetraacetic acid (hereinafter referred to as "EDTA"), pH 8.0), and the like.
 - [0027] Genome DNA can be obtained from the washed cells according to a conventional method for obtaining genome DNA, namely, lysing the cell wall of the cells using a lysozyme and a surfactant (SDS, etc.), eliminating proteins and the like using a phenol solution and a phenol/chloroform solution, and then precipitating the genome DNA with ethanol or the like. Specifically, the following method can be illustrated.
 - [0028] The washed cells are suspended in a washing solution containing 5 to 20 mg/l lysozyme. After shaking, 5 to 20% SDS is added to lyse the cells. In usual, shaking is gently performed at 25 to 40°C for 30 minutes to 2 hours. After shaking, the suspension is maintained at 60 to 70°C for 5 to 15 minutes for the lysis.
 - [0029] After the lysis, the suspension is cooled to ordinary temperature, and 5 to 20 ml of Tris-neutralized phenol is added thereto followed by gently shaking at room temperature for 15 to 45 minutes.
 - [0030] After shaking, centrifugation (15,000 \times g, 20 minutes, 20 $^{\circ}$ C) is carried out to fractionate the aqueous layer.
 - [0031] After performing extraction with phenol/chloroform and extraction with chloroform (twice) in the same manner, 3 mol/l sodium acetate solution (pH 5.2) and isopropanol are added to the aqueous layer at 1/10 times volume and 2 times volume, of the aqueous layer, respectively, followed by gently stirring to precipitate the genome DNA.
 - [0032] The genome DNA is dissolved again in a buffer containing 0.01 to 0.04 mg/ml RNase. As an example of the buffer, TE buffer (10 mmol/l Tris hydrochloride, 1 mol/l EDTA, pH 8.0) can be used. After dissolving, the resultant solution is maintained at 25 to 40°C for 20 to 50 minutes and then extracted successively with phenol, phenol/chloroform and chloroform as in the above case.
 - [0033] After the extraction, isopropanol precipitation is carried out and the resulting DNA precipitate is washed with 70% ethanol, followed by air drying, and then dissolved in TE buffer to obtain a genome DNA solution.
 - (2) Production of shotgun library

10

20

25

30

35

45

- [0034] A method for produce a genome DNA library using the genome DNA of the coryneform bacteria prepared in the above (1) include a method described in *Molecular Cloning*, *A laboratory Manual*, Second Edition (1989) (hereinafter referred to as "*Molecular Cloning*, 2nd ed."). In particular, the following method can be exemplified to prepare a genome DNA library appropriately usable in determining the full nucleotide sequence by the shotgun method.
- [0035] To 0.01 mg of the genome DNA of the coryneform bacteria prepared in the above (1), a buffer, such as TE buffer or the like, is added to give a total volume of 0.4 ml. Then, the genome DNA is digested into fragments of 1 to 10 kb with a sonicator (Yamato Powersonic Model 50). The treatment with the sonicator is performed at an output of 20 continuously for 5 seconds.
 - [0036] The resulting genome DNA fragments are blunt-ended using DNA blunting kit (manufactured by Takara Shuzo) or the like.
 - [0037] The blunt-ended genome fragments are fractionated by agarose gel or polyacrylamide gel electrophoresis and genome fragments of 1 to 2 kb are cut out from the gel.
 - [0038] To the gel, 0.2 to 0.5 ml of a buffer for eluting DNA, such as MG elution buffer (0.5 mol/l ammonium acetate, 10 mmol/l magnesium acetate, 1 mmol/l EDTA, 0.1% SDS) or the like, is added, followed by shaking at 25 to 40°C overnight to elute DNA.
 - [0039] The resulting DNA eluate is treated with phenol/chloroform and then precipitated with ethanol to obtain a genome library insert.
 - [0040] This insert is ligated into a suitable vector, such as pUC18 Smal/SAP (manufactured by Amersham Pharmacia Biotech) or the like, using T4 ligase (manufactured by Takara Shuzo) or the like. The ligation can be carried out by allowing a mixture to stand at 10 to 20°C for 20 to 50 hours.
 - [0041] The resulting ligation product is precipitated with ethanol and dissolved in 5 to 20 µl of TE buffer.
 - [0042] Escherichia coli is transformed in accordance with a conventional method using 0.5 to 2 μ l of the ligation solution. Examples of the transformation method include the electroporation method using ELECTRO MAX DHIOB

(manufactured by Life Technologies) for *Escherichia coli*. The electroporation method can be carried out under the conditions as described in the manufacturer's instructions.

[0043] The transformed *Escherichia coli* is spread on a suitable selection medium containing agar, for example, LB plate medium containing 10 to 100 mg/l ampicillin (LB medium (10 g/l bactotrypton, 5 g/l yeast extract, 10 g/l sodium chloride, pH 7.0) containing 1.6% of agar) when pUC18 is used as the cloning vector, and cultured therein.

[0044] The transformant can be obtained as colonies formed on the plate medium. In this step, it is possible to select the transformant having the recombinant DNA containing the genome DNA as white colonies by adding X-gal and IPTG (isopropyl-β-thiogalactopyranoside) to the plate medium.

[0045] The transformant is allowed to stand for culturing in a 96-well titer plate to which 0.05 ml of the LB medium containing 0.1 mg/ml of ampicillin has been added in each well. The resulting culture can be used in an experiment of (4) described below. Also, the culture solution can be stored at -80°C by adding 0.05 ml per well of the LB medium containing 20% glycerol to the culture solution, followed by mixing, and the stored culture solution can be used at any time.

(3) Production of cosmid library

10

15

20

25

30

40

45

50

55

[0046] The genome DNA (0.1 mg) of the coryneform bacteria prepared in the above (1) is partially digested with a restriction enzyme, such as *Sau*3Al or the like, and then ultracentrifuged (26,000 rpm, 18 hours, 20°C) under a 10 to 40% sucrose density gradient using a 10% sucrose buffer (1 mol/l Nacl, 20 mmol/l Tris hydrochloride, 5 mmol/l EDTA, 10% sucrose, pH 8.0) and a 40% sucrose buffer (elevating the concentration of the 10% sucrose buffer to 40%).

[0047] After the centrifugation, the thus separated solution is fractionated into tubes in 1 ml per each tube. After confirming the DNA fragment size of each fraction by agarose gel electrophoresis, a fraction rich in DNA fragments of about 40 kb is precipitated with ethanol.

[0048] The resulting DNA fragment is ligated to a cosmid vector having a cohesive end which can be ligated to the fragment. When the genome DNA is partially digested with *Sau*3Al, the partially digested product can be ligated to, for example, the *Bam*Hl site of superCos1 (manufactured by Stratagene) in accordance with the manufacture's instructions.

[0049] The resulting ligation product is packaged using a packaging extract which can be prepared by a method described in *Molecular Cloning*, 2nd ed. and then used in transforming *Escherichia coli*. More specifically, the ligation product is packaged using, for example, a commercially available packaging extract, Gigapack III Gold Packaging Extract (manufactured by Stratagene) in accordance with the manufacture's instructions and then introduced into *Escherichia coli* XL-1-BlueMR (manufactured by Stratagene) or the like.

[0050] The thus transformed *Escherichia coli is* spread on an LB plate medium containing ampicillin, and cultured therein.

35 [0051] The transformant can be obtained as colonies formed on the plate medium.

[0052] The transformant is subjected to standing culture in a 96-well titer plate to which 0.05 ml of the LB medium containing 0.1 mg/ml ampicillin has been added.

[0053] The resulting culture can be employed in an experiment of (4) described below. Also, the culture solution can be stored at -80°C by adding 0.05 ml per well of the LB medium containing 20% glycerol to the culture solution, followed by mixing, and the stored culture solution can be used at any time.

(4) Determination of nucleotide sequence

(4-1) Preparation of template

[0054] The full nucleotide sequence of genome DNA of coryneform bacteria can be determined basically according to the whole genome shotgun method (Science, 269: 496-512 (1995)).

[0055] The template used in the whole genome shotgun method can be prepared by PCR using the library prepared in the above (2) (DNA Research, 5: 1-9 (1998)).

[0056] Specifically, the template can be prepared as follows.

[0057] The clone derived from the whole genome shotgun library is inoculated by using a replicator (manufactured by GENETIX) into each well of a 96-well plate to which 0.08 ml per well of the LB medium containing 0.1 mg/ml ampicillin has been added, followed by stationarily culturing at 37°C overnight.

[0058] Next, the culture solution is transported, using a copy plate (manufactured by Tokken), into each well of a 96-well reaction plate (manufactured by PE Biosystems) to which 0.025 ml per well of a PCR reaction solution has been added using TaKaRa Ex Taq (manufactured by Takara Shuzo). Then, PCR is carried out in accordance with the protocol by Makino et al. (DNA Research, 5: 1-9 (1998)) using GeneAmp PCR System 9700 (manufactured by PE Biosystems) to amplify the inserted fragments.

[0059] The excessive primers and nucleotides are eliminated using a kit for purifying a PCR product, and the product is used as the template in the sequencing reaction.

[0060] It is also possible to determine the nucleotide sequence using a double-stranded DNA plasmid as a template.

[0061] The double-stranded DNA plasmid used as the template can be obtained by the following method.

[0062] The clone derived from the whole genome shotgun library is inoculated into each well of a 24- or 96-well plate to which 1.5 ml per well of a 2 × YT medium (16 g/l bactotrypton, 10 g/l yeast extract, 5 g/l sodium chloride, pH 7.0) containing 0.05 mg/ml ampicillin has been added, followed by culturing under shaking at 37°C overnight.

[0063] The double-stranded DNA plasmid can be prepared from the culture solution using an automatic plasmid preparing machine KURABO PI-50 (manufactured by Kurabo Industries), a multiscreen (manufactured by Millipore) or the like, according to each protocol.

[0064] To purify the plasmid, Biomek 2000 manufactured by Beckman Coulter and the like can be used.

[0065] The resulting purified double-stranded DNA plasmid is dissolved in water to give a concentration of about 0.1 mg/ml. Then, it can be used as the template in sequencing.

5 (4-2) Sequencing reaction

20

25

35

40

50

55

[0066] The sequencing reaction can be carried out according to a commercially available sequence kit or the like. A specific method is exemplified below.

[0067] To 6 μ I of a solution of ABI PRISM BigDye Terminator Cycle Sequencing Ready Reaction Kit (manufactured by PE Biosystems), 1 to 2 pmol of an M13 regular direction primer (M13-21) or an M13 reverse direction primer (MI3REV) (*DNA Research*, 5: 1-9 (1998)) and 50 to 200 ng of the template prepared in the above (4-1) (the PCR product or plasmid) to give 10 μ I of a sequencing reaction solution.

[0068] A dye terminator sequencing reaction (35 to 55 cycles) is carried out using this reaction solution and GeneAmp PCR System 9700 (manufactured by PE Biosystems) or the like. The cycle parameter can be determined in accordance with a commercially available kit, for example, the manufacture's instructions attached with ABI PRISM Big Dye Terminator Cycle Sequencing Ready Reaction Kit.

[0069] The sample can be purified using a commercially available product, such as Multi Screen HV plate (manufactured by Millipore) or the like, according to the manufacture's instructions.

[0070] The thus purified reaction product is precipitated with ethanol, dried and then used for the analysis. The dried reaction product can be stored in the dark at -30°C and the stored reaction product can be used at any time.

[0071] The dried reaction product can be analyzed using a commercially available sequencer and an analyzer according to the manufacture's instructions.

[0072] Examples of the commercially available sequencer include ABI PRISM 377 DNA Sequencer (manufactured by PE Biosystems). Example of the analyzer include ABI PRISM 3700 DNA Analyzer (manufactured by PE Biosystems).

(5) Assembly

[0073] A software, such as phred (The University of Washington) or the like, can be used as base call for use in analyzing the sequence information obtained in the above (4). A software, such as Cross_Match (The University of Washington) or SPS Cross_Match (manufactured by Southwest Parallel Software) or the like, can be used to mask the vector sequence information.

[0074] For the assembly, a software, such as phrap (The University of Washington), SPS phrap (manufactured by Southwest Parallel Software) or the like, can be used.

[0075] In the above, analysis and output of the results thereof, a computer such as UNIX, PC, Macintosh, and the like can be used.

[0076] Contig obtained by the assembly can be analyzed using a graphical editor such as consed (The University of Washington) or the like.

[0077] It is also possible to perform a series of the operations from the base call to the assembly in a lump using a script phredPhrap attached to the consed.

[0078] As used herein, software will be understood to also be referred to as a comparator.

(6) Determination of nucleotide sequence in gap part

[0079] Each of the cosmids in the cosmid library constructed in the above (3) is prepared in the same manner as in the preparation of the double-stranded DNA plasmid described in the above (4-1). The nucleotide sequence at the end of the insert fragment of the cosmid is determined using a commercially available kit, such as ABI PRISM BigDye Terminator Cycle Sequencing Ready Reaction Kit (manufactured by PE Biosystems) according to the manufacture's instructions.

[0080] About 800 cosmid clones are sequenced at both ends of the inserted fragment to detect a nucleotide sequence in the contig derived from the shotgun sequencing obtained in (5) which is coincident with the sequence. Thus, the chain linkage between respective cosmid clones and respective contigs are clarified, and mutual alignment is carried out. Furthermore, the results are compared with known physical maps to map the cosmids and the contigs. In case of Corynebacterium glutamicum ATCC 13032, a physical map of Mol. Gen. Genet., 252: 255-265 (1996) can be used. [0081] The sequence in the region which cannot be covered with the contigs (gap part) can be determined by the following method.

[0082] Clones containing sequences positioned at the ends of the contigs are selected. Among these, a clone wherein only one end of the inserted fragment has been determined is selected and the sequence at the opposite end of the inserted fragment is determined.

[0083] A shotgun library clone or a cosmid clone derived therefrom containing the sequences at the respective ends of the inserted fragments in the two contigs is identified and the full nucleotide sequence of the inserted fragment of the clone is determined.

[0084] According to this method, the nucleotide sequence of the gap part can be determined.

[0085] When no shotgun library clone or cosmid clone covering the gap part is available, primers complementary to the end sequences of the two different contigs are prepared and the DNA fragment in the gap part is amplified. Then, sequencing is performed by the primer walking method using the amplified DNA fragment as a template or by the shotgun method in which the sequence of a shotgun clone prepared from the amplified DNA fragment is determined. Thus, the nucleotide sequence of the above-described region can be determined.

[0086] In a region showing a low sequence accuracy, primers are synthesized using AUTOFINISH function and NAVIGATING function of consed (The University of Washington), and the sequence is determined by the primer walking method to improve the sequence accuracy.

[0087] Examples of the thus determined nucleotide sequence of the full genome include the full nucleotide sequence of genome of *Corynebacterium glutamicum* ATCC 13032 represented by SEQ ID NO:1.

(7) Determination of nucleotide sequence of microorganism genome DNA using the nucleotide sequence represented by SEQ ID NO:1

[0088] A nucleotide sequence of a polynucleotide having a homology of 80% or more with the full nucleotide sequence of Corynebacterium glutamicum ATCC 13032 represented by SEQ ID NO:1 as determined above can also be determined using the nucleotide sequence represented by SEQ ID NO:1, and the polynucleotide having a nucleotide sequence having a homology of 80% or more with the nucleotide sequence represented by SEQ ID NO:1 of the present invention is within the scope of the present invention. The term "polynucleotide having a nucleotide sequence having a homology of 80% or more with the nucleotide sequence represented by SEQ ID NO:1 of the present invention" is a polynucleotide in which a full nucleotide sequence of the chromosome DNA can be determined using as a primer an oligonucleotide composed of continuous 5 to 50 nucleotides in the nucleotide sequence represented by SEQ ID NO: 1, for example, according to PCR using the chromosome DNA as a template. A particularly preferred primer in determination of the full nucleotide sequence is an oligonucleotide having nucleotide sequences which are positioned at the interval of about 300 to 500 bp, and among such oligonucleotides, an oligonucleotide having a nucleotide sequence selected from DNAs encoding a protein relating to a main metabolic pathway is particularly preferred. The polynucleotide in which the full nucleotide sequence of the chromosome DNA can be determined using the oligonucleotide includes polynucleotides constituting a chromosome DNA derived from a microorganism belonging to coryneform bacteria. Such a polynucleotide is preferably a polynucleotide constituting chromosome DNA derived from a microorganism belonging to the genus Corynebacterium, more preferably a polynucleotide constituting a chromosome DNA of Corynebacterium glutamicum.

2. Identification of ORF (open reading frame) and expression regulatory fragment and determination of the function of ORF

[0089] Based on the full nucleotide sequence data of the genome derived from coryneform bacteria determined in the above item 1, an ORF and an expression modulating fragment can be identified. Furthermore, the function of the thus determined ORF can be determined.

[0090] The ORF means a continuous region in the nucleotide sequence of mRNA which can be translated as an amino acid sequence to mature to a protein. A region of the DNA coding for the ORF of mRNA is also called ORF.

[0091] The expression modulating fragment (hereinafter referred to as "EMF") is used herein to define a series of polynucleotide fragments which modulate the expression of the ORF or another sequence ligated operatably thereto. The expression "modulate the expression of a sequence ligated operatably" is used herein to refer to changes in the expression of a sequence due to the presence of the EMF. Examples of the EMF include a promoter, an operator, an

15

25

enhancer, a silencer, a ribosome-binding sequence, a transcriptional termination sequence, and the like. In coryneform bacteria, an EMF is usually present in an intergenic segment (a fragment positioned between two genes; about 10 to 200 nucleotides in length). Accordingly, an EMF is frequently present in an intergenic segment of 10 nucleotides or longer. It is also possible to determine or discover the presence of an EMF by using known EMF sequences as a target sequence or a target structural motif (or a target motif) using an appropriate software or comparator, such as FASTA (*Proc. Natl. Acad. Sci. USA, 85*: 2444-48 (1988)), BLAST (*J. Mol. Biol., 215*: 403-410 (1990)) or the like. Also, it can be identified and evaluated using a known EMF-capturing vector (for example, pKK232-8; manufactured by Amersham Pharmacia Biotech).

[0092] The term "target sequence" is used herein to refer to a nucleotide sequence composed of 6 or more nucleotides, an amino acid sequence composed of 2 or more amino acids, or a nucleotide sequence encoding this amino acid sequence composed of 2 or more amino acids. A longer target sequence appears at random in a data base at the lower possibility. The target sequence is preferably about 10 to 100 amino acid residues or about 30 to 300 nucleotide residues.

[0093] The term "target structural motif" or "target motif" is used herein to refer to a sequence or a combination of sequences selected optionally and reasonably. Such a motif is selected on the basis of the threedimensional structure formed by the folding of a polypeptide by means known to one of ordinary skill in the art. Various motives are known.

[0094] Examples of the target motif of a polypeptide include, but are not limited to, an enzyme activity site, a protein-protein interaction site, a signal sequence, and the like. Examples of the target motif of a nucleic acid include a promoter sequence, a transcriptional regulatory factor binding sequence, a hair pin structure, and the like.

[0095] Examples of highly useful EMF include a high-expression promoter, an inducible-expression promoter, and the like. Such an EMF can be obtained by positionally determining the nucleotide sequence of a gene which is known or expected as achieving high expression (for example, ribosomal RNA gene: GenBank Accession No. M16175 or Z46753) or a gene showing a desired induction pattern (for example, isocitrate lyase gene induced by acetic acid: Japanese Published Unexamined Patent Application No. 56782/93) via the alignment with the full genome nucleotide sequence determined in the above item 1, and isolating the genome fragment in the upstream part (usually 200 to 500 nucleotides from the translation initiation site). It is also possible to obtain a highly useful EMF by selecting an EMF showing a high expression efficiency or a desired induction pattern from among promoters captured by the EMF-capturing vector as described above.

[0096] The ORF can be identified by extracting characteristics common to individual ORFs, constructing a general model based on these characteristics, and measuring the conformity of the subject sequence with the model. In the identification, a software, such as GeneMark (*Nuc. Acids. Res., 22*: 4756-67 (1994): manufactured by GenePro)), GeneMark.hmm (manufactured by GenePro), GeneHacker (*Protein, Nucleic Acid and Enzyme, 42*: 3001-07 (1997)), Glimmer (*Nuc. Acids. Res., 26*: 544-548 (1998): manufactured by The Institute of Genomic Research), or the like, can be used. In using the software, the default (initial setting) parameters are usually used, though the parameters can be optionally changed.

[0097] In the above-described comparisons, a computer, such as UNIX, PC, Macintosh, or the like, can be used.
[0098] Examples of the ORF determined by the method of the present invention include ORFs having the nucleotide sequences represented by SEQ ID NOS:2 to 3501 present in the genome of *Corynebacterium glutamicum* as represented by SEQ ID NO:1. In these ORFs, polypeptides having the amino acid sequences represented by SEQ ID NOS:

3502 to 7001 are encoded.

10

20

30

35

40

50

[0099] The function of an ORF can be determined by comparing the identified amino acid sequence of the ORF with known homologous sequences using a homology searching software or comparator, such as BLAST, FAST, Smith & Waterman (*Meth. Enzym., 164*: 765 (1988)) or the like on an amino acid data base, such as Swith-Prot, PIR, GenBank-nr-aa, GenPept constituted by protein-encoding domains derived from GenBank data base, OWL or the like.

[0100] Furthermore, by the homology searching, the identity and similarity with the amino acid sequences of known proteins can also be analyzed.

[0101] With respect of the term "identity" used herein, where two polypeptides each having 10 amino acids are different in the positions of 3 amino acids, these polypeptides have an identity of 70% with each other. In case wherein one of the different 3 amino acids is analogue (for example, leucine and isoleucine), these polypeptides have a similarity of 80%.

[0102] As a specific example, Table 1 shows the registration numbers in known data bases of sequences which are judged as having the highest similarity with the nucleotide sequence of the ORF derived from *Corynebacterium glutamicum* ATCC 13032, genes of these sequences, functions of these genes, and identities thereof compared with known amino acid translation sequences.

[0103] Thus, a great number of novel genes derived from coryneform bacteria can be identified by determining the full nucleotide sequence of the genome derived from coryneform bacterium by the means of the present invention. Moreover, the function of the proteins encoded by these genes can be determined. Since coryneform bacteria are industrially highly useful microorganisms, many of the identified genes are industrially useful.

[0104] Moreover, the characteristics of respective microorganisms can be clarified by classifying the functions thus determined. As a result, valuable information in breeding is obtained.

[0105] Furthermore, from the ORF information derived from coryneform bacteria, the ORF corresponding to the microorganism is prepared and obtained according to the general method as disclosed in *Molecular Cloning*, 2nd ed. or the like. Specifically, an oligonucleotide having a nucleotide sequence adjacent to the ORF is synthesized, and the ORF can be isolated and obtained using the oligonucleotide as a primer and a chromosome DNA derived from coryneform bacteria as a template according to the general PCR cloning technique. Thus obtained ORF sequences include polynucleotides comprising the nucleotide sequence represented by any one of SEQ ID NOS:2 to 3501.

[0106] The ORF or primer can be prepared using a polypeptide synthesizer based on the above sequence information.

[0107] Examples of the polynucleotide of the present invention include a polynucleotide containing the nucleotide sequence of the ORF obtained in the above, and a polynucleotide which hybridizes with the polynucleotide under stringent conditions.

[0108] The polynucleotide of the present invention can be a single-stranded DNA, a double-stranded DNA and a single-stranded RNA, though it is not limited thereto.

[0109] The polynucleotide which hybridizes with the polynucleotide containing the nucleotide sequence of the ORF obtained in the above under stringent conditions includes a degenerated mutant of the ORF. A degenerated mutant is a polynucleotide fragment having a nucleotide sequence which is different from the sequence of the ORF of the present invention which encodes the same amino acid sequence by degeneracy of a gene code.

[0110] Specific examples include a polynucleotide comprising the nucleotide sequence represented by any one of SEQ ID NOS:2 to 3431, and a polynucleotide which hybridizes with the polynucleotide under stringent conditions.

[0111] A polynucleotide which hybridizes under stringent conditions is a polynucleotide obtained by colony hybridization, plaque hybridization, Southern blot hybridization or the like using, as a probe, the polynucleotide having the nucleotide sequence of the ORF identified in the above. Specific examples include a polynucleotide which can be identified by carrying out hybridization at 65°C in the presence of 0.7-1.0 M NaCl using a filter on which a polynucleotide prepared from colonies or plaques is immobilized, and then washing the filter with 0.1x to 2x SSC solution (the composition of lx SSC contains 150 mM sodium chloride and 15 mM sodium citrate) at 65°C.

[0112] The hybridization can be carried out in accordance with known methods described in, for example, *Molecular Cloning*, 2nd ed., *Current Protocols in Molecular Biology, DNA Cloning 1: Core Techniques, A Practical Approach*, Second Edition, Oxford University (1995) or the like. Specific examples of the polynucleotide which can be hybridized include a DNA having a homology of 60% or more, preferably 80% or more, and particularly preferably 95% or more, with the nucleotide sequence represented by any one of SEQ ID NO:2 to 3431 when calculated using default (initial setting) parameters of a homology searching software, such as BLAST, FASTA, Smith-Waterman or the like.

[0113] Also, the polynucleotide of the present invention includes a polynucleotide encoding a polypeptide comprising the amino acid sequence represented by any one of SEQ ID NOS:3502 to 6931 and a polynucleotide which hybridizes with the polynucleotide under stringent conditions.

[0114] Furthermore, the polynucleotide of the present invention includes a polynucleotide which is present in the 5' upstream or 3' downstream region of a polynucleotide comprising the nucleotide sequence of any one of SEQ ID NOS: 2 to 3431 in a polynucleotide comprising the nucleotide sequence represented by SEQ ID NO:1, and has an activity of regulating an expression of a polypeptide encoded by the polynucleotide. Specific examples of the polynucleotide having an activity of regulating an expression of a polypeptide encoded by the polynucleotide includes a polynucleotide encoding the above described EMF, such as a promoter, an operator, an enhancer, a silencer, a ribosome-binding sequence, a transcriptional termination sequence, and the like.

[0115] The primer used for obtaining the ORF according to the above PCR cloning technique includes an oligonucleotide comprising a sequence which is the same as a sequence of 10 to 200 continuous nucleotides in the nucleotide sequence of the ORF and an adjacent region or an oligonucleotide comprising a sequence which is complementary to the oligonucleotide. Specific examples include an oligonucleotide comprising a sequence which is the same as a sequence of 10 to 200 continuous nucleotides of the nucleotide sequence represented by any one of SEQ ID NOS:1 to 3431, and an oligonucleotide comprising a sequence complementary to the oligonucleotide comprising a sequence of at least 10 to 20 continuous nucleotide of any one of SEQ ID NOS:1 to 3431. When the primers are used as a sense primer and an antisense primer, the above-described oligonucleotides in which melting temperature (T_m) and the number of nucleotides are not significantly different from each other are preferred.

[0116] The oligonucleotide of the present invention includes an oligonucleotide comprising a sequence which is the same as 10 to 200 continuous nucleotides of the nucleotide sequence represented by any one of SEQ ID NOS:1 to 3431 or an oligonucleotide comprising a sequence complementary to the oligonucleotide.

[0117] Also, analogues of these oligonucleotides (hereinafter also referred to as "analogous oligonucleotides") are also provided by the present invention and are useful in the methods described herein.

[0118] Examples of the analogous oligonucleotides include analogous oligonucleotides in which a phosphodiester

10

20

25

30

35

40

45

50

bond in an oligonucleotide is converted to a phosphorothioate bond, analogous oligonucleotides in which a phosphodiester bond in an oligonucleotide is converted to an N3'-P5' phosphoamidate bond, analogous oligonucleotides in which ribose and a phosphodiester bond in an oligonucleotide is converted to a peptide nucleic acid bond, analogous oligonucleotides in which uracil in an oligonucleotide is replaced with C-5 propynyluracil, analogous oligonucleotides in which uracil in an oligonucleotide is replaced with C-5 thiazoluracil, analogous oligonucleotides in which cytosine in an oligonucleotide is replaced with C-5 propynylcytosine, analogous oligonucleotides in which cytosine in an oligonucleotide is replaced with phenoxazine-modified cytosine, analogous oligonucleotides in which ribose in an oligonucleotide is replaced with 2'-O-propylribose, analogous oligonucleotides in which ribose in an oligonucleotide is replaced with 2'-methoxyethoxyribose, and the like (*Cell Engineering*, 16: 1463 (1997)).

[0119] The above oligonucleotides and analogous oligonucleotides of the present invention can be used as probes for hybridization and antisense nucleic acids described below in addition to as primers.

[0120] Examples of a primer for the antisense nucleic acid techniques known in the art include an oligonucleotide which hybridizes the oligonucleotide of the present invention under stringent conditions and has an activity regulating expression of the polypeptide encoded by the polynucleotide, in addition to the above oligonucleotide.

3. Determination of isozymes

10

15

20

25

30

35

40

45

55

[0121] Many mutants of coryneform bacteria which are useful in the production of useful substances, such as amino acids, nucleic acids, vitamins, saccharides, organic acids, and the like, are obtained by the present invention.

[0122] However, since the gene sequence data of the microorganism has been, to date, insufficient, useful mutants have been obtained by mutagenic techniques using a mutagen, such as nitrosoguanidine (NTG) or the like.

[0123] Although genes can be mutated randomly by the mutagenic method using the above-described mutagen, all genes encoding respective isozymes having similar properties relating to the metabolism of intermediates cannot be mutated. In the mutagenic method using a mutagen, genes are mutated randomly. Accordingly, harmful mutations worsening culture characteristics, such as delay in growth, accelerated foaming, and the like, might be imparted at a great frequency, in a random manner.

[0124] However, if gene sequence information is available, such as is provided by the present invention, it is possible to mutate all of the genes encoding target isozymes. In this case, harmful mutations may be avoided and the target mutation can be incorporated.

[0125] Namely, an accurate number and sequence information of the target isozymes in coryneform bacteria can be obtained based on the ORF data obtained in the above item 2. By using the sequence information, all of the target isozyme genes can be mutated into genes having the desired properties by, for example, the site-specific mutagenesis method described in *Molecular Cloning*, 2nd ed. to obtain useful mutants having elevated productivity of useful substances.

4. Clarification or determination of biosynthesis pathway and signal transmission pathway

[0126] Attempts have been made to elucidate biosynthesis pathways and signal transmission pathways in a number of organisms, and many findings have been reported. However, there are many unknown aspects of coryneform bacteria since a number of genes have not been identified so far.

[0127] These unknown points can be clarified by the following method.

[0128] The functional information of ORF derived from coryneform bacteria as identified by the method of above item 2 is arranged. The term "arranged" means that the ORF is classified based on the biosynthesis pathway of a substance or the signal transmission pathway to which the ORF belongs using known information according to the functional information. Next, the arranged ORF sequence information is compared with enzymes on the biosynthesis pathways or signal transmission pathways of other known organisms. The resulting information is combined with known data on coryneform bacteria. Thus, the biosynthesis pathways and signal transmission pathways in coryneform bacteria, which have been unknown so far, can be determined.

[0129] As a result that these pathways which have been unknown or unclear hitherto are clarified, a useful mutant for producing a target useful substance can be efficiently obtained.

[0130] When the thus clarified pathway is judged as important in the synthesis of a useful product, a useful mutant can be obtained by selecting a mutant wherein this pathway has been strengthened. Also, when the thus clarified pathway is judged as not important in the biosynthesis of the target useful product, a useful mutant can be obtained by selecting a mutant wherein the utilization frequency of this pathway is lowered.

5. Clarification or determination of useful mutation point

[0131] Many useful mutants of coryneform bacteria which are suitable for the production of useful substances, such

as amino acids, nucleic acids, vitamins, saccharides, organic acids, and the like, have been obtained. However, it is hardly known which mutation point is imparted to a gene to improve the productivity.

[0132] However, mutation points contained in production strains can be identified by comparing desired sequences of the genome DNA of the production strains obtained from coryneform bacteria by the mutagenic technique with the nucleotide sequences of the corresponding genome DNA and ORF derived from coryneform bacteria determined by the methods of the above items 1 and 2 and analyzing them

[0133] Moreover, effective mutation points contributing to the production can be easily specified from among these mutation points on the basis of known information relating to the metabolic pathways, the metabolic regulatory mechanisms, the structure activity correlation of enzymes, and the like.

[0134] When any efficient mutation can be hardly specified based on known data, the mutation points thus identified can be introduced into a wild strain of coryneform bacteria or a production strain free of the mutation. Then, it is examined whether or not any positive effect can be achieved on the production.

[0135] For example, by comparing the nucleotide sequence of homoserine dehydrogenase gene *hom* of a lysine-producing B-6 strain of *Corynebacterium glutamicum* (*Appl. Microbiol. Biotechnol., 32*: 269-273 (1989)) with the nucleotide sequence corresponding to the genome of *Corynebacterium glutamicum* ATCC 13032 according to the present invention, a mutation of amino acid replacement in which valine at the 59-position is replaced with alanine (Val59Ala) was identified. A strain obtained by introducing this mutation into the ATCC 13032 strain by the gene replacement method can produce lysine, which indicates that this mutation is an effective mutation contributing to the production of lysine.

[0136] Similarly, by comparing the nucleotide sequence of pyruvate carboxylase gene pyc of the B-6 strain with the nucleotide sequence corresponding to the ATCC 13032 genome, a mutation of amino acid replacement in which proline at the 458-position was replaced with serine (Pro458Ser) was identified. A strain obtained by introducing this mutation into a lysine-producing strain of No. 58 (FERM BP-7134) of Corynebacterium glutamicum free of this mutation shows an improved lysine productivity in comparison with the No. 58 strain, which indicates that this mutation is an effective mutation contributing to the production of lysine.

[0137] In addition, a mutation A1a213Thr in glucose-6-phosphate dehydrogenase was specified as an effective mutation relating to the production of lysine by detecting glucose-6-phosphate dehydrogenase gene zwf of the B-6 strain. [0138] Furthermore, the lysine-productivity of Corynebacterium glutamicum was improved by replacing the base at the 932-position of aspartokinase gene lysC of the Corynebacterium glutamicum ATCC 13032 genome with cytosine to thereby replace threonine at the 311-position by isoleucine, which indicates that this mutation is an effective mutation contributing to the production of lysine.

[0139] Also, as another method to examine whether or not the identified mutation point is an effective mutation, there is a method in which the mutation possessed by the lysine-producing strain is returned to the sequence of a wild type strain by the gene replacement method and whether or not it has a negative influence on the lysine productivity. For example, when the amino acid replacement mutation Val59Ala possessed by *hom* of the lysine-producing B-6 strain was returned to a wild type amino acid sequence, the lysine productivity was lowered in comparison with the B-6 strain. Thus, it was found that this mutation is an effective mutation contributing to the production of lysine.

[0140] Effective mutation points can be more efficiently and comprehensively extracted by combining, if needed, the DNA array analysis or proteome analysis described below.

6. Method of breeding industrially advantageous production strain

[0141] It has been a general practice to construct production strains, which are used industrially in the fermentation production of the target useful substances, such as amino acids, nucleic acids, vitamins, saccharides, organic acids, and the like, by repeating mutagenesis and breeding based on random mutagenesis using mutagens, such as NTG or the like, and screening.

[0142] In recent years, many examples of improved production strains have been made through the use of recombinant DNA techniques. In breeding, however, most of the parent production strains to be improved are mutants obtained by a conventional mutagenic procedure (W. Leuchtenberger, *Amino Acids - Technical Production and Use.* In: Roehr (ed) Biotechnology, second edition, vol. 6, products of primary metabolism. VCH Verlagsgesellschaft mbH, Weinheim, P 465 (1996)).

[0143] Although mutagenesis methods have largely contributed to the progress of the fermentation industry, they suffer from a serious problem of multiple, random introduction of mutations into every part of the chromosome. Since many mutations are accumulated in a single chromosome each time a strain is improved, a production strain obtained by the random mutation and selecting is generally inferior in properties (for example, showing poor growth, delayed consumption of saccharides, and poor resistance to stresses such as temperature and oxygen) to a wild type strain, which brings about troubles such as failing to establish a sufficiently elevated productivity, being frequently contaminated with miscellaneous bacteria, requiring troublesome procedures in culture maintenance, and the like, and, in its

20

30

40

turn, elevating the production cost in practice. In addition, the improvement in the productivity is based on random mutations and thus the mechanism thereof is unclear. Therefore, it is very difficult to plan a rational breeding strategy for the subsequent improvement in the productivity.

[0144] According to the present invention, effective mutation points contributing to the production can be efficiently specified from among many mutation points accumulated in the chromosome of a production strain which has been bred from coryneform bacteria and, therefore, a novel breeding method of assembling these effective mutations in the coryneform bacteria can be established. Thus, a useful production strain can be reconstructed. It is also possible to construct a useful production strain from a wild type strain.

[0145] Specifically, a useful mutant can be constructed in the following manner.

[0146] One of the mutation points is incorporated into a wild type strain of coryneform bacteria. Then, it is examined whether or not a positive effect is established on the production. When a positive effect is obtained, the mutation point is saved. When no effect is obtained, the mutation point is removed. Subsequently, only a strain having the effective mutation point is used as the parent strain, and the same procedure is repeated. In general, the effectiveness of a mutation positioned upstream cannot be clearly evaluated in some cases when there is a rate-determining point in the downstream of a biosynthesis pathway. It is therefore preferred to successively evaluate mutation points upward from downstream.

[0147] By reconstituting effective mutations by the method as described above in a wild type strain or a strain which has a high growth speed or the same ability to consume saccharides as the wild type strain, it is possible to construct an industrially advantageous strain which is free of troubles in the previous methods as described above and to conduct fermentation production using such strains within a short time or at a higher temperature.

[0148] For example, a lysine-producing mutant B-6 (*Appl. Microbiol. Biotechnol., 32*: 262-273 (1989)), which is obtained by multiple rounds of random mutagenesis from a wild type strain *Corynebacterium glutamicum* ATCC 13032, enables lysine fermentation to be performed at a temperature between 30 and 34°C but shows lowered growth and lysine productivity at a temperature exceeding 34°C. Therefore, the fermentation temperature should be maintained at 34°C or lower. In contrast thereto, the production strain described in the above item 5, which is obtained by reconstituting effective mutations relating to lysine production, can achieve a productivity at 40 to 42°C equal or superior to the result obtained by culturing at 30 to 34°C. Therefore, this strain is industrially advantageous since it can save the load of cooling during the fermentation.

[0149] When culture should be carried out at a high temperature exceeding 43°C, a production strain capable of conducting fermentation production at a high temperature exceeding 43°C can be obtained by reconstituting useful mutations in a microorganism belonging to the genus *Corynebacterium* which can grow at high temperature exceeding 43°C. Examples of the microorganism capable of growing at a high temperature exceeding 43°C include *Corynebacterium thermoaminogenes*, such as *Corynebacterium thermoaminogenes* FERM 9244, FERM 9245, FERM 9246 and FERM 9247.

[0150] A strain having a further improved productivity of the target product can be obtained using the thus reconstructed strain as the parent strain and further breeding it using the conventional mutagenesis method, the gene amplification method, the gene replacement method using the recombinant DNA technique, the transduction method or the cell fusion method. Accordingly, the microorganism of the present invention includes, but is not limited to, a mutant, a cell fusion strain, a transformant, a transductant or a recombinant strain constructed by using recombinant DNA techniques, so long as it is a producing strain obtained via the step of accumulating at least two effective mutations in a coryneform bacteria in the course of breeding.

[0151] When a mutation point judged as being harmful to the growth or production is specified, on the other hand, it is examined whether or not the producing strain used at present contains the mutation point. When it has the mutation, it can be returned to the wild type gene and thus a further useful production strain can be bred.

[0152] The breeding method as described above is applicable to microorganisms, other than coryneform bacteria, which have industrially advantageous properties (for example, microorganisms capable of quickly utilizing less expensive carbon sources, microorganisms capable of growing at higher temperatures).

- 7. Production and utilization of polynucleotide array
- (1) Production of polynucleotide array

[0153] A polynucleotide array can be produced using the polynucleotide or oligonucleotide of the present invention obtained in the above items 1 and 2.

[0154] Examples include a polynucleotide array comprising a solid support to which at least one of a polynucleotide comprising the nucleotide sequence represented by SEQ ID NOS:2 to 3501, a polynucleotide which hybridizes with the polynucleotide under stringent conditions, and a polynucleotide comprising 10 to 200 continuous nucleotides in the nucleotide sequence of the polynucleotide is adhered; and a polynucleotide array comprising a solid support to

5

10

15

20

25

30

35

40

45

50

which at least one of a polynucleotide encoding a polypeptide comprising the amino acid sequence represented by any one of SEQ ID NOS:3502 to 7001, a polynucleotide which hybridizes with the polynucleotide under stringent conditions, and a polynucleotide comprising 10 to 200 continuous bases in the nucleotide sequences of the polynucleotides is adhered.

[0155] Polynucleotide arrays of the present invention include substrates known in the art, such as a DNA chip, a DNA microarray and a DNA macroarray, and the like, and comprises a solid support and plural polynucleotides or fragments thereof which are adhered to the surface of the solid support.

[0156] Examples of the solid support include a glass plate, a nylon membrane, and the like.

[0157] The polynucleotides or fragments thereof adhered to the surface of the solid support can be adhered to the surface of the solid support using the general technique for preparing arrays. Namely, a method in which they are adhered to a chemically surface-treated solid support, for example, to which a polycation such as polylysine or the like has been adhered (*Nat. Genet.*, 21: 15-19 (1999)). The chemically surface-treated supports are commercially available and the commercially available solid product can be used as the solid support of the polynucleotide array according to the present invention.

[0158] As the polynucleotides or oligonucleotides adhered to the solid support, the polynucleotides and oligonucleotides of the present invention obtained in the above items 1 and 2 can be used.

[0159] The analysis described below can be efficiently performed by adhering the polynucleotides or oligonucleotides to the solid support at a high density, though a high fixation density is not always necessary.

[0160] Apparatus for achieving a high fixation density, such as an arrayer robot or the like, is commercially available from Takara Shuzo (GMS417 Arrayer), and the commercially available product can be used.

[0161] Also, the oligonucleotides of the present invention can be synthesized directly on the solid support by the photolithography method or the like (*Nat. Genet., 21*: 20-24 (1999)). In this method, a linker having a protective group which can be removed by light irradiation is first adhered to a solid support, such as a slide glass or the like. Then, it is irradiated with light through a mask (a photolithograph mask) permeating light exclusively at a definite part of the adhesion part. Next. an oligonucleotide having a protective group which can be removed by light irradiation is added to the part. Thus, a ligation reaction with the nucleotide arises exclusively at the irradiated part. By repeating this procedure, oligonucleotides, each having a desired sequence, different from each other can be synthesized in respective parts. Usually, the oligonucleotides to be synthesized have a length of 10 to 30 nucleotides.

30 (2) Use of polynucleotide array

[0162] The following procedures (a) and (b) can be carried out using the polynucleotide array prepared in the above (1).

35 (a) Identification of mutation point of coryneform bacterium mutant and analysis of expression amount and expression profile of gene encoded by genome

[0163] By subjecting a gene derived from a mutant of coryneform bacteria or an examined gene to the following steps (i) to (iv), the mutation point of the gene can be identified or the expression amount and expression profile of the gene can be analyzed:

- (i) producing a polynucleotide array by the method of the above (1);
- (ii) incubating polynucleotides immobilized on the polynucleotide array together with the labeled gene derived from a mutant of the coryneform bacterium using the polynucleotide array produced in the above (i) under hybridization conditions;
- (iii) detecting the hybridization; and
- (iv) analyzing the hybridization data.

[0164] The gene derived from a mutant of coryneform bacteria or the examined gene include a gene relating to biosynthesis of at least one selected from amino acids, nucleic acids, vitamins, saccharides, organic acids, and analogues thereof.

[0165] The method will be described in detail.

[0166] A single nucleotide polymorphism (SNP) in a human region of 2,300 kb has been identified using polynucleotide arrays (*Science, 280*: 1077-82 (1998)). In accordance with the method of identifying SNP and methods described in *Science, 278*: 680-686 (1997); *Proc. Natl. Acad. Sci. USA, 96*: 12833-38 (1999); *Science, 284*: 1520-23 (1999), and the like using the polynucleotide array produced in the above (1) and a nucleic acid molecule (DNA, RNA) derived from coryneform bacteria in the method of the hybridization, a mutation point of a useful mutant, which is useful in producing an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid, or the like can be identified and the gene

40

expression amount and the expression profile thereof can be analyzed.

[0167] The nucleic acid molecule (DNA, RNA) derived from the coryneform bacteria can be obtained according to the general method described in *Molecular Cloning*, 2nd ed. or the like. mRNA derived from *Corynebacterium glutamicum* can also be obtained by the method of Bormann et al. (Molecular Microbiology, 6: 317-326 (1992)) or the like.

- [0168] Although ribosomal RNA (rRNA) is usually obtained in large excess in addition to the target mRNA, the analysis is not seriously disturbed thereby.
 - [0169] The resulting nucleic acid molecule derived from coryneform bacteria is labelled. Labeling can be carried out according to a method using a fluorescent dye, a method using a radioisotope or the like.
 - [0170] Specific examples include a labeling method in which psoralen-biotin is crosslinked with RNA extracted from a microorganism and, after hybridization reaction, a fluorescent dye having streptoavidin bound thereto is bound to the biotin moiety (*Nat. Biotechnol., 16*: 45-48 (1998)); a labeling method in which a reverse transcription reaction is carried out using RNA extracted from a microorganism as a template and random primers as primers, and dUTP having a fluorescent dye (for example, Cy3, Cy5) (manufactured by Amersham Pharmacia Biotech) is incorporated into cDNA (*Proc. Natl. Acad. Sci. USA, 96*: 12833-38 (1999)); and the like.
- 15 [0171] The labeling specificity can be improved by replacing the random primers by sequences complementary to the 3'-end of ORF (*J. Bacteriol.*, 181: 6425-40 (1999)).
 - [0172] In the hybridization method, the hybridization and subsequent washing can be carried out by the general method (*Nat. Bioctechnol., 14*: 1675-80 (1996), or the like).
 - [0173] Subsequently, the hybridization intensity is measured depending on the hybridization amount of the nucleic acid molecule used in the labeling. Thus, the mutation point can be identified and the expression amount of the gene can be calculated.
 - [0174] The hybridization intensity can be measured by visualizing the fluorescent signal, radioactivity, luminescence dose, and the like, using a laser confocal microscope, a CCD camera, a radiation imaging device (for example, STORM manufactured by Amersham Pharmacia Biotech), and the like, and then quantifying the thus visualized data.
- [0175] A polynucleotide array on a solid support can also be analyzed and quantified using a commercially available apparatus, such as GMS418 Array Scanner (manufactured by Takara Shuzo) or the like.
 - [0176] The gene expression amount can be analyzed using a commercially available software (for example, ImaGene manufactured by Takara Shuzo; Array Gauge manufactured by Fuji Photo Film; ImageQuant manufactured by Amersham Pharmacia Biotech, or the like).
- [0177] A fluctuation in the expression amount of a specific gene can be monitored using a nucleic acid molecule obtained in the time course of culture as the nucleic acid molecule derived from coryneform bacteria. The culture conditions can be optimized by analyzing the fluctuation.
 - [0178] The expression profile of the microorganism at the total gene level (namely, which genes among a great number of genes encoded by the genome have been expressed and the expression ratio thereof) can be determined using a nucleic acid molecule having the sequences of many genes determined from the full genome sequence of the microorganism. Thus, the expression amount of the genes determined by the full genome sequence can be analyzed and, in its turn, the biological conditions of the microorganism can be recognized as the expression pattern at the full gene level.
- 40 (b) Confirmation of the presence of gene homologous to examined gene in coryneform bacteria
 - [0179] Whether or not a gene homologous to the examined gene, which is present in an organism other than coryneform bacteria, is present in coryneform bacteria can be detected using the polynucleotide array prepared in the above (1).
- [0180] This detection can be carried out by a method in which an examined gene which is present in an organism other than coryneform bacteria is used instead of the nucleic acid molecule derived from coryneform bacteria used in the above identification/analysis method of (1).
 - 8. Recording medium storing full genome nucleotide sequence and ORF data and being readable by a computer and methods for using the same
 - [0181] The term "recording medium or storage device which is readable by a computer" means a recording medium or storage medium which can be directly readout and accessed with a computer. Examples include magnetic recording media, such as a floppy disk, a hard disk, a magnetic tape, and the like; optical recording media, such as CD-ROM, CD-R, CD-RW, DVD-ROM, DVD-RAM, DVD-RW, and the like; electric recording media, such as RAM, ROM, and the like; and hybrids in these categories (for example, magnetic/optical recording media, such as MO and the like).
 - [0182] Instruments for recording or inputting in or on the recording medium or instruments or devices for reading out the information in the recording medium can be appropriately selected, depending on the type of the recording medium

10

20

35

and the access device utilized. Also, various data processing programs, software, comparator and formats are used for recording and utilizing the polynucleotide sequence information or the like. of the present invention in the recording medium. The information can be expressed in the form of a binary file, a text file or an ASCII file formatted with commercially available software, for example. Moreover, software for accessing the sequence information is available and known to one of ordinary skill in the art.

[0183] Examples of the information to be recorded in the above-described medium include the full genome nucleotide sequence information of coryneform bacteria as obtained in the above item 2, the nucleotide sequence information of ORF, the amino acid sequence information encoded by the ORF, and the functional information of polynucleotides coding for the amino acid sequences.

[0184] The recording medium or storage device which is readable by a computer according to the present invention refers to a medium in which the information of the present invention has been recorded. Examples include recording media or storage devices which are readable by a computer storing the nucleotide sequence information represented by SEQ ID NOS:1 to 3501, the amino acid sequence information represented by SEQ ID NOS:3502 to 7001, the functional information of the nucleotide sequences represented by SEQ ID NOS:1 to 3501, the functional information of the amino acid sequences represented by SEQ ID NOS:3502 to 7001, and the information listed in Table 1 below and the like.

- 9. System based on a computer using the recording medium of the present invention which is readable by a computer
- [0185] The term "system based on a computer" as used herein refers a system composed of hardware device(s), software device(s), and data recording device(s) which are used for analyzing the data recorded in the recording medium of the present invention which is readable by a computer.

[0186] The hardware device(s) are, for example, composed of an input unit, a data recording unit, a central processing unit and an output unit collectively or individually.

- 25 [0187] By the software device(s), the data recorded in the recording medium of the present invention are searched or analyzed using the recorded data and the hardware device(s) as described herein. Specifically, the software device (s) contain at least one program which acts on or with the system in order to screen, analyze or compare biologically meaningful structures or information from the nucleotide sequences, amino acid sequences and the like recorded in the recording medium according to the present invention.
- [0188] Examples of the software device(s) for identifying ORF and EMF domains include GeneMark (Nuc. Acids. Res., 22: 4756-67 (1994)), GeneHacker (Protein, Nucleic Acid and Enzyme, 42: 3001-07 (1997)), Glimmer (The Institute of Genomic Research; Nuc. Acids. Res., 26: 544-548 (1998)) and the like. In the process of using such a software device, the default (initial setting) parameters are usually used, although the parameters can be changed, if necessary, in a manner known to one of ordinary skill in the art.
- [0189] Examples of the software device(s) for identifying a genome domain or a polypeptide domain analogous to the target sequence or the target structural motif (homology searching) include FASTA, BLAST, Smith-Waterman, GenetyxMac (manufactured by Software Development), GCG Package (manufactured by Genetic Computer Group), GenCore (manufactured by Compugen), and the like. In the process of using such a software device, the default (initial setting) parameters are usually used, although the parameters can be changed, if necessary, in a manner known to one of ordinary skill in the art.
 - **[0190]** Such a recording medium storing the full genome sequence data is useful in preparing a polynucleotide array by which the expression amount of a gene encoded by the genome DNA of coryneform bacteria and the expression profile at the total gene level of the microorganism, namely, which genes among many genes encoded by the genome have been expressed and the expression ratio thereof, can be determined.
- [0191] The data recording device(s) provided by the present invention are, for example, memory device(s) for recording the data recorded in the recording medium of the present invention and target sequence or target structural motif data, or the like, and a memory accessing device(s) for accessing the same.

[0192] Namely, the system based on a computer according to the present invention comprises the following:

- (i) a user input device that inputs the information stored in the recording medium of the present invention, and target sequence or target structure motif information;
 - (ii) a data storage device for at least temporarily storing the input information;
 - (iii) a comparator that compares the information stored in the recording medium of the present invention with the target sequence or target structure motif information, recorded by the data storing device of (ii) for screening and analyzing nucleotide sequence information which is coincident with or analogous to the target sequence or target structure motif information; and
 - (iv) an output device that shows a screening or analyzing result obtained by the comparator.

[0193] This system is usable in the methods in items 2 to 5 as described above for searching and analyzing the ORF and EMF domains, target sequence, target structural motif, etc. of a coryneform bacterium, searching homologs, searching and analyzing isozymes, determining the biosynthesis pathway and the signal transmission pathway, and identifying spots which have been found in the proteome analysis. The term "homologs" as used herein includes both of orthologs and paralogs.

10. Production of polypeptide using ORF derived from coryneform bacteria

[0194] The polypeptide of the present invention can be produced using a polynucleotide comprising the ORF obtained in the above item 2. Specifically, the polypeptide of the present invention can be produced by expressing the polynucleotide of the present invention or a fragment thereof in a host cell, using the method described in *Molecular Cloning*, 2nd ed., *Current Protocols in Molecular Biology*, and the like, for example, according to the following method.

[0195] A DNA fragment having a suitable length containing a part encoding the polypeptide is prepared from the full length ORF sequence, if necessary.

[0196] Also, DNA in which nucleotides in a nucleotide sequence at a part encoding the polypeptide of the present invention are replaced to give a codon suitable for expression of the host cell, if necessary. The DNA is useful for efficiently producing the polypeptide of the present invention.

[0197] A recombinant vector is prepared by inserting the DNA fragment into the downstream of a promoter in a suitable expression vector.

[0198] The recombinant vector is introduced to a host cell suitable for the expression vector.

[0199] Any of bacteria, yeasts, animal cells, insect cells, plant cells, and the like can be used as the host cell so long as it can be expressed in the gene of interest.

[0200] Examples of the expression vector include those which can replicate autonomously in the above-described host cell or can be integrated into chromosome and have a promoter at such a position that the DNA encoding the polypeptide of the present invention can be transcribed.

[0201] When a procaryote cell, such as a bacterium or the like, is used as the host cell, it is preferred that the recombinant vector containing the DNA encoding the polypeptide of the present invention can replicate autonomously in the bacterium and is a recombinant vector constituted by, at least a promoter, a ribosome binding sequence, the DNA of the present invention and a transcription termination sequence. A promoter controlling gene can also be contained therewith in operable combination.

[0202] Examples of the expression vectors include a vector plasmid which is replicable in Corynebacterium glutamicum, such as pCGI (Japanese Published Unexamined Patent Application No. 134500/82), pCG2 (Japanese Published Unexamined Patent Application No. 35197/83), pCG4 (Japanese Published Unexamined Patent Application No. 183799/82), pCG11 (Japanese Published Unexamined Patent Application No. 134500/82), pCG116, pCE54 and pCB101 (Japanese Published Unexamined Patent Application No. 105999/83), pCE51, pCE52 and pCE53 (Mol. Gen. Genet., 196: 175-178 (1984)), and the like; a vector plasmid which is replicable in Escherichia coli, such as pET3 and pET11 (manufactured by Stratagene), pBAD, pThioHis and pTrcHis (manufactured by Invitrogen), pKK223-3 and pGEX2T (manufactured by Amersham Pharmacia Biotech), and the like; and pBTrp2, pBTac1 and pBTac2 (manufactured by Boehringer Mannheim Co.), pSE280 (manufactured by Invitrogen), pGEMEX-1 (manufactured by Promega), pQE-8 (manufactured by QIAGEN), pKYP10 (Japanese Published Unexamined Patent Application No. 110600/83), pKYP200 (Agric. Biol. Chem., 48: 669 (1984)), pLSA1 (Agric. Biol. Chem., 53: 277 (1989)), pGEL1 (Proc. Natl. Acad. Sci. USA, 82: 4306 (1985)), pBluescript II SK(-) (manufactured by Stratagene), pTrs30 (prepared from Escherichia coli JM109/pTrS30 (FERM BP-5407)), pTrs32 (prepared from Escherichia coli JM109/pTrS32 (FERM BP-5408)), pGHA2 (prepared from Escherichia coli IGHA2 (FERM B-400), Japanese Published Unexamined Patent Application No. 221091/85), pGKA2 (prepared from Escherichia coli IGKA2 (FERM BP-6798), Japanese Published Unexamined Patent Application No. 221091/85), pTerm2 (U.S. Patents 4,686,191, 4,939,094 and 5,160,735), pSupex, pUB110, pTP5, pC194 and pEG400 (J. Bacteriol., 172: 2392 (1990)), pGEX (manufactured by Pharmacia), pET system (manufactured by Novagen), and the like.

[0203] Any promoter can be used so long as it can function in the host cell. Examples include promoters derived from *Escherichia coli*, phage and the like, such as trp promoter (P_{trp}), lac promoter, P_{L} promoter, P_{R} promoter, P_{R} promoter, P_{R} promoter and the like. Also, artificially designed and modified promoters, such as a promoter in which two P_{trp} are linked in series ($P_{+rp} \times 2$), tac promoter, lacT7 promoter let promoter and the like, can be used.

[0204] It is preferred to use a plasmid in which the space between Shine-Dalgamo sequence which is the ribosome binding sequence and the initiation codon is adjusted to an appropriate distance (for example, 6 to 18 nucleotides).

[0205] The transcription termination sequence is not always necessary for the expression of the DNA of the present invention. However, it is preferred to arrange the transcription terminating sequence at just downstream of the structural gene

[0206] One of ordinary skill in the art will appreciate that the codons of the above-described elements may be opti-

10

15

20

30

40

mized, in a known manner, depending on the host cells and environmental conditions utilized.

[0207] Examples of the host cell include microorganisms belonging to the genus *Escherichia*, the genus *Serratia*, the genus *Bacillus*, the genus *Brevibacterium*, the genus *Corynebacterium*, the genus *Microbacterium*, the genus *Pseudomonas*, and the like. Specific examples include *Escherichia coli* XL1-Blue, *Escherichia coli* XL2-Blue, *Escherichia coli* DH1, *Escherichia coli* MC1000, *Escherichia coli* KY3276, *Escherichia coli* W1485, *Escherichia coli* JM109, *Escherichia coli* HB101, *Escherichia coli* No. 49, *Escherichia coli* W3110, *Escherichia coli* NY49, *Escherichia coli* Gl698, *Escherichia coli* TB1, *Serratia ficaria*, *Serratia fonticola*, *Serratia liquefaciens*, *Serratia marcescens*, *Bacillus subtilis*, *Bacillus amyloliquefaciens*, *Corynebacterium ammonia genes*, *Brevibacterium immariophilum* ATCC 14068, *Brevibacterium saccharolyticum* ATCC 14066, *Corynebacterium glutamicum* ATCC 13032, *Corynebacterium glutamicum* ATCC 13869 (prior genus and species: *Brevibacterium lactofermentum*, *or Corynebacterium lactofermentum*), *Corynebacterium acetoacidophilum* ATCC 13870, *Corynebacterium thermoaminogenes* FERM 9244, *Microbacterium ammoniaphilum* ATCC 15354, *Pseudomonas putida*, *Pseudomonas* sp. D-0110, and the like.

[0208] When Corynebacterium glutamicum or an analogous microorganism is used as a host, an EMF necessary for expressing the polypeptide is not always contained in the vector so long as the polynucleotide of the present invention contains an EMF. When the EMF is not contained in the polynucleotide, it is necessary to prepare the EMF separately and ligate it so as to be in operable combination. Also, when a higher expression amount or specific expression regulation is necessary, it is necessary to ligate the EMF corresponding thereto so as to put the EMF in operable combination with the polynucleotide. Examples of using an externally ligated EMF are disclosed in Microbiology, 142: 1297-1309 (1996).

[0209] With regard to the method for the introduction of the recombinant vector, any method for introducing DNA into the above-described host cells, such as a method in which a calcium ion is used (*Proc. Natl. Acad. Sci. USA, 69*: 2110 (1972)), a protoplast method (Japanese Published Unexamined Patent Application No. 2483942/88), the methods described in *Gene, 17*: 107 (1982) and *Molecular & General Genetics, 168*: 111 (1979) and the like, can be used.

[0210] When yeast is used as the host cell, examples of the expression vector include pYES2 (manufactured by Invitrogen), YEp13 (ATCC 37115), YEp24 (ATCC 37051), YCp50 (ATCC 37419), pHS19, pHS15, and the like.

[0211] Any promoter can be used so long as it can be expressed in yeast. Examples include a promoter of a gene in the glycolytic pathway, such as hexose kinase and the like, PHO5 promoter, PGK promoter, GAP promoter, ADH promoter, gal 1 promoter, gal 10 promoter, a heat shock protein promoter, MF all promoter, CUP 1 promoter, and the like.

[0212] Examples of the host cell include microorganisms belonging to the genus Saccharomyces, the genus Schizosaccharomyces, the genus Trichosporon, the genus Schwanniomyces, the genus Pichia, the genus Candida and the like. Specific examples include Saccharomyces cerevisiae, Schizosaccharomyces pombe, Kluyveromyces lactis, Trichosporon pullulans, Schwanniomyces alluvius, Candida utilis and the like.

[0213] With regard to the method for the introduction of the recombinant vector, any method for introducing DNA into yeast, such as an electroporation method (*Methods. Enzymol., 194*: 182 (1990)), a spheroplast method (*Proc. Natl. Acad. Sci. USA, 75*: 1929 (1978)), a lithium acetate method (*J. Bacteriol., 153*: 163 (1983)), a method described in *Proc. Natl. Acad. Sci. USA, 75*: 1929 (1978) and the like, can be used.

[0214] When animal cells are used as the host cells, examples of the expression vector include pcDNA3.1, pSinRep5 and pCEP4 (manufactured by Invitorogen), pRev-Tre (manufactured by Clontech), pAxCAwt (manufactured by Takara Shuzo), pcDNAI and pcDM8 (manufactured by Funakoshi), pAGE107 (Japanese Published Unexamined Patent Application No. 22979/91; Cytotechnology, 3:133 (1990)), pAS3-3 (Japanese Published Unexamined Patent Application No. 227075/90), pcDM8 (Nature, 329: 840 (1987)), pcDNAI/Amp (manufactured by Invitrogen), pREP4 (manufactured by Invitrogen), pAGE103 (J. Biochem., 101: 1307 (1987)), pAGE210, and the like.

[0215] Any promoter can be used so long as it can function in animal cells. Examples include a promoter of IE (immediate early) gene of cytomegalovirus (CMV), an early promoter of SV40, a promoter of retrovirus, a metal-lothionein promoter, a heat shock promoter, SRα promoter, and the like. Also, the enhancer of the IE gene of human CMV can be used together with the promoter.

[0216] Examples of the host cell include human Namalwa cell, monkey COS cell, Chinese hamster CHO cell, HST5637 (Japanese Published Unexamined Patent Application No. 299/88), and the like.

[0217] The method for introduction of the recombinant vector into animal cells is not particularly limited, so long as it is the general method for introducing DNA into animal cells, such as an electroporation method (*Cytotechnology, 3*: 133 (1990)), a calcium phosphate method (Japanese Published Unexamined Patent Application No. 227075/90), a lipofection method (*Proc. Natl. Acad. Sci. USA, 84*, 7413 (1987)), the method described in *Virology, 52*: 456 (1973), and the like

[0218] When insect cells are used as the host cells, the polypeptide can be expressed, for example, by the method described in *Bacurovirus Expression Vectors, A Laboratory Manual*, W.H. Freeman and Company, New York (1992), *Bio/Technology*, 6: 47 (1988), or the like.

[0219] Specifically, a recombinant gene transfer vector and bacurovirus are simultaneously inserted into insect cells

10

20

to obtain a recombinant virus in an insect cell culture supernatant, and then the insect cells are infected with the resulting recombinant virus to express the polypeptide.

[0220] Examples of the gene introducing vector used in the method include pBlueBac4.5, pVL1392, pVL1393 and pBlueBacIII (manufactured by Invitrogen), and the like.

[0221] Examples of the bacurovirus include Autographa californica nuclear polyhedrosis virus with which insects of the family Barathra are infected, and the like.

[0222] Examples of the insect cells include *Spodoptera frugiperda* oocytes Sf9 and Sf21 (*Bacurovirus Expression Vectors, A Laboratory Manual, W.H.* Freeman and Company, New York (1992)), *Trichoplusia ni* oocyte High 5 (manufactured by Invitrogen) and the like.

10 [0223] The method for simultaneously incorporating the above-described recombinant gene transfer vector and the above-described bacurovirus for the preparation of the recombinant virus include calcium phosphate method (Japanese Published Unexamined Patent Application No. 227075/90), lipofection method (*Proc. Natl. Acad. Sci. USA, 84*: 7413 (1987)) and the like.

[0224] When plant cells are used as the host cells, examples of expression vector include a Ti plasmid, a tobacco mosaic virus vector, and the like.

[0225] Any promoter can be used so long as it can be expressed in plant cells. Examples include 35S promoter of cauliflower mosaic virus (CaMV), rice actin 1 promoter, and the like.

[0226] Examples of the host cells include plant cells and the like, such as tobacco, potato, tomato, carrot, soybean, rape, alfalfa, rice, wheat, barley, and the like.

[0227] The method for introducing the recombinant vector is not particularly limited, so long as it is the general method for introducing DNA into plant cells, such as the *Agrobacterium* method (Japanese Published Unexamined Patent Application No. 140885/84, Japanese Published Unexamined Patent Application No. 70080/85, WO 94/00977), the electroporation method (Japanese Published Unexamined Patent Application No. 251887/85), the particle gun method (Japanese Patents 2606856 and 2517813), and the like.

[0228] The transformant of the present invention includes a transformant containing the polypeptide of the present invention *per se* rather than as a recombinant vector, that is, a transformant containing the polypeptide of the present invention which is integrated into a chromosome of the host, in addition to the transformant containing the above recombinant vector.

[0229] When expressed in yeasts, animal cells, insect cells or plant cells, a glycopolypeptide or glycosylated polypeptide can be obtained.

[0230] The polypeptide can be produced by culturing the thus obtained transformant of the present invention in a culture medium to produce and accumulate the polypeptide of the present invention or any polypeptide expressed under the control of an EMF of the present invention, and recovering the polypeptide from the culture.

[0231] Culturing of the transformant of the present invention in a culture medium is carried out according to the conventional method as used in culturing of the host.

[0232] When the transformant of the present invention is obtained using a prokaryote, such as *Escherichia coli* or the like, or a eukaryote, such as yeast or the like, as the host, the transformant is cultured.

[0233] Any of a natural medium and a synthetic medium can be used, so long as it contains a carbon source, a nitrogen source, an inorganic salt and the like which can be assimilated by the transformant and can perform culturing of the transformant efficiently.

[0234] Examples of the carbon source include those which can be assimilated by the transformant, such as carbohydrates (for example, glucose, fructose, sucrose, molasses containing them, starch, starch hydrolysate, and the like), organic acids (for example, acetic acid, propionic acid, and the like), and alcohols (for example, ethanol, propanol, and the like).

[0235] Examples of the nitrogen source include ammonia, various ammonium salts of inorganic acids or organic acids (for example, ammonium chloride, ammonium sulfate, ammonium acetate, ammonium phosphate, and the like), other nitrogen-containing compounds, peptone, meat extract, yeast extract, corn steep liquor, casein hydrolysate, soybean meal and soybean meal hydrolysate, various fermented cells and hydrolysates thereof, and the like.

[0236] Examples of inorganic salt include potassium dihydrogen phosphate, dipotassium hydrogen phosphate, magnesium phosphate, magnesium sulfate, sodium chloride, ferrous sulfate, manganese sulfate, copper sulfate, calcium carbonate, and the like.

[0237] The culturing is carried out under aerobic conditions by shaking culture, submerged-aeration stirring culture or the like. The culturing temperature is preferably from 15 to 40°C, and the culturing time is generally from 16 hours to 7 days. The pH of the medium is preferably maintained at 3.0 to 9.0 during the culturing. The pH can be adjusted using an inorganic or organic acid, an alkali solution, urea, calcium carbonate, ammonia, or the like.

[0238] Also, antibiotics, such as ampicillin, tetracycline, and the like, can be added to the medium during the culturing, if necessary.

[0239] When a microorganism transformed with a recombinant vector containing an inducible promoter is cultured,

20

30

40

50

an inducer can be added to the medium, if necessary.

[0240] For example, isopropyl-β-D-thiogalactopyranoside (IPTG) or the like can be added to the medium when a microorganism transformed with a recombinant vector containing *lac* promoter is cultured, or indoleacrylic acid (IAA) or the like can by added thereto when a microorganism transformed with an expression vector containing *trp* promoter is cultured.

[0241] Examples of the medium used in culturing a transformant obtained using animal cells as the host cells include RPMI 1640 medium (*The Journal of the American Medical Association, 199*: 519 (1967)), Eagle's MEM medium (*Science, 122*: 501 (1952)), Dulbecco's modified MEM medium (*Virology, 8,* 396 (1959)), 199 Medium (*Proceeding of the Society for the Biological Medicine, 73*:1 (1950)), the above-described media to which fetal calf serum has been added, and the like.

[0242] The culturing is carried out generally at a pH of 6 to 8 and a temperature of 30 to 40°C in the presence of 5% CO₂ for 1 to 7 days.

[0243] Also, if necessary, antibiotics, such as kanamycin, penicillin, and the like, can be added to the medium during the culturing.

[0244] Examples of the medium used in culturing a transformant obtained using insect cells as the host cells include TNM-FH medium (manufactured by Pharmingen), Sf-900 II SFM (manufactured by Life Technologies), ExCell 400 and ExCell 405 (manufactured by JRH Biosciences), Grace's Insect Medium (Nature, 195: 788 (1962)), and the like.

[0245] The culturing is carried out generally at a pH of 6 to 7 and a temperature of 25 to 30°C for 1 to 5 days.

[0246] Additionally, antibiotics, such as gentamicin and the like, can be added to the medium during the culturing, if necessary.

[0247] A transformant obtained by using a plant cell as the host cell can be used as the cell or after differentiating to a plant cell or organ. Examples of the medium used in the culturing of the transformant include Murashige and Skoog (MS) medium, White medium, media to which a plant hormone, such as auxin, cytokinine, or the like has been added, and the like.

25 [0248] The culturing is carried out generally at a pH of 5 to 9 and a temperature of 20 to 40°C for 3 to 60 days.

[0249] Also, antibiotics, such as kanamycin, hygromycin and the like, can be added to the medium during the culturing, if necessary.

[0250] As described above, the polypeptide can be produced by culturing a transformant derived from a microorganism, animal cell or plant cell containing a recombinant vector to which a DNA encoding the polypeptide of the present invention has been inserted according to the general culturing method to produce and accumulate the polypeptide, and recovering the polypeptide from the culture.

[0251] The process of gene expression may include secretion of the encoded protein production or fusion protein expression and the like in accordance with the methods described in *Molecular Cloning*, 2nd ed., in addition to direct expression.

[0252] The method for producing the polypeptide of the present invention includes a method of intracellular expression in a host cell, a method of extracellular secretion from a host cell, or a method of production on a host cell membrane outer envelope. The method can be selected by changing the host cell employed or the structure of the polypeptide produced.

[0253] When the polypeptide of the present invention is produced in a host cell or on a host cell membrane outer envelope, the polypeptide can be positively secreted extracellularly according to, for example, the method of Paulson et al. (J. Biol. Chem., 264: 17619 (1989)), the method of Lowe et al. (Proc. Natl. Acad. Sci. USA, 86: 8227 (1989); Genes Develop., 4: 1288 (1990)), and/or the methods described in Japanese Published Unexamined Patent Application No. 336963/93, WO 94/23021, and the like.

[0254] Specifically, the polypeptide of the present invention can be positively secreted extracellularly by expressing it in the form that a signal peptide has been added to the foreground of a polypeptide containing an active site of the polypeptide of the present invention according to the recombinant DNA technique.

[0255] Furthermore, the amount produced can be increased using a gene amplification system, such as by use of a dihydrofolate reductase gene or the like according to the method described in Japanese Published Unexamined Patent Application No. 227075/90.

[0256] Moreover, the polypeptide of the present invention can be produced by a transgenic animal individual (transgenic nonhuman animal) or plant individual (transgenic plant).

[0257] When the transformant is the animal individual or plant individual, the polypeptide of the present invention can be produced by breeding or cultivating it so as to produce and accumulate the polypeptide, and recovering the polypeptide from the animal individual or plant individual.

[0258] Examples of the method for producing the polypeptide of the present invention using the animal individual include a method for producing the polypeptide of the present invention in an animal developed by inserting a gene according to methods known to those of ordinary skill in the art (*American Journal of Clinical Nutrition*, 63: 639S (1996), *American Journal of Clinical Nutrition*, 63: 627S (1996), *Bio/Technology*, 9: 830 (1991)).

[0259] In the animal individual, the polypeptide can be produced by breeding a transgenic nonhuman animal to which the DNA encoding the polypeptide of the present invention has been inserted to produce and accumulate the polypeptide in the animal, and recovering the polypeptide from the animal. Examples of the production and accumulation place in the animal include milk (Japanese Published Unexamined Patent Application No. 309192/88), egg and the like of the animal. Any promoter can be used, so long as it can be expressed in the animal. Suitable examples include an α -casein promoter, a $(\beta$ -casein promoter, a β -lactoglobulin promoter, a whey acidic protein promoter, and the like, which are specific for mammary glandular cells.

[0260] Examples of the method for producing the polypeptide of the present invention using the plant individual include a method for producing the polypeptide of the present invention by cultivating a transgenic plant to which the DNA encoding the protein of the present invention by a known method (*Tissue Culture, 20* (1994), *Tissue Culture, 21* (1994), *Trends in Biotechnology, 15:* 45 (1997)) to produce and accumulate the polypeptide in the plant, and recovering the polypeptide from the plant.

[0261] The polypeptide according to the present invention can also be obtained by translation in vitro.

[0262] The polypeptide of the present invention can be produced by a translation system *in vitro*. There are, for example, two *in vitro* translation methods which may be used, namely, a method using RNA as a template and another method using DNA as a template. The template RNA includes the whole RNA, mRNA, an *in vitro* transcription product, and the like. The template DNA includes a plasmid containing a transcriptional promoter and a target gene integrated therein and downstream of the initiation site, a PCR/RT-PCR product and the like. To select the most suitable system for the *in vitro* translation, the origin of the gene encoding the protein to be synthesized (prokaryotic cell/eucaryotic cell), the type of the template (DNA/RNA), the purpose of using the synthesized protein and the like should be considered. *In vitro* translation kits having various characteristics are commercially available from many companies (Boehringer Mannheim, Promega, Stratagene, or the like), and every kit can be used in producing the polypeptide according to the present invention.

[0263] Transcription/translation of a DNA nucleotide sequence cloned into a plasmid containing a T7 promoter can be carried out using an *in vitro* transcription/translation system *E. coli* T7 S30 Extract System for Circular DNA (manufactured by Promega, catalogue No. L1130). Also, transcription/translation using, as a template, a linear prokaryotic DNA of a supercoil non-sensitive promoter, such as *lac*UV5, *tac*, λPL(con), λPL, or the like, can be carried out using an *in vitro* transcription/translation system *E. coli* S30 Extract System for Linear Templates (manufactured by Promega, catalogue No. L1030). Examples of the linear prokaryotic DNA used as a template include a DNA fragment, a PCR-amplified DNA product, a duplicated oligonucleotide ligation, an *in vitro* transcriptional RNA, a prokaryotic RNA, and the like.

[0264] In addition to the production of the polypeptide according to the present invention, synthesis of a radioactive labeled protein, confirmation of the expression capability of a cloned gene, analysis of the function of transcriptional reaction or translation reaction, and the like can be carried out using this system.

[0265] The polypeptide produced by the transformant of the present invention can be isolated and purified using the general method for isolating and purifying an enzyme. For example, when the polypeptide of the present invention is expressed as a soluble product in the host cells, the cells are collected by centrifugation after cultivation, suspended in an aqueous buffer, and disrupted using an ultrasonicator, a French press, a Manton Gaulin homogenizer, a Dynomill, or the like to obtain a cell-free extract. From the supernatant obtained by centrifuging the cell-free extract, a purified product can be obtained by the general method used for isolating and purifying an enzyme, for example, solvent extraction, salting out using ammonium sulfate or the like, desalting, precipitation using an organic solvent, anion exchange chromatography using a resin, such as Glethylaminoethyl (DEAE)-Sepharose, DIAION HPA-75 (manufactured by Mitsubishi Chemical) or the like, cation exchange chromatography using a resin, such as S-Sepharose FF (manufactured by Pharmacia) or the like, hydrophobic chromatography using a resin, such as butyl sepharose, phenyl sepharose or the like, gel filtration using a molecular sieve, affinity chromatography, chromatofocusing, or electrophoresis, such as isoelectronic focusing or the like, alone or in combination thereof.

[0266] When the polypeptide is expressed as an insoluble product in the host cells, the cells are collected in the same manner, disrupted and centrifuged to recover the insoluble product of the polypeptide as the precipitate fraction. Next, the insoluble product of the polypeptide is solubilized with a protein denaturing agent. The solubilized solution is diluted or dialyzed to lower the concentration of the protein denaturing agent in the solution. Thus, the normal configuration of the polypeptide is reconstituted. After the procedure, a purified product of the polypeptide can be obtained by a purification/isolation method similar to the above.

[0267] When the polypeptide of the present invention or its derivative (for example, a polypeptide formed by adding a sugar chain thereto) is secreted out of cells, the polypeptide or its derivative can be collected in the culture supernatant. Namely, the culture supernatant is obtained by treating the culture medium in a treatment similar to the above (for example, centrifugation). Then, a purified product can be obtained from the culture medium using a purification/isolation method similar to the above.

[0268] The polypeptide obtained by the above method is within the scope of the polypeptide of the present invention,

10

15

20

30

35

40

45

and examples include a polypeptide encoded by a polynucleotide comprising the nucleotide sequence selected from SEQ ID NOS:2 to 3431, and a polypeptide comprising an amino acid sequence represented by any one of SEQ ID NOS:3502 to 6931.

[0269] Furthermore, a polypeptide comprising an amino acid sequence in which at least one amino acids is deleted, replaced, inserted or added in the amino acid sequence of the polypeptide and having substantially the same activity as that of the polypeptide is included in the scope of the present invention. The term "substantially the same activity as that of the polypeptide" means the same activity represented by the inherent function, enzyme activity or the like possessed by the polypeptide which has not been deleted, replaced, inserted or added. The polypeptide can be obtained using a method for introducing part-specific mutation(s) described in, for example, *Molecular Cloning*, 2nd ed., *Current Protocols in Molecular Biology, Nuc. Acids. Res., 10*: 6487 (1982), *Proc. Natl. Acad. Sci. USA, 79*: 6409 (1982), *Gene, 34*: 315 (1985), *Nuc. Acids. Res., 13*: 4431 (1985), *Proc. Natl. Acad. Sci. USA, 82*: 488 (1985) and the like. For example, the polypeptide can be obtained by introducing mutation(s) to DNA encoding a polypeptide having the amino acid sequence represented by any one of SEQ ID NOS:3502 to 6931. The number of the amino acids which are deleted, replaced, inserted or added is not particularly limited; however, it is usually 1 to the order of tens, preferably 1 to 20, more preferably 1 to 10, and most preferably 1 to 5, amino acids.

[0270] The at least one amino acid deletion, replacement, insertion or addition in the amino acid sequence of the polypeptide of the present invention is used herein to refer to that at least one amino acid is deleted, replaced, inserted or added to at one or plural positions in the amino acid sequence. The deletion, replacement, insertion or addition may be caused in the same amino acid sequence simultaneously. Also, the amino acid residue replaced, inserted or added can be natural or non-natural. Examples of the natural amino acid residue include L-alanine, L-asparagine, L-asparatic acid, L-glutamine, L-glutamic acid, glycine, L-histidine, L-isoleucine, L-leucine, L-lysine, L-methionine, L-phenylalanine, L-proline, L-serine, L-threonine, L-tryptophan, L-tyrosine, L-valine, L-cysteine, and the like.

[0271] Herein, examples of amino acid residues which are replaced with each other are shown below. The amino acid residues in the same group can be replaced with each other.

Group A:

15

20

25

30

40

55

[0272] leucine, isoleucine, norleucine, valine, norvaline, alanine, 2-aminobutanoic acid, methionine, O-methylserine, t-butylglycine, t-butylalanine, cyclohexylalanine;

Group B:

[0273] asparatic acid, glutamic acid, isoasparatic acid, isoglutamic acid, 2-aminoadipic acid, 2-aminosuberic acid;

35 Group C:

[0274] asparagine, glutamine;

Group D:

[0275] lysine, arginine, ornithine, 2,4-diaminobutanoic acid, 2,3-diaminopropionic acid;

Group E:

⁴⁵ [0276] proline, 3-hydroxyproline, 4-hydroxyproline;

Group F:

[0277] serine, threonine, homoserine;

Group G:

[0278] phenylalanine, tyrosine.

[0279] Also, in order that the resulting mutant polypeptide has substantially the same activity as that of the polypeptide which has not been mutated, it is preferred that the mutant polypeptide has a homology of 60% or more, preferably 80% or more, and particularly preferably 95% or more, with the polypeptide which has not been mutated, when calculated, for example, using default (initial setting) parameters by a homology searching software, such as BLAST, FASTA, or the like.

[0280] Also, the polypeptide of the present invention can be produced by a chemical synthesis method, such as Fmoc (fluorenylmethyloxycarbonyl) method, tBoc (t-butyloxycarbonyl) method, or the like. It can also be synthesized using a peptide synthesizer manufactured by Advanced ChemTech, Perkin-Elmer, Pharmacia, Protein Technology Instrument, Synthecell-Vega, PerSeptive, Shimadzu Corporation, or the like.

[0281] The transformant of the present invention can be used for objects other than the production of the polypeptide of the present invention.

[0282] Specifically, at least one component selected from an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid, and analogues thereof can be produced by culturing the transformant containing the polynucleotide or recombinant vector of the present invention in a medium to produce and accumulate at least one component selected from amino acids, nucleic acids, vitamins, saccharides, organic acids, and analogues thereof, and recovering the same from the medium.

[0283] The biosynthesis pathways, decomposition pathways and regulatory mechanisms of physiologically active substances such as amino acids, nucleic acids, vitamins, saccharides, organic acids and analogues thereof differ from organism to organism. The productivity of such a physiologically active substance can be improved using these differences, specifically by introducing a heterogeneous gene relating to the biosynthesis thereof. For example, the content of lysine, which is one of the essential amino acids, in a plant seed was improved by introducing a synthase gene derived from a bacterium (WO 93/19190). Also, arginine is excessively produced in a culture by introducing an arginine synthase gene derived from *Escherichia coli* (Japanese Examined Patent Publication 23750/93).

[0284] To produce such a physiologically active substance, the transformant according to the present invention can be cultured by the same method as employed in culturing the transformant for producing the polypeptide of the present invention as described above. Also, the physiologically active substance can be recovered from the culture medium in combination with, for example, the ion exchange resin method, the precipitation method and other known methods. [0285] Examples of methods known to one of ordinary skill in the art include electroporation, calcium transfection, the protoplast method, the method using a phage, and the like, when the host is a bacterium; and microinjection, calcium phosphate transfection, the positively charged lipid-mediated method and the method using a virus, and the like, when the host is a eukaryote (*Molecular Cloning*, 2nd ed.; Spector *et al.*, *Cells/a laboratory manual*, Cold Spring Harbour Laboratory Press, 1998)). Examples of the host include prokaryotes, lower eukaryotes (for example, yeasts), higher eukaryotes (for example, mammals), and cells isolated therefrom. As the state of a recombinant polynucleotide fragment present in the host cells, it can be integrated into the chromosome of the host. Alternatively, it can be integrated into a factor (for example, a plasmid) having an independent replication unit outside the chromosome. These transformants are usable in producing the polypeptides of the present invention encoded by the ORF of the genome of *Corynebacterium glutamicum*, the polynucleotides of the present invention and fragments thereof. Alternatively, they can be used in producing arbitrary polypeptides under the regulation by an EMF of the present invention.

11. Preparation of antibody recognizing the polypeptide of the present invention

[0286] An antibody which recognizes the polypeptide of the present invention, such as a polyclonal antibody, a monoclonal antibody, or the like, can be produced using, as an antigen, a purified product of the polypeptide of the present invention or a partial fragment polypeptide of the polypeptide or a peptide having a partial amino acid sequence of the polypeptide of the present invention.

(1) Production of polyclonal antibody

[0287] A polyclonal antibody can be produced using, as an antigen, a purified product of the polypeptide of the present invention, a partial fragment polypeptide of the polypeptide, or a peptide having a partial amino acid sequence of the polypeptide of the present invention, and immunizing an animal with the same.

[0288] Examples of the animal to be immunized include rabbits, goats, rats, mice, hamsters, chickens and the like. [0289] A dosage of the antigen is preferably 50 to 100 μg per animal.

[0290] When the peptide is used as the antigen, it is preferably a peptide covalently bonded to a carrier protein, such as keyhole limpet haemocyanin, bovine thyroglobulin, or the like. The peptide used as the antigen can be synthesized by a peptide synthesizer.

[0291] The administration of the antigen is, for example, carried out 3 to 10 times at the intervals of 1 or 2 weeks after the first administration. On the 3rd to 7th day after each administration, a blood sample is collected from the venous plexus of the eyeground, and it is confirmed that the serum reacts with the antigen by the enzyme immunoassay (Enzyme-linked Immunosorbent Assay (ELISA), Igaku Shoin (1976); Antibodies - A Laboratory Manual, Cold Spring Harbor Laboratory (1988)) or the like.

[0292] Serum is obtained from the immunized non-human mammal with a sufficient antibody titer against the antigen used for the immunization, and the serum is isolated and purified to obtain a polyclonal antibody.

10

25

30

40

45

[0293] Examples of the method for the isolation and purification include centrifugation, salting out by 40-50% saturated ammonium sulfate, caprylic acid precipitation (*Antibodies, A Laboratory manual, Cold Spring Harbor Laboratory* (1988)), or chromatography using a DEAE-Sepharose column, an anion exchange column, a protein A- or G-column, a gel filtration column, and the like, alone or in combination thereof, by methods known to those of ordinary skill in the art.

(2) Production of monoclonal antibody

5

25

30

35

40

- (a) Preparation of antibody-producing cell
- [0294] A rat having a serum showing an enough antibody titer against a partial fragment polypeptide of the polypeptide of the present invention used for immunization is used as a supply source of an antibody-producing cell.
 - [0295] On the 3rd to 7th day after the antigen substance is finally administered the rat showing the antibody titer, the spleen is excised.
 - [0296] The spleen is cut to pieces in MEM medium (manufactured by Nissui Pharmaceutical), loosened using a pair of forceps, followed by centrifugation at 1,200 rpm for 5 minutes, and the resulting supernatant is discarded.
 - [0297] The spleen in the precipitated fraction is treated with a Tris-ammonium chloride buffer (pH 7.65) for 1 to 2 minutes to eliminate erythrocytes and washed three times with MEM medium, and the resulting spleen cells are used as antibody-producing cells.
- 20 (b) Preparation of myeloma cells
 - [0298] As myeloma cells, an established cell line obtained from mouse or rat is used. Examples of useful cell lines include those derived from a mouse, such as P3-X63Ag8-U1 (hereinafter referred to as "P3-U1") (*Curr. Topics in Microbiol. Immunol., 81*: 1 (1978); *Europ. J. Immunol., 6*: 511 (1976)); SP2/O-Agl4 (SP-2) (*Nature, 276*: 269 (1978)): P3-X63-Ag8653 (653) (*J. Immunol., 123*: 1548 (1979)); P3-X63-Ag8 (X63) cell line (*Nature, 256*: 495 (1975)), and the like, which are 8-azaguanine-resistant mouse (BALB/c) myeloma cell lines. These cell lines are subcultured in 8-azaguanine medium (medium in which, to a medium obtained by adding 1.5 mmol/l glutamine, 5×10^{-5} mol/l 2-mercaptoethanol, 10 μ g/ml gentamicin and 10% fetal calf serum (FCS) (manufactured by CSL) to RPMI-1640 medium (hereinafter referred to as the "normal medium"), 8-azaguanine is further added at 15 μ g/ml) and cultured in the normal medium 3 or 4 days before cell fusion, and 2×10^7 or more of the cells are used for the fusion.
 - (c) Production of hybridoma
 - [0299] The antibody-producing cells obtained in (a) and the myeloma cells obtained in (b) are washed with MEM medium or PBS (disodium hydrogen phosphate: 1.83 g, sodium dihydrogen phosphate: 0.21 g, sodium chloride: 7.65 g, distilled water: 1 liter, pH: 7.2) and mixed to give a ratio of antibody-producing cells: myeloma cells = 5:1 to 10:1, followed by centrifugation at 1,200 rpm for 5 minutes, and the supernatant is discarded.
 - [0300] The cells in the resulting precipitated fraction were thoroughly loosened, 0.2 to 1 ml of a mixed solution of 2 g of polyethylene glycol-1000 (PEG-1000), 2 ml of MEM medium and 0.7 ml of dimethylsulfoxide (DMSO) per 10⁸ antibody-producing cells is added to the cells under stirring at 37°C, and then 1 to 2 ml of MEM medium is further added thereto several times at 1 to 2 minute intervals.
 - **[0301]** After the addition, MEM medium is added to give a total amount of 50 ml. The resulting prepared solution is centrifuged at 900 rpm for 5 minutes, and then the supernatant is discarded. The cells in the resulting precipitated fraction were gently loosened and then gently suspended in 100 ml of HAT medium (the normal medium to which 10^{-4} mol/l hypoxanthine, 1.5×10^{-5} mol/l thymidine and 4×10^{-7} mol/l aminopterin have been added) by repeated drawing up into and discharging from a measuring pipette.
 - [0302] The suspension is poured into a 96 well culture plate at 100 μ l/well and cultured at 37°C for 7 to 14 days in a 5% CO₂ incubator.
 - [0303] After culturing, a part of the culture supernatant is recovered, and a hybridoma which specifically reacts with a partial fragment polypeptide of the polypeptide of the present invention is selected according to the enzyme immunoassay described in *Antibodies, A Laboratory manual*, Cold Spring Harbor Laboratory, Chapter 14 (1998) and the like.

 [0304] A specific example of the enzyme immunoassay is described below.
 - [0305] The partial fragment polypeptide of the polypeptide of the present invention used as the antigen in the immunization is spread on a suitable plate, is allowed to react with a hybridoma culturing supernatant or a purified antibody obtained in (d) described below as a first antibody, and is further allowed to react with an anti-rat or anti-mouse immunoglobulin antibody labeled with an enzyme, a chemical luminous substance, a radioactive substance or the like as a second antibody for reaction suitable for the labeled substance. A hybridoma which specifically reacts with the polypeptide of the present invention is selected as a hybridoma capable of producing a monoclonal antibody of the present

invention.

5

10

15

25

30

40

50

55

[0306] Cloning is repeated using the hybridoma twice by limiting dilution analysis (HT medium (a medium in which aminopterin has been removed from HAT medium) is firstly used, and the normal medium is secondly used), and a hybridoma which is stable and contains a sufficient amount of antibody titer is selected as a hybridoma capable of producing a monoclonal antibody of the present invention.

(d) Preparation of monoclonal antibody

[0307] The monoclonal antibody-producing hybridoma cells obtained in (c) are injected intraperitoneally into 8- to 10-week-old mice or nude mice treated with pristane (intraperitoneal administration of 0.5 ml of 2,6,10,14-tetrameth-ylpentadecane (pristane), followed by 2 weeks of feeding) at 5×10^6 to 20×10^6 cells/animal. The hybridoma causes ascites tumor in 10 to 21 days.

[0308] The ascitic fluid is collected from the mice or nude mice, and centrifuged to remove solid contents at 3000 rpm for 5 minutes.

[0309] A monoclonal antibody can be purified and isolated from the resulting supernatant according to the method similar to that used in the polyclonal antibody.

[0310] The subclass of the antibody can be determined using a mouse monoclonal antibody typing kit or a rat monoclonal antibody typing kit. The polypeptide amount can be determined by the Lowry method or by calculation based on the absorbance at 280 nm.

[0311] The antibody obtained in the above is within the scope of the antibody of the present invention.

[0312] The antibody can be used for the general assay using an antibody, such as a radioactive material labeled immunoassay (RIA), competitive binding assay, an immunotissue chemical staining method (ABC method, CSA method, etc.), immunoprecipitation, Western blotting, ELISA assay, and the like (An introduction to Radioimmunoassay and Related Techniques, Elsevier Science (1986); Techniques in Immunocytochemistry, Academic Press, Vol. 1 (1982), Vol. 2 (1983) & Vol. 3 (1985); Practice and Theory of Enzyme Immunoassays, Elsevier Science (1985); Enzyme-linked Immunosorbent Assay (ELISA), Igaku Shoin (1976); Antibodies - A Laboratory Manual, Cold Spring Harbor laboratory (1988); Monoclonal Antibody Experiment Manual, Kodansha Scientific (1987); Second Series Biochemical Experiment Course, Vol. 5, Immunobiochemistry Research Method, Tokyo Kagaku Dojin (1986)).

[0313] The antibody of the present invention can be used as it is or after being labeled with a label.

[0314] Examples of the label include radioisotope, an affinity label (e.g., biotin, avidin, or the like), an enzyme label (e.g., horseradish peroxidase, alkaline phosphatase, or the like), a fluorescence label (e.g., FITC, rhodamine, or the like), a label using a rhodamine atom, (*J. Histochem. Cytochem., 18*: 315 (1970); *Meth. Enzym., 62*: 308 (1979); *Immunol., 109*: 129 (1972); *J. Immunol., Meth., 13*: 215 (1979)), and the like.

[0315] Expression of the polypeptide of the present invention, fluctuation of the expression, the presence or absence of structural change of the polypeptide, and the presence or absence in an organism other than coryneform bacteria of a polypeptide corresponding to the polypeptide can be analyzed using the antibody or the labeled antibody by the above assay, or a polypeptide array or proteome analysis described below.

[0316] Furthermore, the polypeptide recognized by the antibody can be purified by immunoaffinity chromatography using the antibody of the present invention.

12. Production and use of polypeptide array

(1) Production of polypeptide array

45 [0317] A polypeptide array can be produced using the polypeptide of the present invention obtained in the above item 10 or the antibody of the present invention obtained in the above item 11.

[0318] The polypeptide array of the present invention includes protein chips, and comprises a solid support and the polypeptide or antibody of the present invention adhered to the surface of the solid support.

[0319] Examples of the solid support include plastic such as polycarbonate or the like; an acrylic resin, such as polyacrylamide or the like; complex carbohydrates, such as agarose, sepharose, or the like; silica; a silica-based material, carbon, a metal, inorganic glass, latex beads, and the like.

[0320] The polypeptides or antibodies according to the present invention can be adhered to the surface of the solid support according to the method described in *Biotechniques*, 27: 1258-61 (1999); *Molecular Medicine Today*, 5: 326-7 (1999); *Handbook of Experimental Immunology*, 4th edition, Blackwell Scientific Publications, Chapter 10 (1986); *Meth. Enzym.*, 34 (1974); Advances in Experimental Medicine and Biology, 42 (1974); U.S. Patent 4,681,870; U.S. Patent 4,762,881, or the like.

[0321] The analysis described herein can be efficiently performed by adhering the polypeptide or antibody of the present invention to the solid support at a high density, though a high fixation density is not always necessary.

(2) Use of polypeptide array

10

15

20

30

35

[0322] A polypeptide or a compound capable of binding to and interacting with the polypeptides of the present invention adhered to the array can be identified using the polypeptide array to which the polypeptides of the present invention have been adhered thereto as described in the above (1).

[0323] Specifically, a polypeptide or a compound capable of binding to and interacting with the polypeptides of the present invention can be identified by subjecting the polypeptides of the present invention to the following steps (i) to (iv):

- (i) preparing a polypeptide array having the polypeptide of the present invention adhered thereto by the method of the above (1);
- (ii) incubating the polypeptide immobilized on the polypeptide array together with at least one of a second polypeptide or compound;
- (iii) detecting any complex formed between the at least one of a second polypeptide or compound and the polypeptide immobilized on the array using, for example, a label bound to the at least one of a second polypeptide or compound, or a secondary label which specifically binds to the complex or to a component of the complex after unbound material has been removed; and
- (iv) analyzing the detection data.
- [0324] Specific examples of the polypeptide array to which the polypeptide of the present invention has been adhered include a polypeptide array containing a solid support to which at least one of a polypeptide containing an amino acid sequence selected from SEQ ID NOS:3502 to 7001, a polypeptide containing an amino acid sequence in which at least one amino acids is deleted, replaced, inserted or added in the amino acid sequence of the polypeptide and having substantially the same activity as that of the polypeptide, a polypeptide containing an amino acid sequence having a homology of 60% or more with the amino acid sequences of the polypeptide and having substantially the same activity as that of the polypeptides, a partial fragment polypeptide, and a peptide comprising an amino acid sequence of a part of a polypeptide.

