

# Diagrama

### Capa del Paciente

- Paciente (A): Punto de partida, donde el paciente en emergencia activa el CRA (B) o el sistema lo detecta automáticamente mediante la HCE.
- Chaleco de Reanimación Automatizado (CRA) (B): Dispositivo portátil que inicia compresiones y oxigenación, conectándose al ID único del paciente para personalizar la intervención.

### Capa de Recolección de Datos

- **Sensores (C)**: Equipados con ECG (±2 lpm), pulsioxímetro (±1%), sensores de frecuencia respiratoria (±1 rpm) y RFID, capturan datos biométricos en <5 ms.
- **Procesamiento Edge (D)**: CPU ARM Cortex (8 núcleos, 2.8 GHz, 16 GB RAM) procesa datos localmente con latencia <10 ms, asegurando privacidad inicial (GDPR Art. 5) y operatividad offline.

**Flujo**: Los datos biométricos del paciente se recolectan y procesan en el borde, garantizando rapidez y seguridad.

### Capa de Procesamiento

- IA Local (E): Analiza datos cada 50 ms (sensibilidad 98%), ajustando compresiones y oxígeno según el estado del paciente (ej. 110 compresiones/min ante paro cardíaco).
- **Asistente Virtual (F)**: Coordina la reanimación, valida ajustes y envía datos a Azure para análisis avanzado, actuando como núcleo de integración.
- **Azure Machine Learning (G)**: Entrena modelos predictivos (98% precisión) para anticipar riesgos como hipoxia en <100 ms, optimizando la intervención.
- Azure Cognitive Services (H): Procesa alertas vocales (95% exactitud), como "Compresiones iniciadas", mejorando la comunicación en tiempo real.

**Flujo**: La IA local procesa datos iniciales, el asistente virtual los valida y Azure refina las decisiones, asegurando precisión y rapidez.

### Capa de Ejecución

- Actuadores CRA (I): Ejecutan compresiones (100-120/min, profundidad 5-6 cm) y oxigenación (10-15 L/min), guiados por el asistente virtual.
- Pantallas de Emergencia (J): Visualizan datos y alertas (ej. "Saturación: 85%, oxígeno ajustado") para el equipo médico y testigos.
- Camilla Robotizada (K): Sincroniza con el CRA para traslados estables, ajustando posición según datos biométricos.
- **Robot Quirúrgico (L)**: Recibe datos para preparar intervenciones postreanimación (ej. cirugía tras shock cardiogénico).
- **Personal Médico (M)**: Supervisa y valida la reanimación, recibiendo notificaciones del asistente virtual.

**Flujo**: El asistente virtual ejecuta la reanimación, coordinando con equipos y personal para garantizar una intervención segura y efectiva.

### Capa de Seguridad y Cumplimiento

- Azure Active Directory (AAD) (N): Autentica al personal con SSO y multifactor, cumpliendo GDPR Art. 32 (seguridad del procesamiento).
- Azure Key Vault (AKV) (O): Cifra datos sensibles (AES-256) y gestiona claves, asegurando confidencialidad (GDPR Art. 9).
- Azure Blob Storage (ABS) (P): Almacena datos biométricos y registros (10 GB/paciente) con acceso cifrado y restringido.

- Azure Sentinel (Q): Monitorea amenazas en tiempo real, detectando accesos no autorizados y cumpliendo ISO 27701.
- Azure Policy (R): Aplica directivas GDPR (retención limitada, Art. 5.1.e) y normas hospitalarias (HL7).
- Azure Digital Twins (S): Simula respuestas del paciente para optimizar ajustes sin comprometer datos reales.
- **HL7 FHIR (T)**: Integra datos con la HCE en <1 s, asegurando interoperabilidad bidireccional.
- ISO 27701 (V): Garantiza cumplimiento con normas sanitarias de gestión de datos.

**Flujo**: Los datos se protegen, almacenan y cumplen con normativas, garantizando seguridad y trazabilidad.

### Capa de Infraestructura

- Azure IoT Hub (W): Centraliza la comunicación segura (5,000 mensajes/s) con cifrado AES-256.
- Azure Kubernetes Service (AKS) (X): Escala recursos en <5 min para picos de emergencias.
- Azure Synapse Analytics (Y): Analiza datos de reanimación para insights clínicos, respetando GDPR Art. 13.
- Azure Functions (Z): Ejecuta alertas automáticas en <1 s (ej. "Paro cardíaco detectado"), integrándose con protocolos hospitalarios.

**Flujo**: La infraestructura soporta comunicación, escalabilidad y análisis, asegurando un rendimiento robusto.

### Flujo General del Sistema

- 1. Paciente: El paciente (A) activa el CRA (B) en una emergencia.
- 2. **Recolección**: Sensores (C) capturan datos biométricos, procesados en el borde (D).
- 3. **Procesamiento**: La IA local (E) ajusta la reanimación, el asistente virtual (F) coordina, y Azure Machine Learning (G) y Cognitive Services (H) refinan la respuesta.
- 4. **Ejecución**: Actuadores (I) aplican compresiones y oxígeno, sincronizando con pantallas (J), camilla (K), robot quirúrgico (L) y personal (M).
- 5. **Seguridad y Cumplimiento**: AAD (N), AKV (O), ABS (P), Sentinel (Q), Policy (R), Digital Twins (S), HL7 FHIR (T) e ISO 27701 (V) protegen y cumplen normativas.
- 6. **Infraestructura**: IoT Hub (W), AKS (X), Synapse Analytics (Y) y Functions (Z) soportan el sistema.

### Cumplimiento con Normas Sanitarias y Legislación UE

- GDPR:
  - o Art. 5: Datos minimizados para reanimación.
  - o Art. 9: Datos sanitarios cifrados y protegidos.
  - o Art. 32: Seguridad garantizada por Sentinel y Key Vault.
- **Protocolos Hospitalarios**: HL7 FHIR asegura interoperabilidad; ISO 27701 protege datos sanitarios.
- **Paciente**: Consentimiento informado (GDPR Art. 7) gestionado por el asistente virtual, con acceso restringido al personal autorizado.

### Integración con el Hospital Ada Lovelace

El CRA se conecta mediante el ID único, compartiendo datos con la Camilla Robotizada para traslados estables, el Robot Quirúrgico Autónomo para intervenciones post-reanimación y el Sistema de Monitoreo de Signos Vitales para análisis continuo, optimizando flujos de emergencia y asegurando una atención integral en el ecosistema del Hospital Ada Lovelace.

# Desglose Operativo y Funcional

El Chaleco de Reanimación Automatizado (CRA) es un dispositivo robótico portátil diseñado para aplicar compresiones torácicas y administrar oxigenación en pacientes fuera del quirófano, como pasillos, salas de espera o áreas de emergencia. Equipado con tecnología avanzada, actúa como un soporte vital inmediato hasta la llegada del equipo médico, integrándose al ecosistema del Hospital Ada Lovelace.

Caso práctico: El CRA se conecta mediante el ID único, compartiendo datos con la Camilla Robotizada para traslados estables, el Robot Quirúrgico Autónomo para intervenciones post-reanimación y el Sistema de Monitoreo de Signos Vitales para análisis continuo, optimizando flujos de emergencia y asegurando una atención integral en el ecosistema del Hospital Ada Lovelace.

### **Funcionalidades Principales**

- Compresiones Automatizadas: Ejecuta compresiones torácicas a 100-120 por minuto (profundidad 5-6 cm) ajustadas al tamaño del paciente. Ejemplo: en un paro cardíaco en el pasillo, inicia RCP en <10 segundos.</li>
- Oxigenación Integrada: Suministra oxígeno a través de una mascarilla integrada (flujo 10-15 L/min), conectada a un concentrador portátil.
- **Integración de Dispositivos**: Compatible con desfibriladores externos automáticos (DEA), monitores multiparámetro y ventiladores de transporte.

- **Monitoreo en Tiempo Real**: Transmite signos vitales a la HCE para seguimiento remoto.
- Activación Rápida: Se activa manualmente o por detección automática de paro cardíaco.

