!pip3 install pmdarima

```
Requirement already satisfied: pmdarima in /usr/local/lib/python3.7/dist-packages (1 Requirement already satisfied: numpy>=1.17.3 in /usr/local/lib/python3.7/dist-package Requirement already satisfied: Cython<0.29.18,>=0.29 in /usr/local/lib/python3.7/dist Requirement already satisfied: urllib3 in /usr/local/lib/python3.7/dist-packages (from Requirement already satisfied: setuptools!=50.0.0,>=38.6.0 in /usr/local/lib/python3 Requirement already satisfied: statsmodels!=0.12.0,>=0.11 in /usr/local/lib/python3.7/dist-packages Requirement already satisfied: scikit-learn>=0.22 in /usr/local/lib/python3.7/dist-packages Requirement already satisfied: pandas>=0.19 in /usr/local/lib/python3.7/dist-packages Requirement already satisfied: patsy>=0.5 in /usr/local/lib/python3.7/dist-packages Requirement already satisfied: pytz>=2017.2 in /usr/local/lib/python3.7/dist-packages Requirement already satisfied: python-dateutil>=2.7.3 in /usr/local/lib/python3.7/dist-packages (from package) satisfied: six in /usr/local/lib/python3.7/dist-packages (from package) Requirement already satisfied: six in /usr/local/lib/python3.7/dist-packages (from package) satisfied: satisfied: six in /usr/local/lib/python3.7/dist-packages (from package) satisfied: satisfie
```

```
# Import package
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import warnings
from statsmodels.tsa.api import SimpleExpSmoothing
from sklearn.metrics import mean_squared_error
from sklearn.metrics import mean_absolute_error
from datetime import datetime
from statsmodels.tsa.arima_model import ARIMA
from statsmodels.graphics.tsaplots import plot_acf,plot_pacf

warnings.simplefilter('ignore')

data = pd.read_csv('Dataset3_nasdaq_1985_2014.csv',names = ['nasdaq_1985_2014'])
```

Applying KPSS and ADF test

1. ADF test

```
ulouchar[ cl.trrat same (%2) %kell = same
   print(dfoutput)
#apply adf test on the series
adf_test('nasdaq_1985_2014')
    Results of Dickey-Fuller Test for nasdaq_1985_2014
    Test Statistic
                                 -2.381102
    p-value
                                   0.147141
    #Lags Used
                                 35.000000
    Number of Observations Used 7240.000000
    Critical Value (1%)
                                -3.431254
    Critical Value (5%)
                                 -2.861939
    Critical Value (10%)
                                -2.566983
    dtype: float64
```

2. KPSS test

```
#define function for kpss test
from statsmodels.tsa.stattools import kpss
#define KPSS
def kpss_test(atr):
    timeseries = data[atr].dropna()
    print ('Results of KPSS Test for ',atr)
    kpsstest = kpss(timeseries, regression='c')
    kpss_output = pd.Series(kpsstest[0:3], index=['Test Statistic','p-value','Lags Used'])
    for key,value in kpsstest[3].items():
         kpss_output['Critical Value (%s)'%key] = value
    print (kpss output)
kpss_test('nasdaq_1985_2014')
     Results of KPSS Test for nasdag 1985 2014
     Test Statistic 12.143812
     p-value
                                 0.010000
     Lags Used
                                36.000000
     Critical Value (10%) 0.347000
Critical Value (5%) 0.463000
Critical Value (2.5%) 0.574000
Critical Value (1%) 0.739000
     dtype: float64
```

For ADF test, we can see that the p-value is more than 0.05. Thus, from ADF test, we can say that the dataset is non-stationary.

For KPSS test, Test Statistic is more than Critical Value, thus we reject the null hypothesis. Thus, from KPSS test, we can say that the dataset is non-stationary.

Since, both tests conclude that the series is stationary, therefore, the dataset is concluded as Non-Stationary.

```
# Differencing
data['diff'] = data['nasdaq_1985_2014'].diff(periods=1)

data.plot(subplots=True, figsize=(10,12))
plt.show()
```


Applying Exponential Smoothening

```
#List of least mse and mae
mseses=[]
msedes=[]
msetes=[]
maeses=[1
```

```
maedes=[]
maetes=[]
```

Single Exponential Smoothing

```
#Defining Single Exponential Smoothing function ses
def ses(arr,alpha):
    arr1 = [arr[0]]
    for i in range(1, len(arr)):
        arr1.append(alpha * arr[i-1] + (1 - alpha) * arr1[i-1])
    return arr1
#Defining Mean of Squared Error Function mse
def mse(arr1,arr2):
  arr3=[0]
  for i, j in zip(arr1, arr2):
    arr3.append(i-j)
  Sum=0
  for i in arr3:
   sqr=i**2
    Sum+=sqr
  mse=Sum/(len(arr2)-1)
  return mse
#Function to make list of demand with interval 'n'
def dem_n(arr,n):
  arr1=[arr[0]]
  for i in range(1,len(arr)):
    if i%n==0:
      arr1.append(arr[i])
  return arr1
#Creating demand list in 'n' intervals
demand=dem n(data.nasdag 1985 2014,1)
#Forecasting
alpha1=0.2
alpha2=0.5
alpha3=0.8
forecast1=ses(demand,alpha1)
forecast2=ses(demand,alpha2)
forecast3=ses(demand,alpha3)
#Calculating Mean of Square Errors
mse1=mean squared error(demand, forecast1)
mse2=mean squared error(demand, forecast2)
mse3=mean squared error(demand, forecast3)
print("Mean of Square Errors for alpha = 0.2 is: ".mse1)
```

```
print("Mean of Square Errors for alpha = 0.5 is: ",mse2)
print("Mean of Square Errors for alpha = 0.8 is: ",mse3)
    Mean of Square Errors for alpha = 0.2 is: 2472.741440084606
    Mean of Square Errors for alpha = 0.5 is: 1336.440186179414
    Mean of Square Errors for alpha = 0.8 is: 1117.7909898783196
#Calculating Mean Absolute Errors
mae1=mean absolute error(demand, forecast1)
mae2=mean absolute error(demand, forecast2)
mae3=mean_absolute_error(demand, forecast3)
print("Mean Absolute Errors for alpha = 0.2 is: ",mae1)
print("Mean Absolute Errors for alpha = 0.5 is: ",mae2)
print("Mean Absolute Errors for alpha = 0.8 is: ",mae3)
    Mean Absolute Errors for alpha = 0.2 is: 28.000982741860746
    Mean Absolute Errors for alpha = 0.5 is: 19.850599625184778
    Mean Absolute Errors for alpha = 0.8 is: 17.774120514236166
#Comparing mse and plotting for least mse
d1={'Demand':demand,'Forecast':forecast1}
d2={'Demand':demand,'Forecast':forecast2}
d3={'Demand':demand,'Forecast':forecast3}
df1=pd.DataFrame(d1)
df2=pd.DataFrame(d2)
df3=pd.DataFrame(d3)
if mse1<=mse2 and mse1<=mse3:</pre>
  print('alpha: ',alpha1)
  df1.plot(style=['-','-'])
elif mse2<=mse1 and mse2<=mse3:
  print('alpha: ',alpha2)
  df2.plot(style=['-','-'])
else:
  print('alpha: ',alpha3)
  df3.plot(style=['-','-'])
```

Double Exponential Smoothing

```
4000 - .
#Defining Double Exponential Smoothing function des
def des(arr,alpha,beta):
  a=[arr[0]]
  l=len(arr)
  b=[(arr[1-1]-arr[0])/(1-1)]
  arr1 = [arr[0]]
  arr1.append(a[0]+b[0])
  for i in range(1,len(arr)-1):
      a.append(alpha * arr[i] + (1 - alpha) * (a[i-1]+b[i-1]))
      b.append(beta * (a[i]-a[i-1]) + (1 - beta) * (b[i-1]))
      arr1.append(a[i]+b[i])
  return arr1
#Creating demand list in 'n' intervals
demand=dem_n(data.nasdaq_1985_2014,1)
#Forecasting
alpha1=0.2
alpha2=0.5
alpha3=0.8
beta1=0.3
beta2=0.6
beta3=0.9
forecast1=des(demand,alpha1,beta1)
forecast2=des(demand,alpha2,beta2)
forecast3=des(demand,alpha3,beta3)
#Calculating Mean of Square Errors
mse1=mean squared error(demand, forecast1)
mse2=mean_squared_error(demand, forecast2)
mse3=mean_squared_error(demand, forecast3)
print("Mean of Square Errors for alpha = 0.2,beta= 0.3 is: ",mse1)
print("Mean of Square Errors for alpha = 0.5,beta= 0.6 is: ",mse2)
print("Mean of Square Errors for alpha = 0.8,beta= 0.9 is: ",mse3)
     Mean of Square Errors for alpha = 0.2,beta= 0.3 is: 2536.946969983234
     Mean of Square Errors for alpha = 0.5, beta = 0.6 is: 1610.849168270192
     Mean of Square Errors for alpha = 0.8, beta= 0.9 is: 1730.2882602330976
#Calculating Mean Absolute Errors
mae1=mean absolute error(demand, forecast1)
mae2=mean absolute error(demand, forecast2)
mae3=mean absolute error(demand, forecast3)
print("Mean Absolute Errors for alpha = 0.2,beta= 0.3 is: ",mae1)
```

```
print("Mean Absolute Errors for alpha = 0.5,beta= 0.6 is: ",mae2)
print("Mean Absolute Errors for alpha = 0.8,beta= 0.9 is: ",mae3)
     Mean Absolute Errors for alpha = 0.2, beta= 0.3 is: 27.818256325155097
     Mean Absolute Errors for alpha = 0.5, beta= 0.6 is: 21.526120724184242
     Mean Absolute Errors for alpha = 0.8, beta= 0.9 is:
                                                           21.86028543903852
#Comparing mse and plotting for least mse
d1={'Demand':demand,'Forecast':forecast1}
d2={'Demand':demand,'Forecast':forecast2}
d3={'Demand':demand,'Forecast':forecast3}
df1=pd.DataFrame(d1)
df2=pd.DataFrame(d2)
df3=pd.DataFrame(d3)
if mse1<=mse2 and mse1<=mse3:</pre>
  print('alpha: ',alpha1)
  print('beta: ',beta1)
  df1.plot(style=['-','-'])
elif mse2<=mse1 and mse2<=mse3:</pre>
  print('alpha: ',alpha2)
  print('beta: ',beta2)
  df2.plot(style=['-','-'])
else:
  print('alpha: ',alpha3)
  print('beta: ',beta3)
  df3.plot(style=['-','-'])
     alpha: 0.5
     beta:
            0.6
      5000
                                                 Demand
                                                Forecast
      4000
      3000
      2000
      1000
```

