Date: 9/10/2024

Marks: 30

CO 4 & CO5 CASE STUDY

CO4 - Case Study 1: Production Planning

1) Binary Integer Programming Model:

Objective: Minimize total production time.

Decision Variables:

XA: 0 or 1 (Product A on Machine M1) XB: 0 or 1 (Product B on Machine M2)

Constraints:

Machine M1: $2 * XA + 1 * XB \le 8$ Machine M2: $1 * XA + 2 * XB \le 8$ Meet demands: $XA \ge 100$, $XB \ge 80$

2) Optimal Production Plan:

Use tools like Python's PuLP or Excel Solver to determine values for XA and XB.

3)Binary Integer Programming Model:

- **Objective:** Minimize total cost (fixed + transportation).
- Decision Variables:
 - o YW: 0 or 1 (whether warehouse W is open)
 - o ZWC: 0 or 1 (whether customer C is served by warehouse W)
- Constraints:
 - o Warehouse capacity limits.
 - o Customer demand must be fulfilled.
 - o If a warehouse serves a customer, it must be open.

4) Impact of Demand Changes:

Use sensitivity analysis—higher demand may require more warehouses, lower demand fewer.

CO5 - Case Study 1: Sales Forecasting

1) Linear Regression Model:

Sales = b0 + b1 * Advertising Spend + b2 * Seasonality Index

- Significant Predictors: Use p-values to identify important variables.
- Performance Metrics:
 - MAE (Mean Absolute Error)
 - o RMSE (Root Mean Square Error)
 - o R-squared (explains model fit)

6-Month Forecast: Use the regression equation with new inputs.

2) Multiple Linear Regression Model:

Energy Consumption = b0 + b1 * Temperature + b2 * Occupancy Rate

- **Relationships:** Use correlation analysis to understand variable impact.
- **Multicollinearity Check:** Use VIF (Variance Inflation Factor). Remove or transform variables if needed.
- **30-Day Forecast:** Predict based on future temperature and occupancy data.

General Questions on Linear Regression

- Assumptions:
 - o Linearity: Relation between variables is linear.
 - o Independence: Errors are independent.
 - o Normality: Residuals follow a normal distribution.
 - o Homoscedasticity: Residuals have constant variance.
- Outliers/Missing Values:
 - o Outliers: Remove or transform.
 - o Missing Values: Use mean, median, or interpolation.
- **Performance Metrics:** MAE, RMSE, R-squared.
- **Model Refinement:** Use feature engineering, regularization (Lasso/Ridge), and cross-validation to improve accuracy.

By Mohamed Abul Hassan A B.Tech AI&DS 2217028