Introduction to Research Data Analysis

Myo Minn Oo

PNGIMR

2022-04-09

Outline

- Research Questions
- Introduction to Statistics
- 3 Introduction to R and RStudio
- Descriptive Statistics: Number Summary
- 5 Descriptive Statistics: categorical data
- 6 Relationship between two variables

GitHub

This slide and R Handout are available to download from GitHub.

https://github.com/myominnoo/biostats_workshop_pngimr/blob/main/slides/slides.pdf

 $https://github.com/myominnoo/biostats_workshop_pngimr/blob/main/slides/rhandout.pdf$

Section 1

Research Questions

A Good Research Question

FINER

- Feasible
- Interesting
- Novel
- Ethical
- Relevant

Our Study Outline - SARS-COV-2 Prevalence Study

Research Question: Among samples tested for COVID-19 infection at PNGIMR lab, what are the positivity rates of COVID-19 infection and predictors for being positive?

Study design: cross-sectional study

Subjects: samples that were tested RT-PCR for COVID-19 infection between September 2021 and March 2022

Outcome/Dependent variable: being positive on RT-PCR

Predictors/Independent variable: age, sex, residence, being symptomatic, previous contact, travel history, COVID-19 vaccination status, vaccination dose, number of symptoms

Potential confounders: reasons for testing

Type of Study Designs

- Cross-sectional
- Cohort
- Case-control
- Randomized control trials (RCT)

Section 2

Introduction to Statistics

What is statistics?

- Statistics the practice and study of collecting and analyzing data
- Summary statistics understanding or summary of some data

What can statistics do?

- How likely is a sample to be positive on a PCR test? Are samples more likely to be positive if people were tested at different clinic or purpose?
- What is the risk of dying if a person tested positive for COVID-19 infection? What interventions can we do to reduce the risk of death?
- A/B tests: which ads or adovacy method is more effective in getting people to test for COVID-19?

What **can't** statistics do?

• Why is antivax working?

Instead

• Are people who were tested for COVID-19 favorable toward COVID-19 vaccination?

But . . .

• Even so this won't tell us if more testing would lead to more vaccination.

Types of Statistics

Descriptive

describe and summarize data

Examples:

- 50% of samples tested positive
- 25% of people tested for COVID-19 were symptomatic
- 5% died during hospitalization

Inferential

 Use a sample of data to make inferences about a larger population

Examples:

- What percent of test samples were tested positive?
- etc

11/80

Types of data

Numeric (quantitative)

- Continuous (measured)
 - age, weight, height
 - time from sample collection to date of test result reported
- Discrete (counted)
 - number of contact persons
 - number of symptoms

Categorical (Qualitative)

- Nominal (Unordered)
 - sex (male / female)
 - province where patients live, country of origin
- Ordinal (Ordered)
 - Dose of vaccination: 0, 1, 2+ doses
 - likert scale: strong diagree, disagree, neutral, agree, strongly agree

Categorical data represented as numbers

Nominal (unordered)

- sex: male / female -> 1 / 2
- country of origin (1, 2, 3, ...)

Ordinal (ordered)

- Dose of vaccination: 0, 1, 2
- likert scale: 1, 2, 3, 4, 5

Why does data type matter?

Summary Statistics

```
mtcars %>%
    summarize(avg_speed = mean(mpg))
```

```
## avg_speed
## 1 20.09062
```


Why does data type matter?

Summary Statistics

```
mtcars %>%
  tabyl(gear) %>%
  adorn_pct_formatting()
```

```
## gear n percent
## 3 15 46.9%
## 4 12 37.5%
## 5 5 15.6%
```


Section 3

Introduction to R and RStudio

See R Handout!

Let's practice R!

Section 4

Descriptive Statistics: Number Summary

mtcars

mtcars

##		mpg	cyl	disp	hp	${\tt drat}$	wt	qsec	vs	am	gear	carb	
##	Mazda RX4	21.0	6	160.0	110	3.90	2.620	16.46	0	1	4	4	
##	Mazda RX4 Wag	21.0	6	160.0	110	3.90	2.875	17.02	0	1	4	4	
##	Datsun 710	22.8	4	108.0	93	3.85	2.320	18.61	1	1	4	1	
##	Hornet 4 Drive	21.4	6	258.0	110	3.08	3.215	19.44	1	0	3	1	
##	Hornet Sportabout	18.7	8	360.0	175	3.15	3.440	17.02	0	0	3	2	
##	Valiant	18.1	6	225.0	105	2.76	3.460	20.22	1	0	3	1	
##	Duster 360	14.3	8	360.0	245	3.21	3.570	15.84	0	0	3	4	
##	Merc 240D	24.4	4	146.7	62	3.69	3.190	20.00	1	0	4	2	
##	Merc 230	22.8	4	140.8	95	3.92	3.150	22.90	1	0	4	2	
##	Merc 280	19.2	6	167.6	123	3.92	3.440	18.30	1	0	4	4	
##	Merc 280C	17.8	6	167.6	123	3.92	3.440	18.90	1	0	4	4	
##	Merc 450SE	16.4		275.8				17.40	0	0	3	3	,
	Myo Minn Oo (PNGIMR)		Introd	uction to Res	earch 1):	ata Analysi	2		202	2_04_0	a a	10	(XI)

How is mpg distributed in this dataset?

