MATH 321 PRACTICE FINAL EXAM SOLUTIONS

KENAN INCE

(1) Let

$$A = \left\{ (-1)^n + \frac{2}{n} : n = 1, 2, 3, \dots \right\} \text{ and } B = \{ x \in \mathbb{Q} : 0 < x < 1 \}.$$

Answer the following questions for each set:

- (a) What are the limit points?
 - (i) for A: ± 1
 - (ii) for B: 0 and 1
- (b) Is the set open? Closed?
 - (i) A is not open because the point $1 = (-1)^1 + \frac{2}{1} \in A$ does not have an ϵ -neighborhood contained entirely within A. A is not closed because the limit point -1 is not contained in the set.
 - (ii) B is open because every $x \in B$ has an ϵ -neighborhood of radius min $\{1 x, x\}$ contained in the set. B is not closed because it does not contain either of its limit points.
- (c) Does the set contain any isolated points?
 - (i) A contains isolated points; for example, consider $2 = (-1)^2 + \frac{2}{2} \in A$. The $\frac{1}{100}$ -neighborhood about 2, for instance, contains no other points of A.
 - (ii) B contains no isolated points. To see this, let $x \in B$ and let $\epsilon > 0$ be arbitrary. By the Density of \mathbb{Q} in \mathbb{R} , $V_{\epsilon}(x)$ contains some point of \mathbb{Q} , hence x is a limit point of B.
- (d) Find the closure of the set.
 - (i) The limit points of A are -1 and 1, and $1=(-1)^1+\frac{2}{1}\in A$. However, $-1\notin A$. For assume that it is; then

$$-1 = (-1)^n + \frac{2}{n}$$
 for some $n \in \mathbb{N}$.

Subtracting $(-1)^n$ from both sides yields

$$-1 - (-1)^n = \frac{2}{n}$$

$$\implies \frac{2}{n} = -2 \text{ or } 0$$

which is not true for any $n \in \mathbb{N}$. Therefore, $\overline{A} = A \cup \{-1\}$.

- (ii) The limit points of B, 0 and 1, are not contained in the set. Therefore, $\bar{B} = B \cup \{0, 1\}$.
- (2) Let (a_n) be an increasing sequence of positive numbers. Prove, using the definition of convergence, that if (a_n) converges, so does $(7a_n^2)$.
 - (a) Let $\epsilon > 0$ be arbitrary.
 - (b) [scratch work] We guess that, if $(a_n) \to a$, then $(7a_n^2) \to 7a^2$. We want to make $|7a_n^2 7a^2| < \epsilon$. But

$$|7a_n^2 - 7a^2| = 7|a_n^2 - a^2| = 7|a_n - a||a_n + a|.$$

We can make $|a_n - a|$ as small as we want, so let's focus on $|a_n + a|$. We may insist that $|a - a_n| < 1$, so that $-1 < a_n - a < 1$, hence $a - 1 < a_n < a + 1$. This means that

$$2a-1 < a_n + a < 2a + 1$$

and hence $|a_n + a| < M = \max\{|2a - 1|, |2a + 1|\}.$

- (c) Choose $N \in \mathbb{N}$ so that $|a_n a| < \frac{\epsilon}{7M}$ whenever $n \geq N$.
- (d) Assume $n \geq N$.

(e) Then

$$|7a_n^2 - 7a^2| = 7|a_n^2 - a^2| = 7|a_n - a||a_n + a|$$

$$< 7\left(\frac{\epsilon}{7M}\right)M$$

$$= \epsilon.$$

- (3) Assume K is compact and F is closed. Decide if the following sets are definitely compact, definitely closed, both, or neither.
 - (a) $K \cap F$

Both. Since $K \cap F$ is the intersection of two closed sets, it's closed. Also, since K is bounded and $K \cap F \subseteq K$, $K \cap F$ is bounded as well. Thus, $K \cap F$ is compact.

- (b) $\overline{F^c \cup K^c}$
 - (i) Definitely closed since it's a closure.
 - (ii) Not necessarily compact. For example, let F = [0,1] = K. Then $F^c = K^c = (-\infty,0) \cup (1,\infty)$, and

$$\overline{F^c \cup K^c} = \overline{(-\infty, 0) \cup (1, \infty)} = (-\infty, 0] \cup [1, \infty)$$

which is not bounded, hence not compact.

(c) $K \setminus F$

Neither. Let K = [0,1] and $F = \{0,1\}$. Then $K \setminus F = (0,1)$, which is neither closed nor compact.

(d) $\overline{K \cap F^c}$

Both. It's definitely closed since it's a closure. It's definitely compact since $\overline{K \cap F^c} \subseteq \overline{K} = K$, which is bounded by virtue of being compact.

- (4) Which of the following statements about 1-to-1 and onto functions are true? Prove if true, and give a counterexample if false.
 - (a) If f and g are onto, then $g \circ f$ is onto.

True; assume $f: A \to B$ and $g: B \to C$. Then $g \circ f: A \to C$. Let $c \in C$. Then, since g is onto, there exists $b \in B$ with g(b) = c. Moreover, since f is onto, there exists $a \in A$ so that f(a) = b. Therefore, g(f(a)) = g(b) = c.

(b) If f is onto and g is 1-to-1, then $g \circ f$ is onto.

False. Consider $g: \mathbb{R} \to \mathbb{R}$ defined by g(x) = 0 for all $x \in \mathbb{R}$ and let f be the identity function f(x) = x. Then g(f(x)) = g(x) = 0 for all $x \in \mathbb{R}$, hence $g \circ f$ is not onto.

(c) If f is onto and g is 1-to-1, then $g \circ f$ is 1-to-1.

False. Consider $f: \mathbb{R} \to [0, \infty)$ given by $f(x) = x^2$ and g(x) = x. Then

$$(g \circ f)(-1) = g(1) = 1 = g(1) = (g \circ f)(1).$$

(d) If f and g are 1-to-1, then $g \circ f$ is 1-to-1.

True. Suppose that $g(f(x_1)) = g(f(x_2))$. Then, since g is 1-to-1, it must be that $f(x_1) = f(x_2)$. And since f is 1-to-1, it must be that $x_1 = x_2$.

(e) If f and g are 1-to-1 correspondences, then $g \circ f$ is a 1-to-1 correspondence.

True; this follows from (a) and (d) above.

- (5) (Bonus) Let (a_n) be a bounded sequence and let $S = \{\lim(a_{n_k}) : (a_{n_k}) \text{ is any subsequence of } (a_n)\}$. Prove that S is closed.
 - You are welcome to ignore this problem; I've made it too difficult. If you're interested in the proof, consider the explanation offered here, replacing each d(x, y) (meaning the distance between x and y) with |x y|.