Lecture 21: Analysis of Variance

Pratheepa Jeganathan

11/08/2019

Recap

- ▶ What is a regression model?
- Descriptive statistics graphical
- Descriptive statistics numerical
- Inference about a population mean
- Difference between two population means
- Some tips on R
- Simple linear regression (covariance, correlation, estimation, geometry of least squares)
 - ► Inference on simple linear regression model
 - ► Goodness of fit of regression: analysis of variance.
 - F-statistics.
 - Residuals.
 - Diagnostic plots for simple linear regression (graphical methods).

Recap

- Multiple linear regression
 - Specifying the model.
 - Fitting the model: least squares.
 - Interpretation of the coefficients.
 - Matrix formulation of multiple linear regression
 - Inference for multiple linear regression
 - T-statistics revisited.
 - More F statistics.
 - ▶ Tests involving more than one β .
- Diagnostics more on graphical methods and numerical methods
 - Different types of residuals
 - Influence
 - Outlier detection
 - Multiple comparison (Bonferroni correction)
 - Residual plots:
 - partial regression (added variable) plot,
 - partial residual (residual plus component) plot.

Recap

- Adding qualitative predictors
 - Qualitative variables as predictors to the regression model.
 - ▶ Adding interactions to the linear regression model.
 - Testing for equality of regression relationship in various subsets of a population

Outline

- One-way layout
- ► Two-way layout

ANOVA models

- ► Often, especially in experimental settings, we record *only* categorical variables.
- Such models are often referred to ANOVA (Analysis of Variance) models.
- ▶ These are generalizations of the two sample *t*-test.

- ► Suppose we want to understand the relationship between recovery time after surgery based on an patient's prior fitness.
- ► We group patients into three fitness levels: below average, average, above average.
- ► If a patient is in better shape before surgery, does it take less time to recover?

```
url = 'http://stats191.stanford.edu/data/rehab.csv'
rehab.table = read.table(url, header=T, sep=',')
rehab.table$Fitness <- factor(rehab.table$Fitness)
head(rehab.table)</pre>
```

##		${\tt Fitness}$	Time
##	1	1	29
##	2	1	42
##	3	1	38
##	4	1	40
##	5	1	43
##	6	1	40

```
p = ggplot(data = rehab.table) +
  geom_boxplot(aes(x = Fitness,
    y = Time, fill = Fitness)) +
  scale_fill_manual(values =
    c('red', 'green', 'blue'))
```


▶ Boxplot shows that the reovery time for the above average fitness group is less than the average and below average group.

One-way ANOVA

- ► First generalization of two sample *t*-test: more than two groups.
- ▶ Observations are broken up into r groups with n_i , $1 \le i \le r$ observations per group.
- ► Model:

$$Y_{ij} = \mu + \alpha_i + \varepsilon_{ij}, \qquad \varepsilon_{ij} \stackrel{IID}{\sim} N(0, \sigma^2),$$

- Y_{ij} is the j-th measurement in i-th group, μ is the overall mean $\mu = \frac{1}{r} \sum_{i=1}^{r} \mu_i$, α_i is the main effect of group i on Y (That is, $\alpha_i = \mu_i \mu$).
- ► Constraint: $\sum_{i=1}^{r} \alpha_i = 0$.
 - ► This constraint is needed for "identifiability".
 - This is "equivalent" to only adding r-1 columns to the design matrix for this qualitative variable.

► Model is easy to fit:

$$\widehat{Y}_{ij} = \frac{1}{n_i} \sum_{i=1}^{n_i} Y_{ij} = \overline{Y}_{i}.$$

▶ If observation is in *i*-th group: predicted mean is just the sample mean of observations in *i*-th group.

