Hemolytic Anemias

Objectives

- Understand mechanisms of hemolysis due to antibodies
- Compare and contrast pathophysiology and laboratory findings for hemolytic anemias due to
 - Membrane Defects
 - Enzyme Deficiencies
 - Immune Defects
 - Nonimmune Defects

Mechanisms of Ab Hemolysis

- Intravascular or extravascular Ab hemolysis depends on
 - Class of Ab
 - Ability to fully activate complement cascade
- Based on whether IgM, IgG, and/or complement are present on RBC
 - IgG-mediated
 - Complement-mediated
 - IgM-mediated

Mechanisms of Ab Hemolysis

- Extravascular hemolysis
 - Most common
 - RBC sensitized with Ab or complement
 - Removed by RES
- Intravascular hemolysis
 - Complement cascade activated → RBC lysis

IgG Mediated Hemolysis

- IgG Ab attaches to RBC membrane Ag's
- Macrophages of RES pits the Ag/Ab complex
 - Or culls the RBC
- Pitted scenario
 - RBC membrane reseals itself
 - Repeated splenic passage continues to lose membrane
 - forms spherocyte
 - Phagocytized by splenic macrophages

Complement Mediated Hemolysis

- Role of complement cascade
 - Sensitization (partial activation of complement on RBC)
 - Lysis of RBCs (full activation on RBC)
- Initiated by Ag/Ab reaction
 - IgM (activation more efficient, requires one IgM)
 - IgG (activation less efficient, requires two IgG)
- Activation ends with membrane attack complex (MAC)
 - Lytic attack to RBC membrane

IgM Mediated Hemolysis

- Macrophages do not recognize IgM
- Efficient activator of complement
 - Full activation = intravascular hemolysis
 - Partial activation = extravascular hemolysis

Laboratory Detection

- Sensitized RBC's serologically detected
 - DAT (direct antiglobulin test)
 - Polyspecific AHG (antihuman globulin)
 - anti-IgG + anti-C3 (complement)
 - Monospecific AHG
 - anti-IgG
 - anti-C3

Membrane Defects

Membrane Defects

- Hereditary Spherocytosis (HS)
- Hereditary Elliptocytosis (HE)
 - Hereditary Pyropoikilocytosis (HPP)
- Overhydrated Hereditary Stomatocytosis (OHS)
- Dehydrated Hereditary Stomatocytosis (DHS)
- Acanthocytosis
- Paroxysmal Nocturnal Hemoglobinuria (PNH)

Hereditary Spherocytosis

- Disorder of vertical protein interactions
 - Combined deficiency of spectrin and ankyrin
 - Weakening of vertical connections
 - Uncoupling between inner membrane skeleton and outer lipid bilayer
 - Shedding of lipid bilayer, forms microvesicles

Hereditary Spherocytosis

- Hgb and MCV N or \downarrow
- MCHC > 36 g/dL (characteristic)
- † serum bilirubin, \ haptoglobin
- Osmotic fragility +
- Autohemolysis test +
- Antihuman globulin test (DAT) -

Hereditary Elliptocytosis

- Defect in horizontal skeletal proteins
 - — ↓ association of spectrin dimers to form tetramers
 - Deficiency or defect in band 4.1
 - Abnormalities of the integral proteins

Hereditary Elliptocytosis

- Elliptocytes > 25%, usually > 60%
- Asymptomatic variants
 - Hgb levels usually > 12 g/dL
 - Reticulocyte mildly elevated
- Hemolytic HE variants
 - Hb 9-10 g/dL
 - Reticulocyte as high as 20%
 - Microelliptocytes, bizarre poikilocytes, schistocytes, spherocytes

Hereditary Pyropoikilocytosis

- Severe subtype of HE
- Two defects (one from each parent)
 - Deficiency of α -spectrin
 - Mutant spectrin
- Defects cause
 - Disruption of the membrane skeletal lattice
 - RBC destabilization → fragmentation and poikilocytes

Hereditary Pyropoikilocytosis

- Striking poikilocytes
 - Budding, fragments, microspherocytes,
 elliptocytes, triangulocytes, bizarre forms
- MCV ↓ 25–55 fL due to RBC fragments
- Osmotic fragility +
 - Abnormal especially after incubation
- Thermal sensitivity test
 - Normal cells fragment at 49–50°C
 - HPP cells fragment at 45–46°C

