Lecture 4

Xiaoping Shi
Department of Statistics, University of Toronto
xpshi@utstat.toronto.edu

July 21, 2013

- Efficiency and the Cramer-Rao Lower Bound
- Sufficiency, the Factorization Theorem and Exponential family
- The Rao-Blackwell Theorem

In most statistical estimation problems, there are a variety of possible parameter estimates.

Given a variety of possible estimates, how would we choose which to use? Two quantitative measures are specified: Mean squared error (MSE) and efficiency.

The mean squared error of $\hat{\theta}$ as an estimate of θ_0 is

$$MSE(\hat{\theta}) = E(\hat{\theta} - \theta_0)^2 = Var(\hat{\theta}) + (E(\hat{\theta}) - \theta_0)^2$$

Given two estimates, $\hat{\theta}$ and $\tilde{\theta}$, of a parameter θ_0 , the efficiency of $\hat{\theta}$ relative to $\tilde{\theta}$ is defined to be

$$\mathsf{eff}(\hat{ heta}, ilde{ heta}) = rac{\mathit{Var}(ilde{ heta})}{\mathit{Var}(\hat{ heta})}$$

Recall: $\hat{\theta}$ is a consistent estimate of θ_0 in probability, that is, for any $\varepsilon>0$,

$$P(|\hat{\theta} - \theta_0| > \varepsilon) \to 0$$
, as $n \to \infty$

by **Chebyschev's Lemma**. Link *MSE* and Consistence by Chebyschev's Lemma:

$$P(|\hat{\theta} - \theta_0| > \varepsilon) \le \frac{MSE(\hat{\theta})}{\varepsilon^2}$$

Question: X_1, \dots, X_n are iid $N(\mu, \sigma^2)$, is $\hat{\sigma}^2$ (mle of σ^2) a consistent estimate of σ^2 ?

Compare $MSE(\hat{\sigma}_{mle}^2)$ and $MSE(\hat{\sigma}_{S}^2)$, where $\hat{\sigma}_{S}^2$ is the sample variance.

To find optimal estimate with smallest *MSE* may be difficult. We could find it with smallest variance among unbiased estimates.

Definition An unbiased estimate whose variance achieves this lower bound (Cramér-Rao bound) is said to be **efficient**.

Theorem Cramér-Rao Inequality Let X_1, \dots, X_n be iid with density function $f(x|\theta)$. Let $T = t(X_1, \dots, X_n)$ be an unbiased estimate of θ . Then, under smoothness assumptions of $f(x|\theta)$,

$$Var(T) \geq \frac{1}{nI(\theta)}$$

- $\frac{1}{nI(\theta)}$ is called Cramér-Rao bound.
- The asymptotic variance of mle is equal to the lower bound, mle is said to be asymptotically efficient:

Proof of C-R inequality:

- i.e., prove that $Var(T)[nI(\theta)] \ge 1$.
- Let $Z = \sum_{i=1}^{n} \frac{\partial}{\partial \theta} \log f(X_i | \theta) = \sum_{i=1}^{n} \frac{\frac{\partial}{\partial \theta} f(X_i | \theta)}{f(X_i | \theta)}$ with $Var(Z) = nI(\theta)$
- Cauchy-Schwartz inequality:

$$Cov^{2}(Z, T) = \{E[(Z - E(Z))(T - E(T))]\}^{2}$$

 $\leq E[(Z - E(Z)]^{2}E[T - E(T)]^{2} = Var(Z)Var(T)$

• Show that Cov(Z, T) = 1 by $E(T) = \theta$.

Among the models encountered in practice, efficient estimators exist for: Poisson distribution, Bernoulli distribution and Normal distribution.

Example 7 continued: Poisson distribution $Pois(\lambda)$ and $I(\lambda) = 1/\lambda$.

Therefore, by C-R inequality, for any unbiased estimate T of λ , based on a sample of iid Poisson r.v.s, X_1, \dots, X_n ,

$$Var(T) \ge \frac{\lambda}{n}$$

The mle of λ was found to be \bar{X} with $E(\bar{X}) = \lambda$ and $Var(\bar{X}) = \lambda/n$. In this sense, \bar{X} is efficient.

