Database Management System Project

Group Id:- T612 Lab Group No:- 6

Topic Name: - e-Bay

- Functional Dependencies and Proof that Relations are in Boyce-Codd Normal Form(BCNF):-
- (1) User_Profile

Attributes:- { Email , Password , first_name , last_name }

Email → Password

Email → first_name

Email → last_name

> Let's take the closure of Email:-

Email + = { Email , Password , first_name , last_name }

Candidate-Key:- Email

Primary-Key:- Email

Since in this Minimal Set of FDs, the left side in all of the FDs is Email which is Candidate-Key of this relation Therefore, "User_Profile" is in BCNF

(2) User

Attributes:-{ User_id, Email}
User_id → Email

➤ Let's take the closure of User_id:-

User_id + = { User_id , Email }

Candidate-Key:- User_id Primary-Key:- User_id

Since in this Minimal Set of FDs, the left side in all of the FDs is User_id which is Candidate-Key of this relation Therefore, "User" is in BCNF

(3) Seller

Attributes:- { User_id , item_sold, Avg_Rating , A/C_Number }

User_id → item_sold
User_id → Avg_Rating
User id → A/C Number

> Let's take the closure of User_id:-

User_id + = { User_id , item_sold, Avg_Rating , A/C_Number }

Candidate-Key:- User_id Primary-Key:- User_id

Since in this Minimal Set of FDs, the left side in all of the FDs is User_id which is Candidate-Key of this relation Therefore, "Seller" is in BCNF

(4) Bank_Details

Attributes:- { A/C_Number , Balance }
A/C_Number → Balance

> Let's take the closure of A/C_Number:-

A/C_Number + = { A/C_Number , Balance }

Candidate-Key:- A/C_Number Primary-Key:- A/C_Number

Since in this Minimal Set of FDs, the left side in all of the FDs is A/C_Number which is Candidate-Key ofthis relation. Therefore, "Bank_Details" is in BCNF

(5) Product

Attributes:- { Product_id , Product_Name ,
Watching_Number ,Available_Units , Price , Description ,
Avg_Rating , Product_Seller_id }

```
Product_id → Product_Name
     Product_id → Watching_Number
     Product_id → Available_Units
     Product id → Price
     Product_id → Description
     Product_id → Avg_Rating
     Product id → Product Seller id
> Let's take the closure of Product id:-
  Product_id + = { Product_id , Product_Name ,
  Watching_Number, Available_Units, Price, Description,
  Avg_Rating , Product_Seller_id }
     Candidate-Key:- Product_id
     Primary-Key:- Product_id
> Since in this Minimal Set of FDs, the left side in all of the FDs is
  Product_id which is Candidate-Key of this relation.
  Therefore, "Product" is in BCNF
(6) Product Review
     Attributes:- { Product_id , User_id , Rating , Comment }
     {Product_id, User_id} → Rating
     {Product_id, User_id} → Comments
Let's take the closure of { Product_id, User_id }:-
{Product_id , User_id} + = {Product_id, User_id, Rating, Comment}
     Candidate-Key:- { Product_id, User_id }
     Primary-Key:- { Product_id , User_id }
```

Since in this Minimal Set of FDs, the left side in all of the FDs is { Product_id, User_id } which is Candidate-Key of this relation. Therefore, "Product_Review" is in BCNF

(7) Order

```
Attributes:- { Order_id , Order_Date , Shipping_Cost ,
Buyer_User_id , Transaction_id ,Shipping_Address_User_id,
Total_order_cost }
```

```
Order_id → Order_Date
Order_id → Shipping_Cost
Order_id → Buyer_User_id
Order_id → Transaction_id
Order_id → Shipping_User_id
Order_id → Total_order_cost
Transaction_id → Order_id
Transaction_id → Order_Date
Transaction_id → Shipping_Cost
Transaction_id → Buyer_id
Transaction_id → Shipping_User_id
Transaction_id → Total_order_cost
```

