23 Algèbre linéaire

6. Applications linéaires

6.1. **Applications linéaires**

Soient E et F deux espaces vectoriels. On appelle application linéaire de E vers F toute application h de E vers F telle que :

1)
$$h(u + v) = h(u) + h(v)$$

2)
$$h(\lambda u) = \lambda h(u)$$

quels que soient les éléments u et v de E et le nombre réel λ .

Exemple
$$E = F = \mathbb{R}$$
, $h : \mathbb{R} \to \mathbb{R}$ et $h(x) = 5x$.
 $h(u + v) = 5(u + v) = 5u + 5v = h(u) + h(v)$
 $h(\lambda u) = 5(\lambda u) = \lambda(5u) = \lambda h(u)$

Nous reviendrons plus longuement sur les endomorphismes au chapitre 7.

Définitions Une application linéaire de E vers F est aussi appelée homomorphisme de E vers F. Une application linéaire de E vers E est appelée **endomorphisme** de E.

Une application linéaire bijective de E vers F est appelée **isomorphisme** de E vers F. Un isomorphisme de E vers E est appelé **automorphisme** de E.

Exercice 6.1

Les applications h de E vers F ci-dessous sont-elles linéaires ?

a.
$$h(x) = 2x$$

c.
$$h(x) = x^2$$

e.
$$h((x; y)) = xy$$

g.
$$h((x;y)) = (0;|y|)$$

i.
$$h((x;y)) = (x;y;x-y)$$

k.
$$h(ax + b) = 5a + 2b$$

m.
$$h(f) = f'$$
 (dérivée de f)

b.
$$h(x) = x + 2$$

d.
$$h((x; y)) = 3x - y$$

f.
$$h((x;y)) = (2x - y;x)$$

h.
$$h((x; y)) = (\sin(x); y)$$

j.
$$h((x; y; z)) = (x + 2y; z - 2y)$$

1.
$$h(ax^2 + bx + c) = cx^2 + bx + a$$

Opérations sur les Si f et g sont des applications linéaires, alors les applications f+g et $\lambda \cdot f$ applications linéaires ($\lambda \in \mathbb{R}$) sont aussi linéaires.

> Soit E, F et G des espaces vectoriels, f une application linéaire de E vers F et g une application linéaire de F vers G.

L'application $g \circ f$ est alors linéaire de E vers G. En effet :

$$(g \circ f)(u+v) = g(f(u+v)) = g(f(u)+f(v)) = g(f(u))+g(f(v))$$

= $(g \circ f)(u)+(g \circ f)(v)$

$$(g \circ f)(\lambda u) = g(f(\lambda u)) = g(\lambda f(u)) = \lambda g(f(u)) = \lambda (g \circ f)(u)$$

Par contre, la multiplication de deux fonctions linéaires n'est pas forcément linéaire :

$$(f \cdot g)(u + v) = f(u + v) \cdot g(u + v) = (f(u) + f(v)) \cdot (g(u) + g(v)) = f(u) \cdot g(u) + f(u) \cdot g(v) + f(v) \cdot g(u) + f(v) \cdot g(v) = (f \cdot g)(u) + (f \cdot g)(v) + f(u) \cdot g(v) + f(v) \cdot g(u)$$

Donc, en général, $(f \cdot g)(u + v) \neq (f \cdot g)(u) + (f \cdot g)(v)$

Didier Müller, 2020 Algèbre linéaire 24 CHAPITRE 6

Noyau et image d'une application linéaire **6.2.**

Noyau Soit h une application linéaire de E vers F. On appelle **noyau** de h, noté Ker(h), l'ensemble des vecteurs de E qui ont pour image, par h, le vecteur nul de F.

Ker pour kernel (noyau en anglais)

 $Ker(h) = \{ u \in E \mid h(u) = 0_F \}$

Soit h une application linéaire de E vers F. On appelle **image** de h, noté Im(h), l'ensemble des vecteurs de F qui sont image, par h, d'au moins un vecteur de E.

$$Im(h) = \{ v \in F \mid \exists \text{ un } u \in E \text{ tel que } h(u) = v \}$$

On appelle rang d'une application linéaire de E vers F la dimension de Im(h).

