# Bài giảng 14: Phân tích 2 nhóm: biến liên tục

## Nguyễn Văn Tuấn

Garvan Institute of Medical Research, Australia Đại học Tôn Đức Thắng, Việt Nam

## Khác biệt giữa phụ nữ Việt Nam và Mĩ

Table 1 Basic characteristics of participants

|                    | <u> </u>                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                            |
|--------------------|------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| US white (n = 419) | Vietnamese<br>(n = 210)                                                                                                      | P value                                                                                                                                                                                                                                                                                                                                                                                                    |
| 71.5 (8.1)         | 61.7 (9.6)                                                                                                                   | <0.0001                                                                                                                                                                                                                                                                                                                                                                                                    |
| 66.7 (12.9)        | 53.3 (7.9)                                                                                                                   | <0.0001                                                                                                                                                                                                                                                                                                                                                                                                    |
| 160.8 (6.1)        | 148.9 (5.7)                                                                                                                  | <0.0001                                                                                                                                                                                                                                                                                                                                                                                                    |
| 25.8 (4.8)         | 24.1 (3.2)                                                                                                                   | <0.0001                                                                                                                                                                                                                                                                                                                                                                                                    |
| 0.69 (0.12)        | 0.63 (0.11)                                                                                                                  | <0.0001                                                                                                                                                                                                                                                                                                                                                                                                    |
| 0.98 (0.19)        | 0.76 (0.14)                                                                                                                  | <0.0001                                                                                                                                                                                                                                                                                                                                                                                                    |
| 1.05 (0.13)        | 0.89 (0.11)                                                                                                                  | <0.0001                                                                                                                                                                                                                                                                                                                                                                                                    |
| 38.6 (5.4)         | 32.3 (4.1)                                                                                                                   | <0.0001                                                                                                                                                                                                                                                                                                                                                                                                    |
| 14.8 (1.8)         | 14.6 (1.5)                                                                                                                   | 0.0730                                                                                                                                                                                                                                                                                                                                                                                                     |
| 24.8 (8.1)         | 18.8 (4.9)                                                                                                                   | <0.0001                                                                                                                                                                                                                                                                                                                                                                                                    |
| 36.4 (6.5)         | 35.0 (6.2)                                                                                                                   | 0.0122                                                                                                                                                                                                                                                                                                                                                                                                     |
|                    | (n = 419) 71.5 (8.1) 66.7 (12.9) 160.8 (6.1) 25.8 (4.8) 0.69 (0.12) 0.98 (0.19) 1.05 (0.13) 38.6 (5.4) 14.8 (1.8) 24.8 (8.1) | (n = 419)       (n = 210)         71.5 (8.1)       61.7 (9.6)         66.7 (12.9)       53.3 (7.9)         160.8 (6.1)       148.9 (5.7)         25.8 (4.8)       24.1 (3.2)         0.69 (0.12)       0.63 (0.11)         0.98 (0.19)       0.76 (0.14)         1.05 (0.13)       0.89 (0.11)         38.6 (5.4)       32.3 (4.1)         14.8 (1.8)       14.6 (1.5)         24.8 (8.1)       18.8 (4.9) |

Lan T Ho-Pham, et al obesity 2010

## Vitamin D ở người Việt theo giới tính

Vitamin D (25-hydroxyvitamin D)

|                         | Men   | Women |
|-------------------------|-------|-------|
| N                       | 222   | 336   |
| Mean                    | 28.57 | 23.79 |
| SD (standard deviation) | 8.94  | 7.86  |

Có khác biệt giữa nam và nữ?

