THEORETICAL EXERCISE 5

ANSWER 1

- a) 8MB = 64000000 bit 6400000*10⁻⁵ = 640 dollars Ram 1MB = 8000000 bit 8000000*10⁻⁴ = 800 dollars Cache Ram is cheaper than cache.
- b) <u>RAM</u>

1320=H*1200+(1-H)(100+1200)

1320=1200H+1300-1300H

1320=1300-100H

100H=-20

H=-20/100=-0,2

CACHE

110=H*100+(1-H)(100+1200)

110=100H+1300-1300H

110=1300-1200H

1200H=1190

H=1190/1200=0,99

c) 0.901 = H*100+(1-H)(100+1200)

0,901=1300-1200H

1200H=1300-0,901

H=(1300-0,901)/1200=1,082

Performance improved.

ANSWER 2

a) Cache = Numbers of blocks*Size of each Word

Cache = $2K*128=2^{1}*2^{10}*2^{7} = 2^{18}$ words

Physical address= $log_2(2^{18})=18$

Word offset= $log_2(128)=7$

Number of lines(cache)=64

Line number= $log_2(64)=6$

Tag=18-(7+6)=5bits S=6bits W=7bits

- b) Cache=Numbers of blocks*Size of each Word Cache = $2K*128=2^{1*}2^{10*}2^{7}=2^{18}$ words Physical Address= $log_2(2^{18})=18$
 - Word offset= log₂(128)=7

Tag=18-7=11bits W=7bits

c) Cache= Numbers of blocks*Size of each Word

Cache= $2K*128=2^{1}*2^{10}*2^{7} = 2^{18}$ words

Physical Address= log₂(2¹⁸)=18

Word offset= $log_2(128)=7$

Number of lines(cache)=64

Number of sets(cache)=64/4=16

Set number= $log_2(16)=4$

Tag=18-(7+4)=7bits S=4bits W=7bits

ANSWER 3

a) Block size=16 bytes

Lines=8 KB/ $16B=2^{13}/2^4=2^9$ r=9

Blocks=64MB/16B=2²⁶/2⁴=2²² s=22

Words=16B/1B=24 w=4

Number of addressable unit(2^{s+w})= 2^{26}

Address length(s+w)=26

Block size2^w=2⁴

Number of blocks in main memory $(2^s)=2^{22}$

b) Direct mapping

Tag=22-9=13

c) Associative mapping

Tag=22

d) Set Associative

Tag=22-1=21

e) <u>0011 1111 0100 1010 1101 0110 1001</u>

3 F 4 A D 6 9

Direct Mapping

Tag= 0011 1111 0100 = 7E9

Word=1001=9

Associative Mapping

Tag=0011 1111 0100 1010 110101=FD2B5

Word=1001=9

Set Associative Mapping
Tag=0011 1111 0100 1010 11010=6E95A
Word=1001=9

ANSWER 4

- a) Miss ratio = 97/386=0,251 Hit ratio=1-0,251=0,749
- b) Hit time=8ns → Access time of cache
 Miss time=23ns → Access time of cache+Access time of ram
- c) Non-overlapped

```
Effective Access Time=H*Access(cache)+M*(Access(cache)+Access(ram))
= 0,749*8+0,251*23
= 11,76
Overlapped
Effective Access Time=H*Access(cache)+M*Access(ram)
=0,749*8+0,251*15
=9,75
```

ANSWER 5

- a) $101010101100 \rightarrow Hit$
- b) 110011001100 → Hit
- c) $1010101100 \rightarrow Miss$
- d) 0101011000000→Miss
- e) 0000110 → Miss
- f) 0110000 → Miss

Emre Kaya

2000006713