

Lecture 14: Wald's Test, Likelihood Ratio Test, and Implicit Hypothesis

课程 □ Unit 4 Hypothesis testing □ Test

☐ 11. Likelihood Ratio Test

11. Likelihood Ratio Test Likelihood Ratio Test

Start of transcript. Skip to the end.

And now there's one last test which also looks like this guy,

and when you look at a very specific setup, it's a test based on the maximum likelihood, right?

So we had a test that was based on the asymptotic--

on the maximum likelihood estimator.

But I might actually want to do--

视频

下载视频文件

字幕

下载 SubRip (.srt) file

下载 Text (.txt) file

Concept Check: The Constrained Maximum Likelihood Estimator

1/1 point (graded)

In the general form of the likelihood ratio test, we have an unknown parameter $\theta^* \in \mathbb{R}^d$, and we are deciding between two hypotheses of the form

$$H_0:(heta^*_{r+1},\ldots, heta^*_d)\ =(heta^{(0)}_{r+1},\ldots, heta^{(0)}_d)$$

$$H_1: (heta^*_{r+1}, \dots, heta^*_d) \
eq (heta^{(0)}_{r+1}, \dots, heta^{(0)}_d) \, .$$

for some $r \geq 1$.

Thus Θ_0 , the region defined by the null hypothesis, is

$$\Theta_0 := \{ \mathbf{v} \in \mathbb{R}^d : (v_{r+1}, \dots, v_d) = (heta_{r+1}^{(0)}, \dots, heta_d^{(0)}) \}$$

where $(heta_{r+1}^{(0)},\ldots, heta_d^{(0)})$ consists of *known* values.

The likelihood ratio test involves the test-statistic

$$T_n = 2\left(\ell_n\left(\widehat{ heta_n}^{MLE}
ight) - \ell_n\left(\widehat{ heta_n}^c
ight)
ight)$$

where $oldsymbol{\ell}_n$ is the log-likelihood.

The estimator $\widehat{ heta^c_n}$ is the **constrained MLE** , and it is defined to be

$$\widehat{ heta_{n}^{c}} = \operatorname{argmax}_{ heta \in \Theta_{0}} \ell_{n}\left(X_{1}, \ldots, X_{n}; heta
ight).$$

Which of the following are possible? (Choose all that apply.)

$$lacksquare$$
 $\ell_n\left(\widehat{ heta_n}^{MLE}
ight) < \ell_n\left(\widehat{ heta_n}^c
ight)$

$$ullet \ell_n\left(\widehat{ heta_n}^{MLE}
ight) = \ell_n\left(\widehat{ heta_n}^c
ight) \square$$

$$otin \ell_n\left(\widehat{ heta_n}^{MLE}
ight) > \ell_n\left(\widehat{ heta_n}^c
ight) \square$$

about 3 hours ago

Solution:

is maximized at $\theta_1 \in \Theta_1$, then A is at least as large as $f(\theta_1)$ because θ_1 is an element of Θ_0 as well (i.e. this follows from the subset relation of Θ_1 and

If you compare $A=\max_{\theta\in\Theta_0}f\left(heta
ight)$ and on the other hand $B=\max_{\theta\in\Theta_1}f\left(heta
ight)$ under the assumption $\Theta_1\subset\Theta_0$, then we know $A\geq B$. Because if B

Recall that the MLE is defined by the optimization problem

$$\widehat{ heta_{n}^{MLE}} = \operatorname{argmax}_{ heta \in \Theta} \ell_{n}\left(X_{1}, \ldots, X_{n}; heta
ight)$$

In particular, we find the maximizer over the *entire* parameter space Θ . The constrained MLE

$$\widehat{ heta_{n}^{c}} = \operatorname{argmax}_{ heta \in \Theta_{0}} \ell_{n}\left(X_{1}, \ldots, X_{n}; heta
ight)$$

finds the maximum over a subset of Θ , so it is not possible that $\ell_n\left(\widehat{\theta_n}^{MLE}\right) < \ell_n\left(\widehat{\theta_n}^c\right)$. However, it may be the case that $\ell_n\left(\widehat{\theta_n}^{MLE}\right) = \ell_n\left(\widehat{\theta_n}^c\right)$ or $\ell_n\left(\widehat{\theta_n}^{MLE}\right) > \ell_n\left(\widehat{\theta_n}^c\right)$. In general, we will have that $\ell_n\left(\widehat{\theta_n}^{MLE}\right) \geq \ell_n\left(\widehat{\theta_n}^c\right)$.

