PUBLICATIONS

- [57] B. Clark. "The IceCube-Gen2 Neutrino Observatory". In: *Proc. 9th Very Large Volume Neutrino Telescopes Workshop 2021*. Aug. 2021. arXiv: 2108.05292 [astro-ph.HE].
- [56] P. Allison et al. "A neural network based UHE neutrino reconstruction method for the Askaryan Radio Array (ARA)". In: PoS ICRC2021 (July 2021): Proc. 37th International Cosmic Ray Conference, p. 1057. DOI: 10.22323/1.395.1057.
- [55] P. Allison et al. "Implementing a Low-Threshold Analysis with the Askaryan Radio Array (ARA)". In: *PoS* ICRC2021 (July 2021): *Proc.* 37th International Cosmic Ray Conference, p. 1053. DOI: 10.22323/1.395.1053.
- [54] P. Allison et al. "A Template-based UHE Neutrino Search Strategy for the Askaryan Radio Array (ARA)". In: PoS ICRC2021 (July 2021): Proc. 37th International Cosmic Ray Conference, p. 1047. DOI: 10. 22323/1.395.1047.
- [53] P. Allison et al. "The Calibration of the Geometry and Antenna Delay in Askaryan Radio Array Station 4 and 5". In: *PoS* ICRC2021 (July 2021): *Proc. 37th International Cosmic Ray Conference*, p. 1086. DOI: 10.22323/1.395.1086.
- [52] R. Abbasi et al. "Searching for Neutrino Transients Below 1 TeV with IceCube". In: PoS ICRC2021 (July 2021): Proc. 37th International Cosmic Ray Conference, p. 1131. DOI: 10.22323/1.395.1131. arXiv: 2108.01530 [astro-ph.HE].
- [51] R. Abbasi et al. "Characterization of the PeV astrophysical neutrino energy spectrum with IceCube using down-going tracks". In: *PoS* ICRC2021 (July 2021): *Proc. 37th International Cosmic Ray Conference*, p. 1137. DOI: 10.22323/1.395.1137. arXiv: 2107.14298 [astro-ph.HE].
- [50] R. Abbasi et al. "Search for dark matter annihilation in the center of the Earth with 8 years of IceCube data". In: *PoS* ICRC2021 (July 2021): *Proc. 37th International Cosmic Ray Conference*, p. 526. DOI: 10.22323/1.395.1131. arXiv: 2107.11244 [astro-ph.HE].

- [49] R. Abbasi et al. "Searching for time-dependent high-energy neutrino emission from X-ray binaries with IceCube". In: *PoS* ICRC2021 (July 2021): *Proc. 37th International Cosmic Ray Conference*, p. 1136. DOI: 10.22323/1.395.1136. arXiv: 2107.12383 [astro-ph.HE].
- [48] R. Abbasi et al. "Reconstructing Neutrino Energy using CNNs for GeV Scale IceCube Events". In: *PoS* ICRC2021 (July 2021): *Proc. 37th International Cosmic Ray Conference*, p. 1053. DOI: 10.22323/1.395. 1053. arXiv: 2107.11446 [astro-ph.HE].
- [47] R. Abbasi et al. "Gravitational Wave Follow-Up Using Low Energy Neutrinos in IceCube DeepCore". In: *PoS* ICRC2021 (July 2021): *Proc.* 37th International Cosmic Ray Conference, p. 939. DOI: 10.22323/1.395.0939. arXiv: 2107.11285 [astro-ph.HE].
- [46] R. Abbasi et al. "Discrimination of muons for mass composition studies of inclined air showers detected with IceTop". In: *PoS* ICRC2021 (July 2021): *Proc. 37th International Cosmic Ray Conference*, p. 212. DOI: 10.22323/1.395.0212. arXiv: 2107.11293 [astro-ph.HE].
- [45] R. Abbasi et al. "New Flux Limits in the Low Relativistic Regime for Magnetic Monopoles at IceCube". In: PoS ICRC2021 (July 2021): Proc. 37th International Cosmic Ray Conference, p. 212. DOI: 10.22323/1.395.0534. arXiv: 2107.10548 [astro-ph.HE].
- [44] R. Abbasi et al. "Searching for High-Energy Neutrinos from Core-Collapse Supernovae with IceCube". In: *PoS* ICRC2021 (July 2021): *Proc. 37th International Cosmic Ray Conference*, p. 1116. DOI: 10. 22323/1.395.1116. arXiv: 2107.09317 [astro-ph.HE].
- [43] R. Abbasi et al. "Testing Hadronic Interaction Models with Cosmic Ray Measurements at the IceCube Neutrino Observatory". In: *PoS* ICRC2021 (July 2021): *Proc. 37th International Cosmic Ray Conference*, p. 357. DOI: 10.22323/1.395.0357. arXiv: 2107.09387 [astro-ph.HE].
- [42] R. Abbasi et al. "Study of Mass Composition of Cosmic Rays with IceTop and IceCube". In: *PoS* ICRC2021 (July 2021): *Proc. 37th International Cosmic Ray Conference*, p. 323. DOI: 10.22323/1.395.0323. arXiv: 2107.09626 [astro-ph.HE].
- [41] R. Abbasi et al. "Measuring total neutrino cross section with IceCube at intermediate energies (~100 GeV to a few TeV)". In: (July 2021): Proc. 37th International Cosmic Ray Conference. arXiv: 2107.09764 [astro-ph.HE].

