

Вспоминаем линейную алгебру

Векторы и матрицы

Мы будем считать, что все векторы являются столбцами по умолчанию. Пространство векторов длины nобозначается \mathbb{R}^n , а пространство матриц размера m imes n с вещественными элементами обозначается $\mathbb{R}^{m imes n}$. То есть ¹:

$$x = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x \end{bmatrix} \quad x^T = \begin{bmatrix} x_1 & x_2 & \dots & x_n \end{bmatrix} \quad x \in \mathbb{R}^n, x_i \in \mathbb{R}$$
 (1)

Вспоминаем линейную алгебру

 $^{^{1}}$ Подробный вводный курс по прикладной линейной алгебре можно найти в книге Introduction to Applied Linear Algebra – Vectors, Matrices, and Least Squares - книга от Stephen Boyd & Lieven Vandenberghe, которая указана в источнике. Также полезен материал по линейной алгебре приведенный в приложении A книги Numerical Optimization by Jorge Nocedal Stephen J. Wright.

Векторы и матрицы

Мы будем считать, что все векторы являются столбцами по умолчанию. Пространство векторов длины nобозначается \mathbb{R}^n , а пространство матриц размера m imes n с вещественными элементами обозначается $\mathbb{R}^{m imes n}$. То есть ¹:

$$x = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} \quad x^T = \begin{bmatrix} x_1 & x_2 & \dots & x_n \end{bmatrix} \quad x \in \mathbb{R}^n, x_i \in \mathbb{R}$$
 (1)

Аналогично, если $A \in \mathbb{R}^{m \times n}$ мы обозначаем транспонирование как $A^T \in \mathbb{R}^{n \times m}$:

$$A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n} & a_{n} & a_{n} \end{bmatrix} \quad A^T = \begin{bmatrix} a_{11} & a_{21} & \dots & a_{m1} \\ a_{12} & a_{22} & \dots & a_{m2} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n} & a_{n} & a_{n} \end{bmatrix} \quad A \in \mathbb{R}^{m \times n}, a_{ij} \in \mathbb{R}$$

Мы будем писать $x \geq 0$ и $x \neq 0$ для обозначения покомпонентных неравенств

 $^{^{1}}$ Подробный вводный курс по прикладной линейной алгебре можно найти в книге Introduction to Applied Linear Algebra – Vectors, Matrices, and Least Squares - книга от Stephen Boyd & Lieven Vandenberghe, которая указана в источнике. Также полезен материал по линейной алгебре приведенный в приложении А книги Numerical Optimization by Jorge Nocedal Stephen J. Wright.

Рис. 1: Эквивалентные представления вектора

Вспоминаем линейную алгебру

Матрица A называется симметричной, если $A=A^T$. Обозначается как $A\in\mathbb{S}^n$ (множество квадратных симметричных матриц размерности n). Заметим, что только квадратная матрица может быть симметричной по определению.

 $f \to \min_{x,y,z}$ Вспоминаем линейную алгебру

Матрица A называется симметричной, если $A=A^T$. Обозначается как $A\in\mathbb{S}^n$ (множество квадратных симметричных матриц размерности n). Заметим, что только квадратная матрица может быть симметричной по определению.

Матрица $A\in\mathbb{S}^n$ называется положительно (отрицательно) определенной, если для всех $x\neq 0: x^TAx>(<)0.$ Обозначается как $A\succ (\prec)0.$ Множество таких матриц обозначается как $\mathbb{S}^n_{++}(\mathbb{S}^n_{--})$

Вспоминаем линейную алгебру

Матрица A называется симметричной, если $A=A^T$. Обозначается как $A\in\mathbb{S}^n$ (множество квадратных симметричных матриц размерности n). Заметим, что только квадратная матрица может быть симметричной по определению.

Матрица $A \in \mathbb{S}^n$ называется положительно (отрицательно) определенной, если для всех $x \neq 0: x^T A x > (<)0$. Обозначается как $A \succ (\prec)0$. Множество таких матриц обозначается как $\mathbb{S}^n_{++}(\mathbb{S}^n_{--})$

Матрица $A \in \mathbb{S}^n$ называется **положительно (отрицательно) полуопределенной**, если для всех $x: x^T A x \geq (\leq) 0$. Обозначается как $A \succeq (\leq) 0$. Множество таких матриц обозначается как $\mathbb{S}^n_+(\mathbb{S}^n_-)$

i Question

Верно ли, что положительно определенная матрица имеет все положительные элементы?

∌ n ø

Матрица A называется симметричной, если $A=A^T$. Обозначается как $A\in\mathbb{S}^n$ (множество квадратных симметричных матриц размерности n). Заметим, что только квадратная матрица может быть симметричной по определению.

Матрица $A \in \mathbb{S}^n$ называется положительно (отрицательно) определенной, если для всех $x \neq 0: x^T Ax > (<)0$. Обозначается как $A \succ (\prec)0$. Множество таких матриц обозначается как $\mathbb{S}^n_{++}(\mathbb{S}^n_{--})$

Матрица $A \in \mathbb{S}^n$ называется положительно (отрицательно) полуопределенной, если для всех $x: x^T A x > (<)0$. Обозначается как $A \succeq (\leq)0$. Множество таких матриц обозначается как $\mathbb{S}^n_+(\mathbb{S}^n_-)$

i Question

Верно ли, что положительно определенная матрица имеет все положительные элементы?

i Question

Верно ли, что если матрица симметрична, то она должна быть положительно определенной?

 $f \to \min_{x,y,z}$

∌ n ø

симметричных матриц размерности n). Заметим, что только квадратная матрица может быть симметричной по определению.

Матрица $A \in \mathbb{S}^n$ называется положительно (отрицательно) определенной, если для всех $x \neq 0: x^T A x > (<) 0$. Обозначается как $A \succ (\prec) 0$. Множество таких матриц обозначается как $\mathbb{S}^n_{++}(\mathbb{S}^n_{--})$

Матрица $A \in \mathbb{S}^n$ называется положительно (отрицательно) полуопределенной, если для всех $x: x^T A x > (<) 0$. Обозначается как $A \succ (\prec) 0$. Множество таких матриц обозначается как $\mathbb{S}^n_+(\mathbb{S}^n_-)$

Матрица A называется симметричной, если $A=A^T$. Обозначается как $A\in\mathbb{S}^n$ (множество квадратных

i Question

Верно ли, что положительно определенная матрица имеет все положительные элементы?

i Question

Верно ли, что если матрица симметрична, то она должна быть положительно определенной?

i Question

Верно ли, что если матрица положительно определена, то она должна быть симметричной?

Матричное умножение (matmul)

Пусть A - матрица размера m imes n, а B - матрица размера n imes p, тогда их произведение AB равно:

$$C = AB$$

Тогда C - матрица размера $m \times p$, элемент (i, j) которой равен:

$$c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}.$$

Эта операция в наивной форме требует $\mathcal{O}(n^3)$ арифметических операций, где n обычно считается наибольшей размерностью матриц.

Матричное умножение (matmul)

Пусть A - матрица размера $m \times n$, а B - матрица размера $n \times p$, тогда их произведение AB равно:

$$C = AB$$

Тогда C - матрица размера $m \times p$, элемент (i,j) которой равен:

$$c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}.$$

Эта операция в наивной форме требует $\mathcal{O}(n^3)$ арифметических операций, где n обычно считается наибольшей размерностью матриц.

Возможно ли умножить две матрицы быстрее, чем за $\mathcal{O}(n^3)$? Как насчет $\mathcal{O}(n^2)$, $\mathcal{O}(n)$?

Пусть A - матрица размера $m \times n$, а x - вектор длины n, тогда i-й элемент произведения Ax равен:

$$z = Ax$$

равен:

$$z_i = \sum_{k=1}^n a_{ik} x_k$$

Эта операция в наивной форме требует $\mathcal{O}(n^2)$ арифметических операций, где n обычно считается наибольшей размерностью входов.

Отметим, что:

•
$$C = AB$$
 $C^T = B^T A^T$

Пусть A - матрица размера $m \times n$, а x - вектор длины n, тогда i-й элемент произведения Ax равен:

$$z = Ax$$

равен:

$$z_i = \sum_{k=1}^n a_{ik} x_k$$

Эта операция в наивной форме требует $\mathcal{O}(n^2)$ арифметических операций, где n обычно считается наибольшей размерностью входов.

Отметим, что:

- C = AB $C^T = B^T A^T$
- $AB \neq BA$

Пусть A - матрица размера $m \times n$, а x - вектор длины n, тогда i-й элемент произведения Ax равен:

$$z = Ax$$

равен:

$$z_i = \sum_{k=1}^n a_{ik} x_k$$

Эта операция в наивной форме требует $\mathcal{O}(n^2)$ арифметических операций, где n обычно считается наибольшей размерностью входов.

Отметим. что:

- C = AB $C^T = B^T A^T$
- $AB \neq BA$
- $e^A = \sum_{k=0}^{\infty} \frac{1}{k!} A^k$

Пусть A - матрица размера $m \times n$, а x - вектор длины n, тогда i-й элемент произведения Ax равен:

$$z = Ax$$

равен:

$$z_i = \sum_{k=1}^{n} a_{ik} x_k$$

Эта операция в наивной форме требует $\mathcal{O}(n^2)$ арифметических операций, где n обычно считается наибольшей размерностью входов.

Отметим. что:

- C = AB $C^T = B^T A^T$
 - $AB \neq BA$
- $e^A=\sum\limits_{k=0}^{\infty}\frac{1}{k!}A^k$ $e^{A+B}\neq e^Ae^B$ (но если A и B коммутируют, то есть AB=BA, то $e^{A+B}=e^Ae^B$)

Пусть A - матрица размера $m \times n$, а x - вектор длины n, тогда i-й элемент произведения Ax равен:

$$z = Ax$$

равен:

$$z_i = \sum_{k=1}^{n} a_{ik} x_k$$

Эта операция в наивной форме требует $\mathcal{O}(n^2)$ арифметических операций, где n обычно считается наибольшей размерностью входов.

Отметим. что:

- C = AB $C^T = B^T A^T$
 - $AB \neq BA$
- $e^A=\sum\limits_{k=0}^{\infty}\frac{1}{k!}A^k$ $e^{A+B}\neq e^Ae^B$ (но если A и B коммутируют, то есть AB=BA, то $e^{A+B}=e^Ae^B$)
- $\langle x, Ay \rangle = \langle A^T x, y \rangle$

Предположим, у вас есть следующее выражение

$$b = A_1 A_2 A_3 x,$$

где $A_1,A_2,A_3\in\mathbb{R}^{3 imes3}$ - случайные квадратные плотные матрицы, и $x\in\mathbb{R}^n$ - вектор. Вам нужно вычислить b.

Какой способ лучше всего использовать?

1. $A_1 A_2 A_3 x$ (слева направо)

Проверьте простой 🗣 код после вашего интуитивного ответа.

Предположим, у вас есть следующее выражение

$$b = A_1 A_2 A_3 x,$$

где $A_1,A_2,A_3\in\mathbb{R}^{3 imes 3}$ - случайные квадратные плотные матрицы, и $x\in\mathbb{R}^n$ - вектор. Вам нужно вычислить b.

Какой способ лучше всего использовать?

- 1. $A_1 A_2 A_3 x$ (слева направо)
- 2. $(A_1(A_2(A_3x)))$ (справа налево)

Проверьте простой 🗣 код после вашего интуитивного ответа.

♥ ი భ

Предположим, у вас есть следующее выражение

$$b = A_1 A_2 A_3 x,$$

где $A_1,A_2,A_3\in\mathbb{R}^{3 imes 3}$ - случайные квадратные плотные матрицы, и $x\in\mathbb{R}^n$ - вектор. Вам нужно вычислить b.

Какой способ лучше всего использовать?

- 1. $A_1 A_2 A_3 x$ (слева направо)
- 2. $(A_1(A_2(A_3x)))$ (справа налево)
- 3. Не имеет значения

Проверьте простой 🕏 код после вашего интуитивного ответа.

♥ ೧ 0

Предположим, у вас есть следующее выражение

$$b = A_1 A_2 A_3 x,$$

где $A_1,A_2,A_3\in\mathbb{R}^{3 imes3}$ - случайные квадратные плотные матрицы, и $x\in\mathbb{R}^n$ - вектор. Вам нужно вычислить b.

Какой способ лучше всего использовать?

- 1. $A_1 A_2 A_3 x$ (слева направо)
- 2. $(A_1(A_2(A_3x)))$ (справа налево)
- 3. Не имеет значения
- 4. Результаты первых двух вариантов не будут одинаковыми.

Проверьте простой 🗣 код после вашего интуитивного ответа.

Норма - это **количественная мера малости вектора** и обычно обозначается как $\|x\|$.

Норма должна удовлетворять определенным свойствам:

1.
$$\|\alpha x\| = |\alpha| \|x\|$$
, $\alpha \in \mathbb{R}$

Норма - это **количественная мера малости вектора** и обычно обозначается как $\|x\|$.

Норма должна удовлетворять определенным свойствам:

- 1. $\|\alpha x\| = |\alpha| \|x\|$, $\alpha \in \mathbb{R}$
- 2. $||x + y|| \le ||x|| + ||y||$ (неравенство треугольника)

 $f \to \min_{x,y,z}$ Вспоминаем линейную алгебру

Норма - это **количественная мера малости вектора** и обычно обозначается как $\|x\|$.

Норма должна удовлетворять определенным свойствам:

- 1. $\|\alpha x\| = |\alpha| \|x\|$, $\alpha \in \mathbb{R}$
- 2. $||x + y|| \le ||x|| + ||y||$ (неравенство треугольника)
- 3. Если ||x|| = 0, то x = 0

Норма - это **количественная мера малости вектора** и обычно обозначается как $\|x\|$.

Норма должна удовлетворять определенным свойствам:

- 1. $\|\alpha x\| = |\alpha| \|x\|$, $\alpha \in \mathbb{R}$
- 2. $||x + y|| \le ||x|| + ||y||$ (неравенство треугольника)
- 3. Если ||x|| = 0, то x = 0

Норма - это количественная мера малости вектора и обычно обозначается как $\|x\|$.

Норма должна удовлетворять определенным свойствам:

- 1. $\|\alpha x\| = |\alpha| \|x\|$, $\alpha \in \mathbb{R}$
- 2. $||x + y|| \le ||x|| + ||y||$ (неравенство треугольника)
- 3. Если ||x|| = 0, то x = 0

Расстояние между двумя векторами определяется как

$$d(x,y) = ||x - y||.$$

Наиболее широко используемой нормой является Евклидова норма:

$$||x||_2 = \sqrt{\sum_{i=1}^n |x_i|^2},$$

которая соответствует расстоянию в нашей реальной жизни. Если векторы имеют комплексные элементы, мы используем их модуль. Евклидова норма, или 2-норма, является подклассом важного класса р-норм:

$$\|x\|_p = \Big(\sum_{i=1}^n |x_i|^p\Big)^{1/p}.$$

p-норма вектора

Существуют два очень важных частных случая. Бесконечность-норма, или норма Чебышева, определяется как максимальное абсолютное значение элемента вектора:

$$||x||_{\infty} = \max_{i} |x_i|$$

p-норма вектора

Существуют два очень важных частных случая. Бесконечность-норма, или норма Чебышева, определяется как максимальное абсолютное значение элемента вектора:

$$||x||_{\infty} = \max_{i} |x_i|$$

 l_1 норма (или **манхэттенское расстояние**) определяется как сумма модулей элементов вектора x:

$$||x||_1 = \sum_i |x_i|$$

р-норма вектора

Существуют два очень важных частных случая. Бесконечность-норма, или норма Чебышева, определяется как максимальное абсолютное значение элемента вектора:

$$||x||_{\infty} = \max_{i} |x_i|$$

 l_1 норма (или **манхэттенское расстояние**) определяется как сумма модулей элементов вектора x:

$$||x||_1 = \sum_i |x_i|$$

 l_1 норма играет очень важную роль: она все связана с методами **compressed sensing**, которые появились в середине 00-х как одна из популярных тем исследований. Код для изображения ниже доступен здесь:. Также посмотрите это видео.

Unit disk in the p-th norm

Матричные нормы

В некотором смысле между матрицами и векторами нет большой разницы (вы можете векторизовать матрицу), и здесь появляется самая простая матричная норма Фробениуса:

$$||A||_F = \left(\sum_{i=1}^m \sum_{j=1}^n |a_{ij}|^2\right)^{1/2}$$

Матричные нормы

В некотором смысле между матрицами и векторами нет большой разницы (вы можете векторизовать матрицу), и здесь появляется самая простая матричная норма Фробениуса:

$$||A||_F = \left(\sum_{i=1}^m \sum_{j=1}^n |a_{ij}|^2\right)^{1/2}$$

Спектральная норма, $\|A\|_2$ является одной из наиболее широко используемых матричных норм (наряду с нормой Фробениуса).

$$||A||_2 = \sup_{x \neq 0} \frac{||Ax||_2}{||x||_2},$$

Она не может быть вычислена непосредственно из элементов с помощью простой формулы, как в случае нормы Фробениуса, однако, существуют эффективные алгоритмы для ее вычисления. Она напрямую связана с сингулярным разложением (SVD) матрицы. Для неё справедливо:

$$\|A\|_2 = \sigma_1(A) = \sqrt{\lambda_{\max}(A^TA)}$$

где $\sigma_1(A)$ - наибольшее сингулярное значение матрицы A.

Скалярное произведение

Стандартное **скалярное произведение** между векторами x и y из \mathbb{R}^n равно:

$$\langle x, y \rangle = x^T y = \sum_{i=1}^n x_i y_i = y^T x = \langle y, x \rangle$$

Здесь x_i и y_i - i-ые компоненты соответствующих векторов.

i Example

Докажите, что вы можете переставить матрицу внутри скалярного произведения с транспонированием:

$$\langle x,Ay\rangle = \langle A^Tx,y\rangle \text{ in } \langle x,yB\rangle = \langle xB^T,y\rangle$$

 $f \to \min_{x,y,z}$ Вспоминаем линейную алгебру

Скалярное произведение матриц

Стандартное скалярное произведение между матрицами X и Y из $\mathbb{R}^{m \times n}$ равно:

$$\langle X,Y\rangle = \operatorname{tr}(X^TY) = \sum_{i=1}^m \sum_{j=1}^n X_{ij} Y_{ij} = \operatorname{tr}(Y^TX) = \langle Y,X\rangle$$

i Question

Существует ли связь между нормой Фробениуса $\|\cdot\|_{F}$ и скалярным произведением между матрицами $\langle \cdot, \cdot \rangle$?

 $f \to \min_{x,y,z}$ Вспоминаем линейную алгебру

Собственные вектора и собственные значения

Число λ является собственным значением квадратной матрицы A размера $n \times n$, если существует ненулевой вектор q такой, что

$$Aq = \lambda q$$
.

Вектор q называется собственным вектором матрицы A. Матрица A невырожденная, если ни одно из её собственных значений не равно нулю. Собственные значения симметричных матриц являются вещественными числами, в то время как несимметричные матрицы могут иметь комплексные собственные значения. Если матрица положительно определена и симметрична, то все её собственные значения являются положительными вещественными числами.

Собственные вектора и собственные значения

i Theorem

$$A\succeq (\succ)0\Leftrightarrow$$
 все собственные значения $A\ge (>)0$

Proof

 $1. \to \mathsf{Предположим},$ что некоторое собственное значение λ отрицательно, и пусть x обозначает соответствующий собственный вектор. Тогда

$$Ax = \lambda x \to x^T A x = \lambda x^T x < 0$$

что противоречит условию $A\succeq 0.$

Собственные вектора и собственные значения

i Theorem

$$A\succeq (\succ)0\Leftrightarrow$$
 все собственные значения $A\ge (>)0$

Proof

1. \to Предположим, что некоторое собственное значение λ отрицательно, и пусть x обозначает соответствующий собственный вектор. Тогда

$$Ax = \lambda x \to x^T A x = \lambda x^T x < 0$$

что противоречит условию $A \succeq 0$.

2. \leftarrow Для любой симметричной матрицы мы можем выбрать набор собственных векторов v_1,\dots,v_n , которые образуют ортонормированный базис в \mathbb{R}^n . Возьмем любой вектор $x\in\mathbb{R}^n$.

$$\begin{split} x^TAx &= (\alpha_1v_1 + \ldots + \alpha_nv_n)^TA(\alpha_1v_1 + \ldots + \alpha_nv_n) \\ &= \sum \alpha_i^2v_i^TAv_i = \sum \alpha_i^2\lambda_iv_i^Tv_i \geq 0 \end{split}$$

Здесь мы использовали тот факт, что $v_i^T v_j = 0$, для $i \neq j$.

⊕ n e

Спектральное разложение (eigendecomposition)

Пусть $A \in S_n$, т.е. A - вещественная симметричная матрица размера $n \times n$. Тогда A может быть разложена как

$$A = Q \Lambda Q^T,$$

 $^{^2}$ Хорошая шпаргалка с разложением матриц доступна на сайте курса по линейной алгебре website.

Спектральное разложение (eigendecomposition)

Пусть $A \in S_n$, т.е. A - вещественная симметричная матрица размера $n \times n$. Тогда A может быть разложена как

$$A = Q\Lambda Q^T,$$

где $Q\in\mathbb{R}^{n\times n}$ ортогональная, т.е. удовлетворяет $Q^TQ=I$, и $\Lambda=\operatorname{diag}(\lambda_1,\dots,\lambda_n)$. Вещественные числа λ_i являются собственными значениями A и являются корнями характеристического полинома $\det(A-\lambda I)$. Столбцы Q образуют ортонормированный набор собственных векторов A. Такое разложение называется спектральным. 2

 $^{^2}$ Хорошая шпаргалка с разложением матриц доступна на сайте курса по линейной алгебре website.

