Rényi relative entropies and noncommutative L_p -spaces

Anna Jenčová Mathematical Institute, Slovak Academy of Sciences

Operator Algebras and Related Topics, June 10, 2021

Divergences in quantum information theory

A divergence is a measure of statistical "dissimilarity" of two (quantum) states

Operational significance

 relation to performance of some procedures in information theoretic tasks

Important properties

- strict positivity: $D(\rho \| \sigma) \ge 0$ and $D(\rho \| \sigma) = 0$ iff $\rho = \sigma$
- data processing inequality (DPI): for any channel T

$$D(\rho \| \sigma) \ge D(T(\rho) \| T(\sigma))$$

Channels and DPI

A channel T:

- \blacktriangleright transforms states to states: $\sigma \mapsto \sigma'$
- positive trace preserving linear map
- usually complete positivity is assumed:

$$T \otimes id_n$$
 is positive for all n

weaker positivity assumptions: 2-positive, Schwarz inequality:

$$T^*(a^*a) \geq T^*(a^*)T^*(a), \quad \forall a.$$

DPI means that channels decrease distinguishability of states

Classical Rényi relative α -entropies

For p, q probability measures over a finite set X: (Rényi, 1961)

$$D_{\alpha}(p||q) := \frac{1}{\alpha - 1} \log \sum_{x} p(x)^{\alpha} q(x)^{1 - \alpha}, \quad 0 < \alpha \neq 1$$

- unique family of divergences satisfying a set of postulates
- fundamental quantities appearing in many information theoretic tasks
- relative entropy as a limit:

$$\lim_{\alpha \to 1} D_{\alpha}(p \| q) = S(p \| q) := \sum_{x} p(x) \log \left(\frac{p(x)}{q(x)} \right).$$

Extensions for density matrices

Relative entropy: (Umegaki, 1962)

$$S(\rho \| \sigma) = \operatorname{Tr} \left[\rho (\log(\rho) - \log(\sigma)) \right]$$

Standard Rényi relative entropies: (Petz, 1984)

$$D_{\alpha}(\rho\|\sigma) = \frac{1}{\alpha - 1} \log \operatorname{Tr}\left[\rho^{\alpha} \sigma^{1 - \alpha}\right], \quad 0 < \alpha \neq 1$$

- ▶ interpretation in hypothesis testing
- relative entropy as a limit

$$\lim_{\alpha \to 1} D_{\alpha}(\rho \| \sigma) = S(\rho \| \sigma)$$

▶ DPI holds for $\alpha \in (0, 2]$

Extensions for density matrices

Sandwiched Rényi relative entropies: (Müller-Lennert et al.,2013; Wilde et al., 2014)

$$\tilde{D}_{\alpha}(\rho\|\sigma) = \frac{1}{\alpha - 1} \log \operatorname{Tr} \left[\left(\sigma^{\frac{1 - \alpha}{2\alpha}} \rho \sigma^{\frac{1 - \alpha}{2\alpha}} \right)^{\alpha} \right], \ 0 < \alpha \neq 1$$

- interpretation in hypothesis testing
- relative entropy as a limit

$$\lim_{\alpha \to 1} \tilde{D}_{\alpha}(\rho \| \sigma) = S(\rho \| \sigma)$$

▶ DPI holds for $\alpha \in [1/2, 1) \cup (1, \infty]$

Extensions to normal states of a von Neumann algebra

- ► Araki relative entropy: (Araki, 1976)
- Standard Rényi relative entropies (quasi-entropies, standard f-divergences): (Petz, 1985)
- ➤ Sandwiched Rényi relative entropies: (Berta et al., 2018; AJ 2018,2021)
- ➤ Other versions: other f-divergences (maximal, measured): (Hiai, 2021)

