B 279,12.30

浙江工业大学2019/2020(一)期末试卷《复变函数与积分变换》

 $\langle\!\!\langle Final\ Exam\ for\ 'Functions\ of\ a\ Complex\ Variable\ and\ Integral\ Transforms' \rangle\!\!\rangle$

	Class:		Name (in Chinese):					Student ID:			
Ple	ase write in	English	n! Good	d luck!							
	Question	1	2	3	4	5	6	7	8	Total	
	Score										
	Choose only If $z = \frac{1}{\sqrt{2}}(1 - \frac{1}{\sqrt{2}})$			nswer	to each	questi	on (3	points	each, t	otal 15 po	ints)
	(A) -i		(B) i		(C) 1			cos T	(D,
(2)	Let $f(t) = te^{iw_0t}$, then $\mathscr{F}[f(t)] =$										
	(A) $2\pi\delta'(w-1)$	$-w_0$)	(B) 27	$\tau\delta'(w+1)$	w_0) (C) 2πiδ	'(w-w)	(D)	$2\pi i\delta'$	$w + w_0$)	
(3)	If $C: z-1 $	$=\frac{1}{2}$ in c	counterc	lockwis	e oriente	ed, then	$\oint_C \frac{\cos}{z^2}$	$\frac{z}{dz} = $		(B
	(A) $2\pi i$		(B) 0		(C) π <i>i</i>		(D)	1		
(4)	Let $F(s) = \frac{1}{(s)^n}$	$\frac{5}{(s+1)^2+25}$,	then $f($	$(t) = \mathcal{L}^{-1}$	$^{-1}[F(s)]$	=				(B
	(A) $e^{-t}\cos 5$	it	(B) e ⁻	$t \sin 5t$	(C) e^t co	s 5 <i>t</i>	(D)	$e^t \sin 5$	5t	U
(5)	Which of the followings is not correct?										
	(A) $\delta(-t) =$					(B) $\mathscr{F}[u(t)] = \frac{1}{w} + \pi \delta(w)$					D
	(C) $\mathscr{F}[e^{-at}]$	$=\frac{1}{a+i}$	w			(D) 3	[sgnt]	$=\frac{2}{iw}$			
2. I	Fill in each l	blank (3 poin	ts each	, total 3	30 poin	ts)				
(1)	$\sqrt[3]{-2 + 2i} =$	12e3	- 1, k	50,1,2	m = 2	E. Cari	-				
(2)	$\sqrt[3]{-2 + 2i} = $ $\lim_{z \to 1 + i} \frac{\overline{z}}{z} = $	-i		1-i 1+i	= (1-1)	- = It	1-21				
(3)	Let $C: z =$	1, then v	when a	$<1,\oint_{C}$	$\frac{\sin z}{(z-a)}$	$\frac{1}{2}dz = $	22/203	<u>(</u> ;		8 211 (sing	b) (2-a
	when $ a > 1$,	$ \oint_C \frac{\sin z}{(z-z)^2} dz $	$\frac{\ln z}{-a)^2}dz$	=							
(4)	The radius of	f the cor	nvergen	ce of $\sum_{n=0}^{\infty}$	$\frac{n}{2^n}z^n$ is	-2	/	<u>-</u> -			

 $\sqrt{\frac{n}{2^n}} = \frac{1}{2} - \frac{1}{2}$

$$\lim_{z \to i} \frac{z^2}{z + i} = \frac{i^2}{-2i}$$

$$= -\frac{i}{2}$$

(5) The Taylor series of
$$\frac{1}{1+z}$$
 around $z=0$ is _______.

(6) Let
$$f(z) = \frac{z^2}{1+z^2}$$
, then $\text{Res}[f(z), -i] = \frac{1}{2}$, $\text{Res}[f(z), i] = \frac{1}{2}$

What kind of isolated singular point of
$$\frac{\sin z - z}{z^3}$$
 at $z = 0$? [emovable]

What kind of isolated singular point of $f(z) = \frac{\sin z}{z^3}$ at $z = 0$? [Please fill in removable singularity, pole and its order, essential singularity, or not isolated singularity).