[0325] The amount of production of a polypeptide derived from coryneform bacteria can be analyzed using a polypeptide array to which the antibody of the present invention has been adhered in the above (1).

[0326] Specifically, the expression amount of a gene derived from a mutant of coryneform bacteria can be analyzed by subjecting the gene to the following steps (i) to (iv):

- (i) preparing a polypeptide array by the method of the above (1);
- (ii) incubating the polypeptide array (the first antibody) together with a polypeptide derived from a mutant of coryneform bacteria;
- (iii) detecting the polypeptide bound to the polypeptide immobilized on the array using a labeled second antibody of the present invention; and
- (iv) analyzing the detection data.
- [0327] Specific examples of the polypeptide array to which the antibody of the present invention is adhered include a polypeptide array comprising a solid support to which at least one of an antibody which recognizes a polypeptide comprising an amino acid sequence selected from SEQ ID NOS:3502 to 7001, a polypeptide comprising an amino acid sequence in which at least one amino acids is deleted, replaced, inserted or added in the amino acid sequence of the polypeptide and having substantially the same activity as that of the polypeptide, a polypeptide comprising an amino acid sequence having a homology of 60% or more with the amino acid sequences of the polypeptide and having substantially the same activity as that of the polypeptides, a partial fragment polypeptide, or a peptide comprising an amino acid sequence of a part of a polypeptide.
- [0328] A fluctuation in an expression amount of a specific polypeptide can be monitored using a polypeptide obtained in the time course of culture as the polypeptide derived from coryneform bacteria. The culturing conditions can be optimized by analyzing the fluctuation.
- 50 [0329] When a polypeptide derived from a mutant of coryneform bacteria is used, a mutated polypeptide can be detected.
 - 13. Identification of useful mutation in mutant by proteome analysis
- [0330] Usually, the proteome is used herein to refer to a method wherein a polypeptide is separated by twodimensional electrophoresis and the separated polypeptide is digested with an enzyme, followed by identification of the polypeptide using a mass spectrometer (MS) and searching a data base.
 - [0331] The two dimensional electrophoresis means an electrophoretic method which is performed by combining two

electrophoretic procedures having different principles. For example, polypeptides are separated depending on molecular weight in the primary electrophoresis. Next, the gel is rotated by 90° or 180° and the secondary electrophoresis is carried out depending on isoelectric point. Thus, various separation patterns can be achieved (JIS K 3600 2474).

[0332] In searching the data base, the amino acid sequence information of the polypeptides of the present invention and the recording medium of the present invention provide for in the above items 2 and 8 can be used.

[0333] The proteome analysis of a coryneform bacterium and its mutant makes it possible to identify a polypeptide showing a fluctuation therebetween.

[0334] The proteome analysis of a wild type strain of coryneform bacteria and a production strain showing an improved productivity of a target product makes it possible to efficiently identify a mutation protein which is useful in breeding for improving the productivity of a target product or a protein of which expression amount is fluctuated.

[0335] Specifically, a wild type strain of coryneform bacteria and a lysine-producing strain thereof are each subjected to the proteome analysis. Then, a spot increased in the lysine-producing strain, compared with the wild type strain, is found and a data base is searched so that a polypeptide showing an increase in yield in accordance with an increase in the lysine productivity can be identified. For example, as a result of the proteome analysis on a wild type strain and a lysine-producing strain, the productivity of the catalase having the amino acid sequence represented by SEQ ID NO: 3785 is increased in the lysine-producing mutant.

[0336] As a result that a protein having a high expression level is identified by proteome analysis using the nucleotide sequence information and the amino acid sequence information, of the genome of the coryneform bacteria of the present invention, and a recording medium storing the sequences, the nucleotide sequence of the gene encoding this protein and the nucleotide sequence in the upstream thereof can be searched at the same time, and thus, a nucleotide sequence having a high expression promoter can be efficiently selected.

[0337] In the proteome analysis, a spot on the two-dimentional electrophoresis gel showing a fluctuation is sometimes derived from a modified protein. However, the modified protein can be efficiently identified using the recording medium storing the nucleotide sequence information, the amino acid sequence information, of the genome of coryneform bacteria, and the recording medium storing the sequences, according to the present invention.

[0338] Moreover, a useful mutation point in a useful mutant can be easily specified by searching a nucleotide sequence (nucleotide sequence of promoters, ORF, or the like) relating to the thus identified protein using a recording medium storing the nucleotide sequence information and the amino acid sequence information, of the genome of coryneform bacteria of the present invention, and a recording medium storing the sequences and using a primer designed on the basis of the detected nucleotide sequence. As a result that the useful mutation point is specified, an industrially useful mutant having the useful mutation or other useful mutation derived therefrom can be easily bred.

[0339] The present invention will be explained in detail below based on Examples. However, the present invention

35 Example 1

is not limited thereto.

15

25

30

40

45

Determination of the full nucleotide sequence of genome of Corynebacterium glutamicum

[0340] The full nucleotide sequence of the genome of *Corynebacterium glutamicum* was determined based on the whole genome shotgun method (*Science*, *269*: 496-512 (1995)). In this method, a genome library was prepared and the terminal sequences were determined at random. Subsequently, these sequences were ligated on a computer to cover the full genome. Specifically, the following procedure was carried out.

(1) Preparation of genome DNA of Corynebacterium glutamicum ATCC 13032

[0341] Corynebacterium glutamicum ATCC 13032 was cultured in BY medium (7 g/l meat extract, 10 g/l peptone, 3 g/l sodium chloride, 5 g/l yeast extract, pH 7.2) containing 1% of glycine at 30°C overnight and the cells were collected by centrifugation. After washing with STE buffer (10.3% sucrose, 25 mmol/l Tris hydrochloride, 25 mmol/l EDTA, pH 8.0), the cells were suspended in 10 ml of STE buffer containing 10 mg/ml lysozyme, followed by gently shaking at 37°C for 1 hour. Then, 2 ml of 10% SDS was added thereto to lyse the cells, and the resultant mixture was maintained at 65°C for 10 minutes and then cooled to room temperature. Then, 10 ml of Tris-neutralized phenol was added thereto, followed by gently shaking at room temperature for 30 minutes and centrifugation (15,000 × g, 20 minutes, 20°C). The aqueous layer was separated and subjected to extraction with phenol/chloroform and extraction with chloroform (twice) in the same manner. To the aqueous layer, 3 mol/l sodium acetate solution (pH 5.2) and isopropanol were added at 1/10 times volume and twice volume, respectively, followed by gently stirring to precipitate the genome DNA. The genome DNA was dissolved again in 3 ml of TE buffer (10 mmol/l Tris hydrochloride, 1 mmol/l EDTA, pH 8.0) containing 0.02 mg/ml of RNase and maintained at 37°C for 45 minutes. The extractions with phenol, phenol/chloroform and chloroform were carried out successively in the same manner as the above. The genome DNA was subjected to iso-

propanol precipitation. The thus formed genome DNA precipitate was washed with 70% ethanol three times, followed by air-drying, and dissolved in 1.25 ml of TE buffer to give a genome DNA solution (concentration: 0.1 mg/ml).

(2) Construction of a shotgun library

5

15

25

40

[0342] TE buffer was added to 0.01 mg of the thus prepared genome DNA of *Corynebacterium glutamicum* ATCC 13032 to give a total volume of 0.4 ml, and the mixture was treated with a sonicator (Yamato Powersonic Model 150) at an output of 20 continuously for 5 seconds to obtain fragments of 1 to 10 kb. The genome fragments were bluntended using a DNA blunting kit (manufactured by Takara Shuzo) and then fractionated by 6% polyacrylamide gel electrophoresis. Genome fragments of 1 to 2 kb were cut out from the gel, and 0.3 ml MG elution buffer (0.5 mol/l ammonium acetate, 10 mmol/l magnesium acetate, 1 mmol/l EDTA, 0.1% SDS) was added thereto, followed by shaking at 37°C overnight to elute DNA. The DNA eluate was treated with phenol/chloroform, and then precipitated with ethanol to obtain a genome library insert. The total insert and 500 ng of pUC18 *Smal*/BAP (manufactured by Amersham Pharmacia Biotech) were ligated at 16°C for 40 hours.

[0343] The ligation product was precipitated with ethanol and dissolved in 0.01 ml of TE buffer. The ligation solution (0.001 ml) was introduced into 0.04 ml of *E. coli* ELECTRO MAX DH10B (manufactured by Life Technologies) by the electroporation under conditions according to the manufacture's instructions. The mixture was spread on LB plate medium (LB medium (10 g/l bactotrypton, 5 g/l yeast extract, 10 g/l sodium chloride, pH 7.0) containing 1.6% of agar) containing 0.1 mg/ml ampicillin, 0.1 mg/ml X-gal and 1 mmol/l isopropyl-β-D-thiogalactopyranoside (IPTG) and cultured at 37°C overnight.

[0344] The transformant obtained from colonies formed on the plate medium was stationarily cultured in a 96-well titer plate having 0.05 ml of LB medium containing 0.1 mg/ml ampicillin at 37°C overnight. Then, 0.05 ml of LB medium containing 20% glycerol was added thereto, followed by stirring to obtain a glycerol stock.

(3) Construction of cosmid library

[0345] About 0.1 mg of the genome DNA of *Corynebacterium glutamicum* ATCC 13032 was partially digested with *Sau*3Al (manufactured by Takara Shuzo) and then ultracentrifuged (26,000 rpm, 18 hours, 20°C) under 10 to 40% sucrose density gradient obtained using 10% and 40% sucrose buffers (1 mol/l NaCl, 20 mmol/l Tris hydrochloride, 5 mmol/l EDTA, 10% or 40% sucrose, pH 8.0). After the centrifugation, the solution thus separated was fractionated into tubes at 1 ml in each tube. After confirming the DNA fragment length of each fraction by agarose gel electrophoresis, a fraction containing a large amount of DNA fragment of about 40 kb was precipitated with ethanol.

[0346] The DNA fragment was ligated to the *Bam*HI site of superCos1 (manufactured by Stratagene) in accordance with the manufacture's instructions. The ligation product was incorporated into *Escherichia coli* XL-1-BlueMR strain (manufactured by Stratagene) using Gigapack III Gold Packaging Extract (manufactured by Stratagene) in accordance with the manufacture's instructions. The *Escherichia coli* was spread on LB plate medium containing 0.1 mg/ml ampicillin and cultured therein at 37°C overnight to isolate colonies. The resulting colonies were stationarily cultured at 37°C overnight in a 96-well titer plate containing 0.05 ml of the LB medium containing 0.1 mg/ml ampicillin in each well. LB medium containing 20% glycerol (0.05 ml) was added thereto, followed by stirring to obtain a glycerol stock.

(4) Determination of nucleotide sequence

(4-1) Preparation of template

[0347] The full nucleotide sequence of *Corynebacterium glutamicum* ATCC 13032 was determined mainly based on the whole genome shotgun method. The template used in the whole genome shotgun method was prepared by the PCR method using the library prepared in the above (2).

[0348] Specifically, the clone derived from the whole genome shotgun library was inoculated using a replicator (manufactured by GENETIX) into each well of a 96-well plate containing the LB medium containing 0.1 mg/ml of ampicillin at 0.08 ml per each well and then stationarily cultured at 37°C overnight.

[0349] Next, the culturing solution was transported using a copy plate (manufactured by Tokken) into a 96-well reaction plate (manufactured by PE Biosystems) containing a PCR reaction solution (TaKaRa Ex Taq (manufactured by Takara Shuzo)) at 0.08 ml per each well. Then, PCR was carried out in accordance with the protocol by Makino et al. (DNA Research, 5: 1-9 (1998)) using GeneAmp PCR System 9700 (manufactured by PE Biosystems) to amplify the inserted fragment.

[0350] The excessive primers and nucleotides were eliminated using a kit for purifying a PCR production (manufactured by Amersham Pharmacia Biotech) and the residue was used as the template in the sequencing reaction.

[0351] Some nucleotide sequences were determined using a double-stranded DNA plasmid as a template.

[0352] The double-stranded DNA plasmid as the template was obtained by the following method.

[0353] The clone derived from the whole genome shotgun library was inoculated into a 24- or 96-well plate containing a $2 \times YT$ medium (16 g/l bactotrypton, 10 g/l yeast extract, 5 g/l sodium chloride, pH 7.0) containing 0.05 mg/ml ampicillin at 1.5 ml per each well and then cultured under shaking at 37°C overnight.

[0354] The double-stranded DNA plasmid was prepared from the culturing solution using an automatic plasmid preparing machine, KURABO PI-50 (manufactured by Kurabo Industries) or a multiscreen (manufactured by Millipore) in accordance with the protocol provided by the manufacturer.

[0355] To purify the double-stranded DNA plasmid using the multiscreen, Biomek 2000 (manufactured by Beckman Coulter) or the like was employed.

10 [0356] The thus obtained double-stranded DNA plasmid was dissolved in water to give a concentration of about 0.1 mg/ml and used as the template in sequencing.

(4-2) Sequencing reaction

15 [0357] To 6 μI of a solution of ABI PRISM BigDye Terminator Cycle Sequencing Ready Reaction Kit (manufactured by PE Biosystems), an M13 regular direction primer (M13-21) or an M13 reverse direction primer (M13REV) (*DNA Research*, *5*: 1-9 (1998) and the template prepared in the above (4-1) (the PCR product or the plasmid) were added to give 10 μI of a sequencing reaction solution. The primers and the templates were used in an amount of 1.6 pmol and an amount of 50 to 200 ng, respectively.

[0358] Dye terminator sequencing reaction of 45 cycles was carried out with GeneAmp PCR System 9700 (manufactured by PE Biosystems) using the reaction solution. The cycle parameter was determined in accordance with the manufacturer's instruction accompanying ABI PRISM BigDye Terminator Cycle Sequencing Ready Reaction Kit. The sample was purified using MultiScreen HV plate (manufactured by Millipore) according to the manufacture's instructions. The thus purified reaction product was precipitated with ethanol, followed by drying, and then stored in the dark at -30°C.

[0359] The dry reaction product was analyzed by ABI PRISM 377 DNA Sequencer and ABI PRISM 3700 DNA Analyzer (both manufactured by PE Biosystems) each in accordance with the manufacture's instructions.

[0360] The data of about 50,000 sequences in total (i.e., about 42,000 sequences obtained using 377 DNA Sequencer and about 8,000 reactions obtained by 3700 DNA Analyser) were transferred to a server (Alpha Server 4100: manufactured by COMPAQ) and stored. The data of these about 50,000 sequences corresponded to 6 times as much as the genome size.

(5) Assembly

20

25

30

50

55

[0361] All operations were carried out on the basis of UNIX platform. The analytical data were output in Macintosh platform using X Window System. The base call was carried out using phred (The University of Washington). The vector sequence data was deleted using SPS Cross_Match (manufactured by Southwest Parallel Software). The assembly was carried out using SPS phrap (manufactured by Southwest Parallel Software; a high-speed version of phrap (The University of Washington)). The contig obtained by the assembly was analyzed using a graphical editor, consed (The University of Washington). A series of the operations from the base call to the assembly were carried out simultaneously using a script phredPhrap attached to consed.

(6) Determination of nucleotide sequence in gap part

[0362] Each cosmid in the cosmid library constructed in the above (3) was prepared by a method similar to the preparation of the double-stranded DNA plasmid described in the above (4-1). The nucleotide sequence at the end of the inserted fragment of the cosmid was determined by using ABI PRISM BigDye Terminator Cycle Sequencing Ready Reaction Kit (manufactured by PE Biosystems) according to the manufacture's instructions.

[0363] About 800 cosmid clones were sequenced at both ends to search a nucleotide sequence in the contig derived from the shotgun sequencing obtained in the above (5) coincident with the sequence. Thus, the linkage between respective cosmid clones and respective contigs were determined and mutual alignment was carried out. Furthermore, the results were compared with the physical map of *Corynebacterium glutamicum* ATCC 13032 (*Mol. Gen. Genet., 252*: 255-265 (1996) to carrying out mapping between the cosmids and the contigs.

[0364] The sequence in the region which was not covered with the contigs was determined by the following method. [0365] Clones containing sequences positioned at the ends of contigs were selected. Among these clones, about 1,000 clones wherein only one end of the inserted fragment had been determined were selected and the sequence at the opposite end of the inserted fragment was determined. A shotgun library clone or a cosmid clone containing the sequences at the respective ends of the inserted fragment in two contigs was identified, the full nucleotide sequence

of the inserted fragment of this clone was determined, and thus the nucleotide sequence of the gap part was determined. When no shotgun library clone or cosmid clone covering the gap part was available, primers complementary to the end sequences at the two contigs were prepared and the DNA fragment in the gap part was amplified by PCR. Then, sequencing was performed by the primer walking method using the amplified DNA fragment as a template or by the shotgun method in which the sequence of a shotgun clone prepared from the amplified DNA fragment was determined. Thus, the nucleotide sequence of the domain was determined.

[0366] In a region showing a low sequence precision, primers were synthesized using AUTOFINISH function and NAVIGATING function of consed (The University of Washington) and the sequence was determined by the primer walking method to improve the sequence precision. The thus determined full nucleotide sequence of the genome of Corynebacterium glutamicum ATCC 13032 strain is shown in SEQ ID NO:1.

(7) Identification of ORF and presumption of its function

[0367] ORFs in the nucleotide sequence represented by SEQ ID NO:1 were identified according to the following method. First, the ORF regions were determined using software for identifying ORF, i.e., Glimmer, GeneMark and GeneMark.hmm on UNIX platform according to the respective manual attached to the software.

[0368] Based on the data thus obtained, ORFs in the nucleotide sequence represented by SEQ ID NO:1 were identified.

[0369] The putative function of an ORF was determined by searching the homology of the identified amino acid sequence of the ORF against an amino acid database consisting of protein-encoding domains derived from Swiss-Prot, PIR or Genpept database constituted by protein encoding domains derived from GenBank database, Frame Search (manufactured by Compugen), or by searching the homology of the identified amino acid sequence of the ORF against an amino acid database consisting of protein-encoding domains derived from Swiss-Prot, PIR or Genpept database constituted by protein encoding domains derived from GenBank database, BLAST. The nucleotide sequences of the thus determined ORFs are shown in SEQ ID NOS:2 to 3501, and the amino acid sequences encoded by these ORFs are shown in SEQ ID NOS:3502 to 7001.

[0370] In some cases of the sequence listings in the present invention, nucleotide sequences, such as TTG, TGT, GGT, and the like, other than ATG, are read as an initiating codon encoding Met.

[0371] Also, the preferred nucleotide sequences are SEQ ID NOS:2 to 355 and 357 to 3501, and the preferred amino acid sequences are shown in SEQ ID NOS:3502 to 3855 and 3857 to 7001

[0372] Table 1 shows the registration numbers in the above-described databases of sequences which were judged as having the highest homology with the nucleotide sequences of the ORFs as the results of the homology search in the amino acid sequences using the homology-searching software Frame Search (manufactured by Compugen), names of the genes of these sequences, the functions of the genes, and the matched length, identities and analogies compared with publicly known amino acid translation sequences. Moreover, the corresponding positions were confirmed via the alignment of the nucleotide sequence of an arbitrary ORF with the nucleotide sequence of SEQ ID NO: 1. Also, the positions of nucleotide sequences other than the ORFs (for example, ribosomal RNA genes, transfer RNA genes, IS sequences, and the like) on the genome were determined.

[0373] Fig. 1 shows the positions of typical genes of the Corynebacterium glutamicum ATCC 13032 on the genome.

5

10

20

25

30

35

40

45

50

5			tein DnaA		a chain	(recF		TP-									protein		lein, LysR		s protein		
10		Function	replication initiation protein DnaA		DNA polymerase III beta chain	ONA replication protein (recF protein)	hypothetical protein	DNA topoisomerase (ATP- hydrolyzing)					NAGC/XYLR repressor			DNA gyrase subunit A	hypothetical membrane protein	hypothetical protein	bacterial regulatory protein, LysR type		cytochrome c biogenesis protein	hypothetical protein	repressor
15		Matched length (a.a.)	524		06E	392	174	704					422			854	112	329	268		265	155	117
20		Similarity (%)	8.66		81.8	79.9	58.1	88.9					50.7			88.1	9.69	63.5	62.3		57.4	64.5	70.1
		identity (%)	8.66		50.5	53.3	35.1	71.9					29.4			70.4	29.5	33.7	27.6		29.1	31.6	36.8
25 30	Table 1	Homologous gene	Brevibacterium flavum dnaA		Mycobacterium smegmatis dnaN	Mycobacterium smegmatis recF	Streptomyces coelicolor yreG	Mycobacterium tuberculosis H37Rv gyrB					Mycobacterium tuberculosis H37Rv			Mycobacterium tuberculosis H37Rv Rv0006 gyrA	Mycobacterium tuberculosis H37Rv Rv0007	Escherichia coli K12 yeiH	Hydrogenophilus thermoluteolus TH-1 cbbR		Rhodobacter capsulatus ccdA	Coxiella burnetii com1	Mycobacterium tuberculosis H37Rv Rv1846c
35		db Match	gsp:R98523 Br		SP.DP3B_MYCSM My	Sp.RECF_MYCSM My	sp:YREG_STRCO St	pir.S44198 H3					Sp:YV11_MYCTU H3			sp.GYRA_MYCTU My	My pir.E70698 H3	sp:YEIH_ECOLI Es	gp:AB042619_1 TH		gp:AF156103_2 Rh	pir:A49232 Co	My pir.F70664 H3
		ORF (bp)	1572	324	1182	1182	534	2133	996	699	510	441	1071 8	261	246	2568 s	342 p	1035 s	894 g	420	870 g	762 p	369 p
45		Terminal (nt)	1572	1597	3473	4766	5299	7486	8795	8798	1001	9474	10107	11263	11523	14398	14746	15209	17207	17670	17860	18736	20073
50		Initial (nt)	-	1920	2292	3585	4766	5354	7830	9466	9562	9914	11177	11523	11768	11831	14405	16243	16314	17251	18729	19497	19705
		SEQ NO (a.a.)	3502	3503	3504	3505	3506	3507	3508	3509	3510	3511	3512	3513	3514	3515	3516	3517	3518	3519	3520	3521	3522
55		S O E	2	3	4	2	ပ္	7	8	9	0	=	2	3	4	5	9	7	80	6	0	-	22

5
10
15
20
25
30
35
40
45
50

Appropriate 1																_				
SEG Initial Terminal ORF db Malch Homologous gene (%) (%) (%) (%) (%) (%) (%) (%) (%) (%)		Function	hypothetical membrane protein	2,5-diketo-D-gluconic acid reductase	5'-nucleotidase precursor	5'-nucleotidase family protein	transposase	organic hydroperoxide detoxication enzyme	ATP-dependent DNA helicase		glucan 1,4-alpha-glucosidase	lipoprotein	ABC 3 transport family or integral membrane protein	iron(III) dicitrate transport ATP- biding protein	sugar ABC transporter, periplasmic sugar-binding protein	high affinity ribose transport protein	ribose transport ATP-binding protein	neurofilament subunit NF-180	peptidyl-prolyl cis-trans isomerase A	hypothetical membrane protein
SEQ Initial Terminal ORF db Match Homologous gene (%) 3523 20073 21055 993 gp.MLCB1788_6 Mycobacterium leprae (%) 3524 21253 21074 180 pir.140838 G.Oymebacterium sp. ATCC 65.4 3525 21597 22124 528 sp.5NTD_VIBPA Vibrio parahaemolyticus nutA 27.0 3526 22754 23399 1236 gp.AE001909_7 Deinococcus radiodurans 27.0 3529 22379 23815 165 pr.12513307C Corynebacterium striatum ORF1 52.9 3529 24729 435 pr.12413353A Xanthomonas campestiris 51.8 3529 26297 24865 1413 sp.RECG_THIFE Thiobacillus ferrooxidans recG 32.7 3530 26338 26775 438 pr.2413353A Saccharomyces cerewisiae 26.7 3531 28985 29117 849 gp.AF180520_3 Streptococcus pyogenes SF370 34.6 3532 33697 31677 981 pir.A72417 Thermotoga maritima MSBB 25.8 3533 32699 33457 759 sp.RBSA_BACSU Bacillus subtilis 168 hpsA 29.5 3539 34399 561 sp.CYPA_MYCTU Ryboobacterium leprae H37RV 79.9 3539 34399 561 sp.CYPG-BACSU Bacillus subtilis 168 hygpP 29.2 3539 34399 561 sp.CYPG-BACSU Bacillus subtilis 168 hygpP 29.2 3539 34399 561 sp.CYPG-BACSU Bacillus subtilis 168 hygpP 29.2 3539 34399 561 sp.CYPG-BACSU Bacillus subtilis 168 hygpP 29.2 3530 34398 561 sp.CYPG-BACSU Bacillus subtilis 168 hygpP 29.2 3530 34399 561 sp.CYPG-BACSU Bacillus subtilis 168 hygpP 29.2 3530 34399 561 sp.CYPG-BACSU Bacillus subtilis 168 hygpP 29.2 3530 34399 561 sp.CYPG-BACSU Bacillus subtilis 168 hygpP 29.2 3530 34399 561 sp.CYPG-BACSU Bacillus subtilis 168 hygpP 29.2 3530 34399 561 sp.CYPG-BACSU Bacillus subtilis 168 hygpP 29.2 3530 34399 561 sp.CYPG-BACSU Bacillus subtilis 168 hygpP 29.2 3530 34399 561 sp.CYPG-BACSU Bacillus subtilis 168 hygpP 29.2 3530 34399 561 sp.CYPG-BACSU Bacillus subtilis 168 hygpP 29.2 3530 34300 561 sp		Matched length (a.a.)	321	26	196	270	51	139	217		449	311	266	222		312	236	347	169	
SEQ			50.8	88.5	56.1	56.7	72.6	6'62	8.09		54.1	63.7	74.1	70.3	56.5	68.3	76.7	44.4	89.9	53.1
SEQ NO. Initial (nt) Terminal (nt) ORF (bp) db Match db Match 3523 20073 21065 993 gp:MLCB1788_6 3524 21253 21074 180 pir.140838 3525 21253 21074 180 pir.140838 3526 22164 23399 1236 gp:ATD_VIBPA 3529 22124 528 sp:SNTD_VIBPA 3529 22124 528 sp:SNTD_VIBPA 3529 226297 24865 1413 sp:AT001809_7 3530 26297 24865 1413 sp:AT013353A 3531 28099 26822 1278 sp:AMYH_YEAST 3532 29117 849 gp:AF180520_3 3533 29965 29117 849 gp:AF180520_3 3534 29965 29117 981 pir.A72417 3533 30697 33465 657 sp:RBSA_BACSU 3538 34280 33465 816 pir.151116		Identity (%)	24.9	65.4	27.0	27.0	52.9	51.8	32.7		26.7	28.9	34.6	39.2	25.8	30.5	32.2	23.6	79.9	29.2
SEQ NO. (nt) Initial (nt) Terminal (nt) ORF (bp) 3523 20073 21065 993 3524 21253 21074 180 3526 21597 22124 528 3528 24295 24729 435 3529 26297 24885 1413 3530 26338 26775 438 3531 28099 26822 1278 3532 29117 28164 954 3533 29965 29117 849 3534 29995 30651 657 3536 31677 981 3536 34280 33457 759 3538 34280 33465 816 3539 34399 561	lable 1 (continued)	Homologous gene	Mycobacterium leprae MLCB1788.18	Corynebacterium sp. ATCC 31090	Vibrio parahaemolyticus nutA	Deinococcus radiodurans DR0505	Corynebacterium striatum ORF1	Xanthomonas campestris phaseoli ohr	Thiobacillus ferrooxidans recG		Saccharomyces cerevisiae S288C YIR019C sta1	Erysipelothrix rhusiopathiae ewlA	Streptococcus pyogenes SF370 mtsC	Escherichia coli K12 fecE	Thermotoga maritima MSB8 TM0114	Escherichia coli K12 rbsC	Bacillus subtilis 168 rbsA	Petromyzon marinus	Mycobacterium leprae H37RV RV0009 ppiA	Bacillus subtilis 168 yagP
SEQ Initial Terminal (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt)		db Match	gp:MLCB1788_6	pir:140838	sp:5NTD_VIBPA	gp.AE001909_7	prf.2513302C	prf.2413353A	sp.RECG_THIFE		sp:AMYH_YEAST	gp:ERU52850_1	gp:AF180520_3	sp:FECE_ECOLI	pir.A72417	prf:1207243B	sp.RBSA_BACSU	pir.151116	sp:CYPA_MYCTU	sp:YQGP_BACSU
SEQ Initial (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt)		ORF (bp)	993	180	528	1236	165	435	1413	438	1278	954	849	657	981	1023	759	816	561	687
SEQ NO. (a.a.) 3523 3524 3528 3528 3528 3530 3531 3532 3535 3536 3535 3536 3536 3537 3536 3536		Terminal (nt)	21065	21074	22124	23399	23615	24729	24885	26775	26822	28164	29117	30651	31677	32699	33457	33465	34899	35668
		Initial (nt)		21253		22164	23779	24295	26297	26338	28099	29117	29965	29995	30697	31677	32699	34280	34339	34982
SEQ NO. (ONA) 23 33 34 35 38 39 39 39 39 39 39 39 39 39 39 39 39 39			3523	3524	3525	3526	3527	3528	3529	3530	3531	3532	3533	3534	3535	3536	3537	3538	3539	3540
		SEQ NO.	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40

	_																					
5		Function	ferric enterobactin transport system permease protein		ATPase	vulnibactin utilization protein	hypothetical membrane protein	serine/threonine protein kinase	serineAhreonine protein kinase	penicillin-binding protein	stage V sporulation protein E	phosphoprotein phosphatase	hypothetical protein	hypothelical protein					phenol 2-monooxygenase	succinate-semialdehyde dehydrogenase (NAD(P)+)	hypothetical protein	hypothetical membrane protein
15		Matched length (a.a.)	332		253	260	92	648	486	492	375	469	155	526					117	490	242	262
20		Similarity (%)	70.5		81.8	52.7	72.6	68.7	59.1	66.7	65.6	70.8	66.5	38.8					63.3	78.2	57.0	64.1
		Identity (%)	40.4		51.8	26.2	40.0	40.6	31.7	33.5	31.2	44.1	38.7	23.6					29.9	46.7	27.3	29.0
25 :	lable i (continued)	Homologaus gene	K12 fepG		/iuC	MO6-24 viuB	uberculosis	eprae pknB	elicotor pksC	iseus pbpA	168 spoVE	uberculosis	uberculosis	uberculosis					aneum ATCC	K12 gabD	лкн	jannaschii
35	lable	Homolog	Escherichia coli K12 fepG		Vibrio cholerae viuC	Vibrio vulnificus MO6-24 viuB	Mycobacterium tuberculosis H37Rv Rv0011c	Mycobacterium leprae pknB	Streptomyces coelicolor pksC	Streptomyces griseus pbpA	Bacillus subtilis 168 spoVE	Mycobacterium tuberculosis H37Rv ppp	Mycobacterium tuberculosis H37Rv Rv0019c	Mycobacterium tuberculosis H37Rv Rv0020c					Trichosporon cutaneum ATCC 46490	Escherichia coli K12 gabD	Bacillus subtilis yrkH	Methanococcus jannaschii MJ0441
40		db Match	sp.FEPG_ECOLI		gp:VCU52150_9	sp:VIUB_VIBVU	sp:YO11_MYCTU	SP:PKNB_MYCLE	gp:AF094711_1	gp:AF241575_1	sp:SP5E_BACSU	pir:H70699	pir.A70700	pir:B70700					sp:PH2M_TRICU	sp:GABD_ECOLI	sp:YRKH_BACSU	sp:Y441_METJA
		ORF (bp)	978 s	966	777 g	822 s	270 s	1938 s	1407 g	1422 g	1143 8	1353 p	462 p	864 p	147	720	219	471	954 8	1470 s	1467 s	8 682
45		Terminal (nt)	38198	36247	38978	39799	40189	40576	42513	43926	45347	46669	48024	48505	49455	49897	50754	99609	54008	51626	55546	55629
50		Initial (nt)	37221	37242	38202	38978	40458	42513	43919	45347	46489	48021	48485	49368	49601	50616	50972	51436	53055	53095	54080	56417
		SEQ NO. (a.a.)	3541	3542	3543	3544	3545	3546	3547	3548	3549	3550	3551	3552	3553	3554	3555	3556	3557	3558	3559	3560
55	į	SEQ NO.	1.4	42	43	4.4	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	09

5
10
15
20
25
30
35
40
45
50

	Function	hypothetical protein	hypothetical protein	hypothetical protein		hypothetical protein			magnesium and cobalt transport protein		chloride channel protein	required for NMN transport	phosphate starvation-induced protein-like protein				Mg(2+)/citrate complex secondary transporter	two-component system sensor histidine kinase		transcriptional regulator	D-isomer specific 2-hydroxyacid dehydrogenase
	Matched length (a.a.)	74	179	62		310			390		400	241	340				497	563		229	293
	Similarity (%)	74.3	70.4	83.9		50.7			59.5		64.8	53.1	60.0				68.8	9.09		63.3	73.7
	Identity (%)	40.5	36.3	53.2		26.8			29.5		30.0	24.1	29.1				42.3	27.2		33.2	43.3
Table 1 (continued)	Homologous gene	Bacillus subtilis yrkF	Synechocystis sp. PCC6803 slr1261	Mycobacterium tuberculosis H37Rv Rv1766		Leishmania major L4768.11			Mycobacterium tuberculosis H37Rv Rv1239c corA		Zymomonas mobilis ZM4 clcb	Salmonella typhimurium pnuC	Mycobacterium tuberculosis H37Rv RV2368C				Bacillus subtilis citM	Escherichia coli K12 dpiB		Escherichia coli K12 criR	Corynebacterium glutamicum unkdh
	db Match	sp:YRKF_BACSU	sp:YC61_SYNY3	pir:G70988		gp:LMFL4768_11			pir.F70952		gp:AF179611_12	sp:PNUC_SALTY	sp:PHOL_MYCTU				sp:CITM_BACSU	sp:DPIB_ECOLI		sp:DPIA_ECOL!	gp:AF134895_1
	ORF (bp)	291	591	174	855	840	711	1653	1119	447	1269	069	1122	132	384	765	1467	1653	570	654	912
	Terminal (nt)	98695	56680	57651	58941	59930	60662	62321	62390	63594	65458	62208	67972	68301	68251	69824	68720	72158	71474	72814	72817
	Initial (nt)	92999	57270	57478	58087	59091	59952	69909	63508	64040	64190	66197	66851	68170	68634	09069	70186	70506	72043	72161	73728
	SEQ NO (a.a.)	3561	3562	3563	3564	3565	3566	3567	3568	3569	3570	3571	3572	3573	3574	3575	3576	3577	3578	3579	3580
	SEQ NO.	61	62	63	64	65	99	29	89	69	2	71	72	73	74	75	9/	11	78	79	80

SIR2 gene family (silent information urease gammma subunit or urease structural protein integral membrane efflux protein 5 Function transcriptional regulator creatinine deaminase urease alpha subunit triacylglycerol lipase triacylglycerol lipase hypothetical protein hypothetical protein hypothetical protein hypothetical protein hypothetical protein urease beta subunit biotin synthase 10 regulator) 15 Matched length (aa) 334 127 507 394 43 251 8 162 570 85 42 84 171 Similarity 63.5 100.0 75.0 99.0 59.0 9.66 50.2 59.0 94.7 %) 56.1 76. 99 79 8 100 20 Identity (%) 99.4 72.1 34.1 100.0 100.0 100.0 တ 71.0 61.0 25.6 97.2 26.2 29.4 30.7 90.6 38. 25 Saccharomyces cerevisiae hst2 Streptomyces coelicolor A3(2) SCM2.03 Corynebacterium glutamicum bioB Table 1 (continued) Corynebacterium glutamicum ureR Corynebacterium glutamicum ureA Corynebacterium glutamicum ATCC 13032 ureC Corynebacterium glutamicum ATCC 13032 ureB Streptomyces virginiae varS Mycobacterium tuberculosis H37Rv Rv1590 Chlamydia muridarum Nigg TC0129 Saccharomyces cerevisiae YKL084w Homologous gene Propionibacterium acnes Propionibacterium acnes Chlamydia pneumoniae 30 Bacillus sp. 35 gp CGL251883_3 gp:CGL251883_2 sp:BIOB_CORGL sp:HST2_YEAST sp:YKI4_YEAST gp:AB029154_1 gp.AB029154_2 db Match prf 2512333A GSP: Y35814 prf 2316378A prf:2316378A gp:SCM2_3 gp D38505 PIR:F81737 pir:H70542 40 1245 1449 1002 339 1710 ORF (bp) 429 237 141 273 306 615 972 900 924 513 117 300 486 45 Terminal 74272 80613 82120 75742 76035 76469 81002 85098 88545 75491 83691 85663 90445 91473 87241 87561 90461 91988 93701 Ē 73844 74490 75506 76353 80753 81274 83568 84935 86318 89558 75697 85403 88532 89444 90973 86277 fnitial (nt) 91174 91992 91503 50 3581 (a.a) 3582 3583 3585 3589 SEQ. 3584 3586 3587 3588 3590 3593 3592 3594 3595 3596 3591 3599 3598 3597 SEQ NO. 85 9 82 83 90 55 84 86 87 88 89 91 93 95 92 94 96 6 98 66

EP 1 108 790 A2

												1												
5		Function	urease accessory protein	urease accessory protein	urease accessory protein	urease accessory protein	epoxide hydrolase		valanimycin resistant protein			heat shock protein (hsp90-family)	AMP nucleosidase		acetolactate synthase large subunit		proline dehydrogenase/P5C dehydrogenase		aryl-alcohol dehydrogenase (NADP+)	pump protein (transport)	indole-3-acetyl-Asp hydrolase		hypothetical membrane protein	
15		Matched length (a.a.)	157	226	502	283	279		347			899	481		196		1297		338	513	352 i		106	
20		Similarity (%)	100.0	100.0	100.0	100.0	48.4		59.7			52.7	68.2		58.7		50.4		60.7	71.4	49.2		70.8	
		Identity (%)	100.0	100.0	100.0	100.0	21.2		26.5			23.8	41.0		29.6		25.8		30.2	36.5	23.0		35.9	
25	ontinued)	s gene	utamicum	utamicum	utamicum	utamicum	bacter echA		aciens vlmF			2 htpG	2 amn		1 APE2509		rium putA		/sosporium	2 ydaH	agglomerans		yidH	
30	Table 1 (continued)	Homologous gene	Corynebacterium glutamicum ATCC 13032 ureE	Corynebacterium glutamicum ATCC 13032 ureF	Corynebacterium glutamicum ATCC 13032 ureG	Corynebacterium glutamicum ATCC 13032 ureD	Agrobacterium radiobacter echA		Streptomyces viridifaciens vlmF			Escherichia coli K12 htpG	Escherichia coli K12 amn		Aeropyrum pernix K1 APE2509		Salmonella typhimurium putA		Phanerochaete chrysosporium aad	Escherichia coli K12 ydaH	Enterobacter agglor		Escherichia coli K12 yidH	
40		db Match	gp:CGL251883_4 C	gp:CGL251883_5	gp:CGL251883_6	gp:CGL251883_7	prf:2318326B		gp:AF148322_1 S			sp:HTPG_ECOLI E	sp:AMN_ECOLI E		pir.E72483		sp:PUTA_SALTY S		sp.AAD_PHACH	sp:YDAH_ECOLI E	prf:2422424A E		sp:YIDH_ECOLI E	
	; !	ORF (bp)	471	678	615	849	777	699	1152	675	2775	1824	1416	579	552	099	3456	114	945	1614	1332	669	$\overline{}$	315
45		Terminal (nt)	94199	94879	95513	96365	96368	98189	97319	100493	98808	101612	104909	105173	105841	106630	110890	111274	112318	114083	115478	114564	115943	116263
50		Initial (nt)	93729	94202	94899	95517	97144	97521	98470	99819	101582	103435	103494	105751	106392	107289	107435	1111161	111374	112470	114147	115262	115578	115949
		SEQ NO. (a.a.)	3600	3601	3602	3603	3604	3605	3606	3607	3608	3609	3610	3611	3612	3613	3614	3615	3616	3617	3618	3619	3620	3621
55		SEQ NO. (DNA)	100	101	102	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118	119	120	121

galactitol utilization operon repressor DNA-3-methyladenine glycosylase xylose operon repressor protein pantoate-beta-alanine ligase 3-methyl-2-oxobutanoate hydroxymethyltransferase mannitof dehydrogenase transcriptional repressor Function D-arabinitol transporter carbonate dehydratase macrolide efflux protein hypothetical protein methylglyoxalase xylulose kinase esterase Matched length (aa) Similarity (%) 100.0 78.6 100.0 64.8 70.4 64.6 61.2 59.7 68.3 68.1 67.6 69.3 53.2 49.3 Identity 100.0 100.0 57.9 27.3 45.0 45.0 37.0 43.5 30.9 39.3 24.1 21.1 29. 30. Pseudomonas fluorescens mtlD Petroleum-degrading bacterium HD-1 hde Streptomyces rubiginosus xylB Corynebacterium glutamicum ATCC 13032 panC Corynebacterium glutamicum ATCC 13032 panB Table 1 (continued) Methanosarcina thermophila Agrobacterium tumefaciens accR Mycobacterium tuberculosis H37Rv Rv1276c Klebsiella pneumoniae dalT Lactococcus lactis mef214 Homologous gene Escherichia coli K12 gatR Arabidopsis thallana mag Bacillus subtilis W23 xylR Bacillus subtilis yurT sp:ACCR_AGRTU SP:XYLB_STRRU sp:YC76_MYCTU SP.GATR_ECOLI SP.XYLR_BACSU gp:LLLPK214_12 Sp:3MG_ARATH Sp:CAH_METTE gp:AB029896_1 db Match gp:CGPAN_2 prf.2309180A prf.2321326A gp:CGPAN_1 pir.C70019 ORF (bp) £ 3642 136321 (at SEQ NO. (a.a.)

5						e protein				live protein	e protein				e protein			se			ecific for	glycosylase	,		sis enzyme
10	Function				cellulose synthase	hypothelical membrane protein				chloramphenicol sensitive protein	hypothetical membrane protein			transport protein	hypothetical membrane protein			ATP-dependent helicase		nodulation protein	DNA repair system specific for alkylated DNA	DNA-3-methyladenine glycosylase	threonine efflux protein	hypothetical protein	doxorubicin biosynthesis enzyme
15	Matched length (a.a.)				420	593				303	198			361	248			829		188	219	166	217	55	284
20	Sim larity (%)				51.2	51.8				2.09	59.1			62.3	70.2			64.3		0.99	2.09	65.1	61.3	72.7	52 1
	icentity (%)				24.3	25.1				34.7	30.3			32.4	34.7			33.8		40.4	34.7	39.8	34.1	50.9	31.0
Table 1 (continued)	us genc				nefaciens celA	erevisiae				ruginosa rarD	12 yadS			12 abrB	12 yfcA			12 hrpB		nosarum bv. L1JI nodL	373#1 alkB	12 tag	12 rhtC	aA	cetius dnrV
Table 1 (Homologous gene				Agrobacterium tumefaciens celA	Saccharomyces cerevisiae YDR420W hkr1				Pseudomonas aeruginosa rarD	Escherichia coli K12 yadS			Escherichia coli K12 abrB	Escherichia coli K12 yfcA			Escherichia coli K12 hrpB		Rhizobium leguminosarum bv. viciae plasmid pRL1JI nodL	Escherichia coli o373#1 alkB	Escherichia coli K12 tag	Escherichia coli K12 rhtC	Bacillus subtilis yaaA	Streptomyces peucetius dnrV
35	atch				₹.					PSEAE P				ECOLI				ECOL! E					ECOLIE	_	
40	db Match				pir 1397 14	sp.HKR1_YEAST				sp:RARD_	Sp.YADS_ECOL!			sp:ABRB_	sp:YFCA_ECOL			sp:HRPB_		sp:NODL_RHILV	sp.ALKB_ECOLI	sp:3MG1_ECOLI	sp.RHTC_	sp:YAAA_BACSU	prf.2510326B
	ORF (bp)	1941	1539	636	1451	1731	621	1065	756	879	717	333	1659	1137	798	624	405	2388	315	675	069	525	678	291	852
45	Terminal (nt)	138744	140329	139226	141789	143526	143075	144639	145480	145518	147238	147570	149780	149794	152369	150966	152814	153226	156167	156147	157537	158138	158831	159159	160013
50	Initial (nt)	136804	138791	139861	140329	141796	142455	143575	144725	146396	146522	147238	148122	150930	151572	151589	152410	155613	155853	156821	156848	157614	158154	158869	159162
	SEQ NO. (a.a.)	3644	3645	3646	3647	3648	3649	3650	3651	3652	3653	3654	3655	3656	3657	3658	3659	3660	3661	3662	3663	3664	3665	3666	3667
55	SEQ NO. (DNA)	144	145	146	147	148	149	150	151	152	153	154	155	156	157	158	159	160	161	162	163	164	165	166	167

					_																			
5		Function	methyllransferase				ribonuclease			neprilysin-like metallopeptidase 1		transcriptional regulator, GntR family or fatty acyl-responsive regulator	fructokinase or carbohydrate kinase	hypothetical protein	methylmalonic acid semialdehyde dehydrogenase	myo-inositol catabolism	myo-inositol catabolism	rhizopine catabolism protein	myo-inositol 2-dehydrogenase	myo-inositol catabolism	metabolite export pump of tetracenomycin C resistance		oxidoreductase	
15		Matched length (a.a.)	104				118			722		238	332	296	498	268	586	290	335	287	457		354	
20		Similarity (%)	56.7				76.3			57.2		65.6	63.0	80.7	1.98	58.2	8.69	51.0	72.2	72.1	61.5		65.5	
		Identity (%)	35.6				41.5			28.5		29.8	28.6	52.7	61.0	33.2	41.0	29.7	39.1	44.6	30.9		31.1	
25	Table 1 (continued)	Homologous gene	Schizosaccharomyces pombe SPAC1250.04c				Neisseria meningitidis MC58 NMB0662			Mus musculus ni1		Escherichia coli K12 farR	Beta vulgaris	Streptomyces coelicolor A3(2) SC8F11.03c	Streptomyces coelicolor msdA	Bacillus subtilis iolB	Bacillus subtilis iolD	Rhizobium meliloti mocC	Bacillus subtilis idh or iolG	Bacillus subtilis iolH	Streptomyces glaucescens tcmA		Bacillus subtilis yvaA	
<i>35</i> <i>40</i>		db Match	gp:SPAC1250_3				gp:AE002420_13			gp:AF176569_1		sp.FARR_ECOLI	pir:T14544	gp:SC8F11_3	prf:2204281A	sp:IOLB_BACSU	sp:IOLD_BACSU	sp:MOCC_RHIME	sp:MI2D_BACSU	sp.IOLH_BACSU	sp:TCMA_STRGA		sp:YVAA_BACSU	
		ORF (bp)	342	930	657	933	405	639	741	2067	963	759	1017	921	1512	888	1728	954	1011	870	1374	621	1023	456
45		Terminal (nt)	160370	161360	162352	161363	162867	163603	166457	163689	167419	167837	169991	170916	172444	173355	175275	176272	177318	178203	179658	178461	-	181297
50		Initial (nt)	160029	160431	161696	162295	162463	162965	165717	165755	166457	168595	168975	169996	170933	172468	173548	175319	176308	177334	178285	179081	179689	180842
		SEQ NO. (a a)	3668	3669	3670	3671	3672	3673	3674	3675	3676	3677	3678	3679	3680	3681	3682	3683	3684	3685	3686	3687	3688	3689
55		SEQ NO. (DNA)	168	169	170	171	172	173	174	175	176	177	178	179	180	181	182		184	185	186	187	188	189

			,	,	_					,	,						,						
5		Function		regulatory protein	oxidoreductase	hypothetical protein		cold shock protein			caffeoyl-CoA 3-O-methyltransferase		glucose-resistance amylase regulator regulator			D-xylose proton symporter		transposase (ISCg2)	signal-transducing histidine kinase	glutamine 2-oxoglutarate aminotransferase large subunit	glutamine 2-oxoglutarate aminotransferase small subunit		hypothetical protein
15		Matched length (a.a.)		331	442	303		64			134		338			458		401	145	1510	909		496
20	:	Similarity (%)		61.9	52.5	64.7		92.2			58.2		62.1			70.5		100.0	60.7	100 0	9.66		72.8
		Identity (%)		32.0	24.4	33.7		70.3			30.6		28.7			36.0		100.0	27.6	6.99	99.4		44.6
<i>25 30</i>	Table 1 (continued)	Homologous gene		Streptomyces reticuli cebR	Rhizobium sp. NGR234 y4hM	Bacillus subtilis yfiH		Streptomyces coelicolor A3(2) csp			Stellaria longipes		Bacillus subtilis ccpA			Lactobacillus brevis xylT		Corynebacterium glutamicum ATCC 13032 tnp	Rhizobium meliloti fixL	Corynebacterium glutamicum gltB	Corynebacterium glutamicum gltD		Mycobacterium tuberculosis H37Rv Rv3698
40		db Match		gp:SRE9798_1	SP Y4HM_RHISN	sp YFIH_BACSU		sp:CSP_ARTGO			prf:2113413A		sp.ccPA_BACSU			sp:XYLT_LACBR		gp:AF189147_1	Sp:FIXL_RHIME	gp:AB024708_1	gp.AB024708_2		pir.C70793
		ORF (bp)	384	993	1233	1011	429	201	534	306	414	426	990	402	240	1473	300	1203	435	4530	1518	240	1485
45		Terminal (nt)	181647	181687	184051	185087	185642	186708	187302	187607	188100	188300	188747	190321	190389	190703	192949	194464	194604	199769	201289	201341	201760
50		Initial (nt)	181264	182679	182819	184077	185214	186508	186769	187302	187687	188725	189736	189920	190628	192175	193248	193262	195038	195240	199772	201580	203244
		SEQ NO. (a a)	3690	3691	3692	3693	3694	3695	9698	3697	3698	3696	3700	3701	3702	3703	3704	3705	3706	3707	3708	3709	3710
55		SEQ NO. (DNA)	190	191	192	193	194	195	196	197	198	199	200	201	202	203	204	205	206	207	208	509	210
	,																					:	

							_			_		_								
5	Function		arabinosyl transferase	hypothetical membrane protein	acetoacetyl CoA reductase	oxidoreductase	:			proteophosphoglycan	hypothetical protein		hypothetical protein	rhamnosyl transferase		hypothetical protein	O-antigen export system ATP- binding protein	O-antigen export system permease protein	hypothetical protein	NADPH quinone oxidoreductase
15	Matched length (a a.)		1122	651	223	464				350	124		206	302		214	236	262	416	302
20	Similarity (%)		70.6	66.1	56.5	85.1				57.4	83.9		73.8	79.1		55.1	78.4	75.6	63.0	71.5
	Ident ty (%)		39.8	35.0	31.4	0.99				24.3	60.5		43.2	63.6		31.3	47.0	31.3	36.5	41.1
30 elder	s gene		ит етъВ	erculosis	phbB	erculosis				opg1	erculosis		erculosis	erculosis		efaciens RA tiorf100	ica rfbE	ica rfbD	erculosis	
30 elder	Homologous gene		Mycobacterium avium embB	Mycobacterium tuberculosis H37Rv Rv3792	Pseudomonas sp. phbB	Mycobacterium tuberculosis H37Rv Rv3790				Leishmania major ppg1	Mycobacterium tuberculosis H37Rv Rv3789		Mycobacterium tuberculosis H37Rv Rv1864c	Mycobacterium tuberculosis H37Rv Rv3782 rfbE		Agrobacterium tumefaciens plasmid pTi-SAKURA tior1100	Yersinia enterocolitica rfbE	Yersinia enterocolitica rfbD	Mycobacterium tuberculosis H37Rv Rv3778c	Homo sapiens pig3
35		-	2	≥I	a.	≥I							ΣI	ΣI					ΣÏ	
40	db Match		prf:2224383C	pir.D70697	prf.2504279B	pir.B70697	,			gp:LMA243459_1	Sp:Y0GN_MYCTU		pir:H70666	pir.B70696		gp:A8016260_100	sp:RFBE_YEREN	SP. RFBD_YEREN	pir.F70695	954 gp:AF010309_1
	ORF (bp)	318	3471	1983	759	1464	234	507	453	1002	396	402	633	939	342	282	789	804	1173	954
45	Terminal (nt)	206385	203541	207007	209210	209992	211535	212283	212735	213657	214107	214522	215159	215162	216605	216116	217141	217943	220151	220154
50	Initial (nt)	206068	207011	208989	209968	211455	211768	211777	212283	212656	213712	214121	214527	216100	216264	216712	217929	218746	218979	221107
	SEQ NO (a.a)	3712	3713	3714	3715	3716	3717	3718	3719	3720	3721	3722	3723	3724	3725	3726	3727	3728	3729	3730
55	SEQ NO.	212	213	214	215	216	217	218	219	220	221	222	223	224	225	226	227	228	229	230

5	
10	
15	
20	
25	
30	
35	
40	
45	
50	

!	Function		probable electron transfer protein	amino acid carrier protein		mclybdopterin biosynthesis protein moeB (sulfurylase)	molybdopterin synthase, large subunit	mclybdenum cofactor biosynthesis protein CB	co-factor synthesis protein	molybdopterin co-factor synthesis protein	hypothetical membrane protein	molybdate-binding periplasmic protein	molybdopterin converting factor subunit 1	maltose transport protein	hypothetical membrane protein	histidinol-phosphate aminolransferase			
	Matched length (a.a.)		78	475		368	150	158	154	377	227	256	96	365	121	330			
	Similarity (%)		51.0	75.8		70.1	75.3	63.3	84.4	58.6	70.5	68.0	70.8	60.8	6.97	65.8			
	Identity (%)		35.0	46.7		43.8	44.7	33.5	61.7	34.5	44.1	34.0	37.5	34.3	36.4	37.3			
Table 1 (continued)	Homologous gene		Mycobacterium tuberculosis H37Rv Rv3571	Bacillus subtilis alsT		Synechococcus sp. PCC 7942 moeB	Arthrobacter nicotinovorans moaE	Synechococcus sp PCC 7942 moaCB	Arthrobacter nicotinovorans moaC	Arthrobacter nicotinovorans moeA	Arthrobacter nicotinovorans modB	Arthrobacter nicolinovorans modA	Mycobacterium tuberculosis H37Rv moaD2	Thermococcus litoralis malK	Streptomyces coelicolor A3(2) ORF3	Zymomonas mobilis hisC			
	db Match		PIR A70606	SP.ALST_BACSU		gp:SYPCCMOEB_	prf 2403296D	sp:MOCB_SYNP7	prf.2403296C	gp:ANY10817_2	prf.2403296F	prf:2403296E	pir.D70816	prf 2518354A	sp:YPT3_STRCO	sp:HIS8_ZYMMO			
	ORF (bp)	582	297	1476	909	1083	456	471	468	1185	723	804	321	912	420	1023	906	294	120
	Terminal (nt)	221131	222207	222210	225244	225242	226312	226760	227218	227703	228891	229711	230928	230931	231848	232260	234818	234910	235409
	Initial (nt)	221712	221911	223685	224336	226324	226767	227230	227685	228887	229613	230514	230608	231842	232267	233282	233913	235203	235290
	SEO NO. (a.a.)	3731	3732	3733	3734	3735	3736	3737	3738	3739	3740	3741	3742	3743	3744	3745	3746	3747	3748
	SEQ NO. (DNA)	231	232	233	234	235	236	237	238	239	240	241	242	243	244	245	246	247	248

5	
10	
15	
20	
25	
30	
35	
40	
45	
50	

queuine tRNA-ribosyltransferase hypothetical membrane protein Na/dicarboxylate cotransporter membrane transport protein magnesium ion transporter glutamyl-tRNA synthetase alcohol dehydrogenase nitrogen fixation protein Function hypothetical protein putrescine oxidase transcription factor ABC transporter oxidoreductase transposase Matched length 252 316 400 526 335 451 444 267 317 160 144 203 360 997 Similarity 57.1 0.99 S 59.6 73.8 68.0 62.1 49.6 63.3 38.1 69.1 70.1 45.7 55.0 8 68. Identity (%) 29 4 340 215 o, 33.2 48.8 41.3 34.8 20.7 34.2 28.1 45 30. 46 Streptomyces glaucescens strW Table 1 (continued) Pseudomonas syringae tnpA Mycobacterium tuberculosis H37Rv tyrA Mycobacterium tuberculosis H37Rv Rv0507 mmpL2 Mycobacterium tuberculosis H37Rv Rv3753c Bacillus stearothermophilus DSM 2334 adh Bradyrhizobíum japonicum Hamologous gene Borrelia burgdorferi mgtE Micrococcus rubens puo Brucella abortus oxyR Bacillus subtilis ypdP Zymomonas mobilis Bacillus subtilis gltX Xenopus laevis gp:PSESTBCBAD_1 sp:YPDP_BACSU sp:ADH2_BACST Sp:YV34_MYCTU sp.TGT_ZYMMO gp:BAU81286_1 sp.PUO_MICRU gp.RHBNFXP_1 sp:SYE_BACSU db Match prf:2305239A prf:2320140A pir.C70800 pir:B70800 pir.S65588 1017 1350 1530 1020 2403 1263 1437 1110 801 1080 AR((bp) 174 417 738 879 762 522 648 201 351 990 138 303 241515 243910 Terminal 237342 239525 244215 244816 255492 235451 241883 248572 238145 239945 243431 247304 248557 250507 249722 251939 252830 252830 254329 256204 E 236326 238176 243494 244466 236212 237345 239986 242902 250503 255438 255794 242910 244015 247310 249294 239772 244902 249428 250369 253819 251952 256067 (ju SEQ NO. 3749 3750 3752 3753 3754 3756 3759 3770 3751 3755 3758 3760 3763 3764 3765 3757 3762 3766 3768 3769 3761 3767

48

258 259

257

256

261

262

264

266

269

55

(DNA)

249

251

253

extracytoplasmic function alternative sigma factor DNA polymerase III holoenzyme tau subunit branched-chain amino acid transport DNA polymerase III epsilon chain UDP-N-acetylmuramyl tripeptide synthetase hypothetical membrane protein leucine-responsive regulatory aspartate kinase alpha chain 5 aspartate transaminase Function recombination protein cotyric acid synthase hypothetical protein vegetative catalase 10 protein Matched 15 length (a.a.) 432 214 642 101 248 444 346 189 492 270 421 143 203 Similarity 0.001 100.0 74.3 72.4 9.09 55.2 63.5 53.1 61.7 Φ 72.0 68.0 % 76.4 99 20 dentity (%) 100.0 41.6 42.5 38.3 ø 31.3 25.7 S 31.2 52.9 30.5 37.1 3 99 Mycobacterium smegmatis sigE Brevibacterium lactofermentum aspC 25 Corynebacterium glutarnicum (Brevibacterium flavum) ATCC 13032 orfX Corynebacterium glutamicum lysC-alpha Table 1 (continued) Thermus thermophilus dnaX Mycobacterium tuberculosis H37Rv dnaQ Heliobacillus mobilis cobQ Heliobacillus mobilis murC Homologous gene Klebsiella pneumoniae Irp Bacillus subtilis 1A1 azlC Bacillus subtilis yaaK Bacillus subtilis recR Bacillus subtilis katA 30 35 sp:RECR_BACSU Sp. YAAK_BACSU sp:CATV_BACSU SP:AKAB_CORGL sp:AZLC_BACSU sp:YLEU_CORGL gp:AF025391_1 SPILRP_KLEPN db Match prf:2503462B prf.2503462C prf.2312309A gsp:W69554 pir.H70794 40 1296 ORF (bp) 2325 309 1269 1080 1263 630 654 750 1053 1434 579 1506 717 753 867 342 291 462 **Terminal** 260875 257894 258529 261295 262055 262546 264599 268258 258596 270633 269524 273194 273542 275871 276232 275957 276302 277581 45 263298 <u>E</u> 256599 257900 259312 261402 263295 264566 265678 269124 274120 274366 276763 258551 260987 270576 271761 276247 276829 269371 275891 nitial £ 50 3775 3772 3773 3774 3776 3778 3779 3780 3783 SEQ NO 3771 3782 3784 3785 3788 3789 (a a.) 3777 3786 3787 3781 (DNA) SEQ No. 271 272 274 275 276 278 280 277 279 282 283 285 286 287 281 284 288 55

EP 1 108 790 A2

5		Function			metalloregulatory protein	arsenic oxyanion-franslocation pump membrane subunit	arsenate reductase				Na+/H+ antiporter or multiple resistance and pH regulation related protein D	Na+/H+ antiporter	Na+/H+ antiporter or multiple resistance and pH regulation related protein A				transcriptional activator	two-component system sensor histidine kinase	alkaline phosphatase		phosphoesterase	hypothetical protein
15		Matched length (a a)			90 m	341 ai	119 at				503 re	119	824 re				223 tra	521 th	180 al		307 pt	149 hy
20		Similarity (%)			68.9	84.2	68.9				70.4	70.6	64.3				70.4	56.8	0.09		54.7	71.8
		Identity (%)			34.4	52.2	31.1				32.4	37.0	34.1				38.6	26.7	28.3		26.1	37.6
25	Table 1 (continued)	Homologous gene			o. As4 arsR	o. As4 arsB	xylosus arsC				F4 mrpD	aureus mnhC	F4 mrpA				phus CH34	uberculosis	s MG1363 apl		kuE	qeY
30	Table 1	Homolog			Sinorhizobium sp. As4 arsR	Sinorhizobium sp. As4 arsB	Staphylococcus xylosus arsC				Bacillus firmus OF4 mrpD	Staphylococcus aureus mnhC	Bacillus firmus OF4 mrpA				Alcaligenes eutrophus CH34 czcR	Mycobacterium tuberculosis mtrB	Lactococcus lactis MG1363 apl		Bacillus subtilis ykuE	Bacillus subtilis yqeY
<i>35</i>		db Match			gp:AF178758_1	gp.AF178758_2	sp.ARSC_STAXY				gp:AF097740_4	prf.2504285D	gp:AF097740_1				sp.czck_ALCEU	prf.2214304B	SP.APL_LACLA		pir.B69865	Sp.YQEY_BACSU [
		ORF (bp)	324	315	345 gp:	1080 gp.	387 sp.	318	270	453	530 gp:	381 prf.	2886 gp:	485	603	964	990 990	467 prf.	603 sp:	561	915 pir.	453 sp.
45		Terminal (nt)	277904	277987	278388	279893	280279	280349	280670	280949		282937	283317 2	287857 1	287059 6	287966	289131 6	1 72892	292417	291273	292597	293991 4
50		Initial (nt)	277581	278301	278732	278814	279893	280666	280939	281401	282933	283317	286202	286373	287661	288829	289796	291243	291815	291833	293511	293539
		SEQ NO (a.a.)	3790	3791	3792	3793	3794	3795	3796	3797	3798	3799	3800	3801	3802	3803	3804	3805	3806	3807	3808	3809
55		SEQ NO.	290	291	292	293	294	295	296	297	298	299	300	301	302	303	304	305	306	307	308	308

EP 1 108 790 A2

													,	,								
5		Function	class A penicillin-binding protein(PBP1)	regulatory protein		hypothetical protein	transcriptional regulator	shikimate transport protein		long-chain-fatty-acid—CoA ligase	transcriptional regulator	3-oxoacyl-(acyl-carrier-protein) reductase	glutamine synthetase	short-chain acyl CoA oxidase	nodulation protein	hydrolase			cAMP receptor protein		ultraviolet N-glycosylase/AP lyase	cytochrome c biogenesis protein
15		Matched length (a.a.)	782	1.2		50	149	440		534	127	251	254	394	153	272			207		240	211 0
20		Similarity (%)	77.1	63.4		96.0	89.9	6.89		59.9	65.4	72.5	52.0	66.5	72.6	72.4			2.39		17.7	58.3
		identity (%)	48.3	40.9		84.0	65.1	37.3		31.1	33.9	41.0	27.2	38.8	45.8	41.2			30.9		57.5	34.6
25 30	Table 1 (continued)	Homologous gene	Mycobacterium leprae pon1	Streptomyces coelicolor A3(2) whiB		Streptomyces coelicolor A3(2) SCH17.10c	Mycobacterium tuberculosis H37Rv Rv3678c	Escherichia coli K12 shiA		Bacillus subtilis IcfA	Streptomyces coelicolor A3(2) SCJ4.28c	Bacillus subtilis fabG	Emericella nidulans fluG	Arabidopsis thaliana atg6	Rhizobium leguminosarum nodN	Mycobacterium tuberculosis H37Rv Rv3677c			Vibrio cholerae crp		Micrococcus luteus pdg	Mycobacterium tuberculosis H37Rv Rv3673c
40		db Match	prf.2209359A	pir:S20912		gp:SCH17_10	pir:G70790	sp:SHIA_ECOLI		sp:LCFA_BACSU	gp:SCJ4_28	sp:FABG_BACSU	sp.FLUG_EMENI	prf.2512386A	sp:NODN_RHILV	pir.F70790			prf:2323349A		sp:UVEN_MICLU	pir.B70790
		ORF (bp)	2385	339	192	153	459	1353	609	1536	525	933	942	1194	471	843	1173	705	681	192	780	558
45		Terminal (nt)	294004	297402	297622	297783	298250	298332	300695	299726	301512	303099	304074	305263	305758	306700	305195	307504	306782	307727	308734	309302
50		Initial (nt)	296388	297064	297431	297631	297792	299684	300087	301261	302036	302167	303133	304070	305288	305858	306367	306800	307462	307918	307955	308745
		SEQ NO.	3810	3811	3812	3813	3814	3815	3816	3817	3818	3819	3820	3821	3822	3823	3824	3825	3826	3827	3828	3829
55		SEQ NO (DNA)	310	311	312	313	314	315	316	317	318	319	320	321	322	323	324	325	326	327	328	329

10
15
20
25
30
35
40
45
50

5

	Function	hypothetical protein	serine proteinase	epoxide hydrolase	hypothetical membrane protein	phosphoserine phosphatase	hypothetical prolein	conjugal transfer region protein		hypothetical membrane protein	hypothetical protein	hypothetical protein				ATP-dependent RNA helicase	cold shock protein		DNA topoisomerase 1	
	Matched length (a.a.)	192	396	280	156	287	349	319		262	201	59				764	67		226	
	Similarity (%)	56.3	71.0	52.1	77.6	65.5	60.2	66.5		63.7	64.2	84.8				66.1	1.88		81.6	
	Identity (%)	30.7	38.6	29.6	46.8	29.6	35.0	32.9		30.5	33.8	47.5				33.8	68.7		61.7	
Table 1 (continued)	Homologous gene	Escherichia coli K12 yeaB	Mycobacterium tuberculosis 1137Rv Rv3671c	Corynebacterium sp. C12 cEH	Mycobacterium tuberculosis H37Rv Rv3669	Mycobacterium leprae MTCY20G9.32C. serB	Mycobacterium tuberculosis H37Rv Rv3660c	Escherichia coli trbB		Mycobacterium tuberculosis H37Rv Rv3658c	Mycobacterium tuberculosis H37Rv Rv3657c	Mycobacterium tuberculosis H37Rv Rv3656c				Bacillus subtilis yprA	Arthrobacter globiformis SI55 csp		Mycobacterium tuberculosis H37Rv Rv3646c topA	
	db Match	sp:YEAB_ECOLI	pir.H70789	prf:2411250A	pir.F70789	pir.S72914	pir:E70788	pir.C44020		pir.C70788	pir.B70788	pir:A70788				sp:YPRA_BACSU	sp.CSP_ARTGO		pir.G70563	
	ORF (bp)	699	1191	993	549	996	1023	1023	615	816	546	198	318	414	345	2355	201	225	2988	711
	Terminal (nt)	310038	311325	311899	312909	313625	316002	317132	316350	317893	318465	318689	319013	318545	319335	319336	322207	321992	325897	326614
	Initial (nt)	309370	310135	312891	313457	314590	314980	316110	316964	317078	317920	318492	318696	318958	318991	321690	322007	322216	322910	325904
	SEQ NO (a.a.)	3830	3831	3832	3833	3834	3835	3836	3837	3838	3839	3840	3841	3842	3843	3844	3845	3846	3847	3848
	SEQ NO. (DNA)	330	331	332	333	334	335	336	337	338	339	340	341	342	343	344	345	346	347	348

dolichol phosphate mannose synthase

230

66.

6

33.

₹

Methanococcus jannaschii 1 MJ1222

sp:YC22_METJA

759 1029

340569

341327 341347

3864 3865 3866 3867 3868

364 365 366 367 368

340195

hypothetical protein

108

88

59

nucleotide sugar synthetase

UDP-sugar hydrolase

260 586

57.3 54.4

25.8

26.

Salmonella typhimurium ushA

SALTY

sp.USHA_

345717 345814

343636 342417

162

345975

sp:YEFJ_ECOLI

1035 2082

343451

342375

Escherichia coli K12 yefJ

metallo-beta-lactamase superfamily dTDP-glucose 4,6-dehydratase 3-oxoacyl-(acyl-carrier-protein) formaldehyde dehydrogenase 5 beta-glucosidase/xylosidase valanimycin resistant protein DNA polymerase III subunit tau/gamma pseudouridine synthase C NAD/mycothiol-dependent ribosomal large subunit Function hypothetical protein hypothetical protein adenylate cyclase beta-glucosidase 10 reductase 15 Matched length 314 558 263 423 144 172 160 415 101 320 362 251 Similarity 65.0 61.4 60.2 47.5 56.4 66.3 8 62 52. 59. 63. 86. 55. 20 dentity (%) 32.6 43.6 34.8 25.3 39.0 38.6 9.99 25.9 26.3 33.8 32 32. 25 Streptomyces viridifaciens vlmF Stigmatella aurantiaca B17R20 cyaB Ureaplasma urealyticum uu033 Erwinia chrysanthemi D1 bgxA Rhodococcus erythropolis orf5 Table 1 (continued) Mycobacterium tuberculosis H37Rv Rv3632 Amycolatopsis methanolica Azospirillum irakense salB Homologous gene Deinococcus radiodurans DR0202 Escherichia coli K12 fabG Escherichia coli K12 rluC Actinoplanes sp. acbB Bacillus subtilis dnaX 30 35 SP:BGLX_ERWCH sp:FADH_AMYME sp:YTH5_RHOSN sp:DP3X_BACSU sp:CYAB_STIAU sp:RLUC_ECOLI sp:FABG_ECOLI gp: AE002103 3 gp:AE001882_8 gp:AF090429_2 gp:AF148322_1 db Match prf:2512357B pir:A70562 40 1644 1989 1104 ORF (bp) 1041 1257 444 561 537 1230 882 933 375 162 621 699 45 Terminal 330376 335185 326695 329539 331533 332433 336112 336748 339725 329909 334562 337449 334953 338768 3 327735 329933 335805 328283 330973 331552 332919 329748 336212 338793 332965 335009 337539 340569 336781 50 <u>f</u> 3849 3850 3852 3851 3853 3854 3855 3856 3857 3858 3860 3861 3862 3863 9 (DNA) SEO 351 8 349 350 352 353 354 355 356 357 358 359 360 361 362 55 363

	Г							·													,	
5		Function		NADP-dependent alcohol dehydrogenase	glucose-1-phosphate thymidylyltransferase	dTDP-4-keto-L-rhamnose reductase	dTDP-glucose 4,6-dehydratase	NADH dehydrogenase	Fe-regulated protein		hypothetical membrane protein	metallopeptidase	prolyl endopeptidase		hypothetical membrane protein	cell surface layer protein	autophosphorylating protein Tyr kinase	protein phosphatase		capsular polysaccharide biosynthesis	ORF 3	Ipopolysaccharide biosynthesis / aminotransferase
15		Matched length (a.a.)		343	285	192	343	206	325		423	461	708		258	363	453	102		613	06	394
20		Similarity (%)		74.9	84.9	74.0	83.4	61.2	66.5		68.3	62.5	56.4		46.0	9.92	57.2	68.6		65.7	51.0	68.3
		Identity (%)		52.2	62.8	49.5	61.8	35.4	33.2		37.4	34.1	28.4		0'92	20.7	28.5	39.2		33.0	41.0	37.1
30 Penainto 2)	command)	us gene		berculosis	n M32 rfbA	tans rmIC	tans XC rmIB	s HB8 nox	ureus sirA		berculosis	licolor	psulata		licolor A3(2)	TCC 6872	sonii ptk	sonii ptp		reus M capD		uni wlaK
·	- Signal	Homologous gene		Mycobacterium tuberculosis H37Rv adhC	Salmonella anatum M32 rfbA	Streptococcus mutans rmIC	Streptococcus mutans XC rmlB	Thermus aquaticus HB8 nox	Staphylococcus aureus sirA		Mycobacterium tuberculosis H37Rv Rv3630	Streptomyces coelicolor SC5F2A.19c	Sphingomonas capsulata		Streptomyces coelicolor A3(2)	Corynebacterium ammoniagenes ATCC 6872	Acinetobacter johnsonii ptk	Acinetobacter johnsonii ptp		Staphylococcus aureus M capD	Vibrio cholerae	Campylobacter jejuni wlaK
40		db Match		sp:ADH_MYCTU H	SP:RFBA_SALAN S	gp:D78182_5	TRMU	Sp. NOX_THETH T	prf:2510361A S		sp:Y17M_MYCTU h	gp.SC5F2A_19	prf.2502226A S		gp:SCF43_2 S	gsp:W56155 C	prf:2404346B A	prf:2404346A A		sp.CAPD_STAAU S	PRF:2109288X V	prf.2423410L C
		ORF (bp)	351	1059 sp.A	855 sp:R	1359 gp:C	1131 sp.R	579 sp:N	945 prf:2	639	1308 sp. Y	1380 gp:S	2118 prf.2	573	1092 gp:S	1095 gsp.\	1434 prf.2	603 prf.2	984	1812 sp.C.	942 PRF.	1155 prf.2
45		Terminal O	346110 3	346961 10	348098 8	348952 13	350313 11	351370 5	353637 9	353749 6	354599 13	355849 13	357237 21	-	360814 10	362057 10				368643 18		
	-	Tern (n	_							-				359762			365257	365852	366838		367701	369801
50		Initial (nt)	346460	348019	348952	350310	351443	351948	352693	354387	355906	357228	359354	360334	361905	363151	363824	365250	365855	366832	368642	368647
	- h	SEQ NO.	3869	3870	3871	3872	3873	3874	3875	3876	3877	3878	3879	3880	3881	3882	3883	3884	3885	3886	3887	3888
55		SEQ NO.	369	370	371	372	373	374	375	376	377	378	379	380	381	382	383	384	385	386	387	388

5	Function	pilin glycosylation protein	capsular polysaccharide biosynthesis	lipopolysaccharide biosynthesis / export protein	UDP-N-acetylglucosamine 1- carboxyvinyltransferase	UDP-N- acetylenolpyruvoylglucosamine reductase	sugar transferase	transposase		transposase (insertion sequence IS31831)		hypothetical protein	acetyltransferase	hypothetical protein B	UDP-glucose 6-dehydrogenase			glycosyl transferase	acetyltransferase	
15	Matched length (a.a.)	196	380	504	427	273	356	53		70		404	354	65	388			243	221	
20	Similarity (%)	75.0	69.2	8.69	64.6	68.5	£.72	79.3		94.3		57.4	60.2	53.0	7.68			65.0	62.0	
	Identity (%)	54.6	33.4	34.3	31.4	34.8	32.0	60.4		75.7		28.0	34.5	44.0	63.7			32.1	33.0	
25 (continued)	Hamologous gene	Neisseria meningitidis pglB	Staphylococcus aureus M capM	Xanthomonas campestris gumJ	Enterobacter cloacae murA	ilis murB	ae ORF39x2	Corynebacterium glutamicum		Corynebacterium glutamicum ATCC 31831		Mycobacterium tuberculosis H37Rv Rv1565c	Pseudomonas aeruginosa PAO1 psbC	Corynebacterium glutamicum	coli ugd			coli wbnA	Escherichia coli 0157 wbhl l	
·	Home	Neisseria me	Staphylococ	Xanthomona	Enterobacte	Bacillus subtilis murB	Vibrio cholerae	Corynebacte		Corynebacte ATCC 31831		Mycobacterium t H37Rv Rv1565c	Pseudomon psbC	Corynebacte	Escherichla coli ugd			Escherichia coli wbnA	Escherichia	
40	db Match	gp:AF014804_1	sp:CAPM_STAAU	pir.S67859	sp.MURA_ENTCL	sp:MURB_BACSU	gp:VCLPSS_9	prf 2211295A		pir:S43613		pir.G70539	gsp:W37352	PIR: S60890	sp:UDG8_ECOLI			gp:AF172324_3	gp:AB008676_13	
	ORF (bp)	612	1161	1491	1314	1005	1035	150	135	327	276	1170	993	231	1161	273	1209	822	645	195
45	Terminal (nt)	370405	371773	373419	374813	375837	376876	377832	378227	378511	378287	378668	379850	381495	383108	383496	383982	385374	387200	387463
50	Initial (nt)	369794	370613	371929	373500	374833	375842	377683	378093	378185	378562	379837	380842	381265	381948	383768	385190	386195	386556	387657
	SEQ NO (a.a.)	3889	3890	3891	3892	3893	3894	3895	3896	3897	3898	3899	3900	3901	3902	3903	3904	3905	3906	3907
55	SEQ NO. (DNA)	389	390	391	392	393	394	395	396	397	398	399	400	401	402	403	404	405	406	

5		Function	dihydrolipoamide dehydrogenase	UTPglucose-1-phosphate uridylyltransferase	regulatory protein	transcriptional regulator	cytochrome b subunit	succinate dehydrogenase flavoprotein	succinate dehydrogenase subunit B						hypothetical protein	hypothetical protein			tetracenomycin C transcription repressor		transporter
15		Matched length (a.a.)	469	295	153	477	230	608	258						259	431			197		499
20		Similarity (%)	100.0	68.1	71.9	81.3	67.4	61.2	56.2						49.8	64.3			53.8		74.6
		Identity (%)	9.66	41.7	43.8	57.0	34.8	32.4	27.5						26.3	32.7			26.4		36.1
25	ontinued)	s gene	lutamicum	pestris	uginosa PAO1	erculosis	icolor A3(2)	۲	erans sdhB						icolor	2 yjiN			cescens		lae T#2717
30	lable 1 (continued)	Homologous gene	Corynebacterium glutamicum ATCC 13032 lpd	Xanthomonas campestris	Pseudomonas aeruginosa PAO1 orfX	Mycobacterium tuberculosis H37Rv Rv0465c	Streptomyces coelicolor A3(2) SCM10.12c	Bacillus subtilis sdhA	Paenibacillus macerans sdhB						Streptomyces coelicolor SCC78.05	Escherichia coli K12 yjiN			Streptomyces glaucescens GLA.0 tcmR		Streptomyces fradiae T#2717 urdJ
<i>35</i>		db Match	gp:CGLPD_1 A	pir:JC4985 X	gp:PAU49666_2 0	pir.E70828 H	gp:SCM10_12 S	pir.A27763 B	gp.BMSDHCAB_4 P						S 9p:SCC78_5 S	sp:YJIN_ECOLI E			Sp.TCMR_STRGA		gp:AF164961_8 s
		ORF (bp)	1407 gp:(921 pir:J	6 0	1422 pir.6	771 gp:8	1 52	837 gp.E	9	261	630	96	39	2	1251 sp:\	420	03	00	204	1647 gp:/
45			1	+	730 49	i	 	513 187	\vdash	650 33	_		_	222 33	232 97	1	\vdash	341 30	150 67	 	
		Terminal (nt)	389098	390168	390730	390787	393475	395513	396262	396650	396932	396411	397825	398222	397232	399579	400017	400341	401150	401253	402796
50		Initial (nt)	387692	389248	390233	392208	392705	393639	395426	396315	396672	397040	397730	397884	398206	398329	399598	400039	400473	401050	401150
		SEQ NO.		3909	3910	3911	3912	3913	3914	3915	3916	3917	3918	3919	3920	3921	3922	3923	3924	3925	3926
55		SEQ NO.	408	409	410	411	412	413	414	415	416	417	418	419	420	421	422	423	424	425	426

										-,	_			,							
5				deformylase	aldolase						pe ATPase B		sidase	nic protein		nding protein					
10		Function	transporter	formyltetrahydrofolate deformylase	deoxyribose-phosphate aldolase			hypothetical protein	hypothetical protein		cation-transporting P-type ATPase		glucan 1,4-alpha-glucosidase	hemin-binding periplasmic protein	ABC transporter	ABC transporter ATP-binding protein	hypothetical protein	hypothetical protein			
15		Matched length (a.a.)	508	286	208			280	92		748		626	348	330	254	266	258			
20		Similarity (%)	74.6	72.7	74.0			53.6	85.9		75.3		56.1	83.6	90.3	85.0	56.4	61.6	:		
		Identity (%)	39.6	40.9	38.5			26.8	58.7		45.7		27.3	57.2	65.2	63.8	28.6	32.6			
25	Table 1 (continued)	is gene	iae T#27·7	sp. P-1 purU	ပွ			ium GIR 10	erculosis		rae ctpB		revisiae a1	iphtheriae	iphtheriae	iphtheriae	color C75A	color C75A			
30	Table 1 (Homologous gene	Streptomyces fradiae T#27* urdJ	Corynebacterium sp.	Bacillus subtifis deoC			Mycobacterium avium GIR10 mav346	Mycobacterium tuberculosis H37Rv Rv0190		Mycobacterium leprae ctpB		Saccharomyces cerevisiae S288C YIR019C sta1	Corynebacterium diphtheriae hmuT	Corynebacterium diphtheriae hmuU	Corynebacterium diphtheriae hmuV	Streptomyces coelicolor C75A SCC75A.17c	Streptomyces coelicolor C75A SCC75A. 17c			
35				_	·			2 5	≥I					υE	ÖΞ	ŭΈ	8 8	क्ष क्ष	-	-	
40		db Match	gp AF 164961_8	sp:PURU_CORSP	sp.DEOC_BACSU			prf:2413441K	pir.A70907		SP:CTPB_MYCLE		sp:AMYH_YEAST	gp:AF109162_1	gp:AF109162_2	gp:AF109162_3	gp:SCC75A_17	gp:SCC75A_17			
		ORF (bp)	1632	912	999	150	897	867	300	900	2265	450	1863	1077	1068	813	957	837	810	813	501
45		Terminal (nt)	404430	404508	406145	406161	405521	407416	407409	409145	407711	410027	412545	413633	414710	415526	416599	417439	417545	418441	419257
50		Initial (nt)	402799	405419	405480	406310	406417	406550	407708	408546	409975	410476	410683	412557	413643	414714	415643	416603	418354	419253	419757
		SEQ NO (a a)	3927	3928	3929	3930	3931	3932	3933	3934	3935	3936	3937	3938	3939	3940	3941	3942	3943	3944	3945
55		SEQ NO.	427	428	429	430	431	432	433	434	435	436	437	438	439	440	441	442	443	444	445

5	Function	UDP-N-acetylpyruvoylglucosamine reductase				long-chain-fatty-acidCoA ligase	transferase	phosphoglycerate mutase	two-component system sensor histidine kinase	two-component response regulator		ABC transporter ATP-binding protein	cytochrome P450	exopolyphosphatase	hypothetical membrane protein	pyrroline-5-carboxylate reductase	membrane glycoprotein	hypothetical protein	
15	Matched length (a.a.)	356				855	416	246	417	231		921	269	306	302	569	394	55	
20	Similarity (%)	58.4				68.1	58.7	84.2	74.8	6.06		60.7	68.9	87.8	57.3	100.0	52.0	94.6	
	Identity (%)	30.1				35.5	33.9	7.07	49.2	75.8		31.3	45.0	28.8	28.8	100.0	25.4	76.4	
25 Table 1 (continued)	Homologous gene	RDD012 murB				cfA	elicolor	elicolor A3(2)	ovis senX3	ovis BCG		elicolor A3(2)	uberculosis	eruginosa ppx	uberculosis	glutamicum C	us 1 ORF71	prae	
·	Homolog	Escherichia coli RDD012 murB				Bacillus subtilis IcfA	Streptomyces coelicolor SC2G5.06	Streptomyces coelicolor A3(2) gpm	Mycobacterium bovis senX3	Mycobacterium bovis BCG regX3		Streptomyces coelicolor A3(2) SCE25.30	Mycobacterium tuberculosis H37Rv RV3121	Pseudomonas aeruginosa ppx	Mycobacterium tuberculosis H37Rv Rv0497	Corynebacterium glutamicum ATCC 17965 proC	Equine herpesvirus 1 ORF71	Mycobacterium leprae B2168_C1_172	
40	db Match	gp:ECOMURBA_1				sp:LCFA_BACSU	gp.SC2G5_6	sp:PMGY_STRCO	prf.2404434A	prf.2404434B		gp:SCE25_30	sp:YV21_MYCTU	prf.2512277A	sp:YV23_MYCTU	sp.PROC_CORGL	gp.D88733_1	pir S72921	
	ORF (bp)	1101 g	651	735	174	1704 s	1254 g	744	1239 p	d 969	879	2586 9	ls £06	927 p	813 S	810 SF	1122 gi	198 pi	219
45	Terminal (nt)	420885	421516	420309	422031	422090	425131	425920	427172	427867	429439	429438	432126	433988	434822	435695	433865	436137	436103
50	Initial (nt)	419785	420866	421043	421858	423793	423878	425177	425934	427172	428561	432023	433028	433062	434010	434886	434986	435940	436321
	SEQ NO.	3946	3947	3948	3949	3950	3951	3952	3953	3954	3955	3956	3957	3958	3959	3960	3961	3962	3963
55	SEO NO.	446	447	448	449	450	451	452	453	454	455	456	457	458	459	460	461	462	463

	ſ	_T																			,		
5		Function	hypothetical protein			phosphoserine phosphatase	hypothetical protein		glutamyl-tRNA reductase	hydroxymethylbilane synthase		cat operon transcriptional regulator	shikimate transport protein	3-dehydroshikimate dehydratase	shikimate dehydrogenase		putrescine transport protein		iron(III)-transport system permease protein		periplasmic-iron-binding protein	uroporphyrin-III C-methyltransferase	
15		Matched length (a.a.)	29 h			296 p	74 h		455 g	308 h		321 c	417 S	309 3	282 s		363 p		ir 978 p		347 p	486 u	
20		Similarity (%)	100 0			77.4	66.2		74.3	75.3		57.6	72.2	6.73	98.6		68.6		55.2	į	59.9	71.6	
		Identity (%)	89.7			51.0	40.5		44.4	50.7		27.1	35.5	28.2	98.2		34.7		25.1		25.1	46.5	
25	lable I (collinued)	Homologous gene	oelicofor			leprae 3. serB	tuberculosis		leprae hemA	leprae hem3b		alcoaceticus	K12 shiA	ssa qa4	n glutamicum		K12 potG		cens sfuB		Brachyspira hyodysenteriae bitA	leprae cysG	
35	lane	Homolog	Streptomyces coelicolor SCE68.25c			Mycobacterium leprae MTCY20G9.32C. serB	Mycobacterium tuberculosis H37Rv Rv0508		Mycobacterium leprae hemA	Mycobacterium leprae hem3b		Acinetobacter calcoaceticus catM	Escherichia coli K12 shiA	Neurospora crassa qa4	Corynebacterium glutamicum ASO19 aroE		Escherichia coli K12 potG		Serratia marcescens sfuB		Brachyspira hyc	Mycobacterium leprae cysG	
40		db Match	gp.SCE68_25			pir.S72914	sp:YV35_MYCTU		SP:HEM1_MYCLE	pir:S72887		sp.CATM_ACICA	sp:SHIA_ECOLI	sp.3SHD_NEUCR	gp:AF124518_2		sp. POTG_ECOLI		sp:SFUB_SERMA		gp:SHU75349_1	pir:S72909	
		ORF (bp)	56	192	618	1065	246	258	1389	906	372	882	1401	1854	849 (273	1050	615	1644	1113	1059	1770	426
45		Terminal (nt)	436561	436764	437850	436980	438424	438037	439904	440814	441591	441601	444158	446038	447386	447398	448130	449100	449183	451961	450837	454430	454875
50		Initial (nt)	436463	436573	437233	438044	438179	438294	438516	439909	441220	442482	442758	444185	446538	447670	449179	449714	450826	450849	451895	452661	454450
		SEO NO.	3964	3962	3966	3967	3968	3969	3970	3971	3972	3973	3974	3975	3976	3977	3978	3979	3980	3981	3982	3983	3984
55		SEQ NO (DNA)	464	465	466	467	468	469	470	471	472	473	474	475	476	477	478	479	480	481	482	483	484

	_																				
5		Function	delta-aminolevulinic acid dehydratase			cation-transporting P-type ATPase B		uroporphyrinogen decarboxylase	protoporphyrinogen IX oxidase	glutamate-1-semialdehyde 2,1- aminomutase	phosphoglycerate mutase	hypothetical protein	cytochrome c-type biogenesis protein	hypothetical membrane protein	cytochrome c biogenesis protein		transcriptional regulator	Zn/Co transport repressor		hypothetical membrane protein	1,4-dihydroxy-2-naphthoate octaprenyltransferase
15		Matched length (a.a.)	337 de			858 ca		364 ur	464 pr	425 gl	161 pt	208 hy	245 cy pr	533 hy	338 c)		144 tra	90 21		82 hy	301 00
	Į		.,									``		-		!	Ì				
20		Similarity (%)	83.1			56.5		76.7	59.9	83.5	62.7	71.2	85.3	76.0	77.8		69.4	72.2		78.1	61.5
		Identity (%)	8.09			27.4		55.0	28.0	61.7	28.0	44.7	53.5	50.7	44.1		38.9	31.1		39.0	33.6
25	ned)	ย	A3(2)			tpB		A3(2)		eml	문	osis	osis	osis	osis		osis	zntR		osis	'nА
30	Table 1 (continued)	Homologous gene	Streptomyces coelicolor A3(2) hemB			Mycobacterium leprae ctpB		Streptomyces coelicolor A3(2) hemE	Bacillus subtilis hemY	Mycobacterium leprae heml.	Escherichia coli K12 gpmB	Mycobacterium tuberculosis H37Rv Rv0526	Mycobacterium tuberculosis H37Rv ccsA	Mycobacterium tuberculosis H37Rv Rv0528	Mycobacterium tuberculosis H37Rv ccsB		Mycobacterium tuberculosis H37Rv Rv3678c pb5	Staphylococcus aureus zntR		Mycobacterium tuberculosis H37Rv Rv0531	Escherichia coli K12 menA
35 40		db Match	sp.HEM2_STRCO			sp:CTPB_MYCLE		sp:DCUP_STRCO	Sp. PPOX_BACSU	sp:GSA_MYCLE	sp.PMG2_ECOLI	pir.A70545	pir:B70545	pir.C70545	pir:D70545		pir:G70790	prf.2420312A		pir.F70545	sp.MENA_ECOL!
		ш 🤝	~	2		4	3	4	4	-	100	-	 	8	-	 	_	~	0		
		ORF (bp)	5	582	510	254	84;	107	134	131	90	62	792	162	5	8	47	35	300	33	88
45		Terminal (nt)	455983	456597	457150	459900	458583	461093	462455	463867	464472	465102	465909	467571	468658	470170	470654	470657	471121	471847	471915
50		Initial (nt)	454967	456016	456641	457357	459425	460020	461112	462557	463867	464482	465118	465949	467648	469370	470184	471013	471420	471515	472808
		SEQ NO.	3985	3986	3987	3988	3989	3990	3991	3992	3993	3994	3995	3996	3997	3998	3999	4000	4001	4002	4003
55		SEQ (S		486	487	488	489	-	491	,	493	i	495	496	497	498	499	200	501	505	503

Function	glycosyl transferase	malonyl-CoA-decarboxylase	hypothetical membrane protein	ketoglutarate semialdehyde dehydrogenase	5-dehydro-4-deoxyglucarate dehydratase	als operon regulatory protein	hypothetical protein		2-pyrone-4,6-dicarboxylic acid				low-affinity inorganic phosphate transporter			naphthoate synthase	peptidase E	pterin-4a-carbinolamine dehydratase	muconate cycloisomerase
Matched length (a.a.)	238	421	139	520	£0£	293	94		267				410			293	202	77	335
Similarity (%)	62.6	51.5	65.5	76.0	75.6	66.2	64.9		54.7				83.2			703	82.7	68.8	76.7
Identity (%)	32.4	25.4	35.3	50.4	48.5	36.9	33.0		28.1				9.09			48.5	57.9	37.7	54.0
Homologous gene	Bacteroides fragilis wcgB	Rhizobium trifolii matB	Escherichia coli K12 yqjF	Pseudomonas putida	Pseudomonas putida KDGDH	Bacillus subtilis 168 alsR	Mycobacterium tuberculosis H37Rv Rv0543c		Sphingomonas sp. LB126 fldB				Mycobacterium tuberculosis H37Rv pitA			Bacillus subtilis menB	Deinococcus radiodurans DR1070	Aquifex aeolicus VFS phhB	Mycobacterium tuberculosis H37Rv Rv0553 menC
db Match	gp:AF125164_6	prf:2423270B	sp:YQJF_ECOLI	pir:S27612	sp:KDGD_PSEPU	sp:ALSR_BACSU	pir:870547		gp:SSP277295_9				pir.D70547			sp:MENB_BACSU	gp:AE001957_12	pir.C70304	014 pir.D70548
ORF (bp)	864	1323	411	1560	948	879	315	444	750	417	378	261	1275	222	306	957	603	309	1014
Terminal (nt)	473811	473814	474997	475489	477048	478092	478989	480597	479452	480208	480624	481131	481394	483366	483637	484106	485986	485077	487014
Initial (nt)	472948	475136	475407	477048	477995	478970	479303	480154	480201	480624	481001	481391	482668	483587	483942	485062	485384	485385	486001
SEQ NO.	4004	4005	4006	4007	4008	4009	4010	4011	4012	4013	4014	4015	4016	4017	4018	4019	4020	4021	4022
SEQ NO. (DNA)	504	505	506	202	508	509	510	511	512	513	514	515	516	517	518	519	950	521	522

10	Function	2-oxoglutarate decarboxylase and 2-succinyl-6-hydroxy-2,4-cyclohexadiene-1-carboxylate synthase	hypothetical membrane protein	alpha-D-mannose-alpha(1- 6)phosphatidyl myo-inositol monomannoside transferase	D-serine/D-alanine/glycine transporter	ubiquinone/menaquinone biosynthesis methyltransferase		oxidoreductase	heptaprenyl diphosphate synthase component II	preprotein translocase SecE subunit	transcriptional antiterminator protein	50S ribosomal protein L11	50S ribosomal protein L1	regulatory protein	4-aminobutyrate aminotransferase
15	Matched length (a.a.)	909	148	408	447	237		412	316	111	318	145	236	564	443
20	Similarity (%)	54.0	64.9	54.2	6.68	66.7		76.7	67.1	100.0	100.0	100.0	100.0	50.2	82.4
	Identity (%)	29.4	37.2	22.8	66.2	37.1		49.0	39.2	100.0	100 0	100.0	100.0	23.1	60.5
os (continued)	ans gene	lenD	berculosis	Iberculosis	(12 cycA	.12 ubiE		berculosis	rmophilus T	glutamicum E	glütamicum G	glutamicum	glutamicum	ilicalor	berculosis ab T
7able 1 (Homologous gene	Bacillus subtilis menD	Mycobacterium tuberculosis H37Rv Rv0556	Mycobacterium tuberculosis H37Rv pimB	Escherichia coli K12 cycA	Escherichia coli K12 ubiE		Mycobacterium tuberculosis H37Rv Rv0561c	Bacillus stearothermophilus ATCC 10149 hepT	Corynebacterium glutamicum ATCC 13032 secE	Corynebacterium glutamicum ATCC 13032 nusG	Corynebacterium glutamicum ATCC 13032 rpIK	Corynebacterium glutamicum ATCC 13032 rpIA	Streptomyces coelicolor SC5H4.02	Mycobacterium tuberculosis H37Rv RV2589 gabT
35	db Match	sp.MEND_BACSU	pir.G70548		sp:CYCA_ECOLI E	ECOLI			sp.HEP2_BACST	gp:AF130462_2	gp:AF130462_3	gp:AF130462_4	gp:AF130462_5	gp.SC5H4_2	Sp.GABT_MYCTU
40			pir.G7	pir:H70548		sp:UBIE_		pir.D70549			gp:AF	gp:AF	gp.AF		
	ORF (bp)	1629	441	1239	1359	069	699	1272	1050	333	954	435	708	1512	1344
45	Terminal (nt)	488656	489100	490447	491938	492655	493583	492645	495110	497142	498327	499032	499869	499925	502920
50	Initial (nt)	487028	488660	489209	490580	491966	492915	493916	494061	496810	497374	498598	499162	501436	501577
	SEQ NO (a.a.)		4024	4025	4026	4027	4028	4029	4030	4031	4032	4033	4034	4035	4036
55	SEQ NO.	523	524	525	526	527	528	529	530	531	532	533	534	535	536