Testing (One-way ANOVA)

Simplest question: is there any group (main) effect?

$$H_0: \alpha_1 = \cdots = \alpha_r = 0$$

or

$$H_0: \mu_1 = \cdots = \mu_r.$$

- ► Test is based on *F*-test with full model vs. reduced model.
 - ▶ Reduced model just has an intercept $Y_{ij} = \mu + \varepsilon_{ij}$.
- Other questions: is the effect the same in groups 1 and 2?

$$H_0: \alpha_1 = \alpha_2$$
?

lm() uses indicator variables.

```
rehab.lm = lm(Time ~ Fitness, data = rehab.table)
##summary(rehab.lm)
```

▶ lm() considers the Fitness == 1 as the base level.

```
Call:
lm(formula = Time ~ Fitness, data = rehab.table)
Residuals:
  Min
          10 Median
 -9.0 -3.0 -0.5
                       3.0
                              8.0
Coefficients:
            Estimate Std/Error t value Pr(>|t|)
(Intercept) (
             38,000
                         1.574 24.149 < 2e-16 ***
Fitness2
             -6.000
                         2.111 -2.842 0.00976 **
Fitness3
             -14.000
                        2.404 -5.824 8.81e-06 ***
0 (***, 0 001 (**, 0 01 (*, 0 02 ( , 0 1 ( , 1
Residual standard error: 4.451 on 21 degrees of freedom
Multiple R-squared: 0.6176, Adjusted R-squared: 0.5812
F-statistic: 16.96 on 2 and 21 DF, p-value: 4.129e-05
                         H0: Time ~1 versus Ha: Time ~ Fitness
```

▶ Upon inspection of the design matrix above, we see that the (Intercept) coefficient corresponds to the mean in Fitness==1, while Fitness==2 coefficient corresponds to the difference between the groups Fitness==2 and Fitness==1.

$$Y_{ij} = \mu + \alpha_i + \varepsilon_{ij}.$$

- ▶ This is not the same *parameterization* we get when only adding r-1 of 0-1 columns, but it gives the same *model*.
 - $\hat{Y}_{ij} = \bar{Y}_{i.}$
- ▶ The estimates of α 's can be obtained from the estimates of β using R's default parameters.
- ► For a more detailed exploration into R's creation of design matrices, try reading the following tutorial on design matrices.

The design matrix is the indicator coding

```
head(model.matrix(rehab.lm))
```

```
## 1 (Intercept) Fitness2 Fitness3
## 1 1 1 0 0
## 2 1 0 0
## 3 1 0 0
## 4 1 0 0
## 5 1 0 0
## 6 1 0
```

- ▶ Recall that the rows of the Coefficients table above do not correspond to the α parameter.
 - $ightharpoonup \mathbb{R}$ does use the r-1 indicator variables.
 - R does not use the condition that α 's and their sum would have to be equal to 0.

 $ightharpoonup ar{Y}_{1\cdot}, ar{Y}_{2\cdot}, ar{Y}_{3\cdot}$ are as follows:

```
print(predict(rehab.lm,
    list(Fitness=factor(c(1,2,3))))

## 1 2 3

## 38 32 24

c(mean(rehab.table$Time[rehab.table$Fitness == 1]),
    mean(rehab.table$Time[rehab.table$Fitness == 2]),
    mean(rehab.table$Time[rehab.table$Fitness == 3]))
```

```
## [1] 38 32 24
```

<fct> <int>

8

10

6

1 1

3 3

2 2

```
overall mean = mean(rehab.table$Time);overall mean
## [1] 32
group_by(rehab.table, Fitness) %>%
  summarise(
   n i = n()
   hat mean i = mean(Time, na.rm = TRUE),
   hat alpha i = hat mean i - overall mean,
   hat sd i = sd(Time, na.rm = TRUE)
## # A tibble: 3 x 5
## Fitness n_i hat_mean_i hat_alpha_i hat_sd_i
```

<dbl>

38

32

24

<dbl>

-8

<dbl>

3.46

4.43

6 5.48

ANOVA table

Source	SS	df	MS	E (MS)
Treatment	$SSTR = \sum_{i=1}^{r} n_i \left(\overline{Y}_{i.} - \overline{Y} \right)^2$	r – 1	$MSTR = \frac{SSTR}{r - 1}$	$\frac{\sigma^2 + }{\sum_{i=1}^r n_i \alpha_i^2}$
Error	SSE = $\sum_{i=1}^{r} \sum_{j=1}^{n_i} (Y_{ij} - \overline{Y}_{i.})^2$	$\sum\nolimits_{i=1}^r (n_i-1)$	$MSE = \frac{SSE}{\sum_{i=1}^{r} (n_i - 1)}$	$r-1$ σ^2

