Лекция Л9. Функционально замкнутые классы

Класс булевых функций называется функционально замкнутым, если вместе с функциями из этого класса он содержит и все их суперпозиции.

Очевидно, что для доказательства функциональной замкнутости класса достаточно показать, что элементарные суперпозиции не выводят из этого класса (суперпозиции ранга $r \in \mathbb{N}$ - результат применения r раз элементарных суперпозиций и если всегда все остается на месте, то и любое число применений элементарных суперпозиций оставит все на месте).

Рассмотрим некоторые функционально замкнутые классы. Через T_0 обозначим класс булевых функций сохраняющих 0, т.е. функций, удовлетворяющих условию f(0,...,0)=0. Через T_1 обозначим класс булевых функций сохраняющих 1, т.е. функций, удовлетворяющих условию f(1,...,1)=1.

Заметим, что
$$\&, \lor, +, 0 \in T_0$$
; $\&, \lor, \sim, \supset, 1 \in T_1$; $\neg, \supset, \circ, |, 1 \notin T_0$; $\neg, +, \circ, |, 0 \notin T_1$.

Поскольку элементарные суперпозиции не выводят из T_0 , T_1 , то эти классы функций функционально замкнуты. Например, если $f_1(X_1,...,X_{k_1})$, $f_2(X_1,...,X_{k_2}) \in T_0$, то функция $f_1(X_1,...,X_{i-1},f_2(X_1,...,X_{k_2}),X_{i+1},...,X_{k_1}) \in T_0$, т.к. $f_1(0,...,0,f_2(0,...,0),0,...,0) = f_1(0,...,0) = 0 \ .$

Переименование переменной также, очевидно, не выводит из T_0 . Аналогичные рассужде-

Пусть $f(X_1,...,X_n)$ - булева функция. Функция $f^*(X_1,...,X_n)$ называется двойственной к $f(X_1,...,X_n)$, если $f^*(X_1,...,X_n) = \neg f(\bar{X}_1,...,\bar{X}_n)$. Очевидно, что

$$(X_1 \lor X_2)^* = X_1 \& X_2, (X_1 \& X_2)^* = X_1 \lor X_2, 0^* = 1, 1^* = 0.$$

Утверждение 7.1 (принцип двойственности). Пусть

$$F = f_1(X_1,...,X_{i-1},f_2(X_1,...,X_{k_2}),X_{i+1},...,X_{k_1})\,.$$

Тогда

ния применимы и к классу T_1 .

$$F^* = f_1^*(X_1,...,X_{i-1}, f_2^*(X_1,...,X_{k_2}), X_{i+1},...,X_{k_l}).$$

Доказательство. Возможны случаи: (a) $k_1 \ge k_2$; (б) $k_1 < k_2$. Рассмотрим первый случай; второй рассматривается аналогично. В случае (a)

$$\begin{split} F^* &= F^*(X_1, ..., X_{k_1}) = \neg F(\bar{X}_1, ..., \bar{X}_{k_1}) = \\ &= \neg f_1(\bar{X}_1, ..., \bar{X}_{i-1}, \neg \neg f_2(\bar{X}_1, ..., \bar{X}_{k_2}), \bar{X}_{i+1}, ..., \bar{X}_{k_1}) = \\ &= \neg f_1(\bar{X}_1, ..., \bar{X}_{i-1}, \neg f_2^*(X_1, ..., X_{k_2}), \bar{X}_{i+1}, ..., \bar{X}_{k_1}) = \\ &= f_1^*(X_1, ..., X_{i-1}, f_2^*(X_1, ..., X_{k_2}), X_{i+1}, ..., X_{k_1}) \end{split}$$

(в случае (б) $F^* = F^*(X_1, ..., X_{k_2})$).

Функция $f(X_1,...,X_n)$ называется *самодвойственной*, если $f(X_1,...,X_n) = f^*(X_1,...,X_n).$ Класс самодвойственных функций обозначается через S.

Класс S самодвойственных функций функционально замкнут. Это следует из утверждения 1, поскольку, если $f_1, f_2 \in S$, т.е. $f_1 = f_1^*, f_2 = f_2^*$, то $F^* = F$. Переименование переменной также, очевидно, не выводит из S.

