# Reproducible Workflows for Mass Spectrum Analysis in Atom Probe Tomography

Clara Tan

Supervised by Prof. Simon Ringer & Dr. Anna Ceguerra





#### The scientific method

question → hypothesis → test

- systematic pursuit of testable explanations
- repeatable, reproducible and peer-reviewed
- objective and empirical

#### Reproducibility in computation

- methods not obvious from article's text
- difficult to verify, reproduce
- most journals do not require source code

## Atom probe tomography



Li, et al. 2011. 'Atomic-scale mechanisms of deformation-induced cementite decomposition in pearlite.'



#### Chemical identity assignment

time-of-flight 
$$\rightarrow$$
 mass-to-charge (s)  $(m/z \text{ or } Da)$ 

every element has a unique mass (amu)

two elements can have the same m/z

Si 28 amu / 
$$2^+$$
 = 14 m/z  
N 14 amu /  $1^+$  = 14 m/z

## Mass spectrum analysis



Courtesy of Keita Nomoto

peaks background noise

Background Problem Proposal Results Conclusion

## Mass spectrum analysis



ipleakisy backagrelund raoise

Background Problem Proposal Results Conclusion

# At the moment, every user assigns identities and ranges their own way.



- 'Blue Mountains Study' Hudson et al. 2011
  - 20 users
  - Same dataset
  - Mean deviation of 10.74%

## It is difficult to know what the user has done to achieve the results.



- Procedure is manual and 'hidden' in software
- Not feasible to describe all steps
  - many steps
  - not easy to quantify or explain
  - ad hoc and heuristic approach

#### Problem

- 1. Analysis is not reproducible
- 2. Analysis is not transparent

#### Aim

To enable transparent and reproducible mass spectrum analysis in atom probe tomography.

# Proposal: New graphical user interface (GUI) for a new method-based approach

#### Thesis:

- Enable transparent and reproducible analysis
- Facilitate automated and manual methods (longterm - proliferate auto)
- Focus on usability and sustainable code

#### Method

- Python & PyQt
- User interviews
- Agile development methodology
- Model-view-controller
- 'Clean Code', PEP Python Style Guide

### GUI design



#### Normal functions



#### Normal functions



## Automatic range methods



#### Auto-method API

```
▼ 

■ MassRep

                             voodoo.py
                                                     dummy.py
 → iii .git
                         def required_inputs():
 > ___pycache__
                              return ['bin_size', 'abundance', 'suggested_m2c']
 > aptread

✓ methods

   pycache__
                         def voodoo(bin_size, abundance, suggested_m2c):
      __init__.py
                              convolution = suggested_m2c/(bin_size*abundance)
    dummy.py
    manual.py
                              start = suggested_m2c - convolution
    voodoo.py
                              end = suggested_m2c + convolution
   DS_Store
                              return (start, end)
     .gitignore
     commands.py
     export_error.ui
     mainwindow.py
     mainwindow.ui
                                                                               LF UTF-8 Python & next
                    methods/voodoo.py
                                 1:1
```

## Reproducible workflow file



### Reproducible workflow file



### Transparent analysis

Workflow file

human readable analysis + notes

```
"Reason": "From floor to discontinuity",
  "Color": [
    1.0,
    0.5725490196078431,
    0.2
  "Range": [
    26.571044394799692,
    27.945168448132208
  "Method": "Manual"
},
"24Mg+1",
  "Ion": [
    "Mg",
    24,
    23.99,
    78.99,
```



*i*Python

#### Conclusion

- Reproducibility is fundamental to research
- Mass spectrum analysis in atom probe tomography
  - is performed ad-hoc and heuristically
  - is not transparent or reproducible

#### Conclusion

- ✓ Problem and stakeholder research
- ✓ A new GUI a new approach
  - enables transparent and reproducible analysis
  - encourages use of automatic methods
- ✓ An iPython notebook
  - a lightweight tool for method/user research

#### Thank You





"A scientist builds in order to learn; an engineer learns in order to build."

- Fred Brooks Jr., architect of the IBM System/360

[extra slides]

### The scientific problem model



#### A new workflow

#### method-based



transparent, recorded

#### Sustainable code

#### Model-view-controller ✓



http://www.codeproject.com/KB/tips/
ModelViewController/Figure4.gif

#### 'Clean Code' ✓



#### Python Style Guide ✓



#### Model-view-controller



http://www.codeproject.com/KB/tips/ModelViewController/Figure4.gif

```
Isotope = namedtuple('Isotope', 'element number mass abundance')
ISOTOPES = [
    Isotope('Al', 27, 26.98, 100),
    Isotope('Cr', 50, 49.95, 4.3),
    Isotope('Cr', 52, 51.94, 83.8),
   Isotope('Cr', 53, 52.94, 9.5),
    Isotope('Cr', 54, 53.94, 2.4),
   Isotope('H', 1, 1.008, 99.985),
   Isotope('H', 2, 2.014, 0.015),
class <u>Ion</u>(namedtuple('Ion', 'isotope charge_state')):
   @property
   def mass_to_charge(self):
        return self.isotope.mass / self.charge_state
   @property
   def name(self):
        return '%s%s+%s' % (self.isotope.number, self.isotope.element,
Range = namedtuple('Range', 'start end')
Analysis = namedtuple('Analysis', 'method range reason color')
ExperimentInfo = namedtuple('Experiment', 'ID description')
```

```
class M2CModel(Q0bject):
class BinSizeModel(Q0bject):
class SuggestedIonsModel(Q0bject):
class MethodsModel(Q0bject):
class AnalysesModel(Q0bject):
class MetadataModel(Q0bject):
```

```
WorkingPlotRecord = namedtuple('WorkingPlotRecord', 'm2cs bin_size analyses ions')
MethodsRecord = namedtuple('MethodsRecord', 'methods m2cs bin_size')
MRRecord = namedtuple('ExportRecord', 'analyses metadata')
AnalysesRecord = namedtuple('AnalysesRecord', 'analyses methods')

class MethodsViewModel(QObject):

class ExportViewModel(QObject):

class WorkingPlotViewModel(QObject):

class AnalysesViewModel(QObject):

class AnalysesViewModel(QObject):
```

```
class ToolsDialog(QDialog, ui_toolsdialog.Ui_ToolsDialog):
    def ___init___(self, undo_stack, suggested_ions_model, ar
   @pyqtSlot()
    def on_suggestButton_clicked(self):=
   @pyqtSlot()
    def on_addionsButton_clicked(self):=
   @pyqtSlot()
    def on_clearionsButton_clicked(self):
   @pyqtSlot(str)
    def on_maxchargestateLineEdit_textEdited(self):
   @pyqtSlot(tuple)
    def on_ions_updated(self, new_ions):
```

```
class BinSizeValueChange(QUndoCommand):
   def __init__(self, value, model):
   def redo(self):
   def undo(self):
class SuggestIons(QUndoCommand):
   def __init__(self, known_elements, max_charge_state, model):
   def redo(self):
   def undo(self):

□
   def _suggest(self, known_elements, max_charge_state):
class AddIonsToTable(QUndoCommand):
   def __init__(self, ions, model):=
```

## GUI design





Advanced Action History



#### Deliverables

- problem identification & problem model
- user interviews & 'user stories'
- the 'auto-manual' workflow (designed by Ingrid McCarroll)
- GUI, its framework and its code architecture
- Code Style Guide
- iPython notebook for easy send/receive research
- recommendations & future work

## Learning outcomes

- GUI programming is very difficult
- Good software/product design process is even more critical
- Consider all stakeholders and their interests
- Consider the logic of the problem and compare solutions that improve the problem or negate the problem





3.rng

3.mr