CS 6290 High Performance Computer Architecture

Lab 2 Report

Name : Raghavendra Vinayak Belapure

T-Square Account Name : rbelapure3

1.0 Default Configuration

The traces are run using default configuration.

MSHR Size : 4	Cache Size : 512KB	Type: 4 way set associative
D-cache latency : 5 cycles	DRAM Row Buffer Hit latency :	DRAM Row Buffer Miss latency :
	100 cycles	200 cycles
DRAM_BANK_NUM: 4	DRAM_PAGE_SIZE : 2KB	

The results of the execution are as follows.

Memory Intensive Trace	Non Memory Intensive Trace
Total instruction: 10057019	Total instruction: 7583269
Total cycles: 35893678	Total cycles: 30307751
IPC: 0.280189	IPC: 0.250209
Total I-cache miss: 0	Total I-cache miss: 0
Total D-cache miss: 15693	Total D-cache miss: 3225
Total D-cache hit: 3626739	Total D-cache hit: 3876379
Total data hazard: 883472	Total data hazard: 488849
Total control hazard : 2050615	Total control hazard : 1705561
Total DRAM ROW BUFFER Hit: 942	Total DRAM ROW BUFFER Hit: 905
Total DRAM ROW BUFFER Miss: 12833	Total DRAM ROW BUFFER Miss: 527
Total Store-load forwarding: 18	Total Store-load forwarding: 15

2.0 Different Cache Sizes

Now, we vary cache size and analyze the results

2.1 Memory intensive trace

Cache Size: 128K	Cache Size: 512K
Total instruction: 10057019	Total instruction: 10057019
Total cycles: 35894697	Total cycles: 35893678
IPC: 0.280181	IPC: 0.280189
Total I-cache miss: 0	Total I-cache miss: 0
Total D-cache miss: 15739	Total D-cache miss: 15693
Total D-cache hit: 3626693	Total D-cache hit: 3626739
Total data hazard: 884498	Total data hazard: 883472
Total control hazard : 2050615	Total control hazard : 2050615
Total DRAM ROW BUFFER Hit: 945	Total DRAM ROW BUFFER Hit: 942
Total DRAM ROW BUFFER Miss: 12864	Total DRAM ROW BUFFER Miss: 12833
Total Store-load forwarding: 18	Total Store-load forwarding: 18

Cache Size: 1024K

Total instruction: 10057019 Total cycles: 35890513

IPC: 0.280214

Total I-cache miss: 0

Total D-cache miss: 15550

Total D-cache hit: 3626882

Total data hazard: 880708

Total control hazard: 2050615

Total DRAM ROW BUFFER Hit: 920

Total DRAM ROW BUFFER Miss: 12779

Total Store-load forwarding: 16

Cache Size 2048K

Total instruction: 10057019 Total cycles: 35890483

IPC: 0.280214 Total I-cache miss: 0

Total I-cache miss: 0
Total D-cache miss: 15549
Total D-cache hit: 3626883
Total data hazard: 880708
Total control hazard: 2050615
Total DRAM ROW BUFFER Hit: 920
Total DRAM ROW BUFFER Miss: 12778

Total Store-load forwarding: 16

We can draw following inferences from the results obtained above.

- 1. Increase in D-cache size results in more number of hits. But this behavior can be seen till increase in cache sizes up to 1MB. After that, increasing the cache size does not affect the cache hits. This is because of the fact that the application has utilized all the caching that it needs and the misses it gets are the compulsory misses, which can not be avoided.
- 2. The total number of DRAM accesses (hits + misses) also gets reduced by 110. This is <u>0.81%</u> decrease in number of memory accesses.
- As we get more number of cache hits and less number of memory accesses, the number of
 cycles required to complete the execution decreases. As a result, we get improved performance
 (higher IPC value). It can be seen that we can save <u>4214 cycles</u> by changing the cache size from
 128K to 2MB.
- 4. It can be observed that replacing 128K cache by 1MB cache results in <u>0.01% increased IPC</u>. But the subsequent increases in cache size do not affect IPC greatly.

2.2 Non memory intensive trace

IPC: 0.250209

Cache Size : 128K	Cache Size : 512K
Total instruction: 7583269	Total instruction: 7583269
Total cycles: 30309803	Total cycles: 30307751
IPC: 0.250192	IPC: 0.250209
Total I-cache miss: 0	Total I-cache miss: 0
Total D-cache miss: 3275	Total D-cache miss: 3225
Total D-cache hit: 3876329	Total D-cache hit: 3876379
Total data hazard: 490917	Total data hazard: 488849
Total control hazard : 1705561	Total control hazard : 1705561
Total DRAM ROW BUFFER Hit: 917	Total DRAM ROW BUFFER Hit: 905
Total DRAM ROW BUFFER Miss: 535	Total DRAM ROW BUFFER Miss: 527
Total Store-load forwarding: 17	Total Store-load forwarding: 15
Cache Size : 1024K	Cache Size 2048K
Total instruction: 7583269	Total instruction: 7583269
Total cycles: 30307751	Total cycles: 30307751
1	

IPC: 0.250209

Total I-cache miss: 0 Total I-cache miss: 0 Total D-cache miss: 3225 Total D-cache miss: 3225 Total D-cache hit: 3876379 Total D-cache hit: 3876379 Total data hazard: 488849 Total data hazard: 488849 Total control hazard: 1705561 Total control hazard: 1705561 Total DRAM ROW BUFFER Hit: 905 Total DRAM ROW BUFFER Hit: 905 Total DRAM ROW BUFFER Miss: 527 Total DRAM ROW BUFFER Miss: 527 Total Store-load forwarding: 15 Total Store-load forwarding: 15

It is evident that non-memory intensive programs gain very little by increases in cache size. The current execution shows that, this program was able to benefit from increase in cache size from 128K to 512K only. There is no improvement in IPC after cache size of 512K. The <u>performance increase obtained is mere 0.006% as opposed to 0.01%</u> in memory intensive trace.

3.0 Different Cache Associativity

Now we vary the cache associativity and observe the results.

3.1 Memory intensive trace

Associativity: 1 way	Associativity: 2 way
Total instruction: 10057019	Total instruction: 10057019
Total cycles: 35903716	Total cycles: 35896780
IPC: 0.280111	IPC: 0.280165
Total I-cache miss: 0	Total I-cache miss: 0
Total D-cache miss: 130802	Total D-cache miss: 134699
Total D-cache hit: 3511630	Total D-cache hit: 3507733
Total data hazard: 893592	Total data hazard: 886418
Total control hazard : 2050615	Total control hazard : 2050615
Total DRAM ROW BUFFER Hit: 958	Total DRAM ROW BUFFER Hit: 989
Total DRAM ROW BUFFER Miss: 127587	Total DRAM ROW BUFFER Miss: 131607
Total Store-load forwarding: 35	Total Store-load forwarding: 38
Associativity: 4 way	Associativity: 8way
Total instruction: 10057019	Total instruction: 10057019
Total cycles: 35893678	Total cycles: 35893678
IPC: 0.280189	IPC: 0.280189
Total I-cache miss: 0	Total I-cache miss: 0
Total D-cache miss: 15693	Total D-cache miss: 15715
Total D-cache hit: 3626739	Total D-cache hit: 3626717
Total data hazard: 883472	Total data hazard: 883472
Total control hazard : 2050615	Total control hazard : 2050615
Total DRAM ROW BUFFER Hit: 942	Total DRAM ROW BUFFER Hit: 942
Total DRAM ROW BUFFER Miss: 12833	Total DRAM ROW BUFFER Miss: 12855
Total Store-load forwarding: 18	Total Store-load forwarding: 18
Associativity: 16 way	
Total instruction: 10057019	
Total cycles: 35893678	

IPC: 0.280189
Total I-cache miss: 0
Total D-cache miss: 15715
Total D-cache hit: 3626717
Total data hazard: 883472
Total control hazard: 2050615
Total DRAM ROW BUFFER Hit: 942
Total DRAM ROW BUFFER Miss: 12855

Total Store-load forwarding: 18

Increasing cache associativity also increases the hit rate and decreases number of accesses to the memory. This phenomenon can be observed when we increase the associativity from direct mapped cache to 4-way set associative cache. Further increases in associativity do not contribute performance increase. This could be due to the fact that, the 4 way set associative cache is sufficient for this application and the address space it uses is small enough so that the application does not need more that 4 lines per set. The <u>performance gained (increase in IPC) by changing the associativity from 1 to 4 results in 0.02% increase</u>.

3.2 Non memory intensive trace

Total cycles: 30307751

Associativity: 1 way	Associativity: 2 way
Total instruction: 7583269	Total instruction: 7583269
Total cycles: 30319369	Total cycles: 30308697
IPC: 0.250113	IPC: 0.250201
Total I-cache miss: 0	Total I-cache miss: 0
Total D-cache miss: 3630	Total D-cache miss: 3252
Total D-cache hit: 3875974	Total D-cache hit: 3876352
Total data hazard: 500418	Total data hazard: 489808
Total control hazard : 1705561	Total control hazard : 1705561
Total DRAM ROW BUFFER Hit: 953	Total DRAM ROW BUFFER Hit: 913
Total DRAM ROW BUFFER Miss: 643	Total DRAM ROW BUFFER Miss: 531
Total Store-load forwarding: 20	Total Store-load forwarding: 17
Associativity: 4 way	Associativity: 8way
Total instruction: 7583269	Total instruction: 7583269
Total cycles: 30307751	Total cycles: 30307751
IPC: 0.250209	IPC: 0.250209
Total I-cache miss: 0	Total I-cache miss: 0
Total D-cache miss: 3225	Total D-cache miss: 3225
Total D-cache hit: 3876379	Total D-cache hit: 3876379
Total data hazard: 488849	Total data hazard: 488849
Total control hazard : 1705561	Total control hazard : 1705561
Total DRAM ROW BUFFER Hit: 905	Total DRAM ROW BUFFER Hit: 905
Total DRAM ROW BUFFER Miss: 527	Total DRAM ROW BUFFER Miss: 527
Total Store-load forwarding: 15	Total Store-load forwarding: 15
Associativity: 16 way	
Total instruction: 7583269	

IPC: 0.250209	
Total I-cache miss: 0	
Total D-cache miss: 3225	
Total D-cache hit: 3876379	
Total data hazard: 488849	
Total control hazard : 1705561	
Total DRAM ROW BUFFER Hit: 905	
Total DRAM ROW BUFFER Miss: 527	
Total Store-load forwarding: 15	

Non-memory intensive application also achieves performance gain of 0.03% changing the cache type from directly mapped to 4-way set associative.

Thus, from these observations, it seems that it is beneficial to use a 512KB, 4-way set associative cache in order to get maximum performance from the given memory intensive and non-intensive applications.

4.0 All Combinations of Available Configurations

Now, let us confirm this, by analyzing the IPC values, by varying both cache size and associativity and find a best possible match.

Memory Intensive	Non-memory-intensive
Cache Size: 128 Associativity: 1 IPC: 0.279992	Cache Size: 128 Associativity: 1 IPC: 0.250088
Cache Size: 128 Associativity: 2 IPC: 0.280082	Cache Size: 128 Associativity: 2 IPC: 0.25018
Cache Size: 128 Associativity: 4 IPC: 0.280181	Cache Size: 128 Associativity: 4 IPC: 0.250192
Cache Size: 128 Associativity: 8 IPC: 0.280189	Cache Size: 128 Associativity: 8 IPC: 0.250209
Cache Size: 128 Associativity: 16 IPC: 0.280189	Cache Size: 128 Associativity: 16 IPC: 0.250209
Cache Size: 512 Associativity: 1 IPC: 0.280111	Cache Size: 512 Associativity: 1 IPC: 0.250113 <best suited=""></best>
Cache Size: 512 Associativity: 2 IPC: 0.280165	Cache Size: 512 Associativity: 2 IPC: 0.250201
Cache Size: 512 Associativity: 4 IPC: 0.280189 < OPTIMAL>	Cache Size: 512 Associativity: 4 IPC: 0.250209 < OPTIMAL>

Cache Size: 512 Associativity: 8 Cache Size: 512 Associativity: 8 IPC: 0.280189 IPC: 0.250209 Cache Size: 512 Associativity: 16 Cache Size: 512 Associativity: 16 IPC: 0.280189 IPC: 0.250209 Cache Size: 1024 Associativity: 1 Cache Size: 1024 Associativity: 1 IPC: 0.280149 IPC: 0.250151 Cache Size: 1024 Associativity: 2 Cache Size: 1024 Associativity: 2 IPC: 0.280203 IPC: 0.250205 Cache Size: 1024 Associativity: 4 Cache Size: 1024 Associativity: 4 IPC: 0.280214 <BEST SUITED> IPC: 0.250209 Cache Size: 1024 Associativity: 8 Cache Size: 1024 Associativity: 8 IPC: 0.280214 IPC: 0.250209 Cache Size: 1024 Associativity: 16 Cache Size: 1024 Associativity: 16 IPC: 0.280214 IPC: 0.250209 Cache Size: 2048 Associativity: 1 Cache Size: 2048 Associativity: 1 IPC: 0.280163 IPC: 0.250151 Cache Size: 2048 Associativity: 2 Cache Size: 2048 Associativity: 2 IPC: 0.280214 IPC: 0.250209 Cache Size: 2048 Associativity: 4 Cache Size: 2048 Associativity: 4 IPC: 0.280214 IPC: 0.250209 Cache Size: 2048 Associativity: 8 Cache Size: 2048 Associativity: 8 IPC: 0.280214 IPC: 0.250209 Cache Size: 2048 Associativity: 16 Cache Size: 2048 Associativity: 16 IPC: 0.280214 IPC: 0.250209

From these results, it can be said that <u>1MB 4-way associative cache is best suited for memory intensive</u> application while <u>512K direct mapped cache is good for non-memory intensive</u> trace.

But as we have to run these applications on same computer, we will require an optimal cache that will try to balance the applications and maximize the performance for both of them at the same time. Thus, a <u>512K 4-way set associative cache will be optimal</u> for the chosen machine and it should be chosen as the working set. This confirms the initial observation.