RINGS IN WHICH ELEMENTS ARE A SUM OF A CENTRAL AND NILPOTENT ELEMENT

Yosum Kurtulmaz

Department of Mathematics, Bilkent University Ankara, Turkey kurtulmazy@gmail.com

Abdullah Harmanci

Department of Mathematics, Hacettepe University
Ankara, Turkey
harmanci@hacettepe.edu.tr

Received May 25, 2024

Abstract

In this paper, we introduce a new class of rings whose elements are a sum of a central element and a nilpotent element, namely, a ring R is called CN if each element a of R has a decomposition a=c+n where c is central and n is nilpotent. In this note, we characterize elements in $M_n(R)$ and $U_2(R)$ having CN-decompositions. For any field F, we give examples to show that $M_n(F)$ can not be a CN-ring. For a division ring D, we prove that if $M_n(D)$ is a CN-ring, then the cardinality of the center of D is strictly greater than n. Especially, we investigate several kinds of conditions under which some subrings of full matrix rings over CN rings are CN.

2010 AMS Mathematics Subject Classification: 15B33, 15B36, 16S70, 16U99.

Key words and phrases: CN ring, CN decomposition, matrix ring, uniquely nil clean ring, uniquely nil*-clean ring.

1 Introduction

Throughout this paper all rings are associative with identity unless otherwise stated. Let R be a ring. Inv(R), J(R), C(R) and nil(R) will denote the group of units, the Jacobson radical, the center and the set of all nilpotent elements of a ring R, respectively. Recall that in [2], uniquely nil clean rings are defined. An element a in a ring R is called uniquely nil clean if there is a unique idempotent $e \in R$ such that a - e is nilpotent. The ring R is uniquely nil clean if each of its elements is uniquely clean. It is proved that in a uniquely nil clean ring, every idempotent is central. Also a uniquely nil clean ring R is called uniquely strongly nil clean [5] if a and e commute. Strongly nil cleanness and uniquely strongly nil cleanness are equivalent by [2]. Let R be a (*)-ring. In [7], $a \in R$ is called uniquely strongly nil *-clean ring if there is a unique projection $p \in R$, i.e., $p^2 = p = p^*$, and $n \in \text{nil}(R)$ such that a = p + n and pn = np. R is called a uniquely strongly nil *-clean ring if each of its elements is uniquely strongly nil *-clean. Another version of the notion of clean rings is that of CU rings. In [1], an element $a \in R$ is called a CU element if there exist $c \in C(R)$ and $n \in nil(R)$ such that a = c + n. The ring R is called CU if each of its elements is CU. Motivated by these facts, we investigate basic properties of rings in which every element is the sum of a central element and a nilpotent element.

In what follows, \mathbb{Z}_n is the ring of integers modulo n for some positive integer n. Let $M_n(R)$ denote the full matrix ring over R and $U_n(R)$ stand for the subring of $M_n(R)$ consisting of all $n \times n$ upper triangular matrices. And in the following, we give definitions of some other subrings of $U_n(R)$ to discuss in the sequel whether they satisfy CN property:

$$D_n(R) = \{(a_{ij}) \in M_n(R) \mid \text{ all diagonal entries of } (a_{ij}) \text{ are equal}\},$$

$$V_n(R) = \left\{ \sum_{i=j}^n \sum_{j=1}^n a_j e_{(i-j+1)i} \mid a_j \in R \right\},$$

$$V_n^k(R) = \left\{ \sum_{i=j}^n \sum_{j=1}^k x_j e_{(i-j+1)i} + \sum_{i=j}^{n-k} \sum_{j=1}^{n-k} a_{ij} e_{j(k+i)} : x_j, a_{ij} \in R \right\}$$

where $x_i \in R$, $a_{js} \in R$, $1 \le i \le k$, $1 \le j \le n-k$ and $k+1 \le s \le n$,

$$D_n^k(R) = \left\{ \left\{ \sum_{i=1}^k \sum_{j=k+1}^n a_{ij} e_{ij} + \sum_{j=k+2}^n b_{(k+1)j} e_{(k+1)j} + cI_n \mid a_{ij}, b_{ij}, c \in R \right\} \right\}$$

where $k = \lfloor n/2 \rfloor$, i.e., k satisfies n = 2k when n is an even integer, and n = 2k + 1 when n is an odd integer, and

$$D_n^{\mathbb{Z}}(R) = \{(a_{ij}) \in U_n(R) \mid a_{11} = a_{nn} \in \mathbb{Z}, a_{ij} \in R, \{i, j\} \subseteq \{2, 3, \dots, n-1\}\}.$$

2 Basic Properties and Examples

Definition 2.1. Let R be a ring with identity. An element $a \in R$ is called CN or it has a CN-decomposition if a = c + n, where $c \in C(R)$ and $n \in n$ mil(R). If every element of R has a CN decomposition, then R is called a CN ring.

We present some examples to illustrate the concept of CN property for rings.

Example 2.2. (1) Every commutative ring is CN.

- (2) Every nilpotent element in a ring R has a CN decomposition.
- (3) For a field F and for any positive integer n, $D_n(F)$ is a CN ring.

Proposition 2.3. Let R be a ring and n a positive integer. Then $A \in M_n(R)$ has a CN decomposition if and only if for each $P \in GL_n(R)$, $PAP^{-1} \in M_n(R)$ has a CN decomposition.

Proof. Assume that $A \in M_n(R)$ has a CN decomposition A = C + N where $C \in C(M_n(R))$ and $N \in \text{nil}(M_n(R))$. Then $PAP^{-1} = PCP^{-1} + PNP^{-1}$ is a CN decomposition of PAP^{-1} since $PCP^{-1} = C \in C(M_n(R))$ and it is obvious that $PNP^{-1} \in \text{nil}(M_n(R))$. Conversely, suppose that PAP^{-1} has a CN decomposition $PAP^{-1} = C + N$. Then $A = P^{-1}CP + P^{-1}NP$ is the CN decomposition of PAP^{-1} . □

Let R be a commutative ring and n a positive integer. The following result gives us a way to find out whether $A \in M_n(R)$ has a CN decomposition. Note that it is easily shown that for a commutative ring $A \in C(M_n(R))$ if and only if $A = cI_n$ for some $c \in R$.

