ANALYSIS-I

Chaitanya G K

Indian Statistical Institute, Bangalore

▶ Definition. A series $\sum_{n=1}^{\infty} b_n$ is said to be a rearrangement of a series $\sum_{n=1}^{\infty} a_n$ if there is a bijection f of \mathbb{N} onto \mathbb{N} such that $b_k = a_{f(k)}$ for all $k \in \mathbb{N}$.

- ▶ Definition. A series $\sum_{n=1}^{\infty} b_n$ is said to be a rearrangement of a series $\sum_{n=1}^{\infty} a_n$ if there is a bijection f of \mathbb{N} onto \mathbb{N} such that $b_k = a_{f(k)}$ for all $k \in \mathbb{N}$.
- ► Consider the alternating harmonic series $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}$.

- ▶ Definition. A series $\sum_{n=1}^{\infty} b_n$ is said to be a rearrangement of a series $\sum_{n=1}^{\infty} a_n$ if there is a bijection f of \mathbb{N} onto \mathbb{N} such that $b_k = a_{f(k)}$ for all $k \in \mathbb{N}$.
- ► Consider the alternating harmonic series $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}$.
- We know that it is convergent and its sum is $s = \ln(2)$.

- ▶ Definition. A series $\sum_{n=1}^{\infty} b_n$ is said to be a rearrangement of a series $\sum_{n=1}^{\infty} a_n$ if there is a bijection f of \mathbb{N} onto \mathbb{N} such that $b_k = a_{f(k)}$ for all $k \in \mathbb{N}$.
- ▶ Consider the alternating harmonic series $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}$.
- We know that it is convergent and its sum is $s = \ln(2)$.
- We have also seen that the rearranged series

$$1 - \frac{1}{2} - \frac{1}{4} + \frac{1}{3} - \frac{1}{6} - \frac{1}{8} + \dots + \frac{1}{2n-1} - \frac{1}{4n-2} - \frac{1}{4n} + \dots$$

is convergent and its sum is $\frac{s}{2}$

- ▶ Definition. A series $\sum_{n=1}^{\infty} b_n$ is said to be a rearrangement of a series $\sum_{n=1}^{\infty} a_n$ if there is a bijection f of \mathbb{N} onto \mathbb{N} such that $b_k = a_{f(k)}$ for all $k \in \mathbb{N}$.
- ▶ Consider the alternating harmonic series $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}$.
- We know that it is convergent and its sum is $s = \ln(2)$.
- We have also seen that the rearranged series

$$1 - \frac{1}{2} - \frac{1}{4} + \frac{1}{3} - \frac{1}{6} - \frac{1}{8} + \dots + \frac{1}{2n-1} - \frac{1}{4n-2} - \frac{1}{4n} + \dots$$

is convergent and its sum is $\frac{s}{2}$

► Thus the rearranged series may converge to a sum different from that of the given series.

- ▶ Definition. A series $\sum_{n=1}^{\infty} b_n$ is said to be a rearrangement of a series $\sum_{n=1}^{\infty} a_n$ if there is a bijection f of \mathbb{N} onto \mathbb{N} such that $b_k = a_{f(k)}$ for all $k \in \mathbb{N}$.
- ▶ Consider the alternating harmonic series $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}$.
- We know that it is convergent and its sum is $s = \ln(2)$.
- We have also seen that the rearranged series

$$1 - \frac{1}{2} - \frac{1}{4} + \frac{1}{3} - \frac{1}{6} - \frac{1}{8} + \dots + \frac{1}{2n-1} - \frac{1}{4n-2} - \frac{1}{4n} + \dots$$

is convergent and its sum is $\frac{s}{2}$

- Thus the rearranged series may converge to a sum different from that of the given series.
- However, things are not that bad when we deal with absolutely convergent series.

- ▶ Theorem (Rearrangement theorem). If $\sum_{n=1}^{\infty} a_n$ is absolutely convergent, then any rearrangement $\sum_{n=1}^{\infty} b_n$ of $\sum_{n=1}^{\infty} a_n$ converges to the same value.
 - Proof: Let $\{s_n\}_{n\in\mathbb{N}}$ be the sequence of partial sums of $\sum_{n=1}^{\infty} a_n$ and let $\sum_{n=1}^{\infty} a_n = a$.

- ▶ Theorem (Rearrangement theorem). If $\sum_{n=1}^{\infty} a_n$ is absolutely convergent, then any rearrangement $\sum_{n=1}^{\infty} b_n$ of $\sum_{n=1}^{\infty} a_n$ converges to the same value.
 - Proof: Let $\{s_n\}_{n\in\mathbb{N}}$ be the sequence of partial sums of $\sum_{n=1}^{\infty} a_n$ and let $\sum_{n=1}^{\infty} a_n = a$.
 - Let $\{t_n\}_{n\in\mathbb{N}}$ be the sequence of partial sums of $\sum_{n=1}^{\infty}b_n$

Proof: Let $\{s_n\}_{n\in\mathbb{N}}$ be the sequence of partial sums of $\sum_{n=1}^{\infty} a_n$ and let $\sum_{n=1}^{\infty} a_n = a$.

Let $\{t_n\}_{n\in\mathbb{N}}$ be the sequence of partial sums of $\sum_{n=1}^{\infty}b_n$ Claim: $\lim_{n\to\infty}t_n=a$.

Proof: Let $\{s_n\}_{n\in\mathbb{N}}$ be the sequence of partial sums of $\sum_{n=1}^{\infty}a_n$ and let $\sum_{n=1}^{\infty}a_n=a$.

Let $\{t_n\}_{n\in\mathbb{N}}$ be the sequence of partial sums of $\sum_{n=1}^{\infty}b_n$

Claim: $\lim_{n\to\infty} t_n = a$.

Let $\epsilon > 0$ be arbitrary.

Proof: Let $\{s_n\}_{n\in\mathbb{N}}$ be the sequence of partial sums of $\sum_{n=1}^{\infty}a_n$ and let $\sum_{n=1}^{\infty}a_n=a$.

Let $\{t_n\}_{n\in\mathbb{N}}$ be the sequence of partial sums of $\sum_{n=1}^{\infty}b_n$

Claim: $\lim_{n\to\infty} t_n = a$.

Let $\epsilon > 0$ be arbitrary.

Since $\lim_{n \to \infty} s_n = extit{a}$, there exists $extit{K}_1 \in \mathbb{N}$ such that

$$|s_n - a| < \epsilon, \ \forall n \ge K_1.$$

Proof: Let $\{s_n\}_{n\in\mathbb{N}}$ be the sequence of partial sums of $\sum_{n=1}^{\infty}a_n$ and let $\sum_{n=1}^{\infty}a_n=a$.

Let $\{t_n\}_{n\in\mathbb{N}}$ be the sequence of partial sums of $\sum_{n=1}^{\infty}b_n$

Claim: $\lim_{n\to\infty} t_n = a$.

Let $\epsilon > 0$ be arbitrary.

Since $\lim_{n o \infty} s_n = extit{a}$, there exists $extit{K}_1 \in \mathbb{N}$ such that

$$|s_n - a| < \epsilon, \ \forall n \ge K_1.$$

Since $\sum_{n=1}^{\infty} |a_n|$ is convergent, by Cauchy criterion, there exists $K_2 \in \mathbb{N}$ such that

$$\sum_{k=n+1}^{m} |a_k| < \epsilon, \ \forall m > n \ge K_2.$$

Proof: Let $\{s_n\}_{n\in\mathbb{N}}$ be the sequence of partial sums of $\sum_{n=1}^{\infty}a_n$ and let $\sum_{n=1}^{\infty}a_n=a$.

Let $\{t_n\}_{n\in\mathbb{N}}$ be the sequence of partial sums of $\sum_{n=1}^{\infty}b_n$

Claim: $\lim_{n\to\infty} t_n = a$.

Let $\epsilon > 0$ be arbitrary.

Since $\lim_{n o \infty} s_n = extit{a}$, there exists $extit{K}_1 \in \mathbb{N}$ such that

$$|s_n - a| < \epsilon, \ \forall n \ge K_1.$$

Since $\sum_{n=1}^{\infty} |a_n|$ is convergent, by Cauchy criterion, there exists $K_2 \in \mathbb{N}$ such that

$$\sum_{k=n+1}^{m} |a_k| < \epsilon, \ \forall m > n \ge K_2.$$

Let $K := \max\{K_1, K_2\}.$

$$|s_n - a| < \epsilon$$
 and $\sum_{k=K+1}^m |a_k| < \epsilon$ for all $n, m > K$.

$$|s_n - a| < \epsilon$$
 and $\sum_{k=K+1}^m |a_k| < \epsilon$ for all $n, m > K$.

Choose $M \in \mathbb{N}$ such that all of the terms a_1, a_2, \dots, a_K are contained as summands in t_M .

$$|s_n - a| < \epsilon$$
 and $\sum_{k=K+1}^m |a_k| < \epsilon$ for all $n, m > K$.

Choose $M \in \mathbb{N}$ such that all of the terms a_1, a_2, \dots, a_K are contained as summands in t_M .

Then it follows that if $l \ge M$, then $t_l - s_{K+1}$ is the sum of a finite number of terms a_k with index k > K.

$$|s_n - a| < \epsilon$$
 and $\sum_{k=K+1}^m |a_k| < \epsilon$ for all $n, m > K$.

Choose $M \in \mathbb{N}$ such that all of the terms a_1, a_2, \dots, a_K are contained as summands in t_M .

Then it follows that if $l \ge M$, then $t_l - s_{K+1}$ is the sum of a finite number of terms a_k with index k > K.

Hence, for some m > K, we have

$$|t_I - s_{K+1}| \le \sum_{k=K+1}^m |a_k| < \epsilon.$$

$$|s_n - a| < \epsilon$$
 and $\sum_{k=K+1}^m |a_k| < \epsilon$ for all $n, m > K$.

Choose $M \in \mathbb{N}$ such that all of the terms a_1, a_2, \dots, a_K are contained as summands in t_M .

Then it follows that if $l \ge M$, then $t_l - s_{K+1}$ is the sum of a finite number of terms a_k with index k > K.

Hence, for some m > K, we have

$$|t_I - s_{K+1}| \leq \sum_{k=K+1}^{m} |a_k| < \epsilon.$$

Therefore, if $l \geq M$, we have

$$|t_l - a| \le |t_l - s_{K+1}| + |s_{K+1} - a| < \epsilon + \epsilon = 2\epsilon.$$

$$|s_n - a| < \epsilon$$
 and $\sum_{k=K+1}^m |a_k| < \epsilon$ for all $n, m > K$.

Choose $M \in \mathbb{N}$ such that all of the terms a_1, a_2, \ldots, a_K are contained as summands in t_M .

Then it follows that if $l \geq M$, then $t_l - s_{K+1}$ is the sum of a finite number of terms a_k with index k > K.

Hence, for some m > K, we have

$$|t_I - s_{K+1}| \leq \sum_{k=K+1}^{m} |a_k| < \epsilon.$$

Therefore, if I > M, we have

$$|t_I - a| \le |t_I - s_{K+1}| + |s_{K+1} - a| < \epsilon + \epsilon = 2\epsilon.$$

Since $\epsilon>0$ is arbitrary, we conclude that $\lim_{n\to\infty}t_n=a$.

► The next theorem is in contrast with the Rearrangement theorem and it says something very dramatic and surprising.

- ► The next theorem is in contrast with the Rearrangement theorem and it says something very dramatic and surprising.
- ► Theorem (Riemann's theorem). A conditionally convergent series can be made to converge to any arbitrary real number or even made to diverge by a suitable rearrangement of its terms.

