NLP + Transformer

성균관대학교 소프트웨어학과 이 지 형

Example

I read an interesting \rightarrow book

Training Data

Crawled Text

I read an interesting book. It was about the life of a famous scientist who made groundbreaking discoveries in the field of biology. The book provided a detailed account of his experiments, challenges, and triumphs. I was particularly fascinated by how his persistence and dedication led to significant advancements in science. It was an inspiring read, and I learned a lot about the scientific process and the importance of never giving up.

Training Data

```
(NA NA NA I → read)
(NA NA I read → an)
(NA I read an → interesting)
(I read an interesting → book)
(read an interesting book → .)
(an interesting book → It)
(interesting book It → was)
(book It was → about)
...
```

How to Handle Texts

I read an interesting \rightarrow book

How to Handle Texts

How to Handle Texts

How to Handle Texts

Representation, Embedding

Values in non-Euclidean space

Values in Euclidean space

Attention Mechanism

성균관대학교 소프트웨어학과 이 지 형

Word Representation

Enough? Embedding Layer

Word Representation

- Words have their own meanings independently
- But in a sentence, they often take on different, more specific meanings depending on context.
- Let's represent a word by blending it with other words in the sentence
- → This leads to the concept of Attention

Attention Mechanism

Overview

Context Consideration

Generating Word Representation with Context

word
$$= s_1 \times \boxed{\text{word I}} + s_2 \times \boxed{\text{word 2}} + \dots + s_n \times \boxed{\text{word n}}$$

Context Consideration

- Generating Word Representation with Context
 - Example

Context Consideration

- Generating Word Representation with Context
 - Example

Self-Attention

Context: The words in the same sentence

Self-Attention

Context: The words in the same sentence

Cross-Attention

Context: The words in the other sentence

Cross-Attention

Context: The words in the other sentence

Cross-Attention

Transformer, BERT, and GPT

성균관대학교 소프트웨어학과 이 지 형

Transformer Encoder

- Structure
 - Self-Attention + Multi-Head + Position Encoding+ Feed forwad NN layer
- More Sophisticated Semantic Processing

Transformer Encoder

Word Representation Reflecting Sentence-Level Semantic

- BERT (Bidirectional Encoder Representations from Transformers)
- A powerful language understanding model
- Developed by Google in 2018
- Generating
 - Word Representations Highly Processed considering Context
 - Sentence Representation
- Pretrained Models
 - ▶ KoBERT (by SKT): 한국어 위키백과 + 뉴스 기사로 학습됨
 - KorBERT (by ETRI)

Structure: CLS token + Transformer Encoders

Usage of CLS token

- Text classification
 - Spam detection
 - News categorization
- Sentiment analysis
 - "I absolutely loved this product!" → Positive
 - The service was terrible and slow." → Negative
- Semantic similarity
 - Two sentences have similar meaning or not

- Usage of Word Representation
 - ▶ Named Entity Recognition (NER): 고유명사 찾기
 - "Apple released a new product." → O, X, X, X
 - ▶ Part-of-Speech Tagging: 품사 찾기
 - "Apple released a new product" → noun, verb, article, adjective, noun
 - Semantic Role Labeling: 문법적 역할 찾기
 - → "Apple released a new product" → subject, action, object

- Example: Sentiment Analysis
 - ▶ CLS 토근에 NN layer를 붙인 후에
 - ▶ 데이터를 이용하여 Fine-Tuning

이 제품 정말 좋아요.→ 긍정 배송이 너무 느려요 → 부정 생각보다 괜찮았어요 → 긍정 기대 이하입니다 → 부정 가성비 최고 → 긍정 디자인 진짜 별로 → 부정

GPT Model

Word Generation

GPT Model

Transformer Encoder + Fully-Connected Layer

GPT Model

Example: English to Korean Translation

I go to school → 나는
I to to school 나는 → 학교에
I to to school 나는 학교에 → 갑니다
A bird is flying → 새가
A bird is flying 새가 → 날고
A bird is flying 새가 날고 → 있어요

Transformer

Original Version

Output

Transformer

Question and Answer