Joint Lemmatization and Morphological Tagging with LEMMING Appendix

Section 1 and 2 illustrate the edit tree extraction and application by Chrupała (2008) and also provide pseudo code. Section 3 and 4 provide an extended overview of our results.

1 Tree Extraction

```
1: function TREE(x,y)

2: i_s, i_e, j_s, j_e \leftarrow LCS(x, y)

3: if i_e - i_s = 0 then

4: return SUB(x,y)

5: else

6: return (TREE(x_0^{i_s}, y_0^{j_s}), i_s, \text{TREE}(x_{i_e}^{|x|}, y_{i_e}^{|y|}), |x| - i_e)
```

Create a tree given a form-lemma pair $\langle x,y\rangle$. LCS returns the start and end indexes of the LCS in x and y. $x_{i_s}^{i_e}$ denotes the substring of x starting at index i_s (inclusive) and ending at index i_e (exclusive). i_e-i_s thus equals the length of this substring. |x| denotes the length of x. Note that the tree does not store the LCS, but only the length of the prefix and suffix. This way the tree for x umgeschaut can also be applied to transform x umgebaut "renovated" into x umbauen "to renovate".

For the example umgeschaut-umschauen, the LCS is the stem schau. The function then recursively transforms umge into um and t into en. The prefix and suffix lengths of the form are 4 and 1 respectively. The left sub-node needs to transform umge into um. The new LCS is um. The new prefix and suffix lengths are 0 and 2 respectively. As the new prefix is empty the is nothing more to do. The suffix node needs to transform ge into the empty string e. As the new LCS of the suffix is empty, because ge and e have no character in common, the node is represented as a substitution node. The remaining transformation e into e is also represented as a substitution, resulting in the tree in Figure 1:

2 Tree Application

1: **function** APPLY(tree, x)

Figure 1: Edit tree for the inflected form *umgeschaut* "looked around" and its lemma *umschauen* "to look around". The right tree is the actual edit tree we use in our model, the left tree visualizes what each node corresponds to. Note how the root node stores the length of the prefix *umge* and the suffix *t*.

```
if tree is a LCS node then
 2:
               tree \rightarrow tree_i, i_l, tree_i, j_l
 3:
                                                                                               ▶ Prefix and Suffix do not fit.
 4:
               if |x| < i_l + j_l then
                    return \perp
 5:
               p = APPLY(tree_i, x_0^{i_l})
 6:
                                                                                                                 ▷ Create prefix.
               if p is \perp then
                                                                                            ▶ Prefix tree cannot be applied.
 7:
                    return ot
 8:
               s = \text{APPLY}(\text{tree}_j, x_{|x|-j_l}^{|x|})
                                                                                                                  ▷ Create suffix.
 9:
               if s is \perp then
                                                                                            ▶ Suffix tree cannot be applied.
10:
               \begin{array}{c} \mathbf{return} \perp \\ \mathbf{return} \ \mathbf{p} + x_{i_l}^{|x|-j_l} + \mathbf{s} \end{array}
11:
                                                                                   ▷ Concatenate prefix, LCS and suffix.
12:
                                                                                                          else
13:
14:
               tree \rightarrow u, v
               if x = u then
                                                                                                  \triangleright If x and u match return v
15:
16:
                    return v
17:
               return \perp

    b tree cannot be applied.
```

In the code + represents string concatenation and \perp a null string, meaning that the tree cannot be applied to the form. We first run the tree depicted in Figure 1 on the form angebaut "attached (to a building)". The first node is a LCS node specifying that prefix and suffix should have length 4 and 1, respectively. We thus recursively apply the left child node to the prefix string ange. This is done by matching the length two prefix an and deleting ge yielding the intermediate result anbaut. We continue on the right side of the tree and replace t with en. This yield the final (correct) result anbauen. The application of the tree to the form einbauen "installed" would fail, as we would try to substitute a ge in eing.