- What is a typical value?
- Where is the center of the data?
 - mean
 - median
 - mode

mtcars %>% select(mpg)

##	mpg
## Mazda RX4	21.0
## Mazda RX4 Wag	21.0
## Datsun 710	22.8
## Hornet 4 Drive	21.4
## Hornet Sportabout	18.7
## Valiant	18.1
## Duster 360	14.3
## Merc 240D	24.4
## Merc 230	22.8
## Merc 280	19.2

Measure of center: mean

$$\textit{mean_mpg} = \frac{21.0 + 21.0 + 22.8 + ...}{32} = 20.09062$$

```
mtcars %>%
    summarize(avg_speed = mean(mpg))
```

```
## avg_speed
## 1 20.09062
```

Measure of center: median

- sort the numbers in ascending order
- if odd number, take the middle one
- if even number, add the middle twos and divide the summation by 2.

```
mtcars %>%
    arrange(mpg) %>%
    unlist(mpg, use.names = FALSE) %>%
    .[16:17]
```

```
## [1] 19.2 19.2
```

```
mtcars %>%
    summarize(median_mpg = median(mpg))
```

```
## median_mpg
## 1 19.2
```

$$median_mpg = \frac{19.2 + 19.2}{2} = 19.2$$

Measure of center: mode

```
mtcars %>%
    count(mpg, sort = TRUE)
##
       mpg n
## 1
      10.4 2
## 2
      15.2 2
## 3
      19.2 2
## 4
      21.0 2
## 5
      21.4 2
## 6
      22.8 2
      30.4 2
## 7
## 8
      13.3 1
## 9
      14.3 1
## 10 14.7 1
## 11 15 A 1
```

Measure of Spread: standard deviation

$$sd_mpg = \sqrt{\frac{\sum (x_i - \mu)^2}{n - 1}}$$

```
mtcars %>%
    summarize(sd_mpg = sd(mpg))
```

```
## sd_mpg
## 1 6.026948
```

Measure of Spread: Interquartile Range

- points that equally divide your data into four quartiles
- first quartile, Q1 = 25%
- second quartile, $Q2 = 50\% \sim median$
- thrid quartile, Q3 = 75%
- interquartile Range (Q1, Q3)

```
## median q1 q3
## 1 19.2 15.425 22.8
```

Other measures of spread: range

- minimum and maximum values
- useful for checking invalid values

```
## mean minimum maximum
## 1 20.09062 10.4 33.9
```

Distributions

See R Handout!

Let's practice in R!

Visualization: histogram

```
mtcars %>%
    ggplot(aes(mpg)) +
    geom_histogram(bins = 5) +
    theme_classic()
```


Visualization: boxplot

```
mtcars %>%
    ggplot(aes(mpg)) +
    geom_boxplot() +
    coord_flip() +
    theme_classic()
```


See R Handout!

Let's practice in R!

Section 5

Descriptive Statistics: categorical data

Displaying frequency and proportions

Gear ratio

```
mtcars %>%
  tabyl(gear) %>%
  adorn_totals("row") %>%
  adorn_pct_formatting()
```

```
## gear n percent
## 3 15 46.9%
## 4 12 37.5%
## 5 5 15.6%
## Total 32 100.0%
```

Automatic transmission

```
mtcars %>%
  tabyl(am) %>%
  adorn_totals("row") %>%
  adorn_pct_formatting()
```

```
## am n percent
## 0 19 59.4%
## 1 13 40.6%
## Total 32 100.0%
```

Barplots

```
mtcars %>%
    ggplot(aes(gear)) +
    geom_bar() +
    theme_classic()
```


See R Handout!

Let's practice in R!

