IX - Suites numériques

I - Suites usuelles

À Savoir

La suite (u_n) est une suite arithmétique de raison r si

$$\forall n \in \mathbb{N}, u_{n+1} = u_n + r.$$

Alors,

$$\forall n \in \mathbb{N}, u_n = u_0 + nr.$$

Exemple 1 - Une suite arithmétique

Soit (u_n) telle que $u_0 = 1$ et pour tout $n \in \mathbb{N}$, $u_{n+1} = u_n + 3$. Alors, (u_n) est une suite arithmétique de raison 3. Ainsi,

$$\forall n \in \mathbb{N}, u_n = 1 + 3n.$$

À Savoir

La suite (u_n) est une suite géométrique de raison q si

$$\forall n \in \mathbb{N}, u_{n+1} = q \times u_n.$$

Alors,

$$\forall n \in \mathbb{N}, u_n = q^n u_0.$$

Exemple 2 - Une suite géométrique

Soit (u_n) telle que $u_0 = 3$ et pour tout $n \in \mathbb{N}$, $u_{n+1} = 2u_n$. Alors, (u_n) est une suite arithmétique de raison 2. Ainsi,

$$\forall n \in \mathbb{N}, u_n = 3 \times 2^n.$$

À Savoir

La suite (u_n) est une suite arithmético-géométrique si

$$\forall n \in \mathbb{N}, u_{n+1} = q \times u_n + r.$$

Exemple 3 - Une suite arithmético-géométrique

L'étude d'une suite arithmético-géométrique suit toujours le schéma suivant.

Soit (u_n) telle que $u_0 = 7$ et pour tout $n \in \mathbb{N}$, $u_{n+1} = 2u_n + 3$.

* Recherche du réel ℓ tel que $\ell = 2\ell + 3$:

$$\ell = 2\ell + 3$$
$$0 = 2\ell - \ell + 3$$
$$\ell = -3.$$

* Étude de la suite définie par $v_n = u_n - \ell$. Alors,

$$v_{n+1} = u_{n+1} - \ell$$

$$= (2u_n + 3) - (2\ell + 3)$$

$$= 2u_n + 3 - 2\ell - 3$$

$$= 2(u_n - \ell)$$

$$= 2v_n.$$

De plus, $v_0 = u_0 - \ell = 7 - (-3) = 10$.

Ainsi, (v_n) est une suite géométrique de raison 2 et

$$\forall n \in \mathbb{N}, v_n = 10 \times 2^n.$$

* Retour sur u_n . D'après la définition,

$$u_n - \ell = v_n$$

 $u_n = v_n + \ell$
 $= 10 \times 2^n - 3 = 5 \times 2^{n+1} - 3.$

Chapitre IX - Suites numériques ECT 2

II - Comportement des suites

À Savoir

Soit (u_n) une suite de nombres réels.

* La suite (u_n) est croissante si

$$\forall n \in \mathbb{N}, u_{n+1} - u_n \geqslant 0.$$

* La suite (u_n) est décroissante si

$$\forall n \in \mathbb{N}, u_{n+1} - u_n \leq 0.$$

Exemple 4 - Études de monotonie

* On définit $u_n = \sum_{k=1}^n \frac{1}{k}$ pour tout entier naturel n non nul. Soit $n \in \mathbb{N}^*$.

$$u_{n+1} - u_n = \sum_{k=1}^{n+1} \frac{1}{k} - \sum_{k=1}^{n} \frac{1}{k}$$
$$= \sum_{k=1}^{n} \frac{1}{k} + \frac{1}{n+1} - \sum_{k=1}^{n} \frac{1}{k}$$
$$= \frac{1}{n+1} \geqslant 0.$$

Ainsi, la suite (u_n) est croissante.

* Soit $t \in]0,1[$. On définit $v_n = \ln(1+t^n)$ pour tout entier naturel n.

Soit $n \in \mathbb{N}$. Comme $t \in]0,1[$,

$$t\leqslant 1$$

$$t^n\times t\leqslant t^n\times 1, \text{ car } t^n\geqslant 0$$

$$1+t^{n+1}\leqslant 1+t^n$$

$$\ln(1+t^{n+1})\leqslant \ln(1+t^n), \text{ car ln est croissante}$$

$$v_{n+1}\leqslant v_n$$

$$v_{n+1}-v_n\leqslant 0.$$

Ainsi, la suite (v_n) est croissante.

Attention! Il convient de travailler avec un entier naturel n quelconque. Montrer que $u_1 - u_0 \ge 0$ ou $u_2 - u_1 \ge 0$ n'est d'aucune utilité pour étudier la monotonie d'une suite.

Exemple 5 - Représentations graphiques

Suite croissante.

Suite non monotone.

À Savoir

Soit (u_n) une suite de réels.

- * La suite (u_n) est majorée s'il existe un réel M tel que pour tout $n \in \mathbb{N}, u_n \leq M$.
- * La suite (u_n) est minorée s'il existe un réel m tel que pour tout $n \in \mathbb{N}, u_n \geqslant m$.

Exemple 6 - Étude de majorant

Soit $t \in]0,1[$. On définit $v_n = \ln(1+t^n)$ pour tout entier naturel n.

Chapitre IX - Suites numériques

Soit $n \in \mathbb{N}$. Comme $t \in]0,1[$,

 $t \leqslant 1$

 $t^n \leq 1^n$, car les puissances sont croissantes sur \mathbb{R}_+

 $1 + t^n \leq 2$

 $\ln(1+t^n) \leq \ln(2)$, car ln est croissante

Ainsi, la suite (v_n) est majorée par $\ln(2)$.

Attention! Le minorant ou le majorant \mathbf{ne} doit \mathbf{pas} dépendre de l'indice n.

