Dimensionality Reduction

COMP 527 Data Mining Danushka Bollegala

Outline

- Problems with high dimensional data
- Dimensionality Reduction Methods
 - Singular Value Decomposition (SVD)
 - Principal Component Analysis (PCA)

- Curse of dimensionality
 - We need exponentially large number of data points to cover a high dimensional space

- Data Sparseness
 - Although we have a large feature space (lots of dimensions to the data), we only observe a small number of non-zero features in any instance
 - This was the case for texts (in particular with the bag-of-words model)

- Overfitting
 - Given n train data points, we can come up with an n-dimensional (n-th order) polynomial that passes through all those data points.
 - But it is very unlikely that it will fit well for the test data points

- Time consuming (time complexity is large)
 - Consider computing cosine similarity between two n dimensional vectors, when n increases.
- Memory issues (space complexity is large)
 - Storing high dimensional dense vectors can be problematic when
 - the dimensionality of the vectors is large
 - there are lots of vectors (instances) to store

Solution

- Dimensionality Reduction
 - Try to project the original vectors to a lower dimensional space L
- What constraints do we have
 - Try to minimise the error due to the projection
 - If X and Y are neighbours in the original space, then they must also be neighbours in the projected space
 - Try to retain salient/important/principal dimensions as much as possible and remove the non-salient/ unimportant/auxiliary dimensions as much as possible

Eigenvalue Decomposition

- Linear Algebra Revision
 - Eigenvalues and Eigenvectors of a Square Matrix
 - $\bullet \quad \mathsf{A}\mathbf{x} = \lambda\mathbf{x}$
 - x is the eigenvector of A corresponding to the eigenvalue λ
- Compute the eigenvalues and eigenvectors of the following matrix

$$\begin{bmatrix} 3 & 2 \\ 2 & 6 \end{bmatrix}$$

Singular Value Decomposition

- Eigenvalue decomposition can be performed only for square matrices.
- Singular Value Decomposition (SVD) is a operation that can be applied to any matrix
 - $M = U\Sigma V^T$
 - U and V are unitary (perpendicular) matrices, Σ is a diagonal matrix (singular values of M are diagonal elements of Σ).
 - Columns of U and V are perpendicular. $U^{T}U=I$ and $V^{T}V=I$.

SVD?

Snayperskaya Vintovka sistem'y Dragunova obraz'tsa (Dragunov Sniper Rifle or SVD)

Example

$$\begin{bmatrix} 1 & 1 & 1 & 0 & 0 \\ 3 & 3 & 3 & 0 & 0 \\ 4 & 4 & 4 & 0 & 0 \\ 5 & 5 & 5 & 0 & 0 \\ 0 & 0 & 0 & 4 & 4 \\ 0 & 0 & 0 & 5 & 5 \\ 0 & 0 & 0 & 2 & 2 \end{bmatrix} = \begin{bmatrix} .14 & 0 \\ .42 & 0 \\ .56 & 0 \\ .70 & 0 \\ 0 & .60 \\ 0 & .75 \\ 0 & .30 \end{bmatrix} \begin{bmatrix} 12.4 & 0 \\ 0 & 9.5 \end{bmatrix} \begin{bmatrix} .58 & .58 & .58 & 0 & 0 \\ 0 & 0 & 0 & .71 & .71 \end{bmatrix}$$

$$M \qquad U \qquad \Sigma \qquad V^T$$

To perform SVD in python (scipy) use scipy.linalg.svd http://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.svd.html

Dimensionality Reduction with SVD

- Procedure
 - Perform SVD on M. Retain the top-k (largest) singular values in Σ and set the remainder to zero.
 - Let us denote the diagonal matrix produced by the previous step by Σ_k
 - The k-dimensional approximation (projection) M_k of M is then given by
 - $M_k = U \Sigma_k V^T$

Reason

- The k-dimensional matrix M_k that minimises the Frobenius norm $||M-M_k||$ is given by the matrix M_k computed as described in the previous slide
- Frobenius norm
 - Extension of the vector L2 norm to matrices
 - Frobenius norm of a matrix M is given by $\sqrt{\sum_{ij} \mathbf{M}_{ij}^2}$