Triple Exponential Smoothing

1000

0

```
#Defining initial trend
def initial_trend(arr, slen):
    Sum = 0
    for i in range(slen):
        Sum += float(arr[i+slen] - arr[i]) / slen
    return Sum / slen
```

2000

3000

4000

5000

6000

7000

```
#Defining initial seasonal
def initial_seasonal(arr, slen):
    arr1 = \{\}
    s avg = []
    m = int(len(arr)/slen)
    for j in range(m):
        s_avg.append(sum(arr[slen*j:slen*j+slen])/float(slen))
    for i in range(slen):
        Sum = 0
        for j in range(m):
            Sum += arr[slen*j+i]-s_avg[j]
        arr1[i] = Sum/m
    return arr1
#Defining Triple Exponential Smoothing function tes with interval 'n'
def tes(arr, slen, alpha, beta, gamma, n):
    arr1 = []
    seasonals = initial_seasonal(arr, slen)
    for i in range(len(arr)+n):
        if i == 0:
            smooth = arr[0]
            trend = initial_trend(arr, slen)
            arr1.append(arr[0])
            continue
        if i >= len(arr):
            m = i - len(arr) + 1
            arr1.append((smooth + m*trend) + seasonals[i%slen])
        else:
            val = arr[i]
            lsmooth, smooth = smooth, alpha*(val-seasonals[i%slen]) + (1-alpha)*(smooth+tr
            trend = beta * (smooth-lsmooth) + (1-beta)*trend
            seasonals[i%slen] = gamma*(val-smooth) + (1-gamma)*seasonals[i%slen]
            arr1.append(smooth+trend+seasonals[i%slen])
    return arr1
#Creating demand list in 'n' intervals
demand=dem_n(data.nasdaq_1985_2014,1)
#Forecasting
alpha1=0.2
alpha2=0.5
alpha3=0.8
beta1=0.3
beta2=0.6
beta3=0.9
gamma1=0.4
gamma2=0.7
gamma3=0.95
#Considering season of 1 hours here
```

```
forecast1=tes(demand,1,alpha1,beta1,gamma1,0)
forecast2=tes(demand,1,alpha2,beta2,gamma2,0)
forecast3=tes(demand,1,alpha3,beta3,gamma3,0)
#Calculating mean of sqaured errors
mse1=mean_squared_error(demand, forecast1)
mse2=mean_squared_error(demand, forecast2)
mse3=mean squared error(demand, forecast3)
print("Mean of Square Errors for alpha = 0.2,beta= 0.3 gamma=0.4 is: ",mse1)
print("Mean of Square Errors for alpha = 0.5,beta= 0.6 gamma=0.7 is: ",mse2)
print("Mean of Square Errors for alpha = 0.8, beta= 0.9 gamma=0.95 is: ", mse3)
     Mean of Square Errors for alpha = 0.2, beta= 0.3 gamma=0.4 is: 324.98461283387843
     Mean of Square Errors for alpha = 0.5, beta = 0.6 gamma = 0.7 is: 159.5560160348016
     Mean of Square Errors for alpha = 0.8, beta= 0.9 gamma=0.95 is: 584.5190867801982
#Calculating Mean Absolute Errors
mae1=mean_absolute_error(demand, forecast1)
mae2=mean absolute error(demand, forecast2)
mae3=mean_absolute_error(demand, forecast3)
print("Mean Absolute Errors for alpha = 0.2, beta= 0.3, gamma=0.4 is: ",mae1)
print("Mean Absolute Errors for alpha = 0.5, beta= 0.6, gamma=0.7 is: ",mae2)
print("Mean Absolute Errors for alpha = 0.8, beta= 0.9, gamma=0.95 is: ",mae3)
     Mean Absolute Errors for alpha = 0.2, beta= 0.3, gamma=0.4 is: 9.812028958449401
     Mean Absolute Errors for alpha = 0.5, beta= 0.6, gamma=0.7 is: 7.130769745696372
     Mean Absolute Errors for alpha = 0.8, beta= 0.9, gamma=0.95 is: 12.927075494158293
#Comparing mse and plotting for least mse
d1={'Demand':demand,'Forecast':forecast1}
d2={'Demand':demand,'Forecast':forecast2}
d3={'Demand':demand,'Forecast':forecast3}
df1=pd.DataFrame(d1)
df2=pd.DataFrame(d2)
df3=pd.DataFrame(d3)
if mse1<=mse2 and mse1<=mse3:</pre>
  print('alpha: ',alpha1)
  print('beta: ',beta1)
  print('gamma: ',gamma1)
  df1.plot(style=['-','-'])
elif mse2<=mse1 and mse2<=mse3:</pre>
  print('alpha: ',alpha2)
  print('beta: ',beta2)
  print('gamma: ',gamma2)
  df2.plot(style=['-','-'])
else:
  print('alpha: ',alpha3)
  print('beta: ',beta3)
  nrint('gamma: '.gamma3)
```

```
df3.plot(style=['-','-'])

alpha: 0.5
beta: 0.6
gamma: 0.7

5000

Demand
Forecast
```

3000

4000

5000

7000

6000

For 1 Unit

0

Ó

Single Exponential Smoothing

1000

2000

```
#Creating demand list in 'n' intervals
demand=dem_n(data.nasdaq_1985_2014,1)
#Forecasting
alpha1=0.2
alpha2=0.5
alpha3=0.8
forecast1=ses(demand,alpha1)
forecast2=ses(demand,alpha2)
forecast3=ses(demand,alpha3)
#Calculating Mean of Square Errors
mse1=mean_squared_error(demand, forecast1)
mse2=mean squared error(demand, forecast2)
mse3=mean squared error(demand, forecast3)
print("Mean of Square Errors for alpha = 0.2 is: ",mse1)
print("Mean of Square Errors for alpha = 0.5 is: ",mse2)
print("Mean of Square Errors for alpha = 0.8 is: ",mse3)
     Mean of Square Errors for alpha = 0.2 is: 2472.741440084606
     Mean of Square Errors for alpha = 0.5 is: 1336.440186179414
     Mean of Square Errors for alpha = 0.8 is: 1117.7909898783196
```

```
#Comparing mse and plotting for least mse
d1={'Demand':demand,'Forecast':forecast1}
d2={'Demand':demand,'Forecast':forecast2}
d3={'Demand':demand,'Forecast':forecast3}
df1=pd.DataFrame(d1)
df2=pd.DataFrame(d2)
df3=pd.DataFrame(d3)
if mse1<=mse2 and mse1<=mse3:</pre>
  print('alpha: ',alpha1)
  df1.plot(style=['-','-'])
  mseses.append(mse1)
elif mse2<=mse1 and mse2<=mse3:</pre>
  print('alpha: ',alpha2)
  df2.plot(style=['-','-'])
  mseses.append(mse2)
else:
  print('alpha: ',alpha3)
  df3.plot(style=['-','-'])
  mseses.append(mse3)
```



```
#Storing least mae values
if mae1<=mae2 and mae1<=mae3:
   maeses.append(mae1)
elif mae2<=mae1 and mae2<=mae3:
   maeses.append(mae2)
else:
   maeses.append(mae3)</pre>
```

Double Exponential Smoothing

#Forecasting
alpha1=0.2

```
#Creating demand list in 'n' intervals
demand=dem_n(data.nasdaq_1985_2014,1)
```

```
alpha2=0.5
alpha3=0.8
beta1=0.3
beta2=0.6
heta3=0.9
forecast1=des(demand,alpha1,beta1)
forecast2=des(demand,alpha2,beta2)
forecast3=des(demand,alpha3,beta3)
#Calculating Mean of Square Errors
mse1=mean_squared_error(demand, forecast1)
mse2=mean_squared_error(demand, forecast2)
mse3=mean_squared_error(demand, forecast3)
print("Mean of Square Errors for alpha = 0.2,beta= 0.3 is: ",mse1)
print("Mean of Square Errors for alpha = 0.5,beta= 0.6 is: ",mse2)
print("Mean of Square Errors for alpha = 0.8,beta= 0.9 is: ",mse3)
     Mean of Square Errors for alpha = 0.2, beta= 0.3 is: 2536.946969983234
     Mean of Square Errors for alpha = 0.5, beta= 0.6 is: 1610.849168270192
     Mean of Square Errors for alpha = 0.8, beta= 0.9 is: 1730.2882602330976
#Comparing mse and plotting for least mse
d1={'Demand':demand,'Forecast':forecast1}
d2={'Demand':demand,'Forecast':forecast2}
d3={'Demand':demand,'Forecast':forecast3}
df1=pd.DataFrame(d1)
df2=pd.DataFrame(d2)
df3=pd.DataFrame(d3)
if mse1<=mse2 and mse1<=mse3:</pre>
  print('alpha: ',alpha1)
  print('beta: ',beta1)
  df1.plot(style=['-','-'])
  msedes.append(mse1)
elif mse2<=mse1 and mse2<=mse3:
  print('alpha: ',alpha2)
  print('beta: ',beta2)
  df2.plot(style=['-','-'])
  msedes.append(mse2)
else:
  print('alpha: ',alpha3)
  print('beta: ',beta3)
  df3.plot(style=['-','-'])
  msedes.append(mse3)
```

```
alpha: 0.5
     beta:
            0.6
      5000
                                                 Demand
                                                 Forecast
      4000
      3000
      2000
#Storing least mae values
if mae1<=mae2 and mae1<=mae3:</pre>
  maedes.append(mae1)
elif mae2<=mae1 and mae2<=mae3:
  maedes.append(mae2)
else:
  maedes.append(mae3)
Triple Exponential Smoothing
#Creating demand list in 'n' intervals
demand=dem_n(data.nasdaq_1985_2014,1)
#Forecasting
alpha1=0.2
alpha2=0.5
alpha3=0.8
beta1=0.3
beta2=0.6
beta3=0.9
gamma1=0.4
gamma2=0.7
gamma3=0.95
#Considering season of 1 hours here
forecast1=tes(demand,1,alpha1,beta1,gamma1,0)
forecast2=tes(demand,1,alpha2,beta2,gamma2,0)
forecast3=tes(demand,1,alpha3,beta3,gamma3,0)
#Calculating mean of sqaured errors
mse1=mean squared error(demand, forecast1)
mse2=mean_squared_error(demand, forecast2)
mse3=mean squared error(demand, forecast3)
print("Mean of Square Errors for alpha = 0.2,beta= 0.3 gamma=0.4 is: ",mse1)
```

print("Mean of Square Errors for alpha = 0.5,beta= 0.6 gamma=0.7 is: ",mse2)
print("Mean of Square Errors for alpha = 0.8,beta= 0.9 gamma=0.95 is: ",mse3)

```
Mean of Square Errors for alpha = 0.8, beta= 0.9 gamma=0.95 is: 584.5190867801982
#Calculating Mean Absolute Errors
mae1=mean_absolute_error(demand, forecast1)
mae2=mean absolute error(demand, forecast2)
mae3=mean_absolute_error(demand, forecast3)
print("Mean Absolute Errors for alpha = 0.2, beta= 0.3, gamma=0.4 is: ",mae1)
print("Mean Absolute Errors for alpha = 0.5, beta= 0.6, gamma=0.7 is: ",mae2)
print("Mean Absolute Errors for alpha = 0.8, beta= 0.9, gamma=0.95 is: ",mae3)
     Mean Absolute Errors for alpha = 0.2, beta= 0.3, gamma=0.4 is: 9.812028958449401
     Mean Absolute Errors for alpha = 0.5, beta= 0.6, gamma=0.7 is: 7.130769745696372
     Mean Absolute Errors for alpha = 0.8, beta= 0.9, gamma=0.95 is: 12.927075494158293
#Comparing mse and plotting for least mse
d1={'Demand':demand,'Forecast':forecast1}
d2={'Demand':demand,'Forecast':forecast2}
d3={'Demand':demand,'Forecast':forecast3}
df1=pd.DataFrame(d1)
df2=pd.DataFrame(d2)
df3=pd.DataFrame(d3)
if mse1<=mse2 and mse1<=mse3:</pre>
  print('alpha: ',alpha1)
  print('beta: ',beta1)
  print('gamma: ',gamma1)
  df1.plot(style=['-','-'])
  msetes.append(mse1)
elif mse2<=mse1 and mse2<=mse3:
  print('alpha: ',alpha2)
  print('beta: ',beta2)
  print('gamma: ',gamma2)
  df2.plot(style=['-','-'])
  msetes.append(mse2)
else:
  print('alpha: ',alpha3)
  print('beta: ',beta3)
  print('gamma: ',gamma3)
  df3.plot(style=['-','-'])
  msetes.append(mse3)
```

Mean of Square Errors for alpha = 0.2,beta= 0.3 gamma=0.4 is: 324.98461283387843 Mean of Square Errors for alpha = 0.5,beta= 0.6 gamma=0.7 is: 159.5560160348016

```
alpha: 0.5
     beta:
           0.6
     gamma:
             0.7
      5000
                                                Demand
                                                Forecast
      4000
      3000
#Storing least mae values
if mae1<=mae2 and mae1<=mae3:
  maetes.append(mae1)
elif mae2<=mae1 and mae2<=mae3:
  maetes.append(mae2)
else:
  maetes.append(mae3)
For 2 Unit
Single Exponential Smoothing
#Creating demand list in 'n' intervals
demand=dem_n(data.nasdaq_1985_2014,2)
#Forecasting
alpha1=0.2
alpha2=0.5
alpha3=0.8
forecast1=ses(demand,alpha1)
forecast2=ses(demand,alpha2)
forecast3=ses(demand,alpha3)
#Calculating Mean of Square Errors
mse1=mean squared error(demand, forecast1)
mse2=mean squared error(demand, forecast2)
mse3=mean_squared_error(demand, forecast3)
print("Mean of Square Errors for alpha = 0.2 is: ",mse1)
print("Mean of Square Errors for alpha = 0.5 is: ",mse2)
print("Mean of Square Errors for alpha = 0.8 is: ",mse3)
     Mean of Square Errors for alpha = 0.2 is: 4853.103732434068
     Mean of Square Errors for alpha = 0.5 is: 2458.2670288633058
     Mean of Square Errors for alpha = 0.8 is: 2061.186342147135
#Comparing mse and plotting for least mse
d1={'Demand':demand,'Forecast':forecast1}
d2={'Demand':demand,'Forecast':forecast2}
d3={'Demand':demand,'Forecast':forecast3}
```

```
df1=pd.DataFrame(d1)
df2=pd.DataFrame(d2)
df3=pd.DataFrame(d3)

if mse1<=mse2 and mse1<=mse3:
    print('alpha: ',alpha1)
    df1.plot(style=['-','-'])
    mseses.append(mse1)
elif mse2<=mse1 and mse2<=mse3:
    print('alpha: ',alpha2)
    df2.plot(style=['-','-'])
    mseses.append(mse2)
else:
    print('alpha: ',alpha3)
    df3.plot(style=['-','-'])
    mseses.append(mse3)</pre>
```



```
#Storing least mae values
if mae1<=mae2 and mae1<=mae3:
    maeses.append(mae1)
elif mae2<=mae1 and mae2<=mae3:
    maeses.append(mae2)
else:
    maeses.append(mae3)</pre>
```

