Documentation for the SUNFLO crop model

January 7, 2015

```
Contents
```

```
Model overview
                     3
Inputs
    Climate
                3
    Soil
            4
    Management
                     4
    Species
    Cultivar
                4
Phenology
                6
    Emergence
    ThermalTime
                     6
    PhenoStages
                     6
LeafArea
              8
    LeafInitiation Time, \ LeafExpansion Time, \ LeafSenescence Time
                                                                  8
    LeafExpansionDuration
    Potential Leaf Area
    Leaf Growth Rate, \ Leaf Senescence Rate, \ Leaf Area
Light interception
                        10
    LAI
            10
    RIE
            10
Biomass production
                         11
    RUE
    CropBiomass (Monteith, 1977)
    CropPerformance
                         11
Thermal stress
                    12
    ThermalStressRUE (Villalobos et al., 1996)
    ThermalStressMineralization (Valé et al., 2007)
                                                      12
    Thermal Stress Allocation
```

```
Water stress
                 13
    WaterDemand
                     13
    WaterSupply
                    13
    WaterStress
                   13
    WaterStressExpansion, WaterStressConductance
                                                    13
    WaterStressPhenology
    WaterStressMineralization
                                13
Nitrogen stress
                    14
Radiation stress
                    15
   RadiationStressExpansion (Rey, 2003)
                                           15
Outputs
             16
    Timed variables
                      16
   Indicators
                 16
References
               17
```

Model overview

Inputs

Climate

label	description	unit
TemperatureAirMin	Minimum air temperature	°C
TemperatureAirMax	Maximum air temperature	°C
Radiation	Global incident radiation	MJ.m-2
PET	Reference evapotranspiration	mm
Rainfall	Rainfall	mm

label	description	value	unit	reference
RootingDepth	Potential rooting depth	1000.00	mm	(Lecoeur et al., 2011)
WaterCapacity	Water content at field capacity (o-30 cm)	19.69	%	NA
WaterCapacity	Water content at wilting point (o-30cm)	9.69	%	NA
WaterCapacity	Water content at field capacity (30 cm-rooting depth)	19.69	%	NA
WaterCapacity	Water content at wilting point (30 cm-rooting depth)	9.69	%	NA
SoilDensity	Soil bulk density (o-30cm)	1.30	g.cm-3	NA
SoilDensity	Soil bulk density (30 cm-rooting depth)	1.30	g.cm-3	NA
StoneContent	Stone content (o-rooting depth)	0.10	[0;1]	NA
Mineralization Rate	Potential nitrogen mineralization rate	0.50	kg/ha/day (normalized)	(Valé et al., 2007)

Management

label	description	value	unit	reference
SowingDate	Sowing date	NA	dd/mm	NA
HarvestDate	Harvest date	NA	dd/mm	NA
SowingDensity	Plant density	7	pnt/m2	NA
Fertilization	Fertilization (date 1)	NA	dd/mm	NA
Fertilization	Fertilization (amount 1)	0	kg/ha eq. mineral nitrogen	NA
Fertilization	Fertilization (date 2)	NA	dd/mm	NA
Fertilization	Fertilization (amount 2)	0	kg/ha eq. mineral nitrogen	NA
Irrigation	Irrigation (date 1)	NA	dd/mm	NA
Irrigation	Irrigation (amount 1)	0	mm	NA
Irrigation	Irrigation (date 2)	NA	dd/mm	NA
Irrigation	Irrigation (amount 2)	0	mm	NA
Irrigation	Irrigation (date 3)	NA	dd/mm	NA
Irrigation	Irrigation (amount 3)	O	mm	NA

Species

Cultivar

label	description	value	unit	reference
ThermalTimeVegetative	Temperature sum to floral initiation	482.000	°Cd	(Lecoeur et al., 2011)
ThermalTimeFlowering	Temperature sum from emergence to the beginning of flowering	836.000	°Cd	(Lecoeur et al., 2011)
ThermalTimeSenescence	Temperature sum from emergence to the beginning of grain filling	1083.000	°Cd	(Lecoeur et al., 2011)
ThermalTimeMaturity	Temperature sum from emergence to seed physiological maturity	1673.000	°Cd	(Lecoeur et al., 2011)
PotentialLeafNumber	Potential number of leaves at flowering	29.000	leaf	(Lecoeur et al., 2011)

label	description	value	unit	reference
PotentialLeafProfile	Potential rank of the plant largest leaf at flowering	17.000	leaf	(Lecoeur et al., 2011)
PotentialLeafSize	Potential area of the plant largest leaf at flowering	448.000	cm2	(Lecoeur et al., 2011)
ExtinctionCoefficient	Light extinction coefficient during vegetative growth	0.880	-	(Lecoeur et al., 2011)
WaterResponseExpansion	Threshold for leaf expansion response to water stress	-4.420	-	(Casadebaig et al., 200
WaterResponseConductance	Threshold for stomatal conductance response to water stress	-9.300	-	(Casadebaig et al., 200
PotentialHarvestIndex	Potential harvest index	0.398	-	(Casadebaig et al., 201
PotentialOilContent	Potential seed oil content	55.400	% dry matter	(Casadebaig et al., 201

