A Brief Review of Probability

Patrick Lam

Outline

Expectation, Variance, and Densities

Important Distributions
Discrete Distributions
Continuous Distributions

Outline

Expectation, Variance, and Densities

Important Distributions
Discrete Distributions
Continuous Distributions

The expected value of a random variable X is simply the weighted average of all possible values of X.

The expected value of a random variable X is simply the weighted average of all possible values of X.

Discrete Case:

The expected value of a random variable X is simply the weighted average of all possible values of X.

Discrete Case:

$$E(X) = \sum_{i} x_{i} P(X = x_{i})$$

where P(X = x) is the probability mass function (PMF).

The expected value of a random variable X is simply the weighted average of all possible values of X.

Discrete Case:

$$E(X) = \sum_{i} x_i P(X = x_i)$$

where P(X = x) is the probability mass function (PMF).

Continuous Case:

The expected value of a random variable X is simply the weighted average of all possible values of X.

Discrete Case:

$$E(X) = \sum_{i} x_i P(X = x_i)$$

where P(X = x) is the probability mass function (PMF).

Continuous Case:

$$E(X) = \int_{-\infty}^{\infty} x p(x) dx$$

where p(x) is the probability density function (PDF).

Suppose we want to find E[g(X)], where g(X) is any function of X.

Suppose we want to find E[g(X)], where g(X) is any function of X. We can simply weight the values of g(x) by the PDF or PMF of X:

Suppose we want to find E[g(X)], where g(X) is any function of X. We can simply weight the values of g(x) by the PDF or PMF of X:

$$E[g(X)] = \sum_{i} g(x_i) P(X = x_i)$$

for discrete random variables

Suppose we want to find E[g(X)], where g(X) is any function of X. We can simply weight the values of g(x) by the PDF or PMF of X:

$$E[g(X)] = \sum_{i} g(x_i) P(X = x_i)$$

for discrete random variables and

$$E[g(X)] = \int_{-\infty}^{\infty} g(x)p(x)dx$$

for continuous random variables.

Suppose we want to find E[g(X)], where g(X) is any function of X. We can simply weight the values of g(x) by the PDF or PMF of X:

$$E[g(X)] = \sum_{i} g(x_i) P(X = x_i)$$

for discrete random variables and

$$E[g(X)] = \int_{-\infty}^{\infty} g(x)p(x)dx$$

for continuous random variables.

This is sometimes known as the *Law of the Unconscious Statistician* (LOTUS).

The formula for the variance of a random variable is

$$\operatorname{Var}(X) = E[(X - E(X))^2]$$

The formula for the variance of a random variable is

$$Var(X) = E[(X - E(X))^2]$$

We can find the variance using LOTUS,

The formula for the variance of a random variable is

$$Var(X) = E[(X - E(X))^2]$$

The formula for the variance of a random variable is

$$Var(X) = E[(X - E(X))^2]$$

$$Var(X) = E[(X - E(X))^2]$$

The formula for the variance of a random variable is

$$Var(X) = E[(X - E(X))^2]$$

$$Var(X) = E[(X - E(X))^{2}]$$

$$= E[X^{2} - 2XE(X) + (E(X))^{2}]$$

The formula for the variance of a random variable is

$$Var(X) = E[(X - E(X))^2]$$

$$Var(X) = E[(X - E(X))^{2}]$$

$$= E[X^{2} - 2XE(X) + (E(X))^{2}]$$

$$= E(X^{2}) - 2E(X)E[E(X)] + E([E(X)]^{2})$$

The formula for the variance of a random variable is

$$Var(X) = E[(X - E(X))^2]$$

$$Var(X) = E[(X - E(X))^{2}]$$

$$= E[X^{2} - 2XE(X) + (E(X))^{2}]$$

$$= E(X^{2}) - 2E(X)E[E(X)] + E([E(X)]^{2})$$

$$= E(X^{2}) - 2[E(X)]^{2} + [E(X)]^{2}$$

The formula for the variance of a random variable is

$$Var(X) = E[(X - E(X))^2]$$

$$Var(X) = E[(X - E(X))^{2}]$$

$$= E[X^{2} - 2XE(X) + (E(X))^{2}]$$

$$= E(X^{2}) - 2E(X)E[E(X)] + E([E(X)]^{2})$$

$$= E(X^{2}) - 2[E(X)]^{2} + [E(X)]^{2}$$

$$= E(X^{2}) - [E(X)]^{2}$$

The formula for the variance of a random variable is

$$Var(X) = E[(X - E(X))^2]$$

We can find the variance using LOTUS, or we can simplify the formula first.

$$Var(X) = E[(X - E(X))^{2}]$$

$$= E[X^{2} - 2XE(X) + (E(X))^{2}]$$

$$= E(X^{2}) - 2E(X)E[E(X)] + E([E(X)]^{2})$$

$$= E(X^{2}) - 2[E(X)]^{2} + [E(X)]^{2}$$

$$= E(X^{2}) - [E(X)]^{2}$$

We can then find the first part with LOTUS.

$$p(x) = \int p(x,y)dy$$

$$p(x) = \int p(x,y)dy$$
$$p(x,y) = \int p(x,y,z)dz$$

$$p(x) = \int p(x,y)dy$$

$$p(x,y) = \int p(x,y,z)dz$$

$$p(x|y) = \frac{p(x,y)}{p(y)}$$

$$p(x) = \int p(x,y)dy$$

$$p(x,y) = \int p(x,y,z)dz$$

$$p(x|y) = \frac{p(x,y)}{p(y)}$$

$$p(x|y,z) = \frac{p(x,y,z)}{p(y,z)}$$

$$p(x) = \int p(x,y)dy$$

$$p(x,y) = \int p(x,y,z)dz$$

$$p(x|y) = \frac{p(x,y)}{p(y)}$$

$$p(x|y,z) = \frac{p(x,y,z)}{p(y,z)}$$

$$p(x,y) = p(x|y)p(y)$$

$$p(x) = \int p(x,y)dy$$

$$p(x,y) = \int p(x,y,z)dz$$

$$p(x|y) = \frac{p(x,y)}{p(y)}$$

$$p(x|y,z) = \frac{p(x,y,z)}{p(y,z)}$$

$$p(x,y) = p(x|y)p(y)$$

$$= p(y|x)p(x)$$

$$p(x) = \int p(x,y)dy$$

$$p(x,y) = \int p(x,y,z)dz$$

$$p(x|y) = \frac{p(x,y)}{p(y)}$$

$$p(x|y,z) = \frac{p(x,y,z)}{p(y,z)}$$

$$p(x,y) = p(x|y)p(y)$$

$$= p(y|x)p(x)$$

$$p(x,y,z) = p(x|y,z)p(y|z)p(z)$$

Outline

Expectation, Variance, and Densities

Important Distributions
Discrete Distributions
Continuous Distributions

Outline

Expectation, Variance, and Densities

Important Distributions
Discrete Distributions
Continuous Distributions

The Bernoulli Distribution

 $Y \sim \mathsf{Bernoulli}(\pi)$

 $Y \sim \mathsf{Bernoulli}(\pi)$

$$y = 0, 1$$

 $Y \sim \mathsf{Bernoulli}(\pi)$

y = 0, 1

$$Y \sim \mathsf{Bernoulli}(\pi)$$

$$y = 0, 1$$

$$p(y|\pi) = \pi^y (1-\pi)^{(1-y)}$$

 $Y \sim \mathsf{Bernoulli}(\pi)$

$$y = 0, 1$$

$$p(y|\pi) = \pi^y (1-\pi)^{(1-y)}$$

$$E(Y) = \pi$$

$$Y \sim \mathsf{Bernoulli}(\pi)$$

$$y = 0, 1$$

$$p(y|\pi) = \pi^y (1-\pi)^{(1-y)}$$

$$E(Y) = \pi$$

$$Var(Y) = \pi(1-\pi)$$

$$Y \sim \mathsf{Bernoulli}(\pi)$$

$$y = 0, 1$$

$$p(y|\pi) = \pi^y (1-\pi)^{(1-y)}$$

$$E(Y) = \pi$$

$$Var(Y) = \pi(1-\pi)$$

 $Y \sim \text{Binomial}(n, \pi)$

$$Y \sim \text{Binomial}(n, \pi)$$

$$y = 0, 1, \ldots, n$$

```
Y \sim \mathsf{Binomial}(n,\pi) y = 0,1,\ldots,n number of trials: n \in \{1,2,\ldots\}
```

```
Y \sim \mathsf{Binomial}(n,\pi) y=0,1,\ldots,n number of trials: n \in \{1,2,\ldots\} probability of success: \pi \in [0,1]
```

$$Y \sim \mathsf{Binomial}(n,\pi)$$
 $y = 0,1,\ldots,n$ number of trials: $n \in \{1,2,\ldots\}$ probability of success: $\pi \in [0,1]$ $p(y|\pi) = \binom{n}{v} \pi^y (1-\pi)^{(n-y)}$

$$Y \sim \mathsf{Binomial}(n,\pi)$$
 $y = 0,1,\ldots,n$ number of trials: $n \in \{1,2,\ldots\}$ probability of success: $\pi \in [0,1]$ $p(y|\pi) = \binom{n}{y} \pi^y (1-\pi)^{(n-y)}$ $E(Y) = n\pi$

$$Y \sim \mathsf{Binomial}(n,\pi)$$
 $y = 0,1,\ldots,n$ number of trials: $n \in \{1,2,\ldots\}$ probability of success: $\pi \in [0,1]$ $p(y|\pi) = \binom{n}{y} \pi^y (1-\pi)^{(n-y)}$ $E(Y) = n\pi$ $\mathsf{Var}(Y) = n\pi(1-\pi)$

$$Y \sim \mathsf{Binomial}(n,\pi)$$

$$y = 0, 1, ..., n$$

number of trials: $n \in \{1, 2, \dots\}$ probability of success: $\pi \in [0, 1]$

$$p(y|\pi) = \binom{n}{y} \pi^y (1-\pi)^{(n-y)}$$

$$E(Y) = n\pi$$

$$Var(Y) = n\pi(1-\pi)$$

 $Y \sim \mathsf{Multinomial}(n, \pi_1, \dots, \pi_k)$

 $Y \sim \mathsf{Multinomial}(n, \pi_1, \dots, \pi_k)$

$$y_j = 0, 1, ..., n; \sum_{j=1}^k y_j = n$$

 $Y \sim \mathsf{Multinomial}(n, \pi_1, \dots, \pi_k)$

$$y_j = 0, 1, ..., n; \sum_{j=1}^k y_j = n$$

number of trials: $n \in \{1, 2, \dots\}$

```
Y \sim \mathsf{Multinomial}(n, \pi_1, \dots, \pi_k) y_j = 0, 1, \dots, n; \quad \sum_{j=1}^k y_j = n number of trials: n \in \{1, 2, \dots\} probability of success for j \colon \pi_j \in [0, 1]; \quad \sum_{j=1}^k \pi_j = 1
```

$$Y \sim \mathsf{Multinomial}(n, \pi_1, \dots, \pi_k)$$
 $y_j = 0, 1, \dots, n; \quad \sum_{j=1}^k y_j = n$ number of trials: $n \in \{1, 2, \dots\}$ probability of success for j : $\pi_j \in [0, 1]; \quad \sum_{j=1}^k \pi_j = 1$ $p(\mathbf{y}|n, \boldsymbol{\pi}) = \frac{n!}{y_1! y_2! \dots y_k!} \pi_1^{y_1} \pi_2^{y_2} \dots \pi_k^{y_k}$

$$Y \sim \mathsf{Multinomial}(n, \pi_1, \dots, \pi_k)$$
 $y_j = 0, 1, \dots, n; \quad \sum_{j=1}^k y_j = n$ number of trials: $n \in \{1, 2, \dots\}$ probability of success for $j \colon \pi_j \in [0, 1]; \quad \sum_{j=1}^k \pi_j = 1$ $p(\mathbf{y}|n, \boldsymbol{\pi}) = \frac{n!}{y_1! y_2! \dots y_k!} \pi_1^{y_1} \pi_2^{y_2} \dots \pi_k^{y_k}$ $E(Y_j) = n\pi_j$

$$Y \sim \mathsf{Multinomial}(n, \pi_1, \dots, \pi_k)$$
 $y_j = 0, 1, \dots, n; \quad \sum_{j=1}^k y_j = n$ number of trials: $n \in \{1, 2, \dots\}$ probability of success for $j: \pi_j \in [0, 1]; \quad \sum_{j=1}^k \pi_j = 1$ $p(\mathbf{y}|n, \boldsymbol{\pi}) = \frac{n!}{y_1! y_2! \dots y_k!} \pi_1^{y_1} \pi_2^{y_2} \dots \pi_k^{y_k}$ $E(Y_j) = n\pi_j$ $\mathsf{Var}(Y_j) = n\pi_j (1 - \pi_j)$

$$Y \sim \mathsf{Multinomial}(n, \pi_1, \dots, \pi_k)$$
 $y_j = 0, 1, \dots, n; \quad \sum_{j=1}^k y_j = n$ number of trials: $n \in \{1, 2, \dots\}$ probability of success for j : $\pi_j \in [0, 1]$; $\sum_{j=1}^k \pi_j = 1$ $p(\mathbf{y}|n, \boldsymbol{\pi}) = \frac{n!}{y_1! y_2! \dots y_k!} \pi_1^{y_1} \pi_2^{y_2} \dots \pi_k^{y_k}$ $E(Y_j) = n\pi_j$ $\mathsf{Var}(Y_j) = n\pi_j (1 - \pi_j)$ $\mathsf{Cov}(Y_i, Y_i) = -n\pi_i \pi_i$

 $Y \sim \mathsf{Poisson}(\lambda)$

 $Y \sim \mathsf{Poisson}(\lambda)$

 $y = 0, 1, \dots$

 $Y \sim \mathsf{Poisson}(\lambda)$

y = 0, 1, ...

$$Y \sim \mathsf{Poisson}(\lambda)$$

$$y = 0, 1, ...$$

$$p(y|\lambda) = \frac{e^{-\lambda}\lambda^y}{y!}$$

$$Y \sim \mathsf{Poisson}(\lambda)$$

$$y = 0, 1, ...$$

$$p(y|\lambda) = \frac{e^{-\lambda}\lambda^y}{y!}$$

$$E(Y) = \lambda$$

$$Y \sim \mathsf{Poisson}(\lambda)$$

$$y = 0, 1, ...$$

$$p(y|\lambda) = \frac{e^{-\lambda}\lambda^y}{y!}$$

$$E(Y) = \lambda$$

$$Var(Y) = \lambda$$

$$Y \sim \mathsf{Poisson}(\lambda)$$

$$y = 0, 1, ...$$

$$p(y|\lambda) = \frac{e^{-\lambda}\lambda^y}{y!}$$

$$E(Y) = \lambda$$

$$Var(Y) = \lambda$$

The Geometric Distribution

The Geometric Distribution

How many Bernoulli trials until success?

The Geometric Distribution

How many Bernoulli trials until success?

 $Y \sim \mathsf{Geometric}(\pi)$

How many Bernoulli trials until success?

 $Y \sim \text{Geometric}(\pi)$

$$y=1,2,3,\ldots$$

How many Bernoulli trials until success?

 $Y \sim \mathsf{Geometric}(\pi)$

 $y = 1, 2, 3, \dots$

How many Bernoulli trials until success?

$$Y \sim \mathsf{Geometric}(\pi)$$

$$y = 1, 2, 3, \dots$$

$$p(y|\pi) = (1-\pi)^{(y-1)}\pi$$

How many Bernoulli trials until success?

$$Y \sim \mathsf{Geometric}(\pi)$$

$$y = 1, 2, 3, \dots$$

$$p(y|\pi) = (1-\pi)^{(y-1)}\pi$$

$$E(Y) = \frac{1}{\pi}$$

How many Bernoulli trials until success?

$$Y \sim \mathsf{Geometric}(\pi)$$

$$y = 1, 2, 3, \dots$$

$$p(y|\pi) = (1-\pi)^{(y-1)}\pi$$

$$E(Y) = \frac{1}{\pi}$$

$$Var(Y) = \frac{1-\pi}{\pi^2}$$

How many Bernoulli trials until success?

