OFFICE OF NAVAL RESEARCH
Contract NO0014-76-C-0817
A
Task No. Nr 359-623

TECHNICAL REPORT NO. 20

PERMEATION OF ELECTROACTIVE SOLUTES THROUGH ULTRATHIN POLYMERIC FILMS ON ELECTRODE SURFACES

by

T. Ikeda, R. Schmehl, P. Denisevich, K. Willman and R. W. Murray

Kenan Laboratories of Chemistry

University of North Carolina

Chapel Hill, North Carolina 27514

Prepared for Publication

in the

Journal of the American Chemical Society

Kenan Laboratories of Chemistry
University of North Carolina
Chapel Hill, North Carolina 27514

December 18, 1981

Reproduction in whole or in part is permitted for any purpose of the United States Government

This document has been approved for public release and sale; its distribution is unlimited

REPORT DUCUMENTATION PAGE REPORT NUMBER TWENTY AD-ALOGU TITLE (and Subtitle) PERMEATION OF ELECTROACTIVE SOLUTES THROUGH ULTRATHIN POLYMERIC FILMS ON ELECTRODE SURFACES AUTHOR() T. Ikeda, R. Schmehl, P. Denisevich, K. Willman and Royce W. Murray PERFORMING ORGANIZATION NAME AND ADDRESS Department of Chemistry BEFORE COMPLETING FORM 3. RECIPIENT'S CATALOG NUMBER Technical Report 6. PERFORMING ORG. REPORT HUMBER (1) 6. CONTRACT OR GRANT NUMBER(9) 10. PROGRAM ELEMENT, PROJECT, TASS AREA & WORK UNIT NUMBERS	ecuality classification of this page		DEAD DESCRIPTIONS
THENTY TITLE (and dubitie) ERREATION OF ELECTROACTIVE SOLUTES THROUGH ULTRATHIN OLYMERIC FILMS ON ELECTRODE SURFACES AUTHOR() AUTHO		* * * * * * * * *	
TITLE (and Submite) ERMEATION OF ELECTROACTIVE SOLUTES THROUGH ULTRATHIN OLYMERIC FILMS ON ELECTRODE SURFACES Technical Report Experiment of Films on Electrode Surfaces AUTHORY) I. Keda, R. Schmehl, P. Denisevich, K. Willman and know Murray Performing organization name and address lepartment of Chemistry Inversity of North Carolina Chapel Hill, North Carolina Chapel Hill, North Carolina Chapel Hill, North Carolina Conventum of Films and Address Pepartment of the Navy Penington, Virginia 22217 HONITORING AGENCY HAME & ADDRESS(II dillerent New Controlling Office) Investing the Convention of the Navy APPLICATION STATEMENT (of the shricest enforced in Ricch 20, II dillerent New Paper) Approved for Public Release, Distribution Unlimited DISTRIBUTION STATEMENT (of the shricest enforced in Ricch 20, II dillerent New Paper) Supplements of permeation, electrode, polymer film, ruthenium, electrode of the product of a pertition of a series of electroactive solutes, bromidg, ferroce acquinone, diquat, [Ru(bpy), Cl2], [Fe(bpy), (N)], land [Ru(bpy), (py)Cl15) have be assured through ultrathin, electrochemically polymerized films like poly-[Ru(vbpy)] ADSTRIBUTION of the Continue on reverse and in the continue of the permeation of a series of electroactive solutes, bromidg, ferroce and addition of the permeation of a series of electroactive solutes, bromidg, ferroce assured through ultrathin, electrochemically polymerized films like poly-[Ru(vbpy)] The product of a pertition coefficient and a diffusion coefficient in the street of the product of a pertition coefficient and a diffusion coefficient in the street of the permeation of the permeation of the permeation of the product of a pertition coefficient and a diffusion coefficient in the street of the permeation of the permeatio		A	
Technical Report Thousand Technical Report N00014-76-C-0817 Thousand Technical Report N00014-76-C-0817 Thousand Thousand Technical Report N00014-76-C-0817 Thousand Thousand Technical Report Thousand Thousand Technical Report Thousand Technical Report Thousand Technical Report Thousand Technical Report Thousand Thousand Technical Report N00014-76-C-0817 Thousand Technical Report Thousand Technical Repo		4D-A1094	
OLYMERIC FILMS ON ELECTRODE SURFACES AUTHOR() . Ikeda, R. Schmehl, P. Denisevich, K. Willman and Royce W. Murray PERFORMING ORGANIZATION HAME AND ADDRESS PEPATRENEOUT OF North Carolina 27514 CONTROLLING OFFICE HAME AND ADDRESS OFFICE OF HAME AND ADDRESS Department of the Navy Philogony, Virginia 22217 HONITORING AGENCY HAME A ADDRESS(If dillerent from Controlling Dilles) DEPARTMENT ON STATEMENT (of the abstract union of the Rich 20, If dillerent from Report) Approved for Public Release, Distribution Unlimited DISTRIBUTION STATEMENT (of the abstract union of the Rich 20, If dillerent from Report) The rates of permeation, electrode, polymer film, ruthenium, electropolymerization ABSTRACT (Continue on reverse side if necessary and identify by block number) The rates of permeation of a series of electroactive solutes, bromids, ferroce acquinone, diquat, Ru(bpy); (2), [Fe(by)); ((N),), and [Ru(bpy); (py) (1)]; have be assured through ultrathin, electrochemically polymerized films like poly-[Ru(vbpy) of the product of a pertition coefficient and a diffusion coefficient in the 5, pol, the product of a pertition coefficient and a diffusion coefficient in the 5, pol, the product of a pertition coefficient and a diffusion coefficient in the 5, pol, the product of a pertition coefficient and a diffusion coefficient in the 5, pol, the product of a pertition coefficient and a diffusion coefficient in the 5, pol, the product of a pertition coefficient and a diffusion coefficient in the 5, pol, the product of a pertition coefficient and a diffusion coefficient in the 5, pol, really insarily and the molecular size discrimation tes vary linearly with film thickness; this and the molecular size discrimation tes vary linearly with film thickness; this and the molecular size discrimation tes vary linearly with film the film the film the size and the molecular size discrimation tes vary linearly and the product of a pertition tes vary linearly and the product of a pertition tes vary linearly and the product of a pertitio	TITLE (and Subsisse) DEDMEATISM OF FLECTROACTIVE C	OLUTES TUDOUSU III TRATUIN	
AUTHOR() I Keda, R. Schmehl, P. Denisevich, K. Willman and know W. Murray PERFORMING ORGANIZATION NAME AND ADDRESS PEPATEMENT OF Chemistry Inversity of North Carolina 27514 CONVENUING OFFICE NAME AND ADDRESS Department of the Navy APJINGTON, Virginia 22217 HONITORING AGENCY HAME & ADDRESS(Hillsrent from Controlling Office) DISTRIBUTION STATEMENT (of this Report) Approved for Public Release, Distribution Unlimited DISTRIBUTION STATEMENT (of this abstract entered in Block 20, If different from Report) Supplementary NOTES KEY WORDS (Continue on reverse side if necessary and Identity by block number) Inembrane, diffusion, permeation, electrode, polymer film, ruthenium, electropolymerization ABSTRIAL (Continue on reverse side if necessary and Identity by block number) The rates of permeation of a series of electroactive solutes, bromida, ferrocen cogninone, diquat, Ru(bpy)/(2), [Fe(by)/(0N)/), and [Ru(bpy)/(py)/(1R)/) and [Ru(bpy)/(py)/(1R)/), and [Ru(bpy)/(py)/(1R)/) have be assured through ultrathin, electrochemically polymerized, films like poly-[Ru(vbpy) film are coated on Pt disk electrodes. The permeation coefficient in the film sare coated on Pt disk electrodes. The permeatilities, expresses of film, runary with film thickness; this and the molecular size discrimination The ratery of the product of a pertition coefficient and a diffusion coefficient in the stary linearly with film thickness; this and the molecular size discrimination			Technical Report
AUTHOR: Nove W. Murray Nountain and loyee W. Are work unit the work work of the second of the log of the lo	OFFICKIO FIENS ON ELECTRODE	SORI AGES	6. PERFORMING ORG. DEPORT HINDER
NOUNTAINEDUTION SYNTEMENT (of the abstract entered in Block 20, If different from Report) Supplementation, permeation, electrode, polymer film, ruthenium, electropolymerization Supplementation, permeation, electrode, polymer film, ruthenium, electropolymerization ABSTRICT (Continue on reverse side if necessary and identity by block number) The rates of permeation of a series of electropactive solutes, bromide, ferroce nounced through ultrathin, electrochemically polymerized films like poly-[Ru(vbpy)]. The films are coated on Pt disk electrodes. The permeation of a series of electropactive solutes, bromide, ferroce nounced through ultrathin, electrochemically polymerized films like poly-[Ru(vbpy), CD)]. The permeation of a pertition coefficient and a diffusion coefficient in the film, reper page from very fast (bromide, > 4 x 10 ⁻⁷ cm//sec.). The permeation the servery linearly with film thickness; this and the molecular size discrimination tes vary linearly with film thickness; this and the molecular size discrimination tes vary linearly with film thickness; this and the molecular size discrimination tes vary linearly with film thickness; this and the molecular size discrimination tes vary linearly with film thickness; this and the molecular size discrimination tes vary linearly with film thickness; this and the molecular size discrimination tes vary linearly with film thickness; this and the molecular size discrimination			
ROYCE W. Murray PERFORMING ORGANIZATION NAME AND ADDRESS lepartment of Chemistry Inversity of North Carolina Chapel Hill, North Carolina Controlling Office of Naval Research Department of the Navy Anington, Virginia 22217 HONITORING AGENCY HAME & ADDRESS(If dillsrent from Controlling Office) DISTRIBUTION STATEMENT (of this Report) Approved for Public Release, Distribution Unlimited DISTRIBUTION STATEMENT (of this obstreet entered in Block 20, If dillsrent from Report) NET WORDS (Continue on reverse side if necessary and identify by block number) NET WORDS (Continue on reverse side if necessary and identify by block number) NET WORDS (Continue on reverse side if necessary and identify by block number) NET WORDS (Continue on reverse side if necessary and identify by block number) NET WORDS (Continue on reverse side if necessary and identify by block number) NET WORDS (Continue on reverse side if necessary and identify by block number) NET WORDS (Continue on reverse side if necessary and identify by block number) NET WORDS (Continue on reverse side if necessary and identify by block number) NET WORDS (Continue on reverse side if necessary and identify by block number) NET WORDS (Continue on reverse side if necessary and identify by block number) NET WORDS (Continue on reverse side if necessary and identify by block number) NET WORDS (Continue on reverse side if necessary and identify by block number) NET WORDS (Continue on reverse side if necessary and identify by block number) NET WORDS (Continue on reverse side if necessary and identify by block number) NET WORDS (Continue on reverse side if necessary and identify by block number) NET WORDS (Continue on reverse side if necessary and identify by block number) NET WORDS (Continue on reverse side if necessary and identify by block number) NET WORDS (Continue on reverse side if necessary and identify by block number) NET WORDS (Continue on reverse side if necessary and identify by block number) NET WORDS (Continue on reverse side if necessar	AUTHOR()		S. CONTRACT OR GRANT NUMBER(s)
PERFORMING ORGANIZATION NAME AND ADDRESS lepartment of Chemistry Iniversity of North Carolina 27514 CONTROLLING OFFICE NAME AND ADDRESS OFFICE OF Naval Research Department of the Navy Anlington, Virginia 22217 MONITORING AGENCY NAME & ADDRESS(II dilisems from Controlling Office) DISTRIBUTION STATEMENT (of the ebstreet entered in Block 20, II dilisems from Report) Supplementary NOTES KEY WORDS (Continue on reverse side II necessary and identify by block number) The rates of permeation of a series of electrogactive solutes, bromide, ferroce na country of the rates of permeation of a series of electrogactive solutes, bromide, ferroce na country of the rates of permeation of a series of electrogactive solutes, bromide, ferroce na country of the rates of permeation of a series of electrogactive solutes, bromide, ferroce na country of the rates of permeation of a series of electrogactive solutes, bromide, ferroce na country of the rates of permeation of a series of electrodes. The permeation is not a survey and thought polymerized films like poly-[Ru(ubpy) - The films are coated on Pt disk electrodes. The permeation it is product of a partition coefficient and a diffusion coefficient in the film, reaer from very fast (bromide, > 4 x 10.7 cm²/sec.). The permeation tes vary linearly with film thickness; this and the molecular size discrimination tes vary linearly with film thickness; this and the molecular size discrimination tes vary linearly with film thickness; this and the molecular size discrimination tes and the solution of the section of the section of the section of the molecular size discrimination test vary linearly with film thickness; this and the molecular size discrimination test.		sevich, K. Willman and	W00014 75 0 0017
Papertment of Chemistry AREA & WORK UNIT NUMBERS Inversity of North Carolina 27514	Royce W. Murray		NUUU14-76-C-U817
Papertment of Chemistry AREA & WORK UNIT NUMBERS Inversity of North Carolina 27514	DEDEADUNG ORGANIZATION NAME AND	ADDRESS	10 PROCESM ELEMENT PROJECT TAKE
CONTROLLING OFFICE NAME AND ADDRESS OFFICE OF Naval Research Department of the Navy Anlington, Virginia 22217 MONITORING AGENCY NAME & ADDRESS(II dillisent from Controlling Dilles) DISTRIBUTION STATEMENT (of this Report) Approved for Public Release, Distribution Unlimited DISTRIBUTION STATEMENT (of this obstrest entered in Block 20, II dillerent from Report) SUPPLEMENTARY HOTES KEY WORDS (Continue on reverse side II necessary and identity by block number) membrane, diffusion, permeation, electrode, polymer film, ruthenium, electropolymerization ABSTRIBUTION STATEMENT (of the obstrest entered in Block 20, II dillerent from Report) The rates on permeation of a series of electrogactive solutes, bromida, ferrocenzoquinone, diquat, [Ru(bpy), Cl2], [Fe(bpy), (CN), and [Ru(bpy), (py)Cl] [S) have be assured through ultrathin, electrochemically polymerized films like poly-[Ru(vbpy), "The films are coated on Pt disk electrodes. The permeation coefficient in the product of a partition coefficient and a diffusion coefficient in the riman from very fast (bromide, > 4 x 10 ⁻⁷ cm²/sec.). The permeation tes vary linearly with film thickness; this and the molecular size discrimination tes vary linearly with film thickness; this and the molecular size discrimination	Department of Chemistry	ADORESS	AREA & WORK UNIT NUMBERS
CONTROLLING OFFICE NAME AND ADDRESS OFFICE OF Naval Research Department of the Navy Anlington, Virginia 22217 RONITORING AGENCY HAME & ADDRESS(If dillarent from Controlling Office) DISTRIBUTION STATEMENT (of this Report) Approved for Fublic Release, Distribution Unlimited DISTRIBUTION STATEMENT (of this obstreat entered in Block 20, If dillerent from Report) EMPPLEMENTARY NOTES KEY WORDS (Continue on reverse side if mescasary and identify by block number) membrane, diffusion, permeation, electrode, polymer film, ruthenium, electropolymerization ADSTRIBUTION STATEMENT (of this obstreat entered in Block 20, If dillerent from Report) The rates of permeation of a series of electrogactive solutes, bromidg, ferroce nizoquinone, diquat, [Ru(bpy),Cl2], [Fe(bpy),(CN),], and [Ru(bpy),(py),Cl], have be assured through ultrathin, electrochemically polymerized films like poly-[Ru(vbpy), The films are coated on Pt disk electrodes. The permeation coefficient in the film, ready linearly with film thickness; this and the molecular size discrimination tes vary linearly with film thickness; this and the molecular size discrimination	University of North Carolina		
