Question 1

Use the K_{sp} values in Table 17.2 of your textbook to find the molar solubility of the following ionic compounds:

$$x = 2.14.10^{-7} M$$

$$\circ \operatorname{Mg(OH)_{2}}_{2} \chi_{p} = \chi(2\chi)^{2} \chi = \sqrt[3]{\frac{\kappa_{p}}{4}} \chi = 1.12.10^{-3} M$$

$$\chi = 1.12 \cdot 10^{-9} M$$

$$k_{sp} = (3x)^3 (2x)^2 \quad k_{sp} = 27x^3.7x$$

$$k_{sp} = (3x)^3 (2x)^2$$
 $k_{sp} = 27x^3 \cdot 4x^2$ $\chi = 5\sqrt{\frac{3.40 \cdot 10^{-23}}{10.8}} = 1.26 \cdot 10^{-5} M$

Question 2

Use the given molar solubilities to find the K_{sp} for the following ionic compounds (don't use Table 17.2!)

•
$$CaSO_4: 7.02 \times 10^{-3} M$$
 $K_{5p} = \chi^{\lambda} = 4.93 \cdot 10^{-5}$

$$\circ \text{ PbI}_2: 1.35 \times 10^{-3} M \text{ Kg} = \chi (2x)^2 = 2/\chi^3 = 9.8 \text{ }\%. 10^{-9}$$

• Al(OH)₃:
$$3.61 \times 10^{-9} \text{ kp} = \chi(7\chi)^3 = 27\chi^2 = 7.59 \cdot 10^{-33}$$

Question 3

The smallest K_{SP} value in Table 17.2 is for SnS_2 , with $K_{sp}=1\times 10^{-70}$. This is a phenomenally small value. Calculate the volume of water required to dissolve just 10 formula units of SnS_2 .

$$k_{sp} = x (2x)^2 = 4x$$

$$\chi = \sqrt[3]{1.10^{-70}}$$

 $\mathrm{CdF_2}$ has a relatively high solubility ($K_{sp}=6.44\times10^{-3}$). Calculate the molar solubility of $\mathrm{CdF_2}$ in both pure water, and in a $0.5\,M$ solution of NaF

inater

Ksp = X (0.5+ax) Solve grandatively numerically small? X=0.0218 M

 $\chi = \sqrt[3]{\frac{6\cdot49\cdot10^{-3}}{24}} = 0.117M$ $6.44^{\circ}\cdot10^{-3} = \chi \cdot 0.5^{\circ}$ $\chi = 0.0258 = 0.328$