Forward and Backward Propagation

CSE 849 Deep Learning Spring 2025

Zijun Cui

Problem Statement

- Given a training set of input-output pairs $(X_1, d_1), (X_2, d_2), \dots, (X_N, d_N)$
- Minimize the following function

$$Loss(W) = \frac{1}{N} \sum_{i} div(f(X_i; W), d_i)$$

w.r.t W

- This is problem of function minimization
 - An instance of optimization

Problem Setup: Things to define

- ✓ What is f() and what are its parameters W?
- ✓ What are these inputoutput pairs?
- ✓ What is the divergence div()?

We are ready!
Next, we will start forward
pass and backward
update

Forward pass

Setting $y_i^{(0)} = x_i$ for notational convenience

Assuming $w_{0j}^{(k)} \equiv b_j^{(k)}$ and $y_0^{(k)} \equiv 1$ -- assuming the bias is a weight and extending the output of every layer by a constant 1, to account for the biases

Forward pass

$$z_1^{(1)} = \sum_i w_{i1}^{(1)} y_i^{(0)}$$

$$z_{\rm j}^{(1)} = \sum_{\rm i} w_{\rm ij}^{(1)} y_{\rm i}^{(0)}$$

$$z_{j}^{(1)} = \sum_{i} w_{ij}^{(1)} y_{i}^{(0)} \qquad y_{j}^{(1)} = f_{1} \left(z_{j}^{(1)} \right)$$

$$z_{j}^{(1)} = \sum_{i} w_{ij}^{(1)} y_{i}^{(0)}$$
 $y_{j}^{(1)} = f_{1} \left(z_{j}^{(1)} \right)$ $z_{j}^{(2)} = \sum_{i} w_{ij}^{(2)} y_{i}^{(1)}$

$$z_{j}^{(1)} = \sum_{i} w_{ij}^{(1)} y_{i}^{(0)} \quad y_{j}^{(1)} = f_{1} \left(z_{j}^{(1)} \right) \quad z_{j}^{(2)} = \sum_{i} w_{ij}^{(2)} y_{i}^{(1)} \quad y_{j}^{(2)} = f_{2} \left(z_{j}^{(2)} \right)$$

$$z_{j}^{(1)} = \sum_{i} w_{ij}^{(1)} y_{i}^{(0)} \quad y_{j}^{(1)} = f_{1} \left(z_{j}^{(1)} \right) \quad z_{j}^{(2)} = \sum_{i} w_{ij}^{(2)} y_{i}^{(1)} \quad y_{j}^{(2)} = f_{2} \left(z_{j}^{(2)} \right)$$

$$z_{\rm j}^{(3)} = \sum_{\rm i} w_{\rm ij}^{(3)} y_{\rm i}^{(2)}$$

$$z_{j}^{(1)} = \sum_{i} w_{ij}^{(1)} y_{i}^{(0)} \quad y_{j}^{(1)} = f_{1} \left(z_{j}^{(1)} \right) \quad z_{j}^{(2)} = \sum_{i} w_{ij}^{(2)} y_{i}^{(1)} \quad y_{j}^{(2)} = f_{2} \left(z_{j}^{(2)} \right)$$

$$z_{j}^{(3)} = \sum_{i} w_{ij}^{(3)} y_{i}^{(2)} \qquad y_{j}^{(3)} = f_{3} \left(z_{j}^{(3)} \right)$$

$$y_j^{(N-1)} = f_{N-1} \left(z_j^{(N-1)} \right) \quad z_j^{(N)} = \sum_i w_{ij}^{(N)} y_i^{(N-1)}$$

$$\mathbf{y}^{(\mathsf{N})} = f_{\mathsf{N}}(\mathbf{z}^{(\mathsf{N})})$$

Forward "Pass"

- Input: D dimensional vector $\mathbf{x} = [x_j, j = 1 ... D]$
- Set:
 - $-D_0 = D$, is the width of the 0th (input) layer

$$-y_j^{(0)} = x_j, \ j = 1 \dots D; \qquad y_0^{(k=1\dots N)} = x_0 = 1$$

- For layer $k = 1 \dots N$
 - For $j=1\dots D_k$ D_k is the size of the kth layer

