操作系统 第2章习题 杨茂琛 191180164

思考题: 19,38,45

应用题: 2, 4, 7, 8, 12, 15, 16, 17

19 进程有哪些主要属性?

1. 动态性

2. 共享性

3. 独立性

4. 制约性

5. 并发性

38 从调度、并发性、拥有资源和系统开销等4个方面对传统 进程和多线程进程进行比较

比较项	传统进程	多线程进程
调度	需要进行进程上下文切换:保存现场,多次 修改PCB,设置地址空间,恢复现场	同一进程中的多线程切换只需改变堆栈和 寄存器,地址空间不变
并 发 性	使得多个程序并发执行	减少程序并发执行时所付出的时空开销,使得并发粒度更细、并发性更好
拥有资源	各个进程拥有独立的PCB、独立的存储空间	同一进程的所有线程共享存储资源
系统开销	较大,需要频繁切换进程及其分配的独立资 源	线程创建和撤销工作比进程少很多,并且 无须再分配存储空间和各种资源

45 分析Linux的fork() vfork() clone() 系统调用

Feature	fork()	vfork()
资源	子进程完全复制父进程资源	父子进程共享地址空间
独立性	子进程的执行独立于父进程	父进程被阻塞直到子进程挂起 execve() 或 exit()
数据共享方法	进程间通信机制	共享地址空间
返回值	父进程中会返回子进程的PID值,子进程中会返回 0;调用失败返回 -1	父进程中会返回子进程的PID值,子进程中会返回 0;调用失败返回 -1

clone() 是轻量级的系统调用,通过参数来定制新进程:有选择地继承父进程的内存,创造父进程的兄弟进程

2

对I/O繁重型作业有利

I/O繁重意味着相对来说较少使用CPU,根据调度算法其理应优先运行

并不是永远不受理处理器繁重型作业

在处理器繁重型作业为其他较少使用CPU的作业进行一定让步后,其近期也较少使用处理器,根据调度 算法其也能够得到运行

4

在时钟中断处理程序中进行。时钟中断随机地在某个进程执行时出现,随机地插入到该进程并重写其动态优先数

7

FCFS

FCFS是非剥夺式

执行顺序 (上至下)	开始时间	结束时间	周转时间	带权周转时间
1	0	10	10	1
2	10	11	11	11
3	11	13	13	6.5
4	13	14	14	14
5	14	19	19	3.8

平均周转时间: (10+11+13+14+19)/5=13.4

平均带权周转时间: (1+11+6.5+14+3.8)/5=7.26

RR

RR是剥夺式

此处令时间片长度为2ms,执行次序为: 1、2(3ms时已完成)、3(5ms时已完成)、4(6ms时已完成)、5、1、5、1、5(15ms时已完成)、1(独自运行至19ms完成)

任务	开始时间	结束时间	周转时间	带权周转时间
1	0	19	19	1.9
2	2	3	3	3
3	3	5	5	2.5
4	5	6	6	6
5	6	15	15	3

平均周转时间: (19+3+5+6+15)/5=9.6

平均带权周转时间: (1.9+3+2.5+6+3)/5=3.28

SJF

SJF是非剥夺式

对于同样执行时间的任务,选择最先到达的执行

执行顺序为: 2、4、3、5、1

执行顺序 (上至下)	开始时间	结束时间	周转时间	带权周转时间
2	0	1	1	1
4	1	2	2	2
3	2	4	4	2
5	4	9	9	1.8
1	9	19	19	1.9

平均周转时间: (1+2+4+9+19)/5=7

平均带权周转时间: $(1+2+2+1.8+1.9)/5 = 1.73\overline{9}$

非抢占优先权调度

执行顺序为: 2、5、1、3、4

执行顺序 (上至下)	开始时间	结束时间	周转时间	带权周转时间
2	0	1	1	1
5	1	6	6	1.2
1	6	16	16	1.6
3	16	18	18	9
4	18	19	19	19

平均周转时间: (1+6+16+18+19)/5=12

平均带权周转时间: (1+1.2+1.6+9+19)/5=6.36

8

执行顺序: 1 (30/60) 、2 (10/50) 、3 (30/30) 、4 (10/10) 、2 (50/50) 、1 (60/60)

作业 名	进入后备队列 的时刻	执行时 间/min	开始执 行时刻	结束执行 时刻	周转时 间/min	带权周转时 间/min
Job_1	8: 00	60	8: 00	10: 30	150	2.5
Job_2	8: 30	50	8: 30	10: 00	90	1.8
Job_3	8: 40	30	8: 40	9: 10	30	1
Job_4	8: 50	10	9: 10	9: 20	10	1

