A fast dynamic programming multi-objective knapsack problem

Marcos Daniel Valadão Baroni* Flávio Miguel Varejão June 9, 2017

Abstract

This work addresses... The Multidi Objective knapsack programming. The dynamic programming method... The data structure...

- 1 Introduction
- 2 The Multidimensional Knapsack Problem
- 3 The Dynamic Programing Algorithm

[1]

4 The use of data structure

The k-d tree is a type of binary search tree for indexing multidimensional data with simple construction and low space usage. Despite its simplicity it efficiently supports operations like nearest neighbour search and range search [2]. For those reasons k-d tree is widely used on spacial geometry algorithms [7, 3], clustering [5, 4] and graphic rendering algorithms [6].

Like a standard binary search tree, the k-d tree subdivides data at each recursive level of the tree. Unlike a standard binary tree, that users only one key for all levels of the tree, the k-d tree uses k keys and cycles through these keys for successive levels of the tree.

Concerning it's efficiency, it is important to consider the number of dimensions k-d tree is indexing. As a general rule, a k-d tree is suitable for efficiently indexing of n elements if n is much greater than 2^k . Otherwise, when k-d tree are used with high-dimensional data, most of the elements in the tree will be evaluated and the efficiency is no better than exhaustive search [8].

Its operations...

 $^{^*\}mbox{Research}$ supported by Fundação de Amparo à Pesquisa do Espírito Santo.

Use on the algorithm.

Indexing the solutions and range operations.

Tends to increase the feasibility on problems with higher dimensions.

5 Computational experiments

- Base de dados utilizaca
- Parametros dos algoritmos
- Anlise dos resultados (comparao)

6 Conclusions and future remarks

- Concluses dos resultados
- Trabalhos futuros

References

- [1] Cristina Bazgan, Hadrien Hugot, and Daniel Vanderpooten. Solving efficiently the 0–1 multi-objective knapsack problem. *Computers & Operations Research*, 36(1):260–279, 2009.
- [2] Jon Louis Bentley. Multidimensional binary search trees used for associative searching. *Communications of the ACM*, 18(9):509–517, 1975.
- [3] Antonin Guttman. R-trees: a dynamic index structure for spatial searching, volume 14. ACM, 1984.
- [4] Piotr Indyk and Rajeev Motwani. Approximate nearest neighbors: towards removing the curse of dimensionality. In *Proceedings of the thirtieth annual ACM symposium on Theory of computing*, pages 604–613. ACM, 1998.
- [5] Tapas Kanungo, David M Mount, Nathan S Netanyahu, Christine D Piatko, Ruth Silverman, and Angela Y Wu. An efficient k-means clustering algorithm: Analysis and implementation. *IEEE transactions on pattern analysis* and machine intelligence, 24(7):881–892, 2002.
- [6] John D Owens, David Luebke, Naga Govindaraju, Mark Harris, Jens Krüger, Aaron E Lefohn, and Timothy J Purcell. A survey of general-purpose computation on graphics hardware. In *Computer graphics forum*, volume 26, pages 80–113. Wiley Online Library, 2007.
- [7] Franco P Preparata and Michael Shamos. Computational geometry: an introduction. Springer Science & Business Media, 2012.
- [8] Csaba D Toth, Joseph O'Rourke, and Jacob E Goodman. *Handbook of discrete and computational geometry*. CRC press, 2004.