

Lerntheorie, Algorithmenunabhängige Verfahren (für überwachtes induktives Lernen)

Prof. Dr.-Ing. J. Marius Zöllner

Charakterisierung von Lernmaschinen

- Motivation:
 - Wieso brachen wir immer neue Lernverfahren?
- Lernen = Optimierung?
 - Kann man Lernen formal beschreiben?
 - Fehler? Empirisch und Real?
 - Modellauswahl
 - Ensambles
- Lernbarkeit, Kapazität von Lernmaschinen
 - PAC Lernbarkeit
 - Aussagen über Lernbarkeit, Stichprobenkomplexität
 - VC Dimension
- Korrektes Lernen ?

Grundsatz

William of Occam (1280/88-1347/49) Franziskaner

- Anklage wegen Ketzerei
- Entzug der Lehrerlaubnis

Razor principle (Rasiermesser - Prinzip):

Entia non sunt multiplicanda sine necessitate (Entities should not be multiplied beyond necessity)

Löse nie ein Problem komplizierter als nötig, denn die einfachste, richtige Erklärung ist die Beste

Lernmaschine

Definition

- Eine lernende Maschine wird bestimmt durch:
 - Hypothesenraum $\{ h_{\alpha} : \alpha \in A \}$
 - Lernverfahren: die Methode um α_{opt} mit Hilfe von Lernbeispielen zu finden (benötigt Fehlerfunktion, Optimierungsmethode)
- lacktriangle Das resultierende (Entscheidungs) Modell $\,M_{\scriptscriptstyle o\!pt}$
 - ist gegeben durch die Auswertung der optimalen Hypothese $h_{\alpha_{opt}}$, die durch die lernende(n) Maschine(n) bestimmt wird

Problem: Welche Maschine ist zu wählen? (Welches Lernverfahren?)

Welches Modell soll gewählt werden?

Probleme beim Lernen

- Statistisches Problem: Das Verfahren betrachtet einen gemessen an der Menge von Trainingsdaten – "zu großen" Hypothesenraum
 - Auf Basis der Trainingsdaten eignen sich mehrere Hypothesen gleichermaßen gut
- Komplexitätsproblem: Aufgrund der Komplexität des Problems kann das Lernverfahren nicht das Finden einer optimalen Lösung innerhalb des Hypothesenraumes garantieren.
 - Bei Verwendung von speziellen Verfahren oder Heuristiken besteht die Gefahr einer suboptimalen Lösung
- Repräsentationsproblem: Der Hypothesenraum enthält keine ausreichend gute Approximationen der Zielfunktion/Konzept etc...
 - Das Lernverfahren kann einen gewünschten Approximationsgrad nicht liefern.

Zwei einfache Beispiele

Beispiel 1

- Klassifikation R^2

Beispiel 2

- Regression in *R*
- gestrichelte Kurve soll eingelernt werden

Was sieht man hier? Diskussion: Daten, Komplexität, Repräsentation ←→ Ergebnis, Fehler, Güte

Überwachtes Lernen aus Beispielen

Lernen = Schätzen einer Abbildung (Hypothese) :

$$h_{\alpha}(\vec{x}) = y$$
, α – Parameter

mit Hilfe von (bekannten) Beispielen (Lernbeispiele)

$$(\vec{x}_1, y_1) \dots (\vec{x}_n, y_n) \in X \times Y$$

generiert von einem (nicht bekannten) System mit der Wahrscheinlichkeit

$$P(\vec{x}, y)$$

Lernproblem = definiert durch
$$X \times Y$$

$$\{Atr_1,...,Atr_n\} \times \{true, false\}$$
 - Konzept

$$R^N \times \{Klasse_1,...,Klasse_n\}$$
 - Klassifikation (numerisch)

$$R^{N} \times R$$
 - Regression/Prognose (numerisch)

Lernen? Fehlerdefinition

Schätze h so, dass "der Fehler" E(h) minimal ist

$$E(h_{\alpha}) = Func(h_{\alpha}(\vec{x}) \longleftrightarrow y), P(\vec{x}, y))$$

wobei \longleftrightarrow ein Vergleich zw. den Termen ist

Kann E berechnet werden?? → NEIN, unvollständige Daten

Kann E geschätzt werden ?? → JA mit verschiedenen Methoden

Lernen = Wie kann E effektiv minimiert werden? Abhängigkeiten? Methode? Maschine?

