Series Solutions of Linear Differential Equations

In this chapter we shall solve some second-order linear differential equation about an initial point using The *Taylor series*.

In all that follows we assume that (E) is a second-order homogeneous linear differential equation

$$a_0(x)y'' + a_1(x)y' + a_2(x)y = 0, (1)$$

where the coefficients $a_0(x)$, $a_1(x)$, and $a_2(x)$ are polynomials. The normalized form of (E),

$$y'' + P(x)y' + Q(x)y = 0.$$
 (2)

is obtained when the equation is divided by the polynomial $a_0(x)$.

A function f(x) is said to be analytic at x_0 if its Taylor series about x_0 ,

$$\sum_{k=0}^{\infty} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k,$$

exists and converges to f(x) for all x in some open interval containing x_0 . Functions such as polynomials, e^x , $\sin x$, and $\cos x$ are analytic at all points. A rational function is analytic at all points except, when the denominator becomes zero.

If both P(x) and Q(x) are analytic at x_0 , then x_0 is called an *ordinary* point of the equation. If either (or both) of these function is not analytic at x_0 , then x_0 is called a singular point of the differential equation.

Let x_0 be a singular point of (E), then we define $deg_P(x_0)$ (rep $deg_Q(x_0)$) as the power of $(x - x_0)$ in the denominator of P(x) (resp. Q(x)). If

$$0 \le deg_P(x_0) \le 1 \qquad 0 \le deg_Q(x_0) \le 2,$$

then x_0 is called a regular singular point (RSP), otherwise x_0 is said to be irregular singular point (ISP).

Consider the differential equation

$$x^{3}(x+1)^{2}(x-2)^{3}(x^{2}+1)y'' + x^{2}(x+1)(x^{2}-4)^{2}y' + xy = 0.$$

The normalized form of this equation is

$$y'' + \frac{(x+2)^2}{x(x+1)^2(x-2)(x^2+1)}y' + \frac{1}{x^2(x+1)^2(x-2)^3(x^2+1)}y = 0.$$

California State University, East Bay

The point 0, -1, 2, -i, and i are singular points. All singular points, except 2 are regular.

A Power Series Solutions About an Ordinary Point. If the point x_0 is an ordinary point of the differential equation (E), then there is a power series solutions of the form

$$\sum_{k=0}^{\infty} C_k (x - x_0)^k \tag{3}$$

for the equation (E).

Now that we are asured that the equation about the regular point has a power series solution; we need to find the coefficients $C'_k s$ in (3).

Algorithm. We assume that

$$y = \sum_{k=0}^{\infty} C_k (x - x_0)^k.$$

Hence

$$y' = \sum_{k=1}^{\infty} kC_k(x - x_0)^{k-1}$$
 and $y'' = \sum_{k=2}^{\infty} k(k-1)C_k(x - x_0)^{k-2}$.

Next we put the power series corresponding to y, y', and y'' in (2) (the non-normalized form of the equation (E)), we obtain

$$a_0(x) \left[\sum_{k=2}^{\infty} k(k-1) C_k(x-x_0)^{k-2} \right] + a_1(x) \left[\sum_{k=1}^{\infty} k C_k(x-x_0)^{k-1} \right] + a_2(x) \left[\sum_{k=0}^{\infty} C_k(x-x_0)^k = 0 \right].$$

We now need to set the coefficient of each $(x - x_0)$ term to zero. We illustrate the whole procedure with the following example.

Example. Consider the differential equation

$$y'' + xy' + (x^2 + 2)y = 0. (4)$$

Notice that the point $x_0 = 0$ is an ordinary point, so we assume that

$$y = \sum_{k=0}^{\infty} C_k x^k$$

is a power series solution to the equation (4). Differentiating term by term we obtain

$$y' = \sum_{k=1}^{\infty} kC_k x^{k-1}$$
 and $y'' = \sum_{k=2}^{\infty} k(k-1)C_k x^{k-2}$.

Substituting the series for y, y', and y'' in (4), we obtain

$$\left[\sum_{k=2}^{\infty} k(k-1)C_k x^{k-2}\right] + x \left[\sum_{k=1}^{\infty} kC_k x^{k-1}\right] + (x^2 + 2) \left[\sum_{k=0}^{\infty} C_k x^k = 0\right] = 0.$$
 (5)

California State University, East Bay

Multiplying x by y' and $(x^2 + 1)$ by y in (5), we obtain

$$\left[\sum_{k=2}^{\infty} k(k-1)C_k x^{k-2}\right] + \left[\sum_{k=1}^{\infty} kC_k x^k\right] + \left[\sum_{k=0}^{\infty} C_k x^{k+2}\right] + 2\left[\sum_{k=0}^{\infty} C_k x^k\right] = 0.$$
 (6)

In order to match the powers of x's in (6), we need to start k in each series from different values. Thus (6) becomes

$$\left[\sum_{k=0}^{\infty} (k+2)(k+1)C_{k+2}x^k\right] + \left[\sum_{k=1}^{\infty} kC_k x^k\right] + \left[\sum_{k=2}^{\infty} C_{k-2}x^k\right] + 2\left[\sum_{k=0}^{\infty} C_k x^k\right] = 0.$$
 (7)

Now we start \mathbf{k} from $\mathbf{2}$ in all four power series in (7); so we need to extract terms with indices less than two. Once this is done we combine all of the power series into a unique power serie. The equation (7) then becomes

$$[2C_2 + 6C_3x] + [C_1x] + [2C_0 + 2C_1x] + \left[\sum_{k=0}^{\infty} [(k+2)(k+1)C_{k+2} + kC_k + C_{k-2} + C_k]x^k\right] = 0.$$
 (8)

From (8) we obtain the system

$$\begin{cases} 2C_2 + 2C_0 = 0\\ 6C_3 + 3C_1 = 0 \end{cases}$$
(9)

and a formula

$$[(k+2)(k+1)C_{k+2} + kC_k + C_{k-2} + C_k] = 0 (10)$$

called the recurrence formula.

The system (9) gives us

$$C_2 = -C_0$$
 and $C_3 = -\frac{1}{2}C_1$. (11)

The conditions (11) and the recurrence formula enable us to express each coefficient C_{k+2} for $k \geq 2$ in terms of the previous coefficients C_k and C_{k-2} , thus giving

$$C_{k+2} = -\frac{(k+1)C_k + C_{k-2}}{(k+1)(k+2)}, \qquad (k \ge 2)$$
(12)

A Power Series Solutions About a Regular Singular Point. We shall restrict our study to the interval x > 0 and if we then wish to find solutions for negative interval, by substituting u = -x in (E), we may study the resulting equation for positive u. If the singular point is not zero, then by translating the origin to that point; this way, we obtain a new equation with a singular point at $x_0 = 0$. Since the equation (E) behave badly at an irregular singular point, we only study the case of regular singular points.

 \bigcirc The Method of Frobenius. If x_0 is a regular singular point of the differential equation (E), then for some real or complex constant (which may be determined), the power serie

$$\sum_{k=0}^{\infty} C_k x^{k+r}, \qquad (C_0 \neq 0)$$
 (12)

is a solution to (E).

The fact that $x_0 = 0$ is a RSP implies that the Mac Laurin series of

$$xP(x) = p_0 + xp_1 + x^2p_2 + \dots = \sum_{k=0}^{\infty} p_k x^k$$
 and
$$x^2Q(x) = q_0 + xq_1 + x^2q_2 + \dots = \sum_{k=0}^{\infty} q_k x^k$$

By putting the power series of y, xP(x) and $x^2Q(x)$ into the differential equation (E), and equating the lowest term of this series to zero, we obtain the equation

$$r^2 + (p_0 - 1)r + q_0 = 0. (13)$$

This equation is called the *indicial equation of* (E).

Let r_1 and r_2 be the roots of the indicial equation with $Re(r_1) \geq Re(r_2)$.

Case 1. If $r_1 - r_2$ is not an integer, then the linearly independent solutions of the equation (E) are given respectively by

$$y_1(x) = x_1^r \sum_{k=0}^{\infty} C_k^1 x^k$$

where $C_0 \neq 0$, and

$$y_2(x) = x_2^r \sum_{k=0}^{\infty} C_k^2 x^k$$

where $C_0 \neq 0$.

Case 2. If $r_1 - r_2$ is an integer, then the linearly independent solutions of the equation (E) are given respectively by

$$y_1(x) = x_1^r \sum_{k=0}^{\infty} C_k^1 x^k$$

where $C_0^1 \neq 0$, and

$$y_2(x) = x_2^r \sum_{k=0}^{\infty} C_k^2 x^k + Cy_1(x) \ln x$$

where $C_0^2 \neq 0$, and C is a constant which may or may not be zero.

California State University, East Bay

Case 3. If $r_1 = r_2$, the the linearly independent solutions of the equation (E) are given respectively by

$$y_1(x) = x_1^r \sum_{k=0}^{\infty} C_k^1 x^k$$

where $C_0^1 \neq 0$, and

$$y_2(x) = x_2^r \sum_{k=0}^{\infty} C_k^2 x^k + y_1(x) \ln x$$

where $C_0^2 \neq 0$.

Equation:	$2x^2y'' + xy' + (x^2 - 3)y = 0$
Indicial Equation	$2r^2 - r - 3 = 0$
Indicial Roots	$r_1 = \frac{3}{2}$ $r_2 = -1$
Recurrence formulas	$\int r_1 = \frac{3}{2} \left\{ C_1 = 0 C_k = -\frac{C_{k-2}}{n(2n+5)} n \ge 2, \right.$
	$\begin{cases} r_2 = -1 & \begin{cases} C_1 = 0 & C_k = -\frac{C_{k-2}}{n(2n-5)} & n \ge 2. \end{cases} \end{cases}$

Equation:	$x^2y'' - xy' - (x^2 - \frac{5}{4})y = 0$
Indicial Equation	$r^2 - 2r - \frac{5}{4} = 0$
Indicial Roots	$r_1 = \frac{5}{2}$ $r_2 = -\frac{1}{2}$
Recurrence formulas	$\int r_1 = \frac{5}{2} \left\{ C_1 = 0 C_k = \frac{C_{k-2}}{n(n+3)} n \ge 2, \right.$
	$\begin{cases} r_2 = -1 & \begin{cases} C_1 = 0 & C_k = \frac{C_{k-2}}{n(n-3)} & n \ge 2. \end{cases}$

<u>\wedge</u> Note. If $r = \alpha \pm \beta i$ are the complex roots of the indicial equation, then the linearly independent solution to the differential equation (E) are

$$y(x) = x^r \sum_{k=0}^{\infty} C_k x^k = x^{\alpha \pm \beta i} \sum_{k=0}^{\infty} C_k x^k = x^{\alpha} e^{\pm i\beta \ln x} \sum_{k=0}^{\infty} C_k x^k$$
$$= x^{\alpha} \left[\cos(\beta \ln x) \pm \sin(\beta \ln x) \right] \sum_{k=0}^{\infty} C_k x^k$$
$$= x^{\alpha} \cos(\beta \ln x) \sum_{k=0}^{\infty} C_k x^k \pm \sin(\beta \ln x) \sum_{k=0}^{\infty} C_k x^k.$$