TSP DA PROJECT 2

G07_9: Bruno Huang 202207517 Ricardo Yang 202208465

- void backtrackingAlgorithm()

Time complexity: O(V!)

Space complexity: O(V)

void heldKarp(const int& origin)

Time complexity: O(V^2 * 2^V)

Space complexity: O(V * 2^V)

void triangularApproximationMSTAlgorithm(int origin, bool fullyConnected)

<u>Time complexity:</u> O((V+E) * logV)

Space complexity: O(V)

void nearestNeighborAlgorithm(const int& origin)

Time complexity: O(V^2)

Space complexity: O(V)

void kNearestNeighborAlgorithm(const int& origin, int k)

<u>Time complexity:</u> O(V^2 * logV + V * k)

Space complexity: O(V)

- void twoOptAlgorithm(const int& origin)

Time complexity: O(k * V^2)

Space complexity: O(V)

void threeOptAlgorithm(const int& origin)

Time complexity: O(k * V^3)

Space complexity: O(V)

void antColonyOptimization(const int &origin, int numAnts, int numIterations, bool fullyConnected)

<u>Time complexity:</u> O(V^2 * numAnts * numIterations)

Space complexity: O(V^2)


```
Travelling
                                    Salesman
                                                 Problem
      Current Graph: Real World - graph 1
      [1]. Backtracking
      [2]. Triangular Approximation MST *
      [3]. Held Karp
      [4]. Nearest Neighbor *
      [5]. K-Nearest Neighbor *
      [6]. 2-Opt
      [7]. 3-Opt
      [8]. Ant Colony Optimization
      [9]. Export Graph txt
      [0]. EXIT
      * - returns feasible or not
Choose a algorithm:
```

Current Graph: Real World - graph 1

```
[2]. Triangular Approximation MST *
Choose a algorithm: 2
Choose origin (int): 0
Considering graph fully connected? [1-YES / 0-N0]: 1

Distance: 1121403
Number of Nodes: 1000
Path: 0 -> 496 -> 878 -> 221 -> 98 -> 134 -> 7 -> 152

Time taken by function: 0 s
Press ENTER to continue...
```

```
[4]. Nearest Neighbor *

Choose a algorithm: 4

Choose origin (int): 0

Distance: 1004706
Number of Nodes: 1000
Path: 0 -> 496 -> 878 -> 221 -> 98 -> 134 -> 7 -> 152

Time taken by function: 0 s

Press ENTER to continue...
```

```
[5]. K-Nearest Neighbor *

Choose a algorithm: 5

Choose origin (int): 0

Choose K (int > 0): 5

Distance: 1420416

Number of Nodes: 1000

Path: 0 -> 496 -> 878 -> 221 -> 632 -> 662 -> 362 -> 161

Time taken by function: 0 s

Press ENTER to continue...
```

Current Graph: Fully Connected - 100 edges

```
[6]. 2-Opt
Choose a algorithm: 6
Choose origin (int): 0

Distance: 698082
Number of Nodes: 100
Path: 0 -> 55 -> 72 -> 42 -> 14 -> 58 -> 5 -> 12 -> 78

Time taken by function: 0 s

Press ENTER to continue...
```

```
[7]. 3-Opt
Choose a algorithm: 7
Choose origin (int): 0

Distance: 669506
Number of Nodes: 100
Path: 0 -> 55 -> 72 -> 42 -> 56 -> 8 -> 26 -> 21 -> 16 -> 4

Time taken by function: 10 s

Press ENTER to continue...
```

```
[8]. Ant Colony Optimization
Choose a algorithm: 8
Choose origin (int): 0
Choose number of ants (int > 0): 10
Choose number of iterations (int > 0): 10
Considering graph fully connected? [1-YES / 0-N0]: 1
Distance: 632855
Number of Nodes: 100
Path: 0 -> 55 -> 72 -> 42 -> 7 -> 60 -> 84 -> 91 -> 64 -> 47 -> 11 -> 51 -> 39 -> 36 -> 98 -> 68
Time taken by function: 0 s
Press ENTER to continue...
```

```
[9]. Export Graph txt
Choose a algorithm: 9
Exporting graph text to "../output/Fully Connected - 100 edges.txt"
( It might take some time )

Time taken by function: 0 s

Press ENTER to continue...
```