Double Exponential Smoothing

beta1=0.3 beta2=0.6

```
#Creating demand list in 'n' intervals
demand=dem_n(data.nasdaq_1985_2014,2)

#Forecasting
alpha1=0.2
alpha2=0.5
alpha3=0.8
```

```
forecast1=des(demand,alpha1,beta1)
forecast2=des(demand,alpha2,beta2)
forecast3=des(demand,alpha3,beta3)
#Calculating Mean of Square Errors
mse1=mean_squared_error(demand, forecast1)
mse2=mean squared error(demand, forecast2)
mse3=mean_squared_error(demand, forecast3)
print("Mean of Square Errors for alpha = 0.2,beta= 0.3 is: ",mse1)
print("Mean of Square Errors for alpha = 0.5,beta= 0.6 is: ",mse2)
print("Mean of Square Errors for alpha = 0.8,beta= 0.9 is: ",mse3)
     Mean of Square Errors for alpha = 0.2,beta= 0.3 is: 4470.512808464085
     Mean of Square Errors for alpha = 0.5, beta = 0.6 is: 2844.2289410307126
     Mean of Square Errors for alpha = 0.8, beta = 0.9 is: 3182.6378222035564
#Comparing mse and plotting for least mse
d1={'Demand':demand,'Forecast':forecast1}
d2={'Demand':demand,'Forecast':forecast2}
d3={'Demand':demand,'Forecast':forecast3}
df1=pd.DataFrame(d1)
df2=pd.DataFrame(d2)
df3=pd.DataFrame(d3)
if mse1<=mse2 and mse1<=mse3:
  print('alpha: ',alpha1)
  print('beta: ',beta1)
  df1.plot(style=['-','-'])
  msedes.append(mse1)
elif mse2<=mse1 and mse2<=mse3:
  print('alpha: ',alpha2)
  print('beta: ',beta2)
  df2.plot(style=['-','-'])
  msedes.append(mse2)
else:
  print('alpha: ',alpha3)
  print('beta: ',beta3)
  df3.plot(style=['-','-'])
  msedes.append(mse3)
```

```
alpha: 0.5
     beta:
            0.6
      5000
                                                Demand
                                                Forecast
      4000
#Storing least mae values
if mae1<=mae2 and mae1<=mae3:
  maedes.append(mae1)
elif mae2<=mae1 and mae2<=mae3:
  maedes.append(mae2)
else:
  maedes.append(mae3)
                 500
                      1000
                           1500
                                             3000
                                                   35,00
                                       25,00
Triple Exponential Smoothing
#Creating demand list in 'n' intervals
demand=dem_n(data.nasdaq_1985_2014,2)
#Forecasting
alpha1=0.2
alpha2=0.5
alpha3=0.8
beta1=0.3
beta2=0.6
beta3=0.9
gamma1=0.4
gamma2=0.7
gamma3=0.95
#Considering season of 1 hours here
forecast1=tes(demand,1,alpha1,beta1,gamma1,0)
forecast2=tes(demand,1,alpha2,beta2,gamma2,0)
forecast3=tes(demand,1,alpha3,beta3,gamma3,0)
#Calculating mean of sqaured errors
mse1=mean squared error(demand, forecast1)
mse2=mean squared error(demand, forecast2)
mse3=mean_squared_error(demand, forecast3)
print("Mean of Square Errors for alpha = 0.2,beta= 0.3 gamma=0.4 is: ",mse1)
print("Mean of Square Errors for alpha = 0.5, beta= 0.6 gamma=0.7 is: ", mse2)
print("Mean of Square Errors for alpha = 0.8,beta= 0.9 gamma=0.95 is: ",mse3)
     Mean of Square Errors for alpha = 0.2, beta = 0.3 gamma = 0.4 is: 594.8463666539786
     Mean of Square Errors for alpha = 0.5, beta = 0.6 gamma = 0.7 is: 297.6694292157872
     Mean of Square Errors for alpha = 0.8, beta= 0.9 gamma=0.95 is: 1072.0211757567604
```

```
#Calculating Mean Absolute Errors
mae1=mean_absolute_error(demand, forecast1)
mae2=mean_absolute_error(demand, forecast2)
mae3=mean absolute error(demand, forecast3)
print("Mean Absolute Errors for alpha = 0.2,beta= 0.3, gamma=0.4 is: ",mae1)
print("Mean Absolute Errors for alpha = 0.5, beta= 0.6, gamma=0.7 is: ",mae2)
print("Mean Absolute Errors for alpha = 0.8, beta= 0.9, gamma=0.95 is: ",mae3)
     Mean Absolute Errors for alpha = 0.2, beta= 0.3, gamma=0.4 is: 13.574281218977394
     Mean Absolute Errors for alpha = 0.5, beta= 0.6, gamma=0.7 is: 9.916028550010301
     Mean Absolute Errors for alpha = 0.8, beta= 0.9, gamma=0.95 is: 18.06301492152557
#Comparing mse and plotting for least mse
d1={'Demand':demand,'Forecast':forecast1}
d2={'Demand':demand,'Forecast':forecast2}
d3={'Demand':demand,'Forecast':forecast3}
df1=pd.DataFrame(d1)
df2=pd.DataFrame(d2)
df3=pd.DataFrame(d3)
if mse1<=mse2 and mse1<=mse3:</pre>
  print('alpha: ',alpha1)
  print('beta: ',beta1)
  print('gamma: ',gamma1)
  df1.plot(style=['-','-'])
  msetes.append(mse1)
elif mse2<=mse1 and mse2<=mse3:
  print('alpha: ',alpha2)
  print('beta: ',beta2)
  print('gamma: ',gamma2)
  df2.plot(style=['-','-'])
  msetes.append(mse2)
else:
  print('alpha: ',alpha3)
  print('beta: ',beta3)
  print('gamma: ',gamma3)
  df3.plot(style=['-','-'])
  msetes.append(mse3)
```

```
alpha: 0.5
     beta: 0.6
     gamma: 0.7
#Storing least mae values
if mae1<=mae2 and mae1<=mae3:</pre>
  maetes.append(mae1)
elif mae2<=mae1 and mae2<=mae3:
  maetes.append(mae2)
else:
 maetes.append(mae3)
                "\1" \V\u_a #1 \.
                                                      For 4 Unit
Single Exponential Smoothing
#Creating demand list in 'n' intervals
demand=dem_n(data.nasdaq_1985_2014,4)
#Forecasting
alpha1=0.2
alpha2=0.5
alpha3=0.8
forecast1=ses(demand,alpha1)
forecast2=ses(demand,alpha2)
forecast3=ses(demand,alpha3)
#Calculating Mean of Square Errors
mse1=mean_squared_error(demand, forecast1)
mse2=mean squared error(demand, forecast2)
mse3=mean squared error(demand, forecast3)
print("Mean of Square Errors for alpha = 0.2 is: ",mse1)
print("Mean of Square Errors for alpha = 0.5 is: ",mse2)
print("Mean of Square Errors for alpha = 0.8 is: ",mse3)
     Mean of Square Errors for alpha = 0.2 is: 10016.916979346734
     Mean of Square Errors for alpha = 0.5 is: 4511.036145599884
     Mean of Square Errors for alpha = 0.8 is: 3560.3736671460274
#Comparing mse and plotting for least mse
d1={'Demand':demand,'Forecast':forecast1}
d2={'Demand':demand,'Forecast':forecast2}
d3={'Demand':demand,'Forecast':forecast3}
df1=pd.DataFrame(d1)
df2=pd.DataFrame(d2)
df3=pd.DataFrame(d3)
if mse1<=mse2 and mse1<=mse3:
  nnin+/'alnha. ' alnha1)
```

```
df1.plot(style=['-','-'])
mseses.append(mse1)
elif mse2<=mse1 and mse2<=mse3:
   print('alpha: ',alpha2)
   df2.plot(style=['-','-'])
   mseses.append(mse2)
else:
   print('alpha: ',alpha3)
   df3.plot(style=['-','-'])
   mseses.append(mse3)
```



```
#Storing least mae values
if mae1<=mae2 and mae1<=mae3:
   maeses.append(mae1)
elif mae2<=mae1 and mae2<=mae3:
   maeses.append(mae2)
else:
   maeses.append(mae3)</pre>
```

Double Exponential Smoothing

```
#Creating demand list in 'n' intervals
demand=dem_n(data.nasdaq_1985_2014,4)

#Forecasting
alpha1=0.2
alpha2=0.5
alpha3=0.8

beta1=0.3
beta2=0.6
beta3=0.9

forecast1=des(demand,alpha1,beta1)
forecast2=des(demand,alpha2,beta2)
```

forecast3=des(demand,alpha3,beta3)

```
#Calculating Mean of Square Errors
mse1=mean squared error(demand, forecast1)
mse2=mean_squared_error(demand, forecast2)
mse3=mean squared error(demand, forecast3)
print("Mean of Square Errors for alpha = 0.2,beta= 0.3 is: ",mse1)
print("Mean of Square Errors for alpha = 0.5,beta= 0.6 is: ",mse2)
print("Mean of Square Errors for alpha = 0.8,beta= 0.9 is: ",mse3)
     Mean of Square Errors for alpha = 0.2, beta = 0.3 is: 9032.16360528243
     Mean of Square Errors for alpha = 0.5, beta = 0.6 is: 4731.670089222
     Mean of Square Errors for alpha = 0.8, beta= 0.9 is: 5163.114656800682
#Comparing mse and plotting for least mse
d1={'Demand':demand,'Forecast':forecast1}
d2={'Demand':demand,'Forecast':forecast2}
d3={'Demand':demand,'Forecast':forecast3}
df1=pd.DataFrame(d1)
df2=pd.DataFrame(d2)
df3=pd.DataFrame(d3)
if mse1<=mse2 and mse1<=mse3:
  print('alpha: ',alpha1)
  print('beta: ',beta1)
  df1.plot(style=['-','-'])
  msedes.append(mse1)
elif mse2<=mse1 and mse2<=mse3:
  print('alpha: ',alpha2)
  print('beta: ',beta2)
  df2.plot(style=['-','-'])
  msedes.append(mse2)
else:
  print('alpha: ',alpha3)
  print('beta: ',beta3)
  df3.plot(style=['-','-'])
  msedes.append(mse3)
     alpha: 0.5
     beta:
            0.6
      5000
                                                Demand
                                                Forecast
      4000
      3000
      2000
      1000
```

250

500

750

1000

1250

1500

1750

```
#Storing least mae values
if mae1<=mae2 and mae1<=mae3:
   maedes.append(mae1)
elif mae2<=mae1 and mae2<=mae3:
   maedes.append(mae2)
else:
   maedes.append(mae3)</pre>
```

