Отношение эквивалентности.

Отношение называется *отношением эквивалентности*, если оно рефлексивно, симметрично и транзитивно.

Примеры.

- 1. Пусть A=R, $x\varphi y \Leftrightarrow x=y$.
- 2. Пусть A=N, $x\phi y \Leftrightarrow x \equiv y \pmod{3}$, то есть $x \bowtie y$ дают одинаковый остаток при делении на 3.
 - 3. Пусть A множество ненулевых векторов на плоскости, $x \varphi y \Leftrightarrow x$ коллинеарен y, то есть $x \parallel y$.
 - 4. Пусть A множество студентов вашего вуза, $x\phi y \Leftrightarrow x$ учится на одном и том же курсе, что и y.

Вопрос для самостоятельной работы:

Проверить для каждого из перечисленных отношений выполнение рефлексивности, симметричности и транзитивности.

Граф отношения эквивалентности транзитивен, содержит только обоюдоострые дуги и у каждой вершины имеет петлю:

Разбиением множества A называется система **m** непустых, попарно непересекающихся множеств, в объединении дающих само множество A, то есть

$$\mathbf{m} = \{A_i \mid \forall_i (A_i \neq \varnothing), \forall_k \forall_n (k \neq n \rightarrow A_k \cap A_n = \varnothing), \bigcup_i A_i = A\}. \quad (53)$$

Мощность системы **m** называется *индексом разбиения*. Пример разбиения множества A:

Пусть дано разбиение \mathbf{m} . *Отношение* $\Phi_{\mathbf{m}}$, *сопряжённое с разбиением* \mathbf{m} , определяется так:

$$x\varphi_{\mathbf{m}}y \Leftrightarrow \exists_{i}(x \in A_{i}, y \in A_{i}).$$
(54)

Теорема об отношении, сопряжённым с разбиением.

Для любого разбиения отношение, сопряжённое с разбиением, является отношением эквивалентности.

<u>Доказательство</u>. Пусть **m** – разбиение множества A, а $\Phi_{\rm m}$ – отношение, сопряжённое с разбиением **m**. Докажем, что $\Phi_{\rm m}$ рефлексивно, симметрично и транзитивно.

- 1. Возьмём произвольный элемент $x \in A$. Так как объединение множеств A_n даёт всё множество A, то x попадёт в некоторый класс A_i . Можно записать $\exists_i (x \in A_i, x \in A_i)$, а это и означает, что $x \varphi_{\mathbf{m}} x$. Значит, отношение $\Phi_{\mathbf{m}}$ рефлексивно.
- 3. Пусть $x\varphi_{\mathbf{m}}y$. Это значит, что найдётся множество A_i , вошедшее в разбиение \mathbf{m} , такое, что $x \in A_i$, $y \in A_i$. Это можно записать, как $\exists_i (y \in A_i, x \in A_i)$, а это означает, что $y\varphi_{\mathbf{m}}x$. Значит, отношение $\Phi_{\mathbf{m}}$ симметрично.
- 5. Пусть $x\varphi_{\mathbf{m}}y$, $y\varphi_{\mathbf{m}}z$. Из того, что $x\varphi_{\mathbf{m}}y$ следует, что найдётся множество A_i , вошедшее в разбиение \mathbf{m} , такое, что $x \in A_i$, $y \in A_i$. Но так как $y\varphi_{\mathbf{m}}z$, то y и z также принадлежат одному из множеств разбиения. Но классы, вошедшие в состав \mathbf{m} , не пересекаются, значит y и z принадлежат тому же классу A_i , которому

принадлежат x и y. Таким образом, $\exists_i (x \in A_i, z \in A_i)$, а это означает, что $x \varphi_{\mathbf{m}} z$. Значит, отношение $\Phi_{\mathbf{m}}$ транзитивно.

Итак, доказано, что $\Phi_{\rm m}$ – отношение эквивалентности.

<u>Пример.</u> Пусть A – множество студентов вашего вуза. Рассмотрим разбиение множества A на факультеты. Тогда отношение, сопряжённое с этим разбиением таково, что учатся на одно и том же факультете. Из теоремы об отношении, сопряжённом с разбиением следует, что следует, что отношение «учиться на одном и том же факультете» является отношением эквивалентности.

<u>Теорема о порождении разбиения отношением эквивалентности.</u>

Для любого отношения эквивалентности Φ , заданного на множестве A, существует разбиение \mathbf{m} множества A, такое, что отношение $\Phi_{\mathbf{m}}$, сопряжённое с этим разбиением, совпадает с Φ .

<u>Доказательство</u>. Пусть отношение эквивалентности Φ задано на множестве A. Возьмём произвольный элемент $a \in A$.

Класс эквивалентности, порождённый элементом a, обозначаемый, как [a]— это множество всех тех элементов из A, которые вступают с aв отношение Φ :

$$[a] = \{x \mid x \in A, x \varphi a\}. \tag{55}$$

Если во множестве A, остались элементы, не попавшие в[a], то возьмём $b \in A, b \not\in [a]$, рассмотрим [b] и будем продолжать эту процедуру до тех пор, пока каждый элемент из A попадёт в один из классов эквивалентности.

Рассмотрим множество **m** всех полученных классов эквивалентности, которое назовём фактор-множеством:

$$\mathbf{m} = \{ [a] | a \in A, \bigcup [a] = A \}.$$
 (56)

Покажем, что **m** является разбиением множества A. Действительно,

- каждый из классов [b] не пуст, так как в нём, по крайней мере, есть элемент b;
- $\bigcup [a] = A$ по построению;

• Покажем, что различные классы эквивалентности не пересекаются. Допустим противное, что нашлись классы [a] и [b], причём $[a] \neq [b]$, то есть $\overline{a\varphi b}$, и в то же время их пересечение не пусто, то есть $\exists_{c \in A} (c \in [a], c \in [b])$. Тогда $c\varphi a, c\varphi b$. В силу симметричности имеем $a\varphi c, c\varphi b$, откуда из транзитивности следует $a\varphi b$, получено противоречие. Значит, построенные различные классы эквивалентности не могут иметь непустое пересечение.

Итак, доказано, что полученная система \mathbf{m} —разбиение множества A. Из построения следует, что отношение $\Phi_{\mathbf{m}}$, сопряжённое с разбиением \mathbf{m} , совпадает с отношением Φ .

Примеры.

1. Пусть A=N, $x\varphi y \Leftrightarrow x \equiv y \pmod{3}$.

Тогда, например, [1]—это множество всех натуральных чисел, дающих остаток 1 при делении на 3, а фактор-множество будет состоять из трёх классов:

класс натуральных чисел, делящихся на 3 без остатка; класс натуральных чисел, дающих остаток 1 при делении на 3; класс натуральных чисел, дающих остаток 2 при делении на 3. Индекс полученного разбиения равен 3.

2. Пусть A – множество студентов вашего вуза, $x\phi y \iff x$ учится на одном и том же курсе, что и y.

Это отношение эквивалентности порождает разбиение множества всех студентов вуза на классы однокурсников, индекс полученного разбиения в нашем вузе равен 6.

Отношения порядка.

Отношение называется *отношением порядка*, если оно антисимметрично и транзитивно.

Отношение частичного порядка.

Отношение называется *отношением частичного порядка*, если оно рефлексивно, антисимметрично и транзитивно.

Если x и y вступают в отношение частичного порядка, то пишут $x \preccurlyeq y$ и говорят, что x *предшествует* y, или x *минорирует* y, или y *мажорирует* x.

Примеры.

- 1. A=N, $x \leq y \Leftrightarrow x \neq y$.
- 2. $A = \{0;1\}^n, (a_1, a_2, ..., a_n) \leq (b_1, b_2, ..., b_n) \Leftrightarrow \forall_i (a_i \leq b_i).$
- 3. $A=U, X \leq Y \Leftrightarrow X \subseteq Y$.
- 4. A=R, $x \le y \iff x \ge y$.
- 5. A множество жителей Самары, проснувшихся сегодня, $x \le y \iff x$ проснулся сегодня не позже y.

