REASONING AND PROOFING SERVICES FOR SEMANTIC WEB AGENTS

<u>Kalliopi Kravari</u>¹, Konstantinos Papatheodorou², Grigoris Antoniou² and Nick Bassiliades¹

¹Dept. of Informatics, Aristotle University of Thessaloniki, Greece ²Institute of Computer Science, FORTH, Greece Department of Computer Science, University of Crete, Greece

- > Motivation
- > Standard rule/logic language use
- > Proposal
- > Semantics
- > Proofs
- > Proof Validation
- > Our appoach
 - o EMERALD
 - Reasoners
 - DR-Prolog Rasoner
- ➤ Conclusions Future Work

Motivation

SW brings interoperability for web information systems

Agents need this interoperability

- to work seamlessly in the web
- to achieve tasks on behalf of the users

Interoperability is in several levels:

1. Syntactic – use of common language formats e.g. XML (parsers)

Motivation

These interoperability solutions are

→ more or less stable in the currents SW standards

The next level of interoperability needed is in Logic and in Proof

Motivation

Logic / rules have a new standard (RIF)

→ but its adoption is not as wide as OWL, RDF, XML

WHY?

Rules Standards DEFINE not a single language BUT a family of languages

- Share same syntax
- Differ in semantics (entirely/ partially)

- > Motivation
- > Standard rule/logic language use
- > Proposal
- > Semantics
- > Proofs
- > Proof Validation
- > Our appoach
 - o EMERALD
 - Reasoners
 - DR-Prolog Rasoner
- ➤ Conclusions Future Work

Standard rule/logic language use

- > Motivation
- > Standard rule/logic language use
- > Proposal
- > Semantics
- > Proofs
- > Proof Validation
- > Our appoach
 - o EMERALD
 - Reasoners
 - DR-Prolog Rasoner
- ➤ Conclusions Future Work

Proposal

complete translation between rule languages is:

- hard to achieve
- sometimes not possible at all
 - → because of the diversity in semantics between rule languages

Our solution:

- → trusted third-party reasoning services (in an agent framework)
- Responsible for executing the inference on the original rule base
- No transformation

- > Motivation
- > Standard rule/logic language use
- > Proposal
- > Semantics
- > Proofs
- > Proof Validation
- > Our appoach
 - o EMERALD
 - Reasoners
 - DR-Prolog Rasoner
- ➤ Conclusions Future Work

Semantics

But then how the semantics of the exchanged rule base are going to be understood by the receiving agent?

Semantics of a rule base ≡ conclusions that can be derived

sending only the conclusions, the semantics are communicated

Why should agent2 trust that agent1 run the rule base completely?

it can trust

- an independent agent with good reputation
- supposing it's a "good" reasoning service provider

Semantics

- > Motivation
- > Standard rule/logic language use
- > Proposal
- > Semantics
- > Proofs
- > Proof Validation
- > Our appoach
 - o EMERALD
 - Reasoners
 - DR-Prolog Rasoner
- ➤ Conclusions Future Work

Proofs

Sometimes it is not enough to trust the results

The receiving agent might want:

- proof that some conclusion is correct
- •an explanation of how the results was drawn

- Verify that the reasoner did a good job
- Present the explanations to its human user

The reasoning service facility needs → a proof generation facility

Proofs

- > Motivation
- > Standard rule/logic language use
- > Proposal
- > Semantics
- > Proofs
- > Proof Validation
- > Our appoach
 - o EMERALD
 - Reasoners
 - DR-Prolog Rasoner
- ➤ Conclusions Future Work

Proof Validation

assist agents in validating the proofs provided by other agents

<u>Input:</u> rule base, fact base, set of conclusions, set of proofs about conclusions <u>Output:</u> validation (or not) of the proofs

Implemented as:

- third-party, independent and trusted service,
- preferably different from the reasoning service that provided the original conclusions + proofs

Proof Validation

- > Motivation
- > Standard rule/logic language use
- > Proposal
- > Semantics
- > Proofs
- > Proof Validation
- > Our appoach
 - o EMERALD
 - Reasoners
 - DR-Prolog Rasoner
- ➤ Conclusions Future Work

Our approach

Having all the above → trust in the exchanged rules, conclusions and proofs → will be increased

key point: reputation and trust in these reasoning/validation services

Our proposal: a complete instantiation of such a framework

EMERALD (extended JADE MAS)

implements many reasoning services (called Reasoners)

K

Here: DR-Prolog Reasoner (operating on defeasible rules)

EMERALD A Multi-Agent Knowledge-Based Framework

Reasoners

- Built as agents
- Act as like web services
- Provide the reasoning services
- Launch an associated reasoning engine

Reasoner:

- stands by for new requests

DR-Prolog Reasoner

DR-Prolog¹: built on-top of Prolog

DR-Prolog Reasoner:

- follows the EMERALD Reasoners' general functionality
- With some new intermediate steps that
 - o process the receiving queries
 - o send back the appropriate answer in RDF format

> extended:

- "Proof Generator" to explain its conclusions
- "Proof Validator" to validate proofs provided by other agents (in defeasible logic)

- > Motivation
- > Standard rule/logic language use
- > Proposal
- > Semantics
- > Proofs
- > Proof Validation
- > Our appoach
 - o EMERALD
 - Reasoners
 - DR-Prolog Rasoner
- > Conclusions Future Work

Conclusions - Future Work

EMERALD

- a fully FIPA-compliant MAS developed on top of JADE
- proposes the use of trusted, independently-developed reasoning services

(REASONERS)

- 1. Can offer inferencing on a variety of logics
- 2. Can be used for related services such as
 - a) proof explanations on the inference results
 - b) Proof validations on exchanged proofs

In future:

- Integrate broader variety of reasoning and proof validation engines
- Integrate the generated proofs with trust mechanisms

EMERALD available at:

http://lpis.csd.auth.gr/systems/emerald

CS-566 Project available at:

http://www.csd.uoc.gr/~hy566/ project2010.html

Thank you! Any Questions?