P8160 - Project 3 Baysian modeling of hurricane

Renjie Wei, Hao Zheng, Xinran Sun Wentong Liu, Shengzhi Luo

2022-05-09

Introduction

- Hurricanes can result in death and economical damage
- There is an increasing desire to predict the speed and damage of the hurricanes
- Use Bayesian Model and Markov Chain Monte Carlo algorithm
 - Predict the wind speed of hurricanes
 - Study how hurricanes is related to death and financial loss

Dataset

- Hurrican703 dataset: 22038 observations × 8 variables
 - ▶ 702 hurricanes in the North Atlantic area in year 1950-2013
- Processed dataset: add 5 more variables into hurrican703
- Hurricanoutcome2 dataset: 43 observations × 14 variables

EDA - Count of Hurricanes in Each Month

EDA - Average Speed (knot) of Hurricanes in Each Month

EDA - Count of Hurricanes in Each Year

EDA - Average Speed (knot) of Hurricanes in Each Year

`geom_smooth()` using formula 'y ~ x'

EDA - Count of Hurricanes in Each Nature

EDA - Average Speed (knot) of Hurricanes in Each Nature

Bayesian Model Setting

Model

The suggested Bayesian model is

$$Y_i(t+6) = \beta_{0,i} + \beta_{1,i} Y_i(t) + \beta_{2,i} \Delta_{i,1}(t) + \beta_{3,i} \Delta_{i,2}(t) + \beta_{4,i} \Delta_{i,3}(t) + \epsilon_i(t)$$

- where $Y_i(t)$ the wind speed at time t (i.e. 6 hours earlier), $\Delta_{i,1}(t)$, $\Delta_{i,2}(t)$ and $\Delta_{i,3}(t)$ are the changes of latitude, longitude and wind speed between t and t-6, and $\epsilon_{i,t}$ follows a normal distributions with mean zero and variance σ^2 , independent across t.
- $\beta_i=(\beta_{0,i},\beta_{1,i},...,\beta_{5,i})$, we assume that $\beta_i\sim N(\mu,\Sigma_{d\times d})$, where d is dimension of β_i .

Priors

$$P(\sigma^2) \propto \frac{1}{\sigma^2}; \quad P(\mu) \propto 1; \quad P(\Sigma^{-1}) \propto |\Sigma|^{-(d+1)} \exp(-\frac{1}{2}\Sigma^{-1})$$

Posterior

 $\bullet \ \, \mathsf{Derive} \,\, \pi(\Theta|Y) \mathsf{,} \,\, \mathsf{where} \,\, \Theta = (\mathbf{B}^\top, \mu^\top, \sigma^2, \Sigma), \,\, \mathbf{B} = (\boldsymbol{\beta}_1^\top, ..., \boldsymbol{\beta}_n^\top)^\top$

Joint posterior

Notations

- $\bullet \ \, X_i(t)\boldsymbol{\beta}_i^\top = \beta_{0,i} + \beta_{1,i}Y_i(t) + \beta_{2,i}\Delta_{i,1}(t) + \beta_{3,i}\Delta_{i,2}(t) + \beta_{4,i}\Delta_{i,3}(t)$
- \bullet For i^{th} hurricane, there may be m_i times of record (excluding the first and second observation), let

$$\boldsymbol{Y}_i = \begin{pmatrix} Y_i(t_0+6) \\ Y_i(t_1+6) \\ \vdots \\ Y_i(t_{m_i-1}+6) \end{pmatrix}_{m_i \times 1}$$

- $\bullet \ \ \text{Hence,} \ Y_i \mid X_i, \beta_i, \sigma^2 \sim N(X_i \beta_i^\top, \sigma^2 I)$
- Where, X_i is a $m_i \times d$ dimensional matrix

$$X_i = \begin{pmatrix} 1 & Y_i(t_0) & \Delta_{i,1}(t_0) & \Delta_{i,2}(t_0) & \Delta_{i,3}(t_0) \\ 1 & Y_i(t_1) & \Delta_{i,1}(t_1) & \Delta_{i,2}(t_1) & \Delta_{i,3}(t_1) \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & Y_i(t_{m_i-1}) & \Delta_{i,1}(t_{m_i-1}) & \Delta_{i,2}(t_{m_i-1}) & \Delta_{i,3}(t_{m_i-1}) \end{pmatrix}$$

