

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

MATHEMATISCHES INSTITUT

Dirk-André Deckert & Jago Silberbauer

Wintersemester 2024/25

Mathematik 3 für Physiker - Übung 4

Aufgabe 1

Es seien $a,b \in \mathbb{R}$ mit a < b und $f : \mathbb{R} \times [a,b] \to \mathbb{R}$ eine stetig partiell differenzierbare Funktion mit

$$\lim_{\epsilon \to 0} \sup_{x \in [a,b]} \left| \frac{f(x,t+\epsilon) - f(x,t)}{\epsilon} - (\partial_t f)(x,t) \right| = 0 \tag{1}$$

für alle $t \in \mathbb{R}$. Zeigen Sie, dass dann die Funktion

$$F: \mathbb{R} \to \mathbb{R}, \ t \mapsto F(t) = \int_{a}^{b} f(x, t) dx \tag{2}$$

differenzierbar ist mit

$$F'(t) = \int_{a}^{b} (\partial_t f)(x, t) dx. \tag{3}$$

Aufgabe 2

Es sei $y_0 \in \mathbb{R}$. Weiterhin sei $V : \mathbb{R} \to \mathbb{R}$ eine Kontraktion. Wir betrachten das Anfangswertproblem (AWP)

$$\dot{y}(t) = V(y(t)), \quad t \in]0, 1[,$$

$$y(0) = y_0. (5)$$

Zeigen Sie, dass das AWP eine eindeutige Lösung $y:[0,1]\to\mathbb{R}$ hat.

Hinweis: Schreiben Sie die Differentialgleichung in eine Integralgleichung um und verwenden Sie anschließend den Banach'schen Fixpunktsatz.

Aufgabe 3 (Schnitte von Sigma-Algebren)

Es sei Ω eine Menge und \mathcal{A}, \mathcal{B} zwei σ -algebren auf Ω . Zeigen Sie, dass dann

$$\mathcal{A} \cap \mathcal{B} := \{ A \cap B \mid A \in \mathcal{A}, B \in \mathcal{B} \}$$
 (6)

ebenfalls eine σ -Algebra auf Ω definiert.

Aufgabe 4

Es sei $\Omega = \{1, 2, 3, 4\}$ eine Menge und $\mathcal{E} = \{\{1, 2\}, \{1, 3\}\}$. Bestimmen Sie $\sigma(\mathcal{E})$.

Aufgabe 5

Beweisen Sie die Aussagen 1,2,3,5 von *Lemma 6* im Abschnitt *Introduction to Measure Theory* im *Hitchiker's Guide to Mathematics*.

Aufgabe 6 (Monotonie der erzeugten σ -Algebra)

Es sei Ω eine Menge und $\mathcal{E}, \mathcal{E}' \subset \mathcal{P}(\Omega)$ mit $\mathcal{E} \subset \mathcal{E}'$. Zeigen Sie $\sigma(\mathcal{E}) \subset \sigma(\mathcal{E}')$.

Aufgabe 7 (Banach-Tarski-Paradox)

Sie dürfen folgende Aussage ohne Beweis als gegeben annehmen:

Es seien $n \geq 3$ und $A, B \subset \mathbb{R}^n$ beschränkte Mengen mit nichtleerem Inneren. Dann gibt es ein $m \in \mathbb{N}$ und Zerlegungen $A = A_1 \cup \cdots \cup A_m$ und $B = B_1 \cup \cdots \cup B_m$ in jeweils paarweise disjunkte Mengen sowie Funktionen $f_j : \mathbb{R}^n \to \mathbb{R}^n$ mit $f(A_j) = B_j$ mit $f_j(x) = A_j x + b_j$, $x \in \mathbb{R}^n$, wobei $A_j \in \mathbb{R}^{n \times n}$ orthogonal ist und $b_j \in \mathbb{R}^n$ für alle $j = 1, \ldots, m$.

Überlegen Sie sich warum dieses Resultat es probelmatisch macht <u>allen</u> Teilmengen von \mathbb{R}^n in sinnvoller Weise ein Volumen zuzuordnen.

Aufgabe 8

Lösen Sie Exercise 7 im Abschnitt Convergence of Continuous Functions and the Riemann Integral im Hitchhiker's Guide to Mathematics.