2.4 常用MSI组合逻辑器件

2.4.1 译码器和编码器

- 译码器和编码器的一般结构、二进制译码器、MSI译码器及其级联与应用
- · 编码器、优先级编码器、MSI编码器及其应用

2.4.2 数据分配器和多路选择器

- 数据分配器原理
- · 多路选择器、MSI多路选择器及其扩展和应用

2.4.3 三态门

- 三态门、多路收发器和双向收发器
- 2.4.4 加法器和比较器
- 加法器
- 比较器

2.4.1 译码器与编码器

译码器与编码器的的一般结构如图所示:

- · 编码:将需要处理的任何信息(包括数和字符等)转换成符合一定规则的二进制代码。
- ·译码:是编码的逆过程, 将每一组代码所包含的信息 "翻译"出来。
- 译码器输入端数n小于输出端数m; 反之,输入端数n大于输出端数m为编码器。

1. 二进制译码器

最常用的译码器是二进制译码器。又称为n-2n译码器。其中:输入编码为n位二进制数;输出编码为2n取1码。换句话说,译码器输出为2n个最小项,所以有时称为最小项发生器。

例 2-4 译码器

输入代码字: I_1 I_0 ; 输入使能: EN

输出代码字: Y₃ Y₂ Y₁ Y₀

功能描述: 当 EN = 1, 输入代码字是i的 二进制表示, 则输出 Y_i (i为十进制数) 位 为1. 其他位均为0。

真值表

输	人		输出
EN	11		$Y_3 Y_2 Y_1 Y_0$
0	d	d	0 0 0 0
1	0	0	0 0 0 1
1	0	1	0 0 1 0
1	1	0	0 1 0 0
1	1	1	1 0 0 0

双2-4译码器74LS139

输	,	λ		输	出	
/G	B	A	/Y ₃	/Y ₂	/Y ₁	/Y ₀
1	d	d	1	1	1	1
0	0	0	1	1	1	0
0	0	1	1	1	0	1
0	1	0	1	0	1	1
0	1	1	0	1	1	1

1) 3-8 译码器74LS138

74LS138真值表

	4	諭 ノ							输	出			
G_1	/G _{2A}	/G _{2B}	C	B	A	Y ₇	/Y ₆	Y ₅	/Y ₄	/Y ₃	/Y ₂	/Y ₁	/Y ₀
0	d	d	d	d	d	1	1	1	1	1	1	1	1
d	1	d	d	d	d	1	1	1	1	1	1	1	1
d	d	1	d	d	d	1	1	1	1	1	1	1	1
1	0	0	0	0	0	1	1	1	1	1	1	1	0
1	0	0	0	0	1	1	1	1	1	1	1	0	1
1	0	0	0	1	0	1	1	1	1	1	0	1	1
1	0	0	0	1	1	1	1	1	1	0	1	1	1
1	0	0	1	0	0	1	1	1	0	1	1	1	1
1	0	0	1	0	1	1	1	0	1	1	1	1	1
1	0	0	1	1	0	1	0	1	1	1	1	1	1
1	0	0	1	1	1	0	1	1	1	1	1	1	1

译码器74LS138的使用要点

- 74LS138的输出信号为低有效,它有三个使能输入端(G₁、/G_{2A}、/G_{2B}),只有在三个使能输入全部有效时,才能有正确的有效输出。
- 74LS138的内部功能可用逻辑表达式描述如下: Y_i = G₁·G_{2A}·G_{2B}·m_i
 其中, Y_i为内部输出编码字的第i位,
 m_i为输入变量C、B、A的最小项。
- 74LS138 外部信号之间的关系为:
 / Y_i = G₁ · /G_{2A} · /G_{2B} · m_i

74LS138

2) BCD译码器74LS49

74LS49是常用的一种BCD码MSI器件,它的输入编码为4位的BCD码,输出为7位编码字。

七段显示器件结构

第二章 组合逻辑 七段数码管分 为共阳极和共 阴极两种:

74LS49真值表

(/B	! :	禁止显示控制端》
		11,1, 4 1,4 , 1,4 ,

逻辑符号:

74LS49

思考:一、如何设计74LS49?

阅读

设: 非十进制数的输入组合为无关项。

例1设计BCD译码器。

A_8A_4		
A_2A_1	d	
	d	
	d	d
	d	d

思考:一、如何设计74LS49?

阅读

设: 非十进制数的输入组合为无关项。

例1设计BCD译码器。

$$\begin{split} Y_0 &= m_0 = \overline{A}_8 \overline{A}_4 \overline{A}_2 \overline{A}_1 \\ Y_1 &= m_1 = \overline{A}_8 \overline{A}_4 \overline{A}_2 A_1 \\ Y_2 &= m_2 + d_{10} = \overline{A}_4 A_2 \overline{A}_1 \\ Y_3 &= m_3 + d_{11} = \overline{A}_4 A_2 A_1 \\ Y_4 &= m_4 + d_{12} = A_4 \overline{A}_2 \overline{A}_1 \\ Y_5 &= m_5 + d_{13} = A_4 \overline{A}_2 \overline{A}_1 \\ Y_6 &= m_6 + d_{14} = A_4 A_2 \overline{A}_1 \\ Y_7 &= m_7 + d_{15} = A_4 A_2 \overline{A}_1 \\ Y_8 &= m_8 + d_{12} + d_{10} + d_{14} = A_8 \overline{A}_1 \end{split}$$

 $Y_9 = m_9 + d_{12} + d_{11} + d_{15} = A_8 A_1$

	A_8A_2	1		
A_2A_1	$\mathbf{Y_0}$	$\mathbf{Y_4}$	d	$\mathbf{Y_8}$
	\mathbf{Y}_{1}	\mathbf{Y}_{5}	d	Y ₉
	$\mathbf{Y_3}$	\mathbf{Y}_7	d	d
	\mathbf{Y}_{2}	$\mathbf{Y_6}$	d	d

例2设计BCD七段数码显示译码器 阅读

输入信号: BCD码DCBA

输出信号:控制数码管发光的信号

a, b, c, d, e, f, g

真值表如下所示:

阅

用MSI组合逻辑器件

由真值表填出卡诺图 ①填入无关项 出 d d d d d d d d d d d d d d d b d d d d d d d d d d d d d d d d d \mathbf{g} d 市川MNI组合这种品什

		值表	長垣	其出	卡	若图		① 埃	i入	无	关项		输	λ			输		出		
包设	Ē							②分	別	填	"1"	,		BA	a	b		_			g
1		d	1	1	. 1	d	1	1	1	d	1	0	0 (0 0	1	1	1	1	1	1	0
	1	d	1	1		d	1	1	1	d	1	0		0 1	0	1	1	0	0	0	0
1	1	d	d	1	. 1	d	d	1	1	d	d	0		$\frac{1}{1}$	1	$\frac{1}{1}$	0	$\frac{1}{1}$	$\frac{1}{0}$	$\frac{0}{0}$	1
1		d	d	1		d	d		1	d	d	$\frac{0}{0}$		1 1 1 0	0	1 1	1 1	0	$\frac{\mathbf{v}}{0}$	$\frac{0}{1}$	$\frac{1}{1}$
a				b				c				$0 \over 0$) 1	$\frac{0}{1}$	$\frac{1}{0}$	$\frac{1}{1}$	$\frac{0}{1}$	$\frac{0}{0}$	$\frac{1}{1}$	$\frac{1}{1}$
1		d	1	1		d	1	1	1	d	1	0	1	1 0	0	0	1	1	1	1	1
	1	d				d			1	d	1	0	1	1 1	1	1	1	0	0	0	0
1		d	d			d	d			d	d	1	0 (0 0	1	1	1	1	1	1	1
1	1	d	d	1	1	d	d		1	d	d	1		0 1	1	1	1	0	0	1	1
d				e				f				1	0 1	1 0	d	d	d	d	d	d	d
		1	d	1						a		1	0 1	$\frac{1}{0}$	d	d	d	d	d	d d	$\frac{\mathbf{d}}{\mathbf{d}}$
		1	d	1					f	g	b	$\frac{1}{1}$) 1		d	d	d	d	d	d
	1	1	d	d					е		С		1		d						d
		1			g					d		1	1	1 1	d	d	d	d	d	d	d
	1	1	d	d	D								1 3	P 14 7.	币	It] [V]	1013	且台	19:	FF 3	>1H

③圈"0", 找出反函数的最小覆盖(为得到与电路对应的"或与"式)阅读

BA

阅读由卡诺图写出表达式,如下:

$$\overline{\mathbf{a}} = \mathbf{C}\overline{\mathbf{A}} + \overline{\mathbf{D}}\overline{\mathbf{C}}\overline{\mathbf{B}}\mathbf{A} + \mathbf{D}\mathbf{B}$$

$$\mathbf{a} = (\overline{\mathbf{C}} + \mathbf{A})(\mathbf{D} + \mathbf{C} + \mathbf{B} + \overline{\mathbf{A}})(\overline{\mathbf{D}} + \overline{\mathbf{B}})$$

$$\overline{\mathbf{b}} = \mathbf{C}\overline{\mathbf{B}}\mathbf{A} + \mathbf{C}\mathbf{B}\overline{\mathbf{A}} + \mathbf{D}\mathbf{B}$$

$$\mathbf{b} = (\overline{\mathbf{C}} + \mathbf{B} + \overline{\mathbf{A}})(\overline{\mathbf{C}} + \overline{\mathbf{B}} + \mathbf{A})(\overline{\mathbf{D}} + \overline{\mathbf{B}})$$

$$\overline{\mathbf{c}} = \overline{\mathbf{C}}\overline{\mathbf{B}}\overline{\mathbf{A}} + \mathbf{D}\mathbf{C}$$

$$\mathbf{c} = \mathbf{C} + \overline{\mathbf{B}} + \mathbf{A})(\overline{\mathbf{D}} + \overline{\mathbf{C}})$$

三个表达式中各包含有一个由"d"构成的多余项(绿色)。为何?

