사전준비

❖ 한글 처리

import matplotlib as mpl import matplotlib.pyplot as plt

%config InlineBackend.figure_format = 'retina'

!apt -qq -y install fonts-nanum

import matplotlib.font_manager as fm
fontpath = '/usr/share/fonts/truetype/nanum/NanumBarunGothic.ttf'
font = fm.FontProperties(fname=fontpath, size=9)
plt.rc('font', family='NanumBarunGothic')
mpl.font_manager._rebuild()

❖ 런타임 다시 시작

사전준비

plt.figure(figsize=(5,5)) plt.plot([0,1], [0,1], label='한글테스트용') plt.legend() plt.show()

지도학습 회귀문제의 예- 붓꽃 예측

- ❖ 붓꽃의 꽃잎petal과 꽃받침sepal의 폭과 길이를 센티미터 단위로 측정해 놓은 데이터를 통해, 새로 채집한 붓꽃의 품종을 예측하고자 한다.
- ❖ '붓꽃(Iris)'은 프랑스의 국화

선형회귀

(Y : 종속변수, X : 독립변수, a : 기울기=회귀계수, b : 절편)

선형 회귀 그래프

선형 회귀
! !
·

라이브러리(library)들을 임포트(import)

```
from sklearn import datasets
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
from sklearn.preprocessing import StandardScaler
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
import numpy as np
```

1.라이브러리 불러오기

```
[66] from sklearn import datasets
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
from sklearn.preprocessing import StandardScaler
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
import numpy as np
```

붓꽃 데이터를 가져오기

```
data = datasets.load_iris()
#데이터셋
input_data = data['data'] # 꽃의 특징 (input data)
target_data = data['target'] #꽃 종류를 수치로 나탄내 것 (0 ~ 2) (target data)

flowers = data['target_names'] # 꽃 종류를 이름으로 나타낸 것
feature_names = data['feature_names'] # 꽃 특징들의 명칭

#sepal : 꽃받침
#petal : 꽃일
print('꽃을 결정짓는 특징 : {}'.format(feature_names))
print('꽃 종류 : {}'.format(flowers))
```

2.dataset loading

```
[67] data = datasets.load_iris()

#데미터셋
input_data = data['data'] # 꽃의 특징 (input data)
target_data = data['target'] #꽃 종류를 수치로 나탄내 것 (0 ~ 2) (target data)

flowers = data['target_names'] # 꽃 종류를 이름으로 나타낸 것
feature_names = data['feature_names'] # 꽃 특징들의 명칭

#sepal : 꽃받침
#petal : 꽃잎
print('꽃을 결정짓는 특징 : {}'.format(feature_names))
print('꽃 종류 : {}'.format(flowers))

꽃을 결정짓는 특징 : ['sepal length (cm)', 'sepal width (cm)', 'petal length (cm)', 'petal width (cm)']
꽃 종류 : ['setosa' 'versicolor' 'virginica']
```

Demos

입력 데이터(input data)와 특징(feature)들을 보기

```
iris df = pd.DataFrame(input data, columns=feature names)
     iris_df['species'] = target data
     #맨 위에 있는 데이터 10개 출력
     print(iris df.head(10))
     #데이터의 정보 출력
     print(iris df.describe())
iris_df = pd.DataFrame(input_data, columns=feature_names)
iris_df['species'] = target_data
#맨-위에-있는-데이터-10개-출력
print(iris_df.head(10))
#데이터의 정보 충력
print(iris_df.describe())
  sepal length (cm) sepal width (cm) ... petal width (cm) species
                                3.5 ...
                                                     0.2
               5.1
                                                                0
                                3.0 ...
                4.9
                                                      0.2
                                                                0
                                3.2 ...
                4.7
                                                                Π
                4.6
               5.0
                                3.6 ...
                                                      0.2
                                                                0
               5.4
                                3.9 ...
                                                      0.4
                                                                Π
               4.6
                                3.4 ...
                                                      0.3
                                                                0
               5.0
                                3.4 ...
               4.4
                                2.9 ...
                                                      0.2
                                3.1 ...
                                                      Π.1
                                                                Π
[10 rows x 5 columns]
      sepal length (cm) sepal width (cm) ... petal width (cm)
                                                                 species
             150.000000
                             150.000000 ...
                                                   150.000000 150.000000
count
              5.843333
                               3.057333 ...
                                                    1.199333
                                                               1.000000
mean.
```

시각화

#4가지 변수(특징)의 관계를 'seaborn' 라이브러리에서 제공하는 pairplot() 메소드로 표현한 그래프 16가지 sns.pairplot(iris_df, hue='species', vars=feature_names) plt.show()

#데이터 개괄적 특징 파악 : 4<mark>가지 변수(특징)의 관계를 'seaborn' 라이브러리에서 제공하는 pairplot() 메소드로 표현한 그래프 16가지 sns.pairplot(iris_df, hue='species', vars=feature_names)
plt.show()</mark>

train_input, test_input, train_target, test_target = train_test_split(

input_data, target_data, random state=42)