Exemple 7 - Représentation graphique

À Savoir

La suite (u_n) est convergente s'il existe un réel ℓ tel que $\lim_{n\to +\infty}u_n=\ell$. Sinon, la suite (u_n) est dite divergente.

À Savoir

Limites classiques

Soit a > 0. Les limites suivantes sont à connaître :

$$\lim_{n \to +\infty} \frac{1}{n^a} = 0, \text{ si } a > 0$$

$$\lim_{n \to +\infty} n^a = +\infty, \text{ si } a > 0$$

$$\lim_{n \to +\infty} t^n = 0, \text{ si } t \in]-1,1[$$

$$\lim_{n \to +\infty} a^n = +\infty, \text{ si } a > 1$$

$$\lim_{n \to +\infty} e^n = +\infty$$

$$\lim_{n \to +\infty} \ln(n) = +\infty$$

$$\lim_{n \to +\infty} \frac{-4n^5 + 3n + 1}{n^2 + 2} = \lim_{n \to +\infty} \frac{-4n^5}{n^2} = \lim_{n \to +\infty} -4n^3 = -\infty$$

Les limites des polynômes ou des fractions rationnelles sont données par les limites des monômes de plus haut degré ou de leur quotient.

Exemple 8 - Représentation graphique

Chapitre IX - Suites numériques

III - Opérations sur les limites

À Savoir

Si la case indique??, la limite est indéterminée. Il faut transformer l'expression (factorisation, expression conjuguée,...) pour pouvoir la déterminer.

* Multiplication par une constante.

$\lim_{n \to +\infty} u_n =$	ℓ	$-\infty$	$+\infty$	
$\lim_{n \to +\infty} k u_n =$	$k\ell$	$-\infty$	$+\infty$	$\sin k > 0$
	$k\ell$	$+\infty$	$-\infty$	$\sin k < 0$
	0	0	0	$\sin k = 0$

* **Addition** de limites. Dans le tableau est indiquée la valeur de $\lim_{n \to +\infty} (u_n + v_n)$.

7+00			
$\lim_{n \to +\infty} u_n \qquad \qquad v_n$	ℓ_1	$-\infty$	$+\infty$
ℓ_2	$\ell_1 + \ell_2$	$-\infty$	$+\infty$
$-\infty$	$-\infty$	$-\infty$??
$+\infty$	$+\infty$??	$+\infty$

* Multiplication de limites. Dans le tableau est indiquée la valeur de $\lim_{n\to +\infty}(u_n\times v_n).$

$\lim_{n \to +\infty} u_n v_n$	$\ell_1 < 0$	$\ell_1 > 0$	0	$-\infty$	$+\infty$
$\ell_2 < 0$	$\ell_1\ell_2$	$\ell_1\ell_2$	0	$+\infty$	$-\infty$
$\ell_2 > 0$	$\ell_1\ell_2$	$\ell_1\ell_2$	0	$-\infty$	$+\infty$
0	0	0	0	??	??
$-\infty$	$+\infty$	$-\infty$??	$+\infty$	$-\infty$
$+\infty$	$-\infty$	$+\infty$??	$-\infty$	$+\infty$

* Quotient de limites. Dans le tableau est indiquée la valeur de $\lim_{n\to +\infty} \frac{u_n}{v_n}$.

$\lim_{\substack{n \to +\infty}} v_n$	$\ell_1 < 0$	$\ell_1 > 0$	0-	0+	$-\infty$	$+\infty$
$\ell_2 < 0$	$\frac{\ell_1}{\ell_2}$	$\frac{\ell_1}{\ell_2}$	$+\infty$	$-\infty$	0+	0-
$\ell_2 > 0$	$\frac{\ell_1}{\ell_2}$	$\frac{\ell_1}{\ell_2}$	$-\infty$	$+\infty$	0-	0+
0-	0+	0-	??	??	0+	0-
$-\infty$	$+\infty$	$-\infty$	$+\infty$	$-\infty$??	??
$+\infty$	$-\infty$	$+\infty$	$-\infty$	$+\infty$??	??

Exemple 9 - Opérations sur les limites

- * Comme $\lim_{n \to +\infty} \frac{1}{n} = 0$ et $\lim_{n \to +\infty} \ln(n) = +\infty$, alors $\lim_{n \to +\infty} \left(\frac{1}{n} 5\ln(n)\right) = -\infty$.
- * Comme $\lim_{n\to +\infty} n^2 = +\infty$ et $\lim_{n\to +\infty} \mathrm{e}^{-n} = 0$, alors $\lim_{n\to +\infty} \frac{\mathrm{e}^{-n}}{n^2} = 0$.
- * Comme $\lim_{n\to +\infty} n^3 = +\infty$ et $\lim_{n\to +\infty} n^5 = +\infty$, alors $\lim_{n\to +\infty} n^3 n^5$ est une forme indéterminée. On va utiliser une factorisation pour lever l'indétermination :

$$n^3 - n^5 = n^5 \left(\frac{1}{n^2} - 1\right).$$

Comme $\lim_{n\to+\infty}\frac{1}{n^2}=0$, alors $\lim_{n\to+\infty}\left(\frac{1}{n^2}-1\right)=-1$. De plus, $\lim_{n\to+\infty}n^5=+\infty$. Ainsi,

$$\lim_{n \to +\infty} n^5 \left(\frac{1}{n^2} - 1 \right) = -\infty.$$

Chapitre IX - Suites numériques ECT 2

À Savoir

Soit (u_n) et (v_n) deux suites de réels telles que, pour tout n entier naturel, $u_n \leqslant v_n$.

Si (u_n) et (v_n) convergent, alors

$$\lim_{n \to +\infty} u_n \leqslant \lim_{n \to +\infty} v_n.$$

À Savoir

Théorème d'encadrement.