- [40] S. Hallmann, B. Clark, C. Glaser, and D. Smith. "Sensitivity studies for the IceCube-Gen2 radio array". In: *PoS* ICRC2021 (July 2021): *Proc. 37th International Cosmic Ray Conference*, p. 1183. DOI: 10. 22323/1.395.1183. arXiv: 2107.08910 [astro-ph.HE].
- [39] B. Clark and R. Halliday. "Simulation and sensitivities for a phased IceCube-Gen2 deployment". In: PoS ICRC2021 (July 2021): Proc. 37th International Cosmic Ray Conference, p. 1186. DOI: 10.22323/1.395. 1186. arXiv: 2107.08500 [astro-ph.HE].
- [38] R. Abbasi et al. "Search for high-energy neutrino emission from hard X-ray AGN with IceCube". In: PoS ICRC2021 (July 2021): Proc. 37th International Cosmic Ray Conference, p. 1142. DOI: 10.22323/1.395. 1142. arXiv: 2107.08366 [astro-ph.HE].
- [37] R. Abbasi et al. "Analysis Framework for Multi-messenger Astronomy with IceCube". In: *PoS* ICRC2021 (July 2021): *Proc. 37th International Cosmic Ray Conference*, p. 1098. DOI: 10.22323/1.395.1098. arXiv: 2107.08254 [astro-ph.IM].
- [36] R. Abbasi et al. "Testing the AGN Radio and Neutrino correlation using the MOJAVE catalog and 10 years of IceCube Data". In: PoS ICRC2021 (July 2021): Proc. 37th International Cosmic Ray Conference, p. 949. DOI: 10.22323/1.395.094. arXiv: 2107.08115 [astro-ph.HE].
- [35] R. Abbasi et al. "Search for High-Energy Neutrinos from Ultra-Luminous Infrared Galaxies with IceCube". In: *PoS* ICRC2021 (July 2021): *Proc.* 37th International Cosmic Ray Conference, p. 1115. DOI: 10.22323/1. 395.1115. arXiv: 2107.03149 [astro-ph.HE].
- [34] J. A. Aguilar et al. "Reconstructing the neutrino energy for in-ice radio detectors: A study for the Radio Neutrino Observatory Greenland (RNO-G)". In: (July 2021). arXiv: 2107.02604 [astro-ph.HE].
- [33] R. Abbasi et al. "All-flavor constraints on nonstandard neutrino interactions and generalized matter potential with three years of IceCube DeepCore data". In: (June 2021). arXiv: 2106.07755 [hep-ex].
- [32] R. Abbasi et al. "Probing neutrino emission at GeV energies from compact binary mergers with the IceCube Neutrino Observatory". In: (May 2021). arXiv: 2105.13160 [astro-ph.HE].
- [31] R. Abbasi et al. "A muon-track reconstruction exploiting stochastic losses for large-scale Cherenkov detectors". In: *JINST* 16.08 (2021), P08034. DOI: 10.1088/1748-0221/16/08/P08034. arXiv: 2103.16931 [hep-ex].