$$Y \sim \text{Geometric}(\pi)$$

$$y = 1, 2, 3, \dots$$

$$p(y|\pi) = (1-\pi)^{(y-1)}\pi$$

$$E(Y) = \frac{1}{\pi}$$

$$Var(Y) = \frac{1-\pi}{\pi^2}$$

Outline

Expectation, Variance, and Densities

Important Distributions

Discrete Distributions

Continuous Distributions

 $Y \sim \mathsf{Normal}(\mu, \sigma^2)$

 $Y \sim \mathsf{Normal}(\mu, \sigma^2)$

 $y \in \mathbb{R}$

 $Y \sim \mathsf{Normal}(\mu, \sigma^2)$

 $y \in \mathbb{R}$

 $\text{mean: } \mu \in \mathbb{R}$

 $Y \sim \mathsf{Normal}(\mu, \sigma^2)$

 $y \in \mathbb{R}$

 $\text{mean: } \mu \in \mathbb{R}$

$$Y \sim \mathsf{Normal}(\mu, \sigma^2)$$

$$y \in \mathbb{R}$$

 $\text{mean: } \mu \in \mathbb{R}$

$$p(y|\mu, \sigma^2) = \frac{\exp\left(-\frac{(y-\mu)^2}{2\sigma^2}\right)}{\sigma\sqrt{2\pi}}$$

$$Y \sim \mathsf{Normal}(\mu, \sigma^2)$$

$$y \in \mathbb{R}$$

 $\text{mean: } \mu \in \mathbb{R}$

$$p(y|\mu,\sigma^2) = rac{\exp\left(-rac{(y-\mu)^2}{2\sigma^2}
ight)}{\sigma\sqrt{2\pi}}$$

$$E(Y) = \mu$$

$$Y \sim \mathsf{Normal}(\mu, \sigma^2)$$
 $y \in \mathbb{R}$ mean: $\mu \in \mathbb{R}$ variance: $\sigma^2 > 0$
$$p(y|\mu, \sigma^2) = \frac{\exp\left(-\frac{(y-\mu)^2}{2\sigma^2}\right)}{\sigma\sqrt{2\pi}}$$
 $E(Y) = \mu$ $\mathsf{Var}(Y) = \sigma^2$

$$Y \sim \mathsf{Normal}(\mu, \sigma^2)$$

 $y \in \mathbb{R}$

 $\text{mean: } \mu \in \mathbb{R}$

$$p(y|\mu,\sigma^2) = rac{\exp\left(-rac{(y-\mu)^2}{2\sigma^2}
ight)}{\sigma\sqrt{2\pi}}$$

$$E(Y) = \mu$$

$$Var(Y) = \sigma^2$$

$$Y \sim \mathcal{N}(oldsymbol{\mu}, oldsymbol{\Sigma})$$

$$m{Y} \sim \mathcal{N}(m{\mu}, m{\Sigma})$$
 $m{y} \in \mathbb{R}^k$

$$Y \sim \mathcal{N}(oldsymbol{\mu}, oldsymbol{\Sigma})$$

 $\mathbf{y} \in \mathbb{R}^k$

mean vector: $oldsymbol{\mu} \in \mathbb{R}^k$

$$Y \sim \mathcal{N}(oldsymbol{\mu}, oldsymbol{\Sigma})$$

 $\mathbf{y} \in \mathbb{R}^k$

mean vector: $oldsymbol{\mu} \in \mathbb{R}^k$

$$Y \sim \mathcal{N}(oldsymbol{\mu}, oldsymbol{\Sigma})$$

$$\mathbf{y} \in \mathbb{R}^k$$

mean vector: $oldsymbol{\mu} \in \mathbb{R}^k$

$$p(\mathbf{y}|\boldsymbol{\mu},\boldsymbol{\pi}) = (2\pi)^{-k/2} |\boldsymbol{\Sigma}|^{-1/2} \exp\left(-\tfrac{1}{2}(\mathbf{y}-\boldsymbol{\mu})' \boldsymbol{\Sigma}^{-1} (\mathbf{y}-\boldsymbol{\mu})\right)$$

$$Y \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$$

$$\mathbf{y} \in \mathbb{R}^k$$

mean vector: $oldsymbol{\mu} \in \mathbb{R}^k$

$$p(\mathbf{y}|\boldsymbol{\mu},\boldsymbol{\pi}) = (2\pi)^{-k/2} |\boldsymbol{\Sigma}|^{-1/2} \exp\left(-\tfrac{1}{2}(\mathbf{y}-\boldsymbol{\mu})' \boldsymbol{\Sigma}^{-1} (\mathbf{y}-\boldsymbol{\mu})\right)$$

$$E(Y) = \mu$$

$$Y \sim \mathcal{N}(oldsymbol{\mu}, oldsymbol{\Sigma})$$

$$\mathbf{y} \in \mathbb{R}^k$$

mean vector: $oldsymbol{\mu} \in \mathbb{R}^k$

$$p(\mathbf{y}|\boldsymbol{\mu},\boldsymbol{\pi}) = (2\pi)^{-k/2} |\boldsymbol{\Sigma}|^{-1/2} \exp\left(-\frac{1}{2}(\mathbf{y}-\boldsymbol{\mu})' \boldsymbol{\Sigma}^{-1} (\mathbf{y}-\boldsymbol{\mu})\right)$$

$$E(Y) = \mu$$

$$\mathsf{Var}(Y) = \mathbf{\Sigma}$$

 $Y \sim \mathsf{Uniform}(\alpha, \beta)$

 $Y \sim \mathsf{Uniform}(\alpha, \beta)$

$$\mathbf{y} \in [\alpha,\beta]$$

 $Y \sim \mathsf{Uniform}(\alpha, \beta)$

 $y \in [\alpha, \beta]$

 $\text{Interval: } [\alpha,\beta]; \ \beta>\alpha$

$$Y \sim \mathsf{Uniform}(\alpha, \beta)$$

$$y \in [\alpha, \beta]$$

Interval:
$$[\alpha, \beta]$$
; $\beta > \alpha$

$$p(y|\alpha,\beta) = \frac{1}{\beta-\alpha}$$

$$Y \sim \mathsf{Uniform}(\alpha, \beta)$$

$$y \in [\alpha, \beta]$$

Interval:
$$[\alpha, \beta]$$
; $\beta > \alpha$

$$p(y|\alpha,\beta) = \frac{1}{\beta-\alpha}$$

$$E(Y) = \frac{\alpha + \beta}{2}$$

$$Y \sim \mathsf{Uniform}(\alpha, \beta)$$

$$y \in [\alpha, \beta]$$

Interval:
$$[\alpha, \beta]$$
; $\beta > \alpha$

$$p(y|\alpha,\beta) = \frac{1}{\beta-\alpha}$$

$$E(Y) = \frac{\alpha + \beta}{2}$$

$$Var(Y) = \frac{(\beta - \alpha)^2}{12}$$

 $Y \sim \text{Beta}(\alpha, \beta)$

$$Y \sim \mathsf{Beta}(lpha, eta)$$
 $y \in [0, 1]$

$$Y \sim \mathsf{Beta}(\alpha, \beta)$$

$$y \in [0, 1]$$

shape parameters:

$$\alpha > 0$$
; $\beta > 0$

$$Y \sim \operatorname{Beta}(\alpha, \beta)$$
 $y \in [0, 1]$ shape parameters: $\alpha > 0; \quad \beta > 0$
$$p(y|\alpha, \beta) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} y^{(\alpha - 1)} (1 - y)^{(\beta - 1)}$$

The Beta Distribution

$$Y \sim \operatorname{Beta}(\alpha,\beta)$$
 $y \in [0,1]$ shape parameters: $\alpha > 0; \quad \beta > 0$
$$p(y|\alpha,\beta) = \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)} y^{(\alpha-1)} (1-y)^{(\beta-1)}$$

$$E(Y) = \frac{\alpha}{\alpha+\beta}$$

The Beta Distribution

$$Y \sim \text{Beta}(\alpha, \beta)$$

$$y \in [0, 1]$$

shape parameters:

$$\alpha > 0$$
; $\beta > 0$

$$p(y|\alpha,\beta) = \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)}y^{(\alpha-1)}(1-y)^{(\beta-1)}$$

$$E(Y) = \frac{\alpha}{\alpha + \beta}$$

$$Var(Y) = \frac{\alpha\beta}{(\alpha+\beta)^2)\alpha+\beta+1)}$$

 $Y \sim \mathsf{Gamma}(\alpha, \beta)$

 $Y \sim \mathsf{Gamma}(\alpha, \beta)$

y > 0

 $Y \sim \mathsf{Gamma}(\alpha, \beta)$

y > 0

shape parameter: $\alpha>0$

 $Y \sim \mathsf{Gamma}(\alpha, \beta)$

y > 0

shape parameter: $\alpha > 0$

inverse scale parameter: $\beta > 0$

$$Y \sim \mathsf{Gamma}(\alpha, \beta)$$

shape parameter: $\alpha > 0$

inverse scale parameter: $\beta>0$

$$p(y|\alpha,\beta) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} y^{(\alpha-1)} \exp(-\beta y)$$

