

Grundlagen der Fernerkundung und Bildverarbeitung

Institut für Geodäsie Übung SS 2023

Technische Universität Graz

Python, ERDAS & QGIS: (Geo-) Daten Handling

Lehrinhalte

Übung 3

- Fähigkeiten von Python (z.B. "rasterio" Bibliothek), ERDAS und QGIS kennenlernen
- Laden von (GeoTiff) Bildern (Python, QGIS & ERDAS)
- Benutzung Viewer (ERDAS & QGIS)
- Bänder Kombinieren (layerstack)
- Subsets erstellen mit Python (ev. ERDAS)
- Spektrale Profile erstellen (ERDAS oder QGIS)

Python Module für Fernerkundung und Bildverarbeitung

- Eine kurze Liste von wichtigsten Modulen:
 - **Pyproj** Library for cartographic transformations.
 - **Cartopy** A library providing cartographic tools.
 - **Basemap** A matplotlib toolkit for plotting 2D data on maps.
 - **GDAL** Geospatial Data Abstraction Library.
 - Rasterio Expressing GDAL's data model using fewer non-idiomatic extension classes
 - **Shapely** Creation, manipulation, and analysis of planar geometry objects.
 - **Pyshp** Shapefile Library reads and writes ESRI Shapefiles.
 - Fiona Fiona reads and writes spatial data files.
 - **LibLAS** Reads and writes the LiDAR format.
 - **PDAL** Library for translating and manipulating point cloud data.
 - Pandas Python Data Analysis Library.
 - **GeoPandas** Working with geospatial data + spatial operations.
 - Seaborn Statistical data visualization.
 - **OpenCV** A real time computer vision library.
 - **Scikit-image** Image processing in Python.
 - Scikit-learn Machine Learning in Python.
 - **Tensorflow** Machine/Deep Learning in Python.
 - **PyTorch** Machine/Deep Learning in Python.
 - **Keras** Machine/Deep Learning Library.

www.tugraz.at

Übungsangaben

- Immer selbe Aufteilung
 - Lehrinhalte bzw. Lernziele
 - Daten
 - ... die in dieser Übung verwendet werden
 - Übungen
 - Auftrag
 - Auftrag in Worten
 - Darstellung der Ergebnisse (zur Betrachtung und für Dokumentation)
 - Dokumentation
 - Nur für Übungen die abzugeben sind (N.N * Übung in ROT)
 - Andere Übungen sind nur in wenigen Worten festzuhalten
 - Daten
 - die für diese Übung relevant sind.

Daten (1)

- Landsat TM 7 Bilder (2007)
 - ORDNER: \data1\LS7\LS2007
 - Namensformat: L7fppprrr_rrrYYYYMMDD_AAA.TIF
 - L71190027_02720020831_B10.TIF
 - L7 = Landsat 7
 - f = ETM+ data format = Level 1
 - ppp = starting PATH of the product
 - rrr_rrr = starting and ending ROW of the product
 - YYYYMMDD = acquisition date 2002 08 31
 - AAA = file type
 - B10 = Band 1
 - B61 = Band 6L (low gain)
 - B62 = Band 6H (high gain)
 - B80 = Band 8 (panchromatisch)
 - MTL = Level-1 metafile, GCP = Ground control points

Daten (2)

- Landsat TM 7 Bilder (2007) \data1\LS7
 - geometrische Auflösung
 - B80 = 15 m
 - B10..B50 + B70 = 30 m
 - B61, B62 = 60 m
 - Bänder ETM+ MS/thermal
 - [1,2,3,4,5,6,7] = [BG,G,R,NIR,MIR(kurzw.),TIR,MIR(langw.)]
 - 8 = panchromatisch
 - Kanalkombinationen (BGR)
 - 123 = "True colour"
 - 234 = "False colour NIR"
 - 247 = "False colour MNIRG"
 - 345 = "False natural" (ERDAS)
 - 346 = "Land Trafficability" (ERDAS)

www.tugraz.at

Übung 1 (1)

3.1 Einlesen von GeoTIFF Bildern in Python

- Einlesen des panchromatischen Bildes (Landsat Bild, LS2007)
 - Metadaten abfragen:
 - Anzahl der Kanäle/ Bänder
 - Datentyp
 - Informationen zur Georeferenzierung (transform, crs,...)
 - Einlesen von Bilddaten ("Pixeln") eines spezifischen Bildkanals
 - Den Bildbereich [9800:11500,6500:8000] darstellen
 - Als Grauwertbild mit matplotlib Bibliothek
- Daten:
 - Input: \LS2007\ "panchromatischen Kanal"

Übung 1 (2)

- 3.2 * Layerstacking (rasterio, gdal, numpy)
 - Auftrag
 - Zusammenfügen der Kanäle [BG,G,R,NIR,MIR1,MIR2] in ein sechskanaliges Bild
 - Darstellung (z.B. in ERDAS)
 Kanalkombination RGB=[742]
 (Achtung: Kanalnummern von Landsat TM!)
 - Dokumentation
 - Python Code
 - Screenshot Kanalkombination (Übersicht und Detail Raum "Knoten Webling", "Schwarzlteiche")
 - Daten
 - Input: \LS2007\... _bNN.tiff
 - Output (Vorschlag): Is2007_ms_notir.img

Übung 1 (3)

- 3.3 Subsets (rasterio, gdal, numpy)
 - Auftrag
 - Bilden von 18 km x 18 km Subsets aus den LS 2007 Bildern bei gegebener Linken Oberen Ecke (upper left corner, ULC)
 - Darstellen (ERDAS): Pan als Greyscale, MS als Falschfarb-Infrarotbild
 - Dokumentation
 - QGIS Screenshots + Python Code
 - Daten
 - Input:
 - ls2007_pan
 - ls2007_ms_notir.img
 - Output (Suffix):
 - ..._subpcNN.img

Übung 1 (4)

3.3 Subsets

- ULC für Subsets
 - Gruppe NN: Easting(X), Northing(Y)
 - *Gruppe* 1: 511920,5344920
 - Gruppe 2: 511920,5326920
 - Gruppe 3: 511920,5308920
 - *Gruppe* 4: 511920,5290920
 - *Gruppe* 5: 511920,5272920
 - *Gruppe* 6: 511920,5254920
 - Gruppe 7: 511920,5236920
 - *Gruppe* 8: 511920,5218920
 - *Gruppe* 9: 511920,5200920

Übung 1 (5)

- 3.4 * Spektrale Profile (ERDAS oder QGIS-Semi-Automatic Classification Plugin)
 - Auftrag
 - Erstellung von Spektralen Profilen für fünf (5)
 Landbedeckungsklassen (engl. landcover, kurz LC)
 - z.B. Wald, Ackerland, Siedlung, Wasser, Grünland, Schnee ...
 - Punkte kleinräumig wählen, so dass auf dem Bild noch etwas erkennbar ist!
 - Dokumentation
 - Screenshot mit Lage der Punkte (sollen erkennbar sein!). Dazu als Hilfe shp-File verwenden.
 - Spectral Profile Chart
 - Beurteilung in welchen Bändern die LC-Klassen trennbar sind (mit Begründung)
 - Daten
 - Input:
 - Is2007_ms_notir_subNN.img