

Electrostática en medios materiales

Tema 2

.

Medios materiales

- Desde el punto de vista del campo electrostático los materiales se dividen en:
 - Conductores: algunos de sus electrones se pueden mover en todo el volumen casi libremente, por ejemplo por acción de un campo electrostática
 - Dieléctricos: sus moléculas no comparten sus electrones. Los campos electroestáticos sólo pueden deformar esas moléculas.
- Al hablar de conducción eléctrica debemos introducir otro tipo de materiales, los semiconductores

Medios conductores

 Si existe un campo en el interior de un conductor, cualquier electrón se moverá en el volumen en contra del campo.

- Se producirá un desplazamiento de cargas negativas en una parte del conductor. Esa parte quedará cargada negativamente.
- La parte contraria, aparecerá cargada positivamente.
- El movimiento de cargas cesará cuando el campo en el interior del conductor sea nulo. $\vec{E}_{\rm interior} = \vec{0}$

2

Propiedades de los conductores

 El campo electrostático es nulo en su interior.

Luego:

No puede existir carga neta en su volumen

- La carga se repartirá sólo por su superficie.

Si el campo es nulo no puede existir diferencia de potencial:

- El volumen de un conductor es equipotencial.
- En los conductores, el campo eléctrico es siempre perpendicular a su superficie.

Y vale:
$$\vec{E} = \frac{\sigma}{\epsilon}$$

- El campo electrostático es mayor en los puntos con menor radio de curvatura.
- En todos los conductores el potencial que adquieren al ser cargados depende de su geometría $V \propto Q$
- La constante de proporcionalidad entre potencial y carga se denomina capacidad del conductor: C·V = Q

5

Conductores en campos

- En el interior de un conductor, el campo es nulo
 - Nunca puede existir carga en el volumen de un conductor.
 - Los conductores son volúmenes equipotenciales.
 - El campo es siempre perpendicular a la superficie de los conductores.
 - El campo es mayor en los puntos con menor radio de curvatura.
- El potencial que adquiere un conductor es proporcional a su carga.

Electroscopio

7

Universidad de Alcalá

Fenómenos de influencia

- Si un conductor cargado se acerca a uno descargado reordena sus cargas. Influye en él.
- Condensador son dos conductores en influencia total.
- Se caracterizan por su capacidad, que sólo depende de la geometría de los conductores y de su posición relativa.

Condensadores

- · Los tipos más usuales son:
 - Plano paralelos $C = \varepsilon_0 \frac{A}{d}$
 - Esféricos . . $C = 4\pi\,\epsilon_0 \bigg[\frac{a\,b}{b-a} \bigg]$
 - Cilíndricos $C = \frac{2\pi \epsilon_0}{ln\left(\frac{r_2}{r_1}\right)}$

Se asocian:

- En paralelo, conectados a la misma diferencia de potencial $C_p = C_1 + C_2$
- En serie tienen la misma carga $\frac{1}{C_s} = \frac{1}{C_1} + \frac{1}{C_2}$

Universidad de Alcalá

Medios dieléctricos

- En los dieléctricos los electrones están ligados, un campo eléctrico deformará la estructura de sus moléculas:
 - Moléculas covalentes:

Moléculas polares

Moléculas iónicas

Polarización dieléctrica

- La densidad de dipolos del material por unidad de volumen, la llamaremos vector polarización o simplemente polarización
- $\vec{P} = \lim_{\Delta \tau \to 0} \frac{\Delta \vec{p}}{\Delta \tau}$ $\vec{P} = \frac{d\vec{p}}{d\tau}$ • Se mide en c m⁻²
- · La relación entre causa (campo) y efecto (polarización) es mediante la susceptibilidad eléctrica: $\vec{P} = \chi_e \, \epsilon_0 \, \vec{E}$

11

Universidad Densidades de carga de polarización

- A un dieléctrico homogéneo en un campo eléctrico le "aparece" carga en su superficie debido a que se polariza.
- La densidad superficial de carga en las caras perpendiculares coincide con el módulo del vector polarización $\sigma_p = \vec{P} \cdot \vec{n}$
- En sus caras paralelas al campo no hay carga.
- En general aparecerá en su volumen $\Delta Q_p = \int \rho_p d\tau$ una carga de polarización.
- La carga de polarización desaparece al hacerlo el campo aplicado

Vector Desplazamiento

- Si existe carga de polarización, al aplicar el teorema de Gauss $\oint_{\Sigma} \vec{E} \cdot d\vec{s} = \frac{Q_{total}}{\epsilon_0}$ También debemos considerar la carga de polarización, con lo que obtenemos: $\oint_{\Sigma} (\epsilon_0 \vec{E} + \vec{P}) \cdot d\vec{s} = Q_{\text{libre}}$
- Desplazamiento eléctrico. $\vec{D} = \epsilon_0 \vec{E} + \vec{P}$

Para medios materiales el teorema de Gauss es

 $\oint_{\Sigma} \vec{D} \cdot d\vec{s} = Q_{Libre}$

13

Relaciones constitutivas

• Entre los vectores campo, desplazamiento y polarización existen las siguientes relaciones:

$$\vec{D} = \epsilon_0 \vec{E} + \vec{P} \quad \vec{P} = \chi_e \ \vec{E} \qquad \vec{D} = \epsilon_0 \big(1 + \chi_e \big) \vec{E}$$

- Si llamamos permitividad a $\epsilon_0 (1 + \chi_e) = \epsilon$
- Introducimos la permitividad relativa $\epsilon_{\rm r} = \frac{\epsilon}{\epsilon_0}$ $\epsilon_{\rm r} = \frac{\epsilon_0 \left(1 + \chi_{\rm e}\right)}{\epsilon_0}$
- Obtenemos que $\vec{D} = \epsilon \; \vec{E} = \epsilon_0 \epsilon_r \; \vec{E}$