Self-Organized Criticality

By Chew Lock Yue, PhD

Division of Physics and Applied Physics School of Physical and Mathematical Sciences Nanyang Technological University

Who could ever calculate the path of a molecule? How do we know that the creation of worlds are not determined by falling grains of sand?

- Victor Hugo, *Les Miserables*

Astronomical Scale

Macroscopic Scale

Mesoscopic Scale

Self-Similarity

Road Network

Leaf Vascular Network

River Network

Lung Tubular Network

Blood Vessel Network

Neural Network

Fractals

$$m = r^{D}$$

$$D = \frac{\ln m}{\ln r}$$

$$m = 1$$
 $r = 1$

$$m = 2$$
 $m = 3$ $r = 3$

$$m = 1$$
 $r = 1$

$$m = 4$$
 $r = 2$

$$r = 3$$

m = 9

m ~ Number of Copies*r* ~ Scale Factor*D* ~ Fractal Dimension

Koch Snowflake

Power Laws

$$P(s) = s^{-\tau}$$

0.001 - Company Compan

Ranking of Cities Ranking of Words

ranking of words

Pulsar Glitches

Biological Extinction

Cotton Price

Earthquake Magnitude

1/f Noise

Intensity of Light from Quasar

Global Temperature

Criticality

Pressure

Second-Order Phase Transition

Liquid-gas critical point

Density - ρ

Data for CO₂ and Xe. Critical index β≈0.34

Ferromagnetism critical point

Specific Heat of MnF₂. The power law $C \sim \epsilon^{-0.16}$

Universality

Ising Model

A model for ferromagnetic phase transition

$$H = -J \sum_{i,j} \sigma_i \sigma_j - h \sum_i \sigma_i$$

Ising Model Simulation (h = 0)

 $T \rightarrow 0$

 $T \to T_c$

 $T \to \infty$

Experimental Comparison

Experimenters	Ref.	T _c (°K)	$\epsilon = \Delta T /T_c$ Range for fit	α		
		Antiferromag	nets			
Teaney	86	67.33 ± 0.01	$2\times10^{-4}-5\times10^{-2}$	≲0.16		
Skalyo, Friedberg	84	2.289 ± 0.002	$10^{-3} - 3 \times 10^{-2}$ $5 \times 10^{-3} - 4 \times 10^{-2}$	≲0.11		
Friedberg, Wasscher	89	1.622 ± 0.005	10-3-10-1			
75 1	05	0.193 ± 0.001	$10^{-3}-2\times10^{-2}$	≲0.6		
Miedema, Wielinga, Huiskamp	63	0.52 ± 0.01	$4\times10^{-3}-2\times10^{-2}$ $4\times10^{-3}-5\times10^{-2}$	≲0.7		
Teaney, Moruzzi, Argyle	90	0.83 ± 0.01	2×10 ⁻¹ -5×10 ⁻² 2×10 ⁻² -2×10 ⁻²	≲0.15		
		Ferromagn	ets			
Kraftmakher, Romashina	91	1043.0 ± 1.0	2×10^{-3} - 10^{-1} 3×10^{-3} - 7×10^{-2}	≲0.17		
Miedema, Wielinga, Huiskamp	92	0.88 ± 0.01	10-3-10-1	≲0.10		
Kraftmakher	93	627.0	$5\times10^{-3}-8\times10^{-2}$			
Value used for scaling law analysis						
Molecular field theory						
				≲0.2		
	Teaney Skalyo, Friedberg Friedberg, Wasscher Miedema, Wielinga, Huiskamp Teaney, Moruzzi, Argyle Kraftmakher, Romashina Miedema, Wielinga, Huiskamp Kraftmakher	Teaney 86 Skalyo, Friedberg 84 Friedberg, Wasscher 89 Miedema, Wielinga, Huiskamp 85 Teaney, Moruzzi, Argyle 90 Kraftmakher, Romashina 91 Miedema, Wielinga, Huiskamp 92 Kraftmakher 93	Antiferromage Teaney 86 67.33±0.01 Skalyo, Friedberg 84 2.289±0.002 Friedberg, Wasscher 89 1.622±0.005 Miedema, Wielinga, Huiskamp 85 0.193±0.001 0.52±0.01 0.52±0.01 Teaney, Moruzzi, Argyle 90 0.83±0.01 Kraftmakher, Romashina 91 1043.0±1.0 Miedema, Wielinga, Huiskamp 92 0.88±0.01 Kraftmakher 93 627.0	Experimenters Ref. T_c (°K) Range for fit Antiferromagnets Teaney 86 67.33 ± 0.01 $2\times10^{-4}-5\times10^{-2}$ Skalyo, Friedberg 84 2.289 ± 0.002 $10^{-3}-3\times10^{-2}$ Friedberg, Wasscher 89 1.622 ± 0.005 $10^{-3}-4\times10^{-2}$ Miedema, Wielinga, Huiskamp 85 0.193 ± 0.001 $10^{-3}-2\times10^{-2}$ Miedema, Moruzzi, Argyle 90 0.83 ± 0.01 $2\times10^{-3}-5\times10^{-2}$ Teaney, Moruzzi, Argyle 90 0.83 ± 0.01 $2\times10^{-3}-5\times10^{-2}$ Ferromagnets Kraftmakher, Romashina 91 1043.0 ± 1.0 $2\times10^{-3}-10^{-1}$ Miedema, Wielinga, Huiskamp 92 0.88 ± 0.01 $10^{-3}-10^{-1}$ Kraftmakher 93 627.0 $5\times10^{-3}-8\times10^{-2}$		

