Linear Algebra

Question 1

1. [10pt] Create a matrix array A and vector array in Numpy with **random** integers using random method. For example

$$A = \begin{bmatrix} 5 & -2 \\ -3 & -1 \\ 7 & 9 \end{bmatrix}$$
, $x = \begin{bmatrix} 4 \\ 6 \end{bmatrix}$. Your A matrix is **5x2** and your x vector is **2x1**. Show your code and result.

Create a diagonal matrix B, with 1,2,3,4,5 in the diagonal. The order doesn't matter. You can have

$$B = \begin{bmatrix} 3 & & \\ & 4 & \\ & & 1 \end{bmatrix}$$
. Note your diagonal matrix is 5x5.

Calculate Ax, and BA. Show your code and result.

Code with Result:

Importing necessary library

```
In [1]: ) import numpy as np
from numpy.linalg import matrix_rank
```

Matrix initialisation

```
In [2]: ▶ # Creating matrix A or 2d array with the help of numpy's
            # randint function by passing tuple, containing matrix dimentions
            # to the size parameter
            matrix_A = np.random.randint(-10, 10, size=(5, 2))
            \# Creating vector X by using numpy's randint function
            vector_x = np.random.randint(-10, 10, size=(2,1))
            # Diagonal matrix B with dimentions 5x5 having 1 to 5 on diagonal
            matrix_B = np.diag([2, 1, 3, 4, 5])
            print(f"Matrix A: \n{matrix_A}")
            print(f"\nMatrix B: \n{matrix B}")
            print(f"\nVector X: \n{vector_x}")
            Matrix A:
            [[ 4 0]
[ 4 6]
             [ 2 6]
[-8 -4]
             [-4 9]]
            Matrix B:
            [[20000]
             [0 1 0 0 0]
             [0 0 3 0 0]
             [0 0 0 4 0]
             [0 0 0 0 5]]
            Vector X:
            [[-2]
             [ 2]]
```

Matrix-Vector product: Ax

```
In [3]: M Ax_product = np.dot(matrix_A, vector_x)
print(f"Matrix - Vector(Ax) product: \n{Ax_product}")

Matrix - Vector(Ax) product:
[[-8]
    [ 4]
    [ 8]
    [ 8]
    [ 26]]
```

Matrix-Matrix product: BA

```
In [4]: M BA_product = np.dot(matrix_B, matrix_A)
print(f"Matrix - Matrix(BA) product: \n{BA_product}")

Matrix - Matrix(BA) product:
[[ 8     0]
[     4     6]
[     6     18]
[-32 -16]
[-20     45]]
```

Question 2

2. [10pt] Calculate the rank of your matrix A and the rank of your matrix B. What about the rank of BA? Are they different? Why?

Matric Rank Calculation - Code with Result:

What about the rank of BA? Are they different? Why?

Here rank of the matrix BA is not equal to the rank of matrix B but equal to the rank of matrix A because the rank(BA) is determined by the following relationship:

rank(BA) is minimum of the ranks of the matrices B and A i.e. rank(BA) <= minimum(rank(B), rank(A))

Hence, the rank of matrix BA will not be 5, same as matrix B, because the minimum of the ranks of B and A is 2, the rank of the matrix A.

So, the rank of the matrix BA <= rank of A, in this case equal to A, i.e. 2.

Question 3

$$A = \begin{bmatrix} -2 & 1 & 8 \\ -1 & -1 & 7 \\ 3 & 0 & 4 \end{bmatrix} \quad B = \begin{bmatrix} 5 & 0 & -7 \\ 6 & 3 & -9 \\ -2 & -2 & 0 \end{bmatrix} \quad C = \begin{bmatrix} 6 & 3 & -1 \\ 2 & 4 & 5 \\ -1 & -1 & 8 \end{bmatrix}$$

- 3. [10pt] Find the following expressions by hand. Show your steps.
 - (a) AB
 - (b) BA
 - (c) AB-BA
 - (d) ABC
 - a, b, c, & d

