11 Veröffentlichungsnummer:

0 350 002 A1

12

EUROPÄISCHE PATENTANMELDUNG

- (21) Anmeldenummer: 89112263.2
- (22) Anmeldetag: 05.07.89

(5) Int. Cl.⁴: C07F 9/38 , A61K 31/66 , C07F 9/60 , C07F 9/572 , C07F 9/650 , C07F 9/59 , C07F 9/650 , C07F 9/654 , C07F 9/653

- Priorität: 05.07.88 DE 3822650
- Veröffentlichungstag der Anmeldung: 10.01.90 Patentblatt 90/02
- Benannte Vertragsstaaten:
 AT BE CH DE ES FR GB GR IT LI LU NL SE
- 71 Anmelder: BOEHRINGER MANNHEIM GMBH Sandhofer Strasse 116 D-6800 Mannheim 31(DE)
- ② Erfinder: Bosies, Elmar, Dr. phil.nat. Delpstrasse 11 D-6940 Weinheim(DE)

Erfinder: Zilch, Harald, Dr. rer.nat.

Alsenweg 2 A

D-6800 Mannheim 31(DE)

- Neue Diphosphonsäurederivate, Verfahren zu deren Herstellung und diese Verbindungen enthaltende Arzneimittel.
- (57) Verbindungen der Formel I

)2 A1

in der R₁-R₂, m, n und X die in den Ansprüchen angegebene Bedeutung haben,

Verfahren zu ihrer Herstellung sowie Arzneimittel, die diese Verbindungen enthalten, zur Behandlung von Calciumstoffwechselstörungen.

Neue Diphosphonsäurederivate, Verfahren zu deren Herstellung und diese Verbindungen enthaltende Arzneimittel

Die vorliegende Erfindung betrifft neue Diphosphonsäurederivate, Verfahren zu deren Herstellung sowie Arzneimittel, die diese Substanzen enthalten.

In der DE-PS 18 13 659 sind Diphosphonsäurederivate beschrieben, von denen die 1-Hydroxyethan-1,1-diphosphonsäure als Mittel zur Behandlung von Morbus Paget Bedeutung erlangt hat.

In der DE-PS 25 34 391 sind Aminoalkan-1,1-diphosphonsäuren, die am Stickstoffatom mit C₁-C₃-Alkylgruppen substituiert sein können, mit einer Wirkung auf den Calciumstoffwechsel beschrieben.

Überraschenderweise wurde nun gefunden, daß Aminoalkan-1,1-diphosphonsäuren, bei denen die Alkylkette durch ein Sauerstoffatom unterbrochen ist, eine deutlich ausgeprägtere Wirkung auf den Calciumstoffwechsel zeigen als die bisher bekannten Verbindungen. Diese Substanzen sind somit besonders zu einer breiten Behandlung von Calciumstoffwechselstörungen geeignet. Sie lassen sich vor allem sehr gut dort einsetzen, wo der Knochenauf- und -abbau gestört ist, d.h. sie sind geeignet zur Behandlung von Erkrankungen des Skelettsystems wie z.B. Osteoporose, Morbus Paget, Morbus Bechterew u.a.. Aufgrund dieser Eigenschaften finden sie aber auch Verwendung in der Therapie von Knochenmetastasen, der Urolithiasis und zur Verhinderung heterotoper Ossifikationen. Durch ihre Beeinflussung des Calciumstoffwechsels bilden sie weiterhin eine Grundlage für die Behandlung der rheumatoiden Arthritis, der Osteoarthritis und der degenerativen Arthrose.

Gegenstand der vorliegenden Erfindung sind demnach Diphosphonate der allgemeinen Formel I

in der

30

5

 R_1 und R_2 jeweils unabhängig voneinander Wasserstoff, eine geradkettige oder verzweigte, gesättigte oder ungesättigte Alkylkette mit 1-9 Kohlenstoffatomen, die gegebenenfalls durch Hydroxy, C_1 - C_5 Alkoxy oder C_1 - C_5 Alkylthio, einen Phenyl- oder einen C_5 - C_7 Cycloalkylring substituiert sein kann, wobei der Phenylring gegebenenfalls durch C_1 - C_5 Alkyl, C_1 - C_5 Alkoxy, Hydroxy oder Halogen substituiert sein kann, einen C_5 - C_7 Cycloalkyl-oder den Phenylrest,

 R_3 = Wasserstoff, niederes geradkettiges oder verzweigtes C_1 - C_5 Alkyl, das gegebenenfalls durch Hydroxy, C_1 - C_5 Alkoxy, C_1 - C_5 Alkoxy, C_1 - C_5 Alkoxy Mercapto, Phenyl, 3-Indolyl oder 4-Imidazolyl substituiert sein kann, oder gebenenfalls durch Hydroxy oder C_1 - C_5 Alkoxy substituiertes Phenyl,

R₄, R₆, R₈ und R₉ jeweils unabhängig voneinander Wasserstoff oder C₁-C₅ Alkyl,

 R_5 und R_7 jeweils unabhängig voneinander Wasserstoff, C_1 - C_5 Alkyl oder gegebenenfalls durch Hydroxy oder C_1 - C_5 Alkoxy substituiertes Phenyl,

X = Wasserstoff, OH oder die Gruppe -NR₁₀, R₁₁, wobei R₁₀ und R₁₁ jeweils unabhängig voneinander Wasserstoff oder C₁-C₅ Alkyl sein soll,

m bzw. n = 0 oder 1

bedeuten, wobei

R₁ und R₂ zusammen mit dem Stickstoffatom, an das sie gebunden sind, ein mono- oder bicyclisches Ringsystem mit 4-9 Kohlenstoffatom, das teilweise oder ganz hydriert ist und gegebenenfalls durch Hydroxy, C₁-C₅ Alkyl oder C₁-C₅ Alkoxy substituiert und/oder im Falle eines Monocyclus durch ein Sauerstoff-, Stickstoff- oder Schwefelatom unterbrochen sein kann,

R₁ und R₃ zusammen mit dem Kohlenstoff- bzw. Stickstoffatom, an das sie gebunden sind, einen Fünfoder Sechsring, der gegebenenfalls mit einem weiteren Sechsring kondensiert sein kann,

R₁ und R₅ zusammen mit dem Kohlenstoff- bzw. Stickstoffatom, an das sie gebunden sind, sowie dem

EP 0 350 002 A1

dazwischenliegenden Kohlenstoffatom einen Fünf-oder Sechsring,

R₃ und R₄ zusammen mit dem Kohlenstoffatom, and das sie gebunden sind, einen Fünf- oder Sechsring,

R4 und R6 zusammen mit den Kohlenstoffatomen, an die sie gebunden sind, einen Fünf- oder Sechsring,

R₅ und R₆ zusammen mit dem Kohlenstoff, an das sie gebunden sind, einen Fünf- oder Sechsring,

R₇ und R₈ zusammen mit dem Kohlenstoffatom, an das sie gebunden sind, einen Fünf- oder Sechsring bilden können,

sowie deren pharmakologisch unbedenkliche Salze.

Unter C₁-C₅ Alkyl sind vorzugsweise die Methyl-, Ethyl-, Isopropyl und Isobutylgruppe zu verstehen.

 $C_1\text{-}C_5$ Alkoxy- bzw. Alkylthio sollen bevorzugt die Methoxy-bzw. Methylthiogruppe sein.

Bei dem C5-C7 Cycloalkylrest handelt es sich bevorzugt um den Cyclohexylrest.

Halogen soll insbesondere Chlor oder Brom darstellen.

Bei der bei R₁ und R₂ angeführten Alkylkette mit 1-9 Kohlenstoffatomen handelt es sich vorzugsweise um die Metyl-, Ethyl-, Isopropyl-, Isobutyl-, sec-Butyl-, n-Pentyl-, n-Nonyl, Allyl- und Methallylgruppe.

Unter der durch einen gegebenenfalls subtituierten Phenylring substituierten Alkylgruppe versteht man insbesondere eine Benzylgruppe.

Bei Gruppe -NR₁₀R₁₁ handelt es sich bevorzugt um die Amino-, Dimethylamino- bzw. Diethylamino- gruppe.

Falls R₁ und R₂ zusammen mit dem Stickstoffatom, an das sie gebunden sind, einen Ring bilden, versteht man hierunter bevorzugt einen Pyrrolidin-, Piperidin-, Di- bzw. Octahydroisoindolin- oder Decahydrochinolinring. Ein durch ein Heteroatom unterbrochener Ring stellt insbesondere einen Piperazin-,
Morpholin-, bzw. Thiamorpholinring dar.

Im Falle, daß R₁ und R₃ zusammen mit dem Kohlenstoff-bzw. Stickstoffatom, an das sie gebunden sind, einen Ring bilden, ist hierunter ein in 2-Stellung substituierter Pyrrolidin-, Piperidin- oder Octahydroin-dolring zu verstehen.

Wenn R₁ und R₅ zusammen mit dem Kohlenstoff- bzw. Stickstoffatom, an das sie gebunden sind, sowie dem dazwischenliegenden Kohlenstoffatom einen Ring bilden, stellt dieser Ring vorzugsweise einen in 3-Stellung substituierten Pyrrolidin- oder Piperidinring dar.

Für den Fall, daß R_3 und R_4 bzw. R_5 und R_6 bzw. R_7 und R_8 mit dem Kohlenstoffatom, an das sie gebunden sind einen Ring bilden, ist dies bevorzugt der Spiro-Cyclopenhylring.

Bilden R_4 und R_6 zusammen mit den C-Atomen an die sie gebunden sind, einen Ring, so handelt es sich um den Cyclohexyl- oder Cyclopentylring.

