Evolutionary Multiple Sequence Alignment

Sanjana Bhagavatula, John Drohan, Rachel Utama, Sreevatsa Nukala

DS3500 Final Project

```
H D S M K A K E I C R N F L G H W Y D S Y V N A T T I F D D
Y D S N K A Q E I C R D F L G H W Y D S Y V N A T T I F D D
H D S I K A K E I C R K F L G H W Y D S Y V N A T T I F D D
H N S N K A K D I C R D F L A H W Y D S Y L N A T S I F D D
H D S N R A K D I C R N F L G H W Y D S Y V N A T K I F D D
H D S Q R A K D I C R Q F L A H W Y D S Y V N A T R I F D D
D D A Q K A Q D V C R E F L K N W Y D S Y V N A T N I F N D
E D G E K A D S V C R N F L E N W Y D S Y V N A T N I F N D
E D P E K A E S V C R D F L S N W Y E S Y T N A T N I F K D
E D G K K A E D V - R E F L G N W Y D S Y V N A T N I F S E
```

Multiple sequence alignment (MSA)

Alignment of 3 or more biological sequences of similar length

A	T	T	G	C	C	A	T	T	
A	T	G	G	C	C	A	T	T	
A	T	C	C	A	A	T	T	T	T
A	T	C	T	T	C	T	T		
A	C	T	G	A	C	C			

A	T	T	G	C	C	A	T	T	-	
A	T	G	G	C	C	A	T	T	-	-
A	T	C	-	C	A	A	T	T	T	T
A	T	C	T	T	C	-	T	T	-	-
									-	

- Process of minimizing gaps and mismatches
- Detect regions of variability or conservation in a family of proteins
- May indicate functional, structural, or evolutionary relationships between biological sequences

Phylogenetic Tree

Implementation

Evolutionary Multiple Sequence Alignment

Read Fasta File

Work	flow.md × 🚜 chart.py × 🚜 align.py × 🚆 all.fasta × 🐉 evo_app.py ×
1	>BAA78379.1 P53 [Canis lupus familiaris]
2	MQEPQSELNIDPPLSQETFSELWNLLPENNVLSSELCPAVDELLLPESVVNWLDEDSDDAPRMPATSAPT
3	APGPAPSWPLSSSVPSPKTYPGTYGFRLGFLHSGTAKSVTWTYSPLLNKLFCQLAKTCPVQLWVSSPPPP
4	NTCVRAMAIYKKSEFVTEVVRRCPHHERCSDSSDGLAPPQHLIRVEGNLRAKYLDDRNTFRHSVVVPYEP
5	PEVGSDYTTIHYNYMCNSSCMGGMNRRPILTIITLEDSSGNVLGRNSFEVRVCACPGRDRRTEEENFHKK
6	GEPCPEPPPGSTKRALPPSTSSSPPQKKKPLDGEYFTLQIRGRERYEMFRNLNEALELKDAQSGKEPGGS
7	RAHSSHLKAKKGQSTSRHKKLMFKREGPDSD
8	>BAC16799.1 P53 [Homo sapiens]
9	MEEPQSDPSVEPPLSQETFSDLWKLLPENNVLSPLPSQAMDDLMLSPDDIEQWFTEDPGPDEAPRMPEAA
10	PRVAPAPAAPTPAAPAPAPSWPLSSSVPSQKTYQGSYGFRLGFLHSGTAKSVTCTYSPALNKMFCQLAKT
11	CPVQLWVDSTPPPGTRVRAMAIYKQSQHMTEVVRRCPHHERCSDSDGLAPPQHLIRVEGNLRVEYLDDRN
12	TFRHSVVVPYEPPEVGSDCTTIHYNYMCNSSCMGGMNRRPILTIITLEDSSGNLLGRNSFEVHVCACPGR
13	DRRTEEENLRKKGEPHHELPPGSTKRALSNNTSSSPQPKKKPLDGEYFTLQIRGRERFEMFRELNEALEL
14	KDAQAGKEPGGSRAHSSHLKSKKGQSTSRHKKLMFKTEGPDSD
15	>AAA39883.1 p53 [Mus musculus]
16	MTAMEESQSDISLELPLSQETFSGLWKLLPPEDILPSPHCMDDLLLPQDVEEFFEGPSEALRVSGAPAAQ
17	DPVTETPGPVAPAPATPWPLSSFVPSQKTYQGNYGFHLGFLQSGTAKSVMCTYSPPLNKLFFQLAKTCPV
18	QLWVSATPPAGSRVRAMAIYKKSQHMTEVVRRCPHHERCSDGDGLAPPQHLIRVEGNLYPEYLEDRQTFR
19	HSVVVPYEPPEAGSEYTTIHYKYMCNSSCMGGMNRRPILTIITLEDSSGNLLGRDSFEVRVCACPGRDRR
20	TEEENFRKKEVLCPELPPGSAKRALPTCTSASPPQKKKPLDGEYFTLKIRGRKRFEMFRELNEALELKDA
21	HATEESGDSRAHSSLQPRAFQALIKEESPNC

