Introdução a circuitos

Eduardo Furlan Miranda 2024-08-01

Baseado em: Tangon, LG; Santos, RC. Arquitetura e organização de computadores. EDE. 2016. ISBN 978-85-8482-382-6.

Representações

Analógica = contínua

Digital = discreta (etapa por etapa)

Sistema Digital

- Vantagem
 - Facilidade de projeto, integração e armazenamento
 - Operação programada
 - Pouca sensibilidade à variação da fonte de tensão, ao envelhecimento e à temperatura

- Desvantagem
 - Conversões de analógico para digital (A/D) e de digital para analógico (D/A)

Lógica combinacional

 Todas as saídas dependem única e exclusivamente das variáveis de entrada

- Circuitos combinacionais básicos
 - Habilitação / Desabilitação, Codificador, Multiplexador,
 Decodificador, Demultiplexador, Gerador de Paridade,
 Verificador de Paridade, Comparador, Circuitos Aritméticos:
 Somador, Shifter (deslocador), Subtrator

Tabela 4.20 – Tabela-verdade habilita/ desabilita circuito.

ENTRA	ENTRADAS	
em	Α	Υ
0	0	0
0	1	0
1	0	0
1	1	1

Figura 4.17 – Diagrama de habilita/ desabilita circuitos.

- Circuito Habilitado → En = 1 → Permite o sinal de entrada para a saída
- Circuito Desabilitado → En = 0 → Não se permite a passagem do sinal de entrada para a saída

Figura
$$4.18 - En = 1$$
.

Figura 4.19 - En = 0.

Tabela 4.21 – Tabela-verdade habilita/desabilita circuito.

ENTRADAS	SAÍDA	
em	Υ	
0	0	
1	Α	

Figura 4.20 – Diagrama de habilita/desabilita circuitos.

Tabela 4.22 – Tabela-verdade habilita/desabilita circuito.

ENTR	ENTRADAS		
En1	En2	Υ	
0	0	0	
0	1	0	
1	0	0	
1	1	Α	

Lógica sequencial

 Valores de sinais de saída dependem dos valores do sinal de entrada e dos valores de sinal armazenados, ao contrário do combinacional, e são geralmente pulsados

LATCHES SR

S	R	Q	Q'
0	0	Latch	Latch
0	1	0	1
1	0 //	1	0
1	1	0	0

"Latch" = mantém o estado anterior

- Implementa um circuito básico de memória
- 2 estados estáveis; usa AND, OR, NOT, NAND, e NOR

Flip-Flop D (D = Dados)

- 2 latches ligados em série
- Normalmente inclui um sinal zero, um ou dois sinais de valores de entrada, um sinal de clock e um sinal de valor de saída (continua)

D

0

Q

(continuação)

 O que interessa é a transição negativa. Quando ocorre, o resultado da saída é atualizado. A cada sinal de clock, as saídas invertem-se (devido a isso que recebe o nome de flip-flop)

Eletrônica Digital II: #27 Flip Flop Tipo D