## Nội dung

- Vài ví dụ
- Lí thuyết
- t-test và R

# Suy luận về khác biệt giữa 2 nhóm

 Estimation (ước tính) và test of hypothesis (kiểm định giả thuyết)

#### Giả định:

- Hai nhóm độc lập
- Cỡ mẫu tương đối *large*. Có thể  $n_1 > 30$  và  $n_2 > 30$
- Cả hai nhóm được chọn ngẫu nhiên

## Ước tính: sample và population

|                         | Sample                  |                         | Population         |                   |
|-------------------------|-------------------------|-------------------------|--------------------|-------------------|
|                         | Men Women               |                         | Men                | Women             |
| N                       | 222 (n <sub>1</sub> )   | 336 (n <sub>2</sub> )   | Infinite           | Infinite          |
| Mean                    | 28.57 (x <sub>1</sub> ) | 23.79 (x <sub>2</sub> ) | μ <sub>1</sub> = ? | μ <sub>2</sub> =? |
| SD (standard deviation) | 8.94 (s <sub>1</sub> )  | 7.86 (s <sub>2</sub> )  | σ <sub>1</sub> = ? | σ <sub>2</sub> =? |

## Estimation: sample and population

|                         | Sample                  |                         | Population               |                   |
|-------------------------|-------------------------|-------------------------|--------------------------|-------------------|
|                         | Men                     | Women                   | Men                      | Women             |
| N                       | 222 (n <sub>1</sub> )   | 336 (n <sub>2</sub> )   | Infinite                 | Infinite          |
| Mean                    | 28.57 (x <sub>1</sub> ) | 23.79 (x <sub>2</sub> ) | μ <sub>1</sub> = ?       | μ <sub>2</sub> =? |
| SD (standard deviation) | 8.94 (s <sub>1</sub> )  | 7.86 (s <sub>2</sub> )  | σ <sub>1</sub> = ?       | <sub>02</sub> = ? |
| Difference              | $d = x_1 - x_1$         |                         | $\delta = \mu_1 - \mu_2$ |                   |
| Status                  | Known                   |                         | Unknown                  |                   |

|                         | Sample                  |                         | Population               |                   |
|-------------------------|-------------------------|-------------------------|--------------------------|-------------------|
|                         | Men                     | Women                   | Men                      | Women             |
| N                       | 222 (n <sub>1</sub> )   | 336 (n <sub>2</sub> )   | Infinite                 | Infinite          |
| Mean                    | 28.57 (x <sub>1</sub> ) | 23.79 (x <sub>2</sub> ) | μ <sub>1</sub> = ?       | μ <sub>2</sub> =? |
| SD (standard deviation) | 8.94 (s <sub>1</sub> )  | 7.86 (s <sub>2</sub> )  | σ <sub>1</sub> = ?       | <sub>02</sub> =?  |
| Difference              | $d = x_1 - x_1$         |                         | $\delta = \mu_1 - \mu_2$ |                   |
| Status                  | Known                   |                         | Unknown                  |                   |

- "Is there real difference between men and women" có nghĩa là d
  = 0.
- Chúng ta cần tính độ dao động mẫu của d (sampling variability)

#### Ước tính

Chúng ta cần ước tính d và standard deviation của d (kí hiệu by s)

$$S = \sqrt{\frac{O_1^2}{n_1} + \frac{O_2^2}{n_2}}$$

Khoảng tin cậy 95% của d:

$$d \pm 1.96 \text{ s}$$

### Test of hypothesis

### **Null hypothesis**

$$H_o: \mu_1 = \mu_2$$

### **Alternative hypothesis**

$$H_1 : \mu_1 \neq \mu_2$$

Câu hỏi: Nếu Họ là thật, xác suất mà chúng ta quan sát dữ liệu là bao nhiên? → P-value

# Test of hypothesis – kiểm định giả thuyết

- Đặt alpha = 0.05 hay 0.01
- Tính chỉ số thống kê (t statistic)
- So sánh chỉ số thống kê với phân bố nếu H₀ là đúng



#### **Test statistic**

$$t = \frac{\text{Difference}}{\text{SD of difference}} = \frac{\text{Signal}}{\text{Noise}}$$

$$t = \frac{(\bar{x}_1 - \bar{x}_2)}{\sqrt{\frac{O_1^2}{n_1} + \frac{s_2^2}{n_2}}}$$

