CS581 Theory of Computation: Homework #6

Due on March 16 2016 at 12:30pm

Harry H. Porter Winter 2016

Konstantin Macarenco

Problem 6.1

Give an example in the spirit of the recursion theorem of a program in a real programming language (or a reasonable approximation thereof) that prints itself out.

Solution in python:

```
x = r"%sprint ('x = r\" ' + x) %% (x + '\"\n')"
print ('x = r\" ' + x) % (x + '\"\n')
```

Problem 6.11

Let ϕ_{eq} be defined as in Problem 6.10. Give a model of the sentence

$$\phi_{lt} = \phi_{eq} \tag{1}$$

$$\wedge \forall x, y [R_1(x, y) \to \neg R_2(x, y)] \tag{2}$$

$$\wedge \forall x, y [\neg R_1(x, y) \to (R_2(x, y) \oplus R_2(x, z))] \tag{3}$$

$$\wedge \forall x, y, z [(R_2(x, y) \land R_2(y, z)) \to R_2(x, z)] \tag{4}$$

$$\wedge \forall x \exists y [2(x,y)]. \tag{5}$$

Solution

One model is (N, R_1, R_2, \oplus) , where R_1 is equality, R_2 is < and \oplus is \lor .

Problem 7.1

Answer each part TRUE or FALSE.

a.	2n = O(n)	TRUE
b.	$n^2 = O(n)$	FALSE
c.	$n^2 = O(n \ log^2 n)$	FALSE
d.	$n \log n = O(n^2)$	TRUE
e.	$3^n = 2^{O(n)}$	TRUE
f.	$2^{2^n} = O(2^{2^n})$	TRUE

Problem 7.4

Fill out the table described in the polynomial time algorithm for context-free language recognition from theorem 7.16 for string w = baba and CFG G:

$$\begin{array}{ccc} S & \rightarrow & RT \\ R & \rightarrow & TR|a \\ T & \rightarrow & TR|b \end{array}$$

Solution

	1	2	3	4
1	Τ	T,R	S	$_{S,R,T}$
2		R	S	S
3			Т	T,R
4				R

Because table (1,4) contains S, the TM accepts w.

Problem 7.5

Is the following formula satisfiable?

$$(x \lor y) \land (x \lor \overline{y}) \land (\overline{x} \lor y) \land (\overline{x} \lor \overline{y})$$

Solution

	X	у	$(x \lor y)$	$(x \vee \overline{y})$	$(\overline{x} \lor y)$	$(\overline{x} \vee \overline{y})$	Result (conjunction of all)
	Γ	Т	Т	Т	Т	F	F
r	Γ	\mathbf{F}	T	T	F	Т	${f F}$
]	F	\mathbf{T}	Т	F	Т	Т	${f F}$
]	F	F	F	${ m T}$	T	Т	${f F}$

Hence the formula is not satisfiable.

Problem 7.12

Call graphs G and H **isomorphic** if the nodes of G may be reordered so that it is identical to H. Let $ISO = \{\langle G, H \rangle | G \text{ and } H \text{ are isomorphic graphs} \}$. Show that $ISO \in NP$

Solution

A nondeterministic polynomial time algorithm for ISO operates as follows:

- " On input $\langle G, H \rangle$ where G and H are undirected graphs:
- 1. Let m be the number of nodes of G and H. If they don't have the same number of nodes, reject.
- 2. Nondeterministically select a permutation π of m elements.
- 3. For each pair of nodes x and y of G check that (x,y) is an edge of G iff $(\pi(x), \pi(y))$ is an edge of H. If all agree, accept. If any differ, reject."

Stage 2 can be implemented in polynomial time nondeterministically, Stage 3 takes polynomial time. Therefore $ISO \in NP$