Triple Exponential Smoothing

```
#Creating demand list in 'n' intervals
demand=dem_n(data.nasdaq_1985_2014,4)
#Forecasting
alpha1=0.2
alpha2=0.5
alpha3=0.8
beta1=0.3
beta2=0.6
beta3=0.9
gamma1=0.4
gamma2=0.7
gamma3=0.95
#Considering season of 1 hours here
forecast1=tes(demand,1,alpha1,beta1,gamma1,0)
forecast2=tes(demand,1,alpha2,beta2,gamma2,0)
forecast3=tes(demand,1,alpha3,beta3,gamma3,0)
#Calculating mean of sqaured errors
mse1=mean squared error(demand, forecast1)
mse2=mean squared error(demand, forecast2)
mse3=mean squared error(demand, forecast3)
print("Mean of Square Errors for alpha = 0.2,beta= 0.3 gamma=0.4 is: ",mse1)
print("Mean of Square Errors for alpha = 0.5,beta= 0.6 gamma=0.7 is: ",mse2)
print("Mean of Square Errors for alpha = 0.8,beta= 0.9 gamma=0.95 is: ",mse3)
     Mean of Square Errors for alpha = 0.2,beta= 0.3 gamma=0.4 is: 1105.38559951607
     Mean of Square Errors for alpha = 0.5, beta = 0.6 gamma = 0.7 is: 601.9928399245516
     Mean of Square Errors for alpha = 0.8, beta = 0.9 gamma = 0.95 is: 1879.0043718837271
#Calculating Mean Absolute Errors
mae1=mean absolute error(demand, forecast1)
mae2=mean_absolute_error(demand, forecast2)
mae3=mean_absolute_error(demand, forecast3)
print("Mean Absolute Errors for alpha = 0.2,beta= 0.3, gamma=0.4 is: ",mae1)
```

```
print("Mean Absolute Errors for alpha = 0.5, beta= 0.6, gamma=0.7 is: ",mae2)
print("Mean Absolute Errors for alpha = 0.8, beta= 0.9, gamma=0.95 is: ",mae3)
     Mean Absolute Errors for alpha = 0.2, beta = 0.3, gamma = 0.4 is: 19.20878869799074
     Mean Absolute Errors for alpha = 0.5, beta= 0.6, gamma=0.7 is: 14.281490895883545
     Mean Absolute Errors for alpha = 0.8, beta= 0.9, gamma=0.95 is: 24.85511351923015
#Comparing mse and plotting for least mse
d1={'Demand':demand,'Forecast':forecast1}
d2={'Demand':demand,'Forecast':forecast2}
d3={'Demand':demand,'Forecast':forecast3}
df1=pd.DataFrame(d1)
df2=pd.DataFrame(d2)
df3=pd.DataFrame(d3)
if mse1<=mse2 and mse1<=mse3:</pre>
  print('alpha: ',alpha1)
  print('beta: ',beta1)
  print('gamma: ',gamma1)
  df1.plot(style=['-','-'])
  msetes.append(mse1)
elif mse2<=mse1 and mse2<=mse3:</pre>
  print('alpha: ',alpha2)
  print('beta: ',beta2)
  print('gamma: ',gamma2)
  df2.plot(style=['-','-'])
  msetes.append(mse2)
else:
  print('alpha: ',alpha3)
  print('beta: ',beta3)
  print('gamma: ',gamma3)
  df3.plot(style=['-','-'])
  msetes.append(mse3)
     alpha: 0.5
     beta: 0.6
     gamma:
             0.7
      5000
                                                Demand
                                                Forecast
      4000
      3000
      2000
```

#Storing least mae values
if mae1<=mae2 and mae1<=mae3:</pre>

0

250

500

750

1000

1250

1500

1750

1000

0

```
maetes.append(mae1)
elif mae2<=mae1 and mae2<=mae3:
   maetes.append(mae2)
else:
   maetes.append(mae3)</pre>
```

For 8 Unit

```
Single Exponential Smoothing
#Creating demand list in 'n' intervals
demand=dem_n(data.nasdaq_1985_2014,8)
#Forecasting
alpha1=0.2
alpha2=0.5
alpha3=0.8
forecast1=ses(demand,alpha1)
forecast2=ses(demand,alpha2)
forecast3=ses(demand,alpha3)
#Calculating Mean of Square Errors
mse1=mean squared error(demand, forecast1)
mse2=mean_squared_error(demand, forecast2)
mse3=mean squared error(demand, forecast3)
print("Mean of Square Errors for alpha = 0.2 is: ",mse1)
print("Mean of Square Errors for alpha = 0.5 is: ",mse2)
print("Mean of Square Errors for alpha = 0.8 is: ",mse3)
     Mean of Square Errors for alpha = 0.2 is: 22001.115413497686
     Mean of Square Errors for alpha = 0.5 is: 9496.632863043103
     Mean of Square Errors for alpha = 0.8 is: 7285.948785941906
#Comparing mse and plotting for least mse
d1={'Demand':demand,'Forecast':forecast1}
d2={'Demand':demand,'Forecast':forecast2}
d3={'Demand':demand,'Forecast':forecast3}
df1=pd.DataFrame(d1)
df2=pd.DataFrame(d2)
df3=pd.DataFrame(d3)
if mse1<=mse2 and mse1<=mse3:
  print('alpha: ',alpha1)
  df1.plot(style=['-','-'])
  mseses.append(mse1)
elif mse2<=mse1 and mse2<=mse3:
  print('alpha: ',alpha2)
  df2.plot(style=['-','-'])
```

```
mseses.append(mse2)
else:
  print('alpha: ',alpha3)
  df3.plot(style=['-','-'])
  mseses.append(mse3)
```



```
#Storing least mae values
if mae1<=mae2 and mae1<=mae3:
   maeses.append(mae1)
elif mae2<=mae1 and mae2<=mae3:
   maeses.append(mae2)
else:
   maeses.append(mae3)</pre>
```

Double Exponential Smoothing

```
#Creating demand list in 'n' intervals
demand=dem_n(data.nasdaq_1985_2014,8)

#Forecasting
alpha1=0.2
alpha2=0.5
alpha3=0.8

beta1=0.3
beta2=0.6
beta3=0.9

forecast1=des(demand,alpha1,beta1)
forecast2=des(demand,alpha2,beta2)
forecast3=des(demand,alpha3,beta3)

#Calculating Mean of Square Errors
mse1=mean_squared_error(demand,forecast1)
mse2=mean_squared_error(demand,forecast2)
```

mse3=mean_squared_error(demand, forecast3)

```
print("Mean of Square Errors for alpha = 0.2,beta= 0.3 is: ",mse1)
print("Mean of Square Errors for alpha = 0.5,beta= 0.6 is: ",mse2)
print("Mean of Square Errors for alpha = 0.8,beta= 0.9 is: ",mse3)
     Mean of Square Errors for alpha = 0.2,beta= 0.3 is: 18784.37734055738
     Mean of Square Errors for alpha = 0.5, beta= 0.6 is: 9918.183439676426
     Mean of Square Errors for alpha = 0.8, beta = 0.9 is: 10292.573461734017
#Comparing mse and plotting for least mse
d1={'Demand':demand,'Forecast':forecast1}
d2={'Demand':demand,'Forecast':forecast2}
d3={'Demand':demand,'Forecast':forecast3}
df1=pd.DataFrame(d1)
df2=pd.DataFrame(d2)
df3=pd.DataFrame(d3)
if mse1<=mse2 and mse1<=mse3:</pre>
  print('alpha: ',alpha1)
  print('beta: ',beta1)
  df1.plot(style=['-','-'])
  msedes.append(mse1)
elif mse2<=mse1 and mse2<=mse3:
  print('alpha: ',alpha2)
  print('beta: ',beta2)
  df2.plot(style=['-','-'])
  msedes.append(mse2)
else:
  print('alpha: ',alpha3)
  print('beta: ',beta3)
  df3.plot(style=['-','-'])
  msedes.append(mse3)
     alpha: 0.5
     beta:
            0.6
      5000
                                                Demand
                                                Forecast
      4000
      3000
      2000
      1000
```

600

400

800

```
#Storing least mae values
if mae1<=mae2 and mae1<=mae3:
   maedes.append(mae1)
elif mae2<=mae1 and mae2<=mae3:
   maedes.append(mae2)</pre>
```

200

0

Ó

else: maedes.append(mae3)

