The University of Texas at Arlington

Lecture 5 PIC I/O and LCD Control

CSE 3442/5442 Embedded Systems I

Based heavily on slides by Dr. Gergely Záruba and Dr. Roger Walker

Digital Input/Output

Only two states

- ON / OFF
- HIGH / LOW
- -1/0

Chapter 4 – PIC I/O PORT PROGRAMMING

- Ports are not only used for simple I/O, but also can be used other functions
 - ADC (analog-to-digital conversion)
 - Timers
 - Oscillator Input
 - Interrupts
 - Serial communication
 - Capturing and Generating PWM Signals
 - Programming the PIC

PIC18F452 Pin Diagram

Pin 5: RA3/AN3/Vref+

						PORTA is a bi-directional I/O port.
RA0/AN0 RA0 AN0	2	3	19	I/O I	TTL Analog	Digital I/O. Analog input 0.
RA1/AN1 RA1 AN1	3	4	20	I/O I	TTL Analog	Digital I/O. Analog input 1.
RA2/AN2/VREF- RA2 AN2 VREF-	4	5	21	I/O I I	TTL Analog Analog	Digital I/O. Analog input 2. A/D Reference Voltage (Low) input.
RA3/AN3/VREF+ RA3 AN3 VREF+	5	6	22	I/O I I	TTL Analog Analog	Digital I/O. Analog input 3. A/D Reference Voltage (High) input.
RA4/T0CKI RA4 T0CKI	6	7	23	I/O I	ST/OD ST	Digital I/O. Open drain when configured as output. Timer0 external clock input.
RA5/AN4/SS/LVDIN RA5 AN4 SS LVDIN	7	8	24	I/O I I	TTL Analog ST Analog	Digital I/O. Analog input 4. SPI Slave Select input. Low Voltage Detect Input.
RA6						(See the OSC2/CLKO/RA6 pin.)

PIC18F452 (40 Pins) has 5 ports, other Family Members Can Have More or Less

Table 4-1: Number of Ports in PIC18 Family Members

Pins	18-pin	28-pin	40-pin	64-pin	80-pin
Chip	PIC18F1220	PIC18F2220	PIC18F458	PIC18F6525	PIC18F8525
Port A	X	X	X	X	X
Port B	X	X	X	X	X
Port C		X	X	X	X
Port D			X	X	X
Port E			X	X	X
Port F				X	X
Port G				X	X
Port H				X	X
Port J				X	X
Port K					X
Port L					X

Note: X indicates that the port is available.

PIC18F452 Pin Diagram 5 Ports

Number of Individual Port Pins

- For example, the PIC18F452
 - Port A has 7 pins
 - Ports B, C, and D each have 8 pins
 - Port E has only 3 pins
 - →34 total digital IO pins
- Each port has three SFRs associated
 - PORTx
 - TRISx (TRIState)
 - LATx (LATch)

SFRs in the File Registers

SFRs in the File Registers

FAOh	PIE2
FA1h	PIR2
FA2h	IPR2
FA3h	
F A4h	
FA5h	
FA6h	
FA7h	
FA8h	
FA9h	
FAAh	
FABh	RCSTA
FACh	TXSTA
FADh	TXREG
FAEh	RCREG
FAFh	SPBRG
FBOh	
FB1h	T3C ON
FB2h	TMR3L
FB3h	TMR3H
FB4h	
FB5h	
FB6h	
FB7h	
FB8h	
FB9h	
FBAh	CCP2CON
FBBh	CCPR2L
FBCh	CCPR2H
FBDh	CCP1CON
FBEh	CCPR1L
FBFh	CCPR1H

FCOh	
FC1h	ADC ON1
FC2h	ADC ONO
FC3h	ADRESL
FC4h	ADRESH
FC5h	SSPC ON2
FC6h	SSPC ON1
FC7h	SSPSTAT
FC8h	SSPADD
FC9h	SSPBUF
FCAh	T2CON
FCBh	PR2
FCCh	TMR2
FCDh	T1CON
FCEh	TMR 1L
FCFh	TMR1H
FDOh	RCON
FD1h	WDTCON
FD2h	LVDCON
FD3h	OSCCON
FD4h	
FD5h	TOCON
FD6h	TMROL
FD7h	TMROH
FD8h	STATUS
FD9h	FSR2L
FDAh	FSR2H
FDBh	PLUSW2
FDCh	PREINC2
FDDh	POSTDEC2
FDEh	POSTINC2
FDFh	INDF2

