SC1015 Mini Project

B137 Team 4

Puah Rong Qi (U2221477H) Kiersten Yeo Shu Xian (U2220969G) Manasarow Gunasekaran (U2222761C)

MOTIVATION

01

PROBLEM

- When issuing credit cards, the personal information of applicants is used to decide whether they should be issued a credit card
- One important factor is the applicant's loan payment history

Which variable affects a person's ability to pay off loans on time the most?

DATASET

DATA PREPARATION

DATA PREPARATION

Changed all the values of the variable 'STATUS' to numbers

DATA PREPARATION

NULL values

Filled up NULL values in 'OCCUPATION_TYPE'

```
# Filling the NULL values in Occupation Type in ar
ar['OCCUPATION_TYPE'].fillna(value="NA", inplace= True)
```

'ID'

Combined rows with the same IDs

```
# Combining all the repeated IDs and averaging out STATUS
cr = cr.groupby(['ID'])['STATUS'].agg('mean')
```

Two CSV files

Merged the two dataframes, removed IDs not in both files

```
# Merging the 2 dataframes and removing all different IDs
merged_df = pd.merge(cr, ar, on="ID", how="inner")
# Rounding up STATUS to whole nummber
merged_df["STATUS"] = np.ceil(merged_df["STATUS"])
```

EXPLORATORY DATA ANALYSIS

VARIABLE SELECTION 1

KEEP

- Total income
- Education type
- Marital status
- Employment status
- Occupation type
- Number of family members
- ☐ Gender
- Number of children
- Housing type
- ☐ Income type

REMOVE

- Car ownership
- Property ownership
- Birthday
- ☐ Phone ownership
- Email ownership
- ☐ Mobile phone ownership
- ☐ Work phone ownership

CATEGORICAL PLOT

Number of Family Members

Education Type

CHI-SQUARED TEST

```
create a contingency table of counts
cont table = pd.crosstab(merged df["STATUS"], merged df["OCCUPATION TYPE"])
# perform chi-square test
chi2, p val, dof, exp freq = stats.chi2 contingency(cont table)
# print results
print("Chi-square test results:")
print(f"Chi-square statistic: {chi2:.2f}")
print(f"P-value: {p val:.4f}")
print(f"Degrees of freedom: {dof}")
print("Expected frequencies:")
print(exp freq)
Chi-square test results:
Chi-square statistic: 41.85
P-value: 0.0012
Degrees of freedom: 18
Expected frequencies:
[[1.51648655e+02 6.73315138e+01 8.00401843e+01 4.38815728e+02
  2.61260938e+02 1.03868941e+01 1.69000878e+02 7.33192528e+00
  7.58976465e+02 2.13847821e+01 3.68062649e+02 1.47493897e+02
  1.38365650e+03 4.20363716e+01 9.65370162e+00 4.25862660e+02
  1.84520120e+01 7.23416628e+01 2.12625833e+01]
 [1.08935135e+03 4.83668486e+02 5.74959816e+02 3.15218427e+03
  1.87673906e+03 7.46131059e+01 1.21399912e+03 5.26680747e+01
  5.45202353e+03 1.53615218e+02 2.64393735e+03 1.05950610e+03
  9.93934350e+03 3.01963628e+02 6.93462984e+01 3.05913734e+03
  1.32547988e+02 5.19658337e+02 1.52737417e+02]]
```

Occupation Type

Total Income

```
# create a contingency table of counts
cont table = pd.crosstab(merged df["STATUS"], merged df["Income Range"])
# perform chi-square test
chi2, p val, dof, exp freq = stats.chi2 contingency(cont table)
# print results
print("Chi-square test results:")
print(f"Chi-square statistic: {chi2:.2f}")
print(f"P-value: {p val:.4f}")
print(f"Degrees of freedom: {dof}")
print("Expected frequencies:")
print(exp frea)
Chi-square test results:
Chi-square statistic: 19.48
P-value: 0.0016
Degrees of freedom: 5
Expected frequencies:
[[ 38.84111806 576.56675248 1238.55976462 926.98381758 831.39352703
   335.65502023]
 282.15888194 4188.43324752 8997.44023538 6734.01618242 6039.60647297
  2438.3449797711
```

