

IIC1253 — Matemáticas Discretas — 1' 2019

PAUTA INTERROGACIÓN 3

Pregunta 1

Una posible demostración consiste en primero considerar que A es finito tal que |A|=n, es claro que $|2^A|=2^n$, como $n<2^n$ para cualquier $n\in\mathbb{N}$ entonces, por principio del palomar, no existe una biyección entre A y 2^A en este caso.

Ahora supongamos que A es un conjunto infinito, por contradicción supongamos que existe una biyección $f: A \to 2^A$, definimos los conjuntos:

$$D = \{ a \in A \mid a \in f(a) \}$$
$$\overline{D} = \{ a \in A \mid a \notin f(a) \}$$

Como $A \neq \emptyset$, luego existe $a^* \in A$ tal que $f(a^*) = \overline{D}$. Ahora

- Si $a^* \in f(a^*)$ entonces $a^* \in \overline{D}$ y por lo tanto $a^* \notin f(a^*)$, lo que es una contradicción.
- Si $a^* \notin f(a^*)$ entonces $a^* \notin \overline{D}$ y por lo tanto $a^* \in f(a^*)$, lo que también es una contradicción.

Por lo tanto no existe una biyección entre A y 2^A .

Considerando lo anterior la distribución de puntaje es la siguiente

- (1 punto) Por el caso de cardinalidad finita (o el caso del conjunto vacío).
- (2 puntos) Por definir el conjunto D y el \overline{D} correctamente.
- (3 puntos) Por llegar a las contradicciones mencionadas.

Pregunta 2

Pregunta 2.1

La solución consiste en encontrar la función f:

$$f(n) = \begin{cases} n & n \text{ es par} \\ n^2 & n \text{ no es par} \end{cases}$$

considerando que los prints toman tiempo constante se tiene,

$$T_A(n) = \begin{cases} c_1 n & n \text{ es par} \\ c_2 n^2 & n \text{ no es par} \end{cases}$$

Por tanto,

 $T_A(n) \le \frac{1}{c_1}f(n)$ si
n es par y $T_A(n) \le \frac{1}{c_2}f(n)$ si
n es impar Tomando $C=\min\{1,c_1\}$, si n par o impar

$$C \cdot f(n) \le T_A(n)$$

Entonces, existe K_1 y K_2 tal que

$$K1 = \min\{1, c_1, c_2\}$$

y,

$$K_2 = \max\{\frac{1}{c_1}, \frac{1}{c_2}\}$$

Si $n_0=0$, entonces $\forall n \geq n_0$ se tiene

$$K_1 f(n) \le T_A(n) \le K_2 f(n)$$

Dado lo anterior, el puntaje asignado es el siguiente:

- (3 puntos) Por encontrar función f
- (3 puntos) Por mostrar/explicar que es $\Theta(f)$.

Pregunta 2.2

Por contradicción, suponga $T_A(n) \in \Theta(f(n))$, es decir, existe n_0 y C_1, C_2 tal que:

$$C_1 f(n) < T_A(n) < C_2 f(n)$$

donde $f(n) = n^k$

• Caso 1: si $K \in (1, \infty)$, entonces si n es par

$$C_1 n^k < T_A(n) < C_2 n$$

es decir, $n^k \leq \frac{C_2}{C_1} n$, y por tanto existe C' y n_0 tal que $\forall n \geq n_0$

$$n^k \le C'n$$

Ahora, sea $n' \geq \frac{C_2}{C_1}$ par, entonces

$$\left(\frac{C_2}{C_1}\right)^2 \le n'^2 < n^k \le \frac{C_2}{C_1} \cdot n$$

es decir,

$$n' < \frac{C_2}{C_1}$$

lo cual es una contradicción.

• Caso 2: si $K \in (-\infty, 1]$, entonces si n es impar

$$T_A(n) = Cn \le C_2 n^k$$

es decir, $n \leq \frac{C_2}{C} n^k$, y por tanto existe C' y n_0 tal que $\forall n \geq n_0$ número impar,

$$n \le C' n^k$$

Lo cual implica una contradicción siguiendo un procedimiento análogo al caso 1.

- (2 puntos) Por desarollo caso 1
- (1 puntos) Por explicar contradicción caso 1
- (2 puntos) Por desarollo caso 2
- (1 puntos) Por explicar contradicción caso 2

Pregunta 3

Pregunta 3.1

Una posible solución consistía en utilizar el teorema CSB, y encontrar funciones inyectivas f y g tales que:

$$f: \Sigma^{\omega} \to \{0, 1\}^{\omega}$$
$$g: \{0, 1\}^{\omega} \to \Sigma^{\omega}$$

Entregamos primero f. Como Σ es finito podemos ordenarlo de alguna forma. Sea $|\Sigma| = n$ y $\{a_1, a_2, \dots, a_n\}$ con $a_i \in \Sigma$ un orden cualquiera de Σ . Definimos una función auxiliar $j : \Sigma \to \{0, 1\}^n$ donde:

$$j(a_i) = \underbrace{0 \cdot 0 \cdot \dots \cdot 0}_{i-1} \cdot 1 \cdot \underbrace{0 \cdot 0 \cdot 0 \cdot \dots \cdot 0}_{n-i}$$

Utilizando la función auxiliar j, definimos la función inyectiva f como:

$$f(c_1c_2c_3c_4c_5...) = j(c_1)j(c_2)j(c_3)j(c_4)j(c_5)...$$

Finalmente, se debía demostrar que f era inyectiva.

