

SEQUENCE LISTING

<110> DSM IP ASSETS BV
Institute National de la Recherche Agronomique

<120> YEAST STRAINS WITH IMPROVED FRUCTOSE FERMENTATION CAPACITY

<130> 21568WO

<150> EP 03078992.9
<151> 2003-12-19

<160> 30

<170> PatentIn version 3.1

<210> 1
<211> 23
<212> DNA
<213> primer

<400> 1
gtgcgggatc cgaaggcaat atc 23

<210> 2
<211> 27
<212> DNA
<213> primer

<400> 2
gatcgatcc atcatcacgt tccttagc 27

<210> 3
<211> 63
<212> DNA
<213> primer

<400> 3
aagtgacggg cgatgagtaa gaaagaata actgactcat tagaccatca tcacgttcc 60

agc 63

<210> 4
<211> 20
<212> DNA
<213> primer

<400> 4
ttaagcatga tcgtcttaggc 20

<210> 5
<211> 68
<212> DNA

<213> primer

<400> 5
aacacaaaaaa caaaaagttt tttaatttt aatcaaaaac ttagttaaac aatcatgaat 60
tcaactcc 68

<210> 6
<211> 65
<212> DNA
<213> primer

<400> 6
gaatgtAAC gTGACATAAC TAATTACATG ACTCGAGACG GTTACGTG AAATTATTC 60
ttGCC 65

<210> 7
<211> 20
<212> DNA
<213> primer

<400> 7
gacacAGTGA CATATGCACC 20

<210> 8
<211> 21
<212> DNA
<213> primer

<400> 8
GCCAAACTT CACAATGTT G 21

<210> 9
<211> 60
<212> DNA
<213> primer

<400> 9
TGTGGTGGT ATTGCCGTTT TATCTCCTAT GTTGATTCT TTCGTACGCT GCAGGTCGAC 60

<210> 10
<211> 62
<212> DNA
<213> primer

<400> 10
CACAGAGTT GAGTAGTTCT TAGTACCGAA GTGGTACAG GCATAGGCCA CTAGTGGATC 60
tg 62

<210> 11
<211> 60
<212> DNA
<213> primer

<400> 11
tttcgaaact tctattgttt tcggtgtcgt caacttcttc ttctgtacgat gcaggtcgac 60

<210> 12
<211> 62
<212> DNA
<213> primer

<400> 12
acataaacgc agaccataacc aatggcacca tataacaaac gcataggcca ctagtggatc 60

tg 62

<210> 13
<211> 20
<212> DNA
<213> primer

<400> 13
ttgggtgata tgtacggtcg 20

<210> 14
<211> 20
<212> DNA
<213> primer

<400> 14
agagatgctc ttgcttcgtc 20

<210> 15
<211> 20
<212> DNA
<213> primer

<400> 15
ggtatcatga tccaaatctct 20

<210> 16
<211> 20
<212> DNA
<213> primer

<400> 16
ggccataatc tagtgactcc 20

<210> 17

<211> 20
<212> DNA
<213> primer

<400> 17
ggtatcatga tccaaatctct

20

<210> 18
<211> 20
<212> DNA
<213> primer

<400> 18
atcatacagt taccaggcacc

20

<210> 19
<211> 31
<212> DNA
<213> primer

<400> 19
cgaggggatc caatcatgaa ttcaactcca g

31

<210> 20
<211> 31
<212> DNA
<213> primer

<400> 20
cgaggaagct tcgtgaaatt atttcttgcc g

31

<210> 21
<211> 37
<212> DNA
<213> primer

<400> 21
cctaaggaaa tgagaggtac ttttagtctcc tgttacc

37

<210> 22
<211> 37
<212> DNA
<213> primer

<400> 22