Пример 7.1. Функции X, $\neg X$, X + Y + Z, XY + XZ + YZ - самодвойственные (на двойственных оценках принимают двойственные значения):

$$(X+Y+Z)^* = (X+1)+(Y+1)+(Z+1)+1 = X+Y+Z;$$

 $(XY+XZ+YZ)^* = (X+1)(Y+1)+(X+1)(Z+1)+(Y+1)(Z+1)+1 =$
 $= XY+X+Y+1+XZ+X+Z+1+YZ+Y+Z+1+1 = XY+XZ+YZ.$

Из определения самодвойственной функции следует, что она задается верхней (или наоборот, нижней) половинной частью таблицы своих значений (в случае перечисления оценок аналогично таблице 7.1 так что в верхней или нижней половине таблицы ни одна оценка не находится вместе с двойственной). Перечислим, например, самодвойственные функции f(X,Y) от двух переменных: X, Y. Пусть $f(1,1) = \alpha$, $f(1,0) = \beta$, где α , $\beta \in \{0, 1\}$. Тогда, если $f(X,Y) \in S$, т.е.

$$f(X,Y) = f^*(X,Y) = \neg f(\overline{X},\overline{Y}),$$

то $f(0,0) = \neg f(1,1) = \bar{\alpha}$, $f(0,1) = \neg f(1,0) = \bar{\beta}$. Всего возможны 4 различные комбинации для значений $\alpha,\beta\in\{0,1\}$:

1)
$$\alpha=1,\beta=1$$
. В этом случае $f(1,1)=\alpha=1$, $f(1,0)=\beta=1$, $f(0,1)=\overline{\beta}=0$, $f(0,0)=\overline{\alpha}=0$, т.е. $f(X,Y)=X$.

2)
$$\alpha=1,\beta=0$$
. В этом случае $f(1,1)=\alpha=1$, $f(1,0)=\beta=0$, $f(0,1)=\overline{\beta}=1$, $f(0,0)=\overline{\alpha}=0$, т.е. $f(X,Y)=Y$.

3)
$$\alpha=0,\beta=1$$
. В этом случае $f(1,1)=\alpha=0$, $f(1,0)=\beta=1$, $f(0,1)=\overline{\beta}=0$, $f(0,0)=\overline{\alpha}=1$, т.е. $f(X,Y)=\overline{Y}$.

4)
$$\alpha=0, \beta=0$$
. В этом случае $f(1,1)=\alpha=0$, $f(1,0)=\beta=0$, $f(0,1)=\overline{\beta}=1$, $f(0,0)=\overline{\alpha}=1$, т.е. $f(X,Y)=\overline{X}$.

Таким образом, самодвойственные функции от двух переменных фактически являются функциями от одной переменной, при этом $\&, \lor, +, \sim, \supset, \circ, \not \in S$. Поэтому менее тривиальные самодвойственные функции, фактически зависящие более чем от одной переменной, следует искать среди функций от трех и большего числа переменных.

Простой способ проверки некоторой булевой функции f на принадлежность S дает табличное представление этой функции. Тогда для доказательства непринадлежности

f классу S достаточно указать две двойственные оценки, на которых f принимает одинаковые значения. Воспользуемся в связи с этим табл. 7.1.

X	Y	X	\overline{X}	X & Y	$X \vee Y$	$X\supset Y$	$X \sim Y$	X + Y	$X \circ Y$	$X \mid Y$
1	1	1	0	1	1	1	1	0	0	0
1	0	1	0	0	1	0	0	1	1	0
0	1	0	1	0	1	1	0	1	1	0
0	0	0	1	0	0	1	1	0	1	1

Табл. 7.1

Из этой таблицы видим, что только функции от одной переменной: X, \overline{X} принадлежат классу S, а остальные не являются самодвойственными. Например, $f(X,Y) = X \& Y \notin S$, т.к. f(1,0) = f(0,1), т.е. нашлись двойственные оценки, на которых булева функция X & Y принимает одинаковые значения.

Функция $f(X_1,...,X_n)$ называется линейной, если $f(X_1,...,X_n)=a_0+a_1X_1+...+a_nX_n$, где $a_i\in\{0,\ 1\}$, i=0,...,n. Класс линейных функций обозначается через L.

Пример 7.2. Функции 0, 1, X, $\neg X$, X + Y, $X \sim Y$, X + Y + Z - линейные, &, \vee , \supset , \circ , $\not \in L$.

