Fundamentals of Solid State Physics

Electronic Properties - The Free Electron Model

Xing Sheng 盛 兴

Department of Electronic Engineering Tsinghua University

xingsheng@tsinghua.edu.cn

Further Reading

- Ashcroft & Mermin, Chapter 1, 2, 3
- Singleton, Chapter 1

Electronic Properties of Materials

CMOS transistor

- Complementary Metal-Oxide-Semiconductor

SiO₂

Silicon

Electronic Properties of Metals

Ohm's Law (1827)

$$V = IR$$

macroscopic

$$j = \frac{I}{A} = \frac{V}{AR} = \frac{EL}{A\rho L/A} = \frac{E}{\rho}$$
$$= \sigma E$$

microscopic

j - current density (A/m²)

E - electric field (V/m)

 ρ - resistivity (Ω *m)

 σ - conductivity (S/m)

Electronic Properties of Metals

conductivity and mobility

$$I = \frac{\partial Q}{\partial t} = ne \frac{\partial V}{\partial t} = ne A \frac{\partial L}{\partial t} = ne A v$$

$$j = \frac{I}{A} = nev$$

$$\sigma = \frac{j}{E} = ne\frac{v}{E} = ne\mu$$

$$\mu = \frac{v}{E}$$

n - density of electrons (#/m³)

v - velocity of electrons (m/s)

 μ - electron mobility (m²/V/s)

How to get Ohm's Law?

assume free electrons in vacuum

$$F = ma = eE$$

$$a = \frac{dv}{dt} = \frac{F}{m} = \frac{eE}{m}$$

$$v = \frac{eE}{m}t \to \infty$$

length L

and

$$\sigma = ne \frac{v}{E} \to \infty$$

what is wrong?

The Drude Model 德鲁德模型

Free electron 'gas'

positive ions
+
electron cloud

- Independent
 - electrons do not interact with each other
- Free
 - electrons do not interact with ions, except collision
- Collision (Origin of the resistance)
 - electrons are scattered by the ions instantaneously
- Relaxation time τ
 - average time between two collisions
 - □ electron mean free path $I = v^*\tau$
- Maxwell–Boltzmann distribution
 - average kinetic energy

$$\frac{1}{2}mv^2 = \frac{3}{2}k_BT$$

P. Drude 1863–1906

The Drude Model 德鲁德模型

Drude-Lorentz Model
$$F = m \frac{dv}{dt} + m \frac{v}{\tau} = eE(t)$$

 τ - relaxation time (s)

when *E* is constant, *v* is constant

$$v = eE \frac{\tau}{m}$$

$$\mu = \frac{v}{E} = e \frac{\tau}{m}$$

$$\sigma = ne\mu = ne^2 \frac{\tau}{m}$$

$$j = nev = \sigma E$$

mobility

conductivity

Ohm's law

Successes of The Drude Model

Ohm's Law

$$j = \sigma E$$

• Electronic conductivity σ

$$\frac{1}{2}mv^2 = \frac{3}{2}k_BT$$

$$v \sim 10^5 \text{ m/s}$$

$$\tau = \frac{l}{v}$$

$$\tau \sim 10^{-14} \text{ s}$$

$$\sigma = ne^2 \frac{\tau}{m}$$

 σ ~ 10⁷ S/m

m = electron mass 9.11*10⁻³¹ kg $k = 1.38*10^{-23}$ J/K $e = 1.6*10^{-19}$ C T = 300 K, room temperature l = mean free path 0.1~1 nm n = atomic density ~ 10^{29} #/m³

metals	conductivity (S/m) at 300 K
Ag	6.3*10 ⁷
Cu	6.0*10 ⁷
AI	3.5*10 ⁷

Successes of The Drude Model

Optical Reflectivity of Metals

mirror reflection

Failures of the Drude Model

It cannot explain

- Electronic heat capacity
- Thermal conductivity
- Hall effect / Hall coefficient
- Insulators / Semiconductors

-

What was wrong?

The Drude Model 德鲁德模型

Free electron 'gas'

positive ions
+
electron cloud

- Independent
 - electrons do not interact with each other
- Free
 - electrons do not interact with ions, except collision
- Collision (Origin of the resistance)
 - electrons are scattered by the ions instantaneously
- Relaxation time τ
 - average time between two collisions
 - σ electron mean free path $I = v^* \tau$
- Maxwell–Boltzmann distribution
 - average kinetic energy

