A Network Optimization Framework for the Control of Traffic Dynamics and Intersection Signaling

Gianluca Bianchin, Fabio Pasqualetti

Department of Mechanical Engineering University of California, Riverside

IEEE Conference on Decision and Control December 17, 2018 | Miami Beach, FL, USA

How Do We Operate Modern Traffic Networks?

- Transportation systems: vital for urban development
- Huge economical and societal impact
- Undergoing increasing travel demand, but limited infrastructure grow

Solution: more-efficient operation of the infrastructure

Network-Wide Control of Signalized Intersections

Traffic lights: Manhattan, NY

Control parameters: traffic lights

minimize (network congestion)

subject to (traffic conditions)

(network interconnection)

- Network-wide control is a massive optimization problem
 MPC-based, limited optimization horizons
- Traditional approaches: control at single-intersection level
 ⇒ SCOOT, RHODES, OPAC, Max-Pressure

Tractable models of overall interconnection can provide insights to overcome suboptimalities of distributed (local) controllers

Network-Wide Control of Signalized Intersections

Traffic lights: Manhattan, NY

Control parameters: traffic lights

minimize (network congestion)

subject to (traffic conditions)

(network interconnection)

- Network-wide control is a massive optimization problem
 ⇒ MPC-based, limited optimization horizons
- Traditional approaches: control at single-intersection level
 ⇒ SCOOT, RHODES, OPAC, Max-Pressure

Tractable models of overall interconnection can provide insights to overcome suboptimalities of distributed (local) controllers

Network-Wide Control of Signalized Intersections

Traffic lights: Manhattan, NY

Control parameters: traffic lights

minimize (network congestion)

subject to (traffic conditions)

(network interconnection)

- Network-wide control is a massive optimization problem
 ⇒ MPC-based, limited optimization horizons
- Traditional approaches: control at single-intersection level
 ⇒ SCOOT, RHODES, OPAC, Max-Pressure

Tractable models of overall interconnection can provide insights to overcome suboptimalities of distributed (local) controllers

Model of Traffic Network

- Network $\mathcal{N} = (\mathcal{R}, \mathcal{I})$
 - ullet $\mathcal{R} = \{r_1, \dots, r_{n_r}\}$ one-way roads
 - \bullet $\mathcal{I} = \{\mathcal{I}_1, \dots, \mathcal{I}_{n_{\mathcal{I}}}\}$ intersections
- ullet Inflows enter at roads $\mathcal{S} \subseteq \mathcal{R}$
- ullet Outflows exit at roads $\mathcal{D}\subseteq\mathcal{R}$

Standard Connectivity Assumption

There exists at least one path in $\mathcal N$ from every r_i to a destination $r_j \in \mathcal D$

Exogenous Flows Assumption

Exogenous inflows and outflows are not known a priori

Model of Traffic Network

- Network $\mathcal{N} = (\mathcal{R}, \mathcal{I})$
 - $\mathcal{R} = \{r_1, \dots, r_{n_r}\}$ one-way roads
 - $\mathcal{I} = \{\mathcal{I}_1, \dots, \mathcal{I}_{n_{\mathcal{I}}}\}$ intersections
- ullet Inflows enter at roads $\mathcal{S} \subseteq \mathcal{R}$
- ullet Outflows exit at roads $\mathcal{D}\subseteq\mathcal{R}$

Standard Connectivity Assumption

There exists at least one path in $\mathcal N$ from every r_i to a destination $r_j \in \mathcal D$

Exogenous Flows Assumption

Exogenous inflows and outflows are not known a priori

Model of Roads

Start from hydrodynamic model in free flow:

$$\frac{\partial \rho}{\partial t} + \frac{\partial f}{\partial s} = 0$$

Discretize in space

If speed is constant along the road (regimes of free flow):

$$\begin{bmatrix} \dot{x}_i^1 \\ \dot{x}_i^2 \\ \vdots \\ \dot{x}_i^{\sigma_i} \end{bmatrix} = \frac{\gamma_i}{h} \begin{bmatrix} -1 \\ 1 & -1 \\ & \ddots & \ddots \\ & & 1 & 0 \end{bmatrix} \begin{bmatrix} x_i^1 \\ x_i^2 \\ \vdots \\ x_i^{\sigma_i} \end{bmatrix} + \begin{bmatrix} f_{r_i}^{\mathsf{in}} \\ 0 \\ \vdots \\ -f_{r_i}^{\mathsf{out}} \end{bmatrix}$$

- x_i^k density of segment k, in road r_i
- \bullet γ_i (average) flow speed
- h spatial discretization step

Model of Interconnection Flows

Road outflow

$$f_{r_i}^{\text{out}} = \sum_{r_k} s(r_k, r_i, t) c(r_i, r_k) x_k^{\sigma_k}$$

- $\bullet \ x_k^{\sigma_k}$ density at intersection proximity
- $c(r_i, r_k)$ models routing ratios, transmission rates, enforces conservation of flows
- $s(r_k, r_i, t) \in \{0, 1\}$ green splits

Model of Interconnection Flows

Road outflow

$$f_{r_i}^{\text{out}} = \sum_{r_k} s(r_k, r_i, t) c(r_i, r_k) x_k^{\sigma_k}$$

- $\bullet \ x_k^{\sigma_k}$ density at intersection proximity
- $c(r_i, r_k)$ models routing ratios, transmission rate
- $s(r_k, r_i, t) \in \{0, 1\}$ green splits

Alternate right of way

Control of intersections

Green splits $s(r_k, r_i, t)$ are the design parameters

Model of Interconnection Flows

Road outflow

$$f_{r_i}^{\mathsf{out}} = \sum_{r_k} s(r_k, r_i, t) \, c(r_i, r_k) \, x_k^{\sigma_k}$$

- $\bullet \ x_k^{\sigma_k}$ density at intersection proximity
- $c(r_i, r_k)$ models routing ratios, transmission rate
- $s(r_k, r_i, t) \in \{0, 1\}$ green splits

Alternate right of way

Control of intersections

Green splits $s(r_k, r_i, t)$ are the design parameters

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \vdots \\ \dot{x}_{n_{\mathsf{r}}} \end{bmatrix} = \begin{bmatrix} A_{11} & & & \\ & A_{22} & & \\ & & \ddots & \\ & & & \ddots & \end{bmatrix}$$

$$A_{n_{r}n_{r}} \begin{bmatrix} x_{1} \\ x_{2} \\ \vdots \\ x_{n_{r}} \end{bmatrix}$$

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \vdots \\ \dot{x}_{n_{\mathrm{r}}} \end{bmatrix} = \begin{bmatrix} A_{11} & A_{12} & \cdots & A_{1n_{\mathrm{r}}} \\ A_{21} & A_{22} & \ddots & A_{2n_{\mathrm{r}}} \\ \vdots & \ddots & \ddots & \vdots \\ A_{n_{\mathrm{r}}1} & A_{n_{\mathrm{r}}2} & \cdots & A_{n_{\mathrm{r}}n_{\mathrm{r}}} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_{n_{\mathrm{r}}} \end{bmatrix}$$
Binary green split functions as switching dynamics

Binary green split functions

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \vdots \\ \dot{x}_{n_{\rm r}} \end{bmatrix} = \begin{bmatrix} A_{11} & A_{12} & \cdots & A_{1n_{\rm r}} \\ A_{21} & A_{22} & \cdots & A_{2n_{\rm r}} \\ \vdots & \ddots & \ddots & \vdots \\ A_{n_{\rm r}1} & A_{n_{\rm r}2} & \cdots & A_{n_{\rm r}n_{\rm r}} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_{n_{\rm r}} \end{bmatrix}$$
Binary green split function is switching dynamics

Binary green split functions
$$\Rightarrow$$
 switching dynamics

$$\begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_{n_r} \end{bmatrix} = \begin{bmatrix} e_{\sigma_1}^\mathsf{T} & \dots & 0 \\ \vdots & \ddots & \\ 0 & \dots & e_{\sigma_{n_r}}^\mathsf{T} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_{n_r} \end{bmatrix}$$

Congestion due to intersections density of downstream segments

Problem Formulation

Network-wide intersections control

- Given a certain network state x_0 , unknown inflows
- Determine green splits that minimize congestion due to intersections

Evacuate the network as fast as possible, final condition is empty system

$$\begin{aligned} \min_{s(r_i,r_k,t)} & & \int_0^\infty \|y\|_2^2 \; dt \\ \text{s.t.} & & \dot{x} = A_{s(r_i,r_k,t)} x \\ & & y = C x \\ & & x(0) = x_0 \\ & & s(r_i,r_k,t) \text{ is a feasible set of green splits} \end{aligned}$$

