Inteligência Artificial

Inteligência Artificial

Samy Soares samy@ufc.br

Busca Avançada e Meta Heurísticas

Objetivos

- Apresentar métodos de busca que possam otimizar busca com restrições de satisfação;
- Introduzir as buscas Meta-Heurísticas.

Roteiro

- Ajuste Heurístico
- Busca Local e Meta-Heurísticas
 - Heurística com Substituição
 - Busca Local Repetida
 - Busca TABU
 - Colônia de Formigas

Busca com Restrições de Satisfação

- Classe de problemas: CSPs.
 - São enunciados como conjuntos de restrições;
 - Um estados é solução se estiver de acordo com as restrições do conjunto.
 - Exemplo: O problema das 8 Rainhas.

Busca com Restrições de Satisfação

Métodos:

- Buscas baseadas nas restrições do problema e representação dos estados;
- Avaliação Adiante;
- Variável mais restrita;
- Variável mais restritiva;
- Variável menos restritiva;

Ajuste Heurístico (Heuristic Repair)

- Método em dois passos:
 - Gere uma possível solução (estado qualquer).
 - · Randomicamente ou via heurística;
 - Preferencialmente próximo de uma solução;
 - Faça ajustes aproximando-a de um nó objetivo.

- Exemplo: 8 Rainhas.
 - Gere uma possível solução (estado qualquer).
 - Coloque uma rainha por coluna, evitando conflitos.
 - Faça ajustes aproximando-a de um nó objetivo.
 - Pode ser feito através da heurística de conflitos mínimos.

- Exemplo: 8 Rainhas.
 - Heurística de Conflitos Mínimos (Min-Conflict).
 - Enquanto houver conflitos, faça:
 - (1) Escolha uma rainha que esteja em conflito com outra;
 - (2) Mova a rainha escolhida para uma outra linha onde ela gere o menor número de conflitos possível.

- Exemplo: 8 Rainhas.
 - Heurística de Conflitos Mínimos (Min-Conflict).
 - Enquanto houver conflitos, faça:
 - (1) Escolha uma rainha que esteja em conflito com outra;
 - (2) Mova a rainha escolhida para uma outra linha onde ela gere o menor número de conflitos possível.

- Exemplo: 8 Rainhas.
 - Heurística de Conflitos Mínimos (Min-Conflict).
 - Enquanto houver conflitos, faça:
 - (1) Escolha uma rainha que esteja em conflito com outra;
 - (2) Mova a rainha escolhida para uma outra linha onde ela gere o menor número de conflitos possível.

- Estratégia eficiente
 - Utilizada com sucesso para n-queens, n = 1.000.000
 - Fator de ramificação da árvore: 10¹².
 - Métodos tradicionais não devem nem ser cogitados.
 - Média de passos: 50 passos!

(Local Search and Metaheuristics)

Definição:

 Meta-Heurísticas são métodos que partem de alguma configuração inicial (normalmente random) e fazem pequenas mudanças na configuração até que não seja possível mais obter estados melhores.

- Otimização Local
 - Problemas de otimização;
 - Normalmente encontrará apenas máximos locais.
 - Exemplo: Subida de Encosta.
 - Outras técnicas incluem Busca Tabu, Colônias de Formigas, Têmpera Simulada, Algoritmos Genéticos e Redes Neurais.

- Heurísticas c/ Substituição (Exchange Heuristics)
 - Método mais simples de busca local;
 - A busca move de um estado para outro através de trocas nos valores das variáveis.
 - Ex: Ajuste Heurístico

- Busca Local Repetida (Iterated Local Search)
 - Procura superar o problema de máximo local ao rodar repetidamente a partir de diferentes estados iniciais.
 - O objetivo é encontrar boas soluções sem realizar uma busca exaustiva.

Busca TABU

- Mantém uma lista de estados que já foram visitados visando evitar repetições de caminhos.
 - Evita-se expandir os estados da lista (os tabus).
- Deve ser usada em conjunto com outra heurística.

Busca TABU

- Intuição:
 - Vale à pena verificar um caminho aparentemente ruim, contanto que isso evite repetir um caminho visitado.
- Do site www.tabusearch.net:
 - "A bad strategic choice can yield more information than a good random choice."

- Colônia de Formigas (Ant Colony Optimization):
 - Baseada no comportamente de formigas na procura de comida e transporte desta para sua colônia.

- Colônia de Formigas (Ant Colony Optimization):
 - Primeiro, formigas escolhem caminhos aleatoriamente

- No seu caminho, formigas deixam rastros (feromônios);
 - A formiga marca o caminho de volta à colônia;
- Outras formigas podem seguir as primeiras:
 - Se existirem caminhos com feromônios, a chance é maior de esse caminho ser o escolhido por uma formiga que começa a busca.
 - Quando o caminho seguido gera produtos, a formiga retorna à colônia e reforça o rastro.

- Colônia de Formigas (Ant Colony Optimization):
 - Formigas são agentes reativos
 - Comportamento pré-definido
 - Exemplo de aplicação:
 - Steel's MARS explorer [Steels, 1990]
 - Aplicação de sistemas multi-agentes que inspirou ACO.

Referências

Russel, S., Norvig, P.; Inteligência Artificial; Editora Campus, Tradução da 2a edição, 2004.

Coppin, B.; Inteligência Artificial; Editora LTC, Tradução da 1a edição, 2010.

Steels, L. Cooperation between distributed agents through self organization. In Demazeau, Y. And Müller, J.-P., editors, Decentralized AI – Proceeding of the first European Workshop on Modelling Autonomous Agents in a Multi-Agent World (MAAMAW – 89), pages 175-196. Elsevier Science Publishers B.V.: Amsterdam, The Netherlands, 1990.

Dúvidas

