Total No. of Questions: 6

Total No. of Printed Pages:3

Faculty of Engineering End Sem (Odd) Examination Dec-2017 AU3CO04 / FT3CO04 / ME3CO04

Engineering Thermodynamics

Branch/Specialisation: AU/FT/ME Programme: B.Tech.

Maximum Marks: 60 Duration: 3 Hrs.

No of Q.

	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		•
	_	estions are compulsory. Internal choices, if any, are indicated. Answe should be written in full instead of only a, b, c or d.	rs
Q.1	i.	Work done in a free expansion process is	1
		(a) Zero (b) Minimum (c) Maximum (d) Positive	
	ii.	The ratio of specific heat at constant pressure (C _p) and specific	1
		heat at constant volume (C_v) is	
		(a) Equal to one (b) Less than one	
		(c) Greater than one (d) None of these	
	iii.	Which of the following is the correct statement of the second	1
		law of thermodynamics?	
		(a) It is impossible to transfer heat from a body at a lower	
		temperature to a higher temperature, without the aid of an external source.	
		(b) It is impossible to construct an engine working on a cyclic	
		process, whose sole purpose is to convert heat energy into work.	
		(c) All of these.	
		(d) There is a definite amount of mechanical energy, which can	
		be obtained from a given quantity of heat energy.	
	iv.	The entropy in an irreversible cyclic process.	1
		(a) Remains constant (b) Decreases	
		(c) Increases (d) None of these.	
	v.	The area under the temperature-entropy curve $(T - s)$ curve of any	
		thermodynamic process represents	
		n m	\sim

P.T.O.

		(a) Heat rejected.		1
		(b) Either heat absorbed or heat rejected.		
		(c) Heat absorbed.		
		(d) None of these.		
	vi.	The Latent heat of steam at pressure greater than a	tmosphere in	1
		comparison to latent heat at atmospheric pressure		
		(a) Less (b) More (c) Equal (d) Un	predictable	
	vii.	The compression ratio for petrol engines is	-	1
		(a) 3 to 6 (b) 5 to 8 (c) 15 to 20 (d) 20 to	to 30	
	viii.	For the same compression ratio, the efficien	cy of dual	1
		combustion cycle is	J	
		(a) Greater than Diesel cycle and less than Otto cycl	e.	
		(b) Less than Diesel cycle and greater than Otto cyc		
		(c) Greater than Diesel cycle.		
		(d) Less than Diesel cycle.		
	ix.	The relation of the vapour pressure to the enthalpy of	of vaporization	1
		is expressed in		-
		(a) Van der Waal's equation (b) Energy equation		
		(c) Gas equation (d) Clausius Clapeyro	-	
	Χ.	The solubility of a gas in a liquid at small con	centration is	1
		represented by		
		(a) Henry's law (b) Roults law		
		(c) Claperyon equation (d) Joules equation		
Q.2	i.	Define path function & point function.		2
	ii.	State first law of thermodynamics & Prove "Th	nere exists a	8
		property of a closed system such that a change in		
		equal to the difference between heat supplied &		
		during the change of state.		
	iii.	A certain water heater operates under steady fl	ow conditions	8
		receiving 4.2 kg/s of water at 75°C, enthalpy 313	.93 kJ/kg. The	Ū
		water is heated by mixing with steam which is s	supplied to the	
		heater at temperature 100.2°C & enthalpy 267		
		mixture leaves the heater as liquid water at temper		
		enthalpy 419kJ/kg. How much steam must be s	upplied to the	
		water heater per hour?		

