# Firmware User Manual

# IMX8X AI\_ML Reference Design

Date: February, 2021 | Version 3.1



# **CONTENTS**

| 1  | INT                           | RODUCTION                                              | 5  |  |  |
|----|-------------------------------|--------------------------------------------------------|----|--|--|
|    | 1.1                           | Purpose of the Document                                |    |  |  |
|    | 1.2                           | About The System                                       |    |  |  |
|    | 1.3<br>1.4                    | Intended Audience Prerequisites                        |    |  |  |
| 2  |                               | VIRONMENT SETUP                                        |    |  |  |
| _  |                               |                                                        |    |  |  |
|    | 2.1                           | Steps to build Yocto Image                             |    |  |  |
|    | 2.2                           | Download firmware package                              |    |  |  |
|    | 2.3                           | Flash the firmware image to SD Card in LINUX HOST PC   |    |  |  |
|    | 2.4                           | Flash the firmware image to SD Card in Windows HOST PC |    |  |  |
|    | 2.5                           | Hardware Installation                                  |    |  |  |
| 3  | RUI                           | NNING DEMOS                                            | 11 |  |  |
|    | 3.1                           | Ethernet Demo                                          |    |  |  |
|    | 3.2                           | HDMI Demo                                              | 12 |  |  |
|    | 3.3                           | Camera Demo                                            |    |  |  |
|    | 3.4                           | Wi-Fi Demo                                             |    |  |  |
|    | 3.5                           | Bluetooth Demo                                         |    |  |  |
|    | 3.6                           | USB Hub demo                                           |    |  |  |
|    | 3.7                           | USB OTG as host                                        |    |  |  |
|    | 3.8                           | USB OTG as Devices                                     | 20 |  |  |
|    | 3.9                           | LTE Demo                                               |    |  |  |
|    | 3.10                          | EEPROM                                                 |    |  |  |
|    | 3.11                          | Sensors (Acc/Gyro)                                     |    |  |  |
|    | 3.12                          | LOW Speed Expansion                                    |    |  |  |
|    | 3.13                          | High Speed Expansion                                   |    |  |  |
|    | 3.14                          | USER LED                                               |    |  |  |
|    | 3.15                          | NOR Flash demo                                         |    |  |  |
|    | 3.16                          | DMIC demo                                              |    |  |  |
|    | 3.17                          | ML and ARM NN demos                                    | 31 |  |  |
| 4  | LIM                           | 1ITATIONS                                              | 32 |  |  |
| 5  | REF                           | FERENCES                                               | 33 |  |  |
|    |                               |                                                        |    |  |  |
|    |                               | FIGURES                                                |    |  |  |
| Fi | gure 1:                       | iMX8XML RD AIML board                                  | 5  |  |  |
|    |                               | : Win32 Disk Imager for flashing SD Card               |    |  |  |
|    | Figure 3: Hardware Setup      |                                                        |    |  |  |
|    | _                             | USB OTG as device in Linux                             |    |  |  |
|    |                               | QUECTEL Module on target board                         |    |  |  |
| Fi | igure 6: High Speed Expansion |                                                        |    |  |  |

# **ACRONYMS AND ABBREVIATIONS**

| Definition/Acronym/Abbreviation | Description                                                                      |
|---------------------------------|----------------------------------------------------------------------------------|
| cd                              | Change directory                                                                 |
| scp                             | Secure copy over the network                                                     |
| dfl                             | Default                                                                          |
| Wi-Fi                           | Wireless fidelity                                                                |
| LTE                             | Long-Term Evolution                                                              |
| ML                              | Machine Learning                                                                 |
| SVM                             | Support Vector Machine                                                           |
| CNN                             | Convolutional Neural Network                                                     |
| ARM NN                          | ARM Neural Network                                                               |
| AI_ML board                     | Artificial intelligence and Machine Learning board featuring the NXP i.MX 8X MPU |
| AES                             | Advanced Encryption Standard                                                     |
| AHAB                            | Advanced High Assurance Boot                                                     |
| AWS                             | Amazon Web Services                                                              |
| BSP                             | Board Support Package                                                            |
| CA                              | Certificate Authority                                                            |
| CAAM                            | Cryptographic Acceleration and Assurance Module                                  |
| CMS                             | Cryptographic Message Syntax                                                     |
| CSF                             | Command Sequence File                                                            |
| CSR                             | Certificate Signing Request                                                      |
| CST                             | Code Signing Tool                                                                |
| DCD                             | Device Configuration Data                                                        |
| GG                              | AWS Greengrass                                                                   |
| OS                              | Operating System                                                                 |
| OTP                             | One-Time Programmable                                                            |
| PKI                             | Public Key Infrastructure                                                        |
| SA                              | Signature Authority                                                              |
| SCFW                            | SCU Firmware                                                                     |
| SDP                             | Serial Download Protocol                                                         |
| SECO                            | Security Controller                                                              |
| SPL                             | Secondary Program Loader                                                         |
| SRK                             | Super Root Key                                                                   |
| SSK                             | Security Starter Kit                                                             |
| TPM                             | Trusted Platform Module                                                          |
| USB                             | Universal Serial Bus                                                             |
| TLS                             | Transport Layer Security                                                         |
| RSA                             | Rivest–Shamir–Adleman                                                            |
| IoT                             | Internet of Things                                                               |
| HSM                             | Hardware Security Module                                                         |

