

BSIM4.3.0 Model

Enhancements and Improvements Relative to BSIM4.2.1

Xuemei (Jane) Xi, Jin He, Mohan Dunga,
Ali Niknejad, Chenming Hu
University of California, Berkeley

OUTLINE

New Features of BSIM4.3.0 beta' release

- Stress effect model
- ❖New temperature model
- ❖ Holistic noise model enhancement
- Unified current saturation model
 - ■Velocity saturation
 - □ Velocity overshoot
 - □Source injection thermal velocity limit
- ❖New document for multi-layer gate tunneling
- Forward body bias

Model for Isolation-induced Stress Effects

Instance parameters added: SA, SB, SD

SD is neighbour finger distance which is constant throughout all the fingers.

Stress effect calculation only if: 1) both SA and SB are given and are larger than 0 for finger number NF=1; 2) SA, SB and SD are all given and are larger than 0 for NF >1

Intermediate geometry definitions:

$$LOD = SA + SB + NF \cdot L + (NF - 1) \cdot SD$$

Mobility Model With STI Stress

Define:

$$r_{m_{eff}} = \Delta m_{eff} / m_{effo} = (m_{eff} - m_{effo}) / m_{effo}$$

$$= \frac{m_{eff}}{m_{effo}} - 1 \qquad \text{(relative mobility change due to stress)}$$

So,
$$\frac{m_{eff}}{m_{effo}} = 1 + r_{m_{eff}}$$
 (Vth insensitive to Lod, SA and/or SB)

Hydrostatic pressure(dyne/cm

UNIVERSITY OF CALIFORNIA, BERKELEY

Stress Effects Model-1/LOD Model

$$r_{meff} = \frac{ku0}{Kstress_u0} \cdot (Inv_sa + Inv_sb)$$

$$Inv _sa = \frac{1}{SA + 0.5 \cdot L_{drawn}} \qquad Inv _sb = \frac{1}{SB + 0.5 \cdot L_{drawn}}$$

$$Kstress _u0 = \left(1 + \frac{LKU0}{(L_{drawn} + XL)^{LLODKU0}} + \frac{WKU0}{(W_{drawn} + XW + WLOD)^{WLODKU0}} + \frac{PKU0}{(L_{drawn} + XL)^{LLODKU0} \cdot (W_{drawn} + XW + WLOD)^{WLODKU0}}\right) \times \left(1 + TKU \cdot 0 \cdot \left(\frac{Temperatur e}{TNOM} - 1\right)\right)$$

❖ All data can be fitted well with only one set of parameters (ie. Global model for LOD effect) and do not need extra binning parameters if binning is desired.

-5 -4 -3 -2 -1 0 1 2

distance from channel center (µm)

For multi-finger device:
$$Inv_{-}sa = \frac{1}{NF} \sum_{i=0}^{NF-1} \frac{1}{SA + 0.5 \cdot L_{drawn} + i \cdot (SD + L_{drawn})} \qquad Inv_{-}sa = \frac{1}{NF} \sum_{i=0}^{NF-1} \frac{1}{SB + 0.5 \cdot L_{drawn} + i \cdot (SD + L_{drawn})}$$

Inv_sa =
$$\frac{1}{NF} \sum_{i=0}^{NF-1} \frac{1}{SB + 0.5 \cdot L_{drawn} + i \cdot (SD + L_{drawn})}$$

$$\frac{1}{SA_{eff} + 0.5 \cdot L_{drawn}} = \sum_{i=1}^{n} \frac{SW_{i}}{W_{drawn}} \cdot \frac{1}{Sa_{i} + 0.5 \cdot L_{drawn}} \qquad \frac{1}{SB_{eff} + 0.5 \cdot L_{drawn}} = \sum_{i=1}^{n} \frac{SW_{i}}{W_{drawn}} \cdot \frac{1}{Sb_{i} + 0.5 \cdot L_{drawn}}$$

