Computing Components

The base components of computer design and the way they are structured.

CHAPTER 5

Chapter Goals

- List the components and their function in a von Neumann machine
- Describe the fetch-decode-execute cycle of the von Neumann machine
- Describe how computer memory is organized and accessed
- Name and describe different auxiliary storage devices
- Define three alternative parallel computer configurations

Stored program computer

Figure 5.1 The von Neumann architecture

Memory

Memory

A collection of cells, each with a unique physical address; both addresses and contents are in binary

7	6	5	4	3	2	1	0	•	 Bit position
1	0	1	0	1	0	1	0		 Contents

Address	Contents			
00000000	11100011			
00000001	10101001			
11111100	00000000			
11111101	11111111			
11111110	10101010			
11111111	00110011			

Arithmetic/Logic Unit

- Performs basic arithmetic operations such as adding
- Performs logical operations such as AND, OR, and NOT
- Most modern ALUs have a small amount of special storage units called registers

Input/Output Units

Input Unit

A device through which data and programs from the outside world are entered into the computer;

Output unit

A device through which results stored in the computer memory are made available to the outside world

Control Unit

Control unit

The organizing force in the computer

Instruction register (IR)

Contains the instruction that is being executed

Program counter (PC)

Contains the address of the next instruction to be executed

Central Processing Unit (CPU)

ALU and the control unit.

Flow of Information

Bus

A set of wires that connect all major sections

Figure 5.2 Data flow through a von Neumann architecture

The Fetch-Execute cycle

Figure 5.3 The Fetch-Execute Cycle

Example: The Fetch-Execute Cycle

Replace A by A+1. Branch if A<0 to instruction 00110:

If TRUE...

Instruction Register

Program Counter 00110

- **•** 00110 ...
- ▶ 01000 Get A
- ▶ 01010 Add 1 to A
- ▶ 01100 Test A<0
- 01110 If True, go to00110
- **10000** ...

	<u> </u>
•••	
00110	•••
00111	•••
01000	Get
01001	Α
01010	Add
01011	+1
01100	Test
01101	<0
01110	If TRUE
01111	branch 00110
10000	
•••	

RAM and ROM

Random Access Memory (RAM)

Memory in which each location can be accessed and changed

Read Only Memory (ROM)

Memory in which each location can be accessed but *not* changed

RAM is volatile, ROM is not

Magnetic Disks

Figure 5.5 The organization of a magnetic disk

Magnetic Disks

Seek time

Time it takes for read/write head to be over right track

Latency

Time it takes for sector to be in position

Access time

Total time required to obtain data

Transfer rate

Rate at which data is transferred to internal memory.

Compact Disks

CD

A compact disk that uses a laser to read information stored optically on a plastic disk; data is evenly distributed around track

CD-ROM read-only memory

CD-DA digital audio

CD-WORM write once, read many

CD - RW or RAM both read from and written to

DVD

Digital Versatile Disk, used for storing audio and video in particular.

Touch Screens

Touch screen

A computer monitor that can respond to the user touching the screen with a stylus or finger

There are several types

- Resistive
- Capacitive
- Infrared
- Surface acoustic wave (SAW)

Parallel processing

Idea is to speed up the execution of large jobs based on design rather than processor speed.

There are four approaches to this:

- Bit level
 Manipulate bigger words in each process;
- Instruction level
 Instructions done in parallel rather than sequentially,
 Superscalar is one CPU with multiple resources;

Parallel processing

Data Level

Execute instruction blocks on multiple data sets at the same time,

Different ALUs do the same instructions on multiple data sets - SIMD;

Task level

Distribute tasks between different processors.

Synchronous processing

One approach to data level parallelism is to have multiple processors apply the same program to multiple data sets

Figure 5.7 Processors in a synchronous computing environment

Pipelining

Arranges processors in tandem, where each processor contributes one part to an overall computation

Figure 5.8 Processors in a pipeline

Independent Processing with Shared Memory

Communicate through shared memory

Figure 5.9 Shared memory configuration of processors

South Africa and HPC

- South Africa has a well-equipped central resource with high end computers - top 500.
- Centre for High Performance Computing www.chpc.ac.za
 - SUN Constellation System: 2000 8-core processing units, 400 terabytes, state of the art water cooling system;
 - Training courses;
 - Technical support;
 - Access through high speed links;
 - Flagship projects Computational Imaging and Remote Sensing (Wits).