Interrogation N°01 / Les mots et les langages

Sujet N°1:

Exercice 01:

Vérifier la validité de l'expression suivante : $(L_1 \cup L_2)^* = L_1^* \cup L_2^*$

Exercice 02:

Montrer que $\forall x,y \in X^* : (xy)^R = y^R x^R$

Exercice 03:

Soit $X = \{a, b\}$: Comparer les deux langages suivants :

 $L1 = \{w_1aaw_2 / w_1, w_2 \in X^*\}$

 $L2 = \{w / w = (b \cup ab)^i . (\varepsilon \cup a) \text{ avec } i \ge 0\}$

Sujet N°2:

Exercice 01:

Vérifier la validité de l'expression suivante : $(L_1, L_2)^*$. $L_1 = L_1$. $(L_1, L_2)^*$

Exercice 02:

Soit $X = \{0, 1\}$: Comparer les deux langages suivants :

 $L_1 = \{1^i 0^j / i, j \ge 0\}$

 $L_2 = \{1^{2i} 0^{3j} / i, j \ge 0\}$

Exercice 03:

Montrer que Si xy = yz, avec $x \neq \varepsilon$ alors $\exists u, v \in X^*$ et un entier $k \geq 0$ tels que :

 $x = uv, y = (uv)^k u = u(vu)^k, z = vu.$

Sujet N°3:

Exercice 01:

Vérifier la validité de l'expression suivante : $L_1 \cup (L_2, L_3) = (L_1 \cup L_2)$. $(L_1 \cup L_3)$

Exercice 02:

Montrer que $\forall x,y \in X^* : (xy)^R = y^R x^R$

Exercice 03:

Soit $X = \{0, 1\}$: Comparer les deux langages suivants :

$$L_1 = \{1^i 0^j / i, j \ge 0\}$$

$$L_2 = \{1^{4i} 0^{2j} / i, j \ge 0\}$$

A. BOUMAHDI