Figure out what this is: 3.3 Workflow Orchestration Options:

Apache Airflow ✓

Pros: Robust scheduling, extensive monitoring, large ecosystem

Cons: Complex setup, potentially heavy for small projects

Prefect

Pros: Modern API, easier to get started than Airflow

Cons: Smaller community

Luigi

Pros: Simpler than Airflow, focus on task dependencies

Cons: Less feature-rich monitoring

Option 2: Al-Assisted Scraping:

All assisted scraping is worth considering but I was talking about making an LLM do web research itself.

I'm getting recommended Pandas but I'm a bit confused what I would even need to use that for??

Need to focus more on tech stack.

Ask:Phoenix Arize / LangChain / LangGraph / LangFuse (or similar OSS)?

Add stuff from useless sections to the proper sections.

Stuff like LLM based scraping is a secondary priority. Focus on the core functionality. If I'm doing **microservices**, it will be easy to improve/change.

Event:

Not sold on the event classifier part.

It might be worse than giving full context to a large model

THis can definitely be tested

Need an **Event Categories** section but need to be careful with this because that is lowkey analysis.

Am I using the reasoning model in the right place?

However, if I'm using a model which is pre-trained and finetuned on financial data, maybe this is possible? I.e RoBERTa-large-financial, FinBERT

do we need a set dataset for event classification? The system is not deterministic meaning nothing will break if the header is new

RAG

Example retrieval (?) - this is not a good example retrieval **UNLESS** we use another model to summarise the actual RAG database and then just pass this to the analysis model. Pros: cuts down input tokens for the most expensive model significantly.

Cons: This part might be where we need the most reasoning (although I feel the same way about current event classification / extraction)

```
HISTORICAL EVENT (2018-12-19): "Federal Reserve raises rates by 25 bps to 2.25-2.50%"

MARKET REACTION: "S&P 500 declined 7.7% in the following week"

ECONOMIC IMPACT: "Mortgage rates increased to 4.75%, housing starts declined 8.6% in Q1 2019"

ANALYST NOTE: "Powell's hawkish stance surprised markets expecting a more dovish forward guidance"
```

Cloud/Model Deployment:

What am I even using cloud for if I use Hugging Face Inference Endpoints? I was planning to finetune the models and deploy on the cloud. Can I finetune through the Hugging Face Inference Endpoints? Note that this is a learning project meaning I want to finetune by myself with pytorch.

So can I finetune and then deploy through the Hugging Face Inference Endpoints?

Additionally, the end goal is a **microservice** architecture.

Similarly, where would I even use Kubernetes/Docker in this project? It's alright if there is no place for them anymore but let me know if there are opportunities.

Storage

Storage: S3 + MongoDB ✓

Pros: S3 for raw data, MongoDB for processed/structured data

Cons: Managing two systems

What is this recommendation even for? What would we store here?

Financial Event Intelligence

Architecture

```
[\text{New Financial Event}] \rightarrow [\text{ Event Classifier}] \rightarrow [\text{RAG Retrieval (FAISS + Hybrid Search)}] \\ \rightarrow [\text{API LLM Reasoning}] \rightarrow [\text{Fine-Tuned Output Formatter}] \rightarrow [\text{Structured Output}]
```

Workflow:

Workflow Example (Step-by-Step):

1. Data Ingestion:

- A new earnings call transcript is scraped from a financial news site via Scrapy.
- Simultaneously, breaking financial news is extracted from Reuters (Tier2) and Reddit posts from r/investing (Tier3).

2. Event Classification:

 The scraped text is passed to the fine-tuned DeBERTa model which assigns the event type "EARNINGS_WARNING" with confidence scores.

3. RAG Retrieval:

– Using text embeddings, the system retrieves several historical earnings warnings and relevant market reaction reports from our FAISS-indexed knowledge base.

4. Large Model Analysis:

– The event details plus retrieved historical context are combined into a prompt sent to GPT-4 (or an equivalent large model API) for synthesizing an in-depth analysis.

5. Fine-tuned Formatting:

– The raw analysis is then input to a smaller model fine-tuned to output a structured report (with sections for Mechanism, Historical, etc.).

6. Structured Output:

 Final output is generated as formatted JSON for machine consumption as well as human-readable YAML.

Tech Stack

Scraping:

In general, need to control scope. US markets are good because there seems to be most information in **english** but even a more specific sector may not be a bad idea.

