

Sparse Unmixing of Hyperspectral Images

Faming Fang

East China Normal University, Shanghai, China fmfang@cs.ecnu.edu.cn

April 15, 2018

- 1 Hyperspectral Images and Spectral Unmixing
 - Introduction
 - Spectral mixing/unmixing process
 - Related works
- 2 Similarity-guided and ℓ_p -regularized Sparse Unmixing (SLpSU)
 - Similarity-guided regularization
 - ℓ_p -norm regularization
 - Proposed model and numerical algorithm
 - Experiments
- 3 Framelet based Sparse Unmixing (FSU)
 - Framelets and image representation
 - Framelet based sparse unmixing model
 - Numerical algorithm
 - Experiments and conclusions
- 4 Conclusion and future work

- 1 Hyperspectral Images and Spectral Unmixing
 - Introduction
 - Spectral mixing/unmixing process
 - Related works
- 2 Similarity-guided and ℓ_p -regularized Sparse Unmixing (SLpSU)
 - Similarity-guided regularization
 - ℓ_p -norm regularization
 - Proposed model and numerical algorithm
 - Experiments
- 3 Framelet based Sparse Unmixing (FSU)
 - Framelets and image representation
 - Framelet based sparse unmixing model
 - Numerical algorithm
 - Experiments and conclusions
- 4 Conclusion and future work

Hyperspectral image

In hyperspectral imaging, the recorded spectra have fine wavelength resolution and cover a wide range of wavelengths.

Hyperspectral image

A single pixel contains several materials (endmembers), due to:

- low spatial resolution
- microscopic material mixing
- multiple scattering

- 1 Hyperspectral Images and Spectral Unmixing
 - Introduction
 - Spectral mixing/unmixing process
 - Related works
- Similarity-guided and ℓ_p -regularized Sparse Unmixing (SLpSU)
 - Similarity-guided regularization
 - ℓ_p -norm regularization
 - Proposed model and numerical algorithm
 - Experiments
- 3 Framelet based Sparse Unmixing (FSU)
 - Framelets and image representation
 - Framelet based sparse unmixing model
 - Numerical algorithm
 - Experiments and conclusions
- 4 Conclusion and future work

Spectral unmixing

Spectral unmixing aims at extracting pure endmember spectra and corresponding abundance.

Mixing model

The mixture models can be divided into two categories:

■ linear mixture model and nonlinear mixture model.

Hyperspectral unmixing process

Hyperspectral unmixing process

The pixel observation y can be expressed as a linear combination of spectral signatures in a spectral library A as:

Noise-tolerant sparse regression optimization problem is:

$$\min_{x} ||x||_0$$
 subject to $||y - Ax||_2 \le \delta$, $x \ge 0$, $\mathbf{1}^T x = 1$

Sparsity-based simultaneous linear unmixing

Linear mixing model written in a matrix form is:

$$Y = AX + N$$

Noise-tolerant sparse regression optimization problem is:

$$\min_{X} ||X||_0$$
 subject to $||Y - AX||_F \le \delta, \ X \ge 0, \ \sum_{i=1}^m X_{ij} = 1 \ orall j$

- 1 Hyperspectral Images and Spectral Unmixing
 - Introduction
 - Spectral mixing/unmixing process
 - Related works
- Similarity-guided and ℓ_p -regularized Sparse Unmixing (SLpSU)
 - Similarity-guided regularization
 - ℓ_p -norm regularization
 - Proposed model and numerical algorithm
 - Experiments
- 3 Framelet based Sparse Unmixing (FSU)
 - Framelets and image representation
 - Framelet based sparse unmixing model
 - Numerical algorithm
 - Experiments and conclusions
- 4 Conclusion and future work

Related works

Table: Some popular sparse unmixing methods

Methods	Data fidelity term	Regularization term	
SUnSAL	$ Ax - y _2^2$	$ x _1$	
SUnSAL-TV	$ AX - Y _F^2$	$\ X\ _{1,1} + \lambda_{TV}TV(X)$	
DSUnADM	$ HXA - Y _F^2$	$\ X\ _{1,1} + \lambda_{TV}TV(X)$	
CLSUnSAL	$ AX - Y _F^2$	$ X _{2,1}$	
[F. Chen, 13]	$ Ax - y _2^2$	$ x _{p}^{p}, \ 0$	
[Giampouras P, 15]	$ AX - Y _F^2$	$ R \odot X _1 + \lambda X _{b,*}$	