当禁止显示输入信号 /BI=0时,通过它们 封锁a、b和c的输出。

阅读由卡诺图写出表达式,如下:

							,	•							
BA `		d	1	1		d	1	1	1	d	1	\Box	1	d	1
) 1	d	Q			d			1	d	1		1	d	1
-		d	d			d	d			d	d	1		d	d
-	1	d	d	1	1	d	d		1	d	d	1	1	d	d
		d				e			í	ĺ					
$\overline{\mathbf{d}}$	$= \overline{CI}$	3A +	- CB	$\mathbf{A} + \mathbf{\bar{C}}$	$\overline{C}\overline{\mathbf{B}}$										
d	$=$ (\overline{C})	$\mathbf{I} + \mathbf{I}$	3 + A	(<u>C</u>	+ B	$+ \overline{\mathbf{A}}$		C + B	$+\overline{\mathbf{A}}$						
e	$\overline{\mathbf{e}} = \mathbf{A} + \mathbf{C}\overline{\mathbf{B}}$														
e	$\mathbf{e} = \mathbf{A}(\mathbf{C} + \mathbf{D})$								g = CBA + DCB						
$\overline{\mathbf{f}}$	$\frac{\overline{\mathbf{f}} = \mathbf{B}\mathbf{A} + \overline{\mathbf{C}}\mathbf{B} + \overline{\mathbf{D}}\overline{\mathbf{C}}\mathbf{A}$ $\mathbf{g} = (\overline{\mathbf{C}} + \overline{\mathbf{B}} + \overline{\mathbf{A}})(\mathbf{D} + \mathbf{C} + \mathbf{B})$														
f	$=$ $\overline{\mathbb{B}}$	$+\overline{A}$	$\overline{\mathbf{C}}$	$+\overline{\mathbf{B}}$	(D -	+ C	$+\overline{\mathbf{A}}$								

思考:二、当给74LS49输入1010—1111组合时,显示阅读的数字是什么?

由卡诺图填出真值表的无关项部分,如下所示:

	输入							输	1	出			
/BI	D	C	В	A		a	b	c	d	e	f	g	
10 1	1	0	1	0		0	0	0	1	1	0	1	
11 1	1	0	1	1		0	0	1	1	0	0	1	
12 1	1	1	0	0		0	1	0	0	0	1	1	
13 1	1	1	0	1		1	0	0	1	0	1	1	
14 1	1	1	1	0		0	0	0	1	1	1	1	
15 1	1	1	1	1		0	0	0	0	0	0	0	

显示的数字分别是

思考: 三、重新设计74LS49, 使数字6和9带头尾, 阅读 如图所示。并判断此设计影响非十进制

BA

如图所示。并判断此设计影响非十进制 1010——1111输入的显示吗?

设计只需改变输出 a 和 d 的 表达式即可。分析其相应的 卡诺图,如下:

$$\overline{\mathbf{a}} = \mathbf{C}\overline{\mathbf{B}}\overline{\mathbf{A}} + \overline{\mathbf{D}}\overline{\mathbf{C}}\overline{\mathbf{B}}\mathbf{A} + \mathbf{D}\mathbf{B}$$

$$\overline{\mathbf{d}} = \overline{\mathbf{CBA}} + \overline{\mathbf{CBA}} + \overline{\mathbf{DCBA}}$$

 1
 d
 1
 1

 0
 1
 d
 1

 1
 1
 d
 1

 1
 1
 d
 1

 \mathbf{a}

这种设计不影响非十进制数的显示。

7

3) 二进制译码器的级联 Cascading Binary Decoders

当输入变量数 n大于器件的输入变量数时,可以用 多个二进制译码器的级联来实现。

例1 用两个3-8译码器组成4-16译码器。

N ₃	4-16 译码器	DEC ₁₅ DEC ₁₄
N ₂ ————————————————————————————————————	个个面	 DEG
N_0		$egin{array}{l} ext{DEC}_1 \ ext{DEC}_0 \end{array}$

N_3	N_2	N_1	N_0	DEC ₀	•••	DEC ₇	DEC ₈	•••	DEC ₁₅
	0	0	0	1	•••	0	0	•••	0
0	•••	•••	•••	•••	•••	•••	•••	•••	•••
	1	1	1	0	•••	1	0	•••	0
	0	0	0	0	•••	0	1	•••	0
1	•••	•••	•••	•••	•••	•••	•••	•••	•••
	1	1	1	0	•••	0	0	•••	1

第二章 组合逻辑电路 用两片74LS138U₁和U₂级联起

来,见图示。

项。

- ①将输入的最高位 N_3 分别接到 $U_1./G_{2A}$ 及 $U_2.G_1$;
- ②整个级联电路的使能输入/EN分别接到 U_1 ./ G_{2B} 和 U_2 ./ G_{2A} 。

当/EN = 0 (有效) 时

- ①若 $N_3=0$,则 U_2 的输出无效(输出
- 1), U_1 的输出为按 $N_2N_1N_0$ 译码:

$$/DEC_i = \overline{m}_i \quad (i = 0 \sim 7)$$

- ②若 $N_3=1$,则 U_1 的输出无效(输出
- 1), U_2 的输出为按 $N_2N_1N_0$ 译码:

$$/DEC_i = \overline{m}_i \quad (i = 8 \sim 15)$$

总的级联译码器的输出逻辑表达 式为: $/DEC_i = /EN + m_i$, $i = 0 \sim 15$

式内: m_i 为 $N_3N_2N_1N_0$ 的对应最小

例2设计一个5-32二进制译码器。第二章组合逻辑电路

采用四片74LS138 和一片74LS139组成一个二级译码的级联译码器。

4-16译码

N_3	N_2	N ₁	N_0
	0	0	0
0	•	•	•
	1	1	1
	0	0	0
1	•	•	•
	1	1	1

5-32译码

N_4	N_3	N ₂	N ₁	N_0	
		0	0	0	
0	0	•	•	•	
		1	1	1	
		0	0	0	
0	1	:	•	:	
		1	1	1	
	0	0	0	0	
1		•	•	•	
		1	1	Ī	
	1	0	0	0	
1		•	•	•	
		1	1	1	

第二章 组合逻辑电路 总的级联译码器的输出逻辑表达式为

 $/DEC_i = \overline{EN}_1 + /EN_2 + /EN_3 + \overline{m}_i$ $i = 0 \sim 31$ 式中 m_i 为 $N_4N_3N_2N_1N_0$ 的对应最小项。

此例中的树形结构又称为二级译码,速度较前例 4-16 译码器的一级译码要慢。

当 n 数更大时,可以采用树形结构的多级译码方案。

例设计一个9-512二进制译码器。

设计一个9-512二进制译码器。

阅读

所谓树形结构,如下图所示:

译码器还可以采用矩形结构。

译码器采用m×n矩形结构时, m、n越接近, 电路越简单。

如图所示:

阅读

Y方向译码

 Y_{2m-1} & & Y_{2m+1} Y_{4m-1} \mathbf{Y}_{2m} & & & Y_{i+1} Y_{2mxn-1} & &

当m、n是较大的 译码电路时, 也可 以用矩阵译码实现

 Y_{2m-1} $|\mathbf{Y_0}|\mathbf{Y_1}$ m-2^m 译码

X方向译码

多

级

译

码

电

路

4) 用MSI译码器实现组合逻辑函数

因为 n-2ⁿ二进制译码器的输出对应于 n 变量函数的2ⁿ个最小项,所以可以借用此器件来实现任何组合逻辑函数。

例1 用译码器74LS138实现 $F(x,y,z) = \sum m(1,4,6,7)$

逻辑图如下所示:

例2 设计一个一位全加器。

设:输入端分别为:被加数输入xi、加数输入yi、

低位向本位的进位输入C_{i-1}

输出端分别为:本位的和输出5;

