Medical Imaging

Team VcLD

Data Preprocessing

- Random rotation
- Horizontal / Vertical flip
- Brightness adjustment
- MultiScaleCrop ... etc

Model Architecture

Backbone + RNN + Classifier

ResNet18 + BiGRU + FC

Hyperparameters

- Batch Size: 4 (patient_ids)
- Optimizer: AdamW
- $\gamma_{-}, \gamma_{+} = 4, 1$
- T = 8
- $\epsilon = 0.5$ $p_1, p_2 = 15, 0.15$
- Learning Rate: 0.001
- Learning Rate Schedule: Reduce the learning rate by half each time the validation loss is non-decreasing for three continuous epochs.
 Stop the training stage if learning rate is smaller than 1e-6.

Performance

F2-score evaluation:

Leaderboard	Public	Private
Single Model	0.78255	0.78312
Ensemble Model	0.79395	0.79353
Small dataset	0.72908	0.73567

Ablation Study

Model	F2-Score (Public)
MTM (remove diversity)	0.77197
MTM (remove CPC)	0.77362
MTM (remove masking strategy)	0.77411
MTM (remove AC)	0.77866
MTM (remove CC)	0.77889
MTM (remove LP)	0.78007
MTM	0.78255

R08922030 Zi-Heng Chen R08521605 Ting-Yu Dai R08942067 Shao-Yeh Huang R08725022 Po-Lin Lai

Methodology

- x: input images
- y:input labels
- *g* : output of ResNet18
- *h* : output of Bi-GRU
- \hat{y} : output of classifier
- res, rnn, cls: function of ResNet18, bi-GRU, and classifier.

Tasks:

1. Multi-label Classification: *Asy* is the asymmetric loss function.

$$L_1 = Asy(y, \hat{y})$$

$$Asy(y, \hat{y}) = -y(1 - \hat{y})^{\gamma_+} \log(\hat{y}) - (1 - y)\hat{y}^{\gamma_-} \log(1 - \hat{y})$$

2. Auxiliary Classification (AC): Remove the RNN layer and only use g to predict labels.

$$L_2 = Asy(y, cls(g))$$

3. Number of Label Prediction (LP): Predict the number of labels for each image. The objective function is cross entropy loss.

$$L_3 = CE(y, cls_2(g))$$

4. Class-Correlation Classification (CC): It uses the Euclidean distance between g and label embedding to predict the labels. The distance between a feature g and k-th label embedding should be small if the feature contains k-th label. (Asymmetric Loss)

$$d_k = f_d(g, c_k)$$

$$d = [d_1, d_2, ..., d_K] \text{ (K=5)}$$

$$q = -\operatorname{softmax}(d)$$

$$L_4 = Asy(y, q)$$

5. Contrastive Predictive Coding (CPC): This is an unsupervised learning task which is used to extract useful representations from high-dimensional data. This task aims to predict $g_{t+1}, g_{t+2}, ..., g_{t+T}$ from h_t (InfoNCE Loss)

$$L_5 = -E \left[log \frac{f_k(g_{t+k}, h_t)}{\sum_{g_i} f_k(g_j, h_t)} \right]$$

Loss functions:

- $L = \alpha L_1 + \beta L_2 + \gamma L_3 + \mu L_4 + \nu L_5$
- $\alpha = \beta = 1, \gamma = \mu = \nu = 0$ (Pretraining)
- $\alpha = \beta = \gamma = \mu = \nu = 1$ (Training MTM)

Initialization:

Pretrained model using MC and AC tasks only (L1 and L2)

Generalization:

Masking:

Choose p_1 % of the image positions randomly. If i-th image is chosen, we replace g_i with all zeros.

Diversity:

Sample a pair of images (z_1,z_2) from training data with following conditions.

i. z_1 and z_2 are adjacent to each other, with z_2 behind z_1

ii. z_2 must always have one more label than z_1

iii. z_1 and z_2 's label sequences must be identical except for the one label z_2 has that z_1 does not. (z_2 contains an additional label l which does not exist in z_1 , [0,1,1,0,0] and [0,1,1,0,1])

Therefore,
$$info(l) = z_2 - z_1$$

Procedures for constructing a new image sequence with image sequence $\{x_1, x_2, ..., x_m\}$ and labels $\{y_1, y_2, ..., y_m\}$:

- i. Let $n = m * p_2$
- ii. Choose n images from the sequence randomly.
- iii. Sample n pairs of images which satisfy the conditions above. Calculate $info(l_k)$ for each pairs of images and obtain $\{info(l_{k_1})_1, info(l_{k_2})_2, ..., info(l_{k_n})_n\}, k_1, k_2, ..., k_n \in \{1, ..., K\}$
- iv. Add $\inf o(l_{k_i})_i$ to its corresponding i-th chosen images in step ii.
- v. Add l_{k_i} to the labels of i-th chosen images if it doesn't exist already Similar to scheduled sampling strategy in NLP, for each patient, we define a probability ϵ to decide whether the model is trained by the original image sequence or the generated image sequence (by applying masking or adding additional labels as described above)