Abelian extensions arising from elliptic curves with complex multiplication

Asimina S. Hamakiotes

University of Connecticut

AMS Spring Eastern Sectional Meeting April 5 - 6, 2025

Let F be a number field and let E/F be an elliptic curve. Let $N \ge 2$.

Let F be a number field and let E/F be an elliptic curve. Let $N \ge 2$.

• When is the division field F(E[N]) abelian over F?

Let F be a number field and let E/F be an elliptic curve. Let $N \ge 2$.

- When is the division field F(E[N]) abelian over F?
- If F(E[N])/F is not abelian, then what is the maximal abelian extension contained in F(E[N])/F?

Let F be a number field and let E/F be an elliptic curve. Let $N \ge 2$.

- When is the division field F(E[N]) abelian over F?
- If F(E[N])/F is not abelian, then what is the maximal abelian extension contained in F(E[N])/F?

For this talk, we will focus on elliptic curves E with complex multiplication and fix F to be the minimal field of definition, i.e. $F = \mathbb{Q}(j(E))$.

Let E be an elliptic curve defined over a number field F.

Let E be an elliptic curve defined over a number field F.

• Let \overline{F} be a fixed algebraic closure of F.

Let E be an elliptic curve defined over a number field F.

- Let \overline{F} be a fixed algebraic closure of F.
- Let $N \ge 2$ be an integer and let

$$E[N] = \{ P \in E(\overline{F}) : [N]P = \mathcal{O} \},$$

be the **N-torsion subgroup of** $E(\overline{F})$.

Let E be an elliptic curve defined over a number field F.

- Let \overline{F} be a fixed algebraic closure of F.
- Let $N \ge 2$ be an integer and let

$$E[N] = \{ P \in E(\overline{F}) : [N]P = \mathcal{O} \},$$

be the **N-torsion subgroup of** $E(\overline{F})$.

• One can show that over \overline{F} , we have that $E[N] \cong \mathbb{Z}/N\mathbb{Z} \oplus \mathbb{Z}/N\mathbb{Z}$.

Let E be an elliptic curve defined over a number field F.

- Let \overline{F} be a fixed algebraic closure of F.
- Let $N \ge 2$ be an integer and let

$$E[N] = \{ P \in E(\overline{F}) : [N]P = \mathcal{O} \},$$

be the **N-torsion subgroup of** $E(\overline{F})$.

- One can show that over \overline{F} , we have that $E[N] \cong \mathbb{Z}/N\mathbb{Z} \oplus \mathbb{Z}/N\mathbb{Z}$.
- ullet We will be interested in the $N^{ ext{th}}$ -division field of E/F,

$$F(E[N]) = F(\{x(P), y(P) : P \in E[N]\}),$$

i.e., the field of definition of the coordinates of points in E[N].

Let $N \geq 2$ be an integer and let ζ_N be a primitive N^{th} -root of unity. Consider the extension $\mathbb{Q}(\zeta_N)/\mathbb{Q}$.

Let $N \geq 2$ be an integer and let ζ_N be a primitive N^{th} -root of unity. Consider the extension $\mathbb{Q}(\zeta_N)/\mathbb{Q}$.

We obtain $\mathbb{Q}(\zeta_N)$ when we adjoin the *N*-torsion points of $\overline{\mathbb{Q}}^{\times}$ to \mathbb{Q} ,

$$\mathbb{Q}(\zeta_N) = \mathbb{Q}(\overline{\mathbb{Q}}^{\times}[N]).$$

Let $N \geq 2$ be an integer and let ζ_N be a primitive N^{th} -root of unity. Consider the extension $\mathbb{Q}(\zeta_N)/\mathbb{Q}$.

We obtain $\mathbb{Q}(\zeta_N)$ when we adjoin the *N*-torsion points of $\overline{\mathbb{Q}}^{\times}$ to \mathbb{Q} ,

$$\mathbb{Q}(\zeta_N) = \mathbb{Q}(\overline{\mathbb{Q}}^{\times}[N]).$$

We know that $Gal(\mathbb{Q}(\zeta_N)/\mathbb{Q})$ is abelian. In fact,

$$\mathsf{Gal}(\mathbb{Q}(\zeta_N)/\mathbb{Q}) \cong (\mathbb{Z}/N\mathbb{Z})^{\times}.$$

Let $N \ge 2$ be an integer and let ζ_N be a primitive N^{th} -root of unity. Consider the extension $\mathbb{Q}(\zeta_N)/\mathbb{Q}$.