Спектральное разложение (eigendecomposition)

Пусть $A \in S_n$, т.е. A - вещественная симметричная матрица размера $n \times n$. Тогда A может быть разложена ĸaĸ

$$A = Q\Lambda Q^T$$
,

где $Q \in \mathbb{R}^{n \times n}$ ортогональная, т.е. удовлетворяет $Q^TQ = I$, и $\Lambda = \mathsf{diag}(\lambda_1, \dots, \lambda_n)$. Вещественные числа λ_i являются собственными значениями A и являются корнями характеристического полинома $\det(A-\lambda I)$. Столбцы Q образуют ортонормированный набор собственных векторов A. Такое разложение называется спектральным. 2

Мы обычно упорядочиваем вещественные собственные значения как $\lambda_1 \geq \lambda_2 \geq ... \geq \lambda_n$. Мы используем обозначение $\lambda_i(A)$ для обозначения i-го наибольшего собственного значения $A \in S$. Мы обычно пишем наибольшее или максимальное собственное значение как $\lambda_1(A) = \lambda_{\max}(A)$, и наименьшее или минимальное собственное значение как $\lambda_n(A) = \lambda_{\min}(A)$.

 $^{^2}$ Хорошая шпаргалка с разложением матриц доступна на сайте курса по линейной алгебре website.

Наибольшее и наименьшее вещественныесобственные значения удовлетворяют

$$\lambda_{\min}(A) = \inf_{x \neq 0} \frac{x^T A x}{x^T x}, \qquad \lambda_{\max}(A) = \sup_{x \neq 0} \frac{x^T A x}{x^T x}$$

Наибольшее и наименьшее вещественныесобственные значения удовлетворяют

$$\lambda_{\min}(A) = \inf_{x \neq 0} \frac{x^T A x}{x^T x}, \qquad \lambda_{\max}(A) = \sup_{x \neq 0} \frac{x^T A x}{x^T x}$$

и, следовательно, $\forall x \in \mathbb{R}^n$ (соотношение Рэлея):

$$\lambda_{\min}(A)x^Tx \leq x^TAx \leq \lambda_{\max}(A)x^Tx$$

Наибольшее и наименьшее вещественныесобственные значения удовлетворяют

$$\lambda_{\min}(A) = \inf_{x \neq 0} \frac{x^T A x}{x^T x}, \qquad \lambda_{\max}(A) = \sup_{x \neq 0} \frac{x^T A x}{x^T x}$$

и, следовательно, $\forall x \in \mathbb{R}^n$ (соотношение Рэлея):

$$\lambda_{\min}(A)x^Tx \leq x^TAx \leq \lambda_{\max}(A)x^Tx$$

Число обусловленности невырожденной матрицы определяется как

$$\kappa(A)=\|A\|\|A^{-1}\|$$

Наибольшее и наименьшее вещественныесобственные значения удовлетворяют

$$\lambda_{\min}(A) = \inf_{x \neq 0} \frac{x^T A x}{x^T x}, \qquad \lambda_{\max}(A) = \sup_{x \neq 0} \frac{x^T A x}{x^T x}$$

и, следовательно, $\forall x \in \mathbb{R}^n$ (соотношение Рэлея):

$$\lambda_{\min}(A)x^Tx \leq x^TAx \leq \lambda_{\max}(A)x^Tx$$

Число обусловленности невырожденной матрицы определяется как

$$\kappa(A) = ||A|| ||A^{-1}||$$

Если мы используем спектральную матричную норму, мы можем получить:

$$\kappa(A) = \frac{\sigma_{\max}(A)}{\sigma_{\min}(A)}$$

Если, кроме того, $A\in \mathbb{S}^n_{++}\colon \kappa(A)=rac{\lambda_{\max}(A)}{\lambda_{\min}(A)}$

Число обусловленности

Пусть $A \in \mathbb{R}^{m \times n}$ с рангом A = r. Тогда A может быть разложена как

$$A = U \Sigma V^T$$

Пусть $A \in \mathbb{R}^{m \times n}$ с рангом A = r. Тогда A может быть разложена как

$$A = U \Sigma V^T$$

где $U\in\mathbb{R}^{m\times r}$ удовлетворяет $U^TU=I$, $V\in\mathbb{R}^{n\times r}$ удовлетворяет $V^TV=I$, и Σ является диагональной матрицей с $\Sigma=\operatorname{diag}(\sigma_1,...,\sigma_r)$, такой что

Пусть $A \in \mathbb{R}^{m \times n}$ с рангом A = r. Тогда A может быть разложена как

$$A = U \Sigma V^T$$

где $U\in\mathbb{R}^{m\times r}$ удовлетворяет $U^TU=I$, $V\in\mathbb{R}^{n\times r}$ удовлетворяет $V^TV=I$, и Σ является диагональной матрицей с $\Sigma=\operatorname{diag}(\sigma_1,...,\sigma_r)$, такой что

$$\sigma_1 \geq \sigma_2 \geq \ldots \geq \sigma_r > 0.$$

Пусть $A \in \mathbb{R}^{m \times n}$ с рангом A = r. Тогда A может быть разложена как

$$A = U\Sigma V^T$$

где $U\in\mathbb{R}^{m imes r}$ удовлетворяет $U^TU=I$, $V\in\mathbb{R}^{n imes r}$ удовлетворяет $V^TV=I$, и Σ является диагональной матрицей с $\Sigma={\sf diag}(\sigma_1,...,\sigma_r)$, такой что

$$\sigma_1 \ge \sigma_2 \ge \dots \ge \sigma_r > 0.$$

Это разложение называется сингулярным разложением (SVD) матрицы A. Столбцы U называются левыми сингулярными векторами A, столбцы V называются правыми сингулярными векторами, и числа σ_i являются сингулярными значениями. Сингулярное разложение может быть записано как

$$A = \sum_{i=1}^{r} \sigma_i u_i v_i^T,$$

где $u_i \in \mathbb{R}^m$ являются левыми сингулярными векторами, и $v_i \in \mathbb{R}^n$ являются правыми сингулярными векторами.

Сингулярное разложение

i Question

Пусть $A \in \mathbb{S}^n_{++}$. Что мы можем сказать о связи между его собственными значениями и сингулярными значениями?

Сингулярное разложение

i Question

Пусть $A \in \mathbb{S}^n_{++}$. Что мы можем сказать о связи между его собственными значениями и сингулярными значениями?

i Question

Как сингулярные значения матрицы связаны с её собственными значениями, особенно для симметричной матрицы?

Пример. Связь между Фробениусовой нормой и сингулярными значениями.

Пусть $A \in \mathbb{R}^{m \times n}$, и пусть $q := \min\{m,n\}$. Докажите, что

$$||A||_F^2 = \sum_{i=1}^q \sigma_i^2(A),$$

где $\sigma_1(A) \geq ... \geq \sigma_q(A) \geq 0$ - сингулярные значения матрицы A. Подсказка: используйте связь между Фробениусовой нормой и скалярным произведением и SVD.

Вспоминаем линейную алгебру

Простое, но очень интересное разложение - это ранговое разложение, которое может быть записано в двух формах:

$$A = UV^T \quad A = \hat{C}\hat{A}^{-1}\hat{R}$$

Простое, но очень интересное разложение - это ранговое разложение, которое может быть записано в двух формах:

$$A = UV^T \quad A = \hat{C}\hat{A}^{-1}\hat{R}$$

Последнее выражение относится к забавному факту: вы можете случайным образом выбрать r линейно независимых столбцов матрицы и любые rлинейно независимых строк матрицы и хранить только их с возможностью точно (!) восстановить всю матрицу.

Простое, но очень интересное разложение - это ранговое разложение, которое может быть записано в двух формах:

$$A = UV^T \quad A = \hat{C}\hat{A}^{-1}\hat{R}$$

Последнее выражение относится к забавному факту: вы можете случайным образом выбрать r линейно независимых столбцов матрицы и любые r линейно независимых строк матрицы и хранить только их с возможностью точно (!) восстановить всю матрицу.

Применения для рангового разложения:

• Сжатие модели, сжатие данных и ускорение вычислений в численном анализе: для матрицы ранга r с $r \ll n, m$ необходимо хранить $\mathcal{O}((n+m)r) \ll nm$ элементов.

Рис. 3: Иллюстрация рангового разложения

∌ດ ø

Простое, но очень интересное разложение - это ранговое разложение, которое может быть записано в двух формах:

$$A = UV^T \quad A = \hat{C}\hat{A}^{-1}\hat{R}$$

Последнее выражение относится к забавному факту: вы можете случайным образом выбрать r линейно независимых столбцов матрицы и любые r линейно независимых строк матрицы и хранить только их с возможностью точно (!) восстановить всю матрицу.

Применения для рангового разложения:

- Сжатие модели, сжатие данных и ускорение вычислений в численном анализе: для матрицы ранга r с $r \ll n, m$ необходимо хранить $\mathcal{O}((n+m)r) \ll nm$ элементов.
- Извлечение признаков в машинном обучении

Рис. 3: Иллюстрация рангового разложения

⇔ റ ഉ

Простое, но очень интересное разложение - это ранговое разложение, которое может быть записано в двух формах:

$$A = UV^T \quad A = \hat{C}\hat{A}^{-1}\hat{R}$$

Последнее выражение относится к забавному факту: вы можете случайным образом выбрать r линейно независимых столбцов матрицы и любые r линейно независимых строк матрицы и хранить только их с возможностью точно (!) восстановить всю матрицу.

Применения для рангового разложения:

- Сжатие модели, сжатие данных и ускорение вычислений в численном анализе: для матрицы ранга r с $r \ll n, m$ необходимо хранить $\mathcal{O}((n+m)r) \ll nm$ элементов.
- Извлечение признаков в машинном обучении
- Все приложения, где применяется SVD, так как ранговое разложение может быть преобразовано в форму усеченного SVD.

Рис. 3: Иллюстрация рангового разложения

∌ດ ø

Каноническое тензорное разложение

Можно рассмотреть обобщение рангового разложения на структуры данных более высокого порядка, такие как тензоры, что означает представление тензора в виде суммы r простых тензоров.

Рис. 4: Иллюстрация канонического тензорного разложения

i Example

Заметьте, что существует множество тензорных разложений: каноническое, Таккера, тензорный поезд (ТТ), тензорное кольцо (ТR) и другие. В случае тензоров мы не имеем прямого определения ранга для всех типов разложений. Например, для разложения Тензорного поезда ранг является не скаляром, а вектором.

Определитель и след матрицы могут быть выражены через собственные значения

$$\mathrm{det} A = \prod_{i=1}^n \lambda_i, \qquad \mathrm{tr} A = \sum_{i=1}^n \lambda_i$$

Определитель имеет несколько интересныхсвойств. Например,

• $\det A = 0$ тогда и только тогда, когда A является вырожденной;

Определитель и след матрицы могут быть выражены через собственные значения

$$\mathrm{det} A = \prod_{i=1}^n \lambda_i, \qquad \mathrm{tr} A = \sum_{i=1}^n \lambda_i$$

Определитель имеет несколько интересных свойств. Например,

- $\det A = 0$ тогда и только тогда, когда A является вырожденной;
- det AB = (det A)(det B):

Определитель и след матрицы могут быть выражены через собственные значения

$$\mathrm{det} A = \prod_{i=1}^n \lambda_i, \qquad \mathrm{tr} A = \sum_{i=1}^n \lambda_i$$

Определитель имеет несколько интересных свойств. Например,

- $\det A = 0$ тогда и только тогда, когда A является вырожденной;
- $\det AB = (\det A)(\det B)$:
- $\det A^{-1} = \frac{1}{\det^A}$.

Определитель и след матрицы могут быть выражены через собственные значения

$$\mathrm{det} A = \prod_{i=1}^n \lambda_i, \qquad \mathrm{tr} A = \sum_{i=1}^n \lambda_i$$

Определитель имеет несколько интересных свойств. Например,

- $\det A = 0$ тогда и только тогда, когда A является вырожденной;
- $\det AB = (\det A)(\det B)$:
- $\det A^{-1} = \frac{1}{\det^A}$.

Определитель и след матрицы могут быть выражены через собственные значения

$$\mathrm{det} A = \prod_{i=1}^n \lambda_i, \qquad \mathrm{tr} A = \sum_{i=1}^n \lambda_i$$

Определитель имеет несколько интересныхсвойств. Например.

- $\det A = 0$ тогда и только тогда, когда A является вырожденной;
- det AB = (det A)(det B):
- $\det A^{-1} = \frac{1}{\det A}$.

Не забывайте о циклическом свойстве следа для произвольных матриц A, B, C, D (предполагая, что все размерности согласованы):

$$\mathsf{tr}(ABCD) = \mathsf{tr}(DABC) = \mathsf{tr}(CDAB) = \mathsf{tr}(BCDA)$$

Определитель и след матрицы могут быть выражены через собственные значения

$$\mathrm{det} A = \prod_{i=1}^n \lambda_i, \qquad \mathrm{tr} A = \sum_{i=1}^n \lambda_i$$

Определитель имеет несколько интересныхсвойств. Например,

- $\det A = 0$ тогда и только тогда, когда A является вырожденной;
- det AB = (det A)(det B):
- $\det A^{-1} = \frac{1}{\det A}$.

Не забывайте о циклическом свойстве следа для произвольных матриц A, B, C, D (предполагая, что все размерности согласованы):

$$\mathsf{tr}(ABCD) = \mathsf{tr}(DABC) = \mathsf{tr}(CDAB) = \mathsf{tr}(BCDA)$$

i Question

Как определитель матрицы связан с её обратимостью?

Задача. Знайте свое скалярное произведение.

Упростите следующее выражение:

$$\sum_{i=1}^{n} \langle S^{-1} a_i, a_i \rangle,$$

где
$$S = \sum\limits_{i=1}^n a_i a_i^T, a_i \in \mathbb{R}^n, \det(S) \neq 0$$

Пример. LoRA: Low-Rank Adaptation of Large Language Models (arXiv:2106.09685)

Поскольку современные LLM слишком большие, чтобы вместиться в память среднего пользователя, мы используем некоторые трюки, чтобы сделать их потребление памяти меньше. Одним из наиболее популярных трюков является LoRA (Low-Rank Adaptation of Large Language Models).

Предположим, у нас есть матрица $W \in \mathbb{R}^{d \times k}$ и мы хотим выполнить следующее обновление:

$$W = W_0 + \Delta W.$$

Основная идея LoRA состоит в том, чтобы разложить обновление ΔW на две низкоранговые матрицы:

$$\begin{split} W = W_0 + \Delta W = W_0 + BA, \quad B \in \mathbb{R}^{d \times r}, A \in \mathbb{R}^{r \times k}, \\ rank(A) = rank(B) = r \ll \min\{d, k\}. \end{split}$$

Проверьте **4** ноутбук для примера реализации LoRA.

Вспоминаем линейную алгебру

Матрично-векторное дифференцирование

Градиент

Пусть $f(x):\mathbb{R}^n o \mathbb{R}$, тогда вектор, который содержит все первые частные производные:

$$\nabla f(x) = \frac{df}{dx} = \begin{pmatrix} \frac{\partial f}{\partial x_1} \\ \frac{\partial f}{\partial x_2} \\ \vdots \\ \frac{\partial f}{\partial x_n} \end{pmatrix}$$

Градиент

Пусть $f(x):\mathbb{R}^n o \mathbb{R}$, тогда вектор, который содержит все первые частные производные:

$$\nabla f(x) = \frac{df}{dx} = \begin{pmatrix} \frac{\partial f}{\partial x_1} \\ \frac{\partial f}{\partial x_2} \\ \vdots \\ \frac{\partial f}{\partial x_n} \end{pmatrix}$$

называется градиентом функции f(x). Этот вектор указывает направление наискорейшего возрастания. Таким образом, вектор $-\nabla f(x)$ указывает направление наискорейшего убывания функции в точке. Кроме того, вектор градиента всегда ортогонален линии уровня в точке.

i Example

Для функции $f(x,y) = x^2 + y^2$ градиент равен:

$$\nabla f(x,y) = \begin{bmatrix} 2x \\ 2y \end{bmatrix}$$

Он указывает направление наискорейшего возрастания функции.

i Question

Как связана норма градиента с крутизной функции?

Гессиан

Пусть $f(x):\mathbb{R}^n o \mathbb{R}$, тогда матрица, содержащая все вторые частные производные:

$$f''(x) = \nabla^2 f(x) = \frac{\partial^2 f}{\partial x_i \partial x_j} = \begin{pmatrix} \frac{\partial^2 f}{\partial x_i \partial x_1} & \frac{\partial^2 f}{\partial x_1 \partial x_2} & \dots & \frac{\partial^2 f}{\partial x_1 \partial x_n} \\ \frac{\partial^2 f}{\partial x_2 \partial x_1} & \frac{\partial^2 f}{\partial x_2 \partial x_2} & \dots & \frac{\partial^2 f}{\partial x_2 \partial x_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^2 f}{\partial x_n \partial x_1} & \frac{\partial^2 f}{\partial x_n \partial x_2} & \dots & \frac{\partial^2 f}{\partial x_n \partial x_n} \end{pmatrix}$$

Гессиан

Пусть $f(x):\mathbb{R}^n o \mathbb{R}$, тогда матрица, содержащая все вторые частные производные:

$$f''(x) = \nabla^2 f(x) = \frac{\partial^2 f}{\partial x_i \partial x_j} = \begin{pmatrix} \frac{\partial^2 f}{\partial x_1 \partial x_1} & \frac{\partial^2 f}{\partial x_1 \partial x_2} & \dots & \frac{\partial^2 f}{\partial x_1 \partial x_n} \\ \frac{\partial^2 f}{\partial x_2 \partial x_1} & \frac{\partial^2 f}{\partial x_2 \partial x_2} & \dots & \frac{\partial^2 f}{\partial x_2 \partial x_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^2 f}{\partial x_n \partial x_1} & \frac{\partial^2 f}{\partial x_n \partial x_2} & \dots & \frac{\partial^2 f}{\partial x_n \partial x_n} \end{pmatrix} \qquad \text{Для фу}$$

Гессиан может быть тензором: $(f(x):\mathbb{R}^n o \mathbb{R}^m)$ Таким образом, это просто трехмерный тензор, каждый срез которого это гессиан соответствующей скалярной функции $(\nabla^2 f_1(x),\dots,\nabla^2 f_m(x)).$

i Example

Для функции $f(x,y)=x^2\!+\!y^2$ гессиан равен:

$$H_f(x,y) = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}$$

Эта матрица содержит информацию о кривизне функции в разных направлениях.

i Question

Как можно использовать гессиан для определения выпуклости или вогнутости функции?

Теорема Шварца

Пусть $f:\mathbb{R}^n \to \mathbb{R}$ - функция. Если смешанные частные производные $\frac{\partial^2 f}{\partial x_i \partial x_j}$ и $\frac{\partial^2 f}{\partial x_j \partial x_i}$ непрерывны на открытом множестве, содержащем точку a, то они равны в точке a. То есть,

$$\frac{\partial^2 f}{\partial x_i \partial x_i}(a) = \frac{\partial^2 f}{\partial x_i \partial x_i}(a)$$

Теорема Шварца

Пусть $f:\mathbb{R}^n o \mathbb{R}$ - функция. Если смешанные частные производные $\frac{\partial^2 f}{\partial x_i \partial x_i}$ и $\frac{\partial^2 f}{\partial x_i \partial x_i}$ непрерывны на открытом множестве, содержащем точку a, то они равны в точке

a. То есть.

$$\frac{\partial^2 f}{\partial x_i \partial x_j}(a) = \frac{\partial^2 f}{\partial x_j \partial x_i}(a)$$

Согласно данной теореме, если смешанные частные производные непрерывны на открытом множестве, то гессиан симметричен. То есть.

$$\frac{\partial^2 f}{\partial x_i \partial x_i} = \frac{\partial^2 f}{\partial x_i \partial x_i} \quad \nabla^2 f(x) = (\nabla^2 f(x))^T$$

Эта симметричность упрощает вычисления и анализ, связанные с гессианом в различных приложениях. особенно в оптимизации.

і Контрпример Шварца

котя

существуют,

$$f(x,y) = \begin{cases} \frac{xy(x^2-y^2)}{x^2+y^2} & \text{ для } (x,\,y) \neq (0,\,0), \\ 0 & \text{ для } (x,y) = (0,0). \end{cases}$$

и в каждой

симметричность выполняется.

другой

Матрично-векторное дифференцирование

⊕ ດ **ø**

точке

Якобиан

Обобщением понятия градиента на случай многомерной функции $f(x):\mathbb{R}^n \to \mathbb{R}^m$ является следующая матрица:

$$J_f = f'(x) = \frac{df}{dx^T} = \begin{pmatrix} \frac{\partial f_1}{\partial x_1} & \frac{\partial f_2}{\partial x_1} & \cdots & \frac{\partial f_m}{\partial x_1} \\ \frac{\partial f_1}{\partial x_2} & \frac{\partial f_2}{\partial x_2} & \cdots & \frac{\partial f_m}{\partial x_2} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial f_1}{\partial x_n} & \frac{\partial f_2}{\partial x_n} & \cdots & \frac{\partial f_m}{\partial x_n} \end{pmatrix}$$

Она содержит информацию о скорости изменения функции по отношению к ее входу.

i Question

Можно ли связать эти три определения выше (градиент, якобиан, и гессиан) с помощью одного утверждения?

i Example

Для функции

$$f(x,y) = \begin{bmatrix} x+y \\ x-y \end{bmatrix},$$

Якобиан равен:

$$J_f(x,y) = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$$

Question

Как матрица Якоби связана с градиентом для скалярных функций?

Матрично-векторное дифференцирование

Итог

$$f(x):X\to Y;\qquad \frac{\partial f(x)}{\partial x}\in G$$

X	Υ	G	Name
\mathbb{R}	\mathbb{R}	\mathbb{R}	f'(x) (производная)
\mathbb{R}^n	\mathbb{R}	\mathbb{R}^n	$rac{\partial f}{\partial x_i}$ (градиент)
\mathbb{R}^n	\mathbb{R}^m	$\mathbb{R}^{n imes m}$	$rac{\partial f_i}{\partial x_i}$ (якобиан)
$\mathbb{R}^{m imes n}$	\mathbb{R}	$\mathbb{R}^{m imes n}$	$rac{\partial f}{\partial x_{ij}}$

Аппроксимация Тейлора первого порядка, также известная как линейное приближение, строится вблизи некоторой точки x_0 . Если $f: \mathbb{R}^n \to \mathbb{R}$ дифференцируемая функция, то ее аппроксимация первого порядка задается следующим образом:

$$f_{x_0}^I(x) = f(x_0) + \nabla f(x_0)^T (x - x_0)$$

где:

• $f(x_0)$ - значение функции в точке x_0 .

Аппроксимация Тейлора первого порядка, также известная как линейное приближение, строится вблизи некоторой точки x_0 . Если $f: \mathbb{R}^n \to \mathbb{R}$ дифференцируемая функция, то ее аппроксимация первого порядка задается следующим образом:

$$f_{x_0}^I(x) = f(x_0) + \nabla f(x_0)^T (x - x_0)$$

где:

- $f(x_0)$ значение функции в точке x_0 .
- $\nabla f(x_0)$ градиент функции в точке x_0 .

Аппроксимация Тейлора первого порядка, также известная как линейное приближение, строится вблизи некоторой точки x_0 . Если $f: \mathbb{R}^n \to \mathbb{R}$ дифференцируемая функция, то ее аппроксимация первого порядка задается следующим образом:

$$f_{x_0}^I(x) = f(x_0) + \nabla f(x_0)^T (x - x_0)$$

где:

- $f(x_0)$ значение функции в точке x_0 .
- $\nabla f(x_0)$ градиент функции в точке x_0 .

Аппроксимация Тейлора первого порядка, также известная как линейное приближение, строится вблизи некоторой точки x_0 . Если $f:\mathbb{R}^n \to \mathbb{R}$ - дифференцируемая функция, то ее аппроксимация первого порядка задается следующим образом:

$$f_{x_0}^I(x) = f(x_0) + \nabla f(x_0)^T (x - x_0)$$

где:

- $f(x_0)$ значение функции в точке x_0 .
- $\nabla f(x_0)$ градиент функции в точке x_0 .

Часто для упрощения теоретического анализа в некоторых методах заменяют р_{ис.} 6: Аппроксимация Тейлора функцию вблизи некоторой точки на её аппроксимацию первого порядка в окрестности точки

 x_0

Аппроксимация Тейлора второго порядка, также известная как квадратичное приближение, использует информацию о кривизне функции. Для дважды дифференцируемой функции $f:\mathbb{R}^n \to \mathbb{R}$, ее аппроксимация второго порядка, строящаяся вблизи некоторой точки x_0 , задается следующим образом:

$$f_{x_0}^{II}(x) = f(x_0) + \nabla f(x_0)^T (x - x_0) + \frac{1}{2} (x - x_0)^T \nabla^2 f(x_0) (x - x_0)$$

Где $\nabla^2 f(x_0)$ - гессиан функции f в точке x_0 .

Аппроксимация Тейлора второго порядка, также известная как квадратичное приближение, использует информацию о кривизне функции. Для дважды дифференцируемой функции $f:\mathbb{R}^n \to \mathbb{R}$, ее аппроксимация второго порядка, строящаяся вблизи некоторой точки x_0 , задается следующим образом:

$$f_{x_0}^{II}(x) = f(x_0) + \nabla f(x_0)^T (x - x_0) + \frac{1}{2} (x - x_0)^T \nabla^2 f(x_0) (x - x_0)$$

Где $abla^2 f(x_0)$ - гессиан функции f в точке x_0 .

Когда линейного приближения функции не достаточно, можно рассмотреть замену f(x) на $f_{x_0}^{II}(x)$ в окрестности точки x_0 . В общем, приближения Тейлора дают нам способ локально аппроксимировать функции.

Аппроксимация первого порядка определяется градиентом функции в точке, т.е. нормалью к касательной гиперплоскости. А аппроксимация второго порядка представляет из себя параболу. Эти приближения особенно полезны

в оптимизации и численных методах, потому что они предоставляют простой способ работы со сложными функциями.

Рис. 7: Аппроксимация Тейлора второго порядка в окрестности точки x_0

Дифференциалы

i Theorem

Пусть $x \in S$ - внутренняя точка множества S, и пусть $D: U \to V$ - линейный оператор. Мы говорим, что функция f дифференцируема в точке x с производной D, если для всех достаточно малых $h \in U$ выполняется следующее разложение:

$$f(x+h) = f(x) + D[h] + o(||h||)$$

Если для любого линейного оператора $D:U\to V$ функция f не дифференцируема в точке x с производной D, то мы говорим, что f не дифференцируема в точке x.

Дифференциалы

После получения дифференциальной записи df мы можем получить градиент, используя следующую формулу:

$$df(x) = \langle \nabla f(x), dx \rangle$$

Дифференциалы

После получения дифференциальной записи df мы можем получить градиент, используя следующую формулу:

$$df(x) = \langle \nabla f(x), dx \rangle$$

Далее, если у нас есть дифференциал в такой форме и мы хотим вычислить вторую производную матричной/векторной функции, мы рассматриваем "старый" dx как константу dx_1 , затем вычисляем $d(df) = d^2 f(x)$

$$d^2f(x) = \langle \nabla^2 f(x) dx_1, dx \rangle = \langle H_f(x) dx_1, dx \rangle$$

Пусть A и B - постоянные матрицы, а X и Y - переменные (или матричные функции).

• dA = 0

- dA = 0
- $\bullet \ d(\alpha X) = \alpha(dX)$

- dA = 0
- $d(\alpha X) = \alpha(dX)$
- d(AXB) = A(dX)B

- dA = 0
- $d(\alpha X) = \alpha(dX)$ • d(AXP) = A(dX)I
- d(AXB) = A(dX)B
- $\bullet \ d(X+Y) = dX + dY$

- dA = 0
- $d(\alpha X) = \alpha(dX)$
- d(AXB) = A(dX)B
- d(X+Y) = dX + dY• $d(X^T) = (dX)^T$

- dA = 0
- $d(\alpha X) = \alpha(dX)$
- d(AXB) = A(dX)B
- d(X+Y) = dX + dY
- $d(X^T) = (dX)^T$
- $d(X^{\perp}) = (dX)^{\perp}$
- $\bullet \ d(XY) = (dX)Y + X(dY)$

- dA = 0
- $d(\alpha X) = \alpha(dX)$
- d(AXB) = A(dX)B
- d(X+Y) = dX + dY
- $d(X^T) = (dX)^T$
- d(XY) = (dX)Y + X(dY)
- $d\langle X, Y \rangle = \langle dX, Y \rangle + \langle X, dY \rangle$

Пусть A и B - постоянные матрицы, а X и Y - переменные (или матричные функции).