Triple Exponential Smoothing

```
#Creating demand list in 'n' intervals
demand=dem_n(data.nasdaq_1985_2014,8)
#Forecasting
alpha1=0.2
alpha2=0.5
alpha3=0.8
beta1=0.3
beta2=0.6
beta3=0.9
gamma1=0.4
gamma2=0.7
gamma3=0.95
#Considering season of 1 hours here
forecast1=tes(demand,1,alpha1,beta1,gamma1,0)
forecast2=tes(demand,1,alpha2,beta2,gamma2,0)
forecast3=tes(demand,1,alpha3,beta3,gamma3,0)
#Calculating mean of sqaured errors
mse1=mean squared error(demand, forecast1)
mse2=mean_squared_error(demand, forecast2)
mse3=mean_squared_error(demand, forecast3)
print("Mean of Square Errors for alpha = 0.2,beta= 0.3 gamma=0.4 is: ",mse1)
print("Mean of Square Errors for alpha = 0.5,beta= 0.6 gamma=0.7 is: ",mse2)
print("Mean of Square Errors for alpha = 0.8, beta= 0.9 gamma=0.95 is: ", mse3)
     Mean of Square Errors for alpha = 0.2,beta= 0.3 gamma=0.4 is: 2411.5017852362967
     Mean of Square Errors for alpha = 0.5, beta= 0.6 gamma=0.7 is: 1315.0437876670146
     Mean of Square Errors for alpha = 0.8, beta= 0.9 gamma=0.95 is: 3885.604997022788
#Calculating Mean Absolute Errors
mae1=mean_absolute_error(demand, forecast1)
mae2=mean absolute error(demand, forecast2)
mae3=mean absolute error(demand, forecast3)
print("Mean Absolute Errors for alpha = 0.2,beta= 0.3, gamma=0.4 is: ",mae1)
print("Mean Absolute Errors for alpha = 0.5, beta= 0.6, gamma=0.7 is: ", mae2)
print("Mean Absolute Errors for alpha = 0.8, beta= 0.9, gamma=0.95 is: ", mae3)
     Mean Absolute Errors for alpha = 0.2, beta= 0.3, gamma=0.4 is: 28.816348734870992
     Mean Absolute Errors for alpha = 0.5, beta= 0.6, gamma=0.7 is: 21.113458801196593
```

Mean Absolute Errors for alpha = 0.8, beta= 0.9, gamma=0.95 is: 35.508952118471896

```
#Comparing mse and plotting for least mse
d1={'Demand':demand,'Forecast':forecast1}
d2={'Demand':demand,'Forecast':forecast2}
d3={'Demand':demand,'Forecast':forecast3}
df1=pd.DataFrame(d1)
df2=pd.DataFrame(d2)
df3=pd.DataFrame(d3)
if mse1<=mse2 and mse1<=mse3:</pre>
  print('alpha: ',alpha1)
  print('beta: ',beta1)
  print('gamma: ',gamma1)
  df1.plot(style=['-','-'])
  msetes.append(mse1)
elif mse2<=mse1 and mse2<=mse3:
  print('alpha: ',alpha2)
  print('beta: ',beta2)
  print('gamma: ',gamma2)
  df2.plot(style=['-','-'])
  msetes.append(mse2)
else:
  print('alpha: ',alpha3)
  print('beta: ',beta3)
  print('gamma: ',gamma3)
  df3.plot(style=['-','-'])
  msetes.append(mse3)
     alpha: 0.5
     beta: 0.6
     gamma:
             0.7
      5000
                                                 Demand
                                                 Forecast
      4000
      3000
      2000
      1000
         0
                    200
                              400
                                       600
                                                800
            Ó
```

```
#Storing least mae values
if mae1<=mae2 and mae1<=mae3:
   maetes.append(mae1)
elif mae2<=mae1 and mae2<=mae3:
   maetes.append(mae2)
else:
   maetes.append(mae3)</pre>
```

Single Exponential Smoothing

```
#Creating demand list in 'n' intervals
demand=dem_n(data.nasdaq_1985_2014,12)
#Forecasting
alpha1=0.2
alpha2=0.5
alpha3=0.8
forecast1=ses(demand,alpha1)
forecast2=ses(demand,alpha2)
forecast3=ses(demand,alpha3)
#Calculating Mean of Square Errors
mse1=mean_squared_error(demand, forecast1)
mse2=mean_squared_error(demand, forecast2)
mse3=mean_squared_error(demand, forecast3)
print("Mean of Square Errors for alpha = 0.2 is: ",mse1)
print("Mean of Square Errors for alpha = 0.5 is: ",mse2)
print("Mean of Square Errors for alpha = 0.8 is: ",mse3)
     Mean of Square Errors for alpha = 0.2 is: 36554.707547896985
     Mean of Square Errors for alpha = 0.5 is: 15334.264016352563
     Mean of Square Errors for alpha = 0.8 is: 11696.207437428884
#Comparing mse and plotting for least mse
d1={'Demand':demand,'Forecast':forecast1}
d2={'Demand':demand,'Forecast':forecast2}
d3={'Demand':demand,'Forecast':forecast3}
df1=pd.DataFrame(d1)
df2=pd.DataFrame(d2)
df3=pd.DataFrame(d3)
if mse1<=mse2 and mse1<=mse3:</pre>
  print('alpha: ',alpha1)
  df1.plot(style=['-','-'])
  mseses.append(mse1)
elif mse2<=mse1 and mse2<=mse3:
  print('alpha: ',alpha2)
  df2.plot(style=['-','-'])
 mseses.append(mse2)
else:
  print('alpha: ',alpha3)
  df3.plot(style=['-','-'])
  mseses.append(mse3)
```

```
alpha: 0.8
```



```
#Storing least mae values
if mae1<=mae2 and mae1<=mae3:
   maeses.append(mae1)
elif mae2<=mae1 and mae2<=mae3:
   maeses.append(mae2)
else:
   maeses.append(mae3)</pre>
```

Double Exponential Smoothing

```
#Creating demand list in 'n' intervals
demand=dem_n(data.nasdaq_1985_2014,12)
#Forecasting
alpha1=0.2
alpha2=0.5
alpha3=0.8
beta1=0.3
beta2=0.6
beta3=0.9
forecast1=des(demand,alpha1,beta1)
forecast2=des(demand,alpha2,beta2)
forecast3=des(demand,alpha3,beta3)
#Calculating Mean of Square Errors
mse1=mean_squared_error(demand, forecast1)
mse2=mean squared error(demand, forecast2)
mse3=mean_squared_error(demand, forecast3)
print("Mean of Square Errors for alpha = 0.2,beta= 0.3 is: ",mse1)
```

print("Mean of Square Errors for alpha = 0.5,beta= 0.6 is: ",mse2)
print("Mean of Square Errors for alpha = 0.8,beta= 0.9 is: ",mse3)

```
Mean of Square Errors for alpha = 0.5, beta= 0.6 is: 15523.773209021978
Mean of Square Errors for alpha = 0.8, beta= 0.9 is: 16105.13520294062
```

```
#Comparing mse and plotting for least mse
d1={'Demand':demand,'Forecast':forecast1}
d2={'Demand':demand,'Forecast':forecast2}
d3={'Demand':demand,'Forecast':forecast3}
df1=pd.DataFrame(d1)
df2=pd.DataFrame(d2)
df3=pd.DataFrame(d3)
if mse1<=mse2 and mse1<=mse3:</pre>
  print('alpha: ',alpha1)
  print('beta: ',beta1)
  df1.plot(style=['-','-'])
  msedes.append(mse1)
elif mse2<=mse1 and mse2<=mse3:
  print('alpha: ',alpha2)
  print('beta: ',beta2)
  df2.plot(style=['-','-'])
  msedes.append(mse2)
else:
  print('alpha: ',alpha3)
  print('beta: ',beta3)
  df3.plot(style=['-','-'])
  msedes.append(mse3)
     alpha: 0.5
     beta: 0.6
                                                 Demand
                                                 Forecast
      4000
      3000
      2000
      1000
         0
                  100
                         200
                                300
                                       400
                                              500
                                                     600
```

```
#Storing least mae values
if mae1<=mae2 and mae1<=mae3:
   maedes.append(mae1)
elif mae2<=mae1 and mae2<=mae3:
   maedes.append(mae2)
else:
   maedes.append(mae3)</pre>
```

```
#Creating demand list in 'n' intervals
demand=dem n(data.nasdag 1985 2014,12)
#Forecasting
alpha1=0.2
alpha2=0.5
alpha3=0.8
beta1=0.3
beta2=0.6
beta3=0.9
gamma1=0.4
gamma2=0.7
gamma3=0.95
#Considering season of 1 hours here
forecast1=tes(demand,1,alpha1,beta1,gamma1,0)
forecast2=tes(demand,1,alpha2,beta2,gamma2,0)
forecast3=tes(demand,1,alpha3,beta3,gamma3,0)
#Calculating mean of sqaured errors
mse1=mean_squared_error(demand, forecast1)
mse2=mean_squared_error(demand, forecast2)
mse3=mean squared error(demand, forecast3)
print("Mean of Square Errors for alpha = 0.2,beta= 0.3 gamma=0.4 is: ",mse1)
print("Mean of Square Errors for alpha = 0.5,beta= 0.6 gamma=0.7 is: ",mse2)
print("Mean of Square Errors for alpha = 0.8, beta= 0.9 gamma=0.95 is: ", mse3)
     Mean of Square Errors for alpha = 0.2, beta = 0.3 gamma = 0.4 is: 4009.291152396081
     Mean of Square Errors for alpha = 0.5, beta= 0.6 gamma=0.7 is: 2162.61293598704
     Mean of Square Errors for alpha = 0.8, beta= 0.9 gamma=0.95 is: 6217.613679652851
#Calculating Mean Absolute Errors
mae1=mean_absolute_error(demand, forecast1)
mae2=mean absolute error(demand, forecast2)
mae3=mean_absolute_error(demand, forecast3)
print("Mean Absolute Errors for alpha = 0.2, beta= 0.3, gamma=0.4 is: ", mae1)
print("Mean Absolute Errors for alpha = 0.5, beta= 0.6, gamma=0.7 is: ",mae2)
print("Mean Absolute Errors for alpha = 0.8, beta= 0.9, gamma=0.95 is: ",mae3)
     Mean Absolute Errors for alpha = 0.2, beta= 0.3, gamma=0.4 is: 37.25633299856909
     Mean Absolute Errors for alpha = 0.5, beta= 0.6, gamma=0.7 is: 27.860130011503685
     Mean Absolute Errors for alpha = 0.8, beta= 0.9, gamma=0.95 is: 45.02798320799283
#Comparing mse and plotting for least mse
d1={'Demand':demand,'Forecast':forecast1}
d2={'Demand':demand,'Forecast':forecast2}
d3-1'Demand'.demand 'Fonecast'.fonecast31
```

```
uu-z pemanu .uemanu, ronecast .nonecastus
df1=pd.DataFrame(d1)
df2=pd.DataFrame(d2)
df3=pd.DataFrame(d3)
if mse1<=mse2 and mse1<=mse3:</pre>
  print('alpha: ',alpha1)
  print('beta: ',beta1)
  print('gamma: ',gamma1)
  df1.plot(style=['-','-'])
  msetes.append(mse1)
elif mse2<=mse1 and mse2<=mse3:</pre>
  print('alpha: ',alpha2)
  print('beta: ',beta2)
  print('gamma: ',gamma2)
  df2.plot(style=['-','-'])
  msetes.append(mse2)
else:
  print('alpha: ',alpha3)
  print('beta: ',beta3)
  print('gamma: ',gamma3)
  df3.plot(style=['-','-'])
  msetes.append(mse3)
     alpha: 0.5
     beta: 0.6
     gamma: 0.7
                                                  Demand
                                                  Forecast
      4000
      3000
      2000
      1000
         0
            Ó
                  100
                          200
                                 300
                                        400
                                               500
                                                      600
#Storing least mae values
if mae1<=mae2 and mae1<=mae3:</pre>
  maetes.append(mae1)
elif mae2<=mae1 and mae2<=mae3:</pre>
```