Joint posterior

Posterior

$$\begin{split} \pi(\Theta|Y) &= \pi(\mathbf{B}^\top, \mu^\top, \sigma^2, \Sigma \mid Y) \\ &\propto \underbrace{\prod_{i=1}^n f(Y_i \mid \beta_i, \sigma^2)}_{\text{likelihood of } Y} \underbrace{\prod_{i=1}^n \pi(\beta_i \mid \mu, \Sigma)}_{\text{distribution of } \mathbf{B}} \underbrace{P(\sigma^2)P(\mu)P(\Sigma^{-1})}_{\text{priors}} \\ &\propto \prod_{i=1}^n \left\{ (2\pi\sigma^2)^{-m_i/2} \exp\big\{ -\frac{1}{2}(Y_i - X_i\beta_i^\top)^\top (\sigma^2I)^{-1}(Y_i - X_i\beta_i^\top) \right. \\ &\times \prod_{i=1}^n \left\{ \det(2\pi\Sigma)^{-\frac{1}{2}} \exp\big\{ -\frac{1}{2}(\beta_i - \mu)\Sigma^{-1}(\beta_i - \mu)^\top \big\} \right\} \\ &\times \frac{1}{\sigma^2} \times \det(\Sigma)^{-(d+1)} \exp\big\{ -\frac{1}{2}\Sigma^{-1} \big\} \end{split}$$

MCMC Algorithm

- Monte Carlo Method
 - Random sampling method to estimate quantity
- Markov Chain
 - Generates a sequence of random variables where the current state only depends on the nearest past
- Example: Gibbs Sampler
 - ▶ MCMC approaches with known conditional distributions
 - Samples from each random variables in turn given the value of all the others in the distribution

MCMC Algorithm

- Monte Carlo Method
 - Random sampling method to estimate quantity
- Markov Chain
 - ► Generates a sequence of random variables where the current state only depends on the nearest past
- Example: Gibbs Sampler
 - ▶ MCMC approaches with known conditional distributions
 - Samples from each random variables in turn given the value of all the others in the distribution

Conditional Posterior

- To apply MCMC using Gibbs sampling, we need to find conditional posterior distribution of each parameter, then we can implement Gibbs sampling on these conditional posterior distributions.
 - $\pi(\mathbf{B}|Y,\mu^{\top},\sigma^2,\Sigma)$
 - $\qquad \qquad \pi(\sigma^2|Y,\mathbf{B}^\top,\mu^\top,\Sigma)$
 - $\blacktriangleright \ \pi(\Sigma|Y,\mathbf{B}^\top,\mu^\top,\sigma^2)$
 - $\blacktriangleright \pi(\mu|Y,\mathbf{B}^{\top},\sigma^2,\Sigma)$

MCMC Algorithm - Conditional Posterior

- $\bullet \ \beta_i \colon \pi(\beta_i | Y, \mu^\top, \sigma^2, \Sigma) \sim \mathcal{N}(\hat{\boldsymbol{\beta}}_i, \hat{\boldsymbol{\Sigma}}_{\beta_i})$
 - $\begin{array}{l} \bullet \ \ \text{where} \ \hat{\boldsymbol{\beta}}_i = (\boldsymbol{\Sigma}^{-1} + \boldsymbol{X}_i^\top (\sigma^2 \boldsymbol{I})^{-1} \boldsymbol{X}_i)^{-1} \boldsymbol{Y}_i^\top (\sigma^2 \boldsymbol{I})^{-1} \boldsymbol{X}_i + \mu \boldsymbol{\Sigma}^{-1}, \hat{\boldsymbol{\Sigma}}_{\boldsymbol{\beta}_i} = (\boldsymbol{\Sigma}^{-1} + \boldsymbol{X}_i^\top (\sigma^2 \boldsymbol{I})^{-1} \boldsymbol{X}_i)^{-1} \end{array}$
- \bullet σ^2 :

$$\pi(\sigma^2|\boldsymbol{Y}, \mathbf{B}^\top, \boldsymbol{\mu}^\top, \boldsymbol{\Sigma}) \sim IG(\tfrac{1}{2} \sum_{i=1}^n m_i, \tfrac{1}{2} \sum_{i=1}^n (\boldsymbol{Y}_i - \boldsymbol{X}_i \boldsymbol{\beta}_i^\top)^\top (\boldsymbol{Y}_i - \boldsymbol{X}_i \boldsymbol{\beta}_i^\top))$$

