Assignment 2

Digital Communication System-I

April 2023

Please answer the following questions:

Q 1: Consider the following two waveforms $f_1(t)$ and $f_2(t)$. Are these waveforms orthonormal?

- (a) True
- (b) False

Q 2: Consider the four waveforms shown in the figure below. These are represented using four basis function as following vectors s_1 , s_2 , s_3 , and s_4 .

(a)
$$s_1 = [2 \ -1 \ -1 \ -1], s_2 = [-2 \ 1 \ 1 \ 0], s_3 = [1 \ -1 \ 1 \ -1], s_4 = [1 \ -2 \ -2 \ 2].$$

(b)
$$s_1 = \begin{bmatrix} 2 & -1 & -1 & -1 \end{bmatrix}$$
, $s_2 = \begin{bmatrix} 1 & -1 & 1 & -1 \end{bmatrix}$, $s_3 = \begin{bmatrix} -2 & 1 & 1 & 0 \end{bmatrix}$, $s_4 = \begin{bmatrix} 1 & -2 & -2 & 2 \end{bmatrix}$.

(c)
$$s_1 = \begin{bmatrix} 2 & -1 & -1 & -1 \end{bmatrix}$$
, $s_2 = \begin{bmatrix} 1 & -1 & 1 & -1 \end{bmatrix}$, $s_3 = \begin{bmatrix} 1 & -1 & 1 & 1 \end{bmatrix}$, $s_4 = \begin{bmatrix} 1 & -2 & -2 & 2 \end{bmatrix}$.

1

(d) None of the above.

Q 3: Suppose a DC signal x of amplitude A is transmitted over a additive white Gaussian noise (AWGN) channel where noise is zero mean Gaussian with variance σ^2 . Then what will be the probability density function $f_Y(y)$ of the output y of the channel?

(a)
$$f_Y(y) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{\frac{-(y-A)^2}{2\sigma^2}}$$

(b)
$$f_Y(y) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{\frac{-(y+A)^2}{2\sigma^2}}$$

(c)
$$f_Y(y) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{\frac{-y^2}{2\sigma^2}}$$

(d) None of the above

Consider the following statement for answering Q(4)-Q(5).

The joint probability density function (PDF) of two random variables (X and Y) are given by

$$f_{X,Y}(x,y) = \begin{cases} Ke^{-x-y}, & x \ge y \ge 0\\ 0, & \text{otherwise} \end{cases}.$$

Q 4: Find the value of the constant K.

- (a) 1
- (b) 0.5
- (c) $\frac{1}{e}$
- (d) 2

Q 5: Find E[X|Y = y].

- (a) y
- (b) y + 1
- (c) y 1
- (d) $\exp(-y)$

Q 6: Let X be a Gaussian Random Variable with mean 1 and variance 9 i.e. $X \sim \mathcal{N}(1,9)$. Calculate the value of $\mathbb{P}[X > 7]$

- (a) Q(1)
- (b) Q(2)
- (c) Q(0.5)
- (d) Q(3)

Q 7: Which of the following properties about complex Gaussian random variable **Z** is true?

- (a) If ${\bf Z}$ is circularly symmetric, then it is zero-mean complex vector.
- (b) If **Z** is circularly symmetric, then it is proper.
- (c) If **Z** is zero mean proper complex vector, **Z** is circularly symmetric.
- (d) All of these.

Q 8: Which of the following is an example of cyclostationary signal?

- (a) $x(t) = \sum_{k=-\infty}^{\infty} a_k p(t-kT)$ where a_k is i.i.d. random variables.
- (b) $x(t) = A\cos(2\pi f t + \theta)$ where $\theta \sim U(0, 2\pi)$

- (c) $x(t) = a(t)\cos(2\pi f t + \theta)$ where $\theta \sim U(0, 2\pi)$, a(t) is a periodic signal.
- (d) All of these

Q 9: Let θ be a random variable uniformly distributed in $[0, 2\pi]$ and let $s(t) = A \sin(2\pi f_c t + \theta)$. Calculate the auto-correlation function of a random process $R_{ss}(t, t + \tau)$

- (a) $\frac{A^2}{2}\sin(2\pi f_c\tau)$
- (b) $\frac{A^2}{2}\cos(2\pi f_c \tau)$
- (c) $A^2 \cos(2\pi f_c \tau)$
- (d) None of the above

 \mathbf{Q} 10: Let X,Y be independent standard normal random variables. Let

$$u(t) = X\cos(2\pi f_c t) + Y\sin(2\pi f_c t)$$

Then, which of the following are correct?

- (a) $\mathbb{E}[u(t)] = 0$
- (b) $R_{uu}(t, t + \tau) = \cos(2\pi f \tau)$
- (c) u(t) is a wide sense stationary Random process
- (d) All of the above.