G. KARCH & M. KRUPSKI & SZ. CYGAN

Portret fazowy okładów na płaszczyźnie

Zadanie 1. Wyznacz wszystkie orbity następujących układów:

a)
$$x' = y$$
, $y' = -x$; b) $x' = y(1 + x + y)$, $y' = -x(1 + x + y)$; c) $x' = 2xy$, $y' = x^2 - y^2$.

Zadanie 2. Udowodnij, że wszystkie rozwiązania x(t), y(t) układu

$$\frac{dx}{dt} = x^2 + y\sin x, \quad \frac{dy}{dt} = -1 + xy + \cos y,$$

które startują w pierwszej ćwiartce układy współrzędnych (x>0,y>0) pozostają tam dla wszystkich $t\in\mathbb{R}.$

Zadanie 3. Udowodnij, że wszystkie rozwiązania x(t), y(t) układu

$$\frac{dx}{dt} = y(e^x - 1), \quad \frac{dy}{dt} = x + e^y,$$

które startują w prawej półpłaszczyźnie układy współrzędnych (x>0) pozostają tam dla wszystkich $t\in\mathbb{R}.$

Zadanie 4. Udowodnij, że wszystkie rozwiązania x(t), y(t) układu

$$\frac{dx}{dt} = 1 + x^2 + y^2, \quad \frac{dy}{dt} = xy + \operatorname{tg} y,$$

które startują w górnej półpłaszczyźnie układy współrzędnych (y>0) pozostają tam dla wszystkich $t\in\mathbb{R}.$

Zadanie 5. Udowodnij, że wszystkie rozwiązania x(t), y(t) układu

$$\frac{dx}{dt} = -1 - y + x^2, \quad \frac{dy}{dt} = x + xy,$$

które startują wewnątrz okręgu $x^2+y^2=1$ pozostają tam dla wszystkich $t\in\mathbb{R}$. Wskazówka: Oblicz $d(x^2+y^2)/dt$.

Zadanie 6. Niech x(t), y(t) będzie rozwiązaniem układu

$$\frac{dx}{dt} = y + x^2, \quad \frac{dy}{dt} = x + y^2.$$

Udowodnij, że jeżeli $x(t_0) \neq y(t_0)$ dla pewnego t_0 , to $x(t) \neq y(t)$ dla wszystkich $t \in \mathbb{R}$.

Zadanie 7. Badamy następujący układ równań z niewiadomymi funkcjami S=S(t) i N=N(t):

$$S' = \frac{1}{10}S - \frac{1}{20}SN, \qquad N' = \frac{1}{100}N - \frac{1}{100}N^2 - \frac{1}{100}SN.$$

a) Udowodnij, że proste N=2 i N+S=1 dzielą pierwszą ćwiartkę układu współrzędnych na trzy obszary, gdzie pochodne S' i N' mają ustalony znak (tak jak na rysunku).

- b) Udowodnij, że każde rozwiązanie które startuje w jednym z obszarów I lub III musi wpaść do obszaru II.
- c) Udowodnij, że każde rozwiązanie startujące w obszarze II, pozostaje już w nim.
- d) Stosując (c) uzasadnij, że jeżeli $S(t_0)>0$ i $N(t_0)>0$, to $\lim_{t\to\infty}S(t)=\infty$ natomiast $\lim_{t\to\infty}N(t)$ istnieje i jest mniejsza od 2.
- e) Udowodnij, że istnieje $t_0>0$ takie, że dla wszystkich $t\geq t_0$ zachodzi nierówność $N'\leq -N$. Wywnioskuj stąd, że $\lim_{t\to\infty}N(t)=0$.

Wskazówka do (e). Udowodnij, że jeżeli $f\in C^1((0,\infty))$ spełnia $\lim_{x\to\infty}f(x)=g$, to istnieje ciąg $x_n\to\infty$ taki, że $\lim_{n\to\infty}f'(x_n)=0$. Podać przykład funkcji f=f(x) takiej, że $\lim_{x\to\infty}f(x)=0$ ale $\lim_{x\to\infty}f'(x)$ nie istnieje.

Zadanie 8. Rozważamy układ równań różniczkowych

$$x' = ax - bxy,$$
 $y' = cy - dxy - ey^2$

gdzie a/b>c/e. Udowodnij, że $\lim_{t\to\infty}y(t)=0$ dla każdego rozwiązania startującego z warunku początkowego $x(t_0)>0$, $y(t_0)>0$. (Wskazówka: naśladuj rozumowanie z poprzedniego zadania.)

Zadanie 9. Zbadać portret fazowy dla $x_1 > 0$ i $x_2 > 0$ następującego układu typu drapieżnikofiara

$$x_1' = x_1(1 - x_2 - \alpha x_1), \quad x_2' = -x_2(1 - x_1 + \alpha x_2) \quad \text{dla } \alpha \in [0, 1).$$

Zadanie 10. Zbadać istnienie cykli granicznych dla układów zapisanych we współrzędnych biegunowych i naszkicować ich portrety fazowe:

a)
$$r' = r(1-r)^2$$
, $\varphi' = 1$; b) $r' = \sin r$, $\varphi' = 1$.

Zadanie 11. Dany jest układ równań r' = f(r), $\varphi' = 1$, gdzie f jest daną funkcją klasy C^1 . Jakie warunki musi spełniać ta funkcja, aby układ miał cykl graniczny?

Zadanie 12. Udowodnić, że układ równań

$$x_1' = (x_1 - x_2)\sqrt{x_1^2 + x_2^2} - x_1, \quad x_2' = (x_1 + x_2)\sqrt{x_1^2 + x_2^2} - x_2$$

ma tylko jeden cykl graniczny.

Zadanie 13. Stosując twierdzenie Poincarégo-Benedixsona udowodnij istnienie nietrywialnego rozwiązania okresowego dla równania $z'' + [\log(z^2 + 4(z')^2)]z' + z = 0$.

2