Deep Learning Cheat Sheet

Evaluation Metrics

Accuracy =
$$\frac{TP + TN}{TP + TN + FP + FN}$$
Error Rate =
$$1 - accuracy$$

$$\frac{TP}{TP + FP}$$
Precision =
$$\frac{TP}{TP + FN}$$

$$TPR = Recall = \frac{TP}{TP + FN}$$

$$F1\text{-score} = \frac{2 \cdot Precision \cdot Recall}{Precision + Recall}$$
Specificity =
$$\frac{TP}{TN + FP}$$

$$TNR = \frac{TN}{TN + FP}$$

$$FPR = \frac{FP}{FP + TN}$$

$$FNR = \frac{FN}{FN + TP}$$

$$AUC = \int_{0}^{1} TPR \cdot dFPR$$

$$Macro Average = \frac{1}{n} \sum_{i=1}^{n} avg_{i}$$

$$Micro Average = \frac{\sum_{i=1}^{n} TP_{i}}{\sum_{i=1}^{n} TP_{i} + \sum_{i=1}^{n} FP_{i}}$$

Activation Functions

Sigmoid: $f(z) = \frac{1}{1+e^{-z}}$ — Smooth and differentiable. Used in output layers for binary classification.

Hyperbolic (tanh) Tangent $f(z) = \tanh(z)$ — Smooth, differentiable, output centered around 0. Used in LSTM.

Rectified Linear Unit (ReLU) $f(z) = \max(0, z)$ — Non-linear, used as a standard, but has dving units problem for z < 0.

Leaky ReLU : $f(z) = \begin{cases} z & \text{if } z \ge 0 \\ \alpha z & \text{if } z < 0 \end{cases}$

Addresses dying units problem with a small α (typical $\alpha = 0.01$).

Exponential Linear Unit (ELU) :

 $f(z) = \begin{cases} z & \text{if } z \ge 0 \\ \alpha(e^z - 1) & \text{if } z < 0 \end{cases}$ Similar to Leaky ReLU but more computationally expensive.

Softmax: $f(z_i) = \frac{e^{z_i}}{\sum_{i=0}^{K-1} e^{z_i}}$ — Used in the last layer for multi-class classification, outputs a probability distribution.

Data Preparation

Min-max [0,1]: $x' = \frac{(x - x_{min})}{(x_{max} - x_{min})}$

Min-max $[-1,1]: x' = 2 \cdot min \ max(x) - 1$ min-max doesn't handle outliers.

Z-norm: $x' = \frac{(x-\mu)}{}$

Scaling & Centering

Scaling improves the numerical stability, the convergence speed and accuracy of the learning algorithms. Centering improves the robustness of the learning algorithms

Gradient Descent

- 1: Initialize parameter vector θ_0
- 2: repeat
- Compute the gradient of the cost 3: function at current position $\theta_t : \nabla_{\theta} J(\theta_t)$
- Update the parameter vector by moving against the gradient : $\theta_{t+1} = \theta_t$ - $\alpha \cdot \nabla_{\theta} J(\theta_t)$
- where α is the learning rate.
- 6: **until** change in θ is small

— MSE -

$$J_{MSE}(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (\hat{y}(i) - y(i))^2$$

where:

- $-\hat{y}(i) = h_{\theta}(x(i))$ is the prediction of the
- y(i) is the true outcome,
- m is the number of training examples.

$$\nabla_w J_{MSE}(w,b) =$$

$$\frac{1}{m} \sum_{i=1}^{m} \hat{y}(i) \cdot (1 - \hat{y}(i)) \cdot (\hat{y}(i) - y(i)) \cdot x(i)$$

$$\nabla_b J_{MSE}(w,b) =$$

$$\frac{1}{m} \sum_{i=1}^{m} \hat{y}(i) \cdot (1 - \hat{y}(i)) \cdot (\hat{y}(i) - y(i))$$

- Cross Entropy -

$$J_{CE}(\theta) = -\sum_{i=1}^{m} y(i) \cdot \log h_{\theta}(x(i)) + (1 - y(i)) \cdot \log(1 - h_{\theta}(x(i)))$$

where:

- $p_{\theta}(y(i) \mid x(i))$ is the probability model parameterized by θ , predicting the probability of the true class y(i) given the input x(i).
- m is the number of observations or data points in the dataset.

$$\nabla_{w} J_{CE}(w,b) = \frac{1}{m} \sum_{i=1}^{m} (\hat{y}(i) - y(i)) \cdot x(i)$$
$$\nabla_{b} J_{CE}(w,b) = \frac{1}{m} \sum_{i=1}^{m} (\hat{y}(i) - y(i))$$

Gradient Descent Variants

-BGD

Smooth, not wiggling, strictly decreasing cost, many epochs needed, choose larger learning rate, no out-of-core support all data in RAM (m), easy to parallelise.

— SGD —

Wiggling, needs smoothing, wiggles around minimum, not necessarily decreasing cost, few epochs needed, choose smaller learning rate, out-of-core support - not all data to be kept in RAM of a single machine, not easy to parallelise.

- MBGD -

Slightly wiggling, wiggles around minimum. typically decreasing cost, less epochs than BGD, more than SGD needed, choose medium learning rate (dependent on model), out-of-core support - not all data to be kept in RAM of a single machine, easy to parallelise.

