Dynamic Transition Analysis with TIMES:

I²CNER Initiative on Challenges in Energy Assessment and Energy Transitions

Anshuman Chaube, James Stubbins, Kathryn Huff

University of Illinios at Urbana-Champaign, Department of Nuclear, Plasma, and Radiological Engineering, Urbana, IL 61801

Objectives

Evaluate potential impact of novel energy technologies within Japan's energy system. Specifically:

- Guide practical near term (2010-2050) transition strategies.
- Minimize carbon emissions within realistic constraints.
- Identify high impact technologies.
- Assess role of technology readiness.
- Predict impediments to strategically optimal technology deployment.
- Identify ideal timelines for energy system deployment, infrastructure development, high impact R&D investment.

Introduction

Previous work has compared the impact of innovative energy technologies in various world regions using **static** scenario analyses [1, 2, 4, 5, 7, 8]. We will simulate **dynamic** transition scenarios [3, 9] aimed at minimizing carbon emissions in Japan by 2050. These scenarios will include realistic constraints regarding technology readiness (in terms of generation, transmission & storage) and will combine multiple technologies in a single heterogeneous system model.

Methodology

The Integrated MARKAL-EFOM System (TIMES) model generator [6] [10] optimizes energy systems using linear and mixed-linear algorithms. A user-defined objective function (such as minimizing carbon emissions or costs) is solve within user defined constraints such as energy generation demand.

Maintenance

Anticipated Results

- Analysis results can be filtered by sector (commercial, industrial, residential, building etc) or by region.
- Many metrics are automatically postprocessed- such as energy intensity, thermal energy efficiency, transmission capacity.
- Technology deployment transitions driven by constrained optimization will have valuable strategic value.

Impact

Results will:

- Optimize realistic decarbonization roadmaps.
- Identify potential transition bottlenecks.
- Help Japan's policymakers create timelines for R&D investment and infrastructure development.
- Quantify system sensitivity to technology readiness.

Timeline

Jan. 2018 · · · · Project start: Literature Review. Feb. 2018 · · · · Data collection: Japan's current grid. Mar. 2018 · · · · Data collection: Static projections. May. 2018 · · · · • Data collection: Conventional technologies. **Jun. 2018** · · · · • Data collection: i²cner generation technology. Jul. 2018 · · · · • Data collection: i²cner efficiency technology. Aug. 2018 · · · · · Data collection: i²cner storage technology. Sep. 2018 · · · · · ◆ Scenario simulation: 2010-2050 conventional. Oct. 2018 · · · · · Scenario simulation: 2010-2050 i²cner driven. Dec. 2018 · · · · • Scenario simulation: 2010-2070. **2019** · · · · • Sensitivity analysis: Vary key parameters.

Summary

- Dynamic simulation of Japan's energy system in TIMES model generator using a heterogeneous model and realistic constraints will help develop near-term decarbonization strategies.
- Policymakers will benefit from identification of high impact technologies, and creation of R&D investment and infrastructure development timelines.
- Simulations will quantify system sensitivity to technology readiness, and also account for secondary scenarios where decarbonization is not the main priority.

costs Availability Operation Fuel needs factor costs Carbon Construction Capacity intensity factor costs **Thermal** Construction regional Fuel costs Efficiency transmission time Storage Technology consumption infrastructure I hermal capacity availability Capacity by sector readiness initial electricity condition (2010) demand growth Maximize Minimize DATA CONSTRAINTS energy market carbon emissions regarding both e.g.: Deployed from all sources diversity i²cner and sources must conventional meet energy technologies demand OBJECTIVE FUNCTION TIMES Model Generator simulate MODEL 2010-2050 heterogeneous multi-technology model of Japan

Figure: Basic methodology for dynamic simulation of Japan's energy system.

References

- [1] K. Chyong Chi, W. J. Nuttall, and D. M. Reiner. Dynamics of the UK natural gas industry: System dynamics modelling and long-term energy policy analysis. Technological Forecasting and Social Change, 76(3):339–357, Mar. 2009.
- [2] Y. Y. Feng, S. Q. Chen, and L. X. Zhang. System dynamics modeling for urban energy consumption and CO2 emissions: A case study of Beijing, China. Ecological Modelling, 252(Supplement C):44–52, Mar. 2013.
- [3] S. Jebaraj and S. Iniyan. A review of energy models. Renewable and Sustainable Energy Reviews, 10(4):281-311, Aug. 2006.
- [4] Y. Kikuchi.
- Simulation-Based Approaches for Design of Smart Energy System: A Review Applying Bibliometric Analysis. Journal of Chemical Engineering of Japan, 50(6):385–396, 2017.
- [5] L. Li, C. Chen, S. Xie, C. Huang, Z. Cheng, H. Wang, Y. Wang, H. Huang, J. Lu, and
- S. Dhakal. Energy demand and carbon emissions under different development scenarios for Shanghai, China. Energy Policy, 38(9):4797-4807, Sept. 2010.
- R. Loulou, U. Remme, A. Kanudia, A. Lehtila, and G. Goldstein. Documentation for the TIMES Model Part II. Energy technology systems analysis programme (ETSAP), 2005.
- [7] N. A. Pambudi, K. Itaoka, A. Kurosawa, and N. Yamakawa. Impact of Hydrogen fuel for CO2 Emission Reduction in Power Generation Sector in Energy Procedia, 105(Supplement C):3075–3082, May 2017.
- N. A. Pambudi, K. Itaoka, N. Yamakawa, and A. Kurosawa. Future Japan power generation sector by introducing hydrogen plant with 80% CO 2 emission reduction target: A preliminary analysis. In Sustainable Energy Engineering and Application (ICSEEA), 2016 International Conference on, pages 66–69. IEEE, 2016.
- [9] S. Pfenninger, A. Hawkes, and J. Keirstead. Energy systems modeling for twenty-first century energy challenges. Renewable and Sustainable Energy Reviews, 33(Supplement C):74–86, May 2014.
- [10] A. J. Seebregts, G. A. Goldstein, and K. Smekens. Energy/Environmental Modeling with the MARKAL Family of Models. In Operations Research Proceedings 2001, Operations Research Proceedings 2001, pages 75–82. Springer, Berlin, Heidelberg, 2002. DOI: 10.1007/978-3-642-50282-8_10.

Contact Information

- Web: arfc.github.io
- Email: kdhuff@illinois.edu

Acknowledgements

This research is being performed using funding received from the International Institute for Carbon Neutral Energy Research (I²CNER) Initiative on Challenges in Energy Assessment and Energy Transitions at the University of Illinois under Director Petros Sofronis.

