Ampliación de Física

2º Curso de Ingeniería de Telecomunicaciones — UPV/EHU Actualizado el 22 de noviembre de 2016, 19:38 "Under-promise and over-deliver."

Javier de Martín Gil - 2015/16

Definiciones

Electrostática

Q (Carga) [C]

 \vec{E} (Campo Eléctrico) $\left[\frac{N}{C}\right]$ or $\left[\frac{V}{T}\right]$

 \vec{D} (Vector Desplazamiento) $\left[\frac{\vec{C}}{m^2}\right]$

 \vec{P} (Vector Polarización) $\left[\frac{C}{m^2}\right]$

 λ (Densidad de Carga Filamental) $[\frac{C}{m}]$

 σ (Densidad de carga superficial) $\left[\frac{C}{m^2}\right]$

 ρ (Densidad de Carga en Volumen) $\left[\frac{C}{-3}\right]$

 Φ (Potencial Eléctrico) [V] o $\left[\frac{J}{C}\right]$

C (Capacitancia) [F]

 U_E (Energía Potencial Eléctrica) [J]

Corrientes

I (Corriente) [A]

 \vec{J} (Densidad de Corriente) $\left[\frac{A}{2}\right]$

 ε (Fuerza Electromotriz)

Magnetismo

 \vec{B} (Campo Magnético) [T] = $\left[\frac{N}{m \cdot A}\right] = \left[\frac{kg}{A \cdot s^2}\right]$ or [G]

 \vec{H} (Intensidad del Campo Magnético)

 \vec{M} (Magnetización)

L (Inductancia) $[H] = \left[\frac{V \cdot s}{A}\right]$

 χ_m (Susceptibilidad Magnética)

Ondas Electromagnéticas

v (Frecuencia)

 $\omega = 2\pi\omega = k \cdot c$ (Frecuencia Angular) $\left[\frac{rad}{s}\right]$

 $n = \sqrt{\varepsilon_r \mu_r}$ (Índice de Refracción de un Medio)

 $v = \frac{\dot{c}}{\pi}$ (Velocidad de Propagación)

 ϕ (Fase de Onda)

 $\lambda = \frac{c}{u} = \frac{v}{v}$ (Longitud de Onda)

 $k = \frac{\omega}{v} = \frac{2\pi}{\lambda}$ (Número de Ondas) $[m^{-1}]$

 $u_g = \frac{\Delta \omega}{\Delta k} = \frac{\partial \omega}{\partial k}$ (Velocidad de Grupo)

 \vec{S} (Vector de Poynting) $\left[\frac{W}{m^2}\right]$

I (Irradiancia) $\left[\frac{W}{m^2}\right]$

 $Z = \sqrt{\frac{\mu}{\varepsilon}}$ (Impedancia Intrínseca de un Medio)

Constantes

 $\varepsilon_o=8,\!85\cdot 10^{-12}\; [\frac{F}{m}]$ (Permitividad Eléctrica del Vacío) $\mu_o=4\pi\cdot 10^{-7}\; [\frac{H}{m}]/[\frac{N}{A^2}]$ (Permeabilidad Magnética del Vacío)

 $Q_{e^-} = -1,\!60217662\cdot 10^{-19}$ [C] (Carga Elemental) $m_{e^-} = 9,\!11\cdot 10^{-31}[kg]$ (Masa de un Electrón) $c = 3 \cdot 10^8 \left[\frac{m}{s}\right]$ (Velocidad de la Luz)

 $Z_0 = \sqrt{\frac{\mu_0}{\varepsilon_0}} = 377\Omega$ (Impedancia del Vacío)

Cálculo Vectorial

Identidades Vectoriales

uy vrepresentan funciones escalares y \vec{A} y \vec{B} funciones

$$\vec{A} \wedge (\vec{B} \wedge \vec{C}) = (\vec{C} \wedge \vec{B}) \wedge \vec{A} = \vec{B}(\vec{A} \cdot \vec{C}) - \vec{C}(\vec{A} \cdot \vec{B})$$

 $\vec{\nabla}(u \cdot v) = u \vec{\nabla}v + v \vec{\nabla}u$

 $\vec{\nabla} \cdot (\vec{A} \cdot \vec{B}) = \vec{A} \wedge (\vec{\nabla} \wedge \vec{B}) + (\vec{A} \cdot \vec{\nabla}) \vec{B} + \vec{B} \wedge (\vec{\nabla} \wedge \vec{A}) + (\vec{B} \cdot \vec{\nabla}) \vec{A}$