- [30] R. Abbasi et al. "A Convolutional Neural Network based Cascade Reconstruction for the IceCube Neutrino Observatory". In: JINST 16.07 (2021), P07041. DOI: 10.1088/1748-0221/16/07/p07041. arXiv: 2101.11589 [hep-ex].
- [29] R. Abbasi et al. "IceCube Data for Neutrino Point-Source Searches Years 2008-2018". In: (Jan. 2021). DOI: 10.21234/CPKQ-K003. arXiv: 2101.09836 [astro-ph.HE].
- [28] R. Abbasi et al. "Search for GeV neutrino emission during intense gamma-ray solar flares with the IceCube Neutrino Observatory". In: *Phys. Rev. D* 103.10 (2021), p. 102001. DOI: 10.1103/PhysRevD.103. 102001. arXiv: 2101.00610 [astro-ph.HE].
- [27] R. Abbasi et al. "LeptonInjector and LeptonWeighter: A neutrino event generator and weighter for neutrino observatories". In: *Comput. Phys. Commun.* 266 (2021), p. 108018. DOI: 10.1016/j.cpc.2021. 108018. arXiv: 2012.10449 [physics.comp-ph].
- [26] R. Abbasi et al. "Follow-up of Astrophysical Transients in Real Time with the IceCube Neutrino Observatory". In: Astrophys. J. 910.1 (2021), p. 4. DOI: 10.3847/1538-4357/abe123. arXiv: 2012.04577 [astro-ph.HE].
- [25] R. Abbasi et al. "A Search for Time-dependent Astrophysical Neutrino Emission with IceCube Data from 2012 to 2017". In: Astrophys. J. 911.1 (2021), p. 67. DOI: 10.3847/1538-4357/abe7e6. arXiv: 2012.01079 [astro-ph.HE].
- [24] R. Abbasi et al. "Search for sub-TeV neutrino emission from transient sources with three years of IceCube data". In: (Nov. 2020). arXiv: 2011. 05096 [astro-ph.HE].
- [23] R. Abbasi et al. "Measurement of the high-energy all-flavor neutrinonucleon cross section with IceCube". In: *Phys. Rev. D* 104.2 (July 2021), p. 022001. DOI: 10.1103/PhysRevD.104.022001. arXiv: 2011.03560 [hep-ex].
- [22] R. Abbasi et al. "The IceCube high-energy starting event sample: Description and flux characterization with 7.5 years of data". In: *Phys. Rev. D* 104.2 (July 2021), p. 022002. DOI: 10.1103/PhysRevD.104.022002. arXiv: 2011.03545 [astro-ph.HE].
- [21] R. Abbasi et al. "Measurement of Astrophysical Tau Neutrinos in Ice-Cube's High-Energy Starting Events". In: (Nov. 2020). arXiv: 2011. 03561 [hep-ex].

- J. A. Aguilar et al. "Design and Sensitivity of the Radio Neutrino Observatory in Greenland (RNO-G)". In: JINST 16.03 (2021), P03025.
 DOI: 10.1088/1748-0221/16/03/P03025. arXiv: 2010.12279 [astro-ph.IM].
- [19] H. A. Ayala Solares et al. "Multimessenger Gamma-Ray and Neutrino Coincidence Alerts Using HAWC and IceCube Subthreshold Data". In: *Astrophys. J.* 906.1 (2021), p. 63. DOI: 10.3847/1538-4357/abcaa4. arXiv: 2008.10616 [astro-ph.HE].
- [18] M. G. Aartsen et al. "IceCube-Gen2: the window to the extreme Universe". In: *J. Phys. G* 48.6 (2021), p. 060501. DOI: 10.1088/1361-6471/abbd48. arXiv: 2008.04323 [astro-ph.HE].
- [17] M. G. Aartsen et al. "Measurements of the time-dependent cosmic-ray Sun shadow with seven years of IceCube data: Comparison with the Solar cycle and magnetic field models". In: *Phys. Rev. D* 103.4 (2021), p. 042005. DOI: 10.1103/PhysRevD.103.042005. arXiv: 2006.16298 [astro-ph.HE].
- [16] M. G. Aartsen et al. "Cosmic ray spectrum from 250 TeV to 10 PeV using IceTop". In: Phys. Rev. D 102 (2020), p. 122001. DOI: 10.1103/PhysRevD.102.122001. arXiv: 2006.05215 [astro-ph.HE].
- [15] M. G. Aartsen et al. "Searching for eV-scale sterile neutrinos with eight years of atmospheric neutrinos at the IceCube Neutrino Telescope". In: *Phys. Rev. D* 102.5 (2020), p. 052009. DOI: 10.1103/PhysRevD.102.052009. arXiv: 2005.12943 [hep-ex].
- [14] M. G. Aartsen et al. "eV-Scale Sterile Neutrino Search Using Eight Years of Atmospheric Muon Neutrino Data from the IceCube Neutrino Observatory". In: *Phys. Rev. Lett.* 125.14 (2020), p. 141801. DOI: 10. 1103/PhysRevLett.125.141801. arXiv: 2005.12942 [hep-ex].
- [13] M. G. Aartsen et al. "IceCube Search for Neutrinos Coincident with Compact Binary Mergers from LIGO-Virgo's First Gravitational-wave Transient Catalog". In: *Astrophys. J. Lett.* 898.1 (2020), p. L10. DOI: 10.3847/2041-8213/ab9d24. arXiv: 2004.02910 [astro-ph.HE].
- [12] M. G. Aartsen et al. "IceCube Search for High-Energy Neutrino Emission from TeV Pulsar Wind Nebulae". In: Astrophys. J. 898.2 (2020), p. 117. DOI: 10.3847/1538-4357/ab9fa0. arXiv: 2003.12071 [astro-ph.HE].
- [11] A. Albert et al. "Combined search for neutrinos from dark matter self-annihilation in the Galactic Center with ANTARES and IceCube". In: *Phys. Rev. D* 102.8 (2020), p. 082002. DOI: 10.1103/PhysRevD.102.082002. arXiv: 2003.06614 [astro-ph.HE].

