## Regression: Hands-on Session

Ditty Mathew

Machine Learning Camp

22<sup>nd</sup> June 2018

- NumPy stands for Numerical Python
- To import numpy in python
  - import numpy

array: N-dimensional array; collection of items of same type

array: N-dimensional array; collection of items of same type import numpy as np

array: N-dimensional array; collection of items of same type import numpy as np a= np.array([1,2,3])

array: N-dimensional array; collection of items of same type import numpy as np a= np.array([1,2,3]) print a

```
array: N-dimensional array; collection of items of same type
import numpy as np
a= np.array([1,2,3])
print a
print a.shape
```

```
array: N-dimensional array; collection of items of same type import numpy as np a= np.array([1,2,3]) print a print a.shape
```

• array of more than one dimensions

```
a = np.array([[1, 2], [3, 4]])
print a
```

NumPy also provides a reshape function to resize an array.

```
\begin{array}{l} a = np.array([[1,2,3],[4,5,6]]) \\ b = a.reshape(3,2) \\ print \ b \end{array}
```

To append a column to a numpy array

```
a = np.array([[1,2,3],[4,5,6]])

np.column\_stack((a,[7,8]))
```

To return a new array of specified size, filled with zeros np.zeros((5,2))

To return a new array of specified size, filled with ones np.ones((5,2))

```
\begin{aligned} \mathbf{a} &= \text{np.array}([[1,2,3],[4,5,6]]) \\ \text{To fetch value of } i^{th} \text{ row and } j^{th} \text{ colummn} \\ \mathbf{a}[\mathbf{i},\mathbf{j}] \end{aligned}
```

To fetch all values in  $j^{th}$  column

• a[:,j]

a = np.array([[1,2,3],[4,5,6]])

To fetch value of  $i^{th}$  row and  $j^{th}$  columnn a[i,j]

To fetch all values in  $j^{th}$  column

 $\bullet \ a[:,j]$ 

To fetch all values in  $i^{th}$  row

 $\bullet \ a[i,:]$ 

#### To multiply two matrices

```
 \begin{array}{l} x \!\!=\!\! np.array([[1,\!2],\![3,\!4]]) \\ y \!\!=\!\! np.array([[1,\!2,\!3],\![3,\!4,\!5]]) \\ np.dot(x,\!y) \end{array}
```

To multiply two matrices

```
x=np.array([[1,2],[3,4]])

y=np.array([[1,2,3],[3,4,5]])

np.dot(x,y)
```

To find a transpose of a matrix

```
y=np.array([[1,2,3],[3,4,5]])
y.transpose()
```

```
To multiply two matrices
```

```
x=np.array([[1,2],[3,4]])
y=np.array([[1,2,3],[3,4,5]])
np.dot(x,y)
```

To find a transpose of a matrix

```
y=np.array([[1,2,3],[3,4,5]])
y.transpose()
```

To find inverse of a matrix

```
y=np.array([[1,2,3],[3,4,5]])

np.linalg.inv(y)
```

• To load data from file data =np.loadtxt(open("data.csv", "rb"), delimiter = ',')

• Import : from sklearn import linear\_model

- Import : from sklearn import linear\_model
- Select Model

 $regr = linear\_model.LinearRegression(fit\_intercept = True)$ 

- Import : from sklearn import linear\_model
- Select Model

  regr = linear\_model.LinearRegression(fit\_intercept=True)
- Train the model using training data regr.fit(X\_train, y\_train)
- Make predictions using test data
   y\_pred = regr.predict(X\_test)

- To retrieve coefficients:  $\theta_1, t\theta_2, \dots$ regr.coef\_
- To retrieve coefficient  $\theta_0$ regr.intercept\_

#### Assignment 1: Single Variable Linear Regression

Load file "data\_train\_sv.csv" to train\_data Load file "data\_test\_sv.csv" to train\_data

- Train linear regression model using train\_data and predict the target values of test\_data
- Compute Mean squared error
- Plot the model

#### Linear Regression: Evaluation Metrics

• Import from sklearn.metrics import mean\_squared\_error

#### Linear Regression: Evaluation Metrics

- Import from sklearn.metrics import mean\_squared\_error
- $\bullet$  mean\_squared\_error(y\_test, y\_pred)

#### Linear Regression

#### Training the model

```
\begin{aligned} &\operatorname{regr.fit}(\mathbf{X}\_\operatorname{train}, \, \mathbf{y}\_\operatorname{train}) \\ &\theta = (X\_\operatorname{train}^T * X\_\operatorname{train})^{-1} * X\_\operatorname{train}^T * y\_\operatorname{train} \end{aligned}
```

