

Model Development Phase Template

Date	05 June 2024	
Team ID	739975	
Project Title	To Predict Consumer Price Index	
Maximum Marks	4 Marks	

Initial Model Training Code, Model Validation and Evaluation Report

The initial model training code will be showcased in the future through a screenshot. The model validation and evaluation report will include classification reports, accuracy, and confusion matrices for multiple models, presented through respective screenshots.

Initial Model Training Code:

```
from sklearn.ensemble import RandomForestRegressor
rfr=RandomForestRegressor()
rfr.fit(x_train,y_train)
```

* RandomForestRegressor
RandomForestRegressor()

```
from sklearn.metrics import accuracy_score

from sklearn.linear_model import LinearRegression,Lasso
lr=LinearRegression()

lr.fit(x_train,y_train)
```

```
* LinearRegression
LinearRegression()
```


${\bf Model\ Validation\ and\ Evaluation\ Report:}$

Model	Classif	ficatio	on R	eport	t	Accuracy	Confusion Matrix
Random Forest	print(classification_report) F Loan will be Approved Loan will not be Approved accuracy macro avg weighted avg			-score sup 0.80 0.83 0.82 0.82 0.82	75 94 169 169 169	81%	<pre>confusion_matrix(y_test,ypred) array([[62, 13],</pre>
Decision Tree	print(classification_repor	t(y_test,yp precision 0.73 0.85 0.79 0.79		f1-score 0.77 0.80 0.79 0.79 0.79	5 support 75 94 169 169 169	79%	<pre>confusion_matrix(y_test,ypred) array([[62, 13],</pre>
KNN	print(classification_repor Loan will be Approved Loan will not be Approved accuracy macro avg weighted avg	precision 0.60 0.67 0.63 0.64			75 94 169 169	64%	<pre>confusion_matrix(y_test,ypred) array([[43, 32],</pre>
Gradient Boosting	print(classification_report Loan will be Approved Loan will not be Approved accuracy macro avg weighted avg	precision 0.71 0.85 0.78 0.79		0.78 0.77	5 support 75 94 169 169 169	78%	<pre>confusion_matrix(y_test,ypred) array([[63, 12],</pre>