- Hyperspectral Images and Spectral Unmixing
 - Introduction
 - Spectral mixing/unmixing process
 - Related works
- 2 Similarity-guided and ℓ_p -regularized Sparse Unmixing (SLpSU)
 - Similarity-guided regularization
 - ℓ_p -norm regularization
 - Proposed model and numerical algorithm
 - Experiments
- 3 Framelet based Sparse Unmixing (FSU)
 - Framelets and image representation
 - Framelet based sparse unmixing model
 - Numerical algorithm
 - Experiments and conclusions
- 4 Conclusion and future work

Similarity-guided regularization

Linear mixing model:

$$\mathbf{Y} = \mathbf{AX} + \mathbf{\Theta} \tag{1}$$

- Assumption: pixels with similar spectra have similar abundances.
- Weighting matrix:

$$\mathbf{W}_{ij} = \begin{cases} e^{-\frac{||\mathbf{y}_i - \mathbf{y}_j||_2}{\sigma}} & j \in \eta_i \\ 0 & j \notin \eta_i \end{cases}$$

where σ denotes the kernel's bandwidth, and η_i represents a small window center on the *i*th pixel.

- W_{ij} measures the similarity of the two spectrums y_i and y_j .
- The more similar the two pixels, the larger the value of \mathbf{W}_{ij} .

Similarity-guided regularization

Our similarity-weighted abundance constraint:

$$R_1(\mathbf{X}) = \frac{1}{2} \sum_{i,j=1}^{k} ||\mathbf{x}_i - \mathbf{x}_j||_2^2 \mathbf{W}_{i,j}$$
 (2)

where $\mathbf{x_i}$ is the *i*th column of \mathbf{X} .

R₁(X) makes good use of the inherent structural information of the data as a priori, leading the abundances estimation to become data-guided.

- 1 Hyperspectral Images and Spectral Unmixing
 - Introduction
 - Spectral mixing/unmixing process
 - Related works
- 2 Similarity-guided and ℓ_p -regularized Sparse Unmixing (SLpSU)
 - Similarity-guided regularization
 - ℓ_p -norm regularization
 - Proposed model and numerical algorithm
 - Experiments
- 3 Framelet based Sparse Unmixing (FSU)
 - Framelets and image representation
 - Framelet based sparse unmixing model
 - Numerical algorithm
 - Experiments and conclusions
- 4 Conclusion and future work

ℓ_p -norm regularization

■ We use the ℓ_p (0 < p < 1) norm as the sparsity regularization with respect to \mathbf{X} , i.e.

$$R_2(\mathbf{X}) = ||\mathbf{X}||_p^p = \sum_{i=1}^m \sum_{j=1}^k |\mathbf{X}_{ij}|^p.$$
 (3)

ℓ_p -norm VS ℓ_1 -norm

Superior of ℓ_p -norm

- Nonconvex but better approximates the ℓ_0 -norm.
- Similar solution but more sparse.
- Confirmed by ℓ_p -norm regularized unmixing method.
- Able to enforce the sum-to-one constraint.

- 1 Hyperspectral Images and Spectral Unmixing
 - Introduction
 - Spectral mixing/unmixing process
 - Related works
- 2 Similarity-guided and ℓ_p -regularized Sparse Unmixing (SLpSU)
 - Similarity-guided regularization
 - ℓ_p -norm regularization
 - Proposed model and numerical algorithm
 - Experiments
- 3 Framelet based Sparse Unmixing (FSU)
 - Framelets and image representation
 - Framelet based sparse unmixing model
 - Numerical algorithm
 - Experiments and conclusions
- 4 Conclusion and future work

Proposed model

■ The proposed unmixing model:

$$\begin{aligned} & \min_{\mathbf{X}} \frac{1}{2} ||\mathbf{Y} - \mathbf{A}\mathbf{X}||_F^2 + \frac{\lambda}{2} \sum_{i,j=1}^k ||\mathbf{x}_i - \mathbf{x}_j||_2^2 \mathbf{W}_{ij} + \mu ||\mathbf{X}||_p^p \\ & \text{subject to } \mathbf{X} \ge 0, \quad \sum_{i=1}^m \mathbf{X}_{ij} = 1 \quad \forall j. \end{aligned} \tag{4}$$

Combining the abundance nonnegative constraint and sum-to-one constraint in (13) into the function:

$$\min_{\mathbf{X}} \frac{1}{2} ||\mathbf{Y} - \mathbf{A}\mathbf{X}||_{F}^{2} + \frac{\lambda}{2} \sum_{i,j=1}^{k} ||\mathbf{x}_{i} - \mathbf{x}_{j}||_{2}^{2} \mathbf{W}_{i,j} + \mu ||\mathbf{X}||_{p}^{p}
+ \delta(\mathbf{X}) + \frac{1}{2} ||\mathbf{1}^{T}\mathbf{X} - \mathbf{1}^{T}||_{F}^{2}$$
(5)

where each element of $\delta(\mathbf{X})$ is zero if $\mathbf{X}_{i,j} \geq 0$ and $+\infty$ otherwise, and $\mathbf{1}^T$ denotes the vector of 1s.

