

Previous Lecture

- structure of the subsurface
- grain size distribution of unconsolidated porous media
- subterranean water
- questions?

Today

- groundwater and aquifers
- pressure
- storage properties

Groundwater and Aquifers

transparency 3 of 29

What is Groundwater?

<u>Groundwater</u> = subterranean water which

- completely fills the pore space
- and in Germany! is not subject to other forces than gravity.

Schematic Overview

- saturated zone: Voids are completely filled ed with water, i.e. S = 1or $\theta = n$.
- unsaturated zone / vadose zone / aeration zone: Voids are filled partly with water and partly with air.

vadose water or suspended water

groundwater table or groundwater surface

groundwater

Effective Porosity

- Adhesive water does not participate in water movement. The same is true for water in isolated pores or in dead-end pores.
- <u>immobile water</u> = subterranean water not participating in water movement
- mobile water = subterranean water participating in water movement
- The volumetric share of voids which can be occupied by mobile water is termed <u>effective porosity</u> or <u>flow-through porosity</u>:

$$n_e = \frac{V_{v,m}}{V_T}$$

Effective vs. Total Porosity

- Effective porosity cannot exceed total porosity, i.e. $n_e \le n$.
- The difference $n n_e$ is termed <u>specific retention</u> or <u>field capacity</u>.
- Specific retention is the volumetric share of water which is retained in the porous medium after drainage due to gravitation.

Aquifer, Aquitard, Aquiclude, Aquifuge

Subterranean formations can be classified by the capability to store and / or transmit groundwater under natural conditions:

- An <u>aquifer</u> or a <u>groundwater reservoir</u> can store and transmit significant (= exploitable) amounts of groundwater.
- An <u>aquitard</u> can store and transmit groundwater but to a much lesser extent than an (adjacent) aquifer.
- An <u>aquiclude</u> can store groundwater but cannot transmit groundwater.
- An <u>aquifuge</u> can neither store nor transmit groundwater.

Top, Bottom, and Thickness

- Aquifers usually appear as "layers", i.e. their lateral extent is rather large as compared to their vertical extent (maybe 10 - 100 km vs. 10 - 100 m).
- The upper aquifer boundary is called <u>aquifer top</u>; the lower boundary is called <u>aquifer bottom</u>.
- The vertical distance between aquifer top and aquifer bottom is called aquifer thickness.
- Upper and lower aquifer boundaries do not have to be horizontal and the thickness may be spatially variable.
- Schematic example (vertical cross section):

Unconfined Aquifer / Groundwater

- Groundwater or an aquifer is termed <u>unconfined</u> (<u>phreatic</u>), if the groundwater does not extend up to the aquifer top.
- The position of the groundwater table is therefore changed during water injection or extraction ("free" groundwater table).
- Water in a borehole rises up to the groundwater table.

Confined Aquifers / Groundwater

- Groundwater or an aquifer is termed <u>confined</u>, if the aquifer contains groundwater throughout its entire thickness.
- The pore space remains completely water filled during water injection or (moderate) extraction.
- This requires a low permeable cover layer. In addition, the groundwater recharge area must be located at higher altitude than the aquifer top.
- The elevation of the groundwater table in the recharge area defines the position of the confined aquifer's <u>pressure line</u>.
- Water in a borehole rises up to the pressure line, i.e. higher than the elevation of the aquifer top.

Artesian Groundwater

- Artesian groundwater is confined groundwater with the pressure line above ground surface.
- Water in a borehole rises up to the ground surface and then forms a fountain.
- Artesian springs and Artesian wells are based on this principle.

Spring chamber (up) for the Artesian well (right) at Albertplatz,
Dresden

Subsurface Underneath Dresden

Example

Aquifer	Obs. point 1	Obs. point 2	Obs. point 3	Obs. point 4
Α				
В				
С				
D				

Pressure

Hydrostatic Pressure I

- Lets consider a vertical column containing a porous medium and water filling the voids completely. The bottom of the column is closed and the water therefore does not move.
- There are two observation points for hydrostatic pressure p at elevation z = 0 and z = L, respectively.