Remarques Ker(h) et Im(h) ne sont jamais vides.

Ker(h) est un sous-espace vectoriel de E. Im(h) est un sous-espace vectoriel de F.

Théorème 6.1 Soient E et F deux espaces vectoriels, avec E de dimension finie. Soit h une application linéaire de E vers F. Alors :

$$\dim(\operatorname{Ker}(h)) + \dim(\operatorname{Im}(h)) = \dim(E)$$

Exercice 6.2

Donnez le noyau et l'image des applications linéaires suivantes :

a.
$$h((x;y)) = (2x - y;x)$$

b.
$$h((x;y)) = (x-y;0)$$

c.
$$h((x;y)) = (x;y;x-y)$$

d.
$$h((x;y)) = (x-y;y-x)$$

$$h((r \cdot v)) = (0 \cdot v \cdot r + 2v)$$

f.
$$h((x; y; z)) = (x + 2y; z - 2y)$$

e.
$$h((x;y)) = (0;y;x+2y)$$

$$h h(f) = f$$

g.
$$h((x; y; z)) = (z; y; x)$$

h. h(f) = f'

Pour chacune de ces questions, vous vérifierez le théorème 6.1.

Algèbre linéaire Didier Müller, 2020

Exercice 6.3

$$Soit f: \mathbb{R}^3 \to \mathbb{R}^3$$

$$(x_1; x_2; x_3) \rightarrow (2x_1 + 3x_2 + 2x_3; x_2 + x_3; 2x_1 - x_3).$$

- **a.** Les vecteurs suivants appartiennent-ils à l'image de f? a = (8; 1; 7), b = (0; 0; 0), c = (0; 1; 0), d = (5; 3; -4)
- **b.** À quelles conditions un élément $(y_1; y_2; y_3)$ de \mathbb{R}^3 appartient-il à l'image de f?
- **c.** Déterminez le noyau de f.

6.3. Matrices et applications linéaires

Il est temps de faire le lien entre les applications linéaires et les matrices. Voici un système d'équations linéaires :

$$\begin{cases} x' = a_1 x + a_2 y + a_3 z \\ y' = b_1 x + b_2 y + b_3 z \end{cases}$$

Ce système peut aussi être écrit de la façon suivante :

Pour le vérifier, calculez le membre de droite de l'équation!

$$\underbrace{\begin{pmatrix} x' \\ y' \end{pmatrix}}_{v'} = \underbrace{\begin{pmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{pmatrix}}_{M} \cdot \underbrace{\begin{pmatrix} x \\ y \\ z \end{pmatrix}}_{v}$$

Pour obtenir l'image de $v' \in F$ d'un élément $v \in E$ par une application linéaire h, on peut donc simplement effectuer le produit matriciel de la matrice associée à h avec le vecteur v.

$$v' = h(v) = M \cdot v$$

Exercice 6.4

Soit l'application linéaire h de \mathbb{R}^2 vers \mathbb{R}^2 , de matrice $M = \begin{pmatrix} 1 & -2 \\ 2 & 1 \end{pmatrix}$.

Soient les vecteurs $u = \begin{pmatrix} 5 \\ 3 \end{pmatrix}$, $v = \begin{pmatrix} -1 \\ 2 \end{pmatrix}$.

Calculez h(u), h(v), h(u + v), h(2u), h(-3v), h(2u - 3v).

Exercice 6.5

Déterminez les matrices des applications linéaires de l'exercice 6.2.

Exercice 6.6

On considère \mathbb{R}^3 et sa base canonique $E = \{e_1 ; e_2 ; e_3\}$.

