In [2]:

```
%matplotlib inline
import pandas as pd
import numpy as np
```

In [2]:

```
data = pd.read_excel("EDS_Branch.xlsx")
data.head(5)
```

Out[2]:

	BillDate	Days	BranchName	BillNo	Createddate	Hours	HallNam
0	2018- 07-01	Sunday	EDS Branch Hopes	1	2018-07-01 07:49:37.000	7	Swee Ha
1	2018- 07-01	Sunday	EDS Branch Hopes	1	2018-07-02 07:49:36.995	7	Swee Ha
2	2018- 07-01	Sunday	EDS Branch Hopes	1	2018-07-03 07:49:36.995	7	Swee Ha
3	2018- 07-01	Sunday	EDS Branch Hopes	2	2018-07-01 08:02:28.813	8	Swee Ha
4	2018- 07-01	Sunday	EDS Branch Hopes	2	2018-07-01 08:02:28.813	8	Swee Ha

Data Cleaning

In [3]:

```
data1 = data[["BillDate","Value"]]
data1.head(10)
```

Out[3]:

	BillDate	Value
0	2018-07-01	50.000
1	2018-07-01	249.375
2	2018-07-01	210.000
3	2018-07-01	192.500
4	2018-07-01	140.000
5	2018-07-01	115.000
6	2018-07-01	30.000
7	2018-07-01	30.000
8	2018-07-01	32.800
9	2018-07-01	118.750

In [4]:

```
data1['BillDate'] = pd.to_datetime(data1['BillDate'], format='%Y-
data1['BillDate'] = data1['BillDate'].dt.date
data1['BillDate'] = pd.to_datetime(data1['BillDate'], errors='coe
data1.head()
```

```
/usr/local/lib/python3.7/site-packages/ipykernel_lau
ncher.py:1: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice fro
m a DataFrame.
Try using .loc[row_indexer,col_indexer] = value inst
ead
```

```
See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
(http://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy)
"""Entry point for launching an IPython kernel./usr/local/lib/python3.7/site-packages/ipykernel_lau
```

ncher.py:2: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice fro

m a DataFrame.
Try using .loc[row_indexer,col_indexer] = value inst
ead

See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
(http://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy)

/usr/local/lib/python3.7/site-packages/ipykernel_lau
ncher.py:3: SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame.

Try using .loc[row_indexer,col_indexer] = value inst
ead

See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
(http://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy)

This is separate from the ipykernel package so we can avoid doing imports until

Out[4]:

	BillDate	Value
0	2018-07-01	50.000
1	2018-07-01	249.375
2	2018-07-01	210.000
3	2018-07-01	192.500
4	2018-07-01	140.000

In [7]:

data1.head(10)

Out[7]:

	BillDate	Value
0	2018-07-01	50.000
1	2018-07-01	249.375
2	2018-07-01	210.000
3	2018-07-01	192.500
4	2018-07-01	140.000
5	2018-07-01	115.000
6	2018-07-01	30.000
7	2018-07-01	30.000
8	2018-07-01	32.800
9	2018-07-01	118.750

In [8]:

data1.isna().sum()

Out[8]:

BillDate 0 Value 0 dtype: int64

In [9]:

data1.describe()

Out [9]:

	Value
count	442420.000000
mean	102.204138
std	275.697064
min	0.200000
25%	41.000000
50%	75.000000
75%	116.250000
max	136500.000000

In [5]:

```
data2 = data1.groupby('BillDate')['Value'].sum().reset_index()
data2.head()
```

Out[5]:

	BillDate	Value
0	2018-07-01	124060.591
1	2018-07-02	64358.945
2	2018-07-03	70038.430
3	2018-07-04	68084.010
4	2018-07-05	80714.220

In [29]:

```
data2.count()
```

Out [29]:

BillDate 396 Value 396 dtype: int64

In [6]:

```
data2.nlargest(10, ['Value'])
```

Out[6]:

	BillDate	Value
124	2018-11-03	531305.015
123	2018-11-02	424899.835
126	2018-11-05	420702.985
125	2018-11-04	364015.735
62	2018-09-02	222505.255
57	2018-08-28	218958.670
391	2019-07-28	204500.986
384	2019-07-21	201396.977
61	2018-09-01	198219.040
377	2019-07-14	195715.580

In [7]:

```
from datetime import datetime
d1 = "2018-07-01"
d2 = "2019-08-01"
d1_1 = datetime.strptime(d1, "%Y-%m-%d")
d2_1 = datetime.strptime(d2, "%Y-%m-%d")
abs((d1_1-d2_1).days)
```

Out[7]:

396

In [8]:

data2 = data2.resample('1D', on='BillDate').mean().reset_index()
data2

Out[8]:

	BillDate	Value
0	2018-07-01	124060.591
1	2018-07-02	64358.945
2	2018-07-03	70038.430
3	2018-07-04	68084.010
4	2018-07-05	80714.220
391	2019-07-27	177738.250
392	2019-07-28	204500.986
393	2019-07-29	107830.368
394	2019-07-30	126576.676
395	2019-07-31	131196.725

396 rows × 2 columns

In [9]:

data2['day_week'] = data2['BillDate'].dt.dayofweek
data2

Out[9]:

	BillDate	Value	day_week
0	2018-07-01	124060.591	6
1	2018-07-02	64358.945	0
2	2018-07-03	70038.430	1
3	2018-07-04	68084.010	2
4	2018-07-05	80714.220	3
391	2019-07-27	177738.250	5
392	2019-07-28	204500.986	6
393	2019-07-29	107830.368	0
394	2019-07-30	126576.676	1
395	2019-07-31	131196.725	2

396 rows × 3 columns

In [10]:

data2[data2.isna().any(axis=1)]

Out[10]:

	BillDate	Value	day_week
38	2018-08-08	NaN	2

In [10]:

```
data2[data2["day_week"]==2]
```

Out[10]:

	BillDate	Value	day_week
3	2018-07-04	68084.010	2
10	2018-07-11	74548.825	2
17	2018-07-18	76797.780	2
24	2018-07-25	70109.120	2
31	2018-08-01	74221.134	2
38	2018-08-08	NaN	2
45	2018-08-15	123470.605	2
52	2018-08-22	104626.485	2
59	2018-08-29	82487.775	2
66	2018-09-05	75402.590	2
73	2012-00-12	103570 726	2

In [11]:

```
data2.groupby('day_week')['Value'].mean()
```

Out[11]:

day_week

```
0 98358.634298
1 103612.778509
2 98216.076929
3 103373.065473
4 113821.672750
5 138893.000357
6 144978.426684
Name: Value, dtype: float64
```

In [11]:

```
data2["Value"] = data2.groupby('day_week')['Value'].transform(lar
```

In [11]:

```
data2[data2["day_week"]==2].head(7)
```

Out[11]:

	BillDate	Value	day_week
3	2018-07-04	68084.010000	2
10	2018-07-11	74548.825000	2
17	2018-07-18	76797.780000	2
24	2018-07-25	70109.120000	2
31	2018-08-01	74221.134000	2
38	2018-08-08	98216.076929	2
45	2018-08-15	123470.605000	2

In [12]:

```
data2.nlargest(10, ['Value'])
```

Out[12]:

	BillDate	Value	day_week
125	2018-11-03	531305.015	5
124	2018-11-02	424899.835	4
127	2018-11-05	420702.985	0
126	2018-11-04	364015.735	6
63	2018-09-02	222505.255	6
58	2018-08-28	218958.670	1
392	2019-07-28	204500.986	6
385	2019-07-21	201396.977	6
62	2018-09-01	198219.040	5
378	2019-07-14	195715.580	6

In [16]:

```
data2['Value'] = data2['Value'].mask(data2['Value'] > (300000) )
```

In [17]:

```
data2.nlargest(10, ['Value'])
```

Out[17]:

BillDate		BillDate	Value	day_week
	63	2018-09-02	222505.255	6
	58	2018-08-28	218958.670	1
	392	2019-07-28	204500.986	6
	385	2019-07-21	201396.977	6
	62	2018-09-01	198219.040	5
	378	2019-07-14	195715.580	6
	384	2019-07-20	191041.914	5
	123	2018-11-01	185600.850	3
	363	2019-06-29	185372.150	5
	357	2019-06-23	185323.505	6

In [19]:

```
data2.isnull().sum()
```

Out[19]:

BillDate 0 Value 4 day_week 0 dtype: int64

In [20]:

```
data2["Value"] = data2.groupby('day_week')['Value'].transform(lar
```

In [21]:

```
data2.isnull().sum()
```

Out [21]:

BillDate 0 Value 0 day_week 0 dtype: int64

In [22]:

data2.nlargest(10, ['Value'])

Out [22]:

	BillDate	Value	day_week
63	2018-09-02	222505.255	6
58	2018-08-28	218958.670	1
392	2019-07-28	204500.986	6
385	2019-07-21	201396.977	6
62	2018-09-01	198219.040	5
378	2019-07-14	195715.580	6
384	2019-07-20	191041.914	5
123	2018-11-01	185600.850	3
363	2019-06-29	185372.150	5
357	2019-06-23	185323.505	6

In [24]:

data2[data2["BillDate"] == ('2018-11-02')]

Out [24]:

	BillDate	Value	day_week
124	2018-11-02	108165.706164	4

In [34]:

```
data2.groupby('day_week')['Value'].mean()
```

Out[34]:

```
day_week
0 92602.485179
1 103612.778509
2 98216.076929
3 103373.065473
4 108165.706164
5 131758.236455
6 141067.046179
Name: Value, dtype: float64
```

In [35]:

data2[data2["day_week"]==1].head(20)

Out[35]:

	BillDate	Value	day_week
2	2018-07-03	70038.430	1
9	2018-07-10	78692.480	1
16	2018-07-17	84405.934	1
23	2018-07-24	110241.930	1
30	2018-07-31	76438.990	1
37	2018-08-07	98080.701	1
44	2018-08-14	80329.940	1
51	2018-08-21	96127.680	1
58	2018-08-28	218958.670	1
65	2018-09-04	88757.860	1
72	2018-09-11	72812.010	1
79	2018-09-18	72271.715	1
86	2018-09-25	60982.520	1
93	2018-10-02	116042.144	1
100	2018-10-09	69669.185	1
107	2018-10-16	91879.850	1
114	2018-10-23	69535.400	1
121	2018-10-30	121823.610	1
128	2018-11-06	133161.210	1
135	2018-11-13	63883.575	1

