

Polar3[™] HiperFET[™] Power MOSFET

IXFT94N30P3 IXFQ94N30P3 IXFH94N30P3

N-Channel Enhancement Mode Avalanche Rated Fast Intrinsic Rectifier

Symbol	Test Conditions	Maximum Ratings		
V _{DSS}	$T_J = 25^{\circ}C \text{ to } 150^{\circ}C$	300	V	
V _{DGR}	$T_{_{\rm J}}$ = 25°C to 150°C, $R_{_{\rm GS}}$ = 1M Ω	300	V	
V _{GSS} V _{GSM}	Continuous Transient	± 20 ± 30	V	
I _{D25}	T _C = 25°C	94	A	
I _{DM}	$\rm T_{_{\rm C}}$ = 25°C, Pulse Width Limited by $\rm T_{_{\rm JM}}$	235	Α	
I _A	T _C = 25°C	47	A	
E _{AS}	$T_{c} = 25^{\circ}C$	2.5	J	
dv/dt	$I_{_{\mathrm{S}}} \le I_{_{\mathrm{DM}}}, V_{_{\mathrm{DD}}} \le V_{_{\mathrm{DSS}}}, T_{_{\mathrm{J}}} \le 150^{\circ}\mathrm{C}$	35	V/ns	
P_{D}	T _C = 25°C	1040	W	
T _J		-55 +150	°C	
T _{JM}		150	°C	
T _{stg}		-55 +150	°C	
T _L T _{SOLD}	Maximum Lead Temperature for Soldering Plastic Body for 10s	300 260	°C °C	
M _d	Mounting Torque (TO-247 & TO-3P)	1.13 / 10	Nm/lb.in	
Weight	TO-268 TO-3P TO-247	4.0 5.5 6.0	g g	

Symbol (T _J = 25°C U	Test Conditions Inless Otherwise Specified)	Charac Min.	teristic Typ.		
BV _{DSS}	$V_{GS} = 0V, I_D = 1mA$	300			V
V _{GS(th)}	$V_{DS} = V_{GS}, I_{D} = 4mA$	3.0		5.0	V
I _{GSS}	$V_{GS} = \pm 20V, V_{DS} = 0V$			±100	nA
I _{DSS}	$V_{DS} = V_{DSS}, V_{GS} = 0V$			25	μΑ
	$T_J = 125$ °C			750	μΑ
R _{DS(on)}	$V_{GS} = 10V, I_{D} = 0.5 \bullet I_{D25}, Note 1$			36	mΩ

 $V_{DSS} = 300V$ $I_{D25} = 94A$ $R_{DS(on)} \leq 36m\Omega$

TO-3P (IXFQ)

G = Gate D = DrainS = Source Tab = Drain

Features

- Fast Intrinsic Rectifier
- Avalanche Rated
- $^{\bullet}$ Low $\rm R_{\rm DS(ON)}$ and $\rm Q_{\rm G}$
- Low Package Inductance

Advantages

- High Power Density
- Easy to Mount
- Space Savings

Applications

- Switch-Mode and Resonant-Mode Power Supplies
- DC-DC Converters
- Laser Drivers
- AC and DC Motor Drives
- Robotics and Servo Controls

Symbol Test Conditions		Chai	Characteristic Values		
$(T_J = 25^{\circ}C U$	nless Otherwise Specified)	Min.	Тур.	Max.	
g _{fs}	$V_{DS} = 20V, I_{D} = 0.5 \cdot I_{D25}, \text{ Note 1}$	40	68	S	
C _{iss}			5510	pF	
C _{oss}	$V_{GS} = 0V, V_{DS} = 25V, f = 1MHz$		965	pF	
C _{rss}			25	pF	
R_{Gi}	Gate Input Resistance		1.2	Ω	
t _{d(on)}			23	ns	
t, (Resistive Switching Times		19	ns	
t _{d(off)}	$V_{GS} = 10V$, $V_{DS} = 0.5 \cdot V_{DSS}$, $I_{D} = 0.5 \cdot I_{D25}$		49	ns	
t _f	$R_{G} = 1\Omega$ (External)		11	ns	
$Q_{g(on)}$			102	nC	
Q _{gs}	$V_{GS} = 10V, V_{DS} = 0.5 \cdot V_{DSS}, I_{D} = 0.5 \cdot I_{D25}$		33	nC	
\mathbf{Q}_{gd}			37	nC	
R _{thJC}				0.12 °C/W	
R _{thCS}	(TO-247 & TO-3P)		0.25	°C/W	

Source-Drain Diode

Symbol Test Conditions		Cha	Characteristic Values			
$(T_J = 25^{\circ}C U)$	nless Otherwise Specified)	Min.	Тур.	Max.		
l _s	$V_{GS} = 0V$			94	Α	
I _{SM}	Repetitive, Pulse Width Limited by $T_{_{JM}}$			376	Α	
V _{SD}	$I_F = I_S$, $V_{GS} = 0V$, Note 1			1.5	V	
t _{rr}	$I_{\rm F} = 47A$, -di/dt = 100A/ μ s			250	ns	
I _{RM}	$V_{R} = 100V$, $V_{GS} = 0V$		15.6		Α	
\mathbf{Q}_{RM}	v _R = 100v, v _{GS} = 0v		1.4		μC	

Note 1. Pulse test, $t \le 300\mu s$, duty cycle, $d \le 2\%$.

PRELIMANARY TECHNICAL INFORMATION

The product presented herein is under development. The Technical Specifications offered are derived from a subjective evaluation of the design, based upon prior knowledge and experience, and constitute a "considered reflection" of the anticipated result. IXYS reserves the right to change limits, test conditions, and dimensions without notice.

IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions.

Terminals: 1 - Gate 2 - I 3 - Source

Dim.	Mill	imeter	Inc	hes
	Min.	Max.	Min.	Max.
Α	4.7	5.3	.185	.209
A,	2.2	2.54	.087	.102
A ₂	2.2	2.6	.059	.098
b	1.0	1.4	.040	.055
b,	1.65	2.13	.065	.084
b ₂	2.87	3.12	.113	.123
С	.4	.8	.016	.031
D	20.80	21.46	.819	.845
E	15.75	16.26	.610	.640
е	5.20	5.72	0.205	0.225
L	19.81	20.32	.780	.800
L1		4.50		.177
ØP	3.55	3.65	.140	.144
Q	5.89	6.40	0.232	0.252
R	4.32	5.49	.170	.216
S	6.15	BSC	242	BSC

IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions.

Fig. 13. Maximum Transient Thermal Impedance