Задание для самостоятельной работы:

Проверить для каждого из перечисленных отношений выполнение рефлексивности, антисимметричности и транзитивности.

Граф отношения частичного порядка транзитивен, не содержит обоюдоострых дуг и у каждой вершины имеет петлю:

Если на множестве A задано отношение частичного порядка, то A называется *частично упорядоченным множеством*.

Элемент I частично упорядоченного множества A называется наибольшим элементом этого множества, если каждый элемент из A ему предшествует, т.е.

$$I \in A, \ \forall_{x \in A} \ (x \leqslant I) \tag{57}$$

Элемент O частично упорядоченного множества A называется наименьшим элементом этого множества, если он предшествует любому элементу из A, т.е.

$$O \in A, \ \forall_{x \in A} \ (O \leqslant x)$$
 (58)

На графе наибольшему элементу соответствует вершина, в которую заходят дуги из всех вершин графа, а наименьшему элементу соответствует вершина, из которой выходят дуги во все

вершины графа:

Примеры.

1. A=N, $x \leq y \Leftrightarrow x \geq y$.

Здесь I = 1, наименьшего элемента нет.

2.
$$A = \{0,1\}^n$$
, $(a_1, a_2, ..., a_n) \leq (b_1, b_2, ..., b_n) \Leftrightarrow \forall_i (a_i \leq b_i)$.

Здесь I = (1, 1, ..., 1), O = (0, 0, ..., 0).

3.
$$A=U$$
, $X \leq Y \Leftrightarrow X \subseteq Y$.

Здесь
$$I=U$$
, $O=\emptyset$.

4.
$$A=R$$
, $x \le y \Leftrightarrow x \ge y$.

Здесь наибольшего и наименьшего элементов нет.

5. A — множество жителей Самары, проснувшихся сегодня, $x \le y \iff x$ проснулся сегодня не позже y.

Здесь I – житель Самары, проснувшийся сегодня позже всех, O –житель Самары, проснувшийся сегодня раньше всех.

Теорема о единственности наибольшего элемента.

Частично упорядоченное множество может иметь не более одного наибольшего элемента.

Доказательство. Пусть I и I^* – наибольшие элементы частично упорядоченного множества A. Тогда $I ≤ I^*$, так как I^* – набольший элемент множества A, а I – элемент множества A.

С другой стороны, $I^* \leq I$, так как I — набольший элемент множества A, а I^* — элемент множества A. Тогда, в силу антисимметричности, $I^* = I$.

Справедлива также двойственная теорема:

Теорема о единственности наименьшего элемента.

Частично упорядоченное множество может иметь не более одного наименьшего элемента.

Задание для самостоятельной работы:

Докажите теорему о единственности наименьшего элемента.

Элемент M частично упорядоченного множества A называется максимальным элементом этого множества, если он предшествует лишь сам себе, т.е.

$$M \in A, \exists_{x \in A} (M \leq x \Longrightarrow x = M).$$
 (59)

Элемент mчастично упорядоченного множества A называется mинимальным элементом этого множества, если ему предшествует лишь он сам, т.е.

$$m \in A, \exists_{x \in A} (x \leq m \Longrightarrow x = m).$$
 (60)

Каждый наибольший элемент является максимальным, также верно, что каждый наименьший элемент является минимальным. Обратное неверно, максимальный элемент не обязательно наибольший, а минимальный — не обязательно наименьший.

На графе максимальному элементу соответствует вершина, в которую дуги только заходят, а минимальному элементу соответствует вершина, из которой дуги только выходят:

Пример:

Здесь минимальные элементы — m_1 и m_2 , а максимальные элементы — M_1 и M_2 .

Как видим, частично упорядоченное множество может иметь несколько минимальных или максимальных элементов.