Performance Analysis of Parallel Support Vector Machines on a MapReduce Architecture

Udita Patel
Department of Computer Science

Agenda

- 1. Introduction
- 2. Support Vector Machines
- 3. Data Preprocessing
- 4. MapReduce Programming Model
- 5. Parallel Algorithms
- 6. Results
- 7. Conclusions
- 8. Future Works
- 9. Acknowledgement

Introduction

- Support Vector Machines are powerful but computational complexity increases rapidly as the number of training example increases.
- Many Parallel SVM implementations exist, but not their comparative study with any benchmark dataset.
- Mostly analyzed for binary classification.
- We use the MNIST hand written digit dataset to analyze performance and accuracy of three parallel algorithms.

Support Vector Machines

Increased computation: Kernels

Increased computation: Multi Class Classification

N Binary SVMs

Increased computation: Multi Class Classification

The dataset: MNIST

Mixed National Institute of Standards and Technology database

• 42,000 data points

• 28 X 28 pixels

Data Preprocessing: Histogram of Oriented Gradients (HOGs)

Data Preprocessing: Histogram of oriented gradients

Digits after preprocessing

MapReduce Model

Cascade SVM

Cascade SVM: MapReduce Implementation

Bagging SVM

Bagging SVM: MapReduce Implementation

Iterative SVM

Iterative SVM: MapReduce Implementation

T iterations

Training time vs Partition count

Accuracy

Standard SVM confusion matrix

	0	1	2	3	4	5	6	7	8	9
0	839	2	2	0	0	0	4	0	1	1
1	1	882	1	0	2	0	1	4	1	1
2	4	4	782	9	4	5	1	2	2	0
3	4	0	11	815	1	13	0	3	10	3
4	1	1	3	0	825	0	4	4	3	18
5	0	0	2	5	1	790	3	0	6	1
6	8	1	0	0	2	4	832	0	3	0
7	0	6	4	5	7	1	0	815	3	27
8	6	8	6	2	0	8	5	1	742	5
9	1	2	1	6	15	2	1	17	3	768

False Negatives

Recall comparison

Support Vectors in the final model

Standard SVM	6340

	Cascade	Bagging	Iterative
2	6026	8137	7024
4	5941	10554	7748
8	5884	13909	8522
16	5888	18143	8921

Conclusion

- The decrease in accuracy is only 0.5% to 3% for all parallel approaches, making all of them usable.
- Iterative SVM is the best choice for high partition counts.
- Bagging SVM takes lowest training time, with 3% reduction in accuracy. They can be used for initial approximation on massive datasets.
- Cascade SVM gives most relevant support vectors with high accuracy.

Future work

Performance of parallel SVM algorithms on unbalanced data

 Quantification of communication cost between mappers and reducers.

 More sophisticated method to calculate training error in Iterative SVM

Acknowledgement

- Dr. Stan Thomas
- Dr. David John and Dr. William Turkett
- Dr. Todd Torgersen
- Department of Computer Science
- Friends and Family

Precision comparison

