The group G is isomorphic to the group labelled by ["could not identify G"] in the Small Groups library Ordinary character table of $G \cong PSU(3,3)$:

	1 <i>a</i>	2a	3a	3b	4a	4b	4c	6a	7 <i>a</i>	7 <i>b</i>	8a	8b	12a	12b
χ_1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
χ_2	6	-2	-3	0	-2	-2	2	1	-1	-1	0	0	1	1
χ_3	7	-1	-2	1	3	3	-1	2	0	0	-1	-1	0	0
χ_4	7	3	-2	1	-1 + 2 * E(4)	-1 - 2 * E(4)	1	0	0	0	E(4)	-E(4)	-1 + E(4)	-1 - E(4)
χ_5	7	3	-2	1	-1 - 2 * E(4)	-1 + 2 * E(4)	1	0	0	0	-E(4)	E(4)	-1 - E(4)	-1 + E(4)
χ_6	14	-2	5	-1	2	2	2	1	0	0	0	0	-1	-1
χ_7	21	5	3	0	1	1	1	-1	0	0	-1	-1	1	1
χ_8	21	1	3	0	-3 + 2 * E(4)	-3 - 2 * E(4)	-1	1	0	0	-E(4)	E(4)	E(4)	-E(4)
χ_9	21	1	3	0	-3 - 2 * E(4)	-3 + 2 * E(4)	-1	1	0	0	E(4)	-E(4)	-E(4)	E(4)
χ_{10}	27	3	0	0	3	3	-1	0	-1	-1	1	1	0	0
χ_{11}	28	-4	1	1	4 * E(4)	-4 * E(4)	0	-1	0	0	0	0	-E(4)	E(4)
χ_{12}	28	-4	1	1	-4 * E(4)	4 * E(4)	0	-1	0	0	0	0	E(4)	-E(4)
χ_{13}	32	0	-4	-1	0	0	0	0	$-E(7)^3 - E(7)^5 - E(7)^6$	$-E(7) - E(7)^2 - E(7)^4$	0	0	0	0
χ_{14}	32	0	-4	-1	0	0	0	0	$-E(7) - E(7)^2 - E(7)^4$	$-E(7)^3 - E(7)^5 - E(7)^6$	0	0	0	0

