

PATENT ABSTRACTS OF JAPAN

(11) Publication number: 09246794 A

(43) Date of publication of application: 19 . 09 . 97

(51) Int. CI

H05K 13/04 B23P 19/00 H05K 13/08

(21) Application number: 08057470

(22) Date of filing: 14 . 03 . 96

(71) Applicant:

MATSUSHITA ELECTRIC IND CO

LTD

(72) Inventor:

MORITA TAKESHI NAGAO KAZUHIDE

(54) ELECTRONIC PART MOUNTING DEVICE AND METHOD FOR DETECTING NOZZLE POSITION THEREIN

(57) Abstract:

PROBLEM TO BE SOLVED: To simply and accurately find out the position of a nozzle for vacuum- sucking an electronic part when an electronic part of parts feeder is transferred/ mounted to/on a board, by a transfer head provided integrally with a camera for board recognition.

SOLUTION: A transfer head 20 is provided with nozzles 211, 212 and 213 and is provided integrally with a camera 32 for board recognition. The camera 32 holds a jig 35, in which a target 36 is made. The head 20 is moved to the upper side of a recognition unit 5 having a line sensor 52 so as to capture the pictures of the target 36 and nozzles 211, 212 and 213. In addition, the picture of the target 36 is captured by the camera 32, and both pictures are synthesized to determine the positions of the nozzles 211, 212 and 213 against the optical axis of the camera 32 accurately.

COPYRIGHT: (C)1997,JPO

PATENT ABSTRACTS OF JAPAN

(11)Publication number:

(43)Date of publication of application: 19.09.1997

(51)Int.Cl.

H05K 13/04 B23P 19/00 HO5K 13/08

(21)Application number: 08-057470

(71)Applicant:

MATSUSHITA ELECTRIC IND CO LTD

(22)Date of filing: 14.03.1996 (72)Inventor:

MORITA TAKESHI

NAGAO KAZUHIDE

(54) ELECTRONIC PART MOUNTING DEVICE AND METHOD FOR DETECTING NOZZLE POSITION THEREIN (57)Abstract:

PROBLEM TO BE SOLVED: To simply and accurately find out the position of a nozzle for vacuumsucking an electronic part when an electronic part of parts feeder is transferred/ mounted to/on a board, by a transfer head provided integrally with a camera for board recognition.

SOLUTION: A transfer head 20 is provided with nozzles 211, 212 and 213 and is provided integrally with a camera 32 for board recognition. The camera 32 holds a jig 35, in which a target 36 is made. The head 20 is moved to the upper side of a recognition unit 5 having a line sensor 52 so as to capture the pictures of the target 36 and nozzles 211, 212 and 213. In addition, the picture of the target 36 is captured by the camera 32, and both pictures are synthesized to determine the positions of the nozzles 211, 212 and 213 against the optical axis of the camera 32 accurately.

LEGAL STATUS

[Date of request for examination]

08.09.1999

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's

decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2000 Japan Patent Office

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平9-246794

(43)公開日 平成9年(1997)9月19日

(51) Int.Cl. ⁸	識別	引記号 广内整理都	号 FI		技術表示箇所
H05K 1	3/04		H05K	13/04	M
B23P 19	9/00 3 0	0 1	B 2 3 P	19/00 3 0	1 D
H05K 1	3/08		H 0 5 K	13/08	Q

審査請求 未請求 請求項の数2 OL (全 6 頁)

(21)出願番号	特顧平8-57470	(71)出願人 000005821
		松下電器産業株式会社
(22)出顧日	平成8年(1996)3月14日	大阪府門真市大字門真1006番地
		(72)発明者 森田 健
		大阪府門真市大字門真1006番地 松下電器
		産業株式会社内
		(72)発明者 永尾 和英
		大阪府門真市大字門真1006番地 松下電器
		産業株式会社内
		(74)代理人 弁理士 滝本 智之 (外1名)

