#### Introduction

De Morgan's Laws

1.  $(A \cup B)^C = A^C \cap B^C$ 

 $2. \quad (A \cap B)^C = A^C \cup B^C$ 

The 3 axioms of Probability

1. For every event  $E \subset S$ ,  $P(E) \ge 0$ 

**2**. P(S) = 1

3. If  $E_1, E_2, ...$  is a sequence of events such that  $E_i \cap E_i = \phi \ \forall i \neq j$ , then

$$P\bigcup_{i=1}^{\infty}E_i=\sum_{i=1}^{\infty}P(E_i)$$

Introductory Theorems (Proofs not included):

1.  $P(E^C) = 1 - P(E)$ 

2.  $P(\phi) = 0$ 

3.  $P(E \cap F^C) = P(E) - P(E \cap F)$ 

4.  $E \subset F \Rightarrow P(E) \leq P(F)$ 

5.  $P(E \cup F) = P(E) + P(F) - P(E \cap F)$ 

6. If S is a finite sample space with N equally probable outcomes, and E is any event in S, then P(E) = |E|/N

# Sausage rule:

Given a problem where we are asked to choose a sample of size n from a space with N objects where a are tagged, and we are asked to find the probability of the event where x of the sample will be tagged.

Define 2 "sausages", the first has as objects sets of x tagged objects that can be drawn from the a tagged objects, the second has as objects sets of n-x untagged objects that can be drawn from the N-a untagged objects. We wish to count the number of ways that we can draw objects from "sausage" 1 and "sausage" 2.

Therefore, this type of problem can be solved with:

$$\frac{\binom{a}{x}\binom{N-a}{n-x}}{\binom{N}{n}}$$

This later came to be known as a Hypergeometric Distribution.

## **Conditional Probability**

Definition:

$$P(B|A) = P(B \cap A)/P(A)$$

By extension, we now have that

$$P(B \cap A) = P(B|A)P(A) = P(A|B)P(B)$$

Conditional Probability Theorems (Proofs not included):

- 1.  $P(B|A) \ge 0 \ \forall B$
- **2**. P(S|A) = 1
- 3. If  $B_1$ ,  $B_2$ , ... are disjoint events, then  $P(\bigcup_{i=1}^{\infty} B_i | A) = \sum_{i=1}^{\infty} P(B_i | A)$
- 4.  $P(B^C|A) = 1 P(B|A)$
- 5. A is any event. Define  $B_1, B_2, ..., B_n$  such that
  - $\textbf{a.} \quad B_i \cap B_j = \varphi \ \forall \ i \neq j$

$$b. \quad \bigcup_{i=1}^{n} B_i = S$$

Then, we have that  $P(A) = \sum_{i=1}^{n} P(A|B_i)P(B_i)$ 

- 6. A is any event. Define  $B_1, B_2, ..., B_n$  such that
  - a.  $B_i \cap B_j = \phi \ \forall \ i \neq j$

b. 
$$\bigcup_{i=1}^{n} B_i = S$$

Then, we have that  $P(B_k|A) = \frac{P(A|B_k)P(B_k)}{\sum\limits_{j=1}^n P(A|B_j)P(B_j)} \forall k = 1, 2, ..., n$ 

This is known as Bayes' Theorem.

## Definition:

- 1. Two events A and B are **independent** if P(B|A) = P(B) and/or P(A|B) = P(A).
- 2. We may also say that these two events are **independent** if  $P(A \cap B) = P(A)P(B)$ .
- 3. By extension, we may say that the events  $A_1, A_2, ..., A_n$  are **mutually independent** if  $P(\bigcap_{j=1}^k A_{ij}) = \prod_{j=1}^k P(A_{ij}) \ \forall \ subsets \ A_{i1}, \ A_{i2}, ..., \ A_{ik} \ of \ A_1, \ A_2, ..., \ A_n \ \forall \ k=1, \ 2, \ ..., \ n$ .
- 4. Given the same definition for subsets as seen above, we say that  $A_1, A_2, ..., A_n$  are pairwise independent if  $P(A_{ij} \cap A_{ik}) = P(A_{ij})P(A_{ik}) \ \forall A_{ij}, A_{ik}$ .
- 5. An infinite collection of events  $A_1$ ,  $A_2$ , ... is **independent** iff every finite collection of  $A_i$ s is independent according to Definition 3.

Related Theorems (Proofs not included):

- 1. If A and B are independent, then  $A^C$  and  $B^C$  are independent.
- 2. If A and B are disjoint, then they are independent iff either P(A) = 0 or P(B) = 0.

### **Random Variables**

## Definition:

Let S be a sample space with outcomes w. A **random variable** is defined to be a real-valued function  $X: S \to \Re s.t. X(w) \epsilon \Re \forall w \epsilon S$ .

The function of x given by  $P(X\varepsilon] - \infty, x]) = P(X \le x)$  is the **cumulative distribution function** of **X** (cdfs), it may be denoted as  $F_X(x)$ . cdfs have the following properties:

- 1.  $F_{x}(x)$  specifies probability distribution;
- 2. Define  $P(X \in A) = P(w : X(w) \in A)$ ;

- 3.  $F_X(x)$  has a few basic properties:
  - a.  $F_{x}(x) \leq F_{x}(y)$  if  $x \leq y$ ;
  - b.  $F_X(\infty) = \lim_{x \to \infty} F_X(x) = 1$  and  $F_X(-\infty) = \lim_{x \to -\infty} F_X(x) = 0$ ;
  - c.  $F_X(x)$  need only be continuous from the right.

## **Discrete Random Variables**

#### Definition:

The real-valued function of x that gives  $P(X = x) \forall x$  in the range of X is called the **probability function of X**, denoted by  $p_X(x) = P(X = x)$ .

Illustrating the difference between the cumulative distribution function of X and the probability function of X:



On the probability function, we see that  $p_X(x_3) = P(X = x_3) = 0.4$ 

On the cumulative distribution function, we see that  $F_X(x_3) = P(X\varepsilon] - \infty, x_3]) = P(X \le x_3) = 0.8$ 

## Named Discrete Random Variable Distributions

1. Discrete Uniform Distribution

$$p_X(a_i) = P(X = a_i) = \frac{1}{N} \ \forall \ 1 \le i \le N$$

Used to model complete randomness over a discrete set.

2. Bernoulli Distribution

$$p_X(x) = P(X = x) = p^x(1-p)^{1-x}$$
 for  $0 \le p \le 1$  and  $x = 0, 1$ 

Used to describe random variables that take on one of two values.

3. Binomial Distribution

$$p_X(x) = P(X = x) = \binom{n}{x} p^x (1-p)^{n-x} \text{ for } 0 \le p \le 1, \ x = 0, 1, 2, ..., n$$
  
 $X \sim Bin(n, p)$ 

Arises in the "Binomial Setup":

- a. We have *n* independent trials which each result in exactly one of two outcomes;
- b. The probability of success on trial i is consistently p.
- 4. Poisson Distribution

$$p_X(x) = P(X = x) = \frac{\lambda^x e^{-\lambda}}{x!}$$
 for  $x = 0, 1, 2, ...$ 

This is an approximation to the Binomial Distribution. To be used when, in the Binomial definition, n is large and p is small, we define  $\lambda = np$ .

5. Hypergeometric Distribution

$$p_X(x) = P(X = x) = \frac{\binom{a}{x}\binom{N-a}{n-x}}{\binom{N}{n}}$$
 for  $x = 0, 1, ..., min\{a, n\}, a \le N, n \le N$ 

Arises when sampling without replacement from a set of N objects: a are of type 1, N-a are of type 2, our desired sample has size n, and we want the probability of observing x of type 1 in our sample.

6. Geometric Distribution

$$p_X(x) = P(X = x) = (1 - p)^{x-1} p \text{ for } x = 1, 2, ...$$

Arises when, given a sequence of independent and consistent Bernoulli trials, X denotes the trial number at which the first success is observed.

7. Negative Binomial Distribution

$$p_X(x) = P(X = x) = \binom{x-1}{k-1} p^k (1-p)^{x-k}$$
 for  $x = k, k+1, ...$ 

Arises when, given a sequence of independent and consistent Bernoulli trials, X denotes the trial number at which the  $k^{th}$  success is observed.

# Mathematical Expectation and Variance of a Discrete Random Variable

### Definition:

The Expected Value (or mean) of a discrete random variable X is defined as

$$E(X) = \sum_{x : x \text{ is in the range of } X} x p_X(x) = \sum_{x : x \text{ is in the range of } X} x P(X = x)$$

$$E(X) = \mu$$

This is a weighted average of the values of  $\boldsymbol{X}$ .

E(X) has the following properties:

- a) For some constant c, E(cX) = cE(X)
- b) For some set of random variables  $X_1, X_2, ..., X_n$ ,  $E(\sum_{i=1}^n X_i) = \sum_{j=1}^n E(X_j)$

## Definition:

The Variance of a discrete random variable X is defined as

$$Var(X) = \sigma_X^2 = E(X - \mu)^2 = \sum_{all \ x} (x - \mu)^2 P(X = x) = E(X^2) - \mu^2$$

The variance is the average of the squared distance of X from  $\mu$ .

 $\sigma$  is the standard deviation of a random variable.

$$E(X^2) \ge E(X)^2$$
 and  $E(XY) \ne E(X)E(Y)$  (in general).

**Expectation and Variance of Some Above-Named Distributions:** 

1. Discrete Uniform Distribution

$$E(X) = \sum_{i=1}^{N} a_i \frac{1}{N}$$

$$V \operatorname{ar}(X) = \frac{1}{N} \sum_{i=1}^{N} (a_i - \sum_{j=1}^{N} (a_j \frac{1}{N}))^2 = \frac{1}{N} \sum_{i=1}^{N} (a_i - E(X))^2$$

2. Bernoulli Distribution

$$E(X) = 1.p + 0.(1 - p) = p$$
  
 $Var(X) = E(X^{2}) - p^{2} = p(1 - p)$ 

3. Binomial Distribution

$$E(X) = np$$
$$V ar(X) = np(1-p)$$

4. Poisson Distribution

$$E(X) = \lambda$$
$$V ar(X) = \lambda$$

5. Geometric Distribution

$$E(X) = \frac{1}{p}$$

$$V \operatorname{ar}(X) = \frac{1-p}{p^2}$$

Useful property:

$$E(X(X-1)) = E(X^{2}) - E(X)$$

$$V \operatorname{ar}(X) = E(X(X-1)) + E(X) - E(X)^{2}$$

## Continuous Random Variables:

## Definition:

A random variable X is said to be **continuous** if its **cumulative distribution function**  $F_X(x) = P(X \le x)$  is a continuous function over all real values of x. As a consequence, P(X = x) = 0.

The **probability density function**  $f_X(x)$  of a random variable X is a function with the following property:  $P(X \le x) = F_X(x) = \int\limits_{-x}^{x} f_X(y) dy$ . Note that  $\int\limits_{-x}^{\infty} f_X(y) dy = 1$ 

Illustrating the difference between **cumulative distribution function** and **probability density function**:





Where  $f_X(x) = \frac{x^3}{4}$  when  $0 \le x \le 2$ ,  $f_X(x) = 0$  otherwise.

Note: if we are given a real function  $g(x) \ge 0$ , we may convert it a probability density function

$$f_X(x)$$
 with  $f_X(x) = \frac{g(x)}{\int_{-\infty}^{\infty} g(x)dx}$ 

# <u>Mathematical Expectation and Variance of a Continuous Random Variable</u> Definition:

The Expected Value (or mean) of a continuous random variable X is defined as

$$E(X) = \int_{-\infty}^{\infty} x f_X(x) dx$$
$$E(X) = \mu$$

### Definition:

The Variance of a continuous random variable X is defined as

$$Var(X) = \sigma_X^2 = E(X - \mu)^2 = \int_{-\infty}^{\infty} (x - \mu)^2 f_X(x) dx = E(X^2) - \mu^2 = \int_{-\infty}^{\infty} x^2 f_X(x) dx - \int_{-\infty}^{\infty} x f_X(x) dx$$

## Named Continuous Random Variable Distributions:

1. The Uniform Distribution, U(a, b)

$$f_X(x) = \frac{1}{b-a} \text{ when } a < x < b, \text{ 0 elsewhere}$$

$$E(X) = \frac{a+b}{2}$$

$$V \operatorname{ar}(X) = \frac{(b-a)^2}{12}$$

Arises in modelling a complete randomness in a continuous setting.

2. The Exponential Distribution,  $exp(\beta)$ 

$$f_X(x) = \frac{1}{\beta}e^{\frac{-x}{\beta}}$$
 for  $x \ge 0$ , 0 elsewhere  $E(X) = \beta$   
 $Var(X) = \beta^2$ 

Has the **memoryless property**, that is,  $P(a < X < a + h \mid X > a) = P(0 < X < h)$ The **hazard function** of X  $\lambda_X(x) = \lim_{\Delta x \to 0} \frac{P(x < X < x + \Delta x \mid X > x)}{\Delta x}$ . This function represents the ratio of the probability density function  $f_X(x)$  to the survival function P(X > x).

