

(11)Publication number:

09-037776

(43) Date of publication of application: 10.02.1997

(51)Int.Cl.

C12N 1/20 C12N 1/20

// C12P 1/06 (C12N 1/20

> C12R 1:01

(21)Application number: 07-160501

(71)Applicant: AGENCY OF IND SCIENCE &

TECHNOL

SHIMADZU CORP

(22)Date of filing:

27.06.1995

(72)Inventor: TOKIWA YUTAKA

TANAKA HIDEO

HARUDANIN PURANAMUDA

YAHATA MASAHITO

(54) BACTERIUM HYDROLYZING POLYLACTIC ACID RESIN AND BACTERIUM HYDROLYSIS OF POLYLACTIC ACID RESIN

(57)Abstract:

PURPOSE: To obtain the subject bacterium Amycolatopsis mediterranei (FERM P-14,921) having a polylactic acid resin hydrolyzing ability, useful for waste treatment of a polylactic acid resin useful as a material for medical treatment, a medicine, etc.

CONSTITUTION: This new bacterium Amycolatopsis mediterranei (FERM P-14,921) is an actinomyces belonging to the genus Amycolatopsi, having a polylactic acid resin hydrolyzing ability. In waste treatment of a polylactic acid resin having been used as a material for medical treatment and a medicine, an exhaust gas will not emit as incineration as an existing method, the treatment is carried out in a much shorter time than a reclamation treatment. By using the bacterium in composting facilities, a polylactic acid resin can be converted into a useful substance such as an organic acid, etc. The new bacterium is obtained by culturing a bacterium collected from water in soil, a river, a lake or a marsh at Tukuba City in Ibaragi Prefecture in a medium containing a polylactic acid resin, picking up a strain forming a transparent region in the periphery of a colony and carrying out isolation operation.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Dat of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

PATENT ABSTRACTS OF JAPAN

(11) Publication number: 09037776 A

(43) Date of publication of application: 10 . 02 . 97

(51) Int. CI

C12N 1/20 C12N 1/20 // C12P 1/06 (C12N 1/20

, C12R 1:01)

(21) Application number: 07160501

(22) Date of filing: 27 . 06 . 95

(71) Applicant:

AGENCY OF IND SCIENCE &

TECHNOL SHIMADZU CORP

(72) Inventor:

TOKIWA YUTAKA TANAKA HIDEO

HARUDANIN PURANAMUDA YAHATA MASAHITO

(54) BACTERIUM HYDROLYZING POLYLACTIC ACID **RESIN AND BACTERIUM HYDROLYSIS OF POLYLACTIC ACID RESIN**

(57) Abstract:

PURPOSE: To subject obtain the bacterium Amycolatopsis mediterranei (FERM P-14,921) having a polylactic acid resin hydrolyzing ability, useful for waste treatment of a polylactic acid resin useful as a material for medical treatment, a medicine, etc.

CONSTITUTION: This new bacterium Amycolatopsis mediterranei (FERM P-14,921) is an actinomyces belonging to the genus Amycolatopsi, having a polylactic acid resin hydrolyzing ability. In waste treatment of a

polylactic acid resin having been used as a material for medical treatment and a medicine, an exhaust gas will not emit as incineration as an existing method, the treatment is carried out in a much shorter time than a reclamation treatment. By using the bacterium in composting facilities, a polylactic acid resin can be converted into a useful substance such as an organic acid, etc. The new bacterium is obtained by culturing a bacterium collected from water in soil, a river, a lake or a marsh at Tukuba City in Ibaragi Prefecture in a medium containing a polylactic acid resin, picking up a strain forming a transparent region in the periphery of a colony and carrying out isolation operation.

COPYRIGHT: (C)1997,JPO

(19)日本国特許庁 (JP) (12) 公開特許公報(A)

(11)特許出願公開番号

特開平9-37776

(43)公開日 平成9年(1997)2月10日

(51) Int.Cl. ⁶		識別記号	庁内整理番号	FI						技術表示箇所
C12N	1/20	ZAB	7804-4B	C1:	2 N	1/20		ZĄI	3 A	
			7804-4B						F	
			7804-4B						D	
// C12P	1/06			C1:	2 P	1/06			Z	
(C12N	1/20									
			審査請求	未請求	精家	項の数4	OL	(全 7	頁)	最終頁に続く
(21)出願番号	•	特廣平7-160501		(71)	出願人	000001	144		<u> </u>	
						工業技	術院長			
(22)出願日		平成7年(1995)6	月27日			東京都	千代田	区度が	月1丁	目3番1号
-				(74)	上記:	l 名の復代	理人	弁理士	西岡	義明 (外 1
						名)				
	•			(71)	出願人	₹ 000001	993			
				1		株式会	社島津	製作所		
				Ì		京都府	京都市	中京区配	ゴノ京	桑原町1番地
				(74)	上記:	1名の代理	人 弁	理士 7	可岡 :	義明
				(72)	発明者	ら 常盤	豊			•
						茨城県	つくば	市東1	「目 1:	番3号 工業技
						術院生	命工学	工業技術	研究	所内
										最終頁に続く

