Zeta functions on orders

Yifeng Huang (UBC)

joint with Ruofan Jiang

ullet R: a Dedekind domain (say, the ring of integers in a number field or a function field).

- R: a Dedekind domain (say, the ring of integers in a number field or a function field).
- $\zeta_R(s) := \sum_I |R/I|^{-s}$, summed over ideals I with $|R/I| < \infty$.

- R: a Dedekind domain (say, the ring of integers in a number field or a function field).
- $\zeta_R(s) := \sum_I |R/I|^{-s}$, summed over ideals I with $|R/I| < \infty$.
- Has meromorphic continuation and functional equation $s \mapsto 1-s$.

Lattice zeta function

ullet Let M be an R-module.

- ullet Let M be an R-module.
- $\zeta_M(s) := \sum_L |M/L|^{-s},$ summed over R-submodules L with $|M/L| < \infty.$

- ullet Let M be an R-module.
- $\zeta_M(s) := \sum_L |M/L|^{-s}$, summed over R-submodules L with $|M/L| < \infty$.
- When M=R, this is just the Dedekind zeta function.

- Let M be an R-module.
- $\zeta_M(s) := \sum_L |M/L|^{-s}$, summed over R-submodules L with $|M/L| < \infty$.
- When M=R, this is just the Dedekind zeta function.
- (Solomon '77) When R is Dedekind and $M=R^d$, then $\zeta_M(s)=\zeta_R(s)\zeta_R(s-1)\ldots\zeta_R(s-d+1)$.

- Let M be an R-module.
- $\zeta_M(s) := \sum_L |M/L|^{-s}$, summed over R-submodules L with $|M/L| < \infty$.
- When M=R, this is just the Dedekind zeta function.
- (Solomon '77) When R is Dedekind and $M=R^d$, then $\zeta_M(s)=\zeta_R(s)\zeta_R(s-1)\ldots\zeta_R(s-d+1)$. From this, it is easy to verify a functional equation $s\mapsto d-s$.

Cohen-Lenstra zeta function

Cohen-Lenstra zeta function

• $\widehat{\zeta}_R(s) := \sum_M |M|^{-s}/|\mathrm{Aut}(M)|$, summed over finite R-modules M up to isomorphism.

Cohen-Lenstra zeta function

- $\widehat{\zeta}_R(s) := \sum_M |M|^{-s}/|\mathrm{Aut}(M)|$, summed over finite R-modules M up to isomorphism.
- (Cohen–Lenstra '83) When R is Dedekind, then $\widehat{\zeta}_R(s) = \zeta_R(s+1)\zeta_R(s+2)\dots$

Cohen-Lenstra zeta function

- $\widehat{\zeta}_R(s) := \sum_M |M|^{-s}/|\mathrm{Aut}(M)|$, summed over finite R-modules M up to isomorphism.
- (Cohen-Lenstra '83) When R is Dedekind, then $\widehat{\zeta}_R(s) = \zeta_R(s+1)\zeta_R(s+2)\dots$ Moreover, it has meromorphic continuation and a functional equation $s\mapsto 1-s$.

Cohen-Lenstra zeta function

- $\widehat{\zeta}_R(s) := \sum_M |M|^{-s}/|\mathrm{Aut}(M)|$, summed over finite R-modules M up to isomorphism.
- (Cohen-Lenstra '83) When R is Dedekind, then $\zeta_R(s) = \zeta_R(s+1)\zeta_R(s+2)\dots$ Moreover, it has meromorphic continuation and a functional equation $s\mapsto 1-s$.

Question

What if R is a non-maximal order, thus not Dedekind?

Cohen-Lenstra zeta function

- $\widehat{\zeta}_R(s) := \sum_M |M|^{-s}/|\mathrm{Aut}(M)|$, summed over finite R-modules M up to isomorphism.
- (Cohen-Lenstra '83) When R is Dedekind, then $\zeta_R(s) = \zeta_R(s+1)\zeta_R(s+2)\dots$ Moreover, it has meromorphic continuation and a functional equation $s\mapsto 1-s$.

Question

What if R is a non-maximal order, thus not Dedekind?

Insight

Function-field case gives us lots of interesting examples.

Cohen-Lenstra zeta function

- $\widehat{\zeta}_R(s) := \sum_M |M|^{-s}/|\mathrm{Aut}(M)|$, summed over finite R-modules M up to isomorphism.
- (Cohen-Lenstra '83) When R is Dedekind, then $\zeta_R(s) = \zeta_R(s+1)\zeta_R(s+2)\dots$ Moreover, it has meromorphic continuation and a functional equation $s\mapsto 1-s$.

Question

What if R is a non-maximal order, thus not Dedekind?

Insight

Function-field case gives us lots of interesting examples. They are also geometric since order = singularity curve.

Let R be an order in the maximal order \widetilde{R} .

Let R be an order in the maximal order \widetilde{R} .

Facts

• $\zeta_R(s)$ has meromorphic continuation; in fact, $\zeta_R(s)/\zeta_{\widetilde{R}}(s)$ is entire.

Let R be an order in the maximal order \widetilde{R} .

- ullet $\zeta_R(s)$ has meromorphic continuation; in fact, $\zeta_R(s)/\zeta_{\widetilde{R}}(s)$ is entire.
- When R is "Gorenstein", then $\zeta_R(s)$ has a functional equation $s\mapsto 1-s$.

Let R be an order in the maximal order \widetilde{R} .

- $\zeta_R(s)$ has meromorphic continuation; in fact, $\zeta_R(s)/\zeta_{\widetilde{R}}(s)$ is entire.
- When R is "Gorenstein", then $\zeta_R(s)$ has a functional equation $s\mapsto 1-s$.
- When R is the coordinate ring of a singular curve X over \mathbb{F}_q , $\zeta_R(s)$ encodes point-counts of Hilbert schemes of points on X.

Let R be an order in the maximal order \widetilde{R} .

- $\zeta_R(s)$ has meromorphic continuation; in fact, $\zeta_R(s)/\zeta_{\widetilde{R}}(s)$ is entire.
- When R is "Gorenstein", then $\zeta_R(s)$ has a functional equation $s\mapsto 1-s$.
- When R is the coordinate ring of a singular curve X over \mathbb{F}_q , $\zeta_R(s)$ encodes point-counts of Hilbert schemes of points on X.
- ullet If X has only planar singularities, then R is Gorenstein.

Let R be an order in the maximal order \widetilde{R} .

- $\zeta_R(s)$ has meromorphic continuation; in fact, $\zeta_R(s)/\zeta_{\widetilde{R}}(s)$ is entire.
- When R is "Gorenstein", then $\zeta_R(s)$ has a functional equation $s\mapsto 1-s$.
- When R is the coordinate ring of a singular curve X over \mathbb{F}_q , $\zeta_R(s)$ encodes point-counts of Hilbert schemes of points on X.
- If X has only planar singularities, then R is Gorenstein.
- Typical example: $R=\mathbb{F}_q[X,Y]/(Y^m-X^n)\subseteq\widetilde{R}=\mathbb{F}_q[[T]]$, m,n pairwise coprime, via $X=T^m,Y=T^n$.

Let R be an order in the maximal order \widetilde{R} .

- $\zeta_R(s)$ has meromorphic continuation; in fact, $\zeta_R(s)/\zeta_{\widetilde{R}}(s)$ is entire.
- When R is "Gorenstein", then $\zeta_R(s)$ has a functional equation $s\mapsto 1-s$.
- When R is the coordinate ring of a singular curve X over \mathbb{F}_q , $\zeta_R(s)$ encodes point-counts of Hilbert schemes of points on X.
- ullet If X has only planar singularities, then R is Gorenstein.
- Typical example: $R=\mathbb{F}_q[X,Y]/(Y^m-X^n)\subseteq\widetilde{R}=\mathbb{F}_q[[T]]$, m,n pairwise coprime, via $X=T^m,Y=T^n$.
- The exact formula here involves a combinatorially interesting polynomial in $q, t = q^{-s}$ (called the generalized q, t-Catalan number). (Gorsky–Mazin '13).

Let R be an order in the maximal order \widetilde{R} .

- $\zeta_R(s)$ has meromorphic continuation; in fact, $\zeta_R(s)/\zeta_{\widetilde{R}}(s)$ is entire.
- When R is "Gorenstein", then $\zeta_R(s)$ has a functional equation $s\mapsto 1-s$.
- When R is the coordinate ring of a singular curve X over \mathbb{F}_q , $\zeta_R(s)$ encodes point-counts of Hilbert schemes of points on X.
- ullet If X has only planar singularities, then R is Gorenstein.
- Typical example: $R = \mathbb{F}_q[X,Y]/(Y^m X^n) \subseteq \widetilde{R} = \mathbb{F}_q[[T]], \ m,n$ pairwise coprime, via $X = T^m, Y = T^n$.
- The exact formula here involves a combinatorially interesting polynomial in $q, t = q^{-s}$ (called the generalized q, t-Catalan number). (Gorsky–Mazin '13).
- (Oblomkov–Rasmussen–Shende conjecture '18) For any curve with planar singularities, $\zeta_R(s)$ should encode knot invariants!!!

