

YAKEEN

Lecture - 3

SOLUTIONS

By

Amit Mahajan

TODAY'S GOAL

IDEAL SOLUTION

RAOULT'S LAW

PA = V-P ag A In Prove Jaan

Interpolite

Volatile Solven

Solution

PB = V-P = y B in

$$P_A = P_A X_A$$

RAOULT'S LAW FOR VOLATILE SOLUTE

RAOULT'S LAW FOR NON-VOLATILE SOLUTE

PS = PA TA = PA (as PB=0) Racult's law fear non-volatile solute

IDEAL SOLUTION

Oscilition which obey Rapult's law at all temperature & Pressure

When Foorces of Interaction blue
Solvent - solvent on Salute Solvent - solvent

Similar as that of solution (solvent - solute)

PROPERTIES OF IDEAL SOLUTION

les ex = same Homologous servi a) n= Heptane + n octane Taluene Bezen Catts Bon + Chatta Bon Catte Bon + Catte

MOLE FRACTION OF ANY COMPONENT IN VAPOUR PHASE

- Male graction of A in Vapour phose

using Pantial

Pressure

PA = YAPT (PT = PS)

- (a) Containing equal mass of both benzene and toluene
- (b) Containing equal molecules of both benzene and toluene
- (c) Containing 1 mole of benzene and 4 moles of toluene
- (d) Also calculate mole fraction of Benzene and toluene in vapour phase if equal moles of benzene and toluene mixed

A > Toluene P = PAXA + PB XB

Benzere

PB = 160mm af Mg) PA = 60mm ag Mg

PS - PA + PB PS = 66×0 46 + 160×0 5 H = 27.6 + 86 4 = 114

RATA 60× = 30 mm aftg 18 - 18 × 5 = 160 × 1 = 80 mm y Ha PS = PAXA + PC XOB PA = 60×0-8 = 48 mmy 19 = 30 + 80 = 110 mm 1 kg PB = 160 x02 = 32mmag Hz 2008 5 Ps = 432=80mmyHg. nA=4 %B=1-XA=02

(d) $A = \frac{PAXA}{PS}$ $\frac{3\phi}{110}$ $\frac{3\phi}{1$

The vapour pressure of two liquids P and Q are 80 and 60 torr respectively.

The total vapour pressure of solution obtained by mixing 3 moles of P and 2 moles of Q would be

[AIIMS 2012]

(a) 140 torr

(b) 20 torr

(c) 68 torr

PANA + PB XB 80X3 + 66X2 48 + 24 = 72 topv

 p_A and p_B are the vapour pressure of pure liquid components A and B respectively of an ideal binary solution. If χ_A represents the mole fraction of component A, the total pressure of the solution will be [CBSE AIPMT]

(a)
$$p_A + \chi_A (p_B - p_A)$$

(c)
$$p_B^\circ + \chi_A (p_B^\circ - p_A^\circ)$$

(b)
$$p_A + \chi_A (p_A - p_B)$$

(a)
$$p_B + \chi_A (p_A - p_B)$$

For an ideal solution, the correct option is

- (a) $\Delta_{\text{mix}} S = 0$ at constant T and P X
- (b) $\Delta_{\text{mix}} V \neq 0$ at constant T and P
- (c) $\Delta_{\text{mix}} H = 0$ at constant T and P
- (d) $\Delta_{mix} G = 0$ at constant T and \times

Which one of the following is incorrect for ideal solution?

(a)
$$\Delta H_{\text{mix}} = 0$$

(c)
$$\Delta P = P_{\text{observed}} - P_{\text{calculated by Raoult's law}} = 0$$
 (d)

$$\Delta U_{mix} = 0$$

$$\Delta G_{\text{mix}} = 0$$

worong

DP-Pobsorved Calculated = 0 by Rapitt's lew

Which one is not equal to zero for an ideal solution?

(a) $\Delta P = P_{observed} - P_{Raoult}$

(b) Δ

(c) ΔS_{mix}

(d) ΔV_{mix}

[AIPMT-2015]

Which of the following statements about the composition of the vapour over an ideal 1 : 1 molar mixture of benzene and toluene is correct? Assume that the temperature is constant at 25°C (Given, Vapour Pressure Data at 25°C, benzene = 12.8 kPa, toluene = 3.85 kPa) [NEET-2016]

- (a) Not enough information is given to make a prediction X
- (b) The vapour will contain a higher percentage of benzene
- (c) The vapour will contain a higher percentage of toluene
- (d) The vapour will contain equal amounts of benzene and toluene

At a given temperature, the vapour pressure in mm of Hg of Hg of a solution of two volatile liquids A and B is given by equation $P=120-80\,\chi_B$

Calculate V.P. of pure A and B at same temperature

Two liquids A and B form an Ideal solution at 300 K the V.P. of solution having 1 mole of A and 3 mole of B is 550 mm of Hg. At same temperature if 1 more mole of B is added to solution, V.P. of solution increases by 10 mm of Hg. Determine V.P. of A and B in pure state.

$$6.25 \times \left[0.2 \times + 6.83 \right] = 560$$

$$y = \frac{30}{0.05}$$

The V.P. of pure liquids A and B are 450 and 700 mm of Hg. Find out composition of liquid mixture if total vapour pressure is 600 mm of Hg. Find composition of vapour phase

$$Y_A = \frac{p_A}{p_S} \frac{x_A}{600} = \frac{90}{600} = \frac{9}{600}$$

thanks for watching

