Homework 4

Due date: Apr. 14th, 2021 Turn in your homework in class

Rules:

- Please work on your own. Discussion is permissible, but extremely similar submissions will be judged as plagiarism!
- Please show all intermediate steps: a correct solution without an explanation will get zero credit.
- Please submit on time. No late submission will be accepted.
- Please prepare your submission in English only. No Chinese submission will be accepted.
- 1. [8%] Equivalent capacitance and inductance
 - a) Obtain the equivalent capacitance of the circuit at terminals a and b in Fig. 1(a).
 - b) Obtain the equivalent inductance of the circuit at terminals a and b in Fig. 1(b).

Fig. 1(a).

Fig. 1(b).

- 2. [10%] Assume the switch is open for a long time and the system is stable when t < 0. Then the switch is closed at time t = 0. Use the circuit as shown in **Fig 2**:
 - a) Find the total energy delivered to the inductor in the time period $[0, \infty]$.
 - b) Find the total energy delivered to the capacitor in the time period $[0, \infty]$.

Fig. 2.

3. [13%] At t=0, the voltage signal of **Fig. 3(b)** is applied to the cascaded integrating amplifiers shown in **Fig. 3 (a)**. There is no energy stored in the capacitors when $t=0^-$. Find $v_{01}(t)$ and $v_0(t)$ for t>0.

Fig. 3(b).

4. [15%] In the circuit shown in **Fig. 4**, the switch is closed at t=0s and re-opened at t=0.5s. Given $V_S=18V$, $R_S=1\Omega$, $R_1=5\Omega$, $R_2=2\Omega$, L=2H and $C=\frac{1}{17}F$. Determine the response for $i_L(t)$ of $t\geq 0$. There is no energy stored in the inductor and capacitor when t<0.

Fig. 4.

5. [10%] In the circuit below, $R_1=10\Omega$, $R_2=5\Omega$, $L=4 {
m mH}$, $C=10 {
m mF}$. When t<0, the input voltage (U) is 5V. When t=0, the input voltage charges to $U=12 {
m V}$. Assume that the circuit reaches steady state before t=0. Determine the expression for ${
m V}_{
m C}(t)$ when $t\geq0$.

Fig. 5.

- 6. [12%] The circuit is shown in **Fig.6.** the gap in the circuit seen in figure will be shorted whenever the voltage across the gap reaches 30~kV. The initial current in the inductor is zero. The value of β is adjusted so the Thevenin resistance with respect to the terminals of the inductor when the switch is closed is $-4~k\Omega$ (Thevenin equivalent to the rest of the circuit excluding the inductor; assuming the gap remains open circuit during the Thevenin equivalencing).
 - (1) What is the value of β ?
 - (2) How many microseconds after the switch is closed will the gap be shorted?

- 7. [20%] The initial value of the voltage $v(0^+)$ in the circuit shown in **Fig. 7** is zero, and the initial value of the capacitor current, $i_c(0^+)$, is 45mA. The expression for the capacitor current is known to be $i_c(t) = A_1 e^{-200t} + A_2 e^{-800t}$, t>0. $R=250\Omega$ Find a) The values of L, C, A_1 and A_2 .
 - b) The express for v(t), $t \ge 0$.

Fig. 7.

8. [12%] Consider a simple series RLC circuit. Before t=0 there is no energy stored in the capacitor and inductor. The switch is closed at t=0. The voltage source is:

$$V(t) = 32e^{-40t}V, t > 0$$

Express i_L , knowing that $R=75\Omega$, C=0.125F and L=4H.

Fig. 8.