Lambda Calculus in a hurry

Rafael Castro G. Silva

rasi@di.ku.dk

Department of Computer Science University of Copenhagen

29/06/2022

- Lambda Calculus is very important in Computer Science!
- Its has many applications in Computer Science
 - Do you know any?
- No prerequisites to learn it (maybe just Set Theory)
- It sounds really cool

2/14

- Lambda Calculus is very important in Computer Science!
- Its has many applications in Computer Science
 - Do you know any?
- No prerequisites to learn it (maybe just Set Theory)
- It sounds really cool

2/14

- Lambda Calculus is very important in Computer Science!
- Its has many applications in Computer Science
 - Do you know any?
- No prerequisites to learn it (maybe just Set Theory)
- It sounds really cool

- Lambda Calculus is very important in Computer Science!
- Its has many applications in Computer Science
 - Do you know any?
- No prerequisites to learn it (maybe just Set Theory)
- It sounds really cool

Contents

- A bit of history
- What is and is not a lambda term?
- How do we compute?
- What cool things can we do with it?

Learning Outcomes

- Learn some background history about Logic and Computer Science
- Identify well-formed terms in Lambda Calculus
- Apply beta-reduction to terms
- Write down/design your own programs in Lambda Calculus

A bit of history

4 / 14

Set Theory

- A set is a collection of elements
 - Unique elements
 - The order of the elements in the set doesn't matter
 - Examples:
 - Numbers
 - We in this room
 - The set of all sets
- A very simple foundation for mathematics

Figure: George Cantor

Russel's Paradox: Set Theory is broken!

Set Theory

- A set is a collection of elements
 - Unique elements
 - The order of the elements in the set doesn't matter
 - Examples:
 - Numbers
 - We in this room
 - The set of all sets
- A very simple foundation for mathematics

Figure: George Cantor

Russel's Paradox: Set Theory is broken!

Set Theory

- A set is a collection of elements
 - Unique elements
 - The order of the elements in the set doesn't matter
 - Examples:
 - Numbers
 - We in this room
 - The set of all sets
- A very simple foundation for mathematics

Figure: George Cantor

Russel's Paradox: Set Theory is broken!

Let $R = \{x \mid x \notin x\}$, then $R \in R \iff R \notin R$

Figure: Bertrand Russel

29/06/2022

The Problem

You are David Hilbert and Mathematics is broken

Hilbert's Program

- Provide a new foundation form mathematics
 - The system must be powerful enough to do arithmetic
 - Provide a proof that the system is consistent
 - Provide an algorithm that solves any given problem stated in this system
- What do we need here?
 - What is an algorithm?

Figure: David Hilbert

The Problem

You are David Hilbert and Mathematics is broken

Hilbert's Program

- Provide a new foundation form mathematics
 - The system must be powerful enough to do arithmetic
 - Provide a proof that the system is consistent
 - Provide an algorithm that solves any given problem stated in this system
- What do we need here?
 - What is an algorithm?

Figure: David Hilbert

The Problem

You are David Hilbert and Mathematics is broken

Hilbert's Program

- Provide a new foundation form mathematics
 - The system must be powerful enough to do arithmetic
 - Provide a proof that the system is consistent
 - Provide an algorithm that solves any given problem stated in this system
- What do we need here?
 - What is an algorithm?

Figure: David Hilbert

The Problem

You are David Hilbert and Mathematics is broken

Hilbert's Program

- Provide a new foundation form mathematics
 - The system must be powerful enough to do arithmetic
 - Provide a proof that the system is consistent
 - Provide an algorithm that solves any given problem stated in this system
- What do we need here?
 - What is an algorithm?

Figure: David Hilbert

The Formal Definition of Algorithm

- Three formal definitions of algorithm showed up together
 - Alonzo Church: Lambda Calculus in 1935
 - It's a language

- Kurt Gödel: Recursive Functions in 1935
 - It's a class of functions

- Alan Turing: Turing Machines in 1936
 - It's an abstract machine

What is and is not a lambda term?

The Syntax of Lambda Calculus

Given a set of variables V, a λ -term is inductively defined by:

- All variables: $x, y, z, w... \in V$ (atoms) are λ -terms
- If M is a λ -term and x is a variable, then $\lambda x.M$ is a λ -term. (λ abstraction or λ function)
- If M and N are λ -terms, then (MN) is a λ -term. (application)

Parenthesis omission convention: $(MN)P \equiv MNP$ for any given M, N and P.

The Syntax of Lambda Calculus

Given a set of variables V, a λ -term is inductively defined by:

- All variables: $x, y, z, w... \in V$ (atoms) are λ -terms
- If M is a λ -term and x is a variable, then $\lambda x.M$ is a λ -term. (λ abstraction or λ function)
- If M and N are λ -terms, then (MN) is a λ -term. (application)

Parenthesis omission convention: $(MN)P \equiv MNP$ for any given M, N and P.

Examples

Considering $V \equiv \{x, y, z\}$,

- 1. x
- 2. *y*
- 3. *z*
- 4. $\lambda x.x$
- 5. $\lambda x.y$
- 6. $(\lambda x.x)y$
- 7. $(\lambda x.x)(\lambda x.x)$

Exercise 1 (Individual and in 5 min)

Which of these are well-formed λ -terms?

Considering $V \equiv \{x, y\}$,

- 1. x
- 2. $x(\lambda x.x)$
- 3. *MNP*
- 4. $\lambda x.y$
- 5. $\lambda x. \lambda y. xy$
- 6. *z*
- 7. $(\lambda y.y)(\lambda y.yx)$

Syntax definition

Given a set of variables V, a λ -term is inductively defined by:

- All variables: $x, y, z, w... \in V$ (atoms) are λ -terms
- If M is a λ -term and x is a variable, then $\lambda x.M$ is a λ -term. (λ abstraction or λ function)
- If M and N are λ -terms, then (MN) is a λ -term. (application)

Parenthesis omission convention: $(MN)P \equiv MNP$ for any given M, N and P.

How do we compute?

9/14

Free variables

The set of all free variables of M, called FV(M), is defined inductively by:

$$FV(x) = \{x\}$$

$$FV(MN) = FV(M) \cup FV(N)$$

$$FV(\lambda x.M) = FV(M) \setminus \{x\}$$

Examples

- $FV(x) = \{x\}x$
- $FV(xy) = \{x, y\}$
- $FV(\lambda x.x) = \emptyset$
- $FV(\lambda x.xy) = \{y\}$

Beta Reduction

Substitution

- $[N/x]x \equiv N$;
- $[N/x]y \equiv y$, if $x \not\equiv y$;
- $[N/x](PQ) \equiv ([N/x]P[N/x]Q);$
- $[N/x](\lambda x.P) \equiv \lambda x.P$;
- $[N/x](\lambda y.P) \equiv \lambda y.P$, if $x \notin FV(P)$;
- $[N/x](\lambda y.P) \equiv \lambda y.[N/x]P$, if $x \in FV(P)$ and $y \notin FV(N)$;
- $[N/x](\lambda y.P) \equiv \lambda z.[N/x][z/y]P$, if $x \in FV(P)$: and $y \in FV(N)$;

Beta Reduction

A term of the form $(\lambda x.M)N$ is called a redex β and is interpreted by the substitution [N/x]M

Beta Reduction

Substitution

- $[N/x]x \equiv N$;
- $[N/x]y \equiv y$, if $x \not\equiv y$;
- $[N/x](PQ) \equiv ([N/x]P[N/x]Q);$
- $[N/x](\lambda x.P) \equiv \lambda x.P$;
- $[N/x](\lambda y.P) \equiv \lambda y.P$, if $x \notin FV(P)$;
- $[N/x](\lambda y.P) \equiv \lambda y.[N/x]P$, if $x \in FV(P)$ and $y \notin FV(N)$;
- $[N/x](\lambda y.P) \equiv \lambda z.[N/x][z/y]P$, if $x \in FV(P)$: and $y \in FV(N)$;

Beta Reduction

A term of the form $(\lambda x.M)N$ is called a redex β and is interpreted by the substitution [N/x]M

11 / 14

Beta Reduction Examples

Examples

- $(\lambda x.x)y$
- $(\lambda x.x)(\lambda x.x)$
- $(\lambda x.\lambda y.y)y$
- $(\lambda x.\lambda y.xy)y$

Beta Reduction Exercise (group and in 5 minutes)

Exercise

- $((\lambda x.x)(\lambda x.x))(\lambda x.x)$
- $(\lambda x.xx)(\lambda x.xx)$

What cool things can we do with it?

13 / 14

Let's program

open: www.haskell.org