Theorem 2.4. Let R be a commutative ring. Then $A \in M_n(R)$ has a CN decomposition if and only if $A - cI_n \in nil(M_n(R))$ for some $c \in R$.

Proof. Assume that $A \in M_n(R)$ has a CN decomposition. By assumption there exists $c \in R$ such that $A - cI_n \in \operatorname{nil}(M_n(R))$. Conversely, suppose that for any $A \in M_n(R)$, there exists $c \in R$ such that $A - cI_n \in \operatorname{nil}(M_n(R))$. Since cI_n is central in $M_n(R)$, $A \in M_n(R)$ has a CN decomposition. \square

Remark. Let R be a commutative ring. Then $A \in M_n(R)$ is a nilpotent matrix if and only if all eigenvalues of A are zero. A ring R is reduced if R has no nonzero nilpotent element. Hence we have.

Corollary 2.5. Let R be a commutative reduced ring and n a positive integer. Then $A \in M_n(R)$ has a CN decomposition if and only if the only eigenvalue for $A - cI_n$ is 0 for some $c \in R$.

Proposition 2.6. Let R be a commutative ring. Then $U_2(R)$ is a CN ring if and only if for any $a, b \in R$, there exists $c \in R$ such that a - c, $b - c \in nil(R)$.

Proof. Let $A = \begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix} \in M_2(R)$ has CN decomposition if and only if there exist $C = \begin{bmatrix} c & 0 \\ 0 & c \end{bmatrix} \in C(M_2(R))$ and $N = \begin{bmatrix} x & y \\ 0 & z \end{bmatrix} \in \operatorname{nil}(M_2(\mathbb{R}))$ such that A = C + N. Since $N \in \operatorname{nil}(M_2(R))$ if and only if $x, z \in \operatorname{nil}(R), A = C + N$ is the CN decomposition of A if and only if there exists $c \in R$ such that $A - cI \in \operatorname{nil}(M_2(R))$ if and only if $a - c, b - c \in \operatorname{nil}(R)$.

Example 2.7. Let $R = \mathbb{Z}$ and $A = \begin{bmatrix} 3 & 0 \\ 0 & 5 \end{bmatrix} \in U_2(R)$. Then there is no $c \in \mathbb{Z}$ such that 3 - c and 5 - c are nilpotent. By Proposition 2.6, $U_2(\mathbb{Z})$ is not CN.

Theorem 2.8. Let R be a commutative local ring. If $M_2(R)$ is a CN ring, then R/J(R) is not isomorphic to \mathbb{Z}_2 .

Proof. Assume that $M_2(R)$ is a CN ring. Suppose that R/J(R) is isomorphic to \mathbb{Z}_2 and we get a contradiction. Let $A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \in M_2(R)$ and $f(c) = \det(A - cI_2)$ be the characteristic polynomial of A. Then $f(c) = c(c-1) \in \operatorname{nil}(R)$. By Proposition 2.6, 1-c and c are nilpotent. Since 1 = c + (1-c), By hypothesis, c or 1-c is invertible, therefore $c \in J(R)$ or $1-c \in J(R)$. This is a contradiction.

In [1], Chen and at al. defined and studied CU rings. Let R be a ring. An element $a \in R$ has a CU-decomposition if a = c + u for some $c \in C(R)$ and $u \in U(R)$. A ring R is called CU, if every element of R has a CU-decomposition.

Proposition 2.9. Every CN ring is CU.

Proof. Let R be a CN ring and $a \in R$. By assumption a+1=c+n for some $c \in C(R)$ and $n \in N(R)$. Hence a=c+(n-1) is a CU decomposition of a.

Theorem 2.10. Let R be a division ring and n a positive integer. If $M_n(R)$ is a CN ring, then |C(R)| > n.

Proof. Assume that |C(R)| < n. Consider A as a diagonal matrix which has the property that each element of C(R) is one of the diagonal entries of A. For such a matrix A there is no $c \in C(R)$ for which A - cI is a unit. Hence $M_n(R)$ is not a CU ring. By Proposition 2.9, $M_n(R)$ can not be a CN ring. This contradicts hypothesis. So |C(R)| > n.

The converse of Proposition 2.9 is not true in general.

Example 2.11. Let $\mathbb{H} = \{a+bi+cj+dk|a,b,c,d\in\mathbb{R}\}$ be the ring of real quaternions, where $i^2=j^2=k^2=ijk=1$ and ij=-ji,ik=-ki,jk=-kj. \mathbb{H} is a noncommutative division ring. Note that $C(\mathbb{H})=\mathbb{R}$ and $nil(\mathbb{H})=0$. Let $a\in\mathbb{H}$. If a=0, then 0=1+(-1) is the CU-decomposition. If $a\neq 0$, then a=0+a is the CU-decomposition of a. Hence \mathbb{H} is a CU ring. On the other hand there is no CN decomposition of $i\in\mathbb{H}$. Hence it is not a CN ring.

Example 2.12. Let D be a division ring and consider the ring $D_2(D)$. The ring $D_2(D)$ is a noncommutative local ring, and so it is a CU-ring, but not a CN ring.

For a positive integer n, one may suspect that if R is a CN ring then the matrix ring $M_n(R)$ is also CN. The following examples shows that this is not true in general. Also whether or not $M_n(R)$ to be a CN ring does not depend on the cardinality of C(R) comparing with n, that is, $|C(R)| \ge n$ or |C(R)| < n.

