Predmet: Mataliza 1

Ukol: 11. Verze: 2.

Autor: David Napravnik

Prezdivka: DN

zadani

plocha utvaru ohraniceneho parabolou $y^2 = x$ a primkou y = x - 2

reseni

nejdrive si problem obratime prohozenim x a y funkce se protinaji v x=-1 a x=2

Tunkee se profinații v
$$x = -1$$
 a $x =$

$$\int x + 2 \ dx = \frac{x^2}{2} + 2x + C$$

$$\int_{-1}^2 x + 2 \ dx = \frac{15}{2}$$

$$\int x^2 \ dx = \frac{x^3}{3} + C$$

$$\int_{-1}^2 x^2 \ dx = 3$$

ohranicena plocha je velka $\frac{15}{2}-3=\frac{9}{2}$

zadani

plocha utvaru ohraniceneho krivkou funkce $\ln x,$ osou xa primkou x=e

reseni

$$\int_{1}^{e} \ln x \ dx = x(\ln x - 1) + C$$

$$\int_{1}^{e} \ln x \ dx = e(\ln e - 1) - 1(\ln 1 - 1)$$

$$\int_{1}^{e} \ln x \ dx = e(1 - 1) - (0 - 1)$$

$$\int_{1}^{e} \ln x \ dx = 1$$

zadani

objem telesa vznikleho z utvaru b) rotaci kolem osy x

reseni

$$\int_{0}^{\pi} \pi(\ln(x))^{2} dx = \pi(2x - 2x\log(x) + x\log^{2}(x))$$
$$\int_{0}^{e} \pi(\ln(x))^{2} dx = \pi e$$

zadani

objem komoleho rotacniho kuzele s vyskou v a polomery podstav r a R

reseni

plocha 2D telesa:
$$vr+\frac{(R-r)*v}{2}=\frac{v(r+R)}{2}$$
 obtocime kolem osy y podle vzorecku $S=\pi r^2$
$$\pi(\frac{(r+R)}{2})^2\mid \text{mame prumerny obsah vodorovne plosky}$$

$$\pi(\frac{(r+R)}{2})^2*v\mid \text{prinasobime velikost telesa (ta se obtocenim kolem osy nemeni)}$$