Chứng minh CRT cho RSA

Đỗ Quốc Thế

January 9, 2021

1 Chứng minh CRT cho RSA

CRT: Cho $n_i \in \mathcal{P}$, $n_i \neq n_j, \forall i \neq j$, $a_i \in \mathbb{N}$. Hệ phương trình (1) có nghiệm duy nhất trong $\mathbb{Z}_{n_1 n_2 \dots n_k}$

$$\begin{cases} x & \equiv a_1 \pmod{n_1} \\ x & \equiv a_2 \pmod{n_2} \\ & \vdots \\ x & \equiv a_k \pmod{n_k} \end{cases}$$
 (1)

RSA: Cho $p,q\in\mathcal{P},\ p\neq q,\ n=pq,\ \phi=(p-1)(q-1),\ \phi(p)=p-1,\ \phi(q)=q-1.$ Chọn e sao cho $gcd(e,\phi)=1,$ chọn d sao cho $ed\equiv 1\ (mod\ \phi).$

Encrypt: $c = m^e \mod n$ Decrypt: $m = c^d \mod n$

Ta có: $m \mod p = (c^d \mod n) \mod p = c^d \mod p = c^{d \mod \phi(p)} \mod p$

Giải thích: $d = k\phi(p) + d \mod \phi(p)$

$$c^{d} \bmod p = c^{k\phi(p)+d \bmod \phi(p)} \bmod p$$

$$= (c^{\phi(p)})^{k} c^{d \bmod \phi(p)} \bmod p$$

$$= 1^{k} c^{d \bmod \phi(p)} \bmod p \qquad (theo \ dinh \ li \ Fermat \ nhỏ)$$

$$= c^{d \bmod \phi(p)} \bmod p$$

Vậy ta có:

$$\begin{cases}
m \equiv c^{d \mod \phi(p)} \pmod{p} \\
m \equiv c^{d \mod \phi(q)} \pmod{q}
\end{cases}$$
(2)

Giải hệ CRT (2) ta được m

2 Chứng minh RSA đúng

2.1 Các bước thực hiện RSA

- (1) Chọn 2 số nguyên tố lớn p, q
- (2) Tính n = pq, $\phi = (p-1)(q-1)$
- (3) Chọn $e \in [2, \phi 1]$ sao cho $gcd(e, \phi) = 1$
- (4) Tìm $d \in [2, \phi 1]$ sao cho $ed \equiv 1 \pmod{\phi}$ d là số duy nhất cần tìm và $gcd(d, \phi) = 1$
- (5) Công bố (e, n) là public key
- (6) Giữ (d, n) là private key

2.2 Chứng minh RSA

2.2.1 d duy nhất

Ta có $ed \equiv 1 \pmod{\phi}$ Giả sử $\exists d' \neq d \in \mathbb{Z}_{\phi}$ sao cho $ed' \equiv 1 \pmod{\phi}$ Ta có: $ed = k\phi + 1$, $ed' = k'\phi + 1$ $\Rightarrow ed - ed' = (k - k')\phi$ $\Rightarrow \phi \mid ed - ed'$ $\Rightarrow \phi \mid e(d - d')$ mà $gcd(e, \phi) = 1 \Rightarrow \phi \mid d - d'$ $\Rightarrow d \equiv d' \pmod{\phi}$

2.2.2 Giải mã đúng

Ta cần chứng minh: $m=(m^e)^d \mod n$ Trước hết, ta có: Với $p,q\in\mathcal{P}$

$$\begin{cases} x & \equiv y \pmod{p} \\ x & \equiv y \pmod{q} \end{cases}$$

Thì $x \equiv y \pmod{pq}$ Chứng minh:

$$\begin{cases} x - y = kp \\ x - y = k'q \end{cases} \Rightarrow \begin{cases} p \mid x - y \\ q \mid x - y \end{cases}$$

mà $gcd(p,q) = 1 \Rightarrow pq \mid x - y$ $\Rightarrow x \equiv y \pmod{pq}$ Ta có:

$$(m^e)^d \mod n = m^{ed} \mod n$$

= $m^{k\phi+1} \mod n$
= $m.m^{k(p-1)(q-1)} \mod n$ (3)

Xét $x = m^{k(p-1)(q-1)}$ ta có:

$$x \bmod p = m^{k(p-1)(q-1)} \bmod p$$

$$= (m^{p-1})^{k(q-1)} \bmod p$$

$$= 1^{k(q-1)} \bmod p \quad \text{(theo dinh li Fermat nhỏ)}$$

$$= 1$$

 $\Rightarrow x \equiv 1 \pmod{p}$

$$\begin{array}{l} x \bmod q = m^{k(p-1)(q-1)} \bmod q \\ = (m^{q-1})^{k(p-1)} \bmod q \\ = 1^{k(p-1)} \bmod q \quad \text{(theo dinh l\'i Fermat nh$\'o$)} \\ = 1 \end{array}$$

 $\Rightarrow x \equiv 1 \pmod{q}$ Vậy ta có:

$$\begin{cases} x \equiv 1 \mod p \\ x \equiv 1 \mod q \end{cases} \Rightarrow x \equiv 1 \mod pq \Rightarrow x \equiv 1 \mod n$$

$$(3) \Rightarrow (m^e)^d \mod n = m.m^{k(p-1)(q-1)} \mod n = m \mod n$$