≤ Machine Learning Model on Clinical Trials Text Analytics

Predictive Power of Unstructured Text Combined with Structured Phase Data

Analysis Project • 2025

13,748 Clinical Trials • Advanced ML & NLP

Problem Statement

Research Question

"What is the predictive power of unstructured summary text when combined with structured phase data?"

Project combines **regression** and **classification** with features:

- Trial Phase (structured)
- Summary Text (unstructured)
- Enrollment Numbers
- Trial Status & Dates
- Medical Domain Keywords

Dataset Overview

Total Trials

13,748

Time Period

36 yrs

Features

524

Topics

10

Prediction Targets

- Classification: Trial Status
- **Regression:** Enrollment Size

Sponsors

Sanofi, GSK, Novartis, Pfizer, AstraZeneca, Merck, Roche, Bayer, Takeda, Eli Lilly

Clinical Trials Text Analytics

Machine Learning & NLP Analysis

Pharmaceutical Sponsors

- √ Improve enrollment planning
- √ Optimize budget allocation
- ✓ Predict trial success
- √ Competitive intelligence

Regulatory Agencies

- √ Automated risk screening
- √ Resource allocation
- √ Quality indicators
- √ Faster assessments

Clinical Researchers

- √ Better resource planning
- √ Identify research trends
- √ Improve trial design
- √ Data-driven decisions

Healthcare Institutions

- √ Trial selection guidance
- ✓ Patient recruitment
- √ Capacity management
- ✓ Partnership opportunities

Business Impact

Late-stage trials require 4-5× more enrollment budget. Text analysis helps predict requirements and optimize resource allocation across all stakeholders.

Clinical Trials Text Analytics Stakeholder Analysis

Data Preparation

- Clean missing values (<2%)
- Remove duplicates
- Univariate & bivariate analysis
- Statistical hypothesis testing

Feature Engineering (524 features)

- Phase: Ordinal, one-hot, binary (3)
- Text: TF-IDF (500), basic (5), domain (7)
- Topics: LDA modeling (10)

Baseline Models

- Linear Regression
- Random Forest
- Evaluate with MAE, R², F1

Advanced Models

- XGBoost with Grid Search CV
- LSTM & CNN (deep learning)
- Hybrid (text + structured)
- Ensemble averaging

Hyperparameter Tuning

- Grid Search with 5-fold CV
- n_estimators: [10, 100, 200]
- max_depth: [2, 10, 20]
- learning_rate: [0.01, 0.1, 0.5]

Evaluation Metrics

- Classification: F1-Score, Accuracy
- Regression: R², MAE, RMSE
- Feature importance (SHAP)

Clinical Trials Text Analytics 5-Step Methodology

Description Count:

Total Data = 13,748 After Cleaning = 13,748 Missing Values = 407 (1.91%) Train Data (80%) = 10,998 Test Data (20%) = 2,750

Cleaning Steps

Remove duplicates (0 found) Handle missing Phase values Standardize phase labels Clean summary text

Models Used

XGBoost, Random Forest, LGBM LSTM, CNN, Hybrid DL Linear Regression (baseline)

Feature Categories (524 total)

Phase Features (3)

Ordinal (0-4), One-hot (8 cols), Binary (is_late_stage)

Text Features (512)

- TF-IDF: 500 features
- Basic: 5 (length, word count, complexity)
- Domain: 7 (medical keywords)

Topic Features (10)

LDA topic modeling: Oncology, Diabetes, Vaccines, PK, RCT, Long-term, Efficacy

Preprocessing Pipeline

- 1. Text tokenization & cleaning
- 2. TF-IDF vectorization (500 features)
- 3. LDA topic extraction (10 topics)
- 4. StandardScaler normalization
- 5. Train/test split (80/20 stratified)

Clinical Trials Text Analytics Feature Engineering Pipeline

Dataset Statistics

Random Forest	n_estimators: [10, 100, 200] max_depth: [2, 10, 20]	
LGBM	n_estimators: [10, 100, 200] max_depth: [2, 10, 20] learning_rate: [0.01, 0.1, 0.5]	

Grid Search Settings

- CV Folds: 5
- Scoring: neg_mean_absolute_error
- Total Combinations: 81
- Training Time: ~45 minutes

Best Model: XGBoost

Optimal Hyperparameters

• n_estimators: 100

• max_depth: 20

• learning_rate: 0.1

• objective: binary:logistic

• eval_metric: logloss

Performance Metrics

F1-Score

0.815

R² Score

0.271

Improvement

+21%

RMSE

1.43

Clinical Trials Text Analytics

Hyperparameter Optimization

Model Performance & Results

Model Name	F1 Train	F1 Test	Туре	Status
XGBoost	0.9247	0.8146	ML	Best
Random Forest	0.9800	0.8006	ML	Baseline
LSTM	0.9450	0.7800	DL	Overfit
Hybrid	0.9470	0.7757	DL	Overfit
CNN	0.9970	0.7743	DL	High Overfit

Regression: Enrollment Size Prediction

Model Name	R ² Train	R ² Test	RMSE	Improvement
XGBoost	0.9600	0.2706	1.43	+21.4%
Random Forest	0.9800	0.2228	1.48	Baseline
Feedforward NN	0.8500	-0.1174	1.77	Failed

© Key Result

XGBoost achieves best performance: F1 = 0.8146 (classification), $R^2 = 0.2706$ (regression). Text features improve enrollment prediction by **21.4%** over baseline.

Clinical Trials Text Analytics Model Comparison Results

Hyperparameter Tuning & Best Model

Grid Search CV Configuration

Model	Hyperparameters Tested	
XGBoost	n_estimators: [10, 100, 200] max_depth: [2, 10, 20] learning_rate: [0.01, 0.1, 0.5]	

Feature Importance Analysis

Top 15 Most Important Features (XGBoost)

? Critical Insight

Topic features (39%) provide 8× more predictive power than phase features (4.8%). Text analysis is essential for accurate predictions.

Clinical Trials Text Analytics XGBoost Feature Importance

Feature Category Breakdown

Predictive Power by Feature Category

✓ Text-Based: 72.6%

Topics (39%) + Domain (20.9%) + Text Metrics (12.7%) = 72.6% of predictive power comes from unstructured text

Structured: 27.4%

Phase (4.8%) + Temporal (22.6%) = 27.4% from traditional structured data

§ Key Takeaway

Unstructured text provides nearly 3× more predictive power than structured data. NLP is critical for clinical trial analytics.

Clinical Trials Text Analytics Feature Category Contribution Analysis

Hypothesis Testing Results

Hypothesis 1: Phase 1 Trials > Phase 3 Trials

Status: NOT SUPPORTED

Finding: Phase 3 had 4,887 trials (35.5%) vs Phase 1's 2,848 trials (20.7%)

Interpretation: Successful trials progress through phases; Phase 3 dominance indicates pipeline maturity

Hypothesis 2: Late-Stage Enrollment >> Early-Stage

Status: STRONGLY SUPPORTED

Phase 1-2 median: 54 participants | Phase 3-4 median: 288 participants

Difference: +234 participants (423% increase)
Statistical test: p < 0.0001 (Mann-Whitney U)

Business Impact: Late-stage trials need **4-5**× **more enrollment budget**

Hypothesis 3: Text Adds Predictive Value

Status: STRONGLY SUPPORTED

Classification F1: **0.8006** \rightarrow **0.8146** (+1.7%) Regression R²: **0.2228** \rightarrow **0.2706** (+21.4%)

Text features explain additional 4.78% of enrollment variance

Topics contribute 39% vs Phase's 4.8%

Clinical Trials Text Analytics Statistical Validation Results

Topic Modeling - LDA Results

10 Discovered Medical Research Themes

Rank	Торіс	Theme	Top Keywords	Import.	
1	Topic 4	Oncology & Chemo	cancer, metastatic, chemotherapy, breast	6.7%	
2	Topic 8	Drug Testing	determine, effective, test, evaluate	5.4%	
3	Topic 2	Diabetes Research	diabetes, insulin, glucose, type	3.6%	
4	Topic 0	Vaccines	vaccine, immunogenicity, children, aged	3.6%	
5	Topic 9	Long-term Studies	long-term, hepatitis, chronic, HCV	3.5%	
6	Topic 1	RCT Methodology	placebo, randomized, double-blind	3.3%	
7	Topic 3	Pharmacokinetics	PK, tolerability, healthy, doses	3.2%	
8-10	Additional: Treatment Duration, Efficacy Evaluation, Safety Studies				

© Automated Categorization

LDA extracted coherent themes without manual labeling. Enables automatic trial classification and trend analysis.

Business Value

Topic features provide competitive intelligence, research trend detection, and portfolio analysis capabilities.

Clinical Trials Text Analytics

Unsupervised Learning - LDA

Key Insights & Findings

1. Text > Phase (8×)

Topics (39%) contribute $8 \times$ more than phase (4.8%). Summary quality carries predictive signals.

3. Temporal Effects Strong

Start_Year is top feature (22.6%). Recent trials differ from historical due to regulations.

5. Text Complexity Matters

Word count & lexical diversity correlate with trial scale. Summary quality signals sophistication.

7. Topic Modeling Success

10 coherent themes extracted automatically. Enables categorization without manual coding.

2. Late-Stage Gap (423%)

Phase 3/4: 288 participants vs Phase 1/2: 54. Budget 4-5× more for late-stage trials.

