Section 13: Large sample hypothesis testing

ARE 210

November 28, 2017

The section notes are available on the section Github at github.com/johnloeser/are210 in the "section13" folder.

Definitions 1

- Large sample hypothesis testing setup
 - $-\{X_i\}_{i=1}^n$ iid, $X_i \sim P_0, \ \theta(P_0) \equiv \theta_0 \ d \times 1$ vector of parameters [write P_θ for some distribution in the probability space
 - Null and alternative hypotheses $\left\{ \begin{array}{l} H : \theta_0 \in \Theta_H \equiv \{\theta \in \Theta : a(\theta) = 0\} \\ K : \theta_0 \in \Theta \setminus \Theta_H \equiv \{\theta \in \Theta : a(\theta) \neq 0\} \end{array} \right\},$ where $a(\theta)$ is an $r \times 1$ vector of restrictions
 - Assume $A(\theta) \equiv \frac{\partial}{\partial \theta^{\mathrm{T}}} a(\theta)$, an $r \times d$ Jacobian, has full row rank
- Definitions
 - $\{\delta_n(X)\}_{n=1}^{\infty} \equiv \{\delta_n\}_{n=1}^{\infty}$ is pointwise asymptotically level- α if $\forall \theta \in \Theta_H$, $\limsup_{n\to\infty} \mathbf{E}_{P_{\theta}}[\delta_n] \leq \alpha$
 - $\lim_{n\to\infty} \sup_{\theta\in\Theta_H} \mathbf{E}_{P_{\theta}}[\delta_n]$ is the **limiting size of** δ_n
 - δ_n has asymptotic significance level- α uniformly in P_0 if the limiting size of δ_n is less than or equal to α
 - $-\delta_n$ is **consistent** if $\lim_{n\to\infty} \mathbf{E}_P[\delta_n] = 1 \ \forall \ \theta \in \Theta \setminus \Theta_H$.
- Estimator and more definitions
 - Assume $\theta_0 = \arg\min_{\theta \in \Theta} Q_0(\theta)$, construct a sequence $Q_n(\theta) \stackrel{p}{\to} Q_0(\theta)$, and define $\hat{\theta}_u \equiv \arg\min_{\theta \in \Theta} Q_n(\theta)$ and $\hat{\theta}_c \equiv \arg\min_{\theta \in \Theta_H} Q_n(\theta)$
 - Let $A_n = A(\hat{\theta}_c)$ and $A_0 = A(\theta_0)$
 - Assuming a "well behaved" Q_n , we can also write
 - * $\frac{\partial Q_n(\hat{\theta}_u)}{\partial \theta} = 0$ in the unconstrained case * $\frac{\partial Q_n(\hat{\theta}_c)}{\partial \theta} + A(\hat{\theta}_c)^T \lambda_n = 0$ subject to $a(\hat{\theta}_c) = 0$ in the constrained case Assume $\sqrt{n} \frac{\partial Q_n(\theta_0)}{\partial \theta} \stackrel{d}{\to} N(0, \Sigma)$ Let $\Psi_n = \frac{\partial^2 Q_n(\hat{\theta}_c)}{\partial \theta \partial \theta^T}$, such that $\Psi_n \stackrel{p}{\to} \Psi \equiv \frac{\partial^2 Q_0(\theta_0)}{\partial \theta \partial \theta^T}$

- Let
$$\Sigma_n = V_{\hat{\theta}_c} \left[\sqrt{n} \frac{\partial Q_n(\hat{\theta}_c)}{\partial \theta} \right]$$
, and assume $\Sigma_n \stackrel{p}{\to} \Sigma^{1}$.

• Some asymptotic results under the null

$$\begin{split} & - \sqrt{n}(\hat{\theta}_{u} - \theta_{0}) = -\Psi^{-1}\sqrt{n}\frac{\partial Q_{n}(\theta_{0})}{\partial \theta} + o_{p}(1) \xrightarrow{d} N(0, \Psi^{-1}\Sigma\Psi^{-1}) \\ & - A_{0}\sqrt{n}\lambda_{n} + \Psi\sqrt{n}(\hat{\theta}_{c} - \theta_{0}) = -\sqrt{n}\frac{\partial Q_{n}(\theta_{0})}{\partial \theta} + o_{p}(1) \\ & - \sqrt{n}\lambda_{n} = -[A_{0}\Psi^{-1}A_{0}^{T}]^{-1}A_{0}\Psi^{-1}\sqrt{n}\frac{\partial Q_{n}(\theta_{0})}{\partial \theta} + o_{p}(1) \\ & - \sqrt{n}(\hat{\theta}_{c} - \theta_{0}) = -[\Psi^{-1} - \Psi^{-1}A_{0}^{T}(A_{0}\Psi^{-1}A_{0}^{T})^{-1}A_{0}\Psi^{-1}]\sqrt{n}\frac{\partial Q_{n}(\theta_{0})}{\partial \theta} + o_{p}(1) \\ & - \sqrt{n}(\hat{\theta}_{c} - \hat{\theta}_{u}) = -\Psi^{-1}A_{0}^{T}(A_{0}\Psi^{-1}A_{0}^{T})^{-1}A_{0}\Psi^{-1}\sqrt{n}\frac{\partial Q_{n}(\theta_{0})}{\partial \theta} + o_{p}(1) \end{split}$$

• Key result

–
$$X \sim N(\mu, \Sigma)$$
 d-dimensional vector random variables $\Rightarrow (X - \mu)^{\mathrm{T}} \Sigma^{-1} (X - \mu) \sim \chi_d^2$

- Possible test statistics
 - Likelihood ratio test

* LR
$$\equiv 2n(Q_n(\hat{\theta}_u) - Q_n(\hat{\theta}_c))$$

* Use
$$Q_n(\hat{\theta}_u) - Q_n(\hat{\theta}_c) = \frac{1}{2}(\hat{\theta}_u - \hat{\theta}_c)^{\mathrm{T}} \frac{\partial^2 Q_n(\theta^*)}{\partial \theta \partial \theta^{\mathrm{T}}} (\hat{\theta}_u - \hat{\theta}_c)$$
 for some $\theta^* \in (\hat{\theta}_c, \hat{\theta}_u)$, with $\theta^*, \hat{\theta}_c, \hat{\theta}_u \stackrel{p}{\to} \theta_0$

* Gives LR
$$\approx -n(\hat{\theta}_u - \hat{\theta}_c)^T \Psi(\hat{\theta}_u - \hat{\theta}_c)$$

* More algebra, LR
$$\approx -(A_0 \Psi^{-1} \sqrt{n} \frac{\partial Q_n(\theta_0)}{\partial \theta})^{\mathrm{T}} (A_0 \Psi^{-1} A_0^{\mathrm{T}})^{-1} (A_0 \Psi^{-1} \sqrt{n} \frac{\partial Q_n(\theta_0)}{\partial \theta})$$

$$* \Sigma = -\Psi \Rightarrow LR \xrightarrow{d} \chi_r^2$$

- Wald test

* WS =
$$na(\hat{\theta}_u)^{\mathrm{T}}V_{\theta_0}[a(\hat{\theta}_u)]^{-1}a(\hat{\theta}_u)$$

* Since θ_0 is unobserved, we can estimate it using $\hat{\theta}_u$

* WS
$$\xrightarrow{d} \chi_r^2$$

- Lagrange multiplier/score test

*
$$n(\lambda_n)^{\mathrm{T}} V_{\theta}[\lambda_n]^{-1} \lambda_n \stackrel{d}{\to} \chi_r^2$$

* When
$$\Psi = -\Sigma$$
, using $\frac{\partial Q_n(\hat{\theta}_c)}{\partial \theta} = -A_n^{\mathrm{T}} \lambda_n$, we can show $n(\frac{Q_n(\hat{\theta}_c)}{\partial \theta})^{\mathrm{T}} \Sigma_n^{-1} (\frac{Q_n(\hat{\theta}_c)}{\partial \theta}) \stackrel{d}{\to} \chi_r^2$

2 Useful tips

- One useful simplifying case is where we have the null $\theta_0 = 0$, in which case $A(\theta) \equiv \mathbf{I}_n$
- Recall that $\Psi = -\Sigma$ when we use maximum likelihood or efficient GMM to esti-

¹Note that this notation is somewhat ambiguous - we're treating $\hat{\theta}_c$ like a parameter here, not like a random variable.

mate θ . When this does not hold, we can estimate these two matrices separately and relax the assumption that $\Psi = -\Sigma$.

3 Practice questions

- 1. Consider the linear regression model $Y_i|Z_i \sim N(\beta_0 + \beta_1 Z_i, \sigma^2)$, where Z_i is a scalar, and consider the null hypothesis $\beta_1 = 0$.
 - (a) What is θ_0 ? $Q_0(\theta)$? $Q_n(\theta)$? $\hat{\theta}_u$? $\hat{\theta}_c$? $a(\theta)$? $A(\theta)$? A_n ? $\frac{\partial Q_0(\theta)}{\partial \theta}$? $\frac{\partial Q_n(\hat{\theta}_c)}{\partial \theta}$?
 - (b) Derive the LR test and its asymptotic distribution.
 - (c) Derive the Wald test and its asymptotic distribution.
 - (d) Derive the score test and its asymptotic distribution.
 - (e) Compare the tests, do they differ in power? Size? How do their sizes compare to the t-test we discussed previously?