### **Using R**

```
setwd("C:/Documents and Settings/Tuan/My Documents/
    _Current Projects/_Vietnam/Huong/Vitamin D")

vd = read.csv("vitaminD.csv", header=T, na.strings=" ")

attach(vd)

library(psych)

describe.by(vitd, sex)

t = t.test(vitd ~ sex)

print(t)
```

### R outputs

### R output – t-test

```
> t = t.test(vitd ~ sex)
> print(t)

t = 6.4768, df = 430.332, p-value = 2.562e-10
alternative hypothesis: true difference in means is not equal
to 0

95 percent confidence interval:
3.326365 6.224809
```

|      | Men        | Women      | Difference<br>and 95% CI | P-value |
|------|------------|------------|--------------------------|---------|
| N    | 222        | 336        | 336                      |         |
| Mean | 28.6 (8.9) | 23.8 (7.9) | 4.8                      | <0.0001 |
|      |            |            | (3.3 - 6.2)              |         |

# Diễn giải

|      | Men        | Women      | Difference and<br>95% CI | P-value |
|------|------------|------------|--------------------------|---------|
| N    | 222        | 336        | 336                      |         |
| Mean | 28.6 (8.9) | 23.8 (7.9) | 4.8                      | <0.0001 |
|      |            |            | (3.3 - 6.2)              |         |

25(OH)D in men was higher than that in women, with average difference being 4.8 ng/mL (95% CI: 3.3 to 6.2 ng/mL; P < 0.0001).

```
se = (6.2-3.3)/(2*1.96)
d = rnorm(1000, mean=4.8, sd=se)
> hist(d, xlim=c(-2, 8))
```



# Hoán chuyển dữ liệu



> library(nortest)
> pearson.test(xlap)
Pearson chi-square normality test
data: xlap
P = 87.877, p-value = 6.145e-12

> pearson.test(log(xlap+0.1))

Pearson chi-square normality test data: log(xlap + 0.1) P = 20.7541, p-value = 0.1882

# Phân tích dựa vào dữ liệu hoán chuyển

# Kết quả t test

```
> t.test(log(xlap+0.1) ~ sex)
data: log(xlap + 0.1) by sex
t = 3.216, df = 206.284, p-value = 0.001509
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
    0.08306888    0.34626674
sample estimates:
mean in group 1 mean in group 2
    -0.7300382    -0.9447060
```

$$Exp(-0.73+0.9447) = 1.234$$
  
 $Exp(0.083) = 1.086$   
 $Exp(0.346) = 1.413$ 

# Diễn giải

|      | Men         | Women       | Percentage<br>difference<br>and 95% CI | P-value |
|------|-------------|-------------|----------------------------------------|---------|
| N    | 100         | 144         |                                        |         |
| Mean | 0.45 (0.31) | 0.34 (0.24) | 23% (8.6,<br>41.3)                     | 0.0015  |

Compared with women, beta crosslap was 23% (95% Cl: 8.6 to 41.3%) higher in men, and the difference was statistically significant (P = 0.001)

## Phương pháp phi tham số

• Wilcoxon's rank sum test

```
> wilcox.test(xlap ~ sex)
Wilcoxon rank sum test with continuity correction
data: xlap by sex
W = 8890, p-value = 0.001834
alternative hypothesis: true location shift is not equal to 0
```

### Phương pháp hoán vị

Permutation và median test

```
> library(coin)
> oneway test(xlap ~ as.factor(sex))
        Asymptotic 2-Sample Permutation Test
data: xlap by as.factor(sex) (1, 2)
Z = 3.1073, p-value = 0.001888
alternative hypothesis: true mu is not equal to 0
> median test(xlap ~ as.factor(sex))
        Asymptotic Median Test
data: xlap by as.factor(sex) (1, 2)
Z = -2.8579, p-value = 0.004265
alternative hypothesis: true mu is not equal to 0
```

### Tóm lược

- Statistical tests:
  - T-test: so sánh 2 nhóm, biến liên tục
  - Phương pháp phi tham số: Wilcoxon, median, and permutation tests
- Giả định: phân bố chuyển, phương sai giống nhau, độc lập
- Hoán chuyển dữ liệu, nếu cần thiết.