Fehlermaßfunktion

Problem: Schätzen oder Abschätzen von E(h)

$$E(h) = \int l(h(\vec{x}), y) dP(\vec{x}, y)$$

$$E(h) \equiv P(h(\vec{x}) \neq y)$$

→ Welche Distanzfunktion /?

Beispiele für l

$$l(h(\vec{x}), y) = \begin{cases} 1, \text{ wenn } h(\vec{x}) \neq y \\ 0, \text{ sonst} \end{cases}$$

$$l(h(\vec{x}), y) = |h(\vec{x}) - y|$$

$$l(h(\vec{x}), y) = (h(\vec{x}) - y)^2$$

Realer & Empirischer Fehler

Der reale Fehler

$$E(h) = \int l(h(\vec{x}), y) dP(\vec{x}, y)$$

bezüglich aller real vorkommenden Daten

ist leider nicht berechenbar → gute Schätzung nötig

Empirische Fehler

$$E_D(h) = \frac{1}{|D|} \sum_{(\vec{x}, y) \in D} I(h(\vec{x}), y)$$

wobei *D*: Lerndaten

Verifikationsdaten

Testdaten

→ Lernfehler

→ Verifikationsfehler

→ Generalisierungsfehler

Lernen: Fehlerminimierung

Eine Lösung:

Definiere h_a und Finde beste α

Durch iterative Minimierung des empirischen Fehlers

$$E_D(h_a)$$

z.B.: Gradientenabstieg auf der Fehlerfunktion

$$\nabla E_D(\vec{\alpha}) \equiv \left| \frac{\partial E_D(h_a)}{\partial \alpha_1}, \dots, \frac{\partial E_D(h_a)}{\partial \alpha_n} \right|$$

Fehlerminimierung als Gradientenabstieg

Anpassung der Parameter

$$\vec{\alpha} \leftarrow \vec{\alpha} + \Delta \vec{\alpha}$$

$$\Delta \vec{\alpha} \approx -\eta \nabla E_D(\vec{\alpha})$$
 $\eta - Lernrate$

Frage: ist das korrekt?

Nun JA ZUMINDEST oft hinreichend

Overfitting

Fakultät für Informatik

- Definition:
 Die Tendenz der Maschine sich beim Lernen auf die Lernbeispiele zu spezialisieren (Auswendig Lernen)
- Formal: $h \in H$ overfit $\Leftrightarrow \exists h' \in H$ s.d. \forall Testdaten $E_{Lerndaten}(h) < E_{Lerndaten}(h')$ $\land E_{Testdaten}(h) > E_{Testdaten}(h')$

Problematisch wenn verrauschte Lerndaten

Overfitting

→ Lernfehler fällt , Testfehler steigt, Generalisierung fällt

Erklärung:

Lerndatenmenge und Testdatenmenge unterschiedlich (je nach Komplexität der Hypothese) → unterschiedlicher Verlauf von:

$$E_{Lern}(h)$$
 und $E_{Verifikation}(h)$

Overfitting

Lösung:

- Repräsentative Beispiele (Anzahl und Art/Verteilung)
- Lernprozess durch den
 Verifikationsfehler steuern
 (Verifikationsdatensatz kann anschließend nicht für die Gütebestimmung genutzt werden)
- lacksquare Richtige Wahl und Suche der optimalen Hypothesen h_a

Trainingszyklen

Fehler

Testmuster

Modellwahl

Beispiel (Regressionsmodell):

Die gestrichelte Kurve soll

eingelernt werden.

