Proof of LQER with an Assumption to be Verified

Proof of LQER with an Assumption to be Verified	. 1
Background	
Geroge's Proof with Assumption	. 1
An Example of Statistic Profile	. 2
What if the Assumption does not hold?	
Cheng's Try without the Assumption	. 4
Numerical Stability of Matrix Square Root and SVD	

Background

- Input vector of linear layer: $\mathbf{x} = [x_1, x_2, ..., x_n]$, where n is the hidden size.
- linear layer: y = xW
- Approximated linear layer: $\tilde{\mathbf{y}} = \mathbf{x} (\widetilde{W} + C)$, where C is a low-rank approximation of quantization error, and $\widetilde{W} = \operatorname{quantize}(W)$

Geroge's Proof with Assumption

We target minimizing the expectation of L2 norm for output vectors, i.e. , $\min \mathbf{E}_{\mathbf{y}}\{\parallel \tilde{\mathbf{y}} - \mathbf{y} \parallel_2^2\}$.

We have

$$\mathbf{E}_{\mathbf{y}}\{\parallel \widetilde{\mathbf{y}} - \mathbf{y} \parallel_{2}^{2}\} = \mathbf{E}_{\mathbf{x}}\{\parallel \mathbf{x} \left(\widetilde{W} - W + C\right) \parallel_{2}^{2}\}$$

$$\tag{1}$$

where $E\{\cdot\}$ stands for expectation.

Let
$$M = \widetilde{W} - W + C = \begin{bmatrix} \mathbf{m_1} \\ \mathbf{m_2} \\ \vdots \\ \mathbf{m_n} \end{bmatrix}$$
 and put it into RHS of (1).

$$\begin{split} \mathbf{E}_{\mathbf{y}}\{\|\tilde{\mathbf{y}} - \mathbf{y}\|\} &= \mathbf{E}_{\mathbf{x}}\{\|\mathbf{x}M\|_{2}^{2}\} \\ &= \mathbf{E}_{\mathbf{x}}\left\{\|\left[x_{1}, x_{2}, ..., x_{n}\right]\begin{bmatrix}\mathbf{m}_{1}\\\mathbf{m}_{2}\\ \vdots\\\mathbf{m}_{n}\end{bmatrix}\|_{2}^{2}\right\} \\ &= \mathbf{E}_{\mathbf{x}}\left\{\|\sum_{i=1}^{n} x_{i} \mathbf{m}_{i}\|_{2}^{2}\right\} \\ &= \mathbf{E}_{\mathbf{x}}\left\{\left(\sum_{i=1}^{n} x_{i} \mathbf{m}_{i}\right)\left(\sum_{j=1}^{n} x_{j} \mathbf{m}_{j}^{\mathbf{T}}\right)\right\} \\ &= \mathbf{E}_{\mathbf{x}}\left\{\sum_{i=1}^{n} \sum_{j=1}^{n} x_{i} x_{j} \mathbf{m}_{i} \mathbf{m}_{j}^{\mathbf{T}}\right\} \\ &= \sum_{i=1}^{n} \sum_{j=1}^{n} \mathbf{E}_{\mathbf{x}}\left\{x_{i} x_{j} \mathbf{m}_{i} \mathbf{m}_{j}^{\mathbf{T}}\right\} \\ &= \sum_{i=1}^{n} \sum_{j=1}^{n} \mathbf{E}_{\mathbf{x}}\left\{x_{i} x_{j}\right\} \mathbf{m}_{i} \mathbf{m}_{j}^{\mathbf{T}} \end{split}$$

Assumption:

$$\mathbf{E}\big\{x_ix_j\big\} = 0 \text{ for } i \neq j \tag{3}$$

Then the RHS of (2) becomes

$$\mathbf{E}_{\mathbf{y}}\{\|\tilde{\mathbf{y}} - \mathbf{y}\|\} = \sum_{i=1}^{n} \mathbf{E}\{x_i^2\} \ \mathbf{m}_{\mathbf{i}} \mathbf{m}_{\mathbf{i}}^{\mathbf{T}}$$

$$\tag{4}$$

 \mathbb{V} One interpretation of (3) is that the *i*-th activation dim x_i is zero-mean, and independent from the *j*-th dim $(i \neq j)$.

If we assign diagonal matrix $S = \operatorname{diag}\left(\sqrt{\operatorname{E}\{x_1^2\}}, \sqrt{\operatorname{E}\{x_2^2\}}, ..., \sqrt{\operatorname{E}\{x_n^2\}}\right)$, the LHS of (4) becomes

$$\begin{split} \mathbf{E}_{\mathbf{y}}\{\|\tilde{\mathbf{y}} - \mathbf{y}\|\} &= \mathrm{Trace}(SMM^TS^T) \\ &= \| \ SM \ \|_F^2 \end{split} \tag{5}$$

where $\|\cdot\|_F^2$ denotes Frobenius norm.

