STABILITY OF REDUCED ORDER MODELS IN SUBSPACE IDENTIFICATION

Ivan Markovsky¹, Jan C. Willems¹, Paolo Rapisarda² and Bart De Moor¹

1 - Departement Elektrotechniek, Katholieke Universiteit Leuven, 2 - Departement Mathematics, Universiteit Maastricht

Abstract

Given an observed input/output time-series $(u_t,y_t),\ t=0,1,\dots,t_{\rm f}-1,$ $u_t\in\mathbb{R}^m,\ y_t\in\mathbb{R}^p,$ find an approximate time-series model

$$\begin{split} x_{t+1} &= \hat{A}x_t + \hat{B}u_t, \qquad x_t \in \mathbb{R}^r, \\ y_t &= \hat{C}x_t + \hat{D}u_t. \end{split}$$

Problem:

Establish stability preservation and an error bound.

Approach:

Subspace identification, balanced truncated state sequence, least squares.

Equivalently, this is the problem of balanced reduction of the Most Powerful Unfalsified Model directly from the given data.

Overview of deterministic subspace identification

Let the observed time-series (u_t, y_t) be generated by the LTI system

$$x_{t+1} = Ax_t + Bu_t$$
, $x_t \in \mathbb{R}^n$,
 $u = Cx_t + Du_t$ (1)

For a given natural number i > n, define

Let $W:=\begin{bmatrix} V \\ I \end{bmatrix}$. W(:,t) gives an I/O response with initial condition x_t . Split the data in U and Y into two equal length parts

$$U = \begin{bmatrix} U_{\mathrm{p}} \\ U_{\mathrm{f}} \end{bmatrix}, \qquad Y = \begin{bmatrix} Y_{\mathrm{p}} \\ Y_{\mathrm{f}} \end{bmatrix}$$

Assume that $\operatorname{row}\operatorname{span}(U_{\mathrm{f}})\cap\operatorname{row}\operatorname{span}(W_{\mathrm{p}})=\{0\}.$ Sufficient conditions is the persistency of excitation and $\operatorname{row}\operatorname{span}(U_{\mathrm{f}})\cap\operatorname{row}\operatorname{span}(X_{\mathrm{p}})=\{0\}.$

$$\mathbb{R}^{j} = \underbrace{\frac{\text{row span}(W_{\text{p}})}{\text{response due to}}}_{\text{past inputs and ini. cond.}} \oplus \underbrace{\frac{\text{row span}(U_{\text{f}})}{\text{response due}}}_{\text{to future inputs}} \oplus \underbrace{\frac{W_{\text{p}}}{U_{\text{f}}}}_{\text{noise}} \underbrace{\frac{W_{\text{p}}}{U_{\text{f}}}}_{\text{noise}} \underbrace{\frac{W_{\text{p}}}{U_{\text{f}}}}_{\text{noise}}$$

Define $\overline{Y_{\rm f}}:=Y_{\rm f}/U_{\rm f}W_{\rm p}$ (row-wise) as the component of $Y_{\rm f}$ lying in ${\rm row\,span}(W_{\rm p}).$

$$\bar{Y}_{\mathrm{f}} = \begin{bmatrix} C \\ CA \\ \vdots \\ CA^{i-1} \end{bmatrix} \begin{bmatrix} x_i \ x_{i+1} \ \cdots \ x_{i+j-1} \end{bmatrix} =: \Gamma X_{\mathrm{f}}$$

Subspace identification algorithm

 $\bar{Y}_{\rm f}$ contains free responses. Any rank revealing factorization

$$\bar{Y}_{\mathrm{f}} = LR^{\top}, \qquad L, R \in \mathbb{R}^{mi \times n}, \qquad L, R - \text{full column rank},$$

defines a valid $\Gamma=L$ and a corresponding state sequence $X_f=R^{\top}$. The rank revealing factorization is not unique and this corresponds to the non uniqueness of Γ and X_f due to the choice of the state space basis. We will use the SVD of Y_f to compute the factorization. With X_f computed, one can estimate A,B,C, and D from a LS problem.

Algorithm 1 (Deterministic subspace identification)

1. Input: the Hankel matrix W.

2. Compute the oblique projection $\bar{Y}_{\mathrm{f}} := Y_{\mathrm{f}}/U_{\mathrm{f}}W_{\mathrm{p}}$.

3. Compute the SVD of the oblique projection $\bar{Y}_f = U_1 S_1 V_1^{\top}$.

4. Define $\Gamma := U_1 \sqrt{S_1}$ and $X_f = \sqrt{S_1} V_1^{\top}$.

5. Find the parameters from the LS problem

$$\begin{bmatrix} \sigma X_{\mathbf{f}} \\ \sigma^* Y_{\mathbf{f}} \end{bmatrix} = \begin{bmatrix} \hat{A} & \hat{B} \\ \hat{C} & \hat{D} \end{bmatrix} \begin{bmatrix} \sigma^* X_{\mathbf{f}} \\ \sigma^* U_{\mathbf{f}} \end{bmatrix}, \quad (2)$$

wher

$$\begin{split} \sigma X_{\mathbf{f}} \coloneqq \begin{bmatrix} x_{i+1} \ x_{i+2} \ \cdots \ x_{i+j-1} \end{bmatrix} \quad \text{and} \quad \sigma^* X_{\mathbf{f}} \coloneqq \begin{bmatrix} x_i \ x_{i+1} \ \cdots \ x_{i+j-2} \end{bmatrix}. \\ \text{6. Output: the estimates } \hat{A}, \, \hat{B}, \, \hat{C}, \, \hat{D}. \end{split}$$

Balanced model subspace identification algorithm

Let V be a $j\times j$ to-be-determined matrix, and consider the SVD of $\bar{Y}_{\!f}V$

$$\bar{Y}_f V = U_1 \Sigma_1 V_1^{\top}$$
.

Define $\Gamma:=U_1\sqrt{\Sigma_1}$ and $X_f:=\Gamma^+\bar{Y}_f$, where Γ^+ is a right inverse of Γ . $\bar{Y}_f=\Gamma X_f$, so that, Γ is an extended observability matrix and X_f is a corresponding state sequence in certain basis.

$$\sqrt{\Sigma_1}V_1^\top = X_fV \implies X_fVV^\top X_f^\top = \Sigma_1$$

For $i \to \infty$ and A Hurwitz, $X_{\mathbf{f}} = \Delta U_{\mathbf{p}} + A^i X_{\mathbf{p}} \approx \Delta U_{\mathbf{p}}$, where $\Delta := [A^{i-1}B \ A^{i-2}B \ \cdots \ AB \ B]$ so from (3), we have

$$\Delta U_p V V^T U_p^T \Delta^T \approx \Sigma_1.$$

Now, if we choose V such that $U_pVV^TU_p^T=I$, then the controllability gramian becomes $\Delta\Delta^T\approx \Sigma_1$ and is approximately equal to the observability gramian $\Gamma^T\Gamma=\Sigma_1$, so the state-space basis fixed with the choice of Γ and X_I is approximately balanced. A particular matrix V is

$$V = U_{p}^{\top}(U_{p}U_{p}^{\top})^{-1}[I \ 0].$$

Algorithm 2 (Identification of a balanced model)

1. Input: the Hankel matrix W.

2. Compute $V = U_p^{\top}(U_pU_p^{\top})^{-1}[I \quad 0].$

3. Compute the oblique projection $\bar{Y}_{\rm f} := Y_{\rm f}/U_{\rm f}W_{\rm p}.$

4. Compute the SVD of $\bar{Y}_fV = U_1S_1V_1^{\top}$

5. Define $\Gamma := U_1 \sqrt{S_1}$ and $X_f = \Gamma^+ \bar{Y}_f$

6. Find the parameters from the LS problem (2).

7. Output: the estimates $\hat{A},\,\hat{B},\,\hat{C},\,\hat{D}.$

Reduced order model estimation by truncation and LS

In subspace identification, one finds first the state sequence X, and then (A,B,C,D). Algorithm 2 finds even an approximate finite-time balanced system. But solving for (A,B,C,D) requires solving equations of order equal to the order of the unreduced system. Reducing X first, leads to equations of order equal to that of the reduced system?

