Machine Learning Engineer Nanodegree

项目报告

Christiana, ChristianaShannon@126.com

1. 项目背景

自然语言处理(简称 NLP)属于机器学习的研究领域,主要聚焦于应用计算机对人类的自然语言(文字,语音等)进行描述,处理;从研究内容来看,自然语言处理包括语法分析、语义分析、篇章理解等。从应用角度来看,自然语言处理具有广泛的应用前景。然而,NLP的应用有着诸多困难,最主要的一点就是消除歧义问题,如词法分析、句法分析、语义分析等过程中存在的歧义问题,简称为消歧。另外,由于歧义问题的存在,合适的语言处理方法和模型也非常难以设计。

传统的解决 NLP 问题的机器学习方法都是基于浅层模型,例如 SVM 和 logistic 回归,其训练是在非常高维、稀疏的特征上进行的。在过去几年,基于 密集向量表征的神经网络在多种 NLP 任务上都产生了优秀成果。这一趋势由词 嵌入与深度学习方法的成功所兴起。深度学习使得多层级的自动特征表征的学习 成为了可能。因此,深度学习在 NLP 领域的应用前景十分广阔。

2. 问题描述

20newsgroups 数据集是用于文本分类、文本挖据和信息检索研究的国际标准数据集之一。在本项目中,我将分别采用不同文本描述模型(词袋子模型、词向量模型)对文档进行表示,并采用不同的机器学习算法(决策树、SVM、

朴素贝叶斯等),对数据进行文档分类,并在此基础上,探索深度学习模型(CNN、LSTM)在本数据集上的应用,最终以分类准确率为各模型评判标准。

3. 基准模型

基准模型采用词袋子模型构建文档描述,并采用 Decision Tree(决策树)模型进行文档分类;这是由于决策树模型简单易用,速度快,且易于理解,是分类问题中最常用的模型之一;可以作为后续模型的参照。

4. 评估指标

对于机器学习模型,模型的评估一般使用 PRF(精确率,召回率,F1值)
和 Acc值(准确率)来评估,本项目中,评估指标采用模型在测试集上的准确率;准确率实际上是所有被正确标示的数据点除以所有的数据点,在本问题中,分类数据不存在明显的偏斜,且对于一个监督学习的多分类问题,"准确分类的比率"可以清晰地表征模型对数据的学习情况及泛化能力,准确率可表示为:

$$accuracy = \frac{\sum_{i=1}^{n} I(y_i = = y_i^{\hat{}})}{n}$$

用混淆矩阵 (Confusion matrix)表示,有:

		实际值	
		1	0
预测值	1	True Positive(TP)	False Positive(FP)
	0	False Negative(FN)	True Negative(TN)

table 1. Confusion matrix

根据混淆矩阵我们可以得到 TP,FN,FP,TN 四个值,根据这四个值即可计算精确率、召回率和 F1。其中精确率(Precision)为 TP/(TP+FP),召回率(Recall)为 TP/(TP+FN), F1 值是精确率和召回率的调和均值,相当于精确率和召回率的综合评价指标,即:

$$F1 = \frac{2 * P * R}{(P+R)}$$

其中 P 为精确率 (Precision), R 为召回率 (Recall).

在项目中,对于传统的机器学习,我们通过 F1 指标,可以协助我们对模型的表现能力做出综合评判;另外,对于基于 text8 语料训练的 word2vec 模型,考虑采用简单的几个判例和 PCA 二维散点图来直观判别。

5. 算法介绍:

5.1 文本表征

在传统机器学习中, NLP 处理使用较多的是词袋子模型, 其中又包括特征词的频率向量(Count Vector)或者加权词频向量(TF-IDF Vector).

词袋子模型的原理大致为将文本文件划分为单词词典,将每篇文档表示为统一词典长度的一维向量,词典中的每个词对应向量中的一个位置,词的数值即为其 TF-IDF值,TF-IDF值计算包括两个要素,一是特征词在文本中的出现频率(TF, Term Frequency,词频),即词频,词频越高,权重越大,二是特征词的文档频率(IDF, Inverse Document Frequency,逆向文件频率),包含该特证词文档越多,表明词越普通,词向量权重越小,即考虑的是特征词的加权;特征词权重函数为:

$$\omega_{ij} = Tf_{ij} * Idf_{ij}$$

Word2Vec 方法则是使用 CBOW 或者 Skip-gram 方式,将文档单词表示为向量形式,将词向量"嵌入"文档,以此来表征文档,以 CBOW 为例: CBOW 模型的训练输入是某一个特征词的上下文相关的词对应的词向量,而输出就是这特定的一个词的词向量。Skip-gram则正好相反,采用的方法一般是一个浅层的神经网络结构,分为输入层,和输出层(softmax 层),通过 Word2Vec 将

one-hot 式的词向量化为"语义化"的词向量,建模出词之间的相似度;用图表表述为:

Figure 1. CPOW 模型结构图

5.2 分类算法

我采用了决策树为 baseline 分类器,并实验了朴素贝叶斯分类器(MultinomialNB), SVM分类器(Linear SVC), Xgboost 分类器 其中决策树、SVM、朴素贝叶斯在课堂上已有介绍,简要概括为:

决策树是通过一系列规则对数据进行分类的过程,分类原则是使无序的数据变的有序,即信息增益最大化,决策树计算便于使用、而且高效,理论明晰,是最常用的机器学习算法。

朴素贝叶斯分类器也称天真贝叶斯分类,是基于贝叶斯定理的特征条件独立的分类器,比较适合应用于文本分类中,项目中使用了多项式 NB,适合于 TF-IDF。

SVM 是一个由分类超平面定义的判别分类器,分类目标是获得最大 margin (超平面距离)。SVM 的应用十分广泛,常应用于图像文字识别,数据挖掘等多方面; Linear SVC 采取线性核,算法简单,速度快,在文本分类上效果好。

Xgboost是由 Tianqi Chen 最初开发的实现可扩展 便携 分布式 gradient

boosting (GBDT, GBRT or GBM) 算法的一个库,是将弱分离器 f_i(x) 组合起来形成强分类器 F(x) 的一种梯度提升方法,相较于其他 boosting 方法,Xgboost 速度快,表现好,且不容易过拟合。

LSTM 全称为长短时间记忆网络 (Long Short Term Memory networks), 是一种特殊的 RNN,它能够学习长时间依赖,可以解决 RNN 中存在的梯度消 失问题,在深度学习中,embedding+LSTM 是一个基础的神经网络层组合。

GRU全称为 Gated Recurrent Unit, GRU是 LSTM 的一个变体,仅包含更新门和重置门两个门结构,更新门用于控制前一时刻的状态信息被带入到当前状态中的程度,更新门的值越大说明前一时刻的状态信息带入越多。重置门用于控制忽略前一时刻的状态信息的程度,重置门的值越小说明忽略得越多。它保持了LSTM 的效果同时又使结构更加简单,除保持 LSTM 的特性外,GRU 简化了运算,在大数据量下有明显的运算优势。

CNN 在课程中已有介绍,限于篇幅,在此略过描述。

6. 具体实现:

6.1 数据获取

本项目中采用的数据来源于官方网站:20Newsgroup,且 sklearn 库中对数据也已近有集成,可以通过 sklearn.dataset 调用,调用方式为:

from sklearn.datasets import fetch_20newsgroups

在深度学习中要使用 word2vec 词向量表达模型, 我使用了 Mikolov 研究的 text8 语料进行词向量训练, 数据来源为 text8 官网.

6.2 数据探索与预处理

对每篇文档来说,包括了正文,脚注和引文。由于正文,脚注和引文可能也包含文档分类的关键词,所以我将其全部作文文档内容进行处理。接下来我对数据集进行了一定的可视化,首先观察 20 类新闻的分布情况:

Figure 2. 20 类新闻的分布情况

20 类新闻的数量大部分基本相同,均在 550-600 左右,仅有三组偏少,分别为 480,465,377;数据集比较均匀分布,不需要再考虑偏差取样的问题。

另外,文档长度等价于其包含的信息大小,有必要观察一下文档长度是否有明显的异常值:

Figure 3. 20 类新闻的文档长度分布情况

绝大多数文档长度在0-1500 单词之间 ,文档最短长度18 ,最长长度16197 ,

中位数长度 191, 不需要再进行额外特征处理。

在文本的预处理中,我主要考虑了4个问题,分别是标点符号的处理、大小写的处理、停用词的处理及词干提取。

首先,标点符号在文档分类中明显没有用处,应当去除,同样的,英文单词 大小写大部分情况并不影响词意表达,将文档中所有单词都转化为小写字母。

对于停用词的处理,可以先观察一下文档中的高频词分布:

Figure 4. 20 类新闻的词频分布情况

文档中常见词分布情况为: 高频词为各类介词(the,of,to, in) 及连词和助词(and, is, i, be)等,符合常见高频词分布,最高频词为('the', 146532),没有异常的高频词,可使用常规停用词词典。

最后再考虑词干提取的问题,在英文中,同一词常存在不同形式,例如 gun 和 guns ,eat 和 eating 等 ,理想状态下可以将其处理为同一词 ,我使用了 NLTK 库的 Snowball 方法 ,对文档进行词干提取 ,但是提取的结果对词语的完整性产生了破化 ,产生了诸如'hungr','desir'等的残缺词 ,同时在随后的分类预测中 ,所获得的准确率反而低于不做词干提取的情况 ,因此 ,不再进行词干提取。

6.3 文本模型构造

在文本模型构造上,我在机器学习和深度学习分别采用 TF-IDF 词袋子模型

和 word2Vec 词向量。

依赖于gensim库 我使用了CBOW模式进行训练 我设定向量维度为128,我引入了text8语料用于词向量模型训练,对模型进行简单判别,显示词向量模型构造成功,可以使用。

he is to his as she is to her big is to bigger as heavy is to heavier shanghai is to china as paris is to france

6.4 分类算法

在机器学习中,考虑到项目为高维数据多分类问题,为了提高效率,SVM模型中的 kernal 选取了线性核,转化为了 Linear SVC;我使用了 Gridsearch 和 5 折交叉验证对分类器参数进行调整,最后将几个分类器合并成集合分类器,采用柔性构造模式,实验了一下集合分类器的性能。

在深度学习算法中,我引入了已训练好的 text8 word2vex 作为 Embedding 层的权重,并将 Embedding 设置为 trainable=False.经过 LSTM/GRU 训练后,输出对于数据集文档的 20 分类预测。

6.5 模型评估

首先,我采用决策树(Decision Tree)分类器作为基准分类器,在默认参数下验证集**准确率为 0.6634, F1 score 为 0.66**。

默认参数的 MultinomialNB, Linear SVC, XGBClassifier 验证集上的**准确** 率、F1 score 分别为(0.8825, 0.9046, 0.8065), (0.88, 0.90, 0.81)。

使用网格搜索 Gridsearch 分别对三个分类器进行优化,分别获得**准确率、 F1 score 为: (0.9046, 0.9055, 0.8445), (0.90, 0.91, 0.85)**,可以看出,相
对于默认参数,准确度和 F1 score 有了微小的提升,用图表展示:

Figure 5. 分类器验证集 acc , F1-score

可以看出,三种分类器在验证集上准确率都超过了基准分类器,且都超过了80%。 将调优后的三种分类器应用于数据的测试集上,基准分类器决策树**准确率、F1** score 为: 0.5769和0.58;三种分类器结果依次为:(0.8132, 0.8247, 0.7661), (0.81, 0.82, 0.77),展示为图表:

Figure 6. 分类器测试集 acc , F1-score

在项目中 我们发现 Linear SVC 的表现最好 在测试集上准确率达到了 82.47%,MultinomialNB 次之,而 Xgboost 的表现要弱于这两个分类器,考虑到 Xgboost 在很多项目中常常与其他分类器一起集合使用,因此我构建了一个柔性的 VotingClassifier 进行分类预测;三个分类器权重均为 1,获得测试集准确率和 F1-score 分别为 0.7402, 0.74。

综合起来看,机器学习传统分类器在本数据集的 20 分类问题上表现最好的是 TF-IDF 词袋子模型+ Linear SVC 分类器,测试集准确率达到 82.47%,使用

heatmap 进行观察,可以看出在各分类上准确率均超过了 66%.

Figure 7. Linear SVC 分类器 HeatMap

在神经网络模型搭建上,我先尝试使用 Keras 文本分类 example 中提供的 三层 CNN 模型,在测试集上准确度为 0.6723,loss 为 1.243;在此基础上, 我将 CNN 层由三层简化为一层(embedding- Conv- Maxpool- LSTM/GRU-Dense - output),最终在 20epoch 训练下,1-CNN-LSTM 在测试集上准确 率为 0.7280,loss 为 0.8217; 将 LSTM 替换为 GRU,1-CNN-GRU 在测试集上准确率为 0.7341,loss 为 0.7878;在此基础上,我将 CNN 层全部去掉, 仅构建基本的 Embedding+LSTM/GRU(embedding- LSTM/GRU- Dense - output),在 20epoch 训练下,LSTM 模型在测试集上准确率为 0.8214,loss 为 0.5723, GRU 模型在测试集上准确率为 0.8538,loss 为 0.4867,模型均在 20 epoch 内 val-loss 值逐渐稳定。如图:

Figure 8.1 3 层 CNN 模型 acc 和 loss

Figure8.2 单层 CNN+LSTM 模型 acc 和 loss

Figure8.3 单层 CNN+LSTM 模型 acc 和 loss

Figure8.4 Embedding+LSTM 模型 acc 和 loss

Figure8.5 Embedding+LSTM 模型 acc 和 loss

Figure 9. 深度学习模型测试集 acc , Loss

7 问题与提升

在本项目中,传统机器学习算法获得82.47%的准确率,使用深度学习模型,

获得85.38%的准确率;可以提升的问题包括两个,第一个是考虑机器学习模型的集成使用,是否存在进一步提高的空间;第二个可能的后续提升是将文本分类问题扩展到中文,尝试中文文本分类。

注:点击引用文献可访问原链接(并不是没有给出链接)

Ref.

- 1. Deep Learning, NLP, and Representations
- 2. 自然语言处理怎么最快入门?
- 3. 深度学习 (Deep Learning), 自然语言处理 (NLP) 及其表达 (Representation)
- 4. How to Develop Your First XGBoost Model in Python with scikit-learn
- 5. 理解 LSTM 网络
- 6. Understanding LSTM Networks
- 7. Distributed Representations of Sentences and Documents
- 8. Distributed Representations of Words and Phrases and their Compositionality
- 9. 20 Newsgroups
- 10. 精确率、召回率、F1 值、ROC、AUC 各自的优缺点是什么?
- 11. Tf-idf
- 12. CS 224D: Deep Learning for NLP
- 13. Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling