Automatische Korrektur von ÖV-Stationen in OpenStreetMap

FOSSGIS 2020 Freiburg im Breisgau

Patrick Brosi

12. März 2020

Lehrstuhl für Algorithmen und Datenstrukturen Universität Freiburg

Lehrstuhl für Algorithmen und Datenstrukturen

• Natural Language Processing aqqu.cs.uni-freiburg.de

Lehrstuhl für Algorithmen und Datenstrukturen

• Natural Language Processing

aqqu.cs.uni-freiburg.de

• Texterkennung in PDFs

icecite.cs.uni-freiburg.de

Lehrstuhl für Algorithmen und Datenstrukturen

Natural Language Processing

• Texterkennung in PDFs

Routenplanung

aqqu.cs.uni-freiburg.de icecite.cs.uni-freiburg.de maps.google.de

Lehrstuhl für Algorithmen und Datenstrukturen

- Natural Language Processing
- Texterkennung in PDFs
- Routenplanung
- Graphdatenbanken

aqqu.cs.uni-freiburg.de icecite.cs.uni-freiburg.de maps.google.de qlever.cs.uni-freiburg.de

Lehrstuhl für Algorithmen und Datenstrukturen

- Natural Language Processing
- Texterkennung in PDFs
- Routenplanung
- Graphdatenbanken
- ÖV Map Matching (pfaedle)

aqqu.cs.uni-freiburg.de icecite.cs.uni-freiburg.de maps.google.de qlever.cs.uni-freiburg.de travic.cs.uni-freiburg.de

Lehrstuhl für Algorithmen und Datenstrukturen

- Natural Language Processing
- Texterkennung in PDFs
- Routenplanung
- Graphdatenbanken
- ÖV Map Matching (pfaedle)
- Graph Drawing

aqqu.cs.uni-freiburg.de
icecite.cs.uni-freiburg.de
maps.google.de
qlever.cs.uni-freiburg.de
travic.cs.uni-freiburg.de
loom.cs.uni-freiburg.de
octi.cs.uni-freiburg.de

Vorstellung Lehrstuhl - octi + Obstacles

Vorstellung Lehrstuhl - octi als Overlay

Häufiges Problem:

Häufiges Problem:

Gegeben zwei Identifier von ÖV-Stationen s_1 , s_2 , jeweils bestehend aus einem Label (z.B. "Freiburg Hauptbahnhof") und einer Position (z.B. 47.997533, 7.840999)

Häufiges Problem:

Gegeben zwei Identifier von ÖV-Stationen s_1 , s_2 , jeweils bestehend aus einem Label (z.B. "Freiburg Hauptbahnhof") und einer Position (z.B. 47.997533, 7.840999)

Beschreiben s_1 und s_2 dieselbe Station?

Häufiges Problem:

Gegeben zwei Identifier von ÖV-Stationen s_1 , s_2 , jeweils bestehend aus einem Label (z.B. "Freiburg Hauptbahnhof") und einer Position (z.B. 47.997533, 7.840999)

Beschreiben s_1 und s_2 dieselbe Station?

Einfache Heuristiken

Einfache Heuristiken haben es schwer...

Einfache Heuristiken

Einfache Heuristiken haben es schwer...

... aber wie schlecht sind sie?

• **Ground truth:** Paarweise Stationen (innerhalb 1 km) aus OpenStreetMap-Daten für D-A-CH die Mitglied einer public_transport=stop_area relation sind.

- **Ground truth:** Paarweise Stationen (innerhalb 1 km) aus OpenStreetMap-Daten für D-A-CH die Mitglied einer public_transport=stop_area relation sind.
- 1,2 Millionen Stationen

- **Ground truth:** Paarweise Stationen (innerhalb 1 km) aus OpenStreetMap-Daten für D-A-CH die Mitglied einer public_transport=stop_area relation sind.
- 1,2 Millionen Stationen
- Erweiterte Version: relevante Namesattribute (name, uic_name, ref_name, gtfs_name, ...) gelten als eigenständige Station, die im jeweiligen Node gruppiert ist.

- **Ground truth:** Paarweise Stationen (innerhalb 1 km) aus OpenStreetMap-Daten für D-A-CH die Mitglied einer public_transport=stop_area relation sind.
- 1,2 Millionen Stationen
- Erweiterte Version: relevante Namesattribute (name, uic_name, ref_name, gtfs_name, ...) gelten als eigenständige Station, die im jeweiligen Node gruppiert ist.
- Stationspaare sind ähnlich, wenn sie in derselben Relation (Gruppe) sind.

