第五章 模拟运算电路

5.3 加法/减法电路

加法/减法电路

- 加法电路
 - 反相加法电路
 - 同相加法电路
- 减法电路

反相放大器

增益

$$A_f = \frac{V_o}{V_i} = -\frac{R_f}{R_1}$$

反相加法电路

- 3个输入
- 节点n虚地,同时 $I_n = 0$
- 围绕节点n列写KCL方程

$$\frac{V_a}{R_a} + \frac{V_b}{R_b} + \frac{V_c}{R_c} + \frac{V_o}{R_f} = 0$$

$$V_o = -R_f \left(\frac{V_a}{R_a} + \frac{V_b}{R_b} + \frac{V_c}{R_c} \right)$$

$$R_a = R_b = R_c = R_f \qquad V_o = -\left(V_a + V_b + V_c\right)$$

反相加法

同相放大器

增益

$$A_f = \frac{V_o}{V_i} = 1 + \frac{R_f}{R_1}$$

$$V_o = \left(1 + \frac{R_f}{R_1}\right)V_i$$

• 3个输入

求解思路:

- 1. 分别计算 V_a 、 V_b 、 V_c 单独作用产生的输出
- 2. 利用叠加原理得到总的输出

• 假设 V_a 单独作用, $V_b = 0$, $V_c = 0$

$$V_p = V_a \frac{R_b \| R_c}{R_a + R_b \| R_c}$$

$$V_n = V_p$$

V_a单独作用

$$V_p = V_a \frac{R_b \| R_c}{R_a + R_b \| R_c}$$

$$V_n = V_p$$

$$-\frac{V_n}{R_1} + \frac{V_{o1} - V_n}{R_f} = 0$$

• V_a单独作用

$$V_{o1} = (1 + \frac{R_f}{R_1}) \frac{R_b \| R_c}{R_a + R_b \| R_c} V_a$$

$$R_a = R_b = R_c$$

$$V_{o1} = \frac{1}{3}(1 + \frac{R_f}{R_1})V_a$$

V_a单独作用

$$V_{o1} = \frac{1}{3} (1 + \frac{R_f}{R_1}) V_a$$

• V_a 、 V_b 、 V_c 同时作用

$$V_o = \frac{1}{3} \left(1 + \frac{R_f}{R_1} \right) (V_a + V_b + V_c)$$

$$R_f = 2R_1$$

$$V_o = V_a + V_b + V_c$$

同相加法

理想运放就是减法放大器

$$\begin{split} V_o &= A \Big(V_p - V_n \Big) \\ - V_{CC} &\leq V_o \leq V_{CC} \\ - \frac{V_{CC}}{A} &\leq V_p - V_n \leq \frac{V_{CC}}{A} \end{split}$$

线性工作范围太小

反相放大器

增益

$$A_f = \frac{V_o}{V_i} = -\frac{R_f}{R_1}$$

$$I_p = 0$$
, $I_n = 0$, $V_n = V_p$

$$V_p = \frac{R_d}{R_c + R_d} V_b$$

$$I_p = 0$$
, $I_n = 0$, $V_n = V_p$

$$V_p = \frac{R_d}{R_c + R_d} V_b$$

$$\frac{V_a - V_n}{R_a} + \frac{V_o - V_n}{R_b} = 0$$

$$I_p = 0$$
, $I_n = 0$, $V_n = V_p$

$$V_p = \frac{R_d}{R_c + R_d} V_b$$

$$\frac{V_a - V_n}{R_a} + \frac{V_o - V_n}{R_b} = 0$$

$$V_o = \frac{R_d \left(R_a + R_b \right)}{R_a \left(R_c + R_d \right)} V_b - \frac{R_b}{R_a} V_a$$

$$V_{o} = \frac{R_{d}\left(R_{a} + R_{b}\right)}{R_{a}\left(R_{c} + R_{d}\right)}V_{b} - \frac{R_{b}}{R_{a}}V_{a}$$

减法放大:

$$R_a = R_c, \quad R_b = R_d$$

$$V_o = \frac{R_b}{R_a} (V_b - V_a)$$

$$(R_a = R_c) = (R_b = R_d)$$

$$V_o = V_b - V_a$$

