Stochastik 1 Hausaufgaben Blatt 5

Jun Wei Tan*

Julius-Maximilians-Universität Würzburg

(Dated: November 18, 2024)

Problem 1. Seien X_1 , X_2 und X_3 Bernoulli-verteilte Zufallsvariablen mit Parametern p_1 , p_2 und p_3 , $p_j \in [0,1], 1 \le j \le 3$. Es gilt also $\mathbb{P}(X_j = 1) = 1 - \mathbb{P}(X_j = 0) = p_j, 1 \le j \le 3$. Ereignisse der Form $\{X_i = k\}, \{X_j = l\}, l, k \in \{0, 1\}$, seien für alle $i \ne j$ unabhängig.

- (a) Bestimmen Sie die Wahrscheinlichkeit des Ereignisses $\{X_1 + X_2 + X_3 = 1\}$.
- (b) Leiten Sie die Verteilung der Zufallsvariable $S = X_1 + X_2 + X_3$ her. Geben Sie insbesondere an, um welche Art von Zufallsvariable es sich hier handelt.
- (c) Bestimmen Sie die Wahrscheinlichkeit des Ereignisses $\{X_1 < X_3\}$.
- (d) Wir definieren die Zufallsvariable $Y = \mathbb{1}\{X_1 < X_2\}$. Wie ist Y verteilt?

Problem 2. (a) Zeigen Sie, dass es sich bei

$$F(x) = \begin{cases} 0 & x < 0 \\ \frac{7}{20} + \frac{1}{5}x + \frac{1}{20}x^2 & 0 \le x < 1 \\ 1 & x \ge 1 \end{cases}$$

um eine Verteilungsfunktion handelt.

(b) Es handelt sich hier um eine Mischung aus diskreter und stetiger Verteilung, also ist F von der Form

$$F(x) = aF^d(x) + bF^s(x)$$

mit positiven Zahlen a und b, a+b=1, und F^d Verteilungsfunktion einer diskreten und F^s einer stetigen Verteilung.

Bestimmen Sie a, b, sowie F^d und F^s . Skizzieren Sie F^d, F^s und F. Geben Sie die Wahrscheinlichkeitsfunktion der diskreten Verteilung an.

 $^{^{\}ast}$ jun-wei.tan@stud-mail.uni-wuerzburg.de

(c) Ein Median m einer Verteilung wird häufig eingeführt als eine Zahl, für welche

$$\mathbb{P}(X \le m) \ge 1/2$$
, und $\mathbb{P}(X \ge m) \ge 1/2$,

gilt. Bestimmen Sie einen so definierten Median zu der durch ${\cal F}$ charakterisierten Verteilung.