LyC: Lógica de Primer Orden

Agustín Santiago Gutiérrez

Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires

Abril 2018

Contexto en la materia Lógica y Computabilidad

La materia se encuentra dividida en dos partes relacionadas, pero relativamente independientes entre sí:

- Computabilidad
- Lógica: La práctica analizada corresponde a esta parte.

Hasta este punto en la materia, los alumnos han estudiado todos los conceptos fundamentales de la lógica **proposicional**:

- Fórmulas de lógica proposicional
- Valuaciones
- Funciones booleanas / tablas de verdad
- Tautologías, contradicciones, fórmulas satisfacibles
- Teorema de compacidad

Objetivos de la práctica

- Reforzar definiciones y conceptos principales de primer orden
 - L-estructuras
 - Fórmulas de lógica primer orden
- Adquirir práctica e intuición sobre la expresión de "enunciados", en el lenguaje de la lógica de primer orden.

División

Si bien no se encuentra explicitado, podemos observar que la práctica está dividida en dos secciones principales:

- Ejercicios 1 a 5: Nociones fundamentales de primer orden
 - L-Estructura
 - Sentencias de primer orden: uso para escribir enunciados
 - Concepto de que una estructura satisfaga una sentencia: $A \vDash \varphi$
- Ejercicios 6 a 11: Todos tratan sobre la noción de elementos, conjuntos, relaciones o clases expresables o definibles por una fórmula de primer orden.
 - Noción muy importante en lógica y teoría de modelos.
 - Fuertemente ligada a la idea de **poder expresivo**, de importancia también en lenguajes de programación.

Decidir si ciertos ejemplos de "estructuras" son apropiadas para los lenguajes dados.

- Se ejercita la definición de L-Estructura
- Se debe verificar:
 - El universo U es no vacío.
 - La interpretación de cada constante está en U.
 - \odot La interpretación de cada función es total y con imagen en U.
 - La interpretación de cada predicado es total.

Se dan ciertas sentencias con sus correspondientes estructuras, y se pide describir las propiedades correspondientes, así como evaluar su validez sobre la estructura correspondiente.

- Se ejercita:
 - Interpretación intuitiva de fórmulas de primer orden.
 - Interpretación de los símbolos de \mathcal{L} , en el contexto de cierta \mathcal{A} .
 - Noción de $A \models \varphi$
- Enunciados:
 - Entre todo par de números reales, hay un número racional. (Verdadera)
 - Todos los días nace un hombre libre. (???)
 - La suma de dos números pares cualesquiera da por resultado un número impar. (Falsa)

Se piden escribir varias fórmulas utilizando únicamente = y P, que predican sobre la cantidad de elementos distintos que existen en U (con la propiedad P).

- Ejercicio muy importante:
 - Las fórmulas que se pide escribir son muy útiles para utilizar como subfórmulas de enunciados más complejos.
 - Serán útiles en varios ejercicios posteriores.
- Error común:
 - Oreer que $\exists x, y (x \neq y \land \varphi(x) \land \varphi(y))$ significa que existen **exactamente** dos elementos con la propiedad φ .
 - Es una buena idea resolver este ejercicio o uno similar durante una clase práctica, mostrando errores comunes como este.

Ejercicios 4 y 5

Ejercicio 4: Se pide escribir una φ tal que $\mathcal{A} \models \varphi$ sii $f_{\mathcal{A}}$ es inyectiva pero no sobreyectiva.

- Definición de infinitud de Dedekind.
- Se pregunta si φ es satisfacible por un modelo finito.

Ejercicio 5: Se dan varias sentencias, y se pide para cada una dar una estructura donde sea verdadera y una donde sean falsa.

• En ambos ejercicios se ejercita específicamente estudiar la noción $\mathcal{A} \vDash \varphi$ sobre distintas posibles estructuras \mathcal{A} , para una sentencia φ dada.

Ejercicios 6 y 7

Ejercicio 6: Dar un ejemplo de \mathcal{L} estructura con universo infinito, en la que todo elemento sea distinguible. \mathcal{L} finito sin constantes.

- Con constantes o lenguaje infinito sería más fácil de lograr:
 - c, f(c), f(f(c)), \cdots . Con fórmulas de la forma $x = f^i(c)$
 - Con infinitos predicados, fórmulas $P_1(x)$, $P_2(x)$, $P_3(x)$, ...
- Se puede mantener la misma idea con solo =, P y f: $\exists z (P(z) \land f^i(z) = x)$

Ejercicio 7: Probar que 1 es distinguible en $(\mathbb{N},+,=)$ y en $(\mathbb{N},\cdot,=)$

- En $(\mathbb{N},\cdot,=)$ es el único neutro.
- En $(\mathbb{N}, +, =)$, el 0 es el único neutro. Con el 0, se puede definir el 1: $\exists z (\forall y (z + y = y) \land x \neq z \land \neg \exists a \exists b (a \neq z \land b \neq z \land a + b = z))$

z es neutro x es no nulo x no es suma de dos no nulos

Ambos salen alternativamente con las fórmulas del Ejercicio 3

Dadas dos \mathcal{L} -estructuras mediante diagramas de Hasse, $\mathcal{L} = \{\leq, =\}$, probar que todos sus elementos son distinguibles.

- Para cada $x \in U$, podemos contar m, la cantidad de elementos menores o iguales $(y \le x)$.
- También podemos contar M, la cantidad de mayores o iguales ($y \ge x$).
- El par (m, M) caracteriza a cada elemento en ambos ejemplos.
- Basta entonces aplicar las fórmulas del ejercicio 3, para:
 - $\varphi(y) \equiv y \leq x$
 - $\psi(y) \equiv y \geq x$

Probar que si en una estructura de n + 1 elementos hay n distinguibles, el restante también lo es.

- Fácil y corto de resolver si se entienden los conceptos involucrados
- Supongamos $\varphi_1(x), \varphi_2(x), \dots, \varphi_n(x)$ distinguen los n elementos.
- El elemento que queda es distinguido por ¬φ₁(x) ∧ ¬φ₂(x) ∧ · · · ∧ ¬φ_n(x)

Demostrar que varias relaciones dadas son *expresables* en las correspondientes estructuras.

- Ejercicio de modelado: Se ejercita el pasaje de relaciones en lenguaje natural, a lógica.
- Se puede ejercitar la técnica de utilizar subfórmulas para construir fórmulas más complejas.
 - Esta es una idea fundamental aplicable también en los lenguajes de programación.
 - Ejemplo: La fórmula para la relación R₁ = {(n, m) : n divide a m}
 es útil para construir una fórmula para el predicado
 P₁ = {n : n es primo }

Dadas varias clases de \mathcal{L} -estructuras, demostrar que son clases definibles.

- Similar al anterior pero sobre **clases de estructuras**, en lugar de relaciones en una estructura prefijada.
- Se piden:
 - La clase vacía.
 - La clase de todas las *L*-estructuras.
 - Ejemplos triviales (la idea no depende de la estructura misma) para fijar conceptos.
 - Basta tomar una φ que sea contradicción o tautología.
- Además:
 - La clase de estructuras con predicado binario reflexivo y transitivo.
 - La clase con funciones unarias f y g tales que $Im(f_A) \subseteq Im(g_A)$
 - Ejemplo de una idea general para expresar inclusión de conjuntos: Usar la fórmula $\forall x (\varphi(x) \Rightarrow \psi(x))$
 - $\varphi(x)$ es una fórmula para $x \in Im(f_A)$
 - $\psi(x)$ es una fórmula para $x \in Im(g_A)$

