$t_{1}^{\#2}$	0	0	0	0	0	0	0
$\tau_{1^-}^{\#1}\alpha$	0	0	0	0	0	0	0
$\sigma_{1}^{#1}{}_{\alpha} \ \sigma_{1}^{#2}{}_{\alpha} \ t_{1}^{#1}{}_{\alpha} \ t_{1}^{#2}{}_{\alpha}$	0 0		0 0		0	0	0
$\sigma_{1^{-}\alpha}^{\#1}$	0 0		0	0	0	0	0
$\tau_{1}^{\#1}_{\alpha\beta}$	$-\frac{i\sqrt{2}}{k(1+k^2)(2r_3-r_4)}$	$\frac{i(k^2(6r_3-3r_4)+2t_2)}{k(1+k^2)^2(2r_3-r_4)t_2}$	$\frac{1}{r_3 - \frac{r_4}{2}} + \frac{3k^2}{t_2}$ $\frac{r_3 - \frac{r_4}{2}}{(1 + k^2)^2}$	0	0	0	0
$\sigma_{1}^{\#2}{}_{\alpha\beta}$	$-\frac{\sqrt{2}}{k^2(1+k^2)(2r_3-r_4)}$	$\frac{k^2 (6r_3 - 3r_4) + 2t_2}{(k+k^3)^2 (2r_3 - r_4)t_2}$	$-\frac{i(k^2(6r_3-3r_4)+2t_2)}{k(1+k^2)^2(2r_3-r_4)t_2}$	0	0	0	0
$\sigma_{1}^{\#1}{}_{\alpha\beta}$		$-\frac{\sqrt{2}}{k^2(1+k^2)(2r_3-r_4)}$	$\frac{i \sqrt{2}}{k (1 + k^2) (2 r_3 - r_4)}$	0	0	0	0
	$\sigma_{1}^{\#1} + \alpha^{\beta}$	$\sigma_1^{\#_2} + \alpha \beta$	$\tau_{1}^{\#1} + ^{\alpha\beta}$	$\sigma_{1^{\bar{-}}}^{\#1} +^{\alpha}$	$\sigma_{1}^{\#2} +^{lpha}$	$\tau_1^{\#_1} +^\alpha$	$\tau_1^{\#2} +^{\alpha}$

۱۳	agrangian density	
	Lagr	

Added source term: $\left| f^{\alpha\beta} \, \tau_{\alpha\beta} + \omega^{\alpha\beta\chi} \, \sigma_{\alpha\beta\chi} \right|$

$f_{1^-}^{\#2}$	0	0	0	0	0	0	0
$f_{1^{\bar{-}}}^{\#1}\alpha$	0	0	0	0	0	0	0
$\omega_{1}^{\#2}$	0	0	0	0	0	0	0
$\omega_{1^{-}}^{\#1}{}_{\alpha}$	0	0	0	0	0	0	0
$f_1^{\#1}$	$\left \frac{1}{3} \vec{l} \sqrt{2} k t_2 \right $	<u>i kt2</u> 3	$\frac{k^2 t_2}{3}$	0	0	0	0
$\omega_1^{\#2}{}_+\alpha\beta$	$\frac{\sqrt{2}\ t_2}{3}$	t 2 3	$-\frac{1}{3}ikt_2$	0	0	0	0
$\omega_1^{\#1}{}_+\alpha\beta$	$k^2 (2 r_3 - r_4) + \frac{2t_2}{3}$	$\frac{\sqrt{2} t_2}{3}$	$-\frac{1}{3}\bar{l}\sqrt{2}kt_2$	0	0	0	0
	$\omega_{1}^{\#1} + \alpha^{\beta}$ k	$\omega_1^{\#2} + ^{lphaeta}$	$f_{1}^{\#1} \dagger^{\alpha\beta}$	$\omega_{1^{-}}^{\#1} \dagger^{\alpha}$	$\omega_{1}^{\#2} \dagger^{\alpha}$	$f_{1^-}^{\#1} \dagger^\alpha$	$f_1^{\#2} +^{\alpha}$

	$\omega_0^{\sharp 1}$	$f_{0^{+}}^{#1}$	$f_{0}^{#2}$	$\omega_0^{\#1}$
$\omega_{0}^{\#1}$ †	$-2k^2(r_3-2r_4)$	0	0	0
$f_{0}^{#1}\dagger$	0	0	0	0
$f_{0}^{#2}$ †	0	0	0	0
$\omega_0^{\#1}$ †	0	0	0	$k^2 r_2 + t_2$

$\omega_{0}^{\#1}$			0		0	0	$k^2 r_2$	$t_1 + t_2$				$\sigma_{0}^{\#1}$	0	0	0	$\frac{1}{k^2 r_2 + t_2}$
	#	1	ا ــا	8	m	l m	l m	ا _ش	2	2	27	$\tau_0^{\#2}$	0	0	0	0
	ŀ			1.,	()	(' '	(' '	0	ц,	ц,		$\tau_{0}^{\#1}$	0	0	0	0
Source constraints) irreps	0 :	0 ::	0 ==	0 ==	0 ==	0 ==	$^3 + ik \sigma_1^{\#2\alpha\beta} = =$	0 == χ _θ	3 == 0	:#	$\sigma_{0}^{\#1}$	$\frac{1}{-2 k^2 r_3 + 4 k^2 r_4}$	0	0	0
Sourc	50(3)	$\tau_0^{\#2} ==$	$\tau_{0}^{\#1} ==$	$\tau_{1}^{\#2\alpha}$	$t_{1}^{\#1}{}^{\alpha}$	$\sigma_{1}^{\#2}$	$\sigma_{1}^{\#1}{}^{lpha}$	$\tau_1^{\#1}{}^{\alpha\beta}$	$\sigma_{2}^{#1}\alphaeta\chi$	$t_2^{\#1}\alpha\beta$	Total		$\sigma_{0}^{\#1}$ †	$\tau_0^{\#1}$ †	$\tau_{0}^{\#2}$ †	$\sigma_{0}^{\#1}\dagger$

	Massive particle					
? $J^P = 0^- $?	Pole residue:	$-\frac{1}{r_2} > 0$				
$J^{\perp} \equiv 0$	Polarisations:	1				
k^{μ}	Square mass:	$-\frac{t_2}{r_2} > 0$				
?	Spin:	0				
	Parity:	Odd				

Unitarity conditions $r_2 < 0 \&\& t_2 > 0$

(No massless particles)