#훈련 데이터와 테스트 데이터 분리

변수(X, y) 선택 : 등간/비율 척도

회귀모델 생성

```
lr = LogisticRegression(max_iter=1000)
#로지스틱 회귀 학습
lr.fit(train_scaled, train_target)
#테스트 데이터 예측
pred = lr.predict(test_scaled[:5])
print(pred)
```

```
Ir = LogisticRegression(max_iter=1000)
#로지스틱 회귀 학습
Ir.fit(train_scaled, train_target)
#테스트 데이터 예측
pred = Ir.predict(test_scaled[:5])
print(pred)
```

[1 0 2 1 1]

회귀모델 생성 원리 설명

각 특징들의 가중치(weight)와 절편(bias)을 확인

#로지스틱 회귀 모델의 가중치와 절편 #다중 분류 가중치와 절편을 출력하면, 각 클래스마다의 가중치 절편을 출력한다. print(lr.coef_, lr.intercept_)

```
#로지스틱·회귀·모델의·가중치와·절편
#다중·분류·가중치와·절편을·출력하면,·각·클래스마다의·가중치·절편을·출력한다.
print(Ir.coef_,·Ir.intercept_)
```

- 첫번째 배열이 setosa에 대한 가중치와 절편이므로 해당 값들로 식을 구성해보면,
- setosa(z1) = (-0.96 * sepal_length) + (1.09 * sepal_width) + (-1.78 * petal_length) + (-1.66 * petal_width) 0.39

회귀모델 생성 원리 설명

- 경우의 수(클래스)가 3가지 이상이다.
- 이런 경우에는 시그모이드(Sigmoid) 함수가 아닌 소프트맥스(Softmax) 함수를 사용

$$e_sum = e^{z^1} + e^{z^2} + e^{z^3}$$

- z1은 setosa, z2는 versicolor, z3은 virginica의 방정식이다.
- 각 클래스들의 Z값을 모두 구한 후, 자연상수 e의 제곱으로 나타내어 모두 더한다. (= e_sum)
- 확률을 구하고 싶은 클래스의 e^z 을 전체 합으로 나누어주면,
- 해당 클래스의 확률이 되는 것이다. (= e^z / e_sum)
- setosa의 확률을 구하는 식

Unit 3

Demos

회귀모델 생성 원리 설명

```
setosa z1 = (-0.96 * 5.1) + (1.09 * 3.5) + (-1.78 * 1.4) + (-1.66 * 0.2) - 0.39
             versicolor z^2 = (0.51 * 5.1) + (-0.30 * 3.5) + (-0.32 * 1.4) + (-0.7 * 0.2) - 1.92
             virginica z3 = (0.47 * 5.1) + (-0.79 * 3.5) + (2.11 * 1.4) + (2.34 * 0.2) - 1.53
              print(setosa z1)
              print(versicolor z2)
              print(virginica z3)
                                                                                 iris_df.head(3)
              setosa rs=setosa z1/(setosa z1+versicolor z2+virginica z3)
             versicolor rs=versicolor z2/(setosa z1+versicolor z2+virginica z3)
                                                                                     sepal length (cm) sepal width (cm) petal length (cm) petal width (cm) species
              virginica rs=virginica z3/(setosa z1+versicolor z2+virginica z3)
              print(setosa rs)
                                                                                  0
                                                                                                                                                                   0.2
                                                                                                      5.1
                                                                                                                          3.5
                                                                                                                                               1.4
              print(versicolor rs)
              print(virginica_rs)
setosa\_z1 = (-0.96 * 5.1) * (1.09 * 3.5) * (-1.78 * 1.4) * (-1.66 * 0.2) * - 0.39
versicolor_z2 = (0.51 * 5.1) + (-0.30 * 3.5) + (-0.32 * 1.4) + (-0.7 * 0.2) - 1.92
virginica_z = (0.47 * 5.1) + (-0.79 * 3.5) + (2.11 * 1.4) + (2.34 * 0.2) - 1.53
print(setosa_z1)
print(versicolor_z2)
print(virginica_z3)
-4.29499999999999
-0.957
```

setosa_rs=setosa_z1/(setosa_z1+versicolor_z2+virginica_z3)
versicolor_rs=versicolor_z2/(setosa_z1+versicolor_z2+virginica_z3)
virginica_rs=virginica_z3/(setosa_z1+versicolor_z2+virginica_z3)
print(setosa_rs)
print(versicolor_rs)
print(virginica_rs)

setosa가 확률 값이 가장 큼. 따라서 잘 분류되고 있는 것을 알 수 있음

1.1520922746781115

1.5239999999999994

- 0.25670600858369097
- -0.40879828326180245

결정 함수(decision_function)

● decision_function()에 테스트 데이터 5개를 넣고 소수점 2자리까지 출력

#결정 함수(decision_function)로 z1 ~ z3의 값을 구한다. decision = lr.decision_function(test_scaled[:5]) print(np.round(decision, decimals=2))

```
#결정 함수(decision_function)로 z1 ~ z3의 값을 구한다.
decision = Ir.decision_function(test_scaled[:5])
print(np.round(decision, decimals=2))

[[-2.21 2.1 0.1]
[ 5.87 2.56 -8.43]
[-9.33 1.8 7.53]
[-9.33 1.8 7.53]
[-2.29 1.73 0.56]
[-3.59 2.33 1.26]]
```

softmax 함수

● z값으로 직접 확률을 구할 필요가 없다. decision_function()을 통해 구한 값을 scipy에서 제공하는 softmax 함수에 전달해주면 각 클래스에 대한 확률을 구해주기 때문이다.

```
#소프트맥스 함수를 사용한 각 클래스들의 확률
  from scipy.special import softmax
                                                               Ir = LogisticRegression(max_iter=1000)
  proba = softmax(decision, axis=1)
  print(np.round(proba, decimals=3))
                                                               #로지스틱 회귀 학습
                                                               Ir.fit(train_scaled, train_target)
#소프트맥스 함수를 사용한 각 클래스들의 확률
                                                               #테스트 데이터 예측
from scipy.special import softmax
                                                               pred = Ir.predict(test_scaled[:5])
                                                               print(pred)
proba = softmax(decision, axis=1)
print(np.round(proba. decimals=3))
                                                               [1 0 2 1 1]
[[0.012 0.87 0.118]
 [0.965 0.035 0.
                                                                 비교해 보자!!!
       0.003 \, 0.9971
 [0.013 0.752 0.234]
 [0.002 0.745 0.253]]
```

- 모델이 예측한 결과값 [1 0 2 1 1] 과 비교해보면,
- 첫번째는 데이터는 87%의 확률로 1(versicolor)이라고 예상했고,
- 두번째 데이터는 97%확률로 0(setosa)이라고 예상했다.

지도학습 회귀문제의 예- 주택가격 예측

❖ 다음은 회귀분석의 한 예로 scikit-learn 패키지에서 제공하는 주택가격을 예측하는 문제를 보였다. 이 문제는 범죄율, 공기 오염도 등의 주거 환경 정보 등을 사용하여 70년대 미국 보스턴시의 주택가격을 예측하는 문제이다.

import pandas as pd import seaborn as sns from sklearn.datasets import load boston

boston=load_boston() boston.data.shape

> warnings.warn(msg, caregory-(506, 13)

- 데이터셋 요약

Samples total	506
Dimensionality	13
Features	real, positive
Targets	real 5 50.

df = pd.DataFrame(boston.data, columns=boston.feature_names)
df["주택가격"] = boston.target
g = sns.pairplot(df[["주택가격", "RM", "AGE", "CRIM"]])
g.fig.suptitle("보스턴 주택가격 데이터 일부 (RM: 방 개수, AGE: 노후화, CRIM: 범죄율)", y=1.02)
plt.show()

Demos

지도학습 회귀문제의 예- 주택가격 예측

```
import pandas as pd
import seaborn as sns
from sklearn.datasets import load_boston
boston = load_boston()
df = pd.DataFrame(boston.data, columns=boston.feature_names)
df["주택가격"] = boston.target
g = sns.pairplot(df[["주택가격", "RM", "AGE", "CRIM"]])
g.fig.suptitle("보스턴 주택가격 데이터 일부 (RM: 방 개수, AGE: 노후화, CRIM: 범죄율)", y=1.02)
plt.show()
```


지도학습 회귀문제의 예- 주택가격 예측

❖ 이 문제를 회귀분석 방법으로 풀면 다음 결과 그래프와 같다. 결과 그래 프에서 하나의 점은 하나의 데이터를 뜻한다. 점의 가로축 값은 실제 가 격을 나타내고 세로축 값은 회귀분석 결과이다. 만약 회귀분석 방법으로 가격을 정확하게 예측했다면 결과는 기울기가 1인 직선과 같은 형태가 되어야 하지만 실제로는 타원 모양이 되는 경우가 많다.

from sklearn.linear_model import LinearRegression

```
model = LinearRegression().fit(boston.data, boston.target)
predicted = model.predict(boston.data)
plt.scatter(boston.target, predicted)
plt.xlabel("실제 가격")
plt.ylabel("예측 가격")
plt.title("보스턴 주택가격 예측결과")
plt.show()
```

Demos

30

위 가격 20

지도학습 회귀문제의 예- 주택가격 예측

```
In [73]: from sklearn.linear_model import LinearRegression

model = LinearRegression().fit(boston.data, boston.target)
predicted = model.predict(boston.data)
plt.scatter(boston.target, predicted)
plt.xlabel("실제 가격")
plt.ylabel("예측 가격")
plt.title("보스턴 주택가격 예측결과")
plt.show()

보스턴 주택가격 예측결과
```

실제 가격

40

fieldtrip.

회귀분석

목표

❖ 목표:

● 보스턴 주택 가격 데이터에 머신러닝 기반의 회귀 분석을 수행.주택 가격에 영향을 미치는 변수를 확인하고 그 값에 따른 주택 가격을 예측

환경에 따른 주택 가격 예측하기						
목표	보스턴 주택 가격 데이터에 머신러닝 기반의 회귀 분석을 수행하여 주택 가격에 영향을 미치는 환경 변수를 확인하고, 그에 따른 주택 가격을 예측한다.					
핵심 개념	머신러닝, 머신러닝 프로세스, 지도 학습, 사이킷런, 사이킷런의 내장 데이터셋, 분석 평가 지표					
데이터 수집	보스턴 주택 가격 데이터: 사이킷런 내장 데이터셋					
데이터 준비 및 탐색	1. 사이킷런 데이터셋 확인: boston.DESCR 2. 사이킷런 데이터셋에 지정된 X 피처와 타깃 피처 결합					
분석 모델 구축	사이킷런의 선형 회귀 모델 구축					

결과 시각화

데이터가 주택 가격에 미치는 영향을 산점도와 선형 회귀 그래프로 시각화

데이터 수집, 준비 및 탐색

1. 주피터 노트북에서 '10장_주택가격분석'으로 노트북 페이지를 추가하고 입력

In [1]:	!pip install sklearn
In [2]:	import numpy as np import pandas as pd from sklearn.datasets import load_boston boston = load_boston()

In [2]: 사이킷런에서 제공하는 데이터셋sklearn.datasets 중에서 보스톤 주택 가격 데이터셋을 사용하기 위해 load_boston을 임포트하고, 데이터셋을 로드하여load_boston() 객체boston를 생성

데이터 수집, 준비 및 탐색

2. 데이터가 이미 정리된 상태이므로 데이터셋 구성을 확인

In [3]:	print(boston. DESCR)														
In [4]:		bostor bostor	_	•		rame	(bos	ton. d	ata, c	olumr	ns = l	ooston	feature	e_nam	es)
Out[4]:		CRIM	ZN	INDU	s CH	AS N	IOX	RM	AGE	DIS	RAD	TAX F	TRATIO	В	LSTAT
0 0.0[.1]	0	0.00632	18.0	2.3	1 (0.0 0.	538	6.575	65.2	4.0900	1.0	296.0	15.3	396.90	4.98
	1	0.02731	0.0	7.0	7 (0.0	469	6.421	78.9	4.9671	2.0	242.0	17.8	396.90	9.14
	2	0.02729	0.0	7.0	7 (0.0	469	7.185	61.1	4.9671	2.0	242.0	17.8	392.83	4.03
	3	0.03237	0.0	2.1	8 (0.0	458	6.998	45.8	6.0622	3.0	222.0	18.7	394.63	2.94
	4	0.06905	0.0	2.1	8 (0.0 0.	458	7.147	54.2	6.0622	3.0	222.0	18.7	396.90	5.33
In [5]:		bostor bostor				osto	n. tar	get							
Out[5]:		CRIM	ZN	INDUS	CHAS	NOX	RN	1 AGE	DI	S RAD	TAX	PTRATIC) В	LSTAT	PRICE
0 0.0[0].	0	0.00632	18.0	2.31	0.0	0.538	6.57	65.2	4.090	0 1.0	296.0	15.	3 396.90	4.98	24.0
	1	0.02731	0.0	7.07	0.0	0.469	6.42	78.9	4.967	1 2.0	242.0	17.	8 396.90	9.14	21.6
	2	0.02729	0.0	7.07	0.0	0.469	7.18	61.1	4.967	1 2.0	242.0	17.	8 392.83	4.03	34.7
	3	0.03237	0.0	2.18	0.0	0.458	6.998	3 45.8	6.062	2 3.0	222.0	18.	7 394.63	2.94	33.4
	4	0.06905	0.0	2.18	0.0	0.458	7.147	7 54.2	6.062	2 3.0	222.0	18.	7 396.90	5.33	36.2

In [3]: 데이터셋에 대한 설명boston.DESCR을 확인

In [4]: 데이터셋 객체의 data 배열boston.data, 즉 독립 변수 X가 되는 피처들을 DataFrame 자료형으로 변환하여 boston_df를 생성

boston_df의 데이터 5개를 확인bostone_df.head()

In [5]: 데이터셋 객체의 target 배열 boston.target, 즉 종속 변수인 주택 가격('PRICE') 컬럼을 boston_df에 추가 boston_df의 데이터 5개를 확인bostone_df.head()

주택 가격 예측

데이터 수집, 준비 및 탐색

2. 데이터가 이미 정리된 상태이므로 데이터셋 구성을 확인

In [6]:	print('보스톤 주택 가격 데이터셋 크기: ', boston_df.shape)				
Out[6]:	보스톤 주택 가격 데이터셋 크기: (506, 14)				
In [7]:	boston_df.info()				
Out[7]:	<class 'pandas.core.frame.dataframe'=""> RangeIndex: 506 entries, 0 to 505 Data columns (total 14 columns): CRIM 506 non-null float64 ZN 506 non-null float64 INDUS 506 non-null float64 CHAS 506 non-null float64 NOX 506 non-null float64 RM 506 non-null float64 AGE 506 non-null float64 DIS 506 non-null float64 RAD 506 non-null float64 RAD 506 non-null float64 TAX 506 non-null float64 PTRATIO 506 non-null float64 B 506 non-null float64 B 506 non-null float64 LSTAT 506 non-null float64 PRICE 506 non-null float64 dtypes: float64(14) memory usage: 55.4KB</class>				