Remark: The likelihood ratio test is a natural test in a situation where we only care about *some* (e.g., the last d-r coordinates) of the unknowns involved in the parameter $\theta^* \in \mathbb{R}^d$.

提交

你已经尝试了2次(总共可以尝试3次)

Answers are displayed within the problem

Concept Check: Test-Statistic for the Likelihood Ratio Test

1/1 point (graded)

Suppose we are hypothesis testing between a null and alternative of the form

$$H_0:(heta^*_{r+1},\ldots, heta^*_d)\ =(heta^{(0)}_{r+1},\ldots, heta^{(0)}_d)$$

$$H_1: (heta^*_{r+1}, \dots, heta^*_d) \
eq (heta^{(0)}_{r+1}, \dots, heta^{(0)}_d) \, .$$

Above, $heta^* \in \mathbb{R}^d$ is an unknown parameter while the values $heta^{(0)}_{r+1}, \dots, heta^{(0)}_d$ are known. To perform the likelihood ratio test, we define the test statistic

$$T_{n}=2\left(\ell_{n}\left(\widehat{ heta_{n}^{MLE}}
ight)-\ell_{n}\left(\widehat{ heta_{n}^{c}}
ight).
ight).$$

Assume that the technical conditions needed for the MLE to be a consistent estimator are satisfied, and assume that the null-hypothesis is true.

Which of the following are true about the above test statistic T_n ? (Choose all that apply. Refer to the slides.)

$ extcolor{black}{ extcolor{black}{\blacksquare}} T_n$ is a pivotal statistic; <i>i.e.</i> , it converges to a pivotal distribution. \square
$lacksquare T_n$ is asymptotically normal.
$T_n \xrightarrow[n o \infty]{(d)} \chi_{d-r}^2 \ \square$
$T_n \xrightarrow[n o \infty]{(d)} \chi_r^2$
Solution:
We examine the choices in order.
The first answer choice is correct. Under the null hypothesis,
$T_n extstyle rac{(d)}{n o \infty} \chi_{d-r}^2.$
The distribution χ^2_r is pivotal because it does <mark>not depend on the specific value of the true parameter</mark> $ heta^*$. Hence T_n is also a pivotal statistic.
• The second answer choice is incorrect. T_n is not asymptotically normal; rather it is asymptotically a χ^2 random variable, as stated in the previous bullet. Note that the normal distribution and χ distribution are very different from each other (e.g., χ^2 has significantly heavier tails).
• The third answer choice is correct. As stated in the first bullet, $T_n \xrightarrow[n \to \infty]{(d)} \chi^2_{d-r}$ assuming the null hypothesis and the technical conditions mentioned in the problem statement.
$ullet$ The fourth answer choice is incorrect. It is true that T_n converges to a χ^2 random variable, but this choice gives the wrong number of degrees of freedom.
Remark: Be careful not to be confused about the following point. While the parameter space corresponding to H_0 is $\Theta_0 = \mathbb{R}^r$ which, intuitively, has r free variables, the test statistic T_n converges to a χ^2 distribution with $d-r$ degrees of freedom. This convergence fact follows from a technical result of Wilks, and we do not discuss aspects of its proof here.
提交 你已经尝试了1次(总共可以尝试3次)
□ Answers are displayed within the problem

讨论

主题: Unit 4 Hypothesis testing:Lecture 14: Wald's Test, Likelihood Ratio Test, and Implicit Hypothesis Test / 11. Likelihood Ratio Test

显示讨论