- **Ground truth:** Paarweise Stationen (innerhalb 1 km) aus OpenStreetMap-Daten für D-A-CH die Mitglied einer public_transport=stop_area relation sind.
- 1,2 Millionen Stationen
- Erweiterte Version: relevante Namesattribute (name, uic_name, ref_name, gtfs_name, ...) gelten als eigenständige Station, die im jeweiligen Node gruppiert ist.
- Stationspaare sind ähnlich, wenn sie in derselben Relation (Gruppe) sind.
- Stationspaare sind **nicht ähnlich**, wenn sie in verschiedenen Relationen (Gruppen) sind.

Einfache Heuristiken - Ergebnisse OSM D-A-CH

Ergebnisse für D-A-CH, Schwellwertparameter optimiert für besten F1-Score.

Methode	Bester Schwellwert	Precision	Recall	F1
Geo-Distanz	20 m	0.84	0.68	0.75
Editierdistanz	0.85	0.97	0.68	0.8
Präfix-Editierdistanz	0.9	0.93	0.74	0.82
Jaro	0.85	0.93	0.72	0.81
Jaro-Winkler	0.9	0.9	0.73	0.8
Jaccard Index	0.45	0.85	0.88	0.87
TF-IDF	0.65	0.87	0.88	0.88

Einfache Heuristiken - Ergebnisse OSM D-A-CH

Ergebnisse für D-A-CH, Schwellwertparameter optimiert für besten F1-Score.

Methode	Bester Schwellwert	Precision	Recall	F1
Geo-Distanz	20 m	0.84	0.68	0.75
Editierdistanz	0.85	0.97	0.68	8.0
Präfix-Editierdistanz	0.9	0.93	0.74	0.82
Jaro	0.85	0.93	0.72	0.81
Jaro-Winkler	0.9	0.9	0.73	8.0
Jaccard Index	0.45	0.85	0.88	0.87
TF-IDF	0.65	0.87	0.88	0.88

[⇒] In der Praxis ungeeignet 😧

Einfache Heuristiken - 2. Versuch

Idee: verschiedene Methoden mittels Soft Voting kombinieren

Einfache Heuristiken - 2. Versuch

Idee: verschiedene Methoden mittels Soft Voting kombinieren

Ergebnisse für D-A-CH, Schwellwertparameter optimiert für besten F1-Score.

Methode	Bester Schwellwert	Precision	Recall	F1
Geo-Distanz + Editierdistanz	20 m + 0.99	0.91	0.82	0.86
Geo-Distanz + TF-IDF	40 m + 0.55	0.95	0.88	0.92

Einfache Heuristiken - 2. Versuch

Idee: verschiedene Methoden mittels Soft Voting kombinieren

Ergebnisse für D-A-CH, Schwellwertparameter optimiert für besten F1-Score.

Methode	Bester Schwellwert	Precision	Recall	F1
Geo-Distanz + Editierdistanz Geo-Distanz + TF-IDF	20 m + 0.99 40 m + 0.55	0.91 0.95	0.02	0.86 0.92

⇒ Immer noch werden mehr als 10% der ähnlichen Paare nicht entdeckt 🙂

Schreibweise von Stationen

```
Hauptbahnhof
             Freiburg
      Freiburg Hauptbahnhof
           Freiburg Hhf
       Freiburg im Breisgau
Freiburg im Breisgau Hauptbahnhof
 Freiburg (Breisgau) Hauptbahnhof
Hauptbahnhof Freiburg im Breisgau
      Hauptbahnhof Freiburg
Freiburg (Breisgau) , Hauptbahnhof
   Freiburg (Brsg) Hauptbahnhof
```

Typische Fehler von TF-IDF

 $\mathsf{FN} = \mathsf{Falsches} \ \mathsf{Negatives}, \ \mathsf{FP} = \mathsf{Falsches} \ \mathsf{Positives}$

Auerbach (Karlsbad), Rosenweg @ (48.9161, 8.5341)
Rosenweg @ (48.9160, 8.5343)

FP Cottbus, Kiekebusch Alte Schule @ (51.7215, 14.3646)
Kiekebusch Friedhof, Cottbus @ (51.7179, 14.3672)