Example 2.13. (1) Since \mathbb{Z} is commutative, it is a CN ring. But $R = M_2(\mathbb{Z})$ is not a CN ring.

(2) $R = M_2(\mathbb{Z}_3)$ is not a CN ring.

(3) $R = M_3(\mathbb{Z}_2)$ is not a CN ring.

Proof. (1) Consider $A = \begin{bmatrix} 1 & 2 \\ 3 & 6 \end{bmatrix} \in M_2(\mathbb{Z})$ which is neither central nor nilpotent. Let $C = \begin{bmatrix} r & 0 \\ 0 & r \end{bmatrix} \in C(M_2(\mathbb{Z}))$ and $N = \begin{bmatrix} x & y \\ z & t \end{bmatrix} \in \mathrm{nil}(M_2(\mathbb{Z}))$ with A = C + N. Then x + t = 0 and zy = xt. This is a contradiction. Hence A does not have CN decomposition.

(2) Let $A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \in M_2(\mathbb{Z}_3)$ which is neither central nor nilpotent. As-

sume that A has CN decomposition with A=C+N where $C=\begin{bmatrix} a & 0 \\ 0 & a \end{bmatrix} \in$

 $C(M_2(\mathbb{Z}_3))$ and $N=\begin{bmatrix} x & y \\ t & u \end{bmatrix}\in \mathrm{nil}(M_2(\mathbb{Z}_3)).$ A=C+N implies 1=a+x, 0=a+u and y=t=0. These equalities do not satisfied in \mathbb{Z}_3 . For if a=0, then x=1; if a=1, then x=0 and u=2; if a=2, then x=2 and u=1. All these lead us a contradition. Hence $M_2(\mathbb{Z}_3)$ is not a CN ring.

(3) Let $A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \in M_3(\mathbb{Z}_2)$ which is neither central nor nilpotent. Assume that A has CN decomposition with A = C + N where $C = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$

Assume that A has $\bar{\mathbb{C}}N$ decomposition with A = C + N where $C = \begin{bmatrix} a & 0 & 0 \\ 0 & a & 0 \\ 0 & 0 & a \end{bmatrix} \in C(M_3(\mathbb{Z}_2))$ and $N = \begin{bmatrix} x & y & z \\ t & u & v \\ k & l & m \end{bmatrix} \in \mathrm{nil}(M_3(\mathbb{Z}_2))$. A = C + N

implies 1 = a + x, 0 = a + u, 0 = a + m and y = z = v = t = k = l = 0. These equalities do not satisfied in \mathbb{Z}_2 . Hence $M_3(\mathbb{Z}_2)$ is not a CN ring. In fact, assume that 1 = a + x holds in \mathbb{Z}_2 . There are two cases for a. a = 0 or a=1. If a=1 then x=0 and u=1. N being nilpotent implies u=1 is nilpotent. A contradiction. Otherwise, a=0. Then x=1. Again N being nilpotent implies x=1 is nilpotent. A contradiction. Thus $M_3(\mathbb{Z}_2)$ is not a CN ring.

In spite of the fact that $U_n(R)$ need not be CN for any positive integer n, there are CN subrings of $U_n(R)$.

Proposition 2.14. For a ring R and an integer $n \geq 1$, the following are equivalent:

- (1) R is CN.
- (2) $D_n(R)$ is CN.
- (3) $D_n^k(R)$ is CN.
- (4) $V_n(R)$ is CN.
- (5) $V_n^k(R)$ is CN.

Proof. Note that the elements of $D_n(R)$, $D_n^k(R)$, $V_n(R)$ and $V_n^k(R)$ having zero as diagonal entries are nilpotent. To complete the proof, it is enough to show (1) holds if and only if (2) holds for n=4. The other cases are just

$$(1) \Rightarrow (2) \text{ Let } A = \begin{bmatrix} a_1 & a_2 & a_3 & a_4 \\ 0 & a_1 & a_5 & a_6 \\ 0 & 0 & a_1 & a_7 \\ 0 & 0 & 0 & a_1 \end{bmatrix} \in D_4(R). \text{ By } (1), \text{ there exist } c \in C(R)$$

a repetition.
$$(1) \Rightarrow (2) \text{ Let } A = \begin{bmatrix} a_1 & a_2 & a_3 & a_4 \\ 0 & a_1 & a_5 & a_6 \\ 0 & 0 & a_1 & a_7 \\ 0 & 0 & 0 & a_1 \end{bmatrix} \in D_4(R). \text{ By } (1), \text{ there exist } c \in C(R)$$
 and $n \in \text{nil}(R)$ such that $a_1 = c + n$.
$$\text{Let } C = \begin{bmatrix} c & 0 & 0 & 0 \\ 0 & c & 0 & 0 \\ 0 & 0 & c & 0 \\ 0 & 0 & 0 & c \end{bmatrix} \text{ and } N = \begin{bmatrix} n & a_2 & a_3 & a_4 \\ 0 & n & a_5 & a_6 \\ 0 & 0 & n & a_7 \\ 0 & 0 & 0 & n \end{bmatrix}. \text{ Then } C \in C(V_n(R))$$
 and $N \in \text{nil}(D_n(R))$.

(2)
$$\Rightarrow$$
 (1) Let $a \in R$. By (2) $A = \begin{bmatrix} a & 0 & 0 & 0 \\ 0 & a & 0 & 0 \\ 0 & 0 & a & 0 \\ 0 & 0 & 0 & a \end{bmatrix} \in D_4(R)$ has a CN

decomposition
$$A = C + N$$
 where $C = \begin{bmatrix} c & 0 & 0 & 0 \\ 0 & c & 0 & 0 \\ 0 & 0 & c & 0 \\ 0 & 0 & 0 & c \end{bmatrix} \in C(D_4(R))$ and

$$N = \begin{bmatrix} n & * & * & * \\ 0 & n & * & * \\ 0 & 0 & n & * \\ 0 & 0 & 0 & n \end{bmatrix} \in C(D_n(R)). \text{ Then } a = c + n \text{ with } c \in C(R) \text{ and } n \in n$$

$$\text{nil}(R).$$

Lemma 2.15. Every homomorphic image of CN ring is CN ring.

