QUÍMICA PER FÍSICS

Pere Barber Lloréns

1 Termodinàmica

• Primer principi: $dU = \partial Q + \partial W$

on $\partial W = -pdV$. Si prenem $C = \frac{\partial Q}{dT}$ tindrem:

- A p ct: $C_p = \frac{\partial Q_p}{\partial T} = \frac{dH}{dT} \longrightarrow Q_p = \Delta H$
- A V ct: $C_V = \frac{\partial Q_V}{\partial T} = \frac{dQ_V}{dT} \longrightarrow Q_V = \Delta U$
- Remarquem que $Q_p > Q_V$
- Entalpia: $H \equiv U + pV \xrightarrow{p \text{ ct}} Q_p = \Delta H$.
- Segon principi: Tenim dues definicions:
 - Macroscòpica: $dS \equiv \frac{dQ_{\text{rev}}}{T}$ on $dS \geqslant 0$, on = defineix un procés reversible i > un d'irreversible. A més $dS_{\text{univers}} = dS_{\text{sistema}} + dS_{\text{entorn}}$
 - Microscòpica: $S = K_B \ln(\Omega)$, on Ω representa el nombre de microestats.
- Equació de Gibbs: dU = TdS pdV. En un sistema obert: $dS = \frac{1}{T}dU + \frac{p}{T}dV - \frac{1}{T}\sum_{i=1}^{m}\mu_{i}dn_{i}$ on el terme del Σ fa referènia al potencial químic
- Designaltat de Clausius: $dS_{\text{univ}} \geqslant 0$
- Energia Lliure de Helmholtz: $A \equiv U TS$. Diferenciant l'equació, T ct, arribem a $dA \leq 0$
- Energia Lliure de Gibbs: Partint de que a p, T ct, tenim que $TdS - dH \ge 0$. Definim $G \equiv H - TS$. Així $dG \leq 0$ i tenim dG = 0 quan tenim un canvi d'estat (com ara H_2O d'estat líquid a vapor).
- \bullet Equacions Diferencials de G i d'A

 $dA = -pdV - SdT \qquad \text{i} \qquad dG = Vdp - SdT$

Composició variable: $\longrightarrow \sum \mu_i dn_i$.

- Reacció espontània: $dG \leq 0 \longrightarrow \sum \mu_i dn_i < 0$
- Reacció en equilibri: $\sum \mu_i dn_i = 0 = dG$

2 Matèria i transformacions

Reprenent Gibbs amb dues fases (gas \rightarrow líquid):

$$dG = Vdp - SdT + \sum_{\alpha=1}^{2} \mu^{\alpha} dn^{\alpha} < 0$$

Per tant tindrem: $\mu^l < \mu^g$ on $\mu_i = \frac{\partial G}{\partial n_i} \Big|_{\substack{T,p,n_j \neq n_i}}$. Amb un sol component $\mu = G_m$. Prenent T ct i n = 1 tindrem

$$\mu(T) = \mu^{0}(T) + RT \ln \left(\frac{p}{p^{0}}\right)$$

amb ⁰ fa referència a estàndard. Els punts d'equilibri s'assoliran en el punt en què $\mu^l = \mu^g$ i $\mu^s = \mu^l$.

• Dissolució: Mescla homogènia de 2 o més components (1 fase, n components). Amb 2 components:

$$dG = Vdp - SdT + \mu_1 dn_1 + \mu_2 dn_2$$

- Propietats molars parcials: 2 components
 - Potencial químic o Energia Molar Parcial:

$$\overline{G_1} = \mu_1 = \frac{\partial G}{\partial n_1} \Big|_{T,p,n_2} \longrightarrow G_{\text{mescla}} = \overline{G_1} n_1 + \overline{G_2} n_2$$

- Fracció Molar: $\chi_i^l = \frac{n_i}{\sum n_i}$
- Volum Parcial: $\overline{V_1} = \frac{\partial V_{\text{mescla}}}{\partial n_1}\Big|_{n_2}$ on tindríem $V_{\rm mescla} = \overline{V_1}n_1 + \overline{V_2}n_2$
- Mescla de 2 Gasos Ideals:

$$\begin{array}{c|cccc} T & i & p_1 & T & i & p_2 \\ n_1 & n_2 & & & & & \\ \hline \end{array} \qquad \begin{array}{c} \underline{\text{\'es espontani?}} & & T & i & p_T \\ n_1 + n_2 & & & & \\ \end{array}$$

