MATH 1853: Introduction to Linear Algebra

Tutorial 1: Matrix

Wenyong Zhou

HKU EEE

September 2024

Who am I

- Wenyong Zhou (Richard)
- Contact me: wenyongz@connect.hku.hk
- Office: Room 806, Chow Yei Ching Building

Important Notes

Before coming, please send me an email about:

- when will you come
- what questions you have

Note: The tutorial and lecture contents **cannot be in sync** due to the tight scheduling. You should treat tutorials as extra materials for Math 1853.

Outline

- Introduction to Linear Algebra
- Introduction to Matrices
- Matrix Operations
- 4 Examples
- 5 Linearly Dependent and Independent
- 6 Examples
- Vector Spaces
- 8 Linear Spaces
- Examples
- Introduction to Determinant
- Properties of Determinants
- Examples
- 💶 Introduction to Eigenvalue
- 💶 Property of Eigenvalue and Eigenvector
- Examples

What is Linearity (Linear)

Consider an equation of the form ax + by = c (a, b, and c are constants), which, when solved, forms a straight line on a plane. In this case, x and y exhibit a linear relationship. The equation ax + by = c is called a linear equation.

Extending this idea to n variables, we have the general form of a first-degree equation:

$$k_1x_1+k_2x_2+\cdots+k_nx_n=b$$

This is called a linear equation, where x_1, x_2, \dots, x_n are variables, and k_1, k_2, \dots, k_n , b are constants. The variables x_1, x_2, \dots, x_n exhibit a linear relationship.

What is Linear Algebra

Linear Algebra is a branch of algebra that primarily deals with linear relationships between variables. The core content of linear algebra involves:

- The study of the structure of finite-dimensional linear spaces.
- 2 Linear transformations between these spaces.

This course introduces the fundamental concepts of linear algebra, with a central focus on solving systems of linear equations.

Gaussian Elimination

In general, a system of linear equations with n unknowns x_1, x_2, \ldots, x_n can be written as:

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1, \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2, \\ \vdots & \vdots & \vdots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m. \end{cases}$$
(1)

This system contains m equations. Here, a_{ij} are the coefficients, b_i are constant terms, with $i=1,2,\ldots,m$, and $j=1,2,\ldots,n$. The coefficient a_{ij} has two subscripts, where i denotes the row and j denotes the column. **Gaussian Elimination** is a classic method for solving systems of linear equations. It is simple, practical, and timeless.

Definition of a Matrix

An $m \times n$ matrix is a rectangular array of numbers with m rows and n columns:

$$\begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix}$$

This is called an $m \times n$ matrix, where a_{ij} represents the number located in the i-th row and j-th column of the matrix. These numbers are also called the **elements** of the matrix.

- Real Matrix: A matrix whose elements are real numbers.
- Complex Matrix: A matrix whose elements are complex numbers.

Types of Matrices

- Square Matrix: A matrix with the same number of rows and columns (m = n).
- Row Matrix: A matrix with a single row $(1 \times n)$.
- Column Matrix: A matrix with a single column $(m \times 1)$.
- Zero Matrix: A matrix in which all elements are zero.
- Identity Matrix: A square matrix with ones on the diagonal and zeros elsewhere.

$$\mathbf{I} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Matrix Addition and Scalar Multiplication

1 Let **A** and **B** be matrices of the same size. The sum $\mathbf{A} + \mathbf{B}$ is defined as:

$$(\mathbf{A} + \mathbf{B})_{ij} = \mathbf{A}_{ij} + \mathbf{B}_{ij}.$$

② Scalar multiplication is defined as $k\mathbf{A}$, where k is a scalar:

$$(k\mathbf{A})_{ij} = k \cdot \mathbf{A}_{ij}$$
, where k is a scalar. In particular, $-\mathbf{A} = (-1)\mathbf{A}$.

The subtraction of matrices is defined as:

$$\mathbf{A} - \mathbf{B} = \mathbf{A} + (-\mathbf{B}).$$

Matrix Multiplication (Key Concept)

Let $\mathbf{A} = [a_{ik}]_{m \times p}$ and $\mathbf{B} = [b_{kj}]_{p \times n}$. The product $\mathbf{C} = [c_{ij}]_{m \times n}$ of \mathbf{A} and \mathbf{B} is defined as:

$$C = AB$$

where

$$c_{ij} = \sum_{k=1}^{p} a_{ik} b_{kj}.$$

That is, the element in the i-th row and j-th column of the product matrix \mathbf{AB} is the inner product of the i-th row of \mathbf{A} and the j-th column of \mathbf{B} .

$$\begin{pmatrix} * & * & \dots & * \\ a_{i1} & a_{i2} & \dots & a_{ip} \\ * & * & \dots & * \end{pmatrix} \quad \begin{pmatrix} * & b_{1j} & * \\ * & b_{2j} & * \\ \vdots & \vdots & \vdots \\ * & b_{ni} & * \end{pmatrix} \quad = \quad \begin{pmatrix} * & * & \dots & * \\ * & c_{ij} & * \\ * & * & \dots & * \end{pmatrix}$$

Matrix Multiplication

Matrix multiplication does not satisfy the commutative property:

- (a) Even if **A** and **B** can be multiplied, **BA** may not be defined.
- (b) Even if both **AB** and **BA** are defined, they may not be of the same type.
- (c) Even if **AB** and **BA** are of the same type, they are not necessarily equal.

Example:

$$\mathbf{A} = \begin{pmatrix} 2 & 1 \\ -1 & 0 \end{pmatrix}, \quad \mathbf{B} = \begin{pmatrix} -1 & 0 \\ 2 & 1 \end{pmatrix}$$

$$\mathbf{AB} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad \mathbf{BA} = \begin{pmatrix} -2 & -1 \\ 3 & 2 \end{pmatrix}$$

In this example, we see that $AB \neq BA$.

Matrix Multiplication

The product of two non-zero matrices can be a zero matrix.

Example:
$$\begin{pmatrix} 1 & 1 \\ 2 & 2 \end{pmatrix} \times \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$

Matrix Multiplication

The cancellation law does not hold for matrix multiplication:

$$AB = CB \implies A = C$$

Example:

$$\mathbf{A} = \begin{pmatrix} -1 & 1 \\ 1 & -1 \end{pmatrix}, \quad \mathbf{B} = \begin{pmatrix} 1 & -1 \\ 2 & 3 \end{pmatrix}, \quad \mathbf{C} = \begin{pmatrix} 2 & 0 \\ 4 & 5 \end{pmatrix}$$

$$\mathbf{B}\mathbf{A} = \mathbf{C}\mathbf{A} = \begin{pmatrix} -2 & 2 \\ 1 & -1 \end{pmatrix}$$

Matrix Powers

Let **A** be an $n \times n$ matrix, and let m be a natural number. Define $\mathbf{A}^m = \mathbf{A} \times \mathbf{A} \times \cdots \times \mathbf{A}$ (where m copies of **A** are multiplied). For a polynomial $f(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_2 x^2 + a_1 x + a_0$, define

$$f(\mathbf{A}) = a_n \mathbf{A}^n + a_{n-1} \mathbf{A}^{n-1} + \dots + a_2 \mathbf{A}^2 + a_1 \mathbf{A} + a_0 \mathbf{I}.$$

Operational Rules:

- (1) $A^k A^l = A^{k+l}$
- (2) $(\mathbf{A}^k)^l = \mathbf{A}^{kl}$

Matrix Transpose

For an $m \times n$ matrix $\mathbf{A} = [a_{ij}]$, the transpose of \mathbf{A} is an $n \times m$ matrix $\mathbf{B} = [b_{ij}]$, where:

$$b_{ij}=a_{ji}$$
,

denoted as **B** being the transpose of **A**, written as \mathbf{A}^T . Therefore, by definition, we have:

$$(\mathbf{A}^T)_{ij} = \mathbf{A}_{ji}.$$

Rules of Operation:

- $(\mathbf{B} + \mathbf{C})^T = \mathbf{B}^T + \mathbf{C}^T$
- $(k\mathbf{A})^T = k\mathbf{A}^T$
- $(A^m)^T = (A^T)^m$
- $|A| = |A^T|$
- **A** is symmetric if and only if $\mathbf{A} = \mathbf{A}^T$. **A** is skew-symmetric if and only if $\mathbf{A} = -\mathbf{A}^T$.

Invertible Matrix (Key Concept)

Let **A** be an $n \times n$ matrix. If there exists an $n \times n$ matrix **B** such that:

$$AB = BA = I$$
,

then **B** is called the **inverse** of **A**, denoted as $\mathbf{B} = \mathbf{A}^{-1}$. If no such **B** exists, then **A** is called **non-invertible** or **singular**.

Theorem

If a square matrix **A** is invertible, then its inverse is unique.

Proof: Assume both **B** and **C** are inverses of **A**. Then:

$$B = BI = B(AC) = (BA)C = IC = C.$$

Thus, the inverse of **A** is unique.

Linear Transformations

Suppose there are two linear transformations:

$$\begin{cases} y_1 = a_{11}x_1 + a_{12}x_2 + a_{13}x_3, \\ y_2 = a_{21}x_1 + a_{22}x_2 + a_{23}x_3, \end{cases}$$
 (1)

$$\begin{cases} x_1 = b_{11}t_1 + b_{12}t_2, \\ x_2 = b_{21}t_1 + b_{22}t_2, \\ x_3 = b_{31}t_1 + b_{32}t_2. \end{cases}$$
 (2)

How to represent the y_1 and y_2 in terms of t_1 and t_2 ?