64	M Y W 1 5 5 Page No.: Date 12 - 01 - 2 - 1	
	Alachant L. Lincar Alachan	1
	5+0+0 40+0+(-28)	-9
	= -10 + 0 + (-21)	_
	-12+C3)+(-27) 6+C3)+0 48 1 21	_
	4+2+0 -2+2+0 -16+(-14)+0	
	F-21 F 12 7	
	BA = -42 3 33	
	6 0 -30	
	1 2-1 2-1 0 2-1 2 2-1	
c)	AB= -20 -13 5 BA= -31 5 12	
-)	AB= -25 -17 (6 13A= -42 3 33 7 -8 -21 6 0 -30	
	0 2 7 2 7 2	
	AB-BA = -20 -13 5 7 -31 5 12	
-	7 -8 -21 6 0 -30	
	720-(-31) -13-5 5-12 7	
	-25-(-42) -17-3 16-33	
	0+0+15- (3-3+4-6)	
	= [11 -18 -7]	
	17 -20 -17	_
	7 -2 -21	
d)	ABC = ABCc), AB = -20 -13 5 C= 6 3 -1	7
	7 -8 -21 2 4 5	
	[-20 -13 5] [6 3 -1]	
	ABC = -25 -17 16 12 4 5	
	7 -8 -21	
	= [-20] [6] [-20] [3] [-20] [-17]	
	-13 - 2 -13 - 4 -13 - 5	
	[-25] [6] [-25] [3] [-25] [a)	
-	1 -17 - 17 - 17 - 17 - 17 - 17 - 17 - 1	
	[7] [6] [7] [16] [7] [7]	

d) contd...

Question 4

- 4. [10pt] Calculate the eigenvalues and eigenvectors of matrix A above by hand.
 - a. Show your steps below. You can use external tools to solve for a polynomial equation only.
 - b. Show the trace of matrix A.
 - a) Calculate Eigenvalues and Eigenvectors

Q-4	A= [-2 1 8] Calculate eigenvalues and eigenvectors 3 0 4 of matrix A. Also, show the trace of	
	[3 0 4] of matrix A. Also, show the trace of	
	matrix A.	
	Ax = \x 0 = 200 + 200 + 100 PP 0	
	$Ax - \lambda I_{x=0}$: $(A - \lambda I)_{x=0}$	
3301 + 0 + 6.1923020		
	det (A-NI) = 0	
	[-2 1 8] [x 0 0] [-2-x 1 8]	
	$\begin{bmatrix} -2 & 1 & 8 \\ -1 & -1 & 7 \\ 3 & 0 & 4 \end{bmatrix} = \begin{bmatrix} 7 & 0 & 0 \\ 0 & \lambda & 0 \\ 0 & 0 & \lambda \end{bmatrix} = \begin{bmatrix} -2-\lambda & 1 & 8 \\ -1 & -1-\lambda & 7 \\ 3 & 0 & 4-\lambda \end{bmatrix}$	
	[304] [80 K] [3 0 4-X]	
	Finding the deter minunt Plan	
	(-2-1)[(-1-1)(4-1)-(7x0)]-1[(-1)(4-1)-(7)(3)]+	
	$(-2-\lambda)[C-1-\lambda)(4-\lambda)-(7\times0)]-1[C-1)(4-\lambda)-(7)(3)]+$ $(8[C-1)(0)-(-1-\lambda)(3)]=0$	
	27-28-29-19-19-29-19-29-29-5-5-5-5-5-5-5-5-5-5-5-5-5-5-5-5-	
	$\lambda^3 + \lambda^2 + 33\lambda + 57 = 0$	
	λ = -2·192 , λ=-3·747 , λ=6·939	
	CBEC-EL MAT TOTALISMENTS [8887]	
	Hence, the cigenvalues (1) are 1=-2-142, 1=-3-747,	
	λ= 6·939	
*	Now, find the eigenvector with eigenvalue 1=-2.192	

a) contd...