Outline

• Sandwiched Rényi relative entropies from noncommutative L_p -spaces

Positive channels and data processing inequality

• Equality in DPI and reversibility of channels

Sandwiched Rényi relative entropies from noncommutative L_p -spaces

A general setting

- $ightharpoonup \mathcal{M}$ a von Neumann algebra, \mathcal{M}_* predual
- ▶ a *-representation $\pi: \mathcal{M} \to \mathcal{B}(\mathcal{H})$
- ightharpoonup
 ho, σ normal states on \mathcal{M} or ho, $\sigma \in \mathcal{M}^+_*$ (σ faithful)
- ▶ $\rho \in \mathcal{H}$ a vector representative of ρ :

$$\rho(\mathsf{a}) = \langle \, \boldsymbol{\rho}, \pi(\mathsf{a}) \boldsymbol{\rho} \, \rangle.$$

ightharpoonup the spatial derivative: $\Delta(
ho/\sigma)$

The standard Rényi relative entropy

In this setting

• for $0 < \alpha \neq 1$:

$$D_{lpha}(
ho\|\sigma) = rac{1}{lpha-1}\log\langle\,oldsymbol{
ho},\Delta(oldsymbol{
ho}/\sigma)^{lpha-1}oldsymbol{
ho}\,
angle$$

Araki relative entropy as a limit value $\alpha \to 1$:

$$\lim_{\alpha \to 1} D_{\alpha}(\rho \| \sigma) = S(\rho \| \sigma) = \langle \, \boldsymbol{\rho}, \log(\Delta(\boldsymbol{\rho}/\sigma)\boldsymbol{\rho} \, \rangle$$

▶ DPI holds for $\alpha \in (0, 2]$.

Sandwiched Rényi relative entropy

For $\alpha \in [1/2,1) \cup (1,\infty]$: (Berta, Scholz & Tomamichel, 2018)

$$\tilde{D}_{\alpha}(\rho\|\sigma) = \frac{1}{\alpha-1}\log\,\tilde{Q}_{\alpha}(\rho\|\sigma), \quad \tilde{Q}_{\alpha}(\rho\|\sigma) = (\|\boldsymbol{\rho}\|_{2\alpha,\sigma}^{(BST)})^{2\alpha},$$

with the Araki-Masuda L_p -norm (with respect to \mathcal{M}'):

$$\|\boldsymbol{\rho}\|_{\boldsymbol{\rho},\sigma}^{(BST)} = \begin{cases} \sup_{\boldsymbol{\omega} \in \mathcal{H}, \ \|\boldsymbol{\omega}\| = 1} \|\Delta(\boldsymbol{\omega}/\sigma)^{1/2 - 1/p} \boldsymbol{\rho}\| & \text{if } 2 \leq p \leq \infty \\ \inf_{\boldsymbol{\omega} \in \mathcal{H}, \|\boldsymbol{\omega}\| = 1, \\ s(\rho') \leq s(\boldsymbol{\omega}')} \|\Delta(\boldsymbol{\omega}/\sigma)^{1/2 - 1/p} \boldsymbol{\rho}\| & \text{if } 1 \leq p < 2. \end{cases}$$

Sandwiched Rényi relative entropy

Properties:

Well defined (not depending on π or ρ)

In finite dimensions:

$$\tilde{Q}_{\alpha}(\rho \| \sigma) = \operatorname{Tr} \left[\left(\sigma^{\frac{1-\alpha}{2\alpha}} \rho \sigma^{\frac{1-\alpha}{2\alpha}} \right)^{\alpha} \right]$$

Relation to the standard Rényi relative entropies:

$$\tilde{D}_{\alpha}(\rho\|\sigma) \leq D_{\alpha}(\rho\|\sigma)$$

DPI for completely positive channels

Sandwiched Rényi relative entropy

Limit values:

Araki relative entropy:

$$\lim_{\alpha \to 1} \tilde{D}_{\alpha}(\rho \| \sigma) = S(\rho \| \sigma)$$

Max-relative entropy:

$$\lim_{\alpha \to \infty} \tilde{D}_{\alpha}(\rho \| \sigma) = D_{\max}(\rho \| \sigma) = \log \inf\{\lambda > 0, \,\, \rho \leq \lambda \sigma\}$$

Uhlmann fidelity:

$$\lim_{\alpha \to 1/2} \tilde{D}_{\alpha}(\rho \| \sigma) = -\log F(\rho \| \sigma).$$

Haagerup L_p -spaces and a standard form

Haagerup L_p -spaces: $L_p(\mathcal{M})$, $1 \leq p \leq \infty$, the norm: $\|\cdot\|_p$

- $ightharpoonup \mathcal{M} \simeq L_{\infty}(\mathcal{M}),$
- $ightharpoonup \mathcal{M}_* \simeq L_1(\mathcal{M})$:

$$\psi \mapsto h_{\psi}, \qquad \operatorname{Tr}\left[h_{\psi}\right] = \psi(1),$$

 $ightharpoonup L_2(\mathcal{M})$ a Hilbert space

$$(\xi, \eta) = \operatorname{Tr} [\xi^* \eta], \qquad \xi, \eta \in L_2(\mathcal{M})$$

Standard form: $(\lambda, L_2(\mathcal{M}), J, L_2(\mathcal{M})^+)$

$$\lambda(x)\xi = x\xi, \quad J\xi = \xi^*, \qquad x \in \mathcal{M}, \ \xi \in L_2(\mathcal{M}).$$

 $h_{\rho}^{1/2}$ - (unique) vector representative of $\rho \in \mathcal{M}_*^+$ in $L_2(\mathcal{M})^+$.

The Kosaki L_p -spaces

$$\sigma \in \mathcal{M}_*^+$$
 (faithful), $\eta \in [0,1]$:

a continuous embedding

$$\mathcal{M} o \mathcal{M}^\eta \subseteq L_1(\mathcal{M}), \quad x \mapsto h^\eta_\sigma x h^{(1-\eta)}_\sigma$$

▶ interpolation spaces: for $1 \le p \le \infty$

$$L_p^{\eta}(\mathcal{M}, \sigma) := C_{1/p}(\mathcal{M}^{\eta}, L_1(\mathcal{M})) \subseteq L_1(\mathcal{M})$$

• for 1/p + 1/q = 1, the map

$$i_{p,\sigma}^{\eta}: k \mapsto h_{\sigma}^{\eta q} k h_{\sigma}^{(1-\eta)q}$$

is an isometric isomorphism of $L_p(\mathcal{M})$ onto $L_p^{\eta}(\mathcal{M}, \sigma)$.

The Kosaki L_p -spaces

We will use:

The right
$$L_p$$
-spaces $(\eta=1)$:
$$L_p^R(\mathcal{M},\sigma)=\{h_\sigma^{1/q}k,\ k\in L_p(\mathcal{M})\},$$
 the norm: $\|h_\sigma^{1/q}k\|_{p,\sigma}^R=\|k\|_p$

The symmetric
$$L_p$$
-spaces $(\eta=1/2)$:
$$L_p(\mathcal{M},\sigma)=\{h_\sigma^{1/2q}kh_\sigma^{1/2q},\ k\in L_p(\mathcal{M})\},$$
 the norm: $\|h_\sigma^{1/2q}kh_\sigma^{1/2q}\|_{p,\sigma}=\|k\|_p$

An expression via the symmetric L_p -spaces, lpha>1

Theorem

Let $\alpha > 1$, $\sigma, \rho \in \mathcal{M}_*^+$. Then $\tilde{Q}_{\alpha}(\rho \| \sigma) = \|h_{\rho}\|_{\alpha,\sigma}^{\alpha}$.

• finite if and only if for some $\mu \in \mathcal{M}_*^+$,

$$h_
ho = h_\sigma^{rac{lpha-1}{2lpha}} h_\mu^{rac{1}{lpha}} h_\sigma^{rac{lpha-1}{2lpha}}, \,\, \|h_
ho\|_{lpha,\sigma}^lpha = \mu(1)$$

• we put $\mu_{\alpha}(\rho \| \sigma) := \mu$, formally

$$h_{\mu} = (h_{\sigma}^{\frac{1-\alpha}{2\alpha}} h_{\rho} h_{\sigma}^{\frac{1-\alpha}{2\alpha}})^{\alpha}, \qquad \tilde{Q}_{\alpha}(\rho \| \sigma) = \operatorname{Tr}[h_{\mu}].$$

An expression for $\alpha \in [1/2, 1)$

Theorem

Let $\alpha \in [1/2,1)$, $\sigma, \rho \in \mathcal{M}_*^+$. Then

$$ilde{Q}_{lpha}(
ho\|\sigma) = \|h_{\sigma}^{rac{1-lpha}{2lpha}}h_{
ho}^{1/2}\|_{2lpha}^{2lpha}.$$

- lacktriangle always finite: $h_{\sigma}^{\frac{1-\alpha}{2\alpha}}h_{\rho}^{1/2}\in L_{2\alpha}(\mathcal{M})$
- $lackbr{>}$ we have $|h_{\sigma^{2\alpha}}^{rac{1-lpha}{2}}h_{
 ho}^{1/2}|=h_{\mu}^{1/2lpha}$ for some $\mu\in\mathcal{M}_{+}^{*}$, formally

$$h_{\mu} = (h_{\sigma}^{\frac{1-\alpha}{2\alpha}} h_{\rho} h_{\sigma}^{\frac{1-\alpha}{2\alpha}})^{\alpha}, \qquad \tilde{Q}_{\alpha}(\rho \| \sigma) = \operatorname{Tr}[h_{\mu}]$$

• we put $\mu_{\alpha}(\rho \| \sigma) := \mu$

An expression via Kosaki right L_p -spaces

We use an embedding: $L_2(\mathcal{M}) \to L_1(\mathcal{M})$,

$$\xi \mapsto h_{\sigma}^{1/2}\xi, \qquad \xi \in L_2(\mathcal{M})$$

and the Kosaki right L_p -spaces $L_p^R(\mathcal{M}, \sigma)$:

Theorem

Let
$$\rho, \sigma \in \mathcal{M}_*^+$$
, $\alpha \in [1/2, 1) \cup (1, \infty]$. Then

$$\tilde{Q}_{\alpha}(\rho \| \sigma) = (\|h_{\sigma}^{1/2} h_{\rho}^{1/2}\|_{2\alpha,\sigma}^{R})^{2\alpha}.$$

A variational expression

For
$$\alpha > 1$$
, $\gamma = \frac{\alpha}{\alpha - 1}$
$$\tilde{Q}_{\alpha}(\rho \| \sigma) = \sup_{x \in \mathcal{M}^+} \alpha \rho(x) - (\alpha - 1) \text{Tr} \left[\left(h_{\sigma}^{\frac{\alpha - 1}{2\alpha}} x h_{\sigma}^{\frac{\alpha - 1}{2\alpha}} \right)^{\frac{\alpha}{\alpha - 1}} \right]$$
$$= \sup_{x \in \mathcal{M}^+} \alpha \rho(x) - (\alpha - 1) \| h_{\sigma}^{1/2} x h_{\sigma}^{1/2} \|_{\gamma, \sigma}^{\gamma}$$

In finite dimensions: (Frank & Lieb, 2013)

