Mountain grassland dynamics: integrating phenotypic plasticity in a new agent-based model

Ph.D. defence of

Clément Viguier

realised under the supervision of

Björn Reineking

at IRSTEA Grenoble - LESSEM

Uta Berger

Technische Universitat Dresden

Rapporteur

Marie-Laure Navas

Montpellier SUPAGRO

Rapporteur

Annabel Porte

INRA – Université de Bordeaux

Examinatrice

François Munoz

LECA – Université Grenoble Alpes

Examinateur

Introduction

From context to questions

Mountain grasslands provide services

Various and depends on the properties of the community

Assessing grassland ecosystem services

Intra-specific variability matters and impacts the community responses

Variance decomposition into the different levels. From Albert and al. 2010.

Up to 40% of the total variability of some traits.

Strong impact on community response

Should be considered in:

- ES assessments

- Dynamic models

The phenotypic plasticity: one source of variation

Phenotypic plasticity

The phenotypic plasticity: one source of variation

Phenotypic plasticity

Rapid response to driver variations

Often overlooked because hard to study in empirical experiments

Mechanistic models to understand

Explicit link with drivers

Understanding by explaining

Emerging behaviour

Experiment at low cost

How does phenotypic plasticity impact grassland community properties? Species diversity and

Introduction

dominant strategies

How model diverse plant communities integrating phenotypic plasticity?

How does phenotypic plasticity impact grassland community properties?

Concepts

From ecological concepts to the model MountGrass

Keys concepts

Niche and variability

Competition for resources

Strategy trade-offs

Niche & variability

Fit of a species under specific environmental conditions

Variability promotes coexistence

True for spatial and temporal variability

Competition for resources

Main plant interaction mechanism

Shapes communities by affecting the realised niches

Depends on plant strategies

Leaf Economic Spectrum

Plant strategies are constrained

→ Dimension reduction

Continuum of plant strategies

Build a strategy space

Depends on allocation

Strategy trade-offs

P. Reich (1992)

The model MountGrass

MountGrass' processes

Response to drivers: physiological processes.

Above and belowground competition: light and water cycles.

Strategies: carbon allocation trade-offs.

Space & time: the individual plant scale

Individual-based model spatialy explicit: explicit competition

Plant carbon pools and allocation trade-offs

6 vegetative pools

3 dimensions:

- Root:shoot ratio
- Prop. active in shoot
- Prop. active in root

Allocation trade-offs

→ strategic trade-offs

Allocation trade-off into strategic trade-off

Phenotypes and strategies

Root:Shoot

Phenotypes and strategies

Each point is a valid strategy

Root:Shoot

sample diverse strategies in a continuous space

Phenotypes and strategies

Root:Shoot

Plasticity allows plant to move within this closed space, but it needs rules.

Plasticity: the functional equilibrium

Objective function: root activity = shoot activity

Plastic dimension: Root:Shoot ratio

Assumption: tomorrow same as today

« fixed-equilibrium »

= changes in Root:Shoot only

Results

Individual- and community-level effects of plasticity

111 days fixed T° & irradiance

12*12*90 cm pots

Parameter filtering

1 parameter set = 31 values

31 parameters
Pot growth patterns
in 2 treatments of
watering

Accepted sets

Simulation sets

→ Selection of a subset of parameter sets for simulations

Trend from multiple simulations

Individual-level simulations

How does plasticity affect community response to spatial and temporal variability?

Individual growth along an availability gradient (spatial)

Individual growth along an variability gradient (temporal)

1 resource: water → observe the effect of plasticity on biomass and optimum root strategy (PAR)

Optimum strategy along a water availability gradient

- No shift in best strategy
- No change in maximum biomass

→No shift in the dominant species

Optimum strategy along a water availability gradient

Proportion of species with high performances along a water availability gradient

- Reduction of growth differences
- → Niche widening

Proportion of species with high performances along a water availability gradient

Niche widening in homogeneous conditions

Plasticity

→ increases relative biomass in non optimum conditions

Potential niche of best species

- Changes in dominant strategy in favour of exploitative species
- Reduction of growth differences
- Increase of relative BM

Optimum strategy along a water variability gradient

- Changes in dominant strategy in favour of exploitative species
- Reduction of growth differences
- Increase of relative BM

- Asymmetric gain (+exploitative strategies)
- → Niche widening

Optimum strategy along a water variability gradient

Consequences at the community level?

Niche widening = reduction of abiotic filtering + reduction of fitness differences

Consequences at the community level?

Niche widening = reduction of abiotic filtering

higher potential species diversity

Asymmetric gain

 Competitive exclusion by exploitative species?

100*100cm plots

6 sites: variable T°, prec. & irradiance

Community-level simulations

Real conditions of variability (weather data for 6 sites) + explicit competitive interactions

- Long term simulations (300 years)
- 12 stable parameter sets (reproducing individual after 50 years in non plastic conditions)
- 400 different phenotypes
- 6 sites: meta-community

Median species abundance per rank

Effects of plasticity on species diversity

Lower abundance of the dominant species Higher species diversity

Median species abundance per rank

Effects of plasticity on species diversity

Lower abundance of the dominant species Higher species diversity

Niche widening > asymmetric gain = better niche partitioning

A shift in meta-community structure?

Species diversity structure

Shift in diversity structure:

- Less distinct site communities
- Richer site communities

41

A shift in meta-community structure

More species → abundance variations but no composition shifts

A shift in meta-community structure

More species → abundance variations but no composition shifts

Community composition for 2 sites

Results summary

Niche widening

Availability gradient

Assymetric gain in favour of exploitative species = loose of sensitivity to resource variability

Variability gradient

Niche widening > asymmetric gain

Plasticity alters meta-community structure

Discussion

Impact on community dynamics and community modelling

How plasticity favours exploitative species?

Gain & costs as a function of the proportion of active tissues

Exploitive = lower efficiency, but higher exchagne rate

→ Sensitivity to unbalance functioning

Plasticity ensures balance and negates the sensitivity

Plasticity is a process integrated at the scale of the whole individual

Transfer to real systems?

There is not switch in reality

Is plasticity as important as it seems for diversity?

- → Cost of plasticity
- → Sampling effect

Response to specific disturbances:

Dialogue between models & empirical experiments

MODEL

Plasticity as a structuring process

Experiment with multiple scenarios

Plasticity as a trait

EMPIRICAL

Plastic dimensions & responses

Cost of plasticity

Phenotypic flexibility

Mean specific trait along an elevation gradient

Discussion 48

Conclusions & Outlook

A consistent framework for a better understanding of plasticity

Modelling conclusions:

A diverse community framework

Diversity in strategies and species Plasticity in coherent framework Plasticity as a strategy (not explored)

but...

A lot of parameters: needs better calibration and sampling High functional convergence

Conclusion 50

Ecological conclusions:

A better undertanding of plasticity

Better understanding as an integrated growth process not just a response function

Plasticity impacts diversity via multiple mechanism at multiple scales

Plasticity is rarely symmetric (niche widening promotes subordinates species, assymetric gain favours certain strategies)

Conclusion 51

To go beyond

- Better calibration and strategy sampling to confirm results
- Explore the plasticity as a strategy
- Climat, management and perturbation scenarios

Thank you!

Bonus!

Bonus 54

