实体链接

(Entity Linking)

汪鹏,潘喆

pwang@seu.edu.cn

东南大学 计算机科学与工程学院

课程主页: https://github.com/npubird/KnowledgeGraphCourse

提纲

- ●一、实体链接背景场景
- ●二、实体链接方法简介
 - ✓ 基于概率生成模型的方法
 - ✓ 基于主题模型的方法
 - ✓ 基于图的方法
 - ✓ 基于深度学习的方法
 - ✓ 无监督方法

实体链接的问题背景

实体链接是指将文档中出现的文本片段,即实体指称(entity mention)链向其在特定知识库(Knowledge B ase)中相应条目(entry)的过程。

实体链接的问题背景

- 例如:
- 86年的电视剧西游记是对小说西游记最经典的改编。
- 链接结果:
- 86年的电视剧西游记(1986年杨洁执导央视 版电视剧)是对小说西游记(中国古典长篇 小说)最经典的改编。

【对其中的专有名词进行正确的标注】

实体链接的应用场景

- 文本分类和聚类
- 信息检索
- 知识库构建
- 智能问答
- ...

实体链接的步骤

- 命名实体识别 (之前已经讨论过了)
- 词义消歧

实体链接的测评

会议	组织者	评测	年份	文本语种	文本风格	知识库	需识别提 及	新实体聚 类
TAC	NIST	KBP Entity Linking	2009-2010	英	新闻、博客	英文维基百科	否	否
		KBP Entity Linking	2011	英、中	新闻、博客	英文维基百科	否	是
		KBP Entity Linking	2012-2014	英、 中 、西	新闻、博客	英文维基百科	否	是
		KBP Cold Start	2012-2014	英	新闻、博客	英文维基百科	否	是
		KBP Entity Discovery & Linking	2015	英	新闻、博客		是	是
NLPCC	CCF	Entity Linking	2013	中	微博	百度百科	否	否
		Entity Linking	2014	中	新闻、微博	中文维基百科	否	否
		Entity Linking	2015	中	新闻、微博	中文维基百科	是	否
SIGIR	Microsoft Google Yahoo!	ERD	2014	英	搜索引擎查询 新闻、网页	Freebase中有维基百 科链接的条目	是	否
www		Microposts NEEL	2014	英	微博	英文DBPedia	是	否

表 实体链接相关评测

实体链接的方法

简单的分类:

- 基于概率生成模型的方法
- 基于主题模型的方法
- 基于图的方法
- 基于深度学习的方法
- 无监督方法
- ...

- 人们在进行链接工作时,使用了大用了大量关于实体的知识:
 - 1. 实体的知名度
 - 2. 实体的名字分布
 - 3. 实体的上下文分布

• 提出了实体-提及模型来融合上述异构知识

- 一个实体的名字通常是固定的,且以一定的概率出现。
- 指称的上下文与实体越匹配,□则越可能链接到对应实体:

苹果 上下文包含 性能、续航等,则有可能指科技公司。

苹果 上下文包含 口感、色泽等,则有可能指水果。

 利用 M&W 相似度可以计算出候选实体与 上下文中其他实体的相关性。

$$\rho^{\mathsf{MW}}(a,b) = 1 - \frac{\log(\max(|in(a)|,|in(b)|)) - \log(|in(a)\cap in(b)|)}{\log(|W|) - \log(\min(|in(a)|,|in(b)|))}$$

11 2019/6/9

名字

知名度

上下文词

基于上述模型,实体e是提及m目标实体的概率

基于主题模型的方法

强假设:

同一篇文本中的实体应当与文本的主题相关:

和科技、手机等有关文章也更有可能出现苹果公司,而不是水果。

基于主题的知识推理

基于主题的知识推理

16

基于主题的知识推理

概率主题模型属于生成模型,对于由 M 个文档组成的文档集中的一个包含 N_d^w 个词、 N_d^e 个实体的文档 d, eLDA 认为,该文档的生成过程如下:

1) 对于每个主题 k,根据狄利柯雷(Dirichlet)分布,分别生成词和实体的在主题上的分布:

$$\phi_k^w \sim Dir(\beta), \phi_k^e \sim Dir(\eta)$$

- 2) 对每个文档集中的文档 $d \in \{1,...,M\}$,执行步骤 3)~步骤 9)
- 3) 为当前文档 d 生成主题分布 θ_{d} ~ $Dir(\alpha)$
- 4) 对 d 中的每个词 $n \in \{1,...,N_d^w\}$,执行步骤 5)、步骤 6)
- 5) 为当前词生成主题 $z_{d,n} \sim Mult(\theta_d)$
- 6) 生成当前的词 $w_{d,n} \sim Mult(\phi_{z_{d,n}}^w)$
- 7) 对 d 中的每个实体 $n' \in \{1,...,N_d^e\}$,执行步骤 8)、步骤 9)
- 8) 为当前实体生成主题 $z_{d,n'}$ ~ $Mult(\theta_d)$
- 9) 生成当前的实体 $e_{d,n'} \sim Mult(\phi_{z_{d,n'}}^e)$