Specific Heat

Experimental Comparison

					STATE STATE	
Material	Experimenters	Ref.	Method	$T_{\mathfrak{o}}$ (°K)	$\epsilon = \Delta T /T_c$ Range for fit	β
			Antiferr	omagnets		
MnF_2	Heller, Benedek	51	NMR on F^{19}	67.336 ± 0.003	8×10 ⁻⁵ -2×10 ⁻²	0.335±0.01
CuCl ₂ •2 H ₂ O	Poulis, Hardeman	76	NMR, Protons	4.337 ± 0.003	$5 \times 10^{-4} - 10^{-2}$ $10^{-2} - 10^{-1}$	0.18±0.07 0.29±0.03
CoCl ₂ ·6 H ₂ O	Sawatzky, Bloom	52	NMR, Protons	2.275	10-2-10-1	0.15 ± 0.05
	Van der Lugt, Poulis	77	NMR, Protons	2.275	5×10 ⁻² -2×10 ⁻¹	0.23±0.02
KMnF ₃	Cooper, Nathans	69	Neutron scattering	88.06 ± 0.02	10-2-10-1	0.33
		,	Ferron	nagnets		
Iron	Preston, Hanna, Heberle	71	Mössbauer Fe ⁵⁷	1042.0 ± 0.3	2×10 ⁻³ -10 ⁻¹	0.34±0.02
	Potter	78	Magnetocaloric effect	1035.0 ± 2.0	4×10 ⁻³ -2×10 ⁻¹	0.36±0.08
Nickel	Howard, Dunlap, Dash	29	Mössbauer Fe ⁵⁷	629.4	5×10 ⁻⁴ -10 ⁻² 10 ⁻² -1.6×10 ⁻¹	0.51±0.04 0.33±0.03
EuS	Heller, Benedek	79	NMR, Eu ¹⁵³	16.50 ± 0.03	10-2-10-1	0.33±0.01
YFeO ₃	Gorodetsky, Shtrikman, Treves	30	Vibrating sample magne- tometer	643	2×10 ⁻⁴ -3×10 ⁻⁸	0.55±0.04
	Eibschutz, Shtrikman, Treves	80	Mössbauer Fe ⁵⁷	640	10-2-3×10-1	0.354±0.00
CrBr ₃	Senturia, Benedek	81	NMR, Br ⁷⁹ , Br ⁸¹	32.56 ± 0.015	7×10 ⁻⁸ -5×10 ⁻²	0.365±0.0
Value used for se	caling law analysis	-				0.33±0.03
Molecular field theory				0.5		
3-dimensional Ising model						0.313±0.00
		1000	The second second	The second second	The second second	

