GoogLeNet 논문 리뷰

Going deeper with convolutions

심동민

A new level of organization in the form of the "Inception module"

More direct sense of increased network depth

ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners

Figure copyright Kaiming He, 2016. Reproduced with permission.

Deeper networks, with computational efficiency!

GoogLeNet 이 지향하는 방향

22 layers

Very deep layer

Inception module

development of an Inception Module that dramatically reduced the number of parameters in the network

No FC layers

- this paper uses Average
 Pooling instead of Fully
 Connected layers at the top of the ConvNet
- eliminating a large amount of parameters

6M parameters

 12 x fewer parameters than AlexNet(2012)

Google Net의 주요 특징 3

Inception Module

Auxiliary classifier

No FC layers

Figure 2: Inception module

Inception module

Increasing their size(depth, width) -> improving the performance of DNN

easy and safe way of training higher quality models availability of a large amount of labeled training data

But

- 1. enlarged network more prone to overfitting
- 2. dramatically increased use of computational resources.

Inception module

ultimately moving from fully connected to sparsely connected architectures, even inside the convolutions

But

실제로 컴퓨터 연산에서는 연산 Matrix 가 Dense 해야 쓸데없는 리소스 손실이 적음

Arora, Provable Bounds for Learning Some Deep Representations

전체적으로는 연결을 줄이면서(sparsity)

세부 Matrix 연산에서는 최대한 dense하게 연산을 하도록 처리

Inception module

- (a) Inception module, naïve version
- (b) Inception module with dimension reductions

Figure 2: Inception module

Inception module

Apply parallel filter operations on the input from previous layer:

- Multiple receptive field sizes
 for convolution (1x1, 3x3, 5x5)
 Pooling operation (3x3)
- Concatenate all filter outputs together depth-wise

Inception module

Total Ops: 565M

Inception module

Auxiliary Classifier

No FC layers

inception (3b)		$28 \times 28 \times 480$	2	128	128	19.
max pool	3×3/2	$14 \times 14 \times 480$	0			
inception (4a)		14×14×512	2	192	96	200
inception (4b)		14×14×512	2	160	112	22
inception (4c)		14×14×512	2	128	128	250
inception (4d)		14×14×528	2	112	144	28
inception (4e)		14×14×832	2	256	160	32
max pool	3×3/2	7×7×832	0			
inception (5a)		7×7×832	2	256	160	32
inception (5b)		7×7×1024	2	384	192	384
avg pool	7×7/1	$1\times1\times1024$	0			
dropout (40%)		$1\times1\times1024$	0			
linear		1×1×1000	1			
softmax		1×1×1000	0			

type	patch size/ stride	output size	depth	#1×1	#3×3 reduce	#3×3	#5×5 reduce	#5×5	pool proj	params	ops
convolution	7×7/2	112×112×64	1							2.7K	34M
max pool	3×3/2	56×56×64	0								
convolution	3×3/1	56×56×192	2		64	192				112K	360M
max pool	3×3/2	28×28×192	0								
inception (3a)		28×28×256	2	64	96	128	16	32	32	159K	128M
inception (3b)		28×28×480	2	128	128	192	32	96	64	380K	304M
max pool	3×3/2	14×14×480	0								
inception (4a)		14×14×512	2	192	96	208	16	48	64	364K	73M
inception (4b)		14×14×512	2	160	112	224	24	64	64	437K	88M
inception (4c)		14×14×512	2	128	128	256	24	64	64	463K	100M
inception (4d)		14×14×528	2	112	144	288	32	64	64	580K	119M
inception (4e)		14×14×832	2	256	160	320	32	128	128	840K	170M
max pool	3×3/2	7×7×832	0								
inception (5a)		7×7×832	2	256	160	320	32	128	128	1072K	54M
inception (5b)		7×7×1024	2	384	192	384	48	128	128	1388K	71M
avg pool	7×7/1	1×1×1024	0								
dropout (40%)		1×1×1024	0								
linear		1×1×1000	1							1000K	1M
softmax		1×1×1000	0								

Table 1: GoogLeNet incarnation of the Inception architecture

Team	Year	Place	Error (top-5)	Uses external data
SuperVision	2012	1st	16.4%	no
SuperVision	2012	1st	15.3%	Imagenet 22k
Clarifai	2013	1st	11.7%	no
Clarifai	2013	1st	11.2%	Imagenet 22k
MSRA	2014	3rd	7.35%	no
VGG	2014	2nd	7.32%	no
GoogLeNet	2014	1st	6.67%	no

Table 2: Classification performance

Team	Year	Place	mAP	external data	ensemble	approach
UvA-Euvision	2013	1st	22.6%	none	?	Fisher vectors
Deep Insight	2014	3rd	40.5%	ImageNet 1k	3	CNN
CUHK DeepID-Net	2014	2nd	40.7%	ImageNet 1k	?	CNN
GoogLeNet	2014	1st	43.9%	ImageNet 1k	6	CNN

Deeper networks, with computational efficiency!

Inception module

22 layers

6M parameters

No FC layers

Auxiliary Classifier to prevent gradient vanishing

ILSVRC'14 classification winner(6.7% top5 error)

참고

GoogLeNet

- Going Deeper with Convolutions
- http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture9.pdf
- https://sike6054.github.io/blog/paper/second-post/
- https://hoya012.github.io/blog/deeplearning-classification-guidebook-1/
- https://norman3.github.io/papers/docs/google_inception.html
- https://youtu.be/05PCt_JFc84
- https://www.youtube.com/watch?v=8ml9zRdx2Es&t=3095s

Receptive Field

http://cd4761.blogspot.com/2016/03/cnnconvolution-neural-network.html

Thanks

CNN-study