Homework 5

Dan Sokolsky

October 27, 2020

Exercise 1.

Proof. First, we claim $f_b \in L^1(\mathbb{R}^n)$, and $f_s \in L^r(\mathbb{R}^n)$ -

$$\int |f_b| = \int |f_b|^p |f_b|^{1-p} \le C(p) ||f||_p^p < \infty$$
$$\int |f_s|^r = \int |f_s|^{r-p} |f_s|^p \le C(r,p) ||f||_p^p < \infty$$

Now, since $|Tf| \leq |Tf_b| + |Tf_s|$, we have $\{|Tf| > t\} \subseteq \{|Tf_b| > \frac{t}{2}\} \cup \{|Tf_s| > \frac{t}{2}\}$, so that -

$$\mu\{|Tf| > t\} \le \mu\{|Tf_b| > \frac{t}{2}\} + \mu\{|Tf_s| > \frac{t}{2}\} \le \frac{2A\|f\|_1}{t} \int |f_b| + \frac{2^r A^r \|f\|_r^r}{t^r} \int |f_s|^r$$

Now,

$$\int_0^\infty t^{q-1}t^{-1}\int_{|f|>t}|f|=\int_{\mathbb{R}^n}|f|\int_0^{|f|}t^{q-2}=\frac{1}{q-1}\int_{\mathbb{R}^n}|f||f|^{q-1}=\frac{\|f\|_q^q}{q-1}$$

since q > p > 1, and

$$\int_0^\infty t^{q-1}t^{-r}\int_{|f|\leq t}|f|^r=\int_{\mathbb{R}^n}|f|^r\int_{|f|}^\infty t^{q-1-r}=\frac{1}{r-q}\int_{\mathbb{R}^n}|f|^r|f|^{q-r}=\frac{\|f\|_q^q}{r-q}$$

since q < r. Altogether,

$$||Tf||_q \le C||f||_q$$

Exercise 2.

Proof. 2

Exercise 3.

Proof. 3