CS 522: Programming Language Semantics Homework-2 Solution

Jai Arora (jaia3@illinois.edu)

1. Let $b \in BExp$ be any boolean expression, $s_1, s_2 \in Block$ be any blocks and $s \in Stmt$ be any statement in IMP. Let \perp_S denote the undefined state. Consider the following two statements,

LHS = (if(b)
$$s_1$$
 else s_2) s
RHS = if(s) s_1 s else s_2 s

• [LHS]: Consider $[if(b) s_1 else s_2]$

$$\llbracket \mathtt{if}(b) \ s_1 \ \mathtt{else} \ s_2 \rrbracket = \lambda \sigma. \begin{cases} \llbracket s_1 \rrbracket(\sigma) & \mathrm{if} \ \llbracket b \rrbracket(\sigma) = \mathtt{t} \\ \llbracket s_2 \rrbracket(\sigma) & \mathrm{if} \ \llbracket b \rrbracket(\sigma) = \mathtt{f} \\ \bot_S & \mathrm{if} \ \llbracket b \rrbracket(\sigma) = \bot \end{cases}$$

Then, $\llbracket (\mathbf{if}(b) \ s_1 \ \mathbf{else} \ s_2) \ s \rrbracket$ will be $\llbracket s \rrbracket \circ \llbracket \mathbf{if}(b) \ s_1 \ \mathbf{else} \ s_2 \rrbracket$, which can be simplified to,

Here, $[\![s]\!](\bot_S) = \bot_S$, since undefined input state leads to an undefined output state (in the semantics, the denotations of different programs are actually **strict** functions).

• [RHS]: We get

We can see that [LHS] = [RHS], making these two statements equivalent.

2. Let \perp_S be the undefined state. Let $b \in \texttt{BExp}$ be any boolean expression and $s \in \texttt{Stmt}$ be any statement. Let $s_w = \texttt{while}(b)$ s be a while loop. The function $\mathcal{F}: (State \rightarrow State) \rightarrow (State \rightarrow State)$ corresponding to s_w is:

$$F(\alpha)(\sigma) = \begin{cases} \alpha(\llbracket s \rrbracket(\sigma)) & \text{if } \llbracket b \rrbracket(\sigma) = \mathsf{t} \\ \sigma & \text{if } \llbracket b \rrbracket(\sigma) = \mathsf{f} \\ \bot_S & \text{if } \llbracket b \rrbracket(\sigma) = \bot \end{cases}$$

- (a) We want to show that \mathcal{F} satisfies the hypothesis of the Fixed Point Theorem, i.e., show that it is continuous. For that, we will show two things,
 - Monotonicity: Let $\alpha, \beta \in [State \to State]$ be two partial functions, such that $\alpha \leq \beta$. Here \leq is the informativeness relation on partial functions.

We need to show that $\mathcal{F}(\alpha) \leq \mathcal{F}(\beta)$. Let $\sigma \in Sigma$ be any state. We will do a case analysis on the values $\mathcal{F}(\alpha)(\sigma)$ and $\mathcal{F}(\beta)(\sigma)$:

- $-\mathcal{F}(\alpha)(\sigma) = \perp_S (\mathcal{F}(\alpha))$ is undefined in σ : Then $\mathcal{F}(\alpha) \leq \mathcal{F}(\beta)$ by definition.
- $-\mathcal{F}(\alpha)(\sigma) \neq \perp_S (\mathcal{F}(\alpha))$ is defined in σ). The following subcases arise:
 - * $[\![b]\!](\sigma) = f$: Then $\mathcal{F}(\alpha)(\sigma) = \sigma$, which is defined. This also means that $\mathcal{F}(\beta)(\sigma) = \sigma$, which is also defined. So, we get that $\mathcal{F}(\alpha)(\sigma) = \mathcal{F}(\beta)(\sigma)$, and both values are defined. So, $\mathcal{F}(\alpha) \leq \mathcal{F}(\beta)$.
 - * $\llbracket b \rrbracket(\sigma) = \mathsf{t}$: Then $\mathcal{F}(\alpha)(\sigma) = \alpha(\llbracket s \rrbracket(\sigma))$, which is defined. Now since $\alpha \leq \beta$, $\beta(\llbracket s \rrbracket(\sigma))$ also has to be defined and $\alpha(\llbracket s \rrbracket(\sigma)) = \beta(\llbracket s \rrbracket(\sigma))$. From here, we get

