DataStream API

Windows & Time

Apache Flink® Training

Flink v1.2 - 05.05.2017

Windows and Aggregates

Windows

- Aggregations on DataStreams are different from aggregations on DataSets
 - You cannot count all records of an unbounded stream
- Aggregations make sense on windowed streams
 - A window is a finite subset of stream elements

Tumbling and Sliding Windows

Tumbling:

aligned, fixed length, non-overlapping windows

Sliding:

aligned, fixed length, overlapping windows

Session Windows

Non-aligned, variable length windows.

Specifying Windowing

Predefined Keyed Windows

- Tumbling time window .timeWindow(Time.minutes(1))
- Sliding time window

 timeWindow(Time.minutes(1), Time.seconds(10))
- Tumbling count window .countWindow(100)
- Sliding count window
 .countWindow(100, 10)
- Session window.window(SessionWindows.withGap(Time.minutes(30)))

Non-keyed Windows

Windows on non-keyed streams are not processed in parallel!

```
stream.windowAll(...)...
```

- stream.timeWindowAll(Time.seconds(10))...
- stream.countWindowAll(20, 10)...

Aggregations on Windowed Streams


```
DataStream<SensorReading> input = ...
input
  .keyBy("key")
  .timeWindow(Time.minutes(1))
  .apply(new MyWastefulMax());
public static class MyWastefulMax implements WindowFunction
    SensorReading,
                                    // input type
   Tuple3<String, Long, Integer>, // output type
   Tuple,
                                    // key type
    TimeWindow> {
                                    // window type
   @Override
    public void apply(
        Tuple key,
        TimeWindow window,
        Iterable<SensorReading> events,
        Collector<Tuple3<String, Long, Integer>> out) {
        int max = 0;
        for (SensorReading e : events) {
            if (e.f1 > max) max = e.f1;
        out.collect(new Tuple3<>(Tuple1<String>key).f0, window.getEnd(), max));
```


state

state

Incremental Window Aggregation


```
DataStream<SensorReading> input = ...
input
  .keyBy("key")
  .timeWindow(Time.minutes(1))
  .reduce(new MyReducingMax(), new MyWindowFunction());
private static class MyReducingMax implements ReduceFunction<SensorReading> {
 public SensorReading reduce(SensorReading r1, SensorReading r2) {
      return r1.value() > r2.value() ? r1 : r2;
private static class MyWindowFunction implements WindowFunction
  SensorReading, Tuple2<Long, SensorReading>, String, TimeWindow> {
      public void apply(String key,
                    TimeWindow window,
                    Iterable<SensorReading> maxReadings,
                    Collector<Tuple2<Long, SensorReading>> out) {
          SensorReading max= maxReadings.iterator().next();
          out.collect(new Tuple2<Long, SensorReading>(window.getStart(), max));
```


8, 3, 9 7 9

8, 3 9 <u>\$\sigma\\$\ 9</u>

8 9 = 9

window trigger

Operations on Windowed Streams

- reduce(reduceFunction)
 - Apply a functional reduce function to the window
- fold(initialVal, foldFunction)
 - Apply a functional fold function with a specified initial value to the window
- Aggregation functions
 - sum(), min(), max(), and others

Custom window logic

- The DataStream API allows you to define very custom window logic
- GlobalWindows
 - a flexible, low-level window assignment scheme that can be used to implement custom windowing behaviors
 - only useful if you explicitly specify triggering, otherwise nothing will happen
- Trigger
 - defines when to evaluate a window
 - whether to purge the window or not
- Careful! This part of the API requires a good understanding of the windowing mechanism!

