Comparação de desempenho do modelo 10SecondWindow_MLP

Comparativo entre literatura e implementações com entropia e complexidade

Literatura vs. Implementações com mesmos parâmetros

Implementação	dx	Batch Size	Epochs	Accuracy	Loss	Precision	Recall	F1 Score
Literatura	-	128	60	0.9220	0.2640	0.9321	0.9084	0.9201
Adding Entropia e Complexidade	3	128	60	0.9154	0.2845	0.9245	0.9046	0.9145
Adding Entropia e Complexidade	4	128	60	0.9062	0.2635	0.9167	0.8969	0.9067
Adding Entropia e Complexidade	5	128	60	0.9169	0.2667	0.9218	0.9062	0.9139

Implementações otimizadas com entropia e complexidade

Implementação	dx	Batch Size	Epochs	Accuracy	Loss	Precision	Recall	F1 Score
Literatura	-	128	60	0.9220	0.2640	0.9321	0.9084	0.9201
Adding Entropia e Complexidade	3	64	200	0.9385	0.2255	0.9412	0.9354	0.9383
Adding Entropia e Complexidade	4	32	60	0.9308	0.2425	0.9350	0.9292	0.9321
Adding Entropia e Complexidade	5	64	100	0.9400	0.2425	0.9412	0.9354	0.9383

Resumo dos melhores resultados

Configuração	Parâmetros	Accuracy	F1 Score
Literatura	Batch=128, Epochs=60	0.9220	0.9201
Melhor dx=3	Batch=64, Epochs=200	0.9385	0.9383
Melhor dx=4	Batch=32, Epochs=60	0.9308	0.9321
Melhor dx=5	Batch=64, Epochs=100	0.9400	0.9383

Conclusões

- Os modelos com entropia e complexidade e parâmetros otimizados consistentemente superam os modelos da literatura em todas as métricas, dada as mudanças na forma de treinamento, alterando o batch size e o número de epochs.
- Com os mesmos parâmetros da literatura (batch size = 128, epochs = 60), a implementação com
 dx = 5 obteve resultados mais próximos da literatura.
- A melhor performance foi obtida com window_size = 10, dx = 5, usando batch size = 64 e epochs = 100, com acurácia de 94%, precisão de 94.12%, recall de 93.54% e F1 score de 93.83%.
- O dataset com um window size = 5 sem entropia e complexidade tem ~6000 linhas; com entropia e complexidade e window size = 10 tem ~3000 linhas, reduzindo o tempo de treinamento e processamento, tendo uma dimininuição de ~50% no tamanho do dataset, implicando em uma diminuição do tempo de treinamento e de processamento.

Nota: dx é a janela deslizante de tempo, que é o tamanho da janela de tempo que o modelo usa para prever a próxima amostra.

Comparação de desempenho do modelo 10SecondWindow_MLP_Federated

Resumo comparativo

Modelo	Comm Round	Accuracy	Loss
Literatura	199	85.751%	1.091
Entropia e Complexidade (dx=3)	199	89.538%	1.061
Entropia e Complexidade (dx=4)	199	90.000%	1.058
Entropia e Complexidade (dx=5)	199	87.846%	1.072

Detalhes das implementações

Literatura

• **Accuracy**: 85.751%

• **Loss**: 1.091

• Métricas por Classe:

Classe	Precision	Recall	F1-Score	Support
0	0.76	0.89	0.82	237
1	0.92	0.83	0.87	223
2	0.86	0.84	0.85	247
3	0.84	0.84	0.84	209
4	0.92	0.88	0.90	263
Macro avg	0.86	0.86	0.86	1179
Weighted avg	0.86	0.86	0.86	1179

Entropia e Complexidade (dx=3)

• **Accuracy**: 89.538%

• **Loss**: 1.061

• Métricas por Classe:

Classe	Precision	Recall	F1-Score	Support
0	0.83	0.92	0.87	113
1	0.92	0.90	0.91	144
2	0.87	0.94	0.90	112
3	0.92	0.85	0.88	138
4	0.93	0.89	0.91	143
Macro avg	0.89	0.90	0.89	650
Weighted avg	0.90	0.90	0.90	650

Entropia e Complexidade (dx=4)

• **Accuracy**: 90.000%

• **Loss**: 1.058

• Métricas por Classe:

Classe	Precision	Recall	F1-Score	Support
0	0.88	0.97	0.92	139
1	0.89	0.85	0.87	119
2	0.90	0.89	0.90	131
3	0.86	0.81	0.83	120
4	0.96	0.96	0.96	141
Macro avg	0.90	0.90	0.90	650
Weighted avg	0.90	0.90	0.90	650

Entropia e Complexidade (dx=5)

• **Accuracy**: 87.846%

• **Loss**: 1.072

• Métricas por Classe:

Classe	Precision	Recall	F1-Score	Support
0	0.81	0.91	0.85	117
1	0.88	0.88	0.88	130
2	0.85	0.94	0.90	123
3	0.92	0.75	0.82	146
4	0.93	0.93	0.93	134
Macro avg	0.88	0.88	0.88	650
Weighted avg	0.88	0.88	0.88	650

Conclusões

- Os modelos federados com entropia e complexidade apresentam desempenho superior ao modelo da literatura, com aumento de até 4.25 pontos percentuais na acurácia (85.75% para 90.00%).
- A melhor configuração foi obtida com dx = 4, alcançando 90% de acurácia.
- As implementações com entropia e complexidade conseguem manter um bom equilíbrio entre precision e recall.
- O modelo com dx = 4 apresenta melhor desempenho na classe 4 (F1-Score de 0.96) e na classe 0 (recall de 0.97).
- A redução do tamanho do dataset com a adição de entropia e complexidade (~50% menos dados) não prejudicou o desempenho, pelo contrário, melhorou os resultados.
- O aprendizado federado com estas características mostrou-se eficiente para este tipo de classificação, preservando a privacidade dos dados distribuídos entre os clientes.

Comparação de desempenho do modelo 10SecondWindow*FederatedEnsemble*(CM)

Composição do modelo

O modelo de ensemble federado utiliza uma combinação dos seguintes classificadores:

- SimpleMLP
- XGBClassifier
- RandomForestClassifier

Resumo comparativo

Modelo	Comm Round	Accuracy
Literatura	199	95.081%
Entropia e Complexidade (dx=3)	199	95.077%
Entropia e Complexidade (dx=4)	199	92.462%
Entropia e Complexidade (dx=5)	199	94.923%

Detalhes das implementações

Literatura

• **Accuracy**: 95.081%

• Métricas por Classe:

Classe	Precision	Recall	F1-Score	Support
0	0.92	0.95	0.93	242
1	0.98	0.91	0.94	235
2	0.96	0.97	0.97	236
3	0.96	0.94	0.95	238
4	0.94	0.98	0.96	228
Macro avg	0.95	0.95	0.95	1179
Weighted avg	0.95	0.95	0.95	1179

Entropia e Complexidade (dx=3)

Accuracy: 95.077%Métricas por Classe:

Classe	Precision	Recall	F1-Score	Support
0	0.95	0.95	0.95	127
1	0.95	0.90	0.93	134
2	0.95	0.99	0.97	127
3	0.96	0.94	0.95	140
4	0.94	0.97	0.96	122
Macro avg	0.95	0.95	0.95	650
Weighted avg	0.95	0.95	0.95	650

Entropia e Complexidade (dx=4)

Accuracy: 92.462%Métricas por Classe:

Classe	Precision	Recall	F1-Score	Support
0	0.88	0.93	0.91	130
1	0.95	0.84	0.89	125
2	0.92	0.97	0.94	131
3	0.98	0.92	0.95	136
4	0.90	0.96	0.93	128
Macro avg	0.93	0.92	0.92	650
Weighted avg	0.93	0.92	0.92	650

Entropia e Complexidade (dx=5)

Accuracy: 94.923%Métricas por Classe:

Classe	Precision	Recall	F1-Score	Support
0	0.85	0.95	0.90	108
1	0.90	0.87	0.89	130
2	0.93	0.91	0.92	140
3	0.99	0.90	0.94	131
4	0.91	0.96	0.93	141
Macro avg	0.92	0.92	0.92	650
Weighted avg	0.92	0.92	0.92	650

Conclusões

- A aplicação de entropia e complexidade com dx = 3 manteve o desempenho praticamente idêntico à literatura (95.08% vs 95.08%).
- Mesmo com a redução de aproximadamente 50% no tamanho do dataset, o desempenho se manteve em níveis excelentes.
- Modelos com dx = 4 e dx = 5 apresentaram pequena redução no desempenho, mas ainda mantiveram acurácia acima de 92%.