Taller No. 5 Teoria Electromagnética

Angie Carolina Chaves Michel Dayana Bolaños Leon Elizabeth Muños Buitron Ivan Dario Mipaz Chamorro

Trabajo escrito de la asignatura: Teoría Electromagnética

Profesor: Servio Tulio Perez Merchancano, Ph.D

Problema 3.13

Encuentra el potencial en la ranura infinita del Ejercicio 3.3 si la frontera en x = 0 consiste en dos tiras metálicas: una, desde y = 0 hasta y = a/2, está a un potencial constante V_0 , y la otra, desde y = a/2 hasta y = a, está a un potencial de $-V_0$.

Solución

Antes de realizar el problema 3.13 y 3.14, resolveremos el Ejercicio 3.3.

Ejercicio 3.3

Dos placas metálicas infinitas conectadas a tierra se encuentran paralelas al plano xz, una ubicada en y=0, y la otra en y=a (ver Fig. 3.17). El extremo izquierdo, en x=0, está cerrado con una banda infinita aislada de las dos placas, y se mantiene a un potencial específico $V_0(y)$. Encuentra el potencial dentro de esta "ranura" (slot).

Figura 3.17

Sujeto a las condiciones de contorno:

$$\begin{cases} \text{ (i)} \quad V=0 \quad \text{cuando } y=0,\\ \text{ (ii)} \quad V=0 \quad \text{cuando } y=a,\\ \text{ (iii)} \quad V=V_0(y) \quad \text{cuando } x=0,\\ \text{ (iv)} \quad V\to 0 \quad \text{si } x\to \infty. \end{cases}$$

Solución

La configuración es independiente de z, ya que todo es infinito en esta dirección. Por tanto, el problema se reduce a dos dimensiones (x, y).

Ecuación de Laplace

$$\frac{\partial^2 V}{\partial x^2} + \frac{\partial^2 V}{\partial y^2} = 0$$

Proponemos como solución:

$$V(x,y) = X(x)Y(y)$$

Sustituimos en la ecuación de Laplace:

$$Y\frac{d^2X}{dx^2} + X\frac{d^2Y}{dy^2} = 0$$

Dividimos entre XY:

$$\frac{1}{X}\frac{d^{2}X}{dx^{2}} + \frac{1}{Y}\frac{d^{2}Y}{dy^{2}} = 0$$

Como la primera parte depende solo de x y la segunda solo de y, ambas deben ser iguales a una constante:

$$\frac{1}{X}\frac{d^2X}{dx^2} = C_1, \quad \frac{1}{Y}\frac{d^2Y}{dy^2} = C_2$$

Con:

$$C_1 + C_2 = 0$$

$$C_1 = -C_2 = k^2$$

Igualamos a k^2

$$\frac{d^2X}{dx^2} = k^2X, \quad \frac{d^2Y}{dy^2} = -k^2Y$$

Sean las soluciones:

$$X(x) = Ae^{kx} + Be^{-kx}$$

$$Y(y) = C\sin(ky) + D\cos(ky)$$

Soluciones generales

Para Y(y):

$$\frac{d^2Y}{du^2} = -k^2Y, \quad Y(y) = C\sin(ky) + D\cos(ky)$$

Aplicamos condiciones de frontera:

$$y = 0$$
 y $y = a$

Si
$$y = 0 \Rightarrow Y(0) = C\sin(0) + D\cos(0) = 0$$

$$Y(0) = D = 0$$

Entonces

$$D = 0$$

Si
$$y = a \Rightarrow Y(a) = C\sin(ka) + D\cos(ka) = 0$$

$$Y(a) = C\sin(ka) = 0$$

Para que esto se cumpla con $C \neq 0$ (queremos soluciones no triviales), necesitamos:

$$\sin(ka) = 0 \quad \Rightarrow \quad ka = n\pi \quad ; \quad k = \frac{n\pi}{a}$$

De forma general,

$$Y(y) = \sin\left(\frac{n\pi y}{a}\right), \quad \text{con } n = 1, 2, 3, \dots$$

Para X(x):

$$\frac{d^2X}{dx^2} = k^2X$$
 ; $X(x) = Ae^{kx} + Be^{-kx}$

Como $k = \frac{n\pi}{a}$, entonces:

$$X(x) = Ae^{\frac{n\pi}{a}x} + Be^{-\frac{n\pi}{a}x}$$

Pero como V = 0 cuando $x \to \infty$:

$$X(x) = Ae^{\infty} + Be^{-\infty} = 0$$

Entonces A debe ser 0 para que no tienda a ∞

$$X(x) = Be^{-\frac{n\pi}{a}x}$$

Finalmente, la solución general:

$$V(x,y) = \sum_{n=1}^{\infty} C_n e^{-\frac{n\pi}{a}x} \sin\left(\frac{n\pi}{a}y\right)$$
 (1)

Determinamos los coeficientes C_n usando la condición de contorno (iii) $V = V_0(y)$ en x = 0:

$$V(0,y) = V_0(y) = \sum_{n=1}^{\infty} C_n e^0 \sin\left(\frac{n\pi}{a}y\right)$$

$$V_0(y) = \sum_{n=1}^{\infty} C_n \sin\left(\frac{n\pi}{a}y\right)$$
(*)

La suma es una serie de Fourier senoidal. Multiplicamos ambos lados de la serie por $\sin\left(\frac{n'\pi}{a}y\right)$ e integramos en y de 0 a a:

$$\int_0^a V_0(y) \sin\left(\frac{n'\pi}{a}y\right) dy = \sum_{n=1}^\infty C_n \int_0^a \sin\left(\frac{n\pi}{a}y\right) \sin\left(\frac{n'\pi}{a}y\right) dy$$

Usamos ortogonalidad:

$$\int_0^a \sin\left(\frac{n\pi}{a}y\right) \sin\left(\frac{n'\pi}{a}y\right) dy = \begin{cases} 0, & \text{si } n' \neq n \\ \frac{a}{2}, & \text{si } n' = n \end{cases}$$

Si n' = n, entonces:

$$\int_0^a V_0(y) \sin\left(\frac{n\pi}{a}y\right) dy = \frac{a}{2} \sum_{n=1}^\infty C_n$$

Despejando Cn:

$$C_n = \frac{2}{a} \int_0^a V_0(y) \sin\left(\frac{n\pi}{a}y\right) dy$$
 (2)

Si el potencial en x = 0 es una constante $V_0 = V_0(y)$:

$$C_n = \frac{2V_0}{a} \left[\int_0^a \sin\left(\frac{n\pi}{a}y\right) dy \right]$$

Resolvemos la integral, sustituimos $u = \frac{n\pi}{a}y$, entonces:

$$C_n = \frac{2V_0}{a} \left[\frac{a}{n\pi} (-\cos u) \Big|_0^{n\pi} \right]$$

$$C_n = \frac{2V_0}{a} \left[\frac{a}{n\pi} \left(-\cos(n\pi) + \cos(0) \right) \right]$$

$$C_n = \frac{2V_0}{a} \cdot \frac{a}{n\pi} \left(1 - \cos(n\pi) \right)$$

$$C_n = \frac{2V_0}{n\pi} (1 - \cos(n\pi)) = \begin{cases} 0, & \text{si } n \text{ es par} \\ \frac{4V_0}{n\pi}, & \text{si } n \text{ es impar} \end{cases}$$

Por lo tanto, la solución es:

$$V(x,y) = \sum_{\substack{n=1\\ n \text{ impar}}}^{\infty} \frac{4V_0}{n\pi} e^{-\frac{n\pi}{a}x} \sin\left(\frac{n\pi}{a}y\right)$$
(3)

Solución ejercicio 3.13

Partimos de las soluciones generales (1) y (2) del ejercicio 3.3:

$$V(x,y) = \sum_{n=1}^{\infty} C_n e^{-\frac{n\pi}{a}x} \sin\left(\frac{n\pi}{a}y\right)$$

donde:

$$C_n = \frac{2}{a} \int_0^a V_0(y) \sin\left(\frac{n\pi}{a}y\right) dy$$

Para este caso en la frontera con x = 0:

$$V_0(y) = \begin{cases} V_0, & 0 \le y < \frac{a}{2} \\ -V_0, & \frac{a}{2} < y \le a \end{cases}$$

Partimos la integral por tramos:

$$C_n = \frac{2V_0}{a} \left[\int_0^{a/2} \sin\left(\frac{n\pi}{a}y\right) dy - \int_{a/2}^a \sin\left(\frac{n\pi}{a}y\right) dy \right]$$

Sabemos que:

$$\int \sin(ky) \, dy = -\frac{1}{k} \cos(ky), \quad \text{con } k = \frac{n\pi}{a}$$

Evaluamos:

Primer término:

$$\int_0^{a/2} \sin\left(\frac{n\pi}{a}y\right) dy = -\frac{a}{n\pi} \left[\cos\left(\frac{n\pi}{a}y\right)\right]_0^{a/2} = -\frac{a}{n\pi} \left[\cos\left(\frac{n\pi}{2}\right) - 1\right]$$

Segundo término:

$$\int_{a/2}^{a} \sin\left(\frac{n\pi}{a}y\right) dy = -\frac{a}{n\pi} \left[\cos\left(\frac{n\pi}{a}y\right)\right]_{a/2}^{a} = -\frac{a}{n\pi} \left[\cos(n\pi) - \cos\left(\frac{n\pi}{2}\right)\right]$$

Tenemos,

$$C_n = \frac{2V_0}{a} \left[-\frac{a}{n\pi} \left(\cos\left(\frac{n\pi}{2}\right) - 1 \right) + \frac{a}{n\pi} \left(\cos(n\pi) - \cos\left(\frac{n\pi}{2}\right) \right) \right]$$

$$C_n = \frac{2V_0}{n\pi} \left[-\cos\left(\frac{n\pi}{2}\right) + 1 + \cos(n\pi) - \cos\left(\frac{n\pi}{2}\right) \right]$$

$$C_n = \frac{2V_0}{n\pi} \left[-2\cos\left(\frac{n\pi}{2}\right) + 1 + \cos(n\pi) \right]$$

Ahora analizamos:

Para n par:

$$\cos(n\pi) = 1, \quad \cos\left(\frac{n\pi}{2}\right) = \pm 1$$

$$n = 2 \Rightarrow C_2 = \frac{2V_0}{2\pi} \left[-2(-1) + 1 + 1\right] = \frac{2V_0}{2\pi} (4) = \frac{4V_0}{\pi}$$

$$n = 4 \Rightarrow C_4 = \frac{2V_0}{4\pi} \left[-2(1) + 1 + 1\right] = 0 \Rightarrow C_4 = 0$$

Para n impar:

$$\cos(n\pi) = -1, \quad \cos\left(\frac{n\pi}{2}\right) = 0$$

$$n = 1 \Rightarrow C_1 = \frac{2V_0}{\pi}(-2(0) + 1 - 1) = 0$$

$$n = 3 \Rightarrow C_3 = \frac{2V_0}{3\pi}(-2(0) + 1 - 1) = 0$$

Luego:

$$C_n = \begin{cases} \frac{8V_0}{n\pi}, & \text{si } n = 2, 6, 10, 14 & (\text{para } n = 4j + 2, \ j = 0, 1, 2, \dots) \\ 0, & \text{de otra manera} \end{cases}$$

Finalmente,

$$V(x,y) = \frac{8V_0}{\pi} \sum_{n=2,6,10,\dots}^{\infty} \frac{1}{n} e^{-\frac{n\pi}{a}x} \sin\left(\frac{n\pi}{a}y\right)$$

o también,

$$V(x,y) = \frac{8V_0}{\pi} \sum_{j=0}^{\infty} \frac{e^{-\frac{(4j+2)\pi}{a}x} \sin\left(\frac{(4j+2)\pi}{a}y\right)}{(4j+2)}$$

Problema 3.14

Para la ranura infinita (Ejercicio 3.3), determina la densidad de carga $\sigma(y)$ sobre la tira en x = 0, asumiendo que es un conductor a potencial constante V_0 .

Solución

Partimos de la Ec. 3, solución del Ejercicio. 3.3:

$$V(x,y) = \frac{4V_0}{\pi} \sum_{n=1,3,5}^{\infty} \frac{1}{n} e^{-\frac{n\pi}{a}x} \sin\left(\frac{n\pi}{a}y\right)$$

La ecuación 2.49 del libro:

$$\sigma = -\varepsilon_0 \frac{\partial V}{\partial n}$$

donde $\frac{\partial}{\partial n}$ es la derivada normal hacia afuera del conductor. En este caso el conductor está en x=0, entonces:

$$\sigma(y) = -\varepsilon_0 \left. \frac{\partial V}{\partial x} \right|_{x=0}$$

Reemplazamos,

$$\sigma(y) = -\varepsilon_0 \frac{\partial}{\partial x} \left[\frac{4V_0}{\pi} \sum_{n=1,3,5}^{\infty} \frac{1}{n} e^{-\frac{n\pi}{a}x} \sin\left(\frac{n\pi}{a}y\right) \right]$$

$$= -\varepsilon_0 \cdot \frac{4V_0}{\pi} \sum_{n=1,3,5}^{\infty} \frac{1}{n} \sin\left(\frac{n\pi}{a}y\right) \frac{\partial}{\partial x} \left(e^{-\frac{n\pi}{a}x}\right)$$

$$= -\varepsilon_0 \cdot \frac{4V_0}{\pi} \sum_{n=1,3,5}^{\infty} \frac{1}{n} \sin\left(\frac{n\pi}{a}y\right) \left(-\frac{n\pi}{a}\right) e^{-\frac{n\pi}{a}x} \Big|_{x=0}$$

$$= -\varepsilon_0 \cdot \frac{4V_0}{\pi} \left(-\frac{\pi}{a}\right) \sum_{n=1,3,5}^{\infty} \sin\left(\frac{n\pi}{a}y\right)$$

Obtenemos finalmente,

$$\sigma(y) = \frac{4V_0\varepsilon_0}{a} \sum_{n=1,3,5}^{\infty} \sin\left(\frac{n\pi}{a}y\right)$$

Problema 3.17:

Derivar el polinomio de Legendre $P_3(x)$ utilizando la fórmula de Rodrigues. Y demuestre que $P_3(\cos \theta)$ satisface la ecuación angular (3.60) para l=3. Demuestre que $P_3(x)$ y $P_1(x)$ son ortogonales mediante integración explícita.

1. Derivación de $P_3(x)$ con la fórmula de Rodrigues

La fórmula de Rodrigues para los polinomios de Legendre está dada por:

$$P_l(x) = \frac{1}{2^l l!} \frac{d^l}{dx^l} (x^2 - 1)^l$$

Para el caso l = 3, se tiene:

$$P_3(x) = \frac{1}{8 \cdot 6} \frac{d^3}{dx^3} (x^2 - 1)^3$$

Calculando el polinomio:

$$(x^2 - 1)^3 = x^6 - 3x^4 + 3x^2 - 1$$

Derivando tres veces:

$$\frac{d}{dx} = 6x^5 - 12x^3 + 6x$$
$$\frac{d^2}{dx^2} = 30x^4 - 36x^2 + 6$$
$$\frac{d^3}{dx^3} = 120x^3 - 72x$$

Entonces:

$$P_3(x) = \frac{1}{48}(120x^3 - 72x) = \frac{5}{2}x^3 - \frac{3}{2}x$$
$$P_3(x) = \frac{5}{2}x^3 - \frac{3}{2}x$$

