习题 1.1

(A)

1.1.1. 利用级数收敛的定义判别下列级数的敛散性, 并对收敛级数求其和:

(1)
$$\sum_{n=0}^{\infty} \frac{3^n + 1}{q^n} (|q| > 3);$$

(3)
$$\sum_{n=1}^{\infty} (\sqrt{n+2} - 2\sqrt{n+1} + \sqrt{n}).$$

解
$$(1)$$
 $a_n = \left(\frac{3}{q}\right)^n + \left(\frac{1}{q}\right)^n$, $S_n = \sum_{k=1}^n \left[\left(\frac{3}{q}\right)^k + \left(\frac{1}{q}\right)^k\right]$, 由于 $\sum \left(\frac{3}{q}\right)^n$ 与 $\sum \left(\frac{1}{q}\right)^n$ 均 收敛, 所以 $\sum \left[\left(\frac{3}{q}\right)^n + \left(\frac{1}{q}\right)^n\right]$ 收敛,

$$S_n = \sum_{k=1}^n \left[\left(\frac{3}{q} \right)^k + \left(\frac{1}{q} \right)^k \right] = \frac{\frac{3}{q} - \left(\frac{3}{q} \right)^{n+1}}{1 - \frac{3}{q}} + \frac{\frac{1}{q} - \left(\frac{1}{q} \right)^{n+1}}{1 - \frac{1}{q}}, \lim_{n \to \infty} S_n = \frac{\frac{3}{q}}{1 - \frac{3}{q}} + \frac{\frac{1}{q}}{1 - \frac{1}{q}} = \frac{3}{q - 3} + \frac{1}{q - 1},$$
 所以原级数收敛,且和 $S = \frac{3}{q - 3} + \frac{1}{q - 1}$.

(3)
$$a_n = \sqrt{n+2} - 2\sqrt{n+1} + \sqrt{n} = \sqrt{n+2} - \sqrt{n+1} - (\sqrt{n+1} - \sqrt{n}) = \frac{1}{\sqrt{n+2} + \sqrt{n+1}} - \sqrt{n}$$

$$\frac{1}{\sqrt{n+1} + \sqrt{n}},$$

$$S_n = \sum_{k=1}^n a_k = \sum_{k=1}^n \left(\frac{1}{\sqrt{k+2} + \sqrt{k+1}} - \frac{1}{\sqrt{k+1} + \sqrt{k}} \right) = -\frac{1}{\sqrt{2}+1} + \frac{1}{\sqrt{n+2} + \sqrt{n+1}},$$

$$\lim_{k \to \infty} S_n = -\frac{1}{\sqrt{2}}$$

 $\lim_{x\to +\infty} S_n = -\frac{1}{\sqrt{2}+1}$ 所以,原级数收敛且和数 $S=-\frac{1}{\sqrt{2}+1}$.

1.1.3. 设级数
$$\sum_{n=1}^{\infty} (-1)^{n-1} a_n = 2, \sum_{n=1}^{\infty} a_{2n-1} = 5$$
, 求级数 $\sum_{n=1}^{\infty} a_n$ 的和.

解由 $a_1 - a_2 + a_3 - a_4 + \dots + a_{2n-1} - a_{2n} = (a_1 + a_3 + \dots + a_{2n-1}) - (a_2 + a_4 + \dots + a_{2n-1})$ $\cdots + a_{2n}$) $\rightarrow 2$ 和 $a_1 + a_3 + \cdots + a_{2n-1} \rightarrow 5$, 得到 $a_2 + a_4 + \cdots + a_{2n} \rightarrow 5 - 2 = 3$. 于是 $S_{2n} = a_1 + a_2 + \dots + a_{2n} = (a_1 + a_3 + \dots + a_{2n-1}) + (a_2 + a_4 + \dots + a_{2n}) \rightarrow 5 + 3 = 8$ 又由 $\sum (-1)^{n-1}a_n$ 收敛得知 $a_n \to 0$. 从而得到 $S_{2n+1} = S_{2n} + a_{2n+1} \to 8$. 故, $S_n \to 8$.

级数 $\sum_{n=0}^{\infty} a_n$ 的和为 8.

1.1.4. 利用级数的性质判别下列级数的敛散性:

(1)
$$\sum \frac{\sqrt[n]{n^2+1}}{(1+\frac{1}{n})^n}$$

$$(4) \sum \left(\frac{1}{n} - \frac{1}{2^n}\right);$$

(5)
$$\sum n^2 \ln\left(1 + \frac{x}{n^2}\right) (x \in \mathbf{R}).$$

解 (1) 由于
$$\lim_{n\to\infty} \frac{\sqrt[n]{n^2+1}}{(1+\frac{1}{e})^n} = \frac{1}{e} \neq 0$$
, 故该级数发散.

(4) 由于
$$\sum_{n=1}^{\infty} \frac{1}{n}$$
 发散, $\sum_{n=1}^{\infty} \frac{1}{2^n}$ 收敛, 由级数的线性运算知,

$$\sum \left(\frac{1}{n} - \frac{1}{2^n}\right) \, \xi \, \mathrm{th}.$$

(5) 当
$$x \neq 0$$
 时, 因为 $a_n = n^2 \ln \left(1 + \frac{x}{n^2}\right) = \ln \left(1 + \frac{x}{n^2}\right)^{\frac{n^2}{x}}$, 所以 $\lim_{n \to \infty} a_n = x \ln e = x \neq 0$. 级数发散; 当 $x = 0$ 时, $\sum n^2 \ln \left(1 + \frac{x}{n^2}\right)$ 的每一项都是零, 从而收敛于 0 , $1.1.5$. 下列命题是否正确?若正确, 给出证明; 若不正确, 举出反例.

(1) 若
$$a_n \leq b_n$$
, 且 $\sum b_n$ 收敛, 则 $\sum a_n$ 必收敛;

(1) 若
$$a_n \le b_n$$
, 且 $\sum b_n$ 收敛, 则 $\sum a_n$ 必收敛;
(3) 若 $\sum a_n$ 收敛, 且 $a_n > 0$, 则 $\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = r < 1$;

(5) 若
$$\sum a_n$$
 发散, 则 $\sum a_n^2$ 必发散.

(5) 若
$$\sum a_n$$
 发散, 则 $\sum a_n^2$ 必发散.
解 (1) 不正确. 若 $\sum \frac{1}{2^n}$ 收敛, $-1 < \frac{1}{2^n}$, 但 $\sum (-1)$ 发散.

(3) 不正确. 如:
$$\sum \frac{1}{n^2}$$
 收敛, 且 $a_n = \frac{1}{n^2}$, 但 $\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \lim_{n \to \infty} \frac{n^2}{(n+1)^2} = 1$.

(5) 不正确. 如:
$$a_n = \frac{1}{n}, \sum \frac{1}{n}$$
 发散, 但 $\sum \frac{1}{n^2}$ 收敛.

1.1.6. 判别下列正项级数的敛散性 (其中参数
$$\alpha > 0$$
): (2) $\sum \frac{n^{n+1}}{(n+1)^{n+2}}$;

(2)
$$\sum \frac{n^{n+1}}{(n+1)^{n+2}}$$
;

$$(4) \sum \frac{\sqrt{n'}}{n^2 - \ln n};$$

$$(4) \sum \frac{(n+1)^{n+2}}{n^2 - \ln n};$$

$$(6) \sum \frac{n^3 \left[\sqrt{2} + (-1)^n\right]^n}{3^n}$$

(8)
$$\sum_{n=0}^{\infty} \left(1 - \cos\frac{\pi}{n}\right);$$

$$(10) \sum n \sin \frac{\pi}{3^n}$$

$$(10) \sum_{n = 1}^{\infty} n \sin \frac{\pi}{3^n}$$

$$(12) \sum_{n = 1}^{\infty} n! \left(\frac{\alpha}{n}\right)^n$$

$$(14) \sum \frac{1}{\ln(n!)}$$

解 (2) 因为
$$a_n = \frac{n^{n+1}}{(n+1)^{n+2}} = \frac{n}{\left(1+\frac{1}{n}\right)^n(n+1)^2}$$
, 所以 $\lim_{n\to\infty} \frac{a_n}{\frac{1}{n}} = \frac{1}{e}$, 由于 $\sum \frac{1}{n}$ 发散, 依比较准则, 原级数发散.

准则, 原级数发散. (4) 因为
$$\lim_{n\to\infty}\frac{\ln n}{n^{3/2}}=0$$
, 所以 $\lim_{n\to\infty}\frac{\sqrt{n}}{n^2-\ln n}/\frac{1}{n^{3/2}}=1$, 而 $\sum \frac{1}{n^{3/2}}$ 收敛, 由比较准则, 原级数收敛.

(6) 因为
$$0 < a_n = \frac{n^3 \left[\sqrt{2} + (-1)^n\right]^n}{3^n} \le \frac{n^3 (\sqrt{2} + 1)^n}{3^n} := b_n$$
,而 $\lim_{n \to \infty} \sqrt[n]{b_n} = \lim_{n \to \infty} \sqrt[n]{n^3} \cdot \frac{\sqrt{2} + 1}{3} = \frac{\sqrt{2} + 1}{3} < 1$, $\sum b_n$ 收敛,故由比较判别法知原级数收敛.

思考若式中的 3^n 换为 2^n , 敛散性又如何呢?

(8) 因为 $1 - \cos \frac{\pi}{n} \sim \frac{\pi^2}{2n^2}$,而 $\sum \frac{1}{n^2}$ 收敛,所以原级数收敛. (10) $\lim_{n \to \infty} \frac{n \sin \frac{\pi}{3^n}}{\left(\frac{2}{n}\right)^n} = 0$,由于 $\sum \left(\frac{2}{3}\right)^n$ 收敛, 所以级数为收敛的.

另解: $n \sin \frac{\pi}{3^n} \sim \frac{n\pi}{3^n}$, $\lim_{n\to\infty} \sqrt[n]{\frac{n\pi}{3^n}} = \frac{1}{3} < 1$, 所以 $\sum \frac{n\pi}{3^n}$ 收敛, 从而原级数收敛.

(12) 因为 $\lim_{n\to\infty} \frac{a_{n+1}}{a_n} = \lim_{n\to\infty} \alpha \left(\frac{n}{n+1}\right)^n = \frac{\alpha}{e} := r$, 所以, 当 $\alpha > e$ 时, 原级数发散. 当 $\alpha < e$ 时, r < 1, 原级数收敛. 当 $\alpha = e$ 时, 对 $a_n = n!(e/n)^n$ 用Raabe判别法: 因为

$$\lim_{n \to \infty} n \left(\frac{a_n}{a_{n+1} - 1} \right) = n \left(e^{-1} \left(1 + \frac{1}{n} \right)^n - 1 \right) = -\frac{1}{2} < 0,$$

所以原级数发散.

(14) 因为 $n! < n^n$, 所以 $\frac{1}{\ln n!} > \frac{1}{n \ln n}$. 由积分判别法知 $\sum \frac{1}{n \ln n}$ 发散, 故原级数发散. 1.1.9. 讨论下列级数的敛散性, 并对收敛级数说明是绝对收敛或条件收敛:

(1)
$$\sum (-1)^n \frac{(2n-1)!!}{3^n \cdot n!}$$

(1)
$$\sum (-1)^{n} \frac{(2n-1)!!}{3^{n} \cdot n!}$$
(3)
$$\sum (-1)^{n-1} \frac{1}{n-\ln n};$$
(5)
$$\sum \frac{(-1)^{n-1}}{n(\sqrt{n}+1)}$$

(5)
$$\sum \frac{(-1)^{n-1}}{n(\sqrt{n}+1)}$$

解 (1) $a_n = \frac{(2n-1)!!}{3^n n!}$,由达朗贝尔比值判别法,得 $\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \frac{2}{3} < 1$,所以级数绝对收敛.

(3) 原级数是交错级数. 因为 $\frac{1}{n-\ln n} \sim \frac{1}{n}, \sum \frac{1}{n}$ 发散, 所以原级数不绝对收敛, 又 $\lim_{n \to \infty} a_n = \lim_{n \to \infty} \frac{1}{n - \ln n} = \lim_{n \to \infty} \frac{\frac{1}{n}}{1 - \frac{\ln n}{n}} = 0,$ 故再设 $f(x) = x - \ln x,$ 由 $f'(x) = 1 - \frac{1}{x} > 1$ 0(x>1), 知 $\{n-\ln n\}$ 单调增, 即 $\left\{\frac{1}{n-\ln n}\right\}$ 单调减, 于是, 依莱布尼茨准则, 原级数

(1)
$$\sum \left(\frac{1}{\sqrt{n}-1} - \frac{1}{\sqrt{n}+1}\right);$$

(2)
$$\sum [1 + (-1)^n] \frac{1}{n} \sin \frac{1}{n}$$
;

$$\mathbf{R}$$
 (1) 级数 $\sum \left(\frac{1}{\sqrt{n}-1} - \frac{1}{\sqrt{n}+1}\right) = \sum \frac{2}{n-1}$, 不是交错级数, 且级数发散.

(2) 原级数不是交错级数, 是正项级数. 因为 $\lim_{x\to\infty} \frac{\frac{\sin \frac{x}{n}}{n}}{\frac{1}{n}} = 1$, 所以, 级数与 $\sum \frac{1}{n^2}$ 有相同 的敛散性,即原级数收敛.

1.1.11. 判别下列级数的敛散性:

(1)
$$\sum \frac{a^n}{n^p} (p > 0, |a| \neq 1);$$

(1)
$$\sum \frac{a^n}{n^p} (p > 0, |a| \neq 1);$$

(2) $a - \frac{b}{2} + \frac{a}{3} - \frac{b}{4} + \dots + \frac{a}{2n-1} - \frac{b}{2n} + \dots + (a^2 + b^2 \neq 0).$

解 (1) 当
$$|a| < 1$$
 时,因为 $\lim_{x \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = |a| < 1$,依达朗贝尔准则, $\sum \frac{a^n}{n^p}$ 绝对收敛. 当

$$|a| > 1$$
 时,因为 $\lim_{x \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = |a| > 1 \Rightarrow |a_n| > |a_N| > 0 (n \ge N)$,其中 N 为某正整数,

于是
$$\lim_{n\to\infty} a_n \neq 0$$
, $\sum \frac{a^n}{n^p}$ 发散.

(2) 当 $a = b$ 时, 级数可化为 $a - \frac{b}{2} + \frac{a}{3} - \frac{b}{4} + \dots + \frac{a}{2n-1} - \frac{b}{2n} + \dots = a \sum (-1)^{n-1} \frac{1}{n}$, 由于 $\sum (-1)^{n-1} \frac{1}{n}$ 收敛, 故 $a = b$ 时, 级数条件收敛. 当 $a \neq b$ 时, 由

$$1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} = \ln n + \gamma + o(1)$$

Euler 常数 $\gamma \approx 0.577$, 得到

$$1 + \frac{1}{3} + \frac{1}{5} + \dots + \frac{1}{2n-1} = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{2n} - \left(\frac{1}{2} + \frac{1}{4} + \dots + \frac{1}{2n}\right)$$
$$= \ln 2n + \gamma + o(1) - \frac{1}{2}\left(1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}\right)$$
$$= \ln 2 + \frac{1}{2}\ln n + \frac{\gamma}{2} + o(1).$$

于是, 对级数的部分和数列 $\{S_n\}$, 有

$$S_{2n} = a - \frac{b}{2} + \frac{a}{3} - \frac{b}{4} + \dots + \frac{a}{2n-1} - \frac{b}{2n} = a\left(1 + \frac{1}{3} + \frac{1}{5} + \dots + \frac{1}{2n-1}\right) - b\left(\frac{1}{2} + \frac{1}{4} + \dots + \frac{1}{2n}\right)$$
$$= a\ln 2 + \frac{a-b}{2}\ln n + \frac{(a-b)\gamma}{2} + o(1)$$

因此, 当 $a \neq b$ 时, $\{S_{2n}\}$ 发散, 从而原级数发散.

1.1.16. 设 $a_n > 0, b_n > 0, \frac{a_{n+1}}{a_n} \le \frac{b_{n+1}}{b_n}$. 若 $\sum b_n$ 收敛, 证明 $\sum a_n$ 也收敛.

证
$$\frac{a_{n+1}}{a_n} \le \frac{b_{n+1}}{b_n} \Rightarrow \frac{a_{n+1}}{b_{n+1}} \le \frac{a_n}{b_n}$$
,这表明 $\left\{\frac{a_n}{b_n}\right\}$ 单减. 因此 $\frac{a_n}{b_n} \le \frac{a_1}{b_1}$,即 $a_n \le \frac{a_1}{b_1}b_n$. 由比

较判别法, 若 $\sum b_n$ 收敛, 则 $\sum a_n$ 也收敛. 1.1.17. 设 $a_n > 0, n$ 充分大. 证明:

(1) 若
$$n$$
 充分大时, $\frac{a_{n+1}}{a_n} \le r < 1$ (或 $\sqrt[n]{a_n} \le r < 1$), 则 $\sum a_n$ 收敛.

(2) 若
$$n$$
 充分大时, $\frac{a_{n+1}}{a_n} > 1$ (或 $\sqrt[n]{a_n} > 1$), 则 $\sum a_n$ 发散.

证 (1) 不妨设
$$\frac{a_{n+1}}{a_n} \le r < 1$$
, 对一切 $n \ge 1$ 成立. 于是有 $\frac{a_2}{a_1} \le r, \frac{a_3}{a_2} \le r, \cdots \frac{a_n}{a_{n-1}} \le r$. 把

前个
$$n$$
 不等式按项相乘后,得 $\frac{a_2a_3\cdots a_n}{a_1a_2\cdots a_{n-1}} \le r^{n-1}$,即 $a_n \le a_1r^{n-1}$.由于当 $0 < r < 1$

时,等比级数
$$\sum q^{n-1}$$
 收敛,根据比较原理可推得 $\sum a_n$ 收敛.

(2) 因为当 $n > N_0$ 时, $\frac{a_{n+1}}{a_n} > 1$, 则 $a_{n+1} > a_n > a_{N_0}$. 于是当 $n \to \infty$ 时, a_n 的极限不 可能为零,故 $\sum a_n$ 发散.

1.1.19. 设正项级数 $\sum a_n$ 收敛, 且 $\{a_n\}$ 单调减, 证明: (1) $\lim_{n \to \infty} na_n = 0$ (提示: 利用级 数的Cauchy 收敛准则). (2) 级数 $\sum n(a_n - a_{n-1})$ 收敛.

证 (1) 因 $\sum a_n$ 收敛, 所以 $a_n \to 0$ $(n \to \infty)$, 且由Cauchy收敛准则可知 $\lim_{n \to \infty} (a_n + a_{n+1} + \cdots + a_{2n}) =$ 0. 但 $a_n + a_{n+1} + \cdots + a_{2n} \ge na_{2n}$, 故当 $n \to \infty$ 时 $2na_{2n} \to 0$, 从而 $na_{n+1} \to 0$ $0,(2n+1)a_{2n+1}\to 0$, 因此 $\lim_{n\to\infty}na_n=0$.

(2) $\Leftrightarrow S_k = \sum_{n=1}^k n (a_n - a_{n+1}), \ \emptyset$

$$S_k = \sum_{n=1}^k a_n - ka_{k+1}$$

因此由 $na_{n+1} \to 0 (n \to \infty)$ 得到 $\lim_{k \to \infty} S_k = \sum_{n=1}^{\infty} a_n$, 即级数 $\sum n (a_n - a_{n+1})$ 收敛. 注著名的Abel求和公式(直接验证即可):

$$\sum_{k=1}^{n} a_k b_k = a_n B_n + \sum_{k=1}^{n-1} (a_k - a_{k+1}) B_k,$$

其中 $B_k = \sum_{i=1}^{\kappa} b_j$.

下面题1.1.20-1.1.23来自文献:

黄永忠, 韩志斌, 吴洁. 通项等价的两个数列级数的收敛性. 大学数学, 2018, 34(6): 61 -66.

- 1.1.20. 设单调有界数列 $\{a_n\}$ 满足 $a_n \geq c > 0, c$ 为常数. 又设 $u_n = a_n v_n \ (n \in \mathbf{N}_+)$. 试
- (1) 若 $\sum v_n$ 条件收敛, 则 $\sum u_n$ 条件收敛; (2) 若 $\sum v_n$ 发散, 则 $\sum u_n$ 发散.
- 证 (1) 设 $\sum v_n$ 条件收敛. 由已知, 有 $|u_n| \ge c |v_n|$. 因为 $\sum |v_n|$ 发散, 所以 $\sum |u_n|$ 发 散. 由 Abel 判别法知 $\sum u_n$ 收敛, 从而条件收敛.
- (2) 现在设 $\sum v_n$ 发散. 已知数列 $\left\{\frac{1}{a_n}\right\}$ 单调有界, 且 $v_n = u_n \cdot \frac{1}{a_n}$. 若 $\sum u_n$ 收敛, 则 由 Abel 判别法知 $\sum v_n$ 收敛, 矛盾. 故 $\sum u_n$ 发散.
- 1.1.21. 利用 1.1.20题的结论考虑下列式子的绝对收敛级数或条件收敛性(其中 p 为正常 数):

$$(1) \sum \frac{(-1)^n}{\sqrt{n}} \cos \frac{\pi}{n}$$

(2)
$$\sum \frac{(-1)^n \arctan n}{n^p (1 + \arctan n)}$$

(2)
$$\sum \frac{(-1)^n \arctan n}{n^p (1 + \arctan n)}$$
(3)
$$\sum \frac{(-1)^n (n+1)}{n^p (2 + \sqrt{n^2 + 1})}.$$

解 (1) 对 $n \ge 3$ 成立 $\frac{1}{2} \le a_n = \cos \frac{\pi}{n} < 1, \{a_n\}$ 单调. 又 $\sum \frac{(-1)^n}{\sqrt{n}}$ 条件收敛, 所以原级

(2) 因为 $a_n = \frac{\arctan n}{1 + \arctan n}$ 单增, 满足 $\frac{\pi}{4 + \pi} \le a_n < \frac{\pi}{2 + \pi}$, 所以级数 $\sum \frac{(-1)^n \arctan n}{n^p (1 + \arctan n)}$ 与 $\sum \frac{(-1)^n}{n^p}$ 有相同的敛散性, 即当 0 时条件收敛, 当 <math>p > 1 时绝对收敛.

$$\sum \frac{n+1}{n^p \left(2 + \sqrt{n^2 + 1}\right)} = \frac{1}{n^p} \cdot \frac{n}{2 + \sqrt{n^2 + 1}} + \frac{1}{n^p} \cdot \frac{1}{2 + \sqrt{n^2 + 1}},$$

而数列 $\left\{\frac{n}{2+\sqrt{n^2+1}}\right\}$ 与 $\left\{\frac{1}{2+\sqrt{n^2+1}}\right\}$ 均单调有界, 级数 $\sum \frac{(-1)^n}{n^p}$ 收敛, 所以由Abel判别法知原级数收敛, 且当 p>1 时绝对收敛, 当 $0< p\leq 1$ 时条件收敛.

1.1.22. 设 a_n, b_n 满足 $a_n \sim b_n$ 且 $a_n - b_n \sim \frac{C}{n^{\beta}}(n \to \infty)$, 其中常数 $C \neq 0, \beta > 1$. 证明 级数 $\sum a_n$ 与 $\sum b_n$ 有相同的敛散性

证已知 $a_n - b_n \sim \frac{C}{n^{\beta}}$ 且 $\beta > 1$ 表明级数 $\sum (a_n - b_n)$ 绝对收敛,从而收敛. 最后由级数 收敛的线性运算性质得到结论.

注题中条件 $a_n \sim b_n$ 是不需要的, 但很多题需要从等价关系去考虑, 比如下题.

此外, 若 $\sum (-1)^n a_n$ 与 $\sum (-1)^n b_n$ 均为交错级数, 则在该题条件下, 这两个交错级数同 敛散性.

1.1.23. 判定下列级数的敛散性(其中常数 p > 0):

(1)
$$\sum \ln \left(1 + \frac{(-1)^{n-1}}{n^p}\right)$$
; (2) $\sum \frac{(-1)^n \sqrt{n}}{n + (-1)^n b} (b \neq 0)$;

(3)
$$\sum \frac{(-1)^n}{[n+(-1)^n]^p}$$
 (4) $\sum \frac{(-1)^n n}{(n+1)\sqrt{n+2}} \tan \frac{1}{\sqrt{n}}$

(5)
$$\sum (-1)^n \frac{\sqrt[3]{n}}{2 + \sqrt{n}}$$
 (6) $\sum \frac{\sin n}{\sqrt{n} + \sin n}$;

(7)
$$\sum \left(e^{\frac{\cos n}{\sqrt{n}}} - \cos \frac{1}{n}\right);$$
 (8) $\sum \frac{(-1)^n}{[\sqrt{n} + (-1)^n]^p}.$

$$a_n = \ln\left(1 + \frac{(-1)^{n-1}}{n^p}\right) = \frac{(-1)^{n-1}}{n^p} - \frac{1}{2n^{2p}} + o(\frac{1}{n^{2p}}).$$

于是

$$a_n \sim \frac{(-1)^{n-1}}{n^p}, \quad a_n - \frac{(-1)^{n-1}}{n^p} \sim -\frac{1}{n^{2p}} := c_n.$$

当 $p > \frac{1}{2}$ 时,由 $\sum c_n$ 收敛及 $\sum \frac{(-1)^{n-1}}{n^p}$ 收敛,得到原级数 $\sum \ln \left(1 + \frac{(-1)^{n-1}}{n^p}\right)$ 收

敛, 并且当 $\frac{1}{2} 时条件收敛, 当 <math>p > 1$ 时绝对收敛.

