Homework 4 Solutions

Ch 12: 1, 2, 9, 22 - 26, 60, 63

1. 2×2 matrices over \mathbb{Z}_2 is finite and non-commutative. Since

$$\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$
 while
$$\begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$$

 2×2 matrices with entries from $2\mathbb{Z}$ would be an example of infinite, non-commutative with no unit.

2. Consider $R = 2\mathbb{Z}_{10} = \{0, 2, 4, 6, 8\}$. 6 is unity since $(5+1)(2m) = 10m + 2m = 2m \mod 10$ (or by inspection if you prefer). To see that each element is a unit, check $2 \cdot 8 = 6 \mod 10$, $4 \cdot 4 = 6 \mod 10$.

9. This is sort of a standard type of result you should expect. If $R = \bigcap R_i$ then we need to show closure under operations, but this is trivial since each R_i is closed.

22. Let $u, v \in U(R)$, then $(u \cdot v) \cdot (v^{-1} \cdot u^{-1}) = (u(vv^{-1})u^{-1}) = u1u^{-1} = uu^{-1} = 1$, so $v^{-1}u^{-1} = (uv)^{-1}$ and thus uv is a unit if u and v are such. The rest is even simpler.

23. Determine $U(\mathbb{Z}[i])$ we need (a+bi)(c+di)=1 so (ac-bd)=1 while (ad+bc)=0. The only units are ± 1 and $\pm i$ are units. That these are the only units can be seen thus

$$(a+bi)^{-1} = \frac{a-bi}{a^2+b^2}$$

so $a+bi \in \mathbb{Z}[i]$ iff $\frac{a}{a^2+b^2}, \frac{b}{a^2+b^2} \in \mathbb{Z}$, for this we must have $a=\pm 1$ and b=0 or $b=\pm 1$ and a=0.

24. Show that $U(R_1 \times R_2 \times \cdots \times R_n) = U(R_1) \times U(R_2) \times \cdots \times U(R_n)$.

It would suffice to consider n=2 and use induction. Suppose $(r,s) \in U(R_1 \times R_2)$ so there is (r',s') such that (r,s)(r',s')=(1,1), but then $(r,s) \in U(R_1) \times U(R_2)$. Essentially the same argument works in the other direction.

25. Determine $U(\mathbb{Z}[x])$. Let $p = a + p_1(x)x$ and $q = b + q_1(x)x$ then $pq = (ab + (aq_1(x) + bp_1(x))x + p_1(x)q_1(x)x^2 = 1$ iff $(a,b) = \pm (1,1)$. So $U(\mathbb{Z}[x]) = U(\mathbb{Z})$.

26. Determine $U(\mathbb{R}[x])$. This is like the above, the only $f \in \mathbb{R}[x]$ with a multiplicative inverse is $f = a \in \mathbb{R}^* = U(\mathbb{R})$. So $U(\mathbb{R}[x]) = U(\mathbb{R})$.

60. Show that $4x^2 + 6x + 3$ is a unit in $\mathbb{Z}_8[x]$.

 $(4x^2 + 6x + 3)(2x + 3) = 8x^3 + 12x^2 + 6x + 12x^2 + 18x + 9 = 8x^2 + 24x^2 + 24x + 9 \mod 8 = 1$

1

63. $A \in M_2(\mathbb{Z})$ We know $\det(AB) = \det(A) \det(B)$ and so if AB = I, then $\det(A) \det(B) = 1$ and as $\det(A), \det(B) \in \mathbb{Z}$ it must be that $\det(A) = \pm 1$.

Ch 13: 7, 12, 17, 30, 43, 49, 51, 56, 57, 64

7. Let R be a finite commutative ring with unity. Show that every $r \in R$ is either a unit or a 0-divisor.

Suppose r is not a zero-divisor. Consider the map $s \mapsto rs$. If rs = rs', then rs - rs' = r(s - s') = 0. If $s \neq s'$ for any $s, s' \in R$, then r is a 0-divisor. Else, the map is 1-1 and hence onto, so rs = 1 for some s. (A counting argument.)

Any time you have an integral domain that is not a field you have non-zero-divisor non-unit elements, like 2 in \mathbb{Z} .

