REPORT S11/L2

Cisco CyberOps 2

Traccia

Utilizzo di Wireshark per Osservare la Stretta di Mano TCP a 3 Vie.

- Parte 1: Preparare gli host per catturare il traffico
- Parte 2: Analizzare i pacchetti utilizzando Wireshark
- Parte 3: Visualizzare i pacchetti utilizzando tcpdump

Svolgimento

In questo laboratorio, utilizzerai Wireshark per acquisire ed esaminare i pacchetti generati tra il browser del PC e un server Web, utilizzando il protocollo HTTP (HyperText Transfer Protocol). Quando un'applicazione, che usa HTTP o FTP, comunnica per la prima volta su un host, viene usata la stretta di mano a tre vie (3way handshake) per stabilire una sessione TCP affidabile tra i due host. Ad esempio, quando un PC utilizza un browser Web per navigare in Internet, viene avviata una stretta di mano a tre vie e viene stabilita una sessione tra l'host del PC e il server Web. Un PC può avere sessioni TCP multiple, simultanee e attive con vari siti Web.

Parte 1: Preparare gli host per catturare il traffico

Avviamo la CyberOps VM. Ci logghiamo con username analyst e password cyberops.

Avviamo Miniet tramite il comando sudo lab.support.files/scripts/cyberops_topo.py

Avviamo gli host H1 e H4 in Miniet con i ocmandi xterm H1 e xterm H4

Avviamo il web server sul nodo H4:

/home/analyst/lab.support.files/scripts/reg_server_start.sh

Per ragioni di sicurezza non possiamo avviare firefox con l'utente root, pertanto sul nodo H1 diamo il comando *su analyst* per switchare utente, poi avviamo il browser con il comando *firefox* &

```
"Node: H1"

[root@secOps analyst]# su analyst

[analyst@secOps "]$ firefox &

[1] 823

[analyst@secOps "]$ ||
```

Dopo l'apertura della finestra di Firefox, avviamo una sessione tcpdump nel terminale H1 e inviamo l'output a un file chiamato capture.pcap. Con l'opzione -v (verbose), possiamo guardare i progressi. Questa acquisizione si interromperà dopo aver acquisito 50 pacchetti, poiché è configurata con l'opzione -c 50.

```
[analyst@secOps "]$ sudo tcpdump -i H1-eth0 -v -c 50 -w /home/analyst/capture.p cap tcpdump: listening on H1-eth0, link-type EN10MB (Ethernet), capture size 262144 bytes 50 packets captured 53 packets received by filter 0 packets dropped by kernel
```

Dopo l'avvio di tcpdump, navighiamo rapidamente fino all'indirizzo 172.16.0.40 nel browser Web Firefox.

(i) 172,16,0,40

Welcome to nginx!

If you see this page, the nginx web server is successfully installed and working. Further configuration is required.

For online documentation and support please refer to <u>nginx.org</u>. Commercial support is available at <u>nginx.com</u>.

Thank you for using nginx.

Parte 2: Analizzare i pacchetti utilizzando Wireshark

Passaggio 1: applicare un filtro all'acquisizione salvata.

Avviamo Wireshark sul nodo H1. Premiamo OK quando richiesto dall'avviso relativo all'esecuzione di Wireshark come superutente.

Apriamo ora il file che abbiamo salvato nella Parte 1 e applichiamo il filtro tcp per visualizzare solo i pacchetti scambiati con quel protocollo

Passaggio 2: esaminare le informazioni all'interno dei pacchetti, inclusi indirizzi IP, numeri di porta TCP e flag di controllo TCP.

In questo esempio, il pacchetto 1 è l'inizio della stretta di mano a tre vie tra il PC e il server su H4. Nel riquadro dell'elenco dei pacchetti (sezione superiore della finestra principale), selezionare il primo pacchetto, espandiamo la tendina del menu **Transmission Control Protocol**

Ora espandiamo anche il menu a tendina delle Flags e vediamo Un valore pari a 1. Questo indica che la bandiera è impostata in questo pacchetto.

```
▼ Flags: 0x002 (SYN)

000. ....... = Reserved: Not set
..... 0...... = Nonce: Not set
..... 0..... = Congestion Window Reduced (CWR): Not set
..... 0..... = ECN-Echo: Not set
..... 0.... = Urgent: Not set
..... 0.... = Acknowledgment: Not set
..... 0.... = Push: Not set
..... 0... = Reset: Not set
..... 1. = Syn: Set
```

Riportiamo inoltre che la porta si origine è la 46104 e quella di destinazione ovviamente la 80, avendo usato il protocollo HTTP. La bandiera inoltre è impostata su **SYN**.

Ripetendo queste stesse operazioni per i successivi due pacchetti vediamo che il secondo riporta la bandiera **SYN**, **ACK** e il terzo è **ACK**.

Parte 3: Visualizza i pacchetti usando tcpdump

Ora analizziamo i pacchetti tramite tcpdump. Avviamolo da una nuova finestra del terminale, e diamo il comando *tcpdump –r /home/analyst/capture.pcap –c 3*

```
[analyst@secOps ~] $ tcpdump -r /home/analyst/capture.pcap -c 3
reading from file /home/analyst/capture.pcap, link-type EN10MB (Ethernet)
09:19:24.247105 IP 10.0.0.11.55330 > 209-165-200-235.got.net.domain: 51146+ A? getpocket.cdn.mozilla.net. (43)
09:19:24.247154 IP 10.0.0.11.55330 > 209-165-200-235.got.net.domain: 42970+ AAAA? getpocket.cdn.mozilla.net. (43)
09:19:25.032366 IP 10.0.0.11.44916 > 209-165-200-235.got.net.domain: 23982+ A? www.google.com. (32)
[analyst@secOps ~]$
```

Vediamo quindi, nelle 3 righe risultanti i tre pacchetti corrispondenti al 3way handshake, che abbiamo sopra analizzato con wireshark.