

Centralna Komisja Egzaminacyjna

EGZAMIN MATURALNY 2012

MATEMATYKA POZIOM ROZSZERZONY

Kryteria oceniania odpowiedzi

Zadanie 1. (0–4)

Obszar standardów	Opis wymagań
	Rozwiązanie zadania, prowadzącego do równania kwadratowego (III.3.b)

Rozwiązanie

Niech a oznacza najmniejszą z czterech szukanych liczb całkowitych. Wtedy kolejne liczby to: a+1, a+2, a+3.

Zapisujemy zatem równanie kwadratowe $a+3=a^2+(a+1)^2+(a+2)^2$

które po przekształceniu przyjmuje postać $3a^2 + 5a + 2 = 0$.

Równanie to ma dwa rozwiązania: $a_1 = -1$, $a_2 = -\frac{2}{3}$. Rozwiązanie $-\frac{2}{3}$ odrzucamy jako sprzeczne z treścią zadania (nie jest to liczba całkowita).

Zatem szukane liczby to: -1, 0, 1, 2.

Schemat oceniania rozwiązania

$$a+3=a^2+(a+1)^2+(a+2)^2$$
 lub $3a^2+5a+2=0$

• Przekształcenie równania $a+3=a^2+(a+1)^2+(a+2)^2$ do postaci równania kwadratowego z błędem rachunkowym (na przykład błąd w redukcji wyrazów podobnych lub w przepisywaniu) i konsekwentne doprowadzenie rozwiązania do końca (o ile otrzymane równanie kwadratowe ma dwa pierwiastki rzeczywiste),

albo

• poprawne rozwiązanie równania kwadratowego $3a^2 + 5a + 2 = 0$, nieodrzucenie rozwiązania $-\frac{2}{3}$ i podanie w odpowiedzi dwóch czwórek liczb.

Uwagi

- 1. Jeżeli zdający źle zinterpretuje treść zadania, to za całe rozwiązanie otrzymuje **0 punktów**.
- 2. Jeśli zdający bez wykonywania rachunków poda odpowiedź i nie uzasadni, że jest to jedyne rozwiązanie zadania, to otrzymuje **1 punkt**.

Zadanie 2. (0–4)

I sposób rozwiązania

Rozwiązanie nierówności wielomianowej składa się z dwóch etapów.

Pierwszy etap to zastosowanie jednej z kilku metod, które pozwalają zapisać wielomian w postaci iloczynowej, drugi etap to rozwiązanie nierówności.

Pierwszy etap: zapisanie wielomianu w postaci iloczynowej.

<u>I wariant</u> (grupowanie wyrazów)

Zapisujemy nierówność w postaci $x^4 + x^2 - 2x \ge 0$, a następnie przedstawiamy lewą stronę nierówności w postaci iloczynowej:

$$x^{4} + x^{2} - 2x = x(x^{3} + x - 2) = x(x(x^{2} - 1) + 2(x - 1)) =$$

$$= x(x(x - 1)(x + 1) + 2(x - 1)) = x(x - 1)(x(x + 1) + 2) = x(x - 1)(x^{2} + x + 2)$$

II wariant (odgadnięcie pierwiastka i dzielenie metodą pisemną)

Zapisujemy nierówność w postaci $x^4 + x^2 - 2x \ge 0$, a następnie przedstawiamy lewą stronę nierówności w postaci iloczynowej: $x^4 + x^2 - 2x = x(x^3 + x - 2)$. Zauważamy, że x = 1 jest pierwiastkiem wielomianu $x^3 + x - 2$ i dzielimy wielomian $x^3 + x - 2$ przez dwumian x - 1 sposobem pisemnym lub za pomocą algorytmu Hornera, otrzymując $x^2 + x + 2$. Następnie zapisujemy nierówność w postaci iloczynowej $x(x-1)(x^2 + x + 2) \ge 0$.

Drugi etap: rozwiązanie nierówności.

Zauważamy, że trójmian x^2+x+2 przyjmuje wartości dodatnie dla każdej liczby rzeczywistej x, zatem rozwiązanie nierówności $x(x-1)(x^2+x+2) \ge 0$ jest jednocześnie rozwiązaniem nierówności kwadratowej $x(x-1) \ge 0$, czyli sumą przedziałów $(-\infty,0) \cup (1,+\infty)$.

Schemat oceniania I sposobu rozwiązania

Pokonanie zasadniczych trudności zadania3 pkt

• Zauważenie, że rozwiązanie nierówności $x^4 + x^2 - 2x \ge 0$ jest jednocześnie rozwiązaniem nierówności kwadratowej $x(x-1) \ge 0$

albo

 $x(x-1)(x^2+x+2) \ge 0$.

• narysowanie i uzupełnienie tabeli znaków lub sporządzenie szkicu wykresu wielomianu z uwzględnieniem jego miejsc zerowych.

Uwaga

Jeśli zdający podzieli nierówność przez x lub x-1, bez rozpatrzenia odpowiednich przypadków to za całe rozwiązanie otrzymuje **0 punktów**.

II sposób rozwiązania

Rozwiązujemy nierówność w trzech przedziałach:

I.
$$x \in (-\infty, 0)$$
, II. $x \in (0,1)$, III. $x \in (1, +\infty)$

I.
$$x \in (-\infty, 0)$$

Wtedy
$$x^4 \ge 0$$
 i $x^2 \ge 0$, a $2x \le 0$.

Stąd
$$x^4 + x^2 \ge 2x$$
 dla każdego $x \in (-\infty, 0)$.

II.
$$x \in (0,1)$$

Wtedy
$$x^4 < x$$
 i $x^2 < x$.

Stąd
$$x^4 + x^2 < 2x$$
 dla każdego $x \in (0,1)$.

Zatem dana nierówność nie ma rozwiązań w tym przedziale.

III.
$$x \in \langle 1, +\infty \rangle$$

Wtedy
$$x^4 \ge x$$
 i $x^2 \ge x$.

Stąd
$$x^4 + x^2 \ge 2x$$
 dla każdego $x \in \langle 1, +\infty \rangle$.

Odp. Rozwiązaniem nierówności $x^4 + x^2 \ge 2x$ jest zbiór $x \in (-\infty, 0) \cup (1, +\infty)$.

