毕业设计理论笔记

钟 威

理论书籍目前看到: P19

最后更改时间: March 11, 2013

凸规划问题基础

P₁₇ 定义 1.2.1

称 S 是凸集,如果对于任意的 $x_1,x_2 \in S$ 和任意的 $\lambda \in [0,1]$,都有:

$$\lambda x_1 + (1 - \lambda)x_2 \in S \tag{1.2.1}$$

P₁₇ 定义 1.2.3

任意的 $x_1, x_2 \in S$ 和任意的 $\lambda \in (0,1)$, 都有:

$$f(\lambda x_1 + (1 - \lambda)x_2) \le \lambda f(x_1) + (1 - \lambda)f(x_2) \tag{1.2.2}$$

P₁₉ 定理 **1.2.4**

f(x) 是凸函数的充要条件是:对于 S 中的任意一点 \bar{x} ,都有:

$$f(x) \ge f(\bar{x}) + \nabla f(\bar{x})^T (x - \bar{x}) \tag{1.2.6}$$

P₂₀ 定义 1.2.6

$$\min \qquad f_0(x), \ x \in \mathbb{R}^n \tag{1.2.10}$$

$$s.t.$$
 $f_i(x) \le 0, \ i = 1, \dots, m$ (1.2.11)

$$h_i(x) = a_i^T x - b_i = 0, \ i = 1, \dots, p.$$
 (1.2.12)

其中 $f_0(x)$ 和 $f_i(x)$ 都是定义在 R^n 上的连续可微凸函数,而 $h_i(x)$ 是线性函数。

P₂₀ 引理 1.2.8

若 f(x) 是 R^n 上的凸函数,则对于任意的 $c \in R$,水平集:

$$S = \{x | f(x) < c, x \in \mathbb{R}^n\}$$
(1.2.16)

是凸集。

P₂₀ 定理 1.2.10

考虑凸规划问题 $(1.2.10) \rightarrow (1.2.12)$,若 x^* 是它的局部解,则 x^* 也是它的整体解。

P₂₁ 定理 **1.2.12**

若凸规划问题 $(1.2.10) \rightarrow (1.2.12)$ 中的目标函数 $f_0(x)$ 是严格凸函数,则该问题的解唯一。

P₂₁ 定义 1.2.13

设凸规划问题 $(1.2.10) \rightarrow (1.2.12)$ 中变量 x 具有式:

$$x = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}, \quad x_i \in \mathbb{R}^{m_i}, \quad i = 1, 2. \quad m_1 + m_2 = n.$$
 (1.2.22)

所示的分划。称 x_1^* 是该问题关于 x_1 的解,如果存在 $x_2^* \in R^{m_2}$,使得 $x^* = (x_1^{*T}, x_2^{*T})^T$ 是该问题的解。

P₂₂ 定理 **1.2.15**

设凸规划问题 $(1.2.10) \rightarrow (1.2.12)$ 中变量 x 具有式 (1.2.22) 的分划,记 $f_0(x) = \mathbf{F}_0(x_1,x_2)$ 。若 $\mathbf{F}_0(x_1,x_2)$ 分别是变量 x_1 和 x_2 的严格凸函数,则该问题对 x_1 的解唯一。

凸规划的对偶理论