Уравнения в целых числах. Линейные уравнения. Уравнения Пелля

На занятии мы обсудили, как описывается множество решений линейного диофантового уравнения ax + by = c, (a, b) = 1. Достаточно найти хотя бы одно его решение (x_0, y_0) , после этого решение представляется в виде $(x, y) = (x_0 + tb, y_0 - ta)$, где $t \in \mathbb{Z}$. Частное решение можно находить при помощи алгоритма Евклида для чисел a и b.

Мы определили, что такое *кольцо*. Кольцом называется множество R, на котором заданы операции сложения $+: R \times R \to R$, вычитания $-: R \times R \to R$ и умножения $\cdot: R \times R \to R$. Кроме того, сложение и умножение коммутативны, т.е. $a \odot b = b \odot a$, ассоциативны, т. е. $(a \odot b) \odot c = a \odot (b \odot c)$, где $\odot = +$ или \cdot . А также умножение связано с аддитивными операциями «правилом фонтанчика»: a(b+c) = ab + bc.

Пример 1. Кольцо целых чисел \mathbb{Z} .

Пример 2. Кольцо всех многочленов $\mathbb{Z}[x]$ с целыми коэффициентами, где сложение и умножение многочленов определены обычным образом.

Пример 3. Кольцо остатков по модулю n: \mathbb{Z}_n . Элементами этого кольца служат числа от 0 до n-1. Сложение и умножение происходит с последующим взятием остатка.

Пример 4. Рассмотрим множество $\mathbb{Z}[\sqrt{d}] = \{x + \sqrt{d}y \mid x, y \in \mathbb{Z}\}$, где $d \in \mathbb{N}$ — фиксированное и не является точным квадратом. Сложение и умножение определяются, как и в случае действительных чисел (как обычно). Элементы кольца $\mathbb{Z}[\sqrt{d}]$ можно записывать в виде пар (x,y). Тогда $(x_1,y_1)+(x_2,y_2)=(x_1+x_2,y_1+y_2)$, а вот умножение этих пар будет устроено хитрее. (Запишите соответствующую формулу).

Также мы стали рассматривать уравнение Пелля $x^2 - dy^2 = 1$, где $d \in \mathbb{N}$ и число d не является точным квадратом. Оказывается, что его решения получаются так. Пусть существует решение (x_0, y_0) , являющееся ближайшим к точке (1, 0). Посмотрим на это решение, как на элемент кольца $\mathbb{Z}[\sqrt{d}]$, т. е. сопоставим ему элемент $x + \sqrt{d}y$. Тогда все решения уравнения Пелля — это просто степени элемента (x_0, y_0) в смысле умножения кольца $\mathbb{Z}[\sqrt{d}]$ (мы это доказали). Так что вся тяжесть решения уравнения Пелля состоит именно в нахождении такого решения (x_0, y_0) . На занятии мы начали доказывать существование точки (x_0, y_0) , и пока не успели это полностью сделать.

Мы также доказали лемму 1 и сформулировали лемму Минковского.

Лемма 1. На клетчатой плоскости лежит клякса, площади больше 1. Тогда найдутся две точки кляксы, служащие началом и концом целочисленного вектора.

Лемма Минковского. На клетчатой плоскости расположена центрально-симметричная выпуклая фигура, площади больше 4 (центр симметрии — начало координат). Тогда эта фигура содержит целую точку, отличную от начала координат.

- 1. Решите в целых числах уравнения:
 - **a.** 23x + 34y = 5,
 - **b.** 12x + 34y + 56z = 7,
 - c. $x^2 2y^2 = 1$,
 - **d.** в натуральных: x! + y! = z! (внезапно).
- **2.** Для элемента $x+\sqrt{d}y\in\mathbb{Z}[\sqrt{d}]$ его весом $N(x+\sqrt{d}y)$ назовём выражение x^2-dy^2 . Докажите, что $N(\alpha\beta)=N(\alpha)N(\beta)$, где $\alpha,\ \beta\in\mathbb{Z}[\sqrt{d}]$.

- **3.** Говорят, что элемент a некоторого кольца R делится на $b \in R$, если существует такой элемент $c \in R$, что a = bc.
 - Пусть $M = N(x_2 + \sqrt{d}y_2)$. Докажите, что если $x_1 \equiv x_2 \pmod{N}$ и $y_1 \equiv y_2 \pmod{N}$, то тогда $x_1 + \sqrt{d}y_1$ делится на $x_2 + \sqrt{d}y_2$ (делимость понимается в смысле кольца $\mathbb{Z}[\sqrt{d}]$).
- **4.** Во всех узлах целочисленной решетки, кроме одного, в котором находится охотник, растут деревья, стволы которых имеют радиус r. Докажите, что охотник не сможет увидеть зайца, находящегося от него на расстоянии больше $\frac{1}{r}$.
- **5.** Дана бесконечная клетчатая бумага и фигура, площадь которой меньше площади клетки. Докажите, что эту фигуру можно положить на бумагу, не накрыв ни одной вершины клетки.