A variational expression

For
$$\alpha \in (1/2,1)$$
, $\gamma = \frac{\alpha}{1-\alpha} > 1$: (Hiai, 2021)
$$\tilde{Q}_{\alpha}(\rho \| \sigma) = \inf_{x \in \mathcal{M}^{++}} \alpha \rho(x) + (1-\alpha) \mathrm{Tr} \left[(h_{\sigma}^{\frac{1-\alpha}{2\alpha}} x^{-1} h_{\sigma}^{\frac{1-\alpha}{2\alpha}})^{\frac{\alpha}{1-\alpha}} \right]$$

$$= \inf_{x \in \mathcal{M}^{++}} \alpha \rho(x) + (1-\alpha) \|h_{\sigma}^{1/2} x^{-1} h_{\sigma}^{1/2})\|_{\gamma,\sigma}^{\gamma}$$

In finite dimensions: (Frank & Lieb, 2013)

Some further properties of $ilde{D}_{lpha}$

Strict positivity: if $\rho(1) = \sigma(1)$

 $ilde{D}_{lpha}(
ho\|\sigma)\geq 0$ with equality if and only if $ho=\sigma$

Strict monotonicity:

$$\alpha \mapsto \tilde{D}_{\alpha}(\rho \| \sigma)$$
 strictly increasing if $\rho \neq \sigma$

Relations to standard Rényi relative entropies

$$D_{2-1/lpha}(
ho\|\sigma) \leq ilde{D}_{lpha}(
ho\|\sigma) \leq D_{lpha}(
ho\|\sigma)$$
 Hölder Hadamard 3 lines

Some further properties of $ilde{D}_{lpha}$

Joint lower semicontinuity (in the $L_1(\mathcal{M})$ -norm topology)

Order relations:

$$\sigma_{1} \leq \sigma_{2} \qquad \Longrightarrow \tilde{D}_{\alpha}(\rho \| \sigma_{1}) \geq \tilde{D}_{\alpha}(\rho \| \sigma_{2})$$

$$\rho_{1} \leq \rho_{2}, \ \alpha > 1 \qquad \Longrightarrow \tilde{D}_{\alpha}(\rho_{1} \| \sigma) \leq \tilde{D}_{\alpha}(\rho_{2} \| \sigma)$$

$$\rho_{1} \leq \rho_{2}, \ \alpha \in [1/2, 1) \Longrightarrow \tilde{D}_{\alpha}(\rho_{1} \| \sigma) \geq \tilde{D}_{\alpha}(\rho_{2} \| \sigma)$$

DPI for positive channels

Positive channels and data processing inequality

The Petz dual

 $T: L_1(\mathcal{M}) \to L_1(\mathcal{N})$ positive trace preserving map $T^*: \mathcal{N} \to \mathcal{M}$ (adjoint) positive, unital, normal map

Petz dual: (Petz, 1988) $T^*_\sigma:\mathcal{M}\to\mathcal{N}$, defined by $T(h^{1/2}_\sigma x h^{1/2}_\sigma) = h^{1/2}_{T(\sigma)} T^*_\sigma(x) h^{1/2}_{T(\sigma)}, \quad x\in\mathcal{M}$

Properties:

- positive, normal, unital map
- ▶ *n*-positive if an only if *T* is *n*-positive

Petz recovery map:

$$T_{\sigma}: L_1(\mathcal{N}) \to L_1(\mathcal{M})$$
, the preadjoint of T_{σ}^*

The Petz dual for T_{σ} is T^* .

The Petz dual

$$L_{1}(\mathcal{M}) \xrightarrow{T} L_{1}(\mathcal{N})$$

$$\cup | \qquad \cup |$$

$$L_{\infty}(\mathcal{M}, \sigma) \qquad L_{\infty}(\mathcal{N}, T(\sigma))$$

$$\downarrow^{1/2} \downarrow \qquad \qquad \downarrow^{1/2} \downarrow^{1/2$$

In particular, $T(L_{\infty}(\mathcal{M}, \sigma)) \subseteq L_{\infty}(\mathcal{N}, T(\sigma))$ and

$$\|T(h_{\sigma}^{1/2}xh_{\sigma}^{1/2})\|_{\infty,T(\sigma)} = \|T_{\sigma}^{*}(x)\| \leq \|x\| = \|h_{\sigma}^{1/2}xh_{\sigma}^{1/2}\|_{\infty,\sigma}, \ x \in \mathcal{M}$$

T defines a contraction $L_{\infty}(\mathcal{M}, \sigma) \to L_{\infty}(\mathcal{N}, T(\sigma))$.