Note This shows that every finite integral domain is a field!

12. In \mathbb{Z}_7 give interpretations for 1/2, -2/3, $\sqrt{-3}$, and -1/6.

 $2 \cdot 4 = 1 \mod 7$ so $4 = 1/2 \mod 7$.

 $1/3 = 5 \mod 7$ since $3 \cdot 5 = 15 = 1 \mod 7$ and so $2/3 = 10 = 3 \mod 7$ and this makes sense as $3 \cdot 3 = 9 = 2 \mod 7$ and so $-2/3 = -3 = 4 \mod 7$.

 $-3 = 4 \mod 7$ so $2 = \sqrt{-3} \mod 7$, that is, $2^2 = 4 = -3 \mod 7$. What about $-2 = 5 \mod 7$? $(-2)^2 = 5^2 = 25 = 4 \mod 7$, do yes, 2 and -2 both satisfy $x^2 = -3$.

1/6 = 6 since $6 \cdot 6 = 1 \mod 7$ and so $-1/6 = -6 = 1 \mod 7$.

All pretty strange:)

17. In an integral domain if $a_1 a_2 \cdots a_n = 0$, then for some $i, a_i = 0$. So if $r^n = 0$, then r = 0.

30. $\mathbb{Q}[\sqrt{d}]$ is a field for d an integer. Closure under addition and multiplication are obvious and

$$a + b\sqrt{d} \cdot \frac{a - b\sqrt{d}}{a^2 - b^2 \cdot d} = 1$$

SO

$$(a+b\sqrt{d})^{-1} = \frac{a}{a^2 - b^2 \cdot d} - \frac{b}{a^2 - b^2 \cdot d}\sqrt{d}$$

43. Show that $\mathbb{Z}_7[\sqrt{3}]$ is a field. The additive group part is clear essentially being isomorphic to $\mathbb{Z}_7 \times \mathbb{Z}_7$.

The multiplication is $(a + b\sqrt{3})(c + d\sqrt{3}) = (ac + 3bd) + (ad + bc)\sqrt{3}$. This will satisfy all the rules except possibly having inverses, so consider

$$1 = (a + b\sqrt{3}) \left(\frac{a - b\sqrt{3}}{(a + b\sqrt{3})(a - b\sqrt{3})} \right)$$

This will be true if $\mathbb{Z}_7[\sqrt{3}]$ is a field. So the proposed inverse of $a + b\sqrt{3}$ is

$$\left(\frac{a}{a^2 - 3b^2}\right) - \left(\frac{b}{a^2 - 3b^2}\right)\sqrt{3}$$

For this to work we need that $a^2 - 3b^2 \neq 0$ in \mathbb{Z}_7 when a and b are not both 0.

Suppose $a^2 = 3b^2 \mod 7$. In this case we would have $3 = (a/b)^2$, so we can't have $a^2 = 3b^2$ unless 3 is a square in \mathbb{Z}_7 .

We can just check that $m^2 \mod 7 \neq 3$ for $m = 0, 1, \dots, 6$.

This indicates what is needed in general, $\mathbb{Z}_p[\sqrt{k}]$ is a field provided that k is not a square in \mathbb{Z}_p .

49. Let x_1, \ldots, x_n belong to a ring with prime characteristic p. First notice $(x+y)^p = x^p + \binom{p}{1}x^{p-1}y + \binom{p}{2}x^{p-2}y^2 + \cdots + \binom{p}{p-1}xy^{p-1} + y^p$. All of the middle terms have a factor of p and hence become 0. Thus $(x+y)^p = x^p + y^p$. Now then $(x+y)^{p^2} = ((x+y)^p)^p = (x^p + y^p)^p = (x^p)^p + (y^p)^p = x^{p^2} + y^{p^2}$, etc. By induction on m, $(x+y)^{p^m} = x^{p^m} + y^{p^m}$.

Now
$$((x_1 + x_2) + x_3)^{p^m} = (x_1 + x_2)^{p^m} + x_3^{p^m} = x_1^{p^m} + x_2^{p^m} + x_3^{p^m}$$
. So by induction on k ,
$$(x_1 + \dots + x_k)^{p^m} = x_1^{p^m} + \dots + x_k^{p^m}$$

Questions Where did we use p is prime? Where did we use commutativity?