5	Function	succinate-semialdehyde dehydrogenase (NAD(P)+)	novel two-component regulatory system	tyrosine-specific transport protein	cation-transporting ATPase G	hypothetical protein or dehydrogenase		50S ribosomal protein L10	50S ribosomal protein L7/L12		hypothetical membrane protein	DNA-directed RNA polymerase beta chain	DNA-directed RNA polymerase beta chain	hypothetical protein		DNA-binding protein	hypothetical protein
15	Matched length (a.a.)	461	150	447	615	468		170	130		283	1180	1332	169		232	215
20	Similarity (%)	71.8	38.0	49.9	64.4	66.2		84.7	89.2		55.5	90.4	68.7	52.0		63.8	57.7
	Identify (%)	40.8	32.0	25.5	33.2	40.2		52.9	72.3		25.8	75.4	72.9	39.0		39.2	29.3
25 Table 1 (continued)	s gene	12 gabD	ense carR	12 0341#7	erculosis tpG	ans P49		sus N2-3-11	erculosis L		erculosis	erculosis 58	erculosis oC	erculosis		color A3(2)	erculosis
	Homologous gene	Escherichia coli K12	Azospirillum brasilense carR	Escherichia coli K12 o341#7 tyrP	Mycobacterium tuberculosis H37Rv RV1992C ctpG	Streptomyces lividans P49		Streptomyces griseus N2-3-11 rplJ	Mycobacterium tuberculosis H37Rv RV0652 rplL		Mycobacterium tuberculosis H37Rv Rv0227c	Mycobacterium tuberculosis H37Rv RV0667 rpoB	Mycobacterium tuberculosis H37Rv RV0668 rpoC	Mycobacterium tuberculosis H37Rv Jv0166c		Streptomyces coelicolor A3(2) SCJ9A. 15c	Mycobacterium tuberculosis H37Rv RV2908C
<i>35</i>	db Match	sp:GABD_ECOLI	GP.ABCARRA_2	sp:TYRP_ECOL!	sp:CTPG_MYCTU	sp.P49_STRLI		sp.RL10_STRGR	sp.RL7_MYCTU		pir.A70962	sp:RPOB_MYCTU	sp:RPOC_MYCTU	GP:AF121004_1		gp:SCJ9A_15	sp:YT08_MYCTU
	ORF (bp)	1359 8	468 (1191	1950 8	1413 8	603	513	384 8	138	972 F	3495 s	s 666£	282	180	082	798 s
45	Terminal (nt)	504283	503272	505569	507647	509081	509696	510510	510974	510989	512507	516407	520492	518696	520850	521644	521679
50	Initial (nt)	502925	503739	504379	809909	507669	509094	509998	510591	511126	511536	512913	516494	519277	520671	520865	522476
	SEQ NO (a.a.)	4037	4038	4039	4040	4041	4042	4043	4044	4045	4046	4047	4048	4049	4050	4051	4052
55	SEQ NO (DNA)	537	538	539	540	541	542	543	544	545	546	547	548	549	550	551	552

	r																						
5			S12	S7							sport ATP-	sport protein	sport protein	enzyme A	S10	13		L4	L23		1.2	S19	
10		Function	30S ribosomal protein S12	30S ribosomal protein	elongation factor G			lipoprotein			ferric enterobactin transport ATP-binding protein	ferric enterobactin transport protein	ferric enterobactin transport protein	butyryl-CoA:acetate coenzyme A transferase	30S ribosomal protein S10	50S ribosomal protein L3		50S ribosomal protein L4	50S ribosomal protein L23		50S ribosomal protein L2	30S ribosomal protein S19	
15		Matched length (a.a.)	121	154	709			44			258	329	335	145	101	212		212	96		280	92	
20		Similarity (%)	97.5	94.8	88.9			78.0			83.7	77.8	90.6	79.3	0.66	9.68		90.1	9.06		92.9	98.9	
		Identity (%)	90.9	81.8	71.7			56.0			56.2	45.6	48.1	56.6	84.2	66.5		71.2	74.0		80.7	87.0	
25	ntinued)	gene	cellulare	gmatis	usA			lis			fepC	fepG	fepD	ium im actA	vrcc	BCG rplC		BCG rplD	BCG rplW		BCG rplB	culosis	
<i>30</i>	Table 1 (continued)	Homologous gene	Mycobacterium intracellulare rpsL	Mycobacterium smegmatis LR222 rpsG	Micrococcus luteus fusA			Chlamydia trachomatis			Escherichia coli K12 fepC	Escherichia coli K12 fepG	Escherichia coli K12 fepD	Thermoanaerobacterium thermosaccharolyticum actA	Planobispora rosea ATCC 53733 rpsJ	Mycobacterium bovis BCG rplC		Mycobacterium bovis BCG rplD	Mycobacterium bovis BCG rplW		Mycobacterium bovis BCG rp18	Mycobacterium tuberculosis H37Rv Rv0705 rpsS	
40		db Match	sp:RS12_MYCIT	sp.RS7_MYCSM	sp.EFG_MICLU			GSP: Y37841			sp:FEPC_ECOLI	sp:FEPG_ECOLI	sp.FEPD_ECOU	gp:CTACTAGEN_1	sp:RS10_PLARO	sp:RL3_MYCBO		sp:RL4_MYCBO	sp:RL23_MYCBO		sp:RL2_MYCLE	sp.RS19_MYCTU	
		ORF (bp)	366	465	2115	2160	144	228	153	729	792	1035	1035	516	303	654	687	654	303	327	840	276	285
45		Terminal (nt)	523059	523533	526010	523911	526013	526894	527607	528768	528779	529592	530748	532523	533401	534090	533401	534743	535048	534746	535915	536210	535899
50		Initial (nt)	522694	523069	523896	526070	526156	527121	527759	528040	529570	530626	531782	532008	533099	533437	534087	534090	534746	535072	535076	535935	536183
		SEQ NO (a.a)	4053	4054	4055	4056	4057	4058	4059	4060	4061	4062	4063	4064	4065	4066	4067	4068	4069	4070	4071	4072	4073
55		O O NO	. 253	524	555	956	22	58	59	90	91	62	63	64	65	99	29	68	69		7.1	72	73

																				_			
5	Function	50S ribosomal protein L22	30S ribosomal protein S3	50S ribosomal protein L16	50S ribosomal protein L29	30S ribosomal protein S17				50S ribosomal protein L14	50S ribosomal protein L24	50S ribosomal protein L5		2,5-diketo-D-gluconic acid reductase		formate dehydrogenase chain D	molybdopterin-guanine dinucleotide biosynthesis protein	formate dehydrogenase H or alpha chain			ABC transporter ATP-binding protein		
15	Matched length (a.a)	109	239	137	29	82				122	105	183		260		298	94	756			624 /		
20	Similarity (%)	91.7	91.2	88.3	88.1	89.0				95.1	91.4	92.3		74.2		2.69	68.1	53.4			52.6		
	Identity (%)	74.3	77.4	69.3	65.7	69.5				83.6	76.2	73.6		52.3		28.9	37.2	24.3			26.9		
30 Figure 1	s gene	erculosis V	vis BCG rpsC	vis BCG rpIP	vis BCG rpmC	vis BCG rpsQ				erculosis V	erculosis X	rplE		p.		enes fdhD	color A3(2)	щ			erculosis ppD		
·	Homologous gene	Mycobacterium tuberculosis H37Rv Rv0706 rplV	Mycobacterium bovis BCG rpsC	Mycobacterium bovis BCG rplP	Mycobacterium bovis BCG rpmC	Mycobacterium bovis BCG rpsQ				Mycobacterium tuberculosis H37Rv Rv0714 rplN	Mycobacterium tuberculosis H37Rv Rv0715 rplX	Micrococcus luteus rplE		Corynebacterium sp.		Wolinella succinogenes fdhD	Streptomyces coelicolor A3(2) SCGD3.29c	Escherichia coli fdfF			Mycobacterium tuberculosis H37Rv Rv1281c oppD		
40	db Match	Sp.RL22_MYCTU	Sp.RS3_MYCBO	Sp.RL16_MYCBO N	Sp:RL29_MYCBO N	Sp.RS17_MYCBO				sp:RL14_MYCTU	sp:RL24_MYCTU	sp:RL5_MICLU N		sp:2DKG_CORSP C		Sp:FDHD_WOLSU V	gp:SCGD3_29	Sp.FDHF_ECOLI E			sp:YC81_MYCTU N		
	ORF (bp)	360	744	414	228	276	294	318	969	366	312 8	573 s	1032	807 s	492	915 8	336 g	2133 s	756	804	1662 s	1146	1074
45	Terminal (nt)	536576	537322	537741	537971	538252	537974	538381	538718	540106	540423	540998	542079	542090	542921	543415	544335	544757	548084	548187	548990	550699	551854
50	Initial (nt)	536217	536579	537328	537744	537977	538267	538698	539413		540112	540426	541048	542896	543412	544329	544670	546889	547329	548990	550651	551844	552927
	SEO NO.	4074	4075	4076	4077	4078	4079	4080	4081	4082	4083	4084	4085	4086	4087	4088	4089	4090	4091	4092	4093	4094	4095
55	SEQ NO. (DNA)	574	575	576	577	578	579	280	581	582	583	584	585	586	287	588	589	590	591	592	593	594	595

	_			$\overline{}$	$\overline{}$			$\overline{}$		$\neg \neg$											1			
5		Function	hypothetical protein	hypothetical protein	30S ribosomal protein S8	50S ribosomal protein L6	50S ribosomal protein L18	30S ribosomal protein S5	50S ribosomal protein L30	50S ribosomal protein L15		methylmalonic acid semialdehyde dehydrogenase		novel two-component regulatory system	aldehyde dehydrogenase or betaine aldehyde dehydrogenase			reductase	2Fe2S ferredoxin	p-cumic alcohol dehydrogenase	hypothetical protein	phosphoenolpyruvate synthetase	phosphoenolpyruvate synthetase	cytochrome P450
15		Matched length (a a.)	405	150	132	179	110	171	55	143		128		125	487			409	107	257	20	629	378	422
20		Similarity (%)	50.4	66.7	57.7	87.7	90.9	88.3	76.4	87.4		68.8		52.0	71.5			71.6	66.4	70.8	26.0	45.0	66.7	65.2
		Identity (%)	24.7	42.7	75.8	59.2	67.3	8.79	54.6	66.4		46.9		47.0	41.7			41.1	47.7	35.8	50.0	22.9	38.6	34.8
25	ununea)	gene	dus AF1398	urans			rpIR	rpsE	rpmJ	rplO		color msdA		nse carR	chrous			redA2	capsulatus fdxE	la cymB	(1 APE0029	s Vc1 DSM	s Vc1 DSM	ropolis thcB
30 S	rable i (confined)	Homologous gene	Archaeoglobus fulgidus AF1398	Deinococcus radiodurans DR0763	Micrococcus luteus	Micrococcus luteus	Micrococcus luteus rpIR	Micrococcus luteus rpsE	Escherichia coli K12 rpmJ	Micrococcus luteus rplO		Streptomyces coelicolor msdA		Azospirillum brasilense carR	Rhodococcus rhodochrous plasmid pRTL1 orf5			Sphingomonas sp. redA2	Rhodobacter capsu	Pseudomonas putida cymB	Aeropyrum pernix K1 APE0029	Pyrococcus furiosus Vc1 DSM 3638 ppsA	Pyrococcus furiosus Vc1 DSM 3638 ppsA	Rhodococcus erythropolis thcB
35		db Match		gp:AE001931_13			sp:RL18_MICLU		Sp.RL30_ECOLI	sp:RL15_MICLU		prf.2204281A		GP.ABCARRA_2	prf.2516399E			prf.2411257B	prf:2313248B	gp:PPU24215_2	72754			34333G
40			pir.E69424		pir: S29885	pir.S29886	+	1	+-	+		1									PIR:H72754	pir.JC4176	pir.JC4176	290 prf.2104333G
		ORF (bp)	1182	468	396	534	405	633	183	444	729	321	363	456	1491	735	306	1266	318	744	213	1740	1080	-
45		Terminal (nt)	552948	554452	555726	556282	556690	557366	557555	558008	556860	558197	558607	560260	559144	560634	562937	561368	562646	562993	564083	563732	565680	266799
50		Initial (nt)	554129	554919	555331	1	1	1	557373		557588		558969		560634	561368	562632	562633	562963	563736	563871	565471	566759	568088
		SEQ NO.	4096	4097	4098	4099	4100	4101	4102	4103	4104	4105	4106	4107	4108	4109	4110	4111	4112	4113	4114	4115	4116	4117
		SEQ NO.	596	597	598	599	009	601	602	603	604	!	909	607	809	609	610	611	612	613	614	615	. 616	617

66

5		Function	transcriptional repressor	adenylate kinase		methionine aminopeptidase		translation initiation factor IF-1	30S ribosomal protein S13	30S ribosomal protein S11	30S ribosomal protein S4	RNA polymerase alpha subunit		50S ribosomal protein L17	pseudouridylate synthase A	hypothetical membrane protein			hypothetical protein	cell elongation protein	cyclopropane-fatty-acyl-phospholipid synthase	hypothetical membrane protein
15	Matched		256	184		253		72	122	134	132	311		122	265	786			485	505	423	100
20		Similarity (%)	66.0	81.0		74.7		86.0	91.0	93.3	93.9	77.8		77.1	61.1	51.2			53.8	50.9	56.0	59.0
	1	(%)	28.5	48.9		43.1		77.0	66.4	81.3	82.6	51.1		51.6	37.0	24.8			27.4	22.8	30.7	28.0
30 1 offer 1		Homologous gene	Erwinia carotovora carotovora kdgR	Micrococcus luteus adk		Bacillus subtilis 168 map		Bacillus subtilis infA	Thermus thermophilus HB8 rps13	Streptomyces coelicolor A3(2) SC6G4.06. rpsK	Mycobacterium tuberculosis H37Rv RV3458C rpsD	Bacillus subtilis 168 rpoA		Escherichia coli K12 rpIQ	Escherichia coli K12 truA	Mycobacterium tuberculosis H37Rv Rv3779			Mycobacterium tuberculosis H37Rv Rv0283	Arabidopsis thaliana CV DIM	Escherichia coli K12 cfa	Streptomyces coelicolor A3(2) SCL 2 30c
40		db Match	prf.2512309A	Sp:KAD_MICLU		sp:AMPM_BACSU		pir.F69644	pri:2505353B	sp:RS11_STRCO	prf.2211287F	sp:RPOA_BACSU		sp:RL17_ECOLI	sp:TRUA_ECOLI	pir.G70695			pir.A70836	sp:DIM_ARATH	sp:CFA_ECOU	gp:SCL2_30
	200	(gd)	804	543	612	792	828	216	366	402	603	1014	156	489	867	2397	456	303	1257	1545	1353	426
45	Logistics	(nt)	568272	571316	570756	572267	573176	573622	574181	574588	575217	576351	575211	576898	577923	580429	580436	580919	582562	584228	585620	586248
50	i i i	(nt)	569075	570774	571367	571476	572349	573407	573816	574187	574615	575338	575366	576410	577057	578033	580891	581221	581406	582684	584268	585823
	SEO	NO. (a a.)	4118	4119	4120	4121	4122	4123	4124	4125	4126	4127	4128	4129	4130	4131	4132	4133	4134	4135	4136	4137
55	SEQ	NO. (DNA)	618	619	620	621	622	623	624	625	929	627	628	629	630	631	632	633	634	635	636	637

																	_			
5		uo	proteinase	ane protein	ane protein					en target ESAT-	n L13	n S9	e mutase							
10		Function	high-alkaline serine proteinase	hypothetical membrane protein	hypothetical membrane protein				hypothetical protein	early secretory antigen target ESAT-6 protein	50S ribosomal protein L13	30S ribosomal protein S9	phosphoglucosamine mutase		hypothetical protein			hypothetical protein	alanine racemase	hypothetical protein
15		Matched length (a.a.)	273	516	1260				103	80	145	181	450		318			259	368	154
20		Similarity (%)	58.0	50.6	38.4				69.9	81.3	82 1	72.4	76.4		45.6			72.2	68.5	78.6
		Identity (%)	31.3	24.0	65.0				31.1	36.3	58.6	49.2	48.9		29.3			44.0	41.6	48.7
25	ontinued)	e dene	S	color A3(2)	erculosis				erculosis	erculosis	color A3(2)	color A3(2)	reus		CC6803			ae.	erculosis I	erculosis
35	Table 1 (continued)	Homologous gene	Bacillus alcalophilus	Streptomyces coelicolor A3(2) SC3C3.21	Mycobacterium tuberculosis H37Rv Rv3447c				Mycobacterium tuberculosis H37Rv Rv3445c	Mycobacterium tuberculosis	Streptomyces coelicolor A3(2) SC6G4.12. rpIM	Streptomyces coelicolor A3(2) SC6G4 13. rpsl	Staphylococcus aureus femR315		Synechocystis sp. PCC6803 slr1753			Mycobacterium leprae B229_F1_20	Mycobacterium tuberculosis H37Rv RV3423C alr	Mycobacterium tuberculosis H37Rv Rv3422c
40		db Match	sp:ELYA_BACAO E	pir.T10930	pir:E70977				pir.C70977	prf:2111376A	sp:RL13_STRCO	sp.RS9_STRCO	prf:2320260A fe		pir.S75138			pir.S73000	Sp.ALR_MYCTU N	sp:Y097_MYCTU N
		ORF (bp)	1359	1371	3567	822	663	906	324	288	441	546	1341	303	1509	573	234	855	1083	495
45		Terminal (nt)	586399	587645	592862	589590	589898	593761	594258	594580	595379	595927	597449	598194	599702	598778	599932	600022	602053	602574
50		Initial (nt)	587757	589015	589296	590411	590560	592862	593935	594293	594939	595382	596109	597892	598194	599350	599699	600876	600971	602080
		SEQ NO. (a.a.)	4138	4139	4140	4141	4142	4143	4144	4145	4146	4147	4148	4149	4150	4151	4152	4153	4154	4155
55		SEQ NO.	638	639	640	641	642	643	644	645	646	647	648	649	650	651	652	653	654	655

																,				
5		Ę.	ne protein	6		nine N-	ndopeptidase				oES	oEL.				na factor				
10		Function	hypothetical membrane protein	proline iminopeptidase	hypothetical protein	ribosomal-protein-alanine N- acetytransferase	O-sialoglycoprotein endopeptidase	hypothetical protein			heat shock protein groES	heat shock protein groEL	hypothetical protein	hypothetical protein	regulatory protein	RNA polymerase sigma factor		hypothetical protein	IMP dehydrogenase	hypothetical protein
15		Matched length (a.a.)	550	411	207	132	319	571			100	537	76	138	94	174		116	504	146
20		Identity Similarity (%)	66.2	77.6	75.4	59.9	75.2	59.4			94.0	85.1	56.0	45.0	88.3	81.6		69.8	93.9	53.0
		Identity (%)	289	51.3	52.2	30.3	46.1	38.4			76.0	63.3	50.0	34.0	64.9	55.2		41.4	80.8	39.0
25	Table 1 (continued)	eueb snc	(12 yidE	n shermanii pip	uberculosis	C12 riml	nolytica Jcp	uberculosis			uberculosis mopB	aprae oE1	sperculosis	ıberculosis	megmatis	iberculosis sigD		prae	TCC 6872	oshii PH0308
	Table 1	Homologous gene	Escherichia coli K12 yidE	Propionibacterium shermanii pip	Mycobacterium tuberculosis H37Rv Rv3421c	Escherichia coli K12 riml	Pasteurella haemolytica SEROTYPE A1 gcp	Mycobacterium tuberculosis H37Rv Rv3433c			Mycobacterium tuberculosis H37Rv RV3418C mopB	Mycobacterium leprae B229_C3_248 groE1	Mycobacterium tuberculosis	Mycobacterium tuberculosis	Mycobacterium smegmatis whi83	Mycobacterium tuberculosis H37Rv Rv3414c sigD		Mycobacterium leprae B1620_F3_131	Corynebacterium ammoniagenes ATCC 6872 guaB	Pyrococcus horikoshii PH0308
<i>35</i>		db Match	sp:YIDE_ECOLI	gp.PSJ00161_1	sp:Y098_MYCTU	sp:RIMI_ECOLI	sp.GCP_PASHA	sp:Y115_MYCTU			Sp:CH10_MYCTU	Sp.CH61_MYCLE	GP:MSGTCWPA_1 N	GP:MSGTCWPA_3 N	gp:AF073300_1 v	sp.Y09F_MYCTU		SP:Y09H_MYCLE	gp:AB003154_1 a	PIR:F71456 P
		ORF (bp)	1599 sp.	1239 gp.	675 sp:`	507 sp:f	1032 sp:(1722 sp.\	429	453	297 sp:(1614 sp.(255 GP:	1158 GP:	297 gp:4	564 sp.)	1026	378 sp:Y	1518 gp:A	627 PIR.
45		Terminal (nt)	604409	605708 1	606392	606898	607936 1	609679 1	610175 4	609816 4	610644	612272 1	610946 2	611109	612418 2	613719 5	614747 10	614803 3	616853 18	615605 6
50		Initial (nt)	602811	604470	605718	606392	606909	607958	609747	610268	610348	610659	611200	612266	612714	613156	613722	615180	615336	616231
		SEQ NO. (a a.)	4156	4157	4158	4159	4160	4161	4162	4163	4164	4165	4166	4167	4168	4169	4170	4171	4172	4173
55		SEQ NO. (DNA)	656	657	658	629	099	661	299	663	664	665	999	299	999	699	029	671	672	673

EP 1 108 790 A2

													,				,			
5	Function	IMP dehydrogenase	hypothetical membrane protein	glutamate synthetase positive regulator	GMP synthetase				hypothetical membrane protein	two-component system sensor histidine kinase	transcriptional regulator or extracellular proteinase response regulator				hypothetical protein	hypothetical protein		hypothetical protein	hypothetical membrane protein	
15	Matched length (a.a.)	381	274	262	517				513	411	218				201	563		275	288	
20	Similarity (%)	1.38	5.79	58.4	92.8				39.6	48.7	65.1				64.2	64.1		62.9	58.3	
	Identity (%)	70.9	38.0	29.0	81.6				20.5	26.8	33.5				30.9	37.5		33.8	27.8	
55 Continued)	us gene	TCC 6872	12 ybiF	Ç	JaA				licolor A3(2)	licolor A3(2)	i8 degU				berculosis	berculosis		licolor A3(2)	durans	
Table 1	Homologous gene	Corynebacterium ammoniagenes ATCC 6872	Escherichia coli K12 ybiF	Bacillus subtilis gltC	Corynebacterium ammoniagenes guaA				Streptomyces coelicolor A3(2)	Streptomyces coelicolor A3(2) SC6E10.15c	Bacillus subtilis 168 degU				Mycobacterium tuberculosis H37Rv Rv3395c	Mycobacterium tuberculosis H37Rv Rv3394c		Streptomyces coelicolor A3(2) SC5B8.20c	Deinococcus radiodurans DR0809	
35	db Match	gp:AB003154_2	sp:YBIF_ECOLI	prf.1516239A	Sp.GUAA_CORAM				gp:SCD63_22 s	gp.SC6E10_15	sp.DEGU_BACSU_E							gp:SC5B8_20	gp:AE001935_7 C	
40		1122 gp:AE	-	6	1569 sp.Gl	6	-	6			0	4	6	3	5 pir B70975	90 pir.A70975	0			0
	ORF (bp)		921	6		99	44	18	1176	1140	39	32	48	96	82	1590	99	861	861	390
45	Terminal (nt)	618094	618093	619994	621572	620264	622157	622457	622460	624939	625674	626000	626070	626577	628551	630140	630151	631809	631824	632690
50	Initial (nt)	616973	619013	619086	620004	620926	621717	622269	623635	623800	624985	625677	626558	627539	627727	628551	630810	630949	632684	633079
	SEQ NO.	4174	4175	4176	4177	4178	4179	4180	4181	4182	4183	4184	4185	4186	4187	4188	4189	4190	4191	4192
55	SEQ NO. (DNA)	674	675	929	677	678	679	680	681	682	683	684	685	989	687	688	689	069	691	692

EP 1 108 790 A2

transmembrane transport protein hypothetical membrane protein geranylgeranyl pyrophosphate (GGPP) synthase transcriptional regulator (MarR family) 5 outer membrane lipoprotein Function phytoene desaturase glycosyl transferase hypothetical protein phytoene synthase DNA polymerase III hypothetical protein **DNA** photolyase ABC transporter ABC transporter ABC transporter ABC transporter 10 lipoprotein Matched length 15 (a.a.) 524 288 722 188 145 462 205 346 1101 223 206 95 367 268 159 497 897 Similarity 67.4 71.2 63.8 76.2 75.6 74.2 63.2 53.7 75.2 75.4 67.2 62.3 % 62.1 68. 72 54 57 20 Identity (%) 36.8 42.0 50.4 48.6 48.7 40.0 25.9 35.4 24.3 43.6 30.2 41.5 33.1 6 28.7 32 38 Citrobacter freundii blc OS60 blc 25 Streptomyces coelicolor A3(2) SCF43A.29c Streptomyces coelicolor A3(2) SCE25.30 Streptomyces coelicolor A3(2) SCE126.11 Table 1 (continued) Brevibacterium linens ATCC 9175 crtl Brevibacterium linens ATCC 9175 crtB Brevibacterium linens ATCC Escherichia coli TAP90 abc Brevibacterium linens crtE Homologous gene Streptococcus suis cps1K Mycobacterium mar.num Bacillus subtilis 168 yvrO Thermus aquaticus dnaE abcD Haemophilus influenzae SEROTYPE B hlpA Brevibacterium linens Brevibacterium linens Helicobacter pylori 30 9175 cpd1 35 gp:AF139916_14 gp:AF139916_11 gp:AF139916_3 gp:AF139916_2 sp:HLPA_HAEIN gp:MMU92075_ gp.AF139916_1 gp.AF139916_5 gp:AF155804_7 gp:SCF43A_29 Sp.BLC_CITFR Sp. ABC_ECOLI db Match gp:SCE126_11 gp.SCE25_30 prf:2420410P prf:2320284D prf.2517386A 40 1425 ORF (bp) 396 1644 1146 2190 1404 2415 1080 3012 912 585 648 753 717 999 846 897 153 447 45 Terminal 633079 640208 648315 648440 649114 633532 638317 640232 642556 647593 635178 644778 645176 636089 642557 650187 650392 654612 655122 <u>E</u> 635175 636089 638278 639624 640879 643959 644026 647590 648309 649105 649342 650193 651288 633474 639462 641133 648467 654676 651601 50 SEQ NO. 4193 4194 4195 4198 4199 1200 4201 4202 4203 4204 4205 4206 4196 4197 4210 4207 4208 4211 SEQ NO (DNA) 705 693 669 704 907 710 695 969 700 702 703 694 697 698 701 707 708 711 55

5	Function	hypothetical membrane protein		transcriptional repressor	hypothetical protein		transcriptional regulator (Sir2 family)	hypothetical protein	iron-regulated lipoprotein precursor	rRNA methylase	methylenetetrahydrofolate dehydrogenase	hypothetical membrane protein	hypothetical protein		homoserine O-acetyltransferase	O-acetylhomoserine sulfhydrylase	carbon starvation protein		hypothetical protein	
15	Matched length (aa)	468		203	264		245 t	157	357	151	278	80	489		379	429	069		20 1	
20	Similarity (%)	56.0		76.4	61.7		71.8	78.3	62.2	86.1	87.4	76.3	63.2		99.5	76.2	78.4		0.99	
	identity (%)	26.1		50.3	34.9		42.5	45.2	31.1	62.9	70.9	31.3	34.0		99.5	49.7	53.9		40.0	
25 (panuituo) 1 alder	Homologous gene	Streptomyces coelicolor A3(2) SCE9.01		Mycobacterium tuberculosis H37Rv Rv2788 sirR	Streptomyces coelicolor A3(2) SCG8A,05c		Archaeoglobus fulgidus AF1676	Streptomyces coelicolor A3(2) SC5H1.34	Corynebacterium diphtheriae irp1	Mycobacterium tuberculosis H37Rv Rv3366 spoU	Mycobacterium tuberculosis H37Rv Rv3356c folD	m leprae Sc	Streptomyces coelicolor A3(2) SC66T3.18c		Corynebacterium glutamicum metA	syeri metY	coli K12 cstA		oli K12 yjiX	
35	Ношо	Streptomyce: SCE9.01		Mycobacterium tube H37Rv Rv2788 sirR	Streptomyces SCG8A.05c		Archaeoglobu	Streptomyces SC5H1.34	Corynebacter irp1	Mycobacterium tuber H37Rv Rv3366 spoU	Mycobacteriu H37Rv Rv335	Mycobacterium leprae MLCB1779.16c	Streptomyces SC66T3.18c		Corynebacter metA	Leptospira meyeri metY	Escherichia c		Escherichia coli K12 yjiX	
40	db Match	gp:SCE9_1		pir.C70884	gp:SCG8A_5		pir:C69459	gp:SC5H1_34	gp:CDU02617_1	pir.E70971	pir.C70970	gp:MLCB1779_8	gp:SC66T3_18		gp:AF052652_1	prf:2317335A	sp:CSTA_ECOU		sp:YJ'X_ECOLI	
	ORF (bp)	1413 g	738	699	798 9	138	774 p	492 g	966	471 p	852 p	255 g	1380 g	963	1131 g	1311 p	2202	609	201 s	609
45	Terminal (nt)	656534	655097	657215	657205	658142	658928	659424	660538	660650	662017	662374	662382	664126	665183	666460	670465	669445	670672	671045
50	Initial (nt)	655122	655834	656547	658002	658005	659155	658933	659543	661120	661166	662120	663761	665088	666313	667770	668264	670053	670472	671653
	SEQ NO (a a.)	4212	4213	4214	4215	4216	4217	4218	4219	4220	4221	4222	4223	4224	4225	4226	4227	4228	4229	4230
55	SEQ NO (DNA)	712	713	714	715	716	717	718	719	720	721	722	723	724	725	726	727	728	729	730

5
10
15
20
25
30
35
40
45
50

EP 1 108 790 A2

5	
10	
15	
20	
25	
30	
35	
40	
45	
50	

	Function		ferrichrome ABC transporter	hemin permease	tryptophanyl-tRNA synthetase	hypothetical protein		penicillin-binding protein 6B precursor	hypothetical protein	hypothetical protein			uracil phosphoribosyltransferase	bacterial regulatory protein, lacl family	N-acyl-L-amino acid amidohydrolase or peptidase	phosphomannomutase	dihydrolipoamide dehydrogenase	pyruvate carboxylase	hypothetical protein	hypothetical protein
	Matched length (aa)		244	346	331	278		301	417	323			209	77	385	561	468	1140	263	127
	Similarity (%)		73.8	69.1	79.8	72.3		57.5	70.7	52.6			72.3	66.2	80.5	53.8	65.0	100.0	60.1	66.9
	identity (%)		45.1	38.7	54.4	37.1		30.9	34.1	29.4			46.4	41.6	51.4	22.1	31.6	100.0	26.2	30.7
Table 1 (continued)	Homologous gene		Corynebacterium diphtheriae hmuV	Yersinia enterocolitica hemU	Escherichia coli K12 trpS	Escherichia coli K12 yhjD		Salmonella typhimurium LT2 dacD	Mycobacterium tuberculosis H37Rv Rv3311	Streptomyces coelicolor A3(2) SC6G10.08c			Lactococcus lactis upp	Streptomyces coelicolor A3(2) SC1A2.11	Mycobacterium tuberculosis H37Rv Rv3305c amiA	Mycoplasma pirum BER manB	Halobacterium volcanii ATCC 29605 lpd	Corynebacterium glutamicum strain21253 pyc	Mycobacterium tuberculosis H37Rv Rv1324	Streptomyces coelicolor A3(2) SCF11.30
	db Match		gp:AF109162_3	pir.S54438	sp:SYW_ECOLI	sp:YHJD_ECOLI		sp:DACD_SALTY	pir.F73842	gp:SC6G10_8			sp:UPP_LACLA	gp:SC1A2_11	pir.H70841	sp:MANB_MYCPI	sp:DLDH_HALVO	prf.2415454A	sp.YD24_MYCTU	gp:SCF11_30
	ORF (bp)	975	780	1017	1035	1083	903	1137	1227	858	195	351	633	384	1182	1725	1407	3420	870	486
	Terminal (nt)	688916	689917	907069	692916	694110	695074	695077	696769	698065	992669	698922	699913	700381	703262	700384	704811	708630	709708	710278
	Initial (nt)	689890	969069	691722	691882	693028	694172	696213	697995	698922	699072	699272	699281	866669	702081	702108	703405	705211	708839	709793
	SEQ NO. (a.a.)	4249	4250	4251	4252	4253	4254	4255	4256	4257	4258	4259	4260	4261	4262	4263	4264	4265	4266	4267
	SEQ NO (DNA)	749	750	751	752	753	754	755	756	757	758	759	760	761	762	763	764	765	992	792

74

EP 1 108 790 A2

			_																
5	Function	hypothetical protein	thioredoxin reductase	PrpD protein for propionate catabolism	carboxy phosphoenolpyruvate mutase	hypothetical protein	citrate synthase		hypothetical protein			thiosulfate sulfurtransferase	hypothetical protein	hypothetical protein	hypothetical membrane protein	hypothetical protein	hypothetical protein	detergent sensitivity rescuer or carboxyl transferase	detergent sensitivity rescuer or carboxyl transferase
15	Matched length (a.a.)		305	521	278	96	383		456			225 11	352 h	133 h	718 h	192 h	63 h	537	543 d
20	Similarity (%)	69.0	59.3	49.5	74.5	47.0	78.9		72.6			100.0	79.8	76.7	63.4	66.2	69.8	100.0	100.0
	Identity (%)	44.6	24.6	24 0	42.5	39.0	54.6		408			100.0	61.1	51.1	35.1	31.8	33.3	8.66	93.6
30 Table 1 (Continuo)	Homologous gene	Bacillus subtilis 168 yciC	Bacillus subtilis IS59 trxB	Salmonella typhimurium LT2 prpD	Streptomyces hygroscopicus	Aeropyrum pernix K1 APE0223	Mycobacterium smegmatis ATCC 607 gltA		Mycobacterium tuberculosis H37Rv Rv1129c			Corynebacterium glutamicum ATCC 13032 thtR	Campylobacter jejuni Cj0069	Mycobacterium leprae MLCB4.27c	Mycobacterium tuberculosis H37Rv Rv1565c	Escherichia coli K12 yceF	Mycobacterium leprae B1308- C3-211	Corynebacterium glutamicum AJ11060 dtsR2	Corynebacterium glutamicum AJ11060 dtsR1
<i>35</i>	db Match	pir.B69760 B:	sp:TRXB_BACSU B	Sp:PRPD_SALTY Pr	prf. 1902224A St	PIR:E72779 At	sp.CISY_MYCSM A7		pir.B70539 M:			Sp:THTR_CORGL AT	gp:CJ11168X1_62 Ca	gp:MLCB4_16 M	M) pir.G70539 H3	Sp.YCEF_ECOLI ES	prf.2323363CF My	gp:AB018531_2 Co	pir.JC4991 Co
	ORF (bp)	1086	924	1494	888	378	1182	375	1323	246	1359	903	1065	414	2148	591	246	1611	1629
45	Terminal (nt)	710520	712647	714231	715145	714380	716283	716286	716687	718350	720016	720547	722841	722925	725559	725872	726470	726742	728696
50	Initial (nt)	711605	711724	712738	714258	714757	715102	716680	718009	718105	718658	721449	721777	723338	723412	726462	726715	728352	730324
	SEQ NO.	4268	4269	4270	4271	4272	4273	4274	4275	4276	4277	4278	4279	4280	4281	4282	4283	4284	4285
55	SEQ NO. (DNA)	768	692	770	771	772	773	774	775	776	777	778	779		781	782	783	784	785

															_			
5	e	iotin synthesis cetyl-CoA	ne protein	mino-4-				mino-4-			xygenase	1-5)	lase	ie protein				
10	Function	bifunctional protein (biotin synthesis repressor and biotin acetyl-CoA carboxylase ligase)	hypothetical membrane protein	5'-phosphoribosyl-5-amino-4- Imidasol carboxylase	K+-uptake protein			5'-phosphoribosyl-5-amino-4- imidasol carboxylase	hypothetical protein	hypothetical protein	nitrilotriacetate monooxygenase	transposase (ISA0963-5)	glucose 1-dehydrogenase	hypothetical membrane protein		hypothetical protein	hypothetical protein	
15	Matched length (a.a.)	293	165	394	628			147	152	255	426	303	256	96		175	142	
20	Similarity (%)	61.8	58.8	83.8	73.6			93.2	60.5	70.6	73.0	52.5	64.8	68.8		66.3	8.92	
	Identity (%)	28.7	23.0	69.0	41.1			85.7	36.2	42.8	43.2	23.4	31.3	29.2		28.6	35.9	
Table 1 (continued)	is gene	12 birA	oercutosis .	.cc 6872	12 kup			CC 6872	eliosum	icolor A3(2)	ıtzii ATCC	jidus	m IAM 1030	па MSB8		8 ywjB	icolor A3(2)	
30 Table 1	Homologous gene	Escherichia coli K12 birA	Mycobacterium tuberculosis H37Rv Rv3278c	Corynebacterium ammoniagenes ATCC 6872 purk	Escherichia coli K12 kup			Corynebacterium ammoniagenes ATCC 6872 purE	Actinosynnema pretiosum	Streptomyces caelicolor A3(2) SCF43A.36	Chelatobacter heintzii ATCC 29600 ntaA	Archaeoglobus fulgidus	Bacillus megaterium IAM 1030 gdhll	Thermotoga maritima MSB8 TM1408		Bacillus subtilís 168 ywjB	Streptomyces coelicolor A3(2) SCJ9A.21	
40	db Match	sp.BIRA_ECOLI	pir.G70979	sp:PURK_CORAM 8	Sp.KUP_ECOLI			sp.PUR6_CORAM	gp:APU33059_5	gp:SCF43A_36	sp:NTAA_CHEHE	pir.A69426	sp.DHG2_BACME	pir.A72258		sp: YWJB_BACSU E	gp:SCJ9A_21	
	ORF (bp)	864	486	1161	1872	615	357	495	453	792	1314	1500	789	369	342	267	420 (222
45	Terminal (nt)	731299	731797	733017	734943	733183	735340	735896	736351	737204	737216	738673	740228	741765	742195	741818	742828	742831
50	finitial (nt)	730436	731312	731857	733072	733797	734984	735402	735899	736413	738529	740172	741016	741397	741854	742384	742409	743052
	SEQ NO.	4286	4287	4288	4289	4290	4291	4292	4293	4294	4295	4296	4297	4298	4299	1300	4301	4302
55	SEQ NO.	786	787	788	789	790	791	792	793	794	795	796	797	798	799	800	801	802

EP 1 108 790 A2

5		Function	trehalose/maltose-binding protein	trehalose/maltose-binding protein		trehalose/maltose-binding protein		ABC transporter ATP-binding protein (ABC-type sugar transport protein) or cellobiose/maltose transport protein		RNA helicase			hypothetical protein	hypothetical protein	DNA helicase II					RNA helicase	hypothetical protein	RNA polymerase associated protein (ATP-dependent helicase)
15		hed th		<u> </u>			-							\vdash				-	<u> </u>	_		
		Matched length (a.a.)	27.1	306		417		332		1783			240	720	701					2033	869	873
20		Similarity (%)	75.3	70.3		62.4		73.9		49.9			59.2	62.5	41.1					45.8	53.2	48.6
		Identity (%)	42.4	37.3		30.9		57.2		25.1			31.7	30.0	20.7					22.4	24.4	23.1
25	ontinuea)	e dene	alis malG	alis malF		alis malE		ılı msiK		furans R1			erculosis	J99 jhp0462	2 uvrD					color	JRC-1 11130	hepA
30	lable I (continued)	Homologous gene	Thermococcus litoralis malG	Thermococcus litoralis malF		Thermococcus litoralis malE		Streptomyces reticuli msiK		Deinococcus radiodurans R1 DRB0135			Mycobacterium tuberculosis H37Rv Rv3268	Helicobacter pylori J99 jhp0462	Escherichia coli K12 uvrD					Streptomyces caelicolor SCH5, 13	Halobacterium sp. NRC-1 plasmid pNRC100 H1130	Escherichia coli K12 hepA
35			두	논		돈		<u> </u>		9 8			€£	포						Str	Ha	Esc
40		db Match	prf.2406355C	prf.2406355B		prf.2406355A		prf.2308356A		pir.B75633			pir.E70978	pir.C71929	sp:UVRD_ECOLI					pir.T36671	pir.T08313	sp.HEPA_ECOU
		ORF (bp)	834	1032	468	1272	423	966	369	4800	372	3699	633	2433	1563	357	393	396	825	6207	4596	2886
45		Terminal (nt)	743067	743900	745046	745622	748442	747031	748814	748886	757434	753697	757630	758364	760906	762853	763122	762582	767367	763237	769547	774150
50		Initial (nt)	743900	744931	745513	746893	748020	748026	748446	753685	757063	757395	758262	760796	762468	762497	762730	762977	768191	769443	774142	777035
		SEQ NO (a.a.)	4303	4304	4305	4306	4307	4308	4309	4310	4311	4312	4313	4314	4315	4316	4317	4318	4319	4320	4321	4322
55		SEQ NO (DNA)	803	804	805	806	807	808	809	810	811	812	813	814	815	816	817	818	819	820	821	822

		7									_	_				_	_	
5	tion	و	NAc- renol, a-3-L- ase	nate e				tase		iate isomerase			sive protein		ocysteine			
10	Function	hypothetical protein	dTDP-Rha.a-D-GlcNAc- diphosphoryl polyprenol, rhamnosyl transferase	mannose-1-phosphate guanylyltransferase	regulatory protein	hypothetical protein	hypothetical protein	phosphomannomutase	hypothetical protein	mannose-6-phosphate isomerase			pheromone-responsive protein		S-adenosyl-L-homocysteine hydrolase			thymidylate kinase
15	Matched length (a.a.)	527	289	353	94	139	136	460	327	420			180		476			209
20	Similarity (%)	71.4	6.77	6.99	81.9	74.8	71.3	66.3	56.3	66.2			57.8		83.0			56.0
	Identity (%)	45.5	56.4	29.8	73.4	48.9	51.5	38.0	31.2	36.9			35.6		29.0			25.8
25 (panuju	gene	rculosis	gmatis	cerevisiae	gmatis	rculosis	olor A3(2)	seo M40	rculosis	manA			is plasmid		lis WAA38			lus VC-16
% Table 1 (continued)	Homologous gene	Mycobacterium tuberculosis H37Rv Rv3267	Mycobacterium smegmatis mc2155 wbbL	Saccharomyces cen YDL055C MPG1	Mycobacterium smegmatis whmD	Mycobacterium tuberculosis H37Rv Rv3259	Streptomyces coelicolor A3(2) SCE34.11c	Salmonella montevideo M40 manB	Mycobacterium tuberculosis H37Rv Rv3256c	Escherichia coli K12 manA			Enterococcus faecalis plasmid pCF10 prgC		Trichomonas vaginalis WAA38			Archaeoglobus fulgidus VC-16 AF0061
35	-	121	_			ΣI		SALMO R	≥ I				шā					
40	db Match	pir.D70978	gp:AF187550_	sp:MPG1_YEAST	gp:AF164439_1	pir.B70847	gp:SCE34_11	sp:MANB	pir:870594	sp:MANA_ECOLI			prf: 1804279K		SP.SAHH_TRIVA			sp.KTHY_ARCFU
	ORF (bp)	1554	897	1044	408	456	390	1374	1005	1182	150	360	564	351	1422	708	720	609
45	Terminal (nt)	777158	779910	781171	781875	782162	783101	784557	785639	786824	787045	787983	787170	788546	790093	788719	789002	790704
50	Initial (nt)	778711	779014	780128	781468	782617	782712	783184	784635	785643	786896	787624	787733	788196	788672	789426	789721	790096
	SEQ NO.	4323	4324	4325	4326	4327	4328	4329	4330	4331	4332	4333	4334	4335	4336	4337	4338	4339
55	SEQ NO.	823	824	825	826	827	828	829	830	831	832	833	834	835	836	837	838	839

EP 1 108 790 A2

30S ribosomal protein or chloroplast precursor preprotein translocase SecA subunit 5-enolpyruvylshikimate 3-phosphate synthase 5-enolpyruvylshikimate 3-phosphate synthase two-component system response two-component system sensor histidine kinase RNA polymerase sigma factor 5 Function hypothetical protein hypothetical protein hypothetical protein hypothetical protein hypothetical protein 10 lipoprotein regulator Matched 15 length (a.a.) 213 224 484 595 845 203 170 322 180 380 188 461 23 Similarity 90'6 78.9 72.8 966 9 78.8 99.0 8 63.9 87.2 42.4 65 100 61. 82 20 Identity (%) 73.7 29.6 34.5 100.0 64.6 53.1 21.6 47.1 ď 38. 99 99 38. 61 25 Brevibacterlum flavum (Corynebacterium glutamicum) MJ-233 secA Table 1 (continued) Corynebacterium glutamicum ASO19 aroA Corynebacterium glutamicum Mycobacterium tuberculosis H37Rv Rv3246c mtrA Mycobacterium tuberculosis H37Rv Rv3245c mtrB Mycobacterium tuberculosis H37Rv Rv3244c lpqB Mycobacterium tuberculosis H37Rv Rv3242c Spinacia oleracea CV rps22 Mycobacterium tuberculosis H37Rv Rv3231c Mycobacterium tuberculosis H37Rv Rv3228 Mycobacterium tuberculosis H37Rv Rv3226c Mycobacterium tuberculosis sigH Mycobacterium tuberculosis H37Rv Rv0336 Homologous gene 30 35 sp.RR30_SPIOL GP:AF114233_1 gp:AF114233_1 db Match prf:2214304A prf:2214304B prf.2515333D gsp:R74093 pir.D70592 pir F70592 pir:D70590 pir.G70506 pir.A70591 pir:F70590 40 1704 2535 1497 ORF (bp) 678 1413 1110 588 684 156 663 480 618 672 504 987 123 45 Terminal 790738 793008 794711 796110 795292 791409 799691 795301 798784 800208 802565 803131 805025 800200 801190 803128 £ 794714 790732 791421 791512 795447 799020 793008 795448 799697 801194 802687 804240 804408 796250 Initial (nt) 802602 802649 50 SEQ. 4340 4342 4343 4344 4345 4346 4341 4347 4348 (3.3.) 4350 4353 4352 4355 4354 4351 848 849 840 841 842 843 845 846 847 855 850 852 851 853 854 55

EP 1 108 790 A2

	•										_			,					
5		ion				endent RNA				A helicase		A helicase							
10		Function	regulatory protein	hypothetical protein	hypothetical protein	DEAD box ATP-dependent RNA helicase		hypothetical protein	hypothetical protein	ATP-dependent DNA helicase		ATP-dependent DNA helicase		potassium channel	hypothetical protein	DNA helicase II		hypothetical protein	
15		Matched length (a.a.)	84	129	415	458		291	249	1155		1126		302	230	099		280	
20		Similarity (%)	96.4	65.1	62.2	64.0		69.8	62.9	48.9		65.7		64.2	58.3	58.8		49.3	
		Identity (%)	78.6	33.3	29.6	37.3		46.4	37.0	23.9		41.4		26.2	30.4	32.6		26.8	
30 F 9 14 15 15 15 15 15 15 15 15 15 15 15 15 15	(panimina)	ous gene	uberculosis /hiB1	ubercutosis	uberculosis	oniae CG43		rberculosis	ıberculosis	Jberculosis		uberculosis		annaschii JAL-	ıberculosis	(12 uvrD		iberculosis	
30 d	table	Homologous gene	Mycobacterium tuberculosis H37Rv Rv3219 whiB1	Mycobacterium tuberculosis H37Rv Rv3217c	Mycobacterium tuberculosis H37Rv Rv3212	Klebsiella pneumoniae CG43 deaD		Mycobacterium tuberculosis H37Rv Rv3207c	Mycobacterium tuberculosis H37Rv Rv3205c	Mycobacterium tuberculosis H37Rv Rv3201c		Mycobacterium tuberculosis H37Rv Rv3201c		Methanococcus jannaschii JAL- 1 MJ0138.1.	Mycobacterium tuberculosis H37Rv Rv3199c	Escherichia coli K12 uvrD		Mycobacterium tuberculosis 137Rv Rv3196	
<i>35</i>		db Match	pir.D70596	pir.B70596	pir.E70595	sp:DEAD_KLEPN d		Pir.H70594	N pir.F70594	pir.G70951		pir.G70951		sp:Y13B_METJA	pir.E70951	sp:UVRD_ECOLI E		pir.B70951	
		₹ D)	258 pir.C	420 pir.E	00 pir.	1272 sp:C	55	846 pir.h)48 pir.C	0	119 pir.C	132	105 sp: Y	14 pir.E	34 sp:U	-	6 pir.B	9
45		al ORF (bp)			12		0 225		3 759	30	6 780	32	13	10	7	20	9 591	8	1 603
		Terminal (nt)	805535	806737	806740	807946	809510	810394	811163	814217	811386	817422	814210	818523	815236	821287	822669	821290	823391
50		Initial (nt)	805792	806318	807939	809217	809286	809549	810405	811170	812165	814204	815541	817519	818523	819254	822079	822105	822789
		SEQ NO. (a.a.)	4356	4357	4358	4359	4360	4361	4362	4363	4364	4365	4366	4367	4368	4369	4370	4371	4372
55		SEQ NO. (DNA)	856	857	858	859	860	861	862	863	864	865	998	867	898	698	870	871	872

						_		,												_	
5		Function	hypothetical protein	hypothetical protein			hypothetical protein	regulatory protein	ethylene-inducible protein	hypothetical protein	hypothetical protein		alpha-lytic proteinase precursor		DNA-directed DNA polymerase	major secreted protein PS1 protein precursor					monophosphatase
15		Matched length (a.a.)	474	350			1023	463	301	81	201		408		208	363					255
20		Similarity (%)	76.4	74.9			73.5	57.7	89.0	53.0	73.6		44.4		51.4	51.5					74.9
		Identity (%)	428	43.4			47.2	34.3	67.4	49.0	40.8		26.7		25.0	27.0					51.8
<i>25</i>	(linued)	jene	culosis	culosis			culosis	ans	cifer er1	APE0247	ааЕ		nes ATCC		a LaBelle- mid	amicum n) ATCC					er pur3
	lable 1 (continued)	Homologous gene	Mycobacterium tuberculosis H37Rv Rv3195	Mycobacterium tuberculosis H37Rv Rv3194			Mycobacterium tuberculosis H37Rv Rv3193c	Deinococcus radiodurans DR0840	Hevea brasiliensis laticifer er1	Aeropyrum pernix K1 APE0247	Bacillus subtilis 168 yaaE		Lysobacter enzymogenes ATCC 29487		Neurospora intermedia LaBelle- 1b mitochondrion plasmid	Corynebacterium glutamicum (Brevibacterium flavum) ATCC 17965 csp1					Streptomyces alboniger pur3
35			2 +	21			<u> </u>	s.		₹.			2 -		2 =						Ó
40		db Match	pir.A70951	pir:H70950			pir.G70950	gp:AE001938_	sp:ER1_HEVBR	PIR.F72782	sp:YAAE_BACSU		pir.TRYXB4		pir.S03722	sp:CSP1_CORGL					рл.2207273Н
		ORF (bp)	1446	1050	675	522	2955	1359	951	345	900	363	1062	501	585	1581	429	510	222	309	780
45		Terminal (nt)	822680	825239	825242	825996	829570	829627	831971	831578	832570	832795	834633	835388	835837	838892	839353	840139	840210	840437	841517
50		Initial (nt)	824125	824190	825916	826517	826616	830985	831021	831922	831971	833157	833572	834888	835253	837312	838925	839630	840431	840745	842296
		SEQ NO (a.a.)	4373	4374	4375	4376	4377	4378	4379	4380	4381	4382	4383	4384	4385	4386	4387	4388	4389	4390	4391
55		SEQ NO (DNA)	873	874	875	876	877	878	879	880	881	882	883	884	885	886	887	888	889	890	891

EP 1 108 790 A2

5		-	sphatase	factor 2	ng protein			-binding					protein		e protein	ng protein	porter	porter	porter (ATP-
10		Function	myo-inositol monophosphatase	peptide chain release factor	cell division ATP-binding protein	hypothetical protein	cell division protein	small protein B (SSRA-binding protein)	hypothetical protein				vibriobactin utilization protein	Fe-regulated protein	hypothetical membrane protein	ferric anguibactin-binding protein precursor	ferrichrome ABC transporter (permease)	ferrichrome ABC transporter (permease)	ferrichrome ABC transporter (ATP-binding protein)
15		Matched length (a.a.)	243	359	226	72	301	145	116				272	319	191	325	313	312	250
20		Similarity (%)	59.3	88.6	91.2	54.0	74.8	75.9	73.3				52.9	58.3	71.2	61.5	80.8	76.0	82.0
		Identity (%)	33.7	68.0	70.4	43.0	40.5	43.5	44.0				26.8	29.5	36.1	27.7	39.3	35.6	48.4
25	Table 1 (continued)	us gene	opersicus	licolor A3(2)	perculosis sE	K1 APE2061	perculosis sX	12 smpВ	12 yeaO				3AWA 395	reus sirA	ırae	775 fatB	8 yclN	8 yclO	8 yclP
30	Table 1 (Homologous gene	Streptomyces flavopersicus spcA	Streptomyces coelicolor A3(2) prfB	Mycobacterium tuberculosis H37Rv Rv3102c ftsE	Aeropyrum pernix K1 APE2061	Mycobacterium tuberculosis H37Rv Rv3101c ftsX	Escherichia coli K12 smpB	Escherichia coli K12 yeaO				Vibrio cholerae OGAWA 395 viuB	Staphylococcus aureus sirA	Mycobacterium leprae MLCB1243.07	Vibrio anguillarum 775 fatB	Bacillus subtilis 168 yclN	Bacillus subtilis 168 yclO	Bacillus subtilis 168 yclP
35			रु छ	ਲਜ਼	žΞ	Ae	ŹΪ						<u>કું કું</u>	St		15	83	Ba	Ba
40		db Match	g_37:U70376_9	sp:RF2_STRCO	pir.E70919	PIR:G72510	pir.D70919	sp:SMPB_ECOLI	sp:YEAO_ECOLI				sp:VIUB_VIBCH	prf:2510361A	gp:MLCB1243_5	sp:FATB_VIBAN	pir B69763	pir.C69763	pir.D69763
		ORF (bp)	819	1104	687	264	900	492	351	283	300	405	825	918	588	1014	999	942	753
45		Terminal (nt)	842306	844360	845181	844842	846097	846628	846982	846269	848026	847718	848499	849326	850412	852364	853616	854724	855476
50		Initial (nt)	843124	843257	844495	845105	845198	846137	846632	046805	847727	848122	849323	850243	850999	851351	852618	853783	854724
		SEQ NO.	4392	4393	4394	4395	4396	4397	4398	4399	4400	4401	4402	4403	4404	4405	4406	4407	4408
55		SEQ NO (DNA)	892	893	894	895	896	897	898	668	006	901	905	903	904	905	906	206	808

		,							1	,	·			,	,			
			nine						factor			ase.						
Function	hypothetical protein	hypothetical protein	kynurenine aminotransferase/glutar transaminase K		DNA repair helicase	hypothetical protein	hypothetical protein		resuscitation-promoting	cold shock protein	hypothetical protein	glutamine cyclotransfera			permease		rRNA(adenosine-2'-0-)- methyltransferase	
Matched length (a.a.)	48	84	442		613	764	25		198	61	159	273			477		319	
Similarity (%)	72.0	0.99	64.9		62.3	65.2	62.0		64.7	75.4	58.5	87.8			79.3		51.7	
Identity (%)	0.99	61.0	33.5		30.7	36.1	44.0		39.4	42.6	28.3	41.8			43.6		27.9	
odons gene	nidarum Nigg	eumoniae	icus (Rat)		ss cerevisiae IC RAD25	n tuberculosis 2c	n tuberculosis 3		iteus rpf	ictis cspB	n leprae	adiodurans			coelicolor A3(2)		azureus tsnR	
Homole	Chlamydia mu TC0129	Chlamydia pne	Rattus norvegi		Saccharomyce S288C YIL143	Mycobacteriun H37Rv Rv0862	Mycobacterium H37Rv Rv0863		Micrococcus lu	Lactococcus la	Mycobacterium MLCB57.27c	Deinococcus ra DR0112			Streptomyces SC6C5.09		Streptonyces	
db Match	PIR:F81737	GSP: Y35814	pir:S66270		sp:RA25_YEAST	pir.F70815	pir G70815		prf.2420502A	prf.2320271A	gp:MLCB57_11	gp:AE001874_1			6_35053qg		Sp.TSNR_STRAZ	
ORF (bp)	147	273	1209	639	1671	2199	219	843	265	381	525	774	669	138	1473	912	828	876
Terminal (nt)	860078	860473	862752	862753	863396	865119	867571	868630	867803	869318	869379	869918	870721	871660	873210	872016	874040	874069
Initial (nt)	860224	860745	861544	863391	865066	867317	867353	867788	868399	868938	869903	870691	871419	871523	871738	872927	873213	874944
SEO NO.	4409	4410	4411	4412	4413	4414	4415	4416	4417	4418	4419	4420	4421	4422	4423	4424	4425	4426
SEQ NO. (DNA)	606	910	911	912	913	914	915	916	917	918	919	920	921	922	923	924	926	926
	SEQ Initial Terminal ORF db Match Homologous gene Identity Similarity Matched (%) (nt) (hp) (bp) (bp) (a.a.)	SEQ NO. (nt) Initial (nt) Terminal (bp) ORF (bp) db Match Homologous gene (%) Identity (%) Similarity (%) Matched (%) (a a.) (nt) (nt) (pp) (pp)	SEQ NO. (nt) Initial (nt) Terminal (nt) db Match Homologous gene (%) Identity (%) Similarity (%) Matched (%) 4409 860224 860078 147 PIR:F81737 Chlamydia muridarum Nigg 66.0 72.0 48 hypothetical p 4410 860745 860473 273 GSP:Y35814 Chlamydia pneumoniae 61.0 66.0 84 hypothetical p	SEQ NO. (nt) Initial (nt) Terminal (nt) QRF db Match Homologous gene (%) Identity (%) Similarity (%) Matched (%)	SEQ NO. (nt) (nt) (bp) db Match Homologous gene Identity (%) Similarity (%) Matched (%) NO. (a.a.) (nt) (nt) (bp) db Match Homologous gene (%)	SEQ NO. (nt) Initial (nt) Terminal (bp) Gb Match (bp) Homologous gene (%) Identity (%) Similarity (%) Matched (%) 4409 860224 860078 147 PIR:F81737 Chlamydia muridarum Nigg 66.0 72.0 48 4410 860745 860473 273 GSP:Y35814 Chlamydia muridarum Nigg 66.0 72.0 48 4411 861544 862752 1209 pir:S66270 Rattus norvegicus (Rat) 33.5 64.9 442 4412 86391 1671 sp:RA25_YEAST Saccharomyces cerevisiae 30.7 62.3 613	SEQ NO. (nt) (nt) (nt) (hp) (nt) (hp) (db Match db Match (nt) (nt) (hp) (hp) db Match db Match (hp) (hp) (hp) (hp) (hp) (hp) (hp) (hp	SEQ NO. (nt) Initial (nt) Terminal (nt) ORF (bp) db Match Homologous gene Identity (%) Similarity (%) Matched (%) Matched (%)	SEQ NO. (nt) Initial (nt) Terminal (nt) ORF (pp) db Match Homologous gene (ma) Identity (%) Similarity (%) Matched (%) Matched (%)	SEQ NO. (nt) Initial (nt) Terminal (nt) ORF (bp) db Match Homologous gene Identity (96) Similarity (96) Matched (96) Matched (96)<	SEQ NO. (a1) Initial (n1) Terminal (pp) ORF (bp) db Match (bp) Homologous gene (bp) Identity (bp) Similarity (bp) Matched (bp) 4409 860224 860078 147 PIR.F81737 Chlamydia muridarum Nigg 66.0 72.0 48 4410 860745 860473 273 GSP:Y35814 Chlamydia pneumoriae 61.0 66.0 72.0 48 4411 861544 862752 1209 pir.S66270 Rattus norvegicus (Rat) 33.5 64.9 442 4412 865366 863396 1671 sp.RA25_YEAST Saccharomyces cerevisiae 30.7 62.3 613 4414 867317 865119 2199 pir.F70815 Mycobacterium tuberculosis 44.0 62.0 57 4416 867788 868630 843 Pir.G20602A Micrococcus luteus rpf 39.4 64.7 198 4418 868938 869318 381 prt.2320274A Lactococcus luteus rpf 42.6 75.4 61	SEQ (na) Initial (nt) QRF (nt) db Match (pp) Homologous gene Identity (%) Similarity (%) Matched (%) 4409 860224 860078 147 PIR:F81737 Chlamydia munidarum Nigg 66.0 72.0 48 4410 860745 273 GSP:Y35814 Chlamydia munidarum Nigg 66.0 72.0 48 4411 861544 862752 1209 pir:S66270 Rattus nonvegicus (Rat) 33.5 64.9 442 4412 863391 1671 sp.RA25_YEAST Saccharomyces cerevisiae 30.7 62.3 613 4414 867367 219 pir F70815 Mycobacterium fuberculosis 36.1 65.2 764 4416 867353 867571 219 pir F70815 Mycobacterium fuberculosis 44.0 62.0 57 4416 867353 867803 597 pir Z420502A Micrococcus laticus rpf 39.4 64.7 198 4418 8689338 869318 361 pir Z420502A	SEQ (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt)	SEQ (a.a.) Initial (tr) Terminal (m) ORF (m) db Match Homologous gene (%) Homologous gene (%) Homologous gene (%) Homologous gene (%) Matched (%) Matched (%)	SEQ (a.a.) Initial (nt) Terminal (nt) ORF (bp) db Match (bp) Homologous gene (bb) Identity (%) Similarity (%) Matched (%) 4400 860244 147 PIR:F81737 Chlamydia muridarum Nigg 66.0 72.0 48 4410 860245 1209 pir:S66270 Rattus rorvegicus (Rat) 33.5 64.9 442 4411 861544 862752 1209 pir:S66270 Rattus rorvegicus (Rat) 33.5 64.9 442 4412 863396 1671 sp:RA25_YEAST Saccharomyces cerevisiae 30.7 62.3 613 4414 867317 219 pir F70815 Mycobacterium tuberculosis 36.1 65.2 764 4416 867353 867571 219 pir F70815 Mycobacterium tuberculosis 44.0 62.0 57 4416 866366 868300 843 pir G70815 Mycobacterium tuberculosis 44.0 62.0 75.4 61 4419 868930 869318 381	SEQ (nt) (nt) Terminal (nt) (hp) QPF (hp) Abatch Match (hp) Homologous gene (ps) (ps) (ps) (ps) (ps) (ps) (ps) (ps)	SEO (nt) (nt) Terminal (bp) QPR (vp) Abatch Match Homologous gene (7%) Identity (7%) Amatched (7%) Matched (7%) Match	SED Initial Terminal ORF db Match Homologous gene Identity Smillarity (%) Matched (%) NO (n1) (n1) (pp) (pp) Chlamydia munidarum Nigg 66.0 72.0 48 4409 660745 860778 147 PIR.F81737 Chlamydia munidarum Nigg 66.0 72.0 48 4410 660745 860473 273 GSP-Y35814 Chlamydia munidarum Nigg 66.0 72.0 48 4411 861549 1671 573 GSP-Y35814 Chlamydia preumoriae 61.0 66.0 84 4412 865066 863391 1671 574A25_YEAST Saccharomyces cerevisiae 81.0 66.0 84 4441 867357 865119 719 pir F70815 Mycobacterium tuberculosis 44.0 65.0 764 4441 867347 219 pir F70815 Mycobacterium tuberculosis 44.0 65.0 764 4441 867360 8643 pir F70815

														_						
5	ion		saminase	carboxylase subunit beta		porter						ultransferase				ase	Ð	ter	A helicase	e-DNA
10	Function	hypothetical protein	phosphoserine transaminase	acetyl-coenzyme A carboxylase carboxy transferase subunit beta	hypothetical protein	sodium/proline symporter	•	hypothetical protein	fatty-acid synthase			homoserine O-acetyltransferase			glutaredoxin	dihydrofolate reductase	thymidylate synthase	ammonium transporter	ATP dependent DNA helicase	formamidopyrimidine-DNA glycosidase
15	Matched length (a.a.)	316	374	236	103	549		243	3026			335			62	171	261	202	1715	298
20	Similarity (%)	55.1	52.9	69.5	80.6	58.1		77.4	83.4			59.7			72.6	62.0	88.9	56.4	68.1	51.0
	Identity (%)	32.6	21.9	36.0	51.5	26.4		49.0	63.1			29.0			43.6	38.0	64.8	32.2	47.4	29.2
25 (Juned	gene	cuiosis	CC 21783	accD	olor A3(2)	scens		culosis				stx			rans	n folA	thyA	cysQ	ilor A3(2)	gatus
% Table 1 (continued)	Homo ngnus gene	Mycobacterium tuberculosis H37Rv Rv0883c	Bacillus circulans ATCC 21783	Escherichia coli K12 accD	Streptomyces coelicolor A3(2) SCI8.08c	Pseudomonas fluorescens		Mycobacterium tuberculosis H37Rv Rv2525c	Corynebacterium ammoniagenes fas			Leptospira meyeri metX			Deinococcus radiodurans DR2085	Mycobacterium avium folA	Escherichia coli K12 thyA	Escherichia coli K12 cysQ	Streptomyces coelicolor A3(2) SC7C7.16c	Synechococcus elongatus naegeli mutM
35			100		0.0	a.		2 I	O e							2			S	
40	db Match	sp:YZ11_MYCTU	pir:S71439	sp:ACCD_ECOLI	gp:SCI8_8	pir.JC2382		pir.A70657	pir.S55505			prf:23173358			gp:AE002044_8	prf:2408256A	Sp:TYSY_ECOLI	sp:cysq_Ecol1	gp:SC7C7_16	sp:FPG_SYNEN
	ORF (bp)	933	1128	1473	339	1653	816	840	8907	489	186	1047	426	267	237	456	798	756	4560	768
45	Terminal (nt)	874951	875985	879642	881985	883647	884541	884549	894578	895191	895593	895596	896719	897689	897727	897979	898434	899253	904602	905382
50	Initial (nt)	875883	877112	881114	881647	881995	883726	885388	885672	894703	895408	896642	897144	897423	897963	898434	899231	800006	900043	904615
	SEQ NO (a a)	4427	4428	4429	4430	4431	4432	4433	4434	4435	4436	4437	4438	4439	4440	4441	4442	4443	4444	4445
55	SEO NO.	927	928	929	930	931	932	933	934	935	936	937	938	939	940	941	942	943	944	945

84

EP 1 108 790 A2

			т—		,	, -		-		·									
5	Function	hypothetical protein	alkaline phosphatase	integral membrane transporter		glucose-6-phosphate isomease	hypothetical protein		hypothetical protein	ATP-dependent helicase	ABC transporter	ABC transporter		peptidase	hypothelical protein		5'-phosphoribosylglycinamide formyltransferase	5'-phosphoribosyl-5-aminoimidazole-4-carboxamide formyltransferase	citrate lyase (subunit)
15	Matched length (a.a.)	 	196 a	403 ir		557 g	195 h		78 h	763 A	885 A	217 A		236 pe	434 h)	_	189 5º	525 5.	217 cit
20	Similarity (%)	86.7	71.9	67.0		77.0	52.3		85.9	73.1	48.6	71.4		73.3	60.8		86.2	87.8	100.0
	Identity (%)	55.5	38.8	33.8		52.4	24.6		59.0	46.1	21.8	43.8		43.6	31.1		64.6	74.5	100.0
25 (panultuo) 30 t alder	ns gene	berculasis	MG1363 apl	licolor A3(2)		M101 pgi	berculosis		berculosis	rmophilus	licolor A3(2)	8 yvrO		serculosis	serculosis		N.	Ŧ	lutamicum
30 L	Homologous gene	Mycobacterium tuberculosis H37Rv Rv0870c	Lactococcus lactis MG1363 apl	Streptomyces coelicolor A3(2) SCI28.06c		Escherichia coli JM101 pgi	Mycobacterium tuberculosis H37Rv Rv0336		Mycobacterium tuberculosis H37Rv Rv0948c	Bacillus stearothermophilus NCA 1503 pcrA	Streptomyces coelicolor A3(2) SCE25.30	Bacillus subtilis 168 yvrO		Mycobacterium tuberculosis H37Rv Rv0950c	Mycobacterium tuberculosis H37Rv Rv0955		Corynebacterium ammoniagenes purN	Corynebacterium ammoniagenes purH	Corynebacterium glutamicum ATCC 13032 citE
35		ΣÏ	۳	क छ		ű	ΣÏ		ΣÏ	N Ba	8 8	Ba		M _y	Ž Ÿ		3 E	a C	AT
40	db Match	pir:F70816	sp.APL_LACLA	pir.T36776		pir.NUEC	pir.G70506		sp:YT26_MYCTU	sp:PCRA_BACST	gp:SCE25_30	prf.2420410P		pir.D70716	sp:YT19_MYCTU		gp:AB003159_2	gp:AB003159_3	gp:CGL133719_3
	ORF (bp)	408	009	1173	717	1620	1176	381	309	2289	2223	999	507	711	1425	228	627	1560	819
45	Terminal (nt)	902506	905792	906559	909328	907759	909521	911223	910855	913514	913477	915699	916368	916970	919352	917827	919956	921526	922412
50	Initial (nt)	905389	906391	907731	908612	909378	910696	910843	911163	911226	915699	916364	916874	917680	917928	918054	919330	919967	921594
	SEQ NO.	4446	4447	4448	4449	4450	4451	4452	4453	4454	4455	4456	4457	4458	4459	4460	4461	4462	4463
55	SEQ. NO. (DNA)	946	947	948	949	950	951	952	953	954	955	926	957	958	926	096	961	962	696

repressor of the high-affinity (methyl) ammonium uptake system 5-formyltetrahydrofolate cyclo-ligase copper-inducible two-component molybdopterin biosynthesis cnx1 transporter (sulfate transporter) two-component system sensor protein (molybdenum cofactor biosynthesis enzyme cnx1) 5 30S ribosomal protein S18 30S ribosomal protein S14 50S ribosomal protein L33 50S ribosomal protein L28 50S ribosomal protein L31 50S ribosomal protein L32 large-conductance mechanosensitive channel Zn/Co transport repressor proteinase DO precursor Function hypothetical protein hypothetical protein 10 regulator Matched length 15 109 529 (aa) 222 100 49 406 88 210 67 17 8 78 55 227 484 131 19 Similarity 100.0 80.0 83.7 81.8 71.1 77.5 65 4 78.2 73.6 6 54.3 8 90. .92 60.1 77.1 59 60 59. 20 Identity (%) 100.0 100.0 34.4 52.2 540 55.1 52.0 37.5 37.2 60.0 48.0 24.4 33.3 27.7 28.6 50 25. 25 Streptomyces coelicolor A3(2) SCF51A.14 Corynebacterium glutamicum ATCC 13032 amtR Corynebacterium glutamicum ATCC 13032 yjcC Pseudomonas syringae copR Table 1 (continued) Cyanophora paradoxa rps18 Arabidopsis thaliana CV cnx1 Staphylococcus aureus zntR Mycobacterium tuberculosis H37Rv Rv0985c mscL Mycobacterium tuberculosis H37Rv Rv0990 Escherichia coli K12 rpmG Haemophilus ducreyi rpmE Escherichia coli K12 rpmB Escherichia coli K12 baeS Escherichia coli K12 rpsN Bacillus subtilis 168 yvdB Homologous gene Escherichia coli K12 htrA Homo sapiens MTHFS 30 35 SP.COPR_PSESM sp:CNX1_ARATH sp.MSCL_MYCTU gp:CGL133719_2 gp:CGL133719_1 Sp:RR18_CYAPA Sp:RL31_HAEDU SP.BAES_ECOLI Sp.RS14 ECOLI sp:RL33_ECOLI db Match SC51A_14 prf:2420312A pir.R5EC28 pir.B70033 pir. S45229 pir.JC4389 pir:A70601 40 gp. 1611 1365 1239 249 303 234 유명(함 162 312 264 969 570 999 585 327 321 171 405 447 198 651 Terminal 923138 924159 924734 925325 926931 927339 922396 924425 927737 927922 45 924901 928812 930248 931648 932570 923981 933060 932290 932487 933733 E (E 926935 924407 924895 927242 927474 927752 927785 928884 923661 924727 925134 928117 930410 931706 932290 932974 933710 923464 934302 923061 Initial (nt) 50 SEQ No. 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4483 4482 (a a) 4481 NO. 968 696 970 971 996 972 974 975 978 983 964 965 967 973 980 977 979 981 982 55

EP 1 108 790 A2

				ı ——				,	·			т	T						
5		tion	osphate	ynthesis protein	Ilanine N-	rane protein	rotein		rane protein	rane protein	95	ane protein		ıthetase	A helicase				
10		Function	UTP-glucose-1-phosphate uridylyltransferase	molybdopterin biosynthesis protein	ribosomal-protein-alanine N- acetyltransferase	hypothetical membrane protein	cyanate transport protein		hypothetical membrane protein	hypothetical membrane protein	cyclomaltodextrinase	nypothetical membrane protein	hypothetical protein	methionyl-tRNA synthetase	ATP-dependent DNA helicase	hypothetical protein	hypothetical protein		transposase
15		Matched length (a.a.)	296	390	193	367	380		137	225	444	488	272	615	741	210	363		94
20		Similarity (%)	68.9	62.6	54.9	54.8	62.4		9.09	9.63	53.6	75.2	78.3	66.7	49.0	53.3	59.0		59.6
		Identity (%)	42.2	31.8	29.0	30.3	26.6		32.1	25.3	26.8	43.0	54.0	33.8	26.2	27.6	30.0		33.0
25	Table 1 (continued)	eueb si	pestris	novorans	12 rimJ	erculosis	2 cynX		ınzae Rd	erculosis	s E-244	erculosis	erculosis	ım Delta H	ğ	ım Delta H	3 yxaG		۳n
<i>30</i>	Table 1 (c	Homologous gene	Xanthomonas campestris	Arthrobacter nicotinovorans moeA	Escherichia coli K12 rimJ	Mycobacterium tuberculosis H37Rv Rv0996	Escherichia coli K12 cynX		Haemophilus influenzae Rd HI1602	Mycobacterium tuberculosis H37Rv Rv0093c	Bacillus sphaericus CDase	Mycobacterium tuberculosis H37Rv	Mycobacterium tuberculosis H37Rv Rv1003	Methanobacterium thermoautotrophicum Delta H MTH587 metG	Escherichia coli recQ	Methanobacterium thermoautotrophicum Delta H MTH796	Bacillus subtilis 168 yxaG		Enterococcus faecium
40		db Match	pir.JC4985	prf:2403296B	sp:RIMJ_ECOLI	pir.G70601	sp:CYNX_ECOLI		sp:YG02_HAEIN	sp:Y05C_MYCTU	sp.CDAS_BACSH (pir.E70602	sp.Y19J_MYCTU	sp.SYM_METTH t	prf. 1306383A	pir.B69206	sp:YXAG_BACSU_E		gp:AF029727_1 E
	i	ORF (bp)	268	1257	099	1020	1200	1419	405	714	1167	1560	825	1830	2049	633	1158	531	294
45		Terminal (nt)	935319	936607	937274	938401	939626	937789	940090	940754	941925	942381	944833	948669	950839	950828	951834	953043	954266
50		Initial (nt)	934423	935351	936615	937382	938427	939217	939686	940041	940759	943940	944009	946840	948791	951460	952991	953573	953973
		SEQ NO. (a.a.)	4484	4485	4486	4487	4488	4489	4490	4491	4492	4493	4494	4495	4496	4497	4498	4499	4500
55	į	SEQ NO. (DNA)	984	985	986	987	988	989	066	991	992	993	994	985	966	266	866	666	1000

5 10	Function	transposase	transposase subunit		D-lactate dehydrogenase	site-specific DNA-methyltransferase		transposase	transposase	transcriptional regulator	cadmium resistance protein		hypothetical protein	hypothetical protein	dimethyladenosine transferase	isopentenyl monophosphate kinase		ABC transporter	pyridoxine kinase	hypothetical protein	hypothetical protein
15	Matched length (a.a.)	139	112		565	231		94	139	91	205		263	362	592	315		478	242	159	108
20	Similarity (%)	67.6	88.4		75.6	62.8		59.6	97.29	84.6	8.99		70.7	63.5	65.3	0.79		85.8	67.4	58.5	78.7
	Identity (%)	41.7	73.2		46.4	30.8		33.0	41.7	62.6	31.7		46.4	34.8	34.3	42.5		65.5	40.1	27.0	45.4
25 (pen	a)		pA			JK8				osis	adD		osis	sis	A	Sis		raea	¥	Sis	43(2)
ss os Table 1 (continued)	Homologous gene	Escherichia coli K12	Brevibacterium linens tnpA		Escherichía coli díd	Klebsiella pneumoniae OK8 kpnIM		Enterococcus faecium	Escherichia coli K12	Mycobacterium tuberculosis H37Rv Rv1994c	Staphylococcus aureus cadD		Mycobacterium tuberculosis H37Rv Rv1008	Mycobacterium tuberculosis H37Rv Rv1009 rpf	Escherichia coli K12 ksgA	Mycobacterium tuberculosis H37Rv Rv1011		Saccharopolyspora erythraea ertX	Escherichia coli K12 pdxK	Mycobacterium tuberculosis 137Rv Rv2874	Streptomyces caelicolor A3(2) SCF1.02
40	db Match	pir.TQECI3	gp:AF052055_1		prf:2014253AE	sp.MTK1_KLEPN		gp.AF029727_1	pir TQEC13	sp:YJ94_MYCTU	prf.2514367A		pir:C70603	pir:D70603	sp.KSGA_ECOLI	pir.F70603		pir.S47441	SP PDXK_ECOLI	sp:YX05_MYCTU	gp:SCF1_2
	ORF (bp)	477	414	864	1713	840	219	294	477	357	621	342	831	1071	879	933	642	1833	792	480	321
45	Terminal (nt)	954753	955354	956774	955686	957844	959185	960374	960861	961653	962249	961321	963639	964934	965852	966784	965950	968660	969458	969461	970349
50	Initial (nt)	954277	954941	955911	957398	958683	959403	960081	960385	961297	961629	961662	962809	963864	964974	965852	966591	966828	968667	969940	970029
	SEQ NO (a.a.)	4501	4502	4503	4504	4505	4506	4507	4508	4509	4510	4511	4512	4513	4514	4515	4516	4517	4518	4519	4520
55	SEQ NO.	1001	1002	1003	1004	1005	1006	1007	1008	1009	1010	1011	1012	1013	1014	1015	1016	1017	1018	1019	1020

EP 1 108 790 A2

ſ				\neg		7	٦						7					
5	Function	hypothetical protein	regulator	hypothetical protein	enoyl-CoA hydratase				major secreted protein PS1 protein precursor	transcriptional regulator (tetR family)	membrane transport protein	S-adenosylmethionine:2- demethylmenaquinone methyltransferase		hypothetical protein	hypothetical protein		peptide-chain-release factor 3	amide-urea transport protein
15	Matched length (a.a.)	107	261	276	337				440	100	802	157		121	482		546	404
20	Similarity (%)	69.2	88.1	59.1	70.9				56.8	70.0	70.0	75.8		63.6	48.3		68.0	72.8
	Identity (%)	35.5	64.8	27.2	35.6				27.7	44.0	42.6	38.2		29.8	24.9		39.2	42.8
25 (pant	e e	r A3(2)	r A3(2)	T.	losis				nicum) ATCC	r A3(2)	r A3(2)	e Rd		VMA1953	losis		S	rophus
S Table 1 (continued)	Homologous gene	Streptomyces coelicolor A3(2) SCF1.02	Streptomyces coelicolor A3(2) SCJ1 15	Bacillus subtilis 168 yxeH	Mycobacterium tuberculosis H37Rv echA9				Corynebacterium glutamicum (Brevibacterium flavum) ATCC 17965 csp1	Streptomyces coelicolor A3(2) SCF56.06	Streptomyces coelicolor A3(2) SCE87.17c	Haemophilus influenzae Rd HI0508 menG		Neisseria meningitidis NMA1953	Mycobacterium tuberculosis H37Rv Rv1128c		Escherichia coli K12 prfC	Methylophilus methylotrophus fmdD
35		ဟဟ	ဖ ဖ		≥I					ဖဖ	တတ			1_21 N	≥I		ш	Ţ.
40	db Match	gp:SCF1_2	gp:SCJ1_15	sp:YXEH_BACSU	pir:E70893				sp:CSP1_CORGL	gp:SCF56_6	gp:SCE87_17	sp:MENG_HAEIN		gp:NMA6Z2491_21	pir.A70539		pir:159305	prf:2405311A
	ORF (bp)	321	960	792	1017	654	777	1212	1386	579	2373	498	999	381	1551	936	1647	1269
45	Terminal (nt)	970738	971823	972244	974155	973304	974962	974965	977734	977800	978368	981490	982287	982294	984650	985845	984864	988007
50	Initial (nt)	970418	970864	973035	973139	373957	974186	976176	976349	978378	980740	980993	981622	982674	983100	984910	986510	986739
	SEQ NO.	4521	4522	4523	4524	4525	4526	4527	4528	4529	4530	4531	4532	4533	4534	4535	4536	4537
55	SEQ NO.	1021	1022	1023	1024	1025	1026	1027	1028	1029	1030	1031	1032	1033	1034	1035	1036	1037

EP 1 108 790 A2

5		Function	amide-urea transport protein	amide-urea transport protein	high-affinity branched-chain amino acid transport ATP-binding protein	high-affinity branched-chain amino acid transport ATP-binding protein	peptidyl-tRNA hydrolase	2-nitropropane dioxygenase	glyceraldehyde-3-phosphate dehydrogenase	polypeptides predicted to be useful antigens for vaccines and diagnostics	peptidyl-tRNA hydrolase	50S ribosomal protein L25	lactoyiglutathione lyase	DNA alkylation repair enzyme	ribose-phosphate pyrophosphokinase	UDP-N-acetylglucosamine pyrophosphorylase		sufi protein precursor	nodulation ATP-binding protein t
15		Matched length (a.a.)	77	234	253	236	187	361	342	51	174	194	143	208	316	452		506	310
20		Similarity (%)	61.0	68.0	0.07	69.1	902	54.0	72.8	61.0	63.2	0.29	54.6	62.5	79.1	71.9		61.7	64.8
		Identity (%)	40.8	34.6	37.9	35.2	39.0	25.2	39.5	54.0	38.5	47.0	28.7	38.9	44.0	42.0		30.8	35.8
<i>30</i>	Table 1 (continued)	Homologous gene	Methylophilus methylotrophus fmdE	Methylophilus methylotrophus fmdF	Pseudomonas aeruginosa PAO braF	Pseudomonas aeruginosa PAO braG	Escherichia coli K12 pth	Williopsis mrakii IFO 0895	Streptomyces roseofulvus gap	Neisseria meningitidis	Escherichia coli K12 pth	Mycobacterium tuberculosis H37Rv rplY	Salmonella typhimurium D21 gloA	Bacillus cereus ATCC 10987 alkD	Bacillus subtilis prs	Bacillus subtilis gcaD		Escherichia coli K12 sufl	Rhizobium sp. N33 nodl
35 40		db Match	prf:2406311B	prf:2406311C	Sp.BRAF_PSEAE	sp:BRAG_PSEAE	sp:PTH_ECOLI	Sp.2NPD_WILMR	Sp.G3P_ZYMMO	GSP: Y75094	Sp.PTH_ECOLI	pir.B70622	sp:LGUL_SALTY	prf.2516401BW	Sp.KPRS_BACCL	pir:S66080		sp:SUFI_ECOLI	Sp:NODI_RHIS3 F
		ORF (bp)	882	1077	726	669	612	1023	1065	369	531	009	429	624	975	1455	1227	1533	918
45		Terminal (nt)	988904	989980	990705	991414	991417	993080	994613	994106	994845	995527	996830	996833	997466	998455	1000016	1002864	1003930
50		Initial (nt)	988023	988904	989980	990716	992028	992058	993549	994474	995375	996126	996402	997456	998440	606666	1001242	1 1	4554 1003013
		SEQ NO.	4538	4539	4540	4541	4542	4543	4544	4545	4546	4547	4548	4549	4550	4551	4552	4553	4554
55		SEQ NO. (DNA)	1038	1039	1040	1041	1042	1043	1044	1045	1046	1047	1048	1049	1050	1051	1052	1053	1054

EP 1 108 790 A2

					_		_	_	_		_	_	т	- -		,						,
	Function	hypothetical membrane protein	two-component system sensor histidine kinase	two component transcriptional regulator (luxR family)		hypothetical membrane protein	ABC transporter		ABC transporter	gamma-glutamyttranspeptidase precursor					transposase protein fragment	transposase (IS1628 TnpB)				transcriptional regulator (TetR-family)	transcription/repair-coupling protein	
	Matched length (a.a.)	272	459	202		349	535		573	999					37	236				183	1217	
	Similarity (%)	63.2	48.4	67.3		64.5	57.0		74.0	58.6					72.0	100.0				59.6	65.1	
	Identity (%)	30.2	24.6	36.6		31.5	28.6		44.0	32.4					64.0	9.66				23.0	36.2	
Table 1 (continued)	Homologous gene	Streptomyces lividans ORF2	Escherichia coli K12 uhpB	Streptomyces peucetius dnrN		Streptomyces coelicolor A3(2) SCF15.07	Streptomyces glaucescens strV		Mycobacterium smegmatis exiT	Fscherichia coli K12 ggt					Corynebacterium glutamicum TnpNC	Corynebacterium glutamicum 22243 R-plasmid pAG1 tnpB				Escherichia coli tetR	Escherichia coli mfd	
	db Match	pir.JN0850	sp:UHPB_ECOLI	prf.2107255A		gp:SCF15_7	pir:S65587		pir.T14180	sp:GGT_ECOLI					GPU.AF164956_23	gp:AF121000_8				sp:TETC_ECOLI	sp.MFD_ECOLI	
	ORF (bp)	831	1257	609	204	1155	1440	153	1734	1965	249	519	192	606	243	708	462	597	312	651	3627	1224
	Terminal (nt)	1004783	1006085	1006697	1006734	1008152	1010061	1008534	1011790	1011797	1014264	1014343	1015116	1016560	1015450	1015145	1017018	1017274	1018393	1019066	1022716	1019390
	Initial (nt)	1003953	1004829	1006089	1006937	1006998	1008622	1008686	1010057	1013761	1014016	1014861	1014925	1015652	1015692	1015852	1016557	1017870	1018082	1018416	1019090	1020613
	SEQ NO. (a.a.)	4555	4556	4557	4558	4559	4560	4561	4562	4563	4564	4565	4566	4567	4568	4569	4570	4571	4572	4573	4574	4575
	SEQ NO. (DNA)	1055	1056	1057	1058	1059	1060	1061	1062		1064	1065	1066	1067	1068	1069	1070	1071	1072	1073	1074	1075

5		Function	Neisserial polypeptides predicted to be useful antigens for vaccines and diagnostics	multidrug resistance-like ATP- binding protein, ABC-type transport protein	ABC transporter	hypothetical membrane protein		hypothetical protein			IpqU protein	enolase (2-phosphoglycerate dehydratase)(2-phospho-D- glycerate hydro-lyase)	hypothetical protein	hypothetical protein	hypothetical protein	guanosine pentaphosphatase or exopolyphosphatase		threonine dehydratase	
15		Matched length (a.a.)	76	632	574	368		183			241	422	41	191	153	329		314	
20		Similarity (%)	69.0	62.7	81.9	100.0		57.4			689	86.0	28.0	55.0	8.77	55.0		64.7	
		Identity (%)	48.0	31.3	50.2	100.0		33.4			46.5	64.5	0.89	31.9	59.5	25.2		30.3	
25	Table 1 (continued)	ans gene	Эеае	dlB	berculosis	glutamicum		Ng			oercutosis 1U	0	K1 APE2459	oerculosis	erculosis	ρΑ		83	
30	Table 1 (Homologous gene	Neisseria gonorrhoeae	Escherichia coli mdlB	Mycobacterium tuberculosis H37Rv Rv1273c	Corynebaclerium giutamicum ATCC 13032 orf3		Bacillus subtilis yabN			Mycobacterium tuberculosis H37Rv Rv1022 lpqU	Bacillus subtilis eno	Aeropyrum pernix K1 APE2459	Mycobacterium tuberculosis H37Rv Rv1024	Mycobacterium tuberculosis H37Rv Rv1025	Escherichia coli gppA		Escherichia coli tdcB	
35			Ž				<u> </u>				ΣΪ		A	ŽΪ	ΝΉ				
40		db Match	GSP:Y75301	sp:MDLB_ECOLI	sp:YC73_MYCTU	sp:YLI3_CORGL		sp.YABN_BACSU			pir.A70623	sp:ENO_BACSU	PIR:872477	pir.C70623	pir:D70623	sp:GPPA_ECOL!		sp:THD2_ECOLI	
		ORF (bp)	228	1968	1731	2382	297	585	426	378	786	1275	144	540	546	963	984	930	195
45		Terminal (nt)	1021078	1022699	1024666	1026505	1032181	1032780	1032760	1033269	1034739	1036223	1036016	1036855	1037445	1038410	1036498	1038721	1039977
50		Initial (nt)	1021305	1024666	1025396	1028886	1031885	1032196	1033185	1033646	1033954	1034949	1036159	1036316	1036900	1037448	1037481	1039650	1039783
		SEQ NO (a.a.)	4576	4577	4578	4579	4580	4581	4582	4583	4584	4585	4586	4587	4588	4589	4590	4591	4592
55		SEQ NO. (DNA)	1076	1077	1078	1079	1080	1081	1082	1083	1084	1085	1086	1087	1088	1089	1090	1091	1092

	Matched length (a.a.)		56 hypothetical protein	242 transcription activator of L-rhamnose operon	282 hypothetical protein		140 hypothetical protein	143 transcription elongation factor	140 hypothetical protein	300 lincomycin-production		3-deoxy-D-arabino-heptulosonate-7-phosphate synthase		hypothetical protein or undecaprenyl pyrophosphate synthetase	28 hypothetical protein			308 pantothenate kinase	434 serine hydroxymethyl transferase	696 p-aminobenzoic acid synthase	
	Similarity Ma (%)		74.1	55.8	80.1		57.1	60.1	72.1	56.3		99.5		97.3	100.0			79.9	100.0	70.1 6	
	Identity S		46.3	24.8	8.73		30.0	35.0	34.3	31.7		99.2		96.0	100.0			53.9	99.5	47.6	
Table 1 (conlinued)	Homologous gene		Thermotoga maritima MSB8	Escherichia coli rhaR	Mycobacterium tuberculosis H37Rv Rv1072		Streptomyces coelicolor A3(2) SCF55.39	Escherichia coli greA	Mycobacterium tuberculosis H37Rv Rv1081c	Streptomyces lincolnensis ImbE		Corynebacterium glutamicum aroG		Corynebacterium glutamicum CCRC18310	Corynebacterium glutamicum (Brevibacterium flavum)			Escherichia coli coaA	Brevibacterium flavum MJ-233 glyA	Streptomyces griseus pabS	
	db Match		pir.872287	sp.RHAR_ECOL1	pir:F70893		gp:SCF55_39	SP.GREA_ECOLI	pir:G70894	pir.S44952		sp:AROG_CORGL		sp.YARF_CORGL	SP:YARF_CORGL			sp.coAA_ECOLI	gsp:R97745	sp:PABS_STRGR	
	ORF (bp)	330	189	993	816	387	450	522	483	873	318	1098	633	675	174	519	318	936	1302	1860	723
	Terminal (nt)	1040325	1040682	1041917	1042842	1042850	1043298	1043774	1044477	1046030	1046390	1047707	1046820	1048501	1048529	1049043	1049068	1049427	1051925	1053880	1054602
	Initial (nt)	1039996	1040494	1040925	1042027	1043236	1043747	1044295	1044959	1045158	1046073	.046610	1047452	1047827	4606 1048356	1048525	1049385	1050362	1050624	1052021	1053880
	SEQ NO (a a)	4593	4594	4595	4596	4597	4598	4599	4600	4601	4602	4603	4604	4605	4606	4607	4608	4609	4610	4611	4612
	SEQ NO.	1093	1094	1095	1096	1097	1098	1099	1100	1101	1102	1103	1104	1105	1106	1107	1108	1109	1110	1111	1112

EP 1 108 790 A2

5		Function			phosphinothricin resistance protin	hypothetical protein		hypothetical protein	lactam utilization protein	hypothetical membrane protein			transcriptional regulator		fumarate hydratase precursor	NADH-dependent FMN oxydoreductase			reductase	dibenzothiophene desulfurization enzyme A	dibenzothiophene desulfurization enzyme C (DBT sulfur dioxygenase)	dibenzothiophene desulfurization enzyme C (DBT sulfur dioxygenase)		
15		Matched length (a.a.)			165	300		225	276	165			204		456	159			184	443	372	391		
20		Similarity (%)			58.8	59.0		57.8	52.2	81.2			63.2		79.4	65.4			81.0	67.7	51.3	61.6		
		Identity (%)			30.3	30.3		37.8	30.8	40.6			26.0		52.0	32.7			55.4	39.1	25.8	28.9		
25 30	Table 1 (continued)	Homologous gene			aecalis ptcR	oli ybgK		oli ybgJ	dulans lamB	lis ycsH			lis ydhC		Rattus norvegicus (Rat) fumH	erythropolis			Streptomyces coelicolor A3(2) StAH10.16	Rhodococcus sp. IGTS8 soxA	Rhodococcus sp. IGTSB soxC	Rhodococcus sp. IGTSB soxC		
35	Table	Ното			Alcaligenes faecalis ptcR	Escherichia coli ybgK		Escherichia coli ybgJ	Emericella nidulans lamB	Bacillus subtilis ycsH			Bacillus subtilis ydhC		Rattus norve	Rhodococcus erythropolis IGTS8 dszD			Streptomyces StAH10.16	Rhodococcus	Rhodococcus	Rhodococcus		
40		db Match			gp:A01504_1	sp:YBGK_ECOLI		sp:YBGJ_ECOLI	Sp:LAMB_EMENI	sp:YCSH_BACSU			Sp.YDHC_BACSU		Sp:FUMH_RAT	gp:AF048979_1			gp:SCAH10_16	sp:SOXA_RHOSO	sp:SOXC_RHOSO	sp:SOXC_RHOSO		
		ORF (bp)	864	393	537	879	1056	699	756	591	672	603	581	1278	1419	489	261	447	564	1488	1080	1197	780	969
45		Terminal (nt)	1055722	1054640	1056319	1056322	1058628	1057200	1057843	1058624	1059889	1059962	1060792	1062146	1062211	1064424	1064478	1064754	1065304	1067570	1068649	1069845	1068913	1069119
50		Initial (nt)	1054859	1055032	1055783	1057200	1057573	1057868	1058598	1059214	1059218	1059360	1060112	1060869	1063629	1063936	1064738	1065200	1065867	1066083	1067570	1068649	1069692	4634 1069808
		SEQ NO (a.a.)	4613	4614	4615	4616	4617	4618	4619	4620	4621	4622	4623	4624	4625	4626	4627	4628	4629	4630	4631	4632	4633	4634
55		SEQ NO.	1113	1114	1115	1116	1117	1118	1119	1120	1121	1122	1123	1124	1125	1126	1127	1128	1129	1130	1131	1132	1133	1134

