Ref of Fu's 1993 paper

September 4, 2015

The linearized drift kinetic equation is given by

$$\left(\partial_t + \mathbf{v}_d \cdot \nabla + v_{\parallel} \hat{\mathbf{b}} \cdot \nabla\right) g = ie \frac{\partial F}{\partial \epsilon} \left(\omega - \omega_{\star}\right) \frac{i}{\omega} \mathbf{v}_d \cdot \delta \mathbf{E}_{\perp}$$
where, $\mathbf{v}_d = \frac{\hat{\mathbf{b}}}{\Omega} \times \left(\mu \nabla B + \kappa v_{\parallel}^2\right) \approx \frac{v_{\perp}^2/2 + v_{\parallel}^2}{\Omega} \hat{\mathbf{b}} \times \kappa, \ \mu = \frac{v_{\perp}^2}{2B}, \ \omega_{\star} = \frac{i\hat{\mathbf{b}} \times \nabla F \cdot \nabla}{\Omega \partial F/\partial \epsilon},$

$$\delta \mathbf{E}_{\perp} = i\omega \vec{\xi} \times \mathbf{B}.$$

The term $\mathbf{v}_d \cdot \delta \mathbf{E}_{\perp}$ can be expressed by the following form.

$$\mathbf{v}_d \cdot \delta \mathbf{E}_{\perp} = \frac{v_{\perp}^2 / 2 + v_{\parallel}^2}{\Omega} \hat{\mathbf{b}} \times \kappa \cdot \delta \mathbf{E}_{\perp} = i\omega \frac{v_{\perp}^2 / 2 + v_{\parallel}^2}{\Omega} \hat{\mathbf{b}} \times \vec{\kappa} \cdot \left(\vec{\xi} \times \mathbf{B} \right)$$
(1)

$$=-i\omega B\frac{v_{\perp}^{2}/2+v_{\parallel}^{2}}{\Omega}\vec{\kappa}\cdot\vec{\xi}=-i\omega B\frac{v_{\perp}^{2}/2+v_{\parallel}^{2}}{\Omega}\left(\nabla\theta\kappa_{\theta}+\nabla r\kappa_{r}\right)\cdot\left(\xi_{\theta}\nabla\theta+\xi_{r}\nabla r\right)$$

$$=-i\omega B\frac{v_{\perp}^{2}/2+v_{\parallel}^{2}}{\Omega}\left(\nabla\theta\cdot\nabla\theta\xi_{\theta}\kappa_{\theta}+\nabla r\cdot\nabla r\xi_{r}\kappa_{r}+\nabla\theta\cdot\nabla r\xi_{r}\kappa_{\theta}+\nabla r\cdot\nabla\theta\xi_{\theta}\kappa_{r}\right)$$

$$=-i\omega B\frac{\epsilon}{\Omega}\left(\frac{\Lambda}{b}+2\left(1-\frac{\Lambda}{b}\right)\right)\left(\left(g^{\theta\theta}\kappa_{\theta}+g^{r\theta}\kappa_{r}\right)\xi_{\theta}+\left(g^{rr}\kappa_{r}+g^{r\theta}\kappa_{\theta}\right)\xi_{r}\right)$$

with
$$g^{rr} = \nabla r \cdot \nabla r$$
, $g^{\theta r} = \nabla \theta \cdot \nabla r$, $g^{\theta \theta} = \nabla \theta \cdot \nabla \theta$. $\xi_r \nabla r = \xi_r \mathbf{e}_r$, $\xi_\theta \nabla \theta = \frac{1}{r} \xi_\theta \mathbf{e}_\theta$, $\kappa_\theta = -\frac{1}{R} \frac{\partial R}{\partial \theta}$, $\kappa_r \approx -\frac{1}{R} \frac{\partial R}{\partial r} - \frac{r}{q^2 R^2}$ [G. Y. Fu, PHYSICS OF PLASMAS 13 2006]. $\Lambda = \frac{\mu B_0}{\epsilon}$, $b = B_0/B \approx 1 + (r/R_0) \cos \theta$, $\epsilon = \frac{1}{2} v^2$.