(54) 【発明の名称】 電子部品実装装置および電子部品実装装置におけるノズルの位置検出方法

(57)【要約】

【課題】 基板認識用のカメラを一体的に備えた移載へッドにより、パーツフィーダの電子部品を基板に移送搭載するにあたり、電子部品を真空吸着するノズルのカメラに対する位置を簡単かつ正確に求めることができる電子部品実装装置および電子部品実装装置におけるノズルの位置検出方法を提供すること。

【解決手段】 移載ヘッド20はノズル211,212,213を有し、また基板認識用のカメラ32が一体的に設けられる。カメラ32は治具35を保持し、治具35にはターゲット36が開孔される。移載ヘッド20をラインセンサ52を有する認識ユニット5の上方を移動させることによりターゲット36とノズル211,212,213の画像を入手し、2つの画像を合成すれば、カメラ32の光軸に対するノズル211,212,213の正確な位置が求められる。

10

【請求項1】基板の位置決め部と、パーツフィーダに備えられた電子部品をノズルの下端部に真空吸着してピックアップし位置決め部に位置決めされた基板に移送搭載する移載ヘッドと、移載ヘッドの移動路の下方に設けられた認識ユニットとを備えた電子部品実装装置であって、

前記移載ヘッドと一体的に基板認識用のカメラを設け、 かつこのカメラの視野内にこのカメラおよび前記認識ユニットで位置認識されるターゲットを有する治具を設け たことを特徴とする電子部品実装装置。

【請求項2】移載ヘッドを認識ユニットの上方を移動させて、この認識ユニットにより移載ヘッドのノズルおよびこの移載ヘッドと一体に設けられた基板認識用のカメラの視野に設けられたターゲットの位置を認識する工程と、前記基板認識用のカメラにより前記ターゲットの位置を認識する工程と、前記2つの認識結果に基づいて前記基板認識用のカメラに対する前記ノズルの位置を求める工程と、を含むことを特徴とする電子部品実装装置におけるノズルの位置検出方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、電子部品を移載へッドのノズルに真空吸着して基板に移送搭載する電子部品実装装置および電子部品実装装置のノズルの位置検出方法に関するものである。

[0002]

【従来の技術】電子部品実装装置は、パーツフィーダに備えられた電子部品を移載ヘッドのノズルに真空吸着してピックアップし、基板の所定の座標位置に移送搭載するようになっている。この場合、電子部品を基板に搭載するのに先立って、基板の位置認識を行って基板の位置を正確に把握する必要があり、このため移載ヘッドには基板認識用のカメラが一体的に設けてある。またこの種の電子部品実装装置において、電子部品を高い位置精度で基板に搭載するためには、基板認識用のカメラに対するノズルの正確な位置を把握しておく必要があり、このためノズルの位置検出が行われる。

【0003】従来、ノズルの位置検出は、次のようにして行われていた。すなわち、ノズルに換えて移戦ヘッド 40にコーンを保持させ、このコーンで基板に打痕をつけ、この打痕の位置を基板認識用のカメラで検出することにより、この打痕をノズルの位置としていた。

[0004]

【発明が解決しようとする課題】しかしながら上記従来 方法は、コーンを移載ヘッドに着脱せねばならないので 面倒であり、かつ自動化は困難であって、しかも高い検 出精度を得にくく、再現性も得にくいなどの多くの問題 点があった。

【0005】したがって本発明は、基板認識用のカメラ 50

に対する移載ヘッドのノズルの位置を自動的に、しかも 高精度で再現性よく求めることができる電子部品実装装 置および電子部品実装装置におけるノズルの位置検出方 法を提供することを目的とする。

[0006]

【課題を解決するための手段】このために本発明の電子 部品実装装置は、移載ヘッドと一体的に基板認識用のカ メラを設け、かつこのカメラの視野内にこのカメラおよ び前記認識ユニットで位置認識されるターゲットを有す る治具を設けたものである。

【0007】また移載ヘッドを認識ユニットの上方を移動させて、この認識ユニットにより移載ヘッドのノズルおよびこの移載ヘッドと一体に設けられた基板認識用のカメラの視野に設けられたターゲットの位置を認識する工程と、前記基板認識用のカメラにより前記ターゲットの位置を認識する工程と、前記2つの認識結果に基づいて前記基板認識用のカメラに対する前記ノズルの位置を求める工程とを構成した。

