Systemy Al i budowa systemów decyzyjnych

Sieci neuronowe

część 1

Sztuczna inteligencja

Suma

- Neurony przesyłają między sobą sygnały (pobudzenie).
 Pojedynczy neuron może przyjmować sygnały od 1000 innych neuronów.
- Neuron przekazuje pobudzenie innym neuronom przez złącza nerwowe zwane synapsami. Transmisja sygnałów to skomplikowany proces chemiczno-elektryczny.
- Synapsy to przekaźniki informacji. Mogą wzmocnić pobudzenie bądź osłabić.

- Cześć sygnałów docierających do neuronu wywiera wpływ pobudający na neuron, a część hamujący.
- Neuron sumuje impulsy pobudzające i hamujące.
- Jeżeli suma ta przekracza pewną wartość progową wówczas sygnał na wyjściu, przez akson, jest przesyłany do innych neuronów.

https://pl.wikipedia.org/wiki/Neuron#/media/File:Action_Potential.gif

Submit Log in Register

ARTICLE | VOLUME 110, ISSUE 23, P3952-3969.E8, DECEMBER 07, 2022

F Figures

In vitro neurons learn and exhibit sentience when embodied in a simulated game-world

Brett J. Kagan <a> 11 <a> □ ■ Andy C. Kitchen ■ Nhi T. Tran ■ ... Ben Rollo ■ Adeel Razi ■ Karl J. Friston ■

Show all authors • Show footnotes

Open Access • Published: October 12, 2022 • DOI: https://doi.org/10.1016/j.neuron.2022.09.001 •

https://www.cell.com/neuron/fulltext/S0896-6273(22)00806-6

Kilkaset tysięcy mysich i ludzkich neuronów na siatce elektrod. Po miesiącu neurony utworzyły sieć (wetware):

Elektrony komunikowały się nie tylko między sobą, ale także z komputerem za pomocą siatki elektrod.

Między siatką elektrod i komputerem możliwe było przesyłanie sygnałów elektrycznych:

Neurony w ciągu 5 minut (!!!) nauczyły się grać w grę Pong. Było to możliwe dzięki **informacji zwrotnej**, którą otrzymywały od komputera (trafienie w rakietkę lub nie).

... czyli sterować rakietką:

w₁ i w₂ to wagi perceptronu

$$y = f(s) = \begin{cases} 1 \text{ jeżeli } s > 0 \\ 0 \text{ jeżeli } s \le 0 \end{cases}$$

 $S=X_1W_1 + X_2W_2$

$$s=2.4 + (-3).1=5$$

$$1 = f(5) = \begin{cases} 1 \text{ jeżeli } 5 > 0 \\ 0 \text{ jeżeli } 5 \le 0 \end{cases}$$

Perceptron może nam poklasyfikować punkty na płaszczyźnie:

Musimy go tylko tego nauczyć (→ UCZENIE MASZYNOWE)

Jakie możliwości ma perceptron?

Algorytm uczenia perceptronu:

- 1. Ustalamy wartości początkowe wag w₁, w₂ perceptronu.
- 2. Podajemy na wejścia współrzędne punktu (x_1, x_2) .
- 3. Wyliczamy s i następnie y.
- 4. Jeżeli y <u>nie jest takie jak oczekiwane</u> (1 dla punktów czerwonych, 0 dla punktów <u>niebieskich</u>) wówczas zmieniamy wagi w₁, w₂ perceptronu.
- 5. Jeżeli dla wszystkich punktów ze zbioru uczącego perceptron zwraca oczekiwane wartości wówczas kończymy naukę. W przeciwnym razie wracamy do punktu 1.

Neurony możemy łączyć w sieci:

Musimy sieć neuronową nauczyć rozpoznawać:

Na czym polega uczenie maszynowe?

Potrzebujemy 3 rzeczy:

- Dane wejściowe np. pliki audio, obrazy etc.
- Przykłady oczekiwanych wyjść np. zapis tekstowy plików audio, podpisy obrazów etc.

W uczeniu maszynowym dane wejściowe są przekształcane na dane wyjściowe. Jak przekształcać maszyna uczy się korzystając z przykładowych oczekiwanych wyjść.

Wprowadźmy następujące oznaczenie warstw sieci neuronowej:

Przekształcania danych (data transformations) możemy układać w warstwy (layers).

Przekształcania danych są parametryzowane przez wagi. Celem jest znalezienie odpowiednich wartości wag.

Sprawdzenie poprawności przekształcania danych możliwe jest dzięki funkcji straty (loss function).

W oparciu o wartość policzonego błędu (loss score) modyfikowane są wagi.

Stary paradygmat programowania:

Nowy paradygmat!

System działający w oparciu o uczenie maszynowe jest raczej trenowany (uczony) niż programowany!

Uczenie głębokie

W systemach uczenia głębokiego (deep learning) liczba warstw jest (bardzo) duża.

Musimy pokazać sieci neuronowej tysiące przykładowych twarzy kobiet i mężczyzn na podstawie, których będzie się uczyła:

Sieci neuronowe potrafią uogólniać wiedzę – po nauczeniu sieć będzie poprawnie klasyfikowała zdjęcia (kobieta czy mężczyzna), których wcześniej nie widziała.

Sieć w czasie uczenia znajdzie wzorzec kobiety i wzorzec mężczyzny.

Rozważmy następujące dwie liczby:

Jakie będą następne liczby?

Liczb jest zbyt mało i trudno zauważyć tutaj jakąś zależność (wzorzec).

Rozważmy więcej liczb:

0, 1, 1, 2, ?, ?, ...

Jakie będą następne liczby?

Możemy przyjąć, że następną jest 2.

Rozważmy jeszcze więcej liczb:

Jakie będą następne liczby?

Rozpoznajemy, że jest to tzw. ciąg Fibonacciego tzn.

$$F_n := egin{cases} 0 & \operatorname{dla} n = 0, \ 1 & \operatorname{dla} n = 1, \ F_{n-1} + F_{n-2} & \operatorname{dla} n > 1. \end{cases}$$

Im więcej danych tym łatwiej znaleźć wzorce!

Regresja liniowa

Regresja liniowa – metoda estymowania wartości oczekiwanej zmiennej y przy znanych wartościach innej zmiennej lub zmiennych x.

Zmienna y jest nazywana zmienną objaśnianą lub zależną. Zmienne x nazywane są zmiennymi objaśniającymi lub niezależnymi.

Zarówno zmienne objaśniane i objaśniające mogą być wielkościami skalarnymi lub tensorami.

Regresja liniowa

Regresja liniowa jest nazywana liniową, gdyż zakładanym modelem zależności między zmiennymi zależnymi a niezależnymi, jest funkcja liniowa bądź przekształcenie liniowe (afiniczne) reprezentowane przez macierz (tensor!) w przypadku wielowymiarowym.

Jaka prosta?

y=ax+b

$$a = ? b = ?$$

Regresja liniowa

Dla danych $\{(x_1, y_1), \dots, (x_N, y_N)\}$ zdefiniujmy błąd:

$$E(a,b) = \sum_{n=1}^{N} (y_n - (ax_n + b))^2$$

Nasz cel to znalezienie wartości a i b dla których błąd jest najmniejszy.

Metoda najmniejszych kwadratów

Metoda najmniejszych kwadratów służy do znalezienia krzywej najlepiej pasującej do danych. Rozważmy metodę w przypadku linii prostej:

$$y = ax + b$$

Załóżmy, że dla $n \in \{1,...,N\}$ pary (x_n, y_n) wyglądają

następująco:

Metoda najmniejszych kwadratów

Dla danych $\{(x_1,y_1), \ldots, (x_N,y_N)\}$ zdefiniujmy błąd:

$$E(a,b) = \sum_{n=1}^{N} (y_n - (ax_n + b))^2$$

Nasz cel to znalezienie wartości a i b dla których błąd jest najmniejszy.

Oznacza to, że musimy znaleźć wartości (a, b) takie, że:

$$\frac{\partial E}{\partial a} = 0, \quad \frac{\partial E}{\partial b} = 0.$$

Obliczmy pochodne *E(a,b)*:

$$\frac{\partial E}{\partial a} = \sum_{n=1}^{N} 2(y_n - (ax_n + b)) \cdot (-x_n)$$

$$\frac{\partial E}{\partial b} = \sum_{n=1}^{N} 2(y_n - (ax_n + b)) \cdot 1.$$

Zatem otrzymujemy:

$$\sum_{n=1}^{N} (y_n - (ax_n + b)) \cdot x_n = 0$$

$$\sum_{n=1}^{N} (y_n - (ax_n + b)) = 0.$$

Możemy zapisać to inaczej:

$$\left(\sum_{n=1}^{N} x_n^2\right) a + \left(\sum_{n=1}^{N} x_n\right) b = \sum_{n=1}^{N} x_n y_n$$

$$\left(\sum_{n=1}^{N} x_n\right) a + \left(\sum_{n=1}^{N} 1\right) b = \sum_{n=1}^{N} y_n.$$

Otrzymujemy zatem równanie macierzowe:

$$\begin{pmatrix} \sum_{n=1}^{N} x_n^2 & \sum_{n=1}^{N} x_n \\ \sum_{n=1}^{N} x_n & \sum_{n=1}^{N} 1 \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} \sum_{n=1}^{N} x_n y_n \\ \sum_{n=1}^{N} y_n \end{pmatrix}$$

Zakładając, że macierz jest odwracalna otrz $\begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} \sum_{n=1}^{N} x_n^2 & \sum_{n=1}^{N} x_n \\ \sum_{n=1}^{N} x_n & \sum_{n=1}^{N} 1 \end{pmatrix}^{-1} \begin{pmatrix} \sum_{n=1}^{N} x_n y_n \\ \sum_{n=1}^{N} y_n \end{pmatrix}$

Oznaczmy tą macierz przez M. Policzmy jej

wyzna $\det M = \sum_{n=1}^{N} x_n^2 \cdot \sum_{n=1}^{N} 1 - \sum_{n=1}^{N} x_n \cdot \sum_{n=1}^{N} x_n.$ $\overline{x} = \frac{1}{N} \sum_{n=1}^{N} x_n$ Wariancj

$$\overline{x} = \frac{1}{N} \sum_{n=1}^{N} x_n$$

$$\det M = N \sum_{n=1}^{N} x_n^2 - (N\overline{x})^2 = N^2 \left(\frac{1}{N} \sum_{n=1}^{N} x_n^2 - \overline{x}^2 \right) = N^2 \left(\frac{1}{N} \sum_{n=1}^{N} (x_n - \overline{x})^2 \right)$$

Zatem dopóki wszystkie x_n nie są równe, det będzie różny od 0 i M będzie odwracalna!

<u>Przykład</u>

Rozważmy następujace dane:

Х	1	2	3	4	5	6	7	8	9	10
Υ	0.5	5	4.1	8.2	5.9	8.1	12.4	12	12.7	18.3

Wówczas otrzymujemy (N=10):

$$\sum_{n=1}^{N} x_n^2 = 385 \quad \sum_{n=1}^{N} x_n = 55 \quad \sum_{n=1}^{N} x_n y_n = 613,8$$

$$\sum_{n=1}^{N} x_n = 55 \quad \sum_{n=1}^{N} 1 = 10 \quad \sum_{n=1}^{N} y_n = 87,$$

Przykład

Macierz M:

Zatem:

$$\begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} 0,012121 & -0,06667 \\ -0,06667 & 0,466667 \end{bmatrix} \cdot \begin{bmatrix} 613,8 \\ 87,2 \end{bmatrix} = \begin{bmatrix} 1,626667 \\ -0,22667 \end{bmatrix}$$

Przykład

Otrzymaliśmy prostą:

Inne rozwiązanie?

$$E(a,b) = \sum_{n=1}^{N} (y_n - (ax_n + b))^2$$

Wartość błędu E(a,b) dla początkowych wartości parametrów a i b.

Czy możemy modyfikować parametry a i b w taki sposób, że wartość błędu będzie się przesuwała w kierunku minimum funkcji E(a,b)?

Inne rozwiązanie?

Inne rozwiązanie?

Final point

W oparciu o wartość policzonego błędu modyfikowane są wagi.

Uczenie odbywa się w następującej pętli treningowej:

- 1. Wybierz partię próbek x i odpowiednich celów y.
- 2. Podaj na wejście sieci x (krok nazywany *forward pass*), aby uzyskać prognozy y_{pred}.
- 3. Oblicz stratę sieci czyli błąd między y pred i y.
- 4. Zaktualizuj wszystkie wagi sieci w sposób, który (nieznacznie) zmniejsza błąd.
- 5. Jeżeli to konieczne (błąd jest nadal duży) wróć do punktu 1.

W jaki sposób aktualizować wagi sieci tak aby błąd ulegał zmniejszeniu?

Rozwiązanie naiwne

- Modyfikujemy tylko jedną wybraną wagę.
- Zmieniamy nieznacznie jej wartość i po każdej zmianie sprawdzamy czy błąd uległ zwiększeniu czy zmniejszeniu.

Przykład

Błąd sieci wynosi 0.5. Wybrana waga ma wartość 0.3. Jeżeli zmienimy wartość na 0.35, błąd wyniesie 0.6. Jeżeli zmienimy na 0.2, błąd wyniesie 0.4. A zatem nowa wartość wagi wynosi 0.2.

Metoda koszmarnie nieefektywne bo:

- Zmiana jednego parametru sieci wymaga dwukrotnego przepuszczenia x przez sieć.
- Parametrów, które musimy zmieniać są często miliony.

Jakie inne rozwiązanie?

Z pomocą przychodzi nam matematyka!

Zauważmy, że:

$$y_{pred} = f_1(W,x)$$

$$loss = f_2(y_{pred}, y)$$

W jest tensorem wag.

Czyli:

$$loss = f_2(f_1(\mathbf{W}, \mathbf{x}), \mathbf{y})$$

Ponieważ x i y jako elementy zbioru treningowego są stałe zatem:

$$loss = f(W)$$

Input X

$$E(a,b) = \sum_{n=1}^{N} (y_n - (ax_n + b))^2$$

Przypomnijmy sobie zatem definicję gradientu funkcji:

Gradient (lub gradientowe pole wektorowe) funkcji skalarnej $f(x_1, \ldots, x_n)$ oznaczany ∇f , gdzie ∇ (nabla) to wektorowy operator różniczkowy nazywany nabla. Innym oznaczeniem gradientu f jest $\operatorname{grad} f$.

W układzie współrzędnych kartezjańskich gradient jest wektorem, którego składowe są pochodnymi cząstkowymi funkcji f. Gradient definiuje się jako pewne pole wektorowe. W układzie współrzędnych kartezjańskich składowe gradientu funkcji f są pochodnymi cząstkowymi tej funkcji tzn.

$$abla f = \left[rac{\partial f}{\partial x_1}, \ldots, rac{\partial f}{\partial x_n}
ight].$$

Wektor gradientu pokazuje kierunek największego wzrostu funkcji w danym punkcie!

Przykład

Funkcja:
$$f(x,y)=x^2y$$
.

Policzmy gradient:
$$\nabla f(3,2)$$

Z definicji:
$$abla f = \left[rac{\partial f}{\partial x_1}, \ldots, rac{\partial f}{\partial x_n}
ight]$$

Pochodne cząstkowe:

$$egin{align} rac{\partial f}{\partial x}(x,y) &= 2xy & rac{\partial f}{\partial y}(x,y) &= x^2 \ rac{\partial f}{\partial x}(3,2) &= 12 & rac{\partial f}{\partial y}(3,2) &= 9 \ \end{matrix}$$

Wróćmy do funkcji błędu:

$$loss = f(W) \tag{*}$$

Funkcja ta jest zwykle funkcją bardzo wielu zmiennych (bo sieć ma bardzo dużo parametrów).

loss =
$$f(w_1, w_2, ..., w_n)$$

UWAGA: 'W' w powyższej formule (*) to pewien tensor.

Funkcji błędu:

$$loss = f(W)$$

Przyjmijmy, że aktualna wartość W wynosi W_0 .

W₀ jest tensorem zawierającym parametry sieci.

UWAGA: Gradient funkcji f w punkcie W₀ czyli:

$$\nabla f(W_0)$$

ma ten sam kształt co W₀.

