String Matching with Finite Automata

- Many string-matching algorithms build a finite automaton that scans the text string T for all occurrences of the pattern P.
- These string matching automata are very efficient: they examine each text character *exactly once*, taking constant time per character.
- The matching time used is therefore $\Theta(n)$.
- However, the time to build the automaton(preprocessing) can be large if Σ is large.

Finite State Machines (FSM)

- FSM(Finite State Machine = Finite Automata) is a computing machine that takes
 - A string as an input
 - Outputs Yes/No answer
 - That is, the machine "accepts" or "rejects" the string

Finite Automata

Figure 34.5 A simple two-state finite automaton with state set $Q = \{0, 1\}$, start state $q_0 = 0$, and input alphabet $\Sigma = \{a, b\}$. (a) A tabular representation of the transition function δ . (b) An equivalent state-transition diagram. State 1 is the only accepting state (shown blackened). Directed edges represent transitions. For example, the edge from state 1 to state 0 labeled b indicates $\delta(1,b) = 0$. This automaton accepts those strings that end in an odd number of a's. More precisely, a string x is accepted if and only if x = yz, where $y = \varepsilon$ or y ends with a b, and $z = a^k$, where k is odd. For example, the sequence of states this automaton enters for input abaaa (including the start state) is $\{0, 1, 0, 1, 0, 1\}$, and so it rejects this input. For input abbaa, the sequence of states is $\{0, 1, 0, 0, 1, 0\}$, and so it rejects this input.

<u>Strategy</u>: Build automaton for pattern, then examine each text character once.

FSM Exercise

Automaton accepts strings ending in 1

Automaton accepts strings having an odd number of 1s

FSM Exercise

Automaton accepts strings having an odd number of 1s and odd number of 0s

Why Study FSM's

- Useful Algorithm Design Technique
 - String matching problem
 - Lexical Analysis ("tokenization")
 - Control Systems
- Modeling a problem with FSM is
 - Simple
 - Elegant

Example: Pattern = P = ababaca

(a) A state-transition diagram for the string-matching automaton that accepts all strings ending in the string **ababaca**. State $\mathbf{0}$ is the start state, and state $\mathbf{7}$ is the only accepting state. A directed edge from state \mathbf{i} to state \mathbf{j} labeled \mathbf{a} represents $\delta(\mathbf{i}, \mathbf{a}) = \mathbf{j}$. This right-going edges forming the "spine" of the automaton, shown heavy in the figure, correspond to successful matches between pattern and input characters. The left-going edges correspond to failing matches. Some edges corresponding to failing matches are not shown; by convention, if a state \mathbf{i} has no outgoing edge labeled \mathbf{a} for some $\mathbf{a} \in \Sigma$, then $\delta(\mathbf{i}, \mathbf{a}) = \mathbf{0}$.

Example: Pattern = P = ababaca

(b) The corresponding transition function δ and the pattern string $\mathbf{P} = \mathbf{ababaca}$. The entries corresponding to successful matches between pattern and input characters are shown shaded.

Example: Pattern = P = ababaca

(c) The operation of the automaton on the text T = abababacaba. Under each text character T[i] appears the state $\Phi(T_i)$ the automaton is in after processing the prefix T_i . One occurrence of the pattern is found, ending in position 9.

String Matching with Finite Automata

• Idea

- build a finite automaton to scan T for all occurrences of P
- examine each character exactly once and in constant time
- matching time $\Theta(n)$, but preprocessing time can be large
- A finite automaton M is a 5-tuple $(Q,q0,A,\Sigma,\delta)$
 - Q is a finite set of states
 - -q0 = Q is the start state
 - $-A \subseteq Q$ is a distinguished set of **accepting states**
 - $-\Sigma$ is a finite **input alphabet**
 - δ is a function from $Q \times \Sigma$ into Q, called **transition** function of M

String Matching with Finite Automata

- Finite automaton
 - begins in state q_0 , reads one input character a at a time
 - <u>transitions</u> from state q into state $\delta(q,a)$
 - accepts the string read so far if current state $q \in A$
 - reject the string read so far if current state $q \notin A$
- A finite automaton induces a **final-state function** ϕ
 - $-\phi:\Sigma^*\to Q$, such that $q=\phi(w)$ is the state M is in after scanning the string w
 - M accepts a string w if and only if $\phi(w) \subseteq A$
 - recursive definition of ϕ $\phi(\epsilon)=q_0$ $\phi(wa)=\delta(\phi(w), a)$ for $w \in \Sigma^*, a \in \Sigma$

String-Matching Automata

- For every pattern P[1..m], we need to construct a string-matching automaton in preprocessing
 - the state set Q is $\{0,1,...,m\}$, where start state q_0 is state 0 and state m is the only accepting state
 - the transition function is defined as $\delta(q, a) = \sigma(P_q a)$ for any state q and character a
- Suffix function σ for a given pattern P[1..m]
 - $-\sigma:\Sigma \to \{0,1,...,m\}$ such that $\sigma(x)=\max\{k:Pk \supset x\}$ is the length of the longest prefix of P that is a suffix of x
 - for a pattern P of length m, $\sigma(x)=m$ if and only if $P \supset x$
 - if $x \supset y$, then $\sigma(x) \leq \sigma(y)$

Example

• Assume pattern P= ababaca

- 8 states and a "spine" of forward transitions
- $-\delta(1, a) = 1$, since $P_1 a = a a$ and $\sigma(P_1 a) = 1$
- $-\delta(3, a) = 1$, since $P_3 a = aba a$ and $\sigma(P_3 a) = 1$
- $-\delta(5,a)=1$ since $P_5a=ababa$ and $\sigma(P_5a)=1$
- $-\delta(5,b)=4$, since $P_5b=ababab$ and $\sigma(P_5b)=4$
- $-\delta(7,a)=1$, since $P_7a=ababacaa$ and $\sigma(P_7a)=1$
- $-\delta(7,b)=2$, since $P_7b=ababac$ ab and $\sigma(P_7b)=2$

String-Matching Automata

```
FINITE-AUTOMATON-MATCHER(T, P, \Sigma, m)

1 n \leftarrow length[T]

2 \delta \leftarrow \text{Compute-Transition-Function}(P, \Sigma)

3 q \leftarrow 0

4 for i \leftarrow 1 to n

5 do q \leftarrow \delta(q, T[i])

6 if q = m

7 then print "Pattern occurs with shift" i - m
```

Matching time on a text of length n is $\underline{\Theta}(n)$

- -simple loop structure with n iterations
- -does not account for the time required to compute the transition function δ

Computing the Transition Function δ

```
COMPUTE-TRANSITION-FUNCTION (P, \Sigma)
  1 m \leftarrow length[P]
  2 for q \leftarrow 0 to m
          do for each character a \in \Sigma
                  do k \leftarrow \min(m+1,q+2)
  5
                      repeat k \leftarrow k-1
                         until P_k \supset P_a a
  6
                      \delta(q,a) \leftarrow k
  7
     return \delta
Computing transition function takes time O(m^3|\Sigma|)
-outer loop: m|\Sigma|
-inner loop can run at most m+1 times
-test P_k \Box P_a a can require up to m comparisons
```

Computing the Transition Function δ

- Much faster procedures for computing the transition function exist. The time required to compute P can be improved to $O(m|\Sigma|)$
- Matching time on a text of length n is $\underline{\Theta(n)}$
- This brings the total runtime to:

$$O(m|\Sigma|+n)$$

• Not bad if your string is fairly small relative to the text you are searching in.