The George Washington University

MAE 3134 – Linear System Dynamics Spring 2015

Final Exam

Problem # 1 [60 points]

For the system shown in the figure,

- (i) Construct the state-space and output equations in matrix form. Include the position and the velocity of the mass as your two outputs. [20 points]
- (ii) Calculate the output matrix in Laplace space for $x_1(t) = t$ u(t) and zero initial conditions. [20 points]
- (iii) Invert the output matrix to obtain the solutions in time space for k = 2 N/m, c = 0.5 N s/m and m = 1 Kg. **[20 points]**

Problem # 2 [60 points]

Consider the model for a car-tire system in the figure, in which the vertical position of the mass exhibits a time-dependent response due to changes in the road topography. The parameters are m = 2000 Kg, k = 8000 N/m and c = 4000 Ns/m.

- (i) Write the equation of motion of the system. [7 points]
- (ii) Derive the transfer function of the system for the vertical motion of the mass, taking the road height as the input. [10 points]

- (iii) Provide an expression for the response of the mass in the Laplace domain, Y(s) when the input is a unit step $(y_{tire} = u(t))$ and the initial conditions are zero. [8 points]
- (iv) Calculate the time-dependent response for the Laplace-domain expression you derived for *Y*(*s*) in step (iii). *[15 points]*
- (v) Calculate the time-dependent vertical response of the mass in the car-tire system to the road feature shown in the figure. Take t=0 as the instant when the tire encounters the up-step. The initial conditions in the vertical direction y(0) and $\dot{y}(0)$ are both zero. The car is traveling at a horizontal speed of 20 m/s. [20 points]

STATE-SPACE SOLUTIONS

Homogeneous Solution:

$$\mathbf{y}_{\text{homogeneous}}(t) = \mathcal{I}^{-1} \{ (\mathbf{sI} - \mathbf{A})^{-1} \} \mathbf{x}(0)$$

Particular Solution:

$$\mathbf{y}_{particular}(t) = \mathcal{I}^{-1} \{ [\mathbf{C}(\mathbf{sI} - \mathbf{A})^{-1}\mathbf{B} + \mathbf{D}] \mathbf{U}(\mathbf{s}) \}$$

Full Solution:

$$\mathbf{Y}(t) = \mathbf{y}_{\text{homogeneous}}(t) + \mathbf{y}_{\text{particular}}(t)$$

Table of Laplace Transforms
$$f(t) = \mathcal{L}^{-1}\{F(s)\} \qquad F(s) = \mathcal{L}\{f(t)\} \qquad f(t) = \mathcal{L}^{-1}\{F(s)\} \qquad F(s) = \mathcal{L}\{f(t)\}$$
1. 1
$$\frac{1}{s} \qquad 2. \quad e^{st} \qquad \frac{1}{s-a}$$
3. $t^{n}, \quad n = 1, 2, 3, ...$ $\frac{n!}{s^{n+1}} \qquad 4. \quad t^{n}, p > -1$ $\frac{\Gamma(p+1)}{s^{p+1}}$
5. \sqrt{t} $\frac{\sqrt{\pi}}{2s^{\frac{3}{2}}} \qquad 6. \quad t^{\frac{n-1}{2}}, \quad n = 1, 2, 3, ...$ $\frac{1 \cdot 3 \cdot 5 \cdot \cdot \cdot (2n-1)\sqrt{\pi}}{s^{2} \cdot s^{n+1}}$
7. $\sin(at)$ $\frac{a}{s^{\frac{3}{2}} + a^{2}} \qquad 8. \quad \cos(at)$ $\frac{s}{s^{\frac{3}{2}} + a^{2}}$
9. $t\sin(at)$ $\frac{2as}{(s^{\frac{3}{2}} + a^{2})^{2}} \qquad 10. \quad t\cos(at)$ $\frac{s^{2} - a^{2}}{(s^{2} + a^{2})^{2}}$
11. $\sin(at) - at\cos(at)$ $\frac{2s^{3}}{(s^{2} + a^{2})^{2}} \qquad 12. \quad \sin(at) + at\cos(at)$ $\frac{s(s^{2} + a^{2})^{2}}{(s^{2} + a^{2})^{2}}$
13. $\cos(at) - at\sin(at)$ $\frac{s(s^{2} - a^{2})}{(s^{2} + a^{2})^{2}}$ 14. $\cos(at) + at\sin(at)$ $\frac{s(s^{2} + a^{2})^{2}}{(s^{2} + a^{2})^{2}}$
15. $\sin(at + b)$ $\frac{s\sin(b) + a\cos(b)}{s^{2} + a^{2}}$ 16. $\cos(at + b)$ $\frac{s\cos(b) - a\sin(b)}{s^{2} + a^{2}}$
17. $\sinh(at)$ $\frac{a}{s^{2} - a^{2}}$ 18. $\cosh(at)$ $\frac{s}{s^{2} - a^{2}}$
19. $e^{at}\sin(bt)$ $\frac{b}{(s-a)^{2} + b^{2}}$ 20. $e^{at}\cos(bt)$ $\frac{s-a}{(s-a)^{2} + b^{2}}$
21. $e^{at}\sin(bt)$ $\frac{b}{(s-a)^{2} - b^{2}}$ 22. $e^{at}\cosh(bt)$ $\frac{s-a}{(s-a)^{2} - b^{2}}$
22. $t^{n}e^{at}, \quad n = 1, 2, 3, ...$ $\frac{n!}{(s-a)^{n+1}}$ 24. $f(ct)$ $\frac{1}{c}F(\frac{s}{c})$
25. $u_{e}(t) = u(t-c)$ $\frac{e^{-at}}{(s-a)^{2} - b^{2}}$ 28. $u_{e}(t)g(t)$ $\frac{e^{-at}}{(s-a)^{2} - b^{2}}$ 29. $e^{at}f(t)$ $\frac{f(t)}{f(t-c)}$ $\frac{e^{-at}}{s}F(s)$ 28. $u_{e}(t)g(t)$ $\frac{e^{-at}}{s}F(s)$ 30. $t^{n}f(t), \quad n = 1, 2, 3, ...$ $\frac{f(s)}{s}F(s)$ 31. $\frac{1}{t}f(t)$ $\frac{f(t)}{s}F(s)-f(0)$ 36. $f^{n}f(t)$ $\frac{s^{2}f(s) + s^{2}f(s) + s^{2}f(t)-f^{1}f(t)}{s^{2}F(s) + s^{2}f(t)-f^{1}f(t)}$

37. $f^{(n)}(t)$

 $s^{n}F(s)-s^{n-1}f(0)-s^{n-2}f'(0)\cdots-sf^{(n-2)}(0)-f^{(n-1)}(0)$