2. Verificación de la ecuación angular

La ecuación angular de Legendre está dada por:

$$\frac{1}{\sin\theta} \frac{d}{d\theta} \left(\sin\theta \frac{d\Theta}{d\theta} \right) + l(l+1)\Theta = 0,$$

para l = 3 y $\Theta(\theta) = P_3(\cos \theta)$. Se tiene que:

$$\Theta(\theta) = P_3(\cos \theta) = \frac{5}{2}\cos^3 \theta - \frac{3}{2}\cos \theta.$$

Calculando su derivada con respecto a θ :

$$\frac{d\Theta}{d\theta} = \frac{d}{d\theta} \left(\frac{5}{2} \cos^3 \theta - \frac{3}{2} \cos \theta \right)$$
$$= \frac{5}{2} \cdot 3 \cos^2 \theta (-\sin \theta) + \frac{3}{2} \sin \theta$$
$$= -\frac{15}{2} \cos^2 \theta \sin \theta + \frac{3}{2} \sin \theta$$
$$= \sin \theta \left(-\frac{15}{2} \cos^2 \theta + \frac{3}{2} \right)$$

Multiplicando por $\sin \theta$:

$$\sin\theta \frac{d\Theta}{d\theta} = \sin^2\theta \left(-\frac{15}{2}\cos^2\theta + \frac{3}{2} \right)$$

Luego, derivando de nuevo:

$$\frac{d}{d\theta} \left(\sin \theta \frac{d\Theta}{d\theta} \right) = \frac{d}{d\theta} \left[\sin^2 \theta \left(-\frac{15}{2} \cos^2 \theta + \frac{3}{2} \right) \right]$$
$$= \frac{d}{d\theta} \left[-\frac{15}{2} \sin^2 \theta \cos^2 \theta + \frac{3}{2} \sin^2 \theta \right]$$

Usando identidades trigonométricas:

$$\sin^2 \theta = \frac{1 - \cos(2\theta)}{2}, \quad \cos^2 \theta = \frac{1 + \cos(2\theta)}{2}$$

Al simplificar, se obtiene finalmente:

$$\frac{1}{\sin \theta} \frac{d}{d\theta} \left(\sin \theta \frac{d\Theta}{d\theta} \right) = -12\Theta(\theta),$$

ya que $l=3 \Rightarrow l(l+1)=12$, lo cual verifica que $\Theta(\theta)=P_3(\cos\theta)$ satisface la ecuación angular.

Por tanto, $\Theta(\theta) = P_3(\cos \theta)$ satisface la ecuación angular para l = 3.

3. Verificación de la ortogonalidad entre $P_3(x)$ y $P_1(x)$

Se verifica la ortogonalidad utilizando la propiedad:

$$\int_{-1}^{1} P_l(x) P_{l'}(x) dx = 0 \quad \text{si } l \neq l'$$

Se tiene:

$$P_1(x) = x$$
, $P_3(x) = \frac{5}{2}x^3 - \frac{3}{2}x$

Producto:

$$P_1(x)P_3(x) = x\left(\frac{5}{2}x^3 - \frac{3}{2}x\right) = \frac{5}{2}x^4 - \frac{3}{2}x^2$$

Integramos:

$$\int_{-1}^{1} \left(\frac{5}{2} x^4 - \frac{3}{2} x^2 \right) dx = \frac{5}{2} \int_{-1}^{1} x^4 dx - \frac{3}{2} \int_{-1}^{1} x^2 dx$$
$$= \frac{5}{2} \cdot \frac{2}{5} - \frac{3}{2} \cdot \frac{2}{3}$$
$$= 1 - 1 = 0$$

$$\int_{-1}^{1} P_1(x) P_3(x) dx = 0$$

Por tanto, $P_1(x)$ y $P_3(x)$ son ortogonales.

Problema 3.18:

(a)Supón que el potencial es una constante V_0 sobre la superficie de una esfera. Usa los resultados de los Ejemplos 3.6 y 3.7 para encontrar el potencial dentro y fuera de la esfera. (b) Encuentra el potencial dentro y fuera de una cáscara esférica que lleva una densidad de carga superficial uniforme σ_0 , usando los resultados del Ejemplo 3.9.

(a) Potencial constante sobre la superficie de una esfera

Se sabe que el potencial general para problemas con simetría esférica (Ej. 3.6 y 3.7) es:

$$V(r,\theta) = \sum_{\ell=0}^{\infty} \left(A_{\ell} r^{\ell} + \frac{B_{\ell}}{r^{\ell+1}} \right) P_{\ell}(\cos \theta)$$

Para el interior de la esfera (r < R), se tiene que $B_{\ell} = 0$, por lo que:

$$V_{\rm dentro}(r,\theta) = \sum_{\ell=0}^{\infty} A_{\ell} r^{\ell} P_{\ell}(\cos \theta)$$

Para el exterior de la esfera (r > R), $A_{\ell} = 0$, y se tiene:

$$V_{\text{fuera}}(r,\theta) = \sum_{\ell=0}^{\infty} \frac{B_{\ell}}{r^{\ell+1}} P_{\ell}(\cos\theta)$$

