

A brief introduction to Convolution

Ji Haozheng

ESS 206 Course Presention

March 12, 2025

Contents

What is Convolution?

A simple example

Reference

What is Convolution?

What is a system?

Figure: General System

Figure: example

A simple but useful system & Some necessary assumptions

Figure: example

Assumption

- Assumption 1: The system is linearity.
- Assumption 2: The system is time-invariant.
 - ⇔ The system is a LTI D-T system.

Figure: Signal input

Figure: Impulse response

Additivity: separate the signals

$$T(u+v) = Tu + Tv$$

Homogeneity: process the signal as a multiple of the impulse signal

$$T(\lambda v) = \lambda T(v)$$

Additivity: superposition all the response

$$Tu + Tv = T(u + v)$$

Figure: Signal response

Figure: Response output

$$\begin{split} Y & [0] = S & [0] \times R & [0] \\ Y & [1] = S & [0] \times R & [1] + S & [1] \times R & [0] \\ Y & [2] = S & [0] \times R & [2] + S & [1] \times R & [1] + S & [2] \times R & [0] \\ & \vdots \\ Y & [n] = \sum_{i=1}^{n} S & [i] \times R & [n-i] \end{split}$$

7/15

Convolution formula

Discrete Convolution

$$Y[n] = \sum_{i=0}^{n} S[i] \times R[n-i]$$

Continuous Convolution

$$Y(t) = \int_{0}^{\infty} S(\tau) \times R(t - \tau) d\tau$$

A simple example

Cauchy Product V.S. Convolution

Convolution:

$$Y[n] = \sum_{i=0}^{n} S[i] \times R[n-i]$$

Cauchy Product:

$$\left(\sum_{n=0}^{\infty} a_n\right) \left(\sum_{n=0}^{\infty} b_n\right) = \sum_{n=0}^{\infty} \left(\sum_{k=0}^{n} a_k b_{n-k}\right)$$

$$\left(\sum_{n=0}^{\infty} a_n x^n\right) \left(\sum_{n=0}^{\infty} b_n x^n\right) = \sum_{n=0}^{\infty} \left(\sum_{k=0}^{n} a_k x^k b_{n-k} x^{n-k}\right) = \sum_{n=0}^{\infty} x^n \left(\sum_{k=0}^{n} a_k b_{n-k}\right)$$

$$= \sum_{n=0}^{\infty} x^n \left(a(n) * b(n)\right)$$

When $x = 10, \forall i \quad a_i, b_i \in \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$

$$\left(\sum_{n=0}^{\infty}a_{n}x^{n}\right)\left(\sum_{n=0}^{\infty}b_{n}x^{n}\right)=\sum_{n=0}^{\infty}x^{n}\left(a\left(n\right)\ast b\left(n\right)\right)$$

$$\overline{a_n a_{n-1} \dots a_2 a_1 a_0} \times \overline{b_n b_{n-1} \dots b_2 b_1 b_0} = \sum_{n=0}^{\infty} 10^n \left(a\left(n\right) * b\left(n\right) \right)$$

	$\widetilde{a_3}$	$\widetilde{a_2}$	$\widetilde{a_1}$	$\widetilde{a_0}$	a_3	a_2	a_1	a_0
$\widetilde{b_3}$								0
$\widetilde{b_2}$							0	0
$\widetilde{b_1}$						0	0	0
$\widetilde{b_0}$					0	0	0	0
b_3				0	(3,3)	(3,2)	(3,1)	(3,0)
b_2			0	0	(2,3)	(2,2)	(2,1)	(2,0)
b_1		0	0	0	(1,3)	(1,2)	(1,3)	(1,3)
b_0	0	0	0	0	(0,3)	(0,2)	(0,1)	(0,0)

Calculation Method by traditional method $n = 10^2$

```
a = randi([0, 9], 1, n);
b = randi([0, 9], 1, n);

tic;
product1=0;
sum=0;
for ii=1:length(a)
    for jj=1:length(b)
        sum=sum+a(ii)*b(jj)*10^(length(b)-jj);
    end
    product1=product1+sum*10^(length(a)-ii);
    sum=0;
end
```

$$\label{eq:complexity} \begin{split} & \mathsf{iteration:} n*n \\ & \mathsf{Algorithmic} \ \mathsf{Complexity:} \ O(n^2) \end{split}$$

Calculation by Convolution

iteration:
$$1 + 2 + 3 + \cdots + (2n - 1) + 2n = n * (2n - 1)$$

Algorithmic Complexity: $O(2n^2)$

More steps, but less time!

Comparison	of Running Times:	• •		
Run Number	Running Time of	Method 1 (seconds)	Running Time of Method 2 (seconds)	Ratio
1	T .	0.000936	0.000064	14.7186
2	T .	0.000939	0.000062	15.0465
3	I	0.000932	0.000062	15.0306
4	I	0.000931	0.000062	14.9630
5	I	0.000935	0.000071	13.2450
6	I	0.000941	0.000063	14.9825
7	T.	0.000929	0.000062	14.9614
8	I	0.000937	0.000063	14.9856
9	I	0.000935	0.000076	12.3567
10	I	0.000945	0.000063	14.9242
11	I	0.000928	0.000062	15.0146
12	I	0.000928	0.000062	14.9613
13	I	0.000929	0.000062	14.9549
14	I	0.000929	0.000063	14.7882
15	I .	0.000927	0.000062	14.9084
16	I	0.000928	0.000062	14.9952
17	I	0.000967	0.000062	15.6505
18	I	0.000928	0.000062	15.0129
19	I	0.000927	0.000062	14.9935
20	I	0.000928	0.000062	14.9661

Figure: Comparison of Running Times

Reference

The End

Reference

- Wikipedia contributors. "Generating function." Wikipedia, The Free Encyclopedia. Wikipedia, The Free Encyclopedia, 26 Dec. 2024. Web. 10 Mar. 2025.
- Wikipedia contributors. "Convolution." Wikipedia, The Free Encyclopedia. Wikipedia, The Free Encyclopedia, 23 Jan. 2025. Web. 10 Mar. 2025.
- But what is a convolution?
- Linear Algebra Done Right