Languages, Automata and Computation II
Assignment 1

Dominik Wawszczak Student ID Number: 440014

Group Number: 1

Problem 1

We define an ω -word u as universal if, and only if, for any $i \in \mathbb{N}$, there exists a j > i such that $u[i] \neq u[j]$. Intuitively, this means that u contains an infinite subsequence of the form $(ab)^{\infty}$. Note that if $u \in \Sigma^{\omega}$ is universal, then for any $v \in \Sigma^{\omega}$, it holds that $v \sqsubseteq u$. This is because we can remove finitely or infinitely many letters from u to obtain $(ab)^{\infty}$, and for each i-th pair of consecutive ab occurrences, we can remove either a or b, depending on the value of v[i].

If an ω -word u is not universal, then either $\#_a(u)$ or $\#_b(u)$ is finite. In the first case, u is of the form vb^{∞} , and we will refer to such an ω -word as a-long. In the second case, u is of the form va^{∞} , and we will call it b-long. In both cases, v is a word of finite length.

Let u_1, u_2, \ldots be any infinite sequence of ω -words. We will prove that there exist indices i < j such that $u_i \sqsubseteq u_j$. If there are at least two universal ω -words in this sequence, the proof is straightforward since u_1 can embed into the second universal word in the sequence. Otherwise, either there are infinitely many a-long words in the sequence, or there are infinitely many b-long words. Without loss of generality, assume there are infinitely many a-long words in the sequence. Let k_1, k_2, \ldots be the indices of the a-long words. Denote $u_{k_l} = u'_{k_l} a^{\infty}$, where u'_{k_l} is finite. By Higman's lemma, there exist indices i < j such that u'_{k_i} is a substring of u'_{k_j} , concluding the proof as $u_{k_i} \sqsubseteq u_{k_i}$.

Now, we will show that in the variant where only finitely many letters can be removed, the resulting relation is not a well-quasi order. Consider the infinite sequence of ω -words u_1, u_2, \ldots such that

$$u_i = a^i b a^{i+1} b a^{i+2} b \dots$$

Clearly, for any $i \in \mathbb{N}^+$, we have $u_i \supseteq u_{i+1}$ because the first i+1 letters of u_i can be removed to obtain u_{i+1} .

Suppose, for the sake of contradiction, that there exists $i \in \mathbb{N}^+$ such that $u_i \sqsubseteq u_{i+1}$. Let k be the smallest number such that a non expandable block of the form $a^k b$ remains intact, after removing finitely many letters from u_{i+1} to obtain u_i . The number of letters b in u_{i+1} before this block equals k-i-1. However, the number of letters b in u_i before this block equals k-i-1, which is a contradiction, as letters can only be removed.

Suppose, for the sake of contradiction, that there exists $i \in \mathbb{N}^+$ such that $u_i \sqsubseteq u_{i+1}$. Let k be the smallest number such that a non-expandable block of the form $a^k b$ remains intact after removing finitely many letters from u_{i+1} to obtain u_i . The number of b letters in u_{i+1} before this block is k-i-1. However, the number of b letters in u_i before this block is k-i, which is greater than k-i-1, contradicting the fact that letters can only be removed.

From the above, we conclude that $u_i \supset u_{i+1}$ for any $i \in \mathbb{N}^+$. Therefore, u_1, u_2, \ldots forms an infinite sequence of strictly decreasing elements, which shows that the relation is not a well-quasi order.