- 1) The equation of the slice curve on the graph of $z = \frac{x^2}{2} 3y^2$ shown below is:
- a) $z = 2x^2 \frac{3}{2}y^2$ b) $z = \frac{x^2}{2} 3$ c) $z = \frac{x^2}{2} 12$ d) $z = 4 3y^2$ e) $z = 2 3y^2$

FORM A

2) The vector $X = \begin{pmatrix} 2 \\ 3 \\ 1 \end{pmatrix}$ is shown with the vector $V = \begin{pmatrix} 1 \\ -2 \\ 2 \end{pmatrix}$ drawn with its tail at the tip of X. The tip of the displaced vector V points to a point P. What vector Y with its tail at the origin points to P? Y =

- a) $\frac{V \cdot X}{|V| |X|} V$ b) $X \times V$ c) V X d) V + X e) $\frac{V \cdot X}{|V| |X|} X$

- 3) The steepest slope of a line on the explicit planar graph of z = 12 x 5 y is?
- a) $\binom{12}{5}$

- b) 17 c) 7 d) 13 e) $\binom{12}{-5}$

2

Problems 4, 5, 6 use the triangle with vertices at: $P = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$, $Q = \sqrt{2} \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}$, $R = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$

- 4) What is the length of the QR side of the triangle PQR?

- a) $\sqrt{3}$ b) $2\sqrt{2}$ c) $2\sqrt{3}$ d) $3\sqrt{2}$ e) $4\sqrt{2}$

- 5) What is the area of the triangle PQR?

- a) $\sqrt{3}$ b) $2\sqrt{2}$ c) $2\sqrt{3}$ d) $3\sqrt{2}$ e) $4\sqrt{2}$

3

- a) 30°

- b) 45° c) 60° d) 90° e) 120°

7) The equation of the explicit plane tangent to $z = \frac{x^2}{4} + \frac{y^2}{3}$ at (x, y, z) = (2, -3, 4) is:

a)
$$(z-4) = \frac{x}{2}(x-2) + \frac{2y}{3}(y+3)$$
 b) $(z-4) = \frac{x}{2}(x-3) + \frac{2y}{3}(y+2)$

b)
$$(z-4) = \frac{x}{2}(x-3) + \frac{2y}{3}(y+2)$$

c)
$$(z-4) = (x-2) - 2(y+3)$$

d)
$$(z-4) = (x+2) - 2(y-3)$$
 e) $(z-4) = 2(x-2) - (y+3)$

e)
$$(z-4) = 2(x-2) - (y+3)$$

- a) G (1, 2)
- b) G(1, 3)
- c) *G*(-3, 2)
- d) *G*(-3, 1)
- e) G(4, -3)

9) Calculate the area-weighted integral $\int_{\mathbb{D}} f \, da$ over the rectangle $\mathbb{D} = \{(x, y) : -1 \le x \le 3, \ 1 \le y \le 2\}$

where $f[x, y] = 3 x^2 y$, $\int_{\mathbb{D}} f \, d a =$

- a) 7
- b) 18
- c) 28
- d) 42
- e) 84

10) The area-weighted integral $\int x y^2 dx$ over the region $\mathbb D$ bounded by the curves y = x/2, y = 0, x = 2

shown below is:

- a) $\frac{4}{15}$ b) $\frac{2}{5}$ c) $\frac{2}{3}$ d) $\frac{4}{3}$

- 11) Set up the area weighted integral of the function $f[x, y] = 2x^2y$ over the region bounded by $y^2 + x = 1$ and $y^2 - x = 1$.
- a) $\int_{-1}^{1} \int_{\sqrt{1-x}}^{\sqrt{1+x}} 2 x^2 y \, dy \, dx$ b) $\int_{-1-y^2}^{1-y^2} \int_{-1}^{1} 2 x^2 y \, dy \, dx$ c) $\int_{-1}^{1} \int_{y^2-1}^{1-y^2} 2 x^2 y \, dy \, dx$ d) $\int_{-1}^{1} \int_{y^2-1}^{1-y^2} 2 x^2 y \, dx \, dy$ e) $\int_{-1}^{1} \int_{1-y^2}^{y^2-1} 2 x^2 y \, dx \, dy$

12) The iterated integral $\int_{1}^{3} \left(\int_{\pi/4}^{3\pi/2} f[r \cos[\theta], r \sin[\theta]] r d\theta \right) dr$ equals the 2D area-weighted integral

 $\int f[x, y] da$ for which of the domains:

- 13) A particle moves with position X[t], velocity V[t] = X'[t], and acceleration A[t] = V'[t]. Such a motion lies on a sphere (|X[t]| = r, constant, for all t) when:
- a) acceleration is constant
- b) velocity is constant
- c) speed is constant

- d) X[t] is perpendicular to V[t] for all t
- e) V[t] is perpendicular to A[t] for all t

- 14) A parametric curve is given by $X[t] = \frac{1}{6} \begin{pmatrix} t^4 \\ t^3 \\ t^2 \end{pmatrix}$ A tangent vector at the point where t = -2 is:

- $\begin{pmatrix}
 8 \\
 -4 \\
 2
 \end{pmatrix}$ b) $\frac{1}{3}\begin{pmatrix} -16 \\ 6 \\ -2 \end{pmatrix}$ c) $\frac{1}{3}\begin{pmatrix} 4 \\ 3 \\ 2 \end{pmatrix}$ d) $\begin{pmatrix} -4 \\ 3 \\ -2 \end{pmatrix}$ e) $\frac{1}{6}\begin{pmatrix} -16 \\ 8 \\ -4 \end{pmatrix}$

15) Which is the vector field for $\mathbf{F}[X] = \begin{pmatrix} 0 \\ X \end{pmatrix}$

16) The work done (or flow along) by the vector field $\mathbf{F}[X] = \begin{pmatrix} 2 \times y \\ x^2 \end{pmatrix}$ moving along the line y = x from (0, 0) to (2, 2) is:

a) 16 b) 1 c) -1 d) -8 e)8

8

- a) $2xy + x^2 + y$ b) 2xy c) $x^2y^2 + y$ d) $2xy + x^2$ e) F[X] has no potential function.

