Lecture 11 Random variables

Review: Key Points

Chapter 14: Randomness and Probability

- Terms: Trial, outcome/event, sample space (S)
- Law of large numbers (LLN)
- Five basic rules of probability: $0 \le P(\mathbf{A}) \le 1$, P(S) = 1, $P(\mathbf{A}^C) = 1 P(\mathbf{A})$, $P(\mathbf{A} \text{ or } \mathbf{B}) = P(\mathbf{A}) + P(\mathbf{B})$, when A and B are disjoint (or mutually exclusive), $P(\mathbf{A} \text{ and } \mathbf{B}) = P(\mathbf{A}) \times P(\mathbf{B})$, when A and B are independent.

Chapter 15: Probability rules

- General addition rule: $P(\mathbf{A} \text{ or } \mathbf{B}) = P(\mathbf{A}) + P(\mathbf{B}) P(\mathbf{A} \text{ and } \mathbf{B})$
- General multiplication rule: $P(\mathbf{A} \text{ and } \mathbf{B}) = P(\mathbf{A}) \times P(\mathbf{B}|\mathbf{A}) = P(\mathbf{B}) \times P(\mathbf{A}|\mathbf{B})$
- Independence: $P(\mathbf{B}|\mathbf{A}) = P(\mathbf{B})$
- Bayes' Rule: $P(\mathbf{B}|\mathbf{A}) = \frac{P(\mathbf{A}|\mathbf{B})P(\mathbf{B})}{P(\mathbf{A}|\mathbf{B})P(\mathbf{B}) + P(\mathbf{A}|\mathbf{B}^{\mathbf{C}})P(\mathbf{B}^{\mathbf{C}})}$

Random Variables

- When its values are based on the outcome of a random event
- We denote random variables using a capital letter, like X
- If we can list all the outcomes, it's discrete random variable.
- Otherwise, it's a continuous random variable.

Policyholder Outcome	Payout X	Probability $P(X = x)$
Death	10,000	$\frac{1}{1000}$
Disability	5000	$\frac{2}{1000}$
Neither	0	$\frac{997}{1000}$

- Example of an insurance company
- Each year, the probability of death (death rate) is 1 out of every 1000 people, etc.
- We can't predict what will happen during any given year,
- but we can say what we can *expect* to happen.
- What's the expected value of a policy payout?
- *E*(X) for expected value,
- and we can use the mean (μ) to estimate it.

$$\mu = E(X)$$
= \$10,000 $\left(\frac{1}{1000}\right)$ + \$5000 $\left(\frac{2}{1000}\right)$ + \$0 $\left(\frac{997}{1000}\right)$
= \$20.

$$\mu = E(X) = \sum x P(x)$$

(for discrete random variables)

Is this based on data?

- Yes, and no.
- Mean for data: $\bar{y} = \frac{Total}{n} = \frac{\sum y}{n}$
- Mean for random variables:

$$\mu = E(X) = \sum x P(x)$$

- What's differences?
- Probability conveys the information about population.
- Remember the law of large numbers.. The probability assumes a large number of repeats.

Law of Large Numbers (LLN)

• When we repeat a random process over and over, the proportion of times that an event occurs settle down to one number, which is the **probability** of the event.

Spread: Standard deviation

- Similar to the data case, we first calculate deviation from the mean and square it.
- Example of the insurance company again:

Policyholder Outcome	Payout x	Probability $P(X = x)$	Deviation $(x-\mu)$
Death	10,000	$\frac{1}{1000}$	(10,000-20)=9980
Disability	5000	$\frac{2}{1000}$	(5000-20)=4980
Neither	0	$\frac{997}{1000}$	(0-20)=-20

• The variance is the expected value of those squared deviations:

$$Var(X) = 9980^2 \left(\frac{1}{1000}\right) + 4980^2 \left(\frac{2}{1000}\right) + (-20)^2 \left(\frac{997}{1000}\right) = 149,600.$$

Its square root is standard deviation:

$$SD(X) = \sqrt{149,600} \approx $386.78.$$

$$\sigma^{2} = Var(X) = \sum (x - \mu)^{2} P(x)$$

$$\sigma = SD(X) = \sqrt{Var(X)}$$

Shifting and combining random variables

- $E(X \pm c) = E(X) \pm c$, $Var(X \pm c) = Var(X)$
- E(aX) = aE(X), $Var(aX) = a^2Var(X)$
- $E(X \pm Y) = E(X) \pm E(Y)$
- If two random variables are independent, $Var(X \pm Y) = Var(X) + Var(Y)$
 - If they are not independent, $Var(X \pm Y) = Var(X) + Var(Y) \pm 2Cov(X, Y)$

$$\mu = E(X) = \sum_{x \in X} x P(x)$$

- $E(X \pm c) = E(X) \pm c$, $Var(X \pm c) = Var(X)$
- $E(ax) = aE(x), Var(ax) = a^2V$
- If two random variables are independent, Var(X + Y) = Var(X) + Var(Y)

Proof
$$E(X + Y) = \sum_{x} \sum_{y} (x + y) P_{XY}(x, y)$$

$$= \sum_{x} \sum_{y} x P_{XY}(x, y) + \sum_{y} \sum_{x} y P_{XY}(x, y)$$

$$= \sum_{x} x P_{X}(x) + \sum_{y} y P_{Y}(y)$$

$$= E(X) + E(Y)$$

Covariance and correlation

• Remember the correlation between two variables from a previous chapter

$$r = \frac{\sum z_x z_y}{n-1} \qquad r = \frac{\sum (x - \bar{x})(y - \bar{y})}{\sqrt{\sum (x - \bar{x})^2 \sum (y - \bar{y})^2}} = \frac{\sum (x - \bar{x})(y - \bar{y})}{(n-1)s_x s_y}$$

• Now, correlation between two random variables.

Covariance and correlation

- Covariance between X and Y, where $E(X) = \mu, E(Y) = \nu$,
 - $Cov(X,Y) = E((X-\mu)(Y-\nu))$
- Some properties of covariance

1.
$$Cov(X,Y) = Cov(Y,X)$$

2.
$$Cov(X,X) = Var(X)$$

- 3. Cov(cX, dY) = cdCov(X, Y), for any constants c and d
- 4. $Cov(X,Y) = E(XY) \mu v$
- 5. If X and Y are independent, Cov(X,Y) = 0
 - but the converse is not always true
- 6. $Var(X \pm Y) = Var(X) + Var(Y) \pm 2Cov(X,Y)$

Proofs

2.
$$Var(X) = E((X - \mu_X)^2) = Cov(X, X)$$

4.
$$Cov(X, Y)$$

= $E((X - \mu_X)(Y - \mu_Y))$
= $E(XY - \mu_X Y - X\mu_Y + \mu_X \mu_Y)$
= $E(XY) - \mu_X E(Y) - E(X)\mu_Y + \mu_X \mu_Y$
= $E(XY) - \mu_X \mu_Y$

5.
$$Cov(X, Y) = E(XY) - \mu_X \mu_Y$$

= $E(X)E(Y) - \mu_X \mu_Y = 0$

6.
$$Var(X+Y) = E[(X+Y-\mu_x-\mu_y)^2]$$

= $E[(X-\mu_x)^2 + (Y-\mu_y)^2 + 2(X-\mu_x)(Y-\mu_y)]$
= $Var(X) + Var(Y) + 2Cov(X,Y)$

Covariance and correlation

- Correlation: $Corr(X,Y) = \frac{Cov(X,Y)}{\sigma_X \sigma_Y}$
- The properties of the correlation:

Properties of Correlation

- Sign of correlation: the direction of the association (e.g., positive, negative)
- Range: *r* is always between -1 and 1.
 - When r = 1 all of the points lie on a straight line with a positive slope.
 - r < 0 indicates a negative association.
 - When r = -1 all points lie on a straight line with negative slope.
 - If r is close to 0, this indicates a very weak linear relationship.
- Symmetry: The correlation of x with y is the same as the correlation of y with x.
- No units
 - The value of r does not change even if units of measure are changed.
 - The correlation has no unit of measurement.
- Only linear: Correlation measures only the strength of a *linear* relationship.
- Sensitive to outliers: The correlation is sensitive to outliers.

CHOONG-WAN WOO | COCOAN lab | http://cocoanlab.github.io

Key Points

Chapter 16: Random variables

- Discrete vs. continuous random variables
- Expected values (mean): $\mu = E(X) = \sum xP(x)$
- Here, probability conveys the information about population assuming a large number of repeats

• Spread:
$$\sigma^2 = Var(X) = \sum (x - \mu)^2 P(x)$$

 $\sigma = SD(X) = \sqrt{Var(X)}$

- $E(X \pm c) = E(X) \pm c$, $Var(X \pm c) = Var(X)$
- $E(aX) = aE(X), Var(aX) = a^2Var(X)$
- $E(X \pm Y) = E(X) \pm E(Y)$
- $Cov(X,Y) = E((X-\mu)(Y-\nu))$
- $Var(X \pm Y) = Var(X) + Var(Y) \pm 2Cov(X, Y)$
- $Corr(X,Y) = \frac{Cov(X,Y)}{\sigma_X \sigma_Y}$

