Breast Tumor Classifier

Classifies Histopathological Images as Benign or Malignant

Subject Area

Intersection of Medical Imaging, Machine Learning, and Histopathology

- Medical Imaging: Utilizing histopathological images
- Machine Learning: Applying algorithms for classification
- Histopathology: Analysis of tissue samples under a microscope

Problem Statement

• Develop a Machine Learning model to classify breast tumors as Benign or Malignant

Data Source

Breast Cancer Histopathological Database (BreakHis)

By <u>Spanhol, F., Oliveira, L.S., Petitjean, C. and Heutte, L.</u> is licensed under a <u>Creative Commons Attribution 4.0 International License</u>

https://web.inf.ufpr.br/vri/databases/breast-cancer-histopathological-databases/breakhis/

Understanding the folder structures

Insights and decision making

Benign breast tumors:

- adenosis (A)
- fibroadenoma (F)
- phyllodes tumor (PT)
- tubular adenona (TA)

Malignant tumors (breast cancer):

- carcinoma (DC)
- lobular carcinoma (LC)
- mucinous carcinoma (MC)
- papillary carcinoma (PC)

Different magnification factors: 40X, 100X, 200X, and 400X

The task is to predict one of two possible outcomes - Benign or Malignant

Naming conventions of .png files

<BIOPSY_PROCEDURE>_<TUMOR_CLASS>_<TUMOR_TYPE>-<YEAR>-<SLIDE_ID>-<MAG>-<SEQ>

Example:

SOB_B_F-14-9133-400-025.png; SOB_M_DC-14-2523-400-026.png

Exploratory Data Analysis

Class imbalance

More EDA

More EDA

Dataset Folds.csv

Out[29]:

	fold	mag	grp	filename
0	1	100	train	BreaKHis_v1/histology_slides/breast/benign/SOB/adenosis/SOB_B_A_14-22549AB/100X/SOB_B_A-14-22549AB-100-001.png
1	1	100	train	BreaKHis_v1/histology_slides/breast/benign/SOB/adenosis/SOB_B_A_14-22549AB/100X/SOB_B_A-14-22549AB-100-002.png
2	1	100	train	BreaKHis_v1/histology_slides/breast/benign/SOB/adenosis/SOB_B_A_14-22549AB/100X/SOB_B_A-14-22549AB-100-003.png
3	1	100	train	BreaKHis_v1/histology_slides/breast/benign/SOB/adenosis/SOB_B_A_14-22549AB/100X/SOB_B_A-14-22549AB-100-004.png
4	1	100	train	BreaKHis_v1/histology_slides/breast/benign/SOB/adenosis/SOB_B_A_14-22549AB/100X/SOB_B_A-14-22549AB-100-005.png
39540	5	400	test	$BreaKHis_v1/histology_slides/breast/malignant/SOB/papillary_carcinoma/SOB_M_PC_15-190EF/400X/SOB_M_PC-15-190EF-400-011.png$
39541	5	400	test	$BreaKHis_v1/histology_slides/breast/malignant/SOB/papillary_carcinoma/SOB_M_PC_15-190EF/400X/SOB_M_PC-15-190EF-400-012.png$
39542	5	400	test	$BreaKHis_v1/histology_slides/breast/malignant/SOB/papillary_carcinoma/SOB_M_PC_15-190EF/400X/SOB_M_PC-15-190EF-400-013.png$
39543	5	400	test	$BreaKHis_v1/histology_slides/breast/malignant/SOB/papillary_carcinoma/SOB_M_PC_15-190EF/400X/SOB_M_PC-15-190EF-400-014.png$
39544	5	400	test	$BreaKHis_v1/histology_slides/breast/malignant/SOB/papillary_carcinoma/SOB_M_PC_15-190EF/400X/SOB_M_PC-15-190EF-400-015.png$

39545 rows × 4 columns

Create label column

Create a new column named label to label the images

fold_info["label"] = fold_info["filename"].str.extract("(malignant|benign)")
fold_info.head()

	fold	mag	grp	filename	label
0	1	100	train	BreaKHis_v1/histology_slides/breast/benign/SOB/adenosis/SOB_B_A_14-22549AB/100X/SOB_B_A-14-22549AB-100-001.png	benign
1	1	100	train	$BreaKHis_v1/histology_slides/breast/benign/SOB/adenosis/SOB_B_A_14-22549AB/100X/SOB_B_A-14-22549AB-100-002.png$	benign
2	1	100	train	$BreaKHis_v1/histology_slides/breast/benign/SOB/adenosis/SOB_B_A_14-22549AB/100X/SOB_B_A-14-22549AB-100-003.png$	benign
3	1	100	train	$BreaKHis_v1/histology_slides/breast/benign/SOB/adenosis/SOB_B_A_14-22549AB/100X/SOB_B_A-14-22549AB-100-004.png$	benign
4	1	100	train	$BreaKHis_v1/histology_slides/breast/benign/SOB/adenosis/SOB_B_A_14-22549AB/100X/SOB_B_A-14-22549AB-100-005.png$	benign

Train - Test Split

Transfer Learning

Leveraging knowledge from pre-trained models and adapting it to this dataset.

- MobileNetV3Small
- EfficientNetV2B1
- VGG16
- ResNet50V2

Target distribution

Model Evaluation

	MobileNetV3	EfficientNetB1	VGG16	ResNet50V2
Loss				
ROC-AUC		N	lerge & Center	
Accuracy				

Productizing the work

Deploy

Breast Cancer Detector

Predict whether breast tumours in histopathological images are benign or malignant (cancerous).

Exploratory data analysis and model training were performed in this Kaggle notebook.

Thank you!