

目录

第一	→章	PDO 应用实例分析	1
	—、	目的	. 1
	_`	手段	· 1
	三、	分析	. 1
	四、	过程······	. 2
		4.1.1 各节点 ID 分配表定义	
		4.1.2 对节点 1 进行对象字典编写	
		4.1.3 对节点 2 进行对象字典编写	
		4.1.4 对节点 3 进行对象字典编写	
		4.2 节点 1 发送数据至节点 2、节点 3	
		4.2.1 节点 1 发送数据至总线	
		4.2.2 节点 2、节点 3 从总线接收数据	
		4.3 节点 2 发送数据至节点 3	
		4.3.1 节点 2 发送数据至总线	9
		4.3.2 节点 3 从总线接收数据	.10
		SDO 应用实例分析	
		J	
	4.1		
		4.1.1 各节点 ID 分配	
		4.1.2 对节点 1 进行对象字典编写	
		4.1.4 对节点 3 进行对象字典编写	
	4.0		
	4.2	节点1读取节点2数据	4
		4.2.1 节点 1 发送请求读取命令至节点 2	
		4.2.2 节点 2 响应节点 1 读取命令	
	4.3	节点1写入数据至节点3	6
		4.3.1 节点1 发送数据至节点 3	
		4.3.2 节点3响应节点1写入数据命令	7
	1		_

i

第一章 PDO 应用实例分析

一、目的

本应用实例的目的如图 1-1 所示,实现节点 1 的数据 $(A \setminus B)$ 传送到节点 2、节点 3,同时实现节点 2 传输数据 $(C \setminus D)$ 至节点 3。

二、手段

使用 PDO 进行数据传送。

三、分析

CANopen 工作流分析

V1.0

图 1-2 SDO 客户/服务器通讯模式[1]

PDO 通信是基于生产者/消费者(Producer/Consumer)模型,主要用于传输实时数据。产生数据的节点将带有自己节点号的数据放到总线上,需要该数据的节点,可以配置为接收该 PDO^[3]。

四、过程

4.1.对象字典的编写

对象字典的结构和条目对于所有设备是共同的,本例中采用索引定位,子索引确定对象的思想构建对象字典,方法是使用结构体定义子索引,子索引结构体的成员变量包含对象的属性(读写权限,数据类型,数据长度等)和指向对象的指针,定义索引时包含指向子索引的指针和子索引数目,对象字典各项在代码中采取如图 1-3 所示的方式来组织构建,这样可以方便地通过索引和子索引找到对应的项,对象定义为指针的形式可以通过主站的 SDO 报文进行读写,实现对对象字典的灵活配置,同时这种方式实现通讯层与应用层共享数据变量的特点。对象字典的条目格式如图 1-3 所示:

图 1-3 对象字典模块结构图

CANopen 工作流分析

V1.0

4.1.1 各节点 ID 分配表定义

表 1-1 各节点 ID 分配表

节点	节点 1	节点 2、	节点3	主节点
NODE-ID	0x01	0x02	0x03	0x04

4.1.2 对节点 1 进行对象字典编写

节点 1 发送数据至节点 2、节点 3,故需定义 TPDO,我们在此处定义为 TPDO1。节点 1 的应用数据区、TPDO1 的通讯参数和映射参数在对象字典中的 定义分别如表 1-2、1-3 和 1-4 所示。

表 1-2 节点 1 的应用数据区在对象字典中的定义

索引	子索引	名称	类型	值	权限
7100h	00h	入口数目	U8	02h	rw
	01h	A	U16	2DFFh	rw
	02h	В	U8	C3h	rw

表 1-3 节点 1 的 TPD01 通讯参数在对象字典中的定义

1800h	_	TPDO	数据类型	值	权限
	00h	入口数目	U8	05h	ro
	01h	发送 PDO 标识符	U32	180h+NodeID	rw
	02h	传输类型	U8	FFh	rw
	03h	禁止时间	U16	00h	rw
	04h	Reserved			rw
	05h	event timer	U16	0x0000h	rw