ggtaacagaga gactaaagta cctctcattt ccttagg

37

<210> 23
<211> 40
<212> DNA
<213> primer

<400> 23
cctgttacca actgatgatt accttggta ttttcttggg 40

<210> 24
<211> 40
<212> DNA
<213> primer

<400> 24
cccaagaaaa tacccaagg aatcatcagt tggtaacagg 40

<210> 25
<211> 1704
<212> DNA
<213> *Saccharomyces cerevisiae*

<400> 25
atgaattcaa ctccagattt aatatctcca caaaagtcaa gtgagaattc gaatgctgac 60
ctgccttoga atagctctca gtaatgaac atgcctgaag aaaaagggtgt tcaagatgtat 120
ttccaagctg aggccgacca agtacttacc aacccaaata caggtaaagg tgcataatgtc 180
actgtgtcta tctgttgtt tatggttgcc ttccgggtt tcgtttcgg ttgggataact 240
gttaccattt ctggtttcgt cgcccaaact gatttcttga gaagattcgg tatgaagcat 300
aaagatggta gttatttattt gtctaaagg agaactggtt taattgtctc cattttcaac 360
atgggttgtt ccattgggtt tattattttg gctaaattgg gtgatatgtt cggcgtaaa 420
atgggtttga ttgtcgttgtt ttttatctac atcatcggtt ttattattca aattgcattcc 480
atcaacaaat ggtaccaata tttcatcggtt agaatttattt ccgggttggg tggtgggtt 540
attgcgttt tatctcctat gttgatttctt gaagtcgtt ctaaggaaat gagaggtact 600
tttagtctcctt gttaccaact gatgattacc ttgggttattt tcttgggttta ctgtaccaac 660
ttcgggtacta agaactactc caactctgtt caatggagag ttccatttggg tttgtgtttt 720
gcctgggttt tggttatgtt cgggtgtatg actttcggtt cagaatcccc acgttatttg 780
gttgaagctg gtcaaaatttga cgaagcaaga gcatctttt ccaaagttaa caagggttggc 840
ccagaccatc cattcattca acaagagtgtt gaagttattt aagctgtt tgaagaagct 900
agagctgtt gttcagcatc atgggggttggg ttgttctgtt gtaagccggc catgtttaag 960
cgtactatgtt tgggttatcat gatccaatctt ctacaacaaat tgactgggttga taactatttc 1020
ttctactatgtt gtactaccgt tttaacgtt gttgggtatgtt gtgattctttt cggaaacttctt 1080
attgttttcgtt gtgtcgtaa cttcttctt acttgggtt ctttgcacac tggatcgatcgtt 1140

tttggacgtc gtaactgttt gttatatggt gccattggta tggctcgctg ttatgttagtt	1200
tacgcttctg ttgggtcac cagactatgg ccaaattggg aaggtaatgg ttcatccaag	1260
ggtgctggta actgtatgat tgccttgc tggttctata ttttctgttt tgctaccact	1320
ttggctccaa ttgcttatgt tgttatttct gaaaacttcc cattgagagt caagtctaag	1380
gttatgtcta ttgctacagc tgctaattgg ttgtggggtt tcttgattgg tttcttcact	1440
ccatttatta ctgggtctat taacttctac tacgggtacg tttcatggg ctgtatggtt	1500
ttcgccctact tctacgaaaaatgtt ccagaaacta agggtttgcac ttggaaagaa	1560
gtcaatgata tgtacgctga aggtgttcta ccatgaaagt ctgcttcatg gggtccaaca	1620
tctcaaagag gtgctaacta cgatgctgat gcattgatgc atgatgacca gccattctac	1680
aagaaaaatgt tcggcaagaa ataa	1704

