In-tutorial exercise sheet 3

supporting the lecture Mathematical Finance and Stochastic Integration

(Discussion in the tutorial on May 4th 2016, 4:15 p.m.)

Exercise P.8.

Let $(M_t)_{t\in\mathbb{N}_0}$ be an L^2 -martingale i.e. a martingale with $\mathbb{E}[(M_t)^2]<\infty$ for all $t\in\mathbb{N}_0$.

a) Prove the identity

$$\mathbb{E}[(M_t)^2] = \mathbb{E}[(M_s)^2] + \mathbb{E}[(M_t - M_s)^2], \quad s, t \in \mathbb{N}_0.$$

b) Conclude

$$\sup_{t\in\mathbb{N}_0}\mathbb{E}[(M_t)^2]<\infty\Leftrightarrow\sum_{t=1}^\infty\mathbb{E}[(M_t-M_{t-1})^2]<\infty.$$

Exercise P.9.

Let $(M_t)_{t\in\mathbb{N}_0}$ be a martingale which is adapted to the filtration $(\mathcal{F}_t)_{t\in\mathbb{N}_0}$ and τ a stopping time. Prove that the stopped process

$$S_t = M_t^{\tau} = M_{t \wedge \tau}$$

is also a $(\mathcal{F}_t)_{t\in\mathbb{N}_0}$ -martingale.