December 18, 1981 December 18, 18 December 18 December 18, 18 December 18 D	Chapel Hill, North Carolina	27514	
DEPTRACT (Continue on reverse side if necessary and identity by black number) The rates of permeation of a series of electrogactive solutes, bromidg, ferrocenzoquinone, diquat, [Ru(bpy)/2Cl2], [Fe(bpy)/2(CN)/2), and [Ru(bpy)/2)(py)/2(l2), [Fe(bpy)/2(CN)/2), and [Ru(bpy)/2)(py)/2(l2), [Fe(bpy)/2(CN)/2), and [Ru(bpy)/2)(py)/2(l2), [Fe(bpy)/2(CN)/2), and [Ru(bpy)/2)(py)/2(l2), [Ru(bpy)/2)(l2), [R		RESS	
EXPLICATE (Continue on reverse side if necessary and identify by block number) The rates of permeation of a series of electroactive solutes, bromids, ferrocenzoquinone, diquat, [Ru(bpy)/CI2], [Fe(bpy)/(CN)/], and [Ru(bpy)/(py)(I)] have be sured through ultrathin, electrochemically polymerized films like poly-(Ru(vbpy)/CI2), fe(bpy)/(CN)/], and [Ru(bpy)/(py)(I)] have be sured through ultrathin, electrochemically polymerized films like poly-(Ru(vbpy)/CN)/). The films are coated on Pt disk electrodes. The permeation tes vary linearly with film thickness; this and the molecular size discrimination tes vary linearly with film thickness; this and the molecular size discrimination tes vary linearly with film thickness; this and the molecular size discrimination	<u>.</u>		
DISTRIBUTION STATEMENT (of the obstread entered in Block 20, If different from Report) Supplementary Notes Extra of permeation, electrode, polymer film, ruthenium, electropolymerization Apprilact (Continue on reverse side if necessary and identity by block number) The rates of permeation of a series of electroactive solutes, bromida, ferrocenzoquinone, diquat, [Ru(bpy)/cl2], [Fe(bpy)/cl2], and [Ru(bpy)/cl2] have be assured through ultrathin, electrodemically polymerized films like poly-[Ru(vbpy)/cl2]. The films are coated on Pt disk electrodes. The permeatilities, expressed as s,pol film, range from very fast (bromide, > 4 x 10-7 cm²/sec.). The permeation tes vary linearly with film thickness; this and the molecular size discrimination tes vary linearly with film thickness; this and the molecular size discrimination tes vary linearly with film thickness; this and the molecular size discrimination			
Unclassified IS. DECLASSIFICATION/DOWNGRADING DISTRIBUTION STATEMENT (of this Report) Approved for Public Release, Distribution Unlimited DISTRIBUTION STATEMENT (of this obstroat entered in Block 20, If different from Report) SUPPLEMENTARY NOTES KEY WORDS (Continue on reverse side If necessary and Identify by Block number) membrane, diffusion, permeation, electrode, polymer film, ruthenium, electropolymerization Applicate (Continue on reverse side If necessary and Identify by block number) The rates of permeation of a series of electroactive solutes, bromide, ferroce nacoquinone, diquat, [Ru(bpy)2Cl2], [Fe(bpy)2(CN)2], and [Ru(bpy)2(py)Cl1½ have be assured through ultrathin, electrochemically polymerized films like poly-[Ru(vbpy)2]. The films are coated on Pt disk electrodes. The permeation coefficient in the film, range from very fast (bromide, > 4 x 10-7 cm²/sec.). The permeation tes vary linearly with film thickness; this and the molecular size discrimination	<u> </u>	5(II dilizrent from Controlling Office)	
DISTRIBUTION STATEMENT (of the Report) Approved for Public Release, Distribution Unlimited DISTRIBUTION STATEMENT (of the obstreet entered in Block 20, If different from Report) SUPPLEMENTARY NOTES KEY WORDS (Continue on reverse side if necessary and identify by block number) membrane, diffusion, permeation, electrode, polymer film, ruthenium, electropolymerization DISTRIBUTION STATEMENT (of the obstreet entered in Block 20, If different from Report) The rates of permeation of a series of electroactive solutes, bromida, ferroce racquinone, diquat, [Ru(bpy); Cl2], [Fe(bpy); CN], and [Ru(bpy); (py)Cl]; have be assured through ultrathin, electrochemically polymerized films like poly-[Ru(vbpy); The films are coated on Pt disk electrodes. The permeabilities, expressed as s,pol; the product of a partition coefficient and a diffusion coefficient in the film, range from very fast (bromide, > 4 x 10-7 cm²/sec.). The permeation tes vary linearly with film thickness; this and the molecular size discrimination			
DISTRIBUTION STATEMENT (of the obstreet entered in Elock 20, If different from Report) DISTRIBUTION STATEMENT (of the obstreet entered in Elock 20, If different from Report) SUPPLEMENTARY NOTES KEY WORDS (Continue on reverse aids if necessary and identify by block number) membrane, diffusion, permeation, electrode, polymer film, ruthenium, electropolymerization The rates of permeation of a series of electropactive solutes, bromids, ferroce in acquainone, diquat, [Ru(bpy)2(Cl)2], [Fe(bpy)2(CN)2], and [Ru(bpy)2(py)Cl]2 have be assured through ultrathin, electrochemically polymerized films like poly-[Ru(vbpy)2]]. The films are coated on Pt disk electrodes. The permeabilities, expressed as S,pol; the product of a partition coefficient and a diffusion coefficient in the film, range from very fast (bromide, > 4 x 10-7 cm²/sec.). The permeation tes vary linearly with film thickness; this and the molecular size discrimination			
DISTRIBUTION STATEMENT (of the obstreet entered in Elock 20, If different from Report) DISTRIBUTION STATEMENT (of the obstreet entered in Elock 20, If different from Report) SUPPLEMENTARY NOTES KEY WORDS (Continue on reverse aids if necessary and identify by block number) membrane, diffusion, permeation, electrode, polymer film, ruthenium, electropolymerization The rates of permeation of a series of electropactive solutes, bromids, ferroce in acquainone, diquat, [Ru(bpy)2(Cl)2], [Fe(bpy)2(CN)2], and [Ru(bpy)2(py)Cl]2 have be assured through ultrathin, electrochemically polymerized films like poly-[Ru(vbpy)2]]. The films are coated on Pt disk electrodes. The permeabilities, expressed as S,pol; the product of a partition coefficient and a diffusion coefficient in the film, range from very fast (bromide, > 4 x 10-7 cm²/sec.). The permeation tes vary linearly with film thickness; this and the molecular size discrimination			15. DECLASSIFICATION/DOWNGRADING
DISTRIBUTION STATEMENT (of the obstreet entered in Block 20, if different from Report) SUPPLEMENTARY NOTES KEY WORDS (Continue on reverse side if necessary and identify by block number) membrane, diffusion, permeation, electrode, polymer film, ruthenium, electropolymerization ABSTRACT (Continue on reverse side if necessary and identify by block number) The rates of permeation of a series of electropactive solutes, bromids, ferroce necoquinone, diquat, [Ru(bpy);Cl2], [Fe(bpy);(CN);], and [Ru(bpy);Clpy);CN; have becaused through ultrathin, electrochemically polymerized films like poly-[Ru(vbpy);CN; The films are coated on Pt disk electrodes. The permeatilities, expressed as s,pol; the product of a partition coefficient and a diffusion coefficient in the film, range from very fast (bromide, > 4 x 10 ⁻⁷ ·cm²/sec.). The permeation tes vary linearly with film thickness; this and the molecular size discrimination			
REY WORDS (Continue on reverse side if necessary and identify by block number) membrane, diffusion, permeation, electrode, polymer film, ruthenium, electropolymerization Abstract (Continue on reverse side if necessary and identify by block number) The rates of permeation of a series of electroactive solutes, bromide, ferrocentaguinone, diquat, [Ru(bpy)2Cl2], [Fe(bpy)2(CN)2], and [Ru(bpy)2(py)Cl]2 have been sured through ultrathin, electrochemically polymerized films like poly-[Ru(vbpy)2]. The films are coated on Pt disk electrodes. The permeabilities, expressed as s, the product of a partition coefficient and a diffusion coefficient in the film, range from very fast (bromide, > 4 x 10 ⁻⁷ ·cm²/sec.). The permeation tes vary linearly with film thickness; this and the molecular size discrimination	DISTRIBUTION STATEMENT (of the obter	oet ontered in Block 30, II dillerent Iroz	n Report)
REY WORDS (Continue on reverse side if necessary and identify by block number) membrane, diffusion, permeation, electrode, polymer film, ruthenium, electropolymerization Abstract (Continue on reverse side if necessary and identify by block number) The rates of permeation of a series of electroactive solutes, bromide, ferrocentaguinone, diquat, [Ru(bpy)2Cl2], [Fe(bpy)2(CN)2], and [Ru(bpy)2(py)Cl]2 have been sured through ultrathin, electrochemically polymerized films like poly-[Ru(vbpy)2]. The films are coated on Pt disk electrodes. The permeabilities, expressed as s, the product of a partition coefficient and a diffusion coefficient in the film, range from very fast (bromide, > 4 x 10 ⁻⁷ ·cm²/sec.). The permeation tes vary linearly with film thickness; this and the molecular size discrimination		· · · · · · · · · · · · · · · · · · ·	
nembrane, diffusion, permeation, electrode, polymer film, ruthenium, electropolymerization The rates of permeation of a series of electroactive solutes, bromida, ferrocenzoquinone, diquat, [Ru(bpy)2Cl2], [Fe(bpy)2(CN)2], and [Ru(bpy)2(py)Cl]2 have be assured through ultrathin, electrochemically polymerized films like poly-[Ru(vbpy)2Cl2], The films are coated on Pt disk electrodes. The permeabilities, expressed as spol, the product of a partition coefficient and a diffusion coefficient in the film, range from very fast (bromide, > 4 x 10 ⁻⁷ ·cm²/sec.). The permeation tes vary linearly with film thickness; this and the molecular size discrimination	SUPPLEMENTARY NOTES		
nembrane, diffusion, permeation, electrode, polymer film, ruthenium, electropolymerization The rates of permeation of a series of electroactive solutes, bromida, ferrocenzoquinone, diquat, [Ru(bpy)2Cl2], [Fe(bpy)2(CN)2], and [Ru(bpy)2(py)Cl]2 have be assured through ultrathin, electrochemically polymerized films like poly-[Ru(vbpy)2Cl2], The films are coated on Pt disk electrodes. The permeabilities, expressed as spol, the product of a partition coefficient and a diffusion coefficient in the film, range from very fast (bromide, > 4 x 10 ⁻⁷ ·cm²/sec.). The permeation tes vary linearly with film thickness; this and the molecular size discrimination	ı		
nembrane, diffusion, permeation, electrode, polymer film, ruthenium, electropolymerization The rates of permeation of a series of electroactive solutes, bromida, ferrocenzoquinone, diquat, [Ru(bpy)2Cl2], [Fe(bpy)2(CN)2], and [Ru(bpy)2(py)Cl]2 have be assured through ultrathin, electrochemically polymerized films like poly-[Ru(vbpy)2Cl2], The films are coated on Pt disk electrodes. The permeabilities, expressed as spol, the product of a partition coefficient and a diffusion coefficient in the film, range from very fast (bromide, > 4 x 10 ⁻⁷ ·cm²/sec.). The permeation tes vary linearly with film thickness; this and the molecular size discrimination	<u> </u>		
Interpolymerization **PSTRACT (Continue on previous side to necessary and identity by block number) The rates of permeation of a series of electroactive solutes, bromide, ferrocents of a series of electroactive solutes, bromide, ferrocents of the series of the permeation of a series of electroactive solutes, bromide, ferrocents of the series of the permeation of the series of the permeation of the permeation coefficient in the series of the product of a partition coefficient and a diffusion coefficient in the film, range from very fast (bromide, > 4 x 10 ⁻⁷ ·cm²/sec.). The permeation tes vary linearly with film thickness; this and the molecular size discrimination			
The rates of permeation of a series of electroactive solutes, bromide, ferrocenzoquinone, diquat, [Ru(bpy)2Cl2], [Fe(bpy)2(CN)2], and [Ru(bpy)2(py)Cl]2 have becaused through ultrathin, electrochemically polymerized films like poly-[Ru(vbpy)2]. The films are coated on Pt disk electrodes. The permeabilities, expressed as the product of a partition coefficient and a diffusion coefficient in the film, range from very fast (bromide, > 4 x 10 ⁻⁷ ·cm²/sec.). The permeation tes vary linearly with film thickness; this and the molecular size discrimination			,
The rates of permeation of a series of electroactive solutes, bromide, ferrocenzoquinone, diquat, [Ru(bpy)2Cl2], [Fe(bpy)2(CN)2], and [Ru(bpy)2(py)Cl]2 have be assured through ultrathin, electrochemically polymerized films like poly-[Ru(vbpy)2]. The films are coated on Pt disk electrodes. The permeabilities, expressed as the product of a partition coefficient and a diffusion coefficient in the film, range from very fast (bromide, > 4 x 10 ⁻⁷ ·cm²/sec.). The permeation tes vary linearly with film thickness; this and the molecular size discrimination	membrane, diffusion, permeati	on, electrode, polymer f	ilm, ruthenium,
The rates of permeation of a series of electroactive solutes, bromide, ferrocenzoquinone, diquat, [Ru(bpy)2Cl2], [Fe(bpy)2(CN)2], and [Ru(bpy)2(py)Cl]2 have be assured through ultrathin, electrochemically polymerized films like poly-[Ru(vbpy)2]. The films are coated on Pt disk electrodes. The permeabilities, expressed as solven, the product of a partition coefficient and a diffusion coefficient in the film, range from very fast (bromide, > 4 x 10 ⁻⁷ ·cm²/sec.). The permeation tes vary linearly with film thickness; this and the molecular size discrimination	electropolymerization		
The rates of permeation of a series of electroactive solutes, bromide, ferrocenzoquinone, diquat, [Ru(bpy)2Cl2], [Fe(bpy)2(CN)2], and [Ru(bpy)2(py)Cl]2 have be assured through ultrathin, electrochemically polymerized films like poly-[Ru(vbpy)2]. The films are coated on Pt disk electrodes. The permeabilities, expressed as solven, the product of a partition coefficient and a diffusion coefficient in the film, range from very fast (bromide, > 4 x 10 ⁻⁷ ·cm²/sec.). The permeation tes vary linearly with film thickness; this and the molecular size discrimination		•	1'
The rates of permeation of a series of electroactive solutes, bromide, ferrocenzoquinone, diquat, [Ru(bpy)2Cl2], [Fe(bpy)2(CN)2], and [Ru(bpy)2(py)Cl]2 have be assured through ultrathin, electrochemically polymerized films like poly-[Ru(vbpy)2]. The films are coated on Pt disk electrodes. The permeabilities, expressed as solven, the product of a partition coefficient and a diffusion coefficient in the film, range from very fast (bromide, > 4 x 10 ⁻⁷ ·cm²/sec.). The permeation tes vary linearly with film thickness; this and the molecular size discrimination	$\mathcal{N} \int d\mathbf{r} d\mathbf{r} d\mathbf{r}$		
nzoquinone, diquat, [Ru(bpy)][Cl2], [Fe(bpy)][(CN)]], and [Ru(bpy)][(py)Cl]][] have becaused through ultrathin, electrochemically polymerized films like poly-[Ru(vbpy)] [Ru(vbpy)] [Ru(vbp			
	nzoquinone, diquat, [Ru(bpy)] asured through ultrathin, ele to The films are coated on F S,pol, the product of a parti	[Cl2], [Fe(bpy)](CN)], a ectrochemically polymerized the disk electrodes. The ition coefficient and a difast (bromide, > 4 x 10 ⁻⁷	ind [Ru(bpy) ₂ (py)Cl]thave been been been been been been been be
le out transport through larger-than-molecular-dimensional channels and pinholes	tes vary linearly with film	thickness; this and the m	molecular size discrimination
· · · · · · · · · · · · · · · · · · ·			

