Given:

$$USD := 1$$

A cryogenic manufacturer handles liquid methane at 115 K and 5 MPa at a rate of 0.280 m3/s. The process involves dropping the pressure to 1 MPa by means of a throttling value. An engineer proposes to replace the throttling value with a turbine so power can be produced from the pressure drop.

$$\begin{split} &T_{in} := 115 \text{ K} \\ &P_{in} := 5 \text{ MPa} \\ &V'_{in} := 0.280 \; \frac{\text{m}}{\text{s}} \\ &P_{out} := 1 \text{ MPa} \end{split}$$

Properties of Liquid Methane			
Density	Enthalpy	Entropy	Specific Heat
ρ , kg/m ³	h, kJ/kg	s, kJ/kg K	c_p , kJ/kg K
425.3	208.3	4.878	3.476
425.8	209.0	4.875	3.471
426.6	210.5	4.867	3.460
429.1	215.0	4.844	3.432
410.4	243.4	5.185	3.551
411.0	244.1	5.180	3.543
412.0	245.4	5.171	3.528
415.2	249.6	5.145	3.486
	Density ρ, kg/m³ 425.3 425.8 426.6 429.1 410.4 411.0 412.0	Density Enthalpy ρ, kg/m³ h, kJ/kg 425.3 208.3 425.8 209.0 426.6 210.5 429.1 215.0 410.4 243.4 411.0 244.1 412.0 245.4	DensityEnthalpyEntropyρ, kg/m³h, kJ/kgs, kJ/kg K425.3208.34.878425.8209.04.875426.6210.54.867429.1215.04.844410.4243.45.185411.0244.15.180412.0245.45.171

Required:

What is the maximum amount of power that can be produced by the turbine? Given that the turbine operates 8760 hr/yr and the cost of electricity is \$0.075/kWhr, what is the maximum savings for the company if they use the turbine?

Solution:

The operating time is defined as

$$\Delta t := 8760 \frac{hr}{vr}$$

The cost of electricity is defined as

$$C_e := 0.075 \cdot \frac{USD}{\text{kW hr}}$$

1st Law for a steady flow turbine that is adiabatic, and has no ΔKE and ΔPE shows

$$\frac{\mathrm{d}}{\mathrm{d} t} E_{sys} = \Sigma E'_{in} - \Sigma E'_{out}$$

$$0 = m'_{in} \cdot \left(h_{in} + \frac{V_{in}^{2}}{2} + g_{e} \cdot z_{in}\right) - m'_{out} \cdot \left(h_{out} + \frac{V_{out}^{2}}{2} + g_{e} \cdot z_{out}\right) - W'_{out}$$

$$0 = m'_{in} \cdot \left(h_{in} - h_{out}\right) - W'_{out}$$

Knowing that the device only has one inlet and outlet the work output of the device becomes

$$W'_{out} = m' \cdot (h_{in} - h_{out})$$

Solution (contd.):

Going to the given table @ $T_{in}=115.0~\mathrm{K}$ and $P_{in}=5.000~\mathrm{MPa}$ shows that interpolation is needed.

$$\begin{split} T_a &:= 110 \text{ K} & T_b := 120 \text{ K} \\ \rho_a &:= 429.1 \, \frac{\text{kg}}{3} & \rho_b := 415.2 \, \frac{\text{kg}}{3} & h_a := 215 \, \frac{\text{kJ}}{\text{kg}} & h_b := 249.6 \, \frac{\text{kJ}}{\text{kg}} \\ \rho_{in} &:= \frac{T_{in} - T_a}{T_b - T_a} \cdot \left(\rho_b - \rho_a\right) + \rho_a = 422.15 \, \frac{\text{kg}}{\text{m}} & h_{in} := \frac{T_{in} - T_a}{T_b - T_a} \cdot \left(h_b - h_a\right) + h_a = 232.3 \, \frac{\text{kJ}}{\text{kg}} \\ s_a &:= 4.844 \, \frac{\text{kJ}}{\text{kg K}} & s_b := 5.145 \, \frac{\text{kJ}}{\text{kg K}} \\ s_{in} &:= \frac{T_{in} - T_a}{T_b - T_a} \cdot \left(s_b - s_a\right) + s_a = 4.994 \, \frac{\text{kJ}}{\text{kg K}} \end{split}$$

The mass flow rate can then be found by

$$m' := \rho_{in} \cdot V'_{in} = 118.202 \frac{\text{kg}}{\text{s}}$$

Desiring an upper limit to what work can be produced by a turbine, let's assume that the turbine is not only adiabatic but also reversible. It has been shown that a turbine that is both adiabatic and reversible is also isentropic so

$$s_{out} := s_{in} = 4.994 \frac{\text{kJ}}{\text{kg K}}$$

Going to the given table @ $P_{out} = 1.000 \text{ MPa}$ and $s_{out} = 4.994 \frac{\text{kJ}}{\text{kg K}}$ shows that interpolation is needed.

$$s_a := 4.875 \frac{\text{kJ}}{\text{kg K}} \qquad s_b := 5.180 \frac{\text{kJ}}{\text{kg K}}$$

$$h_a := 209.0 \frac{\text{kJ}}{\text{kg}} \qquad h_b := 244.1 \frac{\text{kJ}}{\text{kg}}$$

$$s_{out} - s_a \qquad (1 - k) + k = 200.00$$

$$h_{out} := \frac{s_{out} - s_a}{s_b - s_a} \cdot (h_b - h_a) + h_a = 222.8 \frac{\text{kJ}}{\text{kg}}$$

The maximum possible work that could be produced by a turbine can then be found by

$$W'_{out} := m' \cdot (h_{in} - h_{out}) = 1129 \text{ kW}$$

The maximum amount of savings per year is then given by

Savings :=
$$C_e \cdot W'_{out} \cdot \Delta t = 7.415 \cdot 10^5 \frac{USD}{yr}$$