Министерство науки и высшего образования Российской Федерации Федеральное государственное автономное образовательное учреждение высшего образования «СЕВЕРО-КАВКАЗСКИЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ»

Институт цифрового развития Кафедра инфокоммуникаций

ОТЧЕТ ПО ЛАБОРАТОРНОЙ РАБОТЕ №1.1 дисциплины «Основы кроссплатформенного программирования»

	Выполнила: Дудова Мира Сергеевна 1 курс, группа ИТС-б-о-22-1, 11.03.02 «Инфокоммуникационные технологии и системы связи», направленность (профиль) «Инфокоммуникационные системы и сети», очная форма обучения
	(подпись)
	Руководитель практики: Воронкин Р. А., доцент кафедры инфокоммуникаций
	(подпись)
Отчет защищен с оценкой	Дата защиты

Tema: Исследование основных возможностей Git и GitHub

Цель: исследовать базовые возможности системы контроля версий Git и веб-сервиса для хостинга IT-проектов GitHub

Ход работы:

Вариант №10

Рисунок 1. Создание аккаунта на GitHub

Рисунок 2. Установка Git

```
Мира@DESKTOP-34LMQ7R MINGW64 ~

$ git version

git version 2.39.2.windows.1

Мира@DESKTOP-34LMQ7R MINGW64 ~

$ git config --global user.name Mira

Мира@DESKTOP-34LMQ7R MINGW64 ~

$ git config --global user.email dudova_2001@mail.ru
```

Рисунок 3. Версия Git и добавление имени и электронной почты

Рисунок 4. Начало создания репозитория

Create a new repository A repository contains all project files, including the revision history. Already have a project repository elsewhere? Import a repository.	
Description (a	names are s Your new repository will be created as -1.1 How about supreme-spork?
Public Anyone on the internet can see this repository. You choose who can commit. Private You choose who can see and commit to this repository.	
Initialize this repository with: Slip this step if you're importing an existing repository. Ada BEADNE file This is where you can write a long description for your project. Learn more. Add gritignore Choose which files not to back from a list of templates. Learn more. gritypore template: Now =	
Choose a ficense A license tells others what they can and can't do with your code. Learn more. License None -	
① You are one	ing a public repository in your personal account.

Рисунок 5. Создание репозитория GitHub

```
Mupa@DESKTOP-34LMQ7R MINGW64 ~/Desktop

$ git clone https://github.com/chikibryakus/laba1.1.git|
Cloning into 'laba1.1'...
remote: Enumerating objects: 3, done.
remote: Counting objects: 100% (3/3), done.
remote: Compressing objects: 100% (2/2), done.
remote: Total 3 (delta 0), reused 0 (delta 0), pack-reused 0
Receiving objects: 100% (3/3), done.

Mupa@DESKTOP-34LMQ7R MINGW64 ~/Desktop

$ cd C:/Users/Mupa/Desktop/laba1.1

Mupa@DESKTOP-34LMQ7R MINGW64 ~/Desktop/laba1.1 (main)

($ git status
On branch main
Your branch is up to date with 'origin/main'.

nothing to commit, working tree clean
```

Рисунок 6. Клонирование репозитория

```
Mupa@DESKTOP-34LMQ7R MINGW64 ~/Desktop/labal.1 (main)
$ git status
On branch main
Your branch is up to date with 'origin/main'.

Changes not staged for commit:
   (use "git add <file>..." to update what will be committed)
   (use "git restore <file>..." to discard changes in working directory)
   modified: README.md

no changes added to commit (use "git add" and/or "git commit -a")

Mupa@DESKTOP-34LMQ7R MINGW64 ~/Desktop/labal.1 (main)
$ git add README.md

Mupa@DESKTOP-34LMQ7R MINGW64 ~/Desktop/labal.1 (main)
$ git add .

Mupa@DESKTOP-34LMQ7R MINGW64 ~/Desktop/labal.1 (main)
$ git commit -m "Add information about local repository in readme file"
[main 7cee725] Add information about local repository in readme file
1 file changed, 1 insertion(+), 1 deletion(-)

Mupa@DESKTOP-34LMQ7R MINGW64 ~/Desktop/labal.1 (main)
```

