Analysis 3 : Measure Theory

Lecture by Ikhan Choi Notes by Ikhan Choi

Contents

Chapter 1. Carathéodory's theory	5
1. σ -algebras	6
2. Carathéodory's extension theorem	7
Chapter 2.	9
Chapter 3. Topological measures	11
1. Descriptive set theory	12
2. Borel measures	13
Chapter 4. Hmmmm	15
0.1. Convergence in measure	15

Carathéodory's theory

1. σ -algebras

DEFINITION 1.1. Let X be a set. A ring of sets is a family of subsets of X that is closed under finite union and finite relative complement; in other words, $\mathcal{R} \subset \mathcal{P}(X)$ is called a ring of sets if the following two conditions are satisfied:

- (1) if $A, B \in \mathcal{R}$, then $A \cup B \in \mathcal{R}$,
- (2) if $A, B \in \mathcal{R}$, then $A \setminus B \in \mathcal{R}$.

PROPOSITION 1.1. Let X be a set and $\mathcal{R} \in \mathcal{P}(X)$. Then, the followings are equivalent:

- (1) \mathcal{R} is a ring of sets,
- (2) \mathcal{R} is closed under symmetric difference and finite intersection,
- (3) \mathcal{R} is a ring,
- (4) \mathcal{R} is a Boolean ring.

For the ring structure, we take the symmetric difference as addition and the intersection as multiplication.

Proposition 1.2. A ring of sets is a distributive lattice.

If a ring of sets contains a multiplicative identity, the entire set, then we call the ring of sets as follows:

DEFINITION 1.2. An algebra of sets is a ring of sets with the entire set.

PROPOSITION 1.3. Let X be a set and $\mathcal{R} \in \mathcal{P}(X)$. Then, the followings are equivalent:

- (1) \mathcal{R} is an algebra of sets,
- (2) \mathcal{R} is closed under finite union, finite intersection, and complement,
- (3) \mathcal{R} is a Boolean algebra.

An algebra of sets is sometimes called a field of sets.

2. Carathéodory's extension theorem

THEOREM 2.1 (Carathéodory's extension theorem). Let \mathcal{R} be a ring of sets over X. Let $\sigma(\mathcal{R})$ be the σ -algebra generated by \mathcal{R} . A set function $\mu: \mathcal{R} \to [0, \infty]$ is extended to a measure on $\sigma(\mathcal{R})$ if and only if it is a premeasure.

Topological measures

1. Descriptive set theory

2. Borel measures

Hmmmm

0.1. Convergence in measure. Since $\{f_n(x)\}_n$ diverges if and only if

$$\exists k > 0, \quad \forall n_0 > 0. \quad \exists n > n_0 : \quad |f_n(x) - f(x)| > n^{-1},$$

we have

$$\{x : \{f_n(x)\}_n \text{ diverges}\} = \bigcup_{k>0} \bigcap_{n_0>0} \bigcup_{n>n_0} \{x : |f_n(x) - f(x)| > n^{-1}\}$$
$$= \bigcup_{k>0} \limsup_n \{x : |f_n(x) - f(x)| > n^{-1}\}.$$

Since for every k

$$\lim_{n} \sup_{n} \{x : |f_{n}(x) - f(x)| > k^{-1}\} \subset \lim_{n} \sup_{n} \{x : |f_{n}(x) - f(x)| > n^{-1}\},$$

we have

$${x: \{f_n(x)\}_n \text{ diverges}\} \subset \limsup_n \{x: |f_n(x) - f(x)| > n^{-1}\}.}$$

THEOREM 0.1. Let f_n be a sequence of measurable functions on a measure space (X, μ) . If f_n converges to f in measure, then f_n has a subsequence that converges to f μ -a.e.

PROOF. Since $d_{f_n-f}(1/k) \to 0$ as $n \to \infty$, we can extract a subsequence f_{n_k} such that

$$\mu(\lbrace x : |f_{n_k}(x) - f(x)| > k^{-1}\rbrace) > 2^{-k}.$$

Since

$$\sum_{k=1}^{\infty} \mu(\{x : |f_{n_k}(x) - f(x)| > k^{-1}\}) < \infty,$$

by the Borel-Canteli lemma, we get

$$\mu(\limsup_{k} \{x : |f_{n_k}(x) - f(x)| > k^{-1}\}) = 0.$$

Therefore, f_{n_k} converges μ -a.e.