Работа 2.5.1

Измерение коэффициента поверхностного натяжения жидкости

Андрей Киркича, Б01-202, МФТИ, 2023

Цель работы: измерение температурной зависимости коэффициента поверхностного натяжения дистиллированной воды с использованием известного коэффициента поверхностного натяжения спирта, определение полной поверхностной энергии и теплоты, необходимой для изотермического образования единицы поверхности жидкости при различной температуре

В работе используются: прибор Ребиндера с термостатом и микроманометром; исследуемые жидкости; стаканы

Теоретичские сведения

Наличие поверхностного слоя приводит к различию давлений по разные стороны от искривленной границы раздела двух сред. Для сферического пузырька с воздухом внутри жидкости избыточное давление даётся формулой Лапласа:

$$\Delta p = p_{\text{внутр}} - p_{\text{внеш}} = \frac{2\sigma}{r}$$
 (1)

где σ - коэффициент поверхностного натяжения, r - радиус кривизны поверхности раздела двух фаз

Методика измерений

В работе измеряется даление Δp , необходимое для выталкивания в жидкость пузырька воздуха.

Рисунок 1: схема экспериментальной установки

Исследуемая жидкость (дистиллированная вода) наливается в сосуд В. Тестовая жидкость (этиловый спирт) наливается в сосуд Е. При измерениях колбы герметично закрываются пробками. Через одну из двух пробок проходит полая металлическая игла С. Этой пробкой закрывается сосуд, в котором проводятся измерения. Верхний конец иглы открыт в атмосферу, а нижний погружен в жидкость. Другой сосуд герметично закрывается второй пробкой. При создании достаточного разряжения воздуха в колбе с иглой пузырьки воздуха начинают пробулькивать через жидкость. Поверхностное натяжение можно определить по величине разряжения Δp , необходимого для прохождения пузырьков, при известном радиусе иглы.

Разряжение в системе создается с помощью аспиратора А. Кран K_2 разделяет две полости аспиратора. Верхняя полость при закрытом кране K_2 заполняется водой. Затем кран K_2 открывают и заполняют водой нижнюю полость аспиратора. Разряжение воздуха создается в нижней полости при открывании крана K_1 , когда вода вытекает из неё по каплям. В колбах В и С, соединённых трубками с нижней полостью аспиратора, создается такое же пониженное давление. Разность давлений в полостях с разряженным воздухом и атмосферой

измеряется спиртовым микроманометром.

Для стабилизации температуры исследуемой жидкости через рубашку D колбы B непрерывно прогоняется вода из термостата.

Результаты измерений

Измерения проводились для разных значений температуры в диапазоне 20-80 °C. По следующей формуле определялось давление внутри:

$$p = C \cdot N \cdot \frac{\rho_{\text{залитого}}}{\rho_{\text{указанная}}} \cdot K \cdot 9.81$$
 (2)

где N - количество делений по шкале манометра, C - поправочный множитель, K - постоянная угла наклона, $\rho_{\text{залитого}}$ - плотность спирта, залитого в прибор, $\rho_{\text{указанная}}$ - плотность спирта, указанная на приборе

Для данной установки:

- C = 1
- $\rho_{\text{залитого}} = 0.8049 \frac{\Gamma}{\text{см}^3}$
- $\rho_{y \text{казанная}} = 0.8095 \frac{\Gamma}{\text{см}^3}$
- K = 0.2
- r = 0.6 mm

Внешнее давление считается по следующей формуле:

$$p_{\text{внеш}} = \rho g \Delta h \tag{3}$$

 $\Delta h = 16.5 \; \mathrm{mm}$ - глубина погружения иглы под поверхность В расчётах учитывается зависимость плотности воды от температуры

Затем можно найти избыточное давление $\Delta p = p - p_{\text{внеш}}$ и по формуле (1) рассчитать коэффициент поверхностного натяжения. Ниже приведены результаты измерений. По этим значениям можно построить графики зависимости коэффициента поверхностного натяжения $\sigma(T)$, теплоты образования единицы

поверхности жидкости q(T), поверхностной энергии единицы площади $u_{\text{пов}}(T)$ от температуры.

T , o C	N, делений	Δp , Πa	σ , $10^{-2}\frac{H}{M}$	$q, \frac{M \coprod M}{M^2}$	$u_{\text{nob}}, \frac{M \angle M}{M^2}$
20.0	197	220 ± 10	6.7 ± 0.4	2.4 ± 0.4	69 ± 4
26.0	195	219 ± 10	6.6 ± 0.4	3.2 ± 0.6	69 ± 4
30.3	195	219 ± 10	6.6 ± 0.4	3.7 ± 0.7	69 ± 4
35.3	195	219 ± 10	6.6 ± 0.4	4.3 ± 0.8	70 ± 4
40.3	193	216 ± 10	6.5 ± 0.4	4.9 ± 0.9	70 ± 4
46.0	192	214 ± 10	6.4 ± 0.4	5.6 ± 0.9	70 ± 4
50.1	192	215 ± 10	6.4 ± 0.4	6.1 ± 1.1	71 ± 4
55.0	189	209 ± 10	6.3 ± 0.4	6.7 ± 1.1	69 ± 4
60.0	186	204 ± 10	6.1 ± 0.3	7.3 ± 1.2	68 ± 4

Таблица 1: результаты измерений

Ниже представлены упомянутые графики.

Рисунок 2: график зависимости коэффициента поверхностного натяжения от температуры

Отсюда получаем температурный коэффициент:

$$k = \frac{d\sigma}{dT} = -(1.2 \pm 0.2) \cdot 10^{-4} \frac{\text{H}}{\text{M} \cdot \text{K}}$$

Построим зависимости от температуры:

- \bullet Теплоты образования единицы поверхности жидкости $q = -T \cdot \frac{d\sigma}{dT}$
- \bullet Поверхностной энергии единицы площади $u_{\text{пов}} = \sigma T \cdot \frac{d\sigma}{dT}$

Рисунок 3: график зависимости теплоты образования единицы поверхности экидкости от температуры

Рисунок 4: график зависимости поверхностной энергии единицы площади от температуры

Расчёт погрешностей

- $\rho_{\text{залитого}}, \, \rho_{\text{указанная}}, \, K, \, C, \, g, \, \rho$ считаем константами без погрешности
- $\sigma_N = 1$ деление
- $\sigma_p = C \frac{\rho_{\text{залитого}}}{\rho_{\text{указанная}}} K \cdot 9.81 \cdot \sigma_N$
- $\sigma_{\Delta h} = 1 \text{ mm}$
- $\bullet \ \sigma_{p_{\text{\tiny BHeIII}}} = \rho \cdot g \cdot \sigma_{\Delta h}$
- $\bullet \ \sigma_{\Delta p} = \sqrt{\sigma_p^2 + \sigma_{p_{\rm BHeIII}}^2}$
- $\sigma_r = 0.05 \text{ mm}$
- $\sigma_{\sigma} = \frac{1}{2}\sigma\sqrt{\left(\frac{\sigma_{\Delta p}}{\Delta p}\right)^2 + \left(\frac{\sigma_r}{r}\right)^2}$

- ullet о σ_k вычисляется программно методом наименьших квадратов
- $\sigma_T = 0.1 \text{ K}$

•
$$\sigma_q = q \cdot \sqrt{\left(\frac{\sigma_T}{T}\right)^2 + \left(\frac{\sigma_k}{k}\right)^2}$$

$$\bullet \ \sigma_{u_{\text{пов}}} = \sqrt{\sigma_{\sigma}^2 + \sigma_q^2}$$

Вывод

Коэффициент поверхностного натяжения с ростом температуры линейно убывает. Поверхностная энергия единицы площади поверхности жидкости не зависит от температуры. Об этом говорит совпадение значений энергии на выбранном интервале температур в пределах погрешности и практически горизонтальная приближающая прямая на графике зависимости $u_{\text{пов}}(T)$. Среднее значение $u_{\text{ср}} = (69\pm4)\frac{\text{мДж}}{\text{м}^2}$. Теплота, необходимая для изотермического образования единицы поверхности жидкости, прямо пропорциональна температуре.