Solution

Substituting (2) into (1), we can obtain the linear transformation from t_1 , t_2 to y_1 , y_2 :

$$\begin{cases} y_1 = (a_{11}b_{11} + a_{12}b_{21} + a_{13}b_{31})t_1 + (a_{11}b_{12} + a_{12}b_{22} + a_{13}b_{32})t_2, \\ y_2 = (a_{21}b_{11} + a_{22}b_{21} + a_{23}b_{31})t_1 + (a_{21}b_{12} + a_{22}b_{22} + a_{23}b_{32})t_2. \end{cases}$$

Matrix Multiplication Example

Compute the following product:

$$\begin{pmatrix} 1 & 2 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 2 \\ 0 & 0 & 0 & 3 \end{pmatrix} \begin{pmatrix} 1 & 0 & 3 & 1 \\ 0 & 1 & 2 & -1 \\ 0 & 0 & -2 & 3 \\ 0 & 0 & 0 & -3 \end{pmatrix}.$$

Solution

$$\begin{pmatrix} \textbf{A}_1 & \textbf{I} \\ \textbf{O} & \textbf{A}_2 \end{pmatrix} \begin{pmatrix} \textbf{I} & \textbf{B}_1 \\ \textbf{O} & \textbf{B}_2 \end{pmatrix} = \begin{pmatrix} \textbf{A}_1 \textbf{I} & \textbf{A}_1 \textbf{B}_1 + \textbf{B}_2 \\ \textbf{O} & \textbf{A}_2 \textbf{B}_2 \end{pmatrix}$$

which simplifies to:

$$\begin{pmatrix} 1 & 2 & 5 & 2 \\ 0 & 1 & 2 & -4 \\ 0 & 0 & 0 & -6 \\ 0 & 0 & 0 & -9 \end{pmatrix}.$$

Matrix Operations Example

Given matrices

$$\mathbf{A} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & -1 \\ 1 & -1 & 1 \end{pmatrix}, \quad \mathbf{B} = \begin{pmatrix} 1 & 2 & 3 \\ -1 & -2 & 4 \\ 0 & 5 & 1 \end{pmatrix},$$

find 3AB - 2A and A^TB .

Solution

$$3\mathbf{A}\mathbf{B} - 2\mathbf{A} = 3 \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & -1 \\ 1 & -1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 \\ -1 & -2 & 4 \\ 0 & 5 & 1 \end{pmatrix} - 2 \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & -1 \\ 1 & -1 & 1 \end{pmatrix}$$
$$= 3 \begin{pmatrix} 0 & 5 & 8 \\ 0 & -5 & 6 \\ 2 & 9 & 0 \end{pmatrix} - 2 \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & -1 \\ 1 & -1 & 1 \end{pmatrix} = \begin{pmatrix} -2 & 13 & 22 \\ -2 & -17 & 20 \\ 4 & 29 & -2 \end{pmatrix}$$
$$\mathbf{A}^{T}\mathbf{B} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & -1 \\ 1 & -1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 \\ -1 & -2 & 4 \\ 0 & 5 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 5 & 8 \\ 0 & -5 & 6 \\ 2 & 9 & 0 \end{pmatrix}$$

Linear Transformation Example

Given the linear transformations

$$\begin{cases} x_1 = 2y_1 + y_3, \\ x_2 = -2y_1 + 3y_2 + 2y_3, \\ x_3 = 4y_1 + y_2 + 5y_3, \end{cases} \begin{cases} y_1 = -3z_1 + z_2, \\ y_2 = 2z_1 + z_3, \\ y_3 = -z_2 + 3z_3, \end{cases}$$

find the linear transformation from z_1 , z_2 , z_3 to x_1 , x_2 , x_3 .

Solution

Using matrix knowledge:

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 2 & 0 & 1 \\ -2 & 3 & 2 \\ 4 & 1 & 5 \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix} = \begin{pmatrix} 2 & 0 & 1 \\ -2 & 3 & 2 \\ 4 & 1 & 5 \end{pmatrix} \begin{pmatrix} -3 & 1 & 0 \\ 2 & 0 & 1 \\ 0 & -1 & 3 \end{pmatrix} \begin{pmatrix} z_1 \\ z_2 \\ z_3 \end{pmatrix}.$$

Therefore,

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} -6 & 1 & 3 \\ 12 & -4 & 9 \\ -10 & -1 & 16 \end{pmatrix} \begin{pmatrix} z_1 \\ z_2 \\ z_3 \end{pmatrix},$$

leading to the system of equations:

$$\begin{cases} x_1 = -6z_1 + z_2 + 3z_3, \\ x_2 = 12z_1 - 4z_2 + 9z_3, \\ x_3 = -10z_1 - z_2 + 16z_3. \end{cases}$$

Matrix Operations Example

Given matrices
$$\mathbf{A} = \begin{pmatrix} 1 & 2 \\ 1 & 3 \end{pmatrix}$$
 and $\mathbf{B} = \begin{pmatrix} 1 & 0 \\ 1 & 2 \end{pmatrix}$, determine:

- Does AB = BA?
- **2** Is $(\mathbf{A} + \mathbf{B})^2 = \mathbf{A}^2 + 2\mathbf{A}\mathbf{B} + \mathbf{B}^2$?
- **3** Is $(\mathbf{A} + \mathbf{B})(\mathbf{A} \mathbf{B}) = \mathbf{A}^2 \mathbf{B}^2$?

Solution - Part 1

(1) Since

$$\textbf{AB} = \begin{pmatrix} 1 & 2 \\ 1 & 3 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 1 & 2 \end{pmatrix} = \begin{pmatrix} 3 & 4 \\ 4 & 6 \end{pmatrix} \text{,}$$

$$\mathbf{BA} = \begin{pmatrix} 1 & 0 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 1 & 3 \end{pmatrix} = \begin{pmatrix} 1 & 2 \\ 3 & 8 \end{pmatrix},$$

it follows that $AB \neq BA$.

Solution - Part 2

(2) Since

$$(\mathbf{A} + \mathbf{B})^2 = \begin{pmatrix} 2 & 2 \\ 2 & 5 \end{pmatrix} \begin{pmatrix} 2 & 2 \\ 2 & 5 \end{pmatrix} = \begin{pmatrix} 8 & 14 \\ 14 & 29 \end{pmatrix},$$

but

$$\mathbf{A}^2 + 2\mathbf{A}\mathbf{B} + \mathbf{B}^2 = \begin{pmatrix} 3 & 8 \\ 4 & 11 \end{pmatrix} + \begin{pmatrix} 6 & 8 \\ 8 & 12 \end{pmatrix} + \begin{pmatrix} 1 & 0 \\ 3 & 4 \end{pmatrix} = \begin{pmatrix} 10 & 16 \\ 15 & 27 \end{pmatrix}$$

it follows that $(\mathbf{A} + \mathbf{B})^2 \neq \mathbf{A}^2 + 2\mathbf{A}\mathbf{B} + \mathbf{B}^2$.

Solution - Part 3

(3) Since

$$(\mathbf{A} + \mathbf{B})(\mathbf{A} - \mathbf{B}) = \begin{pmatrix} 2 & 2 \\ 2 & 5 \end{pmatrix} \begin{pmatrix} 0 & 2 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 6 \\ 0 & 9 \end{pmatrix},$$

but

$$\mathbf{A}^2 - \mathbf{B}^2 = \begin{pmatrix} 3 & 8 \\ 4 & 11 \end{pmatrix} - \begin{pmatrix} 1 & 0 \\ 3 & 4 \end{pmatrix} = \begin{pmatrix} 2 & 8 \\ 1 & 7 \end{pmatrix},$$

it follows that $(\mathbf{A} + \mathbf{B})(\mathbf{A} - \mathbf{B}) \neq \mathbf{A}^2 - \mathbf{B}^2$.

Thank you!

MATH 1853: Introduction to Linear Algebra

Tutorial 2: Solving Linear Systems

Wenyong Zhou

HKU EEE

September 2024

Who am I

- Wenyong Zhou (Richard)
- Contact me: wenyongz@connect.hku.hk
- Office: Room 806, Chow Yei Ching Building

Important Notes

Before coming, please send me an email about:

- when will you come
- what questions you have

Note: The tutorial and lecture contents **cannot be in sync** due to the tight scheduling. You should treat tutorials as extra materials for Math 1853.

Outline

- Introduction to Linear Algebra
- Introduction to Matrices
- Matrix Operations
- Examples
- Linearly Dependent and Independent
- Examples
- Vector Spaces
- 8 Linear Spaces
- Examples
- Introduction to Determinant
- Properties of Determinants
- Examples
- Introduction to Eigenvalue
- Property of Eigenvalue and Eigenvector
- Examples

n-Dimensional Vector

An ordered tuple a_1, a_2, \ldots, a_n of n elements from the field \mathbb{R} is called an n-dimensional vector over field \mathbb{R} , abbreviated as n-dimensional vector, denoted as

$$\mathbf{a}=(a_1,a_2,\ldots,a_n)$$

where a_i is called the *i*-th component of **a**.

