

Netzwerk und TCP / IP Grundlagen

ppedv AG

Agenda

- Netzwerkprotokolle und Protokollsammlungen
 - ISO / OSI
 - TCP / IP
- Netzwerkgeräte
- IP
- DNS
- DHCP

Netzwerkprotokolle und Protokollsammlungen

ISO / OSI Modell

- OSI-Modell = Open Systems Interconnection Model
 - "7 Schichten Modell"
- Application | Anwendung
- Presentation | Darstellung
- Session | Sitzung
- Transport | Transport
- Network | Netzwerk
- Data Link | Daten / Verbindungsebene
- Physical | Bit / Übertragungsschicht

Merksatz!

Please Do Not Throw Salami Pizza Away

ISO /OSI Modell Application / Anwendung

- Layer 7
- Schnittstelle zu den Anwendungen
- Zuständig für Dateneingabe und –ausgabe
- Protokolle / Anwendungen
 - http
 - Webbrowser

ISO /OSI Modell

Presentation / Darstellung

- Layer 6
- Wandelt systemabhängige Darstellung (ASCII) in unabhängige Form (ASN 1 – Abstract Syntax Notation One)
- Zuständig auch für Kompression & Verschlüsselung

ISO /OSI Modell

Session / Sitzung

- Layer 5
- Zuständig für Prozesskommunikation
- Synchronisiert den Datenaustausch
- Setzt "Check Points" zum Fortsetzen der Verbindung bei Abbruch
- Protokolle z.B.
 - RPC

ISO /OSI Modell

Transport

- Layer 4
- Zuständig für Segmentierung und "Stau Vermeidung"
- Datensegment (SDU-Service Data Unit)
- Zuteilung an Ports
- Beispiel Protokolle:
 - TCP
 - UDP

ISO / OSI Modell Network

- Layer 3
- Schaltet die "Verbindungen"
- Kümmert sich um die "Wegsuche" (Routing)
- Arbeitet mit folgenden Adresstypen
 - IP
 - NSAP (ISDN-Nummer)
- Beispiel Protokolle:
 - IP
 - ICMP

ISO / OSI Modell Data / Verbindungsschicht

- Layer 2
- Teilt den Bitdatenstrom in Frames auf
- Fügt und Prüfsummen hinzu und überprüft diese
- Zuständig für Datenflusskontrolle
- Nutzt:
 - LLC
 - MAC (Media Access Control)

ISO / OSI Modell

Physical / Bit- oder Übertragungsschicht

- Layer 1
- Zuständig z.B. auch für das Multiplexing
- Übertragung der Daten über ein Medium z.B.:
 - Elektrisch
 - Optisch
 - Elektromagnetisch
 - Schall

ISO / OSI Modell Verbindung

ISO / OSI im Vergleich zu TCP / IP

ISO / OSI	TCP / IP (DoD)		
Application			
Presentation	Application		
Session			
Transport	Transport		
Network	Internet		
Data Link	Link		
Physical			

Netzwerkgeräte / Topologien

Geräte	Hub	Switch	Router	
ISO OSI Layer				
Layer 1	X			
Layer 2		X		
Layer 3		(X)	X	
Layer 4				
Layer 5				
Layer 6				
Layer 7				

Topologien

IP

Netzwerk Grundlagen

Aufbau IP-Adresse (Network-/Host-Address)

- Subnetzmaske / Suffix (Präfix)
- APIPA 169.254.0.0 /16

Dezimal / Binär

illai /	שוווט	4 I					
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
2 ⁷	2 ⁶	2 ⁵	24	2 ³	2 ²	2 ¹	2 ⁰
128	64	32	16	8	4	2	1

Subnetting

- Unterteilung eines großen Netzes in kleinere
- Abteilungsdrucker senden nicht ins ganze Netz
- 2 Adressen pro Netz nicht adressierbar
 - die erste IP ist immer die NetzID
 - die letzte IP ist immer die Broadcast Adresse
- IP Adresse besteht aus Netzanteil und Hostanteil

```
Netzanteil Hostanteil 192.168.10. 0
255 . 255 . 255 . 0
11111111111111111111111 00000000
```


Binär	Subnetz- Maske	Präfix letztes Oktett)
00000000	0	/24
1000000	128	/25
11000000	192	/26
11100000	224	/27
11110000	240	/28
11111000	248	/29
11111100	252	/30
11111110	254	/31
11111111	255	/32

Übung 1

Gegeben:

• 192.168.10.106 /29

Gesucht:

- "NetzID"
- Erste Adressierbare Adresse
- Letzte Adressierbare Adresse
- Broadcast IP

Ubung 1 Lösung

Übung 1.2

Gegeben:

• 192.168.36.139 /30

Gesucht:

- "NetzID"
- Erste Adressierbare Adresse
- Letzte Adressierbare Adresse
- Broadcast IP

Übung 2

Gegeben:

• 192.168.6.190 /20

Gesucht:

- "NetzID"
- Erste Adressierbare Adresse
- Letzte Adressierbare Adresse
- Broadcast IP

Übung 2 Lösung

Übung 3

- Gegeben:
- 6 Stockwerke a 100 Hosts
- Grundbereich 192.168.0.0/16
- Gesucht:
- Wie viele Subnetze möglich
- NetzID vom 1. und 4. Subnetz

Manuelle Konfiguration der IP-Adresse

Automatische Konfiguration von IPv4

- Eine APIPA (Automatic-Private-IP-Adressing) wird dann zugewiesen wenn der Client keinen DHCP Server kontaktieren kann.
- Oder ein IP Adresskonflikt vorliegt

Allgemein lässt sich also sagen das die APIPA bei fehlerhafter IP Konfiguration auftritt.

IPv6

- IPv4: 32 Bit 4.3 Mrd. Adressen
 - 4.294.967.296
- IPv6: 128Bit ca. 3.4 x 10 ^38 Adressen
 - 340.282.366.920.938.463.463.374.607.431.768.211.456
 - Dreihundertvierzig Sextillionen zweihundertzweiundachtzig Quintilliarden dreihundertsechsundsechzig Quintillionen neunhundertzwanzig Quadrilliarden neunhundertachtunddreißig Quadrillionen vierhundertdreiundsechzig Trilliarden vierhundertdreiundsechzig Trillionen dreihundertvierundsiebzig Billiarden sechshundertsieben Billionen vierhunderteinunddreißig Milliarden siebenhundertachtundsechzig Millionen zweihundertelftausendvierhundertsechsundfünfzig
 - 2,2x10²⁴ Adressen für jeden m² Landfläche
- 8 Gruppen zu je 16 Bit
 - Bsp.: fe80:12bc:af43:bb15:df23:9836:123f:02a1
- Letzte 64 Bit: Interface Identifier

IPv6

In Hexadezimal dargestellt

2001:0DB8:0000:2F3B:02AA:00FF:FE28:9C5A

Vereinfacht dargestellt
 2001:DB8:0:2F3B:2AA:FF:FE28:9C5A

IPv6

- führende 0 dürfen weggelassen werden
- ::1/128 loopback, localhost
 - 0000:0000:0000:0000:0000:0000:0001
- ::/128 nicht spezifizierte Adresse
- Adressbereiche:
 - Link Local Adress (fe80)
 - nicht routbar
 - Unique Local Unicast
 - Unique local (zentral vom Provider verwaltet) fc00 . .
 - Unique local (lokal verwaltet) fd80
 - Multicast (ff00....)
 - Global Unicast (alle anderen Bereiche)

DNS

Domain Name System

DNSGliederung

- Funktion
- Aufbau der FQDN
- Lookup Arten
- Abfrage Reihenfolge
- Weiterleitungen

Root-Domain

DNS

Zonenaufbau

Funktion

Auflösen der Domänen Namen in IP-Adressen

• FQDN

DNS

Lookup / Abfrage

- Lookup Typen
 - Forward-Lookup: Name -> IP
 - Reverse-Lookup: IP -> Name
- Abfrage Reihenfolge
 - Eigener Hostname
 - Host-Datei
 - Lokaler Cache
 - DNS-Server

DNS

Weiterleitungen / Stammhinweise

DNS Weiterleitungen

DNS

Stammhinweise

- Stammhinweise = Root DNS Server
- insgesamt 13 Stück weltweit verteilt
 - größtenteils an geheimen Standorten verteilt
- Standardmäßig eingetragen

DNS Eintragstypen

Bezeichner	Zweck
A – Address Record	Antwort mit einer IPv4 Adresse wenn Domäne angefragt wurde
AAAA - Eintrag	Antwort mit einer IPv6 Adresse wenn Domäne abgefragt wurde
CNAME – Canonical Name Record	Alias für einen bestehenden A oder AAAA Eintrag wenn einem Host mehrere FQDNS zugewiesen werden sollen.
NSR – Name Server Records	Wird zb. verwendet, um eine komplette Kind-Domäne an einen alternativen DNS zu delegieren
MX – Mail Exchanger Record	Eintrag welches Ziel für die E-Mail-Verarbeitung innerhalb der Domäne zuständig ist

DNS

Befehle für Troubleshooting

EXAMPLE 1

This example resolves a name using the default options.

Windows PowerShell

PS C:\> Resolve-DnsName -Name www.bing.com

EXAMPLE 2

This example resolves a name against the DNS server at 10.0.0.1.

Windows PowerShell

PS C:\> Resolve-DnsName -Name www.bing.com -Server 10.0.0.1

EXAMPLE 3

This example queries for A type records for name www.bing.com.