节点 1 的 TPDO1 的 COB-ID 定义为 181h (1801H?)。

表 1-4 节点 1 的 TPDO1 的映射参数在对象字典中的定义

1A00h	_	TPDO1	数据类型	值	权限
	00h	PDO 映射数目	U8	02h	rw
	01h	A	U16	7100 01 10h	rw
	02h	В	U8	7100 02 08h	rw

CANopen 工作流分析

V1.0

其中 7100 01 10h 映射数据对象字典中索引为 7100h, 子索引为 01h, 长度为 16 位的数据。

4.1.3 对节点 2 进行对象字典编写

节点 2 接收来自节点 1 的数据(A、B),故需定义 RPDO1;此外节点 2 将数据传(C、D)送给节点 3,故需要定义 TPDO2。节点 2 的应用数据在对象字典中的定义如表 1-5 所示。

	74 1 m - 84 = / 13/504 F = / 13/50 7 1 84/6/50							
索引	子索引	名称	类型	值	权限			
7200h	00h	入口数目	U8	02h	rw			
	01h	A	U16		rw			
	02h	В	U8		rw			
7300h	00h	入口数目	U8	02h	rw			
	01h	С	U16	F3CCh	rw			
	02h	D	U8	D5h	rw			

表 1-5 节点 2 的应用数据在对象字典中的定义

此时索引为 7200h,子索引为 01h,02h 条目中起初并没有实际值,这两个条目分别用来接收节点 1 的数据 A、B。接受数据后,子索引为 01h 的条目的值为 2DFFh,子索引为 02h 的条目为 C3h。索引为 7300h,子索引为 01h,02h 条目中为数据 C、D 的索引。

1400h		RPDO1	数据类型	值	权限
	00h	入口数目	U8	05h	ro
	01h	接收 PDO 标识符	U32	180h+NodeID	rw
	02h	传输类型	U8	FFh	rw
	03h	禁止时间	U16	0	rw
	04h	Reserved			rw
	05h	event timer	U16	0x0000h	rw

表 1-6 节点 2 的 RPDO1 通讯参数在对象字典中的定义

CANopen 工作流分析

V1.0

机械工程学院机械设计及理论研究所

节点 2 定义 RPDO1 的 COB-ID 为 181h,对应节点 1 的 TPDO 的 COB-ID,实现节点 1 与节点 2 之间的数据传输。

1600h RPDO 数据类型 权限 值 U8 00h PDO 映射数目 02h rw U16 7200 01 10h 01h Α rw В U8 7200 02 08h 02h rw

表 1-7 节点 2 的 RPDO1 映射参数在对象字典中的定义

其中 7200 01 10h 表示映射到对象字典中索引为 7200h, 子索引为 01h, 长度为 16 位的数据。

因为节点 2 发送数据至节点 3,故需在对象字典中定义 TPDO,在此定义为 TPDO2,其通讯参数和映射参数定义如表 1-8 和 1-9 所示。

1800	_	TPDO2	数据类型	值	权限
	00h	入口数目	U8	05h	ro
	01h	发送 PDO 标识符	U32	280h+NodeID	rw
	02h	传输类型	U8	FFh	rw
	03h	禁止时间	U16	00h	rw
	04h	Reserved			rw
	05h	event timer	U16	0x0000h	rw

表 1-8 节点 2 中 TPDO2 通讯参数在对象字典中的定义

节点 2 的 TPDO2 的 COB-ID 为 282h。

表 1-9 节点 2 中 TPDO2 映射参数在对象字典中的定义

1A00	_	TPDO1	数据类型	值	权限
	00h	PDO映射数目	U8	02h	rw
	01h	С	U16	7300 01 10h	rw

CANopen 工作流分析

V1.0

同濟大學

机械工程学院机械设计及理论研究所

ONI					
	02h	D	U8	7300 02 08h	rw

其中 7300 01 10h 表示映射到对象字典中索引为 7300h, 子索引为 01h, 长度为 16 位的数据

4.1.4 对节点 3 进行对象字典编写

节点 3 分别接受节点 1、节点 2 的数据,需在节点 3 的对象字典中定义 RPDO1、RPDO2,其中 RPDO1 的 COB-ID 需与节点 1 的 TPDO1 的 COB-ID 一致,RPDO2 的 COB-ID 需与节点 2 的 TPDO2 的 COB-ID 一致。

