પ્રશ્ન 1(અ) [3 માર્ક્સ]

વિવિધ માઇક્રોવેવ બેન્ડની તેમની આવૃત્તિ શ્રેણી સાથેની યાદી કરો.

જવાબ:

માઇક્રોવેવ આવૃત્તિ બેન્ડ કોષ્ટક:

બેન્ડ	આવૃત્તિ શ્રેણી	તરંગલંબાઇ
L Band	1-2 GHz	30-15 cm
S Band	2-4 GHz	15-7.5 cm
C Band	4-8 GHz	7.5-3.75 cm
X Band	8-12 GHz	3.75-2.5 cm
Ku Band	12-18 GHz	2.5-1.67 cm
K Band	18-27 GHz	1.67-1.11 cm
Ka Band	27-40 GHz	1.11-0.75 cm

મેમરી ટ્રીક: "લાર્જ શીપ્સ કેન eXામીન કિંડલી યુઝિંગ નોલેજ ઓલવેઝ"

પ્રશ્ન 1(બ) [4 માર્ક્સ]

ટ્રાન્સમિશન લાઇનનું સામાન્ય સમકક્ષ સર્કિટ દોરો. લોસલેસ લાઇન માટે લાક્ષણિક અવબાધ માટેનું સમીકરણ લખો.

જવાબ:

ટ્રાન્સમિશન લાઇન સમકક્ષ સર્કિટ:

સર્કિટ એલિમેન્ટ્સ:

- R: યુનિટ લંબાઇ દીઠ શ્રેણી પ્રતિકાર
- L: યુનિટ લંબાઇ દીઠ શ્રેણી ઇન્ડક્ટન્સ
- C: યુનિટ લંબાઇ દીઠ શન્ટ કેપેસિટન્સ
- **G**: યુનિટ લંબાઇ દીઠ શન્ટ કન્ડક્ટન્સ

લોસલેસ લાઇન માટે (R = 0, G = 0):

લાક્ષણિક અવબાધ: Z₀ = √(L/C)

મુખ્ય મુદ્દાઓ:

• લોસલેસ સ્થિતિ: ટ્રાન્સમિશન દરમિયાન કોઈ પાવર લોસ નથી

• અવ**બાદ્ય મેચિંગ**: Z₀ રિફ્લેક્શન વર્તન નક્કી કરે છે

મેમરી ટ્રીક: "લોસલેસ લાઇન્સ લવ કોન્સ્ટન્ટ ઇમ્પિડન્સ"

પ્રશ્ન 1(ક) [7 માર્ક્સ]

એક જ સ્ટબનો ઉપયોગ કરીને ઇમ્પિડન્સ મેચિંગ પ્રક્રિયા સમજાવો.

જવાબ:

સિંગલ સ્ટબ મેચિંગ પ્રક્રિયા:

મેશિંગ પગલાં:

પગલું	પ્રક્રિયા	હેતુ
1	લોડ એડમિટન્સ કેલ્ક્યુલેટ કરો	Y_L = 1/Z_L શોધો
2	જનરેટર તરફ મૂવ કરો	પોઇન્ટ શોધો જ્યાં G = G ₀
3	સ્ટબ સસેપ્ટન્સ ઉમેરો	રિએક્ટિવ ભાગ કેન્સલ કરો
4	મેચિંગ હાસિલ કરો	Y_total = Y ₀

ડિઝાઇન સમીકરણો:

• સ્ટબ સુધી અંતર: d = (λ/2π) × tan⁻¹(√(R_L/R₀))

• સ્ટબ લંબાઇ: l = (λ/2π) × tan⁻¹(B_stub/Y₀)

એપ્લિકેશન્સ:

- એન્ટીના મેચિંગ
- એમ્પ્લિફાયર ઇનપુટ/આઉટપુટ

• કિલ્ટર ડિઝાઇન

મેમરી ટ્રીક: "સિંગલ સ્ટબ્સ સ્ટોપ સ્ટેન્ડિંગ વેવ્સ સક્સેસફુલી"

પ્રશ્ન 1(ક) વૈકલ્પિક [7 માર્ક્સ]

લંબચોરસ અને ગોળાકાર વેવગાઇડ્સની તુલના કરો.

જવાબ:

તુલના કોષ્ટક:

પેરામીટર	લંબચોરસ વેવગાઇડ	ગોળાકાર વેવગાઇડ
આકાર	લંબચોરસ ક્રોસ-સેક્શન	ગોળાકાર ક્રોસ-સેક્શન
ડોમિનન્ટ મોડ	TE ₁₀	TE ₁₁
કટઓફ ફિક્વન્સી	$fc = c/(2a)$ for TE_{10}	fc = 1.841c/($2\pi a$) for TE ₁₁
પાવર હેન્ડલિંગ	ઓછું	વધારે
મેન્યુફેક્ચરિંગ	સરળ	મુશ્કેલ
મોડ સેપરેશન	સાટું	નબળું
એપ્લિકેશન્સ	રડાર, માઇક્રોવેવ ઓવન	સેટેલાઇટ કમ્યુનિકેશન

મુખ્ય ફાયદાઓ:

• લંબચોરસ: બહેતર મોડ નિયંત્રણ, સરળ ફેબ્રિકેશન

• ગોળાકાર: વધારે પાવર ક્ષમતા, રોટેટિંગ પોલરાઇઝેશન

મેમરી ટ્રીક: "રેક્ટેંગ્યુલર ઇઝ રેગ્યુલર, સર્ક્યુલર કેરીઝ કરન્ટ"

પ્રશ્ન 2(અ) [3 માર્ક્સ]

ગ્રુપ વેલોસિટી અને ફેઝ વેલોસિટીની વ્યાખ્યા કરો અને વચ્ચેનો સંબંધ લખો.

