СВОДКА ОСНОВНЫХ ФОРМУЛ ПО ФИЗИКЕ

Суслов Андрей Антонович https://suslov.site

Аннотация

В сборник включены все формулы базового курса школьной программы по физике. Они полностью соответствуют кодификатору ЕГЭ — перечню всех теоретических фактов, которыми должен владеть выпускник школы, сдающий физику. Формулы, отмеченные звёздочками, рекомендуется запомнить и применять при решении задач. Но они не входят в кодификатор ЕГЭ. Поэтому при оформлении развёрнутого решения заданий второй части экзамена эти формулы необходимо вывести самостоятельно.

Содержание

1	Кинематика
2	Динамика
3	Статика
4	Законы сохранения
5	Механические колебания и волны
6	Молекулярная физика
7	Термодинамика
8	Электростатика
9	Законы постоянного тока
10	Магнитное поле и электромагнитная индукция
11	Электромагнитные колебания и волны
12	Оптика
13	Квантовая физика

1 Кинематика

- \vec{r}, x радиус-вектор и координата точки;
- \vec{r}_0, x_0 начальный радиус-вектор и начальная координата (при t=0);
- $\Delta \vec{r}$ вектор перемещения;
- \vec{v}, v_x вектор скорости и проекция скорости точки;
- \vec{a}, a_x вектор ускорения и проекция ускорения точки;
- $\vec{v}_{\rm ac6}$ скорость тела в неподвижной системе отсчёта (по отношению к Земле); $\vec{v}_{\rm OTH}$ скорость тела в подвижной системе отсчёта; $\vec{v}_{\rm co}$ скорость движения подвижной системы отсчёта, относительно неподвижной;
- R радиус окружности;
- l длина дуги окружности, пройденная точкой;
- φ угол поворота (в радианах);
- ω угловая скорость;
- T период;
- ν частота вращения.
- 1. Вектор перемещения по определению: $\Delta \vec{r} = \vec{r} \vec{r}_0$.
- 2. Формулы для прямолинейного равномерного движения (при $\vec{v}=const$):
 - (2.1) Скорость по определению: $\vec{v} = \frac{\Delta \vec{r}}{t} = \frac{\vec{r} \vec{r_0}}{t}.$
 - (2.2) Уравнения радиус-вектора и координаты: $\vec{r} = \vec{r}_0 + \vec{v}t$, $x = x_0 + v_x t$.
- 3. Преобразование Галилея: $\vec{v}_{\rm abc} = \vec{v}_{\rm oth} + \vec{v}_{\rm co}$.
- 4. Формулы для произвольного неравномерного движения:
 - (4.1) Скорость неравномерного движения по определению: $\vec{v} = \lim_{\Delta t \to 0} \frac{\Delta \vec{r}}{\Delta t}$.
 - (4.2) Средняя скорость по определению: $\langle \vec{v} \, \rangle = \frac{\Delta \vec{r}}{\Delta t}.$
- 5. Формулы прямолинейного равнопеременного движения (при $\vec{a} = const$):
 - $(5.1) \ \ \text{Средняя скорость:} \ \langle \vec{v} \, \rangle = \frac{\vec{v} + \vec{v}_0}{2}, \quad \langle v_x \rangle = \frac{v_x + v_{0x}}{2}.$