(54) 【発明の名称】 ポリ乳酸樹脂を分解する微生物およびポリ乳酸樹脂の微生物分解方法

(57)【要約】

【目的】 ポリ乳酸樹脂およびそれらを含むプラスチッ クを直接生物学的に分解処理する微生物およびその方法 を提供することを目的とする。

【構成】 例えばAmycolatopsis mediterranei に属す る放線菌 (FERM P-14921) を用いて、ポリ 乳酸樹脂を分解する。

FERM P-14921無線選

FERM P-1492160

【特許請求の範囲】

【請求項1】 ポリ乳酸樹脂の分解能を有するAmycolat opsis mediterranei (FERM P-14921)。

【請求項2】 ポリ乳酸樹脂を放線菌で分解することを 特徴とするポリ乳酸樹脂の分解方法。

【請求項3】 請求項2の放線菌がAmycolatopsis 属に 属する菌である請求項2記載のポリ乳酸樹脂の分解方 法。

【請求項4】 請求項3の放線菌がAmycolatopsis mediterraneiである請求項3記載のポリ乳酸樹脂の分解方法。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、新規な生物学的処理法 によるポリ乳酸樹脂の分解方法および分解能を有する微 生物に関する。

[0002]

【従来の技術】最近、プラスチック廃棄物の処理が問題になっている。処理方法としては焼却や埋め立てが主であるが、焼却は地球温暖化の促進、埋め立ては埋立地の減少等の問題を抱え、生物学的分解処理法が注目れている。また、ポリ乳酸樹脂は次世代のプラスチックとして種々の用途開発が進められており、近い将来、現在使用されているプラスチック同様廃棄物問題がクローズアップされることが十分に予想される。

【0003】ポリ乳酸樹脂は水系の中で加水分解する高分子であり、現在医療や医薬用材料として応用されているが、澱粉等の再生可能な資源から乳酸醗酵を通して合成できることから、環境分解が困難である汎用プラスチックに代わる生分解性プラスチックの素材として注目されている。ポリ乳酸樹脂はその構成モノマーの種類によりポリLー乳酸、ポリDLー乳酸あるいは他の高分子との共重合体が存在している。

[0004]

【発明が解決しようとする課題】ポリ乳酸樹脂は酵素に

よって加水分解が促進されていると知られている。しかしながら、これまでポリ乳酸樹脂およびその廃棄物を直接生物学的に分解処理する技術は皆無であった。

【0005】そこで、本発明は、ポリ乳酸樹脂およびそれらを含むプラスチックを直接生物学的に分解処理する 微生物およびその方法を提供することを目的とする。

[0006]

【課題を解決するための手段および作用】本発明者らは、前記課題を解決するべく鋭意研究を重ねた結果、微生物学的手段により優れたポリ乳酸分解活性を有する放線菌を見い出し、本研究を完成するに至った。

【0007】即ち、本発明によれば、ポリ乳酸を放線菌で分解することを特徴とするポリ乳酸樹脂の分解方法が提供され、また無機塩類を含む培地にポリ乳酸樹脂とAmycolatopsis 属に属する放線菌を添加し、分解することを特徴とするポリ乳酸樹脂の分解方法が提供され、特に前記Amycolatopsis mediterranei に属する放線菌(FERM P-14921)であることを特徴とする前記ポリ乳酸樹脂の分解方法が提供される。更に培養条件がpH4.0-10.0、温度10~47°であることを特徴とする前記ポリ乳酸樹脂の分解方法が提供される。

【0008】なお、本発明でいうポリ乳酸樹脂とは、乳酸を主要成分とする重合体をさし、ポリレー乳酸やポリロー乳酸等のポリ乳酸ホモポリマー、ポリレ/ロー乳酸共重合体、及びこれらに他のポリマーを共重合させたポリ乳酸共重合体、そして上記ポリマー間、および他の成分ポリマーとのブレンド体を含み、重合体中の乳酸成分の重量比率が10%以上のものをいう。

【0009】本発明はポリ乳酸樹脂の分解を、その分解 能を有する微生物に行わせることで、好気条件下でのポ リ乳酸樹脂の分解処理を可能にするものである。

【0010】ポリ乳酸分解活性を有する微生物は放線菌 である。放線菌としては表1に示す菌が挙げられる。

[0011]