Schemat oceniania II sposobu rozwiązania

Zdający otrzymuje **po 1 punkcie** za rozwiązanie nierówności w każdym z trzech przedziałów. **Czwarty punkt** zdający otrzymuje za podanie odpowiedzi końcowej.

Zadanie 3. (0-4)

Użycie i tworzenie strategii Rozwiązanie równania trygonometrycznego (IV.6.e.R)	
---	--

Rozwiązanie

Wykorzystując wzór na cosinus podwojonego kąta: $\cos 2x = 2\cos^2 x - 1$, przekształcamy równanie do postaci, w której występuje tylko jedna funkcja trygonometryczna argumentu x: $(2\cos^2 x - 1) - 3\cos x + 2 = 0$.

Porządkujemy i otrzymujemy równanie: $2\cos^2 x - 3\cos x + 1 = 0$.

Wprowadzamy pomocniczą niewiadomą, np. $t = \cos x$, gdzie $t \in \langle -1,1 \rangle$.

Otrzymujemy równanie kwadratowe $2t^2 - 3t + 1 = 0$.

Rozwiązujemy równanie kwadratowe, otrzymując: $t_1 = 1$, $t_2 = \frac{1}{2}$.

Rozwiązujemy równania $\cos x = 1$ i $\cos x = \frac{1}{2}$.

Zapisujemy rozwiązania równań: $x = 2k\pi$, gdzie k jest liczbą całkowitą lub $x = \frac{\pi}{3} + 2k\pi$, gdzie k jest liczbą całkowitą

$$x = -\frac{\pi}{3} + 2k\pi$$
, gdzie *k* jest liczbą całkowitą.

Schemat oceniania rozwiązania

Rozwiązanie, w którym postęp jest niewielki, ale konieczny na drodze do pełnego
rozwiązania
Zapisanie równania w zależności od jednej funkcji trygonometrycznej argumentu x, np.:
$(2\cos^2 x - 1) - 3\cos x + 2 = 0$ lub $2\cos^2 x - 3\cos x + 1 = 0$.
Rozwiązanie, w którym jest istotny postęp2 pkt
Rozwiązanie równania $2\cos^2 x - 3\cos x + 1 = 0$ z niewiadomą $\cos x$: $\cos x = 1$ lub $\cos x = \frac{1}{2}$.
Pokonanie zasadniczych trudności zadania
Rozwiązanie jednego z równań $\cos x = 1$ lub $\cos x = \frac{1}{2}$.

Rozwiązanie pełne4 pkt

• Rozwiązanie równania: $x = 2k\pi$, gdzie k jest liczbą całkowitą lub $x = \frac{\pi}{3} + 2k\pi$, gdzie k jest liczbą całkowitą lub $x = -\frac{\pi}{3} + 2k\pi$, gdzie k jest liczbą całkowitą

albo

• $x = n \cdot 360^{\circ}$, gdzie *n* jest liczbą całkowitą lub $x = 60^{\circ} + n \cdot 360^{\circ}$, gdzie *n* jest liczbą całkowitą lub $x = -60^{\circ} + n \cdot 360^{\circ}$, gdzie *n* jest liczbą całkowitą.

Uwaga

Jeżeli zdający popełni błąd rachunkowy w rozwiązaniu równania kwadratowego i otrzyma dwa rozwiązania, z których co najmniej jedno należy do przedziału $\langle -1,1\rangle$ i konsekwentnie doprowadzi rozwiązanie do końca, to otrzymuje **3 punkty**.

Zadanie 4. (0–6)

Ozycie i twoizeine strategii	Rozwiązanie równania kwadratowego z parametrem, przeprowadzenie dyskusji i wyciągnięcie wniosków (IV.3.b.R)
	(1V.3.0.K)

I sposób rozwiązania

Obliczamy
$$\Delta = m^2 - 12$$
 i następnie $x_1 = \frac{m + 2 - \sqrt{m^2 - 12}}{2}$, $x_2 = \frac{m + 2 + \sqrt{m^2 - 12}}{2}$.

Wówczas

$$x_1^2 = \frac{(m+2)^2 - 2(m+2)\sqrt{m^2 - 12} + m^2 - 12}{4} = \frac{2m^2 + 4m - 8 - 2(m+2)\sqrt{m^2 - 12}}{4} = \frac{m^2 + 2m - 4 - (m+2)\sqrt{m^2 - 12}}{2}$$

i podobnie

$$x_2^2 = \frac{m^2 + 2m - 4 + (m+2)\sqrt{m^2 - 12}}{2}$$
.

Następnie

$$x_{1}^{4} = \frac{\left(m^{2} + 2m - 4\right)^{2} - 2\left(m^{2} + 2m - 4\right) \cdot \left(m + 2\right)\sqrt{m^{2} - 12} + \left(m + 2\right)^{2}\left(m^{2} - 12\right)}{4} =$$

$$= \frac{m^{4} + 4m^{3} - 4m^{2} - 16m + 16 + m^{4} + 4m^{3} - 8m^{2} - 48m - 48 - 2\left(m^{2} + 2m - 4\right) \cdot \left(m + 2\right)\sqrt{m^{2} - 12}}{4} =$$

$$= \frac{2m^{4} + 8m^{3} - 12m^{2} - 64m - 32 - 2\left(m^{2} + 2m - 4\right) \cdot \left(m + 2\right)\sqrt{m^{2} - 12}}{4}$$

i podobnie

$$x_2^4 = \frac{2m^4 + 8m^3 - 12m^2 - 64m - 32 + 2(m^2 + 2m - 4) \cdot (m + 2)\sqrt{m^2 - 12}}{4}.$$

Teraz

$$x_1^4 + x_2^4 = m^4 + 4m^3 - 6m^2 - 32m - 16$$
, czyli mamy równanie $m^4 + 4m^3 - 6m^2 - 32m - 16 = 4m^3 + 6m^2 - 32m + 12$, czyli $m^4 - 12m^2 + 36 = 64$. Zatem $(m^2 - 6)^2 = 64$, stąd : $m^2 - 6 = -8$ lub $m^2 - 6 = 8$,

czyli
$$m^2 = -2$$
 lub $m^2 = 14$.

Przypadek $m^2=-2$ jest niemożliwy; zatem $m^2=14$, czyli $m=\sqrt{14}$ lub $m=-\sqrt{14}$. Należy na zakończenie zauważyć, że jeśli $m^2=14$, to $\Delta=m^2-12=14-12=2>0$, a więc oba pierwiastki x_1 i x_2 są rzeczywiste.

Uwaga

Zdający może rozpocząć od rozważenia nierówności $\Delta > 0$, czyli $m^2 - 12 > 0$. Otrzymuje $m < -2\sqrt{3}$ lub $m > 2\sqrt{3}$. Potem może sprawdzać, czy otrzymane rozwiązania są zgodne z tymi nierównościami.

Schemat oceniania I sposobu rozwiązania.

Rozwiązanie zadania składa się z dwóch części:

a) Pierwsza część polega na rozwiązaniu nierówności $\Delta > 0$, gdzie $\Delta = m^2 - 12$.

Zatem $\Delta > 0$ wtedy i tylko wtedy, gdy $m^2 - 12 > 0$, czyli dla $m \in (-\infty, -2\sqrt{3}) \cup (2\sqrt{3}, \infty)$

Za poprawne rozwiązanie tej części zdający otrzymuje 1 punkt.

<u>Uwaga</u>

Jeżeli zdający rozwiązuje nierówność $\Delta \ge 0$, to nie otrzymuje punktu za tę część.

b) Druga część polega na doprowadzeniu równania $x_1^4 + x_2^4 = 4m^3 + 6m^2 - 32m + 12$ do postaci równania ze zmienną m i rozwiązanie tego równania. Za tę część rozwiązania zdający otrzymuje **4 punkty**.

W ramach tej części rozwiązania wyróżniamy następujące fazy:

<u>Uwagi</u>

- 1. Przyznajemy **1 punkt** za wyznaczenie części wspólnej zbiorów rozwiązań nierówności $\Delta > 0$ z etapu a) i równania $m^4 12m^2 + 36 = 64$ z etapu b), gdy co najmniej jeden etap jest rozwiązany poprawnie.
- 2. Jeżeli zdający popełni błąd rachunkowy i konsekwentnie do tego błędu poda rozwiązanie, to za całe rozwiązanie otrzymuje **5 punktów**.

II sposób rozwiązania:

Tak jak w sposobie I obliczamy
$$x_1 = \frac{m + 2 - \sqrt{m^2 - 12}}{2}$$
, $x_2 = \frac{m + 2 + \sqrt{m^2 - 12}}{2}$.

Następnie przyjmujemy oznaczenie $t = \sqrt{m^2 - 12}$.

Wówczas

$$x_1^4 + x_2^4 = \frac{\left(m+2-t\right)^4}{2^4} + \frac{\left(m+2+t\right)^4}{2^4} = \frac{\left(m+2-t\right)^4 + \left(m+2+t\right)^4}{16}.$$

Korzystamy ze wzorów:

$$(a-b)^4 = a^4 - 4a^3b + 6a^2b^2 - 4ab^3 + b^4$$

$$(a+b)^4 = a^4 + 4a^3b + 6a^2b^2 + 4ab^3 + b^4$$
.

Stąd
$$(a-b)^4 + (a+b)^4 = 2a^4 + 12a^2b^2 + 2b^4$$
.

Zatem

$$x_1^4 + x_2^4 = \frac{2(m+2)^4 + 12(m+2)^2 t^2 + 2t^4}{16} = \frac{(m+2)^4 + 6(m+2)^2 t^2 + t^4}{8}.$$

Ponieważ $t = \sqrt{m^2 - 12}$, więc $t^2 = m^2 - 12$ i $t^4 = m^4 - 24m^2 + 144$.

Mamy zatem

$$x_1^4 + x_2^4 = \frac{m^4 + 8m^3 + 24m^2 + 32m + 16 + (6m^2 + 24m + 24)(m^2 - 12) + m^4 - 24m^2 + 144}{8} = \frac{8m^4 + 32m^3 - 48m^2 - 256m - 128}{8} = m^4 + 4m^3 - 6m^2 - 32m - 16$$

Dalej postępujemy tak, jak w I sposobie rozwiązania.

Schemat oceniania II sposobu rozwiązania.

Rozwiązanie zadania składa się z dwóch części:

a) Pierwsza część polega na rozwiązaniu nierówności $\Delta > 0$, gdzie $\Delta = m^2 - 12$.

Zatem $\Delta > 0$ wtedy i tylko wtedy, gdy $m^2 - 12 > 0$, czyli dla $m \in (-\infty, -2\sqrt{3}) \cup (2\sqrt{3}, \infty)$.

Za poprawne rozwiązanie tej części zdający otrzymuje 1 punkt.

Uwaga

Jeżeli zdający rozwiązuje nierówność $\Delta \ge 0$, to nie otrzymuje punktu za tę część.

b) Druga część polega na doprowadzeniu równania $x_1^4 + x_2^4 = 4m^3 + 6m^2 - 32m + 12$ do postaci równania z niewiadomą m i rozwiązanie tego równania. Za tę część rozwiązania zdający otrzymuje **4 punkty**.

W ramach tej części rozwiązania wyróżniamy następujące fazy:

$$x_1^4 + x_2^4 = \frac{\left(m+2-t\right)^4}{2^4} + \frac{\left(m+2+t\right)^4}{2^4} = \frac{\left(m+2-t\right)^4 + \left(m+2+t\right)^4}{16} = m^4 + 4m^3 - 16m^2 - 32m - 16$$

<u>Uwagi</u>

- 1. Przyznajemy 1 punkt za wyznaczenie części wspólnej zbiorów rozwiązań nierówności $\Delta > 0$ z etapu a) i równania $m^4 12m^2 + 36 = 64$ z etapu b), gdy co najmniej jeden etap jest rozwiązany poprawnie.
- 2. Jeżeli zdający popełni błąd rachunkowy i konsekwentnie do tego błędu poda rozwiązanie, to za całe rozwiązanie otrzymuje **5 punktów**.

III sposób rozwiązania:

Korzystamy ze wzorów Viète'a: $x_1 + x_2 = m + 2$, $x_1 \cdot x_2 = m + 4$.

Mamy teraz:

$$x_1^4 + x_2^4 = (x_1^2 + x_2^2)^2 - 2x_1^2 x_2^2 = ((x_1 + x_2)^2 - 2x_1 x_2)^2 - 2(x_1 x_2)^2 =$$

$$= ((m+2)^2 - 2(m+4))^2 - 2(m+4)^2 = m^4 + 4m^3 - 6m^2 - 32m - 16$$

Dalej postępujemy tak, jak w I sposobie rozwiązania.

Schemat oceniania III sposobu rozwiązania.

Rozwiązanie zadania składa się z dwóch części:

a) Pierwsza część polega na rozwiązaniu nierówności $\Delta > 0$, gdzie $\Delta = m^2 - 12$. Zatem $\Delta > 0$ wtedy i tylko wtedy, gdy $m^2 - 12 > 0$, czyli dla $m \in (-\infty, -2\sqrt{3}) \cup (2\sqrt{3}, \infty)$.

Za poprawne rozwiązanie tej części zdający otrzymuje 1 punkt.

<u>Uwaga</u>

Jeżeli zdający rozwiązuje nierówność $\Delta \ge 0$, to nie otrzymuje punktu za tę część.

b) Druga część polega na doprowadzeniu równania $x_1^4 + x_2^4 = 4m^3 + 6m^2 - 32m + 12$ do postaci równania z niewiadomą m i rozwiązanie tego równania. Za tę część rozwiązania zdający otrzymuje **4 punkty**.

W ramach tej części rozwiązania wyróżniamy następujące fazy:

$$x_1^4 + x_2^4 = \left(x_1^2 + x_2^2\right)^2 - 2x_1^2 x_2^2 = \left(\left(x_1 + x_2\right)^2 - 2x_1 x_2\right)^2 - 2\left(x_1 x_2\right)^2 = m^4 + 4m^3 - 6m^2 - 32m - 16$$

Uwagi

- 1. Przyznajemy **1 punkt** za wyznaczenie części wspólnej zbiorów rozwiązań nierówności $\Delta > 0$ z etapu a) i równania $m^4 12m^2 + 36 = 64$ z etapu b), gdy co najmniej jeden etap jest rozwiązany poprawnie.
- 2. Jeżeli zdający popełni błąd rachunkowy i konsekwentnie do tego błędu poda rozwiązanie, to za całe rozwiązanie otrzymuje **5 punktów**.

IV sposób rozwiązania:

Korzystamy ze wzorów Viète'a oraz ze wzoru na $(a+b)^4$.

$$(x_1 + x_2)^4 = x_1^4 + 4x_1^3x_2 + 6x_1^2x_2^2 + 4x_1x_2^3 + x_2^4 = x_1^4 + x_2^4 + 4x_1x_2(x_1^2 + x_2^2) + 6(x_1x_2)^2 = x_1^4 + x_2^4 + 4x_1x_2((x_1 + x_2)^2 - 2x_1x_2) + 6(x_1x_2)^2$$

czyli

$$x_1^4 + x_2^4 = (x_1 + x_2)^4 - 4x_1x_2((x_1 + x_2)^2 - 2x_1x_2) - 6(x_1x_2)^2 =$$

$$= (m+2)^4 - 4 \cdot (m+4)((m+2)^2 - 2 \cdot (m+4)) - 6 \cdot (m+4)^2 = m^4 + 4m^3 - 6m^2 - 32m - 16$$

Dalej postępujemy tak, jak w I sposobie rozwiązania.

Schemat oceniania IV sposobu rozwiązania.

Rozwiązanie zadania składa się z dwóch części:

a) Pierwsza część polega na rozwiązaniu nierówności $\Delta > 0$, gdzie $\Delta = m^2 - 12$. Zatem $\Delta > 0$ wtedy i tylko wtedy, gdy $m^2 - 12 > 0$, czyli dla $m \in (-\infty, -2\sqrt{3}) \cup (2\sqrt{3}, \infty)$ Za poprawne rozwiązanie tej części zdający otrzymuje **1 punkt.**

Uwaga

Jeżeli zdający rozwiązuje nierówność $\Delta \ge 0$, to nie otrzymuje punktu za tę część.

b) Druga część polega na doprowadzeniu równania $x_1^4 + x_2^4 = 4m^3 + 6m^2 - 32m + 12$ np. do postaci $m^4 - 12m^2 + 36 = 64$ i rozwiązaniu tego równania. Za tę część rozwiązania zdający otrzymuje **4 punkty**.

W ramach tej części rozwiązania wyróżniamy następujące fazy:

$$x_1^4 + x_2^4 = (x_1 + x_2)^4 - 4x_1x_2((x_1 + x_2)^2 - 2x_1x_2) - 6(x_1x_2)^2 = m^4 + 4m^3 - 6m^2 - 32m - 16$$
.

<u>Uwagi</u>

- 1. Przyznajemy **1 punkt** za wyznaczenie części wspólnej zbiorów rozwiązań nierówności $\Delta > 0$ z etapu a) i równania $m^4 12m^2 + 36 = 64$ z etapu b), gdy co najmniej jeden etap jest rozwiązany poprawnie.
- 2. Jeżeli zdający popełni błąd rachunkowy i konsekwentnie do tego błędu poda rozwiązanie, to za całe rozwiązanie otrzymuje **5 punktów**.

Zadanie 5. (0–6)

Użycie i tworzenie strategii	Zastosowanie własności ciągu geometrycznego oraz własności ciągu arytmetycznego (IV.5.c)
------------------------------	--

I sposób rozwiązania

Oznaczmy przez a, b, c kolejne liczby tworzące, w podanej kolejności, ciąg geometryczny. Przez a oraz q oznaczamy odpowiednio pierwszy wyraz i iloraz tego ciągu geometrycznego. Wówczas b = aq oraz $c = aq^2$. Z treści zadania wiemy, że ciąg o wyrazach a, b+8, c jest arytmetyczny, co oznacza, że jest spełniona równość 2(b+8) = a+c, czyli $2(aq+8) = a+aq^2$. Ponadto, ciąg o wyrazach a, b+8, c+64 jest geometryczny, więc $(b+8)^2 = a \cdot (c+64)$, a stąd $(aq+8)^2 = a \cdot (aq^2+64)$.

