I. Solutions

A. electrolytes

i. strong vs. weak

ii. acids/bases/salts

B. phase notation e.g. (aq), (s)

C. concentration

i. molarity: mol/L units, pH

ii. dilution calculations

D. aqueous solubility

i. rules

ii. precipitation reactions

iii. total and net ionic equations

E. acid/base chemistry

i. oxides as anhydrides

ii. proton transfer equations

F. titrations

i. stoichiometry

ii. calculations

G. redox chemistry

i. oxidation numbers

ii. ox./red. agents

iii. half reactions

iv. balancing

H. predicting reaction products

II. Gases

A. P, V, n, T relationships

i. universal constant R, units!

ii. equation of state: PV=nRT

B. STP

i. molar volume

ii. density calculations

C. stoichiometry

i. volume calculations

D. partial pressures

i. mixtures

ii. mole fraction

E. kinetic theory

i. energy ∝ T

ii. average speed $v = \sqrt{3RT/M}$

iii. diffusion and effusion

iv. rate or time calculations

F. non-ideal behavior

i. condensation

ii. van der Waals' equation

III. Thermochemistry

A. 1st Law: $\Delta E = q + w$

B. enthalpy

i. state property: $\Delta H = H_f - H_i$

ii. endothermic vs. exothermic

iii. diagrams

C. calorimetry

i. heat capacity (extensive)

ii. specific heat cap. (intensive)

iii. ΔT measurement, units

D. Hess's Law

i. ΔH 's are additive

ii. multiplying or reversing

equations

iii. enthalpy diagrams

E. reaction enthalpy

i. combining equations

ii. from ΔH_f°

F. energy applications

IV. Lab

A. synthesis of $CoC_2O_4 \cdot 2H_2O$

i. L.R.

ii. % yield

B. decomposition stoichiometry

i. analysis

ii. % Co in sample

C. acid-base titration

i. color indicators

ii. analyte concentration

D. copper compounds

i. observing reactions

ii. writing ionic equations