

IBM PROJECT

SMART WASTE MANAGEMENT FOR METEROPOLITIAN CITIES

Team ID: PNT2022TMID21348

Team Leader: Behanraj.B

Team Members:

- Somasundari.M
- y Gokila.PG
- > Kishore Kumar.S

CONTENTS

TITLE	Page Number
1. INTRODUCTION	4
a. Project Overview	4
b. Purpose	4
2. LITERATURE SURVEY	4
a. Existing problem	4
b. Problem Statement Definition	5
3. IDEAl'ION &PROPOSED SOLUl'ION	5
a. Empathy Map Canvas	5
b. Ideation &Brainstorming	7
c. Proposed Solution	8
d. Problem Solution fit	10
4. REQUIREMENT ANALYSIS	11
a. Functional requirements	11
b. Non-Functional requirements	12
5. PROJECT DESIGN	13
a. Data FlowDiagrams	13
b. Solution & Technical Architecture	13
c. User Stories	14
6. PROJECT PLANNING & SCHEDULING	15
a. Sprint Planning &Estimation	15
b. Sprint Delivery Schedule	16

7. CODING & SOLUTIONING 17	7. CODING & SOLUTIONING	17
----------------------------	-------------------------	----

a. Feature 1	17
b. Feature 2	17
9. RESULTS	18
a. Performance Metrics	18
10. ADVANTAGES & DISADVANTAGES	19
11. CONCLUSION	19
12. FUTURE SCOPE	20

1.INTRODUCTION:

1.1Projct Overview:

This project helps theenvironment to be kept clean. Today big cities around the world are facing a common problem, managing the city waste effectively without making city unclean. Today's waste management systems involve a large number of employees being appointed to attend a certain number of dumpsters this is done every day periodically. This leads to a very inefficient and unclean system in which some dumpsters will be overflowing some dumpsters might not be even half full. This is caused by variation in population density in the city or some other random factor this makes it impossible to determine which part needs immediate attention. Here a waste management system is introduced in which each dumpster is embedded in a monitoring system that will notify the corresponding personal if the dumpster is full. In this system, it is also possible to separate wet and dry waste into two separate containers. This system provides an effective solution to the waste management problem.

a. **Purpose**

The purpose of this product is to make the environment friendly and clean. This made the environment tidy and good.

2.LITERATURE SURVEY

2.1.Existing Problem:

Smart waste management refers to any system that uses technology to make trash collection more efficient, cost-effective and environmentally friendly. Most of these systems are equipped with the Internet of Things (IoT), a monitoring technology that collects and tracks real-time data, to help optimize waste collection and spur future innovation.

2.2.Problem statement definition:

Sensors are unpredictable. Also the cost price of the products and the complications in installing the systems are high. This makes the customers feel disappointed sometimes

1.IDEATION & PROPOSED SOLUTION

3.1.Empathy Map Canvas:

3.2 Ideation & Brainstorming:

_

3.3.Proposed Solutions

S.No.	Parameter	Description			
	Problem Statement	The problem of unorganized and non-			
		systematic waste			
		collection is solved by designing an embedded			
		IoT system			
		that will monitor each dumpster individually fo			
		the amount			
		of waste deposited. Here an automated system			
		is provided			
		for segregating wet and dry waste. It has been			
		tested and			
		verified properly to make sure all the different			
		parts work			
		together for a smooth function of the whole			
		system. This			
		system allows the authorized person to know			
		the fill level			
		of each garbage bin in a locality or city at all			
		times, to give			
		a cost-effective and time-saving route to the			
		truck drivers.			

Idea / Solution description	The key research objectives are as follows: • In the proposed system, the received signal indicates
	the waste bin status at the monitoring
	and controlling system.
	• The proposed system would be able to
	automate the
	solid waste monitoring process and
	management of the
	overall collection process using IOT (Internet
	of Things).
	• In the proposed system, the received signal
	indicates
	the waste bin status at the monitoring
	and controlling system.
	• The proposed system would be able to
	automate the
	solid waste monitoring process and
	management of
	the overall collection process using IOT
	(Internet of
	Things).
Novelty / Uniqueness	The data gathered from the dumpsters will help
	reduce the timely pickup of the waste before
	they
	overload. Once the trash bin is ready to
	overflow, the
	collection centers are immediately alerted to
	send the
	pickup trucks emptying the filled bins. The
	route
	optimization helps to schedule the truck near the
	filled dumpster. This is the most effective way
	to
	prevent missing out on any pickup.
	prevent missing out on any pickup.

	•	Excellent Web world is an experienced IoT software
		and application company, where we have
Jun		helped our
		customers develop many IoT based systems,
		like smart switches, smart parking, smart
		helmet, etc.
		If you are willing to live in a smart city, we
		would be
		more than happy to create an IoT based waste
		management for smart city.
Bus	siness Model(Revenue Model)	Smart waste management technology
		improves
	1	the management of the city services by using
		in-built sensors where data analytics and
	1	technology together notifies the waste
		collectors, reduces the odor, and enhances the
		appearance of the bins in public areas. In
		addition, it helps improve the quality of life of
		the people. Solid Waste, comprising the
		Company's
		waste collection, transfer, recycling and
		resource
		recovery, and disposal services, which are operated
		and managed locally by the Company's various
		subsidiaries, which focus on distinct geographic
		areas
		and Corporate and Other, comprising the
		Company's
		other activities, including its development and
		operation of landfill gas-to- energy facilities in
		the
		INDIA, and its recycling brokerage services, as
		well as
		various corporate
		functions.

Scalabilityof the Solution	In this regard, smart city design is being
	increasingly
	researched and discussed around the world to
	solve this
	problem. Following this approach, this paper
	focused on
	the citizen's perspective and presented an
	efficient IoTbased
	real-time waste management model for
	improving
	urban living conditions. The proposed system
	uses sensors
	and communication technology, where real-
	time waste
	data is collected by smart bins, and 4,444
	citizens can
	access compartments scattered around the city
	to check
	availability online. sent to the platform.

3.4 Problem SolutionFit

Smart Waste Management System

*Team ID: PNT2022TMID2134*8

Framing Statements

Smart waste management system framing

The greatest problem regarding waste management in developing countries begins at the very for the problem regarding waste waste and an advantage of the problem regarding and collections, wastes and garbage's end up in the roads and surrounding. According to a report from Google research, the amount of waste generation in 2010 was the problem regarding to the problem regarding the problem regarding the regarding th

STEP 3

Ideas Problem Solution

Example ideas:

Reduce the number of bins required & DEcluttering and improving the street scene

Previously there were numerous initiatives on waste management and educating people to dispose waste properly, and as they failed to achieve significant results, we have figured out the scopes that could be develop. To solve this problem, we have designed a process that ensures proper disposal and efficient waste collection. The procedures we designed involves creative initiative that will inspire people to dump in designated area or bins, and innovative method by using Decreasing Time algorithm or DTA for monitoring garbage generation and collection of the garbage's.

4.REQUIREMENT ANALYSIS

4.1Functional Requirement:

Following are the functional requirements of the proposed solution.

FR	Functional Requirement	Sub Requirement (Story / Sub-Task)
No.	(Epic)	
FR-1	Product Installation	Trash bin installation of embedded
		components such as
		sensors and Raspberry Pi
FR-2	Pushing data to Database	Database Getting the sensor readings from the
		ultrasonic sensor
		and load cell
FR-3	User Interface	Storing the data in cloud for backup
		When the threshold level is reached,
		1. Notifies the user
		2. Sends the GPS location

4.2Non-functional Requirements:

Following are the non-functional requirements of the proposed solution.

FR No	Non-Functional	Non-Functional Requirement Description
NFR-1	Usability	The product is simple to use and install.
NFR-2	Security	All communication must use end to end encryption.
NFR-3	Reliability	The sensor data is monitored anytime and from anywhere on all devices.

NFR-4	Performance	The users are notified and get the location of bins in a very efficient way, which reduces human effort.
NFR-5	Availability	The data is monitored via a web app and notified 24/7 whenever the threshold level is reached
NFR-6	Scalability	Capable of incorporating a large number of garbage sensors.