Hydrostatic Pressure II

- Hydrostatic pressure p linearly increases with depth.
- In the above setup we have: $p(z) = p_L + \rho \cdot g \cdot (L-z)$
- Pressure difference between the observation points: $\Delta p = p(L) p(0) = p_L (p_L + \rho \cdot g \cdot L) = -\rho \cdot g \cdot L$
- There is a pressure difference but no water flow!

Pressure in a Confined Aquifer

confining bed

confined aquifer

- · The confining bed exerts a certain pressure ho_{cb} on the aquifer.
- This pressure is compensated partly by the porous medium and partly by the groundwater (pressures ρ_{pm} and ρ_{w} respectively).
- Thus: $p_{cb} + p_{pm} + p_w = 0$
- Storage properties of the aquifer and associated parameters can be understood by considering pressure changes.

Change in Hydrostatic Pressure

confining bed

$$p_{cb} + p_{pm} + p_w = \mathbf{0}$$

confined aquifer

- Lets consider a change in hydrostatic pressure Δp_w due to injection or release of groundwater.
- From the above equation: $\Delta p_{cb} + \Delta p_{pm} + \Delta p_{w} = 0$
- Hydrostatic pressure changes do not affect the weight of the confining bed and the exerted downward pressure remains unchanged.
- Thus we have $\Delta p_{cb} = \mathbf{0}$ and consequently $\Delta p_{pm} = -\Delta p_{w}$.
- This implies that an increase / a decrease of hydrostatic pressure automatically results in a decrease / an increase in the pressure exerted by the porous medium.

Hydrostatic Pressure and Water Volume

confining bed

 $\Delta p_{pm} = -\Delta p_w$

confined aquifer

- The change in hydraulic pressure will have two effects with regard to water volume.
- First, the hydraulic pressure change Δp_w directly leads to expansion / compression of water and the water volume is accordingly increased / decreased.
- Secondly, the opposite change $\Delta p_{pm} = -\Delta p_w$ leads to compression / expansion of the porous medium as a whole (not the individual grains!). This, in turn, results in a reduced / an enlarged pore space such that the stored water volume is decreased / increased.
- Both effects contribute to aquifer storage properties (see next section).

Storage Properties

Change in Water Volume Invoked by Δp_{w}

- The change in water volume due to a change in hydrostatic pressure is abbreviated by ΔV_{w} .
- Relative changes in water volume, $\Delta V_{w}'/V_{w}$, are proportional to Δp_{w} :

$$\frac{\Delta V_w'}{V_w} = \alpha_w \cdot \Delta p_w$$

- An increase / a decrease in hydrostatic pressure results in an inflow / outflow of water (compression / expansion of the water already present!).
- The compressibility of water is roughly 4.4·10⁻¹⁰ m²/N.
- The above equation can be rearranged to yield

$$\Delta V_w' = \alpha_w V_w \Delta p_w = n \alpha_w V_T \Delta p_w = n \alpha_w V_T \rho_w g \Delta \psi$$

Change in Total Volume Invoked by Δp_{pm}

- A change Δp_{pm} in the pressure exerted by the porous medium on the confining layer results in a decrease / an increase ΔV_T in total aquifer volume (see previous section).
- Both quantities are proportional to each other via

$$\frac{\Delta V_T}{V_T} = -\alpha_{pm} \cdot \Delta p_{pm}$$

- The compressibility of the porous medium is roughly $10^{-10} 10^{-8}$ m²/N for gravel, $10^{-9} 10^{-7}$ m²/N for sand, and $10^{-8} 10^{-6}$ m²/N for clay.
- The above equation can be rearranged to yield

$$\Delta V_T = -\alpha_{pm} V_T \Delta p_{pm} = \alpha_{pm} V_T \Delta p_w = \alpha_{pm} V_T \rho_w g \Delta \psi$$

