

Pimpri Chinchwad Education Trust's

Pimpri Chinchwad College of Engineering

Department of Civil Engineering

ENGINEERING MATHEMATICS III

UNIT III STATISTICS

Mr. Dinesh Kute (7709495376)

Statistics

Statistics

Def: Statistics is a branch of mathematics dealing with the collection, analysis, interpretation, presentation, and organization of data.

Classification of Data

- 1. Ungrouped Frequency Distribution
- 2. Grouped Frequency Distribution

Classification of Data

Example: Consider marks of 10 students (out of 25)

23,10,12,23,20,12,20,15,15,25

(Ungrouped Data)

Ungrouped Frequency Distribution		
x	f	
23	2	
10	1	
12	2	
20	2	
15	2	
25	1	
	$\sum_{i=1}^{6} f_i = N = 10$	

Grouped Frequency Distribution				
Class	f			
0-5	0			
5-10	0			
10-15	3			
15-20	2			
20-25	5			
	$\sum_{i=1}^{5} f_i = N = 10$			

Measures of Central tendency:

Measure of central tendency is typical value around which other figures aggregate.

There are five measures of central tendency that are in common use

- 1) Arithmetic average or arithmetic mean or simple mean
- 2) Median
- 3) Mode
- 4) Geometric mean
- 5) Harmonic mean

Arithmetic mean or Average:

1. Ungrouped Data: Consider set of observations $x_1, x_2, x_3, \dots, x_k$

$$A. M. = \overline{x} = \frac{\sum_{i=1}^{k} x_i}{k}$$

Arithmetic mean or Average:

2. Ungrouped Frequency distribution: Consider the frequency Distribution

\boldsymbol{x}	f
x_1	f_1
x_2	f_2
:	:
:	:
x_n	f_n

$$A.M = \overline{x} = \frac{\sum_{i=1}^{n} f_i x_i}{\sum_{i=1}^{n} f_i} = \frac{\sum_{i=1}^{n} f_i x_i}{N}$$

Q.1 Find mean of the following observations

(a) 480,485,492,495,500,505,515

(b)	\mathcal{X}	32	33	34	35	36
	f	4	10	13	8	5

Solution:

(a) Since, given data is ungrouped data

$$\frac{1}{x} = \frac{\sum_{i=1}^{k} x_i}{k} \implies x = \frac{480 + 485 + 492 + 495 + 500 + 505 + 515}{7} \implies x = \frac{480 + 485 + 492 + 495 + 500 + 505 + 515}{7}$$

(b) Since, given data is in ungrouped frequency distribution

$$\overline{x} = \frac{\sum_{i=1}^{n} f_i x_i}{\sum_{i=1}^{n} f_i} \implies \overline{x} = \frac{(32 \times 4) + (33 \times 10) + (34 \times 13) + (35 \times 8) + (36 \times 5)}{4 + 10 + 13 + 8 + 5} \implies \overline{x} = \frac{34}{4 + 10 + 13 + 8 + 5}$$

Arithmetic mean or Average:

3. Grouped Frequency distribution: Consider the frequency Distribution

Class	f	x_i
$a_1 - a_2$	f_1	$\frac{a_1 + a_2}{2}$
$a_2 - a_3$	f_2	$\frac{a_2 + a_3}{2}$
:	:	:
:	:	:
$a_n - a_{n+1}$	f_n	$\frac{a_n + a_{n+1}}{2}$

$$A. M. = \overline{x} = A + h \frac{\sum_{i=1}^{n} f_i u_i}{\sum_{i=1}^{n} f_i} = A + h \frac{\sum_{i=1}^{n} f_i u_i}{N}$$

Where, h: length of the interval

 $A: middle \ value \ of \ x_i$

$$u_i = \frac{x_i - A}{h}$$

Q.2 The marks obtained in paper of Mathematics are given in the following table. Find the Arithmetic mean of the distribution.

Marks Obtained	No. of students
0-10	8
10-20	20
20-30	14
30-40	16
40-50	20
50-60	25
60-70	13
70-80	10
80-90	5
90-100	2

Solution:

Marks Obtained	Mid Value x	No. of students <i>f</i>	$u = \frac{x - A}{h}$	fu
0-10	5	8	-4	-32
10-20	15	20	-3	-60
20-30	25	14	-2	-28
30-40	35	16	-1	-16
40-50	45	20	0	0
50-60	55	25	1	25
60-70	65	13	2	26
70-80	75	10	3	30
80-90	85	5	4	20
90-100	95	2	5	10
Total		$\sum f = 133$		$\sum fu = -25$

 $A = \text{middle value of } x_i = 45$

h = 10

We have

$$\overline{x} = A + h \frac{\sum_{i=1}^{n} f_i u_i}{\sum_{i=1}^{n} f_i}$$

$$\Rightarrow \overline{x} = 45 + 10 \left(\frac{-25}{133} \right)$$

$$\Rightarrow x = 43.12$$

Disperson

In some cases average will not give the full information. In this we check how much is scatter/ Disperse from its mean value. To do this we use following Methods of Dispersion

- 1. Standard Deviation
- 2. Coefficient of Variation

Standard deviation

1. Ungrouped Data: Consider set of observations $x_1, x_2, x_3, \dots, x_k$

Standard Deviation =
$$\sigma = \sqrt{\frac{1}{k} \sum_{i=1}^{k} (x_i - \overline{x})^2}$$

2. Ungrouped Frequency Distribution: Consider the frequency distribution

\boldsymbol{x}	f
x_1	f_1
x_2	f_2
:	:
:	:
x_n	f_n

Standard Deviation =
$$\sigma = \sqrt{\frac{1}{N} \sum_{i=1}^{n} f_i (x_i - \overline{x})^2}$$

Remarks

- 1) Standard Deviation = $\sqrt{variance}$: $\sigma^2 = variance$
- 2) For calculation purpose use following formulae for Standard Deviation
- Ungrouped Data

$$\sigma^2 = \frac{1}{k} \sum_{i=1}^k x_i^2 - (\overline{x})^2$$

$$\sigma = \sqrt{\frac{1}{k} \sum_{i=1}^{k} (x_i - \overline{x})^2}$$

Ungrouped Frequency Distribution

$$\sigma^{2} = \frac{1}{N} \sum_{i=1}^{n} f_{i} x_{i}^{2} - (\overline{x})^{2}$$

$$\sigma = \sqrt{\frac{1}{N} \sum_{i=1}^{n} f_i (x_i - \overline{x})^2}$$

Coefficient of Variation (C.V.):

$$C.V. = \frac{standard\ Deviation}{A.M.} \times 100 = \frac{\sigma}{\bar{x}} \times 100$$

