Supplementary Online Content

Yu J, Zhou Z, McEvoy D, et al. Association of positive airway pressure with cardiovascular events and death in adults with sleep apnea: a systematic review and meta-analysis. *JAMA*. doi:10.1001/jama.2017.7967

eAppendix. Search Strategy

eFigure 1. Assessment of Risk of Bias Using Cochrane Collaboration Tool

eFigure 2. Random-Effects Meta-Regression of Selected Trial Characteristics on Risk

Ratio of Major Adverse Cardiovascular Events Plus Hospitalization for Unstable Angina

eFigure 3. Random-Effects Meta-Regression of Selected Trial Characteristics on Risk

Ratio of Cardiovascular Death

eFigure 4. Association of Positive Airway Pressure With Major Adverse Cardiovascular

Events (MACE) and MACE Plus Hospitalization for Unstable Angina After Exclusion of

Outlying Study Using Random-Effects Meta-Analysis

eFigure 5. Assessment of Publication Bias on Vascular Outcomes and Death

eTable 1. Individual Trial Data and Pooled Outcomes Using Random-Effects Model

eTable 2. Individual Trial Data and Pooled Outcomes in Subgroups Using

Random-Effects Meta-Analysis

eReferences.

This supplementary material has been provided by the authors to give readers additional information about their work.

eAppendix. Search Strategy

Medline and Cochran Central Register of Controlled Trials (Central) both searched via Ovid

- 1. randomized controlled trial.pt
- 2. controlled clinical trial.pt
- 3. randomized.tw
- 4. clinical trial/
- 5. randomly.ab
- 6. trial.ti
- 7. control.tw
- 8. 1 or 2 or 3 or 4 or 5 or 6 or 7
- 9. exp sleep apnea syndromes/
- 10. exp sleep disorders/ and exp respiration/
- 11. (sleep* adj5 (apnea or apnoea or hypopnea or hypopnoea)).tw.
- 12. (sleep adj5 (cessation or cease* or periodic) adj5 (respiration or ventilation or air flow)).tw.
- 13. (SDB or OSAS or CSAS or OSA or SAHS or SAS).tw.
- 14. snoring.mp. or exp Snoring/
- 15. upper airway resistance syndrome.mp
- 16. exp sleep/ and exp breathing/
- 17. 9 or 10 or 11 or 12 or 13 or 14 or 15 or 16
- 18. exp positive-pressure respiration/
- 19. continuous positive airway*.tw.
- 20. airway pressure release ventilation.tw.
- 21. (positive pressure or positive-pressure).mp.
- 22. (CPAP or nCPAP or APRV or biPAP or apap or auto-cpap).mp

eAppendix. Search Strategy (continued)

- 23. 18 or 19 or 20 or 21 or 22
- 24. 8 and 17 and 23

EMBASE

- 1. 'randomized controlled trial'/exp or 'randomized controlled trial'.mp.
- 2. sleep apnea syndromes.mp. or sleep disordered breathing/
- 3. sleep disorder/ or sleep wake disorder.mp. or sleep/
- 4. 'sleep respiration'/exp OR 'sleep respiration'.mp.
- 5. central sleep apnea syndrome/ or sleep disorder/ or sleep apnea syndrome/ or sleep/ or sleep disordered breathing/ or sleep respiration.mp. or breathing/ or Cheyne Stokes breathing/
- 6. 'sleep apnoea'
- 7. 'sleep hypopnea'/exp OR 'sleep hypopnea'
- 8. 'sleep hypopnoea'/exp OR 'sleep hypopnoea'
- 9. 'sleep cessation'/exp OR 'sleep cessation' OR 'cease' OR 'periodic' OR 'respiration' OR 'ventilation' OR 'air flow'
- 10. 'SDB'/exp OR 'SDB'
- 11. 'OSAS'/exp OR 'OSAS'
- 12. 'CSAS'/exp OR 'CSAS'
- 13. 'OSA'/exp OR 'OSA'
- 14. 'SAHS'/exp OR 'SAHS'
- 15. 'SAS '/exp OR ' SAS '
- 16. 'snoring'/exp OR 'snoring'
- 17. 'Snoring'/exp OR 'Snoring'
- © 2017 American Medical Association. All rights reserved.

eAppendix. Search Strategy (continued)

- 18. 'upper airway resistance syndrome '/exp OR ' upper airway resistance syndrome'
- 19. 'sleep'/exp OR 'sleep'
- 20. 2 or 3 or 4 or 5 or 6 or 7 or 8 or 9 or 10 or 11 or 12 or 13 or 14 or 15 or 16 or 17 or 18 or 19
- 21. 'positive-pressure respiration'/exp OR 'positive-pressure respiration'
- 22. 'continuous positive airway'/exp OR 'continuous positive airway'
- 23. 'airway pressure release ventilation'/exp OR 'airway pressure release ventilation'
- 24. 'positive pressure'/exp OR 'positive pressure'
- 25. 'positive-pressure'/exp OR 'positive-pressure'
- 26. 'CPAP'/exp OR 'CPAP'
- 27. 'nCPAP'/exp OR 'nCPAP'
- 28. 'APRV'/exp OR 'APRV'
- 29. 'biPAP'/exp OR 'biPAP'
- 30. 'apap'/exp OR 'apap'
- 31. 'auto-cpap'/exp OR 'auto-cpap'
- 32. 21 or 22 or 23 or 24 or 25 or 26 or 27 or 28 or 29 or 30 or 31
- 33. 1 and 20 and 32

clinicaltrials.gov

- 1. sleep apnea syndromes.tw
- 2. sleep disorders.tw
- 3. (sleep* adj5 (apnea or apnoea or hypopnea or hypopnoea)).tw.
- 4. (sleep adj5 (cessation or cease* or periodic) adj5 (respiration or ventilation or air flow)).tw.
- 5. (SDB or OSAS or CSAS or OSA or SAHS or SAS).tw.
- © 2017 American Medical Association. All rights reserved.

eAppendix. Search Strategy (continued)

- 6. snoring.mp. or exp Snoring/
- 7. upper airway resistance syndrome.mp
- 8. positive-pressure respiration.tw
- 9. continuous positive airway*.tw.
- 10. airway pressure release ventilation.tw.
- 11. (positive pressure or positive-pressure).mp.
- 12. (CPAP or nCPAP or APRV or biPAP or apap or auto-cpap).mp

eFigure 1. Assessment of Risk of Bias Using Cochrane Collaboration Tool

Legend: • Low risk of bias • High risk of bias • Unclear risk of bias

eFigure 2. Random-Effects Meta-Regression of Selected Trial Characteristics on Risk Ratio of Major Adverse Cardiovascular Events Plus Hospitalization for Unstable Angina

Legend: (a) Meta regression on risk ratio of MACE plus in 7 included studies $^{2,3,5,7-10}$ according to length of follow-up with regression coefficient of -0.01 [95% confidence interval, -0.04 to 0.02] and p value =0.37.

