

FCC Part 22H & 24E Measurement and Test Report

For

Shenzhen Jimi IOT Co., Ltd

Floor 4th, Building C, Gaoxinqi Industrial Park,

Liuxian 1st Road, District 67, Bao'an, ShenZhen, China

FCC ID: 2AMLFAT2

FCC Rules: FCC Part 22H, FCC Part 24E

Product Description: Asset GPS tracker

Tested Model: AT2

Report No.: <u>WTX19X03010808W-1</u>

Sample Receipt Date: 2019-03-01

Tested Date: <u>2019-03-01 to 2019-03-20</u>

Issued Date: <u>2019-03-20</u>

Tested By: <u>Jason Su / Engineer</u>

Reviewed By: Silin Chen / EMC Manager

Approved & Authorized By: <u>Jandy So / PSQ Manager</u>

Prepared By:

Shenzhen SEM Test Technology Co., Ltd.

1/F, Building A, Hongwei Industrial Park, Liuxian 2nd Road,

Jason Su Fili-Chen Jumby 80

Bao'an District, Shenzhen, P.R.C. (518101)

Tel.: +86-755-33663308 Fax.: +86-755-33663309 Website: www.semtest.com.cn

Note: This test report is limited to the above client company and the product model only. It may not be duplicated without prior permitted by Shenzhen SEM Test Technology Co., Ltd.

TABLE OF CONTENTS

1. GENERAL INFORMATION	3
1.1 PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	3
1.2 TEST STANDARDS	
1.3 Test Methodology	
1.4 TEST FACILITY	
1.5 EUT SETUP AND TEST MODE	
1.7 TEST EQUIPMENT LIST AND DETAILS	
2. SUMMARY OF TEST RESULTS	
3. RF EXPOSURE	
3.1 STANDARD APPLICABLE	
3.2 Test Result.	
4. RF OUTPUT POWER	
4.1 Standard Applicable	
4.2 Test Procedure	11
4.3 SUMMARY OF TEST RESULTS/PLOTS	11
5. PEAK-TO-AVERAGE RATIO (PAR) OF TRANSMITTER	15
5.1 STANDARD APPLICABLE	
5.2 Test Procedure	
5.3 SUMMARY OF TEST RESULTS	
6. EMISSION BANDWIDTH	
6.1 Standard Applicable	
6.2 Test Procedure	
6.3 SUMMARY OF TEST RESULTS/PLOTS	
7. OUT OF BAND EMISSIONS AT ANTENNA TERMINAL	
7.1 STANDARD APPLICABLE	
7.2 TEST PROCEDURE	
8. SPURIOUS RADIATED EMISSIONS	
8.1 STANDARD APPLICABLE	
8.2 Test Procedure	39
9. FREQUENCY STABILITY	
9.1 STANDARD APPLICABLE	
9.2 TEST PROCEDURE	
10. MODULATION CHARACTERISTICS	
10.1 Standard Applicable	
10.3 SUMMARY OF TEST RESULTS/PLOTS	

1. GENERAL INFORMATION

1.1 Product Description for Equipment Under Test (EUT)

Client Information

Applicant: Shenzhen Jimi IOT Co., Ltd

Address of applicant: Floor 4th, Building C, Gaoxinqi Industrial Park,

Liuxian 1st Road, District 67, Bao'an, ShenZhen, China

Manufacturer: Shenzhen Jimi IOT Co., Ltd

Address of manufacturer: Floor 4th, Building C, Gaoxinqi Industrial Park,

Liuxian 1st Road, District 67, Bao'an, ShenZhen, China

General Description of EUT:				
Product Name:	Asset GPS tracker			
Brand Name:	JIMI			
Model No.:	AT2			
Adding Model(s):	/			
Rated Voltage:	DC3.7V			
Battery:	/			
Adapter Model:	/			
Software Version:	/			
Hardware Version:	/			
Note: The test data is gathered f	rom a production sample provided by the manufacturer			

Note: The test data is gathered from a production sample provided by the manufacturer.