Bias & Variance

 $\mathbf{Bias}(h_{\theta}) = \mathbb{E}[h_{\theta}, D] - f$ $\mathbf{Var}(h_{\theta}) = \mathbb{E}[(h_{\theta}, D - \mathbb{E}[h_{\theta}, D])^2]$ $\mathbf{MSE} = \mathrm{Bias}(h_{\theta})^2 + \mathrm{Var}(h_{\theta}) + \sigma^2$ Overfitting Underfitting high bias, low variance low bias, high variance

Theory

Compute Graph Universal Approximation Theorem

Curse of Dimensionality

when the dimensionality increases, the volume of the space increases so fast that the available data become sparse. This sparsity is problematic for any method that requires sta- tistical significance. In order to obtain a statistically sound and reliable result, the amount of data needed to support the result often grows exponentially with the dimensionality

- Backpropagation	DeepCNN	
- MLP Layer	Conf2D Params MaxPooling	Definition Use Case
$\mathbf{a}^{[l]} = \sigma^{[l]}(\mathbf{z}^{[l]})$	LoNot5	
$\mathbf{z}^{[l]} = \mathbf{W}^{[l]} \cdot \mathbf{a}^{[l-1]} + \mathbf{b}^{[l]} \text{with } \mathbf{a}^{[0]} = \mathbf{z}^{[l]}$	AlexNet VGGnet GoogleNet	GenRNN Many to Many
	- ResNet Pattern	Many to One
$\frac{\partial L}{\partial \mathbf{z}^{[l]}} = \frac{\partial L}{\partial \mathbf{a}^{[l]}} * \frac{d\sigma^{[l]}(\mathbf{z}^{[l]})}{dz}$		Attention
$ \frac{\partial L}{\partial \mathbf{W}^{[l]}} = \frac{\partial L}{\partial \mathbf{z}^{[l]}} \cdot \left(\mathbf{a}^{[l-1]}\right)^{T} \\ \frac{\partial L}{\partial \mathbf{b}^{[l]}} = \frac{\partial L}{\partial \mathbf{z}^{[l]}} $	Feature Visualization Data Preparation	Sequence to Sequence Attention
$\frac{\partial \mathbf{b}^{[l]}}{\partial L} = \frac{\partial \mathbf{z}^{[l]}}{\partial \mathbf{z}^{[l]}}^{T} \partial L$	Network Compile	
$\frac{\partial L}{\partial \mathbf{a}^{[l-1]}} = \left(\mathbf{W}^{[l]}\right)^T \cdot \frac{\partial L}{\partial \mathbf{z}^{[l]}}$ Full Batch	Evaluate Activation Map	Transformer High-Level Architecture
	Data Augmentation	Self-Attention Full Architecture
$egin{array}{c} rac{\partial L}{\partial \mathbf{Z}^{[l]}} = rac{\partial L}{\partial \mathbf{A}^{[l]}} * rac{d\sigma^{[l]}(\mathbf{Z}^{[l]})}{dz} \ \end{array}$	Principle Principle	\
$rac{\partial L}{\partial \mathbf{W}^{[l]}} = rac{\partial L}{\partial \mathbf{Z}^{[l]}} \cdot \left(\mathbf{A}^{[l-1]} ight)^T$	Types Strategies	
$egin{pmatrix} rac{\partial L}{\partial \mathbf{b}^{[l]}} = rac{1}{m} \cdot rac{\partial L}{\partial \mathbf{Z}^{[l]}} \cdot egin{pmatrix} dots \ dots \ dots \end{pmatrix}$	Keras	
$\frac{\partial \mathbf{b}^{[l]}}{\partial \mathbf{b}^{[l]}} = \frac{1}{m} \cdot \frac{\partial \mathbf{Z}^{[l]}}{\partial \mathbf{Z}^{[l]}} \cdot \begin{pmatrix} 1 \\ \vdots \end{pmatrix}$	Functional API	
$egin{aligned} rac{\partial L}{\partial \mathbf{A}^{[l-1]}} &= \left(\mathbf{W}^{[l]} ight)^T \cdot rac{\partial L}{\partial \mathbf{Z}^{[l]}} \end{aligned}$	Sequential vs Functionals	
$egin{array}{ll} \partial \mathbf{A}^{[l-1]} &= \begin{pmatrix} \mathbf{V} & \end{pmatrix} & \partial \mathbf{Z}^{[l]} \ \mathbf{Batch\ Normalization} \end{array}$	Architecture 1 Architecture 2 Architecture 3	
	Architecture 3	
Vanishing Exploding Gradient ——Saturation	Transfer Learning	
Variance Change	Principle Keras Code	
Xavier & Heu Initialization Batch Normalization Non Saturating Activation Function	MobileNet Strategies	
Gradient Clipping	DNN	
Optimizers	RNN Use Case	
Momentum	Model Category Recurrence Net	
AdaGrad RMS Prop	Single Layer Many to Many	
Adam Scheduler	Un exemple par catégorie Stacked RNN	
Parulanization.	JStacked Itiviv	
Regularization Weight Penalty	LSTM	
Dropout Early Stopping	Long Term Memory Unit Cell Gates	
Larly Stopping	Backprop Keras	
CNN	$\int_{-\infty}^{\infty}$	
Convolutional Layer Pooling Layer	Word Embedding	-
Habalanaad Dataset	Word Training	
Unbalanced Dataset Bayesian Approach		
Discrete Continuous	Sentiment Classification Strategy	
Medical Test	Architecture	