- 1. Сколько элементов в группе D_5 ? А сколько элементов порядка 2?
- 2. Докажите, что A_n подгруппа группы S_n .
- 3. Верно ли, что подгруппа абелевой группы всегда абелева? Если да объясните. Если нет приведите контрпример.
- 4. В группе $\mathcal{D}_{\mathbb{G}}$ найдите композицию $r \circ \mathfrak{S}_{\mathbb{H}}$, где r поворот на $\mathbb{G}^{\mathbb{O}}$, а $\mathfrak{S}_{\mathbb{H}}$ отражение относительно вертикальной оси.
- 5. Напишите таблицу Кэли для группы S_3 . Какие из элементов коммутируют между собой?
- 6. Докажите, что в группе D_n выполняется равенство:

$$sor = r^{-1} o s$$
.

Где r – поворот на $360^{\circ}/n$, а ε – отражение относительно любой оси.

- 7. Пусть $H = (\{-1,1\},\times)$ в (\mathbb{R}^*,\times) . Является ли H подгруппой? Является ли H абелевой?
- 8. Изоморфны ли группы: (а) S_2 и $\mathbb{Z}/(2)$; (b) S_3 и $\mathbb{Z}/(3)$; (c) D_4 и S_4 ; (d) S_4 и D_{12} , и (f*) S_5 и D_{40} .
- 9. Найдите все подгруппы в: (a) $\mathbb{Z}/(6)$; (b) \mathcal{S}_3 ; (c) \mathcal{D}_4 ; (d) \mathcal{D}_6 ; (e*) \mathcal{D}_{42} , и (f*) \mathcal{A}_4 . Для каждой подгруппы проверьте, что ее порядок делит порядок всей группы. Подумайте над тем, каким группам изоморфны каждая из них.
- 10. Летнешкольников заставили выложить плац правильной шестиугольной плиткой². Сколько существует симметрий такого замощения плиткой? Образуют ли они группу? Если да, то какой у нее порядок?
- 11. Пусть H множество всех перестановок из S_3 , которые оставляют тройку на месте. Является ли H подгруппой группы S_3 ? Если да, то какой у нее порядок и является ли она абелевой?
- 12. Множество $G = \{2^n \mid n \in \mathbb{Z}\}$ с операцией умножения является ли группой? Если да, то является ли она абелевой? Какие в ней подгруппы?
- 13. Придумайте свой объект, например, букву "Ж". Опишите его группу симметрий. Подумайте, какой группе она изоморфна.
- 14. Пусть H подгруппа группы G. Тогда левым смежным классом называется $gH = \{gh \mid h \in H\}$.

 $^{^{1}}$ Здесь "звёздочка" обозначает то, что нет нуля.

²Причем плитка самая обычная, на ней даже узоров никаких нет.

- (а) Докажите, что два смежных класса либо совпадают, либо не пересекаются.
- $(b)^*$ Докажите, что все смежные классы находятся в биекции друг с другом.
 - (c) В каком соотношении находится порядок группы H, число смежных классов и порядок группы G?
- (d) Почему в группе порядка 15 не может быть подгруппы порядка 4?