LINMOD M3: 1

Given 1-way ANOVA model y; = M+ xi + e; , where i=1,...,t; j=1,...,Ni; and eight $N(0, \sigma^2)$. Show that $\alpha_1 = \alpha_2 = ... = \alpha_t$ iff all contrasts $\lambda \beta = 0$.

First, show implication of $\alpha_1 = \ldots = \alpha_t$, i.e. what is actually being tested. Then equate that overall property to a property of each individual contrast.

$$Y = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} M & 1 & 1 \\ M & 1 & 1 \\ M & 1 & 1 \\ M & 1 & 1 \end{bmatrix} \begin{bmatrix} M & 1 & 1 \\ M & 1 & 1 \\ M & 1 & 1 \\ M & 1 & 1 \end{bmatrix} + \underbrace{e} \qquad \qquad Y = J_{M} + \underbrace{e}$$

$$X \qquad \beta$$

Notation:

Consider $X = [J \mid X_1 \cdots X_k]$. Let $X_* = [X_1 \cdots X_k]$, $M_* : ppm onto C(X_*)$, $M: ppm \ onto \ C(x)$, and $M-M_*: ppm \ onto \ C(x-x_*)$.

The estimation space under H_{δ} is C(J), while the test space is $C(X_{*}) = C(M_{*})$. (Prop B.32)

With an orthonormal basis $R = [R, -R_t]$ of $C(X_*)$, can write $M_* = RR'$ (Th. B.35).

$$M_{\star} = RR' = \sum_{i=1}^{t} R_i R_i' = \sum_{i=1}^{t} M_i$$

Note: Since R_i 's are orthonormal, $M_i M_j = 0$, and $Y' M_{\star} Y = \sum_{i=1}^{t} Y' M_i Y$

functions $Y' M_i Y$ and $Y' M_j Y$ are independent. (Th. 13.

functions Y'MiY and Y'Miy are independent. (Th. 1.3.7)

A hypothesis tested using Y'M*Y would test 0 = B'X'M*XB. Since M* and Mis are nonnegative definite, for $0 = B'x'M_*xB = \sum_{i=1}^{t} B'x'M_ixB$ to hold, $B'x'M_ixB > 0$ Vi.

This implies $B'x'[R_i(R_i'R_i)^TR_i']XB=0$, or $R_i'XB=0$ $\forall i$.

Equivalently, if any B'x'MixB>0, then B'x'M* xB=0, and Ho no longer holds.