Relatório Projeto #1 AED 2024-2025

Nome: Vasca Gnillerme Alvis
PL (inscrição): PL 6

Nº Estudante: 2022 22 82 07

- ⇒ Registar os tempos computacionais das 3 soluções desenvolvidas.
- ⇒ Os tamanhos dos arrays (N) devem permitir obter dados representativos (podem ser, por exemplo: 100000, 200000, 500000, 750000, 1000000). Para os gerar pode: (1) criar um array de tamanho N que vai de 0 a N; (2) remover um qualquer elemento (com exceção do primeiro e último); (3) baralhar o array.
- ⇒ Só deve ser contabilizado o tempo do algoritmo (exclui-se o tempo de leitura/geração do input e de impressão dos resultados).
- ⇒ Sugere-se a realização de várias medições (pelo menos 5) para cada solução e apresentação da média.
- ⇒ Devem apresentar e discutir as regressões para as 3 soluções, incluindo também o coeficiente de determinação/regressão (R2).

Tabela para as 3 soluções

n	ALG. 1 (ms)	ALG. 2 (ms)	ALG. 3 (ms)	Iterações
100	0,004	0,006	0,001	100
500	0,067	0,045	0,002	100
1000	0,273	0,102	0,003	10
10000	14,005	0,903	0,012	10
100000	1678,024	10,617	0,105	10
250000	12562,532	28,726	0,256	10
500000	43371,003	62,425	0,573	10
750000	113941,976	96,078	0,854	10
1000000	270186,144	130,887	1,081	10
2000000	546003,387	326,691	2,164	10

Gráfico para a solução A

Gráfico para a solução B

Gráfico para a solução C

Análise dos resultados tendo em conta as regressões obtidas e como estas se comparam com as complexidades teóricas:

Oprimeiro e o cultimo algoritmo seguiram as regnessões com coeficientes superiores a 99%. Oprimeiro algoritmo, chamado de "naive" ou "brutoforce" tem uma complexidade temporal de Ocn2), pois no pior caso tem que iterar ella o array inteiro para cada elemento. O Rº de 0.9948 para a regressar anº +6 campirma esta hipotega.

O terceiro algoritmo implementa a soma de banso entre o minimo e meximo dos valeres na array, empanantegares com a sema dos elementos das array, empanantegares com a sema dos elementos das array, o que ne quer uma só iteração do array indepente da ordem dos elementos. O valor o 8994 do coeficiente recursão confirma a comple-xidade linear Ocn).

O segundo algoritme implemento quickgest via ggest de library gliba para encentrar a elemento que fatta e O anigno é a complikidade travica pois a procura (2n) não é relevante. O grato apresenta duas recursões pois, pora este conjunto de dedes T(42,000,000) aparenta ser Uniar. O auticinta de recursões para a recursões enlaga é, emboros de forma ligeira, maior quar a centiciente da recursõe linear. O algoritmo 2 po tem a sua complixada tecnica supertada pelos dados obtides.