

Chapitre I – Les suites

Bacomathiques -- https://bacomathiqu.es

TABLE DES MATIÈRES				
I - Q	u'est-ce qu'une suite?			
1.	Définition			
2.	Suites arithmétiques			
3.	Suites géométriques			
II - Ét 1. 2. 3.	Sens de variation			

I - Qu'est-ce qu'une suite?

1. Définition

On appelle **suite** une fonction de $\mathbb N$ dans $\mathbb R$: cette fonction va prendre des éléments d'un ensemble de départ $\mathbb N$ et va les amener dans un ensemble d'arrivée $\mathbb R$.

Il y a plusieurs manières de définir une suite :

À RETENIR 🦠

- Par récurrence : On donne le premier terme de la suite ainsi que le terme au rang n+1.
- Par son terme général : On donne le n-ième terme de la suite en fonction de n.

À LIRE 00

Exemple : Pour tout $n \in \mathbb{N}$, on définit les suites $(u_n)_{n \in \mathbb{N}}$ et $(v_n)_{n \in \mathbb{N}}$ ainsi :

 $u_n = n \; ((u_n)_{n \in \mathbb{N}} \; \text{est définie par son terme général}).$

$$(v_n)_{n\in\mathbb{N}}=egin{cases} v_0=0\ v_{n+1}=v_n+1 \end{cases}$$
 $((v_n)_{n\in\mathbb{N}} \text{ est définie par récurrence}).$

On remarque que bien que définies différemment, $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ sont égales.

Attention! Bien que ces deux modes de génération soient les principaux, il en existe d'autres : algorithme, motifs géométriques, ...

2. Suites arithmétiques

Une suite $(u_n)_{n\in\mathbb{N}}$ est dite **arithmétique** si elle est de la forme :

$u_{n+1} = u_n + r$ avec $r \in \mathbb{R}$.

Le réel r est la **raison** de la suite (si r>0, $(u_n)_{n\in\mathbb{N}}$ est strictement croissante, si r<0, $(u_n)_{n\in\mathbb{N}}$ est strictement décroissante et si r=0, $(u_n)_{n\in\mathbb{N}}$ est constante).

Il est possible de trouver le terme général d'une suite arithmétique :

On note p le rang initial de la suite (celui à partir duquel la suite est définie) :

$$u_n = u_p + (n-p) \times r$$

 $u_n=u_p+(n-p) imes r$ Et si $(u_n)_{n\in\mathbb{N}}$ est définie à partir du rang 0 (on a p=0) :

$$u_n = u_0 + (n-0) \times r = u_0 + n \times r$$

On a $u_{p+1} = u_p + r$. Puis, $u_{p+2} = u_{p+1} + r = u_p + r + r = u_p + 2 \times r$. De même, $u_{p+3} = u_{p+2} + r = u_p + 3 \times r$ et caetera.

En fait, pour tout k entier plus grand que p, on a $u_{p+k} = u_p + k \times r$.

Donc si on pose n = p + k, alors $u_n = u_p + (n - p) \times r$.

Soit *n* un entier, alors :

À RETENIR 💡

$$1+2+...+n=\frac{n(n+1)}{2}$$

On pose pour tout $n \in \mathbb{N}$, $S_n = 1 + 2 + ... + n$. On a également $S_n = n + (n-1) + ... + 1$ (en écrivant la somme à l'envers).

D'où
$$S_n + S_n = 2S_n = \underbrace{(n+1) + (n+1) + ... + (n+1)}_{n \text{ fois}} = n \times (n+1)$$
. Et ainsi

$$S_n=\frac{n(n+1)}{2}.$$

À LIRE 99

Exemple : On souhaite calculer S = 24 + 25 + ... + 104.

En fait, S = 1 + 2 + ... + 23 + 24 + 25 + ... + 104 - (1 + 2 + ... + 23). Calculons les deux sommes séparément :

$$-1+2+...+23=\frac{23\times24}{2}=276$$

$$-1+2+...+23 = \frac{23 \times 24}{2} = 276$$
$$-1+2+...+104 = \frac{104 \times 105}{2} = 5460$$

D'où S = 5460 - 276 = 5184.

3. Suites géométriques

Une suite $(v_n)_{n\in\mathbb{N}}$ est dite **géométrique** si elle est de la forme :

À RETENIR 💡

$$v_{n+1} = v_n \times q$$
 avec $q \in \mathbb{R}$.

Le réel q est la **raison** de la suite (si q > 1, $(v_n)_{n \in \mathbb{N}}$ est strictement croissante, si 0 < q < 1, $(v_n)_{n\in\mathbb{N}}$ est strictement décroissante et si q=1 ou 0, $(v_n)_{n\in\mathbb{N}}$ est constante). Il est possible de trouver le terme général d'une suite géométrique :

On note p le rang initial de la suite (celui à partir duquel la suite est définie) :

$$v_n = v_p \times q^{n-p}$$

 $v_n=v_p imes q^{n-p}$ Et si $(v_n)_{n\in\mathbb{N}}$ est définie à partir du rang 0 (on a p=0) :

$$v_n = v_0 \times q^{n-0} = v_0 \times q^n$$

On a $v_{p+1}=v_p\times q$. Puis, $v_{p+2}=v_{p+1}\times q=v_p\times q\times q=v_p\times q^2$. De même, $v_{p+3} = v_{p+2} \times q = v_p \times q^3$ et caetera.

En fait, pour tout k entier plus grand que p, on a $v_{p+k} = v_p \times q^k$.

Donc si on pose n = p + k, alors $v_n = v_p \times q^{n-p}$.

Soit $n \neq 0$ un entier et q un réel, alors :

— Si
$$q \neq 1$$
, alors $1 + q^1 + q^2 + ... + q^n = \frac{1 - q^{n+1}}{1 - q}$.

Le cas q=1 étant donné juste au dessus, on supposera $q\neq 1$. On pose pour tout $n \in \mathbb{N}, \ S_n = 1 + q^1 + q^2 + ... + q^n.$

On a :
$$qS_n=q^1+q^2+q^3+\ldots+q^{n+1}$$
, puis : $S_n-qS_n=1+q^1+q^2+\ldots+q^n-q^1-q^2-q^3-\ldots-q^{n+1}=1-q^{n+1}$.

Donc on a en factorisant par $S_n: (1-q)S_n = 1-q^{n+1} \iff S_n = \frac{1-q^{n+1}}{1-q}$

À LIRE 99

Exemple : On souhaite calculer $S = 3^5 + 3^6 + ... + 3^10$.

En fait, $S=1+3+...+3^4+3^5+3^6+...+3^10-(1+...+3^4)$. Calculons les deux sommes séparément :

$$-1 + 3 + \dots + 3^4 = \frac{1 - 3^5}{1 - 3} = 121$$

- 1 + 3 + ... +
$$3^4 = \frac{1 - 3^5}{1 - 3} = 121$$

- 1 + 3 + ... + $3^10 = \frac{1 - 3^11}{1 - 3} = 88573$

D'où
$$S = 88573 - 121 = 88452$$
.

II - Étude des suites

1. Sens de variation

Une suite $(u_n)_{n\in\mathbb{N}}$ est **croissante** si on a :

À RETENIR 💡

$$u_{n+1} \ge u_n$$
 ou $u_{n+1} - u_n \ge 0$

À l'inverse, une suite $(u_n)_{n\in\mathbb{N}}$ est **décroissante** si on a :

À RETENIR 💡

$$u_{n+1} \le u_n$$
 ou $u_{n+1} - u_n \le 0$

Une suite $(u_n)_{n\in\mathbb{N}}$ est dite **constante** si on a pour $c\in\mathbb{R}$:

À RETENIR 💡

$$u_n=u_{n+1}=c$$

Si une suite est croissante ou décroissante et ne change pas de variation, alors elle est dite **monotone**.

2. Introduction aux limites

Quand on souhaite s'intéresser à la limite d'une suite $(u_n)_{n\in\mathbb{N}}$, on étudie le comportement de ses termes quand "n devient très grand". On préfère dire alors que n tend vers $+\infty$.

À RETENIR 💡

- Si $(u_n)_{n\in\mathbb{N}}$ tend vers un réel, on dit qu'elle **converge**.
- Si $(u_n)_{n\in\mathbb{N}}$ tend vers une limite infinie, on dit qu'elle **diverge**.

À LIRE 👀

Exemple : On définit la suite $(u_n)_{n\in\mathbb{N}}$ pour tout $n\in\mathbb{N}$ par $u_n=\frac{1}{n}$. On souhaite trouver la limite possible de cette suite en $+\infty$.

Pour cela, regardons les valeurs que prend cette suite pour des valeurs de n très grandes :

100	0,01
1000	0,001
100000	0,00001
100000000	0,00000001

Il semble que cette suite converge vers 0.

À savoir que si une suite a une limite, alors cette limite est **unique**. Mais il est également possible pour une suite de ne pas admettre de limite.

À LIRE 👀

Exemple : On définit la suite $(u_n)_{n\in\mathbb{N}}$ pour tout $n\in\mathbb{N}$ par $u_n=(-1)^n$. On souhaite trouver la limite possible de cette suite en $+\infty$.

100	1
101	-1
1000000	1
1000001	-1

En fait, si n est pair cette suite vaut 1 et si n est impair elle vaut -1. Cette suite n'admet donc pas de limite : elle diverge.

3. Représentation graphique

Il est possible de représenter graphiquement une suite. Cela peut aider, par exemple dans le but de chercher sa limite. Ainsi, soit $(u_n)_{n\in\mathbb{N}}$ une suite définie par récurrence :

À RETENIR 💡

Pour représenter $(u_n)_{n\in\mathbb{N}}$ dans un graphique :

- 1. On trace la droite d'équation y = x.
- 2. Comme cette suite est définie par récurrence, pour tout entier n on a une relation du type $u_{n+1} = f(u_n)$. Il s'agit de tracer la courbe représentative C_f de la fonction f.
- 3. On place le point A de coordonnées $(u_0; 0)$
- 4. On trace une droite verticale passant par A, son intersection avec C_f donne un point $B = (u_0; u_1)$.
- 5. À l'aide du point B, on place le point $C = (0; u_1)$.
- 6. On trace une droite horizontale passant par C, son intersection avec la droite y = x donne un point $D = (u_1; u_1)$.
- 7. Une fois le point D obtenu, on place le point $(u_1; 0)$.
- 8. On recommence l'opération en remplaçant u_0 par u_1 et u_1 par u_2 , puis on recommence, etc...

Il est cependant plus facile de représenter graphiquement une suite dont on connaît le terme général. Soit $(v_n)_{n\in\mathbb{N}}$ une telle suite :

À RETENIR 📍

Pour représenter $(v_n)_{n\in\mathbb{N}}$ dans un graphique :

- 1. On place le point de coordonnées $(0; v_0)$.
- 2. On place le point de coordonnées $(1; v_1)$.
- 3. On place le point de coordonnées $(2; v_2)$. Etc...

À LIRE 👀

Exemple : Représentation des trois premiers termes de la suite $(v_n)_{n\in\mathbb{N}}$ définie pour tout $n\in\mathbb{N}$ par $v_n=2^n$.