Tindrem que $p_i = p_T \chi_i^g$ i que $n_i = n_T \chi_i^g$. Per tant $\Delta G_{\text{mescla}} = G_f - G_i < 0.$

Si $G_f = \mu_1 n_1 + \mu_2 n_2$ i $G_i = \mu(T) = \mu^0(T) + RT \ln \left(\frac{p}{p^0}\right)$, arribem a $\Delta G_{\text{mescla}} = n_T R(\chi_1 \ln(\chi_1) + \chi_2 \ln(\chi_2)) < 0$, cosa que vol dir que dos gasos sempre es mesclen. A més, $\Delta H = \Delta G + T \Delta S = 0.$

• Mescla de 2 Líquids Volàtils: Líquids amb fase vapor. Donat que $\mu^{g,*} = \mu^{l,*}$ on * denota pur, sabent que a l'equilibri tindrem $\mu_1^l = \mu_1^g$

$$\mu_1^l = \mu_1^* + RT \ln \left(\frac{p_1}{p_*}\right)$$

• Llei de Raoult: $p_i = p_i^* \chi_i^l$. Aplicant-la tindrem: $\boxed{\mu_i^l(T) = \mu_i^{l,*}(T) + RT \ln(\chi_i^l)}$

$$\mu_i^l(T) = \mu_i^{l,*}(T) + RT \ln(\chi_i^l)$$

- Dissolució Diluïda Ideal: Quan en una mescla tenim que $\chi_2 \ll \chi_1$ es complirà la *Llei de Raoult* pel solvent (1) (anàlogament: $\chi_2 \to 0 \text{ i } \chi_1 \to 1$)
- Llei de Henry: $p_i = K\chi_i$ amb [K] = [atm, Torr]. O bé $p_i = K'm_i$, on m representa la molalitat $\left(m = \frac{n_s}{\lg_{dislv}}\right)$. En aquest cas, la nova constant: $[K'] = [atm \cdot kg_{dislv}]$. mol^{-1}

Atenent ara al solut $(\chi_2 \to 0)$ en una dissolució diluïda ideal, fent servir la Llei de Henry $(p_2 = K\chi_2^l)$ tindrem:

$$\mu_2^l = \mu_2^{l,*} + RT \ln \left(\frac{K\chi_2^l}{p_2^*} \right)$$

$$= \underbrace{\mu_2^{l,*} + RT \ln \left(\frac{K}{p_2^*} \right)}_{\mu_2^{0,l}} + RT \ln \left(\chi_2^l \right)$$

I així, tenim doncs: $\mu_2^l = \mu_2^{0,l} + RT \ln \left(\chi_2^l\right)$. I amb l'altra versió de la Llei de Henry:

$$\boxed{\mu_2^l = \mu_2^{l,0} + RT \ln \left(\frac{m_2}{m_2^0}\right) \text{ on } m_i^0 = \frac{1 \text{ mol}}{\text{kg}_{\text{dislv}}}}$$

- Dissolució Real:
 - Solvent

Tindrem que $\frac{p_i}{p_i^*}=a_i\neq\chi_i$ on $a_i=\gamma_i\chi_i$ (a_i és l'activitat i γ_i el coeficient d'activitat). Per tant, pel solvent tindrem: $\mu_1 = \mu_1^{l,*} + RT \ln(a_1)$

$$= \mu_1^{l,*} + RT \ln(a_1) = \mu_1^{l,*} + RT \ln(\gamma_1) + RT \ln(\chi_1^l)$$

Tindrem que $\frac{p_2}{K_2} = a_2$ amb $a_2 = \gamma_2 \chi_2$. Per tant:

$$\mu_2 = \mu_2^0 + RT \ln(a_2)$$
 on $a_2 = \gamma_2 \left(\frac{m_2}{m_2^0}\right)$

