Cubic Spline Interpolation

Anexo Técnico

María Solange Becerra

E-mail:sbecerra@creasys.cl

08 de Noviembre de 2011

Contenidos

- Interpolación mediante Cubic Spline
 - Definición
- 2 Construcción de un Natural Cubic Spline
- 3 Ejemplos
 - Ejemplo 1 : f(x) = 1/x en [0.1,]
 - Ejemplo 2: $f(x) = \sqrt{x}$ en [0.0, 2.25]
- 4 Referencias

Introducción

En esta sección, revisaremos un método de interpolación polinómica a trozos. Supongamos que tenemos un conjunto de n+1 puntos $P_0, P_1, ... P_n$, de la forma (x_k, y_k) a los cuales deseamos ajustar una curva. El objetivo es encontrar polinomios cúbicos $q_k(x)$ que interpolen cada segmento $[x_k, x_{k+1}]$,con $k=0,\ 1,...,\ n-1$.

Figura 1: Interpolación polinómica a trozos.

Dado un conjunto de puntos $P_0, P_1, ... P_n$ con $P_k = (x_k, y_k)$, $k=0,\ 1,...,\ n...$ Un spline cúbico, es una función S(x) que cumple con las siguientes condiciones:

• S(x) es un polinomio cúbico, denotado por $q_k(x)$, en el subintervalo $[x_k,x_{k+1}]$, para cada $k=0,\ 1,...,\ n-1.$

- Condiciones de Frontera
 - $S''(x_0) = S''(x_n) = 0$ Frontera libre o Natural Spline;
 - $S'(x_0) = f'(x_0)$ y $S'(x_n) = F'(x_n)$ (Clamped Spline);

- S(x) es un polinomio cúbico, denotado por $q_k(x)$, en el subintervalo $[x_k,x_{k+1}]$, para cada $k=0,\ 1,...,\ n-1.$
- $q_k(x_k) = y_k$ para cada k = 0, 1, ..., n.

- Condiciones de Frontera
 - $S''(x_0) = S''(x_n) = 0$ Frontera libre o Natural Spline;
 - $S'(x_0) = f'(x_0)$ y $S'(x_n) = F'(x_n)$ (Clamped Spline);

- S(x) es un polinomio cúbico, denotado por $q_k(x)$, en el subintervalo $[x_k,x_{k+1}]$, para cada $k=0,\ 1,...,\ n-1.$
- $q_k(x_k) = y_k$ para cada k = 0, 1, ..., n.
- $q_k(x_{k+1}) = y_{k+1}$ para cada k = 0, 1, ..., n-1.

- Condiciones de Frontera
 - $S''(x_0) = S''(x_n) = 0$ Frontera libre o Natural Spline;
 - $S'(x_0) = f'(x_0)$ y $S'(x_n) = F'(x_n)$ (Clamped Spline);

- S(x) es un polinomio cúbico, denotado por $q_k(x)$, en el subintervalo $[x_k,x_{k+1}]$, para cada $k=0,\ 1,...,\ n-1.$
- $q_k(x_k) = y_k$ para cada k = 0, 1, ..., n.
- $q_k(x_{k+1}) = y_{k+1}$ para cada k = 0, 1, ..., n-1.
- $q'_{k-1}(x_k) = q'_k(x_k)$ para cada k = 1, 2, ..., n-1.
- Condiciones de Frontera
 - $S''(x_0) = S''(x_n) = 0$ Frontera libre o Natural Spline;
 - $S'(x_0) = f'(x_0)$ y $S'(x_n) = F'(x_n)$ (Clamped Spline);

- S(x) es un polinomio cúbico, denotado por $q_k(x)$, en el subintervalo $[x_k,x_{k+1}]$, para cada $k=0,\ 1,...,\ n-1.$
- $q_k(x_k) = y_k$ para cada k = 0, 1, ..., n.
- $q_k(x_{k+1}) = y_{k+1}$ para cada k = 0, 1, ..., n-1.
- $q'_{k-1}(x_k) = q'_k(x_k)$ para cada k = 1, 2, ..., n-1.
- $q_{k-1}''(x_k) = q''_k(x_k)$ para cada k = 1, 2, ..., n-1.
- Condiciones de Frontera
 - $S''(x_0) = S''(x_n) = 0$ Frontera libre o Natural Spline;
 - $S'(x_0) = f'(x_0)$ y $S'(x_n) = F'(x_n)$ (Clamped Spline);

Asumimos que cada polinomio cúbico está representado por:

$$q_k(x) = A_k + B_k(x - x_k) + C_k(x - x_k)^2 + D_k(x - x_k)^3,$$
 (1)

para cada $k=0,\ 1,...,\ n-1.$ Por lo que:

$$q_k'(x) = B_k + 2C_k(x - x_k) + 3D_k(x - x_k)^2,$$

 $q_k''(x) = 2C_k + 6D_k(x - x_k)$

Claramente, se tiene:

$$A_k = y_k, \quad k = 0, 1, ..., n - 1.$$
 (2)

Denotando por

$$h_k = x_{k+1} - x_k, \quad k = 0, 1, ..., n - 1.$$

y defieniendo:

$$A_n = y_n, \quad B_n = q'(x_n), \quad C_n = q''(x_n)/2$$
 (3)

$$A_{k+1} = A_k + B_k h_k + C_k h_k^2 + D_k h_k^3, \quad k = 0, 1, ..., n-1.$$
(4)

De manera análoga, al aplicar la cuarta condición,

$$B_{k+1} = B_k + 2C_k h_k + 3D_k h_k^2, \quad k = 0, 1, ..., n-1.$$
 (5)

Y aplicando la última condición se obtiene otra relación entre los coeficientes de $q_{\boldsymbol{k}}$

$$C_{k+1} = C_k + 3D_k h_k, \quad k = 0, 1, ..., n-1.$$
 (6)

Al despejar D_k de (6) y sustituir este valor en las ecuaciones (4) y (5) se obtienen

$$A_{k+1} = A_k + B_k h_k + \frac{h_k^2}{3} (2C_k + C_{k+1}), \tag{7}$$

$$B_{k+1} = B_k + (C_k + C_{k+1})h_k, (8)$$

para cada k = 1, 1, ..., n - 1.

Combinando estas dos últimas ecuaciones, se obtiene el sistema de ecuaciones lineales,

$$h_{k-1}C_{k-1} + 2(h_{k-1} + h_k)C_k + h_kC_{k+1} = \frac{3}{h_k}(a_{k+1} - a_k) - \frac{3}{h_{k-1}}(a_k - a_{k-1})$$

para cada k = 1, 1, ..., n - 1.

Una vez que se conocen los valores C_k , k = 0, 1, ..., n. es posible encontrar el resto de los coeficientes B_k , D_k a partir de las ecuaciones (6) y (8).

Entonces, si se establecen las condiciones de frontera natural, se puede determinar valores únicos para $\left\{C_k\right\}_{k=0}^n$ por medio del sistema de ecuaciones lineales, $A\vec{x}=\vec{b}$, donde A es la matriz de $(n+1)\times(n+1)$:

$$A = \begin{pmatrix} 1 & 0 & 0 & \cdots & \cdots & 0 \\ h_0 & 2(h_0 + h_1) & h_1 & \ddots & \ddots & \vdots \\ 0 & h_1 & 2(h_1 + h_2) & h_2 & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & h_{n-2} & 2(h_{n-2} + h_{n-1}) & h_{n-1} \\ \vdots & \ddots & \ddots & \ddots & \ddots & 1 \end{pmatrix}$$

y \vec{b} y \vec{x} son los vectores:

$$\vec{b} = \begin{pmatrix} \frac{3}{h_1}(A_2 - A_1) - \frac{3}{h_0}(A_1 - A_0) \\ \vdots \\ \frac{3}{h_{n-1}}(A_n - A_{n-1}) - \frac{3}{h_{n-2}}(A_{n-1} - A_{n-2}) \\ 0 \end{pmatrix}, \quad \vec{x} = \begin{pmatrix} C_0 \\ C_1 \\ \vdots \\ \vdots \\ C_n \end{pmatrix}$$

Ejemplo 1

Interpolar por splines cúbicos la función f(x)=1/x en x=1.5 considerando los puntos (0.1, 10.0), (0.2, 5.0), (0.5, 2.0), (1.0, 1.0), (2.0, 0.5), (5.0,0.2), (10.0, 0.1).