Es soll ein Modell gefunden

werden.

wenig komplexe Maschine

schlechtes Modell

(Hypothesenraum: oft wenig Parameter)

Komplexe Maschine schlechtes Modell (Hypothesenraum: oft viele Parameter)

Modellgüte - "Validierung"

- Eine Lösung: Cross Validierung
 - Teile die Daten wiederholt in Lern- und Validierungsdaten
 - Bestimme darauf verschiedene Hypothesen (bzw. deren Parameter)
 - Berechne jeweils Generalisierung
 - Wiederhole
- n-fold-crossvalidation:
 - Zerlege die Menge der Lerndaten in n Mengen
 - Trainiere jew. auf n-1 Mengen, Teste auf 1 Menge
 - Wiederhole
- Leave One Out (Spezialfall)
 - Jeweils ein Beispiel für das Lernen weglassen
 - Addiere Fehler für weggelassene Beispiele
 - Wiederhole
 - → statistische Auswertung (Mittelwert, Varianz ...) auf verschiedenen Modellen auch mit rel. wenig Lerndaten evaluieren

Bootstrap

- Grundgedanke: "Wie kann man mit einfachen Verfahren mehr erreichen?"
- In der Literatur oft allgemeiner anekdotischer Hintergrund (Paradoxon)
 - Baron Münchhausen: am eigenen Schopf aus dem Sumpf gezogen
 - (für Informatiker) Computer startet zunächst ein einfaches Programm um dann "vereinfachte" Programme zu starten → mächtige Leistung
- Und beim Lernen
 - Ziehe zufällig (mit Zurücklegen) aus D jeweils | D | Beispiele m Mal
 - Bestimme jeweils die Modell Parameter
 - Wiederhole
 - Bestimme den Mittelwert, Varianz,... der Parameter des Modells
 - → Analyse der Güte / Stabilität,
 - → mit weiteren Ansätzen höhere Güte des Modells erreichen

Bagging = Bootstrap aggregation

Variante des Bootstrap

Verwende mehrere Modelle Verwende Boostrap – Prinzip ziehe n < /D / Beispiele (mit Zurücklegen)

Bestimme die jeweiligen Modelle

Kombiniere die Modelle, z.B. gewichtete Summe

- → Höhere Güte des Modells
- → Aussagen über die Stabilität des Modells (große Abweichungen in den einzelnen Modellen = Unstabil)

Boosting für Klassifikation – ursprünglich Schapire 1990

Kombiniere "schwache" Modelle um ein gutes Modell zu erhalten

Idee: Zerlege D in mehrere Datensätze, z.B. in D_1, D_2, D_3

- 1. Wähle D_1 und bestimme das Modell M_1
- 2. Wähle für D_2 aus D neue Beispiele s.d. 50% durch M_1 korrekt geschätzt werden und erstelle damit M_2
- 3. Wähle für D_3 Beispiele bei denen M_1 und M_2 gegensätzlich sind und bestimme M_3
- 4. Kombiniere die Modelle

$$M = \begin{cases} M_1, \text{ wenn } M_1 = M_2 \\ M_3, \text{ sonst} \end{cases}$$

AdaBoost - Adaptive Boosting [Freund, Schapire 1996]

- Ausgangspunkt Lernmenge D mit n Beispielen
- Iteratives Erstellen eines komplexen Klassifikators in k Stufen (aus k zusammengesetzten Klassifikatoren)
- Ziehen von Lernbeispielen entsprechend definierter Gewichte
- Gewichtung der Lernbeispiele entsprechend dem Klassifikationsergebnis des zuletzt generierten "schwachen" Klassifikators
 - Verringerung des Gewichts von korrekt klassifizierten Beispielen
 - Erhöhung des Gewichts von falsch klassifizierten Beispielen
- Mit der neuen Lernmenge wird mit Hilfe eines Lernverfahrens der nächste Klassifikator bestimmt.
- Die Klassifikatoren 1, . . . , k werden zu einem Ensemble zusammengefasst und legen durch gewichteten Mehrheitsentscheid die Klasse eines Beispiels fest.

