Architecture des systèmes

Chapitre 1 : Fonctionnement d'un ordinateur

Objectifs du chapitre

- Fonctionnement d'un ordinateur
 - stockage : des bits aux valeurs
 - traitement
 - par des circuits simples (sans notion de temps et sans stockage)
 - par des circuits complexes (avec notions de temps et de stockage)
 - entre circuits complexes

Plan

- 1. Représentation des valeurs
- 2. Circuits logiques
- 3. Circuits séquentiels
- 4. Architecture d'un ordinateur

1. Représentation des valeurs

1. Représentation des valeurs

- Bit : unité de stockage de l'information
 - 0 ou 1
- Stockage de valeurs plus complexes
 - nombres, textes, images, sons, vidéos, etc.
- Comment sont stockées ces valeurs ?
 - entiers positifs, entiers naturels
 - nombres réels
 - caractères, chaînes de caractères

- Base = nombre de chiffres différents autorisés
- Base 2 (binaire)
 - valeurs: 0 et 1
- Base 10 (décimale)
 - valeurs: 0, 1, 2, 3, 4, 5, 6, 7, 8 et 9
- Base 16 (hexadécimale)
 - valeurs: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E et F

Remarque

- pour éviter les confusions, on utilise la base en indice
- un nombre en base hexadécimale peut aussi être précédé de 0x
- par défaut, la base est décimale

Exemple

- 25 est un nombre en base 10
- 100 est un nombre en base 10
- 100₂ est un nombre en base 2
- AB₁₆ est un nombre en base 16
- 0xAB est un nombre en base 16

- Comment connaître la valeur décimale d'un nombre écrit dans une base b?
 - soit un nombre binaire $(a_{n-1}, a_{n-2}, ..., a_{2}, a_{1}, a_{0})$, chaque a_{i} étant écrit dans la base b
 - la valeur de $(a_{n-1}, a_{n-2}, ..., a_{2}, a_{1}, a_{0})$ est $sum(i=0..n-1)a_{i}.b^{i}$
- Exemple : quelle est la valeur décimale de 110101, ?
 - $1.2^5+1.2^4+0.2^3+1.2^2+0.2^1+1.2^0=32+16+4+1=53$

- Comment connaître l'écriture dans une base b d'un nombre n écrit en base décimale ?
 - écrire les puissances de b
 - calculer *c* et *k* tel que :
 - c est compris entre 0 et b-1
 - $-c.b^{k} \leq n < (c+1).b^{k}$
 - retirer du nombre actuel c.b^k: c est le k-ème chiffre de l'écriture de n dans la base b
 - recommencer jusqu'à obtenir 0

- Exemple : quelle est l'écriture binaire de 39 ?
 - puissances de 2 : 1, 2, 4, 8, 16, 32, 64
 - 1.32 ≤ 39 < 2.32, avec 32=2⁵, donc le 5-ème chiffre est 1, et il reste 7
 - 1.4 ≤ 7 < 2.4, avec 4=2², donc le 2-ème chiffre est 1, et il reste 3
 - 1.2 ≤ 3 < 2.2, avec 2=2¹, donc le 1-ème chiffre est 1, et il reste 1
 - 1.1 ≤ 1 < 2.1, avec 1=2°, donc le 0-ème chiffre est 1, et il reste 0
 - on obtient 100111₂

- Comment passer d'une base b₁ à une base b₂?
 - passer de la base b₁ à la base 10
 - passer de la base 10 à la base b₂
- Comment passer d'une base 16 à une base 2 rapidement ?
 - traduire chaque chiffre hexadécimal en 4 bits
- Comment passer d'une base 2 à une base 16 rapidement ?
 - lire les bits par blocs de 4, en commençant à droite
 - traduire chaque bloc de 4 bits indépendemment (car 16=2⁴)

- Comment faire une addition entre deux nombres ?
 - comme sur les décimaux
 - attention aux retenues
 - attention aux débordements de capacité (le résultat peut avoir plus de chiffres que les opérandes)

- Exemple : faire l'addition de 39 et de 46 en base 2
 - $39 = 100111_2$ et $46 = 101110_2$
 - on obtient bien $1010101_2 = 85$

Addition de 39 et 46							
39		1	0	0	1	1	1
46		1	0	1	1	1	0
retenue	1	0	1	1	1	0	-
résultat	1	0	1	0	1	0	1