Current Graph: Fully Connected - 100 edges

```
Vertices: 100
(target vertex, edge weight)
Vertex [0] :
    Adjacent edges: (1,40920.9) (2,31761.5) (3,37649.3) (4,38500.3) (5,19127.2) (6,33731.7) (7,15474.5) (8,3279
Vertex [1] :
    Adjacent edges: (0.40920.9) (2.38026.7) (3.27787.1) (4.60886.3) (5.33079) (6.16107.1) (7.30300.1) (8.55183.
Vertex [2] :
    Adjacent edges: (0.31761.5) (1.38026.7) (3.39858.5) (4.56830) (5.31792) (6.37193.7) (7.22720.4) (8.51127.3)
Vertex [3] :
    Adjacent edges: (0,37649.3) (1,27787.1) (2,39858.5) (4,46400.4) (5,18215.6) (6,11683) (7,31522.3) (8,40697.
Vertex [4] :
    Adjacent edges: (0,38500.3) (1,60886.3) (2,56830) (3,46400.4) (5,32081.5) (6,51495.1) (7,38045.6) (8,13013.
Vertex [5]:
    Adjacent edges: (0,19127.2) (1,33079) (2,31792) (3,18215.6) (4,32081.5) (6,22971.4) (7,16923.3) (8,28176.9)
Vertex [6] :
    Adjacent edges: (0,33731.7) (1,16107.1) (2,37193.7) (3,11683) (4,51495.1) (5,22971.4) (7,28513.7) (8,46509.
    Adjacent edges: (0,15474.5) (1,30300.1) (2,22720.4) (3,31522.3) (4,38045.6) (5,16923.3) (6,28513.7) (8,3075
Vertex [8]:
    Adjacent edges: (0,32797.7) (1,55183.7) (2,51127.3) (3,40697.7) (4,13013.1) (5,28176.9) (6,46509.2) (7,3075
Vertex [9]:
    Adjacent edges: (0,36635) (1,28985.6) (2,26609.6) (3,33646.2) (4,59206.1) (5,28540.1) (6,30812.6) (7,26270)
```

k-nearest neighbor is by default K = 1
*ACO considering 10 ants, 10 iterations, alfa = 1.0, beta = 5.0, evaporationRate = 0.5

Averag	e Exe	cution '	Time ((2)
Avelay	C LAC	cution	IIIIIC	31

	Graphs Backtracking Triangular Approximation Held-Karp Nearest Neighbor K-Nearest Neighbor 2-Opt 3-Opt Ant Colony Optimization*										
	Graphs		mangular Approximation		inearest ineignbor	277.0.00	2-Opt	з-Орі	Ant Colony Opumization"		
S	shipping	< 1,0	·	< 1,0	-	< 1,0	-	-	±:		
TOYS	stadiums	1	< 1,0	< 1,0	< 1,0	< 1,0	< 1,0	< 1,0	< 1,0		
	tourism	< 1,0	< 1,0	< 1,0	< 1,0	< 1,0	< 1,0	< 1,0	< 1,0		
	edges_25	-	< 1,0	37 min	< 1,0	< 1,0	< 1,0	< 1,0	< 1,0		
	edges_50	-	< 1,0	-	< 1,0	< 1,0	< 1,0	< 1,0	< 1,0		
	edges_75	-	< 1,0	-	< 1,0	< 1,0	< 1,0	4	< 1,0		
TED	edges_100	-	< 1,0	-	< 1,0	< 1,0	< 1,0	10	< 1,0		
CONNECTED	edges_200	-	< 1,0	-	< 1,0	< 1,0	5	6 min 20 s	1		
S	edges_300	-	< 1,0	-	< 1,0	< 1,0	49	19	5		
FULLY	edges_400	-	< 1,0	-	< 1,0	< 1,0	1	7 min 15 s	12		
	edges_500	-	< 1,0	-	< 1,0	< 1,0	2 min 40 s	-	24		
EXTRA	edges_600	-	< 1,0	-	< 1,0	< 1,0	3 min 19 s	17 min 51 s	42		
	edges_700	-	< 1,0	-	< 1,0	< 1,0	4 min 9 s	-	1 min 05 s		
	edges_800	-	< 1,0	-	< 1,0	< 1,0	12 min 8 s	-	1 min 41 s		
	edges_900	-	< 1,0	-	< 1,0	< 1,0	12 min 21 s	-	2 min 13 s		
	real world 1	-	< 1,0	-	< 1,0	< 1,0	-	=	3 min 07s		
REAL	real world 2	-	< 1,0	-	-	:=:	2	-	*0		
	real world 3	-	3	-	-	:#1	-	-	*		