Como la condición de frontera es que $V(R,\theta) = V_0$, y V_0 es constante, esto implica que solo sobrevive el término $\ell = 0$: Por dentro:

$$V_0 = A_0 R^0 P_0(\cos \theta) = A_0$$

$$V_{\text{dentro}}(r,\theta) = V_0$$

Por fuera:

$$V_0 = \frac{B_0}{R} P_0(\cos \theta) = \frac{B_0}{R}$$

$$B_0 = \frac{V_0}{R}$$

$$V_{\text{fuera}}(r,\theta) = \frac{V_0 R}{r}$$

Entonces, el potencial total es:

$$V(r,\theta) = \begin{cases} V_0, & r < R \\ \frac{V_0 R}{r}, & r > R \end{cases}$$

(b) Cáscara esférica con densidad superficial uniforme σ_0

Del ejemplo 3.9 se tiene:

$$\varepsilon_0 \sum_{\ell=0}^{\infty} (2\ell+1) A_{\ell} R^{\ell-1} P_{\ell}(\cos \theta) = \sigma_0$$

Como σ_0 es constante, sólo sobrevive el término con $\ell=0$ (polinomio de Legendre $P_0(\cos\theta)=1$). Entonces:

$$\varepsilon_0 \cdot A_0 \cdot \frac{1}{R} = \sigma_0 \Rightarrow A_0 = \frac{\sigma_0 R}{\varepsilon_0}$$

Y

$$B_0 = \frac{\sigma_0 R^2}{\varepsilon_0}$$

Así que el potencial en todo el espacio es:

$$V(r) = \begin{cases} \frac{R\sigma_0}{\varepsilon_0}, & r < R\\ \frac{R^2\sigma_0}{\varepsilon_0 r}, & r > R \end{cases}$$

Problema 3.22

En el Problema 2.25, encontraste el potencial sobre el eje de un disco uniformemente cargado:

$$V(r,\theta) = \frac{\sigma}{2\epsilon_o}(\sqrt{r^2 + R^2} - r)$$

- (a) Usa esto, junto con el hecho de que $P_l(1) = 1$ para evaluar los tres primeros términos en la expansión (Ecuación 3.72) para el potencial del disco en puntos fuera del eje, suponiendo que r > R.
- (b) Encuentra el potencial para r < R usando el mismo método, empleando la Ecuación 3.66. [Nota: dividir la región interior en dos hemisferios, por arriba y por debajo del disco. No asumir que los coeficientes A_l son los mismos en ambos hemisferios.]

Solución

En el Problema 2.25, el potencial sobre el eje de un disco uniformemente cargado de radio R:

$$V(r,0) = \frac{\sigma}{2\varepsilon_0} \left(\sqrt{r^2 + R^2} - r \right).$$

(a) Expansión para r > R

Para puntos fuera del disco (r > R), el potencial puede expresarse de la forma:

$$V(r,\theta) = \sum_{l=0}^{\infty} B_l \frac{P_l(\cos \theta)}{r^{l+1}}.$$

En particular, en el eje $\theta = 0$, como $P_l(1) = 1$, se tiene

$$V(r,0) = \sum_{l=0}^{\infty} \frac{B_l}{r^{l+1}}.$$

Por otro lado, para r > R la expresión dada en el enunciado es

$$V(r,0) = \frac{\sigma}{2\varepsilon_0} \left(\sqrt{r^2 + R^2} - r \right).$$

Expandiendo $\sqrt{r^2 + R^2} - r$ en potencias de R/r cuando r > R:

$$\sqrt{r^2 + R^2} = r \sqrt{1 + \frac{R^2}{r^2}} = r \left(1 + \frac{1}{2} \frac{R^2}{r^2} - \frac{1}{8} \frac{R^4}{r^4} + \frac{1}{16} \frac{R^6}{r^6} + \cdots \right),$$

$$\sqrt{r^2 + R^2} - r = r \left(1 + \frac{1}{2} \frac{R^2}{r^2} - \frac{1}{8} \frac{R^4}{r^4} + \frac{1}{16} \frac{R^6}{r^6} + \cdots - 1 \right)$$

$$= \frac{R^2}{2r} - \frac{R^4}{8r^3} + \frac{R^6}{16r^5} - \cdots.$$

Por tanto,

$$V(r,0) = \frac{\sigma}{2\varepsilon_0} \left(\frac{R^2}{2r} - \frac{R^4}{8r^3} + \frac{R^6}{16r^5} - \cdots \right) = \frac{\sigma R^2}{4\varepsilon_0} \frac{1}{r} - \frac{\sigma R^4}{16\varepsilon_0} \frac{1}{r^3} + \frac{\sigma R^6}{32\varepsilon_0} \frac{1}{r^5} - \cdots$$

Comparando este desarrollo con $V(r,0) = \sum_{l=0}^{\infty} \frac{B_l}{r^{l+1}}$, Tenemos que los tres primeros coe-

ficientes no nulos B_l son:

$$B_0 = \frac{\sigma R^2}{4 \varepsilon_0},$$

$$B_2 = -\frac{\sigma R^4}{16 \varepsilon_0},$$

$$B_4 = \frac{\sigma R^6}{32 \varepsilon_0}.$$

Así, la aproximación con los tres primeros términos para r > R queda:

$$V(r,\theta) \approx \frac{\sigma R^2}{4 \varepsilon_0} \frac{P_0(\cos \theta)}{r} - \frac{\sigma R^4}{16 \varepsilon_0} \frac{P_2(\cos \theta)}{r^3} + \frac{\sigma R^6}{32 \varepsilon_0} \frac{P_4(\cos \theta)}{r^5}.$$

