

- Tropospheric effects on Q-band LEO satellite payload and design of future W band systems
 - ☐ Design of Alphasat payload: EIRP calculation in Q band
 - □ Design of a W band system
 - □ Report
 - Calculation of tropospheric effects (using RAPIDS II)
 - Including the effect of varying elevation angle (using ITU-R)
 - Comparison between
 - □ 2 Earth stations (per group)
 - □ 2 frequency bands (Q and W)
 - Tools
 - RAPIDS II software
 - ITU-R recommendations (on moodle) and python packages (e.g. SkyField)
 - Link budget analysis (cfr. this presentation)

 $P_R = \frac{P_T G_T G_R}{L L_T L_R}$

- P_R received power where
 - P_T emitted power

 G_T gain of the emitting antenna (dBi)

 G_R gain of the receiving (dBi)

L free space losses

 $L_{T,R}$ feeder losses (transmitter, receiver)

■ Effective isotropic radiated power (EIRP)

$$EIRP = \frac{P_T G_T}{L_T} = P_{TI}$$

Effective isotropic received power

$$P_{RI} = \frac{P_R L_R}{G_R}$$

Free space losses

$$L_{dB} = 10 \log \left(\frac{P_{TI}}{P_{RI}} \right)$$

UCLouvain

Free space loss

Example: identical EIRP produced by two different systems

JCLouvain

Free space loss: from Tx to Rx

Assuming two antennas with matched polarizations, the power density arriving at the receiving antenna is (taking L_T = 1)

$$S = \frac{P_T G_T}{4\pi r^2} \quad (W/m^2)$$

• Power received by Rx antenna (taking L_R = 1)

$$P_R = \frac{P_T G_T A_{eR}}{4\pi r^2} \quad (W)$$

 $\hfill\Box$ where A_{eR} is the effective area of the receiving antenna

$$G_R = \frac{4\pi}{\lambda^2} A_{eR}$$

■ UCLouvai

Free space loss: receive antenna

■ Effective antenna area = surface multiplied by the efficiency

$$A_{eR} = \eta \left(\frac{\pi D^2}{4} \right)$$

- where η is the efficiency (typically 0.55 for a parabolic antenna and 0.75 for a horn) and D is the antenna diameter
- For a directive antenna, the gain and the received power depend on the direction $(\theta, \varphi) \rightarrow$ directivity

$$D(\vartheta, \varphi) = \frac{P(\vartheta, \varphi)}{P_t/4\pi}$$

UCLouvain

Free space loss vs. frequency

$$\begin{split} P_R &= \frac{P_T G_T A_{eR}}{4\pi r^2} \\ P_R &= \frac{P_T A_{eT} A_{eR}}{\lambda^2 r^2} \\ P_R &= \frac{P_T A_{eT} G_R}{4\pi r^2} \\ P_R &= \frac{P_T G_T G_R \lambda^2}{(4\pi r)^2} \end{split}$$

- \blacksquare Assuming that the diameters of the antennas are fixed, A_{eT} and A_{eR} are the fixed variables
 - □ In that case, the second equation is used → the power increases as the square of frequency

UCLouvain

Free space loss

Path-loss

$$L = \left(\frac{P_{TI}}{P_{RI}}\right) = \frac{P_T G_T}{\left(\frac{P_R}{G_R}\right)} = \frac{P_T G_T G_R}{P_R}$$

$$P_R = \frac{EIRP G_R \lambda^2}{(4\pi r)^2} = \frac{EIRP G_R}{L}$$

$$L = \left(\frac{4\pi r}{\lambda}\right)^2$$

■ UCLouvain

- System design
 - ☐ For performance evaluation the signal-to-noise ratio (SNR) is on eof the most important metric

$$SNR = \frac{P_R}{N} = \frac{EIRP G_R}{NL}$$

- Evaluation of signal level
 - Should account for all system gain/loss (antennas, amplifiers, cables, etc.)
 - Should include tropospheric degradations
 - EIRP is the design target parameter
- Evaluation of noise power
 - Thermal noise (AWGN)

$$N = kTB$$
 (W)

$$\frac{P_R}{N} = \frac{EIRP G_R}{BN_0 L} = \frac{EIRP G_R/T}{BkL_{TOT}}$$

$$\frac{P_R}{N_0} = \frac{EIRP G_R/T}{kL_{TOT}}$$

$$\frac{P_R}{N_0} = \frac{EIRP \ G_R/T}{kL_{TOT}}$$

UCLouvair

Link budget: reminder about noise

Thermal noise

$$N = kTB$$
 (W)