En el caso de g, como $|\Sigma| \geq 2$, sean $a_i, a_j \in \Sigma$ dos elementos cualquiera tales que $a_i \neq a_j$. Definimos la función auxiliar $h: \{0,1\} \to \Sigma$ tal que:

$$h(d_i) = \begin{cases} a_i & \text{si } d_i = 1\\ a_j & \text{si } d_i = 0 \end{cases}$$

Utilizando la función auxiliar g, definimos la función inyectiva g como:

$$g(d_1d_2d_3d_4d_5...) = h(d_1)h(d_2)h(d_3)h(d_4)h(d_5)...$$

Finalmente, se debía demostrar que gera inyectiva.

Dado lo anterior, la distribución del puntaje es la siguiente:

- (1 punto) Por definir correctamente f
- (1 punto) Por definir correctamente g
- (0.5 puntos) Por demostrar correctamente que f es inyectiva.
- (0.5 puntos) Por demostrar correctamente que g es inyectiva.

Pregunta 3.2

Una posible solución consistía en encontrar una estrategia de enumeración para $\Sigma^{\omega-reg}$. Esto lo haremos a partir de $\Sigma^* \times \Sigma^*$. Primero, es necesario demostrar que $\Sigma^* \times \Sigma^*$ es numerable, lo cual es posible encontrando una biyección con $\mathbb{N} \times \mathbb{N}$, o entregando una estrategia de enumeración. Con esto, podemos crear una estrategia de enumeración para $\Sigma^{\omega-reg}$:

- 1. Ordenar todos los elementos $w_i \in \Sigma^* \times \Sigma^*$ en una lista L de alguna forma, donde $w_i = (u_i, v_i)$
- 2. Para cada $w_i \in L$:
 - a) Si para todo $w_j = (u_j, v_j)$ donde j < i se tiene que $u_i \cdot v_i \cdot v_i \cdot \dots \neq u_j \cdot v_j \cdot v_j \cdot \dots$, entregar $u_i \cdot v_i \cdot v_i \cdot \dots$
 - b) En otro caso, continuar con el siguiente elemento.

Finalmente, era necesario demostrar que esta estrategia de enumeración es correcta.

Dado lo anterior, la distribución del puntaje es la siguiente:

- (1.5 punto) Por demostrar formalmente que $\Sigma^* \times \Sigma^*$ es numerable.
- (1.5 punto) Por entregar una estrategia de enumeración para $\Sigma^{\omega-reg}$ y demostrar su correctitud.

Pregunta 4

Una posible solución consiste en hacer inducción fuerte sobre el tamaño de D.

Luego tenemos:

Caso Base: Para la demostración que haremos se necesitan como caso base el 1 y el 2. Para |D|=1, supongamos I tal que $|I\cap D|>\frac{1}{2}\geq 1$ (la cardinalidad debe ser natural). Luego el único elemento de D esta en I y $median(D)\in I$.

Para |D|=2, supongamos I tal que $|I\cap D|>\frac{2}{2}>1$, luego $|I\cap D|=2$ y $D\subseteq I$ y $median(D)\in I$

Hipotesis de inducción: Suponemos que $\forall k < n \ k, n \in \mathbb{N}$ se cumple que sea D conjunto como el descrito en el enunciado tal que |D| = k e I un intervalo cualquiera en \mathbb{N} , $|I \cap D| \ge \frac{k}{2} \to median(D) \in I$.

Paso Inductivo: Ahora demostramos la premisa para D tal que |D| = n.

Sean $D = \{a_1, a_2, \dots, a_n\}$ e I intervalo en \mathbb{N} tal que $|I \cap D| \ge \frac{n}{2}$.

Notando que por los casos bases ya demostrados podemos asumir n > 2, definimos el siguiente conjunto:

$$D' = \{a_2, \dots, a_{n-1}\}$$

Es fácil ver que median(D) = median(D') puesto que al eliminar los elementos del borde de D no cambian los elementos centrales que determinan la media.

Luego solo queda demostrar que $|I \cap D'| > \frac{n-2}{2}$, para poder demostrar lo pedido usando la hipótesis.

Haremos esto mediante una demostración por casos:

- \bullet Si $a_1,\,a_n\not\in I,$ entonces $I\cap D=I\cap D',$ por lo tanto $|I\cap D'|>\frac{n}{2}>\frac{n-2}{2}$
- Si $a_1, a_n \in I$, como I es un intervalo, se tiene que $D \subseteq I$ y $median(D) \in I$
- Sin perdida de generalidad el caso que queda es si $a_1 \in I$ y $a_n \notin I$, luego se tiene $|I \cap D'| = |I \cap D| 1 > \frac{n}{2} 1 = \frac{n-2}{2}$

Finalmente por hipótesis de inducción concluimos que $median(D') \in I$ y por lo mencionado arriba $median(D) \in I$, quedando demostrado lo pedido por inducción fuerte.

Dado la solución anterior la dostribución de puntaje es la siguiente:

- (0.5 puntos) por cada caso base.
- (1 punto) por plantear correctamente la inducción.
- (2 puntos) por plantear un conjunto de menor tamaño que sirva para completar la inducción mediante la hipótesis.
- (0.5 puntos) por demostrar o explicar que median(D) = median(D')
- (0.5 puntos) por cada caso de la demostración de $|I \cap D'| > \frac{n-2}{2}$