

СХЕМА ФОРМИРОВАНИЯ СУММАРНО-РАЗНОСТНЫХ КАНАЛОВ РАДИОЛОКАТОРА

Студент **Гусев Данил Олегович** группа РИ-400006

Руководитель **Шабунин Сергей Николаевич**

д.т.н., доцент, заведующий кафедрой РиТ ИРИТ-РТФ

Актуальность

Моноимпульсная радиолокация используется для сопровождения воздушных целей.

При уходе с российского рынка иностранных производителей возросла необходимость импортозамещения.

В перечень импортозамещяемых товаров входит схема формирования суммарно-разностных каналов.

Рисунок 1 – ДН моноимпульсной радиолокационной станции [1]

Цель выпускной квалификационной работы:

разработка микрополоскового 14-полюсника — схемы, позволяющей антенной решетке, состоящей из 4-х подрешеток, формировать суммарную и разностные в двух плоскостях диаграммы направленности для радиолокатора сопровождения метеозонда.

Задачи:

- 1. Произвести обзор источников и выбрать схему построения;
- 2. Произвести расчёт параметров микрополосковых линии передачи;
- 3. Разработать топологию устройства;
- 4. Выполнить моделирование устройства;
- 5. Изготовить макет устройства;
- 6. Выполнить измерение параметров устройства.

Исходные данные задания:

- микрополосковая технология производства;
- частота *f* = 1,68 ГГц;
- коэффициент стоячей волны меньше 1,2;
- развязка между каналами 30 дБ;
- полоса рабочего диапазона Δf =0,04 ГГц;
- схема представляет собой 14-полюсник, выполненный в одной плоскости;
- разъёмы предварительно *N*-типа.

Результаты работы

В ходе выполнения выпускной квалификационной работы была создана электронная таблица *Microsoft Office Excel*, позволяющая рассчитать параметры микрополосковой линии с точностью до 2 %, на диэлектрическом материале СФ-2-35Г.

Таблица 1 – Параметры микрополосковой линии

Параметр	Значение
W_{50} , M	0,00312
$W_{50\cdot\sqrt{2}}$, M	0,00154
<i>L</i> , M	0,02291
$\epsilon_{reff~50}$	4,01
$\epsilon_{reff~50\cdot\sqrt{2}}$	3,79
<i>t</i> , M	0,000035
<i>h</i> , м	0,00197
x_{50} , M	0,00186
$x_{50\cdot\sqrt{2}},{\sf M}$	0,00115
α ₅₀ , Нп/м	0,58
α _{50·√2} , Нп/м	0,54

Рисунок 2 – Принцип формирования каналов [2]

Рисунок 3 – Топология проектируемой схемы, построенная в AWR Design Enviroment 13

Рисунок 4 – Нумерация каналов В САПР AWR Design Enviroment 13

ФАР 3 (3)

Рисунок 5 – Фазовая характеристика суммарного канала, построенная в AWR Design Enviroment 13

Рисунок 6 – Фазовые характеристики вертикального и горизонтального каналов, построенная в *AWR Design Enviroment* 13

1.22

< 1.15

1.03

1.700

1.700

Рисунок 7 – Модель, построенная в *ANSYS HFSS* 19.2

ΦAP 3 (In3)

Рисунок 9 – Прототип для корректировки параметров

Рисунок 10 – Фаза, град/ затухание, дБ сигналов поступающих на суммарный канал

Рисунок 11 – КСВ Σ канала

Рисунок 12 – Фаза, град/ затухание, дБ сигналов поступающих на ∆гор. канал

Рисунок 14 – Фаза, град/ затухание, дБ сигналов поступающих на Δвер. канал

Рисунок 16 – Итоговый макет схемы формирования суммарно-разностных каналов радиолокатора

Заключение

В ходе выполнения выпускной квалификационной работы задачи выполнены полностью, цель достигнута.

Разработанное устройство полностью соответствует заявленным требованиям и может быть использовано производителями моноимпульсных РЛС.

Внедрение проекта в серийное производство выгодно. Значение экономической эффективности E=0,101, срок окупаемости капиталовложений T1=6,9 года.

Источники

- 1. Monopulseprinzip2 [Электронный ресурс] // Wikipedia. 2023. URL: http://www.radartutorial.eu/druck/Buch3.pdf (дата обращения: 22.03.2024).
- 2. img-drDQts.png [Электронный ресурс] // Studfile. 2021. URL: https://studfile.net/html/2706/219/html_4Oa6IUA6s7.50e2/img-drDQts.png (дата обращения: 22.03.2024).

БЛАГОДАРЮ ЗА ВНИМАНИЕ

Гусев Данил Олегович

+7 (909) 365-35-28 GusevDanil-Rabota@yandex.ru