- ► The next theorem is in contrast with the Rearrangement theorem and it says something very dramatic and surprising.
- ► Theorem (Riemann's theorem). A conditionally convergent series can be made to converge to any arbitrary real number or even made to diverge by a suitable rearrangement of its terms.
- ► Thus there are rearrangements of $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}$ which converge to $\frac{1}{\sqrt{2}}$, $\sqrt[3]{5}$, and so on.

- ► The next theorem is in contrast with the Rearrangement theorem and it says something very dramatic and surprising.
- ► Theorem (Riemann's theorem). A conditionally convergent series can be made to converge to any arbitrary real number or even made to diverge by a suitable rearrangement of its terms.
- ► Thus there are rearrangements of $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}$ which converge to $\frac{1}{\sqrt{2}}$, $\sqrt[3]{5}$, and so on.
- ➤ This theorem should convince us of the danger of manipulating an infinite series without any attention to rigorous analysis.

- ► The next theorem is in contrast with the Rearrangement theorem and it says something very dramatic and surprising.
- ► Theorem (Riemann's theorem). A conditionally convergent series can be made to converge to any arbitrary real number or even made to diverge by a suitable rearrangement of its terms.
- ► Thus there are rearrangements of $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}$ which converge to $\frac{1}{\sqrt{2}}$, $\sqrt[3]{5}$, and so on.
- ➤ This theorem should convince us of the danger of manipulating an infinite series without any attention to rigorous analysis.
- ► To prove this theorem, we need the notions of positive and negative parts of a series.

$$a_n^+ := \max\{a_n, 0\}$$
 and $a_n^- := -\min\{a_n, 0\}.$

$$a_n^+ := \max\{a_n, 0\}$$
 and $a_n^- := -\min\{a_n, 0\}.$

▶ We call the series $\sum_{n=1}^{\infty} a_n^+$ as the series of positive terms of $\sum_{n=1}^{\infty} a_n$. Similarly, we call series $\sum_{n=1}^{\infty} a_n^-$ as the series of negative terms of $\sum_{n=1}^{\infty} a_n$.

$$a_n^+ := \max\{a_n, 0\}$$
 and $a_n^- := -\min\{a_n, 0\}.$

- ▶ We call the series $\sum_{n=1}^{\infty} a_n^+$ as the series of positive terms of $\sum_{n=1}^{\infty} a_n$. Similarly, we call series $\sum_{n=1}^{\infty} a_n^-$ as the series of negative terms of $\sum_{n=1}^{\infty} a_n$.
- ▶ Note that all the terms of both these series are non-negative.

$$a_n^+ := \max\{a_n, 0\}$$
 and $a_n^- := -\min\{a_n, 0\}.$

- ▶ We call the series $\sum_{n=1}^{\infty} a_n^+$ as the series of positive terms of $\sum_{n=1}^{\infty} a_n$. Similarly, we call series $\sum_{n=1}^{\infty} a_n^-$ as the series of negative terms of $\sum_{n=1}^{\infty} a_n$.
- ▶ Note that all the terms of both these series are non-negative.
- ▶ For example, if $a_n = \frac{(-1)^{n+1}}{n}$, then

$$\sum_{n=1}^{\infty} a_n^+ = 1 + 0 + \frac{1}{3} + 0 + \frac{1}{5} + \cdots$$

and

$$\sum_{n=1}^{\infty} a_n^- = 0 + \frac{1}{2} + 0 + \frac{1}{4} + 0 + \cdots$$

Proof: Let $\{s_n\}_{n\in\mathbb{N}}$, $\{t_n\}_{n\in\mathbb{N}}$, $\{u_n^+\}_{n\in\mathbb{N}}$ and $\{u_n^-\}_{n\in\mathbb{N}}$ be the sequence of partial sums of $\sum_{n=1}^{\infty}a_n$, $\sum_{n=1}^{\infty}|a_n|$, $\sum_{n=1}^{\infty}a_n^+$ and $\sum_{n=1}^{\infty}a_n^-$, respectively.

Proof: Let $\{s_n\}_{n\in\mathbb{N}}$, $\{t_n\}_{n\in\mathbb{N}}$, $\{u_n^+\}_{n\in\mathbb{N}}$ and $\{u_n^-\}_{n\in\mathbb{N}}$ be the sequence of partial sums of $\sum_{n=1}^{\infty} a_n$, $\sum_{n=1}^{\infty} |a_n|$, $\sum_{n=1}^{\infty} a_n^+$ and $\sum_{n=1}^{\infty} a_n^-$, respectively.

Note that u_n^+ is the sum of non-negative terms in s_n and $-u_n^-$ is the sum of the negative terms in s_n for all $n \in \mathbb{N}$.

Proof: Let $\{s_n\}_{n\in\mathbb{N}}$, $\{t_n\}_{n\in\mathbb{N}}$, $\{u_n^+\}_{n\in\mathbb{N}}$ and $\{u_n^-\}_{n\in\mathbb{N}}$ be the sequence of partial sums of $\sum_{n=1}^{\infty} a_n$, $\sum_{n=1}^{\infty} |a_n|$, $\sum_{n=1}^{\infty} a_n^+$ and $\sum_{n=1}^{\infty} a_n^-$, respectively.

Note that u_n^+ is the sum of non-negative terms in s_n and $-u_n^-$ is the sum of the negative terms in s_n for all $n \in \mathbb{N}$.

Therefore we have

$$t_n = \sum_{k=1}^n |a_k| = u_n^+ + u_n^-$$
 and $s_n = u_n^+ - u_n^-$ for all $n \in \mathbb{N}$

Proof: Let $\{s_n\}_{n\in\mathbb{N}}$, $\{t_n\}_{n\in\mathbb{N}}$, $\{u_n^+\}_{n\in\mathbb{N}}$ and $\{u_n^-\}_{n\in\mathbb{N}}$ be the sequence of partial sums of $\sum_{n=1}^{\infty}a_n$, $\sum_{n=1}^{\infty}|a_n|$, $\sum_{n=1}^{\infty}a_n^+$ and $\sum_{n=1}^{\infty}a_n^-$, respectively.

