U.S. Serial No.: 09/938,098

CLAIMS

Listing of Claims:

The listing of the claims will replace all prior versions and listings, of claims in the application:

Claim 1 (currently amended): A distributed cellular communication system comprising: a network;

a public switched telephone network (PSTN) coupled to the network;

a plurality of transceivers coupled to the network, the plurality of transceivers geographically separated from one another and each configured to communicate over a wireless medium with mobile stations in an associated cell;

a plurality of base station controllers coupled to the network; wherein each of the plurality of the base station controllers communicates with each of the plurality of the transceivers through the network;

at least one data processing system coupled to the network, the at least one data processing system configured to execute computer programs including software functional blocks adapted to enable the plurality of transceivers to communicate data between mobile stations and between a mobile station and the PSTN, the software functional blocks including:

> a mobility management (MM) functional block to implement MM functions; a visitor location registry (VLR) functional block to implement VLR functions; a communication management(CM) functional block to implement CM functions;

a plurality of radio resources (RR) functional blocks to implement RR functions including maintaining communication between a mobile station and the network by switching communication among the plurality of transceivers as the mobile station moves from one cell to another cell;

wherein communication traffic among the transceivers and the software functional blocks is load-balanced to provide increased efficiency.

Claim 2 (canceled)

and

U.S. Serial No.: 09/938,098

Claim 3 (original): A communication system according to claim 1, wherein the network is a network selected from a group comprising:

circuit switched networks; internet protocol (IP) networks; and

asynchronous Transfer Mode (ATM) networks.

Claim 4 (original): A communication system according to claim 1, wherein the network is an internet protocol (IP) network, and wherein the PSTN is coupled to the IP network via a voice gateway.

Claim 5 (original): A communication system according to claim 4, wherein the voice gateway comprises a voice gateway functional block including software to implement functions including converting between voice communication transmitted over the PSTN and packets transmitted over the IP network, and routing the packets over the IP network.

Claim 6 (original): A communication system according to claim 5, wherein the voice gateway software functional block, the MM functional block and the VLR functional block are resident on a special purpose data processing system known as a mobile services center (MSC).

Claim 7 (original): A communication system according to claim 6, wherein at least one of the plurality of RR functional blocks is resident on a special purpose data processing system known as a base station controller (BSC).

Claim 8 (original): A communication system according to claim 1, wherein the data communicated between mobile stations and between a mobile station and the PSTN includes voice communication.

Claim 9 (original): A communication system according to claim 1, wherein the each of the plurality of transceivers includes a transceiver and a base transceiver station (BTS) software functional block resident on a data processing system coupled to the network.

Claim 10 (currently amended): A distributed cellular network for providing wireless communication with a plurality of mobile stations, comprising:

a plurality of base transceiver station network elements configured to communicate with the plurality of mobile stations over a wireless medium, wherein each base transceiver station includes a network interface adapted to couple to a network;

U.S. Serial No.: 09/938,098

a plurality of base station controller network elements each including a network interface adapted to couple to the network;

at least one mobile station controller network element including a network interface adapted to couple to the network;

wherein each of the plurality of the base transceiver station network elements
communicates with each of the plurality of the base station controller network elements and the
at least one mobile station controller network element through the network;

wherein communication traffic among the base transceiver stations, the base station controllers and the mobile switching center is load-balanced for efficiency.

Claim 11 (original): The distributed cellular network of claim 10, wherein:
each of the network elements is given a predetermined network address and
communication traffic is routed to each of the network elements based on the predetermined
network addresses.

Claim 12 (original): The distributed cellular network of claim 11, wherein: the communication traffic for each of the network elements is routed so as to balance the

processing load among the network elements.

Claim 13 (original): The distributed cellular network of claim 11, wherein: if one of the network element fails, communication traffic is routed to another network element capable of performing the required functions.

Claim 14 (original): The distributed cellular network of claim 10, wherein: one of the network elements is a gatekeeper and is configured to manage voice communications over an Internet protocol.

Claim 15 (original): The distributed cellular network of claim 14, wherein: the voice communications are preferably routed by the gatekeeper internal to the network before sending the voice communications to an external network.

Claim 16 (original): A method of providing wireless communication with a plurality of mobile stations using a cellular network including a plurality of network elements, comprising the steps of:

communicating inbound information with a mobile station over a transceiver network element;

U.S. Serial No.: 09/938,098

communicating the inbound information with one of at least two base station controller network elements to further process the inbound information;

communicating the inbound information with a mobile station controller network element to further process the inbound information;

the communicating steps include communicating network traffic among the network elements is load-balanced for efficiency.

Claim 17 (original): The method of claim 16, wherein:

each of the network elements is given a predetermined network address and the step of communicating the network traffic includes routing to each of the network elements based on the predetermined network addresses.

Claim 18 (original): The method of claim 17, wherein:

the communicating steps include routing network traffic for each of the network elements so as to balance the processing load among the network elements.

Claim 19 (original): The method of claim 17, wherein:

if one of the network element fails, communication traffic is routed to another network element capable of performing the required functions.

Claim 20 (original): The method of claim 16, where one of the network elements is a gatekeeper and wherein:

the communicating steps include managing voice communications using an Internet protocol.

Claim 21 (original): The method of claim 20, wherein:

the voice communications are preferably routed by the gatekeeper internal to the network before sending the voice communications to an external network.

Claim 22 (previously presented): A communication system according to claim 1, wherein the network is selected from a group comprising internet protocol (IP) networks and the network routes communication traffic between the transceivers and the software functional blocks.

Claim 23 (previously presented): A communication system according to claim 1, wherein the network is selected from a group comprising asynchronous Transfer Mode (ATM)

U.S. Serial No.: 09/938,098

networks and the network routes communication traffic between the transceivers and the software functional blocks.

Claim 24 (previously presented): The distributed cellular network of claim 10, wherein the network is selected from a group comprising internet protocol (IP) networks and the network routes communication traffic between the base transceiver stations and the base station controllers.

Claim 25 (previously presented): The distributed cellular network of claim 10, wherein the network is selected from a group comprising asynchronous Transfer Mode (ATM) networks and the network routes communication traffic between the base transceiver stations and the base station controllers.