Frequently Asked Questions

Jari Oksanen

April 22, 2005

Abstract

The document answers some frequently asked questions and explains some design decisions I have made in vegan.

Contents

L	Scaling in redundancy analysis				
2	Why to use weighted averages scores instead of linear combi-	-			
nations in constrained ordination					
	2.1 LC Scores are Linear Combinations	4			
	2.2 Factor constraints	(
	2.3 Conclusion	11			

1 Scaling in redundancy analysis

This chapter discusses the scaling of scores (results) in redundancy analysis and principal component analysis performed by function rda in the vegan library. Principal component analysis, and hence redundancy analysis, is a variant of singular value decomposition (SVD). Functions rda and prcomp (library mva) even use SVD internally in their algorithm. In SVD a centred data matrix is decomposed into orthogonal components so that $x_{ij} = \sum_k \sigma_k u_{ik} v_{jk}$, where u_{ik} and v_{jk} are orthonormal coefficient matrices and σ_k are singular values. Orthonormality means that sum of squared columns is one and their crossproduct is zero, or $\sum_i u_{ik}^2 = \sum_j v_{jk}^2 = 1$, and $\sum_i u_{ik} u_{il} = \sum_j v_{jk} v_{jl} = 0$ for $k \neq l$. This is a decomposition, and the original matrix is found exactly from the singular vectors and corresponding singular values, and first two singular components give the best rank = 2 least squares estimate of the original matrix.

Principal component analysis is often presented (and performed in legacy software) as an eigenanalysis of covariance matrices. Instead of data matrix, we analyse a matrix of covariances and variances \mathbf{S} . The result will be orthonormal coefficient matrix \mathbf{U} and eigenvalues $\mathbf{\Lambda}$. The coefficients u_{ik} are identical to SVD (except for possible sign changes), and eigenvalues λ_k are related to the corresponding singular values by $\lambda_k = \sigma_k^2/(n-1)$. With classical definitions, the sum of all eigenvalues equals the sum of variances of species, or $\sum_k \lambda_k = \sum_j s_j^2$, and it is often said that first axes explain a certain maximized proportion of total variance in the data. The other orthonormal matrix \mathbf{V} can be found indirectly as well, so that we have the same components in both methods.

Table 1: Alternative scalings for RDA used in the functions prcomp and princomp (package mva), and the one used in the vegan function rda and the proprietary software Canoco scores in terms of orthonormal species (u_{ik}) and site scores (v_{jk}) , eigenvalues (λ_k) , number of sites (n) and species standard deviations (s_j) . In rda, const = $\sqrt[4]{(n-1)\sum \lambda_k}$.

•	Site scores u_{ik}^*	Species scores v_{jk}^*
prcomp, princomp	$u_{ik}\sqrt{n-1}\sqrt{\lambda_k}$	v_{jk}
rda, scaling=1	$u_{ik}\sqrt{\lambda_k/\sum \lambda_k} \times \text{const}$	$v_{jk} \times \text{const}$
rda, scaling=2	$u_{ik} \times \text{const}$	$v_{jk}\sqrt{\lambda_k/\sum \lambda_k} \times \text{const}$
rda, scaling=3	$u_{ik} \sqrt[4]{\lambda_k} / \sum \lambda_k \times \text{const}$	$v_{jk}\sqrt[4]{\lambda_k/\sum \lambda_k} \times \text{const}$
Canoco, scaling=-1	$u_{ik}\sqrt{n}\sqrt{\lambda_k/\sum\lambda_k}$	$v_{jk}\sqrt{n}$
Canoco, scaling=-2	$u_{ik}\sqrt{n}$	$v_{jk}\sqrt{n}\sqrt{\lambda_k/\sum\lambda_k}$
Canoco, scaling=-3	$u_{ik}\sqrt{n}\sqrt[4]{\lambda_k/\sum \lambda_k}$	$v_{jk}\sqrt{n}\sqrt[4]{\lambda_k/\sum\lambda_k}$
Canoco, scaling=1	$u_{ik}\sqrt{n}\sqrt{\lambda_k/\sum \lambda_k}$	$v_{jk}\sqrt{n}/s_j$
Canoco, scaling=2	$u_{ik}\sqrt{n}$	$v_{jk}\sqrt{n}\sqrt{\lambda_k/\sum\lambda_k}/s_j$
Canoco, scaling=3	$u_{ik}\sqrt{n}\sqrt[4]{\lambda_k/\sum\lambda_k}$	$v_{jk}\sqrt{n}\sqrt[4]{\lambda_k/\sum \lambda_k}/s_j$

The coefficients u_{ik} and v_{jk} are of the same (unit) length for all axes k, but singular values σ_k or eigenvalues λ_k give the information of the importance of axes, or the 'axis lengths.' Instead of the orthonormal coefficients, or equal length axes, it is customary to use eigenvalues to scale at least one of the alternative scores to reflect the importance of axes or describe the true configuration of points. Table 1 shows some alternative scalings used in various software. These alternatives apply to principal components analysis in all cases, and in redundancy analysis, they apply to species scores and constraints or linear combination scores; weighted averaging scores have somewhat wider dispersion.

In community ecology, it is common to plot both species and sites in the same graph. If this graph is a graphical display of SVD, or a graphical, low-dimensional approximation of the data, the graph is called a biplot. The graph is a biplot if the transformed scores satisfy $x_{ij} = c \sum_k u_{ij}^* v_{jk}^*$ where c is a scaling constant. In functions princomp, prcomp and rda, c=1 or the plotting scores are the straight biplot scores so that the singular values (or eigenvalues) are expressed for sites, and species are left unscaled. For Canoco $c=n^{-1}\sqrt{n-1}\sqrt{\sum \lambda_k}$ with positive Canoco scaling values. All these c are constants for a matrix, so these are all biplots with different internal scaling of species and site scores with respect to each other. For Canoco with negative scaling values, no constant c can be found, but the correction is dependent on species standard deviations s_j , so this alternative does not define a biplot.

There is no natural way of scaling species and site scores to each other, but all functions and programs above selected different strategies. The eigenvalues in redundancy and principal components analysis are scale dependent and change when the the data are multiplied by a constant. If we have percent cover data, the eigenvalues are typically very high, and the scores scaled by eigenvalues will have much wider dispersion than the orthonormal set. If we express the percentages as proportions, or divide the matrix by 100, the eigenvalues will be reduced by factor 100^2 , and the scores scaled by eigenvalues will have much narrower dispersion than the orthonormal set. For graphical biplots we should

be able to fix the relation and make it invariant for scale changes. The solution adoption in the R standard function biplot.princomp is to scale site and species scores independently, and typically very differently, but plot each with separate scales so that both sets fill the graph area. The solution in Canoco and rda is to use proportional eigenvalues $\lambda_k/\sum \lambda_k$ instead of original eigenvalues. These proportions are invariant with scale changes, and typically they have a nice range for plotting two data sets in the same graph.

In this chapter, I used always centred data matrices. In principle SVD could be done with original, non-centred data, but there is no option for this in rda, because I think that non-centred analysis is dubious and I do not want to encourage its use (if you think you need it, you are certainly so good in programming that you can change that one line in rda.default). I do think that the arguments for non-centred analysis are often twisted, and the method is not very good for its intended purpose, but there are better methods for finding fuzzy classes. Normal, centred analysis moves the origin to the average of all species, and the dimensions describe differences from this average. Non-centred analysis leaves the origin in the empty site with no species, and the first axis usually runs from the empty site to the average site. Second and third non-centred components are often very similar to first and second (etc.) centred components, and the best way to use non-centred analysis is to discard the first component and use only the rest. This is better done with directly centred analysis.

2 Why to use weighted averages scores instead of linear combinations in constrained ordination

Constrained ordination methods such as Constrained Correspondence Analysis (CCA) and Redundancy Analysis (RDA) produce two kind of site scores [3, 4]:

- LC or Linear Combination Scores which are linear combinations of constraining variables.
- WA or Weighted Averages Scores which are such weighted averages of species scores that are as similar to LC scores as possible.

Many computer programs for constrained ordinations give only or primarily LC scores, following Mike Palmer's recommendation [3]. However, functions cca and rda in the vegan package use primarily WA scores. This chapter explains the reasons for this choice.

Briefly, the main reasons are that

- LC scores *are* linear combinations, so they give us only the (scaled) environmental variables. This means that they are independent of vegetation and cannot be found from the species composition. Moreover, identical combinations of environmental variables give identical LC scores irrespective of vegetation.
- Bruce McCune has demonstrated that noisy environmental variables result in deteriorated LC scores whereas WA scores tolerate some errors in environmental variables [2]. All environmental measurements contain some errors, and therefore it is safer to use WA scores.

This articles studies mainly the first point. The users of **vegan** have a choice of either LC or WA (default) scores, but after reading this article, I believe that most of them do not want to use LC scores, because they are not what they were looking for in ordination.

