MATH 3022 Algebra II

Lecture 2
JOE TRAN

LECTURE

Recall: We introduced the definition of a ring, and we mentioned how we require two binary operations for a ring, namely an "addition" operation + and a "multiplication" operator \cdot .

Definition 1. Let R be a set and let + and \cdot be operations of "addition" and "multiplication". Then R is said to be a ring, if

- (1) (R, +) is an abelian group.
- (2) For every $x, y, z \in R$, x(yz) = (xy)z
- (3) For every $x, y, z \in R$, x(y+z) = xy + xz and (x+y)z = xz + yz

Example 1. The following are examples of rings:

- \mathbb{Z} , \mathbb{Q} , \mathbb{R} , \mathbb{C} , \mathbb{Z}_n , and $n\mathbb{Z}$, which are typical examples rings.
- $\mathbb{F}[x]$
- $\mathcal{M}_n(\mathbb{F})$ which is the set of all $n \times n$ matrices with \mathbb{F} entries.
- H which is the set of quaternions, where

$$\mathbb{H} = \left\{ \begin{bmatrix} \alpha & \beta \\ -\overline{\beta} & -\overline{\alpha} \end{bmatrix} : \alpha = a + \mathbf{i}d, \beta = b + \mathbf{i}b \in \mathbb{C} \right\} = \{a + b\mathbf{i} + c\mathbf{j} + d\mathbf{k} : a, b, c, d \in \mathbb{R} \}$$

Proposition 1. Let R be a ring and let $x, y \in R$. Then

- (1) x0 = 0x = 0
- (2) x(-y) = (-x)y = -xy
- (3) (-x)(-y) = xy

Proof. To prove (1), using the distributive property,

$$x0 = x(0+0) = x0 + x0$$

and so x0 = 0. In a similar approach, it can be shown that 0x = 0.

To show that (2) is true, observe that

$$x(-y) + xy = x(-y + y) = x0 = 0$$

and similarly, (-x)y = -xy as well.

Finally, to see that (3) is true, note that by (2), and using the associative property of "multiplication"

$$(-x)(-y) = -(x(-y)) = -(-xy) = xy$$

as desired.

There are various types of rings that we will look at.

Definition 2. A ring R is said to be a *commutative ring* if for every $x, y \in R$, xy = yx. That is, multiplication is also commutative.

Example 2. \mathbb{Z} , \mathbb{F} , \mathbb{Z}_n , $n\mathbb{Z}$, and $\mathbb{F}[x]$ are examples of commutative rings, but $\mathcal{M}_n(\mathbb{F})$ and \mathbb{H} are not.

Definition 3. A ring R is said to be a ring with identity if there exists $1 \in R$ with $1 \neq 0$ such that x1 = 1x = x for all $x \in R$.

Example 3. \mathbb{Z} , \mathbb{F} , \mathbb{Z}_n , R[x] (where R is a ring), $\mathcal{M}_n(\mathbb{F})$ and \mathbb{H} are examples of rings with identity, but $n\mathbb{Z}$ is not a ring with an identity whenever $n \geq 2$. In particular, the identity of R[x] is 1 = 1 + 0x, and the identity for $\mathcal{M}_n(\mathbb{F})$ is the identity matrix I_n .

Before we introduce the integral domain, we introduce the zero divisor.

Definition 4. Let R be a commutative ring. A nonzero element $x \in R$ is called a zero divisor if there exists a nonzero element $y \in R$ such that xy = yx = 0.

Example 4. Consider \mathbb{Z}_8 and take $2, 4 \in \mathbb{Z}_8$, which are both nonzero elements in \mathbb{Z}_8 . Then

$$2 \cdot_8 4 = 2 \cdot 4 \mod 8 = 8 \mod 8 = 0$$

Also, if we take $4, 6 \in \mathbb{Z}_8$, which are also both nonzero, then

$$4 \cdot_8 6 = 4 \cdot 6 \mod 8 = 24 \mod 8 = 0$$

Definition 5. A commutative ring R with identity is called an *integral domain* if it does not contain nonzero divisors. Alternatively, R is said to be an *integral domain* if for every $x, y \in R$ such that xy = 0, then either x = 0 or y = 0.

Example 5. \mathbb{F} and \mathbb{H} are examples of integral domains. However, because $\mathcal{M}_n(\mathbb{F})$ is not commutative, then it cannot be an integral domain.

Example 6. Consider \mathbb{Z}_n for $n \geq 2$ such that n is not a prime number. Then n = xy for some $x, y \in \mathbb{Z}$, so

$$x \cdot_n y = x \cdot y \mod n = n \mod n = 0$$

so \mathbb{Z}_n is not an integral domain. Consider if n is prime, i.e. n=p. Then \mathbb{Z}_p is both commutative and contains the identity. Suppose $x \cdot_p y = x \cdot y \mod p = 0$ in \mathbb{Z}_p . Then by definition, $p \mid xy$, so by Euclid's Lemma, either $p \mid x$ or $p \mid y$. That is, either x = 0 or y = 0. Therefore, \mathbb{Z}_p has no zero divisors, and thus, is an integral domain.

Proposition 2. \mathbb{Z}_n is an integral domain whenever n is prime.

Example 7. Let R be a ring that is either \mathbb{Z} , \mathbb{Z}_n or \mathbb{F} . Is R[x] an integral domain? For sure, the set R[x] is a commutative ring with identity. So we check if it is an integral domain. Let p(x) and q(x) be polynomials in R[x] such that p(x)q(x) = 0. [...]