Домашняя работа по дискретной математике №5

Вариант 173

Работу выполнил: Чень Хаолинь, Р3116,407960

Проверить на изоморфизм графы G_1 и G_2 .

 G_1

V/V	x1	x2	х3	х4	х5	x6	х7	х8	х9	x10	x11	x12
x1	0	1	0	1	1	1	0	0	0	0	1	0
x2	1	0	1	0	0	1	1	0	1	0	1	0
х3	0	1	0	1	0	0	1	0	0	1	0	1
x4	1	0	1	0	0	0	1	1	0	0	1	0
x5	1	0	0	0	0	1	0	0	1	0	1	1
x6	1	1	0	0	1	0	1	0	1	1	1	1
x7	0	1	1	1	0	1	0	1	1	0	0	0
x8	0	0	0	1	0	0	1	0	0	0	0	0
x9	0	1	0	0	1	1	1	0	0	1	1	1
x10	0	0	1	0	0	1	0	0	1	0	1	0
x11	1	1	0	1	1	1	0	0	1	1	0	0
x12	0	0	1	0	1	1	0	0	1	0	0	0

 G_2

V/V	y1	y2	уЗ	y4	у5	y6	у7	y8	у9	y10	y11	y12
у1	0	1	0	0	1	1	0	1	0	1	0	1
у2	1	0	1	0	0	1	0	0	1	0	1	0
у3	0	1	0	0	0	1	1	0	0	1	0	1
y4	0	0	0	0	1	0	0	1	0	1	1	1
у5	1	0	0	1	0	1	0	1	1	1	1	1
y6	1	1	1	0	1	0	1	1	0	0	0	0
у7	0	0	1	0	0	1	0	0	0	0	0	0
у8	1	0	0	1	1	1	0	0	1	1	1	0
у9	0	1	0	0	1	0	0	1	0	1	0	0
y10	1	0	1	1	1	0	0	1	1	0	0	1
y11	0	1	0	1	1	0	0	1	0	0	0	0
y12	1	0	1	1	1	0	0	0	0	1	0	0

Проверить на изоморфизм графы G1 и G2.

Для графа G_1 $\Sigma \rho(x)=64$. Список $P(x)=\{5,6,5,5,5,8,6,2,7,4,7,4\}$. Для графа G_2 $\Sigma \rho(y)=64$. Список $P(y)=\{6,5,5,5,8,6,2,7,4,7,4,5\}$.

Разобьем вершины обоих графов на классы по их степеням.

	p(x) = p(y) = 8	p(x) = p(y) = 7	p(x) = p(y) = 6	p(x) = p(y) = 5	p(x) = p(y) = 4	p(x) = p(y) = 2
X	х6	x9, x11	x2, x7	x1, x3, x4, x5	x10, x12	x8
Y	у5	y8, y10	y1, y6	y12, y2, y3, y4	y9, y11	у7

Из таблицы сразу видно соответствие вершин графов:

Х	Υ
x6	у5
x8	у7

Для определения соответствия вершин с $\rho(x) = \rho(y) = 6$ попробуем связать с установленными вершинами из $\rho(x) = \rho(y) = 2$.

X		Y		
x2 x7	x8	y1 y6 ———	y7	

Анализ связей показывает следующее соответствие:

Х	Y
x6	у5
x8	у7
x2	у1
x7	у6

Для определения соответствия вершин с $\rho(x) = \rho(y) = 7$ попробуем связать с установленными вершинами из $\rho(x) = \rho(y) = 6$.

X		Y		
x9 x11	y8 y10	y6		

Анализ связей показывает следующее соответствие:

Χ	Υ
x6	у5
x8	у7
x2	y1
x7	у6
x9	y8
x11	y10

Для определения соответствия вершин с $\rho(x) = \rho(y) = 4$ попробуем связать с установленными вершинами из $\rho(x) = \rho(y) = 7$.

2	X	Y		
x10 x12	x11	y9 y11	y10	

Анализ связей показывает следующее соответствие:

Χ	Υ
x6	у5
x8	у7
x2	у1
x7	y6
x9	y8
x11	y10
×10	у9
x12	y11

Для определения соответствия вершин с $\rho(x) = \rho(y) = 5$ попробуем связать с установленными вершинами. v

Анализ связей показывает следующее соответствие:

Х	Y
x6	у5
x8	у7
x2	у1
x7	y6
x9	y8
x11	y10
×10	у9
x12	y11
x1	y12
x3	y2
x4	уЗ
x5	y4

По итоговой таблице связей можно сделать вывод, что каждой вершине графа G_1 соответствует одна вершина графа G_2 , что доказывает изоморфизм данных графов.