Y^1 is -CH=CH-, -C=C- or -CH(OH)CH(OH)-;

each of Z¹ and Z² is independently OH or a conversion-inhibiting group;

Y² is a phenyl group, an alkyl-substituted phenyl group having from 1 to about 6

[carbons] <u>carbon atoms</u> in the alkyl chain, or an alkyl chain having from 1 to 6

[carbons] <u>carbon atoms</u>;

Y³ is H or a group having the formula $-C(O)R^2/or -S(O)_2R^2$;

 R^2 is a straight-chained alkyl moiety selected from the group consisting of - $(CH_2)_3CH_3$, - $(CH_2)_5CH_3$, - $(CH_2)_7CH_3$ and - $(CH_2)_9CH_3$, or an alkenyl group or alkynyl group having from 2 [1] to 23 carbon atoms in the aliphatic chain;

 Z^2 is a phosphorylcholine attachment-inhibiting group selected from the group consisting of $-X^1$, $-OX^1$, $-X^2X^3$ and $-OX^2X^3$;

X¹ is selected from the group consisting of -C(O)H, -CO₂H, [CH₃(C(CH₃)₃)₂] <u>CH₃</u>,

<u>C(CH₃)₃, Si(CH₃)₃, SiCH₃(C(CH₃)₃)₂, Si(C(CH₃)₃)₃, Si(PO₄)₂C(CH₃)₃, a phenyl group, an alkyl-substituted phenyl group having from 1 to 6 [carbons] <u>carbon atoms</u> in the alkyl chain, an alkyl chain having from 1 to 6 [carbons] <u>carbon atoms</u>, an amino group, a fluorine <u>atom</u>, a chlorine <u>atom</u>, and a group having the formula C(R³R⁴)OH;</u>

 X^2 is selected from the group consisting of CH_2 -, $C(CH_3)_2$ -, $Si(PO_4)_2$ -, $Si(CH_3)_2$ -, $SiCH_3PO_4$ -, C(O)- and $S(O)_2$ -;

 X^3 is selected from the group consisting of -C(O)H, -CO₂H, -CH₃, -C(CH₃)₃, -Si(CH₃)₃, -Si(CH₃)₃, -Si(CH₃)₃, -Si(PO₄)₂C(CH₃)₃, a phenyl group, an alkyl-substituted phenyl group having from 1 to 6 [carbons] <u>carbon atoms</u> in the alkyl

X

Cont

chain, an alkyl chain having from 1 to 6 [carbons] carbon atoms, an amino moiety, a chlorine atom, a fluorine atom, or a group having the formula C(R³R⁴)OH, wherein each of R³ and R⁴ is independently an alkyl chain having from 1 to 6 [carbons] carbon atoms, a phenyl group or an alkyl-substituted phenyl group having from 1 to 6 [carbons] carbon atoms in the alkyl chain;

wherein when \mathbb{Z}^2 is an amino group, \mathbb{R}^2 is an aliphatic chain having from 1 to 9 or from 19 to 23 carbon atoms in the aliphatic chain;

and wherein the compound comprises at least about 5 mole percent of the lipid component.

16. (Amended Twice)

A compound having the formula R¹-Y¹-CHZ¹-

 $CH(NY^2Y^3)-CH_2-Z^2$, wherein:

R¹ is a straight-chained alkyl, alkenyl or alkynyl group having from 5 to 19 carbon atoms in the aliphatic chain;

 Y^1 is -CH=CH-, -C=C- or -CH(OH)CH(OH)/;

Z¹ is OH or a phosphorylcholine attachment inhibiting group selected from the group consisting of -X¹, -OX¹, -X²X³ and OX²X³;

Y² is H, a phenyl group, an alkyl-substituted phenyl group having from 1 to about 6

carbon atoms in the alkyl chain or an alkyl chain having from 1 to 10 carbon atoms;

Y³ is H or a group having the formula $-C(O)R^2$ or $-S(O)_2R^2$;

12

- R² is a straight-chained alkyl moiety selected from the group consisting of -(CH₂)₃CH₃,
 -(CH₂)₅CH₃,-(CH₂)₇CH₃ and -(CH₂)₉CH₃, an alkenyl group having from 2 to 23

 carbon atoms in the aliphatic chain and an alkynyl group having from 2 to 23

 carbon atoms in the aliphatic chain;
- Z² is OH or a phosphorylcholine attachment-inhibiting group selected from the group consisting of -X¹, -OX¹, -X²X³ and -OX²X³.
- X¹ is selected from the group consisting of C(O)H, CO₂H, CH₃, C(CH₃)₃, Si(CH₃)₃.