The linearized drift kinetic equation is rewritten as

$$\frac{d}{dt}g = ie\frac{\partial F}{\partial \epsilon} \left(\omega - \omega_{\star}\right) B \frac{\epsilon}{\Omega} \left(\frac{\Lambda}{b} + 2\left(1 - \frac{\Lambda}{b}\right)\right) \left(\left(g^{\theta\theta}\kappa_{\theta} + g^{r\theta}\kappa_{r}\right)\xi_{\theta} + \left(g^{rr}\kappa_{r} + g^{r\theta}\kappa_{\theta}\right)\xi_{r}\right)$$
(2)

$$\frac{d}{dt}g = H\left(r, \theta, \phi, t\right)$$

The solution of perturbed distribution function g is obtained in the followings. At equilibrium, the projection of the orbit on the polodial cross section is a closed curve. For either mirror-trapped or passing orbit, we define the bounce time [F. Porcelli, R. Stankiewicz, and W. Kerner, Phys. Plasmas 1 1994]

$$\tau_b = \oint d\tau = \oint \frac{d\psi}{\dot{\psi}} = \oint \frac{d\theta}{\dot{\theta}} \tag{3}$$

as the time it takes to close an equilibrium orbit on the poloidal plane. We assume that perturbations have the form

$$X^{(1)} = \hat{X}^{(1)}(r,\theta) \exp\left(-i\omega t + in\phi\right) \tag{4}$$

The formal solution of the nonadibatic distribution g is

$$g = \int_{-\infty}^{t} ie \frac{\partial F}{\partial \epsilon} \left(\omega - \omega_{\star}\right) B \frac{\epsilon}{\Omega} G\left(\tau\right) d\tau \tag{5}$$

with

$$G = \left(\frac{\Lambda}{b} + 2\left(1 - \frac{\Lambda}{b}\right)\right) \left(\left(g^{\theta\theta}\kappa_{\theta} + g^{r\theta}\kappa_{r}\right)\xi_{\theta} + \left(g^{rr}\kappa_{r} + g^{r\theta}\kappa_{\theta}\right)\xi_{r}\right)$$

where $G(\tau) = \hat{G}[r(\tau), \theta(\tau)] \exp(-i\omega\tau + in\phi(\tau))$ and the τ dependence is through the following equations:

$$\dot{r} = \dot{\mathbf{R}} \cdot \nabla r, \dot{\theta} = \dot{\mathbf{R}} \cdot \nabla \theta, \dot{\phi} = \dot{\mathbf{R}} \cdot \nabla \phi \tag{6}$$

Let us separate $\phi(\tau)$ into its secular and osillating parts:

$$\phi\left(\tau\right) = \left\langle \dot{\phi} \right\rangle \tau + \widetilde{\phi}\left(\tau\right) \tag{7}$$

where the brackets indicate bounce averaging.

The quantity $\tilde{G}[r(\tau), \theta(\tau)] = \hat{G}[r(\tau), \theta(\tau)] \exp(in\tilde{\phi}(\tau))$ is a periodic function of τ , which can be expanded in Fourier series,

$$\tilde{G}(\tau) = \sum_{-\infty}^{\infty} Y_p(\Lambda, \epsilon, \bar{r}; \sigma) \exp(ip\omega_b \tau)$$
(8)

where,

$$Y_{p}(\Lambda, \epsilon, \bar{r}; \sigma) = \frac{1}{\tau_{b}} \oint d\tau \tilde{G}(\tau) \exp(-ip\omega_{b}\tau)$$
(9)

with $r(\tau) = \bar{r} + \rho \cos \theta(\tau)$, ρ repesents the finite orbit width. Carrying out the time integration, the solution of g is obtained

$$g = e \frac{\partial F}{\partial \epsilon} (\omega - \omega_{\star}) B \frac{\epsilon}{\Omega} \sum_{-\infty}^{\infty} Y_p (\Lambda, \epsilon, \bar{r}; \sigma) \frac{\exp \left[i \left(n \left\langle \dot{\phi} \right\rangle + p\omega_b - \omega \right) t \right]}{n \left\langle \dot{\phi} \right\rangle + p\omega_b - \omega}$$
(10)

The formula of δW_k is derived as follows.

$$\begin{split} \delta W_k &= \int d^3 x \vec{\xi}^{\star} \cdot \nabla \cdot \delta \mathbf{P}_k = -e \int d^3 x \int d^3 v \left(\frac{i}{\omega} \mathbf{v}_d \cdot \delta \mathbf{E}_{\perp} \right)^{\star} g \\ &= -e \int d^3 x \int d^3 v g B \frac{\epsilon}{\Omega} \left(\frac{\Lambda}{b} + 2 \left(1 - \frac{\Lambda}{b} \right) \right) \left(\left(g^{\theta \theta} \kappa_{\theta} + g^{r \theta} \kappa_r \right) \xi_{\theta}^{\star} + \left(g^{r r} \kappa_r + g^{r \theta} \kappa_{\theta} \right) \xi_r^{\star} \right) \\ &= -e \int d^3 x \int d^3 v g B \frac{\epsilon}{\Omega} G^{\star} \end{split}$$

where $G^{\star} = \hat{G}^{\star} [r(\tau), \theta(\tau)] \exp(i\omega\tau - in\phi(\tau))$. Let $\tilde{G}^{\star} [r(\tau), \theta(\tau)] = \hat{G}^{\star} [r(\tau), \theta(\tau)] \exp(-in\tilde{\phi}(\tau))$, which is a periodic function of τ , which can be expanded in Fourier series,

$$\tilde{G}^{\star}(\tau) = \sum_{-\infty}^{\infty} Y_{p}^{\star}(\Lambda, \epsilon, \bar{r}; \sigma) \exp(-ip\omega_{b}\tau)$$
(11)

where,

$$Y_p^{\star}(\Lambda, \bar{r}; \sigma) = \frac{1}{\tau_b} \oint d\tau \tilde{G}^{\star}(\tau) \exp(ip\omega_b \tau)$$
 (12)

with $r(\tau) = \bar{r} + \rho \cos \theta (\tau)$.

$$\delta W_k = -e^2 \int d^3x \int d^3v \frac{\partial F}{\partial \epsilon} \left(\omega - \omega_\star\right) B^2 \frac{\epsilon^2}{\Omega^2} \sum_{-\infty}^{\infty} Y_p \left(\Lambda, \bar{r}; \sigma\right)$$

$$\cdot \frac{\exp\left[i\left(n\left\langle\dot{\phi}\right\rangle + p\omega_b - \omega\right)\tau\right]}{n\left\langle\dot{\phi}\right\rangle + p\omega_b - \omega} \sum_{-\infty}^{\infty} Y_{p'}^{\star}\left(\Lambda, \epsilon, \bar{r}; \sigma\right) \exp\left(i\omega\tau - in\left\langle\dot{\phi}\right\rangle\tau - ip'\omega_b\tau\right)$$
(13)

$$\delta W_k = -e^2 \int d^3x \int d^3v \frac{\partial F}{\partial \epsilon} \left(\omega - \omega_{\star}\right) B^2 \frac{\epsilon^2}{\Omega^2}$$

$$\cdot \sum_{-\infty}^{\infty} Y_p \left(\Lambda, \epsilon, \bar{r}; \sigma \right) \frac{\exp\left[ip\omega_b \tau \right]}{n \left\langle \dot{\phi} \right\rangle + p\omega_b - \omega} \sum_{-\infty}^{\infty} Y_{p'}^{\star} \left(\Lambda, \epsilon, \bar{r}; \sigma \right) \exp\left(-ip'\omega_b \tau \right) \tag{14}$$

Using $d^3v = \sqrt{2}\pi \frac{1}{b\sqrt{1-\frac{\Lambda}{k}}}d\Lambda \epsilon^{1/2}d\epsilon$, $d^3x = 2\pi Jdrd\theta$, yields

$$\delta W_k = -e^2 \int 2\pi J dr d\theta \int \sqrt{2\pi} \frac{1}{b\sqrt{1-\frac{\Lambda}{b}}} d\Lambda \epsilon^{1/2} d\epsilon \frac{\partial F}{\partial \epsilon} \left(\omega - \omega_{\star}\right) B^2 \frac{\epsilon^2}{\Omega^2}$$

$$\cdot \sum_{-\infty}^{\infty} Y_p \left(\Lambda, \epsilon, \bar{r}; \sigma \right) \frac{\exp\left(ip\omega_b \tau \right)}{n \left\langle \dot{\phi} \right\rangle + p\omega_b - \omega} \sum_{-\infty}^{\infty} Y_{p'}^{\star} \left(\Lambda, \epsilon, \bar{r}; \sigma \right) \exp\left(-ip'\omega_b \tau \right) \tag{15}$$

Applying $d\tau = \frac{qR_0}{\sigma\sqrt{2\epsilon}b\sqrt{1-\frac{\Lambda}{b}}}d\theta$, $\sigma = \pm 1$ for the direction of v_{\parallel} , one finially obtains

$$\delta W_k = -4\pi^2 \frac{e^2 B^2}{\Omega^2} \frac{1}{R_0} \int \frac{J}{q} dr \int d\Lambda \epsilon^3 d\epsilon \frac{\partial F}{\partial \epsilon} \tau_b \left(\omega - \omega_\star\right)$$

$$\cdot \sum_{-\infty}^{\infty} \frac{|Y_p|^2}{n\left\langle\dot{\phi}\right\rangle + p\omega_b - \omega} \tag{16}$$

Note that $\tilde{\phi} \cong 0$, $\left\langle \dot{\phi} \right\rangle \cong \omega_D^0 + q \omega_b, \omega_D^0 \approx 0$ for passing particles. For internal kink mode $\nabla \cdot \vec{\xi} = 0$, the forms of the perturbation are $\xi_r = \xi_0 \cos \theta$, $\xi_\theta = -\xi_0 r \sin \theta$ within the region q = 1 rational surface $r_s = 1$, and $\xi_r = \xi_0 \left(\frac{\Delta r - r + (r_s - \Delta r/2)}{\Delta r} \right) \cos \theta$, $\xi_\theta = -\xi_0 \left(\frac{\Delta r - r + (r_s - \Delta r/2)}{\Delta r} \right) r \sin \theta + \xi_0 \left(\frac{r}{\Delta r} \right) r \sin \theta$ in the inertial region $r_s - \frac{\Delta r}{2} \leq r \leq r_s + \frac{\Delta r}{2}$.

In angle-action coordinate,

$$J_{b} = \frac{1}{2\pi} \int p_{\parallel} ds \cong p_{\parallel e} R_{\parallel} \int_{-\theta_{b}}^{\theta_{b}} \sqrt{1 - \kappa^{-1} \sin^{2} \frac{\theta}{2}} \frac{d\theta}{\pi}$$
 (17)

$$J_{t} = \frac{1}{2\pi} \int p_{\parallel} ds \cong p_{\parallel e} R_{\parallel} \int_{-\pi}^{\pi} \sqrt{1 - \kappa^{-1} \sin^{2} \frac{\theta}{2}} \frac{d\theta}{\pi}$$
 (18)

The formulas of bounce/transit frequency is given by [Alain J. Brizard, PHYSICS OF PLASMAS $18\ 2011$]

$$\omega_b = \frac{\partial H}{\partial J_b} = \left(\frac{\partial J_b}{\partial E}\right)^{-1} = \frac{\pi \omega_{\parallel}}{2K(\kappa)}, \kappa < 1 \tag{19}$$

$$\omega_t = \frac{\partial H}{\partial J_t} = \left(\frac{\partial J_t}{\partial E}\right)^{-1} = \frac{\pi\sqrt{\kappa}\omega_{\parallel}}{K(\kappa^{-1})}, \kappa > 1$$
 (20)

where $\omega_{\parallel} = \frac{1}{qR} \sqrt{\varepsilon \mu B_0} = \frac{\sqrt{\epsilon}}{qR} \sqrt{\varepsilon \Lambda}$, $\kappa = \frac{1 - \Lambda(1 - \varepsilon)}{2\varepsilon \Lambda}$, $\varepsilon = \frac{r}{R_0}$. K denotes the complete elliptic integral of the first kind.

The normalized relations of the quantities are $F=\frac{n}{v_h^3}\bar{F}_0,\,v_h=\sqrt{\frac{2T_h}{M}},\,\epsilon=\frac{T_h}{M}\bar{\epsilon},\,r=a\bar{x},\,J=aR_0\bar{J},\,R=R_0\bar{R},\,\omega_t=\frac{v_h}{R_0}\bar{\omega}_t,\,\frac{1}{\tau_t}=\frac{v_h}{2\pi R_0}\bar{\omega}_t=\frac{v_h}{R_0}\frac{\bar{\omega}_t}{2\pi}=\frac{v_h}{R_0}\frac{1}{\bar{\tau}_t},\,\omega=\frac{v_h}{R_0}\bar{\omega}_\omega,\,\omega_\phi=\frac{v_h}{R_0}\bar{\omega}_\phi,\,\omega_\star=\frac{v_h}{R_0}\bar{\omega}_\star$.

$$\delta W_k = -\pi^2 \frac{e^2 B^2}{\Omega^2} a^2 R_0 n_0 \frac{T_h}{M} \int \frac{\bar{J}}{q} dx \int d\Lambda \bar{\epsilon}^3 d\bar{\epsilon} \frac{\partial \bar{F}}{\partial \bar{\epsilon}} \bar{\tau}_b \left(\bar{\omega} - \bar{\omega}_{\star} \right)$$

$$\cdot \sum_{-\infty}^{\infty} \frac{\left| \bar{Y}_p \right|^2}{n \left\langle \bar{\dot{\phi}} \right\rangle + p\bar{\omega}_b - \bar{\omega}} \tag{21}$$

For passing particles,

$$\bar{\omega}_b = \frac{\pi\sqrt{\kappa}}{K\left(\kappa^{-1}\right)} \frac{\sqrt{\varepsilon\Lambda/2}}{q} \sqrt{\bar{\epsilon}} \tag{22}$$

$$\omega_b t = \bar{\omega}_b \frac{v_h}{R} \int_0^\theta \frac{qR_0}{\sqrt{2(T/M)}\,\bar{\epsilon}b\sqrt{1-\frac{\Lambda}{h}}} d\theta \tag{23}$$

$$= \int_0^\theta \frac{\pi \sqrt{\kappa}}{K\left(\kappa^{-1}\right)} \sqrt{\varepsilon \Lambda/2} \frac{1}{b\sqrt{1 - \frac{\Lambda}{b}}} d\theta$$

$$Y_{p}\left(\Lambda, \bar{r}; \sigma\right) = \frac{1}{\tau_{b}} \oint d\tau \tilde{G}\left(\tau\right) \exp\left(-ip\omega_{b}\tau\right) \tag{24}$$

$$=\frac{\omega_{b}}{2\pi}\oint d\tau \tilde{G}\left[r\left(\tau\right),\theta\left(\tau\right)\right]\exp\left(-ip\omega_{b}\tau\right)$$

$$=\frac{1}{2\pi} \oint d\left(\omega_b \tau\right) \tilde{G}\left[r\left(\tau\right), \theta\left(\tau\right)\right] \exp\left(-ip\omega_b \tau\right)$$

$$=\frac{1}{2\pi}\int_{0}^{2\pi}d\theta\frac{\sigma\pi\sqrt{\kappa}}{K\left(\kappa^{-1}\right)}\frac{\sqrt{\varepsilon\Lambda/2}}{b\sqrt{1-\frac{\Lambda}{b}}}\tilde{G}\left[r\left(\tau\right),\theta\left(\tau\right)\right]\exp\left(-ip\int_{0}^{\theta}d\theta'\frac{\sigma\pi\sqrt{\kappa}}{K\left(\kappa^{-1}\right)}\frac{\sqrt{\varepsilon\Lambda/2}}{b\sqrt{1-\frac{\Lambda}{b}}}\right)$$

where

$$\tilde{G}\left[r\left(\tau\right),\theta\left(\tau\right)\right] = \left(\frac{\Lambda}{b\left(r,\theta\right)} + 2\left(1 - \frac{\Lambda}{b\left(r,\theta\right)}\right)\right)$$

$$\cdot \left(\left(g^{\theta\theta} \kappa_{\theta} + g^{r\theta} \kappa_{r} \right) \hat{\xi}_{\theta m} \left(\bar{r} + \rho \cos \theta \right) \exp \left(-im\theta \right) + \left(g^{rr} \kappa_{r} + g^{r\theta} \kappa_{\theta} \right) \hat{\xi}_{rm} \left(\bar{r} + \rho \cos \theta \right) \exp \left(-im\theta \right) \right)$$

Note that the effect of finite orbit width is induced radially in the perturbed $\xi(r)$ for simply. Furthermore, \tilde{G} is a normalized quantity, so is Y_p ,

$$\tilde{G}\left[x\left(\tau\right),\theta\left(\tau\right)\right] = \left(\frac{\Lambda}{b\left(x,\theta\right)} + 2\left(1 - \frac{\Lambda}{b\left(x,\theta\right)}\right)\right)$$

$$\cdot \left(\left(\bar{g}^{\theta\theta} \bar{\kappa}_{\theta} + \bar{g}^{r\theta} \bar{\kappa}_{r} \right) \bar{\hat{\xi}}_{\theta m} \left(\bar{x} + \frac{\rho}{a} \cos \theta \right) \exp \left(-im\theta \right) + \left(\bar{g}^{rr} \bar{\kappa}_{r} + \bar{g}^{r\theta} \bar{\kappa}_{\theta} \right) \bar{\hat{\xi}}_{rm} \left(\bar{x} + \frac{\rho}{a} \cos \theta \right) \exp \left(-im\theta \right) \right)$$

where, the normalized displacements are $\bar{\hat{\xi}}_{\theta m} = \hat{\xi}_{\theta m}/a^2$, $\bar{\hat{\xi}}_{rm} = \hat{\xi}_{rm}/a$. The slowing down distribution function of fast ions is given by [M. Schneller 2013]

$$F\left(x,\bar{\epsilon},\Lambda\right) = \frac{n_0}{v_h^3} \frac{1}{\bar{\epsilon}^{3/2} + \bar{\epsilon}_c^{3/2}} Erfc\left(\frac{\bar{\epsilon} - \bar{\epsilon}_0}{\Delta \bar{\epsilon}}\right) \exp\left[-\left(\frac{x - x_0}{\Delta x}\right)^2\right] \exp\left(\frac{\Lambda - \Lambda_0}{\Delta \Lambda^{0.2}}\right)^2$$
(25)