DD 1 JAN 73 1473 EUITION OF 1 NOV 65 IS OUSOLETE

SECURITY CLASSIFICATION OF THIS PAGE (Son Field Entered)

|BLCCK #20, ABSTRACT, continued:

the film. The film permeability process is described as membrane diffusion. Relatively pinhole-free films are preparable as thin as 20 - 40 Å.

and that

	No. Copies		No. Copies
Office of Naval Research		U.S. Army Research Office	
Attn: Code 472		Attn: CRD-AA-IP	
800 North Quincy Street		P.O. Box 1211	
Arlington, Virginia 22217	2	Research Triangle Park, N.C. 27709	1
ONR Western Regional Office		Naval Ocean Systems Center	
Attn: Dr. R. J. Marcus		Attn: Mr. Joe McCartney	
1030 East Green Street		San Diego, California 92152	1
Pasadena, California 91106	1		
		Naval Weapons Center	
ONR Eastern Regional Office		Attn: Dr. A. B. Amster,	
Attn: Dr. L. H. Peebles		Chemistry Division	
Building 114, Section D		China Lake, California 93555	1
666 Summer Street		•	
Boston, Massachusetts 02210	1	Naval Civil Engineering Laboratory	
		Attn: Dr. R. W. Drisko	
Director, Naval Research Laboratory		Port Hueneme, California 93401	1
Attn: Code 6100			
Washington, D.C. 20390	1	Department of Physics & Chemistry	
Mrs. Asselvanta Company	•	Naval Postgraduate School	1
The Assistant Secretary of the Navy (RE&S)		Monterey, California 93940	1
Department of the Navy		Scientific Advisor	
Room 4E736, Pentagon		Commandant of the Marine Corps	
Washington, D.C. 20350	1	(Code RD-1)	
-		Washington, D.C. 20380	1
Commander, Naval Air Systems Command			
Attn: Code 310C (H. Rosenwasser)	•	Naval Ship Research and Development	
Department of the Navy		Center	
Washington, D.C. 20360	1	Attn: Dr. G. Bosmajian, Applied	
		Chemistry Division	
Defense Technical Information Center		Annapolis, Maryland 21401	1
Building 5, Cameron Station			
Alexandria, Virginia 22314	12	Naval Ocean Systems Center	
•		Attn: Dr. S. Yamamoto, Marine	
Dr. Fred Saalfeld		Sciences Division	
Chemistry Division, Code 6100		San Diego, California 91232	1
Naval Research Laboratory			
Washington, D.C. 20375	1	Mr. John Boyle	
		Materials Branch	
		Naval Ship Engineering Center	
		Philadelphia, Pennsylvania 19112	1

472:GAN:716:ddc 78u472-608

		No. Copies		No. Copies
	Dr. Paul Delahay		Dr. P. J. Hendra	
	Department of Chamistry		Department of Chemistry	
/	New York University		University of Southhampton	
	New York, New York 10003	1	Southhampton SO9 5NH	
			United Kingdom	1
	Dr. E. Yeager			
	Department of Chemistry		Dr. Sam Perone	
	Case Western Reserve University		Department of Chemistry	
	Cleveland, Ohio 4,106	1	. Purdue University	_
	no n w notes		West Lafayette, Indiana 47907	1
	Dr. D. N. Bennion			
•	Department of Chemical Engineering		Dr. Royce W. Murray	
	Brigham Young University	,	Department of Chemistry	
	Provo, Utah 84602	1	University of North Carolina	•
	Dr. R. A. Marcus		Chapel Hill, North Carolina 27514	1
			News 1 October Contract	
	Department of Chemistry		Naval Ocean Systems Center	
	California Institute of Technology Pasadena, California 91125	1	Attn: Technical Library	,
	resedent, California 71125	•	San Diego, California 92152	1
	Dr. J. J. Auborn		Dr. C. E. Mueller	
_	Bell Laboratories		The Electrochemistry Branch	
	Murray Hill, New Jersey 07974	1	Materials Division, Research	
			& Technology Department	
	Dr. Adam Heller		Naval Surface Weapons Center	
	Bell Laboratories		White Oak Laboratory	
	Murray Hill, New Jersey 07974	1	Silver Spring, Maryland 20910	1
			•	
	Dr. T. Katan		Dr. G. Goodman	
	Lockheed Missiles & Space	Ę	Globe-Union Incorporated	
•	Co, Inc.		5757 North Green Bay Avenue	
	P.O. Box 504	_	Milwaukee, Wisconsin 53201	1
	Sunnyvale, California 94088	1		
			Dr. J. Boechler	
	Dr. Joseph Singer, Code 302-1		Electrochimica Corporation	
	NASA-Levis		Attention: Technical Library	
	21000 Brookpark Road		2485 Charleston Road	ē
	Cleveland, Ohio 44135	1	Mountain View, California 94040	1
	Dr. B. Brummer		Dr. P. P. Schmidt	
	EIC Incorporated		✓ Department of Chemistry	
	55 Chapel Street		Oakland University	
	Newton, Massachusetts 02158	i	Rochester, Michigan 48063	1
		•		-
	Library		Dr. H. Richtol	
	P. R. Mallory and Company, Inc.		Chemistry Department	
	Northwest Industrial Park		Rensselaer Polytechnic Institute	
	Burlington, Massachusetts 01803	1	Troy, New York 12181	1

	No. Copies		No. Copies
Dr. A. B. Ellis		Dr. R. P. Van Duyne	
Chemistry Department		Department of Chemistry	
University of Wisconsin		Northwestern University	
Madison, Wisconsin 53706	1	Evanston, Illinois 60201	1
Dr. M. Wrighton		Dr. B. Stanley Pons	
Chemistry Department		Department of Chemistry	
Massachusetts Institute	V	University of Alberta	
of Technology	_	Edmonton, Alberta	_
Cambridge, Massachusetts 02139	1	CANADA T6G 2G2	1
Larry E. Plew		Dr. Michael J. Weaver	
Naval Weapons Support Center		Department of Chemistry	
Code 30736, Building 2906		Michigan State University	_
Crane, Indiana 47522	1	East Lansing, Michigan 48824	1
S. Ruby		Dr. R. David Rauh	
DOE (STOR)	4.	EIC Corporation	
600 E Street	*	55 Chapel Street	
Washington, D.C. 20545	1	Newton, Massachusetts 02158	1
Dr. Aaron Wold		Dr. J. David Margerum	
Brown University		Research Laboratories Division	
Department of Chemistry	·	 Hughes Aircraft Company 	
Providence, Rhode Island 02192	1	3011 Malibu Canyon Road	
		Malibu, California 90265	1
Dr. R. C. Chudacek			
McGraw-Edison Company		Dr. Martin Fleischmann	
Edison Battery Division		Department of Chemistry	
Post Office Box 28	;	University of Southempton	_
Bloomfield, New Jersey 07003	1	Southempton 509 5NH England	1
Dr. A. J. Bard		Dr. Janet Osteryoung	
University of Texas		Department of Chemistry	
Department of Chemistry		State University of New	
Austin, Texas 78712	1	York at Buffalo	_
		Buffalo, New York 14214	1
Dr. M. M. Nicholson			
Electronics Research Center		Dr. R. A. Osteryoung	
Rockwell International		Department of Chemistry	
3370 Miraloma Avenue		State University of New	
Anaheim, California	1	York at Buffalo	•
		Buffalo, New York 14214	1
Dr. Donald W. Ernst			
Naval Surface Weapons Center		Mr. James R. Moden	
Code R-33	•	Naval Underwater Systems	
White Oak Laboratory	_	Center	
Silver Spring, Maryland 20910	1	Code 3632	•
		Newport, Rhode Island 02840	I

	No. Copies		No. Copies
Dr. R. Nowak		Dr. Bernard Spielvogel	
Naval Research Laboratory	,	U.S. Army Research Office	
Code 6130		P.O. Box 12211	
Washington, D.C. 20375	1	Research Triangle Park, NC 27709	1
Dr. John F. Houlihan		Dr. Denton Elliott	
Shenango Valley Campus		Air Force Office of	
Pennsylvania State University	• (Scientific Research	
Sharon, Pennsylvania 16146	1 '	Bolling AFB	•
De D. B. Chedown		Washington, DC 20332	1
Dr. D. F. Shriver		De Dond & Adlanta	
Department of Chemistry		Dr. David Aikens	
Northwastern University	1	Chemistry Department	
Evanston, Illinois 60201	L	Rensselaer Polytechnic Institute Troy, NY 12181	1,
Dr. D. H. Whitmore			•
Department of Materials Science		Dr. A. P. B. Lever	
Northwestern University		Chemistry Department	
Evanston, Illinois 60201	1	York University	
•		Downsview, Ontario M3J1P3	1
Dr. Alan Bewick		Canada	
Department of Chemistry		•	
The University		Mr. Maurice F. Murphy	
Southampton, SO9 5NH England	1	Naval Sea Systems Command 63R32	
Dr. A. Himy		2221 Jefferson Davis Highway	
NAVSEA-5433		Arlington, VA 20360	1
NC #4			
2541 Jefferson Davis Highway		Dr. Stanislaw Szpak	
Arlington, Virginia 20362	1	Naval Ocean Systems Center Code 6343	
Dr. John Kincaid		San Diego, CA 95152	1
Department of the Navy			
Stategic Systems Project Office		Dr. Gregory Farrington	
Room 901		Department of Materials Science &	
Washington, DC 20376	1	Engineering	
		University of Pennsylvania	
M. L. Robertson		Philadelphia, PA 19104	1
Manager, Electrochemical			
Power Sonices Division		Dr. Bruce Dunn	
Naval Weapons Support Center		Department of Engineering &	
Crane, Indiana 47522	1	Applied Science	
		University of California	_
Dr. Elton Cairns		Los Angeles, CA 90024	1
Energy & Environment Division			
Lawrence Berkeley Laboratory			
University of California	•		
Berkeley, California 94720	1		

	No. Copies
Dr. Micha Tomkiewicz	
Department of Physics	
Brooklyn College	
Brooklyn, NY 11210	1
Dr. Lesser Blum	
Department of Physics	
University of Puerto Rico	
Rio Piedras, PR 00931	1
Dr. Joseph Gordon II	
IBM Corporation	
K33/281	
5600 Cottle Road	
San Jose, CA 95193	1
Dr. Robert Somoano	
Jet Propulsion Laboratory	
California Institute of Technology	
Pasadena, CA 91103	1

PERMEATION OF ELECTROACTIVE SOLUTES THROUGH ULTRATHIN POLYMERIC FILMS ON ELECTRODE SURFACES

T. Ikeda, R. Schmehl, P. Denisevich, K. Willman and R. W. Murray*

Kenan Laboratories of Chemistry

University of North Carolina

Chapel Hill, North Carolina 27514

ABSTRACT

The rates of permeation of a series of electroactive solutes, bromide, ferrocene, benzoquinone, diquat, $[Ru(bpy)_2Cl_2]$, $[Fe(bpy)_2(CN)_2]$, and $[Ru(bpy)_2(py)Cl]^+$ have been measured through ultrathin, electrochemically polymerized films like poly- $[Ru(vbpy)_3]^{2+}$. The films are coated on Pt disk electrodes. The permeabilities, expressed as $PD_{S,pol}$, the product of a partition coefficient and a diffusion coefficient in the film, range from very fast (bromide, $> 4 \times 10^{-7} \text{ cm}^2/\text{sec.}$) to measurable and sensitive to solute size and charge $(2 - 58 \times 10^{-9} \text{ cm}^2/\text{sec.})$ to immeasurably slow ($[Ru(bpy)_2(py)Cl]^+$, $< 7 \times 10^{-12} \text{ cm}^2/\text{sec.}$). The permeation rates vary linearly with film thickness; this and the molecular size discrimination rule out transport through larger-than-molecular-dimensional channels and pinholes in the film. The film permeability process is described as membrane diffusion. Relatively pinhole-free films are preparable as thin as 20 - 40 Å.

PERMEATION OF ELECTROACTIVE SOLUTES THROUGH ULTRATHIN POLYMERIC FILMS ON ELECTRODE SURFACES

T. Ikeda*1, R. Schmehl, P. Denisevich, K. Willman and R. W. Murray*

Kenan Laboratories of Chemistry

University of North Carolina

Chapel Hill, North Carolina 27514

This paper describes electrochemical reactions of acetonitrile solutions of electroactive species at electrodes covered with very thin films (ca. 20 to 450 Å) of redox polymers. Specifically, rates of permeation of electroactive solutes through redox polymer films to the electrode have been measured as a function of film polymeric structure and of solute size and charge. The polymer coated Pt electrodes are prepared by polymerization-inducing reductions of the electroactive monomers $^{1-5}$

Department of Agricultural Chemistry, Kyoto University, Kyoto, Japan

in acetonitrile and are abbreviated Pt/poly- $[Ru(\underline{vbpy})_3]^{2+}$, Pt/poly- $[Ru(\underline{bpy})_2(\underline{p-cinn})_2]^{2+}$, and Pt/poly- VDQ^{2+} , where \underline{bpy} is 2,2'-bipyridine and $\underline{p-cinn}$ is N-(4-pyridyl)cinnamide.

The electroactive solutes are p-benzoquinone, ferrocene, diquat (DQ²⁺; N,N'-ethylene-2,2'-bipyridine), [Ru(bpy)₂Cl₂], [Fe(bpy)₂(CN)₂], [Ru(bpy)₃]²⁺, and [Ru(bpy)₂(py)Cl]⁺. Permeabilities of all solutes except [Ru(bpy)₃]²⁺ were evaluated for the Pt/poly-[Ru(vbpy)₃]²⁺ films, while for Pt/poly-[Ru(bpy)₂)p-cinn)₂]²⁺, ferrocene and [Ru(bpy)₂Cl₂] solutions were studied, and for Pt/poly-VDQ²⁺, solutions of ferrocene, [Ru(bpy)₂Cl₂], and [Ru(bpy)₃]²⁺. The solute permeabilities at film coated rotated disk electrodes were determined from the variations of their limiting currents with electrode rotation rate ω and film thickness.

Thorough understanding of solute transport through thin films is important in describing the catalytic or inhibitory behavior of such films. Solute permeation is relevant to processes in ultrathin films, phases, and membranes such as phospholipid bilayer membranes⁶, biological cell walls⁷, supported oriented-monolayer films⁶, drug encapsulation polymers⁸, immobilized enzyme systems⁹, zeolite particles^{10,11}, surfactant micellar¹² and vesicle^{13,14} structures, and corrosion-inhibiting films on metals, electronic microcircuits, and semiconductor electrodes. The actual transport constants are in most cases, however, unmeasured, one difficulty being that of preparing ultrathin films in suitable physical forms and another being that of distinguishing transport as a solute "dissolved" in the film (which we shall term membrane diffusion) from transport through film imperfections (pinhole and channel diffusion).

Transport of solutes through redox polymer coated electrodes is important in their applications to electrocatalysis $^{15-39}$ and photoelectrochemistry $^{40-43}$ and in relation to the transport of electrochemical charge through such polymers which occurs via electron self-exchange

reactions of the redox sites ^{22,39,41,44-52}. Film permeability is of particular interest with respect to the evolving theory ^{32-39,44} of mediated electrocatalysis. Again, the transport data available ^{17,19,21} to address these problems quantitatively are very limited, and there has been no study of the variation of permeability with either solute or film structure.

Our experiences with electrochemically prepared redox polymer films as used in bilayer film electrodes 1,2 suggest that these films are often free of imperfections even when the film contains only 5-10 layers of redox monomer sites. It is furthermore possible to systematically vary the thickness \underline{d} of these films as measured in mol./cm 2 , Γ_{T} , of ruthenium (III/II) and VDQ $^{2+/1+}$ redox sites. Γ_{T} is determined from voltammetry of the film in monomer free solution. The films thus represent an opportunity to address the difficult issue 17 of film imperfections and to systematically examine structural effects on ultrathin film transport.

EXPERIMENTAL

Electrochemical Polymerization of Redox Polymer Films on Electrodes. Synthesis of the electroactive monomers $[Ru(vbpy)_3]^{2+}$, $[Ru(bpy)_2-(p-cinn)_2]^{2+}$, and VDQ^{2+} , details of their reductions to form polymer films on electrodes, electrochemical properties of the films and the kinetics of their electron transfer mediation reactions with several electroactive solutes are described elsewhere $^{3-5,33,53}$. Briefly, to prepare a film, the potential applied to a Teflon-shrouded Pt disk electrode is swept repeatedly between 0 V vs. SSCE and the second of the one-electron monomer reduction waves in 0.1, 0.5, and 1 mM thor-

oughly-degassed acetonitrile solutions of the three monomers, respectively. The thickness of the polymer films built up in this manner increases linearly with the number of repetitive potential sweeps³, as assessed by the increasing peak currents for the two reduction waves of still-electroactive, polymerized monomer, and more quantitatively by the charge under slow potential scan cyclic voltammetric waves for the Ru^{III/II} and VDQ^{2+/1+} couple waves in monomer free acetonitrile solution. Permeability results include data for electrodes prepared as a group and bearing a series of film thicknesses, as well as data from individual electrodes prepared over a period of several months. Following film deposition, electrodes were thoroughly rinsed with acetonitrile and carefully stored in air in a closed vial. To minimize the incidence of film imperfections caused by handling, films were ordinarily not employed for more than one or two sets of permeability measurements with an electroactive solute.

The Pt/poly- $[Ru(\underline{vbpy})^{2+}/PVFer$ bilayer electrode was prepared as described elsewhere^{1,2}, by evaporation of a droplet of polyvinylferrocene in toluene solution on the surface of a Pt/poly- $[Ru(\underline{vbpy})_3]^{2+}$ electrode.

Procedure for Permeability Measurement. Permeability measurements were based on the limiting currents of voltammograms of the electrochemical oxidations or reductions of the electroactive solutes at polymer film coated Pt disk electrodes rotated in Pine Instrument Co. Mpdel PIR and NSY assemblies varying electrode rotation rate over $400-10^4$ rpm ($\omega^{1/2}=20-100$ rpm $^{1/2}$). Voltammograms for the ruthenium polymer films were extended to include the electron transfer mediated wave for the solute which occurs near the Ru^{III/II} potential (vide infra). The acetonitrile

solutions were 0.1 \underline{M} in Et_4NC10_4 supporting electrolyte, and usually < 0.5 \underline{mM} in electroactive solute. The low solute concentration was chosen to avoid alterations in film swelling, and in the electron transfer mediated wave, to avoid charge transport rate limitations in the polymer films 53 .

Electrochemical Equipment and Chemicals. [Ru(bpy)₂Cl₂] and [Fe(bpy)₂-(CN)₂] were synthesized by literature procedures^{54,55}; ferrocene (Aldrich) was used as received, and p-benzoquinone (J. T. Baker) after sublimation. Electrochemical equipment and cells were conventional. All potentials are referenced against a NaCl-saturated SCE, designated SSCE.

RESULTS AND DISCUSSION

Membrane Diffusion Theory for Rotated Disk Electrode. The limiting current i_{ϱ} for electrochemical reaction of a solute which partitions into (with coefficient P) and diffuses to a rotated disk electrode through a membrane barrier with diffusion constant $D_{S,pol}$ (different from that in the solution D_{S}) is described by the equation 56

$$\frac{1}{i_{\ell}} = \frac{1}{nFAD_{S,pol}PC_{S}/d} + \frac{1}{0.62nFAD_{S}^{2/3} \nu^{-1/6} \omega^{1/2} C_{S}}$$
 (1)

where <u>d</u> is membrane thickness and ω is in rad./sec. The two terms on the right hand side of equation 1 represent respectively the rates of solute diffusion through the membrane and through the Levich depletion layer in solution. If $D_S^{2/3} \nu^{-1/6} \omega^{1/2} \ll PD_{S,pol}/d$ (e.g., very thin film or large $PD_{S,pol}$), the diffusion shrough the Levich layer is the slower of the two and a ("Levich")

plot of $i_{\ell} = \frac{v_{s}}{\omega^{1/2}}$ is linear with zero intercept. If diffusion through the membrane is slower, the Levich plot is not linear, but a plot of $i_{\ell} = \frac{v_{s}}{\omega^{1/2}}$ (an "inverse Levich plot"), is and $PD_{s,pol}/d$ can be evaluated from its intercept.

Important features of an inverse Levich plot are: (i) its slope should yield the same D_S as observed at a naked rotated Pt disk electrode, independent of C_S or d , (ii) the intercept should be inversely proportional to C_S , and (iii) the intercept should be proportional to d (and accordingly Γ_T for the redox polymer films). The latter, vital criterion has not been satisfactorily examined for membrane coated rotated disks.

We should note that membrane diffusion is only one of four conceivable modes of reaction of an electroactive solute at a polymer film coated electrode. The other three are 17 : (a) electronic conductivity of the film leading to electrolysis of the solute at the film/solution interface, (b) oxidation or reduction of the solute by electron transfer mediation by redox sites in the polymer film, and (c) diffusion of the electroactive solute through the solvent in film imperfections (channels and pinholes with dimensions much larger than that of the solute or of monomer sites in the film). Experimental results ruling out these three alternative processes will be identified as we come to them. $\frac{\text{Poly-[Ru(vbpy)_3]}^{2+}}{\text{Poly-[Ru(vbpy)_3]}^{2+}} \text{ and poly-[Ru(bpy)_2(p-cinn)_2]}^{2+} \text{ films.} \quad \text{Electro-reductive polymerization of vinyl monomers like [Ru(vbpy)_3]}^{2+} \text{ in aceto-nitrile produces}^{3} \text{ an adherent, intractably insoluble polymeric film of the complex on the electrode surface which undergoes electron transfer reactions at potentials similar to those of the monomer, Figure 1, Curve$

A. The polymerization is rationalized by the thesis 1,3 that the metal complex reductions are ligand localized, and that radical ions of such activated olefins are prone to coupling and polymer-forming reactions. In an investigation into the generality of this chemistry we have established 4 that one and (more rapidly) two electron reductions of the monomer $[Ru(\underline{bpy})_2(\underline{p-cine})_2]^{2+}$ also produce stable, adherent redox polymer films which are electroactive as shown in Figure 1, Curve B.

Spectroelectrochemical experiments show² that the electrochemical charge under a slow potential scan poly- $[Ru(vbpy)_3]^{3+/2+}$ cyclic voltammogram, Figure 1, Curve A, measures all of the film's redox sites, Γ_{T} , mol./cm². Over the range $\Gamma_{\rm T} = 10^{-10}$ to 10^{-8} mol./cm², the poly- $[Ru(vbpy)_3]^{2+}$ and poly- $[Ru(bpy)_2(p-cinn)_2]^{2+}$ voltammetric waveshapes remain constant, which implies 53 that activity parameter G and correspondingly the density of the charge redox sites do not vary substantially over this range. Accordingly, we assume here that the physical thicknesses of the poly- $[Ru(\underline{vbpy})_3]^{2+}$ and poly- $[Ru(\underline{bpy})_2(\underline{p-cinn})_2]^{2+}$ films are proportional to Γ_T . Densities of bulk samples of poly- $[Ru(vbpy)_3]^{2+}$ and poly- $[Ru(\underline{bpy})_2(\underline{p-cinn})_2]^{2+}$ are 1.35 and 1.4 g/cm³, which correspond to concentrations of ruthenium redox sites in the polymer of $C_{R_{11}} = 1.5$ \times 10⁻³ and C_{Ru}' = 1.2 x 10⁻³ mol./cm³, respectively. Film thicknesses estimated by d = Γ_T/C_{Ru} and d = Γ_T/C_{Ru} ' assume that the ultrathin polymer films swell to the same extent in acetonitrile and the solvents used for the density (flotation) measurement. To avoid this assumption in comparison of equation 1 to film thickness, the membrane permeability results will be expressed as

$$\Gamma_{\mathsf{T}}(\mathsf{PD}_{\mathsf{S},\mathsf{pol}}/\mathsf{d}) = \mathsf{PD}_{\mathsf{S},\mathsf{pol}}\mathsf{C}_{\mathsf{Ru}} \tag{2}$$

which contains no assumptions about film density.

From substantial differences in polymer film forming rates with the degree of vinyl substitution of otherwise similar complexes (e.g., $[Ru(\underline{vbpy})_3]^{2+}$ vs. $[Ru(\underline{bpy})_2(\underline{vbpy})]^{2+}$) which seem best interpreted in steric terms, and from other data, we believe that coupling reactions of sterically bulky vinyl-bipyridine radical anion sites are often terminated at the dimer stage. The poly- $[Ru(\underline{vbpy})_3]^{2+}$ polymer thereby contains not only chain polymer segments but also elements of a three-dimensional matrix of metal complexes joined by bridging- $(\underline{bpy})(CH_2)_4$ - (\underline{bpy}) - ligands. Analogously, poly- $[Ru(\underline{bpy})_2(\underline{p-cinn})_2]^{2+}$ would contain bridging structures like

where the vinyl coupling reaction is depicted as "tail-to-tail" as expected from studies of hydrodimerization of radical anions of activated olefins 57 . Because of the longer spacing between the perimeters of the bipyridine ligands in equation 3, and because $poly-[Ru(\underline{bpy})_2(\underline{p-cinn})_2]^{2+}$ should be less highly three-dimensionally cross-linked, we anticipated that the $poly-[Ru(\underline{bpy})_2(\underline{p-cinn})_2]^{2+}$ polymer film would be more permeable to electroactive solutes, which was borne out by the experimental results, below.

