Conservative Perception Relevance of Dynamic Objects

Motivation

Automated driving

- Safety assurance
- Typical Sense-Plan-Act architecture
- Modular evaluation/validation
- Act requirements are specified

Open questions

- How to consider driving safety for perception?
- What does not need to be perceived?

→ What makes an object irrelevant?

Image: https://www.nuscenes.org/static/media/road-750h.c22d47a4.webp

Related Work

Perception evaluation with datasets

- Relevance implicitly determined by inclusion in ground truth
- Inclusion based on arbitrary criteria
 - Geometric criteria
 - Human perception on sensor data

Relevance in Planning

- Relevance implicitly determined by input to neural planners
 - Geometric criteria
 - Predetermined number of objects
- Formal planners explicitly consider relevance
 - Consider behavior not perception

Image: https://www.highd-dataset.com/static/img/titelvideo_MomentHighD.5174a14.png

Related Work

Relevance for Perception Evaluation

- Concrete implementation of planner
 - Restricted to single specific implementation
- General specifications with formal planner
 - Transfer to perception unsubstatiated

Assumptions

- Stopping is valid behavior
- Ego intention available
- Road environment information available

Limitations

- Structured procedure unavailable
- Lack of specification not addressed

Methodology

- Specify minimum system
 - Object list as Sense/Plan interface
 - R1) Obey traffic rules!
 C1) React in time
 - R2) Do not collide!C2) Steer/Accelerate

(17)

- Specify use case
 - Highway
- Decompose
- Identify behavioral requirements for scenarios

REQ2.1: The ego vehicle shall be able to brake to halt behind a vehicle in front to avoid a collision in the event that the front car suddenly brakes.

Formalize requirements into equation

$$0 < d_{\min} =$$

14.08.2024

Methodology

TECHNISCHE UNIVERSITÄT DARMSTADT

Use Case Decomposition

- Distinguishing Scenarios
- Radial-Tangential
- Pairwise Interaction
- Superposition Principle

Highway

6

Requirement Formalization

Goals

- Closed form solution
- Minimum scenario knowledge required
 - No road
 - No ego/object intentions

Principles

- (1) Always assume the worst case
- (2) If worst case is implausible introduce variable as contract

Method Application: Functional Scenario

Disambiguation

 Radial scenario, ego moving towards, other vehicle moving away: R.TA

Legal Requirement

Avoid collision if front vehicle brakes

Simplified model for hypothetical scenario

- Conservative one-dimensional model
- Worst case behavior of other vehicle
- Worst case behavior of ego during reaction time
- Approriate response of ego

Develop equation

If equation is violated the object is relevant

Results: HighD example

Real highway data recorded by drone

- Relevance for each functional scenario
- Superposition of scenario relevance visible

Results & Discussion: HighD Overall

Results

- Empirical cumulative distribution function (ECDF)
- Relevant objects per scenario over distance
- Large distances considered relevant
- Relevant distance is scenario-dependant

Discussion

- Generally more conservative than headway or TTC
- Avoids false negatives, false positives likely

Discussion

Generalization capability

- Other operational design domains
- Road regulations from other countries
- Different use cases

Implications for perception testing

- Distance for relevance is scenario dependent
- Large distances for highway domain

Validation

Difficult due to lack of established methods

Conclusion & Outlook

Contributions

- Structured approach to determine object relevance
- Specification of the system
- Decomposition of ODD into scenarios
- Equations for relevant objects for each functional scenario
- Application to collision avoidance in highway domain

Outlook

- Expand application
- Validation

