Mathematics of Learning – Worksheet 4 – – Discussion on Novermber 14/15th, 2023

- The exercise sheets will be uploaded every Monday. Solution sketches will be uploaded one week later.
- You can hand in your own solutions via StudOn and we correct them this is not mandatory. Please hand in small groups of 2-3 students.
- For questions, please use the forum on StudOn since other students may have similar questions. If you have a more personal question about the exercises please send an email to ehsan.waiezi@fau.de or lars.weidner@fau.de respectively.

Basics [Eigenvectors of symmetric matrices.] Consider a symmetric matrix $A \in \mathbb{R}^{n \times n}$ (i.e. $A = A^T$). Prove that for two eigenvalues $\lambda_1, \lambda_2 \in \mathbb{R}$ with $\lambda_1 \neq \lambda_2$ and corresponding eigenvectors $v_1 \in \mathbb{R}^n$ and $v_2 \in \mathbb{R}^n$ it holds that $\langle v_1, v_2 \rangle = 0$, i.e., that v_1 and v_2 are orthogonal.

Solution.

$$\lambda_1 \langle v_1, v_2 \rangle = \langle \lambda_1 v_1, v_2 \rangle = \langle A v_1, v_2 \rangle \stackrel{\mathsf{Symmetry}}{=} \langle v_1, A v_2 \rangle = \langle v_1, \lambda_2 v_2 \rangle = \lambda_2 \langle v_1, v_2 \rangle$$

Since $\lambda_1 \neq \lambda_2$, this implies that the inner product is zero.

Basics. [Singular Value Decomposition].

Calculate the SVD of the matrix

$$A = \begin{pmatrix} 2 & -2 & -2 & 0 \\ -1 & -1 & 3 & 4 \\ 2 & -2 & 2 & -2 \end{pmatrix}.$$

The SVD of a matrix $A \in \mathbb{R}^{m \times n}$ consists of matrices $U \in \mathbb{R}^{m \times m}$, $V \in \mathbb{R}^{n \times n}$ which are orthogonal, i.e., UU^T , VV^T is equal to the corresponding unit matrix, and a matrix $\Sigma \in \mathbb{R}^{m \times n}$ which has only positive, descending entries on the diagonal (it looks like

$$\begin{pmatrix} * & 0 & 0 & 0 \\ 0 & * & 0 & 0 \\ 0 & 0 & * & 0 \end{pmatrix}$$

in our case). $U \cdot \Sigma \cdot V^T = A$ should hold, in case you calculated correctly. Hint: No nice numbers this time.

Solution. SVDs are calculated computationally by sophisticated numerical algorithms, which also work efficient in the case the matrix A is large or ill-conditioned. A possibility to calculate the SVD manually on a sheet of paper is the following: U can be chosen to be the matrix of (normalized) eigenvectors of AA^T . The vectors have to be sorted according to the size of the corresponding eigenvalues. If v is a normalized

eigenvector of AA^T , it is not clear beforehand if to take v or -v since both would be normalized eigenvectors. Analogously, V can be chosen to be the matrix of normalized eigenvectors of A^TA . Hence, U and V are equal to (for example, every column might be multiplied by -1)

$$U = \begin{pmatrix} 0.3559 & 0.3110 & -0.8813 \\ -0.9050 & 0.3499 & -0.2420 \\ 0.2331 & 0.8837 & 0.4060 \end{pmatrix}, \quad V = \begin{pmatrix} -0.3811 & 0.5003 & 0.2429 & -0.7385 \\ 0.0499 & -0.6720 & -0.4088 & -0.6155 \\ 0.5417 & 0.5385 & -0.6336 & -0.1231 \\ 0.7476 & -0.0902 & 0.6102 & -0.2462 \end{pmatrix}$$

 Σ is a "diagonal" matrix with the squareroots of the eigenvalues of A^TA (or AA^T , respectively; it is the same).

$$\Sigma = \begin{pmatrix} 5.4658 & 0 & 0 & 0 \\ 0 & 4.0762 & 0 & 0 \\ 0 & 0 & 2.9171 & 0 \end{pmatrix}$$

Calculating the product $U\Sigma V^T$, we see that it is not equal to A. We have to set the signs right, using the identity (u_k denoting the k-th column of U, and v_k denoting the k-th column of V, and σ_k denoting the k-th singular value):

$$u_k = \sigma_k^{-1} A v_k$$

Hence, we derive (and technically, this makes it useless that we calculated a candidate for *U* beforehand)

$$U = \begin{pmatrix} -0.3559 & 0.3110 & 0.8813 \\ 0.9050 & 0.3499 & 0.2420 \\ -0.2331 & 0.8837 & -0.4060 \end{pmatrix}$$

Multiplying $U\Sigma V^T$ we get A.

