

• Sem. 3

Subject Code : 05MF0305

• **Subject** : AlgoTrading using Python

• Course Objectives : Students will be able :

- 1.Understand the fundamentals of algorithmic trading, including key strategies and market micro-structure.
- 2.Develop Python-based trading systems using financial data analysis and visualization techniques.
- 3.Implement technical analysis indicators and integrate machine learning for predictive trading.
- 4.Apply algorithmic trading strategies in real-world financial market through case studies and live trading simulations.
- Prerequisites : Fundamental of Python Programming.

Unit No	Topics Covered	No of Hours.
1	 Unit 1: Introduction to Algorithmic Trading Basics of Algo Trading Market Microstructure Key Trading Strategies Risk Management in Algo Trading Role of AI in Trading Case Study: HFT Firms 	08
2	 Unit 2: Python for Trading Pandas for Financial Data Matplotlib for Visualization Backtesting Strategies 	10

nt
12
าร
Trading ng ices using AI

Course Outcomes:

- Demonstrate knowledge of market microstructure, risk management, and AI-driven trading strategies.
- Utilize Python libraries for financial data analysis, backtesting, and API-based live trading.
- Implement and evaluate technical indicators such as moving averages, candlestick patterns, and momentum indicators.
- Develop and test algorithmic trading strategies using machine learning models in financial markets.

Course Outcomes - Program Outcomes Mapping Table:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8
CO1							М	Н
CO2							L	Н
CO3							М	М
CO4						М	М	

Reference Books:

- "Advances in Financial Machine Learning" Marcos López de Prado
- "Algorithmic Trading: Winning Strategies and Their Rationale" Ernie Chan
- "Python for Algorithmic Trading" Yves Hilpisch
- "Machine Learning for Asset Managers" Marcos López de Prado

Web References:

App References:

Syllabus Coverage from text /reference book & web/app reference:

Unit #	Chapter Numbers

PRACTICALS

Unit No	List of Practical	No of Hours
1	Practical:	60
	Backtesting a Simple Trading Strategy: Implement a basic moving	
	average crossover strategy using Python.	
	Understanding Market Microstructure: Analyze market orders, bid-	
	ask spreads, and slippage using real trading data.	
2	Practical:	
	Loading and Visualizing Financial Data: Use Pandas & Matplotlib to	
	analyze stock price trends.	
	Building a Simple Trading Bot: Fetch live stock prices using an API	
	(Alpaca, Yahoo Finance) and execute simulated trades.	
3	Practical:	
	 Implementing MACD and RSI Indicators: Develop a Python program to calculate MACD & RSI and generate buy/sell signals. 	
	Candlestick Pattern Recognition: Detect common patterns (Doji, Engulfing, Hammer) and visualize them using Matplotlib.	
4	Practical:	
	Developing an Automated Trading Strategy: Implement a MACD-	
	based Auto Buy/Sell Algorithm and backtest it on historical data.	
	Risk Management & Portfolio Optimization: Use Machine Learning to	
	predict stock price movements and optimize asset allocation.	