This shows we need the "prime" assumption: In \mathbb{Z}_4 we have $(1+1)^4 = 2^4 = 0 \neq (1^4+1^4) = 2$.

What about the commutativity issue? Consider $M_2(\mathbb{Z}_2)$. Let $x = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}$ and $y = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$, then

$$x^{2} = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = I$$

$$y^{2} = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$x^{2} + y^{2} = I + I = O$$

$$x + y = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

$$(x + y)^{2} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = I$$

So $x^2 + y^2 \neq (x + y)^2$.

51. Let F be a finite field of character p (we know p is a prime). What we need to see is the $|F| = p^m$ for some m. Suppose $q \mid |F|$ for some $q \neq p$, then there is a $g \in F$ with |g| = q, that is $qg = g + g + \cdots + g = 0$, but then $g \cdot (q \cdot 1) = 0$ and so $q \cdot 1 = 0$, but then $p \mid q$. So $|F| = p^m$ for some m.

56. Find all solutions to $x^2 - x + 2$ over $\mathbb{Z}_3[i]$.

We do have $x^2 - x + 2 = x^2 + 2x - 1 = (x+1)^2 - 2 = (x+1)^2 + 1$ so $x = 1 \pm i$. So x = -1 - i = 2 + 2i and x = -1 + i = 2 + i are the two roots.

57. Consider $x^2 - 5x + 6 = (x - 2)(x - 3) = 0$ Find all solutions in \mathbb{Z}_7 , \mathbb{Z}_8 , \mathbb{Z}_{12} , and \mathbb{Z}_{14} .

 \mathbb{Z}_7 is a field so x=2 and x=3 mod 7 is the only solution.

In \mathbb{Z}_8 , notice that (x-2)(x-3)=(x+6)(x+5) so we have

So in \mathbb{Z}_8 we have 2, 3 as roots.

Note that $x^2-1=(x-1)(x+1)$ has roots 1 and -1=7 mod 8 as indicated in the factorization, but also 3 and 5. So in \mathbb{Z}_{p^k} an n^{th} -degree polynomial may have more than n roots.

 $\mathbb{Z}_{12} \simeq \mathbb{Z}_4 \times \mathbb{Z}_3$ so we can solve these separately. In \mathbb{Z}_3 we have $x^2 - 5x + 6 = x^2 + x = (x)(x+1) = (x)(x-2)$ in \mathbb{Z}_3 so x = 0 and x = 2 in \mathbb{Z}_3 . In \mathbb{Z}_4 we have $x^2 - 5x + 6 = x^2 + 3x + 2 = (x+2)(x+1)$ so x = -2, x = -1, that is x = 2 and x = 3. Thus the solutions are (2,0), (2,2), (3,0), (3,2), these correspond to (2,0), (2,2), (3,0), (3,2),

 $\mathbb{Z}_{14} \simeq \mathbb{Z}_2 \times \mathbb{Z}_7$ and in \mathbb{Z}_2 $x^2 - 5x + 6 = x^2 + x = (x)(x+1) = (x)(x-1)$ so we have 0,1 for roots and in \mathbb{Z}_7 we have 2 and 3 so we have (0,2), (0,3), (1,2), and (1,3) which corresponds to 2, 3, 9, 10.

64. In a finite field F with |F| = n, $|F^*| = n - 1$ and $x^{|F^*|} = 1$ for all $x \in F^*$. (Since in any group G, $g^{|G|} = e$.)

