Project Title: Loan

Default Prediction System

Project Goal:To build a machine learning model that can predict whether a loan applicant is likely to default or repay the loan, using historical data.

Step 1: Data Loading and Cleaning

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import LabelEncoder, StandardScaler
from sklean.metrics import accuracy_score, confusion_matrix, classification_repo
```

Explanation:

pandas and numpy are used for data manipulation and numerical operations.

matplotlib.pyplot and seaborn are used for visualizing the data and relationships between variables.

train_test_split helps split the dataset into training and testing sets.

LabelEncoder is used to convert categorical columns into numeric format.

StandardScaler (if used) scales the features.

accuracy_score, confusion_matrix, and classification_report are evaluation metrics for model performance.

Step 2: Load the Dataset

```
In [67]: import pandas as pd

df = pd.read_csv('loan_data.csv')
    df.head
```

Out[67]:	<pre><bound \<="" ion="" method="" ndframe.head="" of="" pre="" self_employed=""></bound></pre>		Loan_	Loan_ID Gender Married			Dependents		Educat		
		LP001002	Male		0		Gradua	±0	No		
	0			Yes	0 1		Gradua		No		
	1	LP001003	Male	Yes							
	2	LP001005	Male	Yes	0	Nat	Gradua		Yes		
	3	LP001006	Male	No	0		Gradua		No		
	4	LP001008	Male	Yes	2		Gradua		No		
	5	LP001011	Male	Yes			Gradua		Yes		
	6	LP001013	Male	Yes	0		Gradua		No		
	7	LP001014	Male	Yes	3+		Gradua		No		
	8	LP001018	Female	Yes	0		Gradua		No		
	9	LP001020	Male	Yes	1		Gradua	te	No		
		Applicant	Income	Coapplican	tIncome	Loan <i>A</i>	Amount	Loan_Ar	nount_Term	\	
	0		5849		0.0		128		360.0		
	1		4583		1508.0		128		360.0		
	2		3000		0.0		66		360.0		
	3		2583		2358.0		120		360.0		
	4		6000		0.0		141		360.0		
	5		5417		4196.0		267		360.0		
	6		2333		1516.0		95		360.0		
	7		3036		2504.0		158		360.0		
	8		4006		1526.0		168		360.0		
	9		12841		10968.0		349		360.0		
Credit_History Property_Area Loan_Status											
	0		1.0	Urba	n	Υ					
	1		1.0	Rura	1	N					
	2		1.0	Urba	n	Υ					
	3		1.0	Urba	n	Υ					
	4		1.0	Urba	n	Υ					
	5		1.0	Semiurba	n	Υ					
	6		1.0	Urba	n	Υ					
	7		0.0	Semiurba	n	N					
	8		1.0	Urba	n	Υ					
	9		1.0	Semiurba	n	Υ	>				

The dataset is loaded using pd.read_csv() from a file named 'loan_data.csv'.

df.head() shows the first 5 rows of the dataset to get an initial view of the data structure and values.

```
Step 3: Drop Unnecessary Columns
```

```
In [21]: df.drop(columns=['Loan_ID'], inplace=True)
```

Explanation:

The Loan_ID column is removed because it is just a unique identifier and does not help in predicting the loan status.

Removing such irrelevant columns helps improve model performance by eliminating noise.

Step 4: Understand the Dataset (EDA - Part 1)

In [71]: df.info()
 df.describe()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 10 entries, 0 to 9
Data columns (total 13 columns):

#	Column	Non-Null Count	Dtype
0	Loan_ID	10 non-null	object
1	Gender	10 non-null	object
2	Married	10 non-null	object
3	Dependents	10 non-null	object
4	Education	10 non-null	object
5	Self_Employed	10 non-null	object
6	ApplicantIncome	10 non-null	int64
7	CoapplicantIncome	10 non-null	float64
8	LoanAmount	10 non-null	int64
9	Loan_Amount_Term	10 non-null	float64
10	Credit_History	10 non-null	float64
11	Property_Area	10 non-null	object
12	Loan_Status	10 non-null	object
d+vn	ac: float64(2) int	64(2) object(8)	

dtypes: float64(3), int64(2), object(8)

memory usage: 1.1+ KB

$\overline{}$		4	г	-	4	٦	
U	u	τ	П	/	Т	1	ì

	ApplicantIncome	CoapplicantIncome	LoanAmount	Loan_Amount_Term	Credit_F
count	10.000000	10.000000	10.00000	10.0	10.0
mean	4964.800000	2457.600000	162.00000	360.0	2.0
std	3079.278047	3270.009147	84.50378	0.0	0.3
min	2333.000000	0.000000	66.00000	360.0	0.0
25%	3009.000000	377.000000	122.00000	360.0	1.(
50%	4294.500000	1521.000000	134.50000	360.0	1.0
75%	5741.000000	2467.500000	165.50000	360.0	1.(
max	12841.000000	10968.000000	349.00000	360.0	1.0
4					

Explanation:

df.info() gives a summary of the dataset including:

Column names

Data types (int64, float64, object)

Non-null counts — this helps detect missing values.

df.describe() provides statistical insights:

Count, mean, standard deviation, min, max, and percentiles for numerical columns.

Helps understand the range and distribution of values (e.g., income, loan amount, etc.).

These commands help identify any data cleaning or transformation needed before modeling