18) Which vector field is not given by a potential, that is, has **no** function p[x, y] with $\nabla p[x, y] = F[x, y]$

a)
$$F[x, y] = \begin{pmatrix} x^2 \\ y^2 \end{pmatrix}$$
 b) $F[x, y] = \begin{pmatrix} -y \\ x \end{pmatrix}$ c) $F[x, y] = \begin{pmatrix} y \\ x \end{pmatrix}$ d) $F[x, y] = \begin{pmatrix} x \\ 0 \end{pmatrix}$ e) $F[x, y] = \begin{pmatrix} 0 \\ y \end{pmatrix}$

- 19) For the field $F[X] = \begin{pmatrix} x 3y \\ 2x + 2y \end{pmatrix}$. The flows for the unit circle are as follows:
- a) Out = 5π , Around = 3π b) Out = 3π , Around = 5π
- c) Out = 4π , Around = -2π

- d) Out = -2π , Around = 4π
- e) Out =3 π , Around = - π

20) Consider the series $\frac{2}{5} + \frac{4}{25} + \frac{8}{125} + \frac{16}{625} + \dots$ Does this series converge? And if so, evaluate the series.

- a) $\frac{5}{3}$ b) $\frac{3}{5}$ c) $\frac{3}{2}$ d) $\frac{2}{3}$ e) This series does not converge.

-(|+号+世+小)=号号(号)

21) Find the power series for $F[x] = \frac{1}{3-2x}$.

Hint: $\frac{1}{3-2x} = \frac{1}{3} \left(\frac{1}{1-\frac{2}{x}} \right)$ - OR - use Taylor's formula

a) $\sum_{k=0}^{\infty} {2 \choose 9}^k x^k$ b) $\sum_{k=0}^{\infty} {2 \choose 3} x^k$ c) $\sum_{k=0}^{\infty} {2 \choose 3} {1 \choose 3}^k x^k$ d) $\sum_{k=0}^{\infty} {1 \choose 3} {2 \choose 3}^k x^k$ e) $\sum_{k=0}^{\infty} {2 \choose 3}^k x^k$ e) $\sum_{k=0}^{\infty} {2 \choose 3}^k x^k$ = $\frac{1}{3} = \frac{1}{3} \left(\frac{1}{1-\frac{2}{3}x} \right)$ - OR - use Taylor's formula

22) If $i = \sqrt{-1}$, the complex number, the exact numerical value of $e^{i\pi} + \sum_{k=0}^{\infty} \frac{1}{2^k} =$

- a) 0

- d) i + 1
- e) 2

Careful!

$$e^{itt} = CoS(\pi) + iSin(\pi) = -1 + 0 = -1$$

$$= cos(\pi) + iSin(\pi) = -1 + 0 = -1$$

$$= cos(\pi) + iSin(\pi) = -1 + 0 = -1$$

$$= cos(\pi) + iSin(\pi) = -1 + 0 = -1$$

$$= cos(\pi) + iSin(\pi) = -1 + 0 = -1$$

- 23) Find the radius of convergence of the series $Log[1 + \frac{x}{3}] = \frac{x}{3} \frac{x^2}{18} + \frac{x^3}{81} \frac{x^4}{324} + ... = \sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{k} (\frac{x}{3})^k$
- a) 0
- b) 1

- 24) Differentiate the series $\frac{1}{1+x^2} = \sum_{k=0}^{\infty} (-1)^k x^{2k}$ term-by-term to find the series for $-\frac{2x}{(1+x^2)^2}$
- a) $\sum_{k=0}^{\infty} (-1)^{k-1} k x^{2k-1}$ b) $\sum_{k=0}^{\infty} (-1)^k 2 k x^{2k-1}$ c) $\sum_{k=0}^{\infty} (-1)^k \frac{x^{2k+1}}{2k+1}$ d) $\sum_{k=0}^{\infty} (-1)^k 2 k x^{2(k-1)}$ e) $\sum_{k=0}^{\infty} (-1)^k 2 k x^k$

$$\frac{2kx^{2(k-1)}}{2kx^{2(k-1)}} \stackrel{e)}{\underset{k=0}{\sum}} \stackrel{x}{\underset{k=0}{(-1)^{k}}} 2kx^{k}$$

$$= (-1)^{k} \cdot 2k \cdot x^{2k}$$

25) Given that $f[x] = \sum_{k=0}^{\infty} (-1)^k \frac{x^k}{(k+1)}$. Find f'''[0].

- a) $-\frac{1}{4}$ b) $-\frac{3}{4}$ c) $-\frac{3}{2}$ d) $\frac{1}{4}$ e) $\frac{3}{2}$

 $f(x) = 1 - \frac{\chi}{2} + \frac{\chi^2}{3} - \frac{\chi^3}{4} + \cdots$

$$f'''(0) = -\frac{3!}{4}$$

$$= -\frac{6}{4} = -\frac{3}{2}$$