Homework 4 Problem 5 Review Reviewed by Jacob Shiohira

Problem 5a

- 1. I got a little confused on the step where you jump to $|x-2| < \frac{\epsilon}{4}$, for 1 < x < 3. I think you took $\frac{\epsilon}{|x+1|}$ and plugged in 3 for x, but it might be helpful if you explicitly state what you are doing.
- 2. For the last part, I'm not sure that your steps are in the right order. I may be wrong but in class, we said "Let $\delta_{\epsilon} = \text{something.}$ Then $0 < x < \delta_{\epsilon}...$ " Then we showed how $-\epsilon_{\delta} < x < \delta_{\epsilon}$ led to $-\epsilon < f(x) < \epsilon$. Thus, $|f(x)| < \epsilon$. What you have may be fine, but I just noticed it was a little different than what we did in class.

Problem 5b

- 1. I like that you went through the process of actually taking the derivative of sin(x) + cos(x) to show the maximum.
- 2. Mayb say something about the fact that $\sqrt{2}$ being the max value of sin(x) + cos(x) that it is an upper bound and if we can prove $x^2\sqrt{2} < \epsilon$, we know that $x^2(sin(x) + cos(x)) < \epsilon$ as well.
- 3. Same as the proof part on 5a.