Phenology

label	description	value	unit	reference
ThermalTimeVegetative	Temperature sum to floral initiation		°Cd	(Lecoeur et al., 2011)
ThermalTimeFlowering	Temperature sum from emergence to the beginning of flowering	836.00	°Cd	(Lecoeur et al., 2011)
ThermalTimeSenescence	Temperature sum from emergence to the beginning of grain filling	1083.00	°Cd	(Lecoeur et al., 2011)
Thermal Time Maturity	Temperature sum from emergence to seed physiological maturity	1673.00	°Cd	(Lecoeur et al., 2011)
SowingDepth	Sowing depth	30.00	mm	NA
Germination	Temperature sum from sowing to germination	86.20	°Cd	(Casadebaig et al., 2011)
ElongationRate	Reciprocal of hypocotyl elongation rate	1.19	°Cd/mm	(Villalobos et al., 1996)

Emergence

Emergence = Germination + ElongationRate * SowingDepthwith:

- *Germination* = 86, Thermal time for germination (°C.d);
- *ElongationRate* = 1.19, Hypocotyl elongation rate (°Cd/mm)
- *SowingDepth* = 30, Sowing depth (mm).

ThermalTime

$$\textit{ThermalTime}_d = \left\{ \begin{array}{l} \int_0^d (T_m - T_b) * (1 + WaterStressPhenology) & \text{if } T_m > T_b \\ 0 & \text{else} \end{array} \right.$$

with:

- T_m , Daily mean air temperature (°C);
- $T_b = 4.8$, Basal temperature (°C) (Granier and Tardieu, 1998);
- Thermal Stress Phenology, Water stress effect on plant heating

PhenoStages

In the software model, phenostages are computed as integers $\in [0,7]$ corresponding to duration between key stages:

• o, begining of simulation - sowing (bare soil)

- 1, sowing (Ao) emergence (A2)
- 2, emergence (A2) floral initiation (E1)
- 3, floral initiation (E1) flowering (F1)
- 4, flowering (F1) onset of senescence (Mo)
- 5, onset of senescence (Mo) maturity (M₃)
- 6, maturity (M₃) harvest
- 7, harvest end of simulation (bare soil)

LeafArea

label	description	value	unit	reference
PotentialLeafNumber	Potential number of leaves at flowering	29.00	leaf	(Lecoeur et al., 2011)
PotentialLeafProfile	Potential rank of the plant largest leaf at flowering	17.00	leaf	(Lecoeur et al., 2011)
PotentialLeafSize	Potential area of the plant largest leaf at flowering	448.00	cm2	(Lecoeur et al., 2011)
Phyllotherm_1	Phyllotherm (leaf <= 6)	71.43	°Cd	(Rey, 2003)
Phyllotherm_7	Phyllotherm (leaf > 7)	16.34	°Cd	(Rey, 2003)
PotentialLeafDuration	Thermal time between expansion and senescence	851.33	°Cd	(Casadebaig, 2008)

LeafInitiationTime, LeafExpansionTime, LeafSenescenceTime

$$\textit{Leaf Initiation Time}_i = \left\{ \begin{array}{ll} i*\textit{Phyllotherm}_1 & \text{if } i \leq 6 \\ (i-5)*\textit{Phyllotherm}_7 + a & \text{if } i \leq \textit{Leaf Number} \end{array} \right.$$
 with:

- $Phyllotherm_1 = 76.43$ (°C.d)
- $Phyllotherm_7 = 16.34$ (°C.d)
- $a = 400 \, (^{\circ}\text{C.d})$

 $LeafExpansionTime_i = LeafInitiation_i + 1/a$ with a = 0.01379.

