

Refine Search

Search Results -

Terms	Documents
L3 and (processor near10 cache)	87

Database:

US Pre-Grant Publication Full-Text Database
US Patents Full-Text Database
US OCR Full-Text Database
EPO Abstracts Database
JPO Abstracts Database
Derwent World Patents Index
IBM Technical Disclosure Bulletins

Search:

X

Refine Search

Recall Text
Clear
Interrupt

Search History

DATE: Tuesday, November 16, 2004 [Printable Copy](#) [Create Case](#)

<u>Set</u>	<u>Name</u>	<u>Query</u>	<u>Hit Count</u>	<u>Set Name</u>
side by side				result set
<i>DB=PGPB, USPT, USOC; PLUR=YES; OP=OR</i>				
<u>L4</u>	L3 and (processor near10 cache)		87	<u>L4</u>
<u>L3</u>	L1 and (add\$3 same request same node)		123	<u>L3</u>
<u>L2</u>	L1 and (add\$3 same node)		423	<u>L2</u>
<u>L1</u>	((shared or common) near5 memory) same (multiprocessor or (multi adj1 processor))		3138	<u>L1</u>

END OF SEARCH HISTORY

Refine Search

Search Results -

Terms	Documents
L4	0

Database:	<input type="checkbox"/> US Pre-Grant Publication Full-Text Database <input type="checkbox"/> US Patents Full-Text Database <input type="checkbox"/> US OCR Full-Text Database <input checked="" type="checkbox"/> EPO Abstracts Database <input checked="" type="checkbox"/> JPO Abstracts Database <input checked="" type="checkbox"/> Derwent World Patents Index <input checked="" type="checkbox"/> IBM Technical Disclosure Bulletins
Search:	<input style="width: 60%; height: 25px; border: 1px solid black; padding: 2px; margin-bottom: 5px;" type="text" value="L5"/> Refine Search
Recall Text Clear Interrupt	

Search History

DATE: Tuesday, November 16, 2004 [Printable Copy](#) [Create Case](#)

<u>Set</u>	<u>Name</u>	<u>Query</u>	<u>Hit Count</u>	<u>Set Name</u>
side by side				result set
<i>DB=EPAB,JPAB,DWPI,TDBD; PLUR=YES; OP=OR</i>				
<u>L5</u>	<u>L4</u>		0	<u>L5</u>
<i>DB=PGPB,USPT,USOC; PLUR=YES; OP=OR</i>				
<u>L4</u>	L3 and (processor near10 cache)		87	<u>L4</u>
<u>L3</u>	L1 and (add\$3 same request same node)		123	<u>L3</u>
<u>L2</u>	L1 and (add\$3 same node)		423	<u>L2</u>
<u>L1</u>	((shared or common) near5 memory) same (multiprocessor or (multi adj1 processor))		3138	<u>L1</u>

END OF SEARCH HISTORY

Refine Search

Search Results -

Terms	Documents
(700/5 709/213 709/214 709/251 710/305 710/317 710/300 710/62 710/4 710/72 711/141 711/148 711/120 712/14 712/211).ccls.	5971

Database:

- US Pre-Grant Publication Full-Text Database
- US Patents Full-Text Database
- US OCR Full-Text Database
- EPO Abstracts Database
- JPO Abstracts Database
- Derwent World Patents Index
- IBM Technical Disclosure Bulletins

Search:

Refine Search
Recall Text
Clear
Interrupt

Search History

DATE: Tuesday, November 16, 2004 [Printable Copy](#) [Create Case](#)

<u>Set</u>	<u>Hit Count</u>	<u>Set</u>
<u>Name</u>	<u>Count</u>	<u>Name</u>
side by side		result set
DB=PGPB,USPT,USOC; PLUR=YES; OP=OR		
<u>L6</u> 710/305,317,300,62,4,72;711/141,148,120;709/213,214,251;700/5;712/14,211.cccls.	5971	<u>L6</u>
DB=EPAB,JPAB,DWPI,TDBD; PLUR=YES; OP=OR		
<u>L5</u> L4	0	<u>L5</u>
DB=PGPB,USPT,USOC; PLUR=YES; OP=OR		
<u>L4</u> L3 and (processor near10 cache)	87	<u>L4</u>
<u>L3</u> L1 and (add\$3 same request same node)	123	<u>L3</u>
<u>L2</u> L1 and (add\$3 same node)	423	<u>L2</u>
<u>L1</u> ((shared or common) near5 memory) same (multiprocessor or (multi adj1 processor))	3138	<u>L1</u>

END OF SEARCH HISTORY

Refine Search

Search Results -

Terms	Documents
L4 and L6	49

Database:

US Pre-Grant Publication Full-Text Database
US Patents Full-Text Database
US OCR Full-Text Database
EPO Abstracts Database
JPO Abstracts Database
Derwent World Patents Index
IBM Technical Disclosure Bulletins

Search:

L7

[]

[]

Refine Search

Recall Text

Clear

Interrupt

Search History

DATE: Tuesday, November 16, 2004 [Printable Copy](#) [Create Case](#)

<u>Set</u> <u>Name</u> <u>Query</u>	<u>Hit</u> <u>Count</u>	<u>Set</u> <u>Name</u>
side by side		result set
<i>DB=PGPB,USPT,USOC; PLUR=YES; OP=OR</i>		
<u>L7</u> l4 and L6	49	<u>L7</u>
<u>L6</u> 710/305,317,300,62,4,72;711/141,148,120;709/213,214,251;700/5;712/14,211.ccls.	5971	<u>L6</u>
<i>DB=EPAB,JPAB,DWPI,TDBD; PLUR=YES; OP=OR</i>		
<u>L5</u> L4	0	<u>L5</u>
<i>DB=PGPB,USPT,USOC; PLUR=YES; OP=OR</i>		
<u>L4</u> L3 and (processor near10 cache)	87	<u>L4</u>
<u>L3</u> L1 and (add\$3 same request same node)	123	<u>L3</u>
<u>L2</u> L1 and (add\$3 same node)	423	<u>L2</u>
<u>L1</u> ((shared or common) near5 memory) same (multiprocessor or (multi adj1 processor))	3138	<u>L1</u>

END OF SEARCH HISTORY

EAST - [Untitled1:1]

File View Edit Tools Window Help

Drafts Pending Active

L1: (724) ((shared or common) near5 memory) same (multiprocesor or (multi adj1 processor))
L2: (27) 11 and (add\$3 same
L3: (27) 12 and cache
L4: (19) 12 and (processor)