Ponieważ wektor gradientu pokazuje kierunek największego wzrostu funkcji w danym punkcie zatem wartość funkcji f(W) możemy zmniejszyć przesuwając się w kierunku przeciwnym do gradientu np:

$$W_1 = W_0 - \alpha \cdot \nabla f(W_0)$$

Przy czym α jest małym współczynnikiem uczenia. Jest on konieczny bo nie chcemy odejść zbyt mocno od W_0 .

W przypadku jednego parametru (wagi):

Mini-batch stochastic gradient descent

Uczenie odbywa się zatem w następującej pętli treningowej:

- Wybierz partię próbek x i odpowiednich celów y.
- 2. Podaj na wejście sieci x (krok nazywany *forward* pass)), aby uzyskać prognozy y_{pred}.
- 3. Oblicz stratę sieci (czyli błąd) między y pred i y.
- 4. Zmodyfikuj wszystkie wagi sieci w sposób, który nieznacznie zmniejsza błąd.
- 5. Jeżeli to konieczne (błąd jest nadal duży) wróć do punktu 1.

Mini-batch stochastic gradient descent

Uczenie odbywa się zatem w następującej pętli treningowej:

- 1. Wybierz partię próbek x i odpowiednich celów y (→ batch).
- 2. Podaj na wejście sieci x (krok nazywany *forward* pass)), aby uzyskać prognozy y_{pred}.
- 3. Oblicz stratę sieci (czyli błąd) między y pred i y.
- 4. Oblicz gradient funkcji błędu f(W) i zmodyfikuj wszystkie wagi: $W_1 = W_0 \alpha \cdot \nabla f(W_0)$
- 5. Jeżeli to konieczne (błąd jest nadal duży) wróć do punktu 1.

A co w takiej sytuacji?

Budowa tego neuronu jest podobna do budowy perceptronu. Różnica sprowadza się do funkcji aktywacji, która w tym przypadku jest funkcją sigmoidalną (unipolarną lub bipolarną).

Funkcja unipolarna

$$f(x) = \frac{1}{1 + \exp(-\beta x)}$$

Funkcja bipolarna

$$f(x) = \frac{1 - \exp(-\beta x)}{1 + \exp(-\beta x)}$$

Ważną zaletą funkcji sigmoidalnych jest ich różniczkowalność.

Pochodne te łatwo obliczyć.

Funkcja unipolarna:

$$f'(x) = \beta f(x)(1 - f(x))$$

Funkcja bipolarna:

$$f'(x) = \beta \left(1 - f^2(x)\right)$$

Wyjście neuronu:

$$y(t) = f\left(\sum_{i=0}^{n} w_i(t) x_i(t)\right)$$

Uczenie neuronu polega na minimalizacji błędu kwadratowego:

$$Q(\mathbf{w}) = \frac{1}{2} \left[d - f\left(\sum_{i=0}^{n} w_i x_i\right) \right]^2$$

Funkcja $Q\left(\mathbf{w}\right)$ jest różniczkowalna, ze względu na wagi a zatem możemy tutaj wykorzystać optymalizację gradientową.

Wagi w neuronie sigmoidalnym modyfikujemy według wzoru (wykorzystujemy wektor gradientu):

$$w_i(t+1) = w_i(t) - \eta \frac{\partial Q(w_i)}{\partial w_i}$$

$$\frac{\partial Q(w_i)}{\partial w_i} = \frac{\partial Q(w_i)}{\partial s} \cdot \frac{\partial s}{\partial w_i}$$

Łatwo obliczyć, że:

$$\frac{\partial s}{\partial w_i} = x_i$$

Zatem:

$$\frac{\partial Q(w_i)}{\partial w_i} = \frac{\partial Q(w_i)}{\partial s} \cdot x_i$$

Łatwo sprawdzić, że:

$$\frac{\partial Q(w_i)}{\partial s} = -(d - f(s)) \cdot f'(s)$$

Wprowadźmy oznaczenie:

$$\delta = -(d - f(s)) \cdot f'(s)$$

Zatem ostatecznie otrzymujemy następującą formułę na modyfikację wag:

$$w_i(t+1) = w_i(t) - \eta \delta x_i =$$

$$= w_i(t) + \eta (d - f(s))f'(s)x_i$$

gdzie η jest tzw. współczynnikiem uczenia.

Regresja liniowa

Wygląd zbioru testowego:

Dane, funkcja błędu i początkowe wartości parametrów:

```
real_x = np.array(x_point)
real_y = np.array(y_point)

def loss_fn(real_y, pred_y):
    return tf.reduce_mean((real_y - pred_y)**2)

import random
a = tf.Variable(random.random())
b = tf.Variable(random.random())
```

gradient

Modyfikacja parametrów (wag) i sesja: $W_1 = W_0 - \alpha \cdot \nabla f(W_0)$

```
Loss = []
epochs = 50
learning_rate = 0.2
for in range (epochs):
  with tf.GradientTape() as tape:
    pred y = a * real x + b
    loss = loss fn(real y, pred y)
    Loss.append(loss.numpy())
  grad a, grad b = tape.gradient(loss, (a, b))
  a.assign sub(learning rate*grad a)
  b.assign sub(learning rate*grad b)
```

Znaleziona linia prosta:

Sieć neuronowa?

Rozwiązujemy problem za pomocą jednego neuronu o jednym wejściu.

$$pred_y = a * real_x + b$$

Wagami neuronu są parametry a i b.

Zmiana błędu:

learning_rate = 0.2
steps = 50

Zmiana błędu:

learning_rate = 0.8
steps = 50

Zmiana błędu:

learning_rate = 1.0
steps = 50

Zmiana błędu:

learning_rate = 1.0
steps = 50

Obliczenie gradientu:

```
grad_a, grad_b = tape.gradient(loss,(a, b))
```

Modyfikacja wag (parametrów):

```
learning_rate = 1.0

a.assign_sub(learning_rate*grad_a)
b.assign_sub(learning_rate*grad_b)
```

Jak zmieniają się wartości grad_a i grad_b?

Błąd i gradienty:

Błąd i gradienty:

W przypadku jednego parametru (wagi):

W przypadku jednego parametru (wagi):

Mini-batch SGD

Uczenie odbywa się w następującej pętli treningowej:

- 1. Wybierz partię próbek x i odpowiednich celów y.
- 2. Podaj na wejście sieci x (krok nazywany *forward* pass)), aby uzyskać prognozy y_{pred}.
- 3. Oblicz stratę sieci czyli błąd między y pred i y.
- 4. Oblicz gradient funkcji błędu f(W) i zmodyfikuj wszystkie wagi: $W_1 = W_0 \alpha \cdot \nabla f(W_0)$
- 5. Jeżeli to konieczne (błąd jest nadal duży) wróć do punktu 1.

Uczenie maszynowe polega na aktualizacji współczynników metodą gradientową. Dostępnych jest kilka wariantów tej metody w zależności od wielkości próbki treningowej.

Batch SGD – gradient funkcji straty obliczany jest dla całego zestawu treningowego w każdej epoce.

Minusy takiego rozwiązania:

- Wymaga załadowania całego zestawu danych do pamięci.
- Możliwe utknięcie w minimach lokalnych mniejsza szansa na znalezienie minimum globalnego.

Batch Gradient Descent – zmiana błędu:

Mini-batch gradient descent – w tym przypadku parametry są aktualizowane dla pewnej partii danych treningowych (tzw. batch).

True Stochastic Gradient Descent – gradient funkcji straty obliczany jest dla pojedynczego elementu z zestawu treningowego w każdej epoce.

Funkcja zwracająca partię danych treningowych:

```
def subset_dataset(x_dataset, y_dataset, subset_size):
    arr = np.arange(len(x_dataset))
    np.random.shuffle(arr)
    x_train = [x_dataset[i] for i in arr[0:subset_size]]
    y_train = [y_dataset[i] for i in arr[0:subset_size]]
    return x_train,y_train
```

Podsumowanie:

Ponadto istnieje wiele wariantów SGD, które różnią się np. tym, że podczas obliczania następnej aktualizacji parametrów uwzględniają także poprzednie wartości gradientów, a nie tylko ich bieżące wartości.

Jest to np. SGD z członem momentum, a także Adagrad, RMSProp i kilka innych.

Takie warianty nazywane są metodami optymalizacji lub optymalizatorami.