 $\vec{\nabla} \cdot (u \cdot \vec{A}) = u \vec{\nabla} \cdot \vec{A} + \vec{A} \cdot (\vec{\nabla} u)$

 $\vec{\nabla} \wedge (u \cdot \vec{A}) = u \vec{\nabla} \wedge \vec{A} - \vec{A} \wedge \vec{\nabla} u$

 $\vec{\nabla} \cdot (\vec{A} \wedge \vec{B}) = \vec{B} \cdot (\vec{\nabla} \wedge \vec{A}) - \vec{A} \cdot (\vec{\nabla} \wedge \vec{B})$

 $\vec{\nabla} \wedge (\vec{A} \wedge \vec{B}) = (\vec{B} \cdot \vec{\nabla}) \cdot \vec{A} + \vec{A} (\vec{\nabla} \cdot \vec{B}) - (\vec{A} \cdot \vec{\nabla}) \vec{B} - \vec{B} (\vec{\nabla} \cdot \vec{A})$ $\vec{\nabla} \wedge (\vec{\nabla} \wedge \vec{A}) = \vec{\nabla} (\vec{\nabla} \cdot \vec{A}) - (\vec{\nabla} \cdot \vec{\nabla}) \vec{A}$

Operaciones con Operadores Diferenciales

$$\vec{A} \wedge (\vec{B} \wedge \vec{C}) = (\vec{A}\vec{C})\vec{B} - (\vec{A}\vec{B})\vec{C}$$

Gradiente: $\vec{\nabla}\Phi$

Cartesianas: $\frac{\partial \Phi}{\partial x}\hat{x} + \frac{\partial \Phi}{\partial y}\hat{y} + \frac{\partial \Phi}{\partial z}\hat{z}$

Cilindricas: $\frac{\partial \Phi}{\partial r}\hat{r} + \frac{1}{r}\frac{\partial \Phi}{\partial \phi}\hat{\phi} + \frac{\partial \Phi}{\partial z}\hat{z}$ Esféricas: $\frac{\partial \Phi}{\partial r}\hat{r} + \frac{1}{r}\frac{\partial \Phi}{\partial \theta}\hat{\theta} + \frac{1}{r\sin(\theta)}\frac{\partial \Phi}{\partial z}\hat{z}$

Divergencia: $\vec{\nabla} \cdot \vec{A}$

Cartesianas: $\frac{\partial A_x}{\partial x} + \frac{\partial A_y}{\partial y} + \frac{\partial A_z}{\partial z}$ Cilíndricas: $\frac{1}{r} \frac{\partial (rA_r)}{\partial r} + \frac{1}{r} \frac{\partial A_{\phi}}{\partial \phi} + \frac{\partial A_z}{\partial z}$ Esféricas: $\frac{1}{r^2} \frac{\partial (r^2A_r)}{\partial r} + \frac{1}{r\sin\theta} \frac{\partial (A_{\theta}\sin\theta)}{\partial \theta} + \frac{1}{r\sin\theta} \frac{\partial A_{\phi}}{\partial \phi}$

Rotacional: $\vec{\nabla} \wedge \vec{A}$

Cartesianas: $\hat{x} \left(\frac{\partial A_z}{\partial y} - \frac{\partial A_y}{\partial z} \right) + \hat{y} \left(\frac{\partial A_x}{\partial z} - \frac{\partial A_z}{\partial x} \right) + \hat{z} \left(\frac{\partial A_y}{\partial x} - \frac{\partial A_x}{\partial y} \right)$

Cilíndricas:

 $\left(\frac{1}{r}\frac{\partial A_z}{\partial \phi} - \frac{\partial A_\phi}{\partial z}\right) + \hat{\phi}\left(\frac{\partial A_r}{\partial z} - \frac{\partial A_z}{\partial r}\right) + \hat{z}\frac{1}{r}\left(\frac{\partial (rA_\phi)}{\partial r} - \frac{\partial A_r}{\partial \phi}\right)$

 $\underbrace{\frac{\hat{r}}{rsin(\theta)}[\frac{\partial(A_{\phi}sin(\theta)}{\partial\theta}-\frac{\partial A_{\theta}}{\partial\phi}]}_{} + \underbrace{\frac{\hat{\theta}}{r}[\frac{1}{sin(\theta)}\frac{\partial A_{r}}{\partial\phi}-\frac{\partial(rA_{\phi})}{\partial\tau}]}_{} +$

