

CS 188-2 Discussion-Week 5

Ali Hatamizadeh 10/25/2019

• From the first principle, what represents a line?

$$m = \frac{(y - y_0)}{(x - x_0)}$$

$$(y-y_0)=m(x-x_0)$$

 Given the information of two points, we can use the equation of a line an solve for a point that is located anywhere on that line (for instance the middle point). This is called *interpolation*.

- Note that here we are dealing with two variables (e.g. x and y).
 - O What is we had another variable added ?
- In the case of three variables, we need to use bilinear interpolation.
- The general idea is to hold two variable constant, perform a linear interpolation and repeat the process for the other set of two variables.
- Bilinear interpolation is a method commonly used for resizing an image.
- The 3D equivalent of bilinear interpolation is called trilinear interpolation, that follows the same strategy but deals with 4 variables (one variable is a function of the other three).
- We focus on bilinear interpolation in this course.

• Suppose, you want to upsample a given image as shown below. What's the intuition behind this process?

• In bilinear interpolation, each pixel looks at its 4 nearest neighboring pixels and takes into account the contribution by a weighted average.

- Suppose we know the values at Q. If we were to interpolate for point P:
 - \circ First interpolate horizontally to get $\,R_1$ and $\,R_2$:

$$f(R_1) \approx \frac{x_2 - x}{x_2 - x_1} f(Q_{11}) + \frac{x - x_1}{x_2 - x_1} f(Q_{21})$$

$$f(R_2) \approx \frac{x_2 - x}{x_2 - x_1} f(Q_{12}) + \frac{x - x_1}{x_2 - x_1} f(Q_{22})$$

$$f(R_2) \approx \frac{x_2 - x}{x_2 - x_1} f(Q_{12}) + \frac{x - x_1}{x_2 - x_1} f(Q_{22})$$

Then interpolate vertically to get P:

$$f(P) \approx \frac{y_2 - y}{y_2 - y_1} f(R_1) + \frac{y - y_1}{y_2 - y_1} f(R_2).$$

• Assuming that $x_1 = 1, x_2 = 2, y_1 = 2, y_2 = 1, f(Q_{12}) = 100, f(Q_{22}) = 50, f(Q_{21}) = 70, f(Q_{11}) = 20$ use bilinear interpolation to find the coordinates of point p(x=1.5,y=1.5).

• Assuming that $x_1 = 1, x_2 = 2, y_1 = 2, y_2 = 1, f(Q_{12}) = 100, f(Q_{22}) = 50, f(Q_{21}) = 70, f(Q_{11}) = 20$ use bilinear interpolation to find the coordinates of point p(x=1.5,y=1.5).

$$f(R_2) = (1.5-1)(100) + (2-1.5)(50) = 50 + 25 = 75$$
 $f(R_1) = (1.5-1)(20) + (2-1.5)(70) = 10 + 35 = 45$

Convolution

What is a Convolution?

- What does a convolution result in?
 - A convolution operation adds the contribution of each element in the image to its local neighbors and weights it by a kernel.
- How is it represented mathematically?
 - For an original image of x and a kernel filter of h:

$$y[m,n] = x[m,n] * h[m,n] = \sum_{i=-a}^{a} \sum_{i=-b}^{b} x[i,j]. h[m-i,n-j]$$

Convolution by hand

 You need to flip the filter horizontally and then vertically before multiplying it by the overlapped data.

$$\begin{split} y[1,1] &= \sum_{j=-1}^{1} \sum_{i=-1}^{1} x[i,j] \cdot h[1-i,1-j] \\ &= x[0,0] \cdot h[1,1] + x[1,0] \cdot h[0,1] + x[2,0] \cdot h[-1,1] \\ &+ x[0,1] \cdot h[1,0] + x[1,1] \cdot h[0,0] + x[2,1] \cdot h[-1,0] \\ &+ x[0,2] \cdot h[1,-1] + x[1,2] \cdot h[0,-1] + x[2,2] \cdot h[-1,-1] \end{split}$$

Why flipping the filter?

Why flipping the filter is needed? take a closer look:

$$y(n_1,n_2) = \sum_k \sum_l x(k,l) h(n_1-k,n_2-l))$$

As a special case, just take $n_1 = 0, n_2 = 0$. Then essentially you are computing h(-k, -l)

Convolution by hand

• Let's do a convolution operation by hand. Given the following kernel and input images, convolve the image. Apply appropriate padding to match the sizes.