Failed Saved Favorites Tagged (0) UDC

Search List Browse Open Clear

DBs USPAT Plurals

BRS form IS&R form Image Text HTML

Type	L #	Hits	Search Text	DBs	Time Stamp	Comments	Error	Definition	Err
1	BRS	L1	724 ((shared or common) near5 memory) same	USPAT	2004/11/16 12:28				
2	BRS	L2	27 11 and (add\$3 same request same node)	USPAT	2004/11/16 12:29				
3	BRS	L3	27 12 and cache	USPAT	2004/11/16 12:30				
4	BRS	L4	19 12 and (processor near10 cache)	USPAT	2004/11/16 12:31				

EAST - [Untitled1:1]

File View Edit Tools Window Help

Drafts Pending Active L1: (724) ((shared or commo L2: (27) 11 and (add\$3 same L3: (27) 12 and cache L4: (19) 12 and (processor Failed Saved Favorites Tagged (0) UDC

Search List Browse Databases Clear DBs USPAT Default operator: OR Plurals Highlight all hit terms initially

12 and (processor near10 cache)

BRS form IS&R form Image Text HTML

	U	I	Document ID	Issue Date	Pages	Title	Current OR	Current XRef
1	<input type="checkbox"/>	<input type="checkbox"/>	US 6711652 B2	20040323	30	Non-uniform memory access (NUMA) data processing	711/141	711/120; 711/146
2	<input type="checkbox"/>	<input type="checkbox"/>	US 6678799 B2	20040113	13	Aggregation of cache-updates in a multi-processor,	711/141	711/133; 711/147
3	<input type="checkbox"/>	<input type="checkbox"/>	US 6675262 B1	20040106	9	Multi-processor computer system with cache-flushing	711/135	711/133; 711/134;
4	<input type="checkbox"/>	<input type="checkbox"/>	US 6636949 B2	20031021	41	System for handling coherence protocol races in	711/141	707/10; 707/201;
5	<input type="checkbox"/>	<input type="checkbox"/>	US 6496854 B1	20021217	24	Hybrid memory access protocol in a distributed	709/213	709/214; 709/230
6	<input type="checkbox"/>	<input type="checkbox"/>	US 6496740 B1	20021217	17	Transfer controller with hub and ports architecture	700/20	700/11; 700/12;
7	<input type="checkbox"/>	<input type="checkbox"/>	US 6457100 B1	20020924	25	Scalable shared-memory multi-processor computer	711/119	711/122; 711/129;
8	<input type="checkbox"/>	<input type="checkbox"/>	US 6438653 B1	20020820	34	Cache memory control circuit including summarized cache	711/128	711/145; 711/154
9	<input type="checkbox"/>	<input type="checkbox"/>	US 6421775 B1	20020716	11	Interconnected processing nodes configurable as at	713/1	712/28; 713/2;
10	<input type="checkbox"/>	<input type="checkbox"/>	US 6343346 B1	20020129	70	Cache coherent network adapter for scalable shared	711/142	711/121; 711/122;
11	<input type="checkbox"/>	<input type="checkbox"/>	US 6243742 B1	20010605	22	Hybrid memory access protocol in a distributed	709/213	709/214; 709/230

[IEEE HOME](#) | [SEARCH IEEE](#) | [SHOP](#) | [WEB ACCOUNT](#) | [CONTACT IEEE](#)

[Membership](#) [Publications/Services](#) [Standards](#) [Conferences](#) [Careers/Jobs](#)

RELEASE 1.8

Welcome
United States Patent and Trademark Office

» Se...

[Help](#) [FAQ](#) [Terms](#) [IEEE Peer Review](#)

Quick Links

Welcome to IEEE Xplore®

- Home
- What Can I Access?
- Log-out

Tables of Contents

- Journals & Magazines
- Conference Proceedings
- Standards

Search

- By Author
- Basic
- Advanced
- CrossRef

Member Services

- Join IEEE
- Establish IEEE Web Account
- Access the IEEE Member Digital Library

IEEE Enterprise

- Access the IEEE Enterprise File Cabinet

Print Format

[Home](#) | [Log-out](#) | [Journals](#) | [Conference Proceedings](#) | [Standards](#) | [Search by Author](#) | [Basic Search](#) | [Advanced Search](#) | [Join IEEE](#) | [Web Account](#) | [New this week](#) | [OPAC Linking Information](#) | [Your Feedback](#) | [Technical Support](#) | [Email Alerting](#) | [No Robots Please](#) | [Release Notes](#) | [IEEE Online Publications](#) | [Help](#) | [FAQ](#) | [Terms](#) | [Back to Top](#)

Copyright © 2004 IEEE — All rights reserved

[IEEE HOME](#) | [SEARCH IEEE](#) | [SHOP](#) | [WEB ACCOUNT](#) | [CONTACT IEEE](#)

[Membership](#) [Publications/Services](#) [Standards](#) [Conferences](#) [Careers/Jobs](#)

IEEE Xplore®
RELEASE 1.8

Welcome
United States Patent and Trademark Office

[Help](#) [FAQ](#) [Terms](#) [IEEE Peer Review](#)

Quick Links

Welcome to IEEE Xplore®

- Home
- What Can I Access?
- Log-out

Tables of Contents

- Journals & Magazines
- Conference Proceedings
- Standards

Search

- By Author
- Basic
- Advanced
- CrossRef

Member Services

- Join IEEE
- Establish IEEE Web Account
- Access the IEEE Member Digital Library

IEEE Enterprise

- Access the IEEE Enterprise File Cabinet

[Print Format](#)

Search Results [PDF FULL-TEXT 431 KB] PREV DOWNLOAD CITATION

Request Permissions
RIGHTSLINK
Copyright © IEEE. All rights reserved.

Whoops!: a clustered Web cache for DSM systems u memory mapped networks

Cecchet, E.

This paper appears in: Distributed Computing Systems Workshops, 200: Proceedings. 22nd International Conference on

Publication Date: 2-5 July 2002

On page(s): 806 - 811

ISSN:

Number of Pages: xxviii+835

Inspec Accession Number: 7432563

Abstract:

We present Whoops!, a clustered Web **cache** prototype based on SciFS, a distributed shared memory (DSM) that benefits from the high performances and the re-addressing capabilities of memory mapped networks like Scalable Coherent Interface (SCI). Whoops! uses the DSM for all Web **cache** management and **cache** storage. A memory mapped network and a DSM programming model allows us to invent a new algorithm to distribute and handle requests. We present a new implementation of TCP handoff that directly maps remote TCP/IP stacks through the network. This technique reduces processor overhead and forwards TCP acknowledgements in microseconds. We have also designed parallel pull-based LRU (PPBL), an efficient request distribution algorithm for use with DSM systems. The decision is distributed among all nodes thus providing better scalability. PPBL supports multi-frontend environments letting the DSM handle data distribution. Finally, Whoops! implements on-the-fly compression when fetching documents from the Web and on-the-fly decompression when sending documents to clients. We show how this technique can reduce paging of the DSM and improve overall **cache** performance.