Linear Combination

Let $\mathbf{a}_i \in \mathbb{R}^n$, $k_i \in \mathbb{R}$, i = 1, 2, ..., m. Then the vector

$$k_1\mathbf{a}_1+k_2\mathbf{a}_2+\cdots+k_m\mathbf{a}_m$$

is called a linear combination of the vectors $\mathbf{a}_1, \mathbf{a}_2, \ldots, \mathbf{a}_m$ over the field \mathbb{R} .

Linear Combination

Given the vector set $\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_m$ and a vector β , if there exist scalars $\lambda_1, \lambda_2, \dots, \lambda_m$ such that

$$\beta = \lambda_1 \mathbf{a}_1 + \lambda_2 \mathbf{a}_2 + \cdots + \lambda_m \mathbf{a}_m,$$

then vector β is said to be a linear combination of the vector set $\mathbf{a}_1, \mathbf{a}_2, \ldots, \mathbf{a}_m$.

Linear System Representation

Given the linear system $\mathbf{A}\mathbf{x} = \mathbf{b}$, where \mathbf{A} is an $m \times n$ matrix, let

$$\mathbf{A}=(\mathbf{a}_1,\mathbf{a}_2,\ldots,\mathbf{a}_n),$$

then

$$(\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_n) \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = \mathbf{b},$$

which means that the linear system can be equivalently expressed as

$$x_1\mathbf{a}_1 + x_2\mathbf{a}_2 + \cdots + x_n\mathbf{a}_n = \mathbf{b}.$$

Linear Combination

The vector **b** can be expressed as a linear combination of the vectors $\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_n$, which is equivalent to the system of equations

$$x_1\mathbf{a}_1 + x_2\mathbf{a}_2 + \cdots + x_n\mathbf{a}_n = \mathbf{b}.$$

has a solution.

Linear Combination

For example, let

$$\mathbf{a}_1 = (a_{11}, a_{21}, a_{31}, a_{41})^\top, \quad \mathbf{a}_2 = (a_{12}, a_{22}, a_{32}, a_{42})^\top,$$

$$\mathbf{a}_3 = (a_{13}, a_{23}, a_{33}, a_{43})^\top,$$

then

$$x_1$$
a₁ + x_2 **a**₂ + x_3 **a**₃

is equivalent to

$$x_1 \begin{pmatrix} a_{11} \\ a_{21} \\ a_{31} \\ a_{41} \end{pmatrix} + x_2 \begin{pmatrix} a_{12} \\ a_{22} \\ a_{32} \\ a_{42} \end{pmatrix} + x_3 \begin{pmatrix} a_{13} \\ a_{23} \\ a_{33} \\ a_{43} \end{pmatrix} = \begin{pmatrix} a_{11}x_1 + a_{12}x_2 + a_{13}x_3 \\ a_{21}x_1 + a_{22}x_2 + a_{23}x_3 \\ a_{31}x_1 + a_{32}x_2 + a_{33}x_3 \\ a_{41}x_1 + a_{42}x_2 + a_{43}x_3 \end{pmatrix}.$$

Linear Combination

Thus, equivalently, the expression

$$x_1\mathbf{a}_1 + x_2\mathbf{a}_2 + x_3\mathbf{a}_3 = \mathbf{b}$$

is equivalent to the system of equations

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + a_{13}x_3 = b_1, \\ a_{21}x_1 + a_{22}x_2 + a_{23}x_3 = b_2, \\ a_{31}x_1 + a_{32}x_2 + a_{33}x_3 = b_3, \\ a_{41}x_1 + a_{42}x_2 + a_{43}x_3 = b_4. \end{cases}$$

Linear Independent

Given a set of vectors $\mathbf{a}_1, \mathbf{a}_2, \ldots, \mathbf{a}_m \in \mathbb{R}^n$, if there exist non-zero scalars $k_1, k_2, \ldots, k_m \in \mathbb{R}$ such that

$$k_1 \mathbf{a}_1 + k_2 \mathbf{a}_2 + \dots + k_m \mathbf{a}_m = 0,$$
 (1)

then the set of vectors \mathbf{a}_1 , \mathbf{a}_2 , ..., \mathbf{a}_m is said to be *linearly dependent*. Otherwise, they are called *linearly independent*.

Linear Independent

The set of vectors $\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_m$ is linearly dependent, which is equivalent to the homogeneous system of equations

$$x_1\mathbf{a}_1+x_2\mathbf{a}_2+\cdots+x_m\mathbf{a}_m=0$$

having a non-trivial solution.

Linear Independent

The set of vectors $\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_m$ is linearly independent, which is equivalent to the homogeneous system of equations

$$x_1\mathbf{a}_1+x_2\mathbf{a}_2+\cdots+x_m\mathbf{a}_m=0$$

having only the trivial solution.

Let *n*-dimensional vectors

$$\mathbf{e}_i = (0, 0, \ldots, 0, 1, 0, \ldots, 0),$$

where the *i*-th component is 1, and the remaining components are 0. Then, the vectors $\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_n$ are linearly independent.

Proof: Let

$$x_1\mathbf{e}_1+x_2\mathbf{e}_2+\cdots+x_n\mathbf{e}_n=0.$$

This implies

$$(x_1,x_2,\ldots,x_n)=0,$$

which means that $x_1 = x_2 = \cdots = x_n = 0$. Thus, $\mathbf{e}_1, \mathbf{e}_2, \ldots, \mathbf{e}_n$ are linearly independent.

A set of vectors that contains the zero vector is linearly dependent.

Proof: Let the set of vectors $\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_m$ contain $\mathbf{a}_1 = 0$. Then, there exist non-zero scalars $1, 0, 0, \dots, 0$ such that

$$1\mathbf{a}_1 + 0\mathbf{a}_2 + \cdots + 0\mathbf{a}_m = 0.$$

Thus, the set of vectors $\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_m$ is linearly dependent.

If a subset of vectors $\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_m$ is linearly dependent, then the entire set of vectors is also linearly dependent.

Proof: Suppose the first j vectors $\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_j$ are linearly dependent, where $j \leq m$. Then, there exist non-zero scalars k_1, k_2, \dots, k_j such that

$$k_1\mathbf{a}_1+k_2\mathbf{a}_2+\cdots+k_j\mathbf{a}_j=0,$$

and thus there exist non-zero scalars $k_1, k_2, \ldots, k_j, 0, \ldots, 0$ such that

$$k_1\mathbf{a}_1 + k_2\mathbf{a}_2 + \cdots + k_j\mathbf{a}_j + 0\mathbf{a}_{j+1} + \cdots + 0\mathbf{a}_m = 0,$$

proving that the entire set of vectors $\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_m$ is linearly dependent.

Any n+1 vectors in n-dimensional space must be linearly dependent.

Proof: For the set of vectors $\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_n, \mathbf{a}_{n+1} \in \mathbb{R}^n$, assume

$$x_1\mathbf{a}_1 + x_2\mathbf{a}_2 + \cdots + x_{n+1}\mathbf{a}_{n+1} = 0.$$

Notice that in this homogeneous system of linear equations, the number of unknowns is n + 1, while the number of equations is n. Therefore, there must exist non-trivial solutions.

Thus, $\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_n, \mathbf{a}_{n+1}$ are linearly dependent.

If the set of vectors $\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_r$ is linearly independent, and the set $\beta, \mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_r$ is linearly dependent, then β can be expressed as a linear combination of $\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_r$, and the expression is unique.

Proof: There exist non-zero scalars k, k_1, \ldots, k_r such that

$$k\beta + k_1 \mathbf{a}_1 + \dots + k_r \mathbf{a}_r = 0, \tag{1}$$

which implies that $k \neq 0$. In fact, assuming k = 0, then equation (1) becomes

$$k_1\mathbf{a}_1+\cdots+k_r\mathbf{a}_r=0,$$

and since $\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_r$ are linearly independent, we must have

$$k_1 = k_2 = \cdots = k_r = 0.$$

This contradicts the assumption that k, k_1, \ldots, k_r are not all zero.

Thus, we have

$$\beta = -\frac{k_1}{k} \mathbf{a}_1 - \dots - \frac{k_r}{k} \mathbf{a}_r.$$

Hence, β can be expressed as a linear combination of $\mathbf{a}_1, \mathbf{a}_2, \ldots, \mathbf{a}_r$.

Uniqueness of Representation

We now prove the uniqueness of the representation. Suppose β has two representations:

$$\beta = l_1 \mathbf{a}_1 + l_2 \mathbf{a}_2 + \dots + l_r \mathbf{a}_r, \quad \beta = h_1 \mathbf{a}_1 + h_2 \mathbf{a}_2 + \dots + h_r \mathbf{a}_r.$$

Subtracting the two equations gives

$$(I_1-h_1)\mathbf{a}_1+(I_2-h_2)\mathbf{a}_2+\cdots+(I_r-h_r)\mathbf{a}_r=0.$$

Since $\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_r$ are linearly independent, we must have

$$l_1 - h_1 = l_2 - h_2 = \cdots = l_r - h_r = 0,$$

which implies $l_i = h_i$, for i = 1, 2, ..., r. Therefore, the representation is unique.

Let
$$\mathbf{a}_1 = (1, -1, 1)$$
, $\mathbf{a}_2 = (1, 2, 0)$, and $\mathbf{a}_3 = (1, 0, 3)$. Are \mathbf{a}_1 , \mathbf{a}_2 , \mathbf{a}_3 linearly dependent?

