#### **MATH 503: Mathematical Statistics**

Lecture 12: Final Exam Logistics & Review

#### Kimberly F. Sellers



Department of Mathematics and Statistics Georgetown University

1

# Final Exam Logistics

- · Where & when:
  - Friday, December 10 (7-9pm); STM 110
  - Full list of final exam times & locations at <a href="https://registrar.georgetown.edu/scheduling/final-exams/fall-2021-final-exams/#">https://registrar.georgetown.edu/scheduling/final-exams/fall-2021-final-exams/#</a>
- Exam format:
  - Cumulative (over the semester)
  - 1-2 problems from recent material (red, mandatory)
  - 2-4 problems from previous material (black)

# Final Exam Logistics (cont.)

- · What I will supply:
  - Copy of the examination
  - Casella & Berger distribution handout
- · What you can bring:
  - One 8.5"×11" piece of paper (front & back)
  - Calculator

3

## **Exam Instructions**

- You have 2 hours to complete the exam.
- You must sit at least one seat-width apart from your neighbor (left, right).
- You may use only the information provided to you on your examination sheets today, one 8.5"×11" help sheet (two-sided), a calculator (not a cell phone), and the distribution handout provided to you by the instructor.
- Show your work, giving relevant reasoning and formulas.
- Keep the exam stapled together. If you need extra space to complete a problem, write on the back side of THAT problem's sheet.

# Exam Conduct & Honor System

- "Cheating is the use or attempted use of unauthorized materials, information, study aids, or unauthorized collaboration on in-class examinations.... Cheating or assisting another student to cheat in connection with an examination is academic fraud." (modified from <u>GU Honor Council</u> <u>website</u>)
- Instructors required to report any suspicion of Honor Council violation; students strongly encouraged
- See Honor Council website for further details

5

# **Topics**

- Point Estimation
  - Method of moments
  - Maximum likelihood estimation
  - Bayesian Point Estimation (Prior & Posterior Distributions)
- Estimator/Statistic qualities
  - Sufficiency
  - Completeness
  - Minimum variance unbiased estimators (MVUEs)
  - Efficiency (Cramér-Rao Lower Bound)
  - Ancillary statistics

- Hypothesis Testing
  - Likelihood Ratio Test
  - Most powerful & UMP tests
  - Power functions (including type I and II error)
- ANOVA (one-way, and two-way w/ and w/o interaction)
- Simple/linear regression

Find the MOM and MLE for  $\theta$  in the following examples:

- $X_1, \dots, X_n$  iid ~ Unif $(0, \theta)$ .
- $X_1$ , ...,  $X_n$  iid ~ Exponential(θ).

SEE SCRAP

7

## Problem 2

Let  $X_1, ..., X_n$  iid  $\sim \text{Poisson}(\theta)$ ,  $\theta > 0$ . Show that the MLE is also an efficient estimator of  $\theta$ .

SEE SCRAP

R

Tor Unif 
$$(0,\theta)$$
:

More for  $X \sim \text{Unif}(0,\theta)$ 

$$E(X) = \frac{\theta}{2} \implies \overline{X} = \frac{\widetilde{\theta}}{2}$$

$$\widetilde{\theta} = 2\overline{X} \text{ is Norm}$$

THE 
$$X_{17} \rightarrow X_n \sim \text{Unif}(0,\theta) \Rightarrow f(x) = \frac{1}{\theta}, 0 \leq x \leq \theta$$

$$\mathcal{L}(\theta, \overline{x}) = \frac{1}{\theta^n} \mathcal{I}_{(x_{(m)}, \infty)}(\theta) \text{ or } \frac{1}{\theta^n}, x_{(m)} \leq \theta$$

The likelihood has the form shown on the left. From that frigure, we clearly see that  $\hat{\theta} = X_{cm}$  because the likelihood function is maximized  $\hat{\mathcal{C}} = \hat{\theta} = X_{cm}$ .

For 
$$Exp(\theta)$$

$$\frac{\text{Mon}}{\text{E}(x)} = \theta \implies \widetilde{\theta} = \overline{x} \text{ is Mon}$$

