Variables aleatorias

Curso 2022-23

13 de Febrero al 17 de Febrero de 2022

ariables aleatorias discretas ariables aleatorias continuas alcular probabilidades para una variable aleatori ropiedades importantes

Variables aleatorias

Variables aleatorias

- El concepto de variable aleatoria es un modo de unir técnicas que nos han aparecido en probabilidad y estadística descriptiva
- Entre otros conceptos:
 - De probabilidad
 - Sucesos y probabilidades asociados a ellos
 - Probabilidad, independencia, probabilidad condicionada y total, regla de Bayes
 - De estadística descriptiva
 - Medidas centrales y de dispersión como la media y la desviación típica e histogramas
 - Percentiles y datos atípicos
- Para poder usar todas estas técnicas, los sucesos a estudiar deben de ser numéricos

Variables aleatorias

- Partimos de un experimento aleatorio cualquiera
- Los sucesos no tienen por qué ser números
- Nos fijamos en una característica numérica de estos sucesos
- La variable aleatoria permite estudiar esa característica numérica
- Más formalmente
 - Una variable aleatoria es asignar a cada resultado del experimento un número
 - En vez de estudiar probabilidades de los sucesos del experimento estudiamos probabilidades de los números asociados
 - Matemáticamente, una variable aleatoria es una función $X:\Omega \to R$

Variables aleatorias discretas
Variables aleatorias continuas
Calcular probabilidades para una variable aleatori
Propiedades importantes

Variables aleatorias discretas

Variables aleatorias discretas

- Una variable aleatoria discreta viene dada por
 - Una lista de los valores que puede tomar esa variable
 - Una lista de probabilidades de esos valores ya calculadas (con cualquier técnica)
- A partir de aquí
 - Al dibujar los valores junto a sus probabilidades se obtiene el equivalente al barplot o histograma de densidades
 - Faltaría
 - Definir media y varianza en función de las dos listas
 - Percentiles

Media y varianza de una variable aleatoria discreta

- Partimos de una variable aleatoria discreta X dada por:
 - Una lista de posibles valores (x_1, \dots, x_n)
 - Una lista de probabilidades de esos valores ya calculadas $p_i = P(X = x_i)$
 - Suele denotarse $f(x_i) = P(X = x_i)$
- Media o esperanza de X

$$m = E[X] = x_1 \cdot p_1 + \cdots + x_n \cdot p_n$$

• En general, si g(X) es cualquier función de la variable X

$$E[g(X)] = g(x_1) \cdot p_1 + \cdots + g(x_n) \cdot p_n$$

Varianza

$$E[(X-m)^2] = (x_1-m)^2 \cdot p_1 + \cdots + (x_n-m)^2 \cdot p_n$$

Función de distribución y percentiles

- Se llama función de distribución de X ,y se denota por F(x), a la función que asigna a cada valor x su percentil
- Una forma diferente de verlo es que F(x) asigna a x la probabilidad de ser menor o igual que ese valor

$$F(x) = P(X \le x)$$

- Una forma sencilla de calcular F(x)
 - Calcular una lista con probabilidades acumuladas usando la función cumsum() en R
 - Para cualquier valor x_i de la lista de valores de X, el valor de $F(x_i)$ es el valor correspondiente en la lista calculada anteriormente
 - Para cualquier otro valor
 - Buscar en qué intervalo está de entre

$$(-\infty, x_1), [x_1, x_2), \cdots, [x_{n-1}, x_n), [x_n, \infty)$$

- Si es menor que x_1 entonces F(x) = 0
- En los demás casos, si está en el intervalo [a, b), entonces F(x) = F(a)

Variables aleatorias discretas Variables aleatorias continuas Calcular probabilidades para una variable aleatori Propiedades importantes

Variables aleatorias continuas

Variables aleatorias continuas

- Una variable aleatoria se dice continua si puede tomar todos los valores de un intervalo.
- Una variable aleatoria continua viene dada por:
 - Un intervalo [a, b] de posibles valores (puede ser abierto, etc)
 - Una función f(x) (llamada de densidad) que nos indica qué regiones del intervalo son más probables que otras
- Esta función debe cumplir
 - $f(x) \ge 0, \forall x \in [a, b]$
 - $\int_a^b f(x) dx = 1$
- A partir de aquí
 - Al dibujar la función f(x) se obtiene el equivalente al histograma de densidades

