

#### Introduction

- Cloud deployment is continuously increasing
  - Reduce cost and operational and maintenance overhead
- Cloud providers are investing heavily in security
- Security continues a big concern for enterprises
  - Lack of in-house control
  - Resource pooling by cloud providers
  - Shared responsibilities



- Authentication
  - Refers to digitally confirming the identity of the entity
  - Determining "Who you are"
- Authorization
  - Check if user has permission to perform actions
  - "What you are allowed to do"
  - Access Control List is used



- Confidentiality
  - Keeping the data secret from resources not authorized to access it.
  - While continue to provide access to "authorized" users
  - Loss of confidentiality
    - Fear of loss of control of data
    - Will the sensitive data stored on cloud remain confidential?
    - Will cloud provider have access to private data?



- Integrity
  - Data does not get modified or corrupted
    - If data changes that you know that a change has taken place
  - Loss of Integrity
    - How to validate if Cloud provider is returning correct results
    - Could cloud provider temper with data?
- Availability
- Non-Repudiation



- Availability
  - Will the service be available when I need it
  - Loss of availability
    - Can cloud provider prevent DOS attacks?
    - What happens if server goes down?



# Security Concerns

#### Security Concerns

- Loss of Physical Control
  - One of the biggest concerns for enterprises
  - How do we make sure that our data an IP is in good hands
  - Raises important legal concerns as well.
  - Do cloud providers have access to our data?
  - Since we are sharing resources what about competition?



## Security Concerns

- Accountability
  - Who is accountable and liable?
  - Cloud provider employees can be phased, who is responsible for all compliance?
    - SOX, HIPAA, PCI?
- Data Residency
  - Do you know where the data is?
    - Can the data be moved without your knowledge
  - What are data residency requirements



#### Cloud Security Overview

## Desired Functionality

- Customers want to have a trusted enterprise cloud:
  - They can run their mission critical workloads with more confidence.
  - What does it mean to be a "trusted" cloud vendor?
- Trust requires many capabilities in the following areas:
  - Control:
    - Want security mechanisms to control who can access their data under which conditions.
  - Visibility:
    - Need audit-quality logs to have more visibility into what is happening with their accounts and resources.



#### Desired Functionality

#### Auditability:

✓ Want auditability of their resources to make sure that their security configuration is flawless.

#### 3rd Party Assurance:

- ✓ Want the ability to independently verify how their data is being stored, accessed and protected against unauthorized access and modification.
- ✓ Want to know that the have the ability to implement their regulatory requirements in their cloud environment.



#### Desired Functionality

- Out-of-the-box Integration with existing (security) technologies:
  - ✓ They expect seamless integration with their existing security solutions such as Identity and Access Management.
- Secure software and infrastructure:
  - ✓ Last but not least, customers want cloud services that are architected, coded, tested, deployed and managed securely.



# Security Philosophy

- Defense-in-depth
  - Multi-layer security approach
- Add security control closer to the data
- Breach are inevitable
  - Breach detection, incident response, and effective recovery

Focus on securing data





## Security Control in all layers

4 PaaS

Database Cloud Service Security

Java Cloud Service Security

Other PaaS Services Security

3 laaS

Compute Service Security

Storage Service Security Network Service Security

2 Shared Controls

**Shared Security Controls** 

Infrastructure Security Controls

Infrastructure Security Controls (People, Process, Technology)



# Shared Responsibility Model

| Service Model |          |      | Cloud Stack    | Stack Components                  |                        | Responsibility                                                     |                                                                                |                                                                                          |
|---------------|----------|------|----------------|-----------------------------------|------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|
|               |          |      | User           | Login Registration Administration |                        | ackup                                                              | install, patch, upgrade,<br>monitor                                            | Customer -<br>maintain                                                                   |
| SAAS          |          |      | Application    | Authentication                    | Authorization          | - install, patch, upgrade, monitor, backup                         | J                                                                              | install, patch, upgrade, monitor, backup. Customer<br>Provision, Configure and Integrate |
|               |          |      |                | User Interface                    | Transactions           |                                                                    | Custo                                                                          |                                                                                          |
|               |          |      |                | Reports                           | Analytics              |                                                                    |                                                                                |                                                                                          |
|               |          |      | Platform       | Operating System                  | Programming Language   | Customer – install                                                 | - allocate, patch, upgrade,<br>kup. Customer provison                          | ıstall, patch, upgrade, monitor, ba                                                      |
|               | S        |      |                | Application Server                | Middleware/Integration |                                                                    | e, pa                                                                          | on, C                                                                                    |
|               | PAAS     |      |                | Database                          | Load Balancer          |                                                                    | Cloud Provider – allocate, patch, upgrac<br>monitor, backup. Customer provison | Cloud Provider - install, p                                                              |
|               | <b>a</b> | IAAS | Infrastructure | Virtualization                    | Storage                | Cloud Provider allocate,<br>patch, monitor –<br>Customer provision |                                                                                |                                                                                          |
|               |          |      |                | Servers                           | Firewall               |                                                                    |                                                                                |                                                                                          |
|               |          |      |                | Network                           | Data Center            |                                                                    |                                                                                |                                                                                          |



