

Mehrad Ansari

Personal website: https://mehradans92.github.ic

Summary:

A detail-oriented chemical engineer with a strong background in computational modeling, data science and scientific software development, supported by research and professional work experience in process design and optimization.

Education

Doctor of Philosophy in Chemical Engineering Master of Science in Chemical Engineering

(May 2023) (Oct 2021)

University of Rochester, Rochester, NY

Thesis: "Physics-informed Machine Learning in Chemical Engineering"

Master of Science in Environmental Engineering

(May 2018)

Missouri University of Science and Technology (UMR), Rolla, MO

Thesis: "Numerical Modeling of Capillary-driven Flow in Open Microchannels: An Implication of Optimized Wicking Fabric Design"

Bachelor of Science in Chemical Engineering

(July 2015)

(2019 - present)

University of Tehran, Iran

Thesis: "Experimental Setup and Optimization for Electro-catalytical Generation of Hydroxyl Radicals in Wastewater Treatment"

Work Experience and Practical Training

Research Assistant

University of Rochester, Rochester, NY

- Developing web-based deep learning <u>frameworks</u> for semi-supervised classification of the activity of antimicrobial peptides via positive-unlabeled learning
- > Developed a disease modeling framework to predict future disease spreads and infer location of patient-zero
- Developed an automated <u>framework</u> in CFD modeling that reduces the number of simulations using active learning and generates a symbolic equation for the system of interest via symbolic regression
- Contributed to development of a <u>simulation-based inference framework</u> via maximum entropy re-weighting
- Contributed to development of a plugin with TensorFlow GPU-accelerated operations combined with HOOMD-Blue molecular dynamics simulation engine (HOOMD-TF)
- Developed a web-app for peptide-based gelator transparency classification using Kernel ridge regression
- Developed an <u>automated module</u> on a Raspberry-Pi for real-time monitoring of HPC using Python, JS and HTML
- > Implemented finite difference analysis in Python to study 2D shallow water dynamics
- Implemented Monte Carlo simulations in MATLAB to study evolution of spin configurations of a ferromagnet using the Ising model

Energy & Materials Research Intern

(May 2022 - present)

Toyota Research Institute, Los Altos, CA

Developing deep learning frameworks to infer cell degradation in battery informatics

Teaching Assistant of "Advanced Transport Phenomena"

(Aug - Dec 2020)

University of Rochester, Rochester, NY

> Tutored students on homework related problems

Teaching Assistant of "Fundamentals of Fluid Mechanics"

(Jan - May 2020)

University of Rochester, Rochester, NY

> Tutored students on homework related problems and organized laboratory experiments

Lead CFD Analyst at Missouri S&T Solar Car Design Team

(2016 - 2018)

Missouri University of Science and Technology, Rolla, MO

- > Developed validated wind tunnel simulations in STAR-CCM+ for aerodynamic optimization of the solar car
- > Improved aerodynamic design efficiency prior to manufacturing

Manufacturing Process Modeling Intern

(May-Dec 2017)

The Goodyear Tire & Rubber Company, Akron, OH

- Phase-change heat transfer modeling and optimization of tire vulcanization process in ANSYS
- Model verification based on plant data and analytical solution
- Utilized assets more efficiently through MATLAB post processing and automating the simulation process using OPTIMUS
- Provided faster simulation results using Adaptive Mesh Refinement and High-Performance Computing
- GUI development and coupling ANSYS with MATLAB for time-effective post processing

Research Assistant (2016 - 2018)

Missouri University of Science and Technology, Rolla, MO

- Numerical modeling of multiphase flow in open microfluidics using ANSYS and STAR-CCM +
- Reduced simulation run-time by developing an algorithm for <u>Adaptive Mesh Refinement (AMR)</u>
- Increased solver's stability by developing an algorithm for Adaptive Time Step

Mehrad Ansari

Work Experience and Practical Training

Teaching Assistant of "Applied Numerical Methods in CFD" Missouri University of Science and Technology, Rolla, MO

