

By **PhD. Samia Chehbi Gamoura**Associate Professor - EM Strasbourg
France

Big Data

- Data Concept
 - Data
 - Information
 - Knowledge
- Big Data Concept
 - Volume
 - Variety
 - Velocity
 - Veracity
- Big Data Life Cycle
 - Data Acquisition
 - Multi-Channels
 - Internet of Things
 - Cloud/Grid Computing
 - Data Storage
 - Data Base
 - Data Warehouse
 - Data Lake
 - Data Security

Analytics

- Concept
- Types
 - Traditional Analytics
 - Business Intelligence (BI)
 - OnLine Analytical Processing (OLAP)
 - Advanced Analytics
 - Artificial Intelligence
 - Data Mining
 - Machine Learning

Big Data Analytics

- Concept
- Role
- As a field
- Technically
- Big Data Analytics Life Cycle
 - Data Processing
 - Hadoop
 - MapReduce
 - Data Quality
- Big Data Analytics Project
- Technological and Social Mutations
- In Management
 - Applications
 - Predictive Management
 - Prediction in Unstructured BPM
 - Marketing/Sales Compliance
 - Supply Chain Advanced Risk Management
 - Supply Chain Predictive Risk Management

Big Data

- Data Concept
 - Data
 - Information
 - Knowledge
- Big Data Concept
 - Volume
 - Variety
 - Velocity
 - Veracity
- Big Data Life Cycle
 - Data Acquisition
 - Multi-Channels
 - Internet of Things
 - Cloud/Grid Computing
 - Data Storage
 - Data Base
 - Data Warehouse
 - Data Lake
 - Data Security

Analytics

- Concept
- Types
 - Traditional Analytics
 - Business Intelligence (BI)
 - OnLine Analytical Processing (OLAP)
 - Advanced Analytics
 - Artificial Intelligence
 - Data Mining
 - Machine Learning

Big Data Analytics

- Concept
- Role
- As a field
- Technically
- Big Data Analytics Life Cycle
 - Data Processing
 - Hadoop
 - MapReduce
 - Data Quality
- Big Data Analytics Project
- Technological and Social Mutations
- In Management
 - Applications
 - Predictive Management
 - Prediction in Unstructured BPM
 - Marketing/Sales Compliance
 - Supply Chain Advanced Risk Management
 - Supply Chain Predictive Risk Management

Big Data → Data Concept

What is 'Data' ?!

Big Data → Data Concept → Data

Data

Are the raw facts (or descriptions of facts) that were taken, observed, recorded, agreed, such as words, numbers, observations, surveys, etc.

- Data are unprocessed facts, figures, schemas, etc.
- In Information Systems (Computerized), Data is the input in the computer system.
- Data doesn't have a meaning!

Big Data → Data Concept → Data

Data

2 kinds of Data :

Qualitative: textual or symbolic

Quantitative: numerical

	Quantitative	Qualitative	
Concept/Definition	Valuated facts	Describted facts	
Methodology	Collected by measurement tools	Collected by observation	
Analysis	Performed by statistical and numerical methods	Perfomed by specific adapted methods of classification, quantification, etc.	
Results	Reported through statistic methods	Reported through a specific format/language	

Big Data → Data Concept → Data

Data

Example

Big Data → Data Concept → Information

Information

Is the raw fact that was taken, observed, recorded, agreed.

- Information is processed
- Processed Data become information.
- Information is based on Data

Big Data → Data Concept → Information

Big Data → Data Concept → Knowledge

Knowledge

Is the set of relationships between information elements following an ontology

- Mapped information: how they are related, what is compound in what, where ?
- There is ontology (definition of meanings) that frame the set of information

Big Data → Data Concept → Knowledge

What is 'Big Data' ?!

Big Data → Big Data Concept

Big Data → Big Data Concept

Definition

Big Data is the field that gathers all activities and functions of :

- **Acquisition** of Data,
- Storage of Data.

from multiple sources that cannot be processed by common and **traditional** systems (for example ERP, Excel, etc.).

In Big Data, Data are:

- Huge(Volume),
- hetereougenious (Variety),
- Dynamic (Velocity),
- Uncertain (Veracity).