Index Terms:

Internet **cache** storage client-server systems data compression distributed shared systems document handling network servers system buses transport protocols DSM Scalable Coherent Interface SciFS TCP acknowledgements TCP handoff TCP/IP's **cache** management Whoops! **cache** storage clustered Web **cache** compression ! distribution decompression distributed shared memory memory mapped networks

frontend environments parallel pull-based LRU processor overhead remote address:
capabilities request distribution algorithm scalability

Documents that cite this document

There are no citing documents available in IEEE Xplore at this time.

[Search Results](#) [\[PDF FULL-TEXT 431 KB\]](#) [PREV](#) [DOWNLOAD CITATION](#)

[Home](#) | [Log-out](#) | [Journals](#) | [Conference Proceedings](#) | [Standards](#) | [Search by Author](#) | [Basic Search](#) | [Advanced Search](#) | [Join IEEE](#) | [Web Account](#) |
[New this week](#) | [OPAC Linking Information](#) | [Your Feedback](#) | [Technical Support](#) | [Email Alerting](#) | [No Robots Please](#) | [Release Notes](#) | [IEEE Online Publications](#) | [Help](#) | [FAQ](#) | [Terms](#) | [Back to Top](#)

Copyright © 2004 IEEE — All rights reserved

[First Hit](#)[Previous Doc](#)[Next Doc](#)[Go to Doc#](#) [Generate Collection](#) [Print](#)

L7: Entry 1 of 49

File: PGPB

Oct 28, 2004

PGPUB-DOCUMENT-NUMBER: 20040215895
PGPUB-FILING-TYPE: new
DOCUMENT-IDENTIFIER: US 20040215895 A1

TITLE: Multi-node computer system in which networks in different nodes implement different conveyance modes

PUBLICATION-DATE: October 28, 2004

INVENTOR-INFORMATION:

NAME	CITY	STATE	COUNTRY	RULE-47
Cypher, Robert E.	Saratoga	CA	US	

ASSIGNEE-INFORMATION:

NAME	CITY	STATE	COUNTRY	TYPE CODE
Sun Microsystems, Inc.				02

APPL-NO: 10 / 813891 [PALM]
DATE FILED: March 31, 2004

RELATED-US-APPL-DATA:

Application is a non-provisional-of-provisional application 60/461997, filed April 11, 2003,

INT-CL: [07] G06 F 12/00, H04 L 12/28, G06 F 13/00

US-CL-PUBLISHED: 711/141; 370/390
US-CL-CURRENT: 711/141; 370/390

REPRESENTATIVE-FIGURES: 20

ABSTRACT:

A system may include several nodes coupled by an inter-node network. Each node includes several active devices coupled by an address network. The address network included in one of the nodes may be configured to convey address packets specifying a particular coherency unit in broadcast mode. The address network included in a different one of the nodes may be configured to convey address packets specifying that coherency unit in point-to-point mode.

PRIORITY INFORMATION

[0001] This application claims priority to U.S. provisional application serial No. 60/461,997, entitled "MULTI-NODE COMPUTER SYSTEM IN WHICH NETWORKS IN DIFFERENT NODES IMPLEMENT DIFFERENT CONVEYANCE MODES", filed Apr. 11, 2003.

[Previous Doc](#)

[Next Doc](#)

[Go to Doc#](#)

h e b

b g e e e f c e b

e ge

[First Hit](#)[Previous Doc](#)[Next Doc](#)[Go to Doc#](#) [Generate Collection](#) | [Print](#)

L7: Entry 11 of 49

File: PGPB

Jan 17, 2002

PGPUB-DOCUMENT-NUMBER: 20020007443
PGPUB-FILING-TYPE: new
DOCUMENT-IDENTIFIER: US 20020007443 A1

TITLE: Scalable multiprocessor system and cache coherence method

PUBLICATION-DATE: January 17, 2002

INVENTOR-INFORMATION:

NAME	CITY	STATE	COUNTRY	RULE-47
Gharachorloo, Kourosh	Menlo Park	CA	US	
Barroso, Luiz A.	Mountain View	CA	US	
Ravishankar, Mosur K.	Mountain View	CA	US	
Stets, Robert J. JR.	Palo Alto	CA	US	
Scales, Daniel J.	Mountain View	CA	US	

APPL-NO: 09/ 878982 [\[PALM\]](#)

DATE FILED: June 11, 2001

RELATED-US-APPL-DATA:

Application is a non-provisional-of-provisional application 60/210675, filed June 10, 2000,

FOREIGN-APPL-PRIORITY-DATA:

COUNTRY	APPL-NO	DOC-ID	APPL-DATE
US	60210675	2000US-60210675	June 10, 2000

INT-CL: [07] [G06 F 12/00](#)

US-CL-PUBLISHED: 711/141; 711/117

US-CL-CURRENT: [711/141](#); [711/117](#)

REPRESENTATIVE-FIGURES: 3

ABSTRACT:

The present invention relates generally to multiprocessor computer system, and particularly to a multiprocessor system designed to be highly scalable, using efficient cache coherence logic and methodologies. More specifically, the present invention is a system and method including a plurality of processor nodes configured to execute a cache coherence protocol that avoids the use of negative acknowledgment messages (NAKs) and ordering requirements on the underlying transaction-message interconnect/network and services most 3-hop transactions with only a single visit to the home node.

RELATED APPLICATIONS

[0001] This application is related to the following U.S. patent applications:

[0002] System and Method for Daisy Chaining Cache Invalidations Requests in a Shared-memory Multiprocessor System, filed Jun. 11, 2001, attorney docket number 9772-0329-999; and

[0003] Multiprocessor Cache Coherence System and Method in Which Processor Nodes and Input/Output Nodes Are Equal Participants, filed Jun. 11, 2001, attorney docket number 9772-0324-999; and

[0004] Cache Coherence Protocol Engine And Method For Processing Memory Transaction in Distinct Address Subsets During Interleaved Time Periods in a Multiprocessor System, filed Jun. 11, 2001, attorney docket number 9772-0327-999.