Section 6

Relationship between two variables

Relationship between two variables

- categorical ~ categorical » cross-tabulation (contigency table)
- categorical ~ numerical » grouped (stratified) summary measures
- numerical ~ numerical » pearson's correlation (r)

categorical ~ categorical

```
mtcars %>%
    tabyl(gear, am) %>%
    adorn_totals(c("row", "col")) %>%
    adorn_percentages("row") %>%
    adorn_pet_formatting(digits = 1, affix_sign = FALSE) %>%
    adorn_ns("front")
```

```
## gear 0 1 Total
## 3 15 (100.0) 0 (0.0) 15 (100.0)
## 4 4 (33.3) 8 (66.7) 12 (100.0)
## 5 0 (0.0) 5 (100.0) 5 (100.0)
## Total 19 (59.4) 13 (40.6) 32 (100.0)
```

categorical ~ numerical

```
## # A tibble: 3 x 3
## gear mean sd
## <dbl> <dbl> <dbl> <dbl> ## 1 3 16.1 3.37
## 2 4 24.5 5.28
## 3 5 21.4 6.66
```

numerical ~ numerical

- correlation value ranges from −1 to +1
- value 0 = no correlation
- \bullet -1 = absolute negative association
- \bullet +1 = absoluate positive association
- around 0.4 = weak association
- around 0.8 = strong association
- Assumption of linear association

```
mtcars %>%
    summarise(correlation = cor(mpg, wt))
```

```
## correlation
## 1 -0.8676594
```

Visualization: categorical ~ categorical

Introduction to Research Data Analysis

Visualization: categorical ~ numerical

Visualization: numerical ~ numerical

See R Handout!

Let's practice in R!

Section 7

Inferential Statistics

Inferential Statistics

- Confidence Intervals (CI)
- p-value

Confidence Intervals

- If 100 similar studies were carried out, the true unknown value of the population will lie in the range of confidence intervals for 95 times.
- mostly commonly used cut-off = 95%
- If no true association exists, there is 5% chance that we will find a false association.
- more robust than a single estimate like means or proportion

p-value

- how likely our data would have occured by random change
- decision on whether to reject null hypothesis; does not mean it's true.
- ullet arbitarily set value = 0.05 or 5% » .95 or 95% Confidence Interval
- largely depend on sample size: increasing sample size will likely lower p-value.
- No p-value hacking!!

statistical tests and data type

- categorical ~ categorical » cross-tabulation (contigency table)
 - chi-squared test of independence (each cell must be greater than 5!)
 - If not, use Fisher's exact test.
 - if you have ordered data, use different tests.
- categorical ~ numerical » grouped (stratified) summary measures
 - t-test (normal distribution, equal variance) to compare two means
 - if not, use Wilcoxon tests.
- numerical ~ numerical » pearson's correlation (r)
 - to compare more than two groups, use ANOVA (same assumptions as t-test)
 - if not, use Kruskal Wallis test.

Due to time constraint, we won't cover them in details. Interpretation of p-value is the same across all tests.

In addition, there are many other statistical tests that are out of scope for this workshop.

See R Handout!

Let's practice in R!

Section 8

Confounding versus interaction

Confounding variable

- a variable that is associated with both your outcome (dependent variable) and predictors (independent variables)
- Example:
 - coffee drinking is strongly associated with lung cancer.
 - seems like smokers are also heavey coffee drinker.
 - So smoking confounds the non-association between coffee drinking and lung cancer.

Interaction

- the effect of a variable on outcome depends on a second variable.
- Example:
 - type of food (icecream versus hotdogs) + condiments (chocolate sauce versus mustard)
 - Do you prefer ketchup or chocolate sauce on your food?
 - It actually depends on the type of food!

Confounding versus interaction

- if there are confounders, leave confoundees (variables affected by confounders) out of your analysis
- if there are interactions, account the interaction effect in your model.

How do you know which is which? - you don't know in most cases - check during variable selection aka model building - literature or previous knowledge - biological pathways or plausibility - pathway analysis like DAG or SEM??

Section 9

Regression

Regression

- statistical model
 - to explore relationship between an outcome and predictors
 - to predict outcome based on the values of predictors
- Jargons
 - outcome a.k.a dependent variable or y
 - predictors a.k.a independent variables or x

Linear versus logistic

- linear regression: outcome is continus
- logistic regression: outcome is logical

Visualizing linear relationship

```
mtcars %>%
   ggplot(aes(mpg, wt)) +
   geom_point() +
   theme_classic()
```


Adding a linear trend

'geom_smooth()' using formula 'y ~ :

Straight lines defined by two things

Intercept The y value at the point when x is zero

Slope The amount y value increase if x value increases by one unit

Equation

$$y = intercept + slope * x$$

Running a linear model

lm(mpg ~ wt, data = mtcars)

```
##
## Call:
## lm(formula = mpg ~ wt, data = mtcars)
##
## Coefficients:
```

37.285 -5.344

wt

(Intercept)

##

##

Interpreting the model

```
##
## Call:
## lm(formula = mpg ~ wt, data = mtcars)
##
## Coefficients:
## (Intercept) wt
## 37.285 -5.344
```

$$mpg = 37.285 + (-5.344) * wt$$

In every 1000 lbs increase, 5.344 mile per gallon will reduce.

