Fonctions et équations du 2nd degré

1ère Spécialité Math

Table des matières

1	Défi	inition et représentation	1
	1.1	Définition : Fonction du $2^{\rm nd}$ degré	1
	1.2	Variations et représentation graphique	2
2		me factorisée	5
		Définition	
	2.2	Propriété : Racines de $f(x)$	6
3	Rés	olution d'équations du 2 nd degré	6
	3.1	Définition : Discriminant	6
	3.2	Propriété : Solutions de $ax^2 + bx + c = 0 \dots \dots \dots \dots \dots \dots \dots \dots \dots$	6
	3.3	Propriété : Forme factorisée de $ax^2 + bx + c$	8
	3.4	Propriété : Les différentes représentations possibles de f	9
4	Forr	me canonique	0
	4.1	Définition : Forme canonique	0
		Propriété : Minimum et maximum	

1 Définition et représentation

1.1 Définition : Fonction du 2nd degré

On appelle fonction polynôme de degré 2 toute fonction f définie sur \mathbb{R} par une expression de la forme

$$f(x) = ax^2 + bx + c$$

où les coefficients \mathbf{a} , \mathbf{b} et \mathbf{c} sont des réels donnés avec $a \neq 0$.

Remarque:

Une fonction polynôme de degré 2 s'appelle également fonction **trinôme du second degré** ou par abus de langage **"trinôme"**.

Exemples et contre-exemples :

(1)
$$f(x) = 3x^2 - 7x + 3$$

f est une fonction du $2^{\rm nd}$ degré avec a=3 , b=-7 et c=3

(2)
$$g(x) = \frac{1}{2}x^2 - 5x + \frac{3}{5}$$

g est une fonction du $2^{\rm nd}$ degré avec $a=\frac{1}{2}$, b=-5 et $c=\frac{3}{5}$

(3)
$$h(x) = 4 - 2x^2$$

h est une fonction du $2^{\rm nd}$ degré avec a=-2 , b=0 et c=4

(4)
$$k(x) = (x-4)(5-2x)$$

k est une fonction du 2^{nd} degré car $(x-4)(5-2x)=(5\times x)-(2x\times x)-(4\times 5)+(2\times 4x)$

Donc
$$k(x) = -2x^2 + 13x - 20 \Rightarrow a = -2$$
, $b = 13$ et $c = -20$

(5)
$$m(x) = 5x - 3$$

m(x) est une fonction polynôme de degré 1 (fonction affine).

(6)
$$n(x) = 5x^4 - 7x^3 + 3x - 8$$

n(x) est une fonction polynôme de degré 4.

1.2 Variations et représentation graphique

Exemple

Soit la fonction f définie sur \mathbb{R} par : $f(x) = 2x^2 - 4x + 5$. Pour représenter f dans un repère, nous pouvons calculer quelques valeurs de f(x).

$$-f(-2) = 2 \times (-2)^2 - 4 \times (-2) + 5 = 21$$

$$-f(-1) = 2 \times (-1)^2 - 4 \times (-1) + 5 = 11$$

$$-f(0) = 2 \times (0)^2 - 4 \times (0) + 5 = 5$$

$$-f(0) = 2 \times (0)^2 - 4 \times (0) + 5 = 5$$

Remarque

— Dans un repère orthogonal $(O; \overrightarrow{i}, \overrightarrow{j})$, la représentation graphique d'une fonction polynôme de degré 2 est une **parabole**.

1.2.1 Propriété : Minimum et maximum

Soit f une fonction polynôme de degré 2 définie par $f(x) = ax^2 + bx + c$, avec $a \neq 0$.

— Si a > 0, f admet un **minimum** pour $x = \frac{-b}{2a}$. Ce **minimum** est égal à $f\left(\frac{-b}{2a}\right)$.

— Si a < 0, f admet un **maximum** pour $x = \frac{-b}{2a}$. Ce **maximum** est égal à $f\left(\frac{-b}{2a}\right)$.

On appelle α la valeur $\frac{-b}{2a}$ et β la valeur $f\left(\frac{-b}{2a}\right)$. $\alpha = \frac{-b}{2a}$ et $\beta = f\left(\frac{-b}{2a}\right)$.

1.2.2 Propriété : Variations de $f(x) = ax^2 + bx + c$

Nous pouvons résumer la variation d'une fonction du $2^{\rm nd}$ degré par le tableau ci-dessous :

Il existe un moyen pour se souvenir du résultat précedent :

Méthode : Etudier les variations d'une fonction du $2^{\rm nd}$ degré

Étudier les variations de la fonction f définie sur \mathbb{R} par $f(x) = -x^2 + 4x - 1$.

On a
$$f(x) = -x^2 + 4x - 1$$
, donc $a = -1$, $b = 4$ et $c = -1$.

$$\alpha = \frac{-b}{2a} = \frac{-4}{2 \times (-1)} = 2 \text{ et } \beta = f(\alpha) = f(2) = -(2)^2 + 4 \times 2 - 1 = 3$$

Le sommet de la parabole est le point S(2;3).

a < 0 donc le tableau de variation de f est :

x	$+\infty$	2	$+\infty$
f(x)	$-\infty$	3	$-\infty$

Et sa représentation graphique est :

2 Forme factorisée

Il se peut que le polynôme du 2^{nd} degré ne se présente pas sous la forme **developpée** mais sous une forme **factorisée** comme par exemple : f(x) = (x-1)(x-2)

En effet:

$$f(x) = (x - 1)(x - 2)$$

$$= x^{2} - 2x - 1x + 2$$

$$= x^{2} - 3x + 2$$

$$\Rightarrow a = 1, b = -3 \text{ et } c = 2$$

2.1 Définition

Soit f une fonction définie sur \mathbb{R} tel que :

$$f(x) = a(x - x_1)(x - x_2)$$

f est la forme **factorisée** d'une fonction du $2^{\rm nd}$ degré.

 x_1 et x_2 sont les **racines** de f

Remarque

les **racines** de f sont solutions de l'équation f(x) = 0.

$$f(x_1) = a(x_1 - x_1)(x_1 - x_2) = 0$$
 et $f(x_2) = a(x_2 - x_1)(x_2 - x_2) = 0$.

Exemples

(1)
$$f(x) = 3(x-1)(x+2)$$

$$f(x) = 3(x-1)(x-(-2))$$

f est une fonction du 2nd degré sous forme factorisée avec a=3, $x_1=1$ et $x_2=-2$

(2)
$$f(x) = (2x - 6)(x - 12)$$

Pour faire apparaître la forme factorisée il faut modifier l'écriture de (2x-6)

$$(2x-6) = 2(x-3)$$
 donc $f(x) = 2(x-3)(x-12)$

f est une fonction du $2^{\rm nd}$ degré avec a=2 , $x_1=3$ et $x_2=12$

(3)
$$f(x) = (3-x)(2x+1)$$

On a
$$(3-x) = -(x-3)$$
 et $(2x+1) = 2\left(x+\frac{1}{2}\right)$

Donc
$$f(x) = -(x-3) \times 2\left(x + \frac{1}{2}\right) = -2(x-3)\left(x + \frac{1}{2}\right)$$

f est une fonction du 2nd degré avec a=-2, $x_1=3$ et $x_2=-\frac{1}{2}$

2.2 Propriété : Racines de f(x)

Soit f une fonction définie sur \mathbb{R} tel que $f(x) = ax^2 + bx + c$ et x_1 , x_2 les solutions de l'équation f(x) = 0. Alors la forme **factorisée** de f est : $f(x) = a(x - x_1)(x - x_2)$

Exemple

Soit
$$f(x) = 3(x-1)(x+2)$$
.

f est une fonction du $2^{\rm nd}$ degré sous forme factorisée avec a=3, $x_1=1$ et $x_2=-2$.

D'autre part,
$$f(x) = 3(x^2 + 2x - 1x - 2) = 3x^2 + 3x - 6$$

Donc $x_1 = 1$ et $x_2 = -2$ sont solutions de l'équation $3x^2 + 3x - 6 = 0$

3 Résolution d'équations du 2nd degré

Résourdre une équation du 2^{nd} degré, c'est résoudre une équation du type $ax^2 + bx + c = 0$.

3.1 Définition : Discriminant

On appelle **discriminant** du trinôme $ax^2 + bx + c$, le nombre réel, noté Δ , égal à $b^2 - 4ac$.

$$\Delta = b^2 - 4ac$$

3.2 Propriété : Solutions de $ax^2 + bx + c = 0$

Soit Δ le discriminant du trinôme $ax^2 + bx + c$.

- Si $\Delta < 0$: L'équation $ax^2 + bx + c = 0$ n'a pas de solution réelle.
- Si $\Delta = 0$: L'équation $ax^2 + bx + c = 0$ a une unique solution : $x_0 = \frac{-b}{2a}$.
- Si $\Delta > 0$: L'équation $ax^2 + bx + c = 0$ a deux solutions distinctes :

$$x_1 = \frac{-b - \sqrt{\Delta}}{2a}$$
 et $x_2 = \frac{-b + \sqrt{\Delta}}{2a}$.

6

Méthode : Résoudre $ax^2 + bx + c = 0$

Résoudre les équations suivantes :

(1)
$$2x^2 - x - 6 = 0$$

Calculons le discriminant de l'équation $2x^2 - x - 6 = 0$:

$$a = 2, b = -1 \text{ et } c = -6 \text{ donc } \Delta = b^2 - 4ac = (-1)^2 - 4 \times 2 \times (-6) = 49.$$

Comme $\Delta > 0$, l'équation possède deux solutions distinctes :

$$x_{1} = \frac{-b - \sqrt{\Delta}}{2a}$$

$$= \frac{-(-1) - \sqrt{49}}{2 \times 2}$$

$$= -\frac{3}{2}$$

$$x_{1} = \frac{-b + \sqrt{\Delta}}{2a}$$

$$= \frac{-(-1) + \sqrt{49}}{2 \times 2}$$

$$= 2$$

Les solutions de l'équation $2x^2 - x - 6 = 0$ sont $S = \left\{-\frac{3}{2}; 2\right\}$

(2)
$$2x^2 - 3x + \frac{9}{8} = 0$$

Calculons le discriminant de l'équation $2x^2 - 3x + \frac{9}{8} = 0$:

$$a = 2, b = -3 \text{ et } c = \frac{9}{8} \text{ donc } \Delta = b^2 - 4ac = (-3)^2 - 4 \times 2 \times \frac{9}{8} = 0.$$

Comme $\Delta=0$, l'équation possède une unique solution : $x_0=-\frac{b}{2a}=-\frac{-3}{2\times 2}=\frac{3}{4}$

$$(3) \ x^2 + 3x + 10 = 0$$

Calculons le discriminant de l'équation $x^2 + 3x + 10 = 0$:

$$a = 1, b = 3 \text{ et } c = 10 \text{ donc } \Delta = b^2 - 4ac = 3^2 - 4 \times 1 \times 10 = -31.$$

Comme $\Delta < 0$, l'équation ne possède pas de solution réelle.

Propriété

La somme S et le produit P des **racines** d'un polynôme du $2^{\rm nd}$ degré de la forme $ax^2 + bx + c = 0$ sont donnés par :

$$S = -\frac{b}{a} \quad \text{et} \quad P = \frac{c}{a}$$

7

Démonstration

Soit x_1 et x_2 les solutions de $x^2 + bx + c = 0$ alors $x_1 = \frac{-b - \sqrt{\Delta}}{2a}$ et $x_2 = \frac{-b + \sqrt{\Delta}}{2a}$

Donc, la somme des **racines** est $S = x_1 + x_2$:

$$S = x_1 + x_2$$

$$= \frac{-b - \sqrt{\Delta}}{2a} + \frac{-b + \sqrt{\Delta}}{2a}$$

$$= \frac{(-b - \sqrt{\Delta}) + (-b + \sqrt{\Delta})}{2a}$$

$$= \frac{-2b}{2a} = \frac{-b}{a}$$

Le produit des **racines** est $P = x_1 \times x_2$:

$$P = x_1 \times x_2$$

$$= \frac{-b - \sqrt{\Delta}}{2a} \times \frac{-b + \sqrt{\Delta}}{2a}$$

$$= \frac{(-b - \sqrt{\Delta}) \times (-b + \sqrt{\Delta})}{2a \times 2a}$$

$$= \frac{(-b)^2 + ((-b) \times \sqrt{\Delta}) + ((-\sqrt{\Delta}) \times (-b)) + ((-\sqrt{\Delta}) \times \sqrt{\Delta})}{4a^2}$$

$$= \frac{b^2 - \Delta}{4a^2} = \frac{b^2 - (b^2 - 4ac)}{4a^2} = \frac{4ac}{4a^2}$$

$$= \frac{c}{a}$$

3.3 Propriété : Forme factorisée de $ax^2 + bx + c$

Soit f une fonction polynôme de degré 2 définie sur par $f(x) = ax^2 + bx + c$.

- Si $\Delta = 0$: Pour tout réel x, on a : $f(x) = a(x x_0)^2$.
- Si $\Delta > 0$: Pour tout réel x, on a : $f(x) = a(x x_1)(x x_2)$.

Remarque

Si $\Delta < 0$, il n'existe pas de forme factorisée de f.

Méthode : Factoriser un trinôme

Factoriser les trinômes suivants :

(1)
$$4x^2 + 19x - 5$$

On cherche les racines du trinôme $4x^2 + 19x - 5$

On a
$$a = 4$$
, $b = 19$ et $c = -5$ donc $\Delta = 19^2 - 4 \times 4 \times (-5) = 441$

8

Les racines du trinôme sont :

$$x_1 = \frac{-19 - \sqrt{441}}{2 \times 4} \quad | \quad x_2 = \frac{-19 + \sqrt{441}}{2 \times 4}$$
$$= -5 \quad | \quad = \frac{1}{4}$$

On a donc:

$$4x^{2} + 19x - 5 = 4(x - (-5))\left(x - \frac{1}{4}\right)$$
$$= 4(x + 5)\left(x - \frac{1}{4}\right) \text{ ou } (x + 5)(4x - 1)$$

Une vérification à l'aide de la calculatrice n'est jamais inutile! On peut lire une valeur approchée des racines sur l'axe des abscisses.

(2)
$$9x^2 - 6x + 1$$

On cherche les racines du trinôme $9x^2 - 6x + 1$

On a
$$a=9$$
 , $b=-6$ et $c=1$ donc $\Delta=(-6)^2-4\times 9\times (1)=0$

La racine du trinôme est :
$$x_0 = \frac{-(-6)}{2 \times 9} = \frac{1}{3}$$

On a donc :
$$9x^2 - 6x + 1 = 9\left(x - \frac{1}{3}\right)^2$$

3.4 Propriété : Les différentes représentations possibles de f

En fonction du signe de a et de Δ , nous pouvons en déduire les représentations de f.

a > 0

a < 0

4 Forme canonique

4.1 Définition : Forme canonique

Toute fonction polynôme f de degré 2 définie sur \mathbb{R} par $f(x) = ax^2 + bx + c$ peut s'écrire sous la forme :

$$f(x) = a(x - \alpha)^2 + \beta$$

où α et β sont deux nombres réels.

Cette dernière écriture s'appelle la forme canonique de f.

Exemple

 $f(x) = 2(x-1)^2 + 3$ est une fonction du 2^{nd} degré sous forme **canonique** avec a=2, $\alpha=1$ et $\beta=3$.

En effet,

$$f(x) = 2(x-1)^{2} + 3$$

$$= 2(x^{2} - 2x + 1) + 3$$

$$= 2x^{2} - 4x + 2 + 3$$

$$= 2x^{2} - 4x + 5$$

Donc a=2 , b=-4 et c=5

Méthode : Déterminer la forme canonique d'une fonction du 2nd degré

Soit la fonction f définie sur \mathbb{R} par : $f(x) = 2x^2 - 20x + 10$. On veut exprimer la fonction f sous sa forme canonique.

$$f(x) = (x - \alpha)^2 + \beta$$
 où α et β sont des nombres réels.

$$f(x) = 2x^{2} - 20x + 10$$

$$= 2\left[x^{2} - 10x\right] + 10$$

$$= 2\left[x^{2} - 10x + 25 - 25\right] + 10$$

$$= 2\left[(x - 5)^{2} - 25\right] + 10$$

$$= 2(x - 5)^{2} - 50 + 10$$

$$= 2(x - 5)^{2} - 40$$

On a donc $\alpha = 5$ et $\beta = -40$

 $f(x) = 2(x-5)^2 - 40$ est la forme **canonique** de f.

Démonstration:

Comme $a \neq 0$, on peut écrire pour tout réel x:

$$f(x) = ax^{2} + bx + c$$

$$= a\left[x^{2} + \frac{b}{a}x\right] + c$$

$$= a\left[x^{2} + \frac{b}{a}x + \left(\frac{b}{2a}\right)^{2} - \left(\frac{b}{2a}\right)^{2}\right] + c$$

$$= a\left[\left(x + \frac{b}{2a}\right)^{2} - \left(\frac{b}{2a}\right)^{2}\right] + c$$

$$= a\left(x + \frac{b}{2a}\right)^{2} - a\frac{b^{2}}{4a^{2}} + c$$

$$= a\left(x + \frac{b}{2a}\right)^{2} - \frac{b^{2}}{4a} + c$$

$$= a\left(x + \frac{b}{2a}\right)^{2} - \frac{b^{2} - 4ac}{4a}$$

$$= a\left(x - \alpha\right)^{2} + \beta$$

avec
$$\alpha = -\frac{b}{2a}$$
 et $\beta = f(\alpha) = -\frac{b^2 - 4ac}{4a}$.

Remarque:

Pour écrire un trinôme sous sa forme canonique, il est possible d'utiliser les deux dernières formules donnant α et β .

Méthode : Déterminer la forme canonique d'une fonction du 2nd degré (simple)

Soit la fonction f définie sur \mathbb{R} par : $f(x) = 2x^2 - 20x + 10$. On veut exprimer la fonction f sous sa forme canonique.

On a a=2 , b=-20 et c=10 donc

$$\alpha = -\frac{b}{2a}$$
$$= -\frac{-20}{2 \times 2}$$
$$= 5$$

Calculons β :

$$\beta = f(\alpha)$$
= 2 × 5² - 20 × 5 + 10
= 50 - 100 + 10 = 40

On a donc $\alpha = 5$ et $\beta = -40$ donc $f(x) = 2(x-5)^2 - 40$

Exemple:

Soit la fonction f donnée sous sa forme canonique par : $f(x) = 2(x-1)^2 + 3$

Alors: $f(x) \ge 3$ car $2(x-1)^2$ est positif.

Or f(1) = 3 donc pour tout $x, f(x) \ge f(1)$.

f admet donc un minimum en x = 1. Ce minimum est égal à 3.

4.2 Propriété : Minimum et maximum

Soit f une fonction polynôme de degré 2 définie par $f(x) = a(x - \alpha)^2 + \beta$, avec $a \neq 0$.

- Si a > 0, f admet un minimum pour $x = \alpha$. Ce minimum est égal à β .
- Si a < 0, f admet un maximum pour $x = \alpha$. Ce maximum est égal à β .

Remarque:

Soit la fonction f définie sur \mathbb{R} par : $f(x) = ax^2 + bx + c$, avec $a \neq 0$.

On peut retenir que f admet un maximum (ou un minimum) pour $x = -\frac{b}{2a}$.

Méthode : Déterminer les caractéristiques d'une parabole

Déterminer l'axe de symétrie et le sommet de la parabole d'équation $y=2x^2-12x+1$.

La parabole possède un axe de symétrie d'équation $x=-\frac{b}{2a}$, soit $x=-\frac{-12}{2\times 2}=3$.

La droite d'équation x=3 est donc axe de symétrie de la parabole d'équation $y=2x^2-12x+1$.

Les coordonnées de son sommet sont : $\left(-\frac{b}{2a} \; ; \; f\left(-\frac{b}{2a}\right)\right)$, soit : $\left(3 \; ; 2\times 3^2-12\times 3+1\right)=\left(3 \; ; \; -17\right)$.

Le point de coordonnées (3 ; -17) est donc le sommet de la parabole.

a=2>0, ce sommet correspond à un minimum.

Démonstration : Solutions de l'équation $ax^2 + bx + c = 0$

La fonction f définie sur \mathbb{R} par $f(x) = ax^2 + bx + c$ peut s'écrire sous sa forme canonique :

$$f(x) = a(x - \alpha)^2 + \beta$$
 avec $\alpha = -\frac{b}{2a}$ et $\beta = -\frac{b^2 - 4ac}{4a}$.

Donc:

 $ax^2 + bx + c = 0$ peut s'écrire :

$$a\left(x + \frac{b}{2a}\right)^2 - \frac{b^2 - 4ac}{4a} = 0$$

$$a\left(x + \frac{b}{2a}\right)^2 - \frac{\Delta}{4a} = 0$$

$$a\left(x + \frac{b}{2a}\right)^2 = \frac{\Delta}{4a}$$

$$\left(x + \frac{b}{2a}\right)^2 = \frac{\Delta}{4a^2} \quad \text{car } a \neq 0$$

— Si $\Delta < 0$: Comme un carré ne peut être négatif $\left(\frac{\Delta}{4a^2} < 0\right)$, l'équation $ax^2 + bx + c = 0$ n'a pas de solution.

— Si
$$\Delta = 0$$
: L'équation $ax^2 + bx + c = 0$ peut s'écrire : $\left(x + \frac{b}{2a}\right)^2 = 0$

L'équation n'a qu'une seule solution : $x = \frac{-b}{2a}$

— Si $\Delta > 0$: L'équation $ax^2 + bx + c = 0$ est équivalente à :

$$\begin{vmatrix} x + \frac{b}{2a} = +\sqrt{\frac{\Delta}{4a^2}} \\ x = +\sqrt{\frac{\Delta}{4a^2}} - \frac{b}{2a} \\ x = \frac{+\sqrt{\Delta}}{2a} - \frac{b}{2a} \end{aligned}$$
 et
$$x = \frac{-\sqrt{\Delta}}{4a^2} - \frac{b}{2a} \\ x = \frac{-\sqrt{\Delta}}{2a} - \frac{b}{2a} \\ x = \frac{-\sqrt{\Delta}}{2a} - \frac{b}{2a} \\ x = \frac{-\sqrt{\Delta} - b}{2a} \\ x = \frac{-b + \sqrt{\Delta}}{2a}$$

$$x = \frac{-b - \sqrt{\Delta}}{2a}$$

L'équation a deux solutions distinctes :

$$x_1 = \frac{-b + \sqrt{\Delta}}{2a}$$
 et $x_1 = \frac{-b - \sqrt{\Delta}}{2a}$