[Previous Doc](#)

[Next Doc](#)

[Go to Doc#](#)

[First Hit](#) [Fwd Refs](#)[Previous Doc](#) [Next Doc](#) [Go to Doc#](#) [Generate Collection](#) [Print](#)

L7: Entry 21 of 49

File: USPT

Jan 6, 2004

US-PAT-NO: 6675265

DOCUMENT-IDENTIFIER: US 6675265 B2

TITLE: Multiprocessor cache coherence system and method in which processor nodes and input/output nodes are equal participants

DATE-ISSUED: January 6, 2004

INVENTOR-INFORMATION:

NAME	CITY	STATE	ZIP CODE	COUNTRY
Barroso; Luiz A.	Mountain View	CA		
Gharachorloo; Kourosh	Menlo Park	CA		
Nowatzky; Andreas	San Jose	CA		
Ravishankar; Mosur K.	Mountain View	CA		
Stets, Jr.; Robert J.	Palo Alto	CA		

ASSIGNEE-INFORMATION:

NAME	CITY	STATE ZIP CODE	COUNTRY	TYPE CODE
Hewlett-Packard Development Company, L.P.	Houston TX			02

APPL-NO: 09/ 878984 [PALM]

DATE FILED: June 11, 2001

PARENT-CASE:

RELATED APPLICATIONS This application claims the benefit of Provisional Application No. 60/210,675, filed Jun. 10, 2000. This application is related to, and hereby incorporates by reference, the following U.S. patent applications: Scalable Multiprocessor System And Cache Coherence Method, filed Jun. 11, 2001, Ser. No. 09/878,982. System And method for Daisy Chaining Cache Invalidation Requests In A Shared-Memory Multiprocessor System, filed Jun. 11, 2001, Ser. No. 09/878,955. Cache Coherence Protocol Engine And Method For Processing Memory Transaction In Distinct Address Subsets During Interleaved Time Periods in A Multiprocessor System, tiled Jun. 11, 2001, Ser. No. 09/878,983. The present invention relates generally to multiprocessor computer system, and particularly to a multiprocessor system designed to be highly scalable, using efficient cache coherence logic and methodologies.

INT-CL: [07] G06 F 12/00

US-CL-ISSUED: 711/141; 711/144, 711/145

US-CL-CURRENT: 711/141; 711/144, 711/145

FIELD-OF-SEARCH: 711/141, 711/117, 711/118, 711/142, 711/143, 711/144, 711/145, 711/121, 711/147

PRIOR-ART-DISCLOSED:

U.S. PATENT DOCUMENTS

Search Selected Search ALL Clear

PAT-NO	ISSUE-DATE	PATENTEE-NAME	US-CL
<input type="checkbox"/> <u>5634110</u>	May 1997	Laudon et al.	711/145
<input type="checkbox"/> <u>5963975</u>	October 1999	Boyle et al.	711/147
<input type="checkbox"/> <u>6263403</u>	July 2001	Traynor	711/133
<input type="checkbox"/> <u>6438653</u>	August 2002	Akashi et al.	711/128
<input type="checkbox"/> <u>6493809</u>	December 2002	Safranek et al.	711/167

ART-UNIT: 2187

PRIMARY-EXAMINER: Elmore; Reba I.

ASSISTANT-EXAMINER: Takeguchi; Kathy

ABSTRACT:

A computer system has a plurality of processor nodes and a plurality of input/output nodes. Each processor node includes a multiplicity of processor cores, an interface to a local memory system and a protocol engine implementing a predefined cache coherence protocol. Each processor core has an associated memory cache for caching memory lines of information. Each input/output node includes no processor cores, an input/output interface for interfacing to an input/output bus or input/output device, a memory cache for caching memory lines of information and an interface to a local memory subsystem. The local memory subsystem of each processor node and input/output node stores a multiplicity of memory lines of information. The protocol engine of each processor node and input/output node implements the same predefined cache coherence protocol.

14 Claims, 30 Drawing figures

[Previous Doc](#) [Next Doc](#) [Go to Doc#](#)

[First Hit](#) [Fwd Refs](#)[Previous Doc](#) [Next Doc](#) [Go to Doc#](#) [Generate Collection](#) [Print](#)

L7: Entry 38 of 49

File: USPT

Jun 12, 2001

DOCUMENT-IDENTIFIER: US 6247091 B1

** See image for Certificate of Correction **

TITLE: Method and system for communicating interrupts between nodes of a multinode computer system

Brief Summary Text (5):

These computers may be classified by how they share information among the processors. Shared-memory multiprocessor computers offer a common memory address space that all processors can access. Processes within a program communicate through shared variables in memory which allow them to read or write to the same memory location in the computer. Message passing multiprocessor computers, on the other hand, have a separate memory space for each processor. Processes communicate through messages to each other.

Brief Summary Text (7):

Multiprocessor computers with distributed shared memory are often organized into nodes with one or more processors per node. Also included in the node are local memory for the processors, a remote cache for caching data obtained from memory in other nodes, and logic for linking the node with other nodes in the computer. A processor in a node communicates directly with the local memory and communicates indirectly with memory on other nodes through the remote cache. For example, if the desired data is in local memory, a processor obtains the data directly from local memory. But if the desired data is stored in memory in another node, the processor must access its remote cache to obtain the data. A cache hit occurs if the data has been obtained recently and is presently stored in the cache. Otherwise a cache miss occurs, and the cache must obtain the desired data from the local memory in another node through the linking logic.

Brief Summary Text (10):

Bus-based interrupt schemes, however, cannot communicate interrupts across the network of a multinode multiprocessor system because the nodes are not connected by a bus. (The difference between a bus and a network is well defined. See, for example, "Interconnection Networks," Computer Architecture A Quantitative Approach, .sub.2 nd Ed. (1996).) Instead, a second interrupt mechanism must be added to handle interrupts sent via the network from a processor on one node to a processor on another node. The obvious solution is to treat an interrupt like data and provide an interrupt register with a memory address in each node. A requesting processor in one node then interrupts a processor in a second node by writing an interrupt request to the address of the interrupt register in the second node. The request is then sent by way of the network to the second node. Hardware in the second node reads the interrupt register and places the interrupt request on the second node's bus for the second processor to read.

Detailed Description Text (3):

FIG. 1 is a block diagram of a multinode, multiprocessor computer system 10 in accordance with the invention. System 10 uses a computer architecture based on Distributed-Shared Memory (DSM). Four nodes 12-18 are shown connected by a system interconnect 20 that permits any node to communicate with any other node. Specifically, the purpose of interconnect 20 is to allow processors in any node to access the memory resident in any other node with cache coherency guaranteed.

System interconnect 20 is a switch-based interconnection network that uses the Scalable Coherent Interface (SCI) interconnection mechanism. SCI is an IEEE-approved standard, or protocol (1596), well documented in a number of publications including IEEE Std 1596-1992 (Aug. 2, 1993) and Multiprocessor interconnection using SCI, a Master Thesis by Ivan Tving, DTH ID-E 579 (1994), both of which are hereby incorporated by reference.