3 Propietats Col·ligatives

1. Disminució de la pressió-vapor en el solut

$$p_1 = p_1^* \chi_1 \longrightarrow p_1 = p_1^* (1 - \chi_2)$$

 $p_1 - p_1^* = p_1^* \chi_1 \longrightarrow \Delta p = p_1^* \chi_2$

2. Augment de la Temperatura d'Ebullició

$$\Delta T_{\rm eb} = T_{\rm eb} - T_{\rm eb}^{0} \text{ amb } T_{\rm eb} > T_{\rm eb}^{0}$$

 $\Delta T_{\rm eb} \propto m \longrightarrow \Delta T_{\rm eb} = K_{\rm eb} m$

3. Disminució de la Temperatura de Congelació

$$\Delta T_{\rm f} = T_{\rm f}^0 - T_{\rm f} \ \ {\rm amb} \ \ T_{\rm f}^0 > T_{\rm f}$$

$$\Delta T_{\rm f} \propto m \longrightarrow \boxed{\Delta T_{\rm f} = K_{\rm f} m}$$

• <u>Pressió Osmòtica</u>: Tenim un recipient, on E representa la part esquerra i D la dreta. Tenim que $\mu_E = \mu_1^{l,*}$ i $\mu_D = \mu_1^{l,*} + RT \ln(\chi_1)$. Per tant $(\mu_D - \mu_E) < 0$ i així $(\Delta \mu - \Delta G_m) < 0$. A l'equilibri deixa de passar solvent, i així $\mu_D = \mu_E$.

Si
$$\mu_E < \mu_D \longrightarrow \frac{\partial \mu_1}{\partial p} \Big|_{T,n_1,n_2} = \overline{v_m}$$
. Així

 $\Delta \mu = v_m \Delta p$, on $\Delta p = \pi$, que és la pressió osmòtica. I per tant, en l'equilibri:

$$\mu_E=\mu_D=\mu_1^{l,*}+RT\ln(\chi_1)+\pi V_{m_1}^l$$
 I així $\pi=MRT$

• Equació de Clausius-Clapeyron: Partint de què $\mu^l = \mu^g$ o equivalentment $G_m^l = G_m^g$ en el canvi d'estat:

$$\frac{dp}{dT} = \frac{\Delta S_m}{\Delta V_m} = \frac{\Delta H_m}{T\Delta V_m}$$

En el cas de *líquid-gas*, utilitzant PV = nRT arribem a aquesta expressió:

$$\ln \frac{p_2}{p_1} = -\frac{\Delta H_{m, \text{ vap}}}{R} \left(\frac{1}{T_2} - \frac{1}{T_1} \right)$$

on ΔH pot ser tant la de vaporitzaci'o o la de sublimaci'o. Per obtenir la de fusi'o, donat que H és una funci\'o d'estat: $\Delta H_{\rm fusi\'o} = \Delta H_{\rm sub} - \Delta H_{\rm vap}$

	< 0	=0	> 0
ΔS	Mai	Equilibri	
ΔH	Exotèrmic	Equilibri	Endotèrmic
ΔG	Espontani	Equilibri	No espontani
ΔA		Equilibri	Mai

4 Canvi Químic

- 1) Conservació de la massa (Lavoisier s. XVIII)
- 2) Proporcions Múltiples (Dalton, s. XIX)
- 3) Relació de Volums (Gay-Lussac, 1808)
- 4) Hipòtesi d'Avogadro (1811)

- A p i T determinades (element, compost o barreja de gasos) tenim el mateix nombre de molècules
- $-2.69 \cdot 10^{19} \text{ molèc./cm}^3 \text{ (Loschmidt, } 1865)$
- $-6,022 \cdot 10^{23} \text{ molèc.} \equiv N_A \to \text{mol } (1909)$

Recordant l'energia de Gibbs, definim ξ com avanç de la reacció. Tenint $A(g) \rightleftharpoons B(g)$ en equilibri dinàmic, $dn_A = -d\xi$, $dn_B = d\xi$. A 1 fase, p,T constants i 2 components:

$$dG = \mu_A dn_A + \mu_B dn_B = \mu_A (-d\xi) + \mu_B (d\xi)$$
$$\left(\frac{\partial G}{\partial \xi}\right)_{p,T} = -\mu_A + \mu_B$$

