

Bloom Filter

换个角度思考

 有1000瓶药水,但是其中有一瓶是有毒的, 小白鼠吃了一个星期以后就会死掉,请问, 在一个星期内找出有毒的药物,最少需要 多少只小白鼠?

网聚全球特产

• 1		0(00	00	0	0(00	
	L		U		U	U		

- 000000010 • 2
- 000000011 • 3
- 000000100
- 000000101 • 5

• 1000 1111101000

简介

• Bloom Filter是一种空间效率很高的随机数据结构,它利用位数组很简洁地表示一个集合,并能判断一个元素是否属于这个集合。

集合表示

• 下面我们具体来看Bloom Filter是如何用位数组表示集合的。初始状态时,Bloom Filter是一个包含m位的位数组,每一位都置为0。

0 0 0 0 0 0 0 0 0 0 0 0

• 为了表达S={x1, x2,...,xn}这样一个n个元素的集合,Bloom Filter使用k个相互独立的哈希函数(Hash Function),它们分别将集合中的每个元素映射到{1,...,m}的范围中。对任意一个元素x,第i个哈希函数映射的位置hi(x)就会被置为1(1≤i≤k)。注意,如果一个位置多次被置为1,那么只有第一次会起作用,后面几次将没有任何效果。在下图中,k=3,且有两个哈希函数选中同一个位置(从左边数第五位)。

查询

• 在判断y是否属于这个集合时,我们对y应用k次哈希函数,如果所有h_i(y)的位置都是1(1≤i≤k),那么我们就认为y是集合中的元素,否则就认为y不是集合中的元素。下图中y₁就不是集合中的元素。y₂或者属于这个集合,或者刚好是一个false positive。

适用场合

• Bloom Filter的这种高效是有一定代价的: 在判断一个元素是否属于某个集合时,有 可能会把不属于这个集合的元素误认为属 于这个集合(False Position)。因此, Bloom Filter不适合那些"零错误"的应用 场合。而在能容忍低错误率的应用场合下, Bloom Filter通过极少的错误换取了存储空 间的极大节省。

最优的哈希函数个数

- 既然Bloom Filter要靠多个哈希函数将集合映射到位数组中,那么应该选择几个哈希函数才能使元素查询时的错误率降到最低呢?这里有两个互斥的理由:如果哈希函数的个数多,那么在对一个不属于集合的元素进行查询时得到0的概率就大;但另一方面,如果哈希函数的个数少,那么位数组中的0就多。为了得到最优的哈希函数个数,我们需要根据上一小节中的错误率公式进行计算。
- 先用p和f进行计算。注意到 $f = \exp(k \ln(1 e^{-kn/m}))$,我们令 $g = k \ln(1 e^{-kn/m})$,只要让g取到最小,f自然也取到最小。由于 $p = e^{-kn/m}$,我们可以将g写成

$$g = -\frac{m}{n}\ln(p)\ln(1-p),$$

- 根据对称性法则可以很容易看出当p = 1/2,也就是k = ln2·(m/n)时,g取得最小值。在这种情况下,最小错误率f等于(1/2)k≈(0.6185)m/n。另外,注意到p是位数组中某一位仍是0的概率,所以p = 1/2对应着位数组中0和1各一半。换句话说,要想保持错误率低,最好让位数组有一半还空着。
- 需要强调的一点是,p = 1/2时错误率最小这个结果并不依赖于近似值p和f。同样对于 $f' = \exp(k \ln(1 (1 1/m)^{kn}))$, $g' = k \ln(1 (1 1/m)^{kn})$, $p' = (1 1/m)^{kn}$,我们可以将g'写成

$$g' = \frac{1}{n \ln(1 - 1/m)} \ln(p') \ln(1 - p'),$$

• 同样根据对称性法则可以得到当p' = 1/2时, g'取得最小值。

位数组的大小

- 在错误率不大于 ϵ 的情况下,m至少要等于n $\log_2(1/\epsilon)$ 才能表示任意n个元素的集合。
- 上面我们曾算出当 $k = \ln 2 \cdot (m/n)$ 时错误率f最小,这时 $f = (1/2)^k = (1/2)^{m \ln 2 / n}$ 。现在令 $f \le \epsilon$,可以推出 $m \ge n \frac{\log_2(1/\epsilon)}{\ln 2} = n \log_2 \epsilon \cdot \log_2(1/\epsilon)$.
- 这个结果比前面我们算得的下界n log₂(1/ε)大了log₂e≈1.44倍。这说明在哈希函数的个数取到最优时,要让错误率不超过ε,m至少需要取到最小值的1.44倍。

错误概率

m/n	k	k=1	<i>k</i> =2	k =3	<i>k</i> =4	<i>k</i> =5	<i>k</i> =6	k=7	<i>k</i> =8
2	1.39	0, 393	0.400						
3	2. 08	0. 283	0. 237	0. 253					
4	2. 77	0. 221	0.155	0.147	0.160				
5	3. 46	0.181	0.109	0.092	0.092	0.101			
6	4.16	0.154	0.0804	0.0609	0.0561	0.0578	0.0638		
7	4.85	0.133	0.0618	0.0423	0.0359	0.0347	0.0364		
8	5.55	0.118	0.0489	0.0306	0.024	0.0217	0.0216	0.0229	
9	6. 24	0.105	0.0397	0. 0228	0.0166	0.0141	0, 0133	0.0135	0.0145
10	6. 93	0.0952	0.0329	0.0174	0.0118	0.00943	0.00844	0.00819	0.00846

扩展

- 一同时也不支持删除一个已经插入的关键字, 因为该关键字对应的位会牵动到其他的关键字。
- Counting bloom filter(CBF)将位数组中的每一位扩展为一个counter,从而支持了元素的删除操作。
- Spectral Bloom Filter(SBF)将其与集合元素的出现次数关联。SBF采用counter中的最小值来近似表示元素的出现频率。

应用

• 加速查询

适用于一些key-value存储系统,当values存在 硬盘时,查询就是件费时的事。

将Storage的数据都插入Filter,在Filter中查询都不存在时,那就不需要去Storage查询了。

当False Position出现时,只是会导致一次多余的Storage查询。

• 网络应用

P2P网络中查找资源操作,可以对每条网络通路保存Bloom Filter,当命中时,则选择该通路访问。

广播消息时,可以检测某个IP是否已发包。

检测广播消息包的环路,将Bloom Filter保存在包里,每个节点将自己添加入Bloom Filter。

信息队列管理,使用Counter Bloom Filter管理信息流量。

· 数据字典
垃圾邮件地址过滤
来自于Google黑板报的例子。
英文的拼写检查
将词库建成一个bloomfilter

谢谢!

网聚全球特产