Protocoale de comunicații

SUBIECTE

- 1. Enumerați proprietățile generale ale unui protocol
- 2. Prin ce se caracterizează un protocol de tip master-slave?
- 3. Enumerați elementele pe care le definește un protocol.
- 4. Enumerați câteva din avantajele folosirii modelului OSI.
- 5. Completați în tabelul următor numele nivelelor de comunicație ale modelului OSI

Nivel 7	
Nivel 6	
Nivel 5	
Nivel 4	
Nivel 3	
Nivel 2	
Nivel 1	

6. Completați în tabelul următor tipul unităților de date pentru fiecare nivel de comunicație din modelul OSI.

Nivel	Unitate de date
7. Aplicație	
6. Prezentare	
5. Sesiune	
4. Transport	
3. Rețea	
2. Legătura de date	
1. Fizic	

7. Completați în tabelul următor funcția îndeplinită de fiecare nivel de comunicație din modelul OSI.

Nivel	Funcție
7. Aplicație	
6. Prezentare	
5. Sesiune	
4. Transport	
3. Rețea	
2. Legătura de date	
1. Fizic	

- 8. Specificați rolul și unitatea de date pentru nivelul fizic din modelul de comunicații OSI.
- 9. Specificați rolul și unitatea de date pentru nivelul legăturii de date din modelul de comunicații OSI.
- 10. Specificați rolul și unitatea de date pentru nivelul rețea din modelul de comunicații OSI.
- 11. Specificați rolul și unitatea de date pentru nivelul transport din modelul de comunicații OSI.

- 12. Specificați rolul și unitatea de date pentru nivelul sesiune din modelul de comunicații OSI.
- 13. Specificați rolul și unitatea de date pentru nivelul prezentare din modelul de comunicații OSI.
- 14. Specificați rolul și unitatea de date pentru nivelul aplicație din modelul de comunicații OSI.
- 15. Elementele din tabelul următor se referă la caracteridsticile interfeței EIA232; completați tabelul.

Potențialul la punctul de intefață (V1)		
Stare binară	1	0
Stare semnal		

16. În cazul portului serial al unui calculator PC, următoarea schemă de conectare corespunde unei implementări ______ a protocolului de comunicație (controlul traficului).

17. În cazul portului serial al unui calculator PC, următoarea schemă de conectare corespunde unei implementări ______ a protocolului de comunicație (controlul traficului).

- 18. Pentru a transfera date prin portul serial al unui calculator PC folosind protocol software, este necesar un cablu cu:
 - a. Două fire
 - **b**. Trei fire
 - c. Patru fire
 - d. Cinci fire
- * Precizați care sunt semnalele vehiculate de aceste fire.
- 19. Numiți în figura de mai jos elementele unui cadru de date pentru protocolul de comunicație serială asincronă.

- 20. Enumerați și definiți tipurile de paritate folosite în protocolul de comunicație serială asincronă.
- 21. Care este caracterul transmis în carul unei comunicații serilae asincrone pentru următoarea dacă diagrama semnalului de date este umătoarea:

(transmisia este cu 8 biți de date și fără paritate)

22. Care este caracterul transmis în carul unei comunicații serilae asincrone pentru următoarea dacă diagrama semnalului de date este umătoarea:

(transmisia este cu 8 biţi de date şi fără paritate)

23. Care este caracterul transmis în carul unei comunicații serilae asincrone pentru următoarea dacă diagrama semnalului de date este umătoarea:

(transmisia este cu 8 biți de date și fără paritate)

- 23. Ordonați crescător, considerând rata de transfer, modurile de operare ale portului paralel (fără a specifica rata de transfer):
 - a. Compatibility Mode
 - **b**. Nibble Mode
 - c. ECP Mode
 - * Justificați

- 24. Buffer-ul de date al unui circuit de interfață programabil, realizează legătura circuitului de interfață cu:
 - a. magistrala de adrese a microsistemului
 - **b.** magistrala de date a microsistemului
 - c. magistrala de control a microsistemului
 - **d.** dispozitivul periferic
 - * justificați
- 25. Într-o conexiune *single-master multiple-slave*, interfaţa SPI foloseşte pentru selectarea unui *slave*:
 - a. Semnal de selecție
 - **b**. Adrese
 - c. Interfața SPI nu permite conexiune multiple-slave
 - * Justificați
- 26. Reprezentați o conexiune SPI single master single slave

SPI SCLK Master MOSI MISO SS

27. Reprezentați o conexiune SPI single master – multiple slave

SPI SCLK Master MOSI MISO SS

SCLK	SPI
MOSI	Slave
MISO	
SS	

28. Completați diagrama de transfer de date între un master și un slave SPI considerând datele de la momentu startului, cele prezentate mai jos.

