А/В-тестирование

Зачем нужны А/В-тесты

• Представим ситуацию, что пользователи активно используют наш ресурс. И в один прекрасный день мы *решили что-то поменять*, например, *поменять цвет кнопки*, отвечающей за покупку продукта.

Зачем нужны А/В-тесты

• Представим ситуацию, что пользователи активно используют наш ресурс. И в один прекрасный день мы *решили что-то поменять*, например, *поменять цвет кнопки*, отвечающей за покупку продукта.

• Наше решение — это *интуитивное предположение* о том, что пользователям ресурса приятнее видеть зеленую кнопку, и мы ожидаем увеличение числа кликов по кнопке.

Зачем нужны А/В-тесты

• Представим ситуацию, что пользователи активно используют наш ресурс. И в один прекрасный день мы *решили что-то поменять*, например, *поменять цвет кнопки*, отвечающей за покупку продукта.

- Наше решение это интуитивное предположение о том, что пользователям ресурса приятнее видеть зеленую кнопку, и мы ожидаем увеличение числа кликов по кнопке.
- Но наше предположение не означает, что после внесения изменений мы получим желаемый эффект. Для проверки таких гипотез мы и проводим А/В тесты.

Что такое А/В-тестирование

- Делим пользователей на две группы (А и В): Группа А – контрольная – ей показывается страница без изменений Группа В –тестовая – ей показывается страница с внесенным изменением
- Эффект от изменений оценивается путем сравнения целевых метрик в групах

Где используются А/В-тесты: реклама

Где используются А/В-тесты: интернет-магазин

Frequently Bought Together

Total price: \$83.09

Add both to Cart

Add both to List

☑ This item: Structure and Interpretation of Computer Programs - 2nd Edition (MIT Electrical Engineering and... by Harold Abelson Paperback \$50.50

☑ The Pragmatic Programmer: From Journeyman to Master by Andrew Hunt Paperback \$32.59

Customers Who Bought This Item Also Bought

The Little Schemer - 4th

<

Daniel P. Friedman

64
Paperback

36.00 / Prime

4th

Structure and Interpretation of Computer Programs...

Gerald Jay Sussman

5

Paperback \$28.70 Prime

The Pragmatic
Programmer: From
Journeyman to Master

Andrew Hunt

Paperback \$32.59 **Prime**

Introduction to Algorithms, 3rd Edition (MIT Press) > Thomas H. Cormen

#1 Best Seller in Computer

Hardcover \$66.32 \rightarrow Prime

An Introduction to Functional Programming Through Lambda...

Greg Michaelson

\$20.70 Prime

Purely Functional Data
Structures
Chris Okasaki

\$40.74 Prime

Functional Data Code: The Hidden ures Language of Computer Okasaki Hardware and Software

→ Charles Petzold

★★★★★ 334

#1 Best Seller (in Machine

Theory
Paperback
\$17.99 \(Prime \)

Page 1 of 13

The Little Prover (MIT

Press)
Daniel P. Friedman

Paperback \$31.78 **Prime**

\$31.78 *Prim*

>

Где используются A/B-тесты: Netflix

Где используются А/В-тесты: алгоритмы

https://www.fastcompany.com/1825005/how-one-second-could-cost-amazon-16-billion-sales

Ресурсы на проведение А/В-тестов

- Для проведения теста нужна инфраструктура:
 - ✓ Разбиение пользователей на группы
 - ✓ Сбор и хранение необходимых данных
- Результат нельзя получить мгновенно
 - ✓ Необходимо время для накопления достаточного объема данных
- В некоторых случаях можно отказаться от проведения А/В-теста
 - ✓ Если изменение будет в любом случае внесено

Альтернативы А/В-тестам

- Qualitative analysis (качественный анализ)
- UX исследования, фокус группы
- Eye tracking
- Опросы

Eye tracking

По красной кнопке "купить" кликало 5% тестовых пользователей, по зелёной – 8%.

	Α	В
Conversion Rate	5%	8%

Какой вывод?

По красной кнопке "купить" кликало 5% тестовых пользователей, по зелёной — 8%.

	Α	В
Conversion Rate	5%	8%

Какой вывод?

Это может быть случайность, а может быть наше изменение увеличило конверсию. Как проверить?

- значения показателей могут меняться день ото дня это значит, что мы имеем дело со случайными величинами.
- для сравнения случайных величин оценивают *средние значения*, а для оценки среднего значения требуется некоторое время, чтобы накопить историю.

• эффект от внесения изменения определяют как разность между средними значениями показателя в сегментах.

• эффект от внесения изменения определяют как разность между средними значениями показателя в сегментах.

Насколько мы уверены в достоверности полученного результата? Если мы еще раз проведем тест, то какова вероятность того, что мы сможем повторить результат?

