Guía de Ejercicios No. 1

- 1. Sean S_1 y S_2 conjuntos convexos cerrados. Demostrar que $S_1 \oplus S_2$ es convexo.
- 2. ¿En qué dominio es convexa la función $f(x) = x^2(x^2 1)$? ¿Es estrictamente convexa en la región especificada? Justifique su respuesta.
- 3. Sean $h: \mathbb{R} \to \mathbb{R}$ y $g: \mathbb{R} \to \mathbb{R}$ funciones dos veces diferenciables. Considerar la función compuesta f(x) = h(g(x)). Demostrar la veracidad de las siguientes afirmaciones:
 - f es convexa en \mathbb{R} si h es convexa y no decreciente, y g es convexa.
 - f es convexa en \mathbb{R} si h es convexa y no creciente, y g es cóncava.
- 4. Sean f_1, \ldots, f_k funciones convexas de \mathbb{R}^n a \mathbb{R} . Considerar la función:

$$f(\mathbf{x}) = \sum_{j=1}^{k} \alpha_j f_j(\mathbf{x}),$$

donde $\alpha_j > 0$ para j = 1, ..., k. Mostrar que f es convexa. Ilustrar con un ejemplo. Enunciar un resultado idéntico para funciones cóncavas. Ilustrar con un ejemplo

5. Sean f_1, \ldots, f_k funciones convexas de \mathbb{R}^n a \mathbb{R} . Considerar la función:

$$f(\mathbf{x}) = \max\{f_1(\mathbf{x}), \dots, f_k(\mathbf{x})\}.$$

Mostrar que f es convexa. Ilustrar con un ejemplo. Enunciar un resultado idéntico para funciones cóncavas. Ilustrar con un ejemplo.

6. Sea $S = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 \le 1, x^2 - y \le 0\}$. ¿Es convexo? Justificar. Dado el punto $\mathbf{a} = (1, 0, 2)^\mathsf{T}$, plantear un problema de programación matemática no lineal que permita encontrar el punto $\mathbf{b} = (\bar{x}, \bar{y}, \bar{z})^\mathsf{T}$ en S que esté a distancia mínima de \mathbf{a} . A partir de \mathbf{a} y \mathbf{b} explique como determinar un plano que separe \mathbf{a} de S.