Linear Probing

h(k) = (5k+3) mod 8

index	element
0	41
* 1 .	30
2	39
3	64
4	72
5	74
6	55
7	68

Insert 41: $h(41) = (5.41+3) \mod 8 = 0 \implies \text{insert to } 0$ Insert 30: $h(30) = (5.30+3) \mod 8 = 1 \implies \text{insert to } 1$ Insert 74: $h(74) = (5.74+3) \mod 8 = 5 \implies \text{insert to } 5$ Insert 55: $h(55) = (5.55+3) \mod 8 = 6 \implies \text{insert } 6$ Insert 68: $h(68) = (5.68+3) \mod 8 = 7 \implies \text{insert } 6$

Insert 39: h(39) = (5.39+3) mod 8 = (6 + 1 + 1 + 1 + 1) mod 8 > insert to 2

Insert 64: $h(64) = (5.64+3) \mod 8 = 3 \rightarrow \text{insert to 3}$ Insert 72: $h(72) = (5.72+3) \mod 8 = (3+1) = 4 \rightarrow \text{insert to 9}$

Quadratic Probing

h(14) = (3k+1) mod 8

index	element
0	29
	16
2	19
3	14
4	13
5	24
6	27
7	26

Insert 19: $h(19) = (3.19+1) \mod 8 = 2 \rightarrow \text{insert to } 2$ Insert 29: $h(29) = (3.29+1) \mod 8 = 0 \rightarrow \text{insert to } 0$ Insert 16: $h(16) = (3.16+1) \mod 8 = 1 \rightarrow \text{insert to } 1$ Insert 26: $h(26) = (3.26+1) \mod 8 = 7 \rightarrow \text{insert to } 7$ Insert 14: $h(14) = (3.14+1) \mod 8 = 3 \rightarrow \text{insert to } 3$ Insert 24: $h(24) = (3.14+1) \mod 8 = 1 + 2.1 = 3 \pmod{3}$ Insert 13: $h(13) = (3.13+1) \mod 8 = 0 + 2.1 = 3 \pmod{3}$

Insert 27: $h(27) = (3.27+1) \mod 8 = 2 + 2.1 = 4 \text{ (occupied)}$ 2 + 2.2 = 6

Double Hashing

After volashine

7	Ther reha	shing
	index	element 40 75 30 49 36
	0	40
	1	75
	2	30
	3 4	49
	4	36
	5	
	6	14
	7	
	8	16
	9	
	lo	50
-	11	
-	12	
1	13	
	13	
1	15	

insert 30:
$$h_1(30) = (3-30) \mod 8 = 2 \implies \text{insert to 2}$$

insert
$$14 = h_1(14) = (3.14) \mod 8 = 2 + 1 \cdot h_2(14) = 2 + [(5.14+3) \mod (7+1)]$$

insert
$$40$$
: $h_1(40) = (3.40) \mod 8 = 0 \implies \text{insert } 70.6$
insert 36 : $h_1(36) = (3.36) \mod 8 = 0 \implies \text{insert } 70.6$

insert 36:
$$h_1(36) = (3.36) \mod 8 = 0 \implies \text{insert to } 6$$

insert $56 = h_1(56) = (3.56) \mod 8 = 4 \implies \text{insert to } 4$

insert
$$56 = h_1(56) = (3.56) \mod 8 = 4 \implies \text{insert to } 4$$

$$= 4 \mod 4$$

$$= 4 \mod 4$$

$$= 4 \mod 16$$

$$= 4$$

$$0 + 2 \cdot h_2(56) = 0 + 2 \cdot 4$$

$$= 8$$

$$\Rightarrow insert to 8$$

insert
$$49: h_1(49) = (3.49) \mod 8 = 3 \rightarrow \text{insert to } 3$$

insert to:
$$h_1(t_0) = (3.t_0) \mod 8 = 3 \rightarrow \text{insert} + 6.3$$

$$= 6 + 2 \cdot h_2(50) = 6 + 2 \cdot 2$$

Cuckoo Hashing

hi(k) = (3k+1) mod 7, hz(k) = (floor (5k/2)+3) mod 7

table (1)

index	element
0	23
1	
2	12
3	10
4	85
5	
6	46

table (2)	
element	
24	
22	
17	
17	
*1	

insert 10: $h_1(10) = (3 \cdot 10 + 1) \mod 7 = 3 \implies \text{insert at } 3 \text{ in table } 1$ insert $22 = h_1(22) = (3 \cdot 22 + 1) \mod 7 = 4 \implies \text{insert at } 4 \text{ in table } 1$

insert 24: $h(24) = (3.24+1) \mod 7 = 3 \rightarrow \text{insert at 3 in table } 1 \rightarrow h_2(10) = 0$ $\Rightarrow \text{insert at 0 in table 2}$

insert 17: $h_1(17) = (3.17+1) \mod 7 = 3 \rightarrow \text{insert at 3 in table } | \rightarrow h_2(24) = 0$ $\Rightarrow \text{ insert at 0 in table } 2 \rightarrow h_1(10) = 3 \Rightarrow \text{insert at 3 in table } |$ $\Rightarrow h_2(17) = 3 \rightarrow \text{insert at 3 in table } 2$

insert 8t: $h_1(8t) = (3.8t+1) \mod 7 = 4 \rightarrow \text{insert at 4 intable } 1 \rightarrow h_2(22) = 2$ $\Rightarrow \text{insert at 2 intable 2}$

insert 23: $h_1(23) = (3-23+1) \mod 7 = 0 \rightarrow \text{insert at 0}$ in table |

insert $(2 = h_1(12) = (3.12+1) \mod 7 = 2 \rightarrow \text{insert at 2 in table 1}$

insert 46: h1(46) = (3.46+1) mod 7: 6 -> insert at 6 in table 1