江苏省太湖高级中学 $2020\sim 2021$ 第一学期阶段性考试

高一数学

2020 10 14

()

				20,	20.10.	.14
— .	单项选择题:共8小项是符合题目要求的	、题,每小题 5 分,共 句.	40 分在每小题给出的	的四个选项中,	只有	_
1.	下列关系:					
	$\textcircled{1}\frac{1}{2} \in \mathbf{Q};$	$2\sqrt{2} \notin \mathbf{R};$	$30 \in \mathbf{N}^*;$	${\bf \textcircled{4}}\pi \in {\bf Z}$		
	中正确的个数是 A.1	B. 2	C. 3	D. 4	()
2.	•	$B = \{x = 0\}, B = \{x \in B. \{1\}\}$	•		()
3.	已知集合 $A = \{x \mid x \}$ A. $\{x \mid -1 < x < 2\}$ C. $\{x \mid x < -1$ 或 $x > 1$	$x^2 - x - 2 > 0$, 则 C 2}	$\mathbf{R}A =$ B. $\{x \mid -1 \leqslant x \leqslant 2\}$ D. $\{x \mid x \leqslant -1$ 或 $x \geqslant 2$: 2}	()
4.	已知命题 $p: \exists n \in \mathbf{N}$ A. $\forall n \in \mathbf{N}, n^2 > 2n$ C. $\exists n \in \mathbf{N}, n^2 \leqslant 2n$, n ² > 2n + 5, 则命是 + 5 + 5	题 p 的否定为 B. $\forall n \in \mathbf{N}, \ n^2 \leqslant 2n$ D. $\exists n \in \mathbf{N}, \ n^2 > 2n$	+5 +5	()
5.		と过点 $A(1, 6)$ 和 $B(2$ B. $\left(\frac{1}{4}, 4\right)$			()
6.	已知函数 $f(2x+1) =$ A. 5	=3x-5,若 $f(a)=1$ B. 10	0, 则实数 a 的值为 C. 11	D. 2	()
7.	下列各组函数中,表 A. $y = \sqrt{x^2}$, $s = (\sqrt{x^2})$	$(t)^2$	B. $y = x $, $s = (\sqrt{\tau})$	$\overline{2}$)	()
	C. $y = \frac{x^2 - 1}{x - 1}$, $m =$		D. $y = \sqrt{x+1} \cdot \sqrt{x}$	$\overline{-1}, \ y = \sqrt{x^2 - 1}$	ī	
8.	已知 $x > 2$,则 $\frac{x^2}{x-1}$	2 的最小值是			()
	A. 2	B. 6	C. 4	D. 8		
Ξ.		5 5 5 5 5 6 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8				有
9.	下列选项中,命题 q A. p : $1 < x < 2$, q : C. p : $\frac{1}{x} > 1$, q : $x < 1$		条件的是 B. <i>p</i> : xy > 1, q: x D. <i>p</i> : 两直线平行,		•)

10. 某工厂八年来产品累积产量C(即前t年年产量之和)与时间t(年)的函数如图,

下列四种说法中正确的是

- A. 前三年中, 产量增长的速度越来越快
- B. 前三年中,产量增长的速度越来越慢
- C. 第三年后,这种产品停止生产
- D. 第三年后, 年产量保持不变

- 11. 下列说法中正确的是

 - A. 若 a > b > 0, 则 $ac^2 > bc^2$ B. 若 a < b < 0, 则 $a^2 > ab > b^2$ C. 若 a > b > 0 且 c < 0, 则 $\frac{c}{a} > \frac{c}{b}$ D. 若 a > b 且 $\frac{1}{a} > \frac{1}{b}$, 则 ab > 0
- 12. 已知 x, y 为正数,且 xy = 1, a = x + y, $b = \frac{1}{x} + \frac{4}{y}$, 下列选项中正确的有 ()
 - A. a 的最小值为2

B. b 的最小值为 4

C. a+b 的最小值为 5

- D. ab 的最小值为 9
- 三. 填空题: 本大题共4小题, 每小题5分, 共20分.
- 13. 函数 $f(x) = \frac{1}{\sqrt{3-2x}}$ 的定义域为 ______.
- 14. 设函数 $f(x) = \begin{cases} x^2, & x \leq 1 \\ x + 6 6, & x > 1 \end{cases}$, 则 f(f(-2)) =______.
- 15. 已知集合 $A = \{x \mid -1 \le x \le 3\}$, $B = \{y \mid y = x^2, x \in A\}$, $C = \{y \mid y = 2x + a, x \in A\}$, 若满足 $C \subseteq B$,则实数 a 的取值范围为 ______
- 16. 在**R**上定义运算: $\begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad bc$,则:
 - $(1) \begin{vmatrix} 2 & 1 \\ 3 & 5 \end{vmatrix} = \underline{\qquad} ;$
 - (2) 若不等式 $\begin{vmatrix} x-1 & a-2 \\ a+1 & x \end{vmatrix} \ge 1$ 对任意实数 x 恒成立,则实数 a 的取值范围

