ANALYTIC COMBINATORICS
PART ONE

http://aofa.cs.princeton.edu

9. Words and Mappings

Orientation

Second half of class

- Surveys fundamental combinatorial classes.
- Considers techniques from analytic combinatorics to study them .
- Includes applications to the analysis of algorithms.

chapter	combinatorial classes	type of class	type of GF		
6	Trees	unlabeled	OGFs		
7	Permutations	labeled	EGFs		
8	Strings and Tries	unlabeled	OGFs		
9	Words and Mappings	labeled	EGFs		

Note: Many more examples in book than in lectures.

http://aofa.cs.princeton.edu

9. Words and Mappings

- Words
- Birthday problem
- Coupon collector problem
- Hash tables
- Mappings

9a.Words.Words

Symbolic method for unlabelled objects (review)

Warmup: How many binary strings with N bits?

Class	B, the class of all binary strings
Size	b , the number of bits in b
OGF	$B(z) = \sum_{b \in B} z^{ b } = \sum_{N \ge 0} B_N z^N$

Atoms

type	class	size	GF
0 bit	Z_0	1	Z
1 bit	Z_1	1	z

Construction

$$B = SEQ(Z_0 + Z_1)$$

"a binary string is a sequence of 0 bits and 1 bits"

OGF equation

$$B(z) = \frac{1}{1 - 2z}$$

$$[z^N]B(z) = 2^N \quad \checkmark$$

Symbolic method for unlabelled objects (review)

How many strings drawn from an M-char alphabet with N chars?

Class	S, the class of all strings
Size	s , the number of chars in s
OGF	$S(z) = \sum_{s \in S} z^{ s } = \sum_{N \ge 0} S_N z^N$

Atoms

type	class	size	GF					
char 1	<i>Z</i> ₁	1	Z					
char 2	Z ₂	1	Z					
char M	ZΜ	1	Z					

$$S = SEQ(Z_1 + Z_2 + \ldots + Z_M)$$

"a string is a sequence of chars"

$$S(z) = \frac{1}{1 - Mz}$$

$$[z^N]S(z) = M^N \checkmark$$

Symbolic method for labelled objects (review): sets

Q. How many labeled sets (urns) of size N?

 ϕ $S_0 = 1$

 $\bar{s}_1 = 1$

 $\begin{array}{c} \boxed{1} \\ \boxed{2} \\ \boxed{3} \\ \boxed{S_3 = 1} \end{array}$

A. One.

Labelled objects review (continued): sets

Q. How many ordered pairs of labelled sets of N objects?

A. 2^N

Q. How many sequences of length M of urns with N objects in total?

Balls-and-urns viewpoint

Q. How many different ways to throw N balls into 2 urns?

A. 2^N

The symbolic method for labelled classes (review)

Theorem. Let A and B be combinatorial classes of labelled objects with EGFs A(z) and B(z). Then

construction	notation	semantics	EGF
disjoint union	A + B	A + B disjoint copies of objects from A and B	
labelled product	ed product $A \star B$ ordered pairs of copies of objects, one from A and one from B		A(z)B(z)
	$SEQ_k(A)$	k- sequences of objects from A	$A(z)^k$
sequence	SEQ(A)	sequences of objects from A	$\frac{1}{1-A(z)}$
	$SET_k(A)$	k-sets of objects from A	$A(z)^k/k!$
set	SET(A)	sets of objects from A	$e^{A(z)}$
	$CYC_k(A)$	k-cycles of objects from A	$A(z)^k/k$
cycle	CYC(A)	cycles of objects from A	$\ln \frac{1}{1 - A(z)}$

Words

Def. A word is a sequence of M urns holding N objects in total.

