STAT5003 - Week 1

Review of Basic Statistical Concepts

Aims of this Course

- Learn concepts and methods related to statistical data analysis and statistical learning
- Apply the methods on real datasets in R
 (the statistical computing language)
- Aim is to teach you to use the methods, not necessarily to go into all the mathematical details

not a course that looks into algebraic concepts.

Basics of Statistical Computing

- Review basic statistical concepts
- Introduction to R
- Reproducible coding using Rmarkdown
- Recommended IDE via RStudio

Population

Definition:

classical context: population of people.

 The set of data (numeric or otherwise) corresponding to the entire collection of units about which information is sought

Examples:

- Blood pressure readings of all people in Australia
- The number of languages spoken from all currently enrolled students in University of Sydney

 **Abesin's have to be people...

Sample

Definition:

A <u>subset</u> of the <u>population</u> data that are actually collected in the course of a study

Examples:

- Blood pressure readings of 1000 randomly selected people in Australia
- The number of languages spoken from 500 randomly selected students currently enrolled in University of Sydney
 - In most studies, it is difficult to obtain information about the whole population. That is why we rely on samples to make estimates and inferences related to the whole population.

Parameters vs. Statistic

- A parameter is a number that describes a population.
 - Notation usually denoted with Greek letters. e.g. μ, σ
- A statistic is a number that describes a sample.
 - Sample statistics are usually denoted using Roman letters, e.g. x, s.
- A parameter is a fixed number (usually unknown). A statistic is a variable whose value varies from sample to sample.

Descriptive Statistics: Numeric and Graphic

Numeric measures:

- Measure of location
 - Mean, Median, Mode for numeric data
 - Counts, proportions for categorical data
- Measure of spread
 - Standard deviation, MAD (median absolute deviation), IQR
- Others:
 - Min, Max, Quartile, Five number summaries (used later in boxplot)

Co Q1, Q2, Q3, median etc.

never head of this ...

Visualisation Packages

Types of Graphics Libraries Covered

- base R use the built in plotting functions
 - typically good for quick plots of simple datasets
- ggplot graphics ggplot2
 - Name meaning the grammar of graphics
 - Typically better for more complicated datasets
- Not covered but honorable mention with plotly
 - plotly is a powerful plotting library -> more dynamic through HTML browser.
 - Can do interactive graphics

-> Complex coderequired to make more beautiful visualisations in base R.

Simple Example dataframe for Plots

```
What does momend
                                            runif do? Why one they different?
y = unit(100),
                         cat = sample(LETTERS[1:2], prob =
c(1, 3), size = 100, replace = TRUE))
head (example.dat)
                     y cat
                                  go through lab on lecture
1 0.37573068 0.8676167
2 - 1.70387817 0.6760221
3 -1.64878643 0.7621811
4 0.09658172 0.2585820
5 0.74011371 0.2326891
6 - 0.86970148 0.3605919
```

Single Numeric Variable: Boxplot in base R

```
boxplot (example.dat$x,

porizontal = TRUE)

by default the vertical boxplot is vertical
```


Single Numeric Variable: Boxplot in ggplot2

```
library(ggplot2)
ggplot(example.dat, aes(x = x)) +
geom_boxplot() +
theme_minimal()
```


Single Numeric Variable: Histogram in base R

hist(example.dat\$x)

Histogram of example.dat\$x

Single Numeric Variable: Histogram in ggplot2

```
qqplot(example.dat, aes(x = x)) +
    geom histogram() +
    theme minimal()
```

you can speaty the number of him, which control, the bardwidth of the histogram

Single Categorical Variable: Bar Plot in base R

barplot(table(example.dat\$cat))

this command creates the number of counts
for each variable.

Single Categorical Variable: Bar Plot ggplot2

```
ggplot(example.dat, aes(x = cat)) +
    geom_bar() +
    theme_bw() # Change the theme
```


Two Numeric Variables: Scatterplot in base R

Two Numeric Variables: Scatterplot in ggplot2

```
ggplot(example.dat, aes(x = x, y =
y)) + geom_point() # default theme
here
```


Coding with R

What is R?

