STAT547C: Topics in Probability

Fall 2019-20

Assignment 1

 $Giorgio\ Viancha\ Sgarbi$

giorgio.sgarbi@stat.ubc.ca

1 PARTITION GENERATED SIGMA ALGEBRA

(1a)

Let K be the set of all possible countable unions of A, B and C, i.e:

$$\mathcal{K} = \{A, B, C, A \cup B, A \cup C, B \cup C, A \cup B \cup C, \emptyset\}$$

I will show $\mathcal{K} \subset \sigma \mathcal{D}, \sigma \mathcal{D} \subset \mathcal{K}$. Hence, $\mathcal{K} = \sigma \mathcal{D}$.

 \mathcal{K} is a σ -algebra on E:

 $E \in \mathcal{K}$:

 $E = A \cup B \cup C \in \mathcal{K}$ since D is a partition of E.

 \mathcal{K} is closed under union:

By construction, K closed under union (finite/countable union)

 \mathcal{K} is closed under complement:

Since $E = A \cup B \cup C$ and $\emptyset = A \cap B = A \cap C = B \cap C$:

 $E \setminus A = B \cup C$

 $E \setminus B = A \cup C$

 $E \setminus C = A \cup B$

 $E \setminus A \cup B \cup C = \emptyset$

 $D \subset \mathcal{K}$:

 $A, B, C \in \mathcal{K}$

 $\sigma D \subset \mathcal{K}$:

 \mathcal{K} is a σ -algebra on E that contains D, so $\sigma D \subset K$

 $\mathcal{K} \subset \sigma \mathcal{D}$:

 $A, B, C \in \sigma D$ by definition of σD .

 $A \cup B, A \cup C, B \cup C, A \cup B \cup C \in sD$ because σD is a σ -algebra on E and, thus, needs to be closed under countable unions. Therefore, all elements of \mathcal{K} are elements of σD .

Hence, the list of elements in $\sigma \mathcal{D}$ are:

 $\{A, B, C, A \cup B, A \cup C, B \cup C, A \cup B \cup C, \emptyset\}$, where $E = A \cup B \cup C$

(1b)

Notation: $C = \mathcal{C}$

C is a countable partition of E. Let S be the collection of all sets that are countable unions of elements in C (C_i) 's, \varnothing included).

Will show $S = \sigma \mathcal{C}$

Proof template:

- S is a σ -algebra on E .
- $\sigma C \subset S$
- $S \subset \sigma C$

Lemma: The union of a countable collection of countable sets is countable.

 $E \in S$:

 $C = \{C_1, C_2, ...\}$ is a countable partition of $E \Rightarrow E = \bigcup C_i \in S$

S is closed under countable unions:

The union of a countable collection of countable sets is countable and S is the collection of all sets that are countable unions of elements from C. So any countable union of elements in S will again be a countable union of elements from C, i.e, an element of S.

S is closed under complement:

Any A from S can be written as a countable union of a collection of elements in $C^* \subset C_i$'s. A^c is then the union of the C_i 's not in C^* because C is a partition of E. Therefore, by our lemma, A^c is also a countable union of elements from C and hence is also in S.

 $\sigma C \subset S$

 $\sigma \mathcal{C}$ is the intersection of all σ -algebra on E containing C. S is one of those σ -algebra on E, so $\sigma \mathcal{C} \subset \mathcal{S}$

 $S \subset \sigma \mathcal{C}$:

By definition, $\sigma \mathcal{C}$ needs to be closed under countable union, so it has to contain C and own (\exists) all possible countable unions of elements taken from C. So, by the definition of S, $S \subset \sigma \mathcal{C}$.

$$\sigma\mathcal{C} \subset \mathcal{S} \land \mathcal{S} \subset \sigma\mathcal{C} \iff \mathcal{S} = \sigma\mathcal{C}$$

(1c)

 $\mathcal{B}(\mathbb{R})$ is generated by, for example, the collection of sets of the form (q, ∞) , where $q \in \mathbb{Q}$. Since that collection has the same cardinality of Q and Q is countable, $\mathcal{B}(R)$ is countably generated.

SOLUTION:

(1d)

This proof will use the following:

Prop. 2.3 from book with B_0 as the collection of sets of the form (q, ∞) . We know, from the previous question, that B_0 generates $\mathcal{B}(\mathbb{R})$.

 $(E,\mathcal{E}),(\mathbb{R},\mathcal{B}(\mathbb{R}))$

 $f: E \to \mathbb{R}$

 $E = \bigcup_n C_n$

 $C_i \cap C_j = \emptyset \ \forall i, j \ge 1 \land i \ne j$

f is constant on each member of the partition $\implies f$ is \mathcal{E} -measurable:

Assumption:

 $\forall i \in 1, 2, \dots$:

 $f(x) = k_i \in \mathbb{R} \ \forall x \in C_i$

Now, for each set B of the form (q, ∞) : $f^{-1}B = \{x \in E : f(x) \in B\} = \{x \in E : f(x) > q\} = \bigcup C_j : k_j > q \ \forall j \in \mathbb{N}$

I can write $f^{-1}B$ in the way above because C is a partition of E.

Furthermore, since E is the collection of countable unions of elements taken from C (with \varnothing of course), we have that: $f^{-1}B \in \mathcal{E} \ \forall B \in B_0$

f is \mathcal{E} -measurable $\implies f$ is constant on each member of the partition:

Will prove the counter positive:

If f is **NOT** constant on at least one member of the partition, then f is **NOT** \mathcal{E} – measurable.

Assume f is not constant on at least one member C_d in C. This means: $\exists x_1, x_2 \in C_k : f(x_2) < f(x_1)$.

Then take $B = (q, \infty)$ with $f(x_2) < q < f(x_1)$.

Using the fact that C is a partition of E, we can write $f^{-1}B = C_1 \cup C_2 \cup ... \cup S_2...$, where: $S_2 = \{x \in C_d : f(x) \in B\}$.

However, S_2 is a proper subset of C_d as its elements are taken from C_d and it can't be the whole C_d since $x_2 \in C_d$, but $x_2 \notin S_2$.

Since C is a partition of E and S_2 is a **proper** subset of C_d , $f^{-1}B$ will only be a member of \mathcal{E} , i.e a countable union of elements taken from C, if $S_2 = \emptyset$, but $x_1 \in S_2$, so $f^{-1}B \notin \mathcal{E}$. Therefore, f is **NOT** \mathcal{E} – measurable. Since we've proved the counter positive, we have:

f is \mathcal{E} -measurable \implies f is constant on each member of the partition

¹ This rational q exists because $f(x_1)$ and $f(x_2)$ are real numbers and Q is dense in \mathbb{R} , but I won't say q can be written as the average between those two values as said average may not be rational.

2 Towards conditioning and sufficiency

(2a)

For each $A \in \mathcal{B}(\mathbb{R})$, in order for X to be a random variable, we need $X^{-1}A \in \mathcal{H}$.

What must be true of the relationship between $\mathcal C$ and $\mathcal H?$ $\mathcal C\subset\mathcal H$

What must be true of X on each member of \mathcal{C} ? X needs to be constant on each element of \mathcal{C} .

(2b)

$$\mu_n(A) = P(A), A \in \mathcal{C}_n$$

Show that μ_n is a measure:

Since P is a probability measure, $\mu_n : \mathcal{C}_n \to [0,1] \subset \mathbb{R}_+$

$$\mu_n(\varnothing) = P(\varnothing) = 0$$
 since P is a measure.

Let $\{A_n\} \subset C_n$ be a disjoint collection. Using that P is a measure: $\mu(\bigcup_n A_n) = \mathbb{P}(\bigcup_n A_n) = \sum_n P(A_n) = \sum_n \mu(A_n)$

$$\mu(\bigcup_n A_n) = \mathbb{P}(\bigcup_n A_n) = \sum_n P(A_n) = \sum_n \mu(A_n)$$

Hence, μ_n is a measure.

Not necessarily a probability measure:

There's no guaranteed that $\mu_n(C_n) = 1$ so far. For instance, let $C = \{C_1, C_2\}, n = 1, \mu_1(C_1) = 0.6, \mu_1(C_2) = 0.6$ 0.4 Since $\mu_1(C_1) \neq 1$, μ_1 is not a probability measure on (C_1, \mathcal{C}_1) .

For μ_n to be a probability measure on (C_n, \mathcal{C}_n) , we need $\mu_n(C_n) = 1$, i.e, $P(C_n) = 1$.

(2c)

Define a probability measure P_n on (C_n, \mathcal{C}_n) .

Let $P_n(A) = \frac{\mu_n(A)}{\mu_n(C_n)}$. Now we have all the requirements for a **probability measure** as long as this is well defined, i.e, $\mu_n(C_n) \neq 0$

(Ie., we have the requirements for a measure, but now we also have: $P_n(C_n) = \frac{\mu_n(C_n)}{\mu_n(C_n)} = 1$)

(2d)

$$\hat{P}_n(A) = P_n(A \cap C)$$
 for $A \in \mathcal{H} = \frac{\mu_n(A \cap C_n)}{\mu_n(C_n)} = \frac{P(A \cap C_n)}{P(C_n)}$

In an undergrad course, this would be known as a ${f conditional\ probability}.$

(2e)

$$P(A) = P(\cup_{n \geq 1} (A \cap C_n)) = \text{ (countable additivity as the } A \cap C_n \text{ are pairwise disjoint) } \sum_{n \geq 1} P(A \cap C_n) = \sum_{n \geq 1} P(C_n) \hat{P}_n(A) = \sum_{n \geq 1} c_n \hat{P}_n(A) \text{ , where } (c_n)_{n \geq 1} = P(C_n).$$

Show convexity:

$$\sum_{n\geq 1} c_n = \sum_{n\geq 1} P(C_n) = P(\cup_{n\geq 1} C_n) = P(E) = 1 \text{ (using that P is a probability measure)}$$
 Also, notice $0 = P(\varnothing) \leq c_n \leq P(\Omega) = 1 \ \forall n \geq 1$.

Therefore, P can be recovered as a mixture of the set $\{\hat{P}_n\}_{n\geq 1}$

(2f)

v and ν are synonyms here.

$$\nu(A) = \sum_{n>1} c_n \hat{P}_n(A), A \in \mathcal{H}$$

Since each c_n is between 0 and 1, and the sum of the c_n 's is 1, we can notice that the smallest value that $\nu(A)$ can take is 0 (for instance, when $A=\varnothing$) while the maximum value is 1, attained when $\hat{P}_n(A)$ (for instance, when $A = \Omega$). Therefore:

$$v: \mathcal{H} \to [0,1]$$

$$\nu(\varnothing) = \sum_{n \ge 1} c_n \hat{P}_n(\varnothing) = \sum_{n \ge 1} c_n 0 = 0$$

Take a disjoint collection (A_m) from \mathcal{H} :

$$\nu(\cup_{m>1} A_m) =$$

$$\sum_{n\geq 1} c_n \hat{P}_n(\cup_{m\geq 1} A_m) = \text{ (used disjoint and P is a measure here)}$$

$$\sum_{n\geq 1}^{-} c_n(\sum_{m\geq 1} \hat{P}_n(A_m)) =$$

$$\sum_{n>1} \left(\sum_{m>1} c_n P_n(A_m) \right) =$$

$$\sum_{n\geq 1} (\sum_{m\geq 1} c_n \hat{P}_n(A_m)) =$$

$$\sum_{m\geq 1} (\sum_{n\geq 1} c_n \hat{P}_n(A_m)) =$$

$$\sum_{m\geq 1} \nu(A_m)$$

$$\sum_{m>1} \nu(A_m)$$

$$\nu(\Omega) = \sum_{n \ge 1} c_n \hat{P}_n(\Omega) = \sum_{n \ge 1} c_n = 1$$

(2g)

We know:
$$v_n(A) = \frac{v(A)}{v(C_n)} = \frac{P(A)}{P(C_n)} = P_n(A), A \in \mathcal{C}_n$$

We want:

1.
$$P(C_n) = 0 \implies v(C_n) = 0$$

2.
$$\nu(A) = \sum_{n>1} c_n \hat{P}_n(A)$$
, where $\hat{P}_n = P_n(A \cap C_n)$, $A \in \mathcal{H}$

1.
$$\frac{v(A)}{v(C_n)} = \frac{P(A)}{P(C_n)} \implies v(C_n) = P(C_n) \frac{v(A)}{P(A)}$$
 Therefore, $P(C_n) = 0 \implies v(C_n) = 0$

Assume $P(C_n) \neq 0$. Otherwise, from (1), v(A) = 0, and we can take $(c_n) = (1, 0, 0, ...)$ and we're done.