Solución:

$$h_0 = 0.1$$
 $h_3 = 1.0$
 $h_1 = 0.3$ $h_4 = 3.0$
 $h_2 = 0.5$ $h_5 = 5.0$

El sistema resultante es:

$$\begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0.1 & 0.8 & 0.3 & 0 & 0 & 0 & 0 \\ 0 & 0.3 & 1.6 & 0.5 & 0 & 0 & 0 \\ 0 & 0 & 0.5 & 3 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 8 & 3 & 0 \\ 0 & 0 & 0 & 0 & 3 & 16 & 5 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} C_0 \\ C_1 \\ C_2 \\ C_3 \\ C_4 \\ C_5 \\ C_6 \end{pmatrix} = \begin{pmatrix} 0 \\ 120 \\ 24 \\ 4.5 \\ 1.2 \\ 0.24 \\ 0 \end{pmatrix}$$

Los diferentes splines son:

Interpolación mediante Cubic Spline

$$\begin{aligned} q_0(x) &= 10 - 55.1942331(x - 0.1) + 0(x - 0.1)^2 + 519, 4233095(x - 0.1)^3 \\ q_1(x) &= 5 - 39.61153381(x - 0.2) + 155, 8269929(x - 0.2)^2 - 190, 4062672(x - 0.2)^3 \\ q_2(x) &= 2 + 2, 474969764(x - 0.5) - 15, 53864761(x - 0.5)^2 + 13, 17741616(x - 0.5)^3 \\ q_3(x) &= 1 + -3.180615723(x - 1.0) + 4, 227476636(x - 1.0)^2 - 1, 546860913(x - 1.0)^3 \\ q_4(x) &= 0.5 + 0, 63375481(x - 2.0) - 0, 413106102(x - 2.0)^2 + 0, 056173722(x - 2.0)^3 \\ q_5(x) &= 0.2 - 0, 328191314(x - 5.0) + 0, 092457394(x - 5.0)^2 - 0, 006163826(x - 5.0)^3 \end{aligned}$$

$$S(x) = \begin{cases} q_0(x), & \text{si } x \in [0.1, 0.2] \\ q_1(x), & \text{si } x \in [0.2, 0.5] \\ q_2(x), & \text{si } x \in [0.5, 1.0] \\ q_3(x), & \text{si } x \in [1.0, 2.0] \\ q_4(x), & \text{si } x \in [2.0, 5.0] \\ q_5(x), & \text{si } x \in [5.0, 10.0] \end{cases}$$

$$q_3(x) = 1 + -3.180615723(1.5 - 1.0) + 4,227476636(1.5 - 1.0)^2 - 1,546860913(1.5 - 1.0)^3$$

= 0,273203683

Este valor, junto con la estimación para el intervalo [0.1, 2.3] se muestran en la Figura 2.

Figura 2: La función 1/x y S(x) en el intervalo [0.1,2.3].

Ejemplo 2

Figura 3: La función \sqrt{x} y S(x) en el intervalo [0.0, 2.25].

x	$\mathbf{y} = \sqrt{x}$	$\mathbf{S}(\mathbf{x})$	$ \varepsilon_{\mathbf{i}}(\mathbf{x}) $
0,000	0,000	0,000	0,00%
0,063	0,250	0,142	10, 78 %
0,125	0,354	0,277	7,61%
0,250	0,500	0,500	0,00%
0,313	0,559	0,576	1,68%
0,375	0,612	0,631	1,86%
0,500	0,707	0,707	0,00%
0,563	0,750	0,741	0,93%
0,625	0,791	0,774	1,62%
1,750	1,323	1,323	0,00%
1,813	1,346	1,347	0,05%
1,875	1,369	1,370	0,05%
2,000	1,414	1,414	0,00%
2,063	1,436	1,436	0,02%
2,125	1,458	1,457	0,04%
2,250	1,500	1,500	0,00%

Richard L. Burden, J. Douglas Faires.

Numerical Analysis.

MA: Brooks/Cole, Boston, 6th edition, 1997.

Jesús García.

Interpolación: Splines Cúbicos Tutorial de Análisi Numérico.

Departamento de Informática y Sistemas, Universidad de Las Palmas de Gran Canaria, 35017 Campus de Tafira, España, 2 de Octubre de 2000.

v. 0.3.

Yves Nievergelt.

Splines in single and multivariable calculus.

Lexington, MA:COMAP, UMAP Unit 718, 1993.