Search

home / study / engineering / electrical engineering / electrical engineering questions and answers / (15 pts) solve the following questions using th...

Question: (15 pts) Solve the following questions using the appropriate pr...

(15 pts) Solve the following questions using the appropriate properties of the Fourier Transform. (In part a give the derivation and in parts b, c use the properties.)

Who are the experts?

Experts are tested by Chegg as specialists in their subject area.

We review their content and use

your feedback to keep quality

high.

- (a) (5 pts) Derive the Fourier transform of the signal $e^{-|t|}$.
- (b) (5 pts) Find the Fourier transform of $te^{-|t|}$.
- (c) (5 pts) Using the result of part b find the Fourier transform of $\frac{4t}{(1+t^2)^2}$

Show transcribed image text

Expert Answer (1)

RAVI SHANKAR KUMAR & 1,247 answers

SOLUTION

a)

Let

$$f(t) = e^{-|t|}$$

The Fourier transform of signal f(t)

$$F(\omega) = \int_{-\infty}^{\infty} f(t) e^{-jwt} dt$$

$$F(\omega) = \int_{-\infty}^{\infty} e^{-|t|} e^{-jwt} dt$$

$$F(\omega) = \int_{-\infty}^{0} e^{t} e^{-jwt} dt + \int_{0}^{\infty} e^{-t} e^{-jwt} dt$$

$$F(\omega) = \int_{-\infty}^{0} e^{t(1-jw)} dt + \int_{0}^{\infty} e^{-t(1+jw)} dt$$

$$F(\omega) = \left[\frac{1}{(1 - jw)} e^{t(1 - jw)} \right]_{-\infty}^{0} + \left[\frac{1}{-(1 + jw)} e^{-t(1 + jw)} \right]_{0}^{\infty}$$

$$F(\omega) = \left[\frac{1}{(1 - jw)} e^{t(1 - jw)} \right]_{-\infty}^{0} - \left[\frac{1}{(1 + jw)} e^{-t(1 + jw)} \right]_{0}^{\infty}$$

$$F(\omega) = \left[\frac{1}{(1-jw)} - 0\right] - \left[0 - \frac{1}{(1+jw)}\right]$$

$$F(\omega) = \left[\frac{1}{(1-jw)} \right] - \left[-\frac{1}{(1+jw)} \right]$$

$$F(\omega) = \left[\frac{1}{(1-jw)}\right] + \left[\frac{1}{(1+jw)}\right]$$

$$F(\omega) = \frac{2}{1 + w^2}$$

i.e

Fourier transform of

$$f(t) = e^{-|t|}$$

$$F(\omega) = \frac{2}{1 + w^2}$$

b)

Fourier transform of

$$f(t) = e^{-|t|}$$

■ 0

■ 0

Was this answer helpful?

Post a question

Answers from our experts for your tough homework questions

Enter question

Continue to post

20 questions remaining

Snap a photo from your phone to post a question

We'll send you a one-time download

888-888-888

Text me

By providing your phone number, you agree to receive a one-time tomated text message with a link to get the app. Standard messaging rates may apply.

My Textbook Solutions

Signals, Systems, &... 5th Edition

Signals and Systems 2nd Edition

Fundamental s of Signals... **Oth Edition**

View all solutions

Fourier transform of

$$x(t) = t \, e^{-|t|}$$

$$x(t) = t f(t)$$

is

$$X(\omega) = j \frac{dF(\omega)}{d\omega}$$

[using multiplication of t with f(t) properties]

i e

Now,

$$X(\omega) = j \frac{dF(\omega)}{d\omega}$$

$$X(\omega) = j \left[-\frac{4\omega}{\left(1 + \omega^2\right)^2} \right]$$

$$X(\omega) = -j \left[\frac{4\omega}{\left(1 + \omega^2\right)^2} \right]$$

i.e

The Fourier transform of

$$x(t) = t e^{-|t|}$$

:-

$$X(\omega) = -j \left[\frac{4\omega}{\left(1 + \omega^2\right)^2} \right]$$

c)

Let

$$g(t) = \frac{4t}{(1+t^2)^2}$$

Now,

The Fourier transform of

$$x(t) = t \, e^{-|t|}$$

is

$$X(\omega) = -j \left[\frac{4\omega}{\left(1 + \omega^2\right)^2} \right]$$

l.e

$$x(t) \leftrightarrow X(\omega)$$

$$t e^{-|t|} \leftrightarrow -j \left[\frac{4\omega}{(1+\omega^2)^2} \right]$$

Now

Using the duality property of Fourier transform

If
$$x(t) \leftarrow FT \rightarrow X(\omega)$$
 then,

$$X$$
 (t) \leftarrow FT \rightarrow 2π $x(-\omega)$

i.e

$$-j\left[\frac{4t}{\left(1+t^2\right)^2}\right] \leftrightarrow 2\pi(-\omega) \; e^{-|(-\omega)|}$$

on simplifying,

$$-j\left[\frac{4t}{\left(1+t^2\right)^2}\right] \leftrightarrow -2\pi\omega\;e^{-|\omega|}$$

$$j\left[\frac{4t}{\left(1+t^2\right)^2}\right] \leftrightarrow 2\pi\omega \; e^{-|\omega|}$$

$$\lfloor (1+t^2)^2 \rfloor$$
 j

$$\frac{4t}{\left(1+t^2\right)^2} \leftrightarrow \frac{1}{j} \cdot 2\pi\omega \; e^{-|\omega|}$$

$$\frac{4t}{\left(1+t^2\right)^2} \leftrightarrow -j \cdot 2\pi\omega \; e^{-|\omega|}$$

Hence,

The Fourier transform of

$$g(t) = \frac{4t}{\left(1 + t^2\right)^2}$$

$$G(\omega) = -j \cdot 2\pi\omega \; e^{-|\omega|}$$

Comment >

Questions viewed by other students

Q: (15 pts) Using Fourier Transform properties, please solve them (a) (5 pts) Firstly derive a Fourier transform of the signal e-It|. (b) (5 pts) Deterimine the Fourier transform of te-1t|. (C) (5 pts) Using the result of part b find the Fourier transform of (1442)2 ·

A: See answer

COMPANY

About Chegg Chegg For Good College Marketing Corporate Development Investor Relations Jobs Join Our Affiliate Program Media Center

LEGAL & POLICIES

Advertising Choices Cookie Notice General Policies Intellectual Property Rights Terms of Use Global Privacy Policy DO NOT SELL MY INFO Honor Code Honor Shield

CHEGG PRODUCTS AND SERVICES

Cheap Textbooks Chegg Coupon Chegg Play Chegg Study Help College Textbooks eTextbooks Flashcards Chegg Math Solver

Mobile Apps Sell Textbooks Solutions Manual Study 101 Textbook Rental **Used Textbooks** Digital Access Codes Chegg Money

CHEGG NETWORK

EasyBib Internships.com Thinkful

CUSTOMER SERVICE

Customer Service Give Us Feedback Help with eTextbooks Help to use EasyBib Plus Manage Chegg Study Subscription Return Your Books Textbook Return Policy

Site Map

© 2003-2021 Chegg Inc. All rights reserved.