Technical Characteristics of EUT:				
2G				
Support Networks:	GSM, GPRS			
Support Band:	GSM850/PCS1900			
Haliak Eroguanay	GSM/GPRS 850: 824~849MHz			
Uplink Frequency:	GSM/GPRS 1900: 1850~1910MHz			
Downlink Fraguency:	GSM/GPRS 850: 869~894MHz			
Downlink Frequency:	GSM/GPRS 1900: 1930~1990MHz			
Max RF Output Power:	GSM850: 32.26dBm, GSM1900: 29.38dBm			
Type of Emission:	GSM850: 247KGXW, GSM1900: 250KGXW			
Type of Modulation:	GMSK			
Type of Antenna:	Integral Antenna			
Antenna Gain:	GSM850: :-0.6dBi; GSM1900: -3dBi			
GPRS Class:	Class 12			

Report No.: WTX19X03010808W-1 Page 3 of 49 FCC Part 22H&24E

TEST Model: AT2

1.2 Test Standards

The tests were performed according to following standards:

<u>FCC Rules Part 2:</u> FREQUENCY ALLOCA-TIONS AND RADIO TREATY MAT-TERS; GENERAL RULES AND REG-ULATIONS

FCC Rules Part 22: PRIVATE LAND MOBILE RADIO SERVICES.

FCC Rules Part 24: PUBLIC MOBILE SERVICES

<u>TIA/EIA 603 E March 2016:</u> Land Mobile FM or PM Communications Equipment Measurement and Performance Standards.

ANSI C63.26-2015: American National Standard for Compliance Testing of Transmitters Used in Licensed Radio Services

<u>KDB 971168 D01 Power Meas License Digital Systems v03r01:</u> MEASUREMENT GUIDANCE FOR CERTIFICATION OF LICENSED DIGITAL TRANSMITTERS

Maintenance of compliance is the responsibility of the manufacturer. Any modification of the product, which result in lowering the emission, should be checked to ensure compliance has been maintained.

1.3 Test Methodology

All measurements contained in this report were conducted with TIA/EIA 603 E/ KDB 971168/ ANSI C63.26 The equipment under test (EUT) was configured to measure its highest possible emission level. The test modes were adapted accordingly in reference to the Operating Instructions.

1.4 Test Facility

FCC - Registration No.: 125990

Shenzhen SEM Test Technology Co., Ltd. Laboratory has been recognized to perform compliance testing on equipment subject to the Commissions Declaration Of Conformity (DOC). The Designation Number is CN5010, and Test Firm Registration Number is 125990.

Industry Canada (IC) Registration No.: 11464A

The 3m Semi-anechoic chamber of Shenzhen SEM Test Technology Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 11464A.

Report No.: WTX19X03010808W-1 Page 4 of 49 FCC Part 22H&24E

Model: AT2

1.5 EUT Setup and Test Mode

The EUT was operated in the engineering mode to fix the Tx frequency that was for the purpose of the measurements. All testing shall be performed under maximum output power condition, and to measure its highest possible emissions level, more detailed description as follows:

Test Mode List				
Test Mode	Description	Remark		
TM1	GSM 850	Low, Middle, High Channels		
TM2	GPRS 850	Low, Middle, High Channels		
TM3	GSM 1900	Low, Middle, High Channels		
TM4	GPRS 1900	Low, Middle, High Channels		

Testing Configure					
Support Band	Support Standard	Channel Frequency(MHz)	Channel Number		
		824.2	128		
GSM 850	GSM/GPRS	836.6 190	190		
	848.8	848.8	251		
		1850.2	512		
PCS 1900	GSM/GPRS	1880.0	661		
		1909.8	810		

Note: the transmitter has been tested on the communications mode of GSM, GPRS, compliance test and record the worst case.