જવાબ:

વેગની વ્યાખ્યાઓ:

વેગનો પ્રકાર	ફોર્મ્યુલા	ભૌતિક અર્થ
ફ્રેઝ વેલોસિટી	$v_p = \omega/\beta = c/\sqrt{(1-(fc/f)^2)}$	સ્થિર ફેઝની ઝડપ
ગ્રુપ વેલોસિટી	$v_m = d\omega/d\beta = c\sqrt{(1-(fc/f)^2)}$	સિગ્નલ એનર્જીની ઝડપ

સંબંધ: $V_p \times V_m = C^2$

મુખ્ય મુદ્દાઓ:

• ફ્રેઝ વેલોસિટી: હંમેશા > c (પ્રકાશની ઝડપ)

• **ગ્રુપ વેલોસિટી**: હંમેશા < c

• સિગ્નલ પ્રવાસ: ગ્રુપ વેલોસિટી પર

મેમરી ટ્રીક: "ફેઝ ઇઝ ફાસ્ટ, ગ્રુપ કેરીઝ મેસેજ"

પ્રશ્ન 2(બ) [4 માર્ક્સ]

ડાયરેક્શનલ કપ્લરના સિદ્ધાંતો અને કાર્યનું વર્ણન કરો.

જવાબ:

ડાયરેક્શનલ કપ્લર સિદ્ધાંત:

કાર્ય સિદ્ધાંત:

- ઇલેક્ટ્રોમેગ્નેટિક કપલિંગ બે ટ્રાન્સમિશન લાઇન વચ્ચે
- પાવર વિભાજન કપલિંગ કેક્ટર આધારિત
- દિશાત્મક સંવેદનશીલતા તરંગ દિશા તરફ

મુખ્ય પેરામીટર્સ:

• **ธนเ**ตั๋วเ รุ้ระง: C = 10 log(P₁/P₃) dB

• **ડાયરેક્ટિવિટી**: D = 10 log(P₃/P₄) dB

• ઇન્સર્શન લોસ: IL = 10 log(P₁/P₂) dB

મેમરી ટ્રીક: "ડાયરેક્શનલ કપ્લર્સ ડિવાઇડ પાવર પ્રિસાઇસલી"

પ્રશ્ન 2(ક) [7 માર્ક્સ]

બાંધકામ, ઓપરેશન અને એપ્લિકેશન સાથે મેજિક TEE સમજાવો.

જવાબ:

મેજિક TEE બાંધકામ:

ઓપરેટિંગ સિદ્ધાંતો:

પોર્ટ	รเช้	ફ્રીલ્ડ પેટર્ન
પોર્ટ 1 અને 2	કોલિનિયર પોર્ટ્સ	સિમેટ્રિક
પોર્ટ 3 (E-આર્મ)	E-પ્લેન પોર્ટ	ઇલેક્ટ્રિક ફીલ્ડ કપલિંગ
પોર્ટ 4 (H-આર્મ)	H-પ્લેન પોર્ટ	મેગ્નેટિક ફીલ્ડ કપલિંગ

સ્કેટરિંગ ગુણધર્મો:

• **આઇસોલેશન**: પોર્ટ 3 ↔ પોર્ટ 4

• પાવર વિભાજન: મેચ થયું હોય ત્યારે સમાન વિભાજન

• ફેઝ સંબંધો: 0° અને 180°

એપ્લિકેશન્સ:

• મિક્સર્સ અને મોડ્યુલેટર્સ

• પાવર કમ્બાઇનર્સ

• ઇમ્પિડન્સ બ્રિજ

• એન્ટીના ફીડ્સ

મેમરી ટ્રીક: "મેજિક TEE ક્રિએટ્સ પરફેક્ટ આઇસોલેશન"

પ્રશ્ન 2(અ) વૈકલ્પિક [3 માર્ક્સ]

લંબચોરસ વેવગાઇડ માટે TE₁₀, TE₂₀ મોડ્સ દોરો.

જવાબ:

TE₁₀ મોડ (ડોમિનન્ટ મોડ):

TE₂₀ His:

મોડ લાક્ષણિકતાઓ:

• **TE₁₀:** x-દિશામાં એક હાફ-વેવ વેરિએશન

• **TE₂₀:** x-દિશામાં બે હાફ-વેવ વેરિએશન

• ફ્રીલ્ડ પેટર્ન: ઇલેક્ટ્રિક ફીલ્ડ પ્રોપેગેશન પર લંબ

મેમરી ટ્રીક: "TE મોડ્સ હેવ ઇલેક્ટ્રિક ટ્રાન્સવર્સ"

પ્રશ્ન 2(બ) વૈકલ્પિક [4 માર્ક્સ]

જરૂરી સ્ક્રેય સાથે હાઇબ્રિડ રિંગનું વર્ણન કરો.

જવાબ:

હાઇબ્રિડ રિંગ સ્ટ્રક્ચર:

ઓપરેટિંગ સિદ્ધાંત:

• **રિંગ સર્કમફરન્સ**: 3\/2

• પોર્ટ સ્પેસિંગ: \/4 અંતરે

• પાવર વિભાજન: એડજેસન્ટ પોર્ટ્સ વચ્ચે સમાન વિભાજન

મુખ્ય લક્ષણો:

• આઇસોલેશન: વિરુદ્ધ પોર્ટ્સ વચ્ચે

• ફેઝ સંબંધો: 0° અને 180°

• ઇમ્પિડન્સ: બધા પોર્ટ્સ પર મેચ

મેમરી ટ્રીક: "હાઇબ્રિડ રિંગ્સ હેન્ડલ હાફ-વેવલેન્થ્સ"

પ્રશ્ન 2(ક) વૈકલ્પિક [7 માર્ક્સ]

સિદ્ધાંતો, બાંધકામ અને ઓપરેશન સાથે આઇસોલેટર સમજાવો.