LeafExpansionDuration

 $Leaf Expansion Duration_i = a + Potential Leaf Duration * exp^{\frac{-(i-Potential Leaf Profile)^2}{(c*Potential Leaf Number)^2}}$ with:

- PotentialLeaf Duration = 851.3 (°C.d)
- $a = 153 \, (^{\circ}\text{C.d})$
- b = 0.78

 $Leaf Senescence Time_i = Leaf Expansion Time_i + Leaf Expansion Duration_i$

PotentialLeafArea

 $Potential Leaf Area_i = Potential Leaf Size * exp^{a*(\frac{i-Potential Leaf Profile}{Potential Leaf Profile-1})^2 + b*(\frac{i-Potential Leaf Profile}{Potential Leaf Profile-1})^3}$ with: * a = -2.05 and b = 0.049, shape parameters * Potential Leaf Size (cm2) and PotentialLeaf Profile (node), genotypic parameters.

LeafGrowthRate, LeafSenescenceRate, LeafArea

$$\begin{aligned} \textit{LeafGrowthRate}_i &= (T_m - T_b) * \textit{PotentialLeafArea}_i * a * \\ &= \underbrace{exp^{-a(ThermalTime-LeafExpansionTime_i)}}_{(1 + exp^{-a(ThermalTime-LeafExpansionTime_i)})^2} \end{aligned}$$

$$\begin{aligned} \textit{Leaf Senescence Rate}_i &= (T_m - T_b) * \textit{Leaf Area}_i * a * \\ &\frac{exp^{-a(ThermalTime-Leaf Senescence Time_i)}}{(1 + exp^{-a(ThermalTime-Leaf Senescence Time_i)})^2} \end{aligned}$$

with:

- $T_m = 25$, mean air temperature (°C) $T_b = 4.8$, base temperature (°C)
- *a* = 0.01379

The illustration uses i = 10 as values for $PotentialLeafArea_i$, $LeafExpansionTime_i$ and $Leaf Senescence Time_i$

$$LeafArea_i = \int LeafGrowthRate_i - \int LeafSenescenceRate_i$$

Light interception

LAI

$$LAI = SowingDensity * \sum_{i=1}^{LeafNumber} LeafArea_i$$

RIE

$$RIE = 1 - exp^{(-ExtinctionCoefficient*LAI)}$$

Biomass production

RUE

$$Potential RUE = \left\{ \begin{array}{l} r_0 \\ r_0 + 2 * \frac{ThermalTime - 300}{ThermalTimeFlowering - 300} \\ r_{max} \\ a * exp^{b*(1 - \frac{ThermalTime-ThermalTimeMaturity}{ThermalTimeMaturity - ThermalTimeSenescence})} \\ 0 \end{array} \right.$$

with:

- $r_0 = 1$, vegetative RUE
- $r_{max} = 3$, maximum RUE
- a = 0.015, final RUE
- b = 4.5, slope of RUE decrease in grain filling stage

 $if\ Thermal Time < 300$

if 300 < ThermalTime < ThermalTimeFlowering

 $if\ Thermal Time Flowering < Thermal Time < Thermal Time Senescence$

 $if\ Thermal Time Senescence < Thermal Time < Thermal Time Maturity$

Process PotentialRUE

CropBiomass (Monteith, 1977)

dCropBiomass = Radiation * 0.48 * RIE * RUE * dt

CropPerformance

Thermal stress

ThermalStressRUE (Villalobos et al., 1996)

$$ThermalStressRUE = \left\{ \begin{array}{ll} T_m * \frac{1}{T_{ol} - T_b} - \frac{T_b}{T_{ol} - T_b} & \text{if } T_b < T_m < T_{ol} \\ 1 & \text{if } T_{ol} < T_m < T_{ou} \\ T_m * \frac{1}{T_{ou} - tc} - \frac{tc}{T_{ou} - tc} & \text{if } T_{ou} < T_m < tc \\ 0 & \text{else} \end{array} \right.$$

with:

- $T_b = 4.8$, base temperature (°C)
- $T_{ol} = 20$, optimal lower temperature (°C)
- $T_{ou} = 28$, optimal upper temperature (°C)
- $T_c = 37$, critical temperature (°C)

ThermalStressMineralization (Valé et al., 2007)

$$\textit{ThermalStressMineralization} = \frac{T_c}{1 + (T_c - 1) * exp^{(-0.119*(T_m - T_b))}}$$

with:

- $T_b = 15$, base temperature (°C)
- $T_c = 36$, critical temperature (°C)

Thermal Stress Allocation

Process — ThermalStressMineralization

Water stress

WaterDemand

$$WaterDemand = K_c * PET * RIE$$

with $K_c = 1.2$, crop coefficient

WaterSupply

$$WaterSupply = Rainfall + Irrigation - Transpiration - Evaporation - Drainage$$

Transpiration = WaterDemand * WaterStressConductance

$$Evaporation = (1 - RIE) * PET * SoilConductivity$$

SoilConductivity =
$$\sqrt{x+1} - \sqrt{x}$$

with

$$dx/dt = \left\{ egin{array}{ll} 1 & \mbox{if $Rainfall+Irrigation} <= 4 \\ 0 & \mbox{else} \end{array} \right.$$