• ΔV_T represents a change in volume of the porous medium as a whole. It is composed of a change in volume ΔV_s of the solids (which is negligible!) and another change ΔV_w " in water volume, i.e.

$$\Delta V_T = \Delta V_s + \Delta V_w \approx \Delta V_w$$

Change in Water Volume Invoked by Δp_{pm}

From

$$\Delta V_T = \alpha_{pm} V_T \rho_w g \Delta \psi$$

and

$$\Delta V_T = \Delta V_w$$
"

we can immediately derive

$$\Delta V_w'' = \alpha_{pm} V_T \rho_w g \Delta \psi$$

- As mentioned above, ΔV_w denotes the change in water volume due to an increase / a decrease of pressure ρ_{pm} in the porous medium.
- A decrease of pressure in the porous medium leads to an expansion of the porous medium and an associated increase in water volume (enlarged pore space).
- An increase in pressure in the porous medium leads to a compression of the porous medium and an associated decrease in water volume (reduced pore space).

Total Change in Water Volume

- The total change ΔV_w in water volume consists of both effects caused by pressure changes Δp_w and Δp_{pm} .
- Therefore we have $\Delta V_{w} = \Delta V_{w}' + \Delta V_{w}''$.
- Using the results derived before, we can express how ΔV_w depends on changes $\Delta \psi$ in pressure head:

$$\Delta V_{w} = \Delta V_{w}' + \Delta V_{w}'' = n \alpha_{w} V_{T} \rho_{w} g \Delta \psi + \alpha_{pm} V_{T} \rho_{w} g \Delta \psi$$

Specific Storage

• Specific storage S_s is defined as the volume of water that is released from a unit aquifer volume if hydrostatic pressure head is reduced by one unit:

$$S_s = \frac{\Delta V_w}{V_T \cdot \Delta \psi}$$

- The dimension of specific storage is 1/L.
- Both impacts on water volume discussed before have to be considered in order to quantify $\Delta V_{\nu\nu}$ in the above equation:

$$\Delta V_{w} = n \alpha_{w} V_{T} \rho_{w} g \Delta \psi + \alpha_{pm} V_{T} \rho_{w} g \Delta \psi$$

Specific storage can therefore also be expressed as

$$S_s = (n\alpha_w + \alpha_{pm})\rho_w g$$

 Typical values for specific storage range from 10⁻⁶ 1/m (e.g. gravel) to 10⁻² 1/m (e.g. clay).

Storativity (Confined Aquifers)

- Due to their relatively large lateral extent, aquifers are mostly considered as spatially two-dimensional (2D) systems.
- In this case, specific storage S_s is replaced by the <u>storativity</u> or <u>storage</u> <u>coefficient</u> S.
- For confined aquifers S is simply obtained by multiplying S_s by the aquifer thickness m:

$$S = S_s \cdot m$$

- Storativity can be interpreted as the volume of water released from an aquifer volume extending from the aquifer bottom up to the aquifer top over a unit area if the hydrostatic pressure is reduced by one unit.
- Storativity is dimensionless.

Reference Volumes (Confined Aquifer)

The reference volume for defining specific storage S_s is a unit cube (e.g. $V_T = 1 \text{ m}^3$).

The reference volume for defining storativity S is a cuboid extending from the aquifer bottom to the aquifer top over a unit area (e.g. $A = 1 \text{ m}^2$ and $V_T = A \cdot m$).

Storativity (Unconfined Aquifers)

- Actually, unconfined aquifers are always treated as 2D systems.
- Thus, storativity is used to quantify water storage properties.
- The definition of storativity remains unchanged in principle but the considered aquifer volume now extends from the aquifer bottom up to the water table.
- For unconfined aquifers, storativity values correspond to effective porosities.
- This is explained by the free groundwater table:
 Pressure changes simply lead to filling or emptying of voids.
- This is fundamentally different from the storage properties of confined aquifers discussed before:
 In confined aquifers all voids remain filled with groundwater during
 - In confined aquifers all voids remain filled with groundwater during pressure changes and storage properties depend on the compressibilities of water and the porous medium.