The Puzzle of Educated Unemployment in West Africa

Esther Mirjam Girsberger University of Technology Sydney & IZA

Romuald Méango University of Oxford

DSE Conference, Canberra 16 December 2022

Motivation

- Unemployment decreases in education in most developed countries
 - Trickle-down of unemployment (Mincer 1991, Barnichon & Zylberberg 2021)
- Unemployment increases with education in many developing countries

 Educated Unemployment
- Puzzling because self-employment is widespread
- Many possible mechanisms
 - Frictional labour markets
 - Role of the public sector
 - Importance of family background
- Major policy concern
 - Sustainable development goals (education, employment)

The puzzle of educated unemployment

Figure: Ratio unemployment rate basic – intermediate education

Figure: Ratio unemployment rate basic – advanced education

Questions and contributions

Research questions

- Why are educated workers more likely to be unemployed than their uneducated peers?
- (How much) Is the public sector contributing to it?
- Which labour market policies can reduce educated unemployment?

Questions and contributions

Research questions

- Why are educated workers more likely to be unemployed than their uneducated peers?
- (How much) Is the public sector contributing to it?
- Which labour market policies can reduce educated unemployment?
 - Study these question in the context of West Africa Public hiring
 - Develop and estimate a search and matching model
 - heterogeneous workers (education, parental background)
 - multiple labour market sectors, incl. self-employment Employment Sectors
 - Public sector distortions
 - · wage offers, minimum wage rule
 - vacancies
 - Simulate different labour market policies in equilibrium

Related literature

Education and unemployment

```
    Migration prospects:
    Fan & Stark (2007); Stark & Fan (2011)
```

- Skill-biased technological change: Feng & al. (2021 WP)
- Trickle-down of unemployment:
 Gautier (2002); Barnichon & Zylberberg (2021)

Labour markets in developing countries

- Youth unemployment in Sub-Saharan Africa:
 Alfonsi & al. (2020); Abebe & al. (2021); Duflo & al. (2021)
- Informal sector/self-employment:
 Albrecht & al. (2011); Meghir & al. (2015); Langot & Yassin (2017);
 Narita (2021); Rud & Trapeznikova (2021); Poschke (2018 WP)
- Public sector:
 Langot & Yassin (2017); Albrecht & al. (2019)

Outline

- Model sketch
- 2 Data, Estimation and Results
- Policy simulations
- 4 Conclusion

A search- and matching model

Framework: Search- and matching model with public sector & self-employment

- Labour demand: Three labour market sectors
 - private (formal) sector
 - exogenous public sector
 - self-employment: workers as entrepreneurs
 - \rightarrow exogenous job destruction in all sectors

A search- and matching model

Framework: Search- and matching model with public sector & self-employment

- Labour demand: Three labour market sectors
 - private (formal) sector
 - exogenous public sector
 - self-employment: workers as entrepreneurs
 - \rightarrow exogenous job destruction in all sectors
- Labour supply: Heterogeneous workers
 - heterogeneity y = (h, k): education-parental background
 - · costless random search
 - get job offer at rate λ_j in sector j
 - $ightarrow \lambda_j$ depends on parental background k for public/private jobs
 - accept/reject offer
 - \rightarrow acceptance thresholds $R_j(y)$ differ by $y \& sector \rightarrow sorting$
 - only continue search when self-employed

Sketch of the worker's problem

Problem of a worker of type y (i.e. education h, parental background k)

Sketch of the worker's problem

Problem of a worker of type y (i.e. education h, parental background k)

Sketch of the worker's problem

Problem of a worker of type y (i.e. education h, parental background k)

Worker's problem: equations

Private firms, public sector & self-employment

Private (formal) firm

- endogenous vacancy creation
- Nash bargaining over wage

•
$$w_p(x_p, y) = \beta x_p + (1 - \beta) r V_U(y)$$

Private firms, public sector & self-employment

Private (formal) firm

- endogenous vacancy creation Firm's problem: equations
- Nash bargaining over wage

•
$$w_p(x_p, y) = \beta x_p + (1 - \beta) r V_U(y)$$

(Exogenous) Public sector

- fixed vacancy posting v_g
- public wage $w_g(y) \geq \bar{w}_g$
- \rightarrow Cobb-Douglas matching in public and private sector:

$$m = AI^{\eta}(v_p + v_g)^{1-\eta}$$

Private firms, public sector & self-employment

Private (formal) firm

- endogenous vacancy creation
 Firm's problem: equations
- Nash bargaining over wage

•
$$w_p(x_p, y) = \beta x_p + (1 - \beta) r V_U(y)$$

(Exogenous) Public sector

- fixed vacancy posting v_g
- public wage $w_g(y) \ge \bar{w}_g$
- \rightarrow Cobb-Douglas matching in public and private sector:

$$m = AI^{\eta}(v_p + v_g)^{1-\eta}$$

Self-employment

- ullet business ideas arrive independently at rate λ_s
- self-employment income equals productivity: $w_s(y) = x_s$
- ullet continue to receive public/private offers (at lower rate): $\psi \lambda_j$

Model solution & steady-state equilibrium

Solution of the model

- solve the worker's problem
 - \rightarrow reservation productivity for each sector j by type y (Res. productivity
- 2 solve the firm's problem Vacancy
 - ightarrow private vacancies v_p
- **9** public sector only hires if: $w_g(y) \ge \underline{\omega}_h$ \rightarrow match only happens if $w_g(y) \ge \max(\underline{\omega}_h, R_g(y))$
- steady-state conditions on unemployment and sectoral employment

Model solution & steady-state equilibrium

Solution of the model

- solve the worker's problem
 - ightarrow reservation productivity for each sector j by type y (Res. productivity
- 2 solve the firm's problem Vacancy
 - ightarrow private vacancies v_p
- public sector only hires if: $w_g(y) \ge \underline{\omega}_h$ \rightarrow match only happens if $w_g(y) \ge \max(\underline{\omega}_h, R_g(y))$
- steady-state conditions on unemployment and sectoral employment
 steady-state conditions

Equilibrium pins down:

- \rightarrow sectoral reservation productivities $R_i(y)$
- ightarrow offer arrival rates λ_j : LM tightness k, formal vacancy share ϕ

Model sketch
Data, Estimation and Results
Policy simulations
Conclusion

Data, Estimation and Results

Data

Data

- 1-2-3 Survey in seven West African capitals Map
- cross-sectional household labour force survey in 2001-2003
- key feature: self-employment income, labour market transitions

Identification and estimation

- assumption: steady-state equilibrium
- estimation by simulated method of moments
 - \rightarrow minimise (weighted) squared distance between observed and simulated moments: $\hat{\theta}_{MSM} = \arg\min(\hat{\mu}(\theta) \hat{m})' W(\hat{\mu}(\theta) \hat{m})$
- 50 (46) parameters
 - log-normal wage offer distribution parameters μ_j , σ_j
 - reservation wage $R_p(h, k)$, minimum wage rule $\underline{\omega}_h$
 - search efficiency in self-employment, high \emph{k} : ψ , ξ
 - arrival rates λ_j
 - destruction rates $\delta_i(h)$
 - 4 parameters fixed ex-ante
- 263 observed moments (Identification
 - type distribution P(h, k) is observed
 - unemployment rates
 - trimmed wage distributions
 - sectoral size and worker distribution
 - sectoral employment duration
 - 3-year transition rates

Results

Goodness of fit

- Unemployment rates Gof Unemp
- Other moments

Estmation results for Burkina Faso and Senegal

- Low job arrival rates $\lambda_i \to \text{high frictions}$
- High inefficiency in public hiring, high public mininum wage $\underline{\omega}_h$
- Differential job destruction $\delta_i(h)$
- Key difference between Burkina & Senegal: private sector is more marginal in Burkina

Public sector distortions (Burkina Faso)

	Baseline Alig		offers	No min. wage (2)		Same wages (1) + (2)		Same destr. (3)	No pub. sect. (4)
		(1)							
		v _g fixed	bill fixed	v _g fixed	bill fixed	v_g fixed	bill fixed	v_g fixed	$v_g = 99\%$
	(i)	(ii)	(iii)	(iv)	(v)	(vi)	(vii)	(viii)	(ix)
Burkina Faso									
Unemp.	16.6%	8.2%	10.1%	10.4%	12.3%	7.7%	9.9%	15.7%	10.2%
Ed. unemp.	3.1%	1.0%	0.8%	1.1%	1.4%	0.5%	0.7%	2.9%	0.9%
Public	15.9%	65.7%	16.2%	55.7%	34.5%	67.9%	17.5%	15.7%	0.1%
Private	12.8%	0.0%	44.3%	0.0%	14.7%	0.0%	43.7%	18.4%	60.4%
Self-emp.	54.6%	26.0%	29.4%	33.9%	38.5%	24.3%	28.8%	50.2%	29.2%
Welfare	31.1	68.6	57.8	25.8	31.0	68.9	57.8	33.3	58.9
Public bill	12.5	61.0	12.5	17.2	12.5	61.4	12.5	10.2	0.1
Share prior vg	1	1	0.08	1	0.62	1	0.08	1	0.1

Model sketch Data, Estimation and Results Policy simulations Conclusion

Policy simulations for Burkina Faso (Ouagadougou)

Labour market policy simulations

- Three popular labour market policies
 - Public vacancy creation
 - Reduce recruitment costs for private firms
 - Subsidise self-employment
- Compare their effects on labour market equilibrium
 - (educated) unemployment:

$$EdU := \sum_{(h,k)} P(h,k) \left(U_h - \min \left\{ U_{\tilde{h}} : \tilde{h} < h \right\} \right).$$

- sectoral shares
- workers' welfare (overall, by type)
- Keep government expenditures constant across policies:
 - initial public wage bill:

$$B_0 := \sum_{(h,k)} P(h,k) n_g(h,k) \frac{\int_{R_{ug}(h,k)} \omega dF_{(\Omega|h)}(\omega|h)}{1 - F_{(\Omega|h)}(R_{ug}(h,k)|h)}$$

 policy related costs: subsidy to vacancy creation, self-employment subsidy

Costs of different policies: Burkina Faso

Figure: Relationship between π and government expenses growth

Policies: Unemployment and educated unemployment

Figure: Unemployment

Figure: Educated Unemployment

Policies: Public and private sector employment

Figure: Public Sector

Figure: Private sector

Policies: Welfare

Figure: Workers' welfare

Which policy is best?

Public sector vacancy creation

- overall unemployment increases, welfare stagnates
- public vacancies displace private vacancies

Reducing vacancy posting cost

- private vacancies increase
- unemployment drops, welfare increases

Subsidising self-employment

- incomes in self-employment increase → private vacancies decrease
- unemployment increases marginally, slight increase in welfare

Conclusion

Educated unemployment because of

- high frictions (jobs are hard to come by)
- public sector distortions
- differential destruction (mismatch?)

Conclusion

Educated unemployment because of

- high frictions (jobs are hard to come by)
- public sector distortions
- differential destruction (mismatch?)

Lessons for public policy

- negative (unintended) effects of public vacancy creation
- positive effects of vacancy posting cost reduction
- subsidising self-employment increases welfare, but unemployment, too!

Indirect labour market policies ...

- ... reduce frictions, and
- ... should be preferred over public employment creation!

Model sketch
Data, Estimation and Results
Policy simulations
Conclusion

Thank you for your attention!

EstherMirjam.Girsberger@uts.edu.au

The role of the public sector

Figure: Stadium Iba Mar Diop in February 2012

Public, private and self-employment

Figure: Sector of employment (men)

Figure: Residual wages by sector (men)

The worker's problem

Unemployment value

$$\begin{split} rV_U(y) &= b(y) + \lambda_{\rho}(k) \mathbb{E}_{X,\rho} \max\{V_{\rho}(x_{\rho}, y) - V_U(y), 0\} \\ &+ \lambda_{g}(k) \mathbb{E}_{X,g} \max\{V_{g}(x_{g}, y) - V_U(y), 0\} \\ &+ \lambda_{s} \mathbb{E}_{X,s} \max\{V_{s}(x_{s}, y) - V_U(y), 0\} \end{split}$$

- flow value of unemployment b(y)
- job arrival rates λ_j , productivity/wage distributions F_{x_i}

Employment value in sector j

$$\begin{array}{lll} rV_{j}(x_{j},y) &= w_{j}(x_{j},y) &+ \delta_{j}(y) \left(V_{U}(y) - V_{j}(x_{j},y)\right) & \text{for j=g,p} \\ rV_{k}(x_{j},x_{s},y) &= w_{k}(x_{j},x_{s},y) + \delta_{j}(y) \left(V_{U}(y) - V_{k}(x_{j},x_{s},y)\right) & \text{for k=gs,ps} \\ rV_{s}(x_{s},y) &= x_{s} &+ \delta_{s}(y) \left(V_{U}(y) - V_{s}(x_{s},y)\right) & \text{for self-employment} \\ &+ \psi \lambda_{p}(k) \mathbb{E}_{X,p} \max\{V_{ps}(x_{p},y) - V_{s}(x_{s},y),0\} \\ &+ \psi \lambda_{g}(k) \mathbb{E}_{X,g} \max\{V_{gs}(x_{p},y) - V_{s}(x_{s},y),0\} \end{array}$$

- wage w_i and production x_s
- destruction rates δ_i back

Solution to worker's problem: Reservation productivity

• Wage from Nash bargaining is: $w_p(x_p, y) = \beta x_p + (1 - \beta) r V_U(y)$

• Assume public wage rule to be:

$$w_{\sigma}(x_{\sigma}, y) = \pi(y) + \gamma x_{\sigma} + (1 - \gamma)rV_{U}(y)$$

Reservation productivity: $R_p(y) = rV_u(y)$

$$\begin{split} R_{\rho}(y) &= b(y) + \frac{\lambda_{\rho,u}\beta}{r + \delta_{\rho}(y)} \int_{R_{\rho}(y)} \left[x - R_{\rho}(y) \right] \ dF_{X,\rho}(x|y) \\ &+ \frac{\lambda_{g,u}}{r + \delta_{g}(y)} \int_{R_{g}(y)} \left[w_{g}(x,y) - R_{\rho}(y) \right] \ dF_{X,g}(x|y) \\ &+ \frac{\lambda_{s}}{r + \delta_{\rho}(y)} \int_{R_{s}(y)} \left[R_{\rho,s}(x_{s},y) - R_{\rho}(y) \right] \ dF_{X,s}(x|y) \end{split}$$

$$\begin{split} R_s(y) &= R_{\rho}(y) - \frac{\lambda_{\rho,s}\beta}{r + \delta_{\rho}(y)} \int_{R_{\rho}(y)} \left[x - R_{\rho}(y) \right] \ dF_{X,\rho}(x|y) \\ &- \frac{\lambda_{g,s}}{r + \delta_g(y)} \int_{R_{g,s}(R_s(y),y)} \left[w_g(x,y) - R_{\rho}(y) \right] \ dF_{X,g}(x|y) \end{split}$$

Formal sector firm's problem

Value of filled job

$$rJ_u(x, y) = x - w_p(x, y) - \delta_p(y)J_u(x, y)$$

 $rJ_s(x, x_s, y) = x - w_{p,s}(x, x_s, y) - \delta_p(y)J_s(x, x_s, y)$

• no vacancy posting after job destruction

Value of private sector vacancy posting

$$\begin{split} rV &= -c + q(k) \frac{u}{u + \psi_s} \mathbb{E}_{FX,Y,p} \max\{J_u(x,y) - V, 0\} \\ &+ q(k) \frac{\psi_s}{u + \psi_s} \mathbb{E}_{FX,X_s,Y,p} \max\{J_s(x,x_s,y) - V, 0\} \end{split}$$

- vacancy posting cost c
- contacts per vacancy q(k) (k is LM tightness)
- joint distribution of x_p , y among unemployed and self-employed by parental background back

Solve firm's problem: Vacancy posting

• assume free-entry $\rightarrow V = 0$

Vacancy posting condition

$$\begin{split} c &= q(k) \frac{u}{u + \psi_S} \int \int_{R_p(y)} \frac{1 - \beta}{r + \delta_p(y)} (x - R_p(y)) dF_{X,p}(x|y) dF_Y(y|U) \\ &+ q(k) \frac{\psi_S}{u + \psi_S} \\ &\int \int_{R_p(y)} \int_{R_{pS}(x_s,y)} \frac{1 - \beta}{r + \delta_p(y)} (x - R_{pS}(x_s,y)) dF_{X,p}(x|y) dF_{X,s}(x_s|y) dF_Y(y|S) \end{split}$$

back

Steady state conditions

Steady state size of each sector

$$\begin{split} \delta_{p}(y)n_{p}(y) &= \lambda_{p} \left[1 - F_{X,p}(R_{p}(y)|y) \right] u(y) \\ &+ \lambda_{p,s} \int_{R_{s}(y)} \left[1 - F_{X,p}(R_{p,s}(x_{s},y)|y) \right] dF_{X,s}(x_{s}|y)n_{s}(y) \\ \delta_{g}(y)n_{g}(y) &= \lambda_{g} \left[1 - F_{X,g}(R_{g}(y)|y) \right] u(y) \\ &+ \lambda_{g,s} \int_{R_{s}(y)} \left[1 - F_{X,g}(R_{p,s}(x_{s},y)|y) \right] dF_{X,s}(x_{s}|y)n_{s}(y) \\ \delta_{s}(y)n_{s}(y) &= \lambda_{s} \left[1 - F_{X,s}(R_{s}(y)|y) \right] u(y) \\ &- \lambda_{p,s} \int_{R_{s}(y)} \left[1 - F_{X,p}(R_{p,s}(x_{s},y)|y) \right] dF_{X,s}(x_{s}|y)n_{s}(y) \\ &- \lambda_{g,s} \int_{R_{s}(y)} \left[1 - F_{X,g}(R_{g,s}(x_{s},y)|y) \right] dF_{X,s}(x_{s}|y)n_{s}(y) \\ &1 &= n_{p}(y) + n_{g}(y) + n_{s}(y) + u(y) \end{split}$$