Media, varianza y esperanza para variables aleatorias continuas

- Son parecidas a las variables aleatorias discretas. Ahora:
 - Los valores vienen representados por la variable x
 - Las probabilidades por la función de densidad f(x)
 - Las sumas se convierten en integrales
- Con estos cambios
 - Media o esperanza de X: $m = E[X] = \int_a^b x \cdot f(x) dx$
 - Esperanza de una función g(X): $E[g(X)] = \int_a^b g(x) \cdot f(x) dx$
 - Varianza: $v = E[(X m)^2] = \int_a^b (x m)^2 \cdot f(x) dx$

Función de distribución de una variable aleatoria continua

- Tiene el mismo papel que en variables aleatorias discretas
 - $F(x) = P(X \le x)$
 - Por tanto F(x) vale
 - 0 xi x < a
 - 1 si x > b
 - $\int_a^x f(t)dt$ si $a \le x \le b$
- Se utiliza para
 - Calcular probabilidades en subintervalos
 - Calcular percentiles

Variables aleatorias continuas

Calcular probabilidades para una variable aleatoria

Propiedades importantes

Calcular probabilidades para una variable aleatoria

Cálculo de probabilidades si la variable es discreta

- En una variable aleatoria discreta
 - La probabilidad de estar en un intervalo es sumar las probabilidades de los valores del intervalo
 - Ejemplo
 - Una variable aleatoria toma valores $\{1,2,\cdots,10\}$ con probabilidades $P(X=i)=\frac{i^2}{385}$
 - En R tendríamos las listas val = 1:10, $prob = val^2/385$
 - Para calcular P(3 < X <= 7) sumamos las probabilidades de 4, 5, 6, 7 que son los valores que lo cumplen
 - En R: sum(prob[3 < val & val <= 7])

Cálculo de probabilidades si la variable es continua

- En una variable aleatoria continua
 - La probabilidad de estar en un intervalo es sumar las probabilidades de los valores del intervalo
 - Ejemplo
 - Una variable aleatoria toma valores en el intervalo [0,3] con función de densidad

$$f(x) = \begin{cases} 0, & \text{si } x < 0 \\ \frac{x^2}{9}, & \text{si } 1 \le x \le 3 \\ 0, & \text{si } x > 3 \end{cases}$$

•
$$P(1 < X < 2) = \int_1^2 f(x) dx$$

- Por tanto, en una variable aleatoria continua,
 - $P(X=a) = \int_a^a f(x) dx = 0$
- No es cierto que P(X = a) = f(a)

Variables aleatorias discretas Variables aleatorias continuas Calcular probabilidades para una variable aleatori Propiedades importantes

Propiedades importantes

Variables independientes

- Sean X e Y dos variables aleatorias discretas. Se dice que X e Y son independientes si los sucesos P(X=x) y P(Y=y) son independientes para cualquier posible valor x de X y cualquier posible valor y de Y
- Si X e Y son dos variables aleatorias discretas, se dice que X e Y son independientes si los sucesos $P(X \le x)$ y $P(Y \le y)$ son independientes para cualquier posible par de números reales x e y.

Propiedades de la media y la varianza

- Sen X e Y dos variables aleatorias, a, b dos números
- Propiedades de la media
 - $E[a \cdot X + b] = a \cdot E[X] + b$
 - E[X + Y] = E[X] + E[Y]
 - Hay que tener cuidado con otras operaciones, por ejemplo $E[X \cdot Y] \neq E[X] \cdot E[Y]$
- Propiedades de la varianza
 - $Var(a \cdot X + Y) = a^2 \cdot Var(X)$
 - Si X e Y son independientes, Var(X + Y) = Var(X) + Var(Y)

Modelos uniformes iuceso de Bernouilli: modelos binomial y geométrico Modelo normal

Modelos de probabilidad

Modelos uniformes
Suceso de Bernouilli: modelos binomial y geométrico
Modelo normal
Proceso de Poisson, modelo de Poisson y grapanasio