Ch 14: 10, 22, 42, 48, 51, 55, 60, 62, 67, 73, 78, 80

- **10.** In $\mathbb{Z}[x]$ show that (2x,3) = (x,3). Clearly, $2x \in (x,3)$ so $(2x,3) \subseteq (x,3)$. Conversely, $3x \in (2x,3)$ so $x = 3x 2x \in (2x,3)$.
- **22.** Let R be a finite commutative ring and I be prime. Then R/I is a finite integral domain and hence a field. We have shown before that any finite integral domain is a field, the reason is simple, let a be a non-zero element of a finite integral domain, then $ab = ac \iff a(b-c) = 0 \iff b-c = 0 \iff b=c$, so the map $c \mapsto ac$ is 1-1 and hence onto. So ac = 1 for some c.
- **42.** Show that $\mathbb{R}[x]/(x^2+1)$ is a field. Consider $\phi: \mathbb{R}[x] \to \mathbb{C}$ given by $x \mapsto i$ (or $x \mapsto -i$) and extended uniquely to $\mathbb{R}[x]$. Clearly, ϕ is a homomorphism and $p(x) \in \ker(\phi) \iff p(i) = 0 \iff (x-i) \mid p(x)$. Since $p(x) \in \mathbb{R}[x] i$ must also be a root, namely, z is a root of p(x) iff \bar{z} is a root of $\bar{p}(z)$, so $(x-i)(x+i) = x^2+1 \mid p(x)$. So $(x^2+1) = \ker(\phi)$.
- **48.** Let $I = \{a + bi \mid a, b \in 2\mathbb{Z}\} = (2, 2i)$. So I is clearly an ideal. There will be four classes, I, 1 + I, i + I, (1 + i) + I and $\mathbb{Z}[i]/I$ will be isomorphic to $\mathbb{Z}_2 \times \mathbb{Z}_2$. Note $\mathbb{Z}[i] = \mathbb{Z} + \mathbb{Z}i$ as an inner direct product and $I = 2\mathbb{Z} + 2\mathbb{Z}i$ and $(\mathbb{Z} + \mathbb{Z}i)/(2\mathbb{Z} + 2\mathbb{Z}i) \simeq \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z} = \mathbb{Z}_2 \times \mathbb{Z}_2$. This can't be a field, but is an integral domain. (Integral domains are closed under products, fields are not.)
- **51.** In $\mathbb{Z}[x]$ show that $I = \{f(x) \mid f(0) \text{ is even }\} = (x, 2)$. It is clear that $f(x) \in I \iff f(x) = p(x) \cdot x + a$ for $a \in 2\mathbb{Z}$. This has just two elements, I and 1 + I, and $\mathbb{Z}[x]/I$ is isomorphic to \mathbb{Z}_2 . This is a field, so I is maximal, hence prime.
- **55.** In $\mathbb{Z}_5[x]$ let $I = (x^2 + x + 2)$ find a multiplicative inverse to (2x + 3) + I. We are looking for p(x) so that $(2x + 3)p(x) = r(x)(x^2 + x + 2) + 1$. Solved by "guessing" $(2x + 3)(3x + 1) = 6x^2 + 11x + 3 = (x^2 + x + 2) + 1$.
- **60.** In a principal ideal domain, show that every prime ideal is maximal. Let (p) be prime, if (p) were not maximal, then, there is J so that $(p) \subset J \subset R$. But J = (q) since we are in a principal ideal domain and hence $q \mid p$, and so $p = q \cdot r$. But then $p \mid q$ or $p \mid r$. Suppose $p \mid r$, then $r = p \cdot d$ and we have $p = q \cdot r = q \cdot p \cdot d$ so $p \cdot (1 q \cdot d) = 0$ and thus $q \cdot d = 1$ and so q is a unit. This is a contradiction since $(q) \neq R$. A similar argument works if $p \mid q$. In this case, we get r as a unit, so that (p) = (q), again a contradiction.

62. Showing that N(A) is an ideal is straightforward. Suppose $r, s \in N(A)$ so that $r^n, s^m \in A$; let $k = \max\{m, n\}$, then $(r+s)^k = \sum_{i=0}^k \binom{k}{i} r^i s^{k-i}$. In every term either r^i or s^{k-i} will be in A since $i \geq n$ or $k-i \geq m$ for all i. So $(r+s)^k \in A$. That $r \cdot s \in N(A)$ for all $r \in R$ and $s \in N(A)$ is simpler.

Here is even more!

$$N(A) = \bigcap \{J \supset A \mid J \text{ is prime}\}\$$

First notice that for any $r \in R$ with $r^n \in A$, if $A \subset J$ and J is prime, then $r^n \in J$ and hence $r \in J$ (as J is prime). So we have containment $N(A) \subseteq \bigcap \{J \supset A \mid J \text{ is prime}\}$.