 $\frac{\hat{\phi}}{r} \left[\frac{\partial (rA_{\theta})}{\partial r} - \frac{\partial A_r}{\partial \theta} \right]$

Teoremas

Teorema de la Divergencia: La integral de volumen de la divergencia de una función vectorial es igual a la integral sobre la superficie de la componente normal a la superficie. $\int_{\Sigma} \nabla \vec{A} \partial \tau = \int_{\Sigma} A \partial \Sigma$

Teorema de Stokes: La integral de área del rotacional de una función vectorial es igual a la integral de línea del campo alrededor del perímetro del área.

 $\int_{\Sigma} (\vec{\nabla} \wedge \vec{A}) \partial \Sigma = \int_{\Gamma} A \partial l$

Cosas que no hay que olvidar

Superficie de una esfera: $4\pi r^2$

Superficie de una circunferencia: $\pi \cdot r^2$

Diferencial de Supeficie de una circunferencia: $2\pi \cdot r$

Volumen de una esfera: $\frac{4}{2}\pi r^3$

Superficie de un cilindo: $2\pi rl$

 \vec{E} de una carga puntual: $\vec{E} = \frac{q}{4\pi\epsilon_0 r}$

 ϕ de una carga puntual: $\Phi = \frac{q}{4\pi\epsilon_0}$

Conceptos Generales

Carga

 $Q = \iiint \rho(x, y, z) dV$

Densidades de Carga

 $\partial q = \lambda \cdot \partial L$ (Densidad de Carga Filamental)

 $\partial q = \sigma \cdot \partial \Sigma$ (Densidad de Carga Superficial)

 $\partial q = \rho \cdot \partial \tau$ (Densidad de Carga en Volumen)

Energía Potencial

De una distribución de cargas:

 $U_E = \frac{1}{2} \iiint \rho(\vec{r}) \Phi(\vec{r}) dV$

 $U_E = \frac{1}{2} \iiint \varepsilon |\vec{E}|^2 dV$

Electrostática

Ley de Coulomb:

 $\vec{F} = k \cdot q_1 \cdot q_2 \cdot \frac{\vec{r}}{3}$

 $\vec{E} = \frac{q}{4\pi\varepsilon_0} \frac{\vec{r}}{r^3}$ (Campo Eléctrico) Teorema de Gauss:

 $\int_{S} \vec{E} \cdot d\vec{S} = \frac{Q}{\varepsilon}$ (Forma Integral)

 $\vec{\nabla} \cdot \vec{E} = \frac{\rho}{\varepsilon}$ (Forma Diferencial)

 $\vec{E}(x,y,z) = \iiint \frac{\rho(x',y',z')}{4\pi\varepsilon_0 R^2} dV$

Potencial Electrostático: $\Phi = -\int \vec{E} \cdot d\vec{l}$

 $\phi_2 - \phi_1^2 = -\int_1^2 \vec{E} \cdot d\vec{r}$

Conductores

Materiales que contienen algún tipo de cargas que pueden moverse casi libremente de un átomo a otro a través del material manteniendo la neutralidad eléctrica macroscópica de su volumen.

 $\sigma = \frac{q}{G}$ (Densidad de Carga)

Interior de un conductor:

 $\hookrightarrow \vec{E} = 0, \phi = k, Q_{en} = 0$

Superficie de un conductor:

 $\hookrightarrow E_n = \frac{\sigma}{\varepsilon_0}, \phi = k, Q = \int_S \sigma \cdot dS$

 $\nabla^2 \Phi = 0$ (Ecuación de Laplace)

 \hookrightarrow Para dieléctricos

 $\nabla^2 \Phi = -\frac{\rho}{\varepsilon_0}$ (Ecuación de Poisson)

→ Para distribuciones de carga Asociación de Condensadores:

En serie: $\frac{1}{C_{eq}} = \sum_{i} \frac{1}{C_{i}}$

En paralelo:
$$C_{eq} = \sum_i C_i$$

Energía: $U = \frac{1}{2} \int \rho \cdot S$
 $U = \frac{1}{2} \phi \cdot Q$
 $U = \frac{1}{2} \int_{\Sigma} \sigma \cdot \phi = \frac{1}{2} \phi \cdot Q$ (Energía de un Condensador)

Condiciones de Contorno

Superficie de un Conductor: $\hat{n} \cdot \vec{E}_S = \frac{\rho}{2}$ $\hat{n} \wedge \vec{E}_S = 0$ Expresado en términos del potencial...

