Машинное обучение. Неравномерная изучаемость. Выбор модели

Алексей Колесов

Белорусский государственный университет

8 октября 2019 г.

Содержание

- Перавномерная изучаемость
 - Structural risk minimization
 - Minimum description length и Бритва Оккама
 - Другие модели изучаемости
- 2 Выбор модели
- 3 Что делать, если обучение не работает

Равномерная изучаемость

Класс гипотез H называют вероятно приблизительно верно изучаемым (probably approximately correct learnable) если существует такая функция $m_H:(0,1)^2\to\mathbb{N}$ и алгоритм, такой что

- ullet для любых $\epsilon,\delta\in(0,1)$
- ullet для любого распределения D над X
- ullet для любой функции $f:X o \{0,1\}$

если выполняется предположение о реализуемости, то если мы выполним алгоритм на выборке из $m\geqslant m_H(\epsilon,\delta)$ независимых одинаково распределённых элементов из D и размеченных f, то алгоритм вернёт гипотезу $h\in H$ такую, что с вероятностью как минимум $1-\delta$, выполняется $L_{D,f}(h)\leqslant \epsilon$

Ослабление равномерной изучаемости

- H PAC-изучамемый \iff VCdim $(H) < \infty$
- можно ли ослабить определение?
- полезно ли ослаблять такое ограничение?

Неравномерная изучаемость

Гипотеза h называется (ϵ,δ) -конкурентной с гипотезой h' $((\epsilon,\delta)$ -competitive), если $\mathbb{P}[L_D(h)\leqslant L_D(h')+\epsilon]>1-\delta$

Класс гипотез H называют неравномерно изучаемым (nonuniform learnable) если существует такая функция $m_H^{NUL}: (0,1)^2 \times H \to \mathbb{N}$ и алгоритм, такой что

- ullet для любых $\epsilon, \delta \in (0,1)$
- для любой h' ∈ H
- ullet для любого распределения D над X

если мы выполним A на выборке из $m\geqslant m_H^{NUL}(\epsilon,\delta,h')$ независимых элементов из D, то с вероятностью как минимум $1-\delta$, выполняется $L_D(A(S))\leqslant L_D(h')+\epsilon$

Характеризация классов с неравномерной изучаемостью

Критерий неравномерной изучаемости

Класс гипотез H является неравномерно изучаемым, тогда и только тогда, когда H — объединение не более чем счётного множества РАС-изучаемых классов H_i .

Теорема о связи равномерной сходимости и неравномерной изучаемости

Пусть $H = \bigcup_{n \in \mathbb{N}} H_n$, где каждый H_n обладает свойством равномерной сходимости. Тогда H — неравномерно изучаемый

Доказательство критерия

Необходимость:

- имеем $H = \bigcup_{n \in \mathbb{N}} H_n$, H_n PAC-learnable
- \bullet H_n обладает равномерной сходимостью
- чтд (по теореме о связи)

Достаточность:

- имеем H неравномерно изучаемый
- ullet определим $H_n = \{h \in H: m_H^{NUL}(1/8,1/7,h) \leqslant n\}$ $(H = \bigcup_{n \in \mathbb{N}} H_n)$
- $\exists h \in H_n$, т.ч. $L_D(h) = 0 \Rightarrow$ при $S \in D^n$ $\mathbb{P}[L_D(A(S)) \leqslant 1/8] > 6/7 \Rightarrow \mathsf{VCdim}(H_n) < \infty$
- чтд (по фундаментальной теореме)

PAC-изучаемость \neq неравномерная изучаемость

- пусть H_n множество полиномиальных классификаторов степени n (т.е. h(x) sign(p(x)), где p(x) многочлен степени n)
- $H = \bigcup H_n$
- $VCdim(H_n) = n + 1$
- $VCdim(H) = \infty$

Inductive bias

- по NoFLT нужен inductive bias (априорная информация)
- пока умели только ограничить класс гипотез
- теперь попробуем «проранжировать» гипотезы

Обозначения и предположения

- пусть $H = \bigcup_{n \in \mathbb{N}} H_n$
- пусть каждый H_n обладает свойством равномерной сходимости
- ullet введём весовую функцию $w: \mathbb{N} o [0,1]$: $\sum_i w(i) \leqslant 1$
- $\epsilon_n(m,\delta) = \min\{\epsilon \in (0,1) : m_{H_n}^{UC}(\epsilon,\delta) \leqslant m\}$
- $\forall h \in H_n$, $|L_D(h) L_S(h)| \le \epsilon(m, \delta)$ с вероятностью не меньше, чем 1δ , если S из m элементов
- $n(h) = \min\{n : h \in H_n\}$