In [26]:

```
#data2.to_csv("Daily_Sales2.csv")
```

In [3]:

```
data2 = pd.read_csv("Daily_Sales2.csv")
```

Data Analysis

```
In [4]:
```

```
import warnings
import matplotlib.pyplot as plt
warnings.filterwarnings("ignore")
plt.style.use('fivethirtyeight')
import statsmodels.api as sm
import matplotlib
```

In [5]:

```
from chart_studio.plotly import plot_mpl
from statsmodels.tsa.seasonal import seasonal_decompose
from plotly.offline import plot_mpl
```

In [6]:

```
matplotlib.rcParams['axes.labelsize'] = 14
matplotlib.rcParams['xtick.labelsize'] = 12
matplotlib.rcParams['ytick.labelsize'] = 12
matplotlib.rcParams['text.color'] = 'k'
```

In [7]:

data2

Out[7]:

	Unnamed: 0	BillDate	Value	day_week
0	0	2018-07-01	124060.591	6
1	1	2018-07-02	64358.945	0
2	2	2018-07-03	70038.430	1
3	3	2018-07-04	68084.010	2
4	4	2018-07-05	80714.220	3
391	391	2019-07-27	177738.250	5
392	392	2019-07-28	204500.986	6
393	393	2019-07-29	107830.368	0
394	394	2019-07-30	126576.676	1
395	395	2019-07-31	131196.725	2

396 rows × 4 columns

In [15]:

```
result_mul = seasonal_decompose(data2['Value'], model='multiplica'
detrended = data2.Value.values - result_mul.trend
plt.plot(detrended)
plt.title('Sales detrended by subtracting the trend component', 1
```

Out [15]:

Text(0.5, 1.0, 'Sales detrended by subtracting the t rend component')

In [29]:

```
data3 = data2[["BillDate","Value"]]
```

```
In [30]:
data3 = data3.set_index('BillDate')
data3.index
Out [30]:
DatetimeIndex(['2018-07-01', '2018-07-02', '2018-07-
03', '2018-07-04',
                '2018-07-05', '2018-07-06', '2018-07-
07', '2018-07-08',
                '2018-07-09', '2018-07-10',
                '2019-07-22', '2019-07-23', '2019-07-
24', '2019-07-25',
                '2019-07-26', '2019-07-27', '2019-07-
28', '2019-07-29',
                '2019-07-30', '2019-07-31'],
              dtype='datetime64[ns]', name='BillDate
'. length=396, freg=None)
In [31]:
year sales = data3['Value'].resample('MS').mean()
print(year sales['2018':])
BillDate
2018-07-01
               90753.347661
2018-08-01
              105103.745772
2018-09-01
               98366.006667
2018-10-01
               97200.652774
2018-11-01
               94177.810983
2018-12-01
              111739,175726
2019-01-01
              112206.810065
2019-02-01
              111379.844714
```

Time Series Plot

2019-03-01

2019-04-01

2019-05-01

2019-06-01

2019-07-01

108786.581774

117044.663467

123073.983710

133312.133400

142825.586806

Freq: MS, Name: Value, dtype: float64

In [32]:

```
data3.plot(figsize=(15, 6))
plt.show()
```


Observing Trend and Seasonality

In [33]:

```
# Additive Seasonal_Decoposition
from pylab import rcParams
rcParams['figure.figsize'] = 18, 8
decomposition = sm.tsa.seasonal_decompose(data3, model='additive')
fig = decomposition.plot()
plt.show()
```


In [36]:

```
# Multiplicative Seasonal_Decoposition
from pylab import rcParams
rcParams['figure.figsize'] = 18, 8
decomposition = sm.tsa.seasonal_decompose(data3, model='multiplicfig = decomposition.plot()
plt.show()
```


In [22]:

data2.head()

Out [22]:

	BillDate	Value	day_week
0	2018-07-01	124060.591	6
1	2018-07-02	64358.945	0
2	2018-07-03	70038.430	1
3	2018-07-04	68084.010	2
4	2018-07-05	80714.220	3

In [37]:

```
data2_1 = data2.set_index("BillDate")
data2_1.head()
```

Out [37]:

RillData

Value day_week

DiliDate		
2018-07-01	124060.591	6
2018-07-02	64358.945	0
2018-07-03	70038.430	1
2018-07-04	68084.010	2
2018-07-05	80714.220	3

In [38]:

```
# Required libraries for data visulization, normality test, and s
pd.set_option('display.float_format', lambda x: '%.4f' % x)
import seaborn as sns
sns.set_context("paper", font_scale=1.3)
sns.set_style('white')
import warnings
warnings.filterwarnings('ignore')
from time import time
import matplotlib.ticker as tkr
from scipy import stats
from statsmodels.tsa.stattools import adfuller
from sklearn import preprocessing
from statsmodels.tsa.stattools import pacf
```

Normality Test

In [39]:

```
stat, p = stats.normaltest(data2.Value)
print('Statistics=%.3f, p=%.3f' % (stat, p))
alpha = 0.05
if p > alpha:
    print('Data looks Normally Distributed (Accept H0)')
else:
    print('Data does not look Normally Distributed (Reject H0)')
```

```
Statistics=39.268, p=0.000
Data does not look Normally Distributed (Reject H0)
```

Kurtosis and Skewness

In [40]:

```
sns.distplot(data2.Value);
print( 'Kurtosis of normal distribution: {}'.format(stats.kurtosi
print( 'Skewness of normal distribution: {}'.format(stats.skew(data));
```

Kurtosis of normal distribution: 0.8047300298703224 Skewness of normal distribution: 0.7665756612800276

In [41]:

```
plt.figure(figsize=(2,6))
plt.subplot(1,1,1)
plt.subplots_adjust(wspace=0.2)
sns.boxplot(y="Value", data=data2)
plt.title('Box plot')
```

Out [41]:

Text(0.5, 1.0, 'Box plot')

Distribution and Normal probability plots

In [42]:

```
plt.figure(figsize=(14,6))
plt.subplot(1,2,1)
data3['Value'].hist(bins=50)
plt.title('Value Distribution')
plt.subplot(1,2,2)
stats.probplot(data3['Value'], plot=plt);
data3.describe().T
```

Out [42]:

	count	mean	std	min	25%	
Value	396.0000	111232.4255	29425.4967	48189.8500	89019.5175	1084

Average Value Over Day, Week, and Month

In [43]:

```
data4=data2.loc[:,['BillDate','Value']]
```

In [44]:

```
data4.set_index('BillDate',inplace=True)
```

In [45]: fig = plt.figure(figsize=(18,16)) fig.subplots adjust(hspace=.4) ax1 = fig.add subplot(3,1,1)ax1.plot(data4['Value'].resample('D').mean(),linewidth=1) ax1.set title('Mean Value over day') ax1.tick params(axis='both', which='major') ax2 = fig.add subplot(3,1,2, sharex=ax1) ax2.plot(data4['Value'].resample('W').mean(),linewidth=1) ax2.set title('Mean Value over week') ax2.tick params(axis='both', which='major') ax3 = fig.add_subplot(3,1,3, sharex=ax1) ax3.plot(data4['Value'].resample('M').mean(),linewidth=1) ax3.set title('Mean Value over month') ax3.tick_params(axis='both', which='major') 200000 175000 125000 100000

Checking whether Data is Stationary or not

Dickey-Fuller test

In [46]:

data4.head()

Out[46]:

Value

BillDate	
2018-07-01	124060.5910
2018-07-02	64358.9450
2018-07-03	70038.4300
2018-07-04	68084.0100
2018-07-05	80714.2200

In [47]:

import matplotlib.pyplot as plt

In [48]:

```
data5 =data4.resample('D', how=np.mean)
def test_stationarity(timeseries):
               rolmean = timeseries.rolling(window=15).mean()
               rolstd = timeseries.rolling(window=15).std()
              plt.figure(figsize=(14,5))
              sns.despine(left=True)
              orig = plt.plot(timeseries, color='blue', label='Original')
              mean = plt.plot(rolmean, color='red', label='Rolling Mean')
               std = plt.plot(rolstd, color='black', label = 'Rolling Std')
              plt.legend(loc='best'); plt.title('Rolling Mean & Standard Degrade Degrad
              plt.show()
              print ('<Results of Dickey-Fuller Test>')
              dftest = adfuller(timeseries, autolag='AIC')
              dfoutput = pd.Series(dftest[0:4],
                                                                                            index=['Test Statistic','p-value','#Lags
              for key,value in dftest[4].items():
                             dfoutput['Critical Value (%s)'%key] = value
               print(dfoutput)
test stationarity(data5.Value.dropna())
```



```
<Results of Dickey-Fuller Test>
Test Statistic
                                 -1.6867
p-value
                                  0.4380
#Lags Used
                                 13,0000
Number of Observations Used
                               382.0000
Critical Value (1%)
                                 -3.4476
Critical Value (5%)
                                 -2.8691
Critical Value (10%)
                                 -2.5708
dtype: float64
```

Note:- Null Hypothesis for Dickey-Fuller Test: Data is Not Stationary

Here, Test Statistic value is less than Critical Value (1%, 5% and 10%), So we can reject Null Hypothesis.

Dickey-Fuller test telling that the data is Stationary

KPSS Test

```
In [49]:
```

```
from statsmodels.tsa.stattools import kpss
def kpss_test(timeseries):
    print ('Results of KPSS Test:')
    kpsstest = kpss(timeseries, regression='ct')
    kpss_output = pd.Series(kpsstest[0:3], index=['Test Statistic for key,value in kpsstest[3].items():
        kpss_output['Critical Value (%s)'%key] = value
    print (kpss_output)
```

In [50]:

```
kpss_test(data3)
```

```
Results of KPSS Test:
Test Statistic
                          0.1403
                          0.0605
p-value
                         17.0000
Lags Used
                          0.1190
Critical Value (10%)
Critical Value (5%)
                          0.1460
Critical Value (2.5%)
                          0.1760
Critical Value (1%)
                          0.2160
dtype: float64
```

Note:- Null Hypothesis for KPSS test: Data is Stationary

Test for stationarity: If the test statistic is greater than the critical value, we reject the null hypothesis (series is not stationary).