Класс L линейных функций функционально замкнут. Если

$$f_1 = a_0 + a_1 X_1 + \dots + a_{k_1} X_{k_1} \in L, f_2 = b_0 + b_1 X_1 + \dots + b_{k_2} X_{k_2} \in L,$$

TO

$$a_0 + a_1 X_1 + \dots + a_{i-1} X_{i-1} + a_i (b_0 + b_1 X_1 + \dots + b_k X_k) + a_{i+1} X_{i+1} + \dots + a_k X_k \in L$$

(см. свойства 1 - 6 булевых функций \cdot , + из темы Многочлены Жегалкина). Переименование переменной также, очевидно, не выводит из L.

Введем отношение частичного порядка на множестве оценок списка переменных $< X_1, ..., X_n >$. Это ранее введенное отношение Парето:

$$\alpha = <\alpha_1,...,\alpha_n > \le \beta = <\beta_1,...,\beta_n > \Leftrightarrow \alpha_i \le \beta_i, i=1,...,n \,.$$

Функция $f(X_1,...,X_n)$ называется монотонной, если

$$\forall \alpha, \beta \in \{0, 1\}^n \quad \alpha \le \beta \Rightarrow f(\alpha) \le f(\beta).$$

Класс монотонных функций обозначим через M.

Пример 7.3. Функции
$$0,1,X,\&,\lor\in M\;;\;\lnot,+,\sim,\supset,\circ,\not\in M$$
 .

Класс M монотонных функций функционально замкнут. Действительно, элементарные суперпозиции не выводят из M . В частности, если $f_1(X_1,...,X_{k_1})$, $f_2(X_1,...,X_{k_2}) \in M$, то $f_1(X_1,...,X_{i-1},f_2(X_1,...,X_{k_2}),X_{i+1},...,X_{k_1}) \in M$. Покажем это. Пусть, например, $k_1 \geq k_2$ (рассмотрение случая $k_1 < k_2$ аналогично). Если $\alpha = <\alpha_1,...,\alpha_{k_1}>$, $\beta = <\beta_1,...,\beta_{k_1}>$ и $\alpha \leq \beta$, то $f_2(\alpha_1,...,\alpha_{k_2}) \leq f_2(\beta_1,...,\beta_{k_2})$, а следовательно,

$$\begin{split} &<\alpha_{1},...,\alpha_{i-1},f_{2}(\alpha_{1},...,\alpha_{k_{2}}),\alpha_{i+1},...,\alpha_{k_{1}}> \leq <\beta_{1},...,\beta_{i-1},f_{2}(\beta_{1},...,\beta_{k_{2}}),\beta_{i+1},...,\beta_{k_{1}}> \Rightarrow \\ &\Rightarrow f_{1}(\alpha_{1},...,\alpha_{i-1},f_{2}(\alpha_{1},...,\alpha_{k_{2}}),\alpha_{i+1},...,\alpha_{k_{1}}) \leq f_{1}(\beta_{1},...,\beta_{i-1},f_{2}(\beta_{1},...,\beta_{k_{2}}),\beta_{i+1},...,\beta_{k_{1}}) \,. \end{split}$$

Переименование переменной также, очевидно, не выводит из M . Простой способ проверки некоторой булевой функции f на принадлежность M дает табличное представление этой функции. Тогда для доказательства непринадлежности f классу M достаточно указать две оценки α,β , для которых выполняется: $\alpha \le \beta$, $f(\alpha) > f(\beta)$. Воспользуемся в связи с этим табл. 7.1. Например, $f(X,Y) = X \supset Y \notin M$, т.к. $<0,0> \le <1,0>$, но f(0,0) = 1 > 0 = f(1,0).

Классы T_0 , T_1 , S, L, M неполные (например, булевы функции \circ ,| не принадлежат всем этим классам) и попарно различные. Для любых двух из перечисленных пяти классов можно привести пример булевой функции, принадлежащей первому из них, но не принадлежащий второму. Например, $0 \in T_0$, $0 \notin T_1$; $1 \in T_1$, $1 \notin T_0$; $\neg \in S$, $\neg \notin T_0$; $\lor \in T_0$, $\lor \notin S$; $\neg \in S$, $\neg \notin T_1$; $\neg \in L$, $\neg \notin T_1$; $\neg \in L$, $\neg \notin T_1$; $\neg \in L$, $\neg \notin T_2$.

Рассмотрение этих классов дает критерий для проверки полноты системы булевых функций.

Теорема Поста. Для того, чтобы система булевых функций $\{f_1,...,f_m\}$ была полной, необходимо и достаточно, чтобы для каждого из классов T_0 , T_1 , S, L, M нашлась функция из этой системы, не принадлежащая этому классу.

Необходимость. Если бы все функции системы $\{f_1,...,f_m\}$ принадлежали какомулибо из этих классов, то в силу функциональной замкнутости этих классов ему бы принадлежали и все суперпозиции функций этой системы. Но любой из этих классов отличен от множества всех булевых функций (в каждом из них отсутствуют, например, функции \circ ,). Следовательно, эта система не является полной.

Пример 7.4. Используя теорему Поста, покажем полноту системы $\{+, \lor, 1\}$. Составим следующую таблицу (*таблица Поста*). В случае принадлежности функции из этой системы некоторому классу из T_0 , T_1 , S, L, M ставим напротив него символ +, а в противном случае ставим символ -. В случае непринадлежности некоторой функции классам S, M указываем номера оценок списка переменных из табл. 7.1 (порядок нумерации сверху вниз) со значениями функции, подтверждающими эту непринадлежность. В случае непринадлежности некоторой функции классу L приводим многочлен Жегалкина, выражающий эту булеву функцию. Поскольку в каждом столбце табл. 7.2 присутствует хотя бы один символ -, то в силу теоремы Поста рассматриваемая система булевых функций полна.

f	T_0	T_1	S	L	M
+	+	_	_	+	_
			строки 1, 4		строки 1, 2
V	+	+	_	_	+
			строки 2, 3	$X \vee Y = XY + X + Y$	
1	_	+	_	+	+
			строки 1, 4		

Система булевых функций G называется *независимой*, если никакая функция $f \in G$ не является суперпозицией функций системы $G \setminus \{f\}$.

Независимая система булевых функций G называется базисом функционально замкнутого класса K, если

- 1) $G \subseteq K$;
- 2) всякая функция из K является суперпозицией функций из G.

Пример 7.5. Система булевых функций $\{+,\lor,1\}$ является независимой. Функцию 1 нельзя выразить через $+,\lor$. Это следует из столбца табл. 7.2, соответствующего классу T_0 . Действительно, если предположить, что функция 1 является суперпозицией функций $+,\lor$, то поскольку $+,\lor\in T_0$ (см. символы + в столбце для T_0), функция 1 также должна принадлежать классу T_0 , что противоречит символу - в столбце для T_0 напротив функции 1. Функцию + нельзя выразить через функции 1, \lor (см. столбец табл. 7.2, соответствующий классу T_1). Функцию \lor нельзя выразить через функции 1, \dotplus (см. столбец табл. 7.2, соответствующий классу L).

Упражнения для самоподготовки:

- 1) Доказать, что $\{\sim,0\}$ базис для L.
- 2) Доказать, что $\{\cdot, +\}$ базис для T_0 .
- 3) Доказать, что $\{\supset,\&\}$ базис для T_1 . Указание: 1) выразите через $\supset,\&$ булевы функции из T_1 от двух переменных X,Y, принимающих ровно на одной оценке (отличной от <1,1>) значение 0, а на остальных -1. Конъюнкцией таких функций является любая булева функция из T_1 , зависящая от X,Y. Например,

$$X \supset (X \supset Y) = 0 \Leftrightarrow X = 1, Y = 0, Y \supset (Y \supset X) = 0 \Leftrightarrow X = 0, Y = 1.$$

Постройте самостоятельно булеву функцию, принимающую значение 0 только на оценке <0,0>. Выразите с помощью этих булевых функций и операции & булеву функцию $X\sim Y$. 2) Действуйте по аналогии для булевых функций от трех переменных: X,Y,Z (постройте, булеву функцию, принимающую значение 0 только на оценке <0,0,1>, или только на оценке <1,1,0>, или только на оценке <0,0,0>, а затем — на произвольном наборе оценок, отличных от <1,1,1>). 3) Действуйте по аналогии для булевых функций с произвольным списком переменных $<X_1,...,X_n>$. Постройте, например, булеву функцию, принимающую значение 0 только на оценке <0,0,1,1,1>. 4) Опишите теперь общий алгоритм для произвольной функции $f(X_1,...,X_n)\in T_1$.