

Assignment N. 4: Image Segmentation via N-cut on the "tree dataset"

ISPR Course A.Y. 2020/2021 Marco Petix

Implementing the N-Cut Segmentation

Segmentation process implemented via Scikit-Image library functions:

- Initial Segmentation via K-means:
 - k_labels = segmentation.slic(image, compactness=compactness, n_segments=n_segments)
 - k_out = color.label2rgb(k_labels, image, kind='avg')
- Computing the Region Adjacency Graph (RAG):
 - rag = graph.rag_mean_color(image, k_labels, mode='similarity')
- Performing the Normalized-Cut:
 - ncut_labels = graph.cut_normalized(k_labels, rag)
 - ncut_out = color.label2rgb(ncut_labels, image, kind='avg')

Identification of of ideal parameters for the segmentation:

- (At first) By visual comparison of several combination of parameters (Screening)
 - Somewhat inefficient approach
 - Need for a measure of the quality of a segmentation

Computing a Measure of the Segmentation Quality

For each labeled area on the target image:

- 1. Extract the label-specific masks
 - Area covered by the label
 - Area not covered by the target-label
- 2. Apply the masks on the segmented image
 - Obtain the masked images A and A-1
- 3. Compute the positive score on masked image A
 - Select the dominant color of the image as D_clr
 - Compute the percentage of area covered by D_clr within the target-label region
- 4. Compute the negative score on masked image A⁻¹
 - Computing the percentage of the area covered by D_clr outside of the target-label region
- 5. Sum the two scores and weight on the percentage of image covered by the target-label
- 6. Sum the scores for the remaining labels
 - Ex: Score = Sky + Tree + Grass + Background

Analysing the results of the Segmentation

- Improved Model selection:
 - From visual comparison of k-means segmentations
 - o To grid-search approach based on average resemblance to labeled images
- Working on a unique set of parameters:
 - Overall average accuracy around 50%
 - Dense Trees: 60-80%
 - Sparse Trees: around 40%
- Splitting the dataset in tree-shape subsets
- Working on subset specific parameters:
 - Higher number of segments and lower compactness for sparse trees
 - Average accuracy over the whole dataset raised to 60%

Final Considerations: Flaws and Improvements

Problematic Flaws / Conditions:

- Scattered and articulated forms
- Areas shared by different non-easily separable colors
 - Ex. Sky through the branches
- Asymmetrical influence of light on some objects
- Scalability of the manual recognition of the shape of objects

• Potential Improvements:

- Clustering for tree / object shape recognition
- Adaptive use of different segmentations
 - Increasing the segments in areas of high color diversity

