Renewable Energy and Distributed Generation

Topic 6 Variable-speed Induction Generator WECS

Zheng Wang Professor

School of Electrical Engineering Southeast University

Contact Info

Email: zwang@seu.edu.cn

Variable-speed IG WECS

Main Topics

- 1. Introduction
- 2. Direct Field Oriented Control (FOC)
- 3. Indirect Field Oriented Control
- 4. Introduction to Direct Torque Control (DTC)

Introduction

System Configuration

3

Introduction

System Configuration – Megawatt WECS

- Converters are connected in parallel for megawatt power capacity
- Converters can be turned off at lower wind speeds

Introduction

System Configuration – Megawatt WECS

Example - Below rated operating conditions

- Each converter is rated 0.75MW. Total power of the system is 2.25MW
- With wind speed of 0.6pu, captured power is 0.63 x 2.25= 0.49MW
- At a wind speed of 0.6pu, two converter channels may be disabled. Why?

5

Introduction

Classification of FOC

Field Orientation:

In the rotor flux synchronous frame

Direct FOC:

The rotor flux angle is obtained from measured generator terminal voltage and current

Indirect FOC:

The rotor flux angle is obtained from measured rotor position angle and calculated slip angle

Field Orientation

7

Direct FOC

Field Orientation

$\frac{q-axis}{\omega_s}$ $\frac{\vec{v}_s}{\omega_s}$ $\frac{\vec{v}_s}{\omega_s}$ $\frac{\vec{v}_s}{\omega_s}$ $\frac{\vec{v}_s}{\omega_s}$ Rotor $\frac{\vec{v}_s}{\vec{v}_s}$ $\frac{\vec{v}_s}{\vec{v}_s}$

Note: One of the important tasks in the FOC scheme is to identify the rotor flux angle θ_f for field orientation.

Simplified torque equation:

$$\frac{\lambda_{r}}{\lambda_{r}} \stackrel{\omega_{s}}{\sim} d\text{-axis} \begin{cases} \lambda_{qr} = 0 \\ \lambda_{dr} = \sqrt{(\lambda_{r})^{2} - (\lambda_{qr})^{2}} = \lambda_{r} \end{cases}$$
Rotor
$$T_{e} = \frac{3PL_{m}}{2L_{r}} (i_{qs}\lambda_{dr} - i_{ds}\lambda_{qr})$$

$$T_{e} = K_{T} i_{qs}\lambda_{r}$$

where
$$K_T = \frac{2PL_m}{3L_r}$$

Control Scheme - Block Diagram

9

Direct FOC

Principle of Direct FOC

Principle of Direct FOC

11

Direct FOC

Rotor Flux Calculator

SCIG dynamic (space vector) model in the stationary frame

The stator flux vector

Q: Which frame is used for the IG model?

$$\vec{\lambda}_{s} = \int (\vec{v}_{s} - R_{s} \, \vec{i}_{s}) dt$$

A: Stator (stationary) frame.

The rotor flux vector $\vec{\lambda}_r = L_{lr}\vec{i}_r + L_m\vec{i}_m = L_r\frac{\vec{\lambda}_s - L_s\vec{i}_s}{L_m} + L_m\vec{i}_s = \frac{L_r}{L_m}(\vec{\lambda}_s - \sigma L_s\vec{i}_s)$ where σ is the total leakage factor $\sigma = 1 - \frac{L_m^2}{L_sL_r}$

Rotor Flux Calculator

The rotor flux expression $\vec{\lambda}_r = \frac{L_r}{L} (\vec{\lambda}_s - \sigma L_s \vec{i}_s)$ (from the previous slide)

Decomposing the rotor flux into the d- and q-axis components

$$\begin{cases} \lambda_{dr} = \frac{L_r}{L_m} \left(\lambda_{ds} - \sigma L_s i_{ds} \right) \\ \lambda_{qr} = \frac{L_r}{L_m} \left(\lambda_{qs} - \sigma L_s i_{qs} \right) \end{cases}$$
 Can be directly measured

