Problem Set 03: Propositional Logic and Equivalences

CS/MATH 113 Discrete Mathematics

Spring 2024

1. Show that the following are logically equivalent without using truth tables:

(a)
$$(p \Rightarrow r) \lor (q \Rightarrow r) \equiv (p \land q) \Rightarrow r$$

Solution:

 $(\neg p \vee r) \vee (\neg q \vee r)$ Conditional disjunction $(\neg p \vee \neg q) \vee (r \vee r)$ Associative law $\neg (p \wedge q) \vee r$ Idempotent and demorgan's law $(p \wedge q) \rightarrow r$ conditional disjunction

(b)
$$\neg [\neg [(p \lor q) \land r] \lor \neg q] \equiv q \land r$$

Solution:

$$\begin{split} &\neg \left[\neg (p \lor q) \lor \neg r \lor \neg q \right] \text{ Demorgan's law} \\ &(p \lor q) \land r \land q \text{ Demorgan's law} \\ &[q \land (p \lor q)] \land r \text{ Associative law} \\ &[(q \land p) \lor (q \land q)] \land r \text{ Distributive law} \\ &[q \lor (q \land p)] \land r \text{ Idempotent law} \\ &q \land r \text{ Absorption law} \end{split}$$

(c)
$$(p \lor q \lor r) \land (p \lor t \lor \neg q) \land (p \lor \neg t \lor r) \equiv p \lor [r \land (t \lor \neg q)]$$

Solution:

2. Use Truth tables to see if the following statements are logically equivalent:

(a)
$$p \Rightarrow (q \lor r) \equiv (q \Rightarrow p) \land (p \Rightarrow r)$$

Solı	Solution:									
p	\mathbf{q}	r	$q \vee r$	$p \to (q \lor r)$	$q \rightarrow p$	$p \rightarrow r$	$(q \to p) \land (p \to r)$			
T	Τ	Τ	T	T	Т	Т	Τ			
\mathbf{T}	\mathbf{T}	\mathbf{F}	Γ	Γ	Т	F	F			
T	\mathbf{F}	\mathbf{T}	T	Γ	Т	Τ	${ m T}$			
T	\mathbf{F}	\mathbf{F}	F	F	Т	F	F			
F	\mathbf{T}	${\rm T}$	T	T	F	Τ	F			
F	\mathbf{T}	\mathbf{F}	T	Γ	F	Τ	F			
F	\mathbf{F}	\mathbf{T}	T	Γ	Т	Τ	${ m T}$			
F	\mathbf{F}	F	F	Γ	T	Т	m T			

since the truth value of the statements do not match, they are not equivalent.

(b) $(p \lor q) \Rightarrow r \equiv (p \Rightarrow r) \land (q \Rightarrow r)$

Solution:								
p	q	\mathbf{r}	$p \lor q$	$p \rightarrow r$	$q \rightarrow r$	$(p \lor q) \to r$	$ (p \to r) \land (q \to r) $	
T	Τ	Τ	Т	Т	Т	T	Т	
T	${\rm T}$	\mathbf{F}	Т	F	F	\mathbf{F}	F	
T	F	\mathbf{T}	Т	Т	Т	${ m T}$	T	
T	F	F	Т	F	Т	\mathbf{F}	F	
F	T	T	Т	T	Т	${ m T}$	T	
F	T	F	Т	T	F	\mathbf{F}	F	
F	F	T	F	T	Т	${ m T}$	T	
F	F	F	F	T	Т	${ m T}$	T	

Since the truth values for both Propositional statements are same, they are logically equivalent.

(c) $p \Rightarrow (q \lor r) \equiv \neg r \Rightarrow (p \Rightarrow q)$

Solution:								
p	\mathbf{q}	\mathbf{r}	$q \vee r$	$\neg r$	$p \rightarrow q$	$p \to (q \lor r)$	$\neg r \to (p \to q)$	
T	Τ	Τ	Т	F	Т	T	Τ	
T	\mathbf{T}	\mathbf{F}	Т	Т	Т	${ m T}$	${ m T}$	
T	F	\mathbf{T}	Т	F	F	${ m T}$	${ m T}$	
\mathbf{T}	F	F	F	T	F	\mathbf{F}	F	
F	\mathbf{T}	\mathbf{T}	Т	F	T	${ m T}$	${ m T}$	
F	${\rm T}$	F	Т	Τ	T	${ m T}$	${ m T}$	
F	F	T	Т	F	T	${ m T}$	${ m T}$	
F	F	\mathbf{F}	F	Т	T	${ m T}$	Γ	

Since the truth values of the two Propositional are both the same, they are logically Equivalent.

- 3. Express the negation of each of the following statements in natural language using De Morgan's laws.
 - (a) Graduates take a job in industry or go to graduate school or start their own ventures.

Solution: Graduates will not take a job in industry and won't go to graduate school and won't start their own ventures.

(b) First year students know python and calculus.

Solution: First year students don't know python or they don't know calculus

(c) Horizon is new and bright.

Solution: Horizon is not new or not bright.

4. Determine whether each of the following compound propositions is satisfiable.

(a)
$$(p \vee \neg q) \wedge (\neg p \vee q) \wedge (\neg p \vee \neg q)$$

Solution: When both the truth value of both p and q are False, the compound proposition is True. Hence it is satisfiable because of the statement being a contingency.

(b)
$$(p \implies q) \land (p \implies \neg q) \land (\neg p \implies q) \land (\neg p \implies \neg q)$$

Solution: This compound proposition can be also be written as $[(\neg p \lor q) \land (\neg p \lor \neg q) \land (p \lor \neg q)] \land (p \lor q)$

The statement to left is the same as the one in last part for which we reasoned that it is only True when both p and q are False, whereas $p \lor q$ is True when at least of one of them is True. This causes the conditions to be contradictory thus the whole compound proposition is a contradiction, hence unsatisfiable.

(c)
$$(p \iff q) \land (\neg p \iff q)$$

Solution: There is no assignment of truth values to p and q that makes the whole propositional statement True, making this statement a contradiction. Thus it is not satisfiable.