CS & IT ENGINEERING

Theory of Computation

Regular Languages

Lecture No.- 21

Topic

Model-I (Easy: Phi, Sigma*, only epsilon, Sigma+)

Topic

Construction of DFA Model II (Length)

Topic

Construction of DFA Model III (No. of symbols)

Topic

Construction of DFA Model IV (Over 1 symbol)

Topic

Construction of DFA Model V (Sequence based)

Topic

Construction of DFA Model VI (Length & Remainder)

Topic

Construction of DFA Model VII (Symbols & Remainder)

Topic

Construction of DFA Model VIII (Multiple Conditions on symbols)

Topics to be Covered

Topic

Construction of DFA Model IX (Start, End, Contain)

Topic

Construction of DFA Model X (Position based)

(64)
$$L=(a+b)^{*}aaa Min=aaa$$
(65) $L=(a+b)^{*}a(a+b)^{*}Min=a$
(66) $L=(a+b)^{*}a(a+b)^{*}Min=a$

starting will a

= fa,b}

$$= \mathcal{Q}_{\omega}, \mathcal{Q}_{\omega}, \mathcal{Q}_{\omega}, \dots$$

$$= \mathcal{Q}_{\omega} \times \mathcal{Q}$$

(63)
$$L = a^3(a+b)^*$$

Min = aaa

$$\Rightarrow 100 \Rightarrow 200 \Rightarrow 300 \Rightarrow 1000 \Rightarrow 1$$

$$= (a+b)^*a$$

$$Min = a$$

 $L=(a+b)^*aaa$

$$L = (a+b)^* a (a+b)^*$$

= $\{\omega | \omega \in \{a,b\}^*, n_a(\omega) \ge 1\}$

Min = aaa

$$(70)$$
 L = ab $(a+b)^{*}$
 $|ab|=2$
 $(2+1)+1=4$ States

1: waits for ab

9; " " b

3: I am finel

$$\begin{array}{cccc} (71) & L = aba(a+b)^{*} \\ (72) & L = (a+b)^{*} aba \\ (73) & L = (a+b)^{*} aba(a+b)^{*} \end{array}$$

Model-X [Position based]:

gw/w∈da,b}* 2nd symbol of ω is `a'} = fxay | xefa, by yefa, by = (a+b) a (a+b)*

$$\frac{1}{4} = \frac{1}{4} \left(\frac{1}{4} \right) \left(\frac{1}{4$$

= (a+b)* (aa+ab)

2 mins Summary

Topic	Model-I (Easy: Phi, Sigma*, only epsilon, Sigma*)
Topic	Construction of DFA Model II (Length)
Topic	Construction of DFA Model III (No. of symbols)
Topic	Construction of DFA Model IV (Over 1 symbol)
Topic	Construction of DFA Model V (Sequence based)
Topic	Construction of DFA Model VI (Length & Remainder)
Topic	Construction of DFA Model VII (Symbols & Remainder)
Topic	Construction of DFA Model VIII (Multiple Conditions on symbols)
Topic	Construction of DFA Model IX (Start, End, Contain)

THANK - YOU