3. The Gamma Distribution,  $\Gamma(\alpha, \beta)$ 

$$f_X(x) = \frac{1}{\Gamma(\alpha)} \frac{1}{\beta^{\alpha}} x^{\alpha - 1} e^{\frac{-x}{\beta}}, \text{ where } \Gamma(\alpha) = \int_0^\infty x^{\alpha - 1} e^{-x} dx$$

$$E(X) = \beta \alpha$$

$$V \operatorname{ar}(X) = \beta^2 \alpha$$

Arises in in processes for which the waiting times between Poisson-distributed events are relevant [second opinion on this desired]

4. The Chi-Squared Distribution,  $\chi_{v}^{2}$ 

$$\chi_{v}^{2} = \Gamma(\frac{v}{2}, 2)$$

$$E(X) = v$$

5. The Normal Distribution,  $N(\mu, \sigma^2)$ 

$$f_X(x) = \frac{1}{\sqrt{2\pi}} \frac{1}{\sigma} e^{(\frac{-1}{2}\sigma^2(x-\mu)^2)}$$
  
 $E(X) = \mu$ 

$$Var(X) = \sigma^2$$

Arises in models extending the **central limit theorem**, which states that the sum of a large number of random variables is approximately normally distributed.

If  $X \sim N(\mu, \sigma^2)$ , we can define  $Z = \frac{X - \mu}{\sigma}$  to get  $Z \sim N(0, 1)$ , this process is called **standardization** 

This is analogous to the discrete Binomial Distribution

### **Transformations of Random Variables**

## Application:

We have the distribution of some Random Variable X and we wish to obtain the distribution of some real function g(x) of X.

## <u>Transformations of Discrete Random Variables</u>

- 1. Given a discrete random variable X, we wish to find the distribution of a discrete random variable Y which can be mapped by some real function g(x) of X.
- 2. Find  $P(Y = y) = P(g(x) = y) = P(X = g^{-1}(y))$
- 3. Substitute x with  $g^{-1}(y)$  in the probability function of X,  $p_X(x)$ . The result is the probability function of Y,  $p_Y(y)$ .
- 4. Apply the same transformation to the domain of X to obtain the domain of Y.

## Transformations of Continuous Random Variables

- 1. Given a continuous random variable X with pdf  $f_X(x)$ , we wish to find the pdf of a continuous random variable Y  $f_Y(y)$ , where Y is subject to an increasing function of X, g(X)
- 2. Find  $F_Y(y) = F_X(g^{-1}(y))$
- 3. Find  $f_Y(y) = f_X(g^{-1}(y)) \frac{d}{dy}(g^{-1}(y))$

## Definition:

Given some continuous random variable X which has a strictly increasing cdf  $F_X(x)$ , we can define a new random variable  $Y = F_X(x)$ , then  $Y \sim U(0,1)$ . This transformation is called a **probability integral transformation**.

## Theorem:

Given a random variable X and a random variable Y which is subject to the constraint Y = g(X) such that  $E|g(X)| < \infty$ :

- If X is discrete,  $E(g(x)) = \sum_{all \ x} g(x)p_X(x)$
- If X is continuous,  $E(g(x)) = \int_{-\infty}^{\infty} g(x)f_X(x)dx$

By the definition of E(X).

# **Moment Generating Functions**

Definition:

 $E(X^k)$  is the k th moment of some random variable X if  $E(|X|^k) < \infty$ 

For some random variable X, the function  $M_X(t) = E(e^{tX})$  is called the **moment generating** function of X.

- If X is discrete,  $M_X(t) = \sum_{x,y} e^{tx} p_X(x)$
- If X is continuous,  $M_X(t) = \int_0^\infty e^{tx} f_X(x) dx$

Useful property:  $M_X^{(k)}(0) = E(X^k)$ 

## Moment Generating Functions of some known distributions:

- $X \sim Bin(n, p), M_X(t) = (e^t p + (1-p))^n$
- $X \sim Po(\lambda), M_X(t) = e^{\lambda(e^t-1)}$
- $X \sim \Gamma(\alpha, \beta), M_X(t) = \frac{1}{(1-\beta t)^{\alpha}}$
- $X \sim N(\mu, \sigma^2), M_X(t) = e^{\mu t + \frac{1}{2}\sigma^2 t^2}$
- $X \sim N(0, 1), M_X(t) = e^{\frac{t^2}{2}}$

### **Multivariate Distribution**

#### Definition:

Given 2 random variables X and Y,  $F_{XY}(x,y)$  is the **joint cumulative distribution function** of X and Y if  $F_{X,Y}(x,y) = P(X \le x \cap Y \le y)$ 

The following properties must hold in order for two random variables X and Y to have a joint pdf:

- $f_{XY}(x,y) \ge 0$
- $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{X,Y}(x,y) dx dy = 1 \text{ if } X \text{ and } Y \text{ are continuous}$   $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{X,Y}(x,y) dx dy = F_{X,Y}(x_0,y_0) \text{ if } X \text{ and } Y \text{ are continuous}$
- $\sum_{y:y\leq y_0}\sum_{x:x\leq x_0}p_{X,Y}(x,y)=F_{X,Y}(x_0,y_0)$  if X and Y are discrete

Given a **joint cumulative distribution function**,  $f_X(x)$  [ $p_X(x)$ ] and  $f_Y(y)$  [ $p_Y(y)$ ] are said to be the marginal probability distribution functions of X and Y.

Given some function of x and y, we can find the expected value of the function as follows:

- $E(g(x,y)) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x,y) f_{X,Y}(x,y) dx dy$  if X and Y are continuous
- $E(g(x,y)) = \sum_{all \ x} \sum_{all \ x} g(x,y) p_{X,Y}(x,y)$  if X and Y are discrete

#### **Conditional Distributions**

Given a pair of jointly distributed random variables X and Y, we define the **conditional** distribution of the two as

• 
$$p_{Y|X=x}(y|x) = P(Y=y|X=x) = \frac{P(X=x,Y=y)}{P(X=x)}$$
 if  $X$  and  $Y$  are discrete and  $P(X=x) \neq 0$ 

• 
$$f_{Y|X=x}(y|x) = \frac{f_{X,Y}(x,y)}{f_Y(x)}$$
 if  $X$  and  $Y$  are continuous and  $f_X(x)$ 

We can then define the conditional cumulative distribution function as

• 
$$F_{Y|X=x}(y|x) = P(Y=y|X=x) = \int_{-\infty}^{y} f_{Y|X=x}(y|x)dy$$
 if  $X$  and  $Y$  are continuous

• 
$$F_{Y|X=x}(y_0|x) = \sum_{y:y \le y_0} \frac{p_{X,Y}(x,y_0)}{p_x(x)}$$
 if  $X$  and  $Y$  are discrete

We may then the conditional expected value as follows:

• 
$$E(Y|X=x) = \int_{-\infty}^{\infty} y f_{Y|X=x}(y|x) dy$$
 if  $X$  and  $Y$  are continuous

• 
$$E(Y|X=x) = \sum_{all\ y} yp_{Y|X=x}(y|x)$$
 if  $X$  and  $Y$  are discrete

## Independence of Random Variables

Definition:

The random variables  $X_1, X_2, ..., X_n$  are **independent** if

• 
$$f_{X_1,X_2,...,X_n}(x_1x_2,...,x_n) = f_{X_1}(x_1)f_{X_2}(x_2)...f_{X_n}(x_n)$$
 if all are continuous

• 
$$p_{X_1,X_2,...,X_n}(x_1x_2,...,x_n) = p_{X_1}(x_1)p(x_2)...p_{X_n}(x_n)$$
 if all are discrete

• 
$$F_{X_1,X_2,...,X_n}(x_1x_2,...,x_n) = F_{X_1}(x_1)F_{X_2}(x_2)...F_{X_n}(x_n)$$

Property of independence:

Given 2 random variables X and Y, independent over functions g(X), h(Y), we have that E(g(X)h(Y)) = E(g(x))E(h(y))

Theorem:

Let  $X_1, X_2, ..., X_n$  be independent random variables;

Let 
$$S_n = \sum_{i=1}^n X_i$$
;

Then 
$$M_{S_n}(t) = \prod_{i=1}^n M_{X_i}(t)$$

Theorem:

Let X, Y be discrete random variables with joint probability function  $p_{XY}(x,y)$ . Then:

• 
$$p_Y(y) = \sum_{x} p_{Y|X=x}(y|x)p_X(x)$$

• 
$$E(Y) = \sum_{x} E(Y|X=x)p_X(x)$$

### **Central Limit Theorem**

Let  $X_1, X_2, ..., X_n$  be independent random variables with  $E(X) = \mu$  and  $Var(X) = \sigma^2$ . Then

$$P(\frac{\sum\limits_{i=1}^{n}X_{i}-E(\sum\limits_{i=1}^{n}X_{i})}{\sqrt{Var(\sum\limits_{i=1}^{n}X_{i})}}\leq x)\rightarrow P(Z\leq x) \text{ , where } Z\sim N(0,1) \text{ . This is equal to}$$
 
$$P(\frac{\sum\limits_{i=1}^{n}X_{i}-n\mu}{\sqrt{n\sigma^{2}}}\leq x)\rightarrow P(Z\leq x) \text{ .}$$

$$P(\frac{\sum_{i=1}^{n} X_i - n\mu}{\sqrt{n\sigma^2}} \le x) \to P(Z \le x).$$