Séquence 28 : Volumes

Objectifs:

- 5M22 : Convertir des unités de volumes

- 5M23 : Convertir des unités de volumes et de contenances

- 5M20 : Calculer le volume d'un pavé droit, d'un prisme droit, d'un cylindre

- 5M21 : Calculer le volume d'un assemblage de pavés, prismes et/ou cylindres

<u>I Effectuer des conversions d'unités de volumes et de contenances</u> Méthode:

Pour convertir des unités de volumes et de contenances, on utilise un tableau de conversion :

- au début quand on n'est pas à l'aise on le fait au brouillon ;

- ensuite quand on est à l'aise on peut juste l'imaginer dans sa tête

Exemple de tableau de conversion :

km³		hm³		dam³		m³		dm³			cm³			mm³						
											kL	hL	daL	L	dL	cL	mL			

Méthode pour utiliser un tableau de conversion :

- on place le chiffre des unités dans la colonne de l'unité de départ ;
- on place la virgule au crayon à papier dans la colonne de l'unité de départ ;
- on complète le nombre en veillant à n'avoir qu'un seul chiffre par colonne ;
- on repère dans quelle colonne se trouve l'unité qu'on cherche ;
- on déplace la virgule pour la mettre dans la colonne de l'unité qu'on cherche ;
- on ajoute des zéros si besoin.

Exemple:

- 1) Convertir 27 hm³ en m³.
- 2) Convertir 0,52 km³ en dm³
- 3) Convertir 18,5 cm³ en dam³
- 4) Convertir 13,8 L en m³
- 5) Convertir 2,19 m³ en cL

km³		hm³		dam³			m^3			dm³			cm³			mm³			
										kL	hL	daL	L	dL	cL	mL			
			2	7,	0	0	0	0	0	0,									
	0,	5	2	0	0	0	0	0	0	0	0	0	0,						
							0,	0	0	0	0	0	0	0	1	8,	5		
										0,	0	1	3,	8					
										2,	1	9	0	0	0,				

- 1) $27 \text{ hm}^3 = 27\ 000\ 000\ \text{m}^3$
- 2) $0.52 \text{ km}^3 = 520\ 000\ 000\ 000\ dm^3$
- 3) $18.5 \text{ cm}^3 = 0.000\ 000\ 018\ 5\ dam^3$
- 4) $13.8 L = 0.013 8 m^3$
- 5) $2,19 \text{ m}^3 = 219\ 000 \text{ cL}$

II Calculer le volume d'un pavé droit, d'un prisme droit, d'un cylindre

1. Solides usuels

Propriétés:

	Cube	Pavé droit	Prisme droit	Cylindre
Solide	c	h L	h Base	h Base
Volume	$\mathcal{V} = c \times c \times c$	$\mathcal{V} = L \times l \times h$	\mathcal{V} = \mathcal{A}_{base} $ imes$ h	\mathcal{V} = \mathcal{A}_{base} × h \mathcal{V} = π r^2 h

Remarques:

- La base d'un cylindre étant un disque de rayon r, son aire est π r². La formule permettant de calculer l'aire d'un cylindre est donc $\mathcal{V} = \pi r^2 h$
- Pour le calcul d'un volume, toutes les longueurs doivent être exprimées dans la même unité.
- En pratique, on utilise souvent 3,14 comme valeur approchée de π mais π n'est pas égal à 3,14.

Exemple:

Calculer le volume d'un pavé droit de 5 mm de largeur, de 6 mm de longueur et de 3 mm de hauteur. $\mathcal{V} = L \times l \times h = 6 \text{ mm} \times 5 \text{ mm} \times 3 \text{ mm} = 90 \text{ mm}^3$

2. Assemblage de solides

<u>Méthode</u>:

Pour calculer l'aire d'un solide quelconque, on le découpe en solides dont on connaît la formule.

Exemple:

Calculer le volume du « L » ci-dessous.

On voit qu'on peut séparer ce « L » en un pavé droit et un cube

$$V_{total} = V_{pavé\ droit} + V_{cube}$$

 $V_{pavé\ droit} = L \times l \times h = 3 \text{ dm} \times 3 \text{ dm} \times 8 \text{ dm} = 72 \text{ dm}^3$

$$V_{cube} = c \times c \times c = 3 \text{ dm} \times 3 \text{ dm} \times 3 \text{ dm} = 27 \text{ dm}^3$$

$$V_{total} = V_{pavé\ droit} + V_{cube}$$

$$V_{total} = 72 \text{ dm}^3 + 27 \text{ dm}^3 = 99 \text{ dm}^3$$

Remarque:

On peut découper en solides qu'on va additionner comme l'exemple précédent mais on peut aussi découper en solides qu'on va soustraire.

Exemple:

