FedTS Enhancements: Federated Learning Simulation Report

© Goal

The goal of this script is to **simulate a dynamic and robust Federated Learning (FL)** environment that supports:

- Comparison between Thompson Sampling (Fed-TS) and Random client selection
- Integration of **malicious clients** (via label-flipping attacks)
- Use of complex datasets like CIFAR-10
- Tracking and visualizing model performance over rounds
- Enhancing trust-based **client participation** in FL systems
- Optional model checkpoint saving for reproducibility

Problem Statement

Traditional Federated Learning assumes that all participating clients behave honestly and contribute fairly. However, in real-world scenarios:

- Some clients may behave **maliciously** (e.g., label-flipping attacks).
- Client reliability may vary across training rounds.
- Static client participation doesn't reflect practical deployments.

Hence, we simulate:

- Dynamic client participation with malicious clients
- Trust-aware selection mechanism using Fed-TS

• Compare it against naive random client selection

What This Script Does

1. Dataset Preparation

- Loads CIFAR-10 (or MNIST if toggled) with torchvision.
- Partitions dataset among CLIENTS_TOTAL clients non-IID style.
- Adds label-flipping attackers among dynamically inserted clients.

2. Client Simulation

- CLIENTS_ORIGINAL are the fixed set.
- After INSERT_NEW_AT rounds, dynamic clients are added using **Thompson** Sampling based on trust scores.

3. Model Definitions

- Implements both **SimpleNN** and **SimpleCNN**.
- Chooses CNN for CIFAR-10 (due to image complexity).

4. Training Procedure

- Each round, clients train locally and send updated models.
- Global model is updated by averaging local weights.
- Two separate global models:
 - One for **Fed-TS selection**
 - One for **Random selection** (baseline)

5. **Drift Detection**

- Measures the weight update distance (get_path_drift) of each client.
- Uses **KMeans clustering** to define a threshold for suspicious updates.
- Updates Beta distributions (success/failure counts) to influence future client selection.

6. Visualization

- o Plots accuracy over time for both Fed-TS and Random.
- Visualizes **per-client accuracy** trend for deeper insight.

Technologies Used

Component	Tool/Library
Deep Learning	PyTorch (torch)
Dataset	CIFAR-10 / MNIST
Federated Partitioning	Custom + Subset
Visualization	matplotlib
Sampling Algorithm	Thompson Sampling
Clustering	sklearn.cluster.KMea ns
Client Behavior Attack	Label-Flipping Strategy
Persistence (Optional)	torch.save()

* Key Configuration

Parameter	Value	!
ROUND_TOTAL	20	
CLIENTS_ORIGINAL	5	

CLIENTS_DYNAMIC 5

USE_CIFAR True

ATTACK_LABEL_FLIPPI True

NG

SAVE_MODEL True (optional)

im Why Thompson Sampling?

Problem: Malicious or unproductive clients degrade model performance if selected blindly.

Solution: Use Thompson Sampling, a Bayesian multi-armed bandit approach that:

- Scores each client based on success/failure (drift)
- Samples from Beta distribution to balance exploration vs exploitation
- Reduces participation of unreliable clients

What Did We Learn?

- Fed-TS significantly outperforms Random selection in the presence of attackers.
- Thompson Sampling enables adaptive trust-based selection.
- The system is scalable and dataset-agnostic, supporting CIFAR-10 and MNIST.
- Visualizations clearly demonstrate the **robustness** of trust-aware client filtering.