- (b) Meta regression on risk ratio of MACE plus according to adherence to positive airway pressure in 7 included studies $^{2,3,5,7-10}$ with regression coefficient of -0.06 [-0.22 to 0.10] and p value =0.36.
- (c) Meta regression on risk ratio of MACE plus according to apnea hypopnea index at baseline in 6 included studies^{2,5,7-10} with regression coefficient of -0.02 [-0.13 to 0.09] and p value =0.68.

The size of the circles represents the weight given to each study. The circles are centred on the intersection of the relative risk for MACE on the vertical axis and the mean trial value of the metric of interest on the y-axis.

eFigure 2. (continued)

Abbreviations: MACE plus, major adverse cardiovascular events (consists of cardiovascular death, non-fatal acute coronary syndrome and non-fatal stroke) and hospitalization for unstable angina.

eFigure 3. Random-Effects Meta-Regression of Selected Trial Characteristics on Risk Ratio of Cardiovascular Death

Legend: (a) Meta regression on risk ratio of cardiovascular death in 7 included studies $^{1,2,6-10}$ according to length of follow-up with regression coefficient of -0.02 [95% confidence interval, -0.06 to 0.02] and p value =0.23.

- (b) Meta regression on risk ratio of cardiovascular death according to adherence to positive airway pressure in 7 included studies^{1,2,6-10} with regression coefficient of -0.39 [-0.93 to 0.16] and p value =0.13.
- (c) Meta regression on risk ratio of cardiovascular death according to apnea hypopnea index at baseline in 7 included studies $^{1,2,6-10}$ with regression coefficient of -0.00 [-0.10 to 0.09] and p value =0.93.

The size of the circles represents the weight given to each study. The circles are centred on the intersection of the relative risk for MACE on the vertical axis and the mean trial value of the metric of interest on the y-axis.

eFigure 4. Association of Positive Airway Pressure With Major Adverse Cardiovascular Events (MACE) and MACE Plus Hospitalization for Unstable Angina After Exclusion of Outlying Study Using Random-Effects Meta-Analysis

Legend: (a) Pooled relative risks estimated by random-effect model for MACE.

(b) Pooled relative risks estimated by random-effect model for MACE after dropping Huang et al⁷.

© 2017 American Medical Association. All rights reserved.

- (c) Pooled relative risks estimated by random-effect model for MACE plus.
- (d) Pooled relative risk estimated by random-effect model for MACE plus after dropping Huang et al⁷.

Box sizes are proportional to study weight with the centre of the box placed at the point estimate of effect and the horizontal line extending from the upper to the lower margins of the 95% confidence interval for each individual study. The centre of the diamond is placed at the point estimate of the summary metric of association with the tips of the diamond extending from the upper to the lower margins of the 95% confidence interval. The I-squared value indicates the percentage of variability across the pooled estimates attributable to heterogeneity beyond chance with an I-squared statistic of 0-25% considered to reflect a low likelihood, 26-75% a moderate likelihood, and 76-100% a high likelihood. The p value is for a test of heterogeneity across all studies with a p value of ≤0.05 indicating likely variation across pooled estimates beyond chance.

Abbreviations: MACE, major adverse cardiovascular events (consists of cardiovascular death, non-fatal acute coronary syndrome and non-fatal stroke); MACE plus, MACE and hospitalization for unstable angina; n_C : number of cardiovascular events or death in control group; N_C : number of participants in control group; n_P : number of cardiovascular events or death in treatment with positive airway pressure; N_P : number of participants in treatment with positive airway pressure; PAP: positive airway pressure; RR: risk ratio.

eFigure 5. Assessment of Publication Bias on Vascular Outcomes and Death

Legend: Funnel plot and Egger's regression test for (a) MACE (p=0.03); (b) MACE plus (p=0.08); (c) cardiovascular death (p=0.13); (d) all-cause death (p=0.48); (e) non-cardiovascular death (p=0.34); (f) acute coronary syndromes (p=0.37); (g) stroke (p=0.12); (h) hospitalization for unstable angina (Egger's regression test was not applicable since only two included studies); (i) heart failure (p=0.70).

The contour lines (dashed) define the region within which 95% of points would be expected to lie in the absence of both heterogeneity and publication bias. The total overall estimate for the meta-analysis is represented by the vertical line. The linear

eFigure 5. (continued)

regression is represented by the diagonal line.

Abbreviations: MACE, major adverse cardiovascular events (consists of cardiovascular death, non-fatal acute coronary syndrome and non-fatal stroke); MACE plus, MACE plus hospitalization for unstable angina.

eTable 1. Individual Trial Data and Pooled Outcomes Using Random-Effects Model

Study	P	AP	Cor	ntrol	Risk Ratio	Weight*	Risk	Weight [†]
	n _P	N _P	n _C	N _C	Random,	(%)	difference	(%)
					95% CI		Random,	
							95% CI	
MACE								
Barbe	6	357	10	366	0.62 [0.23 to	11.17	-0.01 [-0.03	26.07
2012 [2]					1.68]		to 0.01]	
Craig	1	195	3	196	0.34 [0.04 to	2.71	-0.01 [-0.03	27.25
2012 [3]		1.10		100	3.19]	0.04	to 0.01]	10.00
McMillan	6	140	5	138	1.18 [0.37 to	8.81	0.01 [-0.04	12.03
2014 [5]	0	12		41	3.79]	1.70	to 0.05]	2.06
Huang	0	42	5	41	0.09 [0.01 to	1.72	-0.12 [-0.23	2.96
2015 [7] Parra 2015	5	57	16	69	1.56] 0.38 [0.15 to	12.28	to -0.02]	2.25
[8]	3	31	10	09	0.38 [0.13 to	12.28	to -0.02]	2.23
McEvoy	134	1359	127	1358	1.05 [0.84 to	40.84	0.01 [-0.02]	25.45
2016 [9]	134	1339	127	1336	1.33]	40.04	to 0.03]	23.43
Peker	17	122	21	122	0.81 [0.45 to	22.46	-0.03 [-0.12	3.98
2016 [10]	1,	122	21	122	1.46]	22.10	to 0.06]	3.70
Total	169	2272	187	2290	0.77 [0.53 to	100.00	-0.01 [-0.03	100.00
(95% CI)	10)		10,		1.13]	100,00	to 0.01]	100.00
(* * * * * * * * * * * * * * * * * * *					Heterogeneity	·	Heterogeneity	7:
					Tau ² =0.08; Cl		$Tau^2 < 0.01;$	
					$P=0.17; I^2=34$.10%	Chi ² =11.15; P	2=0.08;
					Overall effect	: z=1.31;	$I^2=46.20\%$	
					P=0.19		Overall effect	: z=1.19;
							P=0.23	
MACE plu		ı		1	T		Γ	
Barbe	23	357	21	366	1.12 [0.63 to	14.64	0.01 [-0.03	20.42
2012 [2]					1.99]		to 0.04]	
Craig	1	195	3	196	0.34 [0.04 to	1.30	-0.01 [-0.03	28.07
2012 [3]		1.40	_	120	3.19]	4.55	to 0.01]	15.70
McMillan	6	140	5	138	1.18 [0.37 to	4.55	0.01 [-0.04	15.79
2014 [5] Huang	0	42	5	41	3.79] 0.09 [0.01 to	0.81	to 0.05]	4.64
2015 [7]	U	42	3	41	1.56]	0.61	to -0.02]	4.04
Parra 2015	5	57	16	69	0.38 [0.15 to	6.64	-0.14 [-0.27	3.59
[8]	3	31	10	0)	0.97]	0.04	to -0.02]	3.37
McEvoy	233	1359	217	1358	1.07 [0.91 to	41.90	0.01 [-0.02	23.87
2016 [9]	200	1557	21,	1000	1.27]	11.70	to 0.04]	23.07
Peker	47	122	53	122	0.89 [0.66 to	30.17	-0.05 [-0.17	3.62
2016 [10]					1.20]		to 0.07]	
Total	315	2272	320	2290	0.92 [0.71 to	100.00	-0.01 [-0.03	100.00
(95% CI)					1.20]		to 0.01]	
					Heterogeneity	:	Heterogeneity	7:
					$Tau^2=0.03$; $Chi^2=9.28$;		$Tau^2 < 0.01;$	
							Chi ² =12.53;	