Remarks

- 2) For calculation purpose use following formulae for Standard Deviation
- Ungrouped Data

$$\sigma^{2} = \frac{1}{k} \sum_{i=1}^{k} \left(x_{i} - \overline{x} \right)^{2} = \frac{1}{k} \sum_{i=1}^{k} x_{i}^{2} - 2x_{i} \overline{x} + \left(\overline{x} \right)^{2}$$

$$= \frac{1}{k} \sum_{i=1}^{k} x_{i}^{2} - \frac{2}{k} \sum_{i=1}^{k} x_{i} \overline{x} + \frac{1}{k} \sum_{i=1}^{k} \left(\overline{x} \right)^{2}$$

$$= \frac{1}{k} \sum_{i=1}^{k} x_{i}^{2} - 2\left(\overline{x} \right)^{2} + \left(\overline{x} \right)^{2}$$

$$= \frac{1}{k} \sum_{i=1}^{k} x_{i}^{2} + \left(\overline{x} \right)^{2}$$

Remarks

- 1. Standard Deviation gives information about distribution of data from its mean value.
- 2. Coefficient of Variation gives information about distribution of data from its mean value in percentage
- 3. If the standard deviation is 0.20 and the mean is 0.50, then the C.V. = 40%. So CV helps us see that even a lower standard deviation doesn't mean less variable data.
- More C.V. ⇒ More Variability⇒ Less Consistency
 Less C.V. ⇒ Less Variability⇒ More Consistency
- 4. More $\sigma \Rightarrow$ More Variability \Rightarrow Less Consistency Less $\sigma \Rightarrow$ Less Variability \Rightarrow More Consistency

Examples:

Q.1 Find the standard deviation for the following data 49,63,46,59,65,52,60,54

-	·
x	x^2
49	2401
63	3969
46	2116
59	3481
65	4225
52	2704
60	3600
54	2916
$\Sigma = 448$	$\Sigma = 25412$

Solution:
Standard deviation for ungrouped data is
$$\sigma^2 = \frac{1}{k} \sum_{i=1}^k x_i^2 - (\overline{x})^2$$
 where, $\overline{x} = \frac{\sum_{i=1}^k x_i}{k}$

$$\therefore \sigma^2 = \frac{1}{8} \times 25412 - \left(\frac{448}{8}\right)^2 = 40.5$$

$$\therefore \sigma = 6.3640$$

Q.2 The scores obtained by two batsman A and B in 10 matches are given below. Determine who is more consistent?

Batsman A	30	44	66	62	60	34	80	46	20	38
Batsman B	34	46	70	38	55	48	60	34	45	30

Solution:

Here, we have to find coefficient of variation of Batsman A i.e. $(C.V.)_A$ & coefficient of variation of Batsman B i.e. $(C.V.)_B$

Where,

Coefficient of variation (A) =
$$(C.V.)_A = \frac{\sigma_A}{(\bar{x})_A} \times 100$$

Coefficient of variation (B) =
$$(C.V.)_B = \frac{\sigma_B}{(\bar{x})_B} \times 100$$

$$\sigma^{2} = \frac{1}{k} \sum_{i=1}^{k} x_{i}^{2} - (\bar{x})^{2} \qquad \bar{x} = \frac{\sum_{i=1}^{k} x_{i}}{k}$$

Case I: Coefficient of variation (A) = $(C.V.)_A = \frac{\sigma_A}{(\bar{x})_A} \times 100$

Batsman A (x)	x^2
30	900
44	1936
66	4356
62	3844
60	3600
34	1156
80	6400
46	2116
20	400
38	1444
$\Sigma = 480$	$\sum = 26152$

$$\sigma_A^2 = \frac{1}{k} \sum_{i=1}^k x_i^2 - (\bar{x})^2$$

$$\Rightarrow \sigma_A^2 = \frac{1}{10} \times 26152 - \left(\frac{480}{10}\right)^2$$

$$\Rightarrow \sigma_A^2 = 311.2$$

$$\Rightarrow \sigma_A = 17.6409$$

$$\therefore \sigma_A = 17.6409$$

&
$$\left(\bar{x}\right)_A = \frac{480}{10} = 48$$

$$(C.V.)_A = \frac{\sigma_A}{(\bar{x})_A} \times 100$$

$$\therefore (C.V.)_A = \frac{17.6409}{48} \times 100$$

$$\therefore (C.V.)_A = 36.7519$$

Case II: Coefficient of variation (B) = $(C.V.)_B = \frac{\sigma_B}{(\bar{x})_B} \times 100$

Batsman B (x)	x^2
34	1156
46	2116
70	4900
38	1444
55	3025
48	2304
60	3600
34	1156
45	2025
30	900
$\Sigma = 460$	$\Sigma = 22626$

$$\sigma_B^2 = \frac{1}{k} \sum_{i=1}^k y_i^2 - (\bar{y})^2$$

$$\Rightarrow \sigma_B^2 = \frac{1}{10} \times 22626 - \left(\frac{460}{10}\right)^2$$

$$\Rightarrow \sigma_B^2 = 146.6$$

$$\Rightarrow \sigma_{\scriptscriptstyle R} = 12.1078$$

$$|:: \sigma_{\scriptscriptstyle B} = 12.1078|$$

&
$$\left(\overline{x}\right)_{B} = \frac{460}{10} = 46$$

$$(C.V.)_B = \frac{\sigma_B}{(\bar{x})_B} \times 100$$

$$\therefore (C.V.)_{B} = \frac{12.1078}{46} \times 100$$
$$\therefore (C.V.)_{B} = 26.3214$$

$$\therefore (C.V.)_{B} = 26.3214$$

Since

$$(C.V.)_A = 36.7519 > (C.V.)_B = 26.3214$$

Therefore, Batsman A has more variability than Batsman B

i.e. Batsman B is more consistent than Batsman A

Q.3 Arithmetic mean and standard deviation of 30 items are 20 and 3 respectively out of these 30 items, item 22 and 15 are dropped. Find new A.M. and S.D. Calculate A.M. and S.D. if item 22 is replaced by 8 and 15 is replaced by 17.

Solution:

Let $x_1, x_2, x_3, ... 22, 15, ... x_{30}$ be given items.

Given that,

A.M. (\bar{x}) and S.D. (σ) are 20 & 3 respectively

$$\vec{x} = 20 \& \sigma = 3....(1)$$

i.e.
$$\bar{x} = \frac{\sum_{i=1}^{k} x_i}{k}$$
 & $\sigma^2 = \left(\frac{1}{k} \sum_{i=1}^{k} x_i^2\right) - \left(\bar{x}\right)^2$

i.e.
$$\frac{\sum_{i=1}^{30} x_i}{30} = 20$$
 & $\frac{1}{30} \sum_{i=1}^{30} x_i^2 - (20)^2 = 9$ From equation (1)

i.e.
$$\frac{\sum_{i=1}^{28} x_i + 22 + 15}{30} = 20 \quad \& \quad \frac{1}{30} \left[\sum_{i=1}^{28} x_i^2 + 22^2 + 15^2 \right] - (20)^2 = 9$$

i.e.
$$\sum_{i=1}^{28} x_i = 563$$
 & $\sum_{i=1}^{28} x_i^2 = 11561$

Case I: when item 22 & 15 are dropped

$$\therefore \ \ \overline{x} = \frac{\sum_{i=1}^{k} x_i}{k}$$

$$\Rightarrow \bar{x} = \frac{\sum_{i=1}^{28} x_i}{28} = \frac{563}{28} = 20.1071 \quad \boxed{\Rightarrow \bar{x} = 20.1071}$$

