TOPOLOGÍA DEL PLANO COMPLEJO

En el plano complejo se distinguen varios tipos de conjuntos, principalmente por sus propiedades topológicas.

Distancia entre dos puntos: Sea $z_1=x_1+y_1$ y $z_2=x_2+y_2$, definimos la distancia entre ambos complejos como $d(z_1,z_2)=\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}$. Recuerde que la distancia es un número positivo o cero.

Entorno (o Vecindad). Un *entorno* de radio \in o \in -entorno o vecindad de un punto z_0 es el conjunto de todos los puntos z tales que $|z-z_0| < \in$, donde \in es cualquier número positivo. También se lo llama *disco* o *bola abierta*

Entorno reducido de z_0 es un entorno o vecindad en el que se ha eliminado el punto z_0 ; esto es, $0 < |z - z_0| < \epsilon$.

Punto Interior. Un punto z_0 es un punto interior de un conjunto S *si existe algún* entorno de z_0 cuyos puntos están todos en S.

Punto Frontera. Un punto z_0 es un punto frontera de un conjunto S *si todo entorno* de z_0 tiene puntos que están en S y puntos que no están en S. La frontera de un conjunto es el conjunto de todos sus puntos frontera.

Punto Exterior. Un punto z_0 es un punto exterior de un conjunto S si *existe algún* entorno de z_0 cuyos puntos no están en S.

Punto de Acumulación (Punto Límite). Un punto z_0 de un conjunto S se dice que es un punto de acumulación $si\ todo\ \in$ -entorno reducido de z_0 contiene al menos un punto de S. Como \in puede ser cualquier número positivo, se deduce que S debe tener infinitos puntos. No es necesario que z_0 esté en S para que z_0 sea un punto de acumulación. En este caso z_0 es un punto frontera. Un punto z_0 no es un punto de acumulación $si\ existe\ al\ menos\ un\ entorno\ reducido\ de\ <math>z_0$ que no tenga puntos de S.

Conjunto Abierto. Un conjunto abierto es un conjunto cuyos puntos son todos interiores. *Por ejemplo*, el conjunto de todos los z tales que |z| < 1 es un *conjunto abierto*.

Conjunto Cerrado. Un conjunto es *cerrado* si su complemento es abierto. Un conjunto cerrado es un conjunto que contiene a todos sus puntos frontera. Un conjunto cerrado contiene a todos sus puntos de acumulación. *Por ejemplo*, el conjunto de todos los z tales que $|z| \le 1$ es un *conjunto cerrado*.

Cierre (**Clausura**). El cierre o clausura S de un conjunto S es el conjunto cerrado que consta de S y de todos sus puntos frontera.

Conjunto Conexo. Un conjunto abierto S es conexo si un par de puntos cualesquiera del conjunto se pueden unir por un camino formado por segmentos rectos (camino poligonal) cuyos puntos están en S.

Regiones o Dominios. A conjunto *abierto conexo* se le llama región abierta o dominio . El cierre de una región abierta es una región cerrada. En general, una región es una región abierta con algunos, ninguno o todos los puntos de la frontera.

Conjunto Acotado. Un conjunto S se dice que es acotado si podemos encontrar una constante (necesariamente positiva) tal que |z| < R; esto es, los puntos tienen que estar dentro de algún círculo de radio R.

Un conjunto que *es acotado* y *cerrado* se llama *compacto*. Un conjunto que no es acotado es un conjunto no acotado o ilimitado.

Teorema de Bolzano-Weierstrass. Todo conjunto S con un número infinito de puntos y acotado, tiene al menos un punto de acumulación.

Algunas regiones

Sea la circunferencia de centro z $_0$ y radio R; si z es un punto cualquiera de esa circunferencia, entonces: $|z - z_0| = R$ es la ecuación de la circunferencia C

Ejemplo: Escriba la ecuación de la circunferencia con centro en $z_0 = 1 + 2i$ y radio 1

La ecuación de dicha circunferencia es : |z - (1 + 2i)| = 1

El **disco abierto D_R(z_0)** de centro z_0 y radio R está dado por la desigualdad:

$$|z - z_0| < R$$

El **disco cerrado** de centro z ₀ y radio R está dado por la desigualdad:

$$|z-z_0| \leq R$$

O sea que el disco abierto es el interior del círculo C; el disco cerrado, en tanto, es todo el círculo C.

Si $R_1 < R_2$, entonces la desigualdad: $R_1 < \mid z - z \mid_0 \mid < R_2$ define un **anillo o una corona abierta**

Ejemplos: Para cada uno de los siguientes conjuntos S, se pide indicar si son abiertos, cerrados, conexos:

El conjunto $S_1 = \{z \mid |z| < 4\}$ es abierto y conexo. Recuerde que S_1 es un disco sin su frontera.

• $S_2 = \{ z / |Re(z)| > 2 \}$ es abierto pero no es conexo; en efecto, los puntos z_1 y z_2 no pueden ser unidos por una poligonal contenida en S_2 .

• $S_3 = \{ z / \text{Im}(z) \le 3 \}$, no es ni abierto, ni cerrado y es conexo

• $S_4 = \{ \ z \ / \ |z| > 2 \ y \ 0 \le \theta \le \pi/2 \}$, no es ni abierto, ni cerrado y es conexo

• $S_5 = \{ z / Im (z^2) > 0 \}$

Recordemos que
$$Im(z) = 2xy > 0$$

Entonces S₅ es abierto y no es conexo

• $S_6 = \{ z/|z-4| > |z| \}$

Esto es por definición
$$(x - 4)^2 + y^2 > x^2 + y^2$$

Operando
$$x^2 - 8x + 16 + y^2 - x^2 - y^2 > 0$$

$$-8 \times +16 > 0 \implies x < 2$$

Es la región del plano complejo tal que su parte real es menor que 2. Es un conjunto abierto, conexo y no acotado.

• $S_7 = \{ z/|2z+4| \ge 1 \}$

$$|2z - 4| \ge 1$$
 sacando factor común $2 \Rightarrow |z + 2| \ge \frac{1}{2}$

Es el exterior de un disco con centro (-2, 0) y de radio $R = \frac{1}{2}$. Es un conjunto ni abierto, ni cerrado, conexo y no acotado.