$$\mathcal{F}(\beta)(\sigma) = \beta(\llbracket s \rrbracket(\sigma))$$
$$= \alpha(\llbracket s \rrbracket(\sigma))$$
$$= \mathcal{F}(\alpha)(\sigma)$$

So, we get that $\mathcal{F}(\alpha)(\sigma) = \mathcal{F}(\beta)(\sigma)$, and both values are defined. So, $\mathcal{F}(\alpha) \leq \mathcal{F}(\beta)$.

So, this implies that \mathcal{F} is monotonous.

• Let $\{\alpha_n \mid n \in \mathbb{N}\}$ be any chain $State \to State$. Now since $(State \to State, \leq , \perp_{S \to S})$ is a pointed CPO, we know that the limit of this chain, $\sqcup \alpha_n$ exists.

We need to show that $\mathcal{F}(\sqcup \alpha_n) \preceq \sqcup \mathcal{F}(\alpha_n)$. Let $\sigma \in State$ be any state. We will do a case analysis on the values $\mathcal{F}(\sqcup \alpha_n)(\sigma)$ and $(\sqcup \mathcal{F}(\alpha_n))(\sigma)$:

- $-\mathcal{F}(\sqcup \alpha_n)(\sigma) = \perp_S (\mathcal{F}(\sqcup \alpha_n) \text{ is undefined in } \sigma)$: Then $\mathcal{F}(\sqcup \alpha_n) \preceq \sqcup \mathcal{F}(\alpha_n)$ by definition.
- $-\mathcal{F}(\sqcup \alpha_n)(\sigma) \neq \bot_S (\mathcal{F}(\sqcup \alpha_n))$ is defined in σ). The following subcases arise:
 - * $\llbracket b \rrbracket(\sigma) = \mathbf{f}$: Then $\mathcal{F}(\sqcup \alpha_n)(\sigma) = \sigma$, which is defined. Also, for all $i \in \mathbb{N}$, $\mathcal{F}(\alpha_i)(\sigma) = \sigma$, which is also defined. Since all functions in the chain $\{\mathcal{F}(\alpha_n) \mid n \in \mathbb{N}\}$ are defined at σ and have the same value, their LUB $\sqcup \mathcal{F}(\alpha_n)$ is also defined and $(\sqcup \mathcal{F}(\alpha_n))(\sigma) = \sigma$.

So, we get that $\mathcal{F}(\sqcup \alpha_n)(\sigma) = (\sqcup \mathcal{F}(\alpha_n))(\sigma)$, and both values are defined. So, $\mathcal{F}(\sqcup \alpha_n) \leq \sqcup \mathcal{F}(\alpha_n)$.

* $\llbracket b \rrbracket(\sigma) = \mathsf{t}$: Then $\mathcal{F}(\sqcup \alpha_n)(\sigma) = (\sqcup \alpha_n)(\llbracket s \rrbracket(\sigma))$, which is defined. Since the LUB of the chain $\{\alpha_n\}$ is defined at $\llbracket s \rrbracket(\sigma)$, there must exist some $k \in \mathbb{N}$ such that,

$$\forall j \geq k, \ \alpha_j(\llbracket s \rrbracket(\sigma)) = (\sqcup \alpha_n)(\llbracket s \rrbracket(\sigma)), \text{ and is defined, and } \forall i < k, \ \alpha_i(\llbracket s \rrbracket(\sigma)) = \bot_S$$

This means that since the LUB is defined at $[s](\sigma)$, there must be some j where the functions in the chain started getting defined at $[s](\sigma)$ and had the same value, and the functions before this were undefined at $[s](\sigma)$. If this was not true, $\sqcup \alpha_n$ would not have been the LUB of the chain $\{\alpha_n\}$.

Let $j \geq k$. Then $\mathcal{F}(\alpha_j)(\sigma) = \alpha_j(\llbracket s \rrbracket(\sigma)) = (\sqcup \alpha_n)(\llbracket s \rrbracket(\sigma))$. So, this value is defined for any such j. This means that the LUB of the chain $\{\mathcal{F}(\alpha_n)\}$ is defined at σ and $(\sqcup \mathcal{F}(\alpha_n))(\sigma) = (\sqcup \alpha_n)(\llbracket s \rrbracket(\sigma))$.

So, we get that $\mathcal{F}(\sqcup \alpha_n)(\sigma) = (\sqcup \alpha_n)(\llbracket s \rrbracket(\sigma)) = (\sqcup \mathcal{F}(\alpha_n))(\sigma)$, and both values are defined. So, $\mathcal{F}(\sqcup \alpha_n) \leq \sqcup \mathcal{F}(\alpha_n)$.

From these two points, we have proved that \mathcal{F} is continuous.

(b) Let $w_k \in [State \rightarrow State]$ be defined as

$$w_k(\sigma) = \begin{cases} \llbracket s \rrbracket^i(\sigma) & \exists 0 \leq i < k, \ \llbracket b \rrbracket(\llbracket s \rrbracket^i(\sigma)) = \mathtt{f}, \ \forall 0 \leq j < i, \ \llbracket b \rrbracket(\llbracket s \rrbracket^j(\sigma)) = \mathtt{t} \\ \bot_S & \text{otherwise} \end{cases}$$

We need to prove w_k is well defined, that is, if such an i exists, then it is unique.

Proof. We will prove this by contradiction. Let's assume that w_k is not well defined, then there exists $\sigma \in State$ such that $w_k(\sigma) = \sigma_1$ and $w_k(\sigma) = \sigma_2$, where σ_1, σ_2 are defined and $\sigma_1 \neq \sigma_2$. From definition of w_k , we know that

- $\sigma_1 = [\![s]\!]^{i_1}(\sigma)$, where $0 \le i_1 < k$ $- [\![b]\!]([\![s]\!]^{i_1}(\sigma)) = f$ $- \forall 0 \le j_1 < i_1, [\![b]\!]([\![s]\!]^{j_1}(\sigma)) = f$
- $\sigma_2 = [\![s]\!]^{i_2}(\sigma)$, where - $0 \le i_2 < k$ - $[\![b]\!]([\![s]\!]^{i_2}(\sigma)) = f$ - $\forall 0 \le j_2 < i_2$, $[\![b]\!]([\![s]\!]^{j_2}(\sigma)) = t$

Since, $\sigma_1 \neq \sigma_2$, it implies $i_1 \neq i_2$. WLOG, assume that $i_1 > i_2$. Then from σ_1 , we get that $\llbracket b \rrbracket(\llbracket s \rrbracket^{i_2}(\sigma)) = t$, but from σ_2 , we get $\llbracket b \rrbracket(\llbracket s \rrbracket^{i_2}(\sigma)) = f$, which is a contradiction.

So, w_k is well defined for all k.

(c) We need to prove that $w_k = \mathcal{F}^k(\perp_{S\to S})$, where $\perp_{S\to S}$ is the bottom of the [State \to State] CPO.

Proof. We will proof this by induction on k.

- Basis: k = 0. Then $w_0(\sigma) = \bot_S$ for all $\sigma \in State$. Since w_0 maps all states to the bottom state, $w_0 = \bot_{S \to S} = \mathcal{F}^0 \bot_{S \to S}$
- Induction Step: $k = n + 1, n \ge 0$.

IH:
$$w_n = \mathcal{F}^n(\perp_{S \to S})$$

It is easy to see that $F^{n+1}(\perp_{S\to S}) = \mathcal{F}(\mathcal{F}^n(\perp_{S\to S}))$. Using the IH, we get $F^{n+1}(\perp_{S\to S}) = \mathcal{F}(w_n)$. So, we need to prove that $w_{n+1} = \mathcal{F}(w_n)$. Let $\sigma \in State$ be any state. $\mathcal{F}(w_n)(\sigma)$ has the following form:

$$F(w_n)(\sigma) = \begin{cases} w_n(\llbracket s \rrbracket(\sigma)) & \text{if } \llbracket b \rrbracket(\sigma) = \mathsf{t} \\ \sigma & \text{if } \llbracket b \rrbracket(\sigma) = \mathsf{f} \\ \bot_S & \text{if } \llbracket b \rrbracket(\sigma) = \bot \end{cases}$$

Consider the following cases:

- $\llbracket b \rrbracket(\sigma) = \bot$: Then $w_{n+1}(\sigma) = \bot_S = \mathcal{F}(w_n)(\sigma)$. So, $w_{n+1} = \mathcal{F}(w_n)$.
- $\llbracket b \rrbracket(\sigma) = \mathbf{f}$: Then i = 0 in w_{n+1} and $w_{n+1}(\sigma) = \sigma$. Also, $\mathcal{F}(w_n)(\sigma) = \sigma$. So, $w_{n+1} = \mathcal{F}(w_n)$.

- $\llbracket b \rrbracket(\sigma) = \mathsf{t}$: Then $\mathcal{F}(w_n)(\sigma) = w_n(\llbracket s \rrbracket(\sigma))$. Also, for w_{n+1} , i > 0. Then $w_{n+1}(\sigma)$ can be rewritten as,

$$w_{n+1}(\sigma) = \begin{cases} [\![s]\!]^{i-1} [\![s]\!](\sigma) & \exists 0 \le i - 1 < n, [\![b]\!]([\![s]\!]^{i-1} [\![s]\!](\sigma)) = f, \\ & \forall 0 \le j < i - 1, [\![b]\!]([\![s]\!]^{j-1} [\![s]\!](\sigma)) = f, \\ & \text{otherwise} \end{cases}$$
$$= w_n([\![s]\!](\sigma))$$

So,
$$w_{n+1} = \mathcal{F}(w_n)$$
.

So, using the principal of mathematical induction, we prove that $w_k = \mathcal{F}^k(\perp_{S\to S})$.

3. Let \perp_S be the undefined state. Let $b \in \mathtt{BExp}$ be any boolean expression and $s \in \mathtt{Stmt}$ be any statement. Let $s_w = \mathtt{while}(b)$ s be a while loop. The functions $\mathcal{F} : (State \rightarrow State) \rightarrow (State \rightarrow State)$ corresponding to s_w is:

$$F(\alpha)(\sigma) = \begin{cases} \alpha(\llbracket s \rrbracket(\sigma)) & \text{if } \llbracket b \rrbracket(\sigma) = \mathsf{t} \\ \sigma & \text{if } \llbracket b \rrbracket(\sigma) = \mathsf{f} \\ \bot_S & \text{if } \llbracket b \rrbracket(\sigma) = \bot \end{cases}$$

The semantics of s_w can be described using the least fixed point of \mathcal{F} , fix (\mathcal{F}) . Let $\sigma \in State$ be any state. fix $(\mathcal{F})(\sigma)$ could be undefined due to the following reasons:

- Type 1: $\sigma = \bot_S$. The input state itself is undefined
- Type 2: $[\![b]\!](\sigma) = \bot$. There are some illegal operations in b, could be a divide-by-zero, or the use of an undeclared variable
- \bullet Type 3: the loop does not terminate in the state σ

It is obvious that any other fixed point of \mathcal{F} , say g, has to have at least as much information as $\operatorname{fix}(\mathcal{F})$ ($\operatorname{fix}(\mathcal{F}) \leq g$). So, g will stay the same for the states in which $\operatorname{fix}(\mathcal{F})$ is defined, and it can defined some states in which the loop is undefined. These could correspond to any of the 3 types above. But, g can only define those states in which the loop does not terminate (type 3), and not the other states, because then g will not be a fixed point of \mathcal{F} .