Find new A.M. and S.D. Calculate A.M. and S.D. if item 22 is replaced by 8 and 15 is replaced by 17.

$$\sigma^2 = \left(\frac{1}{k} \sum_{i=1}^k x_i^2\right) - \left(\frac{1}{x}\right)^2$$

i.e.
$$\sum_{i=1}^{28} x_i = 563$$
 & $\sum_{i=1}^{28} x_i^2 = 11561$

$$\Rightarrow \sigma^2 = \frac{1}{28} \left[\sum_{i=1}^{28} x_i^2 \right] - (20.1071)^2$$

$$\Rightarrow \sigma^2 = \frac{1}{28} [11561] - (20.1071)^2$$

$$\Rightarrow \sigma^2 = 8.5974$$

$$\Rightarrow \sigma = 2.9321$$

Case II: when item 22 is replaced by 8 & 15 is replaced by 17

Now, consider the items

$$x_1, x_2, x_3, ... 8, 17, x_{30}$$

$$\therefore \ \ x = \frac{\sum_{i=1}^{k} x_i}{k}$$

i.e.
$$\sum_{i=1}^{28} x_i = 563$$
 & $\sum_{i=1}^{28} x_i^2 = 11561$

$$\Rightarrow \bar{x} = \frac{\sum_{i=1}^{28} x_i + 8 + 17}{30} = \frac{563 + 8 + 17}{30} = 19.6 \quad \boxed{\Rightarrow \bar{x} = 19.6}$$

$$=19.6$$
 $\Rightarrow x = 19.6$

and
$$\sigma^2 = \left(\frac{1}{k} \sum_{i=1}^k x_i^2\right) - \left(\overline{x}\right)^2$$

$$\sigma^2 = \frac{1}{30} \left[\sum_{i=1}^{28} x_i^2 + 8^2 + 17^2 \right] - (19.6)^2$$

$$\sigma^2 = \frac{1}{30} \left[11561 + 8^2 + 17^2 \right] - \left(19.6 \right)^2$$

$$\sigma^2 = 12.9733 \quad \Longrightarrow \sigma = 3.6019$$

Moment:

The r^{th} moment about mean (\bar{x}) is denoted by μ_r and defined as

$$\mu_r = \frac{1}{k} \sum_{i=1}^k (x_i - \overline{x})^r$$

Also, the r^{th} moment about any Number 'A' is denoted by μ'_r and defined as

$$\mu'_r = \frac{1}{k} \sum_{i=1}^{k} (x_i - A)^r$$

Relation between $\mu_r \& \mu'_r$

$$\mu_{1} = 0$$

$$\mu_{2} = \mu_{2} ' - (\mu_{1} ')^{2}$$

$$\mu_{3} = \mu_{3} ' - 3\mu_{1} ' \mu_{2} ' + 2(\mu_{1} ')^{3}$$

$$\mu_{4} = \mu_{4} ' - 4\mu_{1} ' \mu_{3} ' + 6(\mu_{1} ')^{2} \mu_{2} ' - 3(\mu_{1} ')^{4}$$

Remarks:

(1) Mean(\bar{x})

$$mean = \overline{x} = A + \mu_1$$

(2) Standard Deviation(σ)

standard deviation
$$(\sigma) = \sqrt{\mu_2}$$

(3) Coefficient of skewness(β_1)

$$\beta_1 = \frac{{\mu_3}^2}{{\mu_2}^3}$$

(4) Coefficient of kurtosis(β_2)

$$\beta_2 = \frac{\mu_4}{{\mu_2}^2}$$

Туре	Description	Example	Result
Arithmetic mean	Sum of values of a data set divided by number of values	(1+2+2+3+4+7+9) / 7	4
<u>Median</u>	Middle value separating the greater and lesser halves of a data set	1, 2, 2, 3 , 4, 7, 9	3
Mode	Most frequent value in a data set	1, 2 , 2 , 3, 4, 7, 9	2

Skewness: It gives imbalance and asymmetry from mean of a data distribution

There are two types of skewness

- 1. Positive Skewness: If the frequency curve of a distribution has a longer tail to the right of the central maximum than to the left, the distribution is said to be skewed to the right or to have positive skewed. In a positive skewed distribution, Mean > Median > Mode
- 2. Negative Skewness: If the frequency curve has a longer tail to the left of the central maximum than to the right, the distribution is said to be skewed to the left or to have negative skewed. In a negatively skewed distribution, Mode > Median > Mean.

Remarks:

Coefficient of skewness(β_1)

$$\beta_1 = \frac{{\mu_3}^2}{{\mu_2}^2}$$

1. If $\beta_1 > 0$ then distribution is called Positive Skew Distribution

If $\beta_1 < 0$ then distribution is called Negative Skew Distribution

If $\beta_1 = 0$ then distribution is called Normal Distribution

Kurtosis: <u>Kurtosis</u> is a measure of peakedness of a distribution relative to the normal distribution(or symmetrical distribution)

A distribution having a relatively high peak is called leptokurtic. A distribution which is flat topped is called platykurtic. The normal distribution which is neither very peaked nor very flat-topped is also called mesokurtic.

Remarks:

Coefficient of kurtosis(β_2)

$$\beta_2 = \frac{\mu_4}{\mu_2^2}$$

2. If $\beta_2 > 3$ then curve is called Leptokurtic

If $\beta_2 = 3$ then curve is called Mesokurtic

If $\beta_2 < 3$ then curve is called Platykurtic

Q.1 The first four moments of a distribution about the value 5 are 2,20,40 and 50. From the given information obtain the first four central moments, mean, standard deviation and coefficients of skewness and kurtosis.

Solution:

Given that

$$A = 5, \mu_1' = 2, \mu_2' = 20, \mu_3' = 40, \mu_4' = 50$$

The first four central moments or moments about mean are

$$\mu_1 = 0$$

$$\mu_2 = \mu_2' - (\mu_1')^2 = 20 - (2)^2 = 16 \implies \mu_2 = 16$$

$$\mu_3 = \mu_3' - 3\mu_1' \mu_2' + 2(\mu_1')^3 = 40 - 3(2)(20) + 2(2)^3 = -64 \implies \mu_3 = -64$$

$$\mu_4 = \mu_4' - 4\mu_1' \mu_3' + 6(\mu_1')^2 \mu_2' - 3(\mu_1')^4 = 50 - 4(2)(40) + 6(2)^2(20) - 3(2)^4 = 162$$

$$\Rightarrow \mu_4 = 162$$

Mean

$$mean = \overline{x} = A + \mu_1$$
'
 $mean = \overline{x} = 5 + 2$ $\implies mean = \overline{x} = 7$

Standard Deviation

standard deviation =
$$\sqrt{\mu_2}$$

standard deviation =
$$\sqrt{16}$$
 \Rightarrow standard deviation = 4

Coefficient of skewness

$$\beta_1 = \frac{{\mu_3}^2}{{\mu_2}^2} \quad \Rightarrow \beta_1 = \frac{\left(-64\right)^2}{\left(16\right)^2} \quad \boxed{\Rightarrow \beta_1 = 1}$$

Coefficient of kurtosis

$$\beta_2 = \frac{\mu_4}{{\mu_2}^2} \implies \beta_2 = \frac{162}{(16)^2} \implies \beta_2 = 0.6328$$

Q.2 Find the four moments about the mean of the following

x	61	64	67	70	73
f	5	18	42	27	8

also calculate $\beta_1 \& \beta_2$.