 Bestimmte Tokens haben regional wenig bis keine Bedeutung ("Freiburg im Breisgau")

- Bestimmte Tokens haben regional wenig bis keine Bedeutung ("Freiburg im Breisgau")
- Die Reihenfolge der Tokens hat oft keine Bedeutung ("Freiburg Bertoldsbrunnen" vs. "Bertoldsbrunnen, Freiburg")

- Bestimmte Tokens haben regional wenig bis keine Bedeutung ("Freiburg im Breisgau")
- Die Reihenfolge der Tokens hat oft keine Bedeutung ("Freiburg Bertoldsbrunnen" vs. "Bertoldsbrunnen, Freiburg")
- Bestimmte Tokens haben gängige Ab- und Verkürzungen ("Hbf", "ZOB", "Straße", "Str.")

- Bestimmte Tokens haben regional wenig bis keine Bedeutung ("Freiburg im Breisgau")
- Die Reihenfolge der Tokens hat oft keine Bedeutung ("Freiburg Bertoldsbrunnen" vs. "Bertoldsbrunnen, Freiburg")
- Bestimmte Tokens haben gängige Ab- und Verkürzungen ("Hbf", "ZOB", "Straße", "Str.")
- Bestimmte Tokens sind ein Indikator f
 ür eine große geografische Ausdehnung der Station ("Hauptbahnhof")

Idee: Nutze die folgenden Features für einen lernbasierten Klassifikator (jedes Feature pro Stationspaar $(s_1, s_2)!$)

• Distanz in Metern zwischen s_1 und s_2

Idee: Nutze die folgenden Features für einen lernbasierten Klassifikator (jedes Feature pro Stationspaar $(s_1, s_2)!$)

- Distanz in Metern zwischen s_1 und s_2
- ullet Position des Centroids von s_1 und s_2 auf einem verschachtelten Grid

Idee: Nutze die folgenden Features für einen lernbasierten Klassifikator (jedes Feature pro Stationspaar $(s_1, s_2)!$)

- ullet Distanz in Metern zwischen s_1 und s_2
- Position des Centroids von s₁ und s₂ auf einem verschachtelten Grid
- Die Anzahl der 3-Gramme die nur in einem der beiden Labels vorkommt.

Idee: Nutze die folgenden Features für einen lernbasierten Klassifikator (jedes Feature pro Stationspaar $(s_1, s_2)!$)

- Distanz in Metern zwischen s_1 und s_2
- Position des Centroids von s_1 und s_2 auf einem verschachtelten Grid
- Die Anzahl der 3-Gramme die nur in einem der beiden Labels vorkommt.
- Für die top-k 3-Gramme, die absolute Differenz der Vorkommen des jeweiligen 3-Gramme zwischen s_1 und s_2

Lernbasierter Ansatz - Verschachteltes Grid

Drei Stationspaare in Freiburg:

1. "Freiburg im Breisgau Hauptbahnhof" (47.9966, 7.8404) vs. "Hauptbahnhof" (47.9965, 7.8407)

- 1. "Freiburg im Breisgau Hauptbahnhof" (47.9966, 7.8404) vs. "Hauptbahnhof" (47.9965, 7.8407)
- 2. "Okenstraße" (48.0105, 7.8545) vs. "Nordstraße" (48.0111, 7.8541)

- "Freiburg im Breisgau Hauptbahnhof" (47.9966, 7.8404) vs. "Hauptbahnhof" (47.9965, 7.8407)
- 2. "Okenstraße" (48.0105, 7.8545) vs. "Nordstraße" (48.0111, 7.8541)
- "Zentraler Omnibusbahnhof, Freiburg im Breisgau" (47.9960, 7.8407) vs. "ZOB" (47.9959, 7.8405)

- "Freiburg im Breisgau Hauptbahnhof" (47.9966, 7.8404) vs. "Hauptbahnhof" (47.9965, 7.8407)
- 2. "Okenstraße" (48.0105, 7.8545) vs. "Nordstraße" (48.0111, 7.8541)
- "Zentraler Omnibusbahnhof, Freiburg im Breisgau" (47.9960, 7.8407) vs. "ZOB" (47.9959, 7.8405)