Structural risk minimization: bound

Теорема о верхней границе для SRM

Если выполняются предположения с предыдущего слайда, то для любого $\delta \in (0,1)$ и распределения D, с вероятностью не меньше $1-\delta$ над $S \sim D^m$ одновременно для всех $n \in \mathbb{N}$ и $h \in H_n$ выполняется:

$$|L_D(h) - L_S(h)| \leq \epsilon_n(m, w(n) \cdot \delta)$$

а значит, и

$$L_D(h) \leqslant L_S(h) + \min_{n:h \in H_n} \epsilon_n(m, w(n) \cdot \delta)$$

Structural risk minimization: algorithm

По теореме, выполняется: $L_D(h) \leqslant L_S(h) + \epsilon_{n(h)}(m, w(n(h)) \cdot \delta)$ SRM-алгоритм:

- prior: H объединение счётного множества классов гипотез с равномерными сходимостями
- prior: w весовая функция
- ullet вход: $S\sim D^m$, параметр δ
- выход: $h \in \operatorname{argmin}_{h \in H}[L_S(h) + \epsilon_{n(h)}(m, w(n(h)) \cdot \delta)]$

Teopema o SRM и неравномерной изучаемости

Теорема о SRM и неравномерной изучаемости

Пусть $H=\bigcup_{n\in\mathbb{N}}H_n$, причём каждый H_n обладает свойством равномерной сходимости с выборочной сложностью $m_{H_n}^{UC}$. Пусть $w(n)=\frac{6}{n^2\pi^2}$. Тогда H является неравномерно изучаемым с помощью SRM-алгоритма и имеет выборочную сложность:

$$m_{H}^{NUL}(\epsilon, \delta, h) \leqslant m_{H_{n(h)}}^{UC}\left(\epsilon/2, \frac{6\delta}{(\pi n(h))^2}\right)$$

Замечания

- можем учить другие классы (класс всех полиномов)
- No FLT не отменяется (класс всех функций над бесконечным доменом не является объединением классов с конечной VC-размерностью)
- ullet prior более слабый, чем в PAC \Rightarrow выборочная сложность больше
- если $\operatorname{VCdim}(H_n) = n$, и $h \in H_n$ то $m_H^{NUL}(\epsilon, \delta, h) m_{H_n}^{UC}(\epsilon/2, \delta) \leqslant 4C \frac{2\log(2n)}{\epsilon^2}$

SRM для счётного класса гипотез

- ullet пусть H счётный класс гипотез; $H = igcup_{n \in \mathbb{N}} \{h_n\}$
- ullet у каждого из $H_n=\{h_n\}$ есть равномерная сходимость с

$$m^{UC}(\epsilon, \delta) = \frac{\log(2/\delta)}{2\epsilon^2} \Rightarrow \epsilon_n(m, \delta) = \sqrt{\frac{\log(2/\delta)}{2m}}$$

- SRM: $\underset{h_n \in H}{\operatorname{argmin}} \left[L_S(h) + \sqrt{\frac{-\log(w(h)) + \log(2/\delta)}{2m}} \right]$
- prior зависит только от гипотезы

Обозначения и замечания

- ullet зафиксируем алфавит Σ и класс гипотез H
- ullet пусть $\sigma(h)$ описание гипотезы h на языке Σ , т.е. вектор длины $|\sigma(h)|$, где каждый элемент из Σ
- будем называть описание **беспрефиксным**, если для любых разных h, h' выполняется, что $\sigma(h)$ не является префиксом $\sigma(h')$
- ullet тогда (для $\Sigma=\{0,1\})$ выполняется $\sum\limits_{h}rac{1}{2^{|\sigma(h)|}}\leqslant 1$
- можем выбрать $w(h) = \frac{1}{2^{\sigma(h)}}$ и применить SRM!

Minimum description length

Теорема о MDL

Пусть H счётный или конечный класс гипотез и для него есть беспрефиксное описание над бинарным алфавитом. Тогда для любого $m,\ \delta>0$ и D с вероятностью не меньше $1-\delta$ на выборке $S\sim D^m$ выполняется:

$$\forall h \in H, \ L_D(h) \leqslant L_S(h) + \sqrt{\frac{|\sigma(h)| + \log(2/\delta)}{2m}}$$

Бритва Оккама

Бритва Оккама

Короткие объяснения обычно лучше длинных

- MDL одно из применений этого принципа
- как получается, что риск зависит от выбора языка описания?