Three classes of solute behavior were observed at these films: very fast, very slow, and measureable permeation. These and their eq. l characteristics are outlined in Table I.

Fast Permeation Through poly- $[Ru(vbpy)_3]^{2+}$ Film. A voltammogram in tetraalkylammonium bromide—at a rotated Pt/poly- $[Ru(vbpy)_3]^{2+}$ electrode is shown in Figure 2, Curve B. The rising part of the bromide + bromine wave has an electrochemically irreversible shape; its gently sloping wave plateau has superimposed upon it the film electrode poly- $[Ru(vbpy)_3]^{3+/2+}$

cyclic voltammogram which is shown in Curve A at the same electrode rotation rate in bromide-free solution. Limiting currents for the bromide/bromine reaction measured at +0.95 volt. vs. SSCE follow the Levich equation (Figure 2 inset, proportional to $\omega^{1/2}$, i.e., the right-hand term of eq. 1 is dominant). Further, the shape of a bromide oxidation voltammogram at * naked rotated Pt disk 58a is identical to Figure 2, Curve B, at all potentials more negative than +0.95 volt, and its limiting currents (at +0.95 volt) fall exactly on those in the Figure 2 inset.

These results demonstrate that bromide permeation through poly- $[Ru(\underline{vbpy})_3]^{2+}$ to react at the Pt surface is too fast to measure at our accessible electrode rotation rates, for the film thicknesses employed, up to 3.6 x 10^{-9} mol./cm² or ca. 210 Å. Assuming that a 10% deviation from the Levich plot (Figure 2 inset) could have been detected at the highest electrode rotation rate, we estimate that $PD_{S,pol}/d \ge 0.17$, or $PD_{S,pol}C_{Ru} \ge 6.0 \times 10^{-10}$ for bromide permeation. Rotated electrodes coated with much thicker films of $poly-[Ru(\underline{vbpy})_3]^{2+}$ would be necessary to further define the bromide permeability. The high bromide permeability is relevant to understanding charge transport rates through $poly-[Ru(\underline{vbpy})_3]^{2+}$ films as further discussed below.

Very Slow Permeation Through poly- $[Ru(vbpy)_3]^{2+}$ Film. At naked Pt, an acetonitrile solution of $Ru(bpy)_2(py)Cl^+$ gives a reversible (slope 60 mV.) voltammetric wave, Figure 3. Curve A, with well-defined limiting currents which obey the Levich equation (inset, -x-). At Pt/poly- $[Ru(vbpy)_3]^{2+}$, this complex gives a similarly formed voltammogram with superimposed poly- $[Ru(vbpy)_3]^{3+/2+}$ electrode film reaction as shown in Figure 3. Curve B. However, in contrast to the bromide reaction, the

naked and coated electrode reactions occur at different potentials; the rising part of Figure 3, Curve B, is shifted by +140 mV relative to the naked electrode result (Curve A). The foot of the voltammogram at the polymer coated electrode at potentials where currents on the naked electrode are quite large, shows no hint of an attenuated facsimile of the naked electrode voltammogram (see enlargement, Figure 3).

These results can be interpreted in terms of very slow permeation of $[Ru(\underline{bpy})_2(\underline{py})Cl]^+$ into the poly-Ru(vbpy) $_3^{2+}$ film so that the complex is not oxidized in significant quantity at the Pt/film interface, but is instead oxidized indirectly by Ru $_3^{3+}$ sites near or at the film/solution interface:

$$[Ru(\underline{bpy})_{2}(\underline{py})C1]^{+} + Pt/poly-[Ru(\underline{vbpy})_{3}]^{3+} \longrightarrow [Ru(\underline{bpy})_{2}(\underline{py})C1]^{2+}$$

$$+ Pt/poly-[Ru(\underline{vbpy})_{3}]^{2+} \qquad (4)$$

Reaction 4 has a large driving force ($\Delta E^{\circ} = 375 \text{ mV.}$) and by comparison to mediation of the oxidation of other ruthenium complexes (e.g., $[Ru(\underline{bpy})_3]^{2+}$) with smaller ΔE° but large electron twansfer cross-reaction rates³³, can be expected to be quite fast. Limiting currents for Curve B accordingly obey the Levich equation, see Figure 3 inset -o-, showing that mass transfer of $[Ru(\underline{bpy})_2(\underline{py})C1]^+$ limits the current, not the rate of Reaction 4. Additionally, $E_{1/2}$ for Curve B is considerably more negative than E°_{surf} for poly- $[Ru(\underline{vbpy})_3]^{3+/2+}$, another manifestation of fast electron transfer as discussed in another paper⁵³.

Assuming that a voltammetric wave 1% of Curve A, Figure 3, could have been detected at the foot of Curve B (but was not), we estimate that $PD_{S,pol}/d \le 2.0 \times 10^{-4}$ or $PD_{S,pol}C_{Ru} \le 1.6 \times 10^{-13}$ for $[Ru(\underline{bpy})_2(\underline{py})-C1]^{+}$. The same results were obtained in four experiments, where the

concentration of $[Ru(bpy)_2(py)C1]^+$ was varied from 0.1 - 0.2 mM and the film coverages were 7.2, 7.8, 11.0, and 25.0 x 10^{-10} mol./cm² for a film thickness range of <u>ca.</u> 42 - 147 Å.

Measurable Permeation Rates Through poly-[Ru(vbpy)]2+. Ferrocene is oxidized in two waves at a rotated Pt/poly[Ru_(vbpy)3]2+ disk electrode (Figure 4, Curves A-D). The first wave ($E^{o_1} = +0.38 \text{ volt } \underline{vs}$. SSCE) lies at the same potential as the naked electrode reaction (Curve E) and has limiting currents (measured at 0.6 volt) which are not proportional to $\omega^{1/2}$ (inset, -x-), but which clearly fit the membrane diffusion equation 1 by giving a linear $1/i_{\varrho}$ vs. $\omega^{-1/2}$ plot (Figure 5, Curve A). Similar results were obtained in five additional experiments on electrodes with different poly- $[Ru(vbpy)_3]^{2+}$ film thicknesses Γ_T and at different ferrocene concentrations \mathbf{C}_{ς} , as illustrated by the linear reciprocal Levich plots of Figure 5, Curves B and C. These data further confirm the membrane diffusion model. First, slopes of the $1/i_0$ vs. $\omega^{-1/2}$ plot are inversely proportional to C_S (compare Figure 5, Curves A \underline{vs} . B) and independent of Γ_{T} (e.g., film thickness, compare Curves B and C). This evidence is summarized in Table II by the constancy of D_c , the diffusion coefficient for ferrocene in acetonitrile as calculated from eq. 1, and by agreement of this value with $\mathbf{D}_{\mathbf{S}}$ observed at a rotated naked Pt electrode (2.3 \times 10^{-5} cm²/sec.) and literature values 59 . Secondly, the intercepts (Table II) of the inverse Levich plots are, within the data error limits, inversely proportional to both Γ_{T} and C_{S} , the former over nearly a ten-fold range, as shown by constancy of the intercept-derived product $PD_{S,pol}C_{Ru}$ in Table II. Thirdly, as expected from eq. 1, at sufficiently large film thicknesses (the examples with $\Gamma_T = 2.5 \times 10^{-9}$ and 6.8×10^{-9} mol./cm²),

transport through the polymer film is so slow that the limiting current for the (first) ferrocene oxidation wave becomes essentially independent of the electrode rotation rate.

The second ferrocene oxidation wave in Figure 4, Curves A-D at $E \sim +0.85$ V is due to the rapid poly- $[Ru(\underline{vbpy})_3]^{3+}$ electron transfer mediated reaction

Fer + Pt/poly- $[Ru(\underline{vbpy})_3]^{3+}$ + Fer + Pt/poly- $[Ru(\underline{vbpy})_3]^{2+}$ (5) which occurs on the leading edge of the poly- $[Ru(\underline{vbpy})_3]^{3+/2+}$ wave (dashed curves) in the same manner as Rxn. 4 for $[Ru(\underline{bpy})_2(py)C1]^+$ discussed above. The appearance of the second wave supports interpretation of the first wave as representing membrane diffusion as opposed to electron transfer mediation. Reaction 5 is very fast, so that diffusion of ferrocene in the solution limits the current; the limiting current measured at 1.1 volt follows the Levich equation as shown by Figure 4, $(-\infty)$. This particular experimental situation appears not to have been previously

described.

Analogous experiments were conducted for the solutes p-penzoquinone, diquat $^{2+}$, $[Ru(\underline{bpy})_2Cl_2]$, and $[Fe(\underline{bpy})_2(CN)_2]$. The slow membrane diffusion and small limiting currents for direct oxidation of the latter two complexes diffusing through the polymer film to the Pt/film interface are illustrated by Figure 6, Curve B for $[Ru(\underline{bpy})_2Cl_2]$. Curve A of Figure 6 corresponds to the $[Ru(\underline{bpy})_2Cl_2]^{+1/0}$ reaction at naked Pt (limiting currents follow the Levich relationship, Figure 6 insert -x-). Even with very thin poly- $[Ru(\underline{vbpy})_3]^{2+}$, $\Gamma_7 = 7.8 \times 10^{-10}$ mol./cm², or ca. 46 Å, the currents from Curve B are nearly independent of ω (Figure inset $-\infty$)

and give $1/i_{\ell} \ vs. \ \omega^{-1/2}$ plots according to eq. 1. Results at different C_S (constant D_S from slope) and Γ_T (constant $PD_{S,pel}C_{Ru}$ from the intercept), Table II, again support adherence to the membrane diffusion theory, eq. 1. The voltammograms and numerical data for $[Fe(bpy)_2(CN)_2]$ are similar. The data scatter in $PD_{S,pol}C_{Ru}$ is larger than that for ferrocene owing to the small slopes of the reciprocal Levich plots and to the small measured limiting currents, but general adherence to the membrane relation is obvious.

Like ferrocene, a second (rapid electron transfer mediated) wave is observed for $[Ru(\underline{bpy})_2Cl_2]$ and $[Fe(\underline{bpy})_2(CN)_2]$, the overall limiting current (-o-) of which is, like that at naked Pt (-x-), proportional to $\omega^{1/2}$ (Figure 6 inset) and controlled by diffusion of the complex in the solution.

p-benzoquinone and diquat reductions occur in two one-electron waves on naked Pt; the first wave for each is sufficiently positive of the poly- $[Ru(\underline{vbpy})_3]^{2+/1+}$ reaction that electron transfer mediation of the reduction isn't expected. The permeation wave for diquat²⁺ occurs (Figure 7, Curve B) at the same potential as diquat²⁺ reduction on naked Pt (Curve A), and gives linear reciprocal Levich plots (Figure 7 inset). D_S and $PD_{S,pol}^{C}C_{Ru}$ results for diquat²⁺, and for benzoquinone, are given in Table II.

Average $PD_{S,pol}^{C}Ru$ values in Table II display interesting and systematic variations which are discussed later.

Measurable Permeation Rates Through poly- $[Ru(bpy)_2(p-cinn)_2]^{2+}$. Vo. -ummetry of $[Ru(bpy)_2C_{2}]$ and of ferrocene solutions at rotated poly- $[Ru-(bpy)_2(p-cinn)_2]^{2+}$ disk electrodes is very similar to that in Figures 4-6, and $1/i_0 = 1/\omega^{1/2}$ plots are linear with intercepts inversely propor-

tional to $\Gamma_{\rm T}$. Results for $[{\rm Ru}({\rm \underline{bpy}})_2{\rm Cl}_2]$ and ferrocene permeation into poly- $[Ru(\underline{bpy})_2(\underline{p-cinn})_2]^{2+}$, where C_{Ru}^i is the concentration of redox sites (Table III), are both about six times larger than PDS, pol CRu for $[Ru(\underline{bpy})_2Cl_2]$ and ferrocene in poly- $[Ru(\underline{vbpy})_3]^{2+}$ (Table II). The striking permeability differences between the two solutes in each film and between the two films are illustrated in Figure 8. Expressed as $PD_{S,pol}^{C}$, the poly- $[Ru(\underline{bpy})_2(\underline{p-cinn})_2]^{2+}$ film is more permeable. Permeation Rates Through poly-Vinyldiquat2+. In electrochemical polymerization of the vinyldiquat monomer (VDQ^{2+}), the film thickness as with the ruthenium complex polymers, is controlled by the period of reduction, monomer concentration, and mass transfer mode, and is measured in terms of the coverage of electroactive diquat sites, $\Gamma_{\rm T}$ mol./cm 2 , from the charge under slow potential sweep cyclic voltammograms of the film's $poly-VDQ^{2+/+}$ reaction. The Pt/poly-VDQ²⁺ film, formed from a sterically smaller, monovinyl species, is expected to be a linear chain, polycationic polymer⁵.

Ferrocene is oxidized at a rotated Pt/poly-VDQ²⁺ disk electrode (Figure 9, Curve B) at the same potential as on naked Pt (Curve A), but with much smaller limiting current. Limiting currents (measured at +0.6 V) give linear reciprocal Levich plots the intercepts of which lead to constant PD_{S,pol}C_{VDQ} values (Table IV) over a three-fold range of Γ_T . Permeation of [Ru(bpy)₂Cl₂] and of [Ru(bpy)₃]²⁺ through the same $\Gamma_T = 1.3 \times 10^{-9} \text{ mol/cm}^2 \text{ Pt/poly-VDQ}^{2+}$ electrode employed in the ferrocene experiments gave very small, nearly rotation rate-independent limiting currents for oxidation of the complexes; their PD_{S,pol}C_{VDQ} values are lower than those for ferrocene (Table IV).

