Análisis Numérico de Ecuaciones Diferenciales Ordinarias Tarea IV

Daniel Castañón Quiroz*1

¹Departamento de Matemáticas y Mecánica, IIMAS-UNAM, Cd. de México, México

May 14, 2024

1 Instrucciones generales

Todo los problemas en Matlab se deberán entregar en archivos diferentes con extensión .m. Por ejemplo el problema 1 deberá estar en el archivo Problema_1.m, etc.

2 Problemas en Matlab

En este problema se pide programar un método numérico en particular para un problema en particular. Adicionalmente, el programa debe ser capaz de obtener la norma $L^2(\Omega)$ en el tiempo final y la tasa de convergencia del método. Para ello utilizar un número de subintervalos en el tiempo $N_t = 10, 20, 40, 80, 160$. Se recomienda tomar como partida de referencia el programa **Matlab #2** que esta en el website del curso. El único output del programa deber ser una tabla de la forma:

donde Nt_vec es el número de subintervalos que divide al intervalo global en el tiempo para cada problema, err_L2 es la norma $L^2(\Omega)$ calculada en el tiempo final, y err_rate es la tasa de convergencia.

 Aproximar numéricamente utilizando los elementos finitos de Lagrange de **primer orden** y el método de Euler implícito en el tiempo, la solución débil del siguiente problema con condición inicial y valores en la frontera:

$$\frac{du}{dt} - \frac{d^2u}{dx^2} = f(x,t) \qquad \text{en} \quad \Omega \times (0,1), \tag{1a}$$

$$u(0,t) = u(1,t) = 0$$
 para $t \in (0,1)$, (1b)

$$u(x,0) = u_0(x),$$
 (1c)

donde $\Omega := (0,1)$ y $f(x,t) := 2\pi \sin(2\pi x)(2\pi \cos(2\pi t) - \sin(2\pi t))$. Verificar que $u(x,t) = \sin(2\pi x)\cos(2\pi t)$ es la solución del problema (1). Obtener entonces la tasa de convergencia para el error $e(T) := u_h(T) - u(T)$, donde T es el tiempo final, es decir T = 1, en la norma $L^2(\Omega)$ para $N_x = 100$, donde N_x es el número de subintervalos que dividen a Ω , y siguiendo las instrucciones escritas al inicio de esta sección.

^{*}daniel.castanon@iimas.unam.mx