# IMX8X AI\_ML REFERENCE DESIGN

| PKCS#11 | PKCS#11 (Public Key Cryptography Standards) defines an API to communicate with cryptographic security tokens such as smart cards, USB keys and HSMs |
|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| HW      | Hardware                                                                                                                                            |
| MQTT    | Message Queuing Telemetry Transport                                                                                                                 |
| SSL     | Secure Sockets Layer                                                                                                                                |
| SHA     | Secure Hash Algorithm                                                                                                                               |
| SDK     | Software Development Kit                                                                                                                            |
| ECC     | Elliptic Curve Cryptography                                                                                                                         |
| ARN     | Amazon Resource Name                                                                                                                                |
| SECO    | Security Controller                                                                                                                                 |
| FW      | Firmware                                                                                                                                            |
| NV RAM  | Non Volatile Random Access Memory                                                                                                                   |
| API     | Application Programming Interface                                                                                                                   |
| UUID    | Universally Unique Identifier                                                                                                                       |
| SCP     | Secure Copy Protocol                                                                                                                                |
| SCU     | System Control Unit                                                                                                                                 |
| IAM     | AWS Identity and Access Management                                                                                                                  |
| TSS     | TPM2 Software Stack                                                                                                                                 |

# 1 INTRODUCTION

# 1.1 Purpose of the Document

Purpose of this document is to use / understand / flash / demonstrate interfaces on iMX8ML RD firmware.

#### 1.2 About The System

This system contains iMX8X reference design with multiple interface. This is used for Machine learning experience.



Figure 1: iMX8XML RD AIML board

# 1.3 Intended Audience

This document is for developers and end-users who want to demonstrate all the interface of AIML boards.

# 1.4 Prerequisites

Below are the list of Hardware and software needed to enable demonstration.

- x86 host system having Linux Ubuntu 16.04 LTS or Ubuntu 18.04 installed (to build Yocto image)
- For building machine-learning components, at least 250 GB disk space is recommended.
- Linux PC (Configuration:: Optimal 16GB-RAM, Processor: Octa-core).
- Basic understanding of Linux commands
- Setup will require following:
  - o AI\_ML Board
  - o SD-card -32GB
  - o MicroUSB debug cable
  - o Power Supply -
    - MEANWELL GST60A12-P1J
    - \_5.5/2.1mm to 4.75/1.7mm cable DC plug converter
- Internet connectivity (Wi-Fi/Ethernet) of Board and Linux PC should be on same Network

# **2 ENVIRONMENT SETUP**

# 2.1 Steps to build Yocto Image

We already prepared release package AIML\_L5\_4\_Rel\_3\_1.zip, which contains all the packages and BSP changes required patches for AIML firmware image. User need to download meta-layer first to build image for AIML.

To build AIML firmware on LINUX HOST PC, user will follow below steps:

• Now we need to download new repo for AIML. Currently we are using kernel version 5.4.47 zeus release repo.

```
$: sudo apt-get install repo
$: git config --global user.name "Your Name"
$: git config --global user.email "Your Email"
$: git config --global user.email "Your Email"
$: git config --list
```

Now Download and extract the MIML 15.4 Rel 3.1 zip it contains below:

```
AIML_L5_4_Rel_3_1

—— Prebuilt_Image

—— AIML_L5_4_47_Rel_3_1_patches

—— yocto_build_setup_aiml.sh

—— Yocto_build_setup_steps.txt
```

Now Download Yocto Project environment into local directory

```
$: cd AIML_L5_4_Rel_3_1/
$ sudo chmod 755 yocto_build_setup_aiml.sh
$ ./yocto_build_setup_aiml.sh
```

Note: [Building firmware image it will take ~10 hours to download all packages and build, the time may vary based on your HOST PC configurations]

- After successful build final sd card image reside at below location: imx-yocto-bsp/bld-xwayland-aiml/tmp/deploy/images/imx8qxpaiml/
- Filename should be imx-image-full-imx8qxpaiml.wic.bz2 which is soft link of original build image file imx-image-full-imx8qxpaiml-<TIMESTAMP>.rootfs.wic.bz2
- If user want to clean previously build image and want to run it again then we must first clean it with command "cleanall" or "cleansstate"

```
$: bitbake imx-image-full -c cleanall
$: bitbake -v imx-image-full (If user want to turn on verbose)
```

• If user want to clean any particular package then also we can do that with command "cleanall" or "cleansstate"

```
$: bitbake <PACKAGE_NAME> -c cleanall
$: bitbake | Inux-imx -c cleanall
$: bitbake | linux-imx | (Build | linux | kernel | only)

Same way
$: bitbake | u-boot-imx | (Build | uboot | code | only)

$: bitbake | u-boot-imx | (Build | uboot | code | only)

$: bitbake | imx-gpu-sdk | (Build | gpu | sdk | only)

$: bitbake | imx-gpu-sdk | (Build | gpu | sdk | only)

$: bitbake | opency -c | cleanall |
$: bitbake | opency | (Build | opency | package)

$: bitbake | python3-scipy -c | cleanall |
$: bitbake | python3-scipy | (Build | scipy | python | package | for | python3)
```

Please note that, if you re-build any module then it is better to re-build all modules, which are
dependent on that module. For example, if you change anything in Linux kernel code and
rebuild it using above commands then you must need to re-build kernel-module-laird, imx-gpusdk etc. packages to avoid conflicts.

# 2.2 Download firmware package

- Download the provided SD card (wic.bz2) image on Linux PC
- Open terminal in Host PC from left desktop panel or using keyboard shortcut (ctrl + t)
- From command terminal traverse to the location where firmware has been downloaded using cd command

#### # cd /home/user/download/imximages/

- use **Is** command to verify the existence of image downloaded # Is -I
- Verify md5 check sum of downloaded image with given md5sum.

#### # md5sum <image name>.wic.bz2

- Extract the provided .bz2 image using bunzip2 command, which will take couple of minutes. bunzip2 -dkf <image\_name>.wic.bz2
- Once done, will end with .wic image in the same directory and can again be verified using Is -I command.

# 2.3 Flash the firmware image to SD Card in LINUX HOST PC

- Plugin micro SD card into x86 Linux Host PC
- Verify the node created for SD card into /dev directory

#### # ls -l /dev/sd\*

- Open terminal and traverse to the location where downloaded firmware image is residing using cd command
- Ensure the extracted firmware image's file format is .wic using Is -I command
- Use below command for flashing if the SD card's entry in Linux is /dev/sdb
  - # sudo dd if=<image\_name>.wic of=/dev/sdb bs=1M conv=fsync ;sync
- Above command will take couple of minutes or more (depending upon PC config) to flash the SD card
- Once done remove and insert the SD card, two drives will get mounted if the above command is successful, named <boot> and <rootfs>
- Eject (safely remove) SD card from host PC and plug it into board's SD card slot

# 2.4 Flash the firmware image to SD Card in Windows HOST PC

- Plugin micro SD card into x86 Windows Host PC
- Install win32 Disk Imager (https://sourceforge.net/projects/win32diskimager/)
- Format SD card with **FAT** file system.
- Plug SD card with card reader. It must shows any drive like "E:"
- Download appropriate production image \*.wic.bz2
- Extract \*.wic.bz2 image using winzip or 7-zip. It will create \*.wic image.
- Run Win32 Disk Imager
- Select .sdcard image file and target drive i.e. E: for input Image File. (see below figure)



Figure 2: Win32 Disk Imager for flashing SD Card

- Click on Write.
- After successful transfer, success message will pop up and we got around

# 2.5 Hardware Installation

- Place hardware board on statically clean place
- Insert flashed SD card to J5 SD card slot.
- Attach serial cable's micro end to board's J10 Connector (near Ethernet connector) and USB end to host x86 pc's USB connector.
- Attach Ethernet cable to board's Ethernet connector J12.
- Apply 12V-5A power supply (provided with board) to board on J13 connector once all the other hardware setup done as per requirement.



Figure 3: Hardware Setup

# 3 RUNNING DEMOS

Note: [Demos which require a change in .dtb file has been mentioned in their demo steps,else please keep the .dtb file as imx8qxp-aiml-ei.dtb ]

#### 3.1 Ethernet Demo

- Plug in Ethernet cable to target board as per above figure.
- Power up the board.
- Once board gets booted, apply below command using console (minicom require)
   # ifconfig eth0

- Above command will show the eth0 "IP" as per above screenshot. If IP is not putting up ,check with ethernet Cable plugged into the board.
- Ping <any server IP>

```
root@imx8qxpaiml:~# ping 8.8.8.8

PING 8.8.8.8 (8.8.8.8) 56(84) bytes of data.

64 bytes from 8.8.8.8: icmp_seq=1 ttl=118 time=17.5 ms

64 bytes from 8.8.8.8: icmp_seq=2 ttl=118 time=17.7 ms

64 bytes from 8.8.8.8: icmp_seq=3 ttl=118 time=17.5 ms

64 bytes from 8.8.8.8: icmp_seq=4 ttl=118 time=17.5 ms

64 bytes from 8.8.8.8: icmp_seq=5 ttl=118 time=17.6 ms

64 bytes from 8.8.8.8: icmp_seq=5 ttl=118 time=17.5 ms

67 c

--- 8.8.8.8 ping statistics ---

6 packets transmitted, 6 received, 0% packet loss, time 5009ms

rtt min/avg/max/mdev = 17.504/17.567/17.671/0.060 ms

root@imx8qxpaiml:~#
```