索引	子索引	名称	类型	值	权限
7100h	00h	入口数目	U8	02h	rw
	01h	A	U16		rw
	02h	В	U8		rw
7200h	00h	入口数目	U8	02h	rw
	01h	С	U16		rw
	02h	D	U8		rw

表 1-10 节点 3 的应用数据在对象字典中的定义

其中名称为 A、B、C、D 的条目起初并没有实际值,接受节点 1 和节点 2 的数据后,这些条目才具有相应的值。

表 1-11 节点 3 的 RPDO1 的通讯参数在对象字典中的定义

1400h	_	— RPDO1		值	权限
	00h 入口数目 U8		U8	05h	ro
	01h	接收 PDO 标识符	U32	180h+Nod eID	rw
	02h		U8	FFh	rw
	03h	禁止时间	U16	0	rw
	04h	Reserved			rw

CANopen 工作流分析

V1.0

机械工程学院机械设计及理论研究所

05h	event timer	U16	0x0000h	rw

其中 RPDO1 的 COB-ID 为 181h,与节点 1 的 TPDO1 的 COB-ID 一致,实现节点 1 与节点 3 之间的数据传输。

表 4-11 节点 3 的 RPDO1 的映射参数在对象字典中的定义

1600h	_	RPDO1	数据类型	值	权限
	00h	PDO 映射数目	U8	02h	rw
	01h	A	U32	7100 01 10h	rw
	02h	В	U32	7100 02 08h	rw

表 4-12 节点 3 的 RPDO2 的通讯参数在对象字典中的定义

1401h	_	RPDO2 数据类型		值	权限
	00h	入口数目	U8	05h	ro
	01h	接收 PDO 标识符	U32	U32 280h+NodeID	
	02h 传输类型		U8	FFh	rw
	03h	禁止时间	U16	0	rw
	04h	Reserved			rw
	05h	event timer	U16	0x0000h	rw

其中 RPDO2 的 COB-ID 为 282h,与节点 2 的 TPDO2 的 COB-ID 一致,实现节点 2 与节点 3 之间的数据传输。

表 4-13 节点 3 的 RPDO2 的映射参数在对象字典中的定义

1601h	_	RPDO2	数据类型	值	权限
	00h	PDO 映射数目	U8	02h	rw
	01h	С	U32	7200 01 10h	rw
	02h	D	U32	7200 02 08h	rw

4.2 节点 1 发送数据至节点 2、节点 3

4.2.1 节点 1 发送数据至总线

节点 1 的 TPDO1 报文组装如图 1-4 所示:

CANopen 工作流分析

V1.0

图 1-4 节点 1 的 TPDO1 报文组装形式图

节点1根据映射参数扫描对象字典,将相应的数据总存储器中调出,与通信参数组合后再组装成报文格式,发送到 CAN 总线当中。

此例中传输至总线的数据为 181 2DFF C3。

4.2.2 节点 2、节点 3 从总线接收数据

由于节点 2 的 RPDO、节点 3 中的 RPDO1 的 COB-ID 与节点 1 的 TPDO 的 COB-ID 一致,故而节点 2,节点 3 可以顺利通过报文滤波从总线中接收节点 1 所传输的报文。

对于节点 2, 其接收报文的形式如图 1-5 所示:

图 1-5 节点 2 的 RPDO1 报文接收形式图 节点 2 接收到的 RPDO 为 181 2DFF C3。

CANopen 工作流分析

V1.0

对于节点 3, 其接收报文的形式如图 1-6 所示:

图 1-6 节点 3 的 RPDO1 报文接收形式图

节点 3 接收到的 RPDO 为 181 2DFF C3。

由于 PDO 的发送为广播形式,当节点 1 的 TPDO 报文传输到总线上时,理论上所有节点都能接收该报文,实际上只有与节点 1 的 TPDO 的 COB-ID 一致的 RPDO 才能接收该报文。本例中,节点 2、节点 3 中都定义了与节点 1 的 TPDO的 COB-ID 一致的 RPDO,故而节点 2,节点 3 能接收节点 1 的报文。