equations or order equal to that of the reduced system! For a given natural number r < n, partition the balanced state sequence $X_{\rm f}$ as follows

$$X_{\mathrm{f}} =: \begin{bmatrix} X_{\mathrm{r}} \\ X_{\mathrm{trunc}} \end{bmatrix}, \qquad \text{where} \qquad \mathrm{row} \dim(X_{\mathrm{r}}) = r,$$

and find the reduced order model parameters \hat{A}_r , \hat{B}_r , \hat{C}_r , \hat{D}_r by the least squares problem

$$\begin{bmatrix} \sigma X_{\rm r} \\ \sigma^* Y_{\rm f} \end{bmatrix} = \begin{bmatrix} \hat{A}_{\rm r} & \hat{B}_{\rm r} \\ \hat{C}_{\rm r} & \hat{D}_{\rm r} \end{bmatrix} \begin{bmatrix} \sigma^* X_{\rm r} \\ \sigma^* U_{\rm f} \end{bmatrix}. \tag{4}$$

While for the classical approach there is a proof of stability of the reduced order model and a bound for the \mathcal{H}_{∞} norm of the error system, for the alternative approach there are no such results yet. We state the following conjecture:

General stability conjecture

Let (A,B,C,D) be a minimal, asymptotically stable, and balanced n-th order system. Given an infinite in-put/output sequence (u_t,y_t) , $t=0,1,\ldots$, where u is persistently exciting of order at least 2n, construct a balanced state sequence X_t via Algorithm 2. Solve the least squares problem (4) for the truncated state sequence X_t . Then \hat{A}_t is Schur.

Preliminary result: autonomous model

Theorem (Autonomous model). Consider the asymptotically stable model

$$x_{t+1} = Ax_t$$
, (5)

and let $x \in \ell_2(\mathbb{Z}, \mathbb{R}^n)$ be a trajectory of (5). Denote by X the infinite matrix

$$X = \begin{bmatrix} x_0 & x_1 & \cdots & x_t & \cdots \end{bmatrix}$$
.

For a given natural number r < n, partition X as follows

$$X =: \begin{bmatrix} X_{\mathbf{r}} \\ X_{\mathrm{trunc}} \end{bmatrix}, \quad \text{where} \quad \operatorname{row} \dim(X_{\mathbf{r}}) = r.$$

The solution

$$\hat{A}_{\mathrm{r}} = \sigma X_{\mathrm{r}} X_{\mathrm{r}}^{\top} (X_{\mathrm{r}} X_{\mathrm{r}}^{\top})^{-1}$$

of the least squares problem

$$\min_{\hat{A}_r} ||\sigma X_r - \hat{A}_r X_r||_{\ell_2}^2$$

is Schur.

Proof: Since for any X_r , $(\sigma X_r)(\sigma X_r)^{\top} \leq X_r X_r^{\top}$, we have

$$\begin{split} 0 & \leq \begin{bmatrix} X_{\mathrm{r}} \\ \sigma X_{\mathrm{r}} \end{bmatrix} \begin{bmatrix} X_{\mathrm{r}}^\top & (\sigma X_{\mathrm{r}})^\top \end{bmatrix} \\ & = \begin{bmatrix} X_{\mathrm{r}} X_{\mathrm{r}}^\top & X_{\mathrm{r}} (\sigma X_{\mathrm{r}})^\top \\ (\sigma X_{\mathrm{r}}) X_{\mathrm{r}}^\top & (\sigma X_{\mathrm{r}}) (\sigma X_{\mathrm{r}})^\top \end{bmatrix} \\ & \leq \begin{bmatrix} X_{\mathrm{r}} X_{\mathrm{r}}^\top & X_{\mathrm{r}} (\sigma X_{\mathrm{r}})^\top \\ (\sigma X_{\mathrm{r}}) X_{\mathrm{r}}^\top & X_{\mathrm{r}} X_{\mathrm{r}}^\top \end{bmatrix}. \end{split}$$

