Полупроводникови Елементи

Указания за работа по проекти

- Типове задачи

Как се работи с проектите?

- Какъв софтуер ви е необходим?

Къде се намират проектите?

- Заданията ще бъдат раздадени посредством Google Drive
- Вие пишете директно във файловете, като използвате Google Docs

Какво НЕ трябва да правите

- Да отпечатате проектите и да ги предадете на хартия
- Да даунлоадвате файла и да го изпратите по email
- Да правите копия на файловете в други акаунти или облаци и да шервате връзки към тях

Как да получа помощ?

В Google Docs файла, добавете коментар, в който "тагвате" email-а на преподавателя по ППЕ

3 Мостов изправител

Симулирайте схема на мостов токоизправител (схема на Грец). След това добавете кондензатор 100µF паралелно на резистора R1 и повторете симулацията. Обяснете промяната на V(out).

- Как се работи с проектите?
- Типове задачи
- Какъв софтуер ви е необходим?

Типове задачи

Симулация на схеми с LTSpice

Изследване на схеми на ограничители на напрежение

Указание. Схемите за LTSpice се намират на адрес: https://github.com/vpt-tus/ppe
Всички схеми и резултати от симулациите да са на бял фон.

4 Двустранен ограничител

Симулирайте схема на двустранен ограничител на напрежение.

Обяснете как работи схемата.

От резултатите от симулацията:

- определете праговете на ограничаване
- изчислете максималната мощност разсейвана от всеки диод

схема: Diode-Clipper-1.asc	
тук поставете схемата	
тук поставете времедиаграмите от симулацията	
тук обяснете работата на схемата	
Праг на ограничаване за положителни сигнали, V	
Праг на ограничаване за отрицателни сигнали, V	
Максимална мощност разсейвана от всеки диод, W	

Симулация

2.1 Волт-амперни характеристики на изправителен диод с р-п преход

(a) Симулирайте схемите за две различни температури: 0°С и 100°С и инализирайте влиянието на температурата върху волт-амперните характеристики за изправителен диод RRE02VSM4S.

право включване схема: Diode-VI-1-F.asc

Тук поставете схемата

тук поставете волт-амперната характеристика. Означете кой цвят за коя температура се отнася.

тук обяснете физическата причина за наблюдаваните температурни изменения

Типове задачи

Изчисления

3 Задачи за изчисляване на постояннотоков режим на схеми с диоди

3.1 Постоянно-токов режим на схема с диод

Като използвате прагов модел на диод с Uo=0.7V, определете токовете, падовете на напрежение и разсейваните мощности върху резисторите и диодите в следните схеми.

Изчисления - Схема А	Изчисления - Схема Б

Резултати - Схема А

Е	лемент	U, V	I, mA	P, mW
	D1			
	R1			

Резултати - Схема Б

Елемент	U, V	I, mA	P, mW
D1			
R1			

примери на задачи са дадени в слайдовете за лекциите

Изчисления - Схема А

- 1) Източникът на напрежение U1, диодът D1 и резисторът R1 са свързани последователно => през тях тече еднакъв ток I.
- 2) Диодът е включен в права посока и U1 > Uo
- => диодът пропуска ток.
- 3) От законът на Кирхоф за напреженията => U1 = Ur + Ud; Ur = U1 - Ud = 10V - 0.7V = 9.3V
- 4) От законът на Ом => I = Ur / R1 = 9,3V / 1kOhm = 9.3mA
- 5) Мощността, разсейвана върху резистора е Pr = Ur . I = 9,3V . 9,3mA = 86,5mW
- 6) Мощността, разсейвана върху диода е Pd = Ud . I = 0,7V . 9,3mA = 6,5mW

Резултати - Схема А

Елемент	U, V	I, mA	P, mW
D1	0,7V	9,3mA	6,5mW
R1	9,3V	9,3mA	86,5mW

Клониране на Github репозитория

- Как се работи с проектите?
- Типове задачи
- Какъв софтуер ви е необходим?
 - Git client
 - LTSpice

Какъв софтуер ви е необходим?

- Git клиент за да клонирате репозиторията https://github.com/vpt-tus/ppe.git
- LTSpice за да симулирате електронни схеми

Github Desktop

Download now >

Клониране на Github

Клониране на Github репозитория

Опресняване на локалното копие на GitHub pen.

Указания за проектите

Полупроводникови Елементи

Катедра Електронна Техника / ФЕТТ / ТУ София

Регистрация за проекти по Полупроводникови Елементи, ФЕТТ - 2025г

ФЕТТ 2025г

График на занятията по Полупроводникови Елементи, ФЕТТ - 2025г

- Отворете календара в HTML страница
- <u>Отворете календара в Google Calendar</u>

Помощни материали

- <u>Презентации за лекции 2025 (WIP)</u>
- Указания за проектите
- Схеми за симулация с LTSpice

Схеми за симулация

4.3 Мостов изправител

Симулирайте схема на мостов токоизправител (схема на Грец).
След това добавете кондензатор 100µF паралелно на резистора R1 и повторете симулацията.
Обяснете промяната на V(out).

- Как се работи с проектите?
- Типове задачи
- Какъв софтуер ви е необходим?
 - Git client
 - LTSpice

LTSpice

https://www.analog.com

LTSpice

Products -

Software

Design Resources •

Solutions -

About Us ▼ Careers

Q

Home / Resource Library / Design Tools & Calculators / LTspice

Amplifier & Linear Clock & Timing Data Converter EE-Sim **LTspice** Power Management RF & Synthesis Cybersecurity

LTspice

Fast • Free • Unlimited

LTspice® is a powerful, fast, and free SPICE simulator software, schematic capture and waveform viewer with enhancements and models for improving the simulation of analog circuits. Its graphical schematic capture interface allows you to probe schematics and produce simulation results, which can be explored further through the built-in waveform viewer.

Learn how to use LTspice with our tutorials below or dive deeper with our selection of helpful tips and articles. You can also browse our library of macromodels and demo circuits for select Analog Devices products.

LTspice's enhancements and models improve the simulation of analog circuits when compared to other SPICE solutions. Download LTspice below to see for yourself!

Download LTspice

Download our LTspice simulation software for the following operating systems:

Date models updated - Sep 27 2025

Download for Windows 10 64-bit and forward

Version 24.1.10

Download for MacOS 10.15 and forward

Version 17.2.4

Симулация

схеми

https://github.com/vpt-tus/ppe ——

Резултати от симулация

.tran 50m тук поставете времедиаграмите от симулацията 5V-2V--1V--2V--3V--4V--5V-5.5mA-5.0mA-4.5mA-4.0mA-3.5mA-3.0mA-2.5mA-2.0mA-1.5mA-1.0mA-0.5mA Oms 5ms 10ms 15ms 20ms 25ms 30ms 35ms 40ms 45ms 50ms тук обяснете работата на схемата. Защо напрежението в точка (b) е по-ниско от това в точка (а)?

схема: Diode-Rectifier-1.asc

D1

1N4148

R1

1000

тук поставете схемата

V1

SINE(0 6 50)