

Unstructured Perturbation

□ Problem: Given $M \in \mathbb{C}^{p \times q}$, find a smallest $\Delta \in \mathbb{C}^{p \times q}$ (no structure imposed on Δ) in the sense of $\overline{\sigma}(\Delta)$ such that $\det(I M\Delta = 0$.

It is easy to see that $\alpha_{\min} \coloneqq \inf\{\overline{\sigma}(\Delta) \colon \det(I - M\Delta) = 0, \Delta \in \mathbf{C}^{p\times q}\}$ $=\inf\{\alpha:\det(I-\alpha\,M\!\Delta)=0,\overline{\sigma}(\Delta)\leq 1,\Delta\in\mathbf{C}^{\scriptscriptstyle p\times q}\}$

and $\max_{\overline{\sigma}(\Delta) < 1} \rho(M\Delta) = \alpha_{\min}^{-1} = \overline{\sigma}(M)$

with a smallest "destabilizing" $\Delta_{\text{des}} = \frac{1}{\overline{\sigma}(M)} v_i u_i^*, \det(I - M \Delta_{\text{des}}) = 0$

where $M = \overline{\sigma}(M)u_1v_1^* + \sigma_2u_2v_2^* + \cdots$

So the largest singular value of M can be defined as

$$\overline{\sigma}(M) := \frac{1}{\inf{\{\overline{\sigma}(\Delta) : \det(I - M\Delta) = 0, \Delta \in \mathbb{C}^{p \times q}\}}}$$

Structured Perturbation

□ Problem: Given $M \in \mathbb{C}^{p \times q}$, find a smallest $\Delta \in \Delta$

 $\Delta \!\!=\!\! \{ \mathrm{diag}[\delta_{l}I_{rl},...,\,\delta_{s}I_{rs},\Delta_{l},\,...,\Delta_{F}] \in \mathbb{C}^{p \times q} : \delta_{l} \in \mathbb{C},\,\Delta_{j} \in \mathbb{C}^{m_{j} \times m_{j}} \}$ such that $\det(I-M\Delta)=0$.

$$\alpha_{\min} := \inf \{ \overline{\sigma}(\Delta) : \det(I - M\Delta) = 0, \Delta \in \Delta \}$$

= \inf \{ \alpha : \det(I - \alpha M\Delta) = 0, \overline{\sigma}(\Delta) \leq 1, \Delta \in \Delta \}

$$\max_{_{\Delta \in \Delta, \ \overline{\sigma}(\Delta) \le 1}} \rho(M\Delta) = \alpha_{\min}^{-1} \le \overline{\sigma}(M)$$

 $\hfill \Box$ We shall call $1/\alpha_{min}$ as structured singular value (SSV).

Definition of SSV

□ For $M \in \mathbb{C}^{n \times n}$, $\mu_{\Delta}(M)$ is defined as

$$\mu_{\Delta}(M) := \frac{1}{\min{\{\overline{\sigma}(\Delta) : \Delta \in \Delta, \det(I - M\Delta) = 0\}}}$$

unless no $\Delta \in \Delta$ makes *I-M* Δ singular, in which case $\mu_{\Delta}(M) := 0$.

- If $\Delta=\{\delta I_n:\delta\in\mathbb{C}\}$ (S=1, F=0, $r_r=n$), then $\mu_\Delta(M)=p(M)$, the spectral radius of M.
- If $\Delta = \{\Delta \in \mathbb{C}^{n \times n}\}$ (S=0, F=1, $m_1 = n$), then $\mu_{\Delta}(M) = \overline{\sigma}(M)$
- ☐ Thus we have the following bounds:

 $\rho(M) \le \mu_{\Delta}(M) \le \overline{\sigma}(M)$

Examples

□ Let Δ ={diag[δ_l , δ_2] ∈ C $^{2\times 2}$: δ_l ∈ C}. Consider two matrices:

(1)
$$M = \begin{bmatrix} 0 & \beta \\ 0 & 0 \end{bmatrix}$$
 for any $\beta > 0$. Then $\rho(M) = 0$ and $\overline{\sigma}(M) = \beta$.

But $\mu(M) = 0$ since $\det(I - M\Delta) = 1 \neq 0$ for all admissible Δ .

(2)
$$M = \begin{bmatrix} -1/2 & 1/2 \\ -1/2 & 1/2 \end{bmatrix}$$
. Then $\rho(M) = 0$ and $\overline{\sigma}(M) = 1$. Since

$$\det(I - M\Delta) = 1 + \frac{\delta_1 - \delta_2}{2} = 0$$

if $\delta_1 = -\delta_2 = -1$. So $\mu(M) = 1$.

