Crypto News!

Enrico Pirani Max

Importazione delle librerie necessarie

In primo luogo, per eseguire il nostro processo di creazione di strategie di trading, dobbiamo importare le librerie necessarie nel nostro ambiente. In tutto questo processo, utilizzeremo alcune delle librerie finanziarie più popolari in R, ovvero Quantmod, TTR e Performance Analytics. Utilizzando la funzione library in R, possiamo importare i nostri pacchetti richiesti.

```
y <- rnorm(100)
x <- rnorm(100)
m \leftarrow lm(y \sim x)
summary(x)
##
       Min. 1st Qu.
                       Median
                                   Mean 3rd Qu.
                                                      Max.
## -2.70802 -0.78359 -0.11219 -0.03796 0.75271 3.14094
summary(m)
##
## Call:
## lm(formula = y \sim x)
##
## Residuals:
##
        Min
                  1Q
                       Median
                                     3Q
                                              Max
                                         2.36857
## -1.73478 -0.67582 0.03764 0.53407
##
## Coefficients:
               Estimate Std. Error t value Pr(>|t|)
                                      0.724
                            0.08754
## (Intercept) 0.06339
                                                0.471
## x
               -0.10269
                            0.07727
                                    -1.329
                                                0.187
##
## Residual standard error: 0.8749 on 98 degrees of freedom
## Multiple R-squared: 0.0177, Adjusted R-squared:
## F-statistic: 1.766 on 1 and 98 DF, p-value: 0.187
library(quantmod)
library(PerformanceAnalytics)
library(TTR)
```

Passaggio 2: Estrazione dei dati da Yahoo e Plotting di base

furante tutto il nostro processo, lavoreremo con i dati del prezzo delle cryptovalute Bitcoin, Ethereum, Binance, Cardano e XRP. Estraiamo i dati di queste valute da Yahoo in R.

```
getSymbols("BTC-USD", src = "yahoo", from = "2019-01-01")
## [1] "BTC-USD"
```

```
getSymbols("ETH-USD", src = "yahoo", from = "2019-01-01")

## [1] "ETH-USD"

getSymbols("BNB-USD", src = "yahoo", from = "2019-01-01")

## [1] "BNB-USD"

getSymbols("ADA-USD", src = "yahoo", from = "2019-01-01")

## [1] "ADA-USD"

getSymbols("XRP-USD", src = "yahoo", from = "2019-01-01")

## [1] "XRP-USD"

getSymbols("SOL-USD", src = "yahoo", from = "2020-01-01")
```

[1] "SOL-USD"

Ora facciamo un po' di visualizzazione dei nostri dati estratti! Il seguente codice produce un grafico a barre finanziario dei prezzi delle azioni insieme al volume.

barChart(`BTC-USD`, theme = chartTheme("black"))

barChart(`BNB-USD`, theme = chartTheme("black"))

Creazione di indicatori tecnici

Ci sono molti indicatori tecnici utilizzati per l'analisi finanziaria ma, per la nostra analisi, utilizzeremo e creeremo sei dei più famosi indicatori tecnici, ovvero: Media mobile semplice (SMA), Parabolic Stop And Reverse (SAR), Indice del canale delle materie prime (CCI), Tasso di variazione (ROC), Indice del momento stocastico (SMI) e infine Williams %R. Facciamolo!. Nella nuova dimensione di questi

Media mobile semplice (SMA):

L'intervallo di tempo standard che prenderemo è di 20 giorni SMA e 50 giorni SMA. Ma non ci sono restrizioni nell'uso di qualsiasi intervallo di tempo.

Il seguente codice calcolerà la SMA di tre aziende per 20 giorni e 50 giorni insieme ad un grafico:

```
BTC <- `BTC-USD`
ETH <- `ETH-USD`
BNB <- `BNB-USD`
ADA <- `ADA-USD`
XRP <- `XRP-USD`

# 1. BTC-USD

sma50_btc <- SMA(BTC$`BTC-USD.Close`, n = 50)
sma100_btc <- SMA(BTC$`BTC-USD.Close`, n = 100)
lineChart(`BTC-USD`, theme = chartTheme("black"))
```


addSMA(n = 50, col = "blue")


```
addSMA(n = 100, col = "orange")
legend("left",
  col = c("green", "blue", "orange"),
  legend = c("BTC-USD", "SMA50", "SMA100"), lty = 1, bty = "n",
  text.col = "white", cex = 0.8
)
```



```
# 2. ETH-USD
sma50_btc <- SMA(ETH$^ETH-USD.Close^, n = 50)
sma100_btc <- SMA(ETH$^ETH-USD.Close^, n = 100)
lineChart(^ETH-USD^, theme = chartTheme("black"))</pre>
```


addSMA(n = 50, col = "blue")


```
addSMA(n = 100, col = "orange")
legend("left",
  col = c("green", "blue", "orange"),
  legend = c("ETH-USD", "SMA50", "SMA100"), lty = 1, bty = "n",
  text.col = "white", cex = 0.8
)
```



```
sma50_btc <- SMA(ADA$^ADA-USD.Close^, n = 50)
sma100_btc <- SMA(ADA$^ADA-USD.Close^, n = 100)
lineChart(^ADA-USD^, theme = chartTheme("black"))</pre>
```