- 14개의 독립 변수(피처)의 의미
 - CRIM: 지역별 범죄 발생률
 - ZN: 25,000평방피트를 초과하는 거주 지역 비율
 - INDUS: 비상업 지역의 넓이 비율
 - CHAS: 찰스강의 더미변수(1은 강의 경계, 0은 경계 아님)
 - NOX: 일산화질소 농도
 - RM: 거주할 수 있는 방 개수
 - AGE: 1940년 이전에 건축된 주택 비율
 - DIS: 5개 주요 고용센터까지 가중 거리
 - RAD: 고속도로 접근 용이도
 - TAX: 10,000달러당 재산세 비율
 - PTRATIO: 지역의 교사와 학생 수 비율
 - B: 지역의 흑인 거주 비율
 - LSTAT: 하위 계층의 비율
 - PRICE(MEDV): 본인 소유 주택 가격의 중앙값

In [6]: 데이터셋의 형태 boston_df.shape, 즉 행의 개수(데이터 개수)와 열의 개수(변수 개수)를 확인 행의 개수가 506이므로 데이터가 506개 있으며, 열의 개수가 14이므로 변수가 14개 있음 변수 중에서 13개는 독립 변수 X가 되고, 마지막 변수 'PRICE'는 종속 변수 Y가 됨 In [7]: boston_df에 대한 정보를 확인boston.info()

- 1. 선형 회귀를 이용해 분석 모델 구축하기
 - 1) 사이킷런의 선형 분석 모델 패키지sklearn.linear_model에서 선형 회귀LinearRegression를 이용하여 분석 모델을 구축

In [8]:	from sklearn.linear_model import LinearRegression from sklearn.model_selection import train_test_split from sklearn.metrics import mean_squared_error, r2_score
In [9]:	#X, Y 분할하기 Y = boston_df['PRICE'] X = boston_df. drop (['PRICE'], axis = 1, inplace = False)
In [10]:	#훈련용 데이터와 평가용 데이터 분할하기 X_train, X_test, Y_train, Y_test = train_test_split (X, Y, test_size = 0.3, random_state = 156)

In [8]: 사이킷런을 사용하여 머신러닝 회귀 분석을 하기 위한 LinearRegression과 데이터셋 분리 작업을 위한 train_test_split, 성능 측정을 위한 평가 지표인 mean_squared_ error, r2_score를 임포트 In [9]: PRICE 피처를 회귀식의 종속 변수 Y로 설정하고 PRICE를 제외 drop()한 나머지 피처를 독립 변수 X로 설정 In [10]: X와 Y 데이터 506개를 학습 데이터와 평가 데이터로 7:3 비율로 분할test size=0.3

- 1. 선형 회귀를 이용해 분석 모델 구축하기
 - 1) 사이킷런의 선형 분석 모델 패키지_{sklearn.linear_model}에서 선형 회귀_{LinearRegression}를 이용하여 분석 모델을 구축

In [11]:	#선형 회귀 분석 : 모델 생성 Ir = LinearRegression()
In [12]:	#선형 회귀 분석 : 모델 훈련 Ir .fit (X_train, Y_train)
Out[12]	LinearRegression()
In [13]:	#선형 회귀 분석 : 평가 데이터에 대한 예측 수행 -> 예측 결과 Y_predict 구하기 Y_predict = lr. predict (X_test)

In [11]: 선형 회귀 분석 모델 객체 Ir을 생성

In [12]: 학습 데이터 XX_train와 YY_train를 가지고 학습을 수행fit().

In [13]: 평가 데이터 XX_test를 가지고 예측을 수행하여predict() 예측값YY_predict를 구함

- 1. 선형 회귀를 이용해 분석 모델 구축하기
 - 2) 선형 회귀 분석 모델을 평가 지표를 통해 평가하고 회귀 계수를 확인하여 피처의 영향을 분석

In [14]:	<pre>mse = mean_squared_error(Y_test, Y_predict) rmse = np.sqrt(mse) print('MSE : {0:.3f}, RMSE : {1:.3f}'.format(mse, rmse)) print('R^2(Variance score) : {0:.3f}'.format(r2_score(Y_test, Y_predict)))</pre>
Out[14]	MSE: 17.297, RMSE: 4.159 R^2(Variance score): 0.757
In [15]:	print('Y 절편 값: ', lr. intercept_) print('회귀 계수 값: ', np.round(lr. coef_ , 1))
Out[15]	Y 절편 값: 40.995595172164336 회귀 계수 값: [-0.1 0.1 0. 319.8 3.4 01.7 0.4 -00.9 00.6]

In [14]: 회귀 분석은 지도 학습이므로 평가 데이터 X에 대한 결과값 YY_test를 이미 알고 있는 상태에서 평가 데이터 YY_test와 In [13]에서 구한 예측 결과Y_predict의 오차를 계산하여 모델을 평가. 평가 지표 MSE를 구하고 mean_squared_error() 구한 값의 제곱근을 계산하여np.sqrt(mse) 평가 지표 RMSE를 구함 그리고 평가 지표 R2 을 구함 r2_score()

In [15]: 선형 회귀의 Y절편 Ir.intercept_과 각 피처의 회귀 계수 Ir.coef_를 확인

- 1. 선형 회귀를 이용해 분석 모델 구축하기
 - 2) 선형 회귀 분석 모델을 평가 지표를 통해 평가하고 회귀 계수를 확인하여 피처의 영향을 분석

In [16]:	coef = pd. Series (data = np.round(lr. coef_ , 2), index = X.columns) coef. sort_values (ascending = False)				
Out[16]:	INDUS B AGE TAX	3.35 3.05 0.36 0.07 0.03 0.01 0.01 -0.01			
	PTRATIO DIS	-1.74 -19.80			

In [16]: 회귀 모델에서 구한 회귀 계수 값Ir.coef_과 피처 이름x.columns을 묶어서 Series 자료 형으로 만들고, 회귀 계수 값을 기준으로 내림차순으로 정렬하여 ascending=False 확인sort_values()

회귀 모델 결과를 토대로 보스톤 주택 가격에 대한 회귀식

 $Y_{PRICE} = -0.11X_{CRIM} + 0.07_{XZN} + 0.03_{XINDUS} + 3.05_{XCHAS} - 19.80_{XNOX} + 3.35_{XRM} + 0.01_{XAGE} - 1.74_{XDIS} + 0.36_{XRAD} - 0.01_{XTAX} - 0.92_{XPTRATIO} + 0.01_{XB} - 0.57_{XLSTAT} + 41.00_{XRAD}$

회귀 분석 결과를 산점도 + 선형 회귀 그래프로 시각화하기

- 1. 선형 회귀를 이용해 분석 모델 구축하기
 - 2) 선형 회귀 분석 모델을 평가 지표를 통해 평가하고 회귀 계수를 확인하 여 피처의 영향을 분석

In [17]:	import matplotlib.pyplot as plt import seaborn as sns
In	fig, axs = plt. subplots (figsize = (16, 16), ncols = 3, nrows = 5)
[18]:	x_features = ['CRIM', 'ZN', 'INDUS', 'CHAS', 'NOX', 'RM', 'AGE', 'DIS', 'RAD', 'TAX', 'PTRATIO', 'B', 'LSTAT']
	<pre>for i, feature in enumerate(x_features): row = int(i/3) col = i%3 sns.regplot(x = feature, y = 'PRICE', data = boston_df, ax = axs[row][col])</pre>

```
In [17]: 시각화에 필요한 모듈을 임포트
```

줌

In [18]: 독립 변수인 13개 피처와 종속 변수인 주택 가격, PRICE와의 회귀 관계를 보여주는 13개 그래프를 subplots()를 사용하여 5행 3열 구조로 모아서 나타냄. aborn의 regplot()은 산점도 그래프와 선형 회귀 그래프를 함께 그려

회귀 분석 결과를 산점도 + 선형 회귀 그래프로 시각화하기

- 1. 선형 회귀를 이용해 분석 모델 구축하기
 - 2) 선형 회귀 분석 모델을 평가 지표를 통해 평가하고 회귀 계수를 확인하여 피처의 영향을 분석
- 13개의 피처와 주택 가격의 회귀 관계를 나타낸 산점도/선형 회귀 그래프

분석 미리보기

항목에 따른 자동차 연비 예측하기						
목표	자동차 연비 데이터에 머신러닝 기반의 회귀 분석을 수행하여 연비에 영향을 미치는 항목을 확인하고 그에 따른 자동차 연비를 예측한다.					
핵심 개념	머신러닝, 머신러닝 프로세스, 지도 학습, 사이킷런, 사이킷런의 내장 데이터셋, 분석 평가 지표					
데이터 수집	자동차 연비 데이터: UCI Machine Learning Repository에서 다운로드					
데이터 준비 및 탐색	1. 필요 없는 컬럼 제거 2. X 변수와 Y 변수 확인					
분석 모델 구축	사이킷런의 선형 회귀 모델 구축					

결과 시각화

X 변수와 Y 변수에 대한 산점도 그래프와 선형 회귀 그래프

목표설정 및 데이터 수집

- ❖ 목표: 자동차 연비 데이터에 머신러닝 기반의 회귀 분석을 수행
- 연비에 영향을 미치는 항목을 확인하고, 그에 따른 자동차 연비를 예측
- https://archive.ics.uci.edu/ml/index.php > auto 검색

데이터 수집

❖ 검색 결과 목록에서 'Auto MPG Data Set - UCI Machine Learning Repository 클릭

데이터 수집

데이터 수집

❖ Data Folder를 클릭하여 'auto-mpg.data'를 다운로드

데이터 수집

❖ CSV 파일로 변경하기

데이터 수집

❖ 1단계는 버튼을 클릭, 2단계에서는 [구분 기호]로 '탭'과 '공백'을 선택하고 버튼을 클릭 역소트 맥스트 마바시-3만계 중 2만계 기호 및 포

❖ 텍스트 마법사 3단계에서 데이터 미리 보기를 확인하고 버튼을 클릭

데이터 수집

- ❖ 항목을 구분하기 위해 열 이름을 추가
- 행을 삽입하고 열 이름으로 mpg, cylinders, displacement, horsepower, weight, acceleration, model_year, origin, car_name을 각각 입력

❖ 파일을 'auto-mpg.csv'로 저장

데이터 준비 및 탐색

❖ 분석에 필요 없는 컬럼을 제거하고 데이터셋의 내용을 확인

In [1]:	import numpy as np import pandas as pd data_df = pd.read_csv('./10장_data/auto-mpg.csv', header = 0, engine = 'python')									
In [2]:	print('데이터셋 크기: ', data_df. shape) data_df. head()									
Out[2]:	데이터셋 크기: (398, 9)									
	mpg cyli	nders disp	placement h	orsepower	weight	acceleration	model_year	origin	car_name	
	0 18.0	8	307.0	130	3504	12.0	70	1	chevrolet chevelle malibu	
	1 15.0	8	350.0	165	3693	11.5	70	1	buick skylark 320	
	2 18.0	8	318.0	150	3436	11.0	70	1	plymouth satellite	
	3 16.0	8	304.0	150	3433	12.0	70	1	amc rebel sst	
	4 17.0	8	302.0	140	3449	10.5	70	1	ford torino	
In [3]: Out[3]:	data_df	head()	_df. drop (rsepowe	r'], ax	is = 1, inplace = Fa	alse
	0 18.0	8	307.0	3504	12.0	70				
	1 15.0	8	350.0	3693	11.5	70				
	2 18.0	8	318.0	3436	11.0	70				
	3 16.0	8	304.0	3433	12.0	70				
	4 17.0	8	302.0	3449	10.5	70				

In [2]: 데이터셋의 형태data_df.shape를 확인해보면, 398행과 9열로 구성되어 있음 398개 데이터에 9개 컬럼이 있으므로 파일 내용이 DataFrame으로 잘 저장되었다는 것을 알 수 있음 데이터 5개를 출력하여 내용을 확인data_df.head().

In [3] 피처 중에서 car_name, origin, horsepower는 분석에 사용하지 않으므로 제거data_ df.drop() 후 확인 data df.head().

데이터 준비 및 탐색

❖ 분석에 필요 없는 컬럼을 제거하고 데이터셋의 내용을 확인

In [4]:	print('데이터셋 크기: ', data_df. shape)			
Out[4]:	데이터셋 크기: (398, 6)			
In [5]:	data_df.info()			
Out[5]:	<class 'pandas.core.frame.dataframe'=""> RangeIndex: 398 entries, 0 to 397 Data columns (total 6 columns): mpg</class>			

In [4]: 분석에 사용할 데이터셋의 형태data_df.shape를 확인 In [5]: 분석에 사용할 데이터셋의 정보data_df.info()를 확인

- 1. 선형 회귀 분석 모델 구축하기
 - 1) 자동차 연비 예측을 위해 다음과 같이 선형 회귀 분석 모델을 구축

In [6]:	from sklearn.linear_model import LinearRegression from sklearn.model_selection import train_test_split from sklearn.metrics import mean_squared_error, r2_score
In [7]	#X, Y 분할하기 Y = data_df['mpg'] X = data_df. drop (['mpg'], axis = 1, inplace = False)
In [8]:	#훈련용 데이터와 평가용 데이터 분할하기 X_train, X_test, Y_train, Y_test = train_test_split (X, Y, test_size = 0.3, random_state = 0)

In [6]: 사이킷런을 사용하여 머신러닝 선형 회귀 분석을 하기 위한 LinearRegression과 데이터셋 분리 작업을 위한 train_test_split, 성능 측정을 위한 평가 지표인 mean_squared_ error, r2_score를 임포트

In [7]: 자동차 연비를 예측하는 것이 프로젝트의 목표이므로, mpg 피처를 회귀식의 종속 변수 Y로 설정하고, mpg를 제외한 나머지 피처를 독립 변수 X로 설정

In [8]: 데이터를 7:3 비율 test_size=0.3로 분할하여 train_test_split() 학습 데이터와 평가 데이터로 설정

- 1. 선형 회귀 분석 모델 구축하기
 - 1) 자동차 연비 예측을 위해 다음과 같이 선형 회귀 분석 모델을 구축

In [9]:	#선형 회귀 분석 : 모델 생성 lr = LinearRegression()
In [10]	#선형 회귀 분석 : 모델 훈련 Ir.fit(X_train, Y_train)
Out[10]	LinearRegression()
In [11]:	#선형 회귀 분석 : 평가 데이터에 대한 예측 수행 -> 예측 결과 Y_predict 구하기 Y_predict = lr. predict (X_test)

In [9]: 선형 회귀 분석 모델 객체인 Ir을 생성

In [10]: 학습 데이터 XX_train와 YY_train를 가지고 학습을 수행fit()

In [11]: 평가 데이터 XX_test로 예측을 수행하여predict() 예측값 YY_predict를 구함

- 1. 선형 회귀 분석 모델 구축하기
 - 2) 평가 지표를 통해 선형 회귀 분석 모델을 평가하고 회귀 계수를 확 인하여 자동차 연비에 끼치는 피처의 영향을 분석

In [12]:	<pre>mse = mean_squared_error(Y_test, Y_predict) rmse = np.sqrt(mse) print('MSE : {0:.3f}, RMSE : {1:.3f}'.format(mse, rmse)) print('R^2(Variance score) : {0:.3f}'.format(r2_score(Y_test, Y_predict)))</pre>
Out[12]:	MSE : 12.278, RMSE : 3.504 R^2(Variance score) : 0.808
In [13]	print('Y 절편 값: ', np.round(lr. intercept _, 2)) print('회귀 계수 값: ', np.round(lr. coef _, 2))
Out[13]:	Y 절편 값: -17.55 회귀 계수 값: [-0.14 0.01 -0.01 0.2 0.76]

In [12]: 회귀 분석은 지도 학습이므로 평가 데이터 X에 대한 YY_test를 이미 알고 있음 평가 데이터의 결과값 Y_test과 예측 결과값 Y_predict의 오차를 계산하여 모델을 평가하는데, mean_ squared_error()를

이용하여 평가 지표 MSE를 구하고 구한 값의 제곱근을 계산하여 평가 지표 RMSE를 구한다. 그리고 r2_score()를 이용하여 평가 지표 R2를 구함

In [13]: 선형 회귀의 Y절편 Ir.intercept_과 각 피처의 회귀 계수Ir.coef_를 확인

- 1. 선형 회귀 분석 모델 구축하기
 - 2) 평가 지표를 통해 선형 회귀 분석 모델을 평가하고 회귀 계수를 확 인하여 자동차 연비에 끼치는 피처의 영향을 분석

In [14]:	coef = pd. Series (data = np.round(lr. coef_ , 2), index = X.columns) coef.sort_values(ascending = False)
Out[14] :	model_year 0.76 acceleration 0.20 displacement 0.01 weight -0.01 cylinders -0.14 dtype: float64

In [14]: 회귀 모델에서 구한 회귀 계수 값 Ir.coef_과 피처 이름 X.columns을 묶어서 Series 자료 형으로 만들고, 회귀 계수 값을 기준으로 내림차순 ascending = False으로 정렬 sort_values()하여 회귀 계수 값이 큰 항목을 확인

```
회귀 모델 결과로 자동차 연비를 예측하는 회귀식
Ympg = -0.14Xcylinders + 0.01Xdisplacement - 0.01Xweight + 0.20Xacceleration + 0.76Xmodel_year - 17.55
```


- 1. 선형 회귀 분석 모델 구축하기
 - 2) 평가 지표를 통해 선형 회귀 분석 모델을 평가하고 회귀 계수를 확 인하여 자동차 연비에 끼치는 피처의 영향을 분석

```
import matplotlib.pyplot as plt
import seaborn as sns

fig, axs = plt.subplots(figsize = (16, 16), ncols = 3, nrows = 2)
x_features = ['model_year', 'acceleration', 'displacement', 'weight', 'cylinders']
plot_color = ['r', 'b', 'y', 'g', 'r']
for i, feature in enumerate(x_features):
    row = int(i/3)
    col = i%3
    sns.regplot(x = feature, y = 'mpg', data = data_df, ax = axs[row][col], color = plot_color[i])
```

In [15]: 시각화에 필요한 모듈을 임포트

In [16]: subplots()를 사용하여 독립 변수인 5개 피처 ['model_year', 'acceleration', 'displacement', 'weight', 'cylinders']와 종속 변수인 연비 mpg와의 회귀 관계를 보여주는 5개 그래프를 2행 3열 구조로 나타낸

- 1. 선형 회귀 분석 모델 구축하기
 - 2) 평가 지표를 통해 선형 회귀 분석 모델을 평가하고 회귀 계수를 확 인하여 자동차 연비에 끼치는 피처의 영향을 분석
- 5개 피처와 연비의 회귀 관계를 보여주는 산점도 + 선형 회귀 그래프

- 1. 선형 회귀 분석 모델 구축하기
 - 2) 완성된 자동차 연비 예측 모델을 사용하여 임의의 데이터를 입력 하면 연비를 예측할 수 있음

```
In [17]:
              print("연비를 예측하고 싶은 차의 정보를 입력해주세요.")
             cylinders 1 = int(input("cylinders: "))
              displacement_1 = int(input("displacement : "))
              weight_1 = int(input("weight : "))
              acceleration_1 = int(input("acceleration : "))
              model_year_1 = int(input("model_year : "))
              연비를 예측하고 싶은 차의 정보를 입력해주세요.
Out[17]:
             cylinders: 8
              displacement: 350-
                                      키보드로 값을 입력한 후 [Enter] 누르기
             weight: 3200
             acceleration: 22
              model year: 99-
              mpg_predict = lr.predict([[cylinders_1, displacement_1, weight_1, acceleration_1 , model_year_1]])
In [18]:
              print("이 자동차의 예상 연비(MPG)는 %.2f입니다." %mpg_predict)
In [19]:
              이 자동차의 예상 연비(MPG)는 41.32입니다
Out[19]:
```

In [17]: 5개 항목(독립 변수)을 입력하면 변수에 저장

In [18]: 변수를 회귀 모델에 적용하여 예측 결과값을 구함

Unit

Workbooks

Practice Questions-Workbooks1

피처 엔지니어링

❖ 다음 그림처럼 제공된 파일을 이용하여, f1스코어를 기반으로 각 feature의 중요도를 분석해봅니다.