Recordant el potencial químic d'un gas pur: $\left(\mu_i(T,p) = \mu^0(T) + RT \ln \left(\frac{p_i}{p^0}\right)\right) \quad \text{si} \quad \text{tenim} \quad \text{que} \\ aA(g) \Longrightarrow bB(g):$

$$\left(\frac{\partial G}{\partial \xi}\right)_{p,T} = -a\mu_A + b\mu_B = \Delta_r G$$

$$\Delta_r G = -a\left(\mu_A^0 + RT \ln\left(\frac{p_A}{p^0}\right)\right) + b\left(\mu_B^0 + RT \ln\left(\frac{p_B}{p^0}\right)\right)$$

$$= \underbrace{-a\mu_A^0 + b\mu_B^0}_{\Delta_r G^0} + RT \ln\left(\frac{\left(p_B/p^0\right)^b}{\left(p_A/p^0\right)^a}\right)$$

$$Q_p$$

I a l'equilibri, $\Delta_r G = 0$: $\Delta_r G^0 = -RT \ln K_p$

$$K_p = \frac{\left(p_B/p^0\right)^b}{\left(p_A/p^0\right)^a}$$
 Quocient de reacció a l'equilibri
$$Q_p > K_p \to \text{ Cap a Reactius}$$

$$Q_p < K_p \to \text{ Cap a Productes}$$

Coneixent $\Delta_r G$, si tenim $\Delta_r G < 0$ la reacció va cap als productes, mentre que $\Delta G > 0$ va cap als reactius.

• Reaccions amb Dissolució (Diluïda Ideal): Amb la mateixa metodologia prèvia, però aplicant Henry amb $aA(l) \rightleftharpoons bB(l)$:

$$\Delta_r G = \Delta_r G^0 + RT \ln \underbrace{\left(\frac{\left(m_B/m^0\right)^b}{\left(m_A/m^0\right)^a}\right)}_{K_m}$$

A l'equilibri: $\Delta_r G = 0$ i trobem:

$$\left| K_C = rac{\left(C_B/C^0
ight)^b}{\left(C_A/C^0
ight)^a}
ight| \;\; ext{Ct de [] a l'equilibri}$$

• Dissolucions Reals (Equilibri): Partint de $aA \rightleftharpoons bB$, si no compleixen Henry, tindrem doncs $p_i = K\gamma_i m_i = Ka_i$ i així $\mu_i = \mu_i^0 + RT \ln a_i$:

$$K_a = \frac{(a_B)^b}{(a_A)^a} = \frac{\left(\gamma_B \frac{m_B}{m^0}\right)^b}{\left(\gamma_A \frac{m_A}{m^0}\right)^a} = K_{\gamma_m} \cdot K_m$$

Anàlogament, prenent K_C tindrem una K_{γ_C} per obtenir la mateixa K_a . (constant d'activitat). En els casos en tinguem diferents soluts o diferents fases, es defineix un coeficient de fugacitat $f_i = \gamma_i p_i$ i n'apareix una nova constant, que acura més el resultat de la K_p :

$$\left| K_f = rac{\left(f_B/p^0
ight)^b}{\left(f_A/p^0
ight)^a}
ight|$$
 Ct de fugacitat

• Dependència de K amb T:

$$\ln\left(\frac{K_2}{K_1}\right) = \frac{\Delta_r H^0}{R} \left(\frac{T_2 - T_1}{T_1 T_2}\right)$$

Entalpies:

* $\Delta_r H^0 < 0$, exotèrmica $\rightarrow \text{ si } T \uparrow$, $K \downarrow$

*
$$\Delta_r H^0 > 0$$
, endotèrmica $\rightarrow \text{si } T \uparrow$, $K \uparrow$

– Pressions: Si $p \uparrow l$ 'equilibri es deplaça cap on disminueixen els mols gasosos

Reaccions Acid-Base 5

Segons Brønsted, un àcid és l'espècie que dóna H^+ i una **base** és l'espècie que rep H⁺. Segons Lewis, un àcid és l'espècie que agafa un parell d'e-). Partint de: $H_2O \rightleftharpoons H_3O^+ + OH^-$. Estudiant la constant d'activitat K_a , arribem a:

 $K_w = [H_3O^+][OH^-]$ Producte iònic de l'aigua $\overline{K_w}$ és una constant que depèn de la temperatura i val $10^{-14} \text{ a } T = 298^{\circ} K$. Distingim:

- $-[H_3O^+] = [OH^-]$ Dissolució Neutra
- $-[H_3O^+] > [OH^-]$ Dissolució Àcida
- $-\ [H_3O^+]<[OH^-]$ Dissolució Bàsica

$$pH = -\log[H^+] pOH = -\log[OH^-]$$
 14 = pH + pOH

Aquestes reaccions, segons siguin àcides o bàsiques consten d'una constant:

• Àcid Dèbil: Partint de $HA + H_2O \rightleftharpoons H_3O^+ + A^-$:

òbviament sempre i quan suposem un comportament ideal i $a_{H_2O} = 1$. K_a ens indica la fortalesa d'un àcid. Podem també definir el grau de dissociació com

$$\% \ {\rm dissociaci\acute{o}} = \frac{[H_3O^+]}{[HA]} \cdot 100$$

• <u>Base Dèbil</u>: Partint de $B + H_2O \rightleftharpoons OH^- + HB^+$:

$$K_b = rac{[OH^-][HB^+]}{[B]}$$
 Ct de basicitat

Per tant, tindrem la relació $K_w = K_a \cdot K_b$. A partir de K_a i K_b també trobem:

$$pK_a = -\log[K_a]$$

$$pK_b = -\log[K_b]$$

- Àcid/Base Forta: La concentració de l'àcid/base coincideix amb la de H^+/OH^- respectivament.
- Dissolució Amortidora: És un tipus de dissolució que presenta un petit canvi en el pH a l'afegir una quantitat d'un àcid a una dissolució. Quan $[HA_{aq}] \approx [A_{aq}^-]$, donat

que
$$K_a = \frac{[H^+][A^-]}{[HA]}$$
 tindrem que el nou pH serà
$$pH = pK_a + \log \frac{[A^-]}{[HA]}$$

$$pH = pK_a + \log\frac{[A^-]}{[HA]}$$

Reaccions de Precipitació

Solubilitat de compostos:

- Solubles: NO_3^- , ClO_4^- , Li^+ , Na^+ , NH_4^+

- Insolubles: $X(OH), CO_3^{-2}, PO_4^{-3}$

- Mitjanament solubles: Cl^-, Br^-, I^-

En les reaccions de solubilitat, parlem de nou d'una nova constant: partint de $AB \rightleftharpoons A^- + B^+$:

$$K_{PS} = [A^{-}][B^{+}]$$
 Ct de producte de solubilitat

Direm que una dissolució està saturada quan tenim la màxima quantitat de solut dissolt. També parlem del **producte iònic** $Q = [A^-][B^+]$ que quan és major que la K_{PS} implica que el compost precipita.

$$egin{cases} Q_{PS} = K_{PS}
ightarrow \ ext{Equilibri.} \ ext{Dissoluci\'o Saturada} \ Q_{PS} > K_{PS}
ightarrow \ ext{Precipita.} \ ext{Cap als Reactius} \ Q_{PS} < K_{PS}
ightarrow \ ext{No precipita} \end{cases}$$

- Solubilitat: És la capacitat d'una determinada substància de dissoldre a una altra. s = (g/l). De vegades trobem solubilitat molar s = (g/mol).
- Efecte Ió Comú: En un solut poc soluble, disminueix la solubilitat a l'afegir un ió comú.
- pH/Equilibri de Solubilitat: Quan tenim un pH elevat implica una concentració elevada de OH^- . Per tant, per un augment del pH, tindrem una disminució de la solubilitat. Amb sals amb caràcter bàsic:

$$\begin{array}{c} pH \downarrow \longrightarrow \uparrow \text{Solubilitat} \\ pH \uparrow \longrightarrow \downarrow \text{Solubilitat} \end{array}$$

Reaccions Red-Ox

Són reaccions amb compartició d'e⁻. Quan s'oxida una espècie $perd\ e^-$ (en la semireacció té els e^- a la dreta) i quan es redueix en guanya (e^- a l'esquerra).

