Lesson 7: Rotational Motior I

Henry Ding

Vector Cross Product

Rotation Motior

Homework ^{*}

Lesson 7: Rotational Motion I

Henry Ding

August 19, 2025

Cross Product

Lesson 7: Rotational Motion I

Henry Ding

Vector Cross Product

Rotation Motior

Homework 7

Definition

The **vector cross product** (\times) is one way to multiply vectors in 3D. For vectors u, v, $u \times v$ gives a new vector perpendicular to both u and v.

Theorem

If **u** and **v** are separated by θ , magnitude of the cross product is

$$\|\mathbf{u} \times \mathbf{v}\| = u\mathbf{v}\sin\theta.$$

Note, if \boldsymbol{u} and \boldsymbol{v} are parallel, $\theta=0$ so $\sin\theta=0$ theo. Then, $\boldsymbol{u}\times\boldsymbol{v}$ has no magnitude.

Right Hand Rule for Cross Product

Lesson 7: Rotational Motion I

Henry Ding

Vector Cross Product

Rotation Motion

Homework 7

Theorem (Right Hand Rule)

To find the direction of $\mathbf{u} \times \mathbf{v}$, use the right hand rule.

Rotational Motion

Lesson 7: Rotational Motion I

Henry Ding

Vector Cross Product

Rotation Motion

Homework 7

What is Rotational Motion?

When objects rotate, they travel in circles about a rotational axis.

Definition

The angular position θ of an object describes the orientation of an object relative to some reference. We can choose any pair of references and points on the object to define θ .

Angular Velocity

Lesson 7: Rotational Motion I

Henry Ding

Vector Cross Product

Rotation Motion

Homework 7

Definition

The average angular velocity $oldsymbol{\omega}_{\mathrm{avg}}$ is a vector with magnitude

$$\omega_{\mathrm{avg}} = \frac{\Delta \theta}{\Delta t}.$$

Just like regular instantaneous velocity v (sometimes called *linear* velocity), we can define an instantaneous angular velocity ω . ω points in the direction of the axis of rotation.

Right Hand Rule for Angular Velocity

Lesson 7: Rotational Motion I

Henry Ding

Vector Cross Product

Rotation Motion

Homework 7

Theorem (Right Hand Rule (Angular Velocity))

To determine the direction of ω , curl the fingers in your right hand around the direction of rotation. Then, ω points in the direction of your thumb.

Units for ω

The units for angular velocity are rad/s. However, radians are dimensionless, so sometimes the units are written as just 1/s.

Tangential Velocity from Angular Velocity

Lesson 7: Rotational Motion I

Henry Ding

Vector Cros Product

Rotation Motion

Homework 7

Example

Consider a point at radius r from the axis. Then, the arc length covered is

$$s = r\Delta\theta = (\omega\Delta t)r$$

so the speed of the point is

$$v = \frac{s}{\Delta t} = \omega r.$$

Theorem

A point at radius r rotating with angular velocity ω has speed $r\omega$. The speed is in the tangential direction.

Finding Velocity from the Right Hand Rule

Lesson 7: Rotational Motion I

Henry Ding

Vector Cross Product

Rotation Motion

Homework 7

Theorem

A point at position r (measured relative to the axis) rotating with angular velocity ω has velocity

$$\mathbf{v} = \boldsymbol{\omega} \times \mathbf{r}$$
.

v is often called **tangential velocity**, since it is tangent to the circle along which the point travels.

Note that ω and r are perpendicular to each other. Then,

$$\|\mathbf{v}\| = \mathbf{v} = \omega r \sin(\pi/2) = \omega r$$

as expected.

Angular Acceleration

Lesson 7: Rotational Motion I

Henry Ding

Vector Cross Product

Rotation Motion

Homework 7

Definition

Like linear acceleration, angular acceleration is

$$lpha = rac{\Delta \omega}{\Delta t}.$$

 α is parallel to ω , so we can find the direction of both using the right hand rule.

Theorem (Angular Kinematic Equations in One Dimension)

When we have constant angular acceleration, the kinematic equations are in the same form

$$\omega_f = \omega_i + \alpha t$$

$$\Delta \theta = \left(\frac{\omega_i + \omega_f}{2}\right) t$$

$$\Delta \theta = \omega_i t + \frac{1}{2} \alpha t^2$$

$$\omega_f^2 - \omega_i^2 = 2\alpha \Delta \theta.$$

Constant Angular Acceleration Examples

Lesson 7: Rotational Motion I

Henry Ding

Vector Cross Product

Rotation Motion

Homework 7

Example

A CD disk undergoes constant angular acceleration from rest to rotating at 5 rad/s in 10 s. What is the disk's angular acceleration? Through what angle did the disk turn?

Homework 7

Lesson 7: Rotational Motion

Henry Ding

Vector Cross Product

Rotation Motion

Homework 7

Textbook Problems

