# Homework 1 Answers

Linghui Wu\*

May 15, 2024

(a)

The household's maximization problem is

$$\max_{\{C_{t+s}, N_{t+s}, B_{t+s}, M_{t+s}\}_{s=0}^{\infty}} \mathbb{E}_t \sum_{s=0}^{\infty} \beta^s \left( \frac{X_{t+s}^{1-\gamma} - 1}{1-\gamma} - \chi \frac{N_{t+s}^{1+\varphi}}{1+\varphi} \right)$$

where

$$X_t = \left[ (1 - \theta)C_t^{1 - \nu} + \theta \left( \frac{M_t}{P_t} \right)^{1 - \nu} \right]^{\frac{1}{1 - \nu}}$$

s.t.

$$P_{t+s}C_{t+s} + B_{t+s} + M_{t+s} \leq W_{t+s}N_{t+s} + Q_{t+s-1}B_{t+s-1} + M_{t+s-1} + P_{t+s}(TR_{t+s} + PR_{t+s})$$

The associated Lagrangian is

$$\mathcal{L} = \mathbb{E}_{t} \sum_{s=0}^{\infty} \beta^{s} \left\{ \left( \frac{X_{t+s}^{1-\theta} C_{t+s}^{1-\theta}}{1-\theta} + \chi \frac{N_{t+s}^{1+\varphi}}{1+\varphi} \right) + \lambda_{t+s} \left[ W_{t+s} N_{t+s} + Q_{t+s} B_{t+s-1} + M_{t+s-1} + P_{t+s} (TR_{t+s} + PR_{t+s}) - P_{t+s} C_{t+s} - B_{t+s} - M_{t+s} \right] \right\}$$

<sup>\*</sup>Solutions were discussed with Jiahui Shui.

FOCs are as follows:

$$[C_{t+s}]: (1-\theta)X_{t+s}^{\nu-\gamma}C_{t+s}^{-\nu} = P_{t+s}\lambda_{t+s}$$

$$[N_{t+s}]: \chi N_{t+s}^{\varphi} = \lambda_{t+s}W_{t+s}$$

$$[B_{t+s}]: \lambda_{t+s} = \beta \mathbb{E}_{t} \left[\lambda_{t+s+1}Q_{t+s}\right]$$

$$[N_{t+s}]: X_{t+s}^{\nu-\gamma}\theta \left(\frac{M_{t+s}}{P_{t+s}}\right)^{-\nu} \frac{1}{P_{t+s}} = \beta \mathbb{E}_{t} \left[\lambda_{t+s+1}\right]$$

Combining these FOCs, we can solve for

$$1 = \mathbb{E}_{t} \left[ \beta Q_{t+s} \left( \frac{P_{t+s}}{P_{t+s+1}} \right) \left( \frac{X_{t+s+1}}{X_{t+s}} \right)^{\nu - \gamma} \left( \frac{C_{t+s+1}}{C_{t+s}} \right)^{-\theta} \right]$$
 (Euler's equation) (1)

$$\frac{W_{t+s}}{P_{t+s}} = \chi \frac{N_{t+s}^{\varphi}}{X_{t+s}^{\nu-\gamma} C_{t+s}^{\theta}} \quad \text{(Labor-leisure condition)}$$
 (2)

$$1 = \beta \mathbb{E}_{t} \left[ \left( \frac{X_{t+s+1}}{X_{t+s}} \right)^{\nu - \gamma} \left( \frac{C_{t+s+1}}{C_{t+s}} \right)^{-\nu} \frac{P_{t+s}}{P_{t+s+1}} \right] + \frac{\theta}{1 - \theta} \left( \frac{M_{t+s}}{P_{t+s}} \right)^{-\nu} \left( \frac{1}{C_{t+s}} \right)^{-\nu}$$
(3)

$$\frac{M_{t+s}}{P_{t+s}} = \left(1 - \frac{1}{Q_{t+s}}\right)^{-\frac{1}{\nu}} \left(1 - \frac{\theta}{1 - \theta}\right)^{-\frac{1}{\nu}} C_{t+s} \quad \text{(Money demand)}$$
 (4)

## (b)

The firm's problem is:

$$\max_{N_{t+s}} PR_{t+s} = Y_{t+s} - \frac{W_{t+s}}{P_{t+s}} N_{t+s}$$
where  $Y_{t+s} = A_{t+s} N_{t+s}$ 

FOC with respect to  $N_{t+s}$  yields:

$$A_{t+s} = \frac{W_{t+s}}{P_{t+s}}$$

Government's budget constraint in real terms can be expressed as

$$\frac{B_{t+s}}{P_{t+s}} + \frac{M_{t+s}}{P_{t+s}} = TR_{t+s} + \frac{Q_{t+s-1} - B_{t+s-1}}{P_{t+s}} + \frac{M_{t+s-1}}{P_{t+s}}$$

Combining labor demand with labor supply, we have

$$\frac{W_{t+s}}{P_{t+s}} = A_{t+s} = \frac{\chi N_{t+s}^{\varphi}}{(X_{t+s})^{\nu-\gamma} (1+\theta) C_{t+s}^{-\nu}}$$

when labor market clears.

Notice that  $X_{t+s}$  is a function of  $M_{t+s}$ , so money is neutral if  $(X_{t+s})^{\nu-\gamma} = 1 \iff \nu = \gamma$ .

#### (c)

Assume A=1. In steady state,  $\frac{W}{P}=A=1=\frac{\chi N^{\varphi}}{X^{\nu-\gamma}(1-\theta)C^{-\nu}}$  by labor market clearing condition, which implies that

$$(1 - \theta)X^{\nu - \gamma} = \chi N^{\varphi} C^{\nu} \tag{5}$$

Plug the output market clearing condition that Y = N = C back in the equation (5), we can derive that

$$(1 - \theta)X^{\nu - \gamma} = \chi C^{\varphi + \nu} \tag{6}$$

In steady state (SS), the gross real interest rate is a constant  $R = R_{t+s} \forall s$ . Combining it with Euler's equation (1),  $1 = \beta R \Rightarrow R = \frac{1}{\beta}$ .

We also have constant gross nominal interest rate  $Q = Q_{t+s} \forall s$ , so the inflation rate  $\pi_{t+s} = \frac{P_{t+s+1}}{P_{t+s}} = Q\beta = \pi$  is also a constant.

Then the money demand can be rewritten as:

$$\frac{M}{P} = (1 - \frac{\beta}{\pi})^{-\frac{1}{\gamma}} \left(\frac{1 - \theta}{\theta}\right)^{-\frac{1}{\gamma}} C \tag{7}$$

$$X = \left\{ (1 - \theta)C^{1 - \nu} + \theta \left( 1 - \frac{\beta}{\pi} \right)^{-\frac{\nu - 1}{\nu}} \left( \frac{1 - \theta}{\theta} \right)^{-\frac{\nu - 1}{\nu}} C^{1 - \nu} \right\}^{\frac{1}{1 - \nu}}$$

$$= \left\{ (1 - \theta) + \theta \left( 1 - \frac{\beta}{\pi} \right)^{-\frac{\nu - 1}{\nu}} \left( \frac{1 - \theta}{\theta} \right)^{-\frac{\nu - 1}{\nu}} \right\}^{\frac{1}{1 - \nu}} C$$
(8)

Together with (6),

$$C_{ss} = \left\{ \frac{1-\theta}{\chi} \left[ (1-\theta) + \theta \left( 1 - \frac{\beta}{\pi} \right)^{\frac{\nu-1}{\nu}} \left( \frac{1-\theta}{\theta} \right)^{\frac{\nu-1}{\nu}} \right]^{\frac{\nu-\gamma}{\nu-1}} \right\}^{\frac{1}{\varphi+\gamma}}.$$
 (9)

which is expressed in terms of model parameters.

And we can further express  $Y_{ss} = N_{ss} = C_{ss}$  and  $\frac{W_{ss}}{P_{ss}}$  as functions of  $C_{ss}$  and model parameters.

#### (d)

The algorithm takes Q and  $M_t$  as given. After specifying the model parameters, the algorithm can solve for  $\pi = Q\beta$  and  $C_{ss}$  using equation (9). Then  $Y_{ss}$  and  $N_{ss}$  are identifiable since they are functions of  $C_{ss}$  and model parameters. Also, because we treat  $M_t$  as exogenous, by steady state money demand  $\frac{M_t}{P_t} = \frac{M}{P}$ , the price level  $P_t$  can be pinned down.

#### (e)

Suppose we are given the model parameters, by steady state expressions of  $\frac{M_{ss}}{P_{ss}}$  and  $C_{ss}$ , we have

$$rac{M_{ss}}{P_{ss}} = \left(1 - rac{eta}{\pi}
ight)^{-rac{1}{
u}} \left(rac{1- heta}{ heta}
ight)^{-rac{1}{
u}} \left\{rac{1- heta}{\chi}\left[(1- heta) + heta\left(1 - rac{eta}{\pi}
ight)^{rac{
u-1}{
u}} \left(rac{1- heta}{ heta}
ight)^{rac{
u-1}{
u}}
ight\}^{rac{
u}{\phi+\gamma}}$$

Using the equation above, we can calibrate  $\theta$  given  $\nu$ .

