壹、方法設計

本專案旨在預測社群平台中貼文的觀看數,資料來源為平台真實貼文資料,包含 圖像、標題文字、發文時間與分類等多種特徵。此任務屬於典型的多模態回歸問 題,挑戰在於有效整合結構化資料與非結構化資料(如圖像與文字)。

經由同學的介紹我使用了 AutoGluon 套件中的 MultiModalPredictor (AutoMM) 作為主力模型。AutoMM 能夠同時處理圖像、文字與表格欄位,並自動選擇最佳 backbone (例如 ViT、BERT、小型卷積網路等)進行訓練與調參,適合本任務的資料特性與目標。

預測流程重點如下:

(一)Label 平滑處理:使用 label_log = log(1 + label) 處理目標變數,有效 減緩長尾分布的影響。

(二)結構化特徵設計:在原始特徵基礎上,額外加入:

title_length:標題長度

is weekend:是否為假日

hour bin:時段分群(凌晨、上午、下午、晚上)

(三)模型訓練:使用 AutoMM,設定 time_limit = 1800,預設使用 high_quality 模式,確保模型表現與穩定性。

(四)預測與反轉:預測後使用 expml() 將結果還原為原始觀看數。

貳、引用方法與差異說明

本次實作主要參考 AutoGluon 官方範例教學(AutoMM 多模態分類與回歸模型), 但依據本任務資料屬性與目標進行如下修改:

項目	原教學	本作業做法
預測任務類型	分類任務	回歸任務(觀看數)
Label 處理	原始值	使用 log1p(label) 平滑
結構化欄位	僅使用內建欄位	額外設計 title_length, hour_bin 等
模型輸出方式	直接預測	預測 log 值後使用 expm1() 還原
模型類型	預設 backbone	由 AutoMM 自動挑選並微調

參、實驗結果與分析

AutoMM 訓練期間觀察模型在驗證集上的 RMSE 表現 ,顯示模型學習穩定且有效:

Epoch	val_rmse (最佳)
0	0.89890
1	0. 87576
2	0. 82706
3	0. 78212
4	0. 78167
5	0. 78123
6	0. 75964

此外,將此模型輸出上傳至平台 leaderboard, public Scoreu 顯著優於 baseline,且表現穩定。這表示 AutoMM 成功學習並整合了圖像、文字與時間結構等不同模態的訊號。

我們也觀察到,log(label)處理大幅降低了極端值對訓練過程的影響,能夠有效改善過擬合;而結構欄位如 title_length, hour_bin 對模型收斂速度與準確性也有明顯助益。

肆、参考資料與引用來源

AutoMM 教學文檔

https://auto.gluon.ai/stable/tutorials/multimodal/index.html

AutoMM 論文

Zeng et al., AutoGluon Multimodal, NeurIPS 2022

結構特徵設計靈感:參考常見社群資料建模實務與時間特徵工程

伍、後續優化方向建議

嘗試 pseudo-labeling:將高信心 test 結果納入訓練迴圈

加入特徵重要性分析(如 SHAP)理解模型關注重點

嘗試更輕量化 backbone (MobileViT、TinyBERT) 提升訓練效率

嘗試進一步 tuning backbone 結構或層級凍結策略