Test Conditions				
Temperature:	22~25 °C			
Relative humidity	50~55 %.			
ATM Pressure:	1019 mbar			

EUT Cable List and Details						
Cable Description Length (m) Shielded/Unshielded With / Without Ferrite						
USB Cable	1.0	Unshielded	Without Ferrite			

Special Cable List and Details							
Cable Description Length (m) Shielded/Unshielded With / Without Ferrite							
/	/	/	/				

Auxiliary Equipment List and Details						
Description Manufacturer Model Serial Number						

Report No.: WTX19X03010808W-1 Page 5 of 49 FCC Part 22H&24E

1.6 Measurement Uncertainty

Measurement uncertainty						
Parameter	Conditions	Uncertainty				
RF Output Power	Conducted	±0.42dB ±1.5%				
Occupied Bandwidth	Conducted	±1.5%				
Frequency Stability	Conducted	2.3%				
Transmitter Spurious Emissions	Conducted	± 0.42 dB				
		$30-200 MHz \pm 4.52 dB$				
Transmitter Spurious Emissions	Radiated	$0.2\text{-}1\text{GHz} \pm 5.56\text{dB}$				
	Kadiated	1-6GHz ±3.84dB				
		6-18GHz ±3.92dB				

1.7 Test Equipment List and Details

No.	Description	Manufacturer	Model	Serial No.	Cal Date	Due. Date
CEMT 1075	Communication	Rohde &	CMW500	140650	2010 05 22	2010 05 21
SEMT-1075	Tester	Schwarz	CMW500	148650	2018-05-22	2019-05-21
CEMT 1062	CCM Tastan	Rohde &	CMU200	114402	2019 05 22	2010 05 21
SEMT-1063	GSM Tester	Schwarz	CMU200	114403	2018-05-22	2019-05-21
SEMT-1072	Spectrum	Agilent	E4407B	MY41440400	2018-05-22	2019-05-21
SEWIT-1072	Analyzer	Agnent	E4407B	101141440400	2010-03-22	2019-03-21
SEMT-1079	Spectrum	Agilent	N9020A	US47140102	2018-05-22	2019-05-21
SENTI 1079	Analyzer	righent	11,502011	CS 171 10102	2010 03 22	2017 03 21
SEMT-1080	Signal	Agilent	83752A	3610A01453	2018-05-22	2019-05-21
	Generator	8 1				
SEMT-1081	Vector Signal	Agilent	N5182A	MY47070202	2018-05-22	2019-05-21
	Generator					
SEMT-1028	Power Divider	Weinschel	1506A	PM204	2018-05-22	2019-05-21
SEMT-1082	Power Divider	RF-Lambda	RFLT4W5M18G	14110400027	2018-05-22	2019-05-21
SEMT-1031	Spectrum	Rohde &	FSP30	836079/035	2018-05-22	2019-05-21
	Analyzer	Schwarz				
SEMT-1007	EMI Test	Rohde &	ESVB	825471/005	2018-05-22	2019-05-21
	Receiver	Schwarz				
SEMT-1008	Amplifier	Agilent	8447F	3113A06717	2018-05-22	2019-05-21
SEMT-1043	Amplifier	C&D	PAP-1G18	2002	2018-05-22	2019-05-21
SEMT-1069	Loop Antenna	Schwarz beck	FMZB 1516	9773	2017-06-08	2020-06-07
SEMT-1068	Broadband Antenna	Schwarz beck	VULB9163	9163-333	2017-06-08	2020-06-07
SEMT-1042	Horn Antenna	ETS	3117	00086197	2017-06-08	2020-06-07
SEMT-1121	Horn Antenna	Schwarzbeck	BBHA 9170	BBHA9170582	2017-06-08	2020-06-07
SEMT-1168	Pre-amplifier	Direction Systems Inc.	PAP-0126	14141-12838	2018-05-22	2019-05-21
CENTE 11.00	D 1.C.	Direction	DAD 2640	14145 14152	2010 05 22	2010 05 21
SEMT-1169	Pre-amplifier	Systems Inc.	PAP-2640	14145-14153	2018-05-22	2019-05-21
SEMT-1163	Spectrum	Rohde &	FSP40	100612	2018-05-22	2019-05-21
SEWI1-1105	Analyzer	Schwarz	r3P40	100612	2018-03-22	2019-03-21
SEMT-1170	DRG Horn	A.H.	SAS-574	571	2018-03-19	2021-03-18
SEWI1-1170	Antenna	SYSTEMS	SAS-374	3/1	2016-05-19	2021-03-16
SEMT-1166	Power Limiter	Agilent	N9356B	MY45450376	2018-05-22	2019-05-21
SEMT-1048	RF Limiter	ATTEN	AT-BSF-2400~2500	/	2018-05-22	2019-05-21
SEMT-1076	RF Switcher	Top Precision	RCS03-A2	/	2018-05-22	2019-05-21
SEMT-C001	Cable	Zheng DI	LL142-07-07-10M(A)	/	2019-03-18	2020-03-17
SEMT-C002	Cable	Zheng DI	ZT40-2.92J-2.92J-6M	/	2019-03-18	2020-03-17
SEMT-C003	Cable	Zheng DI	ZT40-2.92J-2.92J-2.5M	/	2019-03-18	2020-03-17
SEMT-C004	Cable	Zheng DI	2M0RFC	/	2019-03-18	2020-03-17

