

Simple Regression 1

Lecture 5

STA 371G

National Longitudinal Study of Adolescent to Adult Health

Nationally representative sample of US students in grades 7-12 were surveyed in the 1994-95 school year

(http://www.cpc.unc.edu/projects/addhealth)

Students were followed up on with subsequent in-home interviews four times (most recently 2008)

This is an **awesome** data set, with data on:

- family
- relationships
- health
- military service
- religion
- sex and STDs
- economics
- education

- personality
- criminality
- tobacco
- drugs
- alcohol
- pregnancy
- sleep
- daily activities

We want to know:

• What is our best **prediction** alcohol consumption if we know at what age had their first drink?

We want to know:

- What is our best prediction alcohol consumption if we know at what age had their first drink?
- How good is that prediction?

We want to know:

- What is our best prediction alcohol consumption if we know at what age had their first drink?
- How good is that prediction?
- What is the relationship between alcohol consumption and age of first drink?

Age of first drink

Number of drinks consumed as adult

Predictor variable Response variable

> hist(addhealth_public4\$h4to34,
+ main='', xlab='Age of first drink',
+ col='orange')

Let's examine our variables

If Q.33 = 1, ask Q.34, else skip to Q.63.				
H4TO34		Num	34. How old were you when you first had an alcoholic drink? By drink, we mean a glass of wine, a can or bottle of beer, a wine cooler, a shot glass of liquor, or a mixed drink, not just sips or tastes from someone else's drink. NOTE: Smallest 5 and largest 5 values are displayed.	
Frequency	Percent	Value	Label	
56	0.4%	5	5 years	
30	0.2%	6	6 years	
21	0.1%	7	7 years	
71	0.5%	8	8 years	
52	0.3%	9	9 years	
12014	76.5%	10-31	NOTE: Range of values omitted from display	
1	0.0%	32	32 years	
2	0.0%	33	33 years	
21	0.1%	96	refused	
3322	21.2%	97	legitimate skip	
111	0.7%	98	don't know	

```
> age <- addhealth_public4$h4to34
> age[age >= 96] <- NA
> hist(age, main='', xlab='', col='orange')
```


Let's examine our variables

If Q.35 not equal 0, ask Q.36, else if Q.35 = 0, then skip to Q.43.				
H4TO36		Num	36. Think of all the times you have had a drink during the past 12 months. How many drinks did you usually have each time? A 'drink' is a glass of wine, a can or bottle of beer, a wine cooler, a shot glass of liquor, or a mixed drink. NOTE: Smallest 5 and largest 5 values are displayed.	
Frequency	Percent	Value	Label	
1651	10.5%	1	1 drink	
3051	19.4%	2	2 drinks	
2274	14.5%	3	3 drinks	
1343	8.6%	4	4 drinks	
891	5.7%	5	5 drinks	
1815	11.6%	6-16	NOTE: Range of values omitted from display	
4	0.0%	17	17 drinks	
108	0.7%	18	18 drinks	
27	0.2%	96	refused	
4427	28.2%	97	legitimate skip	
110	0.7%	98	don't know	

```
> num.drinks <- addhealth_public4$h4to36
> num.drinks[num.drinks >= 96] <- NA
> hist(num.drinks, main='', xlab='How many drinks',
+ col='orange')
```



```
> plot(num.drinks ~ age, pch=16, col='orange',
```

- + xlab='Age of first drink',
- + ylab='Number of drinks consumed')


```
> plot(jitter(num.drinks, 4) ~ jitter(age, 4),
+ pch=46, col='orange',
+ xlab='Age of first drink',
+ ylab='Number of drinks consumed')
```


The regression line is the line of "best fit" through this plot:

What is linear regression doing?

We model each case (x_i = age for ith person, y_i = number of drinks for ith person) as a linear relationship plus some error:

$$y_i = \beta_0 + \beta_1 x_i + \epsilon_i$$

 β_0 and β_1 are the intercept and slope, respectively.

What is linear regression doing?