本位向高位的进位输出C_i

则一位全加器的真值表如下所示。

$C_{i-1}x_i y_i$	$S_i C_i$
0 0 0	0 0
0 0 1	1 0
0 1 0	1 0
0 1 1	0 1
1 0 0	1 0
1 0 1	0 1
1 1 0	0 1
1 1 1	1 1

由真值表得到 $S_i = \sum m^3(1,2,4,7)$ $C_i = \sum m^3(3,5,6,7)$

一位全加器逻辑图

2. 二进制编码器

当译码器的输出编码位数少于输入编码位数时,这种器件称为编码器。

2n-n二进制编码器通用结构如图所示,其中输入端为2n个,输出为 n位二进制数,因此它的输入输出关系正好与译码器的相反。

约束条件:同一时刻只能有一个输入端有效。

二进制编码器框图

例 设计一个操作码形成器。

当按下+、-、X各操作码时,要求产生加法、减法、 乘法的操作码01、10、11。

① 真值表

A B C	$\mathbf{Y}_1\mathbf{Y}_0$	操作
0 0 0	0 0	空操作
0 0 1	0 1	加法
0 1 0	1 0	减法
0 1 1	d d	
1 0 0	1 1	乘法
1 0 1	d d	
1 1 0	d d	
1 1 1	d d	

2 卡诺图

	1	d	1			d	1
	d	d	d	1	d	d	d
$\mathbf{Y_1}$					$\overline{\mathbf{Y_0}}$		

③ 输出函数表达式

$$\mathbf{Y}_1 = \mathbf{A} + \mathbf{B}$$

$$Y_0 = A + C$$

函数仅包括那些使其为1的输入组合。

当且仅当输入代码中的仅一位为1

例 一个8位输入、3位输出的编码器如图所示。

这是一个8-3二进制编码器。输入: $I_0 \sim I_7$,输出: $Y_0 \sim Y_2$

① 简化真值表

I ₇ I ₆	I ₅	I ₄	I ₃	I ₂	\mathbf{I}_1	I_0	$\mathbf{Y}_2 \mathbf{Y}_1 \mathbf{Y}_0$
0 0	0	0	0	0	0	1	0 0 0
0 0	0	0	0	0	1	0	0 🚺
0 0	0	0	0	1	0	0	0 1 0
0 0	0	0	1	0	0	0	0 1 🚺
0 0	0	1	0	0	0	0	1 0 0
0 0	1	0	0	0	0	0	1 0 1
0 1	0	0	0	0	0	0	1 1 0
1 0	0	0	0	0	0	0	1 1 🗓

② 输出函数表达式

$$Y_0 = I_1 + I_3 + I_5 + I_7$$
 $Y_1 = I_2 + I_3 + I_6 + I_7$
 $Y_2 = I_4 + I_5 + I_6 + I_7$

当且仅当输入代码中的 一位为1,输出编码不 可能重复。

③电路图

④ 逻辑符号

 I_i 与 Y_j 之间的关系: 使 Y_j 为1的是那些 I_i , 其下标 i

的二进制数的第j位均为1。

例
$$Y_1 = I_2 + I_3 + I_6 + I_7$$
 即 $Y_1 = I_{010} + I_{011} + I_{110} + I_{111}$

阅读 根据前述的输出与输入下标的关系,可以直接写出 4-2 编码器的输出函数表达式,如下:

$$\mathbf{Y}_0 = \mathbf{I}_{01} + \mathbf{I}_{11} = \mathbf{I}_1 + \mathbf{I}_3$$

 $\mathbf{Y}_1 = \mathbf{I}_{10} + \mathbf{I}_{11} = \mathbf{I}_2 + \mathbf{I}_3$

根据前述的输出与输入下标的关系,可以直接写出16-4 编码器的输出函数表达式,如下:

$$Y_0 = I_1 + I_3 + I_5 + I_7 + I_9 + I_{11} + I_{13} + I_{15}$$

$$Y_1 = I_2 + I_3 + I_6 + I_7 + I_{10} + I_{11} + I_{14} + I_{15}$$

$$Y_2 = I_4 + I_5 + I_6 + I_7 + I_{12} + I_{13} + I_{14} + I_{15}$$

$$Y_3 = I_8 + I_9 + I_{10} + I_{11} + I_{12} + I_{13} + I_{14} + I_{15}$$

优先权编码器 Priority Encoders

如果在任一时刻,允许 2ⁿ 个部件中有多个器件同时提出请求,则 2ⁿ - n 二进制编码器产生的 n 位编码必定有重复,而不能与输入请求的条件一一对应了。为此,应对输入端进行优先权分配,使编码器仅响应请求中优先权最高的有效输入端,并产生相应的输出编码。这种具有指定输入端优先权顺序的编码器。称为优先权编码器。

如:某工控系统中的优先级列表:

火警:最高优先级、主电源故障:次高、系统安全连锁:系统存在危险因素,自动报警、系统连锁:存在较小的系统险情、机器状态1操作连锁:流水线存在问题,如瓶颈现象、机器状态2操作连锁、机器状态3操作连锁、机器状态4操作连锁。

8-3 优先权编码器的结构框图如下所示:

设优先权为: $I_7(最高) \rightarrow I_6 \rightarrow I_5 \rightarrow I_4 \rightarrow I_3 \rightarrow I_2 \rightarrow I_1 \rightarrow I_0$

1) MSI优先权编码器 74LS148

② 真值表

输入										3	输	出	
ÆI	/I ₀	/ I ₁	/I ₂	/I ₃	/I ₄	/I ₅	/ I ₆	/I ₇	/A ₂	/A ₁	/A ₀	/GS	ÆO.
1	d	d	d	d	d	d	d	d	1	1	1	1	1
0	d	d	d	d	d	d	d	0	0	0	0	0	1
0	d	d	d	d	d	d	0	1	0	0	1	0	1
0	d	d	d	d	d	0	1	1	0	1	0	0	1
0	d	d	d	d	0	1	1	1	0	1	1	0	1
0	d	d	d	0	1	1	1	1	1	0	0	0	1
0	d	d	0	1	1	1	1	1	1	0	1	0	1
0	d	0	1	1	1	1	1	1	1	1	0	0	1
0	0	1	1	1	1	1	1	1	1	1	1	0	1
0	1	1	1	1	1	1	1	1	1	1	1	1	0

③ 优先权处理逻辑

设 优先权为:

$$I_7($$
最高 $) \rightarrow I_6 \rightarrow I_5 \rightarrow I_4 \rightarrow I_3 \rightarrow I_2 \rightarrow I_1 \rightarrow I_0$

 H_i 与 I_i 的关系是: 当 I_i 是最高优先权且为1时, H_i 才为1。

即:

$$\begin{split} &H_{7} = I_{7} \\ &H_{6} = \overline{I}_{7} I_{6} \\ &H_{5} = \overline{I}_{7} \overline{I}_{6} I_{5} \\ &H_{4} = \overline{I}_{7} \overline{I}_{6} \overline{I}_{5} I_{4} \\ &H_{3} = \overline{I}_{7} \overline{I}_{6} \overline{I}_{5} \overline{I}_{4} I_{3} \\ &H_{2} = \overline{I}_{7} \overline{I}_{6} \overline{I}_{5} \overline{I}_{4} \overline{I}_{3} I_{2} \\ &H_{1} = \overline{I}_{7} \overline{I}_{6} \overline{I}_{5} \overline{I}_{4} \overline{I}_{3} \overline{I}_{2} I_{1} \\ &H_{0} = \overline{I}_{7} \overline{I}_{6} \overline{I}_{5} \overline{I}_{4} \overline{I}_{3} \overline{I}_{2} \overline{I}_{1} I_{0} \end{split}$$

4 输出编码为:

$$/A_2 = H_4 + H_5 + H_6 + H_7$$
 $/A_1 = \overline{H_2 + H_3 + H_6 + H_7}$
 $/A_0 = \overline{H_1 + H_3 + H_5 + H_7}$
输出使能为:

$$EO = /GS = I_0 + I_1 + ... + I_7$$

$$/EO = GS = /I_0 /I_1 ... /I_7$$

2) 编码器应用举例

在多处理器系统中,需对各处理器争用总线作出仲裁。 为提高仲裁速度,通常采用并行优先权仲裁方式。在争用总 线的各处理器进行优先权分配后,通过优先权编码器和译码 器进行裁决。逻辑电路图参见书P70图2.45。

军器件

2.4.2. 数据分配器和多路选择器

1. 数据分配器

如图四路数据分配器的等效电路和框图。

图中1:传送数据输入端;

 A_1,A_0 :地址码输入端;

Y3,Y2,Y1,Y0:输出的数据通道。

这种分配器被称为"1~4多路分配器"。

一般表达式为: $Y_i = I$ 其中 i为地址码 A_{n-1} A_0 的十进制值

> 用二进制译码器作为数据分配器

例1月1/274LS139作为四输出数据分配器。

- 将使能端G 作为数据输入端, 即 I 接至G端;
- 将数据输入端作为地址输入端,即A端接地址A₀位; B端接地址A₁位。

则: $/y_i = /\overline{G} \cdot m_i = \overline{I} \cdot m_i = I$ i为地址码 A_1A_0 的十进制数74LS139

I	o1G	1Y ₀ /y ₀ /y ₁
A_0	1A	1 1
\mathbf{A}_1	1B	$1Y_3$ y_3
	2G	2Y ₀
	2A	$2Y_2$
	2B	2Y ₃

输入				输	出	
/G	B	A	/Y ₃	/Y ₂	/Y ₁	/Y ₀
1	d	d	1	1	1	1
0	0	0	1	1	1	0
0	0	1	1	1	0	1
0	1	0	1	0	1	1
0	1	1	0	1	1	1

例2 用74LS138作为八输出数据分配器

- 将/G_{2A}作为数据输入端, G₁接高电平、/G_{2B}端接地;
- 将数据端CBA分别接地址码 $A_2A_1A_0$ 位。
- $/Y_i = G_1 \cdot /G_{2A} \cdot /G_{2B} \cdot m_i = 1 \cdot I \cdot 0 \cdot m_i$

则: $/Y_i = I$ i为地址码 $A_2A_1A_0$ 的十进制数

1,	74LS	5138
I —	G_1 G_{2A}	Y_0 Y_1
	G_{2B}	Y ₂ >—— 数据输出
A_0 — A_1	A B	Y ₅ 2————————————————————————————————————
A_2 ——	C	Y ₇ 5——)

输入								输	出				
G_1	/G _{2A}	/G ₂₁	_B C	В	A	/Y ₇	/Y ₆	/Y ₅	/Y ₄	/ Y ₃	/Y ₂	/Y ₁	/Y ₀
0	d	d	d	d	d	1	1	1	1	1	1	1	1
d	1	d	d	d	d	1	1	1	1	1	1	1	1
d	d	1	d	d	d	1	1	1	1	1	1	1	1
1	0	0	0	0	0	1	1	1	1	1	1	1	0
1	0	0	0	0	1	1	1	1	1	1	1	0	1
1	0	0	0	1	0	1	1	1	1	1	0	1	1
1	0	0	0	1	1	1	1	1	1	0	1	1	1
1	0	0	1	0	0	1	1	1	0	1	1	1	1
1	0	0	1	0	1	1	1	0	1	1	1	1	1
1	0	0	1	1	0	1	0	1	1	1	1	1	1
1	0	0	1	1	1	0	1	1	1	1	1	1	1

阅读例3 用74LS138作为64路数据分配器

▶ 使用CMOS传输门实现的数据分配器的结构

阅读 CMOS传输门由一对并联的由互补控制信号控制的常开开关NMOS管和常关开关PMOS管构成。当外部控制信号有效时,传输门传送"0"和"1"都非常好。

下图给出了控制逻辑一个例子,即用控制逻辑实现的数据分配器。如果S是有效的,则这一网络将把唯一的输入信号引导到Z端;如果S是失效的,则将被引导至Z3端。这也被称为多路输出选择器,因为它刚好完成了与多路选择器相反的功能。

> 使用CMOS传输门实现的数据分配器的结构

阅读 但是,该电路存在一个问题:当S有效时, l被导向Z₁,此时输出端 Z₀的值又是什么呢?遗憾的是,输出端Z₀既不是"0",也不是"1",而 是悬空的。当S失效时,Z₁端也会有同样的问题。它违反了作为一个合适的功能网络所需的条件之一。

下图给出了一种有效的解决方法。当输入信号引导至Z₁时,一个额外的传输门将"0"引导至Z₀。当输入信号引导至Z₀时,对输出端Z₁也做同样的处理。

2. 多路选择器

多路选择器又称数据选择器(MUX),是一个数字开关,可以从 n 路源数据中选择一路送至输出端。

假设有 n 组输入数据源,每组数据源的宽度为 b 位二进制数,则反映多路选择器输出关系的框图和等效的电路如下图所示。其中高有效使能端 EN 的功能为: 当EN=0时,所有的输出为 0。

① 多路选择器的结构框图

② 多路选择器的等效功能

③ 多路选择器输出逻辑表达式

从n组数据源中选择哪一组源数据传送到输出端, 由选择输入端的输入值S决定。

S与n的关系为: $n = 2^s$ (或 $S = log_2 n$)

S位选择信号有 2^s 种组合(即最小项)。每一种组合对应选择 n(=2^s)组输入源数据中的一组。逻辑表达式为:

$$\mathbf{KY} = \sum_{i=0}^{n-1} \mathbf{EN} \cdot \mathbf{m_i} \cdot \mathbf{KD_i} \qquad \mathbf{K} = 1, 2, \dots, \mathbf{b}$$

式中: KY为输出位, KD_i是第 i 组输入源数据的第 K位, m_i是 S 位选择输入变量的最小项。

④ 多路选择器的原理图 (某位输出多路选择器)

1) MSI 多路选择器

- ▶八输入1位输出多路选择器74LS151
- 一个低有效使能输入端/EN
- · 三个选择输入端C、B、A
- 8个数据输入端 $D_7 \sim D_0$
- · 2个互反输出 Y、/Y
- ② 逻辑符号

① 简化真值表

	输	输	出		
/EN	C	B	A	Y	/Y
1	d	d	d	0	1
0	0	0	0	D _o	$\overline{\mathbf{D}}_{0}$
0	0	0	1	\mathbf{D}_1	$\overline{\mathbf{D}}_{1}$
0	0	1	0	$\mathbf{D_2}$	$\overline{\mathbf{D}}_{2}$
0	0	1	1	\mathbf{D}_3	$\overline{\mathbf{D}}_3$
0	1	0	0	$\mathbf{D_4}$	$\overline{\mathbf{D}}_{4}$
0	1	0	1	\mathbf{D}_{5}	$\overline{\mathbf{D}}_{5}$
0	1	1	0	D_6	$\overline{\mathbf{D}}_{6}$
0	1	1	1	D ₇	$\overline{\mathbf{D}}_7$

③逻辑电路图

> 四输入2位多路选择器 74LS153

① 简化真值表

输入	输 出
/1G /2G B A	1Y 2Y
1 d d	0 0
0 0 0	$1C_0$ $2C_0$
0 0 1	1C ₁ 2C ₁
0 10	1C ₂ 2C ₂
0 11	1C ₃ 2C ₃

③ 逻辑符号 AB IG IC₀ IY IC₁ IY IC₂ 2Y IC₃ 2G 2C₀ 2C₁ 2C₂ 2C₃

② 逻辑电路图

$$1Y = \sum_{i=0}^{n-1} / \overline{1G} \cdot m_i \cdot 1C_i \quad i = 0,1,2,3$$

- > 二输入4位多路选择器 74LS157
- ① 简化真值表

输	λ	输		出	
/G	S	1Y	2Y	3Y	4Y
1	d	0	0	0	0
0	0	1A	2A	3A	4A
0	1	1B	2B	3B	4B

③ 逻辑符号

② 逻辑电路图

2) 多路选择器的扩展

在实际应用中不一定能找到完全适用的多路选择器,这可能有3种情况:

- ·输入组数 n 满足要求, 但位数 b 不够;
- ·输入组数 n 不够, 而位数 b 满足要求;
- ·组数 n 和位数 b 都不满足要求。

- > MUX的输入组数 n 不够, 而位数 b 满足
- ▶ 使用无三态输出的多路选择器 及译码器

例:设计一个32输入1位多路选择器。

- 5个选择输入: XA₄~XA₀ 32路输入: X₃₁~X₀
- 采用 4 个74LS151,每个器件可处理8 个输入,这样将输入分为4组,每组 由一个74LS151处理
- 选择输入的低三位XA₂~XA₀连接到 4个74LS151的C、B、A端,决定组 内选择
- 选择输入的高二位XA₄、XA₃通过一级2-4译码器1/274LS139产生4个输出,每个输出连接到一个74LS151的使能输入端

XA_4	XA ₃	XA ₂	XA_1	XA ₀	Y
		0	0	0	X_0
0	0		•••••		•••
		1	1	1	X_7
		0	0	0	X_8
0	0 1	•••••			•••
		1	1	1	X ₁₅
	0	0	0	0	X ₁₆
1		•••••			•••
		1	1	1	X ₂₃
	1	0	0	0	X ₂₄
1		•••••			•••
		1	1	1	X_{31}

用74LS151组成的32输入1位多路选择器

- > 采用多级MUX的树形结构
- · 将多路选择器MUX分级连接,低一级(前一级)MUX的输出作为其高一级(后一级)MUX的数据输入
- 用选择输入信号的低位控制低一级MUX, 高位控制 高一级MUX
- 各级的使能输入可以同一控制
- 例 采用多级树形结构组成64输入1位多路选择器