5	Function	FMNH2-dependent aliphatic sulfonate monooxygenase	glycerol metabolism	hypothetical protein	hypothetical protein		transmembrane efflux protein	exadeoxyribonuclease small subunit	exodeoxyribonuclease large subunit	penicillin tolerance	polypeptides predicted to be useful antigens for vaccines and diagnostics		permease		sodium-dependent proline transporter	major secreted protein PS1 protein precursor	GTP-binding protein	virulence-associated protein	ornithine carbamoyttransferase	hypothetical protein
15	Matched length	397	325	211	227		82	62	466	311	131		338		552	412	361	75	301	143
20	Similarity (%)	73.1	75.7	56.4	66.1	!	78.1	67.7	55.6	78.8	47.0		63.9		61.4	60.0	98.6	80.0	58.8	69.9
	Identity (%)	45.3	44.3	27.5	31.3		36.6	40.3	30.0	50.2	33.0		26.3		30.3	29.9	70.1	57.3	29.6	39.2
25 30	Homologous gene	Escherichia coli K12 ssuD	Escherichia coli K12 glpX	Mycobacterium tuberculosis H37Rv Rv1100	Bacillus subtilis ywmD		Streptomyces coelicolor A3(2) SCH24.37	Escherichia coli K12 MG1655 xseB	Escherichia coli K12 MG1655 xseA	Escherichia coli K12 lytB	Neisseria gonorrhoeae		Escherichia coli K12 perM		Rattus norvegicus (Rat) SLC6A7 ntpR	Corynebacterium glutamicum (Brevibacterium flavum) ATCC 17965 csp1	Bacillus subtilis yyaF	Dichelobacter nodosus intA	Pseudomonas aeruginosa argF	Bacillus subtilis 168 ykkB
) 35	Î	Escherich	Escherich	Mycobacterium H37Rv Rv1100	Bacillus si		Streptomy SCH24.37	Escherich xseB	Escherich xseA	Escherich	Neisseria		Escherich		Rattus nor ntpR	Corynebact (Brevibacte 17965 csp1	Bacillus su	Dicheloba	Pseudomo	Bacillus su
40	db Match	gp:ECO237695_3	SP. GLPX_ECOLI	pir.B70897	pir:H70062		gp:SCH24_37	sp.EX7S_ECOLI	sp:EX7L_ECOU	sp:LYTB_ECOLI	GSP:Y75421		SP:PERM_ECOLI		sp:NTPR_RAT	sp:CSP1_CORGL	sp:YYAF_BACSU	sp:VAPI_BACNO	SP.OTCA_PSEAE	sp:YKKB_BACSU
	ORF (bp)	1176	963	570	1902	285	225	243	1251	975	429	828	1320	180	1737	1233	1083	297	822	501
45	Terminal (nt)	1071134	1071479	1073245	1073340	1075641	1075329	1075667	1075933	1078271	1077306	1078319	1079221	1080786	1080972	1082951	1085462	1086087	1086917	1087044
50	Initial (nt)	1069959	1072441	1072676	1075241	1075357	1075553	1075909	1077183	1077297	1077734	1079146	1080540	1080965	1082708	1084183	1084380	1085791	1086096	1087544
	SEQ NO.		4636	4637	4638	4639	4640	4641	4642	4643	4644	4645	4646	4647	4648	4649	4650	4651	4652	4653
55	SEQ NO.	1135	1136	1137	1138	1139	1140	1141	1142	1143	1144	1145	1146	1147	1148	1149	1150	1151	1152	1153

EP 1 108 790 A2

5		Function	9-cis retinol dehydrogenase or oxidoreductase	transposase/integrase (IS110)	hypothetical membrane protein	N-acetylglucosaminyltransferase			transposase (insertion sequence IS31831)	transposase	Iransposase				oxidoreductase or morpyine-6- dehydrogenase (naloxone reductase)	4-carboxymuconolactone decarboxlyase			frenolicin gene cluster protein involved in frenolicin biosynthetic
15		Matched length (a.a.)	198	966	1153	259			97	125	48				264	108			146
20		Similanty (%)	9:09	73.0	52.2	1.74			93.8	94.4	95.8				66.3	63.9			66.4
		Identity (%)	33 8	42.2	23.0	22.8			82.5	79.2	87.5				37.5	33.3			34.9
25	lable 1 (continued)	ns gene)H4	licolor	12 yegE	i nodC			glutamicum	glutamicum ictofermentum)	glutamicum ictofermentum)				ida M10 norA	oaceticus			sofulvus frnS
30	lable 1 (Homologous gene	Mus musculus RDH4	Streptomyces coelicolor SC3C8.10	Escherichia coli K12 yegE	Rhizobium meliloti nodC			Corynebacterium glutamicum ATCC 31831	Corynebacterium glutamicum (Brevibacterium factofermentum) ATCC 13869	Corynebacterium glutamicum (Brevibacterium lactofermentum) ATCC 13869	!			Pseudomonas putida M10 norA	Acinetobacter calcoaceticus dc4c			Streptomyces roseofulvus frnS
<i>35</i>		db Match	gp:AF013288_1	sp.YIS1_STRCO	sp.YEGE_ECOLI	SP.NODC_RHIME			pir.S43613	pir.JC4742	pir.JC4742 (sp:MORA_PSEPU F	sp.DC4C_ACICA			gp:AF058302_19
		ORF (bp)	630 gp:/	1206 sp:\	3042 sp:\	765 sp.N	219	33	291 pir.S	375 pir.J	144 pir.J		90	88			53	5	654 gp.A
45				 			_	34 333	i —			141	366	6 498	12 843	9 321	0 663	5 195	i
		Terminal (nt)	1087664	1088535	1093216	1094693	1094911	1095384	1095387	1095719	1096188	1096331	1096746	1097726	1098592	1098929	1099750	1099015	1099115
50		Initial (nt)	1088293	1089740	1090175	1093929	1094693	1095052	1095677	1096093	1096331	1096471	1097111	1097229	1097750	1098609	1099088	1099209	1099768
		SEO NO. (a.a.)	4654	4655	4656	4657	4658	4659	4660	4661	4662	4663	4664	4665	4666	4667	4668	4669	4670
<i>55</i>		SEQ NO. (DNA)	1154	1155	1156	1157	1158	1159	1160	1161	1162	1163	1164	1165	1166	1167	1168	1169	1170

EP 1 108 790 A2

				_	_		$\overline{}$,		
5	Function	biotin carboxylase						hypothetical protein	magnesium chelatase subunit	2,3-PDG dependent phosphoglycerate mutase	hypothetical protein	carboxyphosphonoenolpyruvate phosphonomutase	tyrosin resistance ATP-binding protein	hypothetical protein	alkylphosphonate uptake protein	transcriptional regulator	multi-drug resistance efflux pump	transposase (insertion sequence IS31831)
15	Matched length (a.a.)	563						655	329	160	262	248	593 t	136	111	134 t	367	436 t
20	Similarity (%)	78.5						80.3	52.6	62.5	60.7	59.3	54.1	6.99	82.0	62.7	59.4	99.8
	Identity (%)	48.1						57.9	27.7	33.8	38.2	29.4	31.7	29.4	55.0	32.1	22.6	99.5
25 (ganuji	jene	CC 7942						culosis	ides ATCC	nolica pgm	culosis	copicus	tlrC	culosis	MG1655	xaD	oniae	amicum fermentum)
© © E Continued)	Homologous gene	Synechococcus sp PCC 7942 accC						Mycobacterium tuberculosis H37Rv Rv0959	Rhodobacter sphaeroides ATCC 17023 bchl	Amycolatopsis methanolica pgm	Mycobacterium tuberculosis H37Rv Rv2133c	Streptomyces hygroscopicus SF1293 BcpA	Streptomyces fradiae ttrC	Mycobacterium tuberculosis H37Rv Rv2923c	Escherichia coli K12 MG1655 phnA	Bacillus subtilis 168 yxaD	Streptococcus pneumoniae pmrA	Corynebacterium glutamicum (Brevibacterium lactofermentum) ATCC 31831
40	db Match	gp:SPU59234_3						sp:YT15_MYCTU	sp.BCHI_RHOSH	gp:AMU73808_1	pir.A70577	gp:STMBCPA_1	sp:TLRC_STRFR	sp:Y06C_MYCTU	sp.PHNA_ECOL!	sp:YXAD_BACSU	gp:SPN7367_1	pir.S43613
	ORF (bp)	1737	597	498	345	153	639	1956	1296	642	705	762	1641	396	342	474	1218	1308
45	Terminal (nt)	1101653	1102639	1103192	1103524	1104103	1105561	1104103	1106086	1108201	1108905	1109754	1111432	1111425	1112230	1112484	1114319	1115793
50	Initial (nt)	1099917	1102043	1102695	1103180	1103951	1104923	1106058	1107381	1107560	1108201	1108993	1109792	1111820	1111889	1112957	1113102	1114486
	SEQ NO.	4671	4672	4673	4674	4675	4676	4677	4678	4679	4680	4681	4682	4683	4684	4685	4686	4687
55	SEQ NO.	1171	1172	1173	1174	1175	1176	1177	1178	1179	1180	1181	1182	1183	1184	1185	1186	1187

EP 1 108 790 A2

5		Function	cysteine desulphurase	nicofinate-nucleotide pyrophosphorylase	quinolinate synthetase A	DNA hydrolase	hypothetical membrane protein	hypothetical protein	hypothetical protein	lipoate-protein ligase A	alkylphosphonate uptake protein and C-P lyase activity	transmembrane transport protein or 4-hydroxybenzoate transporter	p-hydroxybenzoate hydroxylase (4- hydroxybenzoate 3- monooxygenase)	hypothetical membrane protein	ABC transporter ATP-binding protein	hypothetical membrane protein		Ca2+/H+ antiporter ChaA	hypothetical protein	hypothetical membrane protein
15		Matched fength (a.a.)	376	283	361	235	192	214	108	216	148	420	395	191	532	250		339	236	221
20		Similarity (%)	73.4	68.9	77.6	60.9	54.7	66.4	74.1	2 09	80.8	64.3	68.6	9 69	47.6	61.6		0.69	57.6	61.1
		Identity (%)	43.9	42.1	49.3	37.0	23.4	36.0	41.7	30.1	29.7	28.8	40.8	36.7	24.8	25.6		33.3	28.4	27.6
25	intinued)	gene	faciens ise gene	arculosis	A	olor	urans R1	olor	MG1655	lpiA	phnB	a pcaK	jinosa phhy	ykoE		ykoC		Ą	Jrsay	
30	Table 1 (continued)	Homologous gene	Ruminococcus flavefaciens cysteine desulphurase gene	Mycobacterium tuberculosis	Bacillus subtilis nadA	Streptomyces coelicolor SC5B8.07	Deinococcus radiodurans R1 DR1112	Streptomyces coelicolor SC3A7.08	Escherichia coli K12 MG1655 ybdF	Escherichia coli K12 lplA	Escherichia coli K12 phnB	Pseudomonas putida pcaK	Pseudomonas aeruginosa phhy	Bacillus subtilis 168 ykoE	Escherichia coli yijK	Bacillus subtilis 168 ykoC		Escherichia coli chaA	Pyrococcus abyssi Orsay PAB1341	Bacillus subtilis ywaF
<i>35</i> <i>40</i>		db Match	gp:RFAJ3152_2	sp.NADC_MYCTU	pir.E69663	gp:SC588_7	gp.AE001961_5	gp:SC3A7_8	sp.YBDF_ECOLI	gp:AAA21740_1 [sp.PHNB_ECOLI	sp.PCAK_PSEPU	SP. PHHY_PSEAE	pir.A69859	Sp:YJJK_ECOLI	pir.G69858		sp:CHAA_ECOLI	pir.C75001	sp:YWAF_BACSU E
		ORF (bp)	1074	837	1182	642	009	909	342	789	411	1293	1185	588	1338	753	531	1050	708	723
45		Terminal (nt)	1115832	1116908	1117751	1119086	1120804	1120833	1121468	1121818	1123461	1123534	1124836	1127009	1128350	1129102	1129632	1130704	1131428	1131401
50		Initial (nt)	1116905	1117744	1118932	1119727	1120205	1121432	1121809	1122606	1123051	1124826	1126020	1126422	1127013	1128350	1129102	1129655	1130721	1132123
		SEQ NO. (a.a.)	4688	4689	4690	4691	4692	4693	4694	4695	4696	4697	4698	4699	4700	4701	4702	4703	4704	4705
55		SEQ NO. (pNA)	1188	1189	1190	1191	1192	1193	1194	1195	1196	1197	1198	1199	1200	1201	1202	1203	1204	1205

5	Function	excinuclease ABC subunit A	thioredoxin peroxidase			hypothetical membrane protein	oxidoreductase or thiamin biosynthesis protein					chymotrypsin Bll	arsenate reductase (arsenical pump modifier)	hypothetical membrane protein	hypothetical protein	hypothetical protein	GTP-binding protein (tyrosine phsphorylated protein A)	hypothetical protein	hypothetical protein		ferredoxin [4Fe-4S]
15	Matched length (a.a.)	946	164			318	282					271	111	340	147	22.1	614	909	315		103
20	Similarity (%)	58.7	81.7			72.0	49.0					51.3	72.1	62.4	71.4	62.9	76.7	54.9	61.9		91.3
	Identity (%)	35.5	57.3			39.9	34.0					28.8	43.2	23.5	43.5	35.8	46.3	27.9	38.7		78.6
tinued)	ene	s unrA	culosis				lor A3(2)								ulosis	ulosis	урА	ulosis	ulosis		fer
s Table 1 (continued)	Homologous gene	Thermus thermophilus unrA	Mycobacterium tuberculosis H37Rv tpx			Escherichia coli yedL	Streptomyces coelicalor A3(2)					Penaeus vannamei	Escherichia coli	Bacillus subtilis yyaD	Mycobacterium tuberculosis H37Rv Rv1632c	Mycobacterium tuberculosis H37Rv Rv1157c	Escherichia coli K12 typA	Mycobacteriúm tuberculosis H37Rv Rv1166	Mycobacterium tuberculosis H37Rv Rv1170		Streptomyces griseus fer
<i>35</i> <i>40</i>	db Match	2340 Sp. UVRA_THETH	sp:TPX_MYCTU			sp:YEDI_ECOU	gp:SCF76_2					sp:CTR2_PENVA	sp:ARC2_ECOLI	1200 sp:YYAD_BACSU	pir:F70559	pir:F70555	sp:TYPA_ECOLI	pir.F70874	pir.B70875		sp.FER_STRGR
	ORF (bp)	2340	495	216	1776	954	006	366	297	261	387	834	345	1200	537	714	1911	1506	870	438	315
45	Terminal (nt)	1132133	1135055	1135691	1135058	1136938	1138859	1139245	1139492	1139617	1139635	1140028	1140901	1142472	1142479	1143026	1146028	1147602	1148461	1148882	1149267
50	Initial (nt)	1134472	1134561	1135476	1136833	1137891	1137960	1138880	1139196	1139357	1140021	1140861	1141245	1141273	1143015	1143739	1144118	1146097	1147592	4724 1148445	1148953
	SEQ NO.	4706	4707	4708	4709	4710	4711	4712	4713	4714	4715	4716	4717	4718	4719	4720	4721	4722	4723	4724	4725
55	SEQ NO. (DNA)	1206	1207	1208	1209	1210	1211	1212	1213	1214	1215	1216	1217	1218	1219	1220	1221	1222	1223	1224	1225

5		Function	aspartate aminotransferase			tetrahydrodipicolinate succinylase or succinylation of piperidine-2,6-dicarboxylate		hypothetical protein	dihydropteroate synthase	hypothetical protein	hypothetical protein	antigen TbAAMK, useful in vaccines for prevention or treatment of tuberculosis	mycinamicin-resistance gene	sucrose-6-phosphate hydrolase	ADPglucosestarch(bacterial glycogen) glucosyltransferase	glucose-1-phosphate adenylyltransferase	methyltransferase	RNA polymerase sigma factor (sigma-24); heat shock and oxidative stress	
15		Matched length (a.a.)	397			229		211	273	245	66	47	286	524	433	400	63	194	
20		Similarity (%)	52.9			100.0		100.0	0.69	73.1	2.73	91.5	67.8	51.0	51.3	81.8	62.4	57.2	
		Identity (%)	25.9			100.0		100.0	59.0	45.7	31.3	72.3	39.2	23.5	24.7	61.0	25.8	27.3	
25	ontinued)	s gene	YM-2 aat			lutamicum		lutamicum	color A3(2)	rae u17561	erculosis	erculosis	seorubida	saceus scrB	2 MG1655	color A3(2)	arofaciens	ញ់	
30	Table 1 (continued)	Homologous gene	Bacillus sp. strain YM-2 aat			Corynebacterium glutamicum ATCC 13032 dapD		Corynebacterium glutamicum ATCC 13032 orf2	Streptomyces coelicolor A3(2) dhpS	Mycobacterium leprae u1756	Mycobacterium tuberculosis H37Rv Rv1209	Mycobacterium tubercufosis	Micromonospora griseorubida myrA	Pediococcus pentosaceus scrB	Escherichia coli K12 MG1655 glgA	Streptomyces coelicalor A3(2) glgC	Streptomyces mycarofaciens MdmC	Escherichia coli rpoE	
35		t:						5 4	0, 0		<u> </u>					STRCO 8			
40		db Match	sp:AAT_BACSP			gp:CGAJ4934_1		pir:S60064	gp:SCP8_4	gp.MLU15180_14	pir:G70609	gsp:W32443	sp:MYRA_MICGR	Sp.SCRB_PEDPE	sp:GLGA_ECOLI	sp:GLGC_S	sp:MDMC_STRMY	sp:RPOE_ECOLI	
		ORF (bp)	1101	621	1185	891	693	768	831	729	306	165	864	1494	1227	1215	639	639	492
45		Terminal (nt)	1150379	1151028	1152370	1152373	1155875	1157669	1158524	1159252	1159572	1159799	1160728	1160738	1162379	1164916	1164974	1166384	1167067
50		Initial (nt)	1149279	1150408	1151186	1153263	1156537	1156902	1157694	1158524	1159267	1159635	1159865	1162231	1163605	1163702	1165612	1165746	1166576
	i	SEQ NO. (a.a.)	4726	4727	4728	4729	4730	4731	4732	4733	4734	4735	4736	4737	4738	4739	4740	4741	4742
55		SEQ NO. (DNA)	1226	1227	1228	1229	1230	1231	1232	1233	1234	1235	1236	1237	1238	1239	1240	1241	1242

5	Function	hypothetical protein	ATPase	hypothetical protein	hypothetical protein	hypothetical protein			2-oxoglutarate dehydrogenase	ABC transporter or multidrug resistance protein 2 (P-glycoprotein 2)	hypothetical protein	shikimate dehydrogenase	para-nitrobenzyl esterase				tetracycline resistance protein	metabolite export pump of tetracenomycin C resistance	
15	Matched length (aa)	112	257	154	434	140			1257	1288	240	255	501				409	444	
20	Similarity (%)	73.2	72.0	83.8	77.0	87.1			8.66	60.4	72.1	61.2	64.7				61.4	64.2	
	Identity (%)	45.5	43.6	60.4	49.8	57.9			99.4	28.8	31.7	25.5	35.7				27.1	32.4	
8 G	us gene	berculosis	ırp	berculosis	berculosis	berculosis			glutamicum	(Chinese	berculosis	roE	PA A				ansposon	ucescens tcmA	
8 Table 1 (Homologous gene	Mycobacterium tuberculosis H37Rv Rv1224	Escherichia coli mrp	Mycobacterium tuberculosis H37Rv Rv1231c	Mycobacterium tuberculosis H37Rv Rv1232c	Mycobacterium tuberculosis H37Rv Rv1234			Corynebacterium glutamicum AJ12036 odhA	Cricetulus griseus (Chinese hamster) MDR2	Mycobacterium tuberculosis H37Rv Rv1249c	Escherichia coli aroE	Bacillus subtilis pnbA				Escherichia coli transposon Tn1721 tetA	Streptomyces glaucescens tcmA	
35		2I		≥I	≥ I	≥I			04		≥I			_					
40	db Match	pir:C70508	Sp:MRP_ECOLI	pir:B70509	pir.C70509	pir.A70952			prf.2306367A	sp:MDR2_CRIGR	pir:H70953	sp:AROE_ECOLI	sp:PNBA_BACSU				sp:TCR1_ECOLI	sp:TCMA_STRGA	
	ORF (bp)	468	1125	579	1290	516	999	594	3771	3741	717	804	1611	651	876	525	1215	1347	705
45	Terminal (nt)	1167577	1167587	1168747	1169321	1171187	1171871	1171869	1172501	1176308	1180121	1180872	1183603	1184257	1185155	1185218	1187039	1188389	1190526
50	Initial (nt)	1167110	1168711	1169325	1170610	1170672	1171206	1172462	1176271	1180048	1180837	1181675	1181993	1183607	1184280	1185742	1185825	1187043	1189822
	SEO NO.	4743	4744	4745	4746	4747	4748	4749	4750	4751	4752	4753	4754	4755	4756	4757	4758	4759	4760
55	SEQ NO. (DNA)	1243	1244	1245	1246	1247	1248	1249	1250	1251	1252	1253	1254	1255	1256	1257	1258	1259	1260

EP 1 108 790 A2

5		Function	5- methyltetrahydropteroyltriglutamate- homocysteine S-methyltransferase		thiophene biotransformation protein						ABC transporter	ABC transporter	cytochrome bd-type menaquinol oxidase subunil II	cytochrome bd-type menaquinol oxidase subunit l	helicase		mutator mutT protein ((7,8-dihydro-8-oxoguanine triphosphatase)(8-oxo-dGTPase)(dGTP pyrophosphohydrolase)		proline-specific permease
15		Matched length (a.a.)	774		444						526	551	333	512	402		86		433
20		Similarity (%)	72.2		79.5						63.5	58.4	93.0	99.0	55.0		65.6		850
		Identity (%)	45.2		55.2						28.7	29.4	92.0	93.6	26.4		36.9		51.3
25	ontinued)	e dene	us metE		s strain KGB1						2 MG1655	2 MG1655	lutamicum (ofermentum)	lutamicum (tofermentum)	2 MG1655		JtT		ırium proY
	Table 1 (continued)	Homologous gene	Catharanthus roseus metE		Nocardia asteroides strain KGB1						Escherichia coli K12 MG1655 cydC	Escherichia coli K12 MG1655 cydD	Corynebacterium glutamicum (Brevibacterium lactofermentum) cydB	Corynebacterium glutamicum (Brevibacterium lactofermentum) cydA	Escherichia coli K12 MG1655 yejH		Proteus vulgaris mutT		Salmonella typhimurium proY
<i>35</i> <i>40</i>		db Match	pir.S57636		gsp:Y29930						sp.CYDC_ECOLI	Sp.CYDD_ECOLI	gp:AB035086_2	gp:AB035086_1	sp.YEJH_ECOLI		sp:MUTT_PROVU		1404 SP.PROY_SALTY
		ORF (bp)	2235 pir.	456	1398 gsp	324	945	792	1647	192	1554 sp.(1533 sp:(/:d6 666	1539 gp:/	2265 sp.\	342	393 sp://	765	104 sp.F
45		Terminal O	1188388 22	1191542 4	1193807 13	1194190 3	1195109 9	1195125 7	1197620 16	1197815 1	1197990 15	1199543 16	1201090 9	1202094 15	1203916 22	1206657 3	1206831 3	1208138 7	1208212 14
50		Initial (nt)	1190622	1191087	1192410	1193867	1194165	1195916	1195974	1197624	1199543	1201075	1202088	4772 1203632	1206180	1206316	1207223	1207374	1209615
		SEQ NO.	4761	4762	4763	4764	4765	4766	4767	4768	4769	4770	4771	4772	4773	4774	4775	4776	4777
55		SEQ NO. (DNA)	1261	1262	1263	1264	1265	1266	1267	1268	1269	1270	1271	1272	1273	1274	1275	1276	1277

			т			,		,						·					
5		Function	DEAD box ATP-dependent RNA helicase	bacterial regulatory protein, tetR family	phenol 4- nase	maleylacetate reductase	catechol 1,2-dioxygenase		protein	al regulator		protein	rase	protein			pase		
10			DEAD box / helicase	bacterial reg family	pentachlorophenol monooxygenase	maleylaceta	catechol 1,2		hypothetical protein	transcriptional regulator		hypothetical protein	phosphoesterase	hypothetical protein			esterase or lipase		
15		Matched length (a.a.)	643	247	595	354	278		185	878		203	395	915			220		
20		Similarity (%)	74.3	47.4	47.7	72.0	59.4		58.4	55.4		56.2	67.3	59.6			64.6		
		Identity (%)	48.1	24.7	24.5	40.4	30.6		31.9	24.9		29.6	39.2	29.7			37.3		
25	Table 1 (continued)	us gene	oniae CG43 ependent RNA	prae	Iva pcpB	B13 clcE	coaceticus		berculosis	erevisiae		licolor A3(2)	berculosis	perculosis			ng bacterium		
30	Table 1 (Homologous gene	Klebsiella pneumoniae CG43 DEAD box ATP-dependent RNA helicase deaD	Mycobacterium leprae B1308_C2_181	Sphingomonas flava pcpB	Pseudomonas sp. B13 clcE	Acinetobacter calcoaceticus catA		Mycobacterium tuberculosis H37Rv Rv2972c	Saccharomyces cerevisiae SNF2		Streptomyces coelicolor A3(2) orf2	Mycobacterium tuberculosis H37Rv Rv1277	Mycobacterium tuberculosis H37Rv Rv1278			Petroleum-degrading bacterium HD-1 hde		
40		db Match	sp:DEAD_KLEPN	prf.2323363BT		Sp.CLCE_PSESB	Sp.CATA_ACICA		pir.A70672	sp:SNF2_YEAST		gp:SCO007731_6	pir.E70755	sp:Y084_MYCTU			gp:AB029896_1		
		ORF (bp)	2196	687	1590	1068	885	471	540	3102 8	1065	858	1173	2628 s	306	318	774 g	378	786
45		Terminal (nt)	1212129	1212429	1214858	1215938	1216836	1216904	1217443	1222996	1221841	1223843	1225059	1227693	1227282	1227340	1228636	1229095	1229935
50		Initial (nt)	1209934	1213115	1213269	1214871	1215952	1217374	1217982	1219895	1222905	1222986	1223887	1225066	1227587	1227657	1227863	1228718	1229150
		SEQ NO.	4778	4779	4780	4781	4782	4783	4784	4785	4786	4787	4788	4789	4790	4791	4792	4793	4794
55		SEQ NO.	1278	1279	1280	1281	1282	1283	1284	1285	1286	1287	1288	1289	1290	1291	1292	1293	1294

5		transporter				eduction	in periplasmic	se Zn(II)- Pase	se (ATP:GTP ase) (ppGpp	3Se			nase			na chain	chain	chain			chain	
10	Function	short-chain fatty acids transporter	regulatory protein			fumarate (and nitrate) reduction regulatory protein	mercuric transort protein periplasmic component precursor	zinc-transporting ATPase Zni translocating P-type ATPase	GTP pyrophosphokinase (ATP:GTP 3'-pyrophosphotransferase) (ppGpp synthetase I)	tripeptidyl aminopeptidase			homoserine dehydrogenase			nitrate reductase gamma chain	nitrate reductase delta chain	nitrate reductase beta o	hypothetical protein	hypothetical protein	nitrate reductase alpha chain	nitrate extrusion protein
15	Matched length (a.a.)	122	166			228	81	605	137	601			24			220	175	505	137	83	1271	461
20	Similarity (%)	2.69	56.6			57.9	66.7	706	58.4	49.3			98.0			9.69	63.4	83.4	48.0	55.0	73.8	67.9
	Identity (%)	37.7	24.7			25.0	33.3	38.0	32.9	26.6			95.0			45.0	30.3	56.6	36.0	36.0	46.9	32.8
25 (penuju	gene	olor	ni recS			MG1655 fnr	iens merP	MG1655		is tap			tamicum						APE1291	APE1289		narK
& Table 1 (continued)	Homologous gene	Streptomyces coelicolor SC1C2.14c atoE	Erwinia chrysanthemi recS			Escherichia coli K12 MG1655 fnr	Shewanella putrefaciens merP	Escherichia coli K12 MG1655 atzN	Vibrio sp. S14 relA	Streptomyces lividans tap			Corynebacterium glutamicum			Bacillus subtilis narl	Baciltus subtilis narJ	Bacillus subtilis narH	Aeropyrum pernix K1 APE1291	Aeropyrum pernix K1 APE1289	Bacillus subtilis narG	Escherichia coli K12 narK
<i>35</i>	atch	ECOLI	ERWCH E																			ECOLI
40	db Match	sp:ATOE_	sp:PECS_			SP.FNR_ECOLI	sp:MERP_SHEPU	sp. ATZN_ECOLI	sp:RELA_VIBSS	gsp:R80504			GSP:P61449			sp:NARI_BACSU	sp:NARJ_BACSU	sp:NARH_BACSU	PIR: D72603	PIR: B72603	sp:NARG_BACSU	sp:NARK_
	ORF (bp)	537	486	222	519	750	234	1875	630	1581	603	120	108	1260	069	777	732	1593	594	273	3744	1350
45	Terminal (nt)	1229180	1230480	1230831	1230914	1232479	1232836	1234881	1235612	1236545	1241554	1242156	1243728	1243942	1244843	1245720	1246508	.247199	1250444	1251817	1248794	1252557
50	Initial (nt)	1229716	1229995	1230610	1231432	1231730	1232603	1233007	4802 1234983	1238125	1242156	1242275	1243621	1245201	1245532	1246496	1247239	1248791	1249851	1251545	1252537	1253906
	SEQ NO. (a.a.)	4795	4796	4797	4798	4799	4800	4801		4803	4804	4805	4806	4807	4808	4809	4810	4811	4812	4813	4814	4815
55	SEQ NO. (DNA)	1295	1296	1297	1298	1299	1300	1301	1302	1303	1304	1305	1306	1307	1308	1309	1310	1311	1312	1313	1314	1315

				1			·	,	,											
5		Function	molybdopterin biosynthesis cnx1 protein (molybdenum cofactor biosynthesis enzyme cnx1)	extracellular serine protease precurosor		hypothelical membrane protein	hypothetical membrane protein	molybdopterin guanine dinucteolide synthase	mo.ybdoptein biosynthesis protein	molybdopterin biosynthsisi protein Moybdenume (mosybdenum cofastor biosythesis enzyme)	edium-chain fatty acid-CoA ligase	ctor				peptide chain release factor 1	protoporphyrinogen oxidase		hypothetical protein	undecaprenyl-phosphate alpha-N-acetylglucosaminyltransferase
			molyt protei biosy	extracellula precurosor		hypot	hypot	molybdop synthase	mojyb	molyb Moybe cofast	edium	Rho factor				peptid	protop		hypoth	undeca
15		Matched length (a.a.)	157	738		334	472	178	366	354	572	753				363	280		215	322
20		Similarity (%)	65.0	45.9		62.6	60.2	52.3	58.2	73.7	65.7	73.8				71.9	57.9		86.0	58.4
		Identi:y (%)	32.5	21.1		30.8	31.6	27.5	32.8	51.4	36.7	50.7				41.9	31.1		62.3	31.1
25	Table 1 (continued)	us gene	na CV cnx1	ens strain IFO-		berculosis	berculosis	ida mobA	berculosis noeA	na cnx2	ovorans	s rho				12 RF-1	12		percutosis	2 rfe
30	Table 1 (Homologous gene	Arabidopsis thaliana CV cnx1	Serratia marcescens strain IFO- 3046 prtS		Mycobacterium tuberculosis H37Rv Rv1841c	Mycobacterium tuberculosis H37Rv Rv1842c	Pseudomonas putida mobA	Mycobacterium tuberculosis H37Rv Rv0438c moeA	Arabidopsis thaliana cnx2	Pseudomonas oleovorans	Micrococcus luteus rho				Escherichia coli K12 RF-1	Escherichia coli K12		Mycobacterium tuberculosis H37Rv Rv1301	Escherichia coli K12 rfe
35		stch	<u> </u>	-																
40		db Match	sp:CNX1_ARATH	sp:PRTS_SERMA		sp:Y0D3_MYCTU	sp:Y0D2_MYCTU	gp:PPU242952_2	sp:MOEA_ECOL!	sp:CNX2_ARATH	sp:ALKK_PSEOL	sp:RHO_MICLU				sp:RF1_ECOLI	sp:HEMK_ECOLI		sp:YD01_MYCTU	sp.RFE_ECOLI
		ORF (bp)	489	1866	684	1008	1401	561	1209	1131	1725	2286	603	969	1023	1074	837	774	648 s	1146 s
45		Terminal (nt)	1254634	1254737	1257750	1256851	1257865	1259429	1259993	1261688	1262886	1267427	1266267	1265611	1265427	1268503	1269343	1268267	1270043	1271192
50		Initial (nt)	1254146	1256602	1257067	1257858	1259265	1259989	1261201	1262818	1264610	1265142	1265665	1266306	1266449	1267430	1268507	1269040	1269396	1270047
		SEQ NO. (a a.)	4816	4817	4818	4619	4620	4821	4822	4823	4824	4825	4826	4827	4828	4829	4830	4831	4832	4833
55		SEQ NO. (DNA)	1316	1317	1318	1319	1320	1321	1322	1323	1324	1325	1326	1327	1328	1329	1330	1331	1332	1333

EP 1 108 790 A2

thioredoxin

301

71.4

379

Mycobacterium tuberculosis H37Rv Rv1324

sp:YD24_MYCTU

921

1283114

1349 | 4849 | 1282194 |

					-pid	hain	lelta	Ilpha		eta				غ.			_
5	Function		'n	in a (protein 6)	TP synthase lig TP synthase C	TP synthase c	TP synthase d	TP synthase a	TP synthase	TP synthase b	ATP synthase	<u>:</u>	·Ē	-binding prote	<u>ci</u>	Ë	
10	Fun		hypothetical protein	ATP synthase chain	H+-transporting ATP synthase lipid- binding protein. ATP synthase C chane	H+-transporting ATP synthase chain b	H+-transporting ATP synthase delta chain	H+-transporting ATP synthase alpha chain	H+-transporting ATP synthase gamma chain	H+-transporting ATP synthase beta chain	H+-transporting A epsilon chain	hypothetical protein	hypothetical protein	putative ATP/GTP-binding protein	hypothetical protein	hypothetical protein	
15	Matched length (a.a.)		80	245	71	151	274	516	320	483	122	132	230	95	134	101	
20	Similarity (%)		99.0	56.7	85.9	6.99	67.2	88.4	9:92	100.0	73.0	67.4	85.7	56.0	68.7	79.2	
	Identity (%)		98.0	24.1	54.9	27.8	34.3	6.9	46.3	93.8	41.0	38.6	70.0	45.0	35.8	54.5	L
ontinued)	gene		utamicum	2 atpB	ns atpL	ns atpF	ns atpD	ins atpA	ins atpG	utamicum	ins atpE	erculosis	erculosis	color A3(2)	O	erculosis	
%	Homologous gene		Corynebacterium glutamicum atpl	Escherichia coli K12 atpB	Streptomyces lividans atpL	Streptomyces lividans atpF	Streptomyces lividans atpD	Streptomyces lividans atpA	Streptomyces lividans atpG	Corynebacterium glutamicum AS019 atpB	Streptomyces lividans atpE	Mycobacterium tuberculosis H37Rv Rv1312	Mycobacterium tuberculosis H37Rv Rv1321	Streptomyces coelicolor A3(2)	Bacillus subtilis yqjC	Mycobacterium tuberculosis H37Rv Rv1898	
35	db Match		GPU:AB046112_1	sp:ATP6_ECOLI	Sp.ATPL_STRLI	sp:ATPF_STRLI	SP.ATPD_STRLI	Sp.ATPA_STRLI	sp:ATPG_STRLI	sp:ATPB_CORGL	Sp.ATPE_STRL	sp:Y02W_MYCTU	sp:Y036_MYCTU	GP:SC26G5_35	sp:YQJC_BACSU	sp:YC20_MYCTU	
40	ORF (bp)	9		810 sp.A	240 sp.A.	†	6	4	S	0	372 sp:A		690 sp:Y(285 GP:S	453 sp:Y(312 sp:Y(L
		486	249	\vdash	 	564	91	167	97	144		471		-	-		
45	Terminal (nt)	1271698	1272119	1273149	1273525	1274122	1274943	1276648	1277682	1279136	1279522	1280240	1280959	1281251	1281262	1282105	
50	Initial (nt)	1271213	1271871	1272340	1273286	1273559	1274131	1274975	1276708	1277688	1279151	1279770	1280270	1280967	1281714	1281794	
	SEQ NO.	4834	4835	4836	4837	4838	4839	4840	4841	4842	4843	4844	4845	4846	4847	4848	
55	SEQ NO (DNA)	1334	1335	1336	1337	1338	1339	1340	1341	1342	1343	1344	1345	1346	1347	1348	

			T															
5	Function	FMNH2-dependent aliphatic sulfonate monooxygenase	alphatic sulfonates transport permease protein	alphatic sulfonates transport permease protein	sulfonate binding protein precursor	1,4-alpha-glucan branching enzyme (glycogen branching enzyme)	alpha-amylase		ferric enterobactin transport ATP- binding protein or ABC transport ATP-binding protein	hypothetical protein	hypothetical protein		electron transfer flavoprotein beta- subunit	electron transfer flavoprotein alpha subunit for various dehydrogenases		nitrogenase cofactor sythesis protein		hypothetical protein
15	Matched length	366	240	228	311	710	467		211	260	367		244	335		375		397
20	Similarity (%)	74.3	75.8	72.8	62.1	72.7	50.5		87.6	68.5	70.0		64.8	61.8		67.7		55.7
	Identity (%)	50.3	40.8	50.4	35.1	46.1	22.9		31.8	39.6	43.1		31.2	33.1		35.2		29.5
30 February 20	Homologous gene	Escherichia coli K12 ssuD	Escherichia coli K12 ssuC	Escherichia coli K12 ssuB	Escherichia coli K12 ssuA	Mycobacterium tuberculosis H37Rv Rv1326c glgB	Dictyoglomus thermophilum amyC		Escherichia coli K12 fepC	Mycobacterium tuberculosis H37Rv Rv3040c	Mycobacterium tuberculosis H37Rv Rv3037c		Rhizobium meliloti fixA	Rhizobium meliloti fixB		Azulobacter vinelandii nifS		Rhizobium sp. NGR234 plasmid pNGR234a y4mE
35		3 Esch		Esch	Escl	Mycc H37F	Dictyo		Esch	Mycc H37F	Myco H37F		Rhizo	Rhizo		Azolo		Rhizo pNGF
40	db Match	gp ECO237695_3	sp:SSUC_ECOLI	sp.SSUB_ECOLI	sp.SSUA_ECOLI	sp:GLGB_ECOLI	sp.AMY3_DICTH		sp.FEPC_ECOLI	pir C70860	pir:H70859		Sp:FIXA_RHIME	sp:FIXB_RHIME		sp.NIFS_AZOVI		sp.Y4ME_RHISN
	ORF (bp)	1143	768	729	957	2193	1494	348	879	804	1056	612	786	951	615	1128	312	1146
45	Terminal (nt)	1284466	1285284	1286030	1286999	1287281	1289514	1291373	1292577	1294025	1295206	1294436	1296220	1297203	1297093	1298339	1298342	1299000
50	Initial (nt)	1283324	1284517	1285302	1286043	1289473	1291007	1291026	1291699	1293222	1294151	1295047	1295435	1296253	1296479	1297212	1298653	1300145
	SEQ NO.	4850	4851	4852	4853	4854	4855	4856	4857	4858	4859	4860	4861	4862	4863	4864	4865	4866
<i>55</i>	SEQ NO.	1350	1351	1352	1353	1354	1355	1356	1357	1358	1359	1360	1361	1362	1363	1364	1365	1366

											,								
5		Function	transcriptional regulator	acetyltransferase				tRNA (5-methylaminomethyl-2- thiouridylate)-methyltransferase		hypothetical protein	tetracenomycin C resistance and export protin		DNA ligase (polydeoxyribonucleotide synthase [NAD+]	hypothetical protein	glutamyl-tRNA(Gin) amidotransferase subunit C	glutamyl-tRNA(Gin) amidotransferase subunit A	vibriobactin utilization protein / iron- chelator utilization protein	hypothetical membrane protein	pyrophosphatefructose 6- phosphate 1-phosphotransrefase
15		Matched length (a a)	59 (181				361		332 h	500		779	220 h	97 (9	484 g	263	96	358 p
20		Similarity (%)	76.3	55.3				6.08		66.0	65.8		70.6	6.07	64.0	83.0	54.0	79.2	6.77
	•	Identity (%)	47.5	34.8				618		33.7	30.2		42.8	40.0	53.0	74.0	28.1	46.9	54.8
25 30	Table 1 (continued)	Hemologous gene	Rhizobium sp. NGR234 plasmid pNGR234a Y4mF	Escherichia coli K12 MG1655 yhbS				Mycobacterium tuberculosis H37Rv Rv3024c		Mycobacterium tuberculosis H37Rv Rv3015c	Streptomyces glaucescens tcmA		Rhodothermus marinus dnlJ	Mycobacterium tuberculosis H37Rv Rv3013	Streptomyces coelicolor A3(2) gatC	Mycobacterium tuberculosis H37Rv gatA	Vibrio vulnificus viuB	Streptomyces coelicolor A3(2) SCE6.24	Amycolatopsis methanolica pfp
35								H3		My H3		_	i	Myo H37			Į. Vib	Stre	Am
40		db Match	SP:Y4MF_RHISN	sp:YHBS_ECOLI				pir.C70858		pir:870857	sp:TCMA_STRGA		sp:DNLJ_RHOMR	pir:H70856	sp:GATC_STRCO	sp:GATA_MYCTU	sp:VIUB_VIBVU	gp:SCE6_24	sp:PFP_AMYME
		ORF (bp)	225	504	942	1149	396	1095	654	066	1461	735	2040	663	297	1491	849	306	1071
45		Terminat (nt)	1300145	1301055	1300988	1301975	1303694	1304923	1303883	1305921	1305924	1307462	1310369	1310435	1311616	1313115	1314118	1314470	1316083
50		Initial (nt)	1300369	1300552	1301929	1303123	1303299	1303829	4873 1304536	1304932	1307384	1308196	1308330	1311097	1311320	1311625	1313270	1314775	1315013
		SEQ NO (a a)	4867	4868	4869	4870	4871	4872	4873	4874	4875	4876	4877	4878	4879	4880	4881	4882	4883
55		SEQ NO (DNA)	1367	1368	1369	1370	1371	1372	1373	1374	1375	1376	1377	1378	1379	1380	1381	1382	1383

1			<u> </u>	.⊑			_		· -		ω		Γ			Γ	Γ	
5	no		ımylase control proteir	-binding prote	ansport proteir	inding protein	ansport proteir		ding lipoproteir	cid transporter	dotransferase	dent NADH			ine protein		fratase	
10	Function		glucose-resistance amylase regulator (catabolite control protein)	ripose transport ATP-binding protein	high affinity ribose transport protein	periplasmic ribose-binding protein	high affinity ribose transport protein	hypothetical protein	iron-siderophore binding lipoprotein	Na-dependent bile acid transporter	RNA-dependent amidotransferase B	putative F420-dependent NADH reductase	hypothetical protein	hypothetical protein	hypothetical membrane protein		dihydroxy-acid dehydratase	hypothetical protein
15	Matched length (a a)		328	499 ri	329 h	305 p	139 h	200 h	354 ir	268 N	485 R	172 P	317 h	234 h	325 h		613 d	105 h
20	Similarity (%)		31.4	76.2	76.9	7.77	68.4	58.0	60.2	61.9	71.8	61.1	6.99	62.4	52.6		99.4	68.6
	Identify (%)		31.4	44.7	45.6	45.9	41.7	31.0	31.4	35.8	43.1	32.6	39.8	39.3	27.4		99.2	33.3
25 (panu	ne		φd	sA	31655	31655	31655	siae	,) NTCI	WHU 29	chii	jG	losis	losis		nicum	losis
S Table 1 (continued)	Homologous gene		Bacillus megaterium ccpA	Escherichia coli K12 rbsA	Escherichia coli K12 MG1655 rbsC	Escherichia coli K12 MG1655 rbsB	Escherichia coli K12 MG1655 rbsD	Saccharomyces cerevisiae YIR042c	Streptomyces coelicolor SCF34_13c	Rattus norvegicus (Rat) NTCI	Staphylococcus aureus WHU 29 ratB	Methanococcus jannaschii MJ1501 f4re	Escherichia coli K12 yajG	Mycobacterium tuberculosis H37Rv Rv2972c	Mycobacterium tuberculosis H37Rv Rv3005c		Corynebacterium glutamicum ATCC 13032 ilvD	Mycobacterium tuberculosis H37Rv Rv3004
35				Es	Esch	Esch rbsB	Esch rbsD	Sar	Str	Ra	Stap ratB	ĭ ĕ	Es	H3,	My H3		Col	H ₃
40	db Match		sp.ccpa_BACME	Sp.RBSA_ECOLI	sp:RBSC_ECOLI	Sp:RBSB_ECOLI	sp:RBSD_ECOLI	sp:YW2_YEAST	gp:SCF34_13	sp:NTCI_RAT	gsp W61467	sp:F4RE_METJA	sp:YQJG_ECOLI	pir:A70672	pir:H70855		gp:AJ012293_1	pir.G70855
	ORF (bp)	630	1107	1572	972	942	369	636	1014	1005	1479	672	1077	774	1056	237	1839	564
45	Terminat (nt)	1315325	1317444	1319005	1319976	1320942	1321320	1322111	1323406	1324537	1326256	1327049	1329891	1331875	1333008	1333188	1333442	1335412
50	Initial (nt)	1315954	1316338	1317434	1319005	1320001	1320952	1321476	1322393	1323533	1324778	1326378	1330967	1331102	1331953	1333424	1335280	1335975
	SEQ NC. (a a)	4884	4885	4886	4887	4888	4889	4890	4891	4892	4893	4894	4895	4896	4897	4898	4899	4900
55	SEQ NO (DNA)	1384	1385	1386	1387	1388	1389	1390	1391	1392	1393	1394	1395	1396	1397	1398	1399	1400

								_													
5	Function	hypothetical membrane protein	hypothetical protein		nitrate transport ATP-binding potein	mal:ose/maltodextrin transport ATP. binding protein	nitrate transporter protein			actinorhodin polyketide dimerase	cobalt-zinc-cadimium resistance protein			hypothetical protein		D-3-phosphoglycerate dehydrogenase	hypothetical serine-rich protein			hypothetical protein	
15	Matched length (a.a.)	62	99		167	87	324			142	304			642		530	105			620	
20	Similarity (%)	100.0	55.0		80.8	78.2	56.8			73.2	72.7			53.7		100.0	52.0			63.1	
	Identity (%)	100.0	45.0		50.9	46.0	28.1			39.4	39.1			22.9		99.8	29.0			32.9	
55 Table 1 (continued)	us gene	glutamicum	ricus		o. nrtD	genes enes) malK	iin PCC 7120			licolor	а сzcD			nnaschii		vum serA	yces pombe			ulatus strain	
Table 1 (Homologous gene	Corynebacterium glutamicum ATCC 13032 yilV	Sulfolobus solfataricus		Synechococcus sp. nrtD	Enterobacter aerogenes (Aerobacter aerogenes) malK	Anabaena sp. strain PCC 7120 nrtA			Streptomyces coelicolor	Ralstonia eutropha czcD			Methanococcus jannaschii		Brevibacterium flavum serA	Schizosaccharomyces pombe SPAC11G7.01			Rhodobacter capsulatus strain SB1003	
<i>35</i>	db Match		GP:SSU18930_26		SP NRTD_SYNP7	Sp.MALK_ENTAE	SP.NRTA_ANASP			Sp.DIM6_STRCO	sp.CZCD_ALCEU			sp:Y686_METJA		gsp:Y22646	SP:YEN1_SCHPO			PIR.T03476	
	ORF (bp)	1473 Sp	231 G	909	498 sp	267 SF	882 sp	447	369	486 sp	954 sp	153	069	1815 Sp	1743	1590 gs	327 SF	867	1062	1866 pii	402
45	Terminal (nt)	1336095	1338379	1342677	1341960	1342461	1342794	1344464	1344808	1345420	1346439	1345335	1345642	1348272	1350076	1352444	1351727	1353451	1354540	1357554	1356853
50	Initial (nt)	1337567	1338609	1342072	1342457	1342727	1343675	1344018	1344440	1344935	1345486	1345487	1346331	1346458	1348334	1350855	1352053	1352585	1355601	1355689	4920 1356452
	SEQ NO.	4901	4902	4933	4924	4905	4906	4937	4938	4939	4910	4911	4912	4913	4914	4915	4916	4917	4918	4919	
55	SEQ NO (DNA)	1401	1402	1403	1404	1405	1406	140?	1408	1409	1410	1411	1412	1413	1414	1415	1416	1417	1418	1419	1420

EP 1 108 790 A2

5			e catabolism lase fincludes: ene-1,7-dioate erase); 5- hex-3-ene-1,7-	3-0-	9.	tase	20													rotein
10	Function		homoprotocatechiuate catabolism bifunctional isomerase/decarboxylase [includes: 2-hydroxyhepta-2,4-diene-1,7-dioate isomerase(thdd isomerase); 5-carboxymethyl-2-oxo-hex-3-ene-1,7-dioate decarboxylase(opet	methyltransferase or 3-demethylubiquinone-9 3-O-methyltransferase	isochorismate synthase	glutamyl-tRNA synthetase	transcriptional regulator													thiamin biosynthesis protein
15	Matched length (a.a.)		228	192	371	485	29													599 t
20	Similarity (%)		59.2	55.7	70.4	69.7	90.0													81.0
25	Identity (%)		33.3	23.4	38.0	37.3	0.77	[-												65.1
os Table 1 (continued)	Homologous gene		I C hpcE	K12	dhbC	gltX	oelicolor A3(2)													thiA or thiC
able Table	Homolo		Escherichia coli C hpcE	Escherichia coli K12	Bacillus subtilis dhbC	Bacillus subtilis gltX	Streptomyces coelicolor A3(2)													Bacillus subtilis thiA or thiC
40	db Match		sp:HPCE_ECOLI	sp:UBIG_ECOLI	sp DHBC_BACSU	sp:SYE_BACSU	gp.SCJ33_10													sp. THIC_BACSU
	ORF (bp)	654	804	618	1128	1488	213	516	522	342	621	303	180	330	213	183	318	1152	324	1761
45	Terminal (nt)	1358210	1359062	1359669	1360168	1362848	1362926	1363142	1363732	1365256	1364340	1364878	1365217	1366137	1367505	1367888	1368395	1369551	1369874	1369877
50	Initial (nt)	1357557	1422 4922 1358259	1359052	1361295	1361361	1363138	1363657	1364253	1364915	1364960	1365180	1365396	1365808	1367293	1368070	1368078	1368400	1369551	1371637
	SEQ NO (a.a.)	4921	4922	4923	4924	4925	4926	4927	4928	4929	4930	4931	4932	4933	4934	4935	4936	4937	4938	4939
55	SEQ NO.	1421	1422	1423	1424	1425	1426	1427	1428	1429	1430	1431	1432	1433	1434	1435	1436	1437	1438	1439

								_													
5		עכ					ase				ne protein		5'-bis(diphosphate) 3'- lase	otein	hydratase large	hydratase small		((7,8-dihydro- phatase)(8- ie)		osphate	igase
10		Function			lipoprotein		glycogen phosphorylase			hypothetical protein	hypothetical membrane protein		guanosine 3',5'-bis(di pyrophosphatase	acetate repressor protein	3-isopropylmalate dehydratase large subunit	3-isopropylmalate dehydratase small subunit		mutator mutT protein ((7,8-dihydro- 8-oxoguanine-triphosphatase)(8- oxo-dGTPase)(dGTP pyrophosphohydrolase)		NAD(P)H-dependent dihydroxyacetone phosphate reductase	D-alanine-D-alanine ligase
15		Matched length (a.a.)			44		797			599	256		178	257	473	195		294		331	374
20		Similar.ty (%)			74.0		74.0			52.8	64.8		1.09	2.09	87.5	89.2		71.4		72.2	67.4
		Identity (%)			61.0		44.2			25.4	25.4		29.8	26.1	68.1	67.7		45.9		45.0	40.4
25	iinuea)	ene			S		it)				schii Y441		роТ	SIR	/ceticus	E		ulosis		İ	1G1655
30	rable i (cominued)	Homologous gene			Chlamydia trachomatis		Rattus norvegicus (Rat)			Bacillus subtilis yrkH	Methanococcus jannaschii Y441		Escherichia coli K12 spoT	Escherichia coli K12 iclR	Actinoplanes teichomyceticus leu2	Salmonella typhimurium		Mycobacterium tuberculosis H37Rv MLCB637.35c		Bacillus subtilis gpdA	Escherichia coli K12 MG1655 ddIA
35					Ch		Ra							Esc	Actin leu2						
40		db Match			GSP: Y37857		sp.PHS1_RAT			Sp. YRKH_BACSU	Sp:Y441_METJA		sp:SPOT_ECOLI	Sp.ICLR_ECOLI	sp:LEU2_ACTTI	sp:LEUD_SALTY		gp:MLCB637_35		sp:GPDA_BACSU	sp.DDLA_ECOLI
		ORF (bp)	348	531	132	936	2427	183	156	1407	750	477	564	705	1443	591	318	954	156	966	1080
45		Terminal (nt)	1371979	1373131	1373929	1375491	1373350	1375805	1375933	1376149	1377666	1378466	1379566	1379555	1381882	1382492	1382502	1382845	1384085	1385125	1386232
50		Initial (nt)	1372326	1372601	1373798	1374556	1375776	1375987	1376088	1377555	1378415	1378942	1379003	1380259	1380440	1381902	1382819	1383798	1383930	1384130	1385153
		SEQ NO. (a a)	4940	4941	4942	4943	4944	4945	4946	4947	4948	4949	4950	4951	4952	4953	4954	4955	4956	4957	4958
55		SEQ NO. (DNA)	1440	1441	1442	1443	1444	1445	1446	1447	1448	1449	1450	1451	1452	1453	1454	1455	1456	1457	1458

5	Function		le kinase	sylase precursor	nie	NA helicase	polypeptides predicted to be useful antigens for vaccines and diagnostics	rrier protein		lipopolysaccharide core biosynthesis protein		Neisserial polypeptides predicted to be useful antigens for vaccines and diagnostics	or glutamine ABC	l protein	glutamine-binding protein precursor		brane protein		
10	⊒Ē.		thiamin-phosphate kinase	uracil-DNA glycosylase precursor	hypothetical protein	ATP-dependent DNA helicase	polypeptides pred antigens for vacci diagnostics	biotin carboxyl carrier protein	methylase	lipopolysaccharid protein		Neisserial polyper be useful antigens diagnostics	ABC transporter or glutamine ABC transporter, ATP-binding protein	nopaline transport protein	glutamine-binding		hypothetical membrane protein		phage integrase
15	Matched length (aa)		335	245	568	693	108	29	167	155		65	252	220	234		322		223
20	Similarity (%)		57.6	59.6	56.3	0.09	48.0	67.2	63.5	78.7		74.0	78.6	75.0	59.0		60.3		52.5
25	Identity (%)		32.2	38.8	23.1	35.4	31.0	38.8	37.1	42.6		67.0	56.4	32.7	27.4		28.6		26.9
S Table 1 (continued)	Homologous gene		Escherichia coli K12 thil.	Mus musculus ung	Mycoplasma genitalium (SGC3) MG369	Escherichia coli K12 recG	Neisseria meningitidis	Propionibacterium freudenreichii subsp. Shermanii	Escherichia coli K12 yhhF	Escherichia coli K12 MG1655 kdtB		Neisseria gonorrhoeae	Bacillus stearothermophilus glnQ	Agrobacterium tumefaciens nocM	Escherichia coli K12 MG1655 glnH		Methanobacterium thermoautotrophicum MTH465		Bacteriophage L54a vinT
35			Escheric	Mus mu	Mycopla MG369	Escheric	Neisseri	Propioni subsp. S	Escheric	Escheric kdtB		Neisseria	Bacillus glnQ	Agrobaci nocM	Escheric glnH		Methano thermoat		Bacterion
40	db Match		sp:THIL_ECOLI	sp.UNG_MOUSE	sp:Y369_MYCGE	sp:RECG_ECOLI	GSP:Y75303	sp:BCCP_PROFR	Sp:YHHF_ECOLI	sp:KDTB_ECOLI		GSP:Y75358	sp:GLNQ_BACST	sp:NOCM_AGRT5	sp.GLNH_ECOLI		pir:H69160		sp.VINT_BPL54
	ORF (bp)	978	993	762	1581	2121	324	213	582	480	1080	204	750	843	861	807	978	408	756
45	Terminal (nt)	1386293	1388324	1389073	1390788	1392916	1391638	1393151	1393735	1394221	1395933	1395097	1394800	1395568	1396561	1398468	1398557	1401333	1400185
50	Initial (nt)	1387270	1387332	1388312	1389208	1390796	1391961	1392939	1393154	1393742	1394854	1394894	1395549	1396410	1397421	1397662	1399534	1400926	1400940
	SEQ NO.	4959	4960	4961	4962	4963	4964	4965	4966	4967	4968	4969	4970	4971	4972	4973	4974		4976
55	SEQ NO.	1459	1460	1461	1462	1463	1464	1465	1466	1467	1468	1469	1470	1471	1472 4	1473 4	1474	1475	1476 4

EP 1 108 790 A2

5	Function						(IS3 related)		٩											t protein	in	rogenase	
10	Fun						insertion element (IS3 related)		hypothetical protein										DNA polymerase l	cephamycin export protein	DNA-binding protein	morphine-6-dehydrogenase	
15	Matched length (a.a.)						56		37										968	456	283	284	
20	Similarity (%)						96.2		0.79										80.8	67.8	65.4	76.1	,
	Identity (%)						88.5		89.0										56.3	33.8	41.3	46.5	
25 (panuluu)	gene						itamicum		ıtamicum										culosis	idurans	olor A3(2)	morA	
ss os Table 1 (continued)	Homologous gene						Corynebacterium glutamicum orf2		Corynebacterium glutamicum										Mycobacterium tuberculosis polA	Streptomyces lactamdurans cmcT	Streptomyces coelicolor A3(2) SCJ9A. 15c	Pseudomonas putida morA	
40	db Match						pir:S60890		PIR:S60890										sp:DPO1_MYCTU	sp:CMCT_NOCLA	gp:SCJ9A_15	sp:MORA_PSEPU	
	ORF (bp)	744	432	507	864	219	192	855	111	369	315	321	375	948	306	564	222	291	2715	1422	606	873	159
45	Terminal (nt)	1402076	1402703	1402368	1403991	1404215	1404694	1405320	1406999	1407167	1407559	1408703	1409428	1410064	1411119	1411437	1412572	1412626	1416459	1416462	1418870	1419748	1419878
50	Initial (nt)	1401333	1402272	1402874	1403128	1403997	1404885	1406174	1407109	1407535	1407873	1409023	1409802	1411011	1411424	1412000	1412351	1412916	1413745	1417883	1417962	1418876	1420036
	SEQ NO. (a.a)	4977	4978	4979	4980	4981	4982	4983	4984	4985	4986	4987	4988	4989	4990	4991	4992	4993	4994	4995	4996	4997	4998
55	SEQ NO. (DNA)	1477	1478	1479	1480	1481	1482	1483	1484	1485	1486	1487	1488	1489	1490	1491	1492	1493	1494	1495	1496	1497	1498

EP 1 108 790 A2

5	Function	hypothetical protein	30S ribosomal protein S1		hypothetical protein					inosine-uridine preferring nucleoside hypolase (purine nucleosidase)	aniseptic resistance protein	ribose kinase	criptic asc operon repressor, ranscription regulator		excinuclease ABC subunit B	hypothetical protein	hypothetical protein	hypothetical protein		hypothetical protein	hypothetical protein	hydrolase
15	Matched length (a.a.)	163 hyp			195 hур					310 inos hyp	517 anis	293 ribo	337 crip		671 exc	152 hyp	121 hyp	279 hyp		839 hyp	150 hyp	214 hyd
		Ψ.	451		<u> </u>	_				3.	2,	56	3		9	**	1,	2		9.	*	2,
20	Similarity (%)	58.3	71.4		93.9					81.0	53.8	67.6	65.6		83.3	59.2	80.2	1722		47.2	0.89	58.4
	Identity (%)	31.9	39.5		80.5					61.9	23.6	35.5	30.0		57.4	33.6	38.8	53.8		23.2	32.7	30.4
25 (pənu	ne	ľ	sA		mentum					I		sK	933		níae	chii	H	S)			r A3(2)	占
8 Table 1 (continued)	Homologous gene	Streptomyces coelicolor SCH5.13 yafE	Escherichia coli K12 rpsA		Brevibacterium lactofermentum ATCC 13859 yacE					Crithidia fasciculata iunH	Staphylococcus aureus	Escherichia coli K12 rbsK	Escherichia coli K12 ascG		Streptococcus pneumoníae plasmid pSB470 uvrB	Methanococcus jannaschii MJ0531	Escherichia coli K12 ytfH	Escherichia coli K12 ytfG		Bacillus subtilis yvgS	Streptomyces coelicolor A3(2) SC9H11.26c	Escherichia coli K12 ycbL
35			Ш								<u> </u>	T								æ		
40	db Match	sp:YAFE_ECOLI	Sp.RS1_ECOLI		sp:YACE_BRELA					sp:IUNH_CRIFA	sp.QACA_STAAU	SP. RBSK_ECOLI	sp.ASCG_ECOLI		sp:UVRB_STRPN	sp:Y531_METJA	SP.YTFH_ECOLI	sp:YTFG_ECOL		pir.H70040	gp:SC9H11_26	Sp:YCBL_ECOLI
	ORF (bp)	654	1458	1476	009	1098	582	246	957	936	1449	921	1038	798	2097	441	381	846	684	2349	912	000
45	Terminal (nt)	1420071	1422556	1421096	1425878	1427354	1427376	1427804	1429246	1428224	1429194	1430659	1431575	1433547	1436201	1436775	1436869	1438201	1440026	1438212	1440675	1441793
50	Initial (nt)	1420724	1421099	1422571	1425279	1426257	1427957	1428049	1428290	1429159	1430642	1431579	1432612	1432750	1434105	1436335	1437249	1437356	1439343	1440560	1441586	1442392
	SEO NO (a.a.)	4999	2000	5001	5005	5003	5004	5005	5006		5008	5009	5010	5011	5012	5013	5014	5015	5016	5017	5018	5019
55	SEO NO.	1499	1500	1501	1502	1503	1504	1505	1506	1507	1508	1509	1510	1511	1512	1513	1514	1515	1516	1517	1518	1519

10	Function	excinuclease ABC subunit A	hypothetical protein 1246 (uvrA region)	hypothetical protein 1246 (uvrA region)			translation initiation factor IF-3	50S ribosomal protein L35	50S ribosomal protein L20			sn-glycerol-3-phosphate transport system permease protein	sn-glycerol-3-phosphate transport system protein	sn-glycerol-3-phosphate transport system permease proein	sn-glycerol-3-phosphate transport ATP-binding protein	hypothetical protein	glycerophosphoryl diester phosphodiesterase	tRNA(guanosine-2'-0-)- methlytransferase	phenylalanyl-tRNA synthetase alpha chain
15	Matched length (a.a.)	952 e:	100	142 hy			179 tra	60 50	117 50			292 st	270 sr s)	436 sr	393 Sr	74 hy	244 g ^l	153 tR	10 to
20	Similarity (%)	9.08	57.0	47.0			78.2	7.97	92.7			71.6	70.4	57.6	71.3	56.0	50.0	71.2	
	Identity (%)	56.2	40.0	31.0			52.5	41.7	75.0			33.2	33.3	26.6	44.0	47.0	26.2	34.0	
25 (pe							infC		٠.			655	655	655	655	0042		655	
% % % % % % % % % % % % % % % % % % %	Homologous gene	Escherichia coli K12 uvrA	Micrococcus luteus	Micrococcus Iuteus			Rhodobacter sphaeroides infC	Mycoplasma fermentans	Pseudomonas syringae pv. syringae			Escherichia coli K12 MG1655 ugpA	Escherichia coli K12 MG1655 upgE	Escherichia coli K12 MG1655 ugpB	Escherichia coli K12 MG1655 ugpC	Aeropyrum pernix K1 APE0042	Bacillus subtilis glpQ	Escherichia coli K12 MG1655 trmH	Bacillus subtilis 168 syfA
40	db Match	sp:UVRA_ECOLI	PIR:JQ0406	PIR:JQ0406			sp:IF3_RHOSH	Sp.RL35_MYCFE	sp:RL20_PSESY			sp:UGPA_ECOLI	sp:UGPE_ECOLI	sp:UGPB_ECOL!	sp:UGPC_ECULI	PIR:E72756	sp.GLPQ_BACSU	sp:TRMH_ECOL!	sp.SYFA_BACSU
	ORF (bp)	2847	306	450	717	2124	267	192	381	822	567	903	834	1314	1224	249	717	594	1020
45	Terminal (nt)	1445333	1443810	1444944	1446874	1445323	1448358	1448581	1449025	1449119	1450692	1451820	1452653	1454071	1455338	1454102	1455350	1456948	1458066
50	Initial (nt)	1442487	1444115	1445393	1446158	1447446	1447792	1448390	1448645	1449940	1450126	1450918	1451820	1452758	1454115	1454350	1456056	1456355	1457047
	SEO NO. (a.a.)	5020	5021	5022	5023	5024	5025	5026	5027	5028	5029	5030	5031	5032	5033	5034	5035	5036	5037
55	SEQ NO. (DNA)	1520	1521	.522	1523	1524	1525	1526	1527	1528	1529	1530	1531	:532	.533	1534	1535	1536	1537

hypothetical protein

phenylalanyl-tRNA synthetase beta chain N-acetylglutamate-5-semialdehyde dehydrogenase acetylornithine aminotransferase tyrosyl-tRNA synthase (tyrosine--tRNA ligase) macrolide 3-O-acyltransferase glutamate N-acetyltransferase argininosuccinate synthetase argininosuccinate lyase Function hypothetical protein hypothetical protein esterase Matched length (a.a.) Similarity 71.7 99.5 90.0 72.0 79.6 64.4 75.0 55.1 56. Identity (%) 42.6 99.0 83.3 71.0 S 26. 48. 26. Escherichia coli K12 MG1655 syfB Corynebaclerium glutamicum ASO19 argC Corynebacterium glutamicum ATCC 13032 argD Table 1 (continued) Corynebacterium glutamicum ATCC 13032 argJ Streptomyces mycarofaciens mdmB Corynebacterium glutamicum ASO19 argG Corynebacterium glutamicum ASO19 argH Streptomyces scables estA Chlamydia muridarum Nigg TC0129 fomologous gene Escherichia coli K12 yoaR Methanococcus jannaschii MJ0531 Bacillus subtilis syy1 Sp:MDMB_STRMY Sp.ESTA_STRSC sp:ARGD_CORGL sp:ARGJ_CORGL sp:ASSY_CORGL SP:YCAR_ECOLI ECOLI sp:SYY1_BACSU sp:Y531_METJA gp:AF005242_1 gp:AF048764_1 db Match PIR:F81737 sp:SYFB_ ORF (bp) Terminal 14/7929 <u>=</u> 5040 | 1461157 Initial (nt) SEO No (a a.) (ANC)

5	c		actor IF-2								ammonia			P-binding	ing protein or ctive bacterial			ferase		nit se B
10	Function	hypothetical protein	translation initiation factor IF-2	hypothetical protein		hypothetical protein	hypothetical protein	DNA repair protein	hypothetical protein	hypothetical protein	CTP synthase (UTP-ammonia ligase)	hypothetical protein	tyrosine recombinase	tyrosin resistance ATP-binding protein	chromosome partitioning protein or ATPase involved in active partitioning of diverse bacterial plasmids	hypothelical protein		thiosulfate sulfurtransferase	hypothetical protein	ribosomal large subunit pseudouridine synthase B
15	Matched fength (a.a.)	84	182	311		260	225	574	394	313	549	157	00E	551	258	251		270	172	229
20	Similarity (%)	99.0	67.0	60.1		9.69	31.6	63.4	73.1	68.1	7.97	71.3	71.7	59.7	73.6	64.5		0.73	65.7	72.5
25	Identity (%)	61.0	36.3	29.6		38.5	31.6	31.4	41.9	30.4	55.0	36.3	39.7	30.5	44.6	28.3		35.6	33.1	45.9
25 Table 1 (continued)	Homologous gene	Chlamydia pneumoniae	Borrelia burgdorferi IF2	Bacillus subtilis yzgD		Bacillus subtilis yqxC	Mycobacterium tuberculosis H37Rv Rv1695	Escherichia coli K12 recN	Nycobacterium tuberculosis H37Rv Rv1697	Mycobacterium tuberculosis H37Rv Rv1698	Escherichia coli K12 pyrG	Bacillus subtilis yqkG	Staphylococcus aureus xerD	Streptomyces fradiae tIrC	Caulobacter crescentus parA	Bacillus subtilis ypuG		Datisca glomerata tst	Bacillus subtilis ypuH	Bacillus subtilis rluB
40	db Match	GSP:Y35814	sp:/F2_BORBU	sp.YZGD_BACSU		sp:Yaxc_BACSU	sp.YFJB_HAEIN	SP.RECN_ECOLI	pir:H70502	pir.A70503	sp.PYRG_ECOLI	sp:YOKG_BACSU	gp.AF093548_1	sp:TLRC_STRFR	gp CCU87804_4	sp.YPUG_BACSU		gp:AF109155_1	sp:YPUH_BACSU	sp:RLUB_BACSU
	ORF (bp)	273	1353	984	162	819	873	1779	1191	963	1662	657	912	1530	783	765	561	298	543	756
45	Terminal (nt)	1483724	1486027	1487025	1487193	1488056	1489018	1490881	1492134	1493109	1495174	1495861	1496772	1496795	1499645	1500695	1500911	1502576	1503176	1504238
50	Initial (nt)	1483996	1484675	1486042	1487032	1487238	5062 1488146	1489103	1490944	1492147	1493513	1495205	1495861	1498324	5070 1498863	1499931	1501471	1501710	1502634	1503483
	SEQ NO.	5057	5058	5059	5060	5061	5062	5063	5064	5905	9909	5067	5068	6905	5070	5071	5072	5073	5074	5075
55	SEQ NO.	1557	1558	1559	1560	1561	1562	1563	1564	1565	1566	1567	1568	1569	1570	1571	1572	1573	1574	1575

		т—			_															
5	Function	cytidylate kinase	GTP binding protein			methyltransferase	ABC transporter	ABC transporter		hypothetical membrane profein		Na+/H+ antiporter			hypothetical protein	2-hydroxy-6-oxohepta-2,4-dienoate hydrolase	preprotein translocase SecA subunit	signal transduction protein	hypothetical protein	hypothetical protein
15	Matched length (a a)	220	435			232	499	602 /		257		499			130 h	210 2	805 p	132 \$	234 h	133 h
20	Similarity (%)	736	74.0			67.2	60 1	563		73.2		61.5			57.7	63.8	61.7	93.2	74.4	63.2
	Identity (%)	38.6	42.8			36.2	29.7	31.2		39.7		25.7			36.9	25.2	35.2	75.8	41.9	30.8
<i>25</i> (pa						Sis	M82B	M82B				2			6	-0675		garA	<u>.v</u>	<u>s</u>
ss os Table 1 (continued)	Homologous gene	Bacillus subtilis cmk	Bacillus subtilis yphC			Mycobacterium tuberculosis Rv3342	Corynebacterium striatum M82B tetA	Corynebacterium striatum M82B tetB		Escherichia coli K12 ygiE		Bacillus subtilis ATCC 9372 nhaG			Escherichia coli K12 o249#9 ychJ	Archaeoglobus fulgidus AF0675	Bacillus subtilis secA	Mycobacterium smegmatis garA	Mycobacterium tuberculosis H37Rv Rv1828	Mycobacterium tuberculosis H37Rv Rv1828
40	db Match	sp.KCY_BACSU	sp.YPHC_BACSU			sp:YX42_MYCTU	pri.2513302B	prf 2513302A		Sp.YGIE_ECOLI		gp:A8029555_1			sp:YCHJ_ECOLI	pir C69334 /	5	gp:AF173844_2 N	sp:YODF_MYCTU N	sp.Yobe_MYCTU
	ORF (bp)	069	1557	999	498	813	1554	1767	825	789	189	1548	186	420	375	1164	_	429	756	633
45	Terminal (nt)	1504945	1506573	1506662	1507405	1507917	1510366	1512132	1510843	1512977	1514693	1512980	1514974	1515815	1515408	1515799	1519458	1520029	1520945	1521589
50	Initial (nt)	1504256	1505017	1507327	1507902	1508729	1508813	1510366	1511667	1512189	1514505	1514527	1515159	1515396	1515782		1517170	1519601	1520190	1520957
	SEQ NO (a.a.)	5076	5077	5078	5079	5080	5081	5082	5083	5084	5085	5086	5087	5088	5089		5091	5092	5093	5094
55	SEQ NO (DNA)	1576	1577	1578	1579	1580	1581	1582	1583	1584	1585	1586	1587	1588	1589	1590	1591	1592	1593	1594

5		Function	hypothetical protein					hemolysin	hemolysin		DEAD box RNA helicase	ABC transporter ATP-binding protein	6-phosphogluconate dehydrogenase	thioesterase		nodulation ATP-binding protein I	hypothetical membrane protein	transcriptional regulator	phosphonates transport system permease protein	phosphonates transport system permease protein	phosphonates transport ATP-binding protein		
15		Matched fength (a.a.)	178					342	65		374	245	492	121		235	232	277	281	268	250		
20		Similarity (%)	84.3					0.69	65.5		69.5	66.1	99.2	67.8		68.1	76.3	63.9	63.4	62.3	72.0		
		Identity (%)	714					33.9	31.4		41.2	34.3	0.66	39.7		39.6	43.1	26.7	29.9	27.2	44.8		
25 30	lable i (continued)	Homologous ge∽e	Mycobacterium fuberculosis H37Rv Rv1828					tilis yhdP	tilis yhdT	:	Thermus thermophilus herA	Mycobacterium tuberculosis H37Rv Rv1348	um flavum	Mycobacterium tuberculosis H37Rv Rv1847		p. N33 nod!	Mycobacterium tuberculosis H37Rv Rv1686c	Escherichia coli K12 yfhH	Escherichia coli K12 phnE	Escherichia coli K12 phnE	Escherichia coli K12 phnC		
35	lab	Hom	Mycobacterium 1 H37Rv Rv1828					Bacillus subtilis yhdP	Bacillus subtilis yhdT			Mycobacteri H37Rv Rv13	Brevibacterium flavum	Mycobacterium H37Rv Rv1847		Rhizobium sp. N33 nod!	Mycobacterium t H37Rv Rv1686c	Escherichia	Escherichia	Escherichia	Escherichia		
40		db Match	sp:Y0DE_MYCTU					sp:YHDP_BACSU	SP:YHDT_BACSU		9P:TTHERAGEN_1	sp.YD48_MYCTU	gsp:W27613	pir.G70664		sp.NODI_RHIS3	pir.E70501	sp.YFHH_ECOLI	sp:PHNE_ECOL)	sp:PHNE_ECOLI	sp.PHNC_ECOLI		
		ORF (bp)	573	510	1449	909	930	1062	1380	219	1344	735	1476	462	675	741	741	873	846	904	804	210	1050
45		Terminal (nt)	1522343	1522432	1523052	1525973	1524568	1525473	1526534	1528186	1527987	1530220	1530341	1532394	1532996	1533781	1534521	1534529	1535382	1536227	1537030	1538968	1537870
50		Initial (nt)	1521771	1522941	1524500	1525374	1525497	1526534	5101 1527913	1527968	1529330	1529486	1531816	1531933	1532322	1533041	1533781	1535401	5111 1536227	1537030	1537833	1538759	1538919
		SEQ NO.	5095	5096	5097	5098	5099	5100		5102	5103	5104	5105	5106	5107	5108	5109	5110	5111	5112	5113	5114	5115
55		SEQ NO. (DNA)	1595	1596	1597	1598	1599	1600	1601	1602	1603	1604	1605	1606	1607	1608	1609	1610	1611	1612	1613	1614	1615

secretory lipase

392

55.6

23.7

Candida albicans lip1

gp:AF188894 1

1224

1560437

1561660

cyclopropane-fatty-acyl-phospholipid synthase arsenic oxyanion-translocation pump membrane subunit purine phosphoribosyltransferase phosphomethylpyrimidine kinase apolipoprotein N-acyltransferase sugar transporter or 4-methyl-o-phthalate/phthalate permease 5 dolichol phosphate mannose synthase hydoxyethylthiazole kinase Function hypothetical protein hypothetical protein hypothetical protein hypothetical protein sulfate permease 10 15 Matched length (a.a) 262 249 206 468 156 222 469 100 451 217 361 97 527 Similarity (%) 70.2 77.5 6.9 59.0 68.5 54.6 83.8 83.6 50.0 71.0 55.6 87.3 55 20 Identity (%) 47.3 46.6 28.6 32.5 36.5 39.8 23.3 51.8 62.2 71.8 39.2 39 25. 25 Streptomyces coelicolor A3(2) SCI7,33 Table 1 (continued) Salmonella typhimurium thiD Schizosaccharomyces pombe dpm1 Salmonella typhimurium LT2 thiM Pseudomonas sp. R9 ORFA R9 ORFG Mycobacterium tuberculosis H37Rv ufaA1 Burkholderia cepacia Pc701 mopB Sinorhizobium sp. As4 arsB Mycobacterium tuberculosis Thermus flavus AT-62 gpt Escherichia coli K12 yebN Homologous gene Escherichia coli K12 Int Pseudomonas sp. 30 H37Rv Rv2050 35 GP.PSTRTETC1_7 gp:PSTRTETC1 6 Sp. YEBN_ECOLI Sp:THID_SALTY SP:THIM_SALTY gp AF178758_2 db Match SP LNT_FCOLI рг 2223339В prf 2120352B prf.2317468A gp.SCI7_33 pir.H70830 pir:A70945 40 1584 1386 1314 1455 ORF (bp) 474 669 702 966 693 426 1635 804 615 750 396 810 483 207 189 741 Terminal (nt) 1549349 1553972 1555086 45 1538963 1539820 1542119 1546289 1546307 1547967 1550398 1552237 1554070 1555067 1559497 1550951 1553297 1554891 1557014 1557859 1556771 1541403 1556376 1539664 1542922 1544976 1547692 1548440 1549403 1551545 5126 | 1552518 1548651 1550469 1555835 1557823 5127 1553722 1554684 1554861 5130 | 1555079 1559493 1560237 Initial (nt) 50 5117 5119 5120 5129 5116 5118 5122 5121 5123 5125 5128 SEQ. (a.a) 5124 5131 5132 5133 5134 5135 5136 1617 (DNA) 1616 1618 1619 1622 1620 1623 1624 1626 1628 1629 1621 1625 1627 1630 1631 1636 1632 1633 1634 1635 55

	5		Function	precorrin 2 methyltransferase	precorrin-6Y C5, 15 methyltransferase			oxidoreductase	dipeptidase or X-Pro dipeptidase		ATP-dependent RNA helicase	sec-independent protein translocase protein	hypothetical protein	hypothetical protein	hypothetical protein	hypothetical protein		hypothetical protein	hypothetical protein	hypothetical protein
	15		Matched length (a a)	291	411			244	382		1030	268	85	317	324	467		61	516	159
	20		Similarity (%)	56.7	60.8			75.4	61.3		55.7	62.7	69.4	61.2	64.8	17.3		80.3	74.2	50.0
			Identity (%)	31.3	32.4			54.1	36.1		26.5	28.7	44.7	31.9	32.4	53.1		54.1	48.6	42.0
	<i>25</i>	nen)	a	osis	ns			Sis	111		36			sis		sis		sis	sis	E2014
	30 Table 1 (ronline)	lable i (conur	Homologous gene	Mycobacterium tuberculosis H37Rv cobG	Pseudomonas denitrificans SC510 cobt.			Mycobacterium tuberculosis H37Rv RV3412	Streptococcus mutans LT11 pepQ		Saccharomyces cerevisiae YJL050W dob1	Escherichia coli K12 tatC	Mycobacterium leprae MLCB2533.27	Mycobacterium tuberculosis H37Rv Rv2095c	Mycobacterium leprae MLCB2533.25	Mycobacterium tuberculosis H37Rv Rv2097c		Mycobacterium tuberculosis H37Rv Rv2111c	Mycobacterium tuberculosis H37Rv Rv2112c	Aeropyrum pernix K1 APE2014
	35			H3														My H3	My H3	Aei
	40		db Match	pir:C70764	sp:COBL_PSEDE			sp:YY12_MYCTU	gp.AF014460_1		sp:MTR4_YEAST	sp:TATC_ECOLI	sp:YY34_MYCLE	sp:YY35_MYCTU	sp:YY36_MYCLE	sp:YY37_MYCTU		pir:870512	pir:C70512	PIR:H72504
		-	ORF (bp)	774	1278	366	246	738	1137	638	2787	1002	315	981	972	1425	249	192	1542	480
	45		Terminal (nt)	1562553	1562525	1564237	1564482	1564565	1565302	156/106	1567117	1569932	1571068	1571506	1572492	1573491	1575205	1574945	1575406	1577805
,	50		Initial (nt)	1561780	1563802	1563872	1564237	1565302	1566438	1566468	1569903	1570933	1571382	1572486	1573463	1574915	1574957	1575136	1576947	1577327
			SEQ NO (a.a.)	5137	5138	5139	5140	5141	5142	5143	5144	5145	5146	5147	5148	5149	5150	5151	5152	5153
	55		SEQ NO (DNA)	1637	1638	1639	1640	1641	1642	1643	1644	1645	1646	1647	1648	1649	1650	1651	1652	1653

5	
10	
15	
20	
25	
30	
35	
40	
45	
50	

Table 1 (continued)

Function	AAA family ATPase (chaperone-like function)	protein-beta-aspartate methyltransferase	aspartyl aminopeptidase	hypothetical protein	virulence-associated protein	quinolon resistance protein	aspartate ammonia-Iyase	ATP phospharibosyltransferase	beta-phosphoglucomutase	5-methyltetrahydrofolate homocysteine methyltransferase		alkyl hydroperoxide reductase subunit F	arsenical-resistance protein	arsenate reductase	arsenate reductase		cysteinyl-tRNA synthetase
Matched length (a.a.)	545	281	436	269	69	385	526	281	195	1254		366	388	129	123		387
Similarity (%)	78.5	79.0	67.2	71.4	72.5	61.0	9.66	97.5	63.1	62.4		49.5	63.9	64.3	75.6		64.3
Identity (%)	51.6	57.3	38.1	45.4	40.6	21.8	8.66	8.96	30.8	31.6		22.4	33.0	32.6	47.2		35.9
Hornologous gene	Rhodococcus erythropolis arc	Mycobacterium leprae pimT	Homo sapiens	Mycobacterium tuberculosis H37Rv Rv2119	Dichelobacter nodosus A198 vapl	Staphylococcus aureus norA23	Corynebacterium glutamicum (Brevibacterium flavum) MJ233 aspA	Corynebacterium glutamicum ASO19 hisG	Thermotoga maritima MSB8 TM1254	Escherichia coli K12 melH		Xanthomonas campestris ahpF	Saccharomyces cerevisiae S288C YPR201W acr3	Staphylococcus aureus plasmid pl258 arsC	Mycobacterium tuberculosis H37Rv arsC		Escherichia coli K12 cysS
db Match	prf.2422382Q	pir:S72844	gp:AF005050_1	pir.B70513	sp:VAPI_BACNO	prf:2513299A	sp:ASPA_CORGL	gp:AF050166_1	pir:H72277	sp:METH_ECOLI		sp:AHPF_XANCH	sp:ACR3_YEAST	sp:ARSC_STAAU	pir.G70964		sp SYC_ECOLI
ORF (bp)	1581	834	1323	834	264	1209	1578	843	693	3663	570	1026	1176	420	639	378	1212
Terminal (nt)	1576951	1578567	1579449	1581640	1582114	1582273	1583913	1585603	1586812	1587573	1591912	1591941	1594512	1594951	1595668	1595844	1596249
Initial (nt)	1578531	1579400	1580771	1580807	1581851	1583481	1585490	1586445	1587504	1591235	1591343	1592966	1593337	1594532	1595030	159621	1597460
SEQ NO.	5154	5155	5156	5157	5158	5159	5160	5161	5162	5163	5164	5165	5166	5167	5168	5169	5170
SEQ NO. (DNA)	1654	1655	1656	1657	1658	1659	1660	1661	1562	1663	1664	1665	1666	1667	1668	1669	1670

123

5	
10	
15	
20	
25	
30	
35	
40	
45	
50	

Table 1 (continued)

Function	bacitracin resistance protein	oxidoreductase	lipopratein	dihydroorotate dehydrogenase			transposase		bio operon ORF I (biotin biosynthetic enzyme)	Neisserial polypeptides predicted to be useful antigens for vaccines and diagnostics		ABC transporter		ABC transporter		puromycin N-acetyltransferase	LAO(lysine, arginine, and ornithine)/AO (arginine and ornithine)/ransport system kinase	methylmalonyl-CoA mutase alpha subunit
Matched length (a.a.)	255	326	359	334			360		152	198		597		535		56	339	741
Similarity (%)	69.4	62.6	53.5	67.1			55.3		75.0	33.0		58.7		67.1		56.4	72.3	87.5
Identity (%)	37.3	33.4	27.0	44.0			34.7		44.1	26.0		43.6		36.8		32.4	43.1	72.2
Homologaus gene	Escherichia coli K12 bacA	Agrobacterium tumefaciens mocA	Mycobacterium tuberculosis H37Rv lppL	Agrocybe aegerita ura1			Pseudomonas syringae tnpA		Escherichia coli K12 ybhB	Neisseria meningitidis		Corynebacterium striatum M82B tetB		Corynebacterium striatum M82B tetA		Streptomyces anulatus pac	Escherichia coli K12 argK	Streptomyces cinnamonensis A3823.5 mutB
db Match	sp.BACA_ECOLI	prf.2214302F	pir:F70577	SP.PYRD_AGRAE			110 gp.PSESTBCBAD_		sp:YBHB_ECOLI	GSP:Y74829		prf.2513302A		prf.2513302B		pir.JU0052	sp:ARGK_ECOLI	2211 sp:MUTB_STRCM
ORF (bp)	879	948	666	1113	351	807	1110	486	531	729	603	1797	249	1587	351	609	1089	2211
Terminal (nt)	1597745	1599614	1600677	1601804	1601931	1603466	1604629	1604830	1605281	1606689	1608248	1605861	1609335	1607661	1609842	1610844	1611150	1612234
Initial (nt)	1598623	1598667	1599679	1600692	1602281	1602660	1603520	1605315	1605811	1605961	1607646	1607657	1609087	1609247	1610192	1610236	1612238	1614444
SEQ NO.	5171	5172	5173	5174	5175	5176	5177	5178	5179	5180	5181	5182	5183	5184	5185	5186	5187	5188
SEQ NO. (DNA)	1671	1672	1673	1674	1675	1676	1677	1678	1679	1680	1681	1682	1683	1684	1685	1686	1687	1688

								,				,							
5			nutase beta	ne protein		ne protein	ne protein							or					
10		Function	methylmalonyl-CoA mutase beta subunit	hypothetical membrane protein		hypothetical membrane protein	hypothetical membrane protein	hypothetical protein		ferrochelatase	invasin		aconitate hydratase	transcriptional regulator	GMP synthetase	hypothetical protein	hypothetical protein		hypothetical protein
15		Matched length (a.a.)	610	224		370	141	261		364	611		959	174	235	221	986		446
20		Similarity (%)	68.2	70.1		87.0	78.7	72.8		65.7	56.5		85.9	81.6	51.9	62.0	80.2		1.98
		Identity (%)	41.6	39.7		64.1	44.7	51.0		36.8	25.5		6.69	54.6	21.3	32.6	37.2		61.2
25 30	Table 1 (continued)	Homologous gene	Streptomyces cinnamonensis A3823.5 mutA	Mycobacterium tuberculosis H37Rv Rv1491c		Mycobacterium tuberculosis H37Rv Rv1488	Mycobacterium tuberculosis H37Rv Rv1487	Streptomyces coelicolor A3(2) SCC77.24		Propionibacterium freudenreichii subsp. Shermanii hemH	Streptococcus faecium		Mycobacterium tuberculosis H37Rv acn	Mycobacterium tuberculosis H37Rv Rv1474c	Methanococcus jannaschii MJ1575 guaA	Streptomyces coelicolor A3(2) SCD82.04c	Methanococcus jannaschii MJ 1558		Neisseria meningitidis MC58 NMB1652
<i>35</i>	Tak	Нод	Streptomyces A3823.5 mutA	Mycobacterium t H37Rv Rv1491c		Mycobacterium H37Rv Rv1488	Mycobacterium H37Rv Rv1487	Streptomyc SCC77.24		Propionibac subsp. Sher	Streptococo		Mycobacter H37Rv acn	Mycobacterium t H37Rv Rv1474c	Methanococci MJ1575 guaA	Streptomyc SCD82.04c	Methanococ MJ1558		Neisseria m NMB1652
40		db Match	sp:MUTA_STRCM	sp:YS13_MYCTU		sp:YS09_MYCTU	pir B70711	gp SCC77_24		sp.HEMZ_PROFR	sp:P54_ENTFC		pir.F70873	pir.E70873	pir:F64496	gp:SCD82_4	pir.E64494		gp:AE002515_9
		ORF (bp)	1848	723	597	1296	435	843	783	1110	1800	498	2829	564	756	663	267	393	1392
45		Terminal (nt)	1614451	1617300	1617994	1618321	1619672	1620167	1621838	1621841	1623027	1625428	1629107	1629861	1630668	1630667	1631926	1631353	1633324
50		Initial (nt)	1616298	1616578	1617398	1619616	1620106	1621009	1621056	1622950	1624826	1625925	5199 1626279	1629298	1629913	1631329	1631660	1631745	1631933
		SEQ NO. (a a.)	5189	5190	5191	5192	5193	5194	5195	5196	5197	5198	5199	5200	5201	5202	5203	5204	5205
55		SEQ NO. (DNA)	1689	1690	1691	1692	1693	1694	1695	1696	1691	1698	1699	1700	1701	1702	1703	1704	1705

ABC transporter ATP-binding protein host cell surface-exposed lipoprotein dTDP-4-keto-L-rhamnose reductase cation-transporting ATPase P 5 transposase protein fragment nitragen fixation protein Function transposase (IS1628) hypothetical protein hypothetical protein antigenic protein antigenic protein 10 integrase sialidase Matched length 15 (a.a.) 113 152 883 20 154 236 149 497 107 107 387 88 37 Similarity 100.0 0.09 69.0 60.4 64.4 73.2 58.3 73.8 72.4 72.0 43.0 85.2 ર્જી 70. 20 Identity (%) 54.0 59.0 32.8 35.8 43.0 34.4 9.66 64.0 32.0 32.7 63.8 42. 5 25 Neisseria gonorrhoeae ORF24 Streptomyces coelicolor A3(2) SC3D11.02c Table 1 (continued) Micromonospora vindifaciens ATCC 31146 nedA Corynebacterium glutamicum 22243 R-plasmid pAG1 tnpB Corynebacterium glutamicum TnpNC Synechocystis sp. PCC6803 sli1614 pma1 Streptococcus thermophilus phage TP-J34 Homologous gene Pyrococcus abyssi Orsay PAB1087 Escherichia coli K12 yijK Neisseria gonorrhoeae Corynephage 304L int Mycobacterium leprae MLCL536.24c nifU7 30 Plasmid NTP16 35 GPU:AF164956_23 sp:ATA1_SYNY3 SP:NANH_MICVI gp:AF121000_8 Sp:YJJK_ECOLI db Match gp:SC3D11_2 GP:NT11NIS prf:2408488H prf 2510491A GSP: Y38838 456 GSP:Y38838 pir:B75015 pir.S72754 40 2676 480 1629 1182 ORF (bp) 375 1476 243 489 1362 456 423 783 357 156 162 708 261 447 1638442 1638776 1639520 1641001 1641046 1642743 1644318 1632109 1636241 1636244 1640155 1646063 1647212 Terminal 1632682 1639817 1646368 1645601 1647133 1647651 1633781 45 £ 1633566 5215 1639781 1645499 1639656 1640546 1642674 1644218 1645861 5223 1646549 1647634 1632588 1634563 1636732 1639365 1648097 1633137 1637081 1639132 1645821 1645661 Initial <u>=</u> 50 5216 5206 5209 5210 5211 5212 5213 5214 5217 5219 5221 5222 5224 5207 5208 5218 5220 5225 SEQ (a.a.) (DNA) 1706 1714 1709 1715 1716 1723 1707 1710 1711 1712 1713 1717 1718 1719 1720 1722 1725 1721 55

EP 1 108 790 A2

5	
10	
15	
20	
25	
30	
35	
40	
45	
50	

	Function	hypothetical protein	nitrogen fixation protein	ABC transporter ATP-binding protein	hypothetical protein	ABC transporter	DNA-binding protein	hypothetical membrane protein	ABC transporter	hypothetical protein	hypothetical protein		helicase	quinone oxidoreductase	cytochrome o ubiquinol oxidase assembly factor / heme O synthase	transketolase	transaldolase	
:	Matched length (a.a.)	52	411	252	377	493	217	518	317	266	291		418	323	295	675	358	
	Similarity (%)	57.0	84.4	89.3	83.0	73.0	71.4	67.8	77.3	74.8	74.6		51.0	70.9	8.99	100.0	85.2	
	Identity (%)	48.0	64.7	70.2	55.2	41.0	46.1	36.3	50.2	41.0	43.0		23.4	37.5	37.6	100.0	62.0	
Table 1 (continued)	Homologous gene	Aeropyrum pernix K1 APE2025	Mycobacterium leprae nifS	Streptomyces coelicolor A3(2) SCC22.04c	Mycobacterium tuberculosis H37Rv Rv1462	Synechocystis sp. PCC6803 slr0074	Streptomyces coelicolor A3(2) SCC22.08c	Mycobacterium tuberculosis H37Rv Rv1459c	Mycobacterium leprae MLCL536.31 abc2	Mycobacterium leprae MLCL536,32	Mycobacterium tuberculosis H37Rv Rv1456c		Pyrococcus horikoshii PH0450	Escherichia coli K12 qor	Nitrobacter winogradskyi coxC	Corynebacterium glutamicum ATCC 31833 tkt	Mycobacterium leprae MLCL536.39 tal	
	db Match	PIR:C72506	pir:S72761	gp:SCC22_4	pir.A70872	sp:Y074_SYNY3	gp:SCC22_8	pir.F70871	pir.S72783	pir.S72778	pir.C70871		pir.C71156	sp:aoR_ECOLI	gp:NWCOXABC_3	gp:AB023377_1	1080 SP:TAL_MYCLE	
	ORF (bp)	162	1263	756	1176	1443	693	1629	1020	804	666	357	1629	975	696	2100	1080	1164
	Terminal (nt)	1648709	1648100	1649367	1650249	1651433	1652894	1655671	1656700	1657515	1658675	1659140	1661136	1662552	1662630	1666502	1667752	1666601
	Initial (nt)	1648548	1649362	1650122	1651424	1652875	1653586	5232 1654043	1655681	1656712	1657677	1659496	1659508	1661578	1663598	1664403	1666673	1667764
	SEQ NO. (a.a.)	5226	5227	5228	5229	5230	5231	5232	5233	5234	5235	5236	5237	5238	5239	5240	5241	5242
	SEQ NO. (DNA)	1726	1727	1728	1729	1730	1731	1732	1733	1734	1735	1736	1737	1738	1739	1740	1741	1742

5	Function	glucose-6-phosphate dehydrogenase	oxppcycle protein (glucose 6- phosphate dehydrogenase assembly protein)	6-phosphogluconolactonase	sarcosine oxidase	transposase (IS1676)	sarcosine oxidase				triose-phosphate isomerase	probable membrane protein	phosphoglycerate kinase	glyceraldehyde-3-phosphate dehydrogenase	hypothetical protein	hypothetical protein	hypothetical protein	excinuclease ABC subunit C
. ,	Matched length (a.a.)	484	318	258	128	200	205				259	128	405	333	324	309	281	701
20	Similarity (%)	100.0	71.7	58.1	57.8	46.6	100.0				93.6	51.0	98.5	99.7	87.4	82.5	76.2	61.5
	Identity (%)	8.66	40.6	28.7	35.2	24.6	100.0				99.2	37.0	98.0	99.1	63.9	56.3	52.0	34.4
25 September 25 Table 1 (continued)	Homologous gene	Brevibacterium flavum	Mycobacterium tuberculosis H37Rv Rv1446c opcA	Saccharomyces cerevisiae S288C YHR163W sol3	Bacillus sp. NS-129	Rhodococcus erythropolis	Corynebacterium glutamicum ATCC 13032 soxA				Corynebacterium glutamicum AS019 ATCC 13059 tpiA	Saccharomyces cerevisiae YCR013c	Corynebacterium glutamicum AS019 ATCC 13059 pgk	Corynebacterium glutamicum AS019 ATCC 13059 gap	Mycobacterium tuberculosis H37Rv Rv1423	Mycobacterium tuberculosis H37Rv Rv1422	Mycobacterium tuberculosis H37Rv Rv1421	Synechacystis sp. PCC6803 uvrC
40	db Match	gsp:W27612	pir:A70917	sp.SOL3_YEAST	sp.SAOX_BACSN	gp:AF126281_1	gp:CGL007732_5				sp:TPIS_CORGL	SP.YCQ3_YEAST	sp:PGK_CORGL	sp:G3P_CORGL	pir:D70903	sp:YR40_MYCTU	sp:YR39_MYCTU	sp:UVRC_PSEFL
	ORF (bp)	1452	957	705	405	1401	840	174	687	981	777	408	1215	1002	981	1023	927	2088
45	Terminal (nt)	1669401	1670375	1671099	1671273	1673123	1673266	1677384	1678070	1680128	1680332	1681670	1681190	1682624	1684117	1685110	1586152	1687103
50	Initial (nt)	1667950	1669419	1670395	1671677	1671723	1674105	1677211	1678756	1679148	1681108	1681263	1682404	1683625	1685097	1686132	1687078	1689190
	SEQ NO.	5243	5244	5245	5246	5247	5248	5249	5250	5251	5252	5253	5254	5255	5256	5257	5258	5259
55	SEQ NO (DNA)	1743	1744	1745	1746	1747	1748	1749	1750	1751	1752	1753	1754	1755	1756	1757	1758	1759

											_		,		r——		_	
_		mazine	y rib operon	protein	y rib operon	and 3, 4- 4-phosphate nthesis)	ha chain	ninase	pimerase	1/NOP2	transferase	se		synthetase	labolism			
Function	nypothetical protein	3,7-dimethyl-8-ribityllu synthase	olypeptide encoded b	iboflavin biosynthetic	olypeptide encoded b	3TP cyclohydrolase II lihydroxy-2-butanone ynthase (riboflavin sy	iboflavin synthase alp	iboflavin-specific dear	ibulose-phosphate 3-	nucleolar protein NOL eukaryotes) family	nethionyl-tRNA formy	olypeptide deformyla	rimosomal protein n	-adenosylmethionine	NAVpantothenate me avoprotein	ypothetical protein	uanylate kinase	integration host factor
Matched length (a.a.)	150	154	72	217	106	404	211	365 r	234 г	448 (308 r	150	725 p	407	409	81 1	186	103
	68.7	72.1	68.0	48.0	52.0	84.7	79.2	62.7	73.1	60.7	67.9	72.7	46.3	99.5	6.08	87.7	74.7	6.06
Identity (%)	32.7	43.5	59.0	26.0	44.0	65.6	47.4	37.3	43.6	30.8	41.6	44.7	22.9	66.3	58.0	70.4	39.8	9.08
Homologous gene	Mycobacterium tuberculosis H37Rv Rv1417	Escherichia coli K12	Bacillus subtilis	Bacillus subtilis	Bacillus subfilis	Mycobacterium tuberculosis ribA	Actinobacillus pleuropneumoniae ISU-178 ribE	Escherichia coli K12 ribD	Saccharomyces cerevisiae S288C YJL121C rpe1	Escherichia coli K12 sun	Pseudomonas aeruginosa fmt	Bacillus subtilis 168 def	Escherichia coli priA	Brevibacterium flavum MJ-233	Mycobacterium tuberculosis H37Rv RV1391 dfp	Mycobacterium tuberculosis H37Rv Rv1390	Saccharomyces cerevisiae guk1	Mycobacterium tuberculosis H37Rv Rv1388 mIHF
db Match	sp:YR35_MYCTU	sp:RISB_ECOLI	GSP.Y83273	GSP: Y83272	GSP: Y83273	gp:AF001929_1	sp:RISA_ACTPL	sp:RIBD_ECOLI	sp:RPE_YEAST	sp:SUN_ECOLI	sp:FMT_PSEAE	sp.DEF_BACSU	sp:PRIA_ECOLI	gsp:R80060	sp:DFP_MYCTU	sp:YD90_MYCTU	pirKIBYGU	pir:B70899
ORF (bp)	579	477	228	714	336	1266	633	984	657	1332	945	507	2064	1221	1260	291	627	318
Terminal (nt)	1689201	1689869	1690921	1691421	1691347	1690360	1691639	1692275	1693262	1693967	1695499	1696466	1697084	1699177	1700508	1702032	1702411	1702991
Initial (nt)	1689779	1690345	1690654	1690708	1691012	1691625	1692271	1693258	1693918	1695298	1696443	1696972	1699147	1700397	1701757	1702322	1703037	1703308
SEQ NO. (a a.)	5260	5261	5262	5263	5264	5265	5266	5267	5268	5269	5270	5271	5272	5273	5274	5275	5276	5277
SEQ NO.	1760	1761	1762	1763	1764	1765	1766	1767	1768	1769	1770	1771	1772	1773	1774	1775	1776	1777
	SEQ Initial Terminal ORF db Match Homologous gene (%) (nt) (bp)	SEQ NO. (a a .) Initial (nt) Terminal (bp) ORF (bp) db Match (bp) Homologous gene (m) Identity (m) Similarity (m) Matched (ma) 5260 1689779 1689201 579 sp:YR35_MYCTU Mycobacterium tuberculosis 32.7 68.7 150 hypothetical pp	SEQ NO. (a1) Initial (nt) Terminal (nt) ORF (bp) db Match (bp) Homologous gene (%) Identity (%) Similarity (%) Matched (a2) 5260 1689779 1689201 579 sp:YR35_MYCTU Mycobacterium tuberculosis 32.7 68.7 150 hypothetical pothetical potheti	SEQ NO. (at a.) Initial (nt) Terminal (nt) ORF (bp) db Match (bp) Homologous gene (%) Identity (%) Similarity (%) Matched (%) Matc	SEQ NO. (a a .) Initial (nt) Terminal (bp) ORF (bp) db Match (bp) Homologous gene Mycobacterium tuberculosis Identity (%) Similarity (%) Matched (%) Matched (%) 5260 1689779 1689201 579 sp:YR35_MYCTU Mycobacterium tuberculosis 32.7 68.7 150 5261 1690345 1689869 477 sp:RISB_ECOLI Escherichia coli K12 43.5 72.1 154 5262 1690664 1690921 228 GSP:Y83273 Bacillus subtilis 59.0 68.0 72 5263 1690708 1691421 74 GSP:Y83272 Bacillus subtilis 26.0 48.0 217	SEQ NO. (at a.) Initial (nt) Terminal (nt) ORF (bp) db Match (bp) Homologous gene Homologous gene (%) Identity (%) Similarity (%) Matched (%) Matched (%)	SEQ NO. (a1) Initial (II) Terminal (III) ORF (bp) db Match Homologous gene (%) Identity (%) Similarity (%) Matched (%) Matched (%)	SEQ NO. (a1) Initial (III) Terminal (IV) ORF (IV) db Match (bp) Homologous gene (%) Identity (%) Similarity (%) Matched (%) Matche	SEQ NO. (nt) Initial (nt) Terminal (nt) ORF (bp) db Match Homologous gene Homologous gene (%) Identity (%) Similarity (%) Matched (%) Matched (%)	SEQ NO. (nt) Initial (nt) Terminal (nt) ORF (bp) db Match (bp) Homologous gene (%) Identity (%) Similarity (%) Matched (%) Matched	SEQ NO. (a) Indital (n) Terminal (pp) ORF (bp) db Match Homologous gene Mycobacterium tuberculosis Identity (%) Similarity (%) Matched (%) 5260 1689779 570 <td>SEQ NO. (4a) Initial (1b) Terminal (1b) ORF (1b) db Match (1b) Homologous gene (4b) Identity (7b) Similarity (7b) Matched (7b) 2260 1689779 1689201 579 sp.YR35_MYCTU H97Ry Ry1417 43.5 72.1 150 2261 1690345 1689869 477 sp.RISB_ECOLI Escherichia coli K12 43.5 72.1 154 5263 1690624 1690921 228 GSP.Y83273 Bacillus subtilis 59.0 68.0 72 5263 1690708 1691421 714 GSP.Y83273 Bacillus subtilis 56.0 48.0 217 5264 1691022 126 gp.AF001929_1 Mycobacterium tuberculosis ribA 65.6 84.7 404 5265 1691629 126 gp.AF001929_1 Mycobacterium tuberculosis ribA 65.6 84.7 404 5267 1691629 1691629 53.0 106 72.1 106 5268 1691625 1691629 53.4 Sp.RISA_ACTPL</td> <td>SEQ (a) Initial (nt) CRF (nt) db Match (bp) Homologous gene (Ph) Identity (Ph) Similarity (Ph) Matched (Ph) Matched (</td> <td>SEQ NO. (nt) Initial (nt) CRF (pp) db Match (pp) Homologous gene (%) Identity (%) Similarity (%) Matched (%) Matched (</td> <td>SEQ (n,1) (10,</td> <td>SEQ (a a .) Indital (a 1) Terminal (bp) ORF (bp) db Match Homologous gene (%) Identity (%) Similarity (%) Matched (%) S260 (168977) (fil.) (bp) sp. YR35_MYCTU Mycobacterium tuberculosis 32.7 68.7 150 S260 1689779 1689689 477 sp. YR35_MYCTU Mycobacterium tuberculosis 32.7 68.7 150 S261 1690024 128 GSP Y83272 Bacillus subtilis 59.0 68.0 72 S262 1690064 1691347 336 GSP Y83272 Bacillus subtilis 26.0 48.0 217 S263 1691068 1691340 126 gp.AF001929_1 Mycobacterium tuberculosis ribA 65.6 84.7 404 S264 1691027 1691639 533 sp.RISA_ACTPL Actinobacillus 41.6 79.2 211 S265 1692271 1691639 533 sp.RIBD_ECOLI Escherichia coli K12 ribD 37.3 62.7 36.5 S266 1</td> <td>SEQ (nt) (18.9) Initial (nt) (nt) (nt) (nt) Terminal (pp) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt</td> <td>SEQ (n1) (n2) (n1) (n1) (n1) (n1) (n1) (n1) (n1) (n1</td>	SEQ NO. (4a) Initial (1b) Terminal (1b) ORF (1b) db Match (1b) Homologous gene (4b) Identity (7b) Similarity (7b) Matched (7b) 2260 1689779 1689201 579 sp.YR35_MYCTU H97Ry Ry1417 43.5 72.1 150 2261 1690345 1689869 477 sp.RISB_ECOLI Escherichia coli K12 43.5 72.1 154 5263 1690624 1690921 228 GSP.Y83273 Bacillus subtilis 59.0 68.0 72 5263 1690708 1691421 714 GSP.Y83273 Bacillus subtilis 56.0 48.0 217 5264 1691022 126 gp.AF001929_1 Mycobacterium tuberculosis ribA 65.6 84.7 404 5265 1691629 126 gp.AF001929_1 Mycobacterium tuberculosis ribA 65.6 84.7 404 5267 1691629 1691629 53.0 106 72.1 106 5268 1691625 1691629 53.4 Sp.RISA_ACTPL	SEQ (a) Initial (nt) CRF (nt) db Match (bp) Homologous gene (Ph) Identity (Ph) Similarity (Ph) Matched (Ph) Matched (SEQ NO. (nt) Initial (nt) CRF (pp) db Match (pp) Homologous gene (%) Identity (%) Similarity (%) Matched (%) Matched (SEQ (n,1) (10,	SEQ (a a .) Indital (a 1) Terminal (bp) ORF (bp) db Match Homologous gene (%) Identity (%) Similarity (%) Matched (%) S260 (168977) (fil.) (bp) sp. YR35_MYCTU Mycobacterium tuberculosis 32.7 68.7 150 S260 1689779 1689689 477 sp. YR35_MYCTU Mycobacterium tuberculosis 32.7 68.7 150 S261 1690024 128 GSP Y83272 Bacillus subtilis 59.0 68.0 72 S262 1690064 1691347 336 GSP Y83272 Bacillus subtilis 26.0 48.0 217 S263 1691068 1691340 126 gp.AF001929_1 Mycobacterium tuberculosis ribA 65.6 84.7 404 S264 1691027 1691639 533 sp.RISA_ACTPL Actinobacillus 41.6 79.2 211 S265 1692271 1691639 533 sp.RIBD_ECOLI Escherichia coli K12 ribD 37.3 62.7 36.5 S266 1	SEQ (nt) (18.9) Initial (nt) (nt) (nt) (nt) Terminal (pp) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt	SEQ (n1) (n2) (n1) (n1) (n1) (n1) (n1) (n1) (n1) (n1

	_																	
5		Function	phate	phate synthase	phate synthase		noyltransferase	phosphoribosyl transferase or pyrimidine operon regulatory protein	itor				N utilization substance protein B (regulation of rRNA biosynthesis by transcriptional antitermination)	e.	idase	e synthase		type IV prepilin-like protein specific leader peptidase
10		Fu	orotidine-5'-phosphate decarboxylase	carbamoyl-phosphate synthase large chain	carbamoyl-phosphate synthase small chain	dihydroorotase	aspartate carbamoyltransferase	phosphoribosyl transferase pyrimidine operon regulator	cell division inhibitor				N utilization substance protein B (regulation of rRNA biosynthesis transcriptional antitermination)	elongation factor	cytoplasmic peptidase	3-dehydroquinate synthase	shikimate kinase	type IV prepilin-lil leader peptidase
15		Matched length (a.a.)	276	1122	381	402	311	176	297				137	187	217	361	166	142
20		Similarity (%)	73.6	77.5	70.1	67.7	7.8.7	80.1	73.4				69.3	98.4	100.0	99.7	100.0	54.9
25		Identity (%)	51.8	53.1	45.4	42.8	48.6	54.0	39.7				33.6	97.9	99.5	98.6	100.0	35.2
30	Table 1 (continued)	Homologous gene	Mycobacterium tuberculosis H37Rv uraA	Escherichia coli carB	Pseudomonas aeruginosa ATCC 15692 carA	Bacillus caldolyticus DSM 405 pyrC	Pseudomonas aeruginosa ATCC 15692	Bacillus caldolyticus DSM 405 pyrR	Mycobacterium tuberculosis H37Rv Rv2216				Bacillus subtilis nusB	Brevibacterium lactofermentum ATCC 13869 efp	Corynebacterium glutamicum AS019 pepQ	Corynebacterium glutamicum AS019 aroB	Corynebacterium glutamicum AS019 arok	Aeromonas hydrophila tapD
35	,	I	Mycobacterii H37Rv uraA	Escheric	Pseudon ATCC 15	Bacillus o	Pseudomona ATCC 15692	Bacillus o	Mycobac H37Rv R				Bacillus	Brevibacterium la ATCC 13869 efp	Corynebacter AS019 pepQ	Corynebacte AS019 aroB	Corynebacte AS019 arok	Aeromon
40		db Match	Sp. DCOP_MYCTU	pir:SYECCP	sp.CARA_PSEAE	sp:PYRC_BACCL	sp:PYRB_PSEAE	sp.PYRR_BACCL	sp:Y00R_MYCTU				sp:NUSB_BACSU	SP:EFP_BRELA	gp:AF124600_4	gp:AF124600_3	gp.AF124600_2	sp:LEP3_AERHY
		ORF (bp)	834	3339	1179	1341	936	576	1164	477	462	210	681	561	1089	1095	492	411
45		Terminal (nt)	1703517	1704359	1707706	1709011	1710413	1711352	1713759	1714306	1714760	1714950	1715382	1716132	1716780	1717938	1719107	1720971
50		Initial (nt)	1704350	1707697	1708884	1710357	1711348	1711927	1712596	1713830	1714299	1714741	1716062	1716692	1717868	1719032	1719598	1721381
		SEQ NO (a.a.)	5278	5279	5280	5281	5282	5283	5284	5285	5286	5287	5288	5289	5290	5291	5282	5293
55		SEQ NO. (DNA)		1779	1780	1781	1782	1783	1784	1785	1786	1787	1788	1789	1790	1791	1792	1793

			,	,					,	,	,	,			,				
5		רנ	rotein, arsR			ter, irotein	ATP-binding	enase			se			tase		osidase	U		or
10		Function	bacterial regulatory protein, family	ABC transporter		iron(III) ABC transporter, periplasmic-binding protein	ferrichrome transport ATP-binding protein	shikimate 5-dehydrogenase	hypothetical protein	hypothetical protein	alanyl-tRNA synthetase	hypothelical protein		aspartyl-tRNA synthetase	hypothetical protein	glucan 1,4-alpha-glucosidase	phage infection protein		transcriptional regulator
15		Matched length (a.a.)	83	340		373	230	259	395	161	894	454		591	297	839	742		192
20		Simularity (%)	68.7	73.2		50.7	71.7	0.09	70.1	69.6	71.8	84.8		89.2	74.1	53.6	54.0		62.0
		Identity (%)	45.8	35.9		23.6	38.3	50.0	41.8	52.8	43.3	65.4		71.1	46.1	26.1	23.1		29.2
25	ontinued)	gene	color A3(2)	phtheriae		Orsay	fhuc	erculosis	erculosis	erculosis	idans ATCC	erculosis		ae aspS	erculosis	evisiae 11	ш		olor A3(2)
30	Table 1 (continued)	Homologous gene	Streptomyces coeiicolor A3(2) SC1A2.22	Corynebacterium diphtheriae hmuU		Pyrococcus abyssi Orsay PAB0349	Bacillus subtilis 168 fhuC	Mycobacterium tuberculosis H37Rv aroE	Mycobacterium tuberculosis H37Rv Rv2553c	Mycobacterium tuberculosis H37Rv Rv2554c	Thiobacillus ferrooxidans ATCC 33020 alaS	Mycobacterium tuberculosis H37Rv Rv2559c		Mycobacterium leprae aspS	Mycobacterium tuberculosis H37Rv Rv2575	Saccharomyces cerevisiae S288C YIR019C sta1	Bacillus subtilis yhgE		Streptomyces coelicolor A3(2) SCE68.13
35			क्र क्र	5 ₹		P P		ΣĤ	H.M	₹I	33 Th	₹H		Μ̈	A.A.	Sa S2	_		Sc
40		db Match	gp:SC1A2_22	gp:AF109162_2		pir.A75169	sp:FHUC_BACSU	pir:D70660	pir.E70660	pir:F70660	sp:SYA_THIFE	sp:Y0A9_MYCTU		Sp.SYD_MYCLE	sp:Y08Q_MYCTU	SP. AMYH_YEAST	sp:YHGE_BACSU		gp:SCE68_13
		ORF (bp)	303	1074	909	957	753	828	1167	546	2664	1377	1224	1824	891	2676	1857	648	594
45		Terminal (nt)	1721423	1722853	1722202	1723826	1724578	1724612	1725459	1726625	1727385	1730166	1731599	1732988	1735946	1736004	1738713	1740572	1741906
50		Initial (nt)	1721725	1721780	1722807	1722870	1723826	1725439	1726625	1727170	1730048	1731542	1732822	1734811	1735056	1738679	1740559	1741219	1741313
		SEQ NO (a a)	5294	5295	5296	5297	5298	5299	5300	5301	5302	5303	5304	5305	5306	5307	5308	5309	5310
55		SEQ NO. (DNA)	1794	1795	1796	1797	1798	1799	1800	1801	1802	1803	1804	1805	1806	1807	1808	1809	1810

EP 1 108 790 A2

						$\overline{}$							 r	$\overline{}$						\neg
5	Function		oxidoreductase		NADH-dependent FMN reductase	L-serine dehydratase		alpha-glycerolphosphate oxidase	histidyl-tRNA synthetase	hydrolase	cyclophilin		hypothetical protein		GTP pyrophosphokinase	adenine phosphoribosyltransferase	dipeptide transport system	hypothetical protein	protein-export membrane protein	
15	Matched length (a.a.)		371 0		116	462		598	421	211	175 c		128		092	185	49	558	332	
20	Similarity (%)		88.1		77.6	71.4		53.9	72.2	62.1	61.1		100.0		6.66	100.0	98.8	6.09	57.2	
	Identity (%)		72.8		37.1	46.8		28.4	43.2	40.3	35.4		98.4		99.9	99.5	98.0	30.7	25.9	
25 General 25	us gene		licolor A3(2)		ruginosa PAO1	12 sdaA		seliflavus glpO	ureus	juni 09c	ysomallus		glutamicum		glutamicum	glutamicum	glutamicum Æ	berculosis	12 secF	
30	Homologous gene		Streptomyces caelicolor A3(2) SCE15.13c		Pseudomonas aeruginosa PAO1 sIfA	Escherichia coli K12		Enterococcus casseliflavus glpO	Staphylococcus aureus SR17238 hisS	Campylobacter jejuni NCTC11168 Cj0809c	Streptomyces chrysomallus sccypB		Corynebacterium glutamicum ATCC 13032 orf4		Corynebacterium ATCC 13032 rel	Corynebacterium ATCC 13032 apt	Corynebacterium glutamicum ATCC 13032 dciAE	Mycobacterium tuberculosis H37Rv Rv2585c	Escherichia coli K12 secF	
35	db Match				PSEAE	sp:SDHL_ECOLI E				gp:CJ11168X3_12 C			gp:AF038651_4		gp:AF038651_3 C	gp:AF038651_2 C	gp:AF038651_1 C	sp.Y0BG_MYCTU N	SP. SECF_ECOLI E	
40			gp:SCE15_13		sp:SLFA_			prf.2423362A		:	prf.2313309A	!						1		
	ORF (bp)	714	1113	126	495	1347	861	1686	1287	639	507	237	555	342	2280	555	150	1743	1209	630
45	Terminal (nt)	1742606	1743813	1743968	1744519	1746230	1747588	1746233	1747990	1749325	1750933	1751200	1752051	1752527	1752615	1754925	1755599	1755486	1757589	1760336
50	Initial (nt)	1741893	1742701	1743843	1744025	1744884	1746728	1747918	1749276	1749963	1750427	1750964	1751497	1752186	1754894	1755479	1755/48	1757228	1758797	1759707
	SEQ	5311	5312	5313	5314	5315	5316	5317	5318	5319	5320	5321	5322	5323	5324	5325	5326	5327	5328	5329
	SEO	1811	1812	1813	1814	1815	1816	1817	1818	1819	1820	1821	1822	1823	1824	1825	1826	1827	1828	1829

					_				_									_		
5		Function	protein-export membrane protein	hypothetical protein	holliday junction DNA helicase	holliday junction DNA helicase	crossover junction endodeoxyribonuclease	hypothetical protein	acyl-CoA thiolesterase	hypothetical protein	hypothetical protein	hexosyltransferase or N- acetylglucosaminyl- phosphatidylinositol biosynthetic protein	acyltransferase	CDP-diacylglycerol-glycerol-3- phosphate phosphatidyltransferase	histidine triad (HIT) family protein	threonyl-tRNA synthetase	hypothetical protein			
15		Matched length (a.a.)	616	106	331	210	180	250	283	111	170	414	295	82	194	647	400			
20		Similarity (%)	52.0	66.0	81.9	74.3	63.3	78.4	68.6	61.3	61.2	49.3	67.8	78.0	78.4	68.9	61.8			
		Identity (%)	24.4	39.6	55.3	45.2	35.6	49.2	38.5	31.5	38.2	21.7	46.4	48.2	54.6	42.0	34.3			
25	Table 1 (continued)	us gene	ulatus secD	orae	12 ruvB	rae ruvA	12 ruvC	12 ORF246	12 tesB	icolor A3(2)	erculosis	: evislae	icolor A3(2)	erculosis gsA	erculosis	2	Na			
30	Table 1 (c	Homologaus gene	Rhodobacter capsulatus secD	Mycobacterium leprae MLCB1259.04	Escherichia coli K12 ruvB	Mycobacterium leprae ruvA	Escherichia coli K12 ruvC	Escherichia coli K12 ORF246 yebC	Escherichia coli K12 tesB	Streptomyces coelicalor A3(2) SC10A5.09c	Mycobacterium tuberculosis H37Rv Rv2609c	Saccharomyces ce:evislae S288C spt14	Streptomyces coelicolor A3(2) SCL2.16c	Mycobacterium tuberculosis H37Rv Rv2612c pgsA	Mycobacterium tuberculosis H37Rv Rv2613c	Bacillus subtilis thrZ	Bacillus subtilis ywbN			
<i>35</i>		db Match	prf.2313285A	SP_YOBD_MYCLE	sp:RUVB_ECOLI	SP.RUVA_MYCLE	sp.RUVC_ECOLI	sp:YEBC_ECOL!	sp:TESB_ECOL!	gp:SC10A5_9	pir:H70570	sp.GPI3_YEAST	gp:SCL2_16	pir.C70571	pir:D70571	sp.SYT2_BACSU	sp:YWBN_BACSU			
		ORF (bp)	1932 p	363 s	1080 s	618 s	663 's	753 s	846 s	474 g	462 p	1083 s	963 9	657 p	d 099	2058 sı	1206 s	564	546	735
45		Terminal (nt)	1758803	1761005	1761419	1762517	1763177	1763990	1765015	1756442	1766487	1766948	1768034	1769022	1769681	1770327	1772658	1774444	1773893	1774457
50		Initial (nt)	1760734	1761367	1762498	1763134	1763839	1764742	1765860	1765969	1766948	1768030	1768996	1769678	1770340	1772384	1773863	1773881	1774438	1775191
		SEQ NO (a.a.)	5330	5331	5332	5333	5334	5335	5336	5337	5338	5339	5340	5341	5342	5343	5344	5345	5346	5347
		SEQ NO (DNA)	1830	1831	1832	1833	1834	1835	1836	1837	1838	1839	1840	1841	1842	1843	1844	1845	1846	1847

EP 1 108 790 A2

5	Function						puromycin N-acetyltransferase											ferric transport ATP-binding protein					metabolism		
10							puromycin N-											ferric transpor					pantothenate metabolism flavoprotein		
15	Matched length (a.a.)						190											202					129		
20	Similarity (%)						64.2											28.7					66.7		
	Identity (%)						36.3											28.7					27.1		
25. Table 1 (continued)	s gene						atus pac											afuC					dfp s		
·	Homologous gene						Streptomyces anulatus pac			-								Actinobacillus pleuropneumoniae afuC					Zymomonas mobilis dfp		
<i>35</i>	db Match						Sp.PUAC_STRLP											Sp. AFUC_ACTPL					gp:AF088896_20		
	ORF (bp)	378	594	1407	615	399	267	1086	1101	669	2580	1113	1923	483	189	312	429	282	666	159	1107	420	591	864	420
45	Terminal (nt)	1777646	1778037	1778102	1779554	1780507	1781019	1782790	1784381	1783382	1782894	1785732	1786907	1789562	1789768	1790057	1790461	1792438	1793426	1793496	1794820	1795621	1796181	1797049	1797769
50	Initial (nt)	1777269	1777444	1779508	1780168	1780905	1781585	1781705	1783281	1784080	1785473	1786844	1788829	1789080	1789580	1789746	5363 1790889	1791842	1792428	1793654	1793714	1795202	1795591	1796186	5371 1797350
	SEO NO.	5348	5349	5350	5351	5352	5353	5354	5355	5356	5357	5358	5359	5360	5361	5362	-	5364	5365	5366	5367	5368	5369	5370	
55	SEQ NO (DNA)	1848	1849	1850	1851	1852	1853	1854	1855	1856	1857	1858	1859	1860	1861	1862	1863	1864	1865	1866	1867	1868	1869	1870	1871

EP 1 108 790 A2

						_						_									_			_	
5	Function																			transposon TN21 resolvase			protein-tyrosine phosphatase		
10																				transposon Ti			protein-tyrosir		
15	Matched length (a.a.)																			186			164		
20	Similarity (%)																			78.0			51.8		
	Identity (%)																			51.1			29.3		
of utinued)	gene																			~			visrae 11		
8 Table 1 (continued)	Homologous gene																			Escherichia coli tnpR			Saccharomyces cerevisiae S288C YIR026C yvh1		
35		i i																							
40	db Match																			sp.TNP2_ECOL			sp:PVH1_YEAST		
	ORF (bp)	120	/35	225	894	156	474	753	423	289	429	465	237	681	960	480	681	285	375	612	1005	375	477	726	423
45	Terminal (nt)	1797850	1/98023	1799406	1800366	1800449	1801307	1802096	1802155	1803419	1803893	1804598	1804865	1805599	1806686	1807396	1808113	1808421	1808832	1810372	1811545	1811938	1812691	1813606	1812460
50	Initial (nt)	1797969	1798757	1799182	1799473	1800604	1800834	1801344	1802577	1802733	1803465	1804134	1804629	1804919	1805727	1806917	1807433	1808137	1808458	1809761	1810541	1811564	1812215	1812881	1812882
	SEQ NO.	5372	5373	5374	5375	5376	5377	5378	5379	5380	5381	5382	5383	5384	5385	5386	5387	5388	5389	5390	5391	5392	5393	5394	5395
55	SEQ NO. (DNA)	1872	1873	1874	1875	1876	1877	1878	1879	1880	1881	1882	1883	1884	1885	1886	1887	1888	1889	1890	1891	1892	1893	1894	1895

EP 1 108 790 A2

	_																							
5			n factor															related)	related)			pecific		
10		Function	sporulation transcription factor									hypothetical protein					hypothetical protein	insertion element (IS3 related)	insertion element (IS3 related)			single-stranded-DNA-specific exonuclease		primase
15		Matched length (a.a.)	216									545					166	298	101			622		381
20		Similarity (%)	65.7									55.2					75.0	92.6	84.2			50 6		64.3
		Identity (%)	34.3									22.6					63.0	87.9	72.3	j		24.0		31.8
25	ontinued)	s gene	color A3(2)									na MSB8					lutamicum	lutamicum	lutamicum			mi recJ		ge phi-01205
30	Table 1 (continued)	Homologous gene	Streptomyces coelicolor A3(2) whiH									Thermotoga maritima MSB8 TM1189					Corynebacterium glutamicum	Corynebacterium glutamicum orf2	Corynebacterium glutamicum orf 1			Erwinia chrysanthemi recJ		Streptococcus phage phi-O1205 ORF13
<i>35</i> <i>40</i>		db Match	gp:SCA32WHIH_6									pir.C72285					PIR:S60891	pir.S60890	pir.S60889			Sp.RECJ_ERWCH		pir:T13302
40																	-	pir:S						
		ORF (bp)	738	789	456	186	672	4	315	-	207	2202	1746	219	144	429	534	894	294	213	1299	1878	780	1650
45		Terminal (nt)	1814517	1815651	1816128	1816636	1817803	1818219	1818774	1819166	1819748	1820181	1824322	1824589	1824927	1825178	1826557	1825751	1826644	1829688	1832063	1834044	1834149	1838324
50		Initial (nt)	1813780	1814863	1815673	1816451	1817132	1817803	1818460	1818798	1819954		1822577	1824371	1824784	1825606	1826024	1826644	1826937	1829900	1830765	1832167	1834928	1836675
		SEQ NO.		5397	5398	5399	5400	5401	5402	5403	5404		5406	5407	5408	5409	5410	5411	5412	5413	5414	5415	5416	
55		SEQ NO.	1896	1897	1898	1899	1900	1901	1902	1903	1904	1905	1906	1907	1908	1909	1910	1911	1912	1913	1914	1915	1916	1917

EP 1 108 790 A2

| Function | | |

 | helicase | | phage N15 protein gp57
 | | | i | | | | | |
 | actin binding protein with SH3
domains | | | | | ATP/GTP binding protein | | ATP-dependent CIp proteinase ATP-binding subunit
 | |
|-----------------------------|---|---
--
--
---|---|---|---
--|--|--|--|---|--|---|--
---|---|---|---|--|--|--
--|--|--|
| Matched
length
(a.a.) | | |

 | 620 | | 109
 | | | | | | | | |
 | 422 | | | | | 347 | | 630
 | |
| | | |

 | 44.7 | | 64.2
 | | | | | | | | |
 | 49.8 | | | | | 52.5 | | 61.0
 | |
| Identity
(%) | | |

 | 22.1 | | 36.7
 | | | | | | | | |
 | 28.7 | | | | | 23.6 | | 30.2
 | ! |
| e c | | |

 | ae ATCC | | 1657
 | | | | | | | | |
 | pombe | | | | | | | ď
 | |
| Homologous ge | | |

 | Mycoplasma pneumoni
29342 yb95 | | 3acteriophage N15 ger
 | | | | | | | | |
 | Schizosaccharomyces
SPAPJ760.02c | | | | | streptomyces coelicolo | | scherichia coli K12 clp
 | |
| db Match | | |

 | sp:Y018_MYCPN | | pir.T13144 E
 | | | | | | | | |
 | gp:SPAPJ760_2 | | | | | gp:SC5C7_14 | | sp:CLPA_ECOLI
 | |
| ORF
(bp) | 3789 | 447 | 534

 | 1839 | 375 | 336
 | 366 | 618 | 537 | 528 | 798 | 186 | 372 | 438 | 9/9
 | 1221 | 852 | 1395 | 594 | 180 | 1257 | 1854 | 1965
 | |
| Terminal
(nt) | 1842137 | 1842681 | 1843337

 | 1845356 | 1845857 | 1846207
 | 1846333 | 1847932 | 1848474 | 1849036 | 1849785 | 1849966 | 1850406 | 1849978 | 1850474
 | 1852440 | 1852324 | 1853873 | 1854854 | 1855237 | 1856788 | 1858738 | 1860727
 | |
| Initial
(nt) | 1838349 | 1842235 | 1842804

 | 1843518 | 1845483 | 1845872
 | 1846698 | 1847315 | 1847938 | 1848509 | 1848988 | 1849781 | 1850035 | 1850415 | 1851049
 | 1851220 | 1851473 | 1852479 | 1854261 | 1855058 | 1855532 | 1856885 | 1858763
 | |
| SEQ
NO.
(a.a.) | 5418 | 5419 | 5420

 | 5421 | 5422 | 5423
 | 5424 | 5425 | 5426 | 5427 | 5428 | 5429 | 5430 | 5431 | 5432
 | 5433 | 5434 | 5435 | 5436 | 5437 | 5438 | 5439 | 5440
 | |
| SEQ
NO
(DNA) | 1918 | 1919 | 1920

 | 1921 | 1922 | 1923
 | 1924 | 1925 | 1926 | 1927 | 1928 | 1929 | 1930 | 1931 | 1932
 | 1933 | 1934 | 1935 | 1936 | 1937 | 1938 | 1939 | 1940
 | |
| | SEQ Initial Terminal ORF db Match Homologous gene (%) (nt) (bp) db Match (a.a.) | SEQ Initial (nt) Terminal (nt) QRF (ht) db Match Homologous gene (%) Identity (%) Matched (%) 5418 1838349 1842137 3789 (aa) (aa) | SEQ Initial Terminal (h) ORF db Match Homologous gene Identity (%) Matched (%) NO. (nt) (nt) (hp) (hp) <td>SEQ Initial NO. Initial (nt) Terminal (bp) db Match Homologous gene (%) Identity (%) Matched (%) 5418 1838349 1842235 1842804 1843337 534</td> <td>SEQ Initial NO. (nt) Terminal (nt) CRF (bp) db Match Homologous gene (%) Identity (%) Matched /td> <td>SEQ Initial NO. (nt) Terminal (nt) CRF (bp) db Match Homologous gene (%) Identity (%) Matched /td> <td>SEQ Initial NO. (nt) Terminal (bp) db Match Homologous gene (%) Identity (%) Similarity (%) Matched (%) 54.18 1842235 1842235 1842281 447 620 5420 1842804 1843337 534 Mycoplasma pneumoniae ATCC 22.1 44.7 620 5421 184581 1845857 375 mycoplasma pneumoniae ATCC 22.1 44.7 620 5422 1845882 1846807 375 mycoplasma pneumoniae ATCC 22.1 44.7 620 5423 1845887 375 mycoplasma pneumoniae ATCC 22.1 44.7 620</td> <td>SEQ Initial (nt) Terminal (nt) ORF (bp) db Match Homologous gene (%) Identity (%) Similarity (%) Matched (%) 5418 1838349 1842137 3789 6419 1842235 1842681 447 620 5420 18422804 1843337 534 Mycoplasma pneumoniae ATCC 22.1 44.7 620 5421 1845481 1845857 375 29342 yb95 22.1 44.7 620 5423 1845872 1846207 336 pir.T13144 Bacteriophage N15 gene57 36.7 64.2 109 5424 1846698 1846533 366 pir.T13144 Bacteriophage N15 gene57 36.7 64.2 109</td> <td>SEQ
NO.
(aa.) Initial
(nt) Terminal
(nt) ORF
(bp) db Match
(bp) Homologous gene
(%) Identity
(%) Similarity
(%) Matched
(%) Matche</td> <td>SEQ
NO.
(41) Initial
(11) Terminal
(11) ORF
(bp) db Match
(bp) Homologous gene
(%) Identity
(%) Similarity
(%) Matched
(%) Matched</td> <td>SEQ Initial Terminal ORF db Match Homologous gene Identity Similarity Matched NO. (nt) (nt) (nt) (pp) (pp)</td> <td>SEQ Initial NO. (nt) Terminal (nt) Terminal (nt) ORF (nt) db Match Homologous gene (%) Identity (%) Matched (%) Matche</td> <td>SEQ Initial (aa.) Terminal (bp) (bp) (bp) db Match (bp) (bp) (bp) Homologous gene (bp) (bp) (bp) (bp) (bp) (bp) (bp) (bp)</td> <td>SEO Initial NO. Initial (at.) Terminal (bp) ORF (bp) db Match (bp) Homologous gene (%) Identity (%) Similarity (%) Matched (%) Mat</td> <td>SEO (nitial) Terminal (bp) (bp) (db Match (bp)) Homologous gene (%) Identity (%) Similarity (%) Matched (%) (%)</td> <td>SEQ Initial Initial (MI) Terminal (MI) ORF (MI) db Match (Match (</td> <td>SEO (nt) (nt) (nt) (nt) (nt) (nt) (nt) Terminal (nt) (nt) (nt) (nt) (nt) ORF (nt) (nt) (nt) (nt) (nt) (nt) (nt) ORF (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt)</td> <td>SEQ (nt) Initial (nt) Terminal (nt) ORF (nt) db Match (pp) Homologous gene (pp) Identity (pp) Smilarity (pp) Matched (na) 5418 1838349 1842137 3789 (pp) Mycoplasma pneumoniae ATCC 22.1 44.7 620 5419 1842804 1842337 534 Mycoplasma pneumoniae ATCC 22.1 44.7 620 5420 1842804 1845356 1839 sp.Y018_MYCPN Mycoplasma pneumoniae ATCC 22.1 44.7 620 5420 1845804 1845356 1839 pp:.T113144 Bacteriophage N15 gene57 36.7 64.2 109 5421 1845807 336 pp:.T13144 Bacteriophage N15 gene57 36.7 64.7 620 5426 1847918 184874 537 pp:.T13144 Bacteriophage N15 gene57 36.7 64.7 620 5426 1848908 184874 537 pp:.T1344 Bacteriophage N15 gene57 36.7 64.7 620 5429 1849081 18</td> <td>SEC
NO.
(11) Initial
(11) Terminal
(11) ORF
(11) db Match
(bp) Homologous gene
(%) Identity
(%) Similarity
(%) Matched
(%) Matched</td> <td>SEC
NO.
(11) Initial
(11) Terminal
(11) ORF
(11) db Match
(bp) Homologous gene
(%) Identity
(%) Similarity
(%) Matched
(%) Matched</td> <td>SEQ
(a.a.) Initial
(m) Terminal
(m) CPF
(pp) db Match
(pp) Homologous gene
(%) Identity
(%) Similarity
(%) Matched
(%) Matched
(%)</td> <td>SEC Initial Terminal ORF db Match Homologous gene Identity Similarity Matched 64.8 (th) (th) (bp) (bp)</td> <td>SECD (NO.) Initial (Init) (Init) Terminal (Init) ORF (Init) db Match (Init) Homologous gene (Init) (%) (%) (%) (%) (%) Matched (Init) 541B (1838) 49 (1842) 41 (Init) (10)</td> <td>SEO
NO.
(m) Initial
(m) Terminal
(m) ORF
(m) db Match
(m) Homologous gene Identify
(%) Similarity
(%) Matched
(%) 5418 1838349 1842337 3789 —</td> | SEQ Initial NO. Initial (nt) Terminal (bp) db Match Homologous gene (%) Identity (%) Matched (%) 5418 1838349 1842235 1842804 1843337 534 | SEQ Initial NO. (nt) Terminal (nt) CRF (bp) db Match Homologous gene (%) Identity (%) Matched | SEQ Initial NO. (nt) Terminal (nt) CRF (bp) db Match Homologous gene (%) Identity (%) Matched | SEQ Initial NO. (nt) Terminal (bp) db Match Homologous gene (%) Identity (%) Similarity (%) Matched (%) 54.18 1842235 1842235 1842281 447 620 5420 1842804 1843337 534 Mycoplasma pneumoniae ATCC 22.1 44.7 620 5421 184581 1845857 375 mycoplasma pneumoniae ATCC 22.1 44.7 620 5422 1845882 1846807 375 mycoplasma pneumoniae ATCC 22.1 44.7 620 5423 1845887 375 mycoplasma pneumoniae ATCC 22.1 44.7 620 | SEQ Initial (nt) Terminal (nt) ORF (bp) db Match Homologous gene (%) Identity (%) Similarity (%) Matched (%) 5418 1838349 1842137 3789 6419 1842235 1842681 447 620 5420 18422804 1843337 534 Mycoplasma pneumoniae ATCC 22.1 44.7 620 5421 1845481 1845857 375 29342 yb95 22.1 44.7 620 5423 1845872 1846207 336 pir.T13144 Bacteriophage N15 gene57 36.7 64.2 109 5424 1846698 1846533 366 pir.T13144 Bacteriophage N15 gene57 36.7 64.2 109 | SEQ
NO.
(aa.) Initial
(nt) Terminal
(nt) ORF
(bp) db Match
(bp) Homologous gene
(%) Identity
(%) Similarity
(%) Matched
(%) Matche | SEQ
NO.
(41) Initial
(11) Terminal
(11) ORF
(bp) db Match
(bp) Homologous gene
(%) Identity
(%) Similarity
(%) Matched
(%) Matched | SEQ Initial Terminal ORF db Match Homologous gene Identity Similarity Matched NO. (nt) (nt) (nt) (pp) (pp) | SEQ Initial NO. (nt) Terminal (nt) Terminal (nt) ORF (nt) db Match Homologous gene (%) Identity (%) Matched (%) Matche | SEQ Initial (aa.) Terminal (bp) (bp) (bp) db Match (bp) (bp) (bp) Homologous gene (bp) (bp) (bp) (bp) (bp) (bp) (bp) (bp) | SEO Initial NO. Initial (at.) Terminal (bp) ORF (bp) db Match (bp) Homologous gene (%) Identity (%) Similarity (%) Matched (%) Mat | SEO (nitial) Terminal (bp) (bp) (db Match (bp)) Homologous gene (%) Identity (%) Similarity (%) Matched (%) (%) | SEQ Initial Initial (MI) Terminal (MI) ORF (MI) db Match (Match (| SEO (nt) (nt) (nt) (nt) (nt) (nt) (nt) Terminal (nt) (nt) (nt) (nt) (nt) ORF (nt) (nt) (nt) (nt) (nt) (nt) (nt) ORF (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) | SEQ (nt) Initial (nt) Terminal (nt) ORF (nt) db Match (pp) Homologous gene (pp) Identity (pp) Smilarity (pp) Matched (na) 5418 1838349 1842137 3789 (pp) Mycoplasma pneumoniae ATCC 22.1 44.7 620 5419 1842804 1842337 534 Mycoplasma pneumoniae ATCC 22.1 44.7 620 5420 1842804 1845356 1839 sp.Y018_MYCPN Mycoplasma pneumoniae ATCC 22.1 44.7 620 5420 1845804 1845356 1839 pp:.T113144 Bacteriophage N15 gene57 36.7 64.2 109 5421 1845807 336 pp:.T13144 Bacteriophage N15 gene57 36.7 64.7 620 5426 1847918 184874 537 pp:.T13144 Bacteriophage N15 gene57 36.7 64.7 620 5426 1848908 184874 537 pp:.T1344 Bacteriophage N15 gene57 36.7 64.7 620 5429 1849081 18 | SEC
NO.
(11) Initial
(11) Terminal
(11) ORF
(11) db Match
(bp) Homologous gene
(%) Identity
(%) Similarity
(%) Matched
(%) Matched | SEC
NO.
(11) Initial
(11) Terminal
(11) ORF
(11) db Match
(bp) Homologous gene
(%) Identity
(%) Similarity
(%) Matched
(%) Matched | SEQ
(a.a.) Initial
(m) Terminal
(m) CPF
(pp) db Match
(pp) Homologous gene
(%) Identity
(%) Similarity
(%) Matched
(%) Matched
(%) | SEC Initial Terminal ORF db Match Homologous gene Identity Similarity Matched 64.8 (th) (th) (bp) (bp) | SECD (NO.) Initial (Init) (Init) Terminal (Init) ORF (Init) db Match (Init) Homologous gene (Init) (%) (%) (%) (%) (%) Matched (Init) 541B (1838) 49 (1842) 41 (Init) (10) | SEO
NO.
(m) Initial
(m) Terminal
(m) ORF
(m) db Match
(m) Homologous gene Identify
(%) Similarity
(%) Matched
(%) 5418 1838349 1842337 3789 — |

EP 1 108 790 A2

<i>5</i> 10	Function					ATP-dependent helicase					hypothetical protein	deoxynucleotide monophosphate kinase					type II 5-cytosoine methyltransferase	type II restriction endonuclease			hypothetical protein	
15	Matched length (a.a.)					£69					224	208					363	358			504	
20	Similarity (%)					45.9					47.8	61.5					99.7	99.7			45.8	
	Identity (%)					21.4					25.9	31.7					99.2	2.66			24.6	
25 (panuj	ane					s SA20					or A3(2)	l gp52					micum	micum			ır A3(2)	
se	Homologous gene					Staphylococcus aureus SA20 pcrA					Streptomyces coelicolor A3(2) SCH17.07c	Bacteriophage phi-C31 gp52					Corynebacterium glutamicum ATCC 13032 cgllM	Corynebacterium glutamicum ATCC 13032 cglIR			Streptomyces coelicolor A3(2) SC1A2.16c	
40	db Match					sp:PCRA_STAAU					gp:SCH17_7	prf.2514444Y					prf.2403350A	pir.A55225			gp:SC1A2_16	
	ORF (bp)	474	156	324	312	2355	558	378	465	264	777	702	225	2166	273	6507	1089	1074	1521	717	1818	186
45	Terminal (nt)	1861225	1861475	1861519	1862399	1865299	1865822	1866219	1866792	1867095	1867874	1868587	1868671	1868927	1871101	1871380	1879400	1880485	1882470	1884220	1887047	1887590
50	Initial (nt)	1860752	1861320	1861842	1862088	1862945	1865265	1865842	1866328	1866832	1867098	1867886	1868895	1871092	1871373	1877886	1878312	1879412	1883990	1884936	1885230	1887405
	SEQ NO.	5441	5442		5444	5445	5446	5447	5448	5449	5450	5451	5452	5453	5454	5455	5456	5457	5458	5459	5460	5461
55	SEQ NO.	1941	1942	1943	1944	1945	1946	1947	1948	1949	1950	1951	1952	1953	1954	1955	1956	1957	1958	1959	1960	1961

EP 1 108 790 A2

5	Function	SNF2/Rad54 helicase-related protein	hypothetical protein		hypothetical protein				endopeptidase Clp ATP-binding chain B							nuclear mitotic apparatus protein									
15	Matched length (a.a.)	06	163		537				724						! !	1004									
20	Similarity (%)	70.0	56.4		47.9				52.5							49.1									
	Identity (%)	46.7	33.1		20.7				25.3							20.1									
Table 1 (continued)	eue gene	iodurans	ige phi-gle		s pXO2-16				lp B							ımA									
Table 1	Homologous gene	Deinococcus radiodurans DR1258	Lactobacillus phage phi-gle Rorf232		Bacillus anthracis pXO2-16				Escherichia coli clpB							Homo sapiens numA									
35	db Match	gp:AE001973_4	pir.T13226		gp:AF188935_16				sp:CLPB_ECOL!							pir.S23647									
	ORF (bp)	351 gr	864 pi	330	1680 gp	1206	1293	2493	1785 sp	621	1113	846	981	879	198	2766 pir	009	1251	969	714	1008	1659	1488	399	1509
45	Terminal (nt)	1887688	1888231	1889859	1890028	1891832	1893388	1894739	1897374	1899233	1899804	1901066	1902955	1902005	1903225	1903113	1905973	1906664	1907965	1908785	1909501	1910642	1912333		1914725
50	Initial (nt)	1888038	1889094	1889530	1891707	1893037	1894680	1897231	1899158	1899853	1900916	1901911	1901975	1902883	1903028	1905878	1906572	1907914	1908660	5480 1909498	1910508	1912300	1913820	5484 1914371	1916233
	SEQ NO (a.a.)	5462	5463	5464	5465	5466	5467	5468	5469	5470	5471	5472	5473	5474	5475	5476	5477	5478	5479		5481	5482	5483		5485
55	SEQ NO (DNA)	1962	1963	1964	1965	1966	1967	1968	1969	1970	1971	1972	1973	1974	1975	1976	1977	1978	1979	1980	1981	1982	1983	1984	1985

EP 1 108 790 A2

5	tion										ucin			ase											
10	Function										submaxillary apomucin			modification methylase					hypothetical protein			hypothetical protein			
15	Matched length (a.a.)										1408			61					114			328			
20	Similarity (%)										49.2			65.6					58.8			54.6			
	Identity (%)				-						23.2			42.6					38.6			27.1			
ontinued)	s gene										ica			oR1					erculosis			ınaschii			
SS ST Pape 1 (continued)	Homologous gene										Sus scrofa domestica			Escherichia coli ecoR1					Mycobacterium tuberculosis H37Rv Rv1956			Methanococcus jannaschii MJ0137			i i
<i>35</i>	db Match										pir:T03099			sp:MTE1_ECOLI					pir.H70638			sp:Y137_METJA			
	ORF (bp)	360	222	312	645	759	549	930	306	357	4464 p	579	945	171 S	375	1821	201	468	381 pi	507	837	942 st	624	210	534
45	Terminal (nt)	1916733	1917165	1917329	1917564	1918703	1919646	1920347	1925695	1926038	1921547	1926259	1927245	1928381	1928908	1929059	1930990	1931421	1931935	1932373	1933522	1934971	1936849	1937411	1937486
50	Initial (nt)	1916374	1916944	1917640	1918208	1919461	1920194	1921276	1925390	1925682	1926010	1926837	5497 1928189	1928211	1928534	1930879	1931190	1931888	1932315	1932879	1934358	1935912	1936226	1937202	2009 5509 1938019
	SEQ NO.	5486	5487	5488	5489	5490	5491	5492	5493	5494	5495	5496		5498	5499	5500	5501	5202	5503	5504	5205	5506	5507	5508	5509
<i>55</i>	SEQ NO.	1986	1987	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009

EP 1 108 790 A2

5		Function										surface protein				major secreted protein PS1 protein precursor			DNA topoisomerase III					major secreted protein PS1 protein precursor	
15		Matched length (a.a.)										304				270			597	!				344	
20		Similarity (%)										44.1				54.4			50.9					54.7	
		Identity (%)										23.0				30.7			23.8					29.7	
25	tinued)	gene										dse s				amicum m) ATCC								amicum n) ATCC	
30	Table 1 (continued)	Homologous gene										Enterococcus faecalis esp				Corynebacterium glutamicum (Brevibacterium flavum) ATCC 17965 csp1			Escherichia coli topB					Corynebacterium glutamicum (Brevibacterium flavum) ATCC 17965 csp1	
<i>35</i>		db Match										prf.2509434A				sp:CSP1_CORGL			sp:TOP3_ECOLI					sp:CSP1_CORGL	
		ORF (bp)	1191	534	588	444	753	303	216	300	885		297	381	429	1581	2430	867	2277	2085	891	432	744	1887 8	291
45		Terminal (nt)	1940135	1938531	1940844	1941550	1941732	1942812	1943310	1943653	1944564	1944608	1945595	1945952	1946609	1947070	1949021	1951619	1952546	1956203	1958450	1959765	1960371	1961114	1963139
50		Initial (nt)	1938945	1939064	1940257	1941107	1942484	1942510	1943095	1943345	1943680	1945435	1945891	1946332	1947037	1948650	1951450	1952485	1954822	1958287	1959340	1960196	1961114	1963000	1963429
		SEQ NO. (a.a.)	5510	5511	5512	5513	5514	5515	5516	5517	5518	5519	5520	5521	5522	5523	5524	5525	5526	5527	5528	5529	5530	5531	5532
55		SEQ NO. (DNA)	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032

EP 1 108 790 A2

													_							_							
5	רנ														-binding protein												
10	Function				thermonuclease										single stranded DNA-binding protein								serine protease				
15	Matched length (a.a.)				227	ا									225								249				
20	Similarity (%)				57.7										59.1								52.6				
	Identity (%)				30.4										24.9								25.7				
25 (panujiuo	s gene	1			reus nuc																		e AgSP24D				
So Salar Salar Table 1 (continued)	Homologous gene				Staphylococcus aureus nuc										Shewanella sp. ssb								Anopheles gambiae AgSP24D				
40	db Match				sp:NUC_STAAU										prf.2313347B								sp S24D_ANOGA				
	ORF (bp)	1230	1176	357	684 s	147	564	1452	459	1221	1419	591	396	237	624 p	579	462	507	588	333	558	570	912 s	693	366	747	180
45	Terminal (nt)	1963514	1964727	1965911	1966984	1967289	1968167	1969715	1970203	1971474	1973090	1973737	1974204	1974503	1975794	1976494	1976983	1977549	1978329	1978721	1979217	1979809	1980885	1981657	1982028	1982817	1981912
50	Initial (nt)	1964743	↓	1966267	1966301	1967435	1967604	1968264	1969745	1970254	1971672	1973147	1973809	1974267	1975171	1975916	1976522	1977043	1977742	1978389	1978660	1979239	1979974	1980965	1981663	1982071	1982091
	SEO	5533	5534	5535	5536	5537	5538	5539	5540	5541	5542	5543	5544	5545	5546	5547	5548	5549	5550	5551	5552	5553	5554	5555	5556	5557	5550
55	SEQ.	2033	2034	2035	2036	2037	2038	2039	2040	2041	2042	2043	2044	2045	2046	2047	2048	2049	2050	2051	2052	2053	2054	2055	2056	2057	2058

EP 1 108 790 A2

									Ì			i								tein	
5	Function								15e	transposase (divided)	transposase (divided)		transposition repressor	insertion element (IS3 related)	osase					major secreted protein PS1 protein precursor	Se
!				_	_				integrase	transp	transp		transp	insertic	transposase					major sec precursor	integrase
15	Matched length (a.a.)								406	124	117		31	43	270					153	223
20	Simi arity (%)								55.9	94.4	84.6		96.8	88.4	53.7					37.0	56.1
	Identity (%)								29.6	83.9	70.9		80.7	74.4	31.1					25.0	28.7
25 (panujured)	s gene	i							ige L5 int	ofermentum	ofermentum		ofermentum	lutamicum	color A3(2)					utamicum /um) ATCC	ge L5 int
S Table 1 (continued)	Homo!ogous gene								Mycobacterium phage L5 int	Brevibacterium lactofermentum CGL2005 ISaB1	Brevibacterium lactofermentum CGL 2005 ISaB1		Brevibacterium lactofermentum CGL2005 ISaB1	Corynebacterium glutamicum orf1	Streptomyces coelicolor A3(2) SCJ11,12					Corynebacterium glutamicum (Brevibacterium flavum) ATCC 17965 csp1	Mycobacterium phage L5 int
35	db Match								Sp.VINT_BPML5	gsp:R23011	gsp:R23011		gsp:R21601	pir.S60889	gp:SCJ11_12					sp.CSP1_CORGL	SP.VINT_BPML5
40	ORF (bp)	363	7.3	264	34	12	273	23	1149 sp.V	390 gsp.	417 gsp:	207	114 gsp.	135 pir.S	828 gp:S	4	=	12	4	1584 sp:C	687 sp:V
			3 273		0 234	342		1 303	 		 	-			 	354	4 891	9 432	5 744		\vdash
45	Terminal (nt)	1983548	1983883	1984181	1984450	1984728	1985364	198507	1985442	1987507	1987887	1988589	1988370	1988530	1988778	1991020	1989874	1991189	1991795	1992538	1994608
50	Initial (nt)	1983186	1983611	1983918	1984217	1984387	1985092	1985373	1986590	1987896	1988303	1988383	1988483	1988664	1989605	1990667	1990764	1991620	1992538	1994121	1995294
	SEQ NO (a a.)	5559	5560	5561	5562	5563	5564	5999	5566	2567	8955	5569	5570	5571	5572	5573	5574	5575	5576	5577	5578
55	SEQ NO (DNA)	2059	2060	2061	2062	2063	2064	2065	2066	2067	2068	2069	2070	2071	2072	2073	2074	2075	2076	2077	2078

EP 1 108 790 A2

5		uo	ransporter				is protein	protein	reductase					5-phosphate	ise			osphate		
10		Function	sodium-dependent transporter	hypothetical protein			riboflavin biosynthesis protein	potential membrane protein	methionine sulfoxide reductase		hypothetical protein	hypothetical protein	ribonuclease D	1-deoxy-D-xylulose-5-phosphate synthase	RNA methyltransferase		hypothetical protein	deoxyuridine 5'-triphosphate nucleotidohydrolase	hypothetical protein	
15		Matched length (a.a.)	88	92			233	384	126		232	201	371	618	472		268	140	150	
20		Similarity (%)	76.1	81.5			64.4	71.9	67.5		77.2	786	528	78.5	52.3		62 7	82.1	70.7	
		Identity (%)	39.8	48.9			33.5	42.5	41.3		55.2	55.7	25.9	55.3	25.4		38.1	55.0	46.0	
25	Table 1 (continued)	ars gene	26695	аА			perculosis D	oerculosis	donii msrA		berculosis	oerculosis	enzae Rd	CL190 dxs	ma MSB8		oerculosis	icolor A3(2)	oerculosis	
30	Table 1 (Homologaus gene	Helicobacter pylori 26695 HP0214	Bacillus subtilis yxaA			Mycobacterium tuberculosis H37Rv Rv2671 ribD	Mycobacterium tuberculosis H37Rv Rv2673	Streptococcus gordonii msrA		Mycobacterium tuberculosis H37Rv Rv2676c	Mycobacterium tuberculosis H37Rv Rv2680	Haemophilus influenzae Rd KW20 H10390 rnd	Streptomyces sp. CL190 dxs	Thermotoga maritima MSB8 TM1094		Mycobacterium luberculosis H37Rv Rv2696c	Streptomyces coelicolor A3(2) SC2E9.09 dut	Mycobacterium tuberculosis H37Rv Rv2698	
35		db Match	pir:F64546	sp.YXAA_BACSU B			pir.C70968	pir:E70968 ⊢	gp:AF128264_2 S		N pir:H70968	pir.C70528	sp.RND_HAEIN	gp:AB026631_1 S	pir:E72298		pir.C70530	sp.DUT_STRCO S	pir:E70530 H	
40		ORF (bp)	306 pir.F6	432 sp.Y.	345	336	696 pir.C	1254 pir.E.		426	696 pir.H.	624 pir.C.	1263 sp:RI	1908 gp:AE	1236 pir.E7	2	 			7
O.S.				-		-			9 408			 	1		1	9 282	7 861	8 447	8 549	6 207
45		Terminal (nt)	1995783	1996537	1997112	1997503	1998240	1999542	1999949	1999707	2000521	2002112	2003334	2003402	2005452	2006979	2006777	2007738	2008798	2008876
50		Initial (nt)	1996088	1996106	1996768	1997168	1997545	1998289	1999542	2000132	2001216	2001489	2002072	2005309	2006697	2006698	2007637	2008184	2008250	5596 2009082
		SEO NO (a a)	5579	5580	5581	5582	5583	5584	5585	5586	5587	5588	5589	5590	5591	5592	5593	5594	5595	5596
55		SEQ SEQ NO NO (DNA) (a a.)	2079	2080	2081	2082	2083	2084	2085	2086	2087	2088	2089	2090	2091	2002	2093	2094	2095	2096
																				~

EP 1 108 790 A2

5	Function	hypothetical protein	extragenic suppressor protein	polyphosphate glucokinase	sigma factor or RNA polymerase transcription factor	hypothetical membrane protein		hypothetical protein	hypothetical membrane protein	hypothetical protein	transferase	hypothetical protein	iron dependent repressor or diphtheria toxin repressor	putative sporulation protein	UDP-glucose 4-epimerase		hypothetical protein	ATP-dependent RNA helicase
15	Matched length (a.a.)	100	198	248	200	422		578	127	92	523	144	228	77	329		305	661
20	Similarity (%)	81.0	68.2	80.2	98.6	51.4		80.8	59.1	85.5	61.2	100.0	93.6	64.0	, '66		79.0	50.7
	Identity (%)	58.0	38.4	54.4	08.0	23.9		61.3	32.3	65.8	33.5	97.2	98.7	62.0	99.1		45.3	24.4
25	eu eu	losis	hВ	losis	micum			ılosis	llosis	ılosis	r A3(2)	nicum	micum	iens	nicum terium		losis	siae
30	Hamologous gene	Mycobacterium tuberculosis H37Rv Rv2699c	Escherichia coli K12 suhB	Mycobacterium tuberculosis H37Rv RV2702 ppgK	Corynebacterum glutamicum sigA	Bacillus subtilis yrkO		Mycobacterium tuberculosis H37Rv Rv2917	Mycobacterium tuberculosis H37Rv Rv2709	Mycobacterium tuberculosis H37Rv Rv2708c	Streptomyces coelicolor A3(2) SCH5.08c	Corynebacterium glutamicum ATCC 13869 ORF1	Corynebacterium glutamicum ATCC 13869 db:R	Streptomyces aureofaciens	Corynebacterium glutamicum ATCC 13869 (Brevibacterium lactofermentum) galE		Mycobacterium tuberculosis H37Rv Rv2714	Saccharomyces cerevisiae YJL050W dob1
<i>35</i> 40	db Match	pir.F70530	sp.SUHB_ECOLI	sp PPGK_MYCTU	prf.2204286A	sp YRKO_BACSU		sp:Y065_MYCTU	pir.H70531	pir.G70531	gp.SCH5_8	prf.2204286C	pir:140339	GP-AF010134_1	sp GALE_BRELA		pir:E70532	sp:MTR4_YEAST
	ORF (bp)	291	816	828	1494	1335	537	1710	636	237	1533	432	684	234	987	1323	957	2550
45	Terminal (nt)	2009280	2009724	2011382	2013356	2014162	2015585	2016257	2018754	2017966	2020276	2020724	2022949	2022313	2023945	2023948	2026379	2029043
50	Initial (nt)	2009570	2010539	2010555	2011863	2015496	2016121	2017966	2018119	2018202	2018744	2020293	2022266	2022546	2022959	2025270	2025423	2026494
	SEQ NO.	5597	5598	5599	2600	5601	5602	5603	5604	5605	5606	5607	5608	5609	5610	5611	5612	5613
55	SEQ NO. (DNA)	2097	2098	2099	2100	2101	2102	2103	2104	2105	2106	2107	2108	2109	2110	2111	2112	2113

EP 1 108 790 A2

t					-															
10	Function	hydrogen peroxide-inducible genes activator		ATP-dependent helicase	regulatory protein		SOS regulatory protein	galactitol utilization operon repressor	phosphofructokinase (fructose 1- phosphate kinase)	phosphoenolpyruvate-protein phosphotransferase	glycerol-3-phosphate regulon repressor	1-phosphofructokinase or 6- phosphofructokinase	PTS system, fructose-specific IIBC component	phosphocarrier protein		uracil permease	ATP/GTP-binding protein			diaminopimelate epimerase
15	Matched length (a a)	299		1298 /	145 r		222	245 9	320 F	592 F	262	345 1	549 F	81 р		407 u	419 4	i		269 d
20	Similarity (%)	65.6		76.2	86.2		71.6	8.79	55.6	64.0	62.6	55.7	69.6	71.6		70.5	90.C			64.7
! : :	Identity (%)	35.8		49.2	61.4		46.9	33.9	27.2	34.3	26.7	33.0	43.0	37.0		39.1	54.4			33.5
25 (juned)	ere				erus nrdR			atR	or A3(2)	philus ptsl	lpR	us fruK	An.	ohilus XL-		yrP	orf11*			ie Rd
Table 1 (continued)	Homologcus gere	Escherichia coli oxyR		Escherichia coli hrpA	Streptomyces clavuligerus nrdR		Bacillus subtilis dinR	Escherichia coli K12 gatR	Streptomyces coelicolor A3(2) SCE22.14c	Bacillus stearothermophilus ptsl	Escherichia coli K12 glpR	Rhodobacter capsulatus fruK	Escherichia coli K12 fruA	Bacillus stearothermophitus XL- 65-6 ptsH		Bacillus caldolyticus pyrP	Streptomyces fradiae orf11*			Haemophilus influenzae Rd KW20 HI0750 dapF
40	db Match	sp.OXYR_ECOLI		Sp:HRPA_ECOLI	gp:SCAJ4870_3		sp:LEXA_BACSU	sp.GATR_ECOLI	gp:SCE22_14	sp:PT1_BACST	sp:GLPR_ECOLI	sp:K1PF_RHOCA	sp:PTFB_ECOLI	sp.PTHP_BACST		sp.PYRP_BACCL	gp:AF145049_8			SP.DAPF_HAEIN
	ORF (bp)	981	1089	3906	450	420	969	777	960	1704	792	990	1836	267	585	1287	1458	785	537	831
45	Terminal (nt)	2030157	2030277	2035383	2035431	2035990	2037507	2038591	2039550	2039618	2042519	2043508	2045571	2046028	2046714	2047320	2048650	2051106	2051842	2051845
50	fnitiaf (nt)	2029177	2031365	2031478	5617 2035880	2036409	2036812	5620 2037815	5621 2038591	2041321	2041728	2042519	2043736	2045762	2047295	2048606	2050107	2050321	2051306	2052675
	SEQ NO.	5614	5615	5616		5618	5619			5622	5623	5624	5625	5626	5627	5628	5629	5630	5631	5632
55	SEQ NO (DNA)	2114	2115	2116	2117	2118	2119	2120	2121	2122	2123	2124	2125	2126	2127	2128	2129	2130	2131	2132

5	Function	tRNA delta-2- isopentenylpyrophosphate transferase		hypothetical protein			hypothetical membrane protein	hypothetical protein	glutamate transport ATP-binding protein	Neisserial polypeptides predicled to be useful antigens for vaccines and diagnostics	glutamate transport system permease protein	glutamate transport system permease protein	regulatory protein	hypothetical protein		biotin synthase	putrescine transport ATP-binding protein	hypothetical membrane protein
15	Matched length (a a)	300		445			190	494	242	71	225	273	142	29		197	223	228
20	Similarity (%)	68.7		75.7			63.7	86.4	9.66	73.0	100.0	9.66	6.99	71.6		61.4	69.5	58.8
	Identity (%)	40.0		48.5			29.0	68.4	9.66	66.0	100.0	99.3	34.5	40.3		33.0	33.2	24.6
25 (pən	a)	Ą		osis			sis		icum		icum	icum ATCC	×	sis			(1)	
ss os Table 1 (continued)	Homologous gene	Escherichia coli K12 miaA		Mycobacterium tuberculosis H37Rv Rv2731			Mycobacterium tuberculosis H37Rv Rv2732c	Mycobacterium leprae B2235_C2_195	Corynebacterium glutamicum ATCC 13032 gluA	Neisseria gonorrhoeae	Corynebacterium glutamicum ATCC 13032 gluC	Corynebacterium glutamicum (Brevibacterium flavum) ATCC 13032 gluD	Mycobacterium leprae recX	Mycobacterium tuberculosis H37Rv Rv2738c		Bacillus sphaericus bioY	Escherichia coli K12 potG	Bacillus subtilis ybaF
40	db Match	sp MIAA_ECOLI		pir.B70506			pir:C70506	sp.Y195_MYCLE	sp:GLUA_CORGL	GSP:Y75358	sp:GLUC_CORGL	sp:GLUD_CORGL	sp:RECX_MYCLE	pir:A70878		sp:BIOY_BACSH	sp:POTG_ECOLI	pir.F69742
	ORF (bp)	903	675	1359	1020	1023	699	1566	726	219	684	819	597	234	738	576	669	609
45	Terminal (nt)	2052684	2053609	2055761	2054724	2056787	2057120	2057855	2060499	2060196	2062312	2063259	2063298	2065394	2065667	2067141	2067866	2068474
50	Initial (nt)	2053586	2054283	2054403	2055743	2055765	2057788	2059420	2059774	2060414	2061629	2062441	2063894	2065627	2066404	2066566	2067168	2067866
	SEQ NO (a.a.)	5633	5634	5635	5636	5637	5638	5639	5640	5641	5642	5643	5644	5645	5646	5647	5648	5649
55	SEQ NO (DNA)	2133	2134	2135	2136	2137	2138	2139	2140	2141	2142	2143	2144	2145	2146	2147	2148	2149

5	Function	hypothetical protein	hypothetical protein (35kD protein)	regulator (DNA-binding protein)	competence damage induced proteins	phosphotidylglycerophosphate synthase	hypothetical protein	surface protein (Peumococcal surface protein A)		tellurite resistance protein	stage III sporulation protein E	hypothetical protein	hypothetical protein	hypothetical protein			guanosine pentaphosphate synthetase	30S ribosomal protein S15	nucleoside hydrolase
15	Matched tength (a.a.)	228	569	83	165	160	117	30		358	845	216	645	250			742	89	319
20	Similarity (%)	78.5	89.6	78.3	68.5	72.5	52.1	70.0		59.8	64.6	61.0	99.4	9.66			85.3	88.8	63.3
	Identity (%)	41.7	72.5	54.2	41.8	38.8	24.8	60.0		31.0	38.0	33.3	99.1	99.2			65.4	64.0	35.1
25 (panui	ene	ulosis	ulosis	ulosis	oniae R6X	es pgsA		oniae			IOIIIE	or A3(2)	ımicum	micum ermentum)			lsdb sna		
ss & SE Table 1 (continued)	Homologous gene	Mycobacterium tuberculosis	Mycobacterium tuberculosis H37Rv RV2744C	Mycobacterium tuberculosis H37Rv Rv2745c	Streptococcus pneumoniae R6X cinA	Streptococcus pyogenes pgsA	Arabidopsis thaliana ATSP: T16118.20	Streptococcus pneumoniae DBL5 pspA		Escherichia coli terC	Bacillus subtilis 168 spolllE	Streptomyces coelicolor A3(2) SC4G6.14	Corynebacterium glutamicum ATCC 13032 orf4	Corynebacterium glutamicum (Brevibacterium lactofermentum) ATCC 13869 orf2			Streptomyces antibioticus gpsl	Bacillus subtilis rpsO	Leishmania major
40	db Match	pir:B60176	sp:35KD_MYCTU	pir:H70878	sp.CINA_STRPN	prf.2421334D	pir:T10688	gp. AF071810_1		prf 2119295D	sp.SP3E_BACSU	gp:SC4G6_14	sp.YOR4_CORGL	sp:YDAP_BRELA			prf:2217311A	pir:F69700	prf 2518365A
	ORF (bp)	9	828	321	516	603	285	117	813	1107	2763	633	2154	750	669	264	2259	267	948
45	Terminal (nt)	2069392	2068556	2069616	2069997	2070519	2071599	2071740	2072878	2071799	2073294	2076392	2077122	2080387	2082813	2082105	2082932	2085436	2085879
50	Initial (nt)	2068703	2069383	2069936	2070512	2071121	2071315	2071624	2072066	2072905	2076056	2077024	2079275	2081136	2082115	2082368	2085190		5667 2086826
	SEQ NO (a a.)	5650	5651	5652	5653	5654	5655	5656	2657	5658	5659	5660	5661	5662	5663	5664	5665	9999	2999
55	SEQ NO (DNA)	2150	2151	2152	2153	2154	2155	2156	2157	2158	2159	2160	2161	2162	2163	2164	2165	2166	2167

Function	bifunctional protein (riboflavin kinase and FAD synthetase)	tRNA pseudouridine synthase B	hypothetical protein	hypothetical protein	phosphoesterase	DNA damaged inducible protein f	hypothetical protein	ribosome-binding factor A	translation initiation factor IF-2	hypothetical prolein	n-utilization substance protein (transcriptional termination/antitermination factor)		hypothetical protein	peptide-binding protein	peptidetransport system permease	oligopeptide permease	peptidetransport system ABC- transporter ATP-binding protein
Matched length (a.a.)	329	£0£	47	237	273	433	308	108	1103	83	352		165	534	337	292	552
Similarity (%)	79.0	61.7	73.0	62.5	68.9	78.8	70.8	70.4	629	66.3	71.0		65 5	609	69 4	2 69	813
identity (%)	56.2	32.7	65.0	42.2	46.9	51.0	36.7	32.4	37.7	44.6	42.3		34.6	25.3	37.7	38.4	57.6
Homologous gene	Corynebacterium Immoniagenes ATCC 6872 ribF	sacillus subtilis 168 truB	Zorynebacterium Immoniagenes	treptomyces coelicolor A3(2)	Aycobacterium tuberculosis 137Rv Rv2795c	Aycobacterium tuberculosis 137Rv Rv2836c dinF	Aycobacterium tuberculosis 137Rv Rv2837c	Bacillus subtilis 168 rbfA	stigmatella aurantiaca DW4 infB	streptomyces coelicolor A3(2) SC5H4.29	3acillus subtilis 168 nusA		Aycobacterium tuberculosis 137Rv Rv2842c	Bacillus subtilis 168 dppE	scherichia coli K12 dppB	sacillus subtilis spo0KC	Mycobacterium tuberculosis H37Rv Rv3663c dppD
db Match	Sp.RIBF_CORAM	sp.TRUB_BACSU E	PIR:PC4007	gp:SC5A7_23	pir:B70885	pir:G70693	pir:H70693	sp.RBFA_BACSU	sp:IF2_STIAU	gp:SC5H4_29	sp:NUSA_BACSU_E		pir.E70588	sp.DPPE_BACSU E	Sp.DPPB_ECOLI E	prf.1709239C	pir.H70788
ORF (bp)	1023	891	228	651	804	1305	966	447	3012	336	966	1254	534	1602	924	666	1731
Terminal (nt)	2086919	2088863	2087954	2089218	2089861	2090751	2092051	2093055	2093712	2096844	2097380	2099815	2098412	2101841	2102946	2103973	2105703
Initial (nt)	2087941	2087973	2088181	2089868	2090664	2092055	2093046	2093501	2096723	2097179	2098375	2098562	2098945	2100240	2102023	2102975	2103973
SEQ NO.	5668	5669	5670	5671	5672	5673	5674	5675	9299	5677	5678	5679	5680	5681	5682	5683	5684
SEQ NO.	2168	2169	2170	2171	2172	2173	2174	2175	2176	2177	2178	2179	2180	2181	2182	2183	2184
	SEQ Initial Terminal ORF db Match Homologous gene Identity Similarity Matched (%) (nt) (nt) (hp) (bp) (aa)	SEQ Initial (a a.) Terminal (nt) ORF (nt) db Match Homologous gene (gen) Identity (%) Similarity (%) Matched (%) 5668 2087941 2086919 1023 sp.RIBF_CORAM Corynebacterium ammoniagenes ATCC 6872 ribF 56.2 79.0 329	SEQ Initial (a) Terminal (b) ORF (b) db Match Homologous gene (c) Identity (c) Similarity (c) Matched (c) 8668 2087941 2086919 1023 sp:RIBF_CORAM Corynebacterium ammoniagenes ATCC 6872 ribF 56.2 79.0 329 5669 2087973 2088863 891 sp:TRUB_BACSU Bacillus subtilis 168 truB 32.7 61.7 303	SEQ Initial (nt) Terminal (bp) db Match Homologous gene (w) Identity (w) Similarity (m) Matched (w) Matched (w)	SEQ Initial Terminal ORF db Match Homologous gene (dentity (%) Similarity (%) Matched (%)	SEQ Initial (nt) Terminal (nt) ORF (nt) db Match Homologous gene (%) (dentity (%) Similarity (%) Matched (%) (%)<	SEQ Initial (nt) Terminal (DRF) db Match Homologous gene (%) Identity (%) Similarity (%) Matched (%)	SEQ (nt) Initial (nt) Terminal (nt) ORF (nt) db Match Homologous gene (%) Identity (%) Similarity (%) Matched (%) Matched (%)	SEQ NO. Initial (nt) Terminal (nt) ORF (bp) db Match Homologous gene (%) Identity (%) Similarity (%) Matched (%) Matched (%)	SEQ NO. Initial (nt) Terminal (nt) ORF (bp) db Match Homologous gene Identity (%) Similarity (%) Matched (%) Matched (%)	SEQ NO. Initial Terminal ORF db Match Homologous gene Identity (%) Similarity (%) Matched (%) (%)	SEQ Initial Terminal ORF db Match Homologous gene Identity Similarity Matched (%s) (%s)<	SEQ Initial Terminal ORF db Match Homologous gene Identity Similarity flag length NO. (nt) (nt) (bp) db Match Homologous gene Identity Similarity Identity NO. (nt) (bp) 40.0 32.0 79.0 329 5668 2087973 2088683 891 sp.TRUB_BACSU Bacilius subtilis 168 truB 32.7 61.7 303 5670 2081973 2088681 208 22.8 PIR. PC4007 ammoniagenes A7.2 65.0 73.0 47 5670 2088181 2089682 891 PIR. PC4007 ammoniagenes A2.2 65.0 73.0 47 5671 2089686 2089218 651 gp:SC5A7_23 Streptomyces coelicolor A3(2) 42.2 62.5 237 5672 2090686 2080751 1305 pir.H70693 Mycobacterium tuberculosis 51.0 78.8 433 5673 209361 2090751 301	SEC NO. Initial (nt) Terminal (nt) ORF (bp) db Match (bp) Homologous gene Identity (%) Similarity (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Identity (%) Matched (%) Matched (%) <td>SEG Initial Terminal ORF db Match Homologous gene Identity Similarity langth length length NO. (nt) (nt) (hp) db Match Homologous gene (%)</td> <td>SEC NO. Initial (mt) Terminal (mt) ORF (mt) db Match Homologous gene (%s) Identity (%s) Similarity (%s) Matched (%s) Matched (s) Matched (s)<td>SEG Initial Terminal ORF db Match Homologous gene Identity Similarity (%) Matched (%)</td></td>	SEG Initial Terminal ORF db Match Homologous gene Identity Similarity langth length length NO. (nt) (nt) (hp) db Match Homologous gene (%)	SEC NO. Initial (mt) Terminal (mt) ORF (mt) db Match Homologous gene (%s) Identity (%s) Similarity (%s) Matched (%s) Matched (s) Matched (s) <td>SEG Initial Terminal ORF db Match Homologous gene Identity Similarity (%) Matched (%)</td>	SEG Initial Terminal ORF db Match Homologous gene Identity Similarity (%) Matched (%)

5	Function	prolyl-tRNA synthetase	hypothetical protein	magnesium-chelatase subunit	magnesium-chelatase subunit	uroporphyrinogen III methyltransferase	hypothetical protein	hypothetical protein	hypothetical protein	glutathione reductase					methionine aminopeptidase	penicillin binding protein	response regulator (two-component system response regulator)	two-component system sensor histidine kinase	hypothetical membrane protein
15	Matched length (a.a.)	578	243	37	342	237	488	151	338	466					252	630	216	424	360
20	Similarity (%)	84.6	65.0	60.7	9.69	73.8	68.7	62.3	65.7	76.6					75.8	56.5	72.2	56.8	58.1
	Identity (%)	0.79	39.5	32.4	46.5	49.0	41.2	35.1	37.6	53.0					47.2	27.3	44.0	29.5	24.4
otinued)	gene	rculosis S	olor A3(2)	oides ATCC	bchl	eudenreichii	ns NCIB	olor A3(2)	rculosis	AC1100					map	gerus pcbR	htheriae	htheriae	rans
% % % % % % % % % % % % % % % % % % %	Нотовою вепе	Mycobacterium tuberculosis H37Rv Rv2845c proS	Streptomyces coelicolor A3(2) SCC30.05	Rhodobacter sphaeroides ATCC 17023 bchD	Heliobacillus mobilis bchl	Propionibacterium freudenreichii cobA	Clostridium perfringens NCIB 10662 ORF2	Streptomyces coelicolor A3(2) SC5H1.10c	Mycobacterium tuberculosis H37Rv Rv2854	Burkholderia cepacia AC1100 gor					Escherichia coli K12 map	Streptomyces clavuligerus pcbR	Corynebacterium diphtheriae chrA	Corynebacterium diphtheriae chrS	Deinococcus radiodurans DRA0279
40	db Match	sp:SYP_MYCTU	gp:SCC30_5	sp.BCHD_RHOSH	prf.2503462AA	prf:2108318B	sp:YPLC_CLOPE	gp:SC5H1_10	pir:A70590	sp.GSHR_BURCE					sp:AMPM_ECOLI	prf.2224268A	prf:2518330B	prf:2518330A	gp AE001863_70
	ORF (bp)	1764	735	759	1101	750	1422	900	1014	1395	942	474	357	729	789	1866	630	1149	957
45	Terminal (nt)	2105801	2108386	2108389	2109155	2110434	2112659	2112717	2116774	2118310	2117015	2119080	2119495	2120356	2120359	2121296	2123219	2123848	2126045
50	Initial (nt)	2107564	2107652	2109147	2110255	2111183	2111238	2113616	2115761	2116916	2117956	2118607	2119139	2119628	2121147	2123161	2123848	2124996	2125089
	SEQ NO.	5685	5686	5687	5688	5689	5690	5691	2695	5693	5694	5692		2692	5698	5699	5700	5701	5702
55	SEQ NO (DNA)	2185	2186	2187	2188	2189	2190	2191	2192	2193	2194	2195	2196	2197	2198	2199	2200	2201	2202

Table 1 (continued) Terminal ORF Table 2 (continued) Terminal ORF Table 3 (continued) Table 4 (continued) Table 5 (continued) Table 6 (continued) Table 6 (continued) Table 7 (con							~		· · · · · · · · · · · · · · · · · · ·					-,								
Table 1 (continued) Table 2 (continued) Table 3 (continued) Table 3 (continued) Table 4 (continued) Table 5 (continued) Table 6 (continued) Table 6 (continued) Table 6 (continued) Table 7 (continued)			Function	transporter		thetical protein (gcpE protein)		hetical membrane protein	eptides can be used as nes against Chlamydia omatis	xy-D-xylulose-5-phosphate toisomerase				ransporter ATP-binding protein	ate formate-lyase 1 activating	hetical membrane protein	hatidate cytidylyltransferase	me recycling factor	ate kinase		elongation factor Ts	30S ribosomal protein S2
Table 1 (continued) Table 2 (continued)	15			ABC		hypo		hypo	polyp vacci trach	1-dec				ABC	pyruv enzyn	hypot	dsoyd	riboso	uridyl		elong	30S ri
Table 1 (continued) Initial Terminal ORF db Match Homologous gene (%) (11) (10) (1	15			225		359		405	147	312				245	356	94	294	185	109		280	254
Initial Terminal ORF db Match Homologous gene 2126064 2126753 690 prf 2420410P Bacillus subtilis 168 yvrO 2126926 162 2126946 1212 prf C70886 H37Rv Rv2869c 1229461 612 2126869 1212 prf C70886 H37Rv Rv2869c 12130306 2130950 645 GSP: V37145 Chlamydia trachomatis 2131722 2131722 2131724 440 Chlamydia trachomatis 2133402 2131825 1578 Chlamydia trachomatis Chlamydia Chlamydia trachomatis Chlamydia 20		Similarity (%)	71.1		73.8		73.6	43.0	42.0				75.1	78.0	74.5	56.5	84.3	43.1		76.8	83.5	
Initial Terminal ORF db Match Homologous gene 2126064 2126753 699 prf 2420410P Bacillus subtilis 168 yvrO 2126483 2126926 162 2126926 162 2126869 1212 pir.G70886 H37Rv Rv2869c 2128669 1212 pir.G70886 H37Rv Rv2869c 213950 1136 sp. DXR_ECOLI Escherichia coli K12 gcpE 2131026 2131247 480 Algorithm Algori			Identity (%)	37.3		44.3		43.0	36.0	22.8				37.1	0.99	41.5	33.3	47.0	28.4		49.6	54.7
Finitial Terminal ORF db Match (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt)	25	ਜ											 						Ę	-	6	
Finitial Terminal ORF db Match (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt)	30	Table 1 (continued	Homologous gene	cillus subtilis 168 yvrO		cherichia coli K12 gcpE		robacterium tuberculosis 7Rv Rv2869c	lamydia trachomatis	cherichia coli K12 dxr				ermotoga maritima MSB8 10793	cobacterium tuberculosis 7Rv	cobacterium tuberculosis 7Rv Rv3760	eudomonas aeruginosa CC 15692 cdsA	sillus subtilis 168 frr	eudomonas aeruginosa py		Streptomyces coelicolor A3(2) SC2E1.42 tsf	Bacillus subtilis rpsB
S	35			Ba				Ψ.E.	ວົ	ES.		_	-	E Σ	My H3	My H37	Pse ATC	Bac	Pse		Stre	Bac
1 Initial Terminal (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt)	40			prf 2420410P		sp.GCPE			GSP:Y37145					pir:872334		pir:A70801	sp:CDSA_PSEAE	sp.RRF_BACSU	prf:2510355C		sp:EFTS_STRCO	pir:A69699
Initial (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt)			ORF (bp)	969	162	1134	612	1212	645	1176	441	480	1578	855	1098	258	855	555	729	861	825	816
1 Initial (nt) 2126064 2127087 2128483 2128850 2128850 2138850 2131322 2131726 2131726 2135551 2135884 2135864 2138664	45		Terminal (nt)	2126753	2126926	2127350	2129461	2128669	2130950	2129903	2131762	2131247	2131825	2133406	2134454	2136141	2136235	2137286	2137936	2139854	2139003	2140071
	50		Initial (nt)	2126064	2127087	2128483	2128850	2129880	2130306	2131078	2131322	2131726	2133402	2134260	2135551	2135884	2137089	2137840	2138664	-		2140886
			SEQ NO. (a.a.)	5703	5704	5705	5706	5707	5708	5709					5714	5715	5716	5717	5718	5719	5720	5721
	55		SEQ NO.	2203	2204	2205	5206	2207	2208	2209		_						_		-		2221

5	Function	hypothetical protein	site-specific recombinase	hypothetical protein	Mg(2+) chelatase family protein	hypothetical protein	hypothetical protein	ribonuclease HII		signal peptidase	Fe-regulated protein		50S ribosomal protein L19	thiamine phosphate pyrophosphorylase	oxidoreductase	thiamine biosynthetic enzyme thiS (thiG1) protein	thiamine biosynthetic enzyme thiG protein	molybdopterin biosynthesis protein
15	Matched length (a.a.)	120	297	395	504	119	101	190		285	323		111	225	376	62	251	437
20	Similarity (%)	58.0	68.7	8.99	75.8	72.3	0.96	9.69		61.1	59.1		88.3	6.09	64.1	74.2	76.9	56.8
	Identity (%)	46.0	40.1	39.8	46.6	40.3	68.3	42.6		32.3	25.4		70.3	28.4	34.0	37.1	48.2	30.2
ntinued)	gene	rculosis	Q	culosis	culosis	culosis	culosis	zae Rd		s TK21	us sirA		ophilus rp!S	hiE	ilor A3(2)	this	thiG	пхF
% % Service of the se	Homologous gene	Mycobacterium tuberculosis H37Rv Rv2891	Proteus mirabilis xerD	Mycobacterium tuberculosis H37Rv Rv2896c	Mycobacterium tuberculosis H37Rv Rv2897c	Mycobacterium tuberculosis H37Rv Rv2898c	Mycobacterium tuberculosis H37Rv Rv2901c	Haemophilus influenzae Rd HI1059 rnhB		Streptomyces lividans TK21 sípY	Staphylococcus aureus sirA		Bacillus stearothermophilus rplS	Bacillus subtilis 168 thiE	Streptomyces coelicolor A3(2) SC6E10.01	Escherichia coli K12 thiS	Escherichia coli K12 thiG	Emericella nidulans cnxF
40	db Match	sp:YS91_MYCTU	prf:2417318A	sp:YX27_MYCTU	sp:YX28_MYCTU	sp:YX29_MYCTU	sp:YT01_MYCTU	sp.RNHZ_HAEIN		prf.2514288H	prf:2510361A		sp:RL19_BACSTE	sp:THIE_BACSU	gp:SC6E10_1	SP:THIS_ECOLI	sp:THIG_ECOL!	prf.2417383A
	ORF (bp)	504	924	1182	1521	366	303	627	792	982	936	213	339 (663	1080	195	780	1134
45	Terminal (nt)	2141760	2141763	2142885	2144066	2145576	2146264	2146566	2148022	2147261	2149166	2149359	2149634	2150997	2152118	2152329	2153113	2154191
50	Initial (nt)	2141257	2142686	2144066	2145586	2145941	2146566	2147192	2147231	2148046	2148231	2149571	2149972	5734 2150335	2151039	2152135	5737 2152334	2153058
	SEQ NO (a a.)	5722	5723	5724	5725	5726	5727	5728	5729	5730	5731	5732	5733	5734	5735	5736	5737	5738
55	SEQ NO.	2222	2223	2224	2225	2226	2227	2228	2229	2230	2231	2232	2233	2234	2235	2236	2237	2238

	Ì									·	}					-						
5	Function	transcriptional accessory protein	sporulation-specific degradation regulator protein	dicarboxylase translocator	2-oxoglutarate/malate translocator	3-carboxy-cis, cis-muconate cycloisomerase				tRNA (guanine-N1)- methyltransferase	hypothetical protein	16S rRNA processing protein	hypothetical protein	30S ribosomal protein S16	inversin	ABC transporter	ABC transporter	signal recognition particle protein				cell division protein
	70 _	tran	spo reg	dica	2-0)	3-cs cycl				#RN The	hyp	168	hyp	308	inve	ABC	ABC	sign				cell
15	Matched length (a.a.)	776	334	456	65	350				273	210	172	69	83	196	256	318	559				505
20	Similarity (%)	78.7	65.3	78.3	80.0	66.3				64.8	57.6	72.1	66.7	79.5	61.7	69,1	63.8	78.2				66.1
	Identity (%)	56.6	27.0	45.8	40.0	39.1				34.8	30.5	52.3	29.0	47.0	32.1	26.6	35.5	58.7				37.0
S 52 Table 1 (continued)	us gene	sis TOHAMA I	38 degA	eumoniae	chloroplast	tida pcaB				.12 trmD	licolor A3(2)	prae M	i J99 jhp0839	38 rpsP		alactiae cylB	shii OT3 mtrA	38 ffh				12 ftsY
% Table 1 (Homologous gene	Bordetella pertussis TOHAMA I tex	Bacillus subtilis 168 degA	Chlamydophila pneumoniae CWL029 ybhl	Spinacia oleracea chloroplast	Pseudomonas putida pcaB				Escherichia coli K12 trmD	Streptomyces coelicolor A3(2) SCF81.27	Mycobacterium leprae MLCB250.34, rimM	Helicobacter pylori J99 jhp0839	Bacillus subtilis 168 rpsP	Mus musculus inv	Streptococcus agalactiae cylB	Pyrococcus horikoshii OT3 mtrA	Bacillus subtilis 168 ffh				Escherichia coli K12 ftsY
35				30	0,						0, 0,			ш	_	07	11	-				
40	db Match	sp.TEX_BORPE	pir:A36940	pir:H72105	prf.2108268A	sp:PCAB_PSEPU				sp:TRMD_ECOL!	gp:SCF81_27	Sp.RIMM_MYCLE	pir.B71881	pir:C47154	pir:T14151	prf:2512328G	prf:2220349C	sp.SR54_BACSU				530 SP.FTSY_ECOLI
	ORF (bp)	2274	975	1428	219	1251	66	393	690	819	648	513	348	495	929	867	928	1641	633	417	699	1530
45	Terminal (nt)	2154460	2156747	2157754	2159019	2159287	2160768	2161111	2161507	2162196	2163745	2163748	2164737	2164815	2166098	2166124	2166990	2167944	2171058	2172131	2172877	2173759
50	Initial (nt)	2156733	2157721	2159181	2159237	2160537	2160670	2161503	2162196	2163014	2163098	2164260	2164390	2165309	2165523	2166990	2167865	2169584	2170425	2171715	2172209	2175288
	SEO NO. (a.a.)	5739	5740	5741	5742	5743	5744	5745	5746	5747	5748	5749	5750	5751	5752	5753	5754	5755	5756	5757	5758	5759
55	SEQ NO (DNA)	2239	2240	2241	2242	2243	2244	2245	2246	2247	2248	2249	2250	2251	2252	2253	2254	2255	2256	2257	2258	2259

5	u.			cosidase or precursor		ation protein			tor	ne protein			orotein	-DNA							
10	Function			glucan 1,4-alpha-glucosidase or glucoamylase S1/S2 precursor		chromosome segregation protein	acylphosphatase		transcriptional regulator	hypothetical membrane protein			cation efflux system protein	formamidopyrimidine-DNA glycosylase	ribonuclease III	hypothetical protein	hypothetical protein	transport protein	ABC transporter	hypothetical protein	
15	Matched length (a.a.)			1144		1206	92		305	257			188	285	221	176	238	559	541	388 1	
20	Similarity (%)			46.2		72.6	73.9		0.09	73.5			9.92	66.7	76.5	62.5	76.9	55.6	58.8	62.6	
	Identity (%)			22.4		48.3	51.1		23.9	39.3			46.8	36.1	40.3	35.8	50.0	28.3	26.6	35.3	
<i>25</i> (þ <u>ə</u>				<u>ω</u>		sis	sis						de	A or		sis	sis			(3(2)	
တ Table 1 (continued)	Homologous gene			Saccharomyces cerevisiae S288C YIR019C sta1		Mycobacterium tuberculosis H37Rv Rv2922c smc	Mycobacterium tuberculosis H37Rv RV2922.1C		Escherichia coli K12 yfeR	Mycobacterium leprae MLCL581.28c			Dichelobacter nodosus gep	Escherichia coli K12 mutM or fpg	Bacillus subtilis 168 rncS	Mycobacterium tuberculosis H37Rv Rv2926c	Mycobacterium tuberculosis H37Rv Rv2927c	Streptomyces verticillus	Escherichia coli K12 cydC	Streptomyces coelicolor A3(2) SC9C7.02	
35			<u> </u>							ΣΣ			3 Di		Ba			SE		SC	
40	db Match			sp:AMYH_YEAST		sp:Y06B_MYCTU	sp:ACYP_MYCTU		Sp:YFER_ECOLI	pir S72748			gp:DNINTREG	sp:FPG_ECOL!	pir: B69693	sp:Y06F_MYCTU	sp:Y06G_MYCTU	prf:2104260G	sp:CYDC_ECOLI	gp:SC9C7_2	
	ORF (bp)	159	702	3393	963	3465	282	1854	858	831	183	447	615	858	741	534	789	1644	1530	1122	441
45	Terminal (nt)	2175888	2177103	2176110	2181880	2179628	2183110	2183405	2185351	2187129	2187342	2187233	2187692	2188313	2189166	2189906	2190540	2193165	2194694	2198004	2198007
50	In tial (nt)	2176046	2176402	2179502	2180918	2183092	2183391	2185258	2186208	2186299	2187160	2187679	2188306	2189170	2189906	2190439	2191328	2191522	2193165	2196883	2198447
	SEQ NO.	5760	5761	5762	5763	5764	5925	5766	5767	5768	69/9	5770	5771	5772	5773	57.74	5775	5776	5777	5778	5779
55	SEQ NO. (DNA)	2260	2261	2262	2263	2264	2265	2266	2267	2268	2269	2270	2271	2272	2273	2274	2275	2276	2277	2278	2279