- $\bullet \ \Sigma \colon \pi(\Sigma|Y,\mathbf{B}^\top,\mu^\top,\sigma^2) \sim IW(n+d+1,\ I+\sum_{i=1}^n(\beta_i-\mu)(\beta_i-\mu)^\top)$
- $\bullet \ \mu \colon \pi(\mu|Y,\mathbf{B}^{\top},\sigma^2,\Sigma) \sim \mathcal{N}(\tfrac{1}{n} \sum_{i=1}^n \beta_i,\tfrac{1}{n}\Sigma)$

MCMC Algorithm - Parameter Updates

The update of parameters is component wise, at $(t+1)^{\rm th}$ step, updating parameters in the following the order:

- $\textbf{0} \ \, \mathsf{Sample} \ \, \mathbf{B}^{(t+1)} \mathsf{, i.e., sample each} \ \, \boldsymbol{\beta}_i^{(t+1)} \ \, \mathsf{from} \ \, \mathcal{N}(\boldsymbol{\hat{\beta}}_i^{(t)}, \boldsymbol{\hat{\Sigma}}_{\boldsymbol{\beta}_i}^{(t)})$
- $\textbf{2} \ \, \mathsf{Then, sample} \ \, \sigma^2 \ \, \mathsf{from} \\$

$$IG(\tfrac{1}{2}\sum_{i=1}^{n}m_{i},\tfrac{1}{2}\sum_{i=1}^{n}(\boldsymbol{Y}_{i}-\boldsymbol{X}_{i}\boldsymbol{\beta}_{i}^{(t+1)^{\top}})^{\top}(\boldsymbol{Y}_{i}-\boldsymbol{X}_{i}\boldsymbol{\beta}_{i}^{(t+1)^{\top}}))$$

3 Next, sample $\Sigma^{(t+1)}$ from

$$IW(n+d+1,\ I+\sum_{i=1}^{n}(\beta_{i}^{\ (t+1)}-\mu^{(t)})(\beta_{i}^{\ (t+1)}-\mu^{(t)})^{\top})$$

 $\textbf{ § Finally, sample } \mu^{(t+1)} \text{ from } \mathcal{N}(\frac{1}{n}\sum_{i=1}^n \boldsymbol{\beta}_i^{~(t+1)}, \frac{1}{n}\boldsymbol{\Sigma}^{(t+1)})$

MCMC Algorithm - Inital Values

① For initial value of **B**, we run multivariate linear regressions for each hurricane and use the regression coefficients β_i^{MLR} as the initial value for β_i . Then, the initial value of **B** can be represented as

$$\mathbf{B}_{init} = (\boldsymbol{\beta}_1^{MLR}^\top, \dots, \boldsymbol{\beta}_n^{MLR}^\top)^\top.$$

- ② For initial value of μ , we take the average of β_i^{MLR} , that is $\mu_{init} = \frac{1}{n} \sum_{i=1}^n \beta_n^{MLR}$
- **3** For initial value of σ^2 , we take the average of the MSE for i hurricanes.
- For initial value of Σ , we just set it to a simple diagonal matrix, i.e. $\Sigma_{init} = diag(1,2,3,4,5)$

MCMC Results

Details

- 10000 iterations
- First 5000 iterations as burn-in period
- Estimates and inferences based on last 5000 MCMC samples