The magnitude and angle of the rotor flux:

$$\begin{cases} \lambda_r = \sqrt{\lambda_{dr}^2 + \lambda_{qr}^2} \\ \theta_f = \tan^{-1} \frac{\lambda_{qr}}{\lambda_{dr}} \end{cases}$$
 Feature: λ_r and θ_f are identified from measured \vec{v}_s , \vec{i}_s and generator parameters $(L_s, L_r, L_m \text{ and } R_s)$

13

Direct FOC

Rotor Flux Calculator

The d- and q-axis rotor flux: $\begin{vmatrix} \lambda_{dr} = \frac{L_r}{L_m} (\lambda_{ds} - \sigma L_s i_{ds}) \\ \lambda_{qr} = \frac{L_r}{L} (\lambda_{qs} - \sigma L_s i_{qs}) \end{vmatrix}$ (from the previous slide)

How to find/measure λ_{ds} and λ_{as} ?

$$\vec{\lambda}_s = \int (\vec{v}_s - R_s \, \vec{i}_s) dt \qquad \qquad \begin{cases} \lambda_{ds} = \int (v_{ds} - R_s \, i_{ds}) dt \\ \lambda_{qs} = \int (v_{qs} - R_s \, i_{qs}) dt \end{cases} \qquad \text{Can be directly measured}$$

Rotor Flux Calculator

Block diagram of Rotor Flux Calculator

15

Direct FOC

Case Study 1 – Start up Transient Analysis

Investigation: The start-up transient process of a

2.3MW/690V SCIG WECS (Table B-1, Appendix B)

Wind speed: Rated

Control Scheme: Direct FOC scheme

Starting procedures:

- The mechanical safety brake is released
- The turbine and generator speeds are brought up from zero to their rated 2. value by the wind
- A step rotor flux (rated) reference is applied 3.
- The rotor flux starts to build up. After it reaches its rated value, a step 4. torque reference (rated) is applied
- The system delivers its rated power to the grid 5.

Case Study 1 – Start up Transient Analysis

Assumption

- 1. The generator speed does not change during the transients since the mechanical system of the wind turbine is much slower than the electrical system.
- 2. The dc voltage is kept constant by the grid-tied inverter:
 A constant dc voltage source is used in the simulation

17

Direct FOC

Case Study 1 – Start up Transient Analysis

System Parameters

Induction Generator	Generator Ratings: 2.3MW/690V/50Hz/1512rpm 2168A/14.67kN.m	Generator parameters: Table B-1 (Appendix B)		
Generator-side Converters	Converter Type	Two-level VSC		
	Modulation Scheme	Space vector modulation		
	Switching Sequence	Seven segment; Table 4-4		
	Switching Frequency	2kHz		
DC Voltage	Fixed	V _{dc} = 1220V (3.06pu)		

Case Study 1 - Start up Transient Analysis

19

Direct FOC

Case Study 1 – Start up Transient Analysis

Q: Why $T_e = 0$?

A: To be discussed in class

Case Study 1 – Start up Transient Analysis

Q: i_{ds} is reduced. Why?

er is

Q: $i_{ds} = 0.368$ pu. Why?

A: The Rotor Flux Controller is out of saturation

A: i_{ds} is the magnetizing current

21

Direct FOC

Case Study 1 – Start up Transient Analysis

Q: Why the stator current i_{as} is 0.368pu?

A: To be discussed in class

 $I_{as} = \sqrt{i_{ds}^2 + i_{qs}^2} / \sqrt{2}$ = $\sqrt{0.368^2 + 1.365^2} / \sqrt{2} = 1.0$ pu (rated)

23

Direct FOC

Principle of Indirect FOC

25

Indirect FOC

Calculation of Slip Frequency

Space vector model for IG in the synchronous frame

$$p\vec{\lambda}_r = -R_r \vec{i}_r - j\omega_{sl} \vec{\lambda}_r$$

Substituting the rotor current $\vec{i_r} = \frac{1}{L_{_{r}}} \left(\vec{\lambda_r} - L_m \, \vec{i_s} \, \right)$ into the above equation

$$p\vec{\lambda}_r = -\frac{R_r}{L_m} \left(\vec{\lambda}_r - L_m \vec{i}_s \right) - j\omega_{sl} \ \vec{\lambda}_r \qquad \qquad \text{Note:} \quad \vec{\lambda}_r = L_r \vec{i}_r + L_m \vec{i}_s$$