Model: AT2

SEMT-C005	Cable	Zheng DI	1M0RFC	/	2019-03-18	2020-03-17
SEMT-C006	Cable	Zheng DI	1M0RFC	/	2019-03-18	2020-03-17

2. SUMMARY OF TEST RESULTS

FCC Rules	Description of Test Item	Result
§ 1.1307, § 2.1093	RF Exposure	Compliant
§ 22.913 (a), § 24.232 (c)	RF Output Power	Compliant
§ 24.51	Peak-to-average Ratio (PAR) of Transmitter	Compliant
§ 22.917 (b), § 24.238 (b)	Emission Bandwidth	Compliant
§ 22.917 (a), § 24.238 (a)	Spurious Emissions at Antenna Terminal	Compliant
§ 22.917 (a), § 24.238 (a)	Spurious Radiation Emissions	Compliant
§ 22.917 (a), § 24.238 (a)	Out of Band Emissions	Compliant
§ 22.355, § 24.235	Frequency Stability	Compliant

3. RF Exposure

3.1 Standard Applicable

According to § 1.1307 and § 2.1093, the portable transmitter must comply the RF exposure requirements.

3.2 Test Result

This product complied with the requirement of the RF SAR, please see the SAR report.

4. RF Output Power

4.1 Standard Applicable

According to \$22.913(a)(2), The ERP of mobile and portable stations transmitters and auxiliary test transmitters must not exceed 7 Watts.

According to §24.232 (c), Mobile and portable stations are limited to 2 watts EIRP and the equipment must employ a means for limiting power to the minimum necessary for successful communications.

4.2 Test Procedure

Conducted output power test method:

- Radiated power test method:
- 1. The setup of EUT is according with per ANSI/TIA Standard 603E and ANSI C63.26 measurement procedure.
- 2. The measurement antenna was placed at a distance of 3 meters from the EUT. During the tests, the antenna height and polarization as well as EUT azimuth were varied in order to identify the maximum level of emissions from the EUT. The test was performed by placing the EUT on 3-orthogonal axis.
- 3. The frequency range up to tenth harmonic of the fundamental frequency was investigated.
- 4. Remove the EUT and replace it with substitution antenna. A signal generator was connected to the substitution antenna by a non-radiating cable. The absolute levels of the spurious emissions were measured by the substitution.