Modelos uniformes

Modelo uniforme discreto

- Tenemos un conjunto finito de posibles resultados $\{x_1,\cdots,x_n\}$
- Suponemos que todos tienen la misma probabilidad $P(X = x_i) = \frac{1}{n}$
 - La función de probabilidad f es constante
 - La función de distribución viene dada por $F(x_i) = \frac{i}{n}$
 - La media es la media de los valores
 - La varianza es la varianza de los valores
 - Los percentiles son los percentiles de los valores

Modelo uniforme continuo

- Posibles valores en un intervalo [a, b]
- Todos tienen 'la misma probabilidad' luego f es constante
- Debe ser $f(x) = \frac{1}{b-a}$, $\forall x \in [a, b]$

• La función de distribución viene dada por $F(x) = \frac{x-a}{b-a}$

Modelo uniforme continuo

- Media, varianza y percentiles
 - La media es $\frac{a+b}{2}$
 - La varianza es $\frac{(b-a)^2}{12}$
 - El percentil p% es $a + p \cdot (b a)$
- En la mayor parte de los lenguajes de programación se corresponde a la función random()
- En R se simula con runif(, a, b)

Suceso de Bernouilli: modelos binomial y geométrico

Suceso de Bernouilli: modelos binomial y geométrico

Suceso de Bernouilli

- Tenemos un experimento del que solamente nos interesa un posible resultado
- Conocemos su probabilidad p
- Lo modelamos con una variable aleatoria con dos valores
 - 0 si no se da ese suceso
 - 1 si se da el suceso
- Por tanto P(X = 1) = p y P(X = 0) = 1 p
- ullet Su media es p y su varianza es $p\cdot (1-p)$
- No tiene sentido calcular función de distribución o percentiles

Modelo binomial

- Tenemos un suceso de Bernouilli y lo repetimos un determinado número de veces n
- Suponemos que esas repeticiones del experimento son independientes (es decir, que la probabilidad p permanece constante)
- La variable aleatoria X = 'número de veces que ocurre el suceso en esos n intentos' se llama variable binomial con parámetros n y p
- Se denota por B(n, p)
- En R se escribe binom(-, n, p)

Modelo binomial

- Valores entre 0 y n con $P(x=i) = \binom{n}{i} p^i (1-p)^{n-i}$
- En R se calcula como dbinom(i, n, p)

- Las órdenes pbinom(-, n, p) y qbinom(-, n, p) permiten calcular probabilidades acumuladas y percentiles
- Su media es $n \cdot p$ y su varianza es $n \cdot p \cdot (1-p)$
- Se simula con rbinom(-, n, p)

Modelo geométrico

- Tenemos un suceso de Bernouilli y lo repetimos hasta que ocurre el suceso que nos interesa
- Suponemos que esas repeticiones del experimento son independientes (es decir, que la probabilidad p permanece constante)
- La variable aleatoria X = 'número de repeticiones antes de que ocurra el suceso' se llama variable geométrica con parámetro p
- Se denota por G(p)
- En R se escribe geom(-, p)

Modelo geométrico

- Valores $0, 1, 2 \cdots \text{ con } P(x = i) = p(1 p)^i$
- En R se calcula como dgeom(i, p)

- Las órdenes pgeom(-, p) y qgeom(-, p) permiten calcular probabilidades acumuladas y percentiles
- Su media es $\frac{1-p}{p}$ y su varianza es $\frac{1-p}{p^2}$
- Se simula con rgeom(-, p)

Modelos uniformes
Suceso de Bernouilli: modelos binomial y geométric
Modelo normal

Modelo normal

Modelo normal

- Cuando medimos una cantidad solemos cometer pequeños errores
 - Las medidas obtenidas suelen ser parecidas a la medida correcta
 - Habitualmente es igual de fácil equivocarse por exceso o por defecto
 - Es menos probable equivocarse mucho que poco
- La variable normal se utiliza para modelar estas situaciones

Variable normal

- Una variable X se dice que es una variable normal con parámetros m y s si
 - Puede tomar valores entre $-\infty$ y $+\infty$
 - Su función de densidad es $f(x) = \frac{1}{s\sqrt{2\pi}}e^{-\frac{x-m}{2s^2}}$

Variable normal

- Se escribe $X \simeq N(m, s)$
- ullet Su media es m y su desviación típica es s
- En R se usan las órdenes dnorm(-, m, s), pnorm(-, m, s), qnorm(-, m, s) y rnorm(-, m, s) para calcular las funciones de densidad, de distribución, calcular percentiles o simular la variable

Propiedades importantes de las variables normales

• Si $X \simeq N(m, s)$ y $r \in \mathbb{R}$ es un número entonces

$$r \cdot X \simeq N(r \cdot m, r \cdot s)$$

• Si $\{X_1, \dots, X_n\}$ son variables independientes con cada $X_i \simeq N(m_i, s_i)$, entonces

$$X_1 + \cdots + X_n \simeq N(m_1 + \cdots + m_n, \sqrt{s_1^2 + \cdots + s_n^2})$$

$$\overline{X} = \frac{X_1 + \dots + X_n}{n} \simeq N(\frac{m_1 + \dots + m_n}{n}, \frac{\sqrt{s_1^2 + \dots + s_n^2}}{n})$$

Variables asociadas a la variable normal

- Vamos a definir dos variables asociadas a una variable normal
- Variable chi cuadrado
 - Sean X_1, \dots, X_n variables independientes y cada $X_i \simeq N(0,1)$. La variable $\chi_n^2 = X_1^2 + \dots + X_n^2$ se llama variable chi-cuadrado con parámetro n
 - En R se escribe chisq(, n)
- Variable t de Student
 - Se llama variable t de Student con parámetro n a $t_n = \frac{N(0,1)}{\sqrt{(\frac{\chi_n^2}{n})}}$
 - En R se escribe t(, n)

Modelos unitormes

Sudelos de Bernouilli: modelos binomial y geométrico

Modelo normal

Proceso de Poisson: modelo de Poisson y exponencial

Proceso de Poisson: modelo de Poisson y exponencial

Proceso de Poisson

- Estamos interesados en un suceso del que no se conoce la probabilidad. Queremos estudiar qué ocurre en un intervalo de tiempo (o espacio)
- El proceso se dice de Poisson si
 - A la vez solamente ocurre un evento (los tiempos de ocurrencia de los eventos pueden, aún así, estar muy cerca unos de otros).
 - El número de veces que ocurre el suceso en un intervalo es independiente del número de veces que ocurre en cualquier otro intervalo.
 - El número de veces que ocurre el suceso en un intervalo crece de forma aproximadamente proporcional con el tiempo.
- Este proceso viene determinado por cualquiera de los dos datos siguientes
 - El número de veces que ocurre este suceso, en media, en cualquier intervalo finito (llamado λ)
 - El tiempo medio que tarda en ocurrir ese suceso

Modelo de Poisson

- ullet Tenemos un proceso de Poisson con parámetro λ en un intervalo
- A la variable X = 'Número de veces que ocurre el suceso en ese intervalo' se le llama variable de Poisson
- Se denota por $Pois(\lambda)$
- En R se escribe pois(-, p)

Modelo de Poisson

- Valores $0, 1, 2 \cdots$ con $P(x = i) = e^{-\lambda} \frac{\lambda^i}{i!}$
- En R se calcula como dpois(i, lambda)

- Las órdenes ppois(-, lambda) y qpois(-, lambda) permiten calcular probabilidades acumuladas y percentiles
- ullet Su media es λ y su varianza es λ
- Se simula con *rpois*(-, *lambda*)

Modelo exponencial

- ullet Tenemos un proceso de Poisson con parámetro λ en un intervalo
- A la variable X = 'Tiempo transcurrido hasta que vuelva a ocurrir el suceso' se le llama variable exponencial
- Se denota por $E(\lambda)$
- En R se escribe exp(-, p)

Modelo exponencial

- Valores $[0, +\infty)$ con $f(x) = \lambda e^{-\lambda x}$
- En R se calcula como dexp(-, lambda)

- Las órdenes pexp(-, lambda) y qexp(-, lambda) permiten calcular probabilidades acumuladas y percentiles
- Su media es $\frac{1}{\lambda}$ y su varianza es $\frac{1}{\lambda^2}$
- Se simula con rexp(-, lambda)