Proof

- By performing SVD on M, let
 - $M = PQR^T$

$$m_{ij} = \sum_{k} \sum_{\ell} p_{ik} q_{k\ell} r_{\ell j} \qquad ||M||^2 = \sum_{i} \sum_{j} (m_{ij})^2 = \sum_{i} \sum_{j} \left(\sum_{k} \sum_{\ell} p_{ik} q_{k\ell} r_{\ell j}\right)^2$$

$$\left(\sum_{k} \sum_{\ell} p_{ik} q_{k\ell} r_{\ell j}\right)^2 = \sum_{k} \sum_{\ell} \sum_{m} \sum_{n} p_{ik} q_{k\ell} r_{\ell j} p_{in} q_{nm} r_{mj}$$

$$||M||^2 = \sum_{i} \sum_{j} \sum_{k} \sum_{\ell} \sum_{n} \sum_{m} p_{ik} q_{k\ell} r_{\ell j} p_{in} q_{nm} r_{mj}$$

$$||M||^2 = \sum_{i} \sum_{j} \sum_{k} \sum_{n} p_{ik} q_{kk} r_{kj} p_{in} q_{nn} r_{nj}$$

$$||M||^2 = \sum_{j} \sum_{k} q_{kk} r_{kj} q_{kk} r_{kj}$$

Much easier proof exists if you use the trace of a matrix and its properties

$$||M||^2 = \sum_{k} (q_{kk})^2$$

Proof using Trace

$$\mathbf{M} = \mathbf{PQR}^{\top}$$

$$||\mathbf{M}||_{2}^{2} = \operatorname{tr}(\mathbf{M}^{\top}\mathbf{M})$$

$$||\mathbf{M}||_{2}^{2} = \operatorname{tr}(\mathbf{RQP}^{\top}\mathbf{PQR}^{\top})$$

$$||\mathbf{M}||_{2}^{2} = \operatorname{tr}(\mathbf{RQQR}^{\top})$$

$$||\mathbf{M}||_{2}^{2} = \operatorname{tr}(\mathbf{RQ}^{2}\mathbf{R}^{\top})$$

$$||\mathbf{M}||_{2}^{2} = \operatorname{tr}(\mathbf{R}^{\top}\mathbf{RQ}^{2})$$

$$||\mathbf{M}||_{2}^{2} = \operatorname{tr}(\mathbf{Q}^{2})$$

SVD and Approximation Error

If M_k is the matrix with (k+1) and above singular values set to zero $(k-th\ rank\ approximation)$

SVD and Approximation error

• Then, the approximation error, $||M - M_k||^2$ becomes

$$||\mathbf{M} - \mathbf{M}_k||^2 = \operatorname{tr} \left(\mathbf{P} \begin{bmatrix} 0 & & & & & \\ & \ddots & & & & \\ & & 0 & & & \\ & & & \sigma_{k+1} & & \\ & & & & \ddots & \\ & & & & \sigma_n \end{bmatrix} \mathbf{R}^{\top} \right)$$

$$||\mathbf{M} - \mathbf{M}_k||^2 = \sigma_{k+1}^2 + \ldots + \sigma_n^2$$

If we want to minimize this error, then we must select the largest singular values for the first 1...k positions!

Applications of SVD

- Latent Semantic Analysis
 - words vs. document matrix
 - Find similar words (query expansion)
 - Find similar documents (similarity search)
- Recommendation Systems
 - users vs. items/products
 - Recommend similar products to users

Two uses of SVD

- SVD for dimensionality reduction
 - Compute $M = U\Sigma V^T$
 - Get the largest k singular values from Σ to construct a diagonal matrix Σ_k
 - Get the corresponding left singular vectors from U to construct a matrix U_k
 - Reduce the number of columns of M to k to construct the matrix M_k
 - $M_k = U_k \Sigma_k$

Two uses of SVD

- SVD to increase the density of a matrix
 - Compute $M = U\Sigma V^T$
 - Get the largest k singular values from Σ to construct a diagonal matrix Σ_k
 - \bullet Get the corresponding left singular vectors from U to construct a matrix U_k
 - \bullet Get the corresponding right singular vectors from U to construct a matrix V_k
 - Reproduce a dense version of M, M_k
 - $M_k = U_k \Sigma_k V_k^T$
 - Lesser number of non-zero values in M_k
 - However, we end up with negative values in M_k even though M is a matrix with all non-negative values!

