RF TEST REPORT

Report No.: 16070896-FCC-R2 Supersede Report No.: N/A

Verykool USA Inc			
Mobile pho	Mobile phone		
SL5050			
N/A			
FCC Part 1	5.247: 2015, ANSI C63.10: 20	013	
July 21 to A	July 21 to August 30		
August 31, 2016			
Pass Fail			
Equipment complied with the specification			
Equipment did not comply with the specification			
LOVEN LUO Devid Huang			
io n eer	David Huang Checked By		
	Mobile pho SL5050 N/A FCC Part 1 July 21 to A August 31, Pass ied with the set comply with	Mobile phone SL5050 N/A FCC Part 15.247: 2015, ANSI C63.10: 2 July 21 to August 30 August 31, 2016 Pass Fail ied with the specification t comply with the specification David Huang David Huang	

This test report may be reproduced in full only

Test result presented in this test report is applicable to the tested sample only

Issued by:

SIEMIC (SHENZHEN-CHINA) LABORATORIES

Zone A, Floor 1, Building 2 Wan Ye Long Technology Park
South Side of Zhoushi Road, Bao' an District, Shenzhen, Guangdong China 518108
Phone: +86 0755 2601 4629801 Email: China@siemic.com.cn

Test Report	16070896-FCC-R2
Page	2 of 61

Laboratories Introduction

SIEMIC, headquartered in the heart of Silicon Valley, with superior facilities in US and Asia, is one of the leading independent testing and certification facilities providing customers with one-stop shop services for Compliance Testing and Global Certifications.

In addition to testing and certification, SIEMIC provides initial design reviews and compliance management throughout a project. Our extensive experience with China, Asia Pacific, North America, European, and International compliance requirements, assures the fastest, most cost effective way to attain regulatory compliance for the global markets.

Accreditations for Conformity Assessment

Country/Region	Scope
USA	EMC, RF/Wireless, SAR, Telecom
Canada	EMC, RF/Wireless, SAR, Telecom
Taiwan	EMC, RF, Telecom, SAR, Safety
Hong Kong	RF/Wireless, SAR, Telecom
Australia	EMC, RF, Telecom, SAR, Safety
Korea	EMI, EMS, RF, SAR, Telecom, Safety
Japan	EMI, RF/Wireless, SAR, Telecom
Singapore	EMC, RF, SAR, Telecom
Europe	EMC, RF, SAR, Telecom, Safety

Test Report	16070896-FCC-R2
Page	3 of 61

This page has been left blank intentionally.

Test Report	16070896-FCC-R2
Page	4 of 61

CONTENTS

1.	REPORT REVISION HISTORY	5
2.	CUSTOMER INFORMATION	5
3.	TEST SITE INFORMATION	5
4.	EQUIPMENT UNDER TEST (EUT) INFORMATION	6
5.	TEST SUMMARY	9
6.	MEASUREMENTS, EXAMINATION AND DERIVED RESULTS	10
6.1	ANTENNA REQUIREMENT	10
6.2	CHANNEL SEPARATION	11
6.3	20DB BANDWIDTH	15
6.4	PEAK OUTPUT POWER	19
6.5	NUMBER OF HOPPING CHANNEL	23
6.6	TIME OF OCCUPANCY (DWELL TIME)	25
6.7	BAND EDGE & RESTRICTED BAND	29
6.8	AC POWER LINE CONDUCTED EMISSIONS	37
6.9	RADIATED SPURIOUS EMISSIONS & RESTRICTED BAND	43
INA	NEX A. TEST INSTRUMENT	49
INA	NEX B. EUT AND TEST SETUP PHOTOGRAPHS	50
ANI	NEX C. TEST SETUP AND SUPPORTING EQUIPMENT	56
INA	NEX D. USER MANUAL / BLOCK DIAGRAM / SCHEMATICS / PARTLIST	60
INA	NEX E. DECLARATION OF SIMILARITY	61

Test Report	16070896-FCC-R2
Page	5 of 61

1. Report Revision History

Report No.	Report Version	Description	Issue Date
16070896-FCC-R2	NONE	Original	August 31, 2016

2. Customer information

Applicant Name	Verykool USA Inc
Applicant Add	3636 Nobel Drive, Suite 325, San Diego, California 92122 United States
Manufacturer	Kozen Mobile Co.,Ltd
Manufacturer Add	Floor 3rd, Building 29, No.368 Zhangjiang Road, Pudong District, Shanghai, China
	201203

3. Test site information

Lab performing tests	SIEMIC (Shenzhen-China) LABORATORIES
	Zone A, Floor 1, Building 2 Wan Ye Long Technology Park
Lab Address	South Side of Zhoushi Road, Bao' an District, Shenzhen, Guangdong China
	518108
FCC Test Site No.	718246
IC Test Site No.	4842E-1
Test Software	Radiated Emission Program-To Shenzhen v2.0

Test Report	16070896-FCC-R2
Page	6 of 61

4. Equipment under Test (EUT) Information

Description of EUT: Mobile phone

Main Model: SL5050

Serial Model: N/A

Date EUT received: July 20, 2016

Test Date(s): July 21 to August 30

Equipment Category : DSS

GSM850: -2.2dBi

PCS1900: -1.21dBi

UMTS-FDD Band V: -2.62dBi
UMTS-FDD Band IV: -1.42dBi
UMTS-FDD Band II: -1.42dBi

LTE Band 2: -1.5dBi

Antenna Gain: LTE Band 4: -1.4dBi

LTE Band 5: -2.2dBi LTE Band 7: -0.8dBi LTE Band 12: -2.4dBi LTE Band 17: -2.4dBi

