

Digital Technologies and Value Creation

Dr. Philippe Blaettchen
Bayes Business School (formerly Cass)

Overview – subject to change

Overarching theme	Week	
Introduction	1	Introduction to analytics applications and coding basics
Gathering data	2	Scraping web data
Gathering data / descriptive analytics	3	More on scraping, data pre-processing and descriptive analytics
Gathering data / descriptive analytics	4	Descriptives in marketing analytics, and using social media APIs
Descriptive analytics	5	Descriptives in people analytics
NO LECTURE	6	NO LECTURE
Predictive analytics	7	Retaining employees and customers
Predictive analytics	8	Valuing a (social media) customer base
Predictive analytics	9	Segmenting customers and positioning products
Prescriptive analytics	10	Optimizing products and organizations
Prescriptive analytics	11	A/B-testing in practice

Learning objectives of today

Goals: How to pre-process and feature-engineer data:

- Understand the key issues that can be faced when considering raw data
- Learn how to identify and deal with them

How will we do this?

- When pre-processing data, appeal to your intuition: if you had to identify these issues how would you go about it? How would you deal with them?
- We consider a simple use case in people analytics, including a comprehensive dataset

We now have some data, so what?

The analytics pipeline

What could be some issues encountered in raw data?

Go to pollev.com/dtvc2021

Raw data

"Data scientists spend 80% of their time cleaning a dataset and only 20% of their time analyzing it."

- Many, many techniques for data preprocessing and feature engineering
- For some of them, requires technical or Python knowledge above the scope of this course (e.g., how to correct typing errors in data)
- We focus here on the main issues, give some work-arounds and how to use Python to deal with these issues
- Bear in mind that this list is far from exhaustive

Our use-case

- It has about **18,000** employees
- The attrition rate of employees is quite high (~14% compared to industry average of 8-9%).
 - \rightarrow How to fix it?
 - They have gathered data for calendar year 2020

Data cleansing, scaling, normalization, imputation

Data cleansing

- A dataset may have any of the following issues:
- Values that are not in the right format
- Invalid values (i.e., negative values for a variable that is only positive)
- Duplicate observations
- Row records that are basically empty
- Columns that contains the same value for every row

	admin_support	age	boss_survey	boss_tenure	city_size	clock_in	core	education	gender	half_day_leaves	
0	0.0	41.0	0.456427	3.0	4.3	0.0	0.0	3.0	0.0	5.0	
1	2.0	41.0	0.512982	3.0	9.4	1.0	1.0	1.0	1.0	5.0	
2	0.0	33.0	0.415119	3.0	4.3	1.0	0.0	1.0	0.0	2.0	
3	0.0	35.0	0.467731	4.0	2.2	1.0	1.0	1.0	0.0	3.0	
4	0.0	28.0	0.685366	3.0	2.2	0.0	1.0	1.0	0.0	3.0	
											2 VI

Data cleansing – how to detect corrupt or invalid values in a dataset?

- For numerical values: use a histogram and analyze the output. Do the values seem reasonable?
- For categorical values: use the function .unique() to get all the possible values taken on by your variable. Do they seem reasonable?


```
df["education"].unique()
array([ 3., 1., 2., nan])
```

If they are not: drop the corresponding row or change the problematic value.

Data cleansing – how to detect duplicate rows?

Python function ready-made

```
dups = df.duplicated() #checks each row of the dataset and returns TRUE or FALSE dependin
print(dups.any()) #returns TRUE if there is any value in dups that is equal to TRUE
print(df[dups]) #returns the problematic row
```

Don't need to run this every time: can simply delete duplicates in an automated way using Python:

```
print(df.shape) #gives current size of dataset
df.drop_duplicates(inplace=True) # delete duplicate rows
print(df.shape)
```

```
(18149, 26)
(18132, 26)
```


Data cleansing – how to detect and delete rows that have empty cells?

```
df.isna().any()

admin_support True
age True
boss_survey True
boss_tenure True
city_size True
clock in True
```

If there are any rows/columns with empty cells:

- axis = 0 or 1 (depending on row (axis=0) or column (axis=1))
- how = "any" if one NA value is enough; ="all" if all values must be NA for the column to be dropped
- thresh = an integer (number of NA values needed)

Data cleansing – how to detect and delete columns that contain the same value for all rows?

df.nunique()	
admin_support	3
age	36
boss_survey	18074
boss_tenure	15
city_size	5
clock_in	2
core	2
education	3
gender	2
half_day_leaves	10
high_potential	2
job_satisfaction	18085
kpi_performance	18048
local	1

Scaling and normalizing

- What is scaling/normalizing data?
 - → Makes sure that your data is on scales that are comparable.
- Normalizing: operation that ensures that your data is between 0 and 1
- Scaling: operation that ensures that the mean of your data is 0 and the std dev is 1

Normalizing

Scaling

Scaling and normalizing – when to use it?

Useful for certain algorithms only:

- Useful for regressions, PCA. Not for tree algorithms.
- If your algorithm takes features and multiplies them by numbers etc., then chances are scaling/normalizing could improve it.