P. Drude 1863–1906

The Sommerfeld Model 索末菲模型

Free electron 'Fermi' gas

- Introduce quantum mechanics
 - "semi-classical" model

A. Sommerfeld 1868–1951

Maxwell-Boltzmann distribution

Fermi-Dirac distribution

The Electron Wave Function

$$-\frac{\hbar^2}{2m}\nabla^2\psi(\mathbf{r}) + V(\mathbf{r})\cdot\psi(\mathbf{r}) = E\psi(\mathbf{r})$$

free electron

$$V(\mathbf{r}) = 0$$

$$k^2 = \frac{2mE}{\hbar^2}$$

$$\psi(\mathbf{r}) = \sum_{\mathbf{k}} A_{\mathbf{k}} \exp(i\mathbf{k} \cdot \mathbf{r}) \left| \int_{V} \psi * \cdot \psi d\mathbf{r} = 1 \right|$$

$$\int_{V} \psi * \cdot \psi d\mathbf{r} = 1$$

one solution is
$$\psi(\mathbf{r}) = \frac{1}{\sqrt{V}} \exp(i\mathbf{k} \cdot \mathbf{r})$$

The Electron Wave Function

energy

$$E(k) = \frac{\hbar^2 k^2}{2m}$$

velocity

$$v = \frac{\hbar k}{m} = \frac{1}{\hbar} \frac{dE(k)}{dk}$$

momentum

$$p = \hbar k$$

$$\frac{1}{m} = \frac{1}{\hbar^2} \frac{d^2 E(k)}{dk^2}$$

E-k diagram (energy dispersion curve)

Classical vs. Quantum

Classical

Quantum

velocity

 ν

wavenumber 波数 wavevector 波矢

$$k = \frac{2\pi}{\lambda}$$

momentum 动量

$$p = mv$$

 $p = \hbar k$

energy 能量

$$E = \frac{p^2}{2m}$$

$$E = \frac{\hbar^2 k^2}{2m}$$

$$\psi(\mathbf{r}) = \frac{1}{\sqrt{V}} \exp(i\mathbf{k} \cdot \mathbf{r})$$

1D atomic chain

$$\psi(x) = \frac{1}{\sqrt{L_x}} \exp(ik_x x)$$

N is large ~ 10²³

Born-von Karman periodic boundary condition

$$|\psi(x) = \psi(x + L_x)|$$
 \longrightarrow $\exp(ik_x L_x) = 1$

N is large ~ 10²³

Born-von Karman periodic boundary condition

$$\psi(x) = \psi(x + L_x) \qquad \Longrightarrow \qquad \exp(ik_x L_x) = 1$$

k is a quantized value

energy

$$E(k) = \frac{\hbar^2 k^2}{2m}$$

velocity

$$v = \frac{\hbar k}{m} = \frac{1}{\hbar} \frac{dE(k)}{dk}$$

momentum

$$p = \hbar k$$

electron mass

$$\frac{1}{m} = \frac{1}{\hbar^2} \frac{d^2 E(k)}{dk^2}$$

$$n_x = 0, \pm 1, \pm 2, \dots$$

When L is large, k and E(k) are quasi-continuous (准连续)

quantized energy state / level

State vs. Electron

energy state / level / orbital 能态 / 能级 / 轨道

determined by space, lattice, environments, ...

electron / phonon / ... 电子 / 声子 / ...

$$k_x = \frac{2\pi n_x}{L_x}$$
 $n_x = 0, \pm 1, \pm 2, \dots$

 k_F - Fermi wavevector highest occupied state at T = 0 K

Fermi-Dirac distribution: spin up and down

$$-k_F < k_x < +k_F$$

$$N = 2 \cdot \frac{2k_F}{2\pi / L_x}$$

N - total number of free electrons

N/L - free electron density

$$N = 2 \cdot \frac{2k_F}{2\pi / L_x}$$

1D atomic chain

$$k_F = \frac{\pi}{2} \frac{N}{L_x}$$

$$v_F = \frac{\hbar k_F}{m_e}$$

$$T_F$$
 - Fermi temperature

$$E_F = \frac{\hbar^2 k_F^2}{2m_e}$$

$$T_F = \frac{E_F}{k_B}$$

 $T_F = \frac{E_F}{k_B}$ These values are determined by electron density N/L, not N or L

2D box

in a 2D box

$$k_x = \frac{2\pi n_x}{L_x}, k_y = \frac{2\pi n_y}{L_y}$$

$$N = 2 \cdot \pi k_F^2 \cdot \frac{A}{\left(2\pi\right)^2}$$

2D Fermi circle (费米圆)

3D solid

in a 3D solid

$$k_x = \frac{2\pi n_x}{L_x}, k_y = \frac{2\pi n_y}{L_y}, k_z = \frac{2\pi n_z}{L_z}$$

$$V = L_x L_y L_z$$

$$N = 2 \cdot \frac{4\pi}{3} k_F^3 \cdot \frac{V}{(2\pi)^3}$$

3D Fermi sphere (费米球)

