

INTERNATIONAL BACCALAUREATE ORGANIZATION

PHYSICS DATA BOOKLET

November 2002

To be used in the teaching and examination of IB Diploma Programme physics

Physics Data Booklet

First published August 2001 Reprinted November 2002

© International Baccalaureate Organization 2001, 2002

Organisation du Baccalauréat International Route des Morillons 15 Grand-Saconnex / Genève CH-1218 SWITZERLAND

Fundamental Constants

Quantity	Symbol	Approximate Value
Acceleration due to gravity (Earth's surface)	g	9.81 m s^{-2}
Gravitational constant	G	$6.67 \times 10^{-11} \text{ N m}^2 \text{ kg}^{-2}$
Avogadro's constant	$N_{ m A}$	$6.02 \times 10^{23} \text{mol}^{-1}$
Gas constant	R	$8.31 \mathrm{J K^{-1} mol^{-1}}$
Boltzmann's constant	k	$1.38 \times 10^{-23} \text{ JK}^{-1}$
Stefan-Boltzmann constant	σ	$5.67 \times 10^{-8} \text{ W m}^{-2} \text{ K}^{-4}$
Coulomb constant	k	$8.99 \times 10^9 \text{ N m}^2 \text{ C}^{-2}$
Permittivity of free space	$\mathbf{\epsilon}_{\scriptscriptstyle 0}$	$8.85 \times 10^{-12} \text{ C}^2 \text{ N}^{-1} \text{ m}^{-2}$
Permeability of free space	μ_0	$4\pi\times10^{-7}~T~m~A^{-1}$
Speed of light in vacuum	С	$3.00 \times 10^8 \text{ m s}^{-1}$
Planck's constant	h	$6.63 \times 10^{-34} \text{ J s}$
Charge on electron	e	$1.60 \times 10^{-19} \text{ C}$
Electron rest mass	$m_{ m e}$	$9.11 \times 10^{-31} \text{ kg} = 0.000549 \text{ u} = 0.511 \text{ MeV } \text{ c}^{-2}$
Proton rest mass	$m_{ m p}$	$1.673 \times 10^{-27} \text{ kg} = 1.007276 \text{ u} = 938 \text{ MeV } \text{ c}^{-2}$
Neutron rest mass	$m_{ m n}$	$1.675 \times 10^{-27} \text{ kg} = 1.008665 \text{ u} = 940 \text{ MeV } \text{ c}^{-2}$
Unified atomic mass unit	u	$1.661 \times 10^{-27} \text{ kg} = 931.5 \text{ MeV } \text{ c}^{-2}$

Metric (SI) Multipliers

Prefix	Abbreviation	Value
tera	Т	10 ¹²
giga	G	10 ⁹
mega	М	10^{6}
kilo	k	10 ³
hecto	h	10^2
deca	da	10 ¹
deci	d	10 ⁻¹
centi	c	10-2
milli	m	10 ⁻³
micro	μ	10 ⁻⁶
nano	n	10 ⁻⁹
pico	p	10 ⁻¹²
femto	f	10 ⁻¹⁵

Unit Conversions

1 light year (ly) = 9.46×10^{15} m

1 parsec (pc) = 3.26 ly

1 astronomical unit (AU) = 1.50×10^{11} m

1 radian (rad) = $180^{\circ}/\pi$

1 kilowatt-hour (kW h) = 3.60×10^6 J

 $1 \text{ atm} = 1.01 \times 10^5 \text{ N m}^{-2} = 101 \text{ kPa} = 760 \text{ mm Hg}$

Electrical Circuit Symbols

Equations

Core	Additional Higher Level
Topic 1 Physics and physical measurement	
$A_{ m V}$ A $A_{ m H}$	
$A_{\rm H} = A\cos\theta$ $A_{\rm V} = A\sin\theta$	
	Topic 7 Measurement and uncertainties
	If $y = a \pm b$ then $\Delta y = \Delta a + \Delta b$
	If $y = \frac{ab}{c}$ then $\frac{\Delta y}{y} = \frac{\Delta a}{a} + \frac{\Delta b}{b} + \frac{\Delta c}{c}$
Topic 2 Mechanics	Topic 8 Mechanics
$egin{aligned} oldsymbol{v}_{ m av} &= rac{\Delta oldsymbol{s}}{\Delta t} \ oldsymbol{a}_{ m av} &= rac{\Delta oldsymbol{v}}{\Delta t} \end{aligned}$	$g = \frac{F}{m}$ $g = G\frac{m}{r^2}$