- Much of the information in an ANOVA model is contained in the ANOVA table.
- SSTR: sum of squares of treatment and SSE: Sum of squares of error.
- ▶ Note that *MSTR* measures "variability" of the "cell" means.
 - If there is a group effect we expect this to be large relative to MSE.
- We see that under $H_0: \alpha_1 = \cdots = \alpha_r = 0$, the expected value of *MSTR* and *MSE* is σ^2 .
 - This tells us how to test H₀ using ratio of mean squares, i.e. an F test.

Testing for any main effect

- ▶ Rows in the ANOVA table are, in general, independent.
- ightharpoonup Therefore, under H_0

$$F = \frac{MSTR}{MSE} = \frac{\frac{SSTR}{df_{TR}}}{\frac{SSE}{df_E}} \sim F_{df_{TR}, df_E}$$

the degrees of freedom come from the df column in previous table.

▶ Reject H_0 at level α if $F \ge F_{1-\alpha,df_{TR},df_E}$.

ANOVA table

anova (rehab.lm)

```
## Analysis of Variance Table
##
## Response: Time
## Df Sum Sq Mean Sq F value Pr(>F)
## Fitness 2 672 336.00 16.962 4.129e-05 ***
## Residuals 21 416 19.81
## ---
```

Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.3

Testing for any main effect

▶ Relationship between the columns in the above ANOVA table.

```
F = 336.00 / 19.81

pval = 1 - pf(F, 2, 21)

print(data.frame(F,pval))
```

```
## F pval
## 1 16.96113 4.129945e-05
```

ANOVA in R (using aov())

rehab.aov = aov(Time ~ Fitness,

Residuals 21 416 19.8

```
data = rehab.table)
summary(rehab.aov)

## Df Sum Sq Mean Sq F value Pr(>F)
## Fitness 2 672 336.0 16.96 4.13e-05 ***
```

--## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.

▶ We can conclude at 5% significance level that at least one of the effects is non zero (or at least one of means μ_i is different from other)

Inference for linear combinations

▶ Suppose we want to "infer" something about

$$\sum_{i=1}^{r} a_i \mu_i,$$

where $\mu_i = \mu + \alpha_i$ is the mean in the *i*-th group.

For example:

$$H_0: \mu_1 - \mu_2 = 0$$
 (same as $H_0: \alpha_1 - \alpha_2 = 0$)?

For example: Is there a difference between below average and average groups in terms of rehab time?

Inference for linear combinations

We need to know

$$\operatorname{Var}\left(\sum_{i=1}^r a_i \overline{Y}_{i\cdot}\right) = \sigma^2 \sum_{i=1}^r \frac{a_i^2}{n_i}.$$

After this, the usual confidence intervals and t-tests apply.

Example

- Pairwise t-test
- ► H_0 : $\mu_i = \mu_k$ versus H_a : $\mu_i \neq \mu_k$ where $i \neq k = 1, 2, 3$.

pairwise.t.test(rehab.table\$Time,

```
rehab.table$Fitness,
  p.adjust.method = "bonferroni")
##
##
    Pairwise comparisons using t tests with pooled SD
##
  data: rehab.table$Time and rehab.table$Fitness
##
##
## 2 0.0293 -
## 3 2.6e-05 0.0067
##
  P value adjustment method: bonferroni
```

Example

- Tukey's multiple pairwise-comparisons
- ► More about Tukey's multiple pairwise-comparisons

TukeyHSD(rehab.aov)

```
##
    Tukey multiple comparisons of means
      95% family-wise confidence level
##
##
## Fit: aov(formula = Time ~ Fitness, data = rehab.table)
##
## $Fitness
##
      diff
                 lwr
                            upr
                                    p adi
## 2-1 -6 -11.32141 -0.6785856 0.0253639
## 3-1 -14 -20.05870 -7.9413032 0.0000254
## 3-2 -8 -13.79322 -2.2067778 0.0060547
```

plot(rehab.aov, 1)

- Variance is same in each group
- ► OK!

```
plot(rehab.aov, 1)
```


► Normality assumption

plot(rehab.aov, 2)

- Normality assumption
- ► Looks OK!

plot(rehab.aov, 2)

Two-way ANOVA

▶ Often, we will have more than one variable we are changing.

