# ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ) ФАКУЛЬТЕТ ОБЩЕЙ И ПРИКЛАДНОЙ ФИЗИКИ

Лабораторная работа № 3.4.4 Петля гистерезиса (статический метод)

> Серебренников Даниил Группа Б02-826

**Цель работы:** исследование кривых намагничивания ферромагнетиков с помощью баллистического гальванометра.

**В работе используются:** генератор токов намагничивания (ГТН), тороид, соленоид, баллистический гальванометр с осветителем и шкалой, мультиметр-амперметр, лабораторный автотрансформатор (ЛАТР), разделительный трансформатор, ключи, переключатели.

#### 1 Теоретическая часть

К ферромагнетикам принадлежат железо, никель, кобальт, гадолиний, их многочисленные сплавы с другими металлами. К ним примыкают ферриты – диэлектрики со структурой антиферромагнетика.

Ферромагнетики – вещества, которые при определенной температуре обладают самопроизвольной намагниченностью M в отсутствие внешнего магнитного поля. В ферромагнетиках образуются отдельные намагниченные области – домены (от  $10^{-2}$  до  $10^{-6}$  см<sup>3</sup>), магнитные моменты в которых ориентируются параллельно.

Зависимость вектора магнитной индукции  $\boldsymbol{B}$  ферромагнетика от вектора напряженности магнитного поля  $\boldsymbol{H}$  нелинейна. В системе СИ эта связь имеет вид

$$\boldsymbol{B} = \mu_0(\boldsymbol{H} + \boldsymbol{M}) \tag{1}$$

При циклическом перемагничивании зависимость (1) изображается замкнутой кривой - симметричной петлей гистерезиса (рис. 1), где  $\pm \boldsymbol{H}_c$  – значение напряженности магнитного поля, необходимое для полного размагничивания ферромагнетика (коэрцитивная сила);  $\pm \boldsymbol{B}_r$  – магнитная индукция, которую имеет ферромагнетик при напряженности внешнего магнитного поля, равную нулю (остаточная намагниченность);  $\pm \boldsymbol{B}_s$  – значение магнитной индукции, при которой материал достигает насыщения (намагниченность насыщения)<sup>1</sup>.



Рис. 1: Петля гистерезиса ферромагнетика.

 $<sup>^1</sup>$ Кривая, иозображающая зависимость B(H), практически совпадает с зависимостью M(H), поскольку второй член в выражении (1), в малых полях, существенно превосходит первый

## 2 Экспериментальная установка



Рис. 2: Схема установки для исследования петли гистерзеиса.



Рис. 3: Схема установки для калибровки гальванометра.



Рис. 4: Схема установки для размагничивания образца.

• Напряженность магнитного поля H в тороиде зависит от тока, текущего в намагничивающей обмотке:

$$H = \frac{N_{T_0}}{\pi D} I; \tag{2}$$

• Связь между отклонением зайчика баллистического гальванометра в делениях  $\Delta x$  и изменением магнитной индукции  $\Delta B$  в сердечнике тороида:

$$\Delta B = \mu_0 \left(\frac{d_C}{d_T}\right)^2 \frac{N_{C_0}}{N_{T_1}} \frac{N_{C_1}}{l_C} \Delta I_1 \frac{\Delta x}{\Delta x_1}.$$
 (3)

## 3 Экспериментальные данные

Таблица 1: Параметры установки.

| $N_{T_0}$ | $N_{T_1}$ | $N_{C_0}$ | $N_{C_1}$ | D, M | $d_C$ , см | $d_T$ , см | $l_C$ , M |
|-----------|-----------|-----------|-----------|------|------------|------------|-----------|
| 1750      | 300       | 940       | 500       | 0,1  | 7          | 1          | 0,8       |

Таблица 2: Некоторые измеряемые величины и их погрешность.

|                   | <i>I</i> , мА | $\Delta x$ , mm |
|-------------------|---------------|-----------------|
| Величина          | 100           | 100             |
| Погрешность       | 2             | 1,0             |
| $\varepsilon$ , % | 2             | 1               |

Таблица 3: Каллибровка гальванометра.

| $\Delta I_1$ , мА | $\Delta x_1$ |
|-------------------|--------------|
| 1706              | 171          |

Таблица 4: Данные предельной петли.

| I, MA | $\Delta x$ , MM | Н, А/м | $\Delta B$ , Тл | В, Тл    |
|-------|-----------------|--------|-----------------|----------|
| 1705  | 66              | 9498   | 0,079           | -        |
| 1206  | 60              | 6718   | 0,072           | 1,30     |
| 869   | 62              | 4841   | 0,075           | 1,23     |
| 622   | 61              | 3465   | 0,073           | 1,15     |
| 434   | 32              | 2418   | 0,039           | 1,08     |
| 350   | 20              | 1950   | 0,024           | 1,04     |
| 303   | 12              | 1688   | 0,014           | 1,02     |
| 275   | 9               | 1532   | 0,011           | 1,00     |
| 253   | 9               | 1409   | 0,011           | 0,99     |
| 233   | 9               | 1298   | 0,011           | 0,98     |
| 213   | 10              | 1187   | 0,012           | 0,97     |
| 192   | 10              | 1070   | 0,012           | 0,96     |
| 171   | 29              | 953    | 0,035           | 0,95     |
| 121   | 38              | 674    | 0,046           | 0,91     |
| 60    | 45              | 334    | 0,054           | 0,87     |
| 0     | 59              | 0      | 0,071           | 0,81     |
| -60   | 110             | -334   | 0,132           | 0,74     |
| -121  | 71              | -674   | 0,085           | 0,61     |
| -172  | 46              | -958   | $0,\!055$       | 0,52     |
| -193  | 64              | -1075  | 0,077           | 0,47     |
| -214  | 71              | -1192  | $0,\!085$       | $0,\!39$ |
| -234  | 88              | -1303  | 0,106           | 0,31     |
| -254  | 107             | -1415  | 0,129           | 0,20     |
| -276  | 147             | -1537  | 0,177           | 0,07     |
| -304  | 255             | -1693  | 0,307           | -0,11    |
| -350  | 280             | -1950  | 0,337           | -0,41    |
| -434  | 243             | -2418  | 0,292           | -0,75    |
| -621  | 95              | -3459  | 0,114           | -1,04    |
| -868  | 103             | -4835  | 0,124           | -1,16    |
| -1205 | 84              | -6712  | 0,101           | -1,28    |
| -1705 | -60             | -9498  | -0,072          | -1,38    |
| -1205 | -60             | -6712  | -0,072          | -1,31    |
| -868  | -61             | -4835  | -0,073          | -1,24    |
| -621  | -61             | -3459  | -0,073          | -1,16    |

| -434 | -32  | -2418 | -0,039 | -1,09 |
|------|------|-------|--------|-------|
| -350 | -19  | -1950 | -0,023 | -1,05 |
| -303 | -12  | -1688 | -0,014 | -1,03 |
| -275 | -10  | -1532 | -0,012 | -1,01 |
| -254 | -9   | -1415 | -0,011 | -1,00 |
| -233 | -9   | -1298 | -0,011 | -0,99 |
| -213 | -9   | -1187 | -0,011 | -0,98 |
| -192 | -10  | -1070 | -0,012 | -0,97 |
| -172 | -28  | -958  | -0,034 | -0,96 |
| -121 | -38  | -674  | -0,046 | -0,92 |
| -60  | -45  | -334  | -0,054 | -0,88 |
| 0    | -60  | 0     | -0,072 | -0,82 |
| 60   | -113 | 334   | -0,136 | -0,75 |
| 121  | -69  | 674   | -0,083 | -0,62 |
| 171  | -48  | 953   | -0,058 | -0,53 |
| 192  | -62  | 1070  | -0,075 | -0,47 |
| 213  | -72  | 1187  | -0,087 | -0,40 |
| 233  | -90  | 1298  | -0,108 | -0,31 |
| 254  | -108 | 1415  | -0,130 | -0,21 |
| 275  | -144 | 1532  | -0,173 | -0,08 |
| 303  | -265 | 1688  | -0,319 | 0,10  |
| 350  | -267 | 1950  | -0,321 | 0,42  |
| 434  | -247 | 2418  | -0,297 | 0,74  |
| 621  | -94  | 3459  | -0,113 | 1,04  |
| 868  | -102 | 4835  | -0,123 | 1,15  |
| 1205 | -84  | 6712  | -0,101 | 1,27  |
| 1705 | -    | 9498  | -      | 1,37  |
|      |      |       |        |       |

Таблица 5: Данные начальной кривой намагничивания.

| I, мА | $\Delta x$ , mm | H, A/M | $\Delta B$ , Тл | В, Тл |
|-------|-----------------|--------|-----------------|-------|
| 0     | 26              | 0,0    | 0,031           | 0     |
| 61    | 50              | 339,8  | 0,060           | 0,03  |
| 123   | 55              | 685,2  | 0,066           | 0,09  |
| 174   | 14              | 969,3  | 0,017           | 0,16  |
| 195   | 44              | 1086,2 | 0,053           | 0,17  |
| 216   | 33              | 1203,2 | 0,040           | 0,23  |
| 236   | 46              | 1314,6 | 0,055           | 0,27  |
| 257   | 48              | 1431,6 | 0,058           | 0,32  |
| 278   | 62              | 1548,6 | 0,075           | 0,38  |
| 306   | 104             | 1704,5 | 0,125           | 0,45  |
| 361   | 206             | 2010,9 | 0,248           | 0,58  |
| 436   | 188             | 2428,7 | 0,226           | 0,83  |
| 623   | 106             | 3470,4 | 0,128           | 1,05  |
| 865   | 104             | 4818,4 | $0,\!125$       | 1,18  |
| 1205  | 86              | 6712,4 | 0,103           | 1,31  |
| 1705  | -               | 9497,6 | -               | 1,41  |

## 4 Обработка результатов

Используя формулы (2) и (3) рассчитаем  $H = f_1(I)$  и  $\Delta B = f_2(\Delta x)$  для начальной и предельной петель гистерезиса. По полученным данным (табл.4-5) построим петлю гистерезиса B = f(H). Стоит отметить, что для выполнения естественного условия f(0) = 0, к нашим результатам была прибавлена величина  $B_0 = 1,38$  Тл.



Рис. 5: Зависимость B = f(I).

По графику найдём коэрцитивную силу  $H_c$ , индукцию насыщения  $B_s$  и остаточную индукцию  $B_r$ . Более того, можно вычислить максимальное значение дифференциальной магнитной проницаемости  $\mu$  для начальной кривой намагничивания.

Таблица 6: Анализ петли гистерезиса.

| $H_C$ , A/M   | $B_S$ , Тл        | $B_r$ , Тл        | $\mu$        |
|---------------|-------------------|-------------------|--------------|
| $1600 \pm 11$ | $1,410 \pm 0,010$ | $0,810 \pm 0,010$ | $470 \pm 20$ |

## 5 Обсуждение результатов

В ходе данной лабоораторной работы мы исследовали кривую намагничивания стали с помощью баллистического гальванометра. Стоит отметить, что тороид во время эксперимента достаточно сильно нагревался, что могло спровоцировать переход материала в парамагнитное состояние при достижении точки Кюри. Однако для различных сплавов стали критическая температура довольно высока  $T_c \approx 500~\mathrm{K}$  и не может быть достигнута вследствие рассеивания тепла, выделяемого токами в витках. Построенный график (рис. 5) представляет собой симметричную петлю гистерезиса, что соответствует теории ферромагнетизма.

Анализ петли гистерезиса стали показал, что коэрцитивная сила  $H_c$  равна 1600 A/M с точностью в 0.8%. Обратившись к техническо-инженерным справочникам, можно предположить, что наш образец состоит примерно на 2-6% из Cr, на 0,6% из C, на 4-8% из W и на 40-42% из Co – такой сплав стали называется высококобальтовым.

Для него характерна высокая остаточная индукция — 1,10 Тл, что на 26% больше нашего результата в 0,81 Тл. В связи с сильной зависимостью магнитных свойств сплава от его компонент вполне возможно, что наш образец имеет коэрцитивную силу, равную 1600 А/м, но при этом не является высококобальтовым.

## 6 Выводы

- 1. Вычислили коэрцитивную силу  $H_c = (1600 \pm 11) \text{ A/m};$
- 2. Определили остаточную индукцию:  $B_r = (0, 81 \pm 0, 01)$  Тл и индукцию насыщения  $B_s = (1, 41 \pm 0, 01)$  Тл;
- 3. Рассчитали максимальную дифференциальную магнитную проницаемость для начальной кривой намагничивания:  $\mu = 470\,\pm\,20;$
- 4. Состав сплава стали определить не удалось.