eTable 1. Individual Trial Data and Pooled Outcomes Using Random-Effects Model (continued)

Study	P	AP	Coi	ntrol	Risk Ratio	Weight*	Risk	Weight [†]
	n _P	N_{P}	n _C	$N_{\rm C}$	Random,	(%)	difference	(%)
					95% CI		Random,	
							95% CI	
					$P=0.16; I^2=35$.30%	$P=0.05; I^2=52$.10%
					Overall effect:	: z=0.61;	Overall effect:	z=0.81;
					P=0.54		P=0.42	
Cardiovasc	1		I		T	T	Γ	
Bradley	23	128	20	130	1.17 [0.68 to	18.21	0.03 [-0.07	4.61
2005 [1]					2.02]		to 0.12]	
Barbe	1	357	0	366	3.08 [0.13 to	0.68	0.00-] 00.0	29.25
2012 [2]					75.24]		to 0.01]	
Cowie	199	666	158	659	1.25 [1.04 to	59.28	0.06 [0.01 to	11.99
2015 [6]	_				1.49]		0.11]	
Huang	0	42	1	41	0.33 [0.01 to	0.69	-0.02 [-0.09	7.95
2015 [7]	_			_	7.77]		to 0.04]	
Parra 2015	0	57	7	69	0.08 [0.00 to	0.86	-0.10 [-0.18	6.16
[8]					1.38]		to -0.03]	
McEvoy	2	1359	20	1358	1.25 [0.70 to	16.48	0.00 [-0.01	28.63
2016 [9]	5				2.24]		to 0.01]	
Peker	3	122	7	122	0.43 [0.11 to	3.79	-0.03 [-0.08	11.42
2016 [10]					1.62]		to 0.02]	
Total (95%	251	2731	213	2745	1.15 [0.88 to	100.00	-0.00 [-0.02	100.00
CI)					1.50]		to 0.02]	
					Heterogeneity		Heterogeneity	
					$Tau^2 = 0.02$; Ch		Tau ² <0.01; Ch	
					$P=0.31; I^2=15$		$P < 0.001; I^2 = 7$	
					Overall effects	: Z=1.05;	Overall effect	: Z=0.1/;
A 11 J	41-				P=0.30		P=0.87	
All-cause de	1	120	20	120	0.00 [0.61 to	0.40	0.00 [0.10	0.02
Bradley	27	128	28	130	0.98 [0.61 to	8.48	-0.00 [-0.10	0.93
2005 [1]	8	257	2	266	1.57]	1.07	to 0.10]	14.70
Barbe	8	357	3	366	2.73 [0.73 to	1.07	0.01 [-0.00	14.72
2012 [2]	1	105	0	106	10.22]	0.10	to 0.03]	10.15
Craig 2012	1	195	0	196	3.02 [0.12 to	0.18	0.01 [-0.01	18.15
[3] Kushida	2	556	2	542	73.57]	0.49	to 0.02]	25.22
	2	556	2	342	0.97 [0.14 to	0.49	-0.00 [-0.01	25.22
2012 [4] McMillan	1	140	1	138	6.90]	0.24	to 0.01]	12 21
2014 [5]	1	140	1	138	0.99 [0.06 to 15.60]	0.24	-0.00 [-0.02 to 0.02]	13.21
Cowie	232	666	193	659	1.19 [1.02 to	74.96	0.06 [0.01 to	3.36
	232	000	173	039	1.19 [1.02 to	/4.90	0.06 [0.01 to	3.30
2015 [6]	0	42	1	41		0.19	-0.02 [-0.09	2.12
Huang	U	42	1	41	0.33 [0.01 to 7.77]	0.19	to 0.04]	2.12
2015 [7] Parra 2015	6	57	9	69		1.97	_	0.73
	O	31	9	09	0.81 [0.31 to	1.9/	-0.03 [-0.14	0.73
[8]					2.13]		to 0.09]	

eTable 1. Individual Trial Data and Pooled Outcomes Using Random-Effects Model (continued)

Study	P	AP	Cor	ntrol	Risk Ratio	Weight*	Risk	Weight [†]
·	n _P	N _P	n _C	N _C	Random,	(%)	difference	(%)
	-	-	C		95% CI	, ,	Random,	, ,
							95% CI	
McEvoy	40	1359	43	1358	0.93 [0.61 to	10.37	-0.00 [-0.02	19.28
2016 [9]					1.42]		to 0.01]	
Peker	7	122	9	122	0.78 [0.30 to	2.04	-0.02 [-0.08	2.28
2016 [10]					2.02]		to 0.05]	
Total	324	3622	289	3621	1.13 [0.99 to	100.00	0.00 [-0.01	100.00
(95% CI)					1.29]		to 0.01]	
					Heterogeneity	:	Heterogeneity	:
					Tau ² <0.01; Cl	ni ² =5.35;	$Tau^2 < 0.01;$	
					$P=0.80; I^2=0.0$	00%	Chi ² =17.19; P	2 =0.05;
					Overall effect	: z=1.75;	$I^2=47.60\%$	
					P=0.08		Overall effect	: z=0.66;
							P=0.51	
Non-cardio	vascu	1		1	T			
Bradley	4	128	8	130	0.51 [0.16 to	8.00	-0.03 [-0.08	2.17
2005 [1]					1.64]		to 0.02]	
Barbe	7	357	13	366	0.55 [0.22 to	13.11	-0.02 [-0.04	9.18
2012 [2]					1.37]		to 0.01]	
Craig	1	195	0	196	3.02 [0.12 to	1.12	0.01 [-0.01	22.00
2012 [3]					73.57]		to 0.02]	
McMillan	1	140	1	138	0.99 [0.06 to	1.49	-0.00 [-0.02	12.61
2014 [5]					15.60]		to 0.02]	
Cowie	33	666	35	659	0.93 [0.59 to	43.23	-0.00 [-0.03	9.21
2015 [6]					1.48]	4 50	to 0.02]	0.70
Parra 2015	6	57	2	69	3.63 [0.76 to	4.60	0.08 [-0.01	0.73
[8]	1.7	1050	22	1050	17.31]	24.47	to 0.17]	40.40
McEvoy	15	1359	23	1358	0.65 [0.34 to	24.47	-0.01 [-0.01	40.42
2016 [9]	4	100	-	100	1.24]	2.00	to 0.00]	2.60
Peker	4	122	2	122	2.00 [0.37 to	3.99	0.02 [-0.02	3.69
2016 [10]	71	2024	0.4	2020	10.72]	100.00	to 0.06]	100.00
Total	71	3024	84	3038	0.85 [0.60 to	100.00	-0.00 [-0.01	100.00
(95% CI)					1.19]		to 0.01]	
					Heterogeneity Tau ² =0.01; Ch		Heterogeneity Tau ² <0.01; Ch	
					$P=0.39; I^2=4.8$		$P=0.32; I^2=13$	
					Overall effect		Overall effect	
					P=0.33	L-0.91,	P=0.51	. Z=0.00,
Acute coro	narv c	vndran	166		1 -0.55		1 -0.51	
Barbe	2	357	8	366	0.26 [0.05 to	7.42	-0.02 [-0.03	26.74
2012 [2]	_				1.20]	, , , , 2	to 0.00]	
Craig	1	195	3	196	0.34 [0.04 to	3.59	-0.01 [-0.03	21.46
2012 [3]					3.19]	3.07	to 0.01]	_1
McMillan	5	140	3	138	1.64 [0.40 to	8.75	0.01 [-0.03	7.11
2014 [5]					6.74]	35	to 0.05]	
		1		l	J., 1]		10 0.00]	