"throw N balls into M urns"

Q. How many words?

Class	W_M , the class of M -sequences of urns
Size	w , the number of objects in w
EGF	$W_M(z) = \sum_{w \in W_M} \frac{z^{ w }}{ w !} = \sum_{N \ge 0} W_{MN} \frac{z^N}{N!}$

/M, the class of <i>M</i> -sequences of urns	Atom	type	class	size	GF	
v , the number of objects in w		labelled atom	Z	1	Z	
$V_M(z) = \sum_{n=1}^{\infty} \frac{z^{ w }}{ w } = \sum_{n=1}^{\infty} W_{MN} \frac{z^N}{N!}$	Example	{7}{183}	{ } {	24}	{ 5 6	9 }
$V_M(Z) = \sum_{i=1}^{N} V_{MN} \frac{1}{N_{MN}}$						(F)

A 1:1 correspondence

A string is a sequence of N characters (from an M-char alphabet). There are M^N strings.

A word is a sequence of M labelled sets (having N objects in total). There are M^N words.

Correspondence

- For each *i* in the *k*th set in the word set the *i*th char in the string to *k*.
- If the *i*th char in the string is *k*, put *i* into the *k*th set in the word.

Strings and Words

Familiar definition.

A string is a sequence of N characters (from an M-char alphabet).

Combinatorial definition.

A word is a sequence of *M* labeled sets (having *N* objects in total).

- 1-1 correspondence between words and strings
 - Length of sequence in word: number of chars *M* in the alphabet.
 - Number of objects in the set: length of string N.
 - k th set in the sequence: indices where k appears in the string.
- Q. What is the difference between strings and words?
- A. Only the point of view.
 - With strings (last lecture) we study the sequence of characters.
 - With words (this lecture) we study the sets of indices.

1 2 3	N = 3 $M = 2$
0 0 0	{123}{}
0 0 1	{12}{3}
0 1 0	{13}{2}
0 1 1	{1}{23}
1 0 0	{23}{1}
1 0 1	{2}{13}
1 1 0	{ 3 } { 1 2 }
1 1 1	{ } { 1 2 3 }

Strings and Words (summary)

class	type	GF type	typical	construction	GF	count
STRING	unlabelled	OGF	2 4 2 4 5 5 1 2 5	$S = SEQ(Z_1 + + Z_M)$	$S(z) = \frac{1}{1 - Mz}$	Μ ^N
WORD	labelled	EGF	7 (1) φ (2) (5) (6) 9 (7) {183}{}{{24}{569}} 2 4 2 4 5 5 1 2 5 (8) (3) (4) (6) (5) (5)	$W_M = SEQ_M(SET(Z))$	$W_M(z) = e^{Mz}$	M ^N

http://aofa.cs.princeton.edu

9. Words and Mappings

- Words
- Birthday problem
- Coupon collector problem
- Hash tables
- Mappings

9b.Words.Birthday

Birthday problem

One at a time, ask each member of a group of people their birth date.

Q. How many people asked before finding two with the same birthday?

Quick answer: at most 365

Birthday problem

Throw *N* balls into *M* urns, one at a time.

Q. How long until some urn gets two balls (for M = 365)?

Birthday sequences (words with no duplicates)

Def. A birthday sequence is a word where no set has more than one element.

a string with no duplicate letters

Q. How many birthday sequences?

Class	B_M , the class of birthday sequences
EGF	$B_M(z) = \sum_{w \in B_M} \frac{z^{ w }}{ w !} = \sum_{N \ge 0} B_{MN} \frac{z^N}{N!}$

$$B_M = SEQ_M(E+Z)$$

$$B_M(z) = (1+z)^M$$

Counting sequence
$$N![z^N]B_M(z) = N!\binom{M}{N} = \frac{M!}{(M-N)!}$$

= $M(M-1)\dots(M-N+1)$

Birthday problem

Number of *N*-char *M*-words where no char is repeated

$$M(M-1)(M-2)\dots(M-N+1) = \frac{M!}{(M-N)!}$$

Probability that no char is repeated in a random *M*-word of length *N*.

$$\frac{M!}{M^N(M-N)!}$$

Same as the probability that the first repeat position is > N.

Expected position of the first repeat

$$\sum_{0 \le N \le M} \frac{M!}{M^N(M-N)!}$$

Laplace method to estimate Ramanujan Q-function (see Asymptotics lecture)

$$= 1 + Q(M) \sim \sqrt{\pi M/2}$$

Theorem. Expected position of the first repeated character in a random *M*-word is $\sim \sqrt{\pi M/2}$

Birthday problem

- Q. How many people asked before finding two with the same birthday?
- A. About 24.

$$\sim \sqrt{\pi M/2}$$

http://aofa.cs.princeton.edu

9. Words and Mappings

- Words
- Birthday problem
- Coupon collector problem
- Hash tables
- Mappings

9c.Words.Coupon

One at a time, ask each member of a group of people their birth date.

Q. How many people asked before finding every day of the year?

Quick answer: at least 365

Throw *N* balls into *M* urns, one at a time.

Q. How long until each urn has at least one ball?

A collector buys coupons, each randomly chosen from *M* different types

Q. How many coupons collected before having every possible coupon?

Quick answer: at least 365

Roll an M-sided die.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 9 12 19 3 5 20 10 17 16 20 13 8 2 13 9 2 15 17 3 9 11 7 18 2 10 1 20 12 10 8 14 5 5 9 4 5 6

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 \checkmark

Q. How many rolls until seeing all *M* values?

Coupon collector (classical analysis)

Probability that more than j rolls are needed to get the (k+1)st coupon

$$\left(\frac{k}{M}\right)^{j}$$

Expected number of rolls to get the (*k*+1)st coupon

$$\sum_{j\geq 0} (\frac{k}{M})^j = \frac{1}{1 - k/M} = \frac{M}{M - k}$$

Expected number of rolls to get all coupons

$$\sum_{0 \le k \le M} \frac{M}{M - k} = MH_M \sim M \ln M$$

by linearity of expectation

Theorem. Expected number of coupons needed to complete a collection of size M is $\sim M \ln M$.

Motivation for studying in more detail:

- Discover variance and other properties of the distribution.
- Learn structure suitable for analyzing variants and extensions.

Coupon collector sequences (M-words with no empty sets)

Def. A coupon collector sequence is an M-word with no empty set.

Q. How many coupon collector sequences?

Class R_M , the class of coupon collector sequences EGF $R_M(z) = \sum_{w \in R_M} \frac{z^{|w|}}{|w|!} = \sum_{N \ge 0} R_{MN} \frac{z^N}{N!}$ 2 4 2 4 5 5 1 5 3 {7} {13} {9} {24} {568}

a string that uses all the letters in the alphabet

Example (M = 26)the quick brown fox jumps over the lazy dog

Construction
$$R_{M} = SEQ_{M}(SET_{>0}(Z))$$
EGF equation
$$R_{M}(z) = (e^{z} - 1)^{M}$$
Counting sequence
$$N![z^{N}]R_{M}(z) = N![z^{N}] \sum_{j} \binom{M}{j} (-1)^{j} e^{(M-j)z}$$

$$= \sum_{j} \binom{M}{j} (-1)^{j} (M-j)^{N} \sim M^{N}$$

Coupon collector sequences (EGF analysis, continued)

Probability that a random *M*-word of length *N* is a coupon collector sequence.

Probability that collection in a random *M*-word completes in >*N* chars.

Average number of chars to complete a collection in a random *M*-word.

$$\frac{1}{M^N} \sum_{j} \binom{M}{j} (-1)^j (M - j)^N = \sum_{j} \binom{M}{j} (-1)^j \left(1 - \frac{j}{M}\right)^N$$

$$1 - \sum_{j} \binom{M}{j} (-1)^j \left(1 - \frac{j}{M}\right)^N$$

$$\sum_{N \ge 0} \left(1 - \sum_{j} \binom{M}{j} (-1)^j \left(1 - \frac{j}{M}\right)^N\right)$$

$$= -M \sum_{j \ge 1} \binom{M}{j} \frac{(-1)^j}{j}$$

$$= MH_M$$
Knuth Exercise 1.2.7-13

Coupon collector (OGF analysis)

