SAMPLE PROBLEM A

Intensity of Sound Waves

PROBLEM

What is the intensity of the sound waves produced by a trumpet at a distance of 3.2 m when the power output of the trumpet is 0.20 W? Assume that the sound waves are spherical.

SOLUTION

Given: P = 0.20 W r = 3.2 m

Unknown: Intensity = ?

Use the equation for the intensity of a spherical wave.

Intensity =
$$\frac{P}{4\pi r^2}$$

Intensity =
$$\frac{0.20 \text{ W}}{4\pi (3.2 \text{ m})^2}$$

 $Intensity = 1.6 \times 10^{-3} \text{ W/m}^2$

CALCULATOR SOLUTION

The calculator answer for intensity is 0.0015542. This is rounded to 1.6×10^{-3} because each of the given quantities has two significant figures.

PRACTICE A

Intensity of Sound Waves

- **1.** Calculate the intensity of the sound waves from an electric guitar's amplifier at a distance of 5.0 m when its power output is equal to each of the following values:
 - **a.** 0.25 W
 - **b.** 0.50 W
 - **c.** 2.0 W
- **2.** At a maximum level of loudness, the power output of a 75-piece orchestra radiated as sound is 70.0 W. What is the intensity of these sound waves to a listener who is sitting 25.0 m from the orchestra?
- **3.** If the intensity of a person's voice is 4.6×10^{-7} W/m² at a distance of 2.0 m, how much sound power does that person generate?
- **4.** How much power is radiated as sound from a band whose intensity is 1.6×10^{-3} W/m² at a distance of 15 m?
- **5.** The power output of a tuba is 0.35 W. At what distance is the sound intensity of the tuba 1.2×10^{-3} W/m²?