

Exame - Parte 2 (com consulta, 10 valores, 90 minutos)

Nome:

1. Duas estações comunicam usando uma ligação de dados baseada num mecanismo ARQ do tipo *Selective Repeat*. A capacidade do canal, em cada sentido, é de 2 Mbit/s, o atraso de propagação entre estações é de 250 ms e os pacotes têm um tamanho de 250 Bytes. Assuma duas situações de erro distintas: $BER_1=0$ e $BER_2=10^{-4}$.

a) (1,5 valor) Considere inicialmente que as tramas são numeradas **módulo 64**. Calcule a eficiência máxima do

protocolo e o débito máximo para as duas situações de erro.

Selective Repeat ARQ	$BER_1=0$	BER ₂ =10 ⁻⁴
Eficiência máxima (%)	6,4	5,1
Débito máximo (kbit/s)	128	102

b) (*1 valor*) Determine o tamanho da janela de transmissão (e o módulo de numeração correspondente) que permitiria teoricamente obter a eficiência máxima do canal para as duas situações de erro indicadas. Calcule a eficiência máxima obtida para os módulos de numeração identificados nas duas situações de erro.

Selective-Repeat ARQ	$BER_{I}=0$	BER ₂ =10 ⁻⁴
Tamanho da janela de transmissão	512	512
Módulo de numeração para a janela crítica de transmissão	1024	1024
Eficiência máxima (%)	100	82

- c) (1,5 valor) Considere agora que se adiciona a cada trama um código corretor de erros e admita dois cenários:
 - i) no Cenário A usa-se um código que aumenta o tamanho da trama em 10% e origina um *Frame Error Ratio(FER)* de 10%.
 - ii) no Cenário B usa-se um código que aumenta o tamanho da trama em 30% e origina um *FER* de 5%. Assuma as condições da alínea a). Calcule a eficiência máxima e o débito máximo útil para os 2 cenários.

Selective Repeat ARQ	Cenário A	Cenário B
Eficiência máxima (%)	6,3	7,9
Débito máximo útil (kbit/s)	115	121

Nome:

2. Admita que um sistema de transmissão é modelizado por uma fila de espera M/M/1 de capacidade infinita. Verificase que em média chegam ao sistema 600 pacote/s, de comprimento médio 1500 Bytes, e que a linha de transmissão está vazia em 40% do tempo.

a) (1 valor) Calcule a capacidade da linha de transmissão, a ocupação média da fila de espera e o tempo médio de

atraso dos pacotes.

Capacidade da linha (Mbit/s)	12
Ocupação média da fila de espera, N _w	0,9
Tempo médio de atraso dos pacotes, T, (ms)	2,5

b) (1 valor) Calcule a probabilidade de haver pacotes no sistema em duas situações diferentes: i) a fila tem capacidade infinita; ii) a fila tem uma capacidade de 1 buffer.

	Prob [NumPacotes > 0]
i) Fila de capacidade infinita	0,6
ii) Fila com 1 buffer	0.38

c) (1 valor) Admita que, nas condições da alínea a), os pacotes passavam a ter um **comprimento constante** de 1500 Bytes. Calcule a capacidade da linha de transmissão, a ocupação média da fila de espera e o tempo médio de atraso dos pacotes. Discuta e compare estes resultados com os resultados obtidos na alínea a).

Capacidade da linha (Mbit/s)	12
Ocupação média da fila de espera, N _w	0,45
Tempo médio de atraso dos pacotes, T, (ms)	1,75

Nome:

3. À Empresa A foi atribuído o bloco de endereços **77.77.764/26**. A empresa tem um rede de comunicações com a arquitetura descrita na figura, composta por dois routers (R1 e R2) e dois comutadores Ethernet (S1 e S2). O comutador S1 tem configurada a VLAN1 que serve 4 computadores. O comutador S2 tem configurada a VLAN2 e a VLAN3 que servem respetivamente 10 e 28 computadores. Os *routers* R1 e R2 estão interligados por uma ligação ponto-a-ponto que usa o endereço de rede indicado na figura.

a) (1 valor) Calcule os endereços associados às redes indicadas.

	Endereço da subrede (endereço/máscara)	Endereço de <i>broadcast</i> da subrede	N° de endereços de interfaces
VLAN1	77.77.72/29	77.77.77	6
VLAN2	77.77.77.80/28	77.77.77.95	14
VLAN3	77.77.77.96/27	77.77.77.127	30

b) (1 valor) Atribua endereços IP às interfaces de rede indicadas na tabela. Use os <u>endereços mais altos</u> de cada subrede. Numa sub-rede atribua os endereços mais baixos aos routers de índice Ri mais baixo. Por exemplo, o endereço de R1.eth1 deverá ser inferior ao endereço de R2.eth1.

Router.interface	Endereço(s) IP
R1.eth1	77.77.75
R2.eth1	77.77.766
R1.eth2	77.77.78
R2.eth0	77.77.77.94, 77.77.726

c) (1 valor). Escreva a tabela de encaminhamento do **router R2.** Este router deverá ser capaz enviar pacotes para todos os endereços IP unicast. Use o menor número possível de entradas na tabela.

Destino (endereço/máscara)	Gateway	Interface
77.77.77.80/28	-	eth0
77.77.796/27	-	eth0
0/0	77.77.75	eth1