Московский государственный технический университет им. Н.Э.Баумана Кафедра «Системы обработки информации и управления»

Лабораторная работа №5 по дисциплине «Методы машинного обучения» на тему «Предобработка текста »

Выполнил: Студент группы ИУ5-21М Ся Бэйбэй

1. Цель лабораторной работы

Изучение методов предобработки и классификации текстов.

2. Задание

1. Для произвольного предложения или текста решите следующие задачи:

Токенизация.

Частеречная разметка.

Лемматизация.

Выделение (распознавание) именованных сущностей.

Разбор предложения.

2.Для произвольного набора данных, предназначенного для классификации текстов, решите задачу классификации текста двумя способами:

Способ 1. Ha основе CountVectorizer или TfidfVectorizer.

Способ 2. На основе моделей word2vec или Glove или fastText.

Сравните качество полученных моделей.

3. Ход выполнения работы

3.1 Для произвольного предложения или текста

Токенизация

NLTK:

```
In [1]: | text1 = 'Шэньчжэнь — крупный китайский город, расположенный на юге страны, возл text2 - 'Китай или Чжун Го, как его называют сами китайны, является одной на самы text3 - 'Топография Китай очень разнообразия, на его территории имеются высоки import nitk intk. download('punkt')

[nitk_data] Downloading package punkt to filtk_data] Crubera Oscara Appbata Komming\nitk_data...

[nitk_data] Package punkt is already up-to-date!

[nitk_data] Package punkt is already up-to-date!

[nitk_data] Crubera Oscara Crubera Crubera Oscara Crubera Crubera Oscara Crubera Crubera Oscara Crubera Cr
```

```
In [4]: | M | nltk_tk_1 = nltk.WordPunctTokenizer()
nltk_tk_1.tokenize(text1)
           Out[4]: ['Шэньчжэнь',
                        '__',
'крупный',
'китайский',
'город',
                        ',',
'расположенный',
'на',
'юге',
'страны',
                        'Гонконгом',
                        '.',
'Он',
'построен',
'в',
                       в, устье, устье, устье, жемчужной, реки, на, побережье, Южно',
                        'Китайского',
'моря',
                       В',
"Мире",
"Шэньчжэнь",
Воспринимают',
как",
      In [5]: 

# Tokehusauns no предложени nltk_tk_sents = nltk.tokenize.sent_tokenize(text1) print(len(nltk_tk_sents)) nltk_tk_sents
            Out[5]: ['Шэньчжэнь — крупный китайский город, расположенный на юге страны, возле г
раницы с Гонконгом.',
'Он построен в устье Жемчужной реки, на побережье Южно-Китайского моря.',
'В мире Шэньчжэнь воспринимают как экономическое чудо,',
'Его называют «городом парков и небоскребов», а также китайской «Силиконовой долиной».']
Spacy:
                     | from spacy, lang, ru import Russian import spacy | nlp = spacy, load('ru_core_news_sm') | spacy_textl = nlp(textl) | spacy_textl
        In [7]:
              Out[7]: Шэньчжэнь — крупный китайский город, расположенный на юге страны, возле гр
аницы с Гонконгом. Он построен в устье Жемчужной реки, на побережье Южно-Ки
тайского моря. В мире Шэньчжэнь воспринимают как экономическое чудо. Его н
азывают «городом парков и небоскребов», а также китайской «Силиконовой доль
        ан сжи ан сШ
                          —
крупный
китайский
город
                          ,
расположенный
на
юге
страны
                          с
Гонконгом
                          О н
построен
                          устье
Жемчужной
реки
                          на
побережье
       spacy_text2
             Out[9]: Китай или Чжун Го, как его называют сами китайцы, является одной из самых уд
                         ивительных и загадочных стран мира
      spacy_text3
            Out[10]: Топография Китая очень разнообразна, на его территории имеются высокие го
ры, плато, впадины, пустыни и обширные равнины.
```

