化学A演習9 (解答例)

提出日 2019年 月 月

学年: 学科: クラス: 学籍番号 氏名

【注意】必要な定数があれば、その旨明記して使用して良い。

問題 1.

- (1) 水素分子(H₂)とヘリウム分子(He₂)の結合次数を求めなさい。
- (2) Li_2 , C_2 , O_2 の中で常磁性の分子を答えなさい。また、その電子配置を下記の例にならい書きなさい。例 B_2 : ($\text{1s}\,\sigma$ $_{\text{u}}$) 2 ($\text{1s}\,\sigma$ $_{\text{u}}$) 2 ($\text{2s}\,\sigma$ $_{\text{g}}$) 2 ($\text{2s}\,\sigma$ $_{\text{u}}$) 2 ($\text{2s}\,\sigma$

- 解答 -

(1) 等核二原子分子では、たがいの原子軌道が混ざり分子軌道が形成されます。 その分子軌道は H_2 と He_2 では以下のようにIs軌道が結合性軌道 $(Is \sigma_s)$ と反結合性軌道 $(Is \sigma_s)$ に分かれます。

結合性軌道はもとの原子軌道より安定化され、逆に反結合性軌道は非安定化されています。結合の強さは結合性軌道と 反結合性軌道の差によるもので、それを表す指標として結合次数があり、以下のように定義されます。

したがって、これに適用すると H₂と He₂の結合次数はそれぞれ 1と 0になります。

(2) 分子軌道に平行スピンが並ぶことで、磁性の向きがそろい常磁性を示します。 Li_2 , C_2 , O_2 の分子軌道を描くと O_2 のみが右図のように 2 つの平行したスピンが $2p\pi_g$ *に配置されているので、 O_2 は常磁性の分子になります。またその電子配置は以下のようになります。

 O_2 : $(1s \sigma_g)^2 (1s \sigma_u^*)^2 (2s \sigma_g)^2 (2s \sigma_u^*)^2 (2p \sigma_g)^2 (2p \pi_u)^4 (2p \pi_g^*)^2$

問題 2. 以下の文章を読み、(ア)および(イ)には文中の記号を含む式、(ウ)~(カ)には下記の【語句】の中から適切な語句、(キ)には<u>有効数字 3 桁</u>の数値、(ク)および(ケ)には<u>有効数字 2 桁</u>の数値、(コ)には適切な数値、(サ)~(ス)には適切な化学式を、それぞれ入れなさい。

(1) 水素分子イオン(H_2^+)の電子の波動関数は 2 つの水素原子 (H_A および H_B) の波動関数の重ね合わせ (線形結合) として表すことができる。それぞれ 1 に規格化された 1s 波動関数である Φ_A および Φ_B を使うと、結合性軌道 Ψ_+ は N_+ をその規格化定数として (P) と表すことができ、また、反結合性軌道 Ψ_- についても同様に表現できる。 Φ_A と Φ_B の重なり積分 S_{AB} を用いてこの規格化定数を表現すると、 N_+ = (P_+) となる。ここで P_+ となりには以下のような表式を取り、 P_+ の値をもつことが知られている。

$$S_{AB} = \left(1 + \frac{R}{a_0} + \frac{R^2}{3a_0^2}\right)e^{\frac{R}{a_0}}$$
 (a_0 : ボーア半径、 R : 核間距離) · · · · · · · (A)

 Ψ_+ および Ψ_- に対応する水素分子イオンのエネルギーをそれぞれ E_+ および E_- とする。ただし、常に E_+ < E_- とする。核間距離 R を無限遠から近づけると、水素原子の 1s 軌道のエネルギー E_{1s} を基準にすれば、 $E_ E_{1s}$ は単調に (p) し、いかなる R でも $E_ E_{1s}$ は (p) の値をとる。一方、p0 (p0) でも p0 (p0) する。平衡核間距離 p0 (p0) でもとり、さらに近づけると (p0) する。平衡核間距離 p0 (p0) ではおける重なり積分 p0 (p0) をとり、さらに近づけると (p0) する。平衡核間距離における p0 (p0) と具体的に求められる。p0 (p0) をとなる。この値は平衡核間距離における p0 (p0) をとすると、p0 (p0) をとなると大幅に小さい。

(2) 周期表第 2 周期の元素により構成される等核二原子分子について考える。分子軌道における電子配置から結合次数を見積もることができ、例えば C_2 分子の結合次数は(a)である。また、各分子の結合次数は結合エネルギーや結合距離に影響し、結合エネルギーが最も大きいのは(b)である。(b)は原子間の結合距離が最も短い。常磁性の分子を全て列挙すると(a)である。

【語句】不変化・一定化・増加・減少・極大・極小・最大・変曲点・節・正・負・ゼロ・一定・不変 解答欄

- (r) $N_{+}(\phi_{A}+\phi_{B})$:線形結合で表されるので、ある係数(規格化定数)を掛けた和で表される。
- (イ) $1/\sqrt{2+2S_{AB}}$: 規格化条件より、 $(|\Psi_+|^2 dv = 1$ を計算すると N_+ が得られる。
- (ウ) 増加: 反結合性軌道は元の水素原子のエネルギーより不安定で、核間距離が縮まっても安定化しない。
- (エ) 正:水素原子のエネルギーより不安定なので正
- (オ)極小:結合性軌道は核間距離が近づくほど水素原子のエネルギーより安定化するが、近づきすぎると反発し不安定化する。
- (カ) 増加、(キ) $Rl_{20} = 2.00$ を式(A) に代入して計算すると、0.586、(ク) 2.8: 結合エネルギーは元の軌道のエネルギーと分子軌道のエネルギーの差で表される。元の軌道のエネルギーは E(1) = -13.6 eV なので、-13.6 (-16.4) = 2.8
 - (ケ) 9.0 (-4.56-(13.6)=9.0 有効数字2桁)
 - (コ) 2:結合次数は(分子軌道中の結合性軌道に入っている電子数-反結合性軌道に入っている電子数)/2 で表されるので、C₂の電子配置より結合次数は2次
 - (サ) N_2 、(シ) N_2 :結合次数が大きいほど結合エネルギーは大きく、結合距離は短くなる。
 - (ス) B_2 、 O_2 : 分子軌道の電子配置から、 B_2 \geq O_2 では異なる向きのスピンを持つ電子が同数でないため磁性を持つ。