- (5.2) Ускорение по определению: $\vec{a} = \frac{\vec{v} \vec{v_0}}{t}, \quad a_x = \frac{v_x v_{0x}}{t}.$ (5.3) Уравнение скорости: $\vec{v} = \vec{v_0} + \vec{a}t, \quad v_x = v_{0x} + a_xt.$
- (5.4) Уравнения радиус-вектора и координаты: $\vec{r} = \vec{r}_0 + \vec{v}_0 t + \frac{1}{2} \vec{a} t^2$, $x = x_0 + v_{0x} t + \frac{1}{2} a_x t^2$.
- (5.5) * Уравнение координаты, исключающие ускорение: $x = x_0 + \frac{v_x + v_{0x}}{2}t$.
- (5.6) * Уравнение координаты, исключающее время: $x = x_0 + \frac{v_x^2 v_{0x}^2}{2a_x}$.
- 6. Формулы для свободного падения без начальной скорости с высоты h:
 - (6.1) * Время движения тела: $t = \sqrt{\frac{2h}{a}}$
 - (6.2) * Конечная скорость тела (перед соприкосновением с Землёй): $v = \sqrt{2gh}$.
- 7. Формулы для движения тела, брошенного вертикально вверх с начальной скоростью v₀:
 - (7.1) * Общее время движения тела: $t = \frac{2v_0}{a}$.
 - (7.2) * Время движения тела до достижения максимальной высоты: $t = \frac{v_0}{a}$.
 - (7.3) * Максимальная высота над поверхностью Земли: $y_{\text{max}} = \frac{v_0^2}{2a}$
- 8. Формулы равномерного движения по окружности:
 - (8.1) Угол поворота точки (в радианах) по определению: $\varphi = \frac{l}{R}$
 - (8.2) Угловая скорость по определению: $\omega = \frac{\varphi}{t}$.
 - (8.3) Связь периода и частоты: $T = \frac{1}{1}$.
 - (8.4) Связь линейной скорости с периодом и частотой: $v = \frac{2\pi R}{T} = 2\pi R \, \nu$.
 - (8.5) Связь угловой скорости с периодом и частотой: $\omega = \frac{2\pi}{T} = 2\pi\nu$.
 - (8.6) Связь линейной и угловой скоростей: $v = \omega R$.
 - (8.7) Формула центростремительного ускорения: $a = \frac{2\pi v}{\tau}$.
 - (8.8) Выражение центростремительного ускорения через радиус окружности: $a = \frac{v^2}{D} = \omega^2 R$.
 - (8.9) Выражение центростремительного ускорения через линейную и угловую скорости: $a = v \cdot \omega$.
- 9. Формулы для движения тела, брошенного под углом α к горизонту:
 - (9.1) * Время движения тела: $t = \frac{2v_0 \sin \alpha}{c}$
 - (9.2) * Максимальная высота над поверхностью Земли: $y_{\text{max}} = \frac{v_0^2 \sin^2 \alpha}{2a}$
 - (9.3) * Дальность полёта по горизонтали: $x_{\text{max}} = \frac{v_0^2 \sin 2\alpha}{c}$

Динамика

- *F* сила;
- l_0 длина пружины в недеформированном состоянии;
- Δl абсолютное удлинение пружины;
- S площадь поперечного сечения пружины;
- E модуль Юнга;
- k коэффициент жёсткости;
- и
 — коэффициент трения;
- N силы нормальной реакции опоры;
- $G = 6,67 \cdot 10^{-11}$ гравитационная постоянная;
- R радиус планеты;
- q₀ ускорение свободного падения у поверхности планеты;
- v_1 первая космическая скорость;
- v₂ вторая космическая скорость.

- 1. Второй закон Ньютона: $\left(\vec{F}_1 + \vec{F}_2 + \ldots + \vec{F}_n\right) = m\vec{a}$.
- 2. Формула силы тяжести: $F_{\text{тяж}} = mg$.
- 3. Сила упругости и коэффициент жёсткости:
 - (3.1) Формула силы упругости: $F_{\text{упр}} = k \Delta l$.
 - (3.2) * Формула коэффициента жёсткости пружины: $k = E \frac{S}{l_0}$.
 - (3.3) * Коэффициент жёсткости системы последовательно соединённых пружин: $\frac{1}{k} = \frac{1}{k_1} + \frac{1}{k_2} + \ldots + \frac{1}{k_n}$.
 - (3.4) * Коэффициент жёсткости системы параллельно соединённых пружин: $k = k_1 + k_2 + \ldots + k_n$.
- 4. Формула силы трения скольжения и максимальной силы трения покоя: $F_{\text{TD}} = \mu N$.
- 5. Гравитация и тяготение:
 - (5.1) Закон Всемирного тяготения: $F = G \frac{m_1 m_2}{r^2}$.
 - (5.2) * Формула ускорения свободного падения на высоте h от поверхности планеты: $g = \frac{GM}{(R+h)^2} = g_0 \left(\frac{R}{R+h}\right)^2$.
 - (5.3) Первая космическая скорость: $v_1 = \sqrt{\frac{MG}{R}} = \sqrt{g_0 R}$.
 - (5.4) Вторая космическая скорость: $v_2 = \sqrt{\frac{2MG}{R}} = \sqrt{2g_0R} = \sqrt{2}v_1$

3 Статика

Обозначения:

- M момент силы;
- \bullet d- плечо силы (расстояние от оси вращения до линии действия силы);
- ρ плотность жидкости;
- \bullet $V_{
 m norp}$ объём части тела, погруженной в жидкость;
- \bullet $p_{\text{атм}}$ атмосферное давление.
- 1. Статика абсолютно твёрдого тела:
 - (1.1) Определение момента силы \vec{F} : $M = \pm Fd$.
 - (1.2) Условия равновесия абсолютно твёрдого тела: $\vec{F}_1 + \vec{F}_2 + \ldots + \vec{F}_n = 0$, $M_1 + M_2 + \ldots + M_n = 0$.
- 2. Давление на участок поверхности площадью S, которое оказывается сила \vec{F} , действующая перпендикулярно поверхности: $p = \frac{F}{S}$.
- 3. Гидростатика:
 - (3.1) Давление в жидкости на глубине h от поверхности: $p = p_{\text{атм}} + \rho g h$.
 - (3.2) Формула для силы Архимеда, действующей на тело, погружённое в жидкость: $F_A = P_{\text{Вытесн}} = \rho g V_{\text{погр.}}$

4 Законы сохранения

- \vec{p} импульс тела;
- \vec{P} импульс системы тел;
- M масса системы тел;
- A_F работа силы \vec{F} ;
- N_F мощность силы \vec{F} ;
- $E_{\text{кин}}$ кинетическая энергия;
- $E_{\text{пот}}$ потенциальная энергия;
- \bullet E полная механическая энергия;
- A_{BCex} суммарная работа всех сил, действующих на тело;
- $A_{\text{конс}}$ работы консервативных (потенциальных) сил.
- $A_{\rm TP}$ работы диссипативных сил (сил трения).
- 1. Импульс и центр масс:
 - (1.1) Импульс материальной точки по определению: $\vec{p} = m\vec{v}$.
 - (1.2) Второй закон Ньютона в импульсной формулировке: $\frac{\Delta \vec{p}}{\Delta t} = \vec{F}$.
 - (1.3) Импульс системы тел по определению: $\vec{P} = \vec{p}_1 + \vec{p}_2 + \ldots + \vec{p}_n$.
 - (1.4) Закон изменения импульса системы тел: $\Delta \vec{P} = M \cdot \vec{F}_{\text{внешн}}$.
 - (1.5) Закон сохранения импульса системы тела: если $\vec{F}_{\text{внешн}} = 0$, то $\Delta \vec{P} = \text{const.}$
 - (1.6) * Формула координаты центра масс системы материальных точек: $x_{\text{ц.м.}} = \frac{x_1 m_1 + x_2 m_2 + \dots x_n m_n}{m_1 + m_2 + \dots + m_n}$

- 2. Механическая работа и мощность:
 - (2.1) Работа постоянной силы \vec{F} , образующей угол α с вектором перемещения $\Delta \vec{r}$: $A_F = (\vec{F}, \Delta \vec{r}) = F \Delta r \cos \alpha$.
 - (2.2) Работы силы тяжести при изменении высоты тела от h_1 до h_2 : $A = -mg\Delta h = -mg(h_2 h_1) = mg(h_1 h_2)$.
 - (2.3) Работы силы упругости при изменении абсолютного удлинения пружины от Δl_1 до Δl_2 : $A = -\frac{k}{2} \left(\Delta l_2^2 \Delta l_1^2\right)$.
 - (2.4) Мощность силы \vec{F} по определению: $N_F = \frac{A_F}{\Delta t}$.
 - (2.5) Выражение мощности через скорость тела при равномерном движении: $N_F = Fv$.
- 3. Энергия:
 - (3.1) Кинетическая энергия тела по определению: $E_{\text{кин}} = \frac{mv^2}{2}$.
 - (3.2) Потенциальная энергия тела, поднятого на высоту h: $E_{\text{пот}} = mgh$.
 - (3.3) Потенциальная энергия упругой деформации пружины: $E_{\text{пот}} = k \frac{(\Delta l)^2}{2}$.
 - (3.4) Теорема о кинетической энергии: $\Delta E_{\text{кин}} = A_{\text{всех}}$.
 - (3.5) Теорема о потенциальной энергии: $\Delta E_{\text{пот}} = -A_{\text{конс}}$.
 - (3.6) Закон изменения энергии: $\Delta E = \Delta E_{\text{кин}} + \Delta E_{\text{пот}} = A_{\text{тр}}$.
 - (3.7) Закон сохранения энергии: если $A_{\rm TP} = 0$, то $E = {\rm const.}$

5 Механические колебания и волны

Обозначения:

- \bullet A амплитуда колебаний (максимальное отклонение от положения равновесия);
- ω циклическая частота колебаний;
- φ начальная фаза колебаний.
- Т период колебаний или период волны;
- *ν* частота колебаний или частота волны;
- λ длина волны;
- \bullet v скорость распространения волны.
- 1. Кинематика гармонических колебаний:
 - (1.1) Уравнение координаты: $x = A \sin(\omega t + \varphi)$.
 - (1.2) Уравнение проекции скорости: $v_x = A\omega \cos(\omega t + \varphi)$.
 - (1.3) Уравнение проекции ускорения: $a_x = -A\omega^2 \sin{(\omega t + \varphi)}$.
 - (1.4) Связь проекции ускорения и координаты тела: $a_x = -\omega^2 x$.
 - (1.5) Связь максимальных проекций скорости и ускорения с амплитудой: $v_{x \max} = A\omega$, $a_{x \max} = A\omega^2$.
 - (1.6) Связь периода с циклической частотой: $T = \frac{2\pi}{\omega}$
- 2. Динамика колебаний:
 - (2.1) Период колебаний пружинного маятника: $T = 2\pi \sqrt{\frac{m}{k}}$.
 - (2.2) Период колебаний математического маятника: $T = 2\pi \sqrt{\frac{g}{l}}$.
- 3. Связь длины волны с периодом и частотой: $\lambda = vT = \frac{v}{\nu}$.

6 Молекулярная физика

- p давление;
- V объём;
- \bullet T абсолютная температура;
- N кол-во молекул;
- $n = \frac{N}{V}$ концентрация молекул;
- $\rho = \frac{m}{V}$ плотность вещества (табличная величина);
- ν кол-во молей вещества;
- μ молярная масса вещества (табличная величина);
- m_0 масса молекулы;
- E_0 энергия молекулы;

- v скорость молекул;
- φ относительная влажность воздуха;
- р_н давление насыщенного пара (табличная величина);
- $\rho_{\rm H}$ плотность насыщенного пара (табличная величина);
- $N_A = 6 \cdot 10^{23}$ постоянная Авогадро;
- $k = 1,38 \cdot 10^{-23}$ постоянная Больцмана;
- R = 8,31 универсальная газовая постоянная.
- 1. Абсолютная температура: $T = t^{\circ} + 273K$.
- 2. Основное уравнение МКТ: $p = \frac{1}{3} m_0 n \left\langle v^2 \right\rangle = \frac{2}{3} n \left\langle \frac{m_0 v^2}{2} \right\rangle = \frac{2}{3} n \left\langle E_0 \right\rangle$.
- 3. Связь температуры газа со средней кинетической энергией его частиц: $\langle E_0 \rangle = \left\langle \frac{m_0 v^2}{2} \right\rangle = \frac{3}{2} kT$.
- 4. Связь давления идеального газа и температуры p = nkT.
- 5. Уравнение Клапейрона-Менделеева: $pV = \frac{m}{\mu}RT = \nu RT = NkT.$
- 6. Уравнение Клапейрона-Менделеева для плотности газа: $\rho = \frac{p\mu}{RT}$.
- 7. Закон Дальтона для давления смеси разреженных газов: $p = p_1 + p_2 + \ldots + p_n$.
- 8. Изопроцессы в разреженном газе с постоянным числом частиц N:
 - (8.1) Изотермический (T = const): pV = const.
 - (8.2) Изохорный (V = const): $\frac{p}{T} = const.$
 - (8.3) Изобарный (p = const): $\frac{V}{T} = const.$
- 9. Относительная влажность воздуха: $\varphi = \frac{p}{p_{\rm H}} = \frac{\rho}{\rho_{\rm H}}.$

7 Термодинамика

Обозначения:

- \bullet U- внутренняя энергия (сумма кинетической и потенциальной энергии всех молекул);
- \bullet Q кол-во теплоты, которое получается тело (если тело отдаёт тепло, то Q<0);
- c удельная теплоёмкость вещества (табличная величина);
- λ удельная теплота плавления вещества (табличная величина);
- L удельная теплота парообразования вещества (табличная величина);
- \bullet q удельная теплота сгорания топлива вещества (табличная величина).
- 1. Формулы кол-ва теплоты:
 - (1.1) Кол-во теплоты при теплопередаче: $Q = cm\Delta t$.
 - (1.2) Кол-во теплоты при плавлении/конденсации: $Q = \pm \lambda m$.
 - (1.3) Кол-во теплоты при парообразовании/конденсации: $Q = \pm Lm$.
 - (1.4) Кол-во теплоты при сгорании топлива: Q = qm.
- 2. Уравнение теплового баланса: $Q_1 + Q_2 + Q_3 + \ldots + Q_n = 0$.
- 3. Выражение для внутренней энергии одноатомного идеального газа: $U = \frac{3}{2} \nu RT$.
- 4. Работа газа при изобарном процессе: $A = p\Delta V$.
- 5. Первый закон термодинамики: $Q = \Delta U + A$.
- 6. Адиабатический процесс: $Q = 0 \Rightarrow A = -\Delta U$.