Current US Cross Reference Classification (4):

709/251

[Previous Doc](#)

[Next Doc](#)

[Go to Doc#](#)

[First Hit](#) [Fwd Refs](#)[Previous Doc](#) [Next Doc](#) [Go to Doc#](#)
 [Generate Collection](#) [Print](#)

L7: Entry 38 of 49

File: USPT

Jun 12, 2001

US-PAT-NO: 6247091

DOCUMENT-IDENTIFIER: US 6247091 B1

** See image for Certificate of Correction **

TITLE: Method and system for communicating interrupts between nodes of a multinode computer system

DATE-ISSUED: June 12, 2001

INVENTOR-INFORMATION:

NAME	CITY	STATE	ZIP CODE	COUNTRY
Lovett; Thomas D.	Portland	OR		

ASSIGNEE-INFORMATION:

NAME	CITY	STATE	ZIP CODE	COUNTRY	TYPE	CODE
International Business Machines Corporation	Armonk NY				02	

APPL-NO: 08/ 848545 [PALM]

DATE FILED: April 28, 1997

INT-CL: [07] G06 F 13/24

US-CL-ISSUED: 710/260, 710/266, 710/261, 710/263, 710/264, 710/267, 710/268, 709/251, 709/249, 709/253, 709/230, 370/402

US-CL-CURRENT: 710/260, 370/402, 709/230, 709/249, 709/251, 709/253, 710/261, 710/263, 710/264, 710/266, 710/267, 710/268

FIELD-OF-SEARCH: 710/260, 710/262-264, 710/266, 710/268, 710/269, 709/745, 709/238, 709/212, 709/249, 709/251, 709/250, 709/230, 370/392, 370/402

PRIOR-ART-DISCLOSED:

U.S. PATENT DOCUMENTS

PAT-NO	ISSUE-DATE	PATENTEE-NAME	US-CL
<input type="checkbox"/> <u>4604500</u>	August 1986	Brown et al.	379/269
<input type="checkbox"/> <u>4768149</u>	August 1988	Konopik et al.	395/867
<input type="checkbox"/> <u>5109522</u>	April 1992	Lent et al.	395/500
<input type="checkbox"/> <u>5283904</u>	February 1994	Carson et al.	395/739
<input type="checkbox"/> <u>5369748</u>	November 1994	McFarland et al.	711/118

<input type="checkbox"/>	<u>5428799</u>	June 1995	Woods et al.	710/266
<input type="checkbox"/>	<u>5481725</u>	January 1996	Jayakumar et al.	710/48
<input type="checkbox"/>	<u>5511200</u>	April 1996	Jayakumar	710/266
<input type="checkbox"/>	<u>5566171</u>	October 1996	Levinson	370/352
<input type="checkbox"/>	<u>5598541</u>	January 1997	Malladi	710/106
<input type="checkbox"/>	<u>5623494</u>	April 1997	Rostoker et al.	370/397
<input type="checkbox"/>	<u>5625563</u>	April 1997	Rostoker et al.	364/488
<input type="checkbox"/>	<u>5638518</u>	June 1997	Malladi	709/251
<input type="checkbox"/>	<u>5640399</u>	June 1997	Rostoker et al.	370/392
<input type="checkbox"/>	<u>5678057</u>	October 1997	Rostoker et al.	712/11
<input type="checkbox"/>	<u>5706514</u>	January 1998	Bonola	709/104
<input type="checkbox"/>	<u>5715274</u>	February 1998	Rostoker et al.	375/200
<input type="checkbox"/>	<u>5742843</u>	April 1998	Koyanagi et al.	712/14
<input type="checkbox"/>	<u>5790530</u>	August 1998	Moh et al.	370/363
<input type="checkbox"/>	<u>5832279</u>	November 1998	Rostoker et al.	710/266
<input type="checkbox"/>	<u>5892956</u>	April 1999	Qureshi et al.	710/260
<input type="checkbox"/>	<u>5944798</u>	August 1999	McCarty et al.	709/251

OTHER PUBLICATIONS

"Design of the APIC: A High Performance ATM Host Network Interface Chip", Dittia et al., 1995 IEEE.*

"The APIC Approach to High Performance Network Interface Design: Protected and Other Techniques", Dittia et al., 1997 IEEE.*

"Efficient Interprocessor Communications in a Tightly-Coupled Homogeneous Multiprocessor System", van der Wal et al. 1990 IEEE.*

MultiProcessor Specification, Intel, ver. 1.4, Jul. 1, 1995, Rev. Aug. 1996 (appendix E added)

ART-UNIT: 213

PRIMARY-EXAMINER: Teska; Kevin J.

ASSISTANT-EXAMINER: Thomson; William

ATTY-AGENT-FIRM: Klarquist Sparkman Campbell Leigh and Whinston LLP

ABSTRACT:

Each node of multinode computer system includes an interrupt controller, a pair of send and receive queues, and a state machine for communicating interrupts between nodes. The communication among the interrupt controller, the state machine, and the queues is coordinated by a queue manager. For sending an interrupt, the interrupt controller accepts an interrupt placed on a bus within the node and intended for another node and stores it in the send queue. The controller then notifies the interrupt source that the interrupt has been accepted before it is transmitted to other node. The interrupt has a first form suitable for transmission on the bus. A state machine within the node takes the interrupt from the send queue and puts the interrupt into a second form suitable for transmission across a network connecting

the multiple nodes. For receiving an interrupt, the state machine accepts an interrupt from another node and stores it in the receive queue, notifying the interrupt source that the interrupt has been accepted before its is placed on the node bus. The interrupt has the second form suitable for transmission across the network. The interrupt controller takes the interrupt from the receive queue and puts it in the first form suitable for transmission on the bus.

20 Claims, 12 Drawing figures

[Previous Doc](#)

[Next Doc](#)

[Go to Doc#](#)

[First Hit](#) [Fwd Refs](#)[Previous Doc](#) [Next Doc](#) [Go to Doc#](#)
 [Generate Collection](#) [Print](#)

L7: Entry 47 of 49

File: USPT

Jul 14, 1998

US-PAT-NO: 5781757

DOCUMENT-IDENTIFIER: US 5781757 A

TITLE: Adaptive scalable cache coherence network for a multiprocessor data processing system

DATE-ISSUED: July 14, 1998

INVENTOR-INFORMATION:

NAME	CITY	STATE	ZIP CODE	COUNTRY
Deshpande; Sanjay Raghunath	Austin	TX		

ASSIGNEE-INFORMATION:

NAME	CITY	STATE	ZIP CODE	COUNTRY	TYPE	CODE
International Business Machines Corporation	Armonk	NY			02	

APPL-NO: 08/ 747587 [PALM]

DATE FILED: November 13, 1996

PARENT-CASE:

This is a continuation of application Ser. No. 08/320,484, filed 11 Oct. 1994 now abandoned.