				-													
5				tein			rylase / ise		lyceryl	sphate e synthase	ne protein	cyclohydrolase		te	iino-5- xamide	ferase	tance protein nsport protein
10	Function	hypothetical protein	peptidase	sucrose transport protein			maltodextrin phosphorylase glycogen phosphorylase	hypothetical protein	prolipoprotein diacylglyceryl transferase	indole-3-glycerol-phosphate synthase / anthranilate synthase component II	hypothetical membrane protein	phosphoribosyl-AMP cyclohydrolase	cyclase	inositol monophosphate phosphatase	phosphoribosyformimino-5- aminoimidazole carboxamide ribotide isomerase	glutamine amidotransferase	chloramphenicol resistance protein or transmembrane transport protein
15	Matched length (a a)	405	353	133			814	562	264	169	228	83	258	241	245	210	402
20	Similarity (%)	43.7	64.3	51.9			67.4	66.4	65.5	62.1	58.8	79.8	7.79	94.0	97.6	92.4	54.0
	Identity (%)	210	32.9	27.1			36.1	33.9	31.4	29.6	29.4	52 8	97.3	94.0	95.9	86.7	25.6
<i>25</i> (pan	9	SB8	2	5			nalP		FDA 485		osis	s ATCC	iicum	iicum	icum	icum	s cmIR
os Table 1 (continued)	Homologous gene	Thermotoga maritima MSB8 TM0896	Campylobacter jejuni ATCC 43431 hipO	Arabidopsis thaliana SUC1			Thermococcus litoralis malP	Bacillus subtilis 168 yfiE	Staphylococcus aureus FDA 485 lgt	Emericella nidulans trpC	Mycobacterium tuberculosis H37Rv Rv1610	Rhodobacter sphaeroides ATCC 17023 hisl	Corynebacterium glutamicum AS019 hisF	Corynebacterium glutamicum AS019 impA	Corynebacterium glutamicum AS019 hisA	Corynebacterium glutamicum AS019 FisH	Streptomyces lividans 66 cmIR
35		Thermot TM0896	Cam 4343	Arab			Ther	Baci	Stap Igt	Eme	Myce H37F	Rhoc 1702	Cory	Cory AS0	Cory AS01	Cory AS01	Strep
40	db Match	pir A72322	sp:HIPO_CAMJE	pir:S38197			prf.2513410A	sp: YFIE_BACSU	sp:LGT_STAAU	sp:TRPG_EMENI	pir. H70556	sp:HIS3_RHOSH	sp:HIS6_CORG	prf:2419176B	gp:AF051846_1	gp:AF060558_1	sp:CMLR_STRLI
	ORF (bp)	1284	1263	336	135	276	2550	900	948	801	657	354	774	825	738	633	1266
45	Terminal (nt)	2199758	2201070	2201073	2201450	2201594	2201992	2204591	2207302	2208367	2209232	2209920	2210273	2211051	2211882	2212641	2214321
50	Initial (nt)	2198475	2199808	2201408	2201584	2201869	2204541	2205490	2208249	2209167	2209888	2210273	2211046	2211875	2212619	2213273	2215586
	SEQ NO (a.a.)	5780	5781	5782	5783	5784	5785	5786	5787	5788	5789	5790	5791	5792	5793	5794	5795
55	SEQ NO.	2280	2281	2282	2283	2284	2285	2286	2287	2288	2289	2290	2291	2292	2293	2294	2295

5		Function		imidazoleglycerol-phosphate dehydratase	histidinol-phosphate aminotransferase	histidinol dehydrogenase	serine-rich secreted protein			histidine secretory acid phosphatase	tet repressor protein	glycogen debranching enzyme	hypothetical protein	oxidoreductase	myo-inositol 2-dehydrogenase	galactitol utilization operon repressor	ferrichrome transport ATP-binding protein or ferrichrome ABC transporter	hemin permease	iron-binding proteín	iron-binding protein	hypothelical protein
15		hed jth 1.)																			
		Matched length (a.a.)		198	362	439	342			211	204	722	258	268	343	329	246	332	103	182	113
20		Similarity (%)		81.8	79.3	85.7	54.4			2.65	60.8	75.5	76.0	55.2	6.09	64.4	68.3	71.1	68.0	9.79	73.5
		Identity (%)		52.5	57.2	63.8	27.2			29.4	28.9	47.4	50.0	29.9	35.0	30.4	32.9	36.8	30.1	34.6	38.1
25	Table 1 (continued)	eueb s		icolor A3(2)	icolor A3(2)	egmatis	ces pombe			ani SAcP-1	smid RP1	Idarius treX	erculosis	color A3(2)	loti idhA	2 galR	i 3 fhuC	င	3 yvrC	3 yvrC	2 ytfH
30	Table 1 (c	Homologous gene		Streptomyces coelicolor A3(2) hisB	Streptomyces coelicolor A3(2) hisC	Mycobacterium smegmatis ATCC 607 hisD	Schizosaccharomyces pombe SPBC215.13			Leishmania donovani SAcP-1	Escherichia coli plasmid RP1 tetR	Sulfolobus acidocaldarius treX	Mycobacterium tuberculosis H37Rv Rv2622	Streptomyces coelicolor A3(2) SC2G5.27c gip	Sinorhizobium meliloti idhA	Escherichia coli K12 galR	Bacillus subtilis 168 fhuC	Vibrio cholerae hutC	Bacillus subtilis 168 yvrC	Bacillus subtilis 168 yvrC	Escherichia coli K12 ytfH
35 40	:	db Match		sp:HIS7_STRCO	sp:HISB_STRCO h	sp.HISX_MYCSM A	gp:SPBC215_13 S			prf:2321269A		prf.2307203B		gp:SC2G5_27 S	prf.2503399A S	Sp.GALR_ECOL! E	sp:FHUC_BACSU B	prf:2423441E			Sp:YTFH_ECOLI E
40										-	pir.RPECR1		pir.E70572		prf.25(pir.G70046	pir.G70046	
		ORF (bp)	225	909	1098	1326	1200	651	309	642	561	2508	801	774	1011	966	798	1038	348	594	441
45		Terminal (nt)	2215639	2215869	2216494	2217600	2220358	2220459	2221919	2221187	2222518	2225035	2225949	2225990	2226769	2228901	2229099	2229900	2230947	2231339	2232016
50		Initial (nt)	2215863	2216474	2217591	2218925	2219159	2221109	2221611	2221828	2221958	222258	2225149	2226763	2227779	2227906	2229896	2230937	2231294	2231932	2232456
		SEQ NO.	5796	5797	5798	5799	5800	5801	5802	5803	5804	5805	5806	5807	5808	5809	5810	5811	5812	5813	5814
55		SEQ NO. (DNA)	2296	2297	2298	2299	2300	2301	2302	2303	2304	2305	2306	2307	2308	2309	2310	2311	2312	2313	2314

EP 1 108 790 A2

5	Function	DNA polymerase III epsilon chain		maltooligosyl trehalose synthase	hypothetical protein					alkanal monooxygenase alpha chain	hypothetical protein		mallooligosyltrehalose trehalohydrolase	hypothetical protein	threonine dehydratase			Corynebacterium glutamicum AS019	DNA polymerase III	chloramphenicol sensitive protein	histidine-binding protein precursor	hypothetical membrane protein
15	D	DNA		malto	hypot					alkang	hypoti		malto	hypotl	threon			Coryn	DNA	chlora	histidi	hypot
15	Matched length (a.a.)	355		814	322					375	120		568	214	436			415	1183	279	149	198
20	Similarity (%)	50.1		68.6	52.8					54.4	79.2		72.4	72.4	99.3			49.6	80.5	73.8	55.7	64.7
	Identity (%)	23.4		42.0	27.6					20.5	58.3		46.3	36.5	99.3			22.7	53.3	37.6	21.5	22.7
25 (pənu	ne	r A3(2)		еУ	ns					sens	r A3(2)		Za		пісит			etE	r A3(2)	ıD	Z72 hisJ	AF2388
& Table 1 (continued)	Homologous gene	Streptomyces coelicolor A3(2) SCI8.12		Arthrobacter sp. Q36 treY	Deinococcus radiodurans DR1631					Photorhabdus luminescens ATCC 29999 luxA	Streptomyces coelicolor A3(2) SC7H2.05		Arthrobacter sp. Q36 treZ	Bacillus subtilis 168	Corynebacterium glutamicum ATCC 13032 ilvA			Catharanthus roseus metE	Streptomyces coelicolor A3(2)	Escherichia coli K12 rarD	Campylobacter jejuni DZ72 hisJ	Archaeoglobus fulgidus AF2388
35	-5	00 00		A									₹	BACSU B				S				A
40	db Match	gp:SCIB_12		pir S65769	gp:AE002006_4					sp.LXA1_PHOLU	gp:SC7H2_5		pir:S65770	sp:YVYE_B/	sp:THD1_CORGL			pir:S57636	prf 2508371A	sp.RARD_ECOL	sp:HISJ_CAMJE	pir.D69548
	ORF (bp)	1143	909	2433	1023	399	198	189	1056	1044	378	231	1785	651	1308	202	156	1203	3582	840	468	918
45	Terminal (nt)	2234070	2234763	2237284	2238353	2238694	2239845	2240058	2239508	2241724	2241738	2242129	2244819	2242393	2244864	2246892	2246295	2247006	2248358	2252856	2253659	2254642
50	Initial (nt)	2232928	2234158	2234852	2237331	2239092	2240042	2240246	2240563	2240681	2242115	2242359	2243035	2243043	2246171	2246386	2246450	2248208	2251939	2252017	2253192	2253725
	SEQ NO (a a.)	5815	5816	5817	5818	5819	5820	5821	5822	5823	5824	5825	5826	5827	5828	5829	5830	5831	5832	5833	5834	5835
55	SEQ NO (DNA)	2315	2316	2317	2318	2319	2320	2321	2322	2323	2324	2325	2326	2327	2328	2329	2330	2331	2332	2333	2334	2335

10	Function	short chain dehydrogenase or general stress protein	diaminopimelate (DAP) decarboxylase	cysteine synthase		ribosomal large subunit pseudouridine synthase D	ipoprotein signal peptidase		oleandomycin resistance protein		hypothetical protein	L-asparaginase	DNA-damage-inducible protein P	hypothetical membrane protein	transcriptional regulator		hypothetical protein	isoleucyl-1RNA synthetase		
15	Matched length (a.a.)	280	445	314		326	154		550 c		158	321	371	286	334 t		212	1066		
20	Similarity (%):	80.0	47.6	64.3		61.0	61.7		64.0		57.6	62.0	60.7	61.5	73.1		0.79	65.4		
	Ident:ty (%)	48.2	22.9	32.8		36.5	33.8		36.4		36.7	31.2	31.8	31.5	44.3		42.0	38.5		
25 (panujui	მიან	удаD	ginosa lysA	us CH34		rluD	scens NCIB		oticus oleB		opolis orf17	S	dinP	ybiF	olar A3(2)		olor A3(2)	evisiae 31		
Se Se Table 1 (continued)	Homologous gene	Bacillus subtilis 168 ydaD	Pseudomonas aeruginosa lysA	Alcaligenes eutrophus CH34 cysM		Escherichia coli K12 rluD	Pseudomonas fluorescens NCIB 10586 IspA		Streptomyces antibioticus oleB		Rhodococcus erythropolis orf17	Bacillus licheniformis	Escherichia coli K12 dinP	Escherichia coli K12 ybiF	Streptomyces coelicolor A3(2) SCF51.06		Streptomyces coelicolor A3(2) SCF51.05	Saccharomyces cerevisiae A364A YBL076C ILS1		
<i>35</i>	db Match	sp.GS39_BACSU	sp.DCDA_PSEAE	sp.CYSM_ALCEU		sp.RLUD_ECOLI	sp.LSPA_PSEFL		pir.S67863		prf.2422382P	sp:ASPG_BACLI	sp:DINP_ECOLI	sp:YBIF_ECOLI	gp:SCF51_6		gp:SCF51_5	sp.SYIC_YEAST		
	ORF (bp)	876	1287	951	579	930	534	1002	1650	303	009	975	1401	858	1002	132	627	3162	216	1095
45	Terminal (nt)	2254683	2255738	2258362	2259421	2260002	2260934	2262689	2264499	2265298	2264509	2266394	2266897	2268388	2269260	2270435	2270258	2270988	2274473	2274767
50	Initial (nt)	225558	2257024	2259312	2259999	2260931	2261467	2261688	2262850	2264996	2265108	2265420	2268297	2269245	2270261	2270304	2270884	2274149	2274688	2275861
	SEQ NO.	5836	5837	5838	5839	5840	5841	5842	5843	5844	5845	5846	5847	5848	5849	5850	5851	5852	5853	5854
55	SEQ NO.	2336	2337	2338	2339	2340	2341	2342	2343	2344	2345	2346	2347	2348	2349	2350	2351	2352	2353	2354

5	Function	hypothetical membrane protein	hypothetical protein (putative YAK 1 protein)	hypothetical protein	hypothetical protein	hypothetical protein	cell division protein	cell division initiation protein or cell division protein	UDP-N-acetylmuramatealanine ligase	UDP-N-acetylglucosamine-N-acetylmuramyl-(pentapeptide) pyrophosphoryl-undecaprenol N-acetylglucosamine pyrophosphoryl-undecaprenol N-acetylglucosamine	cell division protein	UDP-N-acetylmuramoylalanine-D- glutamate ligase			phospho-n-acetylmuramoyl- pentapeptide	UDP-N-acetylmuramoyialanyl-D- glutamyl-2,6-diaminopimelate-D- alanyl-D-alanyl ligase
15	Matched length (a.a.)	82	152	221	246	117	442	222	486	372	490	110			365	494
20	Similarity (%)	73.2	99.3	9.66	100.0	51.0	98.6	100.0	8'66	99.5	93.6	99.1			63.8	64.2
	Identity (%)	46.3	99.3	97.7	99.2	39.0	98.6	93.6	99.4	98.9	99.4	99.1			38.6	35.0
nlinued)	gene	rculosis	fermentum	ıtamicum	fermentum	1)n	fermentum	ıtamicum	ıtamicum	fermentum	fermentum	fermentum			тгаҮ	тиг
% Se Table 1 (continued)	Homologous gene	Mycobacterium tuberculosis H37Rv Rv2146c	Brevibacterium lactofermentum orf6	Corynebacterium glutamicum	Brevibacterium lactofermentum yfih	Mus musculus P4(21)n	Brevibacterium lactofermentum ffs2	Corynebacterium glutamicum ItsQ	Corynebacterium glutamicum murC	Brevibacterium lactofermentum ATCC 13869 murG	Brevibacterium lactofermentum ATCC 13969 ftsW	Brevibacterium lactofermenlum ATCC 13869 murD			Escherichia coli K12 mraY	Escherichia coli K12 murF
40	db Match	pir.F70578	gp.BLFTSZ_6	sp YFZ1_CORGL C	prf:2420425C E	GP. AB028868_1 N	SP.FTSZ_BRELA	gsp:W70502	gp:AB015023_1	gp:BLA242646_3	gp:BLA242646_2	gp:BLA242646_1 B			SP MRAY_ECOLI E	sp:MURF_ECOLI E
	ORF (bp)	285	456	663		486	1326	999	1458	1116	1650	468	384	333	1098	1542
45	Terminal (nt)	2276353	2276981	2277416	2278122	2279640	2278890	2280470	2281166	2282661	2283782	2285437	2286655	2286831	2286862	2287969
50	Initial (nt)	2276637	2277336	2276078	2278859	2279155	2280215	2281135	2282623	2283776	2285431	2285904	2286272	2286499	2287959	2289510
	SEQ NO. (a.a.)	5855	5856	5857	5858	5859	2860	5861	5862	5863	5864	5865	5866	5867	5868	5869
55	SEQ NO.	2355	2356	2357	2358	2359	2360	2361	2362	2363	2364	2365	2365	2367	2368	2369

						_													
5		tion	imoylalanyl-D- nopimelate-D- ise	rotein	rotein		c	rane protein	د			ahydrofolate	ansferase	rane protein			tain kinase		rane protein
10		Function	UDP-N-acetylmuramoylalanyl-D- glutamyl-2,6-diaminopimelate-D- alanyl-D-alanyl ligase	penicillin binding protein	penicillin-binding protein		hypothetical protein	hypothetical membrane protein	hypothetical protein		hypothetical protein	5,10-methylenetetrahydrofolate reductase	dimethylallyltranstransferase	hypothetical membrane protein		hypothetical protein	eukaryotic-type protain kinase		hypothetical membrane protein
15		Matched length (a.a.)	491	57	650		323	143	137		190	303	329	484		125	684		411
20		Similarity (%)	9'29	100.0	58.8		793	88.8	69.3		65.3	70.6	62.0	9'69		68.8	62.4		58.4
		Identity (%)	37.7	100.0	28.2		55.1	72.0	39.4		36.3	42.6	30.1	35.7		43.2	34.2		30.7
25	(panu	eU:	J.E	mentum	osa pbpB		sisola		losis			1326	K1050			losis	r A3(2)		
30	Table 1 (continued)	Homologous gene	Bacillus subtilis 168 murE	Brevibacterium lactofermentum ORF2 pbp	Pseudomonas aeruginosa pbpB		Mycobacterium tuberculosis H37Rv Rv2165c	Mycobacterium leprae MLCB268.11c	Mycobacterium tuberculosis H37Rv Rv2169c		Mycobacterium leprae MLCB268-13	Streptomyces lividans 1326 metF	Myxococcus xanthus DK1050 ORF1	Mycobacterium leprae MLCB268.17		Mycobacterium tuberculosis H37Rv Rv2175c	Streptomyces coelicolor A3(2) pkaF		Mycobacterium leprae MLCB268.23
35		ے	·	80	а		≥I,		≥I				≥0			ΣI			
40		db Match	sp:MURE_BACSU	GSP:Y33117	pir:S54872		pir.A70581	gp:MLCB268_11	pir.C70935		gp:MLCB268_13	sp:METF_STRLI	pir.S32168	gp:MLCB268_16		pir.A70936	gp:AB019394_1		gp:MLCB268_21
		ORF (bp)	1551	225	1953	795	1011	429	387	423	573	826	1113	1470	507	369	2148	651	1236
45		Terminal (nt)	2289523	2290973	2291212	2293323	2294117	2295376	2296512	2297231	2298438	2298451	2300636	2302175	2302685	2302251	2304980	2303040	2306218
50		Initial (nt)	2291073	2291197	2293164	2294117	2295127	2295804	2296898	2297653	2297866	2299428	2299524	2300706	2302179	2302619	2302833	2303690	2304983
		SEQ NO.	5870	5871	5872	5873	5874	5875	5876	5877	5878	5879	5880	5881	5882	5883	5884	5885	5886
55		SEQ NO. (DNA)	2370	2371	2372	2373	2374	2375	2376	2377	2378	2379	2380	2381	2382	2383	2384	2385	2386

1																
5	ion	ane protein	heptulosonate-7-		ane protein	ein PS1 protein			ane protein			or (invasion-	or (invasion-	e c reductase	e c reductase Rieske [eFe-2S] 708	e c reductase
10	Function	hypothetical membrane protein	3-deoxy-D-arabino-heptulosonate-7- phosphate synthase	hypothetical protein	hypothetical membrane protein	major secreted protein PS1 protein precursor	 		hypothetical membrane protein	acyltransferase	glycosyl transferase	protein P60 precursor (invasion- associated-protein)	protein P60 precursor (invasion- associated-protein)	ubiquinol-cytochrome c reductase cytochrome b subunit	ubiquinol-cylochrome c reductase iron-sulfur subunit (Rieske [eFe-2S] Iron-sulfur protein cyoB	ubiquinol-cytochrome c reductase cytochrome c
15	p c	ᅩ	<u>د</u> م	ے	Ē	<u> </u>			4	a	Б	C to	Фе	⊃ (C)	2.5.5	30
	Matched length (a.a.)	434	462	166	428	440	 		249	245	383	296	191	201	203	278
20	Similarity (%)	62.0	87.9	77.7	64.5	57.1			100.0	100.0	75.7	60.8	61.3	64.7	57.1	83.1
	identity (%)	30.4	6.99	58.4	35.1	282			100.0	100.0	50.1	26.4	33 0	34.3	37.9	58.6
25						0										
& Table 1 (continued)	Homologous gene	Mycobacterium tuberculosis H37Rv Rv2181	Amycolatopsis mediterranei	Mycobacterium leprae MLCB268.21c	Mycobacterium tuberculosis H37Rv Rv2181	Corynebacterium glutamicum (Brevibacterium flavum) ATCC 17965 csp1			Corynebacterium glutəmicum ATCC 13032	Corynebacterium glutamicum ATCC 13032	Streptomyces coelicolor A3(2) SC6G10.05c	Listeria ivanovii iap	Listeria grayi iap	Heliobacillus mobilis petB	Streptomyces lividans qcrA	Mycobacterium tuberculosis H37Rv Rv2194 qcrC
35		Myc. H37	Amy	Myce	Mycc H375	Cory (Brev 1796			Cony	Cory	Strey	Liste	Liste	Helic	Strep	Mycc H37F
40	db Match	pir G70936	gp:AF260581_2	gp:MLCB268, 20	pir:G70936	sp:CSP1_CORGL			gp:AF096280_3	gp:AF096280_2	gp:SC6G10_5	sp:P60_LISIV	sp:P60_LISGR	prf.2503462K	gp:AF107888_1	sp:Y005_MYCTU
	ORF (bp)	1308	1386	504	2418	1449	204	177	1188	735	1143	1047	627	1602	672	885
45	Terminal (nt)	2307621	2307697	2309173	2312252	2313808	2314036	2313916	2314236	2315678	2317633	2318804	2319968	2321472	2323088	2324311
50	Initial (nt)	2306314	2309082	2309676	2309835	2312360	2313833	2314092	2315423	2316412	2318775	2319850	2320594	2323073	2323759	2325195
	SEQ NO. (a a.)	5887	5888	5889	5890	5891	5892	5893	5894	5895	5896	5897	5898	5899	5900	5901
55	SEQ NO. (DNA)	2387	2388	2389	2390	2391	2392	2393	2394	2395	2396	2397	2398	2399	2400	2401

EP 1 108 790 A2

(\neg			\neg	T		$\neg \neg$		- -		Т						T	\neg
5	د	subunit III		ne protein	subunit II	isparagine insensitivity		ne protein		e e srase	ate) synthase		le reductase	o acid	a)		lyltransferase		
10	Function	cytochrome c oxidase subunit III		hypothetical membrane protein	cytochrome c oxidase	glutamine-dependent amidotransferase or asparagine synthetase (lysozyme insensitivity protein)	hypothetical protein	hypothetical membrane protein	cobinamide kinase	nicotinate-nucleotide dimethylbenzimidazole phosphoribosyltransferase	cobalamin (5'-phosphate) synthase		clavulanate-9-aldehyde reductase	branched-chain amino acid aminotransferase	leucyl aminopeptidase	hypothetical protein	dihydrolipoamide acetyltransferase		lipoyltransferase
15	Matched length (a.a.)	188		145	317	640	114	246	172	341	305		241	364	493	97	691		210
20	Similarity (%)	70.7		71.0	53.9	8.66	100.0	60.2	64.0	6.99	49.8		68.5	70.3	62.9	0.79	68.5		65.7
	Identity (%)	36.7		38.6	28.7	99.7	100.0	35.0	43.0	37.8	25.3		38.6	40.1	36.3	40.2	48.9		36.7
Table 1 (continued)	ıs gene	licanus		berculosis	eroides ctaC	glutamicum	glutamicum	orae	ulatus cobP	nitrificans	nitrificans cobV		rufigerus car	AT1	ida ATCC	a erythraea	ulensis pdhB		na
30 Table 1 (0	Homologous gene	Synechococcus vulcanus		Mycobacterium tuberculosis H37Rv Rv2199c	Rhodobacter sphaeroides ctaC	Corynebacterium glutamicum KY9611 ItsA	Corynebacterium glutamicum KY9611 orf1	Mycobacterium leprae MLCB22.07	Rhodobacter capsulatus cobP	Pseudomonas denitrificans cobU	Pseudomonas denitrificans cobV		Streptomyces clavuligerus car	Mus musculus BCAT1	Pseudomonas putida ATCC 12633 pepA	Saccharopolyspora erythraea ORF1	Streptomyces seoulensis pdhB		Arabidopsis thaliana
35					-		2		1 0 <u>×</u>		PSEDE P		O)			80	2 8		-
40	db Match	SP.COX3_SYNVU		sp:Y00A_MYCTU	sp.COX2_RHOSH	gp:AB029550_1	gp:AB029550_	gp:MLCB22_2	pir. S52220	sp.coBu_PSEDE	sp.coBV_PS		prf 2414335A	sp:ILVE_MYCTU	gp:PPU010261_1	prf:2110282A	gp:AF047034		gp:AB020975
	ORF (bp)	615	153	429	1077	1920	342	768	522	1089	921	237	714	1137	1500	393	2025	1365	753
45	Terminal (nt)	2325273	2326121	2326472	2326921	2330435	2330586	2331967	2332495	2333600	2334535	2334481	2335028	2335915	2338734	2338748	234:293	2339440	2342164
50	Initial (nt)	2325387	2326273	2326900	2327997	2328516	2330927	2331200	2331974		2333615	2334717	2335741	2337051	2337235	2339140	2339269	2340804	5919 2341412
	SEQ NO.		5903	5904	5905	2906	2907	5908	5909	5910	5911	5912	5913	5914	5915	5916	5917	5918	5919
55	SEQ NO.	2402	2403	2404	2405	2406	2407	2408	2409	2410	2411	2412	2413	2414	2415	2416	2417	2418	2419

								Γ-	<u> </u>			c			_					T-
5	Function	lipoic acid synthetase	hypothetical membrane protein	hypothetical membrane protein	transposase (ISCg2)		hypothetical membrane protein		mutator mutT domain protein	hypothetical protein		alkanal monooxygenase alpha chain (bacterial luciferase alpha chain)	protein synthesis inhibitor (translation initiation inhibitor)			4-hydroxyphenylacetate permease	transmembrane transport protein	transmembrane transport protein		
15	p c c														-				-	
	Matched length (a.a.)	285	257	559	401		157		145	128		220	111			433	158	118		
20	Similarity (%)	6.07	7.97	8.79	100.0		63.7		44.0	9.59		6.09	73.0			53.4	72.8	66.1		
	Identity (%)	44.6	45.5	32.9	100.0		41.4		31.0	36.7		25.0	40.5			21.9	42.4	31.4		
25 ිට		A BD	S		E		(2)			8			8				(2)	(2)		
S Table 1 (continued)	Homologous gene	Pelobacter carbinolicus GRA BD 1 lipA	Mycobacterium tuberculosis H37Rv Rv2219	Escherichia coli K12 yidE	Corynebacterium glutamicum ATCC 13032 tnp		Streptomyces coelicolor A3(2) SC5F7.04c			Thermotoga maritima MSB8 TM1010		Vibrio harveyi luxA	Thermotoga maritima MSB8 TM0215			Escherichia coli hpaX	Streptomyces coelicolor A3(2) SCGD3.10c	Streptomyces coelicolor A3(2) SCGD3.10c		
35		<u>~</u> –		m	ŭΈ	-	क्ष छ			Ė Ε̈́			투루			Es	\$ 33	क्ष	_	
40	db Match	sp:LIPA_PELCA	Sp.Y00U_MYCTU	sp YIDE_ECOLI	gp.AF189147_1		gp:SC5F7_34			pir.872308		sp:LUXA_VIBHA	pir.A72404			prf:2203345H	gp:SCGD3_10	gp.SCGD3_10		
	ORF (bp)	1044	780	1617	1203	300	471	213	975	388	909	849	393	243	261	1323	561	444	195	405
45	Terminal (nt)	2343347	2344258	2346047	2346289	2347804	2348078	2350408	2351996	2350912	2351310	2352828	2353225	2355398	2355180	2356843	2357354	2357707	2357290	2358130
50	(nitial	2342304	2343479	2344431	2347491	2347505	2348548	2350620	2351022	2351310	2351909	2351980	2352833	2355156	2355440	2355521	2356794	2357264	2357484	5938 2357726
	SEQ NO.	5920	5921	5922	5923	5924	5925	5926	5927	5928	5929	5930	5931	5932	5933	5934	5935	5936	5937	5938
55	SEQ NO. (DNA)	2420	2421	2422	2423	2424	2425	2426	2427	2428	2429	2430	2431	2432	2433	2434	2435	2436	2437	2438

5				ψ.						ein		uclease H utase)				atase	ein-		
10	Function		heme oxygenase	glutamate-ammonia-ligase adenylyltransferase	glutamine synthetase	hypothetical protein	hypothetical protein	hypothetical protein	gafactokinase	virulence-associated protein		bifunctional protein (ribonuclease and phosphoglycerate mutase)		hypothetical protein	hypothetical protein	phosphoglycolate phosphatase	low molecular weight protein- tyrosine-phosphalase	hypothetical protein	insertion element (1S402)
15	Matched length (a.a.)		214	809	441	392	601	54	374	358		382		249	378	204	156	281	129
20	Similarity (%)		78.0	67.0	73.0	54.1	58.2	55.6	53.7	54.5		75.1		58.6	76.2	54.4	63.5	65.5	9.99
	identity (%)		57.9	43.4	43.5	26.8	33.4	38.9	24.9	27.1		54.7		26.5	49.2	26.0	46.2	40.9	32.6
25 (panujun	gene		phtheriae C7	olor A3(2)	a MSB8	olor A3(2)	srculosis	olor A3(2)	1	8		rculosis		rculosis	rculosis	ddb	olor A3(2)	rculosis	
S Table 1 (continued)	Homologous gene		Corynebacterium diphtheriae C7 hmuO	Streptomyces coelicolor A3(2) glnE	Thermotoga maritima MSB8 glnA	Streptomyces coelicalor A3(2) SCE9.39c	Mycobacterium tuberculosis H37Rv Rv2226	Streptomyces coelicolor A3(2) SCC75A,11c.	Homo sapiens galK1	Brucella abortus vacB		Mycobacterium tuberculosis H37Rv Rv2228c		Mycobacterium tuberculosis H37Rv Rv2229c	Mycobacterium tuberculosis H37Rv Rv2230c	Escherichia coli K12 gph	Streptomyces coelicolor A3(2) SCQ11.04c ptpA	Mycobacterium tuberculosis H37Rv Rv2235	Burkholderia cepacia
35						SS			_	-									
40	db Match		sp:HMUO_CORDI	gp:SCY17736_4	sp.GLNA_THEMA	gp:SCE9_39	sp:Y017_MYCTU	gp:SCC75A_11	sp:GAL1_HUMAN	gp:AF174645		sp:Y019_MYCTU		sp:Y01A_MYCTU	sp:Y01B_MYCTU	sp:GPH_ECOLI	sp:PTPA_STRCO	sp.Y01G_MYCTU	sp:YI21_BURCE
	ORF (bp)	543	645	3135	1338	1104	1827	180	1293	1266	486	1146	729	717	1140	554	471	954	393
45	Terminal (nt)	2358153	2358772	2359614	2362818	2365455	2367413	2367473	2369083	2369116	2370908	2371412	2373289	2372573	2373323	2375197	2375684	2376720	2376998
50	Initial (nt)	2358695	2359416	2362748	2364155	2364352	2365587	2367652	2367791	2370381	2370423	2372557	2372561	2373289	2374462	2374544	2375214	2375767	5956 2377390 2376998
	SEQ NO. (a.a.)	5939	5940	5941	5942	5943	5944	5945	5946	5947	5948	5949	5950	5951	5952	5953	5954	5955	
55	SEQ NO. (DNA)	2439	2440	2441	2442	2443	2444	2445	2446	2447	2448	2449	2450	2451	2452	2453	2454	2455	2456

		_			,														
5	Function		julator		r <u>i</u>		pyruvate dehydrogenase component		ir glutamine ding protein		rstem permease	ri.	oteın		0		ine-6-phosphate		
10	Fur		transcriptional regulator		hypothetical protein		pyruvate dehydro		ABC transporter or glutamine transport ATP-binding protein		ribose transport system permease protein	hypothetical protein	calcium binding protein		lipase or hydrolase	acyl carier protein	N-acetylglucosamine-6-phosphate deacetylase	hypothetical protein	
15	Matched length (a.a.)		135		134		910		261		283	286	125		352	75	253	289	
20	Similarity (%)		8.7.8		9.77		78.9		62.8		58.7	62.9	55.2		55.7	80.0	75.5	65.7	
25	Identity (%)		30.4		55.2		55.9		33.7		25.4	26.2	41.6		29.6	42.7	43.9	33.6	
	s gene		color A3(2)		erculosis		lensis pdhA		2 glnQ		rbsC	ii Madrid E	deum AX2		olor A3(2)	s ATCC	? nagŪ	urans	
Table 1 (continued)	Homologous gene		Streptomyces coelicolor A3(2) SC8F4,22c		Mycobacterium tuberculosis H37Rv Rv2239c		Streptomyces seoulensis pdhA		Escherichia coli K12 glnQ		Bacillus subtilis 168 rbsC	Rickettsia prowazekii Madrid E RP367	Dictyostelium discoideum AX2 cbpA		Streptomyces coelicolor A3(2) SC6G4.24	Myxococcus xanthus ATCC 25232 acpP	Escherichia coli K12 nagD	Deinococcus radiodurans DR1192	
35			SC				4 St					Ric			Str				
40	db Match		gp:SC8F4_22		sp:Y01K_MYCTU		gp:AF047034		sp.GLNQ_ECOLI		sp:RBSC_BACSU	pir:H71693	sp.CBPA_DICDI		gp:SC6G4_24	sp:ACP_MYXXA	sp:NAGD_ECOL!	gp:AEC01968_4	
45	ORF (bp)	243	378	198	429	345	2712	1476	789	963	888	939	810	372	1014	291	825	1032	471
	Terminal (nt)	2377484	2378276	2378489	2378884	2379770	2382744	2380765	2382827	2385426	2383622	2384509	2386580	2385913	2386614	2387957	2388821	2389869	2390434
50	Initial (nt)	2377726	2377899	2378292	2379312	2379426	2380033	2382240	2383615	2384464	2384509	2385447	2385771	2386284	2387627	2387667	2387997	2388838	2390904
	SEQ NO (a.a.)	5957	5958	5959	5960	5961	5962	5963	5964	5965	5966	5967	5968	5969	5970	5971	5972	5973	5974
55	SEQ NO. (DNA)	2457	2458	2459	2460	2461	2462	2463	2464	2465	2466	2467	2468	2469	2470	2471	2472	2473	2474

EP 1 108 790 A2

5		Function	ein						tase D precursor		ein	ein						L-glutamine. D-fructos e-6-phosphate amidotransferase			riphosphate ase	in
10		я	hypothetical protein						alkaline phosphatase D precursor		hypothetical protein	hypothetical protein		DNA primase	ribonuclease Sa			L-glutamine. D-fru amidotransferase			deoxyguanosinetriphosphate triphosphohydrolase	hypothetical protein
15		Matched length (a.a.)	271						083		594	89		633	98			636			414	171
20		Similarity (%)	75.3						64.7		73.1	72.1		82.9	67.4			82.2			76.3	59.7
		Identity (%)	52.4						34.2		44.4	41.2		59.1	49.0			59.1			54.6	30.4
25	inuea)	ene	or A3(2)						Oor		or A3(2)	ulasis		natis	ciens BMK			natis			natis dgt	NMA0251
	lable i (continued)	Homologous gene	Streptomyces coelicalor A3(2) SC4A7.08						Bacillus subtilis 168 phoD		Streptomyces coelicolor A3(2) SCI51.17	Mycobacterium tuberculosis H37Rv Rv2342		Mycobacterium smegmatis dnaG	Streptomyces aureofaciens BMK			Mycobacterium smegmatis mc2155 glmS			Mycobacterium smegmatis dgt	Neisseria meningitidis NMA0251
40		db Match	gp:SC4A7_8						Sp.PPBD_BACSU E		gp:SCI51_1/	pir:G70661		prf:2413330B	gp:XXU39467_1 S			gp:AF058788_1			prf.2413330A N	gp:NMA122491_23 N
		ORF (bp)	825	492	771	546	465	342	1560	714	1836	240	675	1899	462	243	636	1869	324	1152	1272	675
45		Terminal (nt)	2391184	2392075	2392579	2393970	2393973	2394935	2396763	2395273	2399099	2399397	2399668	2399405	2401834	2402080	2402530	2402144	2404846	2406822	2404987	2406262
50		Initial (nt)	2392008	2392566	2393349	2393425	2394437	5980 2394594	2395204	2395986	2397264	2399158	2400342	2401303	2401373	2401838	2403165	2404012	2404523	2405671	2406258	2406936
		SEQ NO. (a.a.)	5975	9265	5977	5978	5979		5981	5982	5983	5984	5985	5986	5987	5988	5989	2990	5991	2885	5993	5994
55		SEQ NO. (DNA)	2475	2476	2477	2478	2479	2480	2481	2482	2483	2484	2485	2486	2487	2488	2489	2490	2491	2492	2493	2494

									·									
5	Function	hypothetical protein	hypothetical protein		glycyl-tRNA synthetase	bacterial regulatory protein, arsR family	ferric uptake regulation protein	hypothetical protein (conserved in C. glutamicum?)	hypothetical membrane protein	undecaprenyl diphosphate synthase	hypothetical protein	Era-like GTP-binding protein	hypothetical membrane protein	hypothetical protein	Neisserial polypeptides predicted to be useful antigens for vaccines and diagnostics	phosphate starvation inducible protein	hypothetical protein	
15	P -	1	lyh	-	g ye	bac fan	ferr	₹ 0.	Į,	S S	hyp	Era	hyp	dy d	d b c	phosph protein	hyp	<u>_</u>
	Matched length (a.a.)	692	138		508	83	132	529	224	233	245	296	432	157	85	344	248	
20	Similarity (%)	63.6	54.4		6.69	73.0	70.5	46.7	67.0	71.2	74.3	70.3	82.4	86.0	50.0	84.6	75.4	
	Ident ty (%)	31.1	24.6		46.1	49.4	34.9	24.8	40.6	43.4	45.7	39.5	52.8	65.0	45.0	61.1	44.0	
25 Q	9	SiSO	_			osis		Sis	A3(2)	Sddn 92	sis	ae era	sis	sis		sis	43(2)	
0 0 Table 1 (continued)	Homologous gene	Mycobacterium tuberculosis H37Rv Rv2345	Drosophila melanogaster CG10592		Thermus aquaticus HB8	Mycobacterium tuberculosis H37Rv Rv2358 furB	Escherichia coli K12 fur	Mycobacterium tuberculosis H37Rv Rv1128c	Streptomyces coelicolor A3(2) h3u	Micrococcus luteus B-P 26 uppS	Mycobacterium tuberculosis H37Rv Rv2362c	Streptococcus pneumoniae era	Mycobacterium tuberculosis H37Rv Rv2366	Mycobacterium tuberculosis H37Rv Rv2367c	Neisseria meningitidis	Mycobacterium tuberculosis H37Rv Rv2368c phoH	Streptomyces coelicolor A3(2) SCC77.19c.	
<i>35</i> 40	db Match	pir.B70662	gp:AE003565_26		pir. S58522	pir.E70585	sp.FUR_ECOLI	pir.A70539	gp:AF162938_1	sp:UPPS_MICLU	pir.A70586	gp:AF072811_1	sp:Y1DE_MYCTU	Sp.YN67_MYCTU	GSP:Y75650	sp.PHOL_MYCTU	gp:SCC77_19 S	
	ORF (bp)	2037	486	582	1383	369	432	1551	792	729	726	915	1320	588	264	1050	723	942
45	Terminal (nt)	2409029	2409779	2410280	2410956	2412948	2413423	2415118	2415298	2416371	2417222	2417969	2418990	2420313	2421236	2420900	2421975	2423791
50	Initial (nt)	2406993	2410264	2410861	2412338	2412580	2412992	2413568	2416089	2417099	6004 2417947	2418883	2420309	2420900	2420973	2421949	2422697	2422850
	SEQ NO. (a.a.)	5995	5996	5997	5998	5999	0009	6001	6002	6003	6004	6005	9009	6007	6008	6009	6010	6011
55	SEQ NO.	2495	2496	2497	2498	2499	2500	2501	2502	2503	2504	2505	2506	2507	2508	2509	2510	2511

5	Function	heat shock protein dnaJ	heat-inducible transcriptional repressor (groEL repressor)	oxygen-independent coproporphyrinogen III oxidase	agglutinin attachment subunit precursor			long-chain-fatty-acidCoA ligase	4-alpha-glucanotransferase	ABC transporter, Hop-Resistance protein	Neisserial polypeptides predicted to be useful antigens for vaccines and diagnostics	polypeptides predicted to be useful antigens for vaccines and diagnostics			peptidyl-dipeptidase	carboxylesterase	glycosyl hydrolase or trehalose synthase	hypothetical protein
15	Matched length (a.a.)	380	334	320	134			611	738	604	68	107			069	453	594	449
20	Similarity (%)	77.4	79.6	64.1	64.9			75.1	55.4	64.4	51.0	53.0			6.89	45.7	84.9	58.8
	Identity (%)	47.1	48.2	33.1	36.6			48.0	28.3	29.5	44.0	47.0			40.3	24.1	65.2	32.1
25 (par		12		ns	e			ر2)و۲	a	nid					lcp	36	sis	sis
\$ & Samura Table 1 (continued)	Homologous gene	Streptomyces albus dnaJ2	Streptomyces albus hrcA	Bacillus stearothermophilus hemN	Saccharomyces cerevisiae YNR044W AGA1			Streptomyces coelicolor A3(2) SC6G10.04	Escherichia coli K12 malQ	Lactobacillus brevis plasmid horA	Neisseria gonorrhoeae	Neisseria meningitidis			Salmonella typhimurium dcp	Anisopteromalus calandrae	Mycobacterium tuberculosis H37Rv Rv0126	Mycobacterium tuberculosis H37Rv Rv0127
	db Match				sp.AGA1_YEAST				sp:MALQ_ECOLI	gp:AB005752_1					sp.DCP_SALTY			
40	ę ę	prf:2421342B	prf.2421342A	prf.2318256A	sp:AGA			gp:SC6G10_4		gp:AB0(GSP:Y74827	GSP:Y74829			sp:DCP	gp:AF064523_1	pir:G70983	pir:H70983
	ORF (bp)	1146	1023	066	519	693	378	1845	2118	1863	255	333	180	204	2034	1179	1794	1089
45	Terminal (nt)	2422700	2423915	2424965	2426699	2426776	2427807	2428184	2432413	2434370	2433614	2433875	2434440	2434573	2434805	2438049	2439906	2440994
50	Initial (nt)	2423845	2424937	2425954	2426181	2427468	2428184	2430028	2430296	2432508	2433868	2434207	2434619	2434776	2436838	2436871	2438113	6028 2439906
	SEQ NO.	6012	6013	6014	6015	6016	6017	6018	6019	6020	6021	6022	6023	6024	6025	6026	6027	
55	SEQ NO.	2512	2513	2514	2515	2516	2517	2518	2519	2520	2521	2522	2523	2524	2525	2526	2527	2528

EP 1 108 790 A2

5	Function	isopenienyl-diphosphate Delta- isomerase						beta C-S lyase (degradation of aminoethylcysteine)	branched-chain amino acid transport system carrier protein (isoleucine uptake)	alkanal monooxygenase alpha chain		malonate transporter	glycolate oxidase subunit	transcriptional regulator		hypothetical protein		heme-binding protein A precursor (hemin-binding lipoprotein)	oligopeptide ABC transporter (permease)	dipeptide transport system permease protein	oligopeptide transport ATP-binding protein
15	Matched length (a.a.)	189						326	426	343		324	483	203		467		546	315	271	372
20	Similarity (%)	27.7						100 0	100 0	49.0		9.09	55.1	0.59		57.6		55.5	73.3	74.5	66.4
	Identity (%)	31.8						99.4	99.8	21.6		25.9	27.7	25.6		22.5		27.5	40.0	43.2	37.4
os Table 1 (continued)	us gene	reinhardtii ipi1						glutamicum D	glutanıicum ک	A		siioti mdcF	.12 glcD	12 ydfH		nurium ygiK		enzae Rd	38 аррВ	12 dppC	12 appD
Table 1	Homologous gene	Chlamydomonas reinhardtii ipi1						Corynebacterium glutamicum ATCC 13032 aecD	Corynebacterium glutanicum ATCC 13032 brnQ	Vibrio harveyi luxA		Sinorhizobium meliloti mdcF	Escherichia coli K12 glcD	Escherichia coli K12 ydfH		Salmonella typhimurium ygiK		Haemophilus influenzae Rd H10853 hbpA	Bacillus subtilis 168 appB	Escherichia coli K12 dppC	Escherichia coli K12 oppD
35	ıtch																				
40	db Match	pir. T07979						gp:CORCSLYS_1	sp.BRNQ_CORGL	sp.LUXA_VIBHA		gp:AF155772	sp:GCCD_ECOLI	sp:YDFH_ECOLI		sp:YGIK_SALTY		sp:HBPA_HAEIN	sp:APPB_BACSU	sp.DPPC_ECOU	prf.2306258MR
	ORF (bp)	585	222	438	1755	099	519	975	1278	978	525	927	2844	711	282	1347	423	1509	996	828	1437
45	Terminal (nt)	2441005	2441890	2442792	2441602	2443356	2444033	2445709	2446993	2447998	2450323	2450859	2451794	2455435	2455452	2455720	2457337	2459371	2460336	2461167	2462599
50	Initial (nt)	2441589	2441669	2442355	2443356	2444015	6034 2444551	2444735	2445716	2447021	2450844	6039 2451785	2454637	2454725	2455733	2457066	2457759	2457863	2459371	2460340	2461163
	SEQ NO.	6209	6030	6031	6032	6033	_	6035	6036	6037	6038	6039	6040	6041	6042	6043	6044	6045	6046	6047	6048
55	SEQ NO (DNA)	2529	2530	2531	2532	2533	2534	2535	2536	2537	2538	2539	2540	2541	2542	2543	2544	2545	2546	2547	2548

5					protein		porter or er family	otein C		otein x		ter				oxylate tein	oxylate tein	3 ursor		
10	Function	hypothetical protein	hypothetical protein	ribose kinase	hypothetical membrane protein		sodium-dependent transporter or odium Bile acid symporter family	apospory-associated protein C		thiamine biosynthesis protein x	hypothetical protein	glycine betaine transporter				large integral C4-dicarboxylate membrane transport protein	small integral C4-dicarboxylate membrane transport protein	C4-dicarboxylate-binding periplasmic protein precursor	extensin l	GTP-binding protein
15	Matched length (a.a.)	106	157	300	466		284	295		133	197	601				448	118	227	46	603
20	Simularity (%)	44.0	58.0	65.0	64.6		61.6	51.2		100.0	65.5	71.7				71.9	73.7	59.0	73.0	83.6
	'centity (%)	35.0	29.3	41.0	39.9		31.3	28.5		100.0	42.6	39.8				34.6	33.9	28.2	63.0	58.7
25 (par		E1580	768		43(2)			¥ii		cnm	99	uno				dctM	ta ta	910		
Se Table 1 (continued)	Homologous gene	Aeropyrum pernix K1 APE1580	Aquifex aeolicus VF5 aq_768	Rhizobium etli rbsK	Streptomyces coelicolor A3(2) SCM2.16c		Homo sapiens	Chlamydomonas reinhardtii		Corynebacterium glutamicum ATCC 13032 thiX	Mycobacteriophage D29 66	Corynebacterium glutamicum ATCC 13032 betP				Rhodobacter capsulatus dctM	Klebsiella pneumoniae dctQ	Rhodobacter capsulatus B10 dctP	Lycopersicon esculentum (tomato)	Bacillus subtilis 168 lepA
35		Aero	Aqui	Rhiz	Strep			Chlai		Cory	Mycc	·				Rhod	Klebs		Lycopers (tomato)	
40	db Match	PIR:G72536	pir.D70367	prf.2514301A	gp:SCM2_16		sp:NTCI_HUMAN	gp:AF195243_1		sp:THIX_CORGL	sp:VG66_BPMD	sp:BETP_CORGL				pri:2320266C	gp:AF186091_1	sp.DCTP_RHOCA	PRF:1806416A	sp.LEPA_BACSU
	ORF (bp)	507	549	903	1425	303	972	846	366	570	588	1890	966	1608	384	1311	480	747	243	1845
45	Terminal (nt)	2461543	2462602	2464143	2465768	2465465	2466038	2467922	2470678	2472819	2472893	2475542	2477492	2479251	2479762	2479898	2481213	2481734	2484087	2482548
50	Initial (nt)	2462049	2463150	2463241	2464344	2465767	2467009	2467077	2470313	2472250	2473480	2473653	2476497	2477644	2479379	2481208	2481692	2482480	2483845	2484392
	SEQ NO.	6049	9020	6051	6052	6053	6054	6055	6056	299	6058	6909	909	6061	2909	6063	6064	9909	9909	
55	SEQ NO. (DNA)	2549	2550	2551	2552	2553	2554	2555	2556	2557	2558	2559	2560	2561	2562	2563	2564	2565	2566	2567 6067

5	Function	hypothetical protein	30S ribosomal protein S20	thrreonine efflux protein	ankyrin-like protein	hypothetical protein	late competence operon required for DNA binding and uptake	late competence operon required for DNA binding and uptake		hypothetical protein	phosphoglycerate mutase	hypothetical protein	hypothetical protein		gamma-glutamyi phosphate reductase or glutamate-5- semialdehyde dehydrogenase	D-isomer specific 2-hydroxyacid dehydrogenase	3 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	GTP-binding protein
15	Matched length (a.a.)	185	85	210	129	313	527	195		273	235	117	197		432	304		487
20	Similarity (%)	2.69	72.9	67.1	80.6	74.1	49.7	63.6		66.3	66.4	86.3	85.3		8'66	100.0		78.2
	Identity (%)	41.5	48.2	30.0	61.2	46.0	21.4	30.8		34.8	46.8	55.5	68.0		99.1	99.3		58.9
25 ontinued)	s gene	erculosis	2 rpsT	2 rhtC	color A3(2)	erculosis	s comEC	3 comEA		color A3(2)	erculosis	erculosis	color A3(2)		lutamicum	utamicum		color A3(2)
& Table 1 (continued)	Homologous gene	Mycobaclerium tuberculosis H37Rv Rv2405	Escherichia coli K12 rpsT	Escherichia coli K12 rhtC	Streptomyces coelicolor A3(2) SC6D7.25.	Mycobacterium tuberculosis H37Rv Rv2413c	Bacillus subtilis 168 comEC	Bacillus subtilis 168 comEA		Streptomyces coelicolor A3(2) SCC 123.07c.	Mycobacterium tuberculosis H37Rv Rv2419c	Mycobacterium tuberculosis H37Rv Rv2420c	Streptomyces coelicolor A3(2) SCC123.17c.		Corynebacterium glutamicum ATCC 17965 proA	Corynebacterium glutamicum ATCC 17965 unkdh		Streptomyces coelicolor A3(2) obg
35	db Match			ECOLI														-
40	db M	pir.H70683	sp.RS20_ECOLI	sp.RHTC_	gp:SC6D7_25	pir:H70684	sp.CME3_BACSU	sp.CME1_BACSU		gp:SCC123_7	pir.F70685	pir:G70685	9p.SCC123_17		sp:PROA_CORGL	sp:YPRA_CORGL		1503 gp:D87915_
	ORF (bp)	609	261	699	405	975	1539	582	822	822	708	471	678	1023	1296	912	711	1503
45	Terminal (nt)	2485269	2485733	2485801	2486477	2486910	2487912	2489573	2491732	2490290	2491151	2491873	2492501	2493215	2494339	2495696	2497513	2498009
50	Initial (nt)	2484661	2485473	2486469	2486881	2487884	2489450	2490154	2490911	2491111	2491858	2492343	2493178	2494237	2495634	2496607	2496803	6084 2499511
	SEQ NO (a.a.)	9909	6909	0209	6071	6072	6073	6074	6075	6076	6077	6078	6029	6080	6081	6082	6083	
55	SEQ NO.	2568	2569	2570	2571	2572	2573	2574	2575	2576	2577	2578	2579	2580	2581	2582	2583	2584

EP 1 108 790 A2

5	Function	xanthine permease	2,5-diketo-D-gluconic acid reductase			50S ribosomal protein L27	50S ribosomal protein L21	ribonuclease E				hypothetical protein	transposase (insertion sequence IS31831)	hypothetical protein	hypothetical protein	nucleoside diphosphate kinase		hypothetical protein	hypothetical protein	hypothetical protein
15	Matched length (a a)	422	276			18	101	988				195	436	117	143	134		92	112	118
20	Similarity (%)	77.3	81.9			92.6	82.2	56.6				82.6	100.0	6.97	67.8	9.68		67.4	64.3	68.6
	Identity (%)	39.1	61.2			80.3	56.4	30.1				61.0	99.1	51.3	37.8	70.9		34.8	36.6	33.9
25 (pənu	ne ne	×	700			-013189	-013189	0				A3(2)	nicum	. A3(2)	. A3(2)	atis ndk		1s R1	osis	osis
So Solution Table 1 (continued)	Homologous gene	Bacillus subtilis 168 pbuX	Corynebacterium sp. ATCC 31090			Streptomyces griseus IFO13189 rpmA	Streptomyces griseus IFO13189 obg	Escherichia coli K12 rne		!		Streptomyces coelicolor A3(2) SCF76.08c	Corynebacterium glutamicum ATCC 31831	Streptomyces coelicolor A3(2) SCF76.08c	Streptomyces coelicolor A3(2) SCF76.09	Mycobacterium smegmatis ndk		Deinococcus radiodurans R1 DR1844	Mycobacterium tuberculosis H37Rv Rv1883c	Mycobacterium tuberculosis H37Rv Rv2446c
40	db Match	sp.PBUX_BACSU	pir:140838			sp:RL27_STRGR	prf:2304263A	sp:RNE_ECOLI				gp:SCF76_8	pir:S43613	gp:SCF76_8	gp:SCF76_9	gp:AF069544_1		gp:AE002024_10	pir.H70515	pir.E70863
	ORF (bp)	1887	843	621	396	264	303	2268	549	573	747	609	1308	378	450	408	360	342	465	423
45	Terminal (nt)	2501669	2501735	2503355	2504265	2503984	2504300	2504831	2507663	2507710	2508840	2509530	2509523	2511423	2511876	2511949	2512409	2513144	2513154	2513692
50	Initial (nt)	2499783	2502577	2502735	2503870	2504247	2504602	2507098	2507115	2507138	2508094	2508922	2510830	2511046	2511427	2512356	2512768	2512803	2513618	2514114
	SEQ NO (a a.)	6085	6086	6087	6088	6089	0609	6091	6092	6093	5094	6095	9609	6097	6098	6609	6100	6101	6102	6103
55	SEQ NO.	2585	2586	2587	2588	2589	2590	2591	2592	2593	2594	2595	2596	2597	2598	2599	2600	2601	2602	2603

EP 1 108 790 A2

					_	_				$\overline{}$					_	_				
5	Function	folyl-polyglutamate synthetase				valyl-tRNA synthetase	oligopeptide ABC transport system substrate-binding protein	heat shock protein dnaK	lysine decarboxylase	malate dehydrogenase	transcriptional regulator	hypothetical protein	vanillate demethylase (oxygenase)	pentachiorophenol 4- monooxygenase reductase	transport protein	malonate transporter	class-III heat-shock protein or ATP- dependent protease	hypothetical protein	succinyl CoA:3-oxoadipate CoA transferase beta subunit	succinyl CoA:3-oxoadipate CoA transferase alpha subunit
15	Matched length (a a.)	451				915	521	508	170	319	207	208	357	338	444	286	430	366	210	251
20	Similarity (%)	79.6				72.1	58.5	6.43	71.2	76.5	56.5	51.4	9.89	59.2	76.8	58.4	85.8	73.0	85.7	84.5
	Identity (%)	55.4				45.5	24.2	26.2	42.9	56.4	24.6	26.0	39.5	32.8	40.8	28.0	59.8	45.6	63.3	60.2
So continued)	ous gene	elicolor A3(2)				68 balS	68 oppA	68 dnaK	ins ATCC	us ATCC 33923	elicolar A3(2)	phA	vanA	ava ATCC	vanK	oniae mdcF	lpΧ	elicolor A3(2)	2065 pcaJ	2065 pcal
Table 1	Homologous gene	Streptomyces coelicolor A3(2) folC				Bacillus subtilis 168 balS	Bacillus subtilis 168 oppA	Bacillus subtilis 168 dnaK	Eikenella corrodens ATCC 23824	Thermus aquaticus ATCC 33923 mdh	Streptomyces coelicolor A3(2) SC4A10.33	Vibrio cholerae aphA	Acinetobacter sp. vanA	Sphingomonas flava ATCC 39723 pcpD	Acinetobacter sp. vanK	Klebsiella pneumoniae mdcF	Bacillus subtilis clpX	Streptomyces caelicolor A3(2) SCF55.28c	Streptomyces sp	Streptomyces sp. 2065 pcal
<i>35</i>	db Match	prf:2410252B				sp:SYV_BACSU	pir.A38447	sp.DNAK_BACSU	gp:ECU89166_1	sp:MDH_THEFL	gp:SC4A10_33	gp:AF065442_1	prf.2513416F	gp:FSU12290_2	prf:2513416G	gp:KPU95087_7	prf.2303274A	gp:SCF55_28	gp:AF109386_2	gp:AF109386_1
	ORF (bp)	1374 prf	612	714	663	2700 sp:	575 pir.	1452 sp.	585 gp:	984 sp:	777 gp:	576 gp:	128 prf.	975 gp:	425 prf.	930 gp:	278 prf.	086 gp:	633 gp.	750 gp:
45			 										Ė		-		-			
45	Terminal (nt)	2514114	2516273	2516956	2517751	2515637	2518398	2521660	2521667	2522265	2524337	2524340	2526226	2527207	2528559	2528551	2529484	2531976	2531969	2532604
50	Initial (nt)	2515487	2515662	2516243	2517089	2518336	2519972	2520209	2522251	2523248	2523561	2524915	2525099	2526233	2527135	2529480	2530761	2530891	2532601	2533353
	SEQ NO.		6105	6106	6107	6108	6109	6110	6111	6112	6113	6114	6115	6116	6117	6118	6119	6120	6121	6122
5 <i>5</i>	SEQ NO.	2604	2605	2606	2607	2608	2609	2610	2611	2612	2613	2614	2615	2616	2617	2618	2619	2620	2621	2622

5	Function	protocatechuate catabolic protein	beta-ketothiolase		3-oxoadipate enol-lactone hydrolase and 4-carboxymuconolactone decarboxylase	transcriptional regulator	3-oxoadipate enol-lactone hydrolase and 4-carboxymuconolactone decarboxylase		3-carboxy-cis, cis-muconate cycloisomerase	protocatechuate dioxygenase alpha subunit	protocatechuate dioxygenase beta subunit	hypothetical protein	muconolactone isomerase		muconate cycloisomerase		catechol 1,2-dioxygenase		toluate 1,2 dioxygenase subunit
15	Matched length (a.a.)	251	406		256	825	115		437	214	217	273	35		372		285		437
20	Similarity (%)	82.5	71.9		76.6	43.0	9.68		63.4	9.07	91.2	48.7	81.5		84.7		88.4		85.6
	Identity (%)	58.2	44.8		50.8	23.6	78.3		39.8	49.5	74.7	26.4	54.4		8.09		72.3		62.2
30 (Continued) 1 elucitori	us gene	cus 1CP pcaR	a bktB		ous poal.	icolor A3(2)	cus pcaL		cus pcaB	ons peaG	ous pcaH	erculosis	erculosis		us 1CP catB		ochrous catA		da plasmid
30	Homologous gene	Rhodococcus opacus 1CP pcaR	Ralstonia eutropha bktB		Rhodococcus opacus pcaL	Streptomyces coelicolor A3(2) SCM1.10	Rhodococcus opacus pcaL		Rhodococcus opacus pcaB	Rhodococcus opacus pcaG	Rhodococcus opacus pcaH	Mycobacterium tuberculosis H37Rv Rv0336	Mycobacterium tuberculosis catC		Rhodococcus opacus 1CP catB		Rhodococcus rhodochrous catA		Pseudomonas putida plasmid pDK1 xylX
35		LE.	LZ.		<u>œ</u>	တတ	<u>œ</u>		ж.	<u> </u>	<u>«</u>	ΣI	≥ິວ				8		
40	db Match	prf:2408324F	prf 2411305D		prf 2408324E	gp:SCM1_10	prf.2408324E		prf.2408324D	prf:2408324C	prf.2408324B	pir:G70506	prf.2515333B		Sp.CATB_RHOOP		prf:2503218A		gp.AF134348_1
	ORF (bp)	792	1224	912	753	2061	366	678	1116	612	069	1164	291	771	1119	909	855	141	1470
45	Terminal (nt)	2534182	2535424	2534257	2536182	2538256	2538248	2540230	2538616	2539709	2540335	2541187	2542512	2543813	2542818	2544867	2544022	2544928	2546784
50	Initial (nt)	2533391	2534201	2535168	2535430	2536196	2538613	2539553	2539731	2540320	2541024	2542350	2542802	2543043	2543936	2544262	2544876	2545068	6140 2545315
	SEO NO.	6123	6124	6125	6126	6127	6128	6129	6130	6131	6132	6133	6134	6135	6136	6137	6138	6139	6140
55	SEQ NO. (DNA)	2623	2624	2625	2626	2627	2628	2629	2630	2631	2632	2633	2634	2635	2636	2637	2638	2639	2640

5	Function	toluate 1,2 dioxygenase subunit	toluate 1,2 dioxygenase subunit	1,2-dihydroxycyclohexa-3,5-diene carboxylate dehydrogenase	regulator of LuxR family with ATP- binding site	transmembrane transport protein or 4-hydroxybenzoate transporter	benzoate membrane transport protein	ATP-dependent Clp protease proteolytic subunit 2	ATP-dependent Clp protease proteolytic subunit 1	hypothetical protein	trigger factor (prolyl isomerase) (chaperone protein)	hypothetical protein	penicillin-bínding protein	hypothetical protein		transposase		hypothetical protein	transposase
15	Matched length (a.a.)	161	342	277	979	435	388	197	198	42	417	160	336	115		142		35	75
20	Similarity (%)	83.2	81.0	61.4	48.6	64.4	66.2	88.3	85.9	71.4	66.4	63.1	50.9	58.3		73.2		82.9	7.87
	Identity (%)	60.3	51.5	30.7	23.3	31.3	29.9	69.5	62.1	42.9	32.1	32.5	25.3	27.8		54.2		57.1	50.7
Table 1 (continued)	us gene	ida plasmid	ida plasmid	ida plasmid	hropolis thcG	oaceticus	oaceticus	licolor M145	licolor M145	ous ORF154	8 tig	licolor A3(2)	ırans LC411	a1		striatum ORF1		striatum ORF1	striatum ORF1
Table 1 (Homologous gene	Pseudomonas putida plasmid pDK1 xylY	Pseudomonas putida plasmid pDK1 xylZ	Pseudomonas putida plasmid pDK1 xyIL	Rhodocaccus erythropolis thcG	Acinetobacter calcoaceticus pcaK	Acinetobacter calcoaceticus benE	Streptcmyces coelicolor M145 clpP2	Streptomyces coelicolor M145 clpP1	Sulfolobus islandicus ORF154	Bacillus subtilis 168 tig	Streptomyces coelicolor A3(2) SCD25.17	Nocardia lactamdurans LC411 pbp	Mus musculus Moa1		Conynebacterium striatum ORF1		Corynebacterium striatum ORF1	Corynebacterium striatum ORF1
35				□ □				S S	<i>i</i> o −0		<u> </u>	ώ ω		Σ		Ö		Ö	٥
40	db Match	gp:AF134348_2	gp:AF134348_3	gp:AF134348_4	gp.REU95170_1	sp:PCAK_ACICA	sp.BENE_ACICA	gp:AF071885_2	gp:AF071885_1	gp:SIS243537_4	sp:TIG_BACSU	gp:SCD25_17	sp:PBP4_NOCLA	prf:2301342A		prf:2513302C		prf.2513302C	prf.2513302C
	ORF (bp)	492	1536	828	2685	1380	1242	624	603	150	1347	495	975	456	249	438	150	126	264
45	Terminal (nt)	2547318	2548868	2549695	2552455	2553942	2555267	2555317	2555978	2556748	2556760	2559103	2560131	2560586	2561363	2561483	2562242	2561990	2562078
50	Initial (nt)	2546827	2547333	2548868	2549771	2552563	2554026	2555940	2556580	2556599	2558106	2558609	2559157	2560131	2561115	2561920	2562093	2562115	2562341
	SEQ NO.	6141	6142	6143	6144	6145	6146	6147	6148	6149	2650 6150	6151	6152	6153	6154	6155	6156	6157	6158
55	SEQ NO.	2641	2642	2643	2644	2645	2646	2647	2648	2649	2650	2651	2652	2653	2654	2655	2656	2657	2658

EP 1 108 790 A2

5	Function			galactose-6-phosphate isomerase	hypothetical protein	hypothetical protein	aminopeptidase N	hypothetical protein				phytoene desaturase			phytoene dehydrogenase	phytoene synthase	multidrug resistance transporter		ABC transporter ATP-binding protein	dipeptide transport system permease protein	nickel transport system permease protein	
15	hed ath	-																				
	Matched fength (a.a.)	_		140	248	199	890	358			<u></u>	104			381	290	392	<u>:</u>	538	286	316	
20	Similarity (%)			71.4	58.1	80.9	70.5	58.1				81.7			63.8	58.6	47.7		71.6	73.8	62.0	
	Identity (%)			40.0	26.2	56.8	47.5	25.1				61.5			31.2	31.4	25.8		41.3	38.8	33.2	
25 G				VCTC.	ORF2	Sis	Nd	352				္ပ			1050	3933	fB		S			
·	uag sno			aureus l	lulyticus	ubercult	dans pe	eri BB0				nens AT			hus DK	seus JA	genes		longatu	F4 dppC	(12 nikB	
30 Salah Table 1 (Continued)	Homologous gene			Staphylococcus aureus NCTC 8325-4 facB	Bacillus acidopullulyticus ORF2	Mycobacterium tuberculosis H37Rv Rv2466c	Streptomyces lividans pepN	Borrelia burgdorferi BB0852				Brevibacterium linens ATCC 9175 cttl			Myxococcus xanthus DK1050 carA2	Streptomyces griseus JA3933 crt8	Listeria monocytogenes IItB		Synechococcus elongatus	Bacillus firmus OF4 dppC	Escherichia coli K12 nikB	
35	£																ر ا		7.			
40	db Match			sp:LACB_STAAU	sp:YAMY_BACAD	pir.A70866	SP. AMPN_STRLI	pir:B70206				gp:AF139916_3			sp:CRTJ_MYXXA	sp:CRTB_STRGR	gp:LMAJ9627		gp.SYOATPBP	sp:DPPC_BACFI	pir.S47696	
	ORF (bp)	380	882	471	969	609	2601	1083	1152	999	156	327	171	378	1206	876	1119	1233	1641	882	626	1707
45	Terminal (nt)	2562387	2563847	2563932	2564550	2565623	2568945	2570293	2570309	2572175	2572348	2572351	2572807	2573393	2572659	2573843	2574780	2575981	2577232	2578879	2579769	2580711
50	Initial (nt)	2562776	2562963	2564402	2565245	2566231	2566345	2569211	2571460	2571510	2572193	2572677	2572977	2573770	2573864	2574718	2575898	2577213	2578872	2579760	2580707	2582417
	SEQ NO.	6115	6160	6161	6162	6163	6164	6165	6166		6168	6169	6170	6171	6172	6173	6174	6175	6176	6177	6178	6:79
55	SEQ NO.	2659	2660	2661	2662	2663	2664	2665	2666	2667	2668	2669	2670	2671	2672	2673	2674	2675	2676	2677	2678	2679

5	u		ransferase		ne protein	ctase	or, TetR family	d to be useful and	binding protein		otein					binding protein		ne protein	
10	Function		acetylornithine aminotransferase	hypothetical protein	hypothetical membrane protein	acetoacetyl CoA reductase	transcriptional regulator, TetR family	polypeptides predicted to be useful antigens for vaccines and diagnostics	ABC transporter ATP-binding protein	globin	chromate transport protein	hypothetical protein	hypothetical protein		hypothetical protein	ABC transporter ATP-binding protein	hypothetical protein	hypothetical membrane protein	alkaline phosphatase
15	Matched length (a a)		411	482	218	235	240	94	238	126	396	196	127		55	563	172	200	536
20	Similarity (%)		63.5	47.9	79.4	0.09	55.0	47.0	65.1	77.0	60.4	68.9	61.4		60.0	9.67	62.2	56.7	52.6
	Identity (%)		31.4	25.1	49.1	28.1	26.7	38.0	31.1	53.2	27.3	37.8	36.2		36.4	52.8	31.4	28.C	28.C
25 Continued)	ıs gene		Jutamicum	oerculosis	oerculosis	um D phbB	icolor actII	idis	ida GM73	лае	uginosa chrA	oerculosis	icolor A3(2)		K1 APE1182	12 yijK	oerculosis	rae o659	оВ
7 Table 1 (c	Homologous gene		Corynebacterium glutamicum ATCC 13032 argD	Mycobacterium tuberculosis H37Rv Rv1128c	Mycobacterium tuberculosis H37Rv Rv0364	Chromatium vinosum D	Streptomyces coelicolor actll	Neisser:a meningitidis	Pseudomonas putida GM73 ttg2A	Mycobacterium leprae MLCB1610.14c	Pseudomonas aeruginosa Plasmid pUM505 chrA	Mycobacterium tuberculosis H37Rv Rv2474c	Streptomyces coelicolor A3(2) SC6D10, 19c		Aeropyrum pernix K1 APE1182	Escherichia coli K12 yijK	Mycobacterium tuberculosis H37Rv Rv2478c	Mycobacterium leprae o659	Bacillus subtilis phoB
35	ch Ch			≥I		_	S					ΣI			A		ΣÏ		8
40	db Match		sp:ARGD_CORGL	pir:A70539	sp:YA26_MYCTU	Sp.PHBB_CHRVI	pir:A40046	GSP:Y74375	gp:AF106002_1	gp:MLCB1610_9	sp:CHRA_PSEAE	pir.A70867	gp:SC6D10_19		pir.B72589	sp:YJJK_ECOLI	pir.E70867	Sp:Y05L_MYCLE	pir.C69676
	ORF (bp)	1941	1314	1584	747	708	738	441	792	393	1128	627	465	621	162	1668	615	2103	1419
45	Terminat (nt)	2584504	2585926	2587763	2588722	2588725	2590302	2591137	2591574	2592794	2593965	2593968	2594597	2595188	2595822	2596048	2597869	2598662	2602879
50	Initial (nt)	2582564	2584613	2586180	2587976	2589432	2589565	2590697	2592365	2592402	2592838	2594594	2595061	2595808	2595983	2597715	2598483	2600764	2601461
	SEQ NO.	6180	6181	6182	6183	6184	6185	6186	6187	6188	6189	6190	6191	6192	6193	6194	6195	6196	6197
55	SEQ NO.	2680	2681	2682	2683	2684	2685	2686	2687	2688	2689	2690	2691	2692	2693	2694	2695	2696	2697

EP 1 108 790 A2

5	Function			multiple sugar-binding transport system permease protein	multiple sugar-binding transport system permease protein		maltose-binding protein		ABC transporter ATP-binding protein (ABC-type sugar transport protein) or cellobiose/maltose transport protein		dolichol phosphate mannose synthase		aldehyde dehydrogenase	circadian phase modifier		hypothetical membrane protein	glyoxylate-induced protein	ketoacyi reductase	oligoribonuclease
15	Matched length (a.a.)			279	292		462		386		154		207	183		412	255	258	179
20	Similarity (%)			76.3	67.5		63.2		79.8		72.7		89.4	73.8		64.6	69.4	57.0	78.8
	Identity (%)			39.1	27.4		28.8		59.1		37.7		67.2	48.6		35.0	41.2	40.0	48.0
75 Continued)	Homologous gene			nutans G	nutans F		acterium		ticuli msiK		nyces pombe		odochrous od5	sp. PCC7942		ilima MSB8	K12 gip	uberculosis	<12 orn
30 Lable 1	Homolog			Streptococcus mutans INGBRITT msmG	Streptococcus mutans INGBRITT msmF		Thermoanaerobacterium thermosul amyE		Streptomyces reticuli msiK		Schizosaccharomyces pombe dpm1		Rhodococcus rhodochrous plasmid pRTL1 orf5	Synechococcus sp. PCC7942 cpmA		Thermotoga maritima MSB8 TM0964	Escherichia coli K12 gip	Mycobacterium tuberculosis H37Rv Rv1544	Escherichia coli K12 orn
40	db Match			sp:MSMG_STRMU	sp.MSMF_STRMU		prf:2206392C		prf.2308356A		prf:2317468A		prf:2516398E	prf:2513418A		pir.A72312	sp:GIP_ECOLI	pir:E70761	sp.ORN_ECOLI
	ORF (bp)	930	639	912	843	1674	1329	1242	1128	750	684	690	789	762	345	1182	750	798	657
45	Terminal (nt)	2605502	2603945	2604609	2605527	2608117	2606561	2608185	2609512	2612272	2610848	2613151	2614500	2615410	2615795	2615939	2617995	2618869	2619538
50	Initial (nt)	2604573	2604583	6200 2605520	6201 2606369	2606444	2607889	2609426	6205 2610639	2611523	2611531	2612462	2613712	2614649	2615451	2617120	2617246	2618072	2618882
	SEQ NO.	6198	6199			6202	6203	6204	6205	6206	6207	6208	6209	6210	6211	6212	6213	6214	6215
55	SEQ NO.	2698	5698	2700	2701	2702	2703	2704	2705	2706	2707	2708	2709	2710	2711	2712	2713	2714	2715

EP 1 108 790 A2

	r																	_			
5		Function	elin esterase					S1207)			regulator		sporulation-specific degradation regulator protein		ase		otein	pyrazinamidase/nicotinamidase	otein	bacterioferritin comigratory protein	bacterial regulatory protein, tetR family
10		a.	ferric enterochelin esterase	lipaprotein				transposase (IS1207)			transcriptional regulator	glutaminase	sporulation-spec regulator protein		uronate isomerase		hypothetical protein	pyrazinamidas	hypothetical protein	bacterioferritin	bacterial regula family
15		Matched length (a a)	454	398				436			131	358	97		335		291	185	75	141	114
20		Similarity (%)	6.03	71.9				8.66			63.4	6.93	72.2		60.9		45.0	74.6	80.0	73.8	61.4
		Identity (%)	26.0	48.5				99.5			32.8	35.2	42.3		29.0		32.0	48.1	42.7	46.8	32.5
25	ned)	ø)		osis				icum			KP1001	GUE-	A		O		nial	LCA	osis		A3(2)
30	Table 1 (continued)	Homologous gene	Salmonella enterica iroD	Mycobacterium tuberculosis H37Rv Rv2518c lppS				Corynebacterium glutamicum ATCC 21086			Salmonella typhimurium KP1001 cytR	Rattus norvegicus SPRAGUE- DAWLEY KIDNEY	Bacillus subtilis 168 degA		Escherichia coli K12 uxaC		Zea diploperennis perennial teosinte	Mycobacterium avium pncA	Mycobacterium tuberculosis H37Rv Rv2520c	Escherichia coli K12 bcp	Streptomyces coelicator A3(2) SCI11.01c
35		-,,	Salmor	Mycobi H37Rv				Corynebacter ATCC 21086			Salmor	Rattus DAWLE	Bacillus		Escher		Zea diplote teosinte	Mycoba	Mycoba H37Rv	Escher	Strepto SCI11.0
40		db Match	prf.2409378A	pir.C70870				gp:SCU53587_1			gp:AF085235_1	sp:GLSK_RAT	pir.A36940		sp:UXAC_ECOLI		prf:1814452C	prf.232444A	pir.E70870	sp:BCP_ECOLI	gp.SCI11_1
		ORF (bp)	1188	1209	645	150	246	1308	207	639	453	1629	477	555	1554	501	1197	558	273	465	636
45		Terminal (nt)	2619541	2620973	2623605	2623621	2624048	2624051	2625806	2625809	2628376	2626493	2628852	2628324	2630479	2631136	2632466	2633100	2633146	2634064	2634751
50		Initial (nt)	2620728	2622181	2622961	2623770	2623803	2625358	2625600	2626447	2627924	2628121	2628376	2628878	2628926	2630636	2631270	2632543	2633418	2633600	2634116
		SEQ NO. (a.a)	6216	6217	6218	6219	6220	6221	6222	6223	6224	6225	6226	6227	6228	6229	6230	6231	6232	6233	6234
55		SEQ NO (DNA)	2716	2717	2718	2719	2720	2721	2722	2723	2724	2725	2726	2727	2728	2729	2730	2731	2732	2733	2734

EP 1 108 790 A2

5	Function	phosphopantethiene protein transferase	lincomycin resistance protein	hypothetical membrane protein		fatty-acid synthase	hypothetical protein	peptidase	hypothetical membrane protein	hypothetical membrane protein	hypothetical protein	ribonuclease PH	
15	Matched length (a.a.)	145	473	113		3029	404	230	112	113	202	236	
20	Similarity (%)	75.9	85.6	54.0		83.6	55.2	6.09	67.9	0.69	7.97	81.4	
	Identity (%)	56.6	52.4	30.1		62.3	25.3	40.4	40.2	37.2	55.0	60.2	
52 Table 1 (continued)	ns gene	TCC 6871 ppt1	glutamicum	PCC6803		SI	dicolor A3(2)	iberculosis	Iberculosis	prae	berculosis	ruginosa	
	Homologous gene	Corynebacterium ammoniagenes ATCC 6871 ppt1	Corynebacterium glutamicum ImrB	Synechocystis sp. PCC6803		Corynebacterium ammoniagenes fas	Streptomyces coelicolor A3(2) SC4A7.14	Mycobacterium tuberculosis H37Rv Rv0950c	Mycobacterium tuberculosis H37Rv Rv1343c	Mycobacterium leprae B1549_F2_59	Mycobacterium tuberculosis H37Rv Rv1341	Pseudomanas aeruginosa ATCC 15692 rph	
40	db Match	gp:BAY15081_1	gp:AF237667_1	pir.S76537		pir:S2047	gp:SC4A7_14	pir:D70716	sp:Y077_MYCT	sp:Y076_MYCLE	sp.Y03Q_MYCTU	sp:RNPH_PSEAE	
	ORF (bp)	405	1425 g	324	414	9979	1182 6	615 p	462 s	354 s	618	s 267	246
45	Terminal (nt)	2634747	2635165	2637168	2637240	2638649	2648235	2650164	2650902	2651339	2651420	2652067	2653009
50	initial (nt)	2635151	2636589	2636845	2637653	6239 2647627	6240 2649416	6241 2649550	2650441	2650986	2652037	2652801	2746 6246 2653254
	SEQ NO. (a.a.)	6235	6236	6237	6238			6241	6242	6243	6244	6245	6246
55	SEQ NO. (DNA)	2735	2736	2737	2738	2739	2740	2741	2742	2743	2744	2745	2746

hypothetical membrane protein transposase (IS1628) arylsulfatase 250 428 175 74.4 58.2 97.2 46.0 29.0 92.1 Corynebacterium glutamicum 22243 R-plasmid pAG1 tnpB Mycobacterium tuberculosis H37Rv SC8A6.09c 765 sp.Y030_MYCLE | Mycobacterium leprae ats 1362 sp:Y029_MYCTU gp:AF121000_8 326 693 534 582 099 6247 2654018 2653326 2654660 2654079 2654875 6252 2658500 2657736 6251 2657633 2656974 6250 2656452 2656985 2656236 6248 6249 2752 2747 2751 2740 2742 2743 2741

5		uc	es		regulatory protein, marR	ne protein		xanoate						ase	ne protein		hatase		e chain l	
10	!	Function	D-glutamate racemase		bacterial regulatory p family	hypothetical membrane protein		endo-type 6-aminohexanoate oligomer hydrolase	hypothetical protein	hypothetical protein		hypothetical protein		ATP-dependent helicase	hypothetical membrane protein	hypothetical protein	phosphoserine phosphatase		cytochrome c oxidase chain l	
15		Matched length (a.a.)	284		147	225		321	200	105		428		647	313	222	310		575	
20		Similarity (%)	99.3		70.8	69.3		58.3	58.5	77.1		80.8		53.3	60.1	52.0	61.0		74.4	
		Identity (%)	99.3		44.2	38.2		30.2	35.0	57.1		61.2		25.2	29.7	39.0	38.7		46.8	
25	red)	0)	icum		43(2)	Sis			sis	sis		sis			sis	43(2)			sis	
30 35	Table 1 (continued)	Homologous gene	Corynebacterium glutamicum ATCC 13869 murl		Streptomyces coelicolor A3(2) SCE22.22	Mycobacterium tuberculosis H37Rv Rv1337		Flavobacterium sp. nylC	Mycobacterium tuberculosis H37Rv Rv1332	Mycobacterium tuberculosis H37Rv Rv1331		Mycobacterium tuberculosis H37Rv Rv1330c		Escherichia coli dinG	Mycobacterium tuberculosis H37Rv Rv2560	Streplomyces coelicolor A3(2) SC1B5.06c	Escherichia coli K12 serB		Mycobacterium tuberculosis H37Rv Rv3043c	
40		db Match	prf.2516259A		gp:SCE22_22	SP YO3M_MYCTU		pir.A47039	sp:Y03H_MYCTU	sp:Y03G_MYCTU		sp:Y03F_MYCTU		prf:1816252A	sp:Y0A8_MYCTU	pir:T34684	sp.SERB_ECOLI		pir:D45335	
		ORF (bp)	852	636	492	747	891	960	537	300	624	1338	306	1740	891	723	1017	1596	1743	306
45		Terminal (nt)	2658606	2660131	2660147	2660671	2662455	2661417	2662331	2662883	2664060	2665397	2665992	2667854	2667870	2668839	2669557	2672721	2671063	2673255
50		Initial (nt)	2659457	2659496	2660638	2661417	2661565	2662376	2662867	2663182	2663437	2664060	2665687	2666115	2668760	2669561	2670573	2671126	2672805	2672950
		SEO NO (a a.)	6253	6254	6255	6256	6257	6258	6259	6260	6261	6262	6263	6264	6265	6266	6267	6268	6529	6270
55		SEO NO.	2753	2754	2755	2755	2757	2758	2759	2760	2761	2762	2763	2764	2765	2766	2767	2768	2769	2770

5		Function	ribonucleotide reductase beta-chair	ferritin	sporulation transcription factor	iron dependent repressor or diptheria toxin repressor	cold shock protein TIR2 precursor	hypothetical membrane protein	ribonucleotide reductase alpha- chain		50S ribosomal protein L36	NH3-dependent NAD(+) synthetase			hypothetical protein	hypothetical protein	alcohol dehydrogenase	Bacillus subtilis mmg (for mother ce metabolic genes)	hypothetical protein		phosphoglucomutase
15		Matched length (a.a.)	334	159	256	225	124	50	707		41	279			257	96	337	459	284		556
20		Simi:arity (%)	99.7	64.2	60.2	60.4	62.1	86.0	100.0		79.0	78.1			56.4	68.8	52.8	98.0	66.2		80.6
		Identity (%)	2.65	31.5	32.8	27.6	24.2	50.0	63.6		58.0	55.6			30.7	41.7	26.1	27.0	33.8		61.7
25	led)	0.	cnm		५ ३(2)	uno	e	F0251	cum						303	sis	sn	ш	22.50		
30 35	(south Jean	Homologous gene	Corynebacterium glutamicum ATCC 13032 nrdF	Escherichia coli K12 find	Streptomyces coelicolor A3(2) whiH	Corynebacterium glutamicum ATCC 13869 dtxR	Saccharomyces cerevisiae YPH148 YOR010C TIR2	Archaeoglobus fulgidus AF0251	Corynebacterium glutamicum ATCC 13032 nrdE		Rickettsia prowazekii	Bacillus subtilis 168 nadE			Synechocystis sp. PCC6803 slr1563	Mycobacterium tuberculosis H37Rv Rv3129	Bacillus stearothermophilus DSM 2334 adh	Bacillus subtilis 168 mmgE	Arabidopsis thaliana T6K22.50		Escherichia coli K12 pgm
40		db Match	gp:AF112536_1	sp:FTNA_ECOLI	gp:SCA32WHIH_4	pir.140339	sp:TiR2_YEAST	pir.C69281	gp:AF112535_3		SP:RL36_RICPR	sp:NADE_BACSU			pir:S76790	pir:G70922	sp:ADH2_BACST	sp:MMGE_BACSU	pir:T05174		1662 sp:PGMU_ECOLI
		ORF (bp)	1002	486	750	099	438	276	2121	315	141	831	93	498	747	288	1020	1371	834	792	1662
45		Terminal (nt)	2673338	2675289	2676240	2676243	2677377	2676918	2677478	2680784	2681223	2682376	2681464	2683616	2682379	2683131	2683627	2686289	2687148	2687449	2688389
50		Initial (nt)	2674339	2674804	2675491	2676902	2676940	2677193	2679598	2680470	2681363	2681546	2681556	2683119	2683125	2683418	2684646	2684919	2686315	2688240	6289 2690050
		SEQ NO (a.a.)	6271	6272	6273	6274	6275	6276	6277	6278	6279	6280	6281	6282	6283	6284	6285	6286	6287	6288	6589
<i>55</i>		SEQ NO (DNA)	2771	2772	2773	2774	2775	2776	2777	2778	5779	2780	2781	2782	2783	2784	2785	2785	2787	2788	2789

5	Function	hypothetical membrane protein	hypothetical membrane protein	hypothetical protein	transposase (IS1676)	major secreted protein PS1 protein precursor				transposase (IS1676)		proton/sodium-glutamate symport protein		ABC transporter		ABC transporter ATP-binding protein	hypothetical protein	hypothelical protein		oxidoreductase or dehydrogenase
15	Matched length (a a)	84	122	254	496	355				200		438		873		218	84	42		196
20	Similarity (%)	64.3	61.5	79.1	48.6	49.6				46.6		66.2		0.69		79.8	0'.29	75.0		54.1
	Identity (%)	41.7	25.4	51.2	24.2	24.8				24.6		30.8		33.0		45.4	60.0	71.0		28.1
25 (panuju	gene	rculosis	99 jhp1146	ycsl	opolis	Itamicum um) ATCC				opolis				olor A3(2)		sne	moniae	n Nigg		s Tu 1892
8 Table 1 (continued)	Homologous gene	Mycobacterium tuberculosis H37Rv Rv3069	Helicobacter pylori J99 jhp1146	Bacillus subtilis 168 yesl	Rhodocaccus erythropolis	Corynebacterium glutamicum (Brevibacterium flavum) ATCC 17965 csp1				Rhodococcus erythropolis		Bacillus subtilis 168		Streptomyces coelicolor A3(2) SCE25.30		Staphylococcus aureus	Chlamydophila pneumoniae AR39 CP0987	Chlamydia muridarum Nigg TC0129		Streptomyces collinus Tu 1892 ansG
35		ΣÏ	Ĭ	B	弦					à				क्र छ		S	요 주	52	_	Str
40	db Match	pir.F70650	pir.D71843	sp:YCSI_BACSU	gp:AF126281_1	sp CSP1_CORGL				gp:AF126281_1		sp:GLTT_BACCA		gp:SCE25_30		gp:SAU18641_2	PIR:F81516	PIR:F81737		prf.2509388L
	ORF (bp)	288	324	792	1365	1620	354	165	447	1401	768	1338	693	2541	891	708	273	141	678	672
45	Terminal (nt)	2690437	2690760	2691564	2693053	2694918	2695279	2695718	2695320	2697212	2697383	2698194	2701612	2699926	2703356	2702487	2704586	2704975	2710555	2711308
50	Initial (nt)	2690150	2690437	2690773	2691689	2693299	2694926	2695554	2695766	2695812	2698150	2699531	2700920	2702466	2702466	2703194	2704314	2704835	2709878	6308 2710637 2711308
	SEQ NO.	6290	6291		6293	6294	6295	6296	6297	6298	6299	6300	6301	6302	6303	6304	6305	6306	6307	6308
55	SEQ NO (DNA)	2790	2791	2792	2793	2794	2795	2796	2797	2798	2799	2800	2801	2802	2803	2804	2805	2806	2807	2808
	<u> </u>		L			·			Щ		لــــا		نـــــا:			<u> </u>				i

5			Function	methyltransferase	hypothetical protein	hypothelical protein		UDP-N-acetylglucosamine 1- carboxyvinyltransferase	hypothetical protein	transcriptional regulator		cysteine synthase	O-acetylserine synthase	hypothetical protein	succinyl-CoA synthetase alpha chain	hypothetical protein	succinyl-CoA synthetase beta chain		frenolicin gene E product		succinyl-CoA coenzyme A transferase	transcriptional regulator
15			Matched length (a.a.)	205	84	42		417	190	281		305	172	83	291	75	400		213		501	321
20			Similarity (%)	51.2	0.99	75.0		75.3	84.2	0.69		84.6	79.7	65.1	79.4	43.0	73.0		71.8		77.8	68.5
			Identity (%)	25.9	61.0	71.0		44.8	6.3	45.9		57.1	61.1	36.1	52.9	42.0	39.8		38.5		47.9	38.6
25	·	(pai		sis		99		ns	sis	(3(5)			E2	2	Ph I	1069			frnE		at1	rcc
<i>30</i>		(confined)	Homologous gene	Mycobacterium tuberculosis H37Rv Rv0089	Chlamydia pneumoniae	Chlamydia muridarum Nigg TC0129		Acinelobacter calcoaceticus NCIB 8250 murA	Mycobacterium tuberculosis H37Rv Rv1314c	Streptomyces coelicolor A3(2) SC2G5.15c		Bacillus subtilis 168 cysK	Azotobacter vinelandii cysE2	Deinococcus radiodurans R1 DR1844	Coxiella burnetii Nine Mile Ph sucD	Aeropyrum pernix K1 APE1069	Bacillus subtilis 168 sucC		Streptomyces roseofulvus frnE		Clostridium kluyveri cat1 cat1	Azospirillum brasilense ATCC 29145 ntrC
40			db Match	sp.Y089_MYCTU	GSP: Y35814	PIR-F81737		sp:MURA_ACICA	sp:Y02Y_MYCTU	gp:SC2G5_15		sp.CYSK_BACSU	prt:2417357C	gp:AE002024_10	sp:Suco_coxBu	PIR:F72706	sp:SUCC_BACSU		gp:AF058302_5		sp:CAT1_CLOKL	sp:NIR3_AZOBR
			ORF (bp)	525	273	141	195	1254	570	843	408	924	546	288	882	225	1194	360	735	819	1539	1143
45			Terminal (nt)	2712374	2713453	2713842	2717993	2718436	2720319	2720385	2721295	2722857	2723609	2723770	2724478	2725843	2725384	2726786	2727399	2728207	2729378	2732518
50			Initial (nt)	2711850	2713181	2713702	2718187	2719689	2719750	2721227	2721702	2721934	2723064	2724057	2725359	2725619	2726577	2727145	2728133	2729025	2730916	2731376
			SEO NO (a a)	6309	6310	6311	6312	6313	6314	6315	6316	6317	6318	6319	6320	6321	6322	6323	6324	6325		6327
55			SEQ NO.	2809	2010	2811	2812	2813	2814	2815	2816	2817	2818	2819	2820	2821	2822	2823	2824	2825	2826	2827

										·	,						
5		Function		phosphate transport system regulatory protein	phosphate-specific transport component	phosphate ABC transport system permease protein	phosphate ABC transport system permease protein	phosphate-binding protein S-3 precursor	acetyltransferase		hypothetical protein	hypothetical protein	branched-chain amino acid aminotransferase	hypothetical protein	hypothetical protein	5'-phosphoribosyl-5-aminoimidazole synthetase	amidophosphoribosyl (ransferase
15		Matched length (a.a.)		213	255	292	325	369	315		344	225	259	352	58	347	482
20		Similarity (%)		81.7	82.8	82.2	78.5	26.0	0.09		55.2	74.2	56.0	79.0	81.0	94.2	89.0
		Identity (%)		46.5	58.8	51.4	50.2	40.0	34.3		24.7	44.9	28.6	58.5	58.6	81.0	70.3
30	lable I (continued)	Homologous gene		Mycobacterium tuberculosis H37Rv Rv0821c phoY-2	Pseudomonas aeruginosa pstB	Mycobacterium tuberculosis H37Rv Rv0830 pstA1	Mycobacterium tuberculosis H37Rv Rv0829 pstC2	Mycobacterium tuberculosis H37Rv phoS2	Streptomyces coelicolor A3(2) SCD84.18c		Bacillus subtilis 168 bmrU	Mycobacterium tuberculosis H37Rv Rv0813c	Solanum tuberosum BCAT2	Corynebacterium ammoniagenes ATCC 6872 ORF4	Mycobacterium tuberculosis H37Rv Rv0810c	Corynebacterium ammoniagenes ATCC 6872 purM	Corynebacterium ammoniagenes ATCC 6872 purF
40		db Match		pir:E70810	pir.S68595	gp:MTPSTA1_1	pir: A70584	pir:H70583	gp:SCD84_18		sp:BMRU_BACSU	pir.E70809	gp:AF193846_1	gp:AB003158_6	pir.B70809	gp:AB003158_5	gp:AB003158_4
		ORF (bp)	807	732	897	921	1014	1125	876	783	1095	687	942	1101	213	1074	1482
45		Terminal (nt)	2731424	2733367	2733455	2734264	2735202	2736414	2737836	2739553	2739556	2741356	2741636	2743785	2744222	2744881	2746083
50		Initial (nt)	2732230	2732636	2734351	2735184	2736215	2737538	2738711	2738771	2740650	2740670	2742577	2742685	2744010	2745954	6342 2747564
		SEQ NO. (a.a.)	6328	6329	6330	6331	6332	6333	6334	6335	6336	6337	6338	6339	6340	6341	6342
55		SEQ NO. (DNA)	2828	2829	2830	2831	2832	2833	2834	2835	2836	2837	2838	2839	2840	2841	2842

EP 1 108 790 A2

5	-			ne protein		ynthetase		ynthetase			e				sporter	dase
10	Function	hypothetical protein	hypothelical protein	hypothetical membrane protein	hypothetical protein	5'-phosphoribosyl-N- formylglycinamidine synthetase		5-phosphoribosyl-N- formylglycinamidine synthetase	hypothetical protein		gluthatione peroxidase	extracellular nuclease		hypothetical protein	C4-dicarboxylate transporter	dipeptidyl aminopeptidase
15	Matched length (a.a.)	124	315	217	42	763		223	79		158	965		211	414	697
20	Similarity (%)	75.8	94.0	87.1	71.0	89.5		93.3	93.7		77.9	51.5		68.7	81.6	70.5
	Identity (%)	57.3	75.9	67.7	64.0	77.6		80.3	81.0		46.2	28.0		37.4	49.0	41.8
25	3	sis	72	72		72		72	72			1P636		sis	. 12	dapb1
30	Homologous gene	Mycobacterium tuberculosis H37Rv Rv0807	Corynebacterium ammoniagenes ATCC 6872 ORF2	Corynebacterium ammoniagenes ATCC 6872 ORF1	Sulfolobus solfataricus	Corynebacterium ammoniagenes ATCC 6872 purt		Corynebacterium ammoniagenes ATCC 6872 purQ	Corynebacterium ammoniagenes ATCC 6872 purorf		Lactococcus lactis gpo	Aeromonas hydrophila JMP636 nucH		Mycobacterium tuberculosis H37Rv Rv0784	Salmonella typhimurium LT2 dctA	Pseudomonas sp. WO24 dapb1
35		ŞË			 						L _a	Ae		ΣÏ		ď
40	db Match	pir:H70536	gp:AB003158_2	gp:AB003158_1	GP.SSU18930_21 4	gp:AB003162_3		gp:AB003162_2	gp:AB003162_1		prf.2420329A	prf.2216389A		pir:C70709	sp.DCTA_SALTY	prf.2408266A
	ORF (bp)	375	1017	741	186	2286	720	699	243	522	477	2748	276	687	1338	2118
45	Terminal (nt)	2747683	2749111	2749162	2752103	2750027	2753121	2752327	2752995	2753819	2753328	2756739	2757126	2757129	2757863	2759532
50	Initial (nt)	2748057	2748095	2749902	2751918	2752312	2752402	2752995	2753237	2753298	2753804	2753992	2756851	2757815	2759200	2761649
	SEQ NO.		6344	6345	6346	6347	6348		6350	6351	6352	6353	6354	6355	6356	6357
55	SEQ NO.	2843	2844	2845	2846	2847	2848	2849	2850	2851	2852	2853	2854	2855	2855	2857

