C W N E NS

Metaheurísticas

Convocatoria Ordinaria Enero – 24/enero/2019

Normativa:

- Indicar con V o F la respuesta en el test. En caso de cambiar la respuesta se debe tachar con una X la que no se desea. Otra fórmula penaliza como ERROR.
- El tipo test se evalúa como ACIERTOS ERRORES, y si el resultado del mismo es negativo se restará a la parte de las preguntas cortas.
- Se debe obtener un mínimo de 1 punto en test, 1 punto en preguntas cortas y 3 puntos en problemas para superar el examen, salvo grupos de trabajo que deben obtener 2 puntos en teoría y 3 puntos en problemas

Δna	llidos.	Nom	hra.
Δ	111(1)(1)5	13())11	LII C.

Tipo test (2 puntos)

La metaneuristica de particle swarm optimization tiene caracteristicas muy cercanas a la
evolución diferencial.
Las metaheurísticas basadas en computación evolutiva tienen como ventajas con respecto a
otras técnicas: amplia aplicabilidad, alto coste en desarrollo y la posibilidad de ejecutar
interactivamente, entre otras.
La memoria a largo plazo de la búsqueda tabú solo permite intensificar la búsqueda después
de un estancamiento.
Una búsqueda local tiende hacia óptimos locales que pueden estar muy alejados del óptimo
global.
La matriz de feromonas de un sistema de hormigas recuerda a las estructuras de vecindad y
memoria de la búsqueda tabú.
Las metaheurísticas basadas en computación evolutiva no garantizan la obtención de la
solución óptima en un tiempo finito.
El operador de recombinación ternario del algoritmo JADE permite la obtención de nuevo
individuos seleccionando, entre otros, a uno de los p mejores del momento anterior.
La programación genética es una generalización de la evolución diferencial.
Los sistemas de colonias de hormigas tienen buen comportamiento en problemas de tipo
grafo dirigido, pero se encuentran con problemas cuando el grafo sufre cambios.
El paradigma map-reduce oculta la complejidad de la distribución y tolerancia a fallos, y
destaca por su adecuación ahorrando mucho tiempo en todos los problemas.

Preguntas cortas (2 puntos)

- 1. Enumera y describe brevemente los elementos clave de cualquier metaheurística. Máximo 2-3 líneas por elemento.
- 2. Describe brevemente (4-5 líneas como máximo) las principales diferencias entre las metaheurísticas basadas en trayectorias y las metaheurísticas basadas en poblaciones.
- 3. Describe los principales cambios de Marco Dorigo entre los sistemas de hormigas y los sistemas de colonias de hormigas.
- 4. En una metaheurística híbrida como los algoritmos meméticos, ¿sobre qué agentes se puede aplicar la hibridación? ¿qué hibridación se puede llevar a cabo?
- 5. En la construcción de un algoritmo genético, ¿qué pasos son necesarios? Identifica todos ellos y asócialos al problema, al algoritmo o ambas partes.

Problemas (6 puntos)

1. (1 punto) Necesitamos resolver un problema de regresión simbólica, considerando que solo se pueden utilizar números enteros (Z) en el intervalo [-5, 5], con operaciones de suma, resta, multiplicación y división.

¿Qué técnica consideras más oportuna para resolver este problema? Indica todas las restricciones, parámetros y gramáticas asociadas a la técnica elegida, así como los valores más oportunos para su resolución.

Si empleamos el error cuadrático medio como función de adaptación con respecto a la regresión simbólica en 8 puntos de la función que buscamos, y teniendo la siguiente tabla y la fórmula de ECM, ¿cuál sería mejor solución y=0.5*x^2-1 ó y=x^2/0.25?

$$ECM = \frac{1}{n} \sum_{i=1}^{n} (\widehat{Y}_i - Y_i)^2$$

Puntos				
Х	у	Χ	у	
-2	8	0.5	0.5	
-1.5	4.5	1	2	
-1	2	1.5	4.5	
-0.5	0.5	2	8	

2. (4 puntos) El nuevo museo provincial ibérico de Jaén necesita montar una muestra del Siglo IV al Siglo V a.C sobre "La heroización de los príncipes" durante el mes de junio y para ello cuenta con una sala de 500 metros cuadrados.

El problema de la dirección del museo es que cuenta con 150.000 piezas y necesita elegir las 150 piezas más diversas de entre todas ellas. Para ello, cuentan con una matriz de distancias donde d_{ij} indica la distancia entre el elemento e_i y e_j .

- a. ¿Qué algoritmos consideras más adecuados para resolver este problema de todos los vistos? Justifica la respuesta.
- b. Detalla las ventajas e inconvenientes de su elección.
- c. Resuelve el problema mediante un algoritmo genético indicando la
 - i. representación de un individuo,
 - ii. inicialización basada en lista de 5000 candidatos.
 - iii. función de adaptación (maximizar),
 - iv. cruce en dos puntos entre dos individuos,
 - v. mutación de un individuo de un alelo.
 - vi. Además, dibuja un esquema de un algoritmo genético generacional con élite de dos individuos para este problema.
- d. ¿Qué parámetros necesitamos considerar inicialmente para un correcto funcionamiento de este algoritmo genético?
- 3. (1 punto) Tras resolver el problema anterior mediante el algoritmo genético, el museo provincial nos ha aportado nuevos datos para la muestra. En concreto, nos ha aportado las dimensiones de cada pieza y su peso.
 - a. ¿Qué modificación sobre el algoritmo genético podríamos llevar a cabo para considerar ambos conceptos?
 - b. ¿Cómo incorporarías el peso a la función de evaluación para que fuese el menor posible en la solución óptima?