

∼목차

[1] SIDH 기반 암호 구현[2] CSIDH 기반 암호 구현

Recall

Building blocks

Building blocks

Isogeny

• SIDH

$$E \qquad \frac{\phi}{\ker \phi = \langle m_A P_A + n_A Q_A \rangle} \qquad E_A$$

Kernel P w/ order 2372 → 연산량 많음

- Idea
 - Isogenies used in SIDH is a separable isogeny
 - $\phi = \phi_n \circ \cdots \circ \phi_1$
 - Isogeny of degree 2^{372} → $O(2^{372})$
 - 2-isogeny 372 times → $372 \cdot 0(2)$

Isogeny computation on Alice side

Isogeny - Evaluation

General formula - Montgomery curves

 $\phi: (x,y) \to (f(x),yf'(x))$ for degree d=2s+1

$$f(x) = x \prod_{i=1}^{s} \left(\frac{x \cdot x_i - 1}{x - x_i} \right)^2$$

$$\langle P \rangle = \{ 0, P, -P \} = \{ 0, (x_3, y_3), (x_3, -y_3) \}$$

Isogeny - Evaluation

General formula - Montgomery curves

- Example: 3-isogeny
 - $-P = (x_3, y_3) \in E$, 3-torsion point in E([3]P = 0)
 - $\phi: E \to E' = E/\langle P \rangle$
 - For a point $Q \in E$, $x(\phi(Q)) \in E$ is computed as

$$x(\phi(Q)) = x\left(\frac{x \cdot x_3 - 1}{x - x_3}\right)^2$$

Isogeny - Evaluation

General formula - Montgomery curves

- Example: 3-isogeny
 - In projective coordinates, $x_3 = \frac{X_3}{Z_2}$, $x = \frac{X}{Z}$

$$\frac{X'}{Z'} = \frac{X}{Z} \cdot \left(\frac{XX_3 - ZZ_3}{XZ_3 - X_3Z}\right)^2$$

$$F = (X - Z)(X_3 + Z_3) = XX_3 + XZ_3 - ZX_3 - ZZ_3$$

$$G = (X + Z)(X_3 - Z_3) = XX_3 - XZ_3 + ZX_3 - ZZ_3$$

$$F + G = 2(XX_3 - ZZ_3)$$

$$F - G = 2(XZ_3 - ZX_3)$$

→ COST : 2M

Isogeny - Coefficients

Isogeny - Coefficients

Image curve 에서의 계수 복원

• Example: 3-isogeny

$$E: y^2 = x^3 + Ax^2 + x$$
 ϕ $E: x_3^2 y^2 = x^3 + \left(A + \frac{6}{x_3} - 6x_3\right)x^2 + x$

- 타원곡선의 curve coefficient
 - n 차 division polynomial 을 이용해 n-torsion point의 좌표료
 표현 가능
 - $A = x_3$ 이용해 표현 가능
 - Curve coefficient 도 분수 형태로 표현됨
 - 연산 효율을 위해 projective version 사용
 - 기존 ECC 구현과 다르게 projective curve coefficient 이용
 - 타원곡선 연산 공식도 이에 맞게 변경

Others

Strategies in SIDH

연속적인 ℓ -isogeny 연산을 위해 필요 ℓ -isogeny 연산량과 $[\ell]P$ 연산량 비교를 통해 계산

Others

Public parameter 교환 시

- 공개키 P, Q, R = P Q 사용
 - 개인키로 P + [s]Q 연산 시 Montgomery ladder 사용 위해
- Public parameter 교환 시
 - $\phi(P),\phi(Q),\phi(R)$ 만 교환
 - 타원곡선 계수 전달하지 않음
 - $-\phi(P),\phi(Q),\phi(R)$ 로 타원곡선 계수 변환 가능

SIDH Implementation Summary

Summary

- 주어진 안전강도에 맞는 소수 찾기
 - $p = \ell_A^{e_A} \ell_B^{e_B} f 1$
- 타원곡선 형태 및 base elliptic curve 설정
 - Montgomery curve
 - $-y^2 = x^3 + 6x^2 + x$

- 구현!
 - Projective coordinate/ projective curve coefficient
 - Montgomery XZ-coordinate

Shared Secret
$$[a][b]E = [a]E_B = [b]E_A$$

CSIDH 기반 암호의 핵심연산

- Computation of $[\alpha]E$
 - Naïve way
 - Example : $[\alpha] = [2]^3[3]^5$
 - E 에서 2-torsion point 선택 Velu 공식 이용해서 $E_1 = [2]E$ 연산
 - $-E_1$ 에서 2-torsion point 선택 Velu 공식 이용해서 $E_2=[2]E_1$ 연산
 - $-E_2$ 에서 2-torsion point 선택 Velu 공식 이용해서 $E_3 = [2]E_2$ 연산
 - $-E_3$ 에서 3-torsion point 선택 Velu 공식 이용해서 $E_4 = [3]E_3$ 연산

