Теортест-1 (Вариант 76)

Тема – определенный интеграл

Задача 1

Выберите все верные утверждения (множества A и B имеют площадь):

- 1. площадь $A \cup B$ равна сумме площадей A и B;
- 2. площадь одной точки равна нулю;
- 3. площадь графика любой функции равна нулю;
- 4. при движении площадь не меняется;

Пример ввода: 3, 1, 4 (введите "0", если верных утверждений нет)

Задача 2

Выберите все верные утверждения:

- 1. Кусочно-гладкая кривая спрямляема;
- 2. Любая кривая имеет неотрицательную длину;
- 3. Гладкая кривая это кривая, все параметризации которой гладкие;
- 4. Длина замкнутой кривой равна нулю;
- 5. Длины противоположных путей равны;

Пример ввода: 3, 1, 4 (введите "0", если верных утверждений нет)

Задача 3

Пусть f(x) определена на отрезке [a,b]. Выберите все верные утверждения:

- 1. Если f имеет первообразную на [a, b], то она интегрируема на [a, b];
- 2. Если f интегрируема на [a, b], то она имеет первообразную на [a, b];
- 3. Если f имеет конечное число точек разрыва на [a,b], то она интегрируема на [a,b];
- 4. Если f ограничена на [a, b], то она интегрируема на [a, b];

Задача 4

Пусть f(x), x(t) – дифференцирумые функции. Выберите все верные утверждения (при соответствующей замене) :

- 1. $\int f(x^2)dx = 2 \int f(t)tdt$;
- 2. $\int f(\sqrt{x})dx = 2 \int f(t)\sqrt{t}dt$;
- 3. $\int f(x)dx = \int \frac{f(\ln t)}{t}dt$;
- 4. $\int f(x)d(2x) = \int \frac{f(\sqrt{t})}{\sqrt{t}}dt;$

Пример ввода: 3, 1, 4 (введите "0", если верных утверждений нет)

Задача 5

Пусть f интегрируема и $f \ge 0$ на [a,b]. Выберите все достаточные условия для того, чтобы $\int_a^b f(x) dx > 0$:

- 1. f((a+b)/2) = 1;
- 2. f непрерывна на [a, b] и f(a + b) = 1;
- 3. f возрастает (нестрого) на [a, b] и f(b) = 1;
- 4. f непрерывна в точке a и f(b) = 1;

Пример ввода: 3, 1, 4 (введите "0", если верных утверждений нет)

Задача 6

Функция $f\in R[0,10]$ и $-1\leq f(x)\leq 10$ на [0,10]. Выберите отрезки, содержащие значение интеграла $\int_e^{e^3} \frac{f(x)}{x} dx$:

- 1. [-1, 10];
- 2. [-2, 20];
- 3. [-1, 20];
- 4. [0, 10];

Задача 7

Выберите все функции, имеющие дробно-рациональные первообразные:

- 1. $\frac{x^4}{x^2-1}$;
- 2. $\frac{2x+1}{x^2+x+1}$;
- 3. $\frac{x^3-3(x-1)^2}{(x-1)^3}$;
- 4. $\frac{x^4}{(x^5+1)^3}$;

Пример ввода: 3, 1, 4 (введите "0", если верных утверждений нет)

Задача 8

Пусть функция u=u(x) – первообразная для функции v=v(x) на [a,b]. Выберите все верные на [a,b] утверждения (C – произвольная постоянная):

- 1. v' = u + C;
- 2. u = v':
- 3. v = u' + C;
- 4. v = u';

Пример ввода: 3, 1, 4 (введите "0", если верных утверждений нет)

Задача 9

Пусть $f:[a,b]\to\mathbb{R};\ \sigma_{\tau}(\xi)$ — интегральная сумма для f, построенная по разбиению τ с оснащением $\xi;s_{\tau},S_{\tau}$ — нижняя и верхняя суммы Дарбу. Выберите все верные утверждения:

3

- 1. $\forall \tau \ \exists \xi \colon S_{\tau} = \sigma_{\tau}(\xi);$
- 2. $\forall \tau \ \forall \varepsilon > 0 \ \exists \xi \colon \sigma_{\tau}(\xi) > S_{\tau} \varepsilon;$
- 3. $\forall \tau \ \forall \varepsilon > 0 \ \exists \xi : \ \sigma_{\tau}(\xi) > S_{\tau} + \varepsilon;$
- 4. $\forall \tau \ \forall \varepsilon > 0 \ \exists \xi : \ \sigma_{\tau}(\xi) < s_{\tau} + \varepsilon;$

Задача 10

Пусть $f \in R[a,b], F(x) = \int_a^x f(t) dt.$ Выберите все верные утверждения:

- 1. F непрерывна на [a, b];
- 2. F имеет разрывы в точках разрыва функции f;
- 3. $\int_{a}^{b} f(x)dx = F(b) F(a);$
- 4. F первообразная для f на [a,b];