Homework 10 Rotations

Corey Mostero - 2566652

6 June 2023

Contents

1	Boo	ok
	1.1	10.22
	1.2	10.26
	1.3	10.30
	1.4	10.79
	1.5	9.30
	1.6	9.49
	1.7	9.79
	1.8	9.86
2	Lab	Manual
	2.1	1170
	2.2	1173
	2.3	1175
	2.4	1177
	2.5	1181
	2.6	1283
	2.7	1284

1 Book

1.1 10.22

$$r=8.00\,\mathrm{cm}$$

 $m=0.180\,\mathrm{kg}$
 $v_0=0$
 $\Delta y=75.0\,\mathrm{cm}$
 $I=mr^2$

(a)

$$E_{K_0} + E_{P_0} = E_{K_1} + E_{P_1}$$

$$0 + mgh = \frac{1}{2}I_{cm}\omega^2 + \frac{1}{2}mr^2\omega^2 + 0$$

$$mgh = \omega^2 \left(\frac{1}{2}(mr^2) + \frac{1}{2}mr^2\right)$$

$$\omega = \frac{\sqrt{gh}}{r}$$

$$\omega = \frac{\sqrt{(10.0\,\mathrm{m\,s^{-2}})(0.75\,\mathrm{m})}}{0.08\,\mathrm{m}}$$

$$\omega = 34.2\,\mathrm{rad\,s^{-1}}$$

(b)

$$\begin{split} E_{k_0} + E_{p_0} &= E_{k_1} + E_{p_1} \\ 0 + mgh &= \frac{1}{2} I_{cm} \omega^2 + \frac{1}{2} m v_{cm}^2 + 0 \\ mgh &= \frac{1}{2} (mr^2) \left(\frac{v_{cm}}{r} \right)^2 + \frac{1}{2} m v_{cm}^2 \\ v &= \sqrt{gh} \\ v &= \sqrt{(10.0 \, \text{m s}^{-2})(0.75 \, \text{m})} \\ v &= 2.74 \, \text{m s}^{-1} \end{split}$$

1.2 10.26

$$I_{cm} = \frac{2}{5}mr^2$$

(a) Velocity for the first half of the bowl:

$$\begin{split} E_{K_0} + E_{P_0} &= E_{K_1} + E_{P_1} \\ 0 + mgh &= \frac{1}{2} I_{cm} \omega^2 + \frac{1}{2} m v_{cm}^2 + 0 \\ mgh &= \frac{1}{2} \left(\frac{2}{5} m r^2 \right) \left(\frac{v_{cm}^2}{r^2} \right) + \frac{1}{2} m v_{cm}^2 \\ v_{cm} &= \sqrt{\frac{10gh}{7}} \end{split}$$

Since the ball only slides and doesn't rotate, the kinetic energy it experi-

ences it purely linear velocity and not angular.

$$E_{K_0} + E_{P_0} = E_{K_1} + E_{P_1}$$

$$\frac{1}{2}mv_{cm}^2 + 0 = 0 + mgh_1$$

$$\left(\sqrt{\frac{10gh_0}{7}}\right)^2 = 2gh_1$$

$$h_1 = \frac{5}{7}h_0$$

The ball reaches only $\frac{5}{7}$ of the height of the side of the bowl.

1.3 10.30

(a) Free-body diagram:

The angular velocity of the bowling ball is clockwise \circlearrowright which the friction has to oppose resulting in the friction going upwards (up the incline).

(b) Normal force has no affect as it is directed towards the axis of rotation.

$$\sum F_x = ma_{cm}$$

$$-f = ma_{cm} + mg\sin(\beta)$$

$$-\frac{I_{cm}\alpha}{r} = m(a_{cm} + g\sin(\beta))$$

$$-\frac{\left(\frac{2}{5}mr^2\right)\left(\frac{a_{cm}}{r}\right)}{r} = m(a_{cm} + g\sin(\beta))$$

$$-\frac{2}{5}a_{cm} = a_{cm} + g\sin(\beta)$$

$$a_{cm} = \frac{5g\sin(\beta)}{7}$$

(c)

$$\sum F_y = 0$$
$$N = mg\cos(\beta)$$

$$\sum F_x = ma_{cm}$$

$$-f = ma_{cm} + mg\sin(\beta)$$

$$-\mu(mg\cos(\beta)) = m\left(\frac{5g\sin(\beta)}{7} + g\sin(\beta)\right)$$

$$\mu = \frac{2\tan(\beta)}{7}$$

1.4 10.79

$$I_{cylinder_{cm}} = \frac{1}{2}m(2r)^2$$

$$I_{disk_{cm}} = \frac{1}{2}mr^2$$

$$\begin{split} E_{K_0} + E_{P_0} &= E_{K_1} + E_{P_1} \\ \left(\frac{1}{2}I_{cylinder_{cm}} \left(\frac{v}{2r}\right)^2 + \frac{1}{2}mv^2\right) + \left(\frac{1}{2}I_{disk_{cm}} \left(\frac{v}{r}\right)^2 + \frac{1}{2}mv^2\right) + 0 = 0 + mgh \\ \left(\frac{1}{2} \left(\frac{1}{2}m(2r)^2\right) \left(\frac{v}{2r}\right)^2 + \frac{1}{2}mv^2\right) + \left(\frac{1}{2} \left(\frac{1}{2}mr^2\right) \left(\frac{v}{r}\right)^2 + \frac{1}{2}mv^2\right) = mgh \\ v &= \sqrt{\frac{2gh}{3}} \end{split}$$

$$v_1^2 = v_0^2 + 2ah$$

$$a = \frac{v_1^2}{2h}$$

$$a = \frac{\sqrt{\frac{2gh}{3}}^2}{2h}$$

$$a = \frac{g}{3}$$

- $1.5 \quad 9.30$
- 1.6 9.49
- $1.7 \quad 9.79$
- $1.8 \quad 9.86$
- 2 Lab Manual
- 2.1 1170
- 2.2 1173
- 2.3 1175
- 2.4 1177
- 2.5 1181
- 2.6 1283
- 2.7 1284

3 Problem C: Spherical Symmetry Problem

Starting with $I = \int r^2 dm$, calculate the moment of inertial for an axis of rotation that goes through the center of a sphere with uniform mass density ρ , and radius R. As discussed in class, you may treat this problem like the integration of a series of concentric spherical shells with thickness dr.