Quasirandom combinatorial structures

Dan Král' (Masaryk University, Brno)

April 29, 2021

MOTIVATION

- What does it mean to look randomly?
 graphs, permutations, etc.
 this talk: approach on substructure density
- computer science derandomization, cryptography
- statistics independence of data

- Quasirandom graphs
- Quasirandom tournaments
- Quasirandom permutations
- Quasirandom Latin squares

- Quasirandom graphs
- Quasirandom tournaments
- Quasirandom permutations
- Quasirandom Latin squares

CLASSICAL RESULTS

- quasirandom graph \approx Erdős-Rényi graph $G_{n,p}$ not a property of a single graph but a sequence
- Rödl, Thomason, Chung, Graham and Wilson (1980's)
- d(H,G) = (homomorphic) density of H in G
- G_1, G_2, \ldots is quasirandom if $d(H, G_i) \to \mathbb{E} d(H, G_{n,p})$

EQUIVALENT CHARACTERIZATIONS

- G_1, G_2, \ldots is quasirandom if $d(H, G_i) \to \mathbb{E} d(H, G_{n,p})$ $\Leftrightarrow d(K_2, G_i) \to p \text{ and } d(C_4, G_i) \to p^4$ $\Leftrightarrow \text{every } n\text{-vertex subset induces} \approx pn^2/2 \text{ edges}$
 - \Leftrightarrow number of edges between A and B is $\approx p|A||B|$
 - \Leftrightarrow spectrum of the adjacency matrix is $\{pn, o(n), \dots, \}$

GRAPH LIMIT VIEW

- a sequence G_i is convergent if $d(H, G_i)$ converges quasirandom $\Leftrightarrow d(H, G_i) \to \mathbb{E} d(H, G_{n,p})$
- graphon analytic representation of the limit $W:[0,1]^2 \to [0,1]$, a "continuous" adjacency matrix regularity decompositions, martingale convergence
- possible to define d(H, W) for every graph H

GRAPH LIMIT VIEW

- a sequence G_i is convergent if $d(H, G_i)$ converges
- graphon analytic representation of the limit $W:[0,1]^2 \to [0,1]$, a "continuous" adjacency matrix density d(H,W) of a graph H in W
- a sequence G_i is quasirandom iff W = 1/2 a.e. $d(K_2, W) = p$ and $d(C_4, W) = p^4 \Leftrightarrow W = p$

FINITELY FORCIBLE GRAPH LIMITS

- $d(K_2, W) = p$ and $d(C_4, W) = p^4 \Leftrightarrow W = p$
- a graphon W_0 is finitely forcible if $\exists G_i, d_i$ s.t. $d(G_i, W) = d_i \Leftrightarrow W = W_0$
- another example: $d(K_2, W) = 1/2$ and $d(K_3, W) = 0$
- Simple structure? Useful for extremal graph theory?

SIMPLE STRUCTURE?

- Conjectures (Lovász and Szegedy, 2011): The space T(W) of a finitely forcible W is compact. The space T(W) has finite dimension.
- Theorem (Glebov, K., Volec, 2019): T(W) can fail to be locally compact
- Theorem (Glebov, Klimošová, K., 2019): T(W) can have a part homeomorphic to $[0,1]^{\infty}$
- Theorem (Cooper, Kaiser, K., Noel, 2018): \exists finitely forcible W with no small ε -regular partition

Universality

- Theorem (Cooper, K. Martins, 2018) Every graphon can be embedded in a finitely forcible graphon.
- Theorem (K., Lovász Jr., Noel, Sosnovec, 2020) The embedding can be made to be of $1 - \varepsilon$ of the host.

EXTREMALITY

- Every finitely forcible graphon is extremal.
- Conjecture (Lovász and Szegedy, 2011): Every problem has a finitely forcible optimal solution.
- Theorem (Grzesik, K., Lovász Jr., 2020) Extremal problems with no finitely forcible optimum.

- Quasirandom graphs
- Quasirandom tournaments
- Quasirandom permutations
- Quasirandom Latin squares

WHICH TOURNAMENTS FORCE?

- tournament is an orientation of a complete graph
- every transitive tournament is quasirandom-forcing
- additional 5-vertex (Coregliano, Parente, Sato, 2019)
- no \geq 7-vertex (Bucić, Long, Shapira, Sudakov, 2019+)
- no additional at all tournaments (Hancock, Kabela, K., Martins, Parente, Skerman, Volec, 2019+)

- Quasirandom graphs
- Quasirandom tournaments
- Quasirandom permutations
- Quasirandom Latin squares

PERMUTATION LIMITS

- permutation of order n: order on numbers $1, \ldots, n$ subpermutation: $4\underline{53}21\underline{6} \rightarrow 213 \qquad 4\underline{53}2\underline{1}6 \rightarrow 321$
- probability measure μ on $[0,1]^2$ with unit marginals Hoppen, Kohayakawa, Moreira, Ráth and Sampaio similar ideas in work of Presutti and Stromquist
- μ -random permutation choose n random points, x- and y-coordinates

QUASIRANDOM PERMUTATIONS

- a sequence Π_i is quasirandom $\Leftrightarrow d(\pi, \Pi_i) \to 1/k!$ for every $\pi \in S_k$ and all k $\Leftrightarrow \Pi_i$ converges to the uniform measure
- Question (Graham)

 Does there exist k_0 such that quasirandomness $\Leftrightarrow d(\pi, \Pi_i) \to 1/k_0!$ for every $\pi \in S_{k_0}$?
- $k_0 = 3$ is not sufficient: d(123, .) ranges from 1/4 to 1/8

Quasirandom forcing

- Question (Graham) quasirandomness $\Leftrightarrow d(\pi, \Pi_i) \to 1/k_0!$ for every $\pi \in S_{k_0}$
- Theorem (K., Pikhurko, 2013) quasirandomness $\Leftrightarrow d(\pi, \Pi_i) \to 1/24$ for every $\pi \in S_4$ independence tests (Hoeffding 1948, Yanagimoto 1970)
- Do we need that $d(\pi, \Pi_i) = 1/24$ for all $\pi \in S_4$?

QUASIRANDOM FORCING

- Do we need that $d(\pi, \Pi_i) = 1/24$ for all $\pi \in S_4$?
- Theorem (Kurečka, 2020+)
 At least 4 permutations (regardless of orders) needed.
- Theorem (Chan, K., Noel, Pehova, Sharifzadeh, Volec) characterization of sets $T \subseteq S_4$ such that Π_i is quasirandom $\Leftrightarrow \sum_{\pi \in T} d(\pi, \Pi_i) \to |T|/24$

- Quasirandom graphs
- Quasirandom tournaments
- Quasirandom permutations
- Quasirandom Latin squares

LATIN SQUARES

- Latin square each row/column contain all numbers $1, \ldots, n$
- pattern density: choose rows and columns
- limit theory by Garbe, Hancock, Hladký, Sharifzadeh sampling is tricky (existence of designs)

Quasirandom Latin squares

- Conjecture (Garbe, Hancock, Hladký, Sharifzadeh) quasirandomness \Leftrightarrow density of $k \times \ell$ pattern is $1/(k\ell)$!
- Theorem (Cooper, K., Lamaison, Mohr, 2020+) quasirandomness \Leftrightarrow density of 2×3 pattern is 1/720 2×3 cannot be replaced with $1 \times \ell$ or 2×2

OPEN PROBLEMS

- minimal quasirandom forcing subsets of S_4
- minimal quasirandom forcing sets of permutations
 Can four permutation force quasirandomness?
- general theory of quasirandom relational structures??
 A common property of finiteness characterizations

Thank you for your attention!