### Gestión de Emergencias Específicas

El CRA responde a crisis críticas con intervención inmediata:

- Paro Cardíaco: Detecta ausencia de pulso (ECG), inicia compresiones y oxigenación.
- **Hipoxia Severa**: Ajusta oxígeno ante baja saturación (pulsioxímetro), notificando a urgencias.
- Bradicardia Crítica: Aplica compresiones si la frecuencia cardíaca cae (<20 lpm).
- Asfixia: Optimiza ventilación al detectar obstrucción respiratoria (frecuencia respiratoria).
- Shock Cardiogénico: Sincroniza con DEA para desfibrilación y compresiones.
- Trauma Torácico: Ajusta presión de compresiones según estabilidad (sensores de fuerza).
- Edema Pulmonar: Administra oxígeno y alerta al equipo de UCI.

### Interacción con Equipos Médicos

- **Emergencias**: Envía alertas a pantallas de sala y dispositivos móviles del equipo de respuesta rápida.
- **UCI**: Sincroniza con ventiladores mecánicos y monitores multiparámetro para transición fluida.
- **Quirófano**: Comparte datos con el Robot Quirúrgico Autónomo para preparar intervenciones.
- Transporte: Integra con la Camilla Robotizada para estabilización durante traslados.

### Sensores del Dispositivo

- Electrocardiograma (ECG): Monitorea ritmo cardíaco (±2 lpm).
- Pulsioxímetro: Mide saturación de oxígeno (±1%).
- Sensor de Frecuencia Respiratoria: Detecta patrones respiratorios (±1 rpm).
- Sensores de Fuerza/Presión: Ajustan compresiones según resistencia torácica.
- Acelerómetros: Evalúan profundidad y ritmo de compresiones.
- Tecnología RFID: Identifica al paciente mediante brazaletes hospitalarios.
- Sensor de Temperatura: Monitorea estado del paciente.

### Detección de Anomalías

La IA, potenciada por Azure Machine Learning, analiza datos de sensores con 98% de sensibilidad, prediciendo riesgos (ej. paro cardíaco) en <2 segundos. Activa compresiones u oxigenación y notifica al equipo en 1 segundo si detecta arritmias o hipoxia.

### Materiales y Diseño

- Estructura: Chaleco de polímero flexible y kevlar, 3 kg, ajustable (tallas S-XL).
- **Ergonomía**: Diseño ergonómico con correas ajustables y almohadillas antideslizantes.
- Portabilidad: Incluye batería y concentrador de oxígeno portátil.

### Módulo de Comunicación Integrado

- Hardware: CPU ARM Cortex 8 núcleos, 16 GB RAM, SSD 256 GB.
- Conectividad: Wi-Fi 6, Bluetooth BLE, 5G.
- Batería: 8 horas de autonomía, recarga en 2 horas.

#### Resiliencia

- Autonomía: Opera offline con datos locales, sincronizando al reconectarse.
- Resistencia: IP54 (polvo y salpicaduras), tolera 0-40°C.
- **Redundancia**: Doble procesador y batería de respaldo, uptime 99.99%.

### **Beneficios Específicos**

- Reducción del tiempo de respuesta en emergencias: 50%.
- Incremento en tasas de supervivencia: 35%.
- Mejora en la estabilidad inicial: 40%.
- Disminución de intervención manual inicial: 60%.

### Integración con el Hospital y Otros Módulos

El CRA se conecta al ecosistema del Hospital Ada Lovelace mediante el ID único del paciente, interoperando con la HCE y el asistente virtual. Comparte datos con el Sistema de Monitoreo de Signos Vitales (biomarcadores), la Camilla Robotizada (traslados estabilizados) y el Robot Quirúrgico Autónomo (preparación quirúrgica). Utiliza Azure Cloud Services para un rendimiento robusto:

- Azure IoT Hub: Conecta el CRA a la nube, procesando datos en tiempo real.
- Azure Machine Learning: Detecta anomalías y ajusta intervenciones.
- Azure Synapse Analytics: Analiza datos para informes clínicos.
- Azure Cognitive Services: Genera alertas vocales (ej. "Paro cardíaco detectado").
- Azure Data Lake: Almacena datos anonimizados (GDPR).
- Azure Key Vault: Encripta datos (AES-256).
- Azure Security Center: Monitorea amenazas.
- Azure Active Directory: Autentica acceso.
- Azure Monitor: Registra eventos.
- Azure API Management: Integra con otros sistemas.

Este módulo disruptivo extiende la reanimación a cualquier lugar, salvando vidas con precisión y visibilidad impactante.