FEOh	BSR	
FE1h	FSR1L	
FE2h	F SR 1H	
FE3h	PLUSW1	ľ
FE4h	PREINC1	×
FE5h	POSTDEC1	ľ
FE6h	POSTINC1	ľ
FE7h	INDF1	ľ
FE8h	WREG	
FE9h	FSROL	
FEAh	FSROH	
FEBh	PLUSWO	ľ
FECh	PREINCO	ľ
FEDh	POSTDECO	ľ
FEEh	POSTINCO	ľ
FEFh	IND FO	ľ
F FOh	INTCONS	
FF1h	INTCON2	
FF2h	INTCON	
F F3h	PRODL	
FF4h	PRODH	
F F5h	TABLAT	
F F6h	TBLPTRL	
FF7h	TBLPTRH	
FF8h	TBLPTRU	
F F9h	PCL	
FF.Ah	PCLATH	l
FFBh	PCLATU	
FFCh	STKPTR	
FFDh	TOSL	
FFEh	T ₫\$0 H	
FFFh	TOSU	

TRISx

- Each of the Ports A-E in the PIC18F452 can be used for input or output
 - TRISx SFR is used solely for the purpose of making a given port an input or output port
 - TRISx bit = 0 → PORTx bit is an OUTPUT
 - Can now <u>write to</u> the PORTx bit(s)
 - TRISx bit = 1 → PORTx bit is an INPUT
 - Can now <u>read in</u> from the PORTx bit(s)
 - Can set I/O bit-by-bit or whole TRIS at once

PORTx and LATx

PORTx

- For <u>reading</u> input coming into the PIC
 - Digital High (1) or Low (0)
- For writing output from the PIC
 - Writing a 1 \rightarrow pin is High, 0 \rightarrow pin is Low

• LATx

- For writing output from the PIC
 - Writing a 1 \rightarrow pin is High, 0 \rightarrow pin is Low
- Point of the Latch??

PORTB Example

TABLE 9-4: SUMMARY OF REGISTERS ASSOCIATED WITH PORTB

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on All Other RESETS
PORTB	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	xxxx xxxx	uuuu uuuu
LATB	LATB Data Output Register							xxxx xxxx	uuuu uuuu	
TRISB	PORTB	PORTB Data Direction Register						1111 1111	1111 1111	
INTCON	GIE/ GIEH	PEIE/ GIEL	TMR0IE	INTOIE	RBIE	TMR0IF	INTOIF	RBIF	0000 000x	0000 000u
INTCON2	RBPU	INTEDG0	INTEDG1	INTEDG2	_	TMR0IP	_	RBIP	1111 -1-1	1111 -1-1
INTCON3	INT2IP	INT1IP	_	INT2IE	INT1IE	_	INT2IF	INT1IF	11-0 0-00	11-0 0-00

Legend: x = unknown, u = unchanged. Shaded cells are not used by PORTB.

N and **P** Transistors

N and **P** Transistors

Outputting a 0

Figure 4-3. Outputting (Writing) 0 to a Pin in the PIC18

MikroElektronika (img source)

http://learn.mikroe.com/ebooks/picbasicprogramming/chapter/input-output-ports/

MikroElektronika (img source)

http://learn.mikroe.com/ebooks/picbasicprogramming/chapter/input-output-ports/

Addresses of SFR, PORTx, TRISx (TRIState), and LATx (LATch)