[0008]

20 【発明の実施の形態】本発明によれば、認識ユニットで ターゲットとノズルの位置を認識し、また基板認識用の カメラでターゲットの位置を認識し、これらの認識結果 を合成することにより、ノズルの位置を自動的かつ高精 度で求めることができる。

【0009】次に、本発明の一実施の形態を図面を参照して説明する。図1は、本発明の一実施の形態における電子部品実装装置の斜視図、図2は同電子部品実装装置の平面図、図3は同電子部品実装装置に備えられた移載へッドと認識ユニットの斜視図、図4は同電子部品実装装置の制御系のブロック図、図5は同認識ユニットの画像図、図6は同認識ユニットの反転画像図、図7は同基板認識用カメラの画像図、図8は同反転画像とカメラの画像の合成図である。

【0010】図1および図2において、基台1の上面には、基板2の位置決め部としてのガイドレール3が設けられている。基板2はガイドレール3に沿って搬送され、かつ所定の位置にクランプして位置決めされる。ガイドレール3の両側方にはパーツフィーダ4が多数個並設されている。各々のパーツフィーダ4は、様々な品種の電子部品を備えている。ガイドレール3とパーツフィーダ4の間には、認識ユニット5が設けられている。図3において、認識ユニット5が設けられている。図3において、認識ユニット5が設けられている。回1にはスリット53が形成されている。

【0011】図1および図2において、基台1の両側部にはYテーブル11が設置されている。Yテーブル11の内部には、Y方向の送りねじ12およびレール13が設けられている。14は送りねじ12を回転させるY軸モータである。またYテーブル11上にはXテーブル15が架設されている。Xテーブル15の内部には、X方

20

向の送りねじ16とレール17が設けられている。18 は送りねじ16を回転させるX軸モータである。

【0012】Xテーブル15には移載ヘッド20が保持されている。Y軸モータ14が駆動すると、Xテーブル15は送りねじ12に沿ってY方向へ移動する。またX軸モータ18が駆動すると、移載ヘッド20は送りねじ16に沿ってX方向へ移動する。これにより、移載ヘッド20はX方向やY方向へ水平移動する。

【0013】図3において、移載ヘッド20は3本のノズル211,212,213を有している。各々のノズル211,212,213は、バックプレート22が装着されている。バックプレート22は、ノズル211,212,213の下端部に真空吸着された電子部品9を認識ユニット5で観察するときの光拡散板となる。23はコの字形のブラケットであり、その上面には2軸モータ24が装着されている。25は2軸モータ24に駆動される垂直な送りねじであって、ナット26が装着されている。ノズル211,212,213と一体のノズルシャフト27はナット26に結合されている。したがって2軸モータ24が駆動して送りねじ25が回転すると、ナット26は送りねじ25に沿って上下動し、ノズル211,212,213も上下動する。

【0014】28は θ モータであって、その出力軸とノズルシャフト27に装着されたプーリ29にはベルト30が調帯されている。したがって θ モータ28が駆動すると、ノズル211、212、213はその軸心を中心に回転し、これによりノズル211、212、213の下端部に真空吸着された電子部品9の回転方向の角度を補正する。

【0015】図3において、移載ヘッド20には基板認識用のカメラ32が一体的に設けられている。カメラ32の下部には鏡筒33、34が設けられている。鏡筒34には治具35が着脱自在に保持されている。治具35は板体を箱形に屈曲したものであり、その下面センターには小孔状のターゲット36が開孔されている。図3において、3本のノズル211,212,213とターゲット36は、X方向の同一直線上に位置しており、したがって移載ヘッド20をX方向(ラインセンサ52の長手方向であるY方向と直交する方向)へ直線的に移動させれば、ラインセンサ52によってターゲット36、ノズル211,212,213を一括して高速度で認識できる。