eTable 1. Individual Trial Data and Pooled Outcomes Using Random-Effects Model (continued)

Study	P	AP	Cor	itrol	Risk Ratio	Weight*	Risk	Weight [†]
	n _P	N_P	n _C	$N_{\rm C}$	Random,	(%)	difference	(%)
					95% CI		Random,	
							95% CI	
Huang	0	42	2	41	0.20 [0.01 to	2.05	-0.05 [-0.13	1.92
2015 [7]					3.95]		to 0.03]	
Parra 2015	2	57	1	69	2.42 [0.23 to	3.25	0.02 [-0.03	3.74
[8]					26.02]		to 0.08]	
McEvoy	42	1359	39	1358	1.08 [0.70 to	54.63	0.00 [-0.01	36.43
2016 [9]					1.65]		to 0.01]	
Peker	11	122	8	122	1.38 [0.57 to	20.32	0.02 [-0.04	2.59
2016 [10]					3.30]		to 0.09]	
Total	63	2272	64	2290	1.00 [0.65 to	100.00	-0.00 [-0.02	100.00
(95% CI)					1.55]		to 0.01]	
					Heterogeneity	':	Heterogeneity	•
					Tau ² =0.04; Cl		Tau ² <0.01; Ch	$ni^2 = 7.58;$
					$P=0.35; I^2=10$.20%	$P=0.27; I^2=20$.90%
					Overall effect	: z=0.01;	Overall effect	: z=0.76;
					P=0.99		P=0.45	
Stroke								
Barbe	3	357	2	366	1.54 [0.26 to	2.86	0.00 [-0.01	42.63
2012 [2]					9.15]		to 0.02]	
McMillan	1	140	2	138	0.49 [0.05 to	1.59	-0.01 [-0.03	17.72
2014 [5]					5.37]		to 0.02]	
Huang	0	42	3	41	0.14 [0.01 to	1.06	-0.07 [-0.16	1.65
2015 [7]					2.62]		to 0.02]	
Parra 2015	3	57	8	69	0.45 [0.13 to	5.55	-0.06 [-0.16	1.46
[8]					1.63]		to 0.03]	
McEvoy	67	1359	68	1358	0.98 [0.71 to	84.05	-0.00 [-0.02	30.90
2016 [9]					1.37]		to 0.02]	
Peker	3	122	6	122	0.50 [0.13 to	4.89	-0.02 [-0.07	5.64
2016 [10]					1.95]		to 0.02]	
Total	77	2077	89	2094	0.90 [0.66 to	100.00	-0.00 [-0.02	100.00
(95% CI)					1.21]		to 0.01]	
					Heterogeneity		Heterogeneity	
					$Tau^2 < 0.01$; Cl		$Tau^2 < 0.01$; Ch	
					$P=0.51; I^2=0.0$		$P=0.27; I^2=21$	
					Overall effect	: z=0.72;	Overall effect	: z=0.64;
					P=0.47		P=0.52	
Hospitaliza					1.50.50.75	12.04	0.02.5.0.01	21.55
Barbe	17	357	11	366	1.58 [0.75 to	12.04	0.02 [-0.01	31.55
2012 [2]	00	1050	00	1050	3.34]	07.04	to 0.05]	60.45
McEvoy	99	1359	90	1358	1.10 [0.83 to	87.96	0.01 [-0.01	68.45
2016 [9]	11-	1711	101	170 1	1.45]	100.00	to 0.03]	100.00
Total	116	1716	101	1724	1.15 [0.89 to	100.00	0.01 [-0.01	100.00
(95% CI)					1.49]		to 0.03]	

eTable 1. Individual Trial Data and Pooled Outcomes Using Random-Effects Model (continued)

Study	P	AP	Cor	ntrol	Risk Ratio	Weight*	Risk	Weight [†]	
	n _P	N _P	n _C	N _C	Random, 95% CI	(%)	difference Random, 95% CI	(%)	
					Heterogeneity Tau ² <0.01; Cl P=0.37; I ² =0.0 Overall effect	ni ² =0.82; 00%	Heterogeneity Tau ² <0.01; Cl P=0.52; I ² =0.0 Overall effect	ni ² =0.42;	
TT 46 9					P=0.29		P=0.21	,	
Heart failu Barbe 2012 [2]	re 3	357	5	366	0.62 [0.15 to 2.55]	0.69	-0.01 [-0.02 to 0.01]	22.40	
Cowie 2015 [6]	287	666	272	659	1.04 [0.92 to 1.18]	88.42	0.02 [-0.03 to 0.07]	1.83	
Huang 2015 [7]	1	42	0	41	2.93 [0.12 to 69.92]	0.14	0.02 [-0.04 to 0.09]	1.27	
McEvoy 2016 [9]	17	1359	17	1358	1.00 [0.51 to 1.95]	3.15	-0.00 [-0.01 to 0.01]	74.07	
Peker 2016 [10]	30	122	32	122	0.94 [0.61 to 1.44]	7.60	-0.02 [-0.13 to 0.09]	0.43	
Total (95% CI)	338	2546	326	2546	1.03 [0.92 to 1.16]	100.00	-0.00 [-0.01 to 0.01]	100.00	
					Heterogeneity: Tau ² <0.01; Chi ² =1.16; P=0.88; I ² =0.00% Overall effect: z=0.52; P=0.60		P=0.59; I ² =0.00%		

^{*}Weight of risk ratio.