Here, test statistic is smaller than the critical value, "We Accept Null Hypothesis" and the data has "Stationarity".

Types of Stationarity:

- 1. Strict Stationary
- 2. Trend Stationary
- 3. Difference Stationary

Case 1: Both tests conclude that the series is not stationary -> series is not stationary

Case 2: Both tests conclude that the series is stationary -> series is stationary

Case 3: KPSS = stationary and ADF = not stationary -> trend stationary, remove the trend to make series strict stationary

Case 4: KPSS = not stationary and ADF = stationary -> difference stationary, use differencing to make series strict stationary

ACF and PACF Plots till lag 20

In [51]:

```
from statsmodels.tsa.stattools import acf, pacf
from statsmodels.graphics.tsaplots import plot_acf, plot_pacf
```

In [52]:

```
acf = plot_acf(data3, lags = 20)
plt.title("ACF Plot lags 20")
acf.show()
```


In [53]:

```
pacf = plot_pacf(data3, lags = 20)
plt.title("PACF Plot lags 20")
pacf.show()
```


In [49]:

data3.head(10)

Out [49]:

Value

BillDate	
2018-07-01	124060.5910
2018-07-02	64358.9450
2018-07-03	70038.4300
2018-07-04	68084.0100
2018-07-05	80714.2200
2018-07-06	92766.6620
2018-07-07	111833.9990
2018-07-08	125058.1600
2018-07-09	71373.8750
2018-07-10	78692.4800

ARIMA

In [71]:

from statsmodels.graphics.tsaplots import plot_acf, plot_pacf
from statsmodels.tsa.arima_model import ARIMA

In [72]: fig, ax = plt.subplots(2, sharex=True, figsize=(12,6)) ax[0].plot(data3.Value); ax[0].set title("Raw data"); ax[1].plot(np.log(data3.Value)); ax[1].set title("Logged data (deflated)"); ax[1].set_ylim(0, 15); from statsmodels.graphics.tsaplots import plot_acf, plot_pacf fig, ax = plt.subplots(2, 2, figsize=(12,6))first_diff = (np.log(data3) - np.log(data3).shift()).dropna() ax[0, 0] = plot_acf(np.log(data3), ax=ax[0, 0], lags=20, title="/ = plot_pacf(np.log(data3), ax=ax[1, 0], lags=20, title=' = plot_acf(first_diff , ax=ax[0, 1], lags=20, title="ACF 1] = plot_pacf(first_diff, ax=ax[1, 1], lags=20, title="PAGE" 200000 150000 100000 50000 Logged data (deflated) 15.0 10.0 7.5 5.0 25 0.0 2018-07 2019-01 2018-09 2018-11 2019-03 2019-05 2019-07 ACF - Logged data ACF - Differenced Logged data 1.00 1.00 0.75 0.75 0.50 0.50 0.25 0.25 0.00 0.00 -0.25

1.0

0.5

0.0

-0.5

5 10 15 PACF - Differenced Logged data

Choosing the differencing order

10 PACF - Logged data

10

In [73]:

1.00

0.75

0.50

0.00

-0.25

```
from statsmodels.tsa.arima model import ARIMA
model = ARIMA(np.log(data3).dropna(), (0, 0, 0))
res 000 = model.fit()
print(res 000.summary())
model = ARIMA(np.log(data3).dropna(), (0, 1, 0))
res 010 = model.fit()
print(res 010.summary())
model = ARIMA(np.log(data3).dropna(), (0, 2, 0))
res 020 = model.fit()
print(res 020.summary())
                      ARMA Model Results
______
_____
                        Value No. Observat
Dep. Variable:
                 396
ions:
                    ARMA(0, 0) Log Likeliho
Model:
              -28.231
od
                         css S.D. of inno
Method:
               0.260
vations
               Tue, 05 Nov 2019 AIC
Date:
60.462
Time:
                     15:37:13 BIC
68,425
Sample:
                    07-01-2018 HOIC
63.617
                  -07-31-2019
_____
           coef std err z P>|
z| [0.025 0.975]
          11.5856 0.013 887.241 0.0
const
     11.560 11.611
00
______
_____
                     ARIMA Model Results
______
_____
                      D. Value No. Observat
Dep. Variable:
ions:
                 395
```

Model: ARIMA(0, 1, 0) Log Likeliho od -35.851

Method:		0.265	CSS	S.D.	of inno
<pre>vations Date: 75.702</pre>		0.265 Tue, 0	05 Nov 2019	AIC	
Time: 83.660			15:37:13	BIC	
Sample: 78.855			07-02-2018	HQIC	
70.033		_	07-31-2019) 	
======	======				
z 	[0.025	coef st 0.975] 	td err 		P>
 const 92		0.0001 0.026	0.013	0.011	0.9
======	======		ARIMA Mo	del Res	ults =======
Dep. Va	====== riable:	========	D2.Value	No.	Observat
ions: Model: od		394 ARIN -219.890	MA(0, 2, 0)	Log	Likeliho
Method:			CSS	S.D.	of inno
vations Date:		0.423 Tue, 0	05 Nov 2019	AIC	
443.780 Time: 451.733			15:37:13	BIC	
Sample: 446.932			07-03-2018	HQIC	
=======		_ ========	07-31-2019) :=====	
======	======	=======================================			
z 	[0.025	coef st 0.975] 	td err 		P>
 const 34	-0.040 	0.0018 0.044	0.021 	0.082 ======	0 . 9
======	======	========			

In [74]:

```
fig, ax = plt.subplots(1, 3, sharey=True, figsize=(12, 6))
ax[0].plot(res_000.resid.values, alpha=0.7, label='variance={:.31
ax[0].hlines(0, xmin=0, xmax=350, color='r');
ax[0].set_title("ARIMA(0,0,0)");
ax[0].legend();
ax[1].plot(res_010.resid.values, alpha=0.7, label='variance={:.31
ax[1].hlines(0, xmin=0, xmax=350, color='r');
ax[1].set_title("ARIMA(0,1,0)");
ax[1].legend();
ax[2].plot(res_020.resid.values, alpha=0.7, label='variance={:.31
ax[2].hlines(0, xmin=0, xmax=350, color='r');
ax[2].set_title("ARIMA(0,2,0)");
ax[2].legend();
```


Note: From the above results, we can see that the AIC value is low for "Diffrencing order 1".

Choosing the MA order

In [76]:

```
model = ARIMA(np.log(data3).dropna(), (0, 0, 0))
res_010 = model.fit()
print(res_010.summary())

model = ARIMA(np.log(data3).dropna(), (1, 0, 0))
res_110 = model.fit()
print(res_110.summary())

model = ARIMA(np.log(data3).dropna(), (2, 0, 0))
```

```
res 210 = model_{1}tit()
print(res 210.summary())
                     ARMA Model Results
______
                       Value No. Observat
Dep. Variable:
                396
ions:
                   ARMA(0, 0) Log Likeliho
Model:
             -28.231
od
                        css S.D. of inno
Method:
               0.260
vations
                             AIC
Date:
               Tue, 05 Nov 2019
60,462
                     15:38:18
                             BIC
Time:
68,425
Sample:
                   07-01-2018
                             HOIC
63.617
                  - 07-31-2019
______
            coef std err
                              Z
                                   P>1
      [0.025
              0.9751
z l
const
          11.5856
                 0.013 887.241
                                   0.0
00
     11.560
              11.611
______
_____
                     ARMA Model Results
_____
_____
Dep. Variable:
                       Value No. Observat
ions:
                396
                   ARMA(1, 0) Log Likeliho
Model:
              23.708
od
                     css-mle S.D. of inno
Method:
               0.228
vations
               Tue, 05 Nov 2019
Date:
                             AIC
-41.416
Time:
                     15:38:18
                             BIC
-29.471
Sample:
                   07-01-2018
                             HQIC
-36.684
                  - 07-31-2019
______
             coef std err
                                    P>
                               Ζ
      [0.025
               0.975]
| Z |
```

000 ar.L1.Va	11 . 543 lue	11.5864 11.629 0.4802 0.566			
Modulus		Real Frequency	Ima	aginary 	
AR.1 2.0824		2.0824 0.0000	+(0.0000j 	
			ARMA	Model Res	ults ======
Dep. Varions: Model: od Method: vations Date: -39.702 Time: -23.777 Sample: -33.393	iable:	23.851 0.228 Tue, 0	ARMA(2, css-r 5 Nov 20 15:38 07-01-20 07-31-20	:18 BIC 018 HQIC 019	Likeliho of inno
z 	[0.025	coef s [.] 0.975]	td err 		P>
000 ar.L1.Va 000 ar.L2.Va	11.542 lue 0.368 lue	11.5864 11.631 0.4671 0.566 0.0271 0.126	0.050	9.275 0.536	0.
=======	======	=======================================	======	Roots ======	======

Real

In [58]:

```
fig, ax = plt.subplots(1, 3, sharey=True, figsize=(12, 6))
ax[0].plot(res_010.resid.values, alpha=0.7, label='variance={:.31
ax[0].hlines(0, xmin=0, xmax=350, color='r');
ax[0].set_title("ARIMA(0,1,0)");
ax[0].legend();
ax[1].plot(res_110.resid.values, alpha=0.7, label='variance={:.31
ax[1].hlines(0, xmin=0, xmax=350, color='r');
ax[1].set_title("ARIMA(1,1,0)");
ax[1].legend();
ax[2].plot(res_210.resid.values, alpha=0.7, label='variance={:.31
ax[2].hlines(0, xmin=0, xmax=350, color='r');
ax[2].set_title("ARIMA(2,1,0)");
```

Imaginary

100

Choosing the AR order

200

In [78]:

100

```
model = ARIMA(np.log(data3).dropna(), (1, 0, 0))
res_210 = model.fit()
res_210 = 310 average())
```

```
model = ARIMA(np.log(data3).dropna(), (1, 0, 1))
res 211 = model.fit()
print(res 211.summary())
model = ARIMA(np.log(data3).dropna(), (0, 1, 2))
res 212 = model.fit()
print(res 212.summary())
                         ARMA Model Results
_____
_____
                          Value No. Observat
Dep. Variable:
                   396
ions:
                      ARMA(1, 0) Log Likeliho
Model:
                23.708
od
                         css-mle S.D. of inno
Method:
vations
                 0.228
                 Tue, 05 Nov 2019 AIC
Date:
-41.416
                        15:40:02 BIC
Time:
-29.471
                      07-01-2018 HQIC
Sample:
-36.684
                     - 07-31-2019
               coef std err
                                          P>
                                    Z
|z| [0.025 0.975]
const
            11.5864 0.022 527.242
                                          0.
000 11.543 11.629
ar.L1.Value 0.4802 0.044
                                10.909
                                          0.
        0.394
              0.566
000
                              Roots
               Real
                           Imaginary
Modulus Frequency
          2.0824
AR.1
                           +0.0000j
2.0824
             0.0000
                         ARMA Model Results
```

print(res_210.summary())

======	=======================================	
Dep. Var		t
ions:	396	
Model: od	ARMA(1, 1) Log Likelih 23.882	О
Method:	css-mle S.D. of inn	O
vations	0.228	
Date:	Tue, 05 Nov 2019 AIC	
-39 . 763		
Time:	15:40:03 BIC	
-23.838 Sample:	07-01-2018 HQIC	
-33.454	07 01 2010 HQIC	
	- 07-31-2019	
======		=
======	=======================================	.
z	coef std err z P [0.025 0.975])>
		_
const		
	11.542 11.631	
	lue 0.5331 0.098 5.453 0 0.341 0.725	•
	lue -0.0692 0.119 -0.582 0)_
	-0.302 0.164	•
	Roots	
======		=
======	======================================	
Modulus	Frequency	
		-
AR.1	1.8760 +0.0000j	
1.8760 MA.1	0.0000 14.4608 +0.0000j	
14.4608	0.0000	
		-
	ARIMA Model Results	_
=======		_
Dep. Var	iable: D.Value No. Observa	t
ions:	395	
Model:	ARIMA(0, 1, 2) Log Likelih	0
od Mothod:	42.073	
Method: vations	css-mle S.D. of inn 0.216	0
vacions	₩. ∠10	

Date:	Tue	, 05 Nov 2019	AIC
-76.146 Time:		15:40:03	BIC
-60.231 Sample:		07-02-2018	HOIC
-69.840			·
=======		07-31-2019 =======	' :==========
======================================	coef [0.025 0	==== std err .975]	Z
const a aaa	0.0011 0.001	0.000 a aa1	8.547
ma.L1.D.Va	alue -0.6687	0.048	-13.912
ma.L2.D.Va	-0.763 -0.3313	0.046	-7.180
0.000	-0.422 - 0		loots
========		========= =	
Modulus	Real Frequency	Imagi Y	nary
MA.1 1.0000	1.0000 0.0000	+0.0	000j
MA.2 3.0188	-3.0188 0.5000	+0.0	000j

Model

In [55]: data3.head()

Out [55]:

Value

BillDate 2018-07-01 124060.5910 2018-07-02 64358.9450 2018-07-03 70038.4300 2018-07-04 68084.0100 2018-07-05 80714.2200

In [56]:

```
train, test = data3[:365], data3[365:]
print(train.shape)
print(test.shape)
```

```
(365, 1)
(31, 1)
```

In [57]:

```
plt.plot(train)
plt.plot(test)
plt.show();
```


Auto_Arima

In [58]:

from pmdarima.arima import auto_arima

In [59]:

```
model = auto arima(train, start p=0, start q=0, max p=6, max q=6)
                   seasonal=True, trace=True, d=1, D=1, error_act
                  random state=20, n fits=30)
Fit ARIMA: order=(0, 1, 0) seasonal_order=(0, 1, 0, 0)
7); AIC=8416.003, BIC=8423.759, Fit time=0.031 secon
ds
Fit ARIMA: order=(1, 1, 0) seasonal_order=(1, 1, 0,
7); AIC=8309.917, BIC=8325.427, Fit time=0.156 secon
ds
Fit ARIMA: order=(0, 1, 1) seasonal_order=(0, 1, 1, 1)
7); AIC=8162.646, BIC=8178.157, Fit time=1.135 secon
ds
Fit ARIMA: order=(0, 1, 1) seasonal_order=(1, 1, 1,
7); AIC=8201.163, BIC=8220.552, Fit time=0.738 secon
ds
Fit ARIMA: order=(0, 1, 1) seasonal_order=(0, 1, 0, 1)
7); AIC=8356.116, BIC=8367.749, Fit time=0.062 secon
ds
Fit ARIMA: order=(0, 1, 1) seasonal order=(0, 1, 2, 1)
7); AIC=8201.156, BIC=8220.545, Fit time=0.981 secon
ds
Fit ARIMA: order=(0, 1, 1) seasonal order=(1, 1, 2, 1)
7); AIC=8201.847, BIC=8225.113, Fit time=1.194 secon
ds
Fit ARIMA: order=(1, 1, 1) seasonal_order=(0, 1, 1,
7); AIC=8191.512, BIC=8210.901, Fit time=0.820 secon
ds
7); AIC=8204.934, BIC=8216.568, Fit time=0.657 secon
ds
Fit ARIMA: order=(0, 1, 2) seasonal_order=(0, 1, 1,
7); AIC=8117.996, BIC=8137.385, Fit time=1.214 secon
ds
Fit ARIMA: order=(1, 1, 3) seasonal_order=(0, 1, 1,
7); AIC=8194.886, BIC=8222.030, Fit time=2.026 secon
ds
Fit ARIMA: order=(0, 1, 2) seasonal_order=(1, 1, 1,
7); AIC=8200.916, BIC=8224.182, Fit time=0.481 secon
ds
Fit ARIMA: order=(0, 1, 2) seasonal_order=(0, 1, 0, 1)
```

7); AIC=8324.783, BIC=8340.294, Fit time=0.488 secon

```
ds
Fit ARIMA: order=(0, 1, 2) seasonal_order=(0, 1, 2, 7); AIC=8200.920, BIC=8224.186, Fit time=0.808 secon ds
Fit ARIMA: order=(0, 1, 2) seasonal_order=(1, 1, 2, 7); AIC=8200.641, BIC=8227.785, Fit time=1.502 secon ds
Fit ARIMA: order=(1, 1, 2) seasonal_order=(0, 1, 1, 7); AIC=8163.005, BIC=8186.272, Fit time=1.633 secon ds
Fit ARIMA: order=(0, 1, 3) seasonal_order=(0, 1, 1, 7); AIC=8209.466, BIC=8232.732, Fit time=1.005 secon ds
```

Total fit time: 14.936 seconds

In [60]:

model.summary()

Out [60]:

Statespace Model Results

Dep. Va	riable:			y (N Observation	lo. 365
ı	Model:	SARIMAX(0,	1, 2)x(0, 1,	1, 7) L o	og Likeliho	od -4053.998
	Date:	Tue,	05 Nov 201	9	A	AIC 8117.996
	Time:		10:36:2	:6	В	BIC 8137.385
Sa	ample:			0	на	NC 8125.708
			- 36	55		
Cova	riance Type:		ор	g		
	coef	std err	z	P> z	[0.025	0.975]
intercept	-23.1829	24.431	-0.949	0.343	-71.068	24.702
ma.L1	-0.5272	0.034	-15.390	0.000	-0.594	-0.460
ma.L2	-0.1901	0.043	-4.416	0.000	-0.274	-0.106
ma.S.L7	-0.9914	0.050	-19.690	0.000	-1.090	-0.893
sigma2	4.04e+08	3.57e-07	1.13e+15	0.000	4.04e+08	4.04e+08
Lj	ung-Box (0	2): 59.32	Jarque-Be	era (JB):	210.40	
	Prob(0	2): 0.03	Pı	rob(JB):	0.00	
Heteroske	dasticity (l	H): 0.36		Skew:	0.53	
Prob(H)	(two-side	d): 0.00	K	urtosis:	6.61	

Warnings:

- [1] Covariance matrix calculated using the outer product of gradients (complex-step).
- [2] Covariance matrix is singular or near-singular, with condition number 2.73e+31. Standard errors may be unstable.

```
In [61]:
pred = pd.DataFrame(model.predict(n_periods=31), index=test.index
In [62]:
pred.columns = ['Forecasted']
In [63]:
pred
Out [63]:
            Forecasted
   BillDate
2019-07-01
           113339.0241
2019-07-02 125883.7944
2019-07-03 119444.8986
2019-07-04 124833.1830
2019-07-05 127928.8809
2019-07-06 149259.4597
2019-07-07 159766.6176
2019-07-08 113736.6994
2019-07-09 123918.8396
2019-07-10 117456.7609
2019-07-11 122821.8623
2019-07-12 125894.3772
2019-07-13 147201.7731
2019-07-14 157685.7481
2019-07-15 111632.6469
2019-07-16 121791.6042
2019-07-17 115306.3425
2019-07-18 120648.2609
2019-07-19 123697.5929
2019-07-20 144981.8059
```

```
2019-07-22
            109366.3138
2019-07-23
            119502.0881
2019-07-24
            112993.6435
2019-07-25
            118312.3790
2019-07-26
            121338.5281
2019-07-27
            142599.5580
2019-07-28
            153037.1672
2019-07-29
            106937.7001
2019-07-30
            117050.2915
            110518.6639
2019-07-31
```

155442.5979

In [64]:

2019-07-21

```
plt.figure(figsize=(15,10))
plt.plot(train, label='Training')
plt.plot(test, label='Testing')
plt.plot(pred, label='Predicted')
plt.legend()
plt.show();
```


