2022년 지능화 파일럿 프로젝트 논문 서론 및 이론적 배경

Project

교차로 대기행렬길이 산출 개선을 위한 딥러닝 기반의 차량 검출

> 방창현(2021254011) 2022. 10. 26.

2022년 지능화 파일럿 프로젝트 논문 서론 및 이론적 배경

Contents

- 연구의 배경
- 프로젝트의 목적
- 프로젝트의 기대효과
- 관련 연구(or 시장 동향)
- 기존 연구(or 기술)의 한계
- 연구 추진 방법

연구의 배경

1. 프로젝트 제목

- (한글) 교차로 대기행렬길이 산출 개선을 위한 딥러닝 기반의 차량 검출
- (영문) Deep Learning-based Vehicle Detection to Improve Intersection Queue Length Calculation

연구의 배경

- 지능형 교통 시스템(ITS : Intelligent Traffic System)에서 교통 혼잡을 최소화하기 위한 신호 최적화의 중요한 정보 중의 하나가 대기행렬길이이다.
- 대기행렬길이는 도로상의 영상검지기를 통해서 정보를 산출하고 있지만 **영상분석을 통한 차량 검출 성능이 낮아 검출 정확도** 개선이 필요하다.
- 낮은 검출 성능으로 인하여 신호최적화를 통한 교통혼잡을 최소화 할 수 있는 대기행렬길이에 대한 신뢰도가 높지 않은 상태이다.

프로젝트의 목적

1. 프로젝트의 목적

- **딥러닝 기반의 영상처리기법을 활용**하여 기존의 차량검출 성능을 개선시킴.
- 다양한 크기의 차량 및 작은 크기의 차량을 집중적으로 학습시킴으로써
 먼 거리의 작은 차량도 좀 더 정확한 검출정보를 제공할 수 있도록 한다.
- 기존의 방식으로는 산출 정확도가 낮은 신호 대기 구간의 차량
 대기행렬길이의 정확도를 높이고 검출 누락으로 인한 오류를 개선한다.
- 일반 이용자들이 쉽게 접근하기 어려운 실제 지능형교통체계의 영상 검지기에서 수집되는 차량영상정보를 획득하여 학습 데이터로 활용함으로써 공개된 이미지 데이터 셋을 통해 수집되는 차량영상정보 보다 신뢰성이 높은 학습 데이터를 사용한다.

프로젝트의 기대효과

1. 프로젝트의 기대효과

- 딥러닝 기술을 활용하여 차량객체 검출 정확도를 기존보다 향상 시킴
- 실제 교통상황에 맞는 대기행렬 길이 산정에 도움을 주어 교통정보에 대한 신뢰도를 높이는데 기여
- 차량 이용자들에게 좀 더 **원활하고 쾌적한 도로 주행을 할 수 있도록 정확한 정보를 제공**할 수 있을 것으로 본다.
- 여러 센서 장비들 (루프검지기, 초음파 검지기, 영상 검지기 등)을 도로에 설치하여 교통정보를 제공하는 기존의 방식에 비해 영상 검지기만을 통한 교통정보 제공이 가능해짐으로 비용 절감 및 관리의 단순화에 기여

관련 연구(or 시장 동향)

1. 시장 동향

- 지능형 교통 시스템 (ITS: Intelligent Traffic System) 도입 초기에는 40개 이상의 정부 기관이 참여했으며, 매년 ITS 개발 계획에 예산이 투입되고 있다.
- 인공지능 기술을 활용한 CCTV영상 분석을 통해 교차로 운영체계를 과학적으로 구축하여 도심 내 신호교차로에 최적의 교통신호 운영 및 우회 도로 안내서비스를 제공하고 도심 내 교통 혼잡 완화를 도모하기 위한 노력이 시작되고 있다.

2. 관련 연구

- 이용주 외(2018)는 도로상의 가용 데이터 등을 이용하여 차량대기길이와의 관계를 딥러닝을 통해 학습하고 추정하는 인공지능 모델 구축
- 박영기 외(2020)는 도로의 CCTV카메라를 이용하여 Vision Tracking을 이용한 주행차량의 교통정보 산출 솔루션 제시
- 나다혁 (2021)은 영상 검지기 기반의 딥러닝 기반 대기행렬길이 예측 모델 구축
- 신동훈 외(2021)는 도로 CCTV 데이터를 활용한 딥러닝 기반 차량 이상 감지 방법을 제안
- 이태희 외(2021)는 딥러닝을 이용하여 교차로를 통행하는 차량의 정확한 계수 및 대기열 계산을 위해서 먼 거리의 작은 차량에 대한 정확도 높은 검출 방법을 제시

기존 연구(or 기술)의 한계

1. 기존 연구의 한계

- 차량대기길이 관련 기존 선행연구는 **주로 시계열 데이터 기반의 차량 대기행렬길이를 예측하고** 예측 정확도를 개선하는 것에 기반을 두고 있다.
- 차량 대기행렬길이 계산을 위한 영상기반의 딥러닝 기술을 적용한 연구가 있지만 최신의 딥러닝 기술이 반영되어 있지 않았으며 결과에 대한 정확도 또한 개선의 여지가 있음을 명시하고 있다.

2. 기존 기술의 한계

- 기존 영상분석 기술은 Rule base의 정해진 규칙에 의한 객체검출만을 수행함으로 **다양한 객체를** 검출하는 데는 한계가 있다.
- 영상 내 가까운 거리에서의 차량 객체 검출 정확도는 높지만 **먼 거리에 있는 작은 차량 객체에** 대한 검출 정확도는 낮다.
- 인공지능 기반의 스마트 교차로 도입을 시작하고 있지만 **딥러닝을 이용한 영상분석 기술 적용은** 아직 초기단계이다.

연구 추진 방법

1. 연구 방법론

- 영상 검지기의 영상 데이터 비교 분석하여 학습 데이터 선별
- Over fitting의 방지와 정확도 증가를 위해 데이터 증량 기법 사용
- YOLOv5 딥러닝 기반의 학습 수행
- 결과 성능 비교

🔝 실험 설계(or 서비스 구성)

- 부천시 ITS의 교차로별 영상 검지기에서 데이터 추출
 - 대기행렬길이 오차가 많은 도로 교차로 10군데 선별
 - 선별된 교차로의 영상 검지기에서 데이터 추출
- 데이터 증량 기법 사용
 - 화소적, 기하학적 변형으로 학습 데이터 증량
- 각 영상 데이터에 대한 라벨링 수행
- 라벨링한 전체 영상 데이터에서 train, valid 비율 8 대 2으로 분류
- 작은 객체의 검출 정확도를 높이기 위해 CSP-Darknet기반의 딥러닝 모델인 yolov5 P6 모델을 사용하여 학습 수행
- 영상데이터, 학습옵션등 변경하여 모델을 만들고 각 결과 모델에 대한 성능 비교

감사합니다

