高語の一部位

3年情報

アナログについて

アナログとは

連続的に変化する量を、ほかの連続する量であらわした表現方式

連続する時間を、動く針のような 物理的なもので表現している

デジタルとは

ディジタル

変化する量を一定間隔で区切って数値で表現する方式

物の量を区切って数値で表現する

デジタルにいて

ものの個数など

とびとびの値しかとらないような量を・・・

離散量

(デジタル量)

● デジタル量で表現することを

デジタル

● デジタルで表された情報を

デジタル情報

デジタルでは、とびとびの値をそのまま数値や記号で 表すことができる

アナログとデジタル

長さ

重さ

(アナログ量)

記録したり、他の人に伝えたりするのに便利

アナログ情報をデジタル情報に変換することを デジタル情報をアナログ情報に変換することを デジタル化 アナログ化

(a)アナログ体重計

(b) デジタル体重計

(c)アナログ体温計

(d)デジタル体温計

図 | アナログ情報とデジタル情報

デジタル良いところ

①ディジタルデータはノイズの影響に強い データ伝送の際にノイズの影響を受けても, 0と1だけの 信号なので, 復元しやすく情報が失われにくい

デジタル良いところ

②記録・複製時に劣化しない 情報を記録・複製する際にコピーしても劣化せず, オリジナルと同じ品質を保つことができる

ディジタルデータのその他の特徴

- コピーをネットワークを介して送受信すること
- ・たくさんの情報の中から目的の情報を検索すること
- データ量を圧縮して減らすこと
- データを暗号化すること

ディジタルデータでは、これらのことが簡単にできる

情報の単位はどうやって表す?

■ スマートフォンのカタログ

こんな経験はないかな?

- ●メールやSNSで写真を送るときに、サイズの変更を 聞かれたことはないだろうか?
- ●そのままのサイズで写真を送ったときに、少し時間が かかったことはないだろうか?

データ送信するときには

● 写真(画像)や音楽(音声)はデータ量が大きく,送受信に時間がかかったり,自分と相手のパケット量を消費したりするので気をつけよう

- ●メモリカード 4GB
- スマートフォン 6 4 GB

B(バイト)・GB(ギガバイト)=ディジタルデータの記憶容量をあらわす単位

この単位を、ほかにどこかで見たり聞いたりしたことはないだろうか?

- 3ビット (bit)
 - ・コンピュータで扱う情報量の最小単位
 - | ビットは2進法の | 桁
- Iビットでは ①0 と ②12通りの状態をあらわすことができる

No 0 Yes 1 暑かった 0 寒かった 1

ビット数を増やす → 表現できる情報が増える

暑かっ	暑かった 0		った 1		
2 ビットで表現 → 2² = 4 種類の情報を表現することができる					
とても暑かった		寒かった			
00	01	10	11		
▶ 3 ビットで表現	$arr 1 o 2^3 = 8$ 種類(の情報を表現する	ることができる		

Q:4ビットでは何通りの情報を表現できるだろう?

式: 24 答え: 16通り

単位	読み方	データ量
В	バイト	1B=8bit
KB	キロバイト	1 KB=2 ¹⁰ B=1024B
MB	メガバイト	1MB=2 ¹⁰ KB=1024KB
GB	ギガバイト	1 GB=2 ¹⁰ MB=1024MB
ТВ	テラバイト	1 TB=2 ¹⁰ GB=1024GB
РВ	ペタバイト	1 PB=2 ¹⁰ TB=1024TB
EB	エクサバイト	1 EB=2 ¹⁰ PB=1024PB

※ K は 1000 倍をあらわす k と区別するため大文字を使う。

単位変換の方法

計算しにくいため1000指定が多いです。コンピュータは I O 進数ではなく 2 進数で表現するので 2 という区切りの数字がとても得意で 1024での計算が本当は正しいです

接頭語での表し方

接頭語	10 の何乗か(SI)
k(キロ)	$10^3 = 1000$
M(メガ)	$10^6 = 1\ 000\ 000$
G(ギガ)	$10^9 = 1\ 000\ 000\ 000$
T(テラ)	$10^{12} = 1\ 000\ 000\ 000\ 000$
P(ペタ)	$10^{15} = 1\ 000\ 000\ 000\ 000\ 000$
E(エクサ)	$10^{18} = 1\ 000\ 000\ 000\ 000\ 000$

2の何乗か					
$2^{10} = 1 \ 024$					
$2^{20} = 1\ 048\ 576$					
$2^{30} = 1\ 073\ 741\ 824$					
2 ⁴⁰ = 1 099 511 627 776					
$2^{50} = 1\ 125\ 899\ 906\ 842\ 624$					
$2^{60} = 1\ 152\ 921\ 504\ 606\ 846\ 976$					

計算問題

① I KBは何Bですか

1000B

③2000MBは何G Bですか

32GB

⑤8bは、何Bですか

 \bigcirc 1B

②3GBは何MBですか

23000MB

④3000GBは何TBですか

43TB

⑥10⁹バイトは何KBですか

61000000KB

計算問題 ⑦ ヒント

- ●情報量を計算してみよう
- ⑦スマホの写真データは I 枚撮るのに5MB必要と言われています。 容量が64GBあるスマホがあります。
 - ここには何枚写真が保存できるでしょうか。

ヒント

- ●情報の計算の基本は単位を合わせる
- ●64GBは何MBかな? (64GB= MB??)
- ●単位を合わせたらスマホの容量: 1枚あたりの情報量で計算できるよ

計算問題 ⑦ 答え

●計算式

手順 I:スマホの容量をMBになおす

64 (GB) = 64000 (MB)

手順2:<u>スマホの容量: | 枚あたりの情報量</u>で計算

64000 (MB) \div 5(MB)=12800

計算問題 8 ヒント

8100通りの色を再現するのには何b必要ですか。

計算問題 2-① ヒント

①動画(You tube)だけをみ続けた場合 Lヶ月で何分間見ることができますか?

【参考データ】				
項目		データ通信量		
音楽データ	1 曲	10MB		
動画(You tube など)視聴	1 分間	5MB		
サイト閲覧	1ページ	300KB		
LINE トーク	1 🗇	2KB		
無料電話	1分	300KB		
· ·		•		

ヒント

- ●情報の計算の基本は単位を合わせる
- 2 GBは何MBかな? (2GB= MB)
- ●動画はI分間につき3MBの容量です

計算問題 答え

●計算式

手順 I: Iヶ月使えるデータ量2GBをMBになおす

2 (GB) = 2000 (MB)

手順2:<u>スマホのデータ量: | 分当たりの動画通信量</u>で計算

2000 (MB) \div 3(MB)=666.6666

計算問題 2-2 ヒント

②ライントークは1日平均どれくらい見ることができますか?

ヒント

- 2 GBは何KBかな? (2GB= MB)
- ●ライントークは I 回2KBの容量です

計算問題 2一②答え

● 計算式

手順 I: Iヶ月使えるデータ量2GBをKBになおす

$$2 (GB) = 2000 (MB) = 2000000 (KB)$$

手順2:スマホのデータ量: I回当たりのデータ通信量で計算

2000000 (KB) ÷ 2(KB)=100000回

手順3:<u>手順2は1ヶ月あたりの回数</u>なので1日当たりをだすのに÷30

1000000 (回) ÷ 30(日)=33333回

答え 33333回