- dA = 0
- $d(\alpha X) = \alpha(dX)$
- d(AXB) = A(dX)B
- d(X+Y) = dX + dY
- $d(X^T) = (dX)^T$
- d(XY) = (dX)Y + X(dY)
- $d\langle X, Y \rangle = \langle dX, Y \rangle + \langle X, dY \rangle$

• $d\left(\frac{X}{\phi}\right) = \frac{\phi dX - (d\phi)X}{\phi^2}$

- dA = 0
- $d(\alpha X) = \alpha(dX)$
- d(AXB) = A(dX)B
- $\bullet \ d(X+Y) = dX + dY$
- $d(X^T) = (dX)^T$
- $a(X^{\perp}) = (aX)^{\perp}$
- $\bullet \ d(XY) = (dX)Y + X(dY)$
- $d\langle X, Y \rangle = \langle dX, Y \rangle + \langle X, dY \rangle$

- $d\left(\frac{X}{\phi}\right) = \frac{\phi dX (d\phi)X}{\phi^2}$
- $d(\det X) = \det X\langle X^{-T}, dX \rangle$

- dA = 0
- $d(\alpha X) = \alpha(dX)$
- d(AXB) = A(dX)B
- d(X+Y) = dX + dY
- $d(X^T) = (dX)^T$
- u(X) = (aX)
- $\bullet \ d(XY) = (dX)Y + X(dY)$
- $d\langle X, Y \rangle = \langle dX, Y \rangle + \langle X, dY \rangle$

- $d\left(\frac{X}{\phi}\right) = \frac{\phi dX (d\phi)X}{\phi^2}$
- $d(\det X) = \det X\langle X^{-T}, dX \rangle$
- $\bullet \ d \, ({\rm tr} \, \, X) = \langle I, dX \rangle$

- dA = 0
- $d(\alpha X) = \alpha(dX)$
- d(AXB) = A(dX)B
- d(X+Y) = dX + dY
- $d(X^T) = (dX)^T$
- d(XY) = (dX)Y + X(dY)
- $d\langle X, Y \rangle = \langle dX, Y \rangle + \langle X, dY \rangle$

- $d\left(\frac{X}{\phi}\right) = \frac{\phi dX (d\phi)X}{\phi^2}$
- $d(\det X) = \det X \langle X^{-T}, dX \rangle$
- $d(\operatorname{tr} X) = \langle I, dX \rangle$
- $df(g(x)) = \frac{df}{dg} \cdot dg(x)$

- dA = 0
- $d(\alpha X) = \alpha(dX)$
- d(AXB) = A(dX)B
- d(X+Y) = dX + dY
- $d(X^T) = (dX)^T$
- d(XY) = (dX)Y + X(dY)
- $d\langle X, Y \rangle = \langle dX, Y \rangle + \langle X, dY \rangle$

- $d\left(\frac{X}{\phi}\right) = \frac{\phi dX (d\phi)X}{\phi^2}$
- $d(\det X) = \det X \langle X^{-T}, dX \rangle$
- $d(\operatorname{tr} X) = \langle I, dX \rangle$
- $df(g(x)) = \frac{df}{da} \cdot dg(x)$
- $H = (J(\nabla f))^T$

- dA = 0
- $d(\alpha X) = \alpha(dX)$
- d(AXB) = A(dX)B
- \bullet d(X+Y)=dX+dY
- $d(X^T) = (dX)^T$
- d(XY) = (dX)Y + X(dY)
- $d\langle X, Y \rangle = \langle dX, Y \rangle + \langle X, dY \rangle$

- $d\left(\frac{X}{\phi}\right) = \frac{\phi dX (d\phi)X}{\phi^2}$
- $d(\det X) = \det X\langle X^{-T}, dX\rangle$
- $d(\operatorname{tr} X) = \langle I, dX \rangle$
- $df(g(x)) = \frac{df}{da} \cdot dg(x)$
- $H = (J(\nabla f))^T$
- $d(X^{-1}) = -X^{-1}(dX)X^{-1}$

i Example

Найти $df, \nabla f(x)$, если $f(x) = \langle x, Ax \rangle - b^T x + c.$

i Example

Найти $df, \nabla f(x)$, если $f(x) = \ln \langle x, Ax \rangle.$

i Example

Найти df, $\nabla f(x)$, если $f(x) = \ln \langle x, Ax \rangle$.

1. Заметим, что A должна быть положительно определенной, потому что $\langle x,Ax \rangle$ аргумент логарифма и для любого x формула должна быть положительной. Таким образом, $A \in \mathbb{S}^n_{++}$ Давайте сначала найдем дифференциал:

$$df = d\left(\ln\langle x, Ax \rangle\right) = \frac{d\left(\langle x, Ax \rangle\right)}{\langle x, Ax \rangle} = \frac{\langle dx, Ax \rangle + \langle x, d(Ax) \rangle}{\langle x, Ax \rangle} =$$

$$= \frac{\langle Ax, dx \rangle + \langle x, Adx \rangle}{\langle x, Ax \rangle} = \frac{\langle Ax, dx \rangle + \langle A^Tx, dx \rangle}{\langle x, Ax \rangle} = \frac{\langle (A + A^T)x, dx \rangle}{\langle x, Ax \rangle}$$

i Example

Найти df, $\nabla f(x)$, если $f(x) = \ln \langle x, Ax \rangle$.

1. Заметим, что A должна быть положительно определенной, потому что $\langle x,Ax \rangle$ аргумент логарифма и для любого x формула должна быть положительной. Таким образом, $A \in \mathbb{S}^n_{++}$ Давайте сначала найдем дифференциал:

$$df = d\left(\ln\langle x, Ax \rangle\right) = \frac{d\left(\langle x, Ax \rangle\right)}{\langle x, Ax \rangle} = \frac{\langle dx, Ax \rangle + \langle x, d(Ax) \rangle}{\langle x, Ax \rangle} =$$

$$= \frac{\langle Ax, dx \rangle + \langle x, Adx \rangle}{\langle x, Ax \rangle} = \frac{\langle Ax, dx \rangle + \langle A^Tx, dx \rangle}{\langle x, Ax \rangle} = \frac{\langle (A + A^T)x, dx \rangle}{\langle x, Ax \rangle}$$

2. Наша основная цель - получить форму $df = \langle \cdot, dx \rangle$

$$df = \left\langle \frac{2Ax}{\langle x, Ax \rangle}, dx \right\rangle$$

Таким образом, градиент равен $\nabla f(x) = \frac{2Ax}{\langle x, Ax \rangle}$

i Example

Найти $df, \nabla f(X)$, если $f(X) = \langle S, X \rangle - \log \det X$.