연속시간 Stock Price Model

1) 2016년 일별 종가 S_t , $ln(S_t)$; t=0,1,...n 에 대한 시계열 도표

2016년도와 2017년 2개년 동안의 코스피 지수의 변화를 위의 시계열 추세 그래프로 나타나있다. 2016년부터 2017년은 삼성전자와 하이닉스 등의 반도체산업 및 셀트리온 등의 제약 산업이 한국 경제의 성장을 이끌었다고 할 수 있다. 2016년 1월 2일 1950원 정도에서 출발하여 16년 2분기에 2천원대를 돌파했고, 17년에는 2500원대를 돌파하면서 역대 코스피를 기록했다. 16년도에 비해 17년도의 증가율이 가파르며 그 변동폭이 작다는 것을 그래프를 통해 볼 수 있다.

2) 일별수익률(Daily Return) : $u_t = \Delta S_t/S_t$,t = 0,1,...n-1 자료의 시계열도표, 히스토그램 및 Normal; Logistic; Laplace; 자유도 k 인 t t(k) , k = 0,1,...10; 분포의 Q-Q plot

2016년의 일별 수익률 자료의 시계열도표를 그려본 결과 평균으로의 회귀 경향이 있어보인다. 또한 오른쪽에 히스토그램은 0을 기준으로 왼쪽 꼬리가 조금 더 긴 분포의 형태가 나타나있다.

a) u_t 에 대한 가장 적절한 분포를 찾고 정규성가정이 적절한지 검토

Q-Q plot 을 그려본 결과 $R^2 = 98.27$ 로 Laplace 분포가 가장 적절해 보인다. 또한 정규 분포의 Q-Q plot $R^2 = 94.45$ % 로 정규성가정을 만족하는 듯 하다.

1) Weekly

b) u_t , $u_t^* = \Delta ln(S_t)$, t = 0,1,...n-1 의 평균과 분산을 각각 구하여 이들이 Ito 변환공식을 만족 하는지 검토

	u_t	u_t^*
Mean	0.000162 0.000133	
Variance	0.000059	0.000059

 $\mu^* = \mu - \frac{\sigma^2}{2} = 0.0001328$, $\sigma^2 = 0.0000595$ 로 같다. 따라서 Ito 변환공식을 만족한다고 할 수 있다.

c) 위에서 구한 분포를 이용하여 $p(u < u_t) = lpha$, ;lpha = .05, .01 조건을 만족하는 $VaR(Value\ at\ Risk)$ u_lpha 값과 정규분포를 이용해 구한 VaR 값과 비교

	$\alpha = .05$	$\alpha = .01$
Laplace	-1.578803	-2.537221
Normal	Normal -1.610709 -2.	

최종 선택된 Laplace 분포의 VaR 값과 Normal 분포의 VaR 값을 비교해 보았을 때 큰 차이가 없다는 것을 위 표에서 볼 수 있다.

d) 주별수익률 $v_t = \Delta_5 S_t / S_t$,t = 0,5,10,...n-5 및 월별수익률 $w_t = \Delta_{21} S_t / S_t$,t = 0,21,42,...n-21 자료에 대해 Q-Q plot 을 이용하여 분포 찾고 $v_{lpha}, w_{lpha}; lpha$ =.05, .01 를 구하여 u_{lpha} 값과 비교

-0.03 -0.02 -0.01 0.00 0.01 0.02

주별 수익률 분포를 찾기 위하여 Q-Q plot을 그려본 결과 정규분포가 $R^2 = 98.36\%$ 로 가장 적합하다.

월별 수익률 분포를 찾기 위하여 Q-Q plot을 그려본 결과 정규분포가 $R^2 = 95.72\%$ 로 가장 적합하다.

	Distribution	$\alpha = .05$	$\alpha = .01$
Day	Laplace	-1.578	-2.537
Week	Normal	-1.494	-1.908
Month	Normal	-1.175	-1.341

: 일별, 주별, 월별 수익률 분포에 따라 VaR 값을 계산한 결과 VaR의 크기가 점점 감소하는 경향이 있다.

e) $\{ln(S_t)\}$ 의 Random walk 가설을 검정하기 위해 $\sigma_{d/n}^2 = Var(\Delta_d lnS_t)$; d =1,5,10,15,20,25 추정하여 $(d,\sigma_{d/n}^2)$, $(d,\sigma_{d/n})$, $(\ln d,\ln\sigma_{d/n}^2)$ 그래프 그리기

Random Walk 가설에 의하면 d 값이 증가함에 따라서 $\sigma_{d/n}^2$ 값도 증가해야 한다 . 그래프의 형태를 보면 바람직하지 않은 형태인 것을 알 수 있다. 왜냐하면 d=15일 때 즉 3주 기준으로 주가의 변동성을 살펴보았을 때의 분산이 눈에띄게 큰 값을 갖는다. 따라서 Random Walk 가설을 만족한다고 보기에 무리가 있다.

3) 시계열자료 $\{u_t\}$ 의 자기상관계수도표

 $ho_k = Corr(u_t, u_{t-k})$; k=1,2... 를 각각 그려보고 ut의 독립성가정 검토

> fit <- lm(ut ~ t, kospi2016); durbinWatsonTest(fit)
lag Autocorrelation D-W Statistic p-value
 1 -0.05375531 2.074776 0.624
Alternative hypothesis: rho != 0</pre>

자기상관성을 검토해 보기 위하여 자기상관계수도표를 그려본 결과 ACF < 0.1 값을 갖기 때문에 독립인 것으로 보인다. 정확한 통계량 값을 알기 위해서 추가적으로 Durbin- Watson 검정을 통해 알아본 결과, ut 자료는 독립성을 만족한다고 할 수 있다.

4) 2016년 일별 주가자료에서 $u_t^*=\Delta ln(S_t)$ 일때 $u_t^*\sim N(\mu^*dt,\,\sigma^2dt)$ 가정을 이용하여 순간 무위험 이자율 \mathbf{r} 및 μ , $Volatility \sigma$ 추정

	r	μ_hat	σ_hat
Day	0.0488	0.0399	0.1210

각각 연 수익률 i = 0.05일 때 순간 무위험 이자율, 수익률의 평균, 주가 수익률의 변동성을 나타낸다. 여기서 mu와 r이 비슷한 것을 보아 No arbitrage, 즉 차액거래가 거의 없다는 것을 알 수 있다.

5) S, 가 Geometric Brownian Motion Process 를 따른다고 가정할 때, 앞에서 추정된 값으로 2017 자료 예측

2016 년 자료를 바탕으로 추정된 mu_hat 과 sigma_ha 를 이용하여 2017 년 자료를 예측한 결과를 그래프로 나타내었다. 2016 년 자료에 대해서는 적합선이 시계열자료의 추세를 잘 따른다고 볼 수 있다. 하지만 2017 년 자료에 대해서는 적합이 잘 되지 않지만, 95% 신뢰구간을 벗어나지 않는다.

또한 아래 그래프는 2017 년 t 시점까지의 자료를 이용하여 t+1 의 코스피 주가를 예측한 것을 나타낸 그림이다. 추가 데이터가 들어올 때마다 mu_hat 과 sigma_hat 을 새로 추정하여 다음날의 코스피 종가를 예측한 것이다. 2016 년의 자료만을 사용한 예측에 비해 훨씬 적합도가 높아졌다는 것을 알 수 있지만 실제 데이터와의 차이가 작지 않다. 따라서 의미있는 예측이 힘들다는 점이 주가의 특성 및 시장의 효율성 가설을 잘 반영한다고 할 수 있다.