Ver 2.0

HX6206系列

线性稳压器

■ 产品简介

HX6206 系列是高纹波抑制率、低功耗、低压差,具有过流和短路保护的CMOS降压型电压稳压器。这些器件具有很低的静态偏置电流(6.0µA Typ.),它们能在输入、输出电压差极小的情况下提供250mA的输出电流,并且仍能保持良好的调整率。由于输入输出间的电压差很小和静态偏置电流很小,这些器件特别适用 于希望延长电池寿命的电池供电类产品,如计算机、消费类产品和工业设备等。

■ 产品特点

- 高精度输出电压: ±2.5%
- 输出电压: 1.5V~5.0V(步长 0.1V)
- 极低的静态偏置电流(Typ. =6.0µ A)
- 低的温度调整系数

- 最高输入电压可达 6.5V
- 带载能力强: 当 Vin=4.3V 且Vout=3.3V 时, Iout=250mA
- 可以作为调整器和参考电压来使用
- 输入稳定性好: Typ. 0.03%/V
- 封装形式: SOT89-3、SOT23-3

■ 产品用途

- 电池供电系统
- 无绳电话设备
- 无线控制系统
- 便携/手掌式计算机

- 便携式消费类设备
- 便携式仪器
- 汽车电子设备
- 电压基准源

■ 封装形式和管脚定义功能

	管脚序	号		
MR封装	PP封装	P1R封装	管脚	功能说明
形式	形式	形式	定义) 切形奶奶
S0T23-3	S0T89-3	S0T89-3		
1	1	2	VSS	芯片接地端
2	3	1	VOUT	芯片输出端
3	2	3	VIN	启动输入端

■ 型号选择

名称	型号	最高输入电压(V)	输出电压(V)	容差	封装形式
HX6206PXX	НХ6206Рхх	6.5	1.5, 1.8, 2.5, 2.7, 3.0, 3.3, 3.6, 4.4, 5.0	<u>+</u> 3%	SOT89-3 SOT23-3

型号选择说明: "XX"输出电压值。如: HX6206P302PR,就是 3.0V输出电压,SOT89-3 封装。

■ 功能框图

■ 极限参数

项目	符号	参数		参数	
中亡	Vin	输	入电压	6. 5	V
电压	Vout	输	出电压	Vss-0.3 ~Vout+0.3	V
电流	Iout	输	出电流	500	mA
T-1. #16	DD	S0T23	且上厶次刊起	300	W
功耗	PD	S0T89-3	最大允许功耗	500	mW
	Tw	工	作温度	-25~+80	$^{\circ}$
温度	Тс	存	储温度	-40∼+125	$^{\circ}$
	Th	焊	接温度	260	°C, 10s

■ 电学特性 (Cin=Cout=10uF,Ta=25°C除特别指定)

特性	符号		条件	最小值	典型值	最大值	单位
输出电压	V _{OUT} (E)	T1 m Δ V	$I_{IN} = V_{OUT}(T) + 1V$	V _{OUT} (T)	V _{out} (T)	$V_{OUT}(T)*$	V
柳田屯压	VOUT (L)	TOUT—THIA, V	IN— VOUT (1) 11V	*0.98	VOUT (1)	1.02	v
最大输出电流	I _{OUT} (max)	$V_{IN}=V_{OUT}(T)+$	1V	100			mA
			1. $5V \leq V_{OUT}(T) \leq 2.5V$		200	280	
跌落压差	Vdrop	$I_{OUT} = 50 \text{mA}$	$2.6V \leqslant V_{OUT}(T) \leqslant 3.3V$		160	240	mV
			$3.4V \leq V_{OUT}(T) \leq 5.5V$		120	200	
静态电流	${ m I}_{ m SS}$	$V_{IN} = V_{OUT}(T)$	+1V		7		μA
负载稳定度	$\Delta V_{ ext{OUT}}$	$V_{IN} = V_{OUT}(T)$	+1V, 1mA≤I _{OUT} ≤80mA		20		mV
输入稳定度	$\Delta V_{OUT} / (\Delta V_{IN})$	$I_{OUT} = 1 \text{ mA}$,			0. 1	0.2	%/V
個八亿足)支	• V _{OUT})	$V_{OUT}(T) + 0.5$	$V \leq V_{IN} \leq 5.5V$		0. 1	0.2	70/ V
输出电压	ΔV _{OUT} /(ΔTa	$V_{IN} = V_{OUT}(T)$	$+1V$, $I_{OUT}=10mA$		± 100		nnm/°C
温度系数	• V _{OUT})	-40°C ≤Ta	≶85°C		100		ppm/℃
输入电压	V_{IN}			1.8		8.0	V
分址 加州	DCDD	$V_{IN} = [V_{OUT}(T) + 1]V + 1Vp-pAC$			40		-ID
纹波抑制比	PSRR	$I_{OUT} = 10$ mA,	f=1kHz		40		dB
短路电流	Ishort	$V_{IN} = V_{OUT}(T)$	+1.5V , V _{OUT} =V _{SS}		30		mA
过流保护电流	Ilimt	$V_{\text{IN}} = V_{\text{OUT}}(T)$	+1.5V		380		mA

注:

- 1、 Vour (T): 规定的输出电压。
- 2、 V_{OUT} (E) : 有效输出电压 (即当 I_{OUT} 保持一定数值, V_{IN} = $(V_{OUT}$ (T)+1.0V)时的输出电压)。
- 3、IouT (max): VIN=VouT (T)+1V, 缓慢增加输出电流, 当输出电压≤VouT (E)*95%时的电流值。
- 4、 $Vdrop=V_{INI}-V_{OUT}$ (E) s : $V_{INI}=$ 逐渐减小输入电压, 当输出电压降为 V_{OUT} (E) 1 的 98%时的输入电压。

$$V_{OUT}$$
 (E) $_{S}=V_{OUT}$ (E) *98%

 V_{OUT} (E) 1=当 V_{IN} = $V_{\text{OUT}}(T)$ +1V , Iout=某一数值时的输出电压值。

■ 测试电路

应用电路

1、基本电路

2、大输出电流正电压型电压调整器

3、提高输出电压值电路(1)

Vout=Vxx(1+R2/R1)+IssR2

4、提高输出电压电路(2)

Vout=Vxx+V_{D1}

5、恒流调整器

Iout=Vxx/R_A+Iss

6、双输出

Ver 2.0

■ 特性曲线图

1、输出电压--输出电流(负载电流增加时)

4、Dropout 电压和输出电压

6、纹波抑制

7、瞬态响应

■ 封装信息

SOT-89-3

符号	最小值(mm)	最大值(mm)	
Α	1.400	1.600	
ь	0.320	0.520	
b1	0.360	0.560	
С	0.350	0.440	
D	4.400	4.600	
D1	1.400	1.800	
E	2.300	2.600	
E1	3.940	4.250	
e	1.50	OOTYP	
e1	2.900	3.100	
L	0.900	1.100	

SOT-23-3

Symbol	Dimensions In	Millimeters	Dinensions	In Inches
	Nin	Max	Min	Max
A	1.050	1.250	0.041	0.049
A1	0.000	0.100	0.000	0.004
A2	1.050	1.150	0.041	0.045
b	0.300	0.500	0.012	0.020
c	0.100	0.200	0.004	0.008
D	2.820	3.020	0.111	0.119
E	1.500	1.700	0.059	0.067
E1	2.650	2.950	0.104	0.116
e	0.950(BSC)	0.037(BSC)
e1	1.800	2.000	0.071	0.079
L	0.300	0.600	0.012	0.024
θ	0°	8°	0,	81