Workshop: Online tools for pathogen genome analyses

November 14th, 2023

Sira Sriswasdi, PhD

- Research Affairs, Faculty of Medicine, Chulalongkorn University
- Center of Excellence in Computational Molecular Biology (CMB)
- Center for Artificial Intelligence in Medicine (CU-AIM)

With Ananporn Supataragul & Apaporn Rodpan

Today's team

Sira Sriswasdi, PhD

Center of Excellence in

Computational Molecular Biology

Center for AI in Medicine

Research Affairs

Apaporn Rodpan

Ananporn Supataragul

Plan for today

Overview

Key considerations surrounding pathogen genome analyses

Some technical points (bioinformatics)

Introducing online tools

Showcases & Hands-on

Nextclade suite for viral genome analysis

Galaxy bioinformatics platform

How complex is your DNA/RNA sample?

- Culture = almost single genome
 - Remove only poor-quality reads
- Host contamination
 - Mark and remove host sequences

- Metagenomics = many organisms
 - Identify appropriate database!

https://jgi.doe.gov/promoting-the-power-of-viral-metagenomics/

Investigative questions

- Which strains / variants are present?
 - Strain / variant calling by aligning to curated DB
 - \Box Taxonomy classification by alignment or k-mer matching
- What are their genomes?
 - Whole genome reconstruction
 - Novel pathogen identification
- How are they evolutionally related?
 - Phylogenetics
 - Visualization

A rough workflow

Quality check with FastQC

❷Basic Statistics

Measure	Value
Filename	small_rna.fastq.gz
File type	Conventional base calls
Encoding	Sanger / Illumina 1.9
Total Sequences	250000
Sequences flagged as poor quality	0
Sequence length	100
%GC	45

Per base sequence quality

Per tile sequence quality

Per sequence quality scores

Per base sequence content

Per sequence GC content

Per base N content

Sequence Length Distribution

Sequence Duplication Levels

Overrepresented sequences

Adapter Content

Per base sequence quality

Quality check with FastQC

Overrepresented sequences

Sequence	Count	Percentage	Possible Source
${\tt TGAGGTAGATTGTATAGTTAGATCGGAAGAGCACACGTCTGAACTCC}$	10865	4.346	Illumina Multiplexing PCR Primer 2.01 (100% over 28bp)
${\tt TAGCTTATCAGACTGATGTTGACAGATCGGAAGAGCACACGTCTGAACTC}$	10845	4.338	Illumina Multiplexing PCR Primer 2.01 (100% over 27bp)
${\tt TCTTTGGTTATCTAGCTGTATGAGATCGGAAGAGCACACGTCTGAACTCC}$	7062	2.8247999999999998	Illumina Multiplexing PCR Primer 2.01 (100% over 28bp)
${\tt TCTTTGGTTATCTAGCTGTATGAAGATCGGAAGAGCACACGTCTGAACTC}$	4056	1.622399999999998	Illumina Multiplexing PCR Primer 2.01 (100% over 27bp)
${\tt TGAGGTAGTAGTTTGTGCTGTTAGATCGGAAGAGCACACGTCTGAACTCC}$	3737	1.4948	Illumina Multiplexing PCR Primer 2.01 (100% over 28bp)
${\tt TGAGGTAGTAGTTTGTACAGTTAGATCGGAAGAGCACACGTCTGAACTCC}$	3549	1.4196	Illumina Multiplexing PCR Primer 2.01 (100% over 28bp)
${\tt TGAGGTAGTAGGTTGTATGGTTAGATCGGAAGAGCACACGTCTGAACTCC}$	2931	1.1724	Illumina Multiplexing PCR Primer 2.01 (100% over 28bp)
${\tt AACCCGTAGATCCGATCTTGTAGATCGGAAGAGCACACGTCTGAACTCCA}$	1910	0.764	Illumina Multiplexing PCR Primer 2.01 (100% over 29bp)
${\tt CGCGACCTCAGATCAGACGTAGATCGGAAGAGCACACGTCTGAACTCCAG}$	1749	0.6996	Illumina Multiplexing PCR Primer 2.01 (100% over 30bp)
${\tt TGAGGTAGTAGGTTGTATAGTTAGATCGGAAGAGCACACGTCTGAACTCC}$	1647	0.6588	Illumina Multiplexing PCR Primer 2.01 (100% over 28bp)
${\tt TCTTTGGTTATCTAGCTGTATAGATCGGAAGAGCACACGTCTGAACTCCA}$	1622	0.6487999999999999	Illumina Multiplexing PCR Primer 2.01 (100% over 29bp)
${\tt TAGCTTATCAGACTGATGTTGATAGATCGGAAGAGCACACGTCTGAACTC}$	1328	0.5312	Illumina Multiplexing PCR Primer 2.01 (100% over 27bp)
${\tt TTCAAGTAATCCAGGATAGGCTAGATCGGAAGAGCACACGTCTGAACTCC}$	1248	0.4992	Illumina Multiplexing PCR Primer 2.01 (100% over 28bp)
${\tt AGCAGCATTGTACAGGGCTATGAAGATCGGAAGAGCACACGTCTGAACTC}$	1248	0.4992	Illumina Multiplexing PCR Primer 2.01 (100% over 27bp)