Core

Additional Higher Level

Topic 2 **Mechanics (continued)**

$$v = u + at$$

$$s = \frac{u + v}{2}$$

$$s = ut + \frac{1}{2}at^2$$

$$v^2 = u^2 + 2as$$

s: displacement

t : time

u : initial speed

v: final speed

a: acceleration

$$F = ma$$

$$p = mv$$

$$F = \frac{\Delta p}{\Delta t}$$

Impulse = $\mathbf{F}\Delta t = m\Delta \mathbf{v}$

$$W = Fs\cos\theta$$

$$E_{\rm k} = \frac{1}{2} m v^2$$

$$E_{\rm k} = \frac{p^2}{2m}$$

$$\Delta E_{p} = mg\Delta h$$

$$F = kx$$

$$E_{elas} = \frac{1}{2}kx^{2}$$

$$F = kx$$

$$E_{\rm elas} = \frac{1}{2}kx^2$$

$$power = \frac{work}{time} = Fv$$

$$a = \frac{v^2}{r} = \frac{4\pi^2 r}{T^2}$$

Topic 8 Mechanics (continued)

$$F = G \frac{m_1 m_2}{r^2}$$

$$E_p = -G \frac{m_1 m_2}{r}$$

$$V = -G\frac{m}{r}$$

$$\frac{T^2}{R^3}$$
 = constant

$$F_{\rm fr} \leq \mu_{\rm s} F_{\rm N}$$

$$F_{\rm fr} = \mu_{\rm k} F_{\rm N}$$

$$\tau = Fr\sin\theta$$

Core

Additional Higher Level

Topic 3 Thermal physics

$$p = \frac{F}{A}$$

$$\Delta Q = mc\Delta T$$

$$\Delta Q = mL$$

$$pV = nRT$$

$$\Delta W = p\Delta V$$

$$\Delta Q = \Delta U + \Delta W$$

 $+\Delta Q$ = thermal energy transferred to the system

 $+\Delta U$ = increase in internal energy of the system

 $+\Delta W$ = work done by the system

efficiency =
$$\frac{Q_{\rm h} - Q_{\rm c}}{Q_{\rm h}}$$

$$\frac{Q_{\rm h}}{T_{\rm h}} = \frac{Q_{\rm c}}{T_{\rm c}}$$
 (Carnot cycle)

efficiency =
$$\frac{T_{\rm h} - T_{\rm c}}{T_{\rm h}}$$
 (Carnot cycle)

Topic 4 Waves

$$v = f\lambda$$

$$\frac{\sin \theta_1}{\sin \theta_2} = \frac{v_1}{v_2}$$

$$n_1 \sin \theta_1 = n_2 \sin \theta_2$$

$$n = \frac{c}{v}$$

Topic 10 Waves

$$f' = f\left(\frac{1}{1 \pm \frac{v_s}{v}}\right)$$
 moving source

$$f' = f\left(1 \pm \frac{v_o}{v}\right)$$
 moving observer

$$f_{\text{beat}} = \left| f_1 - f_2 \right|$$

$$d\sin\theta = n\lambda$$

$$s = \frac{\lambda D}{d}$$

Core

Additional Higher Level

Topic 5 Electricity and magnetism

$$F = k \frac{q_1 q_2}{r^2} = \frac{1}{4\pi \varepsilon_0} \frac{q_1 q_2}{r^2}$$

$$E = \frac{F}{q}$$

$$E = k \frac{q}{r^2}$$

$$E = \frac{V}{d}$$

$$I = \frac{\Delta q}{\Delta t}$$

$$R = \frac{V}{I}$$

$$P = VI = I^2 R = \frac{V^2}{R}$$

$$R = R_1 + R_2$$

$$\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2}$$

$$F = qvB\sin\theta$$
$$F = IlB\sin\theta$$

$$F = IlB\sin\theta$$

$$B = \frac{\mu_0}{2\pi} \frac{I}{r}$$

$$B = \mu_0 \frac{NI}{l} = \mu_0 nI$$

$$\frac{F}{l} = \frac{\mu_0}{2\pi} \frac{I_1 I_2}{r}$$

Topic 11 Electromagnetism

$$V = k \frac{q}{r} = \frac{1}{4\pi\varepsilon_0} \frac{q}{r}$$

$$E = -\frac{\Delta V}{\Delta x}$$

$$\Phi = BA\cos\theta$$

$$\mathcal{E} = Bvl$$

$$\mathcal{E} = -N \frac{\Delta \Phi}{\Delta t}$$

$$\frac{V_{\rm p}}{V_{\rm s}} = \frac{N_{\rm p}}{N_{\rm s}}$$

$$I_{\rm rms} = \frac{I_0}{\sqrt{2}}$$

$$V_{\rm rms} = \frac{V_0}{\sqrt{2}}$$

Core		Additional Higher Level
Topic 6	Atomic and nuclear physics	Topic 12 Quantum physics and nuclear physics
$E = mc^2$		$E = hf$ $hf = \phi + E_{k_{max}}$ $hf = hf_0 + eV_s$ $p = \frac{h}{\lambda}$ $N = N_0 e^{-\lambda t}$ $T_{\frac{1}{2}} = \frac{\ln 2}{\lambda}$