#### Linear Regression

```
Training the model  \begin{array}{l} \operatorname{regr.fit}(\mathbf{X}\_\operatorname{train},\,\mathbf{y}\_\operatorname{train}) \\ \theta = (X\_\operatorname{train}^T * X\_\operatorname{train})^{-1} * X\_\operatorname{train}^T * y\_\operatorname{train} \end{array}  Prediction of target value of test data  \begin{array}{l} \mathbf{y}\_\operatorname{pred} = \operatorname{regr.predict}(\mathbf{X}\_\operatorname{test}) \\ y\_\operatorname{pred} = X\_\operatorname{test}\theta \end{array}
```

#### Matplotlib

• import matplotlib.pyplot as plt plt.scatter(X\_test, y\_test, color='black')

#### Matplotlib

• import matplotlib.pyplot as plt plt.scatter(X\_test, y\_test, color='black') plt.plot(X\_test, y\_pred, color='blue', linewidth=3)

#### Matplotlib

• import matplotlib.pyplot as plt plt.scatter(X\_test, y\_test, color='black') plt.plot(X\_test, y\_pred, color='blue', linewidth=3) plt.show()

#### Assignment 1: Multiple Variable Linear Regression

Load file "housing\_data.csv" to data Split 80% of data to training data and 20% of data to test data Normalize features (Feature scaling)

- Train linear regression model using train\_data and predict the target values of test\_data
- Compute Mean squared error

#### Training and Testing Data Split

from sklearn.model\_selection import train\_test\_split X\_train, X\_test, y\_train, y\_test = train\_test\_split(X, y, test\_size=0.20, random\_state=42)

#### Feature Scaling

```
\begin{split} & \text{from sklearn.preprocessing import StandardScaler} \\ & \text{scaler} = \text{StandardScaler}() \\ & \text{scaler.fit}(X\_\text{train}) \\ & X\_\text{train} = \text{scaler.transform}(X\_\text{train}) \\ & X\_\text{test} = \text{scaler.transform}(X\_\text{test}) \end{split}
```

# Assignment 3: Polynomial Curve Fitting

**Dataset Generation** 

Let the underlying function be

$$y\_actual = cos^2 2\pi X$$

Plot the function  $y_actual$ 

$$X = \text{np.linspace}(0, 0.5, 100)$$
  
y\_actual = np.cos(2 \* np.pi \* X)\*\*2

# Assignment 3: Polynomial Curve Fitting

Dataset Generation

Let the underlying function be

$$y\_actual = cos^2 2\pi X$$

Plot the function  $y_actual$ 

$$X = \text{np.linspace}(0, 0.5, 100)$$
  
 $y_{\text{actual}} = \text{np.cos}(2 * \text{np.pi} * X)**2$ 

Generate the dataset by adding noise to the underlying function

## Assignment 3: Polynomial Curve Fitting

**Dataset Generation** 

Let the underlying function be

$$y\_actual = cos^2 2\pi X$$

Plot the function  $y_actual$ 

$$X = \text{np.linspace}(0, 0.5, 100)$$
  
 $y_{\text{actual}} = \text{np.cos}(2 * \text{np.pi} * X)**2$ 

Generate the dataset by adding noise to the underlying function noise = np.random.normal(0, 0.1, 100)  $y=y_{actual+noise}$ 

Plot underlying function y\_actual and y

# Assignment 3: Polynomial Curve Fitting Dataset Generation



Dataset Generation



Fit linear regression model



- Import
  - from sklearn.preprocessing import PolynomialFeatures from sklearn.pipeline import Pipeline
- $\bullet$  deg=2
- polynomial\_features =
  PolynomialFeatures(degree=deg,include\_bias=True)
- linear\_regression = linear\_model.LinearRegression()
- pipeline = Pipeline([("polynomial\_features", polynomial\_features),
   ("linear\_regression", linear\_regression)])
- pipeline.fit(X\_train, y\_train)



# Assignment 3: Polynomial Curve Fitting $_{\text{deg}=10}$





#### Overfiting





### Regularization

$$J(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y(i))^{2} + \lambda \theta^{T} \theta$$

 $\lambda$  is the regularization parameter

### Regularization

 $model = linear\_model.Ridge(alpha=0.001, fit\_intercept=True)$ 

## To use sample datasets in Sklearn

$$\label{eq:continuous} \begin{split} & \text{from sklearn import datasets} \\ & \text{data} = \text{datasets.load\_breast\_cancer()} \\ & X {=} \\ & \text{data.data} \\ & y {=} \\ & \text{data.target} \end{split}$$

## Logistic Regression

```
classifier = linear_model.LogisticRegression()
classifier.fit(X_train, y_train)
y_pred = classifier.predict(X_test)
```