Stress Effect m_{eff} , u_{sat} Model

$$m_{eff} = \frac{1 + r_{meff}(SA, SB)}{1 + r_{meff}(SA_{ref}, SB_{ref})} m_{effo}$$

$$u_{sat} = \frac{1 + K \cdot r_{meff}(SA, SB)}{1 + K \cdot r_{meff}(SA_{ref}, SB_{ref})} u_{sato}$$

Where $\emph{m}_{\it effo}$, $u_{\it sato}$ are low field mobility, saturation velocity at ${\rm SA}_{\rm ref}$, ${\rm SB}_{\rm ref}$

Stress Effect Model to VTH0, K2, ETA0

$$Kstress_vth0 = 1 + \frac{LKVTH0}{(L_{drawn} + XL)^{LLODKVTH}} + \frac{WKVTH0}{(W_{drawn} + XW + WLOD)^{WLODKVTH}} + \frac{PKVTH0}{(L_{drawn} + XL)^{LLODKVTH} \cdot (W_{drawn} + XW + WLOD)^{WLODKVTH}}$$

$$VTH \ 0 = VTH \ 0_{original} + \frac{KVTHO}{Kstress_vth0} \cdot \left(Inv _sa + Inv _sb - Inv _sa_{ref} - Inv _sb_{ref}\right)$$

$$K2 = K \ 2_{original} + \frac{STK2}{Kstress_vth0^{LODK2}} \cdot \left(Inv _sa + Inv _sb - Inv _sa_{ref} - Inv _sb_{ref}\right)$$

$$ETA \ 0 = ETA \ 0_{original} + \frac{STETAO}{Kstress_vth0^{LODETAO}} \cdot \left(Inv _sa + Inv _sb - Inv _sa_{ref} - Inv _sb_{ref}\right)$$

Stress Effect Model Verification

Stress Effect Model Verification

Stress Effect Model Verification

NMOS, W=10um, SA!=SB

Temperature Model Enhancement

Temperature mode TEMPMOD created:

```
TEMPMOD = 0: current model with VFB enhancement
```

 \Box TEMPMOD = 1: New format for vsat, prt, ua, ub, uc:

 $PARAM(T) = PARAM(TNOM) \cdot [1 + TEMP _COEFF \cdot (T - TNOM)]$

Holistic Thermal Noise Model Enhancement

Refer to Chapter 9 of BSIM4 manual

$$q_{tnoi} = RNOIB \cdot \left[1 + TNOIB \cdot L_{eff} \cdot \left(\frac{V_{gsteff}}{E_{sat}L_{eff}} \right)^{2} \right] \quad (9.2.5)$$

$$b_{tnoi} = RNOIA \cdot \left[1 + TNOIA \cdot L_{eff} \cdot \left(\frac{V_{gsteff}}{E_{sat} L_{eff}} \right)^{2} \right] \quad (9.2.6)$$

Default RNOIA=0.577; RNOIB=0.37

Unified Current Saturation

-Velocity Overshoot Model

Price's approximation to HD model:

$$J = qn \, mE_{y} \left(1 + \frac{1}{mE_{y}} \frac{\partial E_{y}}{\partial x}\right) + qD \frac{\partial n}{\partial x}$$

Approximate solution of Price's equation yields unified current expression that includes velocity saturation and velocity overshoot:

$$I_{DS,HD} = \frac{I_{DS 0}}{1 + \frac{V_{dseff}}{L_{eff} E_{sat}^{OV}}}$$

where
$$E_{sat}^{OV} = E_{sat} \left[1 + \frac{LAMBDA}{L_{eff} \cdot m_{eff}} \cdot \frac{\left(1 + \frac{V_{ds} - V_{dseff}}{Esat \cdot litl}\right)^{2} - 1}{\left(1 + \frac{V_{ds} - V_{dseff}}{Esat \cdot litl}\right)^{2} + 1} \right]$$
 $I_{DS0} = I_{DS}(BSIM 4.2.1) \cdot \left(1 + \frac{V_{dseff}}{L_{eff}E_{sat}}\right)^{2}$