Dieléctricos

Las cargas están ligadas a átomos específicos o moléculas, se mantiene esta estructura incluso en presencia de campos eléctricos.

Vector Desplazamiento Eléctrico:

$$\frac{\text{Vector Desplazamiento Eléctrico:}}{\int_{\Sigma} \vec{D} \cdot d\vec{\Sigma} = Q_f^{enc} \text{ (Forma Integral)}}$$

$$\vec{\nabla} \vec{D} = \vec{\nabla} (\varepsilon_0 \vec{E} + \vec{P}) = \rho_f \text{ (Forma Diferencial)}$$

$$\vec{E} = -\vec{\nabla} \phi = \frac{\sigma}{\varepsilon_0}$$

$$\int_{S} \vec{E} \cdot \partial \vec{\Sigma} = \frac{Q_f + Q_b}{\varepsilon_0}$$

$$\vec{D} = \varepsilon \vec{E} = \varepsilon_0 k \vec{E} \text{ (Vector Desplazamiento Eléctrico)}$$

$$\vec{\nabla} \vec{D} = \rho_f$$

$$\frac{\partial \vec{D}}{\partial t} = \vec{J}_f$$

$$\frac{\partial \vec{D}}{\partial t} = \vec{J}_f$$

$$\frac{\text{Vector Polarización:}}{\vec{P} = \vec{D} - \varepsilon_0 \vec{E} = \frac{k - 1}{k} \vec{D}}$$

$$\vec{\nabla} \vec{P} = \frac{1}{r^2} \frac{\partial}{\partial r} (r \cdot \vec{P})$$

$$\frac{\text{Densidades Ligadas de Carga:}}{\sigma_b = \vec{P} \cdot \hat{n} \text{ (Superficial)}}$$

$$\rho_b = -\vec{\nabla} \vec{P} \text{ (En Volumen)}$$

$$\vec{\nabla} \vec{P} = \frac{1}{r} \frac{\partial}{\partial r} (r \cdot P) \text{ (Coordenadas Cilíndricas)}$$

$$\vec{\nabla} \vec{P} = \frac{1}{r^2} \frac{\partial}{\partial r} (r^2 \cdot P) = -\rho \text{ (Coordenadas Esféricas)}$$

$$C = \frac{Q_c}{\Delta \phi} \text{ (Capacidad)}$$

$$\frac{\text{Energía:}}{U = \frac{1}{2}} \int_{\mathcal{F}} \vec{D} \vec{E} d\tau$$

 $\nabla^2 \Phi = -\frac{\rho}{2}$ (Ecuación de Poisson para el Potencial) $\hookrightarrow \nabla \cdot (\stackrel{\varepsilon}{\varepsilon} \nabla \Phi) = -\rho$ (Forma General, para ε no constante)

Condiciones de Contorno

$$\begin{split} \hat{n} \cdot \vec{E}_1 \cdot \varepsilon_1 - \hat{n} \cdot \vec{E}_2 \cdot \varepsilon_2 &= \rho_s \\ \hat{n} \times \vec{E}_1 &= \hat{n} \times \vec{E}_2 \\ Expresado en términos del potencial... \\ \varepsilon_1 \frac{\partial \Phi_1}{\partial n} - \varepsilon_2 \frac{\partial \Phi_2}{\partial n} &= \rho_s \\ \hat{n} \times \nabla \Phi_1 \big|_{superficie} &= \hat{n} \times \nabla \Phi_2 \big|_{superficie} \\ \sigma_f &= \vec{D}_1 \cdot \hat{n}_1 + \vec{D}_2 \cdot \hat{n}_2 \\ \frac{\sigma_f + \sigma_f}{\varepsilon_0} &= \vec{E}_1 \cdot \hat{n}_1 + \vec{E}_2 \cdot \hat{n}_2 \end{split}$$

Corrientes

 $\vec{\nabla} \vec{J} + \frac{\partial \rho}{\partial t} = 0$ (Ecuación de Continuidad)