1	2	3
4	5	6
7	8	9

-1	-2	-1
0	0	0
1	2	1

Input

Kernel

 First we <u>flip</u> the kernel. Then we pad the image where needed and overlay the kernel on top of image and start convolving:

$$\begin{split} y[0,0] &= \sum_{j} \sum_{i} x[i,j] \cdot h[0-i,0-j] \\ &= x[-1,-1] \cdot h[1,1] + x[0,-1] \cdot h[0,1] + x[1,-1] \cdot h[-1,1] \\ &+ x[-1,0] \cdot h[1,0] - + x[0,0] \cdot h[0,0] - + x[1,0] \cdot h[-1,0] \\ &+ x[-1,1] \cdot h[1,-1] + x[0,1] \cdot h[0,-1] + x[1,1] \cdot h[-1,-1] \\ &= 0 \cdot 1 + 0 \cdot 2 + 0 \cdot 1 \\ &+ 0 \cdot 0 + 1 \cdot 0 + 2 \cdot 0 \\ &+ 0 \cdot (-1) + 4 \cdot (-2) + 5 \cdot (-1) \\ &= -13 \end{split}$$

• 2nd element:

$$\begin{split} y[1,0] &= \sum_{j} \sum_{i} x[i,j] \cdot h[1-i,0-j] \\ &= x[0,-1] \cdot h[1,1] + x[1,-1] \cdot h[0,1] + x[2,-1] \cdot h[-1,1] \\ &+ x[0,0] \cdot h[1,0] + x[1,0] \cdot h[0,0] + x[2,0] \cdot h[-1,0] \\ &+ x[0,1] \cdot h[1,-1] + x[1,1] \cdot h[0,-1] + x[2,1] \cdot h[-1,-1] \\ &= 0 \cdot 1 + 0 \cdot 2 + 0 \cdot 1 \\ &+ 1 \cdot 0 + 2 \cdot 0 + 3 \cdot 0 \\ &+ 4 \cdot (-1) + 5 \cdot (-2) + 6 \cdot (-1) \\ &= -20 \end{split}$$

3rd element:

1	2	1 2	3
0	0 4	0 5	6
-1	-2 7	-1 8	9

$$\begin{split} y[0,1] &= \sum_{j} \sum_{i} x[i,j] \cdot h[0-i,1-j] \\ &= x[-1,0] \cdot h[1,1] + x[0,0] \cdot h[0,1] + x[1,0] \cdot h[-1,1] \\ &+ x[-1,1] \cdot h[1,0] + x[0,1] \cdot h[0,0] + x[1,1] \cdot h[-1,0] \\ &+ x[-1,2] \cdot h[1,-1] + x[0,2] \cdot h[0,-1] + x[1,2] \cdot h[-1,-1] \\ &= 0 \cdot 1 + 1 \cdot 2 + 2 \cdot 1 \\ &+ 0 \cdot 0 + 4 \cdot 0 + 5 \cdot 0 \\ &+ 0 \cdot (-1) + 7 \cdot (-2) + 8 \cdot (-1) \\ &= -18 \end{split}$$

1	2 2	1 3
0 4	0 5	0 6
-1 7	-2 8	-1 9

$$\begin{split} y[1,1] &= \sum_{j} \sum_{i} x[i,j] \cdot h[1-i,1-j] \\ &= x[0,0] \cdot h[1,1] + x[1,0] \cdot h[0,1] + x[2,0] \cdot h[-1,1] \\ &+ x[0,1] \cdot h[1,0] + x[1,1] \cdot h[0,0] + x[2,1] \cdot h[-1,0] \\ &+ x[0,2] \cdot h[1,-1] + x[1,2] \cdot h[0,-1] + x[2,2] \cdot h[-1,-1] \\ &= 1 \cdot 1 + 2 \cdot 2 + 3 \cdot 1 \\ &+ 4 \cdot 0 + 5 \cdot 0 + 6 \cdot 0 \\ &+ 7 \cdot (-1) + 8 \cdot (-2) + 9 \cdot (-1) \\ &= -24 \end{split}$$

$$\begin{split} y[0,2] &= \sum_{j} \sum_{i} x[i,j] \cdot h[0-i,2-j] \\ &= x[-1,1] \cdot h[1,1] + x[0,1] \cdot h[0,1] + x[1,1] \cdot h[-1,1] \\ &+ x[-1,2] \cdot h[1,0] + x[0,2] \cdot h[0,0] + x[1,2] \cdot h[-1,0] \\ &+ x[-1,3] \cdot h[1,-1] + x[0,3] \cdot h[0,-1] + x[1,3] \cdot h[-1,-1] \\ &= 0 \cdot 1 + 4 \cdot 2 + 5 \cdot 1 \\ &+ 0 \cdot 0 + 7 \cdot 0 + 8 \cdot 0 \\ &+ 0 \cdot (-1) + 0 \cdot (-2) + 0 \cdot (-1) \\ &= 13 \end{split}$$

1	2	3
1 4	2 5	1 6
0 7	0 8	0 9
-1	-2	-1

$$\begin{split} y[1,2] &= \sum_{j} \sum_{i} x[i,j] \cdot h[1-i,2-j] \\ &= x[0,1] \cdot h[1,1] + x[1,1] \cdot h[0,1] + x[2,1] \cdot h[-1,1] \\ &+ x[0,2] \cdot h[1,0] + x[1,2] \cdot h[0,0] + x[2,2] \cdot h[-1,0] \\ &+ x[0,3] \cdot h[1,-1] + x[1,3] \cdot h[0,-1] + x[2,3] \cdot h[-1,-1] \\ &= 4 \cdot 1 + 5 \cdot 2 + 6 \cdot 1 \\ &+ 7 \cdot 0 + 8 \cdot 0 + 9 \cdot 0 \\ &+ 0 \cdot (-1) + 0 \cdot (-2) + 0 \cdot (-1) \\ &= 20 \end{split}$$

