Введение в CUDA

История развития граф процессоров

S3 ViRGE

64-битный интегрированный 2D/3D акселератор с наличием ТВ — выхода, исполнение в AGP и PCI вариантах, 2-4 Mb SGRAM (83 MHz) или EDO (66 MHz), 170 MHz RAMDAC, поддержка Direct3D, BRender, RenderWare, OpenGL и собственного API S3D, возможно использование телевизионного экрана вместо монитора

Первое поколение

Специализированный процессор для 3D графики

- буфер глубины
- аппаратное распараллеливание
- текстурирование
- задание цвета
- интерполяционная закраска

Второе поколение

nVidia GeForce 256

- Transform & Lighting

(преобразование координат вершин в плоские координаты, отображаемые на мониторе, и вычисление их освещенности)

Третье поколение

nVidia GeForce 2, 3, 4; Radeon 8500 – 9200

Возможность программирования (шейдеры)

- ассемблер для граф. процессора
- ограничены по длине
- Формат с фиксированной запятой

Четвертое поколение

nVidia GeForce 5, 6, 7; ATI Radeon 9500 – X800

- 32-х разрядная точность
- Direct3D, OpenGL, HLSL, GLSL, Cg
- начало GPGPU (General Purpose GPU)

Пятое поколение

nVidia GeForce 8 – GTX 200; ATI Radeon X 1K – HD 5K

- расширенные возможности программирования (унифицированные шейдеры, CUDA, AMD FireStream)

GPGPU

General Purpose computing on Graphical Processing Units

- assembler
- Шейдеры
- OpenGL, DirectX
- CUDA, ATI FireStream, OpenCL

Частоты CPU

- 2004 г. Pentium 4, 3.46 GHz
- 2005 г. Pentium 4, 3.8 GHz
- 2006 г. Core Duo T2700, 2333 MHz
- 2007 г. Core 2 Duo E6700, 2.66 GHz
- 2007 г. Core 2 Duo E6800, 3 GHz
- 2008 г. Core 2 Duo E8600, 3.33 Ghz
- 2009 г. Core i7 950, 3.06 GHz
- 2013 г. Core i7 3970х, 3.5 GHz

Floating point operations per second

Floating point operations per second

Разница между CPU и GPU

CUDA = Compute Unified Device Architecture

- Многократное ускорение в каждой конкретной задаче достигается в результате усилий программиста
- Существовали ранние попытки использования графических карт для научных расчётов
- Проблема алгоритмы должны были быть реализованы на специальном "шейдерном" языке (shade language)
- Для облегчения работы с алгоритмами общего назначения
- компания NVIDIA выдвинула инициативу создания аппаратно/программной архитектуры общего назначения

Общие положения CUDA

- GPU сопроцессор для CPU (хоста)
- У GPU есть собственная память (device memory)
- GPU способен одновременно обрабатывать множество процессов (**threads**) данных одним и тем же алгоритмом
- Для осуществления расчётов при помощи GPU хост должен осуществить запуск вычислительного ядра (kernel), который определяет конфигурацию GPU в вычислениях и способ получения результатов (алгоритм)
- Процессы GPU (в отличие от CPU) очень просты и многочисленны

Возможности NVIDIA CUDA

- унифицированное программно-аппаратное решение для параллельных вычислений на видеочипах NVIDIA
- большой набор поддерживаемых решений, от мобильных до мультичиповых
- стандартный язык программирования Си
- дополнительные библиотеки работающие с GPU
- оптимизированный обмен данными между CPU и GPU
- взаимодействие с графическими API OpenGL и DirectX
- поддержка 32- и 64-битных операционных систем: Windows XP, Windows Vista, Linux и MacOS X
- возможность разработки на низком уровне

Состав CUDA

- CUDA включает два API: высокого уровня (CUDA Runtime API) и низкого (CUDA Driver API)
- CUBLAS CUDA вариант BLAS (Basic Linear Algebra Subprograms), предназначенный для вычислений задач линейной алгебры и использующий прямой доступ к ресурсам GPU;
- **CUFFT** CUDA вариант библиотеки Fast Fourier Transform для расчёта быстрого преобразования Фурье, широко используемого при обработке сигналов.

