VGG19 Memory and Weights

Layer	Number of Activations (Memory)	Parameters (Compute)
Input	224 imes224 imes3=150K	0
CONV3-64	224 imes224 imes64=3.2M	$(3\times3\times3)\times64=1,728$
CONV3-64	224 imes224 imes64=3.2M	$(3\times3\times64)\times64=36,864$
POOL2	$112\times112\times64=800K$	0
CONV3-128	112 imes112 imes128=1.6M	$(3\times3\times64)\times128=73,728$
CONV3-128	$112\times112\times128=1.6M$	(3 imes 3 imes 128) imes 128 = 147,456
POOL2	56 imes56 imes128=400K	0
CONV3-256	56 imes56 imes256=800K	(3 imes 3 imes 128) imes 256 = 294,912
CONV3-256	56 imes56 imes256=800K	(3 imes 3 imes 256) imes 256 = 589,824
CONV3-256	56 imes56 imes256=800K	(3 imes 3 imes 256) imes 256 = 589,824
CONV3-256	56 imes 56 imes 256 = 800K	(3 imes 3 imes 256) imes 256 = 589,824
POOL2	28 imes28 imes256=200K	0
CONV3-512	28 imes28 imes512=400K	(3 imes3 imes256) imes512=1,179,648
CONV3-512	28 imes28 imes512=400K	(3 imes 3 imes 512) imes 512 = 2,359,296
CONV3-512	$28\times28\times512=400K$	(3 imes 3 imes 512) imes 512 = 2,359,296
CONV3-512	28 imes28 imes512=400K	(3 imes 3 imes 512) imes 512 = 2,359,296
POOL2	14 imes14 imes512=100K	0
CONV3-512	$14\times14\times512=100K$	(3 imes 3 imes 512) imes 512 = 2,359,296
CONV3-512	$14\times14\times512=100K$	(3 imes 3 imes 512) imes 512 = 2,359,296
CONV3-512	14 imes14 imes512=100K	(3 imes 3 imes 512) imes 512 = 2,359,296
CONV3-512	14 imes14 imes512=100K	(3 imes 3 imes 512) imes 512 = 2,359,296
POOL2	7 imes 7 imes 512 = 25K	0
FC	4096	4096 imes 4096 = 16,777,216
FC	4096	4096 imes 4096 = 16,777,216
FC	1000	4096 imes 1000 = 4,096,000
Total Activations	17.62M	Total Parameters = 57,668,812

(a)

The inception module in cnns is designed to capture multi-scale information by using parallel convolutional filters of different sizes (1x1, 3x3, 5x5) along with pooling operations. These filters operate in parallel, allowing the network to learn both local and global features effectively. The outputs from these filters are concatenated, preserving the spatial dimensions while increasing the depth of the feature maps.

(b)

Naive Inception Module:

• 1x1 Convolutions: $32 \times 32 \times 128$ • 3x3 Convolutions: $32 \times 32 \times 192$

- 5x5 Convolutions: $32 \times 32 \times 96$
- 3x3 Max Pooling: $32 \times 32 \times 256$

Total Output Size =
$$32 \times 32 \times (128 + 192 + 96 + 256) = 32 \times 32 \times 672$$

Inception Module with Dimension Reduction:

- 1x1 Convolutions: $32 \times 32 \times 128$
- 3x3 Convolutions (with 1x1 reduction): $32 \times 32 \times 192$
- 5x5 Convolutions (with 1x1 reduction): $32 \times 32 \times 96$
- 1x1 Convolution after Max Pooling: $32 \times 32 \times 64$

Total Output Size =
$$32 \times 32 \times (128 + 192 + 96 + 64) = 32 \times 32 \times 480$$

(c)

Naive Inception Module:

• 1x1 Convolutions:

$$1 \times 1 \times 256 \times 128 \times 32 \times 32 = 335,544,32$$

• 3x3 Convolutions:

$$3 \times 3 \times 256 \times 192 \times 32 \times 32 = 1,131,524,096$$

• 5x5 Convolutions:

$$5 \times 5 \times 256 \times 96 \times 32 \times 32 = 983,040,000$$

Total Operations = 2,450,136,128

Inception Module with Dimension Reduction:

• 1x1 Convolutions for Reduction:

$$1 \times 1 \times 256 \times 128 \times 32 \times 32 = 335,544,32$$

• 3x3 Convolutions (after reduction):

$$3 \times 3 \times 128 \times 192 \times 32 \times 32 = 566, 362, 24$$

• 5x5 Convolutions (after reduction):

$$5 \times 5 \times 32 \times 96 \times 32 \times 32 = 122,880,00$$

Total Operations = 1,024,726,56

(d)

The dimension reduction version reduces the computational complexity by approximately 58.4%, making it significantly more efficient than the naive version.

$$\text{Computational Savings} = \frac{2.45 - 1.02}{2.45} \times 100 \approx 58.4\%$$