Soit (u_n) , (v_n) et (w_n) trois suites de réels tells que pour tout nentier naturel,

$$v_n \leqslant u_n \leqslant w_n$$
.

* Si (v_n) et (w_n) convergent vers une même limite ℓ , alors (u_n) converge et

$$\lim_{n \to +\infty} u_n = \ell.$$

- * Si $\lim_{n \to +\infty} v_n = +\infty$, alors $\lim_{n \to +\infty} u_n = +\infty$. * Si $\lim_{n \to +\infty} w_n = -\infty$, alors $\lim_{n \to +\infty} u_n = -\infty$.

Exemple 10 - Théorème d'encadrement

* Soit (u_n) une suite de réels telle que pour tout n entier naturel non nul.

$$\frac{n^5 + n^3 + 1}{2n(1+n^4)} \leqslant u_n \leqslant \frac{n^5 + n^4 + 1}{2n(1+n^4)}.$$

Comme la limite d'une fraction rationnelle est égale au rapport de ses monômes de plus hauts degrés,

$$\lim_{n \to +\infty} \frac{n^5 + n^3 + 1}{2n(1 + n^4)} = \frac{1}{2} \text{ et } \lim_{n \to +\infty} \frac{n^5 + n^4 + 1}{2n(1 + n^4)} = \frac{1}{2}.$$

D'après le théorème d'encadrement, (u_n) converge et $\lim_{n \to +\infty} u_n = \frac{1}{2}.$

* Soit (u_n) une suite de réels telle que pour tout n entier naturel.

$$\frac{n^4 + n^3 + 1}{n^2} \leqslant u_n.$$

Comme la limite d'une fraction rationnelle est égale au rapport de ses monômes de plus hauts degrés,

$$\lim_{n \to +\infty} \frac{n^4 + n^3 + 1}{n^2} = +\infty.$$

D'après le théorème d'encadrement, (u_n) converge et $\lim_{n \to +\infty} u_n = +\infty.$

IV - Existence de limites

À Savoir

Théorème de la limite monotone.

Soit (u_n) une suite de réels.

- * Si (u_n) est croissante et majorée, alors (u_n) converge.
- * Si (u_n) est décroissante et minorée, alors (u_n) converge.

Attention! Ce théorème **ne** fournit **pas** la valeur de la limite. Pour cela, il faudra se reporter à une des techniques précédentes.

Exemple 11 - Limite monotone

Soit (u_n) une suite telle que

$$u_0 = -2 \text{ et } \forall n \in \mathbb{N}, u_{n+1} = \frac{u_n}{2} + 3.$$

* Montrons par récurrence que (u_n) est majorée par 6. Initialisation. Pour $n=0, u_0=-2 \leqslant 6$ donc la propriété est vraie à l'ordre 0.

Hérédité. Soit $n \in \mathbb{N}$. Supposons que $u_n \leq 6$. Alors,

$$u_{n+1} = \frac{u_n}{2} + 3$$

 $\leq \frac{6}{2} + 3$, d'après l'H.R.
 ≤ 6 .

Ainsi, la propriété est vraie à l'ordre n + 1.

Conclusion. La propriété est vraie à l'ordre 0 et est héréditaire, donc

$$\forall n \in \mathbb{N}, u_n \leq 6.$$

* Étudions la monotonie de (u_n) . Soit $n \in \mathbb{N}$.

$$u_{n+1} - u_n = \frac{u_n}{2} + 3 - u_n$$

$$= 3 - \frac{1}{2}u_n$$

$$\geqslant 3 - \frac{1}{2}6, \text{ car } u_n \leqslant 6$$

$$\geqslant 0.$$

Ainsi, la suite (u_n) est croissante.

- * La suite (u_n) est croissante et majorée par 6. D'après le théorème de la limite monotone, (u_n) converge.
- * Notons $\ell = \lim_{n \to +\infty} u_n$. Alors, $\lim_{n \to +\infty} u_{n+1} = \ell$ et en passant à la limite dans l'égalité,

$$u_{n+1} = \frac{u_n}{2} + 3$$
$$\ell = \frac{\ell}{2} + 3$$
$$\frac{\ell}{2} = 3$$
$$\ell = 6.$$

Ainsi, $\lim_{n \to +\infty} u_n = 6$.

V - Exercices

V.1 - Suites arithmétiques

Accroissement constant

Solution de l'exercice 1.

1. Soit $n \in \mathbb{N}$.

$$u_{n+1} - u_n = (n+1+5)^2 - (n+1+2)^2 - ((n+5)^2 - (n+2)^2)$$

$$= (n+6)^2 - (n+3)^2 - (n+5)^2 + (n+2)^2$$

$$= n^2 + 12n + 36 - (n^2 + 6n + 9) - (n^2 + 10n + 25) + n^2 + 4n + 4$$

$$= 2n^2 + 16n + 40 - (2n^2 + 16n + 34)$$

$$= 6.$$

Ainsi, $(u_n)_{n\in\mathbb{N}}$ est une suite arithmétique de raison 6.

Solution de l'exercice 2.

1. Soit $n \in \mathbb{N}$.

$$u_{n+1} - u_n = (2(n+1)+5)^2 - (n+1+2)^2 - ((2n+5)^2 - (n+2)^2)$$

$$= (2n+7)^2 - (n+3)^2 - (2n+5)^2 + (n+2)^2$$

$$= 4n^2 + 28n + 49 - (n^2 + 6n + 9) - (4n^2 + 20n + 25) + n^2 + 4n + 4$$

$$= 5n^2 + 32n + 53 - (5n^2 + 26n + 34)$$

$$= 6n + 19.$$

Comme la quantité $u_{n+1} - u_n$ n'est pas constante, alors la suite $(u_n)_{n \in \mathbb{N}}$ n'est pas une suite arithmétique.