For 24 Interval

else:

maetes.append(mae2)

maetes.append(mae3)

```
#Creating demand list in 'n' intervals
demand=dem_n(data.nasdaq_1985_2014,24)
#Forecasting
alpha1=0.2
alpha2=0.5
alpha3=0.8
forecast1=ses(demand,alpha1)
forecast2=ses(demand,alpha2)
forecast3=ses(demand,alpha3)
#Calculating Mean of Square Errors
mse1=mean squared error(demand, forecast1)
mse2=mean_squared_error(demand, forecast2)
mse3=mean_squared_error(demand, forecast3)
print("Mean of Square Errors for alpha = 0.2 is: ",mse1)
print("Mean of Square Errors for alpha = 0.5 is: ",mse2)
print("Mean of Square Errors for alpha = 0.8 is: ",mse3)
     Mean of Square Errors for alpha = 0.2 is: 81646.70511270332
     Mean of Square Errors for alpha = 0.5 is: 33991.33138341908
     Mean of Square Errors for alpha = 0.8 is: 25484.935350911685
#Comparing mse and plotting for least mse
d1={'Demand':demand,'Forecast':forecast1}
d2={'Demand':demand,'Forecast':forecast2}
d3={'Demand':demand,'Forecast':forecast3}
df1=pd.DataFrame(d1)
df2=pd.DataFrame(d2)
df3=pd.DataFrame(d3)
if mse1<=mse2 and mse1<=mse3:</pre>
  print('alpha: ',alpha1)
  df1.plot(style=['-','-'])
  mseses.append(mse1)
elif mse2<=mse1 and mse2<=mse3:
  print('alpha: ',alpha2)
  df2.plot(style=['-','-'])
  mseses.append(mse2)
else:
  print('alpha: ',alpha3)
  df3.plot(style=['-','-'])
  mseses.append(mse3)
```

alpha: 0.8 Demand Forecast 4000 3000 2000 #Storing least mae values

if mae1<=mae2 and mae1<=mae3: maeses.append(mae1) elif mae2<=mae1 and mae2<=mae3: maeses.append(mae2) else: maeses.append(mae3)

Double Exponential Smoothing

#Creating demand list in 'n' intervals

```
demand=dem_n(data.nasdaq_1985_2014,24)
#Forecasting
alpha1=0.2
alpha2=0.5
alpha3=0.8
beta1=0.3
beta2=0.6
beta3=0.9
forecast1=des(demand,alpha1,beta1)
forecast2=des(demand,alpha2,beta2)
forecast3=des(demand,alpha3,beta3)
#Calculating Mean of Square Errors
mse1=mean squared error(demand, forecast1)
mse2=mean_squared_error(demand, forecast2)
mse3=mean squared error(demand, forecast3)
print("Mean of Square Errors for alpha = 0.2,beta= 0.3 is: ",mse1)
```

print("Mean of Square Errors for alpha = 0.5,beta= 0.6 is: ",mse2) print("Mean of Square Errors for alpha = 0.8,beta= 0.9 is: ",mse3)

Mean of Square Errors for alpha = 0.2, beta= 0.3 is: 67629.46120193429 Mean of Square Errors for alpha = 0.5, beta = 0.6 is: 34800.05663995416 Mean of Square Errors for alpha = 0.8, beta = 0.9 is: 34922.28877471786

#Comparing mse and plotting for least mse d1={'Demand':demand,'Forecast':forecast1}

```
d2={'Demand':demand,'Forecast':forecast2}
d3={'Demand':demand,'Forecast':forecast3}
df1=pd.DataFrame(d1)
df2=pd.DataFrame(d2)
df3=pd.DataFrame(d3)
if mse1<=mse2 and mse1<=mse3:</pre>
  print('alpha: ',alpha1)
  print('beta: ',beta1)
  df1.plot(style=['-','-'])
  msedes.append(mse1)
elif mse2<=mse1 and mse2<=mse3:
  print('alpha: ',alpha2)
  print('beta: ',beta2)
  df2.plot(style=['-','-'])
  msedes.append(mse2)
else:
  print('alpha: ',alpha3)
  print('beta: ',beta3)
  df3.plot(style=['-','-'])
  msedes.append(mse3)
     alpha: 0.5
     beta: 0.6
                                                 Demand
                                                 Forecast
      4000
      3000
      2000
      1000
```

Triple Exponential Smoothing

Ó

```
#Creating demand list in 'n' intervals
demand=dem_n(data.nasdaq_1985_2014,24)
```

50

100

150

200

250

300

```
#Forecasting
alpha1=0.2
alpha2=0.5
alpha3=0.8
beta1=0.3
beta2=0.6
beta3=0.9
```

```
gamma1=0.4
gamma2=0.7
gamma3=0.95
#Considering season of 1 hours here
forecast1=tes(demand,1,alpha1,beta1,gamma1,0)
forecast2=tes(demand,1,alpha2,beta2,gamma2,0)
forecast3=tes(demand,1,alpha3,beta3,gamma3,0)
#Calculating mean of sqaured errors
mse1=mean_squared_error(demand, forecast1)
mse2=mean squared error(demand, forecast2)
mse3=mean_squared_error(demand, forecast3)
print("Mean of Square Errors for alpha = 0.2,beta= 0.3 gamma=0.4 is: ",mse1)
print("Mean of Square Errors for alpha = 0.5,beta= 0.6 gamma=0.7 is: ",mse2)
print("Mean of Square Errors for alpha = 0.8, beta= 0.9 gamma=0.95 is: ", mse3)
     Mean of Square Errors for alpha = 0.2, beta = 0.3 gamma = 0.4 is: 8382.365317435291
     Mean of Square Errors for alpha = 0.5, beta = 0.6 gamma = 0.7 is: 4817.319971579469
     Mean of Square Errors for alpha = 0.8, beta= 0.9 gamma=0.95 is: 13690.609282051906
#Calculating Mean Absolute Errors
mae1=mean_absolute_error(demand, forecast1)
mae2=mean_absolute_error(demand, forecast2)
mae3=mean_absolute_error(demand, forecast3)
print("Mean Absolute Errors for alpha = 0.2, beta= 0.3, gamma=0.4 is: ",mae1)
print("Mean Absolute Errors for alpha = 0.5, beta= 0.6, gamma=0.7 is: ",mae2)
print("Mean Absolute Errors for alpha = 0.8, beta= 0.9, gamma=0.95 is: ",mae3)
     Mean Absolute Errors for alpha = 0.2, beta= 0.3, gamma=0.4 is: 54.238860420695346
     Mean Absolute Errors for alpha = 0.5, beta= 0.6, gamma=0.7 is: 42.58463728481874
     Mean Absolute Errors for alpha = 0.8, beta= 0.9, gamma=0.95 is: 67.30157256856023
#Comparing mse and plotting for least mse
d1={'Demand':demand,'Forecast':forecast1}
d2={'Demand':demand,'Forecast':forecast2}
d3={'Demand':demand,'Forecast':forecast3}
df1=pd.DataFrame(d1)
df2=pd.DataFrame(d2)
df3=pd.DataFrame(d3)
if mse1<=mse2 and mse1<=mse3:</pre>
  print('alpha: ',alpha1)
  print('beta: ',beta1)
  print('gamma: ',gamma1)
  df1.plot(style=['-','-'])
  msetes.append(mse1)
elif mse2<=mse1 and mse2<=mse3:
  print('alpha: ',alpha2)
  print('beta: ',beta2)
```

```
print('gamma: ',gamma2)
  df2.plot(style=['-','-'])
  msetes.append(mse2)
else:
  print('alpha: ',alpha3)
  print('beta: ',beta3)
  print('gamma: ',gamma3)
  df3.plot(style=['-','-'])
  msetes.append(mse3)
```

alpha: 0.5 beta: 0.6 gamma: 0.7


```
#Storing least mae values
if mae1<=mae2 and mae1<=mae3:
   maetes.append(mae1)
elif mae2<=mae1 and mae2<=mae3:
   maetes.append(mae2)
else:
   maetes.append(mae3)</pre>
```

Least MSE and MAE values are

```
print("Least MSE ses")
print(mseses)
print("Least MSE des")
print(msedes)
print("Least MSE tes")
print(msetes)

print("Least MAE ses")
print(maeses)
print("Least MAE des")
print(maedes)
print("Least MAE tes")
print(maedes)
print("Least MAE tes")
print(maedes)
```

```
Least MSE ses
[1117.7909898783196, 2061.186342147135, 3560.3736671460274, 7285.948785941906, 11696
Least MSE des
[1610.849168270192, 2844.2289410307126, 4731.670089222, 9918.183439676426, 15523.7732
Least MSE tes
[159.5560160348016, 297.6694292157872, 601.9928399245516, 1315.0437876670146, 2162.61
Least MAE ses
[7.130769745696372, 7.130769745696372, 9.916028550010301, 14.281490895883545, 21.1134
Least MAE des
[7.130769745696372, 7.130769745696372, 9.916028550010301, 14.281490895883545, 21.1134
Least MAE tes
[7.130769745696372, 9.916028550010301, 14.281490895883545, 21.113458801196593, 27.866]
```

Applying ACF and PACF

#Plotting ACF
plot_acf(data.nasdaq_1985_2014,lags=10)
plt.show

<function matplotlib.pyplot.show>

#plotting PACF
plot_pacf(data.nasdaq_1985_2014,lags=10)
plt.show

Partial Autocorrelation

I

ARMA Model Results

```
______
    Dep. Variable:
                      nasdaa 1985 2014 No. Observations:
                                                                      7276
mse=mean_squared_error(data.nasdaq_1985_2014,data.forecastAR.dropna())
print("MSE for AR is:",mse)
    MSE for AR is: 2345.0059510285555
mae=mean_absolute_error(data.nasdaq_1985_2014,data.forecastAR.dropna())
print("MAE for AR is:",mae)
    MAE for AR is: 17.872702594616264
                                    KOOTS
#MA
#fit model
model=ARIMA(data['nasdaq_1985_2014'].dropna(), order=(0,0,1))
model_fit=model.fit()
#model summary
print(model_fit.summary())
#make prediction
data['forecastMA'] = model_fit.predict()
data[['nasdaq_1985_2014','forecastMA']].plot()
```

ARMA Model Results

```
______
   Dep. Variable: nasdaq_1985_2014 No. Observations:
                                                             7276
                   ARMA(0, 1) Log Likelihood
   Model:
                                                       -55311.023
   Method:
                          css-mle S.D. of innovations
                                                        484.294
                   Mon, 01 Mar 2021 AIC
                                                       110628.046
   Date:
mse=mean_squared_error(data.nasdaq_1985_2014,data.forecastMA.dropna())
print("MSE for MA is:",mse)
   MSE for MA is: 235534.93345216895
    ______
mae=mean_absolute_error(data.nasdaq_1985_2014,data.forecastMA.dropna())
print("MAE for MA is:",mae)
   MAE for MA is: 392.66799044674684
#ARIMA
#fit model
model=ARIMA(data['diff'].dropna(), order=(1,1,1))
model_fit=model.fit()
#model summary
print(model_fit.summary())
#make prediction
data['forecastARIMA'] = model_fit.predict()
```

data[['diff','forecastARIMA']].plot()

ARIMA Model Results

```
______
                            D.diff No. Observations:
    Dep. Variable:
                      ARIMA(1, 1, 1) Log Likelihood
    Model:
                                                          -35797.946
                           css-mle S.D. of innovations
    Method:
                                                            33.176
    Date:
                     Mon, 01 Mar 2021 AIC
                                                           71603.892
                          05:20:18 BIC
    Time:
                                                            71631.461
                                1 HQIC
    Sample:
                                                            71613.374
    ______
                   coef std err z P>|z| [0.025 0.975]
mse=mean_squared_error(data.nasdaq_1985_2014[0:-2],data.forecastARIMA.dropna())
print("MSE for MA is:",mse)
    MSE for MA is: 2790845.8382340004
mae=mean absolute_error(data.nasdaq_1985_2014[0:-2],data.forecastARIMA.dropna())
print("MAE for MA is:", mae)
    MAE for MA is: 1376.2490735730798
Applying Auto ARIMA
       n -
import pmdarima as pm
model = pm.auto_arima(data.iloc[:,0], start_p=1, start_q=1,test='adf',max_p=3, max_q=3,m=1
print(model.summary())
    Performing stepwise search to minimize aic
    ARIMA(1,1,1)(0,0,0)[0] intercept : AIC=71573.519, Time=2.28 sec
    ARIMA(0,1,0)(0,0,0)[0] intercept : AIC=71626.005, Time=0.17 sec
    ARIMA(1,1,0)(0,0,0)[0] intercept : AIC=71602.481, Time=0.22 sec
    ARIMA(0,1,1)(0,0,0)[0] intercept : AIC=71598.884, Time=0.67 sec
    ARIMA(0,1,0)(0,0,0)[0] : AIC=71625.676, Time=0.11 sec ARIMA(2,1,1)(0,0,0)[0] intercept : AIC=71573.861, Time=4.34 sec
    ARIMA(1,1,2)(0,0,0)[0] intercept : AIC=71573.643, Time=3.13 sec
    ARIMA(0,1,2)(0,0,0)[0] intercept : AIC=71574.051, Time=2.33 sec
    ARIMA(2,1,0)(0,0,0)[0] intercept : AIC=71575.909, Time=0.71 sec
    ARIMA(2,1,2)(0,0,0)[0] intercept : AIC=71575.157, Time=4.78 sec
    ARIMA(1,1,1)(0,0,0)[0]
                                : AIC=71573.985, Time=0.87 sec
    Best model: ARIMA(1,1,1)(0,0,0)[0] intercept
    Total fit time: 19.657 seconds
                            SARIMAX Results
    ______
                          y No. Observations: 7276
    Dep. Variable:
    Model:
                    SARIMAX(1, 1, 1) Log Likelihood
                                                          -35782.760
                    Mon, 01 Mar 2021 AIC
    Date:
                                                            71573.519
                          05:20:38 BIC
    Time:
                                                            71601.088
    Sample:
                               0 HOIC
                                                            71583.001
                             - 7276
    Covariance Type:
                             opg
    ______
```

coef std err z P > |z| [0.025 0.975]

intercept	-0.2041	0.131	-1.552	0.121	-0.462	0.054					
ar.L1	0.5947	0.030	19.738	0.000	0.536	0.654					
ma.L1	-0.6657	0.028	-23.530	0.000	-0.721	-0.610					
sigma2	1096.2903	5.118	214.201	0.000	1086.259	1106.322					
========		=======									
Ljung-Box (L1) (Q):			0.26	Jarque-Bera	(JB):	167022.66					
<pre>Prob(Q):</pre>			0.61	Prob(JB):		0.00					
Heteroskedasticity (H):			0.15	Skew:	0.19						
<pre>Prob(H) (two-sided):</pre>			0.00	Kurtosis:		26.47					

Warnings:

[1] Covariance matrix calculated using the outer product of gradients (complex-step)

Best model: ARIMA(1,1,1)(0,0,0)[0]

Final Result

Dataset 3													
s Dataset Stationery	No												
	For ADF test, we can see that the p-value is more than 0.05.												
	Thus, from ADF test, we can say that the dataset is non-												
	stationary.												
	For KPSS test, Test Statistic is more than Critical Value, thus we												
	reject the null hypothesis. Thus, from KPSS test, we can say												
	that the dataset is non-stationary.												
f yes, why, and if not, why not	Thus, Non-Stationary.												
f differencing was done, how many times it was done?	One												
		Prediction FOR ->											
		MSE						MAE					
		1 UNIT	2 UNIT	4 UNIT	8 UNIT	12 UNIT	24 UNIT	1 UNIT			8 UNIT		24 UNIT
Single Exponential Smoothing	alpha(0.8)	1101.34	2057.2	3712.016908	.17	9829.77	20926.61	17.53	24.75	24.75	47.57	57.46	85.0
Double and triple Exponential Smoothing	alpha(0.5), beta(0,6)	3511.46	3309.81	3309.81	3309.81	3309.81	3309.81	19.53	19.53	19.063	19.063	19.063	19.06
Friple Exponential Smoothing	alpha(0.5), beta(0.6), gamma(0.7)			2242310.11	2248883.71	2269030.61	2274708.93	1151	1155.25	1159.09	1161.65	1166.282	1168.3
Only AR	AR(1)	1874.12						17.82					
Only MA	MA(1)	235534.916						392.66					
ARIMA	ARIMA(1,1,1)	2788888.74						1375.85					
ARIMA (if the data has seasonality)	season(?)												
		1											