Windows PowerShell

PS C:\> Resolve-DnsName -Name www.bing.com -Type A

EXAMPLE 4

This example resolves a name using only DNS. LLMNR and NetBIOS queries are not issued.

Windows PowerShell

PS C:\> Resolve-DnsName -Name www.bing.com -DnsOnly

```
Nslookup [<-SubCommand ...>] [{<ComputerToFind> | -<Server>}]
Nslookup /exit
Nslookup /finger [<UserName>] [{[>] <FileName>|[>>] <FileName>}]
Nslookup /{help | ?}
Nslookup /ls [<Option>] <DNSDomain> [{[>] <FileName>|[>>] <FileName>}]
Nslookup /lserver <DNSDomain>
Nslookup /root
Nslookup /server <DNSDomain>
Nslookup /set <KeyWord>[=<Value>]
Nslookup /set all
Nslookup /set class=<Class>
Nslookup /set [no]d2
Nslookup /set [no]debug
Nslookup /set [no]defname
Nslookup /set domain=<DomainName>
Nslookup /set [no]ignore
Nslookup /set port=<Port>
Nslookup /set querytype=<ResourceRecordType>
Nslookup /set [no]recurse
Nslookup /set retry=<Number>
Nslookup /set root=<RootServer>
Nslookup /set [no]search
Nslookup /set srchlist=<DomainName>[/...]
Nslookup /set timeout=<Number>
Nslookup /set type=<ResourceRecordType>
Nslookup /set [no]vc
Nslookup /view <FileName>
```


Dynamic Host Configuration Protocol

- DHCP = Dynamic Host Configuration Protocol
- Verteilung von IP-Adressen
 - Automatische Zuordnung
 - einmalige Zuordnung
 - Dynamische Zuordnung
 - Zuordnung mit Gültigkeit (Lease)
 - Manuelle Zuordnung
 - Bindung einer IP-Adresse an die MAC Adresse
- Port 67 (Server) / Port 68 (Clients)
- dient der Sicherheit
- Definierung über Scopes / Bereiche

- DHCPDISCOVER
 - Broadcast des Clients um DHCP Server im Netz zu finden
- DHCPOFFER
 - Nachricht des Servers mit "Kontaktdaten" und Adressvorschlägen
- DHCPREQUEST
 - Client fordert eine Adresse aus den Vorschlägen an
- DHCPACK
 - Server bestätig die IP und liefert die zusätzlichen Daten (DNS, Time, ...)
- DHCPNAK
 - Server lehnt DHCPRREQUEST ab
- DHCPDECLINE
 - Client lehnt Adresse ab
- DHCPRELEASE
 - Client gibt Adresse frei
- DHCPINFORM
 - Client frägt nur die zusätzlichen Daten an

DHCP – Optimaler Ablauf

DHCP – Lease Gültigkeit

Szenario: Client bekommt vom DHCP eine Adresse mit einer Lease von 8 Tagen zugewiesen, wann meldet sich der Client wieder beim DHCP?

- bei jedem Neustart
- wenn die Hälfte der Leasezeit abgelaufen ist

Failover

• wurde mit Windows Server 2012 R2 eingeführt

Hochverfügbarer DHCP Server

• es werden alle Einstellungen, Leases usw. repliziert

• zwei Modi für den Partner Server

- Lastenausgleich
 - Bereich wird 50 / 50 aufgeteilt
- Hot Standby
 - StandbyServer bekommt default 5 % des Bereichs

Failover-enabled DHCP scope

DHCP Failover

- Maximale Clientvorlaufzeit
 - Lease Dauer im FailoverFall (Status: "Partner down")
- Modus
 - Lastenausgleich
 - Bereich wird 50 / 50 aufgeteilt
 - Hot Standby
 - StandbyServer bekommt default 5 % des Bereichs
- Intervall für den Zustands-Switchover
 - beschreibt Zeit wann vom Status "Communication interrupted" automatisch zu Status "Partner down" gewechselt wird
- Nachrichtenauthentifizierung aktivieren
 - wenn aktiviert, wird die Kommunikation zwischen den Partner SHA-256 verschlüsselt (Authentifizierung mit SHA-2
 - einmalige Eingabe des geheimen Schlüssels, wird danach nicht mehr benötigt da vom Assistenten an beide Seiten gesendet wird

DoD

Application	Data	Data
Host To Host	Message	TCP Header + Data
Internet	Packet	IP Header + TCP Header + Data
Network	Frame	Mac Header + IP Header + TCP Header + Data + Prüfsumme
Access		

ARP

- Adress Resolution Protocol
- "ARP Request" an MAC Broadcast
- Um IP Adresse an MAC Adresse zuzuordnen
- ARP Table
 - Lässt sich mit "arp –a" anzeigen
- Gültigkeit wenige Minuten