Utilisation d'une suite auxiliaire

Solution de l'exercice 3.

1. Soit $n \in \mathbb{N}$.

$$v_{n+1} = u_{n+1}^2 = (\sqrt{4 + u_n^2})^2$$
$$= 4 + u_n^2$$
$$= 4 + v_n.$$

Ainsi, la suite $(v_n)_{n\in\mathbb{N}}$ est une suite arithmétique de raison 4.

2. Comme $v_0 = 1^1 = 1$, pour tout n entier naturel,

$$v_n = 1 + 4n.$$

3. Comme $u_n = \sqrt{4 + u_{n-1}^2}$, alors $u_n \ge 0$.

De plus, $v_n = u_n^2$, donc pour tout n entier naturel,

$$u_n = \sqrt{v_n} = \sqrt{1 + 4n}.$$

Solution de l'exercice 4.

1. Soit $n \in \mathbb{N}$.

$$v_{n+1} = \frac{1}{u_{n+1}} = \frac{1}{\frac{u_n}{1+2u_n}}$$
$$= \frac{1+2u_n}{u_n}$$
$$= \frac{1}{u_n} + \frac{2u_n}{u_n}$$
$$= v_n + 2.$$

Ainsi, $(v_n)_{n\in\mathbb{N}}$ est une suite arithmétique de raison 2.

2. D'après la question précédente, pour tout n entier naturel,

$$v_n = 2n + v_0 = 2n + 1.$$

3. Ainsi, pour tout n entier naturel,

$$u_n = \frac{1}{v_n} = \frac{1}{2n+1}.$$

Solution de l'exercice 5.

1. Soit $n \in \mathbb{N}$.

$$v_{n+1} = u_{n+1} - (n+1)^2 = u_n + 2n - 1 - (n^2 + 2n + 1)$$

$$= u_n + 2n - 1 - n^2 - 2n - 1$$

$$= u_n - n^2 - 2$$

$$= v_n - 2.$$

Ainsi, $(v_n)_{n\in\mathbb{N}}$ est une suite arithmétique de raison -2.

2. D'après la question précédente, pour tout n entier naturel,

$$v_n = -2n + v_1 = -2n + u_1 - 1^2 = -2n + 2.$$

3. Ainsi, pour tout n entier naturel,

$$u_n = v_n + n^2 = n^2 - 2n + 2.$$

V.2 - Suites géométriques

Manipulation des puissances

Solution de l'exercice 6. Pour tout *n* entier naturel,

$$u_n = \frac{3^n}{5^{n+1}} = \frac{3^n}{5 \times 5^n}$$
$$= \frac{1}{5} \times \left(\frac{3}{5}\right)^n.$$

Ainsi, $(u_n)_{n\in\mathbb{N}}$ est une suite géométrique de raison $\frac{3}{5}$.

Solution de l'exercice 7. Pour tout n entier naturel,

$$u_n = \frac{3^n}{5^{2n+1}} = \frac{3^n}{5 \times 5^{2n}} = \frac{3^n}{5 \times 25^n}$$
$$= \frac{1}{5} \times \left(\frac{3}{25}\right)^n.$$

Ainsi, $(u_n)_{n\in\mathbb{N}}$ est une suite géométrique de raison $\frac{3}{25}$.

Suites arithmético-géométriques

Solution de l'exercice 8.

1. Soit $n \in \mathbb{N}$.

$$v_{n+1} = u_{n+1} - 10 = \frac{u_n}{5} + 8 - 10$$
$$= \frac{u_n}{5} - 2 = \frac{1}{5}(u_n - 10)$$
$$= \frac{1}{5}v_n.$$

Ainsi, la suite $(v_n)_{n\in\mathbb{N}}$ est une suite géométrique de raison $\frac{1}{5}$.

2. D'après la question précédente, pour tout n entier naturel,

$$v_n = \left(\frac{1}{5}\right)^n v_0 = \left(\frac{1}{5}\right)^n (u_0 - 10)$$
$$= -6 \times \left(\frac{1}{5}\right)^n.$$

3. Ainsi, pour tout *n* entier naturel non nul,

$$u_n = v_n + 10 = -6 \times \left(\frac{1}{5}\right)^n + 10.$$

Solution de l'exercice 9.

1. On résout l'équation :

$$\ell = 2\ell + 1$$

$$\Leftrightarrow 2\ell - \ell = -1$$

$$\Leftrightarrow \ell = -1.$$

2. Soit $n \in \mathbb{N}$.

$$v_{n+1} = u_{n+1} - \ell = (2u_n + 1) - (-1)$$
$$= 2u_n + 1 + 1 = 2(u_n + 1)$$
$$= 2v_n.$$

Ainsi, $(v_n)_{n\in\mathbb{N}}$ est une suite géométrique de raison 2 et, pour tout n entier naturel,

$$v_n = 2^n v_1 = 2^n (5+1) = 6 \times 2^n$$
.

3. Alors, pour tout n entier naturel,

$$u_n = v_n + \ell = v_n - 1 = 6 \times 2^n - 1.$$

V.3 - Monotonie

Signe de $u_{n+1} - u_n$

Solution de l'exercice 10. Soit $n \in \mathbb{N}$.

$$u_{n+1} - u_n = (n+1+3)^2 + \frac{n+1}{4} - \left((n+3)^2 + \frac{n}{4}\right)$$

$$= (n+4)^2 + \frac{n+1}{4} - (n+3)^2 - \frac{n}{4}$$

$$= n^2 + 8n + 16 + \frac{n+1-n}{4} - (n^2 + 6n + 9)$$

$$= 2n + 7 + \frac{1}{4} \ge 0.$$

Ainsi, la suite $(u_n)_{n\in\mathbb{N}}$ est croissante.

Solution de l'exercice 11. Soit $n \in \mathbb{N}$.

$$u_{n+1} - u_n = (2(n+1)+1)^2 - (2n+1)^2$$

$$= (2n+3)^2 - (2n+1)^2$$

$$= 4n^2 + 12n + 9 - (4n^2 + 4n + 1)$$

$$= 8n + 8 \ge 0.$$

Ainsi, la suite (u_n) est croissante.

Utilisation d'une fonction auxiliaire

Solution de l'exercice 12.

1. La fonction f est dérivable et pour tout x réel positif,

$$f'(x) = \frac{1+2x}{1+x+x^2}.$$

Comme $x \ge 0$, alors $f'(x) \ge 0$ et la fonction f est croissante.

2. Soit $n \in \mathbb{N}$. Alors,

$$n \leq n+1$$

$$f(n) \leq f(n+1), \text{ car } f \text{ est croissante}$$

$$\ln(1+n+n^2) \leq \ln(1+(n+1)+(n+1)^2)$$

$$u_n \leq u_{n+1}$$

Ainsi, $(u_n)_{n\in\mathbb{N}}$ est croissante.

Solution de l'exercice 13.

1. La fonction f est dérivable sur $]-4,+\infty[$ et

$$f'(x) = \frac{1}{2\sqrt{4+x}} > 0.$$

Ainsi, la fonction f est croissante.

2. Montrons par récurrence que $u_n \leq u_{n+1}$ pour tout n entier naturel. **Initialisation.** Lorsque n=0.

D'une part, $u_0 = 1$.

D'autre part, $u_1 = \sqrt{4+1} = \sqrt{5}$.

Ainsi, $u_0 \leqslant u_1$.

Hérédité. Soit $n \in \mathbb{N}$. On suppose que $u_n \leq u_{n+1}$. Montrons que $u_{n+1} \leq u_{n+2}$.

$$u_n \leqslant u_{n+1}$$
, d'après l'H.R. $f(u_n) \leqslant f(u_{n+1})$, car f est croissante $u_{n+1} \leqslant u_{n+2}$

Conclusion. La propriété est vraie à l'ordre 0 et est héréditaire, donc

$$\forall n \in \mathbb{N}, u_n \leqslant u_{n+1}.$$

Ainsi, la suite $(u_n)_{n\in\mathbb{N}}$ est croissante.

Solution de l'exercice 14.

1. Comme $\lim_{n\to+\infty} u_n = \ell$, alors $\lim_{n\to+\infty} u_{n+1} = \ell$.

Comme

$$\forall n \in \mathbb{N}, u_{n+1} = \frac{u_n^2}{2} - u_n + \frac{3}{2},$$

en passant à la limite dans cette égalité,

$$\ell = \frac{\ell^2}{2} - \ell + \frac{3}{2}.$$

2. D'après la question précédente,

$$\frac{\ell^2}{2} - \ell + \frac{3}{2} = \ell$$
$$\frac{\ell^2}{2} - 2\ell + \frac{3}{2} = 0$$
$$\ell^2 - 4\ell + 3 = 0.$$

Le discriminant du trinôme $X^2 - 4X + 3$ vaut

$$(-4)^2 - 4 \times 3 = 16 - 12 = 4 = 2^2$$
.

Ainsi, les valeurs possibles de ℓ sont

$$\frac{-(-4)-2}{2} = \frac{4-2}{2} = 1$$
 et $\frac{-(-4)+2}{2} = \frac{422}{2} = 3$.

Finalement, $\ell \in \{1, 3\}$.

V.4 - Théorème de la limite monotone

Suites récurrentes & Passage à la limite

Solution de l'exercice 15.

1. Pour tout x réel, $f(x) = 2x - x^2$. La fonction f est dérivable et, pour tout x réel,

$$f'(x) = 2 - 2x = 2(1 - x).$$

Ainsi, $f'(x) \ge 0$ si et seulement si $x \le 1$.

De plus, f(1) = 1 et, comme f est un polynôme,

$$\lim_{x\to +\infty} f(x) = \lim_{x\to +\infty} (-x^2) = -\infty \text{ et } \lim_{x\to -\infty} f(x) = \lim_{x\to -\infty} (-x^2) = -\infty.$$

On obtient ainsi le tableau de variations suivant :

x	$-\infty$	1	$+\infty$
f'(x)	+	0	_
f(x)	$-\infty$	1	$-\infty$

2. Montrer par récurrence que $0 \le u_n \le 1$ pour tout n entier naturel. **Initialisation.** Lorsque n=0. Comme $u_0=\frac{1}{5}$, alors $0 \le u_0 \le 1$. **Hérédité.** Soit $n \in \mathbb{N}$. On suppose que $0 \le u_n \le 1$. Montrons que $0 \le u_{n+1} \le 1$.

 $0 \le u_n \le 1$, d'après l'H.R. $f(0) \le f(u_n) \le f(1)$, car f est croissante sur [0,1] $0 \le u_{n+1} \le 1$.

Conclusion. La propriété est vraie à l'ordre 0 et est héréditaire, donc

$$\forall n \in \mathbb{N}, 0 \leq u_n \leq 1.$$

3. Soit $n \in \mathbb{N}$. D'après les définitions,

$$u_{n+1} - u_n = u_n(2 - u_n) - u_n$$

= $u_n(2 - u_n - 1)$
= $u_n(1 - u_n)$.

Comme $u_n \in [0,1]$, alors $u_n \ge 0$ et $1-u_n \ge 0$. Ainsi, $u_{n+1}-u_n \ge 0$ et la suite $(u_n)_{n\in\mathbb{N}}$ est croissante.