64输入1位多路选择器

阅读 MUX的输入组数 n 满足, 位数 b 不满足 例 采用74LS251组成的 8 输入 8 位多路选择器。

阅读 MUX的输入组数 n、位数 b 均不满足例 采用74LS251组成的 16 输入 8 位多路选择器。

3) 用多路选择器实现任意组合逻辑函数

例1 $F(x,y,z) = \sum m^3 (1,2,6,7) = m_1 + m_2 + m_6 + m_7$

① 选择 S = 3 的MUX 74LS151 ,则:

$$\mathbf{F} = \mathbf{D}_0 \cdot \mathbf{m}_0 + \mathbf{D}_1 \cdot \mathbf{m}_1 + \mathbf{D}_2 \cdot \mathbf{m}_2 + \mathbf{D}_3 \cdot \mathbf{m}_3 + \mathbf{D}_4 \cdot \mathbf{m}_4 + \mathbf{D}_5 \cdot \mathbf{m}_5 + \mathbf{D}_6 \cdot \mathbf{m}_6 + \mathbf{D}_7 \cdot \mathbf{m}_7$$

的 C、B、A 选择端,并使数据

输入端为:
$$D_0 = D_3 = D_4 = D_5 = 0$$

$$D_1 = D_2 = D_6 = D_7 = 1$$

则输出端Y的输出即为F。

$$\mathbf{Y} = \sum_{i=0}^{n} \mathbf{E} \mathbf{N} \cdot \mathbf{m_i} \cdot \mathbf{D_i} , \quad \mathbf{K} = 1$$

②用"四选1"多路选择器实现该三变量逻辑函数

将函数 F 改写成变量表达式: $F(x,y,z) = \sum m^3 (1,2,6,7)$

$$= \overline{x} \overline{y} z + \overline{x} y \overline{z} + x y \overline{z} + x y z$$

$$= \overline{x} \overline{y} z + \overline{x} y \overline{z} + x y$$

$$= (\overline{x} \overline{y}) \cdot z + (\overline{x} y) \cdot \overline{z} + (x \overline{y}) \cdot 0 + (x y) \cdot 1$$

x、y作为地址选择变量, z、z、0、1 作为MUX的源数据输入D,则有:

$$\mathbf{F} = \sum_{i=1}^{3} \mathbf{m_i} \, \mathbf{D_i}$$

 $= m_0 D_0 + m_1 D_1 + m_2 D_2 + m_3 D_3$ 式中 m_i 为x、y的最小项, D_i 为:

 $D_0 = Z$, $D_1 = \overline{Z}$, $D_2 = 0$, $D_3 = 1$ 电路逻辑图如图所示。

例2
$$F(x,y,z) = \sum m^3 (1,2,3,6)$$

选用4输入1位多路选择器74LS153。

①列出函数F的真值表

n - 1		
$1Y = \sum /\overline{1G}$	· m. ·	1C.
i = 0		_ 1

m_i	ху	Z	D_{i}
m_1	0 0	1	$C_0 = z$
m_2	0 1	0	
m_3	0 1	$1 \int$	$\mathbf{C}_1 = 1$
m_6	1 1	0	$C_3 = \overline{z}$

$$F = \overline{x} \overline{y} z + \overline{x} y \overline{z} + \overline{x} y z + x y \overline{z}$$

$$= (\overline{x} \overline{y}) \cdot z + (\overline{x} y) \cdot 1 + (x y) \cdot \overline{z}$$

$$\widehat{\$ \text{ 写节 常 HMSI 组合 逻辑 器 件}}$$

例2
$$F(x,y,z) = \sum m^3 (1,2,3,6)$$

② 列出函数F的卡诺图

$$\mathbf{D_0} = \mathbf{Z}$$

$$D_1 = 1$$

$$\mathbf{D_2} = 0$$

$$\mathbf{D}_3 = \overline{\mathbf{z}}$$

$$F = \overline{x} \overline{y} z + \overline{x} y \overline{z} + \overline{x} y z + x y \overline{z}$$

$$= (\overline{x} \overline{y}) \cdot z + (\overline{x} y) \cdot 1 + (x y) \cdot \overline{z}$$

例3 $F(w,x,y,z) = \sum m^4 (3,4,5,6,7,9,10,12,14,15)$

①选择有三个输入选择变量的8输入1位多路选择器 74LS151。将w、x、y分别接入地址端, x 接入数据端。

例3 $F(w,x,y,z) = \sum m^4 (3,4,5,6,7,9,10,12,14,15)$

②选择4输入2位多路选择器74LS153。

当 w=0 时: $D_0 = 0$ $D_1 = z$

$$D_2 = 1$$
 $D_3 = 1$

当w=1 时: $D_4 = \overline{Z}$ $D_5 = \overline{Z}$ $\mathbf{D_6} = \overline{\mathbf{z}} \quad \mathbf{D_7} = 1$

例4 $F(A,B,C,D) = \sum m^4 (0,1,5,6,9,11,12,13)$

①选择A、B、C为地址端输入,

D为数据端输入。如图所示

②选择A、B、D为地址端输入, C为数据端输入。

③选择A、C、D为地址端输入, B为数据端输入。

③选择B、C、D为地址端输入, A为数据端输入。

F

Y O

这是24种设计方案中的4种。

第二章 组合逻辑电路 例5 $F(A,B,C,D) = \sum m^4 (0,1,5,6,9,11,12,13)$

若选择C、A、B为地址端输入, D为数据端输入。由于改变了原有的 变量的先后次序,如图所示,则称为 "非常规顺序的设计"。

非常规顺序的设计要将函数的最小项按新的顺序重新进行编排,得到新的表达式和相应的卡诺图,然后进行设计。

$$F(A,B,C,D) = \sum m(0,1,5,6,9,11,12,13)$$

- = ABCD+ABCD+ABCD+ABCD+ABCD+ABCD+ABCD+ABCD
- = CABD+CABD+CABD+CABD+CABD+CABD+CABD

得到: $F(C,A,B,D) = \sum m(0,1,3,5,6,7,10,13)$

事实上,非常规顺序的设计也可以用原变量顺序的卡诺图进行分析,关键在于要能够按照新的顺序找出相应的最小项。

阅读例 $5 F(A,B,C,D) = \sum m^4 (0,1,5,6,9,11,12,13)$

按照新的顺序 CAB 分别找出相应的 8 个最小项。

由此卡诺图得到的设计结果与前例是一致的。

阅读例 $5 F(A,B,C,D) = \sum m^4 (0,1,5,6,9,11,12,13)$

按照新的顺序 BCA 分别找出相应的 8 个最小项。

2.4.3 三态缓冲器

三态是指器件的输出有三种状态:

即逻辑() (L电平)、逻辑() (H电平)和高阻抗状态(或悬浮态)。

高阻态相当于隔断状态,即与所连的电路断开。高阻态时电阻无穷大,无电流流入或流出。

最基本的三态器件是三态缓冲器,又称为三态门或 三态驱动器。使能输入有效时,器件有正常逻辑状态输 出;当使能输入无效时输出就处于高阻抗状态。

三态缓冲器可使多个源数据分时共享一根公用线, 为了避免多个源数据同时驱动共享线,则不能在使能一 个源数据的同时使能另一个源数据。

三态缓冲器逻辑符号

8个数据源共享一根数据线

1)标准的SSI三态缓冲器

74LS125 和 74LS126 都是四总线缓冲门,每一个缓冲门都有独立的使能端。在 74LS125 中是低有效使能,在 74LS126 中是高有效使能。

最常使用共享线的场合是多位数据总线。

例如:在8位微处理机系统中,数据总线的宽度是8,并且外围器件通常一次置8位数据到总线上。这样外围器件都在同一时刻使能8个三态缓冲器,因此独立的使能输入端都多余了。

为减少总线应用中三态缓冲器的芯片数及连线,三态 缓冲器中包含多个三态缓冲器时常常共用使能输入。

2) MSI 三态缓冲器---74LS541

多端口输入, MSI 74LS541为八三态缓冲器

例如: MSI 74LS541 (八三态缓冲器)的应用

3)双向总线收发器 74LS245 八三态总线收发器

见书P81图2.65

- 4)使用三态输出的多路选择器
- > 用74LS151组成的32输入1位多路选择器

例:用74LS251设计一个32输入1位多路选择器。

- 当输出处于高阻态时,该输出线可以与其他输出线 直接连接在一起,并且不影响其他输出线的高、低 电平。
- 在任意时刻只能有一个74LS251被74LS139使能, 此时输出线XOUT和/XOUT上的逻辑值就是该被使 能的74LS251的输出值
- · 当输入使能/XEN无效时,所有74LS251的输出为高阻态,输出线XOUT和/XOUT上的逻辑值不确定。

> 用74LS251组成的32输入1位多路选择器

第二章 组合逻辑电路 1) 重复电路

2.4.4 比较器和加法器

串行重复电路是一种串行组合逻辑电路,它包含几个同样的模块,每个模 块有四种类型的输入和输出:基本输入、基本输出、级联输入、级联输出。 其中: 最左边的级联输入称为边界输入, 最右边的级联输出称为边界输出。

电路的一般结构如图所示:

串行电路的重复操作步骤如下:

- (1) C₀ 置初值,并置 i 为0;
- (2) 用C_i和 PI_i运算得到 PO_i和 C_{i+1};
- (3) $i + 1 \rightarrow i$:
- (4) 如果 i 小于 n, 返回步骤(2)。

在串行重复电路中,通过提供给各个模块基本输入

 $PI_0 \sim PI_n$,利用模块的串行级联完成步骤(2) \sim (4)的循环。

串行电路非常适 用于简单、重复运算 的逻辑问题, 用串行 重复电路可以组成串 行比较器和串行加法

2) 超前电路

在串行电路中, 延迟时间随着位数 n 的增加而增大。 为了提高速度,采用超前电路。即各个模块直接产生供超前电 路进行运算的中间信号, 由超前电路对这些信号同时进行处理, 从而产生输出结果。超前电路框图如图所示。

超前电路与串行电路的区别:

- ▶ 超前电路的各个结构相同的输入处理模块没有级联信号,且 输出是为了方便超前电路的实现而采用的中间变量。
- ▶ 超前电路对所有输入处理模块提供的中间信号同时进行处理, 减少了级联传输,提高了速度。
- ▶ 超前电路也有边界输入和边界输出,这使得此电路可被串行级联成更大的功能模块。由于级联的级数较少,因此整个电路的速度仍然较高。

- 1. 比较电路
- 1) 比较单元

比较器是对两个位数相同的二进制整数进行数值比较,并判断其大小关系的逻辑器件。

比较大小关系有三种:

大于(>)、等于(=)、小于(<)

相等的比较

相等比较的过程总是从高位开始比较,只有当同位比较结果相等时,才进行低位比较。因此,两个一位数的比较是整个比较器操作的基础。

判断两个一位二进制数是否相等, 可用异或门或 异或非门实现之, 其逻辑表达式为:

$$NEQ = A \oplus B$$

 $NEQ = A \oplus B$ $/NEQ = A \oplus B = EQ$

对应的逻辑电路如图所示。

同理, 异或门及异或非门也可以实现两个多位数 的比较。

比如, 两个四位二进制数的相等比较。

例 四位二进制数的相等比较器。

NEQ =
$$(A_0 \oplus B_0) + (A_1 \oplus B_1) + (A_2 \oplus B_2) + (A_3 \oplus B_3)$$

/NEQ = $\overline{(A_0 \oplus B_0) + (A_1 \oplus B_1) + (A_2 \oplus B_2) + (A_3 \oplus B_3)}$
= $\overline{(A_0 \oplus B_0)} \cdot \overline{(A_1 \oplus B_1)} \cdot \overline{(A_2 \oplus B_2)} \cdot \overline{(A_3 \oplus B_3)} = EQ$
对应的逻辑电路如图所示。

2) 串行比较电路

串行比较电路 Iterative Comparator Circuits

两个n位数 x 和 y: x_i 、 y_i (i = 0,1,...,n-1) 相等比较, 其中: x_0 、 y_0 为最高位。

假设每步比较的结果为 EQ_{i+1} (i = 0,1,...,n-1)。

当第 i 次比较结果相等时, $EQ_{i+1}=1$,则运算步骤为:

- (1) EQ_0 置初值 1, 并使 i = 0;
- (2) 如果EQ_i 为 1, 并且 x_i 和 y_i 相等,则 EQ_{i+1} = 1; 否则,置EQ_{i+1} = 0;
- (3) $i + 1 \rightarrow i$;
- (4) 如果 i < n, 重复步骤(2)。

判断二个n位数是否相等的串行比较电路,如图所示:

>一位串行比较模块参见图(a)

▶完整的 n 位串行比较电路参见图(b)

3) 超前相等比较器

$$(i = 0,1, ...,n)$$

4) MSI比较器

- ▶ 四位比较器74LS85
- ① 电路的逻辑符号

比较器内部采用超前电路

② 一个输入处理模块的 逻辑框图

③ 逻辑表达式

四位比较器有四个输入处理模块,产生了12个中间变量,它们是:

$$PG_0=A_0\overline{B_0}$$
; $PE_0=\overline{A_0\oplus B_0}$; $PL_0=\overline{A_0}B_0$
 $PG_1=A_1\overline{B_1}$; $PE_1=\overline{A_1\oplus B_1}$; $PL_1=\overline{A_1}B_1$
 $PG_2=A_2\overline{B_2}$; $PE_2=\overline{A_2\oplus B_2}$; $PL_2=\overline{A_2}B_2$
 $PG_3=A_3\overline{B_3}$; $PE_3=\overline{A_3\oplus B_3}$; $PL_3=\overline{A_3}B_3$

比较次序: A_3 与 B_3 , A_2 与 B_2 , A_1 与 B_1 , A_0 与 B_0 ,

最后是边界输入条件 ALTBIN、 AEQBIN、 AGTBIN。

④ 四位比较器的输出逻辑表达式

$$AGTBOUT = (A>B) + (A=B) \bullet AGTBIN$$

$$= (PG_3+PE_3 \bullet PG_2+PE_3 \bullet PE_2 \bullet PG_1+PE_3 \bullet PE_2 \bullet PE_1 \bullet PG_0)$$

$$+ (PE_3 \bullet PE_2 \bullet PE_1 \bullet PE_0) \bullet AGTBIN$$

$$AEQBOUT = (A=B) \bullet AEQBIN$$

$$= (PE_3 \bullet PE_2 \bullet PE_1 \bullet PE_0) \bullet AEQBIN$$

$$ALTBOUT = (A

$$= (PL_3+PE_3 \bullet PL_2+PE_3 \bullet PE_2 \bullet PL_1+PE_3 \bullet PE_2 \bullet PE_1 \bullet PL_0)$$

$$+ (PE_3 \bullet PE_2 \bullet PE_1 \bullet PE_0) \bullet ALTBIN$$$$

⑤ 逻辑电路图 74LS85的逻辑符号,参见书P84图2.71

⑥ 74LS85比较器的级联

例 用三个74LS85级联构成 12 位比较器

例 用五个74LS85构成16位两级串联树型级联比较器。

阅读例 用五个74LS85构成18位两级串联树型级联比较器。

阅读例 用五个74LS85构成24位两级串联树型级联比较器。

2. 加法器 1) 全加器

》 半加器的 HS 和 CO 的逻辑表达式为:

$$HS = x \oplus y = \overline{x} \cdot y + x \cdot \overline{y}$$

$$CO = x \cdot y$$

逻辑符号如图所示。

 \triangleright 全加器的 \circ 和 \circ 的逻辑表达式为:

$$S = x \oplus y \oplus C_{in}$$
 $C_{out} = x \cdot y + x \cdot C_{in} + y \cdot C_{in}$
逻辑符号如图所示。

用于级联时的全加器符号

2) 并行加法器 (行波加法器)

n 个全加器级联,每个全加器处理两个一位二进制数,则可以构成两个 n 位二进制数相加的加法器。由于进位信号是一级一级地由低位向高位逐位产生,故又称为行波加法器。

由于进位信号逐位产生,这种加法器速度很低。行波加法器的最大运算时间为:

 $T_{ADD} = T_{XYCOUT} + (n-2) \cdot T_{CINCOUT} + T_{CINS}$

其中: T_{XYCOUT} 是最低位全加器中由 x 和 y 产生进位 C_{out} 的延迟时间, T_{CINS} 是最高位全加器中由 C_{in} 产生 C_{out} 的延迟时间, C_{CINS} 是最高位全加器中由 C_{in} 产生 C_{in} 的延迟时间。 C_{CINS} 第四节常用MSI组合逻辑器件

阅读*全减器及减法器

全减器是完成一位二进制减法运算的器件。

• 三个输入端:被减数 x、减数 y

低位向本位的借位 Bin

• 两个输出端:本位的差 D、本位向高位的借位 Bout

① 真值表如下:

x y B _{in}	D B _{out}
0 0 0	0 0
0 0 1	1 1
0 1 0	1 1
0 1 1	0 1
1 0 0	1 0
1 0 1	0 0
1 1 0	0 0
1 1 1	1 1

②卡诺图如下:

阅读③ 逻辑表达式为:

$$\mathbf{D} = \mathbf{x} \oplus \mathbf{y} \oplus \mathbf{B}_{in}$$

$$\mathbf{B}_{out} = \overline{\mathbf{x}} \bullet \mathbf{y} + \overline{\mathbf{x}} \bullet \mathbf{B}_{in} + \mathbf{y} \bullet \mathbf{B}_{in}$$

