CS 341 Automata Theory Geoffrey Parker - grp352

Homework 10

Due: Tuesday, March 27

This assignment reviews Chapter 13 and covers Chapter 14 and Sections 17.1 - 17.3.

1)		r each of the following languages L , state whether L is regular, context-free but not regular, or not ntext-free and prove your answer.
	a)	$\{w: w = uu^R \text{ or } w = ua^n: n = u , u \in \{a, b\}^*\}.$
		Answer. Context-free but not regular. $\hfill\Box$
		<i>Proof.</i> This language is generated by this context-free grammar so it must be context-free:
		$S o A \mid B$
		$A ightarrow aAa \mid bAa \mid \epsilon$
		$B ightarrow aBa \mid bBb \mid \epsilon$
		This language L is not regular. Let $w=b^ka^k$ for some integer $k\geq 1$. Then y must be b^p for some integer p such that $1\leq p\leq n$. Pumping out y generates a new string $w'=b^{k-p}a^k$ which is not in the language. Therefore by the pumping theorem this language is not regular.
	b)	$\{a^nb^{2n}c^m\}\cap \{a^nb^mc^{2m}\}.$
		Answer. Not context-free. This language is equivalent to $L = \{a^n b^{2n} c^{4n}\}.$
		<i>Proof.</i> Let $w=a^kb^{2k}c^{4k}$. Let region 1 be the a 's, region 2 be the b 's and region 3 be the c 's. In any case where vxy crosses a region boundry, pumping in will result in a new string with out of order a 's b 's or c 's, and thus not in the language. If vxy is contained solely within a region, pumping out will disrupt the cardinality requirement, thus also generating a string not in the language. Therefore by the pumping theorem for context-free languages this language is not context-free.
	c)	L^* , where $L = \{0 * 1^i 0 * 1^i 0 * : i \ge 0\}$.
		Answer. \Box
		Proof.
	d)	$\neg L_0$, where $L_0 = \{ww : w \in \{a, b\}^*\}.$
		Answer. \Box
		Proof.
	e)	$\{x \in \{a,b\}^* : x \text{ is even and the first half of } x \text{ has one more a than does the second half} \}.$
		Answer. \Box
		Proof.

2)	Give a decision procedure to answer the following question: given a context-free grammar G , does G generate any even length strings?
	Solution.
3)	Construct a standard, one-tape Turing machine M to decide the language $L = \{x*y = z : x, y, z \in 1^+ \text{ and, } when x, y, \text{ and } z \text{ are viewed as unary numbers, } xy = z\}. For example, the string 1111*11 = 111111111 \in L. Describe M in the macro language described in Section 17.1.5.$
	Solution.
4)	Construct a standard 1-tape Turing machine M to compute the function sub_3 , which is defined as follows: $sub_3(n) = n-3$ if $n > 2$ 0 if $n < 2$.
	Specifically, compute sub_3 of a natural number represented in binary. For example, on input 10111, M should output 10100. On input 11101, M should output 11010. (Hint: you may want to define a subroutine.)
	Solution.