Calculation of Slip Frequency

$$p\vec{\lambda}_r = -\frac{R_r}{L_r} \left(\vec{\lambda}_r - L_m \vec{i}_s \right) - j\omega_{sl} \vec{\lambda}_r \qquad \text{(from the previous slide)}$$

from which

$$\vec{\lambda}_r (1 + \tau_r (p + j\omega_{sl})) = L_m \vec{i}_s$$

where au_r is the rotor time constant, defined by

$$\tau_r = L_r \, / \, R_r$$

Decomposing into dq-axis components and letting $\lambda_{qr}=0 \ \ \text{and} \ \ \lambda_{dr}=\lambda_r \ \ \text{due to the field orientation:}$

$$\begin{cases} \lambda_r (1 + p \tau_r) = L_m i_{ds} \\ \omega_{sl} \tau_r \lambda_r = L_m i_{qs} \end{cases}$$

Note:

$$\vec{\lambda}_r = \lambda_{dr} + j\lambda_{qr}$$
$$\vec{i}_s = i_{ds} + ji_{qs}$$

27

Indirect FOC

Calculation of Slip Frequency

$$\omega_{sl} \ au_r \ \lambda_r = L_m i_{qs}$$
 (from the previous slide)

$$\omega_{sl} = \frac{L_m}{\tau_r \lambda_r} i_{qs}$$
 Measured q-axis stator current

Slip frequency

Calculation of dq-axis Reference Currents

$$i_{ds}^* = \frac{(1+p\tau_r)}{L_m} \lambda_r^*$$

$$i_{ds}^* = \frac{1}{L_m} \lambda_r^*$$

29

Indirect FOC

Calculation of dq-axis Reference Currents

Torque equation:

$$T_e = \frac{3PL_m}{2L_r} \left(i_{qs} \lambda_{dr} - i_{ds} \lambda_{qr} \right)$$

Replacing $\lambda_{qr}=0$ and $\lambda_{dr}=\lambda_r$ yields

$$i_{qs}^* = T_e^* \frac{2L_r}{3PL_m \lambda_r}$$

or
$$i_{qs}^* = \frac{1}{K_T \lambda_r} T_e^*$$

where
$$K_T = \frac{3PL_m}{2L_r}$$

30

Derived Block Diagram for Indirect FOC

31

Indirect FOC

Steady-state Analysis of IG WECS

Note: With FOC, the rotor flux is kept constant.

Calculation Procedures

Given: Rotor flux linkage	[Wb]	λ_r (Rated, controlled by FOC)	
Given: Rotor speed	[rad/sec]	ω_m (based on wind speed)	
1. Electromagnetic torque [N.m]		$T_e = T_m$ (from the $T_m - \omega_m$ profile)	
2. d-axis current	[A]	$i_{ds} = \frac{\lambda_r}{L_m}$	
3. q-axis current	[A]	$i_{qs} = \frac{T_e}{K_T \lambda_r} = \frac{2L_r}{3PL_m} \frac{T_e}{\lambda_r}$	
4. Stator current	[A]	$i_s = \sqrt{i_{ds}^2 + i_{qs}^2}$	
5. Slip frequency	[rad/sec]	$\omega_{sl} = \frac{L_m}{\tau_r \lambda_r} i_{qs} = \frac{R_r L_m}{L_r \lambda_r} i_{qs}$	

Steady-state Analysis of IG WECS

6. Stator frequency [rad/s	sec]	$\omega_s = \omega_r + \omega_{sl}$
7. Slip		$s = \frac{\omega_{sl}}{\omega_s}$
8. Generator impedance [Ω]		$\overline{Z}_s = R_s + jX_{ls} + jX_m //(\frac{R_r}{s} + jX_{lr})$
9. Stator current (rms) [A]		$\bar{I}_s = i_s / \sqrt{2} \angle 0^\circ$ (Reference phasor)
10. Stator voltage (rms) [V]		$\overline{V}_{s} = \overline{I}_{s}\overline{Z}_{s} = V_{s} \angle \varphi$
11. Stator power factor angle		$\varphi_{\scriptscriptstyle S} = \angle \overline{V}_{\scriptscriptstyle S} - \angle \overline{I}_{\scriptscriptstyle S} = \varphi$

33

Indirect FOC

Case Study 3 – Steady-state analysis of IG WECS

Consider a 2.3MW/690V induction generator wind energy system in Case Study 1.

