

Prédiction de la stabilité des enzymes Novozymes

LO OUSMANE, Machine Learning Engineer

Table of Contents

01

Présentation de la compétition

02

Exploration des données

03

Traitement des données

04

Modélisation

05

Soumission des résultats

06

Conclusion

Présentation de la compétition

Contexte

- Novozymes leader mondial des solutions biologiques
 - Recherche des enzymes
 - Les optimize
 - Utilisation dans l'industrie

Objectif

- Prédire la thermostabilité de variants enzymatiques
 - Traitement des des données
 - Développer des modèles pour la prediction

Données

Structure tridimensionnelle de l'enzyme

On dispose des données:

- Les données d'entraînement avec 5 variables:
 - seq_id, protein_sequence, pH, data_source
 - tm: colonne cible
- Les données d'entraînement mis à jour
- Les données de test
- Les données de soumission
- Les données pour la structure tridimensionnelle de l'enzyme

Exploration des données

Exploration

Distribution du pH

Exploration

Distribution du tm

Corrélation des variables

Traitement des données

Feature extraction

- Utilisons des techniques de PNL pour la classification des séquences de protéines.
- Interpréter les séquences protéiques comme des phrases et leurs constituants, les acides aminés, comme des mots
- Extraction avec Probert

Probert Model

- Modèle pré-entraîné sur des séquences protéiques
- Basé sur le modèle BERT
- Uniquement sur les séquences de protéines brutes
- Aucun humain ne peut pas les étiquette

Architecture ProBERT

- Le message se concentre sur le réglage fin du modèle PyTorch ProtBERT (schéma suivant).
- Nous étendons d'abord le modèle ProtBERT pré-entraîné pour classer les séquences protéiques.

Modélisation

Création de Modèle

- Extraction de feature
- Feature Engineering
- Combiner les données obtenues avec extraction et celles du feature engineering
- Preparation des données d'entrainement, validation et celles de test.
- Choix de modèles pour la prédiction des tm
 - Xgboost modèle choisi
 - Validation croisée non envisager vu la taille des données
 - Pareil pour l'optimisation des hyperparametres

Résultats du modèle

Analyse des résidus

Evaluation des performances

MAE train: 3.78

MAE test: 5.58

• R² train: 82.2%

R² test : 60.7%

Résultats du modèle

Prédiction correcte

Corrélation

Spearman train: 82.1%

• p-value : 0.0

Spearman validation : 57.9%

• p-value : 0.0

Features importance

- Le pH joue considerablement sur la prediction des tm
- La longueur des proteins participle faiblement sur la prédiction
- Les sequences A,K,Y ont un effet sur la prédiction

Features importance

- Le pH influe positivement sur la prediction des tm
- La longueur des proteins participle faiblement sur la prédiction

Soumission des résultats

Données soumission

Seq id

tm pred

31390	63.644640
31391	63.644640
31392	63.194424
31393	60.611930

- Prediction des tm pas top
- Des erreurs de predictions trop grands
- Grande difference entre les tm preded et les valeurs de tm initiaux

- Participation à ma 1ère compétition Kaggle
- Expérience avec les très grosses bases de données
- Amélioration du score d'un autre participant
- Améliorations à envisager
 - Intégrer la compétition assez tôt pour avoir le temps de développer plus en détails les modèles
 - Réaliser les calculs sur une machine avec plus de mémoire

Do you have any questions? ousmanelo78@gmail.com 06 44 06 89 45