Numerical algorithm

Variable splitting:

$$\begin{split} & \min_{\mathbf{X}, \mathbf{V}, \mathbf{Z}, \mathbf{N}} \frac{1}{2} ||\mathbf{Y} - \mathbf{A} \mathbf{X}||_F^2 + \frac{\lambda}{2} \sum_{i,j=1}^k ||\mathbf{v_i} - \mathbf{v_j}||_2^2 \mathbf{W}_{i,j} + \mu ||\mathbf{Z}||_\rho^\rho \\ & + \delta(\mathbf{N}) + \frac{1}{2} ||\mathbf{1}^T \mathbf{X} - \mathbf{1}^T||_F^2 \\ & \text{subject to} \quad \mathbf{V} = \mathbf{X}, \ \mathbf{Z} = \mathbf{X}, \ \mathbf{N} = \mathbf{X}. \end{split} \tag{6}$$

The augmented Lagrangian for problem (6):

$$\mathcal{L}_{\rho}(\mathbf{X}, \mathbf{V}, \mathbf{Z}, \mathbf{N}, \mathbf{D}_{1}, \mathbf{D}_{2}, \mathbf{D}_{3}) = \frac{1}{2} ||\mathbf{Y} - \mathbf{A}\mathbf{X}||_{F}^{2} + \frac{\lambda}{2} \sum_{i,j=1}^{k} ||\mathbf{v}_{i} - \mathbf{v}_{j}||_{2}^{2} \mathbf{W}_{i,j} + \mu ||\mathbf{Z}||_{\rho}^{\rho} + \delta(\mathbf{N}) + \frac{1}{2} ||\mathbf{1}^{T}\mathbf{X} - \mathbf{1}^{T}||_{F}^{2} + \langle \mathbf{D}_{1}, \mathbf{X} - \mathbf{V} \rangle + \frac{\rho}{2} ||\mathbf{X} - \mathbf{V}||_{F}^{2} + \langle \mathbf{D}_{2}, \mathbf{X} - \mathbf{Z} \rangle + \frac{\rho}{2} ||\mathbf{X} - \mathbf{Z}||_{F}^{2} + \langle \mathbf{D}_{3}, \mathbf{X} - \mathbf{N} \rangle + \frac{\rho}{2} ||\mathbf{X} - \mathbf{N}||_{F}^{2}$$

$$(7)$$

- Hyperspectral Images and Spectral Unmixing
 - Introduction
 - Spectral mixing/unmixing process
 - Related works
- 2 Similarity-guided and ℓ_p -regularized Sparse Unmixing (SLpSU)
 - Similarity-guided regularization
 - ℓ_p -norm regularization
 - Proposed model and numerical algorithm
 - Experiments
- 3 Framelet based Sparse Unmixing (FSU)
 - Framelets and image representation
 - Framelet based sparse unmixing model
 - Numerical algorithm
 - Experiments and conclusions
- 4 Conclusion and future work

Experiments with simulated data

Figure: Two simulated data sets.

■ Evaluation metric: signal-to-reconstruction error (SRE)

$$\mathsf{SRE}(\mathsf{dB}) = 10 \log_{10}(\mathbb{E}[\|\mathbf{X}\|_F^2]/\mathbb{E}[\|\mathbf{X} - \hat{\mathbf{X}}\|_F^2]),$$

Higher SRE(dB) value represents a better unmixing performance.

Experiments with simulated data

Figure: SRE(dB) values on the simulated data contaminated by noise.

- We obtain on average 5 SRE(dB) values greater than the second best SUnSAL-TV.
- The per-pixel execution time of our method (0.0052 s) is nearly one-fifth of the SUnSAL-TV (0.0259 s)

Experiments with real data

Figure: Two real data sets.

