Лабораторная работа № 3

АНАЛИЗ ТОЧНОСТИ СИСТЕМ АВТОМАТИЧЕСКОГО УПРАВЛЕНИЯ

1. ЦЕЛЬ РАБОТЫ

Исследование точности систем автоматического регулирования в различных типовых режимах.

2. КРАТКИЕ ТЕОРЕТИЧЕСКИЕ СВЕДЕНИЯ

Точность работы любой системы автоматического управления наиболее полно характеризуется мгновенным значением *ошибки* рассогласования $\varepsilon(t)$, равной разности между заданной g(t) и действительной y(t) значениями регулируемой переменной в соответствии с уравнением

$$\varepsilon(t) = g(t) - y(t)$$

При этом значение $\varepsilon(t)$ оценивается при типовых входных воздействиях: постоянном, линейно или квадратично нарастающем.

Для характеристики точностных свойств систем управления используется понятие установившейся ошибки слежения. Установившаяся ошибка $\varepsilon_y(t)$, представляет собой функцию времени, удовлетворяющую условию

$$\lim_{t\to\infty} \left[\varepsilon(t) - \varepsilon_y(t) \right] = 0$$

для любых начальных условий и заданного воздействия, т.е. она характеризует ошибку слежения, установившуюся после завершения переходного процесса.

Предельное значение установившейся ошибки определяется выражением:

$$\lim_{t\to\infty} \varepsilon(t)$$

Величина предельного значения установившейся ошибки при типовом воздействии наиболее просто может быть рассчитана, если использовать передаточную функцию замкнутой системы по ошибке рассогласования:

$$\Phi_{\varepsilon}(s) = \frac{E(s)}{G(s)} = \frac{1}{1 + W(s)}$$

где E(s) и G(s) — соответственно изображения величины рассогласования и задающего воздействия; W(s) — передаточная функция разомкнутой системы, включающая в себя передаточные функции объекта регулирования $W_0(s)$ и регулятора R(s) (рис. 1).

Рис. 1 Система автоматического управления: u — управление; f — возмущающее воздействие; M(s) — передаточная функция для введения в систему возмущения

Значение установившейся ошибки определяется согласно теореме о конечном значении:

$$\varepsilon_y = \lim_{t \to \infty} \varepsilon(t) = \lim_{s \to 0} sE(s) = \lim_{s \to 0} s \Phi_{\varepsilon}(s)G(s) =$$

Точность работы системы связана с *порядком астатизма*. Система называется *статической*, если она имеет нулевой порядок астатизма.

Типовые задающие воздействия

Таблица 1

Изображение	Постоянное	Линейно	Квадратично
типового	g(t) = A	нарастающее	нарастающее
задающего		$g(t) = V \cdot t$	$a(t) = at^2$
воздействия			$g(t) = \frac{1}{2}$
G(s)	$\frac{A}{s}$	$\frac{V}{s^2}$	$\frac{a}{s^3}$

Порядок астатизма системы управления устанавливается на основе анализа структурных свойств схемы. Так, система (рис. 1) является статической, т.е. она имеет нулевой порядок астатизма, если выполняется условие

$$\lim_{s\to 0}W(s)=K<\infty$$

где K – коэффициент усиления разомкнутой системы.

Для статической системы при постоянном входном воздействии g(t) = A имеем:

$$\varepsilon = \lim_{s \to 0} s \frac{1}{1 + W(s)} \frac{A}{s} = \frac{A}{1 + K}$$

Последнее выражение означает, что постоянное входное воздействие отрабатывается с установившейся ошибкой, которую принято называть статической ошибкой. Для уменьшения статической ошибки необходимо увеличивать коэффициент усиления разомкнутой системы *К*.

При линейно нарастающем задающем входном воздействии g(t) = Vt имеем:

$$\varepsilon = \lim_{s \to 0} s \frac{1}{1 + W(s)} \frac{V}{s^2} = \infty$$

Из полученного выражения следует, что линейно нарастающее воздействие отрабатывается статистической системой с неограниченно растущей ошибкой.