Permeabilities for ferrocene through the thinnest poly-VDQ²⁺ films are difficult to reproduce. For instance, a film specimen with coverage

 $\Gamma_{\rm T}\sim 2\times 10^{-10}~{\rm mol./cm^2}$ gave a much larger permeability than that in Table IV, presumably because of a high incidence of pirholes at this extreme thinness. Since a poly-VDQ²⁺ film with $\Gamma_{\rm T}=4.4\times 10^{-10}~{\rm mol./cm^2}$ corresponds (assuming unit film density or $C_{\rm VDQ}=2.4~{\rm M}$) to an average ca. 19 Å thickness, it is understandable that it is technically difficult to avoid pinholes. That the still very thin $\Gamma_{\rm T}=4.4\times 10^{-10}~{\rm mol./cm^2}$ film was successfully made and shows a modest permeability which is the same as that of a film three times as thick is itself rather remarkable.

Figure 9 shows also cyclic voltammetry of ferrocene at stationary naked Pt and Pt/poly-VDQ²⁺ electrodes. The classically shaped naked electrode wave (Curve C) is altered to a shape (Curve D) similar to a "CE mechanism" voltammogram⁶⁰, where the electrochemical reaction is preceded by a kinetically slow reaction. In Curve D, the slow step is the membrane diffusion process. Permeabilities could in principle be evaluated from studying Curve D as a function of potential sweep rate, but the rotated disk approach is based on a simpler theoretical formulation.

Comparison of Permeabilities. Experimental results for $PD_{S,pol}C$ (Tables II - IV) are converted in Table V to $PD_{S,pol}$ based on $C_{Ru} = 1.5 \times 10^{-3}$, $C_{Ru}' = 1.3 \times 10^{-3}$, and $C_{VDQ} = 2.4 \times 10^{-3} \text{ mol./cm}^3$. Given the general insolubility and cross-linked nature (of the ruthenium polymers), the swelling errors in these redox site concentrations are probably less than 2X. Even at a presumed 2X uncertainty in the derived $PD_{S,pol}$, substantial structural effects are apparent. The Table V values appear to systematically and sensitively reflect the size and charge of the electroactive solute and the polymer membrane structure.

For poly- $[Ru(\underline{vbpy})_3]^{2+}$ films, the PD_{S.pol} values vary over a > 10^4 range. Molecular diameters of the neutral solutes increase and solute permeabilities, $PD_{S,pgl}$, through the poly- $[Ru(vbpy)_3]^{2+}$ polymer films decrease in the order: p-benzoquinone, ferrocene, $[Ru(\underline{bpy})_2Cl_2]$, $[Fe(bpy)_2 (CH)_2$]. The differences between $[Ru(bpy)_2Cl_2]$, (o) and ferrocene (x) permeabilities is illustrated from the slope differences in Figure 8. Such a fine grained molecula size discrimination is not at all expected if the neutral electroactive solutes primarily diffuse to the Pt electrode through generally dispersed polymer structure imperfections (e.g., pinholes and large channels) with dimensions large compared to molecular monomers. Also, such a > 100% range of permeabilities is not consistent with reaction via an electronic conduction mechanism. The permeability ordering clearly demonstrates that transport occurs mainly through spaces in the film structure which have dimensions near those of the solutes. In this sense we agree with the description of Peerce and Bard 17 of a quite different polymer, that the film can

be regarded as a viscous, concentrated poly-electrolyte solution into which the electroactive solute "dissolves" and diffuses.

Films of poly- $[Ru(\underline{bpy})_2(\underline{p-cinn})_2]^{2+}$ involve longer chains bridging adjacent ruthenium sites, should also be less highly cross-linked, and are correspondingly more permeable to neutral solute than poly- $[Ru(\underline{vbpy})_3]^{2+}$, Figure 8.

Positive charge on the electroactive solute depresses its membrane diffusion rate through the poly-cationic films. The effect in poly- $[Ru(\underline{vbpy})_3]^{2+}$ is <u>ca.</u> 10X, comparing ferrocene with diquat²⁺ and $[Ru(\underline{bpy})_2Cl_2]$ with $[Ru(\underline{bpy})_2(\underline{py})Cl]^+$. Although we have no evidential basis for separating the $PD_{S,pol}$ product it seems reasonable to assign this difference to a less than unity partition coefficient, <u>P</u>. Ion association in the films is probably extensive, otherwise the electrostatic cation exclusion would yield an even larger diminution in <u>P</u>.

In this connection, we should note that it is already evident that small cations like Li $^+$ and Et $_4$ N $^+$ can penetrate poly-[Ru(\underline{vbpy}) $_3$] $^{2+}$ films, observing 3 that the film's ohmic resistance is lowered by increasing the external concentrations of LiClO $_4$ and Et $_4$ NClO $_4$ supporting electrolytes.

Permeabilities in the poly-VDQ²⁺ film also follow variations in solute molecular size and charge, but the data there are much less extensive. From the ferrocene data, based on a series of $\Gamma_{\rm T}$, the poly-VDQ²⁺ polymer is less permeable than poly-[Ru(<u>vbpy</u>)₃]²⁺.

The relative pinhole-freeness of the electrochemically polymerized films deserves comment, since demonstrably pinhole-free films with sub-100 Å dimensions are uncommon. We suspect that the dimensional perfection of the films is aided by current density variations during electrochemical reduction of dissolved monomer. Consider that in a film of poly- $[Ru(vbpy)_3]^{2+}$ in the early stages of its formation (a short period of monomer reduction), the current density for further reduction of monomer rises at any large holes and gaps in the film since the resistance to ion flow, in the solution present in those gaps, is less than that in the film . Polymer growth is thereby promoted at the pinhole, tending to eliminate it, e.g., a self-sealing process. This characteristic of electrochemically formed polymer films is not unique to the poly- $[Ru(vbpy)_3]^{2+}$ materials, since electrode passivation during monomer oxidation 62 is a well-known phenomenon. The poly-[Ru(\underline{vbpy})] $^{2+}$ films differ, however, by continuing to grow following sealing of pinholes owing to their ability to transport electrochemical charge to the polymer/solution boundary 63, where film growth continues. Permeability and Film Thickness. The clear proportionality of the intercepts of $1/i_0$ vs. $\omega^{-1/2}$ plots to film thickness as established by

 Γ_{T} is an additional key element in excluding pinhole or channel phenomena in favor of the membrane diffusion model. Theory by Landsberg $^{64-67}$ for reactions of solutes at active sites on rotated disks (equivalent to reactions through pinholes in a film) indicates that for the limiting condition, diffusion layer in the solution $\delta \gg$ spacing and diameter of active site, a plot of i_{ϱ}^{-1} vs. $1/\omega^{1/2}$ would be linear with slope inversely proportional 68 to the overall, projected electrode area (> active site area) and intercept a function of the ratio of pinhole diameter and spacing. To accomodate the observed experimental behavior of the reciprocal Levich plot intercepts with this pinhole theory, the variation of the pinhole diameter/spacing ratio would have to fortuitously mimic a linear Γ_{τ} -intercept relation. The effect would furthermore have to be reproducible over a series of electrode specimens and accurately repeated for three different polymer film structures. We believe this is a highly implausible scenario for the data in Tables II - IV. Most importantly, we draw attention again to the observed, large variations in the intercept values with solute size, as discussed above, which is inconsistent with transport through pinholes of much greater than molecular diameters.

Reciprocal Levich plot intercept- Γ_T proportionality is also important with regard to the average distance over which electrons are transferred between the Pt surface and electroactive solutes diffusing in the membrane. If the electron transfer distance were an appreciable fraction of the film thickness, then the intercept- Γ_T proportionality (at large Γ_T) would change to an exponential relation at small Γ_T , since distance-related barriers to electron transfer are exponential in form. While slight increases in PD_{S,pol}C_{Ru} are observed at low Γ_T studies for several solutes in poly- $[Ru(\underline{vbpy})_3]^{2+}$, this is not generally

the case as shown in Figure 8. It is possible that fluctuations in the data at low Γ_T are due to a higher incidence of film imperfections. The thinnest films in which the Γ_T -intercept proportionality was successfully maintained are 4.1 x 10^{-10} mol./cm² poly-[Ru(bpy)₂(p-cinn)₂]²⁺ (ca. 34 Å based on $C_{Ru}^{+} = 1.2 \times 10^{-3}$) and 4.4 x 10^{-10} mol./cm² poly-VDQ²⁺ (ca. 18 Å based on $C_{VDQ}^{-} = 2.4 \times 10^{-3}$).

Thirdly, the intercept- Γ_T proportionality indicates that topological roughness (depth of valleys and mountains) of the film is not a significant fraction of film thickness for poly- $\left[\text{Ru}(\underline{\text{vbpy}})_3\right]^{2^+}$. This assertion that the microscopic roughness of the film is minimal is consistent with Γ_T -independent mediation rates $\mathbf{k}_{CTS}\Gamma$ for electron transfer reaction of the films with substrate-solutes in the solution 33,53 where Γ is the reacting quantity of redox sites at the film/solution interface.

Finally, the measured permeabilities of $PD_{S,pol}$ in Table V can be used to estimate the average depth of permeation of an electron transfer-mediated substrate into the redox polymer film before being consumed by reaction with a mediator site. Rxn. 4 (Figure 3B) and rxn. 5 (Figure 4, second wave) are examples of such reactions. From eq. 10 in the theoretical treatment of electrocatalysis by Saveant³⁹, the ratio of permeability and mediation rates $PD_{S,pol}/k_{crs}\Gamma$ is equal to the average penetration depth. From this, penetration depths for the mediated substrates in Rxns. 4 and 5 are estimated⁶⁹ as <u>ca.</u> 10^{-3} and 2.6 Å, respectively. These trivially small distances support our view^{33,53} that electron transfer may actually occur without significant penetration of the substrate into the film; i.e., the redox polymer surface acts as the "electrode surface". This then is the $\kappa = 0$ case of the Saveant treatment³⁹.

Bromide Permeability and Charge Transport. The high permeability of poly- $[Ru(vbpy)_3]^{2+}$ films to bromide ions is a significant clue in understanding charge transport through them. Charge transport through poly- $[Ru(vbpy)_3]^{2+}$ refers to migration of electrons to/from the Pt electrode by electron self-exchange^{2,3} between neighbor redox sites, e.g.,

$$\sim \left[\operatorname{Ru}(\underline{\mathsf{vbpy}})_3\right]^{3+} + \sim \left[\operatorname{Ru}(\underline{\mathsf{vbpy}})_3\right]^{2+} + \sim \left[\operatorname{Ru}(\underline{\mathsf{vbpy}})_3\right]^{2+} + \sim \left[\operatorname{Ru}(\underline{\mathsf{vbpy}})_3\right]^{3+}$$
 (6)

Migration of electrochemical charge in this manner is phenomenologically equivalent to diffusion and its rate can be measured as a diffusion constant D_{ct} . We have measured D_{ct} in poly- $[Ru(\underline{vbpy})_3]^{2+}$ films by several procedures and, assuming $C_{Ru} = 1.5 \, \underline{M}$, $D_{ct} = 1.8 \times 10^{-10} \, \text{cm}^2/\text{sec}$.

The molecular interpretation of charge transport diffusion constants has been the object of much discussion $^{22,32,39,44-52,58b}$ but few explicit experimental insights exist into choices between control of D_{ct} by the barrier to the electron hopping event, by the internal mobility

(self-diffusion) of redox polymer sites, or by barriers to the motion of counterions. In reaction 6, transfer of the electron must be accompanied by motion of a charge compensating perchlorate ion. If we presume (reasonably) that perchlorate and bromide ions have similar mobilities in poly-[Ru(vbpy)]2+ films, then the rate of migration of perchlorate in this film occurs (like bromide) at a rate $PD_{S,pol} > 3 \times 10^{-1}$ 10^{-7} cm²/sec (Table V). This exceeds by $> 10^3$ X the rate of migration of electrons by reaction 6, $D_{ct} = 1.8 \times 10^{-10} \text{ cm}^2/\text{sec}$. The strong inference to be drawn from this comparison is that, for this particular redox polymer, the rate of electrochemical charge migration is not controlled by the rate of migration of Cloa counterions, since the latter have, by analogy to bromide ions, a much higher mobility. Redox Polymer Bilayer Films. We have recently described 1,2 electrodes coated with two layers of redox polymers (e.g., bilayer films). The assembly Pt/poly-[Ru(\underline{vbpy})₃]²⁺/poly(vinylferrocene) is an example. The PVFer is spatially isolated from the Pt surface by the poly- $[Ru(vbpy)_3]^{2+}$ film, forcing its oxidation reaction to occur near the electrode potential for Ru(III) production, by the mediation reaction.

$$poly-[Ru(\underline{vbpy})_3]^{3+} + PVFer + poly-[Ru(vbpy)_3]^{2+} + PVFer^{+}$$
 (7)

which is called a (ferrocenium) charge trapping reaction.

The trapped PVFer $^+$ state is stable for considerable periods when the poly-Ru(vbpy) $_3^{2+}$ inner film layer is reasonably thick. We were interested in how thin the inner film thickness could be, yet still effect the charge trapping reaction (7) at all (as opposed to direction oxidation of PVFer by the Pt electrode), and how rapidly PVFer $^+$ trapped states formed with very thin inner films leak away. Figure 10 shows a cyclic voltammogram where $\Gamma_{\rm T}$ for the inner film poly-Ru(vbpy) $_3^{2+}$ layer

was only 6 x 10^{-10} mol./cm², or <u>ca</u>. 40 Å. The initial positive potential scan shows only a small anodic current inflection at <u>ca</u>. +0.44 volt <u>vs</u>. SSCE (the thermodynamic potential for PVFer oxidation in acetonitrile), and then a large current peak at +0.93 volt (Curve E) from previous studies we know to be the trapping reaction^{1,2}. This result demonstrating charge trapping for very thin inner layers, is significant in that switching times for these film assemblies as charge rectifying or as stably switched electrochromic surfaces⁵ are thereby predicted for equally thin outer films to be as short as (by the approximate thickness relation, $\sqrt{0_{ct}t}$) <u>ca</u>. 1 msec.