- Pila Daniell: Cal destacar:
 - Dues "cubetes": Ànode OXIDACIÓ i Càtode RE-DUCCIÓ. Els e^- van de l'ànode al càtode.

$$-\left[\varepsilon_{\rm cel\cdot la}^0 = \varepsilon_{\rm càtode}^0 - \varepsilon_{\rm ànode}^0\right]$$

$$-Zn(s)/Zn_{aq}^{+2}(1M)/Cu_{aq}^{+2}(0,5M)/Cu(s)$$

• Termodinàmica del la Cel·la/Espontaneïtat

$$W_{\text{elect}} = -VQ = -\varepsilon\nu F$$

on $\nu = \frac{n^{\rm o} \ {\rm mols} \ e^-}{{\rm mols} \ {\rm reacci\acute{o}}}$ i F és la constant de Faraday $\left(F = q_{e^-} N_A = 96500 \frac{{\rm C}}{{\rm mol} \cdot e^-}\right)$.

Si tenim una cel·la reversible:

$$-\nu F \varepsilon^0 = \Delta_r G^0 = -RT \ln K \longrightarrow \boxed{\varepsilon^0 = \frac{RT}{\nu F} \ln K}$$

En aquest cas:

$$\begin{cases} \Delta_r G^0 < 0 \longrightarrow K > 1 \longrightarrow \varepsilon^0 > 0 \longrightarrow \text{Espontani} \\ \Delta_r G^0 > 0 \longrightarrow K < 0 \longrightarrow \varepsilon^0 < 0 \longrightarrow \text{No Espontani} \end{cases}$$

Fora de l'estat estàndard, amb $aA + bB \rightleftharpoons cC + dD$:

$$\Delta_r G = \Delta_r G^0 + RT \ln Q$$
 on $Q = \frac{a_C^c \cdot a_D^d}{a_A^a \cdot a_B^b}$

I així $-\nu F\varepsilon = \nu F\varepsilon^0 + RT \ln Q$ i obtenim:

$$\boxed{\varepsilon = \varepsilon^0 - \frac{RT}{\nu F} \ln Q} \qquad \text{Equació de Nernst}$$

I recordant el cas de la $Pila\ Daniell$: $Q = \frac{[Anode]}{[Càtode]}$ Per tant, si ens donen un cas i hem d'estudiar la seva espontaneïtat, mirem:

- $-\varepsilon > 0$ serà espontania mentre que $\varepsilon < 0$ no funcio-
- -Q < K tindrem reacció espontània $\left(K = e^{\frac{\nu F \varepsilon^0}{RT}}\right)$
- Dependència de ε respecte de T:

$$\Delta_r H = -\nu F \varepsilon + T \nu F \left(\frac{\partial \varepsilon}{\partial T} \right)_p$$

- Tipus de cel·les:
 - Cel·les de concentració: La mateixa espècie és la que s'oxida i es redueix, però ha d'haver-hi una diferència de concentració. Ens interessa què [càtode] > [ànode]. Té aplicació a les cèl·lules amb el potassi.
 - Cel·les de combustible

8 Cinètica Química

Part de la química que s'encarrega de l'estudi de la velocitat en una reacció química. Parlem de diversos tipus de reaccions:

$$\boxed{v=-\frac{1}{a}\frac{dn_A}{dt}=-\frac{1}{b}\frac{dn_B}{dt}=\frac{1}{c}\frac{dn_C}{dt}=\frac{1}{d}\frac{dn_D}{dt}}$$
i amb concentracions imposant, que $d\xi=\left(-\frac{dn_A}{a}\right)$

$$v' = \frac{1}{v} \frac{d\xi}{dt} = -\frac{1}{a} \frac{[A]}{dt} = \frac{1}{c} \frac{[C]}{dt}$$

Reacció complexa: $aA+bB \xrightarrow{v_1} I$ i $I \xrightarrow{v_2} cC+dD$. Tindrem velocitats diferents per etapes diferents.

En general, l'expressió de la velocitat:

$$v = K_n[A]^{\alpha}[B]^{\beta}$$

on α és l'ordre de la reacció respecte d'A i β el de B. $n = \alpha + \beta$ és l'ordre global i ens indica com de reguladores són les concentracions

• Ordre de la reacció i K: Partint de la reacció següent $aA \longrightarrow bB$, com es comporta la concentració enfrontada amb el temps?. Tenint $-\frac{1}{a}\frac{d[A]}{dt} = K_n[A]^{\alpha=n}$:

$$- \boxed{n=0}$$

$$-\frac{1}{a}\frac{d[A]}{dt} = K_n \rightarrow \boxed{[A] = [A]_0 - aKt}$$

$$- \boxed{n=1}$$

$$-\frac{1}{a}\frac{d[A]}{dt} = K_n[A] \rightarrow \boxed{\ln[A] = \ln[A]_0 - aKt}$$

$$- \boxed{n>1}$$

$$\boxed{\frac{1}{[A]^{n-1}} = \frac{1}{[A]_0^{n-1}} - a(n-1)Kt}$$

Les unitats de k en funció de n: $|K| = M^{1-n} \cdot t^{-1}$

- Mètode de les equacions integrades de velocitat: Si tenim en tots els casos [A], $\ln[A]$ i 1/[A] en cada t en un únic experiment, estudiar cadascuna de les regressions lineals per separat i la que ajusti millor aquesta, tindrà aquest ordre (veure r).
 - Mètode del periode de semireacció: $t_{1/2}$ on $[A] = [A]_0/2$. Prenent l'equació anterior arribem a:

$$t_{1/2} \begin{cases} n = 0 \to t_{1/2} = \frac{[A]_0}{2aK} \\ n = 1 \to t_{1/2} = \frac{\ln 2}{K} \\ n = 2 \to t_{1/2} = \frac{1}{aK[A]_0} \\ n > 2 \to t_{1/2} = \ln \frac{2^{n-1} - 1}{K(n-1)} - (n-1) \ln[A_0] \end{cases}$$

- Mètode Diferencial (Vant Hoff): Amb diversos experiments dels quals, a partir de la concentració inicial, podem trobar velocitats inicials.
- Mètodes d'acceleració d'una reacció:
 - Efecte de la T sobre la v: Segons la teoria d'Arrhenius, la T afecta a la K:

$$K = Ae^{-\frac{E_a}{RT}}$$

on A és el factor pre-exponencial i E_a l'energia d'activació (valors empírics). Experimentalment es poden trobar (aplicació de logaritmes). Si tenim dues reaccions, si $E_{a_2} > E_{a_1} \rightarrow K_1 > K_2$. Amb més energia d'activació, una reacció és més lenta.

La Teoria de l'estat de transició prediu que

$$K = \frac{K_B T}{h} e^{\left(-\frac{\Delta G^{\neq}}{RT}\right)}$$

Aplicant aquestes dues equacions

 $\Delta G^{\neq} = \Delta H^{\neq} - T \Delta S^{\neq}$ i que $E_a - RT = \Delta H^{\neq}$ trobem la correspondència entre ambdues teories:

$$K = \frac{K_B T}{h} e^{\frac{\Delta S}{R}} e^{-\frac{E_a}{RT}}$$

- Catalitzadors: La G disminueix amb la presència d'un catalitzador. $E_{a,\text{cat}} < E_{a,\text{no cat}}$ i així la $K_{\rm cat}/K_{\rm no\ cat}=e^r$ on $r\geqslant 0$ (K prèvia).
- Mecanismes de Reacció: Si tenim una reacció complexa $aA \rightarrow P$ tenim 3 mecanisme complexes simples segons les reaccions siguin:
 - 1. Reversibles: $A \rightleftharpoons B \begin{cases} A \xrightarrow{K_1} B v = K_1[A]^1 \\ B \xrightarrow{K_{-1}} A v = K_{-1}[B]^1 \end{cases}$

Imposant que aquestes condicions i la conservació de la massa $(a = [A] + [B] \text{ on } [A]_0 = a \text{ i } [B]_0 = 0)$:

$$[A] = \frac{[A]_0 (K_{-1} + K_1 e^{-(K_1 + K_{-1})t})}{K_1 + K_{-1}}$$

$$[B] = \frac{[A]_0 \left(1 - e^{-(K_1 + K_{-1})t}\right)}{K_1 + K_{-1}}$$

- $[B] = \frac{[A]_0 \left(1 e^{-(K_1 + K_{-1})t}\right)}{K_1 + K_{-1}}$ 2. Paral·leles $\begin{cases} A \xrightarrow{K_1} B \\ A \xrightarrow{K_2} C \\ A \xrightarrow{K_3} D \end{cases}$
- 3. Consecutives: $A \xrightarrow{K_1} I \xrightarrow{K_2} B$