EUROPEAN PATENT OFFICE

Patent Abstracts of Japan

PUBLICATION NUMBER

2000160023

PUBLICATION DATE

13-06-00

APPLICATION DATE

24-11-98

APPLICATION NUMBER

10332354

APPLICANT: YOKOHAMA RUBBER CO LTD:THE;

INVENTOR: KURODA MASUO;

INT.CL.

C08L101/00 C08L 21/00 C08L 53/02 C08L 67/02 C08L 77/00 // C08G 81/00

TITLE

THERMOPLASTIC ELASTOMER COMPOSITION

ABSTRACT: PROBLEM TO BE SOLVED: To obtain a thermoplastic elastomer composition which is very soft and large in breaking extension and, at the same time, high in breaking strength.

> SOLUTION: This thermoplastic elastomer composition is obtained by dispersing an at least partially vulcanized rubber into a block copolymer of a polymer having a glass transition temperature of higher than normal temperatures and a polymer having a glass transition temperature of not higher than normal temperatures and/or a polymer having a hydrogen bond in the molecule and a glass transition temperature of not higher than normal temperatures and have a ratio (M400/M100)of 400% modulus to 100% modulus of 0.8-2.0 and, simultaneously, a breaking strength of not lower than 15 MPa.

COPYRIGHT: (C)2000, JPO

				·	
				,	
	•				
					·
·					
,					
,					

(19) 日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特期2000-160023 (P2000-160023A)

(43)公開日 平成12年6月13日(2000.6,13)

神奈川県平塚市追分2番1号 横浜ゴム株

弁理士 渡辺 望稔 (外1名)

式会社平塚製造所内

(51) Int.Cl. ⁷	FI							テーマコード(参考)			
COSL 101/00		C 0 8 L 101/00							4 J 0 0 2		
21/00		21/00							4 / 0 3 1		
ა3/02		53/02									
67/02		67/02									
77/00	•	77/00									
		審査請求	未請求 請	東次東	の数3	OL	(全	9 頁)	最終頁に続く		
(21)出顧番号	特慶平10-332354		(71) 出	顕人	0000067		스 <u>차</u> -				
(22) 胡麟日	22) 刮顧日 平成10年11月24日 (1998, 11, 24)			横浜ゴム株式会社 東京都港区新橋5丁目 (72)発明者 渡邊 次第 神奈川県平塚市追分2 式会社平塚製造所内			2番1	_			

(72)発明者 黒田 益夫

(74)代理人 100080159

最終頁に続く

(54) 【発明の名称】 熱可塑性エラストマー組成物

(57)【要約】

【課題】非常に柔軟で破断伸びが大きく、同時に、破断 強度が高い熱可塑性エラストマー組成物の提供。

【解決手段】ガラス転移温度が常温超であるポリマーと ガラス転移温度が常温以下であるポリマーとのブロック 共重合体、および/または、分子中に水素結合を有しガ ラス転移温度が常温以下であるポリマー中に、少なくと も一部が加碗されたゴムが分散してなり、400%モジ ュラスと100%モジュラスの比(M_{400} $/M_{100}$)が 0.8~2.0、かつ、破断強度が15MPa以上であ る熱可塑性エラストマー組成物。

【特許請求の範囲】

【請求項1】ガラス転移温度が常温超であるポリマーと ガラス転移温度が常温以下であるポリマーとのブロック 共重合体、および/または、分子中に水素結合を有しガ ラス転移温度が常温以下であるポリマー中に、少なくと も一部が加硫されたゴムが分散してなり、

400%モジュラスと100%モジュラスの比 (M_{400} / M_{100}) が0.8 \sim 2.0、かつ、破断強度が15M Pa以上である熱可塑性エラストマー組成物。

【請求項2】上記ブロック共重合体が、水素添加された スチレン系熱可塑性エラストマーである請求項1に記載 の熱可塑性エラストマー組成物。

【請求項3】上記水素添加されたスチレン系熱可塑性エラストマーが、スチレン含有量が20~50重量%であり、分子量が50,000~300,000である請求項2に記載の熱可塑性エラストマー組成物。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、非常に柔軟で伸びが大きく、同時に、破断強度が高い熱可塑性エラストマー組成物に関する。

[0002]

【従来の技術】ソフトセグメントとハードセグメントの 共重合体からなる分子構造で特性を制御して作製される 熱可塑性エラストマーでは、優れた柔軟性、高い破断伸 びと、高い破断強度とを両立させることが困難であっ た。すなわち、熱可塑性エラストマーに柔軟性を持たせ るために、ソフトセグメントの割合を多くし、ハードセ グメントの割合を少なくすると、熱可塑性エラストマー の柔軟性は高くなるが、破断強度が低下する。逆に、熱 可塑性エラストマーに高い破断強度を持たせるために、 ソフトセグメントの割合を少なくし、ハードセグメント の割合を多くすると、熱可塑性エラストマーの破断強度 は高くなるが、柔軟性が低下し、硬い材料となってしま う。上述の共重合体からなる熱可塑性エラストマーの他 に、熱可塑性エラストマー材料としては、熱可塑性樹脂 を連続相(マトリックス)とし、ゴム成分を分散相(ド メイン)とし、かつ分散相の少なくとも一部が架橋した 構造の熱可塑性エラストマー組成物が種々開示されてい る。しかし、これらの熱可塑性エラストマー組成物のい ずれにおいても、非常に柔らかく、低い引張力あるいは 応力によって容易に伸長し、破断伸びが大きく、同時 に、破断強度が高いという特性を満足するものはない。 [0003]

【発明が解決しようとする課題】本発明の目的は、非常に柔軟で破断伸びが大きく、同時に、破断強度が高い熱可塑性エラストマー組成物を提供することである。

[0004]

【課題を解決するための手段】本発明者は、ガラス転移 温度が常温超であるポリマーとガラス転移温度が常温以 下であるポリマーとのブロック共重合体、および/または、分子中に水素結合を有しガラス転移温度が常温以下であるポリマーをマトリックスとして選択し、少なくとも一部が加硫されたゴムをドメインとすることで、非常に高い柔軟性と、高い破断強度を両立させうることを見出し、本発明を完成させた。

【0005】すなわち、本発明は、ガラス転移温度が常温超であるポリマーとガラス転移温度が常温以下であるポリマーとのブロック共重合体、および/または、分子中に水素結合を有しガラス転移温度が常温以下であるポリマー中に、少なくとも一部が加硫されたゴムが分散してなり、400%モジュラスと100%モジュラスの比(M_{400} / M_{100})が0.8~2.0、かつ、破断強度が<math>15MP a以上である熱可塑性エラストマー組成物を提供する。

【0006】上記ブロック共重合体が、水素添加されたスチレン系熱可塑性エラストマーであるのが好ましい。 【0007】上記水素添加されたスチレン系熱可塑性エラストマーが、スチレン含有量が20~50重量%であり、分子量が50,000~300,000であるのが好ましい。

[0008]

【発明の実施の形態】以下、本発明を詳細に説明する。本発明の熱可塑性エラストマー組成物(以下、本発明の組成物と記す)は、ガラス転移温度が常温超であるボリマーとガラス転移温度が常温以下であるボリマーとのブロック共重合体、および/または、分子中に水素結合を有しガラス転移温度が常温以下であるボリマーを、マトリックスとし、少なくとも一部が加硫されたゴムをドメインとする構造を有し、特定範囲の400%モジュラスと100%モジュラスの比(M_{400} / M_{100})と、特定値以上の破断強度を有する組成物である。

【0009】本発明の組成物のマトリックスとなるボリマーとしては、以下に示す熱可塑性樹脂を用いる。

- (1) ガラス転移温度(Tg) が常温超であるポリマーとガラス転移温度(Tg) が常温以下であるポリマーとのブロック共重合体、および/または、
- (2)分子中に水素結合を有しガラス転移温度 (Tg) が常温以下であるポリマー

ここで、ガラス転移温度(Tg)とは、ポリマー分子の ミクロブラウン運動が凍結されて、高分子材料がゴム状 からガラス状に変わる温度で、膨張率、屈折率、比熱、 弾性率等から求められるが、ここでは、示査走査熱量計 を用い、昇温速度5(℃/分)で測定した際の吸熱カー ブの変曲点を与える温度で示した。

【0010】上述のブロック共重合体は、Tgが常温超であるポリマーからなるブロック(A)と、Tgが常温以下のポリマーからなるブロック(B)とのブロック共重合体である。ブロック共重合体中に、上述する異なる温度範囲のTgを有するポリマーからなるブロック

(A)、(B)を含むと、Tgが高いボリマーからなるブロック(A)同士間で、Tg以下の温度領域においては結晶相が形成されこれにより疑似架橋構造が形成され、得られる本発明の組成物は高い破断強度をもつ組成物となる。ブロック共重合体は、Tgが常温超のボリマーからなるブロック(A)とTgが常温以下のボリマーからなるブロック(B)を有する構造であれば、ジブロックであっても、トリブロックであっても、あるいはマルチブロックであってもよい。製造が容易な点からジブロック、トリブロックが好ましい。

【0011】ブロック(A)を構成するポリマーのTg は、常温超、すなわち20℃超であり、40℃超が好ま しい。この温度範囲であれば、得られる本発明の組成物 が常温において高い破断強度を有するからである。この ようなポリマーとしては、Tgが常温超という特性を有 する種々のポリマーを用いることができ、例えば、上記 特性を有する、ポリスチレン系樹脂、ポリエステル系樹 脂、ポリアクリレート樹脂、ポリメタクリレート樹脂、 ポリアミド樹脂等が挙げられるが、これらの中でも、安 価で、得られる本発明の組成物の破断強度が高く、かつ 柔軟性に富むものとなることから、ポリスチレン系樹脂 が好ましい。ポリスチレン系樹脂としては、例えば、ス チレン単独重合体、あるいは、芳香族環に1個以上のア ルキル基、アルコキシ基、ハロ基等が結合する置換スチ レン、例えば、αーメチルスチレン、ρーメチルスチレ ン、ブチルスチレン、pーヒドロキシスチレン、ブロモ スチレン等を含む共重合体が挙げられるが、これらの中 でも、スチレン単独重合体が、高凝集性であり、高強度 であるという理由から好ましい。