【表1】

放線菌の類、属名

ACT INOBACTER IA	ACTINOPLANETES	MICROPOLYSPORAS
Agromyces	Actinopianes	Actinopolyspora
Aureobacterium	Ampullariella	Amycoleta
Clavibacter	Catellatospora	Amyco latopsis
Curtobacterium	Dactylosporangium	Kibde losporangium
Microbacterium	Micromonospora	Pseudonocardia
Arthrobacter	Pilimelia	Saccharomonospora
Micrococcus	rijimeija	Saccharopolyspora
Renibacterium	MADURONYCETES	Faenia
Rothia	Actinomadura pusilla	racnia
	Microbispora	THERMOMONOSPORAS
Stomatoccus		
Cellulomonas	Planobispola	Actinomadura madurae
Oerskov i a	Planomonospora	Actinosynnema
Promicromonospora	Streptosporangium	Microtetraspora viridis
Arcanobacterium		Nocardiopsis
Act inomyces	NOCARDIOFORMS	Saccharothrix
Arachnia	Caseobacter	Streptoalloteichus
Pimelobacter	Corynebacterium	Thermomonospora
Mycobacterium	Mycobacterium	
Dermatophilus	Rhodococcus	
Brevibacterium	Nocard ia	OTHER GENERA
		Glycomyces
STREPTOMYCETES	MULTILOCULAR SPORANGIA	Kitasatosporia
Intrasporangium	Frankia	Spirillospora
Kineosporia	Geodermatophilus	Thermoactinoyces
Sporichthya	•	-
Streptomyces		NOCARDIOIDES
Streptoverticillium		Nocardioides

その中で特にAmycolatopsis mediterranei に属する放 線菌が好ましく、その分離獲得は以下に示す方法により 行った。

【0012】本発明者らは茨城県つくば市の土壌、河川 および湖沼水を採用し、以下に詳述する操作を経てポリ 乳酸樹脂を分解する好気性微生物を分離獲得した。

【0013】以下の表2に示す基本培地1リットルに1000mgのポリ乳酸樹脂を乳化させ、1.5%の寒天を含む寒天平板培地を調製した。各サンプル1gを5m

【0014】 【表2】

基本培地組成

Na_MoO4 • 2H ₂ O	0.5 mg	Na2WO4 + 2H2O	0.5 mg
MnSO ₄	0.5 mg	FeSO4 • 7H2O	10 ng
NaCl	10 mg	CaCl ₂ • 2H ₂ O	20 mg
(NH ₄) ₂ SO ₄	1000 mg	MgSO4 • 7H2O	200 mg
KzHPO.	1600 mg	KH2PO4	200 mg
- ,	界面活性剤	100 mg	
	酵母エキス	100 mg	
	蒸留水11中	pH 7.0	

サンプル43個の中から培地上に生育したコロニーの周囲に透明域を確認したサンプルは一サンプルのみであった。そのコロニーを白金耳で釣り上げ、同様な培地を用い純粋分離し、ポリ乳酸樹脂分解菌(FERM P-14921)を得ることができた。

【0015】分離菌株をYM寒天培地に接種しコロニーを形成させ、得られた菌体の性状について顕微鏡で観察し、また生化学的性状を調べた。結果は以下の表3に示す。

【表3】

翰姝名	Amycolatopsis mediterranei (FERM	P-14921;
コロニーの形態	球状、クリーム、直径1mm	
グラム染色	+	
胞子		
移動性	_	
永薗辰	_	
生育温度		
37℃	+	
41℃		
45℃	_	
細胞壁組成		
メソDAP	+	
ミコール酸	_	
カタラーゼ	+	
オキシダーゼ	ŧ	
OFテスト	変化なし	
グルコース	+	•
マルトース	+	
セロビオース	+	
ラフィノース	+	
ラムノース	_	
フルクトース	. ·	
キシロース	+	
白糖	+	
イヌリン	+ .	
アドニトール	_	
イノシトール		
マンニトール	·1 ·	
アジ化ナトリウム0.01%		
塩化ナトリウム 7%	_	
フェノール 0.1%	_	
リファンピシン	+	
ネオマイシン	+	
アルブチン	-	
キサンチン アラントイン	_	
172512	_	

表3に示す結果をBergey's Manual of Determinative B acteriology 9版等に参照したところ、上記の菌株はAm ycolatopsis mediterranei属の菌と性状が類似していることから、FERM P-14921はAmycolatopsis mediterraneiであることが示された。

【0016】本発明で使用される菌株はAmycolatopsis mediterranei属とし、ポリ乳酸樹脂を処理するために本菌株 (FERMP-14921) を含んだ微生物群を用いることが望ましい。

【0017】本菌株又は本菌株を含む微生物群は必要に

応じて、凍結乾燥した粉末、その粉末と各種ビタミンや ミネラルと必要な栄養源を配合した後打錠した錠剤、先 に記した基本培地中で生育培養させた培養液、の形でポ リ乳酸樹脂の処理に提供される。