Abbreviations: MACE, major adverse cardiovascular events (consists of cardiovascular death, non-fatal acute coronary syndrome and non-fatal stroke); MACE plus, MACE and hospitalization for unstable angina; n_C : number of cardiovascular events or death in control group; N_C : number of participants in control group; n_P : number of cardiovascular events or death in treatment with positive airway pressure; N_P : number of participants in treatment with positive airway pressure; PAP: positive airway pressure.

[†]Weight of risk difference.

eTable 2. Individual Trial Data and Pooled Outcomes in Subgroups Using Random-Effects Model

Subgroup		Study	PA	AP	Con	trol	Risk Ratio	Weight
			n _P	N_{P}	n _C	N _C	Random, 95% CI	(%)
MACE								•
Adherence<4	Craig 20	012 [3]	1	195	3	196	0.34 [0.04 to 3.19]	2.71
hours/day	McMilla	an 2014 [5]	6	140	5	138	1.18 [0.37 to 3.79]	8.81
	McEvoy	2016 [9]	134	1359	127	1358	1.05 [0.84 to 1.33]	40.84
	Subtotal	(95% CI)	141	1694	135	1692	1.05 [0.84 to 1.31]	52.36
			Hetero	ogeneity	: Tau ² <0.0)1; Chi ² =1	.03; P=0.60; I ² =0.00%	Subgroup
			effect:	z=0.40	; P=0.69			
Adherence≥4	Barbe 2	012 [2]	6	357	10	366	0.62 [0.23 to 1.67]	11.17
hours/day	Huang 2	2015 [7]	0	42	5	41	0.09 [0.01 to 1.56]	1.72
	Parra 20	015 [8]	5	57	16	69	0.38 [0.15 to 0.97]	12.28
	Peker 20	016 [10]	17	122	21	122	0.81 [0.45 to 1.46]	22.46
	Subtotal	(95% CI)	28	578	52	598	0.58 [0.34 to 0.99]	47.64
			Hetero	ogeneity	: Tau ² =0.0)6; Chi ² =3	3.74; P=0.29; I ² =19.70%	Subgroup
			effect:	z=1.99	; P=0.05			
Specify [†]	Barbe 2	012 [2]	6	357	10	366	0.62 [0.23 to 1.67]	11.17
	Huang 2	2015 [7]	0	42	5	41	0.09 [0.01 to 1.56]	1.72
	Parra 20	15 [8]	5	57	16	69	0.38 [0.15 to 0.97]	12.28
	McEvoy	2016 [9]	134	1359	127	1358	1.05 [0.84 to 1.33]	40.84
	Peker 20	016 [10]	17	122	21	122	0.81 [0.45 to 1.46]	22.46
	Subtotal	(95% CI)	162	1937	179	1956	0.73 [0.46 to 1.16]	88.47
			Hetero	ogeneity	r: Tau ² =0.1	2; Chi ² =8	8.15; P=0.09; I ² =50.90%	Subgroup
			effect:	z=1.35	; P=0.18			
Not specify [†]	Craig 20)12 [3]	1	195	3	196	0.34 [0.04 to 3.19]	2.71
	McMilla	an 2014 [5]	6	140	5	138	1.18 [0.37 to 3.79]	8.81
	Subtotal	l (95% CI)	7	335	8	334	0.91 [0.32 to 2.55]	11.53
			Hetero	ogeneity	$r: Tau^{2} < 0.0$	01; Chi ² =0	0.96; P=0.33; I ² =0.00%	Subgroup
			effect:	z=0.18	; P=0.85			

Subgroup	Study	PA	AP	Con	trol	Risk Ratio	Weight	
		n _P	N_{P}	n_{C}	$N_{\rm C}$	Random, 95% CI	(%)	
MACE plus								
Adherence<4	Craig 2012 [3]	1	195	3	196	0.34 [0.04 to 3.19]	1.30	
hours/day	McMillan 2014 [5]	6	140	5	138	1.18 [0.37 to 3.79]	4.55	
	McEvoy 2016 [9]	233	1359	217	1358	1.07 [0.91 to 1.27]	41.90	
	Subtotal (95% CI)	240	1694	225	1692	1.07 [0.90 to 1.26]	47.74	
		Hetero	ogeneity	$: Tau^2 < 0.0$	01; Chi ² =	1.05; P=0.59; I ² =0.00%	Subgroup	
		effect:	z=0.78	; P=0.44				
Adherence≥4	Barbe 2012 [2]	23	357	21	366	1.12 [0.63 to 1.99]	14.64	
hours/day	Huang 2015 [7]	0	42	5	41	0.09 [0.01 to 1.56]	0.81	
	Parra 2015 [8]	5	57	16	69	0.38 [0.15 to 0.97]	6.64	
	Peker 2016 [10]	47	122	53	122	0.89 [0.66 to 1.20]	30.17	
	Subtotal (95% CI)	75	578	95	598	0.76 [0.45 to 1.27]	52.26	
		Hetero	ogeneity	$: Tau^2 = 0.1$	3; Chi ² =6	5.37; P=0.09; I ² =52.90%	Subgroup	
		effect:	z=1.06	; P=0.29				
Specify [†]	Barbe 2012 [2]	23	357	21	366	1.12 [0.63 to 1.99]	14.64	
	Huang 2015 [7]	0	42	5	41	0.09 [0.01 to 1.56]	0.81	
	Parra 2015 [8]	5	57	16	69	0.38 [0.15 to 0.97]	6.64	
	McEvoy 2016 [9]	233	1359	217	1358	1.07 [0.91 to 1.27]	41.90	
	Peker 2016 [10]	47	122	53	122	0.89 [0.66 to 1.20]	30.17	
	Subtotal (95% CI)	308	1937	312	1956	0.91 [0.68 to 1.22]	94.16	
		Hetero	ogeneity	$: Tau^2 = 0.0$	05; Chi ² =8	3.29; P=0.08; I ² =51.70%	Subgroup	
		effect:	z=0.63	; P=0.53				
Not specify [†]	Craig 2012 [3]	1	195	3	196	0.34 [0.04 to 3.19]	1.30	
	McMillan 2014 [5]	6	140	5	138	1.18 [0.37 to 3.79]	4.55	
	Subtotal (95% CI)	7	335	8	334	0.91 [0.32 to 2.55]	5.84	
		Heterogeneity: Tau ² <0.01; Chi ² =0.96; P=0.33; I ² =0.00% Subgroup						
		effect:	z=0.18	; P=0.85				

Subgroup	Study	PA	AP	Con	trol	Risk Ratio	Weight	
		n _P	N_{P}	$n_{\rm C}$	N _C	Random, 95% CI	(%)	
Cardiovascula	r death							
Adherence<4	Bradley 2005 [1]	23	128	20	130	1.17 [0.68 to 2.02]	18.21	
hours/day	Cowie 2015 [6]	199	666	158	659	1.25 [1.04 to 1.49]	59.28	
	McEvoy 2016 [9]	25	1359	20	1358	1.25 [0.70 to 2.24]	16.48	
	Subtotal (95% CI)	247	2153	198	2147	1.24 [1.05 to 1.46]	93.97	
		Hetero	ogeneity	/: Tau ² <0.0)1; Chi ² =(0.05; $P=0.98$; $I^2=0.00\%$	Subgroup	
		effect	effect: z=2.58; P=0.01					
Adherence≥4	Barbe 2012 [2]	1	357	0	366	3.08 [0.13 to 75.24]	0.68	
hours/day	Huang 2015 [7]	0	42	1	41	0.33 [0.01 to 7.77]	0.69	
	Parra 2015 [8]	0	57	7	69	0.08 [0.00 to 1.38]	0.86	
	Peker 2016 [10]	3	122	7	122	0.43 [0.11 to 1.62]	3.79	
	Subtotal (95% CI)	4	578	15	598	0.41 [0.14 to 1.18]	6.03	
		Hetero	ogeneity	y: Tau ² <0.0	1; Chi ² =2	.89; P=0.41; I ² =0.00%	Subgroup	
		effect	: z=1.65	; P=0.10				
OSA	Barbe 2012 [2]	1	357	0	366	3.08 [0.13 to 75.24]	0.68	
	Huang 2015 [7]	0	42	1	41	0.33 [0.01 to 7.77]	0.69	
	Parra 2015 [8]	0	57	7	69	0.08 [0.00 to 1.38]	0.86	
	McEvoy 2016 [9]	25	1359	20	1358	1.25 [0.70 to 2.24]	16.48	
	Peker 2016 [10]	3	122	7	122	0.43 [0.11 to 1.62]	3.79	
	Subtotal (95% CI)	29	1937	35	1956	0.70 [0.27 to 1.80]	22.51	
		Hetero	ogeneity	y: Tau ² =0.4	-0; Chi ² =6	5.30; P=0.18; I ² =36.50%	Subgroup	
		effect	: z=0.75	; P=0.45				
CSA	Bradley 2005 [1]	23	128	20	130	1.17 [0.68 to 2.02]	18.21	
	Cowie 2015 [6]	199	666	158	659	1.25 [1.04 to 1.49]	59.28	
	Subtotal (95% CI)	222	794	178	789	1.24 [1.04 to 1.47]	77.49	
		Hetero	ogeneity	$7: \overline{\text{Tau}^2 < 0.0}$)1; Chi ² =(0.05; P=0.82; I ² =0.00%	Subgroup	
		effect	: z=2.46	5; P=0.01				

Subgroup	Study	P	AP	Con	trol	Risk Ratio	Weight
		n _P	N_{P}	n _C	N _C	Random, 95% CI	(%)
CPAP	Bradley 2005 [1]	23	128	20	130	1.17 [0.68 to 2.02]	18.21
	Barbe 2012 [2]	1	357	0	366	3.08 [0.13 to 75.24]	0.68
	Huang 2015 [7]	0	42	1	41	0.33 [0.01 to 7.77]	0.69
	Parra 2015 [8]	0	57	7	69	0.08 [0.00 to 1.38]	0.86
	McEvoy 2016 [9]	25	1359	20	1358	1.25 [0.70 to 2.24]	16.48
	Peker 2016 [10]	3	122	7	122	0.43 [0.11 to 1.62]	3.79
	Subtotal (95% CI)	52	2065	55	2086	0.96 [0.57 to 1.61]	40.72
		Heter	ogeneity	y: Tau ² =0.0	9; Chi ² =6	5.54; P=0.26; I ² =23.60%	Subgroup
		effect	: z=0.14	; P=0.89			
ASV	Cowie 2015 [6]	199	666	158	659	1.25 [1.04 to 1.49]	59.28
All-cause deat	h						
Adherence<4	Bradley 2005 [1]	27	128	28	130	0.98 [0.61 to 1.57]	8.48
hours/day	Craig 2012 [3]	1	195	0	196	3.02 [0.12 to 73.57]	0.18
	Kushida 2012 [4]	2	556	2	542	0.97 [0.14 to 6.90]	0.49
	McMillan 2014 [5]	1	140	1	138	0.99 [0.06 to 15.60]	0.24
	Cowie 2015 [6]	232	666	193	659	1.19 [1.02 to 1.39]	74.96
	McEvoy 2016 [9]	40	1359	43	1358	0.93 [0.61 to 1.42]	10.37
	Subtotal (95% CI)	303	3044	267	3023	1.14 [0.99 to 1.31]	94.73
		Heter	ogeneity	/: Tau ² <0.0	01; $Chi^2 =$	1.98; P=0.85; I ² =0.00%	Subgroup
		effect	: z=1.81	; P=0.07			
Adherence≥4	Barbe 2012 [2]	8	357	3	366	2.73 [0.73 to 10.22]	1.07
hours/day	Huang 2015 [7]	0	42	1	41	0.33 [0.01 to 7.77]	0.19
	Parra 2015 [8]	6	57	9	69	0.81 [0.31 to 2.13]	1.97
	Peker 2016 [10]	7	122	9	122	0.78 [0.30 to 2.02]	2.04
	Subtotal (95% CI)	21	578	22	598	0.99 [0.53 to 1.85]	5.27

Subgroup	Study	PA	P	Con	itrol	Risk Ratio Random, 95% CI	Weight (%)
		n _P	N _P	n_{C}	N _C		
		Hetero	geneity	y: Tau ² =0.0	02; Chi ² =	3.18; P=0.36; I ² =5.70%	Subgroup
		effect:	z=0.02	; P=0.98			
OSA	Barbe 2012 [2]	8	357	3	366	2.73 [0.73 to 10.22]	1.07
	Craig 2012 [3]	1	195	0	196	3.02 [0.12 to 73.57]	0.18
	Kushida 2012 [4]	2	556	2	542	0.97 [0.14 to 6.90]	0.49
	McMillan 2014 [5]	1	140	1	138	0.99 [0.06 to 15.60]	0.24
	Huang 2015 [7]	0	42	1	41	0.33 [0.01 to 7.77]	0.19
	Parra 2015 [8]	6	57	9	69	0.81 [0.31 to 2.13]	1.97
	McEvoy 2016 [9]	40	135	43	1358	0.93 [0.61 to 1.42]	10.37
			9				
	Peker 2016 [10]	7	122	9	122	0.78 [0.30 to 2.02]	2.04
	Subtotal (95% CI)	65	282	68	2832	0.96 [0.69 to 1.35]	16.56
			8				
		Hetero	geneity	/: Tau ² <0.0	01; Chi ² =	3.70; P=0.81; I ² =0.00%	Subgroup
		effect:					
CSA	Bradley 2005 [1]	27	128	28	130	0.98 [0.61 to 1.57]	8.48
	Cowie 2015 [6]	232	666	193	659	1.19 [1.02 to 1.39]	74.96
	Subtotal (95% CI)	259	794	221	789	1.17 [1.00 to 1.35]	83.44
		Hetero	geneity	$Tau^2 < 0.0$	01; Chi ² =	0.59; P=0.44; I ² =0.00%	Subgroup
		effect:	z=2.02	; P=0.04			
CPAP	Bradley 2005 [1]	27	128	28	130	0.98 [0.61 to 1.57]	8.48
	Barbe 2012 [2]	8	357	3	366	2.73 [0.73 to 10.22]	1.07
	Craig 2012 [3]	1	195	0	196	3.02 [0.12 to 73.57]	0.18
	Kushida 2012 [4]	2	556	2	542	0.97 [0.14 to 6.90]	0.49
	McMillan 2014 [5]	1	140	1	138	0.99 [0.06 to 15.60]	0.24
	Huang 2015 [7]	0	42	1	41	0.33 [0.01 to 7.77]	0.19
	Parra 2015 [8]	6	57	9	69	0.81 [0.31 to 2.13]	1.97
	McEvoy 2016 [9]	40	135	43	1358	0.93 [0.61 to 1.42]	10.37
			9				

Study	PAP		Control		Risk Ratio	Weight
	n _P	N_{P}	n _C	$N_{\rm C}$	Random, 95% CI	(%)
Peker 2016 [10]	7	122	9	122	0.78 [0.30 to 2.02]	2.04
Subtotal (95% CI)	92	295	96	2962	0.97 [0.74 to 1.27]	25.04
		6				
		•		01; Chi ² =	3.70; P=0.88; I ² =0.00%	Subgroup
Cowie 2015 [6]		1	<u>í</u>	650	1 10 [1 02 to 1 30]	74.96
<u> </u>		1		+		8.48
·		1				1.07
		1		+		74.96
		1		+		0.19
		1				1.97
		1		+		10.37
WICEVOY 2010 [9]	40	9	43	1336	0.93 [0.01 to 1.42]	10.57
Peker 2016 [10]	7	122	9	122	0.78 [0.30 to 2.02]	2.04
Subtotal (95% CI)	320	273	286	2745	1.13 [0.98 to 1.29]	99.09
		1				
	Hetero	geneity	$7: Tau^2 < 0.0$	01; Chi ² =	4.96; P=0.55; I ² =0.00%	Subgroup
	effect:	z=1.73	; P=0.08			
Craig 2012 [3]	1	195	0	196	3.02 [0.12 to 73.57]	0.18
Kushida 2012 [4]	2	556	2	542	0.97 [0.14 to 6.90]	0.49
McMillan 2014 [5]	1	140	1	138	0.99 [0.06 to 15.60]	0.24
Subtotal (95% CI)	4	891	3	876	1.23 [0.29 to 5.11]	0.91
	Hetero	geneity	$7: Tau^2 < 0.0$	01; Chi ² =	0.38; $P=0.82$; $I^2=0.00\%$	Subgroup
	effect:	z=0.28	; P=0.78			
scular death						
Bradley 2005 [1]	4	128	8	130	0.51 [0.16 to 1.64]	8.00
Craig 2012 [3]	1	195	0	196	3.02 [0.12 to 73.57]	1.12
McMillan 2014 [5]	1	140	1	138	0.99 [0.06 to 15.60]	1.49
Cowie 2015 [6]	33	666	35	659	0.93 [0.59 to 1.48]	43.23
McEvoy 2016 [9]	15	135	23	1358	0.65 [0.34 to 1.24]	24.47
	Cowie 2015 [6] Bradley 2005 [1] Barbe 2012 [2] Cowie 2015 [6] Huang 2015 [7] Parra 2015 [8] McEvoy 2016 [9] Peker 2016 [10] Subtotal (95% CI) Craig 2012 [3] Kushida 2012 [4] McMillan 2014 [5] Subtotal (95% CI) scular death Bradley 2005 [1] Craig 2012 [3] McMillan 2014 [5] Cowie 2015 [6]	Peker 2016 [10] 7 Subtotal (95% CI) 92 Hetero effect: Cowie 2015 [6] 232 Bradley 2005 [1] 27 Barbe 2012 [2] 8 Cowie 2015 [6] 232 Huang 2015 [7] 0 Parra 2015 [8] 6 McEvoy 2016 [9] 40 Peker 2016 [10] 7 Subtotal (95% CI) 320 Hetero effect: Craig 2012 [3] 1 Kushida 2012 [4] 2 McMillan 2014 [5] 1 Subtotal (95% CI) 4 Hetero effect: Scular death Bradley 2005 [1] 4 Craig 2012 [3] 1 McMillan 2014 [5] 1 Cowie 2015 [6] 33 33	Peker 2016 [10] 7 122 Subtotal (95% CI) 92 295 6 Heterogeneity effect: z=0.23 Cowie 2015 [6] 232 666 Bradley 2005 [1] 27 128 Barbe 2012 [2] 8 357 Cowie 2015 [6] 232 666 Huang 2015 [7] 0 42 Parra 2015 [8] 6 57 McEvoy 2016 [9] 40 135 9 9 Peker 2016 [10] 7 122 Subtotal (95% CI) 320 273 1 Heterogeneity effect: z=1.73 Craig 2012 [3] 1 195 McMillan 2014 [5] 1 140 Subtotal (95% CI) 4 891 Heterogeneity effect: z=0.28 Scular death Bradley 2005 [1] 4 128 Craig 2012 [3] 1 195 McMillan 2014 [5] 1 140 Cowie 2015 [6] 33 666	Peker 2016 [10] 7 122 9 Subtotal (95% CI) 92 295 96 Heterogeneity: Tau²<0.4 effect: z=0.23; P=0.81	Peker 2016 [10]	Peker 2016 [10]

Subgroup	Study	PA	P	Con	trol	Risk Ratio	Weight
		n _P	N_{P}	n _C	N _C	Random, 95% CI	(%)
	Subtotal (95% CI)	54	248	67	2481	0.81 [0.57 to 1.15]	78.31
			8				
		Hetero	geneity	$r: Tau^2 < 0.0$	01; Chi ² =2	2.07; P=0.72; I ² =0.00%	Subgroup
		effect:	z=1.20	; P=0.23			
Adherence≥4	Barbe 2012 [2]	7	357	13	366	0.55 [0.22 to 1.37]	13.11
hours/day	Parra 2015 [8]	6	57	2	69	3.63 [0.76 to 17.31]	4.60
	Peker 2016 [10]	4	122	2	122	2.00 [0.37 to 10.72]	3.99
	Subtotal (95% CI)	17	536	17	557	1.37 [0.40 to 4.69]	21.69
		Hetero	geneity	v: Tau ² =0.7	70; Chi ² =-	4.93; P=0.08; I ² =59.40%	Subgroup
		effect:	z=0.50	; P=0.62			
OSA	Barbe 2012 [2]	7	357	13	366	0.55 [0.22 to 1.37]	13.11
	Craig 2012 [3]	1	195	0	196	3.02 [0.12 to 73.57]	1.12
	McMillan 2014 [5]	1	140	1	138	0.99 [0.06 to 15.60]	1.49
	Parra 2015 [8]	6	57	2	69	3.63 [0.76 to 17.31]	4.60
	McEvoy 2016 [9]	15	135	23	1358	0.65 [0.34 to 1.24]	24.47
			9				
	Peker 2016 [10]	4	122	2	122	2.00 [0.37 to 10.72]	3.99
	Subtotal (95% CI)	34	223	41	2249	0.94 [0.51 to 1.72]	48.77
			0				
		Hetero	geneity	7: Tau ² =0.1	13; Chi ² =0	5.46; P=0.26; I ² =22.60%	Subgroup
		effect:	z=0.20	; P=0.84			
CSA	Bradley 2005 [1]	4	128	8	130	0.51 [0.16 to 1.64]	8.00
	Cowie 2015 [6]	33	666	35	659	0.93 [0.59 to 1.48]	43.23
	Subtotal (95% CI)	37	794	43	789	0.86 [0.56 to 1.32]	51.23
		Hetero	geneity	7: Tau ² <0.0	01; Chi ² =0	0.89 ; $P=0.34$; $I^2=0.00\%$	Subgroup
		effect:	z=0.69	; P=0.49			
CPAP	Bradley 2005 [1]	4	128	8	130	0.51 [0.16 to 1.64]	8.00
	Barbe 2012 [2]	7	357	13	366	0.55 [0.22 to 1.37]	13.11
	Craig 2012 [3]	1	195	0	196	3.02 [0.12 to 73.57]	1.12
	McMillan 2014 [5]	1	140	1	138	0.99 [0.06 to 15.60]	1.49
	Parra 2015 [8]	6	57	2	69	3.63 [0.76 to 17.31]	4.60