Let R be an order and M be an "R-lattice of rank d" (e.g., R^d or its finite-index submodule).

Let R be an order and M be an "R-lattice of rank d" (e.g., R^d or its finite-index submodule).

New results (and background)

• $\zeta_M(s)$ has meromorphic continuation; in fact, $\zeta_R(s)/\zeta_{\widetilde{R}^d}(s)$ is entire. (Bushnell–Reiner '81)

Let R be an order and M be an "R-lattice of rank d" (e.g., R^d or its finite-index submodule).

- $\zeta_M(s)$ has meromorphic continuation; in fact, $\zeta_R(s)/\zeta_{\widetilde{R}^d}(s)$ is entire. (Bushnell–Reiner '81)
- (H.–Jiang) When R is Gorenstein, then $\zeta_{R^d}(s)$ has a functional equation $s\mapsto d-s$.

Let R be an order and M be an "R-lattice of rank d" (e.g., R^d or its finite-index submodule).

- $\zeta_M(s)$ has meromorphic continuation; in fact, $\zeta_R(s)/\zeta_{\widetilde{R}^d}(s)$ is entire. (Bushnell–Reiner '81)
- (H.–Jiang) When R is Gorenstein, then $\zeta_{R^d}(s)$ has a functional equation $s\mapsto d-s$.
- (H.–Jiang) When $R=\mathbb{F}_q[X,Y]/(Y^2-X^n)$, $n\geq 2$, q odd, then $\zeta_{R^d}(s)$ is an explicit polynomial in $q,t=q^{-s}$

Let R be an order and M be an "R-lattice of rank d" (e.g., R^d or its finite-index submodule).

- $\zeta_M(s)$ has meromorphic continuation; in fact, $\zeta_R(s)/\zeta_{\widetilde{R}^d}(s)$ is entire. (Bushnell–Reiner '81)
- (H.–Jiang) When R is Gorenstein, then $\zeta_{R^d}(s)$ has a functional equation $s\mapsto d-s$.
- (H.–Jiang) When $R=\mathbb{F}_q[X,Y]/(Y^2-X^n)$, $n\geq 2$, q odd, then $\zeta_{R^d}(s)$ is an explicit polynomial in $q,t=q^{-s}$ involving partitions, Hall polynomials and q-hypergeometric functions.

Let R be an order and M be an "R-lattice of rank d" (e.g., R^d or its finite-index submodule).

- $\zeta_M(s)$ has meromorphic continuation; in fact, $\zeta_R(s)/\zeta_{\widetilde{R}^d}(s)$ is entire. (Bushnell–Reiner '81)
- (H.–Jiang) When R is Gorenstein, then $\zeta_{R^d}(s)$ has a functional equation $s\mapsto d-s$.
- (H.–Jiang) When $R=\mathbb{F}_q[X,Y]/(Y^2-X^n)$, $n\geq 2$, q odd, then $\zeta_{R^d}(s)$ is an explicit polynomial in $q,t=q^{-s}$ involving partitions, Hall polynomials and q-hypergeometric functions.
- Thus: the functional equation implies combinatorial identities; we have found a nontrivial direct proof for the case n=2 or n odd.

Let R be an order. Consider $\widehat{\zeta}_R(s)$

• Nothing is known in the number field case.

Let R be an order. Consider $\widehat{\zeta}_R(s)$

- Nothing is known in the number field case.
- Function field case from now: $\widehat{\zeta}_R(s)$ is related to counting tuples of pairwise commuting matrices satisfying Diophantine equations. E.g. AB = BA = 0 for $R = \mathbb{F}_q[X,Y]/(XY)$. (H.)

Let R be an order. Consider $\widehat{\zeta}_R(s)$

- Nothing is known in the number field case.
- Function field case from now: $\widehat{\zeta}_R(s)$ is related to counting tuples of pairwise commuting matrices satisfying Diophantine equations. E.g. AB = BA = 0 for $R = \mathbb{F}_q[X,Y]/(XY)$. (H.)
- (H.–Jiang) $\widehat{\zeta}_R(s)$ can be computed in terms of $\zeta_{R^d}(t)$ for all $d \geq 0$.

Let R be an order. Consider $\widehat{\zeta}_R(s)$

- Nothing is known in the number field case.
- Function field case from now: $\widehat{\zeta}_R(s)$ is related to counting tuples of pairwise commuting matrices satisfying Diophantine equations. E.g. AB = BA = 0 for $R = \mathbb{F}_q[X,Y]/(XY)$. (H.)
- (H.–Jiang) $\widehat{\zeta}_R(s)$ can be computed in terms of $\zeta_{R^d}(t)$ for all $d \geq 0$.
- (H.–Jiang) When $R=\mathbb{F}_q[X,Y]/(Y^2-X^n)$, $n\geq 2$, q odd, then $\widehat{\zeta}_R(s)$ is an explicit power series in $q^{-1},t=q^{-s}$ involving partitions, etc.

Let R be an order. Consider $\widehat{\zeta}_R(s)$

- Nothing is known in the number field case.
- Function field case from now: $\widehat{\zeta}_R(s)$ is related to counting tuples of pairwise commuting matrices satisfying Diophantine equations. E.g. AB = BA = 0 for $R = \mathbb{F}_q[X,Y]/(XY)$. (H.)
- (H.-Jiang) $\widehat{\zeta}_R(s)$ can be computed in terms of $\zeta_{R^d}(t)$ for all $d \geq 0$.
- (H.–Jiang) When $R=\mathbb{F}_q[X,Y]/(Y^2-X^n)$, $n\geq 2$, q odd, then $\widehat{\zeta}_R(s)$ is an explicit power series in $q^{-1},t=q^{-s}$ involving partitions, etc.
- Remark: When n>2, direct matrix count is hard; we proved the above using our formulas for $\zeta_{R^d}(s)$.

Let R be an order. Consider $\widehat{\zeta}_R(s)$

- Nothing is known in the number field case.
- Function field case from now: $\widehat{\zeta}_R(s)$ is related to counting tuples of pairwise commuting matrices satisfying Diophantine equations. E.g. AB = BA = 0 for $R = \mathbb{F}_q[X,Y]/(XY)$. (H.)
- (H.-Jiang) $\widehat{\zeta}_R(s)$ can be computed in terms of $\zeta_{R^d}(t)$ for all $d \geq 0$.
- (H.–Jiang) When $R=\mathbb{F}_q[X,Y]/(Y^2-X^n)$, $n\geq 2$, q odd, then $\widehat{\zeta}_R(s)$ is an explicit power series in $q^{-1},t=q^{-s}$ involving partitions, etc.
- Remark: When n>2, direct matrix count is hard; we proved the above using our formulas for $\zeta_{R^d}(s)$.
- The formulas surprisingly give modular forms and Ramanujan-type series.

Let R be an order. Consider $\widehat{\zeta}_R(s)$

- Nothing is known in the number field case.
- Function field case from now: $\widehat{\zeta}_R(s)$ is related to counting tuples of pairwise commuting matrices satisfying Diophantine equations. E.g. AB = BA = 0 for $R = \mathbb{F}_q[X,Y]/(XY)$. (H.)
- (H.–Jiang) $\widehat{\zeta}_R(s)$ can be computed in terms of $\zeta_{R^d}(t)$ for all $d \ge 0$.
- (H.–Jiang) When $R=\mathbb{F}_q[X,Y]/(Y^2-X^n)$, $n\geq 2$, q odd, then $\widehat{\zeta}_R(s)$ is an explicit power series in $q^{-1},t=q^{-s}$ involving partitions, etc.
- Remark: When n>2, direct matrix count is hard; we proved the above using our formulas for $\zeta_{R^d}(s)$.
- The formulas surprisingly give modular forms and Ramanujan-type series.
- Example: n=3, get $\sum_{n\geq 0}Q^{n^2}/((1-Q)\dots(1-Q^n))\,t^{2n}$, where $Q=q^{-1}$. At $t=\pm 1$, get modular form by Rogers–Ramanujan.

Future goal

An obvious question

Existence of meromorphic continuation of $\widehat{\zeta}_R(s)$ is not known in general, but true in known examples so far.

Future goal

An obvious question

Existence of meromorphic continuation of $\widehat{\zeta}_R(s)$ is not known in general, but true in known examples so far.

Further-reaching questions

- How do these richer formulas, modular forms, etc. say about the knot theory associated to the singularities?
- Any hope of exact formulas in the number field case?

Thank you for listening!