Introduction to K-means Clustering

K-means clustering: Algorithm

Pre-requisites

- Get points in multi-dimensional space.
 - table, matrix, rectangular dataset
- 2. Specify guesses for cluster centers
 - Specify number of clusters: Weakest point in algorithm
 - Choose a center for each cluster: Second Weakest point in algorithm because data does not determine outcome of algorithm.
- Repeat until convergence:
 - 1. For each point, determine its closest cluster center and assign that point to that cluster
 - 2. Determine the centroid (mean) for each cluster of points

K-Means Clustering (0)

- Clustering starts by getting the data and representing the data as points in space. In this example the space is 2-dimensional.
- Each point describes an observation. An observation is an individual item.
- The dimensions are attributes that describe the item.

K-Means Clustering (1)

- Clustering continues by guessing, presuming, or specifying a number of clusters.
- Each centroid represents a cluster.
- The centroid positions are determined randomly. The centroids should be within the bounds of the points.

K-Means Clustering (2)

- Clustering continues by assigning each point to a cluster.
- For each point, the algorithm measures the distance to each centroid.
- For each point, the smallest distance to a centroid indicates the assignment.

K-Means Clustering (2)

Clustering continues by moving each centroid to the center of its cluster.

K-Means Clustering (3)

Clustering continues by moving each centroid to the center of its cluster.

K-Means Clustering (4)

- Clustering continues by assigning each point to a cluster.
- For each point, the algorithm measures the distance to each centroid.
- For each point, the smallest distance to a centroid indicates the assignment.

K-Means Clustering (4)

- Clustering continues by assigning each point to a cluster.
- For each point, the algorithm measures the distance to each centroid.
- For each point, the smallest distance to a centroid indicates the assignment.

K-Means Clustering (5)

K-Means Clustering (6)

K-Means Clustering (7)

K-Means Clustering (8)

K-Means Clustering (9)

K-Means Clustering (10)

K-Means Clustering (11)

K-Means Clustering (12)

K-Means Clustering (13)

K-means

- Some Points:
 - Initial centroid number and placement is an art.
 - Categorical Data must be one-hot encoded
 - K-means is unsupervised because we do not tell the algorithm what outcome was observed or what outcome is desired.
 - Normalizations are important to put data on equal terms

In-Class Exercise and Homework Assignment

Complete K-Means in Python

- Download L07-1-KMeans_Incomplete.py to your working directory.
- Open L07-1-KMeans_Incomplete.py in Spyder
- Run the script (The result will be wrong)
- Complete the function KMeans()
- Specifically, replace all lines that say: "Replace this line with code".
- Run the script (The result will be correct)