We obtain $\mathbb{Q}(\zeta_N)$ when we adjoin the *N*-torsion points of $\overline{\mathbb{Q}}^{\times}$ to \mathbb{Q} ,

$$\mathbb{Q}(\zeta_N) = \mathbb{Q}(\overline{\mathbb{Q}}^{\times}[N]).$$

We know that $Gal(\mathbb{Q}(\zeta_N)/\mathbb{Q})$ is abelian. In fact,

$$\operatorname{\mathsf{Gal}}(\mathbb{Q}(\zeta_{\mathsf{N}})/\mathbb{Q})\cong (\mathbb{Z}/\mathsf{N}\mathbb{Z})^{\times}.$$

Let *E* be an elliptic curve defined over \mathbb{Q} . Consider $\mathbb{Q}(E[N])/\mathbb{Q}$, where

$$\mathbb{Q}(E[N]) = \mathbb{Q}(\{x(P), y(P) : P \in E[N]\}).$$

Let $N \ge 2$ be an integer and let ζ_N be a primitive N^{th} -root of unity. Consider the extension $\mathbb{Q}(\zeta_N)/\mathbb{Q}$.

We obtain $\mathbb{Q}(\zeta_N)$ when we adjoin the *N*-torsion points of $\overline{\mathbb{Q}}^{\times}$ to \mathbb{Q} ,

$$\mathbb{Q}(\zeta_{N})=\mathbb{Q}(\overline{\mathbb{Q}}^{\times}[N]).$$

We know that $Gal(\mathbb{Q}(\zeta_N)/\mathbb{Q})$ is abelian. In fact,

$$\operatorname{\mathsf{Gal}}(\mathbb{Q}(\zeta_{\mathsf{N}})/\mathbb{Q})\cong (\mathbb{Z}/\mathsf{N}\mathbb{Z})^{\times}.$$

Let E be an elliptic curve defined over \mathbb{Q} . Consider $\mathbb{Q}(E[N])/\mathbb{Q}$, where

$$\mathbb{Q}(E[N]) = \mathbb{Q}(\{x(P), y(P) : P \in E[N]\}).$$

Question

What is $Gal(\mathbb{Q}(E[N])/\mathbb{Q})$?

Let E/\mathbb{Q} be an elliptic curve and $N \geq 2$.

Definition

Let $\rho_{E,N}$ be the mod N Galois representation attached to E:

$$ho_{E,N}\colon\operatorname{\mathsf{Gal}}(\overline{\mathbb{Q}}/\mathbb{Q}) o\operatorname{\mathsf{Aut}}(E[N])\cong\operatorname{\mathsf{GL}}(2,\mathbb{Z}/N\mathbb{Z}),$$

so we have $G_{E,N} := Gal(\mathbb{Q}(E[N])/\mathbb{Q}) \cong im(\rho_{E,N})$.

Let E/\mathbb{Q} be an elliptic curve and $N \geq 2$.

Definition

Let $\rho_{E,N}$ be the mod N Galois representation attached to E:

$$\rho_{E,N} \colon \operatorname{\mathsf{Gal}}(\overline{\mathbb{Q}}/\mathbb{Q}) \to \operatorname{\mathsf{Aut}}(E[N]) \cong \operatorname{\mathsf{GL}}(2,\mathbb{Z}/N\mathbb{Z}),$$

so we have $G_{E,N} := \operatorname{Gal}(\mathbb{Q}(E[N])/\mathbb{Q}) \cong \operatorname{im}(\rho_{E,N}).$

In general,

$$Gal(\mathbb{Q}(E[N])/\mathbb{Q}) \subseteq GL(2,\mathbb{Z}/N\mathbb{Z}),$$

but in many cases,

$$Gal(\mathbb{Q}(E[N])/\mathbb{Q}) \cong GL(2,\mathbb{Z}/N\mathbb{Z}),$$

Let E/\mathbb{Q} be an elliptic curve and $N \geq 2$.

Definition

Let $\rho_{E,N}$ be the mod N Galois representation attached to E:

$$\rho_{E,N} \colon \operatorname{\mathsf{Gal}}(\overline{\mathbb{Q}}/\mathbb{Q}) \to \operatorname{\mathsf{Aut}}(E[N]) \cong \operatorname{\mathsf{GL}}(2,\mathbb{Z}/N\mathbb{Z}),$$

so we have $G_{E,N} := Gal(\mathbb{Q}(E[N])/\mathbb{Q}) \cong im(\rho_{E,N})$.