In [65]:

```
test['forecasted'] = pred
test['error'] = test['Value'] - test['forecasted']
test
```

Out[65]:

	Value	forecasted	error
BillDate			
2019-07-01	104695.7250	113339.0241	-8643.2991
2019-07-02	127803.5900	125883.7944	1919.7956
2019-07-03	134738.3800	119444.8986	15293.4814
2019-07-04	122540.8750	124833.1830	-2292.3080
2019-07-05	139906.2360	127928.8809	11977.3551
2019-07-06	175973.6300	149259.4597	26714.1703
2019-07-07	176618.0850	159766.6176	16851.4674
2019-07-08	116535.6400	113736.6994	2798.9406
2019-07-09	124766.9700	123918.8396	848.1304
2019-07-10	129517.0500	117456.7609	12060.2891
2019-07-11	134813.2500	122821.8623	11991.3877
2019-07-12	151176.9640	125894.3772	25282.5868
2019-07-13	176453.4200	147201.7731	29251.6469
2019-07-14	195715.5800	157685.7481	38029.8319
2019-07-15	129262.1900	111632.6469	17629.5431
2019-07-16	113593.5720	121791.6042	-8198.0322
2019-07-17	121408.7200	115306.3425	6102.3775
2019-07-18	133213.1000	120648.2609	12564.8391
2019-07-19	124875.5150	123697.5929	1177.9221
2019-07-20	191041.9140	144981.8059	46060.1081
2019-07-21	201396.9770	155442.5979	45954.3791
2019-07-22	122373.8600	109366.3138	13007.5462
2019-07-23	135259.0700	119502.0881	15756.9819
2019-07-24	118110.3900	112993.6435	5116.7465
2019-07-25	115316.2280	118312.3790	-2996.1510
2019-07-26	162643.2550	121338.5281	41304.7269
2019-07-27	177738.2500	142599.5580	35138.6920
2019-07-28	204500.9860	153037.1672	51463.8188

```
107830.3680
                  106937.7001
2019-07-29
                             892.6679
2019-07-30 126576.6760 117050.2915
                             9526.3845
2019-07-31 131196.7250 110518.6639 20678.0611
In [66]:
from sklearn import metrics
In [67]:
metrics.mean_absolute_error(test.Value, test.forecasted)
Out [67]:
17339.473179332323
In [68]:
metrics.median_absolute_error(test.Value, test.forecasted)
Out [68]:
12564.839062976258
In [69]:
import math
In [70]:
math.sqrt(metrics.mean_squared_error(test.Value, test.forecasted)
Out [70]:
22765.63356590128
In []:
In [ ]:
```

```
In [ ]:
```

LSTM Model

In [10]:

```
import math
import keras
from keras.layers import *
from sklearn.preprocessing import MinMaxScaler
from keras.models import Sequential
from keras.layers import Dense, Dropout, LSTM
from sklearn.metrics import mean_squared_error
from sklearn.metrics import mean_absolute_error
from keras.callbacks import EarlyStopping
```

Using TensorFlow backend.

In []:

In [69]:

data2.head()

Out [69]:

	Createddate	Value	year	quarter	month	day	weekday
0	2018-07-01	123601.2160	2018	3	7	1	0
1	2018-07-02	64608.3200	2018	3	7	2	1
2	2018-07-03	70248.4300	2018	3	7	3	1
3	2018-07-04	68084.0100	2018	3	7	4	1
4	2018-07-05	80714.2200	2018	3	7	5	1

```
data = data2
new_data = pd.DataFrame(index=range(0,len(data2)),columns=['Bill[
for i in range(0,len(data)):
    new data['BillDate'][i] = data['BillDate'][i]
    new_data['Value'][i] = data['Value'][i]
In [31]:
new_data.index = new_data.BillDate
new data.drop('BillDate', axis=1, inplace=True)
In [32]:
dataset = new_data.values
In [33]:
train = dataset[0:316,:]
valid = dataset[316:,:]
In [34]:
scaler = MinMaxScaler(feature_range=(0, 1))
scaled data = scaler.fit transform(dataset)
In [35]:
x_{train}, y_{train} = [], []
for i in range(20,len(train)):
    x_train.append(scaled_data[i-20:i,0])
    y_train.append(scaled_data[i,0])
x train, y train = np.array(x train), np.array(y train)
In [36]:
x_train = np.reshape(x_train, (x_train.shape[0],x_train.shape[1],
In [37]:
model = Sequential()
model.add(LSTM(units=50, return_sequences=True, input_shape=(x_ti
model.add(LSTM(units=50))
model.add(Dense(1))
```

In [30]:

```
In [38]:
model.compile(loss='mean_squared_error', optimizer='adam')
model.fit(x_train, y_train, epochs=20, batch_size=1, verbose=2)
Epoch 1/20
11s - loss: 0.0100
Epoch 2/20
10s - loss: 0.0084
Epoch 3/20
11s - loss: 0.0084
Epoch 4/20
10s - loss: 0.0073
Epoch 5/20
10s - loss: 0.0076
Epoch 6/20
10s - loss: 0.0066
Epoch 7/20
10s - loss: 0.0062
Epoch 8/20
11s - loss: 0.0069
Epoch 9/20
10s - loss: 0.0061
Epoch 10/20
In [39]:
```

```
inputs = new_data[len(new_data) - len(valid) - 20:].values
inputs = inputs.reshape(-1,1)
inputs = scaler.transform(inputs)
```

In [40]:

```
X_test = []
for i in range(20,inputs.shape[0]):
    X_test.append(inputs[i-20:i,0])
X_test = np.array(X_test)
```

In [210]:

```
X_test = np.reshape(X_test, (X_test.shape[0], X_test.shape[1],1))
closing_price = model.predict(X_test)
closing_price = scaler.inverse_transform(closing_price)
```

```
In [211]:
```

```
mae=np.absolute(np.mean((valid-closing_price)))
mae
```

Out [211]:

15210.18796202546

In [214]:

```
train = new_data[:316]
valid = new_data[316:]
valid['Predictions'] = closing_price
plt.plot(train['Value'])
plt.plot(valid[['Value', 'Predictions']])
```

Out[214]:

In [4]:

```
sweet = pd.read_csv("Daily_Sales1.csv")
sweet.head()
```

Out[4]:

	Unnamed: 0	BillDate	Value	day_week
0	0	2018-07-01	124060.591	6
1	1	2018-07-02	64358.945	0
2	2	2018-07-03	70038.430	1
3	3	2018-07-04	68084.010	2
4	4	2018-07-05	80714.220	3

In [5]:

```
data = sweet
new_data = pd.DataFrame(index=range(0,len(sweet)),columns=['Bill[
for i in range(0,len(data)):
    new_data['BillDate'][i] = data['BillDate'][i]
    new_data['Value'][i] = data['Value'][i]
```

In [6]:

```
new_data.index = new_data.BillDate
new_data.drop('BillDate', axis=1, inplace=True)
```

In [7]:

```
dataset = new_data.values
```

In [8]:

```
train = dataset[0:316,:]
valid = dataset[316:,:]
```

In [11]:

```
scaler = MinMaxScaler(feature_range=(0, 1))
scaled_data = scaler.fit_transform(dataset)
```

```
In [12]:
x_{train}, y_{train} = [], []
for i in range(20,len(train)):
   x_train.append(scaled_data[i-20:i,0])
   y_train.append(scaled_data[i,0])
x_train, y_train = np.array(x_train), np.array(y_train)
In [13]:
x_train = np.reshape(x_train, (x_train.shape[0],x_train.shape[1],
In [14]:
model = Sequential()
model.add(LSTM(units=50, return_sequences=True, input_shape=(x_ti
model.add(LSTM(units=50))
model.add(Dense(1))
In [15]:
model.compile(loss='mean_squared_error', optimizer='adam')
model.fit(x train, y train, epochs=100, batch size=1, verbose=1)
Epoch 1/100
s: 0.0102
Epoch 2/100
296/296 [========== ] - 11s - los
s: 0.0092
Epoch 3/100
296/296 [=========== ] - 12s - los
s: 0.0082
Epoch 4/100
296/296 [========== ] - 14s - los
s: 0.0070
Epoch 5/100
296/296 [=========== ] - 11s - los
s: 0.0071
Epoch 6/100
296/296 [========== ] - 10s - los
s: 0.0064
Epoch 7/100
```

```
In [16]:
inputs = new_data[len(new_data) - len(valid) - 20:].values
inputs = inputs reshape(-1,1)
       = scaler.transform(inputs)
inputs
In [17]:
X \text{ test} = []
for i in range(20,inputs.shape[0]):
    X_test.append(inputs[i-20:i,0])
X test = np.array(X test)
In [18]:
X_test = np.reshape(X_test, (X_test.shape[0], X_test.shape[1],1))
closing_price = model.predict(X_test)
closing_price = scaler.inverse_transform(closing_price)
In [19]:
mae=np.absolute(np.mean((valid-closing_price)))
mae
Out [19]:
19698.17791718764
In [23]:
import matplotlib.pyplot as plt
```

In [24]:

```
train = new_data[:316]
valid = new_data[316:]
valid['Predictions'] = closing_price
plt.plot(train['Value'])
plt.plot(valid[['Value', 'Predictions']])
```

/anaconda3/lib/python3.6/site-packages/ipykernel_lau
ncher.py:3: SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame.