Given:

The generator operates at 0.7pu rotor speed

1. The turbine mechanical torque:

$$T_m = T_{m,R} \times 0.7^2 = -14,740 \times 0.7^2 = -7.2226 \text{ kN.m}$$

2. The rotor flux is kept at its rated value of 1.7106Wb by the FOC scheme.

The d-axis current is:

$$i_{ds} = \frac{\lambda_r}{L_m} = \frac{1.7106}{2.1346 \times 10^{-3}} = 801.4 \text{ A} \quad (0.369 \text{ pu})$$

Case Study 3 – Steady-state analysis of IG WECS

3. The q-axis stator current:

$$i_{qs} = \frac{2L_r}{3PL_m} \frac{T_e}{\lambda_r} = \frac{2 \times 2.1995 \times 10^{-3}}{3 \times 2 \times 2.1346 \times 10^{-3}} \cdot \frac{-7222.6}{1.7106} = -1450.2 \,\text{A} \quad (-0.669 \,\text{pu})$$

4. the peak stator current:

$$i_s = \sqrt{i_{ds}^2 + i_{qs}^2} = \sqrt{801.4^2 + 1450.2^2} = 1656.9 \text{ A} \quad (0.764 \text{ pu})$$

5. The slip frequency:

$$\omega_{sl} = \frac{R_r L_m}{L_r \lambda_r} i_{qs} = \frac{1.497 \times 10^{-3} \times 2.1346 \times 10^{-3}}{2.1995 \times 10^{-3} \times 1.7106} \times (-1450.2) = -1.2317 \text{ rad/sec}$$

6. The stator frequency

$$\omega_s = \omega_r + \omega_{sl} = (1512 \times 0.7)(2\pi/60)P - 1.2317 = 220.4 \text{ rad/sec}$$
 (35.08 Hz)

35

Indirect FOC

Case Study 3 – Steady-state analysis of IG WECS

7. The slip:

$$s = \frac{\omega_{sl}}{\omega_s} = -5.588 \times 10^{-3}$$

8. The rms value of the stator current:

$$\bar{I}_s = i_s / \sqrt{2} \angle 0^\circ = 1171.6 \angle 0^\circ A$$

8. The generator impedance:

$$\overline{Z}_s = R_s + jX_{ls} + jX_m / (\frac{R_r}{s} + jX_{lr}) = 0.2349 \angle 144.9^{\circ} \Omega$$

10. The rms stator voltage can be calculated by:

$$\overline{V}_s = \overline{I}_s \overline{Z}_s = V_s \angle \varphi = 275.2 \angle 144.9^{\circ} \text{ V}$$

Principle of DTC

Direct torque control (DTC):

