

Optimality in Policies

Easwar Subramanian

TCS Innovation Labs, Hyderabad

Email: easwar.subramanian@tcs.com / cs5500.2020@iith.ac.in

August 19, 2022

Overview

Review

2 Optimality in Policies

Policy Iteration

Review

Markov Decision Process

Markov decision process is a tuple $\langle S, A, P, R, \gamma \rangle$ where

- \triangleright S: (Finite) set of states
- \triangleright \mathcal{A} : (Finite) set of actions
- $\triangleright \mathcal{P}$: State transition probability

$$\mathcal{P}_{ss'}^{a} = \mathbb{P}(s_{t+1} = s' | s_t = s, a_t = a), a_t \in \mathcal{A}$$

 \triangleright \mathcal{R} : Reward for taking action a_t at state s_t and transitioning to state s_{t+1} is given by the deterministic function \mathcal{R}

$$r_{t+1} = \mathcal{R}(s_t, a_t, s_{t+1})$$

 $ightharpoonup \gamma$: Discount factor such that $\gamma \in [0,1]$

Policy

Let π denote a policy that maps state space \mathcal{S} to action space \mathcal{A}

Policy

- ▶ Deterministic policy: $a = \pi(s), s \in \mathcal{S}, a \in \mathcal{A}$
- ▶ Stochastic policy $\pi(a|s) = P[a_t = a|s_t = s]$

Value Functions with Policy

Given a MDP and a policy π , we define the value of a policy as follows:

State-value function

The value function $V^{\pi}(s)$ in state s is the expected (discounted) total return starting from state s and then following the policy π

$$V^{\pi}(s) = \mathbb{E}_{\pi} \left(\sum_{k=0}^{\infty} \gamma^k r_{t+k+1} | s_t = s \right)$$

The state-value function can be decomposed into immediate reward plus discounted value of successor state

$$V^{\pi}(s) = \mathbb{E}_{\pi}(r_{t+1} + \gamma V^{\pi}(s_{t+1})|s_t = s)$$

Action Value Function

Action-value function

The action-value function Q(s,a) under policy π is the expected return starting from state s and taking action a and then following the policy π

$$Q^{\pi}(s, a) = \mathbb{E}_{\pi} \left(\sum_{k=0}^{\infty} \gamma^k r_{t+k+1} | s_t = s, a_t = a \right)$$

The action-value function can similarly be decomposed as

$$Q^{\pi}(s,a) = \mathbb{E}_{\pi}(r_{t+1} + \gamma Q^{\pi}(s_{t+1}, a_{t+1}) | s_t = s, a_t = a)$$

Relationship between $V^{\pi}(\cdot)$ and $Q^{\pi}(\cdot)$

Using definitions of $V^{\pi}(s)$ and $Q^{\pi}(s,a)$, we can arrive at the following relationships

$$V^{\pi}(s) = \sum_{a \in \mathcal{A}} \pi(a|s) Q^{\pi}(s, a)$$

$$Q^{\pi}(s, a) = \sum_{s' \in \mathcal{S}} \mathcal{P}^{a}_{ss'} \left[\mathcal{R}^{a}_{ss'} + \gamma V^{\pi}(s') \right]$$

Optimality in Policies

Solution to an MDP

Solving an MDP means finding a policy π_* as follows

$$\pi_* = \operatorname*{arg\,max}_{\pi} \left[\mathbb{E}_{\pi} \left(\sum_{t=0}^{\infty} \gamma^t r_{t+1} \right) \right]$$

is maximum

- ▶ Denote optimal value function $V_*(s) = V^{\pi_*}(s)$
- ▶ Denote optimal action value function $Q_*(s, a) = Q^{\pi_*}(s, a)$
- ▶ The main goal in RL or solving an MDP means finding an **optimal value function** V_* or **optimal action value function** Q_* or **optimal policy** π_*