X stellt bevorzugt Wasserstoff oder Hydroxyl dar.

Bevorzugte Verbindungen der Formel I sind Verbindungen, in denen R₁ Wasserstoff oder Methyl, R₂ Wasserstoff oder C₁ - C₅ Alkyl, R₄ Wasserstoff oder Methyl, R₅ Wasserstoff oder Methyl, R₆ Wasserstoff, R₇ Wasserstoff, R₈ Wasserstoff, R₉ Wasserstoff, m die Zahl O oder 1, n die Zahl O und X eine Hydroxylgruppe bedeuten,

wobei R_1 und R_2 zusammen mit dem Stickstoffatom einen Morpholin-Ring, R_1 und R_3 zusammen mit dem Stickstoffatom und dem Kohlenstoffatom, an das sie gebunden sind, einen Pyrrolidin- oder Piperidin-Ring, R_1 und R_5 zusammen mit dem Kohlenstoffatom und dem Stickstoffatom, an das sie gebunden sind, einen Piperidin-Ring, R_4 und R_6 zusammen mit den C-Atomen an das sie gebunden sind, einen Cyclohexyl-Ring und R_5 und R_6 zusammen mit dem C-Atom , an das sie gebunden sind, einen Spiro-cyclopentan-Ring darstellen.

Asymmetrische Kohlenstoffatome können die R- oder S-Konfiguration besitzen und die Verbindungen können in optisch aktiver Form oder als racemisches Gemisch vorliegen. Sie sind ebenfalls Gegenstand der Erfindung.

Verbindungen der allgemeinen Formel I werden nach an sich bekannten Verfahren dargestellt, vorzugsweise, indem man

I. eine Verbindung der allgemeinen Formel II

50

in der R₁, R₃-R₃, X, m und n die oben angegebenen Bedeutungen haben, mono- oder dialkyliert und gegebenenfalls die entstandenen Tetraester zu Diestern oder Säuren der allgemeinen Formel I verseift, oder

- II. für den Fall, daß X in der allgemeinen Formel I OH bedeutet,
 - a) eine Carbonsäure der allgemeinen Formel III

in der R_1 - R_8 , m und n die oben angegebenen Bedeutungen haben, mit einem Gemisch aus phosphoriger Säure oder Phosphorsäure und einem Phosphorhalogenid bzw. Phosphoroxyhalogenid umsetzt und anschließend zur freien Diphosphonsäure verseift, oder

b) ein Carbonsäurechlorid der allgemeinen Formel IV

in der R_1 - R_8 , m und n die oben genannten Bedeutungen haben, wobei R_1 auch eine Acylgruppe oder mit R_2 zusammen auch als Schutzgruppe den Phthaloylrest darstellen kann, mit einem Trialkylphosphit der allgemeinen Formel V $P(OR')_3$ (V),

in der R[']für Alkylreste mit 1-4 Kohlenstoffatomen, vorzugsweise Methyl, Ethyl, Isopropyl und Isobutyl steht, zu einem Acylphosphonat der allgemeinen Formel VI

55

5

10

20

25

30

35

40

in der R_1 - R_8 , m, n und $R^{'}$ die oben genannten Bedeutungen haben, R_1 auch eine Acylgruppe oder mit R_2 zusammen auch den Phthaloylrest darstellen kann, umsetzt, anschließend mit einem Dialkylphosphit der allgemeinen Formel VII

H- P (OR')₂ (VII),

5

10

20

25

30

40

45

in der R' die oben angegebene Bedeutung hat, zu einem Diphosphonat der allgemeinen Formel VIII

in der R₁-R₃, m, n, und R′ die oben angebenen Bedeutungen haben, R₁ auch eine Acylgruppe oder mit R₂ zusammen auch den Phthaloylrest darstellen kann, reagieren läßt und gegebenenfalls die Phthaloylgruppe durch Hydrazinoylse entfernt und die entstandenen Tetraester zu Diestern oder Säuren der allgemeinen Formel I verseift, wobei unter diesen Bedingungen die als Schutzgruppe verwendete Acyl- bzw. Phthaloylgruppe gleichzeitig abgespalten wird, oder

c) für den fall, daß n = O bedeutet, eine Verbindung der allgemeinen Formel IX

in der R₁-R₅ und m die oben angegebenen Bedeutungen haben mit einem Epoxid der allgemeinen Formel X

in der R₇, R₈ und R['] die oben angegebenen Bedeutungen haben, reagieren läßt und das entstandene. Diphosphonsäurederivat der allgemeinen Formel XI

gewünschtenfalls zu Diestern oder Säuren verseift, oder

5

15

20

25

30

35

50

III. für den Fall, daß X in der allgemeinen Formel I die Gruppe -NR₁₀R₁₁ bedeutet, ein Carbonsäurederivat der allgemeinen Formel XII

in der R₁-R₈, m und n die oben angegebenen Bedeutungen haben und A eine Nitril-, Iminoether- oder eine -CONR₁₀R₁₁-Gruppe, wobei R₁₀ und R₁₁ die oben angegebenen Bedeutungen haben, darstellt, mit einer Phosphorverbindung der allgemeinen Formel XIII PT₃ (XIII).

in der T = Halogen, OH oder OR $^{'}$ bedeutet, wobei $R^{'}$ die oben angegebene Bedeutung hat, umsetzt und gegebenenfalls anschließend verseift,

IV. für den Fall, daß X in der allgemeinen Formel I Wasserstoff bedeutet, a) eine Verbindung der allgemeinen Formel XIV

in der R_1 - R_6 und m die oben angegebenen Bedeutungen haben, wobei R_1 auch ein Acyl- oder mit R_2 zusammen der Phthaloylrest sein kann, und U eine reaktive Gruppe wie z.B. Halogen oder ein Sulfonat darstellt, mit einem Diphosphonsäurederivat der allgemeinen Formel XV,

5

10

15

in der R_7 , R_8 , $R^{'}$ und n die oben angegebenen Bedeutungen haben, reagieren läßt, und die Phthaloylgruppe gewünschtenfalls durch Hydrazinolyse entfernt und die gebildeten Tetraester gegebenenfalls zu Diestern oder Säuren verseift, wobei unter diesen Bedingungen die als Schutzgruppe verwendete Acyl- oder Phthaloylgruppe gleichzeitig abgespalten wird, oder

b) eine Verbindung der allgemeinen Formel IX

25

30

in der R₁-R₆, und m die oben angegebenen Bedeutungen haben, an eine Verbindung der allgemeinen Formel XVI

40

$$R_{7} = C = C \qquad (XVI),$$

$$R_{8} = P(OR')_{2}$$

45

in der R_7 , R_8 und $R^{'}$ die oben angegebenen Bedeutungen haben, addiert und die entstehenden Tetraester gegebenenfalls zu Diestern oder Säuren verseift, oder

50

c) eine Verbindung der allgemeinen Formel XVII

in der R₁-R₈, U, m und n die oben angegebenen Bedeutungen haben, wobei R₁ auch ein Acyl- oder mit R₂ zusammen der Phthaloylrest sein kann, mit einem Diphosphonsäurederivat der allgemeinen Formel XVIII

in der R die oben angegebene Bedeutung hat, umsetzt, die Phthaloylgruppe gewünschtenfalls durch Hydrazinolyse entfernt und die entstandenen Tetraester gegebenenfalls zu Diestern oder Säuren verseift, wobei unter diesen Bedingungen die als Schutzgruppe verwendete Acyl- oder Phthaloylgruppe gleichzeitig abgespalten wird

oder

30

35

50

5

für den Fall, daß R₈ Wasserstoff bedeutet,

d) eine Verbindung der allgemeinen Formel XIX

$$R_{3}$$
 R_{5} R_{7} O $P(OR_{9})_{2}$ $N-C-C-(CH_{2})_{m}-O-(CH_{2})_{n}-C=C$ (XIX) , R_{2} $P(OR_{9})_{2}$ R_{4} R_{6}

in der R₁-R₇, R₉, m und n die oben angegebenen Bedeutungen haben, wobei R₁ auch eine Acylgruppe darstellen kann, katalytisch hydriert und anschließend gegebenenfalls die entstandenen Tetraester zu Diester oder Säuren verseift, wobei dabei auch eine evtl. vorhandene Acylgruppe mit abgespalten werden kann und die freien Säuren in pharmakologisch unbedenkliche Salze überführt.

Bei der reduktiven Alkylierung (Verfahren I) behandelt man ein Gemisch aus primärem oder sekundärem Amin der allgemeinen Formel II und einer Carbonylverbindung oder deren Acetal in Gegenwart eines Hydrierungskatalysators, wie Palladium auf Kohle, oder Nickel, mit Wasserstoff unter Atmosphären- oder erhöhtem Druck oder man setzt als Reduktionsmittel Ameisensäure zu. Schließlich lassen sich Alkylierungen eines sekundären Amins der allgemeinen Formel II besonders vorteilhalft nach dem Phasentransferverfahren mit Dialkylsulfaten durchführen.

Die bei Verfahren II a) eingesetzten Carbonsäuren der allgemeinen Formel III werden mit 1-2, vorzugsweise 1.5 mol phosphoriger Säure oder Phosphorsäure und 1-2, vorzugsweise 1.5 mol Phosphortrihalogenid oder Phosphoroxyhalogenid bei Temperaturen von 80°-130°C, vorzugsweise 100-110°C umgesetzt. Man kann die Reaktion auch in Gegenwart von Verdünnungsmitteln wie Halogenkohlenwasserstoffen, insbesondere Chlorbenzol, Tetrachlorethan oder auch Sulfolan bzw. Dioxan durchführen. Die anschließende Hydrolyse erfolgt durch Kochen mit Wasser, zweckmäßigerweise jedoch mit halbkonzentrierter Salz- oder Bromwasserstoffsäure. Als Phosphortribalogenide kommen in dem gennanten Verfahren beispielsweise Phosphortrichlorid oder Phosphortribromid, als Phosphoroxyhalogenid vor allem Phosphoroxychlorid infrage.