Trivial source character table of $G \cong PSU(3.3)$ at p = 2

Trivial source character table of $G \cong PSU(3,3)$ at $p=2$																			
$Normalisers N_i$				N_1		N_2		N_3	N_4	N_5	N_6			$_8 \mid N_9 \mid$	N_{10}	N	V ₁₁	N_{12} I	$\overline{N_{13}}$
$p-subgroups \ of \ G \ up \ to \ conjugacy \ in \ G$				P_1		P_2		P_3	P_4	P_5	P_6	P_7	P_8	P_9	P_{10}	F	P ₁₁	P_{12}	$\overline{P_{13}}$
Representatives $n_j \in N_i$	1 <i>a</i>	3a	3b	7a	7b	1 <i>a</i>	3a	1a 3b	1a	1a - 3a					1a 3a		3b	1 <i>a</i>	$\overline{1a}$
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 1 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6 + 1 \cdot \chi_7 + 1 \cdot \chi_8 + 1 \cdot \chi_9 + 1 \cdot \chi_{10} + 2 \cdot \chi_{11} + 2 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14}$	224	8	8	0	0	0	0	0 0	0	0 0		0	- 1		0 0	0 0	0	0	0
$0 \cdot \chi_1 + 1 \cdot \chi_2 + 1 \cdot \chi_3 + 1 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6 + 1 \cdot \chi_7 + 1 \cdot \chi_8 + 1 \cdot \chi_9 + 2 \cdot \chi_{10} + 2 \cdot \chi_{11} + 2 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14}$	256	4	7	-3	-3	0	0	0 0	0	0 0	0	0	$0 \mid 0$	1 ~ 1	-	0 0	0	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 1 \cdot \chi_6 + 1 \cdot \chi_7 + 1 \cdot \chi_8 + 1 \cdot \chi_9 + 1 \cdot \chi_{10} + 1 \cdot \chi_{11} + 1 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14}$	160	16	1	-1	-1	0	0	0 0	"	0 0	"	1 ~	$0 \mid 0$	1 ~ 1		0 0	0	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 1 \cdot \chi_{13} + 0 \cdot \chi_{14}$	32	-4	-1	$-E(7)^3 - E(7)^5 - E(7)^6$			- 1	0 0		0 0	0	0			0 0) 0	0	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 1 \cdot \chi_{14}$	32	-4	-1	$-E(7) - E(7)^2 - E(7)^4$	$-E(7)^{} 3 - E(7)^{} 5 - E(7)^{} 6$	0	0	0 0		0 0				0) 0	0	0	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 1 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6 + 1 \cdot \chi_7 + 1 \cdot \chi_8 + 1 \cdot \chi_9 + 1 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14}$	112	4	4	0	0	16	4	0 0		0 0		0	- 1	0	1	0	0	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6 + 2 \cdot \chi_7 + 1 \cdot \chi_8 + 1 \cdot \chi_9 + 2 \cdot \chi_{10} + 1 \cdot \chi_{11} + 1 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14}$	208	10	4	-2	-2	16	-2	0 0		0 0				0	0 0	0 0	0	0	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 2 \cdot \chi_4 + 2 \cdot \chi_5 + 0 \cdot \chi_6 + 3 \cdot \chi_7 + 2 \cdot \chi_8 + 2 \cdot \chi_9 + 3 \cdot \chi_{10} + 2 \cdot \chi_{11} + 2 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14}$	376	16	10	-2	-2	24		8 2		0 0			- 1	0	1	0	0	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6 + 2 \cdot \chi_7 + 1 \cdot \chi_8 + 1 \cdot \chi_9 + 2 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14}$	152	8	2	-2	-2	24	0	8 - 3	1 0	0 0	0	0	$0 \mid 0$	0	0 0) 0	0	0	0
$1 \cdot \chi_1 + 2 \cdot \chi_2 + 1 \cdot \chi_3 + 3 \cdot \chi_4 + 3 \cdot \chi_5 + 2 \cdot \chi_6 + 5 \cdot \chi_7 + 3 \cdot \chi_8 + 3 \cdot \chi_9 + 5 \cdot \chi_{10} + 4 \cdot \chi_{11} + 4 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14}$	680	32	14	-6	-6	24	0	0 0		0 0		0			0 0		0	0	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 1 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 1 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14}$	56	2	2	0	0	8	2	0 0	0	8 2	0	0	- 1		0 0	I	0	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 1 \cdot \chi_4 + 1 \cdot \chi_5 + 1 \cdot \chi_6 + 2 \cdot \chi_7 + 1 \cdot \chi_8 + 1 \cdot \chi_9 + 3 \cdot \chi_{10} + 2 \cdot \chi_{11} + 2 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14}$	312	15	6	-3	-3	8	-1	0 0	0	8 –	$1 \mid 0$	0	$0 \mid 0$	0	0 0) 0	0	0	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 1 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14}$	28	1	1	0	0	4	1	0 0	0	4 1	2	0	0 0	0	0 0	0	0	0	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 2 \cdot \chi_6 + 1 \cdot \chi_7 + 1 \cdot \chi_8 + 1 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14}$	92	20	-1	1	1	4	4	0 0	4	0 0	0	4	4 0	0	0 0	0	0	0	0
$0 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6 + 1 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 1 \cdot \chi_{10} + 1 \cdot \chi_{11} + 1 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14}$	124	-2	4	-2	-2	4	-2	0 0	4	0 0	0	4 -	$-2 \mid 0$	0	0 0) 0	0	0	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6 + 1 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14}$	36	0	3	1	1	12	0	8 2	4	0 0	0	0	0 4	0	0 0	0	0	0	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 2 \cdot \chi_4 + 2 \cdot \chi_5 + 2 \cdot \chi_6 + 5 \cdot \chi_7 + 2 \cdot \chi_8 + 2 \cdot \chi_9 + 5 \cdot \chi_{10} + 2 \cdot \chi_{11} + 2 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14}$	500	32	8	-4	-4	36	0	12 0	4	12 0	0	0	0 0	4	0 0	0 (0	0	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 1 \cdot \chi_6 + 2 \cdot \chi_7 + 1 \cdot \chi_8 + 1 \cdot \chi_9 + 1 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14}$	126	18	0	0	0	14	2	6 0	2	2 2	0	2	2 2	2	2 2	2 0	0	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6 + 1 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 1 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14}$	62	-1	2	-1	-1	14	-1	6 0	2	2 -	1 0	2 -	-1 2	2	2 -	1 0	0	0	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 1 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6 + 1 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 1 \cdot \chi_{10} + 1 \cdot \chi_{11} + 1 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14}$	126	0	6	0	0	6	0	2 2	2	6 0	0	0			0 0	2	2	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 1 \cdot \chi_6 + 1 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 1 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14}$	62	8	-1	-1	-1	6	0	2 - 1	$\lfloor $	6 0	0	0	$0 \mid 0$	2	0 0	$) \mid 2$	-1	0	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 1 \cdot \chi_5 + 1 \cdot \chi_6 + 2 \cdot \chi_7 + 1 \cdot \chi_8 + 1 \cdot \chi_9 + 3 \cdot \chi_{10} + 1 \cdot \chi_{11} + 1 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14}$	250	16	4	-2	-2	18	0	6 0	2	6 0	2	0	0 0	2	0 0	0 (0	2	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14}$	1	1	1	1	1	1	1	1 1	1	1 1	1	1	1 1	1	1 1	. 1	1	1	1