• 9th element:

1	2	3	
4	1 5	2 6	1
7	0 8	0 9	0
-50	-1	-2	-1

$$y[2,2] = \sum_{j} \sum_{i} x[i,j] \cdot h[2-i,2-j]$$

$$= x[1,1] \cdot h[1,1] + x[2,1] \cdot h[0,1] + x[3,1] \cdot h[-1,1] + x[1,2] \cdot h[1,0] + x[2,2] \cdot h[0,0] + x[3,2] \cdot h[-1,0] + x[1,3] \cdot h[1,-1] + x[2,3] \cdot h[0,-1] + x[3,3] \cdot h[-1,-1]$$

$$= 5 \cdot 1 + 6 \cdot 2 + 0 \cdot 1 + 8 \cdot 0 + 9 \cdot 0 + 0 \cdot 0 + 0 \cdot (-1) + 0 \cdot (-2) + 0 \cdot (-1)$$

$$= 17$$

Final Solution

1	2	3
4	5	6
7	8	9

Input

-1	-2	-1
0	0	0
1	2	1

Kernel

-13	-20	-17
-18	-24	-18
13	20	17

Output

Convolution of Colored Images

Colored images have 3 channels. How's the convolution performed?

Convolution of Colored Images

Can we have more than 1 filter?

Convolutions in Deep Learning

- This is the AlexNet architecture, winner of ImageNet 2012 Challenge.
- Can you identify the **number** of **convolutions** in the **first layer**?

Edge & Corner Detection

Some Intuition

Let's separate the image into low and high frequency spectrums:

 Low frequencies encode the global structures while high frequencies encode the details and sharp edges!

Edge Detection

- One idea is to take the first derivative of the image and find the areas in which we have the highest response (why ?)
- For example in the x-direction:

Edge Detection

• In particular, no changes occur along the edge direction, while the maximum change occurs in the direction perpendicular to the edge.

Corner Detection

 How about the corners? in this case we have the highest changes in all directions.

Harris Corner Detection

- We attempt to check if the condition of significant changes in all directions holds
- The loss function for Harris corner detection, for change of intensity in [u,v]
 can be summarized as:

Steps in Harris Corner Detection

- Step 1: Compute image gradients over small region (Error can be approximated by taking a Taylor Series Expansion for only small shifts)
- **Step 2**: Subtract mean from each image gradient (what does dc mean here?)

$$\left[\begin{array}{ccc} \sum\limits_{p \in P} I_x I_x & \sum\limits_{p \in P} I_x I_y \\ \sum\limits_{p \in P} I_y I_x & \sum\limits_{p \in P} I_y I_y \end{array}\right]$$

Steps in Harris Corner Detection

 Step 4: Compute eigenvectors and eigenvalues (the following is the quadratic form that approximates E(u,v))

Steps in Harris Corner Detection

• **Step 4**: Compute eigenvectors and eigenvalues boils down to:

1. Compute the determinant of (returns a polynomial)

 $M - \lambda I$

2. Find the roots of polynomial (returns eigenvalues)

$$\det(M - \lambda I) = 0$$

3. For each eigenvalue, solve (returns eigenvectors)

$$(M - \lambda I)\mathbf{e} = 0$$

Steps in Harris Corner Detection

- Step 4: Interpret eigenvalues:
 - \circ If $\lambda_2 >> \lambda_1$ then: horizontal edge(I_y should have higher variance)
 - \circ If $\lambda_1 >> \lambda_2$ then: vertical edge(I_x should have higher variance)

$$\begin{bmatrix} u & v \end{bmatrix} M \begin{bmatrix} u \\ v \end{bmatrix} = \text{const} \qquad M = R^{-1} \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix} R$$

Steps in Harris Corner Detection

- **Step 4**: Use a threshold on a response function of eignevalues to detect the corners :
 - \circ Just a simple min function $R = \min(\lambda_1, \lambda_2)$
 - Eigenvalues greater than one $R = \lambda_1 \lambda_2 \kappa (\lambda_1 + \lambda_2)^2$
 - Or other choices in the literature

Harris & Stephens (1988)
$$R = \det(M) - \kappa \mathrm{trace}^2(M)$$

Kanade & Tomasi (1994)

$$R = \min(\lambda_1, \lambda_2)$$

Nobel (1998)

$$R = \frac{\det(M)}{\operatorname{trace}(M) + \epsilon}$$

Which error function corresponds to only an edge line?

Which error function corresponds to only an edge line?

• Is Harris corner detection invariant to rotation?

- Is Harris corner detection invariant to rotation?
 - Yes! eigenvalues remain the same!

• Is Harris corner detection invariant to scale?

- Is Harris corner detection invariant to scale?
 - No! curvature can vary across scales and one corner might not be considered as a corner in different scales

Is Harris corner detection invariant to intensity changes?

- Is Harris corner detection invariant to intensity changes?
 - It's partially invariant to affine intensity changes.

intensity shift $I \rightarrow I + b$

Intensity scale: $I \rightarrow a I$

Thank you!