- ullet Measurements enter the optimization updating x_0
- ullet We optimize over $[0,\infty]$ and adopt a "receding horizon" approach

Problem Formulation

Network-wide intersections control

- Given a certain network state x_0 , unknown inflows
- Determine green splits that minimize congestion due to intersections

Evacuate the network as fast as possible, final condition is empty system

$$\begin{split} \min_{s(r_i,r_k,t)} & & \int_0^\infty \|y\|_2^2 \; dt \\ \text{s.t.} & & \dot{x} = A_{s(r_i,r_k,t)} x \\ & & y = C x \\ & & x(0) = x_0 \\ & & s(r_i,r_k,t) \text{ is a feasible set of green splits} \end{split}$$

- Measurements enter the optimization updating x_0
- ullet We optimize over $[0,\infty]$ and adopt a "receding horizon" approach

Problem Formulation

Network-wide intersections control

- Given a certain network state x_0 , unknown inflows
- Determine green splits that minimize congestion due to intersections

Evacuate the network as fast as possible, final condition is empty system

$$\begin{aligned} \min_{s(r_i,r_k,t)} & & \int_0^\infty \|y\|_2^2 \; dt \\ \text{s.t.} & & \dot{x} = A_{s(r_i,r_k,t)}x \\ & & y = Cx \\ & & x(0) = x_0 \\ & & s(r_i,r_k,t) \text{ is a feasible set of green splits} \end{aligned}$$

- ullet Measurements enter the optimization updating x_0
- ullet We optimize over $[0,\infty]$ and adopt a "receding horizon" approach

Solving the Optimization

(1) Handling Switching Dynamics

$$\dot{x} = A_{s(r_i,r_k,t)} x$$
 $s(r_i,r_k,t) = ext{piecewise constant}$

Define
$$\{d_1, \ldots, d_m\}$$
 durations, where $s(r_i, r_k, t) = \text{constant}$

$$\dot{x}_{\mathsf{av}} = A_{\mathsf{av}} x_{\mathsf{av}}$$

$$A_{\mathsf{av}} = \frac{1}{T} (A_1 d_1 + \dots + A_m d_m)$$

"Average" network dynamics $T=\mathsf{signals}$ period

(1) Handling Switching Dynamics

$$\begin{split} \dot{x} &= A_{s(r_i,r_k,t)} x \\ s(r_i,r_k,t) &= \text{piecewise constant} \end{split}$$

Define $\{d_1, \ldots, d_m\}$ durations, where $s(r_i, r_k, t) = \text{constant}$

$$\dot{x}_{\mathsf{av}} = A_{\mathsf{av}} x_{\mathsf{av}}$$

$$A_{\mathsf{av}} = \frac{1}{T} (A_1 d_1 + \dots + A_m d_m)$$

"Average" network dynamics $T={
m signals}$ period

(1) Handling Switching Dynamics

$$\begin{split} \dot{x} &= A_{s(r_i,r_k,t)} x \\ s(r_i,r_k,t) &= \text{piecewise constant} \end{split}$$

Define $\{d_1, \ldots, d_m\}$ durations, where $s(r_i, r_k, t) = \text{constant}$

$$\dot{x}_{\mathsf{av}} = A_{\mathsf{av}} x_{\mathsf{av}}$$

$$A_{\mathsf{av}} = \frac{1}{T} (A_1 d_1 + \dots + A_m d_m)$$

"Average" network dynamics $T=\operatorname{signals}$ period

Network mode durations $\{d_1,\ldots,d_m\}$ are the new design parameters

The Optimization Problem on Average Dynamics

$$\min_{d_1,\dots,d_m} \quad \int_0^\infty \|y_{\rm av}\|_2^2 \ dt$$
 subject to
$$\dot{x}_{\rm av} = A_{\rm av} x_{\rm av}$$

$$y_{\rm av} = C_{\rm av} x_{\rm av}$$

$$A_{\rm av} = \frac{1}{T} \left(d_1 A_1 + \dots + d_m A_m \right)$$
 Avg. network dynamics
$$x_{\rm av}(0) = x_0$$

$$T = d_1 + \dots + d_m$$

$$d_i > 0 \quad i \in \{1,\dots,m\}$$
 Feasible splits

The optimization will return a set of duration for the green splits that are compatible with the cycle time ${\cal T}$

(2) Relationship to Controllability Metrics

① Controllability Gramian for a dynamical system $\dot{x} = Ax + Bu$ is

$$W(A,B) = \int_0^\infty e^{At} B B^{\mathsf{T}} e^{A^{\mathsf{T}} t} dt$$

Quantitative measure of the degree of controllability of the dynamical sys.