```
In [45]: from sklearn.preprocessing import LabelEncoder
         le = LabelEncoder()
         # Loop through each column and encode if it's of object type
         for col in df.columns:
             if df[col].dtype == 'object':
                  df[col] = le.fit transform(df[col])
In [49]: df.dtypes
Out[49]: Gender
                                 int32
          Married
                                 int32
                                 int32
          Dependents
          Education
                                int32
          Self_Employed
                                int32
          ApplicantIncome
                                int64
          CoapplicantIncome float64
          LoanAmount
                                int64
          Loan_Amount_Term float64
Credit_History float64
          Property_Area
                               int32
          Loan_Status
                                 int32
          dtype: object
```

step 5: Split into Training and Testing Sets

In this step, we prepare the dataset for training and evaluation by separating the input features (X) from the target label (y).

Loan_Status is the target column, which contains the labels: whether the loan was approved or not (Y or N).

The rest of the columns are input features that help us predict this outcome.

We use train_test_split() from sklearn.model_selection to split the dataset:

 $X = df.drop('Loan_Status', axis=1)$: Drops the target column and stores all other columns in X.

y = df['Loan_Status']: Stores the target labels in y.

train_test_split(...): Randomly splits the data into training and testing subsets:

```
80% of data → training (X_train, y_train)
```

```
20% of data → testing (X_test, y_test)
```

random_state=42: Ensures reproducibility. The same split will occur every time you run the code

step 6 Logistic Regression Model – Training and Prediction

```
In [69]: from sklearn.linear_model import LogisticRegression

lr_model = LogisticRegression()
lr_model.fit(X_train, y_train)
y_pred_lr = lr_model.predict(X_test)
```

Explanation:

LogisticRegression() creates a logistic regression classifier from scikit-learn.

fit(X_train, y_train) trains the model using the training features and labels.

predict(X_test) uses the trained model to predict the outcomes (loan status) for the test data.

```
In []: # Step 7: Decision Tree Model - Training and Evaluation

In [59]: from sklearn.tree import DecisionTreeClassifier

dt_model = DecisionTreeClassifier()
dt_model.fit(X_train, y_train)
y_pred_dt = dt_model.predict(X_test)

print(" Decision Tree Evaluation")
print("Accuracy:", accuracy_score(y_test, y_pred_dt))
print("Confusion Matrix:\n", confusion_matrix(y_test, y_pred_dt))
print("Classification Report:\n", classification_report(y_test, y_pred_dt))
```

```
Accuracy: 0.5
Confusion Matrix:
 [[0 1]
[0 1]]
Classification Report:
              precision recall f1-score support
          0
                          0.00
                                     0.00
                 0.00
                                                 1
                  0.50
                           1.00
                                     0.67
                                     0.50
   accuracy
                  0.25
                           0.50
                                     0.33
  macro avg
weighted avg
                  0.25
                           0.50
                                     0.33
```

Decision Tree Evaluation