- 1. "Freiburg im Breisgau Hauptbahnhof" (47.9966, 7.8404) vs. "Hauptbahnhof" (47.9965, 7.8407)
- 2. "Okenstraße" (48.0105, 7.8545) vs. "Nordstraße" (48.0111, 7.8541)
- 3. "Zentraler Omnibusbahnhof, Freiburg im Breisgau" (47.9960, 7.8407) vs. "ZOB" (47.9959, 7.8405)

a	m	d_{3g}	<i>X</i> ₀	<i>y</i> o	x_1	<i>У</i> 1	rei	tra	raß	aße	urg	bur	ibu	_Fr	Fre	eib	rg_	eis	"ähnlich"
2	24	20	133	196	133	195	2	0	0	0	1	1	1	1	1	1	1	1	Ja
7	72	10	133	196	133	195	0	0	0	0	0	0	0	0	0	0	0	0	Nein
_1	2	47	133	196	133	195	2	1	0	0	1	1	2	1	1	1	1	1	Ja

Lernbasierter Ansatz - Ergebnisse

Ergebnisse für D-A-CH mit lernbasiertem Ansatz (Random Forest Classifier)

Methode	Bester Schwellwert	Precision	Recall	F1
TF-IDF	0.65	0.87	0.88	0.88
${\sf Geo\text{-}Distanz} + {\sf TF\text{-}IDF}$	$40 \ m + 0.55$	0.95	0.88	0.92
ML (Random Forest)	_	0.99	0.99	0.99

Lernbasierter Ansatz - Ergebnisse

Ergebnisse für D-A-CH mit lernbasiertem Ansatz (Random Forest Classifier)

ML (Random Forest)	_	0.99	0.99	0.99
${\sf Geo\text{-}Distanz} + {\sf TF\text{-}IDF}$	40 m + 0.55	0.95	0.88	0.92
TF-IDF	0.65	0.87	0.88	0.88
Methode	Bester Schwellwert	Precision	Recall	F1

Lernbasierter Ansatz - Beobachtung

Bei der Analyse der verbleibenden falschen Positiven (FP) und falschen Negativen (FN) stellt man fest, dass der Klassifikator häufig Recht hatte, aber die **Ground Truth** nicht korrekt war.

Lernbasierter Ansatz - Beobachtung

Bei der Analyse der verbleibenden falschen Positiven (FP) und falschen Negativen (FN) stellt man fest, dass der Klassifikator häufig Recht hatte, aber die **Ground Truth** nicht korrekt war.

Idee: Nutze das Modell zur Fehlerkorrektur von Stationsdaten in OpenStreetMap.

staty macht genau das:

• Für jedes Paar (s_1, s_2) von Stationen klassifiziert das Modell, ob s_1 und s_2 ähnlich sind.

staty macht genau das:

- Für jedes Paar (s₁, s₂) von Stationen klassifiziert das Modell, ob s₁ und s₂ ähnlich sind.
- Sind sie es, aber in OSM sind sie nicht gruppiert, wird vorgeschlagen eine Gruppierung durchzuführen.

staty macht genau das:

- Für jedes Paar (s₁, s₂) von Stationen klassifiziert das Modell, ob s₁ und s₂ ähnlich sind.
- Sind sie es, aber in OSM sind sie nicht gruppiert, wird vorgeschlagen eine Gruppierung durchzuführen.
- Sind sie es nicht, aber in OSM sind sie gruppiert, wird empfohlen, die Station aus der Gruppe zu lösen.

staty macht genau das:

- Für jedes Paar (s₁, s₂) von Stationen klassifiziert das Modell, ob s₁ und s₂ ähnlich sind.
- Sind sie es, aber in OSM sind sie nicht gruppiert, wird vorgeschlagen eine Gruppierung durchzuführen.
- Sind sie es nicht, aber in OSM sind sie gruppiert, wird empfohlen, die Station aus der Gruppe zu lösen.

staty macht genau das:

- Für jedes Paar (s₁, s₂) von Stationen klassifiziert das Modell, ob s₁ und s₂ ähnlich sind.
- Sind sie es, aber in OSM sind sie nicht gruppiert, wird vorgeschlagen eine Gruppierung durchzuführen.
- Sind sie es nicht, aber in OSM sind sie gruppiert, wird empfohlen, die Station aus der Gruppe zu lösen.

Aktuell noch in Entwicklung, eine aktuelle Version für D-A-CH ist aber online:

staty.cs.uni-freiburg.de

Vielen Dank!