 $P_1 = Group([()]) \cong 1$

 $P_2 = Group([(1,6)(2,28)(3,24)(7,18)(8,21)(9,11)(10,14)(12,16)(13,23)(15,20)(22,26)(25,27)]) \cong C2$

 $P_4 = Group([(1, 14, 6, 10)(2, 12, 28, 16)(3, 7, 24, 18)(4, 19)(5, 17)(8, 27, 21, 25)(9, 26, 11, 22)(13, 15, 23, 20), (1, 6)(2, 28)(3, 24)(7, 18)(8, 21)(9, 11)(10, 14)(12, 16)(13, 23)(15, 20)(22, 26)(25, 27)]) \cong C4$

 $P_5 = Group([(1,6)(2,28)(3,24)(7,18)(8,21)(9,11)(10,14)(12,16)(13,23)(15,20)(22,26)(25,27), (1,14,6,10)(2,26,28,22)(3,18,24,7)(8,13,21,23)(9,12,11,16)(15,25,20,27)]) \cong C4$

 $P_6 = Group([(1,6)(2,28)(3,24)(7,18)(8,21)(9,11)(10,14)(12,16)(13,23)(15,20)(22,26)(25,27),(1,14,6,10)(2,26,28,22)(3,18,24,7)(8,13,21,23)(9,12,11,16)(15,25,20,27),(1,3,14,18,6,24,10,7)(2,27,26,15,28,25,22,20)(5,17)(8,11,13,16,21,9,23,12)]) \cong C8$

 $P_7 = Group([(1,14,6,10)(2,12,28,16)(3,7,24,18)(4,19)(5,17)(8,27,21,25)(9,26,11,22)(13,15,23,20),(1,6)(2,28)(3,24)(7,18)(8,21)(9,11)(10,14)(12,16)(13,23)(15,20)(22,26)(25,27),(1,24,6,3)(2,9,28,11)(4,17)(5,19)(7,10,18,14)(8,13,21,23)(12,22,16,26)(15,27,20,25)]) \cong Q8$

 $P_8 = Group([(1,3)(4,5)(6,24)(7,10)(8,27)(9,11)(12,16)(13,15)(14,18)(17,19)(20,23)(21,25), (1,14,6,10)(2,12,28,16)(3,7,24,18)(4,19)(5,17)(8,27,21,25)(9,26,11,22)(13,15,23,20), (1,6)(2,28)(3,24)(7,18)(8,21)(9,11)(10,14)(12,16)(13,23)(15,20)(22,26)(25,27)]) \cong D8$

