Introduction to Statistical Method

Estimation

- An **estimator** for a population parameter $m{ heta}$ is a statistic and donated by $\hat{m{ heta}}$.
- Any given value of $\hat{\theta}$ is an **estimate**.

Desirable Properties of a Point Estimator

- The expected value of $\hat{\boldsymbol{\theta}}$ should be $\boldsymbol{\theta}$.
- $\hat{\theta}$ should have **small variance** for **large sample size**.

Bias

- The difference $\theta E[\hat{\theta}]$ is the bias of an estimator $\hat{\theta}$ for a population parameter θ .
- $E[\hat{\theta}] = \theta$ means $\hat{\theta}$ is unbiased.

Mean Square Error of Estimator

- The **mean square error** of $\hat{\theta}$ is defined as $\mathrm{MSE}(\hat{\theta}) := E[(\hat{\theta} \theta)^2]$.
- The mean square error measures the **overall quality of an estimator**.

$$\begin{split} \text{MSE}(\hat{\theta}) &= E[(\hat{\theta} - E[\hat{\theta}] + E[\hat{\theta}] - \theta)^2] = E[(\hat{\theta} - E[\hat{\theta}])^2 + (E[\hat{\theta}] - \theta)^2 + 2(\hat{\theta} - E[\hat{\theta}])(E[\hat{\theta}] - \theta)] \\ &= Var(\hat{\theta}) + (bias)^2 + 2E[(\hat{\theta} - E[\hat{\theta}])(E[\hat{\theta}] - \theta)] = Var(\hat{\theta}) + (bias)^2 + 2E[(\hat{\theta} - E[\hat{\theta}])](E[\hat{\theta}] - \theta) \\ &= Var(\hat{\theta}) + (bias)^2 + 2(E[\hat{\theta}] - E[\hat{\theta}])(E[\hat{\theta}] - \theta) = Var(\hat{\theta}) + (bias)^2 \end{split}$$

Sample Mean Variance and Bias

Theorem: Unbiased Sample Mean

Let X_1, \dots, X_n be a random sample of size n from a distribution with mean μ . Then the sample mean \overline{X} is an unbiased estimator for μ .

Since
$$\overline{X}=rac{1}{n}\sum_{k=1}^n X_k$$
 , then we see $\mu-E[\overline{X}]=\mu-rac{1}{n}n\mu=0$, thus unbiased.

Theorem: Sample Average Variance

Let \overline{X} be the sample of a random sample of size n from a distribution with mean μ and variance σ^2 . Then $Var\overline{X}=E[(\overline{X}-\mu)^2]=\frac{1}{n}\sigma^2$

Since
$$Var\overline{X} = Var(\frac{1}{n}\sum_{k=1}^n X_k) = \frac{1}{n^2}Var(\sum_{k=1}^n X_k)$$
 , then check ve401_note_4 , we can see a fact that

$$Var(X+Y)=VarX+VarY+\mathrm{Cov}(X,Y)$$
, where $\mathrm{Cov}(X,Y)=E[(X-\mu_X)(Y-\mu_Y)]$, then we get $Var\overline{X}=rac{1}{n^2}nVarX=rac{1}{n}\sigma^2$

The standard deviation of \overline{X} is given by $\sqrt{Var\overline{X}} = \sigma/\sqrt{n}$ and is called standard error of mean.

Theorem: Sample Variance

Sample variance $S^2=rac{1}{n-1}\sum_{k=1}^n(X_k-\overline{X})^2$ is an unbiased estimator for σ^2 .

$$\begin{split} E[\frac{1}{n-1}\sum_{k=1}^{n}(X_{K}-\overline{X})^{2}] &= \frac{1}{n-1}E[\sum_{k=1}^{n}(X_{K}-\mu+\mu-\overline{X})^{2}] \\ &= \frac{1}{n-1}E[\sum_{k=1}^{n}(X_{k}-\mu)^{2}-2(\overline{X}-\mu)(\sum_{k=1}^{n}X_{k}-n\mu)+n(\mu-\overline{X})^{2}] \\ &= \frac{1}{n-1}E[\sum_{k=1}^{n}(X_{k}-\mu)^{2}-n(\mu-\overline{X})^{2}] \\ &= \frac{1}{n-1}(\sum_{k=1}^{n}E[(X_{k}-\mu)^{2}]-nE[(\mu-\overline{X})^{2}]) = \frac{1}{n-1}(\sum_{k=1}^{n}\sigma^{2}-n\frac{\sigma^{2}}{n}) = \sigma^{2} \end{split}$$

Finding Estimator: Method of Moments

We have an unbiased estimator $M_k=rac{1}{n}\sum_{i=1}^n X_i^k$ for the k^{th} moments $E[X^k]$ given random samples X_1,\cdots,X_n .

The idea is then that population parameters θ_j can often be expressed in terms of moments of distribution. Replacing the moments in these expressions by their estimators for parameter θ_j .

Estimators obtained in this way are not necessarily unbiased.

Finding Estimator: Method of Maximum Likelihood

- Assume we have a random sample x_1, \dots, x_n from the distribution of a random variable X with density f and parameter θ .
- Define likelihood function by $L(\theta) = \prod_{i=1}^n f(x_i)$.
- Find the θ by maximizing the $L(\theta)$.
- Replace θ with $\hat{\theta}$.