Выбор оптимальной модели в задаче моделирования динамики физической системы нейронными сетями

Северилов Павел

Московский физико-технический институт Кафедра интеллектуальных систем

Научный руководитель д.ф.-м.н. В. В. Стрижов

Москва, 2022 г.

Введение

Рассматривается задача выбора оптимальной модели предсказания динамики физической системы. Под динамикой системы понимается изменение во времени параметров системы.

Проблема: Интерпретируемые модели решения задачи разработаны для получения динамики ограниченного набора физических систем, не полностью учитывают физические законы

Гипотеза: Лагранжева нейронная сеть (LNN) является оптимальной моделью в смысле точности и сложности

Предлагается: Сгенерировать данные для системы двойного маятника и сравнить моделирование динамики системы моделью LNN и неинтерпретируемыми моделями.

Новизна: Интерпретация оптимальности модели LNN в терминах симметрии Нётер. Предлагается использование новой модификации LNN, учитывающей иные симметрии кроме закона сохранения энергии.

Лагранжевы нейронные сети (LNN)

- ightharpoonup Вход модели: $x_t = (q_t, \dot{q}_t)$ (канонические координаты)
- lacktriangle Требуется получить $\dot{x}_t = (\dot{q}_t, \ddot{q}_t)$
- lacktriangle Аппроксимировать нейронной сетью лагранжиан ${\cal L}$
- Из ограничений Эйлера-Лагранжа получить выражение для обратного распространения ошибки

$$\ddot{q} = \left(
abla_{\dot{q}}
abla_{\dot{q}}^{ op} \mathcal{L}
ight)^{-1} \left[
abla_{q} \mathcal{L} - \left(
abla_{q}
abla_{\dot{q}}^{ op} \mathcal{L}
ight) \dot{q}
ight]$$

Функция ошибки:

$$\mathcal{L} = \left\|\dot{x}_t^{\mathcal{L}_{ heta}} - \dot{x}_t^{ ext{true}}
ight\|_2$$

Лагранжевы нейронные сети (LNN)

(a) Схема работы базового решения моделирования динамики физической системы нейронными сетями

(b) Схема работы Lagrangian Neural Networks (LNN) моделирования динамики физической системы

Вычислительный эксперимент: Данные

Лагранжиан системы двойного маятника:

$$L = \frac{1}{2} (m_1 + m_2) l_1^2 \dot{\theta}_1^2 + \frac{1}{2} m_2 l_2^2 \dot{\theta}_2^2 + m_2 l_1 l_2 \dot{\theta}_1 \dot{\theta}_2 \cos (\theta_1 - \theta_2) + (m_1 + m_2) g l_1 \cos \theta_1 + m_2 g l_2 \cos \theta_2$$

(а) Схема физической системы двойного маятника

(b) Визуализация сгенерированных канонических координат системы двойного маятника

LNN, учитывающая трансляционную и вращательную симметрии

Нётеровская Лагранжева нейронная сеть

LNN, получающая на вход разницу между каноническими координатами $\delta\theta_{12}=\theta_1-\theta_2$ и аппроксимирующая потенциальную энергию системы $V(\delta\theta_{12})$

Аппроксимируемый лагранжиан примет вид:

$$L = \frac{1}{2} (m_1 + m_2) l_1^2 \dot{\theta}_1^2 + \frac{1}{2} m_2 l_2^2 \dot{\theta}_2^2 + m_2 l_1 l_2 \dot{\theta}_1 \dot{\theta}_2 \cos(\delta \theta_{12}) + V(\delta \theta_{12})$$

Теорема 1

Нётеровская LNN учитывает трансляционную симметрию.

Теорема 2

Нётеровская LNN учитывает вращательную симметрию.

Вычислительный эксперимент

Моделирование динамики системы двойного маятника различными видами нейронных сетей: аналитическое решение, полносвязная нейронная сеть, LSTM, LNN, модифицированной LNN.

Вычислительный эксперимент: MSE

	FC	LSTM	LNN	Нётеровская LNN
MSE	0.00 ± 0.01	0.00 ± 0.01	0.00 ± 0.01	0.00 ±0.01

Средняя ошибка MSE между предсказанной динамикой системы нейронной сетью и динамикой системы, полученной аналитическим решением.

Заключение

Проделанная работа

- ▶ Показано, что LNN является оптимальной среди моделей FN, LSTM
- ▶ Представлена Нётеровская LNN, учитываящая дополнительные симметрии кроме закона сохранения энергии
- Показано, что более интерпретируемая модель дает более точные результаты для решения задачи моделирования динамики физической системы

Опубликованные работы

Котлярова Е.В., Северилов П.А., Ивченков Я.П., Мокров П.В., Чеканов М.О., Гасникова Е.В., Шароватова Ю.И. Ускорение работы двухстадийной модели равновесного распределения потоков по сети / Компьютерные исследования и моделирование (том 14), 2022