网络管理与设计课程实验报告

实验 4: DHCP&NAT&PAT 技术组网

姓名 郭-	-航	院系	软件学院		学号	Ļ	2021112342	
任课教师	余翔湛			指导教师	余翔湛			
实验地点	正心 704			实验时间	2023年11月2日			
实验课表现	出勤、表现得分 10%		实验报告		45	实验总分		
头 独 床 衣	操作结果得分 50%			得分 40%		2	大视心刀	

实验内容:

1、以你的理解,隧道的作用是什么?

得分:

隧道指的是通过一个网络传输另一个网络协议的技术,其作用有:

数据封装: 隧道技术允许数据包被封装在另一种协议的数据包中, 使得一个网络协议能够在另一个不兼容的网络中传输

安全传输:隧道通常与加密技术结合使用,提供安全的传输路径,如虚拟私人网络(VPN)

绕过限制:隧道可以用来绕过网络限制,如在不被允许的网络间建立连接或是绕开地理限制

连接异构网络:隧道可以连接使用不同协议的网络,如连接一个企业的多个局域网

负载均衡和多路径: 在多路径网络中, 隧道可以用来分散流量, 提供负载均衡和冗余路径

2、列出 NAT 的配置过程。

得分:

配置 R1:

进入子网 1 的 Gi0.0 端口

配置位 NAT 的内网端口

进入R1路由器的s0/0/0端口

配置为 NAT 的外网端口

- R1(config)#int Gi0/0
- R1(config-if)#ip nat inside
- R1(config-if)#int s0/0/0
- R1(config-if)#ip nat outside
- R1(config-if)#ip access-list standard 1
- R1(config-std-nacl) #permit 192.168.1.0 0.0.0.255
- R1(config-std-nacl) #exit
- R1(config)#nat pool outuser 202.119.248.250 202.119.248.250 netmask 255.255.255.0
- % Invalid input detected at '^' marker.
- R1(config) #ip nat pool outuser 202.119.248.250 202.119.248.250 netmask 255.255.255.0
- R1(config) #ip nat inside source list 1 pool outuser overload R1(config) #

复制

粘贴

```
配置 R2:
       R2>enable
      R2#conf t
      Enter configuration commands, one per line. End with CNTL/Z.
      R2(config) #ip route 202.119.248.250 255.255.255.255 12.1.1.2
       R2(config)#
                                                                                  复制
                                                                                         粘贴
       置顶
配置 R3:
      R3>enable
      R3#conf t
      Enter configuration commands, one per line. End with CNTL/Z.
      R3(config) #ip route 202.119.248.250 255.255.255.255 13.1.1.1
      R3(config)#
                                                                                 复制
                                                                                         粘贴
配置完成后:
    PC1 都能够访问 PC2、PC3, server2, 但 PC2、PC3, server2 不能够访问 PC1, server1。
    因为 PC1, server1 都被翻译成 202.119.248.250 地址,可以从内网向外网访问,反之则不可
PC>ping 202.118.223.2
                                                 PC>ping 202.118.224.2
                                                 Pinging 202.118.224.2 with 32 bytes of data:
Pinging 202.118.223.2 with 32 bytes of data:
                                                 Reply from 202.118.224.2: bytes=32 time=7ms TTL=125
 deply from 202.118.223.2: bytes=32 time=6ms TTL=126
Reply from 202.118.223.2: bytes=32 time=8ms TTL=126
Reply from 202.118.223.2: bytes=32 time=4ms TTL=126
Reply from 202.118.223.2: bytes=32 time=1ms TTL=126
                                                 Reply from 202.118.224.2: bytes=32 time=9ms TTL=125 Reply from 202.118.224.2: bytes=32 time=2ms TTL=125
                                                 Reply from 202.118.224.2: bytes=32 time=6ms TTL=125
                                                 Ping statistics for 202.118.224.2:
Ping statistics for 202.118.223.2:
Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
Minimum = lms, Maximum = 8ms, Average = 4ms
                                                 Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
Minimum = 2ms, Maximum = 9ms, Average = 6ms
PC>ping 202.118.224.3
Pinging 202.118.224.3 with 32 bytes of data:
Request timed out.
Reply from 202.118.224.3: bytes=32 time=2ms TTL=125
Reply from 202.118.224.3: bytes=32 time=2ms TTL=125
Reply from 202.118.224.3: bytes=32 time=6ms TTL=125
Ping statistics for 202.118.224.3:
       Packets: Sent = 4, Received = 3, Lost = 1 (25% loss),
Approximate round trip times in milli-seconds:
       Minimum = 2ms, Maximum = 6ms, Average = 3ms
```

Packet Tracer PC Command Line 1.0 PC>ping 192.168.1.1	Packet Tracer PC Command Line 1.0 PC>ping 192.168.1.1
Pinging 192.168.1.1 with 32 bytes of data:	Pinging 192.168.1.1 with 32 bytes of data:
Request timed out. Request timed out. Request timed out. Request timed out.	Request timed out. Request timed out. Request timed out. Request timed out.
Ping statistics for 192.168.1.1: Packets: Sent = 4, Received = 0, Lost = 4 (100% loss),	Ping statistics for 192.168.1.1: Packets: Sent = 4, Received = 0, Lost = 4 (100% loss),
Packet Tracer SERVER Command I SERVER>ping 192.168.1.1	Line 1.0
Pinging 192.168.1.1 with 32 by	ytes of data:
Request timed out.	
	ed = 0, Lost = 4 (100% loss),
3、192.168.1.0 这个子网最多能有 251 台机器	
NAT 的时候, 只配置了 202.119.248.250 一个夕	小网地址,以你的理解,
只有1个外网地址,NAT地址翻译的时候怎么	么做到能支持这么多的
机器同时上网?	
NAT 能够让多台设备共享一个公网 IP 地址是	通过将每个内部设备的私有IP地址和端口号映射到
单个公网 IP 地址和不同的端口号来实现的。这	这种技术被称为端口地址转换,它是 NAT 的一种形
式,有时也称为 NAT 过载。通过 PAT,即使	只有一个公网 IP 地址,也能支持数百个甚至数千个
并发连接,因为每个连接都可以通过一个独特	寺的端口号来区分。
指导教师评语:	
	日期:
	₩ /у/1•