- Free, open source software designed for statistical computing
- Runs on Windows, Mac, Linux and other flavours of Unix
- Provides an interactive environment, but it is also an interpreted programming language
- Its power lies in the thousands of contributed packages on CRAN,
 Bioconductor and github

Central Run Archived Network.

Base R and the tidyverse

- The <u>tidyverse</u> popularised by Hadley Wickham and the team at
 - Has a (somewhat) standardised syntax (pipes > or >> are king except for + in ggplot2)
 - Produces more human readable code
 - Not as stable as base, breaking changes occur as tidyverse develops.
 - Good for interactive data analyst

Base R and the tidyverse, (cont.)

- Core base R
 - Good for production level code
 - Stable
 - Function syntax inconsistent

Quirks of R Syntax

- <- is the symbol for 'assign'
 - Example: x <- 14
 - which is equivalent to: x = 14 when used at the prompt
- Should use = for argument matching in a function
- The period symbol . can be used in variable names
 - Example new.vector c("A", "B", "C")
- Element indexing starts at 1

[1] "A"

con use identical(x,y)
to determine if
variables have some assigned
value and Returnstance
false.

Basic Data Types in R

Classical data types

- Numeric
- Integer //
- Logical
- Character
- Complex //

- Factor: categorical data type
 - Unique to R (integer with some attributes)

```
data("ToothGrowth")
levels(ToothGrowth$supp)

[1] "OJ" "VC"

class(ToothGrowth$supp)

[1] "factor"

str(ToothGrowth$supp)

Factor w/ 2 levels
"OJ", "VC": 2 2 2 2 2 2 2 2
2 2 . . .
```

Homogeneous vs. Non-homogenous Data Types in R

Homogenous

- Vector
 - Sequence of data elements of the same basic data type
- Matrix
 - Collection of data elements in a 2dimensional array with rows and columns

Non-homogenous

- List
 - More general structure containing other objects (including possibly other lists)
- Data frame
 - Used for storing data, each column can be a different basic type
 - All columns must have the same length

Vectors

```
new.vector \leftarrow c(1, 2, 3)
class(new.vector)
[1] "numeric"
length (new.vector)
[1] 3
new.vector[1:2]
[1] 1 2
new.vector <- c(1, 2, "hello")</pre>
class(new.vector)
[1] "character"
```

Matrix

```
A \leftarrow matrix(c(2, 4, 3, 1, 7, 8),
nrow = 3)
# Unless specified otherwise, it
will fill the matrix by column.
A
     [,1] [,2]
[1,] 2
[2,] 4 7
[3,] 3
A[2, 1]
[1] 4
A[1, ]
[1] 2 1
A[5]
[1] 7
```

List

```
vector.a <- c(1, 2, 3)
vector.b <- c("hello", "world", "!!")</pre>
new.list <- list(c(vector.a,</pre>
vector.b))
new.list
[[1]]
[1] "1" "2" "3"
                             "hello"
"world" "!!"
new.list <- list(vector.a, vector.b)</pre>
new.list
[[1]]
[1] 1 2 3
[[2]]
[1] "hello" "world" "!!"
new.list[[1]]
[1] 1 2 3
```

Data Frames

we conchechif a variable is a list using: is.list (warpbreaks) - in this case.

```
head (warpbreaks)
  breaks wool tension
      26
      30 A
      54 A
      70
      52
class(warpbreaks)
[1] "data.frame"
head(warpbreaks$wool)
[1] A A A A A A
Levels: A B
```

```
the since str (warpbreaks)
me data.frame': 54 obs. of 3 obs. of 3
$ breaks : num 26 30 54 25 70 52 51 26 67 18 ...
                    : Factor w/ 2 levels
           $ tension: Factor w/ 3 levels
          "L", "M", "H": 1 1 1 1 1
          names (warpbreaks)
          [1] "breaks" "wool"
          "tension"
```

