2019-2020 学年 第二学期期末试卷 2020 年 05 月 31 日

姓名 成绩

一、单项选择题 (每小题 4 分, 满分 20 分)

1、设 X_1 , L, X_n 是来自正态总体 $N(\mu, \sigma^2)$ 的样本, 当k = ()时, $\hat{\mu}^2 = \overline{X}^2 + k\hat{\sigma}^2$

是 μ^2 的无偏估计, 其中 $\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \overline{X})^2$, $\overline{X} = \frac{1}{n} \sum_{i=1}^n X_i$ 。

- (A) $-\frac{1}{n-1}$, (B) $\frac{1}{n}$, (C) $-\frac{n-1}{n^2}$, (D) $-\frac{1}{n}$.

2、设 X_1, X_2, X_3 为总体X的一组样本,在下列估计量中,总体均值 μ 的最小方

差无偏估计是().

$$(A)\frac{2}{9}X_1 + \frac{2}{3}X_2 + \frac{1}{9}X_3$$

(A)
$$\frac{2}{9}X_1 + \frac{2}{3}X_2 + \frac{1}{9}X_3$$
 (B) $\frac{1}{5}X_1 + \frac{3}{10}X_2 + \frac{1}{2}X_3$

(C)
$$\frac{1}{3}X_1 + \frac{1}{3}X_2 + \frac{1}{3}X_3$$
 (D) $\frac{1}{3}X_1 + \frac{3}{4}X_2 - \frac{1}{12}X_3$

(D)
$$\frac{1}{3}X_1 + \frac{3}{4}X_2 - \frac{1}{12}X_3$$

3、总体 X的数学期望 μ 的置信度为 $1-\alpha$,置信上下限分别为 $T_2(X_1,X_2,L,X_n)$, $T_1(X_1,X_2,L,X_n)$ 的置信区间为 $[T_1,T_2]$ 的意义是()。

- (A) $P\{T_1 \le X \le T_2\} = 1 a$ (B) $P\{T_1 \le \overline{X} \mu \le T_2\} = 1 a$
- (C) $P\{T_1 \le \overline{X} \mu \le T_2\} = a$ (D) $P\{T_1 \le \mu \le T_2\} = 1 a$

4、设总体 $X \sim N(\mu, \sigma^2), X_1, X_2, L, X_n$ 为总体X的一个样本, \overline{X} 为样本均 值, S^2 为样本方差,则下列结论中成立的是()

(A)
$$2X_2 - X_1 \sim N(\mu, \sigma^2)$$

(A)
$$2X_2 - X_1 \sim N(\mu, \sigma^2)$$
 (B) $\frac{\overline{X} - \mu}{S} \sqrt{n-1} \sim t(n-1)$

(C)
$$\frac{n(\overline{X} - \mu)^2}{S^2} \sim F(1, n-1)$$
 (D) $\frac{S^2}{\sigma^2} \sim \chi^2(n-1)$

(D)
$$\frac{S^2}{\sigma^2} \sim \chi^2(n-1)$$

5、在运用贝叶斯估计进行参数估计时,统计推断应该建立在()的基础上。

A)先验分布

B)后验分布

C)样本 D) 先验分布和样本

二、填空题 (每小题 5 分, 共 25 分)

- 1. 设总体 $X \sim N(\mu, 3^2)$, X_1, X_2, L , X_9 为总体 X的一个样本, \overline{X} 为样本均值, S^2 为样本方差,则 $D(-3S^2+2)=$ ______.

