Chapter I: The Fundamental Group

Xiyu Zhai

Contents

1 Basic Constructions

1

1 Basic Constructions

Lemma (1.15). If a space X is the union of a collection of path-connected open sets A_{α} each containing the basepoint $x_0 \in X$ and if each intersection $A_{\alpha} \cap A_{\beta}$ is path-connected, then every loop in X at x_0 is homotopic to a product of loops each of which is contained in a single A_{α} .

Exercise 1. Obvious

Exercise 2. Obvious

Exercise 3. Obvious

Exercise 4. Obvious

Exercise 5. Obvious

Exercise 6. Obvious

Exercise 7. Obvious

Exercise 8. Consider $S^1 \times S^1 \to S^1 \hookrightarrow \mathbb{R}^2$, we have

$$f(x,y) \neq f(-x,-y) \tag{1}$$

.

Exercise 9. Define $S^2 \to \mathbb{R}^2$ as follows:

for each $n \in S^2$, choose an average $t(n) \in \mathbb{R}$ such that plane $p_n : n \cdot x = t$ cut A_3 in equal half, by "average" we mean the average of the maximal possible value and the minimal possible value so that t(n) = -t(-n), i.e. $p_n = p_{-n}$. Let x(n), y(n) be the area of A_1, A_2 intersecting with the upper space divided by p_n along n. We then have x(n) + x(-n) = 1 and y(n) + y(-n) = 1. Then apply Borsuk-Ulam theorem to $n \mapsto (x(n), y(n))$ we are done.

Exercise 10. Obvious

Exercise 11. Obvious

Exercise 12. Obvious

Exercise 13. Obvious

Exercise 14. Obvious

Exercise 15. Obvious

Exercise 16. Obvious

Exercise 17. Obvious

Exercise 18. Straightforward