Now suppose $r \notin N(A)$, then we want to find a prime ideal J with $A \subset J$ and $r \notin J$. Look at \mathcal{I} being the set of all ideals of R such that $r^n \notin I$ for any n. We can find a maximal such ideal J, we just need to show that J is prime. Suppose $a \cdot b \in J$ and $a, b \notin J$. By maximality, this means that $r^n \in (a) + J$ and $r^m \in (b) + J$ so $r^n = at + s$ and $r^m = bt' + s'$ for $t, t' \in R$ and $s, s' \in J$. This means $r^{n+m} = abtt' + ats' + bt's + ss' \in J$ which is a contradiction, so $a \in J$ or $b \in J$.

67. First notice that by the polynomial division algorithm $p(x) = ax + b \mod x^2 + x + 1$ for all $p(x) \in \mathbb{Z}_2[x]$. So the elements of the field are 0, 1, x, and 1 + x here $x(1+x) + (x^2 + x + 1) = 1 + (x^2 + x + 1)$ so $x^{-1} = 1 + x$ and we see that $\mathbb{Z}_2[x]$ is a field.

73. Show that if R is a PID, then R/I is a PID for all ideals $I \subset R$. Let $J \subset R/I$ be an ideal, then J = J'/I for $J' = \{r \in R \mid r+I \in J\}$. We know J' = (p) in R and so J = (p)/I = (p/I). So R/I is a PID.

78. Show that the characteristic of $R = \mathbb{Z}[i]/(a+bi)$ divides $a^2 + b^2$.

Just for fun here is a 3Blue1Brown video discussing Gaussian numbers and Gaussian primes.

To begin with we have Fact $\mathbb{Z}[i]/(a+bi) \simeq \mathbb{Z}_{a^2+b^2} = \mathbb{Z}/(a^2+b^2) = \mathbb{Z}/(a^2+b^2)\mathbb{Z}$.

For this see here.

So consider the general case where $gcd(a, b) \neq 1$. Notice that in this case there are 0-divisors in R.

First, why is $\mathbb{Z}[i]/(a+bi)$ finite? It turns out that $\mathbb{Z}[i]$ is Euclidean, and hence a PID with the function witnessing that $\mathbb{Z}[i]$ is Euclidean being the multiplicative norm $n(z) = z \cdot \bar{z}$. (See notes where $\mathbb{Z}[\sqrt{-5}]$ is discussed. $\mathbb{Z}[\sqrt{-5}]$ is definitely not a PID since is irreducible and not prime.) For a proof of this see here.

Claim: $\mathbb{Z}[i]/I$ is finite for every (non-trivial) ideal I.

This is because $\mathbb{Z}[i]/I = \mathbb{Z}[i]/(z)$ for some z and the classes are w + (z) where n(w) < n(z). So if z = a + bi, then w = c + di where $c^2 + d^2 < a^2 + b^2$ and there are only finitely many such integers (c, d). (Integer lattice points in a circle of radius $\sqrt{a^2 + b^2}$.

Now we might just ask what $\mathbb{Z}[i]/(a+bi)$ is and this is an interesting topic. (See here and here.)

Back down to Earth and the problem at hand: Let n be the characteristic of $\mathbb{Z}[i]/(a+bi)$ so we know $n \in (a+bi)$ and so n = (a+bi)(c+di). $\gcd(c,d) = 1$ else we could factor out a common factor and get n' = (a+bi)(a'+d'i) where n' < n contradicting the definition of n.

So there is α and β in \mathbb{Z} satisfying $\alpha c + \beta d = 1$. We also have ad + bc = 0 and so we get

$$a\alpha c + a\beta d = a$$
 $b\alpha c + b\beta d = b$
 $\alpha ac - \beta bc = a$ $-\alpha ad + \beta bd = b$

So

$$n = ((\alpha a - \beta b)c - (\alpha a - \beta b)di)(c + di) = (\alpha a - \beta b)(c^2 + d^2)$$