Options Standard Level

Option A Mechanics extension

$$g = \frac{F}{m}$$

$$g = G \frac{m}{r^2}$$

$$F = G \frac{m_1 m_2}{r^2}$$

$$E_{\rm p} = -G \frac{m_1 m_2}{r}$$

$$V = -G\frac{m}{r}$$

$$\frac{T^2}{R^3} = \text{constant}$$

$$F_{\rm fr} \leq \mu_{\rm s} F_{\rm N}$$

$$F_{fr} \le \mu_{s} F_{N}$$
$$F_{fr} = \mu_{k} F_{N}$$

$$\tau = Fr\sin\theta$$

Option B Quantum physics and nuclear physics

$$E = hf$$

$$hf = \phi + E_{k_{max}}$$

$$hf = hf_0 + eV_s$$

$$p = \frac{h}{\lambda}$$

$$N = N_0 e^{-\lambda}$$

$$T_{\frac{1}{2}} = \frac{\ln 2}{\lambda}$$

Options Standard Level

Option C Energy extension

$$\Delta W = p\Delta V$$

$$\Delta Q = \Delta U + \Delta W$$

 $+\Delta Q$ = thermal energy transferred to the system

 $+\Delta U$ = increase in internal energy of the system

 $+\Delta W$ = work done by the system

efficiency =
$$\frac{Q_{\rm h} - Q_{\rm c}}{Q_{\rm h}}$$

$$\frac{Q_{\rm h}}{T_{\rm h}} = \frac{Q_{\rm c}}{T_{\rm c}} \qquad \text{(Carnot cycle)}$$

efficiency =
$$\frac{T_{\rm h} - T_{\rm c}}{T_{\rm h}}$$
 (Carnot cycle)

$$power = \frac{1}{2} \rho A v^3$$

Options Standard Level/Higher Level

Core (SL + HL)	Extension (HL only)
Option D Biomedical physics	
$\beta = 10 \log \frac{I}{I_0}$ where $I_0 = 10^{-12}$ W m ⁻² $I = I_0 e^{-\mu x}$ $x_{\frac{1}{2}} = \frac{\ln 2}{\mu}$	Mechanical Advantage = $\frac{\text{load}}{\text{effort}}$ Velocity Ratio = $\frac{\text{distance moved by effort}}{\text{distance moved by load}}$ Absorbed dose = $\frac{\text{Absorbed Energy}}{\text{mass}}$ Exposure = $\frac{\text{total charge}}{\text{mass}}$ Dose equivalent = quality factor × Absorbed dose $\frac{1}{T_{\text{E}}} = \frac{1}{T_{\text{B}}} + \frac{1}{T_{\text{R}}}$
Option E The history and development of physics	
Any formulas required will be found in the core topics.	$\frac{1}{\lambda} = R_{\rm H} \left(\frac{1}{n^2} - \frac{1}{m^2} \right)$ $\Delta x \Delta p \ge \frac{h}{2\pi}$ $\Delta E \Delta t \ge \frac{h}{2\pi}$ Any other formulas required will be found in the AHL topics.

Options Standard Level/Higher Level

Core (SL + HL)	Extension (HL only)
Option F Astrophysics	
$L = \sigma A T^4$ $\lambda_{\text{max}} \text{ (metres)} = \frac{2.90 \times 10^{-3}}{T \text{ (kelvin)}}$ $d \text{ (parsec)} = \frac{1}{p \text{ (arc-second)}}$ $b = \frac{L}{4\pi d^2}$	$v = Hd$ $\frac{\Delta \lambda}{\lambda} \cong \frac{v}{c}$
Option G Relativity	
$\gamma = \frac{1}{\sqrt{1 - \frac{v^2}{c^2}}}$	$p = \gamma m_0 u$ $E^2 = p^2 c^2 + m_0^2 c^4$
$\Delta t = \gamma \Delta t_0$ $L = \frac{L_0}{\gamma}$ $u_x' = \frac{u_x - v}{1 - \frac{u_x v}{c^2}}$	$E^{2} = p^{2}c^{2} + m_{0}^{2}c^{4}$ $\frac{\Delta f}{f} = \frac{g\Delta h}{c^{2}}$ $R_{Sch} = \frac{2GM}{c^{2}}$
$m = \gamma m_0$ $E_0 = m_0 c^2$ $E = mc^2$	

Options Standard Level/Higher Level

Core (SL + HL)	Extension (HL only)
Option H Optics	
$n_{1} \sin \theta_{1} = n_{2} \sin \theta_{2}$ $n = \frac{1}{\sin \theta_{c}}$ $\frac{1}{f} = \frac{1}{u} + \frac{1}{v}$ $m = \frac{h_{i}}{h_{o}} = \frac{v}{u}$ $M = \frac{\theta_{i}}{\theta_{o}}$	$\theta = \frac{\lambda}{b}$ $\theta = 1.22 \frac{\lambda}{b}$ $d \sin \theta = n\lambda$