Some use cases:

- Some columns are **orders of magnitude different** (e.g., column A has values around 1 and column B has values around 10,000,000,000)
- Your algorithm is returning warning message of the type "poor condition number"
- The output you get from your algorithm is incomprehensible (e.g., NAs)

Data imputation

Consider a dataset:

	Feature 1	Feature 2	Feature 3
Observation 1	221	Small	Blue
Observation 2	157	Large	Green
Observation 3		Medium	Red
Observation 4	50	Extra-Small	Green
Observation 5	122	Large	Red

Activity (in groups): what could be different ways of dealing with the empty cell? What are the pros and cons of your methods?

How would this change if you consider a missing observation in the Feature 2 column?

Data imputation for numerical variables

Easy

Delete the row(s)/column(s) where values are missing

Replace the value with the mean/the largest value/the smallest value

Find the observation that is "closest" to it in other observations and use the value there

Find a **couple of observations** that are "close" to it and **randomly pick one of them**

Run a **regression** on rows where all the data is present and infer from it the missing values

Run a regression on rows where all the data is present and infer from it the missing values then **add noise** to the missing values

Data imputation for categorical variables

Easy

Delete the row(s)/column(s) where values are missing

Create a new category: missing values

Replace the value with the value that appears most/least

Find the observation that is "closest" to it in other observations and use the value there

Find observations that are **close** to it in other observations and randomly pick one

Run a **prediction algorithm** on rows that outputs a categorical variable

Different types of missing data

	Sales	Size	Color
1	221	NA	Blue
2	157	Large	NA
3	NA	Medium	Red
4	50	NA	Green
5	122	Large	Red

Missing completely at random (no pattern to the missing entries)

	Weight (kgs)	Age	Diabetes
1	80	77	1
2	90	40	0
3	NA	62	1
4	50	18	0
5	NA	54	1

Missing not at random

(entries are absent due to their value or a feature not accounted for)

	Age	Mammography results
1	23	NA
2	55	Negative
3	34	Positive
4	18	NA
5	62	Positive

Missing at random (absent entries depend on another feature)

- Missing completely at random/missing at random: easier to deal with, good results for, e.g., regression
- Missing not at random: much harder, can be mitigated by adding features

(See sklearn.impute library in Python)

Outliers

- An outlier is an observation that doesn't "fit" into your dataset.
- This can be due to corrupt data, typos, or real outliers (e.g., Michael Jordan)
- Three main ways of checking for outliers:
 - Boxplots
 - Z-score charts (numbers above 3 or below -3)
 - Anomaly detection (unsupervised learning technique)


```
np.where((Z>3) | (Z<-3))

(array([ 1093, 2461, 2641, 2708, 3053, 4124, 4514, 5048, 5055, 5275, 5429, 5757, 6448, 6594, 6728, 6811, 6874, 6966, 7106, 7132, 7166, 7603, 7844, 8070, 8164, 8243, 9554, 9806, 9859, 9918, 10728, 11498, 11630, 11816, 12361, 12579, 12665, 12667, 12744, 13067, 13231, 13329, 13559, 13665, 13787, 14680, 14709, 16147, 16175, 17025, 17523, 17600, 17731]),)
```

Serves to flag possible outliers: area-specific knowledge to discard/keep

Feature engineering

Numerical ←→ Categorical

- Some algorithms only accept one kind of input (generally numerical, e.g., regression).
- Useful to know how to go from one "type" of data to another

Categorical → **Numerical**

• Activity (in groups): can you see a difference between these two sets of categorical entries? How would you propose to make them numbers?

Numerical ← Categorical

Ordinal variables (these entries can be ranked)

Blue	
Green	\Rightarrow
Red	

Nominal variables (these entries cannot be ranked)

	Blue	Green	Red
Observation 1	1	0	0
Observation 2	0	1	0
Observation 3	0	0	1

One-Hot Encoding

		Blue	Green
	Observation 1	1	0
<i>\</i>	Observation 2	0	1
	Observation 3	0	0

Drop redundant column

Numerical → Categorical

- **Idea:** use bucketization or data binning. Take average for each bucket. Number of buckets = number of categories.
- Can also serve to aggregate observations.

Feature selection / dimension reduction

- Feature selection involves picking the "right" features for the model out of all possible features: will see examples in later lectures.
- Dimension reduction involves "merging" features together to get as few features as possible to explain the variability in the data: covered in predictive analytics.

Transforms and interactions

- Depending on the set-up it may be useful to transform a feature:
 - take powers of it
 - subtract/add a constant to it
 - divide/multiply by a constant
 - take an exponential of it or a log
- Feature interactions involve adding/multiplying/dividing etc. two features together to obtain a new feature

And off we go: descriptive analytics

Roadmap

- Most of the foundational work on descriptive analytics (statistics, hypothesis testing, etc.) is handled in your methods classes
- The video material of this week recaps on this, and introduces how to use Python for descriptive analytics
- We will soon discuss descriptive analytics in the specific context of marketing and go back to gathering data
- We will also discuss descriptive analytics in the specific context of organizational design
- In both cases, we take a look at social media data and how it can be used fruitfully

Discussion: coding and scraping

