Example 84 The tangent to the nine-point circle at the midpoint of a side of the given triangle is antiparallel to this side with respect to the two other sides of the triangle.

Point order: $b, c, a, a_1, b_1, c_1, n, k, j$.

Hypotheses: $\operatorname{midpoint}(a_1,b,c)$, $\operatorname{midpoint}(c_1,b,a)$, $\operatorname{midpoint}(b_1,a,c)$, $\operatorname{pbisector}(n,a_1,b_1)$, $\operatorname{pbisector}(n,a_1,c_1)$, $\operatorname{perp}(a_1,k,a_1,n)$, $\operatorname{coll}(a,c,k)$,

 $\operatorname{coll}(k, a_1, j), \operatorname{coll}(a, b, j).$ Conclusion: $\operatorname{cyclic}(k, j, b, c).$

The Machine Proof

$$[jk,jb]-[kc,cb] \\$$

(Since a_1, j, k are collinear; a, b, j are collinear; $[jk, jb] = [ka_1, ab]$.)

 $= [ka_1, ab] - [kc, cb]$

(Since $ka_1 \perp a_1n$; $[ka_1, ab] = [na_1, ab] + 1$.)

 $= -[kc, cb] + [na_1, ab] + 1$

(Since a, c, k are collinear; [kc, cb] = [ac, cb].)

 $= [na_1, ab] - [ac, cb] + 1$

(Since circumcenter(n,a_1,c_1,b_1);

Figure 84

$$[na_1, ab] = [na_1, a_1c_1] + [a_1c_1, ab] = -[c_1b_1, b_1a_1] + [c_1a_1, ab] + 1.)$$

$$= -[c_1b_1, b_1a_1] + [c_1a_1, ab] - [ac, cb]$$
(Since $c_1a_1 \parallel ac$; $[c_1a_1, ab] - [ac, cb] = -[ab, cb].$)
$$= -[c_1b_1, b_1a_1] - [ab, cb]$$
(Since $b_1a_1 \parallel ab$; $-[c_1b_1, b_1a_1] - [ab, cb] = -[c_1b_1, cb].$)
$$= -[c_1b_1, cb]$$
(Since $c_1b_1 \parallel cb$; $[c_1b_1, cb] = 0.$)
$$= 0$$

Example 2 18 : As shown in the figure, in $\triangle ABC$, A_1 , B_1 , and C_1 are the midpoints of BC, CA, and AB respectively, and N is the circumcenter of $\triangle A_1B_1C_1$, and pass through A_1 to make $JK \perp A_1N$, intersect AB on J, intersect AC on K, and prove: J, B, K, and C are all circles.

$$\text{prove:} \frac{\frac{J-K}{A-B}}{\frac{A-C}{C-B}} \! \left(\frac{A_{\!\scriptscriptstyle 1}-C_{\!\scriptscriptstyle 1}}{A_{\!\scriptscriptstyle 1}-N} \frac{B_{\!\scriptscriptstyle 1}-A_{\!\scriptscriptstyle 1}}{B_{\!\scriptscriptstyle 1}-C_{\!\scriptscriptstyle 1}} \right) \! = \! \frac{J-K}{A_{\!\scriptscriptstyle 1}-N} \frac{B-C}{B_{\!\scriptscriptstyle 1}-C_{\!\scriptscriptstyle 1}} \frac{A_{\!\scriptscriptstyle 1}-B_{\!\scriptscriptstyle 1}}{A-B} \frac{A_{\!\scriptscriptstyle 1}-C_{\!\scriptscriptstyle 1}}{A-C}$$