- Reconstruction error (RE): RE = $\sqrt{\frac{1}{\text{size}(\mathbf{Y})} \times \|\mathbf{Y} \mathbf{A}\hat{\mathbf{X}}\|_F^2}$.
- Sparsity: $\frac{1}{\textit{size}(\hat{\mathbf{X}})} \times \#(\hat{\mathbf{X}} = 0) \approx \frac{1}{\textit{size}(\hat{\mathbf{X}})} \times \#(\hat{\mathbf{X}} \leq 0.001)$.

Experiments with real data

Figure: Fractional abundance maps: (a) grass; (b) tree; (c) water/shadows; (d) roof; (e) road.

Table: the reconstruction errors and the sparsity of abundances on the second real data set

	Ours	SUnSAL-TV	CLSUnSAL	SUnSAL	FCLS
RE	0.0084	0.0121	0.0152	0.0283	0.0352
Sparsity	0.4870	0.4256	0.4657	0.4829	0.4822

- 1 Hyperspectral Images and Spectral Unmixing
 - Introduction
 - Spectral mixing/unmixing process
 - Related works
- **2** Similarity-guided and ℓ_p -regularized Sparse Unmixing (SLpSU)
 - Similarity-guided regularization
 - ℓ_p -norm regularization
 - Proposed model and numerical algorithm
 - Experiments
- 3 Framelet based Sparse Unmixing (FSU)
 - Framelets and image representation
 - Framelet based sparse unmixing model
 - Numerical algorithm
 - Experiments and conclusions
- 4 Conclusion and future work

■ Let $\chi \subset L^2(\mathbb{R})$ be a countable function subset, if

$$f = \sum_{g \in \chi} \langle f, g \rangle g, \quad \forall f \in L^2(\mathbb{R}),$$

where $\langle \cdot, \cdot \rangle$ is the inner product in $L^2(\mathbb{R})$. Then χ is called a tight frame of $L^2(\mathbb{R})$.

■ The tight frame is a generation of the orthogonal basis which relaxes the requirements of the orthogonality and linear independence.

Important property:

$$W = \begin{bmatrix} W_0 \\ W_1 \end{bmatrix}, \tag{8}$$

where W_0 denotes the low-pass filter operator, and W_1 consists of remaining band-pass and high-pass filter operators.

$$\mathcal{W}^{\mathsf{T}}\mathcal{W} = \mathcal{W}_0^{\mathsf{T}}\mathcal{W}_0 + \mathcal{W}_1^{\mathsf{T}}\mathcal{W}_1 = \mathcal{I}, \tag{9}$$

where $\mathcal{W}^{\mathcal{T}}$ and \mathcal{I} are the inverse framelet transform and equivalent transform, respectively.

$$\mathcal{WW}^{\mathsf{T}} \neq \mathcal{I}$$

lacktriangle Given an hyperspatial image Y, the framelet coefficient vector C after one level **framelet decomposition** is given by

$$C = WY = \begin{bmatrix} W_0 Y \\ W_1 Y \end{bmatrix}, \tag{10}$$

where $W_0 Y$ and $W_1 Y$ are the approximation and detail coefficients, respectively.

framelet reconstruction:

$$Y = \mathcal{W}^T C = \mathcal{W}_0^T C + \mathcal{W}_1^T C$$

Figure: An example of framelet decomposition. (a) the original image (RGB composite of the AVIRIS Cuprite subimage using bands 183, 193, and 203); (b) the result of one level framelet decomposition.

Figure: An example of framelet decomposition. (a) the original image; (b) the result of one level framelet decomposition; (c) the histogram of the original image; (d) the histogram of the approximation coefficient value; (e) the histogram of the framelet coefficient value; (f) cumulative probability distribution corresponding to (e).

- 1 Hyperspectral Images and Spectral Unmixing
 - Introduction
 - Spectral mixing/unmixing process
 - Related works
- **2** Similarity-guided and ℓ_p -regularized Sparse Unmixing (SLpSU)
 - Similarity-guided regularization
 - ℓ_p -norm regularization
 - Proposed model and numerical algorithm
 - Experiments
- 3 Framelet based Sparse Unmixing (FSU)
 - Framelets and image representation
 - Framelet based sparse unmixing model
 - Numerical algorithm
 - Experiments and conclusions
- 4 Conclusion and future work

The construction of FSU model utilizes the sparse property of framelet representation.

- Framelet-based sparsity (regularization term)
 - To preserve the sparse property of framelet coefficient value of abundance
- Robust reconstruction (fidelity term)
 - Split framelet coefficient into two components to reduce the interference of the additive noise.