MLE 
$$X_{11} \rightarrow X_{n} \sim Exp(\theta) \Rightarrow f(x) = \frac{1}{\theta} e^{-X_{1}\theta}$$
,  $0 \le x < \infty$ 

$$\mathcal{L}(\theta, X) = \frac{1}{\theta^{n}} e^{-\sum X_{1}/\theta} = \theta^{n} e^{-\sum X_{1}/\theta}$$

$$\frac{\partial \ln \mathcal{L}(\theta, X)}{\partial \theta} = -n \ln \theta - \frac{\sum X_{1}}{\theta}$$

$$\frac{\partial \ln \mathcal{L}(\theta, X)}{\partial \theta} = \frac{-n}{\theta} + \frac{\sum X_{1}}{\theta^{2}} = 0$$

$$-n\theta + \sum X_{1} = 0$$

$$\Rightarrow \hat{\theta} = \frac{\sum X_{1}}{n} = X$$

(2) 
$$X_{13} - 7X_{n} \sim Poisson(\theta) \Rightarrow P(X=x) = \frac{e^{-\theta}\theta^{x}}{x!}, x = 91,2, -$$

$$\mathcal{L}(\theta, x) = \prod_{i=1}^{n} \frac{e^{-\theta}\theta^{x_{i}}}{x_{i}!} = \frac{e^{-n\theta}\theta^{\Sigma x_{i}}}{TT_{x_{i}!}}$$

$$\mathcal{L}(\theta, x) = -n\theta + (\Sigma x_{i}) \ln \theta - \ln(\prod_{i=1}^{n} x_{i}!)$$

$$20.4$$

$$\frac{\partial \ln \mathcal{L}}{\partial \theta} = -n + \frac{\sum X'}{\theta} = 0$$

$$\frac{\sum X'}{n} = n \implies \hat{\theta} = \frac{\sum X'}{n} = \overline{X}$$

$$\mathbb{E}(\overline{X}) = \mathbb{E}\left(\frac{1}{n}\sum_{i=1}^{n}X_{i}\right) = \frac{1}{n}\sum_{i=1}^{n}\mathbb{E}(X_{i}) = \frac{1}{n}\sum_{i=1}^{n}\theta = \frac{n\theta}{n} = \theta : \overline{X} \text{ unbiased for } \theta$$

Let 
$$f(x) = \frac{\overline{e}^{\theta} \theta^{x}}{x!}$$

$$lnf(x) = -\theta + x ln \theta - ln x!$$

$$\frac{\partial \ln f(x)}{\partial \theta} = -1 + \frac{x}{\theta} = -1 + x\theta^{-1}$$

$$\frac{\partial^2 \ln f(x)}{\partial \theta^2} = -x \theta^{-2} = \frac{-x}{\theta^2}$$

$$I_{+}(\theta) = -E\left(\frac{\partial^{2} \ln f(x)}{\partial \theta^{2}}\right) = -E\left(\frac{-X}{\theta^{2}}\right) = \frac{1}{\theta^{2}}E(x) = \frac{1}{\theta^{2}} = \frac{1}{\theta}$$

$$\therefore CRLB = \frac{1}{nI_{+}(\theta)} = \frac{1}{n(\frac{1}{\theta})} = \frac{\theta}{n} \quad \text{(because } \hat{\theta} = \overline{X} \text{ unbiased)}$$

Meanwhile, tecause 0 - X is untined

$$Van(\hat{\theta}) = Van(\overline{X}) = Van(\frac{1}{n} \sum_{i=1}^{n} Van(X_i) = \frac{1}{n^2} \sum_{i=1}^{n} \theta = \frac{4n\theta}{n^2} = \frac{\theta}{n}$$

$$Var(\hat{\theta}) = CRLB : \hat{\theta} = X$$
 is efficient estimator of  $\theta$ 

Let  $X_1, ..., X_n$  denote a random sample from a distribution that has pdf  $f(x; \theta) = \theta e^{-\theta x}$ ,  $0 < x < \infty$ . Find a sufficient statistic for  $\theta$ , and determine a MVUE of  $\theta$ .

SEE SCRAP

9

## Problem 4

Let  $X_1, ..., X_n$  be a random sample of size n from a Poisson( $\theta$ ) distribution. Find a best critical region for testing  $H_0$ :  $\theta = 0.1$  vs.  $H_1$ :  $\theta = 0.5$ . Is this region uniformly most powerful for  $H_0$ :  $\theta = 0.1$  vs.  $H_1$ :  $\theta > 0.1$ ?

SEE SCRAP

(3) 
$$X_1, \neg X_n$$
 has pdf  $f(x,\theta) = \theta e^{-\theta x}$  i.e.  $X_i \sim \text{Exp}(\frac{1}{\theta})$ 

