POKHARA UNIVERSITY

Level: Bachelor Programme: BE Semester: Spring

Year : 2018 Full Marks: 100

Course: Numerical Methods

Pass Marks: 45 Time : 3hrs.

Candidates are required to give their answers in their own words as far as practicable.

The figures in the margin indicate full marks.

Attempt all the questions.

- 1. a) Find the root of e^xtanx=1 by creating iterative formula of Newton Raphson method.
 - b) Solve $f(x) = xe^x 1$ by secant method for tolerance value 0.0001.
- 2. a) Determine the constants a and b by the method of least squares such that $y = ae^{bx}$

X	2	4	6	8	10
Y	4.077	11.084	30.128	81.897	222.62

b) From the following table, find the number of students who obtained less than 45 marks

Marks	30-40	40-50	50-60	60-70	70-80
No. of students	31	42	51	35	31

From the following table of values of x and y, obtain $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$ for x = 1.2

X	1.0	1.2	1.4	1.6	1.8
у	2.7183	3.3201	4.0552	4.9530	6.0496

- b) Find the Integral value $I = \int_0^1 \frac{dx}{1+x^2}$ correct to three decimal place
- using Romberg Integration.
 a) Solve the following system of equations using Factorization method 2x +3y +z =9

$$x + 2y + 3z = 6$$

 $3x + y + 2z = 8$

- b) Determine the highest Eigen value and its corresponding eigenvector for the following matrix using power method. $A = \begin{bmatrix} 1 & 3 & -1 \\ 3 & 2 & 4 \end{bmatrix}$
- 5. a) Use the Runge Kutta 4th order method to solve $10 \frac{dy}{dx} = x^2 + y^2$, y(0) = 1 for the interval $0 \le x \le 0.4$ with h = 0.1
 - b) Solve the boundary value problem y''(x) = y(x), y(0) = 0 and y(1) = 1.1752 by shooting method, taking $m_0 = 0.8$ and $m_1 = 0.9$
- Solve the Poisson equation $\nabla^2 f = 2x^2y^2$ over the square domain $0 \le x \le 3$ and $0 \le y \le 3$ with f = 0 on the boundary and h = 1.
 - b) Write a program to solve a system of linear equations by Gauss seidal method.

2×5

- 7. Write short notes on: (Any two)
 - a) Convergence of fixed point iteration method
 - b) Cubic spline
 - c) Algorithm of Euler Methods.