જવાબ:

આઇસોલેટર સિદ્ધાંત:

બાંધકામ એલિમેન્ટ્સ:

કોમ્પોનન્ટ	รเช้	મટીરિયલ
ફેરાઇટ	નોન-રેસિપ્રોકલ મીડિયમ	Yttrium Iron Garnet
મેગ્નેટ	બાયાસ ફીલ્ડ	પર્મેનન્ટ મેગ્નેટ
રેઝિસ્ટિવ લોડ	રિવર્સ પાવર એબસોર્બ	કાર્બન/સિરામિક

ઓપરેટિંગ સિદ્ધાંત:

- ફેરાડે રોટેશન મેગ્નેટાઇઝ્ડ ફેરાઇટમાં
- નોન-રેસિપ્રોકલ ફેઝ શિફ્ટ
- ફોરવર્ડ ટ્રાન્સમિશન: લો લોસ

• રિવર્સ ટ્રાન્સમિશન: હાઇ એટેન્યુએશન

એપ્લિકેશન્સ:

- એમ્પ્લિફાયર પ્રોટેક્શન
- ઓસિલેટર આઇસોલેશન
- એન્ટીના સિસ્ટમ્સ

સ્પેસિફિકેશન્સ:

• **આઇસોલેશન**: 20-30 dB સામાન્ય

• **ઇન્સર્શન લોસ**: < 0.5 dB

મેમરી ટ્રીક: "આઇસોલેટર્સ ઇગ્નોર રિવર્સ રિફ્લેક્શન્સ"

પ્રશ્ન 3(અ) [3 માર્ક્સ]

ટ્રાવેલિંગ વેવ ટ્યુબ એમ્પ્લિફાયર દોરો.

જવાબ:

TWT એમ્પ્લિફાયર સ્ટ્રક્ચર:

મુખ્ય કોમ્પોનન્ટ્સ:

• ઇલેક્ટ્રોન ગન: ઇલેક્ટ્રોન બીમ પેદા કરે છે

• હેલિક્સ: સ્લો-વેવ સ્ટક્ચર

• **કપ્લર્સ**: ઇનપુટ/આઉટપુટ RF કનેક્શન્સ

• કલેક્ટર: ખર્ચાયેલા ઇલેક્ટ્રોન્સ એકત્રિત કરે છે

મેમરી ટ્રીક: "TWT ટ્રાન્સફર્સ વેવ થ્રૂ હેલિક્સ"

પ્રશ્ન 3(બ) [4 માર્ક્સ]

માઇક્રોવેવ રેડિયેશનને કારણે વિવિધ પ્રકારના જોખમોનું વર્ણન કરો.

જવાબ:

માઇક્રોવેવ રેડિયેશન જોખમો:

જોખમનો પ્રકાર	અસરો	સેફ્ટી લિમિટ
HERP (Personnel)	ટિશ્યુ હીટિંગ, બર્ન્સ	10 mW/cm²
HERO (Ordnance)	વિસ્ફોટક વિસ્ફોટ	વેરિયેબલ
HERF (Fuel)	ફ્યુઅલ ઇગ્નિશન	5 mW/cm²

જૈવિક અસરો:

• **થર્મલ અસરો**: 41°C થી વધારે ટિશ્યુ હીટિંગ

• નોન-થર્મલ અસરો: કોશિકા નુકસાન

• સંવેદનશીલ અંગો: આંખો, પ્રજનન અંગો

સુરક્ષા પગલાં:

• શીક્ડિંગ: કન્ડક્ટિવ એન્ક્લોઝર્સ

• **અંતર**: પાવર ડેન્સિટી 🛚 1/r²

• સમય મર્યાદા: એક્સપોઝર ક્યુરેશન નિયંત્રણ

• યેતવણી સિસ્ટમ: રેડિયેશન ડિટેક્ટર્સ

મેમરી ટ્રીક: "હીટ એનર્જી રિક્વાયર્સ પ્રોપર પ્રોટેક્શન"

પ્રશ્ન 3(ક) [7 માર્ક્સ]

એપલગેટ ડાયાગ્રામ સાથે બે કેવિટી ક્લાયસ્ટ્રોન બાંધકામ અને ઓપરેશન સમજાવો.

જવાબ:

બે-કેવિટી ક્લાયસ્ટ્રોન સ્ટ્રક્ચર:

એપલગેટ ડાયાગ્રામ:

ઓપરેશન સિદ્ધાંત:

સ્ટેજ	પ્રક્રિયા	પરિણામ
વેલોસિટી મોક્યુલેશન	RF ઇનપુટ ઇલેક્ટ્રોન સ્પીડ બદલે છે	સ્પીડ વેરિએશન
બંચિંગ	ઝડપી ઇલેક્ટ્રોન્સ ધીમા ઇલેક્ટ્રોન્સને પકડે છે	કરન્ટ બંચ
એનર્જી એક્સટ્રેક્શન	બંચ આઉટપુટ કેવિટી સાથે ઇન્ટરેક્ટ કરે છે	RF એમ્પ્લિફિકેશન

મુખ્ય પેરામીટર્સ:

• ટ્રાન્ઝિટ ટાઇમ: બંચિંગ માટે મહત્વપૂર્ણ

• **ડ્રિક્ટ સ્પેસ લંબાઇ**: મહત્તમ બંચિંગ માટે ઓપ્ટિમાઇઝ

• **કેવિટી ટ્યુનિંગ**: રેઝોનન્ટ ફ્રીક્વન્સી મેચિંગ

એપ્લિકેશન્સ:

• રડાર ટ્રાન્સમિટર્સ

• સેટેલાઇટ કમ્યુનિકેશન્સ

• લિનિયર એક્સેલેરેટર્સ

મેમરી ટ્રીક: "ક્લાયસ્ટ્રોન્સ ક્રિએટ બંચ થ્રૂ વેલોસિટી વેરિએશન"

પ્રશ્ન 3(અ) વૈકલ્પિક [3 માર્ક્સ]

માઇક્રોવેવ આવૃત્તિ માટે એટેન્યુએશન માપન પદ્ધતિનો બ્લોક ડાયાગ્રામ દોરો.