Proof. Let $f: R \to S$ be an epimorphism of rings with R CN ring. Let $s = f(x) \in S$ with $x \in R$. There exist $c \in C(R)$ and $n \in \text{nil}(R)$ such that x = c + n. Since f is epic, $f(c) \in C(S)$ and $f(n) \in \text{nil}(R)$. Hence s = f(c) + f(n) is CN decomposition of s.

Proposition 2.16. Let $R = \prod_{i \in I} R_i$ be a direct product of rings. R is CN if and only if R_i is CN for each $i \in I$.

Proof. We may assume that $I = \{1,2\}$ and $R = R_1 \times R_2$. Note that $C(R) = C(R_1) \times C(R_2)$ and $nil(R) = nil(R_1) \times nil(R_2)$. Necessity: Let $r_1 \in R_1$. Then $(r_1,0) = (c_1,c_2) + (n_1,n_2)$ where $(c_1,c_2) \in C(R)$ and $(n_1,n_2) \in nil(R)$. Hence $r_1 = c_1 + n_1$ is the CN decomposition of $r_1 \in R_1$. So R_1 is CN. A similar proof takes care for R_2 be CN. Sufficiency: Assume that R_1 and R_2 are CN. Let $(r_1,r_2) \in R$. By assumption r_1 and r_2 have CN decompositions $r_1 = c_1 + n_1$ and $r_2 = c_2 + n_2$ where c_1 is central in R_1 , n_1 is nilpotent in R_1 and c_2 is central in R_2 , n_2 is nilpotent in R_2 . Hence (r_1, r_2) has a CN decomposition $(r_1, r_2) = (c_1, c_2) + (n_1, n_2)$. This completes the proof.

Let R be a ring and $D(\mathbb{Z},R)$ denote the *Dorroh extension* of R by the ring of integers \mathbb{Z} (see [3]). Then $D(\mathbb{Z},R)$ is the ring defined by the direct sum $\mathbb{Z} \oplus R$ with componentwise addition and multiplication (n,r)(m,s)=(nm,ns+mr+rs) where $(n,r),\ (m,s)\in D(\mathbb{Z},R)$. It is clear that $C(D(\mathbb{Z},R))=\mathbb{Z}\oplus C(R)$. The identity of $D(\mathbb{Z},R)$ is (1,0) and the set of all nilpotent elements is $\mathrm{nil}(D(\mathbb{Z},R))=\{(0,r)\mid r\in\mathrm{nil}(R)\}$.

Theorem 2.17. Let R be a ring. Then R is a CN ring if and only if $D(\mathbb{Z}, R)$ is CN.

Proof. Assume that R is CN. Let $(a,r) \in D(\mathbb{Z},R)$. Since R is a CN ring, r=c+n for some $c \in C(R)$ and $n \in \operatorname{nil}(R)$. Then (a,r)=(a,c)+(0,n) is the CN decomposition of (a,r). Conversely, let $r \in R$. Then (0,r)=(a,c)+(0,s) as a CN decomposition where $(n,c) \in C(D(\mathbb{Z},R))$ and $(0,n) \in \operatorname{nil}(D(\mathbb{Z},R))$. Then $c \in C(R)$ and $s \in \operatorname{nil}(R)$. It follows that r=c+s is the CN decomposition of r. Hence R is CN.

Let R be a ring and S a subring of R and

$$T[R, S] = \{(r_1, r_2, \cdots, r_n, s, s, \cdots) : r_i \in R, s \in S, n \ge 1, 1 < i < n\}.$$

Then T[R, S] is a ring under the componentwise addition and multiplication. Note that $\operatorname{nil}(T[R, S]) = T[\operatorname{nil}(R), \operatorname{nil}(S)]$ and $C([T, S]) = T[C(R), C(R) \cap C(S)]$.

Proposition 2.18. R be a ring and S a subring of R. Then the following are equivalent.

- 1. T[R, S] is CN.
- 2. R and S are CN.

Proof. (1) \Rightarrow (2) Assume that T[R,S] is a CN ring. Let $a \in R$ and $X = (a,0,0,\dots) \in T[R,S]$. There exist a central element $C = (r_1,r_2,\cdots,r_n,s,s,\cdots)$ and a nilpotent element $N = (s_1,s_2,\cdots,s_k,t,t,\cdots)$ in T[R,S] such that X = C + N. Then r_1 is in the center of R and s_1 is nilpotent in R and $a = r_1 + s_1$ is the CN decomposition of a. Hence R is CN. Let $s \in S$. By considering $Y = (0,s,s,s,\cdots) \in T[R,S]$, it can be seen that s has a CN decomposition.

(2) \Rightarrow (1) Let R and S be CN rings and $Y = (a_1, a_2, \dots, a_m, s, s, s, \dots)$ be an arbitrary element in T[R, S]. Then there exist $c_i \in C(R)$, $1 \le i \le m$, $c \in C(R) \cap C(S)$ and $n_i \in \text{nil}(R)$, $1 \le i \le m$, $t \in \text{nil}(S)$ and such that $a_i = c_i + n_i$ for all $1 \le i \le m$ and s = c + t. Let $C = (c_1, c_2, \dots, c_m, c, c, \dots)$ and $N = (n_1, n_2, \dots, n_m, t, t, \dots)$. It is obvious that $C \in C(T[R, S])$ and $N \in \text{nil}(T[R, S])$. Hence Y = C + N is a CN decomposition of Y.

