• , , , , , ,

FIG. 2

FIG. 3a

FIG. 3b

* · · · · * ·

1 1 1 1 1 r

F/G. 5

The first of the max with most time and the first of the

FIG. 7

x = 6.1 1 r

BEAM CYCLOTRON IR MW RADIUS METERS	35697 0.151052063	94595 0.222376553	_								
LOAD TOTAL BEAM	8974 0.4835697	6972 1.0194595		1197 1.6168714						1.616 2.266 3.041 3.90 4.559 6.	1.616 2.266 3.041 3.90 4.559 6.
NAL BEAM LOAD ETA PER CAV MW	0.308515 0.48358974	0.430618 0.53586972	0.520833 0.59711197			+					
JAL FINAL	1.051282 0.30	1.108108 0.43	1.171429 0.52	-	1.242424 0.5			000	0000	00000	0 0 0 0 0 0
IAL FINAL MA GAMMA	1 1.05	1.051282 1.10	1.108108 1.17		1.171429 1.24						
1C INITIAL	97.5	92.5 1.051	87.5 1.108		82.5 1.171					1.24, 1.32, 1.41, 1.51, 1.51,	1.24 1.32 1.32 1.51 1.51 1.51
1C FINAL 1C	2.5	7.5	2.5		7.5 8						
INITIAL	10	6	76		87	87	87 82 77	88.87.77.77.77.77.77.77.77.77.77.77.77.7	8 8 8 7 / 7 / 7 / 7 / 7 / 7 / 7 / 7 / 7	8 8 7 7 7 7 7 9 9 9 9 9 9 9 9 9 9 9 9 9	88 77 77 75 75 75
DRIVE FREQ.	100	95	06		85	85	85 80 75	85 80 75 70	85 80 75 70 70 65	85 80 75 70 65 65	85 80 75 70 65 65 55
CAVITY	1	2	3		4	4	5 6	5 6 7	6 6 7 7 8	4 4 6 6 8 6 9	4 4 6 6 7 7 7 9 9 9 9 9 10 10 10 10 10 10 10 10 10 10 10 10 10

4, 1, 1, 1