We model each case (x_i = age for *i*th person, y_i = number of drinks for *i*th person) as a linear relationship plus some error:

$$y_i = \beta_0 + \beta_1 x_i + \epsilon_i$$

 β_0 and β_1 are the intercept and slope, respectively.

We find estimates for β_0 and β_1 in our sample that *minimize* the errors:

$$\hat{Y} = \hat{\beta}_0 + \hat{\beta}_1 X$$

This is the regression (best fit) line.

```
> model <- lm(num.drinks ~ age)</pre>
> summary(model)
Call:
lm(formula = num.drinks ~ age)
Residuals:
    Min
          10 Median 30
                                  Max
-4.2035 -1.8528 -0.8528 0.8095 15.1602
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 6.55417 0.26532 24.70 <2e-16 ***
age
           -0.16883 0.01588 -10.63 <2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 2.963 on 3600 degrees of freedom
  (2902 observations deleted due to missingness)
Multiple R-squared: 0.03044, Adjusted R-squared: 0.03017
F-statistic: 113 on 1 and 3600 DF, p-value: < 2.2e-16
```

This translates to a regression line of:

$$\widehat{\text{num drinks}} = 6.55 - 0.17 \cdot \text{age}$$

This translates to a regression line of:

$$\widehat{\text{num drinks}} = 6.55 - 0.17 \cdot \text{age}$$

Predict number of drinks for age = 21:

$$num drinks = 6.55 - 0.17 \cdot 21 = 3.01$$

Or we can use R to do the work for us:

 R^2 quantifies how closely the model fits the data.

• $R^2 = cor(X, Y)^2$, i.e., the squared correlation between X and Y.

 R^2 quantifies how closely the model fits the data.

- $R^2 = cor(X, Y)^2$, i.e., the squared correlation between X and Y.
- $R^2 = 0$ when the model has no predictive power at all.

 R^2 quantifies how closely the model fits the data.

- $R^2 = cor(X, Y)^2$, i.e., the squared correlation between X and Y.
- $R^2 = 0$ when the model has no predictive power at all.
- $R^2 = 1$ when the model yields perfect predictions every time.

 R^2 quantifies how closely the model fits the data.

- $R^2 = cor(X, Y)^2$, i.e., the squared correlation between X and Y.
- $R^2 = 0$ when the model has no predictive power at all.
- $R^2 = 1$ when the model yields perfect predictions every time.
- $R^2 = cor(Y, \hat{Y})^2$, i.e., the squared correlation between the actual and predicted values of Y.


```
> model <- lm(num.drinks ~ age)</pre>
> summary(model)
Call:
lm(formula = num.drinks ~ age)
Residuals:
   Min 10 Median 30
                             Max
-4.204 -1.853 -0.853 0.810 15.160
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 6.5542 0.2653 24.7 <2e-16 ***
age -0.1688 0.0159 -10.6 <2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 3 on 3600 degrees of freedom
  (2902 observations deleted due to missingness)
Multiple R-squared: 0.0304, Adjusted R-squared: 0.0302
F-statistic: 113 on 1 and 3600 DF, p-value: <2e-16
```

In our regression, $R^2 = 0.03$, so $r = \sqrt{0.03} = 0.17$. Is this "significant?"

In our regression, $R^2 = 0.03$, so $r = \sqrt{0.03} = 0.17$. Is this "significant?"

• **Statistical significance:** Can we reject the null hypothesis that the correlation between *X* and *Y* in the *population* is not zero?

In our regression, $R^2 = 0.03$, so $r = \sqrt{0.03} = 0.17$. Is this "significant?"

- **Statistical significance:** Can we reject the null hypothesis that the correlation between *X* and *Y* in the *population* is not zero?
- **Practical significance:** Is the correlation in our sample large enough to be meaningful?

The following are equivalent ways to express the overall null hypothesis:

• $R^2 = 0$ (in the population)

- $R^2 = 0$ (in the population)
- cor(X, Y) = 0 (in the population)

- $R^2 = 0$ (in the population)
- cor(X, Y) = 0 (in the population)
- $\beta_1 = 0$

- $R^2 = 0$ (in the population)
- cor(X, Y) = 0 (in the population)
- $\beta_1 = 0$
- The model has no predictive power

- $R^2 = 0$ (in the population)
- cor(X, Y) = 0 (in the population)
- $\beta_1 = 0$
- The model has no predictive power
- Predictions from this model are no better than predicting \overline{Y} for every case

Two ways to test the overall null hypothesis

- The F-test (tests H_0 : $R^2 = 0$ in the population)
- The t-test for the slope (β_1) coefficient (tests $H_0: \beta_1 = 0$)

Two ways to test the overall null hypothesis

- The F-test (tests H_0 : $R^2 = 0$ in the population)
- The t-test for the slope (β_1) coefficient (tests $H_0: \beta_1 = 0$)

Both of these methods are equivalent; the *p*-values will be exactly the same!


```
> model <- lm(num.drinks ~ age)</pre>
> summary(model)
Call:
lm(formula = num.drinks ~ age)
Residuals:
   Min 10 Median 30
                             Max
-4.204 -1.853 -0.853 0.810 15.160
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 6.5542 0.2653 24.7 <2e-16 ***
age -0.1688 0.0159 -10.6 <2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 3 on 3600 degrees of freedom
  (2902 observations deleted due to missingness)
Multiple R-squared: 0.0304, Adjusted R-squared: 0.0302
F-statistic: 113 on 1 and 3600 DF, p-value: <2e-16
```

 There is a statistically significant relationship between the age someone starts drinking and how much they drink as an adult.

- There is a statistically significant relationship between the age someone starts drinking and how much they drink as an adult.
- Or: People that start drinking earlier in life consume significantly more alcohol when they drink as adults.

- There is a statistically significant relationship between the age someone starts drinking and how much they drink as an adult.
- Or: People that start drinking earlier in life consume significantly more alcohol when they drink as adults.
- Each additional year you wait to start drinking is associated with consuming 0.17 fewer drinks as an adult.

- There is a statistically significant relationship between the age someone starts drinking and how much they drink as an adult.
- Or: People that start drinking earlier in life consume significantly more alcohol when they drink as adults.
- Each additional year you wait to start drinking is associated with consuming 0.17 fewer drinks as an adult.
- Is this relationship **practically significant**?

• Our best estimate for the *effect* of a year's postponement of drinking is 0.17 fewer drinks as an adult

- Our best estimate for the effect of a year's postponement of drinking is 0.17 fewer drinks as an adult
- We can use a confidence interval to give a range of plausible values for what this effect size is in the population

A confidence interval is always of the form

estimate \pm (critical value)(standard error).

A confidence interval is always of the form

```
estimate \pm (critical value)(standard error).
```

Recall that the critical value for a 95% confidence interval is the cutoff value that cuts off 95% of the area in the middle of the distribution; the sampling distribution of $\hat{\beta}_1$ is a t-distribution.

```
> n <- nobs(model)
> qt(0.975, n-2)
[1] 1.960623
```

R will also calculate confidence intervals for us:

R will also calculate confidence intervals for us:

In other words, we are 95% confident that the effect of each additional year's delay in starting to drink is between 0.14 and 0.2.

We can also put a confidence interval on a prediction! Two kinds of intervals:

Confidence	Predicting the	Among all people that start drink-
	mean value of Y	ing at age 21, how many drinks do
	for a particular <i>X</i> .	have on average as adults?
Prediction	Predicting Y for a	If Bob started drinking at age 21,
	single new case.	how many drinks do we think will
		have as an adult?

```
> predict.lm(model, list(age=21),
+ interval='confidence')
       fit
               lwr
                        upr
1 3.008664 2.83616 3.181167
> predict.lm(model, list(age=21),
   interval='prediction')
       fit
                 lwr
                          upr
1 3.008664 -2.802894 8.820221
```



```
> predict.lm(model, list(age=21),
+ interval='confidence')
       fit
              lwr
                       upr
1 3.008664 2.83616 3.181167
> predict.lm(model, list(age=21),
   interval='prediction')
       fit
                lwr
                         upr
1 3.008664 -2.802894 8.820221
```

Why is the prediction interval wider?