(注: 第一个空<math>2分,第二个空3分。)

- 四. 解答题: 共6小题, 共70分, 解答应写出文字说明、证明过程或演算步骤.
- 17. (10 分) 若不等式 $ax^2 + 5x 2 > 0$ 的解集是 $\left\{ x \middle| \frac{1}{2} < x < 2 \right\}$.
 - (1) 求实数 a 的值;
 - (2) 求不等式 $\frac{1-ax}{x+1} > a+5$ 的解集.

18. (12 分) 设全集 $U = \mathbf{R}$, 集合 $A = \{x \mid 1 \leqslant x < 4\}$, $B = \{x \mid 2a \leqslant x < 3 - a\}$.

- (1) 若 a = -2 时,求 $B \cap A$, $B \cap (\mathcal{C}_U A)$;
- (2) 若 $A \cup B = A$, 求实数 a 的取值范围.

- 19. (12 分) 已知函数 $f(x) = 2 + \frac{x-2|x|}{3}(-2 < x \le 3)$.
 - (1) 用分段函数的形式表示函数 y = f(x);
 - (2) 画出函数 y = f(x) 的图象;
 - (3) 写出函数 y = f(x) 的值域.

- 20. (12分)已知x, y均为正数,且xy-(x+4y)-5=0.
 - (1) 求 xy 的最小值;
 - (2) 求 x+y 的最小值.

- 21. (12 分) 某厂以 x 千克 / 时的速度匀速生产某种产品 (生产条件要求 $1 \leqslant x \leqslant 10$), 每 小时可获得的利润是 $50\left(5x-\frac{3}{x}+1\right)$ 元.
 - (1) 要使生产该产品 2 小时获得的利润不低 1500 元, 求 x 的取值范围;
 - (2) 要使生产 480 千克该产品获得的利润最大,问:该厂应该选取何种生产速度?并求此最大利润.

- 22. (12 分) 已知 a 为常数, 二次函数 $f(x) = x^2 ax + a + 3$.
 - (1) 若该二次函数的图象与 x 轴有交点, 求实数 a 的取值范围;
 - (2) 已知 $f(x) \ge 4$, 求 x 的取值范围;
 - (3) 若对任意的实数 $x \in [2, 4]$, $f(x) \ge 0$ 恒成立, 求实数 a 的取值范围.

江苏省太湖高级中学高一年级阶段测试

数学试卷

2020年10月

一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项 符合题目要求.)

1. 下列关系中正确的个数是 (A)

 $(1) \frac{1}{2} \in \mathbf{Q}$ $(2) \sqrt{2} \notin \mathbf{R}$

A. 1

B. 2

C. 3

D. 4

2. 已知集合 $A = \{x | x^2 - 2x = 0\}$, $B = \{x | x^2 + x = 0\}$, 则 $A \cup B =$ (C)

A. $\{-1,2\}$

B. {1}

C. $\{-1,0,2\}$ D. $\{0\}$

3. 已知集合 $A = \{x | x^2 - x - 2 > 0\}$,则 $\{x \in A = 1\}$

A. $\{x \mid -1 < x < 2\}$

B. $\{x | -1 \le x \le 2\}$

C. $\{x | x < -1 \text{ di } x > 2\}$

D. $\{x | x \le -1 \implies x \ge 2\}$

4. 已知命题 $p:\exists n \in N, n^2 > 2n + 5, 则 p$ 的否定为

(B)

(B)

A. $\forall n \in \mathbb{N}, n^2 > 2n + 5$

B. $\forall n \in \mathbb{N}, n^2 \leq 2n + 5$

C. $\exists n \in \mathbb{N}, n^2 \le 2n + 5$

D. $\exists n \in \mathbb{N}, n^2 \leq 2n + 5$

5. 若一次函数的图象经过点 A(1,6) 和 B(2,8),则该函数的图象还经过的点的坐标为 (A)

A. $\left(\frac{1}{2}, 5\right)$ B. $\left(\frac{1}{4}, 4\right)$

C. (-1,3)

D. (-2,1)

6. 已知函数f(2x+1) = 3x-5,若f(a) = 10,则实数a的值为

(C)

A. 5

B. 10

C. 11

D. 2

7. 下列各组函数中,表示同一函数的是

(B)

(D)

A. $y = \sqrt{x^2}$, $s = (\sqrt{t})^2$

B. $y = |x|, u = \sqrt{v^2}$

C. $y = \frac{x^2 - 1}{x - 1}$, m = n + 1

D. $y = \sqrt{x+1} \cdot \sqrt{x-1}$, $y = \sqrt{x^2-1}$

8. 已知 x > 2,则 $\frac{x^2}{x-2}$ 的最小值是

A. 2

B. 6

C. 4

D. 8

二、多项选择题(本题共4小题,每小题5分,共20分,在每小题给出的选项中,有多项符合题目 要求.全部选对得5分,有选错的得0分,部分选对的得3分.)

9. 下列选项中p是q的充分不必要条件的是

(AC)

A. p:1 < x < 2, $q:1 \le x \le 2$

B. p: xy > 1, q: x > 1, y > 1

C. $p: \frac{1}{x} > 1$, q: x < 1

D. p:两直线平行,q:内错角相等

10. 某工厂八年来产品累积产量 C(即前 t 年年产量之和) 与时间 t(年) 的函数如图,下列四种说 法中正确的是 (BC)

- B. 前三年中,产量增长的速度越来越慢
- C. 第三年后,这种产品停止生产
- D. 第三年后,年产量保持不变

11. 下列说法中正确的是

A. 若
$$a > b > 0$$
,则 $ac^2 > bc^2$

B. 若
$$a < b < 0$$
,则 $a^2 > ab > b^2$

C. 若
$$a > b > 0$$
 且 $c < 0$,则 $\frac{c}{a} > \frac{c}{b}$ D. 若 $a > b$ 且 $\frac{1}{a} > \frac{1}{b}$,则 $ab > 0$

D. 若
$$a > b$$
且 $\frac{1}{a} > \frac{1}{b}$,则 $ab > 0$

- 12. 已知 x, y 为正数,且 $xy = 1, a = x + y, b = \frac{1}{x} + \frac{4}{y}$,下列选项中正确的有 (ABD)
 - A.a 的最小值为 2

B. b 的最小值为4

C. a+b的最小值为5

D. ab 的最小值为9

- 三、填空题(本大题共4小题,每小题5分,共20分. 请把答案直接填写在答题卡相应位置上)
- 13. 函数 $f(x) = \frac{1}{\sqrt{3-2x}}$ 的定义域为_____.

答案
$$\left(-\infty, -\frac{3}{2}\right)$$

14. 设函数
$$f(x) = \begin{cases} x^2, x \leq 1, \\ x + \frac{6}{x} - 6, x > 1, \end{cases}$$
则 $f(f(-2)) = \underline{\qquad}$.

答案
$$-\frac{1}{2}$$

15. 已知集合 $A = \{x \mid -1 \le x \le 3\}$, $B = \{y \mid y = x^2, x \in A\}$, $C = \{y \mid y = 2x + a, x \in A\}$, 若 $C \subseteq B$, 则实数a的取值范围为 .

答案 [2,3]

16. 在**R**上定义运算: $\begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc$,则 $\begin{vmatrix} 2 & 2 \\ 3 & 4 \end{vmatrix} = \underline{\qquad}$,若不等式 $\begin{vmatrix} x-1 & a-2 \\ a+1 & x \end{vmatrix} \ge 1$ 对任意实 数x恒成立,则实数a的取值范围为 _____.

答案 2
$$\left[-\frac{1}{2}, \frac{3}{2}\right]$$

四、解答题(本大题共6小题,共70分请在答题卡指定区域内作答.解答时应写出文字说明、证明过程或演算步骤)

17. 若不等式
$$ax^2 + 5x - 2 > 0$$
 的解集是 $\left\{ x \middle| \frac{1}{2} < x < 2 \right\}$,

(1) 求 a 的值;

(2) 求不等式
$$\frac{1-ax}{x+1} > a+5$$
 的解集.

解析 (1): 若不等式
$$ax^2 + 5x - 2 > 0$$
 的解集是 $\left\{ x \middle| \frac{1}{2} < x < 2 \right\}$

$$\therefore \frac{1}{2}, 2$$
 是方程 $ax^2 + 5x - 2 = 0$ 的两根且 $a < 0$

∴
$$\begin{cases} \frac{1}{2} + 2 = -\frac{5}{a} \\ \frac{1}{2} \times 2 = -\frac{2}{a} \end{cases}$$
 解得 $a = -2$ (满足 $a < 0$) ∴ a 的值为 -2 .

(2) 不等式
$$\frac{1-ax}{x+1} > a+5$$
 即不等式 $\frac{1+2x}{x+1} > 3$, 即 $\frac{1+2x}{x+1} - 3 > 0$,

通分得
$$\frac{x+2}{x+1}$$
>0,等价于 $(x+2)(x+1)$ >0,解得 -2 < x < -1 ,

所以原不等式的解集为 $\{x \mid -2 < x < -1\}$.

18. 设全集
$$U = \mathbb{R}$$
,集合 $A = \{x | 1 \le x < 4\}$, $B = \{x | 2a \le x < 3 - a\}$.

- (1) 若 a = -2,求 $B \cap A$, $B \cap ([UA)$;
- (2) 若 $A \cup B = A$,求实数 a 的取值范围.

解析
$$(1)a = -2$$
 时 $B = \{x \mid -4 \le x < 5\}$,又 $A = \{x \mid 1 \le x < 4\}$,∴ $\{x \mid A = \{x \mid x < 1 \le x \le 4\}$
 $B \cap A = \{x \mid 1 \le x < 4\}$, $\{x \mid A = \{x \mid x < 1 \le x < 1 \le x < 5\}$.

(2) 若 $A \cup B = A$.则 $B \subseteq A$

若
$$B = \emptyset$$
 ,则 $3 - a \le 2a$,解得 $a \ge 1$

若
$$B \neq \emptyset$$
,则
$$\begin{cases} a < 1 \\ 2a \geqslant 1 \end{cases}$$
,解得 $\frac{1}{2} \leqslant a < 1$,
$$3 - a \leqslant 4$$

综上,实数a的取值范围为 $\left[\frac{1}{2},+\infty\right)$.

- (1) 用分段函数的形式表示函数 f(x);
- (2) 画出函数f(x) 的图象;
- (3) 写出函数f(x) 的值域.

解析
$$(1)f(x) = \begin{cases} x+2, & -2 < x \le 0 \\ -\frac{1}{3}x+2, & 0 < x \le 3 \end{cases}$$

- (2) 函数 f(x) 的图象如右图所示.
- (3) 由图得函数 f(x) 的值域为 (0,2]

- 20. 已知 x, y 均为正数,且 xy (x + 4y) 5 = 0.
 - (1) 求 xy 的最小值;
 - (2) 求 x + y 的最小值.

解析
$$(1)$$
 : x,y 均为正数,且 $xy-(x+4y)-5=0$: $xy-5=x+4y\geqslant 2\sqrt{x\cdot 4y}=4\sqrt{xy}$

当且仅当
$$\begin{cases} x=4y \\ xy-(x+4y)-5=0 \end{cases}$$
 即
$$\begin{cases} x=10 \\ y=\frac{5}{2} \end{cases}$$
 取 "="

$$\therefore xy - 4\sqrt{xy} - 5 \geqslant 0 \therefore (\sqrt{xy} - 5)(\sqrt{xy} + 1) \geqslant 0 \therefore \sqrt{xy} \geqslant 5, \ \text{Pr} \ xy \geqslant 25.$$

:. xy 的最小值为 25.

$$(2)$$
 (方法一) $\because xy - (x+4y) - 5 = 0$ $\therefore (x-4)y = x+5$

$$\therefore x, y$$
 均为正数 $\therefore x > 4 \therefore y = \frac{x+5}{x-4}$

$$\therefore x + y = x + \frac{x+5}{x-4} = x + \frac{x-4+9}{x-4} = (x-4) + \frac{9}{x-4} + 5 \ge 2\sqrt{(x-4) \cdot \frac{9}{x-4}} + 5 = 11$$

当且仅当
$$x-4=\frac{9}{x-4}$$
即 $x=7$ 取"=",此时 $y=4$

 $\therefore x + y$ 的最小值为 11.

(方法二):
$$xy - (x+4y) - 5 = 0$$
: $(x-4)(y-1) = 9$

又
$$(x-4)y = x+5$$
且 x,y 均为正数: $x>4,y>1$

$$\therefore x + y = (x - 4) + (y - 1) + 5 \ge 2\sqrt{(x - 4)(y - 1)} + 5 = 2\sqrt{9} + 5 = 11$$

当且仅当
$$\begin{cases} (x-4) = (y-1) \\ (x-4)(y-1) = 9 \end{cases}$$
 即 $\begin{cases} x=7 \\ y=4 \end{cases}$ 取 "=",

 $\therefore x + y$ 的最小值为 11.

- 21. 某厂以x千克/时的速度匀速生产某种产品 (生产条件要求 $1 \le x \le 10$),每小时可获得的利润是 $50(5x \frac{3}{x} + 1)$ 元.
 - (1)要使生产该产品2小时获得的利润不低于1500元,求x的取值范围;
 - (2)要使生产480千克该产品获得的利润最大,问:该厂应该选取何种生产速度?并求此最大利润.

解析 (1)要使生产该产品 2小时获得的利润不低于 1500 元, 求 x 的取值范围:

- (2)要使生产480千克该产品获得的利润最大,问:该厂应该选取何种生产速度?并求此最大利润.
- (1) 要使生产该产品 2 小时获得的利润不低于 1500 元, 即 $50(5x-\frac{3}{x}+1)\cdot 2 \ge 1500$

即
$$5x - \frac{3}{x} - 14 \ge 0$$
,即 $5x^2 - 14x - 3 \ge 0$,即 $(x - 3)(5x + 1) \ge 0$,解得 $x \ge 3$ 或 $x \le -\frac{1}{5}$

又 $1 \leq x \leq 10$, 所以 $3 \leq x \leq 10$, 即x的取值范围为[3,10].

(2) 生产 480 千克该产品所需时间为 $\frac{480}{x}$ 小时,所获得的利润为 y 元,则

$$y = 50\left(5x - \frac{3}{x} + 1\right) \cdot \frac{480}{x} = 24000\left(-\frac{3}{x^2} + \frac{1}{x} + 5\right)$$

$$=24000\left[-3\left(\frac{1}{x}-\frac{1}{6}\right)^2+\frac{61}{12}\right]=-72000\left(\frac{1}{x}-\frac{1}{6}\right)^2+122000$$

∴ 当
$$\frac{1}{x} = \frac{1}{6}$$
 即 $x = 6 \in [1, 10]$ 时, $y_{max} = 122000$

答:该厂应该选取6千克/时的生产速度,此时利润最大,最大利润为122000元.

- 22. 已知 a 为常数,二次函数 $f(x) = x^2 ax + a + 3$.
 - (1) 若该二次函数的图象与x 轴有交点,求a 的取值范围;
 - (2) 已知 $f(x) \ge 4$,求x的取值范围;
 - (3) 若对任意的实数 $x \in [2,4]$, $f(x) \ge 0$ 恒成立, 求 a 的取值范围.

解析 (1) 若该二次函数的图象与 x 轴有交点,则 $\Delta = a^2 - 4(a+3) >= 0$

$$\therefore$$
 $(a-6)$ $(a+2) ≥ 0$ \therefore $a ≥ 6$ $\not \exists$ $a ≤ 2$

 $\therefore a$ 的取值范围为 $(-\infty, -2] \cup [6, +\infty)$

$$(2)$$
: $f(x) = x^2 - ax + a + 3 \ge 4$: $x^2 - ax + a - 1 \ge 0$ $\mathbb{P}(x - 1)[x - (a - 1)] \ge 0$

当 a-1=1 即 a=2 时, $(x-1)^2 \ge 0$, 解集为 R:

当
$$a-1>1$$
即 $a>2$ 时, $x \le 1$ 或 $x \ge a-1$

当a-1 < 1即a < 2时, $x \le a-1$ 或 $x \ge 1$

综上, 当 a=2 时, 不等式的解集为 R; 当 a>2 时, 不等式的解集为 $(-\infty,1] \cup [a-1,+\infty)$;

当a < 2时,不等式的解集为 $(-\infty, a-1] \cup [1, +\infty)$.

(3) 若对任意的实数 $x \in [2,4]$, $f(x) = x^2 - ax + a + 3 \ge 0$ 恒成立, 即 $a(x-1) \le x^2 + 3$ 恒成立,

$$x \in [2,4]$$
 $x - 1 \in [1,3]$ $a \le (\frac{x^2 + 3}{x - 1})_{min}$

读
$$t = x - 1 \in [1,3]$$
, 则 $x = t + 1$: $\frac{x^2 + 3}{x - 1} = \frac{(t + 1)^2 + 3}{t} = t + \frac{4}{t} + 2 \ge 2\sqrt{t \cdot \frac{4}{t}} + 2 = 6$

当且仅当
$$t = \frac{4}{t}$$
即 $t = 2$ 取"=",此时 $x = 3$

$$\therefore a \leq (\frac{x^2+3}{x-1})_{min} = 6$$
, 即 a 的取值范围为 $(-\infty, 6]$.