Chapter 2: Physical layer

Overview

- Physical layer is responsible for transmission of a stream of bits
 - Put bits from a machine to a medium
 - Pick bits from the medium give to receiver
- Some issues
 - Medium
 - •Line Encoding: representing the digital logic levels using the physical attributes associated with the media.
 - Multiplexing

From signal to packet

Model of data transmission system

Figure 1.1 Simplified Communications Model

Data Communication networks

Figure 1.3 Simplified Network Models

Direct Data transmission system

Communication Media

- Wired media: cable guides signals
 - Twisted Pair
 - Coaxial Cable
 - Fiber Optics
- Wireless media: no cable guides signal
 - Radio
 - Infra red
 - Light
 - •

Twisted pair

- (a) Category 3 UTP.
- (b) Category 5 UTP.

Twisted pair

- Contains several pairs of copper, cable in the one pair is twisted together.
- Two kinds of twisted pair:
 - STP-Shielded Twisted Pair:
 - There is a metal coat, not popular
 - UTP-Unshielded Twisted Pair:
 - No metal coat, popular

Evaluation

- Cheap, simple
- Widely used
- Weak resistance to noice
- Short Transmission distance

- Need amplification after each5km in analog transmission
- In digital transmission
 - Need repeater after each 2 km
 - In Ethernet LAN deployment < 100m
- Limited speed (100Mbps)

Coaxial cable

Category	Impedance	Use
RG-59	75 Ω	Cable TV
RG-58	50 Ω	Thin Ethernet
RG-11	50 Ω	Thick Ethernet

Structure:

- Olnner conduct is coated by an insulator environment
- OShielded by a metal grill
- OA plastic cover for protection.

Application

- Using in TV transmission
- For transmission of telephone signal
 - 10,000 calls in the same time
 - Is being replaced by fiber optics
- Linking the computers of the short distance
- LAN 10BaseT, 100BaseT, ...

- For digital transmission
 - Repeater should be used after each 1km
 - More repeater is needed for high speed transmission

- (a) Single core
- (b) Cable with 3 cores

Optical fiber transmission mode

- Multimode stepped index :
 - Several beam travel in slightly different direction
 - Beams arrive in different delay
 - Pulse can easily distort
- Multimode graded index:
 - Index reduce gradually from the center to cladding.
 - Beams closed to center travel slower than cladding.
 Beams travel in curve form.
 - Reduce pulse distortion.

- Single mode:
 - Index change less from center to cladding in comparison with multimode.
 - Beams travel along the center axe.
 - Pulses experience less distortion.

Application of optical fiber

- Used for long distance transmission
- Used for communication in metropolitan networks
- Used for connecting routers of ISP
- Used in backbone part of a LAN

- Advantage in comparison with other cables
 - Large data rate
 - Small and light cable
 - Low attenuation
 - Better isolation from electromagnetic environment
 - Large distance between repeaters
 - Multimode →10km
 - Singlemode →40 km

Wireless media

- Terrestrial microwave
 - Used for metropolitan connection, for cellular network
- Microwave satellite
 - Used in TV, Long distance telephone communication
- Radio broadcast
- Infrared
 - Small scope, low data rate, unable to travel through the wall

Wireless media

- Radio wave:
 - Wavelengths: 1mm 100.000km
 - Frequencies: 3 Hz 300 GHz
 - Ex: Bluetooth, WIFI
- Microwave:
 - Wavelengths: 1mm-1 m
 - Frequencies: 300 MHz-300 GHz
 - Terrestrial microwave : metro connection, cellular communication
 - Satelite microwave: TV, long distance telephone

Wireless media

- •Infra red:
 - Wavelengths: 700 nm- 1 mm
 - •frequency: 300 GHz-430 THz
 - Small scope, no wall penetration
 - •Ex: use in remote controls
- Free Space Optics
 - •Wavelengths: 850nm, 1300nm, 1550 nm

Frequency range of transmission channels

Transmission methods

- Simplex: Data is trasmitted in one direction
- Full Duplex: Data can be transmitted in both directions at the same time
- Half duplex: Data can be transmitted in both directions but one direction at a time.