Рисунок 7. Изменение файла README, добавление и коммит

```
Мира@DESKTOP-34LMQ7R MINGW64 ~/Desktop/laba1.1 (main)
$ git push
Enumerating objects: 5, done.
Counting objects: 100% (5/5), done.
Delta compression using up to 8 threads
Compressing objects: 100% (3/3), done.
Writing objects: 100% (3/3), 322 bytes | 322.00 KiB/s, done.
Total 3 (delta 2), reused 0 (delta 0), pack-reused 0
remote: Resolving deltas: 100% (2/2), completed with 2 local objects.
To https://github.com/chikibryakus/laba1.1.git
f62ee30..2706e59 main -> main
```

Рисунок 8. Git push файла README

```
Мира@DESKTOP-34LMQ7R MINGW64 ~/Desktop/labal.1 (main)
$ git add gitignore.gitignore

Мира@DESKTOP-34LMQ7R MINGW64 ~/Desktop/labal.1 (main)
$ git add .

Мира@DESKTOP-34LMQ7R MINGW64 ~/Desktop/labal.1 (main)
$ git commit -m "Add gitignore file"
[main 450c020] Add gitignore file
1 file changed, 38 insertions(+)
create mode 100644 gitignore.gitignore

Мира@DESKTOP-34LMQ7R MINGW64 ~/Desktop/labal.1 (main)
$ git push
Enumerating objects: 4, done.
Counting objects: 100% (4/4), done.
Delta compression using up to 8 threads
Compressing objects: 100% (3/3), done.
Writing objects: 100% (3/3), fore.
Writing objects: 100% (3/3), pack-reused 0
To https://github.com/chikibryakus/labal.1.git
7cee725..450c020 main -> main
```

Рисунок 9. Локальное добавление gitignore.gitignore, commit и push

Рисунок 10. Добавление program.cpp, commit 1 и push

```
Mupa@DESKTOP-34LMQ7R MINGW64 ~/Desktop/laba1.1 (main)

§ git commit -m "Add libraries"

[main f62ee30] Add libraries

1 file changed, 2 insertions(+)

Mupa@DESKTOP-34LMQ7R MINGW64 ~/Desktop/laba1.1 (main)

§ git push

Enumerating objects: 5, done.

Counting objects: 100% (5/5), done.

Delta compression using up to 8 threads

Compressing objects: 100% (3/3), done.

Writing objects: 100% (3/3), 284 bytes | 284.00 KiB/s, done.

Total 3 (delta 2), reused 0 (delta 0), pack-reused 0

remote: Resolving deltas: 100% (2/2), completed with 2 local objects.

To https://github.com/chikibryakus/laba1.1.git

408def9..f62ee30 main -> main
```

Рисунок 11. Commit 2 и push

```
Mupa@DESKTOP-34LMQ7R MINGW64 ~/Desktop/laba1.1 (main)
$ git commit -m "Add setlocale"
[main 2706e59] Add setlocale
1 file changed, 3 insertions(+), 1 deletion(-)

Mupa@DESKTOP-34LMQ7R MINGW64 ~/Desktop/laba1.1 (main)
$ git push
Enumerating objects: 5, done.
Counting objects: 100% (5/5), done.
Delta compression using up to 8 threads
Compressing objects: 100% (3/3), done.
Writing objects: 100% (3/3), 322 bytes | 322.00 KiB/s, done.
Total 3 (delta 2), reused 0 (delta 0), pack-reused 0
remote: Resolving deltas: 100% (2/2), completed with 2 local objects.
To https://github.com/chikibryakus/laba1.1.git
f62ee30..2706e59 main -> main
```

Рисунок 12. Commit 3 и push

```
Мира@DESKTOP-34LMQ7R MINGW64 ~/Desktop/labal.1 (main)
$ git commit -m "Add int x and y"
[main 0904d65] Add int x and y
1 file changed, 2 insertions(+), 1 deletion(-)

Мира@DESKTOP-34LMQ7R MINGW64 ~/Desktop/labal.1 (main)
$ git push
Enumerating objects: 5, done.
Counting objects: 100% (5/5), done.
Delta compression using up to 8 threads
Compressing objects: 100% (3/3), done.
Writing objects: 100% (3/3), 290 bytes | 290.00 KiB/s, done.
Total 3 (delta 2), reused 0 (delta 0), pack-reused 0
remote: Resolving deltas: 100% (2/2), completed with 2 local objects.
To https://github.com/chikibryakus/labal.1.git
2706e59..0904d65 main -> main
```