Natasha:

```
In [11]: H #pip install razdel from razdel import tokenize, sentenize
    In [12]: \mathbf{H} n_{\text{tok\_text1}} = 1 \text{ist(tokenize(text1))} 
n_{\text{tok\_text1}}
                                   n_tok_text1

[Substring(0, 9, 'Шэньчжэнь'),
Substring(10, 11, '—'),
Substring(12, 19, 'крупный'),
Substring(20, 29, 'китайский'),
Substring(30, 35, 'город'),
Substring(35, 36, ',),
Substring(37, 50, 'расположенный'),
Substring(37, 50, 'расположенный'),
Substring(54, 57, 'юге'),
Substring(64, 57, 'юге'),
Substring(64, 57, 'юге'),
Substring(66, 71, 'возле'),
Substring(72, '9, 'граннін'),
Substring(80, 81, 'с'),
Substring(80, 81, 'с'),
Substring(82, 91, 'Гонконгом'),
Substring(91, 92, '),
Substring(93, 95, 'Он'),
Substring(91, 92, '),
Substring(10, 112, 'устье'),
Substring(10, 112, 'устье'),
Substring(113, 122, 'Жемчужной'),
Substring(123, 127, 'реки'),
Substring(123, 127, 'реки'),
Substring(123, 127, 'реки'),
Substring(123, 127, 'реки'),
Substring(123, 124, 'но бережье'),
Substring(129, 131, 'на'),
Substring(132, 141, 'по бережье'),
Substring(132, 144, 'по бережье'),
Substring(132, 144, 'по бережье'),
Substring(162, 163, ','),
Substring(164, 165, 'B'),
Substring(171, 180, 'Шөньчжэнь'),
Substring(181, 193, 'Воспринимают'),
              Out[12]: [Substring(0, 9, 'Шэньчжэнь'),
In [13]: M [_.text for _ in n_tok_text1]
        Out[13]: ['Шэньчжэнь',
                                 '—',
'крупный',
'китайский',
'город',
                                расположенный,
на,
оге,
страны,
граны,
границы,
границы,
                                 , Он',
'построен',
                                   В',
'устье',
'Жемчужной',
'реки',
                                 , в',
, мире',
                                 мире,
'Шэньчжэнь',
'воспринимают',
'как',
'экономическое',
   Out[14]: [Substring(0,
                                             stringers.
163.
'Он построен в устье Жемчужной реки, на побережье Южно-Китайского мор
                                    я.'),
Substring (164, 217, 'В мире Шэньчжэнь воспринимают как экономическое чудо.'),
Substring (218,
303,
'Его называют «городом парков и небоскребов», а также китайской «Силик
оновой долиной»,')]
                                   оновой
    In [15]: M [_.text for _ in n_sen_text1], len([_.text for _ in n_sen_text1])
             Out[15]: (['Шэньчжэнь — крупный китайский город, расположенный на юге страны, возле г
раницы с Гонконгом.',
 'Он построен в устье Жемчужной реки, на побережье Южно-Китайского моря.',
 'В мире Шэньчжэнь воспринимают как экономическое чудо.',
 'Его называют «городом парков и небоскребов», а также китайской «Силиконов
ой долиной».'],
```

```
In [16]: | | # タアロア Baphahr Tokehhsauhh нужен для последующей обработки ## 进一步处理高硬这个标记化选项 def n_sentenize(text): n_sen_chunk = [] for sent in sentenize(text): tokens = [_.text for _ in tokenize(sent.text)] n_sen_chunk.append(tokens) return n_sen_chunk
                      а',
побережь
'Южно-Кита'
'моря'.

[18]: М п_sen_chunk_2 = n_se.
n_sen_chunk_2

Out[18]: ['Китаа',
'или',
'Чжун',
'Го',
'Как',
'его',
'называют',
'сами',
'китаацы',
''инаацы',
           In [18]: \mathbf{H} n_sen_chunk_2 = n_sentenize(text2) n_sen_chunk_2
           In [19]: \mathbf{M} n_sen_chunk_3 = n_sentenize(text3) n_sen_chunk_3
                                        Out[19]: [['Топография',
'Китая',
'очень',
'разнообразна',
                                                                                                           ра -
, на , его , территории , имеются , высокие , горы , горы , лато ,
```