Note that u_n^+ is the sum of non-negative terms in s_n and $-u_n^-$ is the sum of the negative terms in s_n for all $n \in \mathbb{N}$.

Therefore we have

$$t_n = \sum_{k=1}^n |a_k| = u_n^+ + u_n^-$$
 and $s_n = u_n^+ - u_n^-$ for all $n \in \mathbb{N}$

Let
$$\lim_{n\to\infty} s_n = s$$
.

Proof: Let $\{s_n\}_{n\in\mathbb{N}}$, $\{t_n\}_{n\in\mathbb{N}}$, $\{u_n^+\}_{n\in\mathbb{N}}$ and $\{u_n^-\}_{n\in\mathbb{N}}$ be the sequence of partial sums of $\sum_{n=1}^{\infty} a_n$, $\sum_{n=1}^{\infty} |a_n|$, $\sum_{n=1}^{\infty} a_n^+$ and $\sum_{n=1}^{\infty} a_n^-$, respectively.

Note that u_n^+ is the sum of non-negative terms in s_n and $-u_n^-$ is the sum of the negative terms in s_n for all $n \in \mathbb{N}$.

Therefore we have

$$t_n = \sum_{k=1}^n |a_k| = u_n^+ + u_n^-$$
 and $s_n = u_n^+ - u_n^-$ for all $n \in \mathbb{N}$

Let
$$\lim_{n\to\infty} s_n = s$$
.

Observe that both $\{u_n^+\}_{n\in\mathbb{N}}$ and $\{u_n^-\}_{n\in\mathbb{N}}$ are increasing.

Proposition. If $\sum_{n=1}^{\infty} a_n$ is conditionally convergent, then $\sum_{n=1}^{\infty} a_n^+$ and $\sum_{n=1}^{\infty} a_n^-$ are both divergent.

Proof: Let $\{s_n\}_{n\in\mathbb{N}}$, $\{t_n\}_{n\in\mathbb{N}}$, $\{u_n^+\}_{n\in\mathbb{N}}$ and $\{u_n^-\}_{n\in\mathbb{N}}$ be the sequence of partial sums of $\sum_{n=1}^{\infty}a_n$, $\sum_{n=1}^{\infty}|a_n|$, $\sum_{n=1}^{\infty}a_n^+$ and $\sum_{n=1}^{\infty}a_n^-$, respectively.

Note that u_n^+ is the sum of non-negative terms in s_n and $-u_n^-$ is the sum of the negative terms in s_n for all $n \in \mathbb{N}$.

Therefore we have

$$t_n = \sum_{k=1}^n |a_k| = u_n^+ + u_n^-$$
 and $s_n = u_n^+ - u_n^-$ for all $n \in \mathbb{N}$

Let
$$\lim_{n\to\infty} s_n = s$$
.

 $n \rightarrow \infty$

Observe that both $\{u_n^+\}_{n\in\mathbb{N}}$ and $\{u_n^-\}_{n\in\mathbb{N}}$ are increasing.

By hypothesis $\sum_{n=1}^{\infty} |a_n|$ is divergent, which implies that $\lim_{n \to \infty} t_n = \infty$.

$$u_n^+ = \frac{t_n + s_n}{2}$$
 and $u_n^- = \frac{t_n - s_n}{2}$ for all $n \in \mathbb{N}$

$$u_n^+ = \frac{t_n + s_n}{2}$$
 and $u_n^- = \frac{t_n - s_n}{2}$ for all $n \in \mathbb{N}$

We shall show that $\lim_{n\to\infty}u_n^+=\infty$.

$$u_n^+ = \frac{t_n + s_n}{2}$$
 and $u_n^- = \frac{t_n - s_n}{2}$ for all $n \in \mathbb{N}$

We shall show that $\lim_{n\to\infty}u_n^+=\infty.$

Let r > 0 be arbitrary.

$$u_n^+ = \frac{t_n + s_n}{2}$$
 and $u_n^- = \frac{t_n - s_n}{2}$ for all $n \in \mathbb{N}$

We shall show that $\lim_{n\to\infty}u_n^+=\infty$.

Let r > 0 be arbitrary.

Since $\{s_n\}_{n\in\mathbb{N}}$ is bounded, there exists M>0 such that

$$-M \leq s_n \leq M, \ \forall n \in \mathbb{N}.$$

$$u_n^+ = \frac{t_n + s_n}{2}$$
 and $u_n^- = \frac{t_n - s_n}{2}$ for all $n \in \mathbb{N}$

We shall show that $\lim_{n\to\infty} u_n^+ = \infty$.

Let r > 0 be arbitrary.

Since $\{s_n\}_{n\in\mathbb{N}}$ is bounded, there exists M>0 such that

$$-M \leq s_n \leq M, \ \forall n \in \mathbb{N}.$$

Since $\lim_{n \to \infty} t_n = \infty$, there exists $K \in \mathbb{N}$ such that

$$t_n > 2r + M, \ \forall n \geq K.$$

$$u_n^+ = \frac{t_n + s_n}{2}$$
 and $u_n^- = \frac{t_n - s_n}{2}$ for all $n \in \mathbb{N}$

We shall show that $\lim_{n\to\infty} u_n^+ = \infty$.

Let r > 0 be arbitrary.

Since $\{s_n\}_{n\in\mathbb{N}}$ is bounded, there exists M>0 such that

$$-M \le s_n \le M, \ \forall n \in \mathbb{N}.$$

Since $\lim_{n \to \infty} t_n = \infty$, there exists $K \in \mathbb{N}$ such that

$$t_n > 2r + M, \ \forall n \geq K.$$

Then
$$t_n+s_n>(2r+M)+(-M)=2r, \forall n\geq K$$
, implying that
$$u_n^+=\frac{t_n+s_n}{2}>\frac{2r}{2}=r, \ \forall n\geq K.$$

$$u_n^+ = \frac{t_n + s_n}{2}$$
 and $u_n^- = \frac{t_n - s_n}{2}$ for all $n \in \mathbb{N}$

We shall show that $\lim_{n\to\infty} u_n^+ = \infty$.