Модель CUDA

Поддерживаемые устройства

CUDA-Enabled NVS Products

Desk	ktap Products	Mobile Pr	oducts	Cefusio 07 460	13
	Conpute		Conquite	Cefusie OT 667	1.1
GPU	Capability	GPU .	Capability	Cefusio 07 600	1.1
Quality MG 400	LI.	HVS 5400M	2.3	Seferie 07 607	1.1
Quality MG 400	1.1	HVS.1000M	2.5	Ceforue 07 COT	1.0
HYDIA HYS 300	1.2	H/5 (00M)	1.1	Cefusie 07.340	1.2
Quality MG 270	1.0	16/5 5100M	1.2	Cefferue 07 207	1.0
		10/5 1700M	12	Cefone III	1.0
				Ceffenie 075 250	1.1
led GeForce Pr	outure.	M0110M	1.2	Gefore 975 100	1.1
	series, and diffuseries GPUs with	a minimum of Third of head	makin asawa	Cefuse Of 107	1.1
				Seferor ST SST	1.1
GeFerce	Desktop Products	GeForce Hotels		Cefforce 0/00*	1.1
GPU	Conpute Capability	GPU	Congute Capability	Cefone WID DO	1.1
Seforce STS TID	w 15	Geforce STX 7804	2.0	Cefuse NOI UTO	1.1
Selfonce STR 788	15	Geforce STX TYPE	1.8	Cefuse 1600 UTX	1.1
				Ceferre NOI 000	1.0
Seforce STI 778	1.9	Geforce STX NON	3.8	Cefuse WILLST	1.1
Seforce STI 768	1.9	Sefance STX 7696	2.9	Cefanor BEST STS	1.1
Seforce Stolets	1.9	Sefance STX extent	3.3	Ceforue BIOLET	1.1
Sefonce STIT 688	1.9	Seferoe STX 68396	2.3	Cefanie BIOLD	1.1
Seferor States	1.0	Cefforce STX 675800	2.0	Cefforce MODI UTS	1.1
Certains Offices	9 12	Cellance STD 475M	12	Ceforue MIDI ST	1.1
Seferor Street	1.0	Seferce STS 67890	2.0	Cefforce EVID UT	1.0
Carlance Office etc.		Carlance STS 475M	11	Cefuse BIDLD	1.1
			-	Cefusie NOI eQFU	1.1
Seferce Offices		Seferoe SYX estre	1.9	Cefanie 1993 eGPU	1.1
Seforce STS 455	1.9	Ceffece ST 750N	3.3	Cefusie ESSI eSPU	1.1
Definice OTS SKE	9 11	Certains ST 400M	2.3	Ceferre EXX eXFU	1.1
Seferce 973 330	n 11	Sefect 91 768	2.8	Cefusie (10) eQFU	LI
Definice OTS 465	1.1	Cefanoe ST (45A)	2.0	Cefusor BEST Urina	1.0
Defining one one	1.1	Certains ST 74090	1.0	Cefusir BIDLETX	1.0
Certains on one		Sefece 97.7396	1.0	Cefforce 07 387	1.0
Cartanos OTO STO		Certains of ARM	1.0	Cefforce OT 338*	1.0
				Cefforce OT 300*	1.0
Ceforce OTS SEE		Cefanoe ST GERN LE	1.0	Cefuse 11V	1.0
Definos 073 370	1.9	Ceffece ST 7/5/6	1.0	Geforer 11P	1.0
Definice OTS 483	1.0	Seffece ST 6/5/4	1.1	Cefuse NOI ST	1.0
Definice OTS 470	1.9	Sefecte ST 7396	1.0	Ceforce NOT ST	1.0
Cefforce OTO 400	1.0	Ceffece ST 6396	13	Ceforce NOSCT	1.0
Definice OTS 370	1.0	Ceffece ST 65546	12		
Defined 073 380	1.3	Seferce ST 700%	EJ.		
Certains 073 380		Cefferor ST 6009	D.		
Cefunos OTS 385		Cefunie FISM	1.1		
Defunde 073 375	1.3	Cefunia 1894	1.1		
Definie 073 343	1.0	CeFusie STX SERV	1.1		
Definite OT 640 (1.5	Sefucie STI 1704	1.1		
Cefunia OT 660 J	0000) 1.1	Cefusie STI SISM	1.1		
Ceffunie OT 638	1.1	Cefuse 07 300A	13		
Ceffence Of 400		Cefuse 07 300N	1.7		
Ceffence Of 418	1.1	Cefunia 01 5496	1.3		
Ceffunie 07 500	1.1	Cefferie ST SSAI	1.1		

Распараллеливание CUDA

SIMD подход

Single Instruction Multiple Data

группа параллельно работающих процессоров осуществляют действия над разными данными, но при этом все они в произвольный момент времени должны выполнять одинаковую команду

Классификация по Флинну

	Single Instruction	Multiple Instruction
Single Data	SISD	MISD
Multiple Data	SIMD	MIMD

Классы систем

- CPU (одноядерный) SISD (одновременно выполняется только одна инструкция над одним набором операндов);
- CPU (многоядерный) MIMD (Одновременно несколько ядер могут работать совершенно независимо, каждое как SISD);
- GPU (NVIDIA ComputeCapability версии < 2.0) SIMD (одновременно на графическом адаптере может выполняться только один поток вычислений, который работает с большим набором данных);
- GPU (NVIDIA ComputeCapability версии ≥ 2.0) MIMD (одновременно на графическом адаптере может выполняться несколько потоков вычислений, каждый из которых работает с большим набором данных).

Графические процессоры изначально предназначены для параллельного решения одной массивно-параллельной задачи

Ограничения CUDA

- Отсутствие поддержки рекурсии для выполняемых функций на первых видеокартах
- Закрытая архитектура
- Поддержка только устройств NVIDIA

Программная модель

- Хост (Host) центральный процессор, управляющий выполнением программы.
- Устройство (Device) видеоадаптер, выступающий в роли сопроцессора центрального процессора.
- Тред (Thread, поток) единица выполнения программы. Имеет свой уникальный идентификатор внутри блока.
- Блок (Block) объединение тредов, которое выполняется целиком на одном SM. Имеет свой уникальный идентификатор внутри грида.
- Грид (Grid) объединение блоков, которые выполняются на одном устройстве.
- Ядро (Kernel) параллельная часть алгоритма, выполняется на гриде.
- Варп (Warp) 32 последовательно идущих треда, выполняется физически одновременно.