Some CN subrings of matrix rings 3

In this section, we study some subrings of full matrix rings whether or not they are CN rings. We first determine nilpotent and central elements of so-called subrings of matrix rings.

The rings $L_{(s,t)}(R)$: Let R be a ring, and $s,t\in C(R)$. Let $L_{(s,t)}(R)=$ $\left\{ \begin{bmatrix} a & 0 & 0 \\ sc & d & te \\ 0 & 0 & f \end{bmatrix} \in M_3(R) \mid a, c, d, e, f \in R \right\}, \text{ where the operations are defined}$ as those in $\overline{M}_3(R)$. Then $L_{(s,t)}(R)$ is a subring of $M_3(R)$.

Lemma 3.1. Let R be a ring, and let s, t be in the center of R. Then the following hold.

(1) The set of all nilpotent elements of $L_{(s,t)}(R)$ is

$$nil(L_{(s,t)}(R)) = \left\{ \begin{bmatrix} a & 0 & 0 \\ sc & d & te \\ 0 & 0 & f \end{bmatrix} \in L_{(s,t)}(R) \mid a,d,f \in nil(R),c,e \in R \right\}.$$

(2) The set of all central elements of $L_{(s,t)}(R)$ is

$$C(L_{(s,t)}(R))) = \left\{ \begin{bmatrix} a & 0 & 0 \\ sc & d & te \\ 0 & 0 & f \end{bmatrix} \in H_{(s,t)}(R) \mid sa = sd, td = tf, a, d, f \in C(R) \right\}.$$

Proof. (1) Let
$$A = \begin{bmatrix} a & 0 & 0 \\ sc & d & te \\ 0 & 0 & f \end{bmatrix} \in \operatorname{nil}(L_{(s,t)}(R))$$
. Assume that $A^n = 0$. Then

$$a^{n} = d^{n} = f^{n} = 0$$
. Conversely, Let $A = \begin{bmatrix} a & 0 & 0 \\ sc & d & te \\ 0 & 0 & f \end{bmatrix} \in (L_{(s,t)}(R))$ with $a^{n_1} = 0$ and $f^{n_1} = 0$ and $f^{n_2} = 0$ and $f^{n_3} = 0$ and $f^{n_4} = 0$ and $f^{n_5} = 0$ and $f^{n_$

$$a^{n_1} = 0$$
, $d^{n_1} = 0$ and $f^{n_1} = 0$ and $n = \max\{n_1, n_2, n_3\}$. Then $A^{n+1} = 0$.

(2) Let
$$A = \begin{bmatrix} a & 0 & 0 \\ sc & d & te \\ 0 & 0 & f \end{bmatrix} \in C(L_{(s,t)}(R)))$$
 and $B = \begin{bmatrix} 1 & 0 & 0 \\ s & 0 & t \\ 0 & 0 & 0 \end{bmatrix} \in L_{(s,t)}(R)).$

By
$$AB = BA$$
 implies $sc + sd = sa$ and $td = tf$(*)
Let $C = \begin{bmatrix} 0 & 0 & 0 \\ s & 0 & t \\ 0 & 0 & 1 \end{bmatrix} \in L_{(s,t)}(R)$.
 $AC = CA$ implies $sa = sd$ and $dt + te = tf$(**)

AC = CA implies sa = sd and dt + te = tf.....(**). (*) and (**) implies sa = sd and tf = td. For the converse inclusion,

let
$$A = \begin{bmatrix} a & 0 & 0 \\ 0 & d & 0 \\ 0 & 0 & f \end{bmatrix} \in L_{(s,t)}(R)$$
 with $sa = sd$, $td = tf$ and a , d , $f \in C(R)$.

Let
$$B = \begin{bmatrix} x & 0 & 0 \\ sy & z & tu \\ 0 & 0 & v \end{bmatrix} \in L_{(s,t)}(R)$$
. Then $AB = \begin{bmatrix} ax & 0 & 0 \\ sdy & dz & e \\ 0 & 0 & tdu \end{bmatrix}$, $BA = \begin{bmatrix} ax & 0 & 0 \\ sdy & dz & e \\ 0 & 0 & tdu \end{bmatrix}$

 $\begin{bmatrix} xa & 0 & 0 \\ sya & zd & tuf \\ 0 & 0 & vf \end{bmatrix}.$ By the conditions; sa = sd, td = tf, sc = 0, te = 0 and a,

 $\bar{d}, f \in C(R), \bar{AB} = BA \text{ for all } B \in L_{(s,t)}(R). \text{ Hence } A \in C(L_{(s,t)}(R)).$

Consider following subrings of $L_{(s,t)}(R)$.

$$V_2(L_{(s,t)}(R)) = \left\{ \begin{bmatrix} a & 0 & 0 \\ 0 & a & te \\ 0 & 0 & a \end{bmatrix} \in L_{(s,t)}(R) \mid a, e \in R \right\}$$

$$C(L_{(s,t)}(R)) = \left\{ \begin{bmatrix} a & 0 & 0 \\ sc & d & te \\ 0 & 0 & f \end{bmatrix} \in L_{(s,t)}(R) \mid a,d,f \in C(R), c,e \in R, sa = sd, td = tf \right\}$$

It is easy to check that $V_2(L_{(s,t)}(R))$ and $C(L_{(s,t)}(R))$ are subrings of $L_{(s,t)}(R)$.

Proposition 3.2. Let R be a ring. Following hold:

- (1) R is a CN ring if and only if $V_2(L_{(s,t)}(R))$ is a CN ring.
- (2) $C(L_{(s,t)}(R))$ is a ring consisting of elements having CN decompositions.

(3) Assume that R is a CN ring. If for any $\{a,d,f\} \subseteq R$ having a CN decomposition a = x+p, d = y+q and f = z+r with $\{x,y,z\} \subseteq C(R)$ and $\{p,q,r\} \subseteq nil(R)$ satisfy sx = sy and ty = tz, then $L_{(s,t)}(R)$ is a CN ring.