જવાબ:

એટેન્યુએશન માપન સેટઅપ:

માપન પ્રક્રિયા:

• **રેફરન્સ માપ**: DUT વિના

• **ઇન્સર્શન માપ**: DUT સાથે

• **એટેન્યુએશન કેલ્ક્યુલેશન**: A = P₁ - P₂ (dB)

મેમરી ટ્રીક: "એટેન્યુએશન એપિયર્સ આફ્ટર એક્યુરેટ એસેસમેન્ટ"

પ્રશ્ન 3(બ) વૈકલ્પિક [4 માર્ક્સ]

માઇક્રોવેવ રેન્જ પર વેક્યુમ ટ્યુબની મર્યાદાનું વર્ણન કરો.

જવાબ:

વેક્યુમ ટ્યુબ મર્યાદાઓ:

મર્યાદા	કારણ	અસર
ટ્રાન્ઝિટ ટાઇમ	ઇલેક્ટ્રોન મુસાફરીનો સમય	ઊંચી આવૃત્તિ પર ઘટતો ગેઇન
લીડ ઇન્ડક્ટન્સ	કનેક્ટિંગ વાયર ઇન્ડક્ટન્સ	નબળી ઇમ્પિડન્સ મેચિંગ
ઇન્ટર-ઇલેક્ટ્રોડ કેપેસિટન્સ	પ્લેટ-કેથોડ કેપેસિટન્સ	ફીડબેક અને અસ્થિરતા
સ્કિન ઇફેક્ટ	હાઇ-ફ્રીક્વન્સી કરન્ટ વિતરણ	વદ્યતો પ્રતિકાર

આવૃત્તિ-સંબંધિત સમસ્યાઓ:

• ઇનપુટ ઇમ્પિડન્સ: રિએક્ટિવ બને છે

• **ગેઇન-બેન્ડવિડ્થ**: પ્રોડક્ટ મર્યાદા

• નોઇઝ ફિગર: આવૃત્તિ સાથે વધે છે

• પાવર હેન્ડલિંગ: ઘટે છે

સોલ્યુશન્સ:

• **સ્પેશિયલ ટ્યુબ ડિઝાઇન**: લાઇટહાઉસ ટ્યુબ્સ

• **કેવિટી રેઝોનેટર્સ**: ટ્યુન્ડ સર્કિટ રિપ્લેસ કરે છે

• શોર્ટ લીડ્સ: ઇન્ડક્ટન્સ મિનિમાઇઝ કરે છે

મેમરી ટ્રીક: "વેક્યુમ ટ્યુબ્સ ફેઇલ ફાસ્ટ એટ હાઇ ફ્રીક્વન્સીઝ"

પ્રશ્ન 3(ક) વૈકલ્પિક [7 માર્ક્સ]

મેગ્નેટ્રોનના સિદ્ધાંત, બાંધકામ, ઇલેક્ટ્રિક અને મેગ્નેટિક ફીલ્ડની અસર અને ઓપરેશન વિગતવાર સમજાવો.

જવાબ:

મેગ્નેટોન બાંધકામ:

ઓપરેટિંગ સિદ્ધાંત:

ફીલ્ડ	દિશા	અસર
ઇલેક્ટ્રિક ફીલ્ડ	રેડિયલ (કેથોડથી એનોડ)	ઇલેક્ટ્રોન્સને એક્સેલેરેટ કરે છે
મેગ્નેટિક ફીલ્ડ	એક્સિયલ (પેજ પર લંબ)	ઇલેક્ટ્રોન્સને ડિફ્લેક્ટ કરે છે
સંયુક્ત અસર	સાયક્લોઇડ મોશન	ફેઝ સિંકોનાઇઝેશન

ઓપરેશન સ્ટેજો:

1. **ઇલેક્ટ્રોન ઇમિશન**: ગરમ કેથોડ ઇલેક્ટ્રોન્સ બહાર કાઢે છે

2. **સાયકલોઇડ મોશન**: E×B ફીલ્ડ્સ સ્પાયરલ પાથ બનાવે છે

3. **સિંકોનાઇઝેશન**: ઇલેક્ટ્રોન્સ RF ફીલ્ડ સાથે સિંકોનાઇઝ કરે છે

4. **એનર્જી ટ્રાન્સફર**: કાઇનેટિક એનર્જી → RF એનર્જી

5. **આઉટપુટ કપલિંગ**: વેવગાઇડ દ્વારા RF એક્ટ્રેક્ટ કરવામાં આવે છે

મુખ્ય પેરામીટર્સ:

• भे**ग्नेटिङ इलड्स डेन्सिटी**: B = 2πmf/e

• હલ કટઓફ વોલ્ટેજ: VH = (eB²R²)/(8m)

• **આવૃત્તિ**: f = eB/(2πm) × (એનોડ મોડ્સ)

એપ્લિકેશન્સ:

• **માઇક્રોવેવ ઓવન્સ** (2.45 GHz)

• રડાર ટ્રાન્સમિટર્સ

• ઇન્ડસ્ટ્રિયલ હીટિંગ

મેમરી ટ્રીક: "મેગ્નેટ્રોન્સ મેક માઇક્રોવેવ્સ થ્રૂ મેગ્નેટિક મોશન"

પ્રશ્ન 4(અ) [3 માર્ક્સ]

ગ્રાફનો ઉપયોગ કરીને વેરેક્ટર ડાયોડના કાર્ય સિદ્ધાંતને સમજાવો.

જવાબ:

વેરેક્ટર ડાયોડ લાક્ષણિકતાઓ:

કાર્ય સિદ્ધાંત:

• રિવર્સ બાયાસ ઓપરેશન: ડાયોડ રિવર્સમાં ઓપરેટ કરે છે

• ડિપ્લેશન લેચર: ડાયલેક્ટ્રિક તરીકે કામ કરે છે

• વેરિયેબલ કેપેસિટન્સ: C ~ 1/\/VR

• વોલ્ટેજ ટ્યુનિંગ: વોલ્ટેજ દ્વારા કેપેસિટન્સ નિયંત્રિત

એપ્લિકેશન્સ:

• વોલ્ટેજ-કંટ્રોલડ ઓસિલેટર્સ

• ફ્રીક્વન્સી મલ્ટિપ્લાયર્સ

• પેરામેટ્રિક એમ્પ્લિફાયર્સ

મેમરી ટ્રીક: "વેરેક્ટર્સ વેરી કેપેસિટન્સ વાયા વોલ્ટેજ"

પ્રશ્ન 4(બ) [4 માર્ક્સ]

ગન ડાયોડ માટે ગન અસર અને નકારાત્મક અવરોધકતા સમજાવો.

