- Konkurentno, paralelno i distribuirano programiranje
 - Nema poptunog slaganja oko definicije
 - Konkurentno: više taskova su istovremeno u izvršavanju
 - Paralelno: više taskova tesno sarađuju
 - Distribuirano: više programa mogu da međusobno sarađuju
 - I paralelno i distribuirano programiranje su konkurentno programiranje
 - Generalno, paralelno zahteva da su jezgra fizički blizu jedno drugog, distribuirano je kada je struktura razuđenija
 - Ili: deljena memorija je paralelno programiranje, distribuirana je distribuirano

• Današnji superračunari (TOP500 Jun 2018)

Processor Generation System Share

Accelerator/CP Family System Share

• Današnji superračunari (TOP500 Jun 2018)

• Današnji superračunari (TOP500 Jun 2018)

Operating system Family System Share

- Današnji superračunari (TOP500 Jun 2018)
 - Summit IBM Power System AC922, IBM POWER9 22C 3.07GHz, NVIDIA Volta GV100, Dual-rail Mellanox EDR Infiniband, IBM, DOE/SC/Oak Ridge National Laboratory, United States
 - Sunway TaihuLight Sunway MPP, Sunway SW26010 260C 1.45GHz, Sunway , NRCPC, National Supercomputing Center in Wuxi, China
 - Sierra IBM Power System S922LC, IBM POWER9 22C 3.1GHz, NVIDIA Volta GV100, Dual-rail Mellanox EDR Infiniband, IBM, DOE/NNSA/LLNL, United States
 - Tianhe-2A TH-IVB-FEP Cluster, Intel Xeon E5-2692v2 12C 2.2GHz, TH Express-2, Matrix-2000, NUDT, National Super Computer Center in Guangzhou, China
 - Al Bridging Cloud Infrastructure (ABCI) PRIMERGY CX2550 M4, Intel Xeon Gold 6148 20C 2.4GHz, NVIDIA Tesla V100 SXM2, Infiniband EDR, Fujitsu, National Institute of Advanced Industrial Science and Technology (AIST), Japan
 - Piz Daint Cray XC50, Intel Xeon E5-2690v3 12C 2.6GHz, Aries interconnect, NVIDIA Tesla P100, Cray Inc., Swiss National Supercomputing Centre (CSCS), Switzerland
 - Titan Cray XK7, AMD Opteron 6274 16C 2.200GHz, Cray Gemini interconnect, NVIDIA K20x, Cray Inc., DOE/SC/Oak Ridge National Laboratory, United States
 - Sequoia BlueGene/Q, Power BQC 16C 1.60 GHz, Custom, IBM, DOE/NNSA/LLNL, United States
 - Trinity Cray XC40, Intel Xeon Phi 7250 68C 1.4GHz, Aries interconnect, Cray Inc., DOE/NNSA/LANL/SNL, United States
 - Cori Cray XC40, Intel Xeon Phi 7250 68C 1.4GHz, Aries interconnect, Cray Inc., DOE/SC/LBNL/NERSC, United States

Paralelizam u programima:

- Na nivou podataka (DLP, Data-Level Parallelism) više podataka se istovremeno obrađuje
- Na nivou zadataka (TLP, Task-Level Parallelism) više (relativno) nezavisnih zadataka se paralelno izvršavaju
- Klase paralelnih arhitektura
 - Paralelizam na nivou naredbi (Instruction-Level Parallelism) - protočna struktura (pipeline), spekulativno izvršavanje
 - Vektorske arhitekture i GPU primena jedne naredbe nad više podataka paralelno
 - Paralelizam niti (Thread-Level Parallelism) zasnovan na DLP ili TLP
 - Paralelizam na zahtev (Request-Level Parallelism) zasnovan na labavom TLP

- Flinova taksonomija (Michael Flynn, 1966)
 - SISD (Single instruction stream, single data stream) - jednojezgarni procesor
 - SIMD (Single instruction stream, multiple data streams) - svako jezgro ima svoju memoriju, kontrolni procesor
 - MISD (Multiple instruction streams, single data stream) - komercijalno ne postoji
 - MIMD (Multiple instruction streams, multiple data streams) - uglavnom (slabo povezani) TLP; Geleralizacija SIMD, ali slabije optimizovano za DLP
- Realni sistemi mogu biti kombinacija navedenih klasa

 Većina današnjih paralelnih računara je nastala na osnovama "serijskih" računara zasnovanih na Von Nojmanovoj arhitekturi

- memorija
 - kod i podaci, adrese
- procesor
 - ALU, registri (PC)
- sabirnica
 - adrese, podaci, kontrola
- CPU je mnogo brži od memorije
 - Razlozi?

