SWIFT: Scalable Wasserstein Factorization for Sparse Nonnegative Tensors

Ardavan Afshar¹ Kejing Yin² Sherry Yan³ Cheng Qian⁴ Joyce C. Ho⁵ Haesun Park¹ Jimeng Sun⁶

¹Georgia Institute of Technology

e of Technology ²Hong Kong Baptist University ³Sutter Health ⁵Emory University ⁶University of Illinois at Urbana-Champaign ⁴IQVIA

Background: CP Tensor Factorization

CP factorization approximates a tensor \mathcal{X} as the sum of R rank-one tensors:

An example of CP factorization with input of a patient-diagnosis-medication tensor.

$$\mathcal{X} \approx \hat{\mathcal{X}} = [\![\mathbf{A}^{(1)}, \mathbf{A}^{(2)},, \mathbf{A}^{(N)}]\!] = \sum_{r=1}^{R} \mathbf{a}_r^{(1)} \circ \mathbf{a}_r^{(2)} \circ ... \circ \mathbf{a}_r^{(N)},$$

- $A^{(n)}$: Factor matrix for the *n*-th mode.
- $\mathbf{a}_r^{(n)}$: the r-th column of $\mathbf{A}^{(n)}$
- It is widely-used in various applications, e.g. healthcare data analytics.
- It is highly interpretable: each rank-one tensor can be treated as a latent factor.

 $^{{}^{1}\}textit{Tamara G Kolda and Brett W Bader. "Tensor decompositions and applications". In: SIAM Review (2009).}$

Motivation

Existing tensor factorization models assume certain distributions of input, for example:

- $\qquad \qquad \text{Gaussian distribution: } \min_{\widehat{\mathcal{X}}} \ ||\mathcal{X} \widehat{\mathcal{X}}||_F^2 \qquad \leftarrow \textit{MSE loss}^2$
- $\hspace{3.5cm} \textbf{Poisson distribution: } \min_{\widehat{\mathcal{X}}} \hspace{0.1cm} \widehat{\mathcal{X}} \mathcal{X} * \log(\widehat{\mathcal{X}}) \hspace{0.5cm} \leftarrow \textit{KL divergence}^3$
- Bernoulli distribution: $\min_{\widehat{\mathcal{X}}} \log(1 + e^{\widehat{\mathcal{X}}}) \mathcal{X} * \widehat{\mathcal{X}} \qquad \leftarrow \textit{logit loss}^4$

Do we always know the distribution of a given input tensor?

- Real-world data often have very complex distributions.
- We usually do not know the underlying distribution of the input tensor.

² J Carroll and J Chang. "Analysis of individual differences in multidimensional scaling via an N-way generalization of "Eckart-Young" decomposition". In: Psychometrika (1970).

³E Chi and T Kolda. "On tensors, sparsity, and nonnegative factorizations". In: SIAM Journal on Matrix Analysis and Applications (2012).

⁴D Hong, T Kolda, and J Duersch. "Generalized canonical polyadic tensor decomposition". In: SIAM Review (2020).

Motivation

Instead of assuming a specific distribution, the Wasserstein distance can be an alternative.

- a.k.a. Earth Mover Distance (EMD);
- is a potentially better measure of the difference between two distributions;
- does not assume any particular distributions of input data; and
- can leverage correlation relationship within each mode by defining the cost matrix.

Preliminaries: Wasserstein Distance and Optimal Transport

Definition (Wasserstein distance between vectors)

Wasserstein distance between probability vectors \mathbf{a} and \mathbf{b} is defined as

$$W(\mathbf{a}, \mathbf{b}) = \langle \mathbf{C}, \mathbf{T} \rangle \tag{1}$$

- **C** is the cost matrix, where c_{ij} is the cost of moving a_i to b_j .
- $T \in U(a, b)$ is an Optimal Transport (OT) solution between a and b.
- $U(\mathbf{a}, \mathbf{b}) = \{ \mathbf{T} \in \mathbb{R}_+^{n \times m} | \mathbf{T} \mathbf{1}_m = \mathbf{a}, \mathbf{T}^T \mathbf{1}_n = \mathbf{b} \}$ is the feasible set of the OT problem.

Solving this OT problem is very expensive⁵: it has a complexity of $O(n^3)$.

⁵ Gabriel Peyré, Marco Cuturi, et al. "Computational optimal transport". In: Foundations and Trends® in Machine Learning (2019).

Preliminaries: Wasserstein Distance and Optimal Transport

An efficient alternative:

Definition (Entropy regularized OT problem⁶)

The entropy regularized OT problem is defined as:

$$W_{V}(\mathbf{a}, \mathbf{b}) = \underset{\mathbf{T} \in U(\mathbf{a}, \mathbf{b})}{\text{minimize}} \quad \langle \mathbf{C}, \mathbf{T} \rangle - \frac{1}{\rho} E(\mathbf{T}),$$
 (2)

where $E(\mathbf{T}) = -\sum_{i,j=1}^{M,N} t_{ij} \log(t_{ij})$ is the entropy of \mathbf{T} .

- It is strictly convex with a unique solution.
- It can be tackled with $\bf u$ and $\bf v$ such that $\operatorname{diag}(\bf u) \exp(-\rho \bf C) \operatorname{diag}(\bf v) \in U(\bf a, \bf b)$.
- Optimal \mathbf{u} and \mathbf{v} can be computed via the Sinkhorn's algorithm⁷.

⁶ Marco Cuturi. "Sinkhorn distances: Lightspeed computation of optimal transport". In: Advances in Neural Information Processing Systems. 2013.

⁷ Richard Sinkhorn and Paul Knopp. "Concerning nonnegative matrices and doubly stochastic matrices". In: Pacific Journal of Mathematics (1967)

Challenges

However, applying Wasserstein distance to tensor factorization is challenging:

- 1. Wasserstein distance is not well-defined for tensors: It is well-defined for vectors, yet vectorizing tensor yields extremely large vectors, making it infeasible to solve.
- 2. Wasserstein distance is difficult to scale: It requires to solve the OT problems many times in each iteration, which is extremely time consuming.
- 3. **Real-world input are often large, sparse and non-negative**: Efficient algorithms are possible only when the sparsity structure are fully utilized.

Our Contributions

Contribution 1: Defining Wasserstein Tensor Distance

- SWIFT is the first work that defines Wasserstein distance for tensors.
- It does not assume any particular distribution.
- Therefore, it can handle non-negative inputs, including binaries, counts, and real-values.

Contribution 2: Formulating Wasserstein Tensor Factorization

 We propose SWIFT model to minimize the Wasserstein distance between the input and its CP reconstructions.

Contribution 3: Efficiently Solving Wasserstein Tensor Factorization

- SWIFT effectively explores the sparsity structure of the input and reduces the number of times required to compute OT.
- It reduces the computational time by efficient rearrangement of its sub-problems.
- As a result, it achieves 921x speed up over a naive implementation.

Defining Wasserstein Tensor Distance

We first define the Wasserstein distance for matrices by summing that over their columns:

Definition (Wasserstein Matrix Distance)

Given a cost matrix $\mathbf{C} \in \mathbb{R}_+^{M \times M}$, the Wasserstein distance between two matrices $\mathbf{A} = [\mathbf{a}_1,...,\mathbf{a}_P] \in \mathbb{R}_+^{M \times P}$ and $\mathbf{B} = [\mathbf{b}_1,...,\mathbf{b}_P] \in \mathbb{R}_+^{M \times P}$ is denoted by $W_M(\mathbf{A},\mathbf{B})$, and given by:

$$W_{M}(\mathbf{A}, \mathbf{B}) = \sum_{p=1}^{P} W_{V}(\mathbf{a}_{p}, \mathbf{b}_{p}) = \underset{\overline{\mathbf{T}} \in U(\mathbf{A}, \mathbf{B})}{\operatorname{minimize}} \langle \overline{\mathbf{C}}, \overline{\mathbf{T}} \rangle - \frac{1}{\rho} E(\overline{\mathbf{T}}), \tag{3}$$

where $\overline{\mathbf{C}} = [\underbrace{\mathbf{C},....,\mathbf{C}}_{P \text{ times}}]$, $\overline{\mathbf{T}} = [\mathbf{T}_1,...\mathbf{T}_P,...,\mathbf{T}_P]$, and the feasible set $U(\mathbf{A},\mathbf{B})$ is given by:

$$U(\mathbf{A},\mathbf{B}) = \left\{ \overline{\mathbf{T}} \in \mathbb{R}_{+}^{M \times MP} \mid \mathbf{T}_{p} \mathbf{1}_{M} = \mathbf{a}_{p}, \mathbf{T}_{p}^{T} \mathbf{1}_{M} = \mathbf{b}_{p} \quad \forall p \right\} = \left\{ \overline{\mathbf{T}} \in \mathbb{R}_{+}^{M \times MP} \mid \Delta(\overline{\mathbf{T}}) = \mathbf{A}, \Psi(\overline{\mathbf{T}}) = \mathbf{B} \right\}, \quad (4)$$

where $\Delta(\overline{\mathbf{T}}) = [\mathbf{T}_1 \mathbf{1}_M, ..., \mathbf{T}_P \mathbf{1}_M] = \overline{\mathbf{T}}(\mathbf{I}_P \otimes \mathbf{1}_M), \ \Psi(\overline{\mathbf{T}}) = [\mathbf{T}_1^T \mathbf{1}_M, ..., \mathbf{T}_P^T \mathbf{1}_M]$ and $\mathbf{1}_M$ is a vector of all ones with the size of M.

Defining Wasserstein Tensor Distance

Then we can define the Wasserstein distance for tensors by summing that over the matricization along each mode of the tensor:

Definition (Wasserstein Tensor Distance)

The Wasserstein distance between *N*-th order tensor $\mathcal{X} \in \mathbb{R}_+^{I_1 \times \ldots \times I_N}$ and its reconstruction $\hat{\mathcal{X}} \in \mathbb{R}_+^{I_1 \times \ldots \times I_N}$ is denoted by $W_{\mathcal{T}}(\hat{\mathcal{X}}, \mathcal{X})$:

$$\boxed{W_{\mathcal{T}}(\hat{\mathcal{X}}, \mathcal{X}) = \sum_{n=1}^{N} W_{\mathcal{M}}\left(\widehat{\mathbf{X}}_{(n)}, \mathbf{X}_{(n)}\right)} \equiv \sum_{n=1}^{N} \left\{ \underset{\overline{\mathbf{T}}_{n} \in U\left(\widehat{\mathbf{X}}_{(n)}, \mathbf{X}_{(n)}\right)}{\text{minimize}} \left\langle \overline{\mathbf{C}}_{n}, \overline{\mathbf{T}}_{n} \right\rangle - \frac{1}{\rho} E(\overline{\mathbf{T}}_{n}) \right\}, \tag{5}$$

where $\mathbf{X}_{(n)} \in \mathbb{R}_{+}^{l_n \times l_{(-n)}}$ is the *n*-th mode matricization of \mathcal{X} , $\overline{\mathbf{C}}_n = [\mathbf{C}_n, \mathbf{C}_n, ..., \mathbf{C}_n] \in \mathbb{R}_{+}^{l_n \times l_n l_{(-n)}}$, and $\overline{\mathbf{T}}_n = [\mathbf{T}_{n1}, ..., \mathbf{T}_{nj}, ..., \mathbf{T}_{nl_{(-n)}}] \in \mathbb{R}_{+}^{l_n \times l_n l_{(-n)}}$. $\overline{\mathbf{T}}_{nj} \in \mathbb{R}_{+}^{l_n \times l_n}$ is the transport matrix between the columns $\widehat{\mathbf{X}}_{(n)}(:,j) \in \mathbb{R}_{+}^{l_n}$ and $\mathbf{X}_{(n)}(:,j) \in \mathbb{R}_{+}^{l_n}$.

The Wasserstein distance $W_T(\mathcal{X}, \mathcal{Y})$ defined above is a valid distance and satisfies the metric axioms of positivity, symmetry, and triangle inequality.

Defining Wasserstein Tensor Distance

Illustration of the Wasserstein distances. Left: Wasserstein matrix distance; right: Wasserstein tensor distance.

Wasserstein Tensor Factorization

SWIFT minimizes the Wasserstein tensor distance between input and its CP reconstruction:

Optimization problem

$$\label{eq:minimize} \begin{split} & \underset{\{\mathbf{A}_n \geq 0, \overline{\mathbf{T}}_n\}_{n=1}^N}{\text{minimize}} & & \sum_{n=1}^N \left(\langle \overline{\mathbf{C}}_n, \overline{\mathbf{T}}_n \rangle - \frac{1}{\rho} E(\overline{\mathbf{T}}_n) \right) \\ & \text{subject to} & & \widehat{\mathcal{X}} = [\![\mathbf{A}_1, \dots, \mathbf{A}_N]\!] \\ & & & \overline{\mathbf{T}}_n \in \mathit{U}(\widehat{\mathbf{X}}_{(n)}, \mathbf{X}_{(n)}), \ n = 1, \dots, N \end{split}$$

Constraint Relaxation using the generalized KL-divergence

$$\underset{\{\mathbf{A}_{n} \geq 0, \overline{\mathbf{T}}_{n}\}_{n=1}^{N}}{\text{minimize}} \sum_{n=1}^{N} \left(\underbrace{\langle \overline{\mathbf{C}}_{n}, \overline{\mathbf{T}}_{n} \rangle - \frac{1}{\rho} E(\overline{\mathbf{T}}_{n})}_{\text{Part } P_{1}} + \lambda \left(\underbrace{KL(\Delta(\overline{\mathbf{T}}_{n}) || \mathbf{A}_{n}(\mathbf{A}_{\odot}^{(-n)})^{T})}_{\text{Part } P_{2}} + \underbrace{KL(\Psi(\overline{\mathbf{T}}_{n}) || \mathbf{X}_{(n)})}_{\text{Part } P_{3}} \right) \right)$$
(6)

We alternate between \mathbf{A}_n and $\overline{\mathbf{T}}_n$ to solve Eq. (6).

Efficient Algorithms: 1. Solving for OT Problems (\overline{T}_n)

Note that: $\overline{\mathbf{T}}_n = [\mathbf{T}_{n1},...,\mathbf{T}_{nj},...,\mathbf{T}_{nl_{(-n)}}] \in \mathbb{R}_+^{l_n \times l_n l_{(-n)}}$.

The number of optimal transport problems to solve is: $I_{(-n)} = I_1 \times \cdots \times I_{n-1} \times I_{n+1} \times \cdots \times I_N$.

Instead, we use the property of the OT solution $\mathbf{T}_{nj}^*\mathbf{1} = \operatorname{diag}(\mathbf{u}_j)\mathbf{K}_n\mathbf{v}_j = \mathbf{u}_j*(\mathbf{K}_n\mathbf{v}_j)$; therefore:

Proposition 2

$$\Delta(\overline{\mathsf{T}}_n) = [\mathsf{T}_{n1}1, ..., \mathsf{T}_{nj}1, ..., \mathsf{T}_{nl_{(-n)}}1] = \mathsf{U}_n * (\mathsf{K}_n \mathsf{V}_n)$$
(7)

minimizes (6), where $\mathbf{K}_n = e^{(-\rho \mathbf{C}_n - 1)} \in \mathbb{R}_+^{I_n \times I_n}$, $\mathbf{U}_n = (\widehat{\mathbf{X}}_{(n)})^{\Phi} \oslash (\mathbf{K}_n (\mathbf{X}_{(n)} \oslash (\mathbf{K}_n^T \mathbf{U}_n))^{\Phi})^{\Phi}$,

 $\mathbf{V}_n = \left(\mathbf{X}_{(n)} \oslash \left(\mathbf{K}_n^T \mathbf{U}_n\right)\right)^{\Phi}$, $\Phi = \frac{\lambda \rho}{\lambda \rho + 1}$, and \oslash indicates element-wise division.

Efficient Algorithms: 1. Solving for OT Problems $(\overline{\mathsf{T}}_n)$

Exploring the sparsity structure for efficiently computing $\Delta(\overline{T}_n)$

- Many columns of the $X_{(n)}$ are all zeros; thus they can be ignored when computing V_n .
- Besides, each column of V_n can be computed in parallel.

SWIFT explores sparsity structure in input data $X_{(n)}$ and drops zero values columns.

Efficient Algorithms: 2. Updating CP factors (A_n)

Sub-problem for the CP factor matrices A_n

$$\underset{\mathbf{A}_{n} \geq 0}{\text{minimize}} \quad \sum_{i=1}^{N} KL\left(\Delta(\overline{\mathbf{T}}_{i}) \mid\mid \mathbf{A}_{i}(\mathbf{A}_{\odot}^{(-i)})^{T}\right) \tag{8}$$

Challenge: \mathbf{A}_n is also involved in the Khatri-Rao product $\mathbf{A}_{\odot}^{(-i)}$.

To tackle this, we define an rearranging operator Π , such that

Efficient rearranging operation

$$\Pi(\mathbf{A}_i(\mathbf{A}_{\odot}^{(-i)})^T, n) = \mathbf{A}_n(\mathbf{A}_{\odot}^{(-n)})^T \in \mathbb{R}_+^{I_n \times I_{(-n)}} \quad \forall i \neq n.$$
(9)

In this way, the Khatri-Rao product term no longer contain the factor matrix \mathbf{A}_n .