3 Development Results

			С	s	d	e	e	n	e	s	h	u	18	a
	SIMPLE	tag	86.08	69.83	79.05	56.02	94.72	87.95	96.29	87.21	94.37	85.20	83.86	57.77
	MORFETTE	lemma	87.22	32.95	93.27	62.15	97.60	75.64	92.92	59.68	86.09	42.02	85.19	14.06
		joint	77.18	22.56	75.60	36.43	93.15	67.58	90.28	54.00	82.99	37.03	75.00	5.39
	SIMPLE	tag	89.82	76.83	85.05	65.22	95.71	90.29	96.83	89.00	95.46	88.17	86.35	65.21
	PCRF	lemma	87.36	32.95	93.28	62.15	97.66	75.64	92.99	59.68	86.11	42.02	85.35	14.06
S		joint	79.99	23.98	80.71	40.26	94.09	69.48	90.75	54.66	83.47	37.16	76.58	6.61
Ξ	JCK	tag	86.08	69.83	79.05	56.02	94.72	87.95	96.29	87.21	94.37	85.20	83.86	57.77
eli	MORFETTE	lemma	96.24	82.59	97.67	88.80	98.71	92.50	97.61	86.76	97.48	91.16	93.26	63.09
Baselines		joint	84.32	61.67	78.10	51.42	94.43	84.61	94.67	78.39	93.15	80.73	81.34	43.71
\mathbf{B}	JCK	tag	89.82	76.83	85.05	65.22	95.71	90.29	96.83	89.00	95.46	88.17	86.35	65.21
	PCRF	lemma	96.26	82.88	97.74	89.11	98.81	93.06	97.78	87.10	97.68	91.91	93.06	62.64
		joint	88.17	68.43	84.16	60.39	95.41	86.95	95.37	80.25	94.33	83.70	83.57	48.84
	MORFETTE	tag	86.08	69.83	79.05	56.02	94.72	87.95	96.29	87.21	94.37	85.20	83.86	57.77
	MORFETTE	lemma	96.25	82.54	97.12	89.90	98.43	92.54	97.97	89.94	97.22	90.04	91.89	55.13
		joint	84.39	61.94	77.60	52.87	94.16	84.70	95.09	81.95	93.11	80.60	80.09	36.39
	edit tree	tag	86.08	69.83	79.05	56.02	94.72	87.95	96.29	87.21	94.37	85.20	83.86	57.77
	MORFETTE		96.29	82.93	97.84	89.78	98.71	92.63	97.91	89.00	97.31	90.49	93.00	61.68
		joint											80.92	
	align	tag											83.86	
	MORFETTE	_	96.74	85.38	98.17	91.61	98.76	93.11	98.05	90.13	97.70	92.15	93.76	66.30
		joint	84.72	63.88	78.47	53.52	94.47	85.09	95.05	81.29	93.31	81.51	81.49	44.67
	dict	tag	86.08	69.83	79.05	56.02	94.72	87.95	96.29	87.21	94.37	85.20	83.86	57.77
	MORFETTE	lemma	97.50	89.38	98.36	92.66	98.84	94.02	98.39	92.56	97.98	93.30	94.64	71.57
		joint	85.06	65.60	78.53	53.91	94.53	85.83	95.27	82.89	93.46	82.10	81.87	46.92
	morph	tag	86.08	69.83	79.05	56.02	NA	NA	96.29	87.21	94.37	85.20	83.86	57.77
	MORFETTE	lemma	96.59	87.28	97.43	89.96	NA	NA	98.46	92.98	97.77	92.62	93.60	66.30
5		joint	85.64	67.73	78.87	55.17	NA	NA	95.63	84.69	94.10	84.02	82.29	48.72
LEMMIN	edit tree	tag	89.82	76.83	85.05	65.22	95.71	90.29	96.83	89.00	95.46	88.17	86.35	65.21
\geq	PCRF	lemma	96.33	83.04	97.93	90.05	98.82	93.02	98.14	89.61	97.53	91.22	92.85	60.98
$\mathbf{\Sigma}$		joint	88.23	68.85	84.41	61.89	95.40	87.00	95.75	83.06	94.30	83.58	83.20	46.73
Γ	align	tag	89.82	76.83	85.05	65.22	95.71	90.29	96.83	89.00	95.46	88.17	86.35	65.21
	PCRF	lemma	96.80	85.72	98.24	91.94	98.88	93.71	98.27	90.75	97.91	92.91	93.50	64.89
		joint	88.57	70.69	84.59	62.95	95.45	87.47	95.81	83.64	94.52	84.60	83.83	50.32
	dict	tag	89.82	76.83	85.05	65.22	95.71	90.29	96.83	89.00	95.46	88.17	86.35	65.21
	PCRF	lemma	97.62	89.88	98.43	92.95	98.94	94.28	98.62	93.23	98.23	94.16	94.49	70.60
		joint	88.97	72.79	84.63	63.16	95.50	88.08	96.02	85.24	94.73	85.46	84.41	53.79
	morph	tag	89.82	76.83	85.05	65.22	NA	NA	96.83	89.00	95.46	88.17	86.35	65.21
	PCRF	lemma	97.38	89.55	98.24	92.42	NA	NA	98.71	93.97	98.30	94.38	94.39	70.54
		joint	89.30	74.32	84.81	64.08	NA	NA	96.17	86.29	95.15	86.87	84.62	55.07
	dict	tag											86.77	
	joint	lemma												
		joint											85.85	
	morph	tag											86.70	
	joint	lemma												
		joint	90.05	78.37	85.28	66.58	95.48	86.52	96.20	86.51	95.30	88.22	85.97	62.97

Table A1: Development accuracies for the baselines and the different pipeline versions and a joint version of LEMMING. The numbers in each cell are general token accuracy and the token accuracy on unknown forms. Each cell specifies either a baseline \in {baseline, JCK, MORFETTE} or a LEMMING feature set \in {edit tree, align, dict, morph} and a tagger \in {MORFETTE, PCRF, joint}.