INT-CL: [06] G06 F 13/00

US-CL-ISSUED: 395/473; 395/200.02, 395/200.03, 395/200.1, 395/200.16, 395/200.15, 395/200.21, 395/297, 395/300, 395/446, 395/447, 395/448, 395/468, 395/449, 395/471, 395/472, 395/473, 395/730, 395/731, 395/800

US-CL-CURRENT: 711/146, 709/201, 710/117, 710/120, 710/242, 710/243, 711/119, 711/120, 711/121, 711/122, 711/141, 711/144, 711/145, 712/28, 712/30

FIELD-OF-SEARCH: 395/447, 395/446, 395/448, 395/468, 395/449, 395/473, 395/472, 395/471, 395/200.16, 395/297, 395/200.21, 395/200.15, 395/300, 395/730, 395/731, 395/200.02

PRIOR-ART-DISCLOSED:

U.S. PATENT DOCUMENTS

 [Search Selected](#) [Search ALL](#) [Clear](#)

PAT-NO	ISSUE-DATE	PATENTEE-NAME	US-CL
<input type="checkbox"/> <u>4049974</u>	September 1977	Boone et al.	326/95

<input type="checkbox"/>	<u>4367420</u>	January 1983	Foss et al.	326/119
<input type="checkbox"/>	<u>4570084</u>	February 1986	Griffin et al.	326/98
<input type="checkbox"/>	<u>4755930</u>	July 1988	Wilson, Jr. et al.	395/449
<input type="checkbox"/>	<u>4794342</u>	December 1988	Kimura	330/2
<input type="checkbox"/>	<u>4896057</u>	January 1990	Yang et al.	326/116
<input type="checkbox"/>	<u>4907184</u>	March 1990	Nakano et al.	369/736
<input type="checkbox"/>	<u>5025365</u>	June 1991	Mathur et al.	395/448
<input type="checkbox"/>	<u>5030857</u>	July 1991	Sanwo et al.	326/86
<input type="checkbox"/>	<u>5250860</u>	October 1993	Chu et al.	326/60
<input type="checkbox"/>	<u>5265235</u>	November 1993	Sindhu et al.	395/447
<input type="checkbox"/>	<u>5274782</u>	December 1993	Chalasani et al.	395/325
<input type="checkbox"/>	<u>5313609</u>	May 1994	Baylor et al.	395/448
<input type="checkbox"/>	<u>5345578</u>	September 1994	Manasse	395/473
<input type="checkbox"/>	<u>5440698</u>	August 1995	Sindhu et al.	395/200.08
<input type="checkbox"/>	<u>5530646</u>	June 1996	Schoen	364/421

OTHER PUBLICATIONS

Lipovski, G. J., An Organization for Optical Linkages Between Integrated Circuits, National Computer Conference, 1977, pp. 227-236.

Dae-Wha Seo, et al, Directory-Based Cache Coherence Scheme Using Number-Balanced Binary Tree, Microprocess. Microprogr. (Netherlands), vol. 37, No. 1-5, pp. 37-40, Jan. 1993, 4 REF.

Farrens, M., et al., CCHIME: A Cache Coherent Hybrid Interconnected Memory Extension, Proceedings: Sixth International Parallel Processing Symposium, (Cat. No. 92TH0419-2), IEEE Computer Soc. Press; xviii+693 pp., pp. 573-577, 1992, 11 REF.

Gupta, S., et al., Stanford DASH Multiprocessor: The Hardware and Software Approach, Proceedings: 4th International Parallel Architectures and Languages Europe Conference, 1992, Springer-Verlag, xvii+894 pp., pp. 802-805, 1992 40 REF.

Michael, W., Directory-Based Coherency Protocol For a Ring-Connected Multiprocessor-Array, Comput. Archit. News (USA), vol. 20, No. 2, p. 437, May 1992, 0 REF.

Al-Sadoun, H.B., et al., Cache Coherency In Multiple Bus Systems, Int. J. Electron (UK), vol. 73, No. 3, pp. 497-522, Sept. 1992, 33 REF.

Tamir, Y., et al., Hierarchical Coherency Management For Shared Virtual Memory Multicomputers, J. Parallel Distribut. Comput. (USA), vol. 15, No. 4, pp. 408-419, Aug. 1992, 17 REF.

Thapar, M., et al., Scalable Cache Coherence For Shared Memory Multiprocessors, Proceedings: Parallel Computation, First International ACPC Conference, Springer-Verlag, ix+451 pp., pp. 1-12, 1992, 13 REF.

Dahlgren, F., et al., Reducing Write Latencies For Shared Data In A Multiprocessor With A Multistage Network, Proceedings of the Twenty-Fifth Hawaii International Conference on System Sciences (Cat. No. 91TH0394-7), IEEE Comput. Soc. Press, 4 vol., (xv+831+877+xii+670+xiii+729) pp., pp. 449-456, vol. 1, 1991, 14 REF.

Tiruveedhula, V., et al., Performance Analysis Of A Cache-Based Multiprocessor System Using Data Movement Policies, Microprocess. Microprogr., (Netherlands), vol. 33, No. 4, pp. 237-248, Jun. 1992, 7 REF.

Marquardt, D.E., et al., A Cache-Coherent, Distributed Memory Multiprocessor System and Its Performance Analysis, IEICE Trans. Inf. Syst. (Japan), vol. E75-D, No. 3,

pp. 274-290, May 1992, 34 REF.

Yang, Q., et al., Design Of An Adaptive Cache Coherence Protocol For Large Scale Multiprocessors, IEEE Trans. Parallel Distrib Syst. (USA), vol. 3, No. 3, pp. 281-293; May 1992, 27 REF.

Yang, Q., et al., An Adaptive Cache Coherence Scheme For Hierarchical Shared-Memory Multiprocessors, Proceedings of the Second IEEE Symposium on Parallel and Distributed Processing 1990 (Cat. No. TH0328-5), IEEE Comput. Soc. Press, xix+892 pp. 318-325, 1990, 22 REF.

Mori, S., et al., The Kyushu University Reconfigurable Parallel Processor-Cache Architecture and Cache Coherence Schemes, Proceedings of the International Symposium on Shared Memory Multiprocessing, Inf. Process. Soc. Japan, 251 pp., pp. 218-219, 1991, 23 REF.

Thapar, M. et al., Cache Coherence For Large Scale Shared Memory Multiprocessors, Comput. Archit. News (USA), vol. 19, No. 1, pp. 114-119, March 1991, 12 REF.

Thaper, M., et al., Scalable Cache Coherence for Large Shared Memory Multiprocessors, Proceedings: 1990 Joint International Conference on Vector and Parallel Processing, Springer-Verlag, xi+900 pp., pp. 592-603, 1990, 19 REF.

Lenoski, D., et al., Design of Scalable Shared-Memory Multiprocessors: The DASH Approach, COMPCON Spring '90, Thirty-Fifth IEEE Computer Society International Conference, Intellectual Leverage, Digest of Papers, (Cat. No. 90CH2843-1), IEEE Comput Soc., xvi+644 pp., pp. 62-67, 1990, 11 REF.

Yang, Q., et al., Performance Analysis Of A Cache-Coherent Multiprocessor Based On Hierarchical Multiple Buses, Proceedings of the International Conference on Databases, Parallel Architectures and Their Applications, 1990, (Cat. No. 90CH2728-4), IEEE Comput. Soc. Press, xiv+570 pp., pp. 248-257, 1990, 24 REF.