DPI for positive channels, $\alpha > 1$

Proposition

T is a contraction $L_p(\mathcal{M}, \sigma) \to L_p(\mathcal{N}, T(\sigma))$, for all $1 \le p \le \infty$.

- ▶ True for p = 1: $||Th||_1 \le ||h||_1$ for all $h \in L_1(\mathcal{M})$.
- ▶ True for $p = \infty$.
- True for all p: Riesz-Thorin theorem.

DPI for positive channels, $\alpha \in [1/2, 1)$

From the variational formula: for any $y \in \mathcal{N}^{++}$, $\gamma = \frac{\alpha}{1-\alpha} \geq 1$:

$$\begin{split} \tilde{Q}_{\alpha}(\rho\|\sigma) &= \inf_{\mathbf{x} \in \mathcal{M}^{++}} \alpha \rho(\mathbf{x}) + (1-\alpha) \|h_{\sigma}^{1/2} \mathbf{x}^{-1} h_{\sigma}^{1/2}\|_{\gamma,\sigma}^{\gamma} \\ &\leq \alpha \rho(T^{*}(y)) + (1-\alpha) \|h_{\sigma}^{1/2} T^{*}(y)^{-1} h_{\sigma}^{1/2}\|_{\gamma,\sigma}^{\gamma} \end{split}$$
 (Choi inequality)
$$\leq \alpha T(\rho)(y) + (1-\alpha) \|h_{\sigma}^{1/2} T^{*}(y^{-1}) h_{\sigma}^{1/2}\|_{\gamma,\sigma}^{\gamma} \\ (\text{Petz dual}) &= \alpha T(\rho)(y) + (1-\alpha) \|T_{\sigma} \left(h_{T(\sigma)}^{1/2} y^{-1} h_{T(\sigma)}^{1/2}\right)\|_{\gamma,\sigma}^{\gamma} \\ (T_{\sigma} \text{ a contraction}) &\leq \alpha T(\rho)(y) + (1-\alpha) \|h_{T(\sigma)}^{1/2} y^{-1} h_{T(\sigma)}^{1/2}\|_{\gamma,T(\sigma)}^{\gamma} \end{split}$$

Taking inf over $y \in \mathcal{N}^{++}$: $\tilde{Q}_{\alpha}(\rho \| \sigma) \leq \tilde{Q}_{\alpha}(T(\rho) \| T(\sigma))$.

DPI for positive channels

Theorem

Let $\rho, \sigma \in \mathcal{M}_*^+$, $\alpha \in [1/2, 1) \cup (1, \infty]$. Then

$$\tilde{D}_{\alpha}(T(\rho)||T(\sigma)) \leq \tilde{D}_{\alpha}(\rho||\sigma)$$

for any positive trace preserving map $T: L_1(\mathcal{M}) \to L_1(\mathcal{N})$.

Taking the limit $\alpha \to 1$:

$$S(T(\rho)||T(\sigma)) \leq S(\rho||\sigma).^a$$

^aFor $B(\mathcal{H})$: (Müller-Hermes & Reeb, 2017)

Equality in DPI and reversibility of channels

Reversibility of channels

A channel $T: L_1(\mathcal{M}) \to L_1(\mathcal{N})$ is reversible with respect to $\{\rho, \sigma\}$ if there is a recovery map: a channel $T': L_1(\mathcal{N}) \to L_1(\mathcal{M})$ such that

$$T'T(\rho) = \rho, \qquad T'T(\sigma) = \sigma.$$

We from now on assume that a channel is a 2-positive trace preserving map.