Exercise 1 [Reading assignment: Association rules].

Read chapter 14.2 of the *Hastie* book, regarding association rules. Discuss the contents with one (or more) fellow student for at least half an hour.

Exercise 2 [Reading assignment: Self organizing maps (SOM)].

Read chapter 14.5 of the *Hastie* book (or 14.4, depending on your version), regarding self organizing maps. Discuss the contents with one (or more) fellow student for at least half an hour.

Exercise 3 [Equivalence of eigenvalue problems].

Let $x^{(1)}, \ldots, x^{(N)}$ be given input data. Furthermore, let \mathcal{H} be a (possibly infinite-dimensional) Hilbert space, $\Psi \colon \mathbb{R}^M \to \mathcal{H}$ a map from the input data, \mathbf{C} the covariance matrix of the transformed data in \mathcal{H} with:

$$\mathbf{C} := \frac{1}{N} \sum_{i=1}^{N} \Psi(x^{(i)}) \Psi(x^{(i)})^{T}, \tag{1}$$

Furthermore, let $k: \mathbb{R}^M \times \mathbb{R}^M \to \mathbb{R}$ be the corresponding kernel function and K the associated Kernel matrix with $K_{i,j} = k(x^{(i)}, x^{(j)})$.

1. Show that for any $\lambda \neq 0$ every solution $\vec{\alpha} \in \mathbb{R}^N$ with $\vec{\alpha} \perp \text{kern}(K)$ of the equation

$$N\lambda K\vec{\alpha} = K^2\vec{\alpha} \tag{2}$$

is also a solution of the eigenvalue equation:

$$N\lambda\vec{\alpha} = K\vec{\alpha}.\tag{3}$$

Solution. We proof the statement by contradiction. For this let us assume that there exists a vector $\vec{\alpha} \in \mathbb{R}^N$ with $\vec{\alpha} \perp \ker K$ that solves (2) but not (3). Then we now that:

$$N\lambda\vec{\alpha} - K\vec{\alpha} = \vec{\beta} \neq \vec{0}.$$

We can rewrite (2) and see that

$$\vec{0} = N\lambda K\vec{\alpha} - K^2\vec{\alpha} = K(N\lambda\vec{\alpha} - K\vec{\alpha}) = K\vec{\beta}.$$

Thus, we know that $\vec{\beta} \in \text{kern}(K)$ and thus $\langle \vec{\alpha}, \vec{\beta} \rangle = 0$ since $\vec{\alpha} \perp \text{kern } K$. On the other hand, we can write:

$$0 < \langle \vec{\beta}, \vec{\beta} \rangle = \langle N\lambda \vec{\alpha} - K\vec{\alpha}, \beta \rangle = N\lambda \underbrace{\langle \vec{\alpha}, \vec{\beta} \rangle}_{=0} - \langle K\vec{\alpha}, \beta \rangle = -\langle \vec{\alpha}, \underbrace{K\vec{\beta}}_{=\vec{0}} \rangle = 0.$$

This is clearly a contradiction, which proves the original statement.

- 2. Use the previous statement to show that the following "equivalence" holds for all $\lambda > 0$
 - (a) $\mathbf{v} \in \mathcal{H}$ is eigenvector of \mathbf{C} with respect to eigenvalue $\lambda \Rightarrow \vec{\alpha} \in \mathbb{R}^N$ defined such that $\mathbf{v} = \sum_{i=1}^N \alpha_i \Psi(x^{(i)})$ is eigenvector of K with respect to eigenvalue $N\lambda$
 - (b) $\vec{\alpha} \in \mathbb{R}^N$ is eigenvector of K with respect to eigenvalue $N\lambda \Rightarrow \mathbf{v} = \sum_{i=1}^N \alpha_i \Psi(x^{(i)}) \in \mathcal{H}$ is eigenvector of \mathbf{C} with respect to eigenvalue λ

Solution. To prove the statement we have to show both directions separately.

(a) We show the first direction of this equivalence by assuming that the eigenvalue equation in \mathcal{H} holds:

$$\lambda \mathbf{v} = \mathbf{C}\mathbf{v}$$
, for $\lambda \neq 0$.