		SPI Master						
	MSB							LSB
Start	1	1	0	0	0	0	0	0
Clock 1								
Clock 2								
Clock 3								
Clock 4								
Clock 5								
Clock 6								
Clock 7								
Clock 8								

SPI Slave							
MSB							LSB
1	0	0	0	0	1	0	1

29. Completați diagrama de transfer de date între un master și un slave SPI considerând datele de la momentu startului, cele prezentate mai jos.

		SPI Master						
	MSB							LSB
Start	1	0	0	1	1	0	0	1
Clock 1								
Clock 2								
Clock 3								
Clock 4								
Clock 5								
Clock 6								
Clock 7								
Clock 8								

SPI Slave								
MSB							LSB	
1	0	0	0	0	1	0	1	

30. Completați diagrama de transfer de date între un master și un slave SPI considerând datele de la momentu startului, cele prezentate mai jos.

	SPI Master							
	MSB							LSB
Start	1	0	0	1	1	0	0	1
Clock 1								
Clock 2								
Clock 3								
Clock 4								
Clock 5								
Clock 6								
Clock 7								
Clock 8								

SPI Slave								
MSB							LSB	
0	0	1	1	1	1	0	0	

- 31. Într-o magistrală I²C, un dispozitiv master:
 - **a**. Controlează linia SCL
 - **b**. Controlează linia SDA
 - c. Pornește și oprește un transfer de date
 - d. Adresează alte dispozitive
 - **e.** Este receptor
 - f. Este emițător
 - * justificați
- 32. Indicați care pe diagramele de mai jos condiția de Star și condiția de Stop pentru o magistrală I^2C .

SDA	\neg	
SCL	$\overline{}$	

SDA	
SCL	

- 33. Sunt posibili masteri multipli în conexiunea:
 - a. SPI
 - b. I2C

- c. USB
- * justificați
- 34. Explicați cum se face sincronizarea datelor în cazul prezenței mai multor masteri în magistrala I2C.
- 35. Explicați cum se face arbitrarea accesului la magitrală în cazul prezenței mai multor masteri în magistrala I2C.
- 36. Selectați funcțiile care intră în resposabilitatea unui dispozitiv gazdă USB
 - a. administrează trasferurile de control între gazdă și dispozitive USB
 - b. administrează transferurile de date între gazdă și dispozitive USB
 - c. culege informații de stare și statistici de activitate
 - **d.** furnizeazã alimentare dispozitivelor USB ataşate
- 37. Un dispozitiv gazdă USB poate să transmită:
- **a**. Pachete de semnalizare (*Token Packet*)
- **b**. Pachete de date (*Data Packet*)
- **c.** Pachete de dialog (*Handshake Packet*)
- * Justificați
- 37. Un dispozitiv funcție USB poate să transmită:
- **a**. Pachete de semnalizare (*Token Packet*)
- **b**. Pachete de date (*Data Packet*)
- **c.** Pachete de dialog (*Handshake Packet*)
- * Justificați
- 38. Un dispozitiv hub USB poate să transmită:
- a. Pachete de semnalizare (Token Packet)
- **b**. Pachete de date (*Data Packet*)
- c. Pachete de dialog (Handshake Packet)
- * Justificați
- 39. Explicați ce rol are câmpul SYNC în cadrul unui pachet USB
- 40. Explicați ce rol are câmpul PID în cadrul unui pachet USB.
- 41. Explicați ce rol are campul de adresă în cadrul unui pachet de semnalizare USB.

- 42. Enumerați testele ce se pot realiza cu ajutorul interfeței JTAG.
- 43. În ce faze de viață ale unui produs poate fi folosită interfața JTAG?

- 44. Semanlul TMS al interfeței JTAG controlează:
 - a. selecția master/slave
 - **b.** tranzițiile în FSM-ul din tap-controller
 - **c.** selecția modului de test: testarea conexiunilor PCB (externă la nivel sistem)/funcțională (logică internă)
 - **d.** selecția modului de operare: test/ISP (*in-system programming*)
 - * Justificați
- 45. Reprezentați grafic structura unui circuit integrat compatibil JTAG (cu reprezentarea elementelor JTAG: Boundery scan, Registrul de bypass, Registrul de instrucțiuni, TAP controller).
- 46. Descrieți pe scurt TAP Controller-ul dintr-o interfață JTAG.
- 47. Explicați cum trec datele de la intrare la ieșire (TDI la TDO) într-o arhitectură JTAG

- 48. Care este rolul registrului Boundery scan în interfața JTAG?
- 49. Care este rolul registrului de bypass în interfața JTAG?
- 50. Enumerați instrucțiunile JTAG.