MITSUBISHI RF POWER TRANSISTOR

2SC1968A

NPN EPITAXIAL PLANAR TYPE

DESCRIPTION

2SC1968A is a silicon NPN epitaxial planar type transistor designed for RF power amplifiers on UHF band mobile radio applications.

FEATURES

- High power gain: $G_{pe} \ge 5.4 dB$ $@V_{CC} = 13.5 V$, $P_0 = 14 W$, f = 470 MHz
- Emitter ballasted construction and gold metallization for high reliability and good performances.
- Low thermal resistance ceramic package with flange.
- Ability of withstanding more than 20:1 load VSWR all phase when operated at V_{CC} = 15.2V, P_{O} = 18W, f = 470MHz.

APPLICATION

10 to 14 watts output power amplifiers in UHF band mobile radio applications.

ABSOLUTE MAXIMUM RATINGS (T_C=25°C unless otherwise specified)

Symbol	Parameter	Conditions	Conditions Ratings	
V _{CBO}	Collector to base voltage		35	V
VEBO	Emitter to base voltage		4	V
V _{CEO}	Collector to emitter voltage	R _{BE} =∞	17	V
lo	Collector current		5	А
PC	Collector dissipation	Ta = 25°C	3	w
		T _C = 25°C	40	w
Tj	Junction temperature		175	°C
Tstg	Storage temperature		-65 to 175	°C
Rth-a	Thermal resistance	Junction to ambient	50	*c/w
Rth-c	Thermal resistance	Junction to case	3.75	°C/W

Note. Above parameters are guaranteed independently.

ELECTRICAL CHARACTERISTICS (T_C = 25°C unless otherwise specified)

Symbol	Parameter	Test conditions	Limits			
		l est conditions	Min	Тур	Max	Unit
V(BR)EBO	Emitter to base breakdown voltage	I _E =10mA, I _C =0	4			V
V(BR)CB0	Collector to base breakdown voltage	i _C =10mA, i _E =0	35			V
V _{(BR)CE0}	Collector to emitter breakdown voltage	I _C =50mA, R _{BE} =∞	- 17			V
СВО	Collector cutoff current	V _{CB} =15V, I _E =0			500	μА
EBO	Emitter cutoff current	V _{EB} =2V, I _C =0			400	μА
hfE	DC forward current gain *	V _{CE} =10V, I _C =0.1A	10	50	180	_
P ₀	Output power	V _{CC} =13.5V, P _{in} =4W, f=470MHz	14	16		w
η_{C}	Collector efficiency		. 50	60		%

Note. *Pulse test, $P_W = 150 \mu s$, duty=5%.

Above parameters, ratings, limits and conditions are subject to change.

TEST CIRCUIT

Coil dimensions in milli-meter

D: inner diameter of coil
T: Turn number of coil
P: Pitch of coil

TYPICAL PERFORMANCE DATA

COLLECTOR DISSIPATION VS. AMBIENT TEMPERATURE

AMBIENT TEMPERATURE T_a (°C)

COLLECTOR CURRENT VS. COLLECTOR TO EMITTER VOLTAGE

COLLECTOR TO EMITTER VOLTAGE VCE (V)

DC CURRENT GAIN VS. COLLECTOR CURRENT

COLLECTOR TO EMITTER BREAKDOWN VOLTAGE VS. BASE TO EMITTER RESISTANCE

BASE TO EMITTER RESISTANCE R_{BE} (Ω)

NPN EPITAXIAL PLANAR TYPE

(%

1

COLLECTOR OUTPUT CAPACITANCE VS. **COLLECTOR TO BASE VOLTAGE**

COLLECTOR TO BASE VOLTAGE VCB (V)

OUTPUT POWER, COLLECTOR EFFICIENCY **VS. INPUT POWER**

INPUT POWER Pin (W)

OUTPUT POWER VS. COLLECTOR SUPPLY VOLTAGE

COLLECTOR SUPPLY VOLTAGE VCC (V)