- **4.** La suite $(u_n)_{n\in\mathbb{N}}$ est croissante et majorée par 1. D'après le théorème de la limite monotone, la suite $(u_n)_{n\in\mathbb{N}}$ converge.
- 5. Notons $\ell = \lim_{n \to +\infty} u_n$.

Comme, pour tout n entier naturel,

$$u_{n+1} = u_n(2 - u_n),$$

en passant à la limite dans l'égalité,

$$\ell = \ell(2 - \ell)$$

$$\ell = 2\ell - \ell^2$$

$$\ell^2 - 2\ell + \ell = 0$$

$$\ell^2 - \ell = 0$$

$$\ell(\ell - 1) = 0.$$

Ainsi, $\ell = 0$ ou $\ell = 1$.

Comme $u_0 = \frac{1}{5}$ et la suite $(u_n)_{n \in \mathbb{N}}$ est croissante, alors

$$\forall n \in \mathbb{N}, u_n \geqslant \frac{1}{5}.$$

En passant à la limite dans l'inégalité, $\ell \frac{1}{5}$. Ainsi, $\ell = 1$ et

$$\lim_{n \to +\infty} u_n = 1.$$

Solution de l'exercice 16.

1. Initialisation. Lorsque n=0. D'après la définition, $u_0=4$ et $u_1=\frac{u_0^2}{5}=\frac{16}{4}$.

Comme $16 \leqslant 20$, alors $0 \leqslant u_0 \leqslant u_1$ et la propriété est vraie à l'ordre 0. **Hérédité.** Soit $n \in \mathbb{N}$. On suppose que $0 \leqslant u_{n+1} \leqslant u_n$. Montrons que $0 \leqslant u_{n+2} \leqslant u_{n+1}$.

$$0 \leqslant u_{n+1} \leqslant u_n$$
, d'après l'H.R. $0^2 \leqslant u_{n+1}^2 \leqslant u_n^2$, car la fonction carré est croissante sur \mathbb{R}_+ $0 \leqslant \frac{u_{n+1}^2}{5} \leqslant \frac{u_n^2}{5}$, car $5 \geqslant 0$ $0 \leqslant u_{n+2} \leqslant u_{n+1}$.

Conclusion. La propriété est vraie à l'ordre 0 et est héréditaire, donc

$$\forall n \in \mathbb{N}, 0 \leqslant u_{n+1} \leqslant u_n.$$

- **2.** D'après la question précédente, la suite $(u_n)_{n\in\mathbb{N}}$ est décroissante et minorée par 0. D'après le théorème de la limite monotone, la suite $(u_n)_{n\in\mathbb{N}}$ converge.
- 3. D'après la définition,

$$\forall n \in \mathbb{N}, u_{n+1} = \frac{u_n^2}{5}.$$

En passant à la limite dans cette égalité,

$$\ell = \frac{\ell^2}{5}$$
$$\frac{\ell^2}{5} - \ell = 0$$
$$\ell\left(\frac{\ell}{5} - 1\right) = 0.$$

Ainsi, $\ell = 0$ ou $\ell = 5$.

Comme la suite $(u_n)_{n\in\mathbb{N}}$ est décroissante et $u_0=\frac{1}{5}$, alors

$$\forall n \in \mathbb{N}, u_n \leqslant \frac{1}{5}.$$

En passant à la limite dans l'inégalité, $\ell \leqslant \frac{1}{5}$. Ainsi, $\ell = 0$ et la suite $(u_n)_{n \in \mathbb{N}}$ converge vers 0.

Avec un soupçon d'absurde

Solution de l'exercice 17.

1. On raisonne par récurrence sur n.

Initialisation. Lorsque n = 0, $u_0 = 1 > 0$ donc la propriété est vraie à l'ordre 0.

Hérédité. Soit $n \in \mathbb{N}$. On suppose que $u_n > 0$. Montrons que $u_{n+1} > 0$. Comme $u_n > 0$, alors $\frac{1}{u_n}$ est bien défini. De plus, $u_{n+1} = u_n + \frac{1}{u_n}$ est la somme de deux nombres strictement positifs, donc est strictement positif.

Conclusion. La propriété est vraie à l'ordre 0 et est héréditaire, donc

$$\forall n \in \mathbb{N}, u_n > 0.$$

2. Soit $n \in \mathbb{N}$.

$$u_{n+1} - u_n = \frac{1}{u_n} > 0.$$

Ainsi, la suite $(u_n)_{n\in\mathbb{N}}$ est croissante.

3. On suppose que la suite $(u_n)_{n\in\mathbb{N}}$ converge vers un réel ℓ .

Comme la suite $(u_n)_{n\in\mathbb{N}}$ est croissante et $u_0=1$, alors en passant à la limite dans l'inégalité,

$$\forall n \in \mathbb{N}, u_n \geqslant 1,$$
$$\ell \geqslant 1.$$

Ainsi, en passant à la limite dans l'égalité suivante, comme $\ell \neq 0$, :

$$\forall n \in \mathbb{N}, u_{n+1} = u_n + \frac{1}{u_n}$$
$$\ell = \ell + \frac{1}{\ell}$$
$$\frac{1}{\ell} = 0.$$

On obtient ainsi une contradiction et la suite $(u_n)_{n\in\mathbb{N}}$ ne converge pas.

4. Comme la suite $(u_n)_{n\in\mathbb{N}}$ est croissante, d'après le théorème de la limite monotone, soit $(u_n)_{n\in\mathbb{N}}$ converge, soit elle tend vers $+\infty$. D'après la question précédente, la suite $(u_n)_{n\in\mathbb{N}}$ ne converge pas. Ainsi.

$$\lim_{n \to +\infty} u_n = +\infty.$$

Solution de l'exercice 18.

1. La fonction f est dérivable et pour tout x réel,

$$f'(x) = 2x + 1.$$

Ainsi, $f'(x) \ge 0$ si et seulement si $x \ge -1/2$.