Main memory

- Arhitektura računara
 - arhitektura naredbi
 - organizacija
 - dizajn na nivou logičkih kola i podsistema
 - hardverska implementacija
 - integrisana logička kola na nivou tranzistora
 - pakovanje u kućište
 - napajanje
 - hlađenje
 - prevazilaženje tehničkih problema

- Arhitektura naredbi (ISA instruction set architecture)
 - veza između softvera i hardvera, ono što se od procesora vidi sa strane programera
 - Klasa arhitekture naredbi
 - gotovo sve zasnovane na registrima opšte namene
 - stek, akumulatorske?
 - operandi su registri, memorija ili konstante
 - registarsko-memorijka podklasa
 - operandi za većinu naredbi mogu biti i registri i memorija x86
 - load-store podklasa
 - memoriji se pristupa preko posebnih naredbi, većina radi samo sa registrima - ARM, RISC-V, POWER

Arhitektura naredbi (ISA - instruction set architecture)

- Adresiranje memorije
 - svi komercijalni procesori koriste adrese na nivou bajta
 - neki zahtevaju da podaci budu poravnati (aligned)
 - ARM zahteva poravnanje
 - x86, RISC-V ne zahtevaju, ali je pristup brži ako je poravnato

Adresni modovi

- načini pristupanja memoriji
- registarsko (register)
- neposredno (immediate)
- indeksno/indirektno (displacement)
- relativno (u odnosui na programski brojač)
- sa automatskim uvećanjem/umanjenjem
- kombinacije (opšti format adresiranja x86)

- Arhitektura naredbi (ISA instruction set architecture)
 - Tipovi i veličine operanada
 - 8, 16, 32, 64, 128 bita za celobrojne podatke
 - 32, 64, 80 bita za pokretni zarez
 - Naredbe
 - prenosa podataka
 - aritmetičke
 - logičke
 - upravljačke
 - sistemske
 - ostale

Arhitektura naredbi (ISA - instruction set architecture)

- Naredbe
 - upravljačke
 - uslovni skokovi
 - testiranje sadržaja registara RISC-V
 - testiranje posebnih uslovnih bita x86, ARM
 - bezuslovni skokovi
 - poziv i povratak iz potprograma/prekida
 - korišćšenje steka
 - uglavnom relativno adresiranje
- Mašinski format naredbi (encoding)
 - dosta zavisi od broja registara i broja i komplikovanosti načina adresiranja
 - fiksna dužina ARM, RISC-V
 - brže dekodiranje
 - promenljiva dužina x86
 - kraći kod

- Implementacija računara
 - organizacija (mikroarhitektura)
 - dizajniranje na visokom nivou
 - memorijski podsistem
 - memorijska sabirnica
 - interna struktura procesora
 - keširanje
 - pipeline

- ...

- ista arhitektura naredbi može imati više organizacija
 - Intel i AMD x86
- multiprocesorski mikroprocesor -> multicore
- hardver
 - detaljan dizajn logičkih kola (na nivou tranzistora)
 - ista arhitektura naredbi i ista organizacija može imati više hardverskih implementacija
 - Intel Core i Xeon procesori

Tehnološki napredak

- Integrisana logička kola
 - Murov zakon više ne važi, broj tranzisora se povećava, ali se brzina povećavanja značajno smanjila i očekuje se da će se i dalje smanjivati

DRAM

- Brzina rasta kapaciteta se drastično smanjila, ranije je bilo učetvorostručavanje svake 3 godine
- 8Gbit čipovi 2014, 16Gbit 2018, 32Gbit ????

- FLASH (SSD)

 Značajan rast kapaciteta u poslednje vreme, trenutno 50-60% godišnje; 10-tak puta jefinije od DRAM

- HDD

- Ranije se kapacitet povećavao 40-60% godišnje, sada je to na nivou 5%
- Stiglo se do granica i gustine zapisa po ploči i broja ploča
- 10-tak puta jefiniji od SSD

- Razvoj performansi računara
 - Propusna moć (bandwidth, throughput) ukupna količina posla odrađena u jednici vremena
 - MB/s za disk transfer, na primer
 - Odziv (latency, response time) vreme između starovanja i završetka zadatka
 - broj ms za prenos fajla, na primer
 - Performase su glavna karakteristika procesora i mrežne opreme
 - Kapacitet je generalno bitniji od brzine za memoriju
 - Propusna moć daleko više raste od poboljšanja u odzivu