#### 3.2 HDMI Demo

- Ensure board is not in power up state and SD card is flashed with the latest provided image.
- Insert HDMI cable into board's J2 HDMI connector.
- Apply power to board and go to terminal of x86 host system and open board's console as mentioned above
- Console will show booting logs.
- At the board boots, console will hold on login prompt where user can enter username as **root**. (no password)
- At this time connected HDMI display will show grey image (with small flowers) on desktop and should stop showing "No Signal"



### Play local videos on HDMI display

- Ensure Ethernet is connected with board
- Go to board's console and type below command from x86 minicom

#### # ifconfig eth0

#### #aplay -I (List of PLAYBACK Hardware Devices )

- Get the IP address of Ethernet eth0 interface and note the same.
- Go to x86 host system and extract the provided zip.
- Locate to test video location from command line in x86 (no minicom require)
- Apply below command

#### # scp ./<file\_name>.mp4 root@<noted ip address of board>:/home/root/

- This will copy the video file from host x86 to board's /home/root location
- Go to board's console (require minicom) and ensure video got copied using ls -l command, will show you <file\_name>.mp4 in current directory.
- Apply below command to find the SPDIF audio hw device and card number.

# IMX8X AI\_ML REFERENCE DESIGN

root@imx8qxpaiml:~# aplay -I

\*\*\*\* List of PLAYBACK Hardware Devices \*\*\*\*

card 0: **imxspdif** [imx-spdif], device 0: S/PDIF PCM snd-soc-dummy-dai-0 [S/PDIF PCM snd-soc-

dummy-dai-0] Subdevices: 1/1

Subdevice #0: subdevice #0

 Be in the board's console ,connect handsfree in audio jack of the HDMI display (If internal speaker not available in HDMI display) and apply below command to play video over HDMI Display and audio over SPDIF by configure above noted card and device number in plughw:<card number>,<device number>

#### # gplay-1.0 <file\_name>.mp4 --audio-sink=alsasink plughw:0,0

Above command will print logs on console of board and will get played over HDMI display

For HDMI Hot plug detection, we must need to connect HDMI before we power-on board. Otherwise, appropriate framebuffer not created at boot up and HDMI hotplug will not work. Same condition applied when we move from one resolution HDMI to another.

#### 3.3 Camera Demo

# Play live video stream from camera on HDMI display

- Attach camera module to high-speed connector.
- To watch live stream over the HDMI, connect HDMI Display too.
- Power up the board
- Go to board's console (require minicom) and immediately stop at u-boot autoboot console by pressing any key.
- Apply below commands for changing dtb file

```
# setenv fdt_file imx8qxp-aiml-ei-ov5640.dtb
# saveenv
# boot
```

Run below command to see preview of camera on HDMI display

```
# export DISPLAY=:0
# gst-launch-1.0 v4l2src device=/dev/video1! video/x-raw,width=1280,height=720! ximagesink
```

• This will show preview (live) streaming over the attached HDMI.

# Capture image from Mipi-camera

- Go to board's console (require minicom) and power up the board with above mentioned dtb change configuration.
- Ensure Ethernet is plugged-in to get image from board to local x86 host pc.
- Apply below command to capture image from camera.

```
# gst-launch-1.0 v4l2src device=/dev/video1 num-buffers=1! jpegenc! filesink location= /home/root/test.jpg
```

- Above command will capture image named test.jpg in /home/root/ location
- Copy image from board to local pc using below command
  - # scp test.jpg <user name of host pc>@<ip of host pc>:/home/user/Desktop
- Go to local pc's /home/user/Desktop and watch image into image viewer to verify captured image from board's camera

#### Capture image from USB-camera

- Go to board's console (require Minicom) and power up the board with above-mentioned USB-Camera plugged-in.
- Ensure Ethernet is plugged-in to get image from board to local x86-host pc.
   Run below command to see preview of camera on HDMI display

```
#gst-launch-1.0 v4l2src device=/dev/video5!
'image/jpeg,width=640,height=480,framerate=30/1'! jpegdec!autovideosink
```

• Below command will capture image named test.jpg in /home/root/ location

# gst-launch-1.0 v4l2src device=/dev/video5 num-buffers=1 ! jpegenc ! filesink location= /home/root/test2.jpg

• Copy image from board to local pc using below command

# scp test2.jpg <user name of host pc>@<ip of host pc>:/home/user/Desktop

Go to local pc's /home/user/Desktop and watch image into image viewer to verify captured image from board's camera

#### 3.4 Wi-Fi Demo

• Open terminal and follow the below commands to run Wi-Fi demo

# ifconfig wlan0 up # ip link show wlan0

Above command will show the below details of wlan0.

```
3: wlan0: <BROADCAST,MULTICAST> mtu 1500 qdisc noop state DOWN mode DEFAULT group default qlen 1000 link/ether 00:25:ca:14:11:6c brd ff:ff:ff:ff:ff
```

• Edit /etc/wpa supplicant.conf file as per below in target board

```
ctrl_interface=/var/run/wpa_supplicant
ctrl_interface_group=0
update_config=1

network={
ssid="closenet"
scan_ssid=1
key_mgmt=WPA-PSK
psk="123456789"
}
```

- Turn on hotspot from mobile device or from Router.
- Change its ssid name /Network name to "closenet" and password to "123456789" (Create Close network). Make sure Security Type must be WPA-PSK or WPA2-PSK.