- Noise figure and temperature
 - ☐ Measures the SNR degradation by a quadripole

$$F = \frac{(S/N)_1}{(S/N)_2}$$

$$F - 1 = \frac{T}{T} \quad ; \quad T = T_0(F - 1)$$

 $F-1=\frac{T}{T_0}$; $T=T_0(F-1)$

Cascaded quadripoles

$$F_{12} = F_1 + \frac{F_2 - 1}{G_1}$$

Link budget: SNR margin and service availability

 A security margin is generally added at link level in order to enable some degradation to occur before the link cuts off

$$\frac{P_R}{N_0} = M \left(\frac{P_R}{N_0}\right)_{req}$$

$$M(dB) = \left(\frac{P_R}{N_0}\right) - \left(\frac{P_R}{N_0}\right)_{req}$$

$$M = \frac{EIRP G_R/T}{(P_R/N_0)_{reg} kL_{TOT}}$$

- Tropospheric degradations are random
 - □ Need to define the service availability to estimate the attenuation

UCLouvain

Tx power	20	dBW
Tx circuit loss	2	dB
Antenna gain	51.6	dBi
EIRP (P_TG_T)	69.6 202.7	dBW dB
Free space loss		
Tropospheric loss (depending on availability)	4	dB
Micellaneous loss	6 -143.1 35.1 2	dB dBW dB dB
Received isotropic power		
Rx antenna gain		
Misalignment loss (antenna lobe)		
Received power P_R	-110	dBW
Rx noise factor <i>F</i>	11.5	dB
Rx noise temperature = 3806 K	35.8	dBK
Antenna temp. (sky noise) = 300K	24.8	dBK
System noise temp. = 4106K	36.1	dBK
Rx sensitivity G/T	-1	dB/K
$N_0 = kT$	-192.5	dBW/H
$SNR = P_R/N_0$	82.5	dB (Hz)

Project schedule					
November	Mon 8	3-4	Atmospheric Propagation and Satellite Systems: Introduction Extinction and Depolarization by Hydrometeors (1)		
	Thu 11	7-8	- (Armistice day)		
	Mon 15	3-4	Project: introduction and organisation		
	Thu 18	7-8	Project: RAPIDS lab session		
	Mon 22	3-4	Extinction and Depolarization by Hydrometeors (2)		
	Thu 25	7-8	Project: RAPIDS lab session		
	Mon 29	3-4	Gaseous Absorption and Tropospheric Radiometry		
December	Thu 2	7-8	Tropospheric Scintillation, Refraction and Multipaths		
	Mon 6	3-4	Project: RAPIDS lab session		
	Thu 9	7-8	Ionospheric Propagation – Remote Sensing, SatCom and GNSS		
	Mon 13	3-4	Project: preliminary presentation		
	Thu 16	7-8	Project: preliminary presentation		

Project practicalities

- Teaching assistant for propagation project
 - Mojtaba Razavian
- Project includes three lab sessions
 - ☐ Two supervised sessions with your own laptop
 - ☐ Third session is on request (consultancy)
- Project deliverables
 - □ Preliminary presentation (non-certificative) on Dec 13 or Dec 16, 2021
 - $\hfill\Box$ Final report on moodle by the ELEC2910 exam starting time in January
- Evaluation (reminder)
 - □ Propagation project accounts for 1/3 of the final LELEC2910 grade (6.7/20)
 - □ No exam on propagation part in January

UCLouvain