第1章的概念题(例题答案)

〇、几个基本概念

(一) 数列极限定义

 $\lim a_n = a \Leftrightarrow$ 对于 $\forall \varepsilon > 0$,均 $\exists N \in N^*$,使得当n > N 时,有 $|a_n - A| < \varepsilon$.

注1: 如何理解这个抽象的定义呢?请认真听课!

注 2: $\lim_{n\to\infty} a_n = a$ 的几何意义是——对于任意的 $\varepsilon > 0$ (无论 ε 有多小),一定存在N ,使得当n > N (也即 第N 项以后)时,所有的 x_n 均落在区间($a-\varepsilon,a+\varepsilon$)内,而只有有限个点(最多N 个)落在该区间之外.

(二) 函数极限定义

1. 自变量趋向于定点

 $\lim_{x \to x_0} f(x) = A \Leftrightarrow$ 对 $\forall \varepsilon > 0$,均 $\exists \delta > 0$,使得当 $0 < |x - x_0| < \delta$ 时,有 $|f(x) - A| < \varepsilon$.

2. 自变量趋向于无穷

 $\lim_{x \to +\infty} f(x) = A \Leftrightarrow \forall x \geq 0, \ \forall x \geq 0, \ \forall x \geq X$ 时,有 $|f(x) - A| < \varepsilon$.

 $\lim_{x \to -\infty} f(x) = A \Leftrightarrow \forall \forall \varepsilon > 0, \quad \forall \exists X > 0, \quad \notin \exists X < -X \text{ th}, \quad \pi |f(x) - A| < \varepsilon.$

 $\lim_{x \to \infty} f(x) = A \Leftrightarrow \forall x > 0, \quad \exists X > 0, \quad$

(三) 有界性

若∃ $M \ge 0$,使得对于 $\forall x \in I$,均有 $|f(x)| \le M$ 恒成立,则称 f(x)在区间 I 上有界.

注 1: 若 f(x)在 [a,b] 连续,则一定存在最大、最小值,故而 f(x)一定有界;

注 2: 若 f(x) 在 (a,b) 连续, 且 $\lim_{x\to a^+} f(x)$ 和 $\lim_{x\to b^-} f(x)$ 存在,则也能推出 f(x) 有界;

注 3: 同理可定义上界和下界—— 若 $\exists M_1$,使得对于 $\forall x \in I$,均有 $f(x) \leq M_1$ 恒成立,则称 f(x)在区间I上有上界; 若 $\exists M_2$,使得对于 $\forall x \in I$,均有 $f(x) \geq M_2$ 恒成立,则称 f(x)在区间I上有下界.

(四) 极限的性质(以函数极限为例,数列极限同理)

1. 唯一性

设 $\lim_{x\to a} f(x) = A$, 则 A 具有唯一性.

2. 局部有界性

设 $\lim f(x) = A$, 则 f(x) 在 $x = x_0$ 的去心邻域内有界.

3. 保号性

设 $\lim f(x) = A$ ——

一、与极限定义相关的概念题

例题 $\mathbf{1}$ (1999 年) "对 $\forall \varepsilon \in (0,1)$, 总存在正整数 N, 当 n > N 时, 恒有 $|x_n - a| \le 2\varepsilon$ " 是" $\lim x_n = a$ " 的(

A. 充分非必要条件 B. 必要非充分条件 C. 充分必要条件

- D. 既非充分也非必要条件

解: "对 $\forall \varepsilon \in (0,1)$, 总存在正整数N, 当n > N 时, 恒有 $|x_n - a| \leq 2\varepsilon$ "

3-5极限中的概念题01:50:43

就是" $\lim x_n = a$ "的定义,显然是充要条件

例题 2 (2014 年) 设 $\lim a_n = a \neq 0$,则当n 充分大时,必有 (

A.
$$|a_n| > \frac{|a|}{2}$$

B.
$$|a_n| < \frac{|a|}{2}$$

C.
$$a_n > a - \frac{1}{n}$$

A.
$$|a_n| > \frac{|a|}{2}$$
 B. $|a_n| < \frac{|a|}{2}$ C. $a_n > a - \frac{1}{n}$ D. $a_n < a + \frac{1}{n}$

解: $\lim_{n\to\infty} a_n = a \Rightarrow \lim_{n\to\infty} |a_n| = |a| > \frac{|a|}{2} > 0$,即当n充分大时, $|a_n| > \frac{|a|}{2}$ 3-5极限中的概念题01:56:50

二、与无界与无穷大相关的概念题

例题 3 当 $x \to 0$ 时, $f(x) = \frac{1}{x^2} \sin \frac{1}{x}$ 是 ()

- B. 无穷小
- C. 有界但非无穷小
- D. 无界但非无穷大

解: 无界推不出无穷大, 但是无穷大能推出无界

 $f(x) = \frac{1}{r^2} \sin \frac{1}{r} \mathcal{L} R \mathbb{R} \mathbb{R} \mathbb{R}$, 不是无穷大

3-5极限中的概念题02:06:43

例题 4 下列叙述正确的是(

3-5极限中的概念题02:15:57

A. 如果f(x)在 x_0 的任意去心邻域内无界,则 $\lim_{x \to \infty} f(x) = \infty$

B. 如果 $\lim_{x\to x} f(x) = \infty$, 则 f(x) 在 x_0 的任意去心邻域内无界

C. $\lim_{x \to x_0} f(x)$ 不存在,则 $\lim_{x \to x_0} f(x) = \infty$

D. 如果
$$\lim_{x \to x_0} f(x) = 0$$
, 则 $\lim_{x \to x_0} \frac{1}{f(x)} = \infty$

解: A. 无穷能推出无界, 但是无界推不出无穷

C. 显然不正确

D. 取 $f(x) \equiv 0$

三、与单调有界准则相关的概念题

例题 5 (2012 年) 设 $a_n > 0$ ($n=1,2,\cdots$), $S_n = a_1 + a_2 + \cdots + a_n$, 则数列 $\{S_n\}$ 有界是数列 $\{a_n\}$ 收敛的 (

A. 充分必要条件 B. 充分非必要条件

C. 必要非充分条件 D. 既非充分也非必要条件

解: ①显然 S_n 单调递增, 若 $\{S_n\}$ 有界, 得出 $\{S_n\}$ 收敛,

3-5极限中的概念题00:01:33

②
$$\mathbb{R} a_n = 1 \Rightarrow S_n = a_1 + a_2 + \cdots + a_n = n \rightarrow \infty$$

例题 6 (2008 年) 设函数 f(x)在($-\infty$, $+\infty$)内单调有界, $\{x_n\}$ 为数列, 下列命题正确的是 ()

A. 若 $\{x_n\}$ 收敛,则 $\{f(x_n)\}$ 收敛 B. 若 $\{x_n\}$ 单调,则 $\{f(x_n)\}$ 收敛 3-5极限中的概念题00:07:35 D. 若 $\{f(x_n)\}$ 单调,则 $\{x_n\}$ 收敛

解:
$$A \, \mathbb{R} \, f(x) = \begin{cases} \arctan x + 1, x > 0 \\ 0, & x = 0, x_n = (-1)^n \cdot \frac{1}{n} \to 0, \\ \arctan x - 1, x < 0 \end{cases}$$

当n为偶数时, $f(x_n) \rightarrow 1$; 当n为奇数时, $f(x_n) \rightarrow -1$

 $B\{x_n\}$ 单调 $\Rightarrow f(x_n)$ 也单调,由于 f(x) 有界,由单调有界得 $\{f(x_n)\}$ 收敛

C取 $x_n = n$, $\{x_n\}$ 发散, 但 $f(x_n) = f(n)$ 单调有界, 收敛 D只要 x_n 单调,取 $x_n=n$, $f(x_n)$ 就单调,不需要 $\{x_n\}$ 收敛

四、与夹逼准则相关的概念题

例题7 设
$$a_n \leq b_n \leq c_n$$
, 且 $\lim_{n \to \infty} (c_n - a_n) = 0$, 则 $\lim_{n \to \infty} b_n$ ()

3-5极限中的概念题00:24:40

A. 存在, 且一定为零 B. 存在, 但不一定为零 C. 不一定存在 D. 一定不存在

解: 取
$$c_n = \sqrt{n+1} \ge a_n = \sqrt{n} \Rightarrow \lim_{n \to \infty} (c_n - a_n) = \lim_{n \to \infty} (\sqrt{n+1} - \sqrt{n}) = \lim_{n \to \infty} \frac{1}{\sqrt{n+1} + \sqrt{n}} = 0$$

但是 $b_n \ge a_n = \sqrt{n} \to +\infty \Rightarrow b_n \to +\infty$

取 $a_n \to A, b_n \to A$, 由夹逼准则可得, $\lim b_n = A$

补充题: 设 $x_n \le a \le y_n$, 且 $\lim (y_n - x_n) = 0$.证明: $\lim x_n = \lim y_n = a$

3-5极限中的概念题00:29:03

解: $0 \le a - x_n \le y_n - x_n \to 0$, 由夹逼准则可得, $\lim_{n \to \infty} (a - x_n) = 0 \Rightarrow \lim_{n \to \infty} x_n = a$

 $\lim y_n = a$

五、与四则运算有关的概念题

例题 8 设 $\lim_{x\to a} f(x) = A$, $\lim_{x\to a} g(x)$ 不存在, $\lim_{x\to a} h(x)$ 也不存在,则下列命题正确的个数是 (