 $\vec{K} = \sigma \cdot \vec{v}$ (Densidad Superficial de Corriente) $\vec{K}_m = \vec{M} \wedge \hat{n}$ (Densidad de Corriente de Imanación $\vec{I} = \lambda \cdot \vec{v}$ (Densidad Filamental de Carga) $\varepsilon = \int_{\Gamma} \vec{E} \partial \vec{l}$ (Corrientes de Conducción: Fuerza Electromotriz) Magnetismo $\vec{B} = \mu_0 (1 + \chi_m) \vec{H} = \mu_0 K_m \cdot \vec{H} = \mu \cdot \vec{H}$ (Campo Magnético) $\vec{B} = \vec{\nabla} \wedge \vec{A}$ (Potencial Vector) $\vec{\nabla} \wedge \vec{B} = \mu_0 \vec{J} = \mu_o (\vec{J}_f + \vec{J}_m)$ $\int_{\Gamma} \vec{B} \partial \vec{l} = \mu_0 I$ $K_m <= 1$ (Material Diamagnético $K_m >= 1$ (Material Paramagnético) $K_m >> 1$ (Material Ferromagnético) $\vec{H} = \frac{\vec{B}}{u}$ (Intensidad de Campo) $\vec{\nabla} \wedge \vec{H} = J_f + \frac{\partial \vec{D}}{\partial t}$ $\hookrightarrow \vec{\nabla} \wedge \vec{H} = 0$ (En ausencia de corrientes libres) $\vec{M} = \frac{\vec{B}}{\mu_0} - \vec{H}$ (Imanación Magnética) $\vec{\nabla} \wedge \vec{M} = \vec{J}_m \\ \vec{M} = \chi_m \cdot \vec{H}$ Momento Magnético: $\vec{m} = \int_{-\tau} \vec{M} \cdot \partial \tau'$ Ley de Biot-Savart: $\partial \vec{B} = \frac{\mu_0}{4\pi} \cdot \frac{I \cdot d\vec{l} \wedge \vec{r}}{r^3} = \frac{\mu_0}{4\pi} \cdot \frac{I \cdot sin(\theta)}{r^2}$ (Forma Integral) Lev de Ampère: $\oint_{\mathcal{C}} \vec{B} \cdot d\vec{l} = \mu_0 \cdot I_{en}$ $\int_{\Gamma} \vec{H} \cdot d\vec{l} = \int_{\Sigma} \vec{J}_f^{enc} = I_f^{enc}$ (Forma Integral) $\vec{\nabla} \times \vec{B} = \mu_o \vec{J}$ (Forma Diferencial) $\vec{B} = \frac{\mu_0 \vec{I}}{4\pi d} [\cos(\beta) - \cos(\delta)]$ (Campo \vec{B} por un segmento AB de un hilo paraelo a otro hilo) $\hookrightarrow \beta$ es el ángulo formado por el hilo y el punto B. $\hookrightarrow \delta$ es el ángulo formado por el hilo y el punto A. Fuerza de Interacción que un circuito 1 ejerce sobre un circuito $\hookrightarrow \vec{F}_{1\rightarrow 2} = I_2 \int_2 \partial \vec{l}_2 \wedge \vec{B}$ $\vec{F_R} = I\vec{l} \times \vec{B}$ (Fuerza sobre un Hilo) $\hookrightarrow \vec{F}_B = q\vec{v} \wedge \vec{B}$ Densidades de Corriente de Imanación: $\rho_m = -\vec{\nabla}\vec{M} = \vec{\nabla}\vec{H}$ (Densidad de Corriente de Imanación en Volumen)

 $\sigma_m = \hat{n}\vec{M}$ (Densidad de Corriente de Imanación Superficial)

 $I = \int_{\Sigma} \vec{J} \cdot d\vec{S}$ (Corriente)

 $\hookrightarrow \dot{\nabla}^2 \phi_m = -\rho_m$

 $\vec{J} = \rho \cdot \vec{v}$ (Densidad de Corriente en Volumen)

 $\vec{J}_m = \vec{\nabla} \wedge \vec{M}$ (Densidad de Corriente de Imanación en

 $\vec{J} = \sigma \vec{E}$ (Lev de Ohm)

 $\hookrightarrow \Delta \phi = I \cdot R$

Energía:

 $U_m = \frac{1}{2} \int_{\forall} \vec{H} \vec{B} \cdot \partial \tau$ (Energía Magnética) $u_m = \frac{1}{2} \vec{H} \vec{B}$ (Densidad de Energía Magnética)

Electromagnetismo

Ley de Faraday e Inducción:

Flujo Magnético: $\Phi_B = \int_S \vec{B} \cdot d\vec{S}$

 $\vec{\nabla} \wedge \vec{E} = -\frac{\partial \vec{B}}{\partial t}$ (Forma Diferencial de la ley de inducción de Faraday-Lenz)

 \hookrightarrow Si $\frac{\partial \phi}{\partial t} = 0 \rightarrow$ no hay corriente en el circuito.

