

DISTA

Corso: Analisi Numerica

Docente: Roberto Piersanti

Radici di equazioni non lineari Lezione 1.2b

Introduzione e metodo di Bisezione

Metodo di Bisezione (descrizione qualitativa)

- > La proprietà di cambiamento di segno è alla base del Metodo di Bisezione
- Sfruttiamo questo principio per costruire una successione di intervalli sempre più piccoli, fino a isolare la radice cercata
- Metodo di Bisezione può descriversi nel seguente modo:
 - 1. Consideriamo f(x) continua in [a,b] in cui f(a)f(b)<0 $\alpha\in(a,b)|f(\alpha)=0$
 - 2. Poniamo:

$$a_1 = a$$
 $b_1 = b$ Inizializzazione dell'algoritmo

$$c_1 = \frac{a_1 + b_1}{2} \longleftarrow$$

Punto medio dell'intervallo

- 3. Valutiamo i segni di $f(c_1), f(a_1), f(b_1)$
- 4. Scegliamo i nuovi estremi di ricerca della radice $\,lpha\,$ in $\,[a_1,c_1]$ oppure $\,[c_1,b_1]\,$
- 5. Calcolo il nuovo punto medio come fatto nel passo 2.

f(x)

f(a)f(b) < 0

 $\alpha \in (a,b)|f(\alpha) = 0$

- > Supponiamo $f(a_1) < 0, f(b_1) > 0$
- **A.** Se $f(c_1) > 0$ il cambio di segno di f(x) avviene in (a_1, c_1)
- **B.** Se $f(c_1) < 0$ il cambio di segno di f(x) avviene in (c_1, b_1)

f(x)

f(a)f(b) < 0

 $\alpha \in (a,b)|f(\alpha) = 0$

- > Supponiamo $f(a_1) < 0, f(b_1) > 0$
- **A.** Se $f(c_1) > 0$ il cambio di segno di f(x) avviene in (a_1, c_1)
 - \longrightarrow Restringiamo la ricerca di α ad (a_1, c_1)

f(x)

f(a)f(b) < 0

 $\alpha \in (a,b)|f(\alpha) = 0$

- > Supponiamo $f(a_1) < 0, f(b_1) > 0$
- **B.** Se $f(c_1) < 0$ il cambio di segno di f(x) avviene in (c_1, b_1)
 - \longrightarrow Restringiamo la ricerca di α ad (c_1,b_1)

- ightharpoonup Se $f(c_1)<0$ il cambio di segno di f(x) avviene in (c_1,b_1) $\begin{cases} f(c_1)f(b_1)<0\\ \alpha\in(c_1,b_1)|f(\alpha)=0 \end{cases}$
- **B.** \Longrightarrow Restringiamo la ricerca di α ad (c_1, b_1)

$$f(x)$$

$$f(c_1)f(b_1) < 0$$

$$\alpha \in (c_1, b_1)|f(\alpha) = 0$$

Metodo di Bisezione (successione di punti medi)

ightharpoonup Ripetendo questo processo iterativamente, ad ogni passo/iterazione k , generiamo una successione di numeri reali

$$x_k = c_k = \frac{a_k + b_k}{2}$$
 $k = 1, 2, 3, \dots$

punti medi che selezioniamo controllando il cambio di segno di f(x)

- Selezioniamo il nuovo intervallo, dimezzando quello precedente e verificando in quale delle due metà avviene il cambio di segno
- ightharpoonup In questo modo si genera una successione di punti medi $\{x_k\}_{k=1}^N$

$$\lim_{k \to \infty} x_k = \alpha$$

Per costruzione la lunghezza degli intervalli $[a_k,b_k]$ si riduce al crescere di k il valore c_k fornisce un'approssimazione sempre più «accurata» della radice α

$$f(\alpha) = 0$$
 $c_k \sim \alpha$