Michael Grossberg

Intro to Data Science CS59969

LDA

Linear Classifier

1-D Two Class

1-D Two Class

T = Best Threshold

1-D Two Class

$$\sigma_{\text{between}}^2 = \mu_{\text{red}} - \mu_{\text{blue}}$$

$$\sigma_{\text{within}}^2 = 1/2(\sigma_{\text{red}}^2 + \sigma_{\text{blue}}^2)$$

Good/Bad Separation

$$S = \frac{\sigma_{\text{between}}^2}{\sigma_{\text{within}}^2}$$

Binary Classification Problem

Finding Linear Separator

Equivalent: Find good projection

Example poor projection

Histogram of projection

Better Projection (difference)

Histogram of projection

More Generally

$$ec{\mu}_0,ec{\mu}_1 \quad \Sigma_0,\Sigma_1 \quad ec{w}\cdotec{x}$$

$$\Sigma_0, \Sigma_1$$

$$ec{w} \cdot ec{x}$$

Class Means Covariance Matrices w Projection "feature"

$$S = rac{\sigma_{ ext{between}}^2}{\sigma_{ ext{within}}^2} = rac{(ec{w} \cdot ec{\mu}_1 - ec{w} \cdot ec{\mu}_0)^2}{ec{w}^T \Sigma_1 ec{w} + ec{w}^T \Sigma_0 ec{w}} = rac{(ec{w} \cdot (ec{\mu}_1 - ec{\mu}_0))^2}{ec{w}^T (\Sigma_0 + \Sigma_1) ec{w}}$$

$$ec{w} \propto (\Sigma_0 + \Sigma_1)^{-1} (ec{\mu}_1 - ec{\mu}_0)$$

Maximum Separation

Hyper-Plane Decision Boundary

$$c = ec{w} \cdot rac{1}{2} (ec{\mu}_0 + ec{\mu}_1) = rac{1}{2} ec{\mu}_1^T \Sigma^{-1} ec{\mu}_1 - rac{1}{2} ec{\mu}_0^T \Sigma^{-1} ec{\mu}_0.$$

LDA Pro/Con

Pros Cons

- * Multi-class version
- Simple to understand
- Usually doesn't overfit
- Works with much less data
- Very fast classification

- Simplistic DecisionBoundaries
- Effected by points far from decision boundary