$$V(r,\theta) \approx \frac{\sigma R^2}{4 \,\varepsilon_0} \, \frac{1}{r} \, - \, \frac{\sigma R^4}{16 \,\varepsilon_0} \, \frac{\frac{1}{2} \left(3 \cos^2 \theta - 1\right)}{r^3} \, + \, \frac{\sigma R^6}{32 \,\varepsilon_0} \, \frac{\frac{1}{8} \left(35 \cos^4 \theta - 30 \cos^2 \theta + 3\right)}{r^5} \, .$$

$$V(r,\theta) \approx \frac{\sigma R^2}{4 \,\varepsilon_0 \, r} \left(1 \, - \, \frac{R^2}{4} \, \frac{\frac{1}{2} \left(3 \cos^2 \theta - 1 \right)}{r^2} \, + \, \frac{R^4}{8} \, \frac{\frac{1}{8} \left(35 \cos^4 \theta - 30 \cos^2 \theta + 3 \right)}{r^4} \, . \right)$$

(b) Expansión para r < R

Para puntos dentro del disco (r < R) el potencial puede expresarse de la forma:

$$V(r,\theta) = \sum_{l=0}^{\infty} A_l r^l P_l(\cos \theta).$$

De nuevo, en el eje $\theta = 0$ se tiene $P_l(1) = 1$, luego

$$V(r,0) = \sum_{l=0}^{\infty} A_l r^l.$$

Pero sabemos también que el valor en el eje $(\theta = 0)$ para r < R sigue siendo

$$V(r,0) = \frac{\sigma}{2\varepsilon_0} \left(\sqrt{r^2 + R^2} - r \right).$$

Ahora, desarrollando $\sqrt{r^2 + R^2} - r$ en potencias de r/R cuando r < R:

$$\sqrt{r^2 + R^2} = R\sqrt{1 + \frac{r^2}{R^2}} = R\left(1 + \frac{1}{2}\frac{r^2}{R^2} - \frac{1}{8}\frac{r^4}{R^4} + \frac{1}{16}\frac{r^6}{R^6} + \cdots\right),$$
$$\sqrt{r^2 + R^2} - r = R - r + \frac{r^2}{2R} - \frac{r^4}{8R^3} + \cdots.$$

Por tanto,

$$V(r,0) = \frac{\sigma}{2\varepsilon_0} \left(R - r + \frac{r^2}{2R} - \frac{r^4}{8R^3} + \cdots \right).$$

Agrupando por potencias de r:

$$V(r,0) = \underbrace{\frac{\sigma R}{2\varepsilon_0}}_{A_0} - \underbrace{\frac{\sigma}{2\varepsilon_0}}_{A_1} r + \underbrace{\frac{\sigma}{4\varepsilon_0 R}}_{A_2} r^2 + \cdots$$

De aquí leemos los primeros coeficientes A_l :

$$A_0 = \frac{\sigma R}{2 \,\varepsilon_0},$$

$$A_1 = -\frac{\sigma}{2 \,\varepsilon_0},$$

$$A_2 = \frac{\sigma}{4 \,\varepsilon_0 \,R},$$

$$\vdots$$

Por lo tanto, la aproximación con los primeros términos (hasta r^2P_2) para r < R para el hemisferio norte $V(r, \theta)$, donde $0 \le \theta \le \pi/2$ es:

$$V(r,\theta) \approx \frac{\sigma R}{2\varepsilon_0} P_0(\cos \theta) - \frac{\sigma}{2\varepsilon_0} r P_1(\cos \theta) + \frac{\sigma}{4\varepsilon_0 R} r^2 P_2(\cos \theta)$$

$$V(r,\theta) \approx \frac{\sigma R}{2\varepsilon_0} - \frac{\sigma r \cos \theta}{2\varepsilon_0} + \frac{\sigma r^2}{8\varepsilon_0 R} \left(3\cos^2 \theta - 1\right).$$

$$V(r,\theta) \approx \frac{\sigma R}{2\varepsilon_0} \left(1 - \frac{r \cos \theta}{R} + \frac{r^2}{4R^2} \left(3\cos^2 \theta - 1\right)\right).$$

Ahora, para el hemisferio sur $(\theta = \pi)$, tenemos en cuenta que $P_l(-1) = (-1)^l$, por lo que los coeficientes A_l son los mismos, pero con signo alternante:

$$V(r,\pi) = \sum_{l=0}^{\infty} (-1)^{l} A'_{l} r^{l} = \frac{\sigma}{2\epsilon_{o}} \left(\sqrt{r^{2} + R^{2}} - r \right)$$

Donde los coeficientes A'_l son:

$$A_0' = \frac{\sigma R}{2 \,\varepsilon_0},$$

$$A_1' = \frac{\sigma}{2 \,\varepsilon_0},$$

$$A_2' = \frac{\sigma}{4 \,\varepsilon_0 \,R},$$

Por lo tanto la aproximación con los primeros términos (hasta r^2P_2) para r < R para el hemisferio sur es:

$$V(r,\theta) \approx \frac{\sigma R}{2\varepsilon_0} P_0(\cos\theta) + \frac{\sigma}{2\varepsilon_0} r P_1(\cos\theta) + \frac{\sigma}{4\varepsilon_0 R} r^2 P_2(\cos\theta)$$
$$V(r,\theta) \approx \frac{\sigma R}{2\varepsilon_0} \left(1 + \frac{r \cos\theta}{R} + \frac{r^2}{4R^2} \left(3\cos^2\theta - 1 \right) \right).$$

Problema 3.24

Resuelve la ecuación de Laplace mediante separación de variables en coordenadas cilíndricas, asumiendo que no hay dependencia con respecto a z (simetría cilíndrica).

