CPSC322 Assignment 4 # of late days used : 1

1.

a.

Α	В	С	р
Т	F	Т	0.4

We can fix this row by making the probability equal to 0. In a joint distribution table, the sum of all probabilities is equal to 1. Without the above row, the table equals to 1.

b.

P(A)	Val
Т	0.5
F	0.5

P(B)	Val
Т	0.5
F	0.5

Are A and B independent?

Conditional Independence à A and B are independent given C

P(A|B,C) = P(A|C)

 $P(A=T \mid B=T, C=T) = P(A=T \mid C=T)$

P(A=T|C=T)

Α	В	С	р	p _e
Т	T	Т	0.1	0.33
Т	F	Т	0	0
F	T	Т	0.1	0.33

F F T 0.1 0.33

P(A=T C=T)	P(A=T)	P(A=F)
C=T	= 0.33	=0.67
C=F	Х	х

P(A|C) = 0.33

P(A=T|B=T, C=T)

Α	В	С	р	p _e
Т	Т	Т	0.1	0.5
F	Т	Т	0.1	0.5

P(A=T|B=T, C=T) = 0.5

P(A|C) = P(A=T|B=T, C=T)

Therefore, A and B are not independent given C

C.

Yes, both are equivalent due to Product rule and Bayes rule. We can show the two are equivalent with product rule; chain rule is derived by successive application of product rule.

$$P(A) * P(B|A) * P(C|A,B) = P(C) * P(B|C) * P(A|B,C)$$

$$\mathsf{P}(\mathsf{A}) \star \tfrac{P(B,A)}{P(A)} \star \tfrac{P(A,B,C)}{P(A,B)} = \mathsf{P}(\mathsf{C}) \star \tfrac{P(B,C)}{P(C)} \star \tfrac{P(A,B,C)}{P(B,C)}$$

$$P(A,B,C)$$
 = $P(A,B,C)$

a.

=0.059

P(Failure = T | Report = T)

Law of Total Probability $P(A) = P(A \mid Bx)*P(Bx) + P(A|By)*P(By)$ **Bayes Rule** $P(A|B) = \frac{P(B|A)P(A)}{P(B)}$ $P(Failure=T) = 0.0001 \Rightarrow P(Failure=F) = 0.9999$ $P(Report=T|Failure=T) = 0.95 \Rightarrow P(Report=F|Failure=T) = 0.05$ $P(Report=F|Failure=F) = 0.95 \Rightarrow P(Report=T|Failure=F) = 0.05$ $A \rightarrow Report = T$ $Bx \rightarrow Failure = T$ By \rightarrow Failure = F P(Report = T)=P(Report = T | Failure = T)*P(Failure = T) + P(Report = T | Failure = F)*P(Failure = F) =0.95 * 0.0001 + 0.05 * 0.9999 =0.000095 + 0.049995=0.05009 $= \frac{P(Report = T | Failure = T)}{P(Failure = T)} * P(Failure = T)$ P(Failure = T | Report = T) P(Report = T)**=** 0.95 * 0.0001 0.05009 = 0.0019b. Law of Total Probability $P(A) = P(A \mid Bx)*P(Bx) + P(A|By)*P(By)$ $A \rightarrow Report = T$ $Bx \rightarrow Failure = T$ By → Failure = F P(Report = T)=P(Report = T | Failure = T)*P(Failure = T) + P(Report = T | Failure = F)*P(Failure = F) =0.95 * 0.01 + 0.05 * 0.99 =0.0095 + 0.0495

 $= \frac{P(Report = T | Failure = T) * P(Failure = T)}{P(Failure = T)}$

P(Report = T)

C.

Given the logged report of a problem, it is good news that the issue is so rare because exploding cars are bad and it would be costly to the manufacturer to recall all affected vehicles.

Possible probabilities

P(L₁)

P(N)

 $P(L_2)$

 $P(C_1 \mid L_1, N)$

 $P(C_2 \mid N, L_2)$

BNet Cost

$$P(L_1)+P(N)+P(L_2)+P(C_1 | L_1,N)+P(C_2 | N, L_2)$$

$$= 1 + 50 + 1 + 5*51^2 + 5*51^2$$

= 26062

JPD Cost

2^2 * 51^3

= 530604

1.