4. Traditional ML Wins

XGBoost (0.815) beats LSTM (0.78). Dataset size (13,748) favors traditional ML.

6. Domain Keywords (21%)

Medical vocabulary (safety, efficacy) adds substantial value. Domain expertise essential.

8. $R^2 = 0.27$ Shows Opportunity

73% variance unexplained. Missing: sponsor reputation, site capabilities, disease prevalence.

Clinical Trials Text Analytics Strategic Insights Summary

Strategic Recommendations

For Sponsors

- ✓ Budget 4-5× more for Phase 3/4
- ✓ Invest in quality summary writing
- ✓ Use topic analysis for competitive intel
- √ Monitor temporal trends

For Researchers

- ✓ Include text analysis in models
- √ Focus on text complexity metrics
- ✓ Use topic modeling for categorization
- ✓ Don't over-rely on phase alone

For Regulators

- √ Text analysis for risk screening
- ✓ Topic modeling for resource allocation
- ✓ Summary quality as trial indicator
- √ Automate preliminary assessments

For Data Scientists

- √ Feature engineering beats complexity
- ✓ Domain knowledge is essential
- √ Traditional ML competitive on small data
- √ Combine structured + unstructured

Universal Takeaway

Structured + unstructured data analysis provides a powerful framework for clinical trial analytics with applications in planning, monitoring, and regulatory oversight.

Clinical Trials Text Analytics Actionable Recommendations

Current Limitations

• **Unexplained Variance:** R² = 0.27 (73% unexplained)

• **Dataset Size:** 13,748 insufficient for DL

• **Short Text:** Avg 419 characters

• Imbalance: 77% completion rate

• **Temporal:** Strong year effect (22.6%)

Missing Data Elements

- Sponsor reputation
- Site capabilities
- Disease prevalence
- Geographical factors
- Financial data

Recommended Next Steps

1. Short-term (3-6 mo)

- BERT embeddings
- Ensemble models
- Feature selection
- K-fold CV

2. Medium-term (6-12 mo)

- Full protocol documents
- Sponsor/site metrics
- Network modeling
- Geographical analysis

3. Long-term (1-2 yrs)

- Causal inference
- Real-time monitoring
- Multi-modal learning
- Transfer learning

Clinical Trials Text Analytics Future Opportunities

Conclusion & Impact

Research Question Answer

"What is the predictive power of unstructured summary text when combined with structured phase data?"

- ✓ Unstructured text provides SUBSTANTIAL value
 - ✓ Improves enrollment prediction by 21.4%
- ✓ Text features contribute 8× more than phase
 - ✓ Topics explain 39% vs Phase's 4.8%

Project Impact

- √ Actionable insights for planning
- ✓ Automated trial categorization
- ✓ Predictive resource allocation
- ✓ Evidence-based framework

Key Deliverables

- ✓ Best Model: XGBoost (F1: 0.815)
- √ Features: 524 engineered
- ✓ Topics: 10 themes extracted
- √ Validation: 3 hypotheses tested

Final Takeaway

Text features outweigh phase information (39% vs 4.8%) - summary quality carries important predictive signals about trial characteristics.

Clinical Trials Text Analytics Final Summary

Dataset & Code

Dataset Source

Kaggle: AERO BirdsEye Dataset 13,748 trials (1984-2020) 10 pharmaceutical companies

☐ Code Repository

GitHub: https://github.com/pradipgite31/Machine-Learning-Model-on-Clinical-Trials-Text-Analytics.git

Kaggle Notebook & Output:

https://www.kaggle.com/code/pradipgite/notebooka840813f3a

Technical Stack

- Python 3.11
- scikit-learn 1.3
- XGBoost 2.0
- TensorFlow 2.18
 Pandas, NumPy, Matplotlib

Key References

1. Hands-On Machine Learning

Aurélien Géron (2019)

2. XGBoost: A Scalable Tree Boosting System

Chen & Guestrin (2016)

3. LightGBM: Efficient Gradient Boosting

Ke et al. (2017)

4. Latent Dirichlet Allocation

Blei, Ng & Jordan (2003)

5. Deep Learning for NLP

Goldberg (2017)

Tools & Libraries

- SHAP for feature interpretation
- TF-IDF for vectorization
- LDA for topic modeling
- Grid Search for optimization

Analysis Date: October 2025 • Dataset: 13,748 Trials • Methods: ML, DL, NLP, Topic Modeling

Clinical Trials Text Analytics References & Resources

Thank You!

Questions & Discussion

Key Takeaways

- ✓ Text features provide 21% improvement in predictions
- ✓ Topics contribute 8× more than phase
- ✓ Late-stage trials need 4-5× more budget
- ✓ Framework applicable to healthcare analytics

Clinical Trials Text Analytics Project • 2025 Machine Learning & NLP for Healthcare