On the other hand we know that

$$n^{2} = n\bar{n} = (a+ib)(a-bi)(c+di)(c-di) = (a^{2}+b^{2})(c^{2}+d^{2})$$

So

$$n = \frac{a^2 + b^2}{\alpha a - \beta b}$$

80. Let $R = \mathbb{Z}[\sqrt{-5}]$ and $I = \{a + b\sqrt{-5} \mid a - b \text{ is even}\}$. Show that I is maximal.

Consider the map

$$\phi(a+b\sqrt{-5}) = \begin{cases} 1 & a-b \text{ is odd} \\ 0 & a-b \text{ is even} \end{cases}$$

Check that $\phi: \mathbb{Z}[\sqrt{-5}] \to \mathbb{Z}_2$ is a surjective homomorphism. The main thing is multiplication where we have

$$\phi((a+b\sqrt{-5})(c+d\sqrt{-5})) = \begin{cases} 1 & (ac-5bd) - (ad+bc) \text{ is odd} \\ 0 & (ac-5bd) - (ad+bc) \text{ is even} \end{cases}$$

We have

$$(ac-5bd)-(ad+bc)=(ac+bd)-(ad+bc)-6bd=a(c-d)+b(d-c)-6bd=(a-b)(c-d)-6bd$$

So (ac - 5bd) - (ad + bc) is odd only when (a - b) and (c - d) are odd. This is what we need here.

Since \mathbb{Z}_2 is a field, I is maximal.

Ch 15: 12, 14, 26, 31, 34, 38, 40, 44, 46, 50, 65, 67

12. The point here is that if $\phi: m\mathbb{Z} \to n\mathbb{Z}$, then

$$\phi(mk) = \underbrace{\phi(m) + \dots + \phi(m)}_{k \text{ times}} = k\phi(m)$$

so clearly everything is determined by $\phi(m)$ and if we hope to be onto, then $\phi(m) = \pm n$ must hold. But then we have

$$\phi(m \cdot (mn)) = mn\phi(m) = mn^2 \neq n(n^2) = n\phi(m^2) = \phi(m^2n)$$

So the map cannot work on products.

Note: The following argument does not work. Since $\mathbb{Z}/m\mathbb{Z} = \mathbb{Z}_m \not\simeq \mathbb{Z}_n = \mathbb{Z}/n\mathbb{Z}$, $m\mathbb{Z} \not\simeq n\mathbb{Z}$. For this, we would require that

$$I \simeq J \implies R/I \simeq R/J$$

which is not true, for example, in $R = \mathbb{Z}[x_1, x_2 \dots]$ we have $I = \langle x_1, x_2, \dots \rangle$ and $J = \langle x_2, x_3, \dots$ so that $I \simeq J$ by the map $x_i \mapsto x_{i+1}$. But $R/I \simeq \mathbb{Z}$ while $R/J \simeq \mathbb{Z}[x]$.

It is true in this example that neither of R/I or R/J is finite, so perhaps this short argument might be saved, but I do not see it.

14. Show that $\mathbb{Z}_3[i] \simeq \mathbb{Z}_3[x]/(x^2+1)$. Nothing is special about 3 here except that it is prime, so \mathbb{Z}_3 is a field.

Define $\phi: \mathbb{Z}_3[x] \to \mathbb{Z}_3[i]$ by $\phi(f(x)) = f(i)$, this is clearly a ring homomorphism. (This sort of evaluation map is always a homomorphism.) The map is clearly onto as $\phi(a+bx) = a+bi$. $f(x) \in \ker(\phi)$ iff f(i) = 0. Since the coefficients are in \mathbb{Z}_3 we have $\overline{f(i)} = \overline{f(-i)} = f(-i) = 0$. this by the division algorithm we have that $(x-i)(x+i) = x^2+1 \mid f(x)$ since if not $f(x) = (x^2+1)q(x) + (ax+b)$ so f(i) = b+ia = 0 and so a = b = 0.

26. Determine all ring homomorphisms $\phi : \mathbb{Z}_n \to \mathbb{Z}_n$.

If we insist that $\phi(1) = 1$, i.e., that ϕ is a homomorphism of unitary rings, then there is just one, namely $\phi(1) = 1$ and so $\phi(m) = \phi(m \cdot 1) = m\phi(1) = m$, so just the identity.