Transmission format

- Sequent transmission: Transmit 1 bit at a moment (over a signal line)
- Parallel transmission: Transmit multiple bits at the same time (over multiple signal lines)

Topology

- Point-to-point
 - Star
 - Ring
 - Mesh
 - Point-to-multipoint
 - Bus
 - Ring
 - Star

Point -to-Point

Point-to-point

In point-to-point topology, a transmission line connects two devices.

- Link between two devices:
 - 1 line (half duplex) or
 - 2 lines (duplex)
- In case of half duplex transmission, there may be collision if two devices on the same link send data at the same time

Point-to-multipoint

Point-to-multipoint

- Common character of point-to-multipoint topo is to use a unique medium to connects multiple nodes.
- Data is broadcasting over the medium
- Collision when two nodes transmit signal in the same time
- Need a control mechanism to allow a single node to transmit → multiple access method → see in Datalink layer.

Medium interface

- Data terminal equipment (DTE)
 - Have data to transmit but has no feature for transmission
 - Need an additional device for accessing the media
- Data circuit terminating equipment (DCE)
 - transmit bits on the media
 - transmit data and control information to another DCE
- Need a clear interface standard between DTE DCE

(a) Generic interface to transmission medium

Medium interface

The medium interface is defined according to different aspects:

- Mechanism
 - Define the form of the interface, number of pins for assuring the interfaces match together
- Electrics
 - Define the level of voltage to be used
 - Define the length of pulse (frequency)
 - Define enconding method
- Functionalities
 - Functionality of each pins
 - There are 4 groups of pins: data, control, synchronization, ground
- Procedure
 - Lists of events to perform for transmitting data

Example: EIA-232-E/RS-232

- Define for serial communication
- Mechanism: ISO 2110
- Electrics: V. 28
- Functionality: V. 24
- Procedure: V. 24

Example: V.24 / EIA-232-E

- Mechanic:
 - 25 or 15 pins
 - Transmission distance 15m
- Electrics
 - Digital data
 - 1=-3v, 0=+3v (NRZ-L)
 - Data rate 20kbps
 - Transmission distance15m

Figure 6.5 Pin Assignments for V.24/EIA-232 (DTE Connector Face)

Encoding Technics: Data to Signals representations

Introduction

Digital data - digital signal

Digital data - analogical signal

Analogical data - digital signa

Analogical data - analogical signal

Reading: Chapter 5, Data and Computer Communications, William Stallings

ONE LOVE. ONE FUTURE.

Basic ideas

- Representing data by symbols
- A symbol is an elementary signal:

Set of mapping is the Encoding scheme

• Encoding could be performed by bit or by a group of bits e.g., 2 or 4 or 8 bits.

Basic ideas

Line coding: represent digital data by digital signals

- Use different digital signals at different voltage levels to represent digital data (bits 0 and 1)
 - "A digital signal is one in which the signal intensity maintains a constant level for some period of time and then abruptly changes to another constant level"

(Data and Computer Communications, 8th Edition, William Stallings)

- An element signal / A symbol/ A pulse of signal
 - Case of digital signal: the shortest signal maintaining a constant level
- Senders encodes a flow of bits → flow of symbols
- Receiver: picks signals, detects symbols, decodes to bits

Line coding: represent digital data by digital signals

- Receiver should know when a symbol starts or ends: clock synchronization between sender and receiver
- There are many ways to represent 0 and 1 \rightarrow different encoding methods

Some line codes

- •NRZ
 - NRZ-L,NRZI
- Bipolar
 - Bipolar alternate mark inversion
 - Pseudoternary

- Biphase encoding
 - Manchester
 - Differential Manchester

NRZ-L Non Return to Zero Level

- During bit time, signal does not go back to 0 level
- Signal level is not changed during bit time.
- NRZ-L Non return to zero level
 - Bit 1 signal is in low/high level
 - Bit 0 signal is in high/low level
- 1 bit \rightarrow 1 symbol

NRZ-I Non return to zero invert

- Bit 0: signal level is not changed at the begining of bit time
- Bit 1: signal level is changed at the beginning of bit time
- A differential encoding method :
 - 0 and 1 are represented by the signal level change, not by the level itself.
 - Reliable/ simple.