$$Y \sim \mathsf{Gamma}(\alpha, \beta)$$

$$p(y|\alpha,\beta) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} y^{(\alpha-1)} \exp(-\beta y)$$

$$E(Y) = \frac{\alpha}{\beta}$$

$$Y \sim \mathsf{Gamma}(\alpha, \beta)$$

shape parameter: $\alpha>0$ inverse scale parameter: $\beta>0$

$$p(y|\alpha,\beta) = \frac{\beta^{\alpha}}{\Gamma(\alpha)}y^{(\alpha-1)}\exp(-\beta y)$$

$$E(Y) = \frac{\alpha}{\beta}$$

$$Var(Y) = \frac{\alpha}{\beta^2}$$

Distribution of the Inverse of a Gamma Distribution:

Distribution of the Inverse of a Gamma Distribution: If $X \sim \text{Gamma}(\alpha, \beta)$, then $\frac{1}{X} \sim \text{Invgamma}(\alpha, \beta)$.

Distribution of the Inverse of a Gamma Distribution: If $X \sim \text{Gamma}(\alpha, \beta)$, then $\frac{1}{X} \sim \text{Invgamma}(\alpha, \beta)$.

 $Y \sim \text{Invgamma}(\alpha, \beta)$

Distribution of the Inverse of a Gamma Distribution: If $X \sim \text{Gamma}(\alpha, \beta)$, then $\frac{1}{X} \sim \text{Invgamma}(\alpha, \beta)$.

 $Y \sim \text{Invgamma}(\alpha, \beta)$

y > 0

Distribution of the Inverse of a Gamma Distribution: If $X \sim \text{Gamma}(\alpha, \beta)$, then $\frac{1}{X} \sim \text{Invgamma}(\alpha, \beta)$.

 $Y \sim \text{Invgamma}(\alpha, \beta)$

y > 0

shape parameter: $\alpha > 0$

Distribution of the Inverse of a Gamma Distribution: If $X \sim \text{Gamma}(\alpha, \beta)$, then $\frac{1}{X} \sim \text{Invgamma}(\alpha, \beta)$.

 $Y \sim \text{Invgamma}(\alpha, \beta)$

y > 0

Distribution of the Inverse of a Gamma Distribution: If $X \sim \text{Gamma}(\alpha, \beta)$, then $\frac{1}{X} \sim \text{Invgamma}(\alpha, \beta)$.

 $Y \sim \text{Invgamma}(\alpha, \beta)$

y > 0

$$p(y|\alpha,\beta) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} y^{-(\alpha+1)} e^{-\frac{\beta}{y}}$$

Distribution of the Inverse of a Gamma Distribution: If $X \sim \text{Gamma}(\alpha, \beta)$, then $\frac{1}{X} \sim \text{Invgamma}(\alpha, \beta)$.

 $Y \sim \text{Invgamma}(\alpha, \beta)$

$$p(y|\alpha,\beta) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} y^{-(\alpha+1)} e^{-\frac{\beta}{y}}$$

$$E(Y) = \frac{\beta}{\alpha - 1}$$
 for $\alpha > 1$

Distribution of the Inverse of a Gamma Distribution: If $X \sim \text{Gamma}(\alpha, \beta)$, then $\frac{1}{X} \sim \text{Invgamma}(\alpha, \beta)$.