### **(f)**

Once we have P = 1 in steady state,

$$M_{\rm SS} = \left(1 - \frac{\beta}{\pi}\right)^{-\frac{1}{\nu}} \left(\frac{1 - \theta}{\theta}\right)^{-\frac{1}{\nu}} \left\{\frac{1 - \theta}{\chi}\left[(1 - \theta) + \theta\left(1 - \frac{\beta}{\pi}\right)^{\frac{\nu - 1}{\nu}} \left(\frac{1 - \theta}{\theta}\right)^{\frac{\nu - 1}{\nu}}\right]^{\frac{1}{\varphi + \gamma}}\right\}^{\frac{1}{\varphi + \gamma}}$$

conditional on we know other parameters.

# (g)

Equilibrium equations of this system, with slight modifications on time subscripts, are

$$\begin{split} Y_t &= A_t N_t \\ \frac{W_t}{P_t} &= A_t \\ \frac{W_t}{P_t} &= \frac{\chi N_t^{\varphi}}{X_t^{\nu - \gamma} (1 - \theta) C_t^{-\nu}} \\ X_t &= \left[ (1 - \theta) C_t^{1 - \nu} + \theta \left( \frac{M_t}{P_t} \right)^{1 - \nu} \right]^{\frac{1}{1 - \nu}}, \\ Y_t &= C_t, \\ 1 &= \mathbb{E}_t \left[ \beta Q_t \frac{P_t}{P_{t+1}} \left( \frac{X_{t+1}}{X_t} \right)^{\nu - \gamma} \left( \frac{C_{t+1}}{C_t} \right)^{-\nu} \right] \end{split}$$

Define log-deviations around steady state as  $\hat{z}_t = \log \frac{Z_t}{Z_{ss}}$ . Then the log-linearization of the system is

$$\begin{split} \hat{y}_t &= \hat{a}_t + \hat{n}_t \\ \hat{w}_t - \hat{p}_t &= \hat{a}_t \\ \hat{w}_t - \hat{p}_t &= \varphi \hat{n}_t - (\nu - \gamma)\hat{x}_t + \nu \hat{c}_t \\ \hat{x}_t &= \frac{(1 - \theta)C_{ss}^{1 - \nu}}{X_{ss}} \hat{c}_t + \frac{\theta \frac{M_{ss}}{P_{ss}}^{1 - \nu}}{X_{ss}} (\hat{m}_t - \hat{p}_t) \\ \hat{y}_t &= \hat{c}_t \\ 0 &= \mathbb{E}_t \left[ \hat{q}_t + \hat{p}_t - \hat{p}_{t+1} + (\nu - \gamma)(\hat{x}_{t+1} - \hat{x}_t) - \nu(\hat{c}_{t+1} - \hat{c}_t) \right] \end{split}$$

where steady state values are solved in previous questions.



Figure 1: DAG

### (h)

Figure 1 represents the DAG. Figure 2 shows the impulse response functions of consumption, prices and norminal interest rate.

### (i)

 $\nu$  is the reciprocal of the elasticity of substitution between consumption and real balances. An increase in  $\nu$  decreases the extent of an individual's trade-off between  $C_t$  and  $\frac{M_t}{P_t}$ .

When v < 1, the exponents of consumption and real balances in  $X_t$  is positive, indicating that an increase in money supply decreases the marginal utility of consumption and labor supply. As a result, production and consumption diminish. When money supply goes up, the prices also go up. To support a hightened money demand, the interest rate declines.

When  $\nu=1$ , an increase in money supply does not change the marginal utility of consumption, so the household maintains their labor supply and production and consumption remain unchanged.



**Figure 2:** Impulse responses for  $C_t$ ,  $P_t$  and  $Q_t$ 

When  $\nu > 1$ , the exponents of consumption and real balances in  $X_t$  is negative. So, an increase in money supply leads to an increase in the marginal utility of consumption, compelling the household to supply more labor and subsequently boosts production and consumption. A higher  $\nu$  also corresponds to an intertemporal substitution from money to consumption, resulting in higher prices and interest rates.

# **(j)**

Based on discussions in part (i), we need  $\nu > 1$  to support the evidence that an increase in the money supply increases consumption.

### (k)

Please refer to hw1\_sequence\_space.py.