Bei Verfahren II b) läßt man das Säurechlorid der allgemeinen Formel IV mit dem Trialkylphosphit der

allgemeinen Formel V bei Temperaturen zwischen 0 und 60°C, vorzugsweise bei 20-40°C zur Reaktion kommen. Man kann ohne Lösungsmittel oder auch in Gegenwart von inerten Lösungsmitteln wie Diethylether, Tetrahydrofuran, Dioxan oder auch halogenierten Kohlenwasserstoffen, wie z.B. Methylenchlorid arbeiten. Das als Zwischenprodukt entstehende Acylphosphonat der allgemeinen Formel VI kann isoliert oder direkt weiter umgesetzt werden. Die anschließende Reaktion führt man in Gegenwart einer schwachen Base, vorzugsweise einen sec. Amin wie z.B. Dibutylamin bei einer Temperatur von 0-60°C, vorzugsweise bei 10-30°C durch. Für den Fall, daß R₁ und R₂ zusammen als Schutzgruppe den Phthaloylrest bilden, wird dieser Rest durch Hydrazinolyse bzw. saure Hydrolyse abgespalten. Bei der Hydrazinolyse setzt man Hydrazin in Essigsäure oder auch Ethanol bei Temperaturen zwischen 20 und 80° ein. Die saure Hydrolyse kann sehr gut durch Kochen mit halbkonzentrierter Salzsäure durchgeführt werden. Auf diese Weise wird auch eine als Schutzgruppe verwendete Acylgruppe - vorzugsweise die Acetylgruppe - abgespalten.

Bei Verfahren II c werden die Alkohole der allgemeinen Formel IX in der Regel in Form ihrer Alkalisalze, vorzugsweise als Natriumsalze eingesetzt. Als Lösungsmittel verwendet man bevorzugt Toluol, Dioxan, Tetrahydrofuran oder auch Dimethylformamid; die Reaktionen werden zwischen 20 und 80°C durchgeführt.

Bei Verfahren III setzt man die Nitrile der allgemeinen Formal XII mit phosphoriger Säure bei Temperaturen von 110-180°C um. Die Reaktion kann ohne oder in Gegenwart von aprotischen Lösungsmitteln wie z.B. Diethylenglykoldimethylether oder Diethylenglykoldiethylether durchgeführt werden. Man kann die Nitrile jedoch auch mit einem Phosphortrihalogenid, z.B. Phosphortribromid oder Phosphortrichlorid in einem inerten Lösungsmittel wie z.B. Dioxan oder Tetrahydrofuran gegebenenfalls unter Zusatz von Wasser bei Temperaturen von 20-80°C zur Reaktion bringen. Iminoether der allgemeinen Formel XII läßt man mit Dialkylphosphiten vorzugsweise in Gegenwart äquimolarer Mengen Natrium in inerten Lösungsmitteln wie Diethylether, Dioxan oder auch Benzol reagieren, wobei die Umsetzungen in der Regel bei der Rückflußtemperatur des entsprechenden Lösungsmittels stattfindet. Säureamide der allgemeinen Formel XII kann man in inerten Lösungsmitteln wie z.B. halogenierten Kohlenwasserstoffen oder Ethern wie z.B. Diethylether mit einem Gemisch aus Phosphorpentahalogenid/phosphoriger Säure oder auch Oxalylchlorid/Trialkylphosphit umsetzen.

Bei Verfahren IV a) setzt man das Diphosphonsäurederivat der allgemeinen Formel XV in Form eines Natrium- oder Kaliumsalzes ein. Hierzu wird es mit Natrium, Kalium oder dem entsprechenden Hydrid in einem inerten Lösungsmittel wie z.B. Benzol, Toluol oder Dimethylformamid bei einer Temperatur von 0 bis 40°C, vorzugsweise bei 25°C umgesetzt. Das Alkalisalz wird ohne Isolierung mit dem entsprechenden Halogenid bzw. Sulfonat zur Reatkion gebracht. Die Temperatur liegt hierbei bei 20-110°C.

Falls R₁ und R₂ zusammen als Schutzgruppe den Phthaloylrest bilden oder R₁ eine Acylgruppe, vorzugsweise die Acetylgruppe darstellt, werden diese Reste wie in Verfahren II b beschrieben abgespalten.

Bei Verfahren IV b werden die Alkohole der allgemeinen Formel IX in Form ihrer Alkalisalze, vorzugsweise der Natriumsalze eingesetzt. Hierzu werden sie mit Natrium bzw. Natriumhydrid in einem inerten Lösungsmittel wie Benzol, Toluol, Dioxan oder Dimethylformamid bei einer Temperatur von 0-60 °C, vorzugsweise bei 25 °C umgesetzt. Das Alkalisalz wird in der Regel ohne Isolierung mit dem entsprechenden Diphosphonat der allgemeinen Formel XVI zur Reaktion gebracht. Die Temperatur liegt bei 20-80 °C.

Bei Verfahren IV c) setzt man den Methylendiphosphonsäureester der allgemeinen Formel XVIII in Form seines Natrium-oder Kaliumsalzes ein. Hierzu wird er mit Natrium, Kalium oder dem entsprechenden Hydrid in einem inerten Lösungsmittel wie z.B. Benzol, Toluol oder Dimethylformamid bei einer Temperatur von 0 bis 40°C, vorzugsweise bei 25°C umgesetzt. Das Alkalisalz wird ohne Isolierung mit dem entsprechenden Halogenid bzw. Sulfonat zur Reaktion gebracht. Die Temperatur liegt hierbei bei 20-110°C.

Die Hydrierung bei Verfahren IV d wird in Gegenwart eines Edelmetallkatalysators wie z.B. Palladium auf Kohle oder Platin in einem Alkohol wie Methanol oder Ethanol als Lösungsmittel oder auch in Wasser durchgeführt. Man kann jedoch auch Nickel in alkalischem Medium verwenden. Die Abspaltung der N-Acylgruppe kann alkalisch, vorzugsweise jedoch sauer mit z.B. 6N Salzsäure vorgenommen werden.

Optisch aktive Verbindungen der Formel I werden in der Regel in der Weise hergestellt, daß man optisch aktive Ausgangsverbindungen einsetzt.

Die bei Verfahren II a eingesetzten Amino-oxa-alkancarbonsäuren werden in der Regel auf folgende Weise hergestellt.

Das entsprechende Aminoalkanol wird z.B. mit einem Halogenessigsäureester zu einem Amino-oxaalkancarbonsäureester umgesetzt, der abhängig von der Kettenlänge und der Substitution am Stickstoffatom zu einem Oxalactam cyclisieren kann. Der entstandene Carbonsäureester wird nach üblichen Methoden sauer oder alkalisch verseift. Im Falle der Ringbildung wird das Lactam durch Kochen mit Bariumhydroxidlösung geöffnet und das Bariumsalz der Amino-oxa-alkancarbonsäure mit Schwefelsäure in die freie Säure überführt.

Die bei diesem Verfahren sowie auch Verfahren II c und IV b eingesetzten Aminoalkanole sind in der

Regel literaturbekannt oder lassen sich aus den entsprechenden Aminosäuren bzw. deren Ester leicht durch Reduktion mit z.B. Lithiumaluminiumhydrid herstellen.

Die bei Verfahren III verwendeten Amino-oxa-alkancarbonsäurenitrile oder Amide der Formel XII lassen sich aus den entsprechenden Aminoalkanolen der Formel IX durch Umsetzung mit Halogenessigsäurenitrilen bzw. Halogenessigsäureamiden synthetisieren. Aus den so gewonnen Nitrilen kann man nach üblichen Verfahren, z.B. durch Reaktion mit einem niederen Alkohol in Gegenwart von gasförmigem Chlorwasserstoff die entsprechenden Iminoether erhalten.

Durch Reaktion eines Aminoalkanols mit einem Phosphorhalogenid wie z.B. Phosphortrichlorid oder Phosphortribromid bzw. mit einem aliphatischen oder aromatischen Sulfochlorid, wie z.B. Methansulfochlorid oder Benzolsulfochlorid erhält man die bei Verfahren IV a eingesetzten Verbindungen der allgemeinen Formel XIV.

Die bei Verfahren IV b eingesetzten Verbindungen der allgemeinen Formel XIX können z.B. aus einer Verbindung der Formel I durch Eliminierung einer H-X-Gruppe hergestellt werden, wobei z.B. ein Halogen, vorzugsweise Brom oder Chlor, oder eine Acyloxygruppe, insbesondere die Acetoxy-oder Propionyloxy-gruppe, darstellt. Die Eliminierung kann durch Basen wie z.B. tert.-Amine, insbesondere Triethylamin, Pyridin oder Diazabicycloundecen, in inerten Lösungsmitteln wie Alkoholen, Ethern (z.B. Dioxan oder Tetrahydrofuran) erfolgen. Bei der Abspaltung von Essigsäure bzw. Propionsäure setzt man vorzugsweise das Tetranatrium- oder Tetrakaliumsalz der entsprechenden Diphosphonsäure ein und führt die Abspaltung durch Erhitzen auf 180-300°C, vorzugsweise 180-240°C durch. Aus dem Tetraalkalisalz kann man die freien Säuren dann z.B. durch Behandlung mit einem sauren Ionenaustauscher (z.B. Amberlite-IR 120, H*-Form) freisetzen.

Die oben angeführten Ausgangsverbindungen können als Racemate oder als Enaniomere eingesetzt werden, wobei die optisch aktiven Verbindungen üblicherweise aus entsprechend optisch aktiven Aminosäuren erhalten werden.

Die bei den Verfahren gegebenenfalls anfallenden Tetraalkylester können zu Diestern oder den freien Tetrasäuren verseift werden. Die Verseifung zu Diestern geschieht in der Regel dadurch, daß man den Tetraalkylester mit einem Alkalihalogenid, vorzugsweise Natriumjodid in einem geeigneten Lösungsmittel wie z.B. Aceton bei Zimmertemperatur behandelt.

25

Hierbei entsteht das symmetrische Diester/Dinatriumsalz, das gegebenenfalls durch einen sauren lonenaustauscher in die Diester/Disäure umgewandelt werden kann. Die Verseifung zu freien Diphosphonsäuren geschieht in der Regel durch Kochen mit halbkonzentrierter Salz- oder Bromwasserstoffsäure. Man kann jedoch auch eine Spaltung mit Trimethylsilylhalogenid, vorzugsweise dem Bromid oder Jodid vornehmen. Die freien Diphosphonsäuren können umgekehrt durch Kochen mit Orthoameisensäurealkylestern wieder in die Tetraalkylester überführt werden. Die freien Diphosphonsäuren der allgemeinen Formel I können als freie Säuren oder in Form ihrer Mono- oder Dialkalisalze isoliert werden. Die Alkalisalze lassen sich in der Regel durch Umfällen aus Wasser/Methanol oder Wasser/Aceton gut reinigen.

Als pharmakologisch verträgliche Salze werden vor allem Alkali- oder Ammoniumsalze verwendet, die man in üblicher Weise z. B. durch Titrieren der Verbindungen mit anorganischen oder organischen Basen wie z.B. Natrium- oder Kaliumhydrogencarbonat, Natronlauge, Kalilauge, wässrigem Ammoniak oder Aminen wie z.B. Trimethyl- oder Triethylamin herstellt.

Die erfindungsgemäßen neuen Substanzen der Formel I und ihre Salze können in flüssiger oder fester Form enteral oder parenteral appliziert werden. Hierbei kommen alle üblichen Applikationsformen infrage, beispielsweise Tabletten, Kapseln, Dragees, Sirupe, Lösungen, Suspensionen etc.. Als Injektionsmedium kommt vorzugsweise Wasser zur Anwendung, welches die bei Injektionslösungen üblichen Zusätze wie Stabilisierungsmittel, Lösungsvermittler und Puffer enthält. Derartige Zusätze sind z.B. Tartrat- und Citrat-Puffer, Ethanol, Komplexbildner (wie Ethylendiamintetraessigsäure und deren nichttoxische Salze), hochmolekulare Polymere (wie flüssiges Polyethylenoxid) zur Viskositätsregelung. Flüssige Trägerstoffe für Injektionslösungen müssen steril sein und werden vorzugsweise in Ampullen abgefüllt. Feste Trägerstoffe sind z.B. Stärke, Lactose, Mannit, Methylcellulose, Talkum, hochdisperse Kieselsäuren, höhermolekulare Fettsäuren (wie Stearinsäure), Gelatine, Agar-Agar, Calciumphosphat, Magnesiumstearat, tierische und pflanzliche Fette, feste hochmolekulare Polymere (wie Polyethylenglykole); für orale Applikation geeignete Zubereitungen können gewünschtenfalls Geschmacks- und Süßstoffe enthalten. Die Dosierung kann von verschiedenen Faktoren, wie Applikationsweise, Spezies, Alter und/oder individuellem Zustand abhängen. Die tägliche zu verabreichenden Dosen liegen bei etwa 0.1-100 mg/Mensch, vorzugsweise bei 1-20 mg/Mensch und können auf einmal oder mehrere Male verteilt eingenommen werden.

Bevorzugt im Sinne der vorliegenden Erfindung sind außer den in den Beispielen genannten Verbindungen und durch Kombination aller in den Ansprüchen genannten Bedeutungen der Substituenten ableitbaren Verbindungen die folgenden Diphosphonate, sowie deren Natriumsalze, Methyl-, Ethyl-oder Isopropylester:

EP 0 350 002 A1

```
5-N,N-Dimethylamino-3-oxa-pentan-1-hydroxy-1,1-diphosphonsäure
    5-N-Methyl-N-propylamino-3-oxa-pentan-1-hydroxy-1,1-diphosphonsäure
    5-N-Methyl-N-nonylamino-3-oxa-pentan-1-hydroxy-1,1-diphosphonsäure
    5-N-Benzylamino-3-oxa-pentan-1-hydroxy-1,1-diphosphonsäure
    5-N-Isobutyl-N-methylamino-3-oxa-pentan-1-hydroxy-1,1-diphosphonsäure
    5-N-Methallyl-N-methylamino-3-oxa-pentan-1-hydroxy-1,1-diphosphonsäure
    5-N-(2-Methoxyethyl)-N-methylamino-3-oxa-pentan-1-hydroxy-1,1-diphosphonsäure
    5-N-(2-Hydroxyethyl)-N-methylamino-3-oxa-pentan-1-hydroxy-1,1-diphosphonsäure
    5-N-(2-Methylmercaptoethyl)-N-methylamino-3-oxa-pentan-1-hydroxy-1,1-diphosphonsäure
    5-N-(4-Methylbenzyl)amino-3-oxa-pentan-1-hydroxy-1,1-diphosphonsäure
    5-N-(2-Chlorbenzyl)amino-3-oxa-pentan-1-hydroxy-1,1-diphosphonsäure
    5-N-Cyclohexyl-N-methylamino-3-oxa-pentan-1-hydroxy-1,1-diphosphonsäure
    5-Amino-7-methyl-3-oxa-octan-1-hydroxy-1,1-diphosphonsäure
    5-Amino-6-phenyi-3-oxa-hexan-1-hydroxy-1,1-diphosphonsäure
    5-Amino-6-(3-indolyl)-3-oxa-hexan-1-hydroxy-1,1-diphosphonsäure
    5-Amino-6-(4-imidazolyl)-3-oxa-hexan-1-hydroxy-1,1-diphosphonsäure
    5-Amino-6-hydroxy-3-oxa-hexan-1-hydroxy-1,1-diphosphonsäure
    5-Amino-7-methylmercapto-3-oxa-heptan-1-hydroxy-1,1-diphosphonsäure
    5-N-Methyl-N-propylamino-3-oxa-hexan-1-hydroxy-1,1-diphosphonsäure
20 5-N-Methyl-N-pentylamino-3-oxa-hexan-1-hydroxy-1,1-diphosphonsäure
    5-N-Allyl-N-methylamino-3-oxa-hexan-1-hydroxy-1,1-diphosphonsäure
    5-Amino-6-(4-hydroxyphenyl)-3-oxa-hexan-1-hydroxy-1,1-diphosphonsäure
    5-Amino-4,4-dimethyl-3-oxa-pentan-1-hydroxy-1,1-diphosphonsäure
    5-Amino-4-phenyl-3-oxa-pentan-1-hydroxy-1,1-diphosphonsäure
25 5-Amino-2-methyl-3-oxa-pentan-1-hydroxy-1,1-diphosphonsäure-
    5-Amino-2,2-dimethyl-3-oxa-pentan-1-hydroxy-1,1-diphosphonsäure
    5-Amino-2-phenyl-3-oxa-pentan-1-hydroxy-1,1-diphosphonsäure
    5-(1-Pyrrolidinyl)-3-oxa-pentan-1-hydroxy-1,1-diphosphonsäure
    5-(1-Piperidinyl)-3-oxa-pentan-1-hydroxy-1,1-diphosphonsäure
   5-(3-Hydroxy-1-pyrrolidinyl)-3-oxa-pentan-1-hydroxy-1,1-diphosphonsäure
    5-(3,4,-Dimethoxy-1-pyrrolidinyl)-3-oxa-pentan-1-hydroxy-1,1-diphosphonsäure
    5-(2,3-Dihydro-isoindolin-1-yl)-3-oxa-pentan-1-hydroxy-1,1-diphosphonsäure
    5-(Octahydro-isoindolin-1-yl)-3-oxa-pentan-1-hydroxy-1,1-diphosphonsäure
    5-(Decahydro-chinolin-1-yl)-3-oxa-pentan-1-hydroxy-1,1-diphosphonsäure
35 5-(1-Piperazinyl)-3-oxa-pentan-1-hydroxy-1,1-diphosphonsäure
    5-(4-Methyl-1-piperazinyl)-3-oxa-pentan-1-hydroxy-1,1-diphosphonsäure
    5-(4-Thiamorpholinyl)-3-oxa-pentan-1-hydroxy-1,1-diphosphonsäure
    5-(4-Hydroxy-1-piperidinyl)-3-oxa-hexan-1-hydroxy-1,1-diphosphonsäure
    S-4-(2-Pyrrolindinyl)-3-oxa-butan-1-hydroxy-1,1-diphosphonsäure
    4-(2-Piperidinyl)-3-oxa-butan-1-hydroxy-1,1-diphosphonsäure
    4-(1-Methyl-2-piperidinyl)-3-oxa-butan-1-hydroxy-1,1-diphosphonsäure
    5-(1-Methyl-2-piperidinyl)-3-oxa-pentan-1-hydroxy-1,1-diphosphonsäure
    4-(Octahydro-indolin-2-yl)-3-oxa-butan-1-hydroxy-1,1-diphosphonsäure
    4-(1-Ethyl-2-pyrrolindinyl-3-oxa-butan-1-hydroxy-1,1-diphosphonsäure
    3-(3-Pyrrolindinyl)-3-oxa-propan-1-hydroxy-1,1-diphosphonsäure
    5-Amino-5,5-butylen-3-oxa-pentan-1-hydroxy-1,1-diphosphonsäure
    5-N,N-Dimethylamino-5,5-pentylen-3-oxa-pentan-1-hydroxy-1,1-diphosphonsäure
    4-(2-Aminocyclohexyl)-3-oxa-butan-1-hydroxy-1,1-diphosphonsäure
    3-(2-Aminocyclopentyl)-3-oxa-propan-1-hydroxy-1,1-diphosphonsäure
    4-(2-Aminocyclopentyl)-3-oxa-butan-1-hydroxy-1,1-diphosphonsäure
    4-(2-N,N-Dimethylamino-cyclohexyl)-3-oxa-butan-1-hydroxy-1,1-diphosphonsäure
    5-Amino-4,4-butylen-3-oxa-pentan-1-hydroxy-1,1-diphosphonsäure
    6-Amino-2,2-butylen-3-oxa-hexan-1-hydroxy-1,1-diphosphonsäure
    5-N,N-Dimethylamino-2,2-pentylen-3-oxa-pentan-1-hydroxy-1,1-diphosphonsäure
    1,5-Diamino-3-oxa-pentan-1,1-diphosphonsäure
    5-Amino-1-N.N-diethylamino-3-oxa-hexan-1.1-diphosphonsäure
    5-Amino-3-oxa-hexan-1,1-diphosphonsäure
```

