

Otimização Aplicada à Engenharia de Processos

Aula 5: Métodos de Programação Linear

Felipe Campelo http://www.cpdee.ufmg.br/~fcampelo

Programa de Pós-Graduação em Engenharia Elétrica

Belo Horizonte Março de 2013

O Método Simplex

Introdução

O método Simplex é um algoritmo que permite resolver problemas de programação linear.

A idéia básica do método consiste em resolver repetidas vezes um sistema de equações lineares de forma a obter uma sucessão de *soluções básicas viáveis* (ou seja, pontos extremos da região factível) sucessivamente melhores, até se chegar a uma *solução básica viável ótima*, que representa o ponto onde o mínimo/máximo da função objetivo é alcançado.

Pivôs

Para obter uma compreensão do método Simplex, é necessário compreender o processo de *pivotagem* em um conjunto de equações lineares.

Há basicamente duas interpretações possíveis para este processo, que serão exploradas a seguir.

Pivôs: interpretação 1

Considere o conjunto de equações lineares, com $m \le n$:

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1$$

 $a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2$
 \vdots
 $a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m$

ou, em notação matricial, $\mathbf{A}\mathbf{x} = \mathbf{b}$.

Pivôs: interpretação 1

No espaço E^n este sistema pode ser interpretado como um conjunto de m relações lineares que devem ser satisfeitas por um vetor \mathbf{x} .

Denotando a *i*-ésima linha de **A** por **a**^{*i*}, podemos escrever:

$$\mathbf{a}^{1}\mathbf{x} = b_{1}$$
 $\mathbf{a}^{2}\mathbf{x} = b_{2}$
 \vdots
 $\mathbf{a}^{m}\mathbf{x} = b_{m}$

Pivôs: interpretação 1

Se $m \le n$ e as equações são linearmente independentes, então existe uma ampla variedade linear de soluções.

Uma solução única resulta, entretanto, se um número n-m de equações lineares independentes forem acrescentadas.

Pivôs: interpretação 1

Se as equações apresentadas forem linearmente independentes (*LI*), pode-se substituir uma dada equação multiplicando-a por um número qualquer diferente de zero e somando à equação obtida alguma combinação linear de outras equações do sistema.

Essa transformação leva aos métodos conhecidos como métodos de redução Gaussianos, utilizados pra transformar um conjunto de equações para a forma triangular.

Pivôs: interpretação 1

Se as *m* primeiras colunas de **A** são *LI*, o sistema pode ser reduzido à seguinte forma através de uma seqüência de multiplicações e subtrações:

Para este sistema transformado as variáveis x_1, \ldots, x_m são chamadas *básicas*, e as demais são *não-básicas*. A solução bási a correspondente é dada por:

$$\mathbf{x} = [y_{10}, \dots, y_{m0}, 0, 0, \dots, 0] = [\mathbf{y}_0, \mathbf{0}]$$

Pivôs: interpretação 1

O sistema anterior pode ser representado por uma matriz de coeficientes, também chamada de quadro Simplex:

Pivôs: interpretação 1

Como exemplo de uso da pivotagem, vamos considerar o seguinte sistema:

$$\begin{bmatrix} 3 & 1 & 1 & 1 \\ 2 & 2 & -3 & 1 \\ 1 & 1 & 2 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 1 \\ 3 \\ 2 \end{bmatrix}$$

Para a realização da pivotagem, representamos o sistema pela matriz extendida

$$\mathbf{B} = \begin{bmatrix} 3 & 1 & 1 & 1 & 1 \\ 2 & 2 & -3 & 1 & 3 \\ 1 & 1 & 2 & -1 & 2 \end{bmatrix}$$

Pivôs: interpretação 1

1:
$$\mathbf{B}(1,:) \leftarrow \mathbf{B}(1,:)/b_{11}$$
 (b_{11} é o elemento pivô)

$$\begin{bmatrix} 1 & 0.333 & 0.333 & 0.333 & 0.333 \\ 2 & 2 & -3 & 1 & 3 \\ 1 & 1 & 2 & -1 & 2 \end{bmatrix}$$