In general,

$$Gal(\mathbb{Q}(E[N])/\mathbb{Q}) \subseteq GL(2,\mathbb{Z}/N\mathbb{Z}),$$

but in many cases,

$$Gal(\mathbb{Q}(E[N])/\mathbb{Q}) \cong GL(2, \mathbb{Z}/N\mathbb{Z}),$$

Question

Can Gal($\mathbb{Q}(E[N])/\mathbb{Q}$) be abelian, i.e., can im($\rho_{E,N}$) be abelian?

What is known?

Theorem (Lozano-Robledo, González-Jiménez, 2015)

Let E/\mathbb{Q} be an elliptic curve. Let $N \geq 2$.

- $\mathbb{Q}(E[N]) = \mathbb{Q}(\zeta_N)$ only for N = 2, 3, 4, or 5.
- More generally, if $\mathbb{Q}(E[N])/\mathbb{Q}$ is abelian, then N=2,3,4,5,6, or 8.

What is known?

Theorem (Lozano-Robledo, González-Jiménez, 2015)

Let E/\mathbb{Q} be an elliptic curve. Let $N \geq 2$.

- $\mathbb{Q}(E[N]) = \mathbb{Q}(\zeta_N)$ only for N = 2, 3, 4, or 5.
- More generally, if $\mathbb{Q}(E[N])/\mathbb{Q}$ is abelian, then N=2,3,4,5,6, or 8.

Theorem (Lozano-Robledo, González-Jiménez, 2015)

Let E/\mathbb{Q} be an elliptic curve with complex multiplication. Let $N \geq 2$.

- $\mathbb{Q}(E[N]) = \mathbb{Q}(\zeta_N)$ only for N = 2 or 3.
- More generally, if $\mathbb{Q}(E[N])/\mathbb{Q}$ is abelian, then N=2,3, or 4.

What is known?

Theorem (Lozano-Robledo, González-Jiménez, 2015)

Let E/\mathbb{Q} be an elliptic curve. Let $N \geq 2$.

- $\mathbb{Q}(E[N]) = \mathbb{Q}(\zeta_N)$ only for N = 2, 3, 4, or 5.
- More generally, if $\mathbb{Q}(E[N])/\mathbb{Q}$ is abelian, then N=2,3,4,5,6, or 8.

Theorem (Lozano-Robledo, González-Jiménez, 2015)

Let E/\mathbb{Q} be an elliptic curve with complex multiplication. Let $N \geq 2$.

- $\mathbb{Q}(E[N]) = \mathbb{Q}(\zeta_N)$ only for N = 2 or 3.
- More generally, if $\mathbb{Q}(E[N])/\mathbb{Q}$ is abelian, then N=2,3, or 4.

Let E be an elliptic curve defined over a number field F and let $N \ge 2$. Can F(E[N])/F be abelian?

Let E/F be an elliptic curve with CM by $\mathcal{O}_{K,f}$, where

ullet be an imaginary quadratic field,

- ullet K be an imaginary quadratic field,
- ullet $\Delta_{\mathcal{K}}$ is the discriminant of the ring of integers $\mathcal{O}_{\mathcal{K}}$,

- K be an imaginary quadratic field,
- ullet Δ_K is the discriminant of the ring of integers \mathcal{O}_K ,
- $\mathcal{O}_{K,f}$ be an order in K of conductor $f \geq 1$, with discriminant $\Delta_K f^2$,

- K be an imaginary quadratic field,
- ullet Δ_K is the discriminant of the ring of integers \mathcal{O}_K ,
- $\mathcal{O}_{K,f}$ be an order in K of conductor $f \geq 1$, with discriminant $\Delta_K f^2$,
- $j_{K,f}$ be a j-invariant associated to the order $\mathcal{O}_{K,f}$, i.e., $j(\mathbb{C}/\mathcal{O}_{K,f})$,

- K be an imaginary quadratic field,
- ullet Δ_K is the discriminant of the ring of integers \mathcal{O}_K ,
- $\mathcal{O}_{K,f}$ be an order in K of conductor $f \geq 1$, with discriminant $\Delta_K f^2$,
- ullet $j_{K,f}$ be a j-invariant associated to the order $\mathcal{O}_{K,f}$, i.e., $j(\mathbb{C}/\mathcal{O}_{K,f})$,
- and $F = \mathbb{Q}(j_{K,f})$ is the minimal field of definition for E.

Let E/F be an elliptic curve with CM by $\mathcal{O}_{K,f}$, where

- K be an imaginary quadratic field,
- Δ_K is the discriminant of the ring of integers \mathcal{O}_K ,
- ullet $\mathcal{O}_{K,f}$ be an order in K of conductor $f\geq 1$, with discriminant $\Delta_K f^2$,
- $j_{K,f}$ be a j-invariant associated to the order $\mathcal{O}_{K,f}$, i.e., $j(\mathbb{C}/\mathcal{O}_{K,f})$,
- and $F = \mathbb{Q}(j_{K,f})$ is the minimal field of definition for E.

Theorem (H. and Lozano-Robledo, 2023)

Let $E/\mathbb{Q}(j_{K,f})$ be an elliptic curve with CM by $\mathcal{O}_{K,f}$, $f \geq 1$. Let $N \geq 2$ and let

$$G_{E,N} = \mathsf{Gal}(\mathbb{Q}(j_{K,f}, E[N])/\mathbb{Q}(j_{K,f}))$$

be the Galois group of the N-division field of E.

If $G_{E,N}$ is abelian, then N must equal 2,3, or 4. Further, if $G_{E,N}$ is abelian, then it is isomorphic to $(\mathbb{Z}/2\mathbb{Z})^k$ for some $0 \le k \le 3$.

Theorem (H. and Lozano-Robledo, 2023)

- (1) If $j_{K,f} \neq 0,1728$, then $G_{E,N}$ is abelian if and only if:
 - N=2 and either
 - $\Delta_K f^2 \equiv 0 \mod 4$, or
 - $\bullet \ \ \Delta_{\mathit{K}} \equiv 1 \ \mathsf{mod} \ 8 \ \mathit{and} \ \mathit{f} \equiv 1 \ \mathsf{mod} \ 2.$

In this case, $G_{E,2} \cong /2$.

Theorem (H. and Lozano-Robledo, 2023)

- (1) If $j_{K,f} \neq 0,1728$, then $G_{E,N}$ is abelian if and only if:
 - N=2 and either
 - $\Delta_K f^2 \equiv 0 \mod 4$, or
 - $\Delta_K \equiv 1 \mod 8$ and $f \equiv 1 \mod 2$.

In this case, $G_{E,2} \cong /2$.

- (2) If $j_{K,f} = 1728$, then $G_{E,N}$ is abelian if and only if:
 - N = 2. In this case, $G_{E,2} \cong \{0\}$ or /2 according to whether E is given by $v^2 = x^3 dx$ with d a square or a non-square in , respectively.
 - $\underline{N=4}$ and E/ is given by $y^2=x^3+dx$ with $d\in\{\pm 1,\pm 4\}$ or $d=\pm t^2$ for some square-free integer $t\notin\{\pm 1,\pm 2\}$, in which case $G_{E,4}\cong (/2)^2$ or $(/2)^3$, resp.

Theorem (H. and Lozano-Robledo, 2023)

- (1) If $j_{K,f} \neq 0,1728$, then $G_{E,N}$ is abelian if and only if:
 - N = 2 and either
 - $\Delta_K f^2 \equiv 0 \mod 4$, or
 - $\Delta_K \equiv 1 \bmod 8$ and $f \equiv 1 \bmod 2$.

In this case, $G_{E,2} \cong /2$.

- (2) If $j_{K,f} = 1728$, then $G_{E,N}$ is abelian if and only if:
 - N = 2. In this case, $G_{E,2} \cong \{0\}$ or /2 according to whether E is given by $v^2 = x^3 dx$ with d a square or a non-square in , respectively.
 - N = 4 and E/ is given by $y^2 = x^3 + dx$ with $d \in \{\pm 1, \pm 4\}$ or $d = \pm t^2$ for some square-free integer $t \notin \{\pm 1, \pm 2\}$, in which case $G_{E,4} \cong (/2)^2$ or $(/2)^3$, resp.
- (3) If $j_{K,f} = 0$, then $G_{E,N}$ is abelian if and only if:
 - $\underline{N=2}$ and E/ is given by $y^2=x^3+d$ with d a cube in . Then $G_{E,2}\cong/2$.
 - $\underline{N=3}$ and E/ is given by $y^2=x^3+d$ such that 4d is a cube in . If in addition d and 3d are not squares, then $G_{E,3}\cong (/2)^2$, and if d or 3d is a square, then $G_{E,3}\cong /2$.

Theorem (1a): If N=2, then $G_{E,2}$ is abelian if and only if $j_{K,f}\neq 0,1728$ and $\Delta_K f^2\equiv 0$ mod 4. In this case, $G_{E,2}\cong \mathbb{Z}/2\mathbb{Z}$.

Theorem (1a): If N=2, then $G_{E,2}$ is abelian if and only if $j_{K,f}\neq 0,1728$ and $\Delta_K f^2\equiv 0$ mod 4. In this case, $G_{E,2}\cong \mathbb{Z}/2\mathbb{Z}$.

Example (32.1-a1)

$$E/\mathbb{Q}(\sqrt{2}): y^2 + \sqrt{2}xy = x^3 + x^2 + (15\sqrt{2} - 22)x + 46\sqrt{2} - 69$$

Theorem (1a): If N=2, then $G_{E,2}$ is abelian if and only if $j_{K,f}\neq 0,1728$ and $\Delta_K f^2\equiv 0$ mod 4. In this case, $G_{E,2}\cong \mathbb{Z}/2\mathbb{Z}$.

Example (32.1-a1)

$$E/\mathbb{Q}(\sqrt{2}): y^2 + \sqrt{2}xy = x^3 + x^2 + (15\sqrt{2} - 22)x + 46\sqrt{2} - 69$$

Note that $j(E) = -29071392966\sqrt{2} + 41113158120$.

Theorem (1a): If N=2, then $G_{E,2}$ is abelian if and only if $j_{K,f}\neq 0,1728$ and $\Delta_K f^2\equiv 0$ mod 4. In this case, $G_{E,2}\cong \mathbb{Z}/2\mathbb{Z}$.

Example (32.1-a1)

$$E/\mathbb{Q}(\sqrt{2}): y^2 + \sqrt{2}xy = x^3 + x^2 + (15\sqrt{2} - 22)x + 46\sqrt{2} - 69$$

Note that $j(E) = -29071392966\sqrt{2} + 41113158120$.

This curve has CM by $\mathbb{Z}[\sqrt{-16}]$ which is the suborder of conductor f=4 of $\mathcal{O}_K=\mathbb{Z}[i]$.

Theorem (1a): If N=2, then $G_{E,2}$ is abelian if and only if $j_{K,f}\neq 0,1728$ and $\Delta_K f^2\equiv 0$ mod 4. In this case, $G_{E,2}\cong \mathbb{Z}/2\mathbb{Z}$.

Example (32.1-a1)

$$E/\mathbb{Q}(\sqrt{2}): y^2 + \sqrt{2}xy = x^3 + x^2 + (15\sqrt{2} - 22)x + 46\sqrt{2} - 69$$

Note that $j(E) = -29071392966\sqrt{2} + 41113158120$.

This curve has CM by $\mathbb{Z}[\sqrt{-16}]$ which is the suborder of conductor f=4 of $\mathcal{O}_K=\mathbb{Z}[i]$.

Here $\Delta_K f^2 = -4 \cdot 16 = -64 \equiv 0 \mod 4$, so $G_{E,2} \cong \mathbb{Z}/2\mathbb{Z}$.

Theorem (1a): If N=2, then $G_{E,2}$ is abelian if and only if $j_{K,f}\neq 0,1728$ and $\Delta_K f^2\equiv 0$ mod 4. In this case, $G_{E,2}\cong \mathbb{Z}/2\mathbb{Z}$.

Example (32.1-a1)

$$E/\mathbb{Q}(\sqrt{2}): y^2 + \sqrt{2}xy = x^3 + x^2 + (15\sqrt{2} - 22)x + 46\sqrt{2} - 69$$

Note that $j(E) = -29071392966\sqrt{2} + 41113158120$.

This curve has CM by $\mathbb{Z}[\sqrt{-16}]$ which is the suborder of conductor f=4 of $\mathcal{O}_K=\mathbb{Z}[i]$.

Here $\Delta_K f^2 = -4 \cdot 16 = -64 \equiv 0 \mod 4$, so $G_{E,2} \cong \mathbb{Z}/2\mathbb{Z}$.

One can check that $E(\mathbb{Q}(\sqrt{2}))[2] \cong \mathbb{Z}/2\mathbb{Z}$ is generated by a non-trivial point of two torsion defined over $\mathbb{Q}(\sqrt{2})$, namely

$$P = \left(2\sqrt{2} - \frac{3}{2}, \ \frac{3}{4}\sqrt{2} - 2\right).$$

Theorem (H. and Lozano-Robledo, 2023)

Let E/F be an elliptic curve with CM and $F = \mathbb{Q}(j(E))$, then F(E[N])/F is only abelian for N = 2, 3, or 4.

Sketch of proof:

Theorem (H. and Lozano-Robledo, 2023)

Let E/F be an elliptic curve with CM and $F = \mathbb{Q}(j(E))$, then F(E[N])/F is only abelian for N = 2, 3, or 4.

Sketch of proof:

(1) For an elliptic curve $E/\mathbb{Q}(j_{K,f})$ with CM by an arbitrary order $\mathcal{O}_{K,f}$, Lozano-Robledo explicitly describes the groups of $GL(2,\mathbb{Z}_p)$ that can occur as images of $\rho_{E,p^{\infty}}$, up to conjugation.

Theorem (H. and Lozano-Robledo, 2023)

Let E/F be an elliptic curve with CM and $F = \mathbb{Q}(j(E))$, then F(E[N])/F is only abelian for N = 2, 3, or 4.

Sketch of proof:

- (1) For an elliptic curve $E/\mathbb{Q}(j_{K,f})$ with CM by an arbitrary order $\mathcal{O}_{K,f}$, Lozano-Robledo explicitly describes the groups of $GL(2,\mathbb{Z}_p)$ that can occur as images of $\rho_{E,p^{\infty}}$, up to conjugation.
- (2) We understand what subgroups of $\mathcal{N}_{\delta,\phi}(N)$ are images of $\rho_{E,N}$ and we give conditions that will help characterize when a subgroup of $\mathcal{N}_{\delta,\phi}(N)$ is abelian (e.g. the Cartan subgroup is abelian).

Theorem (H. and Lozano-Robledo, 2023)

Let E/F be an elliptic curve with CM and $F = \mathbb{Q}(j(E))$, then F(E[N])/F is only abelian for N = 2, 3, or 4.

Sketch of proof:

- (1) For an elliptic curve $E/\mathbb{Q}(j_{K,f})$ with CM by an arbitrary order $\mathcal{O}_{K,f}$, Lozano-Robledo explicitly describes the groups of $GL(2,\mathbb{Z}_p)$ that can occur as images of $\rho_{E,p^{\infty}}$, up to conjugation.
- (2) We understand what subgroups of $\mathcal{N}_{\delta,\phi}(N)$ are images of $\rho_{E,N}$ and we give conditions that will help characterize when a subgroup of $\mathcal{N}_{\delta,\phi}(N)$ is abelian (e.g. the Cartan subgroup is abelian).
- (3) We apply the results from above to all possible images $G_{E,N} = \operatorname{im} \rho_{E,N}$ from (1) and analyze under what circumstances we have that $G_{E,N}$ is abelian.

Let E/F be an elliptic curve with CM by $\mathcal{O}_{K,f}$, where $F=\mathbb{Q}(j_{K,f})$.

Let E/F be an elliptic curve with CM by $\mathcal{O}_{K,f}$, where $F=\mathbb{Q}(j_{K,f})$.

(1) Let $N \geq 2$. By the existence of the Weil-pairing, $F(\zeta_N) \subseteq F(E[N])$.

Let E/F be an elliptic curve with CM by $\mathcal{O}_{K,f}$, where $F=\mathbb{Q}(j_{K,f})$.

- (1) Let $N \geq 2$. By the existence of the Weil-pairing, $F(\zeta_N) \subseteq F(E[N])$.
- (2) Let $N \geq 3$. Then, $K \subseteq F(E[N])$.

Let E/F be an elliptic curve with CM by $\mathcal{O}_{K,f}$, where $F=\mathbb{Q}(j_{K,f})$.

- (1) Let $N \geq 2$. By the existence of the Weil-pairing, $F(\zeta_N) \subseteq F(E[N])$.
- (2) Let $N \geq 3$. Then, $K \subseteq F(E[N])$.
- (3) Let $N \geq 3$, $d \in F$ such that $\sqrt{d} \notin K$, and E^d be the twist of E by d. Then there is an explicitly computable integer $\alpha = \alpha(E^d)$, unique up to some power, such that $F(\sqrt{\alpha}) \subseteq F(E[N])$.

Let E/F be an elliptic curve with CM by $\mathcal{O}_{K,f}$, where $F = \mathbb{Q}(j_{K,f})$.

- (1) Let $N \geq 2$. By the existence of the Weil-pairing, $F(\zeta_N) \subseteq F(E[N])$.
- (2) Let $N \geq 3$. Then, $K \subseteq F(E[N])$.
- (3) Let $N \geq 3$, $d \in F$ such that $\sqrt{d} \notin K$, and E^d be the twist of E by d. Then there is an explicitly computable integer $\alpha = \alpha(E^d)$, unique up to some power, such that $F(\sqrt{\alpha}) \subseteq F(E[N])$.

Therefore, we have that $K(j_{K,f},\zeta_N,\sqrt{\alpha})$ is an abelian extension contained in F(E[N])/F, which is sometimes just $K(j_{K,f},\zeta_N)$ if $\sqrt{\alpha} \in K(j_{K,f},\zeta_N)$.