Spontaneous Magnetization

Complexity

Coupled Pendulums

Per Bak
Pioneer in the
physics of complex
systems

Sandpiles

Chao Tang

Discoverers of Self-Organized Criticality

Kurt Wiesenfeld

Per Bak

BTW Sandpile Model

Example of SOC: sandpile model on 2D square lattice (active) $z(x,y) \rightarrow z(x,y) - 4$ (topple) $z(x\pm 1,y) \rightarrow z(x\pm y) + 1$ $z(x,y\pm 1) \rightarrow z(x,y\pm 1) + 1$

1	1	О	2	3	О
О	3	2	1	1	3
2	2	1	3	3	1
2	О	О	2	0	1
1	1	3	2	2	1
3	2	1	1	О	2

1	1	О	2	3	О
О	3	2	2	1	3
2	2	2	O	4	1
2	О	О	3	О	1
1	1	3	2	2	1
3	2	1	1	О	2

1	1	0	2	3	O
О	3	2	2	2	3
2	2	2	1	0	2
2	О	О	3	1	1
1	1	3	2	2	1
3	2	1	1	О	2

Sandpile Dynamics

... sandpile model on 2D square lattice

1	1	О	2	3	О
О	3	2	2	2	3
2	2	2	1	О	2
2	О	О	3	1	1
1	1	3	4	2	1
3	2	1	1	О	2

1	1	О	2	3	О
О	3	2	2	2	3
2	2	2	1	О	2
2	О	1	4	1	1
1	2	0	1	3	1
3	2	2	2	О	2

1	1	О	2	3	О
0	3	2	2	2	3
2	2	2	2	О	2
2	О	1	0	2	1
1	1	4	1	3	1
3	2	1	2	О	2
3	2	1	2	0	2

1	1	О	2	3	О
О	3	2	2	2	3
2	2	2	1	О	2
2	О	О	4	1	1
1	1	4	0	3	1
3	2	1	2	О	2

1	1	О	2	3	О
О	3	2	2	2	3
2	2	2	2	О	2
2	О	2	0	2	1
1	2	0	2	3	1
3	2	2	2	О	2

	-		-30		
1	1	О	2	3	О
О	3	2	2	2	3
2	2	2	2	О	2
2	О	2	0	2	1
1	2	0	2	3	1
3	2	2	2	О	2

Power Law Distributions

Distribution of Cluster Size

Distribution of Lifetime

2-Dimensional

3-Dimensional

Cluster Size

Self-Organized Criticality

Source: Netherlands Organization for Scientific Research

Fractals

Attractor for Metastable Configurations

1/f behavior

Self-Organized Criticality

Data Collapse

Finite Size Scaling

$$P(s) = a_s s^{-\tau} G_s \left(\frac{s}{b_s L^D} \right)$$

SOC Features

- Slow Drive/Fast Relaxation
- Open/Dissipative
- Threshold/Instability
- Contingent/History
- Avalanche/Fluctuations

Experimental Verifications

Rotating Drum Experiment

IBM Experiment

Norwegian Rice Pile

University of Michigan Experiment

Earthquakes

Burridge-Knopoff Block-Spring Model

OFC Model Non-conservative SOC Model

$$E_i \rightarrow E_i + \varepsilon$$
 Homogeneous driving $E_i \geq E_c \Rightarrow \begin{cases} E_i \rightarrow 0, \\ E_{nn} \rightarrow E_{nn} + \alpha E_i \end{cases}$

Gutenberg-Richter Law

The Earth Crust has self-organized to a critical state.

Biological Evolution

SOC without sandpile

Bak-Sneppen Model: Random numbers between o and 1 are arranged in a circle. At each time step, the lowest number, and the number at its two neighbors, are each replaced by new random numbers.

$$f(t) = f_c - A \left(\frac{t}{N}\right)^{-1/(\gamma - 1)}$$

Self-Organization

Punctuated Equilibrium

- Cambrian Explosion
- Dinosaur Extinction

Riots

Richardson's Power Law, Statistics of Deadly Quarrels

Little India Riots

Wars

Forest Fire

Forest Fire Model

- A cell with burning tree turns into an empty cell
- A tree will burn if at least one neighbor is burning
- A tree ignites with probability *f* even if no neighbor is burning
- A tree appears in an empty cell with probability *p*

Stock Market Crashes

Instabilities

- Imitation
- Herding
- Cooperativity
- Feedbacks

Self-Organizes

to Criticality Speculative Bubbles

Crashes

The Brain

Observation
Other
thoughts

THOUGHTS
~ small or large avalanche

Brain Self Organizes into a Critical State

- Subcritical ~ access limited information
- Supercritical ~ too noisy

Traffic Jams

The critical state, with jams of all sizes, is the most efficient state, that can be reached dynamically.

Subcritical ~ free flow (under-utilization)

Supercritical ~ jammed (over-utilization)

Lifetime distribution from emergent jam

A Relook at SOC

- What is distinct about SOC?
 - Slowly driven, interaction dominated threshold system. Self-organization versus tuning of parameters Robustness of critical behavior
- Is there a theory of SOC systems?
 - Mean field theory
 - Exact solution in terms of operators for Abelian sandpile
 - Langevin equations
 - Dynamically driven renormalization group
- Has SOC taught us anything new about the world?
 - The importance of fluctuations
- Is there anyway predictive power in SOC?
 - Fluctuations have prevented us from predicting SOC systems in detail. Understanding of mechanisms can provide insights into possible
 - measures
 - Having small or medium size fire/ Releasing social tensions in small or medium groups
 - Create friction in the system ~ Cooling measures, e.g. Stock market, Property market.

SOC – Where do we go from here?

- Inconclusive experimental evidence on the possible causal relationship between the emergent power laws and the underlying self-organized critical state
 - Variable selection
 - Gibrat's law growth process by importance measure
 - Coherent noise model (non-critical steady state)
 - Highly optimized tolerance (non-critical self-organizing state)
- Are the empirical distributions of complex systems exactly power law?
 - Pareto, log-normal, log-Cauchy distributions look similar in log-log plot
 - Heavy tailed distributions
- Dragon Kings

References

- [1] Per Bak, "How nature works: the science of self-organized criticality", Springer-Verlag, New York, 1996.
- [2] Henrik Jeldtoft Jensen, "Self-organized criticality: emergent complex behavior in physical and biological systems", Cambridge University Press, 1998.
- [3] Kim Christensen and Nicholas R. Moloney, "Complexity and criticality", Imperial College Press, 2005.
- [4] Gunnar Pruessner, "Self-organized criticality: theory, models and characterisation", Cambridge University Press, 2012.
- [5] Donald L. Turcotte, "Self-organized criticality", Reports on Progress in Physics **62**, 1377 (1999).
- [6] Dimitrije Marković and Claudius Gros, "Power laws and self-organized criticality in theory and nature", arXiv:1310.5527v3.
- [7] Per Bak, Chao Tang and Kurt Wiesenfeld, "Self-organized criticality", Physical Review A **38**, 364 (1988).
- [8] Per Bak and Kan Chen, "Self-organized criticality", Scientific American, page 46, January 1991.

References

- [9] Leo P. Kadanoff, "More is the same: phase transitions and mean field theory", Journal of Statistical Physics 137, 777 (2009).
- [10] Leo P. Kadanoff *et al*, "Static phenomena near critical points: theory and experiment", Reviews of Modern Physics 39, 395 (1967).
- [11] Lars-Erik Cederman"Modeling the size of wars: from billiard balls to sandpiles", American Political Science Review 97, 135 (2003).
- [12] Bruce D. Malamud, Gleb Morein and Donald L. Turcotte, "Forest fires: an example of self-organized critical behavior", Science 281, 1840 (1998).
- [13] B. Drossel and F. Schwabl, "Self-organized critical forest-fire model", Physical Review Letters 69, 1629 (1992).
- [14] Xavier Gabaix *et al*, "A theory of power law distributions in financial market fluctuations", Nature 423, 267 (2003).
- [15]Akihiro Nakayama et al, "Detailed data of traffic jam experiment", Traffic and Granular Flow '07, pp 389-394 (2009).
- [16] Kai Nagel and Maya Paczuski, "Emergent traffic jams", Physical Review E 51, 2909 (1995).