11.3 The Integral Test

July 25, 2016

Definitions & Theorems:

1. The Integral Test

Suppose f is a continuous, positive, decreasing function on $[1,\infty)$ and let $a_n=f(n)$. Then the series $\sum_{n=1}^{\infty}a_n$ is convergent if and only if the improper integral $\int_1^\infty f(x) \, \mathrm{d}x$ is convergent. In other words: (i) If $\int_1^\infty f(x) \, \mathrm{d}x$ is convergent, then $\sum_{n=1}^\infty a_n$ is convergent.

- (ii) If $\int_{1}^{\infty} f(x) dx$ is divergent, then $\sum_{n=1}^{\infty} a_n$ is divergent.

- a. The interval $[1, \infty)$ may be $[a, \infty)$, a > 1
- b. Decreasing need not be everywhere.
- c. We should *not* infer from the Integer Test that the sum of the series is equal to the value of the integral.
- 2. The p-series $\sum_{n=1}^{\infty}\frac{1}{n^{p}}$ is convergent if p>1 and divergent if $p\leq1$

Proofs or Explanations:

1. The *p*-series $\sum_{n=1}^{\infty} \frac{1}{n^p}$

(i)
$$p = 0 \Rightarrow \sum_{n=1}^{\infty} 1$$

n=1 diverges by Test of Divergence

(ii)
$$p < 0 \Rightarrow \sum_{n=1}^{\infty} \frac{1}{n^p} = \infty$$

diverges by Test of Divergence (iii)
$$p > 0 \Rightarrow f(x) = \frac{1}{x^p}$$

- i. f(x) is continuous on $[1, \infty)$
- ii. $0 < x \Rightarrow 0 < x^p \Rightarrow \frac{1}{x^p} > 0 \Rightarrow f(x)$ is positive on $[1, \infty)$
- iii. $f'(x) = \frac{-p}{x^{p+1}} < 0 \Rightarrow f(x)$ is decreasing for all $x \in [1, \infty)$
- ⇒ we can use Integral Test

$$\int_{1}^{\infty} \frac{1}{x^{p}} \text{ converges for } p > 0 \text{, diverges for } 0$$

$$\Rightarrow \sum_{n=1}^{\infty} \frac{1}{n^p} \text{ converges for } p > 1 \text{ and diverges for } 0$$

(i)(ii)(iii)
$$\Rightarrow \sum_{n=1}^{\infty} \frac{1}{n^p}$$
 converges for $p > 1$ and diverges otherwise.

Extra topics:

1.

Examples:

1. For what value(s) of p, does $\sum_{n=2}^{\infty} \frac{1}{n(\ln n)^p}$ converge?

(i)
$$p=0 \Rightarrow \sum_{n=2}^{\infty} \frac{1}{n}$$
 is a p -series with $p=1$, so $\sum_{n=2}^{\infty} \frac{1}{n(\ln n)^p}$ diverges

(ii)
$$p \neq 0$$
, let $f(x) = \frac{1}{x(\ln x)^p}$

- i. f(x) is continuous on $[2, \infty)$
- ii. x > 0 for $x \in [2, \infty)$, $\ln x > 0$ for $x \in [2, \infty) \Rightarrow f(x) > 0$ for all $x \in [2, \infty) \Rightarrow f(x)$ is positive

- 2. For what values(s) of p, does $\sum_{n=2}^{\infty} \frac{\ln p}{n^p}$ converge?

 3. Dos Integral Test apply for $\sum_{n=1}^{\infty} n e^{-n^2}$