5	Function		yl-4-N- mide-5-amino elase	lyase	ıtransferase	ylglycinamide	histidine triad (HIT) family protein		tein	nspoter	adenosylmethionine-8-amino-7- oxononanoate aminotransferase or 7,8-diaminopelargonic acid aminotransferase	hetase	system sensor	two-component system regulatory protein	ctivator	metal-activated pyridoxal enzyme or low specificity D-Thr aldolase
10	ĬĹ		5'-phosphoribosyl-4-N- succinocarboxamide-5-amino imidazole synthetase	adenylosuccino lyase	aspartate aminotransferase	5'-phosphoribosylglycinamide synthetase	histidine triad (H		hypothetical protein	di-/tripeptide transpoter	adenosylmethionine-8-amir oxononanoate aminotransfo 7,8-diaminopelargonic acid aminotransferase	dethiobiotin synthetase	two-component system sensor histidine kinase	two-component protein	transcriptional activator	metal-activated pyridoxal enzi
15	Matched length (a.a.)		294	477	395	425	136		243	469	423	224	335	231	249	382
20	Similarity (%)		89.1	95.0	62.3	86.4	80.2		56.4	67.6	98.8	9.66	70.5	72.7	9.69	53.9
	Identity (%)		70.1	85.3	28.1	71.1	53.7		26.8	30.1	95.7	98.7	31.3	42.0	37.4	30.9
S Table 1 (continued)	eue sn		TCC 6872	TCC 6872	ricus ATCC	TCC 6872	orae u296a		arkeri orf3	subsp. lactis	glutamicum avum) MJ233	glutamicum svum) MJ233	M71plasmid	ma drrA	ans tipA	K-38
Se Table 1 (Homologous gene		Corynebacterium ammoniagenes ATCC 6872 purC	Corynebacterium ammoniagenes ATCC 6872 purB	Sulfolobus solfataricus ATCC 49255	Corynebacterium ammoniagenes ATCC 6372 purD	Mycobacterium leprae u296a		Methanosarcina barkeri orf3	Lactococcus lactis subsp. lactis dipT	Corynebacterium glutamicum (Brevibacterium flavum) MJ233 bioA	Corynebacterium glutamicum (Brevibacterium flavum) MJ233 bio⊡	Lactococcus lactis M71plasmid pND306	Thermotoga maritima drrA	Streptomyces lividans tipA	Arthrobacter sp. DK-38
35									Ă					£		AH
40	db Match		gp:AB003161_3	gp:AB003161_2	sp:AAT_SULSO	gp:AB003167_1	Sp:YHIT_MYCLE		pir:S62195	sp:DTPT_LACLA	sp:BIOA_CORGL	sp:BIOD_CORGL	gp:AF049873_3	prf:2222216A	sp:TIPA_STRLI	prf.2419350A
	ORF (bp)	624	891	1428	1158	1263	414	435	753	1356	1269	672	1455	705	753	1140
45	Terminal (nt)	2761829	2761785	2763504	2764978	2766158	2767993	2767703	2768343	2769156	2771982	2772660	2772644	2774110	2774937	2775740
50	Initial (nt)	2762452	2762675	2764931	2766135	2767420	2767580	2768137	2769095	2770511	2770714	2771989	2774098	2774814	2775689	2776879
	SEQ NO. (a.a.)	6358	6328	6360	6361	6362	6363	6364	6365	9369	5367	6368	6369	6370	6371	6372
55	SEQ NO. (DNA)	2858	2859	2860	2861	2862	2863	2864	2865	2866	2867	2868	2869	2870	2871	2872

													_		_			
Function	pyruvate oxidase	multidrug efflux protein	transcriptional regulator	hypothetical membrane protein		3-ketosteroid dehydrogenase	transcriptional regulator, LysR family	hypothetical protein	hypothetical protein		hypothetical protein	hypothetical membrane protein	transcription initiation factor sigma	trehalose-6-phosphate synthase		trehalose-phosphatase	glucose-resistance amylase regulator	high-affinity zinc uptake system protein
Matched length (a.a.)	574	504	92	421		303	232	278	288		140	464	155	487		245	344	353
Similarity (%)	75.8	68.9	68.5	78.4		62.1	0.69	52.9	55.6		50.7	64.0	50.3	66.7		57.6	60.2	46.7
Identity (%)	46.3	33.3	30.4	45.6		34.3	37.1	28.4	26.7		28.6	36.0	32.3	38.8		27.4	24.7	22.4
Homologous gene	Escherichia coli K12 poxB	Staphylococcus aureus plasmid pSK23 qacB	Escherichia coli K12 ycdC	Mycobacterium tuberculosis H37Rv Rv2508c		Rhodococcus erythropolis SQ1 kstD1	Bacillus subtills 168 alsR	Mycobacterium tuberculosis H37Rv Rv3298c lpqC	Bacillus subtilis 168 ykrA		Oryctolagus cuniculus kidney cortex rBAT	Mycobacterium tuberculosis H37Rv Rv3737	Streptomyces griseus hrdB	Schizosaccharomyces pombe tps1		Escherichia coli K12 ots8	Bacillus megaterium ccpA	Haemophilus influenzae Rd Hi0119 znuA
db Match	gp:ECOPOXB8G_1	prf.2212334B	sp:YCDC_ECOLI	pir.D70551		gp:AF096929_2	sp.ALSR_BACSU	pir.C70982	pir. C69862		pir.A45264	pir:B70798	pir:S41307	sp:TPS1_SCHPO		sp.OTSB_ECOLI	sp:ccPA_BACME	sp:ZNUA_HAEIN
ORF (bp)	1737	1482	531	1320	2142	960	705	813	813	459	399	1503	327	1455	513	768	1074	942
Terminal (nt)	2776768	2780446	2780969	2782315	2782340	2784656	2785651	2788594	2788587	2789477	2790550	2792448	2792857	2794327	2794812	2795637	2795676	2797806
Initial (nt)	2778504	2778965	2780439	2780996	2784481	2785615	2786355	2787782	2789399	2789935	2790152	2790946	2792531	2792873	2794300	2794870	2796749	2890 6390 2796865
SEQ NO. (a.a.)		6374	6375	6376	6377	6378	6379	6380	6381	6382	6383	6384	6385	6385	6387	6388	6389	6390
SEQ NO. (DNA)	2873	2874	2875	2876	2877	2878	2879	2880	2881	2882	2883	2884	2885	2886	2887	2888	2889	2890
	SEQ Initial Terminal ORF db Match Homologous gene (%) (nt) (bp) (bp) (a.a.)	SEQ Initial (nt) (nt) (bp) (bp) (nt) (bp) Ab Match (a.a.) Homologous gene (%) (%) (%) (%) Identity (%) (%) (a.a.) Matched (%) (%) (a.a.) (a.a.) 2778504 2776768 1737 qp:ECOPOXB8G_ Escherichia coli K12 poxB Escherichia coli K12 poxB 46.3 75.8 574 pyruvate oxidi	SEQ Initial (nt) (nt) (bp) (bp) (a.a.) (bp) (bp) (bp) (bp) (bp) (bp) (bp) (bp)	SEQ (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt)	SEQ NO. (a1) Initial (nt) Terminal (nt) ORF (pp) db Match (bp) Homologous gene (sa.a) Identity (%) Similarity (%) Matched (%) Matc	SEQ NO. (a1) Initial (a1) Terminal (a1) ORF (bp) db Match (bp) Homologous gene (9%) Identity (%) Similarity (%) Matched (%) Matche	SEQ Initial (at) Terminal (nt) (bp) db Match Homologous gene (%) (dentity (%) Similarity (%) Matched (%) </td <td>SEQ NO. (a1) Initial (a1) Terminal (a1) ORF (bp) db Match (bp) Homologous gene (bp) Identity (bp) Similarity (bp) Matched (bp) Mat</td> <td>SEQ Initial NO. (nt) Terminal (nt) ORF (nt) db Match Homologous gene (%) Identity (%) Similarity (%) Matched (%) NO. (nt) (nt) (nt) (nt) (nt) (nt) (nt) (m) (</td> <td>SEQ (nt) Initial (nt) Terminal (bp) QPF (bp) db Match (bp) Homologous gene (col) Identity (col) Similarity (col) Matched (col) Matched (col) AB (col) Matched (col</td> <td>SEQ 1ntial No. (nt) (nt) (nt) (bp) Ab Match (bp) Homologous gene (pp) Identity (pp) Similarity (pp) Matched /td> <td>SEQ (nt) Initial (nt) Terminal (nt) ORF (bp) db Match (bp) Homologous gene (pp) Identity (pp) Similarity (pp) Matched /td> <td>SEQ NO. Initial (nf) Terminal (nt) ORF (bp) db Match (bp) Homologous gene (pb) Identity (pb) Similarity (pb) Matched (pb) Matched</td> <td>SEQ NO. Initial (nt) Terminal (nt) ORF (nt) db Match (pp) Homologous gene (vs) Homologous gene (v</td> <td>SEQ Initial Terminal ORF db Match Homologous gene (%) (%) Matched (%) Matched (%) Matched (%) <th< td=""><td>SEQ Initial Terminal ORF db Match Homologous gene (%) (%</td><td>SEQ NO. Initial (RI) Terminal (RI) ORF (RI) db Match (RI) Homologous gene (%) Identity (%) Similarity (%) Matched (%) 63.73 2778504 2778768 17.37 gP-ECOPOXB8G- general (RI) Escherichia coli K12 poxB 46.3 75.8 57.4 63.74 2778506 2778768 17.37 gP-ECOPOXB8G- general (RI) Escherichia coli K12 poxB 46.3 75.8 57.4 63.75 2778506 2782315 13.20 pir.D70551 Brokenichiu tuberculosis 45.6 78.4 42.1 63.76 2780396 2782315 13.20 pir.D70551 H37RA RA2508c 37.1 69.0 23.2 63.76 2786365 36.0 gp.AF036929-2 kstD1 AskD1 37.1 69.0 23.2 63.76 2786365 36.0 gp.ALSR_BACSU Bacillus subtilis 168 slsR 37.1 69.0 23.2 63.76 2786365 36.0 gp.ALSR_BACSU Bacillus subtilis 168 ykrA 26.7 55.6 28.8 63.81</td><td>SEQ Initial (nt) Terminal (DR) ORF (mt) Abatch (as) Homologous gene (%) Identity (%) Abatch (%) Matched (%)</td></th<></td>	SEQ NO. (a1) Initial (a1) Terminal (a1) ORF (bp) db Match (bp) Homologous gene (bp) Identity (bp) Similarity (bp) Matched (bp) Mat	SEQ Initial NO. (nt) Terminal (nt) ORF (nt) db Match Homologous gene (%) Identity (%) Similarity (%) Matched (%) NO. (nt) (nt) (nt) (nt) (nt) (nt) (nt) (m) (SEQ (nt) Initial (nt) Terminal (bp) QPF (bp) db Match (bp) Homologous gene (col) Identity (col) Similarity (col) Matched (col) Matched (col) AB (col) Matched (col	SEQ 1ntial No. (nt) (nt) (nt) (bp) Ab Match (bp) Homologous gene (pp) Identity (pp) Similarity (pp) Matched	SEQ (nt) Initial (nt) Terminal (nt) ORF (bp) db Match (bp) Homologous gene (pp) Identity (pp) Similarity (pp) Matched	SEQ NO. Initial (nf) Terminal (nt) ORF (bp) db Match (bp) Homologous gene (pb) Identity (pb) Similarity (pb) Matched (pb) Matched	SEQ NO. Initial (nt) Terminal (nt) ORF (nt) db Match (pp) Homologous gene (vs) Homologous gene (v	SEQ Initial Terminal ORF db Match Homologous gene (%) (%) Matched (%) Matched (%) Matched (%) (%) <th< td=""><td>SEQ Initial Terminal ORF db Match Homologous gene (%) (%</td><td>SEQ NO. Initial (RI) Terminal (RI) ORF (RI) db Match (RI) Homologous gene (%) Identity (%) Similarity (%) Matched (%) 63.73 2778504 2778768 17.37 gP-ECOPOXB8G- general (RI) Escherichia coli K12 poxB 46.3 75.8 57.4 63.74 2778506 2778768 17.37 gP-ECOPOXB8G- general (RI) Escherichia coli K12 poxB 46.3 75.8 57.4 63.75 2778506 2782315 13.20 pir.D70551 Brokenichiu tuberculosis 45.6 78.4 42.1 63.76 2780396 2782315 13.20 pir.D70551 H37RA RA2508c 37.1 69.0 23.2 63.76 2786365 36.0 gp.AF036929-2 kstD1 AskD1 37.1 69.0 23.2 63.76 2786365 36.0 gp.ALSR_BACSU Bacillus subtilis 168 slsR 37.1 69.0 23.2 63.76 2786365 36.0 gp.ALSR_BACSU Bacillus subtilis 168 ykrA 26.7 55.6 28.8 63.81</td><td>SEQ Initial (nt) Terminal (DR) ORF (mt) Abatch (as) Homologous gene (%) Identity (%) Abatch (%) Matched (%)</td></th<>	SEQ Initial Terminal ORF db Match Homologous gene (%) (%	SEQ NO. Initial (RI) Terminal (RI) ORF (RI) db Match (RI) Homologous gene (%) Identity (%) Similarity (%) Matched (%) 63.73 2778504 2778768 17.37 gP-ECOPOXB8G- general (RI) Escherichia coli K12 poxB 46.3 75.8 57.4 63.74 2778506 2778768 17.37 gP-ECOPOXB8G- general (RI) Escherichia coli K12 poxB 46.3 75.8 57.4 63.75 2778506 2782315 13.20 pir.D70551 Brokenichiu tuberculosis 45.6 78.4 42.1 63.76 2780396 2782315 13.20 pir.D70551 H37RA RA2508c 37.1 69.0 23.2 63.76 2786365 36.0 gp.AF036929-2 kstD1 AskD1 37.1 69.0 23.2 63.76 2786365 36.0 gp.ALSR_BACSU Bacillus subtilis 168 slsR 37.1 69.0 23.2 63.76 2786365 36.0 gp.ALSR_BACSU Bacillus subtilis 168 ykrA 26.7 55.6 28.8 63.81	SEQ Initial (nt) Terminal (DR) ORF (mt) Abatch (as) Homologous gene (%) Identity (%) Abatch (%) Matched (%)

5
10
15
20
25
30
35
40
45
50

						·	_	,		_								
5	Function	ABC transporter	hypothetical membrane protein	transposase (ISA0963-5)		3-ketosteroid dehydrogenase		lipopolysaccharide biosynthesis protein or oxidoreductase or dehydrogenase	dehydrogenase or myo-inositol 2- dehydrogenase	shikimate transport protein	shikimate transport protein	transcriptional regulator	ribosomal RNA ribose methylase or tRNA/rRNA methyltransferase	cysteinyl-tRNA synthetase	PTS system, enzyme il sucrose protein (sucrose-specific IIABC component)	sucrose 6-phosphate hydrolase or sucrase	glucosamine-6-phosphate isomerase	N-acetylglucosamine-6-phosphate deacetylase
15	Matched length (a a)	223 AB	135 hy	303 tra		561 3-k	<u> </u>	204 pro	128 det	292 shi	130 shi	212 trai	334 ribc	464 cys	PT: 668 pro con	473 SUC	248 gluc isor	368 N-a dea
		``	-	"			-			2	_	-2	8	4	9	.4	5.	36
20	Similarity (%)	63.2	87.4	52.5		62.0		56.4	69.5	67.5	80.8	55.7	47.3	688	77.0	56.9	69.4	60.3
	Identity (%)	31.4	9.09	23.4		32.1		34.3	35.2	30.5	43.1	32.6	22.8	42.2	47.0	35.3	38.3	30.2
25 (pənu	96	8325-4	osis			lis SQ1		SB8	or iolG	4	4	A3(2)	ae	S		Ę	a	Duer
35 Table 1 (continued)	Homologous gene	Staphylococcus aureus 8325-4 mreA	Mycobacterium tuberculosis H37Rv Rv2060	Archaeoglobus fulgidus		Rhodococcus erythropolis SQ1 kstD1		Thermotoga maritima MSB8 bplA	Bacillus subtilis 168 idh or iolG	Escherichia coli K12 shiA	Escherichia coli K12 shiA	Streptomyces coelicolor A3(2) SC5A7.19c	Saccharomyces cerevisiae YOR201C PET56	Escherichia coli K12 cysS	Lactococcus lactis sacB	Clostridium acetobutylicum ATCC 824 scrB	Escherichia coli K12 nagB	Vibrio furnissii SR1514 manD
35		:	ZI	< <		œ호		F 4			w	ທ ທ		ш	ا تــــــــــــــــــــــــــــــــــــ	2 2		
40	db Match	gp:AF121672_2	pir:E70507	pir:A69426		gp:AF096929_2		pir. B72359	sp:MI2D_BACSU	sp.SHIA_ECOLI	sp:SHIA_ECOL!	gp:SC5A7_19	sp:PT56_YEAST	sp:SYC_ECOLI	pri:2511335C	gp.AF205034_4	sp:NAGB_ECOLI	sp:NAGA_VIBFU
	ORF (bp)	980	555	1500	201	1689	747	618	435	855	426	654	939	1380	1983	1299	759	1152
45	Terminal (nt)	2798509	2799391	2801034	2801313	2801558	2803250	2804074	2804676	2805113	2806016	2806599	2807426	2808399	2809824	2811960	2813279	2814081
50	Initial (nt)	2797820	2798837	2799535	2801113	2803246	2803996	2804691	2805110	-	2806441	2807252	2808364	2809778	2811806	2813258	2814037	2815232
	SEQ NO (a.a)	6391	6392	6393	6394	6395	9669	6397			6400	6401		6403	6404	6405 2	6406 2	6407 2
55	SEQ NO. (DNA)	2891	2892	2893	2894	2895	2896	2897			2900	2901		2903 (2904	2905	2906	2907 6

5		د	nthase		e-6-phosphate			se operon	protein or	stem	ATP-binding	ATP-binding	n lactone ype	gulatory				
10		Function	dihydrodipicolinate synthase	glucokinase	N-acetylmannosamine-6-phosphate epimerase		sialidase precursor	L-asparagine permease operon repressor	dipeptide transporter protein or heme-binding protein	dipeptide transport system permease protein	oligopeptide transport ATP-binding protein	oligopeptide transport ATP-binding protein	homoserine/homoserin lactone efflux protein or lysE type translocator	leucine-responsive regulatory protein		hypothetical protein	hypothetical protein	transcription factor
15		Matched length (a a)	298	321	220		439	222	260	342	314	258	193	142		152	235	157
20		Similarity (%)	62.1	57.6	68 6		50.3	57.2	51.4	64.3	78.3	78.7	62.7	66.2		86.2	71.5	91.1
		(%)	28.2	28.7	36.4		24.8	26.6	22.5	31.9	46.5	43.4	. 28.5	31.0		55.9	46.4	73.3
25	IIIII aca)	gene	dapA	olor A3(2)	ins NCTC		difaciens		фрА	dappB	Oddo	ррF	rhtB	nicum Irp		rculosis	culosis	culosis
30 F	ומחוב ו (כם	Homologous gene	Escherichia coli K12 dapA	Streptomyces coelicolor A3(2) SC6E10 20c glk	Clostridium perfringens NCTC 8798 nanE		Micromonospora viridifaciens ATCC 31146 nadA	Rhizobium etli ansR	Bacillus firmus OF4 dppA	Bacillus firmus OF4 dappB	Bacillus subtilis 168 oppD	Lactococcus lactis oppF	Escherichia coli K12 rhtB	Bradyrhizobium japonicum Irp		Mycobacterium tuberculosis H37Rv Rv3581c	Mycobacterium tuberculosis H37Rv Rv3582c	Mycobacterium tuberculosis H37Rv Rv3583c
40		db Match	sp:DAPA_ECOLI	sp:GLK_STRCO	prf:2516292A		sp:NANH_MICVI	gp:AF181498_1	gp:BFU64514_1	sp:DPPB_BACFI	sp:OPPD_BACSU	SP:OPPF_LACLA	sp:RHTB_ECOL!	prf:2309303A		pir.C70607	sp:Y18T_MYCTU	pir:H70803
		ORF (bp)	936	606	969	177	1215	729	1608	951	1068	816	621	483	360	480	768	594
45		Terminal (nt)	2816393	2817317	2818058	2818137	2818350	2819557	2822191	2823337	2825341	2826156	2826215	2827404	2827458	2827904	2828379	2829156
50		Initial (nt)	2815458	2816409	2817363	2818313	2819564	2820285	2820584	2822387	2824274	2825341	2826835	2826922	2827817	2828383	2829146	2829749
		SEQ NO (a a)	6408	6409	6410	6411	6412	6413	6414	6415	6416	6417	6418	6419	6420	6421	6422	6423
55		SEQ NO. (DNA)	2908	2909	2910	2911	2912	2913	2914	2915	2916	2917	2918	2919	2920	2921	2922	2923

EP 1 108 790 A2

two-component system response A/G-specific adenine glycosylase L-2.3-butanediol dehydrogenase two-component system sensor histidine kinase DNA repair protein RadA p-hydroxybenzaldehyde dehydrogenase mitochondrial carbonate dehydratase beta Function hypothetical protein hypothetical protein hypothetical protein virulence factor virulence factor regulator Matched length (a a) Similarity (%) 74.3 73.3 53.3 67.7 66.2 85.1 70.7 63.0 , 69 Identity (%) 59.5 36.7 99.2 48.4 S 57.0 ₹. 40. Streptomyces antibioticus IMRU 3720 mutY Brevibacterium saccharolyticum Chlamydomonas reinhardtii ca 1 Table 1 (confinued) Pseudomonas putida NCIMB 9866 plasmid pRA4000 Mycobacterium tuberculosis H37Rv Rv3246c mtrA Mycobacterium tuberculosis H37Rv Rv3587c Mycobacterium tuberculosis Escherichia coli K12 baeS Escherichia coli K12 radA Pseudomonas aeruginosa ORF24222 Pseudomonas aeruginosa ORF25110 Hemologous gene Bacillus subtilis 168 yack H37Rv Rv3592 Sp. YACK_BACSU Sp. RADA ECOLI sp:BAES_ECOLI gp.PPU96338_1 gp:AB009078_1 gp:AF121797_1 db Match prf:2214304A GSP:Y29188 GSP: Y29193 pir.D70804 pir:T08204 pir:E70552 ORF (bp) Terminal Ē Initial £ (a a) (DNA)

CIpC adenosine triphosphatase / ATP-binding proteinase hypothetical membrane protein 5 hydroxymethyldihydropteridine pantoate--beta-alanine ligase lincomycin resistance protein phenol 2-monooxygenase dihydroneopterin aldolase dihydropteroate synthase inosine monophosphate Function lysyl-tRNA synthetase 2-amino-4-hydroxy-6hypothetical protein pyrophosphokinase transcription factor dehydrogenase 10 virulence factor 15 Matched length (a.a.) 316 240 118 832 469 680 511 268 38 58 268 481 55 Similarity 75.0 86.2 70.2 69.0 75.0 71.2 52.6 9 20 8 8 62 55 9 69. Identity (%) 100.0 74.0 24.7 37.1 S 51.5 42.4 26.7 58. 4. 33. 29. 29 38 25 Bacillus stearothermophilus lysS Rhodococcus rhodochrous nitR Trichosporon cutaneum ATCC 46490 Corynebacterium glutamicum ImrB Methylobacterium extorquens AM1 folK Corynebacterium glutamicum fable 1 (continued) Mycobacterium tuberculosis Bacillus cereus 1s-4 impdh Mycobacterium leprae folP Pseudomonas aeruginosa ORF25110 Bacillus subtilis 168 mecB Homologous gene Bacillus subtilis 168 folB Mycobacterium leprae MLCB2548.04c ATCC 13032 panC 30 H37Rv Rv3517 35 Sp. MECB_BACSU Sp. FOLB_BACSU Sp:HPPK_METEX sp:PH2M_TRICU gp:MLCB2548_4 gp:AB035643_1 gp: AF237667_1 gp:AB028656_1 db Match gp:AB012100 gp:CGPAN_2 GSP: Y29193 pir.JC6117 pir:G70807 40 2775 1431 1785 1722 1578 ORF (bp) 1011 1716 1941 1443 837 798 465 390 321 162 951 693 798 477 2853732 45 2846506 2860505 2848659 2857516 2844166 2851815 2859205 2849779 2855709 2857613 2859195 2862132 2865346 2865731 **Ferminal** 2862929 2863624 2864384 2864867 <u>=</u> 2846186 2846940 2855795 2859044 2860145 2863621 2865343 6460 2865735 2847229 2853769 2862082 2862929 2866567 2848769 2850031 2852017 2859055 2864848 2864421 Initial E 50 6459 6443 6444 6445 6446 6448 6449 6450 6451 6455 6456 6461 6447 6452 6453 6454 6457 6458 ġ (DNA) 2945 2946 2949 2950 2961 2948 2951 2954 2956 2947 2952 2960 2957 55

	_																			
5		Function	GTP cyclohydrolase I		cell division protein FtsH	hypoxanthine phosphoribosyltransferase	cell cycle protein MesJ or cytosine deaminase-related protein	D-alanyl-D-alanine carboxypeptidase	inorganic pyrophosphatase		spermidine synthase	hypothetical membrane protein	hypothetical protein	hypothetical protein	hypothetical protein	PTS system, beta-glucosides- permease II ABC component		ferredoxin reductase	hypothetical protein	bacterial regulatory protein, marR family
15	}	P. c		_		£ά	8 8	G G	Ē.		S	Ę	Ę			С а		Į.	Ę	
		Matched length (a.a.)	188		782	165	310	459	159		507	132	144	173	202	68		411	6	135
20		Similarity (%)	86.2		69.0	83.0	66.8	51.4	73.6		80.7	86.4	63.2	60.1	72.3	59.6		9.69	73.2	59.3
		Identity (%)	9.09		56.0	51.5	41.0	27.2	49.7		56.0	38.6	36.8	36.4	44.6	30.3		38.0	46.4	26.7
25 G	(Continued)	gene	mtrA			ium GP660	rculosis	R39 dac	рра		rculosis	rculosis	rculosis	rculosis	rculosis	bgIP		7 phdD	olor A3(2)	mallei ORF
30 tolder	labic i (co	Homologous gene	Bacillus subtilis 168 mtrA			Salmonella typhirnurium GP660 hprt	Mycobacterium tuberculosis H37Rv Rv3625c	Actinomadura sp. R.	Escherichia coli K12 ppa		Mycobacterium tuberculosis H37Rv speE	Mycobacterium tuberculosis H37Rv Rv2600	Mycobacterium tuberculosis H37Rv Rv2599	Mycobacterium tuberculosis H37Rv Rv2598	Mycobacterium tuberculosis H37Rv Rv2597	Bacillus subtilis 168 bgIP		Nocardioides sp. KP7 phdD	Streptomyces coelicolor A3(2) SCH69.09c	Burkholderia pseudomallei ORF E
35			Ba			Saln	H M	Act	Ë		₹ E	Ξ.	±₹	₽,E	₹£	Ва		οN	Str	Вш
40		db Match	sp:GCH1_BACSU			gp:AF008931_1	sp:YZC5_MYCTU	sp:DAC_ACTSP	SP:IPYR_ECOLI		pir:H70886	sp:Y0B1_MYCTU	sp:Y0B2_MYCTU	sp:Y083_MYCTU	sp:Y0B4_MYCTU	sp.PTBA_BACSU		gp:AB017795_2	gp:SCH69_9	prf.2516298U
		ORF (bp)	588	915	2580	582	891	1233	474	219	1539	399	411	493	609	249	264	1233	288	444
45		Terminal (nt)	2866586	2868385	2867169	2869863	2870499	2871445	2873399	2873393	2873905	2875434	2875870	2876280	2876777	2877455	2877595	2878478	2880252	2880987
50		Initial (nt)	2867173	2867471	2869748	2870444	2871389	2872677	2872926	2873611	2875443	2875832	2876280	2876777	2877385	2877703	2877858	2879710	2879965	2880544
		SEQ NO (a a)	6462	6463	6464	6465	6466	6467	6468	6469	6470	6471	6472	6473	6474	6475	6476	6477	6478	6479
55		SEQ NO.	2962	2963	2964	2965	2966	2967	2968	2969	2970	2971	2972 (6	2973 (2974	2975 (2976	2977	2978	2979 (

EP 1 108 790 A2

5	Function		peptide synthase		phenylacetaldehyde dehydrogenase	hypothelical protein	hypothetical protein	hypothetical protein	heat shock protein or chaperon or groEL protein							hypothetical protein			peptidase			Na+/H+ antiporter or multiple resistance and pH regulation related protein A or NADH dehydrogenase
15	Matched	(a a)	1241		488	241	54	31	548							1236			447			797
20	Similarity	(%)	51.6		63.7	7.67	63.0	80.0	100.0							42.3			68.0			68.3
	Identity	(%)	28 4		35.0	57.3	62.0	74.0	99.5							21.7			37.1			35.6
25 (Danii) 10	6000	3000	Sporus cpsB		2 padA	ni Cj0604	erculosis	erculosis	um MJ-233							C5B			erculosis			reus mnhA
0 Table 1 (continued)	ada bandad, aman	5000	Streptomyces roseosporus cpsB		Escherichia coli K12 padA	Campylobacter jejuni Cj0604	Mycobacterium tuberculosis	Mycobacterium tuberculosis	Brevibacterium flavum MJ-233							Homo sapiens MUC5B			Mycobacterium tuberculosis H37Rv Rv2522c			Staphylococcus aureus mnhA
35			Str				A 1 My		8.8							운			H ₃			Stř
40	A de de de	do Match	prf:2413335A		prf.2310295A	gp:CJ11168X2_25	GP:MSGTCWPA_1	GP:MSGTCWPA_1	gsp:R94368							prf:2309326A			pir:G70870			prf.2504285B
	ORF	(pb)	3885	1461	1563	918	162	177	1644	180	1209	963	1986	2454	2799	3591	2775	612	1371	579	909	3057
45	Terminal	(ut)	2884882	2881844	2884935	2886916	2890346	2890553	2888897	2890751	2890930	2892138	2893100	2895072	2897528	2900330	2903964	2906639	2908885	2909788	2909231	2913228
50	Diftial	(jr)	2880998	2883304	2886497	2887833	2890185	<u> </u>	2890540	2890930	2892138	2893100	2895085	2897525	2900326	2903920	2906738	2907250	2907515	2909210	2909830	6499 2910172
	SEQ	(a a)	6480	6481	6482	6483	6484	6485	6486	6487	6488	6489	6490	6491	6492	6493	6494	6495	6496	6497	6498	
55	SEQ	NO.	2980	2981	2982	2983	2984	2985	2986	2987	2988	2989	2990	2991	2992	2993	2994	2995	2996	2997	2998	2999

10	Function	Na+/H+ antiporter or multiple resistance and pH regulation related protein C or cation transport system protein	Na+/H+ antiporter or multiple resistance and pH regulation related protein D	Na+/H+ antiporter or multiple resistance and pH regulation related protein E	K+ efflux system or multiple resistance and pH regulation related protein F	Na+/I+ antiporter or multiple resistance and pH regulation related protein G	hypothetical protein	hypothetical protein		polypeptide deformylase	hypothetical protein	acetyltransferase (GNAT) family or N terminal acetylating enzyme			exodeoxyribonuclease III or exonuclease	cardiolipin synthase
15	Matched length (a.a.)	104	523	161	22	121	178	334		184	7.1	339			31	513
20	Similarity (%)	81.7	72.1	60.09	66.2	63.6	54.5	61.7		6.09	70.4	54.2			59.9	62.0
	identity (%)	44.2	35.2	26.7	32.5	256	24.7	27.0		37.5	47.9	31.3			30.8	27.9
<i>25</i> (p _e						nhG	Sis				.sis	Sis			12	
S Table 1 (continued)	Homologous gene	Bacillus firmus OF4 mrpC	Bacillus firmus OF4 mrpD	Bacillus firmus OF4 mrpE	Rhizobium meliloti phaF	Staphylococcus aureus mnhG	Mycobacterium tuberculosis H37Rv lipV	Escherichia coli K12 ybdK		Bacillus subtilis 168 def	Mycobacterium tuberculosis H37Rv Rv0430	Mycobacterium tuberculosis H37Rv Rv0428c			Salmonella typhimurium LT2 xthA	Bacillus firmus OF4 cls
35					뇺	ts.	My		_		My H3	ξΉ				
40	db Match	gp. AF097740_3	gp.AF097740_4	gp AF097740_5	prf.2416476G	prf.2504285H	pir:D70594	sp:YBDK_ECOLI		sp:DEF_BACSU	pir.D70631	pir:B70631			gp:AF108767_1	1500 gp BFU88888_2
45	ORF (bp)	489	1668	441	273	378	594	1128	663	579	252	1005	699	630	789	1500
45	Terminal (nt)	2913723	2915416	2915922	2916201	2916582	2917024	2917630	2918819	2920293	2919490	2921290	2919808	2920220	2922108	2923617
50	Initial (nt)	2913235	2913749	2915482	2915929	2916205	2917617	2918757	2919481	2919715	2919741	2920286	2920476	2920849	2921320	2922118
	SEQ NO.	6500	6501	6502	6503	6504	6505	9059	6507	6508	6203	6510	6511	6512	6513	6514
55	SEQ NO.	3000	3001	3002	3003	3004	3005	3006	3007	3008	3009	3010	3011	3012	3013	3014

5	Function		membrane transport protein or bicyclomycin resistance protein	sodium dependent phosphate pump	phenazine biosynthesis protein		ABC transporter	ABC transporter ATP-binding protein	mutator mutT protein	hypothetical membrane protein	glutamine-binding protein precursor	serine/threonine kinase		ferredoxin/ferredoxin-NADP reductase	acetyltransferase (GNAT) family				phosphoribosylglycinamide formyltransferase	
15	Matched length (a.a.)		393	382 s	289 p		255 A	309	168 n	423 h	270 g	805 s		457	156 a				379 Pr	
20	Similarity (%)		67.2	68.9	56.4		8.09	66.3	68.5	70.2	64.8	63.5		67.8	60.3				82.6	
	Identity (%)		31.6	28.5	38.8		24.3	36.9	47.6	35.0	31.5	41.2		37.2	34.0				59.1	
25 Gaing Caing Gaing Caing Gaing Gaing Caing Gaing Gaing Gaing Caing Gaing Caing Gaing Cai	gene		2 bcr	569 nptA	ofaciens 30-		color A3(2)	is ATCC	erculosís	erculosis	nophilus	erculosis nG			2 elaA				pur	
30 30 Labra T. (Spanining) Labra T. (Spaning) Labra T. (Spanining) Labra T. (Spaning) Labra T. (Span	Homologous gene		Escherichia coli K12 bcr	Vibrio cholerae JS1569 nptA	Pseudomonas aureofaciens 30- 84 phzC		Streptomyces coelicolor A3(2) SCE8.16c	Bacillus licheniformis ATCC 9945A bcrA	Mycobacterium tuberculosis H37Rv Rv0413	Mycobacterium tuberculosis H37Rv Rv0412c	Bacillus stearothermophilus NUB36 gInH	Mycobacterium tuberculosis H37Rv Rv0410c pknG		Bos taurus	Escherichia coli K12 elaA				Bacillus subtilis 168 pur	
40	db Match		sp.BCR_ECOLI	gp:VCAJ10968_1	sp:PHZC_PSEAR		gp:SCE8_16	sp:BCRA_BACLJ	pir.C70629	pir:B70629	sp:GLNH_BACST	pir:H70628		sp:ADRO_BOVIN	sp:ELAA_ECOLI				sp:PURT_BACSU	
	ORF (bp)	654	1194	1164	840	633	768	936	501	1386	1032	2253	747	1365	545	1062	1029	399	1194	888
45	Terminal (nt)	2924844	2923954	2926704	2926707	2927651	2927551	2928302	2929256	2931336	2932371	2934829	2932652	2939767	2940452	2940447	2941472	2942609	2943012	2945639
50	Initial (nt)	2924191	2925147	2925541	2927546	2928283	2928318	2929237	2929756	2929951	2931340	2932577	2933398	2938403	2939907	2941508	2942500	2943007	2944205	2946526
	SEQ NO		6516	6517	6518	6519	6520	6521	6522	6523	6524	6525	6526	6527	6528	6259	6530	6531	6532	6533
55	SEQ NO (DNA)	3015	3016	3017	3018	3019	3020	3021	3022	3023	3024	3025	3026	3027	3028	3029	3030	3031	3032	3033

orotate phosphoribosyltransferase hypothetical membrane protein fructose-bisphosphate aldolase two-component system sensor histidine kinase 5 insertion element (IS3 related) insertion element (IS3 related) adenylosuccinate synthetase transcriptional regulator Function 3-mercaptopyruvate sulfurtransferase hypothetical protein hypothetical protein hypothetical protein methyltransferase 10 15 Matched length (a.a) 295 218 349 359 344 174 204 304 250 294 182 83 427 Similarity o, 100.0 90.9 84.3 51.3 65.6 95.3 59.3 65.5 91.2 60.0 % 100 6 56.1 20 Identity (%) 100.0 100.0 ø, 67.4 31.7 34.3 99.7 6.9/ 39.1 22. 83 27. 29. 25 Streptomyces thermoviolaceus opc-520 chiS Corynebacterium glutamicum orf2 Corynebacterium glutamicum AS019 ATCC 13059 ORF1 Table 1 (continued) Corynebacterium glutamicum orf1 Corynebacterium glutamicum AS019 ATCC 13059 ORF3 Corynebacterium glutamicum AS019 ATCC 13059 fda Bacillus brevis ALK36 degU Mycobacterium tuberculosis H37Rv Rv0358 Mycobacterium tuberculosis Mycobacterium tuberculosis Homologous gene Pyrococcus abyssi pyrE Corynebacterium ammoniagenes purA Homo sapiens mpsT 30 H37Rv Rv0383c H37Rv Rv0380c 35 sp.DEGU_BACBR Sp:THTM_HUMAN sp:YFDA_CORGL gp:AB003160_1 gp:AB016841_1 gp:AF058713_1 db Match gp:CGFDA_1 pir S60889 pir:G70575 pir:G70833 pir. S60890 pir: S09283 pir: B70834 40 1032 1140 618 1290 1167 ORF (bp) 225 618 972 759 552 279 852 894 264 267 951 720 45 2948049 2949265 2952975 2950431 2950434 2946698 2947620 2952691 2952972 295553 2956830 2957485 2958139 2960468 2962730 Terminal 2954241 2959520 2963198 (n) 2949188 2949882 2955272 2961187 2950207 2951723 2951933 2952709 2956473 2957447 2959110 2963008 2963596 2947886 2954141 2958036 2947591 2960371 Initial (nt) 50 6546 6249 6538 6540 6542 6543 6544 6545 6548 6534 6535 6536 6537 6539 6541 6547 6550 SEO NO 6551 3043 3048 3049 3050 3042 3044 3045 3051 (DNA) 3034 3035 3036 3037 3038 3039 3040 3041 3046 3047 55

Ĭ	
10	
15	
20	
25	
30	
35	
40	
45	
50	

5

g	
ntinue	
1 (conti	•
Table	
_	

_																	
	Function	virulence factor	virulence factor	virulence factor	sodium/glutamate symport carrier protein	cadmium resistance protein	cation efflux system protein (zinc/cadmium)	monooxygenase or oxidoreductase or steroid monooxygenase	alkanal monooxygenase alpha chain		cystathionine gamma-lyase	bacterial regulatory protein, lact family	rifampin ADP-ribosyl transferase	rifampin ADP-ribosyl transferase	hypothetical protein	hypothelical protein	oxidoreductase
	Matched length (a.a.)	59	200	132	489	108	283	476	399		375	184	68	56	361	204	386
	Similarity (%)	82.0	55.0	63.0	54.8	71.3	63.3	45.4	47.4		62.4	67.9	65.2	87.5	56.2	64.7	60.6
	Identity (%)	76.0	38.0	62.0	24.7	37.0	23.7	22.5	21.1		36.5	40.2	49.4	73.2	30.5	33.8	31.9
	Homologous gene	Pseudomonas aeruginosa ORF24222	Pseudomonas aeruginosa ORF23228	Pseudomonas aeruginosa ORF25110	Synechocystis sp. PCC6803 slr0625	Staphylococcus aureus cadC	Pyrococcus abyss; Orsay PAB0462	Rhodococcus rhodochrous IFO3338	Kryptophanaron alfredi symbiont luxA		Escherichia coli K12 metB	Streptomyces coelicolor A3(2) SC1A2.11	Streptomyces coelicolor A3(2) SCE20.34c arr	Streptomyces coelicolor A3(2) SCE20.34c arr	Mycobacterium tuberculosis H37Rv Rv0837c	Mycobacterium tuberculosis H37Rv Rv0836c	Mycobacterium tuberculosis H37Rv Rv0385
	db Match	GSP Y29188	GSP-Y29182	GSP:Y29193	pir:S76683	SP.CADF_STAAU	pir.H75109	gp:AB010439_1	sp:LUXA_KRYAS		sp. METB_ECOLI	gp:SC1A2_11	gp:SCE20_34	gp:SCE20_34	pir:E70812	pir:D70812	pir:D70834
	ORF (bp)	177	762	396	1347	387	858	1170	1041	762	1146	567	240	183	1125	732	1179
	Terminal (nt)	2964434	2965837	2965583	2966458	2968789	2969808	2971003	2972057	2971338	2972060	2973230	2974200	2974382	2975591	2976360	2977774
	Initial (nt)	2964258	2965076	2965188	2967804	2968403	2968951	2969834	2971017	2972099	2973205	2973796	2973961	2974200	2974467	2975629	2976596
	SEQ NO (a.a.)	6552	6553	6554	6555	6556	6557	6558	6559	6560	6561	6562	6563	6564	6999	6566	1959
	SEQ NO. (DNA)	3052	3053	3054	3055	3056	3057	3058	3059	3060	3061	3062	3063	3064	3065	3066	3067

_	acid			egulatory	esi	n regulator	ſ	sctor grpE TPase domain rone DnaK	¥	e protein	nucleosidase			on protein			
Function	N-carbamoyl-O-amino amidohydrolase		hypothetical protein	novel two-component system	aldehyde dehydrogena	heat shock transcriptio	heat shock protein dna	nucleotide exchange fa protein bound to the A of the molecular chape	heat shock protein dna	hypothetical membran	5'-methylthioadenosine nucleosidase and S- adenosylhomocysteine			chromosome segregat			alcohol dehydrogenase
Matched length (a.a.)	275		289	108	507	135	397	212	618	338	195			1311			334
Similarity (%)	67.3		55.4	44.0	90.3	70.4	80.1	66.5	93.8	79.0	60.0			48.4			81.7
Identity (%)	32.0		28.0	38.0	9.69	47.4	56.7	38.7	93.8	42.6	27.2			18.9			50.0
ene	Delta H		or A3(2)	e carR	olis thcA	hspR	ulcsis	or grpE	MJ-233	or A3(2)	0089 mtn			pombe			hilus
Homologous go	lhanobacterium rmoautotrophicum l H1811		eptomyces coelicolo 4A7.03	spirillum brasilense	odococcus erythrop	eptomyces albus G	cobacterium tubero 7Rv RV0352 dnaJ	eptomyces coelicold	vibacterium flavum IK	eptomyces coelicole F6.09	icobacter pylori HP			izosaccharomyces 3			Bacillus stearothermophilus DSM 2334 adh
	Met ther MT		Stre SC4		₽ Pp	Stre			Bre	Stre	Heli						
db Match	pir.B69109		gp:SC4A7_3	GP:ABCARRA_2	prf:2104333D	gp:SAU43299_2	sp:DNAJ_MYCTI	sp:GRPE_STRC	gsp:R94587	gp:SCF6_8	sp.PFS_HELPY			sp.cUT3_SCHPC			sp:ADH2_BACST
ORF (bp)	798	243	1134	330	1518	438	1185	636	1854	1332	633	1200	885	3333	636	1485	1035
Terminal (nt)	2977847	2978979	2980115	2981216	2980181	2982023	2982495	2983887	2984544	2988164	2988214	2988846	2992602	2989954	2993286	2993921	2995747
Initiat (nt)	2978644	2978737	2978982	2980887	2981698	2982460	2983679	2984522	2986397	2986833	2988846	2990045	2991718	2993286	2993921	2995405	2996781
SEQ NO. (a.a.)	6568	6959	6570	6571	6572	6573	6574		9259	6577	6578	6259	6580	6581	6582	6583	6584
SEQ NO.	3068	3069	3070	3071	3072	3073	3074	3075	3076	3077	3078	3079	3080	3081	3082	3083	3084
	SEQ Initial Terminal ORF db Match Homologous gene (%) (ht) (bp)	SEQ Initial Terminal ORF db Match (a.a.) (nt) (nt) (hp) (bp) (a.a.) Methanobacterium 6568 2978644 2977847 798 pir.B69109 thermoautotrophicum Delta H 32.0 67.3 275 amidohydrolas	SEQ NO. (a.a.) Initial (nt) Terminal (nt) ORF (bp) db Match (bp) Homologous gene (%) Identity (%) Similarity (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Ingth (a.a.) 6568 2978644 2977847 798 pir. B69109 Intermoautotrophicum Delta H MTH1811 32.0 67.3 275 6569 2978737 2978979 243 243 275	SEQ NO. (a.a.) Initial (nt) Terminal (nt) ORF (bp) db Match Homologous gene (%) Identity (%) Similarity (%) Matched (%) Matched (%	SEQ Initial (a.a.) Terminal (bb) ORF (bp) db Match Homologous gene (%) Identity (%) Similarity (%) Matched	SEQ NO. (a.a.) Initial (nt) Terminal (nt) ORF (bp) db Match Homologous gene Methanobacterium (%) Identity (%) Similarity (%) Matched (%) Matched (%)	SEQ NO. (a.a.) Initial (nt) Terminal (nt) ORF (bp) db Match (bp) Homologous gene (%) Identity (%) Similarity (%) Matched (%) Match	SEQ NO. Initial (nt) Terminal (nt) ORF (bp) db Match Homologous gene Identity (%) Similarity (%) Matched (%) Matched (%)	SEQ Initial (a.a.) Terminal (bp) (bp) db Match Homologous gene (color) Identity (color) Similarity (color) Matched (color) NO. (nt) (nt) (nt) (bp) db Match Homologous gene (color) (co	SEQ (nt) (nt) Terminal (bp) (bp) (bp) db Match Homologous gene (%) Identity (%) Similarity length (aa) NO. (nt) (nt) (nt) (nt) (bp) db Match Homologous gene (%) (%)	SEQ NO. (nt) Initial (nt) Chritial (nt) ORF (nt) db Match Homologous gene (%) Identity (%) Similarity length (%) Matched (%) NO. (nt) (nt) </td <td>SEC NO. Initial (Init) Terminal (Init) ORF (Init) db Match Homologous gene (%) Homologous gene (%)</td> <td>SEC NO. (ral) Infliat (nt) Terminal (nt) ORF (nt) dab Match (nt) HDmologous gene (%) Identity (%) Similarity (%) Match (%) Match (%)</td> <td>SEG Initial Terminal ORF db Match Homologous gene (%) (%) Match (%) Match (%) Match (%) (%)<!--</td--><td>SEC Initial Terminal ORF db Match Homologous gene Identity Implication Initial Terminal ORF db Match Homologous gene Identity Similarity (%) Methanobacterium 6559 297847 297847 297847 298 pir.869109 Methanobacterium 67.3 27.5 67.3 27.5 6559 297877 298082 2980115 1134 gp.SC4A7_3 Streptomyces coelicolor A3(2) 28.0 67.3 27.5 6570 2980887 2980118 1518 ptr.2104333D Rhodococcus erythropolis thcA 69.6 90.3 50.7 6571 2980887 2980118 1518 ptr.2104333D Rhodococcus erythropolis thcA 69.6 90.3 50.7 6571 2981698 2980181 1518 ptr.2104333D Rhodococcus erythropolis thcA 70.4 136 6573 2982465 1185 sp.DNAJ_MYCTU Mycobacterium flavum MJ-233 56.7 80.1 30.8 61.8 6576</td><td>SEG Initial Terminal ORF db Match Homologous gene Identity Similariny (%) Match (%) Matc</td><td>SEO Initial Terminal ORF db Match H5mologous gene (%) (%</td></td>	SEC NO. Initial (Init) Terminal (Init) ORF (Init) db Match Homologous gene (%) Homologous gene (%)	SEC NO. (ral) Infliat (nt) Terminal (nt) ORF (nt) dab Match (nt) HDmologous gene (%) Identity (%) Similarity (%) Match (%) Match (%)	SEG Initial Terminal ORF db Match Homologous gene (%) (%) Match (%) Match (%) Match (%) (%) </td <td>SEC Initial Terminal ORF db Match Homologous gene Identity Implication Initial Terminal ORF db Match Homologous gene Identity Similarity (%) Methanobacterium 6559 297847 297847 297847 298 pir.869109 Methanobacterium 67.3 27.5 67.3 27.5 6559 297877 298082 2980115 1134 gp.SC4A7_3 Streptomyces coelicolor A3(2) 28.0 67.3 27.5 6570 2980887 2980118 1518 ptr.2104333D Rhodococcus erythropolis thcA 69.6 90.3 50.7 6571 2980887 2980118 1518 ptr.2104333D Rhodococcus erythropolis thcA 69.6 90.3 50.7 6571 2981698 2980181 1518 ptr.2104333D Rhodococcus erythropolis thcA 70.4 136 6573 2982465 1185 sp.DNAJ_MYCTU Mycobacterium flavum MJ-233 56.7 80.1 30.8 61.8 6576</td> <td>SEG Initial Terminal ORF db Match Homologous gene Identity Similariny (%) Match (%) Matc</td> <td>SEO Initial Terminal ORF db Match H5mologous gene (%) (%</td>	SEC Initial Terminal ORF db Match Homologous gene Identity Implication Initial Terminal ORF db Match Homologous gene Identity Similarity (%) Methanobacterium 6559 297847 297847 297847 298 pir.869109 Methanobacterium 67.3 27.5 67.3 27.5 6559 297877 298082 2980115 1134 gp.SC4A7_3 Streptomyces coelicolor A3(2) 28.0 67.3 27.5 6570 2980887 2980118 1518 ptr.2104333D Rhodococcus erythropolis thcA 69.6 90.3 50.7 6571 2980887 2980118 1518 ptr.2104333D Rhodococcus erythropolis thcA 69.6 90.3 50.7 6571 2981698 2980181 1518 ptr.2104333D Rhodococcus erythropolis thcA 70.4 136 6573 2982465 1185 sp.DNAJ_MYCTU Mycobacterium flavum MJ-233 56.7 80.1 30.8 61.8 6576	SEG Initial Terminal ORF db Match Homologous gene Identity Similariny (%) Match (%) Matc	SEO Initial Terminal ORF db Match H5mologous gene (%) (%

r				_																	
5	uo					ine protein			ferase, subunit	ferase small	hosphosulfate	ductase	-NADP				take protein y		enase		
10	Function	ļ				hypothetical membrane protein	hypothetical protein		sulfate adenylyltransferase, subunit 1	sulfate adenylyltransferase small chain	phosphoadenosine phosphosulfate reductase	ferredoxinnitrate reductase	ferredoxin/ferredoxin-NADP reductase	huntingtin interactor			alkylphosphonate uptake protein and C-P lyase activity	hypothetical protein	ammonia monooxygenase		
15	Matched length (a.a.)					301	252		414	308	212	502	487	144			142	1 08	161		
20	Similarity (%)					70.1	53.2		78.3	70.1	64.2	65.5	61.4	59.7			59.9	66.3	76.4		
	Identity (%)					43.5	32.5		47.3	46.1	39.2	34.5	30.8	32.6			26.8	20.0	39.1		
25 D	_						(3(5)		_			7942	o o				~	(3(2)	UZ ID		
56 Table 1 (continued)	Homologous gene					Bacillus subtilis ytnM	Streptomyces coelicolor A3(2) SC7A8 · 0c		Escherichia coli K12 cysN	Escherichia coli K12 cysD	Bacillus subtilis cysH	Synechococcus sp. PCC 7942	Saccharomyces cerevisiae FL200 arh1	Homo sapiens hypE			Escherichia colí K12 phnB	Streptomyces coelicolor A3(2) SCE68.10	Pseudomonas putida DSMZ ID 88-260 amoA		
35						Bacill	Strept SC7A		Esche	Esche	Bacille	Synec	Sacch FL200	Homo			Esche	Strept SCE6	Pseud 88-26(
40	db Match					pir:F69997	gp:SC7A8_10		sp:CYSN_ECOLI	sp.CYSD_ECOLI	sp:CYH1_BACSU	Sp:NIR_SYNP7	sp:ADRO_YEAST	prf:2420294J			sp:PHNB_ECOLI	gp:SCE68_10	gp:PPAMOA_1		
	ORF (bp)	216	207	189	261	927	723	915	1299	912	693	1683	1371	1083	237	534	414	366	522	321	486
45	Terminal (nt)	2997366	2997481	2997876	2997963	2998528	2999478	3002426	3000241	3001542	3002453	3003480	3006915	3008376	3008453	3009303	3008749	3009607	3009710	3010979	3010441
50	Initial (nt)	2997151	2997687	2997688	2998223	2999454	3000200	3001512	3001539	3002453	3003145	3005162	3005545	3007294	3008689	3008770	3009162	3009242	3010231	3010659	3010926
	SEQ NO (a.a.)	6585	6586	_	6588	6589	6590	6591	6592	6593	6594	6595	9859	6597	6598	6238	0099	6601	6602	6603	5604
55	SEQ NO. (DNA)	3085	3086	3087	3088	3089	3090	3091	3092	3093	3094	3095	3096	3097	3098	3099	3100	3101	3102	3103	3104

5		วก						protein homolog			elate					transport ATP.		ii	eductase	ring nucleoside	ne protein	e glycosylase	
10		Function	hypothetical protein		hypothetical protein	ABC transporter	ABC transporter	metabolite transport protein homolog			succinyl-diaminopimelate desuccinylase				dehydrin-like protein	maltose/maltodextrin transport ATP- binding protein		cobalt transport protein	NADPH-flavin oxidoreductase	inosine-uridine preferring nucleoside hydrolase	hypothetical membrane protein	DNA-3-methyladenine glycosylase	flavohemoprotein
15		Matched length (a.a.)	68		337	199	211	416			466				114	373		179	231	317	276	179	406
20		Similarity (%)	58.0		57.9	64.8	73.0	67.8			48.5				46.0	50.1		9'29	71.4	59.3	59.4	78.8	63.8
		Identity (%)	41.0		26.1	35.7	39.3	30.8			21.5				33.0	24.9		30.2	37.2	28.4	31.2	50.3	33.5
25	ontinued)	s gene	ORFZ3		hus H16	enzae hmcB	enzae hmcB	၁၉			2 msgB					2 malK		Plasmid biM	' frp	Huni e	color A3(2)	2 tag	nus H16 fhp
30	Table 1 (continued)	Homologous gene	Agrobacterium vitis ORFZ3		Alcaligenes eutrophus H16 ORF7	Haemophilus influenzae hmcB	Haemophilus influenzae hmcB	Bacillus subtilis ydeG			Escherichia coli K12 msgB				Daucus carota	Escherichia coli K12 malK		Lactococcus lactis Plasmid pNZ4000 Orf-200 cbiM	Vibrio harveyi MAV frp	Crithidia fasciculata iunH	Streptomyces coelicolor A3(2) SCE20.08c	Escherichia coli K12 tag	Alcaligenes eutrophus H16 fhp
35			Agr		AR OR	Hae	Hae	Вас			ESC					Esc		Lac PN2	Vib	Crit	SCI	Esc	\vdash
40		db Match	SP:YTZ3_AGRVI		sp.YGB7_ALCEU	gp:HIU68399_3	gp:HIU68399_3	pir:A69778			sp.DAPE_ECOLI				GPU.DCA297422_	sp:MALK_ECOLI		gp:AF036485_6	sp.FRP_VIBHA	sp:IUNH_CRIFA	gp:SCE20_8	sp:3MG1_ECOLI	sp:HMPA_ALCEU
		ORF (bp)	285	564	1002	693	714	1209	822	687	1323	1905	774	762	954	1068	642	618	816	903	975	588	1158
45		Terminal (nt)	3011273	3011242	3011808	3013106	3013837	3015824	3014648	3016924	3015827	3019220	3018312	3017420	3018123	3019542	3020561	3021208	3022113	3022998	3025353	3026139	3026142
50		Initial (nt)	3010989	3011805	3012809	3013798	3014550	3014616	3015469	3016238	3017149	3017316	3017539	3018181	3019076	3020609	3021202	3021825	3022928	3023900	3024379	3025552	3027299
		SEQ NO (a.a.)	6605	9099	2099	6608	6099	6610	6611	6612	6613	6614	6615	6616	6617	6618	6619	6620	6621	6622	6623	6624	6625
55		SEQ NO (DNA)	3105	3106	3107	3108	3109	3110	3111	3112	3113	3114	3115	3116	3117	3118	3119	3120	3121	3122	3123	3124	3125 6625

5	Function		oxidoreductase		transcription antiterminator or betaglucoside positive regulatory protein		6-phospho-beta-glucosidase		6-phospho-beta-glucosidase	aspartate aminotransferase		transposase (ISCg2)	hypothetical membrane protein		UDP-glucose dehydrogenase	deoxycytidine triphosphate deaminase		hypothetical protein		beta-N-Acetylglucosaminidase
15	Matched length (a.a.)		210		192		167		99	402		401	399		442	188		229		410
20	Similarity (%)		63.8		69.3		59.9		78.8	80.9		100.0	70.2		72.2	72.3		59.4		58.1
	identity (%)		34.8		28.1		43.7		43.9	53.7		100.0	33.6		40.5	43.6		30.6		28.5
25 Raple 1 (continued)	Homologous gene		Streptomyces coelicolor A3(2) mmyQ		Escherichia coli K12 bglC		Clostridium longisporum B6405 abgA		Clostridium longisporum B6405 abgA	Methylobacillus flagellatus aat		Corynebacterium glutamicum ATCC 13032 tnp	Streptomyces coelicolor A3(2) SCQ11,10c		Sinorhizobium melilali rkpK	Escherichia coli K12 dcd		Streptomyces coelicolor A3(2) SCC75A, 16c		Streptomyces thermoviolaceus nagA
40	db Match		gp:SCO276673_18		sp:BGLG_ECOLI		sp:ABGA_CLOLO		sp:ABGA_CLOLO	gp:L78665_2		gp:AF189147_1	gp:SCQ11_10		prf.2422381B	sp:DCD_ECOLI		gp:SCC75A_16		gp:AB008771_1 s
	ORF (bp)	603	624	156	591	279	360	381	240	1257	300	1203	1257	183	1317	295	237	177	1689	1185
45	Terminal (nt)	3028163	3028891	3029033	3028884	3029782	3029702	3030535	3030101	3031979	3032348	3033863	3035437	3034105	3035440	3036845	3037911	3038942	3038993	3040748
50	Initial (nt)	3027561	3028268	3028878	3029474	3029504	3030061	3030155	3030340	3030723	3032647	3032661	3034181	3034287	3036756	3037411	3037675	3038172	3040681	3041932
	SEQ NO.	9299	6627	6528	6239	6630	6631	6632	6633	6634	6635	6636	6637	6638	6639	6640	6541	6642	6643	6644
55	SEQ NO (DNA)	3126	3127	3128	3129	3130	3131	3132	3133	3134	3135	3136	3137	3138	3139	3140	3141	3142	3143	3144

					\neg	7								3Se				1	
5	. Function			hypothetical protein			hypothetical membrane protein	acyltransferase or macrolide 3-O- acyltransferase		hypothelical membrane protein		hexosyltransferase	methyl transferase	phosphoenolpyruvate carboxykinase (GTP)	C4-dicarboxylate transporter	hypothetical protein	hypothelical protein	mebrane transport protein	
15	Matched length (a.a.)			1416			363	408		529		369	251	601	332 (241	207	768	
20	Similarity (%)			49.4			47.1	51.0		54.8		79.1	73.3	78.5	52.7	67.2	85.0	72.3	
	Identity (%)			29.6			24.8	27.7		31.2		53.4	58.6	54.7	24.4	35.7	69.1	42.3	
25 Q			ı				i					S	<u>.</u> 2	pck	į		<u>s</u>	s	
& S Table 1 (continued)	Homologous gene			Mycobacterium leprae MLCB1883.13c			Mycobacterium leprae MLCB1883.05c	Streptomyces sp. acyA		Mycobacterium leprae MLCB1883.04c		Mycobacterium tuberculosis H37Rv Rv0225	Mycobacterium tuberculosis H37Rv Rv0224c	Neocallimastix frontalis pepck	Pyrococcus abyssi Orsay PAB2393	Escherichia coli K12 yggH	Mycobacterium tuberculosis H37Rv Rv0207c	Mycobacterium tuberculosis H37Rv Rv0206c mmpL3	
35								0)				Z -L			т и		<u> </u>	< ±	
40	db Match			gp:MLCB1883_7			gp:MLCB1883_4	pir.JC4001		gp:MLCB1883_3		pir.G70961	pir:F70961	sp:PPCK_NEOFR	pir.E75125	Sp:YGGH_ECOLI	pir.E70959	pir:C70839	
	ORF (bp)	444	201	3129	621	195	903	1068	208	1422	699	1137	177	1830	1011	765	705	2316	1422
45	Terminal (nt)	3042437	3042703	3045788	3043022	3045990	3048048	3046122	3047197	3049479	3051190	3049456	3051964	3052062	3055769	3056631	3057317	3059643	3058096
50	Initial (nt)	3041994	3042503	3042660	3043642	3045796	3047146	3047189	3047904	3048058	3050522	3050592	3051194	3053891	3054759	3055867	3056613	3057328	3059517
	SEQ NO (a a)	6645	6646	6647	6648	6649	6550	6651	6652	6653	6654	6655	9599	6657	6658	6659	0999	6661	6662
55	SEQ NO (DNA)	3145	3146	3147	3148	3149	3150	3151	3152	3153	3154	3155	3156	3157	3158	3159	3160	3161	3162

5	Function	hypothetical membrane protein	hypothetical membrane protein	propionyl-CoA carboxylase complex B subunit	polyketide synthase	acyl-CoA synthase	hypothelical protein		major secreted protein PS1 protein precursor			antigen 85-C	hypothelical membrane protein	nodulation protein	hypothetical protein	hypothelical protein		phosphatidic acid phosphatase
15	Matched length (a.a.)	364	108	523	1747	265	319		259			331	667	295	168	656		170
20	Similarity (%)	62.9	69.4	76.9	54.2	62.3	67.4		99.5			62.5	61.2	51.5	75.0	74.7		56.5
	Identity (%)	29.1	34.3	49.7	30.2	33.5	39.8		98.6			36.3	37.5	27.1	51.2	55.6		28.2
<i>25</i> (Dai		sis	sis	43(2)	eryA	ro .	sis		cum ATCC			sis C	sis	s	sis	sis		ပ္ပ
35 Table 1 (continued)	Homologous gene	Mycobacterium tuberculosis H37Rv Rv0204c	Mycobacterium tuberculosis H37Rv Rv0401	Streptomyces coelicolor A3(2) pccB	Streptomyces erythraeus eryA	Mycobacterium bovis BCG	Mycobacterium tuberculosis H37Rv Rv3802c		Corynebacterium glutamicum (Brevibacterium flavum) ATCC 17965 cop1			Mycobacterium tuberculosis ERDMANN RV0129C fboC	Mycobacterium tuberculosis H37Rv Rv3805c	Azorhizobium caulinodans ORS571 noeC	Mycobacterium tuberculosis H37Rv Rv3807c	Mycobacterium tuberculosis H37Rv Rv3808c		Bacillus licheniformis ATCC 9945A bcrC
40	db Match	pir.A70839	pir:H70633	gp:AF113605_1	sp.ERY1_SACER	prf:2310345A	pir:F70887		sp:CSP1_CORGL			sp:A85C_MYCTU	pir:A70888	sp:NOEC_AZOCA	pir:C70888	pir:D70888		sp:BCRC_BACLI
	ORF (bp)	1083	363	1548	4830	1788	927	498	1971	1401	219	1023	2058	966	504	1968	1494	477
45	Terminal (nt)	3060733	3061095	3061380	3062951	3068143	3070214	3071147	3071650	3075447	3073857	3075540	3076715	3078853	3079848	3080344	3083960	3083935
50	Initial (nt)	3059651	3060733	3062927	3067780	3069930	3071140	3071644	3073620	3074047	3074075	3076562	3078772	3079848	3080351	3082311	3082467	3084411
	SEQ NO.	6663	6664	9999	9999	2999	8999	6999	6670	6671	8672	6673	6674	6675	9299	6677	8299	6299
55	SEQ NO (DNA)	3163	3164	3165	3166	3167	3168	3169	3170	3171	3172	3173	3174	3175	3176	3177	3178	3179

dimethylaniline monooxygenase (Ntranscriptional regulator, GntR family nicotinamidase or pyrazinamidase or fatty acyl-responsive regulator 5 UDP-galactopyranose mutase 2,3-PDG dependent phosphoglycerate mutase Function seryl-tRNA synthetase hypothetical protein hypothetical protein hypothetical protein hypothetical protein 10 acyltransferase glycerol kinase oxide-forming) 15 Matched length (a a) 377 629 377 499 279 419 261 235 356 218 460 113 Similarity 504 72.9 47.8 78.8 70.3 72.0 87.6 61.2 62.8 % 61.7 79.7 20 Ŝ Identity (%) 24.4 43.2 41.6 70.2 ø. 51.7 46.7 27.7 37.2 27.4 29. 32. 6 25 Amycolatopsis methanolica pgm Mycobacterium smegmatis pzaA Table 1 (continued) Mycobacterium tuberculosis Mycobacterium tuberculosis Mycobacterium tuberculosis Mycobacterium tuberculosis H37Rv Mycobacterium tuberculosis H37Rv Rv3835 Mycobacterium tuberculosis H37Rv Rv3836 Pseudomonas aeruginosa Homologous gene Escherichia coli K12 farR Escherichia coli K12 glf H37Rv Rv3811 csp ATCC 15692 glpK 30 H37Rv Rv3813c H37Rv Rv3816c Sus scrofa fmo1 35 Sp:GLPK_PSEAE Sp:FARR_ECOLI gp:AMU73808_1 sp:GLF_ECOLI sp:FMO1_PIG db Match prf:2501285A gsp:W26465 pir:G70520 pir.H70652 pir:A70521 pir D70521 pir:A70653 40 1302 2049 1203 1113 1527 1266 1143 ORF (bp) 510 612 834 876 714 777 342 699 630 729 99 45 3084424 3085218 3087048 **Terminal** 3088276 3087101 3090664 3093175 3094078 3090760 3092342 3096287 3097423 3099454 3097780 3097904 3100698 3101426 3097764 E) 3087665 3088303 3096311 3098825 3085200 3085727 3085747 3088616 3093175 3094050 3095343 3099556 3100698 3092286 3095574 3097423 3097878 3098572 Initial (nt) 50 6680 6682 6683 SEQ NO. (a.a) 6681 6684 9899 6687 6688 6889 6692 6694 6695 9699 0699 6693 2699 6691 (DNA) 3180 3182 3183 3181 3185 3184 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 55

5		Function	ulator				Ľ	lucosidase		diester	se				enase	r	cid hydrolase		tor or lator GntR family		protein
10		Fun	transcriptional regulator				hypothetical protein	glucan 1,4-alpha-glucosidase		glycerophosphoryl diester phosphodiesterase	gluconate permease			pyruvate kinase	L-lactate dehydrogenase	hypothetical protein	hydrolase or haloacid dehalogenase-like hydrolase	efflux protein	transcription activator or transcriptional regulator GntR family	phosphoesterase	shikimate transport protein
15		Matched length (a.a.)	380				107	432		259	456			491	314	526	224	188	221	255	422
20		Similarity (%)	57.1				81.3	55.3		54.1	71.9			47.7	99.7	64.8	58.5	9.79	57.0	9.89	74.4
		identity (%)	31.6				43.9	28.7		29.0	37.3			25.5	99.7	33.5	32.1	39.9	27.6	47.8	37.9
25	(par	a,	43(2)					36						cum	A	sis	13(2)	Ē.	655	sis	
30	Table 1 (continued)	Homologous gene	Streptomyces coelicolor 43(2) SC6G4.33				Streptomyces lavendulae ORF372	Saccharomyces cerevisiae S288C YIR019C sta1		Bacillus subtilis gtpQ	Bacillus subtilis gntP			Corynebacterium glutamicum AS019 pyk	Brevibacterium flavum IctA	Mycobacterium tuberculosis H37Rv Rv1069c	Streptomyces coelicolor A3(2) SC1C2.30	Brevibacterium linens ORF1 ImpA	Escherichia coli K12 MG1655 glcC	Mycobacterium tuberculosis H37Rv Rv2795c	Escherichia coli K12 shiA
35	(Strep				Strepton ORF372	Sacct S288			Bacill			Corynebact AS019 pyk	Brevit	Mycol H37R	Strept SC1C	Brevit tmpA	Esche glcC	Mycot H37R	Esche
40		db Match	gp:SC6G4_33				pir:B26872	sp:AMYH_YEAST		sp:GLPQ_BACSU	sp.GNTP_BACSU			sp:KPYK_CORGL	gsp:Y25997	pir.C70893	gp:SC1C2_30	gp:AF030288_1	sp:GLCC_ECOLI	pir:870885	sp:SHIA_ECOLI
	i	ORF (bp)	1035	120	552	870	327	1314	918	819	1389	642	159	1617	942	1776	636	543	693	786	1299
45		Terminal (nt)	3102768	3101744	3102079	3103763	3104252	3105719	3106053	3106951	3109519	3108823	3110003	3110464	3112449	3115394	3116042	3116621	3117332	3118121	3119582
50		Initial (nt)	3101734	3101863	3102630	3102894	3103926	3104406	3106970	3107769	3108131	3109464	3109845	3112080	3113390	3113619	3115407	3116079	3116640	3117336	3118284
		SEO NO.	8699	6699	6700	6701	6702	6703	6704	6705	9029	2029	8029	6029	6710	6711	6712	6713	6714	6715	6716
55		SEQ NO.	3198	3199	3200	3201	3202	3203	3204	3205	3206	3207	3208	3209	3210	3211	3212	3213	3214	3215	3216

L-lactate dehydrogenase or FMN-dependent dehydrogenase two-component system response regulator phosphatase or reverse transcriptase (RNA-dependent) multidrug resistance transporter superoxide dismutase (Fe/Mn) peptidase or IAA-amino acid hydrolase peptide methionine sulfoxide reductase immunity repressor protein membrane transport protein Function transcriptional regulator transcriptional regulator hypothetical protein Matched length (a.a.) Similarity (%) 80.0 51.3 49.0 65.0 75.5 59.3 65. Identity (%) 45.5 40.4 47.6 82.3 32.5 23.4 27.3 37.2 σ 33. 50. Streptomyces cyanogenus lanJ Bacillus phage phi-105 ORF1 Table 1 (continued) Corynebacterium glutamicum tetA Corynebacterium diphtheriae chrA Mycobacterium tuberculosis H37Rv Rv3850 Neisseria meningitidis IIdA Homologous gene Corynebacterium pseudodiphtheriticum sod Bacillus subtilis 168 yxaD Caenorhabditis elegans Y51811A.1 Arabidopsis thaliana ill1 Escherichia coli B msrA Bacillus subtilis gitC gp CEL.Y51B11A_1 Sp.PMSR_ECOLI sp:GLTC_BACSU sp.YXAD_BACSU gp:AF121000_10 RPC_BPPH1 sp:ILL1_ARATH db Match prf 2508244AB prf.2219306A prf 2518330B pir.G70654 pir:140858 sp ORF (bp) Terminal Ē 6728 3128417 6732 3133028 Initial (nt) (a.a.) (DNA)

ſ							_		ے									
5	LC			em sensor			orotein	SOr	ociated protei			synthase				rotein, gntR ranscriptional		
10	Function			two-component system sensor histidine kinase	hypothetical protein	hypothetical protein	stage III sporulation protein	transcriptional repressor	transglycosylase-associated protein	hypothetical protein	hypothetical protein	RNA pseudouridylate synthase	hypothetical protein	hypothetical protein		bacterial regulatory protein, gntR family or glc operon transcriptional activator	hypothetical protein	hypothetical protein
15	Matched length (a.a.)			408	48	277	265	192	87	296	314	334	84	42		109	488	267
20	Similarity (%)			64.5	79.2	59.2	53.6	6.09	71.3	69 6	73.9	51.2	0 99	75.0		56.0	48.2	78.7
	Identity (%)			30.2	45.8	30.0	26.0	32.3	34.5	41.2	38.5	28.4	61.0	71.0		30.3	26.0	48.3
25				a:	5)	5			5		5					S		
Se Table 1 (continued)	Homologous gene			Corynebacterium diphtheriae chrS	Streptomyces coelicolor A3(2) SCH69.22c	Streptomyces coelicolor A3(2) SCH69.20c	Bacillus subtilis spottlJ	Mycobacterium tuberculosis H37Rv Rv3173c	Escherichia coli K12 MG1655 tag1	Mycobacterium tuberculosis H37Rv Rv2005c	Escherichia coil K12 MG1655 yhbW	Chlorobium vibrioforme ybc5	Chlamydia pneumoniae	Chlamydia muridarum Nigg TC0129		Escherichia coli K12 MG1655 glcC	Streptomyces coelicolor SC4G6.31c	Mycobacterium tuberculosis H37Rv Rv2744c
35	1			Corynet chrS	Streptomyci SCH69.22c	Streptomyce SCH69.20c	Bacillus	Mycoba H37Rv F	Escheric tag1	Mycoba H37Rv F	Escheric yhbW	Chlorobi	Chlamyo	Chlamyo TC0129		Escheric glcC	Strepton SC4G6.3	Mycobac H37Rv F
40	db Match		ı	prf:2518330A	gp:SCH69_22	gp:SCH69_20	sp:SP3J_BACSU	pir.C70948	sp:TAG1_ECOLI	sp.YW12_MYCTU	sp:YHBW_ECOLI	Sp: YBC5_CHLVI	GSP:Y35814	PIR:F81737		sp:GLCC_ECOL!	gp:SC4G6_31	sp:35KD_MYCTU
	ORF (bp)	639	588	1311	150	822	1302	639	261	903	987	996	273	141	207	363	1416	873
45	Terminal (nt)	3137558	3138471	3136593	3138481	3138634	3140952	3140885	3141709	3142454	3143496	3145626	3146841	3147230	3151369	3151842	3153828	3153894
50	fnitial (nt)	3136920	3137884	3137903	3138630	3139455	3139651	3141523	3141969	3143356	3144482	3144661	3146569	3147090	3151575	3152204	3152413	3154766
	SEQ NO (a.a.)	6737	6738	6239	6740	6741	6742	6743	6744	6745	6746	6747	6748	6749	6750	6751	6752	6753
55	SEQ NO. (DNA)	3237	3238	3239	3240	3241	3242	3243	3244	3245	3246	3247	3248	3249	3250	3251	3252	3253

EP 1 108 790 A2

5	lion							orotein				ssolvase					fragment		hosphate eudogene)		ansporting transporting hily)	
10	Function						methyltransferase	nodulin 21-related protein				transposon tn501 resolvase		ferredoxin precursor	hypothetical protein	transposase	transposase protein fragment TnpNC		glyceraldehyde-3-phosphate dehydrogenase (pseudogene)	Ipoprotein	copper/potassium-transporting ATPase B or cation transporting ATPase (E1-E2 family)	
15	Matched length (a a)						217	241				56		62	55	27	46		38	180	717	
20	Similarity (%)						58.1	55.2				92.9		98.4	85.5	84.0	90.0		84.2	59.4	73.4	
	Identity (%)						32.3	26.1				48.2		90.3	47.3	81.0	84.0		63.2	32.2	45.8	
25 (panuju	gene						olor A3(2)					ginosa TNP5	: : : :	erythraea fer	olor A3(2)	utamicum	utamicum		deb	CC6803	dus AF0152	
S Table 1 (continued)	Homologous gene						Streptomyces coelicolor A3(2) SCD35.11c	soybean NO21				Pseudomonas aeruginosa TNPS		Saccharopolyspora erythraea fer	Streptomyces coelicolor A3(2)	Corynebacterium glutamicum Tnp1673	Corynebacterium glutamicum		Pyrococcus woesel gap	Synechocystis sp. PCC6803 s10788	Archaeoglobus fulgidus AF0152	
<i>35</i>	db Match						gp:SCD35_11	sp:NO21_SOYBN				sp:TNP5_PSEAE		Sp:FER_SACER	gp SCD31_14	GPU:AF164956_8	GPU:AF164956_23		sp.G3P_PYRWO	pir.S77018	pir. H69268	
	ORF (bp)	153	1452	1068	249	309	711	720	204	378	186	216 s	483	321 8	333 g	111	162 (0	1038	126 s	о 099	2217 p	171
45	Terminal (nt)	3154969	3155246	3156306	3157223	3157479	3158834	3159081	3160419	3161065	3161001	3160723	3161701	3161087	3161682	3162804	3162871	3163889	3162858	3163074	3163789	3166267
50	Initial (nt)	3154817	3156697	3157373	3157471	3157787	3158124	3159800	3160216	3160688	3160816	3160938	3161219	3161407	3162014	6768 3162694	3162710	3162852	3162983	3163733	3166005	3166437
	SEQ NO.	6754	67.55	6756	6757	67.58	6229	929	6761	6762	6929	6764	6765	3266 6766			6929	6770	6771	6772	6773	6774
55	SEQ NO.	3254	3255	3256	3257	3258	3259	3260	3261	3262	3263	3264	3265	3266	3267	3268	3269	3270	3271	3272	3273	3274

EP 1 108 790 A2

5	Function		two-component system sensor histidine kinase		two-component response regulator or alkaline phosphatase synthesis transcriptional regulatory protein		laccase or copper resistance protein precursor A	thiol disulfide interchange protein (cytochrome c biogenesis protein)	quinone oxidoreductase (NADPH: quinone reductase)(seta- crystallin)		zinc-transporting ATPase (Zn(II)- translocating p-type ATPase			zinc-transporting ATPase (Zn(II)- translocating p-type ATPase	hypothetical protein		transposase	transposase
15	Matched length (a.a.)		301		233		930	101	322		78			909	72		73	70
20	Similarity (%)		71.4		72.1		47.9	63.4	60.9		66.7			68.5	54.0		73.0	0.77
	Identity (%)		37.5		43.4		26.7	31.7	31.4		37.2			39.8	45.0		58.0	75.0
55 57 Table 1 (continued)	e deue		2 baeS		d _o		ngae pv.	sonicum tlpA			PCC6803			2 MG1655	(1 APE2572		lutamicum	lutamicum
·	Homologous gene		Escherichia coli K12 baeS		Bacilius subtilis phoP		Pseudomonas syringae pv. tomato copA	Bradyrhizobium japonicum tlpA	Mus musculus qor		Synechocystis sp. PCC6803 atzN			Escherichia coli K12 MG1655 atzN	Aeropyrum pernix K1 APE2572		Corynebacterium glutamicum Tnp1673	Corynebacterium glutamicum Tnp1673
<i>40</i>	db Match		sp.BAES_ECOLI		sp:PHOP_BACSU		SP COPA_PSESM	sp.TLPA_BRAJA	sp.QOR_MOUSE	:	sp.ATZN_SYNY3			sp.ATZN_ECOLI	PIR:E72491		GPU.AF164956_8	GPU AF164956_8
	ORF (bp)	192	1197 s	828	756 s	672	1479 s	363 8	918 s	471	234 s	315	207	1875 sı	390 P	309	216 G	258 G
45	Terminal (nt)	3167169	3166450	3168566	3167646	3169340	3170892	3171616	3171619	3173465	3173857	3174380	3174784	3176901	3175254	3177482	3177089	3177308
50	Initial (nt)	3166978	3167646	3167739	3168401	3168669	3169414	3171254	3172536	3172995	3173624	3174066	3174990	3175027	3175643	3177174	3177304	3177565
	SEQ NO (a.a.)	6775	6776	6777	6778	6229	6780	6781	6782	6783	6784	6785	9829	6787	6788	62/9	0629	6791
55	SEQ NO.	3275	3276	3277	3278	3279	3280	3281	3282	3283	3284	3285	3286	3287	3288	3289	3290	3291

EP 1 108 790 A2

							_																	
5		Function	transposase (IS1628)	thioredoxin		transmembrane transport protein or 4-hydroxybenzoate transporter		hypothetical protein	replicative DNA helicase		50S ribosomal protein L9	single-strand DNA binding protein	30S ribosomal protein S6		hypothetical protein		penicillin-binding protein	hypothetical protein	bacterial regulatory protein, marR family	hypothetical protein		hypothetical protein	hypothetical protein	ABC transporter ATP-binding protein
15		Matched length (a.a.)	53	001		421		208	461		154	229	92		480		647	107	137	296		71	298	433
20		Similarity (%)	96.2	74.0		60.1		62.5	73.1		71.4	51.5	78.3		68.3		60.1	72.0	65.0	61.8		70.4	63.8	64.0
		Identity (%)	92.5	39.0		27.1		35.1	37.7		42.2	30.6	28.3		41.5		29.1	41.1	35.1	29.7		32.4	30.2	31.2
<i>25</i> 30	Table 1 (continued)	Homologous gene	Corynebacterium glutamicum 22243 R-plasmid pAG1 tnpB	Escherichia coli K12 tni2		Pseudomonas putida pcaK		Escherichia coli K12 yqjl	Escherichia coli K12 chaB		Escherichia coli K12 RL9	Escherichia coli K12 ssb	Escherichia coli K12 RS6		Mycobacterium smegmatis mc(2)155		tilis ponA	Mycobacterium tuberculosis H37Rv Rv0049	Mycobacterium tuberculosis H37Rv Rv0042c	Mycobacterium tuberculosis H37Rv Rv2319c yofF		tilis yhgC	Escherichia coli K12 yceA	Escherichia coli K12 ybjZ
	Tab	Нош	Corynebacto 22243 R-pla	Escherichia		Pseudomon		Escherichia	Escherichia		Escherichia	Escherichia	Escherichia		Mycobacteri mc(2)155		Bacillus subtilis ponA	Mycobacteri H37Rv Rv00	Mycobacteri H37Rv Rv0(Mycobacterium tuber H37Rv Rv2319c yofF		Bacillus subtilis yhgC	Escherichia	Escherichia
<i>35</i>		db Match	gp:AF121000_8	sp:THI2_ECOLI		sp:PCAK_PSEPU		sp:YaJI_ECOLI	sp:DNAB_ECOLI		sp:RL9_ECOLI	Sp:SSB_ECOLI	sp.RS6_ECOLI		gp:AF187306_1		sp:PBPA_BACSU	sp:Y0HC_MYCTU	pir.B70912	sp:Y0FF_MYCTU		sp:YHGC_BACSU	Sp:YCEA_ECOL!	sp:YBJZ_ECOLI
		ORF (bp)	159	447	264	1344	159	576	1530	516	450	675	285	189	1458	882	2160 8	357 8	471	942	495	321 8	936	1263 8
45		Terminal (nt)	3177525	3178112	3178872	3180392	3180946	3180551	3181337	3183984	3183478	3183987	3184701	3185348	3185536	3188793	3187042	3189296	3190347	3191319	3191848	3191922	3192266	3193252
<i>50</i>		Initial (nt)	3177683	3178558	3178609	3179049	3181104	3181126	3182866	3183469	3183927	3184661	3184985	3185536	3186993	3187912	3189201	3189652	3189877	3190378	3191354	3192242	3193201	3194514
		SEQ NO.	6792	6793	6794	6795	9679	6797	6798	6529	6800	6801	6802	6803	3304 6804	6805	9089	6807	6808	6089	6810	6811	6812	6813
		SEQ NO. (DNA)	3292	3293	3294	3295	3296	3297	3298	3299	3300	3301	3302	3303	3304	3305	3306		3308	3309	3310	3311	3312	3313

5	Function	ABC transporter ATP-binding protein	l protein	protein			DNA protection during starvation protein	formamidopyrimidine-DNA glycosylase	protein			methylated-DNAprotein-cysteine S-methyltransferase	zinc-binding dehydrogenase or quinone oxidoreductase (NADPH:quinone reductase) or alginate Iyase		membrane transport protein	malate oxidoreductase [NAD] (malic enzyme)	gluconokinase or gluconate kinase	teicoplanin resistance protein	teicoplanin resistance protein
		ABC transpi	hypothetical protein	hypothetical protein			DNA protect protein	formamidop glycosylase	hypothetical protein			methylated-DNApro S-methyltransferase	zinc-binding d quinone oxido (NADPH:quinc alginate Iyase		membrane t	mafate oxido enzyme)	gluconokina	teicoplanin r	teicoplanin r
15	Matched length (a.a.)	221	237	360			154	268	404			166	231		398	392	486	169	159
20	Similarity (%)	80.1	42.0	90.0			649	55.6	9.99			63.3	63.6		66.3	99.5	53.7	60.4	159.0
	Identity (%)	48.9	18.0	77.8			37.7	28.4	47.5			38.0	33.3		26.4	99.7	24.5	27.8	27.0
25 (panui)	gene	MG1655	Cj0606	culosis			dps	mutM or	tcB				ea pig) qor		cutosis	assecola tamicum)		vanZ	vanZ
55 Table 1 (continued)	Homologous gene	Escherichia coli K12 MG1655 ybjZ	Campylobacter jejuni Cj0606	Mycobacterium tuberculosis H37Rv Rv0046c			Escherichia coli K12 dps	Escherichia coli K12 mutM or fpg	Escherichia coli K12 rtcB			Homo sapiens mgmT	Cavia porcellus (Guinea pig) qor		Mycobacterium tuberculosis H37Rv Rv0191 ydeA	Corynebacterium melassecola (Corynebacterium glutamicum) ATCC 17965 malE	Bacillus subtilis gntK	Enterococcus faecium vanZ	Enterococcus faecium vanZ
40	db Match	sp:YBJZ_ECOLI	pir:E81408	pir:F70912			sp.DPS_ECOU	sp:FPG_ECOU	sp:RTCB_ECOLI			sp:MGMT_HUMAN	sp:QOR_CAVPO		sp:YDEA_ECOLI	gp:AF234535_1	sp:GNTK_BACSU	sp:VANZ_ENTFC	sp:VANZ_ENTFC
	ORF (bp)	069	1977	1089	909	1485	495	813	1149	1089	573	474	1011	111	1176	1176	1482	591	525
45	Terminal (nt)	3194514	3195210	3198500	3198582	3199202	3201260	3202712	3204100	3202979	3204728	3204731	3205222	3206756	3208024	3209454	3209705	3211246	3211904
50	Initial (nt)	3195203	3197186	3197412	3199187	3200686	3201754	3201900	3202952	3204067	3204156	3205204	3206232	3206646	3206849	3208279	3211186	3211836	3212428
	SEQ NO.	6814	6815	6816	6817	6818	6819	6820	6821	6822	6823	6824	6825	6826	6827	6828	6859	6830	6831
55	SEQ NO.	3314	3315	3316	3317	3318	3319	3320	3321	3322	3323	3324	3325	3326	3327	3328	3329	3330	3331

		1		$\overline{}$	1	Т		Τ	1	1		1	_	T					
5	Function	luctase	D-amino acid dehydrogenase small subunit				reductase			nthetase	hypothetical membrane protein	ciated protein		otein	bifunctional protein (homoprotocatechuate catabolism bifunctional isomerase/decarboxylase) (2-	hydroxyhepta-2, 4-diene-1, 7-dioate isomerase and 5-carboxymethyl-2- oxo-hex-3-ene-1, 7 dioate decarboxylase)	gentisate 1,2-dioxygenase or 1- hydroxy-2-naphthoate dioxygenase	bacterial regulatory protein, lacl family or pectin degradation repressor protein	transmembrane transport protein or 4-hydroxybenzoate transporter
10		mercury(II) reductase	D-amino acid c subunit				NAD(P)H nitroreductase			leucyl-tRNA synthetase	hypothetical me	virulence-associated protein		hypothetical protein	bifunctional protein (homoprotocatechuate catabo bifunctional isomerase/decarboxylase) (2-	hydroxyhepta-2,4-diene-isomerase and 5-carboxy oxo-hex-3-ene-1,7dioate decarboxylase)	gentisate 1,2-di hydroxy-2-naph	bacterial regulatory protein, family or pectin degradation repressor protein	transmembrane 4-hydroxybenzc
15	Matched length (a.a.)	448	444				194			943	104	98		247	g	967	339	229	454
20	Similarity (%)	65.6	54.5				55.2			68.1	40.4	81.4		53.8	6 03	5.00	64.3	60.7	80.8
	Identity (%)	29.9	27.3				25.8			47.7	40.4	55.8		31.6	a c	6.07	34.2	25.3	27.5
25 (panu)	sne	s merA	adA				Nox					vapl		_	Ų	ភ	ses xinE	nthemi	caK
% Table 1 (continued)	Homologous gene	Staphylococcus aureus merA	Escherichia coli K12 dadA	,			Thermus thermophilus nox			Bacillus subtilis syt	Escherichia coli K12	Dichelobacter nodosus vapl		Streptomyces coelicolor SCC54.19	Rerhatichia coli K10 had	פטוניוומ כחון או ל זוף	Pseudomonas alcaligenes xInE	Pectobacterium chrysanthemi kdgR	Pseudomonas putida pcaK
35	atch	İ					THETH					BACNO							$\neg \neg$
40	db Match	sp:MERA_STAAU	sp.DADA_ECOLI				sp:NOX_T			sp:SYL_BACSU	sp: YBAN_ECOL!	sp:VAPI_B		gp:SCC54_19	- IOOH HOGH: 45		gp:AF173167_1	sp:KDGR_ERWCH	sp:PCAK_PSEPU
	ORF (bp)	1344	1230	1503	330	321	609	924	1452	2856	429	357	774	723	837		1125	780	1356
45	Terminal (nt)	3213931	3213934	3215257	3216886	3217457	3218601	3219700	3222495	3219778	3223150	3223089	3225374	3223992	3224718	2	3225563	3226910	3229079
50	Initial (nt)	3212588	3215163	3216759	3217215	3217777	3217993	3218777	3221044	3222633	3222722	3223445	3224601	3224714	322554		3226687	3227689	3227724
	SEO NO (a.a.)	6832	6833	6834	6835	6836	6837	6838	6839	6840	6841	6842	6843	6844	5845		6846	6847	6848
55	SEQ NO. (DNA)	3332	3333	3334	3335	3336	3337	3338	3339	3340	3341	3342	3343	3344	3345		3346	3347	3348

		_														
5	uc	a)	porter or transporter2	ermease	component (component II	erase	sphate N-(5'- ranilate		beta chain	alpha chain	ne protein	conent or inzyme II, A	-binding protein	
10	Function	salicylate hydroxylase	proton/glutamate symporter or excitatory amino acid transporter2	tryptophan-specific permease	anthranilate synthase component f		anthranilate synthase component II	anthranilate phosphoribosyltransferase	indole-3-glycerol phosphate synthase (IGPS) and N-(5'- phosphoribosyl) anthranilate isomerase(PRAI)		tryptophan synthase beta chain	tryptophan synthase alpha chain	hypothetical membrane protein	PTS system, IIA component or unknown pentitol phosphotransferase enzyme II, A component	ABC transporter ATP-binding protein	ABC transporter
15	Matched length (a.a.)	476	507	170	515		208	348	474		417	283	521	152	305	547
20	Similarity (%)	49.4	54.4	99.4	93.8		100.0	99.4	98.3		6.76	96.5	86.8	71.7	63.6	57.2
	Identity (%)	28.2	25.4	99.4	99.2		99.0	99.4	97.3		97.6	95.4	9.99	30.3	32.5	25.2
able 1 (continued)	ns gene	lida	72	glufamicum	stofermentum		stofermentum	glutamicum	stofermentum		stofermentum	tofermentum	licolor A3(2)	12 ptxA	Izeri	icolor A3(2)
	Homologous gene	Pseudomonas putida	Homo sapiens eat2	Corynebacterium glutamicum AS019 ORF1	Brevibacterium lactofermentum trpE		Brevibacterium lactofermentum trpG	Corynebacterium glutamicum ATCC 21850 trpD	Brevibacterium lactofermentum trpC		Brevibacterium lactofermentum trpB	Brevibacterium lactofermentum trpA	Streptomyces coelicolor A3(2) SCJ21.17c	Escherichia coli K12 ptxA	Pseudomonas stutzeri	Streptomyces coelicolor A3(2) SCH10.12
40	db Match	prf.1706191A	sp.EAT2_HUMAN_H	pir.JC2326	sp.TRPE_BRELA t		TRPG_BRELA	sp.TRPD_CORGL C	SP.TRPC_BRELA (SP_TRPB_BRELA to	Sp.TRPA_BRELA tr	gp:SCJ21_17	sp:PTXA_ECOLI E	sp:NOSF_PSEST P	gp:SCH10_12 S
	ORF (bp)	1326	1251	510	1554 s	171	624	1044 s	1422 s	969	1251 s	840 s	1539 g	810 s	906	1584 g
45	Terminal (nt)	3230444	3231054	3233105	3234956	3233250	3235579	3236645	3238062	3236518	3239332	3240171	3240313	3241879	3243759	3245342
50	Initial (nt)	3229119	3232304	3232596	3233403	3233420	3234956	3235602	3236641	3237213	3238082	3239332	3241851	3242688	3242854	3243759
	SEO NO (a.a.)	6849	6850	6851	6852	6853	6854	6855	6856	6857	3358 6858	6859	0989		6862	
55	SEQ NO. (DNA)	3349	3350	3351	3352	3353	3354	3355	3356	3357	3358	3359	3360	3361	3362 6862	3363