Разность между средними одинаковая.

В чём же разница?

Разность между средними одинаковая.

В чём же разница?

В разбросе значений и в площади пересечения распределений!

- чем меньше пересечение, тем с большей уверенностью мы можем сказать, что эффект действительно значим.
- эта "уверенность" в статистике называется значимостью результата.

Выбор уровня значимости

- как правило, для принятия положительного решения об эффективности изменений уровень значимости выбирают равным 90%, 95% или 99%.
- пересечение распределений при этом равно соответственно 10%, 5% или 1%.
- при невысоком уровне значимости существует опасность сделать *ошибочные выводы* об эффекте, полученном в результате изменения.

Проверка статистических гипотез

Для оценки значимости результатов необходимо провести проверку гипотезы. Что это?

- Нулевая гипотеза: статистической разницы между средними нет
- Альтернативная гипотеза: разница есть

Нам необходимо применить алгоритм проверки гипотез из математической статистики для того, чтобы решить: принять нулевую гипотезу или отвергнуть её.

Проверка статистических гипотез

Для оценки значимости результатов необходимо провести проверку гипотезы. Что это?

- Нулевая гипотеза: статистической разницы между средними нет
- Альтернативная гипотеза: разница есть

Нам необходимо применить алгоритм проверки гипотез из математической статистики для того, чтобы решить: принять нулевую гипотезу или отвергнуть её.

- задаемся порогом уверенности, например, 95%
- ullet по выбранному порогу, пользуясь готовыми таблицами, находим критическое значение $t_{
 m kput}$
- рассчитываем значение $\underline{cmamucmuku\ kpumepus\ t}$ по нашим данным

Если $t>t_{\rm крит}$, то отвергаем нулевую гипотезу, то есть, наблюдаемые различия статистически значимы.

Пример:

Мы провели эксперимент по клику на баннеры. В группе А результаты составили в среднем 115+-1 клик в день, в группе В — 104+-2 клика в день. Данные имеют нормальное распределение. Необходимо сделать вывод о статистической значимости полученных различий.

Пример:

Мы провели эксперимент по клику на баннеры. В группе А результаты составили в среднем 115+-1 клик в день (всего 37 человек), в группе В — 104+-2 клика в день (всего 37 человек). Данные имеют нормальное распределение. Необходимо сделать вывод о статистической значимости полученных различий.

• Задаем порог уверенности: 95%, для него определяем по таблице критическое значение: $t_{\mathrm{крит}} = 1,993.$

Значения t-критерия Стьюдента при уровне значимости 0,05

Число степеней свободы, <i>f</i>	<i>t</i> -критерий	Число степеней свободы, <i>f</i>	<i>t</i> -критерий	Число степеней свободы, <i>f</i>	<i>t</i> -критерий
1	12,71	13	2,16	25	2,06
2	4,3	14	2,15	26	2,06
3	3,18	15	2,13	27	2,05
4	2,78	16	2,12	28	2,05
5	2,57	17	2,11	29	2,04
6	2,45	18	2,10	30	2,04
7	2,37	19	2,09	40	2,02
8	2,31	20	2,09	50	2,01
9	2,26	21	2,08	60	2,00
10	2,23	22	2,07	100	1,98
11	2,20	23	2,07	120	1,98
12	2,18	24	2,06	∞	1,96

Пример:

Мы провели эксперимент по клику на баннеры. В группе А результаты составили в среднем 115+-1 клик в день (всего 37 человек), в группе В — 104+-2 клика в день (всего 37 человек). Данные имеют нормальное распределение. Необходимо сделать вывод о статистической значимости полученных различий.

- Задаем порог уверенности: 95%, для него определяем по таблице критическое значение: $t_{\mathrm{крит}} = 1{,}993$.
- Вычисляем значение <u>статистики критерия</u>: $t = \frac{115, 4 103, 7}{\sqrt{1, 2^2 + 2, 3^2}}$

Пример:

Мы провели эксперимент по клику на баннеры. В группе А результаты составили в среднем 115+-1 клик в день (всего 37 человек), в группе В — 104+-2 клика в день (всего 37 человек). Данные имеют нормальное распределение. Необходимо сделать вывод о статистической значимости полученных различий.

- Задаем порог уверенности: 95%, для него определяем по таблице критическое значение: $t_{\mathrm{крит}} = 1{,}993$.
- Вычисляем значение статистики критерия: $t = \frac{115, 4 103, 7}{\sqrt{1, 2^2 + 2, 3^2}}$
- $t = 4.51 > t_{
 m KDHT} = 1.993$ => есть статистически значимые различия.

А/В-тест онлайн

https://abtestguide.com/calc/