Page No.: Date: \(\frac{7}{01/24}\)	M T W T F S S Page Na.: Date: 7 - 0 - 24 YOUVA
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	# Eigenvector with eigenvalue $\lambda = -3.747$ $(A - \lambda I)x = 0$ $ \begin{pmatrix} -2 & 1 & 7 & 0 & 0 \\ -1 & -1 & 7 & 0 & 0 \\ 3 & 0 & 4 & 0 & 0 \end{pmatrix} $
0.192x, + x_2 + $8x_3$ = 0 - x_1 + 1.192x, + $7x_3$ = 0 3x, + 0 + 6.192x, = 0 Solving System of equations using examer's rule x_1 - x_2 x_3 1.192 7 - 1 7 -1 1.192	$3 \times 1 + 0 \times 2 + 7.74723 = 0$ $\times 1 - \times 2 \times 3$ $2.747 7 - 1 - 1 7 - 1 2.747$ $0 7.747 3 7.747 3 0$ $= 21.28 \times 28.747 = -8.241$
0 6.192 3 6.192 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	: Eigenvector for eigenvalue 1=-3.747 is 29.74 -8.24
(7x0) (3x7) (1.142 x3) = 7-38 = 27.142 = -3.576 Hence the digenvector for the digenvalue -2.142 is $\begin{bmatrix} 7.38 \\ 27.142 \\ -3.576 \end{bmatrix}$ = eigenvector for $\lambda = -2.142$	# Finding eigenvector with eigenvalue $\lambda = 6.939$ $ \begin{bmatrix} -2 & 1 & 8 \\ -1 & -1 & 7 \\ 3 & 0 & 4 \end{bmatrix} = \begin{bmatrix} 6.939 & 0 & 0 \\ 6.939 & 0 & 6.939 \end{bmatrix} $ $ \begin{bmatrix} -9.939 & 1 & 8 \\ -1 & -7.939 & 7 \\ 3 & 0 & -2.939 \end{bmatrix} $ $ \begin{bmatrix} -8.939 \times 1 & \times 2 & \times 3 & = 0 \end{bmatrix} $
4 Mary First the eigenvector with eigenvalue here	$-2c_{1} - 7.939 + 2c_{2} + 7x_{3} = 0$ $32c_{1} + 02c_{2} - 2.939 \times 3 = 0$

Aver 12-12-12-12-12-12-12-12-12-12-12-12-12-1		Page No.: Date: 7-01-24 YOUVA
oc i Ali Saa	- DC 2	# Figerverterson
-7.439 7	-1 7	-1 -7.939
0 -2.939	3 -2.939	3) = x(O[(-A)
= 23.33	= 18.061	= 23.817
0 = x 6	3743	- 5 1- 1-
. Eigenvector	resulting fro	
. ciaenvalue	\= 6.439 is	8 10 00 1441
[0.192]	- 36 = C	23.817

b) Trace of Matrix

```
b. Trace of a matrix A:

trace is the Sum of all the eigenvalues of a matrix.

Mere eigenvalues are \lambda = -2 \cdot 192, \lambda = -3 \cdot 747, \lambda = 6 \cdot 939

Hence the trace = (-2 \cdot 192) + (-3 \cdot 747) + (6 \cdot 939) = 1

of matrix A

Hence, the trace of a matrix A is 1.
```

Question 5

5. [10pt] Use Numpy to concatenate A, B, C to a 9 x 3 matrix. The order doesn't matter. Let's call the new matrix D. Create b=[3, -10, 2]^T. Find the least squares solution x that minimize $||D^Tx - b||^2$. Show your code and results.

Initializing matrices for question 5

Matrix Concatenation and vector b initialization

```
In [7]: ▶ # Concatenating matrices A, B & C
            D = np.concatenate((A, B, C))
            print(f"Concatenated matrix D: \n{D}")
            # Initializing vector b and transposing it
            b = np.array([[3, -10, 2]]).T
            print(f"\nVector b after transposing: \n{b}")
            Concatenated matrix D:
            [[-2 1 8]
[-1 -1 7]
             [ 3 0 4]
[ 5 0 -7]
             [63-9]
             [-2 -2 0]
             [63-1]
             [-1 -1 8]]
            Vector b after transposing:
            [[ 3]
             [-10]
[ 2]]
```

Least Square solution

Statistics

Question 1

[10pt] Roll a six-sided die 5 times. What is the probability of rolling a six in all 5 rolls? If
rolling the die 5 times is considered one trial, perform 500 trials. What is the probability
of rolling a six in all 5 rolls in exactly one of these 500 trials? What about rolling a six in
all 5 rolls in at least one of the 500 trials?

Q-1	The probability of rolling a six-sided die
	is 1/6
	XI - XI X
	- Probability of rolling a six in all 5 roll
	0 9.747 3 7.747 3 0
	= (1/6) = 1/2 (1/7776) = 10.000129
	- What is Probability of rolling a six in all 5
	rolls in exactly 1 of these Soo trials?
	* Rolling the die 5 times is considered as I trial *
	Thomas in as I tonal of
	Binomial Probability formula:
	13 nomial 180 Bability Tormula.
	P(x) = ncx.p2.qn-20
	P(x) - Cx · I · 4
	n= 500 trials
	P = Prob. of Success on a single trial = (16)
	2 = Prob. of falinge on a single trial = 1-p=1-(16)
	0 = 125 + 320 PSP-F - 126 -
	0=1×456- 10×0 + 10×2

Que 1 contd...

