WHAT IS CLAIMED IS:

1	1. A method for protecting a target circuit, the method comprising:			
2	detecting power from a source of power;			
3	coupling the power to the target circuit in a gradual manner;			
4	detecting noise components in the power; and			
5	varying the amount of power delivered to the target circuit in response to the			
6	noise component.			
1	2. The method of claim 1 wherein the step of coupling includes			
2	controlling the conductivity of a transistor device, the transistor device having series-			
3	connection between the source of power and the target circuit.			
1	3. The method of claim 1 wherein the step of coupling includes			
2	entrolling the conductivity of a transistor device, the transistor device having series-			
3	connection between the source of power and the target circuit.			
1	4. A method for protecting a target circuit, the method comprising:			
2	detecting power from a source of power;			
3	coupling the power to the target circuit in a gradual manner;			
4	detecting when a current supplied to the target circuit exceeds a threshold; and			
5	decoupling the power in response to detecting that the current supplied to the			
6	target circuit exceeds a threshold.			
1	5. A circuit comprising:			
2	a switch configured to couple a target circuit with a source of power;			
3	a first detector configured to detect power provided by the source of power,			
4	the first detector operatively coupled with the switch, wherein the switch closes responsive to			
5	the first detector; and			
6	a second detector configured to detect noise in the power, the second detector			
7	operatively coupled to the switch, wherein a conductivity of the switch varies responsive to			
8	the second detector.			
1	6. The circuit of claim 5 wherein the second detector couples between the			
2	source of power source and a gate of the switch.			

Ţ		7.	The circuit of claim 3 further including a positive terminal and a	
2	negative terminal, wherein the switch is a transistor device having a gate, a source, and a			
3	drain, wherein the second detector comprises:			
4	a bias voltage source;			
5	an operational amplifier having:			
5			an inverting input coupled with the positive terminal and coupled with	
7	the bias voltage source;			
8			a non-inverting input coupled with a negative terminal; and	
9			an output coupled to the gate of the switch.	
1		8.	The circuit of claim 7 wherein the output of the operational amplifier	
2	couples with the first detector.			
1		9.	The circuit of claim 7 wherein the bias voltage source coupled with the	
2	first detector.			
		10		
l		10.	The circuit of claim 9 wherein the bias voltage source is a voltage	
)	divider.			