Réponse

Item 1 : (1 point)

$$f(x) = \frac{x^2 + x + 1}{x} = x + 1 + \frac{1}{x}.$$

$$\lim_{x \to +\infty} (f(x) - (x+1)) = 0 \text{ et } \lim_{x \to -\infty} (f(x) - (x+1)) = 0$$

Items 2 et 3 : (2 points)

- 1. $145 \equiv 2[8]$ Faux
- **2.** $\ln(2^3) + \ln(4) 10\ln(\sqrt{2}) = 0$. **Vraie**

Items 4 et 5: (2 points)

1.
$$h'(x) = \frac{x^2 - 2x + xe^x - 2e^x}{(x-1)^2}$$

2. y = -2x - 1.

Item 6: (1 point)

$$\int_0^3 \left(x^2 + 1 \right) dx = \left[\frac{x^3}{3} + x \right]_0^3 = 12.$$

Item 7: (1 point)

On dit qu'une suite (u_n) admet pour limite le nombre ℓ si pour tout nombre réel r > 0, il existe un rang N à partir duquel tous les termes u_n appartiennent à l'intervalle $|\ell - r|$; $\ell + r[$.

Items 8 et 9: (2 points)

- 1. Réponse a) $z = \sqrt{2}e^{i\frac{\pi}{4}}$
- **2. Réponse c)** $u_n = 3 \times 7^n$

Items 10 et 11 : (2 points)

1.
$$u_n = \frac{(n+1)(1-n)}{n^2} = \frac{1-n^2}{n^2} = \frac{1}{n^2} - 1$$
.

2.
$$\lim_{x \to +\infty} \frac{1}{n^2} - 1 = -1$$
. **Donc** $\lim_{x \to +\infty} u_n = -1$.

Items 12 et 13 : (2 points)

E(2;2;5), F(3;1;6), H(2;1;-1) $\overrightarrow{EF}(1;-1;1)$ $\overrightarrow{v}(-3;0;3)$.

- **1. produit scalaire** $\overrightarrow{EF} \cdot \overrightarrow{v} = 0$.
- 2. Les vecteurs \overrightarrow{EF} et \overrightarrow{v} sont orthogonaux.

Items 14 et 15 : (2 points)

1.
$$2^{2020} \equiv (2^4)^{505} \equiv 1[5]$$
 reste =1

2.
$$2^3 + 0 \times 2^2 + 2^1 + 2^0 = 11$$
.

Item 16: (1 point)

$$z = \sqrt{2}e^{i\frac{\pi}{4}} = \sqrt{2}\left(\cos\frac{\pi}{4} + i\sin\frac{\pi}{4}\right) = \sqrt{2}\left(\frac{\sqrt{2}}{2} + i\frac{\sqrt{2}}{2}\right) = 1 + i.$$

Exercice : (4 points)

- 1. Voir l'arbre ci-contre
- **2.** $p(C \cap F) = 0,6 \times 0,85 = 0,51.$
- 3. $p(\overline{C} \cap F) = 0,4 \times 0,3 = 0,12.$
- **4.** p(F) = 0.51 + 0.12 = 0.63.