2 Equivalent optimization problem:

$$\min_{d_1,\dots,d_m} \quad \operatorname{Trace}\left(C_{\mathsf{av}} \ \mathcal{W}(A_{\mathsf{av}},x_0) \ C_{\mathsf{av}}^\mathsf{T}\right)$$

$$\text{subject to} \quad A_{\mathsf{av}} = \frac{1}{T} \left(d_1 A_1 + \dots + d_m A_m\right)$$

$$T = d_1 + \dots + d_m$$

$$d_i \geq 0, \quad i \in \{1,\dots,m\}$$

Optimal split durations minimize a controllability metric (trace of weighted controllability Gramian)

(2) Relationship to Controllability Metrics

① Controllability Gramian for a dynamical system $\dot{x} = Ax + Bu$ is

$$W(A,B) = \int_0^\infty e^{At} B B^{\mathsf{T}} e^{A^{\mathsf{T}} t} dt$$

Quantitative measure of the degree of controllability of the dynamical sys.

2 Equivalent optimization problem:

$$\begin{aligned} \min_{d_1,\dots,d_m} & \quad \operatorname{Trace}\left(C_{\mathsf{av}} \ \mathcal{W}(A_{\mathsf{av}},x_0) \ C_{\mathsf{av}}^\mathsf{T}\right) \\ \mathsf{subject to} & \quad A_{\mathsf{av}} = \frac{1}{T} \left(d_1 A_1 + \dots + d_m A_m\right) \\ & \quad T = d_1 + \dots + d_m \\ & \quad d_i \geq 0, \quad i \in \{1,\dots,m\} \end{aligned}$$

Optimal split durations minimize a controllability metric (trace of weighted controllability Gramian)

Optimizing Network Controllability

$$\min_{d_1, \dots, d_m} \quad \operatorname{Trace} \left(C_{\mathsf{av}} \ \mathcal{W}(A_{\mathsf{av}}, x_0) \ C_{\mathsf{av}}^{\mathsf{T}} \right)$$

Difficulties:

Difficulties

ullet A_{av} and $\mathcal{W}(A_{\mathsf{av}}, x_0)$ are related by the (nonlinear) relation

$$A_{\mathsf{av}} \ \mathcal{W} + \mathcal{W} \ A_{\mathsf{av}}^{\mathsf{T}} = -x_0 x_0^{\mathsf{T}}$$

- Similar problems: consider stability $\alpha(A_{\mathsf{av}})$
 - Captures steady state rates (not transient overshoots)
 - Nonconvex in A_{av} and "very hard to optimize"

J. Vanbiervliet, B. Vandereycken, W. Michiels, S. Vandewalle, and M. Diehl, "The smoothed spectral abscissa for robust stability optimization," in *SIAM Journal on Optimization*, vol. 20, no. 1, 2009.

The Smoothed Spectral Abscissa

lacktriangle For a certain $A_{\rm av}$ the associated network performance is

Trace
$$\left(C_{\mathsf{av}} \ \mathcal{W}(A_{\mathsf{av}}, x_0) \ C_{\mathsf{av}}^{\mathsf{T}}\right) = 1/\epsilon$$

- ② Now assume we desire better performance $\bar{\epsilon} > \epsilon$
- \odot $\bar{\epsilon}$ can be obtained by making the system "faster":
 - We shift: $A_{\mathsf{av}} \to A_{\mathsf{av}} sI$ (s variable)
 - Then: Trace $(C_{\mathsf{av}} \ \mathcal{W}(A_{\mathsf{av}} sI, x_0) \ \hat{C}_{\mathsf{av}}^\mathsf{T}) = 1/\bar{\epsilon}$

If we can "change" $A_{\rm av}$ so that s=0, then that network will have performance cost $1/\bar{\epsilon}$

 $s:= ilde{lpha}(ar{\epsilon},A_{\mathsf{av}})$ "smoothed spectral abscissa"

