TERESA: Telepresence Reinforcement Learning Social Agent.

WP5: Learning Social Skills

Kyriacos Shiarlis

University of Amsterdam

16/06/2014

- 1 The Project
- 2 Learning Social Skills

3 Current Research Intrests

1 The Project

2 Learning Social Skills

3 Current Research Intrests

Telepresence - What?

Remotely controlled robots that allow the user to interact with an environment, without being physically present.

Telepresence - Why?

Telepresence allows greater remote user **control** and **interaction**.

User also **feels** and **appears** more present in a remote situation.

Applications include:

- Assistive technologies: Remote visits to elderly, disabled, or hospitalised individuals.
- Industrial: Remote inspections, conferences, visits.
- Academic: Conferences, supervisions.

TERESA concentrates on deployment in elderly homes.

Limitations

- Control of the device can be hard.
- Interaction is not as natural as a result.
- Device only allows audiovisual interaction.

Project Aims

Practical

- Remove the cognitive load of control.
- Appear as human as possible.

Project Aims

Practical

- Remove the cognitive load of control.
- Appear as human as possible.

Scientific

- To what extent socially acceptable behaviour can be Learned.
- What sort of implicit feedback is needed to achieve this.

Example

Questions

How should a robot approach a group of people? What what is the correct distance to stop?

⇒ Hard Coding Social Norms is very complex.

Example

Questions

How should a robot approach a group of people? What what is the correct distance to stop?

⇒ Hard Coding Social Norms is very complex.

Our approach

Experiment \to Data \to Offline Learning \to Implicit Reward \to Semi-autonomous behaviour.

Example

Questions

How should a robot approach a group of people? What what is the correct distance to stop?

⇒ Hard Coding Social Norms is very complex.

Our approach

Experiment \rightarrow Data \rightarrow Offline Learning \rightarrow Implicit Reward \rightarrow Semi-autonomous behaviour.

⇒ Easier and more natural local-remote user interaction.

Cognitive Architecture

- 1 The Project
- 2 Learning Social Skills

3 Current Research Intrests

Learning Social Skills

How can emotional feedback from the robot's environment improve its behaviour?

Learning Social Skills

How can emotional feedback from the robot's environment improve its behaviour?

Example

Robot comes **dangerously** close and at high velocity - Person **frowns** - After learning the robot **avoids** action in similar situations.

Learning Social Skills

How can emotional feedback from the robot's environment improve its behaviour?

Example

Robot comes **dangerously** close and at high velocity - Person **frowns** - After learning the robot **avoids** action in similar situations.

Does that perform better than hand-coding social behaviour?

Learning Social Skills - Aims

Extract

Learning Social Skills - Aims

Learning Social Skills - Aims

Extraction

Extracting reward from the environment is an exercise in implicit feedback.

- Semi-Supervised Learning : Implicit emotional state ⇒ Reward.
- Inverse Reinforcement Learning: Expert trajectories ⇒ Reward

Integration

Integration of cost functions should be done intelligently.

- Could be based on individual function confidence.
- Bayesian Approach.

Planning

■ UvA is wholly responsible in planning body pose policies.

- UvA is wholly responsible in planning body pose policies.
- Does planning have different priorities in social occasions?

- UvA is wholly responsible in planning body pose policies.
- Does planning have different priorities in social occasions?
- Do we plan myopically?

- UvA is wholly responsible in planning body pose policies.
- Does planning have different priorities in social occasions?
- Do we plan myopically?
- Collaborating with UPO on Navigation.

- UvA is wholly responsible in planning body pose policies.
- Does planning have different priorities in social occasions?
- Do we plan myopically?
- Collaborating with UPO on Navigation.
- How will the two be regulated?

1 The Project

2 Learning Social Skills

3 Current Research Intrests

Inverse Reinforcement Learning Definition

Given:

- Measurements of an agent's behaviour over time, in a variety of circumstances
- 2 Sensory inputs to the agent.
- 3 A model of the Environment.

Determine:

The reward function R(s, a) being optimised.

Inverse Reinforcement Learning

- An **apprentice** observes a state action trajectory $[(s_1, a_1), (s_2, a_2), ..., (s_T, a_T)]$ from an **expert**.
- $MDP_E = \langle S, A, T, \gamma, R \rangle$ R is hidden from the apprentice.
- Usually $R = \mathbf{w}^T \phi(\mathbf{s}, \mathbf{a})$
- So the IRL algorithm takes as input the trajectory and outputs the feature weights w.
- These are used by the apprentice to mimic and generalise the expert's preferences.

Inverse Reinforcement Learning

Algorithms work by choosing weights to match certain trajectory statistics e.g:

Feature Expectation : $\Phi_E = \frac{1}{m} \sum_{m=0}^{M} \sum_{t=0}^{T} \phi(s_t, a_t)$

Likelihood : $P(s_{1-T}, a_{1-T}|\boldsymbol{w})$

Problems

- Many Reward functions will cause the observed behaviour. Additional constraints are many times used.
- Each iteration usually requires solving the MDP.

Many Approaches

Max margin + Projection

Ng and Abbeel (2004) successfully applied their algorithms on simulated car driving.

Max Entropy IRL

Ziebart et al (2010) added extra disambiguating constraints and applied to route prediction.

Maximum Margin Planning

Ratliff et al (2006) Posed the problem as a Structured Classification. Again applied to route prediction

Many more....But.

Partial Observability in IRL

Observation 1:

All literature assumes the expert and apprentice have the same observational capabilities.

Observation 2:

No principled reason why IRL is better than imitation.

Motivation

Partial observability is possible the case in TERESA. e.g:

- The Pilot-Expert only senses through a camera.
- The Robot has 360 degree laser range finding capabilities.

=> What are the implications of observability mismatch in IRL?

Extreme No 1 Tiger Problem

 $\underset{\textbf{Expert}}{\mathsf{Apprentice}} \to \mathsf{partial} \ \mathsf{observability} \ | \ \mathsf{Expert} \to \mathsf{full} \ \mathsf{observability}$

Extreme No 1

$\textbf{Apprentice} \rightarrow \textbf{partial observability} \mid \textbf{Expert} \rightarrow \textbf{full observability}$

- We now receive belief-action trajectories $[(b(s)_1, a_1), (b(s)_2, a_2), ..., (b(s)_T, a_T)]$
- False information about what to do in uncertain belief states.
- Less information about what the expert is trying to do!

Extreme No 1 Possible Solutions

- 1 Perform forward-backward procedure on beliefs. This will push our samples to the extremes of the simplex.
- 2 Assume a dual controller for the Apprentice.
 - The information gathering part of the Reward function is given.
 - The control part of the Reward function is learned from the expert trajectories.

Extreme No 2 Tiger Problem

 $\textbf{Apprentice} \rightarrow \textbf{full observability} \mid \textbf{Expert} \rightarrow \textbf{partial observability}$

Extreme No 2

Apprentice \rightarrow full observability | Expert \rightarrow partial observability

- We now receive state-belief(belief)-action trajectories $[s_1, b_A(b_E(s))_1, a_1), (s_1, b_A(b_E(s))_2, a_2), ..., (s, b_A(b_E(s))_T, a_T)]$
- We don't want to know what to do in uncertain belief states.
- Less information about what the expert is trying to do!

- Perform forward-backward procedure on beliefs of beliefs. Again, this will push our samples to the extremes of the simplex.
- 2 Assume the expert is using a dual-controller.
 - The information gathering part of the Reward function is given.
 - The control part of the Reward function is learned from the expert trajectories.

Partial Observability IRL Conclusions

We are no longer trying to replicate the expert's behaviour!

⇒ This provides a much more clear motivation for IRL!

As posed, the problem seems unsolvable.

⇒ We need to make extra assumptions and approximations!