

Forecasting Dynamic Term Structure Models with Autoencoders

Carlos Castro-Iragorri ¹ Julian Ramirez ¹

¹Universidad del Rosario

Autoencoders

Autoencoders are a particular type of neural network with the same input and output variables. If there are fewer neurons \rightarrow dimension reduction.

Auto Encoder (AE)

Figure 1. Simple autoencoder (Van Veen and Leijnen, 2019)

$$Y_t(\tau) = W^{(2)} Z_t + b^{(2)}$$
$$Z_t = \sigma(W^{(1)} Y_t(\tau) + b^{(1)})$$

Linear and non linear activation functions, σ . Principal component analysis (PCA) is a particular case of a linear autoencoder. The neurons have no natural ordering and are not ortogonal. However, they contain all of the information vs the selected PCAs.

US historical synthetic yields

- 16 maturities
- monthly data November 1985 to December 2020 (400 observations)
- source: CRSP, US Treasury and Fed data.

Dynamic term structure models

State-space representation (measurement and state transition equation),

$$y_{t+1}(\tau) = F_t(\tau)B_t + \varepsilon_{t+1}(\tau)$$
$$B_t = \Phi B_{t-1} + v_t$$

where $F_t(\tau)$ predetermined or time invariant $(F_t(\tau) = F(\tau) \forall t)$ factor loadings and B_t are lower dimensional $K << \tau$ time varying factors.

Measurement equations

NS3: Nelson-Siegel 3 factor model

$$y_{t+1}(\tau) = \beta_{1,t} 1 + \beta_{2,t} (\frac{1 - e^{-\lambda_t \tau}}{\lambda_t \tau}) + \beta_{3,t} (\frac{1 - e^{-\lambda_t \tau}}{\lambda_t \tau} - e^{-\lambda_t \tau}) + \varepsilon_{t+1}(\tau)$$

where $B_t = (\beta_{1,t}, \beta_{2,t}, \beta_{3,t})$.

PCA 3 factor model

$$y_{t+1}(\tau) \approx Z_{1,t}V_1(\tau) + Z_{2,t}V_2(\tau) + Z_{3,t}V_3(\tau) + \varepsilon_{t+1}(\tau)$$

where $B_t = (Z_{1,t}, Z_{2,t}, Z_{3,t})$.

Autoencoders with 3 neurons and one or more layers

$$y_{t+1}(\tau) = Z_{1,t}W_1^{(2)}(\tau) + Z_{2,t}W_2^{(2)}(\tau) + Z_{3,t}W_3^{(2)}(\tau) + b^{(2)}\mathbf{1}(\tau) + \varepsilon_{t+1}(\tau)$$
$$Z_{i,t} = \tanh(W_i^{(1)}y_t(\tau) + b_i^{(1)})$$

where $B_t = (Z_{1,t}, Z_{2,t}, Z_{3,t})$ and the factor loadings are given by the weight matrices $W_i^{(2)}$ of of each of the neurons at the dencoder level (2).

- LA3: three neurons, one layer, linear activation.
- NA3: three neurons, one layer, non-linear activation.
- DA3: three core-neurons, three layers (6 and 8 non-core neurons), non-linear activation.

