Security Framework for LTE

Overview

Security in LTE

- Security Architecture for 3GPP
- During Attach
 - Key Derivation
 - Mutual Authentication
 - → NAS Security
 - AS Security
- → Handovers
 - Key derivation at target eNB

3GPP Overall Security Architecture

Irfan Ali SEG Security Gateway

3GPP Overall Security Architecture

Network Access Security

- Primarily radio link security
 - Encryption and Integrity protection of RRC
 - Encryption and Integrity protection of NAS
 - Encryption of Data Radio bearers (optional)

Network Domain Security

- Security of the wireline network between PLMNs
 - Key negoation using IKE
 - Use of ISAKMP for setting up the security association between the SEG
 - Tunnel-mode ESP to be used
 - Encryption triple DES
 - Data Integrity and Authentication: MD5 and SHA-1

User Domain Security

- User USIM authentication:
 - Access to the USIM is restricted until the USIM has authenticated the user. Use of PIN. If user does not know PIN, user is not allowed to use SIM.
- USIM Terminal authentication
 - Used only for SIM-Locked Mobiles. When an ME is SIM-locked (SIM/USIM personalisation indicator in the ME to "on"), the ME stores the IMSI of the USIM. If the inserted USIN has a different IMSI, the ME goes into a emergency call only mode. Ref TS 22.022 Section 8.

- NOTE: Maintaining Security on wired links within a security domain (i.e PLMN ,eg between eNB and MME) is responsibility of operator. Only recommendations in 3GPP Specifications.
 - In general, either links should be either physically secured or through IPSec (NDS/IP)

IKE Internet Key Exchange
ISAKMP Internet Security Association and Key Management Protocol
ESP Encapsulation Security Protocol
IPSec IP Security

Encryption and Integrity Protection used in LTE

Key Heirarchy for LTE

LTE Key Hierarchy

ASME = Access
 <u>Security</u>
 <u>Management</u>
 <u>Entity</u>, located
 at the MME

- There are one additional keys:
 - → NH (Next Hop) is a key derived by ME and MME to provide forward security

7

Identity Protection

The two permanent identities of UE are:

- → IMSI (subscriber identity)
 - → Seldom send over the air (only during attach, if no other valid temporary ID is present in the UE).
 - Temporary identities used instead (S-TMSI, GUTI)
- → IMEI (hardware identity)
 - Only sent to MME (in NAS), not to eNB.
 - Sent only after NAS security is setup (i.e encrypted and integrity protected).

General Security Characteristics

- Use of UMTS AKA (Authentication and Key Agreement) procedure
- Use of 128-bit keys truncated from generated 256-bit keys
- Ciphering Algorithms (AS and NAS):
 - \rightarrow 0 = Null;
 - 1= SNOW 3G;
 - → 2 = AES
- Integrity Algorithms (AS, NAS):
 - → 1= SNOW 3G;
 - → 2 = AES

Rel-8 UE is required to support these algorithms

- Access Stratum (AS), between eNB and UE:
 - Ciphering applicable to both user traffic and RRC-level signaling traffic.
 - → Integrity protection applicable only to RRC-level signaling traffic. Integrity information is ciphered.
 - → Located at the PDCP sublayer in both eNB and UE
- Non-Access Stratum (NAS), between MME and UE:
 - → Ciphering and Integrity of NAS messages, independent of the AS security
- Keys change at every intra-E-UTRAN handover, including intra-eNB handovers.

LTE AKA

Key Set Identifier

KSI

10

User authentication function in the USIM

Verify MAC = XMAC

Verify that SQN is in the correct range

- USIM keeps track of last SQN received, SQNms
- USIM only accepts a sequence number from HSS if $|SQN SQNms| < \Delta$

AUTN	Authentication TokeN
AMF	Authentication management field
SQN	Sequence Number
AK	Anonymity Key
MAC	Message Authentication Code
	•

Overview of NAS and AS Security negotiations

Negotiation of NAS/AS Enc & Inc Algorithm

- ME provides support of different EPS encryption (EEA) and integrity protection (EIA) algorithm support as part of "UE Network Capability" IE.
 - → The same set of ciphering and integrity algorithms shall be supported by the UE both for AS and NAS level
- The eNB and MME are configured with a prioritized list of EEA and EIA algorithms to use. Eg
 - → Priority-0 EIA2
 - Priority-1: EIA1
- eNB/MME selects first intersection of configured algorithm with UE's capability.
- NAS and AS security algorithms can be different.

UE Performs attach – Part 1 of 3

UE Performs Attach – Part 2 of 3

UE Performs Attach – Part 3 of 3

16

Kenb Key Derivation at S1 Handover

PCI: EARFCN-DL: NH NCC Physical Cell Identity E-UTRAN Absolute Frequency Channel –DL Next Hop Parameter

NH Chaining Counter

Power-off/Power-on issue

Power-off

 The objective is to store a fully valid native EPS security context, preferably in USIM otherwise in non-volatile memory of the ME.

Power-on

- Retrieve a "valid" EPS security context either from (a) USIM, or (b) if-not from ME non-volatile memory. This becomes the current EPS security context.
- If no valid EPS security context can be retrieved, UE signals to MME in attach that it has "no valid keys".

Specifications

- TS 33.401 LTE Security
- TS 33.102 3G Security