Taxonomic classification

 Sequence alignment against a curated database

Prediction based on k-mer profiles (fast but less accurate)

Hleap, J.S. et al. Molecular Ecology Resource, 21(7):2190-2203 (2021)

Phylogenetics

Multiple sequence alignment

Image from www.mcqbiology.com

Evolutionary model

Yang & Rannala. Nat Rev Genetics (2012)

Tree building algorithm

Tian, Y. and Kubatko, L.S. BMC Evol Biol 17(1) (2017)

 Estimating the most likely evolutionary relationship given a multiple sequence alignment and a sequence substitution model

Nextclade

Nextclade

Clade assignment, mutation calling, and sequence quality checks

Supported pathogens

Alignment overview

Position of detected mutation against the reference genome

Switch between genes and whole genome

Results download

Phylogenetic tree

Q ZOOM TO SELECTED RESET LAYOUT

Phylogeny

Nextclade Pango Lineage▲

XBB.1

XBB.1.16.2

Genome Detective

Genome Detective

- Quality control
- Taxonomy assignment
- Genome assembly
- Subtyping
- Alignment statistics

GENOME DETECTIVE

Genome Detective offers intuitive Bio-Informatics applications for the analysis of microbial molecular sequence data.

We have published our first major application, Genome
Detective Virus Tool: An Accurate, Fast and Automated System
for Virus Identification from High-throughput next generation
sequencing (NGS) data. Genome Detective Virus Tool accurately
and quickly identifies, assembles and classifies all known
viruses present in short read and long read that are produced by
Illumina, Ion torrent and Oxford Nanopore sequencers.

GET STARTED WITH GENOME DETECTIVE

EASE OF USE

Requires no software installation nor detailed bioinformatics knowledge.

INSIGHTFUL REPORTS

Alignment and coverage views provide visual confirmation of identified viruses

ACCURATE

We use manually curated reference databases and advanced methods to obtain high specificity with high sensitivity.

ASSEMBLY

Using de novo assembly allows to type highly diverged viruses and results in (genome) sequences that can be further analyzed.

SUBTYPING

For several species, e.g. Human Immunodeficiency Virus 1, we work with the research community to create and maintain subtyping tools.

Data quality check

Taxonomy chart

ASSIGNMENTS

Strains with at least 50% NT similarity (assuming a 45% similarity for non-covered parts)

Assignment	# Reads	Depth of	NT	AA	Genome	Genome Coverage image
		Coverage	Identity	Identity	Coverage	
Rhinovirus A (subtype: A HRV-A68)	57659	976.4	69.2%	72.2%	99.4%	1 7162
Severe acute respiratory syndrome- related coronavirus (subtype: 🗗 SARS-CoV-2, International A_B Diversity)	6940	64.6	99.7%	98.5%	32.1%	1 2003 CH (CH (CH (CH (CH (CH (CH (CH (CH (CH (
Human endogenous retrovirus K113	977	11.5	99.9%	99.6%	94.8%	1 9472
Dubowvirus SAP26	161	3.7	99.3%	98.3%	11.5%	1 41207 DENO(3) 300 0 DOCK 3 33 DOCK 3 30 DOCK

