The number of ways to arrange n distinct objects along a straight line is given by the **permutation**. The number of permutation of n objects is n! The number of ways to arrange n distinct objects along a circular line is given by the **circular permutation**. The number of circular permutations is (n-1)!. The number is (n-1)! since all cyclic permutations of objects are equivalent because the circle can be rotated.

For example, of the 3!=6 permutations of three objects $\{A,B,C\}$, the (3-1)!=2 distinct circular permutations are $\{A,B,C\}$ and $\{A,C,B\}$ as represented in the top section of the following figure. The other permutations, i.e., $\{B,C,A\}$, $\{C,A,B\}$, $\{C,B,A\}$, and $\{B,A,C\}$, are equivalent because they cannot be distinguished by the previous two when placed around a circle. Similarly, of the 4!=24 permutations of four objects, only (4-1)!=6 are distinct circular permutations as represented by the bottom part of the figure.

Write the function circular Permutation, whose prototype is the following:

void circularPermutation (char *str);

which receives a string str and it displays all circular permutations of its characters. Write the entire C code (no libraries are allowed).