✓ Les compteurs : (modulo 6,24 et 60) ✓ Les décompteurs :(modulo 6,24 et 60)

• Les compteurs

> Compteurs asynchrones

Compteurs asynchrones modulo 6

Etat	Q							
Ltat	С	b	a					
0	0	0	0					
1	0	0	1					
2	0	1	0					
3	0	1	1					
4	1	0	0					
5	1	0	1					

Compteurs asynchrones modulo 24

ETAT	Les sorties										
	Q5	Q4	Q3	Q2	Q1	Q0					
0	0	0	0	0	0	0					
1	0	0	0	0	0	1					
2	0	0	0	0	1	0					
3	0	0	0	0	1	1					
4	0	0	0	1	0	0					
5	0	0	0	1	0	1					
6	0	0	0	1	1	0					
7	0	0	0	1	1	1					
8	0	0	1	0	0	0					
9	0	0	1	0	0	1					
10	0	1	0	0	0	0					
11	0	1	0	0	0	1					
12	0	1	0	0	1	0					
13	0	1	0	0	1	1					
14	0	1	0	1	0	0					
15	0	1	0	1	0	1					
16	0	1	0	1	1	0					
17	0	1	0	1	1	1					
18	0	1	1	0	0	0					
19	0	1	1	0	0	1					
20	1	0	0	0	0	0					
21	1	0	0	0	0	1					
22	1	0	0	0	1	0					
23	1	0	0	0	1	1					

Compteurs asynchrones modulo 60

Le compteur asynchrone modulo 60 est composé de 2 compteurs asynchrones un de modulo 6 et l'autre de modulo 10 liées entre eux par un inverseur comme elle indique la figure celle-ci :

Il suffit de relier la sortie Q4 d'un compteur (synchrone ou asynchrone) de rang N à l'entrée d'horloge du compteur suivant (de rang N + 1). On intercale un inverseur entre cette sortie Q4 et l'entrée d'horloge car celle-ci est active sur le front montant (dans le cas présent).

> Compteurs synchrones

Compteurs synchrones modulo 6

Un compteur modulo 6 nécessite 3 bascules JK.

Etat		Q			Q*		١ ،	C	ı	Ь		a
Ltat	c	b	а	c	b	а	J	K	J	K	J	ĸ
0	0	0	0	0	0	1	0	×	0	×	1	×
1	o	0	1	o	1	0	o	×	1	×	×	1
2	o	1	0	o	1	1	o	×	×	0	1	×
3	o	1	1	1	0	0	1	×	×	1	×	1
4	1	0	0	1	0	1	×	0	o	×	1	×
5	1	0	1	0	0	0	×	1	0	×	×	1

D'après les tables de karnaugh on obtient les équations suivantes :

$$K_a = 1$$

$$J_b = Q_a/Q_c$$

$$K_b = Q_a$$

$$J_c = Q_a Q_b$$

$$K_c = Q$$

6

Compteurs synchrones modulo 24

				2				Q* f			١.	e	١.	4	Ι.	C:	١.		١,	a				
Etat	_						_	_																
	f	e			ь	а	f			С		а	\vdash	K		K		K		K		K		K
0	0	0	0	0	0	0	0	0	0	0	0	1	0	×	0	×	0	×	0	×	0	×	1	×
1	0	0	0	0	0	1	0	0	0	0	1	0	0	×	0	×	0	×	0	×	1	×	×	1
2	0	0	0	0	1	0	0	0	0	0	1	1	0	×	0	×	0	×	0	×	×	0	1	×
3	0	0	0	0	1	1	0	0	0	1	0	0	0	×	0	×	0	×	1	×	×	1	×	1
4	0	0	0	1	0	0	0	0	0	1	0	1	0	×	0	×	0	×	×	0	0	×	1	×
5	0	0	0	1	0	1	0	0	0	1	1	0	0	×	0	×	0	×	×	0	1	×	×	1
6	0	0	0	1	1	0	0	0	0	1	1	1	0	×	0	×	0	×	×	0	×	0	1	×
7	0	0	0	1	1	1	0	0	1	0	0	0	0	×	0	×	1	×	×	1	1	×	×	1
8	0	0	1	0	0	0	0	0	1	0	0	1	0	×	0	×	×	0	0	×	0	×	1	×
9	0	0	1	0	0	1	0	1	0	0	0	0	0	×	1	×	×	1	0	×	0	×	×	1
10	0	1	0	0	0	0	0	1	0	0	0	1	0	×	×	0	0	×	0	×	0	×	1	×
11	0	1	0	0	0	1	0	1	0	0	1	0	0	×	×	0	0	×	0	×	1	×	×	1
12	0	1	0	0	1	0	0	1	0	0	1	1	0	×	×	0	0	×	0	×	×	0	1	×
13	0	1	0	0	1	1	0	1	0	1	0	0	0	×	×	0	0	×	1	×	×	1	×	1
14	0	1	0	1	0	0	0	1	0	1	0	1	0	×	×	0	0	×	×	0	0	×	1	×
15	0	1	0	1	0	1	0	1	0	1	1	0	0	×	×	0	0	×	×	0	1	×	×	1
16	0	1	0	1	1	0	0	1	0	1	1	1	0	×	×	0	0	×	×	0	×	0	1	×
17	0	1	0	1	1	1	0	1	1	0	0	0	0	×	×	0	1	×	×	1	×	1	×	1
18	0	1	1	0	0	0	0	1	1	0	0	1	0	×	×	0	×	0	0	×	0	×	1	×
19	0	1	1	0	0	1	1	0	0	0	0	0	1	×	×	1	×	1	0	×	0	×	×	1
20	1	0	0	0	0	0	1	0	0	0	0	1	×	0	0	×	0	×	0	×	0	×	1	×
21	1	0	0	0	0	1	1	0	0	0	1	0	×	0	0	×	0	×	0	×	1	×	×	1
22	1	0	0	0	1	0	1	0	0	0	1	1	×	0	0	×	0	×	0	×	×	0	1	×
23	1	0	0	0	1	1	0	0	0	0	0	0	×	1	0	×	0	×	0	×	×	1	×	1

