SOHCAHTOA

A way of remembering how to compute the **sine**, **cosine**, and **tangent** of an **angle**.

SOH stands for **Sine** equals **Opposite** over **Hypotenuse**.

CAH stands for Cosine equals Adjacent over Hypotenuse.

TOA stands for Tangent equals Opposite over Adjacent.

SOH
$$\sin \alpha = \frac{Opposite}{Hypotenuse} = \frac{opp}{hyp}$$
CAH
$$\cos \alpha = \frac{Adjacent}{Hypotenuse} = \frac{adj}{hyp}$$
TOA
$$\tan \alpha = \frac{opposite}{adjacent} = \frac{opp}{adj} = \frac{\sin \theta}{\cos \theta}$$

$$\cot \alpha = \frac{adj}{opp} = \frac{\cos \alpha}{\sin \alpha} = \frac{1}{\tan \alpha}$$

$$\sec \alpha = \frac{hyp}{adj} = \frac{1}{\cos \alpha}$$

$$\csc \alpha = \frac{hyp}{opp} = \frac{1}{\sin \alpha}$$

Angle θ in <i>degree</i>	Angle θ in <i>radian</i>	$sin \theta$	$\cos \theta$	tan θ	$cot \ \theta$	$sec \theta$	$csc \theta$
0°	0	0	1	0	∞ (undefined)	1	∞ (undefined)
30°	π/6	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{3}}{3}$	$\sqrt{3}$	$\frac{2\sqrt{3}}{3}$	2
45°	$\pi/4$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2}$	1	1	$\sqrt{2}$	$\sqrt{2}$
60°	$\pi/3$	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$	$\sqrt{3}$	$\frac{\sqrt{3}}{3}$	2	$\frac{2\sqrt{3}}{3}$
90°	$\pi/2$	1	0	$\pm \infty$	0	$\pm \infty$	1
120°	$2\pi/3$	$\frac{\sqrt{3}}{2}$	$-\frac{1}{2}$	$-\sqrt{3}$	$-\frac{\sqrt{3}}{3}$	-2	$\frac{2\sqrt{3}}{3}$
135°	$3\pi/4$	$\frac{\sqrt{2}}{2}$	$-\frac{\sqrt{2}}{2}$	-1	-1	$-\sqrt{2}$	$\sqrt{2}$
150°	5π/6	$\frac{1}{2}$	$-\frac{\sqrt{3}}{2}$	$-\frac{\sqrt{3}}{3}$	$-\sqrt{3}$	$-\frac{2\sqrt{3}}{3}$	2
180°	π	0	-1	0	± ∞	-1	$\pm \infty$

Function	Domain $(n \in \mathbb{Z})$	Range	I	II	III	IV
$y = \sin t$	$\{t \mid -\infty < t < \infty\}$	$-1 \le y \le 1$	+	+	_	_
y = cos t	$\{t \mid -\infty < t < \infty\}$	$-1 \le y \le 1$	+	1	v	+
y = tan t	$\{t \mid -\infty < t < \infty, \ t \neq (2n+1) \ \pi/2\}$	$-\infty < y < \infty$	+	1	+	_
$y = \cot t$	$\{t \mid -\infty < t < \infty, t \neq n\pi\}$	$-\infty < y < \infty$	+	1	+	_
y = csc t	$\{t \mid -\infty < t < \infty, t \neq n\pi\}$	$y \le -1, y \ge 1$	+	+	_	_
y = sec t		$y \le -1, y \ge 1$	+	_	_	+

	sin	cos
0°	0	4
30°	1	3
45°	2	2
60°	3	1
90°	4	0

0°	$\frac{0}{4}$	$\frac{4}{4}$
30°	$\frac{1}{4}$	$\frac{3}{4}$
45°	<u>2</u> 4	<u>2</u> 4
60°	<u>3</u>	$\frac{1}{4}$
90°	$\frac{4}{4}$	$\frac{0}{4}$

0°	$\sqrt{\frac{0}{4}}$	$\sqrt{\frac{4}{4}}$
30°	$\sqrt{\frac{1}{4}}$	$\sqrt{\frac{3}{4}}$
45°	$\sqrt{\frac{2}{4}}$	$\sqrt{\frac{2}{4}}$
60°	$\sqrt{\frac{3}{4}}$	$\sqrt{\frac{1}{4}}$
90°	$\sqrt{\frac{4}{4}}$	$\sqrt{\frac{0}{4}}$

	sin	cos
0°	0	1
30°	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$
45°	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2}$
60°	$\frac{\sqrt{3}}{2}$	1/2
90°	1	0

The Basic Graphs of the Six Trigonometric Functions

Domain: All real numbers

Range: [-1, 1]Period: 2π Amplitude: 1

Domain: All real numbers except $x = k\pi$

Range: $(-\infty, -1] \cup [1, \infty)$

Period: 2π

Amplitude: Not defined

Asymptotes: $x = k\pi$

Domain: All real numbers

Range: [-1, 1]Period: 2π Amplitude: 1

Domain: All real numbers except $x = \frac{\pi}{2} + k\pi$

Range: $(-\infty, -1] \cup [1, \infty)$

Period: 2π

Amplitude: Not defined

Asymptotes: $x = \frac{\pi}{2} + k\pi$

Range: All real numbers

Period: π

Amplitude: Not defined

Asymptotes: $x = \frac{\pi}{2} + k\pi$

Domain: All real numbers except $x = k\pi$

Range: All real numbers

Period: π

Amplitude: Not defined

Asymptotes: $x = k\pi$