【0016】図4において、ラインセンサ52とカメラ32は、それぞれ認識部41,42を介して制御部(CPU)43に接続されている。またX軸モータ18、Y軸モータ14、Z軸モータ24、θモータ28は、移載ヘッド駆動部44を介して制御部43に接続されている。45は記憶部であって、制御部43に取り込まれた画像データやプログラムデータなどの様々なデータを記憶する。また制御部43は、記憶部45のデータを読み50

取りながら、各要素を制御する。

【0017】この電子部品実装装置は上記のような構成より成り、次にパーツフィーダ4に備えられた電子部品9を基板2に移送搭載する動作について説明する。まず基板2をガイドレール3に沿って搬送して所定の位置にクランプする。次に移載ヘッド20を水平方向に移動させながら、この移載ヘッド20に取り付けられた基板認識用のカメラ32で、基板2に形成された認識マーク

(図示せず) 等の基板2の位置を特定できるものを撮像 する。そして認識部42で認識マークの位置を検出し、 制御部43で基板2の位置(電子部品の搭載位置)が認 識される。基板2の位置に関するデータは記憶部45に 一時的に格納される。次に図1および図2において、X 軸モータ18とY軸モータ14が駆動することにより、 移載ヘッド20はパーツフィーダ4の上方へ移動する。 そこで2軸モータ24が駆動することにより、ノズル2 11, 212, 213は下降・上昇動作を行って、パー ツフィーダ4に備えられた電子部品9を真空吸着してピ ックアップする。この場合、移載ヘッド20は3本のノ ズル211,212,213を有するので、パーツフィ ーダ4のピックアップ位置上をX方向へ移動し、各々の ノズル211, 212, 213に順次下降・上昇動作を 行わせて、各々の下端部に電子部品9を真空吸着してピ ックアップする。

【0018】次に移載ヘッド20は認識ユニット5の上 方へ移動し、図3に示すようにX方向へ直線的に移動す ることにより、各ノズル211,212,213に真空 吸着された電子部品9の位置認識を連続的に行う。次に 移載ヘッド20は基板2の上方へ移動し、そこでノズル 211, 212, 213に順に下降・上昇動作を行わせ て、各々の電子部品9を基板2の所定の座標位置に搭載 する。なおこの搭載に先立って、電子部品9の位置ずれ を補正する。この補正は、認識ユニット5の認識結果に したがって行われる。すなわち、認識ユニット5によ り、各電子部品9の画像データが認識部41に入手され るが、認識部42はこの画像データを解析してノズル2 11, 212, 213に対する電子部品9のX方向、Y 方向、θ方向の位置ずれを計算する。制御部43は、こ のX方向、Y方向、θ方向の位置ずれと、予め基板認識 で求めた基板の位置およびカメラ32の基準点に対する ノズル211,212,213の相対的な位置関係に基 づいて、移載ヘッド20の移動量の補正値が求められ る。そしてX方向およびY方向の位置ずれは、X軸モー タ18およびY軸モータ14の回転量を前述した補正値 に基づいて加減することにより補正し、またθ方向の位 置ずれは、θモータ28を駆動してノズル211,21 2, 213を回転させることにより補正する。

【0019】この電子部品実装装置は、上記のようにして電子部品9を基板2に搭載するのであるが、この場合、電子部品9を基板2に高い位置精度で搭載するため

に先ずカメラ32の基準点に対するノズル211,21 2,213の正確な位置を予め把握しておかねばならない。そこで次に、図5~図8を参照して、カメラ32の 基準点に対するノズル211,212,213の正確な 位置を検出する方法を説明する。なおカメラ32で基板 2の認識を行う場合は、治具35はカメラ32から取り はずす。

【0020】まず図3に示すように、移載ヘッド20を認識ユニット5の上方をX方向へ直線的に移動させ、ターゲット36、ノズル211,212,213の画像を入手する。図5は、このようにして入手された画像を示す。なお、説明をわかりやすくするために、図5を左右反転させた図6を用いて説明を行なう。ターゲット36 およびノズル211,212,213の位置は、認識部41で認識され、制御部43へ出力される。図6中、0はラインセンサ52で入手された画像の基準点(ラインセンサ52の基準点)であり、A,B,C,Jは基準点0から各ノズルの画像の位置を示すベクトルである。