当节点 2、节点 3 接收节点 1 的 TPDO 报文后,由于已经事先定义好了报文的映射,TPDO 中的数据(此例中为 2DFFh, C3h)可直接映射到相应的对象字典条目中。

PDO 可以高速传输数据就在于,其实际传输过程中只传输实际数据,无需定义传输数据的来源,接收数据后该存放的地址。因为数据的来源、存放地址等信息已在事先就由工程师定义完成(即对象字典的编写)。

4.3 节点 2 发送数据至节点 3

4.3.1 节点 2 发送数据至总线

节点 2 的 TPDO 报文组装如图 1-7 所示:

CANopen 工作流分析

V1.0

机械工程学院机械设计及理论研究所

图 1-7 节点 2 的 TPDO2 报文组装形式图

节点 2 根据映射参数扫描对象字典,将相应的数据总存储器中调出,与通信参数组合后再组装成报文格式,发送到总线当中。

此例中传输至总线的数据为 282 F3CC D5。

4.3.2 节点 3 从总线接收数据

由于节点 3 的 RPDO2 的 COB-ID 与节点 2 的 TPDO 的 COB-ID 一致,故而节点 3 可以顺利通过报文滤波从总线中接收节点 1 所传输的报文。 其接收形式如图 1-8 所示:

CANopen 工作流分析

V1.0

图 1-8 节点 3 的 RPDO2 报文接收形式图

此例中节点 3 接收到的 RPDO2 为 282 F3CC D5。

CANopen 工作流分析 Date: 2011-5-20 V1.0

第二章 SDO 应用实例分析

一、目的:

实现节点2的数据传送到节点3

二、手段:

使用 SDO 进行传送

注: SDO 不能实现从节点之间数据的直接传送

三、分析:

图 1-1 SDO 客户/服务器通讯模式[1]

SDO通讯可以描述成客户/服务器模型,SDO的客户/服务器通讯模式如图 1-1 所示。两节点中请求进行读写操作的节点为客户端节点,数据被读写的节点为服务器节点^[3]。SDO通讯用于主节点对从节点对象字典的读写访问,以实现对从节点参数的设置,下载程序,定义 PDO 的通讯类型和数据格式等^[1]。

由此可知要实现将节点 2 中数据传送给节点 3 的实现方法为: 设置节点 1 为主站(Client),数据传送过程由 SDO 传送的特点分为两段: 节点 1 读取节点 2 (server)数据,节点 1 写入数据到节点 3 (server)。从而实现了节点 2 (server)的数据传送到节点 3 (server)。如图 1-2 所示。

CANopen 工作流分析

V1.0

图 1-2 数据传送过程

四、过程:

4.1.对象字典的编写

对象字典的结构和条目对于所有设备是共同的,本例中采用索引定位,子索引确定对象的思想构建对象字典,方法是使用结构体定义子索引,子索引结构体的成员变量包含对象的属性(读写权限,数据类型,数据长度等)和指向对象的指针,定义索引时包含指向子索引的指针和子索引数目,对象字典各项在代码中采取如图 4-1 所示的方式来组织构建,这样可以方便地通过索引和子索引一找到对应的项,对象定义为指针的形式可以通过主站的 SDO 报文进行读写,实现对对象字典的灵活配置,同时这种方式实现通讯层与应用层共享数据变量的特点。对象字典的条目格式如图 4-1 所示:

索引	对象 (符号名)	名称	属性	类型	强制/可选
----	----------	----	----	----	-------

图 1-3 对象字典模块结构图

4.1.1 各节点 ID 分配

表 1-1 各节点 ID 分配表

节点	节点 1	节点 2、	节点3	主节点
NODE-ID	0x01	0x02	0x03	0x04

4.1.2 对节点 1 进行对象字典编写

表 1-2 节点 1 的 SDO 讯参数在对象字典中的定义

索引	子索引	接受/发送 SDO	SDO 参数		强制/可选
0x1200	00h	入口数目	Unit8	03h	rw
	01h	接受 SDO	Unit32		ro
	02h	发送 SDO	Unit32		ro
	03h	节点号	Unit32	0x01	rw