Example 13 continued: Bernoulli distribution $B(1, \theta)$ and $I(\theta) = \frac{1}{\theta(1-\theta)}$.

Therefore, by C-R inequality, for any unbiased estimate T of θ , based on a sample of iid Bernoulli r.v.s, X_1, \dots, X_n ,

$$Var(T) \geq \frac{\theta(1-\theta)}{n}$$

The mle of θ was found to be \bar{X} with $E(\bar{X}) = \theta$ and $Var(\bar{X}) = \theta(1-\theta)/n$. In this sense, \bar{X} is efficient.

Example 1. Suppose X is a normally distributed $N(\mu, \sigma^2)$ with known μ and unknown variance σ^2 . Consider the following two statistics:

$$T_1 = \frac{\sum_{i=1}^{n} (X_i - \mu)^2}{n}, \quad T_2 = \frac{\sum_{i=1}^{n} (X_i - \mu)^2}{n+2}$$

The Fish information is

$$I(\sigma^2) = -E\left(-\frac{(X-\mu)^2}{\sigma^6} + \frac{1}{2\sigma^4}\right) = \frac{1}{2\sigma^4}$$

 $E(T_1) = \sigma^2$ and $Var(T_1) = 2\sigma^4/n$ which reaches the C-R lower bound, hence T_1 is efficient.

$$E(T_2) = n\sigma^2/(n+2)$$
, $Var(T_2) = 2n\sigma^4/(n+2)^2$ and $MSE(T_2) = Var(T_2) + (E(T_2) - \sigma^2)^2 = \frac{2\sigma^4}{n+2}$, which is clearly less than $MSE(T_1) = Var(T_1) = 2\sigma^4/n$.

This shows that the biased estimator T_2 of σ^2 has a smaller mean squared error than T_1 .

Definition A statistic $T(X_1, \dots, X_n)$ is said to be **sufficient** for θ if the conditional distribution of X_1, \dots, X_n , given T = t, does not depend on θ for any value of t.

In other words, the **sufficient statistic** T gives all knowledge about θ and we can gain no more knowledge about θ .

The preceding definition of sufficiency is hard to work with, because it does not indicate how to go about finding a sufficient statistic because of the difficulty in evaluating the conditional distribution. The following factorization theorem provides a convenient means of identifying sufficient statistics.

A Factorization Theorem A necessary and sufficient condition for $T(X_1, \dots, X_n)$ to be sufficient for a parameter θ is that the joint probability function (density function or frequency function) factors in the form

$$f(x_1,\dots,x_n|\theta)=g[T(x_1,\dots,x_n),\theta]h(x_1,\dots,x_n)$$

Proof:

$$P(\mathbf{X} = \mathbf{x}|\theta) = P(T = t|\theta)P(\mathbf{X} = \mathbf{x}|T = t)$$

= $g(t,\theta)h(\mathbf{x})$

where the conditional distribution of **X** given T is independent of θ due to the definition of sufficient statistic.

Example 2. Suppose the sample data X_1, \dots, X_n from the distribution with pdf

$$f(x|\theta=e^{-(x-\theta)}\mathbf{1}(\theta,x)$$

where $\mathbf{1}(a,b)$ is 1 or 0 if $a \le b$ or a > b, respectively. What's the sufficient statistic for θ ?

The joint pdf of X_1, \dots, X_n is

$$\prod_{i=1}^{n} [e^{-(X_i - \theta)}] \mathbf{1}(\theta, X_i) = [e^{n\theta} \mathbf{1}(\theta, \min\{X_1, \dots, X_n\})] [e^{-n\bar{X}}]$$
$$= g(t, \theta) h(\mathbf{x})$$

Thus $\min\{X_1, \dots, X_n\}$ is the sufficient statistic for θ .

Question: Suppose pdf is Uniform distribution $U(0, \theta)$. What is the sufficient statistic for θ ?

We can demonstrate the utility of the Factorization Theorem by introducing the **exponential family** of probability distributions.

Many common distribution, including the normal, the binomial, the Poisson, and the gamma, are members of this family.