- Problème : il faut un moyen pour stocker les nombres négatifs
- Solution initiale : un bit de signe (le plus à gauche)
- Exemple : représenter 39 et -39 en base 2, avec un bit de signe, sur 8 bits
 - 39 = 100111
 - 39 sur 8 bits : (0)0100111
 - -39 sur 8 bits : (1)0100111

- Problèmes
 - les additions et les soustractions sont à gérer différemment
 - 0 et -0 ont deux représentations différentes
- Solution intermédiaire : complément logique (ou complément à 1)
 - pour les entiers négatifs, tous les bits sont inversés
- Exemple : représenter 39 et -39 en base 2, en complément logique, sur 8 bits
 - 39 = 100111
 - 39 sur 8 bits: 00100111
 - -39 sur 8 bits : 11011000

- Remarque : les nombres positifs commencent par 0, les nombres négatifs par 1
- Comment ajouter deux entiers naturels en complément logique ?
 - faire l'addition en base 2
 - si une retenue déborde (dépasse de la capacité prévue), il faut la réajouter au résultat
- Problèmes
 - addition complexe
 - 0 et -0 ont toujours deux représentations différentes
- Solution : complément arithmétique (ou complément à 2)
 - obtenu en ajoutant 1 au complément logique pour les nombres négatifs

- Exemple : représenter 39 et -39 en base 2, en complément arithmétique sur 8 bits
 - 39 = 100111
 - 39 sur 8 bits: 00100111
 - -39 sur 8 bits: 11011000+1 = 11011001
- Comment ajouter deux entiers naturels en complément arithmétique ?
 - faire une addition en base 2
 - si une retenue déborde, il faut l'ignorer

- Problème : il faut un moyen pour représenter les nombres à virgule
- Solution : format IEEE 754, simple ou double précision
 - signe : bit de signe
 - valeur absolue : mantisse normalisée et exposant (m.2^e), avec 0.5≤m<1 et e entier
- Mantisse à bit caché
 - le premier bit de la mantisse, qui vaut toujours 1, n'est pas stocké
 - zéro est stocké avec un exposant maximum

Exposant biaisé

 l'exposant est décalé d'un biais pour que la valeur stockée soit toujours positive

Remarques

- simple précision : 1 bit de signe, 23 bits de mantisse, 8 bits d'exposant (biaisé de -126)
- double précision : 1 bit de signe, 52 bits de mantisse, 11 bits d'exposant (biaisé de -1022)

- - bit de signe : 1, donc nombre négatif
 - exposant : 10000000=128 (valeur biaisée), 128-126=2 (valeur non biaisée)
 - mantisse: 01100...0 (avec bit caché), 101100...0 (sans bit caché) = 1/2+1/8+1/16 = 0,5+0,125+0,0625 = 0,6875
 - résultat : $-0,6875.2^2 = -2,75$

- Exemple : quel est l'encodage (en simple précision) de 4,25 ?
 - nombre positif, donc bit de signe : 0
 - 4,25 = 2,125*2¹ = 1,0625*2² = 0,53125*2³, arrêt car mantisse normalisée
 - exposant : 3 (valeur non biaisé), 3+126=129 (valeur biaisée), donc : 10000001
 - mantisse: 0,53125 = 0,5 + 0,03125 = 1/2 + 1/32 = 1000100...0 (sans bit caché), 000100...0 (avec bit caché)
 - résultat : 01000000 10001000 00000000 000000000₂

1.4 Caractères

- Comment les caractères sont-ils stockés ?
 - règles associant chaque caractère à un numéro
 - exemple : ASCII, UTF-8, UTF-16, ISO 8859-1 (latin1), etc
- ASCII = American Standard Code for Information Interchange
 - table associant chaque caractère (parmi 128) à un numéro sur un octet
 - exemples: 'A' est 65, 'B' est 66, 'a' est 97, '+' est 43

1.4 Caractères

Propriétés

- les caractères minuscules se suivent
- les caractères majuscules se suivent
- les chiffres se suivent

Problèmes

- pas de caractères accentués
- beaucoup (33) de caractères non affichables

1.5 Chaînes de caractères

- Deux méthodes
 - stocker le nombre de caractères puis la liste des caractères (approche utilisée en Pascal)
 - stocker un caractère terminal (approche utilisée en C ou sous DOS)

Circuit logique

- circuit électronique simplifié permettant de calculer une sortie en fonction d'entrées
- exemple : allumer une lumière en fonction de la position de plusieurs interrupteurs