Bluetooth/BLE/WIFI: 0dBi

GPS:0dBi

Antenna Type: PIFA antenna

Adapter:

Model: TPA-46B050100UU

Input: AC 100-240V,50/60Hz;0.2A

Output: DC 5.0V,1A

Input Power: Battery:

Model:FHPK275875L

Spec: 3.8V,2500mAh(9.5Wh)
Charge limited voltage: 4.35V

Test Report	16070896-FCC-R2
Page	7 of 61

Max. Output Power: 6.503dBm

GSM / GPRS: GMSK EGPRS: GMSK,8PSK

UMTS-FDD: QPSK

LTE Band: QPSK, 16QAM Type of Modulation:

802.11b/g/n: DSSS, OFDM

Bluetooth: GFSK, π /4DQPSK, 8DPSK

BLE: GFSK GPS:BPSK

GSM850 TX: 824.2 ~ 848.8 MHz; RX: 869.2 ~ 893.8 MHz

PCS1900 TX: 1850.2 ~ 1909.8 MHz; RX: 1930.2 ~ 1989.8 MHz

UMTS-FDD Band V TX: 826.4 ~ 846.6 MHz; RX: 871.4 ~ 891.6 MHz

UMTS-FDD Band IV TX:1712.4 ~ 1752.6 MHz;

RX: 2112.4 ~ 2152.6 MHz

UMTS-FDD Band II TX:1852.4 ~ 1907.6 MHz;

RX: 1932.4 ~ 1987.6 MHz

LTE Band 2 TX: 1852.5 ~ 1907.5 MHz; RX : 1932.5 ~ 1987.5 MHz LTE Band 4 TX: 1712.5 ~ 1752.5 MHz; RX : 2112.5 ~ 2152.5 MHz

LTE Band 5 TX: 826.5 ~ 846.5 MHz; RX : 871.5 ~ 891.5 MHz

LTE Band 7 TX: 2502.5 ~ 2567.5 MHz; RX : 2622.5 ~ 2687.5 MHz

LTE Band 12 TX:699.7 ~ 715.3 MHz; RX : 729.7~ 745.3MHz LTE Band 17 TX: 706.5 ~ 713.5 MHz; RX : 736.5 ~ 743.5 MHz

WIFI: 802.11b/g/n(20M): 2412-2462 MHz WIFI: 802.11n(40M): 2422-2452 MHz Bluetooth& BLE: 2402-2480 MHz

GPS: 1575.42 MHz

GSM 850: 124CH PCS1900: 299CH

UMTS-FDD Band V: 102CH UMTS-FDD Band IV: 202CH UMTS-FDD Band II: 277CH

WIFI :802.11b/g/n(20M): 11CH WIFI :802.11n(40M): 7CH

Bluetooth: 79CH BLE: 40CH GPS:1CH

Number of Channels:

RF Operating Frequency (ies):

Test Report	16070896-FCC-R2
Page	8 of 61

Earphone Port, USB Port

Trade Name : verykool

GPRS/EGPRS Multi-slot class 8/10/12

FCC ID: WA6SL5050

Test Report	16070896-FCC-R2
Page	9 of 61

5. Test Summary

The product was tested in accordance with the following specifications.

All testing has been performed according to below product classification:

FCC Rules	Description of Test	Result
§15.203	Antenna Requirement	Compliance
§15.247(a)(1)	Channel Separation	Compliance
§15.247(a)(1)	20 dB Bandwidth	Compliance
§15.247(b)(1)	Peak Output Power	Compliance
§15.247(a)(1)(iii)	Number of Hopping Channel	Compliance
§15.247(a)(1)(iii)	Time of Occupancy (Dwell Time)	Compliance
§15.247(d)	Band Edge& Restricted Band	Compliance
§15.207(a)	AC Line Conducted Emissions	Compliance
§15.205, §15.209, §15.247(d)	Radiated Emissions& Restricted Band	Compliance

Measurement Uncertainty

Emissions			
Test Item	Uncertainty		
Band Edge and Radiated Spurious Emissions	Confidence level of approximately 95% (in the case where distributions are normal), with a coverage factor of 2 (for EUTs < 0.5m X 0.5m X 0.5m)	+5.6dB/-4.5dB	
-	-	-	

Test Report	16070896-FCC-R2
Page	10 of 61

6. Measurements, Examination And Derived Results

6.1 Antenna Requirement

Applicable Standard

According to § 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the user of a standard antenna jack or electrical connector is prohibited. The structure and application of the EUT were analyzed to determine compliance with section §15.203 of the rules. §15.203 state that the subject device must meet the following criteria:

- a. Antenna must be permanently attached to the unit.
- b. Antenna must use a unique type of connector to attach to the EUT.

Unit must be professionally installed, and installer shall be responsible for verifying that the correct antenna is employed with the unit.

And according to FCC 47 CFR section 15.247 (b), if the transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

Antenna Connector Construction

A permanently attached PIFA antenna for Bluetooth/BLE/WIFI/GPS, the gain is0dBi.

A permanently attached PIFA antenna for GSM/PCS/UMTS, the gain is -2.2dBi for GSM850, -1.21dBi for PCS1900, -2.62dBi for UMTS-FDD Band V, -1.42dBi for UMTS-FDD Band IV, 1.42dBi for UMTS-FDD Band II.

A permanently attached PIFA antenna for LTE Band 2/4/5/7/12/17, the gain is -1.5dBi for LTE Band 2, the gain is -1.4dBi for LTE Band 4, the gain is -2.2dBi for LTE Band 5, the gain is -0.8dBi for LTE Band 7, the gain is -2.4dBi for LTE Band 12, the gain is -2.4dBi for LTE Band 17.