k-nearest neighbor is by default K = 1
*ACO considering 10 ants, 10 iterations, alfa = 1.0, beta = 5.0, evaporationRate = 0.5

Distance - 0	Consider	graphs	as how	they	are
--------------	----------	--------	--------	------	-----

	Graphs	Backtracking	Triangular Approximation	Held-Karp	Nearest Neighbor	K-Nearest Neighbor	2-Opt	3-Opt	Ant Colony Optimization*
22	shipping	86,7	-	86,7	_	96 (k=2)	-	-	-
TOYS	stadiums	341	393	341	403	403	358	390	390
	tourism	2600	2600	2600	2600	2600	2600	2600	2600
	edges_25	-	364925	280592	300938	300938	294806	293456	294467
	edges_50	-	542163	-	534124	534124	528723	527650	505878
	edges_75	-	626244	-	613453	613453	608498	600360	609842
CTED	edges_100	-	671365	=	705224	705224	698082	669506	657769
ONNEC	edges_200	/ <u>*</u>	891268	-	848805	848805	846191	841349	885140
S	edges_300	-	1134182	-	1099096	1099096	1095670	1098243	1209880
FULLY	edges_400	-	1330621	-	1407873	1407873	1403651	1402851	1424019
-	edges_500	-	1422107	-	1366828	1366828	1364619	-	1511514
EXTR/	edges_600	-	1579860	-	1604239	1604239	1602233	1600495	1744216
	edges_700	-	1741831	-	1741831	1741831	1713539	-	1858184
	edges_800	-	1838552	9	1836108	1836108	1834990	-	1968617
	edges_900	12	1990961	-	1888266	1888266	1887096	-	2181466
	real world 1	-	1121403	-	1004706	1004706	3 = 3	-	1108087
REAL	real world 2	-	-	-	-		-	-	-
	real world 3	s .	× .		*	-	-	-	-

BEST	8 points
GOOD	5 points
ОК	3 points
BAD	1 point
N/A or TLE	0 points

	Backtracking	Triangular Approximation	Held-Karp	Nearest Neighbor	K-Nearest Neighbor	2-Opt	3-Opt	Ant Colony Optimization*
Score	78	200 + 1	57	189	200	161	104	147

TRIANGULAR APPROXIMATION*

K-NEAREST NEIGHBOR

* our triangular approximation is adapted to handle with fully/not fully connected graphs, for this we gave an extra point

Highlight Functionalities

We provide users with the flexibility to select and analyze the graph of their choice. Additionally, users can choose an origin node different from the default, enabling a more comprehensive analysis of how various algorithms perform on diverse graphs.

Main Difficulties and Participation of Each Member

The main challenge was likely implementing the algorithms and adapting them to graphs that could be either fully connected or not. Additionally, parsing real-world graphs and running the algorithms on them took considerable time and effort.

Effort:

- Bruno Huang 50%
- Ricardo Yang 50%