Kalman Filters and Least Squares

Dávid Iván

December 1, 2021

Contents

1	Weighted Least Squares	2
	1.1 Block Least Squares	3
2	Matrix inversion	5

1 Weighted Least Squares

We have a linear system to solve:

$$Ax = b \tag{1}$$

Where $A \in \mathbb{R}^{m \times n}$, $x \in \mathbb{R}^n$, $b \in \mathbb{R}^m$. When A has more rows than columns (m > n), we don't (necessarily) have an exact solution. This is where we use least squares to get an approximate solution. x_E is the solution to the Euclidean distance minimization:

$$x_E = \operatorname{argmin}_x ||Ax - b||^2$$

$$= \operatorname{argmin}_x \left[(Ax - b)^T (Ax - b) \right]$$

$$= (A^T A)^{-1} A^T b$$
(2)

Figure 1: difference between ordinary least squares and weighted least squares solution. We want to be close to b either in terms of Euclidean distance or Mahalanobis distance.

 x_M is the solution to the Mahalanobis distance minimization (the weighted least squares problem):

$$x_{M} = \operatorname{argmin}_{x} ||Ax - b||_{R}^{2}$$

$$= \operatorname{argmin}_{x} \left[(Ax - b)^{T} R^{-1} (Ax - b) \right]$$

$$= (A^{T} R^{-1} A)^{-1} A^{T} R^{-1} b$$
(3)

This can be justified when the residual is thought of as a Gaussian random variable with zero mean and covariance R:

$$Ax - b = r \propto N(0, R) \tag{4}$$

Of course, when R covariance matrix is the identity, then the two solutions are the same: $x_E = x_M$. Figure 1 shows the difference between x_E and x_M .

1.1 Block Least Squares

Solving

$$\operatorname{argmin}_{x} \left[||A_{1}x - b||_{B_{1}}^{2} + ||A_{2}x - b||_{B_{2}}^{2} \right]$$
 (5)

is equivalent to solving the following "normal" weighted least squares problem.

Let's divide up the matrices A, b and R as shown on Figure 2.

Figure 2: weighted least squares with block matrices

 $\begin{array}{l} A_1 \in \mathbb{R}^{m_1 \times n}, \ A_2 \in \mathbb{R}^{m_2 \times n}, \ m_1 + m_2 = m. \ b_1 \in \mathbb{R}^{m_1}, \ b_2 \in \mathbb{R}^{m_2}. \ R_1 \in \mathbb{R}^{m_1 \times m_1}, \\ Q_2 \in \mathbb{R}^{m_2 \times m_2}. \ R_1 \ \text{and} \ R_2 \ \text{are both positive (semi)definite matrices.} \end{array}$

The WLS solution is

$$x^* = (A^T R^{-1} A)^{-1} A^T R^{-1} b (6)$$

Figure 3: Calculating the matrix $A^T R^{-1}$

Figure 3 shows how to calculate $A^T R^{-1}$

Now the WLS solution can be calculated as follows:

$$x^* = (A_1^T R_1^{-1} A_1 + A_2^T R_2^{-2} A_2)^{-1} (A_1^T R_1^{-1} b_1 + A_2^T R_2^{-2} b_2)$$
 (7)

Now let's solve the following minimization problem:

$$x_2^* = \operatorname{argmin}_x \left[||A_1 x - b||_{R_1}^2 + ||A_2 x - b||_{R_2}^2 \right] = \operatorname{argmin} \left[L_1(x) + L_2(x) \right]$$
 (8)

First calculate the derivative:

$$\frac{d}{dx}(L_1(x) + L_2(x)) = 2(A_1x - b_1)^T R_1^{-1} A_1 + 2(A_2x - b_2)^T R_2^{-1} A_2$$
 (9)

Setting it to zero and solving it:

$$2(A_{1}x - b_{1})^{T}R_{1}^{-1}A_{1} + 2(A_{2}x - b_{2})^{T}R_{2}^{-1}A_{2} = 0$$

$$A_{1}^{T}R_{1}^{-1}(A_{1}x - b_{1}) + A_{2}^{T}R_{2}^{-1}(A_{2}x - b_{2}) = 0$$

$$A_{1}^{T}R_{1}^{-1}A_{1}x - A_{1}^{T}R_{1}^{-1}b_{1} + A_{2}^{T}R_{2}^{-1}A_{2}x - A_{2}^{T}R_{2}^{-1}b_{2} = 0$$

$$A_{1}^{T}R_{1}^{-1}A_{1}x + A_{2}^{T}R_{2}^{-1}A_{2}x = A_{1}^{T}R_{1}^{-1}b_{1} + A_{2}^{T}R_{2}^{-1}b_{2}$$

$$(A_{1}^{T}R_{1}^{-1}A_{1} + A_{2}^{T}R_{2}^{-1}A_{2})x = A_{1}^{T}R_{1}^{-1}b_{1} + A_{2}^{T}R_{2}^{-1}b_{2}$$

$$x_{2}^{*} = (A_{1}^{T}R_{1}^{-1}A_{1} + A_{2}^{T}R_{2}^{-1}A_{2})^{-1}(A_{1}^{T}R_{1}^{-1}b_{1} + A_{2}^{T}R_{2}^{-1}b_{2})$$

$$(10)$$

Now we see that indeed, $x_2^* = x^*$.

2 Matrix inversion

Let's calculate the following matrix inversion.

Where $D_1 \in \mathbb{R}^{N \times N}$, symmetric, invertible. $D_2 \in \mathbb{R}^{n \times n}$, symmetric, invertible. $E \in \mathbb{R}^{N \times n}$.

It is easy to derive the following expressions:

$$\Delta_2 = (D_2 - E^T D_1^{-1} E)^{-1} \tag{11}$$

$$\Delta_1 = D_1^{-1} + D_1^{-1} E \Delta_2 E^T D_1^{-1}$$

= $(D_1 - E D_2^{-1} E^T)^{-1}$ (12)

$$\beta = -D_1^{-1}E\Delta_2 \tag{13}$$

Note that if N >> n and we already know D_1^{-1} (calculated earlier), then we might use the first formulae for Δ_1 , instead of the second, where we would have to invert a big $(N \times N)$ matrix.