	tive namespace from numpy and mat s://archive.ics.uci.edu/ml/machi		nergydata_complete.csv')		
data.head() date Applia 2016-01-11 17:00:00 2016-01-11 17:10:00 2016-01-11 17:20:00 2016-01-11 17:30:00 2016-01-11 17:40:00 rows × 29 columns	ances lights T1 RH_1 T2 60 30 19.89 47.596667 19.2 44. 60 30 19.89 46.693333 19.2 44. 50 30 19.89 46.300000 19.2 44. 50 40 19.89 46.066667 19.2 44.	RH_2 T3 RH_3 T4 790000 19.79 44.730000 19.000000 722500 19.79 44.790000 19.000000 626667 19.79 44.933333 18.926667 590000 19.79 45.000000 18.890000 530000 19.79 45.000000 18.890000	T9 RH_9 T_out Pre 17.033333 45.53 6.600000 17.066667 45.56 6.483333 17.000000 45.50 6.366667 17.000000 45.40 6.250000	ess_mm_hg RH_out Windspeed Visibility 1 733.5 92.0 7.000000 63.000000 733.6 92.0 6.666667 59.166667 733.7 92.0 6.333333 55.333333 733.8 92.0 6.000000 51.500000 733.9 92.0 5.666667 47.666667	redewpoint rv1 rv2 5.3 13.275433 13.275433 5.2 18.606195 18.606195 5.1 28.642668 28.642668 5.0 45.410389 45.410389 4.9 10.084097 10.084097
df=pd.read_csv('HAMOYE df.head() date Applia 2016-01-11 17:00:00 2016-01-11 17:10:00 2016-01-11 17:30:00 2016-01-11 17:40:00	Ances lights T1 RH_1 T2 60 30 19.89 47.596667 19.2 44. 60 30 19.89 46.693333 19.2 44. 50 30 19.89 46.300000 19.2 44. 50 40 19.89 46.066667 19.2 44.	RH_2 T3 RH_3 T4 790000 19.79 44.730000 19.000000 722500 19.79 44.790000 19.000000 626667 19.79 44.933333 18.926667 590000 19.79 45.000000 18.890000 530000 19.79 45.000000 18.890000	17.033333 45.53 6.600000 17.066667 45.56 6.483333 17.000000 45.50 6.366667 17.000000 45.40 6.250000	ess_mm_hg RH_out Windspeed Visibility T 733.5 92.0 7.000000 63.000000 733.6 92.0 6.666667 59.166667 733.7 92.0 6.333333 55.333333 733.8 92.0 6.000000 51.500000 733.9 92.0 5.666667 47.666667	redewpoint rv1 rv2 5.3 13.275433 13.275433 5.2 18.606195 18.606195 5.1 28.642668 28.642668 5.0 45.410389 45.410389 4.9 10.084097 10.084097
df.isnull().any() date False Appliances False Lights False T1 False RH_1 False T2 False RH_2 False T3 False RH_3 False T4 False T5 False RH_4 False T6 False RH_5 False RH_5 False RH_5 False RH_5 False RH_6 False RH_7 False RH_7 False RH_7 False RH_7 False RH_7 False RH_7 False RH_8 False RH_9 False RH_9 False RH_9 False RH_9 False RH_9 False RH_9 False T_out False T_	columns if df[col].isnull().any	()]			
'RH_3', 'T4', 'R 'RH_8', 'T9', 'R	nces', 'lights', 'T1', 'RH_1', 'T RH_4', 'T5', 'RH_5', 'T6', 'RH_6' RH_9', 'T_out', 'Press_mm_hg', 'R dewpoint', 'rv1', 'rv2'],	, 'T7', 'RH_7', 'T8',			
60 19.89 47.596 60 19.89 46.693 50 19.89 46.300 50 19.89 46.066 60 19.89 46.333 rows × 27 columns	ights'], axis=1) H_1 T2 RH_2 T3 RH_3 667 19.2 44.790000 19.79 44.730000 : 333 19.2 44.722500 19.79 44.790000 : 000 19.2 44.626667 19.79 44.933333 : 667 19.2 44.590000 19.79 45.000000 : 333 19.2 44.530000 19.79 45.000000 : sing import MinMaxScaler	19.000000 45.992500 17.166667 18.926667 45.890000 17.166667 18.890000 45.723333 17.166667	17.033333 45.53 6.600000 17.066667 45.56 6.483333 17.000000 45.50 6.366667 17.000000 45.40 6.250000	nm_hg RH_out Windspeed Visibility Tdewp 733.5 92.0 7.000000 63.000000 733.6 92.0 6.666667 59.166667 733.7 92.0 6.3333333 55.3333333 733.8 92.0 6.000000 51.500000 733.9 92.0 5.666667 47.666667	point rv1 rv2 5.3 13.275433 13.275433 5.2 18.606195 18.606195 5.1 28.642668 28.642668 5.0 45.410389 45.410389 4.9 10.084097 10.084097
trans=pd.DataFrame(nor X=trans.drop('Applianc y=trans.Appliances from sklearn.model_sel X_train, X_test, y_tra	<pre>ection import train_test_split in, y_test = train_test_split(X, del import LinearRegression</pre>		0.3, random_state=42)		
<pre>lin=LinearRegression() lin.fit(X_train,y_trai inearRegression() predict=lin.predict(X_ predict .rray([0.03322207, 0.24</pre>	n) test) 4411599, 0.03400024,, 0.06844 mport r2_score,mean_absolute_err				
-2.2332227772378648 mean_absolute_error(X_ 0.2427487659406262 np.sum(np.square(X_tra 1136.5633215814557 np.sqrt(mean_squared_e 0.28683826868672					
0.09604827, 0. 0.23642491, 0. -0.15759548, -0. -0.07767065, 0. 0.0007701])	5535466 , -0.23617792, -0.456697 028981 , 0.02638578, -0.015656 03804865, 0.01031878, -0.044613 18994077, -0.03980032, -0.321859 02918313, 0.01230661, 0.117757	84, 0.01600579, 64, 0.10199505, 67, 0.00683933, 73, 0.0007701,			
	ef_,X.columns,columns=['coef'])				
RH_7 -0.044614 RH_9 -0.039800 T5 -0.015657 T1 -0.003281 rv1 0.000770 rv2 0.000770 Press_mm_hg 0.006839 T7 0.010319 Visibility 0.012307 RH_5 0.016006 RH_4 0.026386					
T4 0.028981 Windspeed 0.029183 RH_6 0.038049 RH_3 0.096048 T8 0.101995 Tdewpoint 0.117758 T6 0.236425 T3 0.290627 RH_1 0.553547 from sklearn.linear_molas=Lasso(alpha=0.001)					
las.fit(X_train,y_trai _asso(alpha=0.001) la=pd.DataFrame(las.co la 					
4 0.000000 5 0.000000 6 -0.000000 7 0.000000 8 -0.000000 9 0.000000 10 0.000000 11 -0.000000 12 -0.000000 14 0.000000 15 -0.000110					
16 -0.000110 16 -0.000000 17 -0.000000 18 0.000000 19 -0.000000 20 -0.049557 21 0.002912 22 0.000000 23 0.000000					
24 -0.000000 25 -0.000000 las_pre=las.predict(X_	test)				