The Smoothed Spectral Abscissa

lacktriangle For a certain A_{av} the associated network performance is

Trace
$$\left(C_{\mathsf{av}} \ \mathcal{W}(A_{\mathsf{av}}, x_0) \ C_{\mathsf{av}}^{\mathsf{T}}\right) = 1/\epsilon$$

- ② Now assume we desire better performance $\bar{\epsilon} > \epsilon$
- \odot $\bar{\epsilon}$ can be obtained by making the system "faster":
 - We shift: $A_{\mathsf{av}} \to A_{\mathsf{av}} sI$ (s variable)
 - Then: Trace $(C_{\mathsf{av}} \ \mathcal{W}(A_{\mathsf{av}} sI, x_0) \ \hat{C}_{\mathsf{av}}^{\mathsf{T}}) = 1/\bar{\epsilon}$

If we can "change" $A_{\rm av}$ so that s=0, then that network will have performance cost $1/\bar{\epsilon}$

 $@ \ s := \tilde{\alpha}(\bar{\epsilon}, A_{\mathrm{av}}) \text{ "smoothed spectral abscissa"}$

The Smoothed Spectral Abscissa

lacktriangle For a certain $A_{\rm av}$ the associated network performance is

Trace
$$\left(C_{\mathsf{av}} \ \mathcal{W}(A_{\mathsf{av}}, x_0) \ C_{\mathsf{av}}^{\mathsf{T}}\right) = 1/\epsilon$$

- 2 Now assume we desire better performance $\bar{\epsilon} > \epsilon$
- $oldsymbol{\delta}$ can be obtained by making the system "faster":
 - $\begin{array}{ll} \bullet \text{ We shift:} & A_{\mathsf{av}} \to A_{\mathsf{av}} sI & \text{$($s$ variable)$} \\ \bullet \text{ Then:} & \operatorname{Trace}\left(C_{\mathsf{av}} \ \mathcal{W}(A_{\mathsf{av}} sI, x_0) \ C_{\mathsf{av}}^{\mathsf{T}}\right) = 1/\bar{\epsilon} \end{array}$

If we can "change" $A_{\rm av}$ so that s=0, then that network will have performance cost $1/\bar{\epsilon}$

 $\bullet \ s := \tilde{lpha}(ar{\epsilon}, A_{\mathsf{av}})$ "smoothed spectral abscissa"

The Smoothed Spectral Abscissa

lacktriangle For a certain A_{av} the associated network performance is

Trace
$$\left(C_{\mathsf{av}} \ \mathcal{W}(A_{\mathsf{av}}, x_0) \ C_{\mathsf{av}}^{\mathsf{T}}\right) = 1/\epsilon$$

- ② Now assume we desire better performance $\bar{\epsilon} > \epsilon$
- **3** $\bar{\epsilon}$ can be obtained by making the system "faster":
 - We shift: $A_{\mathsf{av}} \to A_{\mathsf{av}} sI$ (s variable)
 - Then: $\operatorname{Trace}\left(C_{\mathsf{av}}\ \mathcal{W}(A_{\mathsf{av}}-sI,x_0)\ \dot{C}_{\mathsf{av}}^{\mathsf{T}}\right)=1/\bar{\epsilon}$

If we can "change" $A_{\rm av}$ so that s=0, then that network will have performance cost $1/\bar{\epsilon}$

 $\bullet \ s := \tilde{lpha}(ar{\epsilon}, A_{\mathsf{av}})$ "smoothed spectral abscissa"

The Smoothed Spectral Abscissa

lacktriangle For a certain A_{av} the associated network performance is

Trace
$$\left(C_{\mathsf{av}} \ \mathcal{W}(A_{\mathsf{av}}, x_0) \ C_{\mathsf{av}}^{\mathsf{T}}\right) = 1/\epsilon$$

- 2 Now assume we desire better performance $\bar{\epsilon} > \epsilon$
- 3 $\bar{\epsilon}$ can be obtained by making the system "faster":
 - We shift: $A_{\mathsf{av}} \to A_{\mathsf{av}} sI$ (s variable)
 - Then: $\operatorname{Trace}\left(C_{\mathsf{av}}\ \mathcal{W}(A_{\mathsf{av}}-sI,x_0)\ \dot{C}_{\mathsf{av}}^{\mathsf{T}}\right)=1/\bar{\epsilon}$

