Выпуклые функции. Семинар

Выгузов Александр

10 октября 2025

Выпуклые функции

Definition (Выпуклая функция)

Функция f называется выпуклой на множестве D, если для любых $x,y\in D$ и любого $\lambda\in [0,1]$ выполняется неравенство

$$f(\lambda x + (1 - \lambda)y) \le \lambda f(x) + (1 - \lambda)f(y).$$

Рис.: Демонстрация неравенства выпуклости.

Критерии выпуклых функций.

Критерий 1. (Дифференцируемая функция) Пусть f — дифференцируемая функция. Она называется выпуклой на множестве D, если для любых $x,y\in D$ выполняется неравенство

$$f(y) \ge f(x) + \langle \nabla f(x), y - x \rangle,$$

Критерий 2. (Дважды дифференцируемая функция) Если функция f дважды непрерывно дифференцируема на D, то она выпукла на D тогда и только тогда, когда её матрица Гессе является положительно полуопределённой во всех точках $x \in D$

$$\nabla^2 f(x) \succeq 0$$

. то есть

$$\langle
abla^2 f(x) v, v \rangle \geq 0$$
 для всех $v \in \mathbb{R}^n$.

Выпуклые функции. Простые примеры выпуклых функций.

Примеры выпуклых и вогнутых функций

- ightharpoonup f(x) = ax + b выпукла,
- $ightharpoonup f(x)=e^{ax}$ выпукла для $a,x\in\mathbb{R}$,
- $ullet f(x) = x^a$ для $x \in \mathbb{R}_{++}$ выпукла, когда $a \geq 1$ или $a \leq 0$, и вогнута на $0 \leq a \leq 1$,
- $lacktriangledown f(x) = (1/2)x^{ op} Px + q^{ op} x + r$ выпукла только если $P \succeq 0$
- $ightharpoonup f(x) = \log x$ вогнутая функций на \mathbb{R}_{++}
- ▶ Любые нормы f(x) = ||x|| выпуклы
- $ightharpoonup f(x) = \max\{x_1,...,x_n\}$ выпуклая в \mathbb{R}^n

Выпуклые функции. Простые примеры выпуклых функций.

Некоторые обоснования

$$(e^{ax})'' = (ae^{ax})' = a^2e^{ax} \ge 0$$

$$(x^a)'' = (ax^{a-1})' = (a(a-1)x^{a-2}) \ge 0$$
, т.к. $a \ge 1$

$$\|\alpha x_1 + (1-\alpha)x_2\| \le \|\alpha x_1\| + \|(1-\alpha)x_2\| = \alpha \|x_1\| + (1-\alpha)\|x_2\|$$

Откуда следует неравенство?

Выпуклые функции. Функция тах.

Функция max. Докажем выпуклость функции $f(x) = \max_i x_i$ при $0 \le \theta \le 1$,

$$f(\theta x + (1 - \theta)y) = \max_{i} (\theta x_{i} + (1 - \theta)y_{i})$$

$$\leq \theta \max_{i} x_{i} + (1 - \theta) \max_{i} y_{i}$$

$$= \theta f(x) + (1 - \theta)f(y).$$

Выпуклые функции. LogSumExp.

Задача

Докажем выпуклость функции LSE : $\mathbb{R}^n \to \mathbb{R}$,

$$f(x) = \mathsf{LSE}(x) = \log\left(\sum_{i=1}^n e^{x_i}\right), \qquad x = (x_1, \dots, x_n)^\top \in \mathbb{R}^n.$$

Выпуклые функции. LogSumExp.

Доказательство.

Log-sum-exp. Гессиан функции log-sum-exp имеет вид (см. Boyd, Stephen P., and Lieven Vandenberghe. Convex optimization. Cambridge university press, 2004. Appendix A.4)

$$\nabla^2 f(x) = \frac{1}{(1^T z)^2} \left((1^T z) \operatorname{diag}(z) - z z^T \right),$$

где
$$z = (e^{x_1}, \dots, e^{x_n}).$$

Выпуклые функции. LogSumExp.

Доказательство.

