The 29th Australasian
Conference on Information
Security and Privacy

Pairing-Free ID-Based Signatures as Secure as Discrete Logarithm in AGM

Jia-Chng (Jason) Loh, Fuchun Guo, Willy Susilo

Institute of Cybersecurity and Cryptology, University of Wollongong, Australia

ONE

Introduction

Digital Signatures

Computed mathematically

Provable secure (forging is computationally hard)

Identity-Based Signatures

In practice, digital signatures require the Public Key Infrastructure (PKI)

Identity (ID)-based Signatures (IBS) – [Shamir84]

- Users' identity ID serves as the public key
- E.g. email address and ID number

alice@uow.edu.au abc@gmail.com efg@yahoo.com

How to Prove?

To prove the security of a scheme...

Adversary \mathcal{A} against the scheme

Re

Reduction/
Security Loss 3

 $L = \epsilon_{\mathcal{A}}/\epsilon_{\mathcal{B}}$

"Ideal security" in cyclic group setting

- 1. Standard security model: EUF-CMA
- 2. Hardest problem: Discrete logarithm (DL)
- 3. Tight reduction: Loss factor is O(1)

Better theoretical result

Efficient construction

Optimal parameter size

One Stone Three Birds?

How to Achieve: Ideal Security

Constructing and proving signature schemes with ideal security is challenging

The Rescuer: Idealized Models

Enabling proofs based on certain idealizations

Random Oracle Model (ROM) - [BR93]

Algebraic Group Model (AGM) - [FKL18]

TWO

Research Motivations & Gaps

Why Pairing-Free IBS?

Pairing-Free Schemes

- Without bilinear pairing property
- Better efficiency
- Lighter computational complexity

Singlishe Control of the Control of

Prior candidates for resource-constrained applications

Some Notable Results under ID-Based EUF-CMA

	Pairing-Free	Hardness Assumption	Tight Reduction	Standard Model (SM)/ ROM/ AGM
ChCh-IBS [CH03]	X	CDH	X	ROM
BBMQ-IBS [BBMQ05]	X	q-SDH	X	ROM
Waters-IBS [PS06]	X	CDH	X	SM
BBG-IBS [KN09]	X	mCDH	X	SM
BNN-IBS [BNN09], Beth-IBS [Beth88], Schnorr-like IBS [GG09]	✓	DL	X	ROM
FH-IBS* [FH17,18]	✓	DDH	✓	ROM
BLS-IBS [LGSY23]	X	DL	✓	AGM + ROM
This work	✓	DL	✓	AGM + ROM

^{*} A slightly different EUF-CMA model: simulator may return different user private key may for each query

Gaps to "Ideal Security": From Most Efficient Pairing-free IBS

Schnorr-like IBS by Galindo-Garcia @ AfricaCrypt'09

- Most efficient based on Schnorr's signatures
- Proven under DL assumption Loose reduction in ROM
- Extra caution: Chosen-identity-and-message attacks

THREE

Challenge & Contribution

Challenge Encountered in Schnorr-like IBS

Galindo-Garcia's (GG) IBS @ AfricaCrypt'09

- Extra caution: Chosen-identity-and-message attacks
- Whether AGM+ROM helps?

Challenge Encountered in

Schnorr-like IBS

Schnorr is tight in AGM+ROM @ EuroCrypt'20

Galindo-Garcia's (GG) IBS @ AfricaCrypt'09

- Extra caution: Chosen-identity-and-message attacks
- Whether AGM+ROM helps?

Can it simulate any key $d_{ID'}$?

X

Couldn't solve both with existing known techniques (even with AGM)

Can it reduce any forgery?

Next... How Schnorr achieves ideal security in AGM + ROM

Schnorr's Signatures

Schnorr's Signatures

Users' perspective

$$g \in \mathbb{G}$$
 $H(\cdot,\cdot) o h_i \in \mathbb{Z}_p^*$

Parameters

Message m_i

Schnorr Simulation (DL Problem)

 \mathcal{O}_{Sign}

Reduction of Schnorr in AGM + ROM

Algebraic Adversary

$$R^* = g^{u_0} \mathbf{Z}^{u_1} \prod_{i=1}^{q_s} (\mathbf{R}_i)^{u_{2,i}}$$
$$\vec{u} = (u_0, u_1, u_{2,1} \dots, u_{2,q})$$

$$R^* = g^{y^*} \cdot Z^{-H(m^*,R^*)}$$

Request:

- - h^*

 $\sigma_{m^*} = (R^*, y^*), \ \vec{u}$

iest:

Random Oracle

$$Set H(m^*, R^*) = h^* \in \mathbb{Z}_p^*$$

$$g^{y^*} \stackrel{?}{=} R^* \cdot Z^{H(m^*,R^*)} \bigcirc$$

Reduction of Schnorr in AGM + ROM

Algebraic Adversary

$$R_i = g^{s_i}(g^\alpha)^{-h_i}$$

Request:

2 h*

Simulator

Random Oracle Set $H(m^*, R^*) = h^* \in \mathbb{Z}_p^*$

$$R^* = q^{y^*} \cdot Z^{-H(m^*,R^*)}$$

 $\vec{u} = (u_0, u_1, u_{2,1} \dots, u_{2,q})$

Check if:

$$g^{y^*} \stackrel{?}{=} R^* \cdot Z^{H(m^*,R^*)} \bigcirc$$

Hash list

$$y^* - \alpha h^* = u_0 + \alpha u_1 = \sum_{i=1}^{q_s} (s_i - \alpha h_i) u_{2,i}$$

$$\alpha = \frac{y^* - u_0 - \sum_{i=1}^{q_s} s_i u_{2,i}}{u_1 + h^* - \sum_{i=1}^{q_s} h_i u_{2,i}}$$

Schnorr-like IBS

Users' perspective

Parameters

$$g, \ Z = g^z, H_1(\cdot, \cdot) \to h_{ID_i} \in \mathbb{Z}_p^*,$$

$$H_2(\cdot, \cdot, \cdot) \to h_{ID_i, m_i} \in \mathbb{Z}_p^*$$

User
$$ID_i$$

$$d_{ID_i}$$

$$\begin{cases} R_i = g^{r_i} \\ y_i = r_i + z \cdot H_1(ID_i, R_i) \end{cases}$$

Check if: O or

$$g^{s_i} \stackrel{?}{=} A_i (R_i \cdot Z^{H_1(ID_i,R_i)})^{H_2(ID_i,m_i,A_i)}$$

Construction in High Level

- Concatenation of Schnorr's signatures
- User private key: $Schorr.Sign(ID,z) \rightarrow d_{ID}$
- Signature: $Schorr.Sign(m, d_{ID}) \rightarrow \sigma_{ID,m}$

Simulator's perspective

Users' perspective

Parameters

$$g, \ Z = g^z, H_1(\cdot, \cdot) \to h_{ID_i} \in \mathbb{Z}_p^*,$$
 $H_2(\cdot, \cdot, \cdot) \to h_{ID_i, m_i} \in \mathbb{Z}_p^*$

User
$$ID_i$$

$$d_{ID_i}$$

$$\begin{cases} R_i = g^{r_i} \\ y_i = r_i + z \cdot H_1(ID_i, R_i) \end{cases}$$

Check if: \bigcirc or \bigcirc $g^{s_i} \stackrel{?}{=} A_i (R_i \cdot Z^{H_1(ID_i,R_i)})^{H_2(ID_i,m_i,A_i)}$

Simulator aborts in query phase

$$Z = g^{\alpha}$$

$$A_i = g^{a_i'} (g^{r'} g^{\alpha h_{ID'}})^{-h_{ID',m_i}}$$

Suppose $\mathcal{O}_S(ID', m_i)$ was queried.

Private key $\mathcal{O}_E(ID') \nrightarrow d_{ID'}$ is not simulatable

Simulator cannot solve for DL problem

$$Z = g^{\alpha}$$

$$R' = g^{r'}(g^{\alpha})^{-h_{ID'}}$$

Forgery $\sigma_{ID^*,m^*}=(R^*,A^*,s^*)$ is non-reducible as g^{α} vanishes by setting $R^*=R'$.

In AGM, representation \vec{u} cannot help.

Solution: OR-Proof Technique

We obtain a new pairing-free IBS scheme...

