08-26-2021-shift-1-16-30

1

AI24BTECH11011 - Himani Gourishetty

- 1) If $\mathbf{A} = \begin{pmatrix} \frac{1}{\sqrt{5}} & \frac{2}{\sqrt{5}} \\ \frac{-2}{\sqrt{5}} & \frac{1}{\sqrt{5}} \end{pmatrix}$, $\mathbf{B} = \begin{pmatrix} 1 & 0 \\ i & 1 \end{pmatrix}$, $i = \sqrt{-1}$, and $\mathbf{Q} = \mathbf{A}^{\mathsf{T}} \mathbf{B} \mathbf{A}$, then the inverse of the matrix $\mathbf{A} \mathbf{Q}^{2021} \mathbf{A}^{\mathsf{T}}$ is equal to:
- 2) If the sum of an infinite GP $a, ar, ar^2, ar^3, \cdots$ is 15 and the sum of the squares of its each term is 150, then the sum of ar^2 , ar^4 , ar^6 , \cdots is:

 - a) $\frac{5}{2}$ b) $\frac{1}{2}$ c) $\frac{25}{2}$ d) $\frac{9}{2}$
- 3) The value of $\lim_{n\to\infty} \frac{1}{n} \sum_{t=0}^{2n-1} \frac{n^2}{n^2+4r^2}$ is:
 - a) $\frac{1}{2} \tan^{-1}(2)$
 - b) $\frac{1}{2} \tan^{-1} (4)$
 - c) $\tan^{-1}(4)$
 - d) $\frac{1}{4} \tan^{-1} (4)$
- 4) Let ABC be a triangle with A(-3,1) and $ACB = \theta, 0 < \theta < \frac{\pi}{2}$. If the equation of the median through **B** is 2x + y - 3 = 0 and the equation of the angle bisector of $\tilde{\mathbf{C}}$ is 7x - 4y - 1 = 0, then $\tan \theta$ is equal to:
 - a) $\frac{1}{2}$

 - b) $\frac{3}{4}$ c) $\frac{4}{3}$
 - d) 2
- 5) If the truth value of the Boolean expression $((p \lor q) \land (q \to r) \land (\neg r)) \to (p \land q)$ is false, then truth values of the statements p, q, r respectively can be:
 - a) TFT
 - b) FFT
 - c) TFF
 - d) FTF

I. SECTION-B

1) Let $z = \frac{1-i\sqrt{3}}{2}$, $i = \sqrt{-1}$. Then the value of $21 + \left(z + \frac{1}{z}\right)^3 + \left(z^2 + \frac{1}{z^2}\right)^3 + \left(z^3 + \frac{1}{z^3}\right)^3 + \dots + \left(z^{21} + \frac{1}{z^{21}}\right)^3$ is

- 2) The sum of all integral values of $k (k \neq 0)$ for which the equation $\frac{2}{x-1} \frac{1}{x-2} = \frac{2}{k}$ in x has no real roots, is
- 4) If ${}^{1}P_{1} + 2 \cdot {}^{2}P_{2} + 3 \cdot {}^{3}P_{3} + \dots + 15 \cdot {}^{15}P_{15} = {}^{q}P_{r-s}, 0 \le s \le \overline{1, \text{ the }} {}^{q+s}C_{r-s}$ is equal to _____
- 5) A wire of length 36 m is cut into two pieces, one of the pieces is bent to form a square and the other is bent to form a circle. If the sum of the areas of the two figures is minimum, and the circumference
- 7) The locus of a point, which moves such that the sum of squares of its distances from the points
- (0,0), (1,0), (0,1), (1,1) is 18 units, is a circle of diameter d. Then d^2 is equal to _____.

 8) If y = y(x) is an implicit function of x such that $\log_e(x+y) = 4xy$, then $\frac{d^2y}{dx^2}$ at x = 0 is equal to
- 9) The number of three-digit even numbers, formed by the digits 0, 1, 3, 4, 6, 7 if the repetition of digits is not allowed, is
- 10) Let $a, b \in \mathbb{R}, b \neq 0$. Define a function

$$f(x) = \begin{cases} a \sin \frac{\pi}{2} (x - 1), & \text{for } x \le 0\\ \frac{\tan 2x - \sin 2x}{bx^3}, & \text{for } x > 0 \end{cases}$$

If f is continous at x = 0, then 10 - ab is equal to