Given (5), our target now is

$$\min \mathbf{E}_{\mathbf{y}} \{ \| \tilde{\mathbf{y}} - \mathbf{y} \|_{2}^{2} \} = \min \| SM \|_{F}^{2}$$

$$= \min \| S(\widetilde{W} - W + C) \|_{F}^{2}$$

$$(6)$$

If we assign $A=Sig(W-\widetilde{W}ig)$ and $\widetilde{A}=SC$, the RHS of (6) becomes

$$\min \mathbf{E}_{\mathbf{y}} \big\{ \parallel \tilde{\mathbf{y}} - \mathbf{y} \parallel_2^2 \big\} = \min \parallel \tilde{A} - A \parallel_F^2 \tag{7}$$

According to Eckart–Young theorem, the best rank k approximation to A (noted as \tilde{A}_k) is

$$\tilde{A}_k = U_k \Sigma_k V_k^T \tag{8}$$

where U_k, Σ_k, V_k is the rank-k SVD of A, i.e., $A = S \big(W - \widetilde{W} \big) = U \Sigma V^T.$

Therefore, the closed-form solution of C based on assumption (3) is

$$C = S^{-1}\tilde{A}_k = S^{-1}U_k\Sigma_k V_k^T \tag{9}$$

For implementation, we assign two low-rank matrices $S^{-1}U_k$ and $\Sigma_k V_k^T$ to save FLOPs.

An Example of Statistic Profile

We can calculate the <u>auto-correlation</u> matrix for $\mathbf{x} = [x_1, x_2, ..., x_n]$:

$$R_{\mathbf{xx}} = \begin{pmatrix} \mathbf{E}(x_1 x_1) & \mathbf{E}(x_1 x_2) & \dots & \mathbf{E}(x_1 x_n) \\ \mathbf{E}(x_2 x_1) & \mathbf{E}(x_2 x_2) & \dots & \mathbf{E}(x_2 x_n) \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{E}(x_n x_1) & \mathbf{E}(x_n x_2) & \dots & \mathbf{E}(x_n x_n) \end{pmatrix}$$
(10)

where $E(x_i x_j)$ is the correlation between **x**'s *i*-th dim and *j*-th dim.

Figure 1 is the profiled first 64 dim of R_{xx} for the linear layers of 6-th decoder in <u>TinyLlama-1.1B</u>. Color black mean 0 value.

It is observed that our assumption is reasonable but looks a bit strong (?).

- (a) The input of q/k/v_proj layer of 6-th decoder
- (b) The input of o_proj layer of 6-th decoder

(c) The input of gate/up_proj layer of 6-th decoder (d) The input of down_proj layer of 6-th decoder

What if the Assumption does not hold?

George hypothesizes that if the assumption (3) does not hold, the closed-form of S might be $S=R_{\mathbf{x}\mathbf{x}}^{\frac{1}{2}}$, where $R_{\mathbf{x}\mathbf{x}}=\mathrm{E}\{\mathbf{x}^{\mathbf{T}}\mathbf{x}\}$. Then (2) may become $\|R_{\mathbf{x}\mathbf{x}}^{\frac{1}{2}}\odot M\|_F^2$ where \odot is elementwise-multiply.

Cheng's Try without the Assumption

Cheng: I tried the following to push the proof.

If we continue at $\sqrt[3]{}$ in (2), we have:

$$\begin{split} \mathbf{E}_{\mathbf{y}}\{\|\tilde{\mathbf{y}}-\mathbf{y}\|\} &= \mathbf{E}_{\mathbf{x}}\left\{\sum_{i=1}^{n}\sum_{j=1}^{n}x_{i}x_{j}\mathbf{m}_{i}\mathbf{m}_{j}^{\mathbf{T}}\right\} \\ &= \mathbf{E}_{\mathbf{x}}\left\{\mathbf{e}\begin{pmatrix} x_{1}x_{1} & x_{1}x_{2} & \dots & x_{1}x_{n} \\ x_{2}x_{1} & x_{2}x_{2} & \dots & x_{2}x_{n} \\ \vdots & \vdots & \ddots & \vdots \\ x_{n}x_{1} & x_{n}x_{2} & \dots & x_{n}x_{n} \end{pmatrix} \odot \begin{pmatrix} \mathbf{m}_{1}\mathbf{m}_{1}^{\mathbf{T}} & \mathbf{m}_{1}\mathbf{m}_{2}^{\mathbf{T}} & \dots & \mathbf{m}_{1}\mathbf{m}_{n}^{\mathbf{T}} \\ \mathbf{m}_{2}\mathbf{m}_{1}^{\mathbf{T}} & \mathbf{m}_{2}\mathbf{m}_{2}^{\mathbf{T}} & \dots & \mathbf{m}_{2}\mathbf{m}_{n}^{\mathbf{T}} \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{m}_{n}\mathbf{m}_{1}^{\mathbf{T}} & \mathbf{m}_{n}\mathbf{m}_{2}^{\mathbf{T}} & \dots & \mathbf{m}_{n}\mathbf{m}_{n}^{\mathbf{T}} \end{pmatrix} \mathbf{e}^{\mathbf{T}} \\ &= \mathbf{E}_{\mathbf{x}}\{\mathbf{e} \cdot ((\mathbf{x}^{\mathbf{T}}\mathbf{x}) \odot (MM^{T})) \cdot \mathbf{e}^{\mathbf{T}}\} \end{split}$$