M T W T F S S
Page No.: Date: 2.3 - 0.1 - 24 VOUVA
: P(exactly 1 success in soo trials) = 500-1
$\frac{\text{Soo} \times \left(\frac{1}{6}\right)^5 \times \left(1 - \left(\frac{1}{6}\right)^5\right)}{1}$
= 500 X \ X \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
7776 (7776)
= 0.06
Hence, probability of getting a six in exactly
all 5 rolls in exactly I of 500 trials is 6%.
7 = 2-0-8 = 2-10-5
- Probability of rolling a six in at teast all 5 rolls in
atleast one of the 500 trials.
alded nothedistrile
Plat least one Success) = 1 - Plno success)
= (1-(1/6)) 5002-5 24 1-205
= (1-1/7776)500
= (7775/7776) SOO = 0.93
= (177/7776) = 0.93
* Now Probability of a randomly saleited student
Hence, Probability of rolling a six in all 5 rolls in at least
one of the Soo trials is 93%
(8.8 > x > 2.2) = (262318) = ((25231))
23251-0-75178-0 =

2. [10pt] A study found that the average amount of coffee consumed by college students is 3 cups per day. Assuming this consumption follows a normal distribution with a standard deviation of 0.8 cups, what is the probability that a randomly selected college student drinks between 2.2 and 3.8 cups of coffee per day?

WW. DASHAGATA	M T W T F S S
	Date: 23-01-24 YOUVA
	13-10-13
	mean $\overline{x} = 3$ cups std. deviation $6 = 0.8$
Q-2	mean = 3 cups, Std. deviation
	X = amount of coffee consumer
	x= 2.2 4 x=3.8.
	2 1 723.8
*	colculating z-score for x=2.2 & x=3.8
	$Z_{x} = x - \overline{x}$ $Z_{2\cdot 2} = 2 \cdot 2 \cdot 0 \cdot 8$
	1. d & Balant part to the Mittage 8 mg
	7 = 2.8 -0.8 = 1
n1 21	or 2 Up dead to NIXIR to souther to KTILLARDON
*	Now, looking Z-Scores in a Standard normal
	distribution table
	PLat least one success = 1 - Plano success)
	for Z2.2 = -1, the 2-Score is 0.15866 4
	for 23.8 = 1, the 2-Score is 0.84134
	:. P(Z \(\frac{1}{2}\) = 0.15866
	P(Z \(\frac{2}{23.8}\) = 0.84134
	P(Z \(\alpha\) = 0.84134 \(\begin{array}{c} \text{Pro} = \text{OFFACTORY} = OFFACT
*	Now, Probability of a randomly selected student
ten	drinks between 2.2 f 3.8 cups
	$P(3.8 \ge X \ge 2.2) = P(Z \le 23.8) - P(Z \le Z_{2.2})$
	= 0.84134-0.15866
	= 0.683
*	Hence, Probability that a randomly selected student
	drinks between 2.2 & 3.8 cups of coffee is 68.1
	1 01 COTTRE 15 00 1
	- 102
	12 Syan Alexander

 [10pt] 6 Digital Camera Prices The prices (in dollars) for a particular model of digital camera with 18.0 megapixels and a f/3.5–5.6 zoom lens are shown here for 10 randomly selected online retailers. Estimate the true mean price for this particular model with 95% confidence.

Prices: [999, 1499, 1997, 398, 591, 498, 798, 849, 449, 348]

F 3 - 1		MTWTFSS
		Page No.: YOUVA
		Date: 27 - 01 - 24
Q-3	n=10 confidence level = 95%	e c1= 11 2-0
	Poices: [999, 1499, 1997, 398, 591, 498, 798, 84	a 460 2607
	, , , , , , , , , , , , , , , , , , , ,	1, 111, 570
*	DC = 999 + 1499 + 1997 + 398 + 591 + 498+	- 300+ 9Ld+
	D & 100 7 (00)	449 + 348
	10	DOME LO BIS
	$\overline{x} = 842.6$ $S = \left[\frac{2(x_i - \overline{x})^2}{2} \right]$	$(\alpha; -\overline{\alpha})^2$
	h-1	25560.96
Class		430860.96
	= 2569262.4	
1.51 5	and a green in a high	1332639.36
	= 534.29	197669.16
OLD ALERS	t-value for as.1. confidence level	63302.56
	with degree of freedon (n-1) i.e. 9	118749.16
05	is 5.565 - 21 - 4.51 - all-	1989.16
	25.7 M	40-96
*	Now, to find true mean:	154920.96
Ta	alue besed on alpha (a) = 0.05 a	244629.16
	$Z = u = \overline{sc} + t(s/\sqrt{n})$ i.e.	2569262.4
	元+ t(%n) ≤ U ≤ 元+t(%n)	* Since the
- 1	INC 2.58 We reject the fail to make	nu Annidiren
	:. M = 842.6 ± 2.262 (534.24)	live set
	C VICE TO	
	= 842.6 ± 168.95×2.26	21ili annah
	= 842.6 ± 382.16	
	[460.44 \le U \le 1224.76]	tives alo
-00	11 9 19 19 19 19 19 19 19 19 19 19 19 19	ais camera
*	Hence, the true mean price of the	hetween
	model with 95% confidence lies	, , , , , , , , , , , , , , , , , , , ,
	460.44 & 1224.76.	
_		

