

OTIMIZAÇÃO DE CONSULTAS

Eduardo Ogasawara eogasawara@ieee.org https://eic.cefet-rj.br/~eogasawara

Introdução

- Modos alternativos de avaliar determinada consulta
 - Expressões equivalentes
 - Diferentes algoritmos para cada operação
- A diferença de custo entre uma maneira boa e ruim para avaliar uma consulta pode ser enorme
 - Exemplo: realizar um $R \times S$ seguido por uma seleção $\sigma_{R.A=S.B}$ é muito mais lento do que realizar uma junção na mesma condição
- Necessidade de estimar o custo das operações
 - Depende criticamente de informações estatísticas sobre relações que o banco de dados precisa manter
 - Exemplo: número de tuplas, número de valores distintos para atributos de junção
 - Precisa estimar estatísticas para resultados intermediários, para calcular o custo de expressões complexas

Comparações de árvores de processamento de consultas

 Relações geradas por duas expressões equivalentes têm o mesmo conjunto de atributos e contêm o mesmo conjunto de tuplas, embora seus atributos possam ser ordenados de modo diferente

(a) árvore da expressão inicial

(b) árvore transformada

Otimização baseada em custo

- A geração de planos de avaliação de consulta para uma expressão envolve várias etapas:
 - Gerar expressões logicamente equivalentes usando regras de equivalência para transformar uma expressão em uma equivalente
 - Anotar expressões resultantes para obter planos de consulta alternativos
 - Escolher o plano mais barato com base no custo estimado
- O processo geral é denominado otimização baseada em custo

Transformação de expressões relacionais

- Duas expressões da álgebra relacional são consideradas equivalentes se em cada instância de banco de dados válida as duas expressões gerarem o mesmo conjunto de tuplas
 - Nota: a ordem das tuplas é irrelevante
- Em SQL, entradas e saídas são multiconjuntos de tuplas
 - Duas expressões na versão multiconjunto da álgebra relacional são consideradas equivalentes se em cada instância de banco de dados válida as duas expressões gerarem o mesmo multiconjunto de tuplas
- Uma regra de equivalência diz que expressões de duas formas são equivalentes
 - Pode substituir a expressão da primeira forma pela segunda, ou vice-versa

 Operações de seleção conjuntiva podem ser desmembradas em uma sequência de seleções individuais

$$\sigma_{\theta_1 \wedge \theta_2}(E) = \sigma_{\theta_1}(\sigma_{\theta_2}(E))$$

Operações de seleção são comutativas

$$\sigma_{\theta_2}(\sigma_{\theta_1}(E)) = \sigma_{\theta_1}(\sigma_{\theta_2}(E))$$

 Somente a última em uma sequência de operações de projeção é necessária, e as outras podem ser omitidas (em cascata)

$$\pi_{\theta_1}(\pi_{\theta_2}(E)) = \pi_{\theta_1}(E)$$

 As seleções em produtos cartesianos podem ser combinados em junções teta

$$\sigma_{\theta}(E_1 \times E_2) = E_1 \bowtie_{\theta} E_2$$

$$\sigma_{\theta_1}(E_1 \bowtie_{\theta_2} E_2) = E_1 \bowtie_{\theta_1 \land \theta_2} E_2$$

• Operações de junção teta (e junções naturais) são comutativas $E_1 \bowtie_{\theta} E_2 = E_2 \bowtie_{\theta} E_1$

Operações de junção natural são associativas

$$(E_1 \bowtie E_2) \bowtie E_3 = E_1 \bowtie (E_2 \bowtie E_3)$$

Operações de junção teta são associativas

$$(E_1 \bowtie_{\theta_1} E_2) \bowtie_{\theta_2 \land \theta_3} E_3 = E_1 \bowtie_{\theta_1 \land \theta_3} (E_2 \bowtie_{\theta_2} E_3)$$

onde $heta_2$ envolve atributos apenas de $heta_2$ e $heta_3$

- A operação de seleção tem distribuição com a junção teta sob as duas condições a seguir:
 - Quando todos os atributos em θ_0 envolvem apenas os atributos de uma das expressões (E_1) sendo juntadas

$$\sigma_{\theta_0}(E_1 \bowtie_{\theta} E_2) = (\sigma_{\theta_0}(E_1)) \bowtie_{\theta} E_2$$

• Quando $etha_1$ envolve apenas os atributos de $extbf{E}_1$ e $etha_2$ envolve apenas os atributos de $extbf{E}_2$

$$\sigma_{\theta_1 \wedge \theta_2}(E_1 \bowtie_{\theta} E_2) = \sigma_{\theta_1}(E_1) \bowtie_{\theta} (\sigma_{\theta_2}(E_2))$$

Essas transformações são conhecidas como push-down selection

Representação das regras de equivalência

Representação das regras de equivalência

- A operação de projeção distribui pela operação de junção teta da seguinte forma:
- se π envolver apenas atributos de $L_1 \cup L_2$:

$$\pi_{L_1 \cup L_2}(E_1 \bowtie_{\theta} E_2) = \pi_{L_1}(E_1) \bowtie_{\theta} \pi_{L_2}(E_2)$$

- A operação de projeção tem cascata na junção teta
- Considere uma junção $E_1 \bowtie_{\theta} E_2$
 - Considere L_1 e L_2 conjuntos de atributos de E_1 e E_2 , respectivamente
 - Considere L_3 um conjunto de atributos de E_1 que estão envolvidos na condição de junção θ , mas não estão em $L_1 \cup L_2$
 - Considere L_4 um conjunto de atributos de E_2 que estão envolvidos na condição de junção θ , mas não estão em $L_1 \cup L_2$

$$\pi_{L_1 \cup L_2}(E_1 \bowtie_{\theta} E_2) = \pi_{L_1 \cup L_2}(\pi_{L_1 \cup L_3}(E_1) \bowtie_{\theta} \pi_{L_2 \cup L_4}(E_2))$$

A união e interseção de conjuntos são comutativas

$$E_1 \cup E_2 = E_2 \cup E_1$$

 $E_1 \cap E_2 = E_2 \cap E_1$

(a diferente de conjunto não é comutativa)

A união e a interseção de conjuntos são associativas

$$(E_1 \cup E_2) \cup E_3 = E_1 \cup (E_2 \cup E_3)$$

$$(E_1 \cap E_2) \cap E_3 = E_1 \cap (E_2 \cap E_3)$$

A operação de seleção tem distribuição por ∪, ∩ e −

$$\sigma_{\theta}(E_1 - E_2) = \sigma_{\theta}(E_1) - \sigma_{\theta}(E_2)$$

$$\sigma_{\theta}(E_1 \cup E_2) = \sigma_{\theta}(E_1) \cup \sigma_{\theta}(E_2)$$

$$\sigma_{\theta}(E_1 \cap E_2) = \sigma_{\theta}(E_1) \cap \sigma_{\theta}(E_2)$$

Também:

$$\sigma_{\theta}(E_1 - E_2) = \sigma_{\theta}(E_1) - (E_2)$$

$$\sigma_{\theta}(E_1 \cap E_2) = \sigma_{\theta}(E_1) \cap (E_2)$$

A operação de projeção tem distribuição pela união

$$\pi_L(E_1 \cup E_2) = \pi_L(E_1) \cup \pi_L(E_2)$$

Exemplo de transformação

 Encontre os nomes de todos os clientes que têm uma conta em alguma agência localizada em Brooklyn

```
\pi_{nomeCliente}(\sigma_{cidadeAgencia="Brooklyn"}(agencia\bowtie conta\bowtie depositante))\\ \equiv\\ \pi_{nomeCliente}(\sigma_{cidadeAgencia="Brooklyn"}(agencia)\bowtie conta\bowtie depositante)
```

 Reduz a seleção o mais cedo possível reduz o tamanho da relação a ser juntada

Exemplo com múltiplas transformações

 Encontrar os nomes de todos os clientes com uma conta em uma agência do Brooklyn cujo saldo de conta é maior que \$1000

```
\pi_{nomeCliente}\left(\sigma_{cidadeAgencia="Brooklyn" \land saldo > 1000}(agencia \bowtie conta \bowtie depositante)\right)
```

 $\pi_{nomeCliente}(\sigma_{cidadeAgencia="Brooklyn" \land saldo > 1000}(agencia \bowtie conta) \bowtie depositante)$

 A segunda forma oferece uma oportunidade para aplicar a regra "realizar seleções cedo", resultando na subexpressão

```
\sigma_{cidadeAgencia = "Brooklyn" \land saldo > 1000}(agencia \bowtie conta)
```

=

 $\sigma_{cidadeAgencia="Brooklyn"}(agencia) \bowtie \sigma_{saldo>1000}(conta)$

Múltiplas transformações

(a) árvore da expressão inicial

(b) árvore após múltiplas transformações

Exemplo de operação de projeção

Quando calculamos

 $\sigma_{cidadeAgencia="Brooklyn"}(agencia)\bowtie conta$

- obtemos uma relação cujo esquema é: (nome-agência, cidade-agência, ativos, número-conta, saldo)
- Empurre projeções usando as regras de equivalência e elimine atributos indesejados dos resultados intermediários para obter: $\pi_{nomeCliente}(\pi_{numeroConta}(\sigma_{cidadeAgencia="Brooklyn"}(agencia) \bowtie conta) \bowtie depositante)$
- Realize a projeção o mais cedo possível reduz o tamanho da relação intermediária
 - Atenção que os atributos necessários as operações seguintes devem ser preservados

Exemplo de ordenação de junção

- Para todas as relações R₁, R₂, R₃
 - $\blacksquare (R_1 \bowtie R_2) \bowtie R_3 = R_1 \bowtie (R_2 \bowtie R_3)$
 - Se $R_2 \bowtie R_3$ for muito grande e $R_1 \bowtie R_2$ for pequeno, escolhemos $(R_1 \bowtie R_2) \bowtie R_3$ de modo que calculamos e armazenamos uma relação temporária menor

Exemplo de ordenação de junção (cont.)

Considere a expressão

 $\pi_{nomeCliente}((depositante \bowtie conta) \bowtie \sigma_{cidadeAgencia="Brooklyn"}(ag\hat{e}ncia))$

- Poderia calcular $conta\bowtie depositante$ primeiro e depois o resultado da junção como $\sigma_{cidadeAgencia="Brooklyn"}(agência)$
- Entretanto, *conta* ⋈ *depositante* provavelmente será uma relação grande
- Como é mais provável que somente uma pequena fração dos clientes do banco tenha contas em agências localizadas no Brooklyn, é melhor calcular primeiro

 $\pi_{nomeCliente}((\sigma_{cidadeAgencia="Brooklyn"}(ag \\ \hat{\text{e}}ncia) \bowtie conta) \bowtie depositante)$

Enumeração de expressões equivalentes

- Os otimizadores de consulta usam regras de equivalência para gerar sistematicamente expressões equivalente à expressão indicada
- Conceitualmente, gera-se todas as expressões equivalentes executando repetidamente as transformações até que nenhuma outra expressão seja encontrada:
 - para cada expressão encontrada até aqui, use todas as regras de equivalência aplicáveis, e acrescente expressões recém geradas ao conjunto de expressões encontradas até aqui
- A técnica acima é muito dispendiosa em espaço e tempo

Plano de avaliação

 Um plano de avaliação define exatamente qual algoritmo é usado para cada operação, e como a execução das operações é coordenada

Escolha dos planos de avaliação

- Precisa-se considerar a interação das técnicas de avaliação quando escolher planos de avaliação:
 - a escolha do algoritmo de menor custo para cada operação independentemente pode não gerar o melhor algoritmo geral.
 - Por exemplo:
 - junção merge pode ser mais dispendiosa que a junção de hash, mas pode oferecer uma saída classificada que reduz o custo para um nível de agregação externo
 - a junção de loop aninhado oferece oportunidade para pipelining
- As abordagens adotadas pelos otimizadores de consulta incorporam elementos das duas técnicas gerais a seguir:
 - 1. Pesquisar todos os planos e escolher o melhor plano com base no custo
 - 2. Usar heurística para escolher um plano

Otimização baseada em custo

Considere encontrar a melhor ordem de junção para

$$R_1 \bowtie R_2 \bowtie R_3 \bowtie \cdots \bowtie R_n$$

- Existem $\frac{{c_{n-1}^{2^{n}-1}}}{n}$ ordens de junção diferentes para a expressão acima
 - Com n=7, o número é 665280, com n=10, o número é maior que 176 bilhões!
- Não é preciso gerar todas as ordens de junção.
 - Usando a programação dinâmica, a ordem de junção de menor custo para qualquer subconjunto de $\{R_1, R_2, ..., R_n\}$ é calculada apenas uma vez e armazenada para uso futuro

Programação dinâmica na otimização

- Para encontrar a melhor árvore de junção para um conjunto de n relações:
 - Para encontrar o melhor plano para um conjunto S de n relações, considere todos os planos possíveis da forma: $S_1 \bowtie (S S_1)$ onde S_1 é qualquer subconjunto não vazio de S
 - Recursivamente, calcule os custos para juntar subconjuntos de S para encontrar o custo de cada plano. Escolha a mais barata das $\mathbf{2}^n \mathbf{1}$ alternativas
 - Quando o plano para qualquer subconjunto for calculado, armazene-o e reutilize-o quando for necessário novamente, em vez de recalculá-lo
 - Programação dinâmica

Algoritmo de otimização da ordem de junção

```
procedure achar Melhor Plano(S)
    if (melhorplano[S].custo \neq \infty)
        return melhorplano[S]
   // Se não estava calculado o melhorplano[S]; calcula-se agora
   for each subconjunto não vazio S_1 de S de modo que S_1 \neq S
        P_1 = acharMelhorPlano(S_1)
        P_2 = acharMelhorPlano(S - S_1)
        A = \text{melhor alg. para junção de resultados de } P_1 \in P_2
        custo = P_1.custo + P_2.custo + custo de A
        if custo < melhorplano[S].custo
                  melhorplano[S].custo = custo
                  melhorplano[S].plano =
                           "executar P<sub>1</sub>.plano;
                           executar P_2.plano;
                           juntar resultados de P_1 e P_2 usando A"
    return melhorplano[S]
```

Árvores de junção esquerda profunda

 Em árvores de junção profunda esquerda, a entrada do lado direito para cada junção é uma relação, e não o resultado de uma junção intermediária

(a) árvore de junção esquerda profunda

(b) árvore de junção

Custo da otimização

- Com o tempo de programação dinâmico, a complexidade da otimização com árvores de muitas folhas é $O(3^n)$
 - Com n = 10, esse número é 59000 em vez de 176 bilhões!
- A complexidade de espaço é $O(2^n)$

Custo da otimização

- lacktriangle Para encontrar a melhor árvore de junção profunda esquerda para um conjunto de n relações
 - Considere n alternativas com uma relação como a entrada do lado direito e as outras relações como a entrada do lado esquerdo
 - Usando a ordem de junção de menor custo (calculada e armazenada recursivamente) para cada alternativa no lado esquerdo, escolha a mais barata das n alternativas
- Se apenas árvores profundas esquerdas forem consideradas, a complexidade de tempo para encontrar a melhor ordem de junção é $O(n2^n)$
- A complexidade de espaço permanece em $O(2^n)$
- A otimização baseada em custo é dispendiosa, mas compensa para consultas sobre datasets grandes
 - (consultas típicas possuem n pequeno, geralmente < 10)

Ordens interessantes na otimização baseada em custo

- Considere a expressão $(R_1 \bowtie R_2 \bowtie R_3) \bowtie R_4 \bowtie R_5$
- Uma ordem de classificação interessante é uma ordem de classificação as tuplas para as próximas operações
 - O uso da junção merge para calcular $R_1 \bowtie R_2 \bowtie R_3$ pode ser mais dispendioso, mas pode oferecer uma saída classificada em uma ordem interessante para o processamento de R_4 ou R_5
- Não é suficiente encontrar a melhor ordem de junção para cada subconjunto do conjunto de n relações dadas
 - É preciso encontrar a melhor ordem de junção para cada subconjunto, para cada ordem de classificação interessante
 - Extensão simples dos algoritmos de programação dinâmica mais antigos
 - Normalmente, o número de ordens interessantes é muito pequeno e não afeta a complexidade de tempo/espaço de modo significativo

Otimização heurística

- A otimização baseada em custo é dispendiosa, mesmo com a programação dinâmica
- Os sistemas podem usar heurísticas para reduzir o número de escolhas que precisam ser feitas com base no custo
- A otimização heurística transforma a árvore de consulta usando um conjunto de regras que normalmente (mas não em todos os casos) melhoram o desempenho da execução:
 - Realizar a seleção cedo (reduz o número de tuplas)
 - Realizar a projeção cedo (reduz o número de atributo)
 - Realizar as operações de seleção e junção mais restritivas antes de outras operações semelhantes
 - Alguns sistemas utilizam apenas heurísticas, outros combinam heurísticas com otimização parcial baseada em custo.

Etapas na otimização heurística típica

- Desconectar seleções conjuntivas em uma sequência de operações de seleção exclusivas
- Mover operações de seleção para baixo na árvore de consulta, para executar o mais cedo possível (push-down selection)
- Executar primeiro as operações de seleção e junção que produzirão as menores relações
- Substituir operações de produto cartesiano que são seguidas por uma condição de seleção por operações de junção
- Desconstruir e mover para o mais baixo possível na árvore as listas de atributos de projeção, criando novas projeções onde for necessário
- Identificar as sub-árvores cujas operações podem ser canalizadas, e executá-las usando pipelining

Referências