Zapisujemy układ równań:

$$\begin{cases} 2(aq+8) = a + aq^2 \\ (aq+8)^2 = a \cdot (aq^2 + 64) \end{cases}$$

Z pierwszego równania wyznaczamy $a = \frac{16}{1 - 2q + q^2}$ (przy założeniu, że $q \ne 1$)

i podstawiamy do drugiego równania. Otrzymujemy równanie:

$$\frac{16}{1 - 2q + q^2} \cdot q - 4 \cdot \frac{16}{1 - 2q + q^2} + 4 = 0$$

Przekształcamy to równanie do równania kwadratowego:

$$16q + 4(1-2q+q^{2}) - 64 = 0,$$

$$4q + 1 - 2q + q^{2} - 16 = 0,$$

$$q^{2} + 2q - 15 = 0.$$

Rozwiązaniami tego równania są liczby: $q_1 = -5$, $q_2 = 3$.

Jeżeli
$$q = -5$$
, to $a = \frac{4}{9}$, $b = -\frac{20}{9}$ oraz $c = -\frac{20}{9} \cdot (-5) = \frac{100}{9}$.

Jeżeli zaś q = 3, to a = 4, b = 12 oraz $c = 12 \cdot 3 = 36$.

Zauważmy na zakończenie, że założenie $q \ne 1$ nie zmniejsza ogólności rozważań, bo gdyby q = 1, to otrzymalibyśmy (początkowy) ciąg geometryczny stały, zaś ciąg (a, a + 8, a) nie byłby arytmetyczny dla żadnej wartości a, wbrew treści zadania.

Odpowiedź: Istnieją dwa ciągi geometryczne spełniające warunki zadania: (4, 12, 36) oraz

$$\left(\frac{4}{9}, -\frac{20}{9}, \frac{100}{9}\right).$$

Schemat oceniania I sposobu rozwiązania

liczby a, aq, aq^2 są kolejnymi wyrazami ciągu geometrycznego oraz liczby a, aq + 8, aq^2 , w podanej kolejności, tworzą ciąg arytmetyczny, natomiast liczby a, aq + 8, $aq^2 + 64$, w podanej kolejności, tworzą ciąg geometryczny.

$$\begin{cases} a + aq^2 = 2(aq + 8) \\ (aq + 8)^2 = a(aq^2 + 64) \end{cases}$$

<u>Uwaga</u>

Jeżeli zdający pomyli własności któregokolwiek ciągu, to za całe rozwiązanie otrzymuje **0 punktów**.

Uwaga

Jeżeli zdający w trakcie przekształcania układu równań popełni błąd, w wyniku którego otrzyma równanie mające mniej niż dwa rozwiązania, to otrzymuje **2 punkty** za całe rozwiązanie.

Rozwiązanie zadania do końca lecz z usterkami, które jednak nie przekreślają poprawności rozwiązania (np. błędy rachunkowe)......5 pkt

• Zdający popełni błędy rachunkowe w rozwiązywaniu równania kwadratowego, np. $q^2 + 2q - 15 = 0$ i konsekwentne do tych błędów poda w odpowiedzi dwa ciągi geometryczne

lub

• przekształci układ równań z błędem (np. błąd w redukcji wyrazów podobnych lub w przepisywaniu) i konsekwentnie doprowadzi rozwiązanie do końca (o ile otrzymane równanie kwadratowe ma dwa pierwiastki rzeczywiste).

II sposób rozwiązania

Oznaczmy przez a, b, c trzy kolejne wyrazy ciągu geometrycznego. Wówczas $b^2 = a \cdot c$. Ponieważ ciąg (a, b+8, c) jest arytmetyczny, więc 2(b+8) = a+c. Ponadto, ciąg (a, b+8, c+64) jest geometryczny, zatem $(b+8)^2 = a \cdot (c+64)$.

Zapisujemy zatem układ równań:

$$\begin{cases} b^2 = a \cdot c \\ 2(b+8) = a+c \\ (b+8)^2 = a \cdot (c+64) \end{cases}$$

a następnie przekształcamy go w sposób równoważny:

$$\begin{cases} c = 2b - a + 16 \\ b^{2} = 2ab + 16a - a^{2} \\ (b+8)^{2} = 2ab + 16a - a^{2} + 64a \end{cases}$$

Odejmujemy stronami drugie i trzecie równanie i otrzymujemy $(b+8)^2 - b^2 = 64a$.

Stąd $a = \frac{b+4}{4}$. Podstawiamy $a = \frac{b+4}{4}$ do drugiego równania i otrzymujemy

$$b^2 = \frac{b+4}{4} \cdot \left(2b+16 - \frac{b+4}{4}\right)$$

Przekształcamy to równanie do równania kwadratowego

$$16b^2 = 7b^2 + 88b + 240$$
, czyli $9b^2 - 88b - 240 = 0$.

Rozwiązaniami tego równania są liczby: $b_1 = -\frac{20}{9}$, $b_2 = 12$.

Jeżeli
$$b = -\frac{20}{9}$$
, to $a = \frac{4}{9}$ oraz $c = \frac{100}{9}$.

Jeżeli zaś b = 12, to a = 4 oraz c = 36.

Odpowiedź: Istnieja dwa ciągi geometryczne spełniające warunki zadania: (4, 12, 36) oraz

$$\left(\frac{4}{9}, -\frac{20}{9}, \frac{100}{9}\right).$$

Schemat oceniania II sposobu rozwiązania zadania

Zapisanie, że liczby a, b, c są kolejnymi wyrazami ciągu geometrycznego oraz, że liczby a, b+8, c, w podanej kolejności, tworzą ciąg arytmetyczny, zaś liczby a, b+8, c+64, w podanej kolejności, tworzą ciąg geometryczny.

Wykorzystanie własności ciągu arytmetycznego i geometrycznego do zapisania układu równań umożliwiającego obliczenie liczb a, b, c, np.

$$\begin{cases} b^2 = a \cdot c \\ 2(b+8) = a+c \\ (b+8)^2 = a \cdot (c+64) \end{cases}$$

<u>Uwaga</u>

Jeżeli zdający pomyli własności któregokolwiek ciągu, to za całe rozwiązanie otrzymuje **0 punktów**.

Lapisamie Townama z jedną mewiadomą, np.. 9a - 40a + 10 = 0 1do 9b - 88b 1db $9c^2 - 424c + 3600 = 0$.

Uwaga

Jeżeli w trakcie przekształcania układu równań zdający popełni błąd, w wyniku którego otrzyma równanie mające mniej niż dwa rozwiązania, to otrzymuje **2 punkty** za całe rozwiązanie.