Система автоматического управления (рис. 1) является астатической, если

$$\lim_{s\to 0}W(s)=\infty$$

и передаточная функция разомкнутой системы W(p) может быть представлена в виде

$$W^*(s) = \frac{1}{s^r}W(s)$$

где W(s)- передаточная функция статической системы, для которой выполняется условие; r — порядок астатизма системы.

Для астатической системы первого порядка при постоянном задающем воздействии при g(t) = A имеем:

$$\varepsilon = \lim_{s \to 0} s \frac{1}{1 + \frac{W(s)}{s}} \frac{A}{s} = 0$$

При линейно нарастающем задающем воздействии g(t) = Vt

$$\varepsilon = \lim_{s \to 0} s \frac{1}{1 + \frac{W(s)}{s}} \frac{V}{s^2} = \frac{V}{K}$$

Установившиеся ошибки автоматического управления различного астатизма при типовых задающих воздействиях приведены в таблице 2.

Установившиеся ошибки систем

Порядок астатизма	g(t) = A	$g(t) = V \cdot t$	$g(t) = \frac{at^2}{2}$
0	$\frac{A}{1+K}$	Ø	80
1	0	$\frac{V}{K}$	8
2	0	0	$\frac{a}{K}$

Аналогичным образом может быть введено понятие порядка астатизма по возмущающему воздействию. При этом следует отметить, что порядок астатизма по возмущающему воздействию не соответствует порядку астатизма по задающему воздействию.

В качестве примера рассмотрим задачу стабилизации величины y(t) системы, представленной на рис. 1.

На основе структурной схемы системы получаем при g(t) = 0

$$Y(s) = -W_0(s)R(s)Y(s) + M(s)F(s)$$

где Y(s), F(s) — соответственно изображения регулируемой величины и возмущающего воздействия.

Так как $W_0(s)R(s)=W(s)$, можно определить передаточную функцию замкнутой системы по возмущающему воздействию:

$$\Phi_f(s) = \frac{Y(s)}{F(s)} = \frac{M(s)}{1 + W(s)}$$

При единичной отрицательной обратной связи и при g(t)=0 имеем – Y(s)=E(s), тогда передаточная функция замкнутой системы для ошибки по возмущающему воздействию будет иметь тот же вид, что и для регулируемой величины, т. е.

$$\Phi_{\varepsilon f}(s) = \frac{E(s)}{F(s)} = -\Phi_f(s)$$

Таким образом, возмущающее воздействие f дает статическую ошибку

$$\varepsilon = \lim_{s \to 0} -s \frac{M(s)}{1 + W(s)} F(s) = \frac{A}{1 + K}$$

где
$$M(s)=1;$$
 $F(s)=\frac{A}{s};$ $\lim_{s\to 0}W(s)=K.$

3. ПОРЯДОК ВЫПОЛНЕНИЯ РАБОТЫ

- 3.1. Исследовать систему с астатизмом нулевого порядка. Структурная схема системы представлена на рис. 2, где R(p)=K. Варианты передаточной функции $W_0(s)$ объекта управления и характеристики задающего воздействия g(t) приведены в таблице 3.
- 3.1.1. Получить кривые переходного процесса для трех значений K(K=1, 5, 10) при подаче на вход системы сигнала g(t)=A и определить предельные значения установившейся ошибки.
- 3.1.2. Получить кривые переходного процесса при подаче на вход системы линейно нарастающего воздействия $g(t)=V \cdot t$.
- 3.2. Исследовать систему с астатизмом первого порядка. В схеме (см. рис. 2) принять R(s)=K/s. Варианты передаточной функции $W_0(s)$ даны в табл. 4, а характеристики заданного воздействия g(t) приведены в таблицах 3 и 4.
- 3.2.1. Получить кривые переходного процесса при подаче на вход системы задающего воздействия g(t)=A.
- 3.2.2. Получить кривые переходного процесса при подаче на вход системы линейно нарастающего воздействия $g(t) = V \cdot t$. Определить предельные значения установившейся ошибки для различных значений коэффициента K(K=1, 5, 10).
- 3.2.3. Получить кривые переходного процесса при подаче на вход системы квадратично нарастающего воздействия $g(t)=a \cdot t^2/2$ (см. табл. 4).
 - 3.3. Исследовать влияние внешнего возмущения.
- 3.3.1. В соответствии с вариантом (см. табл.5 и рис. 3) собрать схему моделирования системы. При этом вид передаточной функции $W_0(s)$ взять из табл. 3.
- 4.3.2. Получить кривые переходного процесса и определить предельное значение установившейся ошибки (g(t)=0, f(t)=1(t)) и R(s)=K, R(s)=K/s.