Compute: P(S | Q=F)

Nodes to Prune

- 1. $Z \rightarrow Unobserved Leaf$
- 2. $Y \rightarrow Unobserved Leaf$
- 3. $M \rightarrow Unobserved Leaf$
- 4. $W \rightarrow Conditionally Independent$
- 5. $V \rightarrow Unobserved Leaf after pruning Z$

f₁(O)

0	P(O)
Т	0.7
F	0.3

 $f_2(NO)$

0	P(N = T O)	P(N = F O)
Т	0.7	0.3
F	0.3	0.7

 $f_3(RO)$

0	P(R = T O)	P(R = F O)
Т	0.6	0.4
F	0.5	0.5

 $f_4(QNR)$

N	R	P(Q = T N,R)	P(Q = F N,R)
Т	Т	0.1	0.9
Т	F	0.2	0.8
F	Т	0.3	0.7
F	F	0.4	0.6

 $f_5(UR)$

R	P(U = T R)	P(U = F R)
Т	0.3	0.7
F	0.9	0.1

 $f_6(SQU)$

Q	U	P(S = T Q,U)	P(S = F Q,U)
Т	Т	0.3	0.7
Т	F	0.4	0.6
F	Т	0.4	0.6
F	F	0.7	0.3

2.

P(S | Q=F) =

 $f_1(O)$

 $f_2(NO)$

 $f_3(RO)$

 $f_4(QNR)$

 $f_5(UR)$

 $f_6(SQU)$

Before Observing Q

 $\underline{P}(S, Q=F) = \sum_{U} f_6(SQU) \sum_{R} f_5(UR) \sum_{O} f_1(O) f_3(RO) \sum_{N} f_2(NO) f_4(QNR)$

After Observing Q

 $\underline{P}(S, Q=F) = \sum_U f_8(SU) \sum_R f_5(UR) \sum_O f_1(O) f_3(RO) \sum_N f_2(NO) f_7(NR)$

f ₁ (O)	$f_4 \rightarrow f_7(NR)$
$f_2(NO)$	$f_6 \rightarrow f_8(SU)$
f ₃ (RO)	$f_2, f_7 \rightarrow f_9(OR)$
$f_4(QNR)$	$f_1, f_3, f_9 \rightarrow f_{10}(R)$
f ₅ (UR)	$f_5,f_{10}\rightarrow f_{11}(U)$
f ₆ (SQU)	$f_8, f_{11} \rightarrow f_{12}(S)$

 $f_1(O)$

О	Value
Т	.7
F	.3

 $f_2(NO)$

N	0	Value
Т	Т	0.7
F	Т	0.3
Т	F	0.3
F	F	0.7

f₃(RO)

31 /		
R	0	Value
Т	Т	0.6
F	Т	0.4
Т	F	0.5
F	F	0.5

$f_4(QNR)$

Q	N	R	Value
Т	Т	Т	0.1
F	Т	Т	0.9
Т	Т	F	0.2
F	Т	F	0.8
Т	F	Т	0.3
F	F	Т	0.7
Т	F	F	0.4
F	F	F	0.6

$f_5(RO)$

U	R	Value
Т	Т	0.3
F	Т	0.7
Т	F	0.9
F	F	0.1

$f_6(SQU)$ when Q=f

S	Ø	U	Value
Т	Т	Т	0.3
F	Т	Т	0.7
Т	Т	F	0.4
F	Т	F	0.6
Т	F	Т	0.4
F	F	Т	0.6
Т	F	F	0.7
F	F	F	0.3

$f_7(NR)$ where Q=f

N	R	Value
Т	Т	0.9
F	Т	0.7
Т	F	0.8
F	F	0.6

$f_8(SU)$

s	U	Value
Т	Т	0.4
F	Т	0.6
Т	F	0.7
F	F	0.3

 $f_9(OR)$

0	R	Value
Т	Т	(0.7*0.9) + (0.3*0.7) = 0.84
F	Т	(0.3*0.9) + (0.7*0.7) = 0.76
Т	F	(0.7*0.8) + (0.3*0.6) = 0.74
F	F	(0.3*0.8) + (0.6*0.7) = 0.66

 $f_{10}(R)$

R	Value
Т	(0.7*0.6*0.84) + (0.3*0.5*0.76) =0.4668
F	(0.7*0.4*0.74) + (0.3*0.5*0.66) = 0.3062

f₁₁(U)

U	Value
Т	(0.4668*0.3) + (0.3062*0.9) = 0.41562
F	(0.4668*0.7) + (0.3062*0.1) = 0.35738

f₁₂(S)

S	Value
Т	(0.4*0.41562) + (0.7*0.35738) = 0.416414
F	(0.6*0.41562) + (0.3*0.35738) = 0.356586

Normalize $f_{12}(S)$

$f_{12}(S)$

S	Value
T	0.416414/0.773 = 0.539
E .	0.356586 / 0.773 = 0.461