Volume

Volume

The evolution of data stored and exchanged over time.

Volume

The evolution of data stored and exchanged over time.

Data Measurement Units

+	Unit	Abbreviation	Decimal	Binary	Size
1	bit	b	0 or 1	0 or 1	1/8 of a byte
	byte	В	8 bits	8 bits	1 byte
	kilobyte	КВ	1,000¹ bytes	1,024 ¹ bytes	1,000 bytes
	megabyte	MB	1,000 ² bytes	1,024 ² bytes	1,000,000 bytes
ı	gigabyte	GB	1,000 ³ bytes	1,024 ³ bytes	1,000,000,000 bytes
ı	terabyte	ТВ	1,000 ⁴ bytes	1,024 ⁴ bytes	1,000,000,000,000 bytes
ı	petabyte	РВ	1,000 ⁵ bytes	1,024 ⁵ bytes	1,000,000,000,000,000 bytes
l	exabyte	EB	1,000 ⁶ bytes	1,024 ⁶ bytes	1,000,000,000,000,000 bytes
	zettabyte	ZB	1,000 ⁷ bytes	1,024 ⁷ bytes	1,000,000,000,000,000,000 bytes
	yottabyte	YB	1,000 ⁸ bytes	1,024 ⁸ bytes	1,000,000,000,000,000,000,000 bytes

Volume

Distribution of Data centers around the world.

Volume

Multiple Data centers around the world.

Data Center Utah (USA)

Data Center Vitry (France)

Data Center Busan (South Korea)

Volume

Storage price decreasing.

Volume

Virtualization.

Volume

Internet Of Things.

Variety

No standard format of data in storages. Meta-Data of structures and organizations, semantic Data, images, videos, texts, XML, text formats, etc.

Variety

Big Data → Big Data Concept → Variety → Applicative Exercise 1

Applicative Exercise 1

Group work. Duration 30min. Sore: 0.5

Try to list more than 10 data sources in at least 3 areas. For example RFID in Manucturing and Logistics

Data source	Туре	Area	Image/Pattern
RFID	Chip with Digital code	Manufacuring / Logistics	

Velocity

Speed of data flows is going increasingly because of IT high process.

Velocity

Speed of data flows is going increasingly because of IT high progress.

Veracity

Uncertainty of the data - Uncertain multichannel sources : Archive

Multiple profiles

Veracity

Uncertainty of the data - Uncertain multichannel sources : Multiple profiles

Veracity

Uncertainty of the data - Uncertain multichannel sources : Delegation

Veracity

Uncertainty of the data - Uncertain multichannel sources : forecasted by nature

Big Data Life Cycle

Big Data Life Cycle

Big Data → Big Data Life Cycle → Data Acquisition

Data Acquisition

Is the process of collecting, cleaning, and filtering data before the data is put in a the storage.

Big Data → Big Data Life Cycle → Data Acquisition → Multi-Channels

Multiple-Channels

- Data streaming → structured and unstructured Data (mainly from Internet of Things)
- **Batch and Events sourcing** → Data from insfrastructures (mainly from cloud and on Pro)
- **Real-time Data flows** → Real-time/near real-time flows (mainly from Internet of Things and cloud)

Internet of Things (IoT)

A set of devices that are able to connect and exchange data through Internet.

Internet of Things (IoT)

Internet of Things (IoT)

Internet of Things (IoT)

Logistics: Tracking, smart manufacturing, optimization

Internet of Things (IoT)

Internet of Things (IoT)

Road safety: study of roads, traffic, tracking, verbalization, etc.

Internet of Things (IoT)

Meteorology: localized forecasting, weather risk prevention, weather warnings, etc.

Big Data → Big Data Life Cycle → Data Acquisition → Cloud/Grid Computing

Cloud/Grid Computing

Computer resources that are located anywhere with access over Internet and processing Data and information in a distributed mode. They provide sharing, archiving, and high-scale.

Big Data → Big Data Life Cycle → Data Storage

Data Storage

Storage infrastructure dedicated to save, protect, manage, recover, archives, alter, delete, and retrieve records of Data.

Storage Disks

Big Data → Big Data Life Cycle → Data Storage → Data Base

Data Base

SQL and especially NoSQL Data Bases like MongoDB, Cassandra ou Redis.