【0021】次にカメラ32でターゲット36の画像を 入手する。ターゲット36の位置は認識部42で認識さ れ、制御部43へ出力される。図7はターゲット36の 画像、Kは基準点0'からのターゲット36の位置を示 すべクトルである。また0'はカメラ32で入手された 画像の基準点であり、この基準点0′はカメラ32の基 準点である。次に制御部43は、ベクトルA、B、C、 JおよびベクトルKに基づいて、基準点0'に対するノ ズル211,212,213の位置を算出して求める。 図8は説明を理解しやすくするために図6と図7を合成 した図である。Mは基準点O'から基準点Oまでのベク トルすなわちラインセンサ52の基準点0とカメラ32 の基準点0'の相対的な位置関係を示すべクトルであ る。また基準点0'から各ノズルまでのベクトル(すな わちカメラ32の基準点0'に対する各ノズルの座標位 置)は、図示するようにA+M、B+M、C+M、J+ Mとなる。なおカメラ32は上方からターゲット36を 認識するのに対し、ラインセンサ52はこれと反対の下 方からノズル211、212、213やターゲット36 を認識するので、図5の画像を図6に示すように左右に 反転することにより認識方向を統一したうえで、図8に 示すように2つの画像を合成したものである。

【0022】制御部43は、まずM=K-JよりベクトルMを求める。次に制御部43は、カメラ32の基準点に対する各ノズルの位置をA+M,B+M,C+Mを算出して求め、記憶部45に記憶する。

【0023】以上のように本方法によれば、カメラ32の基準点に対する各ノズル211,212,213の位置を簡単にしかも正確に検出することができる。また上述したノズルの位置検出は、ノズルの交換時などに頻繁に行われるが、本方法によれば、いつでも簡単にかつ再*

* 現性よくノズルの位置検出を行うことができる。なお本実施の形態の移載へッド20は、3本のノズル211,212,213を有しているが、移載ヘッド20が有するノズルの数は何本でもよいものである。さらに治具35の取付位置は、ターゲット36がカメラ32の視野内に位置するような場所であれば移載ヘッド20のどの位置でもよい。また治具35は必ずしも着脱自在でなくてもよく、移載ヘッド20に常備し、通常はカメラ32の視野の外に退避させ、ノズルの位置を検出するときにカメラ32の視野内へ移動してくるように構成してもよい。さらにターゲット36の形状や構造は、カメラ32とラインセンサ52の両方から観察できるものであればよく本実施の形態に限定されるものではない。

[0024]

【発明の効果】本発明によれば、基板認識用のカメラに対するノズルの位置を、いつでも簡単に、しかも精度よく求めることができるので、ノズルの位置を常に正確に把握し、電子部品を位置精度よく基板に搭載することができる。

20 【図面の簡単な説明】

【図1】本発明の一実施の形態における電子部品実装装置の斜視図

【図2】本発明の一実施の形態における電子部品実装装 置の平面図

【図3】本発明の一実施の形態における電子部品実装装置に備えられた移載ヘッドと認識ユニットの斜視図

【図4】本発明の一実施の形態における電子部品実装装置の制御系のブロック図

【図5】本発明の一実施の形態における認識ユニットの 画像図

【図 6 】本発明の一実施の形態における認識ユニットの 反転画像図

【図7】本発明の一実施の形態における基板認識用カメ ラの画像図

【図8】本発明の一実施の形態における反転画像とカメラの画像の合成図

【符号の説明】

- 2 基板
- 3 ガイドレール
- 4 パーツフィーダ
- 5 認識ユニット
- 9 電子部品
- 20 移載ヘッド
- 32 カメラ
- 35 治具
- 36 ターゲット
- 52 ラインセンサ
- 211, 212, 213 ノズル

40

【図1】

【図2】

【図3】

【図4】

【図5】

【図6】

【図8】

【図7】

