Theorem: Let V be a complex inner product space and let TESIVI.

<T(v), v), ∈ R Y veV

iff T is self-adjoint.

Thus LTIU, VZ, ER.

Conversely, suppose $\langle T(v), v \rangle \in \mathbb{R}$ for all $v \in V$. Then, for $v \in V$, $\langle T(v), v \rangle = \langle v, T^*(w) \rangle \Rightarrow \langle T^*(w), v \rangle = \langle T(v), v \rangle$

(SINCE (V, TW) ER), and therefore

 $\langle tr^*-t\rangle(\vee), v\rangle_{V} = 0 \quad \forall \ v \in V.$

By the above result, this implies that T*-T=U, that is, T*=J./

Theorem: Let V be an inner product space over f (R or C), let TEL(V) be a self-adjoint operator, and let vive eV be eigenvectors of T corresponding to distinct eigenvalues $\lambda_1 \lambda_2$. The vi and vi are orthogonal.

Proof: We have

$$\lambda_{1}\langle v_{1},v_{2}\rangle = \langle \lambda_{1},v_{1},v_{2}\rangle = \langle v_{1},Tv_{2}\rangle \text{ (Since T is self-adjoint)}$$

$$= \langle v_{1},\lambda_{2}v_{2}\rangle$$

$$= \lambda_{2}\langle v_{1},v_{2}\rangle \text{ (Since }\lambda_{2}\in\mathbb{R})$$

$$\Rightarrow (\lambda_1 - \lambda_2) < \vee_{\nu_1 \nu_2} > 0$$

$$\Rightarrow$$
 $\langle v_1, v_2 \rangle = 0$ (since $\lambda_1 - \lambda_2 \neq 0$).

Note that self-adjoint operators have special properties woriteigenvalues and eigenverters: All eigenvalues are real, and eigenvector corresponding to distract eigenvalues are orthogonal. Another class of operators with special properties is the following:

<u>Definition</u>: Let V be an inner product space over F (iR or C) and let TER(V). We say that T is normal iff T*T=TT.

(Every self-adjoint operator is normal, but not vice versa,)

Recall: If V is a finite-dimensional vector space over F and Tedlv),
Then T is diagonalizable iff there exists a basis Tvis-, val of V
consisting of eigenvectors of T, say

$$T(v_j) = \lambda_j v_j, j = 1,2,--,n.$$

(Then the motrix of T wirit [v,,,vu] is diag (An,-,Am).)
Note that

$$\mathcal{T} \left(\sum_{j=1}^{n} \alpha_{j} v_{j} \right) = \sum_{j=1}^{n} \lambda_{j} \alpha_{j} v_{j} \quad \forall \sum_{j=1}^{n} \alpha_{j} v_{j} \in V.$$

Consider the case that Vis a complex inner product space and there exists an arthmornal basis Sv, -, va) of V consisting of eigenvectors of T. Then

$$V \in V \implies V = \sum_{j=1}^{n} \langle v_{j} v_{j} \rangle V_{j}$$

$$\implies \int (v) = \sum_{j=1}^{n} \lambda_{j} \langle v_{j} v_{j} \rangle V_{j} \quad \forall v \in V_{i}$$

What's the adjoint of T?

$$= \langle v, \frac{5}{5} \overline{\lambda}_j \langle u, v_j \rangle v_j \rangle.$$

Thus

$$\uparrow^*(u) = \sum_{j=1}^n \overline{\lambda}_j \langle u, v_j \rangle v_j \quad \forall u \in V.$$

If every λ_j is real, then $\lambda_j = \lambda_j$ $\forall j$ and $T^* = T$, that is, T is self-adjoint.

If not all 2-is are real, then we have T*T=TT* (since $\overline{\lambda}_j \lambda_j = \lambda_j \overline{\lambda}_j$) and thus T is normal. Here is the verification that $T^*T = TT^*$:

$$\uparrow * (T(v)) = \sum_{j=1}^{n} \overline{\lambda}_{j} \angle T(v)_{j} v_{j} > V_{j}$$

$$= \sum_{j=1}^{n} \overline{\lambda}_{j} \angle \sum_{i=1}^{n} \lambda_{i} \langle v_{j} v_{i} \rangle v_{i} \rangle V_{j}$$

$$= \sum_{j=1}^{n} \overline{\lambda}_{j} \lambda_{i} \langle v_{j} v_{i} \rangle \langle v_{i} \rangle v_{j} \rangle V_{j}$$

$$= \sum_{j=1}^{n} \overline{\lambda}_{j} \lambda_{j} \langle v_{j} v_{i} \rangle \langle v_{i} v_{j} \rangle V_{j}$$

$$= \sum_{j=1}^{n} \overline{\lambda}_{j} \lambda_{j} \langle v_{j} v_{j} \rangle V_{j} \quad (\text{Since } \langle v_{i}, v_{j} \rangle = \delta_{ij}),$$

$$T(\uparrow W) = - - = \sum_{j=1}^{n} \lambda_{j} \overline{\lambda}_{j} \langle v_{j} v_{j} \rangle V_{j} = T^{n}(T(v)).$$

Thus, if I can diagonalized by an arthmormal basis of eigenvectors, then
I is normal (and self-adjoint in the special case that all eigenveloce
are real). We want to prove the converses:

- · If I is normal, then I can be diagonalized by an orthonormal basis of eigenvectors.
- . If T is self-adjoint, then T can be diagonalized by an orthonormal basis of eigenvectors, and the eigenvalues are real.

We need the following properties of namual operators.

<u>Lemma</u>: Let V be an inner product space over F(Ror C). Then $\|T(v)\| = \|T^*(v)\| \quad \forall v \in V$

iff T is namel.

(TT-TT) X=

Proof: We have

T is normal (=> T*T-TT*=0

(Note that The Tit is self-adjoint)

∠ T*TW), ν> = ∠ T T*(ν), ν> ∀ ν € V

∠
T(V), T(V)

Z

T*(V), T*(V)

VeV

Leruna: Let V be an inner product space over F (R or C) and let TE &(V) be normal. If A, V is an eigenpair of T, then I, V is an eigenpair of T* (A, V in the real case).

Proof: Recall that $(\lambda I)^* = \bar{\lambda} I$ and hence $(T - \lambda \bar{I})^* = T^* - \bar{\lambda} I$.

If λ, \vee is an eigenpair of T, then $(T-\lambda I)\vee = O \implies \|(T-\lambda I)^*\vee\| = O$ $\implies \|(T^*-\lambda I)\vee\| = O$ $\implies (T^*-\lambda I)\vee = O$,

and hence λ, \vee is an eigenpair of T^* .

Theorem: Let V be an inner product space over F (TR or C), let $T \in \mathcal{L}(V)$ he normal, and let V_1, V_2 be eigenvectors of T corresponding to distinct eigenvalues $\lambda_1 \lambda_2$, respectively, of T. Then V_1 and V_2 are orthogonal
Proof: By assumption, $T(V_1) = \lambda_2 V_1$ and $T(V_2) = \lambda_2 V_2$ ($V_1 \neq 0, V_2 \neq 0$), and $T^*(V_2) = \lambda_2 V_2$ by the preceding result. We thus have $(T^*(V_2) = \lambda_2 V_2)$ in the real case V_1

$$\lambda_{1} \angle \vee_{i,1} \vee_{2} \rangle = \angle \lambda_{1} \vee_{1,1} \vee_{2} \rangle$$

$$= \angle \vee_{i,1} T^{*} \langle \vee_{2} \rangle \rangle$$

$$= \angle \vee_{i,1} \overline{\lambda_{2}} \vee_{2} \rangle \qquad (= \angle \vee_{1,1} \lambda_{2} \vee_{1} \rangle)$$

$$= \lambda_{2} \angle \vee_{i,1} \vee_{2} \rangle$$

$$\Rightarrow (\lambda_1 - \lambda_2) < \nu_{11} \nu_{12} = 0$$