Remarque

- les entrées et les sorties sont composées de signaux binaires
- la manipulation des bits se fait via des fonctions logiques

- Fonctions logiques
 - fonctions de base : NOT, OR, AND

Table de vérité de "NOT A"			
A=0 1			
A=1 0			

Table de vérité de "A OR B"				
B=0 B=1				
A=0	0	1		
A=1 1 1				

Table de vérité de "A AND B"			
B=0 B=1			
A=0 0		1	
A=1 1 1			

autres fonctions: XOR, NOR, NAND

Table de vérité de "A XOR B"			
B=0 B=1			
A=0	0	1	
A=1 1 0			

Table de vérité de "A NOR B"			
B=0 B=1			
A=0	1	0	
A=1	0	0	

Table de vérité de "A NAND B"					
	B=0 B=1				
A=0	1	1			
A=1 1 0					

- Algèbre de Boole
 - opérations élémentaires : NOT (noté barre), OR (noté +), AND (noté * ou .)
 - permet de représenter des fonctions logiques, de les simplifier, et de faire du calcul (appelé calcul propositionnel)
- Quelques propriétés
 - A=A
 - lois de De Morgan : A+B=A.B et A.B=A+B

- Table de vérité
 - liste exhaustive des sorties en fonction de toutes les entrées
- Exemple
 - la lumière L est allumée uniquement quand les interrupteurs A ou B sont ouverts, à moins que l'interrupteur de sécurité S soit ouvert
 - entrées : A, B, S
 - sortie: L

Suite de l'exemple :

S	Α	В	L
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	0

• fonction logique : L=\overline{S}.A.\overline{B}+\overline{S}.A.\overline{B}+\overline{S}.A.B

- Synthèse
 - construction d'un circuit logique à partir d'une fonction logique
- Étapes de la synthèse
 - construction de la table de vérité
 - obtention d'une expression logique
 - réalisation du circuit

• Exemple : $L=\overline{S}.A.\overline{B}+\overline{S}.A.\overline{B}+\overline{S}.A.B$

- Analyse
 - construction d'une fonction logique à partir d'un circuit logique
- Simplification des fonctions logiques (cf TD)
 - par observation de la table de vérité
 - par propriétés de l'algèbre de Boole
 - par la méthode des tableaux de Karnaugh

- Circuit séquentiel
 - circuit logique qui intègre une notion de temps et de mémoire
 - temps : horloge fournissant un signal (à une certaine fréquence)
 - mémoire : bascule RS
- Bascule RS
 - une entrée R (pour reset) : met la sortie à 0
 - une entrée S (pour set) : met la sortie à 1

Table de vérité de la bascule RS

Q (ancien)	R	S	Q (nouveau)
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	???
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	???

• fonction logique : Qnew=\overline{R}.S+\overline{R}.Qold=\overline{R}.(S+Qold) = \overline{R}+(S+Qold)

- Circuit séquentiel de la bascule RS
 - fonction logique : Q=R+(S+Q)

4. Architecture d'un ordinateur

4. Architecture d'un ordinateur

Ordinateur

- interconnexion de circuits séquentiels + horloge
- bus : moyen de communication entre les circuits séquentiels
- modèle de Von Neumann
- Types de circuits séquentiels
 - mémoire
 - unités de calculs
 - unités de traitement
 - périphériques externes

4. Architecture d'un ordinateur

4. Architecture des ordinateurs

- Quelques mots-clés
 - RAM (Random Access Memory) = mémoire principale, en lecture/écriture
 - ROM (Read-Only Memory) = mémoire en lecture seule
 - BIOS (Basic Input/Output System) = primitives de base de gestion des entrées/sorties, disponibles avant le démarrage du système d'exploitation, sauvegardées en ROM
 - CMOS = technologie mémoire historiquement utilisée pour sauvegarder quelques informations du BIOS en mémoire quand l'ordinateur est éteint

4. Architecture des ordinateurs

- Quelques mots-clés
 - circuit intégré = circuit logique ou séquentiel réalisant une ou plusieurs fonctions
 - processeur = composant électronique réalisant des traitements programmables
 - microprocesseur = processeur réalisé sur un seul circuit intégré

Résumé des principales connaissances à avoir

Résumé des principales connaissances à avoir

- Codage : entiers positifs, entiers naturels, réels, caractères
- Circuits logiques : synthèse, analyse
- Circuits séquentiels : principe
- Ordinateur : organisation

