

What does a search engine do?

The ranking problem

Given

 \circ Some evidence of the user's need

Produce

- o A list of matching information items
- o In decreasing order of relevance

The ranking problem

Given

o Some evidence of the user's need query

Produce

- \circ A list of matching information items documents
- ∘ In decreasing order of relevance

2) What order do we show them in? q - - - d f(q,d)

Isn't it a solved problem?

Efficiency

Efficiency is about doing something (good or bad) in an optimal way (i.e., faster or with fewer resources)

Key performance indicators

- Query latency: searching billions of documents
- Query throughput: serving thousands of users
- Document latency: serving freshly published content

Effectiveness

Effectiveness is about doing the right thing; it's about finding documents that are relevant to the user

Relevance is influenced by many factors

- ∘ Topical relevance vs. user relevance
- o Task, context, novelty, style

Ranking models define *a view of* relevance

Pursuing relevance

Exact matching of words is not enough

- Queries are ambiguous; documents are ambiguous
- o Many different ways to write the same thing

Even perfect matching is not enough

- Must counter adversarial content
- Must infer quality beyond content

Assessing relevance

Relevance is a user's prerogative

- We can observe changes in user behavior
- o Or directly ask the user how we're doing

Evaluation is an empirical science

- o It must be scientifically rigorous
- o It must be economically viable

What do search engineers do?

The ranking problem $q - \frac{d}{f(q,d)}$

(Continuous) offline processing

Document acquisition

Document understanding

Document indexing

Document acquisition

The Web is huge

o Trillions of known URLs, billions fetched

The Web is constantly evolving

o Updates, additions, deletions

Efficient crawling is key

 \circ Must aim for coverage, but also freshness

Document understanding

Documents come in many flavors

 Web pages, email, books, news stories, scholarly papers, text messages, Word™, Powerpoint™, PDF, forum postings, patents, IM sessions, etc.

Document understanding

Documents have mostly textual content

 \circ Some of it static, some dynamically rendered

And often some structure

- o Title, body, url, anchor text for web pages
- o Subject, sender, destination for email

Document understanding

Documents carry meaning

- Term-based matching as a first approximation
- Several techniques to leverage semantics

Documents vary in quality

- o Genuinely: accessibility, readability, authority, depth
- o Maliciously: content farms, link farms

Document indexing

Efficient retrieval through indexes

- \circ Like the index of a book
 - For each word, a list of documents it appears on
- o Broken up into shards of millions of documents
 - 1000s of shards for the web index
- o Plus per-document metadata

Online processing

Query understanding Matching and scoring Post-processing

Query understanding

Keyword queries are often poor descriptions of the user's actual information need

o Interaction and context also matter

Query understanding techniques can help

- Query segmentation, query scoping
- o Query relaxation, query expansion

Query understanding

Query scoping through semantic annotation

- [san jose convention center]
- o [matt cutts]

Query expansion through acronym expansion

- ∘ [gm trucks] → [general motors trucks]
- \circ [gm corn] \rightarrow [genetically modified corn]

Matching and scoring

Send the query to all the shards

Each shard

- $\circ \ \text{Finds matching documents} \\$
- Scores each query-document pair
- \circ Sends back the top n documents

Combine all the top documents and sort by score

Post-retrieval adjustments

Host clustering, sitelinks

Near-duplicate removal, diversification

Spam demotions, copyright takedowns

Course goals

Provide an in-depth account of ranking models and evaluation methods for information retrieval

Provide an exploration of recent advances and current research directions in the field

Course scope

Focus on ranking

- Query-dependent ranking
- Query-independent ranking
- Machine-learned ranking

Focus on evaluation

o Offline, online, counterfactual

Out-of-scope

We have dedicated courses for:

- o Information retrieval
- Recommender systems
- o Machine learning
- o Data mining

Course materials: textbooks

Search Engines: Information Retrieval in Practice by B. Croft, D. Metzler, and T. Strohman Introduction to Information Retrieval by C. Manning, P. Raghavan, and H. Schütze Modern Information Retrieval by R. Baeza-Yates and B. Ribeiro-Neto

Course materials: textbooks

<u>Information Retrieval: Implementing and Evaluating Search Engines</u>

by S. Büttcher, C. Clarke, and G. Cormack

<u>Text Data Management: A Practical Introduction to Information Retrieval and Text Mining</u>

by C. Zhai and S. Massung

Course materials: surveys

<u>Foundations and Trends in Information Retrieval</u> by several authors

Morgan & Claypool Synthesis Lectures on Information Concepts, Retrieval, and Services by several authors

Other relevant material

General background

- \circ Algorithms and data structures
- Basic statistics
- o Basic linear algebra

Advanced readings

o Google Scholar is your friend

Course grading (tentative)

Exams: 40% Project: 40% Assignments: 20%

Course website

http://homepages.dcc.ufmg.br/~rodrygo

References

Google Search Statistics Internet Live Stats, 2017

How Google Works: A Google Ranking Engineer's Story

Haahr, SMX West 2016

Ten blue links on Mars

Clarke et al., WWW 2017

Writing assignment #0

Fill in a short questionnaire describing your past experience and expectations related to the course

 \circ Due Tue, Aug 15 @ 23:55 via Moodle

Coming next...

Search Architecture

Rodrygo L. T. Santos rodrygo@dcc.ufmg.br