Бритва Оккама

Бритва Оккама

Короткие объяснения обычно лучше длинных

- MDL одно из применений этого принципа
- как получается, что риск зависит от выбора языка описания?
- не зависит мы выбираем язык перед тем, как смотрим на выборку (как в неравенстве Хёффдинга)

Консистентность

- если разрешить выборочной сложности зависеть от D, то получим определение консистентного класса и алгоритма
- консистентность ослабление неравномерной изучаемости
- алгоритм Memorize является консистентным
- и в то же время «плохим учеником» из первой лекции
- может не нужно ослаблять определение?

Какой true risk у выученной гипотезы?

Какой true risk у выученной гипотезы?

- равномерная и неравномерная изучаемость даёт ответ на этот вопрос
- есть другие способы получить эту оценку (validation)

Structural risk minimization Minimum description length и Бритва Оккам Другие модели изучаемости

Сколько элементов должно быть в выборке, чтоб выучить лучшую гипотезу из H

Сколько элементов должно быть в выборке, чтоб выучить лучшую гипотезу из H

- РАС даёт конкретный ответ (фундаментальная теорема)
- неравномерная изучаемость и консистентность не даёт ответа на вопрос
- ullet маленький $\epsilon_{\it est}$ не значит маленький $\epsilon_{\it app}!$
- если РАС-алгоритм выдаёт гипотезу с большим риском, можно понять, в чём проблема (estimation error vs approximation error)

Как учить? Как выражать априорное знание

- в РАС как только выбрали класс, сразу применяем ERM
- в неравномерной сходимости выбрали w применяем SRM (надо меньше априорного знания)

• в консистентных алгоритмах *иногда* даже не нужно априорное знание! (Memorize)

Memorize и NoFLT

- NoFLT говорит, что нельзя учиться, когда класс все функции
- Memorize может учиться на классе всех функций
- где ошибка?

Memorize и NoFLT

- NoFLT говорит, что нельзя учиться, когда класс все функции
- Memorize может учиться на классе всех функций
- где ошибка?
- ошибки нет: в NoFLT сначала фиксируем размер выборки

Итоги

- ввели новые модели изучаемости
- изучили SRM

Содержание

- Неравномерная изучаемость
 - Structural risk minimization
 - Minimum description length и Бритва Оккама
 - Другие модели изучаемости
- 2 Выбор модели
- 3 Что делать, если обучение не работает

Постановка вопроса

- рассмотрели AdaBoost можем варьировать T, чтоб управлять bias-complexity tradeoff
- как выбрать T?
- как решить, что нужен AdaBoost, а не другой алгоритм?
- надо решить задачу выбора модели (model selection)

SRM для выбора модели

- хорош, когда есть параметр, управляющий bias-complexity tradeoff
- оценка SRM зависит от эмпирического риска и «сложности» класса
- обычно, оценка SRM очень пессимистична

Валидация

- РАС-оценки на ошибку гипотезы верны для всех h и $D \Rightarrow$ часто пессимистичны
- валидация (validation) проверка гипотезы на данных, не использованных для тренировки

Hold-out set

Пусть V — выборка из D, не использованная во время тренировки.

Hold-out set bound

Пусть h — гипотеза и функция потерь лежит в [0;1]. Тогда для любого $\delta \in (0,1)$ с вероятностью не меньше $1-\delta$ выполняется, что на отложенной выборке V длины m_{v} :

$$|L_D(h) - L_V(h)| \leqslant \sqrt{\frac{\log(2/\delta)}{2m_V}}$$

Из фундаментальной теоремы:

$$L_D(h) \leqslant L_S(h) + \sqrt{C \frac{d + \log(1/\delta)}{m}}$$

Использование валидации для выбора модели

- ullet обучим r алгоритмов (или один с разными параметрами)
- ullet каждую из r гипотез проверяем на отложенной выборке
- выбираем лучшую (ERM на конечном классе гипотез)

$$|L_D(h) - L_V(h)| \leqslant \sqrt{\frac{\log(2|H|/\delta)}{2m_V}}$$

Model selection curve

k-Fold cross validation

Алгоритм 1 k-Fold cross validation

Вход: $S = ((x_1, y_1), \dots, (x_m, y_m))$

Вход: множество параметро Ө

 \mathbf{B} ход: алгоритм A

Вход:
$$k \in \mathbb{N}$$

1:
$$S = \coprod_{i=1}^k S_i$$

2: for
$$\theta \in \Theta$$
 do

3: **for**
$$i = 1 ... k$$
 do

4:
$$h_{i,\theta} = A(S \setminus S_i; \theta)$$

6:
$$e(\theta) = \frac{1}{k} \sum_{i=1}^{k} L_{S_i}(h_{i,\theta})$$

7: end for

8: **return** $A(S; \operatorname{argmin}_{\theta}[e(\theta)])$

Train; validation; test

- выбираем минимум на валидации оценка нечестная
- делят на три части
- на тренировочной выборке обучают алгоритмы
- на валидационной выбирают лучший
- на тестовой получают оценку true risk