当 $0 时, 注意到 <math>\sum c_n$ 是发散的不变号级数,

从而由式 (*) 知 $\sum (a_n - \frac{(-1)^{n-1}}{n^p})$ 发散. 再由 $\sum \frac{(-1)^{n-1}}{n^p}$ 收敛, 得原级数发散.

(2) 因为

$$\frac{\sqrt{n}}{n + (-1)^n b} = \frac{1}{\sqrt{n}} \cdot \frac{1}{1 + \frac{(-1)^n b}{n}} = \frac{1}{\sqrt{n}} \cdot \left(1 - \frac{(-1)^n b}{n} + o\left(\frac{(-1)^n b}{n}\right)\right),$$

所以

$$\frac{\sqrt{n}}{n + (-1)^n b} - \frac{1}{\sqrt{n}} \sim \frac{(-1)^n b}{n\sqrt{n}}$$

而 $\sum \frac{(-1)^n b}{n\sqrt{n}}$ 绝对收敛, $\sum \frac{(-1)^n}{\sqrt{n}}$ 收敛, 因此原级数收敛. 又 $\frac{\sqrt{n}}{n+(-1)^n b} \sim \frac{1}{\sqrt{n}}$, 故原

级数条件收敛. 注 $\left\{\frac{\sqrt{n}}{n+(-1)^n b}\right\}$ 不单调, Leibniz判别法不能使用.

个小题的解答请参看1.1.20前提供的文献.

(B)

1.1.1. 讨论下列级数的敛散性:

$$(1) \ 1 + \frac{1}{2} \cdot \frac{19}{7} + \frac{2!}{3^2} \cdot \left(\frac{19}{7}\right)^2 + \frac{3!}{4^3} \cdot \left(\frac{19}{7}\right)^3 + \frac{4!}{5^4} \cdot \left(\frac{19}{7}\right)^4 + \cdots;$$

(1)
$$1 + \frac{1}{2} \cdot \frac{19}{7} + \frac{2!}{3^2} \cdot \left(\frac{19}{7}\right)^2 + \frac{3!}{4^3} \cdot \left(\frac{19}{7}\right)^3 + \frac{4!}{5^4} \cdot \left(\frac{19}{7}\right)^4 + \cdots;$$

(2) $\frac{1}{3} + \frac{1}{3\sqrt{3}} + \frac{1}{3\sqrt{3}\sqrt[3]{3}} + \cdots + \frac{1}{3\sqrt{3}\sqrt[3]{3} \cdot \cdots \sqrt[n]{3}} + \cdots.$
解 (1) 设 $a_n = \frac{(n-1)!}{n^{n-1}} \left(\frac{19}{7}\right)^{n-1}$,并记 $a = 19/7$,则

解 (1) 设
$$a_n = \frac{(n-1)!}{n} \left(\frac{19}{7}\right)^{n-1}$$
, 并记 $a = 19/7$, 则

$$\frac{a_{n+1}}{a_n} = a \frac{n^n}{(n+1)^n} \to \frac{a}{e} < 1(n \to \infty).$$

故原级数收敛.

(2)收敛.

1.1.3. 求下列级数的和:

(1)
$$\sum_{n=1}^{\infty} \arctan \frac{1}{2n^2};$$

(2)
$$\sum_{n=0}^{\infty} \frac{2^n}{1+a^{2^n}} (a > 1)$$

解 (1) 由公式 $\arctan x - \arctan y = \arctan \frac{x-y}{1+xy}$ 可知

$$\arctan \frac{1}{2n-1} - \arctan \frac{1}{2n+1} = \arctan \frac{1}{2n^2}$$

于是,级数的部分和有

$$S_n = \arctan 1 - \arctan \frac{1}{2n+1}$$

令 $n \to \infty$, 得 $\sum \arctan \frac{1}{2n^2} = \frac{\pi}{4}$. (2) 因为

$$\frac{2^n}{1+a^{2^n}} = \frac{2^n \left(a^{2^n}-1\right)}{a^{2^{n+1}}-1} = \frac{2^n \left(a^{2^n}+1\right)}{a^{2^{n+1}}-1} - \frac{2^{n+1}}{a^{2^{n+1}}-1} = \frac{2^n}{a^{2^n}-1} - \frac{2^{n+1}}{a^{2^{n+1}}-1},$$

所以,部分和

$$S_n = \sum_{k=0}^{n-1} \frac{2^n}{1+a^{2^n}} = \frac{1}{a-1} - \frac{2^n}{a^{2^n}-1}$$

故,
$$\sum_{n=0}^{\infty} \frac{2^n}{1+a^{2^n}} = \frac{1}{a-1}$$
.

解对正整数 m, 注意到 $H_m = b_m + \ln m$, 其中 $b_m \to \gamma(m \to \infty)$, $\gamma \approx 0.577$, Euler常数, 我们有

$$\begin{split} \sum_{n=1}^{m} \frac{H_n}{n(n+1)} &= \sum_{n=1}^{m} \frac{H_n}{n} - \sum_{n=2}^{m+1} \frac{H_{n-1}}{n} \\ &= H_1 + \sum_{n=2}^{m} \frac{H_n - H_{n-1}}{n} - \frac{H_m}{m+1} \\ &= \sum_{n=1}^{m} \frac{1}{n^2} - \frac{H_m}{m+1} \\ &= \sum_{n=1}^{m} \frac{1}{n^2} - \frac{\ln m}{m+1} - \frac{b_m}{m+1} \\ &\to \sum_{n=1}^{\infty} \frac{1}{n^2} - 0 - 0 \quad (m \to \infty) \qquad = \frac{\pi^2}{6} \end{split}$$

其中用到 $\lim_{m\to\infty} \frac{\ln m}{m+1} = 0$ 及 $\lim_{m\to\infty} \frac{b_m}{m+1} = 0$.

1.1.10. 令
$$a_n = \frac{1}{4n+1} + \frac{1}{4n+3} - \frac{1}{2n+2}, n = 0, 1, 2, \cdots$$
. 问: 级数 $\sum_{n=0}^{\infty} a_n$ 收敛吗? 若

收敛, 其和是什么?

解令 $S_k = \sum_{n=0}^k a_n, k = 0, 1, 2, \dots,$ 则

$$S_k = \sum_{n=0}^k \left\{ \left(\frac{1}{4n+1} - \frac{1}{4n+2} + \frac{1}{4n+3} - \frac{1}{4n+4} \right) + \left(\frac{1}{4n+2} - \frac{1}{4n+4} \right) \right\}$$
$$= \sum_{m=1}^{4k+4} \frac{(-1)^{m-1}}{m} + \frac{1}{2} \sum_{m=1}^{2k+2} \frac{(-1)^{m-1}}{m}$$

 $\diamond k \to \infty$, 得到

$$\lim_{k \to \infty} S_k = \sum_{m=1}^{\infty} \frac{(-1)^{m-1}}{m} + \frac{1}{2} \sum_{k=1}^{\infty} \frac{(-1)^{m-1}}{m} = \frac{3}{2} \ln 2.$$

所以 $\sum_{n=0}^{\infty} a_n$ 收敛, 其和为 $\frac{3}{2} \ln 2$.

1.1.11. 设级数 $\sum_{n=1}^{\infty} a_n$ 条件收敛, $\sum_{n=1}^{\infty} a_{k(n)}$ 是它的一个重排级数. 试证: 若存在正整数 C,

使得对每个正整数 n 都有 $|k(n)-n| \le C$ 成立, 则重排级数 $\sum_{n=1}^{\infty} a_{k(n)}$ 收敛, 且其和不变. 证设 $S_n = a_1 + a_2 + \cdots + a_n$ 和 $T_n = a_{k(1)} + a_{k(2)} + \cdots + a_{k(n)}$ 依次为原级数和重排级数的部分和, 则 T_n 由 S_n 的项组成, 可能有 2C 项不同: S_n 的最后 C 项的一些可以由重排向前移动, 并从 T_n 中排除, 在这种情况下, 它们最多有 C 项被替换为 $a_{n_1}, \cdots, a_{n_C}, n < n_1 < \cdots < n_C$, 向后移动. 于是

$$|T_n - S_n| \le |a_{n-C+1}| + \dots + |a_n| + |a_{n_1}| + \dots + |a_{n_C}|$$

由 $\sum a_n$ 收敛知, $\forall \varepsilon > 0, \exists N(\varepsilon) > 0$, 当 $k > N(\varepsilon)$ 时有 $|a_k| < \varepsilon/(2C)$. 因此, 对 $n > N(\varepsilon) + C$, 有 $|T_n - S_n| < \varepsilon$. 敛, 其中整数 $p \geq 2$.

证因为 $(u_k + v_k)^2 + (u_k - v_k)^2 = 2u_k^2 + 2v_k^2$, 所以, 对任何整数 n, 有

$$\sum_{k=1}^{n} (u_k - v_k)^2 \le 2 \sum_{k=1}^{n} u_k^2 + 2 \sum_{k=1}^{n} v_k^2 \le 2A + 2B$$

因此, $\sum_{n=1}^{\infty} (u_k - v_k)^2$ 收敛. 于是, 当 k 充分大时, 成立 $(u_k - v_k)^2 < 1$, 从而有 $|u_k - v_k|^p \le (u_k - v_k)^2$ 对 $p \ge 2$ 及充分大的 k 成立. 故级数 $\sum_{n=1}^{\infty} (u_k - v_k)^p$ 绝对收敛, 从而收敛.

1.1.14. 讨论级数 $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^{\alpha}}$ 与 $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^{\beta}}$ 的Cauchy乘积级数的敛散性, 其中 α 与 β 均为正常数.

解由注 1.1.5(2) (1)知, 若 α 、 β 中有一个大于 1,则它们的乘积级数收敛.

若 α 、 β 均大于 1,则乘积级数绝对收敛.

若 α 、 β 中仅一个大于 1,则乘积级数条件收敛.事实上,不妨设 $\alpha > 1, 0 < \beta \le 1,则由$

$$w_n = \sum_{k=1}^n \frac{1}{k^{\alpha}(n-k+1)^{\beta}} = \frac{1}{n^{\beta}} + \frac{1}{2^{\alpha}(n-1)^{\beta}} + \frac{1}{3^{\alpha}(n-2)^{\beta}} + \dots + \frac{1}{n^{\alpha}} > \frac{1}{n^{\beta}}$$

知正项级数 $\sum w_n$ 发散, 从而得到乘积级数 $\sum (-1)^{n-1}w_n$ 条件收敛.

下面设 $0 < \alpha \le 1, 0 < \beta \le 1$. 由Stolz定理得到

$$U_n v_n = \left(1 + \frac{1}{2^{\alpha}} + \dots + \frac{1}{n^{\alpha}}\right) \cdot \frac{1}{n^{\beta}} \sim \frac{(n+1)^{-\alpha}}{(n+1)^{\beta} - n^{\beta}} \sim \frac{1}{\beta n^{\alpha+\beta+1}} (n \to \infty).$$

同理得到 $V_n u_n \sim \frac{1}{\alpha n^{\alpha+\beta-1}} (n \to \infty)$. 由注1.1.5(1)(1), 当且仅当 $\alpha+\beta>1$ 时乘积级数收 敛. 由式 (*), 得到乘积级数 $\sum (-1)^{n-1} w_n$ 条件收敛.

1.1.15. 设级数 $\sum a_n (a_n > 0)$ 发散, 记 S_n 为其部分和, α 是常数. 证明: 当 $\alpha \le 1$ 时, $\sum a_n/S_n^{\alpha}$ 发散; (2) 当 $\alpha > 1$ 时, $\sum a_n/S_n^{\alpha}$ 收敛.

证 (1) 当 $\alpha = 1$ 时,由 $\sum a_n (a_n > 0)$ 发散知,它的部分和数列 $\{S_n\}$ 单调增加无上界, $\lim_{n\to\infty} S_n = +\infty$. 从而对任意 $n \in \mathbf{N}_+$, 存在 $p \in \mathbf{N}_+$,

使得 $S_{n+p} \ge 2S_n$ 或 $\frac{S_n}{S_{n+p}} \le \frac{1}{2}$

于是, 有
$$\frac{a_{n+1}}{S_{n+1}} + \frac{a_{n+2}}{S_{n+3}} + \dots + \frac{a_{n+p}}{S_{n+p}} > \frac{a_{n+1} + a_{n+2} + \dots + a_{n+p}}{S_{n+p}} = \frac{S_{n+p} - S_n}{S_{n+p}} = 1 - \frac{S_n}{S_{n+p}} \ge \frac{1}{2},$$

即, 对 $\varepsilon_0 = \frac{1}{2} > 0$, 对任意的 N > 0, 存在 n > N, 存在 $p \in \mathbb{N}$, 有 $\frac{a_{n+1}}{S_{n+1}} + \frac{a_{n+2}}{S_{n+3}} + \cdots +$ $\frac{a_{n+p}}{S_{n+p}} \ge \frac{1}{2}$, 故级数 $\sum a_n/S_n$ 发散.

当 $0 < \alpha < 1$ 时,由 $\frac{a_n}{S_n^{\alpha}} \ge \frac{a_n}{S_n}$,以及由比较判别法知 $\sum \frac{a_n}{S_n^{\alpha}}$ 发散. (2) 由微分中值定理,存在 $\xi \in (S_{n-1}, S_n)$ 使得 $S_n^{1-\alpha} - S_{n-1}^{1-\alpha} = (1-\alpha)\xi^{-\alpha}a_n$. 于是,当 $\alpha > 1$ 时有

$$\frac{1}{S_{n-1}^{\alpha-1}} - \frac{1}{S_n^{\alpha-1}} = (\alpha - 1) \frac{a_n}{\xi^{\alpha}} \ge (\alpha - 1) \frac{a_n}{S_n^{\alpha}}.$$

由此得到级数 $\sum \frac{a_n}{S_n^{\alpha}}$ 的部分和有界, 从而收敛.

1.1.16. 讨论级数 $\sum_{n=0}^{\infty} (\sqrt[n]{n} - 1)^p$ 的收敛性, 其中 p > 0

解由 $\sqrt[n]{n} - 1 = e^{\frac{1}{n} \ln n} 1 \sim \frac{\ln n}{n} (n \to \infty)$ 知 $(\sqrt[n]{n} - 1)^p \sim \frac{\ln^p n}{n^p} (n \to \infty)$ (易于验证: $a_n \to a > 0$ 推知 $a_n^p \to a^p, p > 0$). 于是,

(i) 当 p=1 时, 由积分判别法知 $\sum \frac{\ln n}{n}$ 发散, 从而原级数发散.

(ii) 当
$$p > 1$$
 时,有 $1 < \frac{1+p}{2} < p$,且 $\lim_{n \to \infty} \frac{\ln^p n}{n^p} / \frac{1}{n^{\frac{1+p}{2}}} = \lim_{n \to \infty} \frac{\ln^p n}{n^{\frac{p-1}{2}}} = 0$.

熟知 $\sum \frac{1}{1-\frac{1+p}{2}}$ 收敛, 于是由正项级数的比较判别法知原级数收敛.

其中用到如下事实: $\lim_{x\to +\infty} \frac{\ln^{\beta} x}{x^{\alpha}} = 0 (\alpha > 0, \beta > 0)$ (由L' Hospital法则即得).

(iii)
$$\stackrel{\text{def}}{=} 0$$

熟知 $\sum \frac{1}{n^{\frac{1+p}{2}}}$ 发散 (因为 $p < \frac{1+p}{2} < 1$), 于是由正项级数的比较判别法知原级数发散.

(A)

1.2.2. 求下列函数项级数的收敛域: (1)
$$\sum \frac{(-1)^n}{n} \left(\frac{1}{1+x}\right)^n$$
 (3) $\sum x^n \sin \frac{x}{2^n}$

$$(3) \sum x^n \sin \frac{x}{2^n}$$

解 (1) $\lim_{n \to \infty} \sqrt[n]{|u_n|} = \lim_{n \to \infty} \frac{1}{\sqrt[n]{n}} \left| \frac{1}{1+x} \right| = \left| \frac{1}{1+x} \right|$. 当 $\left| \frac{1}{1+x} \right| < 1$ 时, x < -2 或 x > 0, 此时原级数绝对收敛. x = 0 时. 级数为Leibniz 级数, 条件收敛. x 为其他值时, 级数发

(2) 由 $\lim_{n\to\infty} \sqrt[n]{\left|x^n \sin\frac{x}{2^n}\right|} = \frac{|x|}{2} < 1$ 知,当 |x| < 2 时级数绝对收敛. |x| = 2 时, $\lim_{n\to\infty} (\pm 2)^n \sin\frac{\pm 2}{2^n} \neq 0$,级数发散. |x| > 2 时,通项不以 0 为极限. 故,级数的收敛域为 (-2,2).

1.2.3. 讨论下列函数列 $\{f_n(x)\}$ 在所给区间 D 上是否一致收敛, 并说明理由.

(2)
$$f_n(x) = \frac{x}{1 + n^2 x^2}, D = \mathbf{R}$$

(2)
$$f_n(x) = \frac{x}{1 + n^2 x^2}, D = \mathbf{R}$$

(4) $f_n(x) = \frac{x}{n}$, (i) $D = [0, +\infty)$, (ii) $D = [0, a], a$ 为正常数;

(6)
$$f_n(x) = \begin{cases} 2n^2x, & 0 \le x \le 1/(2n), \\ 2n - 2n^2x, & 1/(2n) < x \le 1/n, & D = [0, 1]. \\ 0, & 1/n < x \le 1, \end{cases}$$

解 (2) 对任意 $x \in D$, $\lim_{n \to \infty} f_n(x) = \lim_{n \to \infty} \frac{x}{1 + n^2 x^2} = 0$, 极限函数 $f(x) = 0 (x \in D)$. 由

$$\lim_{n \to \infty} \sup_{x \in D} |f_n(x) - f(x)| = \lim_{n \to \infty} \sup_{x \in D} \frac{|x|}{1 + n^2 x^2} = \lim_{n \to \infty} \frac{1}{2n} = 0$$

知, $f_n(x)$ 在 D 上一致收敛于 0.

(4) 对任意 x, 有 $\lim_{n\to\infty} f_n(x) = \lim_{n\to\infty} \frac{x}{n} = 0$, 极限函数 $f(x) = 0, x \in D$. (i) 当 $D = [0, +\infty)$ 时, 取 $x_n = n$, 则

$$f_n(x_n) - f(x_n) = 1 \not\rightarrow 0 (n \rightarrow \infty)$$

因此 $f_n(x) = \frac{x}{n}$ 在 $D = [0, +\infty)$ 上不一致收敛.

(ii) 当 D = [0, a] 时,

$$\sup_{x \in D} |f_n(x) - f(x)| = \sup_{x \in D} \left| \frac{x}{n} \right| = \frac{a}{n} \to 0 (n \to \infty),$$

所以 $f_n(x)$ 在 D = [0, a] 上一致收敛于 0.

(6) 取定 $x \in (0,1], n$ 充分大时,有 $\frac{1}{n} < x \le 1$,此时 $f_n(x) = 0$;又,x = 0 时 $f_n(x) = 0$. 因此,极限函数 $f(x) = 0 (x \in D = [0,1])$. 由于

$$f_n\left(\frac{1}{2n}\right) - f\left(\frac{1}{2n}\right) = n \implies 0 (n \to \infty),$$

所以 $f_n(x)$ 在 D 上不一致收敛.

1.2.4. 讨论下列级数在给定的区间 D 上的一致收敛性 (其中常数 a > 0):

(2)
$$\sum \frac{n}{x^n}, D = [a, +\infty);$$

(11)
$$\sum_{n=1}^{\infty} \frac{1-2n}{(x^2+n^2)[x^2+(n-1)^2]}, \quad D = [-1,1];$$

(8)
$$\sum \frac{(-1)^{n-1}}{x^2 + n}, D = \mathbb{R};$$

$$(12) \sum_{x^2 + n} \frac{x^2}{(1 + nx^2) [1 + (n-1)x^2]}, \quad D = (0, +\infty).$$

解 (2) (i) 当 $0 < a \le 1$ 时,由于对 $x \in [a,1](a < 1)$ 或 x = 1(a = 1) 有 $\lim_{n \to \infty} \frac{n}{x^n} = +\infty$, 级数发散,从而级数不一致收敛.

(ii) 当 a > 1 时, 对 $x \in [a, +\infty)$ 有 $\frac{n}{x^n} \le \frac{n}{a^n}$, 而 $\sum_{i=1}^{\infty} \frac{n}{a^n}$ 收敛(根值判别法), 由 M 判别法 知原级数在 D 上一致收敛.

(8) 对任意 $x \in R$ 记 $u_n(x) = \frac{1}{x^2 + n}$,则 $0 < u_n(x) \le \frac{1}{n} \to 0 (n \to \infty)$,且 $u_n(x) - u_n(x) = \frac{1}{n}$ $u_{n+1}(x) = \frac{1}{x^2 + n} - \frac{1}{x^2 + n + 1} > 0, n = 1, 2, ...,$ 即 $\{u_n(x)\}$ 对每个 $x \in \mathbf{R}$ 单调且在 \mathbf{R} 上一致收敛于 0, 故由Dirichlet判别法知, 交错级数 $\frac{(-1)^{n-1}}{r^2+n}$ 在 \mathbf{R} 上一致收敛.

(11) 由于对 $x \in [-1,1]$, 有

$$\left| \frac{1 - 2n}{(x^2 + n^2)(x^2 + (n-1)^2)} \right| = \frac{2n - 1}{(x^2 + n^2)(x^2 + (n-1)^2)} \le \frac{2n - 1}{n^2(n-1)^2},$$

而级数 $\sum \frac{2n-1}{n^2(n-1)^2}$ 收敛, 故由 M 判别法知, 级数 $\sum \frac{1-2n}{(x^2+n^2)(x^2+(n-1)^2)}$ 在 D

注也可以先求出部分和函数, 再由函数列的一致收敛判定定理来做. 事实上, 不难得到部 分和函数

$$S_n(x) = \frac{1}{x^2 + n^2} - \frac{1}{x^2 + 1}$$

于是

$$\left| S_n(x) + \frac{1}{x^2 + 1} \right| = \frac{1}{x^2 + n^2} \le \frac{1}{n^2} \to 0 \quad (n \to \infty),$$

因而原级数在
$$D$$
 上一致收敛. (12) 由于 $u_n(x) = \frac{1}{1 + (n-1)x^2} - \frac{1}{1 + nx^2}$, 所以对 $x > 0$, 有

$$S_n(x) = \left(1 - \frac{1}{1+x^2}\right) + \left(\frac{1}{1+x^2} - \frac{1}{1+2x^2}\right) + \dots + \left(\frac{1}{1+(n-1)x^2} - \frac{1}{1+nx^2}\right)$$
$$= 1 - \frac{1}{1+nx^2} \to 1(n \to \infty).$$

取 $x_n = \frac{1}{\sqrt{n}}$, 则有 $|S_n(x_n) - 1| = \frac{1}{1 + nx_n^2} = \frac{1}{2} \nrightarrow 0 (n \to \infty)$, 故不一致收敛.

1.2.6. 若在区间 D 上, 对任意的 $n \in \mathbb{N}_+$ 成立 $|u_n(x)| \le v_n(x)$, 证明当 $\sum v_n(x)$ 在 D 上 一致收敛时, 级数 $\sum u_n(x)$ 也在 D 上一致收敛.

证: 级数 $\sum v_n(x)$ 在 D 上一致收敛, 则对任意 $\varepsilon > 0$, 存在 N, 当 n > N 时, 对一切 $x \in D$, 及任意 $p \in \mathbb{N}_+$, 都有 $|v_{n+1}(x) + v_{n+2}(x) + \ldots + v_{n+p}(x)| < \varepsilon$. 于是,由已知,有

$$|u_{n+1}(x) + u_{n+2}(x) + \dots + u_{n+p}(x)| \le v_{n+1}(x) + v_{n+2}(x) + \dots + v_{n+p}(x) < \varepsilon.$$

依一致收敛的柯西准则得, 函数项级数 $\sum u_n(x)$ 在 D 上一致收敛.

(1) 证明: f(x) 在 $[0,\pi/2]$ 上连续; (2) 计算 $\int_{-\pi/2}^{\pi/2} f(x) dx$.

解 (1) 级数的每一项都在区间 $[0, \pi/2]$ 上连续. 设 $a_n(x) = \tan \frac{x}{2^n}, b_n(x) = \frac{1}{2^n},$ 则 $a_n(x)$ 对每一固定的 $x \in \left[0, \frac{\pi}{2}\right]$ 关于 n 是单调的, 且由 $\left|\tan \frac{x}{2^n}\right| \leq \tan \frac{\pi}{4}$ 知, $a_n(x)$ 在 $\left[0, \frac{\pi}{2}\right]$ 上一致有界. 注意到 $\sum_{n=1}^{\infty} \frac{1}{2^n}$ 在 $\left[0, \frac{\pi}{2}\right]$ 上一致收敛, 由 Abel 判别法知, 级数在 $\left[0, \frac{\pi}{2}\right]$ 上 一致收敛, 故 f(x) 在 $[0,\pi/2]$ 上连续.

(2) 由(1)知 f(x) 在 $[0,\pi/2]$ 上可积,且

$$\int_{\pi/6}^{\pi/2} f(x) dx = \int_{\pi/6}^{\pi/2} \sum_{n=1}^{\infty} \frac{1}{2^n} \tan \frac{x}{2^n} dx = \sum_{n=1}^{\infty} \int_{\pi/6}^{\pi/2} \frac{1}{2^n} \tan \frac{x}{2^n} dx$$
$$= \sum_{n=1}^{\infty} \left(\ln \left| \cos \frac{\pi}{3 \cdot 2^{n+1}} \right| - \ln \left| \cos \frac{\pi}{2^{n+1}} \right| \right) = \ln \frac{\prod \cos \frac{\pi}{3 \cdot 2^{n+1}}}{\prod \cos \frac{\pi}{2^{n+1}}}$$

由于

$$\prod \cos \frac{\pi}{(a \cdot 2^n)} = \lim_{n \to \infty} \prod \cos \frac{\pi}{(a \cdot 2^n)} = \lim_{n \to \infty} \frac{\sin \frac{\pi}{a}}{2^n \sin \frac{\pi}{a}} = \frac{\sin \frac{\pi}{a}}{\frac{\pi}{a}} = \frac{\pi}{a} \sin \frac{\pi}{a},$$

所以
$$\int_{\pi/6}^{\pi/2} f(x) dx = \ln \frac{3}{2}$$
.

1.2.10设
$$f(x) = \sum_{n=1}^{\infty} ne^{-nx}, x > 0$$
,计算积分 $\int_{\ln 2}^{\ln 3} f(x) dx$

先证明和函数的可积性,再改变积分和求和的顺序即可

下证
$$f(x) = \sum_{n=1}^{\infty} ne^{-nx} \Phi(0, +\infty)$$
上內闭一致收敛:

(B)

1.2.3. 证明函数 $\zeta(x) = \sum_{n=1}^{\infty} \frac{1}{n^x}$ 在 $(1, +\infty)$ 内连续, 且有连续的各阶导数.

证 (1) 设 $u_n(x) = \frac{1}{n^x}$. 对任意的闭子区间 $[a, A] \subset (1, +\infty)$, 当 $x \in [a, A]$ 时, 有 $0 < \frac{1}{n^x} \le \frac{1}{n^a}$, $\sum \frac{1}{n^a}$ 收敛. 由Weierstrass判别法知, $\sum_{n=1}^{\infty} \frac{1}{n^x}$ 在 [a, A] 上一致收敛, 即 $\sum_{n=1}^{\infty} \frac{1}{n^x}$

在 $(1, +\infty)$ 内闭一致收敛. 又, 对每个 $n, u_n(x)$ 在 $(1, +\infty)$ 上连续, 所以 $\zeta(x) = \sum_{n=1}^{\infty} \frac{1}{n^x}$ 在 $(1, +\infty)$ 上连续.

(2) 对每个 $n, u_n(x)$ 在 $(1, +\infty)$ 上有连续的导数, 且 $u_n'(x) = \frac{-\ln n}{n^x}$. 因为

$$\left| \frac{-\ln n}{n^x} \right| \le \frac{\ln n}{n^a}, x \in [a, A] \subset (1, +\infty)$$

目.

$$\lim_{n \to \infty} n^{(a+1)/2} \frac{\ln n}{n^a} = \lim_{n \to \infty} \frac{\ln n}{n^{(a-1)/2}} = 0,$$

由 $\frac{a+1}{2} > 1$ 及比较判别法知, $\sum \frac{\ln n}{n^a}$ 收敛,所以由Weierstrass判别法知,函数项级数 $\sum \frac{-\ln n}{n^x}$ 在 [a,A] 上一致收敛,即 $\sum -\frac{\ln n}{n^x}$ 在 $(1,+\infty)$ 内闭一致收敛.因此,由逐项

求导定理知, $\zeta(x) = \sum_{n=1}^{\infty} \frac{1}{n^x}$ 在 $(1, +\infty)$ 上有连续的导数.

仿此, 利用 $\frac{d^k}{dx^k} \left(\frac{1}{n^x}\right) = (-1)^k \frac{\ln^k n}{n^x} (k \in \mathbf{N}_+)$ 和对固定 k, 成立 $\lim_{n \to \infty} \frac{\ln^k n}{n^\delta} = 0$ (其中 δ 为 (0,1) 中某数), 可得到 $\sum_{n=1}^{\infty} (-1)^k \frac{\ln^k n}{n^x}$ 在 $(1,+\infty)$ 内闭一致收敛, 从而得到 $\zeta(x)$ 在 $(1,+\infty)$ 有连续的各阶导数.

1.2.4

 $|u_n(x)| \le \max\{u_n(a), u_n(b)\}$,由Weierstrass判别法易知其一致收敛性

1.2.5. 证明: 级数 $\sum (-1)^n x^n (1-x)$ 在 [0,1] 上绝对收敛且一致收敛,但其绝对值级数却不一致收敛.

证 (1) 若 x = 0 或 1,则级数通项为 0,级数收敛; 若 $x \in (0,1)$,则 $\sum x^n$ 为几何级数,收敛,从而原级数绝对收敛.

(2) 由交错级数Leibniz判别法知.

对任意的 $x \in [0,1], |R_n(x)| = |S_n(x) - S(x)| \le (1-x)x^{n+1}$.

记 $f(x)=(1-x)x^{n+1}$,则 $f'(x)=(n+2)x^n\left(\frac{n+1}{n+2}-x\right)$ 进而可得 f(x) 在点 $x=\frac{n+1}{n+2}$ 取得它在 [0,1] 上的最大值,所以

$$|R_n(x)| \le \frac{1}{n+2} \left(\frac{n+1}{n+2}\right)^{n+1} < \frac{1}{n+2},$$

从而 $\lim_{n\to\infty}\sup_{0\leq x\leq 1}|R_n(x)|=0$,故原级数在 [0,1] 上一致收敛. (注: 可由Dirichlet判别法得证其一致收敛.)

(3) 讨论级数
$$\sum x^n (1-x)$$
. 由于 $S_n(x) = \sum_{k=0}^n (1-x)x^k = 1-x^{n+1}, \lim_{n\to\infty} S_n(x) =$

$$S(x) = \begin{cases} 1, 0 \le x < 1 \\ 0, x = 1 \end{cases}$$
 , $\lim_{n \to \infty} \sup_{0 \le x \le 1} |S_n(x) - S(x)| = 1 \ne 0$, 所以绝对值级数不一致收敛.

(注: 可由连续性定理说明其不一致收敛, 因为和函数不连续,)

故,原级数在 [0,1] 绝对并一致收敛,但其各项绝对值组成的级数却不一致收敛. 习题 1.3

(A)

1.3.1. 幂级数 $\sum a_n(x+3)^n$ 在 x=-5 处发散, x=0 处收敛, 这可能吗? 若该幂级数在 x=-1 处条件收敛, 求其收敛区间.

答不可能, 因为幂级数 $\sum a_n(x+3)^n$ 在 x=-5 处发散即 $\sum a_nx^n$ 在 x=-2 处发散 因此由 Abel第一定理知, 对于满足 |x|>2 的任何 x, 级数 $\sum a_nx^n$ 都发散. 又因为幂级数 $\sum a_n(x+3)^n$ 在 x=0 处收敛, 即 $\sum a_nx^n$ 在 x=3 处收敛, 因此再次由 Abel第一

定理知, 对于满足 |x| < 3 的任何 x, 级数 $\sum a_n x^n$ 都收敛. 这与前面结论矛盾, 因此幂 级数 $\sum a_n(x+3)^n$ 在 x=-5 处发散, x=0 处收敛是不可能的.

若该幂级数在 x=-1 处条件收敛即 $\sum a_n x^n$ 在 x=2 处条件收敛, x=2 是 $\sum a_n x^n$ 的收敛端点(因为收敛区间内的点是绝对收敛点), 收敛半径为2.

因此所求的收敛区间由 |x+3| < 2 给出, 即为 (-5,-1).

1.3.2. 求下列幂级数的收敛半径与收敛域: (2) $\sum_{n=1}^{n^2} x^n$

$$(2) \sum \frac{n^2}{n!} x^n$$

$$(4) \sum \frac{1}{2^n} x^{n^2}$$

(4)
$$\sum \frac{1}{2^{n}} x^{n^{2}}$$
(6)
$$\sum \frac{3^{n} + (-2)^{n}}{n} (2x+1)^{n};$$
(8)
$$\sum n! \left(\frac{x^{2}}{n}\right)^{n}$$

$$(8) \sum_{n=1}^{\infty} n! \left(\frac{x^2}{n}\right)^r$$

解 (2) 由于 $\left| \frac{a_{n+1}}{a_n} \right| = \frac{(n+1)^2}{(n+1)!} \frac{n!}{n^2} = \frac{1}{n+1} \left(\frac{n+1}{n} \right)^2 \to 0 (n \to \infty)$,所以幂级数的收敛 半径 $R = \infty$,收敛域为 $(-\infty, +\infty)$.

(4) 对于幂级数
$$\sum \left| \frac{x^{n^2}}{2^n} \right|$$
, 由于

$$\lim_{n \to \infty} \sqrt[n]{\left| \frac{x^{n^2}}{2^n} \right|} = \lim_{n \to \infty} \frac{|x^n|}{2} = \begin{cases} 0 & |x| < 1\\ 1/2, & |x| = 1\\ +\infty & |x| > 1 \end{cases}$$

因此, 幂级数的收敛半径 R=1. 因为 |x|=1 时原级数为 $\sum \frac{1}{2^n}$, 收敛, 所以该幂级数 的收敛域为 [-1,1].

(6) 设
$$u_n = \frac{3^n + (-2)^n}{n}$$
, 由于 $\lim_{n \to \infty} \sqrt[n]{|u_n|} = 3$, 故收敛半径 $R = \frac{1}{3}$. 当 $2x + 1 = -\frac{1}{3}$, 即 $x = -\frac{2}{3}$ 时,幂级数为级数 $\sum \frac{3^n + (-2)^n}{n} \frac{1}{3^n} (-1)^n = \sum \left(\frac{(-1)^n}{n} + \frac{1}{n} \cdot \left(\frac{2}{3}\right)^n\right)$,是收敛的;

当
$$2x+1=\frac{1}{3}$$
, 即 $x=-\frac{1}{3}$ 时, 幂级数为级数 $\sum \frac{3^n+(-2)^n}{n}\frac{1}{3^n}=\sum \left(\frac{1}{n}+\frac{(-1)^n}{n}\cdot\left(\frac{2}{3}\right)^n\right)$,

是发散的. 因此该幂级数的收敛域为 $\left[-\frac{2}{3}, -\frac{1}{3}\right)$. 这里用到级数的线性运算性质.

(8) 由于
$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left(\frac{n}{n+1} \right)^n = \frac{1}{e}$$
, 所以幂级数的收敛半径 R 满足 $R^2 = e$, 即

 $R = \sqrt{e}$. 又因为当 $x = \pm \sqrt{e}$ 时幂级数为级数 $\sum n! \left(\frac{e}{n}\right)^n$, 而由Stirling公式知通项等价 于 $\sqrt{2\pi n}$, 它不以 0 为极限, 级数发散. 故幂级数的收敛域为 $(-\sqrt{e},\sqrt{e})$.

1.3.3. 求下列函数的 Maclaurin 展开式:

(2)
$$\sin^3 x$$
 (6) $(1+x)e^{-x}$; (7) $\frac{x}{1+x-2x^2}$; (8) $\ln\left(x+\sqrt{1+x^2}\right)$; (10) $\int_0^x \cos t^2 dt$. (10) $\pm \mp$

$$\cos t^2 = \sum_{n=0}^{\infty} \frac{(-1)^n (t^2)^{2n}}{(2n)!} = \sum_{n=0}^{\infty} \frac{(-1)^n t^{4n}}{(2n)!}, t \in (-\infty, \infty),$$

所以

$$\int_0^x \cos t^2 \, \mathrm{d}t = \int_0^x \sum_{n=0}^\infty \frac{(-1)^n t^{4n}}{(2n)!} dt = \sum_{n=0}^\infty \frac{(-1)^n x^{4n+1}}{(2n)! (4n+1)}, \quad \mathrm{d}x \in (-\infty, \infty).$$

1.3.6. 求下列幂级数的和函数:
$$(2) \sum_{n=1}^{\infty} (-1)^n n^2 x^n; (4) \sum_{n=1}^{\infty} (2n+1) x^n (6) \sum_{n=1}^{\infty} \frac{(-1)^{n-1} x^{2n}}{(2n-1) 3^{2n-1}}.$$

解 (2) 由例1.3.6后的说明可知
$$\sum_{n=1}^{\infty} n^2 x^n = \frac{x(1+x)}{(1-x)^3}, |x| < 1$$
, 故

$$\sum_{n=1}^{\infty} (-1)^n n^2 x^n = \frac{x(x-1)}{(1+x)^3}, |x| < 1.$$

(4)
$$S(x) = 2\sum_{n=1}^{\infty} nx^n + \sum_{n=1}^{\infty} x^n = \frac{2x}{(1-x)^2} + \frac{x}{1-x} = \frac{x(3-x)}{(1-x)^2}, |x| < 1.$$
 $\exists x \in \mathbb{R}$

$$S(x) = \sum_{n=1}^{\infty} (2n+1)x^n$$
. 由于

$$\sum_{n=1}^{\infty} (2n+1)x^n = \sum_{n=1}^{\infty} 2(n+1)x^n - \sum_{n=1}^{\infty} x^n,$$

可设

$$g(x) = \sum_{n=1}^{\infty} 2(n+1)x^n$$
, $h(x) = \sum_{n=1}^{\infty} x^n$.

将 g(x) 积分可得

$$\int_0^x g(x)dx = 2\sum_{n=1}^\infty x^{n+1} = \frac{2x^2}{1-x},$$

所以
$$g(x) = \frac{2x(2-x)}{(1-x)^2}$$
. 而 $h(x) = \sum_{n=1}^{\infty} x^n = \frac{x}{1-x}$, 故

$$S(x) = \sum_{n=1}^{\infty} (2n+1)x^n = \frac{x(3-x)}{(1-x)^2}.$$

(6) 令
$$S(x) = \sum_{n=1}^{\infty} \frac{(-1)^{n-1}x^{2n}}{(2n-1)3^{2n-1}} = x \sum_{n=1}^{\infty} \frac{(-1)^{n-1}x^{2n-1}}{(2n-1)3^{2n-1}} = xg(x)$$
,则 $xg'(x) = \sum_{n=1}^{\infty} \frac{(-1)^{n-1}x^{2n-1}}{3^{2n-1}} = \frac{x}{3} \sum_{n=1}^{\infty} \left(-\frac{x^2}{9}\right)^{n-1} = \frac{x}{3} \frac{1}{1 + \frac{x^2}{9}} = \frac{3x}{9 + x^2}$. 所以 $g'(x) = \frac{3}{9 + x^2}$,于是 $g(x) = \int_0^x g'(x) dx + g(0) = \arctan \frac{x}{3}$. 故 $S(x) = x \arctan \frac{x}{3}, |x| \le 3$

1.3.7. 设在 (-R,R) 内有 $f(x) = \sum_{n=0}^{\infty} a_n x^n$. 证明: 若 f 为奇函数, 则 $a_{2n} = 0$; 若 f 为偶函数, 则 $a_{2n+1} = 0$, 其中 $n \in \mathbf{N}$.

证由于 $f(x) = \sum_{n=0}^{\infty} a_n x^n, x \in (-R, R)$,所以 $f(-x) = \sum_{n=0}^{\infty} (-1)^n a_n x^n$. 当 f 为奇函数时,应有 $a_n + (-1)^n a_n = 0 (n = 1, 2, 3...)$. 而当且仅当 n = 2k - 1 (k = 1, 2, ...) 时,才满足 $1 + (-1)^n = 0$,故必有 $a_{2n} = 0$. 当 f 为偶函数时,应有 $a_n - (-1)^n a_n = 0 (n = 1, 2, 3...)$. 而当且仅当 n = 2k(k = 1, 2, ...) 时,才满足 $1 - (-1)^n = 0$,故必有 $a_{2n+1} = 0$.

1.3.8. 利用幂级数求下列数项级数的和: $(2)\sum_{n=0}^{\infty} (-1)^n (n^2 - n + 1) 2^{-n}$.

解 (2) 设
$$S(x) = \sum_{n=0}^{\infty} (n^2 - n + 1) x^n$$
, 则有

$$S(x) = \sum_{n=0}^{\infty} n^2 x^n - \sum_{n=0}^{\infty} n x^n + \sum_{n=0}^{\infty} x^n = \frac{x(x+1)}{(1-x)^3} - \frac{x}{(1-x)^2} + \frac{1}{1-x} = \frac{1-2x+3x^2}{(1-x)^3}$$

当 $x = -\frac{1}{2}$ 时,该幂级数即为数项级数 $\sum_{n=0}^{\infty} (-1)^n (n^2 - n + 1) 2^{-n}$,故

$$\sum_{n=0}^{\infty} (-1)^n (n^2 - n + 1) 2^{-n} = \frac{22}{27}$$

1.3.9.
$$\[\[\] \mathcal{T} f(x) = \sum_{n=1}^{\infty} n 3^{n-1} x^{n-1}. \]$$

(1) 证明 f(x) 在 (-1/3, 1/3) 内连续; (2) 计算 $\int_0^{1/8} f(x) dx$. 解 (1) 因为 $\lim_{n \to \infty} \sqrt[n]{n^{3n-1}} = 3$, 所以其收敛半径为 $\frac{1}{3}$. 因此级数在 (-1/3, 1/3) 内闭一致收敛, 故 f(x) 在 (-1/3, 1/3) 内连续。

(2) 由于此幂级数在 $\left[0,\frac{1}{8}\right]$ 上一致收敛, 所以

$$\int_0^{1/8} f(x) dx = \sum_{n=1}^{\infty} \int_0^{\frac{1}{8}} nx^{n-1} 3^{n-1} dx = \frac{1}{5}$$

1.3.12. 对 |x| < 1, 证明

$$x + \frac{2}{3}x^3 + \frac{2}{3} \cdot \frac{4}{5}x^5 + \frac{2}{3} \cdot \frac{4}{5} \cdot \frac{6}{7}x^7 + \dots = \frac{\arcsin x}{\sqrt{1 - x^2}}$$

证记左端的级数和函数为 f(x),则容易得到 $f'(x) = 1 + xf(x) + x^2f'(x)$,即

$$(1 - x^2) f'(x) = 1 + x f(x)$$

解此微分方程, 并利用 f(0)=0, 得到 $f(x)=\frac{\arcsin x}{\sqrt{1-x^2}}$. 1.3.13 设 $C(\alpha)$ 为 $(1+x)^\alpha$ 在 x=0 处的幂级数展开式中 x^{2010} 的系数, 求

$$I = \int_0^1 C(-y-1) \left(\frac{1}{y+1} + \frac{1}{y+2} + \frac{1}{y+3} + \dots + \frac{1}{y+2010} \right) dy.$$

解因为

$$C(-y-1) = \frac{(-y-1)(-y-2)\cdots(-y-2010)}{2010!} = \frac{(y+1)(y+2)\cdots(y+2010)}{2010!}$$

所以被积函数等于 $\frac{d}{du} \left(\frac{(y+1)(y+2)\cdots(y+2010)}{2010!} \right)$. 于是,

$$I = \frac{(y+1)(y+2)\cdots(y+2010)}{2010!}\bigg|_{0}^{1} = 2011 - 1 = 2010$$

1.3.3. 证明: (1) 若级数 $\sum_{n=0}^{\infty} a_n$ 收敛, 则 $f(x) = \sum_{n=0}^{\infty} a_n x^n$ 在 [0,1] 上一致收敛; (2) 若级

数
$$\sum_{n=0}^{\infty} a_n$$
 收敛于 S , 则 $\lim_{x\to 1^-} \sum_{n=0}^{\infty} a_n x^n = S$

数 $\sum_{n=0}^{\infty} a_n$ 收敛于 S, 则 $\lim_{x\to 1^-} \sum_{n=0}^{\infty} a_n x^n = S$. 证 (1) 因为 $|x^n| \leq 1 (x \in [0,1])$ 且对每个 $x \in [0,1]$, $\{x^n\}$ 关于 n 单调, 所以由 Abel 一致 收敛判别法知 $\sum_{n=0}^{\infty} a_n x^n$ 在 [0,1] 上一致收敛. (2) 由连续性定理即得结论.

1.3.4(Tauber 定理) 设对 $x \in (-1,1)$ 有 $f(x) = \sum_{n=0}^{\infty} a_n x^n$, 并且 $\lim_{n \to \infty} n a_n = 0$. 若

$$\lim_{x\to 1^-} f(x) = A, \, \text{则} \, \sum_{n=0}^{\infty} a_n \, \text{收敛且其和为 } A. \, \, \text{试证明之}.$$

证明: 采用三分法, 写出

$$\left| \sum_{k=0}^{n} a_k - A \right| \le \left| \sum_{k=0}^{n} a_k - \sum_{k=0}^{n} a_k x^k \right| + \left| \sum_{k=n+1}^{\infty} a_k x^k \right| + \left| \sum_{k=0}^{\infty} a_k x^k - A \right|.$$

利用 $\lim_{n\to\infty} na_n = 0$, 由Cauchy命题得

$$\lim_{n \to \infty} \frac{|a_1| + 2|a_2| + \dots + n|a_n|}{n} = 0$$

又由 $\lim_{x\to 1^-} f(x) = A$,知 $\lim_{n\to\infty} \left| f\left(1 - \frac{1}{n}\right) - A \right| = 0$. 因此, $\forall \varepsilon > 0$, $\exists N > 0$,当 n > N 时,有 $\frac{|a_1| + 2|a_2| + \dots + n|a_n|}{n} < \frac{\varepsilon}{3}, \quad |na_n| < \frac{\varepsilon}{3}, \quad \left| f\left(1 - \frac{1}{n}\right) - A \right| < \frac{\varepsilon}{3}.$

于是对于 n > N, 在式 (1) 中取 $x = 1 - \frac{1}{n}$, 则其右边的第一项有估计

$$\left| \sum_{k=0}^{n} a_k - \sum_{k=0}^{n} a_k x^k \right| = \left| \sum_{k=0}^{n} a_k \left(1 - x^k \right) \right| = \left| \sum_{k=0}^{n} a_k (1 - x) \left(1 + x + \dots + x^{k-1} \right) \right|$$

$$\leq \sum_{k=0}^{n} |a_k| (1 - x)k = \frac{|a_1| + 2|a_2| + \dots + n|a_n|}{n} < \frac{\varepsilon}{3}.$$

对于式(1)右边的第二项有估计

$$\left| \sum_{k=n+1}^{\infty} a_k x^k \right| \le \frac{1}{n} \sum_{k=n+1}^{\infty} k |a_k| x^k < \frac{\varepsilon}{3n} \sum_{k=n+1}^{\infty} x^k \le \frac{\varepsilon}{3n} \cdot \frac{1}{1-x} = \frac{\varepsilon}{3n \cdot \frac{1}{n}} = \frac{\varepsilon}{3}.$$

对于式(1)右边的第三项有估计

$$\left| \sum_{k=0}^{\infty} a_k x^k - A \right| = \left| f \left(1 - \frac{1}{n} \right) - A \right| < \frac{\varepsilon}{3}$$

因此, 当 n > N 时, 有

$$\left| \sum_{k=0}^{n} a_k - A \right| < \frac{\varepsilon}{3} + \frac{\varepsilon}{3} + \frac{\varepsilon}{3}$$

1.3.5. 设 $\sum a_n$ 为级数, S_n 为其部分和, 且极限 $\lim_{n\to\infty} \frac{a_n}{a_{n+1}}$ 存在.若 $S_n\to +\infty$, $a_n/S_n\to 0 (n\to\infty)$, 求级数 $\sum a_n x^n$ 的收敛半径. (提示: 利用 Stolz 公式.) 解因为 $S_n\to\infty$, 且极限 $\lim_{n\to\infty} \frac{a_n}{a_{n+1}}$ 存在, 所以由 Stolz 公式可得

$$0 = \lim_{n \to \infty} \frac{a_n}{S_n} = \lim_{n \to \infty} \frac{a_n - a_{n-1}}{S_n - S_{n-1}} = \lim_{n \to \infty} \left(1 - \frac{a_{n-1}}{a_n} \right).$$

故 $\lim_{n\to\infty} \frac{a_{n-1}}{a_n} = 1$, 级数 $\sum a_n x^n$ 的收敛半径为 1 . 1.3.6. 求无穷级数的和:

$$S = 1 - \frac{1}{4} + \frac{1}{7} - \frac{1}{10} + \dots + \frac{(-1)^{n+1}}{3n-2} + \dots$$

解因为通项 $a_n = \frac{(-1)^{n+1}}{3n-2} = (-1)^{n+1} \int_0^1 x^{3n-3} dx$, 所以级数的部分和

$$S_n = \int_0^1 \left(1 - x^3 + x^6 - \dots + (-1)^{n+1} x^{3n-3} \right) dx$$
$$= \int_0^1 \frac{1 - (-1)^n x^{3n}}{1 + x^3} dx = \int_0^1 \frac{1}{1 + x^3} dx - \int_0^1 \frac{(-1)^n x^{3n}}{1 + x^3} dx$$

而

$$\left| \int_0^1 \frac{(-1)^n x^{3n}}{1+x^3} \, \mathrm{d}x \right| \le \int_0^1 x^{3n} \, \mathrm{d}x = \frac{1}{3n+1} \to 0 (n \to \infty)$$

因此

$$S = \int_0^1 \frac{1}{1+x^3} \, dx = \frac{1}{3} \left[\int_0^1 \frac{1}{1+x} \, dx + \int_0^1 \frac{2-x}{1-x+x^2} \, dx \right]^2$$
$$= \frac{1}{3} \left[\ln(1+x) - \frac{1}{2} \ln\left(1-x+x^2\right) + \sqrt{3} \arctan\frac{2x-1}{\sqrt{3}} \right]_{x=0}^1$$
$$= \frac{1}{3} \left(\ln 2 + \frac{\sqrt{3}}{3} \pi \right).$$

1.3.7. 设正整数 n > 1, 证明

$$\frac{1}{2ne} < \frac{1}{e} - \left(1 - \frac{1}{n}\right)^n < \frac{1}{ne}$$

解对 n > 1, 我们有

$$e^{1/(n-1)} = 1 + \frac{1}{n-1} + \dots > \frac{n}{n-1},$$

这推知
$$\left(1 - \frac{1}{n}\right)^{n-1} > \frac{1}{e}$$
,因此 $\left(1 - \frac{1}{n}\right)^n > \frac{1}{e}\left(1 - \frac{1}{n}\right)$,得证上界. 又,
$$\left(1 - \frac{1}{n}\right)^n = \exp\left(n\ln\left(1 - \frac{1}{n}\right)\right)$$

$$= \exp\left(n\left(-\frac{1}{n} - \frac{1}{2n^2} - \frac{1}{3n^3} - \cdots\right)\right)$$

$$< e^{-1}\exp\left(-\frac{1}{2n} - \frac{1}{3n^2}\right)$$

$$< e^{-1}\left[1 - \left(\frac{1}{2n} + \frac{1}{3n^2}\right) + \frac{1}{2}\left(\frac{1}{2n} + \frac{1}{3n^2}\right)^2\right]$$

$$< e^{-1}\left(1 - \frac{1}{2n}\right)$$

即
$$\left(1-\frac{1}{n}\right)^n < e^{-1}\left(1-\frac{1}{2n}\right)$$
, 得证下界. 注意, 其中用到
$$\frac{1}{2n}+\frac{1}{3n^2}<1(n\geq 1),\quad \frac{1}{2n}+\frac{1}{3n^2}<\sqrt{\frac{2}{3}}\cdot\frac{1}{n}(n\geq 2).$$

习题 1.5

(A)

1.5.3 设 S(x) 是周期为 2π 的函数 f(x) 的 Fourier 级数的和函数. f 在一个周期内的表达式为

$$f(x) = \begin{cases} 0, & 2 < |x| \le \pi \\ x, & |x| \le 2 \end{cases}$$

写出 S(x) 在 $[-\pi,\pi]$ 上的表达式, 并求 $S(\pi), S(3\pi/2)$ 与 S(-10).

解因为
$$f(x) = \begin{cases} 0, & 2 < |x| \le \pi, \\ x, & |x| \le 2, \end{cases}$$

$$a_0 = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) dx = \frac{1}{\pi} \int_{-2}^{2} x dx = 0$$

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx dx = \frac{1}{\pi} \int_{-2}^{2} x \cos nx dx = 0$$

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx dx = \frac{1}{\pi} \int_{-2}^{2} x \sin nx dx = \frac{2}{\pi} \left(-\frac{2 \cos 2n}{n} + \frac{\sin 2n}{n^2} \right).$$
所以 $f(x) \sim \sum_{k=1}^{\infty} \frac{2}{n\pi} \left(-2 \cos 2n + \frac{\sin 2n}{n} \right) \sin nx,$

$$S(\pi) = 0,$$

$$S\left(\frac{3\pi}{2}\right) = \sum_{n=1}^{\infty} \frac{2}{n\pi} \left(-2\cos 2n + \frac{\sin 2n}{n}\right) \sin \frac{3n\pi}{2}$$

$$= \sum_{n=1}^{\infty} \frac{(-1)^n 2}{(2n-1)\pi} \left(-2\cos 2(2n-1) + \frac{\sin 2(2n-1)}{2n-1}\right),$$

$$S(-10) = \sum_{n=1}^{\infty} \frac{2}{n\pi} \left(-2\cos 2n + \frac{\sin 2n}{n}\right) \sin 10n.$$

1.5.4. 求下列函数的 Fourier 展开式:

(3)
$$f(x) = e^x + 1, -\pi \le x < \pi$$
;

(7)
$$f(x) = x^2, x \in [0, 2\pi).$$

解 (3) 因为
$$f(x) = e^x + 1a_0 = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) dx = \frac{1}{\pi} \int_{-\pi}^{\pi} (e^x + 1) dx = \frac{e^{\pi} - e^{-\pi}}{\pi} + 2$$

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx dx = \frac{1}{\pi} \int_{-\pi}^{\pi} (e^x + 1) \cos nx dx = (-1)^n \frac{e^{\pi} - e^{-\pi}}{n^2 + 1},$$

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx dx = \frac{1}{\pi} \int_{-\pi}^{\pi} (e^x + 1) \sin nx dx = (-1)^{n+1} n \frac{e^{\pi} - e^{-\pi}}{n^2 + 1}.$$

所以

$$f(x) \sim \frac{e^{\pi} - e^{-\pi}}{2\pi} + 2 + \sum_{n=1}^{\infty} (-1)^n \frac{e^{\pi} - e^{-\pi}}{n^2 + 1} (\cos nx - n\sin nx)$$
$$= \begin{cases} e^x + 1, & -\pi < x < \pi\\ \cosh(\pi) + 1, & x = \pm \pi. \end{cases}$$

(7) 函数 f(x) 及其周期延拓后显然为按段光滑, 即可展开为 Fourier 级数.

其中
$$a_0 = \frac{1}{\pi} \int_0^{2\pi} f(x) dx = \frac{1}{\pi} \int_0^{2\pi} x^2 dx = \frac{8}{3} \pi^2,$$

$$a_n = \frac{1}{\pi} \int_0^{2\pi} f(x) \cos nx dx = \frac{1}{\pi} \int_0^{2\pi} x^2 \cos nx dx = \frac{4\pi}{n^2}, \quad n \ge 1$$

$$b_n = \frac{1}{\pi} \int_0^{2\pi} f(x) \sin nx dx = \frac{1}{\pi} \int_0^{2\pi} x^2 \sin nx dx = -\frac{4\pi^2}{n}, \quad n \ge 1$$

所以
$$f(x) \sim \frac{4}{3}\pi^2 + \sum_{n=1}^{\infty} 4\pi \left(\frac{\cos nx}{n^2} - \frac{\pi \sin nx}{n} \right) = \begin{cases} x^2, & 0 < x < 2\pi \\ 2\pi^2, & x = 0, 2\pi \end{cases}$$
.

1.5.5. 将下列函数展开为正弦级数:

(2)
$$f(x) = e^{-2x}, x \in [0, \pi];$$

(4)
$$f(x) = \begin{cases} \cos \frac{\pi x}{2}, & 0 \le x < 1\\ 0, & 1 \le x \le 2 \end{cases}$$

解 (2)
$$b_n = \frac{2}{\pi} \int_0^{\pi} e^{-2x} \sin nx dx = \frac{n}{2\pi} (1 - (-1)^n) e^{-2\pi} - \frac{n^2}{4} b_n$$
, 移项整理可得
$$b_n = \frac{2n}{\pi (4 + n^2)} [1 - (-1)^n] e^{-2\pi}, \quad n \ge 1$$

所以
$$f(x) \sim \frac{2}{\pi} \sum_{n=1}^{\infty} \frac{n}{(4+n^2)} \left[1 - (-1)^n e^{-2\pi} \right] \sin nx.$$

$$(4) \ b_1 = \frac{2}{2} \int_0^2 f(x) \sin \frac{\pi x}{2} dx = \int_0^1 \cos \frac{\pi x}{2} \sin \frac{\pi x}{2} 2\pi dx = \frac{1}{\pi}, \ b_n = \frac{2}{2} \int_0^2 f(x) \sin \frac{n\pi x}{2} dx = \int_0^1 \cos \frac{\pi x}{2} \sin \frac{\pi x}{2} 2\pi dx = \frac{2\left(n - \sin \frac{n\pi}{2}\right)}{\pi \left(n^2 - 1\right)}, \ n \ge 2. \ \text{MUL} \ f(x) \sim \frac{1}{\pi} \sin \frac{\pi x}{2} + \frac{2}{\pi} \sum_{n=2}^{\infty} \frac{n - \sin \frac{n\pi}{2}}{\pi \left(n^2 - 1\right)} \sin \frac{n\pi x}{2}.$$

1.5.6. 将下列函数展开为余弦级数:

(2)
$$f(x) = x - 1, x \in [0, 2],$$
 并求 $\sum_{n=1}^{\infty} n^{-2}$ 的和;

(4)
$$f(x) = \begin{cases} \sin 2x, & 0 \le x < \pi/4 \\ 1, & \pi/4 \le x \le \pi/2 \end{cases}$$

解 (2) 将 f(x) 进行偶延拓, 则 $b_n = 0, n \ge 0$,

$$a_0 = \frac{2}{2} \int_0^2 (x - 1) dx = 0;$$

$$a_n = \frac{2}{2} \int_0^2 (x - 1) \cos \frac{n\pi x}{2} dx = \frac{4((-1)^n - 1)}{(n\pi)^2}, n \ge 1.$$

所以
$$f(x) \sim -\frac{1}{\pi^2} \sum_{n=1}^{\infty} \frac{8}{(2n-1)^2} \cos \frac{(2n-1)\pi x}{2} = x-1 \quad (x \in [0,2]).$$

代
$$x=2$$
, 得到 $\sum_{n=1}^{\infty} \frac{1}{(2n-1)^2} = \frac{\pi^2}{8}$. 又, $\sum_{n=1}^{\infty} \frac{1}{(2n)^2} = \frac{1}{4} \sum_{n=1}^{\infty} \frac{1}{n^2}$. 因此,

$$\sum_{n=1}^{\infty} \frac{1}{n^2} = \sum_{n=1}^{\infty} \frac{1}{(2n-1)^2} + \sum_{n=1}^{\infty} \frac{1}{(2n)^2} = \frac{\pi^2}{8} + \frac{1}{4} \sum_{n=1}^{\infty} \frac{1}{n^2}$$

移项得到 $\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$.

(4) 将 f(x) 进行偶延拓, 则 $b_n = 0, n \ge 0$.

$$a_0 = \frac{4}{\pi} \int_0^{\frac{\pi}{2}} f(x) dx = \frac{4}{\pi} \int_0^{\frac{\pi}{4}} \sin 2x \, dx + \frac{4}{\pi} \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} dx = \frac{2}{\pi} + 1$$

当 n=1 时, 易得 $a_1=-\frac{1}{\pi}$. 当 n>1 时,

$$a_n = \frac{4}{\pi} \int_0^{\frac{\pi}{4}} \cos 2nx \sin 2x \, dx + \frac{4}{\pi} \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \cos 2nx \, dx = \frac{2\left(n - \sin\frac{n\pi}{2}\right)}{n\pi \left(1 - n^2\right)}.$$

所以
$$f(x) \sim \left(\frac{1}{\pi} + \frac{1}{2}\right) - \frac{1}{\pi}\cos 2x + \frac{2}{\pi}\sum_{n=2}^{\infty} \frac{n - \sin\frac{n\pi}{2}}{n(1 - n^2)}\cos 2nx.$$

1.5.7. (3) 将函数
$$f(x) = \begin{cases} 2 - x, x \in [0, 4], \\ x - 6, x \in (4, 8) \end{cases}$$
 展开为Fourier级数.

解(3)函数 f(x) 及其周期延拓后的函数为按段光滑, 即可展开为Fourier 级数.

$$a_0 = \frac{1}{4} \int_0^8 f(x) dx = \frac{1}{4} \int_0^4 (2 - x) dx + \frac{1}{4} \int_4^8 (x - 6) dx = 0,$$

$$a_n = \frac{1}{4} \int_0^8 f(x) \cos \frac{n\pi x}{4} dx$$

$$= \frac{1}{4} \int_0^4 (2 - x) \cos \frac{n\pi x}{4} dx + \frac{1}{4} \int_4^8 (x - 6) \cos \frac{n\pi x}{4} dx$$

$$= \frac{8}{n^2 \pi^2} (1 - (-1)^n),$$

$$b_n = \frac{1}{4} \int_0^8 f(x) \sin \frac{n\pi x}{4} dx$$

$$= \frac{1}{4} \int_0^4 (2 - x) \sin \frac{n\pi x}{4} dx + \frac{1}{4} \int_4^8 (x - 6) \sin \frac{n\pi x}{4} dx = 0.$$

Fighthal the probability of the pr

1.5.8. 求 $\sin x$ 全部非零零点的倒数的平方和.