- Tier 1: sec-edgar-downloader, yfinance, SeekingAlpha API
 - Earnings Call Transcripts (Seeking Alpha/Yahoo Finance)
 - SEC EDGAR API filings (10-K, 10-Q, 8-K, etc.)
 - Federal Reserve Releases (Fed API)
 - Economic indicators releases
- Tier 2: NewsAPI, Reuters OpenAPI
 - Bloomberg Terminal/APIs
 - Major financial publications (Bloomberg, Reuters, WSJ)
 - FOMC Minutes (XML Feeds)
 - o Industry-specific news (TechCrunch for tech, FierceBiotech for healthcare)
 - Regional financial news (for localized market insights) probably not needed
- Tier 3: praw (Reddit), Tweepy (X/Twitter), Discord webhooks
 - Twitter: Verified Analyst Accounts, \$TICKER Hashtags

- Discord: Institutional Research Communities
- Subreddits: r/ValueInvesting, r/WallStreetBets
- Web forums (Seeking Alpha, Yahoo Finance discussions)
- Conference transcripts

spaCy+Prodigy: For custom NER annotation <- research this
Diffbot for automated data extraction. (?)</pre>

Beautiful Soup + Requests ✓

Pros: Simple, flexible, lightweight

Cons: No built-in parallelism, requires more manual handling

Scrapy

Pros: Comprehensive framework, built-in concurrency

Cons: Steeper learning curve

Selenium

Pros: Handles JavaScript-rendered content

Cons: Resource-intensive, slower

• Ilama-index (LLM-assisted)

This is not a bad idea but LOTS of work:

Deterministic Scraping (Recommended for Tier 1)

Scheduled data collection with Airflow/Luigi

LLM-Enhanced Scraping (For Tier 2/3)

- Using models like Anthropic's Claude to extract relevant information from unstructured text
- Event extraction models to identify market-moving events in news articles
- Zero-shot classifiers to categorize content relevance

General:

- Frameworks: PyTorch with Hugging Face Transformers.
- Supporting Libraries: Pandas for data manipulation, scikit-learn for preprocessing, and
 MLflow for experiment tracking.

ML Pipeline: Metaflow (AWS integration), Prefect (complex DAGs)

Evaluation: MLflow (tracking), ragas (RAG metrics)

• Deployment Tools: Docker for containerization; Kubernetes for orchestration; FastAPI and Streamlit for API and UI layers.

Model Deployment & Serving

Options:

- Hugging Face Inference Endpoints ✓
- Pros: Easy deployment, supports many models
- Cons: Can be expensive at scale

I was considering hosting locally (on the cloud)? FastAPI?

Cloud:

- AWS / Lambda
- Azure
- Groq

Classification Models:

DeBERTa-v3 (380M)	SOTA for text classification	Requires significant GPU	High accuracy production
FinBERT	Financial domain pretrained	Limited to 512 tokens	Quick implementation
spaCy NER Rules	Explainable, no training data	Manual maintenance	Regulatory filings parsing

- Look further into **Financial domain pretrained models.** I.e FinBert.
 - RoBERTa-large-financial: Fine-tuned on financial texts (recommended)
- Or finetune DeBERTa-v3 yourself.

Embedding Models:

- Closed Source: text-embedding-3-large (Best accuracy)
- Open Source: all-mpnet-base-v2 (Self-hosted)
- Specialized: gte-finance (Fine-tuned on 10-Ks)

Options: OpenAI's text-embedding-ada-002, Sentence-BERT.

Performance: OpenAl text-embedding-4-large (1536d), \$0.13/1k tokens

Vector DB Options

	System	Cost (GB/mo) Strengths	Weaknesses
•	Pinecone	\$0.50 Managed service	Vendor lock-in

- Weaviate Free (Self-host) Hybrid search Ops overhead
- FAISS Free Lightning-fast No metadata filtering
- Annoy
- Chroma DB ✓
- Couchbase

Analysis Model:

- Financial QA Accuracy (FINRA Benchmark)
- Find other FINANCIAL benchmarks

Formatting Model:

- Models: T5-small, BART.
- Realistically look into the new models.
- Phi-3-mini (Recommended): Lightweight, efficient for formatting tasks

RAG Retrieval

Data Sources:

- Core: Historical SEC filings (10-K/Qs), Fed meeting minutes, Goldman Sachs research archives
- Extended: News archives (Reuters 2000-2025), academic papers on economic mechanisms
- Metadata: Sector, geography, market cap, volatility index (VIX) at event time Historical Event Database:
 - Major market events (crashes, bubbles, corrections)
 - Central bank policy changes (2000-present)
 - Geopolitical events with market impact

Company-Specific History:

- Historical earnings reports (surprise/miss patterns)
- Management changes and outcomes
- M&A activity and market reactions

Economic Data Time Series (probably not, unless it's in a language format):

- Interest rate cycles and market responses
- Inflation/GDP/unemployment data
- Sector performance during different economic regimes

Analyst Reports:

- Public summaries from major banks
- Consensus estimates and historical accuracy
- Sector outlook reports

All the above is too vague if there are no reliable sources to get all of this.

Data Sources:

Financial Data Providers:

- Bloomberg API (paid)
- FRED (Federal Reserve Economic Data free)
- Alpha Vantage (free tier available)

Academic/Research:

- NBER Working Papers
- SSRN Financial Papers
- Federal Reserve Published Research

Historical Archives:

- Financial Times Archive
- Wall Street Journal Historical
- Financial Crisis Documents (2008, 2020)

Example retrieval (?) - this is not a good example retrieval **UNLESS** we use another model to summarise the actual RAG database and then just pass this to the analysis model. Pros: cuts down input tokens for the most expensive model significantly.

Cons: This part might be where we need the most reasoning (although I feel the same way about current event classification / extraction)

```
HISTORICAL EVENT (2018-12-19): "Federal Reserve raises rates by 25 bps to 2.25-2.50%"

MARKET REACTION: "S&P 500 declined 7.7% in the following week"

ECONOMIC IMPACT: "Mortgage rates increased to 4.75%, housing starts declined 8.6% in Q1 2019"

ANALYST NOTE: "Powell's hawkish stance surprised markets expecting a more dovish forward guidance"
```


The optimal RAG approach for this system is a hybrid architecture:

Chunking Strategy:

- Document-level for overall context
- Paragraph-level for granular retrieval
- Hierarchical chunks with parent-child relationships

Retrieval Approach:

- **BM25 + Semantic Search**: Combine keyword matching with embedding similarity
- Metadata Filtering: Filter by event type, date range, entities before vector search (?)
- Reranking: Use a cross-encoder to rerank retrieved documents

Context Processing:

- Apply contextual compression to focus on most relevant parts
- Synthesize retrieved content into concise summary when multiple documents are relevant

Testing:

Unit Tests for the output format (if json/yaml). Can be done at every stage - this way can also evaluate model consistency when finetuning for blog post.yj CI/CD: GitHub Actions + pytest (75%+ coverage target)

Event Classification	Macro F1-Score	≥ 0.85
RAG Retrieval	Mean Reciprocal Rank (MRR)	≥ 0.65
Output Formatting	Schema Compliance Rate	100%
End-to-End	Human Evaluation Score	≥ 4/5

Confidence Calibration - Platt scaling on classifier outputs

• Integration Testing: Verify that end-to-end flow works as expected (data from scraping feeds into classifier and so on).

Input: Mock Fed rate decision \rightarrow System \rightarrow Output format check + GPT-4 quality score (>4/5)

- End-to-End Testing: Simulate financial events and validate final JSON/YAML outputs.
 - Performance Tuning: Monitor latency, throughput, and cost per API call.
 - Model drift

Monitoring

- Prometheus + Grafana dashboards
- Model performance drift detection
- Cost tracking per component
- Cant we do all this through some Lang ecosystem?
- Deployment Testing: Validate API endpoints with load testing (using tools like Locust or JMeter).

Event Classification:

- Accuracy/Precision/Recall/F1 Score
- Confusion matrix across event types
- ROC-AUC for confidence calibration

RAG System:

- RAGAS metrics (faithfulness, relevance, context recall)
- Retrieval precision@k
- Latency measurements
- Recall@k
- Mean Reciprocal Rank (MRR)

Large Model Analysis:

- Factual consistency with retrieved context
- Comprehensiveness assessment
- BLEU, ROUGE, human evaluation, and perplexity measures, GPT eval scores via GPTEval

Formatter Model:

- Format adherence rate
- Content preservation score
- Error rate on structured fields

 User Feedback Loop: Allow users to rate the accuracy of analysis, further fine-tuning downstream models.

