Bias-Variance Tradeoff in Numerical Solution to the Poisson Equation

5th Workshop on Cognition and Control Gainesville, Florida, Jan 13-14, 2017

Amirhossein Taghvaei Joint work with P. G. Mehta and S. P. Meyn

Coordinated Science Laboratory University of Illinois at Urbana-Champaign

Jan 13, 2017

Numerical solution to the Poisson equation Problem formulation

Poisson equation:
$$-\frac{1}{\rho(x)}\nabla\cdot(\rho(x)\nabla\phi(x))=h(x)-\hat{h}$$

$$\int_{\mathbb{R}^d}\phi(x)\rho(x)\,\mathrm{d}x=0$$

$$ho: \mathbb{R}^d o \mathbb{R}^+$$
 (prob. density)

$$lacksquare h: \mathbb{R}^d o \mathbb{R}$$
 (given function), $\hat{h}:=\int h(x)
ho(x) \,\mathrm{d}x$

$$\phi: \mathbb{R}^d \to \mathbb{R}$$
 (solution)

Problem

Given:
$$\{X^1,\ldots,X^N\}\stackrel{\text{i.i.d}}{\sim} \rho$$

Find:
$$\{\nabla\phi(X^1),\ldots,\nabla\phi(X^N)\}$$
 (approximately)

Almost like a statistical learning problem

R. S. Laugesen, P. G. Mehta, S. P. Meyn, and M. Raginsky. Poisson Equation in Nonlinear Filtering. SICON, 2015

Numerical solution to the Poisson equation Problem formulation

Poisson equation:
$$-\frac{1}{\rho(x)}\nabla\cdot(\rho(x)\nabla\phi(x))=h(x)-\hat{h}$$

$$\int_{\mathbb{R}^d}\phi(x)\rho(x)\,\mathrm{d}x=0$$

$$ho: \mathbb{R}^d o \mathbb{R}^+$$
 (prob. density)

$$h: \mathbb{R}^d \to \mathbb{R}$$
 (given function), $\hat{h}:=\int h(x)\rho(x)\,\mathrm{d}x$

$$\phi: \mathbb{R}^d \to \mathbb{R}$$
 (solution)

Problem:

Given:
$$\{X^1,\ldots,X^N\} \stackrel{\text{i.i.d}}{\sim} \rho$$

Find:
$$\{\nabla \phi(X^1), \dots, \nabla \phi(X^N)\}$$
 (approximately)

Almost like a statistical learning problem

R. S. Laugesen, P. G. Mehta, S. P. Meyn, and M. Raginsky. Poisson Equation in Nonlinear Filtering. SICON, 2015

Numerical solution to the Poisson equation Problem formulation

Poisson equation:
$$-\frac{1}{\rho(x)}\nabla\cdot(\rho(x)\nabla\phi(x))=h(x)-\hat{h}$$

$$\int_{\mathbb{R}^d}\phi(x)\rho(x)\,\mathrm{d}x=0$$

$$ho: \mathbb{R}^d o \mathbb{R}^+$$
 (prob. density)

$$h: \mathbb{R}^d \to \mathbb{R}$$
 (given function), $\hat{h}:=\int h(x)\rho(x)\,\mathrm{d}x$

$$\phi: \mathbb{R}^d \to \mathbb{R}$$
 (solution)

Problem:

Given:
$$\{X^1,\ldots,X^N\}\stackrel{\text{i.i.d}}{\sim} \rho$$

Find:
$$\{\nabla \phi(X^1), \dots, \nabla \phi(X^N)\}$$
 (approximately)

Almost like a statistical learning problem

R. S. Laugesen, P. G. Mehta, S. P. Meyn, and M. Raginsky. Poisson Equation in Nonlinear Filtering. SICON, 2015

Feedback Particle Filter Generalization of the Kalman Filter

Kalman Filter:

$$dX_t = AX_t dt + dB_t$$
$$dZ_t = HX_t dt + dW_t$$

$$egin{aligned} \mathsf{P}(X_t|\mathcal{Z}_t) &= \mathsf{Gaussian} \ N(\hat{X}_t, \Sigma_t), \ & \mathrm{d}\hat{X}_t = A\hat{X}_t \, \mathrm{d}t + \mathsf{K}_t (\, \mathrm{d}Z_t - H\hat{X}_t \, \mathrm{d}t) \ & \frac{\mathrm{d}\Sigma_t}{\mathrm{d}t} = \dots ext{(Riccati equation)} \end{aligned}$$

Feedback Particle Filter:

$$dX_t = a(X_t) dt + dB_t$$
$$dZ_t = h(X_t) dt + dW_t$$

$$P(X_t|\mathcal{Z}_t) \approx \text{empirical dist. } \{X^1, \dots, X^N\}$$

$$+ \mathsf{K}_t(X_t^i) \circ (dZ_t - \frac{h(X_t^i) + \hat{h}_t}{2} dt)$$

Challenge: Compute the gain function $K_t := \nabla \phi$ from Poisson eq.

T. Yang, P. G. Mehta, and S. P. Meyn. feedback particle filter, TAC, 2013

T. Yang, R. S. Laugesen, P. G. Mehta, and S. P. Meyn. Multivariable feedback particle filter, Automatica, 2016

Feedback Particle Filter Generalization of the Kalman Filter

Kalman Filter:

$$dX_t = AX_t dt + dB_t$$
$$dZ_t = HX_t dt + dW_t$$

$$\begin{split} \mathsf{P}(X_t|\mathcal{Z}_t) &= \mathsf{Gaussian} \ N(\hat{X}_t, \Sigma_t), \\ \mathrm{d}\hat{X}_t &= A\hat{X}_t \, \mathrm{d}t + \mathsf{K}_t (\, \mathrm{d}Z_t - H\hat{X}_t \, \mathrm{d}t) \\ \frac{\mathrm{d}\Sigma_t}{\mathrm{d}t} &= \dots \text{(Riccati equation)} \end{split}$$

Feedback Particle Filter:

$$dX_t = a(X_t) dt + dB_t$$
$$dZ_t = h(X_t) dt + dW_t$$

$$\mathsf{P}(X_t|\mathcal{Z}_t)pprox \mathsf{empirical} \; \mathsf{dist.} \; \{X^1,\ldots,X^N\}, \ \mathrm{d}X_t^i = a(X_t^i) \, \mathrm{d}t + \, \mathrm{d}B_t^i$$

$$+ \mathsf{K}_t(X_t^i) \circ (dZ_t - \frac{h(X_t^i) + \hat{h}_t}{2} dt)$$

Challenge: Compute the gain function $K_t := \nabla \phi$ from Poisson eq.

T. Yang, P. G. Mehta, and S. P. Meyn. feedback particle filter, TAC, 2013

T. Yang, R. S. Laugesen, P. G. Mehta, and S. P. Meyn. Multivariable feedback particle filter, Automatica, 2016

Feedback Particle Filter Generalization of the Kalman Filter

Kalman Filter:

$$dX_t = AX_t dt + dB_t$$
$$dZ_t = HX_t dt + dW_t$$

$$\begin{split} \mathsf{P}(X_t|\mathcal{Z}_t) &= \mathsf{Gaussian} \ N(\hat{X}_t, \Sigma_t), \\ \mathrm{d}\hat{X}_t &= A\hat{X}_t \, \mathrm{d}t + \mathsf{K}_t (\, \mathrm{d}Z_t - H\hat{X}_t \, \mathrm{d}t) \\ \frac{\mathrm{d}\Sigma_t}{\mathrm{d}t} &= \dots \big(\mathsf{Riccati} \ \mathsf{equation} \big) \end{split}$$

Feedback Particle Filter:

$$dX_t = a(X_t) dt + dB_t$$
$$dZ_t = h(X_t) dt + dW_t$$

$$\mathsf{P}(X_t|\mathcal{Z}_t) \approx \mathsf{empirical\ dist.}\ \{X^1,\ldots,X^N\},$$

$$dX_t^i = a(X_t^i) dt + dB_t^i$$

$$+ \mathsf{K}_t(X_t^i) \circ (dZ_t - \frac{h(X_t^i) + \hat{h}_t}{2} dt)$$

Challenge: Compute the gain function $K_t := \nabla \phi$ from Poisson eq.

T. Yang, P. G. Mehta, and S. P. Meyn. feedback particle filter, TAC, 2013

T. Yang, R. S. Laugesen, P. G. Mehta, and S. P. Meyn. Multivariable feedback particle filter, Automatica, 2016

Poisson equation Examples

Gaussian distribution linear h

$$\nabla \phi(x) = {\rm constant} \quad {\rm (Kalman \ gain)}$$

Bimodal distribution linear h

$$\nabla \phi(x) = \dots$$
 (Nonlinear gain)

Poisson equation Examples

Gaussian distribution linear h

$$\nabla \phi(x) = \text{constant}$$
 (Kalman gain)

Bimodal distribution linear h

$$\nabla \phi(x) = \dots$$
 (Nonlinear gain)

Literature Review

Poisson equation and weighted Laplacian

$$\mbox{Poisson equation:} \quad -\frac{1}{\rho}\nabla\cdot(\rho\nabla\phi) = h - \hat{h}$$

$$\begin{array}{ll} \textbf{Poisson equation:} & -\frac{1}{\rho}\nabla\cdot(\rho\nabla\phi)=h-\hat{h} \\ \\ \textbf{Weighted Laplacian:} & \Delta_{\rho}\phi:=\frac{1}{\rho}\nabla\cdot(\rho\nabla\phi)=\Delta\phi+\nabla\log\rho\cdot\nabla\phi \\ \end{array}$$

PDF

- Markov Diffusion operators [D. Bakry, et. al. 2013]
- Heat kernels [A. Grigoryan, 2009]

Stochastic analysis

Simulation and optimization theory for Markov models [S. Meyn, R. Tweedie, 2012]

Statistical learning

- Nonlinear dimensionality reduction [M. Belkin, 2003]
- Diffusion maps [R. Coifman, S. Lafon, 2006]
- Spectral clustering [M. Hein, et. al. 2006]

P) Weak formulation: (Galerkin)

$$\langle \nabla \phi, \nabla \psi \rangle = \langle h - \hat{h}, \psi \rangle, \quad \forall \psi \in H^1(\mathbb{R}^d, \rho)$$

where $\langle f, g \rangle := \int f(x)g(x)\rho(x)\,\mathrm{d}x$

S) Semigroup formulation: (kernel-based)

$$\phi = P\phi + \tilde{h}$$

where $P:=e^{\epsilon\Delta_{
ho}}$ and $\tilde{h}:=\int_{0}^{t}e^{s\Delta_{
ho}}(h-\hat{h})\,\mathrm{d}s$

3) Variational formulation: (Neural net ?)

$$\min_{\phi \in H_0^1(\mathbb{R}^d,\rho)} \mathsf{E}\left[\frac{1}{2}|\nabla \phi(X)|^2 - \phi(X)(h(X) - \hat{h})\right]$$

P) Weak formulation: (Galerkin)

$$\langle \nabla \phi, \nabla \psi \rangle = \langle h - \hat{h}, \psi \rangle, \quad \forall \psi \in H^1(\mathbb{R}^d, \rho)$$

where
$$\left\langle f,g\right\rangle :=\int f(x)g(x)\rho(x)\,\mathrm{d}x$$

S) Semigroup formulation: (kernel-based)

$$\phi = P\phi + \tilde{h}$$

where
$$P:=e^{\epsilon\Delta_\rho}$$
 and $\tilde{h}:=\int_0^t e^{s\Delta_\rho}(h-\hat{h})\,\mathrm{d}s$

3) Variational formulation:

$$\min_{\phi \in H^1_0(\mathbb{R}^d,\rho)} \mathsf{E}\left[\frac{1}{2}|\nabla \phi(X)|^2 - \phi(X)(h(X) - \hat{h})\right]$$

P) Weak formulation: (Galerkin)

$$\langle \nabla \phi, \nabla \psi \rangle = \langle h - \hat{h}, \psi \rangle, \quad \forall \psi \in H^1(\mathbb{R}^d, \rho)$$

where
$$\langle f, g \rangle := \int f(x)g(x)\rho(x) \,\mathrm{d}x$$

S) Semigroup formulation: (kernel-based)

$$\phi = P\phi + \tilde{h}$$

where
$$P:=e^{\epsilon\Delta_\rho}$$
 and $\tilde{h}:=\int_0^t e^{s\Delta_\rho}(h-\hat{h})\,\mathrm{d}s$

3) Variational formulation

$$\min_{\phi \in H^1_0(\mathbb{R}^d,\rho)} \mathsf{E}\left[\frac{1}{2}|\nabla \phi(X)|^2 - \phi(X)(h(X) - \hat{h})\right]$$

P) Weak formulation: (Galerkin)

$$\langle \nabla \phi, \nabla \psi \rangle = \langle h - \hat{h}, \psi \rangle, \quad \forall \psi \in H^1(\mathbb{R}^d, \rho)$$

where
$$\langle f, g \rangle := \int f(x)g(x)\rho(x) \,\mathrm{d}x$$

S) Semigroup formulation: (kernel-based)

$$\phi = P\phi + \tilde{h}$$

where
$$P:=e^{\epsilon\Delta_{
ho}}$$
 and $\tilde{h}:=\int_0^t e^{s\Delta_{
ho}}(h-\hat{h})\,\mathrm{d}s$

3) Variational formulation: (Neural ne

$$\min_{\phi \in H^1_0(\mathbb{R}^d,\rho)} \mathsf{E}\left[\frac{1}{2}|\nabla \phi(X)|^2 - \phi(X)(h(X) - \hat{h})\right]$$

P) Weak formulation: (Galerkin)

$$\langle \nabla \phi, \nabla \psi \rangle = \langle h - \hat{h}, \psi \rangle, \quad \forall \psi \in H^1(\mathbb{R}^d, \rho)$$

where
$$\langle f, g \rangle := \int f(x)g(x)\rho(x) \,\mathrm{d}x$$

S) Semigroup formulation: (kernel-based)

$$\phi = P\phi + \tilde{h}$$

where
$$P:=e^{\epsilon\Delta_{
ho}}$$
 and $\tilde{h}:=\int_{0}^{t}e^{s\Delta_{
ho}}(h-\hat{h})\,\mathrm{d}s$

3) Variational formulation

$$\min_{\phi \in H_0^1(\mathbb{R}^d, \rho)} \mathsf{E}\left[\frac{1}{2} |\nabla \phi(X)|^2 - \phi(X)(h(X) - \hat{h})\right]$$

P) Weak formulation: (Galerkin)

$$\langle \nabla \phi, \nabla \psi \rangle = \langle h - \hat{h}, \psi \rangle, \quad \forall \psi \in H^1(\mathbb{R}^d, \rho)$$

where $\langle f, g \rangle := \int f(x)g(x)\rho(x) \,\mathrm{d}x$

S) Semigroup formulation: (kernel-based)

$$\phi = P\phi + \tilde{h}$$

where $P:=e^{\epsilon\Delta_{
ho}}$ and $\tilde{h}:=\int_{0}^{t}e^{s\Delta_{
ho}}(h-\hat{h})\,\mathrm{d}s$

3) Variational formulation: (Neural net ?)

$$\min_{\phi \in H_0^1(\mathbb{R}^d,\rho)} \mathsf{E}\left[\frac{1}{2}|\nabla \phi(X)|^2 - \phi(X)(h(X) - \hat{h})\right]$$

P) Weak formulation: (Galerkin)

$$\langle \nabla \phi, \nabla \psi \rangle = \langle h - \hat{h}, \psi \rangle, \quad \forall \psi \in H^1(\mathbb{R}^d, \rho)$$

where $\langle f, g \rangle := \int f(x)g(x)\rho(x) dx$

S) Semigroup formulation: (kernel-based)

$$\phi = P\phi + \tilde{h}$$

where $P:=e^{\epsilon\Delta_{
ho}}$ and $\tilde{h}:=\int_{0}^{t}e^{s\Delta_{
ho}}(h-\hat{h})\,\mathrm{d}s$

3) Variational formulation: (Neural net ?)

$$\min_{\phi \in H_0^1(\mathbb{R}^d,\rho)} \mathsf{E}\left[\frac{1}{2}|\nabla \phi(X)|^2 - \phi(X)(h(X) - \hat{h})\right]$$

Strong form:

$$-\frac{1}{\rho(x)}\nabla\cdot(\rho(x)\nabla\phi(x))=h(x)-\hat{h}$$

Weak form

$$\langle \nabla \phi, \nabla \psi \rangle = \langle h - \hat{h}, \psi \rangle, \quad \forall \psi \in H^1(\mathbb{R}^d, \rho)$$

where $\langle f, g \rangle := \int f(x)g(x)\rho(x) dx$

Galerkin approximation:

$$\langle \nabla \phi^{(M)}, \nabla \psi \rangle = \langle h - \hat{h}, \psi \rangle, \quad \forall \psi \in S$$

where $S = \mathsf{span}\{\psi_1, \dots, \psi_M\}$

Empirical approximation

$$\frac{1}{N} \sum_{i=1}^{N} \nabla \phi^{(M)}(X^i) \cdot \nabla \psi(X^i) = \frac{1}{N} \sum_{i=1}^{N} (h(X^i) - \hat{h}) \psi(X^i), \quad \forall \psi \in S$$

Strong form:

$$-\frac{1}{\rho(x)}\nabla\cdot(\rho(x)\nabla\phi(x))=h(x)-\hat{h}$$

Weak form:

$$\langle \nabla \phi, \nabla \psi \rangle = \langle h - \hat{h}, \psi \rangle, \quad \forall \psi \in H^1(\mathbb{R}^d, \rho)$$

where
$$\langle f, g \rangle := \int f(x)g(x)\rho(x) dx$$

Galerkin approximation:

$$\langle \nabla \phi^{(M)}, \nabla \psi \rangle = \langle h - \hat{h}, \psi \rangle, \quad \forall \psi \in S$$

where $S = \operatorname{span}\{\psi_1, \dots, \psi_M\}$

Empirical approximation

$$\frac{1}{N} \sum_{i=1}^{N} \nabla \phi^{(M)}(X^i) \cdot \nabla \psi(X^i) = \frac{1}{N} \sum_{i=1}^{N} (h(X^i) - \hat{h}) \psi(X^i), \quad \forall \psi \in S$$

Strong form:

$$-\frac{1}{\rho(x)}\nabla \cdot (\rho(x)\nabla \phi(x)) = h(x) - \hat{h}$$

Weak form:

$$\langle \nabla \phi, \nabla \psi \rangle = \langle h - \hat{h}, \psi \rangle, \quad \forall \psi \in H^1(\mathbb{R}^d, \rho)$$

where
$$\langle f, g \rangle := \int f(x)g(x)\rho(x) dx$$

Galerkin approximation:

$$\langle \nabla \phi^{(M)}, \nabla \psi \rangle = \langle h - \hat{h}, \psi \rangle, \quad \forall \psi \in S$$

where
$$S = \mathsf{span}\{\psi_1, \dots, \psi_M\}$$

Empirical approximation

$$\frac{1}{N} \sum_{i=1}^{N} \nabla \phi^{(M)}(X^i) \cdot \nabla \psi(X^i) = \frac{1}{N} \sum_{i=1}^{N} (h(X^i) - \hat{h}) \psi(X^i), \quad \forall \psi \in S$$

where $X^{i} \sim \rho$

Strong form:

$$-\frac{1}{\rho(x)}\nabla\cdot(\rho(x)\nabla\phi(x)) = h(x) - \hat{h}$$

Weak form:

$$\langle \nabla \phi, \nabla \psi \rangle = \langle h - \hat{h}, \psi \rangle, \quad \forall \psi \in H^1(\mathbb{R}^d, \rho)$$

where
$$\langle f, g \rangle := \int f(x)g(x)\rho(x) \,\mathrm{d}x$$

Galerkin approximation:

$$\langle \nabla \phi^{(M)}, \nabla \psi \rangle = \langle h - \hat{h}, \psi \rangle, \quad \forall \psi \in S$$

where
$$S = \mathsf{span}\{\psi_1, \dots, \psi_M\}$$

Empirical approximation

$$\frac{1}{N} \sum_{i=1}^{N} \nabla \phi^{(M)}(X^i) \cdot \nabla \psi(X^i) = \frac{1}{N} \sum_{i=1}^{N} (h(X^i) - \hat{h}) \psi(X^i), \quad \forall \psi \in S$$

Galerkin Approximation Algorithm

- Select basis functions $\{\psi_1, \dots, \psi_M\}$
- Express the approximate solution as

$$\phi^{(M,N)}(x) = \sum_{m=1}^{M} c_m \psi_m(x)$$

Obtain $c = (c_1, \ldots, c_M)$ by solving

$$Ac = b$$

where

$$A_{ml} = \left\langle \nabla \psi_m, \nabla \psi_l \right\rangle \approx \frac{1}{N} \sum_{i=1}^N \nabla \psi_m(X^i) \cdot \nabla \psi_l(X^i)$$
$$b_m = \left\langle \psi_m, h \right\rangle \approx \frac{1}{N} \sum_{i=1}^N \psi_m(X^i) h(X^i) - \hat{h})$$

Galerkin Approximation Numerical result

Issues

- Choice of basis functions
- Singularity of A
- lacktriangle Computationally scales with $O(Nd^p)$

Galerkin Approximation Numerical result

Issues:

- Choice of basis functions
- \blacksquare Singularity of A
- Computationally scales with $O(Nd^p)$

Special case: The basis functions are eigenfunctions of Δ_{ρ}

$$\underbrace{\mathsf{E}\left[\|\nabla\phi - \nabla\phi^{(M,N)}\|_{L^2}\right]}_{\mathsf{Total\ error}} \leq \underbrace{\frac{1}{\sqrt{\lambda_M}}\|h - \Pi_S h\|_{L^2}}_{\mathsf{Bias}} + \underbrace{\frac{1}{\sqrt{N}}\|h\|_{\infty}\sqrt{\sum_{m=1}^{M}\frac{1}{\lambda_m}}}_{\mathsf{Variance}}$$

Poisson equation:
$$-\Delta_{\rho}\phi = h - \hat{h}$$

Semigroup identity:
$$e^{\epsilon\Delta_{
ho}}=I+\int_0^\epsilon e^{s\Delta_{
ho}}\Delta_{
ho}\,\mathrm{d}s$$

Semigroup formulation:

$$\phi = e^{\epsilon \Delta_{\rho}} \phi + \tilde{h}$$

where
$$\tilde{h} := \int_0^\epsilon e^{s\Delta_\rho} (h - \hat{h}) \,\mathrm{d}s$$

Kernel representation:

$$\phi(x) = \int \tilde{k}_{\epsilon}(x, y)\phi(y)\rho(y) \,dy + \tilde{h}(x)$$

Empirical approximation

$$\phi(x) = \frac{1}{N} \sum_{i=1}^{N} \tilde{k}_{\epsilon}(x, X^{i}) \phi(X^{i}) + \tilde{h}(x)$$

Poisson equation:
$$-\Delta_{\rho}\phi = h - \hat{h}$$

Semigroup identity:
$$e^{\epsilon \Delta_{\rho}} = I + \int_0^{\epsilon} e^{s \Delta_{\rho}} \Delta_{\rho} \, \mathrm{d}s$$