Try using .loc[row_indexer,col_indexer] = value inst
ead

See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
(http://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy)

This is separate from the ipykernel package so we can avoid doing imports until

Out [24]:

In []:

Stock Market Data

In [180]:

```
stock = pd.read_csv("Stock.csv")
```

In [181]:

stock.head()

Out[181]:

	Date	Open	High	Low	Last	Close	Total Trac Quanti
0	2013- 10-08	157.0000	157.8000	155.2000	155.8000	155.8000	1720413.000
1	2013- 10-09	155.7000	158.2000	154.1500	155.3000	155.5500	2049580.000
2	2013- 10-10	156.0000	160.8000	155.8500	160.3000	160.1500	3124853.000
3	2013- 10-11	161.1500	163.4500	159.0000	159.8000	160.0500	1880046.000
4	2013- 10-14	160.8500	161.4500	157.7000	159.3000	159.4500	1281419.000

In [260]:

```
stock.describe()
```

Out[260]:

	Open	High	Low	Last	Close	Total Qu
count	1235.0000	1235.0000	1235.0000	1235.0000	1235.0000	1235
mean	168.9549	171.4291	166.4023	168.7364	168.7311	2604151
std	51.4991	52.4368	50.5429	51.5874	51.5449	2277027
min	103.0000	104.6000	100.0000	102.6000	102.6500	100180
25%	137.5500	138.9250	135.2500	137.1750	137.2250	1284481
50%	151.5000	153.2500	149.5000	151.2000	151.1000	1964885
75%	169.0000	172.3250	166.7000	169.1000	169.5000	3095788
max	327.7000	328.7500	321.6500	325.9500	325.7500	29191015

In [182]:

```
data = stock.sort_index(ascending=True, axis=0)
new_data = pd.DataFrame(index=range(0,len(stock)),columns=['Date'
for i in range(0,len(data)):
    new_data['Date'][i] = data['Date'][i]
    new_data['Close'][i] = data['Close'][i]
```

In [183]:

```
new_data.index = new_data.Date
new_data.drop('Date', axis=1, inplace=True)
```

In [184]:

```
dataset = new_data.values
```

In [185]:

```
train = dataset[0:987,:]
valid = dataset[987:,:]
```

```
In [186]:
scaler = MinMaxScaler(feature_range=(0, 1))
scaled_data = scaler.fit_transform(dataset)
In [187]:
x_{train}, y_{train} = [], []
for i in range(60,len(train)):
    x train.append(scaled data[i-60:i,0])
    y_train.append(scaled_data[i,0])
x_train, y_train = np.array(x_train), np.array(y_train)
In [188]:
x_train = np.reshape(x_train, (x_train.shape[0],x_train.shape[1],
In [189]:
model = Sequential()
model.add(LSTM(units=50, return_sequences=True, input_shape=(x_ti
model.add(LSTM(units=50))
model.add(Dense(1))
In [190]:
model.compile(loss='mean_squared_error', optimizer='adam')
model.fit(x_train, y_train, epochs=20, batch_size=1, verbose=2)
Epoch 1/20
96s - loss: 0.0011
Epoch 2/20
94s - loss: 5.3325e-04
Epoch 3/20
94s - loss: 3.1337e-04
Epoch 4/20
94s - loss: 2.8767e-04
Epoch 5/20
94s - loss: 2.7148e-04
Epoch 6/20
94s - loss: 2.4441e-04
Epoch 7/20
95s - loss: 2.3399e-04
Epoch 8/20
94s - loss: 2.4268e-04
Epoch 9/20
95s - loss: 2.3833e-04
```

```
Epoch 10/20
95s - loss:
            2.1853e-04
Epoch 11/20
94s - loss:
            2.3461e-04
Epoch 12/20
95s - loss: 2.0833e-04
Epoch 13/20
94s - loss: 2.2464e-04
Epoch 14/20
96s - loss: 2.1272e-04
Epoch 15/20
95s - loss: 2.1288e-04
Epoch 16/20
94s - loss: 2.2758e-04
Epoch 17/20
94s - loss: 2.2130e-04
Epoch 18/20
96s - loss: 2.1155e-04
Epoch 19/20
93s - loss: 2.0730e-04
Epoch 20/20
95s - loss: 2.0916e-04
Out [190]:
<keras.callbacks.History at 0x13e6e9b00>
In [191]:
inputs = new_data[len(new_data) - len(valid) - 60:].values
inputs = inputs reshape (-1,1)
inputs = scaler.transform(inputs)
In [192]:
X \text{ test} = []
for i in range(60,inputs.shape[0]):
    X test.append(inputs[i-60:i,0])
X test = np.array(X test)
In [193]:
```

X_test = np.reshape(X_test, (X_test.shape[0], X_test.shape[1],1))

closing_price = scaler.inverse_transform(closing_price)

closing_price = model.predict(X_test)

```
In [194]:
rms=np.sqrt(np.mean(np.power((valid-closing_price),2)))
rms
Out[194]:
7.211366722400344
In [195]:
train = new data[:987]
valid = new data[987:]
valid['Predictions'] = closing price
plt.plot(train['Close'])
plt.plot(valid[['Close', 'Predictions']])
Out[195]:
[<matplotlib.lines.Line2D at 0x140f4d668>,
 <matplotlib.lines.Line2D at 0x140f4d828>]
300
In []:
In [2]:
```

In [2]:

Out[2]:

	BillDate	Days	BranchName	BillNo	Createddate	Hours	HallNam
(2018- 07-01	Sunday	EDS Branch Hopes	1	2018-07-01 07:49:37.000	7	Swee Ha
-	1 2018- 07-01	Sunday	EDS Branch Hopes	1	2018-07-02 07:49:36.995	7	Swee Ha
2	2018- 07-01	Sunday	EDS Branch Hopes	1	2018-07-03 07:49:36.995	7	Swee Ha
(3 2018- 07-01	Sunday	EDS Branch Hopes	2	2018-07-01 08:02:28.813	8	Swee Ha
4	2018- 07-01	Sunday	EDS Branch Hopes	2	2018-07-01 08:02:28.813	8	Swee Ha

Data Cleaning

In [3]:

Out[3]:

	BillDate	Value
0	2018-07-01	50.000
1	2018-07-01	249.375
2	2018-07-01	210.000
3	2018-07-01	192.500
4	2018-07-01	140.000
5	2018-07-01	115.000
6	2018-07-01	30.000
7	2018-07-01	30.000
8	2018-07-01	32.800
9	2018-07-01	118.750

In [4]:

/usr/local/lib/python3.7/site-packages/ipykernel_lau
ncher.py:1: SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame.

Try using .loc[row_indexer,col_indexer] = value inst
ead

See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy

(http://pandas.pydata.org/pandas-docs/stable/user_gu
ide/indexing.html#returning-a-view-versus-a-copy)

"""Entry point for launching an IPython kernel.
/usr/local/lib/python3.7/site-packages/ipykernel_lau
ncher.py:2: SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame.

Try using .loc[row_indexer,col_indexer] = value inst
ead

In [7]:

Out[7]:

	BillDate	Value
0	2018-07-01	50.000
1	2018-07-01	249.375
2	2018-07-01	210.000
3	2018-07-01	192.500
4	2018-07-01	140.000
5	2018-07-01	115.000
6	2018-07-01	30.000
7	2018-07-01	30.000
8	2018-07-01	32.800
9	2018-07-01	118.750

In [8]:

Out[8]:

BillDate 0 Value 0 dtype: int64

In [9]:

Out[9]:

	Value
count	442420.000000
mean	102.204138
std	275.697064
min	0.200000
25%	41.000000
50%	75.000000
75%	116.250000
max	136500.000000

In [5]:

Out[5]:

	BillDate	Value
0	2018-07-01	124060.591
1	2018-07-02	64358.945
2	2018-07-03	70038.430
3	2018-07-04	68084.010
4	2018-07-05	80714.220

In [29]:

Out[29]:

BillDate 396 Value 396 dtype: int64

In [6]:

Out[6]:

	BillDate	Value
124	2018-11-03	531305.015
123	2018-11-02	424899.835
126	2018-11-05	420702.985
125	2018-11-04	364015.735
62	2018-09-02	222505.255
57	2018-08-28	218958.670
391	2019-07-28	204500.986
384	2019-07-21	201396.977
61	2018-09-01	198219.040
377	2019-07-14	195715.580

In [7]:

Out[7]:

396

In [8]:

Out[8]:

	BillDate	Value
0	2018-07-01	124060.591
1	2018-07-02	64358.945
2	2018-07-03	70038.430
3	2018-07-04	68084.010
4	2018-07-05	80714.220
391	2019-07-27	177738.250
392	2019-07-28	204500.986
393	2019-07-29	107830.368
394	2019-07-30	126576.676
395	2019-07-31	131196.725

396 rows × 2 columns

In [9]:

Out[9]:

	BillDate	Value	day_week
0	2018-07-01	124060.591	6
1	2018-07-02	64358.945	0
2	2018-07-03	70038.430	1
3	2018-07-04	68084.010	2
4	2018-07-05	80714.220	3
391	2019-07-27	177738.250	5
392	2019-07-28	204500.986	6
393	2019-07-29	107830.368	0
394	2019-07-30	126576.676	1
395	2019-07-31	131196.725	2

396 rows × 3 columns

In [10]:

Out[10]:

	BillDate	Value	day_week
38	2018-08-08	NaN	2

In [10]:

Out[10]:

	BillDate	Value	day_week
3	2018-07-04	68084.010	2
10	2018-07-11	74548.825	2
17	2018-07-18	76797.780	2
24	2018-07-25	70109.120	2
31	2018-08-01	74221.134	2
38	2018-08-08	NaN	2
45	2018-08-15	123470.605	2
52	2018-08-22	104626.485	2
59	2018-08-29	82487.775	2
66	2018-09-05	75402.590	2
72	2012-00-12	103570 796	2

In [11]:

Out[11]:

day_week

98358.634298 1 103612.778509 2 98216.076929 3 103373.065473

4 113821.672750

5 138893.000357

6 144978.426684

Name: Value, dtype: float64

In [11]:

In [11]:

Out[11]:

	BillDate	Value	day_week
3	2018-07-04	68084.010000	2
10	2018-07-11	74548.825000	2
17	2018-07-18	76797.780000	2
24	2018-07-25	70109.120000	2
31	2018-08-01	74221.134000	2
38	2018-08-08	98216.076929	2
45	2018-08-15	123470.605000	2

In [12]:

Out[12]:

	BillDate	Value	day_week
125	2018-11-03	531305.015	5
124	2018-11-02	424899.835	4
127	2018-11-05	420702.985	0
126	2018-11-04	364015.735	6
63	2018-09-02	222505.255	6
58	2018-08-28	218958.670	1
392	2019-07-28	204500.986	6
385	2019-07-21	201396.977	6
62	2018-09-01	198219.040	5
378	2019-07-14	195715.580	6

