Contrôle de Mathématiques

Merci de répondre sur la grille fournie et de rendre le sujet avec la grille.

- 1. L'ensemble des solutions de l'inéquation $-4x+8<9 \ {\rm est}$:
 - (a) R
 - (b) $]-\infty,\frac{1}{4}]$
 - (c) $]-\frac{1}{4},+\infty[$
- 2. L'ensemble des solutions de l'inéquation $-5x + 4 \geqslant 3$
 - (a) R
 - (b) $]-\infty,\frac{1}{5}]$
 - (c) $[\frac{1}{5}, +\infty[$
- 3. Le nombre $\frac{1}{4}$
 - (a) est solution de l'équation 4x + 1 = 0
 - (b) est solution de l'inéquation 4x + 5 > 0
 - (c) est solution de l'équation x + 4 = 0
- 4. Le nombre $\sqrt{7}$
 - (a) est solution de l'équation $x^3 7x = 0$
 - (b) est solution de l'équation $x^2 + 7 = 0$
 - (c) est solution de l'inéquation -5x + 3 > 0
- 5. Le nombre $\frac{1}{10}$
 - (a) est solution de l'équation 9x + 1 = 0
 - (b) est solution de l'inéquation 2x + 3 < 0
 - (c) est solution de l'équation 10x 1 = 0

- 6. Le couple solution du système $\begin{cases} 3x + 5y = -24 \\ x 6y = 15 \end{cases}$ est
 - (a) (6; -3)
 - (b) (-3; -3)
 - (c) $\left(-\frac{3}{2}; -3\right)$
- 7. L'ensemble des solutions de l'équation $x^2 + 3x 40 = 0$ est :
 - (a) **0**
 - (b) $\{5; -8\}$
 - (c) $\{5; 8\}$
- 8. $\frac{6}{7} \frac{5}{4} \times 2 =$

 - (a) $-\frac{23}{14}$ (b) $-\frac{11}{14}$ (c) $-\frac{11}{28}$
- 9. $\frac{\frac{13}{2} 1}{\frac{1}{8} + 1} =$
 - (a) 52
 - (b) $\frac{44}{9}$
 - (c) $\frac{99}{16}$
- 10. Dans un triangle ABC rectangle en A, si AB = 4 et BC = 20, alors
 - (a) $\sin(\hat{B}) = \frac{1}{5}$
 - (b) $\cos(\hat{C}) = \frac{1}{5}$
 - (c) $AC = \sqrt{384}$
- 11. Dans un triangle ABC rectangle en A, si AB = 6 et BC = 10, alors
 - (a) $\cos(\hat{B}) = \frac{3}{5}$
 - (b) $\tan(\hat{C}) = \frac{3}{5}$
 - (c) $AC = \sqrt{136}$
- 12. Dans un triangle ABC rectangle en A, si AB=4cm et AC=35mm, alors $\hat{B}=1$
 - (a) $40 \times \arctan(35)$
 - (b) $\frac{\arctan\left(\frac{7}{2}\right)}{4}$
 - (c) $\arctan\left(\frac{35}{40}\right)$
- 13. Dans un triangle ABC rectangle en B, si $\widehat{A}=30^{\circ}$ alors
 - (a) $\widehat{C} = 70^{\circ}$
 - (b) $\hat{C} = 60^{\circ}$
 - (c) $\widehat{C} = 75^{\circ}$
- 14. Dans un triangle ABC rectangle en B, si $\widehat{A}=75^{\circ}$ alors
 - (a) $\widehat{C} = 25^{\circ}$

- (b) $\hat{C} = 30^{\circ}$
- (c) $\widehat{C} = 15^{\circ}$
- 15. Si ABC est un triangle rectangle en B tel que AB = 63cm et BC = 16cm, alors le segment [AC] mesure :
 - (a) 65cm
 - (b) **79cm**
 - (c) 47cm
- 16. Si ABC est un triangle rectangle en B tel que AB = 19cm et AC = 181cm, alors le segment [BC] mesure :
 - (a) 98cm
 - (b) 200cm
 - (c) 180cm
- 17. Dans quel cas le triangle ABC est-il rectangle?
 - (a) AB = 99cm, AC = 119cm et BC = 20cm
 - (b) AB = 99cm, AC = 101cm et BC = 20cm
 - (c) AB = 99cm, AC = 79cm et BC = 20cm
- 18. On considère deux triangles non plat ABC et A'B'C' tels que (AB) // (A'B'), (AC) // (A'C') et (CB) // (C'B'). Si on a AB = 30cm, AC = 12cm et A'B' = 45mm, alors A'C' = 12cm et A'B' = 12cm
 - (a) 20cm
 - (b) 8cm
 - (c) 18mm
- 19. On considère deux triangles non plat ABC et A'B'C' tels que (AB) // (A'B'), (AC) // (A'C') et (CB) // (C'B'). Si on a AB = 15mm, AC = 20mm et A'B' = 6cm, alors A'C' = 6
 - (a) 50mm
 - (b) 80mm
 - (c) 50cm
- 20. On considère deux triangles non plat ABC et A'B'C' tels que (AB)//(A'B') et (CB)//(C'B'). On a (AC)//(A'C') si on a :
 - (a) AB = 21m, AC = 42m, A'B' = 49cm et A'C' = 18cm
 - (b) AB = 21m, AC = 42m, A'B' = 49cm et A'C' = 9cm
 - (c) AB = 21m, AC = 42m, A'B' = 49cm et A'C' = 98cm