Class	W_{Mk} , the class of M -words	with k different lett	ers	and 1	the l	ast le	etter	appe	aring	only	y onc	:e
OGF	$W_{Mk}(z) = \sum_{w \in W_{Mk}} z^{ w } =$	$= \sum_{N \ge 0} W_{MNk} z^N$	Еха	ampl	6				2		6	3
PGF	$W_{Mk}(z/M) = \sum_{N \ge 0}$	$W_{MNk} \frac{Z^N}{M^N}$		{ }	{ 3 5	(7) (6)	} { 9	9 } {	} { }	(8	8 }
Mean wait time for k coupons	$w_{Mk} \equiv W'_{Mk}(z/M)\Big _{z=1}$	$= \sum_{N\geq 0} N \frac{W_{MNk}}{M^N} z^N$				(5) (3)	9				2)	

Example

Coupon collector (OGF analysis, continued)

 $W_{Mk} = M$ -words with k different letters and the last letter appearing only once.

Construction
$$W_{Mk} = (k-1)Z \times W_{Mk} + (M-k+1)Z \times W_{M(k-1)}$$

OGF equation
$$(1 - (k-1)z)W_{Mk}(z) = (M - (k-1))zW_{M(k-1)}(z)$$

OGF $W_{Mk}(z)$

Evaluate at z/M

$$(M - (k-1)z)W_{Mk}(z/M) = (M - (k-1))zW_{M(k-1)}(z/M)$$

PGF $W_{Mk}(z/M)$

Differentiate and evaluate at 1

$$(M - (k-1))w_{Mk} - (k-1) = (M - (k-1))(w_{M(k-1)} + 1)$$

Wait time for k coupons

$$w_{Mk} \equiv W'_{Mk}(z/M)\Big|_{z=1}$$

Rearrange terms and telescope

$$w_{Mk} = w_{M(k-1)} + \frac{k-1}{M-(k-1)} + 1 = w_{M(k-1)} + \frac{M}{M-(k-1)}$$

$$= \sum_{0 \le j \le k} \frac{M}{M-j} = M(H_M - H_{M-k})$$
r full collection

Wait time for full collection

$$W_{MM} = MH_M$$

A collector buys coupons, each randomly chosen from *M* different types

Q. How many coupons collected before having every possible coupon?

A. $\sim M \ln M$.

Roll an M-sided die.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 9 12 19 3 5 20 10 17 16 20 13 8 2 13 9 2 15 17 3 9 11 7 18 2 10 1 20 12 10 8 14 5 5 9 4 5 6

- Q. How many rolls until seeing all M values?
- A. $\sim M \ln M$. \leftarrow About 60 for a 20-sided die

Coupon collector problem: Sample application

A program randomly accesses an M-page memory.

Q. How many memory accesses before hitting every page, when $M = 2^{20}$?

A. About 14.5 million.

% bc -1 1(2) .69314718055994530941 2^20*1(2^20) 14536349.96005650425534480384

Surjections

Def. An *M-surjection* is an *M*-word with no empty set. ← Alt name for "coupon collector sequence"

Def. A *surjection* is a word that is an *M*-surjection for some *M*.

Q. How many surjections of length N?

 R_M , the class of M-surjections

Construction

$$R_M = SEQ_M(SET_{>0}(Z))$$

EGF equation

$$R_M(z) = (e^z - 1)^M$$

Coefficients

$$R_{MN} \sim M^N$$

Class

R, the class of surjections

Construction

$$R = SEQ(SET_{>0}(Z))$$

EGF equation

$$R(z) = \frac{1}{1 - (e^z - 1)} = \frac{1}{2 - e^z}$$

Coefficients

$$N![z^N]R(z) \sim \frac{N!}{2(\ln 2)^{N+1}}$$

Best handled with complex asymptotics (stay tuned for Part II)