节点 1 的 SDO 参数在对象字典中的定义如表 1-2 所示。因为此处节点 1 充当客户端角色,故而无需定义其接受 SDO 与发送 SDO 的 COB-ID。

4.1.3 对节点 2 进行对象字典编写

表 1-3 节点 2 的 SDO 通讯参数在对象字典中的定义

索引	子索引	接受/发送 SDO	SDO 参数		强制/可选
0x1200	00h	入口数目	Unit8	03h	rw
	01h	接受 SDO	Unit32	600h+节点号	ro

CANopen 工作流分析

V1.0

02h	发送 SDO	Unit32	580h+节点号	ro
03h	节点号	Unit32	0x02	rw

节点 2 的 SDO 参数在对象字典中的定义如表 1-3 所示。节点 2 的发送 SDO 的 COB-ID 为 0x582, 节点 1 的接受 SDO 的 COB-ID 分别为 0x602。

除了完成 SDO 参数在对象字典中的定义外,还需实现节点 2 所要传输数据 在对象字典中的定义。如表 1-4 所示。

子索引 类型 节点 索引 名称 属性 强制/可选 0x020x6000 0x01体积(A) rw unit8 O 质量 (B) O 0x6001 0x01unit32 rw 0x6002 速度(C) 0 0x01unit8 rw 0x6003 0x01位移(D) rw Unit16 \mathbf{O}

表 1-4 节点 2 的数据在对象字典中的定义

其中体积(A)定义在对象字典的应用数据区索引为0x6000、子索引为0x01 的目录中,质量(B)定义在索引为0x6001、子索引为0x01的对象字典目录中, 体积(C)定义在索引为0x6002、子索引为0x01的对象字典目录中,体积(D) 定义在索引为 0x6003、子索引为 0x01 的对象字典目录中。

4.1.4 对节点 3 进行对象字典编写

同节点2的对象字典编写方法对节点3对象字典进行编写。其中节点3的 SDO 参数在对象字典中的定义如表 1-5 所示;

索引	子索引	接受/发送 SDO	SDO 参数		强制/可选
0x1200	00h	入口数目	Unit8	03h	rw
	01h	接受 SDO	Unit32	600h+节点号	ro
	02h	发送 SDO	Unit32	580h+节点号	ro
	03h	节点号	Unit32	0x03	rw

表 1-5 节点 2 的 SDO 通讯参数在对象字典中的定义

节点 2 的 SDO 参数在对象字典中的定义如表 1-5 所示。 节点 2 的发送 SDO 的 COB-ID 为 0x582, 节点 1 的接受 SDO 的 COB-ID 分别为 0x602。

节点3数据接受区在对象字典中定义如表1-6所示

表 1-6 节点 3 的数据在对象字典中的定义

节点	索引	子索引	名称	属性	类型	强制/可选
0x03	0x7000	0x01	体积1(A)	rw	unit8	О
	0x7001	0x01	质量 2 (B)	rw	unit32	О
	0x7002	0x01	速度 3 (C)	rw	unit8	О
	0x7003	0x01	位移 4 (D)	rw	Unit16	0

其中体积1,质量2,速度3、位移4分别由节点1写入数据。

CANopen 工作流分析

V1.0

4.2 节点 1 读取节点 2 数据

4.2.1 节点 1 发送请求读取命令至节点 2

发送格式如图 1-4 所示:

图 1-4 节点 1 请求读取命令格式

4.2.2 节点 2 响应节点 1 读取命令

①若读取成功,则节点2返回:

表 1-7 节点响应读取成功命令格式

₹1-7 ₽ 然构造读状成为即文相式								
数据长度为1个字节时								
580+ServNodeID	0	4F	索引	子索引	d0	0	0	0
数据长度为2个字节时								
580+ServNodeID	0	4B	索引	子索引	d0	d1	0	0
数据长度为3个字节时								
580+ServNodeID	0	47	索引	子索引	d0	d1	d2	0
数据长度为4个字节时								
580+ServNodeID	0	43	索引	子索引	d0	d1	d2	d3

