Pontifícia Universidade Católica de Minas Gerais

Arquitetura de Computadores I – ACI Guia 03 Introdução ao Logisim

Luana Campos Takeishi

712171

Atividade 1: Tutorial para o principiante:

- Passo 0: Orientar-se.
- Passo 1: Acrescentar portas.

Passo 2: Acrescentar conexões.

Passo 3: Acrescentar texto.

Passo 4:

Atividade 2: Simular os circuitos abaixo no Logisim, como mostra a Figura 4. No relatório mostrar os 8 circuitos, feitos no Logisim, preencher e colocar também no relatório as tabelas de acordo com simulação.

A	A + A
0	0
1	1

$\overline{A} + A = 1$

A + AB = A

A + AB] = A

A	В	A + AB
0	0	0
0	1	0
1	0	1
1	1	1

x

0

0

1 1

0

0

1

0

$$AB + A\overline{B} = A$$

Г	_	1	٠			ď	٠	j		_	٠,					٠	٠	٠		٠				
L	v	J						7		·		7	ί.			i			ì		ì	·		
_	•		:					1		:	:	Ĵ	П				:	:	:	:	:	:	:	:
Ŀ	0		_	۲				٠			ب	1		٠	_	┌	•	`	Ċ	:	:	:		•
															-	ŀ)	≻	_	_	-(ø
				ľ			_	Ť	•	÷	÷	`			1	<u>.</u>		/	•					-
:	:	:	:	L			:	1	:	:	:)		:		:	:	:	:	:	:	:	:	:
				Li	_			ł				J												
					سا	7	•	1	÷	÷	ب	•												:

x

0

1 1

0

A	В	$AB + A^{-}B$
0.	0	0
0.	:1: :	0:::::
1:	:0:	1
11	11	1::::::::::::::::::::::::::::::::::::::

$$A + \overline{A}B = A?B \rightarrow A + B$$

a	b	x
0	0	0
0	1	1
1	0	1
1	1	1

A	В	A + AB
0	0	0
0	1	1
1	0	1
1	1	1

• $A + BC = (A?B)?(A?C) \rightarrow (A+B)*(A+C)$

Atividade 3: Projetar um circuito com duas entradas (habilita e dado) e uma única saída "S" (Figura 5), de tal forma que quando a entrada "habilita" = 0, S = 0, e quando a entrada "habilita" = 1, S = "dado". Montar o circuito no Logisim, verificar seu funcionamento e interpretar o circuito. Que nome você daria para este circuito?

Tabela Verdade \rightarrow a partir do enunciado.

Dado	Habilita	Saída S
0	0	0
0	1	0
1	0	0
1	1	1

Ao analisar a tabela da verdade, é possível verificar que o circuito requerido apresenta o funcionamento de uma **porta lógica AND**. No qual 'qualquer zero garante zero' e, para a saída ser igual a '1', é necessário que o Habilita de o Dado sejam '1'.

Pois, quando o Habilita é '0', automaticamente a saída S é '0' e, quando Habilita é '1', a saída acompanha o Dado, que varia entre os dois valores '0' e '1', garantindo uma saída correspondente e gerando a seguinte precondição para saída = 1 : Habilita é '1' e o Dado também.

O nome do circuito AND, acaba sendo autoexplicativo. Nos estudos matemáticos e de lógica de programação, AND (E), indica que será verdadeiro somente se todas as suas entradas forem positivas, ou seja, iguais a 1. Na porta lógica AND, tomando como entradas A e B, sua saída S é igual a 1 se A E B forem iguais a 1.

Circuito no Logisim AND:

