# UNIVERSITE LIBANAISE FACULTE DE GENIE





Set 1 Concours d'entrée (2021 – 2022) Examen de chimie (Bac. L.)

Durée: 40 min Août: 2021

Cette épreuve est constituée de deux exercices à choix multiples (QCM). Chaque exercice est formé de 10 QCM.

- 1- Reporter vos réponses sur la grille de QCM sans les justifier.
- 2- À chaque question correspond 4 propositions a, b, c, d
- 3- Pour chaque question, il existe une SEULE bonne réponse.
- 4- Choisir la bonne proposition et cocher la case correspondante à la lettre (a, b. c ou d) par un « X » dans la GRILLE associée à l'exercice.
- 5- Vous devez répondre à toutes les questions.
- 6- Chaque réponse correcte vous apporte 1 point.
- 7- L'usage de la calculatrice non programmable est autorisé.

# Grille des réponses de l'exercice -1

| QCM N° | а | b | С | d |
|--------|---|---|---|---|
| 1      |   |   |   |   |
| 2      |   |   |   |   |
| 3      |   |   |   |   |
| 4      |   |   |   |   |
| 5      |   |   |   |   |
| 6      |   |   |   |   |
| 7      |   |   |   |   |
| 8      |   |   |   |   |
| 9      |   |   |   |   |
| 10     |   |   |   |   |

# Grille des réponses de l'exercice -2

QCM
N°
a
b
c
d

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

#### Set 1

**Concours d'entrée (2021 – 2022)** 

Examen de chimie (Bac. L.)

Durée: 40 min

Août: 2021

Cette épreuve est constituée de deux exercices à choix multiples (QCM). Chaque exercice est formé de 10 QCM.

- 1- Reporter vos réponses sur la grille de QCM sans les justifier.
- 2-  $\hat{A}$  chaque question correspond 4 propositions a, b, c, d
- 3- Pour chaque question, il existe une SEULE bonne réponse.
- 4- Choisir la bonne proposition et cocher la case correspondante à la lettre (a, b. c ou d) par un « X » dans la GRILLE associée à l'exercice.
- 5- Vous devez répondre à toutes les questions.
- 6- Chaque réponse correcte vous apporte 1 point.
- 7- L'usage de la calculatrice non programmable est autorisé.

# 8- Grille des réponses de l'exercice -1

| QCM N° | а | b | С | d |
|--------|---|---|---|---|
| 1      |   |   | X |   |
| 2      |   |   | X |   |
| 3      |   | Χ |   |   |
| 4      |   |   |   | X |
| 5      |   |   | Х |   |
| 6      |   |   | Х |   |
| 7      |   | Х |   |   |
| 8      |   |   | Х |   |
| 9      |   | X |   |   |
| 10     |   | X |   |   |

9-

# 10- Grille des réponses de l'exercice -2

11-(1)

|        |   | (-) |   |   |
|--------|---|-----|---|---|
| QCM N° | а | b   | С | d |
| 1      |   | Х   |   |   |
| 2      |   |     | Х |   |
| 3      |   |     |   | Х |
| 4      | X |     |   |   |
| 5      | Х |     |   |   |
| 6      |   | Х   |   |   |
| 7      | X |     |   |   |
| 8      |   | Х   |   |   |
| 9      |   | Х   |   |   |
| 10     | X |     |   |   |

#### Exercice -1

## Titrage acido-basique

Un bécher contient un volume  $V_A = 20 \text{ mL}$  d'une solution aqueuse d'acide chlorhydrique  $(H_3O^+ + Cl^-)$  de concentration  $C_A = 2,5.10^{-2} \text{ mol} / \text{L}$ .

Cette solution est titrée par une solution basique (B) aqueuse d'hydroxyde de sodium ( $Na^++HO^-$ ) de concentration  $C_B = 5,0.10^{-2}$  mol / L.

On suit par pH- métrie le pH en fonction du volume de la base (B) ajouté.

