Linerar Regression Model For House Price Prediction

April 7, 2024

0.0.1 Linear Regression Machine Learning Project for House Price Prediction - Prodigy Infotech ML Project - 1

0.0.2 Import Libraries

```
[2]: import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
```

0.0.3 Importing Data and Checking out.

[8]: df.head()

[8]:	Avg. Area Income	Avg. Area House Age	Avg. Area Number of Rooms '
0	79545.458574	5.682861	7.009188
1	79248.642455	6.002900	6.730821
2	61287.067179	5.865890	8.512727
3	63345.240046	7.188236	5.586729
4	59982.197226	5.040555	7.839388

	Avg.	Area	Number	ΟĬ	Bearooms	Area Population	Price	\
C)				4.09	23086.800503	1.059034e+06	
1	-				3.09	40173.072174	1.505891e+06	
2	2				5.13	36882.159400	1.058988e+06	
3	3				3.26	34310.242831	1.260617e+06	
4	Ļ				4.23	26354.109472	6.309435e+05	

Address

- 0 208 Michael Ferry Apt. 674\nLaurabury, NE 3701...
- 1 188 Johnson Views Suite 079\nLake Kathleen, CA...
- 2 9127 Elizabeth Stravenue\nDanieltown, WI 06482...
- 3 USS Barnett\nFPO AP 44820
- 4 USNS Raymond\nFPO AE 09386

[9]: df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 5000 entries, 0 to 4999
Data columns (total 7 columns):

#	Column	Non-Null Count	Dtype
0	Avg. Area Income	5000 non-null	float64
1	Avg. Area House Age	5000 non-null	float64
2	Avg. Area Number of Rooms	5000 non-null	float64
3	Avg. Area Number of Bedrooms	5000 non-null	float64
4	Area Population	5000 non-null	float64
5	Price	5000 non-null	float64
6	Address	5000 non-null	object

dtypes: float64(6), object(1)
memory usage: 273.6+ KB

[10]: df.describe()

[10]:		Avg. Area Income	Avg. Area House Age	Avg. Area Number of Rooms
	count	5000.000000	5000.000000	5000.000000
	mean	68583.108984	5.977222	6.987792
	std	10657.991214	0.991456	1.005833
	min	17796.631190	2.644304	3.236194
	25%	61480.562388	5.322283	6.299250
	50%	68804.286404	5.970429	7.002902
	75%	75783.338666	6.650808	7.665871
	max	107701.748378	9.519088	10.759588

	Avg.	Area	Number	of Bedrooms	Area Population	Price
count				5000.000000	5000.000000	5.000000e+03
mean				3.981330	36163.516039	1.232073e+06
std				1.234137	9925.650114	3.531176e+05
min				2.000000	172.610686	1.593866e+04
25%				3.140000	29403.928702	9.975771e+05
50%				4.050000	36199.406689	1.232669e+06
75%				4.490000	42861.290769	1.471210e+06
max				6.500000	69621.713378	2.469066e+06

[11]: df.columns

0.1 Exploratory Data Analysis for House Price Prediction

[13]: sns.pairplot(df) C:\Users\Anuj\anaconda3\Lib\site-packages\seaborn_oldcore.py:1119: FutureWarning: use inf as na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead. with pd.option_context('mode.use_inf_as_na', True): C:\Users\Anuj\anaconda3\Lib\site-packages\seaborn_oldcore.py:1119: FutureWarning: use inf as na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead. with pd.option_context('mode.use_inf_as_na', True): C:\Users\Anuj\anaconda3\Lib\site-packages\seaborn_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead. with pd.option_context('mode.use_inf_as_na', True): C:\Users\Anuj\anaconda3\Lib\site-packages\seaborn\ oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead. with pd.option_context('mode.use_inf_as_na', True): C:\Users\Anuj\anaconda3\Lib\site-packages\seaborn\ oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead. with pd.option_context('mode.use_inf_as_na', True): C:\Users\Anuj\anaconda3\Lib\site-packages\seaborn\ oldcore.py:1119: FutureWarning: use inf as na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.

[13]: <seaborn.axisgrid.PairGrid at 0x1ebe20cddd0>

with pd.option_context('mode.use_inf_as_na', True):

[17]: sns.distplot(df['Price'])

C:\Users\Anuj\AppData\Local\Temp\ipykernel_20692\834922981.py:1: UserWarning:

`distplot` is a deprecated function and will be removed in seaborn v0.14.0.

Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

For a guide to updating your code to use the new functions, please see https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751

sns.distplot(df['Price'])

C:\Users\Anuj\anaconda3\Lib\site-packages\seaborn_oldcore.py:1119:
FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.
 with pd.option_context('mode.use_inf_as_na', True):

[17]: <Axes: xlabel='Price', ylabel='Density'>


```
[21]: df_numeric = df.drop(columns=['Address'])
[23]: sns.heatmap(df_numeric.corr(), annot=True)
[23]: <Axes: >
```


0.2 Training a Linear Regression Model

0.2.1 X and y List

0.2.2 Split Data into Train, Test

```
[25]: from sklearn.model_selection import train_test_split
```

```
[26]: X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.4, u arandom_state=101)
```

0.3 Creating and Training the LinearRegression Model

```
[27]: from sklearn.linear_model import LinearRegression
[28]: lm = LinearRegression()
[31]: lm.fit(X_train,y_train)
[31]: LinearRegression()
     0.4 LinearRegression Model Evaluation
[30]: print(lm.intercept_)
     -2640159.796851625
[32]: coeff_df = pd.DataFrame(lm.coef_,X.columns,columns=['Coefficient'])
      coeff df
[32]:
                                      Coefficient
                                        21.528276
     Avg. Area Income
     Avg. Area House Age
                                    164883.282027
      Avg. Area Number of Rooms
                                    122368.678027
      Avg. Area Number of Bedrooms
                                      2233.801864
      Area Population
                                        15.150420
     0.5 Predictions from our Linear Regression Model
[33]: predictions = lm.predict(X_test)
[34]: plt.scatter(y_test,predictions)
[34]: <matplotlib.collections.PathCollection at 0x1ebec1fce90>
```


0.5.1 In the above scatter plot, we see data is in line shape, which means our model has done good predictions.

```
[35]: sns.distplot((y_test-predictions),bins=50);
```

C:\Users\Anuj\AppData\Local\Temp\ipykernel_20692\1326397652.py:1: UserWarning:

`distplot` is a deprecated function and will be removed in seaborn v0.14.0.

Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

For a guide to updating your code to use the new functions, please see https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751

sns.distplot((y_test-predictions),bins=50);

C:\Users\Anuj\anaconda3\Lib\site-packages\seaborn_oldcore.py:1119:
FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.

with pd.option_context('mode.use_inf_as_na', True):

0.5.2 In the above histogram plot, we see data is in bell shape (Normally Distributed), which means our model has done good predictions.

0.6 Regression Evaluation Metrics

```
[36]: from sklearn import metrics

[37]: print('MAE:', metrics.mean_absolute_error(y_test, predictions))
    print('MSE:', metrics.mean_squared_error(y_test, predictions))
    print('RMSE:', np.sqrt(metrics.mean_squared_error(y_test, predictions)))

MAE: 82288.2225191496
```

MSE: 10460958907.209692 RMSE: 102278.82922291246

0.7 THANK YOU! :-)

0.8 Github Link: https://github.com/anujtiwari21?tab=repositories