R-5-Amino-3-oxa-hexan-1,1-diphosphonsäure

```
S-5-Amino-3-oxa-hexan-1,1-diphosphonsäure
5-N.N-Dimethylamino-3-oxa-pentan-1.1-diphosphonsäure
R-5-Amino-7-methyl-3-oxa-octan-1-hydroxy-1,1-diphosphonsäure
R-5-Amino-6-phenyl-3-oxa-hexan-1-hydroxy-1,1-diphosphonsäure
S-5-Amino-6-phenyl-3-oxa-hexan-1-hydroxy-1,1-diphosphonsäure
R-5-Amino-6-(3-indolyl)-3-oxa-hexan-1-hydroxy-1,1-diphosphonsäure
S-5-Amino-6-(3-indolyl)-3-oxa-hexan-1-hydroxy-1,1-diphosphonsäure
R-5-Amino-6-(4-imidazolyl)-3-oxa-hexan-1-hydroxy-1,1-diphosphonsäure
S-5-Amino-6-(4-imidazolyl)-3-oxa-hexan-1-hydroxy-1,1-diphosphonsäure
R-5-Amino-1.6-dihydroxy-3-oxa-hexan-1,1-diphosphonsäure
S-5-Amino-1.6-dihydroxy-3-oxa-hexan-1,1-diphosphonsäure
R-5-Amino-7-methylmercapto-3-oxa-heptan-1-hydroxy-1,1-diphosphonsäure
S-5-Amino-7-methylmercapto-3-oxa-heptan-1-hydroxy-1,1-diphosphonsäure
R-5-N-Methyl-N-propylamino-3-oxa-hexan-1-hydroxy-1,1-diphosphonsäure
S-5-N-Methyl-N-propylamino-3-oxa-hexan-1-hydroxy-1,1-diphosphonsäure
R-5-N-Methyl-N-pentylamino-3-oxa-hexan-1-hydroxy-1,1-diphosphonsäure
S-5-N-Methyl-N-pentylamino-3-oxa-hexan-1-hydroxy-1,1-diphosphonsäure
R-5-N-Allyl-N-methylamino-3-oxa-hexan-1-hydroxy-1,1-diphosphonsäure
S-5-N-Allyl-N-methylamino-3-oxa-hexan-1-hydroxy-1,1-diphosphonsäure
R-5-Amino-6-(4-hydroxyphenyl)-3-oxa-hexan-1-hydroxy-1,1-diphosphonsäure
S-5-Amino-6-(4-hydroxyphenyl)-3-oxa-hexan-1-hydroxy-1,1-diphosphonsäure
R-5-Amino-4-phenyl-3-oxa-pentan-1-hydroxy-1,1-diphosphonsäure
S-5-Amino-4-phenyl-3-oxa-pentan-1-hydroxy-1,1-diphosphonsäure
R-5-Amino-2-methyl-3-oxa-pentan-1-hydroxy-1,1-diphosphonsäure
S-5-Amino-2-methyl-3-oxa-heptan-1-hydroxy-1,1-diphosphonsäure
R-5-Amino-2-phenyl-3-oxa-pentan-1-hydroxy-1,1-diphosphonsäure
S-5-Amino-2-phenyl-3-oxa-pentan-1-hydroxy-1,1-diphosphonsäure
5-Amino-2-methyl-3-oxa-hexan-1-hydroxy-1,1-diphosphonsäure
6-Amino-3-oxa-heptan-1-hydroxy-1,1-diphosphonsäure
6-Amino-5-methyl-3-oxa-hexan-1-hydroxy-1,1-diphosphonsäure
6-Amino-4-methyl-3-oxa-hexan-1-hydroxy-1.1-diphosphonsäure
```

Die nachfolgenden Beispiele zeigen einige der Verfahrensvarianten, die zur Synthese der erfindungsgemäßen Verbindungen verwendet werden können. Sie sollen jedoch nicht eine Einschränkung des Erfindungsgegenstandes darstellen. Die Verbindungen fallen in der Regel als hochschmelzende Festprodukte an (Mono- oder Dinatriumsalz), deren Struktur durch H-, P- und gegebenenfalls durch 13 C NMR-Spektroskopie gesichert wurde. Die Reinheit der Substanzen wurde mittels C,H,N,P,S, Na-Analyse sowie durch Dünnschichtelektrophorese (Cellulose, Oxalat-Puffer von pH = 4.0) bestimmt. Zur Charakterisierung der einzelnen Verbindungen werden die $M_{\rm rel}$ -Werte (= relative Mobilität) bezogen auf Pyrophosphat ($M_{\rm rel}$ = 1) angegeben.

Beispiel 1

40

55

R,S-5-Amino-3-oxa-hexan-1-hydroxy-1,1-diphosphonsäure

0.67 g (5 mmol) R,S-5-Amino-3-oxa-hexansäure werden mit 0.82 g (10 mmol) phosphoriger Säure bei 100°C geschmolzen. Man entfernt das Ölbad, tropft 1 mi (11 mmol) Phosphortrichlorid zu und erhitzt weitere 24 h auf 100°C Außentemperatur. Nach dem Abkühlen versetzt man mit 10 ml Wasser, kocht 45 min unter Rückfluß, saugt ab, engt das Filtrat auf die Hälfte ein, stellt die Lösung mit 10 N Natronlauge auf pH = 5, versetzt mit 20 ml Methanol und kühlt die Lösung im Eisbad. Der ausgefallene Niederschlag wird abgesaugt, mit Methanol gewaschen und getrocknet. Der Rückstand wird in wenig Wasser gelöst und über eine Ionenaustauschersäule (35 gAmberlite-IR 120; H*-Form) gereinigt. Man erhält 0.49 g = 34 % der gewünschten Verbindung, die 0.5 mol Wasser enthält; Fp: 240-260°C; M_{rei}: 0.40.

Die als Ausgangsmaterial verwendete R,S-5-Amino-3-oxahexansäure wurde auf folgende Weise hergestellt: R,S-5-Methyl-morpholin-3-on (Fp: 62-64°C) wird mit Bariumhydroxid gekocht und aus dem Bariumsalz mit Schwefelsäure bei pH = 5 die freie Säure (Fp: 190-193°C) hergestellt.

In analoger Weise erhält man durch Umsetzung von phosphoriger Säure und Phosphortrichlorid mit

a) R,S-5-N,N-Dimethylamino-3-oxa-hexansäure (Fp: 108-110 °C) (hergestellt durch reduktive Methylierung von R,S-5-Amino-3-oxa-hexansäure mittels Ameisensäure/Formaldehyd) die R,S-5-N,N-Dimethylamino-3-oxa-hexan-1-hydroxy-1,1-diphosphonsäure als freie Säure mit 1 mol Wasser in einer Ausbeute von 36 %; Fp: ca. 270 °C M_{rel}: 0.40.