- 1- L'équation de la réaction de titrage est :
  - a-  $H_3O^+$  aq + Na  $\longrightarrow$  Na<sup>+</sup>aq +  $H_2O(1)$ .
  - b-  $H_2O(1) + NaOH aq \rightarrow Na^+aq + H_3 O^+aq$ .
  - c-  $H_3O^+aq + HO^-aq \rightarrow 2 H_2O(1)$ .
  - d-  $H_3O^+aq + HO^-aq \rightleftharpoons 2 H_2O(1)$ .
- 2- Le volume de la solution d'hydroxyde de sodium nécessaire pour obtenir l'équivalence acido-basique vaut :
  - a-  $V_{eq} = 40 \text{ mL}$
  - b-  $V_{\text{éq}} = 20 \text{ mL}$
  - **c-**  $V_{\text{éq}} = 10 \text{ mL}$
  - d-  $V_{\acute{eq}} = 5 \text{ mL}$
- 3- L'équivalence acido-basique est atteinte pour un :
  - a- pH = 1,3
  - b- pH = 7
  - c-pH < 7
  - d-pH = 12,7
- 4- Juste avant l'équivalence (V B< V Bé E), l'expression du pH du système réactionnel est :
  - a- pH = 1,3  $\log [(C_B+V_B)/(20+V_B)]$ .
  - b-  $pH = 1.7 log [(C_B 10 + C_B V_B) / (20 + V_B)].$
  - c-  $pH = 1.3 + log [(10 V_B) / (20 + V_B)].$
  - d- pH = 1,3  $\log [(10 V_B)/(20 + V_B)]$
- 5- Pour  $V_B = V_{B \text{ \'eq}} / 2$ , le pH du milieu réactionnel est :
  - a- pH = 10
  - b- pH = 9.2
  - c- pH = 2.0
  - d- pH = 1,3
- 6- À l'équivalence l'espèce qui détermine le pH est :
  - a- L'ion Na+
  - b- L'ion Cl<sup>-</sup>
  - c- La molécule d'eau
  - d- La molécule HCl
- 7- Pour un large volume ajouté de NaOH le pH sera :

a- 
$$pH = 14$$

$$c-pH < 7$$

d- 
$$7 < pH < 10$$

8- Pour un volume  $V_B = 2 V_{B \text{ \'eq}}$ , le pH est :

a- 
$$pH = 2,0$$

b- 
$$pH = 7$$

$$c- pH = 12,1$$

d- 
$$pH = 12,7$$

9- Afin de tracer l'allure de la courbe pH =  $f(V_B)$ , dans le domaine 0 mL<V $_B<$ 20 mL, on relève le pH pour un volume  $V_B=15$  mL, la valeur de pH attendue est :

a- 
$$pH_{(VB)=15 \text{ mL})} = 7,0$$

b- 
$$pH_{(VB)=15 \text{ mL})} = 11,9$$

c- 
$$pH_{(VB)=15 \text{ mL})} = 12,7$$

d- 
$$pH_{(VB)=15 \text{ mL})} = 13,3$$

10- Cette allure admet les caractéristiques:

- a- Formée de 4 paliers, (croissant, légèrement croissant, fortement croissant, légèrement croissant), présente 2 points d'inflexion, commence par pHi = 2,0 et se termine par pH $_{\rm f} \le 12,7$
- b- Formée de 3 paliers, (légèrement croissant, fortement croissant, légèrement croissant), présente 1 seul point d'inflexion, commence par pHi = 1,6 et se termine par pH $_{\rm f} \le 12,7$
- c- Formée de 3 paliers, (légèrement croissant, fortement croissant, légèrement croissant), présente 1 seul point d'inflexion, commence par pHi = 2 et se termine par  $pH_f = 9,2$ .
- d- Formée de 3 paliers, (légèrement croissant, fortement croissant, légèrement croissant), présente 2 points d'inflexion, commence par pHi = 1,6 et se termine par  $pH_f \le 9$ .



# Exercice – 2 Cinétique

I- On veut étudier la cinétique de la réaction lente et totale :

$$H_2O_{2(aq)} + 2 I_{(aq)}^- + 2 H_{(aq)}^+ \longrightarrow I_{2(aq)} + 2 H_2O_{(1)}$$

Et ceci à partir des solutions :

- (A) de  $H_2O_2$  de concentration  $C_A=2\times10^{-2}$  mol/L.
- (B) de KI de concentration C<sub>B</sub>=0,4 mol/L.
- (C) de  $H_2SO_4$  de concentration  $C_C=5\times10^{-2}$  mol/L.
- 1- La solution (A) est obtenue par dilution d'une solution commerciale de H<sub>2</sub>O<sub>2</sub> de concentration 1 mol/L. Le lot de verrerie indispensable pour préparer (A) est :
  - a- Une fiole jaugée de 250 mL et une pipette jaugée de 10 mL.
  - b- Une fiole jaugée de 250 mL et une pipette jaugée de 5 mL.
  - c- Une fiole jaugée de 200 mL et une pipette jaugée de 10 mL.
  - d- Une fiole jaugée de 50 mL et une pipette jaugée de 2 mL.
- 2- La solution (B) est obtenue par dissolution du solide iodure de potassium KI dont  $M_{KI}=166 \text{ g.mol}^{-1}$

Pour obtenir:

- a- 100 mL de (B) il faut dissoudre 3,32 g de KI.
- b- 250 mL de (B) il faut dissoudre 6,64 g de KI.
- c- 100 mL de (B) il faut dissoudre 6,64 g de KI.
- d- 500 mL de (B) il faut dissoudre 3,32 g de KI.
- 3- L'acide sulfurique est un diacide fort :  $H_2SO_4 \rightarrow 2H^+ + SO_4^{2-}$

Le pH de la solution(C) d'acide sulfurique est :

- a- pH(C) = 2.3.
- b-  $pH_{(C)}=2,0$ .
- c-  $pH_{(C)}=1,3$ .
- d-  $pH_{(C)}=1,0.$
- II- Dans un bécher de 500 mL, on mélange à la date t = 0 min,
  - 100 mL de (A) de  $H_2O_2$  de concentration  $C_A=2\times10^{-2}$  mol/L.
  - 40 mL de (B) de KI de concentration C<sub>B</sub>=0,4 mol/L.
  - 60 mL de (C) de  $H_2SO_4$  de concentration  $C_C=5\times10^{-2}$  mol/L.
    - 4 Le réactif limitant est :
    - $a-H_2O_2$
    - b- I
    - c- H<sup>+</sup>
    - d-  $I_2$
    - 5 La concentration initiale dans le mélange de :
    - a-  $H_2O_2$  est  $[H_2O_2]_{t=0}= 1\times 10^{-2}$  mol/L.
    - b-  $H_2O_2$  est  $[H_2O_2]_{t=0}$ =  $5 \times 10^{-3}$  mol/L.
    - c- I<sup>-</sup> est [I<sup>-</sup>]<sub>t=0</sub>=  $4 \times 10^{-2}$  mol/L.
    - d- H<sup>+</sup> est  $[H^+]_{t=0} = 2 \times 10^{-2} \text{ mol/L}.$

- 6 La concentration finale dans le mélange de:
- a-  $H_2O_2$  est  $[H_2O_2]_{t \text{ final}} = 1 \times 10^{-2} \text{ mol/L}$ .
- b-  $I_2$  est  $[I_2]_{t \text{ final}} = 1 \times 10^{-2} \text{ mol/L}.$
- c-  $I^-$  est  $[I^-]_{t \text{ final}} = 8 \times 10^{-2} \text{ mol/L}.$
- d- H<sup>+</sup> est  $[H^+]_{t \text{ final}} = 2 \times 10^{-2} \text{ mol/L}.$
- III- Afin de pouvoir suivre l'évolution cinétique de la réaction lente et totale  $H_2O_{2(aq)} + 2I^-_{(aq)} + 2H^+_{(aq)} \longrightarrow I_{2(aq)} + 2H_2O_{(1)}$

On prélève à des dates différentes, chaque 3 minutes, un volume V=20 mL qu'on verse dans 150 mL d'eau glacée mélangée à l'empois d'amidon (indicateur coloré incolore et se colore en bleu en présence du diiode).

On dose la solution obtenue par une solution de thiosulfate de sodium de concentration  $2\times10^{-3}$  mol/L. l'équation support de dosage est :

$$I_{2\,(aq)} + 2S_2O_{\,3}^{\,2-}\,_{(aq)} \longrightarrow > 2I_{\,(aq)}^{\,-} + S_4O_{\,6(aq)}^{\,2-}$$

La courbe ci-dessous représente  $[I_2] = f(t)$ 



- 7- La vitesse de formation de I<sub>2</sub> au cours du temps :
- a- Diminue.
- b- Augmente.
- c- Ne varie pas.
  - d- Dépend de la concentration de I<sub>2</sub>.
  - 8- L'eau glacée a pour rôle :
  - a- Augmenter la vitesse de la réaction de formation du diiode.
  - b- Bloquer la formation du diiode.
  - c- Augmenter la concentration du diiode
  - d- Augmenter la concentration du réactif limitant.
  - 9 La relation donnant  $[I_2]_t$  en fonction du volume de thiosulfate versé à l'équivalence

 $V_E \, est$ :

a- 
$$[I_2]_t = 2 \times 10^{-5} \times V_E$$
.

b- 
$$[I_2]_t$$
=5×10<sup>-5</sup>/ $V_E$ .

c- 
$$[I_2]_t = 5x10^{-5} \times V_E$$
.

d- 
$$[I_2]_t = 1 \times 10^{-5} \times V_E$$
.

- 10 Le volume V<sub>E</sub> versé à l'équivalence :
- a- Diminue au cours du temps.
- b- Augmente au cours du temps.
- c- Ne varie pas au cours du temps.
- d- Déterminé par virage de l'incolore au bleu.

Temps min

0

3

6

9

12

15

18

21

24

27

[I<sub>2</sub>] mmol.L<sup>-1</sup>

4

8

9

6,5

8,6

9,3

9,5

9,6

9,68

# UNIVERSITE LIBANAISE

FACULTE DE GENIE





Concours d'entrée (2021 – 2022) Examen de chimie (Bac. Fr.)

Durée: 40 min Août: 2021

Cette épreuve est constituée d'un seul exercice à choix multiples (QCM).

L'exercice comporte vingt QCM.

- 1- Reporter vos réponses sur la grille de QCM.
- 2- À chaque QCM correspond 4 propositions a, b, c et d.
- 3- Pour chacun de QCM, il existe une SEULE bonne réponse.
- 4- Choisir la bonne proposition et cocher la case correspondante à la lettre (a, b, c ou d) par un « X » dans la GRILLE associée à l'exercice.
- 5- Vous devez répondre à toutes les questions.
- 6- Chaque réponse correcte vous apporte 1 point.
- 7- L'usage de la calculatrice est autorisé.

#### Grille des réponses.

| QCM N°   | а | b | С | d |
|----------|---|---|---|---|
| 1        |   |   |   |   |
| 2        |   |   |   |   |
| 3        |   |   |   |   |
| 4        |   |   |   |   |
| 5        |   |   |   |   |
| 6        |   |   |   |   |
| 7        |   |   |   |   |
| 8        |   |   |   |   |
| 9        |   |   |   |   |
| 10       |   |   |   |   |
| 11       |   |   |   |   |
| 12       |   |   |   |   |
| 13       |   |   |   |   |
| 14       |   |   |   |   |
| 15       |   |   |   |   |
| 16       |   |   |   |   |
| 17       |   |   |   |   |
| 18<br>19 |   |   |   |   |
|          |   |   |   |   |
| 20       |   |   |   |   |

| QCM N | а | b | С | d |
|-------|---|---|---|---|
| o     |   |   |   |   |
| 1     |   |   |   | X |
| 2     | X |   |   |   |
| 3     |   |   | X |   |
| 4     | X |   |   |   |
| 5     |   |   | X |   |
| 6     |   |   | X |   |
| 7     |   | X |   |   |
| 8     |   | X |   |   |
| 9     |   | X |   |   |
| 10    |   | X |   |   |
| 11    |   | X |   |   |
| 12    |   |   | X |   |
| 13    |   |   | X |   |
| 14    |   |   | X |   |
| 15    |   | X |   |   |
| 16    | X |   |   |   |
| 17    | X |   |   |   |
| 18    |   |   | X |   |
| 19    |   |   |   | X |
| 20    | X |   |   |   |

# L'ACIDE LACTIQUE ET LE LACTATE D'ÉTHYLE

L'acide lactique, obtenu par fermentation du glucose par exemple, est à la base de nombreux dérivés utilisés dans l'industrie, proposant ainsi une alternative à la pétrochimie.

L'un de ces dérivés, le lactate d'éthyle, est un ester ; il est utilisé comme additif alimentaire, dissolvant pour vernis, dégraissant de pièces métalliques...

Formule topologique de l'acide lactique:

- A.1. Les familles fonctionnelles présentes dans la molécule d'acide lactique sont :
  - a- Un alcool primaire, un alcool secondaire, une cétone
  - b- Un alcool primaire, un alcool secondaire, un aldéhyde
  - c- Un alcool secondaire, un ester
  - d- Un alcool secondaire, un acide carboxylique.

## A.2. La formule topologique et le nom de l'isomère de position de l'acide lactique :

|   | Formule topologique | Nom                        |
|---|---------------------|----------------------------|
| a | HO OH               | acide 3-hydroxypropanoïque |
| b | ОН                  | Acide hydroxypropanoïque   |
| С | HO OH               | Acide 1-hydroxypropane     |
| d | СН2(ОН)—СН2—СООН    | acide 3-hydroxypropanoïque |

On souhaite mesurer le pKA du couple acide lactique/ion lactate. L'équation de la réaction modélisant la transformation acido-basique entre l'acide lactique et l'eau est :

$$C_3H_6O_3(aq) + H_2O(\ell) \rightleftarrows C_3H_5O_3$$
 (aq) +  $H_3O^+(aq)$ 

A.3. Les couples acide-base mis en jeu dans cette transformation sont :

 $a\text{--} H_2O/H_3O^{+;} \quad C_3H_6O_3/C_3H_6O_3^-$ 

 $b- H_3O^+/ H_2O^- C_3H_6O_3/C_3H_6O_3^-$ 

 $c-H_3O^+/H_2O^ C_3H_6O_3/C_3H_5O_3^-$ 

 $d-H_3O^+/H_2O^ C_3H_5O_3/C_3H_6O_3$ 

## A.4. L'expression littérale de la constante d'acidité KA du couple de l'acide lactique est :

|   | а                     | b             | С                                       | d              |
|---|-----------------------|---------------|-----------------------------------------|----------------|
| 3 | $[H_3 O^+][base]$     | $[H_3 O^+]^3$ | [H <sub>3</sub> O <sup>+</sup> ][acide] | $2[H_3 O^+]^2$ |
|   | [acide]C <sup>o</sup> | [acide]Co     | [base]Co                                | [base]         |

#### A.5. La constante d'acidité KA du couple de l'acide lactique peut s'exprimer sous la forme :

|    | a                              | b                                                  | С                             | d                              |
|----|--------------------------------|----------------------------------------------------|-------------------------------|--------------------------------|
| KA | $[H_3 O^+]^2$                  | $[H_3 O^+]$                                        | $[H_3 O^+]^2$                 | $2[H_3 O^+]^2$                 |
|    | $\overline{(C-[H_3O^+]^2)C^o}$ | $\overline{(\mathcal{C}-[H_3O^+]^2)\mathcal{C}^o}$ | $\overline{(C-[H_3 O^+])C^o}$ | $\overline{(C-[H_3O^+]^2)C^o}$ |

On mesure le pH d'une solution aqueuse d'acide lactique, de concentration en acide apporté  $C = 8,00 \times 10^{-3} \text{ mol} \cdot \text{L}^{-1}$ . On obtient : pH = 3,03.

A.6. La concentration en quantité de matière d'ions oxonium H<sub>3</sub>O+(aq) de cette solution et la constante d'acidité KA sont tel que :

a- 
$$[H_3O^+] = 8,00 \times 10^{-3} \text{mol/L et KA} = \infty$$

b- 
$$[H_3O^+]$$
 = 8,00x10<sup>-3</sup>mol/L et KA = 1,23x10<sup>-6</sup>

$$c-[H_3O^+] = 9.33x10^{-4} \text{ mol/L et KA} = 1.23x10^{-4}$$

d- 
$$[H_3O^+] = 9.33 \times 10^{-5} \text{mol/L}$$
 et  $KA = 1.23 \times 10^{-8}$ 

A.7. L'acide lactique est un acide faible du fait que :

a- 
$$[H_3O^+] = C = 8,00 \times 10^{-3} \text{ mol/L}.$$

b- 
$$[H_3O^+] = 9.33x10^{-4} \text{ mol/L} < C = 8.00 \times 10^{-3} \text{ mol/L}$$

c- 
$$[H_3O^+] = 9.33 \times 10^{-5} \text{ mol/L} < C = 8.00 \times 10^{-3} \text{ mol/L}.$$

d- 
$$[H_3O^+]$$
 = 2,00 x10<sup>-2</sup> mol/L > C = 8,00 × 10<sup>-3</sup> mol/L.

#### Diagramme de distribution du couple de l'acide lactique



A.8. La relation liante [acide], [base], pH et pKA est :

$$a-pKA = pH + log ([base]/[acide])$$

$$b-pH = pKA + log ([base]/[acide])$$

$$c-pH = pKA + log ([acide]/[base])$$

```
d-pH = pKA - log ([base]/[acide])
```

A.9. À partir du diagramme de prédominance on tire que pour n'importe quel pH:

- a-[acide]+[base]=1
- b- % acide +% base = 100%
- c- % acide augmente si pH augmente
- d- % acide > % base

A.10. À partir du diagramme de prédominance on tire que pour pH = 3.3 on a :

- a- [lactate]/[acide lactique] = 80/20et pKA = 2.70
- b- [lactate]/[acide lactique] = 20/80 et pKA = 3.90
- c- [lactate]/[acide lactique] = 20/100 et pKA = 4,00
- d- [lactate]/[acide lactique] = 80/100et pKA = 3,5

## B. Estérification de l'acide lactique

Le lactate d'éthyle peut être synthétisé à partir de l'acide lactique et de l'éthanol.

L'équation de réaction d'estérification associée à cette transformation est la suivante :

$$C_3H_6O_3(\ell) + C_2H_6O(\ell) \rightleftarrows C_5H_{10}O_3(\ell) + H_2O(\ell)$$

- B.1. Cette réaction est :
- a- Rapide, totale et exothermique
- b- Lente, limitée et athermique
- c- Lente, et totale
- d- Rapide, réversible et athermique
- B.2. Le nom systématique de l'ester obtenu est :
- a- hydroxypropanoate d'éthyle
- b- 1-hydroxypropanoate d'éthyle
- c- 2-hydroxypropanoate d'éthyle
- d- 3-hydroxypropanoate d'éthyle

$$\begin{array}{l} B.3.\ L'expression\ de\ la\ constante\ de\ cet\ équilibre\ est:\\ a-\ K(T)=\frac{[\texttt{C5H1003}\,(\ell)]+[\texttt{H2O}\,(\ell)]}{[\texttt{C3H6O3}\,(\ell)]+[\texttt{C2H6O}\,(\ell)]} \end{array}$$

b- 
$$K(T) = \frac{[C5H1003(\ell)]}{[C3H603(\ell)][C2H60(\ell)]}$$

$$\text{c- K(T)=} \frac{\text{[C5H1003 ($\ell$)][H20 ($\ell$)]}}{\text{[C3H603 ($\ell$)][C2H60 ($\ell$)]}}$$

d- K(T)= 
$$\frac{\text{[C5H10O3 ($\ell$)][H2O ($\ell$)]}}{\text{[C3H6O3 ($\ell$)]}}$$