Comme f est un polynôme dont on étudie la limite en l'infini.

$$\lim_{x \to +\infty} x^2 + x - 3 = \lim_{x \to +\infty} x^2 = +\infty,$$
$$\lim_{x \to -\infty} x^2 + x - 3 = \lim_{x \to -\infty} x^2 = +\infty.$$

De plus,

$$f\left(-\frac{1}{2}\right) = \left(-\frac{1}{2}\right)^2 - \frac{1}{2} - 3$$
$$= \frac{1}{4} - \frac{1}{2} - 3 = \frac{1 - 2 - 12}{3}$$
$$= -\frac{13}{3}.$$

On obtient ainsi le tableau de variations suivant :

x	$-\infty$	$-\frac{1}{2}$	$+\infty$
f'(x)		- 0	+
f(x)	+∞	$-\frac{13}{3}$	+∞

2. Montrons par récurrence que $\sqrt{3} \leq u_n$ pour tout n entier naturel. **Initialisation.** Lorsque n=0. Alors, comme la fonction racine carrée est croissante,

$$u_0 = 3 = \sqrt{9} \geqslant \sqrt{3}$$
.

Hérédité. Soit $n \in \mathbb{N}$. On suppose que $\sqrt{3} \leqslant u_n$. Montrons que $\sqrt{3} \leqslant u_{n+1}$.

Comme la fonction f est croissante sur $[\sqrt{3}, +\infty[$,

$$\sqrt{3}\leqslant u_n, \text{ d'après l'H.R.}$$

$$f(\sqrt{3})\leqslant f(u_n), \text{ par croissance de } f$$

$$(\sqrt{3})^2+\sqrt{3}-3\leqslant u_{n+1}$$

$$\sqrt{3}\leqslant u_{n+1}.$$

Conclusion. La propriété est vraie à l'ordre 0 et est héréditaire, donc,

$$\forall n \in \mathbb{N}, \sqrt{3} \leqslant u_n.$$

3. Soit $n \in \mathbb{N}$.

$$u_{n+1} - u_n = u_n^2 + u_n - 3 - u_n = u_n^2 - 3$$

 $\ge (\sqrt{3})^2 - 3$
 $\ge 0.$

Ainsi, la suite $(u_n)_{n\in\mathbb{N}}$ est croissante.

4. Comme $u_{n+1} = u_n^2 + u_n - 3$, si $\lim_{n \to +\infty} u_n = \ell$, alors $\lim_{n \to +\infty} u_{n+1} = \ell$ et, en passant à la limite dans l'égalité,

$$\ell = \ell^2 + \ell - 3.$$

Ainsi, $\ell^2 = 3$ et $\ell \in \{-\sqrt{3}, \sqrt{3}\}.$

Comme, pour tout n entier naturel, $u_n \geqslant \sqrt{3}$, alors $\ell\sqrt{3}$ et on en déduit que $\ell = \sqrt{3}$.

5. Supposons que la suite $(u_n)_{n\in\mathbb{N}}$ converge vers un réel ℓ . D'après la question précédente, $\ell=\sqrt{3}$.

Or, la suite $(u_n)_{n\in\mathbb{N}}$ est croissante et $u_0=3$. Ainsi, pour tout n entier naturel, $u_n\geqslant 3$ soit $\ell\geqslant 3$. Ainsi, $\sqrt{3}\geqslant 3$.

On obtient ainsi une contradiction. Ainsi, $(u_n)_{n\in\mathbb{N}}$ diverge.

D'après le théorème de la limite monotone, comme $(u_n)_{n\in\mathbb{N}}$ est croissante et $(u_n)_{n\in\mathbb{N}}$ diverge, alors

$$\lim_{n \to +\infty} u_n = +\infty.$$

V.5 - Bijection monotone

Existence de solutions

Solution de l'exercice 19.

1. La fonction f est dérivable et

$$f'(x) = 2x^2 + 1.$$

Comme $f'(x) \ge 0$ la fonction f est strictement croissante. De plus, comme f est un polynôme,

$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} x^3 = +\infty \text{ et } \lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} x^3 = -\infty.$$

On obtient ainsi le tableau de variations suivant :

x	$-\infty$	$+\infty$
f'(x)		+
f(x)	$-\infty$	+∞

2.

Continuité. La fonction f est continue sur [-2, -1].

Stricte monotonie. La fonction f est strictement croissante sur [-2, -1].

Intervalle. $f(-2) = (-2)^3 - 2 + 5 = -8 - 2 + 5 = -5$ et $f(-1) = (-1)^3 - 1 + 5 = 3$ et $0 \in [-5, 3]$.

D'après le théorème de la bijection monotone il existe un unique réel $\alpha \in [-2, -1]$ tel que $f(\alpha) = 0$.

Solution de l'exercice 20.

1. La fonction f est dérivable et

$$f'(x) = -\frac{e^x - (x+1)e^x}{(e^x)^2} = -\frac{e^x - xe^x - e^x}{e^{2x}} = \frac{xe^x}{e^{2x}}.$$

Comme $x \ge 0$, alors $f'(x) \ge 0$ et s'annule uniquement en 0. Ainsi, la fonction f est strictement croissante.

D'après le théorème des croissances comparées,

$$\lim_{x \to +\infty} f(x) = 3.$$

D'après les propriétés de la fonction exponentielle.

$$f(0) = 3 - \frac{0+1}{e^0} = 3 - 1 = 2.$$

On obtient ainsi le tableau de variations suivant :

x	0	$+\infty$
f'(x)		+
f(x)	2	3

2.

Continuité. La fonction f est continue sur $[0, +\infty[$. **Stricte monotonie.** La fonction f est strictement croissante sur $[0, +\infty[$.