- Framelet-based sparsity (regularization term)
- Nonnegativity:

$$\min_{X} \|\iota(X)\|_{1,1} := \sum_{i,j} |\iota(X_{i,j})|,$$

where

$$\iota(X_{i,j}) = \left\{ egin{array}{ll} 0, & X_{i,j} \geq 0 \ +\infty, & ext{otherwise} \end{array}
ight. .$$

Sparsity:

$$\min_{X} \|\mathcal{W}X\|_{1,1} = \|\mathcal{W}_{0}X\|_{1,1} + \|\mathcal{W}_{1}X\|_{1,1}
\approx \|X\|_{1,1} + \|\mathcal{W}_{1}X\|_{1,1}.$$
(11)

■ Robust reconstruction (fidelity term)

 $\label{lem:Figure:The histograms of the framelet coefficient value of Cuprite data. \\$

- Robust reconstruction (fidelity term)
 Observation: At different noise levels.
 - the histograms of approximation coefficient value are similar;
 - the histograms of detail coefficient value are significantly distinct with each other.

Conclusion:

- The noise has little influence on approximation parts;
- we can treat the approximation and detail parts separately.

Leading to:

$$\frac{1}{2} \left\| \begin{bmatrix} \mathcal{W}_0(AX - Y) \\ \sqrt{\alpha} \mathcal{W}_1(AX - Y) \end{bmatrix} \right\|_F^2,$$

or equivalently:

$$\frac{1}{2} \| \mathcal{W}_0 A X - \mathcal{W}_0 Y \|_F^2 + \frac{\alpha}{2} \| \mathcal{W}_1 A X - \mathcal{W}_1 Y \|_F^2.$$
 (12)

Framelet based sparse unmixing model (FSU) ⑩ 華東時紀大学

Total energy:

$$\min_{X} E(X) = \frac{1}{2} \| \mathcal{W}_0 A X - \mathcal{W}_0 Y \|_F^2 + \frac{\alpha}{2} \| \mathcal{W}_1 A X - \mathcal{W}_1 Y \|_F^2 + \beta \| \mathcal{W} X \|_{1,1} + \| \iota(X) \|_{1,1},$$
(13)

Theorem

Let $Y, A, X \in \mathbb{R}^2$, and $\alpha, \beta > 0$, then the minimization problem (13) admits a unique solution in \mathbb{R}^2 .

Outline

- Hyperspectral Images and Spectral Unmixing
 - Introduction
 - Spectral mixing/unmixing process
 - Related works
- 2 Similarity-guided and ℓ_p -regularized Sparse Unmixing (SLpSU)
 - Similarity-guided regularization
 - ℓ_p -norm regularization
 - Proposed model and numerical algorithm
 - Experiments
- 3 Framelet based Sparse Unmixing (FSU)
 - Framelets and image representation
 - Framelet based sparse unmixing model
 - Numerical algorithm
 - Experiments and conclusions
- 4 Conclusion and future work

Numerical algorithm

Total energy:

$$\begin{split} \min_{X} E(X) = & \frac{1}{2} \| \mathcal{W}_{0} A X - \mathcal{W}_{0} Y \|_{F}^{2} + \frac{\alpha}{2} \| \mathcal{W}_{1} A X - \mathcal{W}_{1} Y \|_{F}^{2} \\ & + \beta \| \mathcal{W} X \|_{1,1} + \| \iota(X) \|_{1,1}, \end{split}$$

rewritten to the following equivalent constrained problem:

$$\min_{X,V_{1},V_{2},V_{3}} \frac{1}{2} \| \mathcal{W}_{0} V_{1} - \mathcal{W}_{0} Y \|_{F}^{2} + \frac{\alpha}{2} \| \mathcal{W}_{1} V_{1} - \mathcal{W}_{1} Y \|_{F}^{2} \\
+ \beta \| V_{2} \|_{1,1} + \| \iota(V_{3}) \|_{1,1},$$

$$\begin{cases}
V_{1} = AX \\
V_{2} = \mathcal{W}X \\
V_{3} = X
\end{cases} \tag{14}$$

Numerical algorithm

Overall algorithm:

- Input: spectral library A. observed data Y.
- Initialize: set t = 0, $X^{(0)} = (A^TA)^{-1}A^TY$, $V_1^{(0)} = AX^{(0)}$, $V_2^{(0)} = \mathcal{W}X^{(0)}$, $V_3^{(0)} = X^{(0)}$, $D_1^{(0)} = D_2^{(0)} = D_3^{(0)} = 0$; fix $\mu > 0$, $\alpha > 0$ and $\beta > 0$.
- Repeat:

$$\begin{split} & \chi^{(t+1)} = (A^TA + 2I)^{-1}[A^T(V_1^{(t)} + D_1^{(t)}) \\ & + \mathcal{W}^T(V_2^{(t)} + D_2^{(t)}) + (V_3^{(t)} + D_3^{(t)})], \\ & V_1^{(t+1)} = \mathcal{F}^{-1}\left(\frac{\mathcal{F}(K) \odot \mathcal{F}(Y) + \mu \mathcal{F}\left(AX^{(t+1)} - D_1^{(t)}\right)}{\mathcal{F}(K) + \mu}\right), \\ & V_2^{(t+1)} = \max\{|\mathcal{W}X^{(t+1)} - D_2^{(t)}| - \frac{\beta}{\mu}, 0\}\frac{\mathcal{W}X^{(t+1)} - D_2^{(t)}}{|\mathcal{W}X^{(t+1)} - D_2^{(t)}|}, \\ & V_1^{(t+1)} = \max\{X^{(t+1)} - D_3^{(t)}, 0\}, \\ & D_1^{(t+1)} = D_1^{(t)} + V_1^{(t+1)} - AX^{(t+1)}, \\ & D_2^{(t+1)} = D_2^{(t)} + V_2^{(t+1)} - \mathcal{W}X^{(t+1)}, \\ & D_3^{(t+1)} = D_3^{(t)} + V_3^{(t+1)} - X^{(t+1)}, \\ & update iteration: t = t + 1, \end{split}$$

- Until the stopping criterion is satisfied.
- Output: abundances X.

Outline

- Hyperspectral Images and Spectral Unmixing
 - Introduction
 - Spectral mixing/unmixing process
 - Related works
- 2 Similarity-guided and ℓ_p -regularized Sparse Unmixing (SLpSU)
 - Similarity-guided regularization
 - ℓ_p -norm regularization
 - Proposed model and numerical algorithm
 - Experiments
- 3 Framelet based Sparse Unmixing (FSU)
 - Framelets and image representation
 - Framelet based sparse unmixing model
 - Numerical algorithm
 - Experiments and conclusions
- 4 Conclusion and future work

Experiments with simulated data

Two metrics:

■ Signal to reconstruction error (SRE)

$$\mathsf{SRE} \equiv \frac{\mathbb{E}[\|X_{true}\|_F^2]}{\mathbb{E}[\|X_{true} - X\|_F^2]},$$

Generally, SRE is measured in dB: $SRE(dB) \equiv 10 \log_{10}(SRE)$.

■ Root mean square error (RMSE)

$$\mathsf{RMSE} = \frac{1}{\sqrt{\mathit{size}(X)}} \mathbb{E}[\|X_{\mathit{true}} - X\|_F^2],$$

The higher SRE and lower RMSE value represent the better unmixing performance.

Experiments with simulated data

	Groundtruth	CLSUnSAL	DSUnADM	SUnSAL-TV	FSU
SNR=20 dB					

Experiments with simulated data

Table: SRE(dB) and RMSE values of different unmixing methods to the simulated data cube on different noise levels

SNR		CLSUnSAL	DSUnADM	SUnSAL-TV	FSU
40 dB	SRE	14.6597	18.1897	18.2274	19.4870
	RMSE	0.0134	0.0089	0.0089	0.0077
30 dB	SRE	8.1536	12.9399	12.9881	14.6790
	RMSE	0.0283	0.0163	0.0162	0.0134
20 dB	SRE	4.1745	7.2897	7.3858	9.9667
	RMSE	0.0448	0.0313	0.0310	0.0230

Experiments with real data

Figure: The abundance maps estimated by SUnSAL-TV, and FSU for the subset of the AVIRIS Cuprite scene at SNR=40 dB noise level.

Experiments with real data

Table: the reconstruction errors (RE) and the sparsity of abundances on real data experiment

Algorithms	CLSUnSAL	DSUnADM	SUnSAL-TV	FSU
RE	0.0338	0.0088	0.0080	0.0078
Sparsity	0.6499	0.4293	0.6356	0.6988

Conclusion

- SLpSU better than FSU in piecewise smooth data with small noise.
- FSU better than SLpSU in complex data with large noise.

Future work

- Construct a proper low-rank unmixing model.
- Unmixing the data in tensor form.
- Unmixing the data with incomplete spectral library.

Thanks!