WaterStress

$$WaterStress = \frac{WaterAvailable}{WaterTotal}$$

Water Available = Water Supply

$$WaterStressProcess = -1 + \frac{2}{1 + exp^{(a*WaterStress)}}$$

with $a \in [-15.6; -2.3]$, genotype-dependant response parameter

WaterStressPhenology

WaterStressPhenology = a * (1 - WaterStressConductance)

with a = 0.1, scaling parameter for water-stress plant heating

WaterStressMineralization

 $WaterStressMineralization = 1 - (1 - y_0) * (1 - RelativeWaterContent_{layer1})$

Nitrogen stress

Radiation stress

RadiationStressExpansion (Rey, 2003)

$$RadiationStressExpansion = s*a + \frac{b}{1 + exp^{\left(\frac{c - IPAR/LAI}{d}\right)}}$$

with:

- s = 2.5, scaling parameter for density effect;
- a = -0.14; b = 1.13; c = 4.13; d = 2.09

Outputs

Timed variables

label	description	unit
TemperatureAirMin	Minimum air temperature	°C
TemperatureAirMax	Maximum air temperature	°C
TemperatureAirMean	Mean air temperature	°C
Radiation	Global incident radiation	MJ/m2
PET	Reference evapotranspiration	mm
Rainfall	Rainfall	mm
ThermalTime	Temperature sum from emergence	°Cd
PhenoStage	Phenological stages index	-
WaterStress	Water stress index	-
WaterStressConductance	Transpiration response to water stress	-
WaterStressConductance	Photosynthesis response to water stress	-
Water Supply Demand Ratio	Water supply:demand ratio	-
ThermalStressRUE	Photosynthesis response to thermal stress	-
NitrogenAbsorbed	Absorbed nitrogen	kg.ha-1.d-1
NitrogenNutritionIndex	Nitrogen nutrition index	-
NitrogenStressRUE	Photosynthesis response to nitrogen stress	-
LAI	Leaf area index	-
RIE	Radiation interception efficiency	-
RUE	Radiation use efficiency	-
CropBiomass	Crop aerial dry biomass	g.m-2
CropYield	Grain yield	q.ha-1
OilContent	Grain oil content	% dry matter

Indicators

References

Casadebaig, P., 2008. Analyse et modélisation de l'interaction Génotype - Environnement - Conduite de culture: application au tournesol (Helianthus annuus L.) (PhD thesis). Toulouse University.

Casadebaig, P., Debaeke, P., Lecoeur, J., 2008. Thresholds for leaf expansion and transpiration response to soil water deficit in a range of sunflower genotypes. European Journal of Agronomy 28, 646-654.

Casadebaig, P., Guilioni, L., Lecoeur, J., Christophe, A., Champolivier, L., Debaeke, P., 2011. SUNFLO, a model to simulate genotype-specific performance of the sunflower crop in contrasting environments. Agricultural and Forest Meteorology 151, 163–178.

Granier, C., Tardieu, F., 1998. Is thermal time adequate for expressing the effects of temperature on sunflower leaf development? Plant, Cell & Environment 21, 695-703.

Lecoeur, J., Poiré-Lassus, R., Christophe, A., Pallas, B., Casadebaig, P., Debaeke, P., Vear, F., Guilioni, L., 2011. Quantifying physiological determinants of genetic variation for yield potential in sunflower. SUNFLO: a model-based analysis. Functional Plant Biology 38, 246-259.

Monteith, J.L., 1977. Climate and the Efficiency of Crop Production in Britain. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 281, 277-294.

Rey, H., 2003. Utilisation de la modélisation 3D pour l'analyse et la simulation du développement et de la croissance végétative d'une plante de tournesol en conditions environnementales fluctuantes (température et rayonnement). (PhD thesis). Ecole Nationale Supérieure Agronomique de Montpellier, spécialité sciences agronomiques, CIRAD-AMAP / INRA - LEPSE.

Valé, M., Mary, B., Justes, E., 2007. Irrigation practices may affect denitrification more than nitrogen mineralization in warm climatic conditions. Biology and Fertility of Soils 43, 641-651.

Villalobos, F., Hall, A., Ritchie, J., Orgaz, F., 1996. OILCROP-SUN: a development, growth and yield model of the sunflower crop. Agronomy Journal 88, 403-415.