5

Beispiel 2

Analog wie im Beispiel 1 beschrieben erhält man durch Verwendung von

- a) 5-Amino-3-oxa-pentansäure (Fp: 188-190 °C) die 5-Amino-3-oxa-pentan-1-hydroxy-1.1-diphosphonsäure mit 1 mol Wasser in einer Ausbeute von 31 %; Fp: 255-260 °C; M_{ref}: 0.30.
- b) 6-(N-Acetyl-amino)-3-oxa-hexansäure (ÖI) die 6-Amino-3-oxa-hexan-1-hydroxy-1.1-diphosphonsäure mit 1 mol Wasser in einer Ausbeute von 23 %; Fp: 125-130 C; M_{rel}: 0.30.
- c) 5-N-Methylamino-3-oxa-pentansäure (Fp: 242-245 °C) die 5-N-Methylamino-3-oxa-pentan-1-hydroxy-1.1-diphosphonsäure mit 1 mol Wasser in einer Ausbeute von 28 %; Fp: 155-160 °C; M_{rel}; 0.35
- d) 6-N,N-Dimethylamino-3-oxa-hexansäure-hydrochlorid (Öl) die 6-N,N-Dimethylamino-3-oxa-hexan-1-hydroxy-1.1-diphosphonsäure mit 1 mol Wasser in einer Ausbeute von 22 %; Fp: 115-120 C; M_{rel}: 0.30
- e) R-5-Amino-3-oxa-hexansäure (Fp: 182-185 °C; $[\alpha]_D^{20}$: -30.5 °, c = 1.5 in Wasser) die R-5-Amino-3-oxa-hexan-1-hydroxy-1.1-diphosphonsäure mit 1 mol Wasser in einer Ausbeute von 30 %, Fp: 118-123 °C; $[\alpha]_0^{20}$: -22.6 °, c = 0.8 in Wasser; M_{rel}: 0.30.
- f) S-5-Amino-3-oxa-hexansäure (Fp: 180-182° C; $[\alpha]_D^{20}$: -28.5°, c = 1.4 in Wasser) die S-5-Amino-3-oxa-hexan-1-hydroxy-1.1-diphosphonsäure mit 1 mol Wasser in einer Ausbeute von 34 %, Fp: 115-120 C; $[\alpha]_D^{20}$: +21.2°, c = 0.8 in Wasser; M_{rel} : 0.30.
- g) 5-Amino-6-methyl-3-oxa-heptansäure (ÖI) die 5-Amino-6-methyl-3-oxa-heptan-1-hydroxy-1.1-diphosphonsäure mit 1 mol Wasser in einer Ausbeute von 22 %, Fp: 135-140 °C; M_{rel}: 0.35.
- h) S-5-Amino-6-methyl-3-oxa-heptansäure (Fp: 140-145 $^{\circ}$ C; $[\alpha]_{D}^{20}$: +23.9 $^{\circ}$, c = 1 in Wasser) die S-5-Amino-6-methyl-3-oxa-heptan-1-hydroxy-1.1-diphosphonsäure mit 1 mol Wasser in einer Ausbeute von $\overline{27}$ %, Fp: 245-250 C; $[\alpha]_{D}^{20}$: +19.3 , c = 1.0 in Wasser; M_{rel} : 0.30.
- i) R-5-Amino-6-methyl-3-oxa-heptansäure (Fp: 143-147 °C; $[\alpha]_D^{20}$: -24.3 °, c = 1.1 in Wasser) die R-5-Amino-6-methyl-3-oxa-heptan-1-hydroxy-1.1-diphosphonsäure mit 1 mol Wasser in einer Ausbeute von 26 %, Fp: 245-250 °C; $[\alpha]_D^{20}$: -18.9 °, c = 1.0 in Wasser; M_{rel} 0.30.
- j) S-5-Amino-7-methyl-3-oxa-octansäure (Fp: 148-150 °C; $[\alpha]_0^{20}$: +17.7°, c = 1.2 in Wasser) die S-5-Amino-7-methyl-3-oxa-octan-1-hydroxy-1.1-diphosphonsäure mit 1 mol Wasser in einer Ausbeute von 31 %, Fp: 250-255 °C; $[\alpha]_0^{20}$: +14.8°, c = 1.2 in Wasser; M_{rel}: 0.30.
- k) 5-Amino-5-methyl-3-oxa-hexansäure (Fp: 243-245 °C) die 5-Amino-5-methyl-3-oxa-hexan-1-hydroxy-1.1-diphosphonsäure mit 1 mol Wasser in einer Ausbeute von 27 %, Fp: 155-160 C; M_{rel}: 0.40.
- l) 5-Amino-4-methyl-3-oxa-pentansäure (Fp: 213-215 °C;) die 5-Amino-4-methyl-3-oxa-pentan-1-hydroxy-1.1-diphosphonsäure mit 1 mol Wasser in einer Ausbeute von 33 %, Fp: 145-150 °C; M_{rel}: 0.30.
- m) 5-(4-Morpholinyl)-3-oxa-pentansäure-hydrochlorid (ÖI) die 1-Hydroxy-5-(4-morpholinyl)-3-oxa-pentan-1.1-diphosphonsäure mit 1 mol Wasser in einer Ausbeute von 28 %, Fp: 135-140 C; M_{rel}: 0.35.
- n) 3-(N-Acetyl-3-piperidinyl)-3-oxa-propionsäure (ÖI) die 1-Hydroxy--(3-piperidinyl)-3-oxa-propan-1.1-diphosphonsäure mit 1 mol Wasser in einer Ausbeute von 15 %, Fp: 185-190 °C; M_{rel}: 0.30.
- o) 3-(2-Aminocyclohexyl)-3-oxa-propionsäure (Fp: 218-220°C;) die 3-(2-Aminocyclohexyl)-3-oxa-propan-1-hydroxy-1.1-diphosphonsäure mit 1 mol Wasser in einer Ausbeute von 19 %, Fp: 215-220°C; M_{rel} 0.25.
- p) 5-Amino-4.4-pentylen-3-oxa-pentansäure (Fp: 203-205° C;) die 5-Amino-4.4-pentylen-3-oxa-pentan-1-hydroxy-1.1-diphosphonsäure mit 1 mol Wasser in einer Ausbeute von 29 %, Fp: 235-240° C; M_{rel}: 0.30.
- q) S-4-(2-Pyrrolidinyl)-3-oxa-buttersäure (Fp: 152-155 °C;[α] $_0^{20}$: +20.3 °, c = 1.3 in Wasser) die S-1-Hydroxy-4-(2-pyrrolidinyl)-3-oxa-butan-1.1-diphosphonsäure mit 1 mol Wasser in einer Ausbeute von 26 %, Fp: 120-125 °C, [α] $_0^{20}$: +18.0 °, c = 0.9 in Wasser; M_{rel}: 0.30.
- r) R-5-Amino-4-methyl-3-oxa-pentansäure (Fp: 210-212 °C; $[\alpha]_0^{20}$: -97.0 °, c = 1 in Wasser) die R-5-Amino-4-methyl-3-oxa-pentan-1-hydroxy-1.1-diphosphonsäure mit 1 mol Wasser in einer Ausbeute von 23 %, Fp: 140-145 °C; $[\alpha]_0^{20}$: -22.5 °, c = 1 in Wasser; $M_{\rm rel}$: 0.30.
- s) S-5-Amino-4-methyl-3-oxa-pentansäure (Fp: 212-214 °C; $[\alpha]_D^{20}$: +97.8 °, c = 1 in Wasser) die S-5-Amino-4-methyl-3-oxa-pentan-1-hydroxy-1.1-diphosphonsäure mit 1 mol Wasser in einer Ausbeute von 15 %, Fp: 145-150 °C; $[\alpha]_D^{20}$: +22.9 °, c = 1 in Wasser; M_{rel} : 0.30.
- t) 4-(2-Piperidinyl)-3-oxa-buttersäure (Fp: 158-160 °C) die 1-Hydroxy-4-(2-piperidinyl)-3-oxa-butan-1.1-diphosphonsäure mit 1 mol Wasser in einer Ausbeute von 24 %, Fp: 175-180 °C; M_{rel}: 0.30.

Die im Beispiel 2 a eingesetzte 5-Amino-3-oxa-pentansäure wird auf folgende Weise hergestellt: Ethanolamin wird in Gegenwart von Natriumhydrid mit Chloressigsäureethylester zum Morpholin-3-on (Fp: 100-102°C) umgesetzt und daraus durch Erhitzen mit Bariumhydroxid und anschließender Behandlung mit Schwefelsäure die gewünschte Säure erhalten.

In gleicher Weise wurden die in der folgenden Tabelle aufgeführten Zwischenprodukte hergestellt und umgesetzt.

Beisp.Nr.	Morpholinon	Fp.°C	[α] _D ²⁰ in Methanol
2 c	N-Methyl-morpholin-3-on	Öl	-
2 е	R-5-Methyl-morpholin-3-on	60-62	-3.7°
2 f	S-5-Methyl-morpholin-3-on	59-61	+3.1°
2 g	5-Isopropyl-morpholin-3-on	86-88	•
2 h	S-5-lsopropyl-morpholin-3-on	86-88	+3.9°
2 i	R-5-Isobutyl-morpholin-3-on	87-89	-4,3°
2 j	S-5-Isobutyl-morpholin-3-on	70-72	-4. °
2 k	5,5-Dimethyl-morpholin-3-on	133-35	-
21	6-Methyl-morpholin-3-on	96-98	-
2 0	2-Oxa-5-aza-bicyclo[4.4.0]decan-4-on	174-76	•
2 p	1-Oxa-4-aza-bicyclospiro[5.5]undecan-3-on	93-95	•
2 q	S-3-Oxa-6-aza-bicyclo[4.3.0] nonan-5-on	64-66	-
2 r	R-6-Methyl-morpholin-3-on	96-98	-134.1°
2 s	S-6-Methyl-morpholin-3-on	95-97	+131.1°
2 t	3-Oxa-6-aza-bicyclo[4.4.0] decan-5-on	ÖI	•

Im Falle der Beispiele 2 b und 2 n wurden die Ausgangsaminoalkohole erst am Stickstoff acetyliert, anschließend in Gegenwart von Natriumhydrid mit Bromessigsäureethylester zum entsprechenden Alkoxiessigsäureethylester umgesetzt und dann mit Natronlauge verseift. Alle Zwischenprodukte fielen als Öle an.