Частеречная разметка

Spacy:

Natasha:

Лемматизация

Spacy

Natasha

```
In [33]: N n_doc2 = n_lemmatize(text2)
Cut[33]: (Kut = n n_i kut =
```

Выделение (распознавание) именованных сущностей

```
Spacy
```

In [35]: **М** #Выделение 选择 #Spacy for ent in spacy_text3.ents:

print(ent.text, ent.label_)

```
Китая LOC
впадины LOC
    In [36]: M from spacy import displacy
displacy.render(spacy_text3, style='ent', jupyter=True)
                 Топография Китая Loc очень разнообразна, на его территории имеются высокие горы, плато, впадины Loc , пустыни и обширные
                 равнины.
    In [37]: M print(spacy.explain("LOC"))
                 Non-GPE locations, mountain ranges, bodies of water
    In [38]: ▶ print(spacy.explain("PER"))
                 Named person or family.
Natasha
    In [40]: 州 #撰语 NER、标准 PER、LOC、ORC 注释,受过新闻文章特训 ner = NER.load('./slownet_ner_news_vl.tar')
    In [42]: M markup_ner3 = ner(text3)
    In [43]: ► markup_ner3
         Out[43]: SpanMarkup(
                  text="Топография Китая очень разнообразна, на его территории имеются ие горы, плато, впадины, пустыни и обширные равнины.',
                     spans=[Span(
                         stop=10,
type='ORG'
                      Span (
                         start=11,
                         stop=16,
type='LOC'
    In [44]: N show_markup(markup_ner3.text, markup_ner3.spans)
                  Топография Китая очень разнообразна, на его территории имеются высокие
                                - LOC-
                   горы, плато, впадины, пустыни и обширные равнины.
```

Разбор предложения

Spacy

In [45]: **N** #P a s o o p n p e д л o ж e н и л 提案分析
from spacy import displacy
displacy.render(spacy_text1, style='dep', jupyter=True)

In [46]: | displacy.render(spacy_text2, style='dep', jupyter=True)

In [47]: H print(spacy.explain("NOUN"))
noun

In [48]: H print(spacy.explain("amod"))
adjectival modifier

In [49]: H displacy.render(spacy_text3, style='dep', jupyter=True)

Natasha

3.2 Для произвольного набора данных, предназначенного для классификации текстов Анализоценки:

1.Модель word2vec:

```
In [2]: ⋈ import re
               import pandas as pd
import numpy as np
                from typing import Dict, Tuple
                from sklearn.metrics import accuracy_score, balanced_accuracy_score
from sklearn.feature_extraction.text import CountVectorizer, TfidfVectorizer
                from sklearn.linear_model import LogisticRegression
from sklearn.pipeline import Pipeline
                from nltk import WordPunctTokenizer
                from nltk.corpus import stopwords
                import nltk
               nltk. download ('stopwords')
                [nltk_data] Downloading package stopwords to
                                  C:\Users\92883\AppData\Roaming\nltk_data...
                [nltk_data] Package stopwords is already up-to-date!
      Out[2]: True
In [3]: | # 3 a r p y s k a A a H H M K imdb_df = pd.read_csv("./sen.txt", delimiter='_label__', header=None, names=['value', 'text'])
                imdb_df.head()
               D:\AppIntasll\Anaconda\lib\site-packages\pandas\util\_decorators.py:311: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators \ 1 char and different from '\s+' are interpreted as regex); you can avoid this
               warning by specifying engine='python'
return func(*args, **kwargs)
     Out[3]:
                                                                    text
                 0 2 Great CD: My lovely Pat has one of the GREAT v...
                 1
                       2 One of the best game music soundtracks - for a...
                 2
                      1 Batteries died within a year ...: I bought thi...
                        2 works fine, but Maha Energy is better: Check o...
                 4 2 Great for the non-audiophile: Reviewed quite a...
                 corpus = []
                  stop_words = stopwords.words('english')
                 tok = WordPunctTokenizer()
for line in imdb_df['text'].values:
                      line1 = line. strip(). lower()
line1 = re. sub("[^a-zA-Z]", " ", line1)
                      text_tok = tok.tokenize(line1)
text_tok1 = [w for w in text_tok if not w in stop_words]
                      corpus. append (text_tok1)
  In [5]: M corpus[:5]
                     voices
                     generation'
                     listened,
                     cď,
                    years',
'still',
                     love',
                     good',
                     mood',
                     makes',
                     feel',
                     better'.
                    'bad',
'mood',
                     evaporates',
                    'like',
                     sugar',
                    'rain',
                     cď,
 In [6]: 🔰 # количество текстов в корпусе не изменилось и соответствует целевому призн
#语料库中的文本数量没有变化,与目标特征相对应
                  assert imdb_df.shape[0] == len(corpus)
 In [7]: M %time model_imdb = word2vec.Word2Vec(corpus, workers=4, min_count=10, window=10, sample=1e-3)
                 Wall time: 673 ms
In [8]: 🔰 # Проверим, что модель обучилася
               print(model_imdb.wv.most_similar(positive=['great'], topn=5))
               [('also', 0.9997166395187378), ('high', 0.9996911883354187), ('get', 0.9996903538703918), ('never', 0.9996834993362427), ('way', 0.999682
               4860572815)
In [9]: ► #基于word2vec模型解决文本情感分析问题
               def sentiment(v, c):
                  v pred = model.predict(X test)
                    print_accuracy_score_for_classes(y_test, y_pred)
```

```
In [10]: M def accuracy_score_for_classes(
                           y_true: np.ndarray,
y_pred: np.ndarray) -> Dict[int, float]:
                            Вычисление метрики accuracy для каждого класса
                           y_true - истинные значения классов
y_pred - предсказанные значения классов
Возвращает словарь; ключ - метка класса,
                            значение – Accuracy для данного класса
                           # Для удобства фильтрации сформируем Pandas DataFrame d = {'t': y_true, 'p': y_pred} df = pd. DataFrame (data=d)
                           {\tt classes = np.\,unique(y\_true)}
                           # Результирующий словарь res = dict()
                            # Перебор меток классов
                               r c in classes:

# отфильтруем данные, которые соответствуют

# текущей метке класса в истинных значениях

temp_data_flt = df[df['t']==]

# расчет accuracy для заданной метки класса

temp_acc = accuracy_score(
    temp_data_flt['t'].values,
    temp_data_flt['p'].values)

# сохранение результата в словарь

res[c] = temp_acc

:urn res
                            for c in classes:
                           return res
                       def print accuracy score for classes(
                           y_true: np. ndarray,
                           y_pred: np. ndarray):
                            Вывод метрики accuracy для каждого класса
                           accs = accuracy_score_for_classes(y_true, y_pred)
                           if len(accs)>0:
    print('Merka \t Accuracy')
for i in accs:
                              print('{} \t {}'.format(i, accs[i]))
```

Accuary:

```
In [13]: ► sentiment (EmbeddingVectorizer (model_imdb.wv), LogisticRegression (C=5.0))

Merra Accuracy
1 0.905829596412556
2 0.2729044834307992
```

2. CountVectorizer и TfidfVectorizer:

y_test = imdb_df.value.values[boundary:]

```
vocabVect.fit(vocab_list)
                         corpusVocab = vocabVect.vocabulary_
print('Количество сформированных признаков - {}'.format(len(corpusVocab)))
                          Количество сформированных признаков - 12348
 In [17]: M for i in list(corpusVocab)[1:10]:
                         print('{}={}'.format(i, corpusVocab[i]))
                         cd=1819
                         mv=7178
                         lovely=6453
                         pat=7875
                         has=4990
                          one=7552
                         of=7503
                          the=10919
                         voices=11806
 In [18]: M def VectorizeAndClassify(vectorizers_list, classifiers_list):
                                for v in vectorizers_list:
    for c in classifiers_list:
                                            c in classifiers_list:
pipelinel = Pipeline([("vectorizer", v), ("classifier", c)])
score = cross_val_score(pipelinel, imdb_df['text'], imdb_df['value'], scoring='accuracy', cv=3).mean()
print('Векторизация - {}'.format(v))
print('Модель для классификации - {}'.format(c))
print('Accuracy = {}'.format(score))
In [20]: M vectorizers_list = [CountVectorizer(vocabulary = corpusVocab), TfidfVectorizer(vocabulary = corpusVocab)] classifiers_list = [LogisticRegression(C=3.0), LinearSVC(), KNeighborsClassifier()]
                         VectorizeAndClassify(vectorizers_list, classifiers_list)
  Векторизация - CountVectorizer (vocabulary={'00': 0, '000': 1, '00000': 2, '02': 3, '03': 4, '04': 5, '05': 6, '09': 7, '0zero0': 8, '10': 9, '100': 10, '1000': 11, '10000': 12, '10000000': 13, '100bucks': 14, '100ft': 15, '100x': 16, '101': 17, '1020': 18, '100ft': 19, '10th': 20, '11': 21, '1100': 22, '112': 23, '11th': 24, '12': 25, '120lbs': 26, '1215': 27, '123': 28, '124': 29, ...})
Модель для класси фикалии — LogisticRepression(C=3,0)
  Модель для классификации - LogisticRegression(C=3.0)
  Accuracy = 0.7763713080168776
  Векторизация - CountVectorizer(vocabulary={'00': 0, '000': 1, '00000': 2, '02': 3, '03': 4, '04': 5, '05': 6, '09': 7, '0zero0': 8, '10': 9, '100': 10, '1000': 11, '10000': 12, '10000000': 13, '100bucks': 14, '100ft': 15, '100x': 16, '101': 17, '1020': 18, '10off': 19, '10th': 20, '11': 21, '1100': 22, '112': 23, '11th': 24, '12': 25, '120lbs': 26, '1215': 27, '123': 28, '124': 29, ...})
  Модель для классификации - LinearSVC()
  Accuracy = 0.7643158529234478
  Векторизация - CountVectorizer(vocabulary={'00': 0, '000': 1, '00000': 2, '02': 3, '03': 4, '04': 5, '05': 6, '09': 7, '0zero0': 8, '10': 9, '100': 10, '1000': 11, '10000': 12, '10000000': 13, '100bucks': 14, '100ft': 15, '100x': 16, '101': 17, '1020': 18, '10off': 19, '10th': 20, '11': 21, '1100': 22, '112': 23, '11th': 24, '12': 25, '120lbs': 26, '1215': 27, '123': 28, '124': 29, ...})
  Модель для классификации - KNeighborsClassifier()
  Accuracy = 0.5762507534659433
  Векторизация - TfidfVectorizer (vocabulary={'00': 0, '000': 1, '00000': 2, '02': 3, '03': 4, '04': 5, '05': 6, '09': 7, '0zero0': 8, '10': 9, '100': 10, '1000': 11, '10000': 12, '10000000': 13, '100bucks': 14, '100ft': 15, '100x': 16, '101': 17, '1020': 18, '10off': 19, '10th': 20, '11': 21, '1100': 22, '112': 23, '11th': 24, '12': 25, '120lbs': 26, '1215': 27, '123': 28, '124': 29, ...})