 $\begin{array}{ll} \textit{Proof.} \ \ (1) \ \textit{Assume that} \ R \ \text{is a CN ring. Let} \ A = \begin{bmatrix} a & 0 & 0 \\ 0 & a & te \\ 0 & 0 & a \end{bmatrix} \in V_2(L_{(s,t)}(R)). \\ \text{There exist} \ \ c \in C(R) \ \text{and} \ \ n \in \text{nil}(R) \ \text{such that} \ \ a = c + n. \ \ \text{Then} \ \ C = \begin{bmatrix} c & 0 & 0 \\ 0 & c & 0 \\ 0 & 0 & c \end{bmatrix} \in C(L_{(s,t)}(R)) \ \text{and} \ \ N = \begin{bmatrix} n & 0 & 0 \\ 0 & n & te \\ 0 & 0 & n \end{bmatrix} \in \text{nil}(V_2(L_{(s,t)}(R))) \ \text{and} \\ \end{array}$

A = C + N is the CN decomposition of A in $V_2(L_{(s,t)}(R))$. For the inverse implication, let $r \in R$ and consider $A = \begin{bmatrix} r & 0 & 0 \\ 0 & r & 0 \\ 0 & 0 & r \end{bmatrix} \in V_2(L_{(s,t)}(R))$.

There exist $C = \begin{bmatrix} a & 0 & 0 \\ 0 & a & te \\ 0 & 0 & a \end{bmatrix} \in C(V_2(L_{(s,t)}(R)))$ and $N = \begin{bmatrix} p & 0 & 0 \\ 0 & r & tu \\ 0 & 0 & v \end{bmatrix} \in \text{mil}(V_2(L_{t+1}(R)))$. Then $a \in C(R)$ and $a \in \text{mil}(R)$ and $a \in \text{mil}(R)$.

 $\operatorname{nil}(V_2(L_{(s,t)}(R)))$. Then $a \in C(R)$ and $p \in \operatorname{nil}(R)$ and r = a + n is the CN decomposition of r. Hence R is a CN ring.

(2) Let $A = \begin{bmatrix} a & 0 & 0 \\ sc & d & te \\ 0 & 0 & f \end{bmatrix} \in CN_{(s,t)}(R)$. Set $C = \begin{bmatrix} a & 0 & 0 \\ 0 & d & 0 \\ 0 & 0 & f \end{bmatrix}$ and $N = \begin{bmatrix} a & 0 & 0 \\ 0 & d & 0 \\ 0 & 0 & f \end{bmatrix}$

 $\begin{bmatrix} 0 & 0 & 0 \\ sc & 0 & te \\ 0 & 0 & 0 \end{bmatrix}.$ By Lemma 3.1, $C \in C(L_{(s,t)}(R))$ and $N \in \text{nil}(L_{(s,t)}(R))$.

 $\ddot{A} = C + \vec{N}$ is the CN decomposition of A.

(3) Let $A = \begin{bmatrix} a & 0 & 0 \\ sc & d & te \\ 0 & 0 & f \end{bmatrix} \in L_{(s,t)}(R)$. Let a = x + p, d = y + q and f = z + r

denote the CN decompositions of a, d and f. By hypothesis sx = sy and ty = tz. By (2) A has a CN decomposition in $L_{(s,t)}(R)$ as A = C + N where

$$C = \begin{bmatrix} x & 0 & 0 \\ 0 & y & 0 \\ 0 & 0 & z \end{bmatrix} \in C(L_{(s,t)}(R)) \text{ and } N = \begin{bmatrix} p & 0 & 0 \\ sc & q & te \\ 0 & 0 & r \end{bmatrix} \in \text{nil}(L_{(s,t)}(R)). \quad \Box$$

Corollary 3.3. Let R be a ring. If $L_{(s,t)}(R)$ is a CN ring, then R is a CN ring.

Proof. Assume that $L_{(s,t)}(R)$ is a CN ring and let $a \in R$ and $A = \begin{bmatrix} a & 0 & 0 \\ 0 & a & 0 \\ 0 & 0 & a \end{bmatrix} \in$

 $L_{(s,t)}(R)$. By hypothesis there exist $C = \begin{bmatrix} x & 0 & 0 \\ sy & z & tu \\ 0 & 0 & v \end{bmatrix} \in C(L_{(s,t)}(R))$ and

 $N = \begin{bmatrix} n & 0 & 0 \\ sc & m & te \\ 0 & 0 & k \end{bmatrix} \in \operatorname{nil}(L_{(s,t)}(R)) \text{ such that } A = C + N \text{ where } x \in C(R)$ and $n \in \operatorname{nil}(R)$. Then a = x + n is the CN decomposition of a.

There are CN rings such that $L_{(s,t)}(R)$ need not be a CN ring.

Example 3.4. Let $R = \mathbb{Z}$ and $A = \begin{bmatrix} 1 & 0 & 0 \\ 3 & 2 & 2 \\ 0 & 0 & 3 \end{bmatrix} \in L_{(1,1)}(R)$. Assume that

A = C + N is a CN decomposition of A. Since A is neither central nor nilpotent, by Lemma 3.1, we should get A had a CN decomposition as

$$A = C + N \text{ where } C = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \in C(L_{(1,1)}(R)) \text{ and } N = \begin{bmatrix} x & 0 & 0 \\ c & y & e \\ 0 & 0 & z \end{bmatrix} \in$$

 $\operatorname{nil}(L_{(1,1)}(R))$ where $\{x,y,z\}\subseteq\operatorname{nil}(\mathbb{Z})$. This leads us a contradiction in \mathbb{Z} .

Proposition 3.5. R is CN ring if and only if so is $L_{(0,0)}(R)$.

