Домашнее задание по теории вероятности №4

Агаев Фархат

30 сентября 2019 г.

Задача № 10

Обозначим:

- A_i событие, что болен i-ой болезнью.
- ullet p_i вероятность, что болен i-ой болезнью.
- $p_1 = \frac{1}{2}$, $p_2 = \frac{1}{6}$, $p_3 = \frac{1}{3}$
- \bullet B событие, что тест дал 4 положительных и 1 отрицательный результат.

Посчитаем по формуе полной вероятности:

$$P(B) = C_5^4 \cdot (P(B|A_1) \cdot P(A_1) + P(B|A_2) \times P(A_2) + P(B|A_3)) \cdot P(A_3)) = 5 \cdot (0.1^4 \cdot 0.9 \cdot 0.5 + 0.2^4 \cdot 0.8 \cdot (1/6) + 0.9^4 \cdot 0.1 \cdot (1/3) \approx 0.1105$$

Ответ

По формуле Байеса:

$$P(A_1|B) = \frac{P(B|A_1) \cdot P(A_1)}{P(B)} = \frac{0.1^4 \cdot 0.9 \cdot 0.5 \cdot 5}{0.1105} \approx 0.002$$

$$P(A_2|B) = \frac{P(B|A_2) \cdot P(A_2)}{P(B)} = \frac{0.2^4 \cdot 0.8 \cdot 5 \cdot (1/6)}{0.1105} \approx 0.0009$$

$$P(A_3|B) = \frac{P(B|A_3) \cdot P(A_3)}{P(B)} = \frac{0.0000 \cdot 0.1 \cdot (1/3) \cdot 5}{0.1105} \approx 0.0009$$

Задача №11

Обозначим:

- A_N^2 , событие, что при N испытаниях будет ровно 2 успеха.
- A_N^{2k} событие, что при N испытаниях будет четное число успехов.
- $p = \frac{1}{2}$ вероятность успеха.
- $q = \frac{1}{2}$ вероятность провала.

$$P(A_N^2) = C_N^2 \cdot \left(\frac{1}{2}\right)^N$$

$$P(A_N^{2k}) = \frac{C_N^0 + C_N^2 + C_N^4 + C_N^6 + \dots}{2^N} =$$

$$= \frac{C_{N-1}^0 + C_{N-1}^1 + C_{N-1}^2 + C_{N-1}^3 + \dots}{2^N} = \frac{2^{N-1}}{2^N} = \frac{1}{2}$$

Ответ:

$$P(A_N^2|A_N^{2k}) = \frac{P(A_N^2 \cap A_N^{2k})}{P(A_N^{2k})} = C_N^2 \cdot \left(\frac{1}{2}\right)^{N-1}$$

Задача №12

Обозначим:

- A_n^m , событие, что m успехов произойдут раньше, чем n неудач.
- ullet p вероятность успеха.
- \bullet (1-p) вероятность неудачи
- кодировка, 0 неудача, 1 успех.

Если кодировать наши слачаи словами, то получится, что такое

первые (m - 1 + n - 1) элементы это m - 1 единички и n - 1 нолики, то есть мы просто посчитаем число расстановок C_{m+n-2}^{m-1} , таким образом посчитаем другие слова тоже C_{m+n-3}^{m-1} , C_{m+n-4}^{m-1} , ..., 1 или если посмотреть с другой стороны по увелечению, то получим C_{m-1}^{m-1} , C_{m-2}^{m-1} , ..., C_{m+n-2}^{m-1}

ответ:

$$P(A_n^m) = \sum_{i=0}^{n-1} C_{m-1+i}^{m-1} \cdot (1-p)^i \cdot p^m$$