Mathematics

Robin Adams

February 8, 2024

Contents

Ι	Ca	tegory Theory	5		
1	Foundations				
2	Cat	egories	9		
	2.1	Preorders	10		
	2.2	Monomorphisms and Epimorphisms	10		
	2.3	Sections and Retractions	12		
	2.4	Isomorphisms	13		
	2.5	Initial and Terminal Objects	13		
3	Fun	ctors	15		
	3.1	Comma Categories	15		
II	G	roup Theory	17		
4	Gro	ouds	19		

4 CONTENTS

Part I Category Theory

Foundations

This is a placeholder — I am not sure what foundation I want to use for this project yet. I will try to work in a way which is foundation-independent. What I do could be formalized in ZFC, ETCS, or some other system. I will assume the usual set theoretic constructions as needed. Sets will be defined up to bijection only.

Categories

Definition 2.1 (Category). A category C consists of:

- A class $|\mathcal{C}|$ of *objects*. We write $A \in \mathcal{C}$ for $A \in |\mathcal{C}|$.
- For any objects A, B, a set C[A, B] of morphisms from A to B. We write $f: A \to B$ for $f \in C[A, B]$.
- For any object A, a morphism $id_A: A \to A$, the *identity* morphism on A.
- For any morphisms $f: A \to B$ and $g: B \to C$, a morphism $g \circ f: A \to C$, the *composite* of f and g.

such that:

Associativity Given $f:A\to B,\ g:B\to C$ and $h:C\to D,$ we have $h\circ (g\circ f)=(h\circ g)\circ f$

Left Unit Law For any morphism $f: A \to B$, we have $id_B \circ f = f$.

Right Unit Law For any morphism $f: A \to B$, we have $f \circ id_A = f$.

Example 2.2 (Category of Sets). The *category of sets* **Set** has objects all sets and morphisms all functions.

Definition 2.3 (Endomorphism). In a category \mathcal{C} , an *endomorphism* on an object A is a morphism $A \to A$. We write $\operatorname{End}_{\mathcal{C}}(A)$ for $\mathcal{C}[A, A]$.

Definition 2.4 (Opposite Category). For any category C, the *opposite* category C^{op} is the category with the same objects as C and

$$\mathcal{C}^{\mathrm{op}}[A,B] = \mathcal{C}[B,A]$$

2.1 Preorders

Definition 2.5 (Preorder). A *preorder* on a set A is a relation \leq on A that is reflexive and transitive.

A preordered set is a pair (A, \leq) such that \leq is a preorder on A. We usually write A for the preordered set (A, \leq) .

We identify any preordered set A with the category whose objects are the elements of A, with one morphism $a \to b$ iff $a \le b$, and no morphism $a \to b$ otherwise.

Example 2.6. For any ordinal α , let α be the preorder $\{\beta : \beta < \alpha\}$ under \leq .

Definition 2.7 (Discrete Preorder). We identify any set A with the *discrete* preorder (A, =).

2.2 Monomorphisms and Epimorphisms

Definition 2.8 (Monomorphism). In a category, let $f: A \to B$. Then f is a monomorphism or monic iff, for every object X and morphism $x, y: X \to A$, if fx = fy then x = y.

Definition 2.9 (Epimorphism). In a category, let $f: A \to B$. Then f is a epimorphism or epi iff, for every object X and morphism $x, y: B \to X$, if xf = yf then x = y.

Proposition 2.10. The composite of two monomorphism is monic.

```
Proof:
```

```
\begin{split} &\langle 1 \rangle 1. \text{ Let: } f: A \rightarrowtail B \text{ and } g: B \rightarrowtail C \text{ be monic.} \\ &\langle 1 \rangle 2. \text{ Let: } x, y: X \to A \\ &\langle 1 \rangle 3. \text{ Assume: } g \circ f \circ x = g \circ f \circ y \\ &\langle 1 \rangle 4. \text{ } f \circ x = f \circ y \\ &\langle 1 \rangle 5. \text{ } x = y \end{split}
```

Proposition 2.11. The composite of two epimorphisms is epi.

Proof: Dual. \square

Proposition 2.12. Let $f: A \to B$ and $g: B \to C$. If $g \circ f$ is monic then f is monic.

PROOF: If $f \circ x = f \circ y$ then gfx = gfy and so x = y. \square

Proposition 2.13. Let $f: A \to B$ and $g: B \to C$. If $g \circ f$ is epi then g is epi.

Proof: Dual.

Proposition 2.14. A function is a monomorphism in **Set** iff it is injective.

```
Proof:
\langle 1 \rangle 1. Let: f: A \to B
\langle 1 \rangle 2. If f is monic then f is injective.
   \langle 2 \rangle 1. Assume: f is monic.
   \langle 2 \rangle 2. Let: x, y \in A
   \langle 2 \rangle 3. Assume: f(x) = f(y)
   \langle 2 \rangle 4. Let: \overline{x}, \overline{y}: 1 \to A be the functions such that \overline{x}(*) = x and \overline{y}(*) = y
   \langle 2 \rangle 5. \ f \circ \overline{x} = f \circ \overline{y}
   \langle 2 \rangle 6. \ \overline{x} = \overline{y}
       Proof: By \langle 2 \rangle 1.
   \langle 2 \rangle 7. x = y
\langle 1 \rangle 3. If f is injective then f is monic.
   \langle 2 \rangle 1. Assume: f is injective.
   \langle 2 \rangle 2. Let: X be a set and x, y : X \to A.
   \langle 2 \rangle 3. Assume: f \circ x = f \circ y
            Prove: x = y
   \langle 2 \rangle 4. Let: t \in X
            PROVE: x(t) = y(t)
   \langle 2 \rangle 5. f(x(t)) = f(y(t))
   \langle 2 \rangle 6. \ x(t) = y(t)
       Proof: By \langle 2 \rangle 1.
Proposition 2.15. A function is an epimorphism in Set iff it is surjective.
Proof:
\langle 1 \rangle 1. Let: f: A \to B
\langle 1 \rangle 2. If f is an epimorphism then f is surjective.
   \langle 2 \rangle 1. Assume: f is an epimorphism.
   \langle 2 \rangle 2. Let: b \in B
   \langle 2 \rangle 3. Let: x,y:B\to 2 be defined by x(b)=1 and x(t)=0 for all other
                     t \in B, y(t) = 0 for all t \in B.
   \langle 2 \rangle 4. \ x \neq y
   \langle 2 \rangle 5. x \circ f \neq y \circ f
   \langle 2 \rangle 6. There exists a \in A such that f(a) = b.
\langle 1 \rangle 3. If f is surjective then f is an epimorphism.
   \langle 2 \rangle 1. Assume: f is surjective.
   \langle 2 \rangle 2. Let: x, y : B \to X
   \langle 2 \rangle 3. Assume: x \circ f = y \circ f
            PROVE: x = y
   \langle 2 \rangle 4. Let: b \in B
            PROVE: x(b) = y(b)
   \langle 2 \rangle5. PICK a \in A such that f(a) = b
   \langle 2 \rangle 6. \ x(f(a)) = y(f(a))
   \langle 2 \rangle 7. \ x(b) = y(b)
```

Proposition 2.16. In a preorder, every morphism is monic and epi.

PROOF: Immediate from definitions. \square

2.3 Sections and Retractions

Definition 2.17 (Section, Retraction). In a category, let $r: A \to B$ and $s: B \to A$. Then r is a retraction of s, and s is a section of r, iff $r \circ s = \mathrm{id}_B$.

Proposition 2.18. Every identity morphism is a section and retraction of itself.

PROOF: Immediate from definitions.

Proposition 2.19. Let $r, r': A \to B$ and $s: B \to A$. If r is a retraction of s and r' is a section of s then r = r'.

Proof:

$$r = r \circ id_A$$

 $= r \circ s \circ r'$
 $= id_B \circ r'$
 $= r'$

Proposition 2.20. Let $r_1: A \to B$, $r_2: B \to C$, $s_1: B \to A$ and $s_2: C \to B$. If r_1 is a retraction of s_1 and r_2 is a retraction of s_2 then $r_2 \circ r_1$ is a retraction of $s_1 \circ s_2$.

Proof:

$$r_2 \circ r_1 \circ s_1 \circ s_2 = r_2 \circ \mathrm{id}_B \circ s_2$$

= $r_2 \circ s_2$
= id_C

Proposition 2.21. Every section is monic.

Proof:

- $\langle 1 \rangle 1$. Let: $s: A \to B$ be a section of $r: B \to A$. $\langle 1 \rangle 2$. Let: $x, y: X \to A$ satisfy sx = sy.
- $\langle 1 \rangle 3$. rsx = rsy
- $\langle 1 \rangle 4. \ x = y$

Proposition 2.22. Every retraction is epi.

Proof: Dual.

Proposition 2.23. In Set, every epimorphism has a retraction.

PROOF: By the Axiom of Choice. \square

Example 2.24. It is not true in general that every monomorphism in any category has a section. nor that every epimorphism in any category has a retraction.

In the category 2, the morphism $0 \le 1$ is monic and epi but has no retraction or section.

2.4 **Isomorphisms**

Definition 2.25 (Isomorphism). In a category C, a morphism $f: A \to B$ is an isomorphism, denoted $f: A \cong B$, iff there exists a morphism $f^{-1}: B \to A$, the inverse of f, such that $f^{-1} \circ f = \mathrm{id}_A$ and $f \circ f^{-1} = \mathrm{id}_B$.

An automorphism on an object A is an isomorphism between A and itself. We write $Aut_{\mathcal{C}}(A)$ for the set of all automorphisms on A.

Objects A and B are isomorphic, $A \cong B$, iff there exists an isomorphism between them.

Proposition 2.26. The inverse of an isomorphism is unique.

Proof: Proposition 2.19. \square

Proposition 2.27. For any object A we have $id_A : A \cong A$ and $id_A^{-1} = id_A$.

PROOF: Since $id_A \circ id_A = id_A$ by the Unit Laws. \square

Proposition 2.28. If $f : A \cong B$ then $f^{-1} : B \cong A$ and $(f^{-1})^{-1} = f$.

Proof: Immediate from definitions.

Proposition 2.29. If $f:A\cong B$ and $g:B\cong C$ then $g\circ f:A\cong C$ and $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$.

Proof: From Proposition 2.20. \square

Definition 2.30 (Groupoid). A *groupoid* is a category in which every morphism is an isomorphism.

2.5 **Initial and Terminal Objects**

Definition 2.31 (Initial Object). An object I in a category is *initial* iff, for any object X, there is exactly one morphism $I \to X$.

Example 2.32. The empty set is the initial object in **Set**.

Definition 2.33 (Terminal Object). An object T in a category is terminal iff, for any object X, there is exactly one morphism $X \to T$.

Example 2.34. Every singleton is terminal in Set.

Proposition 2.35. If I and J are initial in a category, then there exists a unique isomorphism $I \cong J$.

Proof:

- $\langle 1 \rangle 1$. Let: i be the unique morphism $I \to J$.
- $\langle 1 \rangle 2$. Let: i^{-1} be the unique morphism $J \to I$. $\langle 1 \rangle 3$. $i \circ i^{-1} = \operatorname{id}_J$

PROOF: Since there is only one morphism $J \to J$.

 $\langle 1 \rangle 4$. $i^{-1} \circ i = \mathrm{id}_I$

Proof: Since there is only one morphism $I \to I$.
Proposition 2.36. If S and T are terminal in a category, then there exists a unique isomorphism $S \cong T$.
Proof: Dual.

Functors

Definition 3.1 (Functor). Let \mathcal{C} and \mathcal{D} be categories. A functor $F:\mathcal{C}\to\mathcal{D}$ consists of:

- for every object $A \in \mathcal{C}$, an object $FA \in \mathcal{D}$
- for any morphism $f: A \to B: \mathcal{C}$, a morphism $Ff: FA \to FB: \mathcal{D}$

such that:

- $Fid_A = id_{FA}$
- $F(g \circ f) = Fg \circ Ff$

Definition 3.2 (Identity Functor). For any category C, the *identity functor* $1_C: C \to C$ is defined by

$$1_{\mathcal{C}}A = A$$
$$1_{\mathcal{C}}f = f$$

Definition 3.3 (Constant Functor). Given categories \mathcal{C} , \mathcal{D} and an object $D \in \mathcal{D}$, the constant functor $K^{\mathcal{C}}D : \mathcal{C} \to \mathcal{D}$ is the functor defined by

$$K^{\mathcal{C}}DC = D$$
$$K^{\mathcal{C}}Df = \mathrm{id}_{D}$$

3.1 Comma Categories

Definition 3.4 (Comma Category). Let $F: \mathcal{C} \to \mathcal{E}$ and $G: \mathcal{D} \to \mathcal{E}$ be functors. The *comma category* $F \downarrow G$ is the category with:

• objects all pairs (C, D, f) where $C \in \mathcal{C}, D \in \mathcal{D}$ and $f : FC \to GD : \mathcal{E}$

• morphisms $(u,v):(C,D,f)\to (C',D',g)$ all pairs $u:C\to C':\mathcal{C}$ and $v:D\to D':\mathcal{D}$ such that the following diagram commutes:

$$FC \xrightarrow{f} GD$$

$$\downarrow_{Fu} \qquad \downarrow_{Gv}$$

$$FC' \xrightarrow{g} GD'$$

Definition 3.5 (Slice Category). Let \mathcal{C} be a category and $A \in \mathcal{C}$. The *slice category* over A, denoted \mathcal{C}/A , is the comma category $1_{\mathcal{C}} \downarrow K^{\mathbf{1}}A$.

Definition 3.6 (Coslice Category). Let C be a category and $A \in C$. The *coslice category* over A, denoted $C \setminus A$, is the comma category $K^1A \downarrow 1_C$.

Definition 3.7 (Pointed Sets). The *category of pointed sets* \mathbf{Set}_* is the coslice category $\mathbf{Set} \setminus 1$.

Part II Group Theory

Groups

Definition 4.1 (Group). A group G consists of a set G and a binary operation $\cdot: G^2 \to G$ such that \cdot is associative, and there exists $e \in G$, the *identity* element of the group, such that:

- For all $x \in G$ we have xe = ex = x
- For all $x \in G$, there exists $x^{-1} \in G$, the *inverse* of x, such that $xx^{-1} = x^{-1}x = e$.

Proposition 4.2. The identity in a group is unique.

PROOF: If e and e' are identities then e = ee' = e'. \square

Example 4.3. • The *trivial* group is $\{e\}$ under ee = e.

- \mathbb{Z} is a group under addition
- \mathbb{Q} is a group under addition
- $\mathbb{Q} \{0\}$ is a group under multiplication
- \mathbb{R} is a group under addition
- $\mathbb{R} \{0\}$ is a group under multiplication
- \mathbb{C} is a group under addition
- $\mathbb{C} \{0\}$ is a group under multiplication
- $\{-1,1\}$ is a group under multiplication
- The set of 2×2 real matrices with non-zero determinant is a group under matrix multiplication.

Part III Linear Algebra

Definition 4.4. Let $\mathrm{GL}_n(\mathbb{R})$ be the group of invertible $n \times n$ real matrices.