Методы оптимизации. Семинар 8. Сопряженные функции.

Корнилов Никита Максимович

Московский физико-технический институт

23 октября 2025г

Сопряженная функция

Позволяет описывать функции с помощью максимального расстояния до прямой с углом наклона y.

Definition

Пусть $f:\mathbb{R}^n o \overline{\mathbb{R}}$. Функция $f^*:\mathbb{R}^n o \overline{\mathbb{R}}$

$$f^*(y) = \sup_{x \in \mathbb{R}^n} \{ \langle x, y \rangle - f(x) \}$$

называется сопряженной по Фенхелю функцией к f.

Сопряженная функция всегда выпуклая независимо от выпуклости f!

(□▶ ◀鬪▶ ◀필▶ ◀필▶ · 필 · 쒸익()

Геометрия сопряженной функции

◆ロ ト ◆回 ト ◆ 直 ト ◆ 直 ・ 夕 Q ○

Примеры сопряженных функций

Попробуем посчитать по определению $f^*(y)$. Если f(x) - выпукла, то $\langle x,y\rangle-f(x)$ - вогнута по x, так что можно пользоваться критериями глобального максимума.

Example

Найти сопряженную функцию к линейной функции $f(x) = \langle a, x \rangle + b$, где $a, x \in \mathbb{R}^n$ и $b \in \mathbb{R}$.

Примеры сопряженных функций

Попробуем посчитать по определению $f^*(y)$. Если f(x) - выпукла, то $\langle x,y\rangle-f(x)$ - вогнута по x, так что можно пользоваться критериями глобального максимума.

Example

Найти сопряженную функцию к линейной функции $f(x) = \langle a, x \rangle + b$, где $a, x \in \mathbb{R}^n$ и $b \in \mathbb{R}$.

Proof.

$$f^*(y) = \sup_{x \in \mathbb{R}^n} \{ \langle y, x \rangle - \langle a, x \rangle - b \} = \sup_{x \in \mathbb{R}^n} \{ \langle y - a, x \rangle - b \}.$$

Величина $\langle y-a,x\rangle-b$ как функция по x ограничена в том и только в том случае, когда y=a, в этом случае она является константой, равной -b. Тогда получаем, что сопряженная функция $f^*(y)=-b$ с областью определения $dom f^*=\{a\}$.

H. M. Корнилов 23 октября 2025г 4 / 23

Example

Найти сопряженную функцию к экспоненте $f(x)=e^x$, где $x\in\mathbb{R}.$

H. М. Корнилов 23 октября 2025г 5 / 23

Example

Найти сопряженную функцию к экспоненте $f(x) = e^x$, где $x \in \mathbb{R}$. **Proof**.

По определению сопряженной функции

$$f^*(y) = \sup_{x \in \mathbb{R}} \{xy - e^x\}.$$

Дифференцируем $xy - e^x$ по x и приравниваем к нулю:

$$y-e^x=0.$$

Такое возможно только при y>0, а именно $xy-e^x$ достигает своего максимуму в точке $x=\log y$. Поэтому $f^*=y\log y-y$. Остальные случаи рассматриваем отдельно:

При y < 0 функция $xy - e^x$ не ограничена.

При
$$y = 0$$
, $f^*(y) = \sup_{x \in \mathbb{P}} -e^x = 0$.

Example

Итого сопряженная функция

$$f^*(y) = \begin{cases} y \log y - y, & y \ge 0, \\ +\infty, & y < 0, \end{cases}$$

с областью определения dom $f^*(y) = \mathbb{R}_+$ (мы доопределили $0 \log 0 = 0$).

6 / 23

Н. М. Корнилов 23 октября 2025г

Общий алгоритм подсчета f^*

Для выпуклых и дифференцируемых функций:

- **①** Для каждого y посчитать градиент $\langle x,y \rangle f(x)$ по x.
- ② Посмотреть, для каких y градиент можно приравнять к 0 и найти глоб максимум по x.
- **3** Для остальных y надо смотреть, расходится ли супремум или сходится к конечному значения.
- *Для субдифференцируемых функций можно считать субдифференциал для $\sup_x \{\langle x,y \rangle f(x)\} = -\inf_x \{f(x) \langle x,y \rangle\}.$
- **Для сложно дифференцируемых функций, можно исследовать супремум по определению или свойствам сопряженных функций.

◆ロト ◆個ト ◆園ト ◆園ト ■ めので

Example

Найти сопряженную функцию для $f(x) = \max\{1-x,0\}$, $x \in \mathbb{R}$.

Н. М. Корнилов

Example (Логистическая функция)

Найти сопряженную функцию для $f(x) = \log(1+e^x)$, $x \in \mathbb{R}$.

H. М. Корнилов 23 октября 2025г 9 / 23

Example (Логистическая функция)

Найти сопряженную функцию для $f(x) = \log(1 + e^x)$, $x \in \mathbb{R}$.

Proof.

По определению сопряженной функции

$$f^*(y) = \sup_{x \in \mathbb{R}} \{ xy - \log(1 + e^x) \}. \tag{1}$$

9 / 23

Беря производную от $xy - \log(1 + e^x)$ по x и приравнивая градиент к 0, получаем

$$x = \log y - \log(1 - y).$$

Эта формула корректно определена только при 0 < y < 1. Поскольку функция $xy - \log(1 + e^x)$ вогнутая по x, то найденное значение — это и есть супремум. Тогда $f^*(y) = y \log y + (1-y) \log(1-y)$. Остальные случаи рассмотрим отдельно.

H. М. Корнилов 23 октября 2025г

Example

Рассмотрим случай, когда y<0. Покажем, что в этом случае выражение $xy-\log(1+e^x)$ как функция по x будет не ограничено при $x\to-\infty$. Действительно, из монотонности логарифма и того, что $e^x<1$ при x<0 следует, $\log(1+e^x)<\log 2$ для всех x<0. Поэтому $xy-\log(1+e^x)>xy-\log 2$. Поскольку $yx\to\infty$ при $x\to-\infty$, то $xy-\log(1+e^x)\to\infty$ при $x\to-\infty$. То есть супремум равен $+\infty$.

Пусть теперь y>1. Аналогичные рассуждения дают неравенство $\log(1+e^x)<\log(e^x+e^x)=\log 2+x$ при x>0. Отсюда $xy-\log(1+e^x)>(y-1)x-\log 2$ для всех x>0. Устремляя $x\to\infty$, получаем, что супремум (1) равен $+\infty$.

◆ロト ◆個ト ◆園ト ◆園ト ■ めので

Example

Пусть теперь y=0. Поскольку $\log(1+e^x)\geq 0$ для всех $x\in\mathbb{R}$ и $\log(1+e^x)\to 0$ при $x\to -\infty$, то супремум (1) равен 0.

Пусть y=1, покажем, что в этом случае супремум так же равен нулю. Из неравенства $\log(1+e^x)\geq x$ для всех $x\in\mathbb{R}$ следует, что супремум не может быть больше нуля. Он равен нулю, поскольку $\log(1+e^x)=x+\log(1+e^{-x}), \forall x\in\mathbb{R}$ и $\ln(1+e^{-x})\to 0$ при $x\to\infty$. Итого имеем

$$f^*(y) = egin{cases} y \log y + (1-y) \log (1-y), & y \in [0,1], \ +\infty, & ext{иначе.} \end{cases}$$

H. М. Корнилов 23 октября 2025г 11 / 23

Example (Квадратичная функция)

Найти сопряженную функцию для $f(x)=\frac{1}{2}\langle x,Ax\rangle+\langle b,x\rangle$ для $A\in\mathbb{S}^n_{++}$ и $x,b\in\mathbb{R}^n$.

(ロ ト 4 🗗 ト 4 분 ト 4 분 ト - 분 - 쒸 Q () -

Example (Лог-детерминант)

Найти сопряженную функцию для $f(X) = -\log \det X$ на $X \in \mathbb{S}^n_{++}.$

Н. М. Корнилов

Example (Лог-детерминант)

Найти сопряженную функцию для $f(X) = -\log \det X$ на $X \in \mathbb{S}^n_{++}$. **Proof**. По определению сопряженная функция

$$f^*(Y) = \sup_{X \succ 0} \{ \operatorname{Tr}(XY) + \log \det X^{-1} \},$$

где ${\rm Tr}(XY)$ — стандартное скалярное произведение на \mathbb{S}^n . Вычисляя градиент под супремумом по X и приравнивая его к нулю, получаем

$$\nabla_X(\operatorname{Tr}(XY) + \log \det X) = Y + X^{-1} = 0,$$

значит, $X = -Y^{-1}$, а поскольку X является положительной определенной матрицей, то $Y \prec 0$. В этом случае

$$f^*(Y) = \log \det(-Y)^{-1} - n.$$

H. М. Корнилов 23 октября 2025г 13 / 23

Example

Покажем, что если $Y \not < 0$, то супремум равен бесконечности. Если $Y \not < 0$, то Y имеет собственный вектор v с $\|v\|_2 = 1$ и собственным значением $\lambda \ge 0$. Возьмем $X = I + tvv^{\top}$, тогда

$$\operatorname{Tr}(XY) + \log \det X^{-1} = \operatorname{Tr}(Y) + t\lambda + \log \det(I + tvv^{\top})$$

= $\operatorname{Tr}(Y) + t\lambda + \log(1 + t)$.

То есть супремум равен бесконечности при $t \to \infty$. Область определения dom $f^* = -\mathbb{S}^n_{++}$.

14 / 23

H. М. Корнилов 23 октября 2025г

Example (Норма)

Найти сопряженную функцию для произвольной нормы f(x) = ||x|| на $x \in \mathbb{R}^n$.

Example (Норма)

Найти сопряженную функцию для произвольной нормы $f(x) = \|x\|$ на $x \in \mathbb{R}^n$.

Proof.