The normalized metric tensors are

$$\bar{g}^{rr} = 1 + 2\Delta' \cos \theta \tag{26}$$

with $\Delta' = (\varepsilon + \alpha)/4$, $\varepsilon = \frac{r}{R_0}$, $\alpha = -R_0 q^2 d\beta/dr$, $\beta = \frac{2\mu_0 P}{B^2}$ set $\alpha = 0$ if $\beta = 0$, or assume $\bar{g}^{rr} = 1$ without toroidal effect, θ independent. Specially, in low beta limit,

$$\bar{g}^{rr} = 1 + \frac{1}{2}\varepsilon\cos\theta\tag{27}$$

$$\bar{g}^{\theta\theta} = \frac{1}{x^2} \left[1 - 2\left(\varepsilon + \Delta'\right) \cos \theta \right] \tag{28}$$

assume $\bar{g}^{\theta\theta} = \frac{1}{x^2}$ without toroidal effect. Specially, in low beta limit,

$$\bar{g}^{\theta\theta} = \frac{1}{x^2} \left[1 - \frac{5}{2} \varepsilon \cos \theta \right] \tag{29}$$

$$\bar{g}^{r\theta} = -\frac{1}{\pi} \left[\varepsilon + (r\Delta')' \right] \sin \theta \tag{30}$$

specially,

$$\bar{g}^{r\theta} = -\frac{1}{r} \frac{3}{2} \varepsilon \sin \theta \tag{31}$$

for low beta limit. and $\bar{q}^{r\theta} = 0$ without toroidal effect.

The normalized curvature are in low beta limit

$$\bar{\kappa}_r = -\frac{a}{R}\cos\theta + \frac{a}{R}\frac{\varepsilon}{4} - \frac{a}{R}\frac{5}{4}\varepsilon(\cos 2\theta - 1) - \left(\frac{a}{R}\right)^2\frac{x}{a}$$
 (32)

$$\bar{\kappa}_{\theta} = \varepsilon \sin \theta + \frac{5}{4} \varepsilon^2 \sin 2\theta \tag{33}$$

with $R = R_0 + r \cos \theta - \Delta(r) + r \eta(r) (\cos 2\theta - 1) \cdot \eta(r) = (\varepsilon + \Delta')/2$. The normalized ω_{\star} is

$$\bar{\omega}_{\star} = \frac{1}{2} \frac{m \partial \bar{F} / \partial x}{\partial \bar{F} / \partial \bar{\epsilon}} \frac{1}{x} \frac{R}{a} \frac{\rho_h}{a} \tag{34}$$

where, m is poloidal mode number, $\rho_h = v_h/\Omega$, $v_h = \sqrt{2T_h/M}$, $\Omega = Be/M$. The normalized ξ are

$$\bar{\xi}_r = \bar{\xi}_0 \cos \theta$$

$$\bar{\xi}_{\theta} = -\bar{\xi}_0 x \sin \theta$$

within q=1 surface. In the inertial region $r_s-\frac{\Delta r}{2} \leq r \leq r_s+\frac{\Delta r}{2},$

$$\bar{\xi}_r = \bar{\xi}_0 \left(\frac{\bar{\Delta r} - x + (\bar{r}_s - \bar{\Delta r}/2)}{\bar{\Delta r}} \right) \cos \theta$$

$$\bar{\xi}_{\theta} = -\bar{\xi}_{0} \left(\frac{\overline{\Delta r} - x + (\bar{r}_{s} - \overline{\Delta r}/2)}{\overline{\Delta r}} \right) x \sin \theta + \bar{\xi}_{0} \left(\frac{x}{\overline{\Delta r}} \right) x \sin \theta$$

with $\bar{\xi}_0 = \xi_0/a$, $\bar{r}_s = r_s/a$, $\overline{\Delta r} = \Delta r/a$, x = r/a.