【0012】ブロック共重合体のもう一方のブロック (B)を構成するポリマーは、Tgが常温以下のポリマ ーを用いる。ブロック(B)を構成するポリマーのTg は、常温以下であり、○℃以下が好ましい。この温度範 囲であれば、得られる本発明の組成物が常温において高 い柔軟性を有するからである。このようなポリマーとし ては、Tgが常温以下という特性を有する種々のポリマ ーを用いることができ、例えば、上記特性を有するポリ ブタジエン、ポリイソプレン等の共役ジエン系ポリマ 一、これらの混合物であるボリマー、ポリテトラメチレ ンエーテルグリコール、ポリエチレングリコール、ポリ プロピレングリコール、ポリブチレングリコール等の非 晶性ポリエーテル、ポリエチレン、ポリプロピレン、エ チレン・プロピレン共重合体、エチレンーαオレフィン 共重合体、ポリイソブチレン等のオレフィン系ポリマ 一、含ハロゲン系ポリマー、シリコーン系ポリマー、フ ッ素系ポリマーが挙げられる。これらの中でも、ポリブ タジエン、ポリイソプレンが、高柔軟性、高伸びを示す ということから好ましい。プロック(B)は、残留不飽 和部位を含んでもよいが、得られる本発明の組成物が耐 候性、耐熱性に優れる特性を示すことから、水素添加に

より飽和されているのが好ましい。

【0013】本発明に用いることができるブロック共重 合体の具体例としては、ポリスチレンーポリプタジエン ブロック共重合体、ボリスチレンーポリブタジエンーボ リスチレンブロック共重合体(SBS)、ポリスチレン ーポリイソプレンーポリスチレンブロック共重合体 (S IS)、およびこれらの変性物等のスチレン系熱可塑性 エラストマー、これらの水素添加された共重合体、例え ば、ポリスチレン- (エチレン-ブチレン) ーポリスチ レンブロック共重合体 (SEBS、SBSの水素添加 物)、ポリスチレンー(エチレンープロピレン)ーポリ スチレンブロック共重合体 (SEPS、SISの水素添 加物)、あるいは、PBT-PTMG共重合体、PET -PPG共重合体等のポリエステル系熱可塑性エラスト マー、N6-PTMG共重合体等のポリアミド系熱可塑 性エラストマー等が挙げられる。これらの中でも、得ら れる本発明の組成物の破断強度が高く、かつ、柔軟性、 耐候性、耐熱性に優れることから、SEBS、SEPS 等の水素添加されたスチレン系熱可塑性エラストマーが 好ましい。これらのブロック共重合体は、公知の製造方 法により製造することができる。

【0014】本発明に用いられるブロック共重合体の好 ましい例である水素添加されたスチレン系熱可塑性エラ ストマーとしては、スチレン含有量が20~50重量% が好ましく、25~40重量%がより好ましい。この範 囲であると、得られる本発明の組成物の破断強度が特に 高く、柔軟性に特に優れるので好ましい。また、上述の 水素添加されたスチレン系熱可塑性エラストマーの数平 均分子量は、50,000~300,000が好まし く、100、000から200、000がより好まし い。数平均分子量が50,000未満であると、本発明 の組成物の物性が低下し、300,000超であると、 組成物製造時に溶融混練において、極めて高いトルクを かけなければならず、機械的にも制約をうけてしまう。 【0015】スチレン系熱可塑性エラストマーとしては 市販品を利用することができ、例えば、セプトン200 2(SEPS、スチレン含有量30重量%、数平均分子 量3万、クラレ社製)、セプトン2023 (SEPS) スチレン含有量15重量%、数平均分子量8万、クラレ 社製) 等が挙げられるが、上述のスチレン含有量. 分子. 量の好適範囲から、より好ましい市販品の例としては、 タフテック K 2 1 8 1 (SEBS、スチレン含有量 3 0) 重量%、数平均分子量50,000、旭化成社製)、セ プトン4033 (SEPS、スチレン含有量30重量 %、数平均分子量10万、クラレ社製)、セプトン20 07 (SEPS、スチレン含有量30重量%、数平均分 子量8万、クラレ社製)等が挙げられる。