Im Falle der Beispiele 2 d und 2 m wurden die tert.-Aminoalkohole in Gegenwart von Natriumhydrid mit Bromessigsäureethylester (2 m) bzw. dem Natriumsalz der Chloressigsäure (2 d) umgesetzt, im letzteren Fall mit Ethanol-Schwefelsäure zum entsprechenden Ethylester verestert und in beiden Fällen anschließend mit 2 N Salzsäure verseift. Alle Zwischenprodukte fielen auch hier als Öle an.

Beispiel 3

5

10

15

20

25

30

45

5-Amino-3-oxa-pentan-1.1-diphosphonsäure

Zu 144 mg (6 mmol) Natriumhydrid in 5 ml abs. Toluol tropft man 1.73 g (6mmol) Methandiphosphon-säuretetraethylester. Man läßt nach Beendigung der Wasserstoffentwicklung noch 30 min nachrühren und tropft dann 1.7 g (6 mmol) N-(2-Brommethoxy-ethyl)phthalimid (Fp: 83-85°C) zu. Man läßt 24 h bei Raumtemperatur rühren, versetzt die Mischung mit Wasser, stellt die wässrige Phase mit 2 N Salzsäure auf pH = 5 ein, trennt die organische Phase ab, trocknet und engt ein. Den Rückstand reinigt man über 250 g Kieselgel (Elutionsmittel: Methylenchlorid/Methanol i.V. 4/1) und erhält 0.35 g = 12 % des 5-Phthalimido-3-oxa-pentan-1.1-diphosphonsäure-tetraethylester als ölige Substanz. Der Ester wird anschließend mit 10 ml 6 N Salzsäure 12 h unter Rückfluß gekocht, nach dem Abkühlen wird ausgefallene Phthalsäure abgesaugt, das Filtrat mit Kohle behandelt, filtriert und eingeengt. Den Rückstand nimmt man in Wasser auf, stellt die Lösung mit 2 N Natronlauge auf PH = 5 und versetzt unter Eiskühlung mit einem großen Überschuß an Methanol. Der Niederschlag wird abgesaugt und getrocknet. Man erhält 0.125 g = 7.2 % der gewünschten

Verbindung in Form des Mononatriumsalzes mit 1 mol Wasser, Fp: >300°C; M_{rel}: 0.30.

Ansprüche

5

1. Verbindungen der allgemeinen Formel I

in der

20

 R_1 und R_2 jeweils unabhängig voneinander Wasserstoff, einegeradkettige oder verzweigte, gesättigte oder ungesättigte Alkylkette mit 1-9 Kohlenstoffatomen, die gegebenenfalls durch Hydroxy, C_1 - C_5 Alkoxy oder C_1 - C_5 Alkylthio, einen Phenyl- oder einen C_5 - C_7 Cycloalkylring substituiert sein kann, wobei der Phenylring gegebenenfalls durch C_1 - C_5 Alkyl, C_1 - C_5 Alkoxy, Hydroxy oder Halogen substituiert sein kann, einen C_5 - C_7 Cycloalkyl- oder den Phenylrest,

 R_3 = Wasserstoff, niederes geradkettiges oder verzweigtes C_1 - C_5 Alkyl, das gegebenenfalls durch Hydroxy, C_1 - C_5 Alkoxy, C_1 - C_5 Alkylthio, Mercapto, Phenyl,3-Indolyl oder 4-Imidazolyl substituiert sein kann, oder gebenenfalls durch Hydroxy oder C_1 - C_5 Alkoxy substituiertes Phenyl,

R₄, R₆, R₈ und R₉ jeweils unabhängig voneinander Wasserstoff oder C₁-C₅ Alkyl,

R₅ und R₇ jeweils unabhängig voneinander Wasserstoff, C₁-C₅ Alkyl oder gegebenenfalls durch Hydroxy oder C₁-C₅ Alkoxy substituiertes Phenyl,

X = Wasserstoff, OH oder die Gruppe -NR₁₀, R₁₁, wobei R₁₀ und R₁₁ jeweils unabhängig voneinander Wasserstoff oder C₁-C₅ Alkyl sein soll,

35 m bzw. n = 0 oder 1

bedeuten, wobei

 R_1 und R_2 zusammen mit dem Stickstoffatom, an das sie gebunden sind, ein mono- oder bicyclisches Ringsystem mit 4-9 Kohlenstoffatomen, das teilweise oder ganz hydriert ist und gegebenenfalls durch Hydroxy, C_1 - C_5 Alkyl oder C_1 - C_5 Alkoxy substi-tuiert und/oder im Falle eines Monocyclus durch ein Sauerstoff-, Stickstoff- oder Schwefelatom unterbrochen sein kann,

R₁ und R₃ zusammen mit dem Kohlenstoff- bzw. Stickstoffatom, an das sie gebunden sind, einen Fünfoder Sechsring, der gegebenenfalls mit einem weiteren Sechsring kondensiert sein kann,

R₁ und R₅ zusammen mit dem Kohlenstoff- bzw. Stickstoffatom, an das sie gebunden sind, sowie dem dazwischenliegenden Kohlenstoffatom einen Fünf- oder Sechsring,

R₃ und R₄ zusammen mit dem Kohlenstoffatom, and das sie gebunden sind, eine Fünf- oder Sechsring, R₄ und R₆ zusammen mit den Kohlenstoffatomen, an die sie gebunden sind, einen Fünf- oder Sechsring, R₅ und R₆ zusammen mit dem Kohlenstoff, an das sie gebunden sind, einen Fünf- oder Sechsring, Rȝ und R₃ zusammen mit dem Kohlenstoffatom, an das sie gebunden sind, einen Fünf- oder Sechsring bilden können,

sowie deren pharmakologisch unbedenkliche Salze und optische Isomere.

2. Verbundungen der Formel I gemäß Anspruch 1, in denen R_1 Wasserstoff oder Methyl, R_2 Wasserstoff oder Methyl, R_3 Wasserstoff oder C_1 - C_5 Alkyl, R_4 Wasserstoff oder Methyl, R_5 Wasserstoff oder Methyl, R_6 Wasserstoff, R_7 Wasserstoff, R_8 Wasserstoff, R_9 Wasserstoff,

das sie gebunden sind, einen Spirocyclo-pentan-Ring darstellen.

3. Verfahren zur Herstellung von Verbindungen der allgemeinen Formel I

in der

 R_1 und R_2 jeweils unabhängig voneinander Wasserstoff, einegeradkettige oder verzweigte, gesättigte oder ungesättigte Alkylkette mit 1-9 Kohlenstoffatomen, die gegebenenfalls durch Hydroxy, C_1 - C_5 Alkoxy oder C_1 - C_5 Alkylthio, einen Phenyl- oder einen C_5 - C_7 Cycloalkylring substituiert sein kann, wobei der Phenylring gegebenenfalls durch C_1 - C_5 Alkyl, C_1 - C_5 Alkoxy, Hydroxy oder Halogen substituiert sein kann, einen C_5 - C_7 Cycloalkyl- oder den Phenylrest,

 R_3 = Wasserstoff, niederes geradkettiges oder verzweigtes C_1 - C_5 Alkyl, das gegebenenfalls durch Hydroxy, C_1 - C_5 Alkoxy, C_1 - C_5 Alkylthio, Mercapto, Phenyl,3-Indolyl oder 4-Imidazolyl substituiert sein kann, oder gebenenfalls durch Hydroxy oder C_1 - C_5 Alkoxy substuiertes Phenyl,

R₄, R₆, R₈ und R₉ jeweils unabhängig voneinander Wasserstoff oder C₁-C₅ Alkyl,

R₅ und R₇ jeweils unabhängig voneinander Wasserstoff, C₁-C₅ Alkyl oder gegebenenfalls durch Hydroxy oder C₁-C₅ Alkoxy substituiertes Phenyl,

X = Wasserstoff, OH oder die Gruppe -NR₁₀, R₁₁, wobei R₁₀ und R₁₁ jeweils unabhängig voneinander Wasserstoff oder C₁-C₅ Alkyl sein soll,

m bzw. n = 0 oder 1

bedeuten, wobei

 R_1 und R_2 zusammen mit dem Stickstoffatom, an das sie gebunden sind, ein mono- oder bicyclisches Ringsystem mit 4-9 Kohlenstoffatomen, das teilweise oder ganz hydriert ist und gegebenenfalls durch Hydroxy, C_1 - C_5 Alkyl oder C_1 - C_5 Alkoxy substituiert und/oder im Falle eines Monocyclus durch ein Sauerstoff-, Stickstoff- oder Schwefelatom unterbrochen sein kann,

R₁ und R₃ zusammen mit dem Kohlenstoff- bzw. Stickstoffatom, an das sie gebunden sind, einen Fünfoder Sechsring, der gegebenenfalls mit einem weiteren Sechsring kondensiert sein kann,

R₁ und R₅ zusammen mit dem Kohlenstoff- bzw. Stickstoffatom, an das sie gebunden sind, sowie dem dazwischenliegenden Kohlenstoffatom einen Fünf- oder Sechsring,

R₃ und R₄ zusammen mit dem Kohlenstoffatom, and das sie gebunden sind, einen Fünf- oder Sechsring,

R₄ und R₅ zusammen mit den Kohlenstoffatomen, an die sie gebunden sind, einen Fünf- oder Sechsring,

R₅ und R₆ zusammen mit dem Kohlenstoff, an das sie gebunden sind, einen Fünf- oder Sechsring,

R₇ und R₈ zusammen mit dem Kohlenstoffatom, an das sie gebunden sind, einen Fünf- oder Sechsring bilden können.