Field diagram

Let $N \geq 3$. Let $G_{E,N} = \operatorname{Gal}(\mathbb{Q}(j_{K,f}, E[N])/\mathbb{Q}(j_{K,f}))$. Let $G'_{E,N}$ denote the commutator subgroup of $G_{E,N}$.

Field diagram

Let $N \geq 3$. Let $G_{E,N} = \operatorname{Gal}(\mathbb{Q}(j_{K,f}, E[N])/\mathbb{Q}(j_{K,f}))$. Let $G'_{E,N}$ denote the commutator subgroup of $G_{E,N}$.

Sketch of proof:

(1) We have explicit matrix groups for G_{E,p^n} , so we can compute explicit commutator subgroups G'_{E,p^n} .

Sketch of proof:

- (1) We have explicit matrix groups for G_{E,p^n} , so we can compute explicit commutator subgroups G'_{E,p^n} .
- (2) We know $K(j_{K,f},\zeta_{p^n})$ or $K(j_{K,f},\zeta_{p^n},\sqrt{\alpha})$ is an abelian extension and we can use that to find an upper bound, U, for the size of G'_{E,p^n} .

Sketch of proof:

- (1) We have explicit matrix groups for G_{E,p^n} , so we can compute explicit commutator subgroups G'_{E,p^n} .
- (2) We know $K(j_{K,f},\zeta_{p^n})$ or $K(j_{K,f},\zeta_{p^n},\sqrt{\alpha})$ is an abelian extension and we can use that to find an upper bound, U, for the size of G'_{E,p^n} .
- (3) We can use the surjective reduction map $\pi: G'_{E,p^{n+1}} \to G'_{E,p^n}$ to get a lower bound, L, for the size of G'_{E,p^n} .

Sketch of proof:

- (1) We have explicit matrix groups for G_{E,p^n} , so we can compute explicit commutator subgroups G'_{E,p^n} .
- (2) We know $K(j_{K,f}, \zeta_{p^n})$ or $K(j_{K,f}, \zeta_{p^n}, \sqrt{\alpha})$ is an abelian extension and we can use that to find an upper bound, U, for the size of G'_{E,p^n} .
- (3) We can use the surjective reduction map $\pi: G'_{E,p^{n+1}} \to G'_{E,p^n}$ to get a lower bound, L, for the size of G'_{E,p^n} .
- (4) It turns out that U = L, so it must be that

$$K(j_{K,f},\zeta_{p^n})$$
 or $K(j_{K,f},\zeta_{p^n},\sqrt{\alpha})$

is the maximal abelian subextension of $\mathbb{Q}(j_{K,f}, E[p^n])/\mathbb{Q}(j_{K,f})$.

Theorem (H., 2024)

Let E/\mathbb{Q} be an elliptic curve with CM by an order $\mathcal{O}_{K,f}$ of K, $f\geq 1$.

Theorem (H., 2024)

Let E/\mathbb{Q} be an elliptic curve with CM by an order $\mathcal{O}_{K,f}$ of K, $f \geq 1$.

(1) If p is any prime such that $p \nmid \Delta_K f^2$, then

$$\mathbb{Q}(E[p^n]) \cap \mathbb{Q}^{ab} = K(\zeta_{p^n}).$$

Theorem (H., 2024)

Let E/\mathbb{Q} be an elliptic curve with CM by an order $\mathcal{O}_{K,f}$ of K, $f \geq 1$.

(1) If p is any prime such that $p \nmid \Delta_K f^2$, then

$$\mathbb{Q}(E[p^n]) \cap \mathbb{Q}^{ab} = K(\zeta_{p^n}).$$

(2) If p > 2 prime such that $p \mid \Delta_K f^2$, then

$$\mathbb{Q}(E[p^n]) \cap \mathbb{Q}^{ab} = \begin{cases} \mathbb{Q}(\zeta_{p^n}, \sqrt{\alpha}) & \text{if E is a twist of a simplest model},} \\ \mathbb{Q}(\zeta_{p^n}) & \text{if E is a simplest model}. \end{cases}$$

Theorem (H., 2024)

Let E/\mathbb{Q} be an elliptic curve with CM by an order $\mathcal{O}_{K,f}$ of K, $f \geq 1$.

(1) If p is any prime such that $p \nmid \Delta_K f^2$, then

$$\mathbb{Q}(E[p^n]) \cap \mathbb{Q}^{ab} = K(\zeta_{p^n}).$$

(2) If p > 2 prime such that $p \mid \Delta_K f^2$, then

$$\mathbb{Q}(E[p^n]) \cap \mathbb{Q}^{ab} = \begin{cases} \mathbb{Q}(\zeta_{p^n}, \sqrt{\alpha}) & \text{if E is a twist of a simplest model}, \\ \mathbb{Q}(\zeta_{p^n}) & \text{if E is a simplest model}. \end{cases}$$

- (3) Let p = 2 such that $2 \mid \Delta_K f^2$.
 - If $\Delta_K f^2 = -12$ or -28, then $\mathbb{Q}(E[2^n]) \cap \mathbb{Q}^{ab} = K(\zeta_{2^{n+1}})$.
 - If $\Delta_K f^2 = -4, -8$, or -16, then

$$\mathbb{Q}(E[2^n]) \cap \mathbb{Q}^{ab} = \begin{cases} \mathbb{Q}(\zeta_{2^{n+1}}, \sqrt{\alpha}) & \text{if E is a twist of a simplest model,} \\ \mathbb{Q}(\zeta_{2^{n+1}}) & \text{if E is a simplest model.} \end{cases}$$

Example $(p = 7 \text{ and } \Delta_K f^2 = -7)$

Let E/\mathbb{Q} : $y^2 = x^3 - 140x - 784$ (3136.n4), where j(E) = -3375.

Example $(p = 7 \text{ and } \Delta_K f^2 = -7)$

Let E/\mathbb{Q} : $y^2 = x^3 - 140x - 784$ (3136.n4), where j(E) = -3375.

Here $K = \mathbb{Q}(\sqrt{-7})$.

Example $(p = 7 \text{ and } \Delta_K f^2 = -7)$

Let E/\mathbb{Q} : $y^2 = x^3 - 140x - 784$ (3136.n4), where j(E) = -3375.

Here $K = \mathbb{Q}(\sqrt{-7})$.

In this case, $G_{E,7^n} = \mathcal{N}_{\delta,0}(7^n)$, where $\delta = -7/4$.

Example $(p=7 \text{ and } \Delta_K f^2 = -7)$

Let E/\mathbb{Q} : $y^2 = x^3 - 140x - 784$ (3136.n4), where j(E) = -3375.

Here $K = \mathbb{Q}(\sqrt{-7})$.

In this case, $G_{E,7^n} = \mathcal{N}_{\delta,0}(7^n)$, where $\delta = -7/4$.

E is a quadratic twist of E'/\mathbb{Q} : $y^2=x^3-1715x+33614$ (49.a2) by -14.

Example (p=7 and $\Delta_K f^2 = -7)$

Let E/\mathbb{Q} : $y^2 = x^3 - 140x - 784$ (3136.n4), where j(E) = -3375.

Here $K = \mathbb{Q}(\sqrt{-7})$.

In this case, $G_{E,7^n}=\mathcal{N}_{\delta,0}(7^n)$, where $\delta=-7/4$.

E is a quadratic twist of E'/\mathbb{Q} : $y^2 = x^3 - 1715x + 33614$ (49.a2) by -14.

Thus, $\mathbb{Q}(E[7^n]) \cap \mathbb{Q}^{\mathsf{ab}} = \mathbb{Q}(\zeta_{7^n}, \sqrt{-14}).$

Example $(p=7 \text{ and } \Delta_K f^2 = -7)$

Let E/\mathbb{Q} : $y^2 = x^3 - 140x - 784$ (3136.n4), where j(E) = -3375.

Here $K = \mathbb{Q}(\sqrt{-7})$.

In this case, $G_{E,7^n} = \mathcal{N}_{\delta,0}(7^n)$, where $\delta = -7/4$.

E is a quadratic twist of E'/\mathbb{Q} : $y^2 = x^3 - 1715x + 33614$ (49.a2) by -14.

Thus, $\mathbb{Q}(E[7^n]) \cap \mathbb{Q}^{\mathsf{ab}} = \mathbb{Q}(\zeta_{7^n}, \sqrt{-14}).$

The simplest CM curve E' has image

$$G_{E',7^n} = \left\langle egin{pmatrix} -1 & 0 \ 0 & 1 \end{pmatrix}, \left\{ egin{pmatrix} a & b \ \delta b & a \end{pmatrix} : a \in (\mathbb{Z}/7\mathbb{Z})^{ imes 2}, b \in \mathbb{Z}/7\mathbb{Z}
ight\}
ight
angle,$$

which is an index 2 subgroup of $\mathcal{N}_{\delta,0}(7^n)$. Thus, $\mathbb{Q}(E[7^n]) \cap \mathbb{Q}^{\mathsf{ab}} = \mathbb{Q}(\zeta_{7^n})$.

Questions?