Sum-Pairs Score Matrix

	S_1	S_2	S_3	S_4	S_5	
S_1	-	7	-2	0	-3	2
S_2	7	-	-2	0	-4	1
S ₃ S ₄	-2	-2	-		-7	-11
S_4	0	0	0	-	-3	-3
S_5	-3	-4	-7	-3	-	-17
	2	1	-11	-3	-17	

 S_1 is the sequence most similar to the rest, and below are the best alignments between S_1 and the rest of the sequences.

Implementation

Evo framework

- Fitness criteria
 - Sum-pairs scores
 - BLOSUM Matrix
- Modification Agents
 - Smith waterman algorithm
- Evolve
- Visualizations
- Alignment Library

Δ	4																			
R	-1	5																		
N	-2	0	6		BLOSUM 62 scoring matrix															
D	-2	-2	1	6																
С	0	-3	-3	-3	9															
Q	-1	1	0	0	-3	5					(F	osit	tive	val	ues	are	sha	ded	1)	
Е	-1	0	0	2	-4	2	5													
G	0	-2	0	-1	-3	-2	-2	6												
Н	-2	0	1	-1	-3	0	0	-2	8											
I	-1	-3	-3	-3	-1	-3	-3	-4	-3	4										
L	-1	-2	-3	-4	-1	-2	-3	-4	-3	2	4									
K	-1	2	0	-1	-3	1	1	-2	-1	-3	-2	5								
М	-1	-1	-2	-3	-1	0	-2	-3	-2	1	2	-1	5							
F	-2	-3	-3	-3	-2	-3	-3	-3	-1	0	0	-3	0	6						
Р	-1	-2	-2	-1	-3	-1	-1	-2	-2	-3	-3	-1	-2	-4	7					
S	1	-1	1	0	-1	0	0	0	-1	-2	-2	0	-1	-2	-1	4				
Т	0	-1	0	-1	-1	-1	-1	-2	-2	-1	-1	-1	-1	-2	-1	1	5			
W	-3	-3	-4	-4	-2	-2	-3	-2	-2	-3	-2	-3	-1	1	-4	-3	-2	11		
Υ	-2	-2	-2	-3	-2	-1	-2	-3	2	-1	-1	-2	-1	3	-3	-2	-2	2	7	
V	0	-3	-3	-3	-1	-2	-2	-3	-3	3	1	-2	1	-1	-2	-2	0	-3	-1	4
l	Α	R	N	D	С	Q	E	G	н	I	L	K	М	F	P	S	T	W	Y	V

substitutions matrices from protein blocks. *Proc. Natl. Acad. Sci.* 89: 10915-10919.

Preliminary Results

Potential Next Steps

- 1) Add more Agents
 - a) Modification Agents
 - i) Needleman-Wunsch
- 2) Add more Fitness Criteria
- 3) Convert Amino acid to numerical representation
 - a) Enable faster run time
 - b) More capability to compare amino acids on a spectrum

References

- 1. https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859 -020-3526-6
- 2. https://www.ebi.ac.uk/Tools/msa/
- 3. https://www.cs.princeton.edu/~mona/Lecture/msal.pdf
- 4. https://d1w9csuen3k837.cloudfront.net/Pictures/2000x2000fit/7/9/6/1 38796_Hydrophobic-and-polar-amino-acids.jpg
- 5. https://d1w9csuen3k837.cloudfront.net/Pictures/2000x2000fit/7/9/6/1 38796_Hydrophobic-and-polar-amino-acids.jpg

Thank you!

Does anyone have any questions?