| УТВЕРЖДЕН                                                       |
|-----------------------------------------------------------------|
|                                                                 |
|                                                                 |
|                                                                 |
|                                                                 |
|                                                                 |
|                                                                 |
|                                                                 |
|                                                                 |
|                                                                 |
|                                                                 |
|                                                                 |
| Автоматизированная система                                      |
| "Испытательный стенд автоматизации и интеллектуального контроля |
| ручных операций"                                                |

Руководство пользователя

Москва

2024 год

# Аннотация

Настоящий документ содержит данные об области применения средства автоматизации, краткого описания возможностей средства автоматизации, перечень эксплуатационной документации, с которой необходимо ознакомиться пользователю, назначение и условия применения.

# Содержание

| 1 | Вве    | дение                                                      | 4  |
|---|--------|------------------------------------------------------------|----|
|   | 1.1    | Область применения средства автоматизации                  | 4  |
|   | 1.2    | Краткое описание возможностей средства автоматизации       | 4  |
|   | 1.3    | Перечень эксплуатационной документации, с которой необходи | MO |
| 2 | ознако | омиться пользователю                                       | 4  |
| 2 | Наз    | начение и условия применения                               | 5  |
| 3 | Пол    | готовка к работе                                           | 5  |

## 1 Введение

# 1.1 Область применения средства автоматизации

На различных предприятиях ОПК РФ для контроля действий операторасборщика с помощью систем интеллектуального видеонаблюдения, а также для распознавания некорректных (не соответствующих белому списку) операций и информирования оператора и руководителя производства.

# 1.2 Краткое описание возможностей средства автоматизации

Система распознавания и интеллектуального контроля ручных операций в промышленном производстве предназначена для автоматизации решения следующих задач:

- Контроль действий оператора-сборщика с помощью систем интеллектуального видеонаблюдения;
- Распознавание некорректных (не соответствующих белому списку) операций в процессе сборки деталей и конструкций;
- Распознавание несоблюдения техники безопасности во время работы на производстве;
- Предоставление отчетности (статистики) о процессе сборки изделия оператору-сборщику и руководителю производства

# 1.3 Перечень эксплуатационной документации, с которой необходимо ознакомиться пользователю

Для успешной эксплуатации AC необходимо ознакомиться со следующими документами:

- Технологическая инструкция;
- Описание постановки задачи (комплекса задач);
- Описание информационного обеспечения системы;

## 2 Назначение и условия применения

На предприятии важную роль играет производительность труда и эффективность рабочего процесса. Данные, собираемые в процессе производства используются аналитиками для выявления слабых мест и оптимизации различных процессов. Приложение по контролю ручных операций также позволяет аккумулировать основную статистику по сборочному процессу.

## 3 Подготовка к работе

Программа состоит из основного файла с кодом на языке python и нескольких пакетов, которые выполняют вспомогательные функции в коде, например, содержат описание необходимых абстракций и методов взаимодействия с ними.

Для запуска потребуется python версии от 3.7 до 3.9 (требования библиотеки pytorch) с установленными библиотеками - PyYaml, tqdm, scipy, pytorch, numpy, opency, pandas, pytorch, pyyaml, requests, seaborn, setuptools, torchvision, tk, pyqt, qt, opency, yolov5. Возможно использование виртуальных сред, таких как Anaconda.

Обратим внимание, что для быстродействия системы дополнительно требуется установить драйвера для графического чипа и пакет CUDA, а также проверить, что устанавливаемая версия pytorch поддерживает установленную версию компилятора.

После установки всех зависимостей переходим к корень каталога с кодом и выполняем команду python3 main\_workflow.py. Во время выполнения откроется отдельное окно с демонстрацией работы программы. Для выхода из программы следует нажать клавишу "q" на клавиатуре. Для перехода вручную на следующий этап следует нажать клавишу "n" на клавиатуре.

# 4 Основные этапы работы с приложением

В демонстрационном варианте приложения пользователю предложено собрать мотор квадрокоптера под контролем интеллектуальной системы. На экране появляются инструкции для сборки конкретного шага. Пошаговый пример работы приложений приведен ниже.

## РАБОТА ОСНОВНОГО ПРИЛОЖЕНИЯ

Оператора сборщика требуют выполнить инструкции указанные на экране для соответствующего этапа сборки. Подсказки для совершения правильных действий на текущем этапе выводятся на втором мониторе в виде gif файлов. На левом gif файле показаны необходимые для успешного завершения текущего этапа действия на текущем шаге, в то время как на правом изображении показано, каким будет следующий шаг. После инструкций выполнения текущего этапа на экране выводится соответствующее сообщение об успешном завершении текущего этапа сборки. Если какой-либо объект в кадре обводится красным цветом, то значит, что на текущем шаге он не должен находиться в данной области. Такие объекты необходимо перенести в нужные зоны и дождаться обводки его зеленым цветом, либо отсутствие выделения совсем. Приложение зациклено, что позволяет непрерывно собирать необходимое количество изделий не перезапуская его.

#### ЭТАП 0

Оператора сборщика требуют расположить детали и инструменты в соответствующих зонах. Пример работы нулевого этапа приведен на Рис. 1.



Рис. 1. Пример работы нулевого этапа

## ЭТАП 1

Оператора сборщика требуют взять пинцет и с его помощью перенести 4 винта М3 в зону сборки и вернуть пинцет в зону инструментов. Пример работы первого этапа приведен на Рис. 2.



Рис. 2. Пример работы первого этапа

# ЭТАП 2

Оператора сборщика требуют переместить мотор и посадочное шасси в зону сборки. Пример работы второго этапа приведен на Рис. 3.



# Рис. 3. Пример работы второго этапа

## ЭТАП 3

Оператора сборщика требуют взять отвертку и с ее помощью прикрепить посадочное шасси к мотору через луч с помощью винтов М3 и вернуть отвертку в зону инструментов. Пример работы третьего этапа приведен на Рис. 4.



Рис. 4. Пример работы третьего этапа

## ЭТАП 4

Оператора сборщика требуют перенести гайку и пропеллер в зону сборки и с помощью ключа и зажима закрепить пропеллер и вернуть ключ и зажим в зону инструментов. Пример работы четвертого этапа приведен на Рис. 5.



Рис. 5. Пример работы четвертого этапа