AdaBoost – adaptive Boosting

Erweiterung des allgemeinen Boosting, Gewichtete Einzelmaschinen, Gewichtung Lernbeispiele

begin:
$$D = \{(\vec{x}_1, y_1), ..., (\vec{x}_n, y_n)\}, W_1(i) = \frac{1}{n}$$
 Gewicht pro Bsp., $k = 0$

- 1. $do: k \leftarrow k+1$
- Trainiere M_k auf D_k ($|D_k| = n$, Bsp. gewählt abh. von $W_k(i)$)
- $E_k \leftarrow emp. \ Fehler \ von \ M_k \ (gewichtet \ bzgl. \ W_k(i), E_k < 0.5 \ sonst \ Stopp)$ 3. **1** Konzentration auf Fehler

 $\alpha_k \leftarrow \frac{1}{2} \Big[\ln((1-E_k)/E_k) \Big] \quad \text{1. Fehler} \Rightarrow \text{gr\"oßeres Gewicht und} \\ 2. \text{ Gr\"oßerer Fehler} \Rightarrow \text{kleinere Erh\"ohung der} \\ W_{k+1}(i) \leftarrow \frac{W_k(i)}{Z_k} \left\{ \begin{array}{l} e^{-\alpha_k}, \text{ wenn } h_k(\vec{x}_i) = y_i \\ e^{\alpha_k}, \text{ wenn } h_k(\vec{x}_i) \neq y_i \end{array} \right. , \quad Z_k - Nomalisierungskonst.$ 5.

6. $until: k = k_{max}$

Ergebnis: Nutze M_k und α_k , z.B. Entscheidung: $\vec{x} \rightarrow sign(\sum \alpha_k h_k(\vec{x}))$

Adaptive Boosting Beispiel

Adaptive Boosting Beispiel – erster Klassifikator

Adaptive Boosting Beispiel – zweiter Klassifikator

25

Adaptive Boosting Beispiel – dritter Klassifikator

$$\epsilon_{3}=0.14$$
 $\alpha_{3}=0.92$

$$\alpha_3 = 0.92$$

Adaptive Boosting Beispiel – finaler Klassifikator

Speziell: Viola & Jones Objekterkennung [~ 2001 - 2003]

- Erkennen von Gesichtern in Bildern
- Sliding Window: Entscheiden für Ausschnitte (z.B. 24 x 24 Pixel) → Gesicht oder kein Gesicht
- Klassifikation: Merkmalsbasiert (Haar)

- naiv
 - → z.B. 180000 Merkmale
 - pro Ausschnitt

 → z.B.: 0.7 Sec pro
 Klassifikation pro Bild
 (384 x 288) bei 700MHz

- deutlich effizienter und definierbar gut
 - Trick 1: Kaskaden von Klassifikatoren einstellbarer "Güte"
 - Trick 2: Güte ausgewählter Merkmale einstellen durch Adaboost

Kaskadierung Viola & Jones 2001

- 2-Klassen-Problem
- Trick 1: Kaskade
 - Gesucht wird eine Folge von Klassifikatoren mit steigender Komplexität

 Vorgehen: Aus der Datenmenge wird schrittweise eine Teilmenge verworfen (F - kein Gesicht), die von der bisherigen Kaskade mit T

(potentiell Gesicht) klassifiziert wurde.

Kaskadierung Viola & Jones 2001

- Für jeden Klassifikator definiere Mindestbedingungen
 - Erkennungsrate (hier: reales Gesicht in T)
 - Falsch Positiv Rate* (hier: nicht Gesicht in T)
- Kaskade → Stufenweise Reduktion der Falsch Positiv Rate (aber Erhöhung der Falsch Negativ Rate und Reduktion der Erkennungsrate)
 - Für 10 Stufen in der Kaskade, einer Erkennungsrate von mindestens 0.99 und einer Falsch Positiv Rate

von höchstens 0.3

erhält man für die Kaskade:

- eine Erkennungsrate von $0.99^{10} \approx 0.9$ und
- eine Falsch Positiv Rate von höchstens 0.3¹⁰ ≈0.000006

(* siehe Folien ML2)

Kaskadierung Viola & Jones 2001

- Für jeden Klassifikator definiere Mindestbedingungen
 - Erkennungsrate (hier: reales Gesicht in T)
 - Falsch Positiv Rate (hier: nicht Gesicht in T)
- Trick 2: Baue die einzelnen Klassifikatoren s.d. die Bedingungen jeweils erfüllt sind
- Methode: Adaboost (iterativ)
 - Kombiniere n einfache Schwellwert-Klassifikatoren anhand der Haarmerkmale
 - Welches n ? (Iteration)
 - Welches sind die besten Merkmale? (Adaboost)

Kaskadierung – nach Viola & Jones


```
begin: D = \{(\vec{x}_1, y_1), ..., (\vec{x}_n, y_n)\},\
        wähle f, F_{sol} – Einzel u. Gesamt – Falsch positiv Rate,
        d Detektionsrate (Erkennungsrate)
while F_i > F_{soll}
                     ← Kaskade
      i = i + 1
      while F_i > fF_{i-1}
                                        AdaBoost-Klassifikator
              n = n + 1
              trainiere h, mit n Merkmalen (AdaBoost)
               bestimme F_i, D_i
       (passe Anzahl und Schwellwerte \theta von h_i an
        um für den Kaskadenklassifikator H<sub>i</sub>,
       die Detektionsrate dD_{i-1} zu erreichen)
```

AdaBoost - nach Viola & Jones

begin:
$$D = \{(\vec{x}_1, y_1), ..., (\vec{x}_n, y_n)\}, W_1(i) = \frac{1}{|P|}, \frac{1}{|N|}$$
 Gewicht pro Bsp., $k = 0$

- 1. do: $k \leftarrow k+1$
- 2. Trainiere für jedes Merkmal f eine Maschine auf D_k ($|D_k|=n$, Bsp. gewählt abh. von $W_k(i)$)

$$h(x) = \begin{cases} 1, pf(x) > p\theta \\ 0 \text{ sonst} \end{cases}, \theta - \text{Schwellwert}, p - Polarität (\pm 1)$$

- 3. Wähle M_k mit kleinstem $E_k \leftarrow$ emp. Fehler von M_k (gewichtet bzgl. $W_k(i)$)
- 4. $\alpha_k \leftarrow \frac{1}{2} \left[\ln((1 E_k) / E_k) \right]$
- 5. $W_{k+1}(i) \leftarrow \frac{W_k(i)}{Z_k} \begin{cases} e^{-\alpha_k}, & \text{wenn } h_k(\vec{x}_i) = y_i \\ e^{\alpha_k}, & \text{wenn } h_k(\vec{x}_i) \neq y_i \end{cases}, \quad Z_k \text{Nomalisier ungskonst}$
- 6. $until: k = k_{max}$

Ergebnis: M_k und $\alpha_k \Rightarrow Ent$ scheidung: $\vec{x} \rightarrow \begin{cases} 1 & \sum_k \alpha_k h_k(\vec{x}) \ge \frac{1}{2} \sum_i \alpha_k \\ 0 & \text{sonst} \end{cases}$

(Frühe) Ergebnisse von Viola Jones

- Datensatz 4916 Gesichter, 10000 nicht Gesichter
- 32 (38) Kaskadenklassifikatoren, 4297 (6060) Merkmale
- Die Teilklassifikatoren der einzelnen Kaskadenstufen haben entsprechend nach AdaBoost – Training:
 - 2 Merkmale 60% "nicht Gesichter" erkannt, 100% Gesicht behalten
 → 40% Falsch Positiv
 - 5 Merkmale 80 % "nicht Gesichter" erkannt, ….
 → 20% Falsch Positiv
 - 20 Merkmale
 - **5**0
 - 100