Note: User can select any name (ssid) and password (psk) except any space or special character here and can change above wpa\_supplicant.conf file accordingly. For example, ssid "Anil's iPhone" is not valid one.

• Use below command to connect with your SSID.

#wpa\_supplicant -B -i wlan0 -c /etc/wpa\_supplicant.conf

Now verify connection using below command.

# #iw wlan0 link

```
root@imx8qxpaiml:~# iw wlan0 link
Connected to 8a:a3:03:7d:26:5e (on wlan0)
SSID: hello
```

freq: 2412

RX: 698 bytes (5 packets) TX: 3835 bytes (25 packets)

signal: -48 dBm rx bitrate: 72.2 MBit/s tx bitrate: 1.0 MBit/s bss flags: short-slot-time

dtim period: 2

beacon int: 100 root@imx8qxpaiml:~#

#### #ip address list wlan0

• Discover IP address using below command.

#### #udhcpc -i wlan0 -n -q

• List inet address using below command.

#### #ip address list wlan0

root@imx8qxpaiml:~# ip address list wlan0

3: wlan0: <BROADCAST,MULTICAST,UP,LOWER\_UP> mtu 1500 qdisc pfifo\_fast state UP group default glen 1000

link/ether 00:25:ca:17:0c:1a brd ff:ff:ff:ff:ff

inet 192.168.43.107/24 brd 192.168.43.255 scope global wlan0

valid\_lft forever preferred\_lft forever

root@imx8qxpaiml:~#

# #ip route show

#ping <Any network IP >

• Response should be as per below logs

PING 192.168.43.1 (192.168.43.1) 56(84) bytes of data. 64 bytes from 192.168.43.1: icmp\_seq=1 ttl=64 time=12.6 ms 64 bytes from 192.168.43.1: icmp\_seq=2 ttl=64 time=10.6 ms 64 bytes from 192.168.43.1: icmp\_seq=3 ttl=64 time=27.7 ms 64 bytes from 192.168.43.1: icmp\_seq=4 ttl=64 time=6.34 ms 64 bytes from 192.168.43.1: icmp\_seq=5 ttl=64 time=22.8 ms 64 bytes from 192.168.43.1: icmp\_seq=6 ttl=64 time=8.26 ms

• The above ping response validates Wi-Fi's working state.

#### 3.5 Bluetooth Demo

• Go to board 's console and apply below command

# pactl unload-module module-bluetooth-discover # pactl load-module module-bluetooth-discover # brcm\_patchram\_plus --baudrate 1500000 --patchram /lib/firmware/brcm/BCM4335C0.hcd -enable\_hci --no2bytes --tosleep 1000 /dev/ttyLP0 &

• Wait until the above command's complete the command response

root@imx8qxpaiml:~# Done setting line discpline

• Apply below command's it's enable the blue LED on the board.

# hciconfig hci0 up # hciconfig hci0

• User will get the hcio interface

root@imx8qxpaiml:~# hciconfig hci0

hci0: Type: Primary Bus: UART

BD Address: 00:25:CA:17:0C:1B ACL MTU: 1021:8 SCO MTU: 64:1

**UP RUNNING** 

RX bytes:1336 acl:0 sco:0 events:70 errors:0 TX bytes:1156 acl:0 sco:0 commands:70 errors:0

root@imx8qxpaiml:~#

• Run the "bluetoothctl" utility

# bluetoothctl

[bluetooth]# power on

[bluetooth]# agent on

[bluetooth]# default-agent

[bluetooth]# pairable on

[bluetooth]# scan on

> Copy mac address

[bluetooth]# scan off

[bluetooth]# pair <mac address>

> Approve pairing on Device if required

[bluetooth]# trust <mac address>

[bluetooth]# connect <mac address>

[bluetooth]# quit

> Sending file command.

# export \$(dbus-launch)

# /usr/libexec/bluetooth/obexd &

# obexctl

[obex]# connect <mac addr>

[<mac addr>]# send <file> [<mac addr>]# disconnect [<mac addr>]# quit

- Play the audio over BT commands
- Collect the audio file from the support package folder.
- Get the Bluetooth headset or Bluetooth speaker and connect using bluetoothctl utility.
- Check bluetooth device card profile if its not set to a2dpsink then set to a2dpsink to play audio on that device. Use below command to check current audio profile.

#### # pactl list cards

• If connected device current profile not set to a2dpsink then set using below command.

# pactl set-card-profile <card number> a2dp\_sink
I.e pactl set-card-profile 2 a2dp\_sink

• After setting profile it time to play audio over bluetooth device.