CSIDH 기반 암호의 핵심연산

- Computation of $[\alpha]E$
 - Problem 1
 - $[\alpha] = \ell_1^{e_1} \cdots \ell_n^{e_n}$ 에 대해서 $\sum e_i$ 번의 랜덤 point를 F_p 에서 선택해야함
 - 작은 torsion point일 수록 실패 확률 존재
 - Costly operation
 - Problem 2
 - $\ell_i^{e_i}$ 에서 e_i 가 음수일 경우 랜덤 point를 F_{p^2} 에서 선택해 야함
 - 마찬가지로 순차적으로 isogeny 연산 수행 경우 실패 확률 존재

- IDEA
 - $[\alpha] = \ell_1^{e_1} \cdots \ell_n^{e_n}$ 에서 e_i 의 부호가 같은 것 끼리 연산

- Algorithm STEP 1: Random point selection
 - F_p 에서 랜덤한 x 좌표 선택 $x^3 + Ax^2 + x = r$ 연산

 - r square → 해당 점 F_p 에 존재
 - r non-square → 해당 점 F_{n^2} 에 존재

- IDEA
 - $[\alpha] = \ell_1^{e_1} \cdots \ell_n^{e_n}$ 에서 e_i 의 부호가 같은 것 끼리 연산

- Algorithm STEP 2: Torsion point generation
 - r square → 해당 점 F_p 에 존재
 - *e*_i 가 음수에 해당하는 소수를 다 곱해 *k* 구함 → $k = \prod \ell_i \ s.t.e_i < 0$
 - 0 = [k]P 연산
 - r non-square → 해당 점 F_{p^2} 에 존재
 - e_i 가 양수에 해당하는 소수를 다 곱해 k 구함 → $k = \prod \ell_i \ s.t.e_i > 0$
 - Q = [k]P 연산

- IDEA
 - $[\alpha] = \ell_1^{e_1} \cdots \ell_n^{e_n}$ 에서 e_i 의 부호가 같은 것 끼리 연산

- Algorithm STEP 3: Isogeny computation
 - r square → 해당 점 F_p 에 존재
 - e_i 가 양수에 해당하는 소수에 대한 isogeny 연산
 - 해당 소수를 제외한 소수를 곱해 torsion point 생 성 → Velu 공식 이용해 isogeny 연산

- IDEA
 - $[\alpha] = \ell_1^{e_1} \cdots \ell_n^{e_n}$ 에서 e_i 의 부호가 같은 것 끼리 연산

- Algorithm STEP 3: Isogeny computation
 - r square → 해당 점 F_p 에 존재
 - *e_i* 가 양수에 해당하는 소수에 대한 isogeny 연산
 - 해당 소수를 제외한 소수를 곱해 torsion point 생 성 → Velu 공식 이용해 isogeny 연산
 - Example
 - *e*_i 가 양수에 해당하는 소수가 2, 3, 5 일 경우
 - [6] Q 연산 → 5-isogeny 수행
 - 무한원점일 경우 skim

Algorithm 2: Evaluating the class-group action.

Input: $A \in \mathbb{F}_p$ and a list of integers (e_1, \dots, e_n) .

Output: B such that $[\mathfrak{l}_1^{e_1} \cdots \mathfrak{l}_n^{e_n}] E_A = E_B$ (where $E_B : y^2 = x^3 + Bx^2 + x$).

While some $e_i \neq 0$ do

Sample a random $x \in \mathbb{F}_p$.

Set $s \leftarrow +1$ if $x^3 + Ax^2 + x$ is a square in \mathbb{F}_p , else $s \leftarrow -1$.

Let $S = \{i \mid e_i \neq 0, \operatorname{sign}(e_i) = s\}$. If $S = \emptyset$ then start over with a new x.

Let $k \leftarrow \prod_{i \in S} \ell_i$ and compute $Q \leftarrow [(p+1)/k]P$.

For each $i \in S$ do

Compute $R \leftarrow [k/\ell_i]Q$. If $R = \infty$ then skip this i.

Compute an isogeny $\varphi \colon E_A \to E_B \colon y^2 = x^3 + Bx^2 + x$ with $\ker \varphi = R$. Set $A \leftarrow B$, $Q \leftarrow \varphi(Q)$, $k \leftarrow k/\ell_i$, and finally $e_i \leftarrow e_i - s$.

Return A.

Summary

SIDH vs CSIDH

- 유한체 연산
 - CSIDH 는 F_p , SIDH 는 F_{n^2} 연산
 - 소수의 특성상 CSIDH 는 일반 Montgomery reduction 사용
 - SIDH는 $p = 2^{e_A}3^{e_B}f \pm 1$ 의 형태로 유한체 연산이 비교적 효율 적
- 아이소제니 연산
 - SIDH 는 3-, 4- isogeny 사용
 - CSIDH 는 소수를 구성하는 홀수 차수 아이소제니 사용