 SiCH₃(C(CH₃)₃)₂, Si(C(CH₃)₃)₃, Si(PO₄), C(CH₃)₃, a phenyl group, an alkylsubstituted phenyl group having from 1 to 6 carbon atoms in the alkyl chain, an

 alkyl chain having from 1 to 6 carbon atoms, an amino group, a fluorine atom, a

 chlorine atom, and a group having the formula C(R³R⁴)OH;
- X²/s selected from the group consisting of CH₂, C(CH₃)₂, Si(PO₄)₂, Si(CH₃)₂, SiCH₃PO₄,

 C(O) and S(O)₂.
- X³ is selected from the group consisting of C(O)H, CO₂H, CH₃, C(CH₃)₃, Si(CH₃)₃,

 SiCH₃(C(CH₃)₃)₂, Si(C(CH₃)₃)₃, Si(PO₄)₂C(CH₃)₃, a phenyl group, an alkylsubstituted phenyl group having from 1 to 6 carbon atoms in the alkyl chain, an
 alkyl chain having from 1 to 6 carbon atoms, an amino moiety, a chlorine atom, a
 fluorine atom, or a group having the formula C(R³R⁴)OH, wherein each of R³ and

 R⁴ is independently an alkyl chain having from 1 to 6 carbon atoms, a phenyl group
 or an alkyl-substituted phenyl group having from 1 to 6 carbon atoms in the alkyl
 chain;

where 2

wherein when Z² is an amino group, R² is an ahphatic chain having from 1 to 9 or from 19

to 23 carbon atoms in the aliphatic chain.

Please add new claims 33-57:

- -- 33. (New) The pharmaceutical composition of claim 31, further comprising a pharmaceutically acceptable carrier.
- 34. (New) A liposome having a bilayer comprising at least about 5 mole percent of the compound of claim 16.
- 35. (New) A liposome having a bilayer comprising at least about 5 mole percent of the compound of claim 17.
- 36. (New) A liposome having a bilayer comprising at least about 5 mole percent of the compound of claim 18.
- 37. (New) A liposome having a bilayer comprising at least about 5 mole percent of the compound of claim 19.
- 38. (New) A liposome having a bilayer comprising at least about 5 mole percent of the compound of claim 20.

- 39. (New) A liposome having a bilayer comprising at least about 5 mole percent of the compound of claim 21.
- 40. (New) A liposome having a bilayer comprising at least about 5 mole percent of the compound of claim 22.
- 41. (New) A liposome having a bilayer comprising at least about 5 mole percent of the compound of claim 23.
- 42. (New) A liposome having a bilayer comprising at least about 5 mole percent of the compound of claim 24.
- of the compound of claim 25.
- 44. (New) A liposome having a bilayer comprising at least about 5 mole percent of the compound of claim 26.
- 45. (New) A liposome having a bilayer comprising at least about 5 mole percent of the compound of claim 27.

- 46. (New) A liposome having a bilayer comprising at least about 5 mole percent of the compound of claim 28.
- 47. (New) A liposome having a bilayer comprising at least about 5 mole percent of the compound of claim 29.
- 48. (New) A liposome having a bilayer comprising at least about 5 mole percent of the compound of claim 30.
- 49. (New) A pharmaceutical composition comprising the liposome of claim 34 and a pharmaceutically acceptable carrier
- 50. (New) A method of treating cancer in an animal in need of the treatment, comprising administering an anticancer effective amount of the composition of claim 33 to said animal.
 - 51. (New) The method of claim 50, wherein said animal is a human.
- 52. (New) The method of claim 50, wherein the cancer is a brain cancer, breast cancer, lung cancer, ovarian cancer, colon cancer, stomach cancer or prostate cancer.