2.1 LC Scores are Linear Combinations

Let us perform a simple CCA analysis using only two environmental variables so that we can see the constrained solution completely in two dimensions:

> library(vegan)
> data(varespec)
> data(varechem)
> orig <- cca(varespec ~ Al + K, varechem)</pre>

Function cca in vegan uses WA scores as default. So we must specifically ask for LC scores (Fig. 1).

Figure 1 LC scores in CCA of the original data.

```
> plot(orig, dis = c("lc", "bp"))
```


What would happen to linear combinations of LC scores if we shuffle the ordering of sites in species data? Function sample() below shuffles the indices.

```
> i <- sample(nrow(varespec))
> shuff <- cca(varespec[i, ] ~ Al + K, varechem)</pre>
```

> plot(shuff, dis = c("lc", "bp"))

It seems that site scores are fairly similar, but oriented differently (Fig. 2). We can use Procrustes rotation to see how similar the site scores indeed are (Fig. 3). There is a small difference, but this will disappear if we use Redundancy Analysis (RDA) instead of CCA (Fig. 4). Here we use a new shuffling as well.

```
> tmp1 <- rda(varespec ~ Al + K, varechem)
> i <- sample(nrow(varespec))
> tmp2 <- rda(varespec[i, ] ~ Al + K, varechem)</pre>
```

LC scores indeed are linear combinations of constraints (environmental variables) and *independent of species data*: You can shuffle your species data, or change the data completely, but the LC scores will be unchanged in RDA. In CCA the LC scores are *weighted* linear combinations with site totals of species data as weights. Shuffling species data in CCA changes the weights, and this can cause changes in LC scores. The magnitude of changes depends on the variability of site totals.

The original data and shuffled data differ in their goodness of fit¹.

> orig

¹Or probably differ: The randomization is done while generating this article, and different versions may have different randomizations.

Figure 3 Procrustes rotation of LC scores from CCA of original and shuffled data.

Procrustes errors

Call: cca(formula = varespec ~ Al + K, data = varechem)

Inertia Rank

Total 2.083

Constrained 0.476 2 Unconstrained 1.607 21

Inertia is mean squared contingency coefficient

Eigenvalues for constrained axes:

CCA1 CCA2

0.3608 0.1152

Eigenvalues for unconstrained axes:

CA1 CA2 CA3 CA4 CA5 CA6 CA7 CA8 0.37476 0.24036 0.19696 0.17818 0.15209 0.11840 0.08364 0.07567 (Showed only 8 of all 21 unconstrained eigenvalues)

> shuff

> plot(procrustes(scores(orig, dis = "lc"), scores(shuff, dis = "lc")))

Figure 4 Procrustes rotation of LC scores in RDA of the original and shuffled data.

Procrustes errors

Call: cca(formula = varespec[i,] ~ Al + K, data = varechem)

Inertia Rank

Total 2.0832

Constrained 0.1662 2 Unconstrained 1.9170 21

Inertia is mean squared contingency coefficient

Eigenvalues for constrained axes:

CCA1 CCA2

0.10412 0.06212

Eigenvalues for unconstrained axes:

CA1 CA2 CA3 CA4 CA5 CA6 CA7 CA8 0.46855 0.34760 0.23394 0.17707 0.17077 0.11622 0.10160 0.07979 (Showed only 8 of all 21 unconstrained eigenvalues)

Similarly their WA scores will be (probably) very different (Fig. 5).

The example used only two environmental variables so that we can easily plot all constrained axes. With a larger number of environmental variables the full

> plot(procrustes(scores(tmp1, dis = "lc"), scores(tmp2, dis = "lc")))

Figure 5 Procrustes rotation of WA scores of CCA with the original and shuffled data.

Procrustes errors

configuration remains similarly unchanged, but its orientation may change, so that two-dimensional projections look different. In the full space, the differences should remain within numerical precision:

```
> tmp1 <- rda(varespec ~ ., varechem)
> tmp2 <- rda(varespec[i, ] ~ ., varechem)
> tmp1
```

Call:

rda(formula = varespec ~ N + P + K + Ca + Mg + S + Al + Fe + Mn + Zn + Mo + Baresoil

Inertia Rank

Total 1825.7 Constrained 1459.9 14 Unconstrained 365.8 9 Inertia is variance

Eigenvalues for constrained axes:

RDA1	RDA2	RDA3	RDA4	RDA5	RDA6	RDA7	RDA8
820.1042	399.2847	102.5617	47.6317	26.8382	24.0481	19.0644	10.1670
RDAG	RDA10	RDA11	RDA12	RDA13	RDA14		

> plot(procrustes(orig, shuff))

4.4288 2.2720 1.5353 0.9255 0.7155 0.3119

Eigenvalues for unconstrained axes:

PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 186.192 88.464 38.188 18.402 12.839 10.552 5.519 4.521 1.092

> proc <- procrustes(scores(tmp1, dis = "lc", choi = 1:14), scores(tmp2,

- + dis = "lc", choi = 1:14))
- > max(residuals(proc))

[1] 2.753734e-14

In cca the difference would be somewhat larger than now observed 2.7537e-14 because site weights used for environmental variables are shuffled with the species data.

2.2 Factor constraints

It seems that users often get confused when they perform constrained analysis using only one factor (class variable) as constraint. The following example uses the classical dune meadow data [1]:

- > data(dune)
- > data(dune.env)
- > summary(dune.env)

A1	Moisture	Management	Use	Manure
Min. : 2.800	1:7	BF:3	Hayfield:7	0:6
1st Qu.: 3.500	2:4	HF:5	Haypastu:8	1:3
Median : 4.200	4:2	NM:6	Pasture :5	2:4
Mean : 4.850	5:7	SF:6		3:4
3rd Qu.: 5.725				4:3
Max. :11.500				

> orig <- cca(dune ~ Moisture, dune.env)</pre>

> orig

Call:

cca(formula = dune ~ Moisture, data = dune.env)

Inertia Rank

Total 2.1153 Constrained 0.6283 3 Unconstrained 1.4870 16

Inertia is mean squared contingency coefficient

Eigenvalues for constrained axes:

CCA1 CCA2 CCA3 0.4187 0.1330 0.0766

Eigenvalues for unconstrained axes:

CA1 CA2 CA3 CA4 CA5 CA6 CA7 CA8

0.409782 0.225913 0.176062 0.123389 0.108171 0.090751 0.085878 0.060894 CA9 CA10 CA11 CA12 CA13 CA14 CA15 CA16 0.056606 0.046688 0.041926 0.020103 0.014335 0.009917 0.008505 0.008033

When the results are plotted using LC scores, sample plots fall only in four alternative positions (Fig. 6). In the previous chapter we saw that this happens

Figure 6 LC scores of the dune meadow data using only one factor as a constraint.

> plot(orig, dis = "lc")

because LC scores are the environmental variables, and they can be distinct only if the environmental variables are distinct. However, normally the user would like to see how well the environmental variables separate the vegetation, or inversely, how we could use the vegetation to discriminate the environmental conditions. For this purpose we should plot WA scores, or LC scores and WA scores together: The LC scores show where the site should be, the WA scores shows where the site is.

Function ordispider adds line segments to connect each WA score with the corresponding LC (Fig. 7). This is the standard way of displaying results of discriminant analysis, too. Moisture classes 1 and 2 seem to be overlapping, and cannot be completely separated by their vegetation. Other classes are more distinct, but there seems to be a clear arc effect or a "horseshoe" despite using CCA.

Figure 7 A "spider plot" connecting WA scores to corresponding LC scores. The shorter the web segments, the better the ordination.

- > plot(orig, display = "wa", type = "points")
- > ordispider(orig, col = "red")
- > text(orig, dis = "cn", col = "blue")

2.3 Conclusion

LC scores are only the (weighted and scaled) constraints and independent of vegetation. If you plot them, you plot only your environmental variables. WA scores are based on vegetation data but are constrained to be as similar to the LC scores as only possible. Therefore vegan calls LC scores as constraints and WA scores as site scores, and uses primarily WA scores in plotting. However, the user makes the ultimate choice, since both scores are available.

References

- [1] R. H. Jongman, C. J. F. ter Braak, and O. F. R. van Tongeren. *Data analysis in community and landscape ecology*. Pudoc, Wageningen, 1987.
- [2] B. McCune. Influence of noisy environmental data on canonical correspondence analysis. *Ecology*, 78:2617–2623, 1997.
- [3] M. W. Palmer. Putting things in even better order: The advantages of canonical correspondence analysis. *Ecology*, 74:2215–2230, 1993.

[4] C. J. F. ter Braak. Canonical correspondence analysis: a new eigenvector technique for multivariate direct gradient analysis. *Ecology*, 67:1167–1179, 1986.