Heute Training innerhalb

Heute Training innerhalb

Anwendung)

Anwendung)

Ctot:

- Trainigszeit Wochen auf 466MHz, AlphaStation XP900
- Aber Klassifikation 0,067 sec pro Bild (Faktor 10x schneller und definierte "Güte")

PAC - Lernbarkeit

PAC = Probably Approximate Correct

Gegeben: eine Menge X von Instanzen der Länge n

ein Konzept C

ein Hypothesenraum H

eine Lerndatenmenge D

Kann eine korrekte Hypothese aus H, $h(\vec{x}) = c(\vec{x})$, $\forall \vec{x} \in D$ gefunden werden?

- Nein

- aber eine ε - genaue: $E_D(h) \le \varepsilon$, $0 < \varepsilon < \frac{1}{2}$

Approximate Correct

PAC - Lernbarkeit

Kann diese sicher gefunden werden?

- Nein
- aber mit beliebiger Wahrscheinlichkeit

$$1-\delta$$
, $0<\delta<\frac{1}{2}$ Probably

Wie ist das Problem (Finden der Hypothese) lösbar?

- in polynomialer Zeit abh. von:
$$1/\delta$$
, $1/\varepsilon$, n

- mit Speicheraufwand abh. von: C

PAC - Stichprobenkomplexität

Und die Anzahl der benötigten Lerndaten (Stichprobenkomplexität) ist:

$$m \ge \frac{1}{\varepsilon} \left(\ln(\frac{1}{\delta}) + \ln|H| \right)$$

Und was heißt das?

- je größer die gewünschte Sicherheit
- je kleiner der zulässige Fehler
- je größer der Hypothesenraum
- um so größer die Anzahl der benötigten Daten

PAC - Beispiel

Für Hypothesen

- die aus Konjunktionen von
- bis zu 10 Literalen bestehen
- kann mit 95% Sicherheit eine
- Hypothese mit Fehler < 0.1 gefunden werden

Dafür benötigt eine Lernmaschine mindestens

$$m \ge \frac{1}{0.1} \left(\ln(\frac{1}{0.05}) + 10 \ln|3| \right) = 140$$
 $|H| = 3^{10}$

Lernbeispiele

Leider für komplexe Maschinen nicht so leicht

Vapnik-Chervonenkis (VC) Dimension

Eine Menge von Abbildungen (Hypothesen)

 $\{h_{\alpha}: \alpha \in A\}$ definieren den Hypothesenraum H^{α}

Definition (für die Klassifikation):

Die VC Dimension $VC(h_a)$ von H^{α} ist gleich der maximalen Anzahl von Datenpunkten (aus einer Menge S) die von H^{α} beliebig separiert werden können

Vapnik-Chervonenkis (VC) Dimension

Definition (für die Klassifikation):

Eine Abbildung (Hypothese) h separiert die Daten aus S wenn durch h zwei Untermengen definiert werden :

$$\{x | h(x) = 0\} \text{ und } \{x | h(x) = 1\}$$

Beispiel:

Hypothesenraum seien die Hyperebenen aus \mathbb{R}^2 (Geraden) und $S \subset \mathbb{R}^2$

VC Dimension Beispiel

Behauptung:

Maximal 3 Werte können von Geraden separiert werden, wenn alle beliebigen Aufteilungen erlaubt sind

Allgemein: Hyperebene in

 $R^n \Longrightarrow n+1$

separierte Werte

VC Dimension auch erweiterbar auf Regressionsmodelle → Literatur

VC Dimension – Nutzen I

Maß für die Datenkomplexität des Lernens [Blumer et al 1988]

Aussagen über PAC - Stichprobenkomplexität, Anzahl von Lernbeispielen m

$$m \ge \frac{1}{\varepsilon} \left(4 \log_2(2/\delta) + 8VC(h) \log_2(13/\varepsilon) \right)$$

Erheblich bessere Abschätzung, welche auch die Lernmaschine einbezieht

Es gibt weitere Beschränkungen für spezielle Maschinen

VC Dimension – Nutzen II

VC(h) = Maß für die Kapazität von lernenden Maschinen

Vermutung:

Je höher VC(h) um so besser kann die Maschine ein Problem einlernen.

