Übungsblatt 1

Selbstlernaufgaben

Aufgabe 1

Gegeben ist die Abbildung

$$f: \mathbb{R} \to \mathbb{R} \quad \text{mit} \quad f(x) = |x|$$

sowie die Mengen A=[-1;1[und B=]-1;1]. Bestimmen Sie f(1), $f^{-1}(1)$, f(A) und $f^{-1}(B)$.

Aufgabe 2

Welche der folgenden Abbildungen $\mathbb{R}^2 \to \mathbb{R}^2$ sind linear?

- (a) $f(x_1, x_2) = (x_1 + 1, x_2 + 1)$
- (b) $f(x_1, x_2) = (x_1, x_2)$
- (c) $f(x_1, x_2) = (x_2, |x_1|)$

Aufgabe 3

Lesen und verstehen Sie die Beweise in **Bemerkung 4.5** und **4.6** im Skript. Beweisen oder Wiederlegen Sie anschließend die folgenden Aussagen.

- (a) Es sei $f: \mathbb{R} \to \mathbb{R}$. Es gilt f invertierbar $\Rightarrow f(0) = 0$.
- (b) Es ex. eine zu sich selbst inverse Abbildung $f:A\to A.$ A sei ein Vektorraum.
- (c) Es sei $f:A\to B$ und $g:B\to C$. f und g invertierbar. Zur Verkettung $g\circ f:A\to C$ ist die Abbildung $f^{-1}\circ g^{-1}$ invers.
- (d) Es sei $f, g \in C[a, b]$, f und g invertierbar. Eine Linearkombination, wie in **Beispiel 3.24** definiert, von f und g ist invertierbar.

Aufgabe 4

Wir betrachten die Funktion $f: \mathbb{R}^2 \to \mathbb{R}^3$,

$$f(x_1, x_2) = \begin{pmatrix} x_1 + x_2 \\ x_1 - x_2 \\ x_1 \end{pmatrix}.$$

- (a) Zeigen Sie, dass f linear ist.
- (b) Berechnen Sie $\ker(f)$.
- (c) Bestimmen Sie eine Basis des Bildes von f.

Hausaufgaben

Aufgabe 5

Gegeben ist die Abbildung

$$f: \mathbb{R}^2 \ni \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \to \begin{pmatrix} x_1^2 \\ \frac{1}{2}x_2 \end{pmatrix} \in \mathbb{R}^2$$

sowie die Menge $A = [-1; 1] \times [0; 10]$.

Bestimmen Sie
$$f\left(\begin{pmatrix}1\\1\end{pmatrix}\right)$$
, $f^{-1}\left(\begin{pmatrix}1\\1\end{pmatrix}\right)$, $f(A)$ und $f^{-1}(A)$.

Aufgabe 6

- (a) Sei $\emptyset \neq M$ und $\mathcal{P}(M)$ die Potenzmenge von M. Wir betrachten die Abbildung $\varphi: M \to \mathcal{P}(M); \varphi(m) = \{m\}$ für $m \in M$. Beweisen oder widerlegen Sie, dass φ injektiv bzw. surjektiv ist.
- (b) Zwei Mengen M_1 , M_2 sind "gleichmächtig" im Sinne von Cantor ($|M_1|=|M_2|$), wenn es eine Bijektion zwischen M_1 und M_2 gibt. Sind die beiden Mengen endlich, impliziert dies, dass M_1 und M_2 gleich viele Elemente enthalten. Man zeige, dass es im Cantorschen Sinne "so viele gerade wie natürliche Zahlen gibt", indem man beweist, dass $\varphi:\mathbb{N}\to 2\mathbb{N},\ \varphi(n)=2n$ eine Bijektion ist.
- (c) Wir definieren

$$f(n) = \begin{cases} -\frac{n-1}{2} &, & n \text{ ungerade} \\ \frac{n}{2} &, & n \text{ gerade} \end{cases}, \quad f: \mathbb{N} \to \mathbb{Z}$$

Beweisen Sie: f ist Bijektion. Was folgt daraus für die Mächtigkeit von \mathbb{N} . $2\mathbb{N}$ und \mathbb{Z} ?

Aufgabe 7

Welche der folgenden Abbildungen von $\mathbb{R}^2 \to \mathbb{R}^3$ sind linear? Bestimmen Sie gegebenenfalls den Kern.

(a)
$$f_1(x_1, x_2) = \begin{pmatrix} -x_2 \\ -x_1 \\ 5x_1 - 7x_2 \end{pmatrix}$$
 (b) $f_2(x_1, x_2) = \begin{pmatrix} x_1 + 1 \\ x_2 - 1 \\ 3 \end{pmatrix}$ (c) $f_3(x_1, x_2) = \begin{pmatrix} x_1 \cdot x_2 \\ 0 \\ x_1 + 1 \end{pmatrix}$ (d) $f_4(x_1, x_2) = \begin{pmatrix} 0 \\ x_1 - x_2 \\ x_1 + x_2 \end{pmatrix}$

Aufgabe 8

Gegeben sei die Abbildung $f:\mathbb{R}^3\to\mathbb{R}^2$ mit $f(x_1,x_2,x_3)=(x_1-2x_3,4x_2)$

- (a) Zeigen Sie: f ist linear.
- (b) Bestimmen Sie den Kern von f und geben Sie $\dim(\text{Ker}(f))$ an.
- (c) Berechnen Sie die $\dim(\operatorname{Bild}(f))$ bzw. $\operatorname{rg}(f)$ und bestimmen Sie $\operatorname{Bild}(f)$.

2

(d) Ist die Abbildung f injektiv oder surjektiv?