From

$$\lambda \mathbf{v} = \mathbf{C}\mathbf{v} := \frac{1}{N} \sum_{i=1}^{N} \Psi(x^{(i)}) \langle \Psi(x^{(i)}), \mathbf{v} \rangle$$

we see that $\mathbf{v} \in \operatorname{span}(\Psi(x^{(1)}), \dots, \Psi(x^{(N)}))$ and hence there exists a vector of coefficients $\vec{\alpha} = (\alpha_1, \dots, \alpha_N) \in \mathbb{R}^N$ such that:

$$\mathbf{v} = \sum_{i=1}^{N} \alpha_i \Psi(x^{(i)}).$$

We define a linear operator $\Psi^T \colon \mathcal{H} \to \mathbb{R}^N$ with $(\Psi^T \mathbf{u})_i = \langle \Psi(x^{(i)}), \mathbf{u} \rangle$ for i = 1, ..., N. Using this notation we apply this operator to the let side of the eigenvalue equation and can deduce for all i = 1, ..., N:

$$\begin{split} (\Psi^T \lambda \mathbf{v})_i &= \lambda \langle \Psi(x^{(i)}), \mathbf{v} \rangle = \lambda \langle \Psi(x^{(i)}), \sum_{j=1}^N \alpha_j \Psi(x^{(j)}) \rangle \\ &= \lambda \sum_{j=1}^N \alpha_j \langle \underbrace{\Psi(x^{(i)}), \Psi(x^{(j)})}_{=K_{i,j}} \rangle = \lambda (K\vec{\alpha})_i \end{split}$$

This means that $\Psi^T \lambda \mathbf{v} = \lambda K \vec{\alpha}$. Applying the same transformation on the right side of the eigenvalue equation we get:

$$(\Psi^{T}\mathbf{C}\mathbf{v})_{i} = \langle \Psi(x^{(i)}), \mathbf{C}\mathbf{v} \rangle = \left\langle \Psi(x^{(i)}), \frac{1}{N} \sum_{j=1}^{N} \Psi(x^{(j)}) \langle \Psi(x^{(j)}), \mathbf{v} \rangle \right\rangle$$

$$= \frac{1}{N} \sum_{j=1}^{N} \left\langle \Psi(x^{(i)}), \Psi(x^{(j)}) \langle \Psi(x^{(j)}), \mathbf{v} \rangle \right\rangle$$

$$= \frac{1}{N} \sum_{j=1}^{N} \underbrace{\langle \Psi(x^{(i)}), \Psi(x^{(j)}) \rangle}_{K_{i,j}} \langle \Psi(x^{(j)}), \sum_{k=1}^{N} \alpha_{k} \Psi(x^{(k)}) \rangle$$

$$= \frac{1}{N} \sum_{j=1}^{N} \sum_{k=1}^{N} \underbrace{\langle \Psi(x^{(i)}), \Psi(x^{(j)}) \rangle}_{K_{i,j}} \underbrace{\langle \Psi(x^{(j)}), \Psi(x^{(k)}) \rangle}_{=K_{j,k}} \alpha_{k} = \frac{1}{N} (K^{2}\vec{\alpha})_{i}.$$

Hence, we get that $\Psi^T \mathbf{C} \mathbf{v} = \frac{1}{N} K^2 \vec{\alpha}$. So in total, if \mathbf{v} is an eigenvector of \mathbf{C} for an eigenvalue $\lambda \neq 0$ we can apply the transform Ψ^T to both sides of the eigenvalue equation and get that $\vec{\alpha}$ solves the equation:

$$N\lambda K\vec{\alpha} = K^2\vec{\alpha}.$$

To show that this vector $\vec{\alpha}$ solves the eigenvalue problem (3) in \mathbb{R}^N we analyse two cases.

First, we assume that $\vec{\alpha} \perp \text{kern}(K)$: For this case we have already proven the statement in the first part of this exercise.

Now let us assume that $\vec{\alpha} \not\perp \ker(K)$. This means that we can write $\vec{\alpha}$ as:

$$\vec{\alpha} = \vec{\alpha}_0 + \vec{\alpha}_\perp,$$

with $\vec{0} \neq \vec{\alpha}_0 \in \text{kern}(K)$ and $\vec{\alpha}_{\perp} \perp \text{kern}(K)$. If we plug this $\vec{\alpha}$ into equation (2), we get that

$$N\lambda K\vec{\alpha}_{\perp} = N\lambda(K\vec{\alpha}_{\perp} + \underbrace{K\vec{\alpha}_{0}}_{=\vec{0}}) = N\lambda K\vec{\alpha} = K^{2}\vec{\alpha}_{\perp} + \underbrace{K^{2}\vec{\alpha}_{0}}_{=\vec{0}} = K^{2}\vec{\alpha}_{\perp}.$$

For the equation $N\lambda K\vec{\alpha}_{\perp} = K^2\vec{\alpha}_{\perp}$ we have already shown that the eigenvalue equation $N\lambda\vec{\alpha}_{\perp} = K\vec{\alpha}_{\perp}$ holds in the first part of this exercise.