Semigroup formulation:

$$\phi = e^{\epsilon \Delta_{\rho}} \phi + \tilde{h}$$

where
$$\tilde{h}:=\int_0^\epsilon e^{s\Delta\rho}(h-\hat{h})\,\mathrm{d}s$$

Kernel representation:

$$\phi(x) = \int \tilde{k}_{\epsilon}(x, y)\phi(y)\rho(y) \,dy + \tilde{h}(x)$$

Empirical approximation

$$\phi(x) = \frac{1}{N} \sum_{i=1}^{N} \tilde{k}_{\epsilon}(x, X^{i}) \phi(X^{i}) + \tilde{h}(x)$$

Poisson equation: $-\Delta_{\rho}\phi = h - \hat{h}$

Semigroup identity: $e^{\epsilon \Delta_{\rho}} = I + \int_0^{\epsilon} e^{s \Delta_{\rho}} \Delta_{\rho} \, \mathrm{d}s$

Semigroup formulation:

$$\phi = e^{\epsilon \Delta_\rho} \phi + \tilde{h}$$

where $\tilde{h}:=\int_0^\epsilon e^{s\Delta_
ho}(h-\hat{h})\,\mathrm{d}s$

Kernel representation:

$$\phi(x) = \int \tilde{k}_{\epsilon}(x, y)\phi(y)\rho(y) \,dy + \tilde{h}(x)$$

Empirical approximation:

$$\phi(x) = \frac{1}{N} \sum_{i=1}^{N} \tilde{k}_{\epsilon}(x, X^{i}) \phi(X^{i}) + \tilde{h}(x)$$

Poisson equation:
$$-\Delta_{\rho}\phi = h - \hat{h}$$

Semigroup identity:
$$e^{\epsilon \Delta_{\rho}} = I + \int_0^{\epsilon} e^{s \Delta_{\rho}} \Delta_{\rho} \, \mathrm{d}s$$

Semigroup formulation:

$$\phi = e^{\epsilon \Delta_\rho} \phi + \tilde{h}$$

where
$$\tilde{h}:=\int_0^\epsilon e^{s\Delta\rho}(h-\hat{h})\,\mathrm{d}s$$

Kernel representation:

$$\phi(x) = \int \tilde{k}_{\epsilon}(x, y)\phi(y)\rho(y) \,dy + \tilde{h}(x)$$

Empirical approximation:

$$\phi(x) = \frac{1}{N} \sum_{i=1}^{N} \tilde{k}_{\epsilon}(x, X^{i}) \phi(X^{i}) + \tilde{h}(x)$$

But $\tilde{k}_{\epsilon}(x,y) = 0$

Poisson equation:
$$-\Delta_{\rho}\phi = h - \hat{h}$$

Semigroup identity:
$$e^{\epsilon \Delta_{\rho}} = I + \int_{0}^{\epsilon} e^{s \Delta_{\rho}} \Delta_{\rho} \, \mathrm{d}s$$

Semigroup formulation:

$$\phi = e^{\epsilon \Delta_\rho} \phi + \tilde{h}$$

where
$$ilde{h}:=\int_0^\epsilon e^{s\Delta
ho}(h-\hat{h})\,\mathrm{d}s$$

Kernel representation:

$$\phi(x) = \int \tilde{k}_{\epsilon}(x, y)\phi(y)\rho(y) dy + \tilde{h}(x)$$

Empirical approximation:

$$\phi(x) = \frac{1}{N} \sum_{i=1}^{N} \tilde{k}_{\epsilon}(x, X^{i}) \phi(X^{i}) + \tilde{h}(x)$$

But
$$\tilde{k}_{\epsilon}(x,y) = ?$$

Kernel-based Approximation

Special case: $\rho = 1$

$$e^{\epsilon \Delta} f(x) = \int g_{\epsilon}(x,y) f(y) \, \mathrm{d}y. \quad \text{(for all $\epsilon > 0$)}$$

where g_{ϵ} is the Gaussian kernel.

In general:

$$e^{\epsilon \Delta \rho} f(x) \approx \int \frac{1}{n_{\epsilon}(x)} \frac{g_{\epsilon}(x,y)}{\sqrt{\int g_{\epsilon}(y,z)\rho(z) \, \mathrm{d}z}} f(y) \rho(y) \, \mathrm{d}y := T_{\epsilon} f(x) \quad \text{(for } \epsilon \downarrow 0\text{)}$$

where n_{ϵ} is normalizing constant

Empirical apprximation

$$e^{\epsilon \Delta_{\rho}} f(x) \approx \sum_{j=1}^{N} \frac{1}{n_{\epsilon}^{(N)}(x)} \frac{g_{\epsilon}(x, X^{j})}{\sqrt{\frac{1}{N} \sum_{l=1}^{N} g_{\epsilon}(X^{j}, X^{l})}} f(X^{j}) := T_{\epsilon}^{(N)} f(x)$$

where $n_{\epsilon}^{(N)}$ is normalizing constant

R. Coifman, S. Lafon, Diffusion maps, *Applied and computational harmonic analysis*, 2006, M. Hein, J. Audibert, U. Von Luxburg, Convergence of graph Laplacians on random neighborhood graphs, *JLMR*, 2007

Kernel-based Approximation

Special case: $\rho = 1$

$$e^{\epsilon \Delta} f(x) = \int g_{\epsilon}(x,y) f(y) \, \mathrm{d}y. \quad \text{(for all $\epsilon > 0$)}$$

where g_{ϵ} is the Gaussian kernel.

In general:

$$e^{\epsilon \Delta_{\rho}} f(x) \approx \int \frac{1}{n_{\epsilon}(x)} \frac{g_{\epsilon}(x,y)}{\sqrt{\int g_{\epsilon}(y,z)\rho(z) \, \mathrm{d}z}} f(y)\rho(y) \, \mathrm{d}y := T_{\epsilon} f(x) \quad \text{(for } \epsilon \downarrow 0\text{)}$$

where n_{ϵ} is normalizing constant.

Empirical apprximation

$$e^{\epsilon \Delta_{\rho}} f(x) \approx \sum_{j=1}^{N} \frac{1}{n_{\epsilon}^{(N)}(x)} \frac{g_{\epsilon}(x, X^{j})}{\sqrt{\frac{1}{N} \sum_{l=1}^{N} g_{\epsilon}(X^{j}, X^{l})}} f(X^{j}) := T_{\epsilon}^{(N)} f(x)$$

where $n_{\epsilon}^{(N)}$ is normalizing constant

R. Coifman, S. Lafon, Diffusion maps, *Applied and computational harmonic analysis*, 2006, M. Hein, J. Audibert, U. Von Luxburg, Convergence of graph Laplacians on random neighborhood graphs, *JLMR*, 2007

Kernel-based Approximation

Special case: $\rho = 1$

$$e^{\epsilon \Delta} f(x) = \int g_{\epsilon}(x,y) f(y) \, \mathrm{d}y. \quad \text{(for all $\epsilon > 0$)}$$

where g_{ϵ} is the Gaussian kernel.

In general:

$$e^{\epsilon \Delta_{\rho}} f(x) \approx \int \frac{1}{n_{\epsilon}(x)} \frac{g_{\epsilon}(x,y)}{\sqrt{\int g_{\epsilon}(y,z)\rho(z) \, \mathrm{d}z}} f(y)\rho(y) \, \mathrm{d}y := T_{\epsilon} f(x) \quad \text{(for } \epsilon \downarrow 0\text{)}$$

where n_{ϵ} is normalizing constant.

Empirical apprximation:

$$e^{\epsilon \Delta_{\rho}} f(x) \approx \sum_{j=1}^{N} \frac{1}{n_{\epsilon}^{(N)}(x)} \frac{g_{\epsilon}(x, X^{j})}{\sqrt{\frac{1}{N} \sum_{l=1}^{N} g_{\epsilon}(X^{j}, X^{l})}} f(X^{j}) := T_{\epsilon}^{(N)} f(x)$$

where $n_{\epsilon}^{(N)}$ is normalizing constant.

R. Coifman, S. Lafon, Diffusion maps, *Applied and computational harmonic analysis*, 2006, M. Hein, J. Audibert, U. Von Luxburg, Convergence of graph Laplacians on random neighborhood graphs, *JLMR*, 2007

Exact solution:

$$\phi(x) = e^{\epsilon \Delta_{\rho}} \phi(x) + \tilde{h}(x)$$

where
$$\tilde{h}:=\int_0^\epsilon e^{s\Delta_
ho}(h-\hat{h})\,\mathrm{d}s$$

Approximation:

$$\phi_{\epsilon}^{(N)}(x) := T_{\epsilon}^{(N)} \phi_{\epsilon}^{(N)}(x) + \epsilon (h(x) - \hat{h}).$$

Numerics:

$$\Phi = \mathbf{T}\Phi + \epsilon(\mathbf{h} - \hat{h})$$

$$\Phi = (\Phi_{\epsilon}^{(N)}(X^1), \dots, \Phi_{\epsilon}^{(N)}(X^N))$$

$$\mathbf{T}_{ij} = \frac{1}{n_{\epsilon}(X^i)} \frac{g_{\epsilon}(X^i, X^j)}{\sqrt{\frac{1}{N} \sum_{l=1}^{N} g_{\epsilon}(X^i, X^l)}}$$
 (Markov matrix)

Gradeint

$$\nabla \phi_{\epsilon}^{(N)}(x) = \nabla (T_{\epsilon}^{(N)} \phi_{\epsilon}^{(N)})(x) + \epsilon \nabla h(x)$$

Exact solution:

$$\phi(x) = e^{\epsilon \Delta_{\rho}} \phi(x) + \tilde{h}(x)$$

where
$$\tilde{h}:=\int_0^\epsilon e^{s\Delta_
ho}(h-\hat{h})\,\mathrm{d}s$$

Approximation:

$$\phi_{\epsilon}^{(N)}(x) := T_{\epsilon}^{(N)} \phi_{\epsilon}^{(N)}(x) + \epsilon (h(x) - \hat{h}),$$

Numerics:

$$\Phi = \mathbf{T}\Phi + \epsilon(\mathbf{h} - \hat{h})$$

$$\Phi = (\Phi_{\epsilon}^{(N)}(X^1), \dots, \Phi_{\epsilon}^{(N)}(X^N))$$

$$\mathbf{T}_{ij} = \frac{1}{n_{\epsilon}(X^i)} \frac{g_{\epsilon}(X^i, X^j)}{\sqrt{\frac{1}{N} \sum_{l=1}^{N} g_{\epsilon}(X^i, X^l)}}$$
 (Markov matrix)

Gradeint:

$$\nabla \phi_{\epsilon}^{(N)}(x) = \nabla (T_{\epsilon}^{(N)} \phi_{\epsilon}^{(N)})(x) + \epsilon \nabla h(x)$$

Exact solution:

$$\phi(x) = e^{\epsilon \Delta_{\rho}} \phi(x) + \tilde{h}(x)$$

where
$$\tilde{h}:=\int_0^\epsilon e^{s\Delta_
ho}(h-\hat{h})\,\mathrm{d}s$$

Approximation:

$$\phi_{\epsilon}^{(N)}(x) := T_{\epsilon}^{(N)} \phi_{\epsilon}^{(N)}(x) + \epsilon (h(x) - \hat{h}),$$

Numerics:

$$\Phi = \mathbf{T}\Phi + \epsilon(\mathbf{h} - \hat{h})$$

Gradeint

$$\nabla \phi_{\epsilon}^{(N)}(x) = \nabla (T_{\epsilon}^{(N)} \phi_{\epsilon}^{(N)})(x) + \epsilon \nabla h(x)$$

Exact solution:

$$\phi(x) = e^{\epsilon \Delta_{\rho}} \phi(x) + \tilde{h}(x)$$

where
$$\tilde{h}:=\int_0^\epsilon e^{s\Delta_
ho}(h-\hat{h})\,\mathrm{d}s$$

Approximation:

$$\phi_{\epsilon}^{(N)}(x) := T_{\epsilon}^{(N)} \phi_{\epsilon}^{(N)}(x) + \epsilon (h(x) - \hat{h}),$$

Numerics:

$$\Phi = \mathbf{T}\Phi + \epsilon(\mathbf{h} - \hat{h})$$

Gradeint:

$$\nabla \phi_{\epsilon}^{(N)}(x) = \nabla (T_{\epsilon}^{(N)} \phi_{\epsilon}^{(N)})(x) + \epsilon \nabla h(x)$$

Kernel-based approximation Numerical result

Properties

- No singularity
- Easy extension to Manifolds [C. Zhang, et. al. CDC 2015]
- Better error bounds
- 4 Computational cost $O(N^2)$ (good in high dimensions)

Kernel-based approximationNumerical result

Properties

- No singularity
- 2 Easy extension to Manifolds [C. Zhang, et. al. CDC 2015]
- Better error bounds
- \blacksquare Computational cost $O(N^2)$ (good in high dimensions)

Kernel-based approximation Error Analysis

Special case: Bounded domain

$$\underbrace{\mathsf{E}\left[\|\nabla\phi - \nabla\phi^{(N)}_{\epsilon}\|_{2}\right]}_{\mathsf{Total\ error}} \leq \underbrace{O(\epsilon)}_{\mathsf{Bias}} + \underbrace{O(\frac{1}{\epsilon^{1+d/4}\sqrt{N}})}_{\mathsf{Variance}}$$

Kernel-based approximation Error Analysis

Special case: Bounded domain

$$\underbrace{\mathsf{E}\left[\|\nabla\phi - \nabla\phi^{(N)}_{\epsilon}\|_{2}\right]}_{\mathsf{Total\ error}} \leq \underbrace{O(\epsilon)}_{\mathsf{Bias}} + \underbrace{O(\frac{1}{\epsilon^{1+d/4}\sqrt{N}})}_{\mathsf{Variance}}$$

Thank you for your attention!

Poisson equation, almost everywhere