

Синаптическая пластичность: обучение, память

Николай Ильич Базенков, к.т.н.

Институт проблем управления им. В.А. Трапезникова РАН

Где хранится опыт?

Содержание

- 1. Хеббовское обучение
- 2. STDP
- 3. Распознавание образов

Синаптическая пластичность

«Правило Хебба»

Когда аксон клетки А способен возбудить клетку В и постоянно принимать участие в ее активности, в одной или обеих клетках запускается метаболический процесс, усиливающий эффективность возбуждения клетки В клеткой А

Fire together, wire together

Дональд Хебб (1904-1985)

https://neuronaldynamics.epfl.ch/online/Ch19.html

Долговременная потенциация

Long-term potentiation (LTP) — долговременное усиление связи между нейронами

спайки

Долговременная потенциация

Свойства синаптической пластичности

- 1. Локальность
- 2. Сочетание активности двух нейронов
- 3. Без учителя нейроны на знают про смысл своей активности

Хеббовское обучение

Совпадающая активность (корреляция)

STDP

• Временная последовательность (каузальность)

Анти-хеббовское обучение

• Ослабление после совместной активности

Математическая модель

Будем рассматривать частоту спайков

- Пресинаптического нейрона ј v_ј
- Постсинаптического нейрона і v_i w_{ij} синаптический вес

$$rac{\mathrm{d}}{\mathrm{d}} t w_{ij} = F\left(w_{ij};
u_i,
u_j
ight)$$

Gerstner, W., & Kistler, W. M. (2002). Mathematical formulations of Hebbian learning. *Biological cybernetics*, *87*(5), 404-415.

Общий вид правил обучения

Разложим $F(w_{ij}; v_i, v_j)$ в ряд Тейлора до 2-го члена:

$$egin{aligned} rac{\mathrm{d}}{\mathrm{d}} t w_{ij} &= c_0 \left(w_{ij}
ight) + c_1^{\mathrm{\;\;pre\;\;}} \left(w_{ij}
ight)
u_j + c_1^{\mathrm{\;\;post\;\;}} \left(w_{ij}
ight)
u_i + c_2^{\mathrm{\;\;pre\;\;}} \left(w_{ij}
ight)
u_j^2 \ &+ c_2^{\mathrm{\;\;post\;\;}} \left(w_{ij}
ight)
u_i^2 + c_1^{\mathrm{\;\;corr\;\;}} \left(w_{ij}
ight)
u_i
u_j + \mathscr{O}\left(
u^3
ight) \,. \end{aligned}$$

Комбинируя разные члены разложения, можно получать разные правила обучения

Коэффициенты могут зависеть от w_{ii}

Линейное правило

$$rac{ ext{d}}{ ext{d}}\, t w_{ij} = c_{11}^{ ext{ corr}} \;\;
u_i \,
u_j \, .$$

 $c^{corr}_{11} > 0$ — Хеббовское обучение $c^{corr}_{11} < 0$ — Антихеббовское обучение

Хотя Хебб подразумевал причинно-следственную связь между нейронами, сейчас хеббовским обычно называют усиление связи, если есть корреляция между активностью нейронов

Линейное правило

Что будет происходить в сети с линейным правилом? Частота $\mathbf{v}_{i}(\mathbf{t})$:

$$v_i(t) = \sum_k w_{ik} v_k(t)$$

Стабилизация весов

Насыщение — есть максимальный вес **w**^{max}:

"Hard" bound:

$$\begin{array}{ll} {c_{11}}^{corr} = const, & 0 {<} w_{ij} {<} \ w^{max} \\ {c_{11}}^{corr} {=} \ 0 \ , & w_{ij} {=} w^{max} \end{array} \label{eq:correction}$$

"Soft" bound

$$c_{11}^{\mathrm{corr}} \left(w_{ij}
ight) = \gamma_2 \left(w^{\mathrm{max}} - w_{ij}
ight)^{eta}$$

$$\gamma_2$$
, β >0

Забывание

$$rac{{
m d}}{{
m d}} \, t w_{ij} = \gamma_2 \, \left(1 - w_{ij}
ight) \,
u_i \,
u_j - \gamma_0 \, w_{ij}$$

