نمرين فصل سوم انتقال

۱۱لناز رضایی ۹۸۴۱۱۳۸۷

سوال ۱

الف)

$$\begin{split} H(X) &= -\sum_{x \in X} P(x) \mathrm{log}_2 \, P(x) \\ &= -\frac{1}{2} \mathrm{log}_2 \, \frac{1}{2} - \frac{1}{4} \mathrm{log}_2 \, \frac{1}{4} - \frac{1}{8} \mathrm{log}_2 \, \frac{1}{8} - \frac{1}{8} \mathrm{log}_2 \, \frac{1}{8} \\ &= \frac{1}{2} + \frac{2}{4} + \frac{3}{8} + \frac{3}{8} = 1.75 \quad [bits/symbol] \end{split}$$

ب)

هیچ نغییری نمی کرد.

ج)

به ازای جابهجایی احتمالات خروجیهای مختلف، انتروبی نغییر نمیکند.

سوال ۲

P(Y,X)	x=1	x=2	x=3	x=4	P(Y)
y=1	$\frac{1}{8}$	$\frac{1}{16}$	$\frac{1}{32}$	$\frac{1}{32}$	$\frac{1}{4}$
y=2	$\frac{1}{16}$	$\frac{1}{8}$	$\frac{1}{32}$	$\frac{1}{32}$	$\frac{1}{4}$
y=3	$\frac{1}{16}$	$\frac{1}{16}$	$\frac{1}{16}$	$\frac{1}{16}$	$\frac{1}{4}$
y=4	$\frac{1}{4}$	0	0	0	$\frac{1}{4}$
P(X)	$\frac{1}{2}$	$\frac{1}{4}$	$\frac{1}{8}$	$\frac{1}{8}$	1

الف)

P(X Y)	x=1	x=2	x=3	x=4
y=1	$\frac{1}{2}$	$\frac{1}{4}$	$\frac{1}{8}$	$\frac{1}{8}$
y=2	$\frac{1}{4}$	$\frac{1}{2}$	$\frac{1}{8}$	$\frac{1}{8}$
y=3	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$
y=4	1	0	0	0

$$\begin{split} H(X|Y) &= -\sum_{x \in X} \sum_{y \in Y} P(y,x) \log_2 P(x|y) \\ &= -\frac{1}{8} \log_2 \frac{1}{2} - \frac{1}{16} \log_2 \frac{1}{4} - \frac{1}{32} \log_2 \frac{1}{8} \\ &- \frac{1}{32} \log_2 \frac{1}{8} - \frac{1}{16} \log_2 \frac{1}{4} - \frac{1}{8} \log_2 \frac{1}{2} \\ &- \frac{1}{32} \log_2 \frac{1}{8} - \frac{1}{32} \log_2 \frac{1}{8} - \frac{1}{16} \log_2 \frac{1}{4} \\ &- \frac{1}{16} \log_2 \frac{1}{4} - \frac{1}{16} \log_2 \frac{1}{4} - \frac{1}{16} \log_2 \frac{1}{4} \\ &- \frac{1}{4} \log_2 1 - 0 \log_2 0 - 0 \log_2 0 \\ &- 0 \log_2 0 = \frac{1}{8} + \frac{2}{16} + \frac{3}{32} + \frac{3}{32} + \frac{2}{16} \\ &+ \frac{1}{8} + \frac{3}{32} + \frac{3}{32} + \frac{2}{16} + \frac{2}{16} + \frac{2}{16} + \frac{2}{16} \\ &+ 0 + 0 + 0 + 0 = \frac{11}{8} \quad [bits/symbol] \end{split}$$

P(Y X)	x=1	x=2	x=3	x=4
y=1	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$
y=2	$\frac{1}{8}$	$\frac{1}{2}$	$\frac{1}{4}$	$\frac{1}{4}$
y=3	$\frac{1}{8}$	$\frac{1}{4}$	$\frac{1}{2}$	$\frac{1}{2}$
y=4	$\frac{1}{2}$	0	0	0

$$\begin{split} H(Y|X) &= -\sum_{y \in Y} \sum_{x \in X} P(x,y) \log_2 P(y|x) \\ &= -\frac{1}{8} \log_2 \frac{1}{4} - \frac{1}{16} \log_2 \frac{1}{4} - \frac{1}{32} \log_2 \frac{1}{4} \\ &- \frac{1}{32} \log_2 \frac{1}{4} - \frac{1}{16} \log_2 \frac{1}{8} - \frac{1}{8} \log_2 \frac{1}{2} \\ &- \frac{1}{32} \log_2 \frac{1}{4} - \frac{1}{32} \log_2 \frac{1}{4} - \frac{1}{16} \log_2 \frac{1}{8} \\ &- \frac{1}{16} \log_2 \frac{1}{4} - \frac{1}{16} \log_2 \frac{1}{2} - \frac{1}{16} \log_2 \frac{1}{2} \\ &- \frac{1}{4} \log_2 \frac{1}{2} - 0 \log_2 0 - 0 \log_2 0 - 0 \log_2 0 \\ &= \frac{1}{4} + \frac{2}{16} + \frac{2}{32} + \frac{2}{32} + \frac{3}{16} + \frac{1}{8} \\ &+ \frac{2}{32} + \frac{2}{32} + \frac{3}{16} + \frac{2}{16} + \frac{1}{16} + \frac{1}{16} \\ &+ \frac{1}{4} + 0 + 0 + 0 = \frac{13}{8} \quad [bits/symbol] \end{split}$$

ب)

بیانگر ابهام باقی مانده از Y با فرض دانستن X می باشد و به طور مشابه، H(X|X) نمایانگر H(X|X) بیام باقی مانده از X با فرض دانستن Y است. با نوجه به مقادیر به دست آمده در بخش قبل، اگر X را داشته باشیم، ابهام باقی مانده بیشتر از زمانی است که Y را داشته باشیم و X را بخواهیم.

ج)

$$\begin{split} H(Y) &= -\sum_{y \in Y} P(Y) \mathrm{log_2} \, P(Y) \\ &= -\frac{1}{4} \mathrm{log_2} \, \frac{1}{4} - \frac{1}{4} \mathrm{log_2} \, \frac{1}{4} - \frac{1}{4} \mathrm{log_2} \, \frac{1}{4} - \frac{1}{4} \mathrm{log_2} \, \frac{1}{4} \\ &= \frac{2}{4} + \frac{2}{4} + \frac{2}{4} + \frac{2}{4} = 2 \quad [bits/symbol] \end{split}$$

$$\begin{split} H(X) &= -\sum_{x \in X} P(x) \mathrm{log}_2 \, P(x) \\ &= -\frac{1}{2} \mathrm{log}_2 \, \frac{1}{2} - \frac{1}{4} \mathrm{log}_2 \, \frac{1}{4} - \frac{1}{8} \mathrm{log}_2 \, \frac{1}{8} - \frac{1}{8} \mathrm{log}_2 \, \frac{1}{8} \\ &= \frac{1}{2} + \frac{2}{4} + \frac{3}{8} + \frac{3}{8} = \frac{7}{4} \quad [bits/symbol] \end{split}$$

$$\begin{split} H(X,Y) &= -\sum_{x \in X} \sum_{y \in Y} P(X,Y) \log_2 P(X,Y) \\ &= -\frac{1}{8} \log_2 \frac{1}{8} - \frac{1}{16} \log_2 \frac{1}{16} - \frac{1}{32} \log_2 \frac{1}{32} \\ &- \frac{1}{32} \log_2 \frac{1}{32} - \frac{1}{16} \log_2 \frac{1}{16} - \frac{1}{8} \log_2 \frac{1}{8} \\ &- \frac{1}{32} \log_2 \frac{1}{32} - \frac{1}{32} \log_2 \frac{1}{32} - \frac{1}{16} \log_2 \frac{1}{16} \\ &- \frac{1}{16} \log_2 \frac{1}{16} - \frac{1}{16} \log_2 \frac{1}{16} - \frac{1}{16} \log_2 \frac{1}{16} \\ &- \frac{1}{4} \log_2 \frac{1}{4} - 0 \log_2 0 - 0 \log_2 0 - 0 \log_2 0 \\ &= \frac{3}{8} + \frac{4}{16} + \frac{5}{32} + \frac{5}{32} + \frac{4}{16} + \frac{3}{8} + \frac{5}{32} + \frac{5}{32} + \frac{4}{16} + \frac{4}{16} \\ &+ \frac{4}{16} + \frac{4}{16} + \frac{2}{4} + 0 + 0 + 0 = \frac{27}{8} \quad [bits/symbol] \end{split}$$

(ک

نتایج زیر را به دست می آوریم:

$$H(X,Y) = H(X) + H(Y|X)$$

$$H(X,Y) = H(X) + H(Y|X)$$

(0

$$H(X) + H(Y) \ge H(X,Y) \implies \frac{30}{8} \ge \frac{27}{8}$$

كه مشخص است عبارت فوق صحيح مي باشد.

(9

$$I(X,Y) = H(X) - H(X|Y) = \frac{7}{4} - \frac{11}{8} = \frac{3}{8}$$

(j

طبق قضیه دوم شانون داریم:

$$C = I(Y, X) = I(X, Y) = \frac{3}{8}$$

ح)

Y/X	1	2	3	4	P(Y)
1	$\frac{1}{8}$	$\frac{1}{16}$	$\frac{1}{32}$	$\frac{1}{32}$	$\frac{1}{4}$
2	$\frac{1}{8}$	$\frac{1}{16}$	$\frac{1}{32}$	$\frac{1}{32}$	$\frac{1}{4}$
3	<u>1</u> 8	$\frac{1}{16}$	$\frac{1}{32}$	$\frac{1}{32}$	$\frac{1}{4}$
4	$\frac{1}{8}$	$\frac{1}{16}$	$\frac{1}{32}$	$\frac{1}{32}$	$\frac{1}{4}$
P(X)	$\frac{1}{2}$	$\frac{1}{4}$	$\frac{1}{8}$	$\frac{1}{8}$	1

(b)

$$H(X,Y) = H(X) + H(Y) - I(X,Y)$$

چون ((X) و ((Y) و ((Y) الله فرض کردیم، پس ((X) و ((Y) الخیبیری نمی کنند و لنها متغیر وابسته به آن ((X,Y) می باشد که بیشترین مقدار ((X,Y) زمانی رخ می دهد که ((X,Y)) در کمترین حالت خود باشد. (مانند بخش ح)

ی)

$$P(X,Y) = P(X) \times P(Y)$$

طبق رابطه بالا، متغیر های نصادفی ما مستقل می باشند و لذا لگاریتم رابطه فوق ۱ می شود که این امر سبب صفر شدن اطلاعات متقابل می شود.

(ರ

Y/X	1	2	3	4	P(Y)
1	$\frac{1}{16}$	$\frac{1}{16}$	$\frac{1}{16}$	$\frac{1}{16}$	$\frac{1}{4}$
2	$\frac{1}{16}$	$\frac{1}{16}$	$\frac{1}{16}$	$e^{\frac{1}{16}}$	$\frac{1}{4}$
3	$\frac{1}{16}$	$\frac{1}{16}$	$\frac{1}{16}$	$\frac{1}{16}$	$\frac{1}{4}$
4	$\frac{1}{16}$	$\frac{1}{16}$	$\frac{1}{16}$	$\frac{1}{16}$	$\frac{1}{4}$
P(X)	$\frac{1}{2}$	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$	1

()

(H(Y) نابت است چرا که (P(Y) نغییری نداشته است.

$$\begin{split} H_2(Y) &= H_1(Y) = 2 \quad [bits/symbol] \\ H_2(X) &= H_1(Y) = -\frac{4}{4} \mathrm{log_2} \; \frac{1}{4} = 2 \quad [bits/symbol] \\ H_2(X,Y) &= -\frac{16}{16} \mathrm{log_2} \; \frac{1}{16} = 4 \quad [bits/symbol] \end{split}$$