4.3 Summary of Test Results/Plots

> Max. Radiated Power

Mode	Channel	Antenna Polar	ERP (dBm)	Limit (dBm)	Result
	128	V	30.65		Pass
		Н	30.21	<38.45	
CCM050	190	V	30.28		
GSM850		Н	30.10		
	251	V	30.54		
		Н	30.45		
GPRS850	128	V	28.05		Pass
		Н	28.05	<38.45	
	190	V	28.63		
		Н	28.21		
	251	V	28.52		
		Н	28.61		

Mode	Channel	Antenna Polar	EIRP (dBm)	Limit (dBm)	Result
	512	V	28.54		Pass
		Н	28.32	<33.00	
PCS1900	661	V	28.41		
PCS1900		Н	28.32		
	810	V	28.42		
		Н	28.34		
GPRS1900	512	V	28.65		Pass
		Н	28.41	<33.00	
	661	V	28.14		
		Н	28.12		
	810	V	28.32		
		Н	28.41		

> Max. Conducted Power (Average power)

Conducted Average power (dBm)						
Band		GSM850		PCS1900		
Channel	128	190	251	251 512 661 810		
Frequency(MHz)	824.20	836.60	848.80	1850.20	1880.00	1909.80
GSM	32.22	32.15	32.06	29.11	29.25	29.35
GPRS(1Slot)	32.26	32.21	32.16	29.12	29.27	29.38

5. Peak-to-average Ratio (PAR) of Transmitter

5.1 Standard Applicable

According to §24.232(d), Power measurements for transmissions by stations authorized under this section may be made either in accordance with a Commission-approved average power technique or in compliance with paragraph (e) of this section. In both instances, equipment employed must be authorized in accordance with the provisions of §24.51. In measuring transmissions in this band using an average power technique, the peak-to-average ratio (PAR) of the transmission may not exceed 13 dB.

5.2 Test Procedure

According with KDB 971168

- 1. The signal analyzer's CCDF measurement profile is enabled
- 2. Frequency = carrier center frequency
- 3. Measurement BW > Emission bandwidth of signal
- 4. The signal analyzer was set to collect one million samples to generate the CCDF curve
- 5. The measurement interval was set depending on the type of signal analyzed. For continuous signals (>98% duty cycle), the measurement interval was set to 1ms. For burst transmissions, the spectrum analyzer is set to use an internal "RF Burst" trigger that is synced with an incoming pulse and the measurement interval is set to less than the duration of the "on time" of one burst to ensure that energy is only captured during a time in which the transmitter is operating at maximum power

Test Configuration for the emission bandwidth testing:

5.3 Summary of Test Results

PCS1900					
Test Mode	Channel	Frequency (MHz)	PAR (dB)	Limit (dB)	
GSM	661	1850.2	3.65	13	
GPRS(1 Slot)	661	1850.2	5.02	13	

Note: Only the worst case was selected to record.

6. Emission Bandwidth

6.1 Standard Applicable

According to §22.917(b), The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emissions are attenuated at least 26 dB below the transmitter power.

According to \$24.238(b), The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emissions are attenuated at least 26 dB below the transmitter power.

6.2 Test Procedure

The RF output terminal of the transmitter was connected to the input of the spectrum analyzer via a suitable attenuation. The RBW of the spectrum analyzer was set to 10kHz for GSM mode and 100kHz for WCDMA mode, VBW shall be at least 3 times the RBW, and the 26dB bandwidth was recorded.

Test Configuration for the emission bandwidth testing:

6.3 Summary of Test Results/Plots

EUT Mode	Channel	Frequency (MHz)	99% Occupy bandwidth (kHz)	-26dB bandwidth (kHz)
	128	824.20	245.3201	319.974
GSM 850 (GMSK)	190	836.60	245.3246	323.213
(GMSR)	251	848.80	243.8269	316.680
	128	824.20	246.2409	316.853
GPRS850 (GMSK,1Slot)	190	836.60	247.1445	324.513
	251	848.80	246.0640	311.839
PCS1900 (GMSK)	512	1850.20	246.8982	313.989
	661	1880.00	250.0519	313.166
	810	1909.80	246.9820	317.984
GPRS1900 (GMSK,1Slot)	512	1850.20	246.0640	311.839
	661	1880.00	246.8205	320.180
	810	1909.80	246.6008	323.720

7. Out of Band Emissions at Antenna Terminal

7.1 Standard Applicable

According to \$22.917(a), the power of any emissions outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least $43 + 10 \log(P) dB$.