Line code consideration

- 3 aspects should be considered in any encoding method:
 - Data speed: number of bits could be sent per second given symbol rate
 - Clock recovery on receiver side: If the clock recovery is correctly at receiver side, the received signal can be incorrectly seperated into symbols → cause error in the received data.
 - DC-component: Directed Current vontage component.
 - DC-component makes recepter mistakenly detect level of signal (by wrongly detect signal baseline)
 - Encoding should avoid DC-component by maintaining signal mean amplitude around 0.

NRZ

- NRZ advantages
 - Simple, utilise the maximum capacity of the line
- NRZ weaknesses
 - NRZ does not contain factors supporting clock synchorization
 - Example: when sending a flow of 20 bits 1s, the signal maintains one level and can be detected wrongly at receivers as 19 bits 1s.
 - Contain DC-component when sending a chain of 1s.
- Application
 - Encoding data on magnetic storage
 - Not popular in data transmission

Bipolar AMI

- Use more than 2 signal levels for 1 bit
- Bipolar alternate mark inversion
 - 0 : No signal
 - 1: Presence of signal. Two consequent 1s have two different signal levels
- pseudoternary
 - 1 : No signal
 - 0 : Presence of signal. Two consequent 0 have two different signal levels

Bipolar AMI

- No DC component
 - Mean of signal lever is always 0
- Good synchronization when sending many bit 1s
- Lost of synchronization when sending many bit 0s
- 3 possible signal levels for 1 bit:
 - Not optimal in transmission line usage.
 - Receiver needs to distinguish 3 levels of signal

Biphase: Manchester

- Manchester: Always change signal level in the middle of bit time
 - Bit 1: Signal change from low level to high level.
 - Bit 0: Signal change from high level to low level
 - Level change provides a synchonisation mechanism.
- Differential Manchester:
 - 0: signal level change at the begining of bit
 - 1: **no** signal level change at the begining of bit
 - Always change signal level in the middle of bit time for synchronization purpose

Manchester encoding

Manchester Encoding

Differential Manchester Encoding

Units in transmitting digital data in digital transmission

Term	Units	Definition
Data unit	bit	A single bit, Value 0 or 1
Data rate	bit/s	Rate transmitting bit
Signal element /Symbol	Pulse voltage of constant amplitude	Part of a signal that occupies the shortest interval of a signal code
Symbol rate/pulse rate	Number of symbol/s (baud)	Number of symbols generated in a unit of time

Symbol rate

 Number of symbol changes, waveform changes, or signaling events across the transmission medium per unit of time

•Unit: Baud/s = symbol/s

Nyquist rate

- Nyquist rate: 2 times bandwidth of a transmission line
 - Bandwidth: B (Hz)
 - Nyquist rate = 2B (Hz)
- The maximum pulse rate for a baseband channel is the Nyquist rate, and is double the bandwidth
 - Bandwidth B (Hz)→ max pulse rate is 2B pulse/s
- Data rate (bps) = pulse rate * number of bits represented by a symbol/pulse.
 - Data rate using NRZ-L?
 - Data rate using Manchester encoding?
- Baseband transmission: signal is directly sent using its original frequency
- Passband transmission: signal is shifted to frequency around carrier frequency.

 Relationship of Nyquist frequency & rate (example)

Line codes

Exercise-01

- 1. Draw the signal generated when we encode following data using different encodings:
 - 11000000 11001101
 - NRZ-L
 - Bipolar AMI
 - Manchester
- 2. We know that the following signal is generated from some data using standard Manchester encoding, assume that you act as receiver, please
 - Identify the starting and ending points of signal corresponding to bits
 - Identify the original data sent

Exercise-02

- We know that the following signal is generated from some data using standard Manchester encoding, assume that you act as receiver, please
 - Identify the starting and ending points of signal corresponding to bits
 - Identify the original data sent

Modulation of digital data to analog signal

- Example: data transmission over telephone line
 - Telephone line accept signal with frequencies between 300Hz -3400Hz
 - Digital data from the source must be modulated to analog signal to transmit over telephone line.
- 3 modulation techniques:
 - Amplitude-Shift Key
 - Frequency-Shift Key
 - Phase-Shift Key

Amplitude-Shift Key (ASK)

- Varying the amplitude of the carrier wave to represent digital data
 - Carrier original wave function: $A \cos(2\pi f t)$
 - 0 and 1 are represented by signals of two different amplitudes. Ex:
 - Amplitude A for 1
 - Amplitude 0 for 0
- Usually used in optical fiber

$$s(t) = \begin{cases} A\cos(2\pi f t) & \text{for } 1\\ 0 & \text{for } 0 \end{cases}$$

On-Off Keying (OOK)

- Used in optical fiber
- A kind of ASK.
 - 1: having light during the bit time (turn on the light source).
 - 0: no light during the bit time (turn off light source).
- OOK may be realized in two forms:
 - NRZ: light is on during all bit time of bit 1.
 - RZ (return-to-zero): light is on only in a part of 1.

On-Off Keying (OOK)

On off key observed from optical intensity (upper figure) And optical field (lower figure)

Frequency-shift key (FSK)

- Varying the frequency of the carrier wave to represent digital data
- Two symbols to represent bit 0 and 1 are two carrier signals of different frequencies.
- Lower error rate
- Used for transmiting data over telephone line (low frequency) or wireless network (high frequency)

$$s(t) = \begin{cases} A \cos(2\pi f_1 t) \\ A \cos(2\pi f_2 t) \end{cases}$$

Figure 5.8 Full-Duplex FSK Transmission on a Voice-Grade Line

Phase-shift key (PSK)

- Carrier signal at different phases to represent bit 0 and 1
- A symbol is a signal with one phase

- A symbol may be used to represent more than one bits.
- May be combined with other modulation methods.

$$s(t) = \begin{cases} A \cos(2\pi f_c t + 45^\circ) & 11\\ A \cos(2\pi f_c t + 135^\circ) & 10\\ A \cos(2\pi f_c t + 225^\circ) & 00\\ A \cos(2\pi f_c t + 315^\circ) & 01 \end{cases}$$

PSK is used in combination with ASK

Constellation diagram

9,600 bps modem (2,400 baud x 4)

Digital to analog modulation recaptulation

Analog signal to digital data

- Used to digitalize real life analog signal, for example voice signal.
- Converting the analog signal to digital data then
 - Encode digital data to digital signal for transmission.
 - Using line codes: NRZ-L, Manchester etc...
- Two methods for converting analog signal to digital data
 - Pulse Code Modulation
 - Delta Modulation

Pulse Code Modulation (PCM)

- Pulse Code Modulation
- Sample signal according to Nyquist-Shannon sampling theorem
 - If sample a signal with frequency >= 2 *max frequency, the original signal can be recovered fidely from the samples.
 - Ex: human voice has greatest frequency of 4300Hz, it should be sampled with at least 8600 sample/s.
- Sample are then quantized
 - Approximate the amplitude of the sample by some digital values
 - 4 bit quantization → 16 diffrent possible sample amplitudes.
 - More bits, more precise.

Delta Modulation

- Weakness of PCM: generate a lot of data→
- Delta modulation: Use a single bit for each sample
- Idea: Instead sending the real value of the sample x(t), send the variation in sample value in comparison with the last sample: approximative value $\hat{x}(t)$.
 - If $x(t) > \hat{x}(t)$: send bit 1
 - If $x(t) < \hat{x}(t)$: send bit 0

Delta Modulation

• Nếu
$$x(t) > \hat{x}(t) \rightarrow \hat{x}(t) \coloneqq \hat{x}(t) + \delta$$

- Output = 1
- Nếu $x(t) < \hat{x}(t) \rightarrow \hat{x}(t) \coloneqq \hat{x}(t) \delta$
 - Output = 0

 $x(t) > \hat{x}(t) + \delta$

Output: 1

 $x(t) < \hat{x}(t) \\ -\delta$

Output: 0

1110000011

Delta Modulation

- Parameters of the modulation
 - Step delta
 - Sampling rate
- Errors:
 - When the signal varies slowly: quantizing noise
 - When the signal varies quickly: overloaded noise

Analog data – analog signal

- Send analog data over a carrier using analog signal
- Integrate signal m(t) to carrier wave with Fc frequency to a signal with frequency around Fc
- Technic is used to shift signal to a frequency appropriate to the frequency of the transmission channel
- 3 methods
 - Amplitude modulation
 - Frequency modulation
 - Phase modulation

