Conditioning and Sampling in Variational Diffusion Models for Speech Super-Resolution

Chin-Yun Yu¹ Sung-Lin Yeh² György Fazekas¹ Hao Tang²

¹Centre for Digital Music, Queen Mary University of London ²Institute for Language, Cognition and Computation, University of Edinburgh

Motivation

Most diffusion-based speech restoration models treat the input audio as condition input to the neural networks. There has been no similar attempt to design a sampling method for recovering speech signals beyond additive noise. We aim to bridge this gap and explore the possibility of enhancing existing diffusion speech super-resolution (SR) models.

Variational Diffusion Models

Variational diffusion models [1] assume an audio sample \mathbf{x} is generated by a chain of T latent variables \mathbf{z}_t .

$$p(\mathbf{x}, \mathbf{z}_{1:T}) = p(\mathbf{x}|\mathbf{z}_1)p(\mathbf{z}_T) \prod_{t=2}^{T} p(\mathbf{z}_{t-1}|\mathbf{z}_t)$$

 $p(\mathbf{z}_{t-1}|\mathbf{z}_t)$ is usually parameterised as $q(\mathbf{z}_{t-1}|\mathbf{z}_t,\mathbf{x}=\hat{\mathbf{x}}_{\theta}(\mathbf{z}_t;t))$ where $\hat{\mathbf{x}}_{\theta}(\mathbf{z}_t;t)$ is modelled by neural networks and $q(\mathbf{z}_{t-1}|\mathbf{z}_t,\mathbf{x})$ is a known Gaussian distribution.

System Overview

Inspired by the recent success of image inpainting with diffusion models, we cast the task of speech SR also as an inpainting problem in the frequency-domain, and propose an algorithm to condition the diffusion reverse step using filters.

Figure 1. Visual schematic of our proposed conditional diffusion step. $\hat{\mathbf{y}}$ is the low-resolution input. 1 Predict $\hat{\mathbf{x}}_t$ from noisy \mathbf{z}_t ; 2 Low pass filtering; 3 High pass filtering; 4 MCG [2] correction step; 5 Sample \mathbf{z}_{t-1} using standard diffusion sampling.

The first author is a research student at the UKRI Centre for Doctoral Training in Artificial Intelligence and Music, supported jointly by UK Research and Innovation [grant number EP/S022694/1] and Queen Mary University of London.

Proposed Approach

To incorporate the available low frequencies in the low-resolution audio $\hat{\mathbf{y}}$, we parameterise the *conditional reverse diffusion* step $p(\mathbf{z}_{t-1}|\mathbf{z}_t,\mathbf{y})$ by replacing low-frequency region of the prediction as

$$q(\mathbf{z}_{t-1}|\mathbf{z}_t,\mathbf{x}=\hat{\mathbf{y}}+\hat{\mathbf{x}}_{\theta}(\mathbf{z}_t;t)-\mathsf{lowpass}(\hat{\mathbf{x}}_{\theta}(\mathbf{z}_t;t))).$$

Manifold Constraint Gradients (MCG)

We subtract the high frequencies of the gradients $\frac{\partial}{\partial \mathbf{z}_t} \|\hat{\mathbf{y}} - \text{lowpass}(\hat{\mathbf{x}}_{\theta}(\mathbf{z}_t;t)))\|_2^2$ before sampling, similar to [2].

Unbiased Diffusion Loss

We trained the model on the original variational lower bound.

$$-VLB(\mathbf{x}) = -\mathbb{E}_{q(\mathbf{z}_1|\mathbf{x})}[\log p(\mathbf{x}|\mathbf{z}_1)] + D_{KL}(q(\mathbf{z}_T|\mathbf{x})||p(\mathbf{z}_T))$$
$$+ \frac{\delta_{max} - \delta_{min}}{2} \mathbb{E}_{\boldsymbol{\epsilon},\upsilon} \left[\|\boldsymbol{\epsilon} - \tilde{\boldsymbol{\epsilon}}_{\theta}(\mathbf{z}_{\upsilon};\upsilon)\|_{2}^{2} \right]$$

Evaluation

We adopted unconditional DiffWave [3] as our denoiser.

Figure 2. Evaluation results on the 48 kHz VCTK Multi-Speaker benchmark with different upscaling ratios and filter settings.

Conclusion

- 1. Robust to various downsampling schemes.
- 2. A **drop-in replacement** for the vanilla sampling process and can enhance the performance of the existing works.
- 3. Can upscale audio up to 48 kHz.

References

- [1] D. P. Kingma, T. Salimans, B. Poole, and J. Ho, "Variational diffusion models," in *Advances in Neural Information Processing Systems*, pp. 21696–21707, 2021.
- [2] H. Chung, B. Sim, D. Ryu, and J. C. Ye, "Improving diffusion models for inverse problems using manifold constraints," in *Advances in Neural Information Processing Systems*, 2022.
- [3] Z. Kong, W. Ping, J. Huang, K. Zhao, and B. Catanzaro, "DiffWave: A versatile diffusion model for audio synthesis," in *International Conference on Learning Representations*, 2021.
- [4] C.-Y. Yu, S.-L. Yeh, G. Fazekas, and H. Tang, "Conditioning and sampling in variational diffusion models for speech super-resolution," in *International Conference on Acoustics, Speech and Signal Processing (ICASSP)*, IEEE, 2023.

