Feedback — Quiz: Week Six

Help Center

You submitted this quiz on **Tue 28 Apr 2015 11:29 AM PDT**. You got a score of **6.00** out of **6.00**.

Question 1

Which of the following would best be categorized as a dummy variable?

Your Answer	Score	Explanation
Dose of medication (measured in mg)		
 Smoking habits (non- smoker, occasional smoker, frequent smoker) 	✓ 1.00	Great job! We know that dummy variables are used to indicate categories of nominal scaled variables, which is the case for smoking habits.
Birth weight (measured in ounces)		
Systolic blood pressure (measured as mmHg)		
Total	1.00 / 1.00	

Question 2

Which of the following is the correct linear regression equation for a model with the predictors **gender** (male/female) and **treatment** (Drug A, Drug B, No Drug), given that all predictors are recoded as dummy variables?

Your Answer		Score	Explanation
$E(Y) = eta_0 + eta_1(male) + eta_2(No\ Drug) + eta_3(Drug\ A) + eta_4(Drug\ B)$			
$lacksquare E(Y) = eta_0 + eta_1(male) + eta_2(Drug\ A) + eta_3(Drug\ B)$	~	1.00	Nice work!

We know that if a variable contains Kcategories, then we must define exactly (k-1)dummy variables to index these categories. In this situation, only (2-1)=1dummy variable is needed to indicate gender, and (3-1)=2dummy variables are

needed to indicate treatment.

$$E(Y)=\beta_0+\beta_1(female)+\beta_2(male)+\beta_3(No\ Drug)+\beta_4(Drug\ A) \cdot$$
 Total
$$1.00\ /$$

$$1.00$$

Question 3

If k dummy variables is fit for a nominal variable with k categories in a model containing a constant term, then all the coefficients cannot be uniquely estimated due to collinearity.

(please answer True or False below)

Your Answer		Score	Explanation
True	~	1.00	Yes, you answered correctly!

		The model will not be able to fit due to collinearity between the dummy variables.
False		
Total	1.00 /	
	1.00	

Question 4

In a model with dependent variable Y and predictors X & Z, we can assume that there is no interaction if the relationship between X & Z is independent of Y.

(please answer True or False below)

Your Answer	Score	Explanation
True		
● False ✓	1.00	Great job! We can, however, assume there is no interaction if the relationship between X & Y is independent of Z
Total	1.00 / 1.00	

Question 5

For this question, consider the following regression which is used to compare two separate straight line regressions using the single regression model method:

$$\mu_{y|xz} = \beta_0 + \beta_1 X + \beta_2 Z + \beta_3 X Z$$

With regard to the above regression, assuming that β_3 significantly contributes to the model, we can interpret β_2 as the unit change in Y given one unit increase in Z.

(please answer True or False below)

Your Answer		Score	Explanation
True			
False	~	1.00	Great job! This is false because the β_3 will also contribute to the change in Y when interaction is present.
Total		1.00 /	

Question 6

For this question, consider the following regression which is used to compare two separate straight line regressions using the single regression model method:

$$\mu_{y|xz} = \beta_0 + \beta_1 X + \beta_2 Z + \beta_3 XZ$$

Suppose $eta_3=0$. Which of the following must \emph{always} be true:

Select all that apply

Your Answer		Score	Explanation
■ The two lines are conincident	~	0.25	The intercept of the the two regression lines are generally not equal and hence are generally not coincident .
✓ The regression lines will be parallel	~	0.25	$\beta_3=0$ means that the interaction term is not significant and so the two regression lines will be parallel.
$\ \square$ The intercept is equal for $X \& Y$	~	0.25	The intercept of the the two regression lines are generally not equal and hence are generally not coincident .
$\ensuremath{\mathscr{U}}$ The slopes will be equal for $X \& Y$	~	0.25	Because the two regression lines are parallel, then their slopes are equal.
Total		1.00 /	
		1.00	