Linear Regression

Simple Linear Regression

Cost Function & Sum of squared residuals

Ordinary least squares method

Simple Linear Regression

Simple Linear Regression

Given four (x, y) data points: (1,6), (2,5), (3,7), (4,10)

Formula:

$$y = \beta_1 + \beta_2 x$$

Cost Function & Sum of squared residuals

Cost Function & Sum of squared residuals

$$CF(\beta_1, \beta_2) = \frac{1}{2m} \sum_{i=1}^{n} (y(x_i) - y_i)^2$$

$$S = \sum_{i=1}^{n} (y(x_i) - y_i)^2 = \sum_{i=1}^{n} r_i^2$$

Goal:

Find min(S)

$$S = \sum_{i=1}^{n} (y(x_i) - y_i)^2 = \sum_{i=1}^{n} r_i^2$$

$$egin{array}{lll} eta_1+1eta_2=&6 & eta_1+1eta_2+r_1=&6 \ eta_1+2eta_2=&5 & eta_1+2eta_2+r_2=&5 \ eta_1+3eta_2=&7 & eta_1+3eta_2+r_3=&7 \ eta_1+4eta_2=&10 & eta_1+4eta_2+r_4=&10 \end{array}$$

$$egin{array}{ll} r_1 &=& 6-(eta_1+1eta_2) \ r_2 &=& 5-(eta_1+2eta_2) \ r_3 &=& 7-(eta_1+3eta_2) \ r_4 &=& 10-(eta_1+4eta_2) \end{array}$$

$$S = \sum_{i=1}^{n} (y(x_i) - y_i)^2 = \sum_{i=1}^{n} r_i^2$$

$$S(\beta_1, \beta_2) = r_1^2 + r_2^2 + r_3^2 + r_4^2$$

$$= [6 - (\beta_1 + 1\beta_2)]^2 + [5 - (\beta_1 + 2\beta_2)]^2 + [7 - (\beta_1 + 3\beta_2)]^2 + [10 - (\beta_1 + 4\beta_2)]^2$$

$$= 4\beta_1^2 + 30\beta_2^2 + 20\beta_1\beta_2 - 56\beta_1 - 154\beta_2 + 210$$

$$0 = rac{\partial S}{\partial eta_1} = 8eta_1 + 20eta_2 - 56, \ 0 = rac{\partial S}{\partial eta_2} = 20eta_1 + 60eta_2 - 154.$$
 $\begin{cases} eta_1 = 3.5 \ eta_2 = 1.4 \end{cases}$

Supplement: Second-partials test

$$A = \frac{\partial^2}{\partial \beta_1^2} S(\beta_1, \beta_2) = \frac{\partial}{\partial \beta_1} \left(\frac{\partial}{\partial \beta_1} S(\beta_1, \beta_2) \right) = \frac{\partial}{\partial \beta_1} (8\beta_1 + 20\beta_2 - 56) = 8$$

$$B = \frac{\partial^2}{\partial \beta_1 \partial \beta_2} S(\beta_1, \beta_2) = \frac{\partial}{\partial \beta_1} \left(\frac{\partial}{\partial \beta_2} S(\beta_1, \beta_2) \right) = \frac{\partial}{\partial \beta_1} (20\beta_1 + 60\beta_2 + 154) = 20$$

$$C = \frac{\partial^2}{\partial \beta_2^2} S(\beta_1, \beta_2) = \frac{\partial}{\partial \beta_2} (20\beta_1 + 60\beta_2 + 154) = 20$$

$$D = AC - B^2 = 8 \times 20 - 20^2 = 160 - 400 = -240 < 0$$

Since D < 0, (β 1, β 2) is a saddle point.

In matrix notation:

$$\mathbf{y} = \mathbf{X}eta \qquad \mathbf{y} = egin{bmatrix} 6 \ 5 \ 7 \ 10 \end{bmatrix}, \quad \mathbf{X} = egin{bmatrix} 1 & 1 \ 1 & 2 \ 1 & 3 \ 1 & 4 \end{bmatrix}, \quad eta = egin{bmatrix} eta_1 \ eta_2 \end{bmatrix}$$

$$\mathbf{y} = \mathbf{X}eta \quad \Rightarrow \quad \mathbf{X}^ op \mathbf{y} = \mathbf{X}^ op \mathbf{X}eta \quad \Rightarrow \quad eta = \left(\mathbf{X}^ op \mathbf{X}
ight)^{-1}\mathbf{X}^ op \mathbf{y} = \left[egin{array}{c} 3.5 \ 1.4 \end{array}
ight]$$