Marquardt, D.E., et al., C/Sup 2/MP: A Cache-Coherent, Distributed Memory Multiprocessor-System, Proceedings of Supercomputing '89, ACM, xviii+894 pp., pp. 466-475, 1989, 39 REF.

Bhuyan, L.N. et al., Analysis of MIN Based Multiprocessors With Private Cache Memories, Proceedings of the 1989 International Conference on Parallel Processing, (Cat. No. 89CH2701-1), Pennsylvania State Univ. Press, 3 vol., (xv+137+xiii+263+xiii+262) pp., pp. 51-58 vol. 1, 1989, 20 REF.

Owicki, S., et al., Evaluating The Performance Of Software Cache Coherence, ASPLOS-III Proceedings. Third International Conference on Architectural Support For Programming Languages and Operating Systems, ACM x+303pp., pp. 230-242, 1989, 33 REF.

Winsor, D.C., et al., Analysis Of Bus Hierarchies For Multiprocessors15th Annual International Symposium on Computer Architecture, Conference Proceedings (Cat. No. 88CH2545-2), IEEE Comput. Soc. Press, xi+461 pp., pp. 100-107, 1988, 20 REF.

Bhuyan, L.N., et al., Multistage Bus Network (MBN) An Interconnection Network For Cache Coherent Multiprocessors, Proceedings of the Third IEEE Symposium on Parallel and Distributed Processing (Cat. No. 91TH0396-2), IEEE Comput. Soc. Press, xvi+903 pp., pp. 780-787, 1991, 14 REF.

Ganapathy, K.N., et al., Yield Optimization In Large RAM's With Hierarchical Redundancy, Special Brief Papers, IEEE Journal of Solid-State Circuits, vol. 26, No. 9, Sep. 1991.

Deshpande, Sanjay, et al., Scalability Of A Binary Tree On A Hypercube, Department of Electrical and Computer Engineering, University of Texas at Austin, 1986.

ART-UNIT: 238

PRIMARY-EXAMINER: Swann; Tod R.

ASSISTANT-EXAMINER: Tran; Denise

ATTY-AGENT-FIRM: Henkler; Richard A. Russell; Brian F. Dillon; Andrew J.

ABSTRACT:

h e b b g e e e f c e b

e ge

A cache coherence network for transferring coherence messages between processor caches in a multiprocessor data processing system is provided. The network includes a plurality of processor caches associated with a plurality of processors, and a binary logic tree circuit which can separately adapt each branch of the tree from a broadcast configuration during low levels of coherence traffic to a ring configuration during high levels of coherence traffic. A cache snoop-in input receives coherence messages and a snoop-out output outputs, at the most, one coherence message per current cycle of the network timing. A forward signal on a forward output indicates that the associated cache is outputting a message on snoop-out during the current cycle. A cache outputs received messages in a queue on the snoop-out output, after determining any response message based on the received message. The binary logic tree circuit has a plurality of binary nodes connected in a binary tree structure. Each branch node has a snoop-in, a snoop-out, and a forward connected to each of a next higher level node and two lower level nodes. A forward signal on a forward output indicates that the associated node is outputting a message on snoop-out to the higher node during the current cycle. Each branch ends with multiple connections to a cache at the cache's snoop-in input, snoop-out output, and forward output.

7 Claims, 11 Drawing figures

[Previous Doc](#)

[Next Doc](#)

[Go to Doc#](#)

[First Hit](#)[Fwd Refs](#)[Previous Doc](#)[Next Doc](#)[Go to Doc#](#)[End of Result Set](#) [Generate Collection](#) [Print](#)

L8: Entry 1 of 1

File: USPT

Oct 21, 2003

US-PAT-NO: 6636926

DOCUMENT-IDENTIFIER: US 6636926 B2

TITLE: Shared memory multiprocessor performing cache coherence control and node controller therefor

DATE-ISSUED: October 21, 2003

INVENTOR-INFORMATION:

NAME	CITY	STATE	ZIP CODE	COUNTRY
Yasuda; Yoshiko	Tokorozawa			JP
Hamanaka; Naoki	Tokyo			JP
Shonai; Toru	Hachioji			JP
Akashi; Hideya	Kunitachi			JP
Tsushima; Yuji	Kokubunji			JP
Uehara; Keitaro	Kokubunji			JP

ASSIGNEE-INFORMATION:

NAME	CITY	STATE	ZIP CODE	COUNTRY	TYPE CODE
Hitachi, Ltd.	Tokyo			JP	03

APPL-NO: 09/ 740816 [PALM]

DATE FILED: December 21, 2000

FOREIGN-APPL-PRIORITY-DATA:

COUNTRY	APPL-NO	APPL-DATE
JP	11-366235	December 24, 1999

INT-CL: [07] G06 F 13/00, G06 F 15/167

US-CL-ISSUED: 710/305, 710/317, 711/141, 709/213, 700/5

US-CL-CURRENT: 710/305, 700/5, 709/213, 710/317, 711/141

FIELD-OF-SEARCH: 710/305, 710/317, 710/300, 710/62, 710/4, 710/72, 711/141, 711/148, 711/120, 709/213, 709/214, 709/251, 700/5, 712/14, 712/211

PRIOR-ART-DISCLOSED:

U.S. PATENT DOCUMENTS

PAT-NO	ISSUE-DATE	PATENTEE-NAME	US-CL
<input type="checkbox"/> <u>4747043</u>	May 1988	Rodman	
<input type="checkbox"/> <u>6011791</u>	January 2000	Okada et al.	
<input type="checkbox"/> <u>6092173</u>	July 2000	Sasaki et al.	
<input type="checkbox"/> <u>6378029</u>	April 2002	Venkitakrishnan et al.	
<input type="checkbox"/> <u>6466825</u>	October 2002	Wang et al.	

OTHER PUBLICATIONS

"RISC System/6000SMP System," 1995 Comcon95 Proceedings, pp. 102-109.
"Starfire: Extending the SMP Envelope," 1998 Micro Jan./Feb. pp. 39-49.

ART-UNIT: 2181

PRIMARY-EXAMINER: Ray; Gopal C.

ABSTRACT:

Each node includes a node controller for decoding the control information and the address information for the access request issued by a processor or an I/O device, generating, based on the result of decoding, the cache coherence control information indicating whether the cache coherence control is required or not, the node information and the unit information for the transfer destination, and adding these information to the access request. An intra-node connection circuit for connecting the units in the node controller holds the cache coherence control information, the node information and the unit information added to the access request. When the cache coherence control information indicates that the cache coherence control is not required and the node information indicates the local node, then the intra-node connection circuit transfers the access request not to the inter-node connection circuit interconnecting the nodes but directly to the unit designated by the unit information.

