

UNIVERSIDAD DE SONORA

UNIDAD REGIONAL CENTRO

LICENCIATURA EN CIENCIAS DE LA COMPUTACIÓN

INFORME DE SEGUIMIENTO PARA LAS RECOMENDACIONES DEL ÁREA DE ESTUDIANTES

RESPONSABLE: Roberto Núñez

PERÍODO: 25/11/19 - 25/11/23

ÁREA

1. Estudiantes

DESCRIPCIÓN

Aquí se habla de los estudiantes

RECOMENDACIÓN

1.1. Estudiar

PLAZO: 12/11/19 - 30/11/19

METAS Y ACCIONES

1.1.1. Bla bla bla

1.1.1.1.1

1.1.1.2. 2

1.1.1.3. 3

1.1.1.4. 4

1.1.1.5. 5

1.1.2. Jo jo jo

1.1.2.1. ji

1.1.2.2. ji

1.1.2.3. ji

EVIDENCIA

TÍTULO: Club de estudio

DESCRIPCIÓN: Alumnos de 5to semestre fueron sorprendidos estudiando para Estadística en el centro de cómputo

Fecha: 03/12/19

Teoría de Lenguajes - Lema de Arden

1. Enunciado

Sean r y s expresiones regulares. Considere la ecuación X = r.X|s, donde r.X denota la concatenación de r con X, y | la unión. Asumiendo que el conjunto denotado por r no contiene la tira vacía, encuentre la solución para X y pruebe que es única. ¿Cuál es la solución si L(r) contiene la tira vacía?

2. Solución

Intuitivamente, podemos ver que todas las tiras de L(s) pertenecen a la solución, así como las tiras de L(rs), y así hasta $L(r^*s)$, que sería el "límite".

Vemos primero que r^*s es solución de la ecuación, es decir que $L(r^*s) = L(rr^*s|s)$:

$$L(r(r^*s)|s) = L(rr^*s|s) = L((rr^*|\epsilon)s) = L(r^*s)$$

(Todas justificadas por propiedades de expresiones regulares fácilmente demostrables)

Demostremos ahora que la solución es única. Primero, vemos que cualquier X' que sea solución debe cumplir que L(X') incluye a $L(r^*s)$. Mostraremos que cualquier tira de la forma $w_{11} \dots w_{1k} w_2$, con $k \geq 0$, $w_{1i} \in L(r)$, $w_2 \in L(s)$ (es decir, las tiras de $L(r^*s)$), pertenece a L(X'). Lo hacemos por inducción completa en k:

Paso Base : Si k=0, entonces $w\in L(s)$ y por lo tanto $w\in L(X')$

Hipótesis Inductiva : Si k < i, entonces $w \in L(X')$

Tesis Inductiva : Si k=i, entonces $w\in L(X')$. Esto es fácil de ver: $w=w_{11}w'$, con $w_{11}\in L(r)$, y $w'\in L(r^*s)$; por lo tanto w' es más corta que w (porque $e\notin L(r)$), y por HI $w'\in L(X')$. Como X' cumple la ecuación, se cumple que $w\in L(X')$

Ahora, supongamos que L(X') incluye estrictamente a $L(r^*s)$. Sea $w \in L(X')$ tal que $w \notin L(r^*s)$, y no existe una tira más corta que w que cumpla esta condición . Como $w \in L(X')$, entonces existen dos posibilidades:

■ Si $w \in L(s)$, entonces $w \in L(r^*s)$, lo que es absurdo

■ Si $w \in L(rX')$, entonces $w = w_1w_2$, con $w_1 \in L(r)$ y $w_2 \in L(X')$; al ser w_2 más corta que w (porque $\epsilon \notin r$), $w_2 \in L(r^*s)$; pero entonces $w \in L(r^*s)$, lo cual es absurdo.

Todas las opciones conducen a un absurdo que se origina al suponer que que existe una solución X' que incluye estrictamente a r^*s , luego r^*s es la única solución.

Finalmente, vemos qué sucede si $\epsilon \in L(r)$. En este caso, la ecuación se transforma en: X = r'X|s|X donde $L(r') = L(r) - \epsilon$. La solución para esta ecuación es $r^*(\alpha|s)$ para cualquier e.r. α . Por lo tanto, la solución ya no es única (salvo que $L(s) = \Sigma^*$).