Постановка задачи:

Будем рассматривать задачу бинарной классификации (1 - квартира будет продана в течение месяца с заданной даты, 0 - квартира не будет продана). Для каждого класса рассчитаем вероятность принадлежности на основе набора признаков двух типов:

- Не зависящих от времени (размер, этаж, отделка,...),
- Зависящих от времени (спрос, акции, ценообразующие факторы,...).

Выбор модели. Формирование обучающей выборки:

Составление набора признаков зависит от способа формирования обучающей выборки. Рассмотримтри варианта:

1. Разделим весь рассматриваемый период времени на промежутки равной длительности (в зависимости, от длины интересующего нас интервала предсказания (в данном случае, 1 месяц), средней частоты происходящих событий, а также на основе величины ошибки по итогам тестирования различных вариантов).

Для каждого рассмотренного интервала сформируем набор признаков. Интервал, в котором произошла сделка - пометим единицей, остальные нулями.

Достоинства	Недостатки
 Большой размер обучающей выборки 	 Несбалансирован ность обучающей выборки- количество негативных примеров

значительно превышает количество позитивных. • Неопределенност ь в прогнозировании, в случае, если дата прогноза пересекает сразу несколько временных интервалов. • Сложность подбора оптимального размера интервала разделения.

 Для каждой квартиры выделим ключевые даты изменения статуса: изменение цены, увеличение спроса, бронирование и т.д. Разобьём весь период времени на промежутки, ограниченные этими датами.

Достоинства	Недостатки
 Меньшая несбалансирован ность по сравнению с предыдущим способом и уменьшение количества незначимых для предсказания примеров. 	• Неопределенност ь в определении ключевых дат

3. Рассмотрим все проданные квартиры как точки в пространстве признаков. Разобьем все множество имеющихся примеров на кластеры, избавившись от аномалий. Для каждой непроданной квартиры рассчитаем вероятность продажи, как значение некоторой функцию отрасстояния до ближайшего кластера.

Достоинства	Недостатки
 Меньшая несбалансирован ность по сравнению с предыдущим способом и уменьшение количества незначимых для предсказания примеров. 	• Неопределенност ь в определении ключевых дат

4. Рассмотрим временной ряд спроса на квартиры разных типов (количество комнат, качество отделки и т.п.). Построим предсказание значение ряда на основе некоторой модели (например, ARIMA). Установим вероятность продажи квартиры как значение некоторой функции от спроса на квартиры данного типа.

Достоинства	Недостатки
• Большой набор инструментов работы с временными рядами(Facebook Prophet, Python StatsModels, и т.п.)	Учитывается неполное множество признаков

Для данной задачи была выбрана вторая модель: для каждой квартиры были рассчитаны

значения признаков **в ключевые моменты времени**:

- Дата продажи квартиры (помечен меткой "1", все остальные меткой "0")
- Начало месяцев, в котором спрос на квартиры данного типа (в зависимости от количества комнат) стал выше среднего вк раз за весь период времени, кподобрано исходя из размера результирующей выборки.
- Начало месяцев, в котором отношение спроса на квартиры данного типа (в зависимости от количества комнат) к общему спросу стал выше среднего вкраз за весь период времени
- Начало месяцев, в которых спрос упал до 0
- Даты начала и продления бронирования
- Датаизменения цены

Выбор модели. Извлечение и преобразование признаков (Feature extraction and transformation)

Признаки, не зависящие от времени: Квартиры, для которых не было информации в таблице *lead.csv* были исключены.

Этаж:

Векторизуем этот признак. Чтобы не увеличивать количество признаков значительно, разделим все допустимые значение параметра "Этаж" на интервалы: [1], [2-4], [5-8], [9-12], [13-18], [19-20] в соответствии с распределением рассматриваемых квартир по этажам:

• Секторикорпус:

Признаки векторизованы, рассмотрены случаи исключения одного и двух признаков (см. раздел *Feature selection*):

Количество комнат:

Признак векторизован, в будущем рассматривается в совокупности с признаком "studio".

• Площадь:

Площадь квартиры заменена на площадь, приходящуюся на одну комнату.

Применен Standard Scaling:

• Отделка (finish)

Признаки, зависящие от времени: Чтобы устранить сезонные эффекты, вместо значений используются нормализованные соотношения.

Лиды:

На графике изображена зависимость количество лидов от номера месяца, начиная с самого первого месяца.

- Demand_month отношение количества лидовна данный тип квартир к общему числу квартир за последний месяц
- Demand экспоненциально взвешанное отношение количества лидов на данный тип квартир к общему числу квартир за весь период времени
- Demand_up = 1, если есть тенденция к повышению интереса к квартирам данного типа

Цены:

- current_cost отношение текущей цены к количеству комнат
- *current_cost_up = 1,* если наблюдается тенденция к повышению цены
- cost_dev-отклонение цены от средней по данному типу квартир в данный момент времени

Бронирования:

- last_resevation_duration длительность последнего бронирования
- resevation_number количество бронирований на данный момент времени

• resevation_duration - Суммарная длительность бронирований на данный момент времени

Выбор модели. Отбор признаков (Feature selection)

- PCA
- Подбор

Выбор модели. Определение порогового значения разделения по классам
Были сравнены несколько видов классификаторов (kNN, decision tree, Random Forest, GBT). Лучший результат показал Random Forest. В качестве порогового значения для идентификации положительного прогноза выбрано 60%.