注: d0, d1, d2, d3 为所要传输的数据。

本例中假设节点 2 返回 582 4F 00 60 01 FD 00 00 00 ,其具体含义如图 1-5 所示。

CANopen 工作流分析

V1.0

图 1-5 节点 2 响应读取成功命令格式

节点 1 读取节点 2 中对象字典中索引为 0x6000, 子索引为 0x01 目录中的数据,即 FD 00 00 00。

②如果读取失败,则节点 2 返回读取失败命令。 其格式如下图 1-6 所示:

图 1-6 节点 2 响应读取失败命令格式

注: 其中 SDO abort code error 根据具体错误返回相应的参数,其具体参数详见附录一。

CANopen 工作流分析

V1.0

4.3 节点 1 写入数据至节点 3

4.3.1 节点1 发送数据至节点3

节点 1 写入数据命令格式如表 1-8 所示 表 1-8 节点写入数据命令格式

节点 1 请求								
数据长为1个字节时								
600+ServNodeID	0	2F	索引	子索引	d0	0	0	0
数据长度为2个字节时								
600+ServNodeID	0	2B	索引	子索引	d0	d1	0	0
数据长度为3个字节时								
600+ServNodeID	0	27	索引	子索引	d0	d1	d2	0
数据长度为4个字节时								
600+ServNodeID	0	23	索引	子索引	d0	d1	d2	d3

注: d0, d1, d2, d3 为所要传输的数据。

本例中假设节点 1 发送 603 2F 00 70 01 FD 00 00 00 ,其具体含义如图 1-7 所示。

图 1-7 节点 1 写入数据实例

CANopen 工作流分析

V1.0

节点 1 将数据 FD 00 00 00 写到节点 3 对象字典索引为 7000h, 子索引为 01h 的条目中。

4.3.2 节点3响应节点1写入数据命令

①若写入成功,则节点3返回写入成功命令给节点1,其格式如图1-8所示:

图 1-8 节点 3 响应写入成功命令格式

②若写入失败,则节点返回写入失败命令,其格式如图 1-9 所示:

图 1-9 节点 3 响应写入失败命令格式

注: 其中 SDO abort code error 根据具体错误返回相应的参数,其具体参数详见附录一。

CANopen 工作流分析

V1.0

附录一:

附录 SDO abort code error

中止代码	代码功能描述
05 03 00 00	触发位没有交替改变
05 04 00 00	SDO 协议超时
05 04 00 01	非法或未知的 Client/Server 命令字
05 04 00 02	无效的块大小(仅 Block Transfer 模式)
05 04 00 03	无效的序号(仅 Block Transfer 模式)
05 03 00 04	CRC 错误(仅 Block Transfer 模式)
05 03 00 05	内存溢出
06 01 00 00	对象不支持访问
06 01 00 01	试图读只写对象
06 01 00 02	试图写只读对象
06 02 00 00	对象字典中对象不存在
06 04 00 41	对象不能够映射到 PDO
06 04 00 42	映射的对象的数目和长度超出 PDO 长度
06 04 00 43	一般性参数不兼容
06 04 00 47	一般性设备内部不兼容
06 06 00 00	硬件错误导致对象访问失败
06 06 00 10	数据类型不匹配,服务参数长度不匹配
06 06 00 12	数据类型不匹配,服务参数长度太大
06 06 00 13	数据类型不匹配,服务参数长度太短
06 09 00 11	子索引不存在
06 09 00 30	超出参数的值范围 (写访问时)
06 09 00 31	写入参数数值太大
06 09 00 32	写入参数值太小
06 09 00 36	最大值小于最小值
08 00 00 00	一般性错误
08 00 00 20	数据不能传送或保存到应用
08 00 00 21	由于本地控制导致数据不能传送或保存到应用
08 00 00 22	由于当前设备状态导致数据不能传送或保存到应用
08 00 00 23	对象字典动态产生错误或对象字典不存在