Solution

Suppose

$$x_1 \mathbf{a}_1 + x_2 \mathbf{a}_2 + x_3 \mathbf{a}_3 = 0. (3)$$

The system of equations can be written in matrix form as

$$\begin{vmatrix} 1 & 1 & 1 \\ -1 & 2 & 0 \\ 1 & 0 & 3 \end{vmatrix} = 7 \neq 0.$$

Thus, the system of equations (3) has only the trivial solution. Therefore, a_1 , a_2 , a_3 are linearly independent.

Let the set of vectors \mathbf{a}_1 , \mathbf{a}_2 , \mathbf{a}_3 be linearly independent. Additionally, $\beta_1 = \mathbf{a}_1 + \mathbf{a}_2 + 2\mathbf{a}_3$, $\beta_2 = \mathbf{a}_1 - \mathbf{a}_2$, and $\beta_3 = \mathbf{a}_1 + \mathbf{a}_3$. Prove that β_1 , β_2 , β_3 are linearly dependent.

Solution

Proof: Since

$$\beta_1 = -\beta_2 + 2\beta_3,$$

it follows that β_1 , β_2 , β_3 are linearly dependent.

Exercise 3

Express the vector \mathbf{a} as a linear combination of \mathbf{a}_1 , \mathbf{a}_2 , \mathbf{a}_3 , \mathbf{a}_4 :

$$\mathbf{a} = \begin{pmatrix} 1 \\ 2 \\ 1 \\ 1 \end{pmatrix}, \quad \mathbf{a}_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}, \quad \mathbf{a}_2 = \begin{pmatrix} 1 \\ 1 \\ -1 \\ -1 \end{pmatrix}, \quad \mathbf{a}_3 = \begin{pmatrix} 1 \\ -1 \\ 1 \\ -1 \end{pmatrix}, \quad \mathbf{a}_4 = \begin{pmatrix} 1 \\ -1 \\ -1 \\ 1 \end{pmatrix}.$$

Solution

Suppose $\mathbf{a} = x_1 \mathbf{a}_1 + x_2 \mathbf{a}_2 + x_3 \mathbf{a}_3 + x_4 \mathbf{a}_4$, then the system of equations is:

$$\begin{cases} x_1 + x_2 + x_3 + x_4 = 1, \\ x_1 + x_2 - x_3 - x_4 = 2, \\ x_1 - x_2 + x_3 - x_4 = 1, \\ x_1 - x_2 - x_3 + x_4 = 1. \end{cases}$$

Solution

By performing elementary row operations on the augmented matrix:

$$\begin{pmatrix} 1 & 1 & 1 & 1 & | & 1 \\ 1 & 1 & -1 & -1 & | & 2 \\ 1 & -1 & 1 & -1 & | & 1 \\ 1 & -1 & -1 & 1 & | & 1 \end{pmatrix} \xrightarrow{\text{elementary row operations}} \begin{pmatrix} 1 & 0 & 0 & 0 & | & \frac{5}{4} \\ 0 & 1 & 0 & 0 & | & \frac{1}{4} \\ 0 & 0 & 1 & 0 & | & -\frac{1}{4} \\ 0 & 0 & 0 & 1 & | & -\frac{1}{4} \end{pmatrix}$$

We get:
$$x_1 = \frac{5}{4}$$
, $x_2 = \frac{1}{4}$, $x_3 = -\frac{1}{4}$, $x_4 = -\frac{1}{4}$.

Thus:

$$\mathbf{a} = \frac{5}{4}\mathbf{a}_1 + \frac{1}{4}\mathbf{a}_2 - \frac{1}{4}\mathbf{a}_3 - \frac{1}{4}\mathbf{a}_4.$$

Exercise 4

Please proof that: If \mathbf{a}_1 and \mathbf{a}_2 are linearly independent, then $\mathbf{a}_1 + \mathbf{a}_2$ and $\mathbf{a}_1 - \mathbf{a}_2$ are also linearly independent.

Solution

Suppose $k_1(\mathbf{a}_1 + \mathbf{a}_2) + k_2(\mathbf{a}_1 - \mathbf{a}_2) = 0$, then:

$$(k_1 + k_2)\mathbf{a}_1 + (k_1 - k_2)\mathbf{a}_2 = 0.$$

Since \mathbf{a}_1 and \mathbf{a}_2 are linearly independent, we must have:

$$\begin{cases} k_1 + k_2 = 0, \\ k_1 - k_2 = 0. \end{cases}$$

The system of equations has the unique solution: $k_1=0$, $k_2=0$. Thus, $\mathbf{a}_1+\mathbf{a}_2$ and $\mathbf{a}_1-\mathbf{a}_2$ are linearly independent.

Exercise 5

If \mathbf{a}_1 , \mathbf{a}_2 , \mathbf{a}_3 , \mathbf{a}_4 are linearly dependent, but any three of them are linearly independent, prove that there must exist a set of nonzero numbers k_1 , k_2 , k_3 , k_4 such that:

$$k_1\mathbf{a}_1 + k_2\mathbf{a}_2 + k_3\mathbf{a}_3 + k_4\mathbf{a}_4 = 0.$$

Solution

By contradiction. Since \mathbf{a}_1 , \mathbf{a}_2 , \mathbf{a}_3 , \mathbf{a}_4 are linearly dependent, there exist nonzero numbers k_1 , k_2 , k_3 , k_4 such that:

$$k_1\mathbf{a}_1 + k_2\mathbf{a}_2 + k_3\mathbf{a}_3 + k_4\mathbf{a}_4 = 0.$$

Assume that at least one of k_1 , k_2 , k_3 , k_4 is zero. Without loss of generality, let $k_1 = 0$, then:

$$k_2\mathbf{a}_2 + k_3\mathbf{a}_3 + k_4\mathbf{a}_4 = 0.$$

where k_2 , k_3 , k_4 are nonzero, it follows that \mathbf{a}_2 , \mathbf{a}_3 , \mathbf{a}_4 are linearly dependent, which contradicts the assumption that any three of the vectors are linearly independent.

Therefore, k_1 , k_2 , k_3 , k_4 must all be nonzero.

Thank you!

MATH 1853: Introduction to Linear Algebra

Tutorial 3: Vector Spaces and Linear Spaces

Wenyong Zhou

HKU EEE

September 2024

Who am I

- Wenyong Zhou (Richard)
- Contact me: wenyongz@connect.hku.hk
- Office: Room 806, Chow Yei Ching Building

Important Notes

Before coming, please send me an email about:

- when will you come
- what questions you have

Note: The tutorial and lecture contents **cannot be in sync** due to the tight scheduling. You should treat tutorials as extra materials for Math 1853.

Outline

- Introduction to Linear Algebra
- Introduction to Matrices
- Matrix Operations
- Examples
- Linearly Dependent and Independent
- 6 Examples
- Vector Spaces
- 8 Linear Spaces
- Examples
- 🔟 Introduction to Determinant
- Properties of Determinants
- Examples
- 💶 Introduction to Eigenvalue
- Property of Eigenvalue and Eigenvector
- Examples

Let $B = \{\beta_1, \beta_2, \dots, \beta_n\} \subseteq \mathbb{R}^n$. If B is linearly independent, then any vector $\alpha \in \mathbb{R}^n$ can be expressed as a linear combination of B, that is,

$$\alpha = a_1\beta_1 + a_2\beta_2 + \cdots + a_n\beta_n,$$

The ordered tuple $(a_1, a_2, ..., a_n)$ is called the coordinates of vector α with respect to the basis B (or in the basis B). We denote it as

$$\alpha_B = (a_1, a_2, \dots, a_n), \quad \text{or} \quad \alpha_B = \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{pmatrix},$$

and call α_B the coordinate vector of α .

Let
$$B=\{lpha_1,lpha_2,\ldots,lpha_n\}$$
 be a basis of \mathbb{R}^n , and let
$$\eta_1=a_{11}lpha_1+a_{21}lpha_2+\cdots+a_{n1}lpha_n,$$

$$\eta_2=a_{12}lpha_1+a_{22}lpha_2+\cdots+a_{n2}lpha_n,$$

$$\vdots$$

$$\eta_n=a_{1n}lpha_1+a_{2n}lpha_2+\cdots+a_{nn}lpha_n,$$

Then a necessary and sufficient condition for $\eta_1, \eta_2, \dots, \eta_n$ to be linearly independent is that

$$\det A = \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix} \neq 0.$$

Let $B_1 = \{\alpha_1, \alpha_2, \dots, \alpha_n\}$ and $B_2 = \{\eta_1, \eta_2, \dots, \eta_n\}$ be two bases of \mathbb{R}^n , and suppose the following relationship holds:

$$(\eta_1, \eta_2, \dots, \eta_n) = (\alpha_1, \alpha_2, \dots, \alpha_n) \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix},$$

Then the matrix

$$A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix}$$

is called the transition matrix from the old basis B_1 to the new basis B_2 .

Let the coordinates of vector α under two bases $B_1 = \{\alpha_1, \alpha_2, \dots, \alpha_n\}$ and $B_2 = \{\eta_1, \eta_2, \dots, \eta_n\}$ be

$$x = (x_1, x_2, \dots, x_n)^{\top}$$
 and $y = (y_1, y_2, \dots, y_n)^{\top}$.

