Numerical Methods for the Solution of Differential Equations (AM 213B) Homework 1 - Grading rubric

Question 1 (30 points):

- (a) (10 points)
 - (5 points) For calculating the local polynomial interpolant in terms of Lagrange characteristic polynomials.
 - (5 points) For arriving at the correct finite-difference backward differentiation formula at x_j .
- (b) (10 points)
 - (5 points) For the Taylor series expansion of the local truncation error of the derivative.
 - (5 points) For using Taylor series to show that (1) converges with order 3 in Δx .
- (c) (10 points)
 - (5 points) For plotting the derivative of the function (2) and the finite difference approximation (1) for n = 20 and n = 60 (two different figures)
 - (5 points) For plotting the maximum pointwise error between the analytical and numerical derivatives and show that that the pointwise error (4) decays as n^{-3} , i.e. that the BDF formula (1) is of order 3 in Δx .

Question 2 (70 points):

- (a) (15 points)
 - (10 points) For computing the analytical solution of (5)-(6). Students need to show some work that leads to the analytical solution (at least the main steps). If no work is shown, then -5 points.
 - (5 points) For plotting $y_1(t)$ versus t, $y_2(t)$ versus t, and $y_1(t)$ versus $y_2(t)$
- (b) (20 points)
 - (10 points) For writing a computer code to compute the numerical solution of the initial value problem by the RK3 method
 - (10 points) For writing a computer code to compute the numerical solution of the initial value problem by the AM3 method
- (c) (5 points) For providing the formulations of the RK3 and AM3 methods for linear systems f(x,t) = Ax.
- (d) (20 points)
 - (10 points) For running simulations for different values of Δt , i.e., $\Delta t = 0.1, 0.05, 0.005, 0.0005$ and plotting the error in logarithmic scale versus time for each case for the RK3 method
 - (10 points) For running simulations for different values of Δt , i.e., $\Delta t = 0.1, 0.05, 0.005, 0.0005$ and plotting the error in logarithmic scale versus time for each case for the AM3 method

(e) (10 points)

- (5 points) For plotting the error (8) at final time in logarithmic scale versus Δt for the RK3 method and showing it converge with order 3
- (5 points) For plotting the error (8) at final time in logarithmic scale versus Δt for the AM3 method and showing it converge with order 4