Università degli Studi di Bologna

Corso di Laurea in Informatica Esercitazione scritta di LINGUAGGI Teoria — 14 febbario 2011

- 1. Dare la sintassi per le formule della logica del prim'ordine
- 2. Scrivere una funzione ricorsiva su F che conti il numero di costanti usate in F
- 3. Definire la semantica $[\cdot]^{A,\xi}$ (o valutazione $v(\cdot)^{A,\xi}$) della formula $\exists x.P$.
- 4. Dare le definizioni di conseguenza logica e di equivalenza logica per la logica proposizionale classica
- 5. Dimostrare il teorema di deduzione sintattica per la logica proposizionale
- 6. Enunciare il teorema di compattezza per la logica proposizionale
- 7. Enunciare il principio di invarianza per sostituzione
- 8. Dare le definizioni di implicante primo essenziale e non essenziale
- 9. Sia F una formula della logica proposizionale in cui compaiono solamente negazioni, formule atomiche, \top e \bot . F si dice positiva se è della forma \top , \bot , A o $\neg N$ dove N è una formula negativa; N si dice negativa se è della forma $\neg P$ dove P è positiva. Dimostrare, per induzione su F che
 - Se F è positiva allora $F \Vdash F[\top/A]$
 - Se F è negativa allora $F[\top/A] \Vdash F$

Nota: mentre si dimostra 1) per F è possibile assumere che 2) valga sulle sottoformule di F. Idem per 1) mentre si dimostra 2).