MCMC Results - Trace Plots 1

Trace plots of model parameters, based on 10000 MCMC sample

MCMC Results - Trace Plots 2

Trace plots of variance parameters, based on 10000 MCMC sample

MCMC Results - Histograms 1

Histograms of model parameters, based on last 5000 MCMC sample

MCMC Results - Histograms 2

Histograms of variance parameters, based on last 5000 MCMC sample

MCMC Results - Model Parameter Estimations and Inferences

Variables	$ar{eta}_i$	$\operatorname{Var}(\bar{\beta}_i)$	95% CI of $\bar{\beta}_i$	$ar{\mu}$	$\mathrm{Var}(\bar{\mu})$	95% CI of $\bar{\mu}$
intercept	3.8252	0.0185	(3.5588,4.0916)	3.8166	0.0190	(3.5468, 4.0865)
Wind prev	0.9118	0.0000	(0.9059, 0.9177)	0.9121	0.0000	(0.9049, 0.9194)
Lat change	0.0744	0.0060	(-0.0776, 0.2264)	0.0720	0.0065	(-0.0857, 0.2298)
Long_change	-0.4014	0.0015	(-0.4771,-0.3257)	-0.3968	0.0016	(-0.4759,- 0.3177)
${\bf Wind_change}$	0.4841	0.0001	(0.4674, 0.5009)	0.4847	0.0001	(0.464, 0.5053)

Bayesian posterior estimates for model parameters

MCMC Results - Variance Parameter Estimations and Inferences

Parameters	Estimates	Variance	95% CI
Σ_{11}	0.3493	0.0435	(-0.0595, 0.7581)
Σ_{12}	-0.0081	0.0000	(-0.0189, 0.0027)
Σ_{13}	0.0201	0.0176	(-0.2399, 0.2801)
Σ_{14}	0.0131	0.0019	(-0.0725, 0.0987)
Σ_{15}	0.0035	0.0002	(-0.0215, 0.0285)
Σ_{22}	0.0031	0.0000	(0.0026, 0.0036)
Σ_{23}	-0.0053	0.0000	(-0.0125, 0.0019)
Σ_{24}	-0.0013	0.0000	(-0.0041, 0.0014)
Σ_{25}	0.0004	0.0000	(-7e-04, 0.0014)
Σ_{33}	0.2960	0.0176	(0.0362, 0.5558)
Σ_{34}	-0.0031	0.0012	(-0.0716, 0.0653)
Σ_{35}	-0.0060	0.0001	(-0.0276, 0.0156)
Σ_{44}	0.0918	0.0007	(0.0412, 0.1424)
Σ_{45}	0.0034	0.0000	(-0.008, 0.0148)
Σ_{55}	0.0258	0.0000	(0.0203, 0.0313)

Bayesian Model Performance

	ID	r_square	rmse	n_obs
1	BONNIE.1998	0.996	1.667	9
2	IVAN.1980	0.996	1.767	8
3	GEORGE.1950	0.993	1.768	8
4	MARIA.2011	0.964	1.768	8
5	BERYL.1982	0.971	1.889	7
6	FLORENCE.1960	0.927	1.890	7
7	LOIS.1966	0.990	1.890	7
8	ERIN.1989	0.991	1.890	7
9	GRETA.1970	0.893	2.041	6
10	HILDA.1964	0.995	2.236	5