Unified Current Saturation:

-Source-end Velocity Limit and Quasi-Ballistic Transport

HD transport source carrier velocity:

$$v_{sHD} = I_{DS,HD} / Wq_s$$

Ballistic transport source carrier velocity:

where VTL: thermal velocity,

$$v_{sBT} = \frac{1-r}{1+r}VTL$$
 $r = \frac{L_{eff}}{XN \cdot L_{eff} + LC}$ $XN \ge 3.0$

Unified current expression with velocity saturation, velocity overshoot and source velocity limit:

$$I_{DS} = \frac{I_{DS,HD}}{\left[1 + \left(v_{sHD} / v_{sBT}\right)^{2MM}\right]^{1/2MM}}$$

Direct Tunneling through Multiple-Layer Gate Stacks

- Gate Current modeled as $J_G = Q_{INV} \cdot f_{IMP} \cdot T$
- ❖ For a single layer $T \propto exp(-at_{oxe})$
- For two layer case $T \propto exp(-a_{new}t_{oxe})$ where

$$a_{double} = a_1 \cdot f + a_2 \cdot (1 - f) + f \cdot (1 - f) \cdot \frac{V_{ox}}{3\hbar} \left(K_1 \cdot \sqrt{\frac{qm_1}{2f_{B1}}} - K_2 \cdot \sqrt{\frac{qm_2}{2f_{B2}}} \right)$$

 α is the tunneling attenuation coefficient already modeled in BSIM4, f = Toxe1/Toxe

- Stands for multiple layers(N≥2) as well.
- Using new tunneling attenuation coefficient and interpreted with tunneling equations in BSIM4, BSIM4 is now capable of modeling multi-layer gate tunneling.

Verification

- ❖ Verified with data of existing gate stack of HfO₂ and silicon oxynitride.
- Very good fit observed using BSIM model.
- * BSIM4 direct tunneling equation thus models the multi-layer case.

Forward Body Bias

To ensure a good model behavior of body effect, body bias is usually bounded between (Vbsc, and f_{s0} where f_{s0} = 0.95 f_{s}). BSIM4.2.1 already has the smooth function for Vbs low bound. Following is the upper bound smooth function:

$$V_{bseff} = 0.95\Phi_{s} - 0.5\left(0.95\Phi_{s} - V_{bseff}' - d_{1} + \sqrt{(0.95\Phi_{s} - V_{bseff}' - d_{1})^{2} + 4d_{1}.0.95\Phi_{s}}\right)$$

Where:

$$V_{bseff} = V_{bc} + 0.5 \cdot \left[\left(V_{bs} - V_{bc} - \boldsymbol{d}_{1} \right) + \sqrt{\left(V_{bs} - V_{bc} - \boldsymbol{d}_{1} \right)^{2} - 4\boldsymbol{d}_{1} \cdot V_{bc}} \right]$$

Is the low bound smooth function. $d_1 = 0.001V$, and V_{bc} is the maximum allowable V_{bs} and found from $dV_{th}/dV_{bs} = 0$ to be

$$V_{bc} = 0.9 \left(\Phi_s - \frac{K1^2}{4K2^2} \right)$$

Gate Current Partition Bugfix

From Original:

$$Igcs = Igc \cdot \frac{PIGCD \cdot V_{ds} + exp(-PIGCD \cdot V_{ds}) - 1 + 1.0e - 4}{PIGCD^{2} \cdot V_{ds}^{2} + 2.0e - 4}$$

and

$$Igcd = Igc \cdot \frac{1 - (PIGCD \cdot V_{ds} + 1) \cdot exp(-PIGCD \cdot V_{ds}) + 1.0e - 4}{PIGCD^2 \cdot V_{ds}^2 + 2.0e - 4}$$

