

$RTL_EXERCISE_1 \ BOUND \ FLASHER$

Author	Group 1 – L03		
Date	2022/03/07		
Version	1.1		

Contents

1.	Inte	erface	2
2.	2. Functional implementation.		
3.	Inte	ernal implementation.	5
3	3.1.	Overall	5
3	3.2.	State Machine	7
4.	Hist	tory	8

1. Interface

Figure 1: The figure of Bound Flasher System

Signal	Width	In/Out	Description	
flick	1	In	Asynchronous input signal; When the output (led) is turned OFF gradually, at LEDs[5] or LEDs[0], if flick	
			= 1, then the output will turn on gradually again to the	
			max led of the previous state, except the final state.	
reset	1	In	Reset signal; LOW-ACTIVE; reset = 0: system	
			restarts to Initial State; "reset" is asynchronous signal	
			(does not depend on "clock" signal).	
clock	1	In	Clock signal; The function operates state's transition	
CIOCK			at the rising edge of the clock signal.	
	16	16 Out	16-bit led from led[0] to LEDs[15]; LEDs[0] is the	
LEDs			Least Significant Bit; LEDs[15] is the Most	
			Significant Bit.	

Table 1: Description of signals in Bound Flasher

2. Functional implementation.

- Implement a 16-bits LEDs system
- System's Operation base on three input signal
 - Reset
 - Clock
 - Flick
- The system specification
 - Clock signal is provided for system inspire of function status. The function operate state's transition at positive edge of the clock signal.
 - Reset signal:
 - LOW-ACTIVE Reset = 0: System is restarted to Initial State.
 - HIGH-ACTIVE Reset = 1: System is started with initial state.
- Flick signal: special input for controlling state transfer.
- At the initial state, all lamps are OFF. If flick signal is ACTIVE, the flasher start operating:
 - The lamps are turned ON gradually from LEDs [0] to LEDs [15].
 - The LEDSs are turned OFF gradually from LEDs [15] to LEDs [5].
 - The LEDSs are turned ON gradually from LEDs [5] to LEDs [10].
 - The LEDSs are turned OFF gradually from LEDs [10] to LEDs [0].
 - The LEDSs are turned ON gradually from LEDs [0] to LEDs [5].
 - Finally, the LEDs s are turned OFF gradually from LEDSs [5] to LEDSs [0], return to initial state.
- Additional condition: At each kickback point (LEDs [5] and LEDs [0]), if flick signal is ACTIVE, the LEDs will go back and repeat that STATE. For simple, kickback point is considered only when the LEDs s are turned OFF gradually, except final state.

- Some insulations:
 - When flick = 0 at kickback points

• When flick = 1 at kickback points (lamp[5])

3. Internal implementation.

3.1. Overall

Figure 3.1: Block diagram of Bound Flasher

Block	Description	
D-FF (1)	Synchronize the input signal (ledTemp[15:0]) with the rising edge clock. Using the clock signal to increase or decrease the 16-bit led. The rst (reset) signal is the lowactive asynchronous signal (whenever rst == 0, all the led will be off immediately).	
"Control ledTemp" Combinational Logic block	Using the input signals (state[2:0] and led[15:0]) to control	
D-FF (0)	Synchronize the input signal (state[2:0]) with the rising edge clock. Using the clock signal to change the output signal (stateR[2:0]) (stateR means "state Real"). The rst (reset) signal is the low-active asynchronous signal (whenever rst == 0, then the "Real state" will be reset to Initial State immediately).	

"Control state" Combinational Logic block	If "flick signal" is 1 at "kick-back points", "state" will be changed to previous "state"; If "flick signal" is 1 at "Initial State", "state" will be changed to "State 1". The rst (Reset) signal is the low-active asynchronous signal (whenever rst==0, state will be reset to Initial State immediately).
"Control flickFlag" Combinational Logic block	Using a flag (called flickFlag) to check if there is a flick signal (flick == 1) at "kick-back points". If there is a flick signal (flick == 1) at any point of the "kick-back points", this 1-bit flag will be 1 (flickFlag = 1). The changing of "stateR" signal (state Real) and the led will help to set this flag back to 0. The rst (Reset) signal is the low-active asynchronous signal (whenever rst == 0, flickFlag = 0 immediately).

Table 3.1: Block diagram of Bound Flasher Description

3.2. State Machine

Figure 3.2: State Machine of Bound Flasher

Variable name	Description	
reset	Asynchronous signal input. When $reset = 0$, the state will return to	
	the initial state.	
	When the output (led) is gradually turned OFF (=0) gradually, at	
flick	LEDs[5] or LEDs[0], if flick = 1, then the output will turn on	
THEK	gradually again to the max led of the previous state, except the final	
	state.	
LEDs	16 bits output represents 16 lamps. LEDs[0] is the LSB and	
LLDS	LEDs[15] is the MSB.	

Table 3.2: Variable name of State machine

State Name	Description	
	All LEDs is OFF (16 bits output = $LED[0:15] = 0$)	
INITIAL	If flick = 1, then state will change to	
	TRANSITION_STATE_1.	
TRANSITION_STATE_1	The LEDs is gradually turned ON from LEDs[0] to	
TRANSITION_STATE_I	LEDs[15], if reset = 0, the state will return to INITIAL. If	

LEDs[15] is ON, the state will change to		
TRANSITION_STATE_2.		
The LEDs is gradually turned OFF from LEDs[15] to		
LEDs[5], if reset = 0, the state will return to INITIAL. If		
LEDs[5] is OFF and flick=0, the state will change to		
TRANSITION_STATE_3. If LEDs[5] is OFF and flick=1,		
the state will return to TRANSITION_STATE_1.		
The LEDs is gradually turned ON from LEDs[5] to		
LEDs[10], if reset = 0, the state will return to INITIAL. If		
LEDs[10] is ON, the state will change to		
TRANSITION_STATE_4.		
The LEDs is gradually turned OFF from LEDs[10] to		
LEDs[0], if reset = 0, the state will return to INITIAL. If		
LEDs[0] is OFF and flick=0, the state will change to		
TRANSITION_STATE_5. If LEDs[0] is OFF and flick=1,		
the state will return to TRANSITION_STATE_3.		
The LEDs is gradually turned ON from LEDs[0] to		
LEDs[5], if reset = 0, the state will return to INITIAL. If		
LEDs[5] is ON, the state will change to FINAL.		
The LEDs is gradually turned OFF from LEDs[5] to		
LEDs[0]. If LEDs[0] is OFF, the state will change to		
INITIAL.		

Table 3.3: State name of State machine

4. History

Date	Author	Modified part	Description
2022/02/25	Group 1	All	New creation
2022/02/05	Group 1	Table 1 and Figure	Add The figure of Bound Flasher System and
2022/03/05		1	Description of signals in Bound Flasher
2022/02/06	Group 1	Table 3.1 and	Draw the block diagram and write the description
2022/03/06		figure 3.1	for the block diagram
2022/03/07	Group 1	Table 3.2, 3.3 and	Draw State Machine; write the description for the
		figure 3.2	State Machine