The Proposed Pairing-free IBS

Users' perspective

Parameters

$$g, Z = g^z, H_1(\cdot,\cdot,\cdot) \to h_{ID_i} \in \mathbb{Z}_p^*$$

$$H_2(\cdot,\cdot,\cdot,\cdot) \to h_{ID_i,m_i} \in \mathbb{Z}_p^*$$

User
$$ID_i$$
 d_{ID_i} d_{ID_i} d_{ID_i} $R_0 = g^{r_0}, \quad R_1 = g^{r_1}, \\ b \in \{0,1\}, \quad y = r_b + z \cdot H_1(ID, R_0, R_1)$

$$\begin{cases} R_0, & R_1, \\ A_0 = g^{a_0'} \big(R_0 \cdot Z^{h_{ID}} \big)^{b \cdot (-c_{1-b})}, & A_1 = g^{a_1'} \big(R_1 \cdot Z^{h_{ID}} \big)^{(1-b) \cdot (-c_{1-b})}, \\ Signature on \\ (ID_i, m_i) & s_b = a_b' + y \cdot c_b, \\ c_{1-b}, & c_b = H_2(ID, m, A_0, A_1) - c_{1-b} \end{cases}$$

$$A_1 = g^{a_1'} (R_1 \cdot Z^{h_{ID}})^{(1-b)\cdot(-c_{1-b})}$$

$$s_b = a_b' + y \cdot c_b$$

$$c_b = H_2(ID, m, A_0, A_1) - c_{1-b}$$

erm.....

Check if: \bigcirc or \bigcirc For $i \in \{0,1\}$, \bigcirc $g^{s_i} \stackrel{?}{=} A_i (R_i \cdot Z^{H_1(ID_i,R_0,R_1)})^{H_2(ID,m,A_0,A_1)}$

2 $H_2(ID, m, A_0, A_1) \stackrel{?}{=} c_0 + c_1$

Next, the proof...

Ideal Security?

The Proposed Pairing-free IBS

Parameters

$$g, Z = g^z \mid H_1(\cdot,\cdot,\cdot) \to h_{ID_i} \in \mathbb{Z}_p^*$$

$$H_2(\cdot,\cdot,\cdot,\cdot) \to h_{ID_i,m_i} \in \mathbb{Z}_p^*$$

User
$$ID_i$$

$$\begin{cases} R_0 = g^{r_0}, \\ b = 1 \end{cases}$$

$$R_1 = g^{r_1}(Z)^{-H_1(ID,R_0,R_1)}, \\ y = r_1 \end{cases}$$

 $\begin{cases} R_0, & R_1, \\ A_0 = g^{a_0} \big(g^{r_1} Z^{h_{ID}} \big)^{-h_{ID,m}}, & A_1 = g^{a_1}, \\ s_0 = a_0 & s_b = a_b' + y \cdot c_b, \end{cases}$ Signature on (ID_i, m_i)

$$A_1 = g^{a_1}$$

$$s_b = a_b' + y \cdot c_b$$

$$c_b = H_2(ID, m, A_0, A_1) - c_{1-b}$$

oh.....

Check if: or or For $i \in \{0,1\}$, 1 $g^{s_i} \stackrel{?}{=} A_i (R_i \cdot Z^{H_1(ID_i,R_0,R_1)})^{H_2(ID,m,A_0,A_1)}$ 2 $H_2(ID,m,A_0,A_1) \stackrel{?}{=} c_0 + c_1$

Next, the proof...

Ideal Security?

Security Proof (in high level)

We propose a simulation...

- Simulate any user private key
- Reduce any forgery with ½ chance
- The concrete analysis is done in AGM + ROM

One key is embedded with problem instance

One key is simulatable

We defer the full proof..

FOUR

Conclusion

Summary & Future Works

Summary

- Discussed challenge in Schnorr-like IBS
- A new pairing-free IBS scheme: Thanks to OR-proof technique
- Achieved "ideal security" in AGM + ROM
- Reduction loss is 2

Future Works

- Minimize the signature size, as our signature size: $4 \mathbb{G} + 4 \mathbb{Z}_p^*$?
- Can we omit ROM? Pairing-free in AGM only (under DL assumption + tight + standard security model)

The 29th Australasian
Conference on Information
Security and Privacy

Thank You