Campos de cargas en movimiento

1.1 Potenciales retardados

Usando el gauge de Lorentz y las ecuaciones de Maxwell se llega a

$$\nabla^2 \mathbf{A} - \frac{1}{c^2} \frac{\partial^2 \mathbf{A}}{\partial t^2} = -\frac{4\pi}{c} \mathbf{J}$$

$$\nabla^2 \phi - \frac{1}{c^2} \frac{\partial^2 \phi}{\partial t^2} = -4\pi \phi$$

con forma general

$$\nabla^2 \psi - \frac{1}{c^2} \frac{\partial^2 \psi}{\partial t^2} = -4\pi f(\mathbf{x}, t) \tag{1.1}$$

siendo f la que da la distribución de fuentes.

Resolveremos (1.1) con una función de Green. Hacemos Fourier respecto a la frecuencia, de manera que podamos remover el tiempo (además luego nos interesarán fuentes armónicas y por sobre todo cualquier perturbación puede descomponerse en Fourier).

Suponemos que podemos escribir

$$\psi(\mathbf{x},t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} \psi(\mathbf{x},\omega) \, \mathrm{e}^{-i\omega t} d\omega$$

$$f(\mathbf{x},t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} f(\mathbf{x},\omega) \, \mathrm{e}^{-i\omega t} d\omega$$

siendo sus inversas

$$\psi(\mathbf{x},\omega) = \int_{-\infty}^{+\infty} \psi(\mathbf{x},t) \, \mathrm{e}^{i\omega t} dt$$

$$f(\mathbf{x},\omega) = \int_{-\infty}^{+\infty} f(\mathbf{x},t) \, \mathrm{e}^{i\omega t} dt$$

luego la ecuación resulta

$$\int_{-\infty}^{+\infty} \nabla^2 \psi(\mathbf{x},\omega) \mathrm{e}^{-i\omega t} d\omega + \int_{-\infty}^{+\infty} \frac{\omega^2}{c^2} \psi(\mathbf{x},\omega) \mathrm{e}^{-i\omega t} d\omega = -4\pi \int_{-\infty}^{+\infty} f(\mathbf{x},\omega) \mathrm{e}^{-i\omega t} d\omega$$

de manera que se satisface la ecuación de Helmholtz inhomogénea,

$$(\nabla^2 + k^2)\psi(\mathbf{x}, \omega) = -4\pi f(\mathbf{x}, \omega),$$

para cada valor de frecuencia ω .

Una función de Green satisfacerá

$$(\nabla^2 + k^2)G(\mathbf{x}, \mathbf{x}') = -4\pi\delta(\mathbf{x} - \mathbf{x}'),$$

donde ${\bf x}-{\bf x}'={\bf R}$ y la función de Green será simétricamente esférica pues pedimos la no existencia de contornos, entonces llamando a aquella $G_k(R)$ se tiene

$$\frac{1}{R}\frac{d^2}{dR^2}(RG_k) + k^2G_k = -4\pi\delta(\mathbf{R})$$

donde hemos usado el laplaciano en esféricas. Debemos distinguir dos casos, si ${\cal R}=0$ entonces la anterior resulta

$$\lim_{kR\to 0}G_k(R)=\frac{1}{R}$$

mientras que de ser cierto $R \neq 0$ en cambio

$$\frac{d^2}{dR^2}(RG_k) + k^2(RG_k) = 0$$

y entonces se propone como solución general

$$G_k(R) = \frac{A}{R} \operatorname{e}^{ikR} + \frac{B}{R} \operatorname{e}^{-ikR}$$

donde A,B dependerán de las condiciones de contorno y siendo que el primer término del RHS representa una onda divergente esférica y el segundo una onda convergente esférica.

Se puede interpretar G_k como el potencial de una carga unitaria que aparece en $\mathbf{x}=\mathbf{x}'$ en el instante t=t' y luego desaparece (mmm, qué misterio!). Ahora necesitamos meter la dependencia temporal,

$$\left(\nabla_x^2 - \frac{1}{c^2}\frac{\partial^2}{\partial t^2}\right)G^\pm(\mathbf{x},\mathbf{x}',t,t') = -4\pi\delta(\mathbf{x}-\mathbf{x}')\delta(t-t')$$

Figura 1.1

Figura 1.2

Figura 1.3

Figura 2.4

1.2 Ejemplo de antena

- 1.3 Campos de una partícula cargada en movimiento
- 1.4 Campo de una carga en movimiento
- 1.5 Cálculo de potencia irradiada
- 1.6 Frenado magnético
- 1.6.1 Esponja electromagnética

Figura 2.5

Figura 3.7

Figura 3.8

Figura 4.9

Figura 4.10

Figura 5.11

Figura 5.12

Figura 6.13

Figura 6.14