Mumbai University

Question Paper

[IDOL - REVISED COURSE] (MAY - 2016)

DIGITAL

SIGNALS AND SYSTEMS

DIGITAL SIGNAL AND SYSTEMS

B.Sc.IT

QUESTION PAPER

(May - 2016 | Revised Course)

(SEMESTER - VI)

(5)

Time: 3 Hours Total Marks: 100

- N.B.: (1) All Question are Compulsory.
 - (2) Make Suitable Assumptions Wherever Necessary And State The Assumptions Made.
 - (3) Answer To The Same Question Must Be Written Together.
 - (4) Number To The Right Indicates Marks.
 - (5) Draw Neat Labeled Diagrams Wherever Necessary.
 - (6) Use of Non Programmable Calculator is allowed.

Q.1 **ATTEMPT ANY TWO QUESTIONS: (10 MARKS)**

- What are the advantages of digital filters? Explain. (A) (5)
- Check whether the system given by $F[x(n)] = e^{x(n)}$ is linear or not. (B) (5)
- How are signals classified? Explain. (5) (C)
- Deduce the Fourier series for the waveform of a positive going rectangular pulse train shown. (D)

ATTEMPT ANY THREE QUESTIONS: (15 MARKS) Q.2

- Determine the Fourier transform of Signum function and plot amplitude and phase spectra. (A) (5)
- State any ten properties of unit impulse function $\delta(t)$. (5) (B)
- (C) What is meant by sampling? State sampling theorem. (5)
- (D) Write a note on Dirichlet's conditions.
- (5) (E) With neat labelled block program explain how analog signal gets converted into digital signals. (5)
- (F) Find the Fourier transform for the signal described as: (5)
 - $-2 \leq t \leq -1$ f(t) = 1 $-1 \le t \le 1$ = 1 $1 \le t \le 2$

Q.3 **ATTEMPT ANY THREE QUESTIONS: (15 MARKS)**

- (A) Find the Laplace transform of Sin at . Sin bt (5)
- (B) Obtain Laplace transform for step and Impulse Responses of a series R-L Circuit. (5)
- (C) Discuss final value theorem in Laplace transform domain. (5)
- (5)
- (D) Find the Laplace Transform of:
 - (i) $e^{-t} \sin 4t$
 - (ii) $e^{2t} + 2te^{-2t} t^2$
- (5) (E) Find inverse Laplace transform of $F_{2(s)} = \frac{3e^{-\frac{3}{2}}}{s^2(s^2+2)}$
- (F) Explain the significance of pole-zero diagram in circuit analysis? How can the time domain response (5) be determined from pole-zero plot?

[Turn Over]

I	Mumbai University		DIGITAL SIGNAL AND SYSTEMS	B.Sc.IT		
	QUESTION PAPER		(MAY – 2016 REVISED COURSE) (SEMESTER –		VI)	
	Q.4	ATTEMPT ANY THREE QUESTIONS: (15 MARKS)				
	(A)	A) What are the condition for z-Transform to exist? Explain.			(5)	
	(B)	· ·			(5)	
			$x(n) = \begin{pmatrix} 2^n & n & \ge 0 \\ 0 & n & > 0 \end{pmatrix}$			
	(C)	Determine the con $h(n) = \{2,2,1,1\}$	involution of the two sequences $x(n) = \{2,1,0,0,5\}$ and		(5)	
	(D) (E)		perties of two-sided z-transform with those of one-sided z-Transfor find $x(n)$ if $X(z)$ is given by:	m.	(5) (5)	
			$x(n) = \frac{1}{\left(1 - \frac{1}{2}z^{-1}\right)\left(1 + \frac{1}{4}z^{-1}\right)}$			
	(F)	Find $x(n)$ if $X(z)$	(2) (4)		(5)	
	Q.5	ATTEMPT ANY TH	REE QUESTIONS: (15 MARKS)			
	(A)		on in Linear Time Invariant System? What are the properties of con	volution?	(5)	
	(B)		e following systems are BIBO stable or not $lpha(n+1)+bxh(n-1)$		(5)	
		(ii) $y(n) = ax$				
	(C)		or an Linear Time Invariant system to the input $x(n)$ is $y(n) = x(n)$, ,	(5)	
	(D)	, ,	te the magnitude and phase of the frequency response of the system $\frac{1}{2} = 0.724(m_b - 1) = 0.124(m_b - 2) + \alpha(m_b - 1)$		/ E\	
	(D)	to the input $x(n)$	conse of the system $y(n) = 0.7y(n-1) - 0.12y(n-2) + x(n-1)$	-1) + x(n-2)	(5)	
	(E)	' '	response? What are the properties of frequency response?		(5)	
	(F)		Response for $y(n) = x(n) + 10y(n-1)$ with initial condition $y(n) = x(n) + 10y(n-1)$	-1) = 0.	(5)	
	Q.6	Q.6 ATTEMPT ANY THREE QUESTIONS: (15 MARKS)				
	(A)	Determine DFT of	the sequence $x(n) = \begin{cases} 1 \\ 4 & 0 \le n \le 2 \\ 0 & otherwise \end{cases}$		(5)	
	(B)	Define Discrete 11	me Fourier Transform (DTFT) and inverse discrete Time Fourier Tra		(5)	
		(DTFT).	nce between Discrete Fourier Transform (DFT) and Discrete Time Fo			
	(C)	•	iodic sequences $x(n)$ and $y(n)$ with period M and N respectively $x(n) = x(n) + y(n)$. Show that $w(n)$ is periodic with period MN	•	(5)	
	(D)		he sequence $x(n)=\{1,2,3,4,4,3,2,1\}$ using Decimation-in-Time (D		(5)	

- Transform (FFT) Algorithm.
- (E) Compute Linear and Circular Periodic Convolutions of the sequence $x_1(n) = \{1,1,2,2\}$ and $x_2(n) = \{1,1,2,2\}$ (5) $\{1,2,3,4\}$ using DFT.
- (F) Define discrete Fourier transform. Explain any five properties of discrete Fourier transform. (5)

Q.7 **ATTEMPT ANY THREE QUESTIONS: (15 MARKS)**

- (A) What is an IIR filter? Compare its characteristics with an FIR filter. (5)
- (B) Explain the procedure for designing an FIR Filter using Kaiser Window. (5)
- (C) Explain the effects of windowing. Define Rectangular and Hamming Window functions. (5)
- Describe elliptical filter in detail. (D) (5)
- (E) Write a short note on Chebyshev filters. (5)
- Write a short note on Butterworth filters. (5)