□ Thus neither ρ(M) nor $\overline{σ}(M)$ provides useful bounds even in these simple cases.

Tighter Bounds

□ To obtain tighter bounds, define $U=\{U \in \Delta : UU^*=I_n\}$

$$\begin{split} D &= \{ diag[D_1, \dots, D_S, d_1 I_{m_1}, \dots, d_{F-1} I_{m_{F-1}}, I_{m_F}] : \\ D_i &\in \mathbf{C}^{s_{X_i}}, D_i = D_i^* > 0, d_j \in \mathbf{R} d_j > 0 \} \end{split}$$

Note that for any $\Delta \in \Delta$, $U \in U$, and $D \in D$,

 $\boldsymbol{U}^* \in \boldsymbol{U} \,, \boldsymbol{U} \Delta \in \boldsymbol{\Delta} \,, \Delta \boldsymbol{U} \in \boldsymbol{\Delta} \,, \overline{\boldsymbol{\sigma}}(\boldsymbol{U} \Delta) = \overline{\boldsymbol{\sigma}}(\Delta \boldsymbol{U}) = \overline{\boldsymbol{\sigma}}(\Delta), \qquad \boldsymbol{D} \Delta = \Delta \boldsymbol{D}.$

For all $U \in \mathbf{U}$ and $D \in \mathbf{D}$

 $\mu_{\scriptscriptstyle \Delta}(MU) = \mu_{\scriptscriptstyle \Delta}(UM) = \mu_{\scriptscriptstyle \Delta}(M) = \mu_{\scriptscriptstyle \Delta}(DMD^{-1}).$

 $\max_{U \in \mathcal{U}} \rho(UM) \le \max_{\Delta \in \mathcal{B}_{\Delta}} \rho(\Delta M) = \mu_{\Delta}(M) \le \inf_{D \in \mathcal{D}} \overline{\sigma}(DMD^{-1})$ $\max_{U,v} \rho(UM) \le \mu_{\Delta}(M) \le \inf_{\Omega \in \Omega} \overline{\sigma}(DMD^{-1}).$

Tightness of Bounds

[Doyle,1982] $\max_{U \in \mathcal{U}} \rho(UM) = \mu_{\Delta}(M)$.

Not Convex or Concave.

$$\mu_{\scriptscriptstyle \Delta}(M\,) = \inf_{D \in \mathbf{D}} \overline{\sigma}(DMD^{-1}) \quad \text{if } 2S + F \leq 3\,.$$

	F=	0	1	2	3	4
s=						
0			Yes	Yes	Yes	No
1		Yes	Yes	No	No	No
2		No	No	No	No	No

Now generate the singular value frequency responses of G_p :

> w = logspace (-3, 3, 300);

> % gpf = frsp(\mathbb{Q}_p , w); %

% gpf is the frequency response of \mathbb{Q}_p ;

>> [u, s, v] = vsvd(\mathbb{Q} pf);

>> vplot('liv, m', s)

The singular value frequency responses of G_p are shown in Figure 10.6: Singular values of G_p (j ω)

To test the robust stability, we need to compute $||G_{pII}||_{\infty}$, $>> Q_{p11} = sol(Q_{p}-1:2, 1:2);$ $>> norm_of_Q_{p11} = hinfnorm(Q_{p11}, 0.001);$ which gives $||G_{p11}||_{\infty} = 0.933<1$. So the system is robustly stable. To check the robust performance, we shall compute the $\mu_{\Lambda_p}(G_p(j\omega))$ for each frequency with $\Delta_p = \begin{bmatrix} \Delta & \\ & \Delta_f \end{bmatrix} \Delta \in \mathbb{C}^{2\cdot2}, \ \Delta_f \in \mathbb{C}^{4\cdot2}.$ >> blk = [2, 2; 4, 2]; >> [bnds, dvee, sens, pvec] = mu(Qpf, blk); >> vplot('liv, m', vnorm(Qpf), hods) >> title('Maximum Singular Value and mu') >> xlabel('frequency(rad/sec)') >> text(0.01, 1.7, 'maximum singular value') >> text(0.5, 0.8, 'mu bounds')