If we can "change" $A_{\rm av}$ so that s=0, then that network will have performance cost $1/\bar{\epsilon}$

 $oldsymbol{0} s := ilde{lpha}(ar{\epsilon}, A_{\mathsf{av}})$ "smoothed spectral abscissa"

Optimizing Controllability Metrics: Numerical Methods

$$\begin{aligned} \min_{d_1,\dots,d_m} & & |\alpha_{\bar{\epsilon}}(A_{\mathsf{av}})| \\ \text{subject to} & & A_{\mathsf{av}} = \frac{1}{T} \left(d_1 A_1 + \dots + d_m A_m \right) \\ & & & T = d_1 + \dots + d_m \\ & & & d_i \geq 0, \quad i \in \{1,\dots,m\} \end{aligned}$$

Gradient Descent

Descent direction for cost function

$$\frac{\partial \alpha_{\epsilon}(A_{\mathsf{av}})}{\partial d} = \operatorname{vec}\left(\frac{QP}{\operatorname{Trace}(QP)}\right) \frac{\partial A_{\mathsf{av}}}{\partial d}$$

where P, Q solve the Lyapunov equations

$$XP + PX^{\mathsf{T}} + x_0 x_0^{\mathsf{T}} = 0,$$
 $X^{\mathsf{T}}Q + QX + C_{\mathsf{av}}C_{\mathsf{av}}^{\mathsf{T}} = 0$

and
$$X = A_{av} - \alpha_{\epsilon}(A_{av})I$$

Optimizing Controllability Metrics: Numerical Methods

$$\begin{aligned} \min_{d_1,\dots,d_m} & & |\alpha_{\overline{\epsilon}}(A_{\mathsf{av}})| \\ \text{subject to} & & A_{\mathsf{av}} = \frac{1}{T} \left(d_1 A_1 + \dots + d_m A_m \right) \\ & & & T = d_1 + \dots + d_m \\ & & & d_i \geq 0, \quad i \in \{1,\dots,m\} \end{aligned}$$

Gradient Descent

Descent direction for cost function

$$\frac{\partial \alpha_{\epsilon}(A_{\mathsf{av}})}{\partial d} = \operatorname{vec}\left(\frac{QP}{\operatorname{Trace}\left(QP\right)}\right) \frac{\partial A_{\mathsf{av}}}{\partial d}$$

where P, Q solve the Lyapunov equations

$$XP + PX^{\mathsf{T}} + x_0 x_0^{\mathsf{T}} = 0,$$
 $X^{\mathsf{T}}Q + QX + C_{\mathsf{av}}C_{\mathsf{av}}^{\mathsf{T}} = 0$

and
$$X = A_{\mathsf{av}} - \alpha_{\epsilon}(A_{\mathsf{av}})I$$

Optimizing Controllability via Gradient-Descent

$$\begin{aligned} \min_{l_1,\dots,d_m} & \quad |\alpha_{\bar{\epsilon}}(A_{\mathsf{av}})| \\ \text{s.t.} & \quad A_{\mathsf{av}} = \frac{1}{T} \left(d_1 A_1 + \dots + d_m A_m \right) \\ & \quad T = d_1 + \dots + d_m \\ & \quad d_i \geq 0, \quad i \in \{1,\dots,m\} \end{aligned}$$

Line search over $\bar{\epsilon}$

```
Input: Matrix C_{av}, vector x_0, scalars \xi, \mu
Output: \{d_1^*, \dots d_m^*, \epsilon^*\}
Initialize: d^{(0)}, \bar{\epsilon} = 0, k = 1
while \tilde{\alpha}_{\bar{\epsilon}}^{(k)}=0 do
        repeat
                  Compute \tilde{\alpha}_{\bar{\epsilon}}^{(k)}:
                  Solve for P and Q:
                    (A_{\mathsf{av}}^{(k)} - \alpha_{\bar{e}}^{(k)}I)P + P(A_{\mathsf{av}}^{(k)} - \alpha_{\bar{e}}^{(k)}I)^{\mathsf{T}} + x_0x_0^{\mathsf{T}} = 0;
                     (A_{\mathsf{av}}^{(k)} - \alpha_{\bar{e}}^{(k)}I)^{\mathsf{T}}Q + Q(A_{\mathsf{av}}^{(k)} - \alpha_{\bar{e}}^{(k)}I) + C_{\mathsf{av}}C_{\mathsf{av}}^{\mathsf{T}} = 0;
                 \frac{\partial \alpha_{\bar{\epsilon}}^{(k)}}{\partial d} \leftarrow \frac{QP}{\text{Trace}(QP)};
                 \nabla \leftarrow \tilde{\alpha}_{\bar{\epsilon}} \frac{\partial \alpha_{\bar{\epsilon}}^{(k)}}{\partial J};
                  Compute projection matrix \mathcal{P}^{(k)};
                 d^{(k)} \leftarrow d^{(k)} - \mu \ \mathcal{P}^{(k)} \nabla:
                  A_{\mathsf{av}}^{(k)} \leftarrow \frac{1}{T} \left( d_1 A_1 + \dots + d_m A_m \right);
        until \mathcal{P}^{(k)}\nabla = 0.
        \bar{\epsilon} \leftarrow \bar{\epsilon} + \mathcal{E}:
end
return d:
```

Test Case: Manhattan, NY

Test Case: Manhattan, NY

Top: green split timing from network-wide optimization

Summary

Motivation: extremely challenging to perform network-wide control

Approximate model: tradeoff between complexity and accuracy

• Give insights to overcome suboptimalities of distributed control

Approximations lead to optimization that performs very well in practice

- Manhattan, NY
- SUMO online code: github.com/gianlucaBianchin

Directions

- Include effects of congestion
- Use framework for design other control variables (speed limits)

Summary

Motivation: extremely challenging to perform network-wide control

Approximate model: tradeoff between complexity and accuracy

• Give insights to overcome suboptimalities of distributed control

Approximations lead to optimization that performs very well in practice

- Manhattan, NY
- SUMO online code: github.com/gianlucaBianchin

Directions

- Include effects of congestion
- Use framework for design other control variables (speed limits)

Summary

Motivation: extremely challenging to perform network-wide control

Approximate model: tradeoff between complexity and accuracy

• Give insights to overcome suboptimalities of distributed control

Approximations lead to optimization that performs very well in practice

- Manhattan, NY
- SUMO online code: github.com/gianlucaBianchin

Directions:

- Include effects of congestion
- Use framework for design other control variables (speed limits)

A Network Optimization Framework for the Control of Traffic Dynamics and Intersection Signaling

Gianluca Bianchin, Fabio Pasqualetti

Department of Mechanical Engineering University of California, Riverside

IEEE Conference on Decision and Control December 17, 2018 | Miami Beach, FL, USA

Distributed Computation of Descent Direction

- We want to solve: $\Lambda X + X \Lambda^{\mathsf{T}} + D = 0$ where $\Lambda = \Lambda_1 + \cdots + \Lambda_{\nu}$
- ullet each agent i knows Λ_i

Each agent i constructs a local estimate $\hat{X}_i^{(k)}$ by performing the following operations in order:

- **1** Receive $\hat{w}_{j}^{(k)}$ and $K_{j}^{(k)}$ from neighbor j;
- $\hat{\boldsymbol{w}}_i^{(k+1)} = \hat{w}_i^{(k)} + [K_i^{(k)} \ 0][K_i^{(k)} \ K_j^{(k)}]^{\dagger} (\hat{w}_i^{(k)} \hat{w}_j^{(k)});$
- Transmit $\hat{w}_i^{(k+1)}$ and $K_i^{(k+1)}$ to neighbor j;

Controllability of Traffic Networks in Free Flow

$$\min_{d_1, \dots, d_m} \quad \operatorname{Trace} \left(C_{\mathsf{av}} \ \mathcal{W}(A_{\mathsf{av}}, x_0) \ C_{\mathsf{av}}^{\mathsf{T}} \right)$$

 \Rightarrow Cost function is finite if $\{d_1,\ldots,d_m\}$ leads to $A_{\sf av}$ that is Hurwitz

(Thm) Stability of optimal solutions = Graph-theoretic property

If there exists a path in $\mathcal N$ between any source $s\in\mathcal S$ and some destination $d\in\mathcal D$, then there exists $\{d_1,\ldots,d_m\}$:

$$\alpha(A_{\rm av})<0$$

Spectral abscissa of A_{av}

$$\alpha(A_{\mathsf{av}}) := \sup \{ \Re(s) : s \in \mathbb{C}, \det(sI - A_{\mathsf{av}}) = 0 \}$$