

Image Analysis

Rasmus R. Paulsen Tim B. Dyrby DTU Compute

rapa@dtu.dk

http://www.compute.dtu.dk/courses/02502

Lecture 6 - BLOB analysis and feature based classification

What can you do after today?

- Calculate the connected components of a binary image. Both using 4-connected and 8-connected neighbours
- Compute BLOB features including area, bounding box ratio, perimeter, center of mass, circularity, and compactness
- Describe a feature space
- Compute blob feature distances in feature space
- Classify binary objects based on their blob features
- Estimate feature value ranges using annotated training data
- Compute a confusion matrix
- Compute rates from a confusion matrix including sensitivity, specificity and accuracy
- Determine and discuss what is the importance of sensitivity and specificity given an image analysis problem

Object recognition

- Recognise objects in images
- Put them into different classes

BLOB - what is it?

- BLOB = Binary Large Object
 - Group of connected pixels
- **BLOB Analysis**
 - Connected component analysis

Image Analysis

- Object labelling

Isolating a BLOB

- What we want:
 - For each object in the image, a list with its pixels
- How do we get that?
 - Connected component analysis
- Connectivity
 - Who are my neighbors?
 - 4-connected
 - 8-connected

Connected component analysis

- Binary image
- Seed point: where do we start?
- Grassfire concept
 - Delete (burn) the pixels we visit
 - Visit all connected (4 or 8) neighbors

Image Analysis

4-connected

DTU Compute

BLOBs 4- and 8-neighbours

- A) 3 and 7
- B) 9 and 5
- C) 8 and 6
- D) 7 and 5
- E) 4 and 5

A BLOB analysis is performed using both 4- and 8connectivity. How many BLOBS are found using the two different connectivities?

The result of connected component analysis

- An image where each BLOB (component) is labelled
- Each blob now has a unique ID number
- What do we do with these blobs?

Features

- **Feature**
 - A prominent or distinctive aspect, quality, or characteristic
 - This radio has many good features
- Car (Ford-T) features
 - 4 wheels
 - 2 doors
 - 540 kg
 - 20 hp

Feature vector

f=[4, 2, 540, 20]

f=[4, 3, 1100, 90]

- Feature vector
 - Vector with all the features for one object
- Ford-T features
 - 4 wheels
 - 2 doors
 - 540 kg
 - 20 hp
- Ford Fiesta features
 - 4 wheels
 - 3 doors
 - 1100 kg
 - 90 hp

Feature extractions

- Compute features for each BLOB that can be used to identify it
 - Size
 - Shape
 - Position
- From image operations to mathematical operations
 - Input: a list of pixel positions
 - Output: Feature vector
- First step: remove invalid BLOBS
 - too small or big- using morphological operations for example
 - border BLOBs

Feature vector =
$$[2,1,...,3]$$

Feature vector =
$$[4,7,...,0]$$

One BLOB

Area

- number of pixels in the BLOB
- Can be used to remove noise (small BLOBS)

One BLOB

Bounding box

- Minimum rectangle that contains the BLOB
- Height: $y_{\text{max}} y_{\text{min}}$
- Width: $x_{\text{max}} x_{\text{min}}$
- Bounding box ratio:

$$\frac{y_{\text{max}} - y_{\text{min}}}{x_{\text{max}} - x_{\text{min}}}$$

tells if the BLOB is elongated

One BLOB

- Bounding box
 - Bounding box area:

$$(y_{\text{max}} - y_{\text{min}}) \cdot (x_{\text{max}} - x_{\text{min}})$$

Compactness of BLOB

Compactness =
$$\frac{\text{BLOB Area}}{(y_{\text{max}} - y_{\text{min}}) \cdot (x_{\text{max}} - x_{\text{min}})}$$

Compactness – which shape is most compact?

A) Shape 1:

B) Shape 2:

Compactness =
$$\frac{\text{BLOB Area}}{(y_{\text{max}} - y_{\text{min}}) \cdot (x_{\text{max}} - x_{\text{min}})}$$

One BLOB

- Bounding box ratio
 - Bounding box height divided by the width

Center of mass (x_c, y_c)

$$x_c = \frac{1}{N} \sum_{i=1}^{N} x_i$$

$$y_c = \frac{1}{N} \sum_{i=1}^{N} y_i$$

Center of mass

- A) (12, 1.5)
- B) (5, 8.5)
- C) (6.5, 3.5)
- D) (4.5, 0.5)
- E) (7, 4.5)

The smallest BLOB is found using 4-connectivity. What is the center of mass of this BLOB. The image has origin (0,0) and uses a (x,y) coordinate system.