Reversibility of channels

Reversibility problem:

Let D be a divergence (satisfies DPI), then reversibility implies

$$D(T(\rho)||T(\sigma)) = D(\rho||\sigma).$$

Is the converse true?

$$D(T(\rho)||T(\sigma)) = D(\rho||\sigma) < \infty \stackrel{?}{\Longrightarrow} T$$
 is reversible.

Reversibility of channels

Theorem (Petz, 1986; 1988)

Assume that $S(\rho \| \sigma) < \infty$. Then a channel T is reversible with respect to $\{\rho, \sigma\}$ if and only if

$$S(\rho \| \sigma) = S(T(\rho) \| T(\sigma)).$$

Other divergences: (Hiai & Mosonyi, 2017; Hiai, 2021)

- true also for D_{α} , $\alpha \in (0,1) \cup (1,2)$
- ▶ not true for D_2 or $\tilde{D}_{1/2}$.

An application: SSA and Markov states

For $\mathcal{M} = B(\mathcal{H}_{ABC})$, \mathcal{H}_{ABC} separable:

Strong subadditivity of entropy (SSA): (Lieb & Ruskai, 1973)

$$S(\omega_{ABC}) + S(\omega_B) \le S(\omega_{AB} + S(\omega_{BC}))$$

Equivalenty,

$$S(\omega_{AB} \| \omega_A \otimes \omega_B) \leq S(\omega_{ABC} \| \omega_A \otimes \omega_{BC})$$
 (DPI for $T = \text{Tr }_C$)

Equality in SSA and short Markov chains: (Hayden et al., 2004)

equality in SSA
$$\iff \omega_{ABC} = (id_A \otimes T')(\omega_{AB})$$

for some $T': B \to BC$.

Universal recovery map

Note that T_{σ} is a channel and we always have $T_{\sigma}T(\sigma)=\sigma$.

Theorem (Petz, 1988)

 ${\cal T}$ is reversible with respect to $\{\rho,\sigma\}$ if and only if

$$T_{\sigma}T(\rho)=\rho.$$

Mean ergodic theorem (Kümmerer & Nagel, 1979)

Let $E: \mathcal{M} \to \mathcal{M}$ be the conditional expectation onto the set of fixed points of $(T_{\sigma}T)^*$. Then

$$T_{\sigma}T(\rho) = \rho \iff E_*(\rho) = \rho.$$

Reversibility problem for \tilde{D}_{α} , $\alpha > 1$

The problem can be reformulated as follows:

Let p>1 and assume that $h_{\rho}\in L_{p}(\mathcal{M},\sigma)$. Then

$$\|Th_{\rho}\|_{p,T(\sigma)} = \|h_{\rho}\|_{p,\sigma} \iff T_{\sigma}Th_{\rho} = h_{\rho} \iff E_*h_{\rho} = h_{\rho}.$$

Remarks:

- \blacktriangleright holds by the fact that T_{σ} is a contraction.
- ▶ T_{σ} is the adjoint of T with respect to the duality of $L_p(\mathcal{M}, \sigma)$ and $L_q(\mathcal{M}, \sigma)$, 1/p + 1/q = 1.
- ▶ \iff holds for p = 2, since $L_2(\mathcal{M}, \sigma)$ is a Hilbert space.

Conditional expectations and L_p -spaces

Let $E: \mathcal{M} \to \mathcal{M}$ be a conditional expectation with range \mathcal{M}_0 . Then: (Junge & Xu, 2003)

- ▶ we may identify $L_p(\mathcal{M}_0) \subseteq L_p(\mathcal{M})$,
- ▶ E extends to a contractive projection E_p on $L_p(\mathcal{M})$ with range $L_p(\mathcal{M}_0)$
- ▶ for $h \in L_p(\mathcal{M}_0)$, $k \in L_q(\mathcal{M})$, $l \in L_r(\mathcal{M}_0)$, $p^{-1} + q^{-1} + r^{-1} = s^{-1} \le 1$

$$E_s(hkl) = hE_q(k)l.$$

▶ If $E_*(\sigma) = \sigma$, then $E_*(L_p^{\eta}(\mathcal{M}, \sigma)) \simeq L_p^{\eta}(\mathcal{M}_0, \sigma|_{\mathcal{M}_0})$.

