Aging Monitoring for Memory-based Reconfigurable Logic Device (MRLD)

Xihong Zhou, Senling Wang, Yoshinobu Higami and Hiroshi Takahashi
Computer System Laboratory,
Department of Computer Science, Ehime University, Japan
July 5, 2020

Outline

- Introduction
- What is MRLD
- Aging Issues in MRLD
- Aging monitoring Technique for MRLD
- •Experimental results
- Conclusions

Background

- Recently, a reconfigurable logic device MRLD for next-generation IoT edge devices has been developed in order to analyze huge amounts of data in IoT in real-time.
- Field-test technology for detecting aging failures during the operation of MRLD devices has not been established.

In order to guarantee the high reliability of IoT systems, field-test technology that can detect and report the aging state of edge devices early during operation is necessary.

Purpose & Objective

• Purpose: Ensuring high reliability of IoT system

Propose a method that can detect and report the aging statues of MRLD device during operation early

- Objective
 - Field test technology to measure the aging-induced delay

Propose the design and implementation method of ring oscillator circuit adapt to the MRLD structure

What is MRLD

- An MRLD (Memory-based Reconfigurable Logic Device) is composed of multiple general-purpose memory cells (MLUTs: Multiple Look Up Tables) arranged in an array.
- Compared with existing technology FPGA, it has advantages of high speed, low power consumption, and low cost.

How an MRLD works

Configure the logic circuit by writing the truth table of the logic circuit (including wiring logic) to the SRAM of MLUT Divide logic circuit $a \rightarrow A0$ D0 of MLUT2→d D11 of MLUT1→A11 D9 of MLUT1→A9 →D9 Crete truth table Crete truth table Write the truth table Write the truth table MLUT1 AD1 AD2 AD3 SRAM2 256word × 16bit 256word × 16bit MLUT2 AD4 AD11 AD4 AD10 AD5 AD5 AD6 AD9 AD6 AD8 AD7 AD0 AD1 AD2 AD3 SRAM3 SRAM4 MLUT1 MLUT2 256word × 16bit 256word × 16bit 256word × 16bit 256word × 16bit (Synchronous) (Synchronous) (Synchronous) (Synchronous) 16-bit 16-bit configurated logic circuit

Aging in MRLD

--Discussion of aging issues in MRLD

- Various aging phenomena such as HCI, BTI
- The progress of aging in MLUTs are different

 Aging-induced delay would affect system failure and the constructed logic circuit performance.
 (e.g.: sudden system down/reset)

Aging Monitoring in MRLD

- Delay Monitoring is an effective way to guarantee the reliability of an electronic device in field
- An early warning/report will be issued to the upper system to avoid a system failure or call for maintenances like repair/diagnosis
- Ring-Oscillator (RO) is commonly used as a sensor to monitor the delay variation of circuit affected by temperature, voltage, process or aging on the circuit

Aging Monitoring in MRLD

The progress of aging in MLUTs are different

For performance

- Global Delay:
 - The Average Delay in overall MLUTs Array

To avoid highly degraded MLUTs

- Local Delay:
 - Delay at each Single MLUT (or Partial MLUTs Array)

RO implementation for Global Delay measurement

 RO circuit structure for Global Delay measurement

Place RO element (inverters) in individual MLUTs throughout the MLUT array

RO implementation method for Local Delay measurement

• RO circuit structure for Local Delay measurement

Place RO in single MLUT alone or partial MLUTs array in MRLD

Partial MLUTs array

RO implementation procedure in MRLD

- Step 1. Select measurement area
- Step 2. Design the RO circuit structure and routing for the measurement area
- Step 3. Create the truth tables for the target MLUTs
- Step 4. Write the RO truth table to the corresponding MLUTs

• Step 5. Set the MRLD to logic operation mode, and observe the RO oscillation

period from the external output for delay analysis

RO oscillation frequency counter in MRLD

- measure the delay of MLUT \rightarrow measure the oscillation frequency of RO
- conventional counter design, cannot be configured in MLUTs: asynchronous Flip-Flops (FF) is required

Where, T denotes the overall RO oscillation time, N denotes the stage number of RO, F denotes the number of pulses counted by the counter.

Experimental results -- implement RO circuit and counter into same MLUTs

- one 2-input NAND and 10 inverters
- 8-bit counter

Since the proposed counter circuit has a simple structure, it can be constructed in the same MLUTs as RO → advantageous for saving LUT resources

Experimental results

- --Simulation waveform to measure delay for MLUT
- The stage number of implemented RO is 10 (N=10)
- 8-bit counter implemented
- The read time of SRAM cell is set to 5.5ns
- The overall RO oscillation time T is set to 2us

Conclusions

- Proposed the approach to monitor the aging of MRLD
- Proposed the design and implementation method of a ring oscillator circuit adapt to the structure of the MRLD device
- Design a counter to store the RO oscillation frequency
- Proposed method can effectively measure the delay of the MLUT with very small error
- In our future work, we will make a quantitative analysis on the aging phenomena, and develop a precise simulation method as well as on-chip test method

Thank you for your listening