11 класс

Задача 1. Груз на горке

Пусть скорость системы в начальном состоянии v_0 , высота горки H. Запишем закон сохранения энергии и закон сохранения импульса для системы груз—горка:

$$mgH + (m+M)\frac{v_0^2}{2} = M\frac{v_1^2}{2} + m\frac{v_2^2}{2},$$
 (7)

$$(m+M)v_0 = Mv_1 + mv_2, (8)$$

где v_1 — скорость горки после соскальзывания груза, v_2 — скорость соскользнувшего груза.

Поскольку нас не интересует конечная скорость горки, то исключим из уравнений (7) и (8) скорость v_1 , в результате чего получим:

$$v_2^2 - 2v_0v_2 + v_0^2 - 2gH\begin{pmatrix} M\\ m+M \end{pmatrix} = 0.$$

Так как по условию задачи $v_2 > v_0$, то запишем:

$$v_2 = v_0 + \sqrt{2gH \binom{M}{m+M}}. (9)$$

Теперь учтём, что $m \ll M$. В этом случае уравнение (9) упростится:

$$v_2 = v_0 + \sqrt{2gH}.$$

Кинетическая энергия груза, съехавшего с горки, равна:

$$K_2 = \frac{mv_2^2}{2} = \frac{mv_0^2}{2} + mgH + mv_0\sqrt{2gH}.$$
 (10)

По условию $\Pi = 4 K_1$, откуда следует, что:

$$v_0 = \sqrt{\frac{gH}{2}}. (11)$$

После подстановки (11) в (10) окончательно имеем:

$$K_2 = K_1 + \Pi + mgH = 2,25\Pi = 2,25$$
 Дж.

Примерные критерии оценивания

Записан закон сохранения энергии	-
Ваписан закон сохранения импульса]
Решена полученная из них система уравнений	•

Учтено, что $m \ll M$
Найдена скорость v_2
Получено выражение для K_2
Получен численный ответ

Задача 2. Нарушение равновесия

Согласно правилу моментов относительно полюса A правый край доски оторвётся от опоры B в момент, когда сила, действующая на левый край доски, станет равной:

$$F = Mg/2. (12)$$

Эта сила складывается из двух составляющих — статической и динамической. Пока песок летит, он не действует на доску. Время его падения от заслонки бункера до доски равно $\tau = \sqrt{2H/g}$. Зато потом на доску начинает действовать постоянная динамическая составляющая силы:

$$F_{\mu i} = \mu_i v$$

где $v=\sqrt{2gH}$ — скорость песка перед падением на доску, μ_i — массовый расход песка в i-м опыте.

В то же время постепенно начинает расти статическая составляющая силы:

$$F_{ci} = \mu_i (t - \tau) g,$$

возникающая за счёт увеличения массы песка на доске. Поэтому в момент времени $t>\tau$ суммарная сила, действующая на доску со стороны песка, равна:

$$F_i = F_{\mathcal{A}i} + F_{ci} = \mu_i g t, \tag{13}$$

причём время t отсчитывается от момента открытия заслонки бункера.

Теперь рассмотрим результаты эксперимента. Так как в первых двух опытах время не зависит от расхода песка, то $\tau_1=\tau=\sqrt{2H/g},$ откуда высота падения песка:

$$H = g\tau_1^2/2 = 5$$
 м.

Уменьшение массового расхода в 4 раза приводит к тому, что динамической составляющей уже не хватает для начала опрокидывания доски. Тогда, используя (13) и (12), находим массовый расход песка в первом эксперименте:

$$\mu = \frac{M}{2\pi} = 0.2 \text{ kg/c}.$$

Примерные критерии оценивания	
Из правила моментов найдено условие отрыва доски	2
Записана связь между Н и т	1

Задача 3. Цепь с конденсатором

Энергия, запасённая в конденсаторе, $W=q^2/(2C)$, где q — заряд на обкладках конденсатора, а C — ёмкость конденсатора.

кость конденсатора. Дифференцируя выражение для энергии по времени, получим:

$$\frac{dW}{dt} = P = UI_C.$$

Запишем второе правило Кирхгофа для контура ABCD (рис. 23), обозначая через I силу тока, текущего через резистор r:

$$Ir + U = \mathscr{E},$$
 откуда $I = (\mathscr{E} - U)/r.$ (14)

Применяя второе правило для контура ABEF, получим:

$$U = (I - I_C)R, (15)$$

где учтено, что сила тока, текущего через резистор R, равна $I_R=I-I_C$. Подставим в (15) выражение из (14). Тогда:

$$I_C = \frac{dq}{dt} = \frac{\mathscr{E}R - U(R+r)}{Rr}.$$

Исследуем на максимум произведение $Udq/dt = U(\mathscr{E}/r) - U^2(R+r)/(Rr)$. Это квадратный многочлен, представляющий из себя уравнение параболы, ветви которой направлены вниз. Его значение достигает максимума в вершине параболы, то есть при:

$$U = \frac{R}{2(R+r)} \mathscr{E}.$$

Такое же напряжение будет на конденсаторе в момент размыкания ключа. Тогда количество теплоты, выделившееся в цепи после размыкания ключа, равно:

$$Q = W = \frac{CU^2}{2} = \frac{C\mathscr{E}^2}{8} \left(\frac{R}{R+r}\right)^2.$$

Примерные критерии оценивания

откуда следует, что $\varphi_1 \approx 19,1^{\circ}$.

Примерные критерии оценивания

3 аписан закон Снелла для границы $AC\ldots$
3 аписан закон Снелла для границы $AB\dots 2$
Bыражен показатель n_0 через $arphi_1$ и $arphi_2 \dots \dots 1$
$\overset{ ext{-}}{ ext{-}}$ Найдена связь между $arphi_1$ и $arphi_2$
Π оказатель преломления n_0 выражен через $arphi_1$ 2
Найден угол φ_1

Задача 5. Термодинамический «лабиринт»

Теплота подводится к газу на тех изохорах и изобарах, на которых температура возрастает. Обозначим эти участки жирными линиями (рис. 25). Вычислим суммарную работу, совершённую на этих участках, как сумму площадей под выделенными горизонтальными прямыми:

$$\frac{A}{p_0 V_0} = \frac{9 \cdot 9 + 8 \cdot 7 + 7 \cdot 5 + 6 \cdot 3 + 5 \cdot 1}{100},$$

Рис. 25

откуда $A = 1.95 p_0 V_0$.

Так как метан — многоатомный газ, то его молярная теплоёмкость при постоянном объёме равна $C_V = 3R$. Вычислим изменение внутренней энергии на тех участках, где тепло подводится к газу:

$$\frac{\Delta U}{3p_0V_0} = \frac{1}{100} \Big((10 \cdot 9 - 1 \cdot 9) + (9 \cdot 8 - 2 \cdot 1) + (8 \cdot 7 - 3 \cdot 2) + (7 \cdot 6 - 4 \cdot 3) + (6 \cdot 5 - 5 \cdot 4) \Big) = 2,41,$$

откуда $\Delta U = 7,23 \, p_0 V_0$. Тогда подведённое тепло:

$$Q = \Delta U + A = 9,18 \, p_0 V_0.$$

Примерные критерии оценивания

Указаны участки, на которых тепло подводится к газу	. 2
Вычислена работа на этих участках	. 3
Определено изменение внутренней энергии	4
Записан верный ответ	1

Определено значение I	!
Записано второе правило Кирхгофа для контура АВЕГ	
Получен квадратный многочлен для $\Delta W/\Delta t$	
Квадратный многочлен исследован на максимум	
Найдено выделившееся количество теплоты	

Задача 4. Призма на воде

Рис. 24

Пусть показатель преломления стекла равен n. Выполним рисунок, поясняющий ход луча (рис. 24). Запишем закон Снелла для луча, преломляющегося на гранях AC и AB:

для грани
$$AC$$
: $\sin \varphi_0 = n \sin \varphi_1$; (16)

для грани
$$AB: \quad n_0 \sin \varphi_0 = n \sin \varphi_2.$$
 (17)

Разделим почленно уравнение (17) на уравнение (16):

$$n_0 = \frac{\sin \varphi_2}{\sin \varphi_1}.$$

Так как призма равнобедренная и прямоугольная, то угол $\alpha = 45^{\circ}$. Для треугольника DEF угол α_1 — внешний. По теореме о внешнем угле треугольника:

$$\varphi_1 + \varphi_2 = \alpha_1.$$

Заметим, что углы α и α_1 равны как углы со взаимно перендикулярными сторонами. С учётом двух последних соотношений получим:

$$n_0 = \frac{\sin(\alpha - \varphi_1)}{\sin \varphi_1} = \frac{\cos \varphi_1 - \sin \varphi_1}{\sqrt{2} \sin \varphi_1} = \frac{1 - \operatorname{tg} \varphi_1}{\sqrt{2} \operatorname{tg} \varphi_1}.$$

Подставив в уравнение значение n_0 , окончательно получим:

$$\operatorname{tg}\varphi_1 = \frac{3}{4\sqrt{2+3}} \approx 0.347,$$