Solution:

The moment about mean \bar{x} is given below $\mu_r = \frac{1}{N} \sum_{i=1}^{n} f_i (x_i - \bar{x})^r$

$$\mu_1 = \frac{1}{N} \sum_{i=1}^n f_i \left(x_i - \overline{x} \right)$$

$$\mu_2 = \frac{1}{N} \sum_{i=1}^n f_i \left(x_i - \overline{x} \right)^2$$

$$\mu_3 = \frac{1}{N} \sum_{i=1}^n f_i \left(x_i - \overline{x} \right)^3$$

$$\mu_4 = \frac{1}{N} \sum_{i=1}^n f_i \left(x_i - \overline{x} \right)^4$$

x	f	fx	$f(x-\bar{x})$	$f(x-\bar{x})^2$	$f(x-\bar{x})^3$	$f(x-\bar{x})^4$
61	5	305	-32.25	208.0125	-1341.6806	8653.84
64	18	1152	-62.1	214.245	-739.1453	2550.051
67	42	2814	-18.9	8.505	-3.8273	1.722263
70	27	1890	68.85	175.5675	447.6971	1141.628
73	8	584	44.4	246.42	1367.6310	7590.352
$\Sigma = 335$	$N = \Sigma = 100$	$\sum = 6745$	$\Sigma = 0$	$\Sigma = 852.75$	$\Sigma = -269.3250$	$\Sigma = 19937.5931$

$$\frac{1}{x} = \frac{\sum_{i=1}^{n} f_i x_i}{\sum_{i=1}^{n} f_i} = \frac{6745}{100} = 67.45$$

$$\mu_1 = \frac{1}{N} \sum_{i=1}^{n} f_i \left(x_i - \overline{x} \right) = \frac{1}{100} \times 0 = 0$$

$$\mu_2 = \frac{1}{N} \sum_{i=1}^{n} f_i \left(x_i - \overline{x} \right)^2 = \frac{1}{100} \times 852.75 = 8.5275$$

$$\mu_3 = \frac{1}{N} \sum_{i=1}^{n} f_i \left(x_i - \overline{x} \right)^3 = \frac{1}{100} \times \left(-269.3250 \right) = -2.6933$$

$$\mu_4 = \frac{1}{N} \sum_{i=1}^{n} f_i \left(x_i - \overline{x} \right)^4 = \frac{1}{100} \times (19937.5931) = 199.3759$$

Coefficient of skewness

$$\beta_1 = \frac{{\mu_3}^2}{{\mu_2}^2} \Rightarrow \beta_1 = \frac{(-2.6933)^2}{(8.5275)^2} \quad \Rightarrow \beta_1 = 0.0998$$

Coefficient of kurtosis

$$\beta_2 = \frac{\mu_4}{{\mu_2}^2} \Rightarrow \beta_2 = \frac{199.3759}{(8.5275)^2} \Rightarrow \beta_2 = 2.7418$$

Correlation:

To measure linear relationship between two variables, Karl Pearson developed a formula called correlation coefficient.

Coefficient of Correlation between two variables x and y denoted by r(x, y) and defined as

$$r(x,y) = \frac{cov(x,y)}{\sigma_x \sigma_y}$$

Where

Ungrouped Data

$$cov(x,y) = \frac{1}{n} \sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})$$

$$cov(x,y) = (\frac{1}{n} \sum_{i=1}^{n} x_i y_i) - \overline{x}.\overline{y}$$

$$\sigma_x^2 = \frac{1}{n} \sum_{i=1}^n x_i^2 - (\overline{x})^2 \quad \sigma_y^2 = \frac{1}{n} \sum_{i=1}^n y_i^2 - (\overline{y})^2$$

Ungrouped Frequency Distribution

$$cov(x,y) = \frac{1}{N} \sum_{i=1}^{n} f_i(x_i - \overline{x})(y_i - \overline{y})$$

$$cov(x,y) = \frac{1}{N} \sum_{i=1}^{n} f_i x_i y_i - \overline{x}.\overline{y}$$

$$\sigma_x^2 = \frac{1}{n} \sum_{i=1}^n x_i^2 - (\overline{x})^2 \quad \sigma_y^2 = \frac{1}{n} \sum_{i=1}^n y_i^2 - (\overline{y})^2 \quad \sigma_x^2 = \frac{1}{N} \sum_{i=1}^n f_i x_i^2 - (\overline{x})^2 \quad \sigma_y^2 = \frac{1}{N} \sum_{i=1}^n f_i y_i^2 - (\overline{y})^2$$

Remarks:

- 1. -1 < r < 1
- 2. If r is close to 0, it means there is no relationship between the variables. If r is positive, it means that as one variable gets larger the other gets larger. If r is negative it means that as one gets larger, the other gets smaller

EXAMPLES

Q.1 Find the coefficient of correlation for the following table

X	10	14	18	22	26	30
У	18	12	24	6	30	36

Solution:

We know, Karl Pearson's coefficient of correlation r(x, y)

$$r(x,y) = \frac{\operatorname{cov}(x,y)}{\sigma_x \sigma_y}$$

where,
$$cov(x, y) = \frac{1}{n} \sum_{i=1}^{n} x_i y_i - (\bar{x}.\bar{y})$$

$$| \sigma_x^2 = \frac{1}{n} \sum_{i=1}^{n} x_i^2 - (\bar{x})^2 | \sigma_y^2 = \frac{1}{n} \sum_{i=1}^{n} y_i^2 - (\bar{y})^2 | \sigma_y^$$

$$\sigma_x^2 = \frac{1}{n} \sum_{i=1}^n x_i^2 - (\bar{x})^2$$

$$\sigma_{y}^{2} = \frac{1}{n} \sum_{i=1}^{n} y_{i}^{2} - (\overline{y})^{2}$$

x	y	xy	x^2	y^2
10	18	180	100	324
14	12	168	196	144
18	24	432	324	576
22	6	132	484	36
26	30	780	676	900
30	36	1080	900	1296
$\Sigma = 120$	$\Sigma = 126$	$\sum = 2772$	$\sum =2680$	\[\sum_{=3276} \]

$$\overline{x} = \frac{\sum_{i=1}^{n} x_i}{n} = \frac{120}{6} = 20 \qquad \Longrightarrow \overline{x} = 20$$

$$\overline{y} = \frac{\sum_{i=1}^{n} y_i}{n} = \frac{126}{6} = 21 \qquad \Longrightarrow \overline{y} = 21$$

