四旋翼无人机设计报告

1. 电子元件及电池尺寸、重量测量表

元件名称	型号	尺寸(mm)	重量 (g)	数量	总重量 (g)	备注
飞控系统	MicoAir743- AIO-35A	36×36×8	10	1	10	集成35A四合一电调
电机	LANNRC 2004- 2500KV	Ф25.7×15.5	16.5	4	66	2500KV, 12N14P配置
螺旋桨	3.5寸三叶	3.5寸 ×16.5宽	2.35	4	9.4	PC材质, 螺距3英寸
电池	4S1P锂电池	33×25×62	88	1	88	1100mAh, 60C放电
接收机	12通道SBUS	30.5×16	2.5	1	2.5	3-6V,4000米控距
已知电子元件总重					175.9	

2. 机架及各类载荷(包含螺丝)重量分配方法

2.1 机架结构组成

组件	数量	材料	预估重量(g)	备注
主机架一体	1	PLA-CF	85	中心板+机臂一体化设计
电池仓盖板	1	PLA-CF	15	可拆卸,便于电池更换
保护球壳	1	PLA-CF	25	整机保护,防撞设计
机架总重			125	

2.2 载荷分布表

载荷类型	重量(g)	安装位置	数量	总重量(g)
飞控系统	10	中心上层	1	10
电机	16.5	机臂末端	4	66
螺旋桨	2.35	电机轴	4	9.4
电池	88	中心下层	1	88
接收机	2.5	中心侧面	1	2.5
机架本体	125	整体结构	1套	125
螺丝螺母	-	各连接点	若干	<20
已知组件总重				300.9
预估总重量				<320.9

3. 飞机重心测试方法阐述

设备要求:

- 4个精密电子秤
- 水平台面
- 4个等高支撑点

测试步骤:

- 1. 将4个电子秤放置在矩形的四个角上
- 2. 调整支撑高度使无人机水平放置
- 3. 记录4个称重点的读数: W1、W2、W3、W4
- 4. 根据几何关系计算重心位置

计算公式:

$$egin{aligned} X_{ar{\pm} \circlearrowleft} &= rac{(W_3 + W_4 - W_1 - W_2) imes L}{2 imes W_{total}} \ Y_{ar{\pm} \circlearrowleft} &= rac{(W_2 + W_3 - W_1 - W_4) imes W}{2 imes W_{total}} \end{aligned}$$

其中L、W为支撑点间距, W_{total} 为总重量

4. 减震设计阐述

4.1 减震方案

飞控减震设计:

• 减震材料: EVA泡棉板

• 安装位置: 垫在飞控系统之下

• 厚度: 3mm

• 尺寸: 40×40mm(略大于飞控尺寸)

设计特点:

1. EVA材质具有优良的减震和缓冲性能

- 2. 轻量化设计,重量影响极小(<2g)
- 3. 安装简便,直接垫放在飞控下方
- 4. 有效隔离高频振动,保护IMU等敏感传感器