Efficient Algorithms: 2. Updating CP factors (A_n)

With this operator, the sub-problem is equivalent to:

Rearranged sub-problem for
$$\mathbf{A}_{n}$$

$$\underset{\mathbf{A}_{n}\geq 0}{\text{minimize}} \quad KL\left(\begin{bmatrix} \Pi(\Delta(\overline{\mathbf{T}}_{1}),n)\\ \dots\\ \Pi(\Delta(\overline{\mathbf{T}}_{i}),n)\\ \dots\\ \Pi(\Delta(\overline{\mathbf{T}}_{N}),n) \end{bmatrix} \middle| \begin{bmatrix} \mathbf{A}_{n}(\mathbf{A}_{\odot}^{(-n)})^{T}\\ \dots\\ \mathbf{A}_{n}(\mathbf{A}_{\odot}^{(-n)})^{T}\\ \dots\\ \mathbf{A}_{n}(\mathbf{A}_{\odot}^{(-n)})^{T} \end{bmatrix}\right) \tag{10}$$

With the rearranged objective function, the factor matrix \mathbf{A}_n can be efficiently updated via multiplicative update rules⁸.

⁸ Daniel D Lee and H Sebastian Seung. "Algorithms for non-negative matrix factorization". In: Advances in Neural Information Processing Systems. 2001.

Experiments: Datasets and Evaluation Metrics

BBC News⁹

- a third-order counting tensor with size of 400 articles by 100 words by 100 words
- downstream task: article category classification; evaluated by accuracy.

Sutter

- a dataset collected from a large real-world health provider network
- a third-order binary tensor with size of 1000 patients by 100 diagnoses by 100 medications
- downstream task: heart failure onset; evaluated by PR-AUC.

We use the pair-wise cosine distance to compute the cost matrices for each mode of the two datasets.

⁹ Derek Greene and Pádraig Cunningham. "Practical Solutions to the Problem of Diagonal Dominance in Kernel Document Clustering". In: International Conference on Machine learning. 2006.

Experiments: Baselines

We compare against the following tensor factorization models with different loss functions:

Model	Loss Type	Underlying Distribution Assumption	Reference	
CP-ALS	MSE Loss	Gaussian	(Bader & Kolda 2007)	
CP-NMU	MSE Loss	Gaussian	(Bader & Kolda 2007)	
Supervised CP	MSE Loss	Gaussian	(Kim et al. 2017)	
Similarity based CP	MSE Loss	Gaussian	(Kim et al. 2017)	
CP-Continuous	Gamma Loss	Gamma	(Hong et al. 2020)	
CP-Binary	Log Loss	Bernoulli	(Hong et al. 2020)	
CP-APR	KL Loss	Poisson	(Chi & Kolda 2012)	

Experimental Results: Classification Performance

		R=5	R=10	R=20	R=30	R=40
BBC News Dataset	CP-ALS	$.521 \pm .033$	$.571 \pm .072$	$.675 \pm .063$	$.671 \pm .028$	$.671 \pm .040$
	CP-NMU	$.484 \pm .039$	$.493 \pm .048$	$.581 \pm .064$	$.600 \pm .050$	$.650 \pm .031$
	Supervised CP	$.506 \pm .051$	$.625 \pm .073$	$.631 \pm .050$	$.665 \pm .024$	$.662 \pm .012$
	Similarity Based CP	$.518\pm.032$	$.648 \pm .043$	$.638 \pm .021$	$.662 \pm .034$	$.673 \pm .043$
Dataset	CP-Continuous	$.403 \pm .051$	$.481\pm.056$	$.528\pm.022$	$.559 \pm .024$	$.543 \pm .043$
	CP-Binary	$.746 \pm .058$	$.743 \pm .027$	$.737 \pm .008$	$.756 \pm .062$	$.743 \pm .044$
	CP-APR	$.675 \pm .059$	$.768 \pm .033$	$.753 \pm .035$	$.743 \pm .033$	$.746 \pm .043$
	SWIFT	$\textbf{.759} \pm \textbf{.013}$	$\textbf{.781} \pm \textbf{.013}$	$\textbf{.803} \pm \textbf{.010}$	$\textbf{.815} \pm \textbf{.005}$	$\textbf{.818} \pm \textbf{.022}$
S	CP-ALS	$.327 \pm .072$	$.333 \pm .064$	$.311 \pm .068$	$.306 \pm .065$	$.332 \pm .098$
	CP-NMU	$.300 \pm .054$	$.294 \pm .064$	$.325 \pm .085$	$.344 \pm .068$	$.302 \pm .071$
	Supervised CP	$.301 \pm .044$	$.305 \pm .036$	$.309 \pm .054$	$.291 \pm .037$	$.293 \pm .051$
Sutter Data	Similarity Based CP	$.304 \pm .042$	$.315 \pm .041$	$.319 \pm .063$	$.296 \pm .041$	$.303 \pm .032$
Data	CP-Continuous	$.252 \pm .059$	$.237 \pm .043$	$.263 \pm .065$	$.244 \pm .053$	$.256 \pm .077$
	CP-Binary	$.301 \pm .061$	$.325 \pm .079$	$.328 \pm .080$	$.267 \pm .074$	$.296 \pm .063$
	CP-APR	$.305 \pm .075$	$.301 \pm .068$	$.290 \pm .052$	$.313 \pm .082$	$.304 \pm .086$
	SWIFT	$\textbf{.364} \pm \textbf{.063}$	$\textbf{.350} \pm \textbf{.031}$	$\textbf{.350} \pm \textbf{.040}$	$\textbf{.369} \pm \textbf{.066}$	$\textbf{.374} \pm \textbf{.044}$