Let r > 0 be arbitrary.

Since $\{s_n\}_{n\in\mathbb{N}}$ is bounded, there exists M>0 such that

$$-M \le s_n \le M, \ \forall n \in \mathbb{N}.$$

Since $\lim_{n \to \infty} t_n = \infty$, there exists $K \in \mathbb{N}$ such that

$$t_n > 2r + M, \ \forall n \geq K.$$

Then
$$t_n+s_n>(2r+M)+(-M)=2r, \forall n\geq K$$
, implying that
$$u_n^+=\frac{t_n+s_n}{2}>\frac{2r}{2}=r, \ \forall n\geq K.$$

Therefore $\lim_{n\to\infty} u_n^+ = \infty$.

$$u_n^+ = \frac{t_n + s_n}{2}$$
 and $u_n^- = \frac{t_n - s_n}{2}$ for all $n \in \mathbb{N}$

We shall show that $\lim_{n\to\infty}u_n^+=\infty$.

Let r > 0 be arbitrary.

Since $\{s_n\}_{n\in\mathbb{N}}$ is bounded, there exists M>0 such that

$$-M \le s_n \le M, \ \forall n \in \mathbb{N}.$$

Since $\lim_{n \to \infty} t_n = \infty$, there exists $K \in \mathbb{N}$ such that

$$t_n > 2r + M, \ \forall n \geq K.$$

Then
$$t_n+s_n>(2r+M)+(-M)=2r, \forall n\geq K$$
, implying that
$$u_n^+=\frac{t_n+s_n}{2}>\frac{2r}{2}=r, \ \forall n\geq K.$$

Therefore $\lim_{n\to\infty}u_n^+=\infty$. A similar argument shows that $\lim_{n\to\infty}u_n^-=\infty$.

- ► Sketch of the proof of Riemann's theorem:
 - Let $\sum_{n=1}^{\infty} a_n$ be a conditionally convergent series and let $c \in \mathbb{R}$ be fixed.

- ► Sketch of the proof of Riemann's theorem:
 - Let $\sum_{n=1}^{\infty} a_n$ be a conditionally convergent series and let $c \in \mathbb{R}$ be fixed.
 - ▶ Then both $\sum_{n=1}^{\infty} a_n^+$ and $\sum_{n=1}^{\infty} a_n^-$ diverges to infinity.

- ► Sketch of the proof of Riemann's theorem:
 - Let $\sum_{n=1}^{\infty} a_n$ be a conditionally convergent series and let $c \in \mathbb{R}$ be fixed.
 - ▶ Then both $\sum_{n=1}^{\infty} a_n^+$ and $\sum_{n=1}^{\infty} a_n^-$ diverges to infinity.
 - ▶ Choose the least $K_1 \in \mathbb{N}$ such that $\sum_{n=1}^{K_1} a_n^+$ exceeds c.

- ► Sketch of the proof of Riemann's theorem:
 - Let $\sum_{n=1}^{\infty} a_n$ be a conditionally convergent series and let $c \in \mathbb{R}$ be fixed.
 - ▶ Then both $\sum_{n=1}^{\infty} a_n^+$ and $\sum_{n=1}^{\infty} a_n^-$ diverges to infinity.
 - ▶ Choose the least $K_1 \in \mathbb{N}$ such that $\sum_{n=1}^{K_1} a_n^+$ exceeds c.
 - Then subtract just enough terms from $\{a_n^-\}$ so that the resulting sums is less than c.

- ► Sketch of the proof of Riemann's theorem:
 - Let $\sum_{n=1}^{\infty} a_n$ be a conditionally convergent series and let $c \in \mathbb{R}$ be fixed.
 - ▶ Then both $\sum_{n=1}^{\infty} a_n^+$ and $\sum_{n=1}^{\infty} a_n^-$ diverges to infinity.
 - ▶ Choose the least $K_1 \in \mathbb{N}$ such that $\sum_{n=1}^{K_1} a_n^+$ exceeds c.
 - Then subtract just enough terms from $\{a_n^-\}$ so that the resulting sums is less than c.
 - And, so on.

- ► Sketch of the proof of Riemann's theorem:
 - Let $\sum_{n=1}^{\infty} a_n$ be a conditionally convergent series and let $c \in \mathbb{R}$ be fixed.
 - ▶ Then both $\sum_{n=1}^{\infty} a_n^+$ and $\sum_{n=1}^{\infty} a_n^-$ diverges to infinity.
 - ▶ Choose the least $K_1 \in \mathbb{N}$ such that $\sum_{n=1}^{K_1} a_n^+$ exceeds c.
 - ▶ Then subtract just enough terms from $\{a_n^-\}$ so that the resulting sums is less than c.
 - And, so on.
 - ► These steps are possible since both $\sum_{n=1}^{\infty} a_n^+$ and $\sum_{n=1}^{\infty} a_n^-$ diverges to infinity.

- ► Sketch of the proof of Riemann's theorem:
 - Let $\sum_{n=1}^{\infty} a_n$ be a conditionally convergent series and let $c \in \mathbb{R}$ be fixed.
 - ▶ Then both $\sum_{n=1}^{\infty} a_n^+$ and $\sum_{n=1}^{\infty} a_n^-$ diverges to infinity.
 - ▶ Choose the least $K_1 \in \mathbb{N}$ such that $\sum_{n=1}^{K_1} a_n^+$ exceeds c.
 - Then subtract just enough terms from $\{a_n^{-1}\}$ so that the resulting sums is less than c.
 - And, so on.
 - ► These steps are possible since both $\sum_{n=1}^{\infty} a_n^+$ and $\sum_{n=1}^{\infty} a_n^-$ diverges to infinity.
 - ▶ Obviously, we obtain a rearrangement of $\sum_{n=1}^{\infty} a_n$.

