

planetmath.org

Math for the people, by the people.

normal modal logic

Canonical name NormalModalLogic Date of creation 2013-03-22 19:33:38 Last modified on 2013-03-22 19:33:38

Owner CWoo (3771) Last modified by CWoo (3771)

Numerical id 16

Author CWoo (3771) Entry type Definition Classification msc 03B45

Related topic DisjunctionProperty law of distribution

Defines necessitation

Defines K
Defines logic

The study of modal logic is based on the concept of a logic, which is a set Λ of wff's satisfying the following:

- contains all tautologies, and
- is closed under modus ponens.

The last condition means: if A and $A \to B$ are in Λ , so is B in Λ .

A normal modal logic is a modal logic Λ that includes the law of distribution K (after Kripke):

$$\Box(A \to B) \to (\Box A \to \Box B)$$

as an axiom schema, and obeying the rule of necessitation RN:

from
$$\vdash A$$
, we may infer $\vdash \Box A$: if $A \in \Lambda$, then $\Box A \in \Lambda$.

Normal modal logics are the most widely studied modal logics. The smallest normal modal logic is called \mathbf{K} . Other normal modal logics are built from \mathbf{K} by attaching wff's as axiom schemas. Below is a list of schemas used to form some of the most common normal modal logics:

- 4: $\square A \rightarrow \square \square A$
- 5: $\Diamond A \to \Box \Diamond A$
- D: $\Box A \to \Diamond A$
- T: $\Box A \to A$
- B: $A \to \Box \Diamond A$

- C: $\Box(A \land \Box B) \to \Box(A \land B)$
- M: $\Box(A \land B) \to \Box A \land \Box B$
- G: $\Diamond \Box A \to \Box \Diamond A$
- L: $\Box(A \land \Box A \rightarrow B) \lor \Box(B \land \Box B \rightarrow A)$
- W: $\Box(\Box A \to A) \to \Box A$

For example, the normal modal logic \mathbf{D} is the smallest normal modal logic containing D as its axiom schema.

Notation. The smallest normal modal logic containing schemas $\Sigma_1, \ldots, \Sigma_n$ is typically denoted

$$K\Sigma_1\cdots\Sigma_n.$$

It is easy to see that $K\Sigma_1 \cdots \Sigma_n$ can be built from the "bottom up": call a finite sequence of wff's a deduction if each wff is either a tautology, an

instance of Σ_i for some i, or as a result of an application of modus ponens or necessitation on earlier wff's in the sequence. A wff is deducible from if it is the last member of some deduction. Let Λ_k be the set of all wff's deducible from deductions of lengths at most k. Then

$$\mathbf{K} \mathbf{\Sigma_1} \cdots \mathbf{\Sigma_n} = \bigcup_{i=1}^{\infty} \Lambda_i$$

Below are some of the most common normal modal logics:

name	D	T	В	S4	S5	GL	K4.3	S4.3
notation	KD	KT	KTB	KT4	KT5	KW	K4L	KT4L

Remarks

- D is commonly used in the study of deontic logic (logic of obligation).
 Extensions of D such as KD4 and KD45 are used in the study of doxastic logic (logic of belief).
- GL is known as provability logic, where $\Box A$ means A is provable in Peano arithmetic.
- S4 and S5 are two of the Lewis' 5 modal logical systems. They are commonly used in the study of epistemic logic (logic of knowledge). The modal logics S1, S2, and S3 are non-normal.

Semantics

The dominant semantics for normal modal logic is the Kripke semantics, or relational semantics. More on this can be found http://planetmath.org/node/12541here. A logic is *sound* in a class of frames if every theorem is valid in every frame in the class, and *complete* if any formula valid in every frame in the class is a theorem. When a logic Λ is both sound and complete in a class $\mathcal C$ of frames, we say that $\mathcal C$ describes Λ .

The following table lists the logics $\mathbf{K}\Sigma$ and the corresponding sound and complete classes of (Kripke) frames:

Σ in $\mathbf{K}\Sigma$	frame $\mathbf{K}\Sigma$ is sound in	frame $\mathbf{K} \mathbf{\Sigma}$ is complete in		
4	transitive	transitive		
5	Euclidean	Euclidean		
D	serial	serial		
Т	reflexive	reflexive		
В	symmetric	symmetric		
G	weakly directed	weakly directed		
L	weakly connected	weakly connected		
W	transitive and converse well-founded	finite transitive and irreflexive		