Some common discrete distributions

$\mathbb{E}(z^X)$	$\frac{1}{n} \sum_{i=1}^{n} z^i$	$\{pz+(1-p)\}^n$	$e^{\lambda(z-1)}$	$\frac{(pz)^k}{\{1-(1-p)z\}^k}$	$\mathbb{E}(z_1^{X_1}\dots z_k^{X_k}) =$	$\left(\sum_{i=1}^k p_i z_i\right)^n$
$\mathrm{Var}(X)$	$\frac{1}{12}(n^2-1)$	np(1-p)	<	$\frac{k(1-p)}{p^2}$	$\operatorname{Cov}(X_i, X_j) =$	$\begin{cases} np_i(1-p_i) & i=j\\ -np_ip_j & i\neq j \end{cases}$
$\mathbb{E}(X)$	$\frac{1}{2}(n+1)$	du	~	$\frac{b}{b}$	(np_1,\ldots,np_k)	
Parameter range $\mathbb{E}(X)$	$n \in \mathbb{N}$	$n\in\mathbb{N},p\in[0,1]$	$\lambda \in [0, \infty)$	$k\in \mathbb{N}, p\in [0,1]$	$p_1,\ldots,p_k\in[0,1]:$	$n\}^k: \sum_i n_i = n \sum_i p_i = 1, \ n \in \mathbb{N}$
Range of X	$\{1,\dots,n\}$	$\{0,1,\ldots,n\}$	$\{0,1,\ldots\}$	$\{k,k+1,\ldots\}$	$(n_1,\ldots,n_k)\in$	$\{0,1,\ldots,n\}^k:\sum_i n_i=n$
$\operatorname{pmf} f(x)$	$\frac{1}{n}$	$\binom{n}{x}p^x(1-p)^{n-x}$	$e^{-\lambda \frac{\lambda^x}{x!}}$	$\binom{x-1}{k-1}p^k(1-p)^{x-k}$ $\{k, k+1, \ldots\}$	$rac{n!}{n_1!n_k!}p_1^{n_1}\cdots p_k^{n_k}$	
Notation	$X \sim U\{1, \dots, n\}$	$X \sim \operatorname{Bin}(n, p)$	$X \sim \text{Poisson}(\lambda)$	$X \sim \text{NegBin}(k, p)$	$X \sim \text{Multi}(n, p_1, \dots, p_k)$	
Distribution	Discrete uniform	Binomial	Poisson	Negative binomial $X \sim \text{NegBin}(k, p)$	Multinomial	

||

Notes:

- 1. The Bin(1, p) distribution is also called the Bernoulli(p) distribution. If $X_1, \ldots, X_n \stackrel{iid}{\sim} \text{Bernoulli}(p)$, then $\sum_{i=1}^n X_i \sim \text{Bin}(n, p)$. The Bin(n, p) distribution models the number of successes in n independent trials, each with probability p of success.
- 2. The NegBin(1,p) distribution is also called the Geometric(p) distribution. If $X_1, \ldots, X_k \stackrel{iid}{\sim} \text{Geometric}(p)$, then $\sum_{i=1}^k X_i \sim \text{NegBin}(k,p)$. The NegBin(k, p) distribution models the number of independent trials required to attain k successes, each with probability p of success.
- 3. The Multi (n, p_1, \ldots, p_k) distribution models the number of balls that appear in each of k buckets, when n balls are placed independently in the buckets and a ball falls in the *i*th bucket with probability p_i .

