CS 330: Network Applications & Protocols

Network Security

Galin Zhelezov
Department of Physical Sciences
York College of Pennsylvania

Overview of Network Security

- What is Network Security?
- Principles of Cryptography
- Message Integrity, Authentication
- Operational Security: Firewalls and IDS

Overview of Network Security

- What is Network Security?
- Principles of Cryptography
- Message Integrity, Authentication
- Operational Security: Firewalls and IDS

What is Network Security?

- The following four items are desirable properties of secure communication:
 - Confidentiality only sender and intended receiver should "understand" message contents
 - Sender encrypts message
 - Receiver decrypts message
 - Eavesdropper should not be able to understand message
 - End-point Authentication sender and receiver want to confirm identity of each other
 - Am I really talking to who I think I'm talking to?
 - Message Integrity sender and receiver want to ensure message is not altered (in transit, or afterwards) without detection
 - Operational Security services must be accessible and available to users
 - Protect network from downtime through redundancy
 - Protect network from attacks with firewalls, intrusion detection systems, etc.

Network Security

- Bob and Alice want to communicate "securely" to prevent others from understanding their communication
- Trudy, the intruder, may intercept, delete, add messages
 - Bob and Alice want to be able to detect changes made by an intruder
 - Bob and Alice don't want the intruder to be able to understand their messages

Network Security

In previous example:

- Bob and Alice don't necessarily have to represent 'users'
- Can represent any number of machines that need to communicate with each other

Other examples of machines that may want secure communication

- Web browser/server for electronic transactions (e.g., on-line purchases)
- On-line banking client/server
- DNS servers
- Routers exchanging routing table updates

What Can an Intruder Do?

- Eavesdrop intercept or listen to messages
- Modification, Insertion, or Deletion of messages or message content
- Impersonation can fake (spoof) source address in packet (or any field in packet)
- Hijacking "take over" ongoing connection by removing sender or receiver, inserting himself in place
- Denial of Service prevent service from being used by others (e.g., by overloading resources)

Overview of Network Security

- What is Network Security?
- Principles of Cryptography
- Message Integrity, Authentication
- Operational Security: Firewalls and IDS

The Language of Cryptography

m - plaintext message

K_A(m) - ciphertext, encrypted with key K_A

 $m = K_B(K_A(m))$ - original plaintext message can be recovered with K_B

In symmetric key systems, both keys are the same

In **public key systems**, multiple keys are used:

- a shared public key, and
- a private key for each user

Breaking an encryption scheme

- cipher-text only attack:
 Trudy has ciphertext she
 can analyze
- two approaches:
 - brute force: search through all keys
 - statistical analysis

- known-plaintext attack:
 Trudy has plaintext
 corresponding to
 ciphertext
 - e.g., in monoalphabetic cipher, Trudy determines pairings for a,l,i,c,e,b,o,
- chosen-plaintext attack:
 Trudy can get ciphertext
 for chosen plaintext

Symmetric Key Cryptography

- Symmetric Key Cryptograph Bob and Alice share the same (symmetric) key Ks
 - Key may be a simple substitution pattern in monoalphabetic substitution cipher
- How should Bob and Alice agree on a key?
- How should Bob and Alice exchange the shared key?

Simple Encryption Scheme

- Substitution cipher substituting one thing for another
 - Monoalphabetic cipher substitutes one letter for another
- Encryption key is the mapping from set of 26 letters to set of 26 letters

```
plaintext: abcdefghijklmnopqrstuvwxyz
ciphertext: mnbvcxzasdfghjklpoiuytrewq
```

• Example:

Pretty easy to break this type of cipher; same as crypto puzzles in weekly newspapers

A More Sophisticated Encryption Approach

- Polyalphabetic encryption uses n monoalphabetic substitution ciphers
 - Cycles through monoalphabetic ciphers in some pattern
 - For example, if n=4: M_1,M_3,M_4,M_3,M_2 ; M_1,M_3,M_4,M_3,M_2 ; ...
 - For each new plaintext symbol, use subsequent substitution pattern in cyclic pattern
 - For example, dog: d from M₁, o from M₃, g from M₄
 - Symbols may be substituted by ciphers throughout message
 - Much more difficult to break using crypto puzzle approach
- Encryption key includes the n monoalphabetic substitution ciphers and the cyclic pattern in which they are applied

Block Ciphers

- Modern ciphers divide messages into k bit blocks and encrypt each of those block independently
 - For small values of k, a simple lookup table is suitable

	output	input	output	input
	011	100	110	000
Simple 3-bit block ciphe	010	101	111	001
	000	110	101	010
	001	111	100	011

- For large values of k (i.e. k=64, k=128, etc.), a lookup table would be too large
 - Instead, modern ciphers use mathematical functions to simulate these tables

Block Ciphers (Cont.)

Example of a block cipher function

- Divide input blocks into smaller 8-bit chunks
- Use smaller, more manageable 8-bit lookup tables
- Scramble the bits and feed them back around to the input
- Loop this *n* times such that each input bit can affect the output bits

This is similar to the approach used by DES and AES

64-bit Input 8 bits T_3 T_2 T_4 **T**₅ **T**₆ T₈ T_1 T_7 Loop for *n* rounds 8 bits 64-bit Scrambler 64-bit Output

Cipher Block Chaining

- Since block cipher is a mathematical function, the same input will always produce the same output
 - This is bad and provides an attack vector for an adversary
- Cipher block chaining introduces randomness into the encrypted message using a randomly generated Initialization Vector (IV)
 - IV is the same size as a block in the block cipher
 - The first block to be encrypted is XORed with the IV *before* being encrypted with the block cipher
 - The encrypted first block is XORed with second block to propagate randomness (output of second block is XORed with third, etc.)
 - IV is typically prepended as plaintext to encrypted message and sent along with message
 - Introduces a small overhead for sending encrypted messages
 - Receiver cannot decrypt the message without the IV

Common Block Cipher Algorithms

DES: Data Encryption Standard

- 56-bit symmetric key, 64-bit plaintext input
- Block cipher with cipher block chaining

3DES: Triple Data Encryption Standard

- Same as DES, but encrypt message 3 times with 3 different keys

AES: Advanced Encryption Standard

- Replaced DES in most applications
- Processes data in 128 bit blocks
- 128, 192, or 256 bit keys

Nation Institute of Standards and Technology estimates that if theoretically had a machine that could crack DES in 1 second, it would take that same machine 149 trillion years to crack AES.

Public Key Cryptography

Symmetric Key Cryptography

- Requires sender and receiver to know a shared secret key
- How should they agree on key in first place (particularly if never "met")?
- How should they share the key?

Public Key Cryptography

- Radically different approach
- Sender and receiver do not share a secret key
- Sender and receiver each have two keys: a shared public key and a private key
- Public encryption key is known to all (even intruders)
- Private decryption key known only to receiver

Public key cryptography

Public Key Cryptography (Cont.)

- Sender determines a private key to use
 - DOES NOT provide that private key to ANYONE
- Receiver determines a private key to use
 - DOES NOT provide that private key to ANYONE

- Sender and receiver agree on a shared public key
 - Does not matter if an intruder sees the shared public key
 - Public key can be exchanged over an unsecured channel
 - Great video provides general idea of how this works (Diffie Hellman key exchange)
 - http://www.youtube.com/watch?v=YEBfamv-_do

VIDEO:

http://www.youtube.com/watch?v=YEBfamv-_do

Diffie-Hellman Vulnerabilities

- Does NOT provide authentication
- Vulnerable to man-in-the-middle attacks
 - Intruder can establish one connection to Bob and another to Alice, intercept messages, re-encrypt and send

- Another public key cryptography technique that avoids this problem is RSA
 - Great video provides general idea of how RSA works
 - http://www.youtube.com/watch?v=wXB-V_Keiu8

Prerequisite: modular arithmetic

- x mod n = remainder of x when divide by n
- facts:

```
[(a mod n) + (b mod n)] mod n = (a+b) mod n
[(a mod n) - (b mod n)] mod n = (a-b) mod n
[(a mod n) * (b mod n)] mod n = (a*b) mod n
```

thus

$$(a \mod n)^d \mod n = a^d \mod n$$

• example: x=14, n=10, d=2: $(x \mod n)^d \mod n = 4^2 \mod 10 = 6$ $x^d = 14^2 = 196 \quad x^d \mod 10 = 6$

VIDEO:

http://www.youtube.com/watch?v=wXB-V_Keiu8

Why
$$K_{B}(K_{B}(m)) = m = K_{B}(K_{B}(m))$$
?

follows directly from modular arithmetic:

 $(m^e \mod n)^d \mod n = m^{ed} \mod n$

= m^{de} mod n

= (m^d mod n)^e mod n

Why is RSA secure?

- suppose you know Bob's public key (n,e). How hard is it to determine d?
- essentially need to find factors of n without knowing the two factors p and q
 - fact: factoring a big number is hard

Session Keys

- Exponentiation required by RSA is time-consuming process
- DES and AES can encrypt messages much faster than RSA
- So ... don't use RSA to encrypt entire communication between sender and receiver
 - Use RSA to establish a secure connection between sender/receiver
 - The only data exchanged using RSA is a session key
 - The session key is used as the encryption key for one of the faster symmetric key cryptography methods such as DES or AES
 - Remainder of communication between sender and receiver is encrypted using the faster symmetric key cryptography

Example:

- Bob and Alice use RSA to exchange a symmetric key Ks
- Once both have K_S, they use symmetric key cryptography