# paplay -p --device=bluez\_sink.<Device MAC>.a2dp\_sink <path of the wav file> l.e: paplay -p --device=bluez\_sink.90\_7A\_58\_33\_ED\_1B.a2dp\_sink Mast\_Magan.wav

#### Record audio over Bluetooth

- Connect mobile with our modem using above **bluetoothctl** command.
- Check bluetooth device card profile if its not set to a2dpsource then set to a2dpsource to play audio on that device. Use below command to check current audio profile.

#### # pactl list cards

• If connected device current profile not set to a2dpsource then set using below command.

# pactl set-card-profile <card number> a2dp\_source I.e pactl set-card-profile 2 a2dp\_source

- play the music on mobile player
- run below command to capture the audio from Bluetooth

#paplay -r -device=bluez\_source.<Device MAC>.a2dp\_source <path of wav file>
l.e: paplay -r --device=bluez\_source.88\_A3\_03\_7D\_26\_5D.a2dp\_source test\_rec.wav

copy recorded file in your host PC and verify with any player on host PC

#### 3.6 USB Hub demo

- Connect USB device disk to USB port of target board
- Go to board 's console and apply below command
- Isusb
- below info should appears on the console where it will show plugged-in USB disk details (i.e. SanDisk in this case)

# Bus 002 Device 003: ID 0781:5583 SanDisk Corp. Ultra Fit Bus 001 Device 002: ID 04b4:6502 Cypress Semiconductor Corp. Bus 001 Device 001: ID 1d6b:0002 Linux Foundation 2.0 root hub Bus 002 Device 002: ID 04b4:6500 Cypress Semiconductor Corp. Bus 002 Device 001: ID 1d6b:0003 Linux Foundation 3.0 root hub

# 3.7 USB OTG as host

- Connect USB device disk to USB OTG port of target board
- Go to board 's console and apply below command as same as USB hub

#### # Isusb

```
Bus 002 Device 003: ID 0781:5583 SanDisk Corp. Ultra Fit
Bus 001 Device 002: ID 04b4:6502 Cypress Semiconductor Corp.
Bus 001 Device 001: ID 1d6b:0002 Linux Foundation 2.0 root hub
Bus 002 Device 002: ID 04b4:6500 Cypress Semiconductor Corp.
Bus 002 Device 001: ID 1d6b:0003 Linux Foundation 3.0 root hub
```

#### 3.8 USB OTG as Devices

- Connect USB cable (same like debug uart cable) USB OTG port of target board
- Run the below command

```
# dd if=/dev/zero of=/mass_storage bs=1M seek=256 count=0

# mkfs.fat /mass_storage

# cat <<EOT | sfdisk --reorder /mass_storage

>hello
> EOT

# mkfs.vfat /mass_storage

# chmod 777 /mass_storage

# mount -o loop /mass_storage /mnt/

# mount

# modprobe g_mass_storage file=/mass_storage
```

- Disconnect and connect the USB cable
- User will see the drive on LINUX host machine.



#### Figure 4: USB OTG as device in Linux

 Please note that on Window system mass storage been created but not seen the drive (although we have created FAT file system). Must be an issue with Windows system. Therefore, User need to test this with Linux system only.

#### 3.9 LTE Demo

- Connect Quectel module with target board's as per below image
- Set user SIM Card APN using below command.

Note: please identify your SIM card APN as per your service provider.

# export LTE\_APN=<Your APN>

i.e export LTE\_APN=airtelgprs.com

Go To Board's console and apply below command

# pppd call quectel-ppp &

Edit /etc/resolv.conf and add appropriate name server as per below

nameserver 59.144.127.117 nameserver 59.144.144.46

nameserver 8.8.8.8

• Save above file and apply below command to check connection and IP address.

#### # ifconfig ppp0

root@imx8qxpaiml:~# ifconfig ppp0

ppp0 Link encap:Point-to-Point Protocol

inet addr:100.78.168.109 P-t-P:10.64.64.64 Mask:255.255.255.255

UP POINTOPOINT RUNNING NOARP MULTICAST MTU:1500 Metric:1

RX packets:4 errors:0 dropped:0 overruns:0 frame:0

TX packets:4 errors:0 dropped:0 overruns:0 carrier:0

collisions:0 txqueuelen:3

RX bytes:52 (52.0 B) TX bytes:58 (58.0 B)

root@imx8qxpaiml:~#

Please confirm IP firtst ,then use below command it should be able to ping to google.com

#### # ping www.google.com -l ppp0

root@imx8qxpaiml:~# ping www.google.com -l ppp0

PING www.google.com (216.58.203.196) from 25.127.216.25 ppp0: 56(84) bytes of data.

64 bytes from bom07s12-in-f4.1e100.net (216.58.203.196): icmp\_seq=1 ttl=114 time=43.0

ms

64 bytes from bom07s12-in-f4.1e100.net (216.58.203.196): icmp\_seq=2 ttl=114 time=63.8

ms

64 bytes from bom07s12-in-f4.1e100.net (216.58.203.196): icmp\_seq=3 ttl=114 time=82.0

ms

• Will be able to ping to google.com.