8 Электростатика

- q электрический заряд (с учётом знака);
- $k = 9 \cdot 10^9$ постоянная в законе Кулона;
- $\varepsilon_0 = 8,85 \cdot 10^{-12}$ электрическая постоянная;
- ε диэлектрическая проницаемость вещества (табличная величина);
- \vec{E} напряжённость электрического поля;
- ullet W энергия заряда в электрическом поле или энергия конденсатора;
- φ потенциал электрического поля;

- d расстояние между пластинами конденсатора;
- C ёмкость конденсатора.
- 1. Закон Кулона (взаимодействие точечных зарядов в вакууме): $F = k \frac{|q_1| \cdot |q_2|}{r^2} = \frac{1}{4\pi\varepsilon_0} \cdot \frac{|q_1| \cdot |q_2|}{r^2}$.
- 2. Напряжённость электростатического поля по определению: $\vec{E} = \frac{\vec{F}}{a}$.
- 3. Работа электрического поля по перемещению заряда: $A = -\Delta W = W_1 W_2 = q (\varphi_1 \varphi_2) = -q \Delta \varphi = q U$.
- 4. Потенциал электростатического поля по определению: $\varphi = \frac{W}{\hat{\ }}$
- 5. Принцип суперпозиции: $\vec{E}=\vec{E}_1+\vec{E}_2+\ldots+\vec{E}_n, \quad \varphi=\varphi_1+\varphi_2+\ldots+\varphi_n.$
- 6. Поле точечного заряда Q:
 - (6.1) Напряжённость: $E = \frac{k|Q|}{r^2}$.
 - (6.2) * Потенциальная энергия: $W = -\frac{kqQ}{r}$
 - (6.3) * Потенциал: $\varphi = -\frac{kQ}{r}$.
- 7. Однородное поле $\vec{E} = const$ (ось x направлена по линиям напряжённости):
 - (7.1) Связь напряжения и напряжённости: $U = E\Delta x$.
 - (7.2) Потенциальная энергия заряда: W = -Eqx.
 - (7.3) Потенциал: $\varphi = -Ex$.
 - (7.4) Работа электрических сил в однородном поле: $A = Eq\Delta x$.
- 8. Конденсаторы:
 - (8.1) Ёмкость конденсатора по определению: $C = \frac{q}{U}$.
 - (8.2) Ёмкость плоского конденсатора: $C = \frac{\varepsilon \varepsilon_0 S}{d}$
 - (8.3) Энергия конденсатора: $W = \frac{q^2}{2c} = \frac{CU^2}{2} = \frac{qU}{2}$.
 - (8.4) Последовательное соединение: $q = q_1 = q_2 = \ldots = q_n$, $U = U_1 + U_2 + \ldots + U_n$, $\frac{1}{C} = \frac{1}{C_1} + \frac{1}{C_2} + \ldots + \frac{1}{C_n}$.
 - (8.5) Параллельное соединение: $U = U_1 = U_2 = \dots = U_n$, $q = q_1 + q_2 + \dots + q_n$, $C = C_1 + C_2 + \dots$

9 Законы постоянного тока

- I сила тока;
- U напряжение;
- R электрическое сопротивление;
- ρ удельное электрическое сопротивление (табличная величина);
- r внутреннее сопротивление источника тока;
- $\mathscr{E} ЭДС$ источника тока.
- 1. Сила тока по определению: $I = \frac{\Delta q}{\Delta t}$.
- 2. Закон Ома для однородного участка цепи: $I = \frac{U}{D}$
- 3. Формула сопротивления проводника: $R = \frac{\rho l}{c}$.
- 4. ЭДС источника тока по определению:: $\mathscr{E} = \frac{A_{\text{стор}}}{a}$.
- 5. Закон Ома для полной цепи: $I = \frac{\mathscr{E}}{R+r}, \, \mathscr{E} = IR + Ir.$
- 6. Соединения проводников:

 - (6.1) Последовательное соединение: $I = I_1 = I_2 = \ldots = I_n$, $U = U_1 + U_2 + \ldots + U_n$, $R = R_1 + R_2 + \ldots + R_n$. (6.2) Параллельное соединение: $U = U_1 = U_2 = \ldots = U_n$, $I = I_1 + I_2 + \ldots + I_n$, $\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2} + \ldots + \frac{1}{R_n}$.
- 7. Работа тока (закон Джоуля Ленца): $A = Q = IUt = I^2Rt = \frac{U^2}{R}t$.
- 8. Мощность тока: $A = IU = I^2R = \frac{U^2}{D}$
- 9. * КПД источника тока: $\eta = \frac{r}{r+R}$.

10 Магнитное поле и электромагнитная индукция

Обозначения:

- \vec{B} вектор индукции магнитного поля;
- Φ поток вектора \vec{B} через замкнутый контур;
- ρ удельное электрическое сопротивление (табличная величина);
- \bullet L индуктивность проводника (катушки).
- 1. Сила Ампера:
 - (1.1) направление $\vec{F}_A \perp I$, $\vec{F}_A \perp \vec{B}$;
 - (1.2) численное значение $F_A = IBl\sin\alpha, \quad \alpha = \angle\left(\vec{B}, I\right).$
- 2. Сила Лоренца:
 - (2.1) направление $\vec{F}_L \perp v$, $\vec{F}_L \perp \vec{B}$;
 - (2.2) численное значение $F_L = |q|vB\sin\alpha$, $\alpha = \angle(\vec{B}, \vec{v})$.
- 3. Поток вектора магнитной индукции: $\Phi = BS\cos\alpha$, $\alpha = \angle\left(\vec{B},\vec{n}\right)$.
- 4. Закон Фарадея: $\mathscr{E}_i = \left| \frac{\Delta \Phi}{\Delta t} \right|$.
- 5. ЭДС индукции в проводнике, движущемся в магнитном поле: $\mathscr{E}_i = Blv \sin \alpha \sin \beta$, $\alpha = \angle \left(\vec{B}, l \right)$ $\beta = \angle \left(\vec{v}, l \right)$.
- 6. Индуктивность по определению: $L = \frac{\Phi}{I}$
- 7. ЭДС самоиндукции: $\mathscr{E}_{si} = -L \frac{\Delta I}{\Delta t}$
- 8. Энергия магнитного поля: $W = \frac{LI^2}{2}$.

11 Электромагнитные колебания и волны

Обозначения:

- \bullet q заряд конденсатора в колебательном контуре;
- C ёмкость конденсатора в колебательном контуре;
- U напряжение на конденсаторе в колебательном контуре;
- \bullet I сила тока в катушке индуктивности;
- L индуктивность проводника (катушки) в колебательном контуре;
- $c = 3 \cdot 10^8$ скорость света в вакууме.
- 1. Уравнения свободных электромагнитных колебаний:
 - (1.1) Зависимость заряда конденсатора от времени: $q = q_{\text{max}} \cos{(\omega t + \varphi)}$.
 - (1.2) Зависимость напряжения на конденсаторе от времени $U = Cq_{\text{max}}\cos{(\omega t + \varphi)}$.
 - (1.3) Зависимость силы тока в катушке от времени: $q = q_{\text{max}} \cos{(\omega t + \varphi)}$.
- 2. Соотношение между амплитудами заряда и силы тока: $I_{\max} = \omega q_{\max}$.
- 3. Закон сохранения энергии для свободных электромагнитных колебаний: $\frac{LI^2}{2} + \frac{CU^2}{2} = \frac{LI_{\max}^2}{2} = \frac{CU_{\max}^2}{2}$.
- 4. Взаимная ориентация векторов в электромагнитной волне в вакууме: $\vec{E} \perp \vec{B} \perp \vec{c}$.
- 5. Связь длины волны с периодом и частотой: $\lambda = Tc = \frac{c}{v}$.

12 Оптика

- $c = 3 \cdot 10^8$ скорость света в вакууме;
- v скорость света в среде;
- Δ оптическая разность хода;
- *F* фокусное расстояние линзы;
- D оптическая сила линзы;
- \bullet d расстояние от предмета до линзы или период дифракционной решётки;
- f расстояние от изображения до линзы;
- \bullet h, H размеры предмета и его изображения в линзе.

- 1. Преломление света:
 - (1.1) Закон преломления: $n_1 \sin \alpha = n_2