Soit l'application linéaire h telle que

$$h(e_1) = 3e_1 - 3e_2$$
; $h(e_2) = 2e_1 - 6e_2 - e_3$ et $h(e_3) = 2e_1 + e_2 + e_3$

- **a.** Écrivez la matrice H de l'application h.
- **b.** Déterminez l'aire de l'image du triangle ABC de sommets A(0; 0; 0), B(2; 0; 0) et C(0; 0; 2) par l'application h.
- **c.** Écrivez la matrice G de l'application $g = h \circ h$.

Exercice 6.7

Soit l'application linéaire $h: \mathbb{R}^2 \to \mathbb{R}^2$ de matrice $M = \begin{pmatrix} 1 & -2 \\ 2 & 1 \end{pmatrix}$ et $u = \begin{pmatrix} 4 \\ 1 \end{pmatrix}$.

- a. Déterminez le vecteur v qui est image de u.
- **b.** Déterminez le vecteur w qui a pour image u.

Exercice 6.8

Déterminez les matrices des endomorphismes de \mathbb{R}^2 suivants :

$$u = \begin{pmatrix} x \\ y \end{pmatrix}$$
 $e_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ $e_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$

- **a.** h(u) = 3u
- **b.** h(u) = -u **c.** $h(u) = xe_1$
- **d.** $h(u) = u 3xe_2$

26 CHAPITRE 6

Exercice 6.9

Déterminez les matrices des endomorphismes de \mathbb{R}^3 suivants :

a.
$$h(u) = 3u$$

b.
$$h(u) = (x + 2y + 4z; -x - 2y - 2z; z)$$
 c. $h(u) = ye_1 - xe_2$

$$\mathbf{c.} \ h(u) = ye_1 - xe$$

Exercice 6.10

Soit l'application linéaire h de \mathbb{R}^2 vers \mathbb{R}^2 telle que $\begin{cases} h((2;1)) &= (2;-3) \\ h((1;-1)) &= (3;-1) \end{cases}$

Déterminez la matrice de h.

Matrice associée à une Nous avons vu que la composition de deux applications linéaires est également une application linéaire application linéaire. Soit M_1 la matrice associée à l'application linéaire h_1 de E vers F et **composée** M_2 la matrice associée à l'application linéaire de F vers G.

Cherchons la matrice M associée à l'application linéaire de $h = h_2 \circ h_1$ de E vers G.

Nous savons que:

$$h(u) = M \cdot u$$

$$h(u) = (h_2 \circ h_1)(u) = h_2(h_1(u)) = M_2 \cdot (M_1 \cdot u)$$

Comme le produit matriciel est associatif, on déduit : $h(u) = (M_2 \cdot M_1) \cdot u$

Théorème 6.2 La matrice M associée à l'application linéaire $h_2 \circ h_1$ est égale au produit des matrices M_2 (de h_2) et M_1 (de h_1), dans cet ordre.

$$M = M_2 \cdot M_1$$

Exercice 6.11

Soient les applications linéaires h_1 et h_2 respectivement de matrices $M_1 = \begin{pmatrix} 1 & 3 \\ 2 & 4 \end{pmatrix}$ et

$$M_2 = \begin{pmatrix} 5 & 7 \\ 6 & 8 \end{pmatrix}$$
.

a. Déterminez les matrices des applications linéaires h_3 , h_4 et h_5 suivantes :

La réciproque se trouve en calculant l'inverse de la matrice.

$$h_3 = h_1 \circ h_2$$

$$h_1 = h_2 \circ h_2$$

$$h_3 = h_1 \circ h_2$$
 $h_4 = h_2 \circ h_1$ $h_5 = h_2 \circ h_2$

b. Déterminez la matrice de la réciproque de h_3 .

Exercice 6.12

Dans \mathbb{R}^3 soit l'endomorphisme h suivant :

$$h((x; y; z)) = (2y; 4x-z; x+y+z).$$

Déterminez la matrice de la réciproque de h.

6.4. Ce qu'il faut absolument savoir

Reconnaître une application linéaire

□ ok

Donner le noyau et l'image d'une application linéaire

□ ok

Donner la matrice d'une application linéaire et de sa réciproque

□ ok

Algèbre linéaire