解因为 $\sin x$ 的全部零点为 $\{n\pi : n \in \mathbf{Z}, n \neq 0\}$, 所以 $\sin x$ 全部非零零点的倒数的平方 和为

$$2\sum_{n=1}^{\infty} \frac{1}{(n\pi)^2} = \frac{1}{3}$$

1.5.9. 证明: 在
$$[0,\pi]$$
 上下列展开式成立:
 $(1) \ x(\pi-x) = \frac{\pi^2}{6} - \sum_{n=1}^{\infty} \frac{\cos 2nx}{n^2}$

(2)
$$x(\pi - x) = \frac{8}{\pi} \sum_{n=1}^{\infty} \frac{\sin(2n-1)x}{(2n-1)^3}.$$

证 (1) 将其进行偶延拓, 延拓后的函数为按段光滑, 即可展开为余弦级数. 则 $b_n = 0, n \ge$ 1.

$$a_0 = \frac{2}{\pi} \int_0^{\pi} x(\pi - x) dx = \frac{\pi^2}{3}$$

$$a_n = \frac{2}{\pi} \int_0^{\pi} x(\pi - x) \cos nx \, dx = \frac{2}{\pi} \int_0^{\pi} \pi x \cos nx \, dx - \frac{2}{\pi} \int_0^{\pi} x^2 \cos nx \, dx$$

$$= \frac{2(1 + (-1)^n)}{n^2}, \quad n \ge 1$$

所以 $x(\pi - x) = \frac{\pi^2}{6} - \sum_{n=1}^{\infty} \frac{\cos 2nx}{n^2}$. (由收玫定理或直接验证知, 端点处级数也收敛到函数值 0)

(2)将其进行奇延拓, 延拓后的函数为按段光滑, 即可展开为正弦级数. 则 $a_n=0, n\geq 0$

$$b_n = \frac{2}{\pi} \int_0^{\pi} x(\pi - x) \sin nx \, dx = \frac{2}{\pi} \int_0^{\pi} \pi x \sin nx \, dx - \frac{2}{\pi} \int_0^{\pi} x^2 \sin nx \, dx$$
$$= \frac{4(1 - (-1)^n)}{n^3 \pi}, n \ge 1.$$

所以 $x(\pi - x) = \frac{8}{\pi} \sum_{n=1}^{\infty} \frac{\sin(2n-1)x}{(2n-1)^3}$. (由收敛定理或直接验证知, 端点处级数也收敛到函数值 0)

1.5.11. 写出定义在任意一个长度为 2π 区间 $[a, a+2\pi]$ 上的函数 f 的 Fourier 级数及其系数的计算公式. 解设 f(x) 为定义 $[a, a+2\pi]$ 上以 2π 为周期的的函数, 假设其具有如下的Fourier 展开

$$f(x) \sim \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos nx + b_n \sin nx \right).$$

下面来确定其系数取值:

$$\int_{a}^{a+2\pi} f(x) \cos mx \, dx$$

$$= \int_{a}^{a+2\pi} \left[\frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos nx + b_n \sin nx \right) \right] \cos mx \, dx$$

$$= \frac{a_0}{2} \int_{a}^{a+2\pi} \cos mx \, dx + \sum_{n=1}^{\infty} \left(a_n \int_{a}^{a+2\pi} \cos nx \cos mx + b_n \int_{a}^{a+2\pi} \sin nx \cos mx \, dx \right),$$

由于 $\cos mx$, $\sin nx$, $\cos nx$ 都是以 2π 为周期函数,则它们乘积仍为以 2π 为周期函数.

故
$$\int_0^{2\pi} \cos nx \cos mx \, dx = \int_a^{a+2\pi} \cos nx \cos mx \, dx = \begin{cases} \pi, & n = m, \\ 0, & n \neq m; \end{cases}$$
$$\int_0^{2\pi} \sin nx \cos mx \, dx = \int_a^{a+2\pi} \sin nx \cos mx \, dx = 0. \ \overrightarrow{m}$$
$$\frac{a_0}{2} \int_a^{a+2\pi} \cos mx \, dx = \frac{a_0}{2} \int_0^{2\pi} \cos mx \, dx = 0,$$
$$\int_a^{a+2\pi} f(x) \cos mx \, dx = a_m \pi,$$

所以

从而

$$a_m = \frac{1}{\pi} \int_a^{a+2\pi} f(x) \cos mx \, dx, \quad m \ge 0.$$

同理

$$\int_{a}^{a+2\pi} f(x) \sin mx \, dx$$

$$= \int_{a}^{a+2\pi} \left[\frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos nx + b_n \sin nx \right) \right] \sin mx \, dx$$

$$= \frac{a_0}{2} \int_{a}^{a+2\pi} \sin mx \, dx + \sum_{n=1}^{\infty} \left(a_n \int_{a}^{a+2\pi} \cos nx \sin mx + b_n \int_{a}^{a+2\pi} \sin nx \sin mx \, dx \right),$$

$$b_m = \frac{1}{\pi} \int_{a}^{a+2\pi} f(x) \sin mx \, dx, m \ge 1$$
即为所求.

(B)

1.5.1. (2) 设 f(x) 在 $[-\pi,\pi]$ 上可积或绝对可积, 证明: 若 $\forall x \in [-\pi,\pi]$, 成立 f(x) = $-f(x+\pi)$, 则 $a_{2n}=b_{2n}=0$.

证 $a_{2n} = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos(2nx) dx = \frac{1}{\pi} \int_{-\pi}^{0} f(x) \cos(2nx) dx + \frac{1}{\pi} \int_{0}^{\pi} f(x) \cos(2nx) dx$. 对于右边第一个积分,令 $x + \pi = t$,则有

$$\int_{-\pi}^{0} f(x) \cos(2nx) dx = \int_{0}^{\pi} f(t-\pi) \cos[2n(t-\pi)] dt = -\int_{0}^{\pi} f(t) \cos(2nt) dt,$$

其中用到 $f(t-\pi) = -f(t-\pi+\pi) = -f(t)$.

故有 $a_{2n} = 0$. 同理可得 $b_{2n} = 0$.

1.5.3. 设周期为 2π 的函数 f(x) 在 $[-\pi,\pi]$ 上的 Fourier 系数为 a_n 及 b_n , 求下列函数的 Fourier 系数 \tilde{a}_n 与 \tilde{b}_n :

- (1) q(x) = f(-x)
- (2) h(x) = f(x+c)(c 是常数); (3) $f(x) = \frac{1}{\pi} \int_{-\pi}^{\pi} f(t)f(x-t)dt$ (假定积分次序可以交换).

解 (1) 当 g(x) = f(-x) 时, $\widetilde{a_n} = \frac{1}{\pi} \int_{-\pi}^{\pi} g(x) \cos nx \, dx = \frac{1}{\pi} \int_{-\pi}^{\pi} f(-x) \cos nx \, dx$. 取变量 代换 x = -t 有

$$\widetilde{a_n} = \frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \cos(-nt) dt = \frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \cos nt dt = a_n,$$

$$\widetilde{b_n} = \frac{1}{\pi} \int_{-\pi}^{\pi} g(x) \sin(nx) dx = \frac{1}{\pi} \int_{-\pi}^{\pi} f(-x) \sin nx dx,$$

取变量代换 x = -t 有

$$\tilde{b_n} = \frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \sin(-nt) dt = -\frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \sin nt dt = -b_n.$$

$$(2) \stackrel{\text{def}}{=} h(x) = f(x+c)$$
时,

$$\widetilde{a_n} = \frac{1}{\pi} \int_{-\pi}^{\pi} h(x) \cos nx \, dx = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x+c) \cos nx \, dx$$

$$= \frac{1}{\pi} \int_{-\pi+c}^{\pi+c} f(t) \cos(nt-nc) dt = \frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \cos(nt-nc) dt$$

$$= \frac{1}{\pi} \int_{-\pi}^{\pi} f(t) [\cos nt \cos nc + \sin nt \sin nc] dt$$

 $= a_n \cos nc + b_n \sin nc$

$$\tilde{b_n} = \frac{1}{\pi} \int_{-\pi}^{\pi} h(x) \sin nx \, dx = \frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \sin(nt - nc) dt$$
$$= b_n \cos nc - a_n \sin nc$$

(3)
$$\widetilde{a_n} = \frac{1}{\pi} \int_{-\pi}^{\pi} F(x) \cos nx \, dx = \frac{1}{\pi^2} \int_{-\pi}^{\pi} dt \int_{-\pi}^{\pi} f(t) f(x - t) \cos nx \, dx.$$

$$\mathbb{R} \ n = 0 \ \mathbb{R}, \ \widetilde{a_0} = \frac{1}{\pi^2} \int_{-\pi}^{\pi} f(t) dt \int_{-\pi}^{\pi} f(x - t) dx. \ \diamondsuit \ x - t = u, \ \rightleftarrows$$

$$\int_{-\pi-t}^{\pi-t} f(u) du = \int_{-\pi}^{\pi} f(u) du = \pi a_0$$

故

$$\widetilde{a_0} = \frac{1}{\pi} \int_{-\pi}^{\pi} a_0 f(t) dt = a_0^2.$$

当取 n > 0 时,

$$\widetilde{a_n} = \frac{1}{\pi^2} \int_{-\pi}^{\pi} f(t) dt \int_{-\pi}^{\pi} f(x - t) \cos nx \, dx$$

$$= \frac{1}{\pi^2} \int_{-\pi}^{\pi} f(t) dt \int_{-\pi - t}^{\pi - t} f(u) \cos(nu + nt) du (\sharp \oplus x - t = u)$$

$$= \frac{1}{\pi^2} \int_{-\pi}^{\pi} f(t) dt \int_{-\pi}^{\pi} f(u) \cos(nu + nt) du$$

$$= \frac{1}{\pi^2} \int_{-\pi}^{\pi} f(t) dt \int_{-\pi}^{\pi} [f(u) \cos nu \cos nt - f(u) \sin nu \sin nt] du$$

$$= \frac{1}{\pi} \int_{-\pi}^{\pi} f(t) (a_n \cos nt - b_n \sin nt) dt$$

$$= a_n^2 - b_n^2,$$

$$\tilde{b_n} = \frac{1}{\pi^2} \int_{-\pi}^{\pi} f(t) dt \int_{-\pi}^{\pi} f(x - t) \sin nx \, dx$$

$$= \frac{1}{\pi^2} \int_{-\pi}^{\pi} f(t) dt \int_{-\pi - t}^{\pi - t} f(u) \sin(nu + nt) du (\mbox{ \mu} + x - t = u)$$

$$= \frac{1}{\pi^2} \int_{-\pi}^{\pi} f(t) dt \int_{-\pi}^{\pi} [f(u) \sin nu \cos nt + f(u) \cos nu \sin nt] du$$

$$= \frac{1}{\pi} \int_{-\pi}^{\pi} f(t) (a_n \sin nt + a_n \sin nt) \, dt$$

$$= 2a_n b_n.$$

1.5.4. 设 f,g 在 $[-\pi,\pi]$ 上可积, a_n,b_n 与 α_n,β_n 分别是 f 与 g 的 Fourier 系数, 利用 Parseval 等式证明:

$$\frac{1}{\pi} \int_{-\pi}^{\pi} f(x)g(x) dx = \frac{a_0 \alpha_0}{2} + \sum_{n=1}^{\infty} \left(a_n \alpha_n + b_n \beta_n \right).$$

证易知 $f(x) \pm g(x)$ 的Fourier 系数为 $a_0 \pm \alpha_0, a_n \pm \alpha_n, b_n \pm \beta_n, n \in \mathbf{N}_+$. 由 $f(x) \pm g(x)$ 的可积性, 利用 Parseval 等式可得

$$\frac{1}{\pi} \int_{-\pi}^{\pi} [f(x) + g(x)]^2 dx = \frac{(a_0 + \alpha_0)^2}{2} + \sum_{n=1}^{\infty} \left[(a_n + \alpha_0)^2 + (b_n + \beta_n)^2 \right],$$

$$\frac{1}{\pi} \int_{-\pi}^{\pi} [f(x) - g(x)]^2 dx = \frac{(a_0 - \alpha_0)^2}{2} + \sum_{n=1}^{\infty} \left[(a_n - \alpha_0)^2 + (b_n - \beta_n)^2 \right].$$

两式相减即得

$$\frac{1}{\pi} \int_{\pi}^{\pi} f(x)g(x)dx = \frac{a_0\alpha_0}{2} + \sum_{n=1}^{\infty} (a_n\alpha_n + b_n\beta_n).$$