 $P_9 = Group([(1,14,6,10)(2,12,28,16)(3,7,24,18)(4,19)(5,17)(8,27,21,25)(9,26,11,22)(13,15,23,20), (1,6)(2,28)(3,24)(7,18)(8,21)(9,11)(10,14)(12,16)(13,23)(15,20)(22,26)(25,27), (2,9)(3,24)(4,19)(5,17)(7,18)(8,20)(11,28)(12,26)(13,27)(15,21)(16,22)(23,25)]) \cong C4 \times C2$

 $P_{11} = Group([(1,14,6,10)(2,12,28,16)(3,7,24,18)(4,19)(5,17)(8,27,21,25)(9,26,11,22)(13,15,23,20), (1,6)(2,28)(3,24)(7,18)(8,21)(9,11)(10,14)(12,16)(13,23)(15,20)(22,26)(25,27), (2,20,9,8)(3,7,24,18)(4,17,19,5)(11,21,28,15)(12,21,28)(13,21)(13$

 $P_{12} = Group([(1,14,6,10)(2,12,28,16)(3,7,24,18)(4,19)(5,17)(8,27,21,25)(9,26,11,22)(13,15,23,20),(1,6)(2,28)(3,24)(7,18)(8,21)(9,11)(10,14)(12,16)(13,23)(15,20)(22,26)(25,27),(2,9)(3,24)(4,19)(5,17)(8,27,21,25)(9,26,11,22)(13,15,23,20),(1,6)(2,28)(3,24)(7,18)(8,21)(9,11)(10,14)(12,16)(13,23)(15,20)(22,26)(25,27),(2,9)(3,24)(4,19)(5,17)(8,27,21,25)(9,26,11,22)(13,15,23,20),(1,6)(2,28)(3,24)(7,18)(8,21)(9,11)(10,14)(12,16)(13,23)(15,20)(22,26)(25,27),(2,9)(3,24)(4,19)(5,17)(8,27,21,25)(9,26,11,22)(13,15,23,20),(1,6)(2,28)(3,24)(7,18)(8,21)(9,11)(10,14)(12,16)(13,23)(15,20)(22,26)(25,27),(2,9)(3,24)(4,19)(5,17)(8,27,21,25)(9,26,11,22)(13,15,23,20),(1,6)(2,28)(3,24)(7,18)(8,21)(9,11)(10,14)(12,16)(13,23)(15,20)(22,26)(25,27),(2,9)(3,24)(4,19)(5,17)(8,27,21,25)(9,26,11,22)(13,15,23,20),(1,6)(2,28)(3,24)(7,18)(8,21)(9,21)(12,28)(13$

 $P_{13} = Group([(2,20,9,8)(3,7,24,18)(4,17,19,5)(11,21,28,15)(12,13,26,27)(16,23,22,25),(1,3,14,18,6,24,10,7)(2,27,26,15,28,25,22,20)(5,17)(8,11,13,16,21,9,23,12)]) \cong (C4 \times C4) : C2$

 $N_1 = Group([(2,3)(4,6)(5,8)(7,11)(9,13)(10,15)(12,14)(16,20)(17,22)(18,23)(24,27)(25,28),(1,2,4,7,12,17)(3,5,9,14,19,22)(6,10,13,18,24,23)(8,11,16,21,26,28)(20,25,27)]) \cong PSU(3,3)$

