

AMERICAN INTERNATIONAL UNIVERSITY-BANGLADESH (AIUB)

FACULTY OF ENGINEERING DEPARTMENT OF COMPUTER ENGINEERING DATA COMMUNICATION

Spring 2023-2024

Section: F

Group: 03

LAB REPORT ON

Introduction to MATLAB.

Supervised By

SADMAN SHAHRIAR ALAM

Submitted By

Name	ID
AZMINUR RAHMAN	22-46588-1
TRIDIB SARKAR	22-46444-1
ISTYAK AHMED	21-45658-3
MD. SAKIBUL HAQUE TANMOY	21-45659-3
SAFAR AHMED	19-40752-1

Date of Experiment: January 24, 2024

Date of Submission: February 07, 2024

Title: Introduction to MATLAB.

Performance Task:

```
ID = AB-CDEFG-H = 22-46588-1
According to the above statement-
A = 2
B = 2
C = 4
D = 6
E = 5
F = 8
G = 8
H = 1
x_1(t) = A_1 \cos((2\pi(C+D+E+F)t) + j_1)
x_2(t) = A_2 \cos((2\pi(C+D+E+F)t) + j_2)
(a) A_1 = A + B = 2 + 2 = 4
   A_2 = G + H = 8 + 1 = 9
   J_1 = D + G = 6 + 8 = 14^{\text{o}}
   J_2=30^{\rm o}
   x_1 = 4*\cos((2*pi(4+6+5+8)t) + 14)
   x_2(t) = 9*\cos((2*pi*(4+6+5+8) t) + 30)
(b)
   A = 2;
   B = 2;
   C = 4;
   D = 6;
   E = 5;
   F = 8;
   G = 8;
   H = 1;
   rad = pi/180;
   A1 = A + B;
   j1 = (D + G)*rad;
   t = -0.1 : 0.001 : 0.1;
   x1 = A1 * cos((2* pi * (C + D + E + F) * t )+ j1);
   plot(t,x1)
```

xlabel('time (t)');
ylabel('signal (x1)');
title('Signal (x1 / t)');

Fig 01: x1

```
A = 2;
B = 2;
C = 4;
D = 6;
E = 5;
F = 8;
G = 8;
H = 1;
rad = pi/180;
A2 = G + H;
j2 = 30*rad;
x2 = A2 * cos((2* pi * (C + D + E + F) * t )+ j2);
plot(t,x2)
xlabel('time (t)');
ylabel('signal (x2)');
title('Signal (x2 / t)');
```


Fig 02: x2

```
(c)
      A = 2;
      B = 2;
      C = 4;
      D = 6;
      E = 5;
      F = 8;
      G = 8;
      H = 1;
      rad = pi/180;
      A1 = A + B;
      j1 = (D + G)*rad;
      t = -0.1 : 0.001 : 0.1;
      x1 = A1 * cos((2* pi * (C + D + E + F) * t )+ j1);
      A2 = G + H;
      j2 = 30*rad;
      x^2 = A^2 * cos((2* pi * (C + D + E + F) * t) + j^2);
      plot(t, x1)
      plot(t, x2)
      plot(t,angle(x1)),title('Phase Plot')
      plot(t,abs(x1)),title('Amplitude Plot')
      plot (t, angle(x2)), title('Phase Plot')
      plot (t, abs(x2)), title('Amplitude Plot')
```


Fig 03: x1 & X2

```
(d)

A = 2;
B = 2;
C = 4;
D = 6;
E = 5;
F = 8;
G = 8;
H = 1;

rad = pi/180;

A1 = A + B;
j1 = (D + G)*rad;
```

```
t = -0.1 : 0.001 : 0.1;
x1 = A1 * cos((2* pi * (C + D + E + F) * t )+ j1);
subplot(3,1,1);
plot(t,x1)
xlabel('time (t)');
ylabel('signal (x1)');
title('Signal (x1 / t)');

A2 = G + H;
j2 = 30*rad;
x2 = A2 * cos((2* pi * (C + D + E + F) * t )+ j2);
subplot(3,1,2);
plot(t,x2)
xlabel('time (t)');
ylabel('signal (x2 / t)');
title('Signal (x2 / t)');
```


Fig 04: Subplot of X1 & X2

```
(e)
       A = 2;
       B = 2;
       C = 4;
      D = 6;
       E = 5;
       F = 8;
      G = 8;
      H = 1;
       rad = pi/180;
       A1 = A + B;
       j1 = (D + G)*rad;
       t = -0.1 : 0.001 : 0.1;
       x1 = A1 * cos((2* pi * (C + D + E + F) * t) + j1);
       subplot(3,1,1);
       plot(t,x1)
       xlabel('time (t)');
       ylabel('signal (x1)');
       title('Signal (x1 / t)');
      A2 = G + H;
```

```
j2 = 30*rad;
x2 = A2 * cos((2* pi * (C + D + E + F) * t )+ j2);
subplot(3,1,2);
plot(t,x2)
xlabel('time (t)');
ylabel('signal (x2)');
title('Signal (x2 / t)');
x3 = x1 + x2;
subplot(3,1,3);
plot(t,x3)
xlabel('time (t)');
ylabel('signal (x3)');
title('Signal (x3 / t)');
```


Fig 05: Subplot of X1, X2 & X3

```
(f)
      A = 2;
      B = 2;
      C = 4;
      D = 6;
      E = 5;
      F = 8;
      G = 8;
      H = 1;
      rad = pi/180;
      A1 = A + B;
      j1 = (D + G)*rad;
      t = -0.1 : 0.001 : 0.1;
      x1 = A1 * cos((2* pi * (C + D + E + F) * t) + j1);
      A2 = G + H;
      j2 = 30*rad;
      x2 = A2 * cos((2* pi * (C + D + E + F) * t) + j2);
      x3 = x1 + x2;
      plot(t, x1)
      plot(t, x2)
      plot(t,angle(x1)),title('Phase Plot')
```

Lab Report

```
plot(t,abs(x1)),title('Amplitude Plot')
plot (t, angle(x2)), title('Phase Plot')
plot (t, abs(x2)), title('Amplitude Plot')
subplot (3,1,1), plot (t,x1)
subplot (3,1,2), plot (t,x2)
subplot (3,1,3), plot (t, x3)
subplot (3,1,3), plot (t, x3)
plot (t, abs(x3)), title('Amplitude Plot')
plot (t, angle(x3)), title('Phase Plot')
```


Fig 06: Phase of X3