3. (7 points)

Given a function
$$v(x, y) = \arctan \frac{y}{x}$$
 $(x > 0)$, find an analytic function $f(z) = u(x, y) + iv(x, y)$.

$$\frac{\partial y}{\partial x} = \frac{-\frac{y}{x^2}}{|+\frac{y^2}{x^2}|} = \frac{-\frac{y}{x^2+y^2}}{|+\frac{y^2}{x^2}|} = \frac{\frac{y}{x^2+y^2}}{|+\frac{y^2}{x^2}|} = \frac{\frac{y}{x^2+y^2}}{|+\frac{y^2}{x^2}|} = \frac{\frac{y}{x^2+y^2}}{|+\frac{y^2}{x^2}|} = \frac{\frac{y}{x^2+y^2}}{|+\frac{y^2}{x^2+y^2}|} = \frac{\frac{y}{x^2+y^2}}{|+\frac{y^2}{x^2+y^2}|} = \frac{\frac{y}{x^2+y^2}}{|+\frac{y}{x^2+y^2}|} = \frac{\frac{y}{x^2+y^2}}{|+\frac{y}{x^2+y^2}|} + C(y)$$

$$\frac{\partial u}{\partial x} = \frac{y}{x^2+y^2} + C(y) = \frac{y}{x^2+y^2}$$

$$C(y) = 0 \qquad C(y) = C$$

$$\therefore U = \frac{1}{2} (n(x^2+y^2) + C + 2arcdon \frac{y}{x^2+y^2})$$

$$= \frac{1}{2} (n|x^2+y^2) + C$$

$$= (|x| + 2arg + C)$$

= hz+ c

4. (4 points each)

Compute Laurent series of function $f(z) = \frac{1}{(z-1)(z-2)}$ in the assigned annulus:

$$(1) \ 0 < |z - 1| < 1$$

$$f(z) = \frac{1}{z-1} \cdot \frac{1}{z-1-1} = -\frac{1}{z-1} \cdot \frac{1}{1-(z-1)} = -\frac{1} \cdot \frac{1}{1-(z-1)} = -\frac{1}{z-1} \cdot \frac{1}{1-(z-1)} = -\frac{1}{z-1} \cdot \frac{$$

(2)
$$1 < |z - 1| < +\infty$$

$$f(z) = \frac{1}{z-1} \cdot \frac{1}{z-1} = \frac{1}{(z-1)^2} \cdot \frac{1}{1-\frac{1}{z-1}} = \frac{1}{(z-1)^2} \cdot \frac{1}{1-\frac{1}{z-1}}$$

$$\int_{1}^{1} (z^{2}) = \frac{1}{z^{2}-1} \cdot \frac{1}{z^{2}-2} = \frac{1}{z^{2}-2} \cdot \frac{1}{z^{2}-2+1} = \frac{1}{z^{2}-2} \cdot \frac{1}{z^{2}-2} \cdot \frac{1}{z^{2}-2} \cdot \frac{1}{z^{2}-2} = \frac{1}{z^{2}-2} \cdot \frac{1}{z^{2}-2} \cdot \frac{1}{z^{2}-2} \cdot \frac{1}{z^{2}-2} = \frac{1}{z^{2}-2} \cdot \frac{1}{z$$

5. (5 points each)

Find Laplace transform of the following f(t):

 $(1) f(t) = e^{-at} \sin kt$

$$d(sinkt) = \frac{k}{s^2+k^2}$$

$$d(e^{-at}sinkt) = \frac{k}{(sta)^2+k^2}$$

 $(2) f(t) = t \cos t.$

6. (6 points each)

Evaluate the following integrals:

(1)
$$\int_{-\infty}^{+\infty} \frac{dx}{x^2 + 2x + 2}$$

$$f(z) = \frac{1}{z^2 + 2z + z} = \frac{1}{(z + 1)^2 + 1} = \frac{2\pi i}{z + 1} = \frac{2\pi i}{z$$

$$(2) \int_{0}^{2\pi} \frac{d\theta}{2 + \cos \theta}.$$

$$= \int_{|2|=1}^{2} \frac{1}{2 + \frac{2+\frac{1}{2}}{2}} \cdot \frac{1}{i \cdot 3} dz$$

$$= \int_{|2|=1}^{2} \frac{1}{i} \cdot \frac{1}{42 + 2 + 1} dz$$

$$= \frac{1}{i} \int_{|2|=1}^{2} \frac{1}{2^{i} + 42 + 4 - 3} dz$$

$$= \frac{1}{i} \int_{|2|=1}^{2} \frac{1}{2^{i} + 42 + 4 - 3} dz$$

$$= \frac{1}{i} \int_{|2|=1}^{2} \frac{1}{2^{i} + 42 + 4 - 3} dz$$

$$= \frac{1}{i} \cdot |\pi_{i}| \operatorname{Res} \left\{ f(z), \sqrt{x} - 2 \right\}$$

$$= 4\pi \cdot \lim_{z \to \sqrt{x} - 2} \frac{1}{2 + 2 + 3} = 4\pi \cdot \frac{1}{\sqrt{x} - 2 + 2 + 3} = 2\pi$$

$$= 2\pi \cdot \frac{1}{\sqrt{x}} \cdot \frac{1}{\sqrt{x}} = 4\pi \cdot \frac{1}{\sqrt{x}} = 2\pi$$

7. (7 points)

Solve the following differential equation using Laplace transform: $y'' + 4y' + 3y = e^{-t}$, y(0) = y'(0) = 1.

$$s^{2}Y(s) - sy(0) - y'(0) + Y(sY(s) - y(0)) + 3Y(s) = \frac{1}{s+1}$$

$$(s^{2}+4s+3) Y(s) - s - 1 - 4 = \frac{1}{s+1}$$

$$(s+1)(s+3) Y(s) = s + 5 + \frac{1}{s+1}$$

$$Y(s) = \frac{s^{2}+6s+s+1}{(s+1)^{2}(s+3)} = \frac{1}{2} \cdot \frac{1}{(s+1)^{2}} + \frac{3}{4} \cdot \frac{1}{s+1}$$

$$Y(t) = \frac{1}{2} + e^{-t} + \frac{3}{4}e^{-t} - \frac{3}{4}e^{-3t}$$

8. (7 **points**) Suppose that f(z) and g(z) are analytic at z = a and $f(a) \neq 0$. If g(z) has a zero of order 2 at z = a, then prove that $\text{Res}[\frac{f(z)}{g(z)}, a] = \frac{6f'(a)g''(a) - 2f(a)g'''(a)}{3[g''(a)]^2}$.

$$g(z) = (z-a)^{2} p(z), p(a) = 0$$

$$\operatorname{Res}\left(\frac{f(z)}{g(z)}, \alpha\right) = \lim_{z \to \alpha} \frac{f(z)}{\phi(z)} = \frac{f(z)}{f(z)} \frac{f(z)}{\phi(z)} = \frac{f'(\alpha)\phi(\alpha) - f(\alpha)\phi'(\alpha)}{\phi'(\alpha)} = \frac{f'(\alpha)\phi(\alpha) - f(\alpha)\phi'(\alpha)}{\phi'(\alpha)}$$

(6=0) (1=0), (1=0)
$$\phi(\alpha) = c_2$$
 $\phi(\alpha) = c_3 = \frac{g^{*}(\alpha)}{3!}$ $= \frac{g^{*}(\alpha)}{3!}$

$$\frac{1}{16} \cdot \text{Res}\left(\frac{f(a)}{g(a)}, a\right) = \frac{f'(a)\frac{g''(a)}{2} - f(a)\frac{g'''(a)}{6}}{\left(\frac{g''(a)}{2}\right)^{2}} = \frac{6f'(a)g''(a) - 2f(a)g'''(a)}{3[g''(a)]^{2}}$$