According to \$24.238(a), the power of any emissions outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least $43 + 10 \log(P) dB$.

7.2 Test Procedure

The RF output terminal of the transmitter was connected to the input of the spectrum analyzer via a suitable attenuation. The RBW of the spectrum analyzer was set to 100kHz and 1MHz for the scan frequency from 30MHz to 1GHz and the scan frequency from 1GHz to up to 10th harmonic.

Test Configuration for the out of band emissions testing:

7.3 Summary of Test Results/Plots

Please refer to the following test plots

8. Spurious Radiated Emissions

8.1 Standard Applicable

According to §22.917(a), the power of any emissions outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log(P) dB.

According to \$24.238(a), the power of any emissions outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least $43 + 10 \log(P) dB$.

8.2 Test Procedure

- 1. The setup of EUT is according with per ANSI/TIA Standard 603E and ANSI C63.26 measurement procedure.
- 2. The measurement antenna was placed at a distance of 3 meters from the EUT. During the tests, the antenna height and polarization as well as EUT azimuth were varied in order to identify the maximum level of emissions from the EUT. The test was performed by placing the EUT on 3-orthogonal axis.
- 3. The frequency range up to tenth harmonic of the fundamental frequency was investigated.
- 4. Remove the EUT and replace it with substitution antenna. A signal generator was connected to the substitution antenna by a non-radiating cable. The absolute levels of the spurious emissions were measured by the substitution.

Spurious attenuation limit in dB = $43+10 \text{ Log}_{10}$ (power out in Watts)

8.3 Summary of Test Results/Plots

Note: this EUT was tested in 3 orthogonal positions and the worst case position data was reported.

Report No.: WTX19X03010808W-1 Page 39 of 49 FCC Part 22H&24E

> Spurious Emissions Below 1GHz

For Cellular Band			
Test Channel	GSM850	Polarity:	Horizontal

No.	Frequency	Reading	Correct	Result	Limit	Margin	Degree	Height	Remark
	(MHz)	(dBm)	dB	(dBm)	(dBm)	(dB)	()	(cm)	
1	45.6948	-69.42	-0.05	-69.47	-13.00	-56.47	315	100	peak
2	90.2205	-69.96	-1.64	-71.60	-13.00	-58.60	98	100	peak
3	275.1570	-69.97	2.83	-67.14	-13.00	-54.14	256	100	peak
4	645.1195	-69.12	9.23	-59.89	-13.00	-46.89	101	100	peak

For Cellular Band			
Test Channel	GSM850	Polarity:	Vertical

No.	Frequency	Reading	Correct	Result	Limit	Margin	Degree	Height	Remark
	(MHz)	(dBm)	dB	(dBm)	(dBm)	(dB)	()	(cm)	
1	44.1202	-69.40	-0.23	-69.63	-13.00	-56.63	330	100	peak
2	89.9047	-69.81	-1.67	-71.48	-13.00	-58.48	93	100	peak
3	291.0360	-68.76	3.36	-65.40	-13.00	-52.40	314	100	peak
4	689.5644	-68.80	9.79	-59.01	-13.00	-46.01	104	100	peak

ſ	For Cellular Band			
	Test Channel	GSM1900	Polarity:	Horizontal

No.	Frequency	Reading	Correct	Result	Limit	Margin	Degree	Height	Remark
	(MHz)	(dBm)	dB	(dBm)	(dBm)	(dB)	()	(cm)	
1	52.7600	-68.65	0.11	-68.54	-13.00	-55.54	223	100	peak
2	103.4421	-68.53	-1.71	-70.24	-13.00	-57.24	92	100	peak
3	360.4477	-68.29	4.64	-63.65	-13.00	-50.65	71	100	peak
4	616.3718	-67.81	8.68	-59.13	-13.00	-46.13	169	100	peak