Let's take the closure of Order_id and Transaction_id:Order_id = { Order_id , Order_Date , Shipping_Cost ,
Buyer_User_id , Transaction_id , Shipping_Address_User_id,
Total_order_cost }
Transaction_id = { Order_id , Order_Date , Shipping_Cost ,
Buyer_User_id , Transaction_id , Shipping_Address_User_id,
Total_order_cost }

Candidate-Keys:- Order_id , Transaction_id Primary-Key:- Order_id

➤ Since in this Minimal Set of FDs, the left side in all of the FDs is Either Order_id or Transaction_id which are Candidate-Keys of this relation. Therefore, "Order" is in BCNF

(8) Shipping_Status

```
Attributes:- { tracking_id , Est_Delivery_Date , Delivered_Date , Delivery_Status , Order_id }

tracking_id → Est_Delivery_Date 
tracking_id → Delivered_Date 
tracking_id → Delivery_Status 
tracking_id → Order_id 
Order_id → Est_Delivery_Date 
Order_id → Delivered_Date 
Order_id → Delivery_Status 
Order_id → tracking_id
```

Let's take the closure of Order_id and tracking_id:-

```
Order_id<sup>+</sup> = { tracking_id , Est_Delivery_Date , Delivered_Date ,

Delivery_Status, Order_id }

tracking_id<sup>+</sup> = { tracking_id , Est_Delivery_Date ,

Delivered_Date , Delivery_Status, Order_id }
```

Candidate-Keys:- Order_id , tracking_id Primary-Key:- tracking_id

➤ Since in this Minimal Set of FDs, the left side in all of the FDs is Either Order_id or tracking_id which are Candidate-Keys of this relation. Therefore, "Shipping_Status" is in BCNF

```
(9) Shipper
```

```
Attributes:- { Shipper_id , Inv_House_Name , Shipper_Name }

Shipper_id → Inv_House_Name
Shipper_id → Shipper_Name
```

Let's take the closure of Shipper_id:-

```
Shipper_id + = { Shipper_id , Inv_House_Name , Shipper_Name }

Candidate-Key:- Shipper_id

Primary-Key:- Shipper_id
```

Since in this Minimal Set of FDs, the left side in all of the FDs is Shipper_id which is Candidate-Key of this relation. Therefore, "Shipper" is in BCNF

(10) Shipper_Phone_No

```
Attributes:- { Shipper_id , Phone_No }

Phone_No → Shipper_id
```

Let's take the closure of Phone_No:-

```
Phone_No<sup>+</sup> = { Shipper_id , Phone_No }
```

Candidate-Key:- Phone_No
Primary-Key:- {Shipper_id , Phone_No}

Since in this Minimal Set of FDs, the left side in all of the FDs is Phone_No which is Candidate-Key of this relation. Therefore, "Shipper_Phone" is in BCNF

```
(11) Inv_Phone_No
     Attributes:- { Inv_House_Name,Inv_Phone_No }
     Inv_Phone_No → Inv_House_Name
> Let's take the closure of Inv_Phone_No:-
  Inv_Phone_No<sup>+</sup> = { Inv_House_Name , Inv_Phone_No }
     Candidate-Key:- Inv_Phone_No
     Primary-Key:- { Inv_House_Name,Inv_Phone_No }
> Since in this Minimal Set of FDs, the left side in all of the FDs is
  Inv_Phone_No which is Candidate-Key of this relation.
  Therefore, "Inv_Phone_No" is in BCNF
(12) Shipping_Address
     Attributes:- { User_id , Apartment_Name , City , Street ,
     State , Pincode , Is_Default }
     User_id → Apartment_Name
     User id \rightarrow City
     User_id → Street
     User id → State
     User id → Pincode
     User_id → Is_Default
> Let's take the closure of User id:-
  User_id + = { User_id , Apartment_Name , City , Street , State ,
```

Pincode , Is_Default }

Candidate-Key:- User_id Primary-Key:- User_id

Since in this Minimal Set of FDs, the left side in all of the FDs is User_id which is Candidate-Key of this relation. Therefore, "Shipping_Address" is in BCNF

(13) User_Phone

```
Attributes:- { User_id , Phone_No }
```

Phone_No → User_id

Let's take the closure of Phone_No:-

Candidate-Key:- Phone_No

Primary-Key:- {User_id , Phone_No}

Since in this Minimal Set of FDs, the left side in all of the FDs is Phone_No which is Candidate-Key of this relation. Therefore, "User_Phone" is in BCNF

(14) Contains

```
Attributes:- { User_id , Product_id }
```

- There does not exist any Functional Dependency
 Primary_Key:- { User_id , Product_id }
- Since there does not exist any FD, Therefore the relation "Contains" is in BCNF

(15) Cart

Attributes:- { User_id }

- There does not exist any Functional Dependency
 Primary_Key:- { User_id }
- Since there does not exist any FD, Therefore the relation "Contains" is in BCNF

(16) Buyer

Attributes:- { User_id}

- There does not exist any Functional Dependency
 Primary_Key:- { User_id }
- > Since there does not exist any FD, Therefore the relation "Contains" is in BCNF

(17) Product_Image

Attributes:- {image_url, Product_id }

- There does not exist any Functional Dependency
 Primary_Key:- {image_url, Product_id }
- Since there does not exist any FD, Therefore the relation "Contains" is in BCNF

(18) Has_Category

Attributes:-{Category_Name, Product_id}

- There does not exist any Functional Dependency
 Primary_Key:- { Category_Name ,Product_id }
- Since there does not exist any FD, Therefore the relation "Contains" is in BCNF

(19) Category

Attributes:- { Category_Name }

- There does not exist any Functional Dependency
 Primary_Key:- { Category_Name }
- Since there does not exist any FD, Therefore the relation "Contains" is in BCNF
- (20) Category_Has_Subcategory

Attributes:- { Category_Name, Subcategory_Name }

- There does not exist any Functional Dependency
 Primary_Key:- { Category_Name, Subcategory_Name }
- Since there does not exist any FD, Therefore the relation "Contains" is in BCNF
- (21) Subcategory

Attributes:- { Subcategory_Name }

- There does not exist any Functional Dependency
 Primary_Key:- { Subcategory_Name }
- Since there does not exist any FD, Therefore the relation "Contains" is in BCNF
- (22) Has_Subcategory

Attributes:- { Subcategory_Name, Product_id }

- There does not exist any Functional Dependency
 Primary_Key:- { Subcategory_Name, Product_id }
 - Since there does not exist any FD, Therefore the relation "Contains" is in BCNF

(23) Payment

Attributes:- { Transaction_id }

There does not exist any Functional Dependency
Primary_Key:- { Transaction_id }

Since there does not exist any FD, Therefore the relation "Contains" is in BCNF

(24) Watches

Attributes:- { User_id , Product_id }

- There does not exist any Functional Dependency
 Primary_Key:- { User_id , Product_id }
- > Since there does not exist any FD, Therefore the relation "Contains" is in BCNF

(25) Has_Order

Attributes:- { Order_id , Product_id }

- There does not exist any Functional Dependency
 Primary_Key:- { Order_id , Product_id }
- Since there does not exist any FD, Therefore the relation "Contains" is in BCNF

(26) Delivers

Attributes:- { Shipper_id , Order_id }

> There does not exist any Functional Dependency
Primary_Key:- { Shipper_id , Order_id }

Since there does not exist any FD, Therefore the relation "Contains" is in BCNF (27) Inv_House

Attributes:- { Inv_House_Name}

- There does not exist any Functional Dependency
 Primary_Key:- { Inv_House_Name}
- > Since there does not exist any FD , Therefore the relation "Contains" is in BCNF