4 Test Results

			c	s	d	e	e	n	e	S	h	u	la	a
	SIMPLE	tag	86.00	68.88	76.80	52.86	95.35	87.58	96.30	87.65	92.33	81.32	79.70	47.06
	MORFETTE	lemma	86.81	31.16	91.42	58.68	97.88	78.95	92.86	59.34	84.67	38.95	83.60	20.43
		joint	76.96	21.22	72.83	33.27	93.82	68.98	90.14	53.45	80.41	33.08	71.62	7.52
	SIMPLE	tag	89.75	76.83	82.81	61.60	96.45	90.68	97.05	90.07	93.64	84.65	82.37	53.73
	PCRF	lemma	86.94	31.16	91.48	58.68	97.92	78.95	92.92	59.34	84.73	38.95	83.80	20.43
S		joint	79.66	22.86	77.78	36.49	94.87	71.62	90.81	54.98	81.06	33.27	73.51	8.58
Ξ	JCK	tag	86.00	68.88	76.80	52.86	95.35	87.58	96.30	87.65	92.33	81.32	79.70	47.06
eli	MORFETTE		95.87	80.79	96.50	85.54	98.95	93.76	97.58	86.80	96.52	88.09	90.84	58.13
aselines		joint											76.76	
	JCK	tag	89.75	76.83	82.81	61.60	96.45	90.68	97.05	90.07	93.64	84.65	82.37	53.73
	PCRF	lemma												
		joint											79.51	
	MORFETTE												79.70	
	MORFETTE		95.88	80.70	95.88	87.55	98.73	93.56	98.02	90.16	96.06	86.21	90.08	54.16
		joint											76.57	
_	edit tree	tag											79.70	
	MORFETTE	_												
		joint											77.00	
	align	tag											79.70	
	MORFETTE													
		joint											77.18	
	dict	tag											79.70	
	MORFETTE	_	97.24	88.13	97.58	91.03	99.07	95.06	98.32	92.36	97.28	91.32	92.97	69.14
		joint											77.52	
	morph	tag		68.88									79.70	
	MORFETTE	_											91.53	
Ŋ		joint		66.73									78.18	
LEMMIN	edit tree	tag											82.37	
\mathbf{Z}	PCRF	lemma												
Σ		joint											79.75	
H	align	tag											82.37	
, ,	PCRF	lemma												
		joint											80.03	
	dict	tag											82.37	
	PCRF	lemma												
		joint											80.49	
	morph	tag		76.83									82.37	
	PCRF	lemma											92.54	
		joint		74.24									80.67	
	dict	tag											82.89	
	joint	lemma												
	J	joint											81.92	
	morph	tag											83.49	
	joint	lemma												
	<i>J</i>	joint											82.57	
		J						,						

Table A2: Test accuracies for the baselines and the different pipeline versions and a joint version of LEMMING. The numbers in each cell are general token accuracy and the token accuracy on unknown forms. Each cell specifies either a baseline \in {baseline, JCK, MORFETTE} or a LEMMING feature set \in {edit tree, align, dict, morph} and a tagger \in {MORFETTE, PCRF, joint}.

	cs	de	es	hu	la
+dict	98.35	99.04	98.92	98.83	96.14
+morph	99.03	99.47	99.09	99.41	96.73

Table A3: Development accuracies for LEMMING with and without morphological attributes using *gold* tags.

		trai	n		dev					test				
	sent	token	pos	morph	sent	token	form unk	lemma unk	sent	token	form unk	lemma unk		
cs	5979	100012	12	266	5228	87988	19.86	9.79	4213	70348	19.89	9.73		
de	5662	100009	51	204	5000	76704	17.11	13.53	5000	92004	19.51	15.64		
en	4028	100012	46		1336	32092	8.06	6.16	1640	39590	8.52	6.56		
es	3431	100027	12	226	1655	50368	13.37	8.85	1725	50630	13.41	9.16		
hu	4390	100014	22	572	1051	29989	23.51	14.36	1009	19908	24.80	14.64		
la	7122	59992	23	474	890	9475	17.59	6.43	891	9922	19.82	7.56		

Table A4: Dataset statistics. Showing number of sentences (sent), tokens (token), POS tags (pos), morphological tags (morph) and token-based unknown form (form unk) and lemma (lemma unk) rates.

References

Grzegorz Chrupała. *Towards a machine-learning architecture for lexical functional grammar parsing*. PhD thesis, Dublin City University, 2008.