Neural Net Classification of Biopsy Tissue

Cynthia O'Rourke

Goal: Use ML to Classify Tissue Biopsies as Malignant or Benign

Labeled data set: 699 unique biopsy samples collected from 1989 through 1991 in 8 batches by one oncology group

Variables

9 descriptive features, all **ordinally scaled** from 1-10

Split 60/20/20 train/validate/test

Is there a batch effect?

Are the features all predictive?

Do the features covary?

Is there a batch effect?

Is there a batch effect?

Seems likely;

retain "batch"

Is there a batch effect?

Are the features all predictive?

Is there a batch effect?

Are the features all predictive?

Yes - all 9 features appear predictive

"Clump Thickness" example shown

Is there a batch effect?

Are the features all predictive?

Do the features covary?

Is there a batch effect?

Are the features all predictive?

Do the features covary?

Yes, some strongly

Algorithm Choice

A multi-layer perceptron classifier neural net will tolerate multicollinearity and a non-linear relationship between the features and the response variable

Metrics of Success

Accuracy - prop TP+TN out of all results

How often did the model get it Right?

Precision - prop TP out of all TP+FP

How often did the model cry wolf?

Metrics of Success

Recall - prop TP out of TP+FN

How often did the model miss a malignancy?

Algorithm Tuning

Increasing the number of neurons in the hidden layers had limited effect

Increasing the number of hidden layers from 5 to 7 had a **huge effect**

Algorithm Tuning: Train vs. Validation

	5 layers	7 layers	
Accuracy	94.2%	100%	
Precision	95.2%	100%	
Recall	87.0%	100%	

Algorithm Testing: Test vs. Validation

Validation Test

Accuracy 100% 97%

Precision 100% 100%

Recall 100% 91.7%

Conclusion

Trade-Off: False alarms will be rare under this model, but some cancers will go undiagnosed at early stages