Если $\|y\|_*>1$, тогда по определению двойственной нормы существует $z\in\mathbb{R}^n$ с $\|z\|\leq 1$ и $y^\top z>1$. Беря x=tz и устремляя $t\to\infty$, получаем

$$y^{\top}x - ||x|| = t(y^{\top}z - ||z||) \to \infty.$$

To есть $y^\top x - ||x||$ не ограничено.

Пусть теперь $\|y\|_* \leq 1$, тогда $\langle y,x \rangle \leq \|x\| \|y\|_*$ для всех $x \in \mathbb{R}^n$. Тогда

$$y^{\top}x - \|x\| \le 0.$$

При x=0, выражение $y^\top x - \|x\| = 0$, то есть $f^*(y) = 0$. Итого $f^*(y)$ – это индикатор множества $\{\|y\|_* \le 1\}$.

H. M. Корнилов 23 октября 2025г 15 / 23

Переход от многомерных к 1D

Example

Найти сопряженную функцию для $f(x)=rac{\|x\|^2}{2}$ на $x\in\mathbb{R}^n$.

Свойства сопряженных функций

• Пусть дан набор собственных функций $f_i: \mathbb{R}^n \to \overline{\mathbb{R}}, i \in \overline{1,m}$ с сопряженными функциями $f_i^*, i \in \overline{1,m}$. Тогда для функции $g: \mathbb{R}^n \times \cdots \times \mathbb{R}^n \to \overline{\mathbb{R}}$, заданной по правилу

$$g(x_1,\ldots,x_m)=\sum_{i=1}^m f_i(x_i),$$

сопряженная функция g^* считается как

$$g^*(y_1,\ldots,y_m) = \sum_{i=1}^n f_i^*(y_i).$$

Example

Найдите сопряженную функцию к $f:\mathbb{R}^n o \mathbb{R}$

$$f(x) = \sum_{i=1}^n x_i \log x_i$$
, dom $f = \{x \in \mathbb{R}^n | x \ge 0\}$.

H. М. Корнилов 23 октября 2025г 17 / 23

Свойства сопряженных функций

• Пусть $f:\mathbb{R}^n \to \overline{\mathbb{R}}$ и $\alpha>0$. Тогда для функций $g(x)=\alpha f(x)$ и $h(x)=\alpha f(\frac{x}{\alpha})$ сопряженные функции считаются как

$$g^*(y) = \alpha f^*(\frac{y}{\alpha}), \quad h^*(y) = \alpha f^*(y).$$

Example

Найти сопряженную функцию для $f(x) = rac{lpha \|x\|^2}{2}$ на $x \in \mathbb{R}^n$.

◆ロト ◆個 ト ◆ 恵 ト ◆ 恵 ・ 夕 Q C・

Н. М. Корнилов

Дополнительные определения

Definition

Функция называется замкнутой, если её надграфик является замкнутым множеством.

Замкнутость функции равносильна её полунепрерывности снизу:

$$\underline{\lim}_{k\to\infty} f(x_k) \ge f(x_0)$$

для любых $x_k \to x_0$. Непрерывные функции, очевидно, являются полунепрерывными снизу.

Definition

Функция называется собственной, если она не принимает значение $-\infty$ ни в какой точке.

Свойства сопряженных функций

$$f^*(y) = \sup_{x \in \mathbb{R}^n} \{ \langle x, y \rangle - f(x) \},$$

$$f^{**}(x) = \sup_{y \in \mathbb{R}^n} \{ \langle x, y \rangle - f^*(y) \}.$$

- f* замкнутая выпуклая функция.
- Функция $f^{**} = f$ если и только если f выпуклая, замкнутая, собственная функция.
- Пусть f замкнутая, собственная функция. Тогда следующие два утверждения равносильны при $\mu > 0$:
 - **1** f является μ -сильно выпуклой,
 - $oldsymbol{2}$ f^* имеет $1/\mu$ -липшицев градиент или f^*-1/μ -гладкая.

4□▶ 4□▶ 4□▶ 4□▶ □ 900

Двойное сопряжение

Fenchel-Young inequality

• Пусть f — произвольная функция, тогда:

$$f(x) + f^*(y) \ge \langle x, y \rangle, \quad \forall x, y \in \mathbb{R}^n.$$

• Равенство достигается только и только если

$$f(x) + f^*(y) = \langle x, y \rangle \longleftrightarrow y \in \partial f(x).$$

• Следствие из Fenchel-Young

$$f(x) \ge f^{**}(x), \quad \forall x \in \mathbb{R}^n.$$

Example

Можно показать, что для $p>1, rac{1}{p}+rac{1}{q}=1$ и $orall x,y\in\mathbb{R}$ верно

$$\frac{|x|^p}{p} + \frac{|y|^q}{q} \ge xy.$$

H. М. Корнилов 23 октября 2025г 22 / 23

Связь субдифференциала и сопряженных функций

Для выпуклых замкнутых функций субдифференциал имеет вид

$$\partial f(x) = \arg\max_{y} \{\langle x, y \rangle - f^*(y)\}.$$

Н. М. Корнилов