In [16]:

In [17]:

Out[17]:

	BillDate	Value	day_week
63	2018-09-02	222505.255	6
58	2018-08-28	218958.670	1
392	2019-07-28	204500.986	6
385	2019-07-21	201396.977	6
62	2018-09-01	198219.040	5
378	2019-07-14	195715.580	6
384	2019-07-20	191041.914	5
123	2018-11-01	185600.850	3
363	2019-06-29	185372.150	5
357	2019-06-23	185323.505	6

In [19]:

Out[19]:

BillDate 0 Value 4 day_week 0 dtype: int64

In [20]:

In [21]:

Out[21]:

BillDate 0
Value 0
day_week 0
dtype: int64

In [22]:

Out[22]:

	BillDate	Value	day_week
63	2018-09-02	222505.255	6
58	2018-08-28	218958.670	1
392	2019-07-28	204500.986	6
385	2019-07-21	201396.977	6
62	2018-09-01	198219.040	5
378	2019-07-14	195715.580	6
384	2019-07-20	191041.914	5
123	2018-11-01	185600.850	3
363	2019-06-29	185372.150	5
357	2019-06-23	185323.505	6

In [24]:

Out[24]:

BillDate		BillDate	Value	day_week
	124	2018-11-02	108165.706164	4

In [34]:

Out[34]:

```
day_week
0 92602.485179
1 103612.778509
2 98216.076929
3 103373.065473
4 108165.706164
5 131758.236455
6 141067.046179
```

Name: Value, dtype: float64

In [35]:

Out[35]:

	BillDate	Value	day_week
2	2018-07-03	70038.430	1
9	2018-07-10	78692.480	1
16	2018-07-17	84405.934	1
23	2018-07-24	110241.930	1
30	2018-07-31	76438.990	1
37	2018-08-07	98080.701	1
44	2018-08-14	80329.940	1
51	2018-08-21	96127.680	1
58	2018-08-28	218958.670	1
65	2018-09-04	88757.860	1
72	2018-09-11	72812.010	1
79	2018-09-18	72271.715	1
86	2018-09-25	60982.520	1
93	2018-10-02	116042.144	1
100	2018-10-09	69669.185	1
107	2018-10-16	91879.850	1
114	2018-10-23	69535.400	1
121	2018-10-30	121823.610	1
128	2018-11-06	133161.210	1
135	2018-11-13	63883.575	1

In [26]:

In [3]:

Data Analysis

In [4]:

In [5]:

In [6]:

In [7]:

Out[7]:

	Unnamed: 0	BillDate	Value	day_week
0	0	2018-07-01	124060.591	6
1	1	2018-07-02	64358.945	0
2	2	2018-07-03	70038.430	1
3	3	2018-07-04	68084.010	2
4	4	2018-07-05	80714.220	3
391	391	2019-07-27	177738.250	5
392	392	2019-07-28	204500.986	6
393	393	2019-07-29	107830.368	0
394	394	2019-07-30	126576.676	1
395	395	2019-07-31	131196.725	2

396 rows × 4 columns

In [15]:

Out[15]:

Text(0.5, 1.0, 'Sales detrended by subtracting the t
rend component')

In [29]:

In [30]:

Out[30]:

In [31]:

```
BillDate
2018-07-01
               90753.347661
               105103.745772
2018-08-01
2018-09-01
               98366.006667
2018-10-01
               97200.652774
2018-11-01
               94177.810983
               111739.175726
2018-12-01
               112206.810065
2019-01-01
               111379.844714
2019-02-01
               108786.581774
2019-03-01
2019-04-01
               117044.663467
2019-05-01
               123073.983710
2019-06-01
              133312.133400
2019-07-01
              142825.586806
Freq: MS, Name: Value, dtype: float64
```

Time Series Plot

In [32]:

Observing Trend and Seasonality

In [33]:

In [36]:

In [22]:

Out[22]:

	BillDate	Value	day_week
0	2018-07-01	124060.591	6
1	2018-07-02	64358.945	0
2	2018-07-03	70038.430	1
3	2018-07-04	68084.010	2
4	2018-07-05	80714.220	3

In [37]:

Out[37]:

Value day_week

BillDate		
2018-07-01	124060.591	6
2018-07-02	64358.945	0
2018-07-03	70038.430	1
2018-07-04	68084.010	2
2018-07-05	80714.220	3

```
In [38]:
```

Normality Test

In [39]:

```
Statistics=39.268, p=0.000
Data does not look Normally Distributed (Reject H0)
```

Kurtosis and Skewness

In [40]:

Kurtosis of normal distribution: 0.8047300298703224 Skewness of normal distribution: 0.7665756612800276

In [41]:

Out[41]:

Text(0.5, 1.0, 'Box plot')

Distribution and Normal probability plots

In [42]:

Out[42]:

	count	mean	std	min	25%	
Value	396.0000	111232.4255	29425.4967	48189.8500	89019.5175	1084

Average Value Over Day, Week, and Month

In [43]:

In [44]:

In [45]:

Checking whether Data is Stationary or not

Dickey-Fuller test

In [46]:

Out[46]:

Value

BillDate	
2018-07-01	124060.5910
2018-07-02	64358.9450
2018-07-03	70038.4300
2018-07-04	68084.0100
2018-07-05	80714.2200

In [47]:

In [48]:

<Results of Dickey-Fuller Test>

Test Statistic	-1.6867
p-value	0.4380
#Lags Used	13.0000
Number of Observations Used	382.0000
Critical Value (1%)	-3.4476
Critical Value (5%)	-2.8691
Critical Value (10%)	-2.5708
dtype: float64	

3 1

Note:- Null Hypothesis for Dickey-Fuller Test: Data is Not Stationary

Here, Test Statistic value is less than Critical Value (1%, 5% and 10%), So we can reject Null Hypothesis.

Dickey-Fuller test telling that the data is Stationary

KPSS Test

In [49]:

In [50]:

```
Results of KPSS Test:
Test Statistic
                          0.1403
p-value
                          0.0605
Lags Used
                         17,0000
Critical Value (10%)
                          0.1190
Critical Value (5%)
                          0.1460
Critical Value (2.5%)
                          0.1760
Critical Value (1%)
                          0.2160
dtype: float64
```

Note:- Null Hypothesis for KPSS test: Data is Stationary

Test for stationarity: If the test statistic is greater than the critical value, we reject the null hypothesis (series is not stationary).

Here, test statistic is smaller than the critical value, "We Accept Null Hypothesis" and the data has "Stationarity".

Types of Stationarity:

- 1. Strict Stationary
- 2. Trend Stationary
- 3. Difference Stationary

- Case 1: Both tests conclude that the series is not stationary -> series is not stationary
- Case 2: Both tests conclude that the series is stationary -> series is stationary
- Case 3: KPSS = stationary and ADF = not stationary -> trend stationary, remove the trend to make series strict stationary
- Case 4: KPSS = not stationary and ADF = stationary -> difference stationary, use differencing to make series strict stationary

ACF and PACF Plots till lag 20

In [51]:

In [52]:

In [53]:

In [49]:

Out [49]:

	13.33
BillDate	
2018-07-01	124060.5910
2018-07-02	64358.9450
2018-07-03	70038.4300
2018-07-04	68084.0100
2018-07-05	80714.2200
2018-07-06	92766.6620
2018-07-07	111833.9990
2018-07-08	125058.1600
2018-07-09	71373.8750

78692.4800

Value

ARIMA

2018-07-10

In [71]:

In [72]:

Choosing the differencing order

In [73]:

ARMA Model Results Value Dep. Variable: No. Observat 396 ions: Model: ARMA(0, 0)Log Likeliho od -28.231Method: S.D. of inno CSS 0.260 vations Tue, 05 Nov 2019 AIC Date: 60,462 Time: 15:37:13 **BTC** 68,425 Sample: 07-01-2018 HQIC 63,617 -07-31-2019coef std err P>| Ζ

In [74]:

Note: From the above results, we can see that the AIC value is low for "Diffrencing order 1".

Choosing the MA order

In [76]:

ARMA Model Results

Dep. Variable: Value No. Observat

ions: 396

Model: ARMA(0, 0) Log Likeliho

od -28.231

Method: css S.D. of inno

vations 0.260

Date: Tue, 05 Nov 2019 AIC

60.462

Time: 15:38:18 BIC

68.425

Sample: 07-01-2018 HQIC

63.617

-07-31-2019

coef std err z P>|

In [58]:

Choosing the AR order

In [78]:

	ARMA Mode	el Results
Dep. Variable: ions: Model:	======================================	No. Observat Log Likeliho
od Method: vations Date:	23.708 css-mle 0.228 Tue, 05 Nov 2019	S.D. of inno
-41.416 Time:	15:40:02	BIC
-29.471 Sample: -36.684	07-01-2018	HQIC
	- 07-31-2019 ====================================	
=======================================	========= coef std err	z P>

Model

In [55]:

Out[55]:

Value

BillDate	
2018-07-01	124060.5910
2018-07-02	64358.9450
2018-07-03	70038.4300
2018-07-04	68084.0100
2018-07-05	80714.2200

```
In [56]:
```

(365, 1) (31, 1)

In [57]:

Auto_Arima

In [58]:

In [59]:

```
Fit ARIMA: order=(0, 1, 0) seasonal_order=(0, 1, 0,
7); AIC=8416.003, BIC=8423.759, Fit time=0.031 secon
ds
Fit ARIMA: order=(1, 1, 0) seasonal_order=(1, 1, 0, 1)
7); AIC=8309.917, BIC=8325.427, Fit time=0.156 secon
ds
Fit ARIMA: order=(0, 1, 1) seasonal order=(0, 1, 1, 1)
7); AIC=8162.646, BIC=8178.157, Fit time=1.135 secon
ds
7); AIC=8201.163, BIC=8220.552, Fit time=0.738 secon
ds
Fit ARIMA: order=(0, 1, 1) seasonal_order=(0, 1, 0, 1)
7); AIC=8356.116, BIC=8367.749, Fit time=0.062 secon
ds
Fit ARIMA: order=(0, 1, 1) seasonal_order=(0, 1, 2, 1)
7); AIC=8201.156, BIC=8220.545, Fit time=0.981 secon
ds
Fit ARIMA: order=(0, 1, 1) seasonal_order=(1, 1, 2, 1)
```