For Cellular Band			
Test Channel	GSM1900	Polarity:	Vertical

No.	Frequency	Reading	Correct	Result	Limit	Margin	Degree	Height	Remark
	(MHz)	(dBm)	dB	(dBm)	(dBm)	(dB)	()	(cm)	
1	63.9828	-68.66	-2.07	-70.73	-13.00	-57.73	72	100	peak
2	97.1148	-69.10	-2.35	-71.45	-13.00	-58.45	95	100	peak
3	266.6089	-69.08	2.83	-66.25	-13.00	-53.25	50	100	peak
4	334.8589	-69.56	4.31	-65.25	-13.00	-52.25	183	100	peak

Note: Margin= (Reading+ Correct)- Limit

Spurious Emissions Above 1GHz

➤ For Cellular Band_GSM850 Mode

Frequency	Reading	Correct	Result	Limit	Margin	Polar			
(MHz)	(dBm)	dB	(dBm)	(dBm)	(dB)	H/V			
		Low	Channel (824.2N	ИНz)					
1648.4	-39.73	4.94	-34.79	-13	-21.79	Н			
2472.6	-43.39	8.46	-34.93	-13	-21.93	Н			
1648.4	-39.96	4.94	-35.02	-13	-22.02	V			
2472.6	-42.11	8.46	-33.65	-13	-20.65	V			
	Middle Channel (836.6MHz)								
1673.2	-37.6	5.11	-32.49	-13	-19.49	Н			
2509.8	-42.45	8.54	-33.91	-13	-20.91	Н			
1673.2	-36.29	5.11	-31.18	-13	-18.18	V			
2509.8	-44.38	8.54	-35.84	-13	-22.84	V			
		High	Channel (848.8M	MHz)					
1697.6	-38.05	5.25	-32.8	-13	-19.8	Н			
2546.4	-42.76	8.57	-34.19	-13	-21.19	Н			
1697.6	-38.23	5.25	-32.98	-13	-19.98	V			
2546.4	-44.31	8.57	-35.74	-13	-22.74	V			

➤ For PCS Band_GSM1900 Mode

Frequency	Reading	Correct	Result	Limit	Margin	Polar			
(MHz)	(dBm)	dB	(dBm)	(dBm)	(dB)	H/V			
		Low	Channel (1850.21	MHz)					
3700.4	-35.15	10.54	-24.61	-13	-11.61	Н			
5550.6	-36.48	13.37	-23.11	-13	-10.11	Н			
3700.4	-33.85	10.54	-23.31	-13	-10.31	V			
5550.6	-39.78	13.37	-26.41	-13	-13.41	V			
	Middle Channel (1880MHz)								
3760.0	-35.8	10.64	-25.16	-13	-12.16	Н			
5640.0	-37.71	13.54	-24.17	-13	-11.17	Н			
3760.0	-32.9	10.64	-22.26	-13	-9.26	V			
5640.0	-38.94	13.54	-25.4	-13	-12.4	V			
		High	Channel (1909.8)	MHz)					
3819.6	-36.02	10.74	-25.28	-13	-12.28	Н			
5729.4	-38.37	13.71	-24.66	-13	-11.66	Н			
3819.6	-35.35	10.74	-24.61	-13	-11.61	V			
5729.4	-39.91	13.71	-26.2	-13	-13.2	V			

Note: Result=Reading+ Correct, Margin= Result- Limit

Note: Testing is carried out with frequency rang 9kHz to the tenth harmonics, other than listed in the table above are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

Report No.: WTX19X03010808W-1 Page 44 of 49 FCC Part 22H&24E

9. Frequency Stability

9.1 Standard Applicable

According to §22.355, §24.235 the limit is 2.5ppm.

9.2 Test Procedure

According to \$2.1055, the following test procedure was performed.

The Frequency Stability is measured directly with a Frequency Domain Analyzer. Frequency Deviation in ppm is calculated from the measured peak to peak value.