【0018】本発明における培養において使用される基本培地は、窒素源として例えば、硫酸アンモニウム、リン酸アンモニウム、炭酸アンモニウム等が使用され、その他無機塩としてリン酸ーカリウム、リン酸ニカリウム、硫酸マグネシウム、塩化ナトリウム、硫酸第一鉄、モリブデン酸ナトリウム、タングステン酸ナトリウムおよび硫酸マンガン等の通常利用される培養源が使用され、そのpHは4.0~10.0であり好ましく5.0~8.0である。また、培養温度は10~47℃であり好ましくは10~40℃である。

【0019】本発明のポリ乳酸の生物学的分解処理は、培養槽に先に示した基本培地、処理されるべきポリ乳酸樹脂、上記菌株および菌群を配合した粉末、錠剤、培養液を添加することで行われることが望ましいが、上記菌株を活性汚泥およびコンポストに組み込んでも良い。なお、基本培地に対するポリ乳酸樹脂の投入量は、0.01重量%~10重量%が望ましい。添加する微生物量は極少量であっても構わないが、投入量が処理時間に影響を及ぼさないためにポリ乳酸樹脂に対して0.01重量%以上が好ましい。

[0020]

【実施例】表2の基本培地100mlに対しポリ乳酸樹

脂を加工したフィルムA(Mw:2.72×10 5)およびフィルムB(Mw:1.89×10 5)を炭素源として添加したものを各々用意し、FERM P-14921菌株を接種、30 $^\circ$ で、フィルムA添加培地は14日、フィルムB添加培地は30日間、180rpm回転型振とう機で培養した。添加フィルムの分解に伴う水溶性の全有機炭素量(TOC)を測定した。その結果は表4に示したように、菌株を植菌しないコントロールに比べ、TOCが約3 $^\circ$ 6倍増加した。なお、分解後のフィルムを走査型電子顕微鏡JSM $^\circ$ T220型(日本電子株式会社製)で倍率5000倍、加速電圧15kVで観察した結果、図1、2に示す如く表面が粗くなったことが確認された。

【0021】以上のことから、分離菌株は高分子量のポリ乳酸樹脂フィルムを分解できることが明らかになった。なお、図1はFERM P-14921によるフィルムAの分解を示すもので、培養14日後のフィルムの表面構造を表している。図1(a)はFERM P-14921 植菌である。また、図2はFERM P-14921によるフィルムBの分解を示すもので、培養30日後のフィルムの表面構造を表している。図2(a)はFERM P-14921 植菌である。図2(b)はFERM P-14921 植菌である。図2(b)はFERM P-14921 植菌である。

[0022]

【表4】

FERM P-14921菌によるポリ乳酸樹脂の分解に伴うTOCの変

,	ТОС (ррт	
フィルム	培養前	培養後
フィルムを添加しない培養	39. 7	10. 9
フィルムA		
• 延伸フィルム		
FERM P-14921 無植菌	41.5	45. 9
FERM P-14921 植蜜	40.5	134. 4
・延伸しないフィルム		
FERM P 14921 無植菌	42. 8	41. 4
FER□ P-14921 植菌	41. 5	219. 7
フィルムB		•
FERU P-14921 無植菌	43. 0	57. 6
FERM P-14921 植菌	41.6	307. 6

[0023]

リ乳酸樹脂廃棄物の処理方法であり、これまで既存の焼 却のように排ガスも生じず、埋立処理に比べて極めて省

時間な技術であり、廃棄物処理上で極めて価値の高い方法である。また、コンポスト化施設で本発明の処理方法を用いることにより、ポリ乳酸樹脂を有機酸等の有用物質や堆肥に転換することも可能である。

【図面の簡単な説明】

【図1】

FERM P-14921無條

(4)

FERM P-14921 植岡

(6)

【図1】FERM P-14921によるフィルムAの 分解を示すもので、培養14日後のフィルムの表面構造 【図2】FERM P-14921によるフィルムBの 分解を示すもので、培養30日後のフィルムの表面構造

【図2】

FERM P-14921触例3

(4)

FERM P-149216開

(b)

フロントページの続き

(51) Int: Cl. 6

識別記号 庁内整理番号

FΙ

技術表示箇所

(72)発明者 田中 秀夫

C 1 2 R 1:01)

茨城県つくば市天王台1丁目1番1号 筑 波大学応用生物化学系内 (72)発明者 ハルダニン プラナムダ

茨城県つくば市天王台1丁目1番1号 筑 波大学応用生物化学系内

(72)発明者 矢幡 雅人

京都府京都市中京区西ノ京桑原町1番地 株式会社島津製作所三条工場内