Condensed Schedule for CM 2607 CW Part 01

Submission Deadline: 15th December 2024
This schedule provides a step-by-step plan to complete the coursework effectively in the remaining
6 days.

Day 1: Today (9th December)
Goals:
1. Set Up Python Environment
- Install Python, Jupyter Notebook, and libraries (SymPy, NumPy, Matplotlib, SciPy).
pip install sympy numpy matplotlib scipy
- Test your installation by creating a simple Python notebook.
2. Basics of Differentiation
- Learn how to compute partial derivatives manually and with Python using SymPy.
- Solve Question 1 (a) using SymPy.
3. Gradient Vectors and 3D Visualization
- Learn Matplotlib basics for 3D surface plotting.
- Solve Question 1 (c) and create a 3D surface plot.
Outcome: Partial derivatives, gradient vector Python function, and basic 3D plot completed.

Day 2: 10th December

Goals:

- 1. Integration Basics
 - Learn definite integrals and their interpretation.
 - Use SymPy to compute integrals in Python.
 - Solve Question 2 (a) and plot A(t) for Question 2 (b).
- 2. Signal Energy Interpretation
 - Research and write an explanation for Question 2 (c).

Outcome: Integration tasks completed with plots and interpretation.

Day 3: 11th December

Goals:

- 1. Series Approximation
 - Learn series expansions and their Python implementation.
 - Plot approximations using loops and Matplotlib.
 - Solve Questions 3 (a) and (b), and analyze convergence for Question 3 (c).

Outcome: Series approximation and convergence analysis completed.

Day 4: 12th December

Goals:

- 1. Fourier Transform Basics
 - Understand the Fourier Transform and how to compute it with NumPy.
 - Learn about low-pass filters.
 - Solve Questions 4 (a) and 4 (b), and discuss filtering for Question 4 (c).

Outcome: Fourier Transform tasks completed with visualizations and explanations.
Day 5: 13th December
Goals:
Image Processing with Fourier and DCT
- Learn 2D Fourier Transform and DCT.
- Solve Question 5 tasks: edge detection, Gaussian blur, DCT scaling, and artifact reproduction.
Outcome: Image processing tasks completed with visualizations and analysis.
Day 6: 14th December
Goals:
1. Polish and Review
- Double-check your code for correctness and readability.
- Add detailed comments and explanations.
- Ensure all plots are labeled and visually appealing.
2. Prepare for Viva
- Practice explaining your Python code and results.
- Focus on the significance of each concept.
Outcome: Coursework finalized and ready for submission.
Submission: 15th December
Goals:

- Submit the Python notebook by the deadline.
- Revise viva topics for clarity and confidence.

Key Tips:

- Focus on One Question per Day: Complete one question fully before moving to the next.
- Use Online Resources: Leverage tutorials for quick learning (e.g., SymPy, Matplotlib, NumPy).
- Ask for Help: Seek guidance immediately if stuck.