- [10] P. Allison et al. "Constraints on the diffuse flux of ultrahigh energy neutrinos from four years of Askaryan Radio Array data in two stations". In: *Phys. Rev. D* 102.4 (2020), p. 043021. DOI: 10.1103/PhysRevD.102.043021. arXiv: 1912.00987 [astro-ph.HE].
- [9] M. G. Aartsen et al. "Neutrino astronomy with the next generation IceCube Neutrino Observatory". In: (Nov. 2019). arXiv: 1911.02561 [astro-ph.HE].
- [8] P. Allison et al. "Long-baseline horizontal radio-frequency transmission through polar ice". In: JCAP 12 (2020), p. 009. DOI: 10.1088/1475-7516/2020/12/009. arXiv: 1908.10689 [astro-ph.IM].
- J. A. Aguilar et al. "The Next-Generation Radio Neutrino Observatory

 Multi-Messenger Neutrino Astrophysics at Extreme Energies". In:
 (July 2019). arXiv: 1907.12526 [astro-ph.HE].
- [6] A. Connolly et al. "Recent Results from The Askaryan Radio Array". In: PoS ICRC2019 (July 2021): Proc. 36th International Cosmic Ray Conference, p. 858. DOI: 10.22323/1.358.0858. arXiv: 1907.11125 [astro-ph.HE].
- [5] C. Glaser et al. "NuRadioMC: Simulating the radio emission of neutrinos from interaction to detector". In: Eur. Phys. J. C 80.2 (2020),
 p. 77. DOI: 10.1140/epjc/s10052-020-7612-8. arXiv: 1906.01670 [astro-ph.IM].
- [4] P. Allison et al. "Design and performance of an interferometric trigger array for radio detection of high-energy neutrinos". In: *Nucl. Instrum. Meth. A* 930 (2019), pp. 112–125. DOI: 10.1016/j.nima.2019.01.067. arXiv: 1809.04573 [astro-ph.IM].
- [3] P. Allison et al. "Observation of Reconstructable Radio Emission Coincident with an X-Class Solar Flare in the Askaryan Radio Array Prototype Station". In: (July 2018). arXiv: 1807.03335 [astro-ph.HE].
- [2] P. Allison et al. "Measurement of the real dielectric permittivity ϵ_r of glacial ice". In: *Astropart. Phys.* 108 (2019), pp. 63–73. DOI: 10.1016/j.astropartphys.2019.01.004. arXiv: 1712.03301 [astro-ph.IM].
- [1] F. Kislat, B. Clark, M. Beilicke, and H. Krawczynski. "Analyzing the data from X-ray polarimeters with Stokes parameters". In: *Astropart. Phys.* 68 (2015), pp. 45–51. DOI: 10.1016/j.astropartphys.2015.02.007. arXiv: 1409.6214 [astro-ph.IM].