60 POINTS HOMEWORK 11 DUE: 4/15/15

1. (60 pts.) Consider a spring-mass-damper system with natural frequency $f_n = 1 \,\mathrm{Hz}$ and $m = 5 \,\mathrm{kg}$. The system is subject to stationary, zero-mean white noise with $S_0 = 1 \,\mathrm{N}^2/(\mathrm{rad/s})$. It is common to model the yield failure of a system in terms of its standard deviation, i.e. $U = k\sigma_x$, where k is a positive constant.

a. (30 pts.) Calculate, from repeated simulations, $E[\dot{n}_+(U)]$ and $E[\dot{n}_+^a(U)]$ as a function of k over the range $0 \le k \le 8$ and for several values of ζ . Compare these to plots of the theoretical values using the standard assumptions of stationary, narrow band, Gaussian processes. Similar to class, plot k on the horizontal axis. Are these comparisons better for higher or lower values of ζ , and why?

b. (30 pts.) For the same values of k and ζ , plot the distribution of t_f , the time to failure, using $E[\dot{n}_+(U)]$ and $E[\dot{n}_+^a(U)]$. Are the mean and standard deviations as expected? Are the expectations closer to the theoretical values for higher or lower values of ζ , and why?