To:

$$Igcs = Igc \cdot \frac{PIGCD \cdot V_{dseff} + exp(-PIGCD \cdot V_{dseff}) - 1 + 1.0e - 4}{PIGCD^2 \cdot V_{dseff}^2 + 2.0e - 4}$$

$$Igcd = Igc \cdot \frac{1 - (PIGCD \cdot V_{dseff} + 1) \cdot exp(-PIGCD \cdot V_{dseff}) + 1.0e - 4}{PIGCD^2 \cdot V_{dseff}^2 + 2.0e - 4}$$

Gate Current Partition Bugfix

Effect of gate current bug fix

Comparison with experimental data

New Parameters in BSIM4.3.0

-Stress Effect

Parameter Name	Description	Default Value	Binnab le?	Note
SA	INSTANCE parameter: Distance between OD edge to Poly from one side	0.0		If not given or (≤0.0), stress effect will be turned off
SB	INSTANCE parameter: Distance between OD edge to Poly from the other side	0.0		If not given or (≤0.0), stress effect will be turned off
SD	INSTANCE parameter: Distance between neighbour fingers	0.0		for NF >1: if not given or (≤0.0), stress effect will be turned off
saref	Reference distance between OD edge to poly of one side	1.E-06[m]	no	>0.0
sbref	Reference distance between OD edge to poly of the other side	1.E-06[m]	no	>0.0
wlod	Width parameter for stress effect	0.0 [m]	no	
ku0	Mobility degradation/enhancement coefficient for stress effect	0.0 [m]	no	
kvsat	Saturation velocity degradation/enhancement parameter for stress effect	0.0[m]	no	-1 ≤ kvsat ≤ 1
tku0	Temperature coefficient of ku0	0.0	no	
lku0	Length dependence of ku0	0.0 [m ^{llodku0}]	no	

New Parameters in BSIM4.3.0

-Stress Effect

Parameter Name	Description	Default Value	Binnable ?	Note
wku0	Width dependence of ku0	0.0 [m ^{wlodku0}]	no	
pku0	Cross-term dependence of ku0	0.0[m ^{llodku0+wlodku0}]	no	
llodku0	Length parameter for u0 stress effect	0.0	no	>0
wlodkuo	Width parameter for u0 stress effect	0.0	no	>0
kvth0	Threshold shift parameter for stress effect	0.0[V*m]	no	
lkvth0	Length dependence of kvth0	0.0[V*m ^{llodku0}]	no	
wkvth0	Width dependence of kvth0	0.0[V*m ^{wlodku0}]	no	
pkvth0	Cross-term dependence of kvth0	0.0[V*m ^{llodku0+wlodku0}]	no	
llodvth	Length parameter for Vth stress effect	0.0	no	>0
wlodvth	Width parameter for Vth stress effect	0.0	no	>0
stk2	K2 shift factor related to Vth0 change	0.0[m]	no	
lodk2	K2 shift modification factor for stress effect	1.0	no	>0
steta0	eta0 shift factor related to Vth0 change	0.0[m]	no	
lodeta0	eta0 shift modification factor for stress effect	1.0	no	>0

New Model Parameters in BSIM4.3.0

-Unified Current Saturation

Parameter Name	Description	Default Value	Binnable ?	Note
LAMBDA	Velocity overshoot coefficient	0.0	yes	If not given or (≤0.0), velocity overshoot will be turned off
VTL	Thermal velocity	2.0e5 [m/s]	yes	If not given or (≤0.0), source end thermal velocity limit will be turned off
LC	Velocity back scattering coefficient	0.0[m]	no	~5e-9(m) at room temperature
XN	Velocity back scattering coefficient	3.0	yes	

Temperature Model

TEMPMOD	Temperature mode selector	0	no	If=0, original model will be used
				If=1, new format will be used

Holistic Thermal Noise

RNOIA	Thermal noise coefficient	0.577	no	
RNOIB	Thermal noise coefficient	0.37	no	