Proof. Note that $L_{(0,0)}(R)$ is isomorphic to the ring $R \times R \times R$. By Proposition 2.16, $\prod_{i \in I} R_i$ is a CN ring if and only if each R_i is a CN ring for each $i \in I$.

The rings $H_{(s,t)}(R)$: Let R be a ring and s,t be in the center of R. Let

$$\begin{cases} \begin{bmatrix} a & 0 & 0 \\ c & d & e \\ 0 & 0 & f \end{bmatrix} \in M_3(R) \mid a, c, d, e, f \in R, a - d = sc, d - f = te \end{cases}.$$

Then $H_{(s,t)}(R)$ is a subring of $M_3(R)$. Note that any element A of $H_{(s,t)}(R)$ has the form $\begin{bmatrix} sc + te + f & 0 & 0 \\ c & te + f & e \\ 0 & 0 & f \end{bmatrix}$.

Lemma 3.6. Let R be a ring, and let s, t be in the center of R. Then the set of all nilpotent elements of $H_{(s,t)}(R)$ is

$$nil(H_{(s,t)}(R)) = \left\{ \begin{bmatrix} a & 0 & 0 \\ c & d & e \\ 0 & 0 & f \end{bmatrix} \in H_{(s,t)}(R) \mid a, d, f \in nil(R), c, e \in R \right\}.$$

Proof. Let $A = \begin{bmatrix} a & 0 & 0 \\ c & d & e \\ 0 & 0 & f \end{bmatrix} \in \operatorname{nil}(H_{(s,t)}(R))$. There exists a positive integer n such that $A^n = 0$. Then $a^n = d^n = f^n = 0$. Conversely assume that $a^n = 0$, $d^m = 0$ and $f^k = 0$ for some positive integers n, m, k. Let $p = \max\{n, m, k\}$. Then $A^{2p} = 0$.

Lemma 3.7. Let R be a ring, and let s and t be central invertible in R. Then

$$C(H_{(s,t)}(R)) = \left\{ \begin{bmatrix} a & 0 & 0 \\ c & d & e \\ 0 & 0 & f \end{bmatrix} \in H_{(s,t)}(R) \mid c, e, f \in C(R) \right\}.$$

Proof. [4, Lemma 3.1].

Theorem 3.8. Let R be a ring. R is a CN ring if and only if $H_{(s,t)}(R)$ is a CN ring.

Proof. Assume that R is a CN ring. Let $A = \begin{bmatrix} a & 0 & 0 \\ c & d & e \\ 0 & 0 & f \end{bmatrix} \in (H_{(s,t)}(R))$. Then $a = c_1 + n_1$, $d = c_2 + n_2$, $f = c_3 + n_3$, $c = c_4 + n_4$, $e = c_5 + n_5$ with $\{c_1, c_2, c_3, c_4, c_5\} \subseteq C(R)$, $\{n_1, n_2, n_3, n_4, n_5\} \subseteq \operatorname{nil}(R)$. Let $c_1 - c_2 = sc_4$, $c_2 - c_3 = tc_5$, $n_1 - n_2 = sn_4$ and $n_2 - n_3 = tn_5$ and $C = \begin{bmatrix} c_1 & 0 & 0 \\ c_4 & c_2 & c_5 \\ 0 & 0 & c_3 \end{bmatrix}$ and

$$N = \begin{bmatrix} n_1 & 0 & 0 \\ n_4 & n_2 & n_5 \\ 0 & 0 & n_3 \end{bmatrix}. \text{ By Lemma 3.7, } C \in C(H_{(s,t)}(R)) \text{ and by Lemma 3.6,}$$

$$N \in \operatorname{nil}(H_{(s,t)}(R)). \text{ Then } A = C + N \text{ is the CN decomposition of } A.$$

$$\operatorname{Conversely, suppose that } H_{(s,t)}(R) \text{ is a CN ring. Let } a \in R. \text{ Then }$$

$$A = \begin{bmatrix} a & 0 & 0 \\ 0 & a & 0 \\ 0 & 0 & a \end{bmatrix} \in (H_{(s,t)}(R)) \text{ and it has a CN decomposition } A = C + N$$

$$\operatorname{where } C = \begin{bmatrix} x & 0 & 0 \\ y & z & u \\ 0 & 0 & v \end{bmatrix} \in C(H_{(s,t)}(R)) \text{ with } \{y,u,v\} \subseteq C(R) \text{ and } N = \begin{bmatrix} n_1 & 0 & 0 \\ n_2 & n_3 & n_4 \\ 0 & 0 & n_5 \end{bmatrix} \in \operatorname{nil}(H_{(s,t)}(R)) \text{ with } \{n_1,n_3,n_5\} \subseteq \operatorname{nil}(R). \text{ Then } a = x + n_1 \text{ is a CN decomposition of } a$$

Proposition 3.9. Uniquely nil clean rings, uniquely strongly nil clean rings, strongly nil *-clean rings are CN.

Proof. These classes of rings are abelian. Assume that R is uniquely nil clean ring. Let e be an idempotent in R. For any $r \in R$, e + (re - ere) can be written in two ways as a sum of an idempotent and a nilpotent as e+(re-ere)=(e+(re-ere))+0=e+(re-ere). Then e=e+(re-ere) and er-ere=0. Similarly, e+(er-ere)=(e+(re-ere))+0=e+(er-ere). Then e=e+(er-ere). Then e=e+(er-ere).

The converse of this result is not true.