If A is the transition matrix from basis B_1 to basis B_2 , then

$$Ay = x$$
 or $y = A^{-1}x$.

- Vectors in addition and scalar multiplication follow certain arithmetic rules, such as:
 - Commutative law of addition: x + y = y + x,
 - Associative law of addition: (x + y) + z = x + (y + z),
 - Distributive law of scalar multiplication: $(\lambda + \mu)x = \lambda x + \mu x$;
- Matrices, polynomials, continuous functions, etc., also satisfy exactly the same arithmetic rules.
- By studying the common properties of different objects in terms of linear operations, we arrive at the axiomatic definition of a vector space.

A vector space (also called a linear space) consists of four components: two sets V and F, and two operations — one called vector addition, and the other called scalar multiplication.

• V: A set of objects called vectors. For example, n-dimensional

- vectors, matrices.
- F: A field typically the real numbers $\mathbb R$ or the complex numbers $\mathbb C$.
- **Vector addition** (denoted as x + y): An operation between two elements in set V. The operation must satisfy closure: $x + y \in V$, $\forall x, y \in V$.
- Scalar multiplication (denoted as λx): An operation between an element in set F and an element in set V. The operation must satisfy closure: $\lambda x \in V$, $\forall \lambda \in F$, $\forall x \in V$.

Let V be a non-empty set, and F be a field.

- A binary operation, called **vector addition**, is defined between elements of V. This means that for any two elements x and y in V, there exists a unique element $z \in V$ such that z is the sum of x and y, denoted as z = x + y.
- A binary operation, called **scalar multiplication**, is defined between elements of F and V. This means that for any scalar $\lambda \in F$ and any element $x \in V$, there exists a unique element $y \in V$ such that y is the scalar product of λ and x, denoted as $y = \lambda x$.

If the addition and scalar multiplication satisfy the following rules, then V is called a **vector space** over the field F.

Vector addition must satisfy the following four rules:

- ② (x+y)+z=x+(y+z) (Associativity of addition)
- **1** There exists an element $\theta \in V$ such that for all $x \in V$,

$$x + \theta = x$$

(The element θ with this property is called the zero element of V, and is denoted 0).

① For every $x \in V$, there exists an element $y \in V$ such that

$$x + y = 0$$

(The element y is called the additive inverse of x, and is denoted -x).

Scalar multiplication must satisfy the following two rules:

- **1** 1x = x;
- $\lambda(\mu x) = (\lambda \mu) x.$

Scalar multiplication and vector addition must satisfy the following two rules:

In the above rules, λ and μ represent arbitrary elements from the field F, and x, y, and z represent arbitrary elements from the set V.

• \mathbb{R}^n : *n*-dimensional real vector space. Operations: (1) vector addition, (2) scalar multiplication with vectors.

$$V = \{x \mid x = (\xi_1, \xi_2, \dots, \xi_n)^T, \, \xi_i \in \mathbb{R}, \, i = 1, 2, \dots, n\}, \quad F = \mathbb{R}.$$

• \mathbb{C}^n : *n*-dimensional complex vector space. Operations: (1) vector addition, (2) scalar multiplication with vectors.

$$V = \{x \mid x = (\xi_1, \xi_2, \dots, \xi_n)^T, \ \xi_i \in \mathbb{C}, \ i = 1, 2, \dots, n\}, \quad F = \mathbb{C}.$$

- If $V = \{x \mid x = (\xi_1, \xi_2, \dots, \xi_n)^T, \xi_i \in \mathbb{R}, i = 1, 2, \dots, n\}$ and $F = \mathbb{C}$, then V is **not** a vector space, because the scalar multiplication does not satisfy closure under these conditions.
- However, if $V = \{x \mid x = (\xi_1, \xi_2, \dots, \xi_n)^T, \xi_i \in \mathbb{C}, i = 1, 2, \dots, n\}$ and $F = \mathbb{R}$, then V is a vector space, denoted as $\mathbb{C}^n_{\mathbb{R}}$.

Matrices of size $m \times n$ with elements from the field F, under:

- (1) matrix addition, and
- (2) scalar multiplication with matrices,

form a vector space over the field F, denoted as $F^{m \times n}$.

- $\mathbb{R}^{m \times n}$: $m \times n$ real matrix space.
- $\mathbb{C}^{m \times n}$: $m \times n$ complex matrix space.

The polynomial ring F[x] over the field F, under:

- (1) the usual polynomial addition, and
- (2) scalar multiplication with polynomials,

forms a vector space over the field F.

If we only consider polynomials of degree less than n, and allow the addition of zero polynomials, this also forms a vector space over the field F, denoted as $F[x]_n$.

• $\mathbb{R}[x]_n$: The space of polynomials with degree less than n over the real field \mathbb{R} ,

$$\mathbb{R}[x]_n = \left\{ p(x) \mid p(x) = \alpha_{n-1} x^{n-1} + \dots + \alpha_1 x + \alpha_0, \ \alpha_i \in \mathbb{R} \right\}.$$

② $\mathbb{C}[x]_n$: The space of polynomials with degree less than n over the complex field \mathbb{C} ,

$$\mathbb{C}[x]_n = \left\{ p(x) \mid p(x) = \alpha_{n-1} x^{n-1} + \dots + \alpha_1 x + \alpha_0, \ \alpha_i \in \mathbb{C} \right\}.$$

The set of all real-valued functions, under:

- (1) function addition, and
- (2) scalar multiplication with functions,

forms a vector space over the real field.

Let C[a, b] denote the set of all continuous functions on the interval [a, b]. Then C[a, b], under:

- (1) function addition, and
- (2) scalar multiplication with functions,

forms a vector space over the real field.

A field P, under its own addition and multiplication, forms a vector space over itself.

Let V be the set of positive real numbers, and $\mathbb R$ be the set of real numbers. Define addition \oplus and scalar multiplication \odot as follows:

$$\alpha \oplus \beta = \alpha \beta$$
 (i.e., the product of α and β),

$$k \odot \alpha = \alpha^k$$
 (i.e., α raised to the power of k),

where $\alpha, \beta \in V$ and $k \in \mathbb{R}$.

Question: Does V, under the operations \oplus and \odot , form a vector space over \mathbb{R} ?

For addition \oplus , closure holds: $\forall \alpha, \beta \in V = \mathbb{R}^+$, $\alpha \oplus \beta = \alpha\beta \in V$. Moreover, the following properties are satisfied:

- **①** Commutativity: $\alpha \oplus \beta = \alpha \beta = \beta \alpha = \beta \oplus \alpha$.
- **②** Associativity: $(\alpha \oplus \beta) \oplus \gamma = (\alpha \beta) \gamma = \alpha(\beta \gamma) = \alpha \oplus (\beta \oplus \gamma)$.
- **3** Existence of a zero element: The constant 1 is the zero element: $1 \oplus \alpha = 1\alpha = \alpha$.
- **3** Existence of an additive inverse: The inverse of any $\alpha \in V$ is $\frac{1}{\alpha}$: $\frac{1}{\alpha} \oplus \alpha = 1$.

For scalar multiplication \odot , closure holds: $\forall \alpha \in V = \mathbb{R}^+$, $k \in \mathbb{R}$, $k \odot \alpha = \alpha^k \in V = \mathbb{R}^+$. Moreover, the following properties are satisfied:

- **1** Identity element of scalar multiplication: $1 \odot \alpha = \alpha^1 = \alpha$.
- **②** Compatibility of scalar multiplication: $(k_1k_2) \odot \alpha = \alpha^{k_1k_2} = (\alpha^{k_2})^{k_1} = k_1 \odot (k_2 \odot \alpha).$
- **3** Distributive property over scalar addition: $(k_1 + k_2) \odot \alpha = \alpha^{k_1 + k_2} = \alpha^{k_1} \alpha^{k_2} = k_1 \odot \alpha \oplus k_2 \odot \alpha$.
- **3** Distributive property over vector addition: $k \odot (\alpha \oplus \beta) = k \odot (\alpha \beta) = (\alpha \beta)^k = \alpha^k \beta^k = (k \odot \alpha) \oplus (k \odot \beta).$

Therefore, V forms a vector space over $\mathbb R$ under the operations \oplus and \odot .

Given a basis $B_2 = \{\beta_1, \beta_2, \beta_3\}$ of \mathbb{R}^3 , where

$$\beta_1 = \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}, \quad \beta_2 = \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}, \quad \beta_3 = \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix},$$

find the transition matrix A from the standard basis $B_1 = \{\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3\}$ to the basis B_2 .

$$(\beta_1,\beta_2,\beta_3)=(\mathbf{e}_1,\mathbf{e}_2,\mathbf{e}_3)egin{pmatrix} 1 & 1 & 1 \ 2 & -1 & 0 \ 1 & 0 & -1 \end{pmatrix}$$
 ,

we obtain the transition matrix:

$$A = \begin{pmatrix} 1 & 1 & 1 \\ 2 & -1 & 0 \\ 1 & 0 & -1 \end{pmatrix}.$$

Exercise 3

Given two bases of \mathbb{R}^3 , $B_1 = \{\alpha_1, \alpha_2, \alpha_3\}$ and $B_2 = \{\beta_1, \beta_2, \beta_3\}$, where:

$$\alpha_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \quad \alpha_2 = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}, \quad \alpha_3 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix},$$

$$\beta_1 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, \quad \beta_2 = \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix}, \quad \beta_3 = \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix}.$$

- (i) Find the transition matrix A from the basis B_1 to the basis B_2 .
- (ii) Given that the coordinates of α in the basis B_1 are $(1, -2, -1)^{\top}$, find the coordinates of α in the basis B_2 .

