

Lecture 3 - Simulation of Techniques and Tools Julius Martensen

DFKI Bremen & Universität Bremen Robotics Innovation Center Director: Prof. Dr. Frank Kirchner www.dfki.de/robotics robotics@dfki.de

A holistic perspective

Robotics - An Interdisciplinary Science

A holistic perspective

Modeling Approaches

Bottom Up

- A model consists of submodels
- Every parameter is considered
- High physical accuracy

Top Down

- A model consists of an input-output behavior
- ► A subset of parameters are needed
- ► Efficient simulation

A holistic perspective

Bottom Up

- (Low Level) Controller Design
- Learning more than I/O relations
- More "realistic" behavior

Top Down

- ► (High level) controller design
- ► Learning basic I/O relations
- ► Visual behavior / Gaming

Opportunities and Limitations

Soft Body Dynamics

- Connect each node of a mesh with a spring damper system
- ► Huge effort from numerical point of view
- Examples

Opportunities and Limitations

Soft Body Dynamics

- Connect each node of a mesh with a spring damper system
- Huge effort from numerical point of view
- Examples

Opportunities and Limitations

Soft Body Dynamics

- Connect each node of a mesh with a spring damper system
- Huge effort from numerical point of view
- Examples

- How to model joint clearance?
- How to make objects grippable?
- Avoid self collision?

- Using CFM and ERP.
- Enable pairings of object and destroyable fixed links
- ► If needed, use collision layers.

- How to model joint clearance?
- How to make objects grippable?
- Avoid self collision?

- Using CFM and ERP.
- Enable pairings of object and destroyable fixed links
- ► If needed, use collision layers.

- How to model joint clearance?
- How to make objects grippable?
- Avoid self collision?

- Using CFM and ERP.
- Enable pairings of object and destroyable fixed links
- ► If needed, use collision layers.

- How to model joint clearance?
- How to make objects grippable?
- Avoid self collision?

- Using CFM and ERP.
- Enable pairings of object and destroyable fixed links
- If needed, use collision layers.

- How to model joint clearance?
- How to make objects grippable?
- Avoid self collision?

- Using CFM and ERP.
- Enable pairings of object and destroyable fixed links
- If needed, use collision layers.

- How to model joint clearance?
- How to make objects grippable?
- Avoid self collision?

- Using CFM and ERP.
- Enable pairings of object and destroyable fixed links
- ► If needed, use collision layers.

Problem Abstraction

Description

Model a factory worker which can step in the working cell of a robot. The robot is able to identify a worker via visual detection.

Abstraction

Model a visual of the factory worker that is able to "walk" in the simulation

Abstraction II

Model a visual of the factory worker that is able to change its position smoothly.

Problem Abstraction

Description

Model a factory worker which can step in the working cell of a robot. The robot is able to identify a worker via visual detection.

Abstraction I

Model a visual of the factory worker that is able to "walk" in the simulation.

Abstraction I

Model a visual of the factory worker that is able to change its position smoothly.

Problem Abstraction

Description

Model a factory worker which can step in the working cell of a robot. The robot is able to identify a worker via visual detection.

Abstraction I

Model a visual of the factory worker that is able to "walk" in the simulation.

Abstraction II

Model a visual of the factory worker that is able to change its position smoothly.

Using the Right Tools

Description

Estimate the forces acting on each joint during a given walking gait.

Abstraction

High accuracy simulation of a robots lower body.

Suitability

Is a rigid body simulator sufficient for the task?

Using the Right Tools

Description

Estimate the forces acting on each joint during a given walking gait.

Abstraction

High accuracy simulation of a robots lower body.

Suitability

Is a rigid body simulator sufficient for the task?

Using the Right Tools

Description

Estimate the forces acting on each joint during a given walking gait.

Abstraction

High accuracy simulation of a robots lower body.

Suitability

Is a rigid body simulator sufficient for the task?

"Nonphysical" Models

Description

Model a factory worker which walks around naturally.

Abstraction

Give a model a walking like behavior.

Requirements

Ray Tracing: Detects objects in front of it.

Target Generator: Creates a (reachable) target.

"Nonphysical" Models

Description

Model a factory worker which walks around naturally.

Abstraction

Give a model a walking like behavior.

Requirements

Ray Tracing: Detects objects in front of it.

Target Generator: Creates a (reachable) target.

"Nonphysical" Models

Description

Model a factory worker which walks around naturally.

Abstraction

Give a model a walking like behavior.

Requirements

Ray Tracing: Detects objects in front of it.

Target Generator: Creates a (reachable) target.

"Nonphysical" Models

Description

Model a factory worker which walks around naturally.

Abstraction

Give a model a walking like behavior.

Solutions

Look at gaming Al. Many algorithms are present. Maybe a simple control strategy is sufficient?

"Nonphysical" Models

Description

Model a factory worker which walks around naturally.

Abstraction

Give a model a walking like behavior.

Solutions

Look at gaming Al. Many algorithms are present.

Maybe a simple control strategy is sufficient?

Nearly Physical Models

Task

Model a current for underwater simulations.

Solution

Create a vectorfield of current forces and add some degree of randomness!

Nearly Physical Models

Task

Model a current for underwater simulations.

Solution

Create a vectorfield of current forces and add some degree of randomness!

Co-Simulation of Models

Live Coding

Sensor Modeling

Model of an IMU

Task

Measure the acceleration and rotational velocity at a given frame.

Equations

$${}^{\prime}a = {}^{\prime}R_{0}^{0}a + {}^{\prime}T_{0}^{0}w$$
 ${}^{\prime}w = {}^{\prime}R_{0}^{0}w$

Sensor Modeling

Model of an IMU

Task

Measure the acceleration and rotational velocity at a given frame.

Equations

Sensor Modeling

Model of an IMU

Task

Measure the acceleration and rotational velocity at a given frame.

Equations

$${}^{\prime}a = {}^{\prime}R_0^0a + {}^{\prime}T_0^0w$$
 ${}^{\prime}w = {}^{\prime}R_0^0w$

Common Simulationtools

Gazebo

Gazebo Overview

Common Simulationtools

V-Rep

V-Rep Overview

Common Simulationtools

OpenModelica

Live Demonstration