The structured singular value $\mu_{\Delta_{\mu}}(G_{p}(j\omega))$ and $\overline{\sigma}(G_{p}(j\omega))$ are shown in Figure 10.7. It is clear that the robust performance is not satisfied. Note that $\max_{\|A\|_{\infty} \le \|F_{u}(G_{p}, \Delta)\|_{\infty}} \le \gamma \Leftrightarrow \sup_{\sigma} \mu_{\Delta_{\mu}} \left[\begin{array}{cc} G_{p11} & G_{p12} \\ G_{p21}/\gamma & G_{p22}/\gamma \end{array} \right] \le 1.$ Using a bisection algorithm, we can also find the worst performance $\max_{\|A\|_{\infty} \le \|F_{u}(G_{p}, \Delta)\|_{\infty}} = 12.7824.$ Figure 10.7: $\mu_{\Delta_{\mu}}(G_{p}(G_{p}(\omega)))$ and $\overline{\sigma}(G_{p}(G_{p}(\omega)))$

Skewed Problem

Recall the skewed problem in Chapter 8. It can be shown that robust performance problem is equivalent to a 2 block structure singular value with the following interconnection matrix $G = \begin{bmatrix} -W_2TW_1 & -W_2KS_3W_d \\ W_2S_2PW_1 & W_2S_3W_d \end{bmatrix}$ So the robust performance condition is $\mu_{\Delta}(G(j\omega)) = \inf_{d_{\omega 0} \in \mathbb{R}_+} \overline{\sigma} \begin{bmatrix} -W_2TW_1 & -\frac{1}{d_{\omega}}W_2KS_2W_d \\ d_{\omega}W_2S_2PW_1 & W_2S_3W_d \end{bmatrix} \le 1$ for all $\omega \ge 0$.

Now assume $W_c=w_sI$, $W_d=I$, $W_I=I$, $W_2=w_tI$ and P is stable and has a stable inverse (I.e., minimum phase) and $K(s)=P^I(s)I(s)$ such that K(s) is proper and the closed-loop is stable. Then $S_o=S_i=I/(I+I(s))I=g(s)I, \ T_o=T_i=I(s)/(I+I(s))I=g(s)I$ $G=\begin{bmatrix} -w_i\pi I & -w_i\pi P^{-1} \\ w_s\varepsilon P & w_s\varepsilon I \end{bmatrix}$ and $\mu_{\Delta}(G(j\omega))=\inf_{d\in\mathbb{R}_+}\sigma\begin{bmatrix} -w_i\pi I & -w_i\pi(dP)^{-1} \\ w_i\varepsilon dP & w_i\varepsilon I \end{bmatrix}$. Let the SVD of $P(j\omega)$ be $P(j\omega)=U\Sigma V^s, \ \Xi=\mathrm{diag}(\sigma_I, \ \sigma_2, \ldots, \ \sigma_m)$ with $\sigma_1=\overline{\sigma}$ and $\sigma_m=\underline{\sigma}$ where m is the dimension of P. Then $\mu_{\Delta}(G(j\omega))=\inf_{d\in\mathbb{R}_+}\overline{\sigma}\begin{bmatrix} -w_i\pi I & -w_i\pi(d\Sigma)^{-1} \\ w_i\omega I\Sigma & w_i\varepsilon I \end{bmatrix}$

Note that $\begin{bmatrix} -w_i \tau I & -w_i \tau (d\Sigma)^{-1} \\ w_s \varepsilon d\Sigma & w_s \varepsilon I \end{bmatrix} = P_1 \operatorname{diag}(M_1, M_2, ..., M_m) P_2$ $M_i = \begin{bmatrix} -w_i \tau & -w_i \tau (d\sigma_i)^{-1} \\ w_s \varepsilon d\sigma_i & w_s \varepsilon \end{bmatrix}.$ where P_1 and P_2 are permutation matrices.

Hence $\mu_{\Delta}(G(j\omega)) = \underset{d \in \mathbb{R}_+}{\inf} \max_i \overline{\sigma} \left(\begin{bmatrix} -w_i \tau & -w_i \tau (d\sigma_i)^{-1} \\ w_s \varepsilon d\sigma_i & w_s \varepsilon \end{bmatrix} \right)$ $= \underset{d \in \mathbb{R}_+}{\inf} \max_i \overline{\sigma} \left(\begin{bmatrix} -w_i \tau & -w_i \tau (d\sigma_i)^{-1} \\ w_s \varepsilon d\sigma_i & w_s \varepsilon \end{bmatrix} \right)$ $= \underset{d \in \mathbb{R}_+}{\inf} \max_i \sqrt{\left(1 + |d\sigma_i|^{-2} \right) \left| |w_s \varepsilon d\sigma_i|^2 + |w_i \tau|^2 \right)}$ $= \underset{d \in \mathbb{R}_+}{\inf} \max_i \sqrt{\left| w_s \varepsilon |^2 + |w_s \varepsilon d\sigma_i|^2 + |w_i \tau|^2 + \left| \frac{w_i \tau}{d\sigma_i} \right|^2}.$