(i) Let

$$(\beta_1, \beta_2, \beta_3) = (\alpha_1, \alpha_2, \alpha_3) A,$$

which gives the equation:

$$\begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 2 \\ 1 & -1 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{pmatrix} A.$$

Thus,

$$A = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{pmatrix}^{-1} \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 2 \\ 1 & -1 & 0 \end{pmatrix}.$$

By performing row operations:

$$\begin{pmatrix} 1 & 0 & 0 & | & 1 & 0 & 1 \\ 1 & 1 & 0 & | & 0 & 1 & 2 \\ 1 & 1 & 1 & | & 1 & -1 & 0 \end{pmatrix} \quad \xrightarrow{r_3-r_2, \, r_2-r_1} \quad \begin{pmatrix} 1 & 0 & 0 & | & 1 & 0 & 1 \\ 0 & 1 & 0 & | & -1 & 1 & 1 \\ 0 & 0 & 1 & | & 1 & -2 & -2 \end{pmatrix},$$

we obtain the transition matrix:

$$A = \begin{pmatrix} 1 & 0 & 1 \\ -1 & 1 & 1 \\ 1 & -2 & -2 \end{pmatrix}.$$

(ii) Let the coordinates to be found be $(y_1, y_2, y_3)^{\top}$. Then:

$$\alpha = (\alpha_1, \alpha_2, \alpha_3) \begin{pmatrix} 1 \\ -2 \\ -1 \end{pmatrix} = (\beta_1, \beta_2, \beta_3) \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix}.$$

Substituting $(\beta_1, \beta_2, \beta_3) = (\alpha_1, \alpha_2, \alpha_3)A$, we get:

$$(\alpha_1, \alpha_2, \alpha_3) \begin{pmatrix} 1 \\ -2 \\ -1 \end{pmatrix} = (\alpha_1, \alpha_2, \alpha_3) A \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix}.$$

Thus:

$$\begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix} = A^{-1} \begin{pmatrix} 1 \\ -2 \\ -1 \end{pmatrix} = \begin{pmatrix} 5 \\ 7 \\ -4 \end{pmatrix}.$$

Thank you!

MATH 1853: Introduction to Linear Algebra

Tutorial 4: Determinant

Wenyong Zhou

HKU EEE

Sep 2024

Who am I

- Wenyong Zhou (Richard)
- Contact me: wenyongz@connect.hku.hk
- Office: Room 806, Chow Yei Ching Building

Important Notes

Before coming, please send me an email about:

- when will you come
- what questions you have

Note: The tutorial and lecture contents **cannot be in sync** due to the tight scheduling. You should treat tutorials as extra materials for Math 1853.

Outline

- Introduction to Linear Algebra
- Introduction to Matrices
- Matrix Operations
- Examples
- Linearly Dependent and Independent
- Examples
- Vector Spaces
- Linear Spaces
- Examples
- Introduction to Determinant
- Properties of Determinants
- Examples
- 💶 Introduction to Eigenvalue
- Property of Eigenvalue and Eigenvector
- Examples

Why Discuss Determinants?

For the two-variable linear system

$$\begin{cases} a_{11}x_1 + a_{12}x_2 = b_1, \\ a_{21}x_1 + a_{22}x_2 = b_2, \end{cases}$$

it is easy to solve using the elimination method: When $a_{11}a_{22} - a_{12}a_{21} \neq 0$, the system has a unique solution:

$$x_1 = \frac{b_1 a_{22} - a_{12} b_2}{a_{11} a_{22} - a_{12} a_{21}}, \quad x_2 = \frac{a_{11} b_2 - a_{12} b_1}{a_{11} a_{22} - a_{12} a_{21}}.$$

We introduce a notation

$$\begin{vmatrix} a & b \\ c & d \end{vmatrix} \triangleq ad - bc, \tag{8}$$

and this notation is called a 2-by-2 determinant.

Why Discuss Determinants?

Thus, the solution to the linear system can be summarized as follows: When the 2-by-2 determinant

$$\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} \neq 0$$

is non-zero, the system of equations

$$\begin{cases} a_{11}x_1 + a_{12}x_2 = b_1, \\ a_{21}x_1 + a_{22}x_2 = b_2, \end{cases}$$

has a unique solution:

$$x_1 = \frac{\begin{vmatrix} \mathbf{b_1} & a_{12} \\ \mathbf{b_2} & a_{22} \end{vmatrix}}{\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix}}, \quad x_2 = \frac{\begin{vmatrix} a_{11} & \mathbf{b_1} \\ a_{21} & \mathbf{b_2} \end{vmatrix}}{\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix}}.$$

Cramer's rule

Let's consider Cramer's rule: Given the linear system

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1, \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2, \\ \vdots \\ a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nn}x_n = b_n. \end{cases}$$
(1)

If the determinant of the coefficient matrix

$$D = \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix} \neq 0, \tag{2}$$

then the linear system (1) has a solution, and the solution is unique.

Cramer's rule

$$x_1 = \frac{D_1}{D}, \quad x_2 = \frac{D_2}{D}, \quad \cdots, \quad x_n = \frac{D_n}{D},$$
 (3)

where D_j is the determinant formed by replacing the j-th column of D with the constant terms b_1, b_2, \cdots, b_n . The determinant D_j is given by:

$$D_{j} = \begin{vmatrix} a_{11} & \cdots & a_{1,j-1} & \mathbf{b_{1}} & a_{1,j+1} & \cdots & a_{1n} \\ a_{21} & \cdots & a_{2,j-1} & \mathbf{b_{2}} & a_{2,j+1} & \cdots & a_{2n} \\ \vdots & & \vdots & \vdots & & \vdots \\ a_{n1} & \cdots & a_{n,j-1} & \mathbf{b_{n}} & a_{n,j+1} & \cdots & a_{nn} \end{vmatrix}.$$
(4)

The reason for the appearance of determinant formulas can be understood as follows: They perfectly express the regularity of a portion of the solution to the linear system.

Using Cramer's Rules solve

$$\begin{cases} x_1 - 2x_2 = 4 \\ -x_1 + x_2 = 2 \end{cases}$$

$$A = \begin{bmatrix} 1 & -2 \\ -1 & 1 \end{bmatrix}, \quad b = \begin{bmatrix} 4 \\ 2 \end{bmatrix}$$

Using Cramer's Rules solve

$$\begin{cases} x_1 - 2x_2 = 4 \\ -x_1 + x_2 = 2 \end{cases}$$

$$A = \begin{bmatrix} 1 & -2 \\ -1 & 1 \end{bmatrix}, \quad b = \begin{bmatrix} 4 \\ 2 \end{bmatrix}$$

$$x_1 = \frac{\det(A_1(b))}{\det(A)} = \frac{\det\begin{bmatrix} 4 & -2 \\ 2 & 1 \end{bmatrix}}{1 \times 1 - (-2 \times -1)} = \frac{4+4}{-1} = -8$$

$$x_2 = \frac{\det(A_2(b))}{\det(A)} = \frac{\det\begin{bmatrix} 1 & 4 \\ -1 & 2 \end{bmatrix}}{1 \times 1 - (-2 \times -1)} = \frac{2+4}{-1} = -6$$

Definition of an $n \times n$ Determinant

Given an $n \times n$ array of numbers, the n-order determinant D is defined as:

$$D = \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix}$$

This number is expressed as follows:

- **1** When n = 1, $D = |a_{11}| = a_{11}$;
- ② When $n \geq 2$,

$$D = (-1)^{1+1} a_{11} M_{11} + (-1)^{1+2} a_{12} M_{12} + \dots + (-1)^{1+n} a_{1n} M_{1n},$$
(16)

where M_{1j} (for $j=1,2,\ldots,n$) is the determinant of the $(n-1)\times(n-1)$ matrix obtained by deleting the first row and the j-th column from D.