In [60]:

Out [60]:

Statespace Model Results

Dep. Va	riable:			y c	N Observation	lo. 365 1 s :
ı	Model:	ARIMAX(0,	1, 2)x(0, 1,	1, 7) L o	og Likeliho	od -4053.998
	Date:	Tue,	05 Nov 201	9	A	IC 8117.996
	Time:		10:36:2	:6	В	IC 8137.385
S	ample:			0	на	IC 8125.708
			- 36	55		
Cova	riance Type:		ор	g		
	coef	std err	z	P> z	[0.025	0.975]
intercept	-23.1829	24.431	-0.949	0.343	-71.068	24.702
ma.L1	-0.5272	0.034	-15.390	0.000	-0.594	-0.460
ma.L2	-0.1901	0.043	-4.416	0.000	-0.274	-0.106
ma.S.L7	-0.9914	0.050	-19.690	0.000	-1.090	-0.893
sigma2	4.04e+08	3.57e-07	1.13e+15	0.000	4.04e+08	4.04e+08
Lj	jung-Box (C	Q): 59.32	Jarque-Be	era (JB):	210.40	
	Prob(C	Q): 0.03	Pı	rob(JB):	0.00	
Heteroske	edasticity (H	H): 0.36		Skew:	0.53	
Prob(H)	(two-side	d): 0.00	K	urtosis:	6.61	

Warnings:

- [1] Covariance matrix calculated using the outer product of gradients (complex-step).
- [2] Covariance matrix is singular or near-singular, with condition number 2.73e+31. Standard errors may be unstable.

```
In [61]:
In [62]:
In [63]:
Out [63]:
             Forecasted
   BillDate
2019-07-01
            113339.0241
2019-07-02 125883.7944
2019-07-03 119444.8986
2019-07-04 124833.1830
2019-07-05 127928.8809
2019-07-06 149259.4597
2019-07-07 159766.6176
2019-07-08 113736.6994
2019-07-09 123918.8396
2019-07-10 117456.7609
2019-07-11 122821.8623
2019-07-12 125894.3772
2019-07-13 147201.7731
2019-07-14 157685.7481
2019-07-15 111632.6469
2019-07-16 121791.6042
2019-07-17 115306.3425
2019-07-18 120648.2609
2019-07-19 123697.5929
2019-07-20 144981.8059
```

2019-07-21

155442.5979

2019-07-22 109366.3138

2019-07-23	119502.0881
2019-07-24	112993.6435
2019-07-25	118312.3790
2019-07-26	121338.5281
2019-07-27	142599.5580
2019-07-28	153037.1672
2019-07-29	106937.7001
2019-07-30	117050.2915
2019-07-31	110518.6639

In [64]:

In [65]:

Out [65]:

	Value	forecasted	error
BillDate			
2019-07-01	104695.7250	113339.0241	-8643.2991
2019-07-02	127803.5900	125883.7944	1919.7956
2019-07-03	134738.3800	119444.8986	15293.4814
2019-07-04	122540.8750	124833.1830	-2292.3080

2019-07-05	139906.2360	127928.8809	11977.3551
2019-07-06	175973.6300	149259.4597	26714.1703
2019-07-07	176618.0850	159766.6176	16851.4674
2019-07-08	116535.6400	113736.6994	2798.9406
2019-07-09	124766.9700	123918.8396	848.1304
2019-07-10	129517.0500	117456.7609	12060.2891
2019-07-11	134813.2500	122821.8623	11991.3877
2019-07-12	151176.9640	125894.3772	25282.5868
2019-07-13	176453.4200	147201.7731	29251.6469
2019-07-14	195715.5800	157685.7481	38029.8319
2019-07-15	129262.1900	111632.6469	17629.5431
2019-07-16	113593.5720	121791.6042	-8198.0322
2019-07-17	121408.7200	115306.3425	6102.3775
2019-07-18	133213.1000	120648.2609	12564.8391
2019-07-19	124875.5150	123697.5929	1177.9221
2019-07-20	191041.9140	144981.8059	46060.1081
2019-07-21	201396.9770	155442.5979	45954.3791
2019-07-22	122373.8600	109366.3138	13007.5462
2019-07-23	135259.0700	119502.0881	15756.9819
2019-07-24	118110.3900	112993.6435	5116.7465
2019-07-25	115316.2280	118312.3790	-2996.1510
2019-07-26	162643.2550	121338.5281	41304.7269
2019-07-27	177738.2500	142599.5580	35138.6920
2019-07-28	204500.9860	153037.1672	51463.8188
2019-07-29	107830.3680	106937.7001	892.6679
2019-07-30	126576.6760	117050.2915	9526.3845
2019-07-31	131196.7250	110518.6639	20678.0611

In [66]:

In [67]:
Out[67]:
17339.473179332323
In [68]:
Out[68]:
12564.839062976258
In [69]:
In [70]:
Out[70]:
22765.63356590128
#######################################
In []:
In []:
In []:
LSTM Model
LSTM Model In [10]:
In [10]:

In [69]:

Out[69]:

	Createddate	Value	year	quarter	month	day	weekday
0	2018-07-01	123601.2160	2018	3	7	1	0
1	2018-07-02	64608.3200	2018	3	7	2	1
2	2018-07-03	70248.4300	2018	3	7	3	1
3	2018-07-04	68084.0100	2018	3	7	4	1
4	2018-07-05	80714.2200	2018	3	7	5	1

In [30]:

In [31]:

In [32]:

In [33]:

In [34]:

In [35]:

In [36]:

In [37]:

In [38]: Epoch 1/20 11s - loss: 0.0100 Epoch 2/20 10s - loss: 0.0084 Epoch 3/20 11s - loss: 0.0084 Epoch 4/20 10s - loss: 0.0073 Epoch 5/20 10s - loss: 0.0076 Epoch 6/20 10s - loss: 0.0066 Epoch 7/20 10s - loss: 0.0062 Epoch 8/20 11s - loss: 0.0069 Epoch 9/20 10s - loss: 0.0061 Epoch 10/20 In [39]: In [40]: In [210]: In [211]: Out [211]: 15210.18796202546

In [214]:

Out [214]:

In [4]:

Out[4]:

	Unnamed: 0	BillDate	Value	day_week
0	0	2018-07-01	124060.591	6
1	1	2018-07-02	64358.945	0
2	2	2018-07-03	70038.430	1
3	3	2018-07-04	68084.010	2
4	4	2018-07-05	80714.220	3

In [5]:

In [6]:

In [7]:

In [8]:
In [11]:
In [12]:
In [13]:
In [14]:
In [15]:
Epoch 1/100 296/296 [====================================
In [16]:
In [17]:
In [18]:

```
In [19]:
Out [19]:
19698.17791718764
In [23]:
In [24]:
/anaconda3/lib/python3.6/site-packages/ipykernel lau
ncher.py:3: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice fro
m a DataFrame.
Try using .loc[row indexer.col indexer] = value inst
ead
See the caveats in the documentation: http://pandas.
pydata.org/pandas-docs/stable/user guide/indexing.ht
ml#returning-a-view-versus-a-copy
(http://pandas.pydata.org/pandas-docs/stable/user gu
ide/indexing.html#returning-a-view-versus-a-copy)
  This is separate from the ipykernel package so we
can avoid doing imports until
Out [24]:
[<matplotlib.lines.Line2D at 0x117567dd8>,
 <matplotlib.lines.Line2D at 0x117567f28>]
In [ ]:
```

Stock Market Data

In [180]:

In [181]:

Out[181]:

	Date	Open	High	Low	Last	Close	Total Trac Quanti
0	2013- 10-08	157.0000	157.8000	155.2000	155.8000	155.8000	1720413.00(
1	2013- 10-09	155.7000	158.2000	154.1500	155.3000	155.5500	2049580.00(
2	2013- 10-10	156.0000	160.8000	155.8500	160.3000	160.1500	3124853.00(
3	2013- 10-11	161.1500	163.4500	159.0000	159.8000	160.0500	1880046.00(
4	2013- 10-14	160.8500	161.4500	157.7000	159.3000	159.4500	1281419.00(

In [260]:

Out[260]:

	Open	High	Low	Last	Close	Total Qu
count	1235.0000	1235.0000	1235.0000	1235.0000	1235.0000	1235
mean	168.9549	171.4291	166.4023	168.7364	168.7311	2604151
std	51.4991	52.4368	50.5429	51.5874	51.5449	2277027
min	103.0000	104.6000	100.0000	102.6000	102.6500	100180
25%	137.5500	138.9250	135.2500	137.1750	137.2250	1284481
50%	151.5000	153.2500	149.5000	151.2000	151.1000	1964885
75%	169.0000	172.3250	166.7000	169.1000	169.5000	3095788
max	327.7000	328.7500	321.6500	325.9500	325.7500	29191015

In [182]:

In [183]:

In [184]:	
In [185]:	
In [186]:	
In [187]:	
In [188]:	
111 [100].	
In [189]:	
In [190]:	
Epoch 1/20 96s - loss: Epoch 2/20 94s - loss: Epoch 3/20 94s - loss: Epoch 4/20 94s - loss: Epoch 5/20 94s - loss: Epoch 6/20 94s - loss: Epoch 6/20 94s - loss: Epoch 7/20 95s - loss: Epoch 8/20 94s - loss: Epoch 9/20 95s - loss: Epoch 10/20 95s - loss: Epoch 10/20	5.3325e-04 3.1337e-04 2.8767e-04 2.7148e-04 2.4441e-04 2.3399e-04 2.4268e-04 2.3833e-04
In [192]:	

```
In [193]:
In [194]:
```

Out [194]:

7.211366722400344

In [195]:

Out [195]:

In []: