

Datenstrukturen, Algorithmen und Programmierung 2

Amin Coja-Oghlan

June 10, 2022

Lehrstuhl Informatik 2 Fakultät für Informatik

Nicht-vergleichbasierte Sortieralgorithmen

- vergleichbasierte Sortieralgorithmen benötigen $\Omega(n \log n)$ Vergleiche
- der Vorteil vergleichbasierter Algorithmen ist ihre allgemeine Anwendbarkeit
- in dieser Vorlesung lernen wir schnellere Sortieralgorithmen für spezielle Sortierprobleme kennen

Sortieren via Zählen

- gegeben ist ein Array $\mathbf{A} = (A_1, \dots, A_n)$
- jedes Arrayelement ist mit einem Schlüssel aus einer Menge

$$S = \{s_1, \ldots, s_k\}$$

versehen

- die Schlüssel sind vergleichbar
- die Arrayelemente sollen anhand der Schlüssel sortiert werden

CountingSort(A)

- **1.** Lege ein Hilfsarray $C = (C_1, ..., C_k)$ an, so daß C_i die Zahl der Vorkommnisse von s_i in A enthählt.
- 2. Verwende das Hilfsarray, um die Gesamtzahlen C'_i der Elemente mit Schlüsseln s_1, \ldots, s_i zu bestimmen.
- **3.** Reserviere Speicherplatz $\mathbf{B} = (B_1, \dots, B_n)$ für das Ausgabearray
- **4.** Für j = n, ..., 1
- **5.** ermittle den Schlüssel σ von A_j
- **6.** setze $B_{C'_{\sigma}} = A_j$
- **7.** verringere C'_{σ} um 1

Analyse von CountingSort

- CountingSort sortiert die Eingabe in Zeit O(n) + O(k)
- wenn $k = o(n \log n)$, ist CountingSort also schneller als vergleichsbasierte Sortieralgorithmen
- CountingSort ist ein stabiler Sortieralgorithmus
- D.h. Elemente mit demselben Schlüssel werden in ihrer ursprünglichen Reihenfolge ausgegeben
- die Stabilität wird dadurch sichergestellt, daß Schritt 4 die Elemente von hinten nach vorn durchgeht

Radixsort

- lacktriangle wir nehmen an, daß die Eingabeelemente mit einer Folge von d Schlüsseln aus $\mathcal S$ versehen sind
- Beispiel: Zahlen- oder Buchstabenfolgen fester Länge
- direktes Anwenden von CountingSort benötigt Zeit $O(n) + O(k^d)$

RadixSort(A)

- **1.** für i = d, ..., 1
- 2. sortiere A nach der i-ten Komponente des Schlüssels mit CountingSort

Analyse von Radixsort

- weil CountingSort stabil ist, funktioniert RadixSort korrekt
- die Laufzeit ist $O(d \cdot n) + O(d \cdot k)$.
- \blacksquare schon für moderate d, k ist dies eine deutliche Verbesserung

Zusammenfassung

- CountingSort und RadixSort sind einfache aber effektive Algorithmen
- $lue{}$ statt derselben Schlüsselmenge ${\cal S}$ können bei RadixSort auch verschiedene Schlüsselmengen verwendet werden
- Anwendungsbeispiele: Matrikelnummern, Daten (Tag-Monat-Jahr)