Diagonal Matrix

$$\begin{vmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{vmatrix} = \lambda_1 \lambda_2 \cdots \lambda_n.$$

$$\begin{vmatrix} \lambda_1 \\ \lambda_n \end{vmatrix} = (-1)^{\frac{n(n-1)}{2}} \lambda_1 \lambda_2 \cdots \lambda_n.$$

Triangular Matrix

$$\begin{vmatrix} a_{11} & 0 & \cdots & 0 \\ a_{21} & a_{22} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & a_{n3} & a_{nn} \end{vmatrix} = a_{11}a_{22}\cdots a_{nn} = \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ 0 & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a_{nn} \end{vmatrix}.$$

$$\begin{vmatrix} 1 & 1 & 1 & \cdots & 1 \\ x_1 & x_2 & x_3 & \cdots & x_n \\ x_1^2 & x_2^2 & x_3^2 & \cdots & x_n^2 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ x_1^{n-1} & x_2^{n-1} & x_3^{n-1} & \cdots & x_n^{n-1} \end{vmatrix} = \prod_{n \ge i > j \ge 1} (x_i - x_j).$$

• Using Cramer's Rules solve

$$\begin{cases} 2x_1 - 4x_2 = 9 \\ 3x_1 + 6x_2 = 7 \end{cases}$$

• Using Cramer's Rules solve

$$\begin{cases} 2x_1 - 4x_2 = 9 \\ 3x_1 + 6x_2 = 7 \end{cases}$$

$$A = \begin{bmatrix} 2 & -4 \\ 3 & 6 \end{bmatrix}, \quad b = \begin{bmatrix} 9 \\ 7 \end{bmatrix}$$

$$x_1 = \frac{\det(A_1(b))}{\det(A)} = \frac{\det\begin{bmatrix} 9 & -4 \\ 7 & 6 \end{bmatrix}}{2 \times 6 - (-4 \times 3)} = \frac{41}{12}$$

$$x_2 = \frac{\det(A_2(b))}{\det(A)} = \frac{\det\begin{bmatrix} 2 & 9 \\ 3 & 7 \end{bmatrix}}{2 \times 6 - (-4 \times 3)} = \frac{-13}{24}$$

Calculate the determinant:

$$D = \begin{vmatrix} 0 & -1 & -1 & 2 \\ 1 & -1 & 0 & 2 \\ -1 & 2 & -1 & 0 \\ 2 & 1 & 1 & 0 \end{vmatrix}.$$

$$D = (-1)^{1+1} \cdot 0 \cdot \begin{vmatrix} -1 & 0 & 2 \\ 2 & -1 & 0 \\ 1 & 1 & 0 \end{vmatrix} + (-1)^{1+2} \cdot (-1) \cdot \begin{vmatrix} 1 & 0 & 2 \\ -1 & -1 & 0 \\ 2 & 1 & 0 \end{vmatrix} +$$

$$(-1)^{1+3} \cdot (-1) \cdot \begin{vmatrix} 1 & -1 & 2 \\ -1 & 2 & 0 \\ 2 & 1 & 0 \end{vmatrix} + (-1)^{1+4} \cdot 2 \cdot \begin{vmatrix} 1 & -1 & 0 \\ -1 & 2 & -1 \\ 2 & 1 & 1 \end{vmatrix}$$

$$= 0 + 2 + 10 - 8 = 4.$$

Example

Calculate the determinant D of the 4x4 matrix:

$$D = \begin{vmatrix} 1 & 1 & -1 & 2 \\ -1 & -1 & -4 & 1 \\ 2 & 4 & -6 & 1 \\ 1 & 2 & 4 & 2 \end{vmatrix}.$$

$$\begin{vmatrix} 1 & 1 & -1 & 2 \\ -1 & -1 & -4 & 1 \\ 2 & 4 & -6 & 1 \\ 1 & 2 & 4 & 2 \end{vmatrix} = \begin{vmatrix} 1 & 1 & -1 & 2 \\ 0 & 0 & -5 & 3 \\ 0 & 0 & -14 & -3 \\ 1 & 2 & 4 & 2 \end{vmatrix} = \begin{vmatrix} 1 & 1 & -1 & 2 \\ 0 & 0 & -5 & 3 \\ 0 & 0 & -14 & -3 \\ 0 & 1 & 5 & 0 \end{vmatrix}$$
$$= (-1)^3 \begin{vmatrix} 1 & 1 & -1 & 2 \\ 0 & 1 & 5 & 0 \\ 0 & 0 & -14 & -3 \\ 0 & 0 & -5 & 3 \end{vmatrix} = - \begin{vmatrix} -14 & -3 \\ -5 & 3 \end{vmatrix} = 57.$$

Example

Calculate the determinant D_n of the following $n \times n$ matrix:

$$D_n = \begin{vmatrix} x & a & a & \cdots & a \\ a & x & a & \cdots & a \\ a & a & x & \cdots & a \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a & a & a & \cdots & x \end{vmatrix}.$$

Step 1: Multiply the first row by (-1) and add it successively to the remaining rows to obtain:

$$D_{n} = \begin{vmatrix} x & a & a & \cdots & a \\ a - x & x - a & 0 & \cdots & 0 \\ a - x & 0 & x - a & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a - x & 0 & 0 & \cdots & x - a \end{vmatrix},$$

Next Step: Add all columns to the first column to obtain:

$$D_n = \begin{vmatrix} x + (n-1)a & a & a & \cdots & a \\ 0 & x - a & 0 & \cdots & 0 \\ 0 & 0 & x - a & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & x - a \end{vmatrix},$$

Last Step: It is a triangular matrix:

$$D_{n} = \begin{vmatrix} x + (n-1)a & a & a & \cdots & a \\ 0 & x - a & 0 & \cdots & 0 \\ 0 & 0 & x - a & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & x - a \end{vmatrix}$$
$$= [x + (n-1)a](x-a)^{n-1}.$$

Thank you!

MATH 1853: Introduction to Linear Algebra

Tutorial 5: Eigenvalue and Eigenvector

Wenyong Zhou

HKU EEE

October 2022

Who am I

- Wenyong Zhou (Richard)
- Contact me: wenyongz@connect.hku.hk
- Office: Room 806, Chow Yei Ching Building

Important Notes

Before coming, please send me an email about:

- when will you come
- what questions you have

Note: The tutorial and lecture contents **cannot be in sync** due to the tight scheduling. You should treat tutorials as extra materials for Math 1853.

Outline

- Introduction to Linear Algebra
- Introduction to Matrices
- Matrix Operations
- Examples
- 5 Linearly Dependent and Independent
- 6 Examples
- Vector Spaces
- Linear Spaces
- Examples
- Introduction to Determinant
- Properties of Determinants
- Examples
- Introduction to Eigenvalue
- Property of Eigenvalue and Eigenvector
- Examples

What is Eigenvalue

Let **A** be an $n \times n$ matrix. If there exists a scalar λ and a nonzero n-dimensional vector \mathbf{x} such that

$$\mathbf{A}\mathbf{x} = \lambda \mathbf{x},\tag{1}$$

then:

- **1** λ is called an **eigenvalue** of matrix **A**;
- ② ${\bf x}$ is called an **eigenvector** corresponding to the eigenvalue λ of matrix ${\bf A}$.

Finding Eigenvalues and Eigenvectors

Problem:

Given an $n \times n$ matrix **A**, find the λ and **x** that satisfy the equation $\mathbf{A}\mathbf{x} = \lambda\mathbf{x}$ where $\mathbf{x} \neq 0$.

Solution Process:

- **1** Start with the equation $\mathbf{A}\mathbf{x} = \lambda \mathbf{x}$.
- ② Rearrange to form $(\lambda \mathbf{I} \mathbf{A})\mathbf{x} = 0$.
- **3** Solve the determinant equation $|\lambda \mathbf{I} \mathbf{A}| = 0$ to find the eigenvalues $\lambda_1, \lambda_2, \dots, \lambda_n$.
- Substitute each λ back into $(\lambda \mathbf{I} \mathbf{A})\mathbf{x} = 0$ to find the corresponding eigenvectors $\mathbf{x}_1, \mathbf{x}_2, \ldots$

Note: The equation $|\lambda \mathbf{I} - \mathbf{A}| = 0$ is called the **characteristic equation**.

Finding Eigenvalues and Eigenvectors

$$|\lambda \mathbf{I} - \mathbf{A}| = 0, \tag{2}$$

that is,

$$\begin{vmatrix} \lambda - a_{11} & -a_{12} & -a_{13} & \cdots & -a_{1n} \\ -a_{21} & \lambda - a_{22} & -a_{23} & \cdots & -a_{2n} \\ -a_{31} & -a_{32} & \lambda - a_{33} & \cdots & -a_{3n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ -a_{n1} & -a_{n2} & -a_{n3} & \cdots & \lambda - a_{nn} \end{vmatrix} = 0,$$
 (3)

- **1** $|\lambda \mathbf{I} \mathbf{A}|$ is called the **characteristic polynomial**.
- ② $\lambda I A$ is called the **characteristic matrix**.
- \odot A matrix of order n has n eigenvalues (including repeated roots) in the complex domain.

Eigen Subspace

Among all the eigenvectors corresponding to the eigenvalue λ_0 , let $\xi_1, \xi_2, \ldots, \xi_I$ be a maximal linearly independent set. The space spanned by this maximal linearly independent set is called the **eigen subspace** of matrix **A** corresponding to the eigenvalue λ_0 , denoted as V_{λ_0} . The dimension of this eigen subspace is called the **geometric multiplicity** of the eigenvalue λ_0 .

Note:

- The eigen subspace V_{λ_0} is the solution space of the equation $(\lambda_0 \mathbf{I} \mathbf{A}) \mathbf{x} = 0$.
- "All eigenvectors corresponding to λ_0 " + "Zero vector" = "Eigen subspace V_{λ_0} ".

Equivalent Definitions of Geometric Multiplicity

The geometric multiplicity I of λ_0 is equivalently defined as:

- ① I is the number of linearly independent solutions included in the fundamental solution system of the equation $(\lambda_0 \mathbf{I} \mathbf{A})\mathbf{x} = 0$, i.e., $I = n r(\lambda_0 \mathbf{I} \mathbf{A})$.
- ② I is the dimension of the eigen subspace corresponding to λ_0 , i.e., $I=\dim V_{\lambda_0}$.