If we allow $\phi(1) \neq 1$, then we still have that ϕ is determined by $\phi(1)$ since $\phi(m) = \phi(m \cdot 1) = m\phi(1)$. since $\phi(1 \cdot 1) = \phi(1)\phi(1) = \phi(1)$ we have $\phi(1) = k$ for some $k \in \mathbb{Z}_n$ satisfying $k^2 = k$ or k(k-1) = 0. (That is $\phi(1)$ must be an idempotent element of \mathbb{Z}_n .

We can count the number of idempotents. If $n = p_1^{m_1} \cdots p_k^{m_l}$, then

$$\mathbb{Z}_n \simeq \mathbb{Z}_{p_1^{m_1}} \times \mathbb{Z}_{p_2^{m_2}} \times \cdots \times \mathbb{Z}_{p_k^{m_l}}$$

so any idempotent k can be associated to (k_1, \ldots, k_l) where each k_i is idempotent in $\mathbb{Z}_{p_i^{m_i}}$, but this means that $p_i^{m_i} \mid k_i(k_i-1)$ and as p_i can only divide one of k_i or k_i-1 we know that either $k_i = p_i^{m_i}$ or $k_i = 1$. Thus there are 2^l many idempotents and so 2^l many homomorphisms of \mathbb{Z}_n where there are l many distinct prime divisors of n.

31. Prove that $R[x]/(x^2)$ is ring isomorphic to $\left\{ \begin{bmatrix} a & b \\ 0 & a \end{bmatrix} \mid a, b \in R \right\}$.

Let $\phi(a_0 + a_1x + a_2x^2 + \cdots + a_nx^n) = \begin{bmatrix} a_0 & a_1 \\ 0 & a_0 \end{bmatrix}$. Preservation of addition is trivial. For multiplication notice

$$f(x)g(x) = (a_0 + a_1x + q(x)x^2)(b_0 + b_1x + r(x)x^2) = a_0b_0 + (a_0b_1 + a_1b_0)x + s(x)x^2$$

and so

$$\phi(f(x))\phi(g(x)) = \begin{bmatrix} a_0 & a_1 \\ 0 & a_0 \end{bmatrix} \begin{bmatrix} b_0 & b_1 \\ 0 & b_0 \end{bmatrix} = \begin{bmatrix} a_0b_0 & a_0b_1 + a_1b_0 \\ 0 & a_0b_0 \end{bmatrix} = \phi(f(x)g(x))$$

We have $f(x) \in \ker(\phi)$ iff $f(x) = 0 + 0x + q(x)x^2 \in (x^2)$, so

$$R[x]/\ker(\phi) = R[x]/(x^2) \simeq \left\{ \begin{bmatrix} a & b \\ 0 & a \end{bmatrix} \mid a, b \in R \right\}$$

34. Let $\phi: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}_a \times \mathbb{Z}_b$ be given by $\phi(m, n) = (m \mod a, n \mod b)$. It is easy to see that ϕ is a surjective homomorphism.

$$(m,n) \in \ker(\phi) \iff m \mod a = 0 \text{ and } n \mod b = 0 \iff (m,n) \in (a) \times (b)$$

So $\mathbb{Z} \times \mathbb{Z} / \ker(\phi) = (\mathbb{Z} \times \mathbb{Z}) / ((a) \times (b)) \simeq \mathbb{Z}_a \times \mathbb{Z}_b$.

38. Let *n* be given in base 10 as, $n = d_k d_{k-1} \cdots d_1 d_0 = d_k 10^k + d_{k-1} 10^{k-1} + \cdots d_1 10 + d_0$ where $d_i \in \mathbb{Z}_{10}$. Then, since $10 = -1 \mod 11$,

$$n \bmod 11 = d_k (10 \bmod 11)^k + d_{k-1} (10 \bmod 11)^{k-1} + \cdots + d_1 (10 \bmod 11) + d_0$$
$$= (d_k (-1)^k + d_{k-1} (-1)^{k-1} + \cdots + d_1 (-1) + d_0) \bmod 11$$

So

$$11 \mid n \iff 11 \mid d_k(-1)^k + d_{k-1}(-1)^{k-1} + \dots + d_1(-1) + d_0$$

- **40.** Suppose $\phi : \mathbb{Z}_m \to \mathbb{Z}_n$ is a ring homomorphism. Then as discussed above, it must be the case that $\phi(1)$ completely determines ϕ , and it must be that $\phi(1)^2 = \phi(1)$ and $n \mid m\phi(1)$, since $\phi(0) = 0$ is required. If $\phi(1) = 1$, then we must have $n \mid m$.
- **44.** Clearly, $R[x]/(x) \simeq R$ so (x) is maximal iff R is a field. So (x) is maximal in $Z_n[x]$ iff Z_n is a field iff n is prime.
- **46.** Show that if $\phi: F \to F$ is a field homomorphism, then the prime subfield is fixed by F.

There are two ways to define the prime subfield, F_0 . The official definition is

$$F_0 = \bigcap \{ F' \subseteq F \mid F' \text{ is a subfield} \}$$

Since the intersection of subfields is a subfield, this definitely defines F_0 as the minimal subfield. On the other hand, F_0 is the subfield generated by 1_F , for a field of prime characteristic p, this is just the copy of \mathbb{Z}_p generated from 1_F . For a field of characteristic 0, F_0 is the copy of \mathbb{Q} of the form $n_F m_F^{-1}$ where $m \neq 0$ and $n_F = 1_F + \cdots + 1_F$, n-times.

So, according to each definition, there is a proof. The proof using the second definition is trivial, just using the fact that $\phi(1_F) = 1_F$.

The proof using the first definition is, perhaps, more interesting. The point is that $\ker(\phi) = \{0_F\}$, assuming that $\ker(\phi) \neq F$. This is because $F/(0_F) \simeq F$ is a field, and so $(0_F) = \{0_F\}$ is a maximal ideal, so there are no non-trivial ideals, and hence every epimorphism is an automorphism. So $\phi(F_0) = \bigcap \{\phi(F') \mid F' \text{ a subfield of } F\} = \bigcap \{F' \mid F' \text{ a subfield of } F\} = F_0$. This argument would not work except that ϕ is a bijection and

$$F'$$
 is a subfield of $F \iff \phi(F')$ is a subfield of $\phi(F) = F$

and

$$F'$$
 is a subfield of $\phi(F) = F \iff \phi^{-1}(F')$ is a subfield of F

50. Prove that $x \mapsto x^p$ is a ring homomorphism in a ring of prime characteristic p. We have already done the hard work

$$(x+y)^p = x^p + y^p$$
 (previous exercise) $(x \cdot y)^p = x^y \cdot y^p$ (trivial)

Now any field epimorphism of F is an isomorphism unless $\ker(\phi) = F$, and clearly $\ker(\phi) \neq F$ for the Frobenius map.

65. Let Q be the field of quotients of $\mathbb{Z}[i]$ and define $\phi: Q \to \mathbb{Q}[i]$ by $(a,b) \mapsto a \cdot b^{-1}$. We can check that this is well-defined and a field homomorphism.

To see that the map is well-defined, suppose (a,b)=(a',b'), that is ab'-a'b=0. Then in $\mathbb{Q}[i]$ it is also true that ab'=a'b and so $ab^{-1}=a'b'^{-1}$ so $\phi((a,b))=\phi((a',b'))$.

Next we check addition, $\phi((a,b) + (a'b')) = \phi((ab' + a'b,bb')) = (ab' + a'b)(bb')^{-1} = ab^{-1} + a'b'^{-1} = p\phi((a,b)) + \phi((a',b'))$. Multiplication is similar.

The map is necessarily 1-1, being a map between fields, so all that is left is seeing that it is onto. Let $r + si \in \mathbb{Q}[i]$, then r = a/b and s = a'/b' where $a, a', b, b' \in \mathbb{Z}$ so $r + si = (ab' + a'bi)(bb')^{-1} \in \text{Img}(\phi)$.

67. Let D be an integral domain and F the field of quotients. Let E be a field that contains D, then E contains naturally a copy of F.

This is exactly as above, define $\phi: F \to E$ by $(a,b) \mapsto ab^{-1}$. Then $\operatorname{Img}(\phi)$ is the desired copy.