【0016】本発明の組成物のマトリックスとなるポリマーとしては、(2)分子中に水素結合を有しガラス転移温度(Tg)が常温以下であるポリマーを用いること

ができる。ここで、水素結合は、ドナーとアクセプター とから形成されるもので、ドナーとは、水素結合を形成 している水素と、部分的にイオン性をもつ共有結合を形 成する陽子供与体(プロトンドナー)となる陰性原子も しくは陰性原子を含む置換基をいう。陰性原子として は、酸素原子、窒素原子が挙げられる。また、アクセプ ターとは、水素結合を水素と共に形成する陽子受容体 (プロトンアクセプター)となる陰性原子もしくは陰性 原子を含む置換基をいう。アクセプター中の陰性原子と しては、酸素原子、窒素原子、硫黄原子が挙げられる。 本発明の組成物のマトリックスとして用いることのでき る上述のポリマーは、このような水素結合を形成するド ナーとアクセプターとを同一ポリマー内に有するポリマ ーである。本発明の組成物のマトリックスとして、水素 結合を有するポリマーを用いると、得られる本発明の組 成物の破断強度が高いので好ましい。ドナーとしては、 -OH、-NH-が挙げられ、具体的には、アルコール 性水酸基、フェノール性水酸基、カルボキシル基中のヒ ドロキシル基、アミノ基、アミド基等を好ましく挙げる ことができる。アクセプターとしては、-CO-、-N H-や、-CO-、-N=を含む、-NR1 R 2 (R1 、R2 はそれぞれ水素原子、または炭素数1~ 20のアルキル基)、-NHCOO-、-NCO、-C ■N、-COOR® (R® は水素原子、炭素数1~20 のアルキル基またはアリール基)、-SCN等が挙げら na.

【0017】上記ポリマー(2)のガラス転移温度は、常温以下であり、0℃以下が好ましい。この温度範囲であれば、得られる本発明の組成物が常温において高い柔軟性を有するからである。このようなボリマー(2)の具体例としては、上記範囲のガラス転移温度をもつ熱可塑性ポリウレタン樹脂が挙げられる。

【0018】ポリウレタン樹脂としては、ウレタンプレポリマーと硬化剤等とから合成されるもののうち、上記特性を有するものであれば特に限定はない。ウレタンプレポリマーは、ポリオール化合物とポリイソシアネート化合物との反応生成物である。このようなウレタンプレポリマーを生成するポリイソシアネート化合物としては、例えば、MDI、水素添加MDI等の芳香族ボリイソシアネート、HDI等の脂肪族ポリイソシアネート、IPDI等の脂環式ポリイソシアネート等が好適に例示され、これらの1種あるいは2種以上を用いることが出来る。

【0019】ボリオール化合物としては、ボリエーテルポリオール、ポリエステルポリオール、その他のポリオールおよびこれらの混合ポリオールが用いられる。ポリエーテルポリオールとしては、エチレングリコール、ジエチレングリコール、プロピレングリコール、グリセリン、トリメチロールプロパン、ヘキサントリオール、ブタンジオール等の多価アルコールの1種または2種以上

に、プロピレンオキサイド、エチレンオキサイド、ブチ レンオキサイド、スチレンオキサイド等の1種または2 種を付加して得られるポリオール、ポリオキシテトラメ チレンオキサイド等が例示される。具体例としては、ポ リテトラメチレンエーテルグリコール(PTMG)、ポ リオキシプロピレングリコール(PPG)等が挙げられ る。ポリエステルポリオールとしては、エチレングリコ ール、ジエチレングリコール、プロピレングリコール、 グリセリン、トリメチロールプロパン、ヘキサントリオ ール、ブタンジオール等の多価アルコールの1種または 2種以上と、グルタル酸、アジピン酸、セバシン酸、テ レフタル酸あるいはその他の低分子カルボン酸やオリゴ マ一酸の1種または2種以上との結合重合体、プロピオ ンラクトン、カプロラクトン等の開環重合体等が例示さ れる。具体例としては、エチレンアジペート、ブチレン アジペート、これらの共重合体等が挙げられる。

【0020】市販の熱可塑性ポリウレタン樹脂は、アジピン酸と1,4ープタンジオールを用いて、鎖延長剤に等モルまたは0.2~0.22モル過剰のMDIを用い、100~120℃の温度で重合して製造される。【0021】本発明に用いるポリウレタン樹脂の分子量は、30,000~500,000が好ましく、30,000~1000,000がより好ましい。この範囲であれば、組成物製造時の溶融混練が容易であり、また、得られる本発明の組成物の柔軟性、破断強度が高いので好ましい。本発明に用いるポリウレタン樹脂としては、市販品を利用することもでき、例えば、エステン58887(分子量50,000、協和発酵社製)等が挙げられる。

【0022】本発明の組成物のドメインとなるゴムは、少なくとも一部が架橋されたものである。本発明の組成物にドメインとして含有されるゴムとしては、ジエン系ゴムおよびその水素添加物、オレフィン系ゴム、含ハロゲン系ゴム、シリコンゴム、含イオウゴム、フッ素ゴム等を用いることが出来る。

【0023】具体的には、ジエン系ゴムおよびその水素添加物としては、天然ゴム(NR)、イソプレンゴム(IR)、エポキシ化天然ゴム、スチレン・ブタジエンゴム(SBR)、ブタジエンゴム(BR、高シスBRおよび低シスBR)、アクリロニトリル・ブタジエンゴム(NBR)、水素化NBR、水素化SBR等が;オレフィン系ゴムとしては、エチレン・プロピレン共重合ゴム(EPM)、エチレン・プロピレン・ジエン共重合ゴム(EPM)、マレイン酸変性エチレン・プロピレン共重合ゴム(MーEPM)、ブチルゴム(IIR)、イソブチレンと芳香族ビニルあるいはジエン系モノマーの共重合体、アクリルゴム(ACM)、アイオノマー等が;含ハロゲンゴムとしては、臭素化ブチルゴム(BrーIR)、塩素化ブチルゴム(CIーIIR)、イソブチレン・パラメチルスチレン共重合体の臭素化物(Brー

IPMS)、クロロプレンゴム(CR)、ヒドリンゴム(CHR、CHC)、クロロスルホン化ボリエチレン(CSM)、塩素化ボリエチレン(CM)、マレイン酸変性塩素化ポリエチレン(M-CM)等が;シリコンゴムとしては、メチルビニルシリコンゴム、ジメチルシリコンゴム、メチルフェニルビニルシリコンゴム等が;含イオウゴムとしては、ボリスルフィドゴム等が;フッ素ゴムとしては、ビニリデンフルオライド系ゴム、含フッ素ビニルエーテル系ゴム、テトラフルオロエチレンープロピレン系ゴム、含フッ素ホスファゼン系ゴムが、それぞれ好適に例示される。

【0024】これらの中でも、EPDM系ゴム、IIR 系ゴム(あるいはこれらを含むゴム組成物)等のオレフィン系ゴム(組成物)が、後述する本発明の熱可塑性エラストマー組成物の製造方法による混練加工時や、本発明の熱可塑性エラストマー組成物を用いた押出成型や射出成型等の成型加工時において良好な耐熱劣化性を示し、また得られる本発明の組成物が良好な耐熱劣化性を示すので好ましい。また、NR系ゴム(あるいはこれらを含むゴム組成物)は、歪が大きくなると結晶化し、得られる本発明の組成物の破断強度が高いものとなるので好ましい。

【0025】本発明の熱可塑性エラストマー組成物は、上述のブロック共重合体または上述のポリマー(以下、両ポリマーをあわせてマトリックス材料とも記す)をマトリックス(連続相)とし、ゴムがドメイン(分散相)として分散し、かつ、ゴムの少なくとも一部が架橋された構成を有する。このような構成は、マトリックスを構成する成分と、ドメインを構成するゴム(ゴム組成物の場合は、基本的に加硫剤は除いた成分)とを、2軸混練押出機等で溶融混練し、マトリックスを形成するポリマーにゴムを分散させ、この状態(混練下)で引き続き加硫剤を添加し、ゴムを混練中に、すなわち動的に加硫させることにより形成することができる。

【0026】加硫剤としては、一般的なゴム加硫剤(架 橋剤)を用いることができる。具体的には、イオウ系加 硫剤としては粉末イオウ、沈降性イオウ、高分散性イオ ウ、表面処理イオウ、不溶性イオウ、ジモルフォリンジ サルファイド、アルキルフェノールジサルファイド等が 例示され、例えば、0.5~4phr(ゴム(組成物) 100重量部あたりの重量部)程度を用いればよい。ま た、有機過酸化物系の加硫剤としては、ベンゾイルパー オキサイド、セーブチルヒドロパーオキサイド、2,4 ージクロロベンゾイルパーオキサイド、2,5-ジメチ ルー2、5-ジ(t-ブチルパーオキシ)ヘキサン、 2,5-ジメチルヘキサン-2,5-ジ(パーオキシル ベンゾエート)等が例示され、例えば、1~15phr 程度を用いればよい。さらに、フェノール樹脂系の加硫 剤としては、アルキルフェノール樹脂の臭素化物や、塩 化スズ、クロロプレン等のハロゲンドナーとアルキルフ

ェノール樹脂とを含有する混合架橋系等が例示され、例えば1~20phr程度を用いればよい。その他として、亜鉛華(0.5~10phr)、酸化マグネシウム(4phr程度)、リサージ(10~20phr程度)、pーキノンジオキシム、pージベンゾイルキノンジオキシム、テトラクロローpーベンゾキノン、ボリーpージニトロソベンゼン(2~10phr程度)、メチレンジアニリン(0.2~10phr程度)が例示される。

【0027】また、必要に応じて、加硫促進剤を添加してもよい。加硫促進剤としては、アルデヒド・アンモニア系、グアニジン系、チアゾール系、スルフェンアミド系、チウラム系、ジチオ酸塩系、チオウレア系等の一般的な加硫促進剤を、例えば0.5~5phr程度用いればよい。

【0028】具体的には、アルデヒド・アンモニア系加 硫促進剤としては、ヘキサメチレンテトラミン等が;グ アニジン系加硫促進剤としては、ジフェニルグアニジン 等が;チアゾール系加硫促進剤としては、ジベンゾチア ジルジサルファイド(DM)、2-メルカプトベンゾチ アゾールおよびそのZn塩、シクロヘキシルアミン塩2 - (4) -モルホリノジチオ) ベンゾチアゾール等が; スルフェンアミド系加硫促進剤としては、シクロヘキシ ルベンゾチアゾリルスルフェンアマイドCBS)、N-オキシジエチレンベンゾチアゾリルー2ースルフェンア マイド、N-t-ブチルー2-ベンゾチアゾリルスルフ ェンアマイド、2-(チモルポリニルジチオ)ベンゾチ アゾール等が;チウラム系加硫促進剤としては、テトラ メチルチウラムジサルファイド(TMTD)、テトラエ チルチウラムジサルファイド、テトラメチルチウラムモ **ノサルファイド(TMTM)、ジペンタメチレンチウラ** ムテトラサルファイド等が; ジチオ酸塩系加硫促進剤と しては、Zn-ジメチルジチオカーバメート、Zn-ジ エチルジチオカーバメート、2nージーnーブチルジチ オカーバメート、Zn-エチルフェニルジチオカーバメ ート、Te-ジエチルジチオカーバメート、Cu-ジメ チルジチオカーバメート、Fe-ジメチルジチオカーバ メート、ピペコリンピペコリルジチオカーバメート等 が:チオウレア系加硫促進剤としては、エチレンチオウ レア、ジエチルチオウレア等が;それぞれ開示され る。