<210> 26

<211> 567

<212> PRT

<213> *Saccharomyces cerevisiae*

<400> 26

Met Asn Ser Thr Pro Asp Leu Ile Ser Pro Gln Lys Ser Ser Glu Asn			
1	5	10	15

Ser Asn Ala Asp Leu Pro Ser Asn Ser Ser Gln Val Met Asn Met Pro		
20	25	30

Glu Glu Lys Gly Val Gln Asp Asp Phe Gln Ala Glu Ala Asp Gln Val		
35	40	45

Leu Thr Asn Pro Asn Thr Gly Lys Gly Ala Tyr Val Thr Val Ser Ile		
50	55	60

Cys Cys Val Met Val Ala Phe Gly Gly Phe Val Phe Gly Trp Asp Thr			
65	70	75	80

Gly Thr Ile Ser Gly Phe Val Ala Gln Thr Asp Phe Leu Arg Arg Phe		
85	90	95

Gly Met Lys His Lys Asp Gly Ser Tyr Tyr Leu Ser Lys Val Arg Thr		
100	105	110

Gly Leu Ile Val Ser Ile Phe Asn Ile Gly Cys Ala Ile Gly Gly Ile
115 120 125

Ile Leu Ala Lys Leu Gly Asp Met Tyr Gly Arg Lys Met Gly Leu Ile
130 135 140

Val Val Val Val Ile Tyr Ile Ile Gly Ile Ile Gln Ile Ala Ser
145 150 155 160

Ile Asn Lys Trp Tyr Gln Tyr Phe Ile Gly Arg Ile Ile Ser Gly Leu
165 170 175

Gly Val Gly Gly Ile Ala Val Leu Ser Pro Met Leu Ile Ser Glu Val
180 185 190

Ala Pro Lys Glu Met Arg Gly Thr Leu Val Ser Cys Tyr Gln Leu Met
195 200 205

Ile Thr Leu Gly Ile Phe Leu Gly Tyr Cys Thr Asn Phe Gly Thr Lys
210 215 220

Asn Tyr Ser Asn Ser Val Gln Trp Arg Val Pro Leu Gly Leu Cys Phe
225 230 235 240

Ala Trp Ala Leu Phe Met Ile Gly Gly Met Thr Phe Val Pro Glu Ser
245 250 255

Pro Arg Tyr Leu Val Glu Ala Gly Gln Ile Asp Glu Ala Arg Ala Ser
260 265 270

Leu Ser Lys Val Asn Lys Val Ala Pro Asp His Pro Phe Ile Gln Gln
275 280 285

Glu Leu Glu Val Ile Glu Ala Ser Val Glu Glu Ala Arg Ala Ala Gly
290 295 300

Ser Ala Ser Trp Gly Glu Leu Phe Thr Gly Lys Pro Ala Met Phe Lys
305 310 315 320

Arg Thr Met Met Gly Ile Met Ile Gln Ser Leu Gln Gln Leu Thr Gly
325 330 335

Asp Asn Tyr Phe Phe Tyr Gly Thr Thr Val Phe Asn Ala Val Gly

340

345

350

Met Ser Asp Ser Phe Glu Thr Ser Ile Val Phe Gly Val Val Asn Phe
355 360 365

Phe Ser Thr Cys Cys Ser Leu Tyr Thr Val Asp Arg Phe Gly Arg Arg
370 375 380

Asn Cys Leu Leu Tyr Gly Ala Ile Gly Met Val Cys Cys Tyr Val Val
385 390 395 400

Tyr Ala Ser Val Gly Val Thr Arg Leu Trp Pro Asn Gly Glu Gly Asn
405 410 415

Gly Ser Ser Lys Gly Ala Gly Asn Cys Met Ile Val Phe Ala Cys Phe
420 425 430

Tyr Ile Phe Cys Phe Ala Thr Thr Trp Ala Pro Ile Ala Tyr Val Val
435 440 445

Ile Ser Glu Thr Phe Pro Leu Arg Val Lys Ser Lys Ala Met Ser Ile
450 455 460

Ala Thr Ala Ala Asn Trp Leu Trp Gly Phe Leu Ile Gly Phe Phe Thr
465 470 475 480

Pro Phe Ile Thr Gly Ala Ile Asn Phe Tyr Tyr Gly Tyr Val Phe Met
485 490 495

Gly Cys Met Val Phe Ala Tyr Phe Tyr Val Phe Phe Val Pro Glu
500 505 510

Thr Lys Gly Leu Thr Leu Glu Glu Val Asn Asp Met Tyr Ala Glu Gly
515 520 525

Val Leu Pro Trp Lys Ser Ala Ser Trp Val Pro Thr Ser Gln Arg Gly
530 535 540

Ala Asn Tyr Asp Ala Asp Ala Leu Met His Asp Asp Gln Pro Phe Tyr
545 550 555 560

Lys Lys Met Phe Gly Lys Lys
565

9/16

<210> 27
<211> 567
<212> PRT
<213> Mutated HXT3 protein

<400> 27

Met Asn Ser Thr Pro Asp Leu Ile Ser Pro Gln Lys Ser Ser Glu Asn
1 5 10 15

Ser Asn Ala Asp Leu Pro Ser Asn Ser Ser Gln Val Met Asn Met Pro
20 25 30

Glu Glu Lys Gly Val Gln Asp Asp Phe Gln Ala Glu Ala Asp Gln Val
35 40 45

Leu Thr Asn Pro Asn Thr Gly Lys Gly Ala Tyr Val Thr Val Ser Ile
50 55 60

Cys Cys Val Met Val Ala Phe Gly Gly Phe Val Phe Gly Trp Asp Thr
65 70 75 80

Gly Thr Ile Ser Gly Phe Val Ala Gln Thr Asp Phe Leu Arg Arg Phe
85 90 95

Gly Met Lys His Lys Asp Gly Ser Tyr Tyr Leu Ser Lys Val Arg Thr
100 105 110

Gly Leu Ile Val Ser Ile Phe Asn Ile Gly Cys Ala Ile Gly Gly Ile
115 120 125

Ile Leu Ala Lys Leu Gly Asp Met Tyr Gly Arg Lys Met Gly Leu Ile
130 135 140

Val Val Val Val Ile Tyr Ile Ile Gly Ile Ile Ile Gln Ile Ala Ser
145 150 155 160

Ile Asn Lys Trp Tyr Gln Tyr Phe Ile Gly Arg Ile Ile Ser Gly Leu
165 170 175

Gly Val Gly Gly Ile Ala Val Leu Ser Pro Met Leu Ile Ser Glu Val
180 185 190

Ala Pro Lys Glu Met Arg Gly Thr Leu Val Ser Cys Tyr Gln Leu Met
195 200 205

Val Thr Leu Gly Ile Phe Leu Gly Tyr Cys Thr Asn Phe Gly Thr Lys
210 215 220

Asn Tyr Ser Asn Ser Val Gln Trp Arg Val Pro Leu Gly Leu Cys Phe
225 230 235 240

Ala Trp Ala Leu Phe Met Ile Gly Gly Met Thr Phe Val Pro Glu Ser
245 250 255

Pro Arg Tyr Leu Val Glu Ala Gly Gln Ile Asp Glu Ala Arg Ala Ser
260 265 270

Leu Ser Lys Val Asn Lys Val Ala Pro Asp His Pro Phe Ile Gln Gln
275 280 285

Glu Leu Glu Val Ile Glu Ala Ser Val Glu Glu Ala Arg Ala Ala Gly
290 295 300

Ser Ala Ser Trp Gly Glu Leu Phe Thr Gly Lys Pro Ala Met Phe Lys
305 310 315 320

Arg Thr Met Met Gly Ile Met Ile Gln Ser Leu Gln Gln Leu Thr Gly
325 330 335

Asp Asn Tyr Phe Phe Tyr Tyr Gly Thr Thr Val Phe Asn Ala Val Gly
340 345 350

Met Ser Asp Ser Phe Glu Thr Ser Ile Val Phe Gly Val Val Asn Phe
355 360 365

Phe Ser Thr Cys Cys Ser Leu Tyr Thr Val Asp Arg Phe Gly Arg Arg
370 375 380

Asn Cys Leu Leu Tyr Gly Ala Ile Gly Met Val Cys Cys Tyr Val Val
385 390 395 400

Tyr Ala Ser Val Gly Val Thr Arg Leu Trp Pro Asn Gly Glu Gly Asn
405 410 415

Gly Ser Ser Lys Gly Ala Gly Asn Cys Met Ile Val Phe Ala Cys Phe

11/16

420

425

430

Tyr Ile Phe Cys Phe Ala Thr Thr Trp Ala Pro Ile Ala Tyr Val Val
 435 440 445

Ile Ser Glu Thr Phe Pro Leu Arg Val Lys Ser Lys Ala Met Ser Ile
 450 455 460