Rozwiązanie zadania do końca lecz z usterkami, które jednak nie przekreślają poprawności rozwiązania (np. błędy rachunkowe). 5 pkt

• Zdający popełni błędy rachunkowe w rozwiązywaniu równania kwadratowego, np. $9b^2 - 88b - 240 = 0$ i konsekwentne do tych błędów poda w odpowiedzi dwa ciągi geometryczne

lub

 przekształci układ równań z błędem (np. błąd w redukcji wyrazów podobnych lub w przepisywaniu) i konsekwentnie doprowadzi rozwiązanie do końca (o ile otrzymane równanie kwadratowe ma dwa pierwiastki rzeczywiste).

Zadanie 6. (0-6)

Modelowanie matematyczne	Znalezienie związków miarowych na płaszczyźnie, wyznaczenie największej i najmniejszej wartości funkcji
	(III.8.e; 4.k)

Rozwiązanie

Wyznaczamy odległość punktów *P* i *Q*: $|PQ| = \sqrt{\left(\frac{55}{2} - \frac{1}{2}m - \frac{5}{2}\right)^2 + m^2} = \sqrt{\left(\frac{50}{2} - \frac{1}{2}m\right)^2 + m^2}$.

Wyznaczamy wzór funkcji f opisującej wartość $|PQ|^2$:

$$f(m) = \left(\frac{50}{2} - \frac{1}{2}m\right)^2 + m^2 = \frac{5}{4}(m^2 - 20m + 500) \text{ dla } m \in \langle -1, 7 \rangle.$$

Obliczamy pierwszą współrzędną wierzchołka paraboli, która jest wykresem funkcji f:

$$m_{w} = \left(\frac{5}{4} \cdot 20\right) : \left(2 \cdot \frac{5}{4}\right) = 25 : \frac{5}{2} = 25 \cdot \frac{2}{5} = 10$$
.

Ponieważ $10 \notin \langle -1,7 \rangle$, więc w tym przedziałe funkcja f jest monotoniczna. Zatem największa i najmniejsza wartość funkcji f dla $m \in \langle -1,7 \rangle$ są przyjmowane dla argumentów, będących końcami tego przedziału.

$$f(-1) = \frac{5}{4}(1+20+500) = 651,25 \text{ oraz } f(7) = \frac{5}{4}(49-140+500) = 511,25.$$

Zatem najmniejsza i największa wartość $|PQ|^2$ to odpowiednio 511,25 oraz 651,25.

Schemat oceniania rozwiązania

Wyznaczenie odległości między punktami P i Q: $|PQ| = \sqrt{\left(\frac{50}{2} - \frac{1}{2}m\right)^2 + m^2}$ lub

$$|PQ|^2 = \left(\frac{50}{2} - \frac{1}{2}m\right)^2 + m^2.$$

<u>Uwaga</u>

Jeżeli zdający zapisze, np. $|PQ| = \sqrt{\left(\frac{50}{2} - \frac{1}{2}m\right)^2 - m^2}$, to otrzymuje za całe zadanie **0 punktów**.

$$f(m) = \frac{5}{4}(m^2 - 20m + 500).$$

Uwaga

Dalszej ocenie podlega badanie tylko takich funkcji kwadratowych, które przyjmują wartości nieujemne w całym zbiorze liczb rzeczywistych.

Pokonanie zasadniczych trudności zadania 4 pkt

Obliczenie pierwszej współrzędnej wierzchołka paraboli, będącej wykresem funkcji f
i stwierdzenie, że współrzędna ta nie należy do przedziału ⟨-1,7⟩: m_w = 10
i 10 ∉ ⟨-1,7⟩ i z rozwiązania wynika, że f (10) nie jest żadną z poszukiwanych wartości

albo

• obliczenie f(-1) i f(7), zapisanie bez uzasadnienia, że f(-1) jest wartością największą, f(7) jest wartością najmniejszą.

Rozwiązanie zadania do końca lecz z usterkami, które jednak nie przekreślają poprawności rozwiązania (np. blędy rachunkowe) 5 pkt Rozwiązanie pełne 6 pkt Podanie najmniejszej i największej wartość $\left|PQ\right|^2$ odpowiednio 511,25 oraz 651,25

z uzasadnieniem, np. powołanie się na monotoniczność lub stwierdzenie, że pierwsza współrzędna wierzchołka nie należy do podanego przedziału.

<u>Uwaga</u>

Jeśli zdający obliczy f(10) = 500, f(-1) = 651,25 i f(7) = 511,25 i stąd wywnioskuje, że najmniejszą wartością funkcji f jest 500, a największą 651,25, to za całe rozwiązanie otrzymuje **4 punkty**.

Zadanie 7. (0-3)

Rozumowanie i argumentacja	Przeprowadzenie dowodu algebraicznego (V.2.b)
----------------------------	---

Rozwiązanie

Przekształcamy nierówność w sposób równoważny

$$a^{3} + b^{3} - a^{2}b - ab^{2} \ge 0$$
,
 $(a^{3} - a^{2}b) + (b^{3} - ab^{2}) \ge 0$,
 $a^{2}(a-b) + b^{2}(b-a) \ge 0$,

$$(a-b)(a^2-b^2) \ge 0,$$

$$(a-b)^2(a+b) \ge 0.$$

Ostatnia nierówność jest prawdziwa, gdyż z założenia $a+b \ge 0$ oraz $(a-b)^2 \ge 0$ dla wszystkich liczb rzeczywistych a i b, co kończy dowód.

Schemat oceniania rozwiązania

$$(a-b)^2(a+b) \ge 0$$
, lub $(a-b)(a-b)(a+b) \ge 0$.

Uwaga

- 1. Jeżeli zdający podzieli obie strony nierówności przez a+b, nie zakładając, że $a+b \neq 0$, to otrzymuje **0 punktów.**
- 2. W przypadku gdy zdający podzieli nierówność przez a+b>0 i nie rozpatrzy przypadku a+b=0, to przyznajemy **2 punkty**.

Zadanie 8. (0–4)

i wariacji do zliczania obiektów w sytuacjach kombinatorycznych (IV.10.R)	Użycie i tworzenie strategii	
---	------------------------------	--

Rozwiązanie

Rozkładamy liczbę 12 na czynniki pierwsze $12 = 3 \cdot 2 \cdot 2$.