Hereditary Stomatocytosis

- Overhydrated Hereditary Stomatocytosis
 - Abnormally permeable to Na+ and K+
 - Intracellular concentration of cations increase
 - Stomatocytes
- Dehydrated Hereditary Stomatocytosis
 - Net loss of K+ exceeds net gain of Na+
 - Targeted, contracted, or spiculated

Hereditary Stomatocytosis

- Overhydrated Hereditary Stomatocytosis
 - → MCHC, ↑ MCV
 - 10–50% stomatocytes
 - — ↑ osmotic fragility and autohemolysis
- Dehydrated Hereditary Stomatocytosis
 - Target cells, RBCs with Hb puddled at periphery
 - Slight ↑ MCV, ↑ MCHC (can be >37 g/dL)
 - → osmotic fragility

Acanthocytosis

- Abnormalities of lipid membrane
 - Acquired or hereditary
 - Liver disease
 - Spur cell Anemia (↑ C:P, excess cholesterol)
 - Abetalipoproteinemia († C:P, decrease phospholipids)
- Concentration of plasma lipids increase
 - RBCs acquire excess lipids
 - Expand RBC membrane
 - Target cells, acanthocytes, echinocytes

Acanthocytosis

- Moderate to severe normocytic/normochromic anemia
- Hb 5–10 g/dL, reticulocytes 5–15%
- 20–80% acanthocytes
- May see spherocytes and echinocytes
- Normal permeability = normal osmotic fragility
- † autohemolysis at 48 hrs
- † unconjugated bilirubin, liver enzymes

PNH

- RBC abnormally sensitive to lysis by complement
- Acquired stem cell somatic mutation
 - RBCs, platelets, neutrophils
 - Bind abnormally large amounts of complement
 - Abnormally sensitive to complement lysis
- Deficient on PNH cells
 - CD55 (DAF = decay accelerating factor)
 - CD59 (MIRL = membrane inhibitor of reactive lysis)

PNH

- Pancytopenia
- Normocytic or macrocytic anemia
- Reticulocyte count 5–10%
- Normal osmotic fragility
- Autohemolysis † after 48 hours
 - Addition of glucose hemolysis ↑
- Immunophenotyping
 - CD55, CD59

Enzyme Deficiencies

Enzyme Deficiencies

- Glucose-6-phosphate dehydrogenase (G6PD)
 - Most common
 - Affects hexose monophosphate shunt
- Pyruvate kinase (PK)
 - Second most common
 - Affects glycolytic pathway (Embden-Meyerhof)

Hexose Monophosphate Shunt

- Catabolizes 10% of glucose
- Maintains adequate levels of reduced glutathione, GSH
 - Protects RBC from oxidant damage
 - Maintains HB in the reduced functional state
 - Nonreduced → Heinz bodies
- GSH levels maintained by G6PD
 - G6PD reduces NADP → NADPH

G6PD Deficiency

- X-linked inheritance
 - Fully expressed in males
 - Only in females with homozygous inheritance
- G6PD deficiency
 - Generation of NADPH and GSH impaired
 - Cellular oxidants accumulate ↓ Hgb solubility
 - Heinz bodies (supravital stain)
- Acute acquired
 - Favism (fava beans), infection, drug-induced

G6PD Deficiency

- Post hemolytic episode
 - Reticulocytosis: 4–35%
 - 5x more activity = $N-\uparrow GSH$
 - Bite cells, blister cells, spherocytes
- Definitive diagnosis
 - Demonstrate a ↓ in erythrocytic G6PD activity
 - Perform assays 2–3 months after hemolytic episode

Embden-Meyerhof

- Maintains adequate levels of ATP for
 - Active cation transport across the cell membrane
 - Maintaining membrane deformability
 - Maintaining RBCs' bioconcave shape
- Rapoport-Luebering shunt
 - Maintains 2,3-BPG levels
 - Stimulates O2 delivery to tissues

PK Deficiency

- Pyruvate kinase
 - Conversion of ADP to ATP
- PK deficiency (block in glycolysis)
 - → ↓ ATP production
 - Cell membrane damage
 - Failure of cation pump = loss of Na+, K+, gain Ca++
 - Cell dehydration (echinocytes, target cells)
- Accompanied by $2-3x \uparrow 2,3-BPG$