•
$$z_{j}^{(k)} = \sum_{i=0}^{D_{k-1}} w_{i,j}^{(k)} y_{i}^{(k-1)}$$

•
$$y_j^{(k)} = f_k \left(z_j^{(k)} \right)$$

• Output:

$$-Y = y_j^{(N)}, j = 1...D_N$$

Training Neural Nets through Gradient Descent

Total training Loss:

$$Loss = \frac{1}{T} \sum_{t} Div(Y_{t}, d_{t})$$

- Gradient descent algorithm:
- Initialize all weights and biases $\left\{w_{ij}^{(k)}\right\}$
 - Using the extended notation: the bias is also a weight
- Do:
 - For every layer k for all i, j, update:

•
$$w_{i,j}^{(k)} = w_{i,j}^{(k)} - \eta_{dw_{i,j}^{(k)}}^{dLoss}$$

Until <u>Loss</u> has converged

We have computed all these intermediate values in the forward computation

We must remember them – we will need them to compute the derivatives

Today's Topic

The derivative w.r.t the actual output of the final layer of the network is simply the derivative w.r.t to the output of the network

$$\frac{\partial Div(Y,d)}{\partial y_i^{(N)}} = \frac{\partial Div(Y,d)}{\partial y_i}$$

$$\frac{\partial Div}{\partial z_i^{(N)}} = \frac{\partial y_i^{(N)}}{\partial z_i^{(N)}} \frac{\partial Div}{\partial y_i^{(N)}}$$

We then can continue the calculation as before but in layer N-1

$$\frac{\partial Div}{\partial y_{i}^{(N-2)}} = \sum_{j} w_{ij}^{(N-1)} \frac{\partial Div}{\partial z_{j}^{(N-1)}} \qquad \frac{\partial Div}{\partial w_{ij}^{(N-1)}} = y_{i}^{(N-2)} \frac{\partial Div}{\partial z_{j}^{(N-1)}} \qquad \frac{\partial Div}{\partial z_{i}^{(N-1)}} = f_{N-1}^{'} \left(z_{i}^{(N-1)}\right) \frac{\partial Div}{\partial y_{i}^{(N-1)}}$$

Finally reach the input layer

$$\frac{\partial Div}{\partial y_1^{(1)}} = \sum_{j} w_{ij}^{(2)} \frac{\partial Div}{\partial z_j^{(2)}}$$

$$\frac{\partial Div}{\partial z_{i}^{(1)}} = f_{1}^{'} \left(z_{i}^{(1)} \right) \frac{\partial Div}{\partial y_{i}^{(1)}}$$

$$\frac{\partial Div}{\partial w_{ij}^{(1)}} = y_i^{(0)} \frac{\partial Div}{\partial z_j^{(1)}}$$

Special cases

- Have assumed so far that
 - 1. The computation of the output of one neuron does not directly affect computation of other neurons in the same layers
 - 2. Inputs to neurons only combine through weighted addition
 - 3. Activations are actually differentiable
 - All of these conditions are frequently not applicable

Special Case 1. Vector activations

Scalar activation: Modifying a z_i only changes corresponding y_i

$$y_i^{(k)} = f\left(z_i^{(k)}\right)$$

 Vector activations: all outputs are functions of all inputs

Vector activation: Modifying a z_i potentially changes all $y_1 \dots y_M$

$$\begin{bmatrix} y_1^{(k)} \\ y_2^{(k)} \\ \vdots \\ y_M^{(k)} \end{bmatrix} = f \begin{pmatrix} \begin{bmatrix} z_1^{(k)} \\ z_2^{(k)} \\ \vdots \\ z_D^{(k)} \end{bmatrix} \end{pmatrix}$$

"Influence" diagram

Scalar activation: Each z_i influences one y_i

Vector activation: Each z_i influences all, $y_1 \dots y_M$

Derivatives of vector activation

Scalar activation: Each z_i influences one y_i

$$\frac{\partial Div}{\partial z_i^{(k)}} = \frac{dy_i^{(k)}}{dz_i^{(k)}} \frac{\partial Div}{\partial y_i^{(k)}}$$

$$\frac{\partial Div}{\partial z_i^{(k)}} = \sum_{j} \frac{\partial y_j^{(k)}}{\partial z_i^{(k)}} \frac{\partial Div}{\partial y_j^{(k)}}$$

Note: derivatives of scalar activations are just a special case of vector activations:

$$\frac{\partial y_j^{(k)}}{\partial z_i^{(k)}} = 0 \text{ for } i \neq j$$

Example Vector Activation: Softmax

$$y_{i}^{(k)} = \frac{exp\left(z_{i}^{(k)}\right)}{\sum_{j} exp\left(z_{j}^{(k)}\right)}$$

$$\frac{\partial Div}{\partial z_i^{(k)}} = \sum_{j} \frac{\partial y_j^{(k)}}{\partial z_i^{(k)}} \frac{\partial Div}{\partial y_j^{(k)}}$$

$$\Rightarrow \frac{\partial y_{j}^{(k)}}{\partial z_{i}^{(k)}} = \begin{cases} y_{i}^{(k)} \left(1 - y_{i}^{(k)}\right) & \text{if } i = j \\ -y_{i}^{(k)} y_{j}^{(k)} & \text{if } i \neq j \end{cases}$$

$$\Rightarrow \frac{\partial Div}{\partial z_{i}^{(k)}} = \sum_{j} \frac{\partial Div}{\partial y_{j}^{(k)}} y_{j}^{(k)} \left(\delta_{ij} - y_{i}^{(k)} \right)$$

$$\delta_{ij} = 1$$
 if $i = j$, 0 if $i \neq j$

Special Case 2: Multiplicative networks

Forward:

$$o_i^{(k)} = y_j^{(k-1)} y_l^{(k-1)}$$

- Some types of networks have *multiplicative* combination
 - In contrast to the additive combination we have seen so far
- Seen in networks such as LSTMs, GRUs, attention models, etc.

Backward:

$$\frac{\partial Div}{\partial y_j^{(k-1)}} = \frac{\partial o_i^{(k)}}{\partial y_j^{(k-1)}} \frac{\partial Div}{\partial o_i^{(k)}} = y_l^{(k-1)} \frac{\partial Div}{\partial o_i^{(k)}} \qquad \frac{\partial Div}{\partial y_l^{(k-1)}} = \frac{\partial o_i^{(k)}}{\partial y_l^{(k-1)}} \frac{\partial Div}{\partial o_i^{(k)}} = y_j^{(k-1)} \frac{\partial Div}{\partial o_i^{(k)}}$$

suppose $\frac{\partial Div}{\partial o^{(k)}}$ is already calculated

Multiplicative combination as a case of vector activations

$$z_i^{(k)} = y_i^{(k-1)}$$

$$y_i^{(k)} = z_{2i-1}^{(k)} z_{2i}^{(k)}$$

• A layer of multiplicative combination is a special case of vector activation

Special Case 3: Non-differentiable Activations

- Activation functions are sometimes not actually differentiable
 - E.g. The RELU (Rectified Linear Unit)
 - And its variants: leaky RELU, randomized leaky RELU
 - E.g. The "max" function

$$y = \max_{i} z_{i}$$

Must use "subgradients" where available

The subgradient

• A subgradient of a function f(x) at a point x_0 is any vector v such that

$$(f(x) - f(x_0)) \ge v^{\mathsf{T}}(x - x_0)$$

- Any direction such that moving in that direction increases the function
- Guaranteed to exist only for convex functions
 - "bowl" shaped functions
 - For non-convex functions, the equivalent concept is a "quasi-secant"
- The subgradient is a direction in which the function is guaranteed to increase
- If the function is differentiable at x_0 , the subgradient is the gradient

Non-differentiability: RELU

 $\Delta f(z) = \alpha \Delta z$

$$-\alpha = 0$$

• A positive perturbation $\Delta z > 0$ results in $\Delta f(z) = \Delta z$

$$-\alpha = 1$$

- we can imagine that the curve is rotating continuously from slope = 0 to slope = 1 at z = 0
 - So any slope between 0 and 1 is valid

- The subderivative of a RELU is the slope of any line that lies entirely under it
- Can use any subgradient at 0
 - Typically, will use the equation given
 - Deep learning frameworks, such as TensorFlow and PyTorch, directly choose the gradient as 1 at the point z=0z = 0z=0 for ReLU.