Модельная классификации - LogisticRepression(C-3,0)
  Модель для классификации - LogisticRegression(C=3.0)
  Accuracy = 0.7974683544303797
```

```
Векторизация - TfidfVectorizer (vocabulary= ('00': 0, '000': 1, '00000': 2, '02': 3, '03': 4, '04': 5, '05': 6, '09': 7, '0zero0': 8, '10': 9, '100': 10, '1000': 11, '10000': 12, '10000000': 13, '100bucks': 14, '100ft': 15, '100x': 16, '101': 17, '1020': 18, '10off': 19, '10th': 20, '11': 21, '1100': 22, '112': 23, '11th': 24, '12': 25, '1201bs': 26, '1215': 27, '123': 28, '124': 29, ...})
Модель для классификации - LinearSVC()
Accuracy = 0.7920433996383364
_____
Векторизация - TfidfVectorizer (vocabulary= ('00': 0, '000': 1, '00000': 2, '02': 3, '03': 4, '04': 5, '05': 6, '09': 7, '0zero0': 8, '10': 9, '100': 10, '1000': 11, '10000': 12, '10000000': 13, '100bucks': 14, '100ft': 15, '100x': 16, '101': 17, '1020': 18, '10off': 19, '10th': 20, '11': 21, '1100': 22, '112': 23, '11th': 24, '12': 25, '1201bs': 26, '1215': 27, '123': 28, '124': 29, ...})
Модель для классификации - KNeighborsClassifier()
Accuracy = 0.6449668474984931
  In [21]: M X_train, X_test, y_train, y_test = train_test_split(imdb_df['text'], imdb_df['value'], test_size=0.5, random_state=1)
  y_pred = model.predict(X_test)
print_accuracy_score_for_classes(y_test, y_pred)
  In [23]: ► sentiment(TfidfVectorizer(), LogisticRegression(C=5.0))
                                  0. 8034398034398035
                                  0.8250591016548463
                  \blacktriangleright \mid \texttt{sentiment}(\texttt{TfidfVectorizer}(\texttt{ngram\_range=}(1,3)), \quad \texttt{LogisticRegression}(\texttt{C=5}.0))
  In [28]:
                                              Accuracy
                                   0. 7936117936117936
                                  0.8037825059101655
                  ▶ sentiment(TfidfVectorizer(ngram_range=(2,3)), LogisticRegression(C=5.0))
                       Метка
                                             Accuracy
                                  0. 6953316953316954
                                  0. 8392434988179669
  In [26]: M sentiment(TfidfVectorizer(ngram_range=(1,4)), LogisticRegression(C=5.0))
                       Метка
                                  a Accuracy
0.7960687960687961
                                  0. 8014184397163121
  In [27]: ▶ sentiment(TfidfVectorizer(ngram_range=(2,6)), LogisticRegression(C=5.0))
                                  0.6093366093366094
                                   0.8865248226950354
```

Сравнивая точность, я думаю, модель(TfidfVectorizer и LogisticRegression) лучше при анализе моих данных

4. Список литературы

[1] Amazon Reviews for Sentiment Analysis // Kaggle. — 2022. — Access mode: https://www.kaggle.com/datasets/bittlingmayer/amazonreviews/code?resource=download&select=tr ain.ft.txt.bz2 (online; accessed:26.04.2022).

[2] url-

https://nbviewer.org/github/ugapanyuk/ml_course_2022/blob/main/common/notebooks/text/preprocess.ipynb.

[3] url-

 $https://nbviewer.org/github/ugapanyuk/ml_course_2022/blob/main/common/notebooks/text/bag_of_words.ipynb\ .$

[4] url-

 $https://nbviewer.org/github/ugapanyuk/ml_course_2022/blob/main/common/notebooks/text/embed dings.ipynb.$