平均周转时间 T = (150 + 90 + 30 + 10)/4 = 70

平均带权周转时间 W=(2.5+1.8+1+1)/4=1.575

12

FCFS

运行顺序: ABCDE

任务	开始时间	结束时间	周转时间
А	0	10	10
В	10	16	16
С	16	18	18
D	18	22	22
Е	22	30	30

平均周转时间: (10+16+18+22+30)/5=19.2

优先级调度算法

假设非剥夺式调度

执行顺序为: BEACD

任务	开始时间	结束时间	周转时间
В	0	6	6
Е	6	14	14
A	14	24	24
С	24	26	26
D	26	30	30

平均周转时间: (6+14+24+26+30)/5=20

RR

RR是非剥夺式的

假设时间片为 2min

执行顺序为: A(2/10) B(2/6) C(2/2) D(2/4) E(2/8) A(4/10) B(4/6) D(4/4) E(4/8) A(6/10) B(6/6) E(6/8)

A(8/10) E(8/8) A(10/10)

任务	开始时间	结束时间	周转时间
А	0	30	30
В	2	22	22
С	4	6	6
D	6	16	16
Е	8	28	28

平均周转时间: (30 + 22 + 6 + 16 + 28)/5 = 20.4

15

FCFS

执行顺序: 1、2、3

作业	提交时 刻	运行时刻 (时 间)	开始时 刻	完成时刻	周转时 间/min	带权周转时 间/min
1	10:00	2:00(120)	10:00	12:00	120	1
2	10:10	1:00(60)	12:00	13:00	180	3
3	10:25	0:25(25)	13:00	13:25	205	8.2

平均周转时间 $T=(120+180+205)/3=168.\overline{3}$ 平均带权周转时间 $W=(1+3+8.2)/3=4.0\overline{6}$

HRRF

执行顺序: 1、3 (1+110/60<1+95/25) 、2

作业	提交时刻	运行时刻(时间)	开始时刻	完成时刻	周转时 间/min	带权周转时 间/min
1	10:00	2:00(120)	10:00	12:00	120	1
2	10:10	1:00(60)	12:25	13:25	205	3.416
3	10:25	0:25(25)	12:00	12:25	145	5.8

平均周转时间 $T=(120+205+145)/3=156.\overline{6}$

平均带权周转时间 $W=(1+205/60+5.8)/3=3.40\overline{5}$

对比FCFC和HRRF,HRRF的平均周转时间和平均带权周转时间都更优秀,HRRF性能更好

16

FCFS

执行顺序为: 1、2、3、4

任务	开始时间	结束时间	周转时间	带权周转时间
1	8:00	10:00	120	1
2	10:00	10:50	170	3.4
3	10:50	11:00	180	18
4	11:00	11:20	200	10

平均周转时间: (120 + 170 + 180 + 200)/4 = 167.5

平均带权周转时间: (1+3.4+18+10)/4=8.1

SJF

执行顺序为: 1、3、4、2

任务	开始时间	结束时间	周转时间	带权周转时间
1	8:00	10:00	120	1
3	10:00	10:10	130	13
4	10:10	10:30	150	7.5
2	10:30	11:20	200	4

平均周转时间: (120 + 130 + 150 + 200)/4 = 150

平均带权周转时间: (1+13+7.5+4)/4=6.375

HRRF

执行顺序为: 1、3 (1+70/50<1+60/10>1+10/20) 、2 (1+80/50>1+20/20) 、4

任务	开始时间	结束时间	周转时间	带权周转时间
1	8:00	10:00	120	1
3	10:00	10:10	130	13
4	10:10	10:30	150	7.5
2	10:30	11:20	200	4

平均周转时间: (120 + 130 + 150 + 200)/4 = 150

平均带权周转时间: (1+13+7.5+4)/4=6.375

17

执行顺序: 1(5/30) 2(5/20) 3(5/5) 2(10/20) 4(10/10) 2(20/20) 1(30/30)

任务	开始时间	结束时间	周转时间	带权周转时间
1	10:00	11:10	70	2.3
2	10:05	10:45	40	2
3	10:10	10:15	5	1
4	10:25	10:35	10	10

平均周转时间: (70+40+5+10)/4=31.25

平均带权周转时间: $(70/30 + 2 + 1 + 10)/4 = 3.8\overline{3}$