where $\mathbf{e} = \underbrace{[1,1,...,1]}_{\mathbf{n}}$ is a row vector of n ones, and \odot is elementwise multiply. $\overset{\$}{\psi}$ in (11) is based on this StackExchange page.

Using the following property of Hadamard product

• For vectors \mathbf{x} and \mathbf{y} , and corresponding diagonal matrices $D_{\mathbf{x}}$ and $D_{\mathbf{y}}$ with these vectors as their main diagonals, the following identity holds: $\mathbf{x}^*(A \circ B)\mathbf{y} = \operatorname{tr}(D_{\mathbf{x}}^*AD_{\mathbf{y}}B^{\mathsf{T}})$,

where \mathbf{x}^* denotes the conjugate transpose of \mathbf{x} . In particular, using vectors of ones, this shows that the sum of all elements in the Hadamard product is the trace of AB^T where superscript T denotes the matrix transpose, that is, $\operatorname{tr}(AB^T) = \mathbf{1}^T (A \odot B) \mathbf{1}$. A related result for square A and B, is that the row-sums of their Hadamard product are the diagonal elements of AB^T :[8]

$$\sum_{i} (A \circ B)_{ij} = (B^{\mathsf{T}} A)_{jj} = (AB^{\mathsf{T}})_{ii}.$$

Similarly

$$(\mathbf{y}\mathbf{x}^*)\odot A = D_{\mathbf{y}}AD_{\mathbf{x}}^*$$

Furthermore, a Hadamard matrix-vector product can be expressed as:

$$(A \odot B)\mathbf{y} = \operatorname{diag}(AD_{\mathbf{v}}B^{\mathsf{T}})$$

where $\operatorname{diag}(M)$ is the vector formed from the diagonals of matrix M

The LHS of (11) becomes

$$\begin{split} \mathbf{E}_{\mathbf{y}} \{ \| \tilde{\mathbf{y}} - \mathbf{y} \| &= \mathbf{E}_{\mathbf{x}} \{ \mathrm{Trace}(\mathbf{x}^{\mathbf{T}} \mathbf{x} M M^{T}) \} \\ &= \mathrm{Trace}(\mathbf{E}_{\mathbf{x}} \{ \mathbf{x}^{\mathbf{T}} \mathbf{x} M M^{T} \}) \quad \varnothing \\ &= \mathrm{Trace}(\mathbf{E}_{\mathbf{x}} \{ \mathbf{x}^{\mathbf{T}} \mathbf{x} \} M M^{T}) \\ &= \mathrm{Trace}(R_{\mathbf{x}\mathbf{x}} M M^{T}) \\ &= \mathrm{Trace}\left(R_{\mathbf{x}\mathbf{x}}^{\frac{1}{2}} M M^{T} R_{\mathbf{x}\mathbf{x}}^{\frac{1}{2}}\right) \quad \overset{\mathfrak{g}}{\longrightarrow} \\ &= \mathrm{Trace}\left(R_{\mathbf{x}\mathbf{x}}^{\frac{1}{2}} M M^{T} \left(R_{\mathbf{x}\mathbf{x}}^{\frac{1}{2}}\right)^{T}\right) \\ &= \| R_{\mathbf{x}\mathbf{x}}^{\frac{1}{2}} M \|_{F}^{2} \end{split}$$

 \mathcal{D} in (12) is based on this page.

in (12) is based on the following clues:

- R_{xx} is symmetric and positive-semidefinite. Refer to wiki page
- MM^T is positive-semidefinites. Refer to <u>StackExchange page</u>
- For two positive-semidefinite matrices A and B, we have $\operatorname{Trace}(AB) = \operatorname{Trace}(A^{\frac{1}{2}}BA^{\frac{1}{2}})$: refer to <u>wikitage</u>