The Schur complement of the (2,2) block in the right most matrix is

$$X_{\mathbf{r}}X_{\mathbf{r}}^{\top} - \underbrace{(\sigma X_{\mathbf{r}})X_{\mathbf{r}}^{\top}(X_{\mathbf{r}}X_{\mathbf{r}}^{\top})^{-1}}_{\hat{\boldsymbol{A}}}X_{\mathbf{r}}(\sigma X_{\mathbf{r}})^{\top} \geq 0$$

Using the identity $X_{\rm r}(\sigma X_{\rm r})^{\top}=(X_{\rm r}X_{\rm r}^{\top})\hat{A}_{\rm r}^{\top},$ we obtain a Stein inequality

$$X_{\mathbf{r}}X_{\mathbf{r}}^{\top} \ge \hat{A}_{\mathbf{r}}(X_{\mathbf{r}}X_{\mathbf{r}}^{\top})\hat{A}_{\mathbf{r}}^{\top},$$

which proves that \hat{A}_{r}^{\top} is Schur, so that \hat{A}_{r} is Schur.

Preliminary result: impulse response identification

Corollary (Impulse response case). Consider the model (1), with (A,B,C) minimal and A Schur. Let u be the Kronecker delta function δ_t and $x_0=0$. Denote by X the infinite matrix

$$X = \begin{bmatrix} x_0 & x_1 & \cdots & x_t & \cdots \end{bmatrix}$$
.

For a given natural number r < n, partition X as follows

$$X =: \begin{bmatrix} X_{\mathrm{r}} \\ X_{\mathrm{trunc}} \end{bmatrix}, \quad \text{where} \quad \operatorname{row\,dim}(X_{\mathrm{r}}) = r.$$

The solution

$$\hat{A}_{\mathbf{r}} = \sigma X_{\mathbf{r}} X_{\mathbf{r}}^{\top} (X_{\mathbf{r}} X_{\mathbf{r}}^{\top} - X_{\mathbf{r}} U^{\top} (U U^{\top})^{-1} U X_{\mathbf{r}}^{\top})^{-1}$$

$$(6)$$

of the least squares problem (4) is Schur.

Proof: The formula in the right-hand-side of (6) is obtained by explicitly computing the (1,1) block of the LS solution of (4)

$$\begin{bmatrix} \hat{A}_{\mathbf{r}} & \hat{B}_{\mathbf{r}} \\ \hat{C}_{\mathbf{r}} & \hat{D}_{\mathbf{r}} \end{bmatrix} = \begin{bmatrix} \sigma X_{\mathbf{r}} \\ Y_{\mathbf{f}} \end{bmatrix} \begin{bmatrix} X_{\mathbf{r}} \\ U_{\mathbf{f}} \end{bmatrix}^{\top} \left(\begin{bmatrix} X_{\mathbf{r}} \\ U_{\mathbf{f}} \end{bmatrix} \begin{bmatrix} X_{\mathbf{r}} \\ U_{\mathbf{f}} \end{bmatrix}^{\top} \right)^{-1}.$$

For $u=\delta$ and $x_0=0, X_{\rm r}U^\top(UU^\top)^{-1}UX_{\rm r}^\top=0,$ so that the estimate

$$\hat{A}_{r} = \sigma X_{r} X_{r}^{\top} (X_{r} X_{r}^{\top})^{-1}$$

has the same form as in the autonomous case. Under the assumptions of the theorem u is persistently exciting and $x \in \ell_2(\mathbb{Z}, \mathbb{R}^n)$, so that the result of the Theorem applies and \hat{A}_r is Schur.