Practice 4

Tatsiana Palikarpava, Juan José Valenzuela Gómez

1. Noise, Samples

Using as a function the one which is in to the archive EX2/f.m, that isf(x) = sin(x) in the interval [0...2PI], analyze the evolution of the error for progressively increasing variances of the noise and for different number of training samples (functions).

1.1. Increasing Noise

1.1.1. Conclusion

With variance = 0.0 the error it's 0 so if we increase de variance we increase the error too.

1.2. Different number of training samples:

1.2.1. Conclusion

This is because the overfitting point, the values set the perfect number of training samples between 100 and 250.

2. Hidden layers

Once an acceptable result has been found, analyze now what happens if we change the configuration of the network: with one, or two (or more, if you have time) hidden layers and a variable number of neurons in each layer.

ins or only drone in occur ray or		
	Two layers (original):	
	Error: -0.303, 0.2995	
	Best Validation Performance: 0.029638 at epoch 58	WITH 100 SAMPLES
	Two layers (original):	
	Error: -0.297, 0.3077	
	Best Validation Performance: 0.029502 at epoch 20	
	BEST	WITH 250 SAMPLES
	Two layers [4 4]:	
	Error: -0.308, 0.3082	
	Best Validation Performance: 0.029631 at epoch 23	WITH 250 SAMPLES
	With three layers [10 10 10]:	
	Error: -0.3081 , 0.3033	
	Best Validation Performance: 0.029699 at epoch 37	WITH 250 SAMPLES
	With three layers [10 5 10]:	
	Error: -0.3113, 0.3014	
	Best Validation Performance: 0.030585 at epoch 33	WITH 250 SAMPLES

3. Complex function

Using any of the best results of the former exercise, change the function f by another, more com-plex one, and approximate it looking at the differences. Try to improve the result by changing the configuration of the network.

3.1. Using $\sin(x) + 0.5 \cos(2x)$

