Московский физико-технический университет Факультет радиотехники и кибернетики

Лабораторная работа № 4.2.1 (Общая физика: оптика)

Кольца Ньютона

Работу выполнил: **Милославов Глеб, группа Б01-103**

г. Долгопрудный 2023 год

Цель работы: познакомиться с явлением интерференции в тонких плёнках (полосы равной толщины) на примере колец Ньютона и с методикой интерференционных измерений кривизны стеклянной поверхности.

Оборудование: измерительный микроскоп с опак-иллюминатором, плоско-выпуклая линза; пластинка из чёрного стекла, ртутная лампа типа ДРШ, щель, линзы, призма прямого зрения, объектная шкала.

1 Теоретическое введение

Рис. 1: Ход интерфирирующих лучей

Этот классический опыт используется для определения радиуса кривизны сферических поверхностей линз. В этом опыте наблюдается интерференция волн, отражённых от границ тонкой воздушной прослойки, образованной сферической поверхностью линзы и плоской стеклянной пластиной. При нормальном падении света (рис. 1) интерференционные полосы локализованы на сферической поверхности и являются полосами равной толщины.

Геометрическая разность хода между интерферирующими лучами равна удвоенной толщине воздушного зазора 2d в данном месте. Для точки на сферической поверхности, находящейся на расстоянии r от оси системы, имеем $r^2=R^2-(R-d)^2=2Rd-d^2$, где R— радиус кривизны сферической поверхности (рис. 1).

При $R\gg d$ получим $d=r^2/2R$. С учётом измене-

ния фазы на π при отражении волны от оптически более плотной среды (на границе воздухстекло) получим оптическую разность хода интерферирующих лучей:

$$\Delta = \frac{\lambda}{2} + 2d = \frac{r^2}{2R} + \frac{\lambda}{2} \tag{1}$$

Из условия интерференционного минимума $\Delta=\frac{(2m+1)\lambda}{2},\ m=0,1,2..$ получим радиусы темных колец r_m , а из аналогичного условия максимума $\Delta=m\lambda$ радиусы светлых r_m' :

$$r_m = \sqrt{m\lambda R}, \qquad r'_m = \sqrt{\frac{(2m-1)m\lambda R}{2}}$$
 (2)

2 Экспериментальная установка

Схема экспериментальной установки приведена на рис. 2. Опыт выполняется с помощью измерительного микроскопа. На столик микроскопа помещается держатель с полированной пластинкой из чёрного стекла. На пластинке лежит исследуемая линза.

Источником света служит ртутная лампа, находящаяся в защитном кожухе. Для получения монохроматического света применяется призменный монохроматор, состоящий из конденсора K, коллиматора (щель S и объектив O) и призмы прямого зрения Π .

Эти устройства с помощью рейтеров располагаются на оптической скамье. Свет от монохроматора попадает на расположенный между объективом и окуляром микроскопа опак-иллюминатор (ОИ) специальное устройство, служащее для освещения объекта при работе в отражённом свете. Внутри опак-иллюминатора находится полупрозрачная стеклянная пластинка P, наклоненная под углом 45° к оптической оси микроскопа. Свет частично отражается от этой пластинки, проходит через объектив микроскопа и попадает на исследуемый объект. Пластинка может поворачиваться вокруг горизонтальной оси X,

Рис. 2: Экспериментальная установка

опак-иллюминатор вокруг вертикальной оси. Интерференционная картина не зависит от показателя преломления линзы и определяется величиной зазора между линзой и пластинкой (кольца равной толщины).

Сначала микроскоп настраивается на кольца Ньютона в белом свете (свете ртутной лампы), затем при помощи монохроматора выделить из спектра яркую зелёную линию и провести измерения диаметров колец в монохроматическом свете.

3 Ход работы

Оценим систематическую погрешность измерения величин на окуляре как $\sigma_l = 0.005$ (по цене деления). С помощью призмы разобьем свет ртутной лампы на зеленый ($\lambda_{\rm 3} = 546$ нм) и желтый ($\lambda_{\rm ж} = 578$ нм).

Будем последовательно измерять расстояния l_1 от верхнего края 6-ого «набора» колец до центра, затем аналогично будем измерять расстояния l_2 от нижнего края до нуля. Результаты занесем в таблицу.

таолица	Ι.	измерение	диаметров	колец	пьют	она

	Темные кольца					
m	l_1 , дел	l_2 , дел	r_m , дел	r_m^2 , дел ²		
0	2.73	0.92	0.91	0.82		
1	4.58	2.14	1.22	1.49		
2	5.01	1.62	1.91	3.63		
3	5.42	1.20	2.24	5.02		
4	5.72	0.94	2.55	6.50		
5	6.02	0.62	2.77	7.29		
6	6.32	0.38	2.97	8.82		
7	6.54	0.13	3.21	10.2		

Теперь определим калибровку окулярной шкалы. Она равна k=0,1 мм.

При биениях мы наблюдали между центрами четких систем $\Delta m=14$ полос. Вычислим отсюда разность длин волн желтого и зеленого света ртутной лампы $\Delta \lambda=\lambda_{\mathtt{ж}}-\lambda_{\mathtt{3}}=\frac{\lambda_{\mathtt{3}}}{\Delta m}=39$ нм

Рис. 3: График зависимости r_m^2 от номера m

Расчет аппроксимирующей прямой y = ax + b для темных колец:

	Estimate	Standart Error
\overline{b}	0.65	0.16
a	1.37	0.06

Определим радиус кольца. Так как $\frac{d(r_m^2)}{dm} = k^2 a_{\scriptscriptstyle
m T},$ отсюда

$$R = \frac{r_m^2}{m\lambda} = \frac{k^2 a_{\text{\tiny T}}}{\lambda_{\text{\tiny 3}}} = (2.51 \pm 0.11) \text{ cm}$$
 (3)

4 Вывод

Таким образом, исходя из экспериментального периода биений разница длин волн желтого и зеленого света ртутной лампы примерно равна $\Delta\lambda=39$ нм, в то время как табличный результат — 33 нм. Это может быть объяснено большой неточностью определения числа Δm и близостью спектров жёлтого дуплета ($\lambda_{\rm ж}=578\pm10$ нм).

Также был построен графики зависимости радиусов колец Ньютона от их номеров. Полученный результат позволил рассчитать радиус линзы — $R = (2.51 \pm 0.11)$ см . Погрешность результата 4%. Это значение было проверен с помощью определени фокусного расстояния линзы ($f \approx 5$ см) и формулы выпуклой лизны: $R = \frac{n-1}{f} \approx \frac{0.5}{5} = 2.5$ см, что попадает в одну σ -окрестность.