Tutorial 5

Update MicroBlaze Platform with a Custom Peripheral (RGB LED controller) connected via AXI-Lite – HW project (VIVADO)

Vivado version: 2022.2

Open Vivado and the previous project. Add a new IP block by clicking Tools >
 Create and Package IP.

2. Call it **CustomPeriph**. Stick to this name to simplify future steps.

3. No changes in parameters are necessary.

For our purpose, we don't need 4 registers. However, we cannot have less, so we leave it as is.

4. Click Next.

5. If available, click in **Run Connection Automation**. Click in **Regenerate Layout** (optional)

6. Right-click the new module. Click on **Edit in IP Packager**.

7. A new **Vivado** instance opens up.

- 8. Identify the two source files of the project.
- CustomPeriph_v1_0.vhd
- CustomPeriph_v1_0_S00_AXI.vhd

 In the Moodle you will find the file CustomPeriph (1).rar, that has two source code files: CustomPeriph_v1_0.vhd and CustomPeriph_v1_0_S00_AXI.vhd.
Replace the code.

10. Select the Package IP - CustomPeriph tab.

11. Click on Merge changes from File Groups Wizard.

12. Click on Merge changes from Customization Parameters Wizard.

13. Click on Synthesis. Once over, close the pop-up window: click Cancel or top right X.

14. Click on Re-Package IP. Click Yes in the pop-up window.

15. Back to the original Vivado window, click on Report IP Status.

16. Click on Upgrade Selected.

17. Close the pop-window (**X** on top right corner) concerning generation of Output Products.

18. A warning message will show up. We will address it in the next steps. Click **OK**.

19. The reason is related to the fact that the **CustomPeriph** block does not have its **PWM_out** output connected anywhere.

20. We will add an XDC file to address this issue. Open the **Sources** tab and click on **Add Sources** ('+' button).

21. Click Next.

22. Add the XDC file that you used in the initial lab assignments. Click OK.

23. Uncomment the ports concerning the RGB LEDs.

24. Return to the diagram view.

25. Right-click on the white open area of the diagram. Select **Create Port...** A pop-up window will show up.

26. Name it **RGB1_Red** and assign it as **Output**. Name should match that in the XDC file. Do the same for the two remaining pins: **RGB1_Green and RGB1_Blue**.

27. Move the pins to near the **CustomPeriph** block.

28. Click on the **Add IP** button ('+' sign button). Select the **Slice** block. This block takes a bus (i.e., an array of signals) and isolates individual signals.

29. Add the **Slice** block between the **CustomPeriph** outputs and the **RGB** pins. Click on the Slice block to parameterize it.

30. Field **Din Width** indicates the width of the output; set it to **3** bits.

Fields **Din From** and **Din Down To** identify, respectively, the first and last index of the signals you wish to isolate. To isolate the LSB of the bus output by **CustomPeriph**, we set both fields to **0**.

Field Dout Width indicates the width of the output; set it to 1.

31. Add two more such blocks.

32. Parameterize them accordingly to isolate bit 1 and bit 2.

33. Establish all connections.

34. Click in Regenerate Layout.

35. Confirm the status of the **CustomPeriph** module (step 16). Click **Re-run** if not upto-date.

36. Right-click the wrapper file. Click in **Generate Output Products**.

37. Click on Generate.

38. Click in **Create HDL Wrapper**.

39. Click on Generate Bitstream

40. Click on File > Export > Export Hardware.

Congratulations!

Sources: AMD Xilinx documentation.