The Carrier Frequency Stability over Power Supply Voltage and over Temperature is measured with a Frequency Domain Analyzer in histogram mode

9.3 Summary of Test Results/Plots

Note: 1. Worst case at GSM850/PCS1900 middle channel

2. Normal Voltage NV=DC3.7V; Low Voltage LV=DC3.5V; High Voltage HV=DC4.2V

Report No.: WTX19X03010808W-1 Page 45 of 49 FCC Part 22H&24E

> Frequency stability V.S. Temperature measurement

Re	ference Frequency: GS	SM850 Middle cha	nnel=190 channel	=836.6MHz		
Down symplical (V/ds)	Towns and towns (97)	Frequen	cy error	Limit (mm)	Dogult	
Power supplied (Vdc)	Temperature ($^{\circ}$ C)	Hz	ppm	Limit (ppm)	Result	
	-30	69	0.0828			
	-20	60	0.0717			
	-10	49	0.0588			
	0	44	0.0524			
NV	10	38	0.0460	2.50	Pass	
	20	31	0.0368			
	30	38	0.0460			
	40	45	0.0533			
	50	52	0.0616			
Re	ference Frequency: Po	CS1900 Middle ch	annel=661 channel	l=1880MHz		
Power supplied (Vdc)	Temperature (°C)	Frequen	cy error	Limit (ppm)	Result	
rower supplied (vdc)	remperature (C)	Hz	ppm	Limit (ppin)		
	-30	79	0.0421			
	-20	65	0.0348			
	-10	57	0.0303			
	0	51	0.0270			
NV	10	45	0.0237	2.50	Pass	
	20	38	0.0205			
	30	44	0.0233			
	40	48	0.0258			
	50	52	0.0278			

➤ Frequency stability V.S. Voltage measurement

Reference Frequency: GSM850 (GSM link) Middle channel=190 channel=836.6MHz								
Temperature (℃)	Power supplied	Frequen	cy error	Limit (ppm)	Result			
remperature (C)	(Vdc)	Hz	ppm	Lillili (ppili)	Result			
	HV	53	0.0634					
25	NV	44	0.0524	2.50	Pass			
	LV	38	0.0460					
Referenc	e Frequency: PCS190	0 (GSM link) Mid	dle channel=661 cl	hannel=1880MHz	Z			
Tomorous turns (9C)	Power supplied	Frequen	cy error	Limit (mmm)	Result			
Temperature ($^{\circ}$ C)	(Vdc)	Hz	ppm	Limit (ppm)				
	HV	62	0.0327					
25	NV	54	0.0286	2.50	Pass			
	LV	50	0.0266					

10. Modulation characteristics

10.1 Standard Applicable

According to §2.1047, Measurements required: Modulation characteristics is given below:

- (a) Voice modulated communication equipment. A curve or equivalent data showing the frequency response of the audio modulating circuit over a range of 100 to 5000 Hz shall be submitted. For equipment required to have an audio low-pass filter, a curve showing the frequency response of the filter, or of all circuitry installed between the modulation limiter and the modulated stage shall be submitted.
- (b) Equipment which employs modulation limiting. A curve or family of curves showing the percentage of modulation versus the modulation input voltage shall be supplied. The information submitted shall be sufficient to show modulation limiting capability throughout the range of modulating frequencies and input modulating signal levels employed.
- (c) Single sideband and independent sideband radiotelephone transmitters which employ a device or circuit to limit peak envelope power. A curve showing the peak envelope power output versus the modulation input voltage shall be supplied. The modulating signals shall be the same in frequency as specified in paragraph (c) of §2.1049 for the occupied bandwidth tests.
- (d) Other types of equipment. A curve or equivalent data which shows that the equipment will meet the modulation requirements of the rules under which the equipment is to be licensed.

10.2 Test Procedure

According to ANSI C63.26-2015 section 5.3.2, the following test setup was performed.

10.3 Summary of Test Results/Plots

Only the worst case was selected to record

***** END OF REPORT *****