Чтобы проверить, что $\nabla^2 f(x) \succeq 0$, необходимо показать, что для любого v

$$v^T \nabla^2 f(x) v \geq 0$$
,

то есть

$$v^T \nabla^2 f(x) v = \frac{1}{(1^T z)^2} \left(\left(\sum_{i=1}^n z_i \right) \left(\sum_{i=1}^n v_i^2 z_i \right) - \left(\sum_{i=1}^n v_i z_i \right)^2 \right) \geq 0.$$

Это следует из неравенства Коши — Буняковского

$$(a^Ta)(b^Tb) \geq (a^Tb)^2$$

применённого к векторам с компонентами $a_i = v_i \sqrt{z_i}$, $b_i = \sqrt{z_i}$.

Надграфик выпуклых функций.

Определение. Пусть $f:X\to\mathbb{R}$ — функция, определённая на множестве $X\subseteq\mathbb{R}^n$. Надграфиком функции f называется множество

$$\operatorname{\mathsf{epi}} f = \{(x,t) \in X \times \mathbb{R} \mid t \geq f(x)\}.$$

Иными словами, надграфик состоит из всех точек, расположенных на графике функции и выше него.

Надграфик выпуклых функций.

Рис.: Надграфик функции f. Ист. Boyd, Stephen P., and Lieven Vandenberghe. Convex optimization. Cambridge university press, 2004.

Надграфик выпуклых функций.

Функция выпукла тогда и только тогда, когда их надграфик - выпуклое множество.

Доказательство.

и есть выпуклость.

1) Допустим f выпукла, тогда $\alpha t_1 + (1-\alpha)t_2 \geq \alpha f(x_1) + (1-\alpha)f(x_2) \stackrel{\mathsf{вып.}}{\geq} f(\alpha x_1 + (1-\alpha)x_2),$ 2) Допустим ері f выпукло, тогда по определению надграфика имеем при $t_1 = f(x_1), \ t_2 = f(x_2)$ и $(\lambda x_1 + (1-\lambda)x_2, \lambda f(x_1) + (1-\lambda)f(x_2))$ имеем следующее неравенство $\lambda f(\alpha x_1 + (1-\alpha)x_2) \leq \lambda f(x_1) + (1-\lambda)f(x_2),$ а это

- **В** Взвешенная сумма: $\omega_0 x_0 + ... + \omega_n x_n$
- ightharpoonup Композиция выпуклой функции f и афинной: g(x) = f(Ax + b)
- ightharpoonup Поточечный максимум выпуклых функций $f(x) = \max\{f_1(x),...,f_n(x)\}$

Пример. Сумма r наибольших компонент.

Задача (Сумма r наибольших компонент.)

Для $x \in \mathbb{R}^n$ обозначим через $x_{[i]}$ i-ую наибольшую компоненту вектора x, то есть

$$x_{[1]} \geq x_{[2]} \geq \cdots \geq x_{[n]}$$

— это компоненты x, упорядоченные по невозрастанию. Тогда функция

$$f(x) = \sum_{i=1}^{r} x_{[i]},$$

то есть сумма r наибольших элементов вектора x, является выпуклой функцией.

Пример. Сумма r наибольших компонент.

Доказательство.

Это можно увидеть, записав её в виде

$$f(x) = \sum_{i=1}^{r} x_{[i]} = \max\{x_{i_1} + \dots + x_{i_r} \mid 1 \le i_1 < i_2 < \dots < i_r \le n\},$$

то есть как максимум всех возможных сумм r различных компонент вектора x. Так как это есть поточечный максимум

$$\frac{n!}{r!(n-r)!}$$

линейных функций, то f(x) является выпуклой.

Если функция f(x,y) выпукла по x для всех $y\in Q$, то функция

$$g(x) = \sup_{y} f(x, y)$$

так же выпукла.

Примеры:

- lacktriangle Самая дальняя точка множества $Q\subseteq \mathbb{R}^n$ от заданной точки x: $f(x)=\sup_{v\in Q}\|x-y\|$
- lacktriangle Опорная функция к множеству $Q\colon S_c(x)=\sup\{x^ op y|y\in Q\}$

Задача (Максимальное собственное значение симметричной матрицы.)