Solución

La ecuación de Laplace en coordenadas cilíndricas (ρ, φ, z) , asumiendo que no hay dependencia con respecto a z (simetría axial), se reduce a:

$$\nabla^2 \Phi = \frac{1}{\rho} \frac{\partial}{\partial \rho} \left(\rho \frac{\partial \Phi}{\partial \rho} \right) + \frac{1}{\rho^2} \frac{\partial^2 \Phi}{\partial \varphi^2} = 0$$

Proponemos una solución mediante separación de variables, de la forma $\Phi(\rho, \varphi) = S(\rho)F(\varphi)$. Sustituyendo esta forma en la ecuación de Laplace:

$$\frac{F(\varphi)}{\rho}\frac{d}{d\rho}\left(\rho\frac{dS}{d\rho}\right) + \frac{S(\rho)}{\rho^2}\frac{d^2F}{d\varphi^2} = 0$$

Multiplicamos por $\frac{\rho^2}{S(\rho)F(\varphi)}$ para separar las variables:

$$\frac{\rho}{S(\rho)}\frac{d}{d\rho}\left(\rho\frac{dS}{d\rho}\right) + \frac{1}{F(\varphi)}\frac{d^2F}{d\varphi^2} = 0$$

Esto nos lleva a dos ecuaciones diferenciales ordinarias, igualando cada parte a una constante de separación k^2

$$\frac{\rho}{S(\rho)} \frac{d}{d\rho} \left(\rho \frac{dS}{d\rho} \right) = k^2$$
$$\frac{1}{F(\varphi)} \frac{d^2 F}{d\varphi^2} = -k^2$$

i) Ecuación angular

$$\frac{d^2F}{d\varphi^2} + k^2F(\varphi) = 0$$

La solución general para esta ecuación es:

$$F(\varphi) = A_k \cos(k\varphi) + B_k \sin(k\varphi)$$

ii) Ecuación radial

$$\frac{\rho}{S(\rho)} \frac{d}{d\rho} \left(\rho \frac{dS}{d\rho} \right) = k^2$$
$$\rho \frac{d}{d\rho} \left(\rho \frac{dS}{d\rho} \right) - k^2 S(\rho) = 0$$

Expandiendo el término de la derivada:

$$\rho \left(\frac{dS}{d\rho} + \rho \frac{d^2S}{d\rho^2} \right) - k^2 S = 0$$
$$\rho^2 \frac{d^2S}{d\rho^2} + \rho \frac{dS}{d\rho} - k^2 S = 0$$

Esta es la ecuación de Euler-Cauchy.

Caso 1: $k \neq 0$

La solucion es de la forma $S(\rho) = \rho^m$.

$$\rho^{2}m(m-1)\rho^{m-2} + \rho m\rho^{m-1} - k^{2}\rho^{m} = 0$$

$$m(m-1) + m - k^{2} = 0$$

$$m^{2} - m + m - k^{2} = 0$$

$$m^{2} = k^{2} \implies m = \pm k$$

Por lo tanto, la solución general para $S(\rho)$ cuando $k \neq 0$ (y k es un entero $n \neq 0$) es:

$$S_n(\rho) = C_n \rho^k + D_n \rho^{-k}$$

Caso 2: k = 0

La ecuación radial se simplifica a:

$$\rho \frac{d}{d\rho} \left(\rho \frac{dS}{d\rho} \right) = 0$$

Dividiendo por ρ (asumiendo $\rho \neq 0$):

$$\frac{d}{d\rho} \left(\rho \frac{dS}{d\rho} \right) = 0$$

Integrando una vez:

$$\rho \frac{dS}{d\rho} = C_1$$
$$\frac{dS}{d\rho} = \frac{C_1}{\rho}$$

Integrando de nuevo:

$$S_0(\rho) = C_1 \ln(\rho) + C_2$$

Esta solución logarítmica es la que corresponde al potencial de una línea de carga infinita.

Solución General

La solución general $\Phi(\rho,\varphi)$ es la superposición de todas las soluciones.

$$V(\rho,\varphi) = a_0 + b_0 \ln(\rho) + \sum_{k=1}^{\infty} \left[(a_k \rho^k + b_k \rho^{-k}) \cos(k\varphi) + (c_k \rho^k + d_k \rho^{-k}) \sin(k\varphi) \right]$$

Tubo metálico infinitamente cargado.

Problema 3.25

Encuentra el potencial fuera de un tubo metálico infinitamente largo, de radio R, colocado perpendicularmente a un campo eléctrico uniforme \vec{E}_0 . Luego, encuentra la densidad de carga superficial inducida en el tubo. Usa el resultado del problema 3.24.

Solución

El tubo es un cilindro conductor de radio R, con simetría cilíndrica (eje z). El campo eléctrico uniforme aplicado es:

$$\vec{E}_0 = E_0 \hat{x}$$

En coordenadas polares (r, ϕ) , se tiene:

$$\vec{E}_0 = E_0 \cos \phi \,\hat{r} - E_0 \sin \phi \,\hat{\phi}$$

El potencial asociado al campo externo es:

$$\Phi_{\rm ext} = -\vec{E}_0 \cdot \vec{r} = -E_0 x = -E_0 r \cos \phi$$

Solución de la ecuación de Laplace

Fuera del cilindro (región r>R), se resuelve la ecuación de Laplace en coordenadas polares:

$$\nabla^2 \Phi = 0$$

La solución general con simetría en ϕ es:

$$\Phi(r,\phi) = \sum_{k=1}^{\infty} \left(A_k r^k + B_k r^{-k} \right) \left(C_k \cos k\phi + D_k \sin k\phi \right)$$

Como el campo externo solo depende de $\cos \phi$, consideramos solo el término con k=1 y sin seno:

$$\Phi(r,\phi) = \left(Ar + \frac{B}{r}\right)\cos\phi$$

Condiciones de frontera

• En r = R, el potencial debe ser cero (condición sobre el conductor):

$$\Phi(R,\phi) = 0$$

• Para $r \to \infty$, el potencial debe tender al del campo externo:

$$\Phi(r \to \infty, \phi) \to -E_0 r \cos \phi \Rightarrow A = -E_0$$

Usando la condición en r = R:

$$\Phi(R,\phi) = \left(-E_0R + \frac{B}{R}\right)\cos\phi = 0 \Rightarrow B = E_0R^2$$

Potencial final

$$\Phi(r,\phi) = \left(-E_0 r + \frac{E_0 R^2}{r}\right) \cos \phi$$

Densidad superficial de carga

La densidad superficial de carga en un conductor se relaciona con el campo eléctrico perpendicular justo fuera del conductor:

$$\sigma(\phi) = -\varepsilon_0 \left. \frac{\partial \Phi}{\partial r} \right|_{r=R}$$

Calculamos la derivada:

$$\frac{\partial \Phi}{\partial r} = \left(-E_0 - \frac{E_0 R^2}{r^2} \right) \cos \phi$$

Evaluado en r = R:

$$\frac{\partial \Phi}{\partial r}\Big|_{r=R} = -2E_0 \cos \phi \Rightarrow \sigma(\phi) = 2\varepsilon_0 E_0 \cos \phi$$

• Potencial fuera del tubo:

$$\Phi(r,\phi) = \left(-E_0 r + \frac{E_0 R^2}{r}\right) \cos \phi$$

• Densidad superficial de carga:

$$\sigma(\phi) = 2\varepsilon_0 E_0 \cos \phi$$

Problema 3.29

Cuatro partículas (una de carga q, una de carga 3q y dos de carga -2q) se colocan como muestra la figura, cada una a una distancia a del origen. Encuentre la fórmula aproximada simple para el potencial eléctrico, válida en puntos alejados del origen. (Exprésese la respuesta en coordenadas esféricas).

Distribución de cuatro partículas con carga.

Solución

El potencial eléctrico debido a un conjunto de cargas puntuales es:

$$V(\mathbf{r}) = \frac{1}{4\pi\varepsilon_0} \sum_{i=1}^{4} \frac{q_i}{|\mathbf{r} - \mathbf{r}_i|}$$

Cuando $r \gg a$, se puede usar una expansión multipolar:

$$V(\mathbf{r}) \approx \frac{1}{4\pi\varepsilon_0} \left(\frac{Q_{\text{total}}}{r} + \frac{\mathbf{p} \cdot \hat{\mathbf{r}}}{r^2} + \cdots \right)$$

donde:

$$Q_{\text{total}} = \sum_{i} q_{i}$$
$$\mathbf{p} = \sum_{i} q_{i} \mathbf{r}_{i}$$

Carga total

$$Q_{\text{total}} = q + 3q - 2q - 2q = 0$$

Por lo tanto, el término monopolar se anula y el primer término no nulo es el dipolar.

Momento dipolar

Calculamos cada contribución:

$$q_1 \mathbf{r}_1 = q(0, 0, -a) = (0, 0, -aq)$$

$$q_2 \mathbf{r}_2 = 3q(0, 0, a) = (0, 0, 3aq)$$

$$q_3 \mathbf{r}_3 = -2q(a, 0, 0) = (-2aq, 0, 0)$$

$$q_4 \mathbf{r}_4 = -2q(-a, 0, 0) = (2aq, 0, 0)$$

Sumando:

$$\mathbf{p} = (-2aq + 2aq, 0, -aq + 3aq) = (0, 0, 2aq)$$

El momento dipolar apunta en la dirección \hat{z} y tiene magnitud 2aq.

Potencial dipolar

En coordenadas esféricas, el vector unitario radial es:

$$\hat{\mathbf{r}} = (\sin\theta\cos\phi, \sin\theta\sin\phi, \cos\theta)$$

Como $\mathbf{p} = 2aq\hat{z}$, entonces:

$$\mathbf{p} \cdot \hat{\mathbf{r}} = 2aq\cos\theta$$

Finalmente, el potencial en la aproximación dipolar es:

$$V(r,\theta) \approx \frac{1}{4\pi\varepsilon_0} \frac{2aq\cos\theta}{r^2}$$

Este resultado muestra un comportamiento de dipolo orientado a lo largo del eje z.