Basic derivatives and differentiation rules

Annamaria Iezzi

Basic derivatives

f(x)	f'(x)
$c, c \in \mathbb{R}$	0
$x^{\alpha}, \ \alpha \in \mathbb{R}$	$\alpha x^{\alpha-1}$
$\sin(x)$	$\cos(x)$
$\cos(x)$	$-\sin(x)$
$\tan(x)$	$\frac{1}{\cos^2(x)} = \sec^2 x \text{or} 1 + \tan^2(x)$
e^x	e^x
$\ln x$	$\frac{1}{x}$
a^x	$a^x \ln a$
$\log_a x$	$\frac{1}{x \ln a}$
$\sin^{-1} x$	$\frac{1}{\sqrt{1-x^2}}$
$\cos^{-1} x$	$-\frac{1}{\sqrt{1-x^2}}$
$\tan^{-1} x$	$\frac{1}{1+x^2}$

DIFFERENTIATION RULES

* Constant multiple rule : [cf(x)]' = cf'(x).

* Sum rule : [f(x) + g(x)]' = f'(x) + g'(x).

* Difference rule : [f(x) - g(x)]' = f'(x) - g'(x).

* **Product rule** : [f(x)g(x)]' = f'(x)g(x) + f(x)g'(x).

 $\star \ \mathbf{Quotient} \ \mathbf{rule} : \left[\frac{f(x)}{g(x)} \right]' = \frac{f'(x)g(x) - f(x)g'(x)}{[g(x)]^2}.$

* Chain rule : [f(g(x))]' = f'(g(x))g'(x).