

planetmath.org

Math for the people, by the people.

A.1.2 Dependent function types (Π -types)

Canonical name A12DependentFunctionTypesPitypes

Date of creation 2013-11-09 4:45:53 Last modified on 2013-11-09 4:45:53

Owner PMBookProject (1000683) Last modified by PMBookProject (1000683)

Numerical id 1

Author PMBookProject (1000683)

Entry type Feature Classification msc 03B15 We introduce a primitive constant c_{Π} , but write $c_{\Pi}(A, \lambda x. B)$ as $\prod_{(x:A)} B$. Judgments concerning such expressions and expressions of the form $\lambda x. b$ are introduced by the following rules:

- if $\Gamma \vdash A : \mathcal{U}_n$ and $\Gamma, x : A \vdash B : \mathcal{U}_n$, then $\Gamma \vdash \prod_{(x : A)} B : \mathcal{U}_n$
- if $\Gamma, x : A \vdash b : B$ then $\Gamma \vdash (\lambda x. b) : (\prod_{(x:A)} B)$
- if $\Gamma \vdash g: \prod_{(x:A)} B$ and $\Gamma \vdash t: A$ then $\Gamma \vdash g(t): B[t/x]$

If x does not occur freely in B, we abbreviate $\prod_{(x:A)} B$ as the non-dependent function type $A \to B$ and derive the following rule:

• if $\Gamma \vdash g : A \to B$ and $\Gamma \vdash t : A$ then $\Gamma \vdash g(t) : B$

Using non-dependent function types and leaving implicit the context Γ , the rules above can be written in the following alternative style that we use in the rest of this section of the appendix.

- if $A: \mathcal{U}_n$ and $B: A \to \mathcal{U}_n$, then $\prod_{(x:A)} B(x): \mathcal{U}_n$
- if $x : A \vdash b : B$ then $\lambda x.b : \prod_{(x:A)} B(x)$
- if $g:\prod_{(x:A)}B(x)$ and t:A then g(t):B(t)