Optimal Policy

Define a partial ordering over policies

$$\pi \ge \pi'$$
, if $V^{\pi}(s) \ge V^{\pi'}(s)$, $\forall s \in \mathcal{S}$

Theorem

- ▶ There exists an optimal policy π_* that is better than or equal to all other policies.
- ▶ All optimal policies achieve the optimal value function, $V_*(s) = V^{\pi_*}(s)$
- ▶ All optimal policies achieve the optimal action-value function, $Q_*(s,a) = Q^{\pi_*}(s,a)$

Grid World Problem

TCS Research & Innovation

Consider a 4×4 grid world problem

 $R_t = -1 \\ \text{on all transitions}$

- \triangleright $S: \{1, 2, \dots, 14\}$ (non-terminal) + 2 terminal states (shaded)
- $ightharpoonup \mathcal{A}: \{ \text{East, West, North, South} \}$
- \triangleright \mathcal{P} : Upon choosing an action from \mathcal{A} , state transitions are deterministic; except the actions that would take the agent off the grid in fact leave the state unchanged
- \triangleright \mathcal{R} : Reward is -1 on all transitions until the terminal state is reached

Grid World Problem

	1	2	3
4	5	6	7
8	9	10	11
12	13	14	

 $R_t = -1 \\ \text{on all transitions}$

 $\underline{\mathbf{Goal}}$: Reach any of the goal state in as minimum plays as possible

Question: What could be an optimal policy to achieve the above objective?

Grid World Problem : Optimal Policies

Question: How many optimal policies are there?

Answer: There are infinite optimal policies (including some deterministic ones)

Finding an Optimal Policy

Question: Suppose we are given $Q_*(s,a)$. Can we find an optimal policy?

Answer: An optimal policy can be found by maximising over $Q_*(s,a)$

$$\pi_*(a|s) = \begin{cases} 1 & \text{if } a = \arg\max_{a \in \mathcal{A}} Q_*(s, a) \\ 0 & \text{Otherwise} \end{cases}$$

- ▶ If we know $Q_*(s, a)$, we immediately have an optimal policy
- ▶ There is always a deterministic optimal policy for any MDP

Greedy policy with respect to optimal (action) value function is an optimal policy

An optimal policy can be found by maximising over $Q_*(s,a)$

$$\pi_*(s) = \begin{cases} 1 & \text{if } a = \arg\max_{a \in \mathcal{A}} Q_*(s, a) \\ 0 & \text{Otherwise} \end{cases}$$

Greedy Policy

For a given $Q^{\pi}(\cdot,\cdot)$, define $\pi'(s)$ as follows

$$\pi'(s) = \operatorname{greedy}(Q) = \begin{cases} 1 & \text{if } a = \arg \max_{a \in \mathcal{A}} Q^{\pi}(s, a) \\ 0 & \text{Otherwise} \end{cases}$$

For a given $V^{\pi}(\cdot)$, define $\pi'(s)$ as follows

$$\pi'(s) = \operatorname{greedy}(V) = \begin{cases} 1 & \text{if } a = \operatorname{arg\,max}_{a \in \mathcal{A}} \left[\sum_{s' \in \mathcal{S}} \mathcal{P}_{ss'}^{a} \left(\mathcal{R}_{ss'}^{a} + \gamma V^{\pi}(s') \right) \right] \\ 0 & \text{Otherwise} \end{cases}$$

Question: Suppose we are given $Q_*(s, a), \forall s \in \mathcal{S}$. Can we find $V_*(s)$?

$$V_*(s) = \max_a Q_*(s, a)$$

Question: Suppose we are given $V_*(s), \forall s \in \mathcal{S}$. Can we find $Q_*(s, a)$?

$$Q_*(s, a) = \left[\sum_{s' \in \mathcal{S}} \mathcal{P}_{ss'}^a \left(\mathcal{R}_{ss'}^a + \gamma V_*(s') \right) \right]$$

Policy Iteration

Policy Iteration

Question: Is there a way to arrive at π_* starting from an arbitrary policy π ?