Figure 5: QUECTEL Module on target board

#### 3.10 EEPROM

- Run below command to test EEPROM
- To write in eeprom

#echo Hello\_einfochips > /sys/bus/i2c/devices/16-0050/eeprom

• To read from eeprom

\$ cat /sys/bus/i2c/devices/16-0050/eeprom | hexdump -C

Compare the output will contain data which was written to EEPROM

# 3.11 Sensors (Acc/Gyro)

#### Command to test Accelerometer Sensors

- Note current values of co-ordinates using below command.
   # cat /sys/bus/i2c/devices/16-006a/iio\:device1/in\_accel\_x\_raw
   # cat /sys/bus/i2c/devices/16-006a/iio\:device1/in\_accel\_y\_raw
   # cat /sys/bus/i2c/devices/16-006a/iio\:device1/in accel z raw
- Now move change the direction of device note values of co-ordinates using above command. It should vary.

#### Command to test Gyro meter Sensors

- Note current values of angle using below command.
  - #cat /sys/bus/i2c/devices/16-006a/iio\:device0/in\_anglvel\_x\_raw
    #cat /sys/bus/i2c/devices/16-006a/iio\:device0/in\_anglvel\_y\_raw
    #cat /sys/bus/i2c/devices/16-006a/iio\:device0/in\_anglvel\_z\_raw
- Change anlge of device and again run above commands note the values it should vary and

#### **Command to test Temperature Sensors**

- Set values of temperature sensor using below command.
  - # i2cset -f -y 16 0x6a 0x11 0x10 # i2cset -f -y 16 0x6a 0x10 0x10
- Check the value of temperature using below command.
- Check row 20 of i2cdump it should change.
  - # i2cdump -f -y 16 0x6a

```
No size specified (using byte-data access)
0 1 2 3 4 5 6 7 8 9 a b c d e f 0123456789abcdef
10: 10 10 44 00 00 00 00 00 38 38 00 0f 00 10 07 bb ??D.....88.?.???
20: e6 00 10 02 0c fc 9e fe ac ff 5e fb d1 c1 00 00 ?.???????.^???.
50: 00 00 00 00 00 00 00 00 80 00 00 10 00 00 00 ......?..?...
```

# 3.12 LOW Speed Expansion

- UART is validated with Bluetooth
- SPI validated using SPI based chipset (SPI to CAN interface) at EI LAB
- I2C is validated with D3 camera and NXP Display
- GPIO is validated using multi-meter (Set high and low from user space)

# Pin 23

# echo 29 > /sys/class/gpio/export # echo out > /sys/class/gpio/gpio29/direction # cat /sys/class/gpio/gpio29/value # echo 1 > /sys/class/gpio/gpio29/value # echo 0 > /sys/class/gpio/gpio29/value

#### Pin 24

# echo 35 > /sys/class/gpio/export # echo out > /sys/class/gpio/gpio35/direction # cat /sys/class/gpio/gpio35/value # echo 1 > /sys/class/gpio/gpio35/value # echo 0 > /sys/class/gpio/gpio35/value

#### Pin 25

# echo 39 > /sys/class/gpio/export # echo out > /sys/class/gpio/gpio39/direction # cat /sys/class/gpio/gpio39/value # echo 1 > /sys/class/gpio/gpio39/value # echo 0 > /sys/class/gpio/gpio39/value

# Pin 26

# echo 63 > /sys/class/gpio/export # echo out > /sys/class/gpio/gpio63/direction # cat /sys/class/gpio/gpio63/value # echo 1 > /sys/class/gpio/gpio63/value # echo 0 > /sys/class/gpio/gpio63/value

# Pin 27

# echo 20 > /sys/class/gpio/export # echo out > /sys/class/gpio/gpio20/direction # cat /sys/class/gpio/gpio20/value # echo 1 > /sys/class/gpio/gpio20/value # echo 0 > /sys/class/gpio/gpio20/value

#### Pin 28

# echo 64 > /sys/class/gpio/export # echo out > /sys/class/gpio/gpio64/direction # cat /sys/class/gpio/gpio64/value # echo 1 > /sys/class/gpio/gpio64/value # echo 0 > /sys/class/gpio/gpio64/value

#### Pin 29

# echo 32 > /sys/class/gpio/export # echo out > /sys/class/gpio/gpio32/direction # cat /sys/class/gpio/gpio32/value # echo 1 > /sys/class/gpio/gpio32/value # echo 0 > /sys/class/gpio/gpio32/value

#### Pin 30

# echo 45 > /sys/class/gpio/export # echo out > /sys/class/gpio/gpio45/direction # cat /sys/class/gpio/gpio45/value # echo 1 > /sys/class/gpio/gpio45/value # echo 0 > /sys/class/gpio/gpio45/value