Subgradients and the Max

Multiple outputs, each selecting the max of a different subset of inputs

$$y_j = \max_{l \in \delta_j} z_l$$

- Will be seen in convolutional networks
- Gradient for any output:
 - 1 for the specific component that is maximum in corresponding input subset
 - 0 otherwise

$$\frac{\partial y_j}{\partial z_i} = 1$$
 if $i = arg \max_{l \in \delta_j} z_l$, 0 otherwise

Vector formulation

- For layered networks it is generally simpler to think of the process in terms of vector operations
 - Simpler arithmetic
 - Fast matrix libraries make operations much faster

- We can restate the entire process in vector terms
 - This is what is actually used in any real system

Vector formulation

- Arrange the *inputs* to neurons of the kth layer as a vector \mathbf{z}_k
- Arrange the outputs of neurons in the kth layer as a vector \mathbf{y}_k
- Arrange the weights to any layer as a matrix \mathbf{W}_k
 - Similarly with biases

Vector formulation

The computation of a single layer is easily expressed in matrix notation as (setting $y_0 = x$):

$$\mathbf{z}_k = \mathbf{W}_k \mathbf{y}_{k-1} + \mathbf{b}_k$$

$$\mathbf{y}_k = f_k(\mathbf{z}_k)$$

The forward pass

$$\Rightarrow \mathbf{y}_1 = f_1(\mathbf{W}_1\mathbf{x} + \mathbf{b}_1)$$

The forward pass

$$\mathbf{y}_1 = f_1(\mathbf{W}_1 \mathbf{x} + \mathbf{b}_1)$$

$$y_2 = f_2(W_2y_1 + b_2) = f_2(w_2f_1(W_1x + b_1) + b_2)$$

The forward pass

$$\mathbf{z}_{N} = \mathbf{W}_{N} f_{N-1} (... f_{2} (\mathbf{W}_{2} f_{1} (\mathbf{W}_{1} \mathbf{x} + \mathbf{b}_{1}) + \mathbf{b}_{2}) ...) + \mathbf{b}_{N}$$

$$Y = f_{N} (\mathbf{W}_{N} f_{N-1} (... f_{2} (\mathbf{W}_{2} f_{1} (\mathbf{W}_{1} \mathbf{x} + \mathbf{b}_{1}) + \mathbf{b}_{2}) ...) + \mathbf{b}_{N})$$

Forward pass

Forward pass:

Initialize

$$\mathbf{y}_0 = \mathbf{x}$$

For k = 1 to N:
$$\mathbf{z}_k = \mathbf{W}_k \mathbf{y}_{k-1} + \mathbf{b}_k$$
 $\mathbf{y}_k = f_k(\mathbf{z}_k)$

Output

$$Y = \mathbf{y}_N$$

The Backward Pass

- Have completed the forward pass
- Before presenting the backward pass, some more calculus...
 - Vector calculus this time

Vector Calculus Notes: Definitions

- For a scalar function of a vector argument
 - For a vector function of a vector argment

$$y = f(\mathbf{z})$$
$$\Delta y = \nabla_{\mathbf{z}} y \, \Delta \mathbf{z}$$

$$\mathbf{y} = f(\mathbf{z})$$

Otherwise, the dimension won't match

$$\begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_M \end{bmatrix} = f \begin{pmatrix} \begin{bmatrix} z_1 \\ z_2 \\ \vdots \\ z_D \end{bmatrix} \end{pmatrix}$$

If \mathbf{z} is an D \times 1 vector, and y is a scalar $\nabla_z y$ is a 1 \times D vector

$$\Delta \mathbf{y} = \nabla_{\mathbf{z}} y \, \Delta \mathbf{z}$$

The shape of the derivative is the transpose of the shape of z

If z is an $D \times 1$ vector, y is an $M \times 1$ vector $\nabla_z y$ is a $M \times D$ matrix

 $\nabla_z y^T$ is called the **gradient** of y w.r.t. z

 $\nabla_z y$ is called the **Jacobian** of y w.r.t. z

Vector Calculus Notes: The Jacobian

- The derivative of a vector function w.r.t. vector input is called a *Jacobian*
- It is the matrix of partial derivatives given below

$$\begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_M \end{bmatrix} = f \left(\begin{bmatrix} z_1 \\ z_2 \\ \vdots \\ z_D \end{bmatrix} \right)$$

$$\begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_M \end{bmatrix} = f \begin{pmatrix} \begin{bmatrix} z_1 \\ z_2 \\ \vdots \\ z_D \end{bmatrix} \end{pmatrix}$$

$$J_{\mathbf{y}}(\mathbf{z}) = \begin{bmatrix} \frac{\partial y_1}{\partial z_1} & \frac{\partial y_1}{\partial z_2} & \dots & \frac{\partial y_1}{\partial z_D} \\ \frac{\partial y_2}{\partial z_1} & \frac{\partial y_2}{\partial z_2} & \dots & \frac{\partial y_2}{\partial z_D} \\ \dots & \dots & \ddots & \dots \\ \frac{\partial y_M}{\partial z_1} & \frac{\partial y_M}{\partial z_2} & \dots & \frac{\partial y_M}{\partial z_D} \end{bmatrix}$$