2:
$$B(2,:) \leftarrow B(2,:) - B(1,:) * (b_{21}/b_{11})$$

$$\begin{bmatrix} 1 & 0.333 & 0.333 & 0.333 & 0.333 \\ 0 & 1.333 & -3.667 & 0.333 & 2.333 \\ 1 & 1 & 2 & -1 & 2 \end{bmatrix}$$

Pivôs: interpretação 1

3:
$$B(3,:) \leftarrow B(3,:) - B(1,:) * (b_{31}/b_{11})$$

$$\begin{bmatrix} 1 & 0.333 & 0.333 & 0.333 & 0.333 \\ 0 & 1.333 & -3.667 & 0.333 & 2.333 \\ 0 & .667 & 1.667 & -1.333 & 1.667 \end{bmatrix}$$

4:
$$\mathbf{B}(2,:) \leftarrow \mathbf{B}(2,:)/b_{22}$$
 (b_{22} é o elemento pivô)

Pivôs: interpretação 1

5:
$$B(1,:) \leftarrow B(1,:) - B(2,:) * (b_{12}/b_{22})$$

6:
$$B(3,:) \leftarrow B(3,:) - B(2,:) * (b_{32}/b_{22})$$

$$\begin{bmatrix} 1 & 0 & 1.25 & 0.25 & -0.25 \\ 0 & 1 & -2.75 & 0.25 & 1.75 \\ 0 & 0 & 3.5 & -1.5 & 0.5 \end{bmatrix}$$

Pivôs: interpretação 1

7:
$$\mathbf{B}(3,:) \leftarrow \mathbf{B}(3,:)/b_{33}$$
 (b_{33} é o elemento pivô)

$$\begin{bmatrix} 1 & 0 & 1.25 & 0.25 & | & -0.25 \\ 0 & 1 & -2.75 & 0.25 & | & 1.75 \\ 0 & 0 & 1 & -0.428 & | & 0.143 \end{bmatrix}$$

8:
$$B(1,:) \leftarrow B(1,:) - B(3,:) * (b_{13}/b_{33})$$

$$\begin{bmatrix} 1 & 0 & 0 & 0.786 & -0.428 \\ 0 & 1 & -2.75 & 0.25 & 1.75 \\ 0 & 0 & 1 & -0.428 & 0.143 \end{bmatrix}$$

Pivôs: interpretação 1

Solução por passos:

9:
$$\mathbf{B}(2,:) \leftarrow \mathbf{B}(2,:) - \mathbf{B}(3,:) * (b_{23}/b_{33})$$

$$\begin{bmatrix} 1 & 0 & 0 & 0.786 & -0.428 \\ 0 & 1 & 0 & -0.928 & 2.143 \\ 0 & 0 & 1 & -0.428 & 0.143 \end{bmatrix}$$

Que encontra-se na forma canônica. Este quadro representa o caso onde as variáveis $x_1 \sim x_3$ são básicas, e a variável x_4 é não-básica.

Pivôs: interpretação 1

A questão a ser realmente resolvida através da pivotagem no contexto de programação linear pode ser formulada como:

Dado um sistema na forma canônica, suponha que se deseje tornar uma variável básica em não-básica e uma variável não-básica em básica. Qual será a nova tabela correspondente a esse novo conjunto de variáveis básicas?

Pivôs: interpretação 1

Esta questão pode ser respondida basicamente utilizando-se um método bastante simples. Supondo que desejemos tornar a variável x_p não-básica, e a variável x_q básica:

- Divida toda a linha correspondente à variável x_p pelo valor do coeficiente correspondente à variável x_q naquela linha (desde que este último seja diferente de zero).
- Realize as operações necessárias para zerar todos os outros elementos relacionados à coluna da variável x_q.

Esta operação não afeta as colunas relativas às outras variáveis básicas atuais.

Pivôs: interpretação 1

Este processo pode ser resumido (utilizando a notação y'_{ij} para denotar os coeficientes pós-transformação):

$$\left\{egin{aligned} y_{ij}'=y_{ij}-rac{y_{pj}}{y_{pq}}y_{iq}, & ext{se } i
eq p \ \ y_{pj}'=rac{y_{pj}}{y_{pq}} \end{aligned}
ight.$$

Estas equações são conhecidas como equações de pivotamento, e aparecem frequentemente em programação linear. O elemento y_{pq} no sistema original é chamado de elemento pivô.

Pivôs: interpretação 1

Para fazer em sala: Na tabela abaixo as variáveis x_1 , x_2 , x_3 são variáveis báscias, e x_4 é não-básica. Desejamos entrar com x_4 na base, no lugar de x_3 .

```
    1
    0
    0
    2
    2

    0
    1
    0
    3
    6

    0
    0
    1
    4
    2
```

Pivôs: interpretação 2

O mesmo conjunto de equações simultâneas que define a região factível de um programa linear pode ser interpretado como uma equação vetorial no espaço \mathbf{E}^m . Denotando as colunas de \mathbf{A} por $\mathbf{a}_1, \ldots, \mathbf{a}_n$, pode-se escrever como:

$$\sum_{i=1}^n \mathbf{a}_i x_i = \mathbf{b}$$

Esta interpretação busca a expressão de $\bf b$ como uma combinação linear das colunas $\bf a_i$.

Pivôs: interpretação 2

Se m < n e os vetores \mathbf{a}_i compõe o espaço \mathbf{E}^m então encontramos não apenas uma, mas uma família de soluções.

A solução para a qual as n-m variáveis não-básicas assumem o valor zero é a solução básica para o sistema.

Pivôs: interpretação 2

Suponha agora que nós tenhamos um sistema na forma da tabela:

Nesse caso as primeiras *m* colunas formam a base. Além disso, qualquer outro vetor representado na tabela pode ser expresso como uma combinação linear dos outros vetores da base,

$$\mathbf{a}_j = \sum_{i=1}^m y_{ij} \mathbf{a}_i$$

Pivôs: interpretação 2

Com esta interpretação, a tabela pode ser vista como uma representação dos vetores \mathbf{a}_j em termos da base; a j-ésima coluna da tabela constitui a representação para \mathbf{a}_i .

Em particular, a expressão para **b** em termos da base é dada na última coluna.

Nesta interpretação, a mesma pergunta se mantém: como substituir uma variável básica por uma não-básica - isto é, como mudar a base?

Pivôs: interpretação 2

Suponha que desejemos substituir o vetor de base \mathbf{a}_p , $(1 \le p \le m)$ pelo vetor \mathbf{a}_q .

Uma vez que os m primeiros vetores (com \mathbf{a}_p substituído por \mathbf{a}_q) sejam LI, estes vetores constituirão uma base, e qualquer um dos vetores remanescentes poderá ser expresso como uma combinação linear do novo conjunto de vetores de base.

Para encontrar as novas representações dos vetores é necessário atualizar o quadro, o que pode ser feito de forma simples utilizando o mesmo procedimento anterior.

Pivôs: forma canônica

Se um dado sistema não estiver originalmente em sua forma canônica, o mesmo pode ser transformado através da adição de *m* vetores unitários ao quadro e a aplicação sucessiva das operações de pivotamento.

Por exemplo, consideremos o sistema:

$$x_1 + x_2 - x_3 = 5$$
$$2x_1 - 3x_2 + x_3 = 3$$
$$-x_1 + 2x_2 - x_3 = -1$$

Pivôs: forma canônica

Para a obtenção de uma base original, pode-se montar um quadro extendido:

\mathbf{e}_1	\mathbf{e}_2	\mathbf{e}_3	\mathbf{a}_1	\mathbf{a}_2	\mathbf{a}_3	b
1	0	0	1	1	-1	5
0	1	0	2	-3	1	3
0	0	1	-1	2	-1	-1

E aplicar o pivotamento de forma a substituir \mathbf{e}_1 por \mathbf{a}_1 , etc. (como visto no exemplo anterior).

Introdução

Discutimos anteriormente que é necessário considerar apenas as soluções básicas viáveis na solução de problemas de programação linear cujas restrições estejam na forma padrão,

$$\mathbf{A}\mathbf{x} = \mathbf{b}$$
 $\mathbf{x} > \mathbf{0}$

Embora as operações de pivotagem consigam transformar uma solução básica em outra, a condição de não-negatividade frequentemente não pode ser presevada - isto requer que algumas condições particulares sejam satisfeitas.

Introdução

Nesta seção mostraremos que:

- Não é possível selecionar arbitrariamente um par de variáveis cujos papéis no sistema serão invertidos com a expectativa da manutenção da não-negatividade;
- É possível selecionar arbitrariamente qual variável não-básica deverá virar básica, e a partir disto determinar qual básica deverá deixar a base.