SWIFT outperforms all models consistently by a large margin.

Experimental Results: Classification Performance

Comparison against widely-adopted classifiers:

	Accuracy on BBC	PR-AUC on Sutter
Lasso Logistic Regression	$.728\pm.013$	$.308\pm.033$
Random Forest	$.628\pm.049$	$.318\pm.083$
Multi-Layer Perceptron	$.690\pm.052$	$.305\pm.054$
K-Nearest Neighbor	$.596\pm.067$	$.259\pm.067$
SWIFT (R=5)	.759 ± .013	.364 ± .063
SWIFT (R=40)	$\textbf{.818}\pm\textbf{.020}$	$\textbf{.374}\pm\textbf{.044}$

SWIFT with rank of 5 already outperforms all other classifiers compared.

Experimental Results: Classification Performance on Noisy Data

We inject random noise to the BBC News data and run all models using the noisy data:

SWIFT outperforms all baselines, especially for medium and high noise levels.

Experimental Results: Scalability of SWIFT

We set R = 40, switch off all parallelization of SWIFT for fair comparison and measure the running time of all models.

SWIFT is as scalable as other CP factorization models.

Experimental Results: Interpretability of SWIFT

We interpret the factor matrices learned for Sutter datasets. Following are three examples:

Atrial Fibrillation (Weight= 21.93)

Dx-Essential hypertension [98.]

Dx-Disorders of lipid metabolism [53.] Dx-Cardiac dysrhythmias [106.]

Rx-Calcium Channel Blockers

Rx-Alpha-Beta Blockers

Rx-Angiotensin II Receptor Antagonists

Cardiometablic Disease (Weight= 19.58)

Dx-Diabetes mellitus without complication [49.]

Dx-Essential hypertension [98.]

Dx-Disorders of lipid metabolism [53.]

Rx-Diagnostic Tests

Rx-Biguanides Rx-Diabetic Supplies

Mental Disorder (Weight= -16.22)

Dx-Anxiety disorders [651]

Dx-Menopausal disorders [173.]

Dx-Depressive disorders [6572]

Rx-Benzodiazepines

Rx-Selective Serotonin Reuptake Inhibitors (SSRIs)

Rx-Serotonin Modulators

- Each group (phenotype) contains clinically relevant diagnoses and medications.
- The weight indicates the lasso logistic regression coefficient for heart failure (HF) prediction.
- First two groups are clinically relevant to HF, but the third is not.
- The clinical meaningfulness is endorsed by a medical expert.

SWIFT yields interpretable factor matrices.

Conclusion

- We define the Wasserstein distance between two tensors and propose SWIFT, a Wasserstein tensor factorization model.
- We derive an efficient learning algorithm by exploring the sparsity structure and introducing efficient rearrangement operator.
- Empirical evaluations demonstrate that SWIFT consistently outperforms baselines in downstream prediction tasks, even in the presence of heavy noise.
- SWIFT is also shown scalable and interpretable.

Thank you!

All questions and comments are greatly appreciated!