3D solid

$$N = 2 \cdot \frac{4\pi}{3} k_F^3 \cdot \frac{V}{(2\pi)^3}$$

$$k_F = (3\pi^2 n)^{1/3}$$

$$k_F = (3\pi^2 n)^{1/3}$$
 $v_F = \frac{\hbar k_F}{m_e}$

$$E_F = \frac{\hbar^2 k_F^2}{2m_e}$$

$$T_F = \frac{E_F}{k_B}$$

in a 3D solid

n = N/V - free electron density

 k_F - Fermi wavevector

E_F - Fermi energy

 v_F - Fermi velocity

 T_F - Fermi temperature

 $T_F = \frac{E_F}{k_B}$ These values are determined by density n, not N or V

Density of States (DOS) 态密度

DOS - number of energy states/levels in *k* space

Ashcroft & Mermin, p.35

$$g(k) = 2\frac{L}{2\pi}$$

$$g(k) = 2\frac{A}{(2\pi)^2}$$

3D

Density of States (DOS) 态密度

$$g(E) = \frac{dn}{dE}$$

 $g(E) = \frac{dn}{dE}$ DOS - number of energy states/levels per unit energy in [E, E+dE], per unit volume

$$k = (3\pi^2 n)^{1/3}$$

$$E = \frac{\hbar^2 k^2}{2m_e}$$

$$\longrightarrow n = \frac{1}{3\pi^2} \left(\frac{2m_e}{\hbar^2}\right)^{3/2} E^{3/2}$$

$$\Rightarrow g(E) = \frac{dn}{dE} = \frac{1}{2\pi^2} \left(\frac{2m_e}{\hbar^2}\right)^{3/2} E^{1/2}$$

Density of States (DOS) 态密度

$$g(E) = \frac{dn}{dE} = \frac{1}{2\pi^2} \left(\frac{2m_e}{\hbar^2}\right)^{3/2} E^{1/2}$$

Q: How about in 1D and 2D?

Distribution of Free Electrons

Drude Model Maxwell-Boltzmann

Sommerfeld Model Fermi-Dirac

Electrons occupy higher levels of energy, even at 0 K

Density of Electrons

Density of electrons = DOS * probability

When T > 0 K, some electrons are excited to higher states (from 1 to 2)

State vs. Electron

energy state / level / orbital 能态 / 能级 / 轨道

determined by space, lattice, environments, ...

electron / phonon / ... 电子 / 声子 / ...

Electrons in an Electric Field E

momentum 动量 $p = mv = \hbar k$

$$p = mv = \hbar k$$

$$\mathbf{F} = m\frac{d\mathbf{v}}{dt} = \hbar\frac{d\mathbf{k}}{dt} = -e\mathbf{E}$$
 \rightarrow $\delta\mathbf{k} = -\frac{e\mathbf{E}}{\hbar}t$

Electrons in an Electric Field E

momentum 动量 $p = mv = \hbar k$

$$p = mv = \hbar k$$

$$\mathbf{F} = m\frac{d\mathbf{v}}{dt} = \hbar\frac{d\mathbf{k}}{dt} = -e\mathbf{E}$$
 \rightarrow $\delta\mathbf{k} = -\frac{e\mathbf{E}}{\hbar}t$

Electrons in an Electric Field E

momentum 动量 $p = mv = \hbar k$

$$p = mv = \hbar k$$

$$\mathbf{F} = m\frac{d\mathbf{v}}{dt} = \hbar\frac{d\mathbf{k}}{dt} = -e\mathbf{E}$$
 \rightarrow $\delta\mathbf{k} = -\frac{e\mathbf{E}}{\hbar}t$

collision time $t = \tau$, the displacement δk is steady

$$\delta \mathbf{k} = -\frac{e\mathbf{E}}{\hbar}\tau \longrightarrow v = \frac{\hbar \delta \mathbf{k}}{m} = -\frac{e\mathbf{E}}{m}\tau$$

Electron Conductivity - Revisit

- Electrons are in different energy states, therefore have different velocities and energies. Under E field, there are more electrons moving in the opposite direction.
- Mobility μ and relaxation time τ are average values for all the free electrons

$$\sigma = ne\mu = \frac{ne^2\tau}{m}$$

Success of The Sommerfeld Model

- Ohm's Law
- Electronic conductivity σ
- Thermal conductivity of electrons
- Electronic heat capacity

Failures of The Sommerfeld Model

It cannot explain

- Electronic / Thermal properties of some other metals
- Hall effect / Hall coefficient
- Insulators / Semiconductors

•

The Free Electron Models

- The Drude Model: 1900s
- The Sommerfeld Model: 1920s
- What are missing?
 - Material and atom structures
 - Potentials of positive ions
 - Localized electrons

P. Drude 1863–1906

A. Sommerfeld 1868–1951

positive ions
+
electron cloud

Thank you for your attention