P(X,Y)	y=0	y=1	y=2	P(x)
x=1	$\frac{1}{12}$	$\frac{1}{12}$	0	$\frac{1}{6}$
x=2	$\frac{1}{12}$	$\frac{1}{12}$	0	$\frac{1}{6}$
x=3	$\frac{1}{12}$	$\frac{1}{12}$	0	$\frac{1}{6}$
x=4	$\frac{1}{12}$	$\frac{1}{12}$	0	$\frac{1}{6}$
x=5	$\frac{1}{24}$	$\frac{2}{24}$	$\frac{1}{24}$	$\frac{1}{6}$
x=6	$\frac{1}{24}$	$\frac{2}{24}$	$\frac{1}{24}$	$\frac{1}{6}$
P(y)	$\frac{5}{12}$	$\frac{1}{2}$	$\frac{1}{12}$	1

$$I(X,Y) = H(Y) + H(X) - H(X,Y)$$

$$\begin{split} H(X) &= -\sum_{x \in X} P(x) \mathrm{log}_2 \, P(x) \\ &= -\frac{1}{6} \mathrm{log}_2 \, \frac{1}{6} - \frac{1}{6} \mathrm{log}_2 \, \frac{1}{6} - \frac{1}{6} \mathrm{log}_2 \, \frac{1}{6} \\ &- \frac{1}{6} \mathrm{log}_2 \, \frac{1}{6} - \frac{1}{6} \mathrm{log}_2 \, \frac{1}{6} - \frac{1}{6} \mathrm{log}_2 \, \frac{1}{6} \\ &= 6 \times 0.43 = 2.584 \quad [bits/symbol] \end{split}$$

$$\begin{split} H(Y) &= -\sum_{y \in Y} P(Y) \mathrm{log_2} \, P(Y) \\ &= -\frac{5}{12} \mathrm{log_2} \, \frac{5}{12} - \frac{1}{2} \mathrm{log_2} \, \frac{1}{2} - \frac{1}{12} \mathrm{log_2} \, \frac{1}{12} \\ &= 0.53 + 0.5 + 0.294 = 1.324 \quad [bits/symbol] \end{split}$$

$$\begin{split} H(X,Y) &= -\sum_{x \in X} \sum_{y \in Y} P(X,Y) \log_2 P(X,Y) \\ &= -\frac{1}{12} \log_2 \frac{1}{12} - \frac{1}{12} \log_2 \frac{1}{12} - 0 \times \log_2 0 \\ &- \frac{1}{12} \log_2 \frac{1}{12} - \frac{1}{12} \log_2 \frac{1}{12} - 0 \times \log_2 0 \\ &- \frac{1}{12} \log_2 \frac{1}{12} - \frac{1}{12} \log_2 \frac{1}{12} - 0 \times \log_2 0 \\ &- \frac{1}{24} \log_2 \frac{1}{24} - \frac{2}{24} \log_2 \frac{2}{24} - \frac{1}{24} \log_2 \frac{1}{24} \\ &- \frac{1}{24} \log_2 \frac{1}{24} - \frac{2}{24} \log_2 \frac{2}{24} - \frac{1}{24} \log_2 \frac{1}{24} \\ &= \frac{10}{12} \times 3.585 + \frac{4}{24} \times 4.585 \\ &= 2.987 + 0.764 = 3.751 \quad [bits/symbol] \end{split}$$

I(X,Y) = 2.584 + 1.324 - 3.751 = 0.157 [bits/symbol]

الف)

$$SNR_{dB} = 10\log_{10}SNR \implies SNR = 10^{\frac{1}{2}} \approx 3.16$$

 $C = B\log_2 1 + SNR = 10\log_2 1 + 3.16 = 20 \quad [Mbps]$

ب)

$$C = B \log_2 1 + SNR \implies 50 = 10 \log_2 1 + SNR$$

$$32 = 1 + SNR \implies SNR = 31$$