Out-of-sample performance, Horizon 1 month

$\overline{\tau}$	RW	NS3	PCA	LA3	NA3	DA3	$ERNN_{20}$	$GRNN_{20}$	$LSTM_{20}$
0.1	25.63	28.28	22.25	22.65	36.44	24.25	173.52	171.96	171.96
0.2	17.28	19.25	17.33	17.71	40.66	19.66	185.93	194.31	182.31
0.3	16.69	18.80	17.02	17.44	48.78	19.12	191.14	200.68	185.58
0.4	16.29	19.17	16.89	17.09	55.09	18.75	193.32	208.67	192.57
0.5	17.79	20.47	17.56	18.14	59.96	19.61	191.83	208.40	192.61
1.0	21.57	42.23	24.42	25.30	97.89	26.10	244.05	273.30	246.16
2.0	24.12	31.61	27.95	28.85	126.31	29.23	257.33	281.97	256.88
3.0	25.63	28.34	27.69	28.19	131.61	29.17	253.63	266.66	253.84
4.0	26.84	29.96	28.41	28.83	136.09	29.92	261.19	275.55	264.36
5.0	26.52	31.74	27.66	27.95	139.56	29.53	260.69	268.47	257.13
7.0	26.28	30.49	27.23	27.17	140.50	29.95	260.56	272.74	257.86
10.0	25.55	33.35	26.04	26.23	146.72	29.14	255.46	255.79	247.35
15.0	24.10	26.19	26.89	27.31	131.67	31.39	255.57	291.27	253.35
20.0	23.54	25.74	26.46	27.16	131.03	29.92	257.90	242.50	254.61
25.0	22.27	24.94	25.37	26.18	128.60	31.32	256.35	275.83	256.27
30.0	22.47	27.58	24.83	25.76	133.91	31.15	236.37	232.55	235.30

10 basis points is 0.10%. RW random walk benchmark

Benchmarks: Recurent Neural Networks (RNN) and Time Series Forecasting

Elman recurrent unit, ERNN(1).

$$y_{t+1}(\tau) = Z_t W^{(2)}(\tau) + b^{(2)} \mathbf{1}(\tau) + \varepsilon_{t+1}(\tau)$$
$$Z_t = \tanh(y_t(\tau)W_y^{(1)} + Z_{t-1}W_z^{(1)} + b^{(1)})$$

Gated recurrent unit, GRNN(1).

$$y_{t+1}(\tau) = Z_t W^{(2)}(\tau) + b^{(2)} \mathbf{1}(\tau) + \varepsilon_{t+1}(\tau)$$

$$Z_t = u_t \circ \tilde{Z}_t + (1 - u_t) \circ Z_{t-1}$$

$$\tilde{Z}_t = \tanh(y_t(\tau) W_{z,y}^{(1)} + Z_{t-1} W_{z,z}^{(1)} r_t + \mathbf{1} b_z^{(1)})$$

$$r_t = \sigma(W_{r,y}^{(1)} y_t(\tau) + W_{r,z}^{(1)} Z_{t-1} + \mathbf{1} b_r^{(1)})$$

$$u_t = \sigma(W_{u,y}^{(1)} y_t(\tau) + W_{u,z}^{(1)} Z_{t-1} + \mathbf{1} b_u^{(1)})$$

Long Short Term Memory (LSTM) with or whithout peephole.

RNN can provide a dynamic system (for forecasting) that is deterministic (weights and bias are t-measurable) and with non-linear activation functions. These are analogous to classical time series models with a state space representation fore forecasting, for example an additive exponential moving average that can be represented as a linear non-deterministic dynamic system with a single source of error (Hyndman et al 2008).

Conclusions and work ahead

- PCA and simple linear autoencoder outperform Nelson and Siegel and more complex models: non-linear or deep autoencoder.
- Recurrent neural network models: Elman recurrent unit, Gated recurrent unit, LSTM, undeperform.
- Too few data (right trade off to the number of parameters) and structural changes.

References

- Shihao Gu, Bryan T. Kelly, and Dacheng Xiu. Autoencoder asset pricing models. Journal of Econometrics, 2020.
- Francis Diebold and Canlin Li. Forecasting the term structure of government bond yields. J. Econometrics, 2006.
- Hansika Hewamalage, Christoph Bergmeir, and Kasun Bandara. Recurrent neural networks for time series forecasting: Current status and future directions. International Journal of Forecasting, 37:388-427, 2021.
- Yoshiyuki Suimon, Hiroki Sakaji, Kiyoshi Izumi, and Hiroyasu Matsushima. Autoencoder-based three-factor model for the yield curve of japanese government bonds and a trading strategy. 13:82, 2020.
- P. Baldi and K. Hornik. Neural networks and principal component analysis: Learning from examples without local minima. Neural Networks, 2:53-58, 1989.
- R.J. Hyndman, Koehler A.B., J.K. Ord, and R.D. Snyder. Forescasting with exponential smoothing: The state space approach. Springer, 2008.