I have identified some 4-6 oil crisis starting dates [OIL-CRISIS-DATES] during 1990-2019, Figure 1.

It is a highly skewed time-lapse data, considering that the total number of observations in the oil price series (monthly, 1990-2015 equals 12x(2015-1990)=12x25=300 data points x).

Below is my outline of how to deal with a highly skewed data.

Highly skewed datasets and how to achieve high prediction performance on the minority class.

1. imbalanced classification: Cost-sensitive supervised learning algorithms

Given labeled examples from the minority (rare) class, and it tries to improve prediction performance especially on the minority class.

- 1.1. **Cost-sensitive KNN (C-KNN)**, assigning class-based weights to each instance, thus weighing the votes of the neighbors.
- **1.2. Cost-sensitive SVM** most commonly used methods in imbalanced classification.
- 1.3. Cost-sensitive Logistic Regression
- 1.4. Performance comparison s.t. F-1 scores compare the performances of cost-sensitive k-NN, cost-sensitive SVM, and cost-sensitive logistic regression
- 1.5. Multiple Kernel Learning for Imbalanced Classification

2. Unsupervised Anomaly Detection a.k.a. rare class detection

Aims to detect the rare classes de-novo from a few examples.

Detection of rare categories when no labeled samples are available a-priori

Unsupervised Anomaly Detection - often unsupervised (or labels are known only for the "normal" data).

2.1. three separate classification experiments:

2.1.1. Positive Compact

assumes that the minority class is compact and learns only from the minority class (with nNegative instances from the majority class added in the training set),

2.1.2. **Negative Compact**

the second experiment assumes that the majority class is compact and learns only from the majority class (with nPositive instances from the minority class added in the training set).

2.1.3. one-class SVM.

use all data, regardless of their labels.

- 2.2. Results analysis as measure the F-1 score of Positive Compact, Negative Compact, one-class SVM and cost-sensitive logistic regression on highly skewed datasets
 - 2.2.1. All experiments use Gaussian RBF kernel / Python Scikit-learn one-class SVM classifier
 - 2.2.2. Multiple Kernel Learning approach with compactness assumption
 - 2.2.2.1. Compare the MKL approach to random under sam-pling (RUS), one-class SVM, and cost-sensitive logistic regression

Figure 1
Top Left: Brent oil price

Top Right: Brent oil price extended by 2 years (padding)

Bottom Left: K-ratio function (blue), its minimum (dashed) zero-crosses of 1st derivative (green)

Bottom Right: The four Crisis-Dates (blue) over Brent oil price

K-ratio is computed at each time as ratio:

accumulated oil price per barrel for 12 months ahead vs. accumulated oil price per barrel for 12 months in the past