Reversibility problem for \tilde{D}_{α} , $\alpha>1$

Let
$$\mu = \mu_{\rho}(\rho \| \sigma) \in \mathcal{M}_{*}^{+}$$
: $h_{\rho} = h_{\sigma}^{1/2q} h_{\mu}^{1/p} h_{\sigma}^{1/2q}$ and put
$$h_{t} := h_{\sigma}^{(1-t)/2} h_{\mu}^{t} h_{\sigma}^{(1-t)/2} \in L_{1}(\mathcal{M})^{+}, \qquad t \in [0, 1].$$

For $t \in (0,1)$, consider the equalities:

$$||Th_t||_{1/t,T(\sigma)} = ||h_t||_{1/t,\sigma} \iff E_*(h_t) = h_t.$$

- ▶ Any of the equalities holds for some $t \in (0,1) \iff$ it holds for all $t \in [0,1]$
- ▶ the equalities are equivalent for t = 1/2
- \implies the equivalence holds for all $t \in (0,1)$.

Reversibility problem for \tilde{D}_{α} , $\alpha \in (1/2,1)$

Here $\mu=\mu_{lpha}(
ho\|\sigma)$ is given by: $h_{\mu}=|h_{\sigma}^{\frac{1-lpha}{2lpha}}h_{
ho}^{1/2}|^{2lpha}$

Using extended conditional expectations:

$$E_*h_{
ho}=h_{
ho}\iff E_*h_{\mu}=h_{\mu}.$$

We can show that

$$E_* h_\mu = h_\mu \iff \tilde{Q}_\alpha(T(\rho) \| T(\sigma)) = \tilde{Q}_\alpha(\rho \| \sigma)$$

using the variational formula for \tilde{Q}_{α} .

Reversibility problem for \tilde{D}_{α} , $\alpha \in (1/2,1)$

If $\mu\sigma \leq \rho \leq \lambda\sigma$, we use

Lemma (Hiai, 2021)

Assume that $\mu\sigma \leq \rho \leq \lambda\sigma$ for some $\lambda, \mu > 0$, $\alpha \in (1/2,1)$. Then

$$\tilde{Q}_{\alpha}(\rho\|\sigma) = \inf_{\mathbf{x} \in \mathcal{M}^{++}} \alpha \rho(\mathbf{x}) + (1-\alpha) \|h_{\sigma}^{1/2} \mathbf{x}^{-1} h_{\sigma}^{1/2}\|_{\gamma,\sigma}^{\gamma}$$

is attained at a unique $x \in \mathcal{M}^{++}$ such that

$$h_{\sigma}^{1/2}x^{-1}h_{\sigma}^{1/2}=h_{\sigma}^{1/2\gamma^*}h_{\mu}^{1/\gamma}h_{\sigma}^{1/2\gamma^*},\quad 1/\gamma+1/\gamma^*=1$$

In general: limit arguments and uniform convexity of $L_p(\mathcal{M})$.

Reversibility problem for $ilde{D}_{lpha}$

Theorem

Let $\alpha \in (1/2,1) \cup (1,\infty)$. Assume that $\tilde{D}_{\alpha}(\rho \| \sigma) < \infty$. Then T is reversible with respect to $\{\rho,\sigma\}$ if and only if

$$\tilde{D}_{\alpha}(T(\rho)||T(\sigma)) = \tilde{D}_{\alpha}(\rho||\sigma).$$

Thank you.