R Squared and RMSE

Bayesian Model Performance

Actual Wind Speed vs. Predicted Wind Speed

Seasonal Difference Exploration

	Beta	0	Beta 1		Beta	2	Beta	3	Beta 4	
	Estimate	Pr(> t)								
(Intercept)	4.4810021	0.0000000	1.3431063	0.0000000	0.0413063	0.9506172	-0.8336700	0.0185275	0.2890273	0.4482640
monthApril	0.0232609	0.8346449	0.0147943	0.6696787	0.0165579	0.9306863	0.0416468	0.6796126	0.0361823	0.7393892
monthMay	0.0259813	0.7827813	-0.0001180	0.9967888	0.0708822	0.6597505	0.0632772	0.4581672	-0.0162907	0.8594231
monthJune	0.0275693	0.7650618	0.0053935	0.8509869	-0.0070875	0.9641298	0.0556884	0.5047909	0.0237694	0.7918014
monthJuly	0.0125400	0.8914489	0.0154032	0.5901741	-0.0090910	0.9538180	0.0361214	0.6640154	0.0130817	0.8840332
monthAugust	-0.0198034	0.8284715	0.0233206	0.4124181	-0.0522548	0.7378961	0.0123691	0.8811234	0.0312427	0.7261962
monthSeptember	-0.0070528	0.9384385	0.0261005	0.3585599	-0.0361073	0.8169707	0.0212965	0.7966351	0.0444835	0.6177631
monthOctober	0.0093435	0.9185853	0.0210829	0.4587183	-0.0286163	0.8546050	0.0341549	0.6796975	0.0350505	0.6944480
monthNovember	0.0145692	0.8748155	0.0246144	0.3925264	0.0239972	0.8792681	0.0263450	0.7529105	0.0209069	0.8168323
monthDecember	0.0057977	0.9526542	0.0088244	0.7715305	-0.0543131	0.7447475	0.0422468	0.6326060	0.0114196	0.9046290
year	-0.0003419	0.0717253	-0.0002252	0.0001471	0.0000365	0.9101708	0.0002184	0.2032812	0.0000905	0.6249586
natureET	0.0008449	0.9774141	0.0037334	0.6877086	-0.0702038	0.1687975	-0.0263888	0.3286540	-0.0209217	0.4726774
natureNR	0.0008122	0.9866387	-0.0146142	0.3331114	0.0058967	0.9432660	0.0030556	0.9444979	-0.0217275	0.6462854
natureSS	0.0141564	0.4904257	-0.0033299	0.6021721	-0.0013517	0.9692484	0.0126339	0.4964264	-0.0238538	0.2339965
natureTS	0.0118370	0.4785102	-0.0059979	0.2486925	-0.0154533	0.5880814	-0.0231521	0.1258337	-0.0174987	0.2832214

Seasonal Difference Exploration

year

-0.0003543

0.0497902

	E	Beta 0		Beta 1		Beta 2		Beta 3		Beta 4	
	Estima	te Pr(> t)	Estimate	Pr(> t)	Estimate	Pr(> t)	Estimate	Pr(> t)	Estimate	Pr(> t)	
(Intercept)	3.83655	0.0000000	0.8942250	0.0000000	0.1606506	0.0000610	-0.3500900	0.0000000	0.4422452	0.0000000	
seasonSummer	-0.03050	0.2048954	0.0152377	0.0440074	-0.0979486	0.0167511	-0.0466127	0.0338037	0.0361669	0.1203099	
seasonAutumn	-0.02353	46 0.3248438	0.0209616	0.0053662	-0.0909590	0.0253577	-0.0434764	0.0463302	0.0487052	0.0354139	
seasonWinter	-0.01865	42 0.6535827	0.0034158	0.7936540	-0.0984181	0.1637856	-0.0094850	0.8023902	0.0149135	0.7107131	
	Beta 0)	Beta 1		Beta 2	2	Beta 3		Beta 4	1	
	Estimate	Pr(> t)	Estimate	Pr(> t)	Estimate	Pr(> t)	Estimate	Pr(> t)	Estimate	Pr(> t)	
(Intercept)	4.5142875	0.0000000	1.3448481	0.0000000	-0.1056332	0.8629385	-1.0267628	0.001781	0.3051312	0.3817170	

0.0000878

0.7757368

0.0003188

0.053474

-0.0002178

0.0001332

0.0000902

0.6072986

Predictions of Damage and Deaths

Basic plot of Damage and Deaths

Predictions of Damage and Deaths

Basic plot of Damage and Deaths

Coefficient Table

```
[1] "lid
                    | intercept | beta1 | beta2 | beta3 | beta4 | "
    "|:----::|----::|----::|----::|"
[3]
    "|agnes.1972
                      3.950974 | 0.9224097 | 0.0059532 | -0.3103372 | 0.5453543 | "
[4] "lalex.2010
                       3.798737 | 0.9370333 | 0.0698849 | -0.3937358 | 0.5400187 | "
[5]
    "lalicia.1983
                       3.897408 | 0.9036878 | -0.0748341 | -0.3994486 | 0.5477718 | "
[6] "lallen.1980
                       3.6870701 0.96553041
                                            0.1306393 | -0.5460144 | 0.5466129 | "
    "landrew.1992
                      3.676279 | 0.9375384 | -0.2843257 | -0.5782973 | 0.5370158 | "
[7]
[8]
    "|betsy.1965
                       3.808396 | 0.9513766 |
                                           -0.4500720| -0.3890718| 0.4244575|"
[9] "|bob.1991
                      3.629466 | 0.9232143 | 0.0279527 | -0.5751636 | 0.4382048 | "
[10] "|camille.1969 |
                      3.994355 | 0.9355674 | 0.0729188 | -0.5734830 | 0.6703910 | "
```

Fitted results of beta models

Predict Damage

•	term	estimate [‡]	std.error [‡]	statistic [‡]	p.value [‡]
1	(Intercept)	-2.179428e+02	63.786161983	-3.416772	6.336828e-04
2	intercept	5.044916e+00	0.872632934	5.781258	7.414400e-09
3	beta1	6.283543e+01	14.027126920	4.479565	7.479523e-06
4	beta2	-1.095810e+00	0.424325439	-2.582476	9.809426e-03
5	beta3	3.378223e+00	0.816050104	4.139725	3.477231e-05
6	nobs	4.921117e-02	0.008036275	6.123630	9.146733e-10
7	Season	7.497698e-02	0.012627373	5.937655	2.891284e-09
8	MonthJune	-3.416174e+00	0.762110791	-4.482516	7.376795e-06
9	MonthNovember	-1.902107e+00	0.789148853	-2.410327	1.593822e-02
10	MonthOctober	-1.290673e+00	0.298201079	-4.328198	1.503344e-05
11	MonthSeptember	-1.764116e+00	0.243173467	-7.254558	4.029764e-13
12	NatureNR	-4.317468e+00	1.126675716	-3.832042	1.270843e-04
13	NatureTS	-2.038481e+00	0.452900892	-4.500942	6.765302e-06
14	Maxspeed	5.044572e-02	0.006764325	7.457613	8.810369e-14
15	Meanspeed	-6.565465e-02	0.015403789	-4.262240	2.023877e-05
16	Percent.Poor	-3.819578e-02	0.005858677	-6.519522	7.053169e-11

Predict Deaths

1 2	term (Intercept) intercept	estimate 1.164978e+02	std.error	statistic [‡]	p.value [‡]
2			1.257956e+01	0.250002	
	intercept			9.260883	2.027487e-20
2		1.167475e+01	2.564192e-01	45.529931	0.000000e+00
3	beta1	1.141195e+02	2.200144e+00	51.869091	0.000000e+00
4	beta2	5.528798e+00	1.226329e-01	45.084128	0.000000e+00
5	beta3	8.561691e+00	2.853214e-01	30.007184	7.908823e-198
6	beta4	-1.049211e+01	3.058279e-01	-34.307225	6.123346e-258
7	nobs	3.430943e-03	1.116605e-03	3.072657	2.121619e-03
8	Season	6.102077e-03	2.093747e-03	2.914429	3.563401e-03
9	MonthJuly	-1.183782e+00	1.448847e-01	-8.170505	3.071002e-16
10	MonthJune	-1.291597e+00	8.968191e-02	-14.401980	5.028215e-47
11	MonthNovember	-2.533192e+00	1.551869e-01	-16.323490	6.718278e-60
12	MonthOctober	-1.546676e+00	6.466487e-02	-23.918335	1.974205e-126
13	MonthSeptember	-2.751167e-01	4.588850e-02	-5.995331	2.030720e-09
14	NatureNR	2.348783e+00	1.290216e-01	18.204563	4.748263e-74
15	NatureTS	3.563406e+00	1.209962e-01	29.450564	1.238185e-190
16	Meanspeed	-3.676417e-02	3.143216e-03	-11.696356	1.330451e-31
17	Maxpressure	-2.686076e-01	9.670821e-03	-27.775052	8.684053e-170
18	Meanpressure	5.377225e-03	2.009523e-04	26.758717	9.775966e-158
19	Total.Pop	9.410461e-07	2.587520e-08	36.368659	1.332659e-289
20	Percent.Poor	3.599824e-02	8.024514e-04	44.860342	0.000000e+00
21	Percent.USA	-7.214139e-03	5.570867e-04	-12.949761	2.356879e-38