Adding a categorical variable

Let's add am indicating automatic transmission by 0 and manual by 1

'geom_smooth()' using formula 'y ~

Adding a categorical variable to the linear model

We need to convert am to a factor type to indicate as categorical data. Converting it as character also works.

```
lm(mpg ~ wt + factor(am), data = mtcars)
```

```
##
## Call:
## lm(formula = mpg ~ wt + factor(am), data = mtcars)
##
## Coefficients:
## (Intercept) wt factor(am)1
## 37.32155 -5.35281 -0.02362
```

Interpreting a linear model with two predictors

```
##
## Call:
## lm(formula = mpg ~ wt + factor(am), data = mtcars)
##
## Coefficients:
## (Intercept) wt factor(am)1
## 37.32155 -5.35281 -0.02362
```

• while keeping the same weight, cars with manual transmission will reduce additional 0.02362 miles per gallon, compared to cars with automatic transmission.

Assessing model fit

- coefficient of determination R-squared » just squaring Pearson's correlation r
 - always increase when number of predictors increases not good for multivariable model
- adjusted R-squared
 - penalized for number of predictors
- RSE = residual standard error
 - typical difference between prediction and observed values
- AIC
- BIC

Checking model fit

```
mpg model <- lm(mpg ~ wt + factor(am), data = mtcars)</pre>
summary(mpg model)
##
## Call:
## lm(formula = mpg ~ wt + factor(am), data = mtcars)
##
## Residuals:
##
      Min
             1Q Median
                           3Q
                                       Max
## -4.5295 -2.3619 -0.1317 1.4025 6.8782
##
## Coefficients:
##
               Estimate Std. Error t value Pr(>|t|)
## (Intercept) 37.32155 3.05464 12.218 5.84e-13 ***
                E 2E201
```

Checking model fit using glance()

```
## # A tibble: 1 x 12
## r.squared adj.r.squared sigma statistic p.value df logLik AIC
```

```
## 1 0.753 0.736 3.10 44.2 0.00000000158 2 -80.0 168.
## # ... with 3 more variables: deviance <dbl>, df.residual <int>, nobs <int>
```

<dbl> <dbl > <db > <dbl > <db > </d> <db > <

We look at sigma for RSE. The value of RSE is 3.10.

typical difference between predicted mpg and observed mpg is 3.10 miles per gallon.

<dbl>

library(broom)
mpg model %>%

##

Visualizing model fit

Visualizing model fit 2

What is next!

- model diagnostics in details
- quadratic or cubed model
- modelling on transformed data
- prediction
- outliers, leverage or influential points
- model building or variable selection

See R Handout!

Let's practice in R!

Section 10

Logistic Regression

Logistic Regression

- another type of linear regression
- The outcome variable is logical » meaning 1 and 0.

We can still run a linear model on the binary outcome.

```
lm(am ~ mpg, data = mtcars)
```

```
##
## Call:
## lm(formula = am ~ mpg, data = mtcars)
##
## Coefficients:
## (Intercept) mpg
## -0.59149 0.04966
```

Visualizing linear model on binary outcome

Let's add am indicating automatic transmission by 0 and manual by 1

Odds Ratio

$$OddsRatio = \frac{Probability_of_something_happening}{probability_of_something_not_happening}$$

$$OddsRatio = \frac{probability}{(1-probability)}$$

$$OddsRatio = \frac{0.25}{(1-0.25)} = \frac{1}{3}$$

Running a logistic regression

```
logm1 <- glm(am ~ mpg, data = mtcars, family = binomial)</pre>
summary(logm1)
##
## Call:
## glm(formula = am ~ mpg, family = binomial, data = mtcars)
##
## Deviance Residuals:
##
      Min
                1Q Median
                                  3Q
                                          Max
## -1.5701 -0.7531 -0.4245 0.5866 2.0617
##
## Coefficients:
##
              Estimate Std. Error z value Pr(>|z|)
## (Intercept) -6.6035 2.3514 -2.808 0.00498 **
                 0 2070
                                           0 00751 **
```

Displaying coefficient estimates

```
logm1 %>%
    tidy()
```

```
# A tibble: 2 x 5
               estimate std.error statistic p.value
##
    term
##
    <chr>
                  dbl>
                            <dbl>
                                     <dbl>
                                             <dbl>
##
    (Intercept)
                 -6.60
                           2.35
                                     -2.81 0.00498
                  0.307
                           0.115
                                      2.67 0.00751
##
  2
    mpg
```

With 1 mpg increase, there is 0.307 log odds chance of being manual. *it is hard to understand log odds scale without visualization.*

Calculating odds ratios

```
cbind(
    exp(coef(logm1)),
    exp(confint(logm1))
)

## Waiting for profiling to be done...
```

```
## 2.5 % 97.5 %
## (Intercept) 0.001355579 4.425443e-06 0.06255158
## mpg 1.359379288 1.129764e+00 1.79946863
```

See R Handout!

Let's practice in R!