Therefore,

$$I = \dim V_{\lambda_0} = n - r(\lambda_0 \mathbf{I} - \mathbf{A}).$$

Let λ_0 be an eigenvalue of the $n \times n$ matrix **A** with algebraic multiplicity k. Then k is called the **algebraic multiplicity** of the eigenvalue λ_0 .

If \mathbf{x}_1 and \mathbf{x}_2 are eigenvectors of \mathbf{A} corresponding to the eigenvalue λ_0 , then $k_1\mathbf{x}_1+k_2\mathbf{x}_2$ is also an eigenvector of \mathbf{A} corresponding to the eigenvalue λ_0 (where k_1 and k_2 are arbitrary constants, but $k_1\mathbf{x}_1+k_2\mathbf{x}_2\neq 0$).

Proof:

Since \mathbf{x}_1 and \mathbf{x}_2 are solutions of the homogeneous linear system

$$(\lambda_0 \mathbf{I} - \mathbf{A})\mathbf{x} = 0$$
,

it follows that $k_1\mathbf{x}_1+k_2\mathbf{x}_2$ is also a solution of the above equation. Hence, when $k_1\mathbf{x}_1+k_2\mathbf{x}_2\neq 0$, it is an eigenvector of **A** corresponding to the eigenvalue λ_0 .

Let $\lambda_1, \lambda_2, \ldots, \lambda_n$ be all the eigenvalues of an $n \times n$ matrix **A**. The following important properties hold:

- $\lambda_1 + \lambda_2 + \cdots + \lambda_n = a_{11} + a_{22} + \cdots + a_{nn}$;
- $\bullet \ \lambda_1 \lambda_2 \cdots \lambda_n = |\mathbf{A}|.$

Here, $a_{11} + a_{22} + \cdots + a_{nn}$ is called the trace of the matrix and is denoted as $tr(\mathbf{A})$.

If λ is an eigenvalue of matrix **A**, and **x** is an eigenvector of **A** corresponding to λ , then:

- (i) $k\lambda$ is an eigenvalue of $k\mathbf{A}$ (where k is any constant);
- (ii) λ^m is an eigenvalue of \mathbf{A}^m (where m is a positive integer);
- (iii) If **A** is invertible, λ^{-1} is an eigenvalue of **A**⁻¹;
- (iv) If **A** is invertible, $\frac{|\mathbf{A}|}{\lambda}$ is an eigenvalue of **A*** (where **A*** denotes the adjugate of **A**).

Let λ be an eigenvalue of the square matrix **A**. Then

$$a_0 + a_1\lambda + \cdots + a_m\lambda^m$$

is an eigenvalue of

$$a_0\mathbf{I} + a_1\mathbf{A} + \cdots + a_m\mathbf{A}^m$$
.

The eigenvalues of matrix \mathbf{A} and matrix \mathbf{A}^T are identical.

Proof:

Since

$$(\lambda \mathbf{I} - \mathbf{A})^T = (\lambda \mathbf{I})^T - \mathbf{A}^T = \lambda \mathbf{I} - \mathbf{A}^T,$$

we have

$$|\lambda \mathbf{I} - \mathbf{A}| = |\lambda \mathbf{I} - \mathbf{A}^T|,$$

hence, the eigenvalues of \mathbf{A} and \mathbf{A}^T are identical.

Example

Find the eigenvalues and eigenvectors of the matrix

$$\mathbf{A} = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}.$$

Step 1 Solve the characteristic equation $|\lambda \mathbf{I} - \mathbf{A}| = 0$.

$$|\lambda \mathbf{I} - \mathbf{A}| = \begin{vmatrix} \lambda - 1 & -2 \\ -2 & \lambda - 1 \end{vmatrix} = (\lambda - 1)^2 - 4 = (\lambda - 3)(\lambda + 1),$$

By solving $|\lambda \mathbf{I} - \mathbf{A}| = 0$, the eigenvalues are obtained as

$$\lambda_1 = 3$$
, $\lambda_2 = -1$.

Step 2 Find all non-zero solutions to the equation $(\lambda_i \mathbf{I} - \mathbf{A})\mathbf{x} = 0$.

• For $\lambda_1=3$, solve the linear system $(\lambda_1 \mathbf{I} - \mathbf{A})\mathbf{x}=0$. We have

$$3\mathbf{I} - \mathbf{A} = \begin{pmatrix} 2 & -2 \\ -2 & 2 \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & -1 \\ 0 & 0 \end{pmatrix},$$

The fundamental solution is

$$\mathbf{p}_1 = egin{pmatrix} 1 \ 1 \end{pmatrix}$$
 ,

Thus, all eigenvectors corresponding to $\lambda_1 = 3$ are

$$k_1\mathbf{p}_1=k_1\begin{pmatrix}1\\1\end{pmatrix},\quad k_1\neq0.$$

• For $\lambda_2 = -1$, solve the linear system $(\lambda_i \mathbf{I} - \mathbf{A})\mathbf{x} = 0$. We have

$$(-1)\mathbf{I} - \mathbf{A} = \begin{pmatrix} -2 & -2 \\ -2 & -2 \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}$$
 ,

The fundamental solution is

$$\mathbf{p}_2 = egin{pmatrix} 1 \ -1 \end{pmatrix}$$
 ,

Thus, all eigenvectors corresponding to $\lambda_2=-1$ are

$$k_2\mathbf{p}_2=k_2\begin{pmatrix}1\\-1\end{pmatrix},\quad k_2\neq0.$$

Examples

Given

$$\mathbf{A} = \begin{pmatrix} 2 & -2 & 0 \\ -2 & 1 & -2 \\ 0 & -2 & 0 \end{pmatrix}.$$

- Find the eigenvalues and eigenvectors of A;
- **②** Find an invertible matrix **P** such that $P^{-1}AP$ is a diagonal matrix.

By calculating the determinant,

$$|\mathbf{A} - \lambda \mathbf{I}| = \begin{vmatrix} 2 - \lambda & -2 & 0 \\ -2 & 1 - \lambda & -2 \\ 0 & -2 & -\lambda \end{vmatrix} = (1 - \lambda)(\lambda - 4)(\lambda + 2),$$

we find that the eigenvalues of matrix **A** are $\lambda_1=-2$, $\lambda_2=1$, and $\lambda_3=4$.

When $\lambda_1 = -2$, from $(\lambda_1 \mathbf{I} - \mathbf{A})\mathbf{x} = 0$, we have

$$\begin{pmatrix} 4 & -2 & 0 \\ -2 & 3 & -2 \\ 0 & -2 & 2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix},$$

The fundamental solution is

$$\mathbf{x}_1 = (1, 2, 2)^T$$

Thus, all eigenvectors of **A** corresponding to the eigenvalue $\lambda_1 = -2$ are

$$k_1(1,2,2)^T$$
,

where k_1 is any non-zero constant.

When $\lambda_2 = 1$, from $(\lambda_2 \mathbf{I} - \mathbf{A})\mathbf{x} = 0$, we have

$$\begin{pmatrix} 1 & -2 & 0 \\ -2 & 0 & -2 \\ 0 & -2 & -1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix},$$

The fundamental solution is

$$\mathbf{x}_2 = (2, 1, -2)^T$$

Thus, all eigenvectors of **A** corresponding to the eigenvalue $\lambda_2=1$ are

$$k_2(2,1,-2)^T$$
,

where k_2 is any non-zero constant.

When $\lambda_3 = 4$, from $(\lambda_3 \mathbf{I} - \mathbf{A})\mathbf{x} = 0$, we have

$$\begin{pmatrix} -2 & -2 & 0 \\ -2 & -3 & -2 \\ 0 & -2 & -4 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix},$$

The fundamental solution is

$$\mathbf{x}_3 = (2, -2, 1)^T$$

Thus, all eigenvectors of **A** corresponding to the eigenvalue $\lambda_3=4$ are

$$k_3(2,-2,1)^T$$
,

where k_3 is any non-zero constant.

Given

$$\begin{split} \mathbf{A}(\mathbf{x}_1,\mathbf{x}_2,\mathbf{x}_3) &= (\mathbf{A}\mathbf{x}_1,\mathbf{A}\mathbf{x}_2,\mathbf{A}\mathbf{x}_3) = (\lambda_1\mathbf{x}_1,\lambda_2\mathbf{x}_2,\lambda_3\mathbf{x}_3) \\ &= (\mathbf{x}_1,\mathbf{x}_2,\mathbf{x}_3) \begin{pmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_2 & 0 \\ 0 & 0 & \lambda_3 \end{pmatrix}, \end{split}$$

Let

$$\mathbf{P}=(\mathbf{x}_1,\mathbf{x}_2,\mathbf{x}_3),\quad \Lambda=egin{pmatrix} \lambda_1 & 0 & 0 \ 0 & \lambda_2 & 0 \ 0 & 0 & \lambda_3 \end{pmatrix},$$

then

 $AP = P\Lambda$.

Since $|\mathbf{P}| = -27 \neq 0$, the matrix **P** is invertible, where

$$\mathbf{P} = \begin{pmatrix} 1 & 2 & 2 \\ 2 & 1 & -2 \\ 2 & -2 & 1 \end{pmatrix},$$

Thus,

$$\mathbf{P}^{-1}\mathbf{A}\mathbf{P} = \begin{pmatrix} -2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 4 \end{pmatrix}.$$

Thank you!