DISCOVERIES

Strains with low NT identity and/or low genome coverage

Similar to	# Reads	Depth of	NT	AA	Genome	Genome Coverage image		
		Coverage	Identity	Identity	Coverage			
Baboon endogenous virus strain M7	156	8.8	58.6%	54.2%	21.8%	1 8507		
Peeveelvirus PV83	130	5.4	90.2%	87.0%	5.6%	1 40000 () () () () () () () () () ()		
Triavirus P240	115	3.2	99.6%	99.0%	8.7%	1 45005) D D D D D D D D D D D D D D D D D D D		
Human coronavirus 229E	105	52.2	86.1%	79.2%	0.6%	1 27317 X DED		

Assembly and annotation

ASSIGNMENT		ALIGNMENT	
Туре	Rhinovirus A (Taxonomy ID: 147711)	Alignment Score	5322.0 (NT) + 11678.0 (AA) = 17000.0
Subtype	☐ HRV-A68	Concordance (%)	58.2431
Reference Genome	NC_001617.1	Alignment Method	Global, seeded, nucleotide + amino acids (AGA)
NT Identity (%)	69.193	NT Alignment	Download alignment (FASTA)
AA Identity (%)	72.1735	Region Bam File	Download BAM file (.bam)
Number Of Stop	0	CDS Alignment	Download CDS alignment (FASTA)
Codons		Consensus Sequence	Download consensus sequence (FASTA)
Number Of CDS	1	Consensus Contigs	Download consensus contigs (FASTA)

GENOME REGION

Sequence starts at position 1 and ends at position 7111 relative to NC_001617.1 reference sequence.

ALIGNMENT DETAILED STATISTICS

SHOW MUTATIONS

±	Begin	End	Coverage	Score	Concordance	Matches	Identities	I/D/M/F*	Stop Codons
NT	1	7111	99.4%	5322	37.8%	7082 (99.0%)	4930 (68.9%)	43/29	
CDS									
☐ HRV89gp1	1	2165	100%	11678	77.2%	2156 (99.1%)	1564 (71.9%)	11/9/0/0	0
Proteins									
genome polypr	1	2165	100%	11678	77.2%	2156 (99.1%)	1564 (71.9%)	11/9/0/0	0
apsid protein	1	69	100%	436	95.8%	69 (100%)	66 (95.7%)	0/0/0/0	0

Galaxy

Galaxy

 A GUI platform with many bioinformatics tools built-in

- Upload data file and set the analysis parameters
 - Require bioinformatics understanding but no coding skill

Customizable workflow

 Multiple bioinformatics tools can be chained together into a workflow

Bioinformatics parameter setting

Step 2: MUSCLE

Fasta file

Output dataset 'output' from step 1

Run options

Most accurate, maxiters=16

Find diagonals (-diags)

False

Clustering (tree-building) options

UPGMB

Output format

Fasta

Step 3: FastTree

Aligned sequences file (FASTA/Phylip format)

Output dataset 'out_align' from step 2

Nucleotide or protein alignment

Auto detect

Evolutionary model if type is DNA

GTR

Evolutionary model if type is PROTEIN

LG

Use Gamma distribution

Yes

Bootstrap branch support

Bootstrap

Number of replicates

100

Analysis history

Phylogenetic tree viewer

Export

Let's try analyzing some data

https://github.com/cmb-chula/CGENet-symposium-2023

Thank you for coming today

Contact information

- Sira Sriswasdi: sira.sr@chula.ac.th

Acknowledgements

- Faculty of Medicine and Faculty of Engineering, Chulalongkorn University
- King Chulalongkorn Memorial Hospital, Thai Red Cross Society
- World Health Organization
- The National Research Council of Thailand
- Department of Disease Control, Ministry of Public Health
- All speakers: Mahidol University, the University of Tokyo, Kasetsart University
- CGENet developers

Genomics

Transcriptomics

Proteomics

Metabolomics

Multi-omics

Epigenomics

Single-cell

Nutrigenomics

Micro/Metagenomics System Biology

Ai & ML

Infectious Diseases Agriculture

Others

