Санкт-Петербургский политехнический университет Петра Великого Высшая школа интеллектуальных систем и суперкомпьютерных технологий

Отчёт по лабораторной работе

Дисциплина: Низкоуровневое программирование

Тема: Моделирование машины Тьюринга

Выполнил студент гр. 3530901/90004		И.А. Сергеев
	(подпись)	
Преподаватель		А.О. Алексюк
	(подпись)	

25.04.2021 г.

Оглавление

3
3
3
5
5
6

Задача:

Реализовать в симуляторе машину Тьюринга-Поста, переводящую десятичное число в его двоичное представление, согласно варианту №10.

Алфавит: 0,1,2,3,4,5,6,7,8,9.

Описание работы:

Перед началом работы машины Тьюринга головка должна находиться на старшем разряде десятичного числа.

Рисунок 1. Симулятор машины Тьюринга.

Для того, чтобы перевести десятичное число в его двоичное представление, будем вычитать единицу из десятичного числа и прибавлять её к двоичному.

- Q₁. Данный столбец переходов поразрядно обходит число до того момента, как дойдет до пустой ячейки.
- Q₂. Далее происходит вычитание единицы из младшего разряда. Если младший разряд равен нулю, то нам нужно сделать этот ноль девяткой, а затем повторить вычитание с разрядом постарше.
- Q₃. Теперь нам необходимо обойти число без вычитания, для того, чтобы добавить единицу к её двоичному виду.
- Q₇. В данном столбце мы переходим пустое пространство до тех пор, пока не дойдем до младшего разряда двоичного числа.
- Q₄. Здесь мы обходим двоичное число. Если младший разряд равен нулю, то мы заменяем его на единицу. Иначе обходим число целиком и в новый старший разряд записываем единицу.
- Q₅. После того как мы добавили новый разряд, поставив единицу, мы должны пойти к младшему разряду, заменяя все единицы на нули.
- Q₆. После того как мы вернулись к десятичному числу, нам необходимо проверить, появился ли ноль в старшем разряде при вычитании, в случае чего заменить его на пустую ячейку. А затем вновь обойти число до конца.
- Q₈. Если мы в столбце Q₆, после замены старшего разряда, равного нулю, на пустую ячейку, перешли на разряд вправо и у нас на головке машины стоит пустая ячейка, то значит, что программу стоит завершить. Иначе если следом стоит любая цифра, то возвращаемся на столбец Q₁.

На рисунке 2 изображена диаграмма, показывающая состояния и переходы машины Тьюринга.

Диаграмма переходов:

Рисунок 2. Диаграмма переходов.

На рисунке 2 окружности обозначают состояния, дуги — переходы. В начале дуги указывается символ, при считывании которого выполняется переход, в конце дуги — символ, печатаемый на ленте и направление движения головки («L» - влево, «R» - вправо, «IP» - на месте (от англ. In Place)).

Реализация машины в симуляторе:

Переведем число 128_{10} в равное ему двоичное. Должно получиться: $128_{10} = 10000000_2$

-8	-7	-6	-5	-4	-3	-2	-1	0	1] /2	3	4	5
							0		1	2	8		

Рис. 3. Начальное состояние ленты.

-8	-7	-6	-5	-4	-3	-2	-1	0	1	2	3/	4) /5
1	0	0	0	0	0	0	0						

Рис. 4. Состояние ленты после работы машины.

Результат работы машины оказался верен.

Вывод:

В ходе данной работы был осуществлён алгоритм перевода десятичного числа в его двоичное представление на машине Тьюринга. Результаты полностью соответствуют ожидаемым.