• Razvoj performansi računara

Microprocessor	16-Bit address/ bus, microcoded	32-Bit address/ bus, microcoded	5-Stage pipeline, on-chip I & D caches, FPU	2-Way superscalar, 64-bit bus	Out-of-order 3-way superscalar	Out-of-order superpipelined, on-chip L2 cache	Multicore OOO 4-way on chip L3 cache, Turbo
Product	Intel 80286	Intel 80386	Intel 80486	Intel Pentium	Intel Pentium Pro	Intel Pentium 4	Intel Core i7
Year	1982	1985	1989	1993	1997	2001	2015
Die size (mm ²)	47	43	81	90	308	217	122
Transistors	134,000	275,000	1,200,000	3,100,000	5,500,000	42,000,000	1,750,000,000
Processors/chip	1	1	1	1	1	1	4
Pins	68	132	168	273	387	423	1400
Latency (clocks)	6	5	5	5	10	22	14
Bus width (bits)	16	32	32	64	64	64	196
Clock rate (MHz)	12.5	16	25	66	200	1500	4000
Bandwidth (MIPS)	2	6	25	132	600	4500	64,000
Latency (ns)	320	313	200	76	50	15	4
Memory module	DRAM	Page mode DRAM	Fast page mode DRAM	Fast page mode DRAM	Synchronous DRAM	Double data rate SDRAM	DDR4 SDRAM
Module width (bits)	16	16	32	64	64	64	64
Year	1980	1983	1986	1993	1997	2000	2016
Mbits/DRAM chip	0.06	0.25	1	16	64	256	4096
Die size (mm ²)	35	45	70	130	170	204	50
Pins/DRAM chip	16	16	18	20	54	66	134
Bandwidth (MBytes/s)	13	40	160	267	640	1600	27,000
Latency (ns)	225	170	125	75	62	52	30

• Razvoj performansi računara

-						
Local area network	Ethernet	Fast Ethernet	Gigabit Ethernet	10 Gigabit Ethernet	100 Gigabit Ethernet	400 Gigabit Ethernet
IEEE standard	802.3	803.3u	802.3ab	802.3ac	802.3ba	802.3bs
Year	1978	1995	1999	2003	2010	2017
Bandwidth (Mbits/seconds)	10	100	1000	10,000	100,000	400,000
Latency (µs)	3000	500	340	190	100	60
Hard disk	3600 RPM	5400 RPM	7200 RPM	10,000 RPM	15,000 RPM	15,000 RPM
Product	CDC WrenI 94145-36	Seagate ST41600	Seagate ST15150	Seagate ST39102	Seagate ST373453	Seagate ST600MX0062
Year	1983	1990	1994	1998	2003	2016
Capacity (GB)	0.03	1.4	4.3	9.1	73.4	600
Disk form factor	5.25 in.	5.25 in.	3.5 in.	3.5 in.	3.5 in.	3.5 in.
Media diameter	5.25 in.	5.25 in.	3.5 in.	3.0 in.	2.5 in.	2.5 in.
Interface	ST-412	SCSI	SCSI	SCSI	SCSI	SAS
Bandwidth (MBytes/s)	0.6	4	9	24	86	250
Latency (ms)	48.3	17.1	12.7	8.8	5.7	3.6

Razvoj performansi računara

Razvoj performansi računara

- veličina i brzina tranzistora i vodova
 - Procesi proizvodnje integrisanih kola su karakterisani najmanjom dimenzijom pojedinačnih elemenata
 - 1971 10µm, 2016 0.016µm = 16nm
 - Danas 14nm, 10nm, radi se na 7nm i 4nm
 - Veća gustina tranzistora -> više mogućnosti iz iste površine
 - Manje dimenzije -> niži radni napon
 - Ranije se povećanje gustine najviše trošilo na broj bita u arhitekturi (8->16->32->64) i povećanje mogućnosti, danas se najviše troši na povećanje broja jezgara i keša
 - Manji vodovi -> veća kapacitivnost i otpornost po jedinici dužine (na kapacitivnost utiče još mnogo faktora) -> veće kašnjenje signala po jedinici dužine
 - Kašnjenje signala u vodovima je trenutno veći problem nego povećanje brzine tranzistora
 - Još veći problem je disipacija toplote