MA 2631 Conference 5

September 29, 2021

The exponential random variable with parameter $\lambda > 0$:

$$f(x) = \begin{cases} \lambda e^{-\lambda x} & x \ge 0\\ 0 & x < 0 \end{cases}$$

- 1. Let X be an exponential random variable with parameter λ . Calculate Var[X] in two ways:
 - (a) By looking up E[X] in the lecture notes, calculating $E[X^2]$ directly using the definition of expectation, and the formula $Var[X] = E[X^2] (E[X])^2$;
 - (b) By deriving the moment generating function $M_X(t) = E[e^{tX}]$ (a challenge problem).
- 2. Suppose that the length of a phone call in minutes is an exponential random variable with parameter $\lambda = \frac{1}{10}$. If someone arrives immediately ahead of you at public telephone booth, find the probability you will have to wait
 - (a) more than 10 minutes;
 - (b) not more than one standard deviation away from the mean.
- 3. We say that a nonnegative random variable X is memoryless if

$$P[X > s + t | X > t] = P[X > s]$$
 for all $s, t \ge 0$.

Show that an exponential random variable X with parameter λ is memoryless.

4. Suppose that the number of miles that a car can run before its battery wears out is exponentially distributed with an average value of 10,000 miles. If a person desires to take a 5,000 mile trip, what is the probability that he or she will be able to complete the trip without having to replace the car battery?