Following scanning through the poly-[Ru(vbpy)₃]^{3+/2+} wave at +1.1 volt, no reverse wave for PVFer⁺ reduction is seen (as expected^{1,2}). If the potential is scanned again positively from zero volts immediately or after pause-waiting periods of 1, 2 or 4 minutes (Curves A-D), a retrapping peak is observed near +0.9 volts whose magnitude does not increase proportionately to the waiting time. This indicates that leakage does occur for this thin inner film but not all regions of the film leak away charge at equal rates.

The wave at <u>ca</u>. +0.44 volt in Figure 11is notable both for its small size and its shape. The charge under the +0.44 volt wave is < 5% of the +0.93 volt initial charge trapping peak; very little ferrocene is oxidized by permeation through the inner film poly- $[Ru(\underline{vbpy})_3]^{2+}$ film. That which is oxidized gives a membrane diffusion cyclic volt-ammetric shape reminiscent of that in Figure 9, Curve D, which implies that slow diffusion of PVFer chains into the poly- $Ru(vbpy)_3^{2+}$ polymer can occur on a time scale of a second or so. However, this polymer/polymer interpenetration does not over the course of time homogenize the films (else no trapping peak at all), so the PVFer diffusion must more resemble a large-scale polymer segment vibration than a net

diffusional mass transport. This particular observation is of interest with respect to the stability of bilayer polymer film assemblies and the kinetics of electron transfer trapping reactions at the polymer/polymer, $poly-[Ru(\underline{vbpy})_3]^{3+}/PVFer$ interface 70.

CONCLUSIONS

This paper demonstrates the feasibility of electrochemically preparing ultrathin redox polymer films which exhibit both molecular size and charge discrimination toward solutes in contact with them. This observation is significant in that the ruthenium polymers have redox properties making them potential oxidation catalysts for electro-organic reactions; their permeability characteristics also suggest the possibility of size selective oxidation processes by the polymer, and/or by the underlying electrode or other catalyst. The discrimination of molecular size is, crudely, comparable to that of zeolitic structures 10,11.

Acknowledgement. This research was supported in part by grants from the National Science Foundation and the Office of Naval Research.

References

- Abruña, H. D.; Denisevich, P.; Umaña, M.; Meyer, T. J.; and
 Murray, R. W. J. Amer. Chem. Soc. 103 (1981) 1.
- 2. Denisevich, P.; Willman, K. W.; and Murray, R. W. <u>J. Amer. Chem. Soc.</u>
 103 (1981) 4727.
- 3. Denisevich, P; Abruña, H. D.; Leidner, C. R.; Meyer, T. J.; and Murray, R. W. Inorg. Chem., in press.
- 4. Schmehl, R.; and Murray, R. W., unpublished results.
- 5. Willman, K. W.; and Murray, J. Electroanal. Chem., in press.
- 6. Blank, M., Ed.; "Biochemistry: Ions, Surfaces, Membranes", Adv. Chem. Series, vol. 88, 1980.
- 7. Tepfer, M.; and Taylor, I. E. P. Science 213 (1981) 761.
- 8. Kydonieus, A. F. "Controlled Release Technologies: Methods, Theory, and Applications", vol. 1, CRC Press, 1980, pp.
- 9. Carr, R. W.; and Bowers, L. D. "Immobilized Enzymes In Analytical and Clinical Chemistry", John Wiley and Sons, New York, 1980.
- 10. Barrer, R. M. "Molecular Sieve Zeolite", Adv. Chem. Series, 102 (1971)
 41.
- 11. Eberly, P. E. "Zeolite Chemistry and Catalysis", Rabo, J. A.; ACS Monograph Series, ACS Press, 1976, pp. 392.
- 12. Fendler, J. H.; and Fendler, E. J. "Catalysis in Micellar and Macro-molecular Systems", Academic Press, New York, 1975.
- 13. Infelta, P. P.; Gratzel, M.; and Fendler, J. H. <u>J. Amer. Chem. Soc. 102</u> (1980) 1479.
- 14. Nomura, T.; Escabi-Perez, J. R.; Sunamoto, J.; and Fendler, J. H. J. Amer. Chem. Soc. 102 (1980) 1484.

References, continued page 2 of 5

- 15. Oyama, N.; and Anson, F. C. Anal. Chem. 52 (1980) 1192.
- 16. Oyama, N.; Shigehara, K.; and Anson, F. C. Inorg. Chem. 20 (1981) 518.
- 17. Peerce, P. J.; and Bard, A. J. J. Electroanal. Chem. 112 (1980) 97.
- 18. Doblhofer, K.; Nolte, D.; and Ulstrup, J. Ber. Bunsenges. Phys. Chem. 82 (1978) 403.
- 19. Lacaze, P.-C.; Pham, M.-C.; Delamar, M.; and Dubois, J.-E. <u>J. Electro-anal. Chem.</u> 108 (1980) 9.
- 20. Dautartas, M. F.; and Evans, J. F. J. Electroanal. Chem. 109 (1980) 301.
- 21. Schroeder, A. H.; and Kaufman, F. R. J. Electroanal. Chem. 113 (1980) 209.
- 22. Kaufman, F. B.; Schroeder, A. H.; Engler, E. M., Kramer, S. R.; and Chambers, J. Q. J. Amer. Chem. Soc. 102 (1980) 483.
- 23. Bettelheim, A.; Chan, R. J. H.; and Kuwana, T. <u>J. Electroanal. Chem.</u>
 110 (1980) 93.
- 24. DeGrand, C.: and Laviron, E. J. Electroanal. Chem. 117 (1981) 283.
- 25. Oyama, N., Sato, K.; and Matsuda, H. J. Electroanal. Chem. 115 (1980) 149.
- 26. Samuels, G. J.; and Meyer, T. J. J. Amer. Chem. Soc. 103 (1981) 307.
- 27. Miller, L. L.; and Van De Mark, M. R. J. Amer. Chem. Soc. 100 (1978) 3223.
- 28. Miller, L. L.; and Van De Mark, M. R. J. Electroanal. Chem. 88 (1978) 437.
- 29. Kerr, J. B.; and Miller, L. L. <u>J. Electroanal. Chem.</u> 101 (1979) 263.
- 30. Kerr, J. B.; Miller, L. L.; and Van De Mark, M. R. <u>J. Amer. Chem. Soc.</u>
 102 (1980) 3383.
- 31. DeGrand, C.; and Miller, L. L. <u>J. Electroanal. Chem.</u> <u>117</u> (1981) 267.
- 32. Kuo, K. N.; and Murray, R. W. J. Electroanal. Chem., in press.
- 33. Ikeda, T.; Leidner, C. R.; and Murray, R. W. J. Amer. Chem. Soc., in press.
- 34. Rocklin, R. D.; and Murray, R. W. <u>J. Phys. Chem.</u> <u>85</u> (1981) 2104.
- 35. Murray, R. W. Philosoph. Trans. Royal Society, London, Phil. Trans. R. Soc. Lond. A 302 (1981) 253.

References, continued page 3 of 5

- 36. Andrieux, C. P.; and Saveant, J.-M. J. Electroanal. Chem. 93 (1978) 163.
- 37. Andrieux, C. P.; Dumas-Bouchiat, J. M.; and Saveant, J.-M. <u>J. Electro-</u>
 anal. Chem. 114 (1980) 159.
- 38. Andrieux, C. P.; and Saveant, J.-M. J. Electroanal. Chem. 111 (1980) 377.
- 39. Andrieux, C. P.; Dumas-Bouchiat, J. M.; and Saveant, J.-M., J. Electroanal. Chem., in press.
- 40. Bolts, J. M.; Bocarsly, A. B.; Palazzotto, M. C.; Walton, E. G.; Lewis, N. S.; and Wrighton, M. S. J. Amer. Chem. Soc. 101 (1979) 1378.
- 41. Bookbinder, D. C.; Lewis, N. S.; Bradley, M. G.; Bocarsly, A. B.; and Wrighton, M. S. J. Amer. Chem. Soc. 101 (1979) 7721.
- 42. Lewis, N. S.; Bocarsly, A. B.; and Wrighton, J. Phys. Chem. 84 (1980) 2033.
- 43. Dautartas, M. F.; Mann, K. R.; and Evans, J. F. <u>J. Electroanal. Chem.</u>
 110 (1980) 379.
- 44. Anson, F. C. J. Phys. Chem. 84 (1980) 3336.
- 45. Peerce, P. J.; and Bard, A. J. J. Electroanal. Chem. 114 (1980) 89.
- 46. Schroeder, A. H.; Kaufman, F. B.; Patel, V.; and Engler, E. M. <u>J. Electroanal. Chem.</u> 113 (1980) 193.
- 47. Laviron, E. J. Electroanal. Chem. 112 (1980) 1.
- 48. Daum, P.; Lenhard, J. R.; Rolison, D. R.; and Murray, R. W. <u>J. Amer.</u>
 Chem. Soc. 102 (1980) 4649.
- 49. Nowak, R. J.; Schultz, F. A.; Umaña, M.; Lam. R.; and Murray, R. W. Anal. Chem. 52 (1980) 315.
- 50. Daum, P.; and Murray, R. W. J. Electroanal. Chem. 103 (1979) 289.
- 51. Daum, P.; and Murray, R. W. J. Phys. Chem. 85 (1981) 389.
- 52. Facci, J.; and Murray, R. W. J. Electroanal. Chem., 124 (1981) 339.
- 53. Ikeda, T.; Leidner, C. R.; and Murray, R. W., submitted.
- 54. Sullivan, B. P.; Salmon, D. J.; and Meyer, T. J. <u>Inorg. Chem. 17</u> (1978) 3334.

References, continued page 4 of 5

- 55. Schilt, A. A. Inorg. Synth. 12 (1970) 247.
- 56. Gough, D. A.; and Leypoldt, J. K. Anal. Chem. 51 (1979) 439.
- 57. Bazier, M. M.; "Organic Electrochemistry", M. M. Bazier, ed., New York, Marcel Dekker, 1973, pp. 679-704.
- 58. a) Rubenstein, I.; J. Phys. Chem. 85 (1981) 1899;
 b) Rubenstein, I.; and Bard, A. J. J. Amer. Chem. Soc. 103 (1981) 5007.
- 59. Kuwana, T.; Bublitz, D. E.; and Hom, G. J. Amer. Chem. Soc. 82 (1960) 5811.
- 60. Nicholson, R. S.; and Shain, I.; Anal. Chem. 36 (1964) 706.
- 61. That current density uniformity is important is shown by considerable sensitivity to the placement of the auxiliary electrode during polymerization³.
- 62. Baizer, M. M.; "Organic Electrochemistry", M. M. Bazier, ed., New York, Marcel Dekker, 1973, pp. 947-975.
- 63. Including the boundary of the inner surface of any remaining gaps or canyons.
- 64. Gueshi, T.; Tokuda, K.; and Matsuda, H. J. Electroanal. Chem. 89 (1978) 247.
- 65. Landsberg, R.; and Thiele, R. Electrochim. Acta 11 (1966) 1243.
- 66. Scheller, F.; Muller, S.; Landsberg, R.; and Spitzer, H.-J. J. Electroanal. Chem. 19 (1968) 187.
- 67. Scheller, F.; Landsberg, R.: and Muller, S. J. Electroanal. Chem. 20 (1969) 375.
- 68. We observe this, since D_S determined from the reciprocal Levich plots agrees with naked electrode D_S .
- 69. The Levich behavior in Figure 4 (-o-) for the mediated ferrocene oxidation rxn. 5 indicates that $k_{crs}\Gamma > \sim 0.5$ cm/s., i.e., is beyond our measurable 53 limit. With the measured PD_{S,pol} = 1.3×10^{-8} cm²/s. for ferrocene in Table V, the estimation of ferrocene penetration beyond the

References, continued page 5 of 5

poly-[Ru(vbpy)₃]²⁺/solution interface is simply, $PD_{S,pol}/k_{crs}\Gamma > 2.6 \times 10^{-8}$ cm., less than a monolayer dimension. The calculation for Rxn. 4 is done similarly.

70. Denisevich, P.; Willman, K.; and Murray, R. W., unpublished results.

CLASSES OF BEHAVIOR OBSERVED FOR SOLUTE PERMEATION THROUGH poly-[Ru(vbpy)3]2+ POLYMER FILMS

Rate of Solute (Reactant) Permeation	Reaction Site(s)	Waves Observed	Potential of solute reaction; diagnostic characteristics	Examples
very fast	Electrode Surface	-	Same as at naked electrode; linear Levich plot	Br ⁻ /Br ₂
very.slow	Film/solution interface	-	Shifted toward polymer potential; linear Levich plot	[Ru(bpy) ₂ (py)C1] ^{+1/+2}
measurable	l. Electrode surface, a	and 2	<pre>1. Same as at naked electrode; linear reciprocal Levich plot</pre>	Fer/Fer ⁺
	2. Film/solution interface	ace	 Shifted toward polymer potential; linear Levich plot 	

TABLE II

Permeation Rates of Various Electroactive Solutes Through $Pt/poly-Ru(\underline{vbpy})_3^{2+}$ Films, in 0.1 M Et_4NC10_4/CH_3CN

$E^{21} = -0.37V$ 7.8×10^{-10} 0.19 1.1×10^{-9} 0.19	diquat ²⁺		3.6 x 10 ⁻³ 0.11			$E^{\circ}' = -0.51_5 V 7.8 \times 10^{-10} 0.12$	Benzoquinone		6.8 x 10 ⁻³ 0.07	2.5×10^{-9} 0.07	1.2 x 10 ⁻³ 0.17	1.1 x 10 ⁻⁵ 0.18	7.8×10^{-10} 0.18	E° = +0.38V 7.2 x 10^{-10} 0.07	. Ferrocene	Γ_{T} , mol./cm ² C_{S} , $\times 10^{-9}$
0.078 1.2 0.31 1.0 ^D _S (at maked Pt): 1.		D _S (at naked Pt): 2.	0.035 5.0	0.026 4.4	0.0080 2.2	0.0048 2.6		D _S (at naked Pt) ^b : 2	0.67 ^a	0.30 ^a	0.024 2.4	0.029 2.0	0.021 2.4	0.034 2.4		Intercept, $\times 10^{-0}$, amp ⁻¹ 0_S , $\times 10^{\circ}$, cm ² /s.
5.6×10^{-3} 1.4×10^{-3} 1.1×10^{-5} cm ² s ⁻¹		$2.2 \times 10^{-5} \text{ cm}^2 \text{s}^{-1}$	2.1×10^{-2}	2.9×10^{-2}	8.9×10^{-2}	1.5 × 10 ⁻¹		$2.3 \times 19^{-5} \text{ cm}^2 \text{s}^{-1}$	1.8×10^{-3}	4.6×10^{-3}	2.0×10^{-2}	1.6×10^{-2}	2.2×10^{-2}	4.2×10^{-2}		/s. PD _{S,pol} /d,cm/s.
4.4×10^{-12} 1.5×10^{-12} $3.0 \pm 1.5 \times 10^{-12}$		$8.7 \pm 2.1 \times 10^{-11}$	7.6 x 10 ⁻¹¹	5.8×10^{-11}	9.8×10^{-11}	1.2 × 10 ⁻¹⁰		1.9 ± 0.7 x 10 ⁻¹¹	1.2 × 10 ⁻¹¹	1.2 x 10 ⁻¹¹	2.4×10^{-11}	1.7 x 10 ⁻¹¹	1.7 x 10 ⁻¹¹	3.0 x 10 ⁻¹¹		PDS,pol ^C Ru,mol./cm.s.

