## REINFORCEMENT LEARNING IN STATIONARY MEAN-FIELD GAMES

# Jayakumar Subramanian & Aditya Mahajan ECE & CIM, McGill University and GERAD



## Mean field games: Large number of small, anonymous agents with negligible individual impact





Fig. 1: Smart Grid - Demand Response

Fig. 2: Financial Markets

## Solution concept

- Mean-field equilibrium—competitive agents.
- Mean-field social-welfare optimal policy—cooperative agents.
- Extension to stationary mean-field games:
  - -Stationary mean-field equilibrium (SMFE)
  - -Stationary social-welfare optimal policy (SMF-SO)

#### Our contribution

- Generalization of these solution concepts to their local variants using bounded rationality based arguments.
- Development of policy gradient based reinforcement learning algorithms to predict these solution concepts.
- Proof of convergence of these algorithms to the right solution concept under mild technical conditions.

## Mean field game (MFG) model

- Agent set:  $N := \{1, 2, ..., n\}$  homogeneous agents;
- State and action spaces for each agent: X, A (finite and identical for all agents);
- Empirical mean field (or population average):  $Z_t(x) = \frac{1}{n} \sum_{i \in \mathbb{N}} \mathbb{1}\{X_t^i = x\}, \quad \forall x \in \mathcal{X}.$
- Dynamical state evolution for each agent  $i \in N$  (decoupled by mean-field):  $X_{t+1}^i \sim P(X_t^i, A_t^i, Z_t)$ .
- Per-step reward to agent i (decoupled by mean-field):  $R_t^i = r(X_t^i, A_t^i, Z_t, X_{t+1}^i)$ .

### Stationary MFG model

- 1. **Time homogeneous policy**: All agents follow a time-homogeneous, stochastic policy,  $\pi_t = \pi \colon \mathcal{X} \to \Delta(\mathcal{A})$  for all t.
- 2. **Stationarity of mean-field**: When all agents follow a policy  $\pi \in \Pi$ , the mean-field of states  $\{Z_t\}_{t\geqslant 0}$  converges almost surely to a constant limit:  $z=\Phi(z,\pi)$ .
- 3. **Agent's performance evaluation**: Agents evaluate their performance by assuming infinite population stationary mean-field:

$$V_{\pi,z}(x) = \mathbb{E}_{\substack{A_t^i \sim \pi(X_t^i) \\ X_{t+1}^i \sim P(X_t^i, A_t^i, z)}} \left[ \left. \sum_{t=0}^{\infty} \gamma^t r(X_t^i, A_t^i, z, X_{t+1}^i) \right| X_0^i = x \right].$$

## Stationary MF equilibrium (SMFE)

A stationary mean-field equilibrium (SMFE) is a pair of policy  $\pi \in \Pi$  and mean-field  $z \in \Delta(\mathfrak{X})$  which satisfies the following two properties:

- 1. Sequential rationality: For any other policy  $\pi'$ ,  $V_{\pi,z}(x) \ge V_{\pi',z}(x)$ ,  $\forall x \in \mathcal{X}$ .
- 2. *Consistency:* The mean-field z is stationary under policy  $\pi$ , i.e.,  $z = \Phi(z, \pi)$ .

## Stationary MF social-welfare optimal policy (SMF-SO)

A policy  $\pi \in \Pi$  is stationary mean-field social welfare optimal (SMF-SO) if it satisfies the following property:

• Optimality: For any other policy  $\pi' \in \Pi$ ,  $V_{\pi,z}(x) \ge V_{\pi',z'}(x)$ ,  $\forall x \in \mathcal{X}$ , where z and z' are the stationary mean-field distributions:  $z = \Phi(z,\pi)$  and  $z' = \Phi(z',\pi')$ .

#### Local SMFE (LSMFE)

A local stationary mean-field equilibrium (LSMFE) is a pair of policy  $\pi_{\theta} \in \Pi$  and mean-field  $z \in \Delta(X)$  which satisfies the following two properties:

- 1. Local sequential rationality:  $\partial J_{\pi_{\theta},z}/\partial \theta = 0$ .
- 2. Consistency:  $z = \Phi(z, \pi_{\theta})$ .

### Local SMF-SO (LSMF-SO)

A policy  $\pi_{\theta} \in \Pi$  is local stationary mean-field social welfare optimal (LSMF-SO) if it satisfies the following property:

• Local optimality:  $dJ_{\pi_{\theta},z_{\theta}}/d\theta = 0$ , where  $z_{\theta}$  is the stationary mean-field distribution corresponding to  $\pi_{\theta}$ , i.e., satisfies  $z_{\theta} = \Phi(z_{\theta}, \pi_{\theta})$ .

#### RL algorithm for learning LSMFE

Suppose  $G_{\theta,z}$  is an unbiased estimator of  $\partial J_{\pi_{\theta},z}/\partial\theta$ . Then, we start with an initial guess  $\theta_0 \in \Theta$  and  $z_0 \in \Delta(\mathfrak{X})$  and at each step of the iteration, update the guess  $(\theta_k, z_k)$  using two-timescale stochastic gradient ascent:

$$z_{k+1} = z_k + \beta_k [\hat{\Phi}(z_k, \pi_{\theta_k}) - z_k]; \quad \theta_{k+1} = [\theta_k + \alpha_k G_{\theta_k, z_k}]_{\Theta}$$

where  $[\,\cdot\,]_{\Theta}$  denotes projection on  $\Theta$ , learning rates  $\{\alpha_k,\beta_k\}_{k\geqslant 0}$  are chosen s.t.:  $\sum \alpha_k = \infty$ ,  $\sum \beta_k = \infty$ ,  $\sum (\alpha_k^2 + \beta_k^2) < \infty$ ,  $\lim_{k \to \infty} \alpha_k = 0$ ,  $\lim_{k \to \infty} \beta_k = 0$ ,  $\lim_{k \to \infty} \alpha_k / \beta_k = 0$ .

#### Stationary mean-field estimation

 $\hat{\Phi}(z,\pi)$  is an unbiased approximation of  $\Phi(z,\pi)$  which is generated using a minibatch of m samples  $(X^j,A^j,Y^j)_{j=1}^m$  where  $X^j \sim z$ ,  $A^j \sim \pi(\cdot|X^j)$ , and  $Y^j \sim P(X^j,A^j,z)$  and set

$$\hat{\Phi}(z,\pi)(y) = \frac{1}{m} \sum_{j=1}^{m} \mathbb{1}\{Y^j = y\}.$$

## Likelihood ratio based gradient estimate

$$\begin{split} &\frac{\partial J_{\theta,z}}{\partial \theta} = \mathbb{E}_{X \sim \xi_0} \left[ \frac{\partial V_{\theta,z}(X)}{\partial \theta} \right] \\ &\frac{\partial V_{\theta,z}(x)}{\partial \theta} = \mathbb{E}_{A_t \sim \pi_{\theta}(X_t)} \left[ \sum_{t=0}^{\infty} \gamma^t \Lambda_{\theta}^t V_{\pi_{\theta},z}(X_t) \ \middle| \ X_0 = x \right], \end{split}$$

where  $\Lambda_{\theta}^{t} = \nabla_{\theta} \log[\pi_{\theta}(A_{t} \mid X_{t})].$ 

## RL algorithm for learning LSMF-SO

Suppose  $T_{\theta}$  is an unbiased estimator for  $dJ_{\pi_{\theta},z_{\theta}}/d\theta$ , where  $z_{\theta}$  is the fixed point of  $z = \Phi(z, \pi_{\theta})$ . Then, we start with an initial guess  $\theta_0 \in \Theta$ , and at each step of the iteration, update the guess using stochastic gradient ascent:

$$\theta_{k+1} = \left[\theta_k + \alpha_k T_{\theta_k}\right]_{\Theta}$$

### Numerical examples





Fig. 3: Malware spread

Fig. 4: Product investments