Функция $f(X) = \lambda_{\max}(X)$ с областью определения dom $f = S^m$ является выпуклой.

Доказательство.

Представим собственное число в виде $Xy = \lambda y = > y^\top Xy = \lambda y^\top y = \lambda \|y\|_2^2 = > (\frac{y}{\|y\|_2})^\top X(\frac{y}{\|y\|_2}) = \lambda$ Обозначим $v = \frac{y}{\|y\|}$, тогда из требования на максимум исходная задача запишется в виде

$$f(X) = \sup\{v^T X v \mid ||v||_2 = 1\},\$$

то есть как поточечная супремумная оболочка семейства линейных функций от X (а именно, $y^T X y$).

Дана композиция функций $h: \mathbb{R} \to \mathbb{R}$, $g: \mathbb{R}^n \to \mathbb{R}$:

$$f(x) = h(g(x)),$$

 $\operatorname{\mathsf{dom}} f = \{x \in \operatorname{\mathsf{dom}} g \mid g(x) \in \operatorname{\mathsf{dom}} h\}$, тогда

- ▶ f выпукла, если h выпукла и не убывает, g выпукла,
- ▶ f выпукла, если h выпукла и не возрастает, g вогнута,
- ▶ f вогнута, если h вогнута и не убывает, g вогнута,
- ▶ f вогнута, если h вогнута и не возрастает, g выпукла.

Некоторые примеры выпуклых функций h(x), у которых композиция h(g(x)) не выпукла:

$$f(x) = \exp(-x^2)$$
, где $g(x) = \exp x$ и $h(x) = -x^2$

$$f(x) = -(x^2)$$
, где $g(x) = x^2$ и $h(x) = -x$

$$f(x) = (-x + x^2)^2$$
, где $g(x) = -x + x^2$ и $h(x) = x^2$

Доказательство.

Пусть $f=h\circ g$, где g и h выпуклы, h неубывает. Возьмём $x,y\in {\sf dom} f,\ \theta\in[0,1].$ Тогда $x,y\in {\sf dom} g,\ g(x),g(y)\in {\sf dom} h.$ Из выпуклости g имеем

$$g(\theta x + (1 - \theta)y) \le \theta g(x) + (1 - \theta)g(y).$$

 $\mathsf{T}\mathsf{a}\mathsf{k}$ к $\mathsf{a}\mathsf{k}$ h неубывает, то

$$h(g(\theta x + (1-\theta)y)) \le h(\theta g(x) + (1-\theta)g(y)).$$

Из выпуклости h получаем

$$h(\theta g(x) + (1 - \theta)g(y)) \le \theta h(g(x)) + (1 - \theta)h(g(y)).$$

Объединяя предыдущие два неравенства получаем

$$f(\theta x + (1 - \theta)y) \le \theta f(x) + (1 - \theta)f(y).$$

- ightharpoonup Если g выпукла, то $\exp g(x)$ выпукла.
- ightharpoonup Если g вогнута и положительна, то $\log g(x)$ вогнута.
- ightharpoonup Если g вогнута и положительна, то 1/g(x) выпукла.
- ightharpoonup Если g выпукла и неотрицательна и $p \geq 1$, то $g(x)^p$ выпукла.
- ightharpoonup Если g выпукла, то $-\log(-g(x))$ выпукла на множестве $\{x\mid g(x)<0\}.$

Выпуклость композиции векторных функций. Примеры.

Рассмотрим теперь случай функции $h: \mathbb{R}^k o \mathbb{R}, g_i: \mathbb{R}^n o \mathbb{R}$:

$$f(x) = h(g(x)) = h(g_1(x), ..., g_n(x))$$

- ightharpoonup f выпукла, если h выпукла, не убывает по каждому аргументу и g_i выпуклы.
- ightharpoonup f выпукла, если h выпукла, не возрастает по каждому аргументу и g_i вогнуты.
- f вогнута, если h вогнута, не убывает по каждому аргументу и g_i вогнуты.

Выпуклость композиции векторных функций. Примеры.

- Функция $h(z) = \log\left(\sum_{i=1}^n e^{z_i}\right)$ является выпуклой и неубывающей по каждому аргументу, поэтому $\log\left(\sum_{i=1}^n e^{g_i}\right)$ выпукла не зависимо от того g_i выпукла или нет.
- ▶ Геометрическое среднее $h(z) = \left(\prod_{i=1}^n z_i\right)^{1/n}$ на \mathbb{R}_{++}^n является вогнутой и неубывающей по каждому аргументу функцией. Отсюда следует, что если функции g_k неотрицательны и вогнуты, то их геометрическое среднее $\left(\prod_{k=1}^m g_k\right)^{1/m}$ также является вогнутой функцией.

Выпуклость композиции векторных функций. Пример.

Задача

Предположим, что $p \ge 1$, а g_1, \ldots, g_k являются выпуклыми и неотрицательными функциями. Тогда функция

$$f(x) = \left(\sum_{i=1}^k g_i(x)^p\right)^{1/p}$$

является выпуклой.

Доказательство.

Чтобы это показать, рассмотрим функцию $h: \mathbb{R}^k o \mathbb{R}$, определённую как

$$h(z) = \left(\sum_{i=1}^k \max\{z_i,0\}^p\right)^{1/p},\,$$

с областью определения $\mathrm{dom}\,h=\mathbb{R}^k$. Эта функция выпуклая и неубывающая, поэтому заключаем, что h(g(x)) является выпуклой функцией от x. Для $z\geq 0$ имеем

$$h(z) = \left(\sum_{i=1}^k z_i^p\right)^{1/p}.$$

L-липшицев градиент

Определение 1. Пусть f — дифференцируемая функция. Говорят, что её градиент *липшицев* (или что f имеет L-липшицев градиент), если существует константа $L \geq 0$ такая, что для любых $x,y \in D$ выполняется

$$\|\nabla f(x) - \nabla f(y)\| \le L\|x - y\|,$$

где $\|\cdot\|$ — евклидова норма в \mathbb{R}^n .

L-липшицев градиент.

Определение 2. Если функция f дважды непрерывно дифференцируема, то условие липшицевости градиента с константой L эквивалентно требованию

$$\|H_f(x)\|_2 \le L$$
 для всех $x \in D$,

где $H_f(x)$ — матрица Гессе функции f в точке x, а $\|\cdot\|_2$ — спектральная норма (наибольшее по модулю собственное значение).

Сильная выпуклость.

Определение 1. Пусть f — дифференцируемая функция. Она называется μ -сильно выпуклой на D (где $\mu>0$), если для любых $x,y\in D$ выполняется

$$f(y) \ge f(x) + \langle \nabla f(x), y - x \rangle + \frac{\mu}{2} ||y - x||^2,$$

где $\langle \cdot, \cdot \rangle$ — скалярное произведение, а $\| \cdot \|$ — евклидова норма.

Сильная выпуклость.

Определение 2. Если функция f дважды непрерывно дифференцируема, то она является μ -сильно выпуклой на D тогда и только тогда, когда

$$H_f(x) \succeq \mu I$$
 для всех $x \in D$,

то есть

$$\langle H_f(x)v, v \rangle \geq \mu \|v\|^2$$
 для всех $v \in \mathbb{R}^n$,

где $H_f(x)$ — матрица Гессе, I — единичная матрица, а символ \succeq обозначает положительную определённость в матричном смысле.

Условие градиентного доминирования/PL-условие.

Определение. Функция f удовлетворяет условию Поляка—Лоясевича (Polyak—Łojasiewicz, PL-условию) с константой $\mu>0$, если для всех $x\in D$ выполняется неравенство

$$\frac{1}{2} \|\nabla f(x)\|^2 \ge \mu (f(x) - f^*),$$

где $f^* = \inf_{y \in D} f(y)$ — минимальное значение функции, а $\|\cdot\|$ — евклидова норма.

Ссылки І

Boyd, Stephen P., and Lieven Vandenberghe. Convex optimization. Cambridge university press, 2004. (Appendix A.4)