IP

- Verbindungsloses Protokoll
- Version = IP Protokollversion
- IHL (Internet Header Length)
- Type of Service (Steuerinformationen)
- Total Length (Gesamtlänge des Datagramms. Max 64 Kbyte)
- Identification (eindeutige Kennung, Zusammengehörigkeit von Fragmenten)
- Flags (stehen für "dont Fragment" oder "More fragments"
- TTL (jeder Gateway decrementiert feld "Hop Counter")
- Protocol (Upper Layer Protocol zb TCP, UDP, ICMP)
- Header Checksum (16 Bit Länge)
- Options (zb Record Route "Weg des Datagramms protokollieren")
- Paddings (Füllbits)

)	{	3 1	16 24			3.
Version	HL	Type of Service	Total Length			
Identification		Flags Fragment Offset				
Т	ΓL	Protocol	Header Checksum			
Source Address						
Destination Address						
Options			Padding			
Data						

UDP

User Datagramm Protocol

Source Port Destination Port
Length UDP-Checksum
Data

- Verbindunglos
- Nicht zuverlässig
- Ungesichertes ungeschütztes Übertragungsprotokoll
- Keine Garantie das Paket unverändert ankommt
- Keine Garantie der richtigen Reihenfolge

Transmission Control Protocol

- Verbindungsorientiert
- Jedes Paket kommt einmalig an
- Handshake

Broadcast

- Limited Broadcast
 - Ziel 255.255.255.255
 - Router leitet nicht weiter
- Directed Broadcast
 - An Broadcast IP des Netz
 - Wird weitergeleitet von Routern wenn Quell und Ziel Netz unterschiedlich

Multicast

- Nachricht von einer Stelle an eine Gruppe
- Adressbereich 224.0.0.0 bis 239.255.255.255
- Datenübertragung muss explizit beim server angmeldet werden

Unicast

- Verbindung zwischen zwei TN
- Unicast Adresse aus Layer3 (Vermittlungsschicht)

Anycast

- Gleichartige Server erhalten die gleiche IP
- Server Geografisch weit verteilt
- Erhöht die Verfügbarkeit
- Lastverteilung durch Routen
- Es wird immer der nächste Server kontaktiert
 - Zb bei DNS Server im Einsatz

NAT

- Network Adress Translation
- Private Adresse an öffentliche Adresse zuordnen

SNAT

- Source Network Adress Translation
- Mehrere Clients kommunizieren über eine öffentliche Adresse

DNAT

- Destination Network Adress Translation
- Verbindung wird von außen aufgebaut
- Paket wird an definierte interne Zieladresse geleitet

IP Masquerading

- Auch PAT (Port and Adress Translation bezeichnet)
- Einzelne Ports einer öffentlich Adresse werden an verschiedene interne IP Adressen weitergeleitet

VPN

VPN-PPTP

- Point-to-Point-Tunneling-Protkoll
- Alle Betriebssysteme
- Verschlüsselung mit nur 128 Bit
- Nicht besonders sicher

VPN-L2TP/IP

- Layer 2 Tunneling Protcol
- Sicherer als PPTP
- Zweifache Verschlüsselung
- Benötigt mehr Rechenleistung
- Sichere Alternative zu OpenVPN
- 256 bit Verschlüsselung

VPN-OpenVPN

- Sicherste und leistungfähigstes Protokoll
- Daten werden mit digitalen Zertifikaten authentifiziert
- Hohe Geschwindigkeiten
- SSL / TLS Verschlüsselung
- 256 Bit Verschlüsselung

Routing

- Wegsuche über mehrere Wege bis zum Ziel
- Unterschiede in
 - Routing-Algorithmen
 - Metriken
 - Adminitrativen Verwaltungsaufwand
- Interior Routing Protocols
 - "für lokale Netzwerke"
 - RIP
 - OSPF

Routing

- Exterior Routing Protcol
- Routing Protokoll für das Routing zwischen autonomen Netzen
- Arbeiten mit Präferenzen oder Policies
- Zb:
 - Boarder Gateway Protocol
 - Link-State-Algorithmus

RIP

- Routing Information Protocol
- Arbeitet mit Distance-Vector-Algorithmus
- Alle Router senden eigene Routing Tabellen als Broadcast
- "Entfernung" wird aus eigenen Tabellen in relation berechnet
- Maximal 15 Hops
 - 16. Hop ist Infinity und meldet das Netz nicht erreichbar

OSPF

- Open Shortest Path First
- Dynamische Lastverteilung
- Geringer Overhead
- Mehr als 14 Hops möglich (bis zu 65 000)
- OSPF v2 für IPv4
- OSPF v3 für IPv6
- Spanning Tree Verfahren zur Routenfindung
 - Alle vernetzten Punkte nur durch einen Weg miteinander verbunden
 - Wenn BPDU nicht durchkommt wird neuorganisiert