1 Craig Interpolation Theorem

Remark 17.1.1 As a second serious application of the Model Existence Theorem we prove Craig's Interpolation Theorem for propositional logic. The first-order version of this result has many important consequences which we will consider more fully later. The proof of the first-order theorem is due to William Craig in 1957, and is probably the last deep elementary theorem about first-order logic. I am not sure if the interpolation theorem for propositional logic predates Craig's work or not.

The proof given here is due to Raymond Smullyan, modified a bit by Melvin Fitting.

Definition 17.1.2 (Interpolant) A proposition γ is an *interpolant* for the implication $\alpha \to \beta$ if every propositional symbol in γ occurs in both α and β and both $\models \alpha \to \gamma$ and $\models \gamma \to \beta$.

Example 17.1.3 The implication $(P \lor (Q \land R)) \to (P \lor \neg \neg Q))$ has $P \lor Q$ as an interpolant. The implication $(P \land \neg P) \to Q$ has \bot as an interpolant. The implication $Q \to (P \lor \neg P)$ has \top as an interpolant.

Theorem 17.1.4 (Craig Interpolation Theorem) If $\alpha \to \beta$ is a tautology, then it has an interpolant.

Proof. It is useful to introduce the following notation for this proof. If S is a finite set of propositions, then $\langle S \rangle$ is the conjunction of the members of S. If $S = \{\gamma\}$ then $\langle S \rangle = \gamma$ and if $S = \emptyset$ take $\langle S \rangle$ to be \top . Call a finite set of propositions *Craig-consistent*, provided there is a partition of S into two subsets S_1 and S_2 (that is, $S = S_1 \cup S_2$ and $\emptyset = S_1 \cap S_2$) such that $\langle S_1 \rangle \to \neg \langle S_2 \rangle$ has no interpolant. We will show that Craig-consistency is a propositional consistency property.

Suppose that Craig consistency is a propositional consistency property, and we will derive the theorem in the contrapositive form: if $\alpha \to \beta$ has no interpolant, then $\alpha \to \beta$ is not a tautology. Let $S = \{\alpha \to \neg \beta\}$, and consider the partition $S_1 = \{\alpha\}$ and $S_2 = \{\neg \beta\}$. If $\alpha \to \neg(\neg \beta)$, which is $\langle S_1 \rangle \to \neg \langle S_2 \rangle$, then this would be an interpolant for $\alpha \to \beta$ as well, hence it has no interpolant. So, $\{\alpha, \neg \beta\}$ is Craig-consistent, and thus satisfiable by the Model Existence Theorem 16.2.1. It follows that $\alpha \to \beta$ cannot be a tautology.

We complete the proof by showing that Craig-consistency is a propositional consistency property. It is more straightforward to show that Craig-inconsistency (the negation of Craig consistency) is a propositional inconsistency property. This is sufficient by Lemma 16.1.6. To show a finite set S is Craig-inconsistency amounts to showing that any partition into S_1 and S_2 the implication $\langle S_1 \rangle \to \neg \langle S_2 \rangle$ has an interpolant. We will say that S_1 and S_2 has an interpolant if this is so.

Let S be a finite set of propositions. Suppose $P, \neg P \in S$, for some propositional symbol P. Consider any partition S_1 and S_2 of S. If $P, \neg P$ is in S_1 , then $\langle S_1 \rangle$ is tautologically equivalent to \bot , so we can take \bot to be the interpolant. If $P, \neg P \in S_2$, then $\neg \langle S_2 \rangle$ is tautologically equivalent to \top , so we can take the interpolant to be \top . Otherwise, P and $\neg P$ are in different partitions. If $P \in S_1$ take the interpolant to be P, since $\langle S_1 \rangle$ is tautologically equivalent to a conjunction with P as one conjunction and $\neg \langle S_2 \rangle$ is tautologically equivalent to a disjunction with $\neg \neg P$ as a disjunct. And if $P \in S_2$, then take the interpolant to be $\neg P$, since $\langle S_1 \rangle$ is tautologically equivalent to a conjunction with $\neg P$ as a conjunct and $\neg \langle S_2 \rangle$ is is tautologically equivalent to a disjunction with $\neg P$ as a disjunct. In any case, S is Craig-inconsistent, since for every way of partitioning S into S_1 and S_2 , $\langle S_1 \rangle \rightarrow \neg \langle S_2 \rangle$ has an interpolant. Very similar reasoning by cases shows that if $\bot \in S$ or $\neg \top \in S$ then S will be Craig-inconsistent. So, Craig inconsistency satisfies condition (C1).

Let α is a type-A proposition with components α_1 and α_2 and suppose that $S \cup \{\alpha_1, \alpha_2\}$ is Craig inconsistent. Consider any partition of S into S_1 and S_2 . Let γ_1 be an interpolant for $S_1 \cup \{\alpha_1, \alpha_2\}$ and S_2 , let γ_2 be an interpolant for S_1 and $S_2 \cup \{\alpha_1, \alpha_2\}$ Since $\alpha \simeq \alpha \land \beta$ and $\neg \alpha \simeq \neg \alpha \lor \neg \beta$, it follows that

 $\langle S_1 \cup \{\alpha_1, \alpha_2\} \rangle \simeq \langle S_1 \cup \{\alpha\} \rangle$ and $\neg \langle S_2 \cup \{\alpha_1, \alpha_2\} \rangle \simeq \neg \langle S_1 \cup \{\alpha\} \rangle$. So, γ_1 is an interpolant for $S_1 \cup \{\alpha\}$ and S_2 and γ_2 is an interpolant for S_1 and $S_2 \cup \{\alpha\}$. Since S_1 and S_2 was an arbitrary partition of S, $S \cup \{\alpha\}$ is Craig-inconsistent. So Craig-inconsistency satisfies (C2).