		8 \	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
1	2	3	4	5	6	7
(1)	3	2	5	4	7	6
	(2)	1	6	7	4	5
		(3)	7	6	5	4
			(4)	1	2	3
				(5)	3	2
					(6)	1
						(7)

 $L_8(2^7)$ 交互作用表:

3. 在双因素考虑交互作用的方差分析中,总离差平方和 S_{τ} 的分解式为

$$S_T = S_A + S_B + S_{A \times B} + S_e$$

- 4. 设总体 X 服从[0, θ]上的均匀分布,则参数 θ 的矩估计是_____
- 5. 设 X_1, X_2, L , X_n 是来自正态总体N(0,1) 的简单样本,则常数 $\mathbf{c} =$ _____时统

计量
$$\frac{c\left(\sum_{i=1}^{m} X_{i}\right)^{2}}{\sum_{i=m+1}^{n} X_{i}^{2}} 服从 F - 分布 \quad (1 \leq m < n).$$

- 三、(10 分, 任选一个) 1. 证明: $(t_{1-\frac{a}{2}}(n))^2 = F_{1-a}(1,n)$
 - 2. 设 $x_1, x_2, L, x_n, x_{n+1}$ 是 来 自 正 态 总 体 $N(\mu, \sigma^2)$ 的 样 本, 令

$$\overline{X}_n = \frac{1}{n} \sum_{i=1}^n X_i, \qquad S_n^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X}_n)^2 \quad , \quad \text{iff} \quad \mathbb{H} \quad \mathbb{H} \quad \mathbb{H}$$

$$T = \sqrt{\frac{n}{n+1}} \frac{x_{n+1} - \overline{x}_n}{S_n} \sim t(n-1)$$

四、(15 分)设 x_1, x_2, L , x_m 是来自正态总体 $N(\mu, 1)$ 的简单样本, y_1, y_2, L , y_n 是来自正态总体 $N(2\mu, 1)$ 的简单样本, 两样本独立, 其中 μ 是未知参数。将两样本合并成样本容量为 m+n 样本 x_1, x_2, L , x_m , y_1, y_2, L , y_n . (1) 证明 $T_1 = \frac{1}{2}(\bar{x} + \frac{\bar{y}}{2})$ 是 μ 的无偏估计; (2) 求 μ 的一致最小方差无偏估计 T_2 ; (3) 问 T_2 是否为 μ 的有效估计?证明你的结论。

五、(10分,任选一个)

1. 设 x_1, x_2, L, x_n 是来自正态总体 N(μ , 1)的简单样本,求检验问题 H₀: μ =0,H₁: μ =1 的水平为 α (0< α <1) 的 MPT

2.设有某种产品,其长度服从正态分布,现从该种产品中随机抽取 25件,得样本均值 \bar{x} = 9.28 (cm),样本标准差 s = 0.36 (cm),问: 这批产品的长度能否认为是 9cm? (已知 $z_{0.95}$ = 1.645; $z_{0.975}$ = 1.96; $t_{0.975}(24)$ = 2.064, $t_{0.975}(25)$ = 2.060; $t_{0.95}(24)$ = 1.711; $t_{0.95}(25)$ = 1.708) 六、(10 分) 考虑某四因子二水平试验,除考察因子 A,B,C,D 外,还需考察交互作用 $A \times B$ 及 $A \times C$ 。今选用表 $L_8(2^7)$,表头设计及试验数据如表所示,所考虑的指标是越大越好。试用极差分析方法指出因子的主次顺序和较优工艺条件。

列号 试验号	A 1	<i>B</i> 2	$A \times B$	R C 4	A×C 5	C D 6	7	实验数据
1	1	1	1	1	1	1	1	350
2	1	1	1	2	2	2	2	325
3	1	2	2	1	1	2	2	425
4	1	2	2	2	2	1	1	425
5	2	1	2	1	2	1	2	200
6	2	1	2	2	1	2	1	250
7	2	2	1	1	2	2	1	275
8	2	2	1	2	1	1	2	375

北京航空航天大学数学二学位课程数理统计试卷

七、(10分) 随机向量 (x_1,x_2,x_3,x_4) 的协方差矩阵

且其特征根为 $\lambda_1 = 86.640$, $\lambda_2 = 7.094$, $\lambda_3 = 0.472$, $\lambda_4 = 0.257$.

- (1) 根据主成分85%的选取标准,应选取几个主成分?
- (2) 试求 (1) 中所选的主成分。