Limits and Colimits as universal cones

Siddharth Bhat

##harmless Category Theory in Context

Sun 20, June 2021

Building objects from other ones

$$\mathbb{R}^{1} \times \mathbb{R}^{2} = \mathbb{R}^{2}$$

$$\mathbb{R}^{2} \left[\mathbb{R} \times \mathbb{R}^{2} \times \mathbb{R}^{2} + \mathbb{R}^{2} - \mathbb{R}^{2} \right] = 0$$

$$\mathbb{R}^{2} \left[\mathbb{R} \times \mathbb{R}^{2} \times \mathbb{R}^{2} + \mathbb{R}^{2} - \mathbb{R}^{2} \right] = 0$$

$$\mathbb{R}^{2} \left[\mathbb{R} \times \mathbb{R}^{2} \times \mathbb{R}^{2} + \mathbb{R}^{2} - \mathbb{R}^{2} \right] = 0$$

$$\mathbb{R}^{2} \left[\mathbb{R} \times \mathbb{R}^{2} \times \mathbb{R}^{2} + \mathbb{R}^{2} \right] = 0$$

$$\mathbb{R}^{2} \left[\mathbb{R} \times \mathbb{R}^{2} \times \mathbb{R}^{2} + \mathbb{R}^{2} \right] = 0$$

$$\mathbb{R}^{2} \left[\mathbb{R} \times \mathbb{R}^{2} \times \mathbb{R}^{2} + \mathbb{R}^{2} \right] = 0$$

$$\mathbb{R}^{2} \left[\mathbb{R} \times \mathbb{R}^{2} \times \mathbb{R}^{2} + \mathbb{R}^{2} \right] = 0$$

$$\mathbb{R}^{2} \left[\mathbb{R} \times \mathbb{R}^{2} \times \mathbb{R}^{2} + \mathbb{R}^{2} \right] = 0$$

$$\mathbb{R}^{2} \left[\mathbb{R} \times \mathbb{R}^{2} \times \mathbb{R}^{2} + \mathbb{R}^{2} \right] = 0$$

$$\mathbb{R}^{2} \left[\mathbb{R} \times \mathbb{R}^{2} \times \mathbb{R}^{2} + \mathbb{R}^{2} \right] = 0$$

$$\mathbb{R}^{2} \left[\mathbb{R} \times \mathbb{R}^{2} \times \mathbb{R}^{2} + \mathbb{R}^{2} \right] = 0$$

$$\mathbb{R}^{2} \left[\mathbb{R} \times \mathbb{R}^{2} \times \mathbb{R}^{2} + \mathbb{R}^{2} \right] = 0$$

$$\mathbb{R}^{2} \left[\mathbb{R}^{2} \times \mathbb{R}^{2} \times \mathbb{R}^{2} + \mathbb{R}^{2} \right] = 0$$

$$\mathbb{R}^{2} \left[\mathbb{R}^{2} \times \mathbb{R}^{2} \times \mathbb{R}^{2} + \mathbb{R}^{2} \right] = 0$$

$$\mathbb{R}^{2} \left[\mathbb{R}^{2} \times \mathbb{R}^{2} \times \mathbb{R}^{2} \times \mathbb{R}^{2} \right] = 0$$

$$\mathbb{R}^{2} \left[\mathbb{R}^{2} \times \mathbb{R}^{2} \times \mathbb{R}^{2} \times \mathbb{R}^{2} \right] = 0$$

$$\mathbb{R}^{2} \left[\mathbb{R}^{2} \times \mathbb{R}^{2} \times \mathbb{R}^{2} \times \mathbb{R}^{2} \times \mathbb{R}^{2} \times \mathbb{R}^{2} \right] = 0$$

$$\mathbb{R}^{2} \left[\mathbb{R}^{2} \times \mathbb{R}^{2} \times \mathbb{R}^{2} \times \mathbb{R}^{2} \times \mathbb{R}^{2} \times \mathbb{R}^{2} \times \mathbb{R}^{2} \right] = 0$$

$$\mathbb{R}^{2} \left[\mathbb{R}^{2} \times \mathbb{R}^{2} \right] = 0$$

$$\mathbb{R}^{2} \left[\mathbb{R}^{2} \times \mathbb{R$$

Cone over a diagram (Picture)

Cone over a diagram (formally)

■ Given: (1) a diagram category J, (2) a target category C, (3) a functor $F: J \rightarrow C$, (4) a choice of apex $c_* \in C$.

Cone over a diagram (formally)

- Given: (1) a diagram category J, (2) a target category C, (3) a functor $F: J \to C$, (4) a choice of apex $c_* \in C$.
- The cone is: A natural transformation η between the constant functor $\Delta_{c_*}: J \to C$ (defined by the eqn $\Delta_{c_*}(_) \equiv c_*$) and the given $F: J \to C$.

Cone over a diagram (formally)

- Given: (1) a diagram category J, (2) a target category C, (3) a functor $F: J \rightarrow C$, (4) a choice of apex $c_* \in C$.
- The cone is: A natural transformation η between the constant functor $\Delta_{c_*}: J \to C$ (defined by the eqn $\Delta_{c_*}(_) \equiv c_*$) and the given $F: J \to C$.
- At each component, we have:

$$\eta: \Delta_{c_*} \Rightarrow F
\eta_j: \Delta_{c_*}(j) \to F(j)
\eta_i: c_* \to F(j)$$

Cone over a diagram (DependentHaskell)

- Given: (1) a diagram category J, (2) a target category C, (3) a functor F: J → C, (4) a choice of apex c* ∈ C.
- The cone is: A natural transformation η between the constant functor $\Delta_{c_*}: J \to C$ (defined by the eqn $\Delta_{c_*}(_) \equiv c_*$) and the given $F: J \to C$.
- At each component, we have:

```
\eta: \Delta_{c_*} \Rightarrow F
\eta_j: \Delta_{c_*}(j) \to F(j)
\eta_j: c_* \to F(j)
```

```
ConstFunctor (J :: Category) (C :: Category) (c :: C) =
Functor J C
('j -> c) -- action on objects
('a -> id c) -- action on arrows

Cone (J :: Category) (C :: Category)
(c :: C) (F :: Functor J C) =
NaturalTransformation (ConstFunctor C c) F
```

Example Cone 1

Example Cone 2

■ For any diagram $F: J \rightarrow C$, there is a functor: $Cone(-,F): C \rightarrow Set$ which sends a given object $c_* \in C$ to the set of cones over F with summit c_* .

- For any diagram $F: J \rightarrow C$, there is a functor: $Cone(-,F): C \rightarrow Set$ which sends a given object $c_* \in C$ to the set of cones over F with summit c_* .
- A limit is a representation of Cone(-, F).

- For any diagram F: J → C, there is a functor: Cone(-, F): C → Set which sends a given object c* ∈ C to the set of cones over F with summit c*.
- A limit is a representation of Cone(-, F).
- So we have an object $\lim F$ whose Hom functor represents $\operatorname{Cone}(-,F)$. This is given by $\eta:\operatorname{Hom}_C(-,\lim F)\simeq\operatorname{Cone}(-,F)$.

- For any diagram $F: J \rightarrow C$, there is a functor: $Cone(-,F): C \rightarrow Set$ which sends a given object $c_* \in C$ to the set of cones over F with summit c_* .
- A limit is a representation of Cone(-, F).
- So we have an object $\lim F$ whose Hom functor represents $\operatorname{Cone}(-,F)$. This is given by $\eta:\operatorname{Hom}_{\mathcal{C}}(-,\lim F)\simeq\operatorname{Cone}(-,F)$.
- By Yoneda, such a natural transformation is determined entirely by an element of Cone(-, F)(lim F), or Cone(lim F, F).

- For any diagram F: J → C, there is a functor: Cone(-, F): C → Set which sends a given object c* ∈ C to the set of cones over F with summit c*.
- A limit is a representation of Cone(-, F).
- So we have an object $\lim F$ whose Hom functor represents $\operatorname{Cone}(-,F)$. This is given by $\eta:\operatorname{Hom}_C(-,\lim F)\simeq\operatorname{Cone}(-,F)$.
- By Yoneda, such a natural transformation is determined entirely by an element of Cone(-, F)(lim F), or Cone(lim F, F).
- Call this (universal) element $\lambda \in \mathsf{Cone}(\mathsf{lim}\,F,F)$. This is a natural transformation $\lambda : \Delta_{\mathsf{lim}\,F} \Rightarrow F$.

- For any diagram F: J → C, there is a functor: Cone(-, F): C → Set which sends a given object c* ∈ C to the set of cones over F with summit c*.
- A limit is a representation of Cone(-, F).
- So we have an object $\lim F$ whose Hom functor represents $\operatorname{Cone}(-,F)$. This is given by $\eta:\operatorname{Hom}_C(-,\lim F)\simeq\operatorname{Cone}(-,F)$.
- By Yoneda, such a natural transformation is determined entirely by an element of Cone(-, F)(lim F), or Cone(lim F, F).
- Call this (universal) element $\lambda \in \mathsf{Cone}(\mathsf{lim}\,F,F)$. This is a natural transformation $\lambda : \Delta_{\mathsf{lim}\,F} \Rightarrow F$. ^a

^aRiehl writes $\lambda: \lim F \Rightarrow F$ which does not type-check for me.

Definition of a Limit 1: Natural Iso

- An object $\lim F$ such that $\eta : \operatorname{Hom}_{C}(-, \lim F) \simeq \operatorname{Cone}(-, F)$.
- By Yoneda, η is determined entirely by an element of Cone(lim F, F).
- This Universal element is $\lambda \in \mathsf{Cone}(\mathsf{lim}\, F, F)$. le, a natural transformation $\lambda : \Delta_{\mathsf{lim}\, F} \Rightarrow F$.