EP 1 108 790 A2

5	Function	cytchrome b6-F complex iron-sulfur subunit (Rieske iron-sulfur protein)	NADH oxidase or NADH-dependent flavin oxidoreductase	hypothetical membrane protein	hypothetical protein	bacterial regulatory protein, arsR family or methylenomycin A resistance protein	NADH oxidase or NADH-dependent flavin oxidoreductase	hypothetical protein					acetoin(diacetyl) reductase (acetoin dehydrogenase)	hypothetical protein	di-/tripeptide transpoter		bacterial regulatory protein, tetR family	hydroxyquinol 1,2-dioxygenase
15	Matched length (a.a.)	305	336	328	262	102	347	226					238	58	469		188	246
20	Similarity (%)	63.6	64.3	74.7	54.6	79.4	64.3	69.5					52.9	84.5	71.6		50.5	62.2
	identity (%)	32.5	33.3	43.6	34.0	45.1	33.4	31.4					26.9	53.5	34.5		26.1	31.7
25 (pənu	ar:	tč	rockii	eН	ır A3(2)	ır Plasmid	rockii	siae					Ç	llosis	sp. lactis		ırR	ticus
% % % % % % % % % % % % % % % % % % %	Homologous gene	Chlorobium limicola petC	Thermoanaerobacter brockii nadO	Escherichia coli K12 yfeH	Streptomyces coelicolor A3(2) SCI11.36c	Streptomyces coelicolor Plasmid SCP1 mmr	Thermoanaerobacter brockii nadO	Saccharomyces cerevisiae ymyO					Klebsiella terrigena budC	Mycobacterium tuberculosis H37Rv Rv2094c	Lactococcus lactis subsp. lactis		Escherichia colì K12 acrR	Acinetobacter calcoaceticus catA
<i>35</i>	db Match	Sp.UCRI_CHLLT	sp.NADO_THEBR	sp:YFEH_ECOLI	gp:SCI11_36	pir.A29606	sp:NADO_THEBR	sp.YMY0_YEAST					sp:BUDC_KLETE	sp:YY34_MYCTU	Sp.DTPT_LACLA		SP.ACRR_ECOLI	sp.CATA_ACICA
	ORF (bp)	450	1110	972	774	348	1092	648	153	192	168	321	753	180	1359	171	555	903
45	Terminal (nt)	3245766	3245822	3248205	3249165	3249187	3250742	3251405	3251466	3251743	3252133	3252316	3253480	3253739	3253824	3255719	3255744	3256471
50	Initial (nt)	3245317	3246931	3247234	3248392	3249534	3249651	6870 3250758	3251618	3251934	3252300	3252636	3252728	3253560	3255182	3255549	3256298	3257373
	SEQ NO. (a.a.)	6864	6865	9989	6867	6868	6889	6870	6871	6872	6873	6874	6875	6876	6877	6878	6879	6880
55	SEQ NO (DNA)	3364	3365	3366	3367	3368	3369	3370	3371	3372	3373	3374	3375	3376	3377	3378	3379	3380

			u C	_													Γ-	$\overline{}$		
5		se	-xylose-proto ansporter)	il regulator o sor		otein	genase	o-inositol 2- ptomycin							se family	e protein		ine kinase	otein or d domain	protein
10	Function	maleylacetate reductase	sugar transporter or D-xylose-proton symporter (D-xylose transporter)	bacterial transcriptional regulator or acetate operon repressor	oxidoreductase	diagnostic fragment protein sequence	myo-inositol 2-dehydrogenase	dehydrogenase or myo-inositoi 2- dehydrogenase or streptomycin biosynthesis protein	phosphoesterase				stomatin		DEAD box RNA helicase family	hypothetical membrane protein		phosphomethylpyrimidine kinase	mercuric ion-binding protein or heavy-metal-associated domain containing protein	ectoine/proline uptake protein
15	Matched length (a.a.)	351	513	280	357	270	332	343	1242				206		1660	141		125	67	297
20	Similarity (%)	75.5	58.3	60.7	55.7	58.2	59.6	62.4	62.7				57.3		80.2	61.0		76.8	70.1	62.3
	Identity (%)	43.0	31.4	25.7	27.2	25.9	26.5	34.1	33.3				28.6		58.4	34.8		50.4	46.3	29.9
25 (panuluu (gene	P51	xylE	ium icIR	ydgJ	n 4450	ti idhA	s strl					ins unc1		BCG	e u2266k				tamicum
S Table 1 (continued)	Homologous gene	Pseudomonas sp. Pt	Escherichia coli K12 xylE	Salmonella typhimurium iclR	Escherichia coli K12 ydgJ	Listeria innocua strain 4450	Sinorhizobium meliloti idhA	Streptomyces griseus strl	Bacillus subtilis yvnB				Caenorhabditis elegans unc1		Mycobacterium bovis BCG RvD1-Rv2024c	Mycobacterium leprae u2266k		Bacillus subtilis thiD	Bacillus subtilis yvgY	Corynebacterium glutamicum proP
35			Ü	Š	Ш.		_		ä						Σά	Σ		ä	<u>~~~~</u>	ŏ ā
40	db Match	sp:TCBF_PSESQ	sp:XYLE_ECOLI	sp:ICLR_SALTY	sp:YDGJ_ECOLI	gsp:W61761	sp.MI2D_BACSU		pir:C70044				Sp:UNC1_CAEEL		gp:MBO18605_3	prf:2323363AAM		sp:THID_BACSU	pir.F70041	prf.2501295A
	ORF (bp)	1089	1524	861	1077	879	1005	1083	4032	645	618	1086	744	696	4929	507	360	600	243	837
45	Terminal (nt)	3257403	3258561	3261989	3263221	3264115	3265146	3266266	3271093	3267913	3268618	3272477	3274488	3275602	3276671	3281666	3283101	3282347	3283383	3283473
50	Initial (nt)	3258491	3260084	3261129	3262145	3263237	3264142	3265184	3267062	3268557	3269235	3271392	3275231	3276570	3281599	3282172	3282742	3282946	3283141	3284309
	SEQ NO.	6881	6882	6883	6884	6885	6886	6887	6888	6889	6890	6891	6892	6893	6894	6895	6896	6897	6898	6899
55	SEQ NO. (DNA)	3381		3383	3384	3385	3338	3387	3388	3389	3390	3391	3392	3393	3394	3395	3396	3397 (3398	3399

5	Function	iron(III) dicitrate-binding periplasmic protein precursor or iron(III) dicitrate transport system permease protein	mitochondrial respiratory function protein or zinc-binding dehydrogenase or NADPH quinone oxidoreductase			phosphomethylpyrimidine kinase		mercuric ion-binding protein or heavy-metal-associated domain containing protein	branched-chain amino acid transport	branched-chain amino acid transport	hypothetical protein	tRNA nucleotidyltransferase	mutator mutT protein		hypothetical membrane protein	hypothetical membrane protein		RNA polymerase sigma-H factor or sigma-70 factor (ECF subfamily)	thioredoxin reductase
15	Matched length (a a)	279	324			249		29	102	212	169	471	234		858	1201		189	308
20	Similarity (%)	9.09	58.0			75.5		70.1	65.7	0.78	2.95	51.8	69.2		543	60.1		6.09	82.5
	Identity (%)	29.4	27.2			46.2		41.8	36.3	32.1	23.7	26.8	436		25.8	35.7		30.2	60.4
55 Zable 1 (continued)	Homologous gene	Escherichia coli K12 fecB	Schizosaccharomyces pombe mrf1			tilis thiD		tilis yvgY	tilis aziD	tilis azıD	Escherichia coli K12 yqgE	Escherichia coli K12 cca	Mycobacterium tuberculosis H37Rv Rv3908		Mycobacterium tuberculosis H37Rv Rv3909	Mycobacterium tuberculosis H37Rv Rv3910		Pseudomonas aeruginosa algU	Streptomyces clavuligerus trxB
35 GET	Hom	Escherichia	Schizosacci mr11			Bacillus subtilis thiD		Bacillus subtilis yvgY	Bacillus subtilis azlD	Bacillus subtilis azID	Escherichia	Escherichia	Mycobacterium H37Rv Rv3908		Mycobacterium H37Rv Rv3909	Mycobacterium H37Rv Rv3910		Pseudomon	Streptomyce
40	db Match	sp:FECB_ECOLI	sp:MRF1_SCHPO			sp.THID_BACSU		pir.F70041	sp:AZLD_BACSU	Sp. AZLC_BACSU	sp.Yage_Ecoll	sp.CCA_ECOLI	pir.E70600		pir.F70600	pir.G70600		sp.RPSH_PSEAE	sp.TRXB_STRCL
	ORF (bp)	s 256	1122 8	384	219	798 s	345	201 p	345 s	711 S	567 s	1320 st	996	273	2511 pi	3249 pi	723	603 st	951 S
45	Terminal (nt)	3284399	3286576	3287005	3287079	3287393	3288609	3288885	3288971	3289311	3290025	3290623	3293497	3292610	3296007	3299404	3298428	3300263	3301321
50	Initial (nt)	3285355	3285455	3286622	3287297	3288190	3288265	3288685	3289315	3290021	3290591	3291942	3292532	3292882	3293497	3296156	3297706	3299661	3300371
	SEQ NO (a.a.)	0069	6901	6902	6903	6904	6905	9069	6907	8069	6069	6910	6911	6912	6913	6914	6915	6916	6917
55	SEO NO.	3400	3401	3402	3403	3404	3405	3406	3407	3408	3409	3410	3411	3412	3413	3414	3415	3416	3417

EP 1 108 790 A2

	٢			\neg		T	Т.		\neg		T		i	T	\Box	\top			T		
5		uc.		pe	alanine					ation protein	sion protein B	ine protein	protein component	n L34			carboxylase	nthase		yde	
10		Function		thioredoxin ch2, M-type	N-acetylmuramoyl-L-alanine amidase			hypothetical protein	hypothetical protein	partitioning or sporulation protein	glucose inhibited division protein	hypothetical membrane protein	ribonuclease P prote	50S ribosomal protein L34			L-aspartate-alpha-decarboxylase precursor	2-isopropylmalate synthase	hypothetical protein	aspartate-semialdehyde dehydrogenase	3-dehydroquinase
15		Matched length (a.a.)		119	196			212	367	272	153	313	123	47			136	616	85	344	149
20		Similarity (%)		76.5	75.4			58.5	60.5	78.0	64.7	75.4	59.4	93.6			100.0	100.0	100.0	100.0	100.0
		Identity (%)		42.0	51.0			34.4	37.6	65.0	36.0	44.7	26.8	83.0			100.0	100.0	100.0	100.0	100.0
25	ontinued)	s gene		sinharctii thi2	B			ercutosis	da ygi2	erculosis	2 gidB	erculosis	Ϋ́	um rpmH			lutamicum	lutamicum	lutamicum vum) ATCC	Jutamicum	lutamicum
30	Table 1 (conlinued)	Homologous gene		Chlamydomonas reinharctii thi2	Bacillus subtilis cwlB			Mycobacterium tuberculosis H37Rv Rv3916c	Pseudomonas putida ygi2	Mycobacterium tuberculosis H37Rv parB	Escherichia coli K12 gidB	Mycobacterium tuberculosis H37Rv Rv3921c	Bacillus subtilis rnpA	Mycobacterium avium rpmH			Corynebacterium glutamicum panD	Corynebacterium glutamicum ATCC 13032 leuA	Corynebacterium glutamicum (Brevibacterium flavum) ATCC 13032 orfX	Corynebacterium glutamicum asd	Corynebacterium glutamicum ASO19 aroD
35		db Match		sp:THI2_CHLRE	sp.CWLB_BACSU			pir:D70851	sp: YGI2_PSEPU	sp.YG11_PSEPU	sp.GIDB_ECOLI	pir.A70852	sp:RNPA_BACSU	gp:MAU19185_1			gp:AF116184_1	sp.LEU1_CORGL	sp:YLEU_CORGL	sp:DHAS_CORGL	gp:AF124518_1
		ORF (bp)	1185	372 sp	1242 sp.	777	1041	618 pir	1152 sp	837 sp	ds 699	951 pir	399 sp	336 gp	294	222	408 gp	1848 sp	255 sp	1032 sp	447 gp
45		Terminal (nt)	3300119	3301729	3302896	3301989	3304475	3302999	3303636	3304835	3305864	3306682	3307971	3308412	3309321	3308822	147573	266154	268814	271691	446521
50		Initial (nt)	3301303	3301358	3301755	3302765	3303435	3303616	3304787	3305671	3306532	3307632	3308369	3308747	3309028	3309043	147980	268001	269068	270660	446075
		SEO NO.	6918	6919	6920	6921	6922	6923	6924	6925	6926	6927	6928	6269	6930	6931	6932	6933	6934	6935	6936
55		SEQ NO. (DNA)	3418	3419	3420	3421	3422	3423	3424	3425	3426	3427	3428	3429	3430	3431	3432	3433	3434	3435	3436

					,										
5	Function	elongation factor Tu	preprotein translocase secY subuit	isocitrate dehydrogenase (oxalosuccinatedecarboxylase)	acyl-CoA carboxylase or biotin- binding protein	citrate synthase	putative binding protein or peptidyl- prolyl cis-trans isomerase	glycine betaine transporter	hypothetical membrane protein	L-lysine permease	aromatic amino acid permease	hypothetical protein	succinyl diaminopimelate desuccinylase	proline transport system	arginyl-tRNA synthetase
15	Matched length	(aa) 396 e	440 p	738	591 a	437 6	118	595	426 h	501 L	463 a	316 h	969E	524 p	550 a
20	Similarity	100.0	100 0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
	Identity	100.0	100 0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
25	Table 1 (confinued)	ı glutamicum	ı glutamicum Tavum) MJ233	glutamicum	glutamicum BC	glutamicum	glutamicum A	glutamicum P	glutamicum	glutamicum	glutamicum P	glutamicum	glutamicum	glutamicum	glutamicum 359 argS
30	Homologous gene	Corynebacterium glutamicum ATCC 13059 tuf	Corynebacterium glutamicum (Brevibacterium flavum) MJ233 secY	Corynebacterium glutamicum ATCC 13032 icd	Corynebacterium glutamicum ATCC 13032 accBC	Corynebacterium glutamicum ATCC 13032 gltA	Corynebacterium glutamicum ATCC 13032 fkbA	Corynebacterium glutamicum ATCC 13032 betP	Corynebacterium glutamicum ATCC 13032 orf2	Corynebacterium glutamicum ATCC 13032 lysl	Corynebacterium glutamicum ATCC 13032 aroP	Corynebacterium glutamicum ATCC 13032 orf3	Corynebacterium glutamicum ATCC 13032 dapE	Corynebacterium glutamicum ATCC 13032 putP	Corynebacterium glutamicum AS019 ATCC 13059 argS
<i>35</i> <i>40</i>	db Match	sp.EFTU_CORGL	sp SECY_CORGL	sp:IDH_CORGL	prf.2223173A	CISY_CORGL	sp.FKBP_CORGL	BETP_CORGL	sp:YLI2_CORGL	sp:LYSI_CORGL	sp:AROP_CORGL	pir.S52753	prf:2106301A	gp:CGPUTP_1	sp:SYR_CORGL
	ORF		1320 sp	2214 sp	1773 pr	1311 sp	354 sp	1785 sp	1278 sp	1503 sp	1389 sp	948 pi	1107 pr	1572 gp	1650 sp
45	Terminal	62	570771	677831	718580	879148	879629	946780	1029006	1030369	1153295	1154729	1156837	1218031	1239923
50	Initial	526376	569452	680044	720352	877838	879276	944996	1030283	1031871	1154683	1155676	1155731	1219602	6950 1238274
	SEO		6938	6633	6940	6941	6942	6943	6944	6945	6946	6947	6948	6949	
55	SEO	(DNA)	3438	3439	3440	3441	3442	3443	3444	3445	3446	3447	3448	3449	3450

5	Function	diaminopimelate (DAP) decarboxylase (meso- diaminopimelate decarboxylase)	homoserine dehydrogenase	homoserine kinase	ion channel subunit	lysine exporter protein	lysine export regulator protein	acetohydroxy acid synthase, large subunit	acetohydroxy acid synthase, small subunit	acetohydroxy acid isomeroreductas	3-isopropylmalate dehydrogenase	PTS system, phosphoenolpyruvate sugar phosphotransferase (mannose and glucose transport)	acetylglutamate kinase	ornithine carbamoyltransferase	arginine repressor
15	Matched length (a.a.)	445	445	309	216	236	290	626	172	338	340	683	294	319	171
20	Similarity (%)	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
	Identity (%)	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
25 (pencipuo) 1 alder	is gene	glutamicum 59 lysA	glutamicum 59 hom	glutamicum 59 thrB	glutamicum	glutamicum	glutamicum	glutamicum	glutamicum	glutamicum	glutamicum	glutamicum	glutamicum	glutamicum	glutamicum
30 dde 1	Homologous gene	Corynebacterium glutamicum AS019 ATCC 13059 lysA	Corynebacterium glutamicum AS019 ATCC 13059 hom	Corynebacterium glutamicum AS019 ATCC 13059 thrB	Corynebacterium glutamicum R127 orf3	Corynebacterium glutamicum R127 lysE	Corynebacterium glutamicum R127 lysG	Corynebacterium ATCC 13032 ilvB	Corynebacterium glutamicum ATCC 13032 ilvN	Corynebacterium glutamicum ATCC 13032 ilvC	Corynebacterium glutamicum ATCC 13032 leuB	Corynebacterium glutamicum KCTC1445 ptsM	Corynebacterium glutamicum ATCC 13032 argB	Corynebacterium glutamicum ATCC 13032 argF	Corynebacterium glutamicum ASO19 argR
<i>35</i> <i>40</i>	db Match	sp:DCDA_CORGL	sp.DHOM_CORGL	sp:KHSE_CORGL	gsp:W37716	sp:LYSE_CORGL	sp:LYSG_CORGL	sp.ILVB_CORGL	pir.B48648	pir.C48648	sp.LEU3_CORGL	prf.2014259A	sp:ARGB_CORGL	sp.OTCA_CORGL	gp:AF041436_1
	ORF (bp)	1335 s	1335 s	927	627 9	708 s	870 s	1878 s	516 p	1014 p	1020 s	2049 p	882 \$	957 s	513 g
45	Terminal (nt)	1241263	1243841	1244781	1328243	1328246	1329884	1340008	1340540	1341737	1354508	1425265	1467372	1469521	1470040
50	Initial (nt)	1239929	1242507	1243855	1327617	1328953	1329015	1338131	1340025	1340724	1353489	1423217	1466491	1468565	1469528
	SEQ NO.		6952	6953	6954	6955	6956	6957	6958	6929	0969	6961	6962	6963	6964
55	SEO	3451	3452	3453	3454	3455	3456	3457	3458	3459	3460	3461	3462	3463	3464

5	Function	NADH dehydrogenase	phosphoribosyl-ATP- pyrophosphohydrolase	ornithine-cyclodecarboxylase	ammonium uptake protein, high affinity	protein-export membrane protein secG	phosphoenolpyruvate carboxylase	chorismate synthase (5- enolpyruvylshikimate-3-phosphate phospholyase)	restriction endonuclease	sigma factor or RNA polymerase transcription factor	glutamate-binding protein	recA protein	dihydrodipicolinate synthase	dihydrodipicolinate reductase	L-malate dehydrogenase (acceptor)
15	Matched length (a.a.)	467	87	362	452	77	919	410	632	331	295	376	301	248	500
20	Similarity (%)	100 0	100.0	100.0	100.0	100 0	100.0	100.0	100.0	100.0	100.0	100 0	100.0	100.0	100 0
	Identity (%)	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100 0
ontinued)	gene	utamicum	utamicum	utamicem	ufamicum	utamicum	utamicum	utamicum	utamicum	utamicum	utamicum	utamicum	utamicum ofermentum)	utamicum ofermentum)	utamicum
S Table 1 (continued)	Homologous gene	Corynebacterium glutamicum ATCC 13032 ndh	Corynebacterium glutamicum ASO19 hisE	Corynebacterium glutamicum ATCC 13032 ocd	Corynebacterium glutamicum ATCC 13032 amt	Corynebacterium glutamicum ATCC 13032 secG	Corynebacterium glutamicum ATCC 13032 ppc	Corynebacterium glutamicum AS019 aroC	Corynebacterium glutamicum ATCC 13032 cgillR	Corynebacterlum glutamicum ATCC 13869 sigB	Corynebacterium glutamicum ATCC 13032 gluB	Corynebacterium glutamicum AS019 recA	Corynebacterium glutamicum (Brevibacterium lactofermentum) ATCC 13869 dapA	Corynebacterium glutamicum (Brevibacterium lactofermentum) ATCC 13869 dapB	Corynebacterium glutamicum R127 mgo
<i>35</i>	db Match	gp:CGL238250_1	gp:AF086704_1	gp.CGL007732_4	gp:CGL007732_3	gp.CGL007732_2	prf.1509267A	gp:AF124600_1	pir:855225	prf.2204286D	sp.GLUB_CORGL	sp.RECA_CORGL	sp:DAPA_BRELA (sp:DAPB_CORGL (500 gp:CGA224946_1 F
	ORF (bp)	1401	261	1086	1356	231	2757	1230	1896	993	885	1128	603	744	1500
45	Terminal (nt)	1543154	1586465	1674123	1675268	1677049	1677387	1719669	1882385	2021846	2061504	2063989	2079281	2081191	2113864
50	Initial (nt)	1544554	1586725	1675208	1676623	1677279	1680143	1720898	1880490	2020854	2060620	2065116	2080183	2081934	2115363
	SEQ NO.	6965	9969	2969	6968	6969	0269	6971	6972	6973	6974	6975	6976	6977	6978
55	SEQ NO. (DNA)	3465	3466	3467	3468	3469	3470	3471	3472	3473	3474	3475	3476	3477	3478

EP 1 108 790 A2

5	Function	uridilylyltransferase, uridilylyl- removing enzyme	nitrogen regulatory protein P-II	ammonium transporter	glutamate dehydrogenase (NADP+)	pyruvate kinase	glucokinase	glutamine synthetase	threonine synthase	ectoine/proline/glycine betaine carrier	malate synthase	socitrate lyase	glutamate 5-kinase	cystathionine gamma-synthase	ribonucleotide reductase	glutaredoxin
15	Matched length (a.a.)	692	112	438 6	447	475	323 6	477	481 t	615	739 г	432 li	369	386	148	9 77
20	Similarity (%)	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
	Identity (%)	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
30 Equipmo 1	Homologous gene	Corynebacterium glutamicum ATCC 13032 glnD	Corynebacterium glutamicum ATCC 13032 glnB	Corynebacterium glutamicum ATCC 13032 amtP	Corynebacterium glutamicum ATCC 17965 gdhA	Corynebacterium glutamicum AS019 pyk	Corynebacterium glutamicum ATCC 13032 glk	Corynebacterium glutarnicum ATCC 13032 glnA	Corynebacterium glutamicum thrC	Corynebacterium glutamicum ATCC 13032 ectP	Corynebacterium glutamicum ATCC 13032 aceB	Corynebacterium glutamicum ATCC 13032 aceA	Corynebacterium glutamicum ATCC 17965 proB	Corynebacterium glutamicum ASO19 metB	Corynebacterium glutamicum ATCC 13032 nrdl	Corynebacterium glutamicum ATCC 13032 nrdH
·	Ното	Corynebacterium g ATCC 13032 ginD	Corynebacterium of ATCC 13032 glnB	Corynebacter ATCC 13032	Corynebacter ATCC 17965	Corynebacter AS019 pyk	Corynebacterium ATCC 13032 gik	Corynebacterium ATCC 13032 glnA	Corynebacter thrC	Corynebacterium of ATCC 13032 ectP	Corynebacter ATCC 13032	Corynebacterium g ATCC 13032 aceA	Corynebacterium g ATCC 17965 proB	Corynebacter ASO19 metB	Corynebacterium ATCC 13032 nrd	Corynebacter ATCC 13032
35 40	db Match	gp:CAJ10319_4	gp:CAJ10319_3	gp.CAJ10319_2	pir. S32227	Sp.KPYK_CORGL	gp:AF096280_1	prf:2322244A	sp:THRC_CORGL	prf.2501295B	pir:140715	pir:140713	sp.PROB_CORGL	gp:AF126953_1	gp:AF112535_2	gp:AF112535_1
	ORF (bp)	2076 91	336 91	1314 gr	1341 pi	1425 sp	969	1431 pr	1443 sp	1845 pr	2217 pi	1296 pi	1107 Sp	1158 gr	444 95	231 gp
45	Terminal (nt)	2169666	2171751	2172154	2194742	2205668	2316582	2350259	2353600	2448328	2467925	2472035	2496670	2590312	2679684	2680419
· 50	Initial (nt)	2171741	2172086	2173467	2196082	2207092	2317550	2348829	2355042	2450172	2470141	2470740	2497776	2591469	2680127	2680649
	SEQ NO	6269	6980	6981	6982	6983	6984	6985	9869	6987	6988	6869	0669	6991	6992	6993
55	SEQ NO.	3479	3480	3481	3482	3483	3484	3485	3486	3487	3488	3489	3490	3491	3492	3493

5	
10	
15	
20	
25	
30	
35	
40	
45	
50	

	Function	meso-diaminopimelate D. dehydrogenase	porin or cell wall channel forming protein	acetate kinase	phosphate acetyltransferase	multidrug resistance protein or macrolide-efflux pump or drug:proton antiporter	ATP-dependent protease regulatory subunit	prephenate dehydratase	ectoine/proline uptake protein
	Matched length (a.a.)	320	45	397	329	459	852	315	504
	Identity Similarity (%)	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
	Identity (%)	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
Table 1 (continued)	Homologous gene	Corynebacterium glutamicum KY10755 ddh	Corynebacterium glutamicum MH20-22B porA	Corynebacterium glutamicum ATCC 13032 ackA	Corynebacterium glutamicum ATCC 13032 pta	Corynebacterium glutamicum ATCC 13032 cmr	Corynebacterium glutamicum ATCC 13032 clpB	Corynebacterium glutamicum pheA	Corynebacterium glutamicum ATCC 13032 proP
	db Match	sp:DDH_CORGL	gp:CGL238703_1	1191 sp:ACKA_CORGL	prf.2516394A	7 prf.2309322A	2556 sp:CLPB_CORGL	prf.1210266A	prf:2501295A
	ORF (bp)	960	135	1191	987	1377	2556	945	1512
	Terminal (nt)	2786756	2887944	2935315	2936508	2962718	2963606	3098578	3272563
	Initial (nt)	2787715	2888078	2936505	2937494	2961342	2966161	3099522	3501 7001 3274074
	SEQ NO. (a.a.)	6994	6995	9669	6997	8669	6669	7000	7001
:	SEQ NO (DNA)	3494	3495	3496	3497	3498	3499	3500	3501

Example 2

10

20

30

40

55

Determination of effective mutation site

(1) Identification of mutation site based on the comparison of the gene nucleotide sequence of lysine-producing B-6 strain with that of wild type strain ATCC 13032

[0374] Corynebacterium glutamicum B-6, which is resistant to S-(2-aminoethyl)cysteine (AEC), rifampicin, streptomycin and 6-azauracil, is a lysine-producing mutant having been mutated and bred by subjecting the wild type ATCC 13032 strain to multiple rounds of random mutagenesis with a mutagen, N-methyl-N' -nitro-N-nitrosoguanidine (NTG) and screening (Appl. Microbiol. Biotechnol., 32: 269-273 (1989)). First, the nucleotide sequences of genes derived from the B-6 strain and considered to relate to the lysine production were determined by a method similar to the above. The genes relating to the lysine production include lysE and lysG which are lysine-excreting genes; ddh, dapA, hom and lysC (encoding diaminopimelate dehydrogenase, dihydropicolinate synthase, homoserine dehydrogenase and aspartokinase, respectively) which are lysine-biosynthetic genes; and pyc and zwf (encoding pyruvate carboxylase and glucose-6-phosphate dehydrogenase, respectively) which are glucose-metabolizing genes. The nucleotide sequences of the genes derived from the production strain were compared with the corresponding nucleotide sequences of the ATCC 13032 strain genome represented by SEQ ID NOS:1 to 3501 and analyzed. As a result, mutation points were observed in many genes. For example, no mutation site was observed in IysE, IysG, ddh, dapA, and the like, whereas amino acid replacement mutations were found in hom, lysC, pyc, zwf, and the like. Among these mutation points, those which are considered to contribute to the production were extracted on the basis of known biochemical or genetic information. Among the mutation points thus extracted, a mutation, Val59Ala, in hom and a mutation, Pro458Ser, in pyc were evaluated whether or not the mutations were effective according to the following method.

(2) Evaluation of mutation, Val59Ala, in hom and mutation, Pro458Ser, in pyc

[0375] It is known that a mutation in hom inducing requirement or partial requirement for homoserine imparts lysine productivity to a wild type strain (*Amino Acid Fermentation*, ed. by Hiroshi Aida *et al.*, Japan Scientific Societies Press). However, the relationship between the mutation, Val59Ala, in *hom* and lysine production is not known. It can be examined whether or not the mutation, Val59Ala, in *hom* is an effective mutation by introducing the mutation to the wild type strain and examining the lysine productivity of the resulting strain. On the other hand, it can be examined whether or not the mutation, Pro458Ser, in *pyc* is effective by introducing this mutation into a lysine-producing strain which has a deregulated lysine-bioxynthetic pathway and is free from the *pyc* mutation, and comparing the lysine productivity of the resulting strain with the parent strain. As such a lysine-producing bacterium, No. 58 strain (FERM BP-7134) was selected (hereinafter referred to the "lysine-producing No. 58 strain" or the "No. 58 strain"). Based on the above, it was determined that the mutation, Val59Ala, in *hom* and the mutation, Pro458Ser, in *pyc* were introduced into the wild type strain of *Corynebacterium glutamicum* ATCC 13032 (hereinafter referred to as the "wild type ATCC 13032 strain" or the "ATCC 13032 strain") and the lysine-producing No. 58 strain, respectively, using the gene replacement method. A plasmid vector pCES30 for the gene replacement for the introduction was constructed by the following method.

[0376] A plasmid vector pCE53 having a kanamycin-resistant gene and being capable of autonomously replicating in Coryneform bacteria (*Mol. Gen. Genet., 196*: 175-178 (1984)) and a plasmid pMOB3 (ATCC 77282) containing a levansucrase gene (*sacB*) of *Bacillus subtilis* (*Molecular Microbiology, 6*: 1195-1204 (1992)) were each digested with *Pst*I. Then, after agarose gel electrophoresis, a pCE53 fragment and a 2.6 kb DNA fragment containing *sacB* were each extracted and purified using GENECLEAN Kit (manufactured by BIO 101). The pCE53 fragment and the 2.6 kb DNA fragment were ligated using Ligation Kit ver. 2 (manufactured by Takara Shuzo), introduced into the ATCC 13032 strain by the electroporation method (*FEMS Microbiology Letters,* 65: 299 (1989)), and cultured on BYG agar medium (medium prepared by adding 10 g of glucose, 20 g of peptone (manufactured by Kyokuto Pharmaceutical), 5 g of yeast extract (manufactured by Difco), and 16 g of Bactoagar (manufactured by Difco) to 1 liter of water, and adjusting its pH to 7.2) containing 25 µg/ml kanamycin at 30°C for 2 days to obtain a transformant acquiring kanamycin-resistance. As a result of digestion analysis with restriction enzymes, it was confirmed that a plasmid extracted from the resulting transformant by the alkali SDS method had a structure in which the 2.6 kb DNA fragment had been inserted into the *Pst*I site of pCE53. This plasmid was named pCES30.

[0377] Next, two genes having a mutation point, hom and pyc, were amplified by PCR, and inserted into pCES30 according to the TA cloning method (Bio Experiment Illustrated vol. 3, published by Shujunsha). Specifically, pCES30 was digested with BamHI (manufactured by Takara Shuzo), subjected to an agarose gel electrophoresis, and extracted and purified using GENECLEAN Kit (manufactured by BIO 101). The both ends of the resulting pCES30 fragment were blunted with DNA Blunting Kit (manufactured by Takara Shuzo) according to the attached protocol. The blunt-ended pCES30 fragment was concentrated by extraction with phenol/chloroform and precipitation with ethanol, and allowed

to react in the presence of Taq polymerase (manufactured by Roche Diagnostics) and dTTP at 70°C for 2 hours so that a nucleotide, thymine (T), was added to the 3'-end to prepare a T vector of pCES30.

[0378] Separately, chromosomal DNA was prepared from the lysine-producing B-6 strain according to the method of Saito et al. (*Biochem. Biophys. Acta, 72*: 619 (1963)). Using the chromosomal DNA as a template, PCR was carried out with Pfu turbo DNA polymelase (manufactured by Stratagene). In the mutated *hom* gene, the DNAs having the nucleotide sequences represented by SEQ ID NOS:7002 and 7003 were used as the primer set. In the mutated *pyc* gene, the DNAs having the nucleotide sequences represented by SEQ ID NOS:7004 and 7005 were used as the primer set. The resulting PCR product was subjected to agarose gel electrophoresis, and extracted and purified using GENE-GLEAN Kit (manufactured by BIO 101). Then, the PCR product was allowed to react in the presence of Taq polymerase (manufactured by Roche Diagnostics) and dATP at 72°C for 10 minutes so that a nucleotide, adenine (A), was added to the 3'-end.

[0379] The above pCES30 T vector fragment and the mutated *hom* gene (1.7 kb) or mutated *pyc* gene (3.6 kb) to which the nucleotide A had been added of the PCR product were concentrated by extraction with phenol/chloroform and precipitation with ethanol, and then ligated using Ligation Kit ver. 2. The ligation products were introduced into the ATCC 13032 strain according to the electroporation method, and cultured on BYG agar medium containing 25 μg/ml kanamycin at 30°C for 2 days to obtain kanamycin-resistant transformants. Each of the resulting transformants was cultured overnight in BYG liquid medium containing 25 μg/ml kanamycin, and a plasmid was extracted from the culturing solution medium according to the alkali SDS method. As a result of digestion analysis using restriction enzymes, it was confirmed that the plasmid had a structure in which the 1.7 kb or 3.6 kb DNA fragment had been inserted into pCES30. The plasmids thus constructed were named respectively pChom59 and pCpyc458.

[0380] The introduction of the mutations to the wild type ATCC 13032 strain and the lysine-producing No. 58 strain according to the gene replacement method was carried out according to the following method. Specifically, pChom59 and pCpyc458 were introduced to the ATCC 13032 strain and the No. 58 strain, respectively, and strains in which the plasmid is integrated into the chromosomal DNA by homologous recombination were selected using the method of lkeda et al. (Microbiology 144: 1863 (1998)). Then, the stains in which the second homologous recombination was carried out were selected by a selection method, making use of the fact that the Bacillus subtilis levansucrase encoded by pCES30 produced a suicidal substance (J. of Bacteriol., 174: 5462 (1992)). Among the selected strains, strains in which the wild type hom and pyc genes possessed by the ATCC 13032 strain and the No. 58 strain were replaced with the mutated hom and pyc genes, respectively, were isolated. The method is specifically explained below.

[0381] One strain was selected from the transformants containing the plasmid, pChom59 or pCpyc458, and the selected strain was cultured in BYG medium containing 20 µg/ml kanamycin, and pCG11 (Japanese Published Examined Patent Application No. 91827/94) was introduced thereinto by the electroporation method. pCG11 is a plasmid vector having a spectinomycin-resistant gene and a replication origin which is the same as pCE53. After introduction of the pCGII, the strain was cultured on BYG agar medium containing 20 µg/ml kanamycin and 100 µg/ml spectinomycin at 30°C for 2 days to obtain both the kanamycin- and spectinomycin-resistant transformant. The chromosome of one strain of these transformants was examined by the Southern blotting hybridization according to the method reported by Ikeda *et al.* (*Microbiology, 144*: 1863 (1998)). As a result, it was confirmed that pChom59 or pCpyc458 had been integrated into the chromosome by the homologous recombination of the Cambell type. In such a strain, the wild type and mutated *hom* or *pyc* genes are present closely on the chromosome, and the second homologous recombination is liable to arise therebetween.

[0382] Each of these transformants (having been recombined once) was spread on Suc agar medium (medium prepared by adding 100 g of sucrose, 7 g of meat extract, 10 g of peptone, 3 g of sodium chloride, 5 g of yeast extract (manufactured by Difco), and 18 g of Bactoagar (manufactured by Difco) to 1 liter of water, and adjusting its pH 7.2) and cultured at 30°C for a day. Then the colonies thus growing were selected in each case. Since a strain in which the sacB gene is present converts sucrose into a suicide substrate, it cannot grow in this medium (J. Bacteriol., 174: 5462 (1992)). On the other hand, a strain in which the sacB gene was deleted due to the second homologous recombination between the wild type and the mutated hom or pyc genes positioned closely to each other forms no suicide substrate and, therefore, can grow in this medium. In the homologous recombination, either the wild type gene or the mutated gene is deleted together with the sacB gene. When the wild type is deleted together with the sacB gene, the gene replacement into the mutated type arises.

[0383] Chromosomal DNA of each the thus obtained second recombinants was prepared by the above method of Saito *et al.* PCR was carried out using Pfu turbo DNA polymerase (manufactured by Stratagene) and the attached buffer. In the *hom* gene, DNAs having the nucleotide sequences represented by SEQ ID NOS:7002 and 7003 were used as the primer set. Also, in the *pyc* gene was used, DNAs having the nucleotide sequences represented by SEQ ID NOS:7004 and 7005 were used as the primer set. The nucleotide sequences of the PCR products were determined by the conventional method so that it was judged whether the *hom* or *pyc* gene of the second recombinant was a wild type or a mutant. As a result, the second recombinant which were called HD-1 and No. 58pyc were target strains having the mutated *hom* gene and *pyc* gene, respectively.

15

(3) Lysine production test of HD-1 and No. 58pyc strains

[0384] The HD-1 strain (strain obtained by incorporating the mutation, Val59Ala, in the hom gene into the ATCC 13032 strain) and the No. 58pyc strain (strain obtained by incorporating the mutation, Pro458Ser, in the pyc gene into the lysine-producing No. 58 strain) were subjected to a culture test in a 5 I jar fermenter by using the ATCC 13032 strain and the lysine-producing No. 58 strain respectively as a control. Thus lysine production was examined. [0385] After culturing on BYG agar medium at 30°C for 24 hours, each strain was inoculated into 250 ml of a seed medium (medium prepared by adding 50 g of sucrose, 40 g of corn steep liquor, 8.3 g of ammonium sulfate, 1 g of urea, 2 g of potassium dihydrogenphosphate, 0.83 g of magnesium sulfate heptahydrate, 10 mg of iron sulfate heptahydrate, 1 mg of copper sulfate pentahydrate, 10 mg of zinc sulfate heptahydrate, 10 mg of β -alanine, 5 mg of nicotinic acid, 1.5 mg of thiamin hydrochloride, and 0.5 mg of biotin to 1 liter of water, and adjusting its pH to 7.2, then to which 30 g of calcium carbonate had been added) contained in a 2 1 buffle-attached Erlenmeyer flask and cultured therein at 30°C for 12 to 16 hours. A total amount of the seed culturing medium was inoculated into 1,400 ml of a main culture medium (medium prepared by adding 60 g of glucose, 20 g of corn steep liquor, 25 g of ammonium chloride, 2.5 g of potassium dihydrogenphosphate, 0.75 g of magnesium sulfate heptahydrate, 50 mg of iron sulfate heptahydrate, 13 mg of manganese sulfate pentahydrate, 50 mg of calcium chloride, 6.3 mg of copper sulfate pentahydrate, 1.3 mg of zinc sulfate heptahydrate, 5 mg of nickel chloride hexahydrate, 1.3 mg of cobalt chloride hexahydrate, 1.3 mg of ammonium molybdenate tetrahydrate, 14 mg of nicotinic acid, 23 mg of β-alanine, 7 mg of thiamin hydrochloride, and 0.42 mg of biotin to 1 liter of water) contained in a 5 1 jar fermenter and cultured therein at 32°C, 1 vvm and 800 rpm while controlling the pH to 7.0 with aqueous ammonia. When glucose in the medium had been consumed, a glucose feeding solution (medium prepared by adding 400 g glucose and 45 g of ammonium chloride to 1 liter of water) was continuously added. The addition of feeding solution was carried out at a controlled speed so as to maintain the dissolved oxygen concentration within a range of 0.5 to 3 ppm. After culturing for 29 hours, the culture was terminated. The cells were separated from the culture medium by centrifugation and then L-lysine hydrochloride in the supernatant was quantified by high performance liquid chromatography (HPLC). The results are shown in Table 2 below.

Table 2

Strain	L-Lysine hydrochloride yield (g/l)
ATCC 13032	0
HD-1	8
No. 58	45
No. 58pyc	51

[0386] As is apparent from the results shown in Table 2, the lysine productivity was improved by introducing the mutation, Val59Ala, in the *hom* gene or the mutation, Pro458Ser, in the pyc gene. Accordingly, it was found that the mutations are both effective mutations relating to the production of lysine. Strain, AHP-3, in which the mutation, Val59Ala, in the *hom* gene and the mutation, Pro458Ser, in the *pyc* gene have been introduced into the wild type ATCC 13032 strain together with the mutation, Thr331lle in the *lysC* gene has been deposited on December 5, 2000, in National Institute of Bioscience and Human Technology, Agency of Industrial Science and Technology (Higashi 1-1-3, Tsukuba-shi, Ibaraki, Japan) as FERM BP-7382.

Example 3

10

15

20

25

30

35

40

55

Reconstruction of lysine-producing strain based on genome information

[0387] The lysine-producing mutant B-6 strain (*Appl. Microbiol. Biotechnol., 32*: 269-273 (1989)), which has been constructed by multiple round random mutagenesis with NTG and screening from the wild type ATCC 13032 strain, produces a remarkably large amount of lysine hydrochloride when cultured in a jar at 32°C using glucose as a carbon source. However, since the fermentation period is long, the production rate is less than 2.1 g/l/h. Breeding to reconstitute only effective mutations relating to the production of lysine among the estimated at least 300 mutations introduced into the B-6 strain in the wild type ATCC 13032 strain was performed.

(1) Identification of mutation point and effective mutation by comparing the gene nucleotide sequence of the B-6 strain with that of the ATCC 13032 strain

[0388] As described abov, the nucleotide sequences of genes derived from the B-6 strain were compared with the

corresponding nucleotide sequences of the ATCC 13032 strain genome represented by SEQ ID NOS:1 to 3501 and analyzed to identify many mutation points accumulated in the chromosome of the B-6 strain. Among these, a mutation, Val591Ala, in hom, a mutation, Thr311lle, in lysC, a mutation, Pro458Ser, in pyc and a mutation, Ala213Thr, in zwf were specified as effective mutations relating to the production of lysine. Breeding to reconstitute the 4 mutations in the wild type strain and for constructing of an industrially important lysine-producing strain was carried out according to the method shown below.

(2) Construction of plasmid for gene replacement having mutated gene

[0389] The plasmid for gene replacement, pChom59, having the mutated hom gene and the plasmid for gene replacement, pCpyc458, having the mutated pyc gene were prepared in the above Example 2(2). Plasmids for gene replacement having the mutated lysC and zwf were produced as described below.

[0390] The lysC and zwf having mutation points were amplified by PCR, and inserted into a plasmid for gene replacement, pCES30, according to the TA cloning method described in Example 2(2) (Bio Experiment Illustrated, Vol. 3). [0391] Separately, chromosomal DNA was prepared from the lysine-producing B-6 strain according to the above method of Saito et al. Using the chromosomal DNA as a template, PCR was carried out with Pfu turbo DNA polymerase (manufactured by Stratagene). In the mutated lysC gene, the DNAs having the nucleotide sequences represented by SEQ ID NOS:7006 and 7007 were used as the primer set. In the mutated zwf gene, the DNAs having the nucleotide sequences represented by SEQ ID NOS:7008 and 7009 as the primer set. The resulting PCR product was subjected to agarose gel electrophoresis, and extracted and purified using GENEGLEAN Kit (manufactured by BIO 101). Then, the PCR product was allowed to react in the presence of Taq DNA polymerase (manufactured by Roche Diagnostics) and dATP at 72°C for 10 minutes so that a nucleotide, adenine (A), was added to the 3'-end.

[0392] The above pCES30 T vector fragment and the mutated lysC gene (1.5 kb) or mutated zwf gene (2.3 kb) to which the nucleotide A had been added of the PCR product were concentrated by extraction with phenol/chloroform and precipitation with ethanol, and then ligated using Ligation Kit ver. 2. The ligation products were introduced into the ATCC 13032 strain according to the electroporation method, and cultured on BYG agar medium containing 25 µg/ml kanamycin at 30°C for 2 days to obtain kanamycin-resistant transformants. Each of the resulting transformants was cultured overnight in BYG liquid medium containing 25 µg/ml kanamycin, and a plasmid was extracted from the culturing solution medium according to the alkali SDS method. As a result of digestion analysis using restriction enzymes, it was confirmed that the plasmid had a structure in which the 1.5 kb or 2.3 kb DNA fragment had been inserted into pCES30. The plasmids thus constructed were named respectively pClysC311 and pCzwf213.

(3) Introduction of mutation, Thr311IIe, in IysC into one point mutant HD-1

[0393] Since the one mutation point mutant HD-1 in which the mutation, Val59Ala. in hom was introduced into the wild type ATCC 13032 strain had been obtained in Example 2(2), the mutation, Thr311lle, in IysC was introduced into the HD-1 strain using pClysC311 produced in the above (2) according to the gene replacement method described in Example 2(2), PCR was carried out using chromosomal DNA of the resulting strain and, as the primer set, DNAs having the nucleotide sequences represented by SEQ ID NOS:7006 and 7007 in the same manner as in Example 2(2). As a 40 result of the fact that the nucleotide sequence of the PCR product was determined in the usual manner, it was confirmed that the strain which was named AHD-2 was a two point mutant having the mutated IysC gene in addition to the mutated hom gene.

(4) Introduction of mutation, Pro458Ser, in pyc into two point mutant AHD-2

[0394] The mutation, Pro458Ser, in pyc was introduced into the AHD-2 strain using the pCpyc458 produced in Example 2(2) by the gene replacement method described in Example 2(2). PCR was carried out using chromosomal DNA of the resulting strain and, as the primer set, DNAs having the nucleotide sequences represented by SEQ ID NOS:7004 and 7005 in the same manner as in Example 2(2). As a result of the fact that the nucleotide sequence of the PCR product was determined in the usual manner, it was confirmed that the strain which was named AHD-3 was a three point mutant having the mutated pyc gene in addition to the mutated hom gene and lysC gene.

(5) Introduction of mutation, Ala213Thr, in zwf into three point mutant AHP-3

55 [0395] The mutation, Ala213Thr, in zwf was introduced into the AHP-3 strain using the pCzwf458 produced in the above (2) by the gene replacement method described in Example 2(2). PCR was carried out using chromosomal DNA of the resulting strain and, as the primer set, DNAs having the nucleotide sequences represented by SEQ ID NOS: 7008 and 7009 in the same manner as in Example 2(2). As a result of the fact that the nucleotide sequence of the PCR

5

15

20

25

35

product was determined in the usual manner, it was confirmed that the strain which was named APZ-4 was a four point mutant having the mutated *zwf* gene in addition to the mutated *hom* gene, *lysC* gene and *pyc* gene.

(6) Lysine production test on HD-1, AHD-2, AHP-3 and APZ-4 strains

[0396] The HD-1, AHD-2, AHP-3 and APZ-4 strains obtained above were subjected to a culture test in a 5 I jar fermenter in accordance with the method of Example 2(3).

[0397] Table 3 shows the results.

5

10

15

20

25

30

35

40

45

50

55

Table 3

Strain	L-Lysine hydrochloride (g/l)	Productivity (g/l/h)
HD-1	8	0.3
AHD-2	73	2.5
AHP-3	80	2.8
APZ-4	86	3.0

[0398] Since the lysine-producing mutant B-6 strain which has been bred based on the random mutation and selection shows a productivity of less than 2.1 g/l/h, the APZ-4 strain showing a high productivity of 3.0 g/l/h is useful in industry.

(7) Lysine fermentation by APZ-4 strain at high temperature

[0399] The APZ-4 strain, which had been reconstructed by introducing 4 effective mutations into the wild type strain, was subjected to the culturing test in a 5 I jar fermenter in the same manner as in Example 2(3), except that the culturing temperature was changed to 40°C.

[0400] The results are shown in Table 4.

Table 4

Temperature (°C)	L-Lysine hydrochloride (g/l)	Productivity (g/l/h)
32	86	3.0
40	95	3.3

[0401] As is apparent from the results shown in Table 4, the lysine hydrochloride titer and productivity in culturing at a high temperature of 40°C comparable to those at 32°C were obtained. In the mutated and bred lysine-producing B-6 strain constructed by repeating random mutation and selection, the growth and the lysine productivity are lowered at temperatures exceeding 34°C so that lysine fermentation cannot be carried out, whereas lysine fermentation can be carried out using the APZ-4 strain at a high temperature of 40°C so that the load of cooling is greatly reduced and it is industrially useful. The lysine fermentation at high temperatures can be achieved by reflecting the high temperature adaptability inherently possessed by the wild type strain on the APZ-4 strain.

[0402] As demonstrated in the reconstruction of the lysine-producing strain, the present invention provides a novel breeding method effective for eliminating the problems in the conventional mutants and acquiring industrially advantageous strains. This methodology which reconstitutes the production strain by reconstituting the effective mutation is an approach which is efficiently carried out using the nucleotide sequence information of the genome disclosed in the present invention, and its effectiveness was found for the first time in the present invention.

Example 4

Production of DNA microarray and use thereof

[0403] A DNA microarray was produced based on the nucleotide sequence information of the ORF deduced from the full nucleotide sequences of *Corynebacterium glutamicum* ATCC 13032 using software, and genes of which expression is fluctuated depending on the carbon source during culturing were searched.

(1) Production of DNA microarray

[0404] Chromosomal DNA was prepared from Corynebacterium glutamicum ATCC 13032 by the method of Saito et

al. (Biochem. Biophys. Acta, 72: 619 (1963)). Based on 24 genes having the nucleotide sequences represented by SEQ ID NOS:207, 3433, 281, 3435, 3439, 765, 3445, 1226, 1229, 3448, 3451, 3453, 3455, 1743, 3470, 2132, 3476, 3477, 3485, 3488, 3489, 3494, 3496, and 3497 from the ORFs shown in Table 1 deduced from the full genome nucleotide sequence of Corynebacterium glutamicum ATCC 13032 using software and the nucleotide sequence of rabbit globin gene (GenBank Accession No. V00882) used as an internal standard, oligo DNA primers for PCR amplification represented by SEQ ID NOS:7010 to 7059 targeting the nucleotide sequences of the genes were synthesized in a usual manner.

- [0405] As the oligo DNA primers used for the PCR,
- [0406] DNAs having the nucleotide sequence represented by SEQ ID NOS:7010 and 7011 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:207.
- [0407] DNAs having the nucleotide sequence represented by SEQ ID NOS:7012 and 7013 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:3433,
- [0408] DNAs having the nucleotide sequence represented by SEQ ID NOS:7014 and 7015 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:281,
- [9409] DNAs having the nucleotide sequence represented by SEQ ID NOS:7016 and 7017 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:3435,
 - [0410] DNAs having the nucleotide sequence represented by SEQ ID NOS:7018 and 7019 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:3439,
 - [0411] DNAs having the nucleotide sequence represented by SEQ ID NOS:7020 and 7021 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:765,
 - [0412] DNAs having the nucleotide sequence represented by SEQ ID NOS:7022 and 7023 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:3445,
 - [0413] DNAs having the nucleotide sequence represented by SEQ ID NOS:7024 and 7025 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:1226,
- [0414] DNAs having the nucleotide sequence represented by SEQ ID NOS:7026 and 7027 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:1229,
 - [0415] DNAs having the nucleotide sequence represented by SEQ ID NOS:7028 and 7029 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:3448,
 - [0416] DNAs having the nucleotide sequence represented by SEQ ID NOS:7030 and 7031 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:3451,
 - [0417] DNAs having the nucleotide sequence represented by SEQ ID NOS:7032 and 7033 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:3453,
 - [0418] DNAs having the nucleotide sequence represented by SEQ ID NOS:7034 and 7035 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:3455,
 - [0419] DNAs having the nucleotide sequence represented by SEQ ID NOS:7036 and 7037 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:1743,
 - [0420] DNAs having the nucleotide sequence represented by SEQ ID NOS:7038 and 7039 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:3470,
 - [0421] DNAs having the nucleotide sequence represented by SEQ ID NOS:7040 and 7041 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:2132,
 - [0422] DNAs having the nucleotide sequence represented by SEQ ID NOS:7042 and 7043 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:3476,
 - [0423] DNAs having the nucleotide sequence represented by SEQ ID NOS:7044 and 7045 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:3477,
- [0424] DNAs having the nucleotide sequence represented by SEQ ID NOS:7046 and 7047 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:3485,
 - [0425] DNAs having the nucleotide sequence represented by SEQ ID NOS:7048 and 7049 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:3488,
 - [0426] DNAs having the nucleotide sequence represented by SEQ ID NOS:7050 and 7051 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:3489,
 - [0427] DNAs having the nucleotide sequence represented by SEQ ID NOS:7052 and 7053 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:3494,
 - [0428] DNAs having the nucleotide sequence represented by SEQ ID NOS:7054 and 7055 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:3496,
- ⁵⁵ [0429] DNAs having the nucleotide sequence represented by SEQ ID NOS:7056 and 7057 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:3497, and
 - [0430] DNAs having the nucleotide sequence represented by SEQ ID NOS:7058 and 7059 were used for the amplification of the DNA having the nucleotide sequence of the rabbit globin gene,

as the respective primer set.

[0431] The PCR was carried for 30 cycles with each cycle consisting of 15 seconds at 95°C and 3 minutes at 68°C using a thermal cycler (GeneAmp PCR system 9600, manufactured by Perkin Elmer). TaKaRa EX-Taq (manufactured by Takara Shuzo), 100 ng of the chromosomal DNA and the buffer attached to the TaKaRa Ex-Taq reagent. In the case of the rabbit globin gene, a single-stranded cDNA which had been synthesized from rabbit globin mRNA (manufactured by Life Technologies) according to the manufacture's instructions using a reverse transcriptase RAV-2 (manufactured by Takara Shuzo). The PCR product of each gene thus amplified was subjected to agarose gel electrophoresis and extracted and purified using QlAquick Gel Extraction Kit (manufactured by QlAGEN). The purified PCR product was concentrated by precipitating it with ethanol and adjusted to a concentration of 200 ng/µl. Each PCR product was spotted on a slide glass plate (manufactured by Matsunami Glass) having MAS coating in 2 runs using GTMASS SYSTEM (manufactured by Nippon Laser & Electronics Lab.) according to the manufacture's instructions.

(2) Synthesis of fluorescence labeled cDNA

10

15

20

25

30

35

40

45

50

55

[0432] The ATCC 13032 strain was spread on BY agar medium (medium prepared by adding 20 g of peptone (manufactured by Kyokuto Pharmaceutical), 5 g of yeast extract (manufactured by Difco), and 16 g of Bactoagar (manufactured by Difco) to in 1 liter of water and adjusting its pH to 7.2) and cultured at 30°C for 2 days. Then, the cultured strain was further inoculated into 5 ml of BY liquid medium and cultured at 30°C overnight. Then, the cultured strain was further inoculated into 30 ml of a minimum medium (medium prepared by adding 5 g of ammonium sulfate, 5 g of urea, 0.5 g of monopotassium dihydrogenphosphate, 0.5 g of dipotassium monohydrogenphosphate, 20.9 g of morpholinopropanesulfonic acid, 0.25 g of magnesium sulfate heptahydrate, 10 mg of calcium chloride dihydrate, 10 mg of manganese sulfate monohydrate, 10 mg of ferrous sulfate heptahydrate, 1 mg of zinc sulfate heptahydrate, 0.2 mg copper sulfate, and 0.2 mg biotin to 1 liter of water, and adjusting its pH to 6.5) containing 110 mmol/l glucose or 200 mmol/l ammonium acetate, and cultured in an Erlenmyer flask at 30° to give 1.0 of absorbance at 660 nm. After the cells were prepared by centrifuging at 4°C and 5,000 rpm for 10 minutes, total RNA was prepared from the resulting cells according to the method of Bormann et al. (Molecular Microbiology, 6: 317-326 (1992)). To avoid contamination with DNA, the RNA was treated with Dnasel (manufactured by Takara Shuzo) at 37°C for 30 minutes and then further purified using Qiagen RNeasy MiniKit (manufactured by QIAGEN) according to the manufacture's instructions. To 30 μg of the resulting total RNA, 0.6 μl of rabbit globin mRNA (50 ng/μl, manufactured by Life Technologies) and 1 μl of a random 6 mer primer (500 ng/μl, manufactured by Takara Shuzo) were added for denaturing at 65°C for 10 minutes, followed by quenching on ice. To the resulting solution, 6 µl of a buffer attached to Superscript II (manufactured by Lifetechnologies), 3 μl of 0.1 mol/l DTT, 1.5 μl of dNTPs (25 mmol/l dATP, 25 mmol/l dCTP, 25 mmol/l dGTP, 10 mmol/ I dTTP), 1.5 μl of Cy5-dUTP or Cy3-dUTP (manufactured by NEN) and 2 μl of Superscript II were added, and allowed to stand at 25°C for 10 minutes and then at 42°C for 110 minutes. The RNA extracted from the cells using glucose as the carbon source and the RNA extracted from the cells using ammonium acetate were labeled with Cy5-dUTP and Cy3-dUTP, respectively. After the fluorescence labeling reaction, the RNA was digested by adding 1.5 μl of 1 mol/l sodium hydroxide-20 mmol/l EDTA solution and 3.0 µl of 10% SDS solution, and allowed to stand at 65°C for 10 minutes. The two cDNA solutions after the labeling were mixed and purified using Qiagen PCR purification Kit (manufactured by QIAGEN) according to the manufacture's instructions to give a volume of 10 μ l.

(3) Hybridization

[0433] UltraHyb (110 μ l) (manufactured by Ambion) and the fluorescence-labeled cDNA solution (10 μ l) were mixed and subjected to hybridization and the subsequent washing of slide glass using GeneTAC Hybridization Station (manufactured by Genomic Solutions) according to the manufacture's instructions. The hybridization was carried out at 50°C, and the washing was carried out at 25°C.

(4) Fluorescence analysis

[0434] The fluorescence amount of each DNA array having the fluorescent cDNA hybridized therewith was measured using ScanArray 4000 (manufactured by GSI Lumonics).

[0435] Table 5 shows the Cy3 and Cy5 signal intensities of the genes having been corrected on the basis of the data of the rabbit globin used as the internal standard and the Cy3/Cy5 ratios.

Table 5

SEQ ID NO	Cy3 intensity	Cy5 intensity	Cy3/Cy5
207	5248	3240	1.62

Table 5 (continued)

	`		
SEQ ID NO	Cy3 intensity	Cy5 intensity	Cy3/Cy5
3433	2239	2694	0.83
281	2370	2595	0.91
3435	2566	2515	1.02
3439	5597	6944	0.81
765	6134	4943	1.24
3455	1169	1284	0.91
1226	1301	1493	0.87
1229	1168	1131	1.03
3448	1187	1594	0.74
3451	2845	3859	0.74
3453	3498	1705	2.05
3455	1491	1144	1.30
1743	1972	1841	1.07
3470	4752	3764	1.26
2132	1173	1085	1.08
3476	1847	1420	1.30
3477	1284	1164	1.10
3485	4539	8014	0.57
3488	34289	1398	24.52
3489	43645	1497	29.16
3494	3199	2503	1.28
3496	3428	2364	1.45
3497	3848	3358	1.15

[0436] The ORF function data estimated by using software were searched for SEQ ID NOS:3488 and 3489 showing remarkably strong Cy3 signals. As a result, it was found that SEQ ID NOS:3488 and 3489 are a maleate synthase gene and an isocitrate lyase gene, respectively. It is known that these genes are transcriptionally induced by acetic acid in *Corynebacterium glutamicum* (*Archives of Microbiology, 168*: 262-269 (1997)).

[0437] As described above, a gene of which expression is fluctuates could be discovered by synthesizing appropriate oligo DNA primers based on the ORF nucleotide sequence information deduced from the full genomic nucleotide sequence information of *Corynebacterium glutamicum* ATCC 13032 using software, amplifying the nucleotide sequences of the gene using the genome DNA of *Corynebacterium glutamicum* as a template in the PCR reaction, and thus producing and using a DNA microarray.

[0438] This Example shows that the expression amount can be analyzed using a DNA microarray in the 24 genes. On the other hand, the present DNA microarray techniques make it possible to prepare DNA microarrays having thereon several thousand gene probes at once. Accordingly, it is also possible to prepare DNA microarrays having thereon all of the ORF gene probes deduced from the full genomic nucleotide sequence of *Corynebacterium glutamicum* ATCC 13032 determined by the present invention, and analyze the expression profile at the total gene level of *Corynebacterium glutamicum* using these arrays.

Example 5

5

10

15

20

25

30

35

45

55

Homology search using Corynebacterium glutamicum genome sequence

(1) Search of adenosine deaminase

[0439] The amino acid sequence (ADD_ECOLI) of *Escherichia coli* adenosine deaminase was obtained from Swiss-prot Database as the amino acid sequence of the protein of which function had been confirmed as adenosine deaminase (EC3.5.4.4). By using the full length of this amino acid sequence as a query, a homology search was carried out on a nucleotide sequence database of the genome sequence of *Corynebacterium glutamicum* or a database of the amino acids in the ORF region deduced from the genome sequence using FASTA program (*Proc. Natl. Acad. Sci. ISA, 85*: 2444-2448 (1988)). A case where E-value was le⁻¹⁰ or less was judged as being significantly homologous. As a result,

no sequence significantly homologous with the *Escherichia coli* adenosine deaminase was found in the nucleotide sequence database of the genome sequence of *Corynebacterium glutamicum* or the database of the amino acid sequences in the ORF region deduced from the genome sequence. Based on these results, it is assumed that *Corynebacterium glutamicum* contains no ORF having adenosine deaminase activity and thus has no activity of converting adenosine into inosine.

(2) Search of glycine cleavage enzyme

5

10

15

20

25

30

35

45

50

55

[0440] The sequences (GCSP_ECOLI, GCST_ECOLI and GCSH_ECOLI) of glycine decarboxylase, aminomethyl transferase and an aminomethyl group carrier each of which is a component of *Escherichia coli* glycine cleavage enzyme as the amino acid sequence of the protein, of which function had been confirmed as glycine cleavage enzyme (EC2.1.2.10), were obtained from Swiss-prot Database.

[0441] By using these full-length amino acid sequences as a query, a homology search was carried out on a nucleotide sequence database of the genome sequence of *Corynebacterium glutamicum* or a database of the ORF amino acid sequences deduced from the genome sequence using FASTA program. A case where E-value was le-10 or less was judged as being significantly homologous. As a result, no sequence significantly homologous with the glycine decarboxylase, the aminomethyl transferase or the aminomethyl group carrier each of which is a component of *Escherichia coli* glycine cleavage enzyme, was found in the nucleotide sequence database of the genome sequence of *Corynebacterium glutamicum* or the database of the ORF amino acid sequences estimated from the genome sequence. Based on these results, it is assumed that *Corynebacterium glutamicum* contains no ORF having the activity of glycine decarboxylase, aminomethyl transferase or the aminomethyl group carrier and thus has no activity of the glycine cleavage enzyme.

(3) Search of IMP dehydrogenase

[0442] The amino acid sequence (IMDH ECOLI) of Escherichia coli IMP dehydrogenase as the amino acid sequence of the protein, of which function had been confirmed as IMP dehydrogenase (EC1.1.1.205), was obtained from Swissprot Database. By using the full length of this amino acid sequence as a query, a homology search was carried out on a nucleotide sequence database of the genome sequence of Corynebacterium glutamicum or a database of the ORF amino acid sequences predicted from the genome sequence using FASTA program. A case where E-value was le-10 or less was judged as being significantly homologous. As a result, the amino acid sequences encoded by two ORFs, namely, an ORF positioned in the region of the nucleotide sequence No. 615336 to 616853 (or ORF having the nucleotide sequence represented by SEQ ID NO:672) and another ORF positioned in the region of the nucleotide sequence No. 616973 to 618094 (or ORF having the nucleotide sequence represented by SEQ ID NO:674) were significantly homologous with the ORFs of Escherichia coli IMP dehydrogenase. By using the above-described predicted amino acid sequence as a query in order to examine the similarity of the amino acid sequences encoded by the ORFs with IMP dehydrogenases of other organisms in greater detail, a search was carried out on GenBank (http://www.ncbi.nlm. nih.gov/) nr-aa database (amino acid sequence database constructed on the basis of GenBankCDS translation products, PDB database, Swiss-Prot database, PIR database, PRF database by eliminating duplicated registrations) using BLAST program. As a result, both of the two amino acid sequences showed significant homologies with IMP dehdyrogenases of other organisms and clearly higher homologies with IMP dehdyrogenases than with amino acid sequences of other proteins, and thus, it was assumed that the two ORFs would function as IMP dehydrogenase. Based on these results, it was therefore assumed that Corynebacterium glutamicum has two ORFs having the IMP dehydrogenase activity.

Example 6

Proteome analysis of proteins derived from Corynebacterium glutamicum

(1) Preparations of proteins derived from *Corynebacterium glutamicum* ATCC 13032, FERM BP-7134 and FERM BP-

[0443] Culturing tests of *Corynebacterium glutamicum* ATCC 13032 (wild type strain), *Corynebacterium glutamicum* FERM BP-7134 (lysine-producing strain) and *Corynebacterium glutamicum* (FERM BP-158, lysine-highly producing strain) were carried out in a 5 l jar fermenter according to the method in Example 2(3). The results are shown in Table 6.

Table 6

Strain	L-Lysine yield (g/l)	
ATCC 13032	0	
FERM BP-7134	45	
FERM BP-158	60	

[0444] After culturing, cells of each strain were recovered by centrifugation. These cells were washed with Tris-HCI buffer (10 mmol/l Tris-HCI, pH 6.5, 1.6 mg/ml protease inhibitor (COMPLETE; manufactured by Boehringer Mannheim)) three times to give washed cells which could be stored under freezing at -80°C. The freeze-stored cells were thawed before use, and used as washed cells.

[0445] The washed cells described above were suspended in a disruption buffer (10 mmol/l Tris-HCl, pH 7.4, 5 mmol/l magnesium chloride, 50 mg/l RNase, 1.6 mg/ml protease inhibitor (COMPLETE: manufactured by Boehringer Mannheim)), and disrupted with a disruptor (manufactured by Brown) under cooling. To the resulting disruption solution, DNase was added to give a concentration of 50 mg/l, and allowed to stand on ice for 10 minutes. The solution was centrifuged (5,000 \times g, 15 minutes, 4°C) to remove the undisrupted cells as the precipitate, and the supernatant was recovered.

[0446] To the supernatant, urea was added to give a concentration of 9 mol/l, and an equivalent amount of a lysis buffer (9.5 mol/l urea, 2% NP-40, 2% Ampholine, 5% mercaptoethanol, 1.6 mg/ml protease inhibitor (COMPLETE; manufactured by Boehringer Mannheim) was added thereto, followed by thoroughly stirring at room temperature for dissolving.

[0447] After being dissolved, the solution was centrifuged at 12,000 \times g for 15 minutes, and the supernatant was recovered.

[0448] To the supernatant, ammonium sulfate was added to the extent of 80% saturation, followed by thoroughly stirring for dissolving.

[0449] After being dissolved, the solution was centrifuged (16,000 \times g, 20 minutes, 4°C), and the precipitate was recovered. This precipitate was dissolved in the lysis buffer again and used in the subsequent procedures as a protein sample. The protein concentration of this sample was determined by the method for quantifying protein of Bradford.

(2) Separation of protein by two dimensional electrophoresis

[0450] The first dimensional electrophoresis was carried out as described below by the isoelectric electrophoresis method.

[0451] A molded dry IPG strip gel (pH 4-7, 13 cm, Immobiline DryStrips; manufactured by Amersham Pharmacia Biotech) was set in an electrophoretic apparatus (Multiphor II or IPGphor; manufactured by Amersham Pharmacia Biotech) and a swelling solution (8 mol/l urea, 0.5% Triton X-100, 0.6% dithiothreitol, 0.5% Ampholine, pH 3-10) was packed therein, and the gel was allowed to stand for swelling 12 to 16 hours.

[0452] The protein sample prepared above was dissolved in a sample solution (9 mol/l urea, 2% CHAPS, 1% dithiothreitol, 2% Ampholine, pH 3-10), and then about 100 to 500 μg (in terms of protein) portions thereof were taken and added to the swollen IPG strip gel.

[0453] The electrophoresis was carried out in the 4 steps as defined below under controlling the temperature to 20°C:

- step 1: 1 hour under a gradient mode of 0 to 500V;
- step 2: 1 hour under a gradient mode of 500 to 1,000 V;
- step 3: 4 hours under a gradient mode of 1,000 to 8,000 V; and
- step 4: 1 hour at a constant voltage of 8,000 V.

[0454] After the isoelectric electrophoresis, the IPG strip gel was put off from the holder and soaked in an equilibration buffer A (50 mmol/l Tris-HCl, pH 6.8, 30% glycerol, 1% SDS, 0.25% dithiothreitol) for 15 minutes and another equilibration buffer B (50 mmol/l Tris-HCl, pH 6.8, 6 mol/l urea, 30% glycerol, 1% SDS, 0.45% iodo acetamide) for 15 minutes to sufficiently equilibrate the gel.

[0455] After the equilibrium, the IPG strip gel was lightly rinsed in an SDS electrophoresis buffer (1.4% glycine, 0.1% SDS, 0.3% Tris-HCl, pH 8.5), and the second dimensional electrophoresis depending on molecular weight was carried out as described below to separate the proteins.

[0456] Specifically, the above IPG strip gel was closely placed on 14% polyacrylamide slub gel (14% polyacrylamide, 0.37% bisacrylamide, 37.5 mmol/l Tris-HCl, pH 8.8, 0.1% SDS, 0.1% TEMED, 0.1% ammonium persulfate) and sub-

5

10

20

25

30

40

45

50

jected to electrophoresis under a constant voltage of 30 mA at 20°C for 3 hours to separate the proteins.

(3) Detection of protein spot

10

20

25

40

45

50

[0457] Coomassie staining was performed by the method of Gorg et al. (*Electrophoresis*, *9*: 531-546 (1988)) for the slub gel after the second dimensional electrophoresis. Specifically, the slub gel was stained under shaking at 25°C for about 3 hours, the excessive coloration was removed with a decoloring solution, and the gel was thoroughly washed with distilled water.

[0458] The results are shown in Fig. 2. The proteins derived from the ATCC 13032 strain (Fig. 2A), FERM BP-7134 strain (Fig. 2B) and FERM BP-158 strain (Fig. 2C) could be separated and detected as spots.

- (4) In-gel digestion of detected protein spot
- [0459] The detected spots were each cut out from the gel and transferred into siliconized tube, and 400 μ l of 100 mmol/1 ammonium bicarbonate : acetonitrile solution (1:1, v/v) was added thereto, followed by shaking overnight and freeze-dried as such. To the dried gel, 10 μ l of a lysylendopeptidase (LysC) solution (manufactured by WAKO, prepared with 0.1% SDS-containing 50 mmol/l ammonium bicarbonate to give a concentration of 100 ng/ μ l) was added and the gel was allowed to stand for swelling at 0°C for 45 minutes, and then allowed to stand at 37°C for 16 hours. After removing the LysC solution, 20 μ l of an extracting solution (a mixture of 60% acetonitrile and 5% formic acid) was added, followed by ultrasonication at room temperature for 5 minutes to disrupt the gel. After the disruption, the extract was recovered by centrifugation (12,000 rpm, 5 minutes, room temperature). This operation was repeated twice to recover the whole extract. The recovered extract was concentrated by centrifugation *in vacuo* to halve the liquid volume. To the concentrate, 20 μ l of 0.1% trifluoroacetic acid was added, followed by thoroughly stirring, and the mixture was subjected to desalting using ZipTip (manufactured by Millipore). The protein absorbed on the carriers of ZipTip was eluted with 5 μ l of α -cyano-4-hydroxycinnamic acid for use as a sample solution for analysis.
- (5) Mass spectrometry and amino acid sequence analysis of protein spot with matrix assisted laser desorption ionization time of flight mass spectrometer (MALDI-TOFMS)
- [0460] The sample solution for analysis was mixed in the equivalent amount with a solution of a peptide mixture for mass calibration (300 nmol/l Angiotensin II, 300 nmol/l Neurotensin, 150 nmol/l ACTHclip 18-39, 2.3 μmol/l bovine insulin B chain), and 1 μl of the obtained solution was spotted on a stainless probe and crystallized by spontaneously drying.
 - [0461] As measurement instruments, REFLEX MALDI-TOF mass spectrometer (manufactured by Bruker) and an N2 laser (337 nm) were used in combination.
 - **[0462]** The analysis by PMF (peptide-mass finger printing) was carried out using integration spectra data obtained by measuring 30 times at an accelerated voltage of 19.0 kV and a detector voltage of 1.50 kV under reflector mode conditions. Mass calibration was carried out by the internal standard method.
 - [0463] The PSD (post-source decay) analysis was carried out using integration spectra obtained by successively altering the reflection voltage and the detector voltage at an accelerated voltage of 27.5 kV.
 - **[0464]** The masses and amino acid sequences of the peptide fragments derived from the protein spot after digestion were thus determined.
 - (6) Identification of protein spot
 - **[0465]** From the amino acid sequence information of the digested peptide fragments derived from the protein spot obtained in the above (5), ORFs corresponding to the protein were searched on the genome sequence database of *Corynebacterium glutamicum* ATCC 13032 as constructed in Example 1 to identify the protein.
 - [0466] The identification of the protein was carried out using MS-Fit program and MS-Tag program of intranet protein prospector.
 - (a) Search and identification of gene encoding high-expression protein
- [0467] In the proteins derived from Corynebacterium glutamicum ATCC 13032 showing high expression amounts in CBB-staining shown in Fig. 2A, the proteins corresponding to Spots-1, 2, 3, 4 and 5 were identified by the above method. [0468] As a result, it was found that Spot-1 corresponded to enclase which was a protein having the amino acid sequence of SEQ ID NO:4585; Spot-2 corresponded to phosphoglycelate kinase which was a protein having the amino acid sequence of SEQ ID NO:5254; Spot-3 corresponded to glyceraldehyde-3-phosphate dehydrogenase which was

a protein having the amino acid sequence represented by SEQ ID NO:5255; Spot-4 corresponded to fructose bisphosphate aldolase which was a protein having the amino acid sequence represented by SEQ ID NO:6543; and Spot-5 corresponded to triose phosphate isomerase which was a protein having the amino acid sequence represented by SEQ ID NO:5252.

- ⁵ [0469] These genes, represented by SEQ ID NOS:1085, 1754, 1775, 3043 and 1752 encoding the proteins corresponding to Spots-1, 2, 3, 4 and 5, respectively, encoding the known proteins are important in the central metabolic pathway for maintaining the life of the microorganism. Particularly, it is suggested that the genes of Spots-2, 3 and 5 form an operon and a high-expression promoter is encoded in the upstream thereof (*J. of Eacteriol., 174*: 6067-6086 (1992)).
- [0470] Also, the protein corresponding to Spot-9 in Fig. 2 was identified in the same manner as described above, and it was found that Spot-9 was an elongation factor Tu which was a protein having the amino acid sequence represented by SEQ ID No:6937, and that the protein was encoded by DNA having the nucleotide sequence represented by SEQ ID No:3437.
- [0471] Based on these results, the proteins having high expression level were identified by proteome analysis using the genome sequence database of *Corynebacterium glutamicum* constructed in Example 1. Thus, the nucleotide sequences of the genes encoding the proteins and the nucleotide sequences upstream thereof could be searched simultaneously. Accordingly, it is shown that nucleotide sequences having a function as a high-expression promoter can be efficiently selected.
- (b) Search and identification of modified protein
 - [0472] Among the proteins derived from *Corynebacterium glutamicum* FERM BP-7134 shown in Fig. 2B, Spots-6, 7 and 8 were identified by the above method. As a result, these three spots all corresponded to catalase which was a protein having the amino acid sequence represented by SEQ ID NO:3785.
- 25 [0473] Accordingly, all of Spots-6, 7 and 8 detected as spots differing in isoelectric mobility were all products derived from a catalase gene having the nucleotide sequence represented by SEQ ID No:285. Accordingly, it is shown that the catalase derived from Corynebacterium glutamicum FERM BP-7134 was modified after the translation.
 - [0474] Based on these results, it is confirmed that various modified proteins can be efficiently searched by proteome analysis using the genome sequence database of *Corynebacterium glutamicum* constructed in Example 1.
 - (c) Search and identification of expressed protein effective in lysine production
 - [0475] It was found out that in Fig. 2A (ATCC 13032: wild type strain), Fig. 2B (FERM BP-7134: lysine-producing strain) and Fig. 2C (FERM BP-158: lysine-highly producing strain), the catalase corresponding to Spot-8 and the elongation factor Tu corresponding to Spot-9 as identified above showed the higher expression level with an increase in the lysine productivity.
 - **[0476]** Based on these results, it was found that hopeful mutated proteins can be efficiently searched and identified in breeding aiming at strengthening the productivity of a target product by the proteome analysis using the genome sequence database of *Corynebacterium glutamicum* constructed in Example 1.
- 40 [0477] Moreover, useful mutation points of useful mutants can be easily specified by searching the nucleotide sequences (nucleotide sequences of promoter, ORF, or the like) relating to the identified proteins using the above database and using primers designed on the basis of the sequences. As a result of the fact that the mutation points are specified, industrially useful mutants which have the useful mutations or other useful mutations derived therefrom can be easily bred.
- 45 [0478] While the invention has been described in detail and with reference to specific embodiments thereof, it will be apparent to one of skill in the art that various changes and modifications can be made therein without departing from the spirit and scope thereof. All references cited herein are incorporated in their entirety.

50 Claims

55

- 1. A method for at least one of the following:
 - (A) identifying a mutation point of a gene derived from a mutant of a coryneform bacterium,
 - (B) measuring an expression amount of a gene derived from a coryneform bacterium,
 - (C) analyzing an expression profile of a gene derived from a coryneform bacterium,
 - (D) analyzing expression patterns of genes derived from a coryneform bacterium, or
 - (E) identifying a gene homologous to a gene derived from a coryneform bacterium,

said method comprising:

5

10

20

25

30

35

45

55

- (a) producing a polynucleotide array by adhering to a solid support at least two polynucleotides selected from the group consisting of first polynucleotides comprising the nucleotide sequence represented by any one of SEQ ID NOS:1 to 3501, second polynucleotides which hybridize with the first polynucleotides under stringent conditions, and third polynucleotides comprising a sequence of 10 to 200 continuous bases of the first or second polynucleotides,
- (b) incubating the polynucleotide array with at least one of a labeled polynucleotide derived from a coryneform bacterium, a labeled polynucleotide derived from a mutant of the coryneform bacterium or a labeled polynucleotide to be examined, under hybridization conditions,
- (c) detecting any hybridization, and
- (d) analyzing the result of the hybridization.
- 2. The method according to claim 1, wherein the coryneform bacterium is a microorganism belonging to the genus *Corynebacterium*, the genus *Brevibacterium*, or the genus *Microbacterium*.
 - 3. The method according to claim 2, wherein the microorganism belonging to the genus Corynebacterium is selected from the group consisting of Corynebacterium glutamicum, Corynebacterium acetoacidophilum, Corynebacterium acetoglutamicum, Corynebacterium callunae, Corynebacterium herculis, Corynebacterium lilium, Corynebacterium melassecola, Corynebacterium thermoaminogenes, and Corynebacterium ammoniagenes.
 - 4. The method according to claim 1, wherein the polynucleotide derived from a coryneform bacterium, the polynucleotide derived from a mutant of the coryneform bacterium or the polynucleotide to be examined is a gene relating to the biosynthesis of at least one compound selected from an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid, and analogues thereof.
 - 5. The method according to claim 1, wherein the polynucleotide to be examined is derived from Escherichia coli.
 - 6. A polynucleotide array, comprising:

at least two polynucleotides selected from the group consisting of first polynucleotides comprising the nucleotide sequence represented by any one of SEQ ID NOS:1 to 3501, second polynucleotides which hybridize with the first polynucleotides under stringent conditions, and third polynucleotides comprising 10 to 200 continuous bases of the first or second polynucleotides, and a solid support adhered thereto.

- 7. A polynucleotide comprising the nucleotide sequence represented by SEQ ID NO:1 or a polynucleotide having a homology of at least 80% with the polynucleotide.
- 40 8. A polynucleotide comprising any one of the nucleotide sequences represented by SEQ ID NOS:2 to 3431, or a polynucleotide which hybridizes with the polynucleotide under stringent conditions.
 - A polynucleotide encoding a polypeptide having any one of the amino acid sequences represented by SEQ ID NOS:3502 to 6931, or a polynucleotide which hybridizes therewith under stringent conditions.
 - 10. A polynucleotide which is present in the 5' upstream or 3' downstream of a polynucleotide comprising the nucleotide sequence of any one of SEQ ID NOS:2 to 3431 in a whole polynucleotide comprising the nucleotide sequence represented by SEQ ID NO:1, and has an activity of regulating an expression of the polynucleotide.
- 11. A polynucleotide comprising 10 to 200 continuous bases in the nucleotide sequence of the polynucleotide of any one of claims 7 to 10, or a polynucleotide comprising a nucleotide sequence complementary to the polynucleotide comprising 10 to 200 continuous based.
 - 12. A recombinant DNA comprising the polynucleotide of any one of claims 8 to 11.
 - 13. A transformant comprising the polynucleotide of any one of claims 8 to 11 or the recombinant DNA of claim 12.
 - 14. A method for producing a polypeptide, comprising:

culturing the transformant of claim 13 in a medium to produce and accumulate a polypeptide encoded by the polynucleotide of claim 8 or 9 in the medium, and recovering the polypeptide from the medium.

- 5 15. A method for producing at least one of an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid, and analogues thereof, comprising:
 - culturing the transformant of claim 13 in a medium to produce and accumulate at least one of an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid, and analogues thereof in the medium, and recovering the at least one of the amino acid, the nucleic acid, the vitamin, the saccharide, the organic acid, and analogues thereof from the medium.
 - 16. A polypeptide encoded by a polynucleotide comprising the nucleotide sequence selected from SEQ ID NOS:2 to 3431.
 - 17. A polypeptide comprising the amino acid sequence selected from SEQ ID NOS:3502 to 6931.
 - 18. The polypeptide according to claim 16 or 17, wherein at least one amino acid is deleted, replaced, inserted or added, said polypeptides having an activity which is substantially the same as that of the polypeptide without said at least one amino acid deletion, replacement, insertion or addition.
 - 19. A polypeptide comprising an amino acid sequence having a homology of at least 60% with the amino acid sequence of the polypeptide of claim 16 or 17, and having an activity which is substantially the same as that of the polypeptide.
- 25. An antibody which recognizes the polypeptide of any one of claims 16 to 19.
 - 21. A polypeptide array, comprising:

10

15

20

30

35

45

50

- at least one polypeptide or partial fragment polypeptide selected from the polypeptides of claims 16 to 19 and partial fragment polypeptides of the polypeptides, and a solid support adhered thereto.
- 22. A polypeptide array, comprising:
 - at least one antibody which recognizes a polypeptide or partial fragment polypeptide selected from the polypeptides of claims 16 to 19 and partial fragment polypeptides of the polypeptides, and a solid support adhered thereto.
- 23. A system based on a computer for identifying a target sequence or a target structure motif derived from a coryneform bacterium, comprising the following:
 - (i) a user input device that inputs at least one nucleotide sequence information selected from SEQ ID NOS:1 to 3501, and target sequence or target structure motif information;
 - (ii) a data storage device for at least temporarily storing the input information;
 - (iii) a comparator that compares the at least one nucleotide sequence information selected from SEQ ID NOS: 1 to 3501 with the target sequence or target structure motif information, recorded by the data storage device for screening and analyzing nucleotide sequence information which is coincident with or analogous to the target sequence or target structure motif information; and
 - (iv) an output device that shows a screening or analyzing result obtained by the comparator.
 - 24. A method based on a computer for identifying a target sequence or a target structure motif derived from a coryneform bacterium, comprising the following:
 - (i) inputting at least one nucleotide sequence information selected from SEQ ID NOS:1 to 3501, target sequence information or target structure motif information into a user input device;
 - (ii) at least temporarily storing said information;
 - (iii) comparing the at least one nucleotide sequence information selected from SEQ ID NOS:1 to 3501 with the target sequence or target structure motif information; and

- (iv) screening and analyzing nucleotide sequence information which is coincident with or analogous to the target sequence or target structure motif information.
- 25. A system based on a computer for identifying a target sequence or a target structure motif derived from a coryneform bacterium, comprising the following:
 - (i) a user input device that inputs at least one amino acid sequence information selected from SEQ ID NOS: 3502 to 7001, and target sequence or target structure motif information;
 - (ii) a data storage device for at least temporarily storing the input information;
 - (iii) a comparator that compares the at least one amino acid sequence information selected from SEQ ID NOS: 3502 to 7001 with the target sequence or target structure motif information, recorded by the data storage device for screening and analyzing amino acid sequence information which is coincident with or analogous to the target sequence or target structure motif information; and
 - (iv) an output device that shows a screening or analyzing result obtained by the comparator.
- **26.** A method based on a computer for identifying a target sequence or a target structure motif derived from a coryneform bacterium, comprising the following:
 - (i) inputting at least one amino acid sequence information selected from SEQ ID NOS:3502 to 7001, and target sequence information or target structure motif information into a user input device;
 - (ii) at least temporarily storing said information;
 - (iii) comparing the at least one amino acid sequence information selected from SEQ ID NOS:3502 to 7001 with the target sequence or target structure motif information; and
 - (iv) screening and analyzing amino acid sequence information which is coincident with or analogous to the target sequence or target structure motif information.
- 27. A system based on a computer for determining a function of a polypeptide encoded by a polynucleotide having a target nucleotide sequence derived from a coryneform bacterium, comprising the following:
 - (i) a user input device that inputs at least one nucleotide sequence information selected from SEQ ID NOS:2 to 3501, function information of a polypeptide encoded by the nucleotide sequence, and target nucleotide sequence information;
 - (ii) a data storage device for at least temporarily storing the input information;
 - (iii) a comparator that compares the at least one nucleotide sequence information selected from SEQ ID NOS: 2 to 3501 with the target nucleotide sequence information for determining a function of a polypeptide encoded by a polynucleotide having the target nucleotide sequence which is coincident with or analogous to the polynucleotide having at least one nucleotide sequence selected from SEQ ID NOS:2 to 3501; and
 - (iv) an output devices that shows a function obtained by the comparator.
- 28. A method based on a computer for determining a function of a polypeptide encoded by a polypeptide encoded by a polynucleotide having a target nucleotide sequence derived from a coryneform bacterium, comprising the following:
 - (i) inputting at least one nucleotide sequence information selected from SEQ ID NOS:2 to 3501, function information of a polypeptide encoded by the nucleotide sequence, and target nucleotide sequence information;
 (ii) at least temporarily storing said information;
 - (iii) comparing the at least one nucleotide sequence information selected from SEQ ID NOS:2 to 3501 with the target nucleotide sequence information; and
 - (iv) determining a function of a polypeptide encoded by a polynucleotide having the target nucleotide sequence which is coincident with or analogous to the polynucleotide having at least one nucleotide sequence selected from SEQ ID NOS:2 to 3501.
 - 29. A system based on a computer for determining a function of a polypeptide having a target amino acid sequence derived from a coryneform bacterium, comprising the following:
 - (i) a user input device that inputs at least one amino acid sequence information selected from SEQ ID NOS: 3502 to 7001, function information based on the amino acid sequence, and target amino acid sequence information;

238

BNSDOCID: <FR_ 1108790A2 I

5

10

15

20

25

30

35

45

50

- (ii) a data storing device for at least temporarily storing the input information;
- (iii) a comparator that compares the at least one amino acid sequence information selected from SEQ ID NOS: 3502 to 7001 with the target amino acid sequence information for determining a function of a polypeptide having the target amino acid sequence which is coincident with or analogous to the polypeptide having at least one amino acid sequence selected from SEQ ID NOS:3502 to 7001; and
- (iv) an output device that shows a function obtained by the comparator.
- **30.** A method based on a computer for determining a function of a polypeptide having a target amino acid sequence derived from a coryneform bacterium, comprising the following:
 - (i) inputting at least one amino acid sequence information selected from SEQ ID NOS:3502 to 7001, function information based on the amino acid sequence, and target amino acid sequence information;
 - (ii) at least temporarily storing said information;
 - (iii) comparing the at least one amino acid sequence information selected from SEQ ID NOS:3502 to 7001 with the target amino acid sequence information; and
 - (iv) determining a function of a polypeptide having the target amino acid sequence which is coincident with or analogous to the polypeptide having at least one amino acid sequence selected from SEQ ID NOS:3502 to 7001.
- 20 31. The system according to any one of claims 23, 25, 27 and 29, wherein a coryneform bacterium is a microorganism of the genus Corynebacterium, the genus Brevibacterium, or the genus Microbacterium.
 - **32.** The method according to any one of claims 24, 26, 28 and 30, wherein a coryneform bacterium is a microorganism of the genus *Corynebacterium*, the genus *Brevibacterium*, or the genus *Microbacterium*.
 - 33. The system according to claim 31, wherein the microorganism belonging to the genus Corynebacterium is selected from the group consisting of Corynebacterium glutamicum, Corynebacterium acetoacidophilum, Corynebacterium acetoglutamicum, Corynebacterium callunae, Corynebacterium herculis, Corynebacterium lilium, Corynebacterium melassecola, Corynebacterium thermoaminogenes, and Corynebacterium ammoniagenes.
 - 34. The method according to claim 32, wherein the microorganism belonging to the genus *Corynebacterium* is selected from the group consisting of *Corynebacterium glutamicum*, *Corynebacterium acetoacidophilum*, *Corynebacterium acetoglutamicum*, *Corynebacterium callunae*, *Corynebacterium herculis*, *Corynebacterium lilium*, *Corynebacterium melassecola*, *Corynebacterium thermoaminogenes*, and *Corynebacterium ammoniagenes*.
 - 35. A recording medium or storage device which is readable by a computer in which at least one nucleotide sequence information selected from SEQ ID NOS:1 to 3501 or function information based on the nucleotide sequence is recorded, and is usable in the system of claim 23 or 27 or the method of claim 24 or 28.
- 40 36. A recording medium or storage device which is readable by a computer in which at least one amino acid sequence information selected from SEQ ID NOS:3502 to 7001 or function information based on the amino acid sequence is recorded, and is usable in the system of claim 25 or 29 or the method of claim 26 or 30.
 - 37. The recording medium or storage device according to claim 35 or 36, which is a computer readable recording medium selected from the group consisting of a floppy disc, a hard disc, a magnetic tape, a random access memory (RAM), a read only memory (ROM), a magneto-optic disc (MO), CD-ROM, CD-R, CD-RW, DVD-ROM, DVD-RAM and DVD-RW.
 - **38.** A polypeptide having a homoserine dehydrogenase activity, comprising an amino acid sequence in which the Val residue at the 59th in the amino acid sequence of homoserine dehydrogenase derived from a coryneform bacterium is replaced with an amino acid residue other than a Val residue.
 - 39. A polypeptide comprising an amino acid sequence in which the Val residue at the 59th position in the amino acid sequence as represented by SEQ ID NO:6952 is replaced with an amino acid residue other than a Val residue.
 - 40. The polypeptide according to claim 38 or 39, wherein the Val residue at the 59th position is replaced with an Ala residue.

239

BNSDOCID: <EP___1108790A2_I_>

55

5

10

15

25

30

35

45

- 41. A polypeptide having pyruvate carboxylase activity, comprising an amino acid sequence in which the Pro residue at the 458th position in the amino acid sequence of pyruvate carboxylase derived from a coryneform bacterium is replaced with an amino acid residue other than a Pro residue.
- 42. A polypeptide comprising an amino acid sequence in which the Pro residue at the 458th position in the amino acid sequence represented by SEQ ID NO:4265 is replaced with an amino acid residue other than a Pro residue.
 - 43. The polypeptide according to claim 41 or 42, wherein the Pro residue at the 458th position is replaced with a Ser residue.
 - 44. The polypeptide according to any one of claims 38 to 43, which is derived from Corynebacterium glutamicum.
 - 45. A DNA encoding the polypeptide of any one of claims 38 to 44.
- 46. A recombinant DNA comprising the DNA of claim 45.
 - 47. A transformant comprising the recombinant DNA of claim 46.
 - 48. A transformant comprising in its chromosome the DNA of claim 45.
 - 49. The transformant according to claim 47 or 48, which is derived from a coryneform bacterium.
 - 50. The transformant according to claim 49, which is derived from Corynebacterium glutamicum.
- 51. A method for producing L-lysine, comprising:

culturing the transformant of any one of claims 47 to 50 in a medium to produce and accumulate L-lysine in the medium, and recovering the L-lysine from the culture.

30

35

40

45

55

10

- **52.** A method for breeding a coryneform bacterium using the nucleotide sequence information represented by SEQ ID NOS:1 to 3431, comprising the following:
 - (i) comparing a nucleotide sequence of a genome or gene of a production strain derived a coryneform bacterium which has been subjected to mutation breeding so as to produce at least one compound selected from an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid, and analogous thereof by a fermentation method, with a corresponding nucleotide sequence in SEQ ID NOS:1 to 3431;
 - (ii) identifying a mutation point present in the production strain based on a result obtained by (i);
 - (iii) introducing the mutation point into a coryneform bacterium which is free of the mutation point, or deleting the mutation point from a coryneform bacterium having the mutation point; and
 - (iv) examining productivity by the fermentation method of the compound selected in (i) of the coryneform bacterium obtained in (iii).
- 53. The method according to claim 52, wherein the gene is a gene encoding an enzyme in a biosynthetic pathway or a signal transmission pathway.
 - **54.** The method according to claim 52, wherein the mutation point is a mutation point relating to a useful mutation which improves or stabilizes the productivity.
- 55. A method for breading a coryneform bacterium using the nucleotide sequence information represented by SEQ ID NOS:1 to 3431, comprising:
 - (i) comparing a nucleotide sequence of a genome or gene of a production strain derived a coryneform bacterium which has been subjected to mutation breeding so as to produce at least one compound selected from an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid, and analogous thereof by a fermentation method, with a corresponding nucleotide sequence in SEQ ID NOS:1 to 3431;
 - (ii) identifying a mutation point present in the production strain based on a result obtain by (i);
 - (iii) deleting a mutation point from a coryneform bacterium having the mutation point; and

- (iv) examining productivity by the fermentation method of the compound selected in (i) of the coryneform bacterium obtained in (iii).
- **56.** The method according to claim 55, wherein the gene is a gene encoding an enzyme in a biosynthetic pathway or a signal transmission pathway.
- 57. The method according to claim 55, wherein the mutation point is a mutation point which decreases or destabilizes the productivity.
- 58. A method for breeding a coryneform bacterium using the nucleotide sequence information represented by SEQ ID NOS:2 to 3431, comprising the following:
 - (i) identifying an isozyme relating to biosynthesis of at least one compound selected from an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid, and analogous thereof, based on the nucleotide sequence information represented by SEQ ID NOS:2 to 3431;
 - (ii) classifying the isozyme identified in (i) into an isozyme having the same activity;
 - (iii) mutating all genes encoding the isozyme having the same activity simultaneously; and
 - (iv) examining productivity by a fermentation method of the compound selected in (i) of the coryneform bacterium which have been transformed with the gene obtained in (iii).
 - 59. A method for breeding a coryneform bacterium using the nucleotide sequence information represented by SEQ ID NOS:2 to 3431, comprising the following:
 - (i) arranging a function information of an open reading frame (ORF) represented by SEQ ID NOS:2 to 3431; (ii) allowing the arranged ORF to correspond to an enzyme on a known biosynthesis or signal transmission pathway:
 - (iii) explicating an unknown biosynthesis pathway or signal transmission pathway of a coryneform bacterium in combination with information relating known biosynthesis pathway or signal transmission pathway of a coryneform bacterium;
 - (iv) comparing the pathway explicated in (iii) with a biosynthesis pathway of a target useful product; and (v) transgenetically varying a coryneform bacterium based on the nucleotide sequence information to either strengthen a pathway which is judged to be important in the biosynthesis of the target useful product in (iv) or weaken a pathway which is judged not to be important in the biosynthesis of the target useful product in (iv).
- 35 60. A coryneform bacterium, bred by the method of any one of claims 52 to 59.
 - **61.** The coryneform bacterium according to claim 60, which is a microorganism belonging to the genus *Corynebacterium*, the genus *Brevibacterium*, or the genus *Microbacterium*.
- 40 62. The coryneform bacterium according to claim 61, wherein the microorganism belonging to the genus Corynebacterium is selected from the group consisting of Corynebacterium glutamicum, Corynebacterium acetoacidophilum, Corynebacterium acetoglutamicum, Corynebacterium callunae, Corynebacterium herculis, corynebacterium lilium, Corynebacterium melassecola, Corynebacterium thermoamino genes, and Corynebacterium ammonia genes.
 - **63.** A method for producing at least one compound selected from an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid and an analogue thereof, comprising:
 - culturing a coryneform bacterium of any one of claims 60 to 62 in a medium to produce and accumulate at least one compound selected from an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid, and analogues thereof; recovering the compound from the culture.

 - **64.** The method according to claim 63, wherein the compound is L-lysine.
 - 65. A method for identifying a protein relating to useful mutation based on proteome analysis, comprising the following:
 - (i) preparing

5

15

20

25

30

45

50

a protein derived from a bacterium of a production strain of a coryneform bacterium which has been subjected to mutation breeding by a fermentation process so as to produce at least one compound selected from an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid, and analogues thereof, and a protein derived from a bacterium of a parent strain of the production strain;

5

10

- (ii) separating the proteins prepared in (i) by two dimensional electrophoresis;
- (iii) detecting the separated proteins, and comparing an expression amount of the protein derived from the production strain with that derived from the parent strain;
- (iv) treating the protein showing different expression amounts as a result of the comparison with a peptidase to extract peptide fragments;
- (v) analyzing amino acid sequences of the peptide fragments obtained in (iv); and
- (vi) comparing the amino acid sequences obtained in (v) with the amino acid sequence represented by SEQ
- ID NOS:3502 to 7001 to identifying the protein having the amino acid sequences.
- 66. The method according to claim 65, wherein the coryneform bacterium is a microorganism belonging to the genus *corynebacterium*, the genus *Brevibacterium*, or the genus *Microbacterium*.
 - 67. The method according to claim 66, wherein the microorganism belonging to the genus Corynebacterium is selected from the group consisting of Corynebacterium glutamicum, Corynebacterium acetoacidophilum, Corynebacterium acetoglutamicum, Corynebacterium callunae, Corynebacterium herculis, Corynebacterium lilium, Corynebacterium melassecola, Corynebacterium thermoaminogenes, and Corynebacterium ammoniagenes.
 - 68. A biologically pure culture of Corynebacterium glutamicum AHP-3 (FERM BP-7382).

25

20

30

35

40

45

50

245

FIG. 4