D'après les tables de karnaugh on obtient les équations suivantes :

Compteurs synchrones modulo 60

Même principe de compteur asynchrone modulo 60 : Le compteur synchrone modulo 60 est composé de 2 compteurs synchrones un de modulo 6 et l'autre de modulo 10 liées entre eux par un inverseur.

• Les décompteurs

- > Décompteurs asynchrones
 - Décompteurs asynchrones modulo 6

ETAT	Les soties							
EIAI	Q2	Q1	Q0					
5	1	0	1					
4	1	0	0					
3	0	1	1					
2	0	1	0					
1	0	0	1					
0	0	0	0					

Décompteurs asynchrones modulo 24

FTAT	Les sorties										
ETAT					T						
	Q5	Q4	Q3	Q2	Q1	Q0					
23	1	0	0	0	1	1					
22	1	0	0	0	1	0					
21	1	0	0	0	0	1					
20	1	0	0	0	0	0					
19	0	1	1	0	0	1					
18	0	1	1	0	0	0					
17	0	1	0	1	1	1					
16	0	1	0	1	1	0					
15	0	1	0	1	0	1					
14	0	1	0	1	0	0					
13	0	1	0	0	1	1					
12	0	1	0	0	1	0					
11	0	1	0	0	0	1					
10	0	1	0	0	0	0					
9	0	0	1	0	0	1					
8	0	0	1	0	0	0					
7	0	0	0	1	1	1					
6	0	0	0	1	1	0					
5	0	0	0	1	0	1					
4	0	0	0	1	0	0					
3	0	0	0	0	1	1					
2	0	0	0	0	1	0					
1	0	0	0	0	0	1					
0	0	0	0	0	0	0					

Décompteurs asynchrones modulo 60

Le décompteur asynchrone modulo 60 est composé de 2 décompteurs asynchrones un de modulo 6 et l'autre de modulo 10 liées entre eux par un file ou bien une porte oui.

> Décompteurs synchrones

Décompteurs synchrones modulo 6

	Les soties								
ETAT	Q2	Q1	Q0						
5	1	0	1						
4	1	0	0						
3	0	1	1						
2	0	1	0						
1	0	0	1						
0	0	0	0						

D'après les tables de karnaugh on obtient les équations suivantes :

$$J_a = 1 K_a = 1$$

$$J_b = /Q_a Q_c K_b = /Q_a$$

$$J_c = /Q_a/Q_b$$
 $K_c = /Q_a$

Décompteurs synchrones modulo 24

	Les sorties										
ETAT					T						
	Q5	Q4	Q3	Q2	Q1	Q0					
23	1	0	0	0	1	1					
22	1	0	0	0	1	0					
21	1	0	0	0	0	1					
20	1	0	0	0	0	0					
19	0	1	1	0	0	1					
18	0	1	1	0	0	0					
17	0	1	0	1	1	1					
16	0	1	0	1	1	0					
15	0	1	0	1	0	1					
14	0	1	0	1	0	0					
13	0	1	0	0	1	1					
12	0	1	0	0	1	0					
11	0	1	0	0	0	1					
10	0	1	0	0	0	0					
9	0	0	1	0	0	1					
8	0	0	1	0	0	0					
7	0	0	0	1	1	1					
6	0	0	0	1	1	0					
5	0	0	0	1	0	1					
4	0	0	0	1	0	0					
3	0	0	0	0	1	1					
2	0	0	0	0	1	0					
1	0	0	0	0	0	1					
0	0	0	0	0	0	0					

$$J_{b} = /Q_{a}(Q_{c} + Q_{d} + /Q_{e}/Q_{f})$$
 $K_{b} = /Q_{a}$

$$K_b = /Q_a$$

$$J_c = /Q_a Q_d$$

$$K_c = /Q_a/Q_b$$

$$J_{d} = /Q_{a}/Q_{b}/Q_{c}(Q_{e}+Q_{f}) \qquad K_{d} = /Q_{a}$$

$$K_d = /Q_a$$

$$J_e = /Q_a/Q_bQ_f$$

$$K_e = /Q_a/Q_b/Q_c/Q_d$$

$$J_f = /Q_a/Q_b/Q_c/Q_d/Q_e K_f = /Q_a/Q_b$$

$$K_f = /Q_a/Q_b$$

Décompteurs synchrones modulo 60

Le décompteur synchrone modulo 60 est composé de 2 décompteurs synchrones un de modulo 6 et l'autre de modulo 10 liées entre eux par un file ou bien une porte oui comme indique le schéma suivante :