 $N_3 = Group([(1,3)(4,5)(6,24)(7,10)(8,27)(9,11)(12,16)(13,23)(15,20)(22,26)(23,26),(2,9)(3,24)(4,19)(5,17)(7,18)(8,20)(11,28)(12,25)(13,16)(15,21)(17,24)(18,19)(22,27)(23,26),(2,9)(3,24)(4,19)(5,17)(7,18)(8,20)(11,28)(12,25)(13,16)(15,21)(17,24)(18,19)(22,27)(23,26),(2,9)(3,24)(4,19)(5,17)(7,18)(8,20)(11,28)(12,25)(13,16)(15,21)(17,24)(18,19)(22,27)(23,26),(2,9)(3,24)(4,19)(5,17)(7,18)(8,20)(11,28)(12,25)(13,16)(15,21)(17,24)(18,19)(22,27)(23,26),(2,9)(3,24)(4,19)(5,17)(7,18)(8,20)(11,28)(12,25)(13,16)(13,23)(15,20)(22,26)(23,25)(13,16)(15,21)(17,24)(18,19)(22,27)(23,26),(2,9)(3,24)(4,19)(5,17)(17,24)(18,19)(22,27)(23,26),(2,9)(3,24)(4,19)(5,17)(17,24)(18,19)(22,27)(23,26),(2,9)(3,24)(4,19)(13,23)(15,20)(13,24)($

 $N_5 = Group([(1,6)(2,28)(3,24)(7,18)(8,21)(9,11)(10,14)(12,16)(13,23)(15,20)(22,26)(25,27), (1,2,14,26,6,28,10,22)(3,9,18,12,24,11,7,16)(5,19)(8,27,13,15,21,25,23,20), (2,20,9,8)(3,7,24,18)(4,17,19,5)(11,21,28,15)(12,13,26,27)(16,23,22,25), (1,14,6,10)(2,26,28,22)(3,18,24,7)(8,13,21,23)(9,12,11,16)(15,25,20,27)]) \\ \cong SL(2,3) : C4 \\ SL(2,3) : C4 \\$

 $N_6 = Group([(1,6)(2,28)(3,24)(7,18)(8,21)(9,11)(10,14)(12,16)(13,23)(15,20)(22,26)(25,27),(2,9)(3,24)(4,19)(5,17)(7,18)(8,20)(11,28)(12,26)(13,27)(15,21)(16,22)(23,25),(1,14,6,10)(2,26,28,22)(3,18,24,7)(8,13,21,23)(9,12,11,16)(15,25,20,27),(1,3,14,18,6,24,10,7)(2,27,26,15,28,25,22,20)(5,17)(8,11,13,16,21,9,23,12)]) \cong C8:C2$

 $N_7 = Group([(1,14,6,10)(2,12,28,16)(3,7,24,18)(4,19)(5,17)(8,27,21,25)(9,26,11,22)(13,15,23,20),(1,6)(2,28)(3,24)(7,18)(8,21)(9,11)(10,14)(12,16)(13,23)(15,20)(22,26)(25,27),(1,15,12)(2,24,21)(3,8,28)(5,19,17)(6,20,16)(7,23,26)(9,10,27)(11,14,25)(13,22,18),(1,24,6,3)(2,9,28,11)(4,17)(5,19)(7,10,18,14)(8,13,21,23)(12,22,16,26)(15,27,20,25),(1,28,14,22,6,2,10,26)(15,27,20,25),(1,28,14,22,26,23),(1,28,14,22,26,23),(1,28,14,22,26,23),(1,28,14,22,26,23),(1,28,14,22,26,23),(1,28,14,22,26,23),(1,28,14,22,26,23),(1,28,14,22,26,23),(1,28,14,22,26,23),(1,28,14,22,26,23),(1,28,14,22,26,23),(1,28,14,22,26,23),(1,28,14,22,26,23),(1,28,14,22,26,23),(1,28,14,22,26,23),(1,28,14,22,26,23),(1,28,14,22,26,23),(1,28,14,22,26,23),(1,28,14,22,26,23),(1,28,14,$