The maximum is achieved at

$$d^2 = \frac{\left|w_\iota \tau\right|}{\left|w_s \varepsilon \middle| \underline{\sigma} \overline{\overline{\sigma}}\right|},$$

and

$$\begin{split} \mu_{\scriptscriptstyle \Delta}(G(j\omega)) &= \sqrt{\left|w_{\scriptscriptstyle s}\varepsilon\right|^2 + \left|w_{\scriptscriptstyle t}\tau\right|^2 + \left|w_{\scriptscriptstyle s}\varepsilon\right| \left|w_{\scriptscriptstyle t}\tau\right| \left[\kappa(P) + \frac{1}{\kappa(P)}\right]}. \\ \mu_{\scriptscriptstyle \Delta}(G(j\omega)) &\approx \sqrt{\left|w_{\scriptscriptstyle s}\varepsilon\right| \left|w_{\scriptscriptstyle t}\tau|\kappa(P)\right|}. \end{split}$$

☐ Conclusion: The structure singular value of the skewed problem is (approximately) proportional to the square root of the condition number of the plant.

Overview on μ Synthesis

G

☐ Consider a general feedback system with interconnection G. Find a stabilizing controller K so that the following μ -norm is minimized:

$$\min_{K} \left\| F_{\ell}(G,K) \right\|_{\mathcal{U}} = \min_{K} \sup_{\omega} \mu_{\Delta}(F_{\ell}(G(j\omega),K(j\omega)))$$

$$F_{\ell}(G,K) = G_{11} + G_{12}K(I - G_{22}K)^{-1}G_{21}$$

This problem is called μ -synthesis.

 $\hfill \Box$ The $\mu\mbox{-synthesis}$ is not yet fully solved. But a reasonable approach is to "solve" $\min_{K}\inf_{D,D^{-1}\in H_{\infty}}\left\|DF_{\ell}(G,K)D^{-1}\right\|_{\infty}$

by iteratively solving for K and D, i.e., first minimizing over K with D fixed, then minimizing point-wise over D with K fixed,

- \Box Fix D $\min_{\sigma} \left\| DF_{\ell}(G,K)D^{-1} \right\|$
 - is a standard H_{∞} optimization problem.
- \Box Fix K $\inf_{D^{-1} \in H} \left\| DF_{\ell}(G, K)D^{-1} \right\|_{\alpha}$ is a standard convex optimization problem and it can be solved $\sum_{k=0}^{n} e^{ik\theta_k} \| \mathcal{D} \mathcal{L}(\mathbf{U}, \mathbf{K}) \mathbf{D} \|_{\infty}$

point-wise in the frequency domain:
$$\sup_{D_{\omega} \in D} \inf_{\overline{D}} \overline{\sigma} \Big[D_{\omega} F_{l}(G,K) (j\omega) D_{\omega}^{-1} \Big]$$

Note that when S = 0, (no scalar blocks)

$$D_{\omega} = \operatorname{diag}(d_1^{\omega}I, \dots, d_{F-1}^{\omega}I, I) \in D,$$

Details of D-K Iterations:

- (ii) Find scalar transfer functions $d_i(s), d_i^{-1}(s) \in \mathrm{RH}_{\infty}$ for $i=1,\dots,$ (F-1) such that $|d_i(j\omega)| \approx d_i^{\omega}$.
- (iii) Let D(s)=diag($d_I(s)$ I, ..., $d_{F-I}(s)$ I, I). Construct a state space model for system

$$\hat{G}(s) = \begin{bmatrix} D(s) & \\ & I \end{bmatrix} G(s) \begin{bmatrix} D^{-1}(s) & \\ & I \end{bmatrix}.$$

(iv) Solve an $H_{\mbox{\tiny ∞}}$ optimization problem to minimize

$$F_l(\hat{G}, K)$$

over all stabilizing K's. Denote the minimizing controller by \hat{K} .

(v) Minimize

$$\overline{\sigma}[D_{\omega}F_{l}(G,\hat{K})D_{\omega}^{-1}]$$

over $D_{\infty} \in D$ point-wise across frequency. The minimization itself produces a new scaling function \hat{D}_{ω} .

- (vi) Compare \hat{D}_{ω} with the previous estimate D_{ϖ} , Stop if they are close, otherwise, replace D_{ω} with \hat{D}_{ω} and return to step (ii).
- The joint optimization of \boldsymbol{D} and \boldsymbol{K} is not convex and the global convergence is not guaranteed, many designs have shown that this approach works well.