Principal Component Analysis

- We would like to project our high dimensional data points to a low dimensional space by preserving the geometric properties in the original space as much as possible
- Two ways to do this:
 - Maximise the variance of the projected data
 - Linear projection that minimises the average projection cost
- PCA is also known as the Karhunen-Loève Transform

Idea

Maximum Variance Formulation

- Problem
 - Given D dimensional N data points {x_n}, where n=1,...,N, we must project those into a M<D dimensional space
 - M is given
- Let us consider the case M=1 (one-dimensional projection)
- The projection direction is given by the unit vector \mathbf{u}_1

•
$$\mathbf{u}_1^\mathsf{T} \mathbf{u}_1 = 1$$

$$\tilde{x}_n = \mathbf{u}_1^\mathsf{T} \mathbf{x}_n$$

Maximum Variance Formulation

Mean of the data points

$$\bar{\boldsymbol{x}} = \frac{1}{N} \sum_{n=1}^{N} \boldsymbol{x}_n$$

Variance of the projected data

$$\frac{1}{N} \sum_{n=1}^{N} (\boldsymbol{u}_1^{\top} \boldsymbol{x}_n - \boldsymbol{u}_1^{\top} \bar{\boldsymbol{x}})^2 = \boldsymbol{u}_1^{\top} \mathbf{S} \boldsymbol{u}_1$$

S is the covariance matrix given by

$$\mathbf{S} = \frac{1}{N} \sum_{n=1}^{N} (\boldsymbol{x}_n - \bar{\boldsymbol{x}}) (\boldsymbol{x}_n - \bar{\boldsymbol{x}})^{\top}$$

Maximum Variance Formulation

• We must maximize the variance subjected to the normalization constraint on \mathbf{u}_1

Lagrange multiplier method
$$L(\boldsymbol{u}_1,\lambda_1) = \boldsymbol{u}_1^{\top}\mathbf{S}\boldsymbol{u}_1 + \lambda_1(1-\boldsymbol{u}_1^{\top}\boldsymbol{u}_1)$$
 (see SVM slides)

$$\frac{\partial L(\boldsymbol{u}_1, \lambda_1)}{\partial \boldsymbol{u}_1} = 0 \quad \Longrightarrow \quad \mathbf{S}\boldsymbol{u}_1 = \lambda_1 \boldsymbol{u}_1$$

$$\boldsymbol{u}_1 \ \mathbf{S} \boldsymbol{u}_1 = \lambda_1$$

This is variance!

u_I is the eigenvector of S that corresponds to the largest eigenvalue of S

PCA Algorithm

- INPUT
 - D dimensional N data points {x_n}, where n=1,...,N
 - Dimensionality M
- Procedure
 - Compute the covariance matrix S for the dataset
 - Compute the first M eigenvectors of S
- return the computed eigenvectors

A Word on Complexity

- Eigenvalue decomposition of a DxD matrix is O(D³)
- However, we only need the largest M eigenvectors of S
- This can be computed efficiently using truncated methods such as the power-iteration method in O(MD²)
- Reference
 - Golub & Van Loan, Matrix Computations, John Hopkins University Press, 1996.

References

- Mining of Massive Datasets
 - http://infolab.stanford.edu/~ullman/ mmds.html#original
 - Chapter 11 on Dimensionality Reduction (SVD)
- Pattern Recognition and Machine Learning
 - Section 1.1 (overfitting)
 - Section 1.4 (curse of dimensionality)
 - Page 561 onwards: PCA