One-parameter members of the exponential family have density or frequency functions of the form

$$f(x|\theta) = \exp[c(\theta)T(x) + d(\theta) + S(x)]$$

A k-parameter member of the exponential family has density or frequency functions of the form

$$f(x|\theta) = \exp\left[\sum_{i=1}^{k} c_i(\theta) T_i(x) + d(\theta) + S(x)\right]$$

Suppose that X_1, \dots, X_n is a sample from a member of the exponential family; the joint probability function is

$$f(\mathbf{X}|\theta) = \prod_{i=1}^{n} \exp[c(\theta)T(X_i) + d(\theta) + S(x)]$$
$$= \exp\left[c(\theta)\sum_{i=1}^{n}T(X_i) + nd(\theta)\right] + \exp\left[\sum_{i=1}^{n}S(X_i)\right]$$

From this result, it is apparent by the factorization theorem that $\sum_{i=1}^{n} T(X_i)$ is a sufficient statistic.

Example 3. Consider a sequence of independent Bernoulli random variables $B(1, \theta)$, X_1, \dots, X_n ,

$$f(\mathbf{X}|\theta) = \prod_{i=1}^{n} \theta^{X_i} (1-\theta)^{1-X_i}$$

$$= \theta^{\sum_{i=1}^{n} X_i} (1-\theta)^{n-\sum_{i=1}^{n} X_i}$$

$$= \left(\frac{\theta}{1-\theta}\right)^{\sum_{i=1}^{n} X_i} (1-\theta)^n$$

This is a member of the exponential family with $c(\theta) = \frac{\theta}{1-\theta}$ and T(x) = x, and then $\sum_{i=1}^{n} T(X_i)$ is a sufficient statistic.

Example 4. Consider a sequence of independent Normal random variables $N(\mu, \sigma^2)$

$$f(\mathbf{X}|\mu,\sigma^{2}) = \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi}\sigma} \exp\left[\frac{-1}{2\sigma^{2}} (X_{i} - \mu)^{2}\right]$$
$$= \frac{1}{(2\pi)^{n/2}\sigma^{n}} \exp\left[\frac{-1}{2\sigma^{2}} \left(\sum_{i=1}^{n} X_{i}^{2} - 2\mu \sum_{i=1}^{n} X_{i} + n\mu^{2}\right)\right]$$

This expression is just a function of $\sum_{i=1}^{n} X_i$ and $\sum_{i=1}^{n} X_i^2$, which are therefor sufficient statistics.

In this example we have a two-dimensional sufficient statistic.

Theorem Rao-Blackwell Theorem

Let $\hat{\theta}$ be an unbiased estimator of θ . Suppose that T is sufficient for θ , and let $\tilde{\theta} = E(\hat{\theta}|T)$. Then this statistic $\tilde{\theta}$ is unbiased and

$$Var(\tilde{\theta}) \leq Var(\hat{\theta})$$

This theorem tells us that if we begin with an unbiased estimator $\hat{\theta}$ alone, then we can always improve on this by computing $\tilde{\theta}$ so that $\tilde{\theta}$ is an unbiased estimator with smaller variance that that of $\hat{\theta}$. Proof:

$$E(\tilde{\theta}) = E[E(\hat{\theta}|T)] = E(\hat{\theta}) = \theta$$

by the property of iterated conditional expectation (Theorem A of Section 4.4.1), and

$$Var(\hat{\theta}) = Var(\tilde{\theta}) + E[Var(\hat{\theta}|T)]$$

by Theorem B of Section 4.4.1.

Exercises:

- 1. $X_n \ge 0$, $\mu \ge 0$, $X_n \to \mu$ in prob. Then $\sqrt{X_n} \to \sqrt{\mu}$ in prob.
- $X_n \to \mu_1$ in prob. and $Y_n \to \mu_2$ in prob. Then $X_n + Y_n \to \mu_1 + \mu_2$.
- 2. Method of moment and MLE. For example $N(\mu, \sigma^2)$.
- 3. Bayesian estimator: Posterior mean.
- 4. Fish information and large sample theory.
- 5. C-R lower bound and efficient.
- 6. Sufficient. For example $U(\theta)$.