Chapter 7: Computer and Network Security

COMP422 Ethics and Professional Issues in Computing Dr. Patrick Pang

Ethics for the Information Age (5th Ed.)
by
Michael J. Quinn

Chapter Overview

- Introduction
- Hacking
- Malware
- Cyber crime and cyber attacks
- Online voting

7.1 Introduction

- Computers getting faster and less expensive
- Utility of networked computers increasing
 - Shopping and banking
 - Managing personal information
 - Controlling industrial processes
- Increasing use of computers → growing importance of computer security

7.2 Hacking

Hackers, Past and Present

- Original meaning of hacker: explorer, risk taker, system innovator
 - MIT's Tech Model Railroad Club in 1950s
- 1960s-1980s: Focus shifted from electronics to computers and networks
 - 1983 movie WarGames
- Modern meaning of hacker: someone who gains unauthorized access to computers and computer networks

Obtaining Login Names and Passwords

Eavesdropping

 looking over the shoulder of a legitimate user to learn his login name and password

Dumpster diving

looking through garbage for interesting information

Social engineering

 manipulation of a person inside the organization to gain access to confidential information

Computer Fraud and Abuse Act

- Criminalizes wide variety of hacker-related activities
 - Transmitting code that damages a computer
 - Accessing any Internet-connected computer without authorization
 - Transmitting classified government information
 - Trafficking in computer passwords
 - Computer fraud
 - Computer extortion
- Maximum penalty: 20 years in prison and \$250,000 fine

Sidejacking

- Sidejacking: hijacking of an open Web session by capturing a user's cookie
- Sidejacking possible on unencrypted wireless networks because many sites send cookies "in the clear"
- Internet security community complained about sidejacking vulnerability for years, but ecommerce sites did not change practices

Case Study: Firesheep

- October 2010: Eric Butler released Firesheep extension to Firefox browser
- Firesheep made it possible for ordinary computer users to easily sidejack Web sessions
- More than 500,000 downloads in first week
- Attracted great deal of media attention
- Early 2011: Facebook and Twitter announced options to use their sites securely

Utilitarian Analysis

- Release of Firesheep led media to focus on security problem
- Benefits were high: a few months later Facebook and Twitter made their sites more secure
- Harms were minimal: no evidence that release of Firesheep caused big increase in identity theft or malicious pranks
- Conclusion: Release of Firesheep was good

COMP422 @ MPI

1-10

Kantian Analysis

- Accessing someone else's user account is an invasion of their privacy and is wrong
- Butler provided a tool that made it much simpler for people to do something that is wrong, so he has some moral accountability for their misdeeds
- Butler was willing to tolerate short-term increase in privacy violations in hope that media pressure would force Web retailers to add security
- He treated victims of Firesheep as a means to his end
- It was wrong for Butler to release Firesheep

7.3 Malware

Viruses

- Virus: Piece of self-replicating code embedded within another program (host)
- Viruses associated with program files
 - Hard disks, floppy disks, CD-ROMS
 - Email attachments
- How viruses spread
 - Diskettes or CDs
 - Email
 - Files downloaded from Internet

How a Virus Replicates

(c)

- a) Program P, which is infected with a virus, is executed
- b) The virus code executes.
 It finds another program
 Q and creates a new
 version of Q infected
 with the virus
- c) The virus passes control to program P. The user is unaware of the presence of the virus

How an Email Virus Spreads

Email Attachment with Possible Virus

Antivirus Software Packages

- Allow computer users to detect and destroy viruses
- Must be kept up-to-date to be most effective
- Many people do not keep their antivirus software packages up-to-date
- Consumers need to beware of fake antivirus applications

Worm

- Self-contained program
- Spreads through a computer network
- Exploits security holes in networked computers

COMP422 @ MPI 1-17

How a Worm Spreads

The Internet Worm

- Robert Tappan Morris, Jr.
 - Graduate student at Cornell (1988)
 - Released worm onto Internet from MIT computer
- Effect of worm
 - Spread to significant numbers of Unix computers
 - Infected computers kept crashing or became unresponsive
 - Took a day for fixes to be published
- Impact on Morris
 - Suspended from Cornell
 - 3 years' probation + 400 hours community service
 - \$150,000 in legal fees and fines

Ethical Evaluation

- Kantian evaluation
 - Morris used others by gaining access to their computers without permission
- Social contract theory evaluation
 - Morris violated property rights of organizations
- Utilitarian evaluation
 - Benefits: Organizations learned of security flaws
 - Harms: Time spent by those fighting worm, unavailable computers, disrupted network traffic, Morris's punishments
- Morris was wrong to have released the Internet worm

Cross-site Scripting

- Another way malware may be downloaded without user's knowledge
- Problem appears on Web sites that allow people to read what others have posted
- Attacker injects client-side script into a Web site
- Victim's browser executes script, which may steal cookies, track user's activity, or perform another malicious action

Drive-by Downloads

- Unintentional downloading of malware caused by visiting a compromised Web site
- Also happens when Web surfer sees pop-up window asking permission to download software and clicks "Okay"
- Google Anti-Malware Team says 1.3 percent of queries to Google's search engine return a malicious URL somewhere on results page

COMP422 @ MPI 1-22

Trojan Horses and Backdoor Trojans

- Trojan horse: Program with benign capability that masks a sinister purpose
- Backdoor Trojan: Trojan horse that gives attack access to victim's computer

COMP422 @ MPI 1-23

Rootkits

- Rootkit: A set of programs that provides privileged access to a computer
- Activated every time computer is booted
- Uses security privileges to mask its presence

COMP422 @ MPI

1 - 24

Spyware and Adware

- Spyware: Program that communicates over an Internet connection without user's knowledge or consent
 - Monitor Web surfing
 - Log keystrokes
 - Take snapshots of computer screen
 - Send reports back to host computer
- Adware: Type of spyware that displays pop-up advertisements related to user's activity
- Backdoor Trojans often used to deliver spyware and adware

Bots

- Bot: A kind of backdoor Trojan that responds to commands sent by a command-and-control program on another computer
- First bots supported legitimate activities
 - Internet Relay Chat
 - Multiplayer Internet games
- Other bots support illegal activities
 - Distributing spam
 - Collecting person information for ID theft
 - Denial-of-service attacks

Botnets and Bot Herders

- Botnet: Collection of bot-infected computers controlled by the same command-and-control program
- Some botnets have over a million computers in them
- Bot herder: Someone who controls a botnet

Defensive Measures

- Security patches: Code updates to remove security vulnerabilities
- Anti-malware tools: Software to scan hard drives, detect files that contain viruses or spyware, and delete these files
- Firewall: A software application installed on a single computer that can selectively block network traffic to and from that computer

COMP422 @ MPI 1-28

7.5 Online Voting

Motivation for Online Voting

- 2000 U.S. Presidential election closely contested
- Florida pivotal state
- Most Florida counties used keypunch voting machines
- Two voting irregularities traced to these machines
 - Hanging chad
 - "Butterfly ballot" in Palm Beach County

The Infamous "Butterfly Ballot"

AP Photo/Gary I. Rothstein

Benefits of Online Voting

- More people would vote
- Votes would be counted more quickly
- No ambiguity with electronic votes
- Cost less money
- Eliminate ballot box tampering
- Software can prevent accidental over-voting
- Software can prevent under-voting

Risks of Online Voting

- Gives unfair advantage to those with home computers
- More difficult to preserve voter privacy
- More opportunities for vote selling
- Obvious target for a DDoS attack
- Security of election depends on security of home computers
- Susceptible to vote-changing virus
- Susceptible to phony vote servers
- No paper copies of ballots for auditing or recounts

Utilitarian Analysis

- Suppose online voting replaced traditional voting
- Benefit: Time savings
 - Assume 50% of adults actually vote
 - Suppose voter saves 1 hour by voting online
 - Average pay in U.S. is \$18.00 / hour
 - Time savings worth \$9 per adult American
- Harm of DDoS attack difficult to determine
 - What is probability of a DDoS attack?
 - What is the probability an attack would succeed?
 - What is the probability a successful attack would change the outcome of the election?

Kantian Analysis

- The will of each voter should be reflected in that voter's ballot
- The integrity of each ballot is paramount
- Ability to do a recount necessary to guarantee integrity of each ballot
- There should be a paper record of every vote
- Eliminating paper records to save time and/or money is wrong

Conclusions

- Existing systems are highly localized
- Widespread tainting more possible with online system
- No paper records with online system
- Evidence of tampering with online elections
- Relying on security of home computers means system vulnerable to fraud

1 - 36

Strong case for not allowing online voting

7.4 Cyber Crime and Cyber Attacks

Phishing and Spear-phishing

- Phishing: Large-scale effort to gain sensitive information from gullible computer users
 - At least 67,000 phishing attacks globally in second half of 2010
 - New development: increase in phishing attacks on Chinese ecommerce sites
- Spear-phishing: Variant of phishing in which email addresses chosen selectively to target particular group of recipients

SQL Injection

- Method of attacking a database-driven
 Web application with improper security
- Attack inserts (injects) SQL query into text string from client to application
- Application returns sensitive information

Denial-of-service and Distributed Denial-of-service Attacks

- Denial-of-service attack: Intentional action designed to prevent legitimate users from making use of a computer service
- Aim of a DoS attack is not to steal information but to disrupt a server's ability to respond to its clients
- Distributed denial-of-service attack: DoS attack launched from many computers, such as a botnet

Cyber Crime (PP. 332-334)

- Criminal organizations making significant amounts of money from malware
- Jeanson James Ancheta
- Pharmamaster
- Albert Gonzalez
- Avalanche Gang

The Rise and Fall of Blue Security Part I: The Rise

- Blue Security: An Israeli company selling a spam deterrence system
- Blue Frog bot would automatically respond to each spam message with an opt-out message
- Spammers started receiving hundreds of thousands of opt-out messages, disrupting their operations
- 6 of 10 of world's top spammers agreed to stop sending spam to users of Blue Frog

The Rise and Fall of Blue Security Part II: The Fall

- One spammer (PharmaMaster) started sending Blue Frog users 10-20 times more spam
- PharmaMaster then launched DDoS attacks on Blue Security and its business customers
- Blue Security could not protect its customers from DDoS attacks and virus-laced emails
- Blue Security reluctantly terminated its anti-spam activities

COMP422 @ MPI 1-43

Politically Motivated Cyber Attacks (PP. 334-337)

- Estonia (2007)
- Georgia (2008)
- Georgia (2009)
- Exiled Tibetan Government (2009)
- United States and South Korea (2009)
- Stuxnet Worm (2009)

Attacks on Twitter and Other Social Networking Sites

- Massive DDoS attack made Twitter service unavailable for several hours on August 6, 2009
- Three other sites attacked at same time: Facebook, LiveJournal, and Google
- All sites used by a political blogger from the Republic of Georgia
- Attacks occurred on first anniversary of war between Georgia and Russia over South Ossetia

COMP422 @ MPI 1-45

Fourth of July Attacks

- 4th of July weekend in 2009: DDoS attack on governmental agencies and commercial Web sites in United States and South Korea
- Attack may have been launched by North Korea in retaliation for United Nations sanctions

Supervisory Control and Data Acquisition (SCADA) Systems

- Industrial processes require constant monitoring
- Computers allow automation and centralization of monitoring
- Today, SCADA systems are open systems based on Internet Protocol
 - Less expensive than proprietary systems
 - Easier to maintain than proprietary systems
 - Allow remote diagnostics
- Allowing remote diagnostics creates security risk

Stuxnet Worm (2009)

- Attacked SCADA systems running Siemens software
- Targeted five industrial facilities in Iran that were using centrifuges to enrich uranium
- Caused temporary shutdown of Iran's nuclear program
- Worm may have been created by Israeli Defense Forces