数理社会I 第7回 性転換

2014年5月30日

金曜日1-2時限

担当:中丸麻由子

前期授業スケジュール・予定

回	日にち	講義内容		
1	4/11	ガイダンス		
2	4/18	進化生態学基礎		
3	4/25	進化ゲーム		
4	5/2	進化ゲーム		
5	5/9	進化ゲーム・採餌行動		
6	5/23	採餌行動		
7	5/30	性比•性転換	進	化生態学の基本
8	6/6	性選択	+,	人への適用例
9	6/13	血縁淘汰		
10	6/20	人の性選択・人の血縁淘汰		
11	6/27	協力の進化		
12	7/4	協力の進化		
13	7/11	遺伝と多様性		
14	7/18	予備日・テスト範囲説明		
15	7/25	テスト日		

講義の参考文献

- 酒井聡樹、高田壮則、近雅博(1999)「生き物 の進化ゲーム」共立出版
- 酒井聡樹、高田壮則、東樹宏和(2012)「生き物の進化ゲーム 大改訂版」共立出版
- 長谷川寿一、長谷川真理子(2000)「進化と人間行動」東大出版会
- 巌佐庸(1990)「数理生物学入門」共立出版
- 石川統、他編(2006)シリーズ進化「行動・生態の進化」岩波書店

性転換

多くの動物→雌雄に分けれている。性は一生の間変化しない

エビ、珊瑚礁の魚など

成熟すると:まずは♂になって精子を生産 さらにサイズが大:♀になって産卵

小さいとき♀ →大き**く**なると♂

進化ゲームで説明する

映画「ファインディング・ニモ」は・・

クマノミという魚の話。

母は居なくなってしまったので、二モは父に育てられる ニモはダイバーに連れ去られ、父が探し当てる

桑村哲生「性転換する魚たち」(岩波新書)によると

生態学的には大間違い!

クマノミ: 珊瑚礁に住む

 $3 \rightarrow 9$

卵はどこからか漂流してきたものが孵化 →本来ならば父と二モは血縁なし

映画を生態学的に正しく修正すると・・

母が巣から居なくなるので→父が母(♀)となる

ニモと、♀になった父が番う

基本モデル

♀として産卵する能力一個体サイズとともに増大

卵=遺伝情報+栄養 →卵生産にはコストがかかるので大きくなるほど個 体はそのコストが払うことができる

♂は、ランダム交配であれば、小さなオスでも繁殖可能

精子=遺伝情報のみ

→ 生産にコストがかからない

小さいときは♂、大きくなると♀が有利となるだろう

個体の繁殖成功度=産卵数+精子量×

集団中の総卵数 集団中の総精子数

♂→♀の場合 エビの例

- 漁獲後(集団中の大きなサイズが漁されるので)
 - →サイズが小さい分布へ偏る
 - →♂の数が多くなり、メスと交尾しにくくなる
 - →♂の繁殖成功度が下がる
 - →早く性転換してメスになった方が有利

よって。。。

性転換のタイミングは

自身の齢やサイズというより、

集団中での相対的なサイズによって決まり、

社会的相互作用によって生理機構が影響されることがわかる

♀→♂に性転換する時は?

社会的状況に影響

大きな♂がハレム・縄張りを持つような社会では

大きな♂が、ハレムや縄張りに侵入しようとする小さな♂を追い払うことができる

♂を取り除くと、ハレムの中の一番大きい♀が♂に転換 ただし、小さな♂は大きな♂の縄張り・ハレム内のメスが産卵するときに ひそかにメスに近づいて放精する「こそ泥」行動もして子孫を残す

タラバエビの例を考えてみよう Charnov (1979)

季節変動のある環境に生息 齢αで繁殖開始、毎年1回繁殖

Pの割合の個体 : 一生♀

1-Pの割合の個体:最初のα歳は♂、α+1歳から♀

タラバエビの例 変数設定 Charnov (1979)

O歳からx 歳まで生きて、x 歳中に卵を f_x 個体産む

F₁:一生♀である個体の生涯卵生産量

$$F_1 = \sum_{x \ge a} l_x f_x$$

F₂:性転換個体の生涯卵生産量

$$F_2 = \sum_{x \ge a+1} l_x f_x$$

M:精子生産

$$M = l_a m_a$$

l_x:x歳までの生存率

mx:オスとして繁殖した時の、x歳での精子の生産量

fx:メスとして繁殖した時の、x歳での1年あたりの卵生産量

タラバエビの例

生まれたばかりのN個体のうち: NP: 純粋なメス数

N(1-P): 性転換個体の数

集団中の総卵生産 F_{total}

$$F_{total} = NPF_1 + N(1-P)F_2$$

集団中の総精子生産 M_{total}

$$M_{total} = N(1-P)M$$

タラバエビの例

この式へ代入すると・・・・

個体の繁殖成功度=産卵数+精子量×

集団中の総卵数 集団中の総精子数

メス個体の繁殖成功度

$$\phi_f = F_1$$

性転換個体の繁殖成功度

$$\phi_h = F_2 + M \frac{F_{total}}{M_{total}} = F_2 + M \frac{NPF_1 + N(1-P)F_2}{N(1-P)M}$$

タラバエビの例

進化的平衡状態を計算するには・・・

考え方: 共存している→両者の適応度が等しい

性転換個体のみ→ メス個体よりも適応度が高い

進化平衡状態では

どの様な性比?

理論値と実測値の比較 一タラバエビの例 Charnov 1979—

図16.2 縦軸は、最初から雌として繁殖する個体と、雄として繁殖し始めて翌年雌に転換する個体との比率。横軸は、性転換個体と雌個体の生涯卵生産量の比率。直線はゲームモデルの解(16.2)式、点はタラバエビの27個の個体群に関するデータを表す。Charnov(1982)より。

P=1/2:メス個体が半分 F₂/F₁> 0

 $F_2/F_1 = 0$

F₂/F₁が大きくなるほど はじめからメスである個 体は少ない

性転換の個体の生涯

卵生産量(F₂)がO

巌佐庸「数理生物学入門」より