Subgroup	Study	PAP		Control		Risk Ratio	Weight
		n _P	N _P	n_{C}	N _C	Random, 95% CI	(%)
СРАР	McEvoy 2016 [9]	15	135	23	1358	0.65 [0.34 to 1.24]	24.47
			9				
	Peker 2016 [10]	4	122	2	122	2.00 [0.37 to 10.72]	3.99
	Subtotal (95% CI)	38	235	49	2379	0.82 [0.49 to 1.36]	56.77
			8				
		Heterogeneity: Tau ² =0.07; Chi ² =7.04; P=0.32; I ² =14.70% S					Subgroup
		effect: z=0.77; P=0.44					
ASV	Cowie 2015 [6]	33	666	35	659	0.93 [0.59 to 1.48]	43.23
Specify [†]	Bradley 2005 [1]	4	128	8	130	0.51 [0.16 to 1.64]	8.00
	Barbe 2012 [2]	7	357	13	366	0.55 [0.22 to 1.37]	13.11
	Cowie 2015 [6]	33	666	35	659	0.93 [0.59 to 1.48]	43.23
	Parra 2015 [8]	6	57	2	69	3.63 [0.76 to 17.31]	4.60
	McEvoy 2016 [9]	15	135	23	1358	0.65 [0.34 to 1.24]	24.47
			9				
	Peker 2016 [10]	4	122	2	122	2.00 [0.37 to 10.72]	3.99
	Subtotal (95% CI)	69	268	83	2704	0.84 [0.55 to 1.27]	97.39
			9				
		Heterogeneity: Tau ² =0.07; Chi ² =6.72; P=0.24; I ² =25.60% Subgroup					
		effect: z=0.85; P=0.40					
Not specify [†]	Craig 2012 [3]	1	195	0	196	3.02 [0.12 to 73.57]	1.12
	McMillan 2014 [5]	1	140	1	138	0.99 [0.06 to 15.60]	1.49
	Subtotal (95% CI)	2	335	1	334	1.59 [0.20 to 12.85]	2.61
		Heterogeneity: Tau ² <0.01; Chi ² =0.27; P=0.60; I ² =0.00% Su					Subgroup
		effect: z=0.44; P=0.66					

[†]Trials that specified or did not specify vascular outcomes or death as primary outcome.

Abbreviations: ASV, adaptive servo ventilation; CPAP, continuous positive airways pressure; CSA, central sleep apnea; MACE, major adverse cardiovascular events (consists of cardiovascular death, non-fatal acute coronary syndrome and non-fatal stroke); MACE plus, MACE and hospitalization for unstable angina; n_C: number of cardiovascular events or death in control group; N_C: number of participants in control group; n_P: number of cardiovascular events or death in treatment with positive airway pressure; N_P: number of participants in treatment with positive airway pressure; OSA: obstructive sleep apnea; PAP: positive airway pressure.

eReferences.

- 1. Bradley TD, Logan AG, Kimoff RJ, et al. Continuous positive airway pressure for central sleep apnea and heart failure. N Engl J Med. 2005;353(19):2025-2033.
- Barbé F, Durán-Cantolla J, Sánchez-de-la-Torre M, et al. Effect of continuous positive airway pressure on the incidence of hypertension and cardiovascular events in nonsleepy patients with obstructive sleep apnea: a randomized controlled trial. JAMA. 2012; 307(20): 2161-2168.
- Craig SE, Kohler M, Nicoll D, et al. Continuous positive airway pressure improves sleepiness but not calculated vascular risk in patients with minimally symptomatic obstructive sleep apnoea: the MOSAIC randomised controlled trial. Thorax. 2012; 67(12): 1090-1096.
- 4. Kushida CA, Nichols DA, Holmes TH, et al. Effects of continuous positive airway pressure on neurocognitive function in obstructive sleep apnea patients: The Apnea Positive Pressure Long-term Efficacy Study (APPLES). Sleep. 2012;35(12):1593-1602.
- 5. McMillan A, Bratton DJ, Faria R, et al. Continuous positive airway pressure in older people with obstructive sleep aponea syndrome (PREDICT): a 12-month, multicenter, randomised trial. Lancet Respir Med. 2014; 2(10): 804-812.
- 6. Cowie MR, Woehrle H, Wegscheider K, et al. Adaptive Servo-Ventilation for Central Sleep Apnea in Systolic Heart Failure. N Engl J Med. 2015; 373(12): 1095-1105.
- 7. Huang Z, Liu Z, Luo Q, et al. Long-term effects of continuous positive airway pressure on blood pressure and prognosis in hypertensive patients with coronary heart disease and obstructive sleep apnea: a randomized controlled trial. Am J Hypertens. 2015; 28(3): 300-306.
- 8. Parra O, Sánchez-Armengol Á, Capote F, et al. Efficacy of continuous positive airway pressure treatment on 5-year survival in patients with ischaemic stroke and obstructive sleep apnea: a randomized controlled trial. J Sleep Res. 2015; 24(1):

47-53.

- 9. McEvoy RD, Antic NA, Heeley E, et al. CPAP for Prevention of Cardiovascular Events in Obstructive Sleep Apnea. N Engl J Med. 2016; 375(10): 919-931.
- 10. Peker Y, Glantz H, Eulenburg C, Wegscheider K, Herlitz J, Thunström E. Effect of Positive Airway Pressure on Cardiovascular Outcomes in Coronary Artery Disease Patients with Nonsleepy Obstructive Sleep Apnea. The RICCADSA Randomized Controlled Trial. Am J Respir Crit Care Med. 2016; 194(5): 613-620.