Abschätzung des Testfehlers

Nach Vapnik gilt mit Wahrscheinlichkeit $1-\eta$

$$E(h_{\alpha}) \leq \approx E_{emp}(h_{\alpha}) + \sqrt{\dots \frac{VC(h_{\alpha})}{N}} \dots$$

wobei:

 $VC(h_a)$ – VC-Dimension der lernenden Maschine

N – Anzahl der Lernbeispiele

 $E_{emp}(h_{\alpha})$ – empirischer Fehler abhängig von $VC(h_{\alpha})$ und N

 $\vec{E}(h_{\alpha})$ – realer (zu minimierender) Fehler

Lernerfolg ist abhängig von:

- Kapazität der lernenden Maschine (so gering wie nötig)
- Optimierungsmethode (so gut wie möglich)
- Lernbeispiele (repräsentativ, so viele wie möglich)

Abschätzung des Testfehlers

Minimierung des emp. Fehlers bei:

- VC Dimension (z.B. Topologie bei NN)
 - = konst.
- Anzahl von Trainingsbeispielen
 - = konst,
- Iterative Optimierung

Verhältnis: emp. und realer Fehler

- VC Dimension = veränderlich
- Anzahl von Trainingsbeispielenkonst.

Lösungsansatz: Structural Risk Minimization

Ziel: finde eine Lösung für

$$\min_{H_n}(E_{emp}(h_{\alpha}) + \sqrt{\dots \frac{VC(h_{\alpha})}{N}}\dots)$$

finde $VC(h_a)$ ("Maschine"), N ("Beispiele"), und a ("Minimum des emp. Fehlers")

Ideale Lösung:

- Minimiere Summe (nicht Summanden)
- Strukturiere den Hypothesenraum

$$H^1 \subset H^2 \subset \subset H^n$$
, $VC(h^i_\alpha) \leq VC(h^{i+1}_\alpha)$

- Suche Optimum: das Minimum für $E(h_{\alpha})$

Lösungsansatz: Structural Risk Minimization

Probleme:

- Strukturierung:
 - Berechnung der *VC* Dimension schwer, rechenintensiv, für viele Hypothesenräume unmöglich
- Optimierung:
 - Finden, definieren der Hypothesenräume
 - große Kapazität → kleiner empirischer Fehler
 - geringe Kapazität → größerer Fehler
 - Minimierung von $E_{emp}(h_{\alpha}^{n})$, $\forall H^{n}$

Korrektes Lernen → Gesucht sind geeignete Realisierungen

Zusammenfassung

- Definition des Lernens
- Fehler: empirischer & realer Fehler
- Overfitting
- Modellauswahl (Crossvalidation, Bootstrap, AdaBoost)
- Was ist PAC ?
- Approximation des realen Fehlers nach Vapnik und Chervonenkis
- Wie kann korrektes Lernen erfolgen?

... und wie geht es weiter in ML

Bestimme eine Hypothese h aus Beispielen $\leftarrow \rightarrow$ Finde geeignete Maschine und bestimme optimales Modell M

- Probabilistisch: Schätzen von Wahrscheinlichkeiten
 - Bayes
- im Wesentlichen Empirische Minimierung aber auch mit Struktureller Risikominimierung
 - Entscheidungsbäume
 - Neuronale Netze
- Strukturelle Risikominimierung
 - Support Vector Methoden

Literatur

Tom M. Mitchell: Machine Learning

Tom M. Mitchell - Carnegie Mellon University (CMU) http://www-2.cs.cmu.edu/afs/cs.cmu.edu/project/theo-20/www/mlc/

Duda & Hart: Pattern Classification

V.N. Vapnik: Statistical Learning Theory

P. Viola, M. Jones: Rapid object detection using a boosted cascade of simple features (2001,)