 $Y \sim \text{Invgamma}(\alpha, \beta)$

$$p(y|\alpha,\beta) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} y^{-(\alpha+1)} e^{-\frac{\beta}{y}}$$

$$E(Y) = \frac{\beta}{\alpha - 1}$$
 for $\alpha > 1$

$$Var(Y) = \frac{\beta^2}{(\alpha-1)^2(\alpha-2)}$$
 for $\alpha > 2$

Distribution of the Inverse of a Gamma Distribution: If $X \sim \text{Gamma}(\alpha, \beta)$, then $\frac{1}{X} \sim \text{Invgamma}(\alpha, \beta)$.

$$Y \sim \text{Invgamma}(\alpha, \beta)$$

$$p(y|\alpha,\beta) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} y^{-(\alpha+1)} e^{-\frac{\beta}{y}}$$

$$E(Y) = \frac{\beta}{\alpha - 1}$$
 for $\alpha > 1$

$$Var(Y) = \frac{\beta^2}{(\alpha-1)^2(\alpha-2)}$$
 for $\alpha > 2$

 $Y \sim \text{Dirichlet}(\alpha_1, \dots, \alpha_k)$

 $Y \sim \mathsf{Dirichlet}(\alpha_1, \ldots, \alpha_k)$

$$y_j \in [0,1]; \sum_{j=1}^k y_j = 1$$

$$Y \sim \mathsf{Dirichlet}(\alpha_1, \dots, \alpha_k)$$

$$y_j \in [0,1]; \sum_{j=1}^k y_j = 1$$

$$\alpha$$
 parameters: $\alpha_j > 0$; $\sum_{j=1}^k \alpha_j \equiv \alpha_0$

$$Y \sim \mathsf{Dirichlet}(\alpha_1, \ldots, \alpha_k)$$

$$y_j \in [0,1]; \sum_{j=1}^k y_j = 1$$

$$\alpha$$
 parameters: $\alpha_j > 0$; $\sum_{j=1}^k \alpha_j \equiv \alpha_0$

$$p(\mathbf{y}|\alpha) = \frac{\Gamma(\alpha_1 + \dots + \alpha_k)}{\Gamma(\alpha_1) \dots \Gamma(\alpha_k)} y_1^{\alpha_1 - 1} \dots y_k^{\alpha_k - 1}$$

$$Y \sim \mathsf{Dirichlet}(\alpha_1, \dots, \alpha_k)$$

$$y_j \in [0,1]; \sum_{j=1}^k y_j = 1$$

$$\alpha$$
 parameters: $\alpha_j > 0$; $\sum_{j=1}^k \alpha_j \equiv \alpha_0$

$$p(\mathbf{y}|\alpha) = \frac{\Gamma(\alpha_1 + \dots + \alpha_k)}{\Gamma(\alpha_1) \dots \Gamma(\alpha_k)} y_1^{\alpha_1 - 1} \dots y_k^{\alpha_k - 1}$$

$$E(Y_j) = \frac{\alpha_j}{\alpha_0}$$

$$Y \sim \mathsf{Dirichlet}(\alpha_1, \ldots, \alpha_k)$$

$$y_j \in [0,1]; \sum_{j=1}^k y_j = 1$$

$$\alpha$$
 parameters: $\alpha_j > 0$; $\sum_{j=1}^k \alpha_j \equiv \alpha_0$

$$p(\mathbf{y}|\alpha) = \frac{\Gamma(\alpha_1 + \dots + \alpha_k)}{\Gamma(\alpha_1) \dots \Gamma(\alpha_k)} y_1^{\alpha_1 - 1} \dots y_k^{\alpha_k - 1}$$

$$E(Y_j) = \frac{\alpha_j}{\alpha_0}$$

$$Var(Y_j) = \frac{\alpha_j(\alpha_0 - \alpha_j)}{\alpha_0^2(\alpha_0 + 1)}$$

$$Y \sim \mathsf{Dirichlet}(\alpha_1, \ldots, \alpha_k)$$

$$y_j \in [0,1]; \sum_{j=1}^k y_j = 1$$

$$\alpha$$
 parameters: $\alpha_j > 0$; $\sum_{j=1}^k \alpha_j \equiv \alpha_0$

$$p(\mathbf{y}|\alpha) = \frac{\Gamma(\alpha_1 + \dots + \alpha_k)}{\Gamma(\alpha_1) \dots \Gamma(\alpha_k)} y_1^{\alpha_1 - 1} \dots y_k^{\alpha_k - 1}$$

$$E(Y_j) = \frac{\alpha_j}{\alpha_0}$$

$$Var(Y_j) = \frac{\alpha_j(\alpha_0 - \alpha_j)}{\alpha_0^2(\alpha_0 + 1)}$$

$$Cov(Y_i, Y_j) = -\frac{\alpha_i \alpha_j}{\alpha_0^2(\alpha_0 + 1)}$$