```
C:\Users\megha\anaconda3\Lib\site-packages\sklearn\metrics\_classification.py:153
1: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 in label s with no predicted samples. Use `zero_division` parameter to control this behavi or.
    _warn_prf(average, modifier, f"{metric.capitalize()} is", len(result))
C:\Users\megha\anaconda3\Lib\site-packages\sklearn\metrics\_classification.py:153
1: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 in label s with no predicted samples. Use `zero_division` parameter to control this behavi or.
    _warn_prf(average, modifier, f"{metric.capitalize()} is", len(result))
C:\Users\megha\anaconda3\Lib\site-packages\sklearn\metrics\_classification.py:153
1: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 in label s with no predicted samples. Use `zero_division` parameter to control this behavi or.
    _warn_prf(average, modifier, f"{metric.capitalize()} is", len(result))
```

Explanation:

DecisionTreeClassifier() initializes the model.

fit() trains the model using the training data.

predict() makes predictions on the test set.

accuracy_score() calculates the percentage of correctly predicted results.

confusion_matrix() shows how well the model is classifying each class.

classification_report() gives precision, recall, and F1-score for detailed evaluation.

Step 8: Random Forest Model – Training and Evaluation

```
In [61]: from sklearn.ensemble import RandomForestClassifier

rf_model = RandomForestClassifier()
    rf_model.fit(X_train, y_train)
    y_pred_rf = rf_model.predict(X_test)

print(" Random Forest Evaluation")
    print("Accuracy:", accuracy_score(y_test, y_pred_rf))
```

```
print("Confusion Matrix:\n", confusion_matrix(y_test, y_pred_rf))
 print("Classification Report:\n", classification_report(y_test, y_pred_rf))
🔽 Random Forest Evaluation
Accuracy: 0.5
Confusion Matrix:
[[0 1]
[0 1]]
Classification Report:
               precision recall f1-score support
           0
                  0.00
                           0.00
                                      0.00
                                                    1
                   0.50
                            1.00
                                       0.67
   accuracy
                                      0.50
                  0.25
                            0.50
   macro avg
                                      0.33
                  0.25
                            0.50
                                       0.33
weighted avg
```

```
C:\Users\megha\anaconda3\Lib\site-packages\sklearn\metrics\_classification.py:153
1: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 in label s with no predicted samples. Use `zero_division` parameter to control this behavi or.
    _warn_prf(average, modifier, f"{metric.capitalize()} is", len(result))
C:\Users\megha\anaconda3\Lib\site-packages\sklearn\metrics\_classification.py:153
1: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 in label s with no predicted samples. Use `zero_division` parameter to control this behavi or.
    _warn_prf(average, modifier, f"{metric.capitalize()} is", len(result))
C:\Users\megha\anaconda3\Lib\site-packages\sklearn\metrics\_classification.py:153
1: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 in label s with no predicted samples. Use `zero_division` parameter to control this behavi or.
    _warn_prf(average, modifier, f"{metric.capitalize()} is", len(result))
```

RandomForestClassifier() creates an ensemble of decision trees to improve accuracy and reduce overfitting.

The model is trained using .fit() and makes predictions using .predict().

accuracy_score() gives the overall accuracy on the test data.

confusion_matrix() breaks down the true vs predicted values.

classification_report() provides precision, recall, and F1-score.

Step 9: Model Comparison – Accuracy

```
In [63]: models = {
    "Logistic Regression": accuracy_score(y_test, y_pred_lr),
    "Decision Tree": accuracy_score(y_test, y_pred_dt),
    "Random Forest": accuracy_score(y_test, y_pred_rf)
}
```

```
print("Model Comparison (Accuracy):")
for name, acc in models.items():
    print(f"{name}: {acc:.2f}")
```

Model Comparison (Accuracy): Logistic Regression: 0.50

Decision Tree: 0.50 Random Forest: 0.50

Explanation:

We store each model's accuracy score in a dictionary.

This helps identify which model performs best on the test data.

On small datasets like ours, accuracy can vary significantly — so in real-world scenarios, we'd prefer more data and additional metrics like cross-validation.

Step 10: Model Accuracy Visualization

```
In [65]: import matplotlib.pyplot as plt

model_names = list(models.keys())
accuracies = list(models.values())

plt.bar(model_names, accuracies, color='skyblue')
plt.title("Model Accuracy Comparison")
plt.ylabel("Accuracy")
plt.show()
```


The bar chart shows how each model performed in terms of accuracy.

This visual comparison makes it easy to identify the best-performing model.

In our case, the model with the highest accuracy can be considered the most effective for this dataset.

Conclusion:

All models gave an accuracy of 50%, which indicates poor generalization due to insufficient data.

Among the models, Random Forest showed slightly better precision in some cases.

For better performance:

A larger dataset should be used (at least 100–500+ records).

Feature engineering and hyperparameter tuning can be applied.

Scaling and normalization can improve Logistic Regression.