Let β is a type-A proposition with components β_1 and β_2 and suppose that both $S \cup \{\beta_1\}$ and $S \cup \{\beta_2\}$ are Craig inconsistent. Consider any partition of S into S_1 and S_2 . Let γ_1 be an interpolant for $S_1 \cup \{\beta_1\}$ and S_2 and δ_1 be an interpolant for S_1 and $S_2 \cup \{\beta_1\}$. Similarly, let γ_2 be an interpolant for $S_1 \cup \{\beta_2\}$ and S_2 and S_3 be an interpolant for S_4 and S_5 . Note that S_5 and S_7 and S_8 and S_8

$$\langle S_1 \cup \{\beta\} \rangle \simeq (\langle S_1 \cup \{\beta_1\} \rangle \vee \langle S_1 \cup \{\beta_2\} \rangle)$$

Thus, $\gamma_1 \vee \gamma_2$ is an interpolant for $S_1 \cup \{\beta\}$ and S_2 , since

$$\models \langle S_1 \cup \{\beta_1\} \rangle \to \gamma_1 \vee \gamma_2$$
 and $\models \langle S_1 \cup \{\beta_1\} \rangle \to \gamma_1 \vee \gamma_2$ and $\models \gamma_1 \vee \gamma_2 \to \langle S_2 \rangle$.

Also,

$$\neg \langle S_2 \cup \{\beta\} \rangle \simeq (\neg \langle S_2 \cup \{\beta_1\} \rangle \land \neg \langle S_2 \cup \{\beta_2\} \rangle)$$

Thus, $\delta_1 \wedge \delta_2$ is an interpolant for S_1 and $S_2 \cup \{\beta\}$ since

$$\models \langle S_1 \rangle \to \delta_1 \wedge \delta_2$$
 and $\models (\delta_1 \wedge \delta_2) \to \neg \langle S_2 \cup \{\beta_1\} \rangle$ and $(\delta_1 \wedge \delta_2) \to \neg \langle S_2 \cup \{\gamma_2\} \rangle$

and $\langle S_1 \rangle \to (\delta_1 \wedge \delta_2)$. Since S_1 and S_2 was an arbitrary partition of S, $S \cup \{\beta\}$ is Craig-inconsistent. So Craig-inconsistency satisfies (C3).

Example 17.1.5 The proof of the Craig Interpolation Theorem suggests an algorithm for finding the interpolant using the unified notation. Consider the tautology $(P \to (Q \to R)) \to (Q \to (P \to R))$.

- 1. Start with the set $S = \{P \to (Q \to R), \neg (Q \to (P \to R))\}$ with the partition $S_1 = \{P \to (Q \to R)\}$ and $S_2 = \{\neg (Q \to (P \to R))\}$ in the notation of the theorem. We are looking for an interpolant for this partition.
- 2. It is sufficient to find an interpolant for $\{P \to (Q \to R)\}$ and $\{Q, \neg (P \to R)\}$. This is a type-A case.
- 3. It is sufficient to find an interpolant for $\{P \to (Q \to R)\}$ and $\{Q, P, \neg R\}$. This is a type-A case.
- 4. The proposition in $\{P \to (Q \to R)\}$ is type-B, so if γ_1 is an interpolant for $\{\neg P\}$ and $\{Q, P, \neg R\}$ and γ_2 is an interpolant for $\{Q \to R\}$ and $\{Q, P, \neg R\}$, then $\gamma_1 \vee \gamma_2$ is the desired interpolant.
 - (a) $\gamma_1 = \neg P$ is an interpolant for $\{\neg P\}$ and $\{Q, P, \neg R\}$. It is worth verifying this:

$$\models \neg P \rightarrow \neg P$$
 and $\models \neg P \rightarrow (\neg Q \lor \neg P \lor \neg \neg R)$.

- (b) We now need an interpolant for $\{Q \to R\}$ and $\{Q, P, \neg R\}$. It is sufficient to find an interpolant γ_3 for $\{\neg Q\}$ and $\{Q, P, \neg R\}$ and an interpolant γ_4 for $\{R\}$ and $\{Q, P, \neg R\}$.
 - i. $\gamma_3 = \neg Q$ is an interpolant for $\{\neg Q\}$ and $\{Q, P, \neg R\}$.
 - ii. $\gamma_4 = R$ is an interpolant for $\{R\}$ and $\{Q, P, \neg R\}$. We verify this:

$$\models R \rightarrow R$$
 and $\models R \rightarrow (\neg Q \lor \neg P \lor \neg \neg R)$.

- (c) We have $\gamma_3 = \neg Q$ and $\gamma_4 = R$, so the required interpolant for step b is $\neg Q \lor R$.
- 5. We now have $\gamma_1 = \neg P$ and $\gamma_2 = \neg Q \lor R$, so the required interpolant for step 4 is $\neg P \lor \neg Q \lor R$. This is also the required interpolant for $(P \to (Q \to R)) \to (Q \to (P \to R))$.

So, $\neg P \lor \neg Q \lor R$ is an interpolant for $(P \to (Q \to R)) \to (Q \to (P \to R))$. We verify this:

$$\models (P \to (Q \to R)) \to (\neg P \lor \neg Q \lor R)$$
 and $\models (\neg P \lor \neg Q \lor R) \to (Q \to (P \to R)).$