addSMA(n = 50, col = "blue")


```
addSMA(n = 100, col = "orange")
legend("left",
  col = c("green", "blue", "orange"),
  legend = c("ADA-USD", "SMA50", "SMA100"), lty = 1, bty = "n",
  text.col = "white", cex = 0.8
)
```



```
sma50_btc <- SMA(BNB$`BNB-USD.Close`, n = 50)
sma100_btc <- SMA(BNB$`BNB-USD.Close`, n = 100)
lineChart(`BNB-USD`, theme = chartTheme("black"))</pre>
```


addSMA(n = 50, col = "blue")


```
addSMA(n = 100, col = "orange")
legend("left",
  col = c("green", "blue", "orange"),
  legend = c("BNB-USD", "SMA50", "SMA100"), lty = 1, bty = "n",
  text.col = "white", cex = 0.8
)
```



```
sma50_btc <- SMA(XRP$`XRP-USD.Close`, n = 50)
sma100_btc <- SMA(XRP$`XRP-USD.Close`, n = 100)
lineChart(`XRP-USD`, theme = chartTheme("black"))</pre>
```


addSMA(n = 50, col = "blue")


```
addSMA(n = 100, col = "orange")
legend("left",
  col = c("green", "blue", "orange"),
  legend = c("BNB-USD", "SMA50", "SMA100"), lty = 1, bty = "n",
  text.col = "white", cex = 0.8
)
```


Indice del Canale delle Materie Prime (CCI):

Per calcolare il CCI, dobbiamo considerare i prezzi giornalieri di massimo, minimo e chiusura delle aziende insieme a un periodo di tempo specificato e un valore costante. In questo passaggio, prenderemo 20 giorni come periodo di tempo e 0.015 come valore costante.

Il seguente codice calcolerà il CCI delle aziende insieme a un grafico:

```
# 1.BTC
cci_BTC <- CCI(HLC(BTC), n = 20, c = 0.015)
barChart(BTC, theme = "black")</pre>
```


addCCI(n = 20, c = 0.015)


```
# 2.ETH
cci_eth <- CCI(HLC(ETH), n = 20, c = 0.015)
barChart(ETH, theme = "black")</pre>
```


addCCI(n = 20, c = 0.015)


```
# 3.BNB
cci_BNB <- CCI(HLC(BNB), n = 20, c = 0.015)
barChart(BNB, theme = "black")</pre>
```


addCCI(n = 20, c = 0.015)


```
# 4. XRP

cci_XRP <- CCI(HLC(XRP), n = 20, c = 0.015)
barChart(XRP, theme = "black")</pre>
```



```
# 5.ADA

cci_ADA <- CCI(HLC(ADA), n = 20, c = 0.015)
barChart(ADA, theme = "black")</pre>
```


addCCI(n = 20, c = 0.015)

Tasso di variazione (ROC)

Per calcolare il ROC, dobbiamo considerare un intervallo di tempo specificato e non ci sono restrizioni nell'utilizzare qualsiasi periodo. In questo passaggio, prenderemo 25 giorni come periodo di tempo.

Il codice seguente calcolerà il ROC delle aziende insieme a un grafico:

```
# 1. BTC
roc_btc <- ROC(BTC$`BTC-USD.Close`, n = 25)
barChart(BTC, theme = "black")</pre>
```



```
addROC(n = 25)
legend("left",
  col = "red", legend = "ROC(25)", lty = 1, bty = "n",
  text.col = "white", cex = 0.8
)
```


roc_ETH <- ROC(ETH\$`ETH-USD.Close`, n = 25)
barChart(ETH, theme = "black")</pre>


```
addROC(n = 25)
legend("left",
  col = "red", legend = "ROC(25)", lty = 1, bty = "n",
  text.col = "white", cex = 0.8
)
```


roc_BNB <- ROC(BNB\$`BNB-USD.Close`, n = 25)
barChart(BNB, theme = "black")</pre>


```
addROC(n = 25)
legend("left",
  col = "red", legend = "ROC(25)", lty = 1, bty = "n",
  text.col = "white", cex = 0.8
)
```


roc_XRP <- ROC(XRP\$`XRP-USD.Close`, n = 25)
barChart(XRP, theme = "black")</pre>


```
addROC(n = 25)
legend("left",
  col = "red", legend = "ROC(25)", lty = 1, bty = "n",
  text.col = "white", cex = 0.8
)
```


roc_ADA <- ROC(ADA\$`ADA-USD.Close`, n = 25)
barChart(ADA, theme = "black")</pre>


```
addROC(n = 25)
legend("left",
  col = "red", legend = "ROC(25)", lty = 1, bty = "n",
  text.col = "white", cex = 0.8
)
```



```
# Set the number of successes (3 heads)
x <- 3

# Set the number of trials (5 coin flips)
size <- 5

# Set the probability of success (0.5 for a fair coin)
prob <- 0.5

# Calculate the probability using the dbinom function
probability <- dbinom(x, size, prob)

# Print the result
print(probability)</pre>
```

[1] 0.3125

When you run this code, it will calculate the probability of getting exactly 3 heads in 5 coin flips and print the result.

"