Mamy więc trzy, parami wykluczające się możliwości, w których iloczyn cyfr liczby ośmiocyfrowej jest równy 12:

- 1. Wśród cyfr tej liczby są "3", "4" i sześć "1" (12 = 3·4·1·1·1·1·1). Takich liczb jest: 8·7 = 56 wybieramy miejsce dla "3" na 8 sposobów i z pozostałych dla "4" na 7 sposobów.
- 2. Wśród cyfr tej liczby są "2", "6" i sześć "1" (12 = 2·6·1·1·1·1·1). Takich liczb jest: 8·7 = 56 wybieramy miejsce dla "2" na 8 sposobów i z pozostałych dla "6" na 7 sposobów.
- 3. Wśród cyfr tej liczby są dwie "2", jedna "3" i pięć "1" ($12 = 3 \cdot 2 \cdot 2 \cdot 1 \cdot 1 \cdot 1 \cdot 1 \cdot 1$). Takich liczb jest: $8 \cdot \binom{7}{2} = 168$ wybieramy jedno miejsce z ośmiu dla "3" a następnie dwa

miejsca z pozostałych siedmiu dla "2".

Zatem liczb ośmiocyfrowych, których iloczyn cyfr jest równy 12 jest 56+56+168=280.

Schemat oceniania rozwiązania

$$12 = 3 \cdot 4 \cdot 1 \cdot 1 \cdot 1 \cdot 1 \cdot 1 \cdot 1$$

$$12 = 2 \cdot 6 \cdot 1 \cdot 1 \cdot 1 \cdot 1 \cdot 1 \cdot 1$$

$$12 = 3 \cdot 2 \cdot 2 \cdot 1 \cdot 1 \cdot 1 \cdot 1 \cdot 1$$

 $12 = 3 \cdot 4 \cdot 1 \cdot 1 \cdot 1 \cdot 1 \cdot 1 \cdot 1$

 $12 = 2 \cdot 6 \cdot 1 \cdot 1 \cdot 1 \cdot 1 \cdot 1 \cdot 1$

 $12 = 3 \cdot 2 \cdot 2 \cdot 1 \cdot 1 \cdot 1 \cdot 1 \cdot 1$

Zadanie 9. (0-5)

Użycie i tworzenie strategii	Znalezienie związków miarowych w figurach płaskich z zastosowaniem własności figur podobnych (IV.7.c.R)
------------------------------	---

I sposób rozwiązania

Z twierdzenia Pitagorasa dla trójkąta DAB otrzymujemy $c = \sqrt{a^2 + b^2}$. Trójkąt ten jest podobny do trójkąta DEA (oba są prostokątne i mają wspólny kąt ostry przy wierzchołku D),

więc
$$\frac{|AE|}{|AD|} = \frac{|BA|}{|BD|}$$
 oraz $\frac{|DE|}{|DA|} = \frac{|DA|}{|DB|}$, czyli $\frac{h}{b} = \frac{a}{\sqrt{a^2 + b^2}}$ oraz $\frac{|DE|}{b} = \frac{b}{\sqrt{a^2 + b^2}}$. Stąd $h = \frac{ab}{\sqrt{a^2 + b^2}}$ oraz $|DE| = \frac{b^2}{\sqrt{a^2 + b^2}}$.

Pole trójkąta *AED* jest równe
$$P_{ADE} = \frac{1}{2}h \cdot |DE| = \frac{1}{2} \cdot \frac{ab}{\sqrt{a^2 + b^2}} \cdot \frac{b^2}{\sqrt{a^2 + b^2}} = \frac{ab^3}{2(a^2 + b^2)}$$
.

II sposób rozwiązania

Z twierdzenia Pitagorasa dla trójkąta DAB otrzymujemy $c = \sqrt{a^2 + b^2}$. Trójkąt ten jest podobny do trójkąta DEA (oba są prostokątne i mają wspólny kąt ostry przy wierzchołku D),

więc
$$\frac{|AE|}{|AD|} = \frac{|BA|}{|BD|}$$
 oraz $\frac{|DE|}{|DA|} = \frac{|DA|}{|DB|}$, czyli $\frac{h}{b} = \frac{a}{\sqrt{a^2 + b^2}}$ oraz $\frac{|DE|}{b} = \frac{b}{\sqrt{a^2 + b^2}}$. Stąd $h = \frac{ab}{\sqrt{a^2 + b^2}}$ oraz $|DE| = \frac{b^2}{\sqrt{a^2 + b^2}}$.

Wyznaczamy sinus kąta EAD w trójkącie AED: $\sin \left| \angle EAD \right| = \frac{\left| DE \right|}{b} = \frac{b}{\sqrt{a^2 + b^2}}$.

Pole trójkąta AED jest równe:

$$P_{AED} = \frac{1}{2}b \cdot h \cdot \sin \left| \angle EAD \right| = \frac{1}{2} \cdot b \cdot \frac{ab}{\sqrt{a^2 + b^2}} \cdot \frac{b}{\sqrt{a^2 + b^2}} = \frac{ab^3}{2(a^2 + b^2)}.$$

Schemat oceniania I i II sposobu rozwiązania

• Zauważenie, że trójkąty AED (lub AEB) i BAD są podobne i zapisanie odpowiedniej proporcji np.: $\frac{|AE|}{|AD|} = \frac{|AB|}{|BD|}$ lub $\frac{|DE|}{|AD|} = \frac{|AD|}{|BD|}$

albo

• zapisanie pola trójkąta AED: $P = \frac{|AE| \cdot |DE|}{2}$ lub $P = \frac{|AE| \cdot |AD| \cdot \sin| \langle EAD|}{2}$

Rozwiązanie, w którym jest istotny postęp......2 pkt

Obliczenie długości odcinka DE: $|DE| = \frac{b^2}{\sqrt{a^2 + b^2}}$ lub AE: $|AE| = \frac{ab}{\sqrt{a^2 + b^2}}$ lub

$$\sin\left|EAD\right| = \frac{b}{\sqrt{a^2 + b^2}}.$$

Pokonanie zasadniczych trudności zadania3 pkt

• Obliczenie długości obu odcinków $DE: |DE| = \frac{b^2}{\sqrt{a^2 + b^2}}$ i $AE: |AE| = \frac{ab}{\sqrt{a^2 + b^2}}$

lub

• obliczenie długości odcinka AE: $|AE| = \frac{ab}{\sqrt{a^2 + b^2}}$ i $\sin |\angle EAD| = \frac{b}{\sqrt{a^2 + b^2}}$.