#### laaS Security Capabilities Fall in Two Buckets

- Cloud Operations Security
  - Physical access to data centers
  - Logical access to data centers
  - Network protection and monitoring
  - Incident response
  - Cloud governance (policies and procedures)
  - Auditing, certifications and attestations

- Cloud Service-Specific Security
  - Identity and access management
  - Data security
  - Virtualization (compute platform) security
  - Network security for instances
  - Security design
  - 3rd Party Certifications and attestations



## Security Operations: Network

#### Network

- Multi-level Firewalling Application, Middleware, Database
- Shared Service Segmentation Directory, Identity Manager, Access Manager

#### Intrusion Detection

- All infrastructure should be monitored 24x7x365
- Security Information and Event Management
- Servers, Switches, Firewalls, IDS, Anti-Virus/Malware,
- Multi-factor Authentication Systems, Netflows, etc.



## Security Operations: Incident Response

- Dedicated Cloud Security Teams Needed to Provide:
  - Detection
  - Mitigation
  - Forensics
  - Notification
- Incident Response Efforts Need to be Coordinated With:
  - Global Information Security
  - Global Product Security
  - Privacy & Security Legal



#### Data Disposal

- Upon termination of services or at Customer's request, will Provider delete environments?
- And delete data residing therein in a manner designed to ensure that they cannot reasonably be accessed or read?



#### Service-Specific Security

## Compute Instance Security

- SSH based access to VMs:
  - Before creating a compute instance customers need to generate at least one SSH key pair and upload the SSH public key.
  - After adding an SSH public key, customers need to attach it to an instance.
  - Customers can update, disable, enable and delete an existing SSH public key.



#### Compute Instance Security

#### Dynamic Firewall:

- When you create an instance, by default, it shouldn't allow any network traffic from and other instance or external host.
- To allow communication among some of your instances, you should create a network security list and add the instances to that security list.
- By default, the instances in a security list should b isolated from hosts outside the security list.
- You should create "security rules" to enable communication with hosts
- Each security rule should define a specific source, a destination, and a protocol-port combination over which communication is allowed.



#### Instance Isolation

- Virtualization is the foundation of Compute Cloud Service.
- Many security-related concerns about virtualization are unwarranted.
- Multiple hardware-supported and software-supported isolation techniques address the risks associated with virtualization.
- The first technique is instruction isolation.
  - Intel VT-x and AMD-V both enable a VMM to give the CPU to a virtual machine for direct execution until the time the virtual machine attempts to execute a privileged instruction.
  - At that point, the virtual machine execution is suspended, and the CPU is given back to the virtual machine monitor.



#### Instance Isolation

- In addition to CPU instruction isolation:
  - Hypervisor also provides memory and device isolation
  - By virtualization of physical memory and physical devices including disks.
  - This explicit virtualization of the physical resources leads to:
    - A clear separation between the guest OS and the hypervisor,
    - Resulting in a secure compute environment.
    - Thus, different customer instances running on the same physical machine are isolated from each other via the hypervisor.