 \hookrightarrow Si $\frac{\ddot{\delta} \dot{\phi}}{\partial t} \neq 0 \rightarrow$ aparece una corriente inducida en el circuito.

Ley de Faraday-Lenz:

 $\varepsilon_{ind} = -\frac{\partial \phi}{\partial t}$ (Fuerza Electromotriz Inducida)

 $M = \frac{\phi}{\tau}$ (Coeficiente de Inducción Mutua)

 $U_{em} = \frac{1}{2}\vec{D}\vec{E} + \frac{1}{2}\vec{B}\vec{H}$ (Energía Electromagnética)

Ecuaciones de Maxwell

 $\vec{\nabla} \vec{D} = \rho_f$ (Ley de Coulomb)

 $\vec{\nabla} \wedge \vec{E} = -\frac{\partial \vec{B}}{\partial t}$ (Ley de Faraday-Lenz)

 $\vec{\nabla} \vec{B} = 0$ (Ausencia de monopolos magnéticos libres)

 $\vec{\nabla} \wedge \vec{H} = \vec{J}_f + \frac{\partial \vec{D}}{\partial t}$ (Ley de Ampère)

Ondas Electromagnéticas

OEM Plana:

 $\vec{E} = \vec{E}_0 e^{i(\vec{k}\vec{r} - \omega t)} = E_0 \cdot cos(k \cdot \vec{r} - \omega \cdot t)\vec{k}$

 $\vec{H} = \vec{H}_0 e^{i(\vec{k}\vec{r} - \omega t)} = H_0 \cdot \cos(k \cdot \vec{r} - \omega \cdot t)\vec{k}$

 $\Psi(z,t) = \Psi_0 cos(kz - \omega t)$ (Ecuación de Onda Unidimensional)

 $\Psi(x, y, z, t) = \Psi_0 \cos(\vec{k}\vec{z} - \omega t)$ (Ecuación de Onda Tridimensional)

Relación entre las magnitudes de los campos:

 $\hookrightarrow H = \frac{\varepsilon \omega}{k} E = \varepsilon u E = \frac{n}{Z_0} E =$

 $I = \frac{1}{2}E_0H_0 = \frac{n}{2Z_0}|E_0|^2 = \frac{1}{2\mu_0 v}|E_0|^2 = \langle |\vec{S}| \rangle$ (Irradiancia)

 $\vec{S} = \frac{1}{\mu_0} \cdot \vec{E} \wedge \vec{B}$ (Vector de Poynting)

 \hookrightarrow Si \vec{E}_0 y $\vec{H}_0 \in \Re \rightarrow$ Polarización Lineal/Plana

 \hookrightarrow Plano de polarización \rightarrow plano creado por \vec{E} y \hat{k}

 $P = Area \cdot |\vec{S}|$ (Potencia)

Longitudes de Onda:

 $< 10^9 Hz \mid > 300 mm$ (Radiofrecuencia)

 $10^9 \rightarrow 10^{12} Hz \mid 300 \rightarrow 0.3 mm \text{ (Microondas)}$

 $10^{16} \rightarrow 10^{19} Hz \mid 300 \text{Å} \rightarrow 0, 3 \text{Å} \text{ (Rayos X)}$

 $> 10^{19} Hz \mid < 0.3 \text{Å (Rayos } \gamma)$

 $\langle \vec{S} \rangle = \frac{1}{2} \vec{E}_0 \wedge \vec{H}_0 = \frac{1}{2} \vec{E}_0 \wedge \frac{\vec{B}_0}{\mu_0} = I = \frac{1}{2} \cdot E_0 \cdot H_0 = \frac{1}{2} \cdot E_0 \cdot \frac{B_0}{\mu_0}$ (Energía de una OEM Plana)

 $\hookrightarrow E = I \cdot S \cdot t$ (Energía por unidad de tiempo)