Obliczenie pola trójkąta *AED*: $P_{AED} = \frac{ab^3}{2(a^2 + b^2)}$.

III sposób rozwiązania

Z twierdzenia Pitagorasa dla trójkąta DAB otrzymujemy $c = \sqrt{a^2 + b^2}$. Trójkąt AED jest podobny do trójkąta BAD, a ten jest podobny do trójkąta BEA, więc trójkąt BEA jest podobny do trójkąta AED. Skala tego podobieństwa jest równa $\frac{a}{b}$. Stosunek pól tych trójkątów jest

równy
$$\frac{P_{\scriptscriptstyle BEA}}{P_{\scriptscriptstyle AED}} = \left(\frac{a}{b}\right)^2$$
. Stąd $P_{\scriptscriptstyle BEA} = \left(\frac{a}{b}\right)^2 \cdot P_{\scriptscriptstyle AED}$.

Ponieważ
$$P_{ABD} = \frac{1}{2}ab = P_{BEA} + P_{AED}$$
, więc $\frac{1}{2}ab = \left(\frac{a}{b}\right)^2 \cdot P_{AED} + P_{AED}$.

Stad
$$P_{AED} = \frac{\frac{1}{2}ab}{\left(\frac{a}{b}\right)^2 + 1} = \frac{ab^3}{2(a^2 + b^2)}.$$

Schemat oceniania III sposobu rozwiązania

Uwaga

Rozwiązanie możemy zakwalifikować do tej kategorii tylko pod warunkiem, że skala podobieństwa trójkątów *BEA* i *AED* została zapisana w zależności od *a* i *b*.

Zadanie 10. (0-5)

Użycie i tworzenie strategii	Znalezienie związków miarowych w ostrosłupie (IV.9.b)
------------------------------	---

Rozwiązanie

Korzystając z twierdzenia Pitagorasa dla trójkąta BAS, obliczamy długość boku AB: $|AB| = \sqrt{118^2 - \left(8\sqrt{210}\right)^2} = 22$.

Korzystając z twierdzenia Pitagorasa dla trójkąta CAS, obliczamy długość boku AC: $|AC| = \sqrt{131^2 - \left(8\sqrt{210}\right)^2} = 61$.

Stąd wynika, że |BC| = 61, ponieważ nie istnieje trójkąt o długościach boków 22, 22, 61 (nierówność trójkąta).

Trójkąt ABC jest równoramienny, wówczas wysokość h opuszczona na bok AB jest równa: $h = \sqrt{61^2 - 11^2} = 60$.

Obliczamy pole *P* trójkąta *ABC*: $P = \frac{1}{2} \cdot 22 \cdot 60 = 660$.

Obliczamy objętość V ostrosłupa ABCS: $V = \frac{1}{3} \cdot P \cdot \left| AS \right| = \frac{1}{3} \cdot 660 \cdot 8\sqrt{210} = 1760\sqrt{210}$.

Schemat oceniania

<u>Uwaga</u>

Jeśli zdający obliczy |AB| oraz |AC| i nie zapisze (zauważy), że|BC| = 61, to przyznajemy **2 punkty**.

Pokonanie zasadniczych trudności zadania4 pk	t
Obliczenie pola podstawy ostrosłupa: $P = 660$.	
Rozwiązanie zadania do końca lecz z usterkami, które jednak nie przekreślają	
poprawności rozwiązania (np. błędy rachunkowe) 4 pk	t
	4
Rozwiązanie pełne 5 pk	ι

Uwaga

Jeśli zdający nie zauważy, że trójkąt o bokach 22, 22, 61 nie istnieje i obliczy dwie "możliwe" objętości ostrosłupów, to otrzymuje **4 punkty**.

Zadanie 11. (0-3)

Rozumowanie i argumentacja	Wykorzystanie własności prawdopodobieństwa do obliczania prawdopodobieństw zdarzeń (V.10.c.d)
----------------------------	---

I sposób rozwiązania.

Zdarzenia $A \cap B'$ oraz $A' \cap B$ są rozłączne.

Stąd i z faktu, że $P((A \cap B') \cup (A' \cap B)) \le 1$ wynika, że

$$1 \ge P((A \cap B') \cup (A' \cap B)) = P(A \cap B') + P(A' \cap B), \text{ czyli } P(A' \cap B) \le 0,3.$$

Uwaga

Zdający może rozwiązać zadanie za pomocą diagramu Venna.

Schemat oceniania I sposobu rozwiązania

Rozwiązanie, w którym jest istotny postęp	1 pkt
Zdający zauważy, że zdarzenia $A \cap B'$ oraz $A' \cap B$ są rozłączne.	•
Pokonanie zasadniczych trudności zadania	
Zdający zapisze, że $1 \ge P((A \cap B') \cup (A' \cap B)) = P(A \cap B') + P(A' \cap B)$.	-

Uwaga

Jeżeli zdający przeprowadzi pełny dowód, ale nie zapisze, że podane zdarzenia są rozłączne, to otrzymuje **2 punkty**.

II sposób rozwiązania.

Wiemy, że
$$(A \cap B') \subset B'$$
, stąd $P(A \cap B') \leq P(B')$, czyli $P(A \cap B') \leq 1 - P(B)$.

Zatem $P(B) \le 0.3$.

Wiemy, że $(A' \cap B) \subset B$, stąd mamy $P(A' \cap B) \leq P(B)$, czyli $P(A' \cap B) \leq 0.3$, co kończy dowód.

Schemat oceniania II sposobu rozwiązania
Rozwiązanie, w którym postęp jest niewielki, ale konieczny na drodze do pełnego
rozwiązania zadania1 pkt
Zapisanie, że $(A \cap B') \subset B'$. Zdający nie musi tego wyraźnie napisać, o ile wynika
to z dalszych rozważań.
Pokonanie zasadniczych trudności zadania2 pkt
Zapisanie, że $(A' \cap B) \subset B$ oraz, że $P(B) \le 0,3$. Zdający nie musi tego wyraźnie napisać,
o ile wynika to z pozostałych zapisów.
Rozwiązanie pełne3 pkt
Zapisanie wniosku: $P(A' \cap B) \le 0,3$.