Pour étudier l'influence de différents paramètres sur cette transformation, on fait réagir deux systèmes chimiques identiques de même volume mais dans des conditions différentes.

|                | Mélange initial             | Protocole                  |
|----------------|-----------------------------|----------------------------|
| Expérience (a) | 0,741 mol d'acide lactique  | Chauffage à reflux à 80 °C |
|                | et 0,850 mol d'éthanol      |                            |
| Expérience (b) | 0,741 mol d'acide lactique, | Chauffage à reflux à 80 °C |
|                | 0,850 mol d'éthanol et      |                            |
|                | quelques gouttes d'acide    |                            |
|                | sulfurique concentré        |                            |

- B.4. Dans les deux systèmes (a) et (b):
- a- L'acide lactique est le réactif limitant dans le système (a)
- b- L'acide lactique est le réactif limitant dans le système (b)
- c- Aucun des réactifs est limitant dans les deux systèmes (a) et (b)
- d- L'éthanol est en excès.

Par une succession de dosages à différents instants, on peut suivre l'évolution temporelle de la transformation. On obtient alors les deux courbes suivantes :

Quantité d'ester formé n ester au cours du temps



On admet que le système (b) atteint l'état d'équilibre.

# B.5. La composition du système (b) à t = 360 min:

|   | $C_3H_6O_3(\ell)$ | $C_2H_6O(\ell)$ | $C_5H_{10}O_3\left(\ell\right)$ | $H_2O(\ell)$ |
|---|-------------------|-----------------|---------------------------------|--------------|
| a | 0,741             | 0,850           | 0,370                           | 0,370        |
| b | 0,371             | 0,480           | 0,370                           | 0,370        |
| С | 0,700             | 0,809           | 0,041                           | 0,041        |
| d | 0,370             | 0,425           | 0,370                           | 0,370        |

## B.6. La constante d'équilibre est :

$$a-K(T) = 0.79$$

$$b-K(T) = 2,97$$

$$c-K(T) = 2.0 \times 10^{-2}$$

$$d-K(T)=4.1 \times 10^{-4}$$

## B.7. $\hat{A} t = 0$ :

- a- Vester formé système (b) = 10 x Vester formé système (a)
- b- Vester formé système (b) = Vester formé système (a)
- C- Vester formé système (b) < Vester formé système (a)
- d- 10 x V<sub>ester formé système (b)</sub> = V<sub>ester formé système (a)</sub>

#### B.8. À un même instant t :

- a- n ester formé système (a) = n ester formé système (b) et v ester formé système (a) = v ester formé système (b)
- b- n ester formé système (a) < n ester formé système (b) et  $v_{ester}$  formé système (a) =  $v_{ester}$  formé système (b)
- c- n ester formé système (a) < n ester formé système (b) et v ester formé système (a) < v ester formé système (b)
- d- n ester formé système (a) > n ester formé système (b) et v ester formé système (a) > v ester formé système (b)

#### B.9. L'acide sulfurique ajouté dans l'expérience (b) a pour rôle :

- a- Bloquer la réaction d'hydrolyse
- b- Rendre la réaction d'estérification totale.
- c- Augmenter le rendement final de l'estérification
- d- Accélérer la transformation

# B.10. Dans le cas où le système (a) atteigne l'état d'équilibre, sa composition sera :

|   | $C_3H_6O_3(\ell)$ | $C_2H_6O(\ell)$ | $C_5H_{10}O_3(\ell)$ | $H_2O(\ell)$ |
|---|-------------------|-----------------|----------------------|--------------|
| a | 0,371             | 0,480           | 0,370                | 0,370        |
| b | 0,741             | 0,850           | 0,370                | 0,370        |
| С | 0,700             | 0,809           | 0,041                | 0,041        |
| d | 0,370             | 0,425           | 0,370                | 0,370        |