Cvičení na výroky

Úloha 1. Sestavte tabulku pravdivostních hodnot pro složené výroky

- (a) $(x \wedge y) \Rightarrow (y \vee z)$,
- (b) $(x \Leftrightarrow \neg y) \lor (x \Leftrightarrow y)$,
- (c) $(x \wedge y \wedge \neg z) \vee (\neg x \wedge y \wedge \neg z)$.

Úloha 2. Výroky z Úlohy 1 znegujte (tak, aby ve výsledku se negovaly pouze x, y či z, nikoliv složené výroky).

Úloha 3. Znegujte následující výroky:

- (a) Přišel jsem, viděl jsem, zvítězil jsem.
- (b) Nebude-li pršet, nezmoknem.
- (c) Bude-li každý z nás z křemene, bude celý národ z kvádru.
- (d) Půjdu do školy právě tehdy, když nebudu nemocný a nebude sněžit.
- (e) Když půjdu do školy, tak nebudu nemocný a nebude sněžit.

Úloha 4. Výroky (b) a (c) z Úlohy 3 přepište pomocí *obměněné implikace* (tj. s využitím "pravidla" $(a \Rightarrow b) \Leftrightarrow (\neg b \Rightarrow \neg a)$).

Úloha 5. Vymyslete nějaký složený výrok Sobsahující $x,\,y$ a z,jehož pravdivostní tabulka bude

\boldsymbol{x}	y	z	S
0	0	0	1
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

Dokážete vymyslet recept pro jakýkoliv poslední sloupec?

Nápověda: Inspirujte se Úlohou 1 (c).

* Úloha 6. Ukažte, že pomocí operace $x \uparrow y$, která je definována jako $\neg(x \land y)$, lze dostat všechny ostatní logické operace.

1.

x	y	z	$(x \land y) \Rightarrow (y \lor z)$	$(x \Leftrightarrow \neg y) \lor (x \Leftrightarrow y)$	$ (x \wedge y \wedge \neg z) \vee (\neg x \wedge y \wedge \neg z) $
0	0	0	1	1	0
0	0	1	1	1	0
0	1	0	1	1	1
0	1	1	1	1	0
1	0	0	1	1	0
1	0	1	1	1	0
1	1	0	1	1	1
1	1	1	1	1	0

- **2.** (a) $(x \wedge y) \wedge (\neg y \wedge \neg z)$, (b) $(x \Leftrightarrow y) \wedge (\neg x \Leftrightarrow y)$, (c) $(\neg x \vee \neg y \vee z) \wedge (x \vee \neg y \vee z)$
- 3. (a) Nepřišel jsem, nebo jsem neviděl, nebo jsem nezvítězil. (b) Nebude pršet a zmoknem. (c) Bude každý z nás z křemene a celý národ z kvádru nebude. (d) Nepůjdu do školy právě tehdy, když nebudu nemocný a nebude sněžit. (e) Půjdu do školy a budu nemocný nebo bude sněžit.
- ${\bf 4.}$ (b) Zmokneme-li, bude pršet. (c) Nebude-li celý národ z kvádru, nebude každý z nás z křemene.
- **5.** např. $(\neg x \land \neg y \land \neg z) \lor (\neg x \land \neg y \land z) \lor (\neg x \land y \land \neg z) \lor (x \land y \land \neg z) \lor (x \land y \land z)$
- **6.** $\neg x = x \uparrow x, \ x \land y = (x \uparrow y) \uparrow (x \uparrow y), \ x \lor y = (x \uparrow x) \uparrow (y \uparrow y), \ x \Rightarrow y = x \uparrow (y \uparrow y), \ x \Leftrightarrow y = (x \uparrow y) \uparrow ((x \uparrow x) \uparrow (y \uparrow y))$