19 Claims, 16 Drawing figures

[Previous Doc](#)

[Next Doc](#)

[Go to Doc#](#)

US006343346B

(12) United States Patent

(10) Patent No.: US 6,343,346 B1
(45) Date of Patent: Jan. 29, 2002

(54) CACHE COHERENT NETWORK ADAPTER
FOR SCALABLE SHARED MEMORY
PROCESSING SYSTEMS

(75) Inventor: Howard Thomas Olnowich, Endwell
NY (US)

(73) Assignee: International Business Machines Corporation, Armonk, NY (US)

(*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 3 U.S.C. 154(b) by 0 days.

(21) Appl. No.: 09/516,393

(22) Filed: Mar. 1, 2009

Related U.S. Application Data

(62) Division of application No. 08/301,404, filed on Jul 10, 1997, now Pat. No. 6,092,155.

(S1) Int. Cl.' G06F 12/0

(S2) USE C 211042Z 211021Z 211022Z

711/15

(36) *Fruit of Samara* 711/121, 122
711/143, 144, 145, 146, 148, 153, 142
709/214, 215, 218, 25

(56) References Cited

U.S. PATENT DOCUMENTS

4,399,504	A	8/1983	White et al.	364/203
4,562,139	A	12/1985	Vince	395/203
4,755,930	A	7/1988	Wilson, Jr. et al.	355/46
4,811,216	A	3/1989	Bishop et al.	564/225
4,965,719	A	10/1990	Shocco et al.	364/203
5,123,105	A	6/1992	Otsuka et al.	711/15
5,218,658	A	6/1993	Nishida	711/15
5,303,362	A	4/1994	Eutic, Jr. et al.	711/15
5,313,609	A	5/1994	Baylor et al.	355/46
5,394,555	A	2/1995	Hunter et al.	711/14
5,442,758	A	8/1995	Singwiene et al.	355/50
5,444,705	A	8/1995	Olcilowich et al.	370/85
5,452,447	A	9/1995	Nelson et al.	395/203

5,499,349	A	3/1996	Nikhil et al.	395/375
5,522,058	B	5/1996	Iwasa et al.	71/145
5,530,811	A	6/1996	Hoi	395/375
5,535,116	A	7/1996	Gupta et al.	395/200,000
5,537,569	A	7/1996	Maschinski	395/200,000
5,537,574	A	7/1996	Elni et al.	395/200,000
5,537,792	A	9/1996	Jesús et al.	395/200,000
5,561,809	A	10/1996	Elni et al.	395/200,000
5,592,625	A	1/1997	Sandberg	395/200,000
5,610,933	A	3/1997	Glavinich et al.	375/375
5,611,049	A	3/1997	Pitt	395/200,000
5,864,671	A	1/1999	Hagenaars et al.	709/213,000
5,987,505	A	11/2000	Carter et al.	709/213,000

(List continued on next page.)

OTHER PUBLICATIONS

M. Dubois et al. "Effects of Cache Coherency in Multiprocessors", *IEEE Transactions on Computers*, vol. C-31, No. 11, Nov. 1982.

*Primary Examiner—Hiem T. Nguyen
(74) Attorney, Agent, or Firm—Shelley M Beckstrand*

ABSTRACT

A shared memory parallel processing system interconnected by a multi-stage network combines new system configuration techniques with special-purpose hardware to provide remote memory accesses across the network, while controlling cache coherency efficiently across the network. The system configuration techniques include a systematic method for partitioning and controlling the memory in relation to local versus remote accesses and changeable versus unchangeable data. Most of the special-purpose hardware is implemented in the memory controller and network adapter, which implements three send FIFOs and three receive FIFOs at each node to segregate and handle efficiently invalidates functions, remote store, and remote accesses requiring cache coherency. The segregation of these three functions into different send and receive FIFOs greatly facilitates the cache coherency function over the network. In addition, the network itself is tailored to provide the best efficiency for remote accesses.

61 Claims, 41 Drawing Sheets

US06044438A

United States Patent [19]

Olnowich

[11] Patent Number: 6,044,438

[45] Date of Patent: Mar. 28, 2000

[54] MEMORY CONTROLLER FOR
CONTROLLING MEMORY ACCESSES
ACROSS NETWORKS IN DISTRIBUTED
SHARED MEMORY PROCESSING SYSTEMS

5,561,809 10/1996 Elko et al.
5,592,623 1/1997 Sandberg
5,610,933 3/1997 Olnowich et al.
5,611,040 3/1997 Pitts
5,737,588 4/1998 Hanaguchi et al.
5,832,534 11/1998 Singh et al. 711/141

[75] Inventor: Howard Thomas Olnowich, Endwell,
N.Y.

OTHER PUBLICATIONS

[73] Assignee: International Business Machines
Corporation, Armonk, N.Y.

M. Dubaise et al. "Effects of Cache Coherency in Multi-
processors", IEEE Transactions on Computers, vol. C-31,
No. 11, Nov. 1982.

[21] Appl. No.: 08/890,341

Primary Examiner—Krisha Lim
Attorney, Agent, or Firm—Shelley M Beckstrand

[22] Filed: Jul. 10, 1997

[51] Int. CL' G06F 13/14

[52] U.S. Cl. 711/130; 711/120; 711/141;
711/150; 707/201; 709/213; 709/214

[58] Field of Search 711/120, 130,
711/141, 150, 707/201; 709/213, 214, 250

[57] ABSTRACT**[56] References Cited****U.S. PATENT DOCUMENTS**

4,399,304 8/1983 Wiers et al.
4,582,539 12/1983 Vlachos
4,735,930 7/1988 Wilcox, Jr. et al.
4,965,719 10/1990 Shoen et al.
5,313,609 5/1994 Baylor et al.
5,442,758 8/1995 Shingwane et al.
5,444,705 8/1995 Olnowich et al.
5,452,447 9/1995 Nelson et al.
5,469,349 3/1996 Nikhil et al.
5,530,816 6/1996 Holt
5,533,116 7/1996 Gupta et al.
5,537,569 7/1996 Machichi
5,537,574 7/1996 Elko et al.
5,537,792 9/1996 Josten et al.

A shared memory parallel processing system interconnected by a multi-stage network combines new system configuration techniques with special-purpose hardware to provide remote memory accesses across the network, while controlling cache coherency efficiently across the network. The system configuration techniques include a systematic method for partitioning and controlling the memory in relation to local versus remote accesses and changeable versus unchangeable data. Most of the special-purpose hardware is implemented in the memory controller and network adapter, which implements three send FIFOs and three receive FIFOs at each node to segregate and handle efficiently invalidation functions, remote stores, and remote accesses regarding cache coherency. The segregation of these three functions into different send and receive FIFOs greatly facilitates the cache coherency function over the network. In addition, the network itself is tailored to provide the best efficiency for remote accesses.

16 Claims, 41 Drawing Sheets