上述过程中的 Dir 表示狄利克雷分布,Mult 表示多项式分布.当给定参数 α,β,η 时,所有观察变量(即观察到的文档中的词和实体)和隐变量(如每个主题上的实体分布)的联合概率公式为

$$P(d, z^{w}, z^{e}, \boldsymbol{\Theta}, \boldsymbol{\Phi}^{w}, \boldsymbol{\Phi}^{e}, \boldsymbol{\alpha}, \boldsymbol{\beta}, \boldsymbol{\eta}) = P(\boldsymbol{\Theta} \mid \boldsymbol{\alpha}) P(\boldsymbol{\Phi}^{w} \mid \boldsymbol{\beta}) P(\boldsymbol{\Phi}^{e} \mid \boldsymbol{\eta}) \times \left(\prod_{n=1}^{N^{w}} P(w_{n} \mid z^{w}, \boldsymbol{\Phi}^{w}) \right) \left(\prod_{n=1}^{N^{e}} P(e_{n} \mid z^{e}, \boldsymbol{\Phi}^{e}) \right)$$
(1)

基于图的方法

- 重启随机游走
- 实体相似度计算:根据实体属性值的数据 类型使用不同相似度计算方法来度量它们 之间的相似性再使用聚合函数初始化实体 间的相似度矩阵。
- 图模型构建:根据实体类型,基于中计算得到的相似度确定候选链接单元,将所有候选单元作为关联图中的顶点,再基于各实体间的语义关系,确定候选链接单元间的关联(即生成关联图中的边)。

基于图的方法

● 重启随机游走

图 1 基于随机游走的实体链接模型

基于图的方法

- 重启随机游走:
- 基本思想是给定一个图,游走者从某个顶点 或一系列顶点开始遍历该图。在任意一个顶 点,游走者对于下一步行动有2种选择:
- 1. 以概率 1 一 c 随机选择一条关联到当前顶点的边以游走到某个邻居顶点
- 2. 以 c 的概率随机跳转到图中任意一个顶点每次游走后,均将得到一个概率分布,将该概率分布作为下一次游走的输入,反复迭代。当满足一定前提条件时,该概率分布将会收敛到一个稳定值。

基于深度学习的方法

● 使用BiLSTM、CNN等

图 4.6 文本实体链接神经网络整体架构

基于深度学习的方法

● 借助BiLSTM、CNN等计算相似度后再基于图:

表 4.5 中文数据集上的实体链接对比试验结果

数据集		用例总数	文档总数	牧 候选	候选集平均大小	
训练集	:	743, 978	232, 49	3	6. 032	
测试集		55, 716	15, 058	3	5. 966	
LI	LIEL DSRM		RM	0urs		
Micro	Macro	Micro	Macro	Micro	Macro	
0. 7063	0. 7189	0. 7434	0. 7296	0.8107	0. 8211	
DSRM + Ours		Prior		Prior + RWR		
Micro	Macro	Micro	Macro	Micro	Macro	
0. 7776	0. 7821	0. 6983	0. 6844	0. 7191	0. 7123	

基于无监督的方法

AAAI 18 阿里 Colink

- 协同训练算法:
- 在该框架中定义两个不同的模型:一个基于属性的模型 fatt 和一个基于关系的模型 frel。
- 这两个模型会进行二元分类预测,将一组给定实体对分类为正例(链接的)或负例(非链接的)。
- 该协同训练算法以迭代的方式不断增强这两个模型。

基于无监督的方法

AAAI 18 阿里 Colink

```
Input: a source social network G^s, a target social
           network G<sup>t</sup>
   Output: a set of user pairs S
1 S \leftarrow the set of seed pairs generated with seed rules;
2 repeat
       /* generate pairs from attribute-based model */
      D_{att} \leftarrow f_{att}(S, G^s, G^t);
4
       /* generate pairs from relationship-based model */
     D_{rel} \leftarrow f_{rel}(S, G^s, G^t);
     /* join two sets and remove conflicting pairs */
     D \leftarrow merge(D_{att}, D_{rel});
       S \leftarrow S \cup D;
10 until D = \emptyset;
                                                    公 产业智能官
11 return S;
```

基于无监督的方法

● AAAI18 阿里 Colink (和无监督的方法对比)

Table 2: Performance comparison of different approaches.

Method	P	R	F1
Random-select	49.31	54.21	51.64
SiGMa	91.00	44.28	59.57
Alias-disamb	82.35	58.92	68.69
CoLink (S2S+Coarse-tuned)	86.74	83.67	85.18
CoLink (S2S+Coarse-tuned+Rev)	89.51	86.20	87.82
CoLink (S2S+Fine-tuned)	91.47	86.70	89.02
CoLink (S2S+Fine-tuned+Rev)	89.22	86.36	87.77
CoLink (SVM+Fine-tuned)	84.16	62.63	71.81

实体链接总结与展望

- 跨语言实体链接
- 利用实体链接促进自然语言处理任务

• ...

Спасибо

Russian

Spanish

Obrigado

Brazilian Portuguese

Grazie

Danke German

> Merci French

ありがとうございました

Japanese

감사합니다 Korean