Рис. 2. Структурная схема системы

Рис. 3. Структурная схема системы при наличии возмущений

Таблица 3 Варианты параметров систем с нулевым порядком астатизма

Варианты параметров систем с нулсвым порядком астатизма								
Вариант	$W_0(s)$	g=A	$g=V\cdot t$	Вариант	$W_0(s)$	g=A	$g=V\cdot t$	
1	$\frac{2}{3s+1}$	1	0,5t	7	$\frac{1}{2s^2+3s+1}$	1	1,5t	
2	$\frac{3}{2,5 s + 1}$	2	2 <i>t</i>	8	$\frac{2}{0.5 s^2 + 2 s + 1}$	1	2 <i>t</i>	
3	$\frac{1,5}{0,5 s + 1}$	2	4t	9	$\frac{2}{0.5 s^2 + 1 s + 2}$	2	2 <i>t</i>	
4	$\frac{1,5}{s^2+2s+1}$	1	t	10	$\frac{8}{0.5 s^2 + 2 s + 8}$	2	t	
5	$\frac{1}{s^2 + s + 2}$	2	2 <i>t</i>	11	$\frac{1}{0.5 s^2 + s + 1}$	2	2 <i>t</i>	
6	$\frac{1}{s^2 + 5s + 6}$	1	t	12	$\frac{1}{0.1 s^2 + 0.7 s + 1}$	4	2 <i>t</i>	

Варианты параметров астатических систем

Вариант	$W_0(p)$	$g = at^2/2$	Вариант	$W_0(p)$	$g = at^2/2$				
1	$\frac{2}{3s+1}$	$0,2t^{2}$	7	$\frac{1}{2s^2+3s+1}$	0,25t ²				
2	$ \begin{array}{r} 3s+1 \\ \hline 3 \\ \hline 2,5s+1 \end{array} $	0,5t ²	8	$\frac{2}{0.5 s^2 + 2 s + 1}$	$0,2t^2$				
3	$\frac{1,5}{0,5 s+1}$	0,2t ²	9	$\frac{2}{0.5 s^2 + 1 s + 2}$	0,5t ²				
4	$\frac{1,5}{s^2+2s+1}$	0,4t ²	10	$\frac{8}{0.5 s^2 + 2 s + 8}$	$0,3t^2$				
5	$\frac{1}{s^2 + s + 2}$	$0,3t^2$	11	$\frac{1}{0.5 s^2 + s + 1}$	0,45t ²				
6	$\frac{1}{s^2 + 5s + 6}$	0,45t ²	12	$\frac{1}{0,1s^2+0,7s+1}$	$0,4t^{2}$				

Таблица 5 Варианты параметров систем с возмущением

Вариант	1	2	3	4	5	6	7	8	9	10	11	12
Схема												
системы	а	б	а	б	а	б	A	б	а	б	а	б
(№ рис.)												
M(s)	0,5	0,5	1	2	0,5	2	1	2	2	1	0,5	1
f	2	2	-0,5	1	2	1	1	0,75	-0,75	2	-1	0,5

4.СОДЕРЖАНИЕ ОТЧЕТА

Отчет должен содержать следующие разделы:

- 1. Цель работы.
- 2. Порядок выполнения работы.
- 3. Математические модели исследуемых систем и кривые переходных процессов.
- 4. Графики экспериментально полученных зависимостей предельных значений установившихся ошибок ε в зависимости от коэффициента K.
 - 5. Аналитический расчет установившихся ошибок систем.
 - 6. Выводы