Лабораторная работа №2 Интерполирование

 Π остановка задачи. Для заданной функции $f:[a,b] \to \mathbb{R}$ требуется:

- Произвести интерполяцию многочленом в указанной форме на отрезке [-2,2].
- Интерполирование следует проводить как по равноотстоящим узлам, так и по чебышевским.
- Для каждого типа узлов построить графики получившихся приближений для сеток с количеством узлов, равным $N_i=10i,\quad i=1,2,\ldots,10.$ На графике должны быть изображены построенное приближение и исходная функция.
- Для каждого построения экспериментально определить максимум-норму погрешности: взять сетку из 1000 равноотстоящих узлов и определить максимум величины $|f(x_i) P(x_i)|$, $i = 1, \ldots, 1000$. Результат представить в виде таблицы:

N	Норма (равноотстоящие узлы)	Норма (чебышовские узлы)
10		
20		
100		

Вариант	f(x)	Тип ИМ	Исполнитель
1	$e^x \sin(10x)$	Ньютона	Авсяник Е.
2	$x^2 + 2\sin(10x)$	Лагранжа	Артюшкевич С.
3	$e^{\cos(5x)}$	Барицентрическая	Богданова Н.
4	$e^{rac{1}{\cos(4x)+2}}$	Ньютона	Гриб А.
5	$e^x - 3x^2$	Лагранжа	Заржицкий И.
6	$x + \cos(8x)$	Барицентрическая	Крусь В.
7	$e^x - 3x^2\sin(10x)\cos(5x)$	Ньютона	Лукашевич Ю.
8	$ x + \cos\left(x^2\right)$	Лагранжа	Мелех А.
9	$(\sin(4x) - x)^3$	Барицентрическая	Сараев В.
10	$\left(\log(x+4) - x^2\right)^3$	Ньютона	Титов С.
11	$\frac{\log^3(x+4)}{(x+5)^{4.5}}$	Лагранжа	Шидловская В.
12	$\cos^2(x) - x$	Барицентрическая	Юрковская Е.

Срок сдачи – 6 апреля 2020 года.