

S'20 CS 410/510

Intro to quantum computing

Fang Song

Week 6

- Phase estimation
- Quantum Fourier transform

Credit: based on slides by Richard Cleve

Recall: quantum factorization algorithm

- Last week: 1 & 2 (treating PE as black-box)
- Today: 3 open up PE and QFT

Phase estimation (eigenvalue est.) [Kitaev'94]

Input:

- Unitary operation U (described by a quantum circuit).
- A quantum state $|\psi\rangle$ that is an eigenvector of $U:U|\psi\rangle=e^{2\pi i\theta}|\psi\rangle$.

Output: An approximation to $\theta \in [0, 1)$.

- A central tool in quantum algorithm design
 - Order finding
 - QFT (\mathbb{Z}_m)
 - Hidden subgroup problem
 - Quantum linear system solver
 - Quantum simulation
 - •

Generalized controlled unitary

$$\bullet C - U = \begin{pmatrix} I & 0 \\ 0 & U \end{pmatrix}$$

$$egin{array}{c|c} \Lambda_m(U) & |b_1
angle & |b_1
angle & |b_m
angle & |b$$

• $\Lambda_m(U)$ on m+n qubits $|k\rangle|\psi\rangle\mapsto|k\rangle U^k|\psi\rangle, k\in\{0,1,\ldots,2^m-1\}$

$$\Lambda_{m}(U) = \begin{pmatrix} I & 0 & 0 & \dots & 0 \\ 0 & U & 0 & \dots & 0 \\ 0 & 0 & U^{2} & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & U^{2^{m}-1} \end{pmatrix}$$

- $b_1b_2 \dots b_m$ base-2 representation of integers
- Identify $\{000, 001, 010, 011, 100, 101, 110, 111\} = \{0, 1, 2, 3, 4, 5, 6, 7\}$

Phase estimation algorithm

- Assume a quantum circuit for $\Lambda_m(U)$ is given
 - ullet May be difficult to construct from a circuit for U

$$U|\psi\rangle = e^{2\pi i\theta}|\psi\rangle$$

■ A special case: $\theta = \frac{j}{2^m}$ for some $j \in \{0,1,...,2^m-1\}$

Let
$$|\phi_j\rangle \coloneqq \frac{1}{\sqrt{2^m}} \sum_{k=0}^{2^m - 1} \omega_M^{kj} |k\rangle (\omega_M \coloneqq e^{\frac{2\pi i}{2^m}})$$

■ Determining $j \Leftrightarrow$ distinguishing between $|\phi_j\rangle$

How to distinguishing between $|\phi_j\rangle$, $j \in \{0, ..., 2^m - 1\}$? $|\phi_j\rangle \coloneqq \frac{1}{\sqrt{2^m}} \sum_{k=0}^{2^{m-1}} \omega_M^{kj} |k\rangle (\omega_M \coloneqq e^{\frac{2\pi i}{2^m}})$

- Observation. $\{|\phi_j\rangle\}$ orthonormal
- Pf. $\langle \phi_j | \phi_{j'} \rangle =$

• $\{|\phi_j\rangle\}$ orthonormal \Rightarrow \exists unitary $F:|j\rangle\mapsto|\phi_j\rangle=\frac{1}{\sqrt{M}}\sum_{k=0}^{M-1}\omega_M^{kj}|k\rangle$, $M=2^m$

$$F_{M} = \frac{1}{\sqrt{M}} \begin{pmatrix} 1 & 1 & 1 & \cdots & 1\\ 1 & \omega & \omega^{2} & \cdots & \omega^{M-1}\\ 1 & \omega^{2} & \omega^{4} & \cdots & \omega^{2(M-1)}\\ \vdots & \vdots & \vdots & \ddots & \vdots\\ 1 & \omega^{M-1} & \omega^{2(M-1)} & \cdots & \omega^{(M-1)(M-1)} \end{pmatrix}$$

• Special case $\theta = \frac{j}{2^m} = 0.j_1j_2...j_m$.

• General $\theta = 0.j_1 j_2 ... j_m j_{m+1} ...$

 \rightarrow Measure $j = j_1 j_2 \dots j_m$ (m-bit approximation of θ) with prob. at

lest $\frac{4}{\pi^2} \approx 0.4$.

Exercise

1. Let U be a unitary on one qubit, and $|\psi\rangle$ is an eigenvector with eigenvalue either 1 or -1. Can you design a quantum algorithm to determine the eigenvalue? How many gates do you need?

