

K2 Base Report

ASV Solnice

Adresa projektu Solnice, Česko Společnost iSolar PV s.r.o. Zpracovatel Tomáš Kalabis Naposledy aktualizováno Tomáš Kalabis

uživatelem

Datum vydání a verze 03.06.2025 | K2 Base Verze 3.2.41.0

Obsah

Prehled projektu	4
Střecha 2	8
Návrh montáže	10
Výsledky	12
Technická zpráva: statika	14
Seznam položek	18
Střecha 2 (1)	20
Návrh montáže	22
Výsledky	24
Technická zpráva: statika	26
Seznam položek	30
Střecha 4	32
Návrh montáže	34
Výsledky	36
Technická zpráva: statika	38
Seznam položek	42
Střecha 5	44
Návrh montáže	46
Výsledky	48
Technická zpráva: statika	50
Seznam položek	54
Střecha 6	56
Návrh montáže	58
Výsledky	60
Technická zpráva: statika	63
Seznam položek	68
Seznam položek	69

0 nás

K2 Systems. Inovativní montážní systém od silného týmu.

Od roku 2004 vyvíjíme průkopnická a vysoce funkční řešení montážních systémů pro fotovoltaické instalace po celém světě. Naše systémy jsou navrženy v našem vlastním oddělení vývoje produktů, kde neustále optimalizujeme a přizpůsobujeme montážní systémy neustále se měnícímu trhu

Znalý a přátelský tým

Stejně jako horolezecký tým je i K2 Systems postaven na vzájemné důvěře. To platí pro náš zákaznický servis i v rámci společnosti samotné, protože věříme, že důvěryhodné partnerství vede k úspěšným fotovoltaickým projektům.

Naši zaměstnanci se plně soustředí na potřeby a přání našich zákazníků. To platí pro všechna oddělení společnosti.

10 míst a celosvětová prodejní síť

V našem mezinárodním týmu všichni spolupracují, abychom zákazníkům poskytli kompetentní, komplexní a zcela personalizované služby.

To platí zejména pro neustálé školení našich zaměstnanců v oblasti optimalizace produktů, zajištění kvality nebo inovací stavebních technik.

Řízení kvality a certifikáty

Společnost K2 Systems se vyznačuje bezpečnými spoji, nejvyšší kvalitou a přesně vyrobenými komponenty na míru. Naši zákazníci a obchodní partneři všechny tyto faktory hluboce oceňují. Tři nezávislé autority otestovaly, potvrdily a certifikovaly naše dovednosti a komponenty. Externí autority nejsou jediné, které společnost K2 Systems podrobily zkoušce. Naše interní kontrola kvality zajišťuje, že všechny naše výrobky podléhají neustálému procesu kontroly.

Všechna tato opatření zajišťují vynikající standardy kvality, které jsou příkladem výrobků společnosti K2 Systems a které udržujeme prostřednictvím převážně exkluzivních postupů "Made in Germany" nebo "Made in Europe".

Záruka na produkt

K2 Systems nabízí 12letou záruku na všechny produkty ve své integrované řadě. Tyto standardy zajišťuje použití vysoce kvalitních materiálů a třístupňová kontrola kvality.

Ve zkratce

Jako specialisté na střechy nabízíme efektivní a ekonomická řešení pro střechy po celém světě a poskytujeme profesionální, rychlou a spolehlivou podporu našim zákazníkům v solárním průmyslu.

Statický posudek neobsahuje modulové a stavební ověření.

Přehled projektu

Střechy

Střecha	Systém	Modul	Výška	Počet	Celkový výkon
Střecha 2 Trapézová	<u>MultiRail</u>	n.n. 1 955×1 134×30 mm 460 Wp	7,00 m	42	19.32 kWp
Střecha 2 (1) Trapézová	<u>MultiRail</u>	n.n. 1 955×1 134×30 mm 460 Wp	7,00 m	42	19.32 kWp
Střecha 4 Trapézová	<u>MultiRail</u>	n.n. 1 955×1 134×30 mm 460 Wp	5,00 m	65	29.9 kWp
Střecha 5 Trapézová	<u>MultiRail</u>	n.n. 1 955×1 134×30 mm 460 Wp	12,00 m	35	16.1 kWp
Střecha 6 Trapézová	<u>MultiRail</u>	n.n. 1 955×1 134×30 mm 460 Wp	8,00 m	33	15.18 kWp
Součet				217	99,82 kWp

Informace o projektu

Adresa Solnice, Česko Zpracovatel Tomáš Kalabis

Načíst nastavení

"Metoda návrhu CZ EN

Třída následků CC1
Návrhová životnost 25 let

Kategorie terénu III - Stromy, vesnice, předměstí, lesy

Prostředí **Běžná krajina** Rychlost větru **25,0 m/s**

Oblast zatížení větrem II Sněhové oblasti III

Zatížení sněhem na zemi 1,50 kN/m²

Materiálové hodnoty

Informace o materiálu naleznete v katalogu produktů:

Katalog K2 (k2-systems.com)

Přehled projektu

ASV Solnice

Informace o projektu

Adresa Solnice, Česko Zpracovatel Tomáš Kalabis

Střecha	Systém	Modul	Výška	Počet	Celkový výkon
Střecha 2 Trapézová	MultiRail	n.n. 1 955×1 134×30 mm 460 Wp	7,00 m	42	19.32 kWp

Modulová pole

Modulární pole	Šířka[m]	Délka[m]	Šířka v modulech	Délka v modulech
1	27,63	3,43	14	3

Střecha 2 | Modulární pole 1

Střecha (1) Modulární pole (1)

Montážní systém

Modul Rozestup řad MultiRail

42(19.32 kWp) x n.n.

1,98 m

Střecha 2 | Modulární pole 1 | Modulové bloky

Střecha (1) Modulární pole

Blok s moduly

Moduly

14 × 3 = **42**

Legenda

- Spojovací prvek
- → Vzdálenost od okraje střechy [m]
- Dc Vzdálenost pro upnutí mezi moduly
- Dm Vzdálenost mezi moduly

Výsledky | Střecha 2

Střecha	Systém	Modul	Výška	Počet	Celkový výkon
Střecha 2 Trapézová	<u>MultiRail</u>	n.n. 1 955×1 134×30 mm 460 Wp	7,00 m	42	19.32 kWp

Modul

Rozměry 1 955×1 134×30 mm

Hmotnost 23,5 kg

Součásti

Spojovací prvek Thread-forming metal screw 6.0×25

Základní kolejnice K2 MultiRail

Zatížení modulů (dimenzování modulu)

Oblast	A-TrA [m²]	Z	Zkouška únosnosti [Pa]			Zk	Zkouška použitelnosti [Pa]		
Oblast	A 114 [111]	Tlak ⊥	Tlak II	Zvednout ⊥	Zvednout II	Tlak ⊥	Tlak II	Zvednout ⊥	Zvednout II
Oblast pole	2,22	1 533,4	389,0	-571,9	27,7	1 207,6	306,4	-426,2	27,7
Okraj hřebenu	2,22	1 533,4	389,0	-799,5	27,7	1 207,6	306,4	-604,8	27,7

Využití výsledků

	S	Středová svorka		k			
Oblast	Typ MultiRail	Vytížení	Vytížení	Typ MultiRail	Vytížení	Vytížení	Vytížení
		Svorka modulů[%]	Šroub[%]		Svorka modulů[%]	Šroub[%]	Vyváznout[%]
Oblast pole	2 x 100/2	41,5	44,7	2 x 100/2	18,6	22,4	20,7
Okraj hřebenu	2 x 100/2	41,5	61,7	2 x 100/2	18,6	30,8	29,0

Výsledky | Střecha 2

Důležité informace

- Konstrukce byla staticky ověřena v souladu s Eurokódem 9: Navrhování hliníkových konstrukcí (prEN 1999-1-1:2021) a nabízí dostatečnou únosnost a stabilitu pro zatížení specifikovaná v kapitole "Maximální zatížení prvků".
- Korekční faktor pro zatížení větrem s ohledem na dobu životnosti, fW, je podle DIN EN 1991-1-4/NA, NDP pro 4,2 (2P) poznámka 5, tabulka 3
- Korekční faktor pro zatížení sněhem s ohledem na dobu životnosti, fS, je podle DIN EN 1991-1-3/příloha D, tabulka 4
- Návrhová pravidla odpovídají základům navrhování konstrukcí: ČSN EN 1990: 2021.
- Zatížení sněhem se určuje podle ČSN EN 1991-1-3: 2017.
- Zatížení větrem se určuje podle ČSN EN 1991-1-4: 2013.
- Životnost byla zohledněna podle normy Eurokód EN 1991 Zatížení konstrukcí, zatížení sněhem a Eurokód EN 1991 Zatížení konstrukcí, zatížení větrem.
- Třída následků byla zohledněna podle normy EN 1990 Eurokód Zásady navrhování konstrukcí.
- Osoba odpovědná za provádění prací musí zkontrolovat předpokládané zatížení s podmínkami na místě.
 Pokud jsou zjištěny odchylky, je třeba neprodleně konzultovat osobu, která vypracovala statický výpočet.
 Všeobecné podmínky používání (VPP), speciálně § 2 ("Technické a odborné podmínky u zákazníka"), § 7 ("Omezení záruky") a § 8 ("Omezení ručení").
- Výpočet TerraGrif slouží jako vodítko a musí být považován za projektově specifický

Všeobecné informace

Název ASV Solnice Montážní systém MultiRail Zpracovatel Tomáš Kalabis

Informace o poloze

Adresa Solnice, Česko Nadmořská výška 334,09 m

Informace o střeše

Výška budovy 7,00 m

Typ střechy Sedlová střecha

Sklon střechy 15°

Krytina Trapézová Minimální vzdálenost od okraje 0,00 m Vzdálenost hřbetu trap. plechu 210,0 mm Šířka hřbetu plechu 30,0 mm Výška hřebene 30,0 mm Materiál Ocel Kvalita plechu S235 Tloušťka plechu 0,600 mm

7atížení

"Metoda návrhu CZ EN

Trīda následků CC1

Návrhová životnost 25 let

Kategorie terénu III - Stromy, vesnice, předměstí, lesy

Zatížení větrem

Oblast zatížení větrem II

Rychlostní tlak, 50 let $q_{p,50} = 0,579 \text{ kN/m}^2$

Faktor upravující zatížení sněhem $f_w = 1,000$

podle doby návratu

Rychlostní tlak, 25 let $q_{p,25} = 0,534 \text{ kN/m}^2$

Střešní úseky

Oblast	Plocha působení zatížení [m²]	maxCpe	minCpe		Sání větru [kN/m²]
Oblast pole	2,22	0,200	-0,993	0,107	-0,530
Okraj hřebenu	2,22	0,200	-1,327	0,107	-0,708

Zatížení sněhem

Prostředí Běžná krajina

Sněhová zábrana mřížová Ne

Zatížení sněhem na zemi $s_k = 1,500 \text{ kN/m}^2$

"Tvarový součinitel zatížení sněhem μ_i = 0,800

Faktor sklonu střechy $d_i = 0.966$

Zatížení střechy sněhem, 50 let $s_{i,50} = 1,159 \text{ kN/m}^2$

Faktor upravující zatížení sněhem

podle doby návratu

f_s = 1,000

Zatížení střechy sněhem, 25 let $s_{i,25} = 1,077 \text{ kN/m}^2$

Stálé zatížení

Hmotnost modulu $G_M = 23,5 \text{ kg}$ Hmotnost montážního systému na = 0,7 kg

modul

Plocha modulů $A_{M} = 2,22 \text{ m}^2$

Mrtvá hmotnost modulu na m² = 10,60 kg/m² Mrtvá hmotnost montážního = 0,32 kg/m²

systému na m²

Celkové zatížení (kromě předřadníku) = 0,11 kN/m²

na m²

Kombinace zatížení

Únosnost

Dílčí součinitel pro stále zatížení - nepříznivé působení (STR)	$\gamma_{\text{G,sup}}$	= 1,35
Dílčí součinitel pro stále zatížení - příznivé působení (STR)	$\gamma_{\text{G,inf}}$	= 1,00
Dílčí součinitel pro stálé zatížení - nestabilní působení (EQU)	$\gamma_{\text{G,dst}}$	= 1,10
Dílčí součinitel pro stále zatížení - stabilní působení (EQU)	$\gamma_{\text{G,stb}}$	= 0,90
Dílčí součinitel- zatížení n proměnných	$\gamma_{\scriptscriptstyle Q}$	= 1,50
Kombinační součinitel zatížení pro Zatížení větrem	$\psi_{\text{o,w}}$	= 0,60
Kombinační součinitel zatížení pro Zatížení sněhem	$\psi_{\text{o,s}}$	= 0,50
Součinitel pro stálé zatížení tříd spolehlivosti	$\mathbf{K}_{Fl,G}$	= 0,90
Součinitel pro proměnlivý zatížení tříd spolehlivosti	$\mathbf{K}_{Fl,Q}$	= 0,85
Kombinace zatěžovacích stavů 01 LCC 01_uls = $\gamma_{G,sup} * \kappa_{Fl,G} * G_k + \gamma_0 *$		
Kombinace zatěžovacích stavů 02 LCC 02_uls = $\gamma_{g,sup} * \kappa_{Fl,g} * G_k + \gamma_0 *$	K _{Fl.0} * '	W _{k.Pressure}

Kombinace zatěžovacích stavů 01	LCC 01_uls	$= \gamma_{G,sup} * \kappa_{Fl,G} * G_k + \gamma_Q * \kappa_{Fl,Q} * S_{i,n}$
Kombinace zatěžovacích stavů 02	LCC 02_uls	= $\gamma_{G,sup}$ * $\kappa_{Fl,G}$ * G_k + γ_Q * $\kappa_{Fl,Q}$ * $W_{k,Pressure}$
Kombinace zatěžovacích stavů 03	LCC 03_uls	= $\gamma_{G,sup}$ * $\kappa_{Fl,G}$ * G_k + γ_Q * $\kappa_{Fl,Q}$ * ($W_{k,Pressure}$ + $\psi_{0,S}$ * $S_{i,n}$)
Kombinace zatěžovacích stavů 04	LCC 04_uls	= $\gamma_{G,sup}$ * $\kappa_{Fl,G}$ * G_k + γ_Q * $\kappa_{Fl,Q}$ * $(S_{i,n}$ + $\psi_{0,W}$ * $W_{k,Pressure})$
Kombinace zatěžovacích stavů 06	LCC 06 uls	$= V_{G,inf} * G_{L} + V_{O} * K_{G,O} * W_{L,Supring}$

Použitelnost

0,	= 0,60
0,S	= 0,50
1	
е	
	o, o,s n

Maximální zatížení modulů (dimenzování montážního systému)

LCC 06_sls = $G_k + W_{k,Suction}$

Oblast	A-TrA [m ²]	Zk	ouška ú	nosnosti [k	N/m²]	Zko	uška pol	užitelnosti [kN/m²]			
	/	Tlak ⊥	Tlak II	Zvednout ⊥	Zvednout II	Tlak ⊥	Tlak II	Zvednout ⊥	Zvednout II		
Oblast pole	2,22	1,533	0,389	-0,572	0,028	1,208	0,306	-0,426	0,028		
Okraj hřebenu	2,22	1,533	0,389	-0,799	0,028	1,208	0,306	-0,605	0,028		

Maximální vlivy na jeden úchyt

Kombinace zatěžovacích stavů 06

Oblast	A-TrA [m²]		Zkouška	ı únosnosti	[kN]	ZI	Zkouška použitelnosti [kN]			
	/ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Tlak⊥	Tlak II	Zvednout ⊥	Zvednout II	Tlak⊥	Tlak II	Zvednout ⊥	Zvednout II	
Oblast pole	2,22	1,700	0,431	-0,634	0,031	1,339	0,340	-0,472	0,031	
Okraj hřebenu	2,22	1,700	0,431	-0,886	0,031	1,339	0,340	-0,670	0,031	

Odolnost konstrukce

Základní kolejnice

KO Maltine il	[cm ²]	[cm ⁴]	[cm ⁴]	[cm ³]	[cm ³]	[KN]
K2 MultiRail	2,160	2,66	4,74	1,65	2,43	1,53

$\mathsf{F}_{\mathsf{p},\mathsf{Rd}}$ Odpor proti protažení

Svorka modulů

Svorka modulů	$R_{D, zdvih, kolm y}$ [kN]	$R_{D, Tlak, Kolmo}$ [kN]	R _{D, Tlak, Paralelní} [kN]
MiddleClamp XS Set 30-33	5,00	-	1,04
EndClamp Set 30-31	2,62	-	1,16

Spojovací prvek

Spojovací prvek	R _{D, zdvih, kolmý} [kN]	R _{D, Tlak, Kolmo} [kN]	R _{D, Tlak, Paralelní} [kN]
Thread-forming metal screw 6.0×25	0,74	-	0,72

Využití výsledků

		Středová svorka		h	Koncová svorka			
Oblast	Typ MultiRail	Vytížení	Vytížení	Typ MultiRail	Vytížení	Vytížení	Vytížení	
		Svorka modulů[%]	Šroub[%]		Svorka modulů[%]	Šroub[%]	Vyváznout[%]	
Oblast pole	2 x 100/2	41,5	44,7	2 x 100/2	18,6	22,4	20,7	
Okraj hřebenu	2 x 100/2	41,5	61,7	2 x 100/2	18,6	30,8	29,0	

Střecha 2 | Seznam položek

Poloha	Č. výrobku	Výrobek	Počet	Hmotnost
1	1005345	EndClamp Set 30-31	56	4,2 kg
2	1005207	Thread-forming metal screw 6.0×25	224	1,3 kg
3	1005156	MiddleClamp XS Set 30-33	56	3,9 kg
4	2001881	TerraGrif K2SZ	42	0,1 kg
5	2001300	MultiRail 10	112	6,7 kg
Součet				16,3 kg

Střecha 2 (1)

Střecha 2 (1)

Střecha	Systém	Modul	Výška	Počet	Celkový výkon
Střecha 2 (1) Trapézová		n.n. 1 955×1 134×30 mm 460 Wp	7,00 m	42	19.32 kWp

Střecha 2 (1)

Modulová pole

Modulární pole	Šířka[m]	Délka[m]	Šířka v modulech	Délka v modulech	
1	27,63	3,43	14	3	

Střecha 2 (1) | Modulární pole 1

Střecha 2 Modulární pole 1

Montážní systém

Modul Rozestup řad <u>MultiRail</u>

42(19.32 kWp) x n.n.

1,98 m

Střecha 2 (1) | Modulární pole 1 | Modulové bloky

Střecha

Modulární pole

Blok s moduly

Moduly

14 × 3 = **42**

Legenda

- Spojovací prvek
- Vzdálenost od okraje střechy [m]
- Dc Vzdálenost pro upnutí mezi moduly
- Dm Vzdálenost mezi moduly

Výsledky | Střecha 2 (1)

Střecha	Systém	Modul	Výška	Počet	Celkový výkon
Střecha 2 (1) Trapézová	<u>MultiRail</u>	n.n. 1 955×1 134×30 mm 460 Wp	7,00 m	42	19.32 kWp

Modul

Název n.n.

Výrobce n.n.

Výkon 460 Wp

Rozměry 1 955×1 134×30 mm

Hmotnost 23,5 kg

Součásti

Spojovací prvek Thread-forming metal screw 6.0×25

Základní kolejnice K2 MultiRail

Zatížení modulů (dimenzování modulu)

Oblast	A-TrA [m²]	Z	Zkouška únosnosti [Pa]				Zkouška použitelnosti [Pa]			
	/	Tlak ⊥	Tlak II	Zvednout ⊥	Zvednout II	Tlak ⊥	Tlak II	Zvednout ⊥	Zvednout II	
Oblast pole	2,22	1 533,4	389,0	-571,9	27,7	1 207,6	306,4	-426,2	27,7	
Okraj hřebenu	2,22	1 533,4	389,0	-799,5	27,7	1 207,6	306,4	-604,8	27,7	

Využití výsledků

	S	tředová svorka		h	Koncová svorka				
Oblast	Typ MultiRail	Vytížení	Vytížení	Typ MultiRail	Vytížení	Vytížení	Vytížení		
		Svorka modulů[%]	Šroub[%]		Svorka modulů[%]	Šroub[%]	Vyváznout[%]		
Oblast pole	2 x 100/2	41,5	44,7	2 x 100/2	18,6	22,4	20,7		
Okraj hřebenu	2 x 100/2	41,5	61,7	2 x 100/2	18,6	30,8	29,0		

Výsledky | Střecha 2 (1)

Důležité informace

- Konstrukce byla staticky ověřena v souladu s Eurokódem 9: Navrhování hliníkových konstrukcí (prEN 1999-1-1:2021) a nabízí dostatečnou únosnost a stabilitu pro zatížení specifikovaná v kapitole "Maximální zatížení prvků".
- Korekční faktor pro zatížení větrem s ohledem na dobu životnosti, fW, je podle DIN EN 1991-1-4/NA, NDP pro 4,2 (2P) poznámka 5, tabulka 3
- Korekční faktor pro zatížení sněhem s ohledem na dobu životnosti, fS, je podle DIN EN 1991-1-3/příloha D, tabulka 4
- Návrhová pravidla odpovídají základům navrhování konstrukcí: ČSN EN 1990: 2021.
- Zatížení sněhem se určuje podle ČSN EN 1991-1-3: 2017.
- Zatížení větrem se určuje podle ČSN EN 1991-1-4: 2013.
- Životnost byla zohledněna podle normy Eurokód EN 1991 Zatížení konstrukcí, zatížení sněhem a Eurokód EN 1991 Zatížení konstrukcí, zatížení větrem.
- Třída následků byla zohledněna podle normy EN 1990 Eurokód Zásady navrhování konstrukcí.
- Osoba odpovědná za provádění prací musí zkontrolovat předpokládané zatížení s podmínkami na místě.
 Pokud jsou zjištěny odchylky, je třeba neprodleně konzultovat osobu, která vypracovala statický výpočet.
 Všeobecné podmínky používání (VPP), speciálně § 2 ("Technické a odborné podmínky u zákazníka"), § 7 ("Omezení záruky") a § 8 ("Omezení ručení").
- Výpočet TerraGrif slouží jako vodítko a musí být považován za projektově specifický

Všeobecné informace

Název ASV Solnice Montážní systém MultiRail Zpracovatel Tomáš Kalabis

Informace o poloze

Adresa Solnice, Česko Nadmořská výška 334,09 m

Informace o střeše

Výška budovy 7,00 m

Typ střechy Sedlová střecha

Sklon střechy 15°

Krytina Trapézová Minimální vzdálenost od okraje 0,00 m Vzdálenost hřbetu trap. plechu 210,0 mm Šířka hřbetu plechu 30,0 mm Výška hřebene 30,0 mm Materiál Ocel Kvalita plechu S235 Tloušťka plechu 0,600 mm

7atížení

"Metoda návrhu CZ EN

Třída následků CC1

Návrhová životnost 25 let

Kategorie terénu III - Stromy, vesnice, předměstí, lesy

Zatížení větrem

Oblast zatížení větrem II

Rychlostní tlak, 50 let $q_{p,50} = 0,579 \text{ kN/m}^2$

Faktor upravující zatížení sněhem $f_w = 1,000$

podle doby návratu

Rychlostní tlak, 25 let $q_{p,25} = 0,534 \text{ kN/m}^2$

Střešní úseky

Oblast	Plocha působení zatížení [m²]	maxCpe	minCpe		Sání větru [kN/m²]
Oblast pole	2,22	0,200	-0,993	0,107	-0,530
Okraj hřebenu	2,22	0,200	-1,327	0,107	-0,708

= 1,000

Zatížení sněhem

Sněhové oblasti III	ı
---------------------	---

Prostředí Běžná krajina

Sněhová zábrana mřížová Ne

Zatížení sněhem na zemi $s_k = 1,500 \text{ kN/m}^2$

"Tvarový součinitel zatížení sněhem μ_i = 0,800

Faktor sklonu střechy $d_i = 0,966$

Zatížení střechy sněhem, 50 let $s_{i,50} = 1,159 \text{ kN/m}^2$

Faktor upravující zatížení sněhem

podle doby návratu

Zatížení střechy sněhem, 25 let $s_{i25} = 1,077 \text{ kN/m}^2$

Stálé zatížení

Hmotnost modulu $G_M = 23,5 \text{ kg}$ Hmotnost montážního systému na = 0,7 kg

modul

modul

Plocha modulů $A_{M} = 2,22 \text{ m}^{2}$

Mrtvá hmotnost modulu na m² = $10,60 \text{ kg/m}^2$ Mrtvá hmotnost montážního = $0,32 \text{ kg/m}^2$

systému na m²

Celkové zatížení (kromě předřadníku) = 0,11 kN/m²

na m²

Kombinace zatížení

Únosnost

Dílčí součinitel pro stále zatížení - nepříznivé působení (STR)	$\gamma_{\text{G,sup}}$	= 1,35
Dílčí součinitel pro stále zatížení - příznivé působení (STR)	$\gamma_{\text{G,inf}}$	= 1,00
Dílčí součinitel pro stálé zatížení - nestabilní působení (EQU)	$\gamma_{\text{G,dst}}$	= 1,10
Dílčí součinitel pro stále zatížení - stabilní působení (EQU)	$\gamma_{\text{G,stb}}$	= 0,90
Dílčí součinitel- zatížení n proměnných	$\gamma_{\scriptscriptstyle Q}$	= 1,50
Kombinační součinitel zatížení pro Zatížení větrem	$\psi_{\text{o,w}}$	= 0,60
Kombinační součinitel zatížení pro Zatížení sněhem	$\psi_{\text{o,s}}$	= 0,50
Součinitel pro stálé zatížení tříd spolehlivosti	$\mathbf{K}_{Fl,G}$	= 0,90
Součinitel pro proměnlivý zatížení tříd spolehlivosti	$\mathbf{K}_{\mathrm{Fl,Q}}$	= 0,85
Kombinace zatěžovacích stavů 01 LCC 01_uls = $\gamma_{G,sup} * \kappa_{Fl,G} * G_k + \gamma_0 *$	K _{Fl,Q} *	S _{i,n}

Kombinace zatěžovacích stavů 01	LCC 01_uls	$= \gamma_{G,sup} * \kappa_{Fl,G} * G_k + \gamma_0 * \kappa_{Fl,Q} * S_{i,n}$
Kombinace zatěžovacích stavů 02	LCC 02_uls	= $\gamma_{G,sup}$ * $\kappa_{Fl,G}$ * G_k + γ_Q * $\kappa_{Fl,Q}$ * $W_{k,Pressure}$
Kombinace zatěžovacích stavů 03	LCC 03_uls	= $\gamma_{G,sup}$ * $\kappa_{Fl,G}$ * G_k + γ_0 * $\kappa_{Fl,Q}$ * ($W_{k,Pressure}$ + $\psi_{0,S}$ * $S_{i,n}$)
Kombinace zatěžovacích stavů 04	LCC 04_uls	= $\gamma_{G,sup} * \kappa_{Fl,G} * G_k + \gamma_0 * \kappa_{Fl,Q} * (S_{i,n} + \psi_{0,W} * W_{k,Pressure})$
Kombinace zatěžovacích stavů 06	LCC 06_uls	$= \gamma_{G,inf} * G_k + \gamma_0 * \kappa_{Fl,0} * W_{k,Suction}$

Použitelnost

Kombinační součinitel zatížení pro Zat	tížení větrem	Ψ _{ο,} w	= 0,60
Kombinační součinitel zatížení pro Zat	$\psi_{\text{o,s}}$	= 0,50	
Kombinace zatěžovacích stavů 01	LCC 01_sls = $G_k + S_{i,n}$		

Kombinace zatěžovacích stavů 02 LCC 02_sls = $G_k + W_{k,Pressure}$ Kombinace zatěžovacích stavů 03 LCC 03_sls = $G_k + W_{k,Pressure} + \psi_{0,S} * S_{i,n}$ Kombinace zatěžovacích stavů 04 LCC 04_sls = $G_k + S_{i,n} + \psi_{0,W} * W_{k,Pressure}$ Kombinace zatěžovacích stavů 06 LCC 06_sls = $G_k + W_{k,Suction}$

Maximální zatížení modulů (dimenzování montážního systému)

Oblast	A-TrA [m²]	Zkouška únosnosti [kN/m²]			Zko	Zkouška použitelnosti [kN/m²]			
		Tlak ⊥	Tlak II	Zvednout ⊥	Zvednout II	Tlak ⊥	Tlak II	Zvednout ⊥	Zvednout II
Oblast pole	2,22	1,533	0,389	-0,572	0,028	1,208	0,306	-0,426	0,028
Okraj hřebenu	2,22	1,533	0,389	-0,799	0,028	1,208	0,306	-0,605	0,028

Maximální vlivy na jeden úchyt

Oblast	A-TrA [m ²]	Zkouška únosnosti [kN]			ZI	Zkouška použitelnosti [kN]			
		Tlak⊥	Tlak II	Zvednout ⊥	Zvednout II	Tlak⊥	Tlak II	Zvednout ⊥	Zvednout II
Oblast pole	2,22	1,700	0,431	-0,634	0,031	1,339	0,340	-0,472	0,031
Okraj hřebenu	2,22	1,700	0,431	-0,886	0,031	1,339	0,340	-0,670	0,031

Odolnost konstrukce

Základní kolejnice

KO Maltine il	[cm ²]	[cm ⁴]	[cm ⁴]	[cm ³]	[cm ³]	[KN]
K2 MultiRail	2,160	2,66	4,74	1,65	2,43	1,53

$\mathsf{F}_{\mathsf{p},\mathsf{Rd}}$ Odpor proti protažení

Svorka modulů

Svorka modulů	$R_{D, zdvih, kolm ilde{y}}$ [kN]	R _{D, Tlak, Kolmo} [kN]	R _{D, Tlak, Paralelní} [kN]
MiddleClamp XS Set 30-33	5,00	-	1,04
EndClamp Set 30-31	2,62	-	1,16

Spojovací prvek

Spojovací prvek	R _{D, zdvih, kolmý} [kN]	R _{D, Tlak, Kolmo} [kN]	R _{D, Tlak, Paralelní} [kN]
Thread-forming metal screw 6.0×25	0,74	-	0,72

Využití výsledků

	Středová svorka			h			
Oblast	Typ MultiRail	Vytížení	Vytížení	Typ MultiRail	Vytížení	Vytížení	Vytížení
		Svorka modulů[%]	Šroub[%]		Svorka modulů[%]	Šroub[%]	Vyváznout[%]
Oblast pole	2 x 100/2	41,5	44,7	2 x 100/2	18,6	22,4	20,7
Okraj hřehenu	2 x 100/2	41,5	61,7	2 x 100/2	18,6	30,8	29,0

Střecha 2 (1) | Seznam položek

Poloha	Č. výrobku	Výrobek	Počet	Hmotnost
1	1005345	EndClamp Set 30-31	56	4,2 kg
2	1005207	Thread-forming metal screw 6.0×25	224	1,3 kg
3	1005156	MiddleClamp XS Set 30-33	56	3,9 kg
4	2001881	TerraGrif K2SZ	42	0,1 kg
5	2001300	MultiRail 10	112	6,7 kg
Součet				16,3 kg

Střecha	Systém	Modul	Výška	Počet	Celkový výkon
Střecha 4 Trapézová	<u>MultiRail</u>	n.n. 1 955×1 134×30 mm 460 Wp	5,00 m	65	29.9 kWp

Modulová pole

Modulární pole	Šĩřka[m]	Délka[m]	Šířka v modulech	Délka v modulech
1	25,66	5,72	13	5

Střecha 4 | Modulární pole 1

Střecha (3) Modulární pole 1

Montážní systém Modul

Rozestup řad

MultiRail

65(29.9 kWp) x n.n.

1,98 m

Střecha 4 | Modulární pole 1 | Modulové bloky

Střecha (3) Modulární

modularni pole 1 Blok s moduly

1

Moduly

13 × 5 = **65**

Legenda

Spojovací prvek

→ Vzdálenost od okraje střechy [m]

Dc Vzdálenost pro upnutí mezi moduly

Dm Vzdálenost mezi moduly

Výsledky | Střecha 4

Střecha	Systém	Modul	Výška	Počet	Celkový výkon
Střecha 4 Trapézová	<u>MultiRail</u>	n.n. 1 955×1 134×30 mm 460 Wp	5,00 m	65	29.9 kWp

Modul

Název n.n.
Výrobce n.n.
Výkon 460 Wp

Rozměry 1 955×1 134×30 mm

Hmotnost 23,5 kg

Součásti

Spojovací prvek Thread-forming metal screw 6.0×25

Základní kolejnice K2 MultiRail

Zatížení modulů (dimenzování modulu)

Oblast	A-TrA [m²]	Zkouška únosnosti [Pa]					Zkouška použitelnosti [Pa]			
Oblast	A 11A [111]	Tlak ⊥	Tlak II	Zvednout 1	Zvednout II	TI	lak ⊥	Tlak II	Zvednout ⊥	Zvednout II
Oblast pole	2,22	1 543,8	214,0	-523,9	14,9	12	215,8	168,5	-388,0	14,9
Okraj hřebenu	2,22	1 543,8	214,0	-926,8	14,9	12	215,8	168,5	-704,1	14,9

Využití výsledků

	S	Středová svorka		k			
Oblast	Typ MultiRail	Vytížení	Vytížení	Typ MultiRail	Vytížení	Vytížení	Vytížení
		Svorka modulů[%]	Šroub[%]		Svorka modulů[%]	Šroub[%]	Vyváznout[%]
Oblast pole	2 x 100/2	22,8	40,1	2 x 100/2	11,8	20,1	19,0
Okraj hřebenu	2 x 100/2	22,8	70,2	2 x 100/2	20,3	35,1	33,6

Důležité informace

- Konstrukce byla staticky ověřena v souladu s Eurokódem 9: Navrhování hliníkových konstrukcí (prEN 1999-1-1:2021) a nabízí dostatečnou únosnost a stabilitu pro zatížení specifikovaná v kapitole "Maximální zatížení prvků".
- Korekční faktor pro zatížení větrem s ohledem na dobu životnosti, fW, je podle DIN EN 1991-1-4/NA, NDP pro 4,2 (2P) poznámka 5, tabulka 3
- Korekční faktor pro zatížení sněhem s ohledem na dobu životnosti, fS, je podle DIN EN 1991-1-3/příloha D, tabulka //
- Návrhová pravidla odpovídají základům navrhování konstrukcí: ČSN EN 1990: 2021.
- Zatížení sněhem se určuje podle ČSN EN 1991-1-3: 2017.
- Zatížení větrem se určuje podle ČSN EN 1991-1-4: 2013.
- Životnost byla zohledněna podle normy Eurokód EN 1991 Zatížení konstrukcí, zatížení sněhem a Eurokód EN 1991 Zatížení konstrukcí, zatížení větrem.
- Třída následků byla zohledněna podle normy EN 1990 Eurokód Zásady navrhování konstrukcí.
- Osoba odpovědná za provádění prací musí zkontrolovat předpokládané zatížení s podmínkami na místě.
 Pokud jsou zjištěny odchylky, je třeba neprodleně konzultovat osobu, která vypracovala statický výpočet.
 Všeobecné podmínky používání (VPP), speciálně § 2 ("Technické a odborné podmínky u zákazníka"), § 7 ("Omezení záruky") a § 8 ("Omezení ručení").
- Výpočet TerraGrif slouží jako vodítko a musí být považován za projektově specifický

Všeobecné informace

ASV Solnice Název MultiRail Montážní systém Zpracovatel Tomáš Kalabis

Informace o poloze

Adresa Solnice, Česko Nadmořská výška 334,09 m

Informace o střeše

Výška budovy 5,00 m

Pultová střecha Typ střechy

8° Sklon střechy

Krytina Trapézová Minimální vzdálenost od okraje 0,00 m Vzdálenost hřbetu trap. plechu 333,0 mm Šířka hřbetu plechu 32,0 mm Výška hřebene 40,0 mm Materiál Ocel Kvalita plechu S235

Tloušťka plechu 0,600 mm

7atížení

"Metoda návrhu CZ EN

Třída následků CC1

Návrhová životnost 25 let

Kategorie terénu III - Stromy, vesnice, předměstí, lesy

Zatížení větrem

Oblast zatížení větrem Ш

 $q_{p,50} = 0,500 \text{ kN/m}^2$ Rychlostní tlak, 50 let

Faktor upravující zatížení sněhem = 1,000

podle doby návratu

Rychlostní tlak, 25 let $q_{p,25} = 0,461 \text{ kN/m}^2$

Střešní úseky

Oblast	Plocha působení zatížení [m²]	maxCpe	minCpe		Sání větru [kN/m²]
Oblast pole	2,22	0,060	-1,072	0,028	-0,494
Okraj hřebenu	2,22	0,060	-1,758	0,028	-0,810

 $s_{i,50} = 1,188 \text{ kN/m}^2$

= 1,000

Zatížení sněhem

Prostředí Běžná krajina

Sněhová zábrana mřížová Ne

Zatížení sněhem na zemi $s_k = 1,500 \text{ kN/m}^2$

"Tvarový součinitel zatížení sněhem μ_i = 0,800

Faktor sklonu střechy $d_i = 0,990$

Zatížení střechy sněhem, 50 let

Faktor upravující zatížení sněhem

podle doby návratu

Zatížení střechy sněhem, 25 let $s_{i25} = 1,104 \text{ kN/m}^2$

Stálé zatížení

Hmotnost modulu $G_M = 23,5 \text{ kg}$ Hmotnost montážního systému na = 0,7 kg

modul

Plocha modulů $A_{M} = 2,22 \text{ m}^{2}$

Mrtvá hmotnost modulu na m² = $10,60 \text{ kg/m}^2$ Mrtvá hmotnost montážního = $0,32 \text{ kg/m}^2$

systému na m²

Celkové zatížení (kromě předřadníku) = 0,11 kN/m²

na m²

Kombinace zatížení

Únosnost

Dílčí součinitel pro stále zatížení - nepříznivé působení (STR)	$\gamma_{G,sup}$	= 1,35
Dílčí součinitel pro stále zatížení - příznivé působení (STR)	$\gamma_{\text{G,inf}}$	= 1,00
Dílčí součinitel pro stálé zatížení - nestabilní působení (EQU)	$\gamma_{\text{G,dst}}$	= 1,10
Dílčí součinitel pro stále zatížení - stabilní působení (EQU)	$\gamma_{\text{G,stb}}$	= 0,90
Dílčí součinitel- zatížení n proměnných	$\gamma_{\scriptscriptstyle Q}$	= 1,50
Kombinační součinitel zatížení pro Zatížení větrem	$\psi_{\text{o,w}}$	= 0,60
Kombinační součinitel zatížení pro Zatížení sněhem	$\psi_{\text{o,s}}$	= 0,50
Součinitel pro stálé zatížení tříd spolehlivosti	$\mathbf{K}_{Fl,G}$	= 0,90
Součinitel pro proměnlivý zatížení tříd spolehlivosti	$\mathbf{K}_{Fl,Q}$	= 0,85
Kombinace zatěžovacích stavů 01 LCC 01_uls = $\gamma_{G,sup} * \kappa_{Fl,G} * G_k + \gamma_0 *$	K _{Fl,Q} *	S _{i,n}

Kombinace zatěžovacích stavů 01	LCC 01_uls	$= \gamma_{G,sup} * \kappa_{Fl,G} * G_k + \gamma_Q * \kappa_{Fl,Q} * S_{i,n}$
Kombinace zatěžovacích stavů 02	LCC 02_uls	= $\gamma_{G,sup}$ * $\kappa_{Fl,G}$ * G_k + γ_Q * $\kappa_{Fl,Q}$ * $W_{k,Pressure}$
Kombinace zatěžovacích stavů 03	LCC 03_uls	= $\gamma_{G,sup}$ * $\kappa_{Fl,G}$ * G_k + γ_Q * $\kappa_{Fl,Q}$ * ($W_{k,Pressure}$ + $\psi_{0,S}$ * $S_{i,n}$)
Kombinace zatěžovacích stavů 04	LCC 04_uls	= $\gamma_{G,sup}$ * $\kappa_{Fl,G}$ * G_k + γ_0 * $\kappa_{Fl,Q}$ * $(S_{i,n}$ + $\psi_{0,W}$ * $W_{k,Pressure})$
Kombinace zatěžovacích stavů 06	LCC 06_uls	$= \gamma_{G,inf} * G_k + \gamma_0 * \kappa_{Fl,0} * W_{k,Suction}$

Použitelnost

Kombinační součinitel zatížení pro Za	tížení větrem		ψ _{ο,} w	= 0,60
Kombinační součinitel zatížení pro Za	$\psi_{\text{o,s}}$	= 0,50		
Kombinace zatěžovacích stavů 01	LCC 01_sls	= G _k + S _{i.n}		

Kombinace zatěžovacích stavů 01 LCC 02_sls = $G_k + W_{k,Pressure}$ Kombinace zatěžovacích stavů 03 LCC 03_sls = $G_k + W_{k,Pressure} + \psi_{0,s} * S_{i,n}$ Kombinace zatěžovacích stavů 04 LCC 04_sls = $G_k + S_{i,n} + \psi_{0,w} * W_{k,Pressure}$ Kombinace zatěžovacích stavů 06 LCC 06_sls = $G_k + W_{k,Suction}$

Maximální zatížení modulů (dimenzování montážního systému)

Oblast	A-TrA [m ²]	Zkouška únosnosti [kN/m²]			Zko	Zkouška použitelnosti [kN/m²]			
	// 11// [111]	Tlak⊥	Tlak II	Zvednout ⊥	Zvednout II	Tlak⊥	Tlak II	Zvednout ⊥	Zvednout II
Oblast pole	2,22	1,544	0,214	-0,524	0,015	1,216	0,169	-0,388	0,015
Okraj hřebenu	2,22	1,544	0,214	-0,927	0,015	1,216	0,169	-0,704	0,015

Maximální vlivy na jeden úchyt

Oblast	A-TrA [m ²]	Zkouška únosnosti [kN]			Zkouška použitelnosti [kN]				
		Tlak⊥	Tlak II	Zvednout ⊥	Zvednout II	Tlak⊥	Tlak II	Zvednout ⊥	Zvednout II
Oblast pole	2,22	1,711	0,237	-0,581	0,017	1,348	0,187	-0,430	0,017
Okraj hřebenu	2,22	1,711	0,237	-1,027	0,017	1,348	0,187	-0,780	0,017

Odolnost konstrukce

Základní kolejnice

KO Maltine il	[cm ²]	[cm ⁴]	[cm ⁴]	[cm ³]	[cm ³]	[KN]
K2 MultiRail	2,160	2,66	4,74	1,65	2,43	1,53

$\mathsf{F}_{\mathsf{p},\mathsf{Rd}}$ Odpor proti protažení

Svorka modulů

Svorka modulů	R _{D, zdvih, kolmý} [kN]	R _{D, Tlak, Kolmo} [kN]	R _{D, Tlak, Paralelní} [kN]
MiddleClamp XS Set 30-33	5,00	-	1,04
EndClamp Set 30-31	2,62	-	1,16

Spojovací prvek

Spojovací prvek	R _{D, zdvih, kolmý} [kN]	R _{D, Tlak, Kolmo} [kN]	R _{D, Tlak, Paralelní} [kN]
Thread-forming metal screw 6.0×25	0,74	-	0,72

Využití výsledků

		Středová svorka		k			
Oblast	Typ MultiRail	Vytížení	Vytížení	Typ MultiRail	Vytížení	Vytížení	Vytížení
		Svorka modulů[%]	Šroub[%]		Svorka modulů[%]	Šroub[%]	Vyváznout[%]
Oblast pole	2 x 100/2	22,8	40,1	2 x 100/2	11,8	20,1	19,0
Okraj hřehenu	2 x 100/2	22,8	70,2	2 x 100/2	20,3	35,1	33,6

Střecha 4 | Seznam položek

Poloha	Č. výrobku	Výrobek	Počet	Hmotnost
1	1005345	EndClamp Set 30-31	52	3,9 kg
2	1005207	Thread-forming metal screw 6.0×25	312	1,9 kg
3	1005156	MiddleClamp XS Set 30-33	104	7,3 kg
4	2001881	TerraGrif K2SZ	65	0,2 kg
5	2001300	MultiRail 10	156	9,4 kg
Součet				22,6 kg

Střecha	Systém	Modul	Výška	Počet	Celkový výkon
Střecha 5 Trapézová	<u>MultiRail</u>	n.n. 1 955×1 134×30 mm 460 Wp	12,00 m	35	16.1 kWp

Modulová pole

Modulární pole	Šířka[m]	Délka[m]	Šířka v modulech	Délka v modulech	
1	13,81	5,75	7	5	

Střecha 5 | Modulární pole 1

Střecha 4 Modulární pole 1

Montážní systém Modul Rozestup řad MultiRail 35(16.1 kWp) x n.n. 1,98 m

Střecha 5 | Modulární pole 1 | Modulové bloky

Střecha

Modulární pole

Blok s moduly

Moduly

7 × 5 = **35**

Legenda

- Spojovací prvek
- → Vzdálenost od okraje střechy [m]
- Dc Vzdálenost pro upnutí mezi moduly
- Dm Vzdálenost mezi moduly

Střecha	Systém	Modul	Výška	Počet	Celkový výkon
Střecha 5 Trapézová	<u>MultiRail</u>	n.n. 1 955×1 134×30 mm 460 Wp	12,00 m	35	16.1 kWp

Modul

Název n.n.
Výrobce n.n.
Výkon 460 Wp

Rozměry 1 955×1 134×30 mm

Hmotnost 23,5 kg

Součásti

Spojovací prvek Thread-forming metal screw 6.0×25

Základní kolejnice K2 MultiRail

Zatížení modulů (dimenzování modulu)

Oblast	A-TrA	Zkouška únosnosti [Pa]			Zk	kouška pr	a použitelnosti [Pa]		
	[m ²]	Tlak 1	Tlak II	Zvednout 	Zvednout II	Tlak⊥	Tlak II	Zvednout 	Zvednout II
Oblast pole	2,22	773,1	447,3	-928,1	75,7	609,9	354,4	-711,6	75,7
Rohová plocha (hřeben)	2,22	773,1	447,3	-1 677,0	75,7	609,9	354,4	-1 298,9	75,7
Okraj hřebenu	2,22	773,1	447,3	-928,1	75,7	609,9	354,4	-711,6	75,7

Využití výsledků

		Středová svorka	L		Koncová svorka			
Oblast	Typ MultiRail	Vytížení	Vytížení	ení Typ Vytíže MultiRail		Vytížení	Vytížení	
		Svorka modulů[%]	Šroub[%]		Svorka modulů[%]	Šroub[%]	Vyváznout[%]	
Oblast pole	2 x 100/2	47,7	50,9	2 x 100/2	23,2	25,5	33,7	
Rohová plocha (hřeben)	2 x 100/2	47,7	88,5	2 x 100/2	39,1	44,2	60,8	
Okraj hřebenu	2 x 100/2	47,7	50,9	2 x 100/2	23,2	25,5	33,7	

Důležité informace

- Konstrukce byla staticky ověřena v souladu s Eurokódem 9: Navrhování hliníkových konstrukcí (prEN 1999-1-1:2021) a nabízí dostatečnou únosnost a stabilitu pro zatížení specifikovaná v kapitole "Maximální zatížení prvků".
- Korekční faktor pro zatížení větrem s ohledem na dobu životnosti, fW, je podle DIN EN 1991-1-4/NA, NDP pro 4,2 (2P) poznámka 5, tabulka 3
- Korekční faktor pro zatížení sněhem s ohledem na dobu životnosti, fS, je podle DIN EN 1991-1-3/příloha D, tabulka 4
- Návrhová pravidla odpovídají základům navrhování konstrukcí: ČSN EN 1990: 2021.
- Zatížení sněhem se určuje podle ČSN EN 1991-1-3: 2017.
- Zatížení větrem se určuje podle ČSN EN 1991-1-4: 2013.
- Životnost byla zohledněna podle normy Eurokód EN 1991 Zatížení konstrukcí, zatížení sněhem a Eurokód EN 1991 Zatížení konstrukcí, zatížení větrem.
- Třída následků byla zohledněna podle normy EN 1990 Eurokód Zásady navrhování konstrukcí.
- Osoba odpovědná za provádění prací musí zkontrolovat předpokládané zatížení s podmínkami na místě.
 Pokud jsou zjištěny odchylky, je třeba neprodleně konzultovat osobu, která vypracovala statický výpočet.
 Všeobecné podmínky používání (VPP), speciálně § 2 ("Technické a odborné podmínky u zákazníka"), § 7 ("Omezení záruky") a § 8 ("Omezení ručení").
- Výpočet TerraGrif slouží jako vodítko a musí být považován za projektově specifický

Všeobecné informace

Název ASV Solnice Montážní systém MultiRail Zpracovatel Tomáš Kalabis

Informace o poloze

Adresa Solnice, Česko Nadmořská výška 334,09 m

Informace o střeše

Výška budovy 12,00 m

Typ střechy Pultová střecha

Sklon střechy 45°

Krytina Trapézová Minimální vzdálenost od okraje 0,00 m Vzdálenost hřbetu trap. plechu 160,0 mm Šířka hřbetu plechu 60,0 mm Výška hřebene 40,0 mm Materiál Ocel Kvalita plechu S235 Tloušťka plechu 0,800 mm

7atížení

"Metoda návrhu CZ EN

Třída následků CC1

Návrhová životnost 25 let

Kategorie terénu III - Stromy, vesnice, předměstí, lesy

Zatížení větrem

Oblast zatížení větrem II

Rychlostní tlak, 50 let $q_{p,50} = 0,715 \text{ kN/m}^2$

Faktor upravující zatížení sněhem $f_w = 1,000$

podle doby návratu

Rychlostní tlak, 25 let $q_{p,25} = 0,658 \text{ kN/m}^2$

Střešní úseky

Oblast	Plocha působení zatížení [m²]	maxCpe	minCpe	Tlak větru [kN/m²]	Sání větru [kN/m²]
Oblast pole	2,22	0,600	-1,196	0,395	-0,787
Rohová plocha (hřeben)	2,22	0,600	-2,089	0,395	-1,375
Okraj hřebenu	2,22	0,600	-1,196	0,395	-0,787

Zatížení sněhem

Sněhové oblasti	Ш	
Prostředí	Běžr	ná krajina
Sněhová zábrana mřížová	Ne	
Zatīženī sněhem na zemi	$\mathbf{S}_{\mathbf{k}}$	= 1,500 kN/m ²
"Tvarový součinitel zatížení sněhem	μ_{i}	= 0,400
Faktor sklonu střechy	d_{i}	= 0,707
Zatížení střechy sněhem, 50 let	S _{i,50}	$= 0,424 \text{ kN/m}^2$
Faktor upravující zatížení sněhem podle doby návratu	f_s	= 1,000

Zatížení střechy sněhem, 25 let $s_{i,25} = 0,394 \text{ kN/m}^2$

Stálé zatížení

Hmotnost modulu	G_{\scriptscriptstyleM}	= 23,5 kg
Hmotnost montážního systému na modul		= 0,7 kg
Plocha modulů	\mathbf{A}_{M}	= 2,22 m ²
Mrtvá hmotnost modulu na m²		$= 10,60 \text{ kg/m}^2$
Mrtvá hmotnost montážního systému na m²		= 0,32 kg/m ²
Celkové zatížení (kromě předřadníku) na m²		= 0,11 kN/m ²

Kombinace zatížení

Únosnost

Dílčí součinitel pro stále zatížení - nepříznivé působení (STR)	$\gamma_{G, sup}$	= 1,35
Dílčí součinitel pro stále zatížení - příznivé působení (STR)	$\gamma_{G,inf}$	= 1,00
Dílčí součinitel pro stálé zatížení - nestabilní působení (EQU)	$\gamma_{\text{G,dst}}$	= 1,10
Dílčí součinitel pro stále zatížení - stabilní působení (EQU)	$\gamma_{\text{G,stb}}$	= 0,90
Dílčí součinitel- zatížení n proměnných	$\gamma_{\scriptscriptstyle Q}$	= 1,50
Kombinační součinitel zatížení pro Zatížení větrem	$\psi_{\text{o},w}$	= 0,60
Kombinační součinitel zatížení pro Zatížení sněhem	$\psi_{\text{o,s}}$	= 0,50
Součinitel pro stálé zatížení tříd spolehlivosti	$\mathbf{K}_{Fl,G}$	= 0,90
Součinitel pro proměnlivý zatížení tříd spolehlivosti	$\mathbf{K}_{\mathrm{Fl,Q}}$	= 0,85
Kombinace zatěžovacích stavů 01 LCC 01_uls = $\gamma_{g,sup} * \kappa_{Fl,g} * G_k + \gamma_0 *$	K _{Fl,Q} *	$S_{i,n}$

Kombinace zatěžovacích stavů 01	LCC 01_uls	= $\gamma_{G,sup} * \kappa_{Fl,G} * G_k + \gamma_0 * \kappa_{Fl,Q} * S_{i,n}$
Kombinace zatěžovacích stavů 02	LCC 02_uls	= $\gamma_{G,sup}$ * $\kappa_{Fl,G}$ * G_k + γ_Q * $\kappa_{Fl,Q}$ * $W_{k,Pressure}$
Kombinace zatěžovacích stavů 03	LCC 03_uls	= $\gamma_{G,sup}$ * $\kappa_{Fl,G}$ * G_k + γ_Q * $\kappa_{Fl,Q}$ * ($W_{k,Pressure}$ + $\psi_{0,S}$ * $S_{i,n}$)
Kombinace zatěžovacích stavů 04	LCC 04_uls	= $\gamma_{G,sup}$ * $\kappa_{Fl,G}$ * G_k + γ_0 * $\kappa_{Fl,Q}$ * $(S_{i,n}$ + $\psi_{0,W}$ * $W_{k,Pressure}$)
Kombinace zatěžovacích stavů 06	LCC 06_uls	= $\gamma_{g,inf} * G_k + \gamma_0 * \kappa_{Fl,0} * W_{k,Suction}$

Použitelnost

Kombinační součinitel zatížení pro Zatížení větrem	ψ _{ο,} w	= 0,60
Kombinační součinitel zatížení pro Zatížení sněhem	$\psi_{\text{o,s}}$	= 0,50

Kombinace zatěžovacích stavů 01 LCC 01_sls = $G_k + S_{i,n}$ Kombinace zatěžovacích stavů 02 LCC 02_sls = $G_k + W_{k,Pressure}$ Kombinace zatěžovacích stavů 03 LCC 03_sls = $G_k + W_{k,Pressure} + \psi_{0,S} * S_{i,n}$ Kombinace zatěžovacích stavů 04 LCC 04_sls = $G_k + S_{i,n} + \psi_{0,W} * W_{k,Pressure}$ Kombinace zatěžovacích stavů 06 LCC 06_sls = $G_k + W_{k,Suction}$

Maximální zatížení modulů (dimenzování montážního systému)

Oblast	A-TrA	Zk	Zkouška únosnosti [kN/m²]			Zkouška použitelnosti [kN/m²			kN/m²]
	[m ²]	Tlak⊥	Tlak II	Zvednout 	Zvednout II	Tlak ⊥	Tlak II	Zvednout L	Zvednout II
Oblast pole	2,22	0,773	0,447	-0,928	0,076	0,610	0,354	-0,712	0,076
Rohová plocha (hřeben)	2,22	0,773	0,447	-1,677	0,076	0,610	0,354	-1,299	0,076
Okraj hřebenu	2,22	0,773	0,447	-0,928	0,076	0,610	0,354	-0,712	0,076

Maximální vlivy na jeden úchyt

Oblast	A-TrA	Zkouška únosnosti [kN]			Zkouška použitelnosti [kN]				
Obtact	[m ²]	Tlak⊥	Tlak II	Zvednout 	Zvednout II	Tlak⊥	Tlak II	Zvednout 	Zvednout II
Oblast pole	2,22	0,857	0,496	-1,029	0,084	0,676	0,393	-0,789	0,084
Rohová plocha (hřeben)	2,22	0,857	0,496	-1,859	0,084	0,676	0,393	-1,440	0,084
Okraj hřebenu	2,22	0,857	0,496	-1,029	0,084	0,676	0,393	-0,789	0,084

Odolnost konstrukce

Základní kolejnice

K2 MultiRail	2,160	2,66	4.74	1,65	2,43	1,53
Zaktaum kotejmice	[cm ²]	[cm ⁴]	l _z [cm ⁴]	(cm ³	vv _z [cm ³]	[KN]
Základní kolejnice	Δ		1	W.,	W	F

$F_{p,Rd}$ Odpor proti protažení

Svorka modulů

Svorka modulů	$R_{D, zdvih, kolm \tilde{y}}$ [kN]	$R_{D, Tlak, Kolmo} [kN]$	R _{D, Tlak, Paralelní} [kN]
OneMid Set 30-42	5,00	-	1,04
OneEnd Set 30-42	2,62	-	1,16

Spojovací prvek

Spojovací prvek	R _{D, zdvih, kolmý} [kN]	R _{D, Tlak, Kolmo} [kN]	R _{D, Tlak, Paralelní} [kN]
Thread-forming metal screw 6.0×25	1,11	-	0,95

Využití výsledků

	Středová svorka Koncová svorka						
Oblast	Typ MultiRail	Vytížení	Vytížení	Typ MultiRail	Vytížení	Vytížení	Vytížení
		Svorka modulů[%]	Šroub[%]		Svorka modulů[%]	Šroub[%]	Vyváznout[%]
Oblast pole	2 x 100/2	47,7	50,9	2 x 100/2	23,2	25,5	33,7
Rohová plocha (hřeben)	2 x 100/2	47,7	88,5	2 x 100/2	39,1	44,2	60,8
Okraj hřebenu	2 x 100/2	47,7	50,9	2 x 100/2	23,2	25,5	33,7

Střecha 5 | Seznam položek

Poloha	Č. výrobku	Výrobek	Počet	Hmotnost
1	2002514	OneEnd Set 30-42	28	2,4 kg
2	1005207	Thread-forming metal screw 6.0×25	168	1,0 kg
3	2003071	OneMid Set 30-42	56	4,4 kg
4	2001881	TerraGrif K2SZ	35	0,1 kg
5	2001300	MultiRail 10	84	5,0 kg
Součet				13,0 kg

Střecha	Systém	Modul	Výška	Počet	Celkový výkon
Střecha 6 Trapézová	<u>MultiRail</u>	n.n. 1 955×1 134×30 mm 460 Wp	8,00 m	33	15.18 kWp

Modulová pole

Modulární pole	Šířka[m]	Délka[m]	Šīřka v modulech	Délka v modulech
1	11,83	6,87	6	6

Střecha 6 | Modulární pole 1

Střecha (5) Modulární pole 1

Montážní systém Modul

Rozestup řad

<u>MultiRail</u>

33(15.18 kWp) x n.n.

1,98 m

Střecha 6 | Modulární pole 1 | Modulové bloky

Střecha (

Modulární pole

Blok s moduly

Moduly

 $(6 \times 6) - 3 = 33$

Legenda

- Spojovací prvek
- ➤ Vzdálenost od okraje střechy [m]
- Dc Vzdálenost pro upnutí mezi moduly
- Dm Vzdálenost mezi moduly

Střecha	Systém	Modul	Výška	Počet	Celkový výkon
Střecha 6 Trapézová	<u>MultiRail</u>	n.n. 1 955×1 134×30 mm 460 Wp	8,00 m	33	15.18 kWp

Modul

Název n.n. Výrobce n.n. Výkon 460 Wp

Rozměry 1 955×1 134×30 mm

Hmotnost 23,5 kg

Součásti

Spojovací prvek Thread-forming metal screw 6.0×25

Základní kolejnice K2 MultiRail

Zatížení modulů (dimenzování modulu)

Oblast	A-TrA	Zkouška únosnosti [Pa]			Zkouška použitelnosti [Pa]				
	[m ²]	Tlak⊥	Tlak II	Zvednout L	Zvednout II	Tlak⊥	Tlak II	Zvednout L	Zvednout II
Oblast pole	2,22	1 538,0	389,0	-684,3	27,7	1 211,1	306,4	-514,4	27,7
Rohová plocha (okap)	2,22	1 538,0	389,0	-1 422,3	27,7	1 211,1	306,4	-1 093,2	27,7
Štītovā hrana	2,22	1 538,0	389,0	-1 543,8	27,7	1 211,1	306,4	-1 188,5	27,7
Rohová plocha (hřeben)	2,22	1 538,0	389,0	-1 856,1	27,7	1 211,1	306,4	-1 433,4	27,7
Okraj hřebenu	2,22	1 538,0	389,0	-1 159,7	27,7	1 211,1	306,4	-887,3	27,7

Využití výsledků

		Středová svorka	-	ł	Koncová svorka		
Oblast	Typ MultiRail	Vytížení	Vytížení	Typ MultiRail	Vytížení	Vytížení	Vytížení
		Svorka modulů[%]	Šroub[%]		Svorka modulů[%]	Šroub[%]	Vyváznout[%]
Oblast pole	2 x 100/2	41,5	54,9	2 x 100/2	18,6	27,4	24,8
Rohová plocha (okap)	2 x 250/4	41,5	56,4	2 x 100/2	31,4	56,4	25,8
Štítová hrana	2 x 250/4	41,5	61,1	2 x 100/2	34,0	61,1	28,0
Rohová plocha (hřeben)	2 x 250/4	44,1	73,4	2 x 100/2	40,6	73,4	33,7
Okraj hřebenu	2 x 100/2	41,5	92,2	2 x 100/2	25,9	46,1	42,1

Důležité informace

- Konstrukce byla staticky ověřena v souladu s Eurokódem 9: Navrhování hliníkových konstrukcí (prEN 1999-1-1:2021) a nabízí dostatečnou únosnost a stabilitu pro zatížení specifikovaná v kapitole "Maximální zatížení prvků".
- Korekční faktor pro zatížení větrem s ohledem na dobu životnosti, fW, je podle DIN EN 1991-1-4/NA, NDP pro 4,2 (2P) poznámka 5, tabulka 3
- Korekční faktor pro zatížení sněhem s ohledem na dobu životnosti, fS, je podle DIN EN 1991-1-3/příloha D, tabulka 4
- Návrhová pravidla odpovídají základům navrhování konstrukcí: ČSN EN 1990: 2021.
- Zatížení sněhem se určuje podle ČSN EN 1991-1-3: 2017.
- Zatížení větrem se určuje podle ČSN EN 1991-1-4: 2013.
- Životnost byla zohledněna podle normy Eurokód EN 1991 Zatížení konstrukcí, zatížení sněhem a Eurokód EN 1991 Zatížení konstrukcí, zatížení větrem.
- Třída následků byla zohledněna podle normy EN 1990 Eurokód Zásady navrhování konstrukcí.
- Osoba odpovědná za provádění prací musí zkontrolovat předpokládané zatížení s podmínkami na místě.
 Pokud jsou zjištěny odchylky, je třeba neprodleně konzultovat osobu, která vypracovala statický výpočet.
 Všeobecné podmínky používání (VPP), speciálně § 2 ("Technické a odborné podmínky u zákazníka"), § 7 ("Omezení záruky") a § 8 ("Omezení ručení").
- Výpočet TerraGrif slouží jako vodítko a musí být považován za projektově specifický

Všeobecné informace

Název ASV Solnice
Montážní systém MultiRail
Zpracovatel Tomáš Kalabis

Informace o poloze

Adresa Solnice, Česko Nadmořská výška 334,09 m

Informace o střeše

Výška budovy 8,00 m

Typ střechy Pultová střecha

Sklon střechy 15°

Krytina Trapézová
Minimální vzdálenost od okraje 0,00 m

Vzdálenost hřbetu trap. plechu 250,0 mm

Šířka hřbetu plechu 40,0 mm

Výška hřebene 40,0 mm

Materiál Hliník

Kvalita plechu 165 N/mm² Tloušťka plechu 1,000 mm

7atížení

"Metoda návrhu CZ EN

Trīda následků CC1

Návrhová životnost 25 let

Kategorie terénu III - Stromy, vesnice, předměstí, lesy

Zatížení větrem

Oblast zatížení větrem II

Rychlostní tlak, 50 let $q_{p,50} = 0,612 \text{ kN/m}^2$

Faktor upravující zatížení sněhem f_w = 0,921

podle doby návratu

Rychlostní tlak, 25 let $q_{p,25} = 0,564 \text{ kN/m}^2$

Střešní úseky

Oblast	Plocha působení zatížení [m²]	maxCpe	minCpe	Tlak větru [kN/m²]	Sání větru [kN/m²]
Oblast pole	2,22	0,200	-1,096	0,113	-0,618
Rohová plocha (okap)	2,22	0,200	-2,123	0,113	-1,197
Štítová hrana	2,22	0,200	-2,293	0,113	-1,292
Rohová plocha (hřeben)	2,22	0,200	-2,727	0,113	-1,537
Okraj hřebenu	2,22	0,200	-1,758	0,113	-0,991