$$v(A) = v(C_n) \frac{P(A)}{P(C_n)}$$
 for any $A \in \mathcal{C}_n$

 $A \in \mathcal{C}_n$ and $C_n \in \mathcal{C}_n$. Therefore, since sigma-algebras are closed under countable intersection, $A \cap C_n \in \mathcal{C}_n$ and we can write: $v(A \cap C_n) = v(C_n) \frac{P(A \cap C_n)}{P(C_n)} = v(A \cap C_n) = v(C_n) \hat{P}_n(A)$

$$\implies \sum_{n>1} v(A \cap C_n) = \sum_{n>1} v(C_n) \hat{P}_n(A)$$

$$\implies \sum_{n\geq 1} v(A \cap C_n) = \sum_{n\geq 1} v(C_n) \hat{P}_n(A)$$

$$\implies v(A) = \sum_{n\geq 1} c_n \hat{P}_n(A) \text{ where, } c_n = v(C_n).$$

v is a probability measure on $(\Omega, \mathcal{H}) \implies 0 \le c_n \le 1, \sum_{n \ge 1} c_n = 1$

Fix n, write the mixture using index m, and assume
$$P(C_n) \neq 0$$
:
$$\frac{v(A)}{v(C_n)} = \frac{\sum_{m \geq 1} c_m \hat{P}_m(A)}{\sum_{m \geq 1} c_m \hat{P}_m(C_n)} = \frac{\sum_{m \geq 1} c_m \frac{P(A \cap C_m)}{P(C_m)}}{\sum_{m \geq 1} c_m \frac{P(C_n \cap C_m)}{P(C_m)}} = \frac{\sum_{m \geq 1} P(A \cap C_m)}{c_n \frac{P(C_n)}{P(C_n)}} = \frac{P(A)}{P(C_n)}$$

Now, if $P(C_n) = 0$, then $v(C_n) = 0$, and we have:

$$A \subset C_n \implies P(A) = 0, v(A) = 0$$
. Therefore: $\frac{v(A)}{v(C_n)} = \frac{0}{0} = \frac{P(A)}{P(C_n)}$

$$\frac{v(A)}{v(C_n)} = \frac{0}{0} = \frac{P(A)}{P(C_n)}$$

3 Continuous functions

(3)

 $(E,\mathcal{E}),(\mathbb{R},\mathcal{B}(\mathbb{R}))$

 $f:E\to\mathbb{R}$ continuous

E is topological

Hint: f continuous $\implies f^{-1}B$ is open for every open subset $B \subset \mathbb{R}$ (1)

Show $\forall B \in \mathcal{B}(\mathbb{R}) : f^{-1}B \in \mathcal{E}$

If (E,\mathcal{E}) is topological, \mathcal{E} is a collection of open sets in E. Therefore, we have:

 $\forall B \in \mathcal{B}(\mathbb{R}):$ $B \ open \implies {}^{(1)}f^{-1}B \ open \implies f^{-1}B \in \mathcal{E} \quad \square$

4 Functional representation

(4)

⇐:

We have: $\exists h:G\to F:h$ is $\mathcal{G}\text{-measurable}$ and $f=h\circ g$

We want: f is $g^{-1}\mathcal{G} - measurable$

h is $\mathcal{G}\text{-measurable}\ : \forall B \in \mathcal{F}, h^{-1}B \in \mathcal{G}$ g is \mathcal{E} -measurable : $\forall B \in \mathcal{G}, g^{-1}B \in \mathcal{E}$ f is \mathcal{E} -measurable : $\forall B \in \mathcal{F}, f^{-1}B \in \mathcal{E}$

Take any $F_1 \in \mathcal{F}$:

Take any $F_1 \in \mathcal{F}$: h is \mathcal{G} -measurable : $h^{-1}F_1 \in \mathcal{G}$ g is \mathcal{E} -measurable : $g^{-1}h^{-1}F_1 \in g^{-1}\mathcal{G}$ $\implies g^{-1} \circ h^{-1}F_1 \in g^{-1}\mathcal{G}$ $\implies (h \circ g)^{-1}F_1 \in g^{-1}\mathcal{G}$ $\implies f^{-1}F_1 \in g^{-1}\mathcal{G}$

 $\implies f \text{ is } \in g^{-1}\mathcal{G}\text{-measurable}$

 \Rightarrow :