 $\nabla_z y$ is a M \times D matrix

Jacobians can describe the derivatives of neural activations w.r.t their input

For scalar activations

$$y_i = f(z_i)$$

$$J_{\mathbf{y}}(\mathbf{z}) = \begin{bmatrix} f'(z_1) & 0 & \cdots & 0 \\ 0 & f'(z_2) & \cdots & 0 \\ \cdots & \cdots & \ddots & \cdots \\ 0 & 0 & \cdots & f'(z_M) \end{bmatrix}$$

- Jacobian is a diagonal matrix
- Diagonal entries are individual derivatives of outputs w.r.t inputs

Jacobians can describe the derivatives of neural activations w.r.t their input

For vector activations

$$J_{\mathbf{y}}(\mathbf{z}) = \begin{bmatrix} \frac{\partial y_1}{\partial z_1} & \frac{\partial y_1}{\partial z_2} & \dots & \frac{\partial y_1}{\partial z_D} \\ \frac{\partial y_2}{\partial z_1} & \frac{\partial y_2}{\partial z_2} & \dots & \frac{\partial y_2}{\partial z_D} \\ \dots & \dots & \ddots & \dots \\ \frac{\partial y_M}{\partial z_1} & \frac{\partial y_M}{\partial z_2} & \dots & \frac{\partial y_M}{\partial z_D} \end{bmatrix}$$

- Jacobian is a full matrix
 - Entries are partial derivatives of individual outputs w.r.t individual inputs

Special case: Affine functions

- Matrix W and bias b operating on vector y to produce vector z
- The Jacobian of z w.r.t y is simply the matrix W

Vector Calculus Notes 2: Chain rule

 For nested functions we have the following chain rule

• Chain rule for Jacobians (vector functions of vector inputs):

$$\mathbf{y} = y(\mathbf{z}(\mathbf{x})) \square \nabla_{\mathbf{x}} \mathbf{y} = \nabla_{\mathbf{z}} \mathbf{y} \nabla_{\mathbf{x}} \mathbf{z}$$

$$y = y(z(x)) \square \supset J_y(x) = J_y(z)J_z(x)$$

$$\Delta \mathbf{y} = \nabla_{\mathbf{z}} \mathbf{y} \nabla_{\mathbf{x}} \mathbf{z} \Delta \mathbf{x} = \nabla_{\mathbf{x}} \mathbf{y} \Delta \mathbf{x}$$

$$\Delta \mathbf{y} = J_{\mathbf{y}}(\mathbf{z})J_{\mathbf{z}}(\mathbf{x})\Delta \mathbf{x} = J_{\mathbf{y}}(\mathbf{x})\Delta \mathbf{x}$$

Note the order: The derivative of the outer function comes first

Combining Jacobians and Gradients

$$D = D(\mathbf{y}(\mathbf{z})) \square \nabla_{\mathbf{z}} D = \nabla_{\mathbf{y}}(D) J_{\mathbf{y}}(\mathbf{z})$$

More calculus: Special Case

Scalar functions of Affine functions

$$z = Wy + b$$

$$D = f(\mathbf{z})$$

$$\nabla_{\mathbf{y}}D = \nabla_{\mathbf{z}}(D)\mathbf{W}$$

$$\nabla_{\mathbf{b}}D = \nabla_{\mathbf{z}}(D)$$

Derivatives w.r.t parameters?