Premissa de não-degeneralidade

Para a discussão que se segue, assume-se a seguinte premissa:

Toda solução básica viável é uma solução básica viável não-degenerada.

Embora limitante, a adoção desta premissa se justifica pelo fato de o método Simplex (em sua forma mais simples) estar sujeito a problemas numéricos caso a mesma seja violada;

Entretanto, esta premissa aparece mais como uma conveniência matemática do que como um problema, visto que os métodos desenvolvidos podem ser facilmente adaptados para lidar com degeneração.

Determinação do vetor que sai da base

Suponha que tenhamos uma solução básica viável inicial $\mathbf{x}=[x_1,\ldots,x_m,0,\ldots,0]$ ou, equivalentemente,

$$x_1 \mathbf{a}_1 + x_2 \mathbf{a}_2 + \ldots + x_m \mathbf{a}_m = \mathbf{b}$$

A premissa de não-degeneralidade garante que $x_i > 0$, i = 1, 2, ..., m.

Suponha ainda que se deseje incluir o vetor $\mathbf{a}_q, q > m$, na base. Temos a representação desse vetor na base atual,

$$\mathbf{a}_q = y_{1q}\mathbf{a}_1 + y_{2q}\mathbf{a}_2 + \ldots + y_{mq}\mathbf{a}_m$$

Determinação do vetor que sai da base

Multiplicando esta última expressão por uma variável escalar $\epsilon \geq 0$ e subtraindo da primeira expressão, temos:

$$(x_1 - \epsilon y_{1q})\mathbf{a}_1 + \ldots + (x_m - \epsilon y_{mq})\mathbf{a}_m + \epsilon \mathbf{a}_q = \mathbf{b}$$

Esta expressão fornece **b** como uma combinação linear de (no máximo) m+1 vetores, para qualquer $\epsilon \geq 0$. Para $\epsilon = 0$ temos a solução básica viável original.

Determinação do vetor que sai da base

$$(x_1 - \epsilon y_{1q})\mathbf{a}_1 + \ldots + (x_m - \epsilon y_{mq})\mathbf{a}_m + \epsilon \mathbf{a}_q = \mathbf{b}$$

À medida em que ϵ vai aumentando, o coeficiente de \mathbf{a}_q também aumenta.

- Para pequenos valores de ϵ , a equação acima fornece soluções viáveis, mas não básicas;
- Os demais coeficientes podem crescer ou decrescer linearmente com ϵ ;
- Se um ou mais decrescem, podemos determinar para ε o menor valor para o qual algum(ns) destes coeficientes se torna(m) zero:

$$\epsilon = \min_{i} \left\{ x_i / y_{iq} : y_i q > 0 \right\}$$

Determinação do vetor que sai da base

$$\epsilon = \min_{i} \left\{ x_i / y_{iq} : y_i q > 0 \right\}$$

Para este valor de ϵ , teremos uma nova solução básica viável, com o vetor \mathbf{a}_q substituindo o vetor \mathbf{a}_p , que é aquele que alcançou zero para o mínimo valor de ϵ .

Se o valor mínimo de ϵ zerou mais de um coeficiente, a nova solução básica é degenerada, e qualquer um dos vetores cujo coeficiente se tornou zero pode ser o selecionado para sair da base.

Determinação do vetor que sai da base

$$\epsilon = \min_{i} \left\{ x_i / y_{iq} : y_i q > 0 \right\}$$

Se nenhum dos coeficientes y_{iq} é positivo, então todos os coeficientes crescem (ou permanecem constantes) quando ϵ aumenta, e nenhuma nova solução viável básica é obtida.

Observa-se, entretanto, que nesse caso há soluções viáveis para o sistema com coeficientes arbitrariamente grandes, o que implica que o conjunto factível é ilimitado. Esta situação corresponde a um caso específico do método Simplex, que será explorado posteriormente.

Determinação do vetor que sai da base

Basicamente, esta discussão resulta na seguinte conclusão:

Dada uma solução básica viável e um vetor arbitrário \mathbf{a}_q , uma das duas situações a seguir se verifica:

- Existe uma outra solução básica viável contendo aq em sua base, com algum dos vetores base originais removido;
- O conjunto factível é ilimitado.

Determinação do vetor que sai da base

Em um quadro Simplex, a determinação da variável básica que deixa a base pode ser feita da seguinte maneira:

- A coluna pertencente à variável não-básica que entrará na base é chamada de coluna pivô. Dividem-se todos os termos independentes (y_{i0}) (assumidos como não-negativos) pelos elementos correspondentes pertencentes a essa coluna;
- Escolhe-se o menor desses quocientes. A linha que atende a essa especificação, chamada de linha pivô, é associada à variável básica que deixará a base.

Determinação do vetor que sai da base

Exemplo: substituir a variável não-básica x_4 por alguma das variáveis básicas, de forma a obter uma solução básica viável.

$$\mathbf{B} = \begin{vmatrix} 1 & 0 & 0 & 2 & 2 \\ 0 & 1 & 0 & 3 & 6 \\ 0 & 0 & 1 & 4 & 2 \end{vmatrix}$$

Observe que a solução básica viável para a base atual é $[2; 6; 2; 0]^T$.

Determinação do vetor que sai da base

Solução:

1) Determinação da variável básica que deve sair da base:

$$\begin{vmatrix} 1 & 0 & 0 & 2 & 2 \\ 0 & 1 & 0 & 3 & 6 \\ 0 & 0 & 1 & 4 & 2 \end{vmatrix} \rightarrow y_{i0}/a_{i4} = \begin{vmatrix} 1 \\ 2 \\ 0, 5 \end{vmatrix}$$

Logo, a variável x_3 deve sair da base.

Determinação do vetor que sai da base

Solução:

- 2) Substituição de x_3 por x_4 (usando pivotamento b_{34} é o elemento pivô):
 - Dividindo a linha 3 por *b*₃₄:

Zerando o elemento b₁₄:

$$\begin{vmatrix} 1 & 0 & -0.5 & 0 & 1 \\ 0 & 1 & 0 & 3 & 6 \\ 0 & 0 & 0.25 & 1 & 0.5 \end{vmatrix}$$

Determinação do vetor que sai da base

Solução:

- 2) Substituição de x_3 por x_4 (usando pivotamento b_{34} é o elemento pivô):
 - Zerando o elemento b₂₄:

$$\begin{vmatrix} 1 & 0 & -0.5 & 0 & 1 \\ 0 & 1 & -0.75 & 0 & 4.5 \\ 0 & 0 & 0.25 & 1 & 0.5 \end{vmatrix}$$

A nova solução básica viável é $\mathbf{x} = [1; 4.5; 0; 0.5]^T$

Introdução

Na discussão precedente vimos como é possível passar de uma solução básica viável para outra (ou determinar que o conjunto de soluções é ilimitado).

A ideia do método Simplex consiste em selecionar a coluna-pivô de forma que a solução básica viável resultante do pivotamento possua um valor de função objetivo inferior àquela anterior ao pivotamento.

Nesta seção discutiremos como selecionar o vetor que deve entrar na base de forma a garantir este pivotamento monotonicamente decrescente.

Derivação

Suponha que tenhamos uma solução básica viável e um quadro onde a matriz identidade aparece (por conveniência de notação) nas primeiras *m* colunas.

$$[\mathbf{x}_B, \mathbf{0}]^T = [y_{10}, y_{20}, \dots, y_{m0}, 0, \dots, 0]^T$$

Derivação

O valor da função-objetivo correspondente a uma solução qualquer é dada por:

$$z = \sum_{i=1}^{n} c_i x_i$$

O que implica que, para a solução básica,

$$z_0 = \mathbf{c}_B^T \mathbf{x}_B$$

$$\mathsf{com}\; \boldsymbol{c}_B^T = [c_1, \dots, c_m]$$

Derivação

Embora o mais natural seja utilizar a solução básica $[\mathbf{x}_B, \mathbf{0}]^T$ quando se tem o quadro Simplex descrito, é claro que se valores arbitrários forem associados a x_{m+1}, \ldots, x_n , as alterações nas variáveis básicas para acomodar estas variações podem ser facilmente determinadas:

$$x_{1} = y_{10} - \sum_{j=m+1}^{n} y_{1j}x_{j}$$

$$\vdots$$

$$x_{m} = y_{m0} - \sum_{j=m+1}^{n} y_{mj}x_{j}$$

Derivação

Utilizando este último resultado, é possível eliminar as variáveis básicas x_1, \ldots, x_m da fórmula geral, o que resulta em:

$$z = \mathbf{c}^T \mathbf{x} = z_0 + (c_{m+1} - z_{m+1}) x_{m+1} + \ldots + (c_n - z_n) x_n$$

onde:

$$z_j = \sum_{i=1}^m y_{ij} c_i$$

Derivação

<i>C</i> ₁	c_2		c_m	c_{m+1}		Cn	
1	0		0	$y_{1,(m+1)}$		<i>Y</i> ₁ <i>n</i>	<i>y</i> ₁₀
0	1		0	$y_{2,(m+1)}$		y 2n	<i>y</i> ₂₀
÷	:	٠	:	:	٠	:	÷
0	0		1	$y_{m,(m+1)}$		y _{mn}	<i>y_m</i> 0
				z_{m+1}		z_n	
				$C_{m+1} - Z_{m+1}$		$C_n - Z_n$	

Derivação

Esta remoção das variáveis x_1, \ldots, x_m do cálculo do valor da função objetivo é a relação fundamental requerida para a determinação da coluna pivô, por permitir a determinação de z em função apenas das variáveis não-básicas.

A partir disto, é possível determinar se haverá algum ganho ao se alterar a solução básica corrente através da introdução de alguma das variáveis não-básicas.

Por exemplo, se $c_j - z_j$, for negativo para algum $j \in \{(m+1), \ldots, n\}$, o aumento de x_j a partir de zero trará um decrescimento no custo total.

Derivação

Se houver mais de um valor de $c_j - z_j < 0$, escolhe-se o valor de j que minimize esta diferença,

$$\min_{j}\left\{c_{j}-z_{j}|c_{j}-z_{j}<0\right\}$$

Se para alguma solução básica viável ocorrer a situação onde $c_i - z_i \ge 0 \forall j$, então a solução é ótima.

Coeficientes de custo relativo

Dado que as constantes $c_j - z_j$ tem tal importância no desenvolvimento do método Simplex, é conveniente introduzir a notação abreviada $r_j = c_j - z_j$, onde os r_j são chamados de *coeficientes de custo relativo* ou *coeficientes de custo reduzido*.

Estes coeficientes medem o custo de uma dada variável em relação a uma dada base. O coeficiente de custo relativo das variáveis básicas é convencionado como zero.

Coeficientes de custo relativo

Para que o processamento (isto é, a mudança sucessiva de bases) possa ser automatizado, consideramos o quadro Simplex com a adição de uma nova linha correspondente à função-objetivo z:

<i>C</i> ₁	<i>C</i> ₂		c_m	c_{m+1}		Cn	
1	0		0	<i>y</i> _{1,(m+1)}		y 1n	<i>y</i> ₁₀
						y 2n	
:	÷	•	÷	÷	•	:	÷
0	0		1	$y_{m,(m+1)}$		y _{mn}	<i>y_m</i> 0
0	_		_	r_{m+1}			

Exercício

Enunciado

Vamos resolver o problema abaixo utilizando os conceitos discutidos nesta aula (que formam o método conhecido como Simplex):

maximize:
$$3x_1 + x_2 + 3x_3$$

sujeito a: $2x_1 + x_2 + x_3 \le 2$
 $x_1 + 2x_2 + 3x_3 \le 5$
 $2x_1 + 2x_2 + x_3 \le 6$
 $\mathbf{x} \ge \mathbf{0}$

Exercício

Solução

Antes de mais nada, o problema deve ser colocado em forma padrão. Para isto, transformamos o problema em um de minimização (multiplicação por -1) e colocamos as restrições na forma de igualdades (introdução de variáveis de folga x_4, x_5, x_6):

minimize:
$$-3x_1 - x_2 - 3x_3$$

sujeito a: $2x_1 + x_2 + x_3 + x_4 = 2$
 $x_1 + 2x_2 + 3x_3 + x_5 = 5$
 $2x_1 + 2x_2 + x_3 + x_6 = 6$
 $\mathbf{x} \ge \mathbf{0}$

Antes de mais nada, o problema deve ser colocado em forma padrão. Para isto, transformamos o problema em um de minimização (multiplicação por -1) e colocamos as restrições na forma de igualdades (introdução de variáveis de folga):

Observe que o problema já se encontra em forma adequada à utilização do método Simplex, com uma solução básica viável dada por $\mathbf{x} = [0; 0; 0; 2; 5; 6]^T$ e um $z_0 = 0$.

Exercício

Solução

Por inspeção dos coeficientes r_j na última linha da matriz, vemos que as variáveis x_1 ou x_3 conduzirão à maior redução do valor da função-objetivo caso sejam introduzidas na base.

Se selecionarmos x_1 , precisamos descobrir qual variável deixará a base, de forma que a solução básica resultante seja factível.

Isto pode ser feito tomando-se o menor valor de $y_{i0}/a_{i1}, i \in \{1,2,3\}.$

Isto pode ser feito tomando-se o menor valor de $y_{i0}/a_{i1}, i \in \{1,2,3\}.$

Efetuando as contas temos 2/2, 5/1, 6/2.

O menor resultado corresponde ao elemento a_{11} , que por estar na primeira linha conduz à remoção da variável básica associada àquela linha, ou seja, x_4 .

A troca destas variáveis é realizada por pivotamento, utilizando a_{11} como elemento pivô.

$$\begin{vmatrix} 1 & 0.5 & 0.5 & 0.5 & 0 & 0 & 1 \\ 0 & 1.5 & 2.5 & -0.5 & 1 & 0 & 4 \\ 0 & 1 & 0 & -1 & 0 & 1 & 4 \\ -3 & -1 & -3 & 0 & 0 & 0 & 0 \\ \end{vmatrix} \begin{vmatrix} 1 & 0.5 & 0.5 & 0.5 & 0 & 0 & 1 \\ 0 & 1.5 & 2.5 & -0.5 & 1 & 0 & 4 \\ 0 & 1 & 0 & -1 & 0 & 1 & 4 \\ 0 & 0.5 & -1.5 & 1.5 & 0 & 0 & 3 \\ \end{vmatrix}$$

$$\begin{vmatrix} 1 & 0.5 & 0.5 & 0.5 & 0 & 0 & 1 \\ 0 & 1.5 & 2.5 & -0.5 & 1 & 0 & 4 \\ 0 & 1 & 0 & -1 & 0 & 1 & 4 \\ 0 & 0.5 & -1.5 & 1.5 & 0 & 0 & 3 \end{vmatrix}$$

Continuando o processo, vemos que o coeficiente de custo reduzido r_3 possui o menor valor (negativo), implicando na introdução da variável x_3 na base.

Ao dividirmos 1/0.5 e 4/2.5, verificamos que o menor resultado corresponde à retirada da variável básica associada à segunda linha, ou seja, x_5 .

Pivotando (elemento pivô: *a*₂₃):

$$\begin{vmatrix} 1 & 0.5 & 0.5 & 0.5 & 0 & 0 & 1 \\ 0 & 0.6 & 1 & -0.2 & 0.4 & 0 & 1.6 \\ 0 & 1 & 0 & -1 & 0 & 1 & 4 \\ 0 & 0.5 & -1.5 & 1.5 & 0 & 0 & 3 \\ \end{vmatrix}$$

$$\begin{vmatrix} 1 & 0.2 & 0 & 0.6 & -0.2 & 0 & 0.2 \\ 0 & 0.6 & 1 & -0.2 & 0.4 & 0 & 1.6 \\ 0 & 1 & 0 & -1 & 0 & 1 & 4 \\ 0 & 1.4 & 0 & 1.2 & 0.6 & 0 & 5.4 \end{vmatrix}$$

Como não há mais coeficientes de custo reduzido com valores negativos, conclui-se que é impossível reduzir ainda mais a função-objetivo dentro do espaço factível. Logo, a solução ótima é dada pela solução básica ótima viável na base x_1 , x_3 , x_6 :

$$\mathbf{x} = [0.2; 0; 1.6; 0; 0; 4]^T$$

Para a qual a função-objetivo original vale z = 3(0.2) + 0 + 3(1.6) = 5.4.

Perguntas e comentários?