Midterm Exam

Name:	McCIII ID.
NAME:	MCGILL ID:

Assignment Project Exam Help

- Do not turn this page over until we tell you that the exam starts! You have two hours free point to we tell you that the exam starts! You
- The exam counts 5 questions worth 20 marks each, adding-up to 100 marks.
- This is a closed Aok examination Bit yet may exclude the power series below.
- Calculators are allowed, given that you can't write notes in them. Smarter devices are obviously forbidden.
- Answer all problems in the booklet provided with this exam. Show all your work.
- Please **return this exam** with the booklet in the end.
- Good luck!

$\boxed{\frac{1-x^{N+1}}{1-x} = 1 + x + x^2 + \ldots + x^N}$	$\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n$
$(1+x)^r = \sum_{n=0}^{\infty} \binom{r}{n} x^n$	$\frac{1}{(1-x)^r} = \sum_{n=0}^{\infty} \binom{n+r-1}{n} x^n$
$\sqrt{1+x} = \sum_{n=0}^{\infty} {2n \choose n} \frac{(-1)^{n+1}}{4^n (2n-1)} x^n$	$e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}$
$\cosh(x) = \frac{e^x + e^{-x}}{2} = \sum_{n=0}^{\infty} \frac{x^{2n}}{(2n)!}$	$\sinh(x) = \frac{e^x - e^{-x}}{2} = \sum_{n=0}^{\infty} \frac{x^{2n+1}}{(2n+1)!}$

Question 1

How many integers $1 \le n \le 1000$ are neither perfect squares, perfect cubes, nor multiples of 7?

Question 2

(a) Find an algebraic proof the following identity.

$$n2^{n-1} = \sum_{k=1}^{n} k \binom{n}{k}$$

(b) Find a combinatorial proof of the same identity.

Question 3

Use the Generating Functions Method to solve the recurrence $a_n = 3a_{n-1} + 4^n$ with initial condition $a_0 = 1$.

Assignment Project Exam Help

Use an Exponential Generating Function to count the number of strings of length n over the alphabet {0,1,2} with an even number of '0' and an odd number of '1'.

Duestion 5

Duestion 5

Question 5

A function $f: \{0, 1, ..., n\} \rightarrow \{0, 1, ..., n\}$ is called *nilpotent* if for all $x \in \{0, 1, ..., n\}$, there is a number k_0 such that for all $k \ge k_0$, $f^k(x) = 0$. Here f^k denotes the k-th iterate: $f^k = f \circ f \circ \cdots \circ f$ (Fig. 1) POWCOUCT

(a) Show that the function f defined by the following table is nilpotent.

x	0	1	2	3	4	5
f(x)	0	4	0	4	2	2

(b) Show that if $f:\{0,1...n\} \to \{0,1...n\}$ is nilpotent, then we can simply take $k_0 = n$ in the definition, i.e. show that for all x and for all $k \ge n$, $f^k(x) = 0$.

Hint: One of the key steps here might be the Pigeonhole Principle...

- (c) Apply Joyal's bijection to the function in part (a) and draw the corresponding vertebrate.
- (d) Generalize this example to show that the number of nilpotent functions on $\{0, 1 \dots n\}$ is $(n+1)^{(n-1)}$.