Answer: Policy Iteration

ightharpoonup Evaluate the policy π

$$\star$$
 Compute $V^{\pi}(s) = \mathbb{E}_{\pi}(r_{t+1} + \gamma r_{t+2} + \gamma^2 r_{t+3} + \cdots | s_t = s)$

▶ Improve the policy π

$$\pi'(s) = \operatorname{greedy}(V^{\pi}(s))$$

$$\pi_0 \xrightarrow{\mathrm{E}} V^{\pi_0} \xrightarrow{\mathrm{I}} \pi_1 \xrightarrow{\mathrm{E}} V^{\pi_1} \xrightarrow{\mathrm{I}} \pi_2 \xrightarrow{\mathrm{E}} \cdots \xrightarrow{\mathrm{I}} \pi^* \xrightarrow{\mathrm{E}} V^*,$$

Policy Evaluation

- **Problem**: Evaluate a given policy π
- Compute $V^{\pi}(s) = \mathbb{E}_{\pi}(r_{t+1} + \gamma r_{t+2} + \gamma^2 r_{t+3} + \cdots | s_t = s)$
- ▶ Solution 1 : Solve a system of linear equations using any solver
- ▶ Solution 2 : Iterative application of Bellman Evaluation Equation
- ► Iterative update rule :

$$V_{k+1}^{\pi}(s) \leftarrow \sum_{a} \pi(a|s) \sum_{s'} \mathcal{P}_{ss'}^{a} \left[\mathcal{R}_{ss'}^{a} + \gamma V_{k}^{\pi}(s') \right]$$

▶ The sequence of value functions $\{V_1^{\pi}, V_2^{\pi}, \cdots, \}$ converge to V^{π}

Policy Improvement

Suppose we know V^{π} . How to improve policy π ?

The answer lies in the definition of action value function $Q^{\pi}(s,a)$. Recall that,

$$Q^{\pi}(s, a) = \mathbb{E}_{\pi} \left(\sum_{k=0}^{\infty} \gamma^{k} r_{t+k+1} | s_{t} = s, a_{t} = a \right)$$

$$= \mathbb{E}(r_{t+1} + \gamma V^{\pi}(s_{t+1}) | s_{t} = s, a_{t} = a)$$

$$= \sum_{s' \in S} \mathcal{P}_{ss'}^{a} \left[\mathcal{R}_{ss'}^{a} + \gamma V^{\pi}(s') \right]$$

- ▶ If $Q^{\pi}(s, a) > V^{\pi}(s)$ \implies Better to select action a in state s and thereafter follow the policy π
- ► This is a special case of the policy improvement theorem

Policy Improvement Theorem

Theorem

Let π and π' be any pair of deterministic policies such that, for all $s \in \mathcal{S}$,

$$Q^{\pi}(s, \pi'(s)) \ge V^{\pi}(s).$$

Then $V^{\pi'}(s) > V^{\pi}(s)$ for all $s \in \mathcal{S}$

Proof.

$$V^{\pi}(s) \leq Q^{\pi}(s, \pi'(s)) = \mathbb{E}_{\pi'}(r_{t+1} + \gamma V^{\pi}(s_{t+1})|s_{t} = s)$$

$$\leq \mathbb{E}_{\pi'}(r_{t+1} + \gamma Q^{\pi}(s_{t+1}, \pi'(s_{t+1}))|s_{t} = s)$$

$$= \mathbb{E}_{\pi'}(r_{t+1} + \gamma r_{t+2} + \gamma^{2} V^{\pi}(s_{t+2})|s_{t} = s)$$

$$\leq \mathbb{E}_{\pi'}(r_{t+1} + \gamma r_{t+2} + \gamma^{2} Q^{\pi}(s_{t+2}, \pi'(s_{t+2}))|s_{t} = s)$$

$$\leq \mathbb{E}_{\pi'}(r_{t+1} + \gamma r_{t+2} + \gamma^{2} r_{t+3} + \cdots |s_{t} = s) = V^{\pi'}(s)$$