•

5.PROJECT DESIGN

5.1Data Flow Diagrams:

5.2Solution & TechnicalArchitecture:

5.3User Stories:

6.PROJECT PLANNINGAND SCHEDULING

6.1Sprint Planning& Estimation:

Sprint	Functional	User	User	Story	Priority	Team
	Requirement	Story	Story/Task	Points		Members
	(Epic)	Number				
Sprint-	Login	USN-1	We will	20	High	somasundrai
1			provide user			
			ID and			
			password			
			for all the			
			employees			
			and manage			
			them. Here			
			we			
			complete			
			the work of			
			a user. We			
			will monitor			
			dust bin			
			level. If the			
			dust bins are			
			filled, we			
			will post the			
			location and			
			garbage ID			
			to the trash			
			truck. Here			
			we			
			complete			
			the work of			
			a co-admin.			

Sprint-2	Dashboard	USN-2	We will follow the route sent by co-admin to reach the filled dustbin. Here we complete the work of a truck driver.	20	Low	Kishore kumar
Sprint-3	Dashboard	USN-3	We will collect all the garbage from dust bin and load it into garbage trucks and send it to the landfill. Here we complete the work of a waste collector.	20	Medium	Gokila
Sprint-4	Dashboard	USN-4	We will monitor the process. Here we complete the work of a municipal authority.	20	High	Behanraj

<u>6.2Sprint Delivery Schedule:</u>

Project Tracker, Velocity & Burn down Chart:

Sprint	Total	Duration	Sprint	Sprint End	Story Points	Sprint
	Story		Start	Date	Completed	Release
	Point		Date	(Planned)	(as on	Date
					Planned	(Actual)
					End Date)	
Sprint-	20	6 Days	21 Oct	27 Oct 2022	20	27 Oct
1			2022			2022
Sprint-	20	6 Days	28 Oct	04 Nov 2022	20	04 Nov
2			2022			2022
Sprint-	20	6 Days	08 Nov	14 Nov 2022	20	14 Nov
3			2022			2022
Sprint-	20	6 Days	15 Nov	21 Nov 2022	20	21 Nov
4			2022			2022

7.CODING AND SOLUTIONING

7.1Feature 1(Node Red Output)

7.2 Feature

Python code is developed and then tested whether the code is generating random sensor data or not

8.ADVANTAGES AND DISADVANTAGES

Advantages:

- a. Practice is highly lucrative
- b. Keeps the environment clean and fresh
- c. Saves the Earth and conserves energy

d. Reduces environmental pollution

Disadvantages:

- a. Process is not always costeffective
- b. The resultant product has a short life
- c. Needs More Global Buy-In
- d. The sites are often dangerous

9..CONCLUSION

Smart waste management is about using technology and data to create a more efficient waste industry. Based on IoT (Internet of Things) technology, smart waste management aims to optimize resource allocation, reduce running costs, and increase the sustainability of waste services. The use of environmental management tools allows institutions to anticipate and to avoid problems in a proactive rather than reactive way. They assist with analysis and reporting of performance and with day-to-day management, which requires timely feedback to make appropriate adjustments. In the past we have seen environmental movements bringing positive changes to the nation. But with the increase in population and demands of the consumers and the main focus of the governments engaging in economic and military development in the country, the environment factor has been largely ignored.

10.FUTURE SCOPE

Future of Solid Waste Disposal & Management in India

_

There are four tiers to waste management to reduce its environmental impactTotal of approximately 143,449 MT of municipal waste is generated daily. However, only 35,062 tons of waste is treated. A report from MNRE says that waste generation is expected to reach 300 million tons annually by the year 204: pollution prevention and source reduction; reuse or redistribution of unwanted, surplus materials; treatment, reclamation, and recycling of materials within the waste; and disposal through incineration, treatment, or land burial.Recycling e-waste also helps recover precious metals like gold, silver, cobalt, etc. This is especially useful for India as it has to depend on other countries to meet its metal requirements. And as a bonus, recycled metals are also 2 to 10 times more energy-efficient than metals smelted from virgin ore.