Ala Thr Ala Ala Asn Trp Leu Trp Gly Phe Leu Ile Gly Phe Phe Thr
 465 470 475 480

Pro Phe Ile Thr Gly Ala Ile Asn Phe Tyr Tyr Gly Tyr Val Phe Met
 485 490 495

Gly Cys Met Val Phe Ala Tyr Phe Tyr Val Phe Phe Val Pro Glu
 500 505 510

Thr Lys Gly Leu Thr Leu Glu Glu Val Asn Asp Met Tyr Ala Glu Gly
 515 520 525

Val Leu Pro Trp Lys Ser Ala Ser Trp Val Pro Thr Ser Gln Arg Gly
 530 535 540

Ala Asn Tyr Asp Ala Asp Ala Leu Met His Asp Asp Gln Pro Phe Tyr
 545 550 555 560

Lys Lys Met Phe Gly Lys Lys
 565

<210> 28
<211> 1704
<212> DNA
<213> Mutated HXT3 gene

<400> 28		
atgaattcaa ctccagattt aatatctcca caaaagtcaa gtgagaattc gaatgtcgac	60	
ctgccttcga atagctctca ggtaatgaac atgcctgaag aaaaagggtgt tcaagatgat	120	
ttccaagctg aggccgacca agtacttacc aacccaaata caggtaaagg tgcataatgtc	180	
actgtgtcta tctgttgtgt tatgggtgcc ttccgggggt tcgtttcgg ttgggatact	240	
ggtaccattt ctggttcgt cgcccaaact gatttcttga gaagattcgg tatgaagcat	300	
aaagatggta gttattattt gtctaaagggtt agaactgggtt taattgtctc cattttcaac	360	

atgggttgtg ccattgggtt gattatttt gctaaattgg gtgatatgtt cggcgtaaa	420
atgggttgtt tttcggtgt ttgttatctac atcatcggtt ttattattca aattgcattcc	480
atcaacaaat ggtaccaata tttcatcggtt agaattatcc cccgtttggg tggtgggtt	540
atggccgttt tatctcctat gttgatttctt gaagtcgctc ctaaggaaat gagaggtaact	600
ttagtctccat gttaccaact gatggttacc ttgggtatcc tctgggtta ctgtaccaac	660
tccggacta agaactactc qaactctgtt caatggagag ttccattagg tttgtgtttt	720
gcctgggctt tggttatgtt cgggtgtatg actttcggtt cagaatcccc acgttatttg	780
gttgaagctg gtcaaattga cgaagcaaga gcatctctt ccaaagttaa caaggttgc	840
ccagaccatc cattcattca acaagagttt gaagttattt aagctgtt tgaagaagct	900
agagctgctg gttcagcatc atgggttagt ttgttcaactg gtaagccggc catgtttaag	960
cgtactatgtt tgggtatcat gatccaatctt ctacaacaat tgactgggtt taactatttc	1020
ttctactatgtt gtaactaccgt ttttaacgct gttggatgtt gtgattctt cgaaacttctt	1080
atgttttcgtt gtgtcgtaa cttcttctctt acttgggtt ctttgcac tacgttgcgtt	1140
tttggacgtt gtaactgtttt gttatgtt gccattggta tggctgtgtt ttatgttagtt	1200
tacgcttctt tgggtgtcac cagactatgg ccaaattggg aaggtaatgg ttcattccaag	1260
ggtgcgtgtt actgtatgtt tgcattttgtt tggttgcata ttttgcgtt tgctaccact	1320
tgggctccaa ttgttatgtt tggttgcata gaaactttcc cattgagagt caagtctaag	1380
gctatgtctt ttgtacagc tgcttgcata ttttgcata ttttgcgtt ttttgcgtt tgctaccact	1440
ccatttattttt ctgggtgtat taaattttttt tacgggttacg ttttgcata ttttgcgtt	1500
ttcgccact tctacgtttt tttttttttt ccagaaacta agggttttgcac ttttgcata	1560
gtcaatgata tgcgtgtt ggtgttctt ccatgaaatgtt ctgcttgcata ggttccaaaca	1620
tctcaaaatgtt gtgttgcata cgtgtgttgcata gtttgcata ttttgcata ggttccaaaca	1680
aagaaaatgtt tcggcaagaa ataa	1704