Q.3	i.	Write the Kelvin Planck & Clausius Statement.	2
OR	ii. iii.	What is Entropy Principle. Prove the Inequality of Clausius. A reversible heat engine is supplied with heat from two constant temperature sources at 900 k and 600 K, rejects heat to a constant temperature sink at 300 K. The engine develops work equivalent to 90kJ/s and reject heat at the rate of 56 kJ/s. Determine: (a) Heat supplied from each source. (b) Thermal efficiency of the engine.	8 8
Q.4	i. ii.	What is dryness fraction? Draw h-s, T-S, P-T diagram for pure substance. Also draw the p-v diagram of pure substance other than water, whose volume increases on melting.	2 8
OR	iii.	A locomotive boiler develops 16tons of steam per hour at 10bar & 0.97 dry. The steam coming out of the boiler is passed through the super heater. The temperature of the steam coming out of the super heater is 250° C. Find the heat supplied by the super heater per Kg per hour. Also calculate the change in specific volume & internal energy when it passé through the super heater. Take $c_p=2.1$ kJ/Kg-k.	8
Q.5	i. ii.	Define clearance volume & swept volume & compression ratio. Derive the relation for the air standard efficiency of the Otto cycle.	3 7
OR	iii.	Find the air standard efficiencies of Otto & Diesel cycles on the basis of equal compression ratio of 10 & equal heat rejection of 840 kJ/kg. The suction conditions are 1 bar & 328 K.	7
Q.6	i. ii. iii.	Attempt any two: What is Avogadro's law? Write four Maxewell's Equations. Derive the first & second TDS equation. Write the equation of Internal energy, Enthalpy, Specific heat of gas mixture & Entropy.	5 5 5

AU3CO04 / FT3CO04 / ME3CO04 Engineering Thermodynamics Marking Scheme

		Marking Scheme	
Q.1	i.	Workdone in a free expansion process is	
	ii.	(a) Zero The ratio of specific heat at constant pressure (C_p) and specific	
		heat at constant volume (C_v) is (c) Greater than one	
	iii.	Which of the following is the correct statement of the second	
		law of thermodynamics? (c) All of the above	
	iv.	The entropy in an irreversible cyclic process.	
		(c) Increases	
	v.	The area under the temperature-entropy curve $(T - s \text{ curve})$ of any	-
		thermodynamic process represents	
		(b) Either heat absorbed or heat rejected	
	vi.	The Latent heat of steam at pressure greater than atmosphere in	
		comparison to latent heat at atmospheric pressure	
	,	(a) Less	
	vii.	The compression ratio for petrol engines is	-
	viii.	(b) 5 to 8 For the same compression ratio, the efficiency of dual	
	VIII.	combustion cycle is	-
		(a) Greater than Diesel cycle and less than Otto cycle	
	ix.	The relation of the vapour pressure to the enthalpy of vaporization	
		is expressed in	
		(d) Clausius Clapeyron equation	
	х.	The solubility of a gas in a liquid at small concentration is	
		represented by	
		(b) Roults law	
Q.2	i.	Path function & point function. 1 marks for each	2
		(1 mark * 2 = 2 marks)	
	ii.	3 marks for statement	8
		5 marks for prove	
	iii.	3 marks for formula	8
		2 marks for diagram	
		3 marks for answer	

Q.3	i.	Kelvin Planck & Clausius Statement.	2
		1 marks for each (1 mark * $2 = 2$ marks)	_
	ii.	Entropy Principle. Prove the Inequality of Clausius.	8
		3 marks for entropy principle	
		1 marks for diagram	
		4 marks for derivation	
OR	iii.	2 marks for formula	8
		3 marks for each right answer (3 marks $*2 = 6$ marks)	
Q.4	i.	Dryness fraction	2
	ii.	h-s, T-S, P-T, p-v diagram for pure substance.	8
		2 marks for each diagram (2 marks * 4 = 8 marks)	
OR	iii.	1 marks for values from steam table	8
		3 marks for heat	
		2 marks for sp volume	
		2 marks for internal energy	
Q.5	i.	Clearance volume & swept volume & compression ratio.	3
		1 marks for each (1 mark $*$ 3 = 3 marks)	
	ii.	Relation for the air standard efficiency of the Otto cycle.	7
		1 marks for diagram,	
		6 marks for derivation	
OR	iii.	1 marks for diagram	7
		3 marks for right steps	
		3 marks for answer.	
Q.6		Attempt any two:	
	i.	Avogadro's law - 1 marks	5
		Four Maxewell's Equations - 1 marks for each equation	
		(1 mark * 4 = 4 marks)	
	ii.	First TDS equation - 2 marks	5
	•	Second TDS equation - 3 marks	•
	iii.	Equation of Internal energy, Enthalpy, Specific heat of gas	5
		mixture & Entropy	•
