Dimension Reduction Accelerating t-SNE using Tree-Based Algorithms

Journal of Machine Learning Research 15(Oct):3221-3245, 2014

Laurens van der Maaten

Tilburg University

Geoffrey Hinton

University of Toronto

2015.10.21 Group Meeting Report NCTU 指導教授 | 林志青 0356624 | 葉美伶

Introduction

Purpose: build map in which distances between points reflect similarities in the data

Introduction

Purpose: build map in which distances between points reflect similarities in the data

Introduction

Purpose: build *map* in which distances between points reflect similarities in the data

To do this we need to minimize some objective function that measures the *discrepancy* between similarities in the data and similarities in the map

Measure pairwise similarities between high-dimension points

Measure pairwise similarities between high-dimension points

 The bandwidth, σ(i) is scaled by predefined perplexity (default=30)

$$p_{j|i} = \frac{\exp(-d(\mathbf{x}_i, \mathbf{x}_j)^2 / 2\sigma_i^2)}{\sum_{k \neq i} \exp(-d(\mathbf{x}_i, \mathbf{x}_k)^2 / 2\sigma_i^2)} \qquad p_{ij} = \frac{p_{j|i} + p_{i|j}}{2N}$$

Measure pairwise similarities between low-dimension map points

 Points of low-dim local structure are from high-dim local structure

Move points around to minimize: $C = KL(P||Q) = \sum_{i} \sum_{j} p_{ij} \log \frac{p_{ij}}{q_{ij}}$

$$\frac{\delta C}{\delta y_i} = 4 \sum_{j} (p_{ij} - q_{ij}) (y_i - y_j) (1 + ||y_i - y_j||^2)^{-1}$$

$$\frac{\delta C}{\delta y_i} = 4 \sum_{j} (p_{ij} - q_{ij}) (y_i - y_j) (1 + ||y_i - y_j||^2)^{-1}$$

Normalization term

$$\frac{\delta C}{\delta y_i} = 4 \sum_{j} (p_{ij} - q_{ij}) (y_i - y_j) \left(1 + ||y_i - y_j||^2 \right)^{-1}$$

$$\frac{\delta C}{\delta y_i} = 4 \sum_{j} (p_{ij} - q_{ij}) (y_i - y_j) (1 + ||y_i - y_j||^2)^{-1}$$

$$\frac{\delta C}{\delta y_i} = 4 \sum_{j} (p_{ij} - q_{ij}) (y_i - y_j) (1 + ||y_i - y_j||^2)^{-1}$$

Simple version of t-Distributed Stochastic Neighbor Embedding

```
Data: data set X = \{x_1, x_2, ..., x_n\},\
cost function parameters: perplexity Perp,
optimization parameters: number of iterations T, learning rate \eta, momentum \alpha(t).
Result: low-dimensional data representation \mathcal{Y}^{(T)} = \{y_1, y_2, ..., y_n\}.
begin
     compute pairwise affinities p_{j|i} with perplexity Perp (using Equation 1)
     set p_{ij} = \frac{p_{j|i} + p_{i|j}}{2n}
     sample initial solution \mathcal{Y}^{(0)} = \{y_1, y_2, ..., y_n\} from \mathcal{N}(0, 10^{-4}I)
     for t=1 to T do
           compute low-dimensional affinities q_{ij} (using Equation 4)
          compute gradient \frac{\delta C}{\delta \gamma} (using Equation 5)
          \operatorname{set} \mathcal{Y}^{(t)} = \mathcal{Y}^{(t-1)} + \eta \frac{\delta C}{\delta \mathcal{Y}} + \alpha(t) \left( \mathcal{Y}^{(t-1)} - \mathcal{Y}^{(t-2)} \right)
     end
end
```

Simple version of t-Distributed Stochastic Neighbor Embedding

```
Data: data set X = \{x_1, x_2, ..., x_n\},\
           cost function parameters: perplexity Perp,
           optimization parameters: number of iterations T, learning rate \eta, momentum \alpha(t).
           Result: low-dimensional data representation \mathcal{Y}^{(T)} = \{y_1, y_2, ..., y_n\}.
           begin
               compute pairwise affinities p_{j|i} with perplexity Perp (using Equation 1)
                 set p_{ij} = \frac{p_{j|i} + p_{i|j}}{2n}
                 sample initial solution \mathcal{Y}^{(0)} = \{y_1, y_2, ..., y_n\} from \mathcal{N}(0, 10^{-4}I)
\begin{array}{|c|c|c|c|c|c|}\hline \textbf{for } t=1 \textbf{ to } T \textbf{ do} \\ \hline \textbf{O(n^2)} \\ \hline \textbf{O(n^2)} \\ \hline \textbf{O(n^2)} \\ \hline \textbf{Set } \mathcal{Y}^{(t)} = \mathcal{Y}^{(t-1)} + \eta \frac{\delta C}{\delta \mathcal{Y}} + \alpha(t) \left(\mathcal{Y}^{(t-1)} - \mathcal{Y}^{(t-2)}\right) \\ \hline \end{array}
           end
```