Example 3.10. The ring $H_{(0,0)}(\mathbb{Z})$ is CN but not uniquely nil clean. Proof. By Theorem 3.8, $H_{(0,0)}(\mathbb{Z})$ is CN. Note that for $n \in \mathbb{Z}$ has a uniquely nil clean decomposition if and only if n = 0 or n = 1. Let $A = \begin{bmatrix} a & 0 & 0 \\ c & a & e \\ 0 & 0 & a \end{bmatrix} \in H_{(0,0)}(R)$ with $a \notin \{0,1\}$. Assume that A has a uniquely nil clean decomposition. There exist unique $E^2 = E = \begin{bmatrix} x & 0 & 0 \\ y & x & u \\ 0 & 0 & x \end{bmatrix} \in H_{(0,0)}(R)$ and

 $N = \begin{bmatrix} g & 0 & 0 \\ h & g & l \\ 0 & 0 & g \end{bmatrix} \in N(H_{(0,0)}(R) \text{ such that } A = E + N. \text{ Then } A \text{ has a uniquely nil clean decomposition. So } a = x + g \text{ has a CN decomposition.}$ This is not the case for $a \in \mathbb{Z}$. Hence $H_{(0,0)}(\mathbb{Z})$ is not uniquely nil clean. \square

Generalized matrix rings: Let R be ring and s a central element of R. Then $\begin{bmatrix} R & R \\ R & R \end{bmatrix}$ becomes a ring denoted by $K_s(R)$ with addition defined componentwise and with multiplication defined in [6] by

$$\begin{bmatrix} a_1 & x_1 \\ y_1 & b_1 \end{bmatrix} \begin{bmatrix} a_2 & x_2 \\ y_2 & b_2 \end{bmatrix} = \begin{bmatrix} a_1a_2 + sx_1y_2 & a_1x_2 + x_1b_2 \\ y_1a_2 + b_1y_2 & sy_1x_2 + b_1b_2 \end{bmatrix}.$$

In [6], $K_{\delta}(R)$ is called a generalized matrix ring over R.

Lemma 3.11. Let R be a commutative ring. Then the following hold.

(1)
$$nil(K_0(R)) = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in K_0(R) \mid \{a, d\} \subseteq nil(R) \right\}.$$

(2) $C(K_0(R))$ consists of all scalar matrices.

Proof. (1) Let
$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in \text{nil}(K_0(R))$$
. Then $A^2 = \begin{bmatrix} a^2 & b(a+d) \\ c(a+d) & d^2 \end{bmatrix}$, ..., $A^{2^n} = \begin{bmatrix} a^{2^n} & \sum_{i=1}^n b(a^{2^{i-1}} + d^{2^{i-1}}) \\ \sum_{i=1}^n c(a^{2^{i-1}} + d^{2^{i-1}}) & d^{2^n} \end{bmatrix}$. Hence $A \in \text{nil}(K_0(R))$ if and only if $\{a,d\} \subseteq \text{nil}(R)$.

Lemma 3.12. Let R be ring. Then R is a CN ring if and only if $D_n(K_0(R))$ is a CN ring.

Proof. Necessity: We assume that n=2. Let $A=\begin{bmatrix} a & b \\ 0 & a \end{bmatrix} \in D_2((K_0(R)))$. By assumption $a=c_1+n_1$ where $c_1\in C(R)$ and $n_1\in \mathrm{nil}(R)$. Let $C=\begin{bmatrix} c_1 & 0 \\ 0 & c_1 \end{bmatrix} \in C(D_2(K_0(R)))$ and $N=\begin{bmatrix} n_1 & b \\ 0 & n_1 \end{bmatrix} \in \mathrm{nil}D_2((K_0(R)))$. A=C+N is the CN decomposition of A.

Sufficiency: Let $a \in R$. Then $A = \begin{bmatrix} a & 0 \\ 0 & a \end{bmatrix} \in D_2((K_0(R)))$ has a CN decomposition A = C + N with $C = \begin{bmatrix} c_1 & 0 \\ 0 & c_1 \end{bmatrix} \in C(D_2((K_0(R))))$ and $N = \begin{bmatrix} n_1 & b_1 \\ 0 & n_1 \end{bmatrix} \in \operatorname{nil}(D_2((K_0(R))))$ where $c_1 \in C(R)$ and $n_1 \in \operatorname{nil}(R)$. By comparing components of matrices we get $a = c_1 + n_1$. It is a CN decomposition of a.

Note that $K_0(R)$ need not be a CN ring.

Example 3.13. Let $A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \in K_0(\mathbb{Z})$ have a CN decomposition as A = C + N where $C \in C(K_0(\mathbb{Z}))$ and $N \in \text{nil}K_0(\mathbb{Z})$. Then we should have $C = \begin{bmatrix} x & 0 \\ 0 & x \end{bmatrix}$ and $N = \begin{bmatrix} 1 - x & 0 \\ 0 & -x \end{bmatrix}$. These imply x = 1 or x is nilpotent. A contradiction.

References

- [1] H. Chen, S. Halicioglu, A. Harmanci and Y. Kurtulmaz, On the Decomposition of a Matrix into the Sum of a Central Matrix and a Unit Matrix, submitted for publication.
- [2] A. J. Diesl, Nil clean rings, J. Algebra, 383(2013), 197-211.
- [3] J. L. Dorroh, Concerning Adjunctions to Algebras, Bull. Amer. Math. Soc., 38(1932), 85-88.
- [4] H. Kose, Y. Kurtulmaz, B. Ungor and A. Harmanci, Rings Having Normality in terms of the Jacobson Radical, Arab. J. Math., https://doi.org/10.1007/s40065-018-0231-7.
- [5] Y. Hirano, H. Tominaga and A. Yaqub, On rings in which every element is uniquely expressable as a sum of a nilpotent element and a certain potent element, Math. J. Okayama Univ. 30(1988), 33-40.
- [6] P. A. Krylov, Isomorpism of generalized matrix rings, Algebra and Logic, 47(4)(2008), 258-262.

[7] C. Li and Y. Zhou, On strongly *-clean rings, J. Algebra Appl. $10(2011),\,1363\text{-}1370.$