<210> 29
<211> 1704
<212> DNA
<213> Mutated HXT3 gene II

<400> 29
atgaattcaa ctccagattt aatatctcca caaaagtcaa gtgagaattc gaatgtgtac
ctgccttcga atagctctca ggtaatgaac atgcgttgcac aaaaagggtt tcaagatgtat
'60
120

ttccaagctg aggccgacca agtacttacc aacccaaata caggtaaagg tgcataatgtc	180
actgtgtcta tctgttgt tatgggtgcc ttccgggtt tcgtttcggtt ttgggataact	240
ggtaccattt ctgggttcgt cgcccaaact gatttcttga gaagattcggtt tatgaagcat	300
aaagatggta gttattatTT gtctaaagggtt agaactgggtt taattgtctc cattttcaac	360
attgggttggtt ccattgggtt tattatTTT gctaaattgggtt gtgatatgtt cggtcgtaaa	420
atgggtttgtt tggtcggtt tggttatctac atcatcggtt ttattattca aattgcattcc	480
atcaacaaat ggtaccaata cttcatcggtt agaattatTTT ccgggtttgggtt tggtgggtt	540
attggccgttt tatctcttat gttgatttctt gaagtcgttc ctaaggaaat gagaggtgtt	600
ttagtctctt gttaccaactt gatgggttacc ttgggttattt tcttgggttta ctgtaccaac	660
ttccggtaacta agaactactc caactctgtt caatggagag ttccatttggg tttgtgtttt	720
gcctgggctt tggttatgtt cgggtgtatg actttcggtt cagaatcccc acgttatttg	780
gttgaagctg gtcaaaattgtt cgaagcaaga gcatctctttt ccaaagttaa caaggttgc	840
ccagaccatc cattcattca acaagagttt gaagttattt aagctagtgt tgaagaagct	900
agagctgctg gttcagcatc atgggggttggg ttgttcaactg gtaagccggc catgtttaag	960
cgtactatgtt taggttatcat gatccaatctt ctacaacaaat tgactgggtttaa taactatttcc	1020
ttctactatgtt gtactaccgtt tttaacgtt gttgggtatgtt gtgattctttt cgaaacttctt	1080
attgttttcgtt gtgtcgtaa cttcttctcc acttgggtt ttctgtacac cgttggaccgtt	1140
tttggccgttc gtaactgtttt gatgtgggtt gctgtcggtt tgggtctgtt ttatgttgc	1200
tatgtttctgtt tggtggactt tagattatgg ccaaatgggtt aaaacaacgg ctcattccaaag	1260
ggtgctggta actgttatgtt tgcgttttgc tgggttttata ttttctgtttt cgctactacc	1320
tggggcccaaa ttgttatgtt cgttgggtt gaaactttcc cattgagagt caagtctaaag	1380
gctatgtctt ttgtcacagc tgctaaactgg atctgggggtt tcttggattgg tttcttcaact	1440
ccattttatata ctgggtctat taacttctac tacgggttacg ttttcatggg ctgtatgggtt	1500
ttccgcctact tctacgtttt cttcttctgtt ccagaaacta aggggtttgac tttggaaagaa	1560
gtcaatgata tgcgttgc aggtgttctt ccatggaaatgtt ctgtttcatg gggttccaaaca	1620
tctcaaaagag gtgtcacacta cgtatgttgcat gcatgttgc atgtatgacca gcccattctac	1680
aagaaaaatgtt tcggcaagaa ataa	1704