VARIABLE SELECTION 2

KEEP

- Total income
- Occupation type
- Education type
- Number of family members

REMOVE

- Gender
- Car ownership
- ☐ Property ownership
- ☐ Number of children
- ☐ Income type
- Marital status
- Housing type
- Birthday
- Employment status
- Phone ownership
- Email ownership
- Mobile phone ownership
- Work phone ownership

MACHINE LEARNING

TARGET ENCODING

Used to convert categorical variables to numerical variables

```
# Use target encoder to encode the non-numerical columns
# Define the target encoder with smoothing to avoid overfitting
encoder = ce.TargetEncoder(cols=["NAME INCOME TYPE", "NAME EDUCATION TYPE", "NAME FAMILY STATUS", "NAME HOUSING TYPE",
                                 "OCCUPATION TYPE", "CODE GENDER", "FLAG OWN CAR", "FLAG OWN REALTY"], smoothing=0.2)
print("Converted non-numerical columns to numerical columns using target encoder with smoothing")
# Fit and transform the encoder on the data
merged df = encoder.fit transform(merged df, merged df["STATUS"])
# Show number of numerical and non-numerical columns in the dataframe
print("\n[POST CONVERSION]\n Number of numerical columns: {}".format(merged df.select dtypes(include=np.number).shape[1]))
print("\n[POST CONVERSION]\n Number of non-numerical columns: {}".format(merged df.select dtypes(exclude=np.number).shape[1]))
Converted non-numerical columns to numerical columns using target encoder with smoothing
[POST CONVERSION]
 Number of numerical columns: 19
[POST CONVERSION]
 Number of non-numerical columns: 1
```

DECISION TREE

- Classify cases into groups
- ☐ Identify relationships between categories and variables
- ☐ Can show the relationships of several variables and STATUS

UPSCALING

- Initially had a high False Positive rate due to the data for SAMPLE being skewed
- To balance it, we upscaled the data

```
Upscale Bad to match Good
from sklearn.utils import resample
creditBad = merged df[merged df.STATUS == 1]
creditGood = merged_df[merged_df.STATUS == 0]
# Upscale the good samples
creditgood up = resample(creditGood,
                        replace=True,
                        n samples=creditBad.shape[0])
# Combine the two classes back after upsampling
scaled df = pd.concat([creditBad, creditgood up])
# Check the ratio of the classes
scaled df['STATUS'].value counts()
       32002
0.0
       32002
Name: STATUS, dtype: int64
```

UPSCALING

RANDOM FOREST

- Builds several decision trees using different samples from the data
- Takes the majority for classification, average for regression

GRIDSEARCH CROSS-VALIDATION

- Used to find the optimal values for hyperparameters
- Using hyperparameters best suited to the model helps to increase the model's accuracy

RandomForestClassifier(max_depth=21, n_estimators=500)
0.5983409389822494

05 INSIGHTS

The variable that affects a person's ability to pay off loans on time the most is TOTAL INCOME.

NEW TOOLS AND TECHNIQUES

.MERGE

Used to merge two dataframes together

UPSCALE

Used to balance skewed data

MACHINE LEARNING

Random Forest, GridSearchCV

Best model for our problem: Random Forest with <u>GridSearchCV</u>

RECOMMENDATIONS

DECISION TREE

RANDOM FOREST

RECOMMENDATIONS

DECISION TREE

Single model

Searches for the locally optimal

solution at each step

RANDOM FOREST

Multiple models

More likely to find the globally

optimal solution

RECOMMENDATIONS

USE MORE VARIABLES

Collecting data on other variables (eg: financial indicators) could improve accuracy

OTHER MACHINE LEARNING MODELS

Advanced models (eg: neural networks) may be better suited to solve this problem

REFERENCES

- □ Database:
 https://www.kaggle.com/datasets/rikdifos/credit-card-approval-prediction?select=credit_record.csv
- Decision Tree: https://www.ibm.com/docs/en/spss-statistics/25.0.0?topic=trees-creating-decision
- Random Forest: https://www.analyticsvidhya.com/blog/2021/06/understanding-random-forest/
- ☐ GridSearchCV: https://www.mygreatlearning.com/blog/gridsearchcv/
- Comparing Decision Tree and Random Forest:
 https://vitalflux.com/differences-between-decision-tree-random-forest/#:~:text=Random-forest/#:~:te