Ru(bpy)2C12						
$E^{\circ i} = +0.29_5 V$		0.17	0.35	4.	1.4 x 10 ⁻³	1 1 . 10-12
•	9.7×10^{-10}	0.04	0.82		2.5×10^{-3}	24 × 10-12
	9.7 × 10 ⁻¹⁰	0.09	0.29	0.81	3.2×10^{-3}	3 1 2 10-12
	9.7 × 10 ⁻¹⁰	0.15	0.19	0.84	3.0 × 10 ⁻³	2. 9 x 10 ⁻¹²
	1.1 x 10 ⁻⁹	0.17	0.62	0.84	7.8×10^{-4}	8 6 × 10 ⁻¹³
	1.2×10^{-9}	0.12	0.33ª	•	2.1×10^{-3}	2.5 x 10 ⁻¹²
	2,1 x 10 ⁻⁹	0.12	1.33ª	•	5.2 x 10 ⁻⁴	1.0 × 10 ⁻¹²
			D _c (at	D_c (at maked Pt): 1.3 x 10^{-5} cm ² s ⁻¹	1-5 _{cm} 2-1	2.0 + 0.9 x 30-12

		·	D _S (at	$^{0}_{S}$ (at naked Pt): 1.3 \times 10 $^{-5}$ cm 2 s $^{-1}$	0 ⁻⁵ cm ² s ⁻¹	$2.0 \pm 0.9 \times 30^{-12}$
Fe(bpy) ₂ (CN) ₂		÷			4	
E" = +0.445V	7.8×10^{-10}	0.18	0.83ª	ı	5.5 x 10 ⁻⁴	4.3 x 10 ⁻¹³
١	1.2×10^{-3}	6.14	1.0°	•	5.9 x 10 ⁻⁴	7.1 × 10 ⁻¹³
	2.7 × 10 °	0.32	2.04	ı	1.3 x 10 ⁻⁴	3.5 x 10 ⁻¹³
			D _S (at	D_S (at naked Pt): 0.87 \times 10 ⁻⁵ cm ² s ⁻¹	10 ⁻⁵ cm ² s ⁻¹	$5.0 \pm 2.0 \times 10^{-13}$

a.
$$i_{\mathbf{k}} \neq f(\omega^{1/2})$$

 $^{2.4 \}times 10^{-5} \text{ cm}^2\text{s}^{-1}$ from ref. 59, $2.8 \times 10^{-5} \text{ cm}^2\text{s}^{-1}$ from ref. 5-9.

Permeation Rates of Electroactive Solutes Through Pt/poly-[Ru(\underline{bpy})₂(\underline{p} - \underline{cinn})₂]²⁺ Films in 0.1 \underline{M} Et₄NC10₄/CH₃CN

TABLE III

	$\Gamma_{\text{T}},\text{mol./cm}^2,\text{x10}^{10}$	c _s ,×10 ³ , <u>M</u>	D _S ×10 ⁵ ,cm ² sec ⁻¹	PDS,polCku,mol./cin.s.
[Ru(<u>bpy</u>) ₂ C1 ₂]	4.11	0.0826	1.65	1.2 x 10 ⁻¹¹
	7.83	0.0826	1.51	1.5 x 10 ⁻¹¹
	9.68	0.0826	1.88	9.2×10^{-12}
	11.9	0.067	1.85	1.1×10^{-11}
	21.2	0.0826	-	1.7×10^{-11}
	25.0	0.10	0.45	1.5×10^{-11}
	49.6	0.067	0.99	1.4×10^{-11}
	49.6	0.10	1.05	1.1×10^{-11}
	130.0	0.10	-	1.5 x 10 ⁻¹¹
		• • •		Avg. 7.3 ₅ x 10 ⁻¹¹
ferrocene	15.2	0.135	2.11	12.6 x 10 ⁻¹¹
	23.4	0.10	1.25	8.8 x 10 ⁻¹¹
	28.1	0.135	1.90	17.1 x 10 ⁻¹¹
	46.6	0.135	2.02	13.5 × 10 ⁻¹¹
·	55.3	0.135	1,89	11.7 x 10 ⁻¹¹
	58.1	0.10	1.22	8.3×10^{-11}
	75.7	0.10	1.41	10.6 x 10 ⁻¹¹
			•	_11

Avg. 11.8 x 10^{-11}

Permeation Rates of Electroactive Solutes Through $pt/poly-v00^{2+}$ Films in 0.1 M $Et_{4}NCl0_{4}/CH_{3}CN$

PD _S po1 ^C vDq ^{mo1} ./cm. 2.2 × 10 ⁻¹² 2.2 × 10 ⁻¹² 2.9 × 10 ⁻¹²	7.9 × 10 ⁻¹³	3.5 × 10 ⁻¹³
PD _{S,pol} /4,cm ² s ⁻¹ 5.1 x 10 ⁻³ 3.5 x 10 ⁻³ 2.2 x 10 ⁻³	6.1 × 10 ⁻⁴	2.7 × 10 ⁻⁴
0 _S ×10 ⁵ ,cm ² /s 2.7 1.2 1.8	ı	•
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	89°0	2.7ª
0.10 0.10 0.18	0.2 6	0.15
$\Gamma_{\text{L*mol./cm}}^{2}$ 4.4×10^{-10} 6.3×10^{-10} 1.3×10^{-9}	1.3 x 10 ⁻⁹	1.3 × 10 ⁻⁹
Ferrocene	[Ru(bpy) ₂ C1 ₂]	[Ru(<u>bpx</u>) ₃] ²⁺

1. i, + f(w)/2

PD_{S,pol} For Various Electroactive Solutes Through Electrochemically Polymerized Films^a

PDS.col thr	$PD_{5,col}$ through: poly-[Ru(vbpy) ₅] ^{2+b}	poly-[Ru(bpy) ₂ (p-cinn) ₂] ²⁺	poly-VDQ ²⁺
Solute			
bromide	$> 4 \times 10^{-7}$	•	
p-benzoquinone	5.8 x 10 ⁻⁸	c	,
ferrocene	1.3 x 10 ⁻⁸	9.0 x 10 ⁻³	0. × 0. ľ
$[Ru(bpy)_2^{Cl}]$	1.3 × 10 ⁻⁹	1.0 x 10 ⁻⁸	3.3 × 10
$[Fe(\underline{bpy})_2(CN)_2]$	3.3×10^{-10}		
diquat ²⁺	2.0 × 10 ⁻⁹		
$[Ru(\underline{bpy})_2(\underline{py})^{-1}]^{\dagger}$	<7 × 10-12		
FRu(boy), 12+	•		1.5 ×10

Assuming maximum redox site concentrations as in footnotes b, c, d, for unswollen films.

b. $C_{Ru} = 1.5 \times 10^{-3} \text{ mol./cm}^3 \text{ based on 1.35 g./cm}^3 \text{ density}^3$.

c. $C_{Ru} = 1.3 \times 10^{-3} \text{ mol./cm}^3 \text{ based on 1.40 g./cm}^2 \text{ density.}$

d. $C_{VDQ} = 2.4 \times 10^{-3} \text{ mol./cm}^3$ based on assumed unity density.

FIGURE LEGENDS

- Figure 1. Cyclic voltammetry at 0.1 v/s of Ru^{III/II} reaction for Pt/poly-[Ru(\underline{vbpy})₃]²⁺ (Curve A) and Pt/poly-[Ru(\underline{bpy})₂($\underline{p-cinn}$)₂]²⁺ (Curve B) electrodes in 0.1 M Et₄NClO₄/CH₃CN. Γ_T = 5.8 x 10⁻⁹ and 5.3 x 10⁻⁹ mol./cm², respectively.
- Figure 2. Rotated Pt/poly-[Ru(\underline{vbpy})₃]²⁺ (Γ_T = 3.6 x 10⁻⁹mol./cm²) disk voltammetry in 0.1 \underline{M} Et₄NClO₄/CH₃CN. No added bromide (Curve A); 0.1- \underline{mM} Bu₄NBr (Curve B). v = 0.02 v/s, S = 77 μ A/cm², ω = 6400 rpm. Inset is limiting current measured at 0.95 v. as a function of ω ^{1/2}.
- Figure 3. Rotated disk voltammograms of 0.20 mM $[Ru(\underline{bpy})_2(\underline{py})C1]^+$ in 0.1 M Et_4NC10_4/CH_3CN at naked Pt (Curve A) and Pt/poly $[Ru(\underline{vbpy})_3]^{2+}$ $(\Gamma_T = 7.8 \times 10^{-10} \text{ mol./cm}^2)$ (Curve B) electrodes. v = 0.02 v/s, $S = 77 \,\mu\text{a/cm}^2$, $\omega = 6400 \text{ rpm}$. Figure insets are Levich plots of limiting currents of Curve A (-x-) and Curve B (-o-) and 10X scale expansion $(S = 7.7 \,\mu\text{a/cm}^2)$ of foot of Curve B.
- Figure 4. Rotated disk voltammograms of 0.070 mM ferrocene in 0.1 M ${\rm Et_4NC10_4/CH_3CN}$ at Pt/poly-Ru(vbpy) $_3^{2+}$ ($\Gamma_{\rm T}$ = 7.2 x 10^{-10} mol./cm 2) (Curves A D, electrode rotation rate 400, 1600, 3600, and 6400 rpm, respectively), and naked Pt (Curve E, 6400 rpm). v = 0.02 v/s, S = $19~\mu {\rm a/cm}^2$. Figure inset is limiting currents of ferrocene at naked Pt (--) and at Pt/poly-Ru(vbpy) $_3^{2+}$ for permeation wave (-x-) measured at 0.6 volt and mediated wave (-o-) measured at 1.1 volt.

- Figure 5. Reciprocal Levich plots for permeation wave for ferrocene oxidation at Pt/poly-Ru(vbpy) $_3^{2+}$. Curve A C: $C_S = 0.070$, 0.18, 0.18 mM; $\Gamma_T = 7.2 \times 10^{-10}$, 1.1 x 10^{-9} , 7.8 x 10^{-10} mol./cm², respectively.
- Figure 6. Rotated disk voltammogram at 0.17 mM [Ru(bpy)₂Cl₂] in 0.1 M Et₄NClO₄/CH₃CN at naked Pt (Curve A) and (Curve B) Pt/poly- [Ru(vbpy)₃]²⁺ (Γ_T = 7.8 x 10⁻¹⁰ mol./cm²) electrodes. v = 0.02 v/s, S = 77 μ a/cm², ω = 6400 rpm. Inset is limiting currents measured at (-x-) 0.5 volt on Curve A and at (-\iff -\iff -\
- Figure 7. Rotated disk voltammograms of 0.19 mM diquat $^{2+}$ in 0.1 M Et₄NC10₄/ CH₃CN at naked Pt (Curve A) and Pt/poly-[Ru(<u>vbpy</u>)₃] $^{2+}$ ($\Gamma_T = 7.8 \times 10^{-10}$ mol./cm²) electrodes. v = 0.02 V/s, $S = 39 \mu a/cm^2$, $\omega = 6400$ rpm. Figure inset is reciprocal Levich plot for limiting currents of Curve B (Line 1) and of another example where $\Gamma_T = 1.1 \times 10^{-9}$ mol./cm² (Line 2).
- Figure 8. PD_S/d from reciprocal Levich plot intercepts—are inversely proportional to Γ_T , film thickness. Results for ferrocene (x) and $[Ru(\underline{bpy})_2Cl_2]$ (o) in poly- $[Ru(vbpy)_3]^{2+}$ (---) and for ferrocene (•) and $[Ru(\underline{bpy})_2Cl_2]$ (\triangle) in poly- $[Ru(\underline{bpy})_2(\underline{p-cinn})_2]^{2+}$ (----).
- Figure 9. Rotated disk voltammetry of 0.1 mM ferrocene in 0.1 M Et₄NC10₄/CH₃CN at naked Pt (Curve A) and Pt/poly-VDQ²⁺ (Γ_{T} = 6.3 x 10⁻¹⁰ mol./cm²). v = 0.02 v/s, S = 19 μ a/cm², ω = 3600 rpm. Stationary electrode cyclic voltammetry for naked Pt (Curve C) and Pt/poly-VDQ²⁺ (Curve D)

Figure Legends, continued page 3 of 3

Figure 9 continued: in same solution at 0.1 v/s.

Figure 10. Cyclic voltammetry (0.1 v/s) of a Pt/poly-Ru(\underline{vbpy}) $_3$] $^{2+}$ /PVFer bilayer electrode were Γ_{inner} is 6 x 10 $^{-10}$ mol./cm 2 . Curve E: virgin scan 0 + +1.6 + 0 volt; Curve A: immediately repeated scan; Curves B - D repeated after 1, 2, 4 minute pause at 0 volt, respectively. Charges under trapping peaks are (Curves A - E), 1.6 x 10 $^{-10}$, 3.8 x 10^{-10} , 6.2 x 10^{-10} , 8.9 x 10^{-10} , 2.5 x 10^{-9} mol./cm 2 .