При отсутствии возбуждения веса возвращаются к 0

Хеббовское обучение

- 1. Локальные правила. Изменение весов связано только с ближайшими нейронами
- **2. Кооперация.** Для изменения нужна совместная активность нейронов
- **3. Подавление.** Веса должны убывать при отсутствии активности
- **4. Ограниченность.** Веса не должны расти неограниченно
- **5. Конкуренция.** Усиление одних весов должно сопровождаться ослаблением других
- **6. Долговременная устойчивость.** В процессе обучения новая информация не должна стирать прошлый опыт

Пластичность, зависимая от времени спайков

Spike Timing Dependent Plasticity (STDP) — изменение веса зависит от разницы времени появления пре- и пост-синаптических спайков

STDP

Математическая модель STDP

- 1. Вес растет, если $\mathbf{t}_{pre} < \mathbf{t}_{post}$
- 2. Вес уменьшается, если $\mathbf{t}_{pre} > \mathbf{t}_{post}$
- 3. Изменение веса максимально, если

$$t_{\text{pre}} = t_{\text{post}} - \varepsilon,$$
 $\varepsilon \rightarrow 0$

LTP - Long-term potentiation

$$\Delta w_{+} \!=\! A_{+}\left(w
ight) \cdot \exp(-\left|\Delta t
ight|/ au_{+})$$
 at t_{post} for $t_{\mathrm{pre}} < t_{\mathrm{post}}$

LTD – Long-term depression

$$\Delta w_- = A_-\left(w
ight) \cdot \exp(-\left|\Delta t
ight|/ au_-)$$
 at $t_{
m pre}$ for $t_{
m pre} > t_{
m post}$ $|\Delta t| = |t_{
m post} - t_{
m pre}|$

Серия спайков

Добавим две новые переменные для каждого синапса ј:

 $\mathbf{x_i}$ – суммирует пресинаптические спайки $\mathbf{t_i^f}$

 $\mathbf{y_i}$ – суммирует постсинаптические спайки $\mathbf{t_i^f}$

$$rac{ ext{d} \quad x_j}{ ext{d} \quad t} = -rac{x_j}{ au_+} + \sum_f \delta\left(t - t_j^f
ight)$$

$$rac{ ext{d} \quad y_i}{ ext{d} \quad t} = -rac{y_i}{ au_-} + \sum_f \delta\left(t - t_i^f
ight)$$

$$rac{\mathrm{d}}{\mathrm{d}} t w_{ij}\left(t
ight) = A_{-}\left(w_{ij}
ight) y_{i}\left(t
ight) \sum_{f} \delta\left(t - t_{j}^{f}
ight) + A_{+}\left(w_{ij}
ight) x_{j}\left(t
ight) \sum_{f} \delta\left(t - t_{i}^{f}
ight)$$

Окно обучения

Распознавание образов

Peter Udo Diehl

PhD, ETH Zürich

Verified email at audatic.ai - <u>Homepage</u>

Deep Learning Artificial Intelligence Computational Neuroscience Audiology

Neuromorphic Computing

TITLE	CITED BY	YEAR
Unsupervised Learning of Digit Recognition Using Spike-Timing-Dependent Plasticity PU Diehl, M Cook Frontiers in Computational Neuroscience	710	2015
Fast-Classifying, High-Accuracy Spiking Deep Networks Through Weight and Threshold Balancing PU Diehl, D Neil, J Binas, M Cook, SC Liu, M Pfeiffer IEEE International Joint Conference on Neural Networks (IJCNN)	541	2015
Conversion of Artificial Recurrent Neural Networks to Spiking Neural Networks for Low PU Diehl, G Zarrella, A Cassidy, BU Pedroni, E Neftci arXiv	*	2016
Conversion of Artificial Recurrent Neural Networks to Spiking Neural Networks for Low-power Neuromorphic Hardware PU Diehl, G Zarrella, A Cassidy, BU Pedroni, E Neftci arXiv	121	2016