<210> 30
<211> 567

<212> PRT

<213> Mutated HXT3 protein II

<400> 30

Met Asn Ser Thr Pro Asp Leu Ile Ser Pro Gln Lys Ser Ser Glu Asn
1 5 10 15

Ser Asn Ala Asp Leu Pro Ser Asn Ser Ser Gln Val Met Asn Met Pro
20 25 30

Glu Glu Lys Gly Val Gln Asp Asp Phe Gln Ala Glu Ala Asp Gln Val
35 40 45

Leu Thr Asn Pro Asn Thr Gly Lys Gly Ala Tyr Val Thr Val Ser Ile
50 55 60

Cys Cys Val Met Val Ala Phe Gly Gly Phe Val Phe Gly Trp Asp Thr
65 70 75 80

Gly Thr Ile Ser Gly Phe Val Ala Gln Thr Asp Phe Leu Arg Arg Phe
85 90 95

Gly Met Lys His Lys Asp Gly Ser Tyr Tyr Leu Ser Lys Val Arg Thr
100 105 110

Gly Leu Ile Val Ser Ile Phe Asn Ile Gly Cys Ala Ile Gly Gly Ile
115 120 125

Ile Leu Ala Lys Leu Gly Asp Met Tyr Gly Arg Lys Met Gly Leu Ile
130 135 140

Val Val Val Val Ile Tyr Ile Ile Gly Ile Ile Ile Gln Ile Ala Ser
145 150 155 160

Ile Asn Lys Trp Tyr Gln Tyr Phe Ile Gly Arg Ile Ile Ser Gly Leu
165 170 175

Gly Val Gly Gly Ile Ala Val Leu Ser Pro Met Leu Ile Ser Glu Val
180 185 190

Ala Pro Lys Glu Met Arg Gly Ala Leu Val Ser Cys Tyr Gln Leu Met
195 200 205

Val Thr Leu Gly Ile Phe Leu Gly Tyr Cys Thr Asn Phe Gly Thr Lys
210 215 220

Asn Tyr Ser Asn Ser Val Gln Trp Arg Val Pro Leu Gly Leu Cys Phe
225 230 235 240

Ala Trp Ala Leu Phe Met Ile Gly Gly Met Thr Phe Val Pro Glu Ser
245 250 255

Pro Arg Tyr Leu Val Glu Ala Gly Gln Ile Asp Glu Ala Arg Ala Ser
260 265 270

Leu Ser Lys Val Asn Lys Val Ala Pro Asp His Pro Phe Ile Gln Gln
275 280 285

Glu Leu Glu Val Ile Glu Ala Ser Val Glu Glu Ala Arg Ala Ala Gly
290 295 300

Ser Ala Ser Trp Gly Glu Leu Phe Thr Gly Lys Pro Ala Met Phe Lys
305 310 315 320

Arg Thr Met Ile Gly Ile Met Ile Gln Ser Leu Gln Gln Leu Thr Gly
325 330 335

Asp Asn Tyr Phe Phe Tyr Tyr Gly Thr Thr Val Phe Asn Ala Val Gly
340 345 350

Met Ser Asp Ser Phe Glu Thr Ser Ile Val Phe Gly Val Val Asn Phe
355 360 365

Phe Ser Thr Cys Cys Ser Leu Tyr Thr Val Asp Arg Phe Gly Arg Arg
370 375 380

Asn Cys Leu Met Trp Gly Ala Val Gly Met Val Cys Cys Tyr Val Val
385 390 395 400

Tyr Ala Ser Val Gly Val Thr Arg Leu Trp Pro Asn Gly Gln Asn Asn
405 410 415

Gly Ser Ser Lys Gly Ala Gly Asn Cys Met Ile Val Phe Ala Cys Phe
420 425 430

Tyr Ile Phe Cys Phe Ala Thr Thr Trp Ala Pro Ile Ala Tyr Val Val

435

440

445

Val Ser Glu Thr Phe Pro Leu Arg Val Lys Ser Lys Ala Met Ser Ile
450 455 460

Ala Thr Ala Ala Asn Trp Ile Trp Gly Phe Leu Ile Gly Phe Phe Thr
465 470 475 480

Pro Phe Ile Thr Gly Ala Ile Asn Phe Tyr Tyr Gly Tyr Val Phe Met
485 490 495

Gly Cys Met Val Phe Ala Tyr Phe Tyr Val Phe Phe Val Pro Glu
500 505 510

Thr Lys Gly Leu Thr Leu Glu Glu Val Asn Asp Met Tyr Ala Glu Gly
515 520 525

Val Leu Pro Trp Lys Ser Ala Ser Trp Val Pro Thr Ser Gln Arg Gly
530 535 540

Ala Asn Tyr Asp Ala Asp Ala Leu Met His Asp Asp Gln Pro Phe Tyr
545 550 555 560

Lys Lys Met Phe Gly Lys Lys
565