- Lectured on Finite Difference Analysis in fluid dynamics, heat and mass transfer using MATLAB
- Organized CFD and programming workshops for ANSYS and Star-CCM +

Teaching Assistant of "Process Control"

(2014-2015)

University of Tehran, Iran

Tutored undergraduate students in process control using MATLAB and VisSim

Engineering Intern

(July-Sept 2014)

(Jan-May 2017)

Emden-Leer University of Applied Sciences, Emden, Germany

Design of experiments in advanced oxidation process (AOP) for wastewater treatment

President of IAESTE Iran

(Apr 2013-July 2014)

International Association for the Exchange of Students for Technical Experience

Led a team of college students that organized technical internships internationally

Computer Skills

Scientific Softwares Developed:

- MaxEnt AL-CFD
- Py0 • Peptide.bio
- HOOMD-TF • <u>GTP</u>

Other tools: MATLAB, STAR-CCM+, ANSYS, OPTIMUS, CATIA

Languages: Python, JavaScript, HTML, CSS

Honors and Awards

1st place winner at Battery Informatics & ML Competition (Dec 2022) Materials Research Society, Boston, MA Kwang-Yu and Lee-Chien Wang Fellowship (Nov 2021) Department of Chemical Engineering, University of Rochester Earl W. Costich Graduate Fellowship (May 2020) Department of Chemical Engineering, University of Rochester 1st place winner: 2017 Mike Alizadeh Scholarship (Aug 2017)

American Society of Civil Engineers (ASCE)

Recognized reviewer: Journal of Environmental Chemical Engineering MATLAB programming contest

(May 2016) (Mar 2014)

University of Sharif Computer-Aided Chemical Engineering Contest (SC3)

Sharif University of Technology, Iran

M Ansari, AD White

Publications

Do Large Language Models Know Chemistry? (Submitted Dec 2022) 1. AD White, GM Hocky, HA Gandhi, M Ansari, S Cox, GP Wellawatte, S Sasmal, Z Yang, K Liu, Y Singh, WJ Peña Ccoa

Serverless Prediction of Peptide Properties with Recurrent Neural Networks Journal of Chemical Information and Modeling

(Submitted Dec 2022)

Book chapter: Hyper-parameter Optimization in Deep Learning

(July 2022)

Deep Learning for Molecules and Materials, Living Journal of Computational Molecular Science M Ansari. AD White.

Inferring Spatial Source of Disease Outbreaks using Maximum Entropy American Physical Society, Physical Review E

(July 2022)

M Ansari, D Soriano-Paños, G Ghoshal, AD White. **Iterative Symbolic Regression for Learning Transport Equations**

(March 2022)

AIChE Journal, Special Edition for AI M Ansari, HA Gandhi, DG Foster, AD White

Simulation-based Inference with Approximately Correct Parameters via Maximum Entropy Machine Learning in Science and Technology R Barrett, M Ansari, G Ghoshal, AD White

(Apr 2022)

Presentations and Talks

1.	Maximum Entropy Inference in Chemical Reaction Networks with Unknown Kinetic Parameters AIChE, Phoenix, AZ	(Nov 2022)
2.	Wang Lecture: Rescuing Physics-based Model with Maximum Entropy Reweighting Department of Chemical Engineering, Rochester, NY	(Sept 2022)
3.	Positive Unlabeled Learning of Peptide Properties Fundamentals of Molecular Modelina and Simulation, Delayan, WI	(July 2022)

Serverless Prediction of Peptide Properties with Recurrent Neural Networks Middle Atlantic Regional Meeting of the American Chemical Society, Ewing Township, NJ

(June 2022)

5.

Simulation-based Inference with Approximately Correct Parameters via Maximum Entropy Advances in Neural Information Processing Systems 33: Workshop on Machine Learning for Structural Biology

(Dec 2020)