Big Data → Big Data Life Cycle → Data Storage → Data Warehouse

Data Warehouse

Repository of Data (set of connected storages) regarding an organization in order to feed Data Marts usually used for Business Intelligence applications for reporting, dashboards, and decision making.

- Data sources are usually transactional like ERP, CRM, SCM, etc.
- Data are structured.
- Data are stored in formated models (records and rows).

Big Data → Big Data Life Cycle → Data Storage → Data Lake

Data Lake

A centralized architecture of one or more repositories of Data that are not related to one organization in order to feed Data Analytics (for processing).

- Data sources are mutliple
- Data are structured and unstructured
- Data are stored in unformated models.

Big Data → Big Data Life Cycle → Data Storage → Data Security

Data Security

It is the set of methods and tools that aim to protect electronic privacy of people and enterprises against illegal access to Data from malicious uses.

Agenda

Big Data

- Data Concept
 - Data
 - Information
 - Knowledge
- Big Data Concept
 - Volume
 - Variety
 - Velocity
 - Veracity
- Big Data Life Cycle
 - Data Acquisition
 - Multi-Channels
 - Internet of Things
 - Cloud/Grid Computing
 - Data Storage
 - Data Base
 - Data Warehouse
 - Data Lake
 - Data Security

Analytics

- Concept
- Types
 - Traditional Analytics
 - Business Intelligence (BI)
 - OnLine Analytical Processing (OLAP)
 - Advanced Analytics
 - Artificial Intelligence
 - Data Mining
 - Machine Learning

Big Data Analytics

- Concept
- Role
- As a field
- Technically
- Big Data Analytics Life Cycle
 - Data Processing
 - Hadoop
 - MapReduce
 - Data Quality
- Big Data Analytics Project
- Technological and Social Mutations
- In Management
 - Applications
 - Predictive Management
 - Prediction in Unstructured BPM
 - Marketing/Sales Compliance
 - Supply Chain Advanced Risk Management
 - Supply Chain Predictive Risk Management

Analytics → **Concept**

Concept

Analytics denotes the set of methods, techniques, heuristics, and processes of analyzing data in order to find valuable information by:

- Revealing hidden pattern,
- Finding **connections** between concepts,

With this, businesses may take better/more accurate decisions.

Analytics → Types

Types

In Business, there are 2 generations of Analytics:

 Traditional Analytics: The set of common tools of analytics that use the data in a surface as to try understanding what is going on, what is the best result, what was the set best strategy, and so forth. This kind of Analytics does not need complex methods but common practices.

Examples: Excel, Oracle, ERP, etc.

 Advanced Analytics: Some traditional tools cannot process the huge volumes of Data, so more complex methods are available in statistics, mathematics, artificial intellience, etc.

Example of volumes where Excel can't exceed thousands of rows

Analytics → **Types** → **Traditional**

Traditional Analytics

- Business Intelligence (BI): tools that allow business to accumulate data from internal and external sources in order to provide dashboards, and reporting for management
- OnLine Analytical Processing (OLAP): tool that allows users to selectively query data from different views dynamlically.

OnLine Analytical Processing (OLAP)

Business Intelligence (BI)

Analytics → Types → Traditional → Business Intelligence (BI)

Business Intelligence (BI)

Tools that allow business to accumulate data from internal and external sources in order to provide dashboards, and reporting for management

Business Intelligence (BI)

Analytics → Types → Traditional → OnLine Analytical Processing (OLAP)

OnLine Analytical Pricessing (OLAP)

Tool that allows users to selectively query data from different views dynamlically.

OnLine Analytical Processing (OLAP)

Analytics → **Types** → **Advanced Analytics**

Advanced Analytics

- **Artificial Intelligence**: Any machine that observes the environment and decides automatically (through algorithms) to productively accomplishing goals.
- **Data Mining:** The set of approaches that allow identifying patterns in a set of Data. Meaningful information are extracted.

Artificial Intelligence

Analytics → Types → Advanced Analytics → Applicative Exercise 2

Applicative Exercise 2

Duration: 60min. Group Work. Score: 1.0

Context

Try to list more than 10 Companies that are specialized in Big Data Solutions for enterprises, with a brief description of each one, the names of the proposed products (software) and/or services (IT providing), and creation data of the activity.

Try to illustrate the evolution (history) of creation by dates and the number of companies by year in one chart. What do you have as result?

Analytics → Types → Advanced Analytics → Artificial Intelligence

Artificial Intelligence

- **Reasonning:** By rules, logic, deductions, generalization, etc.
- Knowledge representation: by gathering commonsense objects.
- **Multi Agent Intelligence:** by planning in a shared and parallel way for the same goals
- **Machine Learning:** algorithms that try to learn from experience to improve the present and future.
- **Natural Lanuguage Processing:** methods that allow the machine understanding the human language
- **Social Intelligence:** methods that allow the machine (usually set of machines) to bypass the numeric intelligence and introduce the emotional and behavioral intelligence.
- And many other types and sub-types.

Analytics → Types → Advanced Analytics → Data Mining

Data Mining

- Is the set of tools that aim to find hidden patterns and relationships between Data and information to answer one or more issues for an enterprise. These issues can be prediction of actions or decision making.

Analytics → Types → Advanced Analytics → Machine Learning

Machine Learning

The set of computational methods that automate the acquisition of knowledge from experience.

In Enterprises application, Machine Learning uses Statistics, Mathematics, Computer Science, and Graphs Theory in engineering tasks related to business. This provides unseen patterns and diminish irregularities in human errors

Applications in management can be:

- Stock prediction,
- Accounting accuracy,
- Insurance Fraud detection.
- Bankruptcy prediction,
- Risk Prediction,
- Business Process Improvement,

Agenda

Big Data

- Data Concept
 - Data
 - Information
 - Knowledge
- Big Data Concept
 - Volume
 - Variety
 - Velocity
 - Veracity
- Big Data Life Cycle
 - Data Acquisition
 - Multi-Channels
 - Internet of Things
 - Cloud/Grid Computing
 - Data Storage
 - Data Base
 - Data Warehouse
 - Data Lake
 - Data Security

Analytics

- Concept
- Types
 - Traditional Analytics
 - Business Intelligence (BI)
 - OnLine Analytical Processing (OLAP)
 - Advanced Analytics
 - Artificial Intelligence
 - Data Mining
 - Machine Learning

Big Data Analytics

- Concept
- Role
- As a field
- Technically
- Big Data Analytics Life Cycle
 - Data Processing
 - Hadoop
 - MapReduce
 - Data Quality
- Big Data Analytics Project
- Technological and Social Mutations
- In Management
 - Applications
 - Predictive Management
 - Prediction in Unstructured BPM
 - Marketing/Sales Compliance
 - Supply Chain Advanced Risk Management
 - Supply Chain Predictive Risk Management

Concept

Processing)

Machine Learning (ML)
AI (Artificial Intelligence)

Concept

A wide cloud of data in dynamic flows.

Concept

A wide cloud of data in dynamic flows.

In order to take advantage of these huge Data and understand them

We have to read them, to classify them, to explore them

BUT...!

Concept

A wide cloud of data in dynamic flows.

Concept

A wide cloud of data in dynamic flows.

Diversity in Data sets makes the mining complex by humans and even by machines!

Hence the use of advanced methods to mine

All of these methods constitute the BIG DATA ANALYTICS

Concept

Big Data Analytics are the set of tools that aim to process the stored Big Data in order to :

- Reveal hidden patterns,
- **Discover unknown** correlations,
- Forecasting market trends,
- Finding customer preferences,
- Accurating forecastings,
- Unconvering unexpected information and knowledge.

•

Big Data Analytics → **Role**

Role

Big Data Analytics → As a field

As a field

Big Data Analytics → Technically

Big Data Analytics → Technically → Applicative Exercise 3

Applicative Exercise 3

Group work. Duration 1 week. Score 1.0

Try to list more than 10 applications of Bid Data Analytics in Management/Business with information about area, concerns, and possible Data sources. For example Segmentation of Customers (finding hidden segments of new customers) in Customer Relationship Management (CRM) as following.

Application	Area	Concern	Data sources
Customers Segmentation	Customer Relationship Management	Helping in opening new markets and/or new market/products opportunities	Data sources: Demographic Data from territories, social media (new population), weater/tourism (seasonable products), etc.

Big Data Analytics Life Cycle

Big Data Analytics Life Cycle

Big Data Analytics → Big Data Analytics Life Cycle → Applicative Exercise 4

Applicative Exercise 4

Individual work. Duration 20min. Score 0.5

Try to find and distinguish between the paradigms 'Data', 'Information', and 'knowledge' in the figure below (Figure Big Data Analytics Life Cycle).

Big Data Analytics → Big Data Analytics Life Cycle → Data Processing

Data Processing

Big Data Analytics → Big Data Analytics Life Cycle → Data Processing

Data Processing

A number of frameworks exist for data parallel processing:

- Spark: Open-source more adapted for wide assortment of workloads and more powerful in streaming mode.
- **Hadoop MapReduce:** Open-source framework processes Data stored in HDFS format (Hadoop Distributed File System), with an algorithm MapReduce and a combined with the Data Base Hbase. It is more adapted for wide volumes of data and more powerful in batch mode..

Hadoop

Hadoop

MapReduce

MapReduce

Big Data Analytics → Big Data Analytics Life Cycle → Data Quality

Data Quality

Is the set of operations for cleansing of Data by improving truthfulness, consistency, compliance, and significance. The management of these operations in the field of Big Data Analytics is called 'Master Data Management'

Big Data Analytics → Big Data Analytics Project

Big Data Analytics Project

Step 1

Identify the context and the objective(ex. Target Marketing)

Etape 2

Aggregate the Data (ex. Buy and open Data flows from FB, and/or Open-Data)

Etape 3

Exploration of the accumulated Data (ex. Hadoop, MapReduce, Cassandra, ..)

Exploration of the accumulated Data (ex. Hadoop, MapReduce, Cassandra, ..)

Elape 3

Big Data Analytics → Big Data Analytics Project → Applicative Exercise 5

Applicative Exercise 5

Try to export an Excel file of Data from the Open Data of French government (ex. agriculture data of Strasbourg) (https://www.data.gouv.fr/)

Big Data Analytics → In Management

Data Visualization

In Management **Big Data Analytics Patterns Discovery and Predictive Real-time Management**

Management

Big Data Analytics → In Management → Applications

Big Data Analytics → In Management → Applications

Before Big Data Analytics

With Big Data Analytics

Big Data Analytics → In Management → Applications → Prediction in Unstructured BPM

Big Data Analytics → In Management → Applications → Prediction in Unstructured BPM

Business Process Execution

Big Data Analytics → In Management → Applications → Prediction in Unstructured BPM

Applicative Exercise 6

Group Work. Duration 60min. Score 1.0

In the given SCOR model, select an operation then propose a solution based on Big Data Analytics following the following information:

- Operation in SCOR
- Objective
- Data Sources

For example:

- **Function in SCOR:** Distribution optimization
- **Objective**: Predictive Optimization
- Data Sources:
 - GPS,
 - History of vehicles/Distribution (indents, duration, delays, etc.)
 - Weather forecasting
 - RFID
 - ...

Big Data Solution

Bibliography

- Book: 'Data Analytics Made Accessible'. 2018. by Anil Maheshwari
- Book: 'Too Big to Ignore: The Business Case for Big Data'. by award-winning
- Book: 'Data Smart: Using Data Science to Transform Information into Insight', by J.
 W. Foreman'.
- Paper: 'Almeida, F. (2018). Big Data: Concept, Potentialities and Vulnerabilities'.
 Emerging Science Journal, 2(1).
- McAfee, A., Brynjolfsson, E., Davenport, T. H., Patil, D. J., & Barton, D. (2012). Big data: the management revolution. Harvard business review, 90(10), 60-68.
- Zikopoulos, P., & Eaton, C. (2011). Understanding big data: Analytics for enterprise class hadoop and streaming data. McGraw-Hill Osborne Media.
- Kwon, O., Lee, N., & Shin, B. (2014). Data quality management, data usage experience and acquisition intention of big data analytics. International Journal of Information Management, 34(3), 387-394.

Thanks ... any questions?

