

Chapter 8 Sorting in Linear-Time

Algorithm Analysis

School of CSEE

- Counting Sort
- Radix Sort
- Bucket Sort

Algorithm Analysis Chapter 8 2

Insertion sort:

- Easy to code
- Fast on small inputs (less than ~50) elements)
- Fast on nearly-sorted inputs
- $-\Theta(n^2)$ worst case
- $-\Theta(n^2)$ average (equally-likely inputs) case

Merge sort:

- Divide-and-conquer:
 - Split array in half
 - Recursively sort subarrays
 - Linear-time merge step
- $-\Theta(n \lg n)$
- Doesn't sort in place

Heap sort:

- -Uses the very useful heap data structure
 - Complete binary tree
 - Heap property: parent key > children's keys
- $-\Theta(n \log n)$ worst case
- Sorts in place

6

Quick sort:

- Divide-and-conquer:
 - Partition array into two subarrays, the recursive calling.
 - All of first subarray < all of second subarray
 - No merge step needed!
- $-\Theta(n \lg n)$ average case
- Fast in practice
- $-\Theta(n^2)$ worst case

How Fast Can We Sort?

- We will provide a lower bound, then beat it
 - How do you suppose we'll beat it?
- First, an observation: all of the sorting algorithms so far are comparison sorts
 - The only operation used to gain ordering information about a sequence is the pairwise comparison of two elements
 - Theorem: all comparison sorts are $\Omega(n \log n)$
 - Is this the best we can do?

Decision tree

Each internal node is labeled i, j for i, $j \in \{1,2,...,n\}$.

The left subtree shows subsequent comparisons if $a_i \le a_j$

The right subtree shows subsequent comparisons if $a_j \le a_i$

Decision tree example

Each leaf contains a permutation $\{\pi(1), \pi(2), ..., \pi(n)\}$ to indicate that the ordering $a_{\pi(1)} \le a_{\pi(2)} \le ... \le a_{\pi(n)}$ has been established

Algorithm Analysis

Decision tree model

A decision tree can model the execution of any comparison sort:

- One tree for each input size n.
- View the algorithm as slitting whenever it compares two elements.
- The tree contains the comparisons along all possible instruction traces.
- The running time of the algorithm = the length of the path taken.
- Worst-case running time = height of tree.

Algorithm Analysis Chapter 8 10

- Theorem. Any decision tree that can sort n elements must have height $\Omega(n \lg n)$
- Proof. The tree must contain ≥ n! leaves, since there are n! possible permutations. A height-h binary tree has ≤ 2^h leaves. Thus, n! ≤ 2^h.

$$\therefore h \ge \lg(n!)$$

$$\ge \lg((n/e)^n)$$

$$= n \lg n - n \lg e$$

$$h = \Omega(n \lg n)$$
(Ig is mono Increasing)
(Stirling's formula)
$$\sqrt{2\pi} \, n^{n+\frac{1}{2}} e^{-n} \le n! \le e \, n^{n+\frac{1}{2}} e^{-n}$$

Algorithm Analysis Chapter 8

Lower Bound For Comparison Sort

- Thus the time to sort n elements with comparison sort is $\Omega(n \lg n)$
- Corollary: Heapsort and Mergesort are asymptotically optimal comparison sorts
- But the name of this lecture is "Sorting in linear time"!
 - How can we do better than $\Omega(n \lg n)$?

Algorithm Analysis Chapter 8 12

What is Counting-Sort?

- Counting-Sort does not use comparisons.
- Counting-Sort uses counting to sort.
- We can sort an input array in ⊖(n) time!!
- Constraints
 - Each of the *n* input elements should be an INTEGER.
 - Each of the *n* input elements should be in the range 0 to k, for some integer k.
 - It should be possible to represent that k = O(n).