Содержание

- Неравномерная изучаемость
 - Structural risk minimization
 - Minimum description length и Бритва Оккама
 - Другие модели изучаемости
- 2 Выбор модели
- 3 Что делать, если обучение не работает

Проблема

- выбрали алгоритм, класс, параметры
- обучили, на валидации выбрали лучший
- проверили на тестовой выборке, получили высокую ошибку
- что делать?

Решения

- найти больше объектов для обучения
- изменить класс гипотез:
 - увеличить его
 - уменьшить его
 - полностью изменить его
 - изменить перебираемые параметры
- изменить признаковое представление
- изменить алгоритм обучения

Большой approximation error

$$L_D(h_S) = \epsilon_{\mathsf{app}} + \epsilon_{\mathsf{bayes}} + \epsilon_{\mathsf{est}}$$

- ullet ϵ_{app} не зависит от тренировочной выборки и алгоритма
- нет смысла увеличивать выборку, уменьшать класс, менять алгоритм
- можно поменять класс, либо увеличить его
- попробовать другое признаковое представление

Большой estimation error

$$L_D(h_S) = \epsilon_{\mathsf{app}} + \epsilon_{\mathsf{bayes}} + \epsilon_{\mathsf{est}}$$

- ullet ϵ_{est} зависит от размера выборки
- нет смысла уменьшать выборку или увеличивать класс
- можно поменять класс полностью, либо уменьшить его
- попробовать другой алгоритм
- попробовать другое признаковое представление

Разложение ошибки с помощью валидации

$$L_D(h) = (L_D(h) - L_V(h)) + (L_V(h) - L_S(h)) + L_S(h)$$

- на синюю часть хорошая оценка
- если изумрудная большая, то «переобучение»
- если коричневая большая, то «недообучение»
- ullet эти части не являются хорошими оценками ϵ_{est} и $\epsilon_{\mathsf{app}}!$

Случай большого $L_S(h)$

Пусть $L_S(h)$ большой. Запишем (h^* — лучшая гипотеза из класса):

$$L_{S}(h) = (L_{S}(h) - L_{S}(h^{*})) + (L_{S}(h^{*}) - L_{D}(h^{*})) + L_{D}(h^{*})$$

- синяя скобка не больше нуля, если ERM
- изумрудная скобка хорошо оценивается
- ullet коричневая величина и есть ϵ_{app}

Случай маленького $L_{\mathcal{S}}(h)$

Пусть $L_S(h)$ маленький.

- ullet Сценарий 1: m < d, ϵ_{app} большая
- ullet Сценарий 2: m>2d, $\epsilon_{\sf app}=0$

B обоих случаях
$$L_S(h_S) = 0$$

Learning curves

Построить зависимость ошибок от размера выборки:

Learning curves

- ullet если $\epsilon_{\mathsf{app}} > 0$, то $L_S(h)$ обычно растёт от увеличения S
- L_V(h_S) падает
- при $m \to \infty$ оба true risk
- можно экстраполировать learning curves и найти интервал, где ϵ app

Общий план

- если есть параметры, то надо начертить model-selection curve
- если $L_S(h_S)$ велико, то увеличить класс, поменять его, изменить признаковое представление
- \bullet если $L_S(h_S)$ мало, то начертить learning curves
- ullet если $\epsilon_{
 m app}$ велико, то добыть больше данных, уменьшить класс
- если $\epsilon_{\sf app}$ мало, то стоит изменить класс или признаковое представление объектов

Содержание

- Неравномерная изучаемость
 - Structural risk minimization
 - Minimum description length и Бритва Оккама
 - Другие модели изучаемости
- 2 Выбор модели
- Что делать, если обучение не работает

Итоги

- рассмотрели SRM
- обсудили разные определения изучаемости
- изучили метод валидации
- составили план действий, в случае если качество гипотезы плохое

Литература

 Shai Shalev-Shwartz and Shai Ben-David — Understanding Machine Learning: From theory to algorithms (главы 8,11)