PK Deficiency

- Normocytic/normochromic anemia
- Reticulocytosis from 2–15%
- Fluorescent screening test
 - RBCs incubated with PEP, LD, ADP, NADH
 - PEP + ADP \rightarrow (PK) \rightarrow Pyruvate + ATP
 - Pyruvate + NADH + H + \rightarrow (LD) \rightarrow Lactate +NAD+
 - Based on disappearance of fluorescence

Immune Defects

Immune Defects

- Immune hemolytic anemia (IHA)
 - Autoimmune hemolytic anemia (AIHA)
 - Paroxysmal Cold Hemoglobinuria
 - Drug-induced hemolytic anemia
 - Immune response to drug-induced alteration of RBC
 - Alloimmune hemolytic anemia
 - Transfusion reactions
 - Hemolytic Disease of the Fetus and Newborn (HDFN)
 - ABO, Rh incompatibilities

Autoimmune Hemolytic Anemia

- Defects in regulation of immune tolerance against self
 - Genetic predisposition
 - Exposure to infectious agents (molecular mimicry)
- Warm AIHA
 - Optimal reactivity at 37°C
 - Usually IgG
- Cold AIHA
 - Optimal reactivity < 37°C
 - Usually IgM

Warm AIHA

- ~ 70% of cases AIHA
- Most Abs react with "Rh protein" complex
- Most hemolysis is extravascular
- Moderate to severe normocytic/normochromic anemia
- Reticulocytosis, nRBCs, spherocytes, schistocytes
- + DAT (direct antiglobulin test)
 - + polyspecific AHG and anti-IgG monospecific AHG
 - 30% + anti-C3

Cold AIHA

- ~ 16-30% of cases AIHA
- Most Abs react with I/i Ag's
- Most hemolysis due to complement-mediated lysis
- Mild to moderate normocytic/normochromic anemia
- RBC clumps, reticulocytosis, nRBCs, spherocytes, schistocytes
- + DAT (direct antiglobulin test)
 - + polyspecific AHG and anti-C3 monospecific

Paroxysmal Cold Hemoglobinuria

- Bi-phasic complement fixing IgG antibody
 - Donath Landsteiner antibody
 - Binds RBCs at low temps (< 20°C)
 - activates complement
 - Upon warming to 37°C, Ab detaches
 - RBC lysed by complement activation
 - Usual reactivity = P-antigen
- DAT negative for antibodies
- DAT weakly + for complement

Paroxysmal Cold Hemoglobinuria

Patient's Whole Blood ^a	Control	Test
Incubate for 30 min at	37°C	4°C
Incubate for 30 min at	37°C	37°C
Centrifuge: observe plasma for presence of hemolysis		
Interpretation		
D-L antibodies present	No hemolysis	Hemolysis
No D-L antibodies present	No hemolysis	No hemolysis

^aTwo tubes of patient's whole blood are used; one tube serves as the control and the other as the test.

Drug-induced

- Drug binds to RBC membrane
 - Abs produced to react with epitopes specific to drug
 - Combination of drug and RBC proteins
 - Epitopes primarily on RBC membrane
- Lab testing
 - Drug dependent vs drug independent
- + DAT

Alloimmune

- Ab develops to a RBC Ag that the individual lacks
 - Patient transfused foreign RBC's
 - Ag's on transfused cells stimulate production of Ab (alloAb)
- Seen in:
 - Transfusion reactions
 - Hemolytic disease of the fetus or newborn (HDFN)

Transfusion Reactions

- Patient's Ab's recognize foreign Ag's on transfused RBC's
- Two types of transfusion reactions
 - Immediate (IgM)
 - Occurring within 24 hr
 - intravascular hemolysis
 - Delayed (IgG)
 - Occurring 2–14 days after transfusion
 - extravascular hemolysis

HDFN

- Mother forms alloAb's against fetal RBC Ag's
 - IgG Ab's cross placenta → destroys fetal RBCs in utero
- Three ABO, Rh incompatibility categories:
 - Rh(D) caused by anti-D (more severe)
 - Immune IgG = no spherocytes or schistocytes
 - ABO caused by anti-A and/or anti-B (more common)
 - Nonimmune IgG = spherocytes and schistocytes present
 - "Other" caused by Ab's to other blood group system Ag's

Nonimmune Defects

Nonimmune Defects

- Microangiopathic Hemolytic Anemia (MAHA)
 - Hemolytic Uremic Syndrome (HUS)
 - Thrombotic Thrombocytopenic Purpura (TTP)
 - Disseminated Intravascular Coagulation (DIC)
- Hemolytic Anemias from Antagonists
 - Malaria
 - Babeosis

Microangiopathic Hemolytic Anemias

- Hemolytic process caused by microcirculatory lesions
 - Damage to endothelial lining of the small vessels
 - Deposition of platelets and fibrin in microvasculature
- Schistocytes, keratocytes/helmet cells, \(\gamma\) reticulocytes
- Hemolysis may be intravascular and/or extravascular
- Disorders associated with MAHA
 - HUS, TTP, DIC

Hemolytic Uremic Syndrome

- D+ HUS (diarrhea-associated)
 - -90% of cases, most in children ≤ 5
 - GI infections Shiga toxin producing E. coli
 - Damage to intestinal mucosa
 - Endothelial cells of glomerulus microvasculature
- D– HUS (nondiarrhea-associated) / Atypical HUS (aHUS)
 - Associated with lupus, cancer, diabetes, Streptococcus pneumoniae infections, immunosuppressive therapy
 - Observed in children and adults

Hemolytic Uremic Syndrome

- Moderate to severe normocytic, normochromic anemia
- Schistocytes, helmet cells, spherocytes, echinocytes/burrs
- Polychromasia, occasional nRBC
- Leukocytosis with left shift
- Platelet counts: low normal to markedly
- D-dimer ↑

Thrombotic Thrombocytopenic Purpura

- Acute disorder with platelet aggregation on microvascular endothelium
- Affects young adults (20–50 yrs)
- Mostly precipitated from infections
- Microthrombi
 - Composed of platelets and large vWF multimers
 - Occlude capillaries and arterioles in organs
 - Kidneys, heart, brain, pancreas
 - Deficiency in ADAMTS13 is cause of TTP

Thrombotic Thrombocytopenic Purpura

- Normocytic, normochromic anemia
- Polychromasia, nRBC's
- †† schistocytes
- Leukocytosis with left shift
- Severe thrombocytopenia

Disseminated Intravascular Coagulation

- Normal coagulation process altered
 - Bacterial sepsis, Neoplasms, Immunologic disorders,
 Trauma
- Damage to endothelial lining of vessels
 - Release of thromboplastic substances
 - Activate coagulation mechanism
 - Platelet activation and aggregation

Disseminated Intravascular Coagulation

- Consumptive coagulopathy
 - Severe thrombocytopenia
 - Decreased coagulation factors
- Schistocytes
- Abnormal coagulation
 - Prolonged PT, APTT, TT
 - ↑ D-dimer, FDPs
 - → fibrinogen

Malarial parasites

- Mild normocytic, normochromic anemia
- Extravascular destruction of parasitized RBCs
- Diagnosis is finding life cycle stage within RBCs

Babesiosis

- Mild to moderate anemia,
 † reticulocytes, \understand platelets
- Extravascular destruction of parasitized RBCs
- Diagnosis is finding life cycle stage within RBCs
 - Maltese cross

References

- American Society for Clinical Laboratory Science. (2016). Hematology and Hemostasis Medical Laboratory Scientist Entry Level Curriculum. American Society for Clinical Laboratory Science.
- American Society for Clinical Pathology. (2021). Medical Laboratory Scientist, MLS(ASCP) Examination Content Guideline. American Society for Clinical Pathology.
- Greer, J. (2014). Wintrobe's clinical hematology (Thirteenth ed.). Philadelphia, Pennsylvania: Lippincott Williams & Wilkins.
- Kaushansky, Kenneth. (2016). Williams hematology (9th ed.). New York: McGraw Hill Education.
- McKenzie, S. B., & Williams, J. L. (2015). Clinical laboratory hematology (3rd ed.). Boston: Pearson.
- McPherson, R., & Pincus, M. (2017). Henry's clinical diagnosis and management by laboratory methods (23rd ed., ClinicalKey). St. Louis, Mo.: Elsevier.
- Rodak, B. F., & Carr, J. H. (2015). Clinical Hematology Atlas. Elsevier Health Sciences.