STAT 251 - Project

Joshua Carpenter, Cecilia Fu

3/24/2021

Introduction

Between the years of 2000 and 2019, the World Health Organization (WHO) has collected data on causes of death in 183 countries. We are interested particularly in Cardiovascular Disease. The purpose of this analysis will be to determine if cardiovascular disease is a more prevalent cause of death in the United States than elsewhere, that is if the proportion of deaths due to cardiovascular disease is greater in the US than in other countries.

To do this, we will model the proportion of deaths due to cardiovascular disease in the United States as the probability of success of a binomial random variable, where the population consists of all deaths in the United States and a trial consists of sampling one death and determining whether or not the cause was cardiovascular disease. We will consider a success to be that the death was caused by cardiovascular disease and a failure that it was not. We will similarly model the proportion of deaths outside the United States caused by cardiovascular disease as the probability of success of a binomial random variable where the population is all deaths that occurred outside of the United States.

We will then determine an appropriate gamma prior distribution, which we will use for both data distributions; we will run a Bayesian update based on data from WHO; and we will compare the posterior distributions using Monte-Carlo methods. Based on the Monte-Carlo estimated posterior distribution for the difference in proportions, we will determine a 95% confidence interval and conclude whether the proportions are significantly different.

Data

Below is a summary of the data to be used. The variable Total_Deaths is the total number of deaths, measured in thousands of deaths, in that country during the time period of data collection. The variable Cardio_Disease is the number of those deaths that were caused by cardiovascular disease, also measured in thousands of deaths.

ID	Country	Cardio_Disease	Total_Deaths
1	AFG	71.26378	254.8099
2	ALB	19.4825	31.1542
3	DZA	91.51461	203.3004
175	USA	873.20014	2949.2139
182	ZMB	16.6686	121.1049
183	ZWE	17.3354	117.7098

A tibble: 8 x 4

ID Country Cardio_Disease Total_Deaths

	<chr></chr>	<chr></chr>	<chr></chr>	<chr></chr>
1	1	AFG	71.26378	254.8099
2	2	ALB	19.4825	31.1542
3	3	DZA	91.51461	203.3004
4				
5	175	USA	873.20014	2949.2139
6				
7	182	ZMB	16.6686	121.1049
8	183	ZWE	17.3354	117.7098

	Min.	1st Qu.	Median	Mean	3rd Qu.	Max.
Cardio_Disease Total Deaths						4306.536 10105.596

We will make a comparison between the United States and all other countries, so we will summarize the data in just two rows.

Category	Cardio_Disease	Total_Deaths
USA	873200	2949214
OTH	16990627	52466558

Prior Distribution

Apendix A: Data Source

Global health estimates: Leading causes of death

Cause-specific mortality, 2000–2019

See Global summary estimates

https://www.who.int/data/gho/data/themes/mortality-and-global-health-estimates/ghe-leading-causes-of-death

Apendix B: Code

```
library(knitr)
opts_chunk$set(echo = FALSE, comment=NA)
library(readxl)
library(tidyverse)
set.seed(3812)
# Read in the data
country_codes <- read_xlsx("deaths2019.xlsx",</pre>
          range = "'Deaths All ages'!H8:GH8",
          col_names = FALSE) %>%
  pivot_longer(everything(), names_to = "Names", values_to = "Country") %>%
  select(-Names)
cardio_disease_vals <- read_xlsx("deaths2019.xlsx",</pre>
          range = "'Deaths All ages!H148:GH148",
          col_names = FALSE) %>%
  pivot_longer(everything(), names_to = "Names", values_to = "Cardio_Disease") %>%
  select(-Names)
total_deaths_vals <- read_xlsx("deaths2019.xlsx",</pre>
          range = "'Deaths All ages!H11:GH11",
          col_names = FALSE) %>%
  pivot_longer(everything(), names_to = "Names", values_to = "Total_Deaths") %>%
  select(-Names)
cardio <- bind_cols(country_codes, cardio_disease_vals, total_deaths_vals)</pre>
##
?read_xlsx
cardio_tail <- cardio %>%
 rownames_to_column("ID") %>%
 tail(2) %>%
  mutate(Cardio_Disease = as.character(round(Cardio_Disease, 4)),
         Total_Deaths = as.character(round(Total_Deaths, 4)))
row_USA <- cardio %>%
  rownames_to_column("ID") %>%
  filter(Country == "USA") %>%
  mutate(Cardio_Disease = as.character(round(Cardio_Disease, 5)),
         Total_Deaths = as.character(round(Total_Deaths, 4)))
cardio_head <- cardio %>%
  rownames_to_column("ID") %>%
 head(3) %>%
  mutate(Cardio_Disease = as.character(round(Cardio_Disease, 5)),
         Total_Deaths = as.character(round(Total_Deaths, 4))) %>%
```

```
add_row(ID = "...", Country = "...",
          Cardio_Disease = "...", Total_Deaths = "...") %>%
  add_row(row_USA) %>%
  add_row(ID = "...", Country = "...",
          Cardio_Disease = "...", Total_Deaths = "...") %>%
  bind_rows(cardio_tail)
kable(cardio_head, align = "c")
cardio head
cardio_summ <- cardio$Cardio_Disease %>%
  summary() %>%
  as.matrix() %>%
  t()
death_summ <- cardio$Total_Deaths %>%
  summary() %>%
  as.matrix() %>%
 t()
overall_summ <- rbind(cardio_summ, death_summ) %>%
  round(4)
row.names(overall_summ) <- c("Cardio_Disease", "Total_Deaths")</pre>
kable(overall_summ, align = "c")
cardio_comp <- cardio %>%
  mutate(Category = fct_collapse(cardio$Country,
                                  USA = "USA",
                                  other_level = "OTH")) %>%
  group_by(Category) %>%
  summarise(Cardio_Disease = round(sum(Cardio_Disease) * 1000),
            Total_Deaths = sum(Total_Deaths) * 1000)
kable(cardio_comp, align = "c")
data <- cardio_comp %>%
 select(-Category) %>%
  as.matrix()
row.names(data) <- cardio_comp$Category</pre>
x \leftarrow seq(0, 1, length = 1001)
a < -1.5
b <- 10
plot(x, dbeta(x, a, b), type = "1")
```