Best practices/Pitfalls/Tips:

Cost Control:

- Cache RAG embeddings (reduces API calls by 40%)
- LLM Call Batching

```
# Process 10 events in single API call
responses = await asyncio.gather(*[analyze(event) for event in batch])
```

Quantization

```
# Export formatting model to GGUF python -m llama.cpp.convert --q4_0 phi-3-formatting.safetensors
```

Reproducibility:

- Version datasets with DVC, version indexes
- Containerize pipelines via Docker (+ Kubernetes for scaling)
- Try to separate into microservices

Model Quantization:

- ONNX runtime with int8 quantization for formatter model
- KV cache optimization for inference efficiency

Batched Processing:

- · Group similar events for batch embedding
- Pipeline parallel processing where possible

Caching Strategies:

- LRU cache for common retrievals
- Persistent caching of embeddings
- Pre-computed embeddings for static knowledge base

Pitfalls/Tips:

- News API Rate Limits: Always implement exponential backoff
- LLM Temperature: For analysis, keep <0.3 (deterministic)
- Regulatory Compliance: SEC filings have strict usage terms
- Fallbacks: Test different models once evaluation metrics are determined. If GPT4 fails, fallback to claude..
- Synthetic Data: Generate fake earnings call Q&A with Llama-3-70B to augment training (label with synthetic=true).

- Bias detection
- Limit API usage via batching prompts, sequential Chains of Thought.
- Caching frequent prompts (Anthropic prompt caching, reducing costs up to 90% (anthropic.com)).

Fundamental Q&A

Should RAG Use New Event Data?

No – Keep RAG strictly historical (pre-2024). New events are processed separately to avoid contamination.

- 10x cheaper
- 95%+ accuracy for SEC/earnings data
- GDPR/ToS compliant (Reddit/Twitter API only)

Exception: Use GPT-4 Vision to extract tables from PDF filings if OCR fails (cost: \$0.02/page).

Timeline:

Setup	1-2	Data pipeline, SEC/NewsAPI integration
Model Training	3-5	Fine-tune classifier, Phi-3 formatter
RAG Build	6-7	Historical embedding, hybrid search
Testing	8-10	Unit tests, GPT-4 vs Phi-3 benchmarks

• Week 1–2:

- Requirements gathering, environment setup, initial research, and design of the architecture.
 - Week 3-4:
- Develop and test the scraping pipelines for Tier1 (SEC filings) and Tier2/Tier3 sources.
 - Week 5:
 - Build and fine-tune the event classifier; label training data.
 - · Week 6:
- Set up the RAG knowledge base, embed historical documents, and configure FAISS (or an alternative).
 - Week 7:
- Integrate and test the API-based large model analysis (e.g., GPT-4) together with RAG outputs.
 - Week 8:
 - Fine-tune the small formatter model using synthetic/formatted examples.
 - Week 9–10:
- End-to-end integration, develop CI/CD pipelines, implement testing suites, and build a basic UI/API (using FastAPI/Streamlit).
 - Week 11:
 - Performance tuning, final documentation, and deployment preparations.

Total estimated duration: ~10–11 weeks (approximately 200–300 hours total).

Weeks 1-2: Scope Definition, Initial Research, Data Scraping Setup

Weeks 3-5: Event Classifier Development

Weeks 6-7: RAG Database Setup & Embedding

Weeks 8-9: Large Model Prompt Engineering & Integration

Weeks 10-11: Formatter (small model) fine-tuning

Weeks 12-13: End-to-end pipeline & API development

Weeks 14-15: CI/CD setup, rigorous testing

Week 16: Final polish, documentation, presentation, showcase/demo

Rough Estimated Cost:

Phase 1: Infrastructure & Data Collection (3 weeks)

Week 1: Set up cloud infrastructure, design data schemas

Week 2: Implement SEC filing & financial news scrapers

Week 3: Build event classification system

Phase 2: Knowledge Base & RAG (4 weeks)

Week 4: Collect and process historical data

Week 5: Implement embedding pipeline and vector database

Week 6: Build retrieval system with evaluation

Week 7: Optimize RAG performance

Phase 3: Analysis Generation (3 weeks)

Week 8: Implement large model integration with prompt engineering

Week 9: Develop formatter model training data

Week 10: Fine-tune and optimize formatter model

Phase 4: Integration & Testing (2 weeks)

Week 11: End-to-end system integration

Week 12: Testing, evaluation, and optimization

Total Timeline: 12 weeks (3 months)