P2 de Álgebra Linear I -2005.2

Data: 10 de outubro de 2005.

Início: 17h:05min Fim: 18h:55min

Nome:	Matrícula:	
Assinatura:	Turma	

Questão	Valor	Nota	Revis.
1	2.0		
2a	1.0		
2b	1.0		
2c	1.0		
2d	0.5		
2e	0.5		
3a	0.5		
3b	0.5		
3c	1.0		
4	2.0		
Total	10.0		

Instruções:

- Não é permitido usar calculadora. Mantenha o celular desligado. Escreva de forma clara e legível.
- É proibido desgrampear a prova. Prova com folhas faltando ou rasuradas terá nota zero.
- Nas questões 2, 3 e 4 justifique todas as respostas de forma completa, ordenada e coerente.
- Faça a prova na sua turma.

1) Decida se cada afirmação a seguir é verdadeira ou falsa.

Atenção: responda **todos** os itens, use $\underline{N=n\~{a}o}$ sei caso você não saiba a resposta.

Atenção: esta questão poderá ter nota negativa.

- Cada resposta certa vale 0.4.
- ullet Cada resposta ${f N}$ vale 0.
- Respostas confusas e ou rasuradas serão contabilizadas como erradas.
- A pontuação das respostas erradas segue a seguinte tabela progressiva:

Núm. questões erradas	1	2	3	4	5
Pontos negativos	0	0.4	0.8	1.6	2.0

Marque com caneta no quadro abaixo as respostas

Não é necessário justificar

Itens	V	F	N
1.a			
1.b			
1.c			
1.d			
1.e			

- **1.a)** Considere duas bases β e γ de \mathbb{R}^2 e um vetor v não nulo de \mathbb{R}^2 . Suponha que o vetor v tem as mesmas coordenadas nas bases β e γ . Então as bases β e γ são iguais.
 - **1.b)** Não existe uma transformação linear $T \colon \mathbb{R}^3 \to \mathbb{R}^3$ que leve a reta

$$r: (1+t, 2+2t, -3-3t), t \in \mathbb{R},$$

na reta

$$s: (1+t, 2-t, 3+t), t \in \mathbb{R}.$$

1.c) Considere as transformações lineares

$$L, T, S: \mathbb{R}^3 \to \mathbb{R}^3,$$

cujas matrizes na base canônica são respectivamente

$$[L] = \begin{pmatrix} 1 & 1 & 3 \\ 0 & 1 & 2 \\ 2 & 1 & 4 \end{pmatrix}, \quad [T] = \begin{pmatrix} 3 & 1 & 1 \\ 2 & 0 & 1 \\ 4 & 2 & 1 \end{pmatrix}, \quad [S] = \begin{pmatrix} 2 & 2 & 0 \\ 0 & 2 & 0 \\ 4 & 2 & 0 \end{pmatrix}.$$

As imagens de L, T e S são iguais.

1.d) A transformação

$$T: \mathbb{R}^2 \to \mathbb{R}^2$$
, $T(x, y) = (|x|, y)$,

verifica T(0,0) = (0,0) e é linear.

1.e) Os vetores

$$\{(1,1,2);(\lambda,1,\lambda);(1,2,3)\}$$

são linearmente independentes para todo valor de $\lambda \in \mathbb{R}.$

2) Considere os vetores

$$v_1 = (1, 2, 3), v_2 = (-1, 0, 1)$$

e defina a transformação linear

$$T: \mathbb{R}^3 \to \mathbb{R}^3$$
, $T(u) = (u \cdot v_1, u \cdot v_2, u \cdot (v_1 + v_2))$.

Observação: $v \cdot w$ denota o produto escalar dos vetores $v \in w$.

Observação: $v \cdot w$ denota o produto escalar dos vetores $v \in w$.

- (a) Determine a matriz [T] da transformação linear T na base canônica.
- (b) Determine a equação cartesiana da imagem de T.
- (c) Determine a equação paramétrica do conjunto de vetores $u \in \mathbb{R}^3$ que verificam T(u) = 0.
- (d) Determine a equação paramétrica da imagem do plano

$$\rho$$
: $x - y - 3z = 0$

pela transformação T.

(e) Determine a matriz da transformação linear T^2 na base canônica.

Resposta:

3) Considere os vetores

$$u_1 = (0,3,2), \quad u_2 = (1,2,1), \quad u_3 = (4,5,2), \quad u_4 = (-4,1,2).$$

- (a) Determine a equação cartesiana do subespaço $\mathbb V$ gerado pelos vetores u_1,u_2,u_3 e $u_4.$
- (b) Determine uma base β do subespaço \mathbb{V} formada por vetores do conjunto $\{u_1,u_2,u_3,u_4\}$.
- (c) Considere agora o vetor v que na base β tem coordenadas

$$(v)_{\beta} = (2,1).$$

Determine as coordenadas do vetor v na base canônica.

Resposta:

4) Considere as seguintes retas de \mathbb{R}^2

$$r_1: 3x - y = 5,$$
 $r_2: (t - 1, -2t + 7), t \in \mathbb{R}.$

e

$$s_1: (2t-1, t+3), \quad t \in \mathbb{R}, \qquad s_2: 3x-y=9.$$

Determine a forma matricial de uma transformação afim ${\cal S}$

$$S \colon \mathbb{R}^2 \to \mathbb{R}^2$$

que verifica

$$S(r_1) = s_1$$
 e $S(r_2) = s_2$.

Resposta: