Objectives

- Develop a evolutionary-biology inspired framework for discovery in federated networks
- Derive functionality rules required for computation discovery in federated networks
- Adaptive learning rules to discover novel paths for sustainability of the Seas

Description of work

Task T3.1: Develop eco-evolutionary biology-inspired modeling for discovery in federated networks (M13-M36) Leader: SRC. Contributors: 10

This task extends eco-evolutionary biology-inspired modeling for general principles of discovery in federated networks... Jon:Keep elaborating

Task T3.2: Develop evolutionary neurobiology-inspired algorithms... (M13-M36) Leader: UNIGRAZ. Contributors: 9

... T3.2 provides computation algorithms with evolving neurons with (many) traits and interactions to allow WP3 to implement this feature in discovery in federated networks.... Wolfgang: Keep elaborating

Task T3.3: Based on the framework developed in T3.1 and T3.2, ICREA will derive automation rules for discovery in federated networks (M25-M36) Leader: ICREA. Contributors: 3

Automation rules for eco-evolutionary and neurobiology-inspired modeling for discovery in federated networks Roger: Keep elaborating

Task T3.4: Reproduce (M21-M27)

Leader: SDSC. Contributors: 4 In this task the SDSC will merge the work done in T3.1 and T3.2 into reproducible and replicable discovery in federated networks Christine: Keep elaborating

Task T3.5: Visualize (M21-M27)

Leader: SME. Contributors: 5 In this task the partner SME will apply visualization algorithms to the work done in T3.1 and T3.2Charles:Keep elaborating

Leader:

Task T3.6: Sustainability of the Seas federated network (M21-M30) UNIGRAZ. Contributors: 6,7,8,9,10

All participants apply results from eco-evolutionary and neurobiology-inspired algorithms into a fully automated, reproducible and animated sustainability of the Seas federated network case study

Deliverables

- D3.1Demonstrator on eco-evolutionary biology-inspired rules for discovery in federated networks (M30)
- D3.2Demonstrator on evolutionary neurobiology-inspired rules for discovery in federated networks (M36)
- D3.3Automated demonstrator of for evolutionary biology-inspired rules in federated networks (M36)
- D3.4 Reproducible demonstrator of evolutionary rules in federated networks (M36)
- D3.5Visualization demonstrator of evolutionary rules for discovery in federated networks (M36)
- D3.6Demonstrator all parts for the sustainability of the Seas federated network case study (M36)

Work package number 4 Lead beneficiary IEO	
Work package title	Dissemination
Participant number	10 11
Short name of participant	IEO SEM
Person month per participant	X X
Start month	1
End month	36

Objectives

• This WP deals with the system entire scope of dissemination of results in the research community and for the general public. Connection to SME for visualization

Description of work

Task T4.1: Paco:Keep elaborating... (M7-M24) Leader: IEO. Contributors: 10

Task T4.2: Paco:Keep elaborating (M7-M24) Leader: IEO. Contributors: 10