TABLE 4-1: SPECIAL FUNCTION REGISTER MAP

Address	Name	Address	Name	Address	Name	Address	Name
FFFh	TOSU	FDFh	INDF2 ⁽³⁾	FBFh	CCPR1H	F9Fh	IPR1
FFEh	TOSH	FDEh	POSTINC2(3)	FBEh	CCPR1L	F9Eh	PIR1
FFDh	TOSL	FDDh	POSTDEC2(3)	FBDh	CCP1CON	F9Dh	PIE1
FFCh	STKPTR	FDCh	PREINC2 ⁽³⁾	FBCh	CCPR2H	F9Ch	_
FFBh	PCLATU	FDBh	PLUSW2 ⁽³⁾	FBBh	CCPR2L	F9Bh	_
FFAh	PCLATH	FDAh	FSR2H	FBAh	CCP2CON	F9Ah	_
FF9h	PCL	FD9h	FSR2L	FB9h	_	F99h	_
FF8h	TBLPTRU	FD8h	STATUS	FB8h	_	F98h	_
FF7h	TBLPTRH	FD7h	TMR0H	FB7h	_	F97ii	_
FF6h	TBLPTRL	FD6h	TMR0L	FB6h	_	F96h	TRISE ⁽²⁾
FF5h	TABLAT	FD5h	T0CON	FB5h	_	F95h	TRISD ⁽²⁾
FF4h	PRODH	FD4h		FB4h	_	F94h	TRISC
FF3h	PRODL	FD3h	OSCCON	FB3h	TMR3H	F93h	TRISB
FF2h	INTCON	FD2h	LVDCON	FB2h	TMR3L	F92h	TRISA
FF1h	INTCON2	FD1h	WDTCON	FB1h	T3CON	F91h	_
FF0h	INTCON3	FD0h	RCON	FB0h	_	F90h	_
FEFh	INDF0 ⁽³⁾	FCFh	TMR1H	FAFh	SPBRG	F8Fh	_
FEEh	POSTINC0(3)	FCEh	TMR1L	FAEh	RCREG	F8Eh	_
FEDh	POSTDEC0 ⁽³⁾	FCDh	T1CON	FADh	TXREG	F8Dh	LATE ⁽²⁾
FECh	PREINC0 ⁽³⁾	FCCh	TMR2	FACh	TXSTA	F8Ch	LATD ⁽²⁾
FEBh	PLUSW0 ⁽³⁾	FCBh	PR2	FABh	RCSTA	F8Bh	LATC
FEAh	FSR0H	FCAh	T2CON	FAAh	_	F8Ah	LATB
FE9h	FSR0L	FC9h	SSPBUF	FA9h	EEADR	F89h	LATA
FE8h	WREG	FC8h	SSPADD	FA8h	EEDATA	F88h	_
FE7h	INDF1 ⁽³⁾	FC7h	SSPSTAT	FA7h	EECON2	F87h	_
FE6h	POSTINC1(3)	FC6h	SSPCON1	FA6h	EECON1	F86h	_
FE5h	POSTDEC1 ⁽³⁾	FC5h	SSPCON2	FA5h	_	F85h	_
FE4h	PREINC1 ⁽³⁾	FC4h	ADRESH	FA4h	_	F84h	PORTE ⁽²⁾
FE3h	PLUSW1 ⁽³⁾	FC3h	ADRESL	FA3h	_	F83h	PORTD ⁽²⁾
FE2h	FSR1H	FC2h	ADCON0	FA2h	IPR2	F82h	PORTC
FE1h	FSR1L	FC1h	ADCON1	FA1h	PIR2	F81h	PORTB
FE0h	BSR	FC0h	_	FA0h	PIE2	F80h	PORTA

CSF@UI	⁷ – ı
F97h	_
F96h	TRISE ⁽²⁾
F95h	TRISD ⁽²⁾
F94h	TRISC
F93h	TRISB
F92h	TRISA
F91h	_
F90h	_
F8Fh	_
F8Eh	_
F8Dh	LATE ⁽²⁾
F8Ch	LATD ⁽²⁾
F8Bh	LATC
F8Ah	LATB
F89h	LATA
F88h	_
F87h	_
F86h	_
F85h	_
F84h	PORTE ⁽²⁾
F83h	PORTD ⁽²⁾
F82h	PORTC
F81h	PORTB
F80h	PORTA

PORTB EQU 0XF81 ;in .H header file TRISB EQU 0XF93 ;in .H header file

ORG 0x00

MOVLW 0 ;All 0's to WREG

MOVWF TRISB ;All of PORTB is an OUTPUT

MOVLW B'10101010'

PORTB EQU 0XF81 ;in .H header file TRISB EQU 0XF93 ;in .H header file

ORG 0x00

MOVLW 0 ;All 0's to WREG

MOVWF TRISB ; PORTB is an OUTPUT

MOVLW B'10101010'

```
WREG = ?
TRISB = ?
PORTB = ?
```

```
Direction
            Pin Value
(TRISB)
            (PORTB)
              RB7/ ?
 40
            RB6/ ?
 39
            ► RB5/ ?
 38
            → RB4 ?
? 37
            ➤ RB3/ ?
? 36
              RB2/ ?
? 35
            ➤ RB1/ ?
 34
? 33
            ➤ RB0/ ?
            – VDD
  32
             Vss
  31
            ► RD7/
  30
            ➤ RD6/
  29
            ► RD5/
```


PORTB EQU 0XF81 ;in .H header file TRISB EQU 0XF93 ;in .H header file

ORG 0x00

MOVLW 0 ;All 0's to WREG

MOVWF TRISB ; PORTB is an OUTPUT

MOVLW B'10101010'

```
WREG = 0000 0000
TRISB = ?
PORTB = ?
```

```
Pin Value
Direction
            (PORTB)
(TRISB)
              RB7/ ?
 40
            RB6/ ?
 39
            ► RB5/ ?
 38
            → RB4 ?
? 37
            ➤ RB3/ ?
? 36
              RB2/ ?
? 35
            ➤ RB1/ ?
 34
? 33
            ➤ RB0/ ?
            – VDD
  32
             Vss
  31
            ► RD7/
  30
            ➤ RD6/
  29
            ► RD5/
```


