

Department of Computer Science and Engineering

Assignment

Course Code: STA227

Course Tittle: Statistics & Probability

Topic Name: Basic Concepts of Probability

Submitted To: Submitted By:

Taksina Kabir Sadia Afrin

Lecturer, Dept. of CSE ID: 221-15-5393

Daffodil International University. Section: RE A

Submission Date: 25 Jul, 2025

$$A = Female P(A) = \frac{165}{346}$$

$$B = did$$
 not graduate $P(B) = \frac{87}{346}$

-. And = P (And) =
$$\frac{32}{340}$$

$$=\frac{165+87-32}{346}$$

$$=\frac{226}{346}$$
 = 6.636

$$P = \frac{126}{346} = 0.3642$$

Conditional probability

$$=\frac{133}{165}$$

So,
P (English | French) =
$$\frac{P(English \cap French)}{P(French)}$$

= $\frac{20}{50} = 0.4$

• Jack hits =
$$\frac{5}{7}$$
 \rightarrow misses = $\frac{2}{7}$

• Andy hits =
$$\frac{G}{11}$$
 \rightarrow misses = $\frac{5}{11}$

$$P(both miss) = \frac{2}{7} \cdot \frac{5}{11} = \frac{10}{77}$$

P (at least one hits) =
$$1 - \frac{10}{77} = \frac{67}{77} = 0.8701$$

Russell wins both matches

Cricket = 0.7

Football = 0.9

$$P (Win both) = 0.7 \times 0.9$$

= 0.63

$$\Rightarrow$$
 P (not win both) = 1 - 0.63
= 0.37

marble problem

P(red dired) =
$$\frac{2}{9}$$
, p(yellow second) = $\frac{4}{9}$
=> $P = \frac{2}{9} \cdot \frac{4}{9} = \frac{91}{91}$

let,
$$P(x) = \frac{1}{5} \cdot P(y) = \frac{1}{7}$$

(i) Both die,

$$P = \frac{1}{3} \cdot \frac{1}{7} = \frac{1}{35}$$

(ii) At least one dies

P(at least one) = 1-P (both survive)
= 1-
$$\left(\frac{4}{5}, \frac{6}{7}\right) = 1 - \frac{24}{35}$$

= $\frac{11}{35}$

(iii) Neither dies

$$P = \frac{4}{5} \cdot \frac{6}{7}$$
$$= \frac{24}{35}$$