#### Authentication

- The process of authentication involves:
  - Validating at least one factor of authentication
    - Factor can be something the entity or user knows (pw, pin)
    - Something that user has (smart card)
    - Something that can uniquely identify the user (fingerprints)
  - Multi-factor authentication
    - More than one factor is used for authentication



## Single Sign On

- Enables users to access multiple systems after signing on once
- Since different systems or applications may be internally using different authentication mechanism
  - SSO upon receiving initial credentials translates for different systems
- Reduces human errors and aggravation
- Different implementations for SSO:



#### SSO: SAML-Token

- Security Assertion Markup Language (SAML)
  - XML based standard data format for exchanging security information between identify provider and service provider
- When user tries to access cloud app
  - SAML request is generated and user is predicted to the identity provider
  - The identity provider parses the request and authenticates the user
  - A SAML token is returned to the user who access the cloud app using the token



#### SSO: Kerberos

- Uses tickets for authenticating clients to a service
- Provides mutual authentication:
  - Both client and servers authenticate with each other
- Client authenticate itself to the Authentication Server
  - Client sends users ID to the AS
  - The AS checks if the client is in DB and generates a Client/TGS Session key
    - This is used by client and the remote



#### SSO: One Time Password

- Uses valid passwords for use only for a single session
- More secure Not vulnerable to replay attacks
- Text message is the common delivery mode for OTP tokens
- The most common approach for generating OTP is time synchronization



## laaS: Storage Service Security

- Client-side customer controlled encryption
  - Customer can encrypt objects before sending to Storage Cloud Service
  - Unique symmetric key is generated for each object
  - Customer provides and manages an asymmetric key pair
- Availability via data replication across multiple storage nodes
  - Ensuring data will survive hardware failure
  - Yes they do happen in cloud as well.



## laaS: Storage Service Security

- Access control via roles and container based read/ write ACLs
  - Access to stored objects is controlled by pre-defined groups
  - Customer can manage and define these roles, e.g.,:
    - Identity domain administrator
    - Storage Administrator



## laaS: Storage Service Security

- API Authentication
  - Most cloud provides offer access through RESTful APIs
  - API Calls to storage can be done using basic authentication
    - User name/password, token-based authentication
    - Grants token for 30-60 mins refreshes after that time.
- Data Integrity checks
  - MD5 checks is periodically performed in multiple data copies



## **Shared Security Controls**

- Shared identity and access management solution provided by Public Cloud Providers:
  - Including PaaS and laaS services.
- Identity is a core feature that customers rely on to provide secure access to Providers' PaaS and IaaS services.
  - The Public Cloud feature that brings users, services, and applications together in a secure manner is **shared identity**.
- A tenant in Oracle Public Cloud represents a customer who has subscribed to one or more services from Public Cloud.
- Typically there is a one-to-one correspondence between a Public Cloud tenant and a customer.



#### **Shared Security Controls**

- An identity domain in the Public Cloud represents the namespace assigned for a tenant.
- An identity domain is used to identify and associate the assets of a tenant
  - Enable isolation of data assets and transactions of a tenant from that of other tenants.
- A tenant's assets include subscribed services and data assets including security artifacts such as users, groups, tokens, cookies, and policies.



#### **Shared Security Controls**

- A customer can be associated with more than one Public Cloud identity domain.
- Corporate Identity Federation
  - Federate your corporate identity and your identity domain and thereby achieve single sign-on (SSO) between onpremises and the Public Cloud.
  - The SSO service enables users to log in to one domain and access another domain without logging in again.



# Network Service Security

- Site-to-site VPN
  - Available with providers the offer dedicated compute
  - Customer establish a secure connection
    - IPSec tunnel between the VPN gateway and on-premise gateway
  - Customer can configure range of IP address for compute instances
  - Public IPs can be configured for internet access
  - 128-bit AES Symmetric key is used for encryption



# Network Service Security

#### Multitenant VPN

- IPSec tunnel is established between customer gateway and provider gateway
- Used for non-dedicated compute (multitenant)

### Direct Connect

- Serves two purposes Security and Performance
- Applications sensitive to latency or require faster data movement.



# Cloud Access Security Broker

- So, what is CASB?,
  - CASB, stands for Cloud Access Security Broker, a term that has been coin by Gartner
  - According to Gartner, CASBs are security policy control points
    - Placed between users in your organization and the cloud.
- Gartner believes that there is 3 ways in which you can deploy CASB:
  - The first is a proxy like on-prem gateway.
  - The second a host-based agent.
  - And the third one, an API-centric, cloud solution.



- Current market trends shows a driving dissolution of the network perimeter.
- Users are everywhere,
  - Using unmanaged devices and connecting to on-premise and cloud applications
  - making network edge solutions such as FW, IPS/IDS,
     Network Proxies to become less than idea.



