Module 2.4: Logical Structure of Statements MCIT Online - CIT592 - Professor Val Tannen

LECTURE NOTES

Statements

Logical terminology and notation.

Elucidate the logical **structure** of mathematical assertions (statements).

Eventually, proof patterns.

Examples (of statements):

13 is prime.

5 is not even.

The letter 'a' is a vowel.

If x is prime and x is not 2 then x is odd.

A letter ℓ is either a vowel or a consonant.

Except for the first one, which is a *basic statement* (also called "atomic statement"), each of these statements contain *logical connectives*.

Basic statements and logical connectives

In logical notation we write the basic statement "13 is prime" as prime(13).

Similarly, even(5), letter('a'), odd(x), letter(ℓ), vowel(ℓ), etc.

x=2 is also a basic statement.

Note that x and ℓ are variables. To be discussed later.

For each logical connective we give the (fancy name), the corresponding "plain language name", and our corresponding mathematical notation.

- (conjunction) "and"
- "or" • (disjunction)
- (implication) "if-then"
- (negation) "not"

Logical connectives allow us to combine basic statements into more complex statements.

Statements in logical notation

13 is prime prime(13)

5 is not even $\neg even(5)$

The letter 'a' is a vowel $letter('a') \wedge vowel('a')$

If x is prime and x is not 2 then x is odd

$$[prime(x) \land (\neg(x=2))] \Rightarrow odd(x)$$

A letter ℓ is either a vowel or a consonant (Two equivalent translations!) $letter(\ell) \Rightarrow [(vowel(\ell) \land \neg consonant(\ell)) \lor (consonant(\ell) \land \neg vowel(\ell))]$ $letter(\ell) \Rightarrow [(vowel(\ell) \lor consonant(\ell)) \land \neg (vowel(\ell) \land consonant(\ell))]$

Logical set-builder notation

In **set-builder notation** $A = \{ x \mid P(x) \}$ P(x) is a logical statement about x.

Let's redo some of the set-builder definitions

$$C = \{ \ell \mid letter(\ell) \land \neg vowel(\ell) \}$$

$$\mathbb{Z}^+ = \{ x \mid x \in \mathbb{N} \land x \neq 0 \}$$

$$A \cup B = \{ x \mid x \in A \lor x \in B \}$$

$$A \cap B = \{ x \mid x \in A \land x \in B \}$$

$$A \setminus B = \{ x \mid x \in A \land x \notin B \}$$

Implication, conditional, and equivalence

Recall that "if P_1 then P_2 " is called **implication** and is written in logical notation: $P_1 \Rightarrow P_2$

 P_1 is called the **premise** of the implication and P_2 is called its **conclusion**.

Inspired by some programming languages we ask for the logical notation for the **conditional** statement "if P_1 then P_2 else P_3 ".

It's
$$(P_1 \Rightarrow P_2) \land (\neg P_1 \Rightarrow P_3)$$

Another statement is the **biconditional**: "if P_1 then P_2 and if P_2 then P_1 ".

Logical notation: $(P_1 \Rightarrow P_2) \land (P_2 \Rightarrow P_1)$

The biconditional is commonly written as " P_1 iff P_2 " where "iff" abbreviates "if and only if", and is called **equivalence**. But logically it is the same.

ACTIVITY: Set Builder Notation

The **symmetric difference** of two sets A and B is defined by $A \triangle B = (A \setminus B) \cup (B \setminus A)$.

Give an alternative definition to $A \triangle B$ using set-builder notation.

In the video, there is a box here for learners to put in an answer to the question above. As you read these notes, try it yourself using pen and paper!

ACTIVITY: Set Builder Notation (Continued)

Answer:

Using set-builder notation:

$$A \triangle B = \{ x \mid (x \in A \land x \notin B) \lor (x \notin A \land x \in B) \}.$$

To better understand this operation, here is a diagram. Note that $A \triangle B$ contains elements that are either in A or in B but not in both.

ACTIVITY: Logical Notation

Recall a statement we proved in the first module:

If x is an integer such that x > 1, then $x^3 + 1$ is not prime.

Write the statement above in logical notation.

In the video, there is a box here for learners to put in an answer to the question above. As you read these notes, try it yourself using pen and paper!

ACTIVITY: Logical Notation (Continued)

Answer:

$$(int(x) \land greaterThanOne(x)) \Rightarrow \neg prime(x^3 + 1)$$

Use the logical predicates int(x), greaterThanOne(x), and prime(x) to represent the statements "x is an integer," "x > 1," and "x is prime," respectively.

Recall that the logical notation for "if x then y" is $x \Rightarrow y$, and the logical notation for "not x" is $\neg x$.

Therefore, we can write "If x is an integer such that x > 1 then $x^3 + 1$ is not prime" in logical notation as above.

ACTIVITY: More Logical Notation

Recall a statement we proved in the first module:

If p, r, s are positive integers such that $p = r \cdot s$ and p is prime, then one of r and s is 1 and the other one equals p.

Write this statement in logical notation.

In the video, there is a box here for learners to put in an answer to the question above. As you read these notes, try it yourself using pen and paper!

ACTIVITY: More Logical Notation (Continued)

Answer:

$$ig(posInt(p) \land posInt(r) \land posInt(s) \land (p = r \cdot s) \land prime(p) ig) \\ \Rightarrow \Big(ig((s = 1) \land (r = p) ig) \lor ig((s = p) \land (r = 1) ig) \Big)$$

Use the logical predicates posInt(x) and prime(x) to represent the statements "x is a positive integer" and "x is prime," respectively. We connect these predicates in the appropriate order using \vee , \wedge , \Rightarrow , and parentheses.