The generator torque au_e is directly controlled by the torque angle $au_{ au}$

1. Stator flux linkage is kept constants by the controller

37

Introduction to Direct Torque Control

Switching Logic

Switching table for $\vec{\lambda}_s^*$ rotating in the clockwise direction

Comparat	tor output	Sector					
x_{λ}	x_T	I	II	III	IV	V	VI
	+1	$ec{V}_6$ [POP]	\vec{V}_5 [OOP]	\vec{V}_4 [OPP]	\vec{V}_3 [OPO]	$ec{V_2}$ [PPO]	$ec{V_1}$ [POO]
1	0	$ec{V}_0$ [PPP]	\vec{V}_0 [OOO]	$ec{V_0}$ [PPP]	\vec{V}_0 [OOO]	$ec{V_0}$ [PPP]	\vec{V}_0 [OOO]
	-1	$ec{V}_2$ [PPO]	$ec{V_1}$ [POO]	$ec{V}_{6}$ [POP]	\vec{V}_5 [OOP]	$ec{V}_4$ [OPP]	\vec{V}_3 [OPO]
	+1	\vec{V}_5 [OOP]	\vec{V}_4 [OPP]	\vec{V}_3 [OPO]	$ec{V_2}$ [PPO]	$ec{V}_1$ [POO]	\vec{V}_6 [POP]
-1	0	\vec{V}_0 [OOO]	\vec{V}_0 [PPP]	$\vec{V_0}$ [OOO]	\vec{V}_0 [PPP]	\vec{V}_0 [OOO]	\vec{V}_0 [PPP]
	-1	\vec{V}_3 [OPO]	$ec{V}_2$ [PPO]	$ec{V_1}$ [POO]	$ec{V}_{6}$ [POP]	\vec{V}_5 [OOP]	$ec{V}_4$ [OPP]

(b) Torque comparator

39

Introduction to Direct Torque Control

Stator Flux and Torque Calculator

$$\vec{\lambda}_{s} = \lambda_{ds} + j\lambda_{qs}$$

$$= \int (v_{ds} - R_{s}i_{ds})dt + j\int (v_{qs} - R_{s}i_{qs})dt$$

$$\begin{cases} \lambda_{s} = \sqrt{\lambda_{ds}^{2} + \lambda_{qs}^{2}} \\ \theta_{s} = \tan^{-1}\left(\frac{\lambda_{qs}}{\lambda_{ds}}\right) \end{cases}$$

$$T_{e} = \frac{3P}{2}(\lambda_{ds}i_{qs} - \lambda_{qs}i_{ds})$$

Algorithm of stator flux and torque identification

Block diagram of stator flux and torque calculator

Case Study 4 – Transient Analysis of an SCIG WECS

Investigation: The transient process of a 2.3MW/690V SCIG WECS

Control Scheme: DTC scheme

Wind Speed: Step change from 0.7 pu to 1.0 pu

- 1. The stator flux keeps constant.
- 2. The absolute value of the angle between stator flux and rotor flux vector is increased.

41

Introduction to Direct Torque Control

Case Study 4 – Transient Analysis of an SCIG WECS System Parameters

Induction generator	Generator ratings: 2.3MW/690V/50Hz/1512rpm 2168A/14.67kN.m	Generator parameters: Table B-1 (Appendix B)
	Stator flux reference (rated)	$\lambda_s^* = 1.803 \text{ Wb}$ (1.422 pu)
System input variables	Initial generator torque at wind speed of 8.4m/s (0.7pu)	$T_m = -7222.6 \text{ N.m} (0.49 \text{ pu})$
	Step change in wind speed at t = 0.1 sec	$V_{w} = 12 \text{ m/sec (1.0 pu)}$
DTC scheme	Control scheme	Fig. 7-14 with the torque PI controller implemented
	Flux tolerance band	δ_{λ} = 0.01 pu
	Torque tolerance band	δ_{τ} = 0.08 pu
	Switching Frequency	Around 2.7kHz at 0.7pu rotor speed and 2kHz at rated rotor speed

Case Study 4 – Transient Analysis of an SCIG WECS

System Parameters

		1	
Generator-side converter	Converter type	Two-level voltage source	
	Modulation scheme	Not applicable	
Grid-side converter	Replaced by a dc voltage source with a fixed dc voltage	V _{dc} = 1220 V (3.06 pu)	
Stator flux calculator	Algorithm	Fig. 7-16	
PI controller	Torque control loop	Yes	
	Stator flux loop	No	
Reference frame transformation	Not applicable		

43

Introduction to Direct Torque Control

Case Study 4 - Transient Analysis of an SCIG WECS

Case Study 4 - Transient Analysis of an SCIG WECS

45

Introduction to Direct Torque Control

Case Study 4 - Transient Analysis of an SCIG WECS

Comparison to the FOC Schemes

- The DTC scheme has similar or better dynamic performance than the FOC schemes
- 2. The DTC scheme does not use any modulation schemes or reference frame transformation (simple control scheme)
- 3. The DTC scheme may generate more torque ripples
- 4. Both DTC and FOC schemes are widely used in industry

47