sowie deren pharmakologisch unbedenkliche Salze und optische Isomere,

dadurch gekennzeichnet, daß man in an sich bekannter Weise

I. eine Verbindung der allgemeinen Formel II

50

in der R₁ R₃-R₉, X, m und n die oben angegebenen Bedeutungen haben, mono- oder dialkyliert und gegebenenfalls die entstandenen Tetraester zu Diestern oder Säuren der allgemeinen Formel I verseift, oder

- II. für den Fall, daß X in der allgemeinen Formel I OH bedeutet,
- a) eine Carbonsäure der allgemeinen Formel III

in der R₁-R₈, m und n die oben angegebenen Bedeutungen haben, mit einem Gemisch aus phosphöriger Säure oder Phosphorsäure und einem Phosphorhalogenid bzw. Phosphoroxyhalogenid umsetzt und anschließend zur freien Diphosphonsäure verseift,

b) ein Carbonsäurechlorid der allgemeinen Formel IV

 R_{1} R_{2} R_{3} R_{5} R_{7} R_{7} R_{1} R_{2} R_{2} R_{4} R_{6} R_{8} R_{8}

in der R₁-R₈, m und n die oben genannten Bedeutungen haben, wobei R₁ auch eine Acylgruppe oder mit R₂ zusammen auch als Schutzgruppe den Phthaloylrest darstellen kann, mit einem Trialkylphosphit der allgemeinen Formel V

P(OR)₃ (V), in der R für Alkylreste mit 1-4 Kohlenstoffatomen, vorzugsweise Methyl, Ethyl, Isopropyl und Isobutyl steht, zu einem Acylphosphonat der allgemeinen Formel VI

55

35

in der R₁-R₃, m, n und R die oben genannten Bedeutungen haben, R₁ auch eine Acylgruppe oder mit R₂ zusammen auch den Phthaloylrest darstellen kann, umsetzt, anschließend mit einem Dialkylphosphit der allgemeinen Formel VII

O H- P (OR')₂ (VII),

5

10

15

20

25

30

40

45

in der R die oben angegebene Bedeutung hat, zu einem Diphosphonat der allgemeinen Formel VIII

in der R₁-R₈, m, n, und R['] die oben angebenen Bedeutungen haben, R₁ auch eine Acylgruppe oder mit R₂ zusammen auch den Phthaloylrest darstellen kann, reagieren läßt und gegebenenfalls die Phathaloylgruppe durch Hydrazinoylse entfernt und die entstandenen Tetraester zu Diestern oder Säuren der allgemeinen Formel I verseift, wobei unter diesen Bedingungen die als Schutzgruppe verwendete Acetyl- bzw. Phthaloylgruppe gleichzeitig abgespalten wird, oder

c) für den Fall, daß n = O bedeutet, eine Verbindung der allgemeinen Formel IX

 R_{1} R_{5} R_{1} R_{2} R_{4} R_{6} R_{5} R_{5} R_{1} R_{2} R_{4} R_{6} R_{5} R_{5} R_{5} R_{5} R_{6} R_{5} R_{7} R_{7} R_{7} R_{7} R_{8} R_{6}

50 in der R₁-R₅ und m die oben angegebenen Bedeutungen haben mit einem Epoxid der allgemeinen Formel X

in der R₇, R₈ und R['] die oben angegebenen Bedeutung haben, reagieren läßt und das entstandene Diphosphonsäurederivat der allgemeinen Formel XI

gewünschtenfalls zu Diestern oder Säuren verseift, oder

5

25

30

III. für den Fall, daß X in der allgemeinen Formel I die Gruppe -NR₁₀R₁₁ bedeutet, ein Carbonsäurederivat der allgemeinen Formel XII

in der R₁-R₈, m und n die oben angegebenen Bedeutungen haben und A eine Nitril-, Iminoether-oder eine -CONR₁₀R₁₁-Gruppe, wobei R₁₀ und R₁₁ die oben angegebenen Bedeutungen haben, darstellt, mit einer Phosphorverbindung der allgemeinen Formel XIII PT₃ (XIII).

in der T = Halogen, OH oder OR bedeutet, wobei R die oben angegebene Bedeutung hat, umsetzt und gegebenenfalls anschließend verseift, oder

IV. für den Fall, daß X in der allgemeinen Formel I Wasserstoff bedeutet, a) eine Verbindung der allgemeinen Formel XIV

in der R₁-R₆ und m die oben angegebenen Bedeutungen haben, wobei R₁ auch ein Acyl- oder mit R₂ zusammen der Phthaloylrest sein kann, und U eine reaktive Gruppe wie z.B. Halogen oder ein Sulfonat darstellt, mit einem Diphosphonsäurederivat der allgemeinen Formel XV,

5

10

15

in der R_7 , R_8 , $R^{'}$ und n die oben angegebenen Bedeutungen haben, reagieren läßt, und die Phthaloylgruppe gewünschtenfalls durch Hydrazinolyse entfernt und die gebildeten Tetraester gegebenenfalls zu Diestern oder Säuren verseift, wobei unter diesen Bedingungen die als Schutzgruppe verwendete Acyl- oder Phthaloylgruppe gleichzeitig abgespalten wird, oder

b) eine Verbindung der allgemeinen Formel IX

25

$$R_{1}$$
 R_{1}
 $N-C - C-(CH_{2})_{m}-O-H$
 R_{2}
 R_{4}
 R_{6}
 R_{5}
 R_{1}
 R_{2}
 R_{4}
 R_{6}

30

in der R_1 - R_6 , und m die oben angegebenen Bedeutungen haben, an eine Verbindung der allgemeinen ³⁵ Formel XVI

40

45

in der R_7 , R_8 und $R^{'}$ die oben angegebenen Bedeutungen haben, addiert und die entstehenden Tetraester gegebenenfalls zu Diestern oder Säuren verseift, oder

50

c) eine Verbindung der allgemeinen Formel XVII

in der R₁-R₈, U, m und n die oben angegebenen Bedeutungen haben, wobei R₁ auch ein Acyl- oder mit R₂ zusammen der Phthaloylrest sein kann, mit einem Diphosphonsäurederivat der allgemeinen Formel XVIII

in der R die oben angegebene Bedeutung hat, umsetzt, die Phthaloylgruppe gewünschtenfalls durch Hydrazinolyse entfernt und die entstandenen Tetraester gegebenenfalls zu Diestern oder Säuren verseift, wobei unter diesen Bedingungen die als Schutzgruppe verwendete Acyl- oder Phthaloylgruppe gleichzeitig abgespalten wird

oder

25

30

35

55

5

für den Fall, daß R8 Wasserstoff bedeutet,

d) eine Verbindung der allgemeinen Formel IXX

$$R_{3}$$
 R_{5} R_{7} O $\|$ $P(OR_{9})_{2}$ $N-C-C-(CH_{2})_{m}-O-(CH_{2})_{n}-C=C$ (XIX) $P(OR_{9})_{2}$ R_{4} R_{6}

in der R₁-R₇, R₉, m und n die oben angegebenen Bedeutungen haben, wobei R₁ auch eine Acylgruppe darstellen kann, katalytisch hydriert

und anschließend gegebenenfalls die entstandenen Tetraester zu Diester oder Säuren verseift, wobei dabei auch eine evtl. vorhandene Acylgruppe mit abgespalten werden kann und die freien Säuren in pharmakologisch unbedenkliche Salze überführt.

- 4. Verfahren zur Herstellung von Verbindungen gemäß Anspruch 3, in denen R_1 Wasserstoff oder Methyl, R_2 Wasserstoff oder Methyl, R_3 Wasserstoff oder C_1 - C_5 Alkyl, R_4 Wasserstoff oder Methyl, R_5 Wasserstoff, R_6 Wasserstoff, R_8 Wasserstoff, R_8 Wasserstoff, R_9 Wassers
- 5. Arzneimittel, enthaltend eine Verbindung gemäß Anspruch 1 oder 2 neben üblichen Träger- und Hilfsstoffen.
- 6. Verwendung von Verbindungen gemäß Anspruch 1 oder 2 zur Behandlung von Calciumstoffwechselstörungen.

EUROPÄISCHER RECHERCHENBERICHT

EP 89 11 2263

EINSCHLÄGIGE DOKUMENTE				
Kategorie	Kennzeichnung des Dokum der maßgebli	ents mit Angabe, soweit erforderlich, chen Teile	Betrifft Anspruch	KLASSIFIKATION DER ANMELDUNG (Int. Cl.5)
X,Y Y	ZA-A- 879 454 (NC PHARMACEUTICALS)	ORWICH EATON -A-274 158 (Kat. P,X)		C 07 F 9/38 A 61 K 31/66 C 07 F 9/60 C 07 F 9/650 C 07 F 9/654 C 07 F 9/653
				RECHERCHIERTE SACHGEBIETE (Int. Cl.5)
Der vo	orliegende Recherchenbericht wur Recherchenort	de für alle Patentansprüche erstellt Abschlußdatum der Recherche		Prüfer
DEN HAAG 04-10-1989 BESLIER L.M.				

KATEGORIE DER GENANNTEN DOKUMENTE

- X: von besonderer Bedeutung allein betrachtet
 Y: von besonderer Bedeutung in Verbindung mit einer anderen Veröffentlichung derselben Kategorie
 A: technologischer Hintergrund
 O: nichtschriftliche Offenbarung
 P: Zwischenliteratur

- T: der Erfindung zugrunde liegende Theorien oder Grundsätze
 E: älteres Patentdokument, das jedoch erst am oder
 nach dem Anmeldedatum veröffentlicht worden ist
 D: in der Anmeldung angeführtes Dokument
 L: aus andern Gründen angeführtes Dokument

- & : Mitglied der gleichen Patentfamilie, übereinstimmendes Dokument