PORTB EQU 0XF81 ;in .H header file TRISB EQU 0XF93 ;in .H header file

ORG 0x00

MOVLW 0 ;All 0's to WREG

MOVWF TRISB ;PORTB is an OUTPUT

MOVLW B'10101010'

```
WREG = 0000 0000
TRISB = 0000 0000
PORTB = ?
```

```
Pin Value
Direction
          (PORTB)
(TRISB)
0.40
        → RB7/ ?
        → RB6/ ?
0 39
        → RB5/ ?
0 38
        → RB4 ?
0 37
        → RB3/ ?
0 36
        → RB2/ ?
0 35
        → RB1/ ?
0 34
        → RB0/ ?
0 33
          — Vdd
 32
          Vss
 31
          ► RD7/
 30
          ➤ RD6/
 29
          ► RD5/
```


PORTB EQU 0XF81 ;in .H header file TRISB EQU 0XF93 ;in .H header file

ORG 0x00

MOVLW 0 ;All 0's to WREG

MOVWF TRISB ; PORTB is an OUTPUT

MOVLW B'10101010'

```
WREG = 1010 1010
TRISB = 0000 0000
PORTB = ?
```

```
Pin Value
Direction
(TRISB)
          (PORTB)
0.40
        → RB7/ ?
        → RB6/ ?
0 39
        → RB5/ ?
0 38
        → RB4 ?
0 37
        → RB3/ ?
0 36
        → RB2/ ?
0 35
        → RB1/ ?
0 34
        → RB0/ ?
0 33
          — Vdd
 32
          Vss
 31
          ► RD7/
 30
          ➤ RD6/
 29
          ► RD5/
```


PORTB EQU 0XF81 ;in .H header file TRISB EQU 0XF93 ;in .H header file

ORG 0x00

MOVLW 0 ;All 0's to WREG

MOVWF TRISB ;PORTB is an OUTPUT

MOVLW B'10101010'

MOVWF PORTB ;Write 1/0 to PORTB pins

WREG = 1010 1010 TRISB = 0000 0000 PORTB = 1010 1010

PORTB EQU 0XF81 ;in .H header file TRISB EQU 0XF93 ;in .H header file

ORG 0x00

MOVLW 0 ;All 0's to WREG

MOVWF TRISB ; PORTB is an OUTPUT

MOVLW B'10101010'

MOVWF PORTB ;Write 1/0 to PORTB pins

WREG = 1010 1010 TRISB = 0000 0000 PORTB = 1010 1010

► RD5/

PORTB EQU 0XF81 ;in .H header file TRISB EQU 0XF93 ;in .H header file

ORG 0x00

MOVLW 0 ;All 0's to WREG

MOVWF TRISB ; PORTB is an OUTPUT

MOVLW B'10101010'

MOVWF PORTB ;Write 1/0 to PORTB pins

WREG = 1010 1010 TRISB = 0000 0000 PORTB = 1010 1010

Example PORTA as an INPUT

In order to make all the bits of Port A an input, TRISA must be programmed by writing 1 to all the bits. In the code below, Port A is configured first as an input port by writing all 1 s to register TRISA, and then data is received from Port A and saved in some RAM location of the file registers:

MYREG EQU 0X20 ;Program location (RAM)

MOVLW B'111111111' ;All 1's to WREG

MOVWF TRISA ;PORTA as INPUT port (1 for In)

MOVF PORTA, W ;move from filereg of PORTA to WREG

MOVWF MYREG ;save in fileReg of MYREG

Register bit manipulation

- Bit set flag
 - BSF filereg, bit

BSF TRISB, 4

- Bit clear flag
 - BCF filereg, bit

BCF PORTB, 2

- Bit toggle flag
 - BTF filereg, bit
- Bit test filereg skip next instruction if clear (0)
 - BTFSC filereg, bit
- Bit test filereg skip next instruction if set (1)
 - BTFSS filereg, bit

Working with I/O Ports in C Whole BYTES at a Time

```
//OLD → #include <p18F452.h>
#include <xc.h>
void main(void)
   unsigned char mybyte;
   TRISC = 0b111111111; //PORTC is input
   TRISB = 0b00000000; //PORTB is output
   TRISD = 0b00000000; //PORTD is output
   while(1)
        mybyte = PORTC; //load the value of PORTC
        if(mybyte < 100)
                PORTB = mybyte; //send it to PORTB is it is less than 100
        else
                PORTD = mybyte; //otherwise, send to PORTD
```


Working with I/O Ports in C Single BITS at a Time

```
#include <xc.h>
                          //OLD \rightarrow \#include < p18F452.h >
void main(void)
   unsigned char mybyte;
   TRISC = 0b111111111; //PORTC is input
   TRISB = 0b00000000; //PORTB is output
   TRISBbits.RB4 = 1;
   while(1)
         mybyte = PORTC; //load the value of PORTC
        if(mybyte < 100)
                 PORTB = mybyte; //send it to PORTB is it is less than 100
        else
                 PORTD = mybyte; //otherwise, send to PORTD
         mybyte = PORTCbits.RC1;
```


Fan-out

- Current can flow in (pin at 0 level) and out (pin at 1 level) of port pins.
- This current is limited by the design of the IC.
- Fan-out is really the number of logic gates a pin can drive but is closely connected to the total current of pins.
- Arguably, for microcontrollers it is more important to remember the total current drawn (see LEDs driven in QwikFlash)

Maximum output current sunk by any I/O pin	25 mA
Maximum output current sourced by any I/O pin	
Maximum current sunk by PORTA, PORTB, and PORTE (Note 3) (combined)	200 mA

Example of Interfacing PIC to Components on QwikFlash

Example of Interfacing PIC to Components on QwikFlash

Example: Parallel Digital Output LCD Control

Driving LCD Controllers (textbook chapter 12, PICBook chapter 7)

LCDs

- Liquid Crystal Displays are frequently used with PICs
- Usually have their own controller for logic and receiving commands
- Commonly have parallel digital inputs where interfacing is done (there are some with serial interfaces as well)
- Usually go through some own initialization thus a couple hundred milliseconds after reset should pass before talking to them.
- Usually have to be first initialized before use.

LCD Common Pins

- Supply, "ground," and LCD contrast voltage
- Register Select (RS)
 - RS=0 for sending instructions (such as clear screen, or defining characters)
 - RS=1 for sending data to be displayed
- Enable (E)
 - Essentially a clock input; a high-low transition will cause the LCD to latch in the data on the data pins
- Data (D0-D7) or (D0-D3)
 - The parallel interface pins (can use all 8 or just 4)
- Read/Write (R/W)
 - Direction of I/O (if used only as a display, "grounding" this is necessary)

Connections to QwikFlash

LCD Module – Hitachi HD44780 onboard controller

Typical LCD Timing for Displaying (Write)

Example Initialization (Nibble Interface)

- Wait 100ms to make sure own initialization has occurred
- 2. RS=0, (all commands)
- 3. 3 times: E=1,D=3,E=0, wait
- 4. 2 times: E=1,D=2,E=0, wait (set nibble iface)
- 5. E=1,D=8,E=0, wait, E=1,D=0,E=0 (two line display)
- 6. E=1,D=1,E=0, wait, E=1,D=0,E=0 (clear display)
- 7. E=1,D=0xC,E=0, wait, E=1,D=0,E=0 (Turn off cursor, turn on display)
- 8. E=1,D=1,E=0, wait (auto cursor increment)

Cursor Positioning

- All commands (RS=0) where the MSB is set are cursor positioning commands
- Row 1 begins with 0x80 (1000 0000)
- Row 2 begins with 0XC0 (1100 0000)
- Positions are counted left to right and auto increment can be enabled (no need for cursor positioning for short strings)

Special Characters

- ASCII lower 128 characters are easy to display (just send ASCII codes) with a few exceptions
- Japanese characters at codes 0xa0 to 0xff
- Eight user defined characters 0x0 to 0x7
- All command codes (RS=0) with MSBs '01' are character generating commands
- 5x8 characters are then defined by sending their bitmaps (sending 8 bytes where upper three bits are always ignored)

Debugging

- LCDs (as they are displays) are a great tool for debugging embedded code.
- Of course we need to assume that the microcontroller works
- Displaying variables and port statuses can be very helpful

Questions?

- Textbook Ch. 4.1 and 4.2 for PIC IO examples and more details
- Textbook Ch. 12.1 for LCD details
- LCD Videos
 - https://www.youtube.com/watch?v=mo4_5vG8bbU&t =1438s
 - https://www.youtube.com/watch?v=ZP0KxZI5N2o
 - https://www.youtube.com/watch?v=85LvW1QDLLw

- Start reading Chapter 7
 - PIC Programming in C