R-square

$$R^2 \equiv 1 - rac{SS_{
m res}}{SS_{
m tot}}$$

$$SS_{ ext{res}} = \sum_i (y_i - f_i)^2 = \sum_i e_i^2 \qquad ar{y} = rac{1}{n} \sum_{i=1}^n y_i$$

$$SS_{ ext{tot}} = \sum_i (y_i - ar{y})^2$$

Linear Model for Probe: cg16867657


```
> summary(model_probe_cg16867657)
Call:
lm(formula = y \sim x)
Residuals:
                      Median
     Min
                1Q
                                             Max
-0.150152 -0.022994 -0.002232 0.021933 0.233710
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.3726630 0.0071218
                                  52.33
                                          <2e-16 ***
           0.0046411 0.0001084
                                  42.82
                                          <2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.04088 on 654 degrees of freedom
Multiple R-squared: 0.7371, Adjusted R-squared: 0.7367
F-statistic: 1833 on 1 and 654 DF, p-value: < 2.2e-16
```

```
3 library(limma)
 4 library(MEAL)
 6 # Assuming the probe IDs are listed in the 'probe_id' column of the dataset
   probe_ids <- unique(fData(gse40279_matrix)$ID)</pre>
 8
   # Create an empty list to store the regression results for each probe
   probe_regression_results <- list()</pre>
11
12 for (probe_id in probe_ids) {
13
      # Select data for the current probe
14
     probe_data <- subset(gse40279_matrix, fData(gse40279_matrix)$ID == probe_id)</pre>
15
16
     # Extract the age and beta value
17
     x <- probe_data$age
     y <- assayData(probe_data)$exprs[1, ]</pre>
18
19
20
     # Create and fit the linear regression model
21
     model \leftarrow lm(y \sim x)
22
23
      # Store the probe ID and regression model in the results list
24
     probe_regression_results[[probe_id]] <- model</pre>
25 - }
```

Name	Туре	Value
probe_regression_results	list [473034]	List of length 473034
D cg00000029	list [12] (S3: lm)	List of length 12
O cg00000108	list [12] (S3: lm)	List of length 12
O cg00000109	list [12] (S3: lm)	List of length 12
O cg00000165	list [12] (S3: lm)	List of length 12
O cg00000236	list [12] (S3: lm)	List of length 12
O cg00000289	list [12] (S3: lm)	List of length 12
O cg00000292	list [12] (S3: lm)	List of length 12
D cg00000321	list [12] (S3: lm)	List of length 12
© cg00000363	list [12] (S3: lm)	List of length 12
D cg00000622	list [12] (S3: lm)	List of length 12
© cg00000658	list [12] (S3: lm)	List of length 12
D cg00000714	list [12] (S3: lm)	List of length 12
D cg00000721	list [12] (S3: lm)	List of length 12
probe_regression_results	Ber (40) (co. lee)	1: f

□ LR.R ×			
← ⇒ / 和 ▼ Filter			
\$	probe_id [‡]	correlation_coefficient	
301867	cg16867657	0.8585363	
125882	cg06639320	0.7471026	
422694	cg24724428	0.7445793	
386708	cg22454769	0.7439943	
412467	cg24079702	0.7074021	
143282	cg07553761	0.7000595	
374187	cg21572722	0.6871400	
128662	cg06784991	0.6734072	
94605	cg04875128	0.6650027	
266488	cg14692377	0.6541842	
390948	cg22736354	0.6452676	
143171	cg07547549	0.6312118	
154122	cg08160331	0.6287802	
52539	cg02650266	0.6284389	
Showing 1 to 15 of 473,034 entries, 2 total columns			

References:

Montgomery, D. C., Peck, E. A., & Vining, G. G. (1993a). Introduction to linear regression analysis. Journal of the American Statistical Association, 88(421), 383. https://doi.org/10.2307/2290746

O, I., & Guest, P. G. (1961a). Numerical methods of curve fitting. Journal of the American Statistical Association. https://doi.org/10.2307/2282040

Supervised Machine Learning: regression and classification. (n.d.-a). Coursera. https://www.coursera.org/learn/machine-learning?specialization=machine-learning-introduction

What is a complete list of the usual assumptions for linear regression? (n.d.-a). Cross Validated. https://stats.stackexchange.com/questions/16381/what-is-a-complete-list-of-the-usual-assumptions-for-linear-regression

References:

Chwang. (2021a, December 25). Machine Learning — 給自己的機器學習筆記 — Linear Regression — 迴歸模型介紹與公式原理教學. Medium. https://reurl.cc/3xAgYj

iThome. (n.d.-a). [Day 8] 線性迴歸 (Linear Regression) - IT 邦幫忙::一起幫忙解決難題,拯救 IT 人的一天. iT 邦幫忙::一起幫忙解決難題,拯救 IT 人的一天. https://ithelp.ithome.com.tw/articles/10268453

造成上次兩群資料(gse30870&gse40279)所分析出來p-value < 1e-5 的探針們不太一致的可能原因:

- 1.gse40279 選取的Young-Old 不像gse30870選取的Young-Old那麼極端
- 2.不同樣本的差異
- 3.取樣本的過程中(保存/提取基因的過程)基因被污染