Intervalle.
$$f(0) = 2$$
, $\lim_{x \to +\infty} f(x) = 3$ et $\frac{5}{2} = 3$.

D'après le théorème de la bijection monotone il existe un unique réel $\alpha \in [0, +\infty[$ tel que $f(\alpha) = \frac{5}{2}$.

Solution de l'exercice 21.

1. La fonction f est dérivable sur \mathbb{R} et

$$f'(x) = e^x + 1.$$

Comme la fonction exponentielle est à valeurs strictement positives, $f'(x) \ge 0$ et la fonction f est strictement croissante.

D'après les théorèmes d'addition des limites,

$$\lim_{x \to +\infty} f(x) = +\infty \text{ et } \lim_{x \to -\infty} f(x) = -\infty.$$

On obtient ainsi le tableau de variations suivant :

x	$-\infty$	$+\infty$
f'(x)		+
f(x)	$-\infty$	+∞

2.

Continuité. La fonction f est continue sur \mathbb{R} .

Stricte monotonie. La fonction f est strictement croissante sur \mathbb{R} . **Intervalle.** Comme $\lim_{x\to -\infty} f(x) = -\infty$ et $\lim_{x\to +\infty} f(x) = +\infty$, alors $0\in]-\infty, +\infty[$.

D'après le théorème de la bijection monotone, il existe un unique réel α tel que $f(\alpha)=0$.

3. On remarque que $f(0) = e^0 + 0 - 2 = -1$ et $f(1) = e^1 + 1 - 2 = e - 1 \ge 0$. Ainsi, $f(\alpha) = 0 \in [f(0), f(1)]$. Comme f est croissante, alors $\alpha \in [0, 1]$.

4. Soit $x \in \mathbb{R}$ tel que $e^x = -x + 2$. On remarque que

$$e^{x} = -x + 2$$

$$\Leftrightarrow e^{x} + x - 2 = 0$$

$$\Leftrightarrow f(x) = 0.$$

Or, d'après la question précédente, il existe un unique réel α tel que $f(\alpha) = 0$. Ainsi, $x = \alpha$ et l'équation $e^x = -x + 2$ admet α comme unique solution.

Construction de solutions approchées

Solution de l'exercice 22.

1.

b - a > 0.25	m	f(a) * f(m) <= 0	a	b
			0	3
True	1.5	True	0	1.5
True	0.75	False	0.75	1.5
True	1.125	False	1.125	1.5
True	1.3125	False	1.3125	1.5
False				

Le programme affiche alors 1.3125.

2. La valeur renvoyée est une valeur approchée d'une solution de l'équation $x^2-2=0$ appartenant à [0,3], soit une valeur approchée de $\sqrt{2}$. \square

Solution de l'exercice 23.

- 1. On remarque que $e^x = 2$ si et seulement si $x = \ln(2)$.
- **2.** L'algorithme est un algorithme de dichotomie. Il permet de donner une valeur approchée à 10^{-5} près d'une solution de l'équation f(x) = 0. Ainsi, l'algorithme affiche une approximation à 10^{-5} près de $\ln(2)$. \square

Solution de l'exercice 24.

1. La fonction f est dérivable et

$$f'(x) = (-2x+1)e^{-x} + (-x^2 + x - 1)(-e^{-x})$$
$$= e^{-x}(-2x+1+x^2-x+1)$$
$$= (x^2 - 3x + 2)e^{-x}.$$

Le discriminant du trinôme $x^2 - 3x + 2$ vaut

$$(-3)^2 - 4 \times 2 = 9 - 8 = 1.$$

Ainsi, les solutions de l'équation $x^2 - 3x + 2 = 0$ sont

$$\frac{3-1}{2} = 1$$
 et $\frac{3+1}{2} = 2$.

D'après le théorème des croissances comparées,

$$\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} (2 - x^2 e^{-x}) = -\infty$$

et

$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} (2 - x^2 e^{-x}) = 2.$$

De plus,

$$f(1) = 2 + (-1 + 1 - 1)e^{-1} = 2 - e^{-1}$$

et

$$f(2) = 2 + (-4 + 2 - 1) e^{-2} = 2 - 3 e^{-2}$$
.

On obtient ainsi le tableau de variations suivant :

x	$-\infty$		1		2		$+\infty$
f'(x)		+	0	_	0	+	
f(x)	$-\infty$		$2-\frac{1}{e}$		$2-\frac{3}{\mathrm{e}^2}$		2

2.

Continuité. La fonction f est continue sur [-1,0]. **Stricte monotonie.** La fonction f est strictement croissante sur [-1,0].

Intervalle. D'une part,

$$f(-1) = 2 + (-1 - 1 - 1)e^{1} = 2 - 3e \le 0.$$

D'autre part, $f(0) = 2 - 1 = 1 \ge 0$. Ainsi, $0 \in [f(-1), f(0)]$. Chapitre IX - Suites numériques

D'après le théorème de la bijection monotone, il existe un unique réel $\alpha \in [-1,0]$ tel que $f(\alpha)=0$.

3.

```
\begin{array}{l} \text{import numpy as np} \\ \text{def } f(x) \colon \\ \text{return } 2 + (-x {**}2 + x - 1) \text{ np.exp}(-x) \\ \\ \text{a} = -1 \\ \text{b} = 0 \\ \text{while } \text{b} - \text{a} > 10 {**}(-4) \colon \\ \text{m} = (\text{a} + \text{b}) \ / \ 2 \\ \text{if } f(\text{a}) * f(\text{m}) > 0 \colon \\ \text{a} = \text{m} \\ \text{else} \colon \\ \text{b} = \text{m} \\ \\ \text{print (a)} \end{array}
```

Lycée Ozenne 54 A. Camanes