- 1. Вспомним свойства броуновского движения:)
 - (a) Найдите $E(W_3|W_1)$, $Var(W_3|W_1)$;
 - (b) Найдите $E(W_1|W_3)$, $E(W_1|\mathcal{F}_3)$, $Var(W_1|W_3)$, $Var(W_1|\mathcal{F}_3)$;
 - (c) Найдите $E(W_3^3|W_1)$, $E(W_1^3|W_3)$.
- 2. Рассмотрим процесс $C_t = W_t^3 + 7W_t + 5 + d \cdot t \cdot W_t$.
 - (a) Найдите dC_t .
 - (b) При каких значениях d процесс C_t будет мартингалом?
 - (c) Для полученного значения d найдите $Cov(C_t, \int W_u^2 dW_u)$.
- 3. Рассмотрим процесс $Y_t = \exp(\sigma W_t + bt)$.
 - (a) Найдите dY_t .
 - (b) Как должны быть связаны b и σ , чтобы Y_t был мартингалом?
 - (c) Найдите $E(\exp(\sigma W_t))$.
- 4. Рассмотрим процесс $Y_t = W_t + 2t$. Пусть τ первый момент времени, когда W_t окажется равным 5.
 - (a) Пусть α произвольная константа, найдите такую функцию f(t), что процесс $M_t = f(t) \exp(\alpha Y_t)$ является мартингалом.
 - (b) Используя теорему Дуба найдите $\mathsf{E}(\exp(-s au))$ для произвольной константы s.

Подсказка: для первого пункта найдите dM_t и что-то там к чему-то там приравняйте :)

- 5. Эта задача объясняет, для чего искать такую полезную штуку, как $\mathrm{E}(\exp(-s au))$. При этом ничего из предыдущей задачи не используется :) Итак, пусть $m(s) = \mathrm{E}(\exp(-s au))$.
 - (a) Найдите m'(s), m'(0), m''(s), m''(0).
 - (b) Известно, что m'(0) = -5, а m''(0) = 100, найдите $E(\tau)$ и $Var(\tau)$.
- 6. Рассмотрим модель Блэка-Шоулза с параметрами S_0, μ, σ, r .

Найдите цену актива X_0 , если известно, что в момент времени T=2 актив выплачивает сумму равную $X_2=S_1+6\ln S_2$.