- Gartner classifies CASB functionality into four pillars.
- Visibility
  - Who is accessing what applications?
  - What are unmanaged users doing?
- So we can say that visibility in CASB provides:
  - Shadow IT discovery and sanctioned application control
  - Consolidated view of an organization's cloud service usage and the users who access data from any device or location.



- Compliance
  - Are there any over privileged users in my systems?
  - Are my access keys non-compliant?
  - Or is my DevOps practices compliant?
- CASB can assist with data residency and compliance with regulations and standards, as well as:
  - Identify cloud usage and the risks of specific cloud services.



- Data Security
  - For data security, CASB provides the ability to enforce datacentric security policies, things like:
    - Who is sharing data in the public cloud?
    - Am I fulfilling the shared security responsibility?
    - Are there any security holes in my DevOps?
- The idea is to prevent unwanted activity based on:
  - Data classification, discovery and user activity monitoring of access to sensitive data or privilege escalation.



- Threat Protection
  - Who are risky users in my systems?
  - How fast can I stop risky user activities?
  - or How fast can I stop risky applications?
- With threat protection, we try to prevent:
  - Unwanted devices, users and versions of applications from accessing cloud services.
  - Other examples in this category are user and entity behavior analytics (UEBA),
  - or the use of threat intelligence and malware identification.



## Cloud Provider CASB

- Cloud Provider monitors:
  - Activity, configurations, transactions and content for laaS, PaaS, and SaaS services.
- App-to-App and some are BYoD-ready.
- Full security automation:
  - including capabilities to Predict, Prevent, Detect and Respond.
- With secure provisioning:
  - Offer continuous protection of applications through its entire lifecycle.

Data Security

# Introduce Risk

More risks concentrated in a single asset you need:

- Better Data Privacy protection
- Stronger AccessControls
- Improved Audit Management



More Sensitive Data outside of your control

- More people with potential to access your data
- Greater risk of sensitive data leakage



# Database Cloud Service Security

- Dedicated database with full administrative control
  - Completely controlled by customer (shared responsibility)
- Benefits from the compute and network security
- Upon creation All access is set to disable by default
  - Appropriate security rules must be enabled.



# Database Security





# DB Security in Cloud Deployment





# Logical View: Encryption and Masking

Objectives for Database Security

Improve Regulatory Compliance Enhance Customer / Employee Privacy / Confidentiality

Reduce risk and liability



Sohail Rafiqi



# Logical View: Access Control

Objectives Improve Enhance Customer /
For Database Regulatory Compliance Enhance Customer /
Employee Privacy /
Confidentiality Reduce risk and liability



Sohail Rafiqi



# Logical View: Auditing and Monitoring

**Objectives** for Database Regulatory Security

Improve Compliance Enhance Customer / Employee Privacy / Confidentiality

Reduce risk and liability





- Interruption causes in service (availability) to legitimate users
  - Using up all of the targets resources to accept network connections
    - Resulting in additional connections being denied
  - Sending a message that resets target host's subnet mask
    - Causing a disruption of the target's subnet routing
  - Filling up a target's hard drive storage space



- Cloud Provider network should offer protection against traditional network security issues such as:
  - Distributed denial of service (DDoS) attacks, man-in-the-middle attacks, IP spoofing, and port scanning.
- Network protection devices, including firewalls, needed:
  - To monitor and control network communications at the external boundary
  - and at internal boundaries within the network.
- These network boundary devices employ traffic flow policies, or access control lists (ACLs), that enforce the flow of traffic.
- Firewalls should be deployed in a layered approach to perform packet inspection with security policies configured to filter the packets based on:
  - Protocol, port, source, and destination IP address to identify authorized sources, destinations, and traffic types.



- Vulnerability notification systems needed to monitor security incidents, advisories, and other related information.
- Scaled to support large amount of traffic
  - Wirespeed
- 3-7 layer attack prevention
- Load balancers can inspect traffic
- SYN encryption, support high capacity connection tables
- Pattern matching, flow validation, ICMP flood limitation, strict TCP forwarding
- NIDS Monitors and block suspicious network traffic
  - NIDS sensors can be in Intrusion Prevention System (IPS) or Intrusion Detection System (IDS)