Map of West Africa

Identification

Parameter	Moment	#	
Income/productivity distribution by sector $F_{x,j,y}$			
Public sector: $\mu_g(h)$, $\sigma_g(h)$	Mean & std. dev. of public income by education and background	20	
Private sector: $\mu_D(h)$, $\sigma_D(h)$	Mean & std. dev. of private income by education and background		
Self-employment: $\mu_S(h)$, $\sigma_S(h)$	Mean & std. dev. of self-employment income by education and background	20	
	Mean of public and private income by education	10	
	conditional on past self-employment		
Reservation wages, public minimum wage, search effic	iency		
Reservation wage private sector: $R_{up}(h, k)$	1st percentile of private income by education and background		
Public min. wage rule: ω_h	1st percentile of public income by education and background		
Search efficiency in self-employment: ψ	1st percentile of self-employment income by education and background	10	
Search efficiency with high parental background: ζ	same as above and sectoral shares by background as below		
Offer arrival and destruction rates			
Self-employment arrival rate: λ_S	Share of self-employment by education and background	10	
Labour market tightness: κ	htness: κ Share of public sector by education and background		
Share of private vacancies: ϕ	Share of private sector by education and background	10	
Destruction rates: $\delta_i(h)$	Mean employment duration by sector	3	
3	Unemployment rate by education and background	10	
All above	Corrected 3-year transition rates by education	80	
	Educational-background composition of each sector	40	
Calibrated parameters			
Interest rate: $r = 0.10$			
Bargaining power worker: $\beta = 0.5$			

Total moments

Matching elasticity: $\eta = 0.5$ Matching efficiency: A = 0.1

263

Goodness of fit: Unemployment

Figure: Unemployment - low parental background k

Figure: Unemployment - high parental background k

Results: Accepted wage distributions

Results: Reservation productivity and public premium

Param.	Description	Value				
		no educ	prim	low sec	up sec	tert
$R_p(y)$	Res. prod. formal	20.2	12.0	25.1	24.9	61.6
$\pi(y)$	Public wage premium	13.2	14.4	2.3	16.5	4.4
$R_s(y)$	Res. prod. self-emp	18.0	7.6	14.9	14.3	45.8
<i>b</i> (<i>y</i>)	(y) Unemployment flow		-80.8	-95.9	-112.3	-156.2
β	Bargaining pow. (calib.)			0.5		
γ	Prod. in public (calib.)	0.5				

Results: Productivity parameters

	Public		Formal		Self	
	μ	σ	μ	σ	μ	σ
No education	4.52	0.68	3.03	0.56	4.28	0.53
Primary	4.39	0.69	4.49	0.55	4.12	0.52
Lower sec.	5.05	0.68	5.06	0.76	4.05	0.71
Higher sec.	4.21	1.19	5.06	0.87	4.49	0.67
Tertiary	5.57	0.52	5.06	0.88	4.80	0.71

Results: Arrival rates and LM parameters

Parameter	Description	Value
q(k)/k	Offer arrival rate	0.15
k	LM tightness	47.7
λ	Offer arrival rate self-employment	0.17
ϕ	Fraction formal-sector vacancies	0.56
ψ	Search efficiency in self-employment	0.14
Vg	Public-sector vacancies	0.25%
С	Vacancy cost	2496
	Mean wage private sector	88.6

Results: Destruction rates

Policy simulations: Unemployment

Figure: Unemployment before and after policy

Policy simulations: Unemployment

Figure: Unemployment before and after policies

Policy simulations: Sectoral employment

Figure: Sectoral employment before and after policy

Policy simulations: Sectoral employment

Figure: Sectoral employment before and after policy

Policy simulations: Welfare (ex-post)

Figure: Welfare (ex-post) before and after policy

Policy simulations: Welfare (ex-post)

Figure: Welfare (ex-post) before and after policy