④ 逻辑符号

阅读5)用加法器实现减法器的功能

在实际应用中,是将**全加器推演为全减器**,则全减器的逻辑表达式变换为:

$$\begin{aligned} \mathbf{B}_{out} &= \overline{\mathbf{x}} \bullet \mathbf{y} + \overline{\mathbf{x}} \bullet \mathbf{B}_{in} + \mathbf{y} \bullet \mathbf{B}_{in} \\ \overline{\mathbf{B}_{out}} &= (\mathbf{x} + \overline{\mathbf{y}}) \bullet (\mathbf{x} + \overline{\mathbf{B}_{in}}) \bullet (\overline{\mathbf{y}} + \overline{\mathbf{B}_{in}}) \\ &= \mathbf{x} \bullet \overline{\mathbf{y}} + \mathbf{x} \bullet \overline{\mathbf{B}_{in}} + \overline{\mathbf{y}} \bullet \overline{\mathbf{B}_{in}} \end{aligned}$$

- 将全加器的进位输入 C_i 和进位 输出 C_{i+1} 分别看成是全减器的 两个低有效的借位输入 /b_i 和 借位输出 /b_{i+1}
- 全加器的和 S_i 即为全减器的差 D_i 则: $D = x \oplus y \oplus \overline{b_i}$

$$\overline{\mathbf{b}_{i+1}} = \mathbf{x} \bullet \overline{\mathbf{y}} + \mathbf{x} \bullet \overline{\mathbf{b}_{i}} + \overline{\mathbf{y}} \bullet \overline{\mathbf{b}_{i}}$$

$$\mathbf{D} = \mathbf{x} \oplus \mathbf{y} \oplus \mathbf{B}_{in}$$
$$= \mathbf{x} \oplus \overline{\mathbf{y}} \oplus \overline{\mathbf{B}}_{in}$$

<u>阅读</u>

⑥ n 位行波减法器

其中:最低位的借位输入应为无效,即/ $b_0 = 1$

3) 超前进位加法器

结构框图如图所示:

输入处理模块的逻辑表达式为: 进位产生项G、进位传递项P $S = x \oplus y \oplus C_{in} = P \oplus C_{in}$, $G = x \bullet y$, $P = x \oplus y$

$$C_{out} = x \cdot y + (x \oplus y) C_{in} = G + P \cdot C_{in}$$

用"半加器"实现全加器:

$$S_{i} = A_{i} \oplus B_{i} \oplus C_{i-1}$$

$$= S_{h1} \oplus C_{i-1}$$

$$= S_{h2}$$

$$C_i = A_i B_i + A_i B_i C_{i-1} + A_i B_i C_{i-1}$$

$$= C_{h1} + C_{i-1} (A_i B_i + A_i B_i)$$

$$= C_{h1} + C_{i-1} (A_i \oplus B_i)$$

$$= \mathbf{C_{h1}} + \mathbf{C_{i-1}} \, \mathbf{S_{h1}}$$

$$= \mathbf{C_{h1}} + \mathbf{C_{h2}}$$

超前进位加法器的设计思想是:

由n个输入处理模块及超前进位发生器组成。

$$\begin{aligned}
 & \mathbf{C_{i+1}} = \mathbf{x_i} \bullet \mathbf{y_i} + (\mathbf{x_i} \oplus \mathbf{y_i}) \bullet \mathbf{C_i} \\
 & = \mathbf{G_i} + \mathbf{P_i} \bullet \mathbf{C_i}
 \end{aligned}$$

其中:输入处理模块产生两个中间变量,分别称为进位产生项Gi、进位传递项Pi

则
$$\mathbf{G_i} = \mathbf{x_i} \cdot \mathbf{y_i}$$
 $\mathbf{P_i} = \mathbf{x_i} \oplus \mathbf{y_i}$

$$C_{i+1} = G_i + P_i \cdot C_i = G_i + P_i \cdot (G_{i-1} + P_{i-1} \cdot C_{i-1}) = \dots$$

$$= G_i + P_i \cdot (G_{i-1} + P_{i-1} \cdot (G_{i-2} + P_{i-2} \cdot (\dots \cdot (G_0 + P_0 \cdot C_0))))$$

- 第 i 位的进位输入 C_i 是否为 1, 直接取决于 x_{0} ~ x_{i-1} , y_{0} ~ y_{i-1} 及 C_0 ;
- 第 i 位是否产生进位输出 $C_{i+1}(C_{i+1}=1)$,直接取决于 $x_0 \sim x_i$, $y_0 \sim y_i$ 及 C_0 。

①可以由二个半加器组成的一个全加器构成输入处理模块,如下:

②三位二进制加法的进位输出可写成如下,此即超前进位发生器:

$$C_{1} = G_{0} + P_{0} \cdot C_{0}$$

$$C_{2} = G_{1} + P_{1} \cdot C_{1} = G_{1} + P_{1} \cdot (G_{0} + P_{0} \cdot C_{0}) = G_{1} + P_{1} \cdot G_{0} + P_{1} \cdot P_{0} \cdot C_{0}$$

$$C_{3} = G_{2} + P_{2} \cdot C_{2} = G_{2} + P_{2} \cdot (G_{1} + P_{1} \cdot G_{0} + P_{1} \cdot P_{0} \cdot C_{0})$$

$$= G_{2} + P_{2} \cdot G_{1} + P_{2} \cdot P_{1} \cdot G_{0} + P_{2} \cdot P_{1} \cdot P_{0} \cdot C_{0}$$

逻辑图参见书P87图2.77。

特点: 所有进位都是同时产生的,故电路延时时间与位数多少无关。在位数较多时其运算速度比行波加法器的要快得多。

第二章 组合逻辑电路 三位超前进位加法器逻辑图

几级门延迟就可产生所有进位信号C;?

$$\begin{split} C_1 &= G_0 + P_0 \bullet C_0 \\ C_2 &= G_1 + P_1 \bullet C_1 \\ &= G_1 + P_1 \bullet (G_0 + P_0 \bullet C_0) \\ &= G_1 + P_1 \bullet G_0 + P_1 \bullet P_0 \bullet C_0 \\ C_3 &= G_2 + P_2 \bullet C_2 \\ &= G_2 + P_2 \bullet (G_1 + P_1 \bullet G_0 + P_1 \bullet P_0 \bullet C_0) \\ &= G_2 + P_2 \bullet G_1 + P_2 \bullet P_1 \bullet G_0 + P_2 \bullet P_1 \bullet P_0 \bullet C_0 \end{split}$$

4) MSI加法器74LS283

这是一个快速进位四位二进制加法器。 逻辑符号如下所示。 可以用74LS283级联构成 n 位加法器, 级联方式为:

- 片内(4位)超前进位
- 片间为行波进位

- > MSI加法器的应用
- 例1 用MSI四位二进制加法器实现两个一位十进制 8421BCD码的加法器。
- 一位8421BCD码所能表示的值是 0~9;
- · 两个8421BCD码相加所得和的范围是0~18;
- 如果其和的范围在 0~9 之间,则不需要进行校正;
- 如果其和在10~18之间,则必须进行校正。

两个一位8421BCD码相加之和的校正表(0+0~9+9, 再加进位)

十进	未校正	校正的	十进	未校正	校正的
	BCD码和	BCD码和	十进	BCD码和	BCD码和
制数	C ₄ S ₃ S ₂ S ₁ S ₀	C' ₄ S' ₃ S' ₂ S' ₁ S' ₀	制数	$C_4 S_3 S_2 S_1 S_0$	C' ₄ S' ₃ S' ₂ S' ₁ S' ₀
0	0 0 0 0	0 0 0 0	10	1 0 1 0	1 0 0 0 0
1	0 0 0 1	0 0 0 1	11	1 0 1 1	1 0 0 0 1
2	0 0 1 0	0 0 1 0	12	1 1 0 0	1 0 0 1 0
3	0 0 1 1	0 0 1 1	13	1 1 0 1	1 0 0 1 1
4	0 1 0 0	0 1 0 0	14	1 1 1 0	1 0 1 0 0
5	0 1 0 1	0 1 0 1	15	1 1 1 1	1 0 1 0 1
6	0 1 1 0	0 1 1 0	16	1 0 0 0 0	1 0 1 1 0
7	0 1 1 1	0 1 1 1	17	1 0 0 0 1	1 0 1 1 1
8	1 0 0 0	1 0 0 0	18	1 0 0 1 0	1 1 0 0 0
9	1 0 0 1	1 0 0 1	19	1 0 0 1 1	1 1 0 0 1

校正算法: 当和 $S_{3\sim 0}$ 的范围在 $0\sim 9$ 之间,则 $S'_{3\sim 0}=S_{3\sim 0}+0$; 当和 $S_{3\sim 0}$ 的范围在 $10\sim 18$ 之间,则 $S'_{3\sim 0}=S_{3\sim 0}+0110$

两个一位8421BCD码相加之和的校正表(0+0~9+9, 再加进位)

上进	未校正	校正的	十进	未校正	校正的
十进	BCD码和	BCD码和	T XI	BCD码和	BCD码和
制数	C ₄ S ₃ S ₂ S ₁ S ₀	C' ₄ S' ₃ S' ₂ S' ₁ S' ₀	制数	$\begin{array}{ c c c c c }\hline C_4 & S_3 & S_2 & S_1 & S_0 \\ \hline \end{array}$	C' ₄ S' ₃ S' ₂ S' ₁ S' ₀
0	0 0 0 0	0 0 0 0	10	1 0 1 0	1 0 0 0 0
1	0 0 0 1	0 0 0 1	11	1 0 1 1	1 0 0 0 1
2	0 0 1 0	0 0 1 0	12	1 1 0 0	1 0 0 1 0
3	0 0 1 1	0 0 1 1	13	1 1 0 1	1 0 0 1 1
4	0 1 0 0	0 1 0 0	14	1 1 1 0	1 0 1 0 0
5	0 1 0 1	0 1 0 1	15	1 1 1 1	1 0 1 0 1
6	0 1 1 0	0 1 1 0	16	1 0 0 0 0	1 0 1 1 0
7	0 1 1 1	0 1 1 1	17	1 0 0 0 1	1 0 1 1 1
8	1 0 0 0	1 0 0 0	18	1 0 0 1 0	1 1 0 0 0
9	1 0 0 1	1 0 0 1	19	1 0 0 1 1	1 1 0 0 1

$$C'_{4} = S_{3}\overline{S}_{2}S_{1}\overline{S}_{0} + S_{3}\overline{S}_{2}S_{1}S_{0} + S_{3}S_{2}\overline{S}_{1}\overline{S}_{0} + S_{3}S_{2}\overline{S}_{1}S_{0} + S_{3}S_{2}S_{1}S_{0} + S_{3}S_{1}S_{0}$$

第二章 组合逻辑电路 两个一位8421码加法器的逻辑图

当和需要校正(即C₄'=1)时,则需作+0110(+6)校正。

例2 用MSI四位二进制加法器实现码制转换。

1 用MSI四位二进制加法器实现8421BCD码转换成 2421码(例2-18)

设: 输入的8421BCD码为B₈B₄B₂B₁(0~9)

输出对应的2421码为Y4Y3Y2Y1

用74LS283实现8421BCD码到2421码的转换。

设:输入为8421码 $B_8B_4B_2B_1$,输出为2421码 $Y_4Y_3Y_2Y_1$

从真值表可以看出: $Y_4Y_3Y_2Y_1 = B_8B_4B_2B_1 + A_4A_3A_2A_1$

十进制数	$B_8B_4B_2B_1$	$\mathbf{Y}_4\mathbf{Y}_3\mathbf{Y}_2\mathbf{Y}_1$	$A_4A_3A_2A_1$
0	0 0 0 0	0 0 0 0	0 0 0 0
1	0 0 0 1	0 0 0 1	0 0 0 0
2	0 0 1 0	0 0 1 0	0 0 0 0
3	0 0 1 1	0 0 1 1	0 0 0 0
4	0 1 0 0	0 1 0 0	0 0 0 0
5	0 1 0 1	1 0 1 1	0 1 1 0
6	0 1 1 0	1 1 0 0	0 1 1 0
7	0 1 1 1	1 1 0 1	0 1 1 0
8	1 0 0 0	1 1 1 0	0 1 1 0
9	1001	1 1 1 1	0 1 1 0

$A_4 = A_1 = 0$ $A_3 = A_2$

 $A_2 = B_8 + B_4 B_2 + B_4 B_1$

例2 用MSI四位二进制加法器实现码制转换。 练习

2 实现二进制码转换成8421BCD码。

设:输入的二进制数为 $A_3A_2A_1A_0$

输出对应的8421BCD码为B₈B₄B₂B₁(0~9)?

例2 用MSI四位二进制加法器实现码制转换。

练之3 实现二进制码与8421BCD码的通用转换电路。

设:输入码为 $X_3 X_2 X_1 X_0$

输出码为y₃y₂y₁y₀

输入控制端k: 1——二进制码 \rightarrow 8421码。

0——8421码→二进制码。

例3 用MSI四位二进制加法器实现两位8421BCD码 练习 转换成二进制码

设:两位8421BCD码的高位为B₈₀B₄₀B₂₀B₁₀

低位为B₈B₄B₂B₁(0~99)

输出对应的二进制数为A₇ A₆ A₅ A₄ A₃ A₂ A₁ A₀ (<127)

练习 用MSI四位二进制加法器实现两位8421BCD码 转换成二进制码

$$\begin{split} \mathbb{N} : \ D &= B_{80} B_{40} B_{20} B_{10} \, B_8 B_4 B_2 B_1 \\ &= (B_{80} B_{40} B_{20} B_{10}) \times 10^1 + (B_8 B_4 B_2 B_1) \times 10^0 \\ &= (B_{80} \times 8 + B_{40} \times 4 + B_{20} \times 2 + B_{10} \times 1) \times 10^1 \\ &\quad + (B_8 \times 8 + B_4 \times 4 + B_2 \times 2 + B_1 \times 1) \times 10^0 \\ &= B_{80} \times 80 + B_{40} \times 40 + B_{20} \times 20 + B_{10} \times 10 \\ &\quad + B_8 \times 8 + B_4 \times 4 + B_2 \times 2 + B_1 \times 1 \\ &= B_{80} \times (64 + 16) + B_{40} \times (32 + 8) + B_{20} \times (16 + 4) \\ &\quad + B_{10} \times (8 + 2) + B_8 \times 8 + B_4 \times 4 + B_2 \times 2 + B_1 \times 1 \\ &= B_{80} \times 2^6 + B_{40} \times 2^5 + (B_{80} + B_{20}) \times 2^4 + (B_{40} + B_{10} + B_8) \times 2^3 + (B_{20} + B_4) \times 2^2 + (B_{10} + B_2) \times 2^1 + B_1 \times 2^0 \end{split}$$

由分立元件构成的电路逻辑图

由MSI器件构成的电路逻辑图

例4 用MSI四位二进制加法器实现码制转换。

1. 实现8421BCD码到余3码的转换。

设:输入为8421码 $A_8A_4A_2A_1$,输出为余3码 $Y_3Y_2Y_1Y_0$

从真值表可以看出: $Y_3Y_2Y_1Y_0 = A_8A_4A_2A_1 + 3(0011)$

十进制数	$A_8A_4A_2A_1$	$\mathbf{Y}_{3}\mathbf{Y}_{2}\mathbf{Y}_{1}\mathbf{Y}_{0}$
0	0 0 0 0	0 0 1 1
1	0 0 0 1	0 1 0 0
2	0 0 1 0	0 1 0 1
3	0 0 1 1	0 1 1 0
4	0 1 0 0	0 1 1 1
5	0 1 0 1	1 0 0 0
6	0 1 1 0	1 0 0 1
7	0 1 1 1	1 0 1 0
8	1 0 0 0	1 0 1 1
9	1 0 0 1	1 1 0 0

电路图如下所示。

2. 实现余3码到8421BCD码的转换。

设:输入为余3码 $Y_3Y_2Y_1Y_0$,输出为8421码 $A_8A_4A_2A_1$

$$\mathbb{N}: A_8A_4A_2A_1 = Y_3Y_2Y_1Y_0 - 3(-0011+10000)$$
$$= Y_3Y_2Y_1Y_0 + 1101$$

电路图为:

3. 设计8421码和余3码的通用转换器。

设:输入为 $B_3B_2B_1B_0$,输出为 $A_3A_2A_1A_0$ 设置转换开关选择 K

则:
$$K = \begin{cases} 0 & 8421 \rightarrow 余3码 + 0011 \\ 1 & 余3码 \rightarrow 8421 + 1101 \end{cases}$$

4. 实现2421到余3码的转换。

设: 输入为2421码ABCD 输出为余3码Y₃Y₂Y₁Y₀

从真值表可以看出:

- · 当十进制数为 0~4 时,相应的余三码比2421码多3。
- 当十进制数为 5~9时,相应的余三码比2421码少3。

即: 当输入A=0时

$$Y_3Y_2Y_1Y_0 = ABCD + 3$$

= $ABCD + 0011$
当输入 $A = 1$ 时

$$Y_3Y_2Y_1Y_0 = ABCD - 3$$

= $ABCD + 1101$

十进制数	ABCD	$\mathbf{Y}_{3}\mathbf{Y}_{2}\mathbf{Y}_{1}\mathbf{Y}_{0}$
0	0000	0 0 1 1
1	0001	0 1 0 0
2	0 0 1 0	0 1 0 1
3	0 0 1 1	0 1 1 0
4	0 1 0 0	0 1 1 1
5	1011	1000
6	1 1 0 0	1001
7	1 1 0 1	1010
8	1110	1011
9	1111	1 1 0 0

2421码转换成余3码的转换电路

$$A = 0: + 0011$$

$$A = 1: -0011 (+1101)$$

5. 余3码转换成2421码的转换电路

根据前例的分析, 可以得出:

$$Y_3 = 0$$
: -0011 (+1101)

$$Y_3 = 1$$
: + 0011

6. 设计2421码和余3码的通用转换器。

练习设:输入为 $B_3B_2B_1B_0$,输出为 $A_3A_2A_1A_0$ 设置转换开关选择 K

