521 M7410 –Adjustment and Analysis of Spatial Information Fall Semester 2015

Homework No. 5

handed out Thursday, October 29, 2015 due Thursday, November 05, 2015, 09:10 Name:

LSQ for Nonlinear Models

1. Adjust the following problem with a non-linear I.O. approach, assuming that p,q are observables of equal precision ($\sigma_l = \pm 1.0cm$), and P,Q are given constants.

$$\text{Model: } \begin{bmatrix} \boldsymbol{p} \\ \boldsymbol{q} \end{bmatrix} = \sigma \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix} \begin{bmatrix} \boldsymbol{P} \\ \boldsymbol{Q} \end{bmatrix} + \begin{bmatrix} \boldsymbol{t}_p \\ \boldsymbol{t}_q \end{bmatrix}$$

Observations (unit: meters):

P, Q	p, q	P, Q	p, q
10, 20	16.6791, 16.1734	-30, 98	8.4674, 103.4796
23, 71	47.6718, 58.7223	21, -10	15.7592, -15.7964
60, 45	72.4188, 20.8377	-23, -8	-24.3569, 2.3997

- 1) Find LSQ estimates of all parameters and observables. By the way, how do you decide their initial values?
- 2) Compute $\hat{\sigma}_0$, $\sum_{\Lambda\Lambda}$, $\sum_{\nu\nu}$, and $\sum_{\hat{n}}$.
- 3) Plot $(\Delta X)_i$, $(v^T P v)_i$, and $(v^T P v)_i / (v^T P v)_{i-1}$ as functions of iteration number $i = 1 \sim 10$. Discuss behaviors of these functions.
- 2. If the model in 1 becomes:

$$\begin{bmatrix} p \\ q \end{bmatrix} = \begin{bmatrix} a & b \\ -b & a \end{bmatrix} \begin{bmatrix} P \\ Q \end{bmatrix} + \begin{bmatrix} t_p \\ t_q \end{bmatrix}$$

Show (with detailed mathematical steps) that the solutions (i.e., parameter and uncertainty estimates) can be derived from those obtained in 1.

Your (individual) final report should contain (use A4 papers):

- this page as the cover sheet
- source code(s) and outputs; do not forget to add your name and lots of comment cards to the source listing (%)
- input and output files from program [input/output values used and calculated], if any
- plots, including captions on axes, title, your name, LB#/HM#, course title, date (if any)
- derivation and description of formulas used, accompanied by figures where applicable
- evidence of computational accuracy
- discussion of results