The antenna meets up with the ANTENNA REQUIREMENT.

Result: Compliance.

Test Report	16070896-FCC-R2
Page	11 of 61

6.2 Channel Separation

Temperature	25°C
Relative Humidity	50%
Atmospheric Pressure	1008mbar
Test date :	August 08, 2016
Tested By :	Loren Luo

Requirement(s):

Requirement(s):						
Spec	Item	Applicable				
0.45.047(.)(4)		Channel Separation < 20dB BW and 20dB BW <				
	۵)	25KHz;Channel Separation Limit=25KHz				
§ 15.247(a)(1)	(a)	Chanel Separation < 20dB BW and 20dB BW >				
		25kHz; Channel Separation Limit=2/3 20dB BW				
Test Setup						
	The to	est follows FCC Public Notice DA 00-705 Measurement	Guidelines.			
	Use the following spectrum analyzer settings:					
	The EUT must have its hopping function enabled					
	- Span = wide enough to capture the peaks of two adjacent					
	channels					
	- Resolution (or IF) Bandwidth (RBW) ≥ 1% of the span					
Test Procedure	- Video (or Average) Bandwidth (VBW) ≥ RBW					
restrioccure	- Sweep = auto					
	- Detector function = peak					
	- Trace = max hold					
	- Allow the trace to stabilize. Use the marker-delta function to					
	determine the separation between the peaks of the adjacent					
	channels. The limit is specified in one of the subparagraphs of this					
		Section. Submit this plot.				

Test Report	16070896-FCC-R2
Page	12 of 61

Rema	rk				
Resu	lt	Pass	Fail		
Test Data	Yes	;	□ _{N/A}		
Test Plot Yes (See below)		□ _{N/A}			

Channel Separation measurement result

Type/ Modulation	СН	CH Frequency (MHz)	CH Separation (MHz)	Limit (MHz)	Result
	Low Channel	2402	1.005	0.687	Pass
	Adjacency Channel	2403	1.003	0.007	F a 5 5
CH Separation	Mid Channel	2440	1.005	0.685	Pass
GFSK	Adjacency Channel	2441	1.005	0.000	Pass
	High Channel	2480	1.005	0.604	Door
	Adjacency Channel	2479	1.005	0.684	Pass
	Low Channel	2402	1.005	0.004	Desc
	Adjacency Channel	2403	1.005	0.881	Pass
CH Separation	Mid Channel	2440	1.005	0.871	Pass
π /4 DQPSK	Adjacency Channel	2441	1.005		
	High Channel	2480	1.005	0.077	Door
	Adjacency Channel	2479	1.005	0.877	Pass
	Low Channel	2402	4.005	0.074	Dese
	Adjacency Channel	2403	1.005	0.871	Pass
CH Separation	Mid Channel	2440	4.005	0.000	Dese
8DPSK	Adjacency Channel	2441	1.005	0.869	Pass
	High Channel	2480	4.005	0.070	Dess
	Adjacency Channel	2479	1.005	0.873	Pass

Test Report	16070896-FCC-R2	
Page	13 of 61	

Test Plots

Channel Separation measurement result

Test Report	16070896-FCC-R2	
Page	14 of 61	

Test Report	16070896-FCC-R2	
Page	15 of 61	

6.3 20dB Bandwidth

Temperature	23°C
Relative Humidity	58%
Atmospheric Pressure	1006mbar
Test date :	August 06, 2016
Tested By :	Loren Luo

Requirement(s):				
Spec	Item	em Requirement Applicable		
§15.247(a) (1)	a)	>		
Test Setup				
Test Procedure	The test follows FCC Public Notice DA 00-705 Measurement Guidelines. Use the following spectrum analyzer settings: Span = approximately 2 to 3 times the 20 dB bandwidth, centered on a hopping channel RBW ≥ 1% of the 20 dB bandwidth VBW ≥ RBW Sweep = auto Detector function = peak Trace = max hold. The EUT should be transmitting at its maximum data rate. Allow the trace to stabilize. Use the marker-to-peak function to set the marker to the peak of the emission. Use the emission. Reset the marker-			
		delta function, and move the marker to the other side of the emission, until it is (as close as possible to) even with the		

Test Report	16070896-FCC-R2	
Page	16 of 61	

		marker level. The marker-delta reading at this point is the 20 dB			
		bandwi	bandwidth of the emission. If this value varies with different modes of		
		operation	on (e.g., data rate, modulation format, etc.), repeat this test for		
		each va	ariation. The limit is specified in one of the subparagraphs of		
		this Sec	ction. Submit this plot(s).		
Remark					
Result		Pass	■ Fail		
Test Data	Y	´es	□ _{N/A}		
Test Plot	Y	es (See below)	□ _{N/A}		

Measurement result

Modulation	СН	CH Frequency	20dB Bandwidth	99% Occupied
Modulation	СП	(MHz)	(MHz)	Bandwidth (MHz)
	Low	2402	1.031	0.8944
GFSK	Mid	2441	1.028	0.8993
	High	2480	1.026	0.8918
π /4 DQPSK	Low	2402	1.321	1.1797
	Mid	2441	1.306	1.1766
	High	2480	1.316	1.1760
8-DPSK	Low	2402	1.307	1.1931
	Mid	2441	1.304	1.1830
	High	2480	1.309	1.1921

Test Report	16070896-FCC-R2	
Page	17 of 61	

Test Plots

20dB Bandwidth measurement result

Test Report	16070896-FCC-R2	
Page	18 of 61	

Test Report	16070896-FCC-R2	
Page	19 of 61	

6.4 Peak Output Power

Temperature	25°C
Relative Humidity	50%
Atmospheric Pressure	1008mbar
Test date :	August 08, 2016
Tested By :	Loren Luo

Requirement(s):

Spec	Item	Requirement	Applicable		
	->	FHSS in 2400-2483.5MHz with ≥ 75 channels: ≤ 1			
	a)	Watt	>		
	b)	FHSS in 5725-5850MHz: ≤ 1 Watt			
C4E 047/b)	٥)	For all other FHSS in the 2400-2483.5MHz band:			
§15.247(b)	c)	≤ 0.125 Watt.			
(3)	d)	FHSS in 902-928MHz with ≥ 50 channels: ≤ 1 Watt			
		FHSS in 902-928MHz with ≥ 25 & <50 channels:			
	e)	≤ 0.25 Watt			
	f)	DTS in 902-928MHz, 2400-2483.5MHz: ≤ 1 Watt			
Test Setup					
	The test follows FCC Public Notice DA 00-705 Measurement Guidelin				
	Use the following spectrum analyzer settings:				
	- Span = approximately 5 times the 20 dB bandwidth, centered on a				
		hopping channel			
Test	-	- RBW > the 20 dB bandwidth of the emission being measured			
Procedure	-	VBW ≥ RBW			
	- Sweep = auto				
	- Detector function = peak				
	-	- Trace = max hold			
	- Allow the trace to stabilize.				

Test Report	16070896-FCC-R2
Page	20 of 61

		- Use the	marker-to-peak function to set the marker to the peak of the
		emissio	n. The indicated level is the peak output power (see the note
		above re	egarding external attenuation and cable loss). The limit is
		specifie	d in one of the subparagraphs of this Section. Submit this
		plot. A p	eak responding power meter may be used instead of a
		spectrur	m analyzer.
Remark			
Result		Pass	Fail
Test Data	Y	es	□ _{N/A}
Test Plot	Y	es (See below)	□ _{N/A}

Peak Output Power measurement result

Туре	Modulation	СН	Frequenc y (MHz)	Conducted Power (dBm)	Limit (mW)	Result
		Low	2402	4.699	125	Pass
	GFSK	Mid	2441	6.503	125	Pass
		High	2480	3.512	125	Pass
04		Low	2402	3.973	125	Pass
Output	π /4 DQPSK	Mid	2441	5.797	125	Pass
power		High	2480	2.851	125	Pass
		Low	2402	4.126	125	Pass
	8-DPSK	Mid	2441	5.914	125	Pass
		High	2480	3.005	125	Pass

Test Report	16070896-FCC-R2
Page	21 of 61

Test Plots

Output Power measurement result

Test Report	16070896-FCC-R2
Page	22 of 61

Test Report	16070896-FCC-R2
Page	23 of 61

6.5 Number of Hopping Channel

Temperature	25°C
Relative Humidity	50%
Atmospheric Pressure	1008mbar
Test date :	August 08, 2016
Tested By :	Loren Luo

Requirement(s):						
Spec	Item	Requirement	Applicable			
§15.247(a) (1)(iii)	a)	FHSS in 2400-2483.5MHz ≥ 15 channels	V			
Test Setup						
	The tes	st follows FCC Public Notice DA 00-705 Measurement Gu	ıidelines.			
	Use the	e following spectrum analyzer settings:				
	The El	JT must have its hopping function enabled.				
	- Span = the frequency band of operation					
	- RBW ≥ 1% of the span					
	- VBW ≥ RBW					
Test	-	- Sweep = auto				
Procedure	-	- Detector function = peak				
	- Trace = max hold					
	- Allow trace to fully stabilize.					
	It may prove necessary to break the span up to sections, in order to					
		clearly show all of the hopping frequencies. The limit is specified in				
		one of the subparagraphs of this Section. Submit this plot	:(s).			
Remark						
Result	Pas	s Fail				
Test Data	Yes	□ _{N/A}				
Test Plot	Yes (See	e below)				

Test Report	16070896-FCC-R2
Page	24 of 61

Number of Hopping Channel measurement result

Туре	Modulation	Frequency Range	Number of Hopping Channel	Limit
Number of Hopping Channel	GFSK	2400-2483.5	79	15
	π /4 DQPSK	2400-2483.5	79	15
	8-DPSK	2400-2483.5	79	15

Test Plots

Number of Hopping Channels measurement result

Test Report	16070896-FCC-R2
Page	25 of 61

6.6 Time of Occupancy (Dwell Time)

Temperature	25°C
Relative Humidity	50%
Atmospheric Pressure	1008mbar
Test date :	August 08, 2016
Tested By:	Loren Luo

Requirement(s):

Spec	Item	Requirement	Applicable
§15.247(a) (1)(iii)	a)	Dwell Time < 0.4s	V
Test Setup			
		st follows FCC Public Notice DA 00-705 Measurement G	Guidelines.
	Use the	e following spectrum analyzer	
	-	Span = zero span, centered on a hopping channel	
	-	RBW = 1 MHz	
Test	-	VBW ≥ RBW	
Procedure	-	Sweep = as necessary to capture the entire dwell time p	er hopping
		channel	
	-	Detector function = peak	
	-	Trace = max hold	
	-	use the marker-delta function to determine the dwell tim	e
Remark			
Result	Pas	s Fail	

Test Data	Yes	□ _{N/A}
Test Plot	Yes (See below)	□ _{N/A}

Test Report	16070896-FCC-R2
Page	26 of 61

Dwell Time measurement result

Modulation	СН	Pulse Width (ms)	Dwell Time (ms)	Limit (ms)	Result
	Low	2.85	304.000	400	Pass
GFSK	Mid	2.88	307.200	400	Pass
	High	2.85	304.000	400	Pass
π /4 DQPSK	Low	2.85	304.000	400	Pass
	Mid	2.85	304.000	400	Pass
	High	2.85	304.000	400	Pass
8-DPSK	Low	2.85	304.000	400	Pass
	Mid	2.85	304.000	400	Pass
	High	2.85	304.000	400	Pass
	GFSK π /4 DQPSK 8-DPSK	GFSK Mid High Low π /4 DQPSK Mid High Low S-DPSK Mid	Low 2.85 GFSK Mid 2.88 High 2.85 Low 2.85 Low 2.85 High 2.85 High 2.85 Low 2.85 High 2.85	Composition of the compositio	Composition of the compositio

Note: Dwell time=Pulse Time (ms) × (1600 \div 6 \div 79) ×31.6

Test Report	16070896-FCC-R2
Page	27 of 61

Test Plots

Dwell Time measurement result

Test Report	16070896-FCC-R2
Page	28 of 61

Test Report	16070896-FCC-R2
Page	29 of 61

6.7 Band Edge & Restricted Band

Temperature	25°C
Relative Humidity	54%
Atmospheric Pressure	1012mbar
Test date :	August 12, 2016
Tested By :	Loren Luo

Requirement(s):

Spec	Item	Requirement	Applicable
§15.247(a) (1)(iii)	a)	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits.	\
Test Setup		Ant. Tower Support Units Turn Table Ground Plane Test Receiver	
Test Procedure	Radiate - -	st follows FCC Public Notice DA 00-705 Measurement G d Method Only 1. Check the calibration of the measuring instrument using either calibrator or a known signal from an external generator. 2. Position the EUT without connection to measurement instrum the Rotated table and turn on the EUT and make it operate in tra mode. Then set it to Low Channel and High Channel within its operate.	r an internal ent. Put it on ansmitting

Test Report	16070896-FCC-R2
Page	30 of 61

	and make sure the instrument is operated in its linear range.
	- 3. First, set both RBW and VBW of spectrum analyzer to 100 kHz with a
	convenient frequency span including 100kHz bandwidth from band edge, check
	the emission of EUT, if pass then set Spectrum Analyzer as below:
	a. The resolution bandwidth and video bandwidth of test receiver/spectrum
	analyzer is 120 kHz for Quasiy Peak detection at frequency below 1GHz.
	b. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and
	video bandwidth is 3MHz with Peak detection for Peak measurement at
	frequency above 1GHz.
	c. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and the
	video bandwidth is 10Hz with Peak detection for Average Measurement as
	below at frequency above 1GHz.
	- 4. Measure the highest amplitude appearing on spectral display and set it as a
	reference level. Plot the graph with marking the highest point and edge
	frequency.
	- 5. Repeat above procedures until all measured frequencies were complete.
Remark	
Result	Pass Pail
Test Data	Yes N/A
Test Plot	∕es (See below)

Test Report	16070896-FCC-R2
Page	31 of 61

Test Plots

GFSK Mode:

Test Report	16070896-FCC-R2
Page	32 of 61

Test Report	16070896-FCC-R2
Page	33 of 61

π /4 DQPSK Mode:

Test Report	16070896-FCC-R2
Page	34 of 61

Test Report	16070896-FCC-R2
Page	35 of 61

8-DPSK Mode:

Test Report	16070896-FCC-R2
Page	36 of 61

Test Report	16070896-FCC-R2
Page	37 of 61

6.8 AC Power Line Conducted Emissions

Temperature	24°C
Relative Humidity	53%
Atmospheric Pressure	1001mbar
Test date :	August 01, 2016
Tested By:	Loren Luo

Requirement(s):

Spec	Item	Requirement Applicable						
47CFR§15. 207, RSS210 (A8.1)	connected to the public utility (AC) power line, the radio for voltage that is conducted back onto the AC power line on frequency or frequencies, within the band 150 kHz to 30 mot exceed the limits in the following table, as measured [mu]H/50 ohms line impedance stabilization network (LIS							
		0.15 ~ 0.5	66 – 56	56 – 46				
		0.5 ~ 5	56	46				
		5 ~ 30	60	50				
Test Setup	Vertical Ground Reference Plane Horizontal Ground Reference Plane Note: 1.Support units were connected to second LISN.							
	2.Both of LISNs (AMN) are 80cm from EUT and at least 80cm from other units and other metal planes support units.							
Procedure	filtered mains.							
	3. The	e RF OUT of the EUT LIS	SN was connected to the	ne EMI test receiver via	a low-loss			

Test Report	16070896-FCC-R2
Page	38 of 61

	coaxial cable.						
	4. All other supporting equipment were powered separately from another main supply.						
	5. The EUT was switched on and allowed to warm up to its normal operating condition.						
	6. A scan was made on the NEUTRAL line (for AC mains) or Earth line (for DC power)						
	over the required frequency range using an EMI test receiver.						
	7. High peaks, relative to the limit line, The EMI test receiver was then tuned to the						
	selected frequencies and the necessary measurements made with a receiver bandwidth						
	setting of 10 kHz.						
	8. Step 7 was then repeated for the LIVE line (for AC mains) or DC line (for DC power).						
Remark							
Result	Pass Fail						

Test Data	Yes	□ _{N/A}
Test Plot	Yes (See below)	□ _{N/A}

Test Report	16070896-FCC-R2
Page	39 of 61

Test Mode:	Bluetooth Mode

Phase Line Plot at 120Vac, 60Hz

No.	P/L	Frequency	Reading	Detector	Corrected	Result	Limit	Margin
		(MHz)	(dBuV)		(dB)	(dBuV)	(dBuV)	(dB)
1	L1	0.2865	25.38	QP	10.03	35.41	60.63	-25.22
2	L1	0.2865	15.11	AVG	10.03	25.14	50.63	-25.49
3	L1	0.5088	18.64	QP	10.03	28.67	56.00	-27.33
4	L1	0.5088	3.02	AVG	10.03	13.05	46.00	-32.95
5	L1	1.2264	11.74	QP	10.03	21.77	56.00	-34.23
6	L1	1.2264	-1.69	AVG	10.03	8.34	46.00	-37.66
7	L1	1.7646	10.61	QP	10.04	20.65	56.00	-35.35
8	L1	1.7646	-2.83	AVG	10.04	7.21	46.00	-38.79
9	L1	4.0179	12.83	QP	10.07	22.90	56.00	-33.10
10	L1	4.0179	-1.87	AVG	10.07	8.20	46.00	-37.80
11	L1	15.3123	8.26	QP	10.23	18.49	60.00	-41.51
12	L1	15.3123	-2.02	AVG	10.23	8.21	50.00	-41.79

Test Report	16070896-FCC-R2
Page	40 of 61

Test Mode:	Bluetooth Mode
rest Mode:	Diuetooth wode

Phase Neutral Plot at 120Vac, 60Hz

No.	P/L	Frequency	Reading	Detector	Corrected	Result	Limit	Margin
		(MHz)	(dBuV)		(dB}	(dBuV)	(dBuV)	(dB)
1	N	0.2865	25.53	QP	10.02	35.55	60.63	-25.08
2	N	0.2865	14.75	AVG	10.02	24.77	50.63	-25.86
3	N	0.5244	17.58	QP	10.02	27.60	56.00	-28.40
4	N	0.5244	0.82	AVG	10.02	10.84	46.00	-35.16
5	N	1.2225	12.65	QP	10.03	22.68	56.00	-33.32
6	N	1.2225	-6.31	AVG	10.03	3.72	46.00	-42.28
7	N	1.8816	11.88	QP	10.04	21.92	56.00	-34.08
8	N	1.8816	-6.54	AVG	10.04	3.50	46.00	-42.50
9	N	4.0062	14.78	QP	10.06	24.84	56.00	-31.16
10	N	4.0062	-3.60	AVG	10.06	6.46	46.00	-39.54
11	N	21.6654	9.22	QP	10.29	19.51	60.00	-40.49
12	N	21.6654	5.08	AVG	10.29	15.37	50.00	-34.63

Test Report	16070896-FCC-R2
Page	41 of 61

Test Mode:	Bluetooth Mode	
------------	----------------	--

Phase Line Plot at 240Vac, 60Hz

No.	P/L	Frequency	Reading	Detector	Corrected	Result	Limit	Margin
		(MHz)	(dBuV)		(dB)	(dBuV)	(dBuV)	(dB)
1	L1	0.4074	23.11	QP	10.03	33.14	57.70	-24.56
2	L1	0.4074	13.45	AVG	10.03	23.48	47.70	-24.22
3	L1	0.7623	33.66	QP	10.03	43.69	56.00	-12.31
4	L1	0.7623	21.26	AVG	10.03	31.29	46.00	-14.71
5	L1	1.3239	32.27	QP	10.03	42.30	56.00	-13.70
6	L1	1.3239	23.31	AVG	10.03	33.34	46.00	-12.66
7	L1	1.8738	19.79	QP	10.04	29.83	56.00	-26.17
8	L1	1.8738	10.34	AVG	10.04	20.38	46.00	-25.62
9	L1	3.3627	31.85	QP	10.06	41.91	56.00	-14.09
10	L1	3.3627	18.54	AVG	10.06	28.60	46.00	-17.40
11	L1	13.3857	20.98	QP	10.20	31.18	60.00	-28.82
12	L1	13.3857	7.37	AVG	10.20	17.57	50.00	-32.43

Test Report	16070896-FCC-R2
Page	42 of 61

Bluetooth Mode

Phase Neutral Plot at 240Vac, 60Hz

No.	P/L	Frequency	Reading	Detector	Corrected	Result	Limit	Margin
		(MHz)	(dBuV)		(dB}	(dBuV)	(dBuV)	(dB)
1	N	0.2904	23.06	QP	10.02	33.08	60.51	-27.43
2	N	0.2904	8.32	AVG	10.02	18.34	50.51	-32.17
3	N	0.3879	24.85	QP	10.02	34.87	58.11	-23.24
4	N	0.3879	7.94	AVG	10.02	17.96	48.11	-30.15
5	N	0.5127	27.70	QP	10.02	37.72	56.00	-18.28
6	N	0.5127	10.68	AVG	10.02	20.70	46.00	-25.30
7	N	1.2225	19.80	QP	10.03	29.83	56.00	-26.17
8	N	1.2225	3.19	AVG	10.03	13.22	46.00	-32.78
9	N	2.1429	19.30	QP	10.04	29.34	56.00	-26.66
10	N	2.1429	3.03	AVG	10.04	13.07	46.00	-32.93
11	N	3.8603	21.05	QP	10.06	31.11	56.00	-24.89
12	N	3.8603	4.56	AVG	10.06	14.62	46.00	-31.38

Test Report	16070896-FCC-R2
Page	43 of 61

6.9 Radiated Spurious Emissions & Restricted Band

Temperature	24°C
Relative Humidity	53%
Atmospheric Pressure	1001mbar
Test date :	August 01, 2016
Tested By :	Loren Luo

Requirement(s):

