Logistic Regression

Andrew Flint, Cole Lyman, Corinne Sexton, and Kevin Toney October 12, 2017

Problem 1

Libraries

```
library(dummies)
library(glmnet)
```

Read in the data

```
icudata <- read.csv("data/icudata.csv")
```

Fit Logistic Model (1a)

```
model <- glm(as.factor(STA) ~ as.factor(CPR) + AGE + as.factor(RACE) + SYS + HRA + as.
factor(TYP), icudata, family = 'binomial')

# output the coefficients
model$coefficients</pre>
```

```
(Intercept) as.factor(CPR)1
                                                   AGE as.factor(RACE)2
##
##
       -3.121326454
                         1.387793431
                                           0.035029828
                                                           -0.826682213
## as.factor(RACE)3
                                  SYS
                                                   HRA as.factor(TYP)1
        0.264005681
##
                        -0.012837227
                                          -0.007946038
                                                            2.303171699
```

Effect of CPR on survival (1b)

CPR is the second best indicator of survival after the type of admission. Thus, having CPR increases your chance of survival greatly.

Create LASSO Model (1c)

Need to create dummy variables because LASSO only take numeric values (no categorical/factors) Need to remove the first column so the model is identifiable.

```
CPR_dummy <- dummies::dummy(icudata$CPR)
CPR_dummy <- CPR_dummy[ , -1]

RACE_dummy <- dummies::dummy(icudata$RACE)
RACE_dummy <- RACE_dummy[ , -1]

TYP_dummy <- dummies::dummy(icudata$TYP)
TYP_dummy <- TYP_dummy[ , -1]</pre>
```

Create X and y matrix/vector

```
X <- as.matrix(icudata[ , c("AGE", "SYS", "HRA")])
X <- cbind(X, CPR_dummy, RACE_dummy, TYP_dummy)
y <- icudata$STA</pre>
```

Fit LASSO model with logistic regression

```
lasso_model <- cv.glmnet(X, y, family = 'binomial')
plot(lasso_model)</pre>
```


Find optimal value of lambda and coefficients for optimal lambda

lasso_model\$lambda.min

```
## [1] 0.01146592
```

Coefficients: (1d)

```
coef(lasso_model, s = "lambda.min")
```

```
## 8 x 1 sparse Matrix of class "dgCMatrix"
##
                                                                            1
## (Intercept)
                                                                 -3.002058860
## AGE
                                                                 0.027858713
## SYS
                                                                 -0.010109830
## HRA
                                                                 -0.002601166
## CPR_dummy
                                                                  1.140993069
## /home/cole/Code/2017/cs494/logisticRegression/problem1.Rmd2 -0.402812800
## /home/cole/Code/2017/cs494/logisticRegression/problem1.Rmd3
## TYP_dummy
                                                                  1.726744394
```

Problem 2

Libraries

```
rm(list=ls())
library(dplyr)
library(glmnet)
library(plyr)
library(stringr)
library(jsonlite)
```

Data wrangling with the tag column (2a)

```
ted.data <- read.csv("data/ted.csv", header = T, sep = ",")</pre>
#unique(ted.data$tags)
#each row, except 20 has a unique combination of tags.
#try splitting up the tags column by commas.
tags <- str_replace(as.character(ted.data$tags), "\\[", "")</pre>
tags <- str_replace(tags, "\\]", "")</pre>
tags <- str_replace_all(tags, "\\'", "")</pre>
tags <- str_split(tags, ", ")</pre>
diff.tags <- unique(unlist(tags))</pre>
tag.cols <- NULL
for(i in 1:length(diff.tags)) {
  tag.cols[i] <- paste("TAG_", diff.tags[i], sep = '')</pre>
}
new.data <- matrix(data=NA, nrow=nrow(ted.data), ncol=length(tag.cols))</pre>
colnames(new.data) <- tag.cols</pre>
ted.data <- cbind(ted.data, new.data)</pre>
for(i in 1:ncol(ted.data)) {
  for(j in 1:nrow(ted.data)) {
    ted.data[j,i+17] <- diff.tags[i] %in% tags[[j]]</pre>
  }
}
```