 $N_9 = Group([(1,3)(4,5)(6,24)(7,10)(8,27)(9,11)(12,16)(13,23)(15,23)(21,25), (1,4,6,10)(2,28)(3,24)(7,18)(8,21)(9,11)(10,14)(12,25,26,23)(13,16,27,22), (2,9)(3,24)(4,19)(5,17)(8,27,21,25)(9,26,11,22)(13,15,23,20), (1,6)(2,28)(3,24)(7,18)(8,21)(9,11)(10,14)(12,25,26,23)(13,16,27,22), (2,9)(3,24)(4,19)(5,17)(8,27,21,25)(9,26,11,22)(13,15,23,20), (1,6)(2,28)(3,24)(7,18)(8,21)(9,11)(10,14)(12,25,26,23)(13,16,27,22), (2,9)(3,24)(4,19)(5,17)(6,21,23)(13,16,27,22), (2,9)(3,24)(4,19)(5,17)(6,21)(13,23)(13,16,27,22), (2,9)(3,24)(4,19)(5,17)(6,21)(13,23)(13,16,27,22), (2,9)(3,24)(4,19)(5,17)(6,22)(23,25)(13,27)(13,23)(13,16,27,22), (2,9)(3,24)(4,19)(5,17)(6,22)(23,25)(13,24$

 $N_{10} = Group([(1,3)(4,5)(6,24)(7,10)(8,27)(9,11)(12,16)(13,23)(15,20)(22,26)(25,27), (1,14,6,10)(2,28,16)(3,7,24,18)(4,19)(5,17)(6,24)(7,10)(8,27)(13,15,23,20), (1,14,6,10)(2,28,23)(21,25), (1,14,6,10)(2,28,23)(21,25)(13,16)(13,23)(15,20)(22,26)(25,27), (1,14,6,10)(2,28,23)(21,25)(13,16)(13,23)(15,20)(22,26)(25,27), (1,14,6,10)(2,28,23)(21,25)(13,16)(13,23)(15,20)(22,26)(25,27), (1,14,6,10)(2,28,23)(21,25)(13,16)(13,23)(15,20)(22,26)(25,27), (1,14,6,10)(2,28,23)(21,25)(13,16)(15,23)(15,23)(15,23)(15,23)(15,23)(15,23)(15,23)(15,23)(15,23)(15,23)(15,23)(15,23)(15,23)($

 $N_{12} = Group([(1,3)(4,5)(6,24)(7,10)(8,27)(9,11)(12,16)(13,15)(14,18)(17,19)(20,23)(21,25), (1,3,14,18,6,24,10,7)(2,28,26)(25,27), (2,9)(3,24)(4,19)(5,17)(7,18)(8,21)(9,11)(10,14)(12,16)(13,23)(15,20)(22,26)(25,27), (2,9)(3,24)(4,19)(5,17)(7,18)(8,21)(9,11)(10,14)(12,16)(13,23)(15,20)(22,26)(25,27), (2,9)(3,24)(4,19)(5,17)(7,18)(8,21)(9,11)(10,14)(12,16)(13,23)(15,20)(22,26)(25,27), (2,9)(3,24)(4,19)(5,17)(8,27,21,25)(9,26,11,22)(13,15,23,20), (1,3,14,18,6,24,10,7)(2,28,25)(21,25), (1,3,14,18,6,24,10,7)(2,28,25)(21,25), (1,3,14,18,6,24,10,7)(2,28,25)(21,25), (1,3,14,18,6,24,10,7)(2,28,25)(21,25), (1,3,14,18,6,24,10,7)(2,28,25)(21,25), (1,3,14,18,6,24,10,7)(2,28,25)(21,25), (1,3,14,18,6,24,10,7)(2,28,25)(21,25), (1,3,14,18,6,24,10,7)(2,28,25)(21,25), (1,3,14,18,6,24,10,7)(21,28,25)(21,25), (1,3,14,18,6,24,10,7)(21,28,25)(21,25), (1,3,14,18,6,24,10,7)(21,28,25)(21,25), (1,3,14,18,6,24,10,7)(21,28,25)($

 $N_{13} = Group([(1,3)(4,5)(6,24)(7,10)(8,27)(9,11)(12,16)(13,15)(14,18)(17,19)(20,23)(21,25),(2,20,9,8)(3,7,24,18)(4,17,19,5)(11,21,28,15)(12,13,26,27)(16,23,22,25),(1,3,14,18,6,24,10,7)(2,27,26,15,28,25,22,20)(5,17)(8,11,13,16,21,9,23,12)]) \cong (C4 \times C4) : C2$