The only thing left to show is that the vector $\vec{\alpha}_0$ has no influence on the solution $\mathbf{v} \in \mathcal{H}$ of the eigenvalue problem in the Hilbert space \mathcal{H} , i.e., we have to show that

$$\mathbf{v} = \sum_{i=1}^{N} \alpha_i \Psi(x^{(i)}) = \sum_{i=1}^{N} (\alpha_{\perp})_i \Psi(x^{(i)}) + \sum_{i=1}^{N} (\alpha_0)_i \Psi(x^{(i)}) = \sum_{i=1}^{N} (\alpha_{\perp})_i \Psi(x^{(i)}).$$

One sufficient condition for that is obviously to show that

$$\sum_{i=1}^{N} (\alpha_0)_i \Psi(x^{(i)}) = \vec{0}.$$

For this we regard the squared norm of this vector in \mathcal{H} :

$$\begin{aligned} ||\sum_{i=1}^{N} (\alpha_{0})_{i} \Psi(x^{(i)})||^{2} &= \langle \sum_{i=1}^{N} (\alpha_{0})_{i} \Psi(x^{(i)}), \sum_{j=1}^{N} (\alpha_{0})_{j} \Psi(x^{(j)}) \rangle \\ &= \sum_{i=1}^{N} (\alpha_{0})_{i} \sum_{j=1}^{N} \underbrace{\langle \Psi(x^{(i)}), \Psi(x^{(j)}) \rangle}_{=K_{i,j}} (\alpha_{0})_{j} \\ &= \sum_{i=1}^{N} (\alpha_{0})_{i} (K\vec{\alpha}_{0})_{i} = \langle \vec{\alpha}_{0}, \underbrace{K\vec{\alpha}_{0}}_{=\vec{0}} \rangle = 0. \end{aligned}$$

This concludes the first direction of the equivalence.

(b) To show the other direction of the equivalence, we assume that $\vec{\alpha} \in \mathbb{R}^N$ solves the eigenvector equation $N\lambda\vec{\alpha}=K\vec{\alpha}$. Furthermore, we define a vector $\mathbf{v}=\sum_{i=1}^N\alpha_i\Psi(x^{(i)})$. We need to show that $\mathbf{v}\in\mathcal{H}$ solves the eigenvalue equation in the Hilbert space \mathcal{H} for the eigenvalue $\lambda\neq 0$. For this we deduce:

$$\lambda \mathbf{v} = \sum_{i=1}^{N} \lambda \alpha_{i} \Psi(x^{(i)}) = \sum_{i=1}^{N} \frac{1}{N} (K\vec{\alpha})_{i} \Psi(x^{(i)}) = \frac{1}{N} \sum_{i=1}^{N} \Psi(x^{(i)}) \sum_{j=1}^{N} K_{i,j} \alpha_{j}$$

$$= \frac{1}{N} \sum_{i=1}^{N} \Psi(x^{(i)}) \sum_{j=1}^{N} \langle \Psi(x^{(i)}), \Psi(x^{(j)}) \rangle \alpha_{j} = \frac{1}{N} \sum_{i=1}^{N} \Psi(x^{(i)}) \langle \Psi(x^{(i)}), \sum_{j=1}^{N} \alpha_{j} \Psi(x^{(j)}) \rangle$$

$$= \frac{1}{N} \sum_{i=1}^{N} \Psi(x^{(i)}) \langle \Psi(x^{(i)}), \mathbf{v} \rangle = \mathbf{C} \mathbf{v}.$$

Thus, we have shown that any eigenvector $\vec{\alpha} \in \mathbb{R}^N$ of an eigenvalue $N\lambda \neq 0$ of K induces an eigenvector $\mathbf{v} \in \mathcal{H}$ of the eigenvalue $\lambda \neq 0$ of the covariance matrix \mathbf{C} . This concludes the proof.

Exercise 4 [Implementing Kernel PCA for data reduction].

Implement the Kernel principal component analysis algorithm as described on the

slides. For the numerical approximation of the eigenvalues and respective eigenvectors of the Kernel matrix K you can use the Python function <code>scipy.linalg.eig</code>. Test your algorithm on the "Circle" data set. Each line of the data file has to be interpreted as a single data point with <code>[x, y, label]</code>. Compare the effect of using an inhomogeneous polynomial kernel of degree 2 and a Gaussian kernel by plotting the respective first two principal components. Choose a good value for $\sigma^2 > 0$ and $a \in \mathbb{R}$ in case of the Gaussian kernel and the polynomial kernel, respectively.

Solution. See python code.