Handling Time Explicitly

The biggest change in moving from batch to streaming is handling time explicitly

Different Notions of Time

Event Time vs Processing Time

This is called *processing time*

Setting the StreamTimeCharacteristic


```
final StreamExecutionEnvironment env =
   StreamExecutionEnvironment.getExecutionEnvironment();
env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime);

// alternatively:
// env.setStreamTimeCharacteristic(TimeCharacteristic.IngestionTime);
// env.setStreamTimeCharacteristic(TimeCharacteristic.ProcessingTime);
```

Choosing Event Time has Consequences

- With event time, Flink needs to know
 - how to extract timestamps from stream elements
 - when enough event time has elapsed that a time window should be triggered

Watermarks

- Watermarks mark the progress of event time
- They flow with the data stream and carry a timestamp
- Watermarks assert that all earlier events have (probably) arrived

Perfect Watermarks

 When stream elements are in order (or in order by key), we can achieve perfect watermarking

 When events are out-of-order, we often assume there is some bound to how out-of-order they can be

maxOutOfOrderness = 4

 Each time a new maximum timestamp arrives, we have enough info to emit a new Watermark

maxOutOfOrderness = 4

 Each time a new maximum timestamp arrives, we have enough info to emit a new Watermark

maxOutOfOrderness = 4

 Each time a new maximum timestamp arrives, we have enough info to emit a new Watermark

How often to emit Watermarks?

- Here we are emitting an new Watermark as often as possible
- However, it is best to avoid generating too many Watermarks

Watermarks define Lateness

• Elements where timestamp < currentWatermark are late

Two Styles of Watermark Generation

Periodic Watermarks

- Based on a timer
- BoundedOutOfOrdernessGenerator is an example
- ExecutionConfig.setAutoWatermarkInterval(msec) controls the interval at which your periodic watermark generator is called

Punctuated Watermarks

Based on something in the event stream

Pre-defined timestamp extractors / watermark emitters

- AscendingTimestampExtractor
 - For special case when timestamps are in ascending order
- BoundedOutOfOrdernessTimestampExtractor
 - Periodically emits watermarks that lag a fixed amount of time behind the max timestamp seen so far

Example


```
stream
    .assignTimestampsAndWatermarks(new MyTSExtractor())
    .keyBy(...)
    .timeWindow(...)
    .addSink(...);
public static class MyTSExtractor extends
  BoundedOutOfOrdernessTimestampExtractor<TaxiRide> {
    public TaxiRideTSExtractor() {
        super(Time.seconds(MAX EVENT DELAY));
   @Override
    public long extractTimestamp(TaxiRide ride) {
        return ride.startTime.getMillis();
```

```
public class BoundedOutOfOrdernessGenerator extends
 AssignerWithPeriodicWatermarks<MyEvent> {
    private final long maxOutOfOrderness = 3500; // 3.5 seconds
    private long currentMaxTimestamp;
   @Override
    public long extractTimestamp(MyEvent element, long previousElementTimestamp) {
        long timestamp = element.getCreationTime();
        currentMaxTimestamp = Math.max(timestamp, currentMaxTimestamp);
        return timestamp;
   @Override
    public Watermark getCurrentWatermark() {
       // watermark is current highest timestamp minus the out-of-orderness bound
        return new Watermark(currentMaxTimestamp - maxOutOfOrderness);
```

Watermarks in Parallel

Per-Kafka-Partition Watermarks

Watermarking

- Perfect
- (Un)comfortably bounded by fixed delay
 - too slow: results are delayed
 - too fast: some data is late
- Heuristic
 - allow windows to produce results as soon as meaningfully possible, and then continue with updates during the allowed lateness interval

References

 The Dataflow Model: A Practical Approach to Balancing Correctness, Latency, and Cost in Massive-Scale, Unbounded, Out-of-Order Data Processing

https://research.google.com/pubs/pub43864.html

Documentation

- https://ci.apache.org/projects/flink/flink-docs-release-1.2/dev/event_time.html
- https://ci.apache.org/projects/flink/flink-docs-release-1.2/dev/event_timestamps_watermarks.html
- https://ci.apache.org/projects/flink/flink-docs-release-1.2/dev/windows.html

Blog posts

- http://flink.apache.org/news/2015/12/04/Introducing-windows.html
- http://data-artisans.com/how-apache-flink-enables-new-streamingapplications-part-1/
- https://www.mapr.com/blog/essential-guide-streaming-first-processingapache-flink
- http://data-artisans.com/session-windowing-in-flink/