赛元触控Flash MCU介绍

■您是否有如下的困扰:

▶ 触控按键 产品 可靠性 差 ?

▶ 触控按键 项目 开发 2€?

▶ 触控按键 方案 成本 高?

目录

O SOC 触控按键解决方案的易用性

SOC 触控按键产品及应用实例

触控按键技术背景

- 触控感应技术
 - ▶ 电阻
 - > 电容
 - > 超声
 - > 红外
 - * 主流是电容感应技术
- ■电容感应应用
 - 触控屏

■ 技术原理 平板电容

■ 技术原理等效电路

Cf: 手指电容 Ch: 人体电容

Cp: PCB板上电容

Chp:人体与PCB板间电容

Cx: 等效电容

0.5p~10p 50p~100p 1p~100p 1p~10p 0.1p~5p

■ 电容感应方法

自电容

互电容

■ 技术实现方式 张弛振荡

优势:

- > 无须参考电容。
- > 易实现低功耗功能;

劣势:

- ▶ 高输入阻抗, 抗干扰能力弱;
- ➤ RC振荡易受外部环境影响;
- > 按键个数多时,扫描速度慢,分组扫描;
- ▶ Layout要求高;

SOC

■ 技术实现方式 电荷转移

优势:

- 开关电容电路与外部调制电容之间组成了个低阻通路,增强信号输入 强度;
- ➤ 每个Cx与IO 天然形成RC滤波,衰减高频噪声,增强抗干扰能力;
- ▶ 扫描速度快,按键多时无需分组;
- ➤ Layout难度低;

劣势:

>需要外接Cm参考电容;

■SOC触控技术的原理

:= Vmod 从Vref 放电到0V 时间

:= 无键按下时, 从0V 充电到Vref所需的时间

:= 有键按下时, 从0V 充电到Vref所需的时间

Tdisc

Twith

Twithout

干扰源

SOC 因应方法

> 电源噪声

软体:门限滤波;平衡算法;

邻键抑制;噪声抑制;

➤ 硬体:IC内置 RC滤波LDO/OPA/Vref

> 电源纹波

软体:平衡算法、基线更新;

➤ 硬体:IC内置LDO/OPA/Vref;

400W

交流手持电钻

<8%电压 纹波系数

干扰源

SOC 因应方法

长时间长 持续工作

> 温湿度补偿

软体:温湿度跟踪;基线更新;

信号优选;定时基线更新;

➤ 硬体:IC内置LDO/OPA/Vref;

RF射频

软体:门限滤波;噪声抑制;

信号优选;邻键抑制;

▶ 硬体:IC内置RC滤波、电源处理;

5W对讲机 5CM距离

干扰源

SOC 因应方法

> EFT

平衡算法;邻键抑制;

▶ 硬体:IC内置RC滤波、电源处理;

> CS

软体:跳频算法;多键抑制;

信号优选;噪声抑制;

> 硬体:IC集成独特的调频技术;

静态4KV 动态2KV

10V 150K~230 MHz

干扰源

> 水气

> 溢水

I. 水流速度

II. 水的厚度

III. 覆盖面积

IV. 水的种类

V. 水的温度

▶ 抹布

SOC 因应方法

软体:基线更新;滤波算法;

▶ 硬体:IC内置RC滤波,OPA/Vref

> 软体:连键抑制;邻键抑制;

滤波算法;电磁干扰抑制

▶ 硬体:IC内置RC滤波,OPA/Vref

> 软体:连键抑制;邻键抑制;

多键抑制;电磁干扰抑制

▶ 硬体:IC内置RC滤波,OPA/Vref

能操作

无跳键

无跳键

■SOC提供触控技术

SOC 触按库

- SOC 提供的技术服务
 - 数据手册
 - 规格书
 - 选型指南
 - 开发工具
 - 库文件及使用说明
 - 开发套件
 - 评估版
 - 数据采集分析工具

应用支持应用笔记参考设计调试手册在线支持现场支持

■ SOC 提供的开发工具

界面图形化,更直观

> 数据表格化,更易分析

- > 每通道可单独设置阈值,克服各种应用困难
- > 参数设置,更简便

■ 触控按键项目开发流程

■ 触控按键项目开发流程

SOC触控按键产品及应用实例

SOC 触控按键产品-RoadMap

SOC 触控按键产品-RoadMap

ROM Size) 	·····	·,····	.,	
16K					SC91F838
8K			SC91F831	SC91F832	ADC
8K			SC91F833	SC91F835	SC91F828
4K	SC91F820	SC91F821			ADC
	8	16	20	28	44 SOG No

SOC 触控按键产品-RoadMap

Function					
TK + Wheel/S	Slide	SCT8308A	SCT8310A		
TK + 数码管		SCT8208A	SCT8210A	SCT8216A	SCT8222A
TK + LED		SCT8108A	SCT8110A	SCT8116A	
TK Only	SCT8004A	SCT8008A	SCT8010A	SCT8016A	
	4	8	10	16	22 SOK NO

SOC触控按键产品及应用实例

SOC 触控按键产品-单芯片

SOC单芯片

单芯片优势:

- > 2颗IC→1颗 单芯片,省一颗触控专用IC
- > 不要通讯连接,减IO及功耗
- 》 减少PCB面积及外围器件

SOC 触控按键产品及应用实例-烟机

市场现有方案

BOM优势:

- 1、省一颗164 SOP14;
- 2、省一颗触控专用IC SOP16;
- 3、省10颗电阻, 2颗电容;
- 4、省SMT费用;

方案优势:

- 1、外置32K OSC CNT,可实现 RTC;
- 2、触控性能优势;
- 3、生产加工方便;

SOC 触控按键产品-LED Seg&TK复用

LED Seg&TK 复用 优势:

- ▶省1颗LED Driver1628
- ▶不要通讯连接控制
- ▶减少PCB面积及外围器件

SOC 触控按键产品应用实例-电磁炉面板

市场现有方案

SOC单芯片方案

BOM 优势:

- 1、省一颗1628 SOP28;
- 2、省SMT费用;

方案优势:

- 1、内置ADC,可实现面板测温;
- 2、触控性能优势;
- 3、生产加工方便;

产可靠性差

SOC触控核心算法 +MCU硬体架构

▶强!

► 开发 **难**

SOC稳定的触控库 +图形化的工具

▶易!

> 成本

SOC高集成度MCU+LedSeg&TK复用

≻低!

不好玩了

找 赛元!

THANK YOU

www.socmcu.com