Spec	Item	tem Requirement Applica			
47CFR§15. 205, §15.209, §15.247(d)	a)	Y			
Test Setup	Above 960 Ant. Tower Variable Support Units Ground Plane Test Receiver				
Procedure	 The EUT was switched on and allowed to warm up to its normal operating condition. The test was carried out at the selected frequency points obtained from the EUT characterization. Maximization of the emissions, was carried out by rotating the EUT, changing the antenna polarization, and adjusting the antenna height in the 				

Test Report	16070896-FCC-R2
Page	44 of 61

	fol	lowing manner:		
	a.	Vertical or horizontal polarization (whichever gave the higher emission		
		level over a full rotation of the EUT) was chosen.		
	b.	The EUT was then rotated to the direction that gave the maximum		
		emission.		
	C.	Finally, the antenna height was adjusted to the height that gave the		
		maximum emission.		
	3. Th	ne resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is		
	12	0 kHz for Quasiy Peak detection at frequency below 1GHz.		
	4. The	e resolution bandwidth of test receiver/spectrum analyzer is 1MHz and video		
	ba	ndwidth is 3MHz with Peak detection for Peak measurement at frequency above		
	1G	SHz.		
	Th	e resolution bandwidth of test receiver/spectrum analyzer is 1MHz and the video		
	ba	dth is 10Hz with Peak detection for Average Measurement as below at		
	fre	equency above 1GHz.		
	5. St	eps 2 and 3 were repeated for the next frequency point, until all selected		
	fre	equency points were measured.		
Remark				
Result	Pass	Fail		
Test Data	Yes	□ _{N/A}		
Test Plot	Yes (See	below) N/A		

Test Report	16070896-FCC-R2
Page	45 of 61

Below 1GHz

Test Data

Horizontal Polarity Plot @3m

No.	P/L	Frequency	Readin g	Detector	Corrected	Result	Limit	Margin	Height	Degree
		(MHz)	(dBuV/ m)		(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	(cm)	(°)
1	Ι	35.8747	32.31	peak	-4.58	27.73	40.00	-12.27	100	216
2	Н	42.8998	39.70	peak	-9.53	30.17	40.00	-9.83	100	190
3	Н	105.2718	35.60	peak	-9.86	25.74	43.50	-17.76	100	190
4	Н	129.0146	32.19	peak	-7.87	24.32	43.50	-19.18	100	156
5	Н	213.0151	35.62	peak	-8.86	26.76	43.50	-16.74	100	122
6	Н	319.9370	28.04	peak	-6.32	21.72	46.00	-24.28	100	145

Test Report	16070896-FCC-R2
Page	46 of 61

Below 1GHz

Vertical Polarity Plot @3m

No.	P/L	Frequency	Readin g	Detector	Corrected	Result	Limit	Margin	Height	Degree
		(MHz)	(dBuV/ m)		(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	(cm)	(°)
1	>	30.1054	36.25	QP	-0.34	35.91	40.00	-4.09	100	229
2	٧	51.6616	43.48	peak	-13.37	30.11	40.00	-9.89	100	286
3	V	87.7248	45.63	peak	-13.43	32.20	40.00	-7.80	100	158
4	٧	132.2206	34.63	peak	-8.06	26.57	43.50	-16.93	100	312
5	V	170.7926	39.35	peak	-9.16	30.19	43.50	-13.31	100	331
6	V	203.5228	38.17	peak	-8.77	29.40	43.50	-14.10	100	244

Test Report	16070896-FCC-R2
Page	47 of 61

Above 1GHz

Test Mode: Transmitting Mode

Mode: GFSK (Worst Case)

Low Channel (2402 MHz) (GFSK Worst Case)

Frequency (MHz)	S.A. Reading (dBµV)	Detector (PK/AV)	Polarity (H/V)	Ant. Factor (dB/m)	Cable Loss (dB)	Pre- Amp. Gain (dB)	Cord. Amp. (dBµV/m)	Limit (dBµV/m)	Margin (dB)
4804	39.11	AV	V	33.67	6.86	32.66	46.98	54	-7.02
4804	38.94	AV	Н	33.67	6.86	32.66	46.81	54	-7.19
4804	48.26	PK	V	33.67	6.86	32.66	56.13	74	-17.87
4804	48.67	PK	Н	33.67	6.86	32.66	56.54	74	-17.46
17854	25.32	AV	V	45.03	11.21	32.38	49.18	54	-4.82
17854	25.14	AV	Н	45.03	11.21	32.38	49	54	-5
17854	41.25	PK	V	45.03	11.21	32.38	65.11	74	-8.89
17854	40.98	PK	Н	45.03	11.21	32.38	64.84	74	-9.16

Middle Channel (2441 MHz) (GFSK Worst Case)

Frequency (MHz)	S.A. Reading (dBµV)	Detector (PK/AV)	Polarity (H/V)	Ant. Factor (dB/m)	Cable Loss (dB)	Pre- Amp. Gain (dB)	Cord. Amp. (dBµV/m)	Limit (dBµV/m)	Margin (dB)
4882	39.25	AV	V	33.71	6.95	32.74	47.17	54	-6.83
4882	38.78	AV	Н	33.71	6.95	32.74	46.7	54	-7.3
4882	48.37	PK	V	33.71	6.95	32.74	56.29	74	-17.71
4882	48.57	PK	Н	33.71	6.95	32.74	56.49	74	-17.51
17893	25.46	AV	V	45.15	11.18	32.41	49.38	54	-4.62
17893	24.99	AV	Н	45.15	11.18	32.41	48.91	54	-5.09
17893	41.21	PK	V	45.15	11.18	32.41	65.13	74	-8.87
17893	41.02	PK	Н	45.15	11.18	32.41	64.94	74	-9.06

Test Report	16070896-FCC-R2
Page	48 of 61

High Channel (2480 MHz) (GFSK Worst Case)

Frequency (MHz)	S.A. Reading (dBµV)	Detector (PK/AV)	Polarity (H/V)	Ant. Factor (dB/m)	Cable Loss (dB)	Pre- Amp. Gain (dB)	Cord. Amp. (dBµV/m)	Limit (dBµV/m)	Margin (dB)
4960	39.48	AV	V	33.9	6.76	32.74	47.4	54	-6.6
4960	39.35	AV	Н	33.9	6.76	32.74	47.27	54	-6.73
4960	48.05	PK	V	33.9	6.76	32.74	55.97	74	-18.03
4960	47.79	PK	Н	33.9	6.76	32.74	55.71	74	-18.29
17906	24.78	AV	V	45.22	11.35	32.38	48.97	54	-5.03
17906	24.39	AV	Н	45.22	11.35	32.38	48.58	54	-5.42
17906	41.48	PK	V	45.22	11.35	32.38	65.67	74	-8.33
17906	41.27	PK	Н	45.22	11.35	32.38	65.46	74	-8.54

Note:

- 1, The testing has been conformed to 10*2480MHz=24,800MHz
- 2, All other emissions more than 30 dB below the limit
- 3, X-Axis, Y-Axis and Y-Axis were investigated. The results above show only the worst case.

Test Report	16070896-FCC-R2
Page	49 of 61

Annex A. TEST INSTRUMENT

Instrument	Model	Serial #	Cal Date	Cal Due	In use
AC Line Conducted				l	
EMI test receiver	ESCS30	8471241027	09/17/2015	09/16/2016	~
Line Impedance	LI-125A	191106	09/25/2015	09/24/2016	<u> </u>
Line Impedance	LI-125A	191107	09/25/2015	09/24/2016	<u>\</u>
LISN	ISN T800	34373	09/25/2015	09/24/2016	~
Double Ridge Horn Antenna (1 ~18GHz)	AH-118	71283	09/24/2015	09/23/2016	V
Transient Limiter	LIT-153	531118	09/01/2015	08/31/2016	V
RF conducted test					
Agilent ESA-E SERIES	E4407B	MY45108319	09/17/2015	09/16/2016	>
Power Splitter	1#	1#	09/01/2015	08/31/2016	~
DC Power Supply	E3640A	MY40004013	09/17/2015	09/16/2016	~
Radiated Emissions					
EMI test receiver	ESL6	100262	09/17/2015	09/16/2016	~
Positioning Controller	UC3000	MF780208282	11/19/2015	11/18/2016	~
OPT 010 AMPLIFIER (0.1-1300MHz)	8447E	2727A02430	09/01/2015	08/31/2016	V
Microwave Preamplifier (1 ~ 26.5GHz)	8449B	3008A02402	03/24/2016	03/23/2017	\
Bilog Antenna (30MHz~6GHz)	JB6	A110712	09/21/2015	09/20/2016	V
Double Ridge Horn Antenna (1 ~18GHz)	AH-118	71283	09/24/2015	09/23/2016	<u>X</u>
Universal Radio Communication Tester	CMU200	121393	09/25/2015	09/24/2016	V

Test Report	16070896-FCC-R2
Page	50 of 61

Annex B. EUT And Test Setup Photographs

Annex B.i. Photograph: EUT External Photo

Test Report	16070896-FCC-R2
Page	51 of 61

Test Report	16070896-FCC-R2
Page	52 of 61

Annex B.ii. Photograph: EUT Internal Photo

Cover Off - Top View 1

Cover Off - Top View 2

Battery - Front View

Battery - Rear View

Mainboard with Shielding - Front View

Mainboard without Shielding - Front View

Test Report	16070896-FCC-R2	
Page	53 of 61	

Mainboard with Shielding - Rear View

Mainboard without Shielding - Rear View

Small Board - Rear View

LCD - Front View

LCD - Rear View

Test Report	16070896-FCC-R2
Page	54 of 61

GSM/PCS/UMTS-FDD-Antenna View

WIFI/BT/BLE/GPS - Antenna View

LTE - Antenna View

Test Report	16070896-FCC-R2
Page	55 of 61

Annex B.iii. Photograph: Test Setup Photo

Conducted Emissions Test Setup Front View

Conducted Emissions Test Setup Side View

Radiated Spurious Emissions Test Setup Below 1GHz

Radiated Spurious Emissions Test Setup Above 1GHz

Test Report	16070896-FCC-R2
Page	56 of 61

Annex C. TEST SETUP AND SUPPORTING EQUIPMENT

Annex C.ii. TEST SET UP BLOCK

Block Configuration Diagram for AC Line Conducted Emissions

Test Report	16070896-FCC-R2
Page	57 of 61

Block Configuration Diagram for Radiated Emissions (Below 1GHz).

Test Report	16070896-FCC-R2
Page	58 of 61

Block Configuration Diagram for Radiated Emissions (Above 1GHz) .

Test Report	16070896-FCC-R2
Page	59 of 61

Annex C. il. SUPPORTING EQUIPMENT DESCRIPTION

The following is a description of supporting equipment and details of cables used with the EUT.

Supporting Equipment:

Manufacturer	nufacturer Equipment Description		Serial No
Verykool USA Inc	Adapter	TPA- 46B050100UU	SL-010

Supporting Cable:

Cable type	Shield Type	Ferrite Core	Length	Serial No
USB Cable	Un-shielding	No	0.8m	SL-010

Test Report	16070896-FCC-R2
Page	60 of 61

Annex D. User Manual / Block Diagram / Schematics / Partlist

Please see attachment

Test Report	16070896-FCC-R2
Page	61 of 61

Annex E. DECLARATION OF SIMILARITY

N/A