- ► Sketch of the proof of Riemann's theorem:
 - Let $\sum_{n=1}^{\infty} a_n$ be a conditionally convergent series and let $c \in \mathbb{R}$ be fixed.
 - ▶ Then both $\sum_{n=1}^{\infty} a_n^+$ and $\sum_{n=1}^{\infty} a_n^-$ diverges to infinity.
 - ▶ Choose the least $K_1 \in \mathbb{N}$ such that $\sum_{n=1}^{K_1} a_n^+$ exceeds c.
 - Then subtract just enough terms from $\{a_n^-\}$ so that the resulting sums is less than c.
 - And, so on.
 - ► These steps are possible since both $\sum_{n=1}^{\infty} a_n^+$ and $\sum_{n=1}^{\infty} a_n^-$ diverges to infinity.
 - ▶ Obviously, we obtain a rearrangement of $\sum_{n=1}^{\infty} a_n$.
 - Exploit the fact that $a_n \to 0$ to estimate at each step how much the sum differ from c.

- ► Sketch of the proof of Riemann's theorem:
 - Let $\sum_{n=1}^{\infty} a_n$ be a conditionally convergent series and let $c \in \mathbb{R}$ be fixed.
 - ▶ Then both $\sum_{n=1}^{\infty} a_n^+$ and $\sum_{n=1}^{\infty} a_n^-$ diverges to infinity.
 - ▶ Choose the least $K_1 \in \mathbb{N}$ such that $\sum_{n=1}^{K_1} a_n^+$ exceeds c.
 - Then subtract just enough terms from $\{a_n^-\}$ so that the resulting sums is less than c.
 - And, so on.
 - ► These steps are possible since both $\sum_{n=1}^{\infty} a_n^+$ and $\sum_{n=1}^{\infty} a_n^-$ diverges to infinity.
 - ▶ Obviously, we obtain a rearrangement of $\sum_{n=1}^{\infty} a_n$.
 - Exploit the fact that $a_n \to 0$ to estimate at each step how much the sum differ from c.
 - ▶ It follows that the sequence of partial sums of the rearranged series converges to *c*.

- ► Sketch of the proof of Riemann's theorem:
 - Let $\sum_{n=1}^{\infty} a_n$ be a conditionally convergent series and let $c \in \mathbb{R}$ be fixed.
 - ▶ Then both $\sum_{n=1}^{\infty} a_n^+$ and $\sum_{n=1}^{\infty} a_n^-$ diverges to infinity.
 - ▶ Choose the least $K_1 \in \mathbb{N}$ such that $\sum_{n=1}^{K_1} a_n^+$ exceeds c.
 - Then subtract just enough terms from $\{a_n^-\}$ so that the resulting sums is less than c.
 - And, so on.
 - ► These steps are possible since both $\sum_{n=1}^{\infty} a_n^+$ and $\sum_{n=1}^{\infty} a_n^-$ diverges to infinity.
 - ▶ Obviously, we obtain a rearrangement of $\sum_{n=1}^{\infty} a_n$.
 - Exploit the fact that $a_n \to 0$ to estimate at each step how much the sum differ from c.
 - ▶ It follows that the sequence of partial sums of the rearranged series converges to *c*.
- ► Reference: Theorem 3.54 in [Walter Rudin, Principles of Mathematical Analysis, Third Edition, McGraw Hill Inc., 1976]

or

Theorem 8.33 in [Tom M. Apostol, Mathematical Analysis, Addison-Wesley Publishing Company, Inc., 1974]

▶ Similar to $\sum_{n=1}^{\infty} a_n$, it is natural to ask: What is the meaning of $\prod_{n=1}^{\infty} a_n$ when $\{a_n\}_{n\in\mathbb{N}}$ is a real sequence?

- Similar to $\sum_{n=1}^{\infty} a_n$, it is natural to ask: What is the meaning of $\prod_{n=1}^{\infty} a_n$ when $\{a_n\}_{n\in\mathbb{N}}$ is a real sequence?
- ▶ Definition. Let $\{a_n\}_{n\in\mathbb{N}}$ be a sequence of real numbers. An expression of the form $\prod_{n=1}^{\infty} a_n$ is called an infinite product.

- Similar to $\sum_{n=1}^{\infty} a_n$, it is natural to ask: What is the meaning of $\prod_{n=1}^{\infty} a_n$ when $\{a_n\}_{n\in\mathbb{N}}$ is a real sequence?
- ▶ Definition. Let $\{a_n\}_{n\in\mathbb{N}}$ be a sequence of real numbers. An expression of the form $\prod_{n=1}^{\infty} a_n$ is called an infinite product.

For each $n \in \mathbb{N}$, the finite product $p_n = \prod_{k=1}^n a_k$ is called the n^{th} partial product of $\prod_{n=1}^{\infty} a_n$.

- Similar to $\sum_{n=1}^{\infty} a_n$, it is natural to ask: What is the meaning of $\prod_{n=1}^{\infty} a_n$ when $\{a_n\}_{n\in\mathbb{N}}$ is a real sequence?
- ▶ Definition. Let $\{a_n\}_{n\in\mathbb{N}}$ be a sequence of real numbers. An expression of the form $\prod_{n=1}^{\infty} a_n$ is called an infinite product.

For each $n \in \mathbb{N}$, the finite product $p_n = \prod_{k=1}^n a_k$ is called the n^{th} partial product of $\prod_{n=1}^{\infty} a_n$.

For each $n \in \mathbb{N}$, the number a_n is called the n^{th} factor of $\prod_{n=1}^{\infty} a_n$.

- Similar to $\sum_{n=1}^{\infty} a_n$, it is natural to ask: What is the meaning of $\prod_{n=1}^{\infty} a_n$ when $\{a_n\}_{n\in\mathbb{N}}$ is a real sequence?
- ▶ Definition. Let $\{a_n\}_{n\in\mathbb{N}}$ be a sequence of real numbers. An expression of the form $\prod_{n=1}^{\infty} a_n$ is called an infinite product.

For each $n \in \mathbb{N}$, the finite product $p_n = \prod_{k=1}^n a_k$ is called the n^{th} partial product of $\prod_{n=1}^{\infty} a_n$.

For each $n \in \mathbb{N}$, the number a_n is called the n^{th} factor of $\prod_{n=1}^{\infty} a_n$.

The symbol $\prod_{n=N+1}^{\infty} a_n$ means $\prod_{n=1}^{\infty} a_{N+n}$.

- Similar to $\sum_{n=1}^{\infty} a_n$, it is natural to ask: What is the meaning of $\prod_{n=1}^{\infty} a_n$ when $\{a_n\}_{n\in\mathbb{N}}$ is a real sequence?
- ▶ Definition. Let $\{a_n\}_{n\in\mathbb{N}}$ be a sequence of real numbers. An expression of the form $\prod_{n=1}^{\infty} a_n$ is called an infinite product.

For each $n \in \mathbb{N}$, the finite product $p_n = \prod_{k=1}^n a_k$ is called the n^{th} partial product of $\prod_{n=1}^{\infty} a_n$.

For each $n \in \mathbb{N}$, the number a_n is called the n^{th} factor of $\prod_{n=1}^{\infty} a_n$.

The symbol $\prod_{n=N+1}^{\infty} a_n$ means $\prod_{n=1}^{\infty} a_{N+n}$.

▶ By analogy with infinite series, it seems natural to call the product $\prod_{n=1}^{\infty} a_n$ converges if $\{p_n\}_{n\in\mathbb{N}}$ converges.

- Similar to $\sum_{n=1}^{\infty} a_n$, it is natural to ask: What is the meaning of $\prod_{n=1}^{\infty} a_n$ when $\{a_n\}_{n\in\mathbb{N}}$ is a real sequence?
- ▶ Definition. Let $\{a_n\}_{n\in\mathbb{N}}$ be a sequence of real numbers. An expression of the form $\prod_{n=1}^{\infty} a_n$ is called an infinite product.

For each $n \in \mathbb{N}$, the finite product $p_n = \prod_{k=1}^n a_k$ is called the n^{th} partial product of $\prod_{n=1}^{\infty} a_n$.

For each $n \in \mathbb{N}$, the number a_n is called the n^{th} factor of $\prod_{n=1}^{\infty} a_n$.

The symbol $\prod_{n=N+1}^{\infty} a_n$ means $\prod_{n=1}^{\infty} a_{N+n}$.

- ▶ By analogy with infinite series, it seems natural to call the product $\prod_{n=1}^{\infty} a_n$ converges if $\{p_n\}_{n\in\mathbb{N}}$ converges.
- However, this definition is inconvenient since every product having one factor zero would converge regardless of the behavior of the other factors.

▶ Definition. Let $\prod_{n=1}^{\infty} a_n$ be an infinite product of real numbers.

- ▶ Definition. Let $\prod_{n=1}^{\infty} a_n$ be an infinite product of real numbers.
 - (i) If infinitely many factors a_n are zero, then we say that the product diverges to zero.

- ▶ Definition. Let $\prod_{n=1}^{\infty} a_n$ be an infinite product of real numbers.
 - (i) If infinitely many factors a_n are zero, then we say that the product diverges to zero.
 - (ii) If no factor a_n is zero, then we say that the product is convergent if there exists a real number $p \neq 0$ such that $\lim_{n \to \infty} p_n = p$.

- ▶ Definition. Let $\prod_{n=1}^{\infty} a_n$ be an infinite product of real numbers.
 - (i) If infinitely many factors a_n are zero, then we say that the product diverges to zero.
 - (ii) If no factor a_n is zero, then we say that the product is convergent if there exists a real number $p \neq 0$ such that $\lim_{n \to \infty} p_n = p$.

In this case, p is called the value of the product and we write $p = \prod_{n=1}^{\infty} a_n$.

- ▶ Definition. Let $\prod_{n=1}^{\infty} a_n$ be an infinite product of real numbers.
 - (i) If infinitely many factors a_n are zero, then we say that the product diverges to zero.
 - (ii) If no factor a_n is zero, then we say that the product is convergent if there exists a real number $p \neq 0$ such that $\lim_{n \to \infty} p_n = p$.

In this case, p is called the value of the product and we write $p = \prod_{n=1}^{\infty} a_n$.

If $\lim_{n \to \infty} p_n = 0$., then we say that the product diverges to zero.

- ▶ Definition. Let $\prod_{n=1}^{\infty} a_n$ be an infinite product of real numbers.
 - (i) If infinitely many factors a_n are zero, then we say that the product diverges to zero.
 - (ii) If no factor a_n is zero, then we say that the product is convergent if there exists a real number $p \neq 0$ such that $\lim_{n \to \infty} p_n = p$.

In this case, p is called the value of the product and we write $p = \prod_{n=1}^{\infty} a_n$.

If $\lim_{n\to\infty}p_n=0$., then we say that the product diverges to zero.

(iii) If there exists an $N \in \mathbb{N}$ such that n > N implies $a_n \neq 0$, then we say that $\prod_{n=1}^{\infty} a_n$ is convergent provided that $\prod_{n=N+1}^{\infty} a_n$ converges as described in (ii).

- ▶ Definition. Let $\prod_{n=1}^{\infty} a_n$ be an infinite product of real numbers.
 - (i) If infinitely many factors a_n are zero, then we say that the product diverges to zero.
 - (ii) If no factor a_n is zero, then we say that the product is convergent if there exists a real number $p \neq 0$ such that $\lim_{n \to \infty} p_n = p$.

In this case, p is called the value of the product and we write $p = \prod_{n=1}^{\infty} a_n$.

If $\lim_{n\to\infty} p_n = 0$., then we say that the product diverges to zero.

(iii) If there exists an $N \in \mathbb{N}$ such that n > N implies $a_n \neq 0$, then we say that $\prod_{n=1}^{\infty} a_n$ is convergent provided that $\prod_{n=N+1}^{\infty} a_n$ converges as described in (ii).

In this case the value of the product $\prod_{n=1}^{\infty} a_n$ is

$$a_1a_2\cdots a_N\prod_{n=N+1}^{\infty}a_n.$$

(iv) $\prod_{n=1}^{\infty} a_n$ is called divergent if it does not converge as described in (ii) or (iii).

Note that value of a convergent infinite product can be zero. But this happen if and only if a finite number of factors are zero.

- Note that value of a convergent infinite product can be zero. But this happen if and only if a finite number of factors are zero.
- ► The convergence of an infinite product is not affected by inserting or removing a finite number of factors, zero or not.

- Note that value of a convergent infinite product can be zero. But this happen if and only if a finite number of factors are zero.
- ► The convergence of an infinite product is not affected by inserting or removing a finite number of factors, zero or not.
- ▶ This fact makes the above definition very convenient.

- Note that value of a convergent infinite product can be zero. But this happen if and only if a finite number of factors are zero.
- ► The convergence of an infinite product is not affected by inserting or removing a finite number of factors, zero or not.
- ▶ This fact makes the above definition very convenient.
- ▶ Theorem (Cauchy criterion). The infinite product $\prod_{n=1}^{\infty} a_n$ is convergent if and only if for every $\epsilon > 0$, there exists an $N \in \mathbb{N}$ such that

$$|a_{n+1}a_{n+2}\cdots a_m-1|<\epsilon, \ \forall m>n\geq N.$$

- Note that value of a convergent infinite product can be zero. But this happen if and only if a finite number of factors are zero.
- ► The convergence of an infinite product is not affected by inserting or removing a finite number of factors, zero or not.
- This fact makes the above definition very convenient.
- ▶ Theorem (Cauchy criterion). The infinite product $\prod_{n=1}^{\infty} a_n$ is convergent if and only if for every $\epsilon > 0$, there exists an $N \in \mathbb{N}$ such that

$$|a_{n+1}a_{n+2}\cdots a_m-1|<\epsilon, \ \forall m>n\geq N.$$

▶ Theorem. If $\prod_{n=1}^{\infty} a_n$ is convergent, then $\lim_{n\to\infty} a_n = 1$.

- Note that value of a convergent infinite product can be zero. But this happen if and only if a finite number of factors are zero.
- ► The convergence of an infinite product is not affected by inserting or removing a finite number of factors, zero or not.
- This fact makes the above definition very convenient.
- ▶ Theorem (Cauchy criterion). The infinite product $\prod_{n=1}^{\infty} a_n$ is convergent if and only if for every $\epsilon > 0$, there exists an $N \in \mathbb{N}$ such that

$$|a_{n+1}a_{n+2}\cdots a_m-1|<\epsilon, \ \forall m>n\geq N.$$

- ▶ Theorem. If $\prod_{n=1}^{\infty} a_n$ is convergent, then $\lim_{n\to\infty} a_n = 1$.
- ▶ For this reason, the factors of a product are written as $1 + a_n$ instead of just a_n . Thus, if $\prod_{n=1}^{\infty} (1 + a_n)$ is convergent, then $\lim_{n \to \infty} a_n = 0$.

▶ Theorem. Let $a_n > 0$ for all $n \in \mathbb{N}$. Then $\prod_{n=1}^{\infty} (1 + a_n)$ is convergent if and only if $\sum_{n=1}^{\infty} a_n$ is convergent.

- ▶ Theorem. Let $a_n > 0$ for all $n \in \mathbb{N}$. Then $\prod_{n=1}^{\infty} (1 + a_n)$ is convergent if and only if $\sum_{n=1}^{\infty} a_n$ is convergent.
- ▶ Definition. The product $\prod_{n=1}^{\infty} (1+a_n)$ is said to be absolutely convergent if $\prod_{n=1}^{\infty} (1+|a_n|)$ is convergent.

- ▶ Theorem. Let $a_n > 0$ for all $n \in \mathbb{N}$. Then $\prod_{n=1}^{\infty} (1 + a_n)$ is convergent if and only if $\sum_{n=1}^{\infty} a_n$ is convergent.
- ▶ Definition. The product $\prod_{n=1}^{\infty} (1+a_n)$ is said to be absolutely convergent if $\prod_{n=1}^{\infty} (1+|a_n|)$ is convergent.
- ▶ Theorem. If $\prod_{n=1}^{\infty} (1 + a_n)$ is absolutely convergent, then it is convergent.

- ▶ Theorem. Let $a_n > 0$ for all $n \in \mathbb{N}$. Then $\prod_{n=1}^{\infty} (1 + a_n)$ is convergent if and only if $\sum_{n=1}^{\infty} a_n$ is convergent.
- ▶ Definition. The product $\prod_{n=1}^{\infty} (1+a_n)$ is said to be absolutely convergent if $\prod_{n=1}^{\infty} (1+|a_n|)$ is convergent.
- ▶ Theorem. If $\prod_{n=1}^{\infty} (1 + a_n)$ is absolutely convergent, then it is convergent.
- ▶ Theorem. The product $\prod_{n=1}^{\infty} (1 + a_n)$ is absolutely convergent if and only if $\sum_{n=1}^{\infty} a_n$ is absolutely convergent.

- ▶ Theorem. Let $a_n > 0$ for all $n \in \mathbb{N}$. Then $\prod_{n=1}^{\infty} (1 + a_n)$ is convergent if and only if $\sum_{n=1}^{\infty} a_n$ is convergent.
- ▶ Definition. The product $\prod_{n=1}^{\infty} (1+a_n)$ is said to be absolutely convergent if $\prod_{n=1}^{\infty} (1+|a_n|)$ is convergent.
- ▶ Theorem. If $\prod_{n=1}^{\infty} (1 + a_n)$ is absolutely convergent, then it is convergent.
- ▶ Theorem. The product $\prod_{n=1}^{\infty} (1 + a_n)$ is absolutely convergent if and only if $\sum_{n=1}^{\infty} a_n$ is absolutely convergent.
- ► Reference: pp. 206-209 of [Tom M. Apostol, Mathematical Analysis, Addison-Wesley Publishing Company, Inc., 1974]