# Course Project

Jie Tao

9/16/2020

### Contents

| P | rediction Assignment Writeup | 1  |
|---|------------------------------|----|
|   | Summary                      | 1  |
|   | Data Splits and Exploration  | 1  |
|   | Data Pre-processing          | 7  |
|   | Model Training and Selection | 7  |
|   | Predication                  | 11 |

## Prediction Assignment Writeup

### Summary

The project utilizes activity data collected by wearable devices such as Jawbone Up, Nike FuelBand, and Fitbit to predict how well 6 participants perform in weight lifting exercise. The goal of this project is to use a variable "classe" in the raw training set to predict the same variable in validation set. I started by separating the raw training data into training and testing sets. Then, pre-processing the training set by removing all variable with last amount of missing values, near-zero-variance variables, and identification variables. After training three different models (decision three model, generalized boost model, and random forest model), I selected the Random Forest Model (RFM) as the final model based on its accuracy of 0.988. Then, I applied the RFM to the validation set and find that the predicted classe is B A B A A E D B A A B C B A E E A B B B.

### **Data Splits and Exploration**

In this section, I read the raw data into act\_train and act\_validation. Then, I splitted the act\_train into training and testing sets. The overview of the two sets is shown in the end.

```
# Read raw data
act_train <- read.csv("https://d396qusza40orc.cloudfront.net/predmachlearn/pml-training.csv")
act_validation <- read.csv("https://d396qusza40orc.cloudfront.net/predmachlearn/pml-testing.csv")
# Create training and testing sets
intrain <- createDataPartition(act_train$classe, p = 0.7, list = FALSE)
training <- act_train[intrain, ]
testing <- act_train[-intrain, ]
dim(training)</pre>
```

## ## [1] 13737 160

# dim(testing)

### ## [1] 5885 160

# Glimpse the training data
library(skimr)
skim\_without\_charts(training)

Table 1: Data summary

| Name                   | training |
|------------------------|----------|
| Number of rows         | 13737    |
| Number of columns      | 160      |
| Column type frequency: |          |
| character              | 37       |
| numeric                | 123      |
| Group variables        | None     |

# Variable type: character

| skim_variable                    | n_missing | complete_rate | min | max | empty | n_unique | whitespace |
|----------------------------------|-----------|---------------|-----|-----|-------|----------|------------|
| user_name                        | 0         | 1             | 5   | 8   | 0     | 6        | 0          |
| $\operatorname{cvtd\_timestamp}$ | 0         | 1             | 16  | 16  | 0     | 20       | 0          |
| $new\_window$                    | 0         | 1             | 2   | 3   | 0     | 2        | 0          |
| kurtosis_roll_belt               | 0         | 1             | 0   | 9   | 13453 | 278      | 0          |
| kurtosis_picth_belt              | 0         | 1             | 0   | 9   | 13453 | 231      | 0          |
| kurtosis_yaw_belt                | 0         | 1             | 0   | 7   | 13453 | 2        | 0          |
| skewness_roll_belt               | 0         | 1             | 0   | 9   | 13453 | 278      | 0          |
| $skewness\_roll\_belt.1$         | 0         | 1             | 0   | 9   | 13453 | 241      | 0          |
| skewness_yaw_belt                | 0         | 1             | 0   | 7   | 13453 | 2        | 0          |
| $max\_yaw\_belt$                 | 0         | 1             | 0   | 7   | 13453 | 62       | 0          |
| min_yaw_belt                     | 0         | 1             | 0   | 7   | 13453 | 62       | 0          |
| $amplitude\_yaw\_belt$           | 0         | 1             | 0   | 7   | 13453 | 4        | 0          |
| kurtosis_roll_arm                | 0         | 1             | 0   | 8   | 13453 | 231      | 0          |
| $kurtosis\_picth\_arm$           | 0         | 1             | 0   | 8   | 13453 | 229      | 0          |
| kurtosis_yaw_arm                 | 0         | 1             | 0   | 8   | 13453 | 278      | 0          |
| $skewness\_roll\_arm$            | 0         | 1             | 0   | 8   | 13453 | 232      | 0          |
| $skewness\_pitch\_arm$           | 0         | 1             | 0   | 8   | 13453 | 229      | 0          |
| $skewness\_yaw\_arm$             | 0         | 1             | 0   | 8   | 13453 | 279      | 0          |
| $kurtosis\_roll\_dumbbell$       | 0         | 1             | 0   | 7   | 13453 | 279      | 0          |
| $kurtosis\_picth\_dumbbell$      | 0         | 1             | 0   | 7   | 13453 | 280      | 0          |
| $kurtosis\_yaw\_dumbbell$        | 0         | 1             | 0   | 7   | 13453 | 2        | 0          |
| $skewness\_roll\_dumbbell$       | 0         | 1             | 0   | 7   | 13453 | 281      | 0          |
| $skewness\_pitch\_dumbbell$      | 0         | 1             | 0   | 7   | 13453 | 283      | 0          |
| $skewness\_yaw\_dumbbell$        | 0         | 1             | 0   | 7   | 13453 | 2        | 0          |
| $\max_{yaw} dumbbell$            | 0         | 1             | 0   | 7   | 13453 | 63       | 0          |
| $\min_{yaw\_dumbbell}$           | 0         | 1             | 0   | 7   | 13453 | 63       | 0          |