4. [10pt] The average number of books read by a person in a year is reported to be 12. A 'reader' is defined as a person who reads at least one book in a year. A random sample of 50 readers from a local community library showed that the average number of books read per person was 13.4. The population standard deviation is 4.5 books. At the 0.01 level of significance, can it be concluded that this sample represents a significant difference from the national average?

avec .	Page No.: Date: 27-01-24 YOUVA
Q-4	U=12 -> Avag. no. of books read by a person in a year
	x = 13.4 -> Sample mean
	n=50 -> Sample Size 6 = Sam 4.5 -> Repulation Standard Deviation
842 4	Significance Level = 0.01 > a
3	
*	Null Hypothesis (Ho): The average no. of books read by a person in a year is 12
96.09	Alt. Hypothesis (H.): The average not no. of books
34.36	read by a person in a year is 13.4
91:09	534.29 1976
100	Here, n > 30 & population Standard deviation is known
	So, I will use a z-test band to samuel with
10.00	$z = \overline{z} - \mu_0$ $z = 13 \cdot 4 - 12 = 2 \cdot 19 \approx 2 \cdot 20$
120-96	* Nov. to find bove mean: 15ho
11.*	Critical Value based on alpha (a) =0.05 0.01
4.5926	19 2.58 91 (AV) 3 + 50 = 1h = 50
*	Cinco tto (158) 4 15 5 111 5 (-18) 4 -
	Since the calculated z-value, 2-2, is less than
	critical value 2.58, we reject the fail to reject the null hypothesis.
	Hence, with 0.01 level of significance i.e. with 99.1.
	considerate we can conclude that this
	abesit represent a significant life on a from
	the flational average
	model with 45% confidence lies between
	100.42 de 100.
5	

5. [10pt] A statistics professor is used to having a variance in his class grades of no more than 100. He feels that his current group of students is different, and so he examines a random sample of midterm grades as shown. At α = 0.05, can it be concluded that the variance in grades exceeds 100?

The grades: [92.3, 89.4, 76.9, 65.2, 49.1, 96.7, 69.5, 72.8, 67.5, 52.8, 88.5, 79.2, 72.9, 68.7, 75.8]

avuov	M Page	T W T F S S
G-5	$n=15$, Significance level(α) = 0.05 $\delta^2 = 100 \Rightarrow \text{Population Variance}$ 9 rades: [92.3, 89.4, 76.9, 65.2, 49.7, 96.7, 69.5.8] 52.8, 88.5, 79.2, 72.9, 68.7, 75.8]	5, 72-8, 67-5,
	Null Hypothesis (Ho): Variance in class grand no more than 100. Alt. Hypothesis (H,): Variance in class open more than 100.	
*	\overline{x} = 92-3 + 89.4 + 76.9 + 65.2 + 49.1 + 96.7 + + 67.5 + 52.8 + 88.5 + 79.2 + 72.9 + 6	
	$\frac{1}{5^2} = \frac{74.48}{5^2} = \frac{2572.85}{14} = \frac{183.77}{14}$	$(x; -xc)^2$ 317.31 222.40 5.82
*	The critical chi-Squared value for degree of freedon = 15 & Significance level of 0.05 is 23.68 -> Critical Val.	86·24 644·48 493·43 24·86
	Now, calculate the test stars.	2·84 58·81 570·31 196·37
*	$\chi^2 = \frac{(n-1) \cdot s^2}{\delta^2} = \frac{14 \times 183 \cdot 77}{100} = 25.72$ Since, $25-72 > 23.68$, we reject the	22·21 2·51 33·48
	Hence, with 0.05 significance level we	1· 72 2572·85
	can conclude that variance in grades exceeds loo.	