2.4.1

- a) False
- b) True
- c) False
- d) False
- e) True
- f) False
- g) True
- h) True
- i) True

2.4.3

- a) Not isomorphic since their dimensions are not equal $(3 \neq 4)$
- b) Yes since they are the same dimension and any vector space is isomorphic to \mathbb{F}^n where n is the dimension of the vector space
- c) Yes since theyre finitely dimensional with the same dimension
- d) Not isomorphic since their dimensions are not equal $(2 \neq 4)$

2.4.16

Let $\Phi^{-1}(A) = BAB^{-1}$. Note then that

$$\Phi(\Phi^{-1}(A)) = B^{-1}BAB^{-1}B = A$$

$$\Phi^{-1}(\Phi(A)) = BB^{-1}AB^{-1}B = A$$

Therefore $\Phi\Phi^{-1} = \Phi^{-1}\Phi = I$. Therefore Φ is invertible and hence an isomorphism between $M_{n\times n}(\mathbb{F})$ and itself.

2.4.17

Part A

Proof. Since T is an isomorphism, it is linear. Let $y_1, y_2 \in T(V_0)$ where $y_1 = T(x_1)$ and $y_2 = T(x_2)$. Then $y_1 + y_2 = T(x_1) + T(x_2) = T(x_1 + x_2) \in T(V_0)$ since $x_1, x_2 \in V_0$. Additionally, $cy_1 = cT(x_1) = T(cx_1) \in T(V_0)$ by linearity of T. $0_W \in T(V_0)$ since V_0 is a subspace and hence $0_V \in V_0$ and $T(0_V) = 0_W$. Therefore $T(V_0)$ is a subspace of W.

Part B

Proof. Let $T': V_0 \to W$ with T'(x) = T(x). Since T is invertible, it is one-to-one and onto and consequently so is T'. Therefore nullity T' = 0 and

$$\operatorname{rank} T' = \dim(V_0) \implies \dim(T(V_0)) = \dim(V_0)$$

2.4.22

Proof. Note that

$$T(f + cg) = ((f + cg)(c_0), \dots (f + cg)(c_n))$$

$$= (f(c_0) + c \cdot g(c_0), \dots, f(c_n) + c \cdot g(c_n))$$

$$= (f(c_0), \dots, f(c_n)) + c(g(c_0), \dots, g(c_n))$$

$$= T(f) + cT(g)$$

The only functions that will map to 0 are functions that have n+1 zeroes, which must be the zero function. Therefore $N(T) = \{0\}$. Since dim $P_n(\mathbb{F}) = \dim F^{n+1}$ and T is injective since $N(T) = \{0\}$, T is also onto and therefore a bijection. Hence T is invertible and therefore an isomorphism.

2.5.1

- a) False
- b) True
- c) True
- d) False
- e) True

2.5.4

$$\begin{split} [T]_{\beta'} &= [I]_{\beta}^{\beta'} [T]_{\beta} [I]_{\beta'}^{\beta} \\ &= \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix}^{-1} \begin{pmatrix} 2 & 1 \\ 1 & -3 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix} \\ &= \begin{pmatrix} 2 & -1 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} 2 & 1 \\ 1 & -3 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix} \\ &= \begin{pmatrix} 2 & -1 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} 3 & 4 \\ -2 & -5 \end{pmatrix} \\ &= \begin{pmatrix} 8 & 13 \\ -5 & -9 \end{pmatrix} \end{split}$$

2.5.5

$$\begin{split} [T]_{\beta'} &= [I]_{\beta}^{\beta'} [T]_{\beta} [I]_{\beta'}^{\beta} \\ &= \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}^{-1} \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \\ &= \begin{pmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & -\frac{1}{2} \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \\ &= \begin{pmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & -\frac{1}{2} \end{pmatrix} \begin{pmatrix} 1 & -1 \\ 0 & 0 \end{pmatrix} \\ &= \begin{pmatrix} \frac{1}{2} & -\frac{1}{2} \\ \frac{1}{2} & -\frac{1}{2} \end{pmatrix} \end{split}$$

2.5.6

1.
$$[L_A]_{\beta} = \begin{pmatrix} 6 & 11 \\ -2 & -4 \end{pmatrix}$$
 and $Q = \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix}$

2.
$$[L_A]_{\beta} = \begin{pmatrix} 3 & 0 \\ 0 & -1 \end{pmatrix}$$
 and $Q = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$

3.
$$[L_A]_{\beta} = \begin{pmatrix} 2 & 2 & 2 \\ -2 & -3 & -4 \\ 1 & 1 & 2 \end{pmatrix}$$
 and $Q = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 2 \end{pmatrix}$

4.
$$[L_A]_{\beta} = \begin{pmatrix} 6 & 0 & 0 \\ 0 & 12 & 0 \\ 0 & 0 & 18 \end{pmatrix}$$
 and $Q = \begin{pmatrix} 1 & 1 & 1 \\ 1 & -1 & 1 \\ -2 & 0 & 1 \end{pmatrix}$