RISC_One_Cycle - Especificaciones del Diseño

Resumen

RISC_One_Cycle contiene la implementacion de un procesador RISC One Cycle que cumple con las especificaciones proporcionadas por la guía RTL Exercise Training de Allegro.

Diagrama

Módulos

- top_module.sv: Módulo principal. En este módulo se instancian y conectan el resto de los módulos.
- **control_unit_mod.sv**: Unidad de control. Este módulo genera las señales de control necesarias para el funcionamiento del procesador, decodificando las instrucciones y activando las señales y excepciones correspondientes.
- data_memory_mod.sv: Memoria de datos.
- register_file_mod.sv: Memoria de registros. Contiene los 32 registros del procesador.
- **instruction_memory_mod.sv**: Memoria de instrucciones. Almacena el conjunto de instrucciones que serán ejecutadas por el procesador.
- **program_counter_mod.sv**: Contador de programa. Registro de la dirección de la siguiente instrucción a ejecutar.
- extender_mod.sv: Extensor de señal. Extiende a 32 bits el parametro Immediate o su concatenacion con el parametro Rc.
- alu_mod.sv: Unidad Aritmético-Lógica. Realiza operaciones aritméticas y lógicas sobre los datos proporcionados por los registros o la memoria.

Entradas

- clk: Señal de reloj.
- rst_n: Señal de reinicio activa en bajo. Cuando está en bajo (0) resetea el módulo al estado "A".

Salidas

- **exception_flags_o**: Señales de bandera de excepción de 3 bits: Instrucción inválida, dirección de memoria inválida y dirección de program counter inválida.
- alu_result_o: Resultado de 32 bits de la operación realizada por la ALU.
- reg_file_r_data1_o: Datos de 34 bits leídos del primer registro de la memoria de registros.
- reg_file_r_data2_o: Datos de 34 bits leídos del segundo registro de la memoria de registros.
- data_mem_r_data_o: Datos de 32 bits leídos de la memoria de datos.
- **pc_o**: Contador de programa de N bits.
- inst_read_data_o: Datos de 32 bits leídos de la memoria de instrucciones.
- alu_C_flag_o: Señal de bandera de carry de la ALU. Indica si hubo un acarreo en la última operación aritmética.
- alu_V_flag_o: Señal de bandera de overflow de la ALU. Indica si hubo un desbordamiento en la última operación aritmética.

Estructura del proyecto

El proyecto se encuentra dividido en 5 carpetas:

- Modules: Aqui se encuentran los módulos que conforman procesador.
- testbenchs: Contiene los testbenchs correspondientes cada uno de los módulos.
- Assembler: Aqui puede encontrarse el compilador de assembler desarrollado en python, junto con el programa utilizado y un txt con su explicación.
- Memory files: Contiene los datos a precargar en las memorias para el target testbench.
- Documentación: Aqui se almacenan todos los archivos relevantes para la documentación.

```
RISC One Cycle
- ┌─ testbenchs
├ 🗒 alu_tb.sv
I → □ top module target tb.sv
 data_memory_tb.sv
 I → ☐ instruction memory tb.sv
     - ☐ program_counter_tb.sv
register_file_tb.sv
Lagrandictor Lagr
  - ┌──Assembler
RISC_compiler.py
☐ program1_explained.txt
► ├── Memory files
 └ ☐ reg_memory.bin
 - Modules
```

Simulación online

https://www.edaplayground.com/x/7vE8