What about F_M

$$\begin{pmatrix} x_0 \\ x_1 \\ \vdots \\ x_{M-1} \end{pmatrix} \mapsto \begin{pmatrix} y_0 \\ y_1 \\ \vdots \\ y_{M-1} \end{pmatrix} = F_M \begin{pmatrix} x_0 \\ x_1 \\ \vdots \\ x_{M-1} \end{pmatrix}$$

■ Discrete Fourier transform
$$\begin{pmatrix} x_0 \\ x_1 \\ \vdots \\ x_{M-1} \end{pmatrix} \mapsto \begin{pmatrix} y_0 \\ y_1 \\ \vdots \\ y_{M-1} \end{pmatrix} = F_M \begin{pmatrix} x_0 \\ x_1 \\ \vdots \\ x_{M-1} \end{pmatrix}$$

$$F_M = \frac{1}{\sqrt{M}} \begin{pmatrix} 1 & 1 & 1 & \cdots & 1 \\ 1 & \omega & \omega^2 & \cdots & \omega^{M-1} \\ 1 & \omega^2 & \omega^4 & \cdots & \omega^{2(M-1)} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & \omega^{M-1} & \omega^{2(M-1)} & \cdots & \omega^{(M-1)(M-1)} \end{pmatrix}$$

$$y_j = \frac{1}{\sqrt{M}} \sum_{k=0}^{M-1} \omega_M^{kj} x_k$$

Applications everywhere: signal processing, optics, crystallography, geology, astronomy ...

• Quantum Fourier transform QFT_M $|j\rangle \mapsto |\phi_j\rangle = \frac{1}{\sqrt{M}} \sum_{k=0}^{M-1} \omega_M^{kj} |k\rangle$

$$\sum_{j=0}^{M-1} x_j |j\rangle \mapsto \sum_{j=0}^{M-1} y_j |j\rangle, y_j = \frac{1}{\sqrt{M}} \sum_{j=0}^{M-1} \omega_M^{kj} x_k$$

Computing F_M

- Naïve matrix multiplication $O(M^2)$
- Classical FFT algorithm: $O(M \log M)$ arithmetic operations

$$F_{M} = \frac{1}{\sqrt{M}} \begin{pmatrix} 1 & 1 & 1 & \cdots & 1\\ 1 & \omega & \omega^{2} & \cdots & \omega^{M-1}\\ 1 & \omega^{2} & \omega^{4} & \cdots & \omega^{2(M-1)}\\ \vdots & \vdots & \vdots & \ddots & \vdots\\ 1 & \omega^{M-1} & \omega^{2(M-1)} & \cdots & \omega^{(M-1)(M-1)} \end{pmatrix}$$

$$\begin{pmatrix} x_0 \\ x_1 \\ \vdots \\ x_{M-1} \end{pmatrix} \mapsto \begin{pmatrix} y_0 \\ y_1 \\ \vdots \\ y_{M-1} \end{pmatrix} = F_M \begin{pmatrix} x_0 \\ x_1 \\ \vdots \\ x_{M-1} \end{pmatrix} = \begin{pmatrix} x_0 \\ x_1 \\ \vdots \\ x_{M-1} \end{pmatrix} = \begin{pmatrix} x_0 \\ x_1 \\ \vdots \\ x_{M-2} \end{pmatrix} \begin{pmatrix} x_0 \\ x_2 \\ \vdots \\ x_{M-2} \end{pmatrix} \begin{pmatrix} x_1 \\ x_3 \\ \vdots \\ x_{M-1} \end{pmatrix}$$

Computing F_M cont'd

■ Classical FFT algorithm: $O(M \log M)$ arithmetic operations

■ $T(M) = 2T(M/2) + O(M) = O(M \log M)$ [Think of Merge Sort]

Quantum Fourier Transform

- ∃ QFT circuit of size $O(m^2)$ [log² M vs. FFT $M \log M$]
- Let's implement $\widetilde{QFT_M}|j_{m-1}j_{m-2}...j_0\rangle = \frac{1}{\sqrt{M}}\sum_k \omega_M^{kj}|k_0k_1...k_{m-1}\rangle$
 - i.e. reverse the order of the output qubits of QFT

Quantum Fourier Transform cont'd

Quantum Fourier Transform cont'd

$$R_k = \begin{pmatrix} 1 & 0 \\ 0 & e^{2\pi i/2^k} \end{pmatrix}$$

$$T(m) = T(m-1) + O(m) = O(m^2)$$

Revisit quantum order finding algorithm

- QFT √
- $\blacksquare \Lambda_m(M_a): |k\rangle |x\rangle \mapsto |k\rangle |a^k x \bmod N\rangle$
 - Modular exponentiation takes time $O(mn^2)$ $|0^m\rangle$
 - m = O(n) suffices to recover r
- \rightarrow Circuit size poly(n)

$$|1\rangle = |00 \dots 1\rangle = \frac{1}{\sqrt{r}} \sum |\psi_j\rangle$$

■ NB. Read about continued fraction if curious https://people.eecs.berkeley.edu/~vazirani/s09quantum/notes/lecture4.pdf

Summary

Factoring

Order Fiding

Phase Estimation

Exercise

1. Let
$$\vec{x} = \left(\frac{1}{\sqrt{2}}, 0, 0, \frac{i}{\sqrt{2}}\right)$$
. Compute $\vec{y} = F_4 \vec{x}$ using FFT

2. Draw the QFT circuit that implements F_4

Scratch