1

Assignment 17

Mtech in AI Department Priya Bhatia AI20MTECH14015

Abstract

This document illustrates about the properties related to projection and its relevant proof.

Download the latex-tikz codes from

https://github.com/priya6971/matrix theory EE5609/tree/master/Assignment17

1 Problem

Let E be a projection of V and let T be a linear operator on V. Prove that the range of E is invariant under T if and only if ETE = TE. Prove that both the range and null space of E are invariant under T if and only if ET = TE.

2 Solution

Proof of $ETE = TE$	Any projection E is represented by a matrix that is a part of an identity matrix Assume the Basis can be defined as follows: $B = \{\alpha_1,, \alpha_r,, \alpha_n\}$ such that $E_{ii} = 1$ for $i \le r$ and 0 elsewhere $E_B = \begin{pmatrix} I & 0 \\ 0 & 0 \end{pmatrix}$ where I is the $r \times r$ matrix Let $\alpha = (a_1,, a_n)$ $\Longrightarrow T(E_\alpha) = T(a_1,, a_r,0) = \beta$ If we assume T to be invariant over the range W of E , then $\beta \in W$ $\beta = (\beta_1,, \beta_r,, 0), E_\beta = \beta$ Therefore, $ETE = TE$
Proof of $ET = TE$	Consider the same assumption for basis B and projection E as defined above. $B = \{\alpha_1,, \alpha_r,, \alpha_n\}$ $E_B = \begin{pmatrix} I & 0 \\ 0 & 0 \end{pmatrix}$ where I is the $r \times r$ matrix Let $TE \neq ET$, then there exists some vector V such that $T(a_1,, a_r,0) \neq (Ta_1,, Ta_r,, 0)$ But for this case, T is not an invariant of W . Assuming that T is an invariant of W , $T(a_1,, a_r,0) \in W$ for all $\alpha \in W$. Therefore, $T(a_1,, a_r,0) = (Ta_1,, Ta_r,, 0) \implies ET = TE$

Conclusion Hence, it is proved that the range of E is invariant under T if and only if $ETE = TE$. And both the range and null space of E are invariant under T if and only if $TE = ET$.	Conclusion	ETE = TE. And both the range and null space of E are invariant under T if and only if
--	------------	--

TABLE 1: Illustration of Proof