જવાબ:

ગન અસર મિકેનિઝમ:

પેરામીટર	લોઅર વેલી	અપર વેલી
એનર્જી લેવલ	લોઅર	હાયર
ઇલેક્ટ્રોન મોબિલિટી	હાઇ (µ₁)	લો (µ ₂)
ઇફેક્ટિવ માસ	લાઇટ	હેવી

ટ્રાન્સફર લક્ષણ:

નકારાત્મક અવરોધકતા:

• થ્રેશોલ્ક વોલ્ટેજ: ઇલેક્ટ્રોન્સ અપર વેલીમાં ટ્રાન્સફર કરે છે

• કરન્ટ ઘટાડો: ઘટતી મોબિલિટીને કારણે

• ઓસિલેશન: નકારાત્મક અવરોધકતા સક્ષમ કરે છે

• ડોમેઇન ફોર્મેશન: હાઇ-ફીલ્ડ ડોમેઇન્સ પ્રોપેગેટ કરે છે

મુખ્ય મુદ્દાઓ:

• મટીરિયલ્સ: GaAs, InP

• **आवृत्ति रेन्४**: 1-100 GHz

• รเช้นหสา: 5-20%

મેમરી ટ્રીક: "ગન ડાયોડ્સ જનરેટ ઓસિલેશન્સ થ્રૂ નેગેટિવ રેઝિસ્ટન્સ"

પ્રશ્ન 4(ક) [7 માર્ક્સ]

માઇક્રોવેવ આવૃત્તિ માટે આવૃત્તિ માપન પદ્ધતિ સમજાવો.

જવાબ:

ડાયરેક્ટ ફ્રીક્વન્સી માપ:

અપ્રત્યક્ષ પદ્ધતિઓ:

પદ્ધતિ	સિદ્ધાંત	ચોકસાઈ
વેવમીટર	કેવિટી રેઝોનન્સ	±0.1%
બીટ ફ્રીક્વન્સી	હેટેરોડાયન મિક્સિંગ	±0.01%
સ્ટેન્ડિંગ વેવ	λ/2 માપ	±0.5%

કેવિટી વેવમીટર સેટઅપ:

માપન પ્રક્રિયા:

1. **કપલિંગ**: સિગ્નલ લાઇન સાથે નબળી કપલિંગ

2. **ટ્યુનિંગ**: રેઝોનન્સ માટે કેવિટી એડજસ્ટ કરો

3. **ઇન્ડિકેશન**: મિનિમમ/મહત્તમ માટે આઉટપુટ મોનિટર કરો

4. **કેલિબ્રેશન**: કેલિબ્રેટેડ સ્કેલથી આવૃત્તિ વાંચો

બીટ ફ્રીક્વન્સી પદ્ધતિ:

• લોકલ ઓસિલેટર: જાણીતી રેફરન્સ આવૃત્તિ

• મિક્સર: બીટ ફ્રીક્વન્સી જનરેટ કરે છે

• **มเน**: fbeat = |fsignal - fLO|

મેમરી ટ્રીક: "ફ્રીક્વન્સી ફાઉન્ડ થ્રૂ કેરફુલ કેવિટી કેલિબ્રેશન"

પ્રશ્ન 4(અ) વૈકલ્પિક [3 માર્ક્સ]

સ્વિય તરીકે PIN ડાયોડનું કાર્ય સમજાવો.

જવાબ:

PIN ડાયોડ સ્ટ્રક્ચર:

સ્વિચિંગ ઓપરેશન:

બાયાસ સ્થિતિ	ઇન્ટ્રિન્સિક રીજન	RF ઇમ્પિડન્સ	સ્વિય સ્થિતિ
ફોરવર્ડ બાયાસ	કેરિયર્સથી ભરેલું	લો (~1Ω)	ON (બંધ)
રિવર્સ બાયાસ	ડિપ્લીટેડ	હાઇ (~10kΩ)	OFF (ખુલ્લું)
ઝીરો બાયાસ	અલ્પ કેરિયર્સ	મીડિયમ	વેરિયેબલ

મુખ્ય ફાયદાઓ:

• ફાસ્ટ સ્વિચિંગ: નેનોસેકંડ રિસ્પોન્સ

• **લો ઇન્સર્શન લોસ**: જ્યારે ON હોય

• હાઇ આઇસોલેશન: જ્યારે OFF હોય

• **વાઇડ ફ્રીક્વન્સી રેન્જ**: DC થી માઇક્રોવેવ

એપ્લિકેશન્સ:

• RF સ્વિય

• મોક્યુલેટર્સ

• એટેન્યુએટર્સ

• ફેઝ શિફ્ટર્સ

મેમરી ટ્રીક: "PIN ડાયોડ્સ પરફોર્મ પરફેક્ટ સ્વિચિંગ"

પ્રશ્ન 4(બ) વૈકલ્પિક [4 માર્ક્સ]

સ્ટ્રિપલાઇન અને માઇક્રોસ્ટ્રિપ સર્કિટ સમજાવો.

જવાબ:

સ્ટ્રિપલાઇન કન્ફિગરેશન:

માઇક્રોસ્ટ્રિપ કન્ફિગરેશન:

```
Signal Conductor
----+----
Dielectric
-----
Ground Plane
```

તુલના કોષ્ટક:

પેરામીટર	સ્ટ્રિપલાઇન	માઇક્રોસ્ટ્રિપ
ગ્રાઉન્ડ પ્લેન્સ	બે (સેન્ડવિય)	એક (તળિયે)
શીલ્કિંગ	સંપૂર્ણ	આંશિક
ડિસ્પર્શન	ઓછું	વદ્યારે
મેન્યુફેક્ચરિંગ	જટિલ	સરળ
કિંમત	વદ્યારે	ઓછી

એપ્લિકેશન્સ:

• **સ્ટ્રિપલાઇન**: હાઇ-પરફોર્મન્સ સિસ્ટમ્સ

• **માઇક્રોસ્ટ્રિપ**: PCB સર્કિટ્સ, એન્ટીનાસ

ડિઝાઇન સમીકરણો:

• **લાક્ષણિક અવબાદ્ય**: w/h રેશિયોનું ફંક્શન

• **ช่ธุ์ระ**ว**น น**ห์ใช้ใจว่า: ɛeff = (ɛr + 1)/2

મેમરી ટ્રીક: "સ્ટ્રિપલાઇન્સ આર સેન્ડવિચ્ડ, માઇક્રોસ્ટ્રિપ્સ આર માઉન્ટેડ"

પ્રશ્ન 4(ક) વૈકલ્પિક [7 માર્ક્સ]

પેરામેટ્રિક એમ્પ્લિફાયર માટે એમ્પ્લિફિકેશનના સિદ્ધાંતો અને પ્રક્રિયા સમજાવો.

જવાબ:

પેરામેટ્રિક એમ્પ્લિફાયર સિદ્ધાંત:

એનર્જી ફ્લો: પંપ → સિગ્નલ

આવૃત્તિ સંબંધો:

પેરામીટર	સંબંધ	સામાન્ય વેલ્યુઝ
પંપ ફ્રીક્વન્સી	fp = fs + fi	10 GHz
સિગ્નલ ફ્રીક્વન્સી	fs (ઇનપુટ)	1 GHz
આઇડલર ફ્રીક્વન્સી	fi = fp - fs	9 GHz

એમ્પ્લિફિકેશન પ્રક્રિયા:

1. **નોનલિનિયર એલિમેન્ટ**: વેરેક્ટર ડાયોડ ટાઇમ-વેરીંગ કેપેસિટન્સ પ્રદાન કરે છે

2. **પંપ પાવર**: હાઇ-ફ્રીક્વન્સી પંપ એનર્જી સપ્લાય કરે છે

3. **ફ્રીક્વન્સી મિક્સિંગ**: ત્રણ-આવૃત્તિ ઇન્ટરેક્શન

4. **એનર્જી ટ્રાન્સફર**: પંપ એનર્જી → સિગ્નલ એનર્જી

5. **ઇમ્પિડન્સ મેચિંગ**: પાવર ટાન્સફર ઓપ્ટિમાઇઝ કરો

સર્કિટ કન્ફિગરેશન:

મુખ્ય ફાયદાઓ:

• લો નોઇઝ ફિગર: ક્વાન્ટમ લિમિટની નજીક

• **હાઇ ગેઇન**: 10-20 dB સામાન્ય

• **વાઇડ બેન્ડવિડ્ય**: પંપ સર્કિટ દ્વારા મર્યાદિત

એપ્લિકેશન્સ:

• સેટેલાઇટ રિસીવર્સ

• રેડિયો એસ્ટોનોમી

• લો-નોઇઝ એમ્પ્લિફાયર્સ

ડિઝાઇન વિચારણાઓ:

• પંપ પાવર: નોનલિનિચર ઓપરેશન માટે પૂરતું

• ઇમ્પિડન્સ મેચિંગ: ત્રણેય આવૃત્તિઓ

• સ્થિરતા: ઓસિલેશન અટકાવો

મેમરી ટ્રીક: "પેરામેટ્રિક એમ્પ્લિફાયર્સ પંપ પાવર ઇન્ટુ સિગ્નલ પરફેક્ટલી"

પ્રશ્ન 5(અ) [3 માર્ક્સ]

RADAR અને SONAR ની સરખામણી કરો.

જવાબ:

RADAR vs SONAR तुलना:

પેરામીટર	RADAR	SONAR
તરંગ પ્રકાર	ઇલેક્ટ્રોમેગ્નેટિક	અકૌસ્ટિક
માધ્યમ	હવા/વેક્યુમ	પાણી
આવૃત્તિ	300 MHz - 30 GHz	1 kHz - 1 MHz
ઝડપ	3×10 ⁸ m/s	1500 m/s (પાણી)
રેન્જ	1000 km સુધી	100 km સુધી
એપ્લિકેશન્સ	એરક્રાફ્ટ, હવામાન	સબમરીન, માછીમારી

સામાન્ય સિદ્ધાંતો:

• ઇકો રેન્જિંગ: ટાઇમ-ઓફ-ફ્લાઇટ માપો

• ડોપ્લર ઇફેક્ટ: ગતિશીલ લક્ષ્યો શોધો

• બીમ ફોર્મિંગ: દિશાત્મક ટ્રાન્સમિશન

મુખ્ય તફાવતો:

• **પ્રોપેગેશન**: EM તરંગો vs ધ્વનિ તરંગો

• એટેન્યુએશન: વિવિધ લોસ મિકેનિઝમ

• રિઝોલ્યુશન: આવૃત્તિ આધારિત

મેમરી ટ્રીક: "RADAR સીઝ રેડિયો વેવ્સ, SONAR હિયર્સ સાઉન્ડ વેવ્સ"

પ્રશ્ન 5(બ) [4 માર્ક્સ]

RADAR પ્રદર્શન પદ્ધતિનું નામ લખો અને કોઈપણ એકને સમજાવો.