Today's Star

$$\nabla_{\mathbf{W}}D = \mathbf{y}\nabla_{\mathbf{z}}(D)$$

Note: the derivative shapes are the *transpose* of the shapes of W and b

$$\mathbf{z}^\mathsf{T} = \mathbf{y}^\mathsf{T} \mathbf{W}^\mathsf{T} + \mathbf{b}^\mathsf{T}$$
 Writing the transpose

$$\nabla_{\boldsymbol{W}^{\top}} \boldsymbol{z}^{\top} = \mathbf{y}^{\top}$$

$$\nabla_{\boldsymbol{W}^{\top}}D = \nabla_{\boldsymbol{z}^{\top}}D \ \nabla_{\boldsymbol{W}^{\top}}\boldsymbol{z}^{\top} = \nabla_{\boldsymbol{z}^{\top}}D \ \boldsymbol{y}^{\top}$$

$$\nabla_{\boldsymbol{W}}D = (\nabla_{\boldsymbol{W}^{\top}}D)^{\top} = \mathbf{y}\nabla_{\mathbf{z}}D$$

$$\nabla_{\mathbf{W}}D = \mathbf{y}\nabla_{\mathbf{z}}(D)$$

Special Case: Application to a network

Scalar functions of Affine functions

$$\mathbf{z}_{k} = \mathbf{W}_{k} \mathbf{y}_{k-1} + \mathbf{b}_{k}$$

$$Div = Div(\mathbf{z}_{k}) \qquad \nabla_{\mathbf{y}_{k-1}} Div = \nabla_{\mathbf{z}_{k}} Div \mathbf{W}_{k}$$

$$\nabla_{\mathbf{b}_{k}} Div = \nabla_{\mathbf{z}_{k}} Div$$

$$\nabla_{\mathbf{W}_{k}} D = \mathbf{y}_{k-1} \nabla_{\mathbf{z}_{k}} Div$$

The divergence is a nested function: $Div(\mathbf{Y}(\mathbf{z}_N))$

$$\nabla_{\mathbf{z}_{N}} Div = \nabla_{\mathbf{Y}} Div. \nabla_{\mathbf{z}_{N}} \mathbf{Y} = \nabla_{\mathbf{Y}} Div. J_{\mathbf{Y}}(\mathbf{z}_{N})$$

Already computed

New term

First compute the derivative of the divergence w.r.t Y. The actual derivative depends on the divergence function.

 $\nabla_{\mathbf{b}_{\mathsf{N}}} Div = \nabla_{\mathbf{z}_{\mathsf{N}}} Div$

The Jacobian will be a diagonal matrix for scalar activations

$$\nabla_{\mathbf{z}_{N-1}} Div$$

$$\nabla_{\mathbf{z}_{N-1}} Div = \nabla_{\mathbf{y}_{N-1}} Div \cdot \nabla_{\mathbf{z}_{N-1}} \mathbf{y}_{N-1}$$

$$\nabla_{\mathbf{y}_{N-2}} Div = \nabla_{\mathbf{z}_{N-1}} Div \cdot \nabla_{\mathbf{y}_{N-2}} \mathbf{z}_{N-1}$$

$$\Rightarrow \nabla_{\mathbf{y}_{N-2}} Div = \nabla_{\mathbf{z}_{N-1}} Div \mathbf{W}_{N-1}$$

$$\nabla_{\mathbf{W}_{N-1}} Div = \mathbf{y}_{N-2} \nabla_{\mathbf{z}_{N-1}} Div$$

$$\nabla_{\mathbf{b}_{N-1}} Div = \nabla_{\mathbf{z}_{N-1}} Div$$

$$\nabla_{\mathbf{z}_1} Div = \nabla_{\mathbf{y}_1} Div J_{\mathbf{y}_1}(\mathbf{z}_1)$$

$$\nabla_{\mathbf{W}_{1}} Div = \mathbf{x} \nabla_{\mathbf{z}_{1}} Div$$

$$\nabla_{\mathbf{b}_{1}} Div = \nabla_{\mathbf{z}_{1}} Div$$

Setting up for digit recognition

Training data

- Simple Problem: Recognizing "2" or "not 2"
- Single output with sigmoid activation
 - $Y \in (0,1)$
 - d is either 0 or 1
- Use KL divergence
- Backpropagation to compute derivatives
 - To apply in gradient descent to learn network parameters

Recognizing the digit

Training data

- More complex problem: Recognizing digit
- Network with 10 (or 11) outputs
 - First ten outputs correspond to the ten digits
 - Optional 11th is for none of the above
- Softmax output layer:
 - Ideal output: One of the outputs goes to 1, the others go to 0
- Backpropagation with KL divergence
 - To compute derivatives for gradient descent updates to learn network