GeeksforGeeks

A computer science portal for geeks

Login

Home	Algorithms	DS	GATE	Intervi	ew Corner	Q&A	С	C++	Java	Books	Contribute	Ask a Q	About
Array	Bit Magic	C/C+	+ Arti	cles	GFacts	Linked L	ist	MCQ	Misc	Output	t String	Tree	Graph

Dynamic Programming | Set 22 (Box Stacking Problem)

You are given a set of n types of rectangular 3-D boxes, where the i'th box has height h(i), width w(i) and depth d(i) (all real numbers). You want to create a stack of boxes which is as tall as possible, but you can only stack a box on top of another box if the dimensions of the 2-D base of the lower box are each strictly larger than those of the 2-D base of the higher box. Of course, you can rotate a box so that any side functions as its base. It is also allowable to use multiple instances of the same type of box.

Source: http://people.csail.mit.edu/bdean/6.046/dp/. The link also has video for explanation of solution.

The Box Stacking problem is a variation of LIS problem. We need to build a maximum height stack.

Following are the key points to note in the problem statement:

1) A box can be placed on top of another box only if both width and depth of the upper placed box

53,523 people like GeeksforGeeks.

Interview	Experiences

Advanced Data Structures

Dynamic Programming

Greedy Algorithms

Backtracking

Pattern Searching

Divide & Conquer

Mathematical Algorithms

Recursion

Geometric Algorithms

are smaller than width and depth of the lower box respectively.

- 2) We can rotate boxes. For example, if there is a box with dimensions {1x2x3} where 1 is height, 2×3 is base, then there can be three possibilities, {1x2x3}, {2x1x3} and {3x1x2}.
- 3) We can use multiple instances of boxes. What it means is, we can have two different rotations of a box as part of our maximum height stack.

Following is the **solution** based on DP solution of LIS problem.

- 1) Generate all 3 rotations of all boxes. The size of rotation array becomes 3 times the size of original array. For simplicity, we consider depth as always smaller than or equal to width.
- 2) Sort the above generated 3n boxes in decreasing order of base area.
- 3) After sorting the boxes, the problem is same as LIS with following optimal substructure property.

```
MSH(i) = Maximum possible Stack Height with box i at top of stack
MSH(i) = { Max ( MSH(j) ) + height(i) } where j < i and width(j) > width(i) and depth(j) > depth(i).
If there is no such j then MSH(i) = height(i)
```

4) To get overall maximum height, we return max(MSH(i)) where 0 < i < n

Following is C++ implementation of the above solution.

```
/* Dynamic Programming implementation of Box Stacking problem */
#include<stdio.h>
#include<stdlib.h>
/* Representation of a box */
struct Box
  // h -> height, w -> width, d -> depth
  int h, w, d; // for simplicity of solution, always keep w <= d</pre>
};
// A utility function to get minimum of two intgers
int min (int x, int y)
{ return (x < y)? x : y; }
// A utility function to get maximum of two intgers
int max (int x, int y)
{ return (x > y)? x : y; }
```

Informix Database

O progress.com/Informix

JDBC Compliant w/ Major Databases Fully Functional Eval -Try Now!

Popular Posts

All permutations of a given string

Memory Layout of C Programs

Understanding "extern" keyword in C

Median of two sorted arrays

Tree traversal without recursion and without stack!

Structure Member Alignment, Padding and

Data Packing

Intersection point of two Linked Lists

Lowest Common Ancestor in a BST.

Check if a binary tree is BST or not

Sorted Linked List to Balanced BST

```
/* Following function is needed for library function qsort(). We
   use qsort() to sort boxes in decreasing order of base area.
   Refer following link for help of qsort() and compare()
   http://www.cplusplus.com/reference/clibrary/cstdlib/qsort/ */
int compare (const void *a, const void * b)
    return ( (*(Box *)b).d * (*(Box *)b).w ) -
           ( (*(Box *)a).d * (*(Box *)a).w );
/* Returns the height of the tallest stack that can be formed with give
int maxStackHeight( Box arr[], int n )
   /* Create an array of all rotations of given boxes
      For example, for a box \{1, 2, 3\}, we consider three
      instances{{1, 2, 3}, {2, 1, 3}, {3, 1, 2}} */
   Box rot[3*n];
   int index = 0;
   for (int i = 0; i < n; i++)
      // Copy the original box
      rot[index] = arr[i];
      index++:
      // First rotation of box
      rot[index].h = arr[i].w;
      rot[index].d = max(arr[i].h, arr[i].d);
      rot[index].w = min(arr[i].h, arr[i].d);
      index++;
      // Second rotation of box
      rot[index].h = arr[i].d;
      rot[index].d = max(arr[i].h, arr[i].w);
      rot[index].w = min(arr[i].h, arr[i].w);
      index++;
   // Now the number of boxes is 3n
   n = 3*n;
   /* Sort the array 'rot[]' in decreasing order, using library
      function for quick sort */
   qsort (rot, n, sizeof(rot[0]), compare);
   // Uncomment following two lines to print all rotations
   // for (int i = 0; i < n; i++)
         printf("%d x %d x %d\n", rot[i].h, rot[i].w, rot[i].d);
```


/* Initialize msh values for all indexes msh[i] -> Maximum possible Stack Height with box i on top */ int msh[n]; for (int i = 0; i < n; i++)</pre> msh[i] = rot[i].h;/* Compute optimized msh values in bottom up manner */ **for** (int i = 1; i < n; i++) for (int j = 0; j < i; j++)</pre> if (rot[i].w < rot[j].w &&</pre> rot[i].d < rot[j].d && msh[i] < msh[j] + rot[i].hmsh[i] = msh[j] + rot[i].h;/* Pick maximum of all msh values */ int max = -1;for (int i = 0; i < n; i++)</pre> **if** (max < msh[i]) max = msh[i];return max; /* Driver program to test above function */ int main() Box arr[] = { $\{4, 6, 7\}, \{1, 2, 3\}, \{4, 5, 6\}, \{10, 12, 32\} \};$ int n = sizeof(arr)/sizeof(arr[0]);

Output:

return 0;

The maximum possible height of stack is 60

maxStackHeight (arr, n));

In the above program, given input boxes are {4, 6, 7}, {1, 2, 3}, {4, 5, 6}, {10, 12, 32}. Following are all rotations of the boxes in decreasing order of base area.

Recent Comments

Aman Hi, Why arent we checking for conditions...

Write a C program to Delete a Tree. · 37 minutes ago

kzs please provide solution for the problem...

Backtracking | Set 2 (Rat in a Maze) · 41 minutes ago

Sanjay Agarwal bool

tree::Root_to_leaf_path_given_sum(tree...

Root to leaf path sum equal to a given number · 1 hour ago

GOPI GOPINATH @admin Highlight this sentence "We can easily...

Count trailing zeroes in factorial of a number 1 hour ago

newCoder3006 If the array contains negative numbers also. We...

Find subarray with given sum 1 hour ago

newCoder3006 Code without using while loop. We can do it...

Find subarray with given sum · 1 hour ago

AdChoices [>

- ► C++ Vector
- ► C++ Code
- ► Stacking Boxes

printf("The maximum possible height of stack is %d\n",

10 x 12 x 32 12 x 10 x 32 32 x 10 x 12 4 x 6 x 7 4 x 5 x 6 6 x 4 x 7 5 x 4 x 6 7 x 4 x 6 6 x 4 x 5 1 x 2 x 3 2 x 1 x 3 3 x 1 x 2

The height 60 is obtained by boxes { {3, 1, 2}, {1, 2, 3}, {6, 4, 5}, {4, 5, 6}, {4, 6, 7}, {32, 10, 12}, **{10**, 12, 32**}**}

Time Complexity: O(n^2) Auxiliary Space: O(n)

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.

AdChoices [>

- ► Java Source Code
- ► Programming C++
- ► Rectangle Box

AdChoices ▷

- ► Stack Stacking
- ► Box 2 Box
- ► Box Java

ITT Tech - Official Site

itt-tech.edu

Tech-Oriented Degree Programs. Education for the Future.

Related Tpoics:

- Backtracking | Set 8 (Solving Cryptarithmetic Puzzles)
- Tail Recursion
- Find if two rectangles overlap
- Analysis of Algorithm | Set 4 (Solving Recurrences)
- Print all possible paths from top left to bottom right of a mXn matrix
- Generate all unique partitions of an integer
- Russian Peasant Multiplication
- Closest Pair of Points | O(nlogn) Implementation

Writing code in comment? Please use ideone.com and share the link here.

@geeksforgeeks, Some rights reserved

Contact Us!

Powered by WordPress & MooTools, customized by geeksforgeeks team