| skim_variable          | n_missing | $complete\_rate$ | min | max | empty | n_unique | whitespace |
|------------------------|-----------|------------------|-----|-----|-------|----------|------------|
| amplitude_yaw_dumbbell | 0         | 1                | 0   | 7   | 13453 | 3        | 0          |
| kurtosis_roll_forearm  | 0         | 1                | 0   | 7   | 13453 | 226      | 0          |
| kurtosis_picth_forearm | 0         | 1                | 0   | 7   | 13453 | 226      | 0          |
| kurtosis_yaw_forearm   | 0         | 1                | 0   | 7   | 13453 | 2        | 0          |
| skewness_roll_forearm  | 0         | 1                | 0   | 7   | 13453 | 228      | 0          |
| skewness_pitch_forearm | 0         | 1                | 0   | 7   | 13453 | 225      | 0          |
| skewness_yaw_forearm   | 0         | 1                | 0   | 7   | 13453 | 2        | 0          |
| max_yaw_forearm        | 0         | 1                | 0   | 7   | 13453 | 38       | 0          |
| min_yaw_forearm        | 0         | 1                | 0   | 7   | 13453 | 38       | 0          |
| amplitude_yaw_forearm  | 0         | 1                | 0   | 7   | 13453 | 3        | 0          |
| classe                 | 0         | 1                | 1   | 1   | 0     | 5        | 0          |

## Variable type: numeric

| skim_variable                                     | n_missi <b>n</b> | ${f g}$ mple ${f te}_{f l}$ | _ra <b>n</b> ean | $\operatorname{sd}$ | p0                    | p25              | p50                 | p75                | p100                   |
|---------------------------------------------------|------------------|-----------------------------|------------------|---------------------|-----------------------|------------------|---------------------|--------------------|------------------------|
| X                                                 | 0                | 1.00                        | 9824.42          | 5660.96             | 3 1.00000e+           | <b>49</b> 04.00  | 9831.00             | 14716.00           | 1.962100e+04           |
| $raw\_timestamp\_$                                | _par <b>0</b> _1 | 1.00                        | 13228265         | 58 <b>7</b> 086484  | .6 <b>17</b> .32249e+ | <b>09</b> 226731 | 10 <b>0322</b> 8329 | 1 <b>8323</b> 0842 | 6 <b>2.80</b> 3095e+09 |
| $raw\_timestamp\_$                                | _par <b>0</b> _2 | 1.00                        | 502221.0         | 7 287801            | .82394000e+           | <b>03</b> 6290.0 | 0 500321.00         | 748406.00          | 9.988010e+05           |
| $\operatorname{num}$ _window                      | 0                | 1.00                        | 433.10           | 248.00              | 1.00000e +            | 0024.00          | 428.00              | 647.00             | 8.640000e+02           |
| $roll\_belt$                                      | 0                | 1.00                        | 64.52            | 62.81               | -                     | 1.10             | 114.00              | 123.00             | 1.620000e+02           |
|                                                   |                  |                             |                  |                     | 2.86000e +            |                  |                     |                    |                        |
| pitch_belt                                        | 0                | 1.00                        | 0.12             | 22.41               | -                     | 1.67             | 5.26                | 14.60              | 6.030000e+01           |
|                                                   |                  |                             |                  |                     | 5.58000e +            | 01               |                     |                    |                        |
| yaw_belt                                          | 0                | 1.00                        | -10.74           | 95.61               | -                     | -88.30           | -12.70              | 14.20              | 1.790000e+02           |
|                                                   |                  |                             |                  |                     | 1.80000e +            |                  |                     |                    |                        |
| $total\_accel\_belt$                              | 0                | 1.00                        | 11.33            | 7.76                | 0.00000e+             |                  | 17.00               | 18.00              | 2.900000e+01           |
| $\max_{\text{roll\_belt}}$                        | 13453            | 0.02                        | -9.46            | 94.83               | -                     | -88.12           | -8.70               | 7.10               | 1.800000e+02           |
|                                                   |                  |                             |                  |                     | 9.43000e +            |                  |                     |                    |                        |
| $\max\_picth\_belt$                               | 13453            | 0.02                        | 12.63            | 8.10                | 3.00000e +            | 00 5.00          | 18.00               | 19.00              | 3.000000e+01           |
| $\min_{\text{roll\_belt}}$                        | 13453            | 0.02                        | -12.52           | 93.85               | -                     | -88.50           | -13.80              | 3.20               | 1.730000e+02           |