Pисунок 13. Commit 4 и push

```
Mupa@DESKTOP-34LMQ7R MINGW64 ~/Desktop/labal.1 (main)
$ git commit -m "Add code int main"
[main da72a85] Add code int main
1 file changed, 9 insertions(+), 1 deletion(-)

Mupa@DESKTOP-34LMQ7R MINGW64 ~/Desktop/labal.1 (main)
$ git push
Enumerating objects: 5, done.
Counting objects: 100% (5/5), done.
Delta compression using up to 8 threads
Compressing objects: 100% (3/3), done.
Writing objects: 100% (3/3), 453 bytes | 453.00 KiB/s, done.
Total 3 (delta 1), reused 0 (delta 0), pack-reused 0
remote: Resolving deltas: 100% (1/1), completed with 1 local object.
To https://github.com/chikibryakus/labal.1.git
0904d65..da72a85 main -> main
```

Рисунок 14. Commit 5 и push

```
Mupa@DESKTOP-34LMQ7R MINGW64 ~/Desktop/laba1.1 (main)
$ git commit -m "Add int i,c,d"
[main 53d2fce] Add int i,c,d
1 file changed, 2 insertions(+), 1 deletion(-)

Mupa@DESKTOP-34LMQ7R MINGW64 ~/Desktop/laba1.1 (main)
$ git push
Enumerating objects: 5, done.
Counting objects: 100% (5/5), done.
Delta compression using up to 8 threads
Compressing objects: 100% (3/3), done.
Writing objects: 100% (3/3), 279 bytes | 279.00 KiB/s, done.
Total 3 (delta 2), reused 0 (delta 0), pack-reused 0
remote: Resolving deltas: 100% (2/2), completed with 2 local objects.
To https://github.com/chikibryakus/laba1.1.git
da72a85..53d2fce main -> main
```

Рисунок 15. Commit 6 и push

```
Mupa@DESKTOP-34LMQ7R MINGW64 ~/Desktop/labal.1 (main)

$ git commit -m "Add if"

[main aed5bfd] Add if

1 file changed, 15 insertions(+), 1 deletion(-)

Mupa@DESKTOP-34LMQ7R MINGW64 ~/Desktop/labal.1 (main)

$ git push

Enumerating objects: 5, done.

Counting objects: 100% (5/5), done.

Delta compression using up to 8 threads

Compressing objects: 100% (3/3), done.

Writing objects: 100% (3/3), 558 bytes | 558.00 KiB/s, done.

Total 3 (delta 1), reused 0 (delta 0), pack-reused 0

remote: Resolving deltas: 100% (1/1), completed with 1 local object.

To https://github.com/chikibryakus/labal.1.git

53d2fce..aed5bfd main -> main
```

Pисунок 16. Commit 7 и push

```
Mupa@DESKTOP-34LMQ7R MINGW64 ~/Desktop/labal.1 (main)

$ git commit -m "Add else"
[main 667976d] Add else
1 file changed, 8 insertions(+), 1 deletion(-)

Mupa@DESKTOP-34LMQ7R MINGW64 ~/Desktop/labal.1 (main)

$ git push
Enumerating objects: 5, done.
Counting objects: 100% (5/5), done.
Delta compression using up to 8 threads
Compressing objects: 100% (3/3), done.
Writing objects: 100% (3/3), 326 bytes | 326.00 KiB/s, done.
Total 3 (delta 2), reused 0 (delta 0), pack-reused 0
remote: Resolving deltas: 100% (2/2), completed with 2 local objects.
To https://github.com/chikibryakus/labal.1.git
aed5bfd..667976d main -> main
```

Pисунок 17. Commit 8 и push

Рисунок 18. Обновленный удаленный репозиторий

Ссылка: https://github.com/chikibryakus/laba1.1

Ответы на контрольные вопросы:

1. Что такое СКВ и каково ее назначение?

Система контроля версий (СКВ) — это система, регистрирующая изменения в одном или нескольких файлах этих файлов.

2. В чем недостатки локальных и централизованных СКВ?

Это единая точка отказа, представленная централизованным сервером. Если этот сервер выйдет из строя на час, то в течение этого времени никто не сможет использовать контроль версий для сохранения изменений, над которыми работает, а также никто не сможет обмениваться этими изменениями с другими разработчиками.

3. К какой СКВ относится Git?

К распределённым системам контроля версий.

4. В чем концептуальное отличие Git от других СКВ?

Git не хранит и не обрабатывает данные таким же способом как другие СКВ.

5. Как обеспечивается целостность хранимых данных в Git?

В Git для всего вычисляется хеш-сумма, и только потом происходит сохранение. В дальнейшем обращение к сохранённым объектам происходит по этой хеш-сумме.

