

TALLER No 2

Cuadrados Minimos

Métodos Numéricos Primer cuatrimestre 2017

Integrante	LU	Correo electrónico
Ingani Bruno	50/13	chino117@hotmail.com

Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires

Ciudad Universitaria - (Pabellón I/Planta Baja) Intendente Güiraldes 2160 - C1428EGA Ciudad Autónoma de Buenos Aires - Rep. Argentina

 $\label{eq:TelFax: formula} Tel/Fax: (54\ 11)\ 4576\mbox{-}3359$ $\mbox{http://www.fcen.uba.ar}$

Índice

1. Soluciones

1. Soluciones

1. Gráficamente. ¿Qué solución encuentra cuadrados mínimos lineales?

2

La solucion de cuadrados minimos nos busca un X para minimizar ||b - Ax||. Como podemos ver en el grafico $b = proy_w$ b + b2, siendo b2 el une el vector b con la proyeccion que pertenece a $Im(A)^{\perp}$ y la proyeccion en el espacio Columna de A.

2. ¿Cuando es posible usar ecuaciones normales?

Es posible usar las ecuaciones normales para resolver el sistema cuando rango $(A^tA) = \operatorname{col}(A^tA)$. Osea, si A^tA es inversible

3. ¿Cuando tiene cuadrados mínimos lineales una solución única?

Cuadrados mínimos lineales tiene solución única cuando rango(A) = col(A).

- 4. Sea un Subespacio $S \in \mathbb{R}^m$, $b \in \mathbb{R}^m$ e y la proyección ortogonal de b sobre S.
 - a) probar que b-Y $\in S^{\perp}$

Sabemos que b=b1+b2 donde donde b1 es la proyección ortogonal de b en S y b2 es la proyección ortogonal de b en S^{\perp} , por lo tanto podemos decir que b-b1=b2, como b1 \in S, y por enunciado Y \in S podemos reemplazar b1 por Y quedándonos b-Y=b2 y por lo dicho anteriormente b2 \in S^{\perp} \Rightarrow $b-y\in S^{\perp}$

b) usar pitágoras para verificar que y es el único vector de S tal que $||b-y||_2 = min_{s \in S}$ $||b-s||_2$.

Para resolver este ejercicio, utilizaremos la siguiente propiedad y la demostraremos a continuación: Sean u,v $\in \mathbb{R}$ si $u \perp v \Rightarrow \|u + v\|_2^2 = \|u\|_2^2 + \|v\|_2^2$

Demostración: Sabemos que $u \perp v \Rightarrow u^t v = 0$.

Partimos de $||u+v||_2^2 = (u+v)^t(u+v) = (u^t+v^t)(u+v) = u^tu+v^tu+u^tv+v^tv$.

Como $v^t u = 0$ y $u^t v = 0 \Rightarrow u^t u + v^t v = ||u||_2^2 + ||v||_2^2$

Como mencionamos en el inciso a) b = b1 + b2 y Y = b1 entonces planteamos la siguiente

$$||b - Y||_2 = min_{s \in S} ||b - s||_2 = 0 \iff ||b1 + b2 - b1||_2 = min_{s \in S} ||b1 + b2 - s||_2$$

Tomamos el cuadrado de los módulos, ya que no afecta a la igualdad y me permite utilizar la propiedad antes demostrada.

$$||b1 + b2 - b1||_2^2 = min_{s \in S} ||b1 + b2 - s||_2^2 \iff ||b2||_2^2 = min_{s \in S} ||b2 + (b1 - s)||_2^2$$

 $||b1 + b2 - b1||_2^2 = min_{s \in S} ||b1 + b2 - s||_2^2 \iff ||b2||_2^2 = min_{s \in S} ||b2 + (b1 - s)||_2^2$ Como $(b1 - s) \in S$ y $b2 \in S^{\perp} \implies (b1 - s) \perp b2$. Entonces aplicando esto a la igualdad que

$$||b2||_2^2 = min_{s \in S} ||b2||_2^2 + ||(b1 - s)||_2^2$$

Como buscamos el mínimo de s, ya que b2 no pertenece a S sino a S^{\perp} podemos sacar a s afuera

$$||b2||_2^2 = ||b2||_2^2 + min_{s \in S} ||(b1 - s)||_2^2$$

Por último, tomando el mínimo de $s \in S$ como s = b1. Luego

$$||b2||_2^2 = ||b2||_2^2$$

a) Probar que x^* es tal que $||b - Ax^*||_2 = min\{||b - Aw||_2 : \mathbf{w} \in \mathbb{R}^n \}$ si y solo si $b - Ax^*$ 5. $\in Im(A)^{\perp}$.

Demostracion:

 \Rightarrow)

si $||b - Ax^*||_2$ tal que $||b - Aw^*||_2$, w $\in \mathbb{R}^n$. Sabemos que $Ax^* = y$, con y vector, entonces si reemplazamos en la primera ecuacion $||b-y||_2$ luego por el ejercicio 4) A sabemos que $||b-y||_2$ $\in Im(A)^{\perp}$

Demostracion:

 \Leftarrow

Sabemos que $b - Ax^* \in Im(A)^{\perp}$. Razonando igual que el punto anterior $Ax^* = y$, con y vector, por el ejercicio 4)B sabemos que $||b-y||_2 = min_{s \in S} ||b-s||_2$. Luego $||b-Ax^*||_2 = min\{||b-Aw||_2$ $: \mathbf{w} \in \mathbb{R}^n$ $\}$.

b) Usar el item anterior para demostrar que $x \in \mathbb{R}^n$ resuelve el problema de cuadrados mínimos para el sistema Ax = b si y sólo si $A^tAx = A^tb$ (ecuaciones normales).

Sea x, tal que resuelve cuadrados mínimos para $Ax=b \iff ||Ax-b||_2^2 = min_{w\in\mathbb{R}}(||Aw-b||_2^2)$ \iff por propiedad anterior $b-Ax\in Im(A)^{\perp} \iff b-Ax\in Nu(A^t) \iff A^t(b-Ax)=0 \iff$ $A^t A x = A^t b.$

6. Completar el codigo de resolverEN.m y resolverQR.m