

## Ministério da Educação

Universidade Federal dos Vales do Jequitinhonha e Mucuri Faculdade de Ciências Sociais, Aplicadas e Exatas - FACSAE





| Discip | olina: | Cá             | lcul | o N | uméi | rico |
|--------|--------|----------------|------|-----|------|------|
| Prof.  | : Luiz | $\mathbf{C}$ . | Μ.   | de  | Aqui | ino  |

|         | <u>-</u> |         |   |   |
|---------|----------|---------|---|---|
| Aluno(a | a):      | Data: / | / | / |

## Avaliação $I - 2^a$ Chamada

## Instruções

- Todas as justificativas necessárias na solução de cada questão devem estar presentes nesta avaliação;
- As respostas finais de cada questão devem estar escritas de caneta;
- Esta avaliação tem um total de 25,0 pontos.
- 1. [6,0 pontos] Seja x um número natural qualquer. Considere que n seja um quadrado perfeito mais próximo de x. Prove que  $\sqrt{x} \approx \frac{x+n}{2\sqrt{n}}$ . (Observação: dizemos que n é um quadrado perfeito se existe um natural m tal que  $n=m^2$ .)
- 2. [4,5 pontos] Use o Método da Secante para encontrar a raiz aproximada da função definida por  $f(x) = \cos x \frac{1}{5}$  no intervalo [1; 2] (considere uma tolerância de  $10^{-5}$ ).
- 3. [4,5 pontos] Utilize o Método de Newnton para determinar uma aproximação para a raiz da função polinomial definida por  $p(x) = 2x^4 2x^3 22x^2 10x + 8$  no intervalo [0; 1] (considere uma tolerância de  $10^{-5}$ ).
- 4. [5,0 pontos] A cada passo no Método da Falsa Posição, escolhemos  $x_k = \frac{a_k |f(b_k)| + b_k |f(a_k)|}{|f(a_k)| + |f(b_k)|}$ , sendo que no intervalo  $[a_k; b_k]$  temos  $f(a_k)f(b_k) < 0$ . Prove que esta escolha de  $x_k$  coincide com a abscissa do ponto de interseção entre o eixo x e a reta passando por  $(a_k, f(a_k))$  e  $(b_k, f(b_k))$ .
- 5. [5,0 pontos] Seja  $f:[a;b] \to [a;b]$  uma função contínua em todo o seu domínio. Prove que o gráfico de f e de g(x) = x tem pelo menos um ponto em comum.