$$cov(x, y) = \frac{1}{n} \sum_{i=1}^{n} x_i y_i - (\overline{x}.\overline{y})$$

$$cov(x, y) = \frac{1}{6} \times 2772 - (20 \times 21)$$

$$\left|\operatorname{cov}(x,y)\right| = 42$$

$$\sigma_{x}^{2} = \frac{1}{n} \sum_{i=1}^{n} x_{i}^{2} - (\bar{x})^{2}$$

$$\sigma_x^2 = \frac{1}{6} \times 2680 - (20)^2$$

$$\sigma_x^2 = 46.6667$$
 $\Rightarrow \sigma_x = 6.8313$

x	y	xy	x^2	y^2
10	18	180	100	324
14	12	168	196	144
18	24	432	324	576
22	6	132	484	36
26	30	780	676	900
30	36	1080	900	1296
$\Sigma = 120$	$\Sigma = 126$	\(\sum_{=2772}\)	\(\sum_{=2680}\)	∑=3276

$$\Rightarrow \overline{x} = 20$$

$$\Rightarrow \overline{y} = 21$$

$$\sigma_y^2 = \frac{1}{n} \sum_{i=1}^n y_i^2 - (\bar{y})^2$$
 $\Rightarrow \sigma_y^2 = \frac{1}{6} \times 3276 - (21)^2$ $\Rightarrow \sigma_y^2 = 105$ $\Rightarrow \sigma_y = 10.2470$

$$r(x,y) = \frac{\operatorname{cov}(x,y)}{\sigma_x \sigma_y}$$

$$r(x,y) = \frac{42}{(6.8313)(10.2470)}$$

$$r(x, y) = 0.6$$

EXAMPLES

Q.2 Find the coefficient of correlation for the following table

Х	6	2	10	4	8
У	9	11	5	8	7

Solution:

We know, Karl Pearson's coefficient of correlation r(x, y)

$$\Rightarrow r(x,y) = \frac{\operatorname{cov}(x,y)}{\sigma_x \sigma_y}$$

$$\left|\operatorname{cov}(x,y)\right| = 42$$

$$\Rightarrow \sigma_x = 6.8313$$

$$\Rightarrow \sigma_y = 10.2470$$

where,
$$cov(x, y) = \frac{1}{n} \sum_{i=1}^{n} x_i y_i - (\bar{x}.\bar{y})$$

$$| \sigma_x^2 = \frac{1}{n} \sum_{i=1}^{n} x_i^2 - (\bar{x})^2 | \sigma_y^2 = \frac{1}{n} \sum_{i=1}^{n} y_i^2 - (\bar{y})^2 | \sigma_y^$$

$$\sigma_{x}^{2} = \frac{1}{n} \sum_{i=1}^{n} x_{i}^{2} - (\bar{x})^{2}$$

$$\sigma_{y}^{2} = \frac{1}{n} \sum_{i=1}^{n} y_{i}^{2} - (\overline{y})^{2}$$

x	y	xy	x^2	y^2
6	9	54	36	81
2	11	22	4	121
10	5	50	100	25
4	8	32	16	64
8	7	56	64	49
$\Sigma = 30$	$\Sigma = 40$	$\sum =214$	$\sum = 220$	$\sum = 340$

$$\overline{x} = \frac{\sum_{i=1}^{n} x_i}{n} = \frac{30}{5} = 6 \qquad \Rightarrow \overline{x} = 6$$

$$\frac{1}{y} = \frac{\sum_{i=1}^{n} y_i}{n} = \frac{40}{5} = 8 \qquad \Longrightarrow \frac{\overline{y}}{y} = \frac{1}{5}$$

$$cov(x, y) = \frac{1}{n} \sum_{i=1}^{n} x_i y_i - (\bar{x}.\bar{y})$$

$$cov(x, y) = \frac{1}{5} \times 214 - (6 \times 8)$$

$$\left| \cot(x, y) = -5.2 \right|$$

$$\sigma_x^2 = \frac{1}{n} \sum_{i=1}^n x_i^2 - (\bar{x})^2$$

$$\sigma_x^2 = \frac{1}{5} \times 220 - (6)^2$$

$$\sigma_x^2 = 8$$

$$\Rightarrow \sigma_x = 2.8284$$

$$\sigma_{y}^{2} = \frac{1}{n} \sum_{i=1}^{n} y_{i}^{2} - (\overline{y})^{2}$$
 $\Rightarrow \sigma_{y}^{2} = \frac{1}{5} \times 340 - (8)^{2}$ $\Rightarrow \sigma_{y}^{2} = 4$

x
 y
 xy

$$\chi^2$$
 y^2

 6
 9
 54
 36
 81

 2
 11
 22
 4
 121

 10
 5
 50
 100
 25

 4
 8
 32
 16
 64

 8
 7
 56
 64
 49

 $\Sigma = 30$
 $\Sigma = 40$
 $\sum = 214$
 $\sum = 220$
 $\sum = 340$

$$\Rightarrow \overline{x} = 6$$

$$\Rightarrow y = 8$$

$$\Rightarrow \sigma_y = 2$$

$$r(x,y) = \frac{\operatorname{cov}(x,y)}{\sigma_x \sigma_y}$$

$$r(x,y) = \frac{-5.2}{(2.8284)(2)}$$

$$r(x,y) = -0.9192$$

Q.3 Find the coefficient of correlation for the following table

$$n = 20, \sum x = 40, \sum x_i^2 = 190, \sum y_i = 40, \sum y_i^2 = 200, \sum x_i y_i = 150,$$

Solution:

We know that

$$\overline{x} = \frac{\sum_{i=1}^{n} x_i}{n} = \frac{40}{20} = 2 \quad \& \quad \overline{y} = \frac{\sum_{i=1}^{n} y_i}{n} = \frac{40}{20} = 2$$

$$\left| \cos(x, y) = -5.2 \right|$$

$$\Rightarrow \sigma_x = 2.8284$$

$$\Rightarrow \sigma_y = 2$$

$$r(x,y) = \frac{\operatorname{cov}(x,y)}{\sigma_x \sigma_y}$$

where,
$$cov(x, y) = \frac{1}{n} \sum_{i=1}^{n} x_i y_i - (x, y)$$

$$=\frac{1}{20}\times150-(2\times2)$$

$$= 3.5$$

$$\Rightarrow \operatorname{cov}(x, y) = 3.5$$

$$\sigma_x^2 = \frac{1}{n} \sum_{i=1}^n x_i^2 - (\bar{x})^2 = \frac{1}{20} \times 190 - (2)^2 = 5.5 \quad \Longrightarrow \sigma_x = 2.3452$$

$$\sigma_y^2 = \frac{1}{n} \sum_{i=1}^n y_i^2 - (\bar{y})^2 = \frac{1}{20} \times 200 - (2)^2 = 6 \quad \Longrightarrow \sigma_y = 2.4495$$

$$n = 20, \sum x = 40, \sum x_i^2 = 190, \sum y_i = 40, \sum y_i^2 = 200, \sum x_i y_i = 150,$$

$$\overline{x} = 2$$
 $\overline{y} = 2$

$$\Rightarrow r(x,y) = \frac{3.5}{(2.3452 \times 2.4495)}$$
$$\Rightarrow r(x,y) = 0.6093$$

$$\Rightarrow r(x, y) = 0.6093$$

$$\Rightarrow \sigma_y = 2.4495$$

Regression:

In <u>statistical modeling</u>, regression analysis is a statistical process for estimating the relationships among variables.

The line of regression gives best estimate for the value of one variable for some specified value of other variable

Regression line y on x

$$y - \overline{y} = b_{yx}(x - \overline{x})$$
 where $b_{yx} = r \frac{\sigma_y}{\sigma_x} = \frac{\text{cov}(x, y)}{\sigma_x} \frac{\sigma_y}{\sigma_x}$ $\Rightarrow b_{yx} = \frac{\text{cov}(x, y)}{\sigma_x^2}$

Regression line x on y

$$x - \overline{x} = b_{xy}(y - \overline{y})$$
 where $b_{xy} = r \frac{\sigma_x}{\sigma_y} = \frac{\text{cov}(x, y)}{\sigma_x \cdot \sigma_y} \frac{\sigma_x}{\sigma_y}$ $\Rightarrow b_{xy} = \frac{\text{cov}(x, y)}{\sigma_y^2}$

where
$$\left| \text{cov}(x, y) = \frac{1}{n} \sum_{i=1}^{n} x_i y_i - \left(\overline{x} \cdot \overline{y} \right) \right| \left| \sigma_x^2 = \frac{1}{n} \sum_{i=1}^{n} x_i^2 - \left(\overline{x} \right)^2 \right| \left| \sigma_y^2 = \frac{1}{n} \sum_{i=1}^{n} y_i^2 - \left(\overline{y} \right)^2 \right|$$

$$\sigma_x^2 = \frac{1}{n} \sum_{i=1}^n x_i^2 - (\bar{x})^2$$

$$\sigma_{y}^{2} = \frac{1}{n} \sum_{i=1}^{n} y_{i}^{2} - (\overline{y})^{2}$$

Remarks:

- 1) $b_{yx} = r \frac{\sigma_y}{\sigma_x}$, $b_{xy} = r \frac{\sigma_x}{\sigma_y}$ are called regression coefficients
- $2) r = \sqrt{b_{yx}.b_{xy}}$
- 3) If x is given and to find corresponding value of y, use regression line of y on x
- 4) If y is given and to find corresponding value of x, use regression line of x on y
- 5) If $b_{xy} > 0$ and $b_{yx} > 0$ then r > 0
- 6) If $b_{xy} < 0$ and $b_{yx} < 0$ then r < 0
- 7) Point (\bar{x}, \bar{y}) satisfies the equations of lines of regression

$$y - \overline{y} = b_{yx} \left(x - \overline{x} \right)$$

$$x - \overline{x} = b_{xy} \left(y - \overline{y} \right)$$

Q.1 Obtain regression lines for the following data:

Х	6	2	10	4	8
У	9	11	5	8	7

Solution:

Case I: Regression y on x

$$y - \overline{y} = b_{yx} \left(x - \overline{x} \right)$$

where

$$b_{yx} = \frac{\text{cov}(x, y)}{\sigma_x^2}$$

and

$$\operatorname{cov}(x, y) = \frac{1}{n} \sum_{i=1}^{n} x_i y_i - \left(\overline{x}.\overline{y}\right)$$

$$\sigma_x^2 = \frac{1}{n} \sum_{i=1}^n x_i^2 - (\bar{x})^2$$

Case II: Regression x on y

$$x - \overline{x} = b_{xy} \left(y - \overline{y} \right)$$

where

$$b_{xy} = \frac{\text{cov}(x, y)}{\sigma_y^2}$$

$$\sigma_{y}^{2} = \frac{1}{n} \sum_{i=1}^{n} y_{i}^{2} - (\overline{y})^{2}$$

х	у	ху	<i>x</i> ²	y^2
6	9	54	36	81
2	11	22	4	121
10	5	50	100	25
4	8	32	16	64
8	7	56	64	49
$\Sigma = 30$	$\Sigma = 40$	$\Sigma = 214$	$\Sigma = 220$	$\Sigma = 340$

$$\overline{x} = \frac{\sum_{i=1}^{n} x_i}{n} = \frac{30}{5} = 6$$

$$\overline{y} = \frac{\sum_{i=1}^{n} y_i}{n} = \frac{40}{5} = 8$$

$$\Rightarrow \overline{y} = 8$$

$$\Rightarrow \overline{x} = 6$$

$$\Rightarrow \overline{y} = 8$$

$$\left|\operatorname{cov}(x,y) = \frac{1}{n} \sum_{i=1}^{n} x_i y_i - \left(\overline{x}.\overline{y}\right)\right|$$

$$\sigma_{x}^{2} = \frac{1}{n} \sum_{i=1}^{n} x_{i}^{2} - (\bar{x})^{2}$$

$$cov(x, y) = \frac{1}{n} \sum_{i=1}^{n} x_i y_i - (\bar{x}.\bar{y}) = \frac{1}{5} \times 214 - (6 \times 8) = -5.2$$

$$\sigma_{y}^{2} = \frac{1}{n} \sum_{i=1}^{n} y_{i}^{2} - \left(\overline{y}\right)^{2}$$

$$\Rightarrow \operatorname{cov}(x, y) = -5.2$$

$$\sigma_x^2 = \frac{1}{n} \sum_{i=1}^n x_i^2 - (\bar{x})^2 = \frac{1}{5} \times 220 - (6)^2 = 8$$

$$\Rightarrow \sigma_x^2 = 8$$

$$\sigma_y^2 = \frac{1}{n} \sum_{i=1}^n y_i^2 - (\bar{y})^2 = \frac{1}{5} \times 340 - (8)^2 = 4$$

$$\Rightarrow \sigma_y^2 = 4$$

$$b_{yx} = \frac{\text{cov}(x, y)}{\sigma^2} = \frac{-5.2}{8} = -0.65$$
 $\implies b_{yx} = -0.65$

$$b_{xy} = \frac{\text{cov}(x, y)}{\sigma_{y}^{2}} = \frac{-5.2}{4} = -1.3$$
 $\implies b_{xy} = -1.3$

x
 y
 xy

$$x^2$$
 y^2

 6
 9
 54
 36
 81

 2
 11
 22
 4
 121

 10
 5
 50
 100
 25

 4
 8
 32
 16
 64

 8
 7
 56
 64
 49

 $\Sigma = 30$
 $\Sigma = 40$
 $\Sigma = 214$
 $\Sigma = 220$
 $\Sigma = 340$

$$\left|\operatorname{cov}(x,y) = \frac{1}{n} \sum_{i=1}^{n} x_i y_i - \left(x \cdot y\right)\right|$$

$$\sigma_{x}^{2} = \frac{1}{n} \sum_{i=1}^{n} x_{i}^{2} - (\bar{x})^{2}$$

$$\sigma_{y}^{2} = \frac{1}{n} \sum_{i=1}^{n} y_{i}^{2} - (\overline{y})^{2}$$

$$\Rightarrow \overline{x} = 6$$
 $\Rightarrow \overline{y} = 8$

Case I: Regression y on x

$$y - \overline{y} = b_{yx} \left(x - \overline{x} \right)$$

$$y-8 = -0.65(x-6)$$

$$y - 8 = -0.65x + 3.9$$

$$y = -0.65x + 11.9$$

Case II: Regression x on y

$$x - \overline{x} = b_{xy} \left(y - \overline{y} \right)$$

$$x-6=-1.3(y-8)$$

$$x-6=-1.3y+10.4$$

$$x = -1.3y + 16.4$$

$$\Rightarrow b_{yx} = -0.65$$

$$\Rightarrow b_{xy} = -1.3$$

$$\Rightarrow \overline{x} = 6$$
 $\Rightarrow \overline{y} = 8$

Q.2 Obtain regression lines for the following data:

Х	10	14	19	26	30	34	39
У	12	16	18	26	29	35	38

and estimate y for x = 14.5 and x for y = 29.5

Solution:

Case I: Regression y on x

$$y - \overline{y} = b_{yx} \left(x - \overline{x} \right)$$

where

$$b_{yx} = \frac{\text{cov}(x, y)}{\sigma_x^2}$$

and

$$\operatorname{cov}(x,y) = \frac{1}{n} \sum_{i=1}^{n} x_i y_i - \left(\overline{x}.\overline{y}\right)$$

$$\sigma_x^2 = \frac{1}{n} \sum_{i=1}^n x_i^2 - (\bar{x})^2$$

Case II: Regression x on y

$$x - \overline{x} = b_{xy} \left(y - \overline{y} \right)$$

where

$$b_{xy} = \frac{\text{cov}(x, y)}{\sigma_y^2}$$

$$\sigma_{y}^{2} = \frac{1}{n} \sum_{i=1}^{n} y_{i}^{2} - (\overline{y})^{2}$$

x	y	xy	x^2	y^2
10	12	120	100	144
14	16	224	196	256
19	18	342	361	324
26	26	676	676	676
30	29	870	900	841
34	35	1190	1156	1225
39	38	1482	1521	1444
$\Sigma = 172$	$\Sigma = 174$	$\Sigma = 4904$	$\Sigma = 4910$	$\Sigma = 4910$

$$\frac{1}{x} = \frac{\sum_{i=1}^{n} x_i}{n} = \frac{172}{7} = 24.5714 \qquad \frac{1}{y} = \frac{\sum_{i=1}^{n} y_i}{n} = \frac{174}{7} = 24.8571$$

$$\Rightarrow x = 24.5714$$

$$\Rightarrow \overline{y} = 24.8571$$

$$cov(x,y) = \frac{1}{n} \sum_{i=1}^{n} x_i y_i - \left(\overline{x}.\overline{y}\right) = \frac{1}{7} \times 4904 - \left(24.5714 \times 24.8571\right)$$

$$\left|\operatorname{cov}(x,y) = \frac{1}{n} \sum_{i=1}^{n} x_{i} y_{i} - \left(\overline{x}.\overline{y}\right)\right|$$

$$\sigma_x^2 = \frac{1}{n} \sum_{i=1}^n x_i^2 - (\bar{x})^2$$

$$\sigma_{y}^{2} = \frac{1}{n} \sum_{i=1}^{n} y_{i}^{2} - (\overline{y})^{2}$$

$$\Rightarrow \operatorname{cov}(x, y) = 89.7977$$

$$\sigma_x^2 = \frac{1}{n} \sum_{i=1}^n x_i^2 - (\bar{x})^2 = \frac{1}{7} \times 4910 - (24.5714)^2$$

$$\Rightarrow \sigma_x^2 = 97.6749$$

$$\sigma_y^2 = \frac{1}{n} \sum_{i=1}^n y_i^2 - (\overline{y})^2 = \frac{1}{7} \times 4910 - (24.8571)^2$$

$$\Rightarrow \sigma_y^2 = 83.5532$$

$$b_{yx} = \frac{\text{cov}(x, y)}{\sigma_x^2} = \frac{89.7977}{97.6749} \implies b_{yx} = 0.9194$$

$$b_{xy} = \frac{\text{cov}(x, y)}{\sigma_{y}^{2}} = \frac{89.7977}{83.5532}$$

$$\Rightarrow b_{xy} = 1.0747$$

х	у	ху	x ²	y ²
10	12	120	100	144
14	16	224	196	256
19	18	342	361	324
26	26	676	676	676
30	29	870	900	841
34	35	1190	1156	1225
39	38	1482	1521	1444
∑ = 172	∑ = 174	∑ = 4904	∑ = 4910	$\Sigma = 4910$

$$\left|\operatorname{cov}(x,y) = \frac{1}{n} \sum_{i=1}^{n} x_i y_i - \left(\overline{x}.\overline{y}\right)\right|$$

$$\sigma_{x}^{2} = \frac{1}{n} \sum_{i=1}^{n} x_{i}^{2} - (\bar{x})^{2}$$

$$\sigma_{y}^{2} = \frac{1}{n} \sum_{i=1}^{n} y_{i}^{2} - (\overline{y})^{2}$$

$$\Rightarrow \overline{x} = 24.5714$$

$$\Rightarrow \overline{y} = 24.8571$$

Case I: Regression y on x

$$y - \overline{y} = b_{yx} \left(x - \overline{x} \right)$$

$$y - 24.8571 = 0.9194(x - 24.5714)$$

$$y - 24.8571 = 0.9194x - 22.5909$$

$$y = 0.9194x + 2.2662$$

For x = 14.5

$$y = 0.9194(14.5) + 2.2662$$

$$y = 15.5975$$

$$\Rightarrow b_{yx} = 0.9194$$

$$\Rightarrow b_{xy} = 1.0747$$

$$\Rightarrow \overline{x} = 24.5714$$

$$\Rightarrow \overline{y} = 24.8571$$

and estimate

y for
$$x = 14.5$$
 and x for $y = 29.5$

Case II: Regression x on y

$$x - \overline{x} = b_{xy} \left(y - \overline{y} \right)$$

$$x - 24.5714 = 1.0747 (y - 24.8571)$$

$$x - 24.5714 = 1.0747 y - 26.7139$$

$$x = 1.0747 y - 2.1425$$

For
$$y = 29.5$$

$$x = 1.0747(29.5) - 2.1425$$

$$x = 29.5612$$

$$\Rightarrow b_{yx} = 0.9194$$

$$\Rightarrow b_{xy} = 1.0747$$

$$\Rightarrow \bar{x} = 24.5714$$

$$\Rightarrow \overline{y} = 24.8571$$

and estimate

y for
$$x = 14.5$$
 and x for $y = 29.5$

Q.3 The regression equations are 8x-10y+66=0 and 40x-18y=214. The value of variance of x is 9. Find

- a) The mean values of x and y
- b) The correlation x and y and
- c) The standard deviation of y

Solution

The regression lines are 8x-10y+66=0 and 40x-18y=214

Case I: Mean values of x and y

Since, we know that the point (\bar{x}, \bar{y}) satisfies both regression lines

$$8\bar{x} - 10\bar{y} + 66 = 0$$
 and $40\bar{x} - 18\bar{y} = 214$

$$\bar{x} = 13 \text{ and } \bar{y} = 17$$

Case II: Coefficient of correlation

$$r = \sqrt{b_{xy}.b_{yx}}$$

Regression y on x:
$$y - \overline{y} = b_{yx} (x - \overline{x})$$

Regression x on y:
$$x - \overline{x} = b_{xy} (y - \overline{y})$$

$$8x - 10y + 66 = 0$$

$$40x - 18y = 214$$

$$-1 < r < 1$$

To find regression of y on x and regression of x on y

8x - 10y + 66 = 0	$r = \sqrt{b_{xy}.b_{yx}}$	40x - 18y = 214
$y = \frac{8}{10}x + \frac{66}{10} \implies b_{yx} = \frac{8}{10} = 0.8$	$1) \ r = \sqrt{0.8 \times 0.45}$ $r = 0.6$	$y = \frac{40}{18}x - \frac{214}{18} \Rightarrow b_{yx} = \frac{40}{18} = 2.2222$
$x = \frac{10}{8}y - \frac{66}{8} \implies b_{xy} = \frac{10}{8} = 1.25$	2) $r = \sqrt{1.25 \times 2.2222}$ r = 1.6667	$x = \frac{18}{40} y + \frac{214}{40} \Rightarrow b_{xy} = \frac{18}{40} = 0.45$

Regression y on x :

$$y = \frac{8}{10}x + \frac{66}{10}$$

$$\Rightarrow b_{yx} = \frac{8}{10} = 0.8$$

$$r = \sqrt{0.8 \times 0.45}$$

$$\Rightarrow r = 0.6$$

Case II: standard deviation of $y:(\sigma_x)$

standard deviation = $\sqrt{\text{variance}}$ $\Rightarrow \sigma = \sqrt{\text{var}}$

Given that var(x) = 9

$$\Rightarrow \sigma_x = \sqrt{\operatorname{var}(x)}$$

$$\Rightarrow \sigma_{x} = \sqrt{9}$$

$$\Rightarrow \sigma_{r} = 3$$

Regression x on y:

$$x = \frac{18}{40} y + \frac{214}{40}$$

$$\Rightarrow b_{xy} = \frac{18}{40} = 0.45$$

$$8x - 10y + 66 = 0$$

$$r = \sqrt{b_{xy}b_{yx}}$$

$$40x - 18y = 214$$

$$y = \frac{8}{10}x + \frac{66}{10} \Rightarrow b_{yx} = \frac{8}{10} = 0.8$$

$$10 \quad r = \sqrt{0.8 \times 0.45}$$

$$r = 0.6$$

$$x = \frac{18}{40}y + \frac{214}{40} \Rightarrow b_{xy} = \frac{18}{40} = 0.45$$

Q.4 If the two lines of regression are $9x + y - \lambda = 0$ and $4x + y = \mu$ and the means of x & y are 2 & -3 respectively, find the values of λ, μ and the coefficient of correlation between x & y.

Solution

The regression lines are $9x + y = \lambda$ and $4x + y = \mu$

Since, we know that the point (\bar{x}, \bar{y}) satisfies both regression lines

$$\therefore 9\overline{x} + \overline{y} = \lambda$$
 and $4\overline{x} + \overline{y} = \mu$

Given that: $\bar{x} = 2$ and $\bar{y} = -3$

$$\therefore 9(2) + (-3) = \lambda \text{ and } 4(2) + (-3) = \mu$$

$$\lambda = 15$$
 and $\mu = 5$

:The regression lines are 9x + y = 15 and 4x + y = 5

Case II: Coefficient of correlation

$$\lambda = 15$$
 and $\mu = 5$

$$r = \sqrt{b_{xy}.b_{yx}}$$

Regression y on x:
$$y - \overline{y} = b_{yx} (x - \overline{x})$$

$$-1 < r < 1$$

Regression x on y:
$$x - \overline{x} = b_{xy} (y - \overline{y})$$

To find regression of y on x and regression of x on y

9x + y = 15	$r = \sqrt{b_{xy}.b_{yx}}$	4x + y = 5
$y = -9x + 15 \implies b_{yx} = -9$	1) $r = \sqrt{(-9) \times (-0.25)}$ r = 1.5	$y = -4x + 5 \implies b_{yx} = -4$
$x = \frac{-1}{9}y + \frac{15}{9} \Rightarrow b_{xy} = \frac{-1}{9} = -0.1111$	2) $r = \sqrt{(-0.1111) \times (-4)}$ r = 0.6666	$x = \frac{-1}{4}y + \frac{5}{4} \Rightarrow b_{xy} = \frac{-1}{4} = -0.25$

Regression y on x:

$$x = \frac{-1}{9}y + \frac{15}{9}$$

$$\Rightarrow b_{xy} = \frac{-1}{9} = -0.1111$$

$$r = \sqrt{(-0.1111) \times \left(-4\right)}$$

$$r = 0.6666$$

Regression x on y:

$$y = -4x + 5$$

$$\Rightarrow b_{yx} = -4$$

9x + y = 15	$r = \sqrt{b_{xy}.b_{yx}}$	4x + y = 5	
		$y = -4x + 5 \implies b_{yx} = -4$	
$x = \frac{-1}{9}y + \frac{15}{9} \Rightarrow b_{xy} = \frac{-1}{9} = -0.1111$	2) $r = \sqrt{(-0.1111) \times (-4)}$ r = 0.6666		

Since both regression coefficients b_{xy} and b_{yx} are negative

∴ we take

$$r = -0.6666$$

Curve Fitting

As a result of certain experiment suppose the values of are (x_i, y_i) for i = 1, 2, ... n

Curve fitting is actually the process of constructing curve which has best fit to the above data. Usually these curves are straight line, parabola of second degree & parabola of third degree and so on.

1. Fitting by straight line : y = ax + b

Formulae :
$$\sum y = a \sum x + nb$$

$$\sum xy = a\sum x^2 + b\sum x$$

2. Fitting by second degree parabola : $y = ax^2 + bx + c$

Formulae:
$$\sum y = a \sum x^2 + b \sum x + nc$$

$$\sum xy = a\sum x^3 + b\sum x^2 + c\sum x$$

$$\sum x^2 y = a \sum x^4 + b \sum x^3 + c \sum x^2$$

Conversion into straight line

$$y = ax^b$$

Taking log_{10} on both side

$$\therefore \log_{10} y = \log_{10} a + \log_{10} x^b$$

$$\therefore \log_{10} y = \log_{10} a + b \log_{10} x$$

Now, let
$$Y = \log_{10} y$$
, $X = \log_{10} x$, $c = \log_{10} a$

$$\therefore Y = bX + c$$

By curve fitting of straight line

Formulae:
$$\sum Y = b \sum X + nc$$

$$\sum XY = b \sum X^2 + c \sum X$$

Calculate values of **b** & **c**, where $\mathbf{a} = \mathbf{10^c}$

Conversion into straight line

$$y = ab^x$$

Taking log_{10} on both side

$$\therefore \log_{10} y = \log_{10} a + \log_{10} b^x$$

$$\therefore \log_{10} y = \log_{10} a + x \log_{10} b$$

Now, let
$$Y = \log_{10} y$$
, $B = \log_{10} b$, $c = \log_{10} a$

$$\therefore Y = Bx + c$$

By curve fitting of straight line

Formulae :
$$\sum Y = B \sum x + nc$$

$$\sum xY = B\sum x^2 + c\sum x$$

Calculate values of **B** & **c**, where $\mathbf{a} = \mathbf{10^c}$, $\mathbf{b} = \mathbf{10^B}$