Numeriska metoder F/CL 2010 DN1240

Lärare i kursen:

Ninne Carlsund Katarina Gustavsson Johan Hoffman Johan Jansson Matthias Sandberg Jeannette Hiromi Spühler Rodrigo Vilela de Abreu

Gemensam e-mail-adress för kursen (denna omgång):

numfcl-2010@csc.kth.se

Vi kommer använda Python 2.6 (status quo ante) som är installerat på NADA:s datorer (färgsalarna).

Numeriska metoder?

Computational Science/Beräkningsvetenskap

Scientific Computing/Vetenskapliga beräkningar

High Preformance Computing

Numerisk analys

Simuleringsteknik

Beräkningsmatematik

Matematiska modeller + dator

Modellering och simulering

Bygg en matematisk modell (ekvation) av verkligheten

En ekvation från verkligheten är ofta alltför komplex för att lösa med penna och papper

Simulera verkligheten (lös ekvationen): numerisk metod + dator

Datorspel och film

Upplevelsen är ofta viktigare än realismen

Fysikmotor

Bräkningsfel är okej.

Klimatmodeller

Politiska beslut baseras på simuleringar

Vilken modell?

Noggrannhet?

Denna kurs

Matematiska modeller

Numeriska metoder

Implementering

Simulering

Uppskatta fel i simuleringen

Differentialekvationer

Beskriver kontinuum/fält/funktioner: temperatur, hastighet, tryck, densitet, &c.

Finita element metoden: approximera lösningen med enkla funktioner på en triangulering.

Eulers ekvationer (1755)

$$\partial u / \partial t + u \cdot \nabla u + \nabla p = f$$

 $\nabla \cdot u = 0$

Strömningsmekanik

Maxwells ekvationer (1873)

$$\partial B/\partial t + \nabla \times E = 0$$
 Elektromagnetism $\partial D/\partial t + \nabla \times H = 0$ $\nabla \cdot D = 0, \nabla \cdot B = 0$

Schrödingers ekvation (1925)

$$i\partial \psi/\partial t = H\psi$$
 Kvantmekanik

Simulering är ofta nödvändigt

- För små skalor för experiment
- För stora skalor för experiment
- Oetiska experiment
- Dyra experiment
- Simulera framtiden
- Simulera virtuell verklighet

. . .

5-dygnsprognos

- Samla in data från väderstationer
- Simulera vädret med Eulers ekvationer

Varför inte 10-dygnsprognos?

Diskussionsforum på BILDA.

Kolla på kurshemsidan!!!

http://www.csc.kth.se/utbildning/kth/kurser/DN1240/numfcl10/

Kursmaterial på 6 moduler.

Laborationstillfällen med bonuspoäng till tentamen i slutet på varje modul.

Material för Python-programmering.

Schema

E-bok

Moduler:

Modul 1: Fundamental satsen
Modul 2: Funktionsapproximation

Modul 3: ODE 1 (explicita/implicita metoder)

Modul 4: ODE 2

Modul 5: Fixpunktiteration

Modul 6: PDE

Projekt — 3 delar

Supplementär kurs för F: DN1242

Grundexamination Projektexamination Vi ska få en enkel partikel, en boll, att studsa.

Vi behöver:

Gravitation Partikel:

Koordinat $x \in [x_0; x_N]$

Massa M Radie

Elastisitet

Tid $t \in [t_0 = 0; \infty[$

Diskreta tidssteg, dt

$$t_{n+1} = t_n + dt$$

tidskoordinat: $t_n = n dt$

koordinat: $x^n = x(n dt)$ ($x^n \ddot{a}r x med index n, alltså <math>x_n$)

hastighet: $v^n = v(n dt)$

acceleration: $a^n = a(n dt)$

kraft: $F^n = F(n dt)$

massa: M

Newtons 2:a lag:

$$F = Ma$$

Rörelselagar:

•
$$v = \frac{dx}{dt}$$

•
$$a = \frac{dv}{dt}$$

Diskretiserade förändingar:

$$dt = t_{n+1} - t_n$$

$$dx^n = x^{n+1} - x^n$$

$$dv^n = v^{n+1} - v^n$$

(
$$d = \Delta$$
; $d()^n = \Delta_n()$)

Newtonsrörelselagar (för M = 1):

$$v^{n+1} = v^n + F^n dt$$

$$x^{n+1} = x^n + v^n dt$$