Example

- After kidney failure, we suppose that the time of stay in hospital depends on weight gain between treatments and duration of treatment.
- ▶ We will model the log number of days as a function of the other two factors.

Variable	Description		
Days	Duration of hospital stay (resposne)		
Weight	How much weight is gained? (three levels)		
Duration	How long under treatment for kidney problems? (two levels)		

Example (Two-way ANOVA model)

```
url = 'http://statweb.stanford.edu/~jtaylo/stats191/data/k:
kidney.table = read.table(url, header=T)
kidney.table$D = factor(kidney.table$Duration)
kidney.table$W = factor(kidney.table$Weight)
kidney.table$logDays = log(kidney.table$Days + 1)
head(kidney.table)
```

```
## Days Duration Weight ID D W logDays
## 1 0 1 1 1 1 1 0.0000000
## 2 2 1 1 1 2 1 1 1.0986123
## 3 1 1 1 1 3 1 1 0.6931472
## 4 3 1 1 1 1 3 1 1 0.6931472
## 5 0 1 1 5 1 1 0.0000000
## 6 2 1 1 6 1 1 1.0986123
```

Two-way ANOVA model

- Second generalization of t-test: more than one grouping variable.
- ► Two-way ANOVA model:
 - r groups in first factor
 - m groups in second factor
 - $ightharpoonup n_{ij}$ in each combination of factor variables.
- ► Model:

$$Y_{ijk} = \mu + \alpha_i + \beta_j + (\alpha\beta)_{ij} + \varepsilon_{ijk}, \qquad \varepsilon_{ijk} \sim N(0, \sigma^2).$$

▶ In kidney example, r = 3 (weight gain), m = 2 (duration of treatment), $n_{ij} = 10$ for all (i, j).

Questions of interest

Two-way ANOVA: main questions of interest

▶ Are there main effects for the grouping variables?

$$H_0: \alpha_1 = \cdots = \alpha_r = 0, \qquad H_0: \beta_1 = \cdots = \beta_m = 0.$$

Are there interaction effects:

$$H_0: (\alpha\beta)_{ij} = 0, 1 \leq i \leq r, 1 \leq j \leq m.$$

Interactions between factors

We've already seen these interactions in the IT salary example.

- An additive model says that the effects of the two factors occur additively – such a model has no interactions.
- An interaction is present whenever the additive model does not hold.

Interaction plot

```
interaction.plot(kidney.table$W, kidney.table$D,
  kidney.table$logDays, type='b',
  col=c('red', 'blue'), lwd=2,
  pch=c(23,24),
  xlab = "Weight",
  ylab = "mean of logDays")
```


Interaction plot

- ▶ When these broken lines are not parallel, there is evidence of an interaction.
- ▶ The one thing missing from this plot are errorbars.
 - The above broken lines are clearly not parallel but there is measurement error.
 - ▶ If the error bars were large then we might consider there to be no interaction, otherwise we might.

Parameterization

- Many constraints are needed, again for identifiability. Let's not worry too much about the details.
- Constraints:
 - $\sum_{i=1}^{r} \alpha_i = 0$
 - $\sum_{j=1}^{m} \beta_j = 0$
 - $\sum_{i=1}^{m} (\alpha \beta)_{ij} = 0, 1 \le i \le r$
- We should convince ourselves that we know have exactly r * m free parameters.

