

Information Retrieval

Learning to Rank: Pointwise

Rodrygo L. T. Santos rodrygo@dcc.ufmg.br

The ranking problem

Learning to rank

Learning to rank

Feature-based representation

Individual models as ranking "features"

Discriminative learning

- Effective models learned from data
- Aka machine-learned ranking

Building blocks

Goal is to learn a ranking model

$$\circ f: \mathcal{X} \to \mathcal{Y}$$

That minimizes some loss function

$$\circ \mathcal{L}: f(\mathcal{X}) \times \mathcal{Y} \to \mathcal{R}$$

Ideally, we would like a low test error

We settle for a good training error / capacity trade-off

What is a learning algorithm?

Given

- \circ A family of functions ${\mathcal F}$ (e.g., linear, trees, neural nets)
- \circ A measure of loss \mathcal{L} (error + capacity)

Learning can be cast as an optimization problem

$$f^* = \operatorname{argmin}_{f \in \mathcal{F}} \mathcal{L}(f, \operatorname{train})$$

$$= \operatorname{argmin}_{f \in \mathcal{F}} \operatorname{Err}(f, \operatorname{train}) + \lambda \operatorname{Reg}(f)$$

Classical algorithms

Linear learning algorithms

- Regression (LASSO, Ridge reg.)
- Classification (logistic reg., linear SVM, AdaBoost)

Non-linear learning algorithms

- Neural networks
- (Boosted) regression trees

Linear learning algorithms

 \mathcal{F} is the set of linear functions

- $f_w(x) = w^T x$, where $x \in \mathcal{R}^d$, $w \in \mathcal{R}^d$
 - x: d-dimens. feature vector describing an example
 - w: weight vector defining the function f_w
 - $f_w(x)$ is the prediction of f_w for example x

Linear learning algorithms

Most typical regularizers

- L2 regularization, $||w||_2^2 = \sum_j w_j^2$ (prefer "flat" weights)
- L1 regularization, $||w||_1 = \sum_j |w_j|$ (prefer "sparse" weights)

Classical algorithms

Linear learning algorithms

- Regression (LASSO, Ridge reg.)
- Classification (logistic reg., linear SVM, AdaBoost)
- Non-linear learning algorithms
- Neural networks
- (Boosted) regression trees

Linear learning for regression

Ordinary least squares

$$\circ \mathcal{L}(w) = \frac{1}{2} \sum_{i=1}^{m} (f_w(x^{(i)}) - y^{(i)})^2$$

Ridge regression

• Add L2 regularization $(+\lambda ||w||_2^2)$

LASSO

• Add L1 regularization $(+\lambda ||w||_1)$

Linear learning for regression

Ordinary least squares

$$\circ \mathcal{L}(w) = \frac{1}{2} \sum_{i=1}^{m} (f_w(x^{(i)}) - y^{(i)})^2$$

Typical optimization strategy

- \circ Compute the gradient of $\mathcal{L}(\cdot)$ as $\nabla\mathcal{L}(\cdot)$
- Take a step (iterate) in the opposite direction $w = w \alpha \nabla \mathcal{L}(w)$, where α is the learning rate

Gradient as a d-dimens. vector of partial derivatives

$$\circ \nabla \mathcal{L}(w) = \left(\frac{\partial \mathcal{L}(w)}{\partial w_1}, \frac{\partial \mathcal{L}(w)}{\partial w_2}, \dots, \frac{\partial \mathcal{L}(w)}{\partial w_d}\right)$$

How to compute each partial derivative?

- Manual derivation... d may be very large!
- Automatically

Ordinary least squares

$$\circ \mathcal{L}(w) = \frac{1}{2} \sum_{i=1}^{m} (f_w(x^{(i)}) - y^{(i)})^2$$

For a given dimension k

$$\frac{\partial}{\partial w_{k}} \mathcal{L}(w) = \frac{\partial}{\partial w_{k}} \frac{1}{2} \sum_{i=1}^{m} \left(f_{w}(x^{(i)}) - y^{(i)} \right)^{2}
= \sum_{i=1}^{m} \frac{\partial}{\partial w_{k}} \frac{1}{2} \left(f_{w}(x^{(i)}) - y^{(i)} \right)^{2}
= \sum_{i=1}^{m} 2 \frac{1}{2} \left(f_{w}(x^{(i)}) - y^{(i)} \right) \frac{\partial}{\partial w_{k}} \left(f_{w}(x^{(i)}) - y^{(i)} \right)
= \sum_{i=1}^{m} \left(f_{w}(x^{(i)}) - y^{(i)} \right) \frac{\partial}{\partial w_{k}} f_{w}(x^{(i)})$$

$$\frac{\partial}{\partial w_k} f_w(x^{(i)}) = \frac{\partial}{\partial w_k} w^T x^{(i)}$$

$$= \frac{\partial}{\partial w_k} \sum_{j=1}^d w_j x_j^{(i)}$$

$$= \frac{\partial}{\partial w_k} \left(w_k x_k^{(i)} + \sum_{j \neq k} w_j x_j^{(i)} \right)$$

$$= x_k^{(i)}$$

$$\frac{\partial}{\partial w_k} \mathcal{L}(w) = \sum_{i=1}^m \left(f_w(x^{(i)}) - y^{(i)} \right) \frac{\partial}{\partial w_k} f_w(x^{(i)})$$

$$= \sum_{i=1}^m \left(f_w(x^{(i)}) - y^{(i)} \right) x_k^{(i)}$$
prediction error
$$k^{th} \text{ feature score}$$

$$\frac{\partial}{\partial w_k} \mathcal{L}(w) = \sum_{i=1}^m \left(f_w(x^{(i)}) - y^{(i)} \right) \frac{\partial}{\partial w_k} f_w(x^{(i)})$$
$$= \sum_{i=1}^m \left(f_w(x^{(i)}) - y^{(i)} \right) x_k^{(i)}$$

- $^{\circ} m = |D|$: batch gradient descent
- $m = c \ll |D|$: mini-batch gradient descent
- m = 1: stochastic gradient descent

Classical algorithms

Linear learning algorithms

- Regression (LASSO, Ridge reg.)
- Classification (logistic reg., linear SVM, AdaBoost)

Non-linear learning algorithms

- Neural networks
- (Boosted) regression trees

Linear learning for classification

Prediction

Classification error

$$\circ \mathcal{L}(w) = \frac{1}{m} \sum_{i=1}^{m} \mathbf{1} (y^{(i)} f_w(x^{(i)}) < 0)$$

• Problem: non-differentiable!

Linear learning for classification

Logistic regression

Logistic loss + L1 or L2 regularizer

Support Vector Machines (SVM)

Hinge loss + L2 regularizer

AdaBoost

Exponential loss + L1 regularizer

Classical algorithms

Linear learning algorithms

- Regression (LASSO, Ridge reg.)
- Classification (logistic reg., linear SVM, AdaBoost)

Non-linear learning algorithms

- Neural networks
- (Boosted) regression trees

Neural networks

Composable functions through several layers

Inspired by biological neural networks (your brain)

Each layer performs a linear operation potentially

followed by a non-linear activation

$$\circ \ \ell_0 = x \ \text{and} \ \ell_i = \sigma_i (W_i \ell_{i-1} + b_i)$$
 activation weights biases

Example: shallow (2-layer) network

$$\ell_{0} = x$$

$$[d \times 1]$$

$$\ell_{1} = \sigma_{1}(W_{1}\ell_{0} + b_{1})$$

$$[h_{1} \times 1] \qquad [h_{1} \times d[d \times 1] \quad [h_{1} \times 1]$$

$$\ell_{2} = \sigma_{2}(W_{2}\ell_{1} + b_{2})$$

$$[1 \times 1] \qquad [1 \times h_{1}[h_{1} \times 1] \quad [1 \times 1]$$

Example: deep (5-layer) network

$$\ell_{0} = x$$

$$[d \times 1]$$

$$\ell_{1} = \sigma_{1}(W_{1}\ell_{0} + b_{1})$$

$$[h_{1} \times 1] \quad [h_{1} \times d][d \times 1] \quad [h_{1} \times 1]$$

$$\ell_{2} = \sigma_{2}(W_{2}\ell_{1} + b_{2})$$

$$[h_{2} \times 1] \quad [h_{2} \times h_{1}][h_{1} \times 1] \quad [h_{2} \times 1]$$

$$\ell_{3} = \sigma_{3}(W_{3}\ell_{2} + b_{3})$$

$$[h_{3} \times 1] \quad [h_{3} \times h_{2}][h_{2} \times 1] \quad [h_{3} \times 1]$$

$$\ell_{4} = \sigma_{4}(W_{4}\ell_{3} + b_{4})$$

$$[h_{4} \times 1] \quad [h_{4} \times h_{3}][h_{3} \times 1] \quad [h_{4} \times 1]$$

$$\ell_{5} = \sigma_{5}(W_{5}\ell_{4} + b_{5})$$

$$[1 \times 1] \quad [1 \times h_{4}][h_{4} \times 1] \quad [1 \times 1]$$

Neural network learning

Parameters (W_i 's and b_i 's) learned via gradient descent

 \circ Find $\{W_i, b_i\}$ which minimize loss

Works with any differentiable loss

- Cross-entropy commonly used
- \circ L2 regularization on $\{W_i, b_i\}$

Architecture selected using validation data

Classical algorithms

Linear learning algorithms

- Regression (LASSO, Ridge reg.)
- Classification (logistic reg., linear SVM, AdaBoost)

Non-linear learning algorithms

- Neural networks
- (Boosted) regression trees

Regression trees

Examples travel the tree from the root to one leaf Each node performs a test on the input xEach leaf corresponds to a prediction f(x)

- 1. Start with a tree containing only the root
- 2. Splitting: for each node with depth < max depth
- Find best test and create two leaves from the node
- Find best prediction for these two leaves
- 3. Rep. #2 until no more nodes with depth < max depth

f(x) = 0.5

Best split: $x_2 > 0.5$

Best predictions: f(x) = 0.7 if $x_2 > 0.5$

f(x) = 0.2 otherwise

Best split: $x_2 > 0.5$

Best predictions: f(x) = 0.7 if $x_2 > 0.5$

f(x) = 0.2 otherwise

Best split: $x_4 > 0.8$

Best predictions: f(x) = 0.5 if $x_4 > 0.8$

f(x) = 0.8 otherwise

Greedy learning

Best split: $x_4 > 0.8$

Best predictions: f(x) = 0.5 if $x_4 > 0.8$

f(x) = 0.8 otherwise

Greedy learning

Best split: $x_1 > 0.2$

Best predictions: f(x) = 0.3 if $x_1 > 0.2$

f(x) = 0.1 otherwise

Greedy learning

Best split: $x_1 > 0.2$

Best predictions: f(x) = 0.3 if $x_1 > 0.2$

f(x) = 0.1 otherwise

Greedy learning a regression tree

- 1. Start with a tree containing only the root
- 2. Splitting: for each node with depth < max depth
- Find best test and create two leaves from the node
- Find best prediction for these two leaves
- 3. Rep. #2 until no more nodes with depth < max depth

Splitting a node

Given all S_k examples reaching node k, find:

 $\circ i, \tau$: defining the test $x_i > \tau$

Let
$$S_k^l \equiv S_k : x_i \le \tau$$
 and $S_k^r \equiv S_k : x_i > \tau$

Minimize:
$$\mathcal{L} = \sum_{(x,y) \in S_k^l} (\bar{y}^l - y)^2 + \sum_{(x,y) \in S_k^r} (\bar{y}^r - y)^2$$

•
$$\bar{y}^l \equiv \frac{1}{|S_k^l|} \sum_{(x,y) \in S_k^l} y$$
 and $\bar{y}^r \equiv \frac{1}{|S_k^r|} \sum_{(x,y) \in S_k^r} y$

Regression trees

Advantages

- Low computation cost for prediction
- Easy to interpret

Disadvantages

- Only models piecewise constant functions
- Learning deep trees requires lots of examples

Gradient boosted regression trees (GBRTs)

A GBRT is an ensemble of regression trees

 $f(x) = \sum_{t=1}^{T} h_t(x)$, where h_t is a regression tree

Advantages

- Models more complex functions than a single tree
- Learning many shallow trees requires less training data than learning one deep tree

Gradient boosting

For
$$t = 1, ..., T$$

- Current model: $f_t = \sum_{i=1}^{t-1} h_i$
- \circ Learn h_t^* to "correct" f_t

 - $h_t^* = \operatorname{argmin}_{h_t} \sum_{(x,y)} (h_t(x) (y f_t(x))^2$ $= \operatorname{argmin}_{h_t} \sum_{(x,y)} (h_t(x) - (-\alpha \nabla \mathcal{L}(f_t))^2$

Summary

Pointwise approaches borrowed from other tasks

- Regression, classification, ordinal classification
 Straightforward, yet not quite suited for ranking
- Ranking requires getting relative scores right
- Higher positions matter more than lower positions
- All queries are equally important

References

Learning to rank for information retrieval Liu, FnTIR 2009

Learning to rank for information retrieval Liu, 2011

Learning to rank for information retrieval and natural language processing

Li, 2014

References

Learning for Web rankings

Grangier and Paiement, 2011

Stanford's CS229 lecture notes

Ng, 2017

TensorFlow and deep learning without a PhD

Gorner, 2017

References

Mathematics for machine learning

Deisenroth et al., 2018

Coming next...

Learning to Rank: Pairwise and Listwise

Rodrygo L. T. Santos rodrygo@dcc.ufmg.br