5

10

15

20

25

30

CLAIMS

- 1. Method of obtaining a transmission gain function by means of an array of antennae, a signal to be transmitted by the array being weighted by a vector (\bar{b}_d) of N complex coefficients, referred to as the transmission weighting vector, N being the number of antennae in the array, the array transmitting to a telecommunication terminal over a transmission channel, referred to as the downlink channel, a downlink transmission signal (S_d) and the said terminal transmitting to the said array over a transmission channel, referred to as the uplink channel, an uplink transmission signal (S_u) , the said downlink channel being disturbed by an isotropic noise (N') and/or a directional noise, referred to as the downlink interference (I_d) , characterised in that the said transmission weighting vector (\bar{b}_d) is determined by means of a matrix product from a noise power matrix (D_d) which is a function of the power of the said isotropic noise and/or of the power of the said directional noise and a vector (\bar{C}_d) , referred to as the downlink channel vector, representing an angular sampling of the transfer function of the downlink channel in M directions k, k=0,...,M-1, belonging to the angular range covered by the array.
- 2. Method of obtaining a transmission gain function according to Claim 1, characterised in that the said downlink channel vector (\overline{Ca}) is obtained from variations in the transfer function of the uplink channel.
- 3. Method of obtaining the transmission gain function according to Claim 2, characterised in that the said downlink channel vector $(\overline{C_u})$ is obtained from variations $(\overline{\Delta C_u})$ in a vector $(\overline{C_u})$, referred to as the uplink channel vector, representing an angular sampling of the transfer function of the uplink channel in the said M directions.
- 4. Method of obtaining a transmission gain function according to Claim 3, characterised in that the variations $(\overline{\Delta C_d})$ in the downlink channel vector are obtained from variations $(\overline{\Delta C_u})$ in the uplink channel.
- 5. Method of obtaining a transmission gain function according to Claim 3 or 4, characterised in that the variations Δc_{dk} in the components c_{dk} of the downlink

5

15

20

25

channel vector $(\overline{C_d})$ are obtained by means of the variations Δc_{uk} in the components c_{uk} of the uplink vector by: $\Delta c_{dk}/c_{dk}=f_d/f_u$. $\Delta c_{uk}/c_{uk}$ where f_u is the frequency used on the said uplink channel and f_d is the frequency used on the said downlink channel.

- 6. Method of obtaining a transmission gain function according to Claim 4 or 5, characterised in that the said downlink channel vector $(\overline{C_d})$ is obtained by integrating the said variations $(\overline{\Delta C_d})$ in the said downlink channel vector and an initial value $(\overline{C_d}(0))$ transmitted by the said terminal.
- 7. Method of obtaining a transmission gain function according to one of the preceding claims, characterised in that the noise matrix is a diagonal matrix of size MxM and of components $\sqrt{\sigma_{dk}^2 + \gamma_d N'_0/I_d}$ where σ_{dk}^2 is the power of the downlink interference in the direction k, N'_0 is the power of the isotropic noise, $\gamma_d = 1/\|\overline{C}_d\|^2$ and I_d is the total power of the downlink interference.
 - 8. Method of obtaining a transmission gain function according to one of Claims 1 to 6, characterised in that, the array transmitting over a plurality of downlink channels a plurality of transmission signals to a plurality of telecommunication terminals and receiving from them a plurality of transmission signals transmitted over a plurality of uplink channels, each downlink channel j relating to a terminal j of the said plurality being associated with a transmission weighting vector $\bar{b}_d(j)$, the second noise matrix relating to the downlink channel j is a diagonal matrix of size MxM and of components $\sqrt{\sigma_{dk}^2(j) + \gamma_d(j) . N_0/I_d(j)}$ where $\sigma_{dk}^2(j)$ is the power of the downlink interference for the downlink channel j in the direction of k, $\gamma_d(j)$ is a coefficient characterising the power transfer over the downlink channel j, N'_0 is the power of the second isotropic noise, and I_d is the total power of the downlink interference.
 - 9. Method of obtaining a transmission gain function according to Claim 8, characterised in that the coefficient $\gamma_d(j)$ is transmitted to the array by the terminal j on the associated uplink channel.

- 10. Method of obtaining a transmission gain function according to Claim 8, characterised in that the coefficient γ_d (j) is estimated by the base station from a coefficient (Γ) characterising the power transfer in the uplink direction.
- 11. Method of obtaining a transmission gain function according to one of Claims 8 to 10, characterised in that, for a given downlink channel j, the downlink interference power in the direction k, $\sigma_{dk}^2(j)$, is estimated according to the power of the transmitted signals $(S_d(j'))$ on the downlink channels j' distinct from j, a coefficient $\beta_d(j)$ characterising the orthogonality of the downlink channel j, the components $(g_{dk}(j'))$ of the gain vectors $(\overline{G}_d(j'))$ relating to the said distinct downlink channels j', the gain vectors consisting of an angular sampling in the said M directions of the transmission gain functions obtained for the said distinct downlink channels j'.

10

12. Method of obtaining a transmission gain function according to Claim 11, characterised in that the said coefficient $\beta_d(j)$ is estimated from a coefficient characterising the orthogonality of the uplink channel j.

15

20

13. Transmission device for a base station in a mobile telecommunication system, comprising an array $(40_0,40_1,...,40_{N-1})$ of N antennae, weighting means (41_2) for weighting the signal to be transmitted (S_d) by the said array by means of a transmission weighting vector (\bar{b}_d) of N complex coefficients, characterised in that it comprises means $(42_2,44_2,46,47,48)$ adapted to implement the method of obtaining the transmission gain function according to one of the preceding claims, the said adapted means supplying to the said weighting means (41_2) the said transmission weighting vector (\bar{b}_d) .