

Figure 51.11: Let C be the solid peach tetrahedron in \mathbb{R}^3 . The small upside-down magenta tetrahedron is the translate of $N_C(a)$. Figure (a) shows that the normal cone is separated from C by the horizontal green supporting hyperplane. Figure (b) shows that any vector $u \in N_C(a)$ does not make an acute angle with a line segment in C emanating from a.

Assume that f(x) is finite. Observe that the subgradient inequality says that 0 is a subgradient at x iff f has a global minimum at x. In this case, the hyperplane \mathcal{H} (in \mathbb{R}^{n+1}) defined by the affine form $\omega(y,\alpha) = f(x) - \alpha$ is a horizontal supporting hyperplane to the epigraph $\mathbf{epi}(f)$ at (x, f(x)). If $u \in \partial f(x)$ and $u \neq 0$, then $(*_{\text{subgrad}})$ says that the hyperplane induced by the affine form $z \mapsto \langle z - x, u \rangle + f(x)$ as in Proposition 51.9 is a nonvertical supporting hyperplane \mathcal{H} (in \mathbb{R}^{n+1}) to the epigraph $\mathbf{epi}(f)$ at (x, f(x)). The vector $(u, -1) \in \mathbb{R}^{n+1}$ is normal to the hyperplane \mathcal{H} . See Figure 51.13.

Indeed, if $u \neq 0$, the hyperplane \mathcal{H} is given by

$$\mathcal{H} = \{ (y, \alpha) \in \mathbb{R}^{n+1} \mid \omega(y, \alpha) = 0 \}$$

with $\omega(y,\alpha) = \langle y - x, u \rangle + f(x) - \alpha$, so $\omega(x, f(x)) = 0$, which means that $(x, f(x)) \in \mathcal{H}$. Also, for any $(z,\beta) \in \mathbf{epi}(f)$, by $(*_{\mathrm{subgrad}})$, we have

$$\omega(z,\beta) = \langle z - x, u \rangle + f(x) - \beta \le f(z) - \beta \le 0,$$

since $(z, \beta) \in \mathbf{epi}(f)$, so $\mathbf{epi}(f) \subseteq \mathcal{H}_-$, and \mathcal{H} is a nonvertical supporting hyperplane (in \mathbb{R}^{n+1}) to the epigraph $\mathbf{epi}(f)$ at (x, f(x)). Since

$$\omega(y,\alpha) = \langle y - x, u \rangle + f(x) - \alpha = \langle (y - x, \alpha), (u, -1) \rangle + f(x),$$

the vector (u, -1) is indeed normal to the hyperplane \mathcal{H} .

The above facts are important and recorded as the following proposition.

Proposition 51.10. For every $x \in \mathbb{R}^n$, if f(x) is finite, then f is subdifferentiable at x if and only if there is a nonvertical supporting hyperplane (in \mathbb{R}^{n+1}) to the epigraph $\mathbf{epi}(f)$ at