- 1. (12, 1.5)
- 2. (5, 8.5)
- 3. (6.5, 3.5)
- 4. (4.5, 0.5)
- 5. (7, 4.5)

One BLOB

- Perimeter
 - Length of perimeter
 - How can we compute that?
- In practice (in Matlab) it is computed differently and more accurately

$$\sum ((f(x,y) \oplus SE) - f(x,y))$$

BLOB Features - circularity

Circle like

- How much does it look like a circle?
- Circle
 - Area $A = \pi r^2$
 - Perimeter $P = 2\pi r$
- New object assumed to be a circle
 - Measured perimeter P_m
 - Measured area A_m
- Estimate perimeter from (measured) area
 - Estimated perimeter $P_e = 2\sqrt{\pi A_m}$

BLOB Features - circularity

Circle like

- Compare the perimeters
 - Measured perimeter P_m
 - Estimated perimeter $P_e = 2\sqrt{\pi A_m}$
- Circularity 1:

Circularity =
$$\frac{P_m}{P_e} = \frac{P_m}{2\sqrt{\pi A_m}}$$

Circularity

Circularity =
$$\frac{P_m}{P_e} = \frac{P_m}{2\sqrt{\pi A_m}}$$

A)
$$P_m < P_e$$

$$(B) P_m = P_e$$

$$C)$$
 $P_m > P_e$

Circularity 2

Circularity =
$$\frac{P_m}{P_e} = \frac{P_m}{2\sqrt{\pi A_m}}$$

- A) $P_m < P_e$
- B) $P_m = P_e$
- C) $P_m > P_e$

BLOB Features - circularity

Circle like

- Compare the perimeters
 - Measured perimeter P_m
 - Estimated perimeter $P_e = 2\sqrt{\pi A_m}$
- Circularity:

Circularity =
$$\frac{P_m}{P_e} = \frac{P_m}{2\sqrt{\pi A_m}}$$

This measure will normally be ≥1

BLOB Features – circularity inverse

Circle like

- Compare the perimeters
 - Measured perimeter P_m
 - Estimated perimeter $P_e = 2\sqrt{\pi A_m}$
- Circularity (inverse):

Circularity inverse =
$$\frac{P_e}{P_m} = \frac{2\sqrt{\pi A_m}}{P_m}$$

This measure will normally be ≤ 1

After feature extraction

Area, compactness, circularity etc calculated for all BLOB

One feature vector per blob

BLOB Classification

- Classification
 - Put a BLOB into a class
- Classes are normally pre-defined
 - Car
 - Bus
 - Motorcycle
 - Scooter
- Object recognition

Object recognition: Circle example

BLOB number	Circu- larity	Area (pixels)
1	0.31	6561
2	0.40	6544
3	0.98	890
4	0.97	6607
5	0.99	6730
6	0.52	6611
7	0.75	2073

Which objects are circles?

Circle classification

- Two classes:
 - Circle
 - Not-circle
- Lets make a model of a proto-type circle

Circle classification

Proto-type circle

Circularity: 1

Area: 6700

Feature Space

Objects in here are classified as circles

Feature space

- Proto-type circle
 - Circularity: 1
 - Area: 6700
- Some slack is added to allow non-perfect circles
 - Circularity: 1 +/- 0.15

Feature space - distances

- How do we decide if an object is inside the circle?
- Feature space distance
- Euclidean distance in features space

Blob 1: circularity: 0.31, Area: 6561

$$D = \sqrt{(0.31 - 1)^2 + (6561 - 6700)^2}$$

Dominates all! – normalisation needed

BLOB Feature Selection

- A) Compactness and circularity
- B) Bounding box ratio and circularity
- C) Area and compactness
- D) Compactness and bounding box ratio
- E) Area and bounding box ratio

What set of BLOB features separate the below BLOBS best?

Cell classification

UV Microscopy

Fluorescence Microscopy (DAPI)

Images from ChemoMetec A/S

Nuclei classification

- DAPI image
- Two classes
 - Single nuclei
 - Noise
 - Multiple nuclei together
 - Debris
 - Other noise

Training and annotation

- Selection of true single nuclei marked
- Thresholding
- **BLOB Analysis**
 - Circularity
 - Area

Training data - analysis

Probably outliers

Feature ranges

Feature	Min	Max
Area	50	110
Circularity	0.87	1.05

Image Analysis

Using the classifier

DAPI input image

- Threshold input image
- Morphological opening (SE 5x5)
- Morphological closing (SE 5x5)
- BLOBs found using 8-neighbours
- Border BLOBS removed
- Border features computed
 - Area + circularity
- BLOBs with features inside the acceptance range are single-nuclei

2019

Using the classifier

How well does it work?