① $\lim f(x)g(x)$ 不存在

② $\lim [f(x) + h(x)]$ 不存在 3-5极限中的概念题00:34:05

③ $\lim h(x)g(x)$ 不存在

④ $\lim [g(x)+f(x)]$ 不存在

A. 0

B. 1

C. 2

D. 3

解: 取 $f(x) \equiv 0$, 则 $\lim f(x) \cdot g(x) = 0$, 故①错

由于:存在+不存在=不存在,所以②④正确

③ 的反例,取 $h(x) = \begin{cases} 1, x > 0 \\ 0, x < 0 \end{cases}$, $g(x) = \begin{cases} 0, x > 0 \\ 1, x < 0 \end{cases}$

 $h(x)g(x) \equiv 0$

或者取 $h(x) = D(x) = \begin{cases} 1, x \text{ 为有理数} \\ 0, x \text{ 为无理数} \end{cases}$ $g(x) = \begin{cases} 0, x \text{ 为有理数} \\ 1, x \text{ 为无理数} \end{cases}$

 $h(x)g(x) \equiv 0$

例题9 设数列 $\{x_n\}$ 和 $\{y_n\}$ 满足 $\lim x_n y_n = 0$,则(D)

3-5极限中的概念题00:46:06

A. 若x_n发散,则y_n必发散

解: A. 取 $y_n \equiv 0$

B. $x_n = 0, 2, 0, 4, 0, 6, 0, 8, \cdots$ 无界

 $y_n = 1, 0, 3, 5, 0, 7, 0, 9, \dots$ $\mathcal{L} = 0$

C. 取 $x_n = 0$,但是 y_n 可以任取

 $D. \ \frac{1}{r}$ 为无穷小,那么 $x_n \to \infty$,由 $\lim_{n \to \infty} x_n y_n = 0 \Rightarrow y_n \to 0$

例题 10 设 $\lim_{n\to\infty} a_n$ 和 $\lim_{n\to\infty} b_n$ 均不存在,则下列选项正确的是(C)

3-5极限中的概念题01:00:24

A. 若 $\lim_{n\to\infty} (a_n+b_n)$ 不存在,则 $\lim_{n\to\infty} (a_n-b_n)$ 也不存在

B. 若
$$\lim_{n\to\infty} (a_n + b_n)$$
不存在,则 $\lim_{n\to\infty} (a_n - b_n)$ 必定存在

C. 若
$$\lim_{n\to\infty} (a_n + b_n)$$
存在,则 $\lim_{n\to\infty} (a_n - b_n)$ 必不存在

D. 若
$$\lim_{n\to\infty} (a_n+b_n)$$
存在,则 $\lim_{n\to\infty} (a_n-b_n)$ 也存在

解:
$$a_n = \frac{(a_n + b_n) + (a_n - b_n)}{2}$$
, $b_n = \frac{(a_n + b_n) - (a_n - b_n)}{2}$, 由于 $\lim_{n \to \infty} a_n$ 和 $\lim_{n \to \infty} b_n$ 均不存在

且:存在+存在=存在,存在+不存在=不存在

补充题 (复合运算)

3-5极限中的概念题01:08:42

下列命题:

①
$$g(x)$$
在 $x = x_0$ 连续, $f(u)$ 在 $u = u_0 = g(x_0)$ 连续,则 $f[g(x)]$ 在 $x = x_0$ 连续

②
$$g(x)$$
在 $x = x_0$ 连续, $f(u)$ 在 $u = u_0 = g(x_0)$ 不连续,则 $f[g(x)]$ 在 $x = x_0$ 不连续

③
$$g(x)$$
在 $x = x_0$ 不连续, $f(u)$ 在 $u = u_0 = g(x_0)$ 连续,则 $f[g(x)]$ 在 $x = x_0$ 不连续

$$\bigoplus g(x)$$
在 $x = x_0$ 不连续, $f(u)$ 在 $u = u_0 = g(x_0)$ 不连续,则 $f[g(x)]$ 在 $x = x_0$ 可能连续

中正确的的个数是()

A. 1 B. 2 C. 3 D. 4

解:②取
$$g(x) \equiv 0 \Rightarrow f[g(x)] \equiv f(0) \Rightarrow f[g(x)]$$
常函数,连续

取
$$g(x) = x \Rightarrow f[g(x)] = f(x) \Rightarrow f[g(x)] \land x = x_0 \land x \in \mathcal{A}$$

③取
$$f(x) \equiv 0$$
, 无论 $g(x)$ 是什么, $f[g(x)] \equiv 0$, 连续

取
$$f(x)=x$$
, $f[g(x)]=g(x)$ 不连续

④ 取
$$g(x) = \begin{cases} 0, x = 0 \\ 1, x \neq 0 \end{cases}$$
 ⇒ 只需使得 $f(x)$ 在 $x = 0$ 间断,且 $\lim_{x \to 0} f[g(x)] = f(1) = f[g(0)] = f(0)$ 成立即可

或者取
$$f(x) = g(x) = D(x) = \begin{cases} 1, & x \to \text{有理数} \\ 0, & x \to \text{无理数} \end{cases} \Rightarrow f[g(x)] \equiv 1$$