Phrase Patterns for Text Classification

speaker: Hirakata Kennai

Univ. of Tokyo, CS

October 27, 2014

- 1 Introduction
- 2 Phrase pattern
 - Phrase pattern
 - 拡張版 phrase pattern
 - Learning patterns
 - PrefixSpan
 - 改良版 Prefix Span
- 3 Word Classes
- 4 実験
 - Speaker role
 - Alignment move
 - Authority claim
- 5 まとめ

読んだ論文

"Learning Phrase Patterns for Text Classification"
Author: Bin Zhang+
http://ieeexplore.ieee.org/xpl/articleDetails.
jsp?arnumber=6457440

導入

テキスト分類のための素性として n-gram が通常使われる ある程度の精度は達成されてる ドメインに特化してしまい一般性がない n-gram とそのまま置き換える素性として、phrase pattern が ある

先行研究

- Wiebe+, 2005 文章の subject を教師ナシで推定する.これは目的語を 含んだフレーズパターンで分類した。
- Sun+, 2007第二外国語学習者の書いた誤文法を検出。
- Thur and Davidov, 2010 Twitter や Amazon レビューから「皮肉」な文を検出
- Zhang+, 2010 Speaker role

素 phrase pattern

文を語の列 $[w_1\cdots w_n]$ とみなす.これに対して phrase pattern とは、語の列 $[u_1\cdots u_m]$ と定める. phrase pattern が 文にマッチするとは、subsequence の関係にあること

$$\forall i. \ u_i = w_{j_i}$$
 $i_1 < i_2 \implies j_{i_1} < j_{i_2}$

phrase pattern with word classes

語の列でなく、word class も利用したい word class としては、POS とか polarity とか (個数を制限しない) word w の class として (文脈に依存して) $\{c1 \ldots cn\}$ があるとき、

$$w \rightarrow \{w, c1 ... cn\}$$

という拡張を、文と phrase pattern に対して適用する.

文 $[w_1 \cdots w_n]$ $(w_i$ はトークンとクラスの集合) phrase pattern $[u_1 \cdots u_n]$ (同様に集合の列) マッチすることの定義は以下のように

$$\forall i. \ u_i \subseteq w_{j_i}$$

$$i_1 < i_2 \implies j_{i_1} < j_{i_2}$$

パターンの学習

コーパス D から、意味のありそうなパターンの学習アルゴリズムとして

- PrefixSpan
- CloSpan

などがある.ここでは一つ目を紹介して、これを改良する.

PrefixSpan (Pei, Han+, 2001)

コーパス D (文の集合) から、頻度が閾値 f を上回るようなパターンを、頭から一つずつ word or class を追加していくことで得る

パターン [a] が得られたら、それを伸ばすような [a, X] も試すことで、パターンを学習していく.

コーパス D, 閾値 f に対して $PrefixSpan(D, \rho = [])$

Algorithm 1 PrefixSpan (D, ρ)

Require: D is a corpus and ρ is a prefix pattern

- 1: $P \leftarrow \emptyset$
- 2: **for** word or class a in D **do**
- 3: $\rho' \leftarrow \mathsf{append}(\rho, a)$
- 4: **if** matchFreq $(D, \rho') >= f$ **then**
- 5: $P = P \cup \{\rho'\}$
- 6: $D' \leftarrow \rho'$ -project(D)
- 7: $P' = \operatorname{PrefixSpan}(D', \rho')$
- 8: $P = P \cup P'$
- 9: **end if**
- 10: end for

 ρ -project は、パターン ρ にマッチする文だけ抽出する射影

☐ PrefixSpan

長さnのパターンを見て、長さn+1のパターンを見て... とやると計算効率が悪いので実際は、後ろに追加した1つ だけ見ればよい。

Algorithm 2 ρ -project(D)

$$\begin{aligned} D' &\leftarrow \{\} \\ [w_1 \dots w_m] &= \rho \\ \text{for sentence } [b_1 \dots b_n] &\in D \text{ do} \\ \text{if pattern } \rho \text{ matches this sentence then} \\ \text{find indecies } j \text{ such that} \\ w_1 &= b_{j_1} \dots w_m = b_{j_m} \\ D' &\leftarrow D' \cup \{[b_{j_m+1} \dots b_m]\} \\ \text{end if} \\ \text{end for} \end{aligned}$$

射影で、マッチより後ろ部分だけを抽出することで、PrefixSpan で、パターンの頻度を確認するときに、新たに追加した a だけを、見ればいい。

改良版 PrefixSpan

尺度として頻度を用いたが、分類器において、相互情報量が良い尺度になりうる.

