北京航空航天大学

2022-2023 学年第一学期期末

试题册

A卷

考试课程	理科数学分析 (I)	任课老师		
班级	学号	姓名		

题 号	1	_	Щ	四	五	六	¥	总分
成绩								
阅卷人								
校对人								

一、判断题(在正确的命题后面打 $\sqrt{}$,在错误的命题后面打 \times ,每小题2分,共10分)

- 1. 对于数列 $\{x_n\}, \{y_n\}, 若 \{x_ny_n\}$ 和 $\{x_n\}$ 都收敛, 则 $\{y_n\}$ 收敛. ()
- 2. 若连续函数 f(x) 在闭区间 [a,b] 上的函数值都是无理数,则 f(x) 在 [a,b] 上是常值函数. ()
- 3. 若函数 f(x) 在开区间 (a,b) 内单调, 且在 x = a 和 x = b 处有定义, 则 f(x) 在区间 [a,b] 上可积. ()
- 4. 设 f(x) 在 [a,b] 上可积,则 f(x) 在 [a,b] 上存在原函数. ()
- 5. 设 f(x), g(x) 在 $[a, +\infty)$ 上连续, 且 $\lim_{x\to +\infty} \frac{f(x)}{g(x)} = 1$, 若反常积分 $\int_a^{+\infty} f(x) dx$ 收敛, 则 反常积分 $\int_a^{+\infty} g(x) dx$ 收敛. ()

二、填空题(每空 4分, 共 20 分)

1.
$$\lim_{x \to 1} \frac{x^3 + ax^2 + b}{x - 1} = 4$$
, \mathbb{M} $a + b = \underline{\qquad}$.

2.
$$\lim_{n \to \infty} \frac{1 + \frac{1}{2} + \dots + \frac{1}{n}}{\ln(n^2)} = \underline{\qquad}.$$

- 3. 不定积分 $\int \frac{\cos x}{1 + \sin^2 x} dx =$ _______.
- 4. 若连续函数 f(x) 满足 $f(x) = (x^3 + 1)\sqrt{1 x^2} + \int_{-1}^{1} f(x) dx$, 则 f(x) =______.
- 5. 曲线弧段 $y = \int_0^x \sqrt{\cos t} \, dt \, (x \in [0, \frac{\pi}{3}])$ 的弧长为 ______.

三、计算题(每小题8分,共32分)

1. 求极限:
$$\lim_{x\to 0} \frac{\ln(1+x^2) + 2(\cos x - 1)}{\sin^4 x}$$
.

2.
$$\forall y = y(x)$$
 由方程 $e^{3y} + \int_0^{x+y} \cos(t^2) dt = 1$ 确定,求 $\frac{dy}{dx}\Big|_{(0,0)}$, $\frac{d^2y}{dx^2}\Big|_{(0,0)}$.

3. 己知
$$f(x) = \int_1^{x^2} \sin(t^2) dt$$
, 求 $I = \int_0^1 x f(x) dx$.

4. 求不定积分:
$$I = \int \frac{\arctan x}{x^2(1+x^2)} dx$$
.

四、(12分)设函数 $f(x) = x^3 - 3x$.

- 1. 求 f(x) 的单调区间与极值;
- 2. 设 f(x) 的两个不同的极值点分别为 x_1 与 x_2 , 求曲线 y = f(x) 与直线 $x = x_1$, $x = x_2$ 和 x 轴所围图形 D 的面积;
 - 3. 求 D 绕 x 轴旋转所得旋转体的体积 V.

五、(10分) 1. 设 $f(x) = \frac{\ln x}{x^{\alpha}} (x > 0, \alpha > 0)$, 证明存在常数 a > 0, 使得函数f(x) 在区间 $[a, +\infty)$ 上单调减少,且 $\lim_{x \to +\infty} f(x) = 0$;

2. 讨论反常积分 $I = \int_1^{+\infty} \frac{\ln x \cos x}{x^p} dx$ 的收敛情况 (包括绝对收敛、条件收敛、参数 p > 0).

六、(10分) 1. 叙述函数 f(x) 在区间 [a,b] 上的 Lagrange 中值定理.

- 2. 设函数 f(x) 在 [a,b] 上可导, 且有 $0 < |f'(x)| \le M$, 证明: 若 f(b) = 0, 则 $\int_a^b |f(x)| \mathrm{d}x \le \frac{M}{2} (b-a)^2$;
- 3. 设函数 f(x) 在 [0,1] 上可导,且有 $0 < |f'(x)| \le M$,证明: 对于任意的正整数 n,成立 $\left| \int_0^1 f(x) \mathrm{d}x \frac{1}{n} \sum_{k=1}^n f(\frac{k}{n}) \right| \le \frac{M}{2n}.$

七、(6分) 设 f(x) 在 $[0,+\infty)$ 上一致连续,且对于任意的正实数 h,极限 $\lim_{n\to\infty} f(nh)$ 存在,试判断 $\lim_{x\to+\infty} f(x)$ 是否存在,并证明你的判断.