- **Q1** §13.1 Problem 1
- **Q2** §13.2 Problem 7
- **Q3** Let K/F be a field extension and $\alpha_1, \ldots, \alpha_n \in K$. Show that

$$F(\alpha_1,\ldots,\alpha_n) = (F(\alpha_1,\ldots,\alpha_{n-1}))(\alpha_n).$$

(The LHS is the subfield generated by $\alpha_1, \ldots, \alpha_n$ over F. The RHS is the subfield generated by α_n over the field $F(\alpha_1, \ldots, \alpha_{n-1})$.)

- **Q4** Let K/F be a field extension and $\alpha, \beta \in K$. Suppose that $[F(\alpha) : F]$ and $[F(\beta) : F]$ are both finite.
 - (a) Show that $[F(\alpha):F] \ge [F(\alpha,\beta):F(\beta)]$.
 - (b) Show that $[F(\alpha, \beta) : F] \leq [F(\alpha) : F][F(\beta) : F]$, and the equality holds if $[F(\alpha) : F]$ and $[F(\beta) : F]$ are coprime.
 - (c) Given $\alpha_1, \ldots, \alpha_n \in K$ with $[F(\alpha_j) : F], 1 \leq j \leq n$, all finite, show that

$$[F(\alpha_1,\ldots,\alpha_n):F] \leq [F(\alpha_1):F][F(\alpha_2):F]\cdots [F(\alpha_n):F].$$