Homework 11

Problem 1. Prove that the function family

$$\mathcal{H} = \left\{ h_{a,b} \mid h_{a,b}(x) = a \cdot x + b, a \in \{0,1\}^k, b \in \{0,1\} \right\}$$

is a pairwise independent hash function family for range $R = \{0, 1\}$ and domain $U = \{0, 1\}^k$.

Solution. We need to prove that $\forall x_1 \neq x_2$ and $\forall y_1, y_2$, we have $\Pr_{h \in \mathcal{H}}(h(x_1) = y_1 \land h(x_2) = y_2) = \frac{1}{|R|^2} = \frac{1}{4}$.

Note that:

$$\Pr_{h \in \mathcal{H}}(h(x_1) = y_1 \land h(x_2) = y_2)
= \Pr_{h \in \mathcal{H}}(a \cdot x_1 + b = y_1 \land a \cdot x_2 + b = y_2)
= \Pr_{a,b}(a \cdot (x_1 \oplus x_2) = y_1 \oplus y_2 \land a \cdot x_2 + b = y_2)
= \sum_{i} \Pr_{b}(a \cdot (x_1 \oplus x_2) = y_1 \oplus y_2 \land b = a \cdot x_2 + y_2 | a = a_i) \Pr(a_i)
= \sum_{i} 1_{a_i \cdot (x_1 \oplus x_2) = y_1 \oplus y_2} \times \frac{1}{2} \Pr(a_i)
= \Pr_{a}(a \cdot (x_1 \oplus x_2) = y_1 \oplus y_2) \times \frac{1}{2}$$

The second last equation holds because when $a_i \cdot (x_1 \oplus x_2) = y_1 \oplus y_2$ the event happens when b happens to be the number $a_i \cdot x_2 + y_2$ which is of probability 1/2. In the other case the event can never happen (probability 0).

Since $x_1 \neq x_2$, we have $x_1 \oplus x_2 \neq 0$. If we can prove that $\Pr_a(a \cdot x = y) = \frac{1}{2}$ for any $x \neq 0$, the proof will be done. Say the *i*-th bit of x is none-zero, $x^i \neq 0$, then we can devide the sample space of a (denote as \mathcal{A}) into two parts: \mathcal{A}_0 with $a^i = 0$ and \mathcal{A}_1 with $a^i = 1$. There is a natural bijection between the two parts by flipping the bit a^i , say a, \tilde{a} only differ in the *i*-th bit. Then we have $a \cdot x = a^i x^i + \sum_{j \neq i} a^j x^j \neq \tilde{a}^i x^i + \sum_{j \neq i} a^j x^j = \tilde{a} \cdot x$. This indicates that precisely half of the a in \mathcal{A} will make $a \cdot x = 0$ and the other half will make it 1, so $\forall y \in \{0,1\}$, $\Pr_a(a \cdot x = y) = \frac{1}{2}$.

Therefore, by taking $x=x_1\oplus x_2$ and $y=y_1\oplus y_2$ we can obtain $\Pr_{h\in\mathcal{H}}(h(x_1)=y_1\wedge h(x_2)=y_2)=\frac{1}{2}\times\frac{1}{2}=\frac{1}{4}$.

Problem 2.

Homework 11 Zhang Chi

(a) Consider a random walk X_0, X_1, X_2, \ldots on a chain of n+1 vertices $0, 1, \ldots, n$ with the following transition probabilities

$$\Pr(X_t = k | X_{t-1} = j) = \begin{cases} \frac{1}{2} & \text{if } j \in [1, n-1] \text{ and } k = j \pm 1, \\ 1 & \text{if } j = 0, k = 1 \text{ or } j = n, k = n, \\ 0 & \text{otherwise.} \end{cases}$$

Let T_i be the expected number of steps the walk takes to arrive at the end vertex n starting with $X_0 = i$. Prove that $T_i \le n^2$ for all $i \in [0, n]$.

- (b) Consider the following randomized algorithm for 2-SAT problems of n variables.
 - 1: Choose an arbitrary initial assignment.
 - 2: **for** $t = 1, 2, \dots, 2n^2$ **do**
 - 3: **if** the current assignment is satisfying **then**
 - 4: Accept immediately.
 - 5: else
 - 6: Choose an arbitrary clause not satisfied.
 - 7: Sample one of the two literals uniformly at random.
 - 8: Flip the value of the variable in the sampled literal.
 - 9: end if
 - 10: end for
 - 11: Reject if haven't accepted.

Use Markov inequality to show that the algorithm will find a satisfying solution with probability at least $\frac{1}{2}$ given a yes-instance as input.

Solution. (a) Denote a walk from X_i to X_n as w, and the number of steps it takes as |w|. Use w_k to denote the k-th vertex in the walk (starting from $w_0 = X_i(\text{starting vertex})$). Then for $1 \le i \le n-1$:

$$T_{i} = \sum_{w|w_{0}=X_{i}} |w| \operatorname{Pr}(w)$$

$$= \sum_{w|w_{0}=X_{i}} |w| \sum_{X_{j}} \operatorname{Pr}(w|w_{1} = X_{j}) \operatorname{Pr}(w_{1} = X_{j})$$

$$= \sum_{w|w_{0}=X_{i}} |w| \left(\operatorname{Pr}(w|w_{1} = X_{i+1}) \times \frac{1}{2} + \operatorname{Pr}(w|w_{1} = X_{i-1}) \times \frac{1}{2} \right)$$

$$= \frac{1}{2} \sum_{w'|w'_{0}=X_{i+1}} (|w'| + 1) \operatorname{Pr}(w') + \frac{1}{2} \sum_{w'|w'_{0}=X_{i-1}} (|w'| + 1) \operatorname{Pr}(w')$$

$$= \frac{1}{2} \sum_{w'|w'_{0}=X_{i+1}} |w'| \operatorname{Pr}(w') + \frac{1}{2} \sum_{w'|w'_{0}=X_{i-1}} |w'| \operatorname{Pr}(w') + 1$$

$$= \frac{1}{2} T_{i+1} + \frac{1}{2} T_{i-1} + 1.$$

Homework 11 Zhang Chi

By taking $w = w_0 w'$.

Specifically, we have $T_0 = T_1 + 1$ and $T_n = 0$. By adding the above equations together we have:

$$\sum_{i=0}^{n} T_i = T_1 + 1 + \sum_{i=1}^{n-1} \left(\frac{1}{2} T_{i+1} + \frac{1}{2} T_{i-1} + 1 \right)$$

$$= T_1 + \frac{1}{2} \sum_{i=2}^{n} T_i + \frac{1}{2} \sum_{i=0}^{n-2} T_i + n$$

$$= \frac{1}{2} (T_0 + T_1 + T_{n-1} + T_n) + \sum_{i=1}^{n-2} T_i + n.$$

So we have:

$$T_0 + T_{n-1} + T_n = \frac{1}{2}(T_0 + T_1 + T_{n-1} + T_n) + n$$

$$\frac{1}{2}T_0 - \frac{1}{2}T_1 + \frac{1}{2}(T_{n-1} + T_n) = n$$

$$\frac{1}{2} + \frac{1}{2}T_{n-1} = n$$

$$T_{n-1} = 2n - 1.$$

By using $T_{i-1} = 2T_i - T_{i+1} - 2$ for $1 \le i \le n-1$ we can inductively prove the rest $T_i (i = 0, 1, 2, ..., n-1)$ are in following form:

$$T_{n-k} = 2kn - k^2$$

by verifying the base case $T_{n-1} = 2n - 1$ and the inductive step:

$$T_{n-k-1} = 2T_{n-k} - T_{n-k+1} - 2$$

$$= 2(2kn - k^2) - 2(k-1)n + (k-1)^2 - 2$$

$$= (4k - 2k + 2)n - (2k^2 - k^2 + 2k - 1 + 2)$$

$$= 2(k+1)n - (k+1)^2.$$

Thus, by $T_{n-k} - n^2 = -(n-k)^2 \le 0$ we know that $T_{n-k} \le n^2$ for all k, which implies $T_i \le n^2$ for all $i \in [0, n]$.

(b) Consider the input is satisfyable CNF $\phi(x^1,...,x^n)$. Say a satisfying assignment is $x_*^1, x_*^2, ..., x_*^n$. For any assignment $x^1, ..., x^n$, we define the "distance" of the assignment to the answer is $d(x) = \sum_i (x^i \oplus x_*^i)$. Then $x = x_* \iff d(x) = 0, 0 \le d(x) \le n$.

When we conduct the algorithm, say the initial assignment is x_0 and $d(x_0) = m$. Then after each iteration step, say the current assignment is x_k ,

Homework 11 Zhang Chi

we randomly flip a bit in an unsatisfied clause to get x_{k+1} . Say we chose $C = l^i \wedge l^j$, and flipped x_k^i or x_k^j . Since C is unsatisfied we know that there is $x_k^i \neq x_*^i$ or $x_k^j \neq x_*^j$. Since at least one of the two variable isn't the same with x_* , we have at least 1/2 chance to filp a variable that isn't same with x_* , and at most 1/2 chance to flip one that is. In the former case, after flipping x_{k+1} will have one less "wrong" variable, and thus $d(x_{k+1}) = d(x_k) - 1$. In the latter case, $d(x_{k+1}) = d(x_k) + 1$. Specifically, when $d(x_k) = n$, which means all variables are wrong, flipping any variable will make $d(x_{k+1}) = 1$.

Use vertex X_k to denote all assignments x with d(x) = n - k. By (a), for any initial state, in the worst case which we have only 1/2 probability to decrease the distance by each flip, the expectation of flips to reach d(x) = 0 (Say it's T) is at most n^2 .

Since the algorithm will repeat for $2n^2$ steps, the success rate of the algorithm is $Pr(T \le 2n^2)$. By Markov's inequality, we know that:

$$\Pr(T \ge 2n^2) \le \frac{\mathbb{E}(T)}{2n^2} \le \frac{n^2}{2n^2} = \frac{1}{2}.$$

Therefore, the algorithm will find a satisfying solution with probability at least $\frac{1}{2}$ given a yes-instance as input.