Trace [edit]

The diagonal entries m_{ii} of a positive-semidefinite matrix are real and non-negative. As a consequence the trace, $\operatorname{tr}(M) \geq 0$. Furthermore, ^[13] since every principal sub-matrix (in particular, 2-by-2) is positive semidefinite,

$$|m_{ij}| \leq \sqrt{m_{ii}m_{jj}} \quad orall i, j$$

and thus, when $n\geq 1$,

 $\max_{i,j} |m_{ij}| \leq \max_{i} m_{ii}$

An n imes n Hermitian matrix M is positive definite if it satisfies the following trace inequalities: [14]

$$\operatorname{tr}(M)>0\quad\text{and}\quad\frac{(\operatorname{tr}(M))^2}{\operatorname{tr}(M^2)}>n-1.$$

Another important result is that for any M and N positive-semidefinite matrices, $\operatorname{tr}(MN) \geq 0$. This follows by writing $\operatorname{tr}(MN) = \operatorname{tr}(M^{\frac{1}{2}}NM^{\frac{1}{2}})$. The matrix $M^{\frac{1}{2}}NM^{\frac{1}{2}}$ is positive-semidefinite and thus has non-negative eigenvalues, whose sum, the trace, is therefore also non-negative.

• R_{xx} has a symmetric and positive semidefinite square root: $R_{xx} = R_{xx}^{\frac{1}{2}} R_{xx}^{\frac{1}{2}}$. Refer to wiki page

Positive semidefinite matrices [edit]

See also: Positive definite matrix § Decomposition

A symmetric real $n \times n$ matrix is called *positive semidefinite* if $x^TAx \ge 0$ for all $x \in \mathbb{R}^n$ (here x^T denotes the transpose, changing a column vector x into a row vector). A square real matrix is positive semidefinite if and only if $A = B^TB$ for some matrix B. There can be many different such matrices B. A positive semidefinite matrix A can also have many matrices B such that A = BB. However, A always has precisely one square root B that is positive semidefinite and symmetric. In particular, since B is required to be symmetric, $B = B^T$, so the two conditions A = BB or $A = B^TB$ are equivalent.

Now our target becomes

$$\min \mathbf{E}_{\mathbf{y}} \{ \| \ \widetilde{\mathbf{y}} - \mathbf{y} \|_{2}^{2} \} = \min \| \ R_{\mathbf{x}\mathbf{x}}^{\frac{1}{2}} M \|_{F}^{2}$$

$$= \min \| \ R_{\mathbf{x}\mathbf{x}}^{\frac{1}{2}} \left(\widetilde{W} - W + C \right) \|_{F}^{2}$$
(13)

If we assign $A=R_{\mathbf{xx}}^{\frac{1}{2}}\big(W-\widetilde{W}\big)$ and $\tilde{A}=R_{\mathbf{xx}}^{\frac{1}{2}}C$, the RHS of (13) becomes

$$\min \mathbf{E}_{\mathbf{y}}\{\parallel \tilde{\mathbf{y}} - \mathbf{y} \parallel_2^2\} = \min \parallel \tilde{A} - A \parallel_F^2 \tag{14}$$

According to Eckart–Young theorem, the best rank k approximation to A (noted as \tilde{A}_k) is

$$\tilde{A}_k = U_k \Sigma_k V_k^T \tag{15}$$

Therefore, the closed-form solution of C without the assumption is

$$C = \left(R_{\mathbf{x}\mathbf{x}}^{\frac{1}{2}}\right)^{-1} \tilde{A}_k = \left(R_{\mathbf{x}\mathbf{x}}^{\frac{1}{2}}\right)^{-1} U_k \Sigma_k V_k^T \tag{16}$$

For implementation, we assign two low-rank matrices $\left(\left(R_{\mathbf{x}\mathbf{x}}^{\frac{1}{2}}\right)^{-1}U_k\right)$ and $\left(\Sigma_k V_k^T\right)$ to save FLOPs.

? A concern here is if $R_{\mathbf{x}\mathbf{x}}^{\frac{1}{2}}$ is always invertible? We assume in practice it is invertible for a trained network, but we need a backup plan if it is not (Probably add perturbation to $R_{\mathbf{x}\mathbf{x}}^{\frac{1}{2}}$, or fall back to the diagonal S case)

Numerical Stability of Matrix Square Root and SVD

- The numerical stability of this algorithm is not ensured and has not been investigated.
- Current empirical implementation uses use FP32 to compute $R_{\rm xx}$, use FP64 to accumulated $R_{\rm xx}$, and use FP32 to solve the matrix square root and SVD. The evaluation of the quantized network may use FP32, or BF16 to align with MXINT's 8-bit exponent.