Deep Learning for NLP

Lecture 5 - Dependency Parsing, Guiding Questions

Dr. Steffen Eger steffen.eger@uni-Bielefeld.de

Natural Language Learning Group (NLLG)

 What's ambiguous about "He saw the girl with the telescope"? Give two dependency trees that reveal this ambiguity.

 What's the relationship between dependency parsing and semantics?

Does the arrow go from head to dependent or vice

versa?

• What are universal dependencies?

 Why is it called greedy transition-based dependency parsing?

Parsing Example

Arc-standard transition-based parser

(there are other transition schemes ...) Analysis of "I ate fish"

Start fish [root] ate Shift [root] fish ate Shift fish [root] ate

```
Start: \sigma = [ROOT], \beta = w_1, ..., w_n, A = \emptyset
                                  \sigma, W_i | \beta, A \rightarrow \sigma | W_i, \beta, A
         Shift
         Left-Arc<sub>r</sub> \sigma |w_i| w_i, \beta, A \rightarrow
                                       σ|W_j, β, A \cup \{r(W_j, W_i)\}
         Right-Arc, \sigma|w_i|w_i, \beta, A \rightarrow
                                      \sigma|W_i, \beta, A \cup \{r(W_i, W_i)\}
Finish: β = ∅
```


Parsing Example

Arc-standard transition-based parser

Analysis of "I ate fish"

Neural Model for Parsing

Model Architecture

Softmax probabilities