- 6. В каких состояниях могут находится файлы в Git? Как связаны эти состояния?
 - 1) Зафиксированный значит, что файл уже сохранён в вашей локальной базе;
- 2) К изменённым относятся файлы, которые поменялись, но ещё не были зафиксированы;
- 3) Подготовленные файлы это изменённые файлы, отмеченные для включения в следующий коммит.
 - 7. Что такое профиль пользователя в GitHub?

Профиль - это наша публичная страница на GitHub, как и в социальных сетях. В нем другие пользователи могут посмотреть ваши работы.

- 8. Какие бывают репозитории в GitHub?
- 9. Укажите основные этапы модели работы с GitHub.
- 1) Регистрация;
- 2) Создание репозитория;
- 3) Клонирование репозитория;
- 4) Добавление новых файлов.
- 10. Как осуществляется первоначальная настройка Git после установки?

Убедимся, что Git установлен используя команду: git version. Перейдём в папку с локальным репозиторием используя команду: cd /d < Расположения папки на компьютере>. Свяжем локальный репозиторий и удалённый командами: git config --global user.name < YOUR_NAME git config --global user.email < EMAIL>.

- 11. Опишите этапы создания репозитория в GitHub.
- 1) В правом верхнем углу, рядом с аватаром есть кнопка с плюсиком, нажимая которую мы переходим к созданию нового репозитория;

- 2) В результате будет выполнен переход на страницу создания репозитория. Наиболее важными на ней являются следующие поля: Имя репозитория. Описание (Description). Public/private. "Initialize this repository with a README" gitignore и LICENSE.
- 12. Какие типы лицензий поддерживаются GitHub при создании репозитория?

Microsoft Reciprocal License, The Code Project Open License (CPOL), The Common Development and Distribution License (CDDL), The Microsoft Public License (Ms-PL), The Mozilla Public License 1.1 (MPL 1.1), The Common Public License Version 1.0 (CPL), The Eclipse Public License 1.0, The MIT License, The BSD License, The Apache License, Version 2.0, The Creative Commons Attribution-ShareAlike 2.5 License, The zlib/libpng License, A Public Domain dedication, The Creative Commons Attribution 3.0 Unported License, The Creative Commons).

13. Как осуществляется клонирование репозитория GitHub? Зачем нужно клонировать репозиторий?

После создания репозитория его необходимо клонировать на ваш компьютер. Для этого на странице репозитория необходимо найти кнопку Clone или Code и щелкнуть по ней, чтобы отобразить адрес репозитория для клонирования.

Откройте командную строку или терминал и перейдите в каталог, куда вы хотите скопировать хранилище. Затем напишите git clone и введите адрес.

- 14. Как проверить состояние локального репозитория Git? git status
- 15. Как изменяется состояние локального репозитория Git после выполнения следующих операций: добавления/изменения файла в локальный репозиторий Git; добавления нового/измененного файла под версионный контроль с помощью команды git add; фиксации (коммита) изменений с помощью команды git commit и отправки изменений на сервер с помощью команды git push?

Файлы обновятся на репорзиории.

16. У Вас имеется репозиторий на GitHub и два рабочих компьютера, с омощью которых Вы можете осуществлять работу над некоторым проектом с использованием этого репозитория. Опишите последовательность команд, с помощью которых оба локальных репозитория, связанных с репозиторием GitHub будут находиться в синхронизированном состоянии.

git clone.

git pull.

- 17. GitHub является не единственным сервисом, работающим с Git. Какие сервисы еще Вам известны? Приведите сравнительный анализ одного из таких сервисов с GitHub.
- 1) GitLab альтернатива GitHub номер один. GitLab предоставляет не только веб-сервис для совместной работы, но и программное обеспечение с открытым исходным кодо;
- 2) BitBucket это служба хостинга репозиториев и управления версиями от Atlassian. Она тесно интегрирована с другими инструментами Atlassian Jira, HipChat и Confluence.
- 18. Интерфейс командной строки является не единственным и далеко не самым удобным способом работы с Git. Какие Вам известны программные средства с графическим интерфейсом пользователя для работы с Git? Приведите как реализуются описанные в лабораторной работе операции Git с помощью одного из таких программных средств.

GitHub Desktop это совершенно бесплатное приложение с открытым исходным кодом, разработанное GitHub. С его помощью можно взаимодействовать с GitHub (что и не удивительно), а также с другими платформами (включая Bitbucket и GitLab).

Вывод: исследовала базовые возможности системы контроля версий Git и веб-сервиса для хостинга IT-проектов GitHub.