# Digits Clusterization

**Unsupervised Machine Learning** 

Irene Moyano Fernández

18/10/2020

## Framing the problem

Trying to find out the best number of clusters to understand out data, we followed the next steps:

- 1. Dimensionality Reduction: Finding is the best method for our data
- 2. Clustering Techniques
  - Kmeans

Spectral

Birch

- MiniBatchKmeans
- Agglomerative
- 3. Performance Conclusions: Metrics
- 4. Tuning

# 1. Dimensionality Reduction

#### 1. DIMENSIONALITY REDUCTION: Finding the best method for our data





(30 components, 85% variance ratio)



#### LDA

(3 comp, 95% variance ratio)

|                                                       | precision                                                    | recall                                                       | f1-score                                             | support                                            |
|-------------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------|------------------------------------------------------|----------------------------------------------------|
| 0<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8             | 1.00<br>1.00<br>0.98<br>1.00<br>1.00<br>0.98<br>1.00<br>0.98 | 0.98<br>0.98<br>1.00<br>0.96<br>1.00<br>0.95<br>1.00<br>0.96 | 0.99<br>0.99<br>0.98<br>1.00<br>0.97<br>0.99<br>0.98 | 53<br>42<br>41<br>52<br>47<br>39<br>43<br>48<br>37 |
| 9                                                     | 0.92                                                         | 1.00                                                         | 0.96                                                 | 48                                                 |
| accuracy<br>macro avg<br>weighted avg<br>Accuracy: 0. | 0.98<br>0.98<br>98 %                                         | 0.98<br>0.98                                                 | 0.98<br>0.98<br>0.98                                 | 450<br>450<br>450                                  |

1. DIMENSIONALITY REDUCTION: Finding the best method for our data

# SVM on original data

|              | precision | recall | f1-score | support |
|--------------|-----------|--------|----------|---------|
| 0            | 1.00      | 0.98   | 0.99     | 63      |
| 1            | 0.95      | 1.00   | 0.98     | 59      |
| 2            | 1.00      | 1.00   | 1.00     | 55      |
| 3            | 1.00      | 0.99   | 0.99     | 68      |
| 4            | 0.99      | 1.00   | 0.99     | 66      |
| 4<br>5       | 0.96      | 0.98   | 0.97     | 52      |
| 6            | 1.00      | 1.00   | 1.00     | 54      |
| 7            | 1.00      | 0.98   | 0.99     | 62      |
| 8            | 0.96      | 0.96   | 0.96     | 51      |
| 9            | 0.97      | 0.94   | 0.95     | 64      |
| accuracy     |           |        | 0.98     | 594     |
| macro avģ    | 0.98      | 0.98   | 0.98     | 594     |
| weighted avg | 0.98      | 0.98   | 0.98     | 594     |
| Accuracy: 0. | 98 %      |        |          |         |

|          | <b>/</b> | (Under 0.95) | Precision | Recall | F1-score |
|----------|----------|--------------|-----------|--------|----------|
| Original | 5        | 0            | 98%       | 98%    | 98%      |
| PCA      | 6        | 0            | 99%       | 99%    | 99%      |
| LDA      | 6        | 2            | 98%       | 98%    | 98%      |

# 2. Clustering Techniques

## 2.0. Checking # clusters

Silhouette Method → 9 clusters



Elbow Method →?



#### 2. CLUSTERING TECHNIQUES: Finding the best method for our data

#### 2.1. KMeans

With PCA



2. CLUSTERING TECHNIQUES: Finding the best method for our data

### 2.2. MiniBatchKMeans (on PCA & 9 clust)

 We expected quite faster results that with KMeans but in this case the difference has just slightly improved:

1269.8 vs 1176.04

#### 2. CLUSTERING TECHNIQUES: Finding the best method for our data

#### 2.4. Birch

brc\_02 = Birch(branching\_factor=2,
n\_clusters=None, threshold=1.5)



brc\_50 = Birch(branching\_factor=50,
n\_clusters=None, threshold=1.5)



## 2. Clustering

KMeans, MiniBatchKMeans, Agglomerative, Birch

#### KMeans PCA over KMeans:

Computational cost

#### MiniBatchKmeans over KMeansPCA:

Time Performance

#### • Agglomerative:

Different linkages perform indistinctly mediocre except for the "single" linkage which is even worse because results in a single cluster.

#### Birch:

It has the best performance in Time, Homogeneity, V-measure, and David Bouldin metrics. Completeness is quite good too.

# 3. Performance Conclusions: METRICS

#### 3. PERFORMANCE CONCLUSIONS: Metrics

| METRIC                          | TECHNIQUE                      | SCORE 1 | TECH 2       | TECH 3                 |
|---------------------------------|--------------------------------|---------|--------------|------------------------|
| Time execution:                 | OPTICS                         | 1123.58 | DB-SCAN      | Birch_50               |
| Homogeneity:                    | Birch_02, Birch_50<br>& DBSCAN | 1       | Kmeans       | Agg_avg_link           |
| Completeness:                   | OPTICS                         | 1       | Agg_avg_link | Kmeans                 |
| V-measure:                      | Kmeans                         | 0.71    | Agg_avg_link | Birch_02 &<br>Birch_50 |
| Adjusted Rand Index:            | Kmeans                         | 0.59    | Agg_avg_link | MiniBatch              |
| Adjusted Mutual<br>Information: | Kmeans                         | 0.71    | Agg_avg_link | MiniBatch              |



Gràcies!

¡Gracias!

Thank you!