Use PCA to generate initial solution

$$\frac{\delta C}{\delta y_i} = 4 \sum_{j} (p_{ij} - q_{ij}) (y_i - y_j) (1 + ||y_i - y_j||^2)^{-1}$$

Each datapoint is a 8x8 image of a digit.

Classes	10
Samples per class	~180
Samples total	1797
Dimensionality	64
Features	integers 0-16

A selection from the 64-dimensional digits dataset 01234501134501234505 550413510022201233333 44150524001234505555001 234501234501234505555041 234501234501234505555041 3510022201233333441505 3510022201233333441505 315542225544001234505551 011345012345055550413 510012201233333441505 12041325544001234505551 00123455055550413545055315 442215544001234505315

Experiments

Each datapoint is a 8x8 image of a digit.

Classes	10
Samples per class	~180
Samples total	1797
Dimensionality	64
Features	integers 0-16


```
Modified Locally Linear Embedding of the digits (time 0.63s)
```


handwritten digits					
sample points	10,000 / 70,000				
dimensions	784				
classes	10 (0~9)				

Figure 2: Visualizations of 10,000 digits from the MNIST dataset by parametric dimensionality reduction techniques.

	MNIST			Characters			20 Newsgroups		
	2D	10D	30D	2D	10D	30D	2D	10D	30D
PCA	78.16%	43.03%	10.78%	86.72%	60.73%	20.50%	35.99%	27.05%	28.82%
NCA	56.84%	8.84%	7.32%	72.90%	24.68%	17.95%	30.76%	26.65%	26.09%
Autoencoder	66.84%	6.33%	2.70%	82.93%	17.91%	11.11%	37.60%	29.15%	27.62%
Par. t-SNE, $\alpha = 1$	9.90%	5.38%	5.41%	43.90%	26.01%	23.98%	$ \bar{3}4.\bar{3}0\% ^{-1}$	24.40%	[24.88%]
Par. t-SNE, $\alpha = d - 1$	9.90%	4.58%	2.76%	43.90%	17.13%	13.55%	35.10%	25.28%	23.75%
Par. t-SNE, learned α	12.68%	4.85%	2.70%	44.78%	17.30%	14.31%	33.82%	27.21%	24.72%

Table 1: Generalization errors of 1-nearest neighbor classifiers on low-dimensional representations of the MNIST dataset, the characters dataset, and the 20 newsgroups dataset.

Summary

- The disadvantages to using t-SNE are roughly:
 - t-SNE is computationally expensive, and can take several hours on million-sample datasets where PCA will finish in seconds or minutes
 - The Barnes-Hut t-SNE method is limited to two or three dimensional embeddings.
 - The algorithm is stochastic and multiple restarts with different seeds can yield different embeddings. However, it is perfectly legitimate to pick the the embedding with the least error.
 - Global structure is not explicitly preserved. This is problem is mitigated by initializing points with PCA (using init='pca').

References

- 1. L.J.P. van der Maaten. **Accelerating t-SNE using Tree-Based Algorithms**. *Journal of Machine Learning Research* 15(Oct):3221-3245, 2014.
- 2. L.J.P. van der Maaten and G.E. Hinton. **Visualizing Non-Metric Similarities in Multiple Maps**. *Machine Learning* 87(1):33-55, 2012.
- 3. L.J.P. van der Maaten. Learning a Parametric Embedding by Preserving Local Structure. In Proceedings of the Twelfth International Conference on Artificial Intelligence & Statistics (AI-STATS), JMLR W&CP 5:384-391, 2009.
- 4. L.J.P. van der Maaten and G.E. Hinton. **Visualizing High-Dimensional Data Using t-SNE**. *Journal of Machine Learning Research* 9(Nov):2579-2605, 2008.
- 5. G.E. Hinton and S.T. Roweis. Stochastic Neighbor Embedding. In Advances in Neural Information
- 6. Processing Systems, volume 15, pages 833–840, Cambridge, MA, USA, 2002. The MIT Press.
- 7. <a href="https://github.com/scikit-learn/
- 8. http://scikit-learn.org/stable/index.html