

Quantum simulation of dynamical gauge fields using ultracold atomic mixtures

Synthetic Quantum Systems

Apoorva Hegde, Alexander Mil, Torsten Zache, Andy Xia, Rohit Bhatt, Markus Oberthaler, Philipp Hauke, Jürgen Berges, Fred Jendrzejewski

Kirchhoff- Institut für Physik, Im Neunheimer Feld 227, 69120 Heidelberg, Germany apoorva.hegde@kip.uni-heidelberg.de

U(1) gauge theory with cold atoms

Related Theory: Uwe- Jens Wiese, Ann. Phys. (Berlin) 525, No. 10–11, 777–796 (2013) Zohar et.al, PHYSICAL REVIEW A 88, 023617 (2013)

Similar experimental works: Schweizer et al. arXiv: 1901.07103 (2019) Görg et al. Nature Physics (2019)

- Fermions(matter), bosons(gauge field), and local gauge invariance
- High Energy Physics — Quantum gas mixtures
 - Gauge fields are replaced by quantum mechanical spins \hat{L}_n .
 - A discrete 'Electric field' is represented by $\widehat{L}_{n,z}$.

$$H = \sum_{n} \left[\frac{H_{n}}{h} + \hbar \Omega \left(\hat{b}_{n,v}^{\dagger} \hat{b}_{n,p} + h.c \right) \right]$$

 H_n : hamiltonian of the building block.

 Ω : Coupling strength between the two matter states.

 $\hat{b}_{n,v}^{\dagger}, \hat{b}_{n,p}$: creation and annihilation operators for 'vacuum' and 'particle' states.

Experimental platform

Gauge field

Sodium

Matter field

Lithium

Gauge coupling

Spin changing collisions

$$H_n = \chi L_{z,N}^2 + \frac{\Delta}{2} (\hat{b}_p^{\dagger} \hat{b}_p - \hat{b}_v^{\dagger} \hat{b}_v) + \lambda (\hat{b}_p^{\dagger} \hat{L}_- \hat{b}_v - \hat{b}_v^{\dagger} \hat{L}_+ \hat{b}_p) + \text{decoherence}$$

 $N_{Na} \approx 300 \times 10^3$

$$\omega_{Na}=2\pi imes200~{
m Hz}$$

$$N_{Li}\approx 30\times 10^3$$

$$\omega_{Li} = 2\omega_{Na}$$

Lithium

$$B \approx 2 \text{ G}$$

Initial state preparation and dynamics

Create a coherent superposition in Sodium:

Observed dynamics: Spin transfer in Lithium

$$H_n = \chi L_{z,N}^2 + \frac{\Delta}{2} (\hat{b}_p^{\dagger} \hat{b}_p - \hat{b}_v^{\dagger} \hat{b}_v) + \lambda (\hat{b}_p^{\dagger} \hat{L}_- \hat{b}_v - \hat{b}_v^{\dagger} \hat{L}_+ \hat{b}_p) + \text{decoherence}$$

Alexander Mil et al. Science Vol. 367, Issue 6482, pp. 1128-1130

Fluctuations in the dynamics

Nature of the fluctuations observed in the data

Truncated Wigner Approximation

- Fluctuations in the initial state
- Randomly selecting an initial state from Gaussian distribution
- Incorporate uncertainty in L_z of Sodium

Projection noise of Sodium is seen in Lithium transfer