Some common (absolutely) continuous distributions

Distribution	Notation	$\operatorname{pdf} f(x)$	Range	Range Parameter range	$\mathbb{E}(X)$	$\operatorname{Var}(X)$	$\mathbb{E}(e^{tX})$
	$X \sim U[a,b]$	$\frac{1}{b-a}$	[a,b]	$(a,b) \in \mathbb{R}^2, a < b$	$\frac{1}{2}(a+b)$	$\frac{1}{12}(b-a)^2$	$\frac{e^{ov}-e^{uv}}{t(b-a)}$
	$X \sim N(\mu, \sigma^2)$	$\frac{1}{\sqrt{2\pi\sigma^2}}e^{-\frac{1}{2\sigma^2}(x-\mu)^2}$		$\mu \in \mathbb{R}, \sigma \in (0, \infty)$	μ	σ^2	$e^{t\mu+\sigma^2t^2/2}$
	$X \sim \operatorname{Gamma}(\alpha, \lambda)$	$\frac{\lambda^{\alpha}x^{\alpha-1}e^{-\lambda x}}{\Gamma(\alpha)}$	$(0,\infty)$	∞) $\alpha \in (0, \infty), \lambda \in (0, \infty)$ $\frac{\alpha}{\lambda}$	≫ წ	$\frac{\alpha}{\lambda^2}$	$\begin{cases} (\frac{\lambda}{\lambda - t})^{\alpha} & \text{if } t < \lambda \\ \infty & \text{if } t \ge \lambda \end{cases}$
	$X \sim \mathrm{Beta}(a,b)$	$\frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)}x^{a-1}(1-x)^{b-1} (0,$	(0,1)	$a \in (0, \infty), b \in (0, \infty)$	$\frac{a}{a+b}$	$\frac{ab}{(a+b)^2(a+b+1)}$	
	$X \sim \text{Cauchy}$	$\frac{1}{\pi(1+x^2)}$			Does not exist	8	$\begin{cases} 1 & \text{if } t = 0 \\ \infty & \text{if } t \neq 0 \end{cases}$
normal	Multivariate normal $X \sim N_d(\mu, \Sigma)$	$\frac{e^{-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu)}}{(2\pi)^{d/2}(\det \Sigma)^{1/2}}$	\mathbb{R}^d	$\mu \in \mathbb{R}^d$, Σ pos. def.	π	$\operatorname{Cov}(X_i, X_j) = \Sigma_{ij}$	$\operatorname{Cov}(X_i, X_j) = \sum_{ij} \mathbb{E}(e^{t^T X}) = e^{t^T \mu + t^T \Sigma t}$

Notes:

1. The Gamma(1, λ) distribution is the same as the Exponential(λ) distribution. If $X_1, \ldots, X_n \stackrel{iid}{\sim} \text{Exponential}(\lambda)$, then $\sum_{i=1}^n X_i \sim \text{Gamma}(n, \lambda)$.

 $\Sigma t/2$

- 2. For $n \in \mathbb{N}$, the Gamma $(\frac{n}{2}, \frac{1}{2})$ distribution is the same as the χ_n^2 distribution. If $X_1, \ldots, X_n \stackrel{iid}{\sim} N(0, 1)$, then $\sum_{i=1}^n X_i^2 \sim \chi_n^2$. If $Y \sim \text{Gamma}(n, \lambda)$ then $2\lambda Y \sim \chi_{2n}^2$.
- 3. Recall that the Gamma function is defined, for $z \in \mathbb{C}$ with Re(z) > 0, by $\Gamma(z) = \int_0^\infty t^{z-1}e^{-t} dt$. If $n \in \mathbb{N}$, then $\Gamma(n) = (n-1)!$. The function $B(a,b) = \frac{\Gamma(a)\Gamma(b)}{\Gamma(a+b)}$ is called the beta function.
- 4. More generally, we can define the degenerate normal distribution: say $X \sim N(\mu, 0)$ if $\mathbb{P}(X = \mu) = 1$. Then we say $X = (X_1, \dots, X_d) \sim N_d(\mu, \Sigma)$ if every linear combination $t_1X_1 + \dots + t_dX_d$ has a (possibly degenerate) univariate normal distribution. This more general definition includes situations like the following: suppose $X_1 \sim N(0, 1)$, and let $X = (X_1, X_1)$. Then $X \sim N_2(0, \Sigma)$, where $\Sigma = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$. Note here that $\det \Sigma = 0$.