Create a new column for each rating category (2b)

```
r_names <- c("RATINGS_Funny", "RATINGS_Beautiful", "RATINGS_Ingenious", "RATINGS_Coura
geous", "RATINGS_LongWinded",
              "RATINGS_Confusing", "RATINGS_Informative", "RATINGS_Fascinating", "RATIN
GS_Unconvincing",
              "RATINGS_Persuasive", "RATINGS_Jaw-Dropping",
              "RATINGS_Ok", "RATINGS_Obnoxious", "RATINGS_Inspiring")
rat_matrix <- matrix(NA, nrow=nrow(ted.data), ncol=length(r_names))
ted.data$ratings <- gsub("'", '"', ted.data$ratings)</pre>
ratings <- sapply(ted.data$ratings, fromJSON)</pre>
#now we got a matrix with 2,550 columns and three rows.
#this matrix goes by ratings[,col][[list#]] to get to a column first and then a row
#Standardize the rows to follow the same order.
ratingsnew <- ratings
for(i in 1:ncol(ratings)) {
  for(k in 1:3){
    if (k == 1) {
      orders = order(match(ratings[,i][[2]], ratings[,1][[2]]))
    ratingsnew[,i][[k]] <- ratings[,i][[k]][orders]</pre>
  }
}
#r_names <- sort(r_names)[orders]</pre>
colnames(rat_matrix) <- r_names</pre>
#populate the new matrix of the ratings with the counts.
for(i in 1:ncol(ratings)){
  for(k in 1:ncol(rat_matrix)){
    rat_matrix[i,k] <- ratingsnew[,i][[3]][k]</pre>
  }
}
#cbind the old data frame and the ratings data frame together.
ted.data <- cbind(ted.data, rat_matrix)</pre>
```

Use LASSO to fit logistic regression (2c)

```
dummy_TAG <- dummies::dummy.data.frame(ted.data, names=grep("TAG_",names(ted.data), va
lue=T), all=F)
# eliminate extras (FALSE COLUMNS)
dummy_TAG2 <- dummy_TAG[ , grep('TRUE', colnames(dummy_TAG))]

X <- as.matrix(ted.data[ , grep('RATINGS', colnames(ted.data), value = T)])
X <- cbind(X, ted.data$comments, ted.data$duration, ted.data$num_speaker, dummy_TAG2)
X <- as.matrix(X)
y <- ted.data$views

lasso_model <- cv.glmnet(X, y, family = 'gaussian')
plot(lasso_model)</pre>
```


Optimal lambda value (2d)

```
lasso_model$lambda.min
```

[1] 35457.52

Top 10 and Worst 10 Tags (2e)

```
a <- coef(lasso_model, s = "lambda.min")
b <- a[,1]</pre>
```

Top 10 tags

```
# max 10
head(sort(b, decreasing=T),11)
```

```
##
           TAG_magicTRUE TAG_body languageTRUE
                                                        TAG_fashionTRUE
##
                 958274.9
                                        750762.1
                                                                576839.4
##
   TAG_relationshipsTRUE
                                 TAG_successTRUE
                                                      TAG_potentialTRUE
##
                 339736.1
                                        299042.7
                                                                250780.9
##
          TAG_flightTRUE
                                  TAG_speechTRUE
                                                     TAG_wunderkindTRUE
                 237398.3
                                        216959.7
                                                                207806.1
##
##
              (Intercept)
                            TAG_performanceTRUE
##
                 175241.9
                                        162139.5
```

Worst 10 tags

```
# min ten
head(sort(b),10)
```

```
##
      TAG_statisticsTRUE
                                  TAG_TED-EdTRUE
                                                           TAG_memeTRUE
##
               -400256.15
                                      -296041.81
                                                             -269150.38
   TAG_consciousnessTRUE
                                                    TAG_advertisingTRUE
##
                           TAG_presentationTRUE
##
               -235208.74
                                      -135765.24
                                                             -103070.19
##
          TAG_GoogleTRUE
                             TAG_simplicityTRUE TAG_global issuesTRUE
##
                -99786.60
                                       -99593.20
                                                              -91046.41
##
            TAG_selfTRUE
##
                -90935.56
```

Least important rating (2f)

LongWinded, Persuasive, Obnoxious, Confusing, and Unconvincing all went to 0 through the LASSO test, but besides that Jaw-Dropping had the lowest coefficient (8.842249) for the rest of the ratings.

```
b[grep("RATINGS", names(b))]
```

```
##
          RATINGS_Funny
                            RATINGS_Beautiful
                                                   RATINGS_Ingenious
##
               771.68330
                                     165.64021
                                                           634.96058
     RATINGS_Courageous
##
                           RATINGS_LongWinded
                                                   RATINGS_Confusing
##
               537.43943
                                     -19.10856
                                                             0.00000
##
    RATINGS Informative
                          RATINGS_Fascinating RATINGS_Unconvincing
##
              1080.78316
                                     589.78996
                                                           -12.09196
                                                          RATINGS Ok
##
     RATINGS_Persuasive RATINGS_Jaw-Dropping
##
                 0.00000
                                      15.93627
                                                          5753.79140
##
      RATINGS_Obnoxious
                            RATINGS_Inspiring
##
                 0.00000
                                     293.44017
```