|                                                   |                  |                             |                  |                     | 1.80000e +            | 02               |                     |                    |                        |
| $\min\_\operatorname{pitch}\_\operatorname{belt}$ |                  | 0.02                        | 10.48            | 7.51                | 0.00000e+             |                  | 16.00               | 17.00              | 2.300000e+01           |
| $amplitude\_roll\_$                               |                  | 0.02                        | 3.06             | 21.39               | 0.00000e +            |                  | 1.00                | 2.00               | 3.600000e+02           |
| amplitude_pitch                                   |                  | 0.02                        | 2.15             | 2.48                | 0.00000e +            |                  | 1.00                | 2.00               | 1.200000e+01           |
| $var\_total\_accel\_$                             | _                | 0.02                        | 1.00             | 2.44                | 0.00000e +            |                  | 0.20                | 0.30               | 1.650000e+01           |
| $avg\_roll\_belt$                                 | 13453            | 0.02                        | 65.56            | 63.61               | -                     | 1.10             | 114.35              | 123.10             | 1.574000e+02           |
|                                                   |                  |                             |                  |                     | 2.74000e +            |                  |                     |                    |                        |
| stddev_roll_belt                                  |                  | 0.02                        | 1.37             | 2.61                | 0.00000e +            |                  | 0.40                | 0.70               | 1.420000e+01           |
|                                                   | 13453            | 0.02                        | 8.67             | 26.12               | 0.00000e +            |                  | 0.10                | 0.40               | 2.007000e+02           |
| avg_pitch_belt                                    | 13453            | 0.02                        | 0.39             | 22.14               | -                     | 2.15             | 5.25                | 14.22              | 5.970000e+01           |
|                                                   |                  |                             |                  |                     | 5.14000e +            |                  |                     |                    |                        |
| stddev_pitch_be                                   |                  | 0.02                        | 0.60             | 0.65                | 0.00000e +            |                  | 0.40                | 0.70               | 4.000000e+00           |
| $var\_pitch\_belt$                                |                  | 0.02                        | 0.77             | 1.78                | 0.00000e +            |                  | 0.10                | 0.50               | 1.620000e+01           |
| $avg\_yaw\_belt$                                  | 13453            | 0.02                        | -11.48           | 94.00               | -                     | -88.30           | -12.60              | 3.83               | 1.735000e + 02         |
|                                                   |                  |                             |                  |                     | 1.38300e +            |                  |                     |                    |                        |
| stddev_yaw_bel                                    |                  | 0.02                        | 0.96             | 6.49                | 0.00000e +            |                  | 0.30                | 0.60               | 1.092000e+02           |
| —v —                                              | 13453            | 0.02                        | 42.96            | 707.77              | 0.00000e +            |                  | 0.09                | 0.36               | 1.192847e + 04         |
| $gyros\_belt\_x$                                  | 0                | 1.00                        | 0.00             | 0.21                | -                     | -0.03            | 0.03                | 0.11               | 2.200000e+00           |
|                                                   |                  |                             |                  |                     | 1.04000e +            |                  |                     |                    |                        |
| $gyros\_belt\_y$                                  | 0                | 1.00                        | 0.04             | 0.08                | -                     | 0.00             | 0.02                | 0.11               | 6.400000e-             |
|                                                   |                  |                             |                  |                     | 5.30000e-             |                  |                     |                    | 01                     |
|                                                   |                  |                             |                  |                     | 01                    |                  |                     |                    |                        |
|                                                   |                  |                             |                  |                     |                       |                  |                     |                    |                        |

| skim_variable 1              | n_miss | i <b>ng</b> mplete_ | _ra <b>n</b> ean | $\operatorname{sd}$ | p0                                                                     | p25         | p50     | p75                    | p100             |
|------------------------------|--------|---------------------|------------------|---------------------|------------------------------------------------------------------------|-------------|---------|------------------------|------------------|
| gyros_belt_z                 | 0      | 1.00                | -0.13            | 0.24                | -<br>1.46000e+00                                                       | -0.20       | -0.10   | -0.02                  | 1.620000e+00     |
| $accel\_belt\_x$             | 0      | 1.00                | -5.38            | 29.75               |                                                                        | -21.00      | -15.00  | -5.00                  | 7.800000e+01     |
| $accel\_belt\_y$             | 0      | 1.00                | 30.13            | 28.51               | 6.50000e+03                                                            | 3.00        | 35.00   | 61.00                  | 1.640000e+02     |
| $accel\_belt\_z$             | 0      | 1.00                | -72.82           | 100.60              |                                                                        | 162.00      | -152.00 | 27.00                  | 1.040000e+02     |
| $magnet\_belt\_x$            | 0      | 1.00                | 56.00            | 64.53               | 5.20000e+03                                                            | 9.00        | 35.00   | 60.00                  | 4.850000e+02     |
| magnet_belt_y                | 0      | 1.00                | 593.54           | 35.98               | 3.54000e+0.000                                                         |             | 601.00  | 610.00                 | 6.690000e+02     |
| magnet_belt_z                | 0      | 1.00                | -345.72          | 64.89               |                                                                        | 375.00      | -319.00 | -306.00                | 2.890000e+02     |
|                              |        |                     |                  |                     | 6.23000e+0.000e                                                        |             |         |                        |                  |
| roll_arm                     | 0      | 1.00                | 17.93            | 72.63               |                                                                        | -31.80      | 0.00    | 77.30                  | 1.800000e+02     |
| pitch_arm                    | 0      | 1.00                | -4.81            | 30.65               |                                                                        | -26.10      | 0.00    | 10.90                  | 8.850000e+01     |
| yaw_arm                      | 0      | 1.00                | -0.85            | 71.00               |                                                                        | -42.80      | 0.00    | 45.20                  | 1.800000e+02     |
| $total\_accel\_arm$          | 0      | 1.00                | 25.47            | 10.57               | 1.00000e + 00                                                          |             | 27.00   | 33.00                  | 6.600000e+01     |
| var accel arm                |        | 0.02                | 53.23            | 53.20               | 0.00000e+00                                                            |             | 40.89   | 75.68                  | 3.317000e+02     |
| avg_roll_arm                 | 13453  | 0.02                | 11.43            | 69.00               | -                                                                      | -38.34      | 0.00    | 74.39                  | 1.607800e + 02   |
| atdday nall anni             | 19459  | 0.02                | 11.00            | 16.04               | 1.66670e + 0.00000e + 0.000000e + 0.000000e + 0.000000e + 0.0000000000 |             | 5.55    | 14.92                  | 1.614500e+02     |
| stddev_roll_arm var_roll_arm | 13453  | 0.02 $0.02$         | 377.52           |                     | 0.00000e+00<br>0.00000e+00                                             |             | 30.83   | $\frac{14.92}{222.53}$ | 2.606658e+04     |
| avg_pitch_arm 1              |        | 0.02 $0.02$         | -4.95            | 27.11               |                                                                        | -22.32      | 0.00    | 7.96                   | 7.566000e+01     |
| avg_piten_arm                | 19499  | 0.02                | -4.90            | 21.11               | 8.17700e+0                                                             | 1           | 0.00    | 1.90                   | 7.50000000000000 |
| stddev_pitch_ar              | h3453  | 0.02                | 10.25            | 9.15                | 0.00000e+00                                                            | 0.1.71      | 8.13    | 16.10                  | 4.341000e+01     |
| var_pitch_arm                | 13453  | 0.02                | 188.58           | 281.88              | 0.00000e+00                                                            | 0.2.91      | 66.15   | 259.12                 | 1.884560e + 03   |
| avg_yaw_arm                  | 13453  | 0.02                | 0.92             | 61.51               | -<br>1.73440e+05                                                       | -29.27<br>2 | 0.00    | 38.86                  | 1.520000e+02     |
| stddev_yaw_arm               | 13453  | 0.02                | 22.07            | 22.49               | 0.00000e+00                                                            | 0.2.62      | 17.47   | 36.33                  | 1.632600e+02     |
| var_yaw_arm                  | 13453  | 0.02                | 991.06           | 2382.81             | 1.0.00000e + 00                                                        | 0 6.88      | 305.09  | 1320.12                | $2.665319e{+04}$ |
| gyros_arm_x                  | 0      | 1.00                | 0.05             | 2.00                | -<br>6.36000e+00                                                       | -1.32       | 0.08    | 1.57                   | 4.870000e+00     |
| gyros_arm_y                  | 0      | 1.00                | -0.26            | 0.86                | -                                                                      | -0.80       | -0.24   | 0.14                   | 2.840000e+00     |
| gyros_arm_z                  | 0      | 1.00                | 0.27             | 0.55                | 3.40000e+00                                                            | 0<br>-0.07  | 0.25    | 0.72                   | 2.950000e+00     |
| accel_arm_x                  | 0      | 1.00                | -58.84           | 180.96              | 2.33000e+00                                                            | )<br>240.00 | -41.00  | 84.00                  | 4.370000e+02     |
|                              |        |                     |                  |                     | 4.04000e+02                                                            | 2           |         |                        |                  |
| accel_arm_y                  | 0      | 1.00                | 31.64            | 109.82              | 3.18000e+02                                                            | -55.00<br>2 | 12.00   | 138.00                 | 3.080000e+02     |
| $accel\_arm\_z$              | 0      | 1.00                | -72.78           | 135.85              | :<br>6.36000e+05                                                       | 146.00<br>2 | -47.00  | 23.00                  | 2.920000e+02     |
| $magnet\_arm\_x$             | 0      | 1.00                | 196.71           | 443.22              |                                                                        | 297.00      | 301.00  | 639.00                 | 7.820000e+02     |
| $magnet\_arm\_y$             | 0      | 1.00                | 153.82           | 202.42              |                                                                        | -13.00      | 196.00  | 321.00                 | 5.830000e+02     |
| $magnet\_arm\_z$             | 0      | 1.00                | 302.13           | 329.32              |                                                                        | 118.00      | 440.00  | 544.00                 | 6.940000e+02     |

| skim_variable n_                      | _missi <b>ng</b> mplete | e_ra <b>nc</b> ean | sd     | p0              | p25     | p50    | p75    | p100                 |
|---------------------------------------|-------------------------|--------------------|--------|-----------------|---------|--------|--------|----------------------|
| max_roll_arm 13                       | 3453 0.02               | 11.09              | 26.99  | -<br>7.31000e+0 | -0.12   | 5.55   | 25.95  | 8.550000e+01         |
| max_picth_arm13                       | 3453 0.02               | 33.97              | 69.25  | -               | -2.10   | 22.70  | 94.12  | 1.800000e+02         |
| -                                     |                         |                    |        | 1.73000e + 0    | )2      |        |        |                      |
| max_yaw_arm 13                        | 3453 	 0.02             | 35.65              | 10.09  | 4.00000e+0      | 0030.00 | 35.00  | 41.00  | 6.000000e+01         |
| min_roll_arm 13                       | 3453 	 0.02             | -21.11             | 28.82  | -               | -41.90  | -22.50 | 0.00   | 6.640000e+01         |
|                                       |                         |                    |        | 8.91000e + 0    | )1      |        |        |                      |
| min_pitch_arm 13                      | 3453 	 0.02             | -36.01             | 59.55  | -               | -73.23  | -34.60 | 0.00   | 1.520000e+02         |
|                                       |                         |                    |        | 1.80000e + 0    |         |        |        |                      |
| min_yaw_arm 13                        |                         | 14.65              | 9.18   | 2.00000e + 0    |         | 12.50  | 19.00  | 3.800000e+01         |
| amplitude_roll_ <b>a</b> t            |                         | 32.19              | 26.58  | 0.00000e + 0    |         | 28.55  | 50.16  | 1.195000e+02         |
| amplitude_pitch13                     |                         | 69.98              | 65.59  | 0.00000e + 0    |         | 57.30  | 116.85 | 3.590000e+02         |
| amplitude_yaw_1a                      |                         | 21.00              | 12.12  | 0.00000e + 0    |         | 22.00  | 28.00  | 5.200000e+01         |
| $roll\_dumbbell$                      | 0 	 1.00                | 24.13              | 69.83  | -               | -17.77  | 48.34  | 67.91  | 1.535500e+02         |
|                                       |                         |                    |        | 1.53710e + 0    |         |        |        |                      |
| $\operatorname{pitch\_dumbbell}$      | 0 	 1.00                | -10.79             | 36.97  | -               | -40.63  | -21.01 | 17.47  | 1.494000e+02         |
|                                       |                         |                    |        | 1.48500e + 0    |         |        |        |                      |
| yaw_dumbbell                          | 0 1.00                  | 1.53               | 82.44  | -               | -77.65  | -3.66  | 79.26  | 1.549500e + 02       |
|                                       |                         |                    |        | 1.41810e + 0    |         |        |        |                      |
| max_roll_dumbb                        | <b>34</b> 53 0.02       | 13.46              | 49.24  | -               | -27.70  | 13.10  | 50.80  | 1.370000e+02         |
|                                       |                         |                    |        | 7.01000e + 0    |         |        |        |                      |
| max_picth_duml6                       | 3453 0.02               | 32.34              | 93.70  | - 1 10000 + 6   | -67.05  | 41.60  | 132.62 | 1.550000e+02         |
| . 11 1 1146                           | NIE 0 00                | 44 85              | 00.00  | 1.12900e + 0    |         | 10.70  | 25.25  | <b>=</b> 220000 + 01 |
| min_roll_dumbble                      | <b>34</b> 53 0.02       | -41.75             | 33.38  | 1 40000 + 0     | -59.32  | -42.70 | -27.25 | 7.320000e+01         |
|                                       | 0.4119 0.00             | 25 27              | 72.00  | 1.49600e + 0    |         | 70 55  | 16.40  | 1 000000- + 00       |
| min_pitch_dumbl                       | <b>345</b> 3 0.02       | -35.27             | 73.22  | -<br>1.47000e+0 | -92.55  | -70.55 | 16.40  | 1.209000e+02         |
| amplitude_roll_di                     | <b>345B</b> bell 0.02   | 55.21              | 56.42  | 0.00000e+0      |         | 33.91  | 78.10  | 2.564800e+02         |
| amplitude_ron_ua<br>amplitude_pitch13 |                         | 67.61              | 68.02  | 0.00000e + 0    |         | 41.72  | 104.49 | 2.735900e+02         |
| total accel dumb                      |                         | 13.71              | 10.22  | 0.00000e+0      |         | 10.00  | 20.00  | 4.000000e+01         |
| var_accel_dumbb                       |                         | 4.68               | 15.55  | 0.00000e+0      |         | 0.97   | 3.46   | 2.304300e+02         |
| avg roll dumbble                      |                         | 24.92              | 61.77  | 0.00000c   C    | -10.67  | 50.09  | 62.85  | 1.259900e+02         |
| avg_ron_dumbba                        | H99 0.02                | 24.02              | 01.11  | 1.28960e + 0    |         | 00.03  | 02.00  | 1.2000000   02       |
| stddev_roll_dun <b>i</b> b            | <b>845B</b> 0.02        | 21.87              | 25.97  | 0.00000e+0      |         | 11.87  | 28.05  | 1.237800e + 02       |
| var roll dumbbel                      |                         | 1150.59            |        | 9.0000000+0     |         | 140.80 | 786.71 | 1.532101e+04         |
| avg_pitch_dumble                      |                         | -12.64             | 31.89  |                 | -43.08  | -18.70 | 12.56  | 9.393000e+01         |
| 0_r                                   |                         |                    | 02.00  | 7.07300e + 0    |         |        |        | 0.0000000,00         |
| stddev_pitch_ddfa                     | <b>M</b> 0.02           | 13.25              | 13.86  | 0.00000e+0      |         | 7.95   | 18.87  | 8.268000e+01         |
| var pitch dumble                      |                         | 366.87             | 737.06 |                 |         | 63.15  | 356.09 | 6.836020e+03         |
| avg_yaw_dumbbé                        |                         | -1.28              | 77.46  | -               | -77.01  | -4.85  | 70.73  | 1.349000e+02         |
| <b>○</b> — ·                          |                         |                    |        | 1.17950e + 0    | )2      |        |        |                      |
| stddev_yaw_durh                       | <b>M53</b> 0.02         | 17.09              | 18.33  | 0.00000e + 0    | 00 3.87 | 10.26  | 24.62  | 9.956000e+01         |
| var_yaw_dumbble                       | <b>34</b> 53 0.02       | 626.81             | 1259.3 | 7.000000e+0     | 014.99  | 105.35 | 606.17 | 9.912850e + 03       |
| gyros_dumbbell_z                      |                         | 0.17               | 0.39   | -               | -0.03   | 0.13   | 0.35   | 2.220000e+00         |
|                                       |                         |                    |        | 1.99000e + 0    | 00      |        |        |                      |
| gyros_dumbbell_y                      | y 0 1.00                | 0.04               | 0.49   | -               | -0.14   | 0.03   | 0.21   | 4.370000e+00         |
| ·                                     |                         |                    |        | 2.10000e + 0    | 00      |        |        |                      |
| $gyros\_dumbbell\_z$                  | z = 0 1.00              | -0.15              | 0.32   | -               | -0.31   | -0.13  | 0.03   | 1.870000e+00         |
|                                       |                         |                    |        | 2.30000e+0      | 00      |        |        |                      |
| $accel\_dumbbell\_x$                  | 1.00                    | -28.48             | 67.01  | -               | -50.00  | -9.00  | 11.00  | 2.350000e+02         |
|                                       |                         |                    |        | 2.37000e + 0    | )2      |        |        |                      |
|                                       |                         |                    |        |                 |         |        |        |                      |

| skim_variable n_missing          | $_{ m mplete}$ | _ra <b>n</b> ean | $\operatorname{sd}$ | p0                         | p25    | p50     | p75     | p100            |
|----------------------------------|----------------|------------------|---------------------|----------------------------|--------|---------|---------|-----------------|
| accel_dumbbell_y 0               | 1.00           | 52.97            | 80.90               | 1 00000 + 00               | -8.00  | 42.00   | 111.00  | 3.150000e+02    |
| accel_dumbbell_z 0               | 1.00           | -38.77           | 108.98              | 1.89000e+02                | 42.00  | -1.00   | 37.00   | 3.180000e+02    |
| accer_dumbben_z 0                | 1.00           | -90.11           | 100.90              | 3.19000e+02                |        | -1.00   | 57.00   | 5.10000000-02   |
| magnet_dumbbell_x0               | 1.00           | -330.27          | 337.45              |                            | 36.00  | -479.00 | -307.00 | 5.920000e+02    |
| <u> </u>                         |                |                  |                     | 6.43000e+02                |        |         |         | •               |
| $magnet\_dumbbell\_y0$           | 1.00           | 223.09           | 325.51              |                            | 233.00 | 311.00  | 391.00  | 6.330000e+02    |
|                                  |                |                  |                     | 3.60000e+03                |        |         |         |                 |
| $magnet\_dumbbell\_z0$           | 1.00           | 46.81            | 140.11              |                            | 44.00  | 14.00   | 96.00   | 4.520000e+02    |
| roll_forearm 0                   | 1.00           | 35.13            | 107.45              | 2.49000e+02                | 0.00   | 22.50   | 141.00  | 1.800000e+02    |
| ron_lorearm 0                    | 1.00           | 55.15            | 101.40              | 1.80000e+02                |        | 22.00   | 141.00  | 1.00000000-02   |
| pitch_forearm 0                  | 1.00           | 10.70            | 27.81               | -                          | 0.00   | 9.18    | 28.10   | 8.980000e+01    |
| • —                              |                |                  |                     | 7.25000e+01                |        |         |         |                 |
| yaw_forearm 0                    | 1.00           | 19.33            | 102.88              |                            | -68.20 | 0.00    | 110.00  | 1.800000e+02    |
|                                  |                |                  |                     | 1.80000e+02                |        |         |         |                 |
| max_roll_forearh3453             | 0.02           | 23.75            | 31.68               | - 40000 + 01               | 0.00   | 26.50   | 45.28   | 8.980000e+01    |
| man nieth foned-9-452            | 0.02           | 90.44            | 95.20               | 6.40000e+01                | 0.00   | 111 50  | 173.25  | 1 000000 - 1 00 |
| max_picth_foredf#453             | 0.02           | 80.44            | 95.20               | 1.51000e+02                |        | 111.50  | 175.20  | 1.800000e+02    |
| min_roll_forearth3453            | 0.02           | -0.48            | 23.25               | -                          | -5.95  | 0.00    | 12.80   | 6.210000e+01    |
| 1011_1011_10110011100111001      | 0.02           | 0.10             | _00                 | 7.25000e+01                |        | 0.00    | 12.00   | 0.2100000   01  |
| min_pitch_forealr3453            | 0.02           | -51.87           | 111.68              |                            | 74.00  | -49.40  | 5.30    | 1.670000e+02    |
|                                  |                |                  |                     | 1.80000e+02                | 2      |         |         |                 |
| amplitude_roll_ <b>f3453</b> m   | 0.02           | 24.22            | 26.32               | 0.00000e+00                |        | 17.18   | 37.72   | 1.260000e+02    |
| amplitude_pitch13458arm          | 0.02           | 132.31           | 144.67              | 0.00000e+00                |        | 83.70   | 346.75  | 3.590000e+02    |
| total_accel_forearm0             | 1.00           | 34.83            | 10.04               | 0.00000e+00                |        | 36.00   | 41.00   | 7.300000e+01    |
| var_accel_forearli3453           | 0.02           | 32.55            | 33.30               | 0.00000e+00                |        | 20.04   | 50.31   | 1.726100e+02    |
| avg_roll_forearm13453            | 0.02           | 29.31            | 78.50               | 1.77020 + 00               | -3.57  | 5.68    | 102.06  | 1.771200e+02    |
| stddev_roll_fore <b>\345</b> 3   | 0.02           | 41.70            | 59.10               | 1.77230e+02<br>0.00000e+00 |        | 6.97    | 84.65   | 1.791700e+02    |
| var roll forearm 3453            | 0.02 $0.02$    | 5218.96          |                     | 0.00000e+00<br>0.00000e+00 |        | 48.66   | 7166.60 | 3.210224e+04    |
| avg_pitch_forealf3453            | 0.02           | 11.34            | 25.58               | -<br>-                     | 0.00   | 12.08   | 28.28   | 7.209000e+01    |
| avg_pren_rerearbase              | 0.02           | 11.04            | 20.00               | 6.55200e+01                |        | 12.00   | 20.20   | 1.2030000   01  |
| stddev_pitch_fo <b>t&amp;453</b> | 0.02           | 7.84             | 8.94                | 0.00000e+00                |        | 5.29    | 12.21   | 4.775000e+01    |
| var_pitch_foreath3453            |                |                  |                     | 0.00000e+00                |        |         |         | 2.279620e+03    |
| avg yaw forearin 3453            | 0.02           | 19.39            | 79.37               |                            | -25.45 | 0.00    | 88.86   | 1.692400e+02    |
| <u> </u>                         |                |                  |                     | 1.55060e + 02              | 2      |         |         |                 |
| stddev_yaw_for <b>4345</b> 3     | 0.02           | 42.42            | 49.79               | 0.00000e+00                | 0.52   | 24.74   | 71.15   | 1.975100e+02    |
| $var\_yaw\_forearnh3453$         | 0.02           | 4269.59          | 6984.59             | 0.00000e+00                | 0.27   | 612.21  | 5067.01 | 3.900933e+04    |
| $gyros\_forearm\_x = 0$          | 1.00           | 0.16             | 0.63                | -                          | -0.21  | 0.05    | 0.58    | 3.260000e+00    |
|                                  |                |                  |                     | 3.36000e+00                |        |         |         |                 |
| gyros_forearm_y 0                | 1.00           | 0.05             | 2.16                | -                          | -1.48  | 0.03    | 1.61    | 6.130000e+00    |
| r o                              | 1.00           | 0.14             | 0.00                | 7.02000e+00                |        | 0.00    | 0.40    | 4.210000 + 00   |
| gyros_forearm_z 0                | 1.00           | 0.14             | 0.60                | -<br>8.09000e+00           | -0.18  | 0.08    | 0.49    | 4.310000e+00    |
| accel_forearm_x 0                | 1.00           | -61.87           | 180.43              |                            | 78.00  | -57.00  | 75.00   | 4.770000e+02    |
| accel_forcariff_X 0              | 1.00           | -01.01           | 100.40              | 4.96000e+02                |        | -01.00  | 19.00   | 4.110000ET02    |
| accel_forearm_y 0                | 1.00           | 165.13           | 200.96              | -                          | 58.00  | 202.00  | 314.00  | 5.890000e+02    |
|                                  |                |                  |                     | 5.85000e+02                |        |         |         | , 0-            |
| $accel\_forearm\_z = 0$          | 1.00           | -54.73           | 138.29              |                            | 81.00  | -38.00  | 26.00   | 2.910000e+02    |
|                                  |                |                  |                     | 4.10000e+02                | 2      |         |         |                 |
|                                  |                |                  |                     |                            |        |         |         |                 |