Распознавание образов в сети с STDP

Diehl, P. U., & Cook, M. (2015). Unsupervised learning of digit recognition using spike-timing-dependent plasticity. *Frontiers in computational neuroscience*, *9*, 99. https://github.com/peter-u-diehl/stdp-mnist

Архитектура сети

Входной слой

28 x 28 нейронов 1 нейрон = 1 пиксель Преобразует яркость в спайки

Слой обработки

2n = 400*2 нейронов 1 возбуждающий связан с 1 тормозящим

Модель нейрона

$$\tau \frac{dV}{dt} = (E_{rest} - V) + g_e(E_{exc} - V) + g_i(E_{inh} - V)$$

V – мембранный потенциал

Erest – потенциал покоя

g_e, g_i – проводимости возбуждающих и тормозящих синапсов

E_{exc}, E_{inh} – равновесный потенциал синапсов

 τ – постоянная времени, τ_{exc} = 100 мс, τ_{inh} =10-20 мс

 v_{thres} , v_{reset} — порог и перезагрузка после спайка

Рефрактерный период 1-10 мс

Адаптация порога для возбуждающих нейронов:

$$V_{thres} += \theta$$

Изменение весов

Динамика проводимости

$$\tau_{g_e} \frac{dg_e}{dt} = -g_e$$

После поступления спайка на вход проводимость увеличивается:

$$g_e = g_e + w$$

w возрастает с поступлением новых спайков:

$$\Delta w = \eta (x_{pre} - x_{tar})(w_{max} - w)^{\mu}$$

 x_{pre} – presynaptic trace, суммирует пресинаптические спайки

x_{tar} – обеспечивает убывание синаптических весов

Процедура обучения

1. Предъявление образа - 350 мс

Если на выходе (Е) < 5 спайков, то макс. частота += 32 Гц и к шагу 1

3. Симуляция динамики сети = обучение

4. Пауза 150 мс

Все переменные, кроме порогов v_{thres} , возвращаются к равновесным значениям

5. Завершение

Если еще есть образы, то к шагу 1 Иначе зафиксировать пороги v_{thres} и к шагу 6

6. Назначение классов

Последовательно предъявляются все образы. Каждому нейрону назначается класс в соответствии с его максимальным откликом

Результаты

Каждый из 100 нейронов выходного слоя реагирует на «свой» образ:

2D receptive fields

Результаты

Сравнение

TABLE 1 | Classification accuracy of spiking neural networks on MNIST test set.

Architecture	Preprocessing	Training-type	(Un-)supervised	Learning-rule	Performance
Dendritic neurons (Hussain et al., 2014)	Thresholding	Rate-based	Supervised	Morphology learning	90.3%
Spiking RBM (Merolla et al., 2011)	None	Rate-based	Supervised	Contrastive divergence, linear classifier	89.0%
Spiking RBM (O'Connor et al., 2013)	Enhanced training set to 120,000 examples	Rate-based	Supervised	Contrastive divergence	94.1%
Spiking convolutional neural network (Diehl et al., 2015)	None	Rate-based	Supervised	Backpropagation	99.1%
Spiking RBM (Neftci et al., 2013)	Thresholding	Rate-based	Supervised	Contrastive divergence	92.6%
Spiking RBM (Neftci et al., 2013)	Thresholding	Spike-based	Supervised	Contrastive divergence	91.9%
Spiking convolutional neural network (Zhao et al., 2014)	Scaling, orientation detection, thresholding	Spike-based	Supervised	Tempotron rule	91.3%
Two layer network (Brader et al., 2007)	Edge-detection	Spike-based	Supervised	STDP with calcium variable	96.5%
Multi-layer hierarchical network (Beyeler et al., 2013)	Orientation-detection	Spike-based	Supervised	STDP with calcium variable	91.6%
Two layer network (Querlioz et al., 2013)	None	Spike-based	Unsupervised	Rectangular STDP	93.5%
Two layer network (this paper)	None	Spike-based	Unsupervised	Exponential STDP	95.0%