【0029】また、加硫促進助剤としては、一般的なゴム用助剤を併せて用いることができ、例えば、亜鉛華(0.5~10phr程度)、ステアリン酸やオレイン酸およびこれらのZn塩(0.2~3.0phr程度)等を用いればよい。

【0030】ゴム組成物には、これ以外にも、加硫されていないエラストマー、老化防止剤、酸化防止剤、紫外線吸収剤、顔料や染料等の着色剤、他の可塑剤、カーボンブラッックやシリカ等の補強剤が必要に応じて含まれ

ていてもよい。

【0031】本発明の熱可塑性エラストマー組成物において、配合する上述のマトリックス材料とゴムの量比、マトリックス材料/ドメインは、95/5~30/70が好ましく、90/10~50/50がより好ましい。マトリックス材料/ドメインが30/70未満だとマトリックス材料が連続相を形成できず混練が不可能となり、マトリックス材料/ドメインが95/5超だと得られる本発明の組成物の破断伸びが十分ではなくなり好ましくない。

【〇〇32】さらに本発明の組成物には、本発明の特性を損なわない範囲で、他のポリマーを、マトリックス材料に混合することができる。他のポリマーを混合することによって、相溶性の改善、成形加工性の改良、耐熱性の向上、コストダウンなどを図ることが出来る。これらの他のポリマーとしては、一般的な熱可塑性樹脂、例えば、ポリエチレン(PE)、ポリプロピレン(PP)、ポリスチレン(PS)、ABS、SBS、ポリカーボネート(PC)等が挙げられる。

【0033】本発明の熱可塑性エラストマー組成物には、本発明の目的を損なわない範囲で、可塑剤、相溶化剤、老化防止剤、酸化防止剤、紫外線吸収剤、顔料や染料等の着色剤、カーボンブラッックやシリカ等の補強剤及び加工助剤を必要に応じて添加・混練してもよく、さらに、レーヨン、ナイロン、ポリエステル、ビニロン、ガラス繊維、カーボン繊維等の補強用繊維を成形時に用いてもよい。

【0034】本発明の組成物の製造方法は、公知の熱可 塑性樹脂組成物の製造方法が利用可能であるが、バッチ 式の製造方法を用いてもよく、あるいは、連続的に上述 のマトリックス材料を供給・溶融し、混練しつつ移送し ながら順次、ゴム(組成物)や加硫剤等を添加・混練し てエラストマー組成物を製造する、2軸混練押出機等を 使用した連続的な製造方法を利用してもよいが、マトリ ックス材料とゴム(組成物)を充分混練して動的に加硫 する方法が好ましい。以下に本発明の組成物の好ましい 製造方法の一例を示す。

【0035】本発明の組成物の製造において、マトリックス材料、ゴム(組成物)、添加剤を混練するのに使用する機械には特に限定はないが、スクリュー押出機、ニーダ、バンバリミキサー、2軸混練押出機等が例示される。中でもマトリックス材料とゴム(組成物)の混練およびゴム(組成物)の動的加硫を考慮すると、2軸混練押出機を使用するのが好ましい。さらに、2種類以上の混練機を使用し、順次混練してもよい。また、混練温度はマトリックス材料が溶融する温度以上であればよい。混練時の剪断速度は500~7500 sec-1であるのが好ましい。混練全体の時間は30秒から10分で、加硫系を添加した後の加硫時間は15秒から5分程度とするのが好ましい。

【0036】以下、通常行われる2軸混練機による混練 に基づいて、製造方法の一例をより具体的に例示する。 まず、2軸混練機の第1の投入口より、ペレット状に成 形した、前述のブロック共重合体および/または前述の 分子中に水素結合を有するポリマーからなるマトリック ス材料を投入し、2軸スクリューによって混合して溶融 ・加熱する。一方、ゴム(組成物)はバンバリミキサー 等のゴム用混練機を用い、必要に応じて補強剤、老化防 止剤、加工助剤等を添加して混練した後、加硫系を含ま ない、いわゆるマスターバッチとして、ゴム用ロール等 で厚さ2~2.5㎜のシート状に成形し、さらに、この シートをゴム用ペレタイザーでペレット化して調製して おく。前述のように、マトリックス材料を2軸混練機で 溶融・加熱した後、このようにあらかじめペレット化し たゴム(組成物)を2軸混練機の第2の投入口より投入 し、マトリックス材料中にゴム (組成物)を分散させ る。なお、ゴム(組成物)の添加時には、ステアリン 酸、ステアリン酸亜鉛、ワックスのような加工助剤を併 用してもよい。この場合には、ゴム(組成物)とステア リン酸等とをバンバリミキサー等によって混合した後、 前述のようにペレット状にして2軸混練機成分に投入す ればよい。

【0037】この後、2軸混練機の第3の投入口より加硫剤あるいはさらに加硫助剤を投入し、混練下に、マトリックス材料中にゴム(組成物)を加硫(動的に加硫)させ分散相とする。加硫をこのようにして行うことにより、ゴムをマトリックス材料に十分に分散した状態で、しかもゴムが十分に微細な状態のまま加硫を行い、マトリックス中に、ドメインとして少なくとも一部が加硫されたゴムが安定に分散してなる本発明の熱可塑性エラストマー組成物を好適に製造することができる。

【0038】本発明の熱可塑性エラストマー組成物は、 2軸混練押出機でストランド状に押し出し、樹脂用ペレタイザーでペレット化する。このペレットを使用して溶 融押出機構を有する押出機または簡易型押出機、一般の 樹脂用射出成型機や簡易型射出成型機を使用して、種々 の形状をしたモールドに押出または射出成型することが 可能である。

【0039】このような熱可塑性エラストマー組成物の中で、本発明の熱可塑性エラストマー組成物は、400%モジュラスと100%モジュラスの比(M_{400} M_{100})が0.8~2.0、かつ、破断強度(T_B)が15MPa以上であるものである。 M_{400} M_{100} の値が上記範囲である組成物は、柔軟で低応力で伸長し、 T_B の値が上記範囲である組成物は、最終的な破断時の強度が高い。従って、 M_{400} M_{100} と T_B がこの範囲の物性を有する本発明の組成物は、柔軟性に優れ、かつ、破断強度が高い。好ましくは、 M_{400} M_{100} が0.8~1.2、 T_B が25MPa以上である。

【0040】本発明の熱可塑性エラストマー組成物は、

上記構成をとることにより、従来の分子構造の制御によ り作製された熱可塑性エラストマーや、動的架橋系熱可 塑性エラストマーにはない、初期伸長時の応力が低く、 非常に柔らかく、低い応力によって容易に伸長し、破断 伸びが大きく、同時に、このような高い柔軟性との両立 が困難であった最終的な破断強度が高いという特性を有 する。マトリックスとして水素添加されたスチレン系熱 可塑性エラストマーを用いた本発明の組成物では、破断 強度に優れるとともに、耐熱性、耐候性にも優れる。マ トリックスとしてスチレン含有量が20~50重量%。 分子量が50,000~300,000である水素添加 されたスチレン系熱可塑性エラストマーを用いた本発明 の組成物では、さらに、組成物製造時の溶融混練が容易 で、得られる本発明の組成物の破断強度により優れ、破 断伸びにも優れる。従って、このような特性を有する本 発明の組成物は、救命ボート、風船、防舷材、気球、ア ドバルーン、エアバック等の袋物、型物等に好適に利用 される。

[0041]

【実施例】以下に実施例を挙げ、本発明の熱可塑性エラストマー組成物についてさらに詳細に説明する。

【0042】(実施例1~10、および比較例1~2) 下記表1に示される、共重合樹脂、未加硫のゴム、およ び加硫系を構成する各添加剤を用い、以下のようにし て、各種の熱可塑性エラストマー組成物を作製した。共 重合樹脂を 2軸混練押出機の第1の投入口に投入して、 共重合樹脂を溶解して混練し、次いで、第2の投入口からゴム(未加硫)、充填剤(炭酸カルシウム)、可塑剤 (パラフィンオイル)を投入し、共重合樹脂中にゴムおよび充填剤をを添加・混練した。その後、第3の投入口から加硫系を添加して、混練することによって、共重合樹脂のマトリックス中にドメインとして分散されるゴムを動的に加硫した。以上の組成物の製造は、連続的に共重合樹脂を供給・溶融し、混練しつつ移送しながら順次ゴムや加硫系を添加・混練する、いわゆる連続的な製造によって行った。なお、混練は、回転数を100rpm、混練時の樹脂温度を200~230℃とし、作製された組成物の吐出量が15kg/hである条件下で行った。

【0043】上記方法で製造した各熱可塑性エラストマー組成物に対して、破断強度 (T_8) 、破断伸び (E_8) 、100%モジュラス (M_{100}) 、400%モジュラス (M_{400}) を測定し、400%モジュラスと100%モジュラスの比 (M_{400}/M_{100}) を算出した。測定方法は、JIS K 6251に記載の方法に準拠した。