Sorting In Linear Time

Input / Output:

- Input: A[1..*n*], where A[j] \in {1, 2, 3, ..., k}
- Output: B[1..*n*], sorted (notice: does not sort in place)
- Also: Array C[1..k] for auxiliary storage is needed.

Basic Idea

- The basic idea of counting sort is to determine, for each input element *x*, the number of elements less than *x*.
- This information can be used to place element *x* directly into its position in the output array.

Algorithm Analysis Chapter 8 14

Counting Sort


```
CountingSort (A, B, k)
              for i \leftarrow 0 to k
                     do C[i] = 0;
3
              for j \leftarrow 1 to length[A]
4
                     do C[A[j]] \leftarrow C[A[j]] + 1
5
              for i \leftarrow 1 to k
                     do C[i] \leftarrow C[i] + C[i-1]
              for j \leftarrow length[A] downto 1
8
                     do B[C[A[j]]] \leftarrow A[j]
9
                         C[A[j]] \leftarrow C[A[j]] - 1
```


Line 1-2


```
1 for i \leftarrow 0 to k
```

2 do $C[i] \leftarrow 0$

 1
 2
 3
 4
 5
 6
 7
 8

 A
 2
 5
 3
 0
 2
 3
 0
 3

 0
 1
 2
 3
 4
 5

 C
 0
 0
 0
 0
 0

Line 3-4


```
for j \leftarrow 1 to length[A]
    do C[A[j]] \leftarrow C[A[j]] + 1
                       6
         3
                  5
                                8
          3
                       3
                                3
     1
 0
              3
                  4
                      5
```


Line 3-4

		2							
Α	2	5	3	0	2	3	0	3	
		1							
С	2	0	2	3	0	1			

 \triangleright C[i] now contains the number of elements equal to i.

Algorithm Analysis Chapter 8 18

Line 5-6

 \triangleright C[i] now contains the number of elements less than or equal to i.

Line 7-9


```
for j \leftarrow length[A] downto 1
8
       do B[C[A[j]]] \leftarrow A[j]
              C[A[j]] \leftarrow C[A[j]]
                      4 5
                                6
                                         8
                      0
           5
                3
                                3
                                         3
    B
             2
                 4
                                8
```


Line 7-9 cont'd

8

21

2	5	3	0	2	3	0	3
1	2	3	4	5	6	7	8
0	1	2	3	4	5		
	2	2512	 2 5 3 	2 5 3 0 1 2 3 4	2 5 3 0 2 1 2 3 4 5	2 5 3 0 2 3	1 2 3 4 5 6 7 2 5 3 0 2 3 0 1 2 3 4 5 6 7 0 1 2 3 4 5

Algorithm Analysis Chapter 8

Analysis of counting sort

$$\Theta(k) \begin{cases}
\text{for } i \leftarrow 0 \text{ to } k \\
\text{do } C[i] \leftarrow 0
\end{cases}$$

$$\Theta(n) \begin{cases}
\text{for } i \leftarrow 1 \text{ to } n \\
\text{do } C[A[j]] \leftarrow C[A[j]] + 1
\end{cases}$$

$$\Theta(k) \begin{cases}
\text{for } i \leftarrow 1 \text{ to } k \\
\text{do } C[i] \leftarrow C[i] + C[i-1]
\end{cases}$$

$$\Theta(n) \begin{cases}
\text{for } j \leftarrow n \text{ downto } 1 \\
\text{do } B[C[A[j]]] \leftarrow A[j] \\
C[A[j]] + C[A[j]] - 1
\end{cases}$$

Algorithm Analysis Chapter 8

Running time

If k = O(n), then counting sort takes $\Theta(n)$ time.

- But, sorting takes $\Omega(n \lg n)$ time!
- Where's the fallacy?

Answer:

- Comparison sorting takes $\Omega(n | g | n)$ time.
- Counting sort is not a comparison sort.
- In fact, not a single comparison between elements occurs!

Algorithm Analysis Chapter 8 23

Counting Sort

- Cool! Why don't we always use counting sort?
- Because it depends on range k of elements.
- Could we use counting sort to sort 32 bit integers? Why or why not?
- Answer: no, k too large $(2^{32} = 4,294,967,296)$

Stable sorting

Counting sort is a *stable* sort: it preserves the input order among equal elements.

Exercise: What other sorts have this property?

Normally, the property of stability is important only when satellite data are carried around with the element being sorted. Counting-Sort is often used as a subroutine in radix sort.

Algorithm Analysis Chapter 8

Number of keys: not one, but several keys... say *d* keys.

Ex) Sorting students by class, math. score, height

 K^0 K^1 K^2

Ex) Sorting deck of cards

Two keys – (1) suit : clover < diamond < heart < spade

(2) face value : $2 < 3 < 4 < \ldots < J < Q < K < A$

After sorting,

2C, 3C, ... KC, AC, 2D, 3D, < KS < AS

[1] MSD: Most Significant Digit

Step 1 : Sort by suit

Step 2: Sort by face value

[2] LSD: Least Significant Digit

Step 1: Sort by face

Step 2 : Sort by suit

- Intuitively, you might sort on the most significant digit, then the second msd, etc.
- Problem: lots of intermediate piles of cards to keep track of
- Key idea: sort the least significant digit first

```
RadixSort(A, d)
for i=1 to d
StableSort(A) on digit i
```

Algorithm Analysis Chapter 8 28

Example of Radix Sort

- Can we prove it will work?
- Sketch of an inductive argument (induction on the number of passes):
 - Assume lower-order digits { j: j<i} are sorted
 - Show that sorting next digit i leaves array correctly sorted
 - If two digits at position *i* are different, ordering numbers by that digit is correct (lower-order digits irrelevant)
 - If they are the same, numbers are already sorted on the lower-order digits. Since we use a stable sort, the numbers stay in the right order

Algorithm Analysis Chapter 8 30

- What sort will we use to sort on digits?
- Counting sort is obvious choice:
 - Sort n numbers on digits that range from 1..k
 - Time: $\Theta(n + k)$
- Each pass over n numbers with d digits takes time $\Theta(n+k)$, so total time $\Theta(dn+dk)$
 - When d is constant and k=O(n), it takes O(n) time.

- In general, radix sort based on counting sort is
 - Fast
 - Asymptotically fast (i.e., $\Theta(n)$)
 - Simple to code
 - A good choice

Algorithm Analysis Chapter 8 32

Bucket Sort

- Bucket sort
 - Assumption: input is n reals from [0, 1]
 - Basic idea:
 - Create n lists (buckets) to divide interval [0,1] into subintervals of size 1/n
 - Add each input element to appropriate bucket and sort buckets with insertion sort
 - Uniform input distribution $\rightarrow \Theta(1)$ bucket size
 - Therefore the expected total time is $\Theta(n)$
 - The idea as discussed in hash table.

Algorithm Analysis Chapter 8 33

Worst-Case Running Time

• Lemma: In the worst case, Bucket Sort takes $O(n^2)$ time.

Using Merge Sort, we can get this down to
 ⊝(n lg n).

But Insertion Sort is simpler.

Average-Case Running Time

 Lemma: Given that the input sequence is drawn uniformly at random from [0,1), the expected size of a bucket is Θ(1).

 Lemma: Given that the input sequence is drawn uniformly at random from [0,1), the average-case running time of Bucket Sort is Θ(n).

Summary

- Every comparison-based sorting algorithm has to take $\Omega(n \lg n)$ time.
- Merge Sort, Heap Sort, and Quick Sort are comparisonbased and take Θ(n lg n) time. Hence, they are optimal.
- Other sorting algorithms can be faster by exploiting assumptions made about the input.
- Counting Sort and Radix Sort take linear time for integers in a bounded range.
- Bucket Sort takes linear average-case time for uniformly distributed real numbers.