#### Pin 31

# echo 19 > /sys/class/gpio/export
# echo out > /sys/class/gpio/gpio19/direction
# cat /sys/class/gpio/gpio19/value
# echo 1 > /sys/class/gpio/gpio19/value
# echo 0 > /sys/class/gpio/gpio19/value

## Pin 32

# echo 46 > /sys/class/gpio/export # echo out > /sys/class/gpio/gpio46/direction # cat /sys/class/gpio/gpio46/value # echo 1 > /sys/class/gpio/gpio46/value # echo 0 > /sys/class/gpio/gpio46/value

#### Pin 33

# echo 33 > /sys/class/gpio/export # echo out > /sys/class/gpio/gpio33/direction # cat /sys/class/gpio/gpio33/value # echo 1 > /sys/class/gpio/gpio33/value # echo 0 > /sys/class/gpio/gpio33/value

#### Pin 34

# echo 103 > /sys/class/gpio/export
# echo out > /sys/class/gpio/gpio103/direction
# cat /sys/class/gpio/gpio103/value
# echo 1 > /sys/class/gpio/gpio103/value
# echo 0 > /sys/class/gpio/gpio103/value

# 3.13 High Speed Expansion

• NXP DSI connected and validated the DSI display interface



Figure 6: High Speed Expansion

- CSI is validated with D3 Camera
- USB is validated with USB pen drive (pin out connect with external USB connector)

#### 3.14 USER LED

• Run the below command to control the Led

#### USER LED1

#### **USER LED1 ON**

# echo 255 > /sys/class/leds/green\:user1/brightness

**USER LED1 OFF** 

# echo 0 > /sys/class/leds/green\:user1/brightness

#### **USER LED2**

# **USER\_LED2 ON**

# echo 255 > /sys/class/leds/green\:user2/brightness

**USER LED2 OFF** 

# echo 0 > /sys/class/leds/green\:user2/brightness

#### USER\_LED3

# **USER LED3 ON**

# echo 255 > /sys/class/leds/green\:user3/brightness

**USER LED3 OFF** 

# echo 0 > /sys/class/leds/green\:user3/brightness

#### **USER LED4**

# **USER\_LED4 ON**

# echo 255 > /sys/class/leds/green\:user4/brightness

**USER LED4 OFF** 

# echo 0 > /sys/class/leds/green\:user4/brightness

#### BT LED

#### BT LED ON

# echo 255 > /sys/class/leds/blue\:bt/brightness

BT\_LED OFF

# echo 0 > /sys/class/leds/blue\:bt/brightness

#### WLAN LED

# WLAN\_LED ON

# echo 255 > /sys/class/leds/yellow\:wlan/brightness

WLAN LED OFF

# echo 0 > /sys/class/leds/yellow\:wlan/brightness



#### 3.15 NOR Flash demo

On Board's create text file

#### # vi write.txt

- Write some data into it by below command
- Once done writing save and quit the above file by below command.

#### # <ESC><:><wq>

Check for the Nor flash node by below command

#### # ls -l /dev/mtd0

Erase NOR flash using below command

# # flash\_eraseall /dev/mtd0

Write the created file into NOR flash using below command.

# # time dd if=write.txt of=/dev/mtd0

Read from NOR flash from the same location

#### # dd if=/dev/mtd0 of=read.txt

#### # cat read.txt

- Compare the read.txt, it should be same as write.txt
- Please note that, when we write data, we write only a few bytes of data. However, when we read, we read the whole partition instead of the initial few lines. Due to that, we see junk characters in the place where we did not write anything. So user need to read the file at very first few lines using vim and verify its data.

# 3.16 DMIC demo

- Record a wav format file using below command.
- Please use command below to check DMIC hardware card and device number.

#### # arecord -l

```
**** List of CAPTURE Hardware Devices ****
card 1: imxaudmix [imx-audmix], device 0: HiFi-AUDMIX-FE (*) []
Subdevices: 1/1
```

Subdevice #0: subdevice #0

card 2: imxaudiosph0645 [imx-audio-sph0645], device 0: imx-sph0645 snd-soc-dummy-dai-0

Subdevices: 1/1

Subdevice #0: subdevice #0 root@imx8qxpaiml:~#

• Capture sound using below command, configure above noted card and device number in plughw:<card number>,<device number>.

# arecord -D hw:2,0 -c 4 -r 48000 -f S16\_LE tt.wav

Control + C after 20 sec.

• copy it to host system

# scp tt.wav username@<IP address>:~/

Play using audacity utility.

# 3.17 ML and ARM NN demos

Please refer ML demo user guide,

 $\label{lem:condition} \verb|`ML_Demos_Guide_iMX8_L5_4_Rel_3_1.docx|'' for this section.$ 

# IMX8X AI\_ML REFERENCE DESIGN

# 4 LIMITATIONS

1. DSI Display not validated with this release 3.1

#### IMX8X AI\_ML REFERENCE DESIGN

#### **REFERENCES** 5

- [3] https://www.nxp.com/webapp/Download?colCode=L5.4.47 2.2.0 LINUX DOCS