(非数学类, 2019年11月16日)

第十一届全国大学生数学竞赛河南寨区决赛试卷

绝密 ★ 启用前

考试形式: 闭卷 考试时间: 150 分钟 满分: 100 分

题 号	_		三	四	五.	六	七	八	总 分
满分	25	10	10	10	10	10	10	15	100
得分									

注意: 1. 所有答题都须写在试卷密封线右边, 写在其他纸上一律无效,

2. 密封线左边请勿答题, 密封线外不得有姓名及相关标记,

得分	
评阅人	

一、填空题 (本题满分 25 分, 每题 5 分)

1. 极限
$$\lim_{x\to 0} \frac{\int_0^x \left[\tan t + \ln\left(1 + t^2\right) \sin\frac{1}{t}\right] dt}{\int_0^x \ln(1 + \arctan t) dt} = \underline{\hspace{1cm}}.$$

- 2. 函数 $\frac{1+2x+3x^2}{(1+x+x^2+x^3)^2}$ 的麦克劳林级数中 x^{2019} 项的系数是 ______.
- 3. 设直线 L 的极坐标方程为 $r = \theta$, 则曲线 L 在点 $(r, \theta) = (\pi, \pi)$ 处的曲率半径为

4. 设曲线
$$L$$
:
$$\begin{cases} \frac{x}{3} - \frac{z}{2} = 1 \\ y - 2z + 4 = 0 \end{cases}$$
, 则 $u = \cos^2(xy) + \frac{y}{z^2}$ 在点 $(0,0,1)$ 处沿直线 L 的正向 \mathbf{n} 的方向导数 $\frac{\partial u}{\partial \mathbf{n}} =$ _______.(规定: L 与 z 轴正向的夹角为锐角

的方向为 L 的正向).

5. 设
$$\Gamma: \frac{x^2}{4} + \frac{y^2}{9} = 1$$
, 方向为逆时针方向, 则 $\oint_{\Gamma} \frac{\mathrm{d}x + \mathrm{d}y}{|x| + |y|} = \underline{\hspace{1cm}}$

得分	
评阅人	

二、解答题 (本题满分 10 分)

设 z = z(x, y) 具有一阶连续偏导数, w = w(u, v) 是由方程组

$$u = x^{2} + y^{2}$$
, $v = \frac{1}{x} + \frac{1}{y}$, $z = e^{w+x+y}$

所确定的隐函数。试将方程 $y\frac{\partial z}{\partial x} - x\frac{\partial z}{\partial y} = (y - x)z$ (其中 $x \neq y$) 化成 $\frac{\partial w}{\partial u}$, $\frac{\partial w}{\partial v}$ 所满足的关系式.

得分	
评阅人	

三、解答题(本题满分 10 分)

计算广义积分:

$$I = \int_{1}^{+\infty} \frac{\mathrm{d}x}{x\sqrt{1 + x^5 + x^{10}}}.$$

得分	
评阅人	

四、解答题(本题满分 10 分)

一容器中盛有 120 升的盐水,并有 75 克盐溶解在溶液中. 如果每升 1.2 克盐的盐水以每分钟 2 升的速度流入该容器并以相同速度从该容器中流出 (该过程中持续搅动以保持混合物浓度恒定),求 1 小时后容器中剩余的盐量. (已知 $e^{-1}=0.37$)

震

得分	
评阅人	

五、解答题 (本题满分 10 分)

设函数 f(x) 在闭区间 [a,b] 上具有一阶连续导数, 且 f(a)=f(b), 证明:

$$\max_{x \in [a,b]} \left| f'(x) \right| \ge \frac{4}{(b-a)^2} \left| \int_a^b f(x) \, \mathrm{d}x \right|$$

准考证号

省市:

得分	
评阅人	

六、解答题 (本题满分 10 分)

设
$$a_1 = 1, \dots, a_{n+1} = \sqrt{6 + a_n} (n = 1, 2, \dots)$$

- (1) 证明 $\lim_{n\to\infty} a_n$ 收敛, 并求此极限.
- (2) 证明 $\sum_{n=1}^{\infty} \left(\frac{a_{n+1}}{a_n} 1 \right) 收敛.$

得分	
评阅人	

(1) 三重积分
$$I = \iiint_{\Omega} (x^2 + y^2) dx dy dz$$
.

(1) 三重积分
$$I = \iiint_{\Omega} (x^2 + y^2) dx dy dz$$
.
(2) 曲面积分 $J = \iint_{\Sigma} x^3 dy dz + y^3 dz dx - z dx dy$, 其中 Σ 取外侧.

得分	
评阅人	

八、解答题 (本题满分 15 分)

设
$$\frac{1}{1-x-x^2}$$
 的麦克劳林展开式为 $\sum_{n=0}^{\infty} a_n x^n$.

- (1) 求级数 $\sum_{n=0}^{\infty} \frac{a_{n+1}}{a_n a_{n+2}} x^n$ 的和 A.
- (2) 证明: 对 n = 1, 2, ...,方程 $(1 \cos x)^n = \frac{1}{A} \cos x$ 在 $\left(0, \frac{\pi}{2}\right)$ 内有且仅有一个实根.