ETE 211/EEE 211 Digital Logic Design

Synchronous Sequential Logic - Analysis

Analysis of Clocked Sequential Circuits

- •The analysis of a sequential circuit consists of obtaining a table or a diagram for the time sequence of inputs, outputs, and internal states.
- •It is also possible to write Boolean expressions that describe the behavior of the sequential circuit.
- •These expressions must include the necessary time sequence, either directly or indirectly.
- •The behavior of a clocked sequential circuit can be described algebraically by means of state equations.
- State equation specifies the next state as a function of the present state and inputs.
 - ✓A state equation is an algebraic expression that specifies the condition for a flip-flop state transition.
 - √The left side of the equation with (t+1) denotes the next state of the
 flip-flop one clock edge later.
 - ✓ The right side of the equation is Boolean expression that specifies the present state and input conditions that make the next state TRUE. 2

Example of Sequential Circuit

•This sequential circuit consists of two D flip-flops A and B, an input X and an output Y.

State Table

The time sequence of inputs, outputs, and flip-flop states can be enumerated in a state table (sometimes called transition table).

Present State		Input	Nex	t State	Output
Α	В	X	Α	В	Υ
0	0	0	0	0	0
0	0	1	0	1	0
0	1	0	0	0	1
0	1	1	1	1	0
1	0	0	0	0	1
1	0	1	1	0	0
1	1	0	0	0	1
1	1	1	1	0	0

State Diagram

- The information available in a state table can be represented graphically in the form of a state diagram.
- A state is represented by a circle, and the transitions between states are indicated by directed lines connecting the circles.

1/0 : means input =1 output=0

Flip-Flop Input Equations

- The part of the combinational circuit that generates external outputs is described algebraically by a set of Boolean functions called output equations.
- ■The part of the circuit that generates the inputs to flip-flops is described algebraically by a set of Boolean functions called flip-flop input equations.
- ■The logic diagram of the circuit can be expressed algebraically with two flip-flop input equations and an output equation:

$$D_A = AX + BX$$

 $D_B = A`X$
 $y = (A + B) X'$

Analysis with D Flip-Flop

The circuit we want to analyze is described by the input equation $D_A = A \oplus x \oplus y$

- •The D_A symbol implies a D flip-flop with output A.
- •The x and y variables are the inputs to the circuit.
- •No output equations are given, so the output is implied to come from the output of the flip-flop.

Analysis with D Flip-Flop

- •The binary numbers under Axy are listed from 000 through 111
- •The next state values are obtained from the state equation $A(t+1) = A \oplus x \oplus y$
- •The state diagram consists of two circles-one for each state

Present state	Inputs	Next state	
\boldsymbol{A}	х у	\boldsymbol{A}	
О	0 0	O	
O	0 1	1	01,10
O	1 0	1	00, 11
O	1 1	O	
1	0 0	1	
1	0 1	O	
1	1 0	O	01, 10
1	1 1	1	01,10

(b) State table

(c) State diagram

Analysis With T Flip-Flops

Characteristic equation

$$Q(t + 1) = T \oplus Q = T Q + TQ$$

Analysis With T Flip-Flops

Two flip-flops A and B, one input x, and one output y. Two input equations and an output equation:

$$T_A = Bx$$
 $T_B = x$
 $y = AB$

$$A(t+1) = (Bx)'A + (Bx)A'$$
$$= AB' + Ax' + A'Bx$$

$$B(t+1) = x \oplus B$$

Present State		Input	Next State		Output
A	В		A	В	N N N
0	0	0	0	0	0
0	0	1	0	1	0
0	1	0	0	1	0
0	I monse	namine nie miene	00 01	0	0
1	0	0	1	0	0
1	0	sec 1 mini	1	1	0
1	1 0 0	0	1	1	pollepo
1	1	1	0	0	1