| skim_variable r     | n_missi <b>ng</b> mplete | _ra <b>n</b> ean | sd          | p0        | p25     | p50     | p75    | p100         |  |
|---------------------|--------------------------|------------------|-------------|-----------|---------|---------|--------|--------------|--|
| magnet_forearm_     | _x 0 1.00                | -314.15          | 345.43      | -         | -617.00 | -379.00 | -79.00 | 6.660000e+02 |  |
|                     |                          |                  |             | 1.28000e- | -03     |         |        |              |  |
| $magnet\_forearm\_$ | _y 0 1.00                | 383.69           | 509.19      | -         | 10.00   | 595.00  | 739.00 | 1.480000e+03 |  |
|                     |                          |                  | 8.90000e+02 |           |         |         |        |              |  |
| magnet_forearm_     | _z 0 1.00                | 395.44           | 369.77      | _         | 194.00  | 514.00  | 653.00 | 1.090000e+03 |  |
| -                   |                          |                  |             | 9.73000e- | -02     |         |        |              |  |

### **Data Pre-processing**

Given that many variables have large amount of missing values and zero variance, I excluded them from the final training and testing sets. Also, 5 identification variables such as user\_name were left out. Eventually, there are 54 variables left in both training and testing sets.

```
# Remove all variables with missing values
library(tidyverse)
training <- training %>%
    select_if(~!any(is.na(.))) %>%
    mutate(classe = factor(classe))
testing <- testing%>%
    select_if(~!any(is.na(.))) %>%
    mutate(classe = factor(classe))
# remove all variables with near zero variance
nzv <- nearZeroVar(training)</pre>
training <- training[, -nzv]</pre>
testing <- testing[, -nzv]</pre>
# remove all id variables
training <- training[, -(1:5)]</pre>
testing <- testing[, -(1:5)]
dim(training)
## [1] 13737
                 54
dim(testing)
```

# Model Training and Selection

54

In total, I have trained three different models: Decision Tree Model (DTM), Generalized Boost Model (GBM), and Random Forest Model (RFM). The RFM was chosen as the final model due to its highest accuracy at 0.988.

### **Model Training**

## [1] 5885

## Warning: labs do not fit even at cex 0.15, there may be some overplotting



Rattle 2020-Sep-16 15:00:10 tsqua

```
# prediction
pred_rpart <- predict(modfit_rpart, newdata = testing, type = "class")
conf_mat_rpart <-confusionMatrix(pred_rpart, testing$classe)
conf_mat_rpart</pre>
```

```
## Confusion Matrix and Statistics
##
##
             Reference
## Prediction
                 Α
                      В
                            С
                                 D
                                      Ε
##
            A 1505 214
                           22
                                55
                                     19
##
            В
                 3
                    609
                           81
                                43
                                     52
##
            С
                 8
                    142 811
                                     89
                               215
            D
                97
                    134
                          108
                               564
                                    120
##
            Ε
##
                61
                      40
                            4
                                87
                                    802
##
```

```
## Overall Statistics
##
##
                  Accuracy : 0.7291
##
                    95% CI: (0.7176, 0.7405)
##
      No Information Rate: 0.2845
##
      P-Value [Acc > NIR] : < 2.2e-16
##
##
                     Kappa: 0.6569
##
  Mcnemar's Test P-Value : < 2.2e-16
##
## Statistics by Class:
##
##
                        Class: A Class: B Class: C Class: D Class: E
## Sensitivity
                          0.8990
                                  0.5347
                                            0.7904 0.58506
                                                              0.7412
## Specificity
                          0.9264
                                  0.9623
                                            0.9066 0.90673
                                                              0.9600
## Pos Pred Value
                         0.8292 0.7728
                                           0.6411 0.55132
                                                              0.8068
## Neg Pred Value
                         0.9585 0.8960
                                           0.9535 0.91773
                                                             0.9428
## Prevalence
                          0.2845 0.1935
                                           0.1743 0.16381
                                                             0.1839
## Detection Rate
                          0.2557 0.1035
                                            0.1378 0.09584
                                                             0.1363
## Detection Prevalence
                         0.3084 0.1339
                                           0.2150 0.17383
                                                             0.1689
## Balanced Accuracy
                          0.9127 0.7485
                                            0.8485 0.74589
                                                              0.8506
# Generalized boosted model
set.seed(234)
control_gbm <- trainControl(method = "repeatedcv", number = 5, repeats = 1)</pre>
modfit_bgm <- train(classe ~ .,</pre>
                    method = "gbm",
                    trControl = control_gbm,
                    verbose = FALSE,
                    data = training)
# prediction
pred_gbm <- predict(modfit_bgm, newdata = testing)</pre>
conf_mat_bgm <- confusionMatrix(pred_gbm, testing$classe)</pre>
conf_mat_bgm
## Confusion Matrix and Statistics
##
##
            Reference
## Prediction
                Α
                           С
                               D
                                     Ε
           A 1669
##
                      8
                           0
                                0
                                     0
##
           В
                 5 1116
                              11
##
           C
                 0
                     15 1015
                              11
                                     1
##
           D
                 0
                      0
                           4
                             941
                                    11
##
           Ε
                              1 1067
                      0
                           0
##
## Overall Statistics
##
##
                  Accuracy : 0.9869
##
                    95% CI: (0.9837, 0.9897)
##
      No Information Rate: 0.2845
##
      P-Value [Acc > NIR] : < 2.2e-16
##
##
                     Kappa: 0.9834
```

```
##
## Mcnemar's Test P-Value : NA
##
## Statistics by Class:
##
##
                       Class: A Class: B Class: C Class: D Class: E
## Sensitivity
                         0.9970 0.9798 0.9893 0.9761
                                                             0.9861
                         0.9981
                                          0.9944
                                                   0.9970
## Specificity
                                  0.9945
                                                             0.9998
                                          0.9741
                         0.9952 0.9772
## Pos Pred Value
                                                   0.9843
                                                             0.9991
## Neg Pred Value
                         0.9988 0.9952
                                          0.9977
                                                  0.9953
                                                             0.9969
## Prevalence
                         0.2845 0.1935
                                          0.1743
                                                   0.1638
                                                            0.1839
                         0.2836 0.1896
## Detection Rate
                                          0.1725
                                                   0.1599
                                                             0.1813
## Detection Prevalence 0.2850 0.1941
                                          0.1771
                                                   0.1624
                                                             0.1815
                         0.9976 0.9872
                                           0.9919 0.9865
                                                             0.9930
## Balanced Accuracy
# Random forest
set.seed(456)
control_rf <- trainControl(method = "cv", number = 3, verboseIter = FALSE)</pre>
modfit_rf <- train(classe ~ .,</pre>
                  method = "rf",
                  trControl = control_rf,
                  data = training)
# prediction
pred_rf <- predict(modfit_rf, newdata = testing)</pre>
conf_mat_rf <- confusionMatrix(pred_rf, testing$classe)</pre>
conf_mat_rf
## Confusion Matrix and Statistics
##
##
            Reference
## Prediction
              Α
                     В
                          С
                               D
                                    Ε
           A 1673
                     6
                          0
                               0
##
           В
                0 1132
                          1
                               0
##
           C
                0
                     1 1025
                               3
##
           D
                0
                     0
                          0
                             961
                                    1
##
           Ε
                     0
                          0
                               0 1081
##
## Overall Statistics
##
##
                 Accuracy: 0.9978
##
                   95% CI: (0.9962, 0.9988)
##
      No Information Rate: 0.2845
      P-Value [Acc > NIR] : < 2.2e-16
##
##
##
                    Kappa: 0.9972
##
##
  Mcnemar's Test P-Value : NA
##
## Statistics by Class:
##
##
                       Class: A Class: B Class: C Class: D Class: E
                                                             0.9991
## Sensitivity
                         0.9994 0.9939 0.9990 0.9969
## Specificity
                         0.9986 0.9998
                                          0.9992 0.9998
                                                             0.9998
## Pos Pred Value
                         0.9964 0.9991
                                          0.9961 0.9990
                                                            0.9991
```

```
## Neg Pred Value
                                            0.9998
                          0.9998
                                   0.9985
                                                      0.9994
                                                               0.9998
## Prevalence
                          0.2845
                                   0.1935
                                            0.1743
                                                      0.1638
                                                               0.1839
## Detection Rate
                                   0.1924
                                            0.1742
                                                      0.1633
                          0.2843
                                                               0.1837
## Detection Prevalence
                          0.2853
                                   0.1925
                                            0.1749
                                                      0.1635
                                                               0.1839
## Balanced Accuracy
                          0.9990
                                   0.9968
                                            0.9991
                                                      0.9983
                                                               0.9994
```

#### Final Model Selection

```
# Final model selection
which.max(c(conf_mat_rpart$overall["Accuracy"], conf_mat_bgm$overall["Accuracy"], conf_mat_rf$overall[".
## Accuracy
## 3
```

### Predication

The results from RFM were applied to the validation set to predict the results of *classe*. Based on the prediction, *classe* follows the sequence of **B A B A A B D B A A B C B A E E A B B B** 

```
pred_val <- predict(modfit_rf, newdata = act_validation)
pred_val</pre>
```

```
## [1] B A B A A E D B A A B C B A E E A B B B ## Levels: A B C D E
```