Fitting the model

▶ Easy to fit when $n_{ij} = n$ (balanced)

$$\widehat{Y}_{ijk} = \overline{Y}_{ij\cdot} = \frac{1}{n} \sum_{k=1}^{n} Y_{ijk}.$$

▶ Inference for linear combinations of μ_{ij} 's

$$\operatorname{Var}\left(\sum_{i=1}^{r}\sum_{j=1}^{m}a_{ij}\overline{Y}_{ij}\right) = \frac{\sigma^{2}}{n}\cdot\sum_{i=1}^{r}\sum_{j=1}^{m}a_{ij}^{2}.$$

Usual t-tests, confidence intervals.

Fitting the model

4 2

5 3

6.3

```
group_by(kidney.table, W, D) %>%
 summarise(
   count = n(),
   hat_mean_ij = mean(logDays, na.rm = TRUE),
   hat_sd_ij = sd(logDays, na.rm = TRUE)
## # A tibble: 6 x 5
## # Groups: W [3]
## W
         D count hat mean ij hat sd ij
## <fct> <fct> <int>
                         <dbl>
                                 <dbl>
## 1 1
                 10
                         1.02 0.831
## 2 1 2
                                 0.759
                 10
                         0.917
## 3 2
                 10
                         1.87
                                 0.751
```

1.34 0.726

0.619

2.55 0.693

1.99

10

10

10

ANOVA table

▶ In the balanced case, everything can again be summarized from the ANOVA table

Source	SS	DF	MS
Jource		Di	1415
A	$SSA = nm \sum_{i=1}^{r} \left(\overline{Y}_{i} - \overline{Y}_{} \right)^{2}$	r-1	SSA/(r-1)
В	$SSB = nr \sum_{j=1}^{m} \left(\overline{Y}_{\cdot j} - \overline{Y}_{\cdot \cdot \cdot} \right)^2$	m-1	SSB/(m-1)
A:B	$SSAB = n \sum_{i=1}^{r} \sum_{i=1}^{m} \left(\overline{Y}_{ij} - \overline{Y}_{i} - \overline{Y}_{.j} + \overline{Y}_{} \right)^{2}$	(m-1)(r-1)	SSAB/(m-1)(r-1)
ERROR	$SSE = \sum_{i=1}^{r} \sum_{j=1}^{m} \sum_{k=1}^{n} (Y_{ijk} - \overline{Y}_{ij})^{2}$	(n-1)mr	SSE/(n-1)mr

ANOVA table

Source	$\mathbb{E}(MS)$
А	$\sigma^2 + nm \frac{\sum_{i=1}^r \alpha_i^2}{r-1}$
В	$\sigma^2 + nr \frac{\sum_{j=1}^m \beta_j^2}{m-1}$
A:B	$\sigma^2 + n \frac{\sum_{i=1}^{r} \sum_{j=1}^{m} (\alpha \beta)_{ij}^2}{(r-1)(m-1)}$
ERROR	σ^2

- ► Rows of the ANOVA table can be used to test various of the hypotheses we started out with.
- For instance, we see that under $H_0: (\alpha\beta)_{ij} = 0, \forall i, j$ the expected value of SSAB and SSE is σ^2 : use these for an F-test testing for an interaction.
- ▶ Under H_0 ,

$$F = rac{MSAB}{MSE} = rac{rac{SSAB}{(m-1)(r-1)}}{rac{SSE}{(n-1)mr}} \sim F_{(m-1)(r-1),(n-1)mr}.$$

```
kidney.aov = aov(logDays ~ D * W,
  data = kidney.table)
summary(kidney.aov)
```

- ▶ $H_0: (\alpha\beta)_{ij} = 0, \forall i, j$, we do not reject H_0 at 5% significance level.
- ▶ The main effects are significant at 5% significance level.

Multiple pairwise comparison of effect of Weight groups

```
pairwise.t.test(kidney.table$logDays,
  kidney.table$W,
  p.adjust.method = "bonferroni")
```

```
##
    Pairwise comparisons using t tests with pooled SD
##
##
  data: kidney.table$logDays and kidney.table$W
##
##
## 2 0.030
## 3 2.8e-06 0.019
##
## P value adjustment method: bonferroni
```

▶ Multiple pairwise comparison of effect of Duration groups

```
pairwise.t.test(kidney.table$logDays,
   kidney.table$D,
   p.adjust.method = "bonferroni")

##
## Pairwise comparisons using t tests with pooled SD
##
```

 $\begin{tabular}{ll} \begin{tabular}{ll} \beg$

1

##

2 0.093
##
P value adjustment method: bonferroni

▶ We do not reject the *H*₀ (at 5% significance level) that the level of duration (of treatment) has no different effect on the number of stays in the hospital.