あるパターンについて, マッチするかどうか X=0,1, 文書のクラス Y=0...K

$$I(X; Y) = \sum_{x,y} p(x,y) \log \frac{p(x,y)}{p(x)p(y)}$$
$$= \sum_{x,y} p(x|y) \log \frac{p(x|y)}{\sum_{y'} p(x|y')p(y')}$$

相互情報量の上限

パターン ρ がマッチするかどうか X, ρ を伸ばして得たパターン ρ' がマッチするかどうかを XE と書くと

$$p(XE = 1|y) \le p(X = 1|y)$$

とあるから、次のような上限が存在する (前頁の l は p(x|y) について上に凸!?)

$$\max I(XE; Y)$$

つまり、パターン ρ について、パターンを伸ばすことで増価しうる相互情報量の上限は予め算出できる

```
Phrase pattern
```

└─改良版 Prefix Span

改良版 Prefix Span

尺度を 頻度 $\geq f$ から、相互情報量を使うように書き換える

```
Algorithm 3 ExtendedPrefixSpan(D, \rho)
   P \leftarrow \emptyset
   for a in D do
     \rho' \leftarrow \operatorname{append}(\rho, a)
     if 
ho' の相互情報量が閾値以上なら then
         P \leftarrow P \cup \{\rho'\}
     else if 
ho' の相互情報量の上限が閾値以上なら then
         D' \leftarrow \rho'-project(D)
         P' \leftarrow \mathsf{ExtendedPrefixSpan}(D', \rho')
         P \leftarrow P \cup P'
     end if
   end for
```

実際に使う word class は以下の通り

- Lemma
- Word shape
- POS
- NE
- LIWC
- subjectivity lexicon
- manual
- automatic

Lemma

```
語の標準系を取り出す \{go, goes, going, went gone\} \rightarrow gotool: NLTK WordNet lemmatizer
```

POS

tool: Stanford log-linear POS tagger English models and trained models for Arabic, Chinese, French, Spanish, and German

Named entity (NE)

```
テキスト分類に於いてはこれが重要ということになっている
```

```
(sentence, word) ->
class ({Location, Person, Organization, Time, Date})
```

Stanford conditional random field-based NE recognizer (NER) なるものが良いって。

LIWC dictionary

Linguistic Inquiry and Word Count (LIWC) は、単語を 64 の 感情に関するクラスに分類する Facebook が使ってた 文脈に依存せず、一つの単語について分析する。 http://www.liwc.net/tryonline.php 完全版は \$89.95 で使える

MPQA subjectivity lexicon

MPQA さんが GNU GPL の元で配布してる辞書 単語とその品詞から引く形になっている

(word, POS) -> class

8222 項目が登録されてる

e.g.

type=weaksubj len=1 word1=dominate pos1=verb
stemmed1=y priorpolarity=negative

manual

そのトピックについて詳しい人間が手作業で、そのクラスに属する単語をリストアップしていく. あとの実験で使われたものでは

```
AGREEMENT = [right, agree, true]

DISAGREEMENT = [doubt, inappropriate]

ALIGNMENT = AGREEMENT ++ DISAGREEMENT

MODAL = [could, should]

NEGATIVE_DISCOURSE_ORDER =

[however, but, nevertheless]
```

automatic

Brown+, 1992 "Class-based n-gram models of natural language" の手法を用いる 1 次マルコフモデルを使った、word のクラスタリング クラスタ数 = 10, 100, 1000

実験

n-gram (と他の素性) ではそれなりに難しいタスク

- Speaker role
- Alignment move
- Authority claim

Baseline を n-gram (3-gram までに制限) と他とするとき、pattern (長さ3に制限) と他でやってみる 分類は 最大エントロピー法 5-fold cross validation で精度または F 値を出す └Speaker role

Speaker role

ニュースショー (音源) から、一つのセリフを発した人間の 役割 (Host, Guest, Voice bite) を推定する Liu+ 80% └Speaker role

data

- 48 English talks
- 90 Mandarin talks

の録音に対して、

REF (Reference human transcripts) と ASR (automatic speech recognition) output (using SRI Decipher ASR system) を対象にする.