【0044】 【表1】

	実施例	実施例	突旋例	実施例	美粒例	突施剝	実施例	実施例	実施例	実施例	比較例	比較例
	1	2	3	4	5	6	7	8	9	10	1	2
共重合領域 1 共重合領域 2 共重合領域 3 共重合領域 4 共重合制 3 共重合制 3 共重合制 3 共重合制 3 共重合制 3	7 0	5 0	rb	9 0	7 0	10	7 0	7 0	70	4 0	100	1 0 0
ゴム1 ゴム2 ゴム3	3 0	5 9	3 0	10	3 0	3 0	3 0	3 0	30	6 t		
充填剤 (炭酸 カメラウム) 可製剤(スラフィンネイル)	2 0 1 4	2 0 1 G	2 0 1 4	2 0 1 B	2 0 1 4	2 0 1 4	2 0 1 4	2 0 1 4	2 G 1 4	20		
加破系 イオウ NS 亜鉛率 ステアリン酸 ステアリン酸亜鉛 老化防止剤	0, 6 0. 3 1. 5 0. 9	0. 3 1. 2 0. 6	0, 18 0, 72 0, 36	0, 06 0, 24 0, 12	0. 6 0. 3 1. 5 0. 9	0. 6 0. 3 1. 5 0. 9	0. 6 0. 3 1. 5 0. 9	D. 6 B. 3 1. 5 D. 9	0, 6 6, 3 1, 5 0, 9	1. 2 0. 6 3. 0 1. 8		
Ta (MPa) En (%) Mia, (MPa) Man (MPa) Man (MPa) Man (MPa)	2 8 6 3 0 2. 6 3. 2 1. 2	3 7 8 6 0 1. 3 1. 5 1. 2	4 8 8 2 9 1. 5 1. 7 1. 1	4 3 6 2 0 2. 2 2. 8 1. 3	4 6 7 2 0 2. 1 2. 7 1. 3	2 5 9 6 0 1. B 1. 9	1 8 7 7 0 1 . 8 1 . 9 1 . 1	2 0 1300 0. 6 0. 7 1. 2	3 9 6 7 0 2. 7 3. 4 1. 3	2 9 1000 1. 0 1. 2 1. 2	4 3 5 2 0 2. 7 11.5 4. 3	1 4 6 7 0 2, 5 5, 5 2, 2

表中の化合物の単位は重量部である

[0045]

<表中の各成分>

共重合樹脂1:タフテックK2181 (SEBS、ポリスチレンのTg=100 C

ポリエチレンのTg=-125℃ ポリブチレンのTg=-24℃ スチレン含有量30重量%

数平均分子量50,000、旭化成社製)

共重合樹脂2:セプトン4033 (SEPS、ポリスチレンのTg=100℃

ポリエチレンのTg=-125℃ ポリプロピレンのTg=-8℃ スチレン含有量30重量%

数平均分子量10万、クラレ社製)

共重合樹脂3:セプトン2007 (SEPS、ポリスチレンのTg=100℃

ポリエチレンのTg=-125℃ . ポリプロピレンのTg=-8℃

スチレン含有量30重量%、数平均分子量8万、クラレ社製)

共重合樹脂4:セプトン2002(SEPS、ポリスチレンのTg=100℃

ボリエチレンのTg=-125℃ ボリプロピレンのTg=-8℃ スチレン含有量30重量%

数平均分子量1.5万、クラレ社製)

共重合樹脂5:セプトン2023 (SEPS、ポリスチレンのTg=100℃

ポリエチレンのTg=-125℃ ポリプロピレンのTg=-8℃

スチレン含有量15重量%、数平均分子量8万、クラレ社製)

共重合樹脂6:エステン58887 (ポリウレタン樹脂、Tg=-110℃

数平均分子量50,000、協和発酵社製)

ゴム1:EXXPRO89-4 (変性IIR、エクソン化学社製)

ゴム2:SMR-L(NR)

ゴム3:エスプレン600F、(EPDM、住友化学社製)

充填剤:炭酸カルシウム(重質炭酸カルシウム、丸尾カルシウム社製)

可塑剤:マシン油22(パラフィンオイル、昭和シェル石油社製)

【0046】<加硫系>

硫黄:粉末イオウ(軽井沢精練所製)

NS:サントキュアNS(フレキシス社製)

亜鉛華:亜鉛華3号(正同化学社製)

ステアリン酸:ビーズステアリン酸NY(日本油脂社

製)

ステアリン酸亜鉛:ステアリン酸亜鉛(正同化学社製)

老化防止剤:ノクラック224(大内新興化学社製)

[0047]

【発明の効果】本発明によれば、非常に柔らかく大きな 破断伸びを持ち、かつ、高い破断強度を併せ持った熱可 塑性エラストマー組成物を得ることができる。このよう な熱可塑性エラストマー組成物は、救命ボート、風船、 防舷材、気球、アドバルーン、エアバック等の袋物、型

物等に好適に利用される。

フロントページの続き

(51) Int. Cl. 7

識別記号

FΙ

(参考)

// COSG 81/00

COSG 81/00

Fターム(参考) 4J002 AC01X AC02X AC03X AC06X AC07X AC08X AC09X AC10X

AC12X BB15X BB18X BB23X

BB24X BB27X BD12X BG04X

BP01W BP03W CD18X CF10W

CKO3W CKO4W CKO5W CLO7W

CNO2X CPO3X CP17W CQO1X

FD010 FD020 FD030 FD050

FD070 FD090 FD140 FD150

4J031 AA12 AA13 AA14 AA20 AA29

AA49 AA53 AA55 AA59 AC01

ACO3 ADO1 AF05 AF10 AF19

		·	·		
				·	
-		·	•		
<i>,</i>					
·					
•					