Diagnostics

homogeneity of variance - OK!

```
plot(kidney.aov, 1)
```


Fitted values aov(logDays ~ D * W)

Normality assumption - OK!

plot(kidney.aov, 2)

Fit using Im

```
\begin{split} Y_{ijk} &= \beta_0 + \beta_1 D_1 + \beta_2 W_1 + \beta_3 W_2 + \beta_4 D_1 W_1 + \beta_5 D_1 W_2 + \epsilon \\ \text{kidney.lm} &= \text{lm}(\text{logDays} \sim \text{D*W}, \\ \text{contrasts=list}(\text{D='contr.sum'}, \\ \text{W='contr.sum'}), \text{ data} &= \text{kidney.table}) \\ \text{\#summary}(kidney.lm) \end{split}
```

```
Call:
lm(formula = loaDays ~ D * W. data = kidney.table. contrasts = list(D = "contr.sum".
    W = "contr.sum"))
Residuals:
               10 Median
-1.33772 -0.51121 0.06302 0.62926 1.17950
                           Overall mean
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.61401
D1
            0.19747
W1
           -0.64496
                       0.13377 -4.821 1.2e-05 ***
           -0.01264
                       0.13377 -0.095
                                         0.9251
D1:W1
           -0.14537
                       0.13377 -1.087
                                         0.2820
            0.06618 0.13377 0.495 0.6228
D1:W2
Signif. codes:
0 (**** 0 001 (*** 0 01 (** 0 05 ( ) 0 1 ( ) 1
Residual standard error: 0.7327 on 54 degrees of freedom
Multiple R-squared: 0.4076, Adjusted R-squared: 0.3528
F-statistic: 7.431 on 5 and 54 DF, p-value: 2.301e-05
               Ho: logDays ~ 1 versus Ha: logDays ~ D*W
```

Contrasts in R

- One level is the base level
- ► Compare other levels with the base level

contr.sum(3)

Model matrix in Im

R uses indicator variables

head(model.matrix(kidney.lm))

Finding predicted values using Im

- ► The most direct way to compute predicted values is using the predict function.
 - For example, \bar{Y}_{11} and the confidence interval for μ_{11} are

```
predict(kidney.lm, list(D=factor(1),
    W=factor(1)), interval='confidence')
```

```
## fit lwr upr
## 1 1.021156 0.5566306 1.485681
```

ANOVA using Im

```
anova(kidney.lm)
## Analysis of Variance Table
##
## Response: logDays
            Df Sum Sq Mean Sq F value Pr(>F)
##
## D
             1 2.3397 2.3397 4.3583 0.04156 *
## W
            2 16.9713 8.4856 15.8067 3.945e-06 ***
## D:W 2 0.6357 0.3178 0.5920 0.55675
## Residuals 54 28.9892 0.5368
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.3
```

 We can tests the interaction and the overall main effects (same as using aov)

Some caveats

We can test the interaction using our usual approach.

```
anova(lm(logDays ~ D+W,
  data = kidney.table),
  lm(logDays ~ D*W,
   data = kidney.table))
```

```
## Analysis of Variance Table
##
## Model 1: logDays ~ D + W
## Model 2: logDays ~ D * W
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 56 29.625
## 2 54 28.989 2 0.63566 0.592 0.5567
```

▶ But we cannot test the main effects using this approach

Some caveats

► Test the main effect of Weight factor variable using our ususal approach.

```
anova(lm(logDays ~ D,
  data = kidney.table),
  lm(logDays ~ D+W,
   data = kidney.table))
```

```
## Analysis of Variance Table
##
## Model 1: logDays ~ D
## Model 2: logDays ~ D + W
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 58 46.596
## 2 56 29.625 2 16.971 16.041 3.109e-06 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.5
```