જવાબ:

RADAR પ્રદર્શન પદ્ધતિઓ:

ડિસ્પ્લે પ્રકાર	વર્ણન	એપ્લિકેશન
A-Scope	રેન્જ vs એમ્પ્લિટ્યુડ	ટાર્ગેટ ડિટેક્શન
B-Scope	રેન્જ vs અઝીમુથ	2D પોઝિશન
C-Scope	અઝીમુથ vs એલિવેશન	3D ટ્રેકિંગ
PPI	પ્લેન પોઝિશન ઇન્ડિકેટર	એર ટ્રાફિક કંટ્રોલ
RHI	રેન્જ હાઇટ ઇન્ડિકેટર	વેધર રડાર

PPI ડિસ્પ્લે સમજૂતી:

PPI લક્ષણો:

• પોલર કોઓર્ડિનેટ: રેન્જ અને બેરિંગ

• રોટેટિંગ સ્વીપ: એન્ટીના રોટેશનને અનુસરે છે

• પર્સિસ્ટન્સ: ટાર્ગેટ્સ દૃશ્યમાન રહે છે

• સ્કેલ સિલેક્શન: એડજસ્ટેબલ રેન્જ

ડિસ્પ્લે પ્રક્રિયા:

1. **સ્વીપ જનરેશન**: એન્ટીના સાથે સિંક્રોનાઇઝ

2. **ટાર્ગેટ પ્લોટિંગ**: અંતર અને દિશા

3. **ઇન્ટેન્સિટી મોડ્યુલેશન**: ટાર્ગેટ સ્ટ્રેન્થ

4. મેપ ઓવરલે: ભૌગોલિક સંદર્ભ

મેમરી ટ્રીક: "PPI પ્રોવાઇડ્સ પરફેક્ટ પોઝિશન ઇન્ફોર્મેશન"

પ્રશ્ન 5(ક) [7 માર્ક્સ]

બ્લોક ડાયાગ્રામ સાથે મૂળભૂત પલ્સ રડાર સિસ્ટમ સમજાવો.

જવાબ:

પલ્સ રડાર બ્લોક ડાયાગ્રામ:

સિસ્ટમ કોમ્પોનન્ટ્સ:

કોમ્પોનન્ટ	รเข้	મુખ્ય પેરામીટર્સ
માસ્ટર ઓસિલેટર	RF સિગ્નલ જનરેટ કરે છે	ફ્રીક્વન્સી સ્થિરતા
મોક્યુલેટર	પલ્સ ટ્રેઇન બનાવે છે	પત્સ વિડ્થ, PRF
પાવર એમ્પ્લિફાયર	ટ્રાન્સમિટ પાવર બૂસ્ટ કરે છે	પીક પાવર, કાર્યક્ષમતા
ડુપ્લેક્સર	Tx/Rx સ્વિય કરે છે	આઇસોલેશન, સ્વિચિંગ ટાઇમ
એન્ટીના	રેડિયેટ/રિસીવ કરે છે	ગેઇન, બીમવિડ્થ
રિસીવર	ઇકો સિગ્નત્સ એમ્પ્લિફાય કરે છે	સેન્સિટિવિટી, બેન્ડવિડ્થ

ઓપરેટિંગ સીક્વન્સ:

1. ટ્રાન્સમિશન ફેઝ:

- ૦ માસ્ટર ઓસિલેટર RF જનરેટ કરે છે
- ૦ મોક્યુલેટર પલ્સ બનાવે છે
- ૦ પાવર એમ્પ્લિફાયર સિગ્નલ બૂસ્ટ કરે છે
- ૦ ડુપ્લેક્સર એન્ટીના તરફ રૂટ કરે છે

2. રિસેપ્શન ફેઝ:

- ૦ એન્ટીના ઇકો રિસીવ કરે છે
- ૦ ડુપ્લેક્સર રિસીવર તરફ રૂટ કરે છે
- ૦ સિગ્નલ પ્રોસેસિંગ માહિતી એક્સટ્રેક્ટ કરે છે
- ૦ ડિસ્પ્લે ટાર્ગેટ ડેટા બતાવે છે

મુખ્ય સમીકરણો:

- **રેન્જ**: R = ct/2 (જ્યાં t = રાઉન્ડ-ટ્રિપ ટાઇમ)
- भक्तम रेन्४: Rmax = cPRT/2
- **રેન્જ રિઝોલ્યુશન**: ΔR = cτ/2

પરફોર્મન્સ પેરામીટર્સ:

• PRF: પલ્સ રિપેટિશન ફ્રીક્વન્સી

• **ડ્યુટી સાયકલ**: τ × PRF

• **એવરેજ પાવર**: પીક પાવર × ક્યુટી સાયકલ

મેમરી ટ્રીક: "પત્સ રડાર પ્રોપર્લી પ્રોસેસ રિફ્લેક્ટેડ સિગ્નલ્સ"

પ્રશ્ન 5(અ) વૈકલ્પિક [3 માર્ક્સ]

માઇક્રોવેવ આવૃત્તિની એપ્લિકેશનની સૂચિ બનાવો.

જવાબ:

માઇક્રોવેવ એપ્લિકેશન્સ:

એપ્લિકેશન કેટેગરી	વિશિષ્ટ ઉપયોગો	આવૃત્તિ બેન્ડ
કમ્યુનિકેશન	સેટેલાઇટ, સેલ્યુલર, WiFi	1-40 GHz
રડાર સિસ્ટમ્સ	હવામાન, એર ટ્રાફિક, મિલિટરી	1-35 GHz
ઇન્ડસ્ટ્રિયલ	હીટિંગ, ડ્રાચિંગ, મેડિકલ	0.9-5.8 GHz
નેવિગેશન	GPS, એરક્રાફ્ટ લેન્ડિંગ	1-15 GHz
સાયન્ટિફિક	રેડિયો એસ્ટ્રોનોમી, રિસર્ચ	1-300 GHz
મેડિકલ	ડાયાથર્મી, કેન્સર ટ્રીટમેન્ટ	0.9-2.45 GHz
ઘરેલું	માઇક્રોવેવ ઓવન્સ	2.45 GHz

મુખ્ય મુદ્દાઓ:

• ISM બેન્ડ્સ (ઇન્ડસ્ટ્રિયલ, સાયન્ટિફિક, મેડિકલ): લાઇસન્સ-ફ્રી

• પેનેટ્રેશન ક્ષમતા: આવૃત્તિ અને મટીરિયલ પર આધાર રાખે છે

• એટમોસ્ફેરિક એબસોર્પ્શન: આવૃત્તિ સાથે વધે છે

મેમરી ટ્રીક: "માઇક્રોવેવ્સ સર્વ મેની એપ્લિકેશન્સ પરફેક્ટલી"

પ્રશ્ન 5(બ) વૈકલ્પિક [4 માર્ક્સ]

PULSED RADAR અને CW RADAR ની સરખામણી કરો.

જવાબ:

PULSED vs CW RADAR तुलना:

પેરામીટર	પલ્સ્ક RADAR	CW RADAR
ટ્રાન્સમિશન	પલ્સ ટ્રેઇન	કન્ટિન્યુઅસ વેવ
રેન્જ માપ	ટાઇમ-ઓફ-ફ્લાઇટ	ફ્રીક્વન્સી શિફ્ટ
વેલોસિટી માપ	પલ્સમાં ડોપ્લર	ડાયરેક્ટ ડોપ્લર
એન્ટીના	સિંગલ (ડુપ્લેક્સર)	અલગ Tx/Rx
પાવર	હાઇ પીક, લો એવરેજ	લો કન્ટિન્યુઅસ
રેન્જ રિઝોલ્યુશન	પલ્સ વિડ્થ લિમિટેડ	નબળું
વેલોસિટી રિઝોલ્યુશન	લિમિટેડ	<u>ල</u> ශින
જટિલતા	ଟାଣ	લો
કિંમત	વધારે	ઓછી

ઓપરેશનલ તફાવતો:

પલ્સ્ક RADAR:

• રેન્જ સમીકરણ: R = ct/2

• મહત્તમ રેન્જ: PRF દ્વારા મર્યાદિત

• **બ્લાઇન્ડ રેન્જ**: cPRT/2 ના મલ્ટિપલ

• એપ્લિકેશન્સ: લોંગ-રેન્જ ડિટેક્શન

CW RADAR:

• **ડોપ્લર સમીકરણ**: fd = 2vr/\lambda

• **રેન્જ માપ**: FM મોક્યુલેશન જરૂરી

• કોઈ બ્લાઇન્ડ રેન્જ નથી: કન્ટિન્યુઅસ ઓપરેશન

• એપ્લિકેશન્સ: સ્પીડ માપ, પ્રોક્સિમિટી

મુખ્ય ફાયદાઓ:

• પલ્સ્ક: બહેતર રેન્જ ક્ષમતા, ટાર્ગેટ સેપરેશન

• CW: બહેતર વેલોસિટી એક્યુરસી, સરળ ડિઝાઇન

મેમરી ટ્રીક: "પલ્સ્ડ મેઝર્સ રેન્જ, CW મેઝર્સ વેલોસિટી"

પ્રશ્ન 5(ક) વૈકલ્પિક [7 માર્ક્સ]

બ્લોક ડાયાગ્રામ સાથે MTI રડાર સમજાવો.

જવાબ:

MTI RADAR બ્લોક ડાયાગ્રામ:

MTI સિસ્ટમ કોમ્પોનન્ટ્સ:

કોમ્પોનન્ટ	સંપૂર્ણ નામ	รเข้
STALO	સ્ટેબલ લોકલ ઓસિલેટર	રેફરન્સ આવૃત્તિ
соно	કોહેરન્ટ ઓસિલેટર	ફેઝ રેફરન્સ
MTI ફિલ્ટર	મૂવિંગ ટાર્ગેટ ઇન્ડિકેટર	ક્લટર સપ્રેશન
ફેઝ ડિટેક્ટર	-	સિગ્નલ ફેઝની તુલના

MTI ઓપરેટિંગ સિદ્ધાંત:

પલ્સ-ટુ-પલ્સ તુલના:

MTI પ્રક્રિયા:

1. **કોહેરન્ટ ટ્રાન્સમિશન**: ફેઝ સંબંધો જાળવો

2. **ઇકો રિસેપ્શન**: ફેઝ માહિતી સાચવો

3. **ફેઝ તુલના**: ક્રમિક પલ્સની તુલના કરો

- 4. **કલટર કેન્સલેશન**: સ્થિર રિટર્ન ઘટાડો
- 5. **મૂવિંગ ટાર્ગેટ ડિટેક્શન**: ગતિશીલ ટાર્ગેટ વધારો

મુખ્ય સમીકરણો:

- **ડોપ્લર આવૃત્તિ**: fd = 2vr cos(θ)/λ
- **ફેઝ থাঁજ**: Δφ = 4πνr/λ × PRT
- **બ્લાઇન્ડ સ્પીડ્સ**: vb = n\/(2PRT)

MTI સુધારણા પરિબળ:

- વ્યાખ્યા: MTI પહેલા/પછી ક્લટર પાવરનો ગુણોત્તર
- સામાન્ય મૂલ્યો: 20-40 dB
- અસર કરતા પરિબળો: સિસ્ટમ સ્થિરતા, ક્લટર લક્ષણો

મર્યાદાઓ:

- **બ્લાઇન્ડ સ્પીડ્સ**: ચોક્કસ વેગ પર ટાર્ગેટ્સ અવૃશ્ય
- સ્પર્શંક ટાર્ગેટ્સ: રેડિયલ વેલોસિટી કોમ્પોનન્ટ જરૂરી
- હવામાન અસરો: વાતાવરણીય વધઘટ

એપ્લિકેશન્સ:

- એર ટ્રાફિક કંટ્રોલ: ગ્રાઉન્ડ ક્લટરથી એરક્રાફ્ટ અલગ કરો
- વેઘર રડાર: ભૂપ્રદેશથી વરસાદ અલગ કરો
- મિલિટરી રડાર: ગતિશીલ વાહનો/એરક્રાક્ટ શોધો

મેમરી ટ્રીક: "MTI મેક્સ ટાર્ગેટ્સ આઇડેન્ટિફાયેબલ બાય મૂવમેન્ટ"