

Stefania Sferragatta Matricola 1948081 Big Data for Official Statistics AY 2021-2022


```
model = VAR(data_differenced)
x = model.select_order(maxlags=20)
x.summary()
```

VARMA MODEL FIT

```
# train the VAR model of selected order (p=12)
p=12
model_fitted = model.fit(p)
model_fitted.summary()
```

Result:

- → Each table is related to one feature treating it as the variable of interest;
- → In each table is used as possible regressor every lag from 1 to 12 for all the 7 features, and we should consider the regressor with the smallest p-value;
- In the end there is a confusion matrix that shows the correlation between the variables.

PREDICTION

```
lag = model_fitted.k_ar #12

# input data for forecasting
lagged_Values = data_differenced.values[-lag:] # specify the 'initial value' for the forecast

# Forecast
pred = model_fitted.forecast(y= lagged_Values, steps= n_obs)
df_pred = (pd.DataFrame(pred, index=test.index, columns=test.columns + '_pred'))
df_pred
```

result = invert_transformation(train, df_pred)


```
repeats = 10
error_scores = list()
for r in range(repeats):
   # fit the model
   lstm_model = fit_lstm(train_scaled, 1, 10, 4)
   # forecast the entire training dataset to build up state for forecasting
   train_reshaped = train_scaled[:, 0].reshape(len(train_scaled), 1, 1)
    lstm model.predict(train reshaped, batch size=1)
    # walk-forward validation on the test data
    predictions = list()
    for i in range(len(test_scaled)):
       # make one-step forecast
       X, y = test_scaled[i, 0:-1], test_scaled[i, -1]
       yhat = forecast_lstm(lstm_model, 1, X) #yhat = y
       # invert scaling
       yhat = invert_scale(scaler, X, yhat)
       # invert differencing
       yhat = inverse_difference(raw_values, yhat, len(test_scaled)+1-i)
       # store forecast
        predictions.append(yhat)
    # report performance
    rmse = sqrt(mean_squared_error(raw_values[-12:], predictions))
    error scores.append(rmse)
```


EVALUATIONS

18.353	
	4.101
VARMA	A LSTM
119.033	
VARMA	A LSTM
0.034	0.037
_	0.034

Surface tempertature	ARIMA	VARMA	LSTM	
RMSE	1.422	0.478	0.793	
CO2	ARIMA	VARMA	LSTM	
RMSE	9.892	1.001	0.805	
Anomalies Land&Ocean temperature	ARIMA	VARMA	LSTM	
RMSE	0.120	0.088	0.081	
GMSL	ARIMA	VARMA	LSTM	
RMSE	29.974	-	3.319	

- → Analysed a time series dataset using three different methods;
 - Highlighted the differences between them;
- → Present the main steps done to compute the predictions
- → Improving may be provided tuning the parameters before fit the model

climate change→ Starting point for future in-depth analyses to try to

be aware of the actual

Useful for organizations to

in-depth analyses to try to edge out what is happening.