ASR は、結構間違える. 英語については 22.8% 北京語については 38.6% くらい、単語/文字を誤る.

 $\kappa = 0.67/0.78$

Result - English

$\overline{\hspace{1.5cm}}$ pattern $+$ word class	Ref.	ASR
n-gram (no pattern)	85.8%	85.0%
pattern w/out class	86.9	85.6
w/ lemma	86.8	85.4
w/ POS	86.2	85.8
w/ NE	86.9	84.7
w/ LIWC	86.0	85.9
w/ MPQA	86.5	85.9
w/ automatic	87.1*	85.6

Ref に対して、 ASR もそこまで 悪くない n-gram もそんな 悪くないんだよね └─Speaker role

Result - Chinese

pattern+word class	Ref.	ASR
n-gram	84.6	
pattern w/ no class	85.8	77.8
w/ POS	84.8	74.5
w/ automatic	85.7	77.2

中国語はいくつかの素性が使えないからしょうがない。 あと POS が使い物になってないのが意外。 Alignment move

Alignment move

ネット上の議論においてある発言が趣旨に同意してるのか (positive) 反対してるのか (negative) を見る neutral はない

└ Alignment move

data

実験で使うのは Wikipedia talk page

- 211 English pages and
- 225 Chinese pages

 $\kappa=0.50/0.53$ いくつかの文は pos, neg 両方を含む あるアノテータが pos をつけて、あるアノテータが neg をつけたようなものを、両方あるものとして、pos+neg という ラベルにする

分類は、pos/none, neg/none の 2 つの分類器を作って union をとる

Result - English (F-score)

pattern + word class	Ref.	ASR
n-gram (no pattern)	38.1%	38.8%
pattern w/out class	40.5	38.9
w/ lemma	40.2	38.8
w/ word shape	40.0	39.3
w/ POS	39.0	38.6
w/ NE	40.5	38.9
w/ LIWC	39.0	38.7
w/ MPQA	39.2	40.5
w/ manual	40.8	39.4
w/ automatic	40.7	40.5

Result - Chinese (F-score)

pattern + word class	Ref.	ASR
n-gram (no pattern)	26.7%	29.7%
pattern w/out class	31.2	31.2
w/ POS	32.7	30.7
w/ manual	33.9	31.5
w/ automatic	30.9	30.6

基本的に manual が強い

Authority claim

showing her knowledge or experience with respect to a topic, or using some external evidence to support herself

- forum claim: フォーラム内のソース (発言) を引用する
- external claim: 外のソースを引用する

引用を見るだけだから Unigram で実際けっこう良い (Marin+, 2010)

data

- 339 English pages and
- 225 Chinese pages

発言ごとに、forum / external authority claim であるかどうか.

 $\kappa = 0.59/0.73$

データは疎である. authority claim は全体の 20 % だった

Result - English (F-score)

$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	Ref.	ASR
n-gram (no pattern)	49.5%	46.5%
pattern w/out class	47.7	46.0
w/ lemma	48.0	46.7
w/ word shape	48.2	45.8
w/ POS	48.6	45.1
w/ NE	47.7	46.0
w/ LIWC	48.9	46.5
w/ MPQA	47.8	45.5
w/ manual	48.0	46.8
w/ automatic	48.9	46.1

Authority claim

Result - Chinese (F-score)

pattern + word class	Ref.	ASR
n-gram (no pattern)	32.2	32.3
pattern w/out class	31.8	33.5
w/ POS	34.3	40.3
w/ manual	30.3	37.9
w/ automatic	31.4	35.6

まとめ

- 基本的には
 n-gram → 素 phrase pattern → phrase pattern with word classes
 で強くなる
- word class は利用可能なら manual が強い
- Speech role の ASR で見たように、訓練データに頑強性 がある

まとめ

- 基本的には
 n-gram → 素 phrase pattern → phrase pattern with word classes
 で強くなる
- word class は利用可能なら manual が強い
- Speech role の ASR で見たように、訓練データに頑強性 がある
- この実験は長さ3に制限していたが本気を出したバージョンを見たかった