Name: Pristian Budi Dharmawan

ID : 2501983105

Study Case A

Line	Code	Description
		Importing library numpy dan
1	import numpy as np	diberikan nama variabel atau
		typedef sebagai np
2		
3		
4	def f(x, y):	Fungsi f dengan parameter x, y.
5	return [x, y, 1], -x*x-y*y	Berfungsi untuk memasukkan entry matrix ke dalam fungsi Gaussian Elimination. Dimana hasil return akan disimpan pada array dengan variabel temp. Selain itu nilai yang direturn berupa nilai x dan y yan dikurangi dengan formula -x*x-y*y yang mana formula ini berfungsi untuk mendapatkan nilai z dari A matrix sehingga kita bisa mendapatkan bentuk matrix yang diinginkan
6		
7		
8	def partialPivot(A, n, k):	Dengan menggunakan metode
9	absMaxIdx = k	partial pivoting. Metode ini akan
10	for i in range(k, n):	menukarkan bagian "main diagonal
11	if abs(A[i][k]) > abs(A[absMaxIdx][k]):	pivot" dengan baris kedua atau
12	absMaxIdx = i	bawahnya. Hal ini bisa dilihat pada
13	if absMaxIdx != k:	ilustrasi berikut:
14	A[[k, absMaxldx], :] = A[[absMaxldx, k], :]	Dari Bentuk
15		
16	-	

17	def printMatrix(A, n):	Fungsi ini berfungsi untuk
18	print("A matrix:")	melakukan print pada Matrix A dan
19	for i in range(n):	Matrix B. Sehingga kita bisa
20	for j in range(n):	melihat perubahan pada setiap
21	print(f"{A[i][j]:.4f}", end=" ")	step yang dilakukan dalam
22	print("")	Gaussian Elimination, yaitu
23	print("")	membuat segitiga bawah menjadi
24	print("B matrix:")	0
25	for i in range(n):	
26	print(f"{A[i][n]:.4f}")	
27	# print(round(A[i][n], 4))	
28	print("")	
29		
30		
31	def GaussianElimination(A, B, pivot=True, showall=True):	Pada bagian ini, program akan
32	n = len(A)	melakukan partial pivoting terlebih
33	x = np.zeros(n)	dahulu dan dilanjutkan dengan
34	A = np.append(A, B, axis=1)	perubahan segitiga bawah menjadi
35	# Forward elimination	0. Setelah melakukan Step 1 untuk
36	for k in range(0, n-1): # goes down -> (n-1) steps	merubah segitiga bawah menjadi 0,
37	if pivot:	kemudian Gaussian Elimination
38	partialPivot(A, n, k)	akan dilanjutkan dengan cara
39	# A[absMaxIdx][j] == 0	subtitusi balik sehingga kita bisa
40	if $A[k][k] == 0$:	mendapatkan nilai final yaitu solusi
41	return [False, x]	dari matrix yang diberikan.
42	if showall:	
43	<pre>print('Step {:d}:'.format(k+1))</pre>	
44	for i in range(k+1, n): # goes right -> (n-k) sub steps	
45	factor = A[i][k]/A[k][k]	
46	# Changes the whole i-th row	
47	for j in range(n+1):	
48	A[i][j] = A[i][j] - factor*A[k][j]	
49	if showall:	
50	print('Sub Step {:d}:'.format(i-k))	
51	printMatrix(A, n)	
52	# Back substitution	
53	for i in range(n-1, -1, -1):	
54	x[i] = A[i][n]	
55	for j in range(i+1, n):	
56	x[i] = x[i]-x[j]*A[i][j]	
57	if A[i][i] == 0:	
58	if(x[i] == 0):	
59	print("No unique solution.Infinite solutions.")	
60	else:	
61	print("No solution")	
62	return [False, x]	

63	x[i] = x[i]/A[i][i]	
64	return [True, x]	
65		
66		
\vdash	def main():	Fungsi ini berfungsi sebagai fungsi
68	n = 3	utama. Fungsi ini diawali dengan
69	# n = int(input())	alokasi nilai dari System of Linear
70	A = np.zeros((n, n))	Equation ke dalam pemanggilan
71	B = np.zeros((n, 1))	fungsi f()
72	# for i in range(n):	
/2	# A[i] = np.array([list(map(float, input().split()))],	Dilanjutkan dengan pengecekan
73	float)	status dari nilai yang dikembalikan
74	# for i in range(n):	pada fungsi GaussianElimination,
75	# B[i][0] = float(input())	jika status bernilai TRUE maka akan
76		melakukan printing hasil dari nilai
77	temp = f(-2, 0)	final yang telah dihitung pada fungsi
78	A[0], B[0] = temp[0], temp[1]	GaussianElimination. Namun jika
79	temp = f(-1, 7)	bersifat False maka akan melakukan
80	A[1], B[1] = temp[0], temp[1]	print bahwa tidak ada solusi dari
81	temp = f(5, -1)	matrix yang diberikan
82	A[2], B[2] = temp[0], temp[1]	_
83	A[2], b[2] = temp[0], temp[1]	
84	status, x = GaussianElimination(A, B)	_
85	if status:	_
86	print("Solution:")	
87	for i in x:	
88	print(f"{i:.4f}")	
89	else:	
90	print("No solution exists")	
91	print(No solution exists)	
92		
	if name == ' main ':	Sobogoi typodof dari bontuk main
94	ifname == 'main': main()	Sebagai typedef dari bentuk main
95	παπη	
	III	Bagian ini merupakan sebuah string
	-2a + 0b + c = -4	penjelasan System of Linear
	-2a + 0b + c = -4 -a + 7b + c = -50	Equations yang akan diberlakukan
	5a - b + c = -26	Gaussian Elimination
	3	
	-2 01	-
	-1 7 1	-
102	5 - 1 1	-
	-4	-
104	- 4 -50	_
105		
		-
106	-26 ""	

Study Case B

Line	Code	Description
1	import numpy as np	Lancation III and a lancation and
2	import matplotlib.pyplot as plt	Importing library dengan nama
3	import pandas as pd	variabel np, plt, dan pd
4		
5		
6	def linear(x, y):	Fungsi ini akan menghitung nilai
7	n = np.size(x)	regresi dari setiap element yang
8	p = np.sum(x*x)	ada pada dalam array Xi dan Yi.
9	q = np.sum(x)	
10	r = np.sum(x*y)	Dengan beberapa fungsi dari library
11	s = np.sum(y)	panda, kita bisa mendapatkan nilai
12	$a_1 = (n*r-q*s) / (n*p - q*q)$	regresi tersebut. Seperti
13	$a_0 = (p*s-q*r) / (n*p - q*q)$	penambahan element dari
14		np.append; pembuatan tabel
15	data = {'x': np.append(x, q), 'y': np.append(computer dengan fungsi
16	y, s), 'x^2': np.append(x*x, p), 'xy': np.append(x*y, r)}	pd.DataFrame untuk menghasilkan array 2 dimensi; dan df.index untuk
17	df = pd.DataFrame(data)	mengakses data pada bagian index
18	df.index = np.arange(1, len(df)+1)	tertentu di dalam pd.DataFrame
19	print(df)	
20	return (a_0, a_1)	
21	· - · - ·	
22		
23	def drawGraph(x, y, y_pred):	Fungsi ini berfungsi untuk membuat
24	plt.scatter(x, y)	sebuah graphs pada program kita
25	plt.plot(x, y_pred)	setelah dijalankan. Dapat dilihat
26	plt.show()	scatter berfungsi untuk melihat seberapa jauh nilai x dan y yang ingin ditampilkan dan pol sebagai penanda atau legend dalam graph yang telah dibuat
27		
28		
29	def main():	Dengan membuat sebuah baris
30	x = np.array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])	nilai Xi dan Yi dan menempatkan
31	y = np.array([1, 3, 2, 5, 7, 8, 8, 9, 10, 12])	pada array, kita dapat memanggil
32	a_0, a_1 = linear(x, y)	fungsi linear(x, y) untuk
33	drawGraph(x, y, a_0 + a_1*x)	menghitung nilai regresi dari nilai- nilai Xi dan Yi
34		
35		
36	ifname == "main":	Sebagai typedef dari bentuk main

1 27	main()	
57	παπι()	

Study Case C

Line	Code	Description	
DISCI	AIMER: Source code GitHub untuk Newton Divided Differen	ce memiliki sebuah error	
"Inde	"IndentationError: unexpected independent" Sehingga saya melakukan format ulang document		
(Shift	+Alt+F) di Visual Studio Code yang mana error ini terdapat p	ada line 2-5.	
1	def proterm(i, value, x):	Funcci ini adalah kalenintan dari	
2	pro = 1	Fungsi ini adalah kelanjutan dari	
3	for j in range(i):	fungsi applyFormula() yaitu untuk mengimplementasikan rumus ke	
4	pro = pro * (value - x[j])	dalam program	
5	return pro	dalam program	
6			
7			
8	def dividedDiffTable(x, y, n):		
9			
10	for i in range(1, n):		
11	for j in range(n - i):		
12	y[j][i] = ((y[j][i - 1] - y[j + 1][i - 1]) /		
13	(x[j] - x[i + j]))		
14	return y		
15			
16			
17	def applyFormula(value, x, y, n):	Fungsi ini adalah fungsi untuk	
18		membuat formula menghitung	
19	sum = y[0][0]	Newton Divided dalam bentuk	
20		program.	
21	for i in range(1, n):		
22	sum = sum + (proterm(i, value, x) * y[0][i])		
23			
24	return sum		
25			
26			
27	def printDiffTable(y, n):	Fungsi ini berfungsi untuk	
28		menghasilkan bentuk dari Newton	
29	for i in range(n):	Divided Difference Table "Inverted	
30	for j in range(n - i):	90° Triangle"	
31	print(round(y[i][j], 4), "\t",		
32	end = " ")		
33			
34	print("")		
35			
36			
37	n = 5; # manual input	Setelah fungsi-fungsi diatas,	
38	y = [[0 for i in range(10)]	program ini menggunakan global	

39	for j in range(10)]	syntax yang mana tidak ada fungsi
40	x = [-1, 0, 3, 6, 7]; # manual input	utama. Sehingga biasa saya sebut
41		"Self-Service" karena tanpa adanya
42	y[0][0] = 3; # manual input	fungsi utama, program ini dapat
43	y[1][0] = -6	berjalan dengan baik dengan
44	y[2][0] = 39	bypass nilai-nilai atau nama variabel
45	y[3][0] = 822	yang sama pada variabel global ke
46	y[4][0] = 1611	dalam setiap fungsi yang ada.
47		
48		Jadi kesimpulan dari line 37-58
49	y = dividedDiffTable(x, y, n);	adalah "Main Function" dari
50		program ini
51	printDiffTable(y, n)	
52		
53	# value to be interpolated	
54	value = 2	
55		
56	# printing the value	
57	print("\nValue at", value, "is",	
58	round(applyFormula(value, x, y, n), 2))	