By Haymann Faster Factorization

Thus,

$$T_i = f(x_i; \theta) = \theta^n e^{-\theta \sum x_i} \cdot 1 \implies Y = \sum_{i=1}^n x_i \text{ is sufficient statistic for } \theta$$
 $K_i(\sum x_i; \theta) = K_i(\sum x_i; \theta) = K_i(\sum$ 

$$\mathbb{E}(Y) = \frac{n}{\theta}$$
, so consider

$$E(r) = \int_{0}^{\infty} \frac{1}{y} f(y) dy = \int_{0}^{\infty} \frac{1}{r^{2}(n)} \frac{1}{(r^{2})^{n}} y^{n-1} e^{-\frac{y}{r^{2}(r^{2})}} dy$$

$$= \frac{\theta^{n}}{r^{2}(n)} \int_{0}^{\infty} y^{n-2} e^{-\theta y} dy = \frac{\theta^{n}}{r^{2}(n)} \int_{0}^{\infty} y^{n-1} e^{-\frac{\theta y}{r^{2}}} dy$$

$$= \frac{\theta^{m}}{r^{2}(n)} \cdot \frac{r^{2}(n-1)}{\theta^{m}} \int_{0}^{\infty} \frac{\theta^{n-1}}{r^{2}(n-1)} \frac{t^{2}(r^{2})}{y^{2}} e^{-\frac{\theta y}{r^{2}}} dy$$

$$= \frac{r^{2}(n-1)\theta}{r^{2}(n)} = \frac{r^{2}(n-1)\theta}{(n-1)r^{2}(n-1)} = \frac{\theta}{n-1}$$

$$f(x) = P(X_i = x_i) = \frac{e^{\theta} \theta^{x_i}}{x_i!} \implies \mathcal{R}(\theta_i x) = \frac{e^{-n\theta} \theta^{\sum x_i}}{\prod_{i=1}^{n} x_i!}$$

$$\frac{\mathcal{L}(\theta=0.5,\mathbb{X})}{\mathcal{L}(\theta=0.5,\mathbb{X})} = \frac{e^{-n(0.1)}(0.1)}{\mathsf{T}(0.5)} \cdot \frac{\mathsf{T}(0.5)}{e^{-n(0.5)}(0.5)} \cdot \frac{\mathsf{E}_{\mathsf{X}_{i}}}{\mathsf{E}_{\mathsf{X}_{i}}} \leq \mathsf{k}$$

$$= e^{-n(0.5-0.1)} \left(\frac{0.1}{0.5}\right)^{\mathsf{T}_{\mathsf{X}_{i}}} \leq \mathsf{k}$$

$$(0.5-0.1) n + (\mathsf{T}_{\mathsf{X}_{i}}) \ln \left(\frac{0.1}{0.5}\right) \leq \mathsf{k}_{1} = \ln \mathsf{k}$$

$$(\mathsf{T}_{\mathsf{X}_{i}}) \ln \left(\frac{0.1}{0.5}\right) \leq \mathsf{k}_{2} = \mathsf{k}_{1} - (0.5-0.1) n$$

$$= \sum_{i=0}^{n} \mathsf{T}_{\mathsf{X}_{i}} \geq \mathsf{k}_{3} = \frac{\mathsf{k}_{2}}{\ln \left(\frac{0.1}{0.5}\right)}$$

This critical region is UMP for  $H_0: \theta = 0.1 \text{ vs. } H_1: \theta > 0.1 \text{ because, for any } \theta_1 > 0.1, we see that$ 

$$\frac{\mathcal{L}(\theta=0.1,\mathbb{X})}{\mathcal{L}(\theta=\theta_1,\mathbb{X})} \leq k \Rightarrow \sum_{i=1}^{n} X_i \geq k_3 \text{ for } k_3 \text{ st. } P_{4}(\sum_{i=1}^{n} X_i \geq k_3) = d$$

Let  $X_i \mid \theta \sim \text{Binomial}(1, \theta) = \text{Bernoulli}(\theta) \text{ iid, and } \Theta \sim \text{Beta}(\alpha, \beta)$  where  $\alpha, \beta$  known. Find the Bayes estimator of  $\theta$  using a squared-error loss function.

SEE SCRAP

11

## Problem 6

The driver of a diesel-powered automobile decided to test the quality of three types of diesel fuel sold in the area based on mpg. Make the usual assumptions and take  $\alpha=0.05$ .

| Brand A | 38.7 | 39.2 | 40.1 | 38.9 |      |
|---------|------|------|------|------|------|
| Brand B | 41.9 | 42.3 | 41.3 | _    |      |
| Brand C | 40.8 | 41.2 | 39.5 | 38.9 | 40.3 |

The ANOVA Procedure Dependent Variable: mpg

Sum of DF Source Squares Mean Square F Value Pr > F fuel \_\_\_(3)\_\_\_\_ \_(1)\_ 11.78300000 \_(4)\_ 0.0048 Error (2) 0.57624074 Corrected Total 16.96916667

R-Square Coeff Var Root MSE mpg Mean 0.694377 1.885585 0.759105 40.25833

- 1. State the appropriate hypothesis test associated with this problem.
- 2. Complete the ANOVA table, filling in the four spaces above.
- 3. Draw conclusions.

12

SEE SCRAP

$$\int f(x; |\theta) = \theta^{x_i} (1-\theta)^{1-x_i} \implies \int_{i=1}^{n} f(x; |\theta) = \theta^{\sum x_i} (1-\theta)^{n-\sum x_i} = f(x|\theta)$$

$$\pi(\theta) = \frac{f'(\alpha+\beta)}{f'(\alpha)f'(\beta)} \theta^{\alpha-1} (1-\theta)^{n-1}$$

$$\pi(\theta|x) \propto f(x|\theta)\pi(\theta) \propto \theta^{\sum x_i + \alpha-1} (1-\theta)^{n+\beta-\sum x_i - 1}$$

which is the form of a Beta poly: 8 | X ~ Beta (x+ \( \int X; \), n+B-\( \int X; \)

Under a squared-error loss function, the posterior mean is the Bayes estimator of D

$$: \mathbb{E}(\theta|X) = \frac{\alpha + \Sigma X}{(\alpha + \Sigma X) + (n + \beta - \Sigma X)} = \frac{\alpha + \Sigma X}{\alpha + n + \beta}$$

(2) = 
$$16.96916667 - 11.783 \approx 5.1862$$
  
or  $\frac{(2)}{9} = 0.57624074 \therefore (2) = 9 \times 0.57624074 \approx 5.1862$ 

$$(3) = \frac{11.783}{2} = 5.8915$$

$$(4) = \frac{(3)}{\sqrt{57624074}} = \frac{5\sqrt{8915}}{0\sqrt{57624074}} \approx 10\sqrt{224}$$

3. Assuming  $\alpha = 0.05$ , we see that the pralue =  $0.0048 < 0.05 = \alpha$ , therefore we reject Ho. Accordingly, there exists a statistically significant difference among the average mpg's for Brands A, B, C. We don't, however, know where the difference between the different brands exists.

For the simple regression model,  $Y_i = \alpha + \beta x_i + \epsilon_i$ , determine the least squares estimates for  $\alpha$  and  $\beta$ .

SEE SCRAP

7) To find least squares estimators for  $\alpha, \beta$ , we want to minimize the residual sum of squares,

RSS = 
$$\sum_{i=1}^{n} r_{i}^{2} = \sum_{i=1}^{n} (Y_{i} - \hat{Y}_{i})^{2} = \sum_{i=1}^{n} (Y_{i} - (\alpha + \beta x_{i}))^{2} = \sum_{i=1}^{n} (Y_{i} - \alpha - \beta x_{i})^{2}$$

$$\frac{\partial RSS}{\partial \alpha} = 2 \sum_{i=1}^{n} (\gamma_i - \alpha - \beta x_i)(-1) = 2 \sum_{i=1}^{n} (\gamma_i - \alpha - \beta x_i) = 0$$

$$= \sum_{i=1}^{n} \gamma_i - n\alpha - \beta \sum_{i=1}^{n} \chi_i = 0$$

$$n\alpha = \sum Y_i - \beta \sum X_i$$

$$= \frac{\sum Y_i}{n} - \beta \frac{\sum X_i}{n} = \overline{Y} - \widetilde{\beta} \overline{X}$$

$$\frac{\partial RSS}{\partial \beta} = 2\sum_{i=1}^{n} (Y_i - \alpha - \beta x_i)(-x_i) = 2\sum_{i=1}^{n} (X_i Y_i - \alpha x_i - \beta x_i^2) = 0$$

$$\Rightarrow \sum_{i=1}^{n} (Y_i - \alpha - \beta x_i)(-x_i) = 2\sum_{i=1}^{n} (X_i Y_i - \alpha x_i - \beta x_i^2) = 0$$

$$\Rightarrow \sum_{i=1}^{n} X_{i} Y_{i} - \widetilde{\alpha} \sum_{i=1}^{n} X_{i}^{2} = 0 \text{ where } \widetilde{\alpha} \text{ defined above}$$

$$= \sum X_i Y_i - \left(\frac{\sum Y_i}{n} - \widetilde{\beta} \frac{\sum X_i}{N}\right) \sum X_i - \widetilde{\beta} \sum X_i^2 = 0$$

$$\sum X_i Y_i - \frac{(\sum X_i)(\sum Y_i)}{n} + \widetilde{\beta} \frac{(\sum X_i)^2}{n} - \widetilde{\beta} \sum X_i^2 = 0$$

$$\sum X_i Y_i - \frac{(\sum X_i)(\sum Y_i)}{n} - \beta \left[\sum X_i^2 - \frac{(\sum X_i)^2}{n}\right] = 0$$

$$\geq \widetilde{\beta} = \frac{\sum x_i x_i - \frac{(\sum x_i)(\sum x_i)^2}{n}}{\sum x_i^2 - \frac{(\sum x_i)^2}{n}}$$