Zatížení sněhem

Sněhové oblas	sti	III

Prostředí Běžná krajina

Sněhová zábrana mřížová Ne

Zatížení sněhem na zemi $s_k = 1,500 \text{ kN/m}^2$

"Tvarový součinitel zatížení sněhem μ_i = 0,800

Faktor sklonu střechy $d_i = 0,966$

Zatížení střechy sněhem, 50 let $s_{i,50} = 1,159 \text{ kN/m}^2$

Faktor upravující zatížení sněhem $f_s = 0,929$ podle doby návratu

Zatížení střechy sněhem, 25 let $s_{i,25} = 1,077 \text{ kN/m}^2$

Stálé zatížení

Hmotnost modulu $G_M = 23,5 \text{ kg}$

Hmotnost montážního systému na = 0,7 kg modul

Plocha modulů $A_{M} = 2,22 \text{ m}^{2}$

Mrtvá hmotnost modulu na m² = $10,60 \text{ kg/m}^2$ Mrtvá hmotnost montážního = $0,32 \text{ kg/m}^2$

systému na m²

Celkové zatížení (kromě předřadníku) = 0,11 kN/m²

na m²

Kombinace zatížení

Únosnost

Dílčí součinitel pro stále zatížení - nepříznivé působení (STR)	$\gamma_{\text{G,sup}}$	= 1,35
Dílčí součinitel pro stále zatížení - příznivé působení (STR)	$\gamma_{\text{G,inf}}$	= 1,00
Dílčí součinitel pro stálé zatížení - nestabilní působení (EQU)	$\gamma_{\text{G,dst}}$	= 1,10
Dílčí součinitel pro stále zatížení - stabilní působení (EQU)	$\gamma_{\text{G,stb}}$	= 0,90
Dílčí součinitel- zatížení n proměnných	$\gamma_{\scriptscriptstyle Q}$	= 1,50
Kombinační součinitel zatížení pro Zatížení větrem	$\psi_{\text{o,w}}$	= 0,60
Kombinační součinitel zatížení pro Zatížení sněhem	$\psi_{\text{o,s}}$	= 0,50
Součinitel pro stálé zatížení tříd spolehlivosti	$\mathbf{K}_{Fl,G}$	= 0,90
Součinitel pro proměnlivý zatížení tříd spolehlivosti	$\mathbf{K}_{Fl,Q}$	= 0,85
Kombinace zatěžovacích stavů 01 LCC 01_uls = $\gamma_{G,sup} * \kappa_{Fl,G} * G_k + \gamma_0 *$	K _{Fl,Q} *	$S_{i,n}$

Kombinace zatěžovacích stavů 01	LCC 01_uls = $\gamma_{G,sup} * \kappa_{Fl,G} * G_k + \gamma_0 * \kappa_{Fl,Q} * S_{i,n}$
Kombinace zatěžovacích stavů 02	LCC 02_uls = $\gamma_{G,sup} * \kappa_{Fl,G} * G_k + \gamma_0 * \kappa_{Fl,Q} * W_{k,Pressure}$
Kombinace zatěžovacích stavů 03	LCC 03_uls = $\gamma_{G,sup} * \kappa_{Fl,G} * G_k + \gamma_0 * \kappa_{Fl,Q} * (W_{k,Pressure} + \psi_{0,S} * S_{i,n})$
Kombinace zatěžovacích stavů 04	LCC 04_uls = $\gamma_{G,sup} * \kappa_{Fl,G} * G_k + \gamma_0 * \kappa_{Fl,Q} * (S_{i,n} + \psi_{0,W} * W_{k,Pressure})$
Kombinace zatěžovacích stavů 06	LCC 06_uls = $\gamma_{G,inf} * G_k + \gamma_0 * \kappa_{Fl,0} * W_{k,Suction}$

Použitelnost

Kombinační součinitel zatížení pro Zatížení větrem	$\psi_{o,}$	= 0,60
	W	
Kombinační součinitel zatížení pro Zatížení sněhem	$\psi_{\text{o,s}}$	= 0,50

Kombinace zatěžovacích stavů 01	LCC 01_sls	$= G_k + S_{i,n}$
Kombinace zatěžovacích stavů 02	LCC 02_sls	= G _k + W _{k,Pressure}
Kombinace zatěžovacích stavů 03	LCC 03_sls	= G_k + $W_{k,Pressure}$ + $\psi_{0,S}$ * $S_{i,n}$
Kombinace zatěžovacích stavů 04	LCC 04_sls	= $G_k + S_{i,n} + \psi_{0,w} * W_{k,Pressure}$
Komhinaca zatěžovacích stavů 06	LCC OR ele	=G+W

Maximální zatížení modulů (dimenzování montážního systému)

Oblast	A-TrA	Zkouška únosnosti [kN/m²]			Zko	Zkouška použitelnosti [kN/m²]			
	[m ²]	Tlak⊥	Tlak II	Zvednout L	Zvednout II	Tlak 	Tlak II	Zvednout _L	Zvednout II
Oblast pole	2,22	1,538	0,389	-0,684	0,028	1,211	0,306	-0,514	0,028
Rohová plocha (okap)	2,22	1,538	0,389	-1,422	0,028	1,211	0,306	-1,093	0,028
Štítová hrana	2,22	1,538	0,389	-1,544	0,028	1,211	0,306	-1,189	0,028
Rohová plocha (hřeben)	2,22	1,538	0,389	-1,856	0,028	1,211	0,306	-1,433	0,028
Okraj hřebenu	2,22	1,538	0,389	-1,160	0,028	1,211	0,306	-0,887	0,028

Maximální vlivy na jeden úchyt

Oblast	A-TrA	Zkouška únosnosti [kN]			Zł	Zkouška použitelnosti [kN]			
Oblast	[m ²]	Tlak⊥	Tlak II	Zvednout 	Zvednout II	Tlak⊥	Tlak II	Zvednout L	Zvednout II
Oblast pole	2,22	1,705	0,431	-0,759	0,031	1,343	0,340	-0,570	0,031
Rohová plocha (okap)	2,22	1,705	0,431	-1,577	0,031	1,343	0,340	-1,212	0,031
Štītovā hrana	2,22	1,705	0,431	-1,711	0,031	1,343	0,340	-1,317	0,031
Rohová plocha (hřeben)	2,22	1,705	0,431	-2,057	0,031	1,343	0,340	-1,589	0,031
Okraj hřebenu	2,22	1,705	0,431	-1,286	0,031	1,343	0,340	-0,984	0,031

Odolnost konstrukce

Základní kolejnice

Základní kolejnice	A	l _y	l _z	W _y	W₂	F _{p,Rd}
	[cm²]	[cm ⁴]	[cm ⁴]	[cm³]	[cm³]	[KN]
K2 MultiRail	2,160	2,66	4,74	1,65	2,43	1,53

$F_{p,Rd}$ Odpor proti protažení

Svorka modulů

Svorka modulů	$R_{D, zdvih, kolm ilde{y}}$ [kN]	R _{D, Tlak, Kolmo} [kN]	R _{D, Tlak, Paralelní} [kN]
MiddleClamp XS Set 30-33	5,00	-	1,04
EndClamp Set 30-31	2,62	-	1,16

Spojovací prvek

Spojovací prvek	$R_{D, zdvih, kolm \tilde{y}}$ [kN]	$R_{D, Tlak, Kolmo} [kN]$	R _{D, Tlak, Paralelní} [kN]
Thread-forming metal screw 6.0×25	0,71	-	1,26

Využití výsledků

		Středová svorka		Koncová svorka			
Oblast	Typ MultiRail	Vytížení	Vytížení	Typ MultiRail	Vytížení	Vytížení	Vytížení
		Svorka modulů[%]	Šroub[%]		Svorka modulů[%]	Šroub[%]	Vyváznout[%]
Oblast pole	2 x 100/2	41,5	54,9	2 x 100/2	18,6	27,4	24,8
Rohová plocha (okap)	2 x 250/4	41,5	56,4	2 x 100/2	31,4	56,4	25,8
Štítová hrana	2 x 250/4	41,5	61,1	2 x 100/2	34,0	61,1	28,0
Rohová plocha (hřeben)	2 x 250/4	44,1	73,4	2 x 100/2	40,6	73,4	33,7
Okraj hřebenu	2 x 100/2	41,5	92,2	2 x 100/2	25,9	46,1	42,1

Střecha 6 | Seznam položek

Poloha	Č. výrobku	Výrobek	Počet	Hmotnost
1	1005345	EndClamp Set 30-31	24	1,8 kg
2	1005207	Thread-forming metal screw 6.0×25	184	1,1 kg
3	1005156	MiddleClamp XS Set 30-33	54	3,8 kg
4	2001881	TerraGrif K2SZ	33	0,1 kg
5	2001300	MultiRail 10	64	3,8 kg
6	2002793	MultiRail 25	14	2,1 kg
Součet				12.7 kg

Seznam položek

Poloha	Č. výrobku	Výrobek	Počet	Hmotnost
1	1005345	EndClamp Set 30-31	188	14,1 kg
2	1005207	Thread-forming metal screw 6.0×25	1 112	6,7 kg
3	1005156	MiddleClamp XS Set 30-33	270	18,9 kg
4	2001881	TerraGrif K2SZ	217	0,7 kg
5	2001300	MultiRail 10	528	31,7 kg
6	2002514	OneEnd Set 30-42	28	2,4 kg
7	2003071	OneMid Set 30-42	56	4,4 kg
8	2002793	MultiRail 25	14	2,1 kg
Součet				80,9 kg

Děkujeme, že jste si vybrali montážní systém K2.

Systémy od společnosti K2 Systems se snadno a rychle instalují. Doufáme, že vám tyto pokyny pomohly. V případě jakýchkoli dotazů nebo návrhů na zlepšení nás prosím kontaktujte.

Naše kontaktní údaje:

k2-systems.com/en/contact

Platí naše Všeobecné obchodní podmínky. Viz k2-systems.com

K2 Systems GmbH

Haldenstraße 1
71272 Renningen
Germany
+49 (0)7159 42059-0
+49 (0)7159 42059-177
info@k2-systems.com
www.k2-systems.com