Benchmarking results:

Average runtime complexity of the non-random pivot version of quicksort:

_	ent version of quicksout has the following				
	The non-random pinot version of quicksort has the following				
r	and time				
	T(n) = T(k) + (Ch o () + gen)				
	n = dize of the input array				
-	k = index of pinot element after partitioning				
	count on pastitioning				
	Olnie time spent on pastitioning				
	In average case we assume that every element has an equal				
•	protating of being chosen as the prot. The expected value				
	of k is n/2.				
	substituting the expected value of to in the recurrence relation.				
	T(n) = 2T(n/2) + O(n)				
	By Master's theorem, TCn)=0(n hogn)				
	this implies that on average, quick soct exhibits a logarithmi				
	growter rate with respect to input rize.				