- We say we have a great algorithm!
- Strangely the doctor/biochemist do not trust this statement!
 - They need numbers!
- How do we report the performance?

Creating ground truth - expert annotations

Found single nuclei

Expert opinion on true single nuclei

Red markings: Single nuclei

Not marked: Noise

Four cases

- True Positive (TP): A nuclei is classified as a nuclei
- True Negative (TN): A noise object is classified as noise object
- False Positive (FP): A noise object is classified as a nuclei
- False Negative (FN): A nuclei is classified as a noise object

	Predicted as single- nuclei
Actual noise	
Actual single-nuclei	

	Predicted as noise	Predicted as single- nuclei
Actual noise	TN=19	
Actual single-nuclei		

		Predicted as single- nuclei
Actual noise	TN=19	
Actual single-nuclei		TP=51

2019

	Predicted as noise	Predicted as single- nuclei
Actual noise	TN=19	FP=2
Actual single-nuclei		TP=51

		Predicted as single- nuclei
Actual noise	TN=19	FP=2
Actual single-nuclei	FN=5	TP=51

Something simpler?

Accuracy

Tells how often the classifier is correct

$$Accuracy = \frac{TP + TN}{N}$$

N is the total number of annotated objects

$$N = TN + TP + FP + FN$$

Accuracy

- A) 42%
- B) 65%
- C) 77%
- D) 91%
- E) 97%

	Predicted as noise	Predicted as single- nuclei
Actual noise	TN=19	FP=2
Actual single-nuclei	FN=5	TP=51

2019

True positive rate (sensivity)

How often is a positive predicted when it actually is positive

Sensivity=
$$\frac{TP}{FN+TP}$$

All the experts true single-nuclei

Image Analysis

Sensitivity

- A) 62%
- B) 65%
- C) 71%
- D) 91%
- E) 93%

	Predicted as noise	Predicted as single- nuclei
Actual noise	TN=19	FP=2
Actual single-nuclei	FN=5	TP=51

Specificity

How often is a negative predicted when it actually is negative

Specificity =
$$\frac{TN}{TN+FP}$$
 All the experts true noise objects

Specificity

- A) 77%
- B) 81%
- **C)** 90%
- D) 92%
- E) 97%

		Predicted as single- nuclei
Actual noise	TN=19	FP=2
Actual single-nuclei	FN=5	TP=51

2019

Optimising the classification

- Changing the classification limits
- The rates will be changed:
 - Accuracy
 - Sensitivity
 - Specificity
- Very dependent on the task what is optimal

Dependencies

- Increasing true positive rate
 - Increased false positive rate
 - Decreased precision

Example – cell analysis

- We want only single-nuclei cells
 - For further analysis
- We do not want to do an analysis of a noise object
- We are not interested in the true number of single nuclei

What measure is the most important?

- A) Low false positives
- B) High true positives
- C) High true negatives
- D) Low false negatives

- For further analysis
- We do not want to do an analysis of noise objects
- We are not interested in the true number of single nuclei

Advanced classification

- Fitting more advanced functions to the samples
- Multivariate Gaussians
- Mahalanobis distances

Feature Engineering vs. Deep learning

- Until around 5-7 years ago feature engineering was the way to go
- Now deep learning beats everything
- However feature engineering is still important

Feature engineering

- Given a classification problem
 - Cars vs. Pedestrians
- Use background knowledge to select relevant features
 - Area
 - Shape
 - Appearance
 - _ ...
- Use multivariate statistics to classify
- Depending on the selected features

Deep learning

- You start with a dummy classifier
- Feed it with lots and lots of data with given labels
- The network learns the optimal features
- Layer/network engineering

Feature Engineering vs. Deep learning

Deep Learning

- When you have lot of annotated data
- Where it is not clear what features work

Manual features

- When you have limited data
- When it is rather obvious what features can discriminate

The level of medical examples

- A) Stop stop! Too much medical stuff
- B) I would like some more non-medical examples
- C) Its ok
- D) I like the medical examples
- E) Great with medical examples

2019

Next week

Pixel Classification

