and Wireless Communications

Martin Weisenhorn 20. April 2020

Lernübung 2.1 – Skizzieren von Bodediagrammen

Aufgabe 1. Gegeben ist der Frequenzgang

$$\underline{H}(\omega) = \frac{j\omega \, 4 \, L/R}{1 + j\omega L/R} \tag{1}$$

eines Zweitors, mit $R=1.592\,\mathrm{k}\Omega$ und $L=253\,\mathrm{mH}$. Der Frequenzgang kann durch die elementaren Frequenzgangfunktionen

$$\underline{H}_1(\Omega) = j\Omega$$
 bzw. $\underline{H}_1(\omega) = \frac{j\omega}{\omega_0},$ $\underline{H}_2(\Omega) = 1 + j\Omega$ bzw. $\underline{H}_2(\omega) = 1 + \frac{j\omega}{\omega_0},$ $\underline{H}_3(\Omega) = k$

dargestellt werden. Das Bodediagramm kann mit Hilfe der folgenden Schritte bestimmt werden:

Normierung

a) Die Übertragungsfunktion (1) soll durch die elementaren Frequenzgangfunktionen $\underline{H}_1(\omega)$, $\underline{H}_2(\omega)$ bis $\underline{H}_3(\omega)$ ausgedrückt werden. Die Zahlenwert für ω_0 und k sollen durch einen Koeffizientenvergleich bestimmt werden.

Skizzieren des Bodediagramms

- b) Skizzieren Sie separat die Amplitudengänge und die Phasengänge der Elementarfunktionen in den Hilfsskizzen.
- c) Addieren bzw. subtrahieren Sie die Amplitudengänge und Phasengänge zum Amplitudenund Phasengang des Gesamtfrequenzgangs $H(\omega)$, siehe Tabelle C.1 und C.2 des Skripts.
- d) Vergleichen Sie Ihr Bodediagramm mit dem des Hochpassfilters.
- e) Welchen numerischen Werte haben der Amplitudengang $20 \log_{10} |\underline{H}(f)|$ und der Phasengang angle $(\underline{H}(f))$ bei der Kreisfrequenz $\omega = 0.01 \cdot \omega_0$?

${\bf Hilfsskizze} \ {\bf Amplitudengang}$

Amplitudengang

Hilfsskizze Phasengang

Phasengang

Lösung 1.

Normierung

a) Die Übertragungsfunktion $\underline{H}(\omega)$ kann auf zwei verschiedene Weisen normiert werden:

Variante 1

$$\underline{H}(\omega) = \frac{j\omega/\omega_1}{1 + j\omega/\omega_0},$$

wobei $\omega_0=R/L$ und $\omega_1=R/(4L)$. Der Faktor k erhält den Wert k=1 und kann deshalb ignoriert werden. Einsetzen der numerischen Werte für R und L liefert die beiden Kreisfrequenzen $\omega_0=6.292\,\mathrm{MHz}$ und $\omega_1=1.573\,\mathrm{MHz}$.

Variante 2

$$\underline{H}(\omega) = 4 \frac{j\omega L/R}{1 + j\omega L/R}$$
$$= k \frac{j\omega/\omega_0}{1 + j\omega/\omega_0}$$

wobei k = 4, und $\omega_0 = R/L = 6.292 \,\mathrm{MHz}$.

Vergleich der beiden Varianten Beide Varianten sind zulässige Normierungen der Übertragungsfunktion $\underline{H}(\omega)$. Letztere hat die Eigenschaft, dass nur die eine Eckfrequenz ω_0 auftritt. Das ist ein Vorteil beim Zeichnen des Bodediagramms.

Skizzieren des Bodediagramms

- b) Zum skizzieren des Bodediagramms wird die Normierung aus Variante 2 verwendet, siehe nächste Seite.
- c) siehe nächste Seite.
- d) Das Bodediagramm entspricht dem eines Hochpassfilters. Der Faktor k=4 resultiert in einer Verstärkung von $12\,\mathrm{dB}$.
- e) Bei einer Kreisfrequenz $\omega = 0.01 \cdot \omega_0$ hat der Amplitudengang den Wert $12 \, \mathrm{dB} 40 \, \mathrm{dB} = -28 \, \mathrm{dB}$. Der Phasengang besitzt die Phase $\varphi = 90^{\circ}$.

${\bf Hilfsskizze} \ {\bf Amplitudengang}$

Amplitudengang

Hilfsskizze Phasengang

Phasengang