Some caveats

► This F statistics value is not same as when we use anova(kidney.lm)

```
Analysis of Variance Table
Model 1: logDays ~ D
Model 2: logDays ~ D + W
  Res.Df
           RSS Df Sum of Sq F
                                      Pr(>F)
      58 46.596
                    (16.971) 16.041 3.109e-06 ***
     56)29,625 2
Signif. codes:
0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Analysis of Variance Table
Response: logDays
         Df Sum Sa Mean Sa F value Pr(>F)
             2.3397 2.3397 4.3583
                                     0.04156 *
D
          2 16.9713 8.4856 15.8067 3.945e-06 ***
D:W
          2 0.6357 0.3178 0.5920
                                     0.55675
Residuals 54 28.9892 0.5368
Signif. codes:
0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

Sum of squares

- Let's take Y response and 3 predictors X_1, X_2, X_3 .
- ▶ SSR (X_1, X_2, X_3) : total variation explained by X_1 , X_2 , and X_3 .
- ▶ SSR $(X_1|X_2)$: additional variation explained by X_1 when added to a model already containing X_2 .

Extra sum of squares

- ► ESS measures the part of the SSE (sum of squares of error) that is explained by an added subset of predictors.
 - ► $SSR(X_1|X_2) = SSE(X_2) SSE(X_1, X_2)$
 - Sequential sum of squares can be used to compute the total variation explained by X_1 , X_2 , and X_3 . This computation of sum of squares is called the Type I sum of squares.

$$SSR(X_1, X_2, X_3) = SSR(X_1) + SSR(X_2|X_1) + SSR(X_3|X_1, X_2)$$

Type I sum of squares can be used to test a term in the order they are listed in the model.

ANOVA table

- Need partial sum of squares SSA = SS(A|B,AB), SS(B|A,AB), SSAB = SS(AB|A,B).
- We can compute the above sum of squares using Type III sum of squares.
- In the balanced design the ANOVA table is from the ANOVA table

Source	SS
Α	$SSA = SS(A B, AB) = nm \sum_{i=1}^{r} (\overline{Y}_{i} - \overline{Y}_{})^{2}$
В	$SSB = SS(B A, AB) = nr \sum_{j=1}^{m} (\overline{Y}_{\cdot j} - \overline{Y}_{\cdot i})^2$
A:B	$SSAB = SS(AB A, B) = n \sum_{i=1}^{r} \sum_{j=1}^{m} (\overline{Y}_{ij.} - \overline{Y}_{i} - \overline{Y}_{.j.} + \overline{Y}_{})^{2}$
ERROR	$SSE = \sum_{i=1}^{r} \sum_{j=1}^{m} \sum_{k=1}^{n} (Y_{ijk} - \overline{Y}_{ij})^{2}$

Type I, II, III sum of squares

- ➤ Type I, II, III sum of squares will give different results (ANOVA table) for **unbalanced design**.
- anova() and aov() computes the sequential sum of squaresfactors are tested in the order they are in the model.
- ► For the two-way layout, we want to test each term in the model in light of the every other term in the model.
- ► If the design is unbalanced, we can use Anova() (with contrasts sum) in car package to get the ANOVA table.

For the example

```
library(car)
Anova(lm(logDays \sim D * W, data = kidney.table,
        contrasts=list(D='contr.sum', W='contr.sum')),
     type = "III")
## Anova Table (Type III tests)
##
## Response: logDays
##
              Sum Sq Df F value Pr(>F)
## (Intercept) 156.302 1 291.1532 < 2.2e-16 ***
             2.340 1 4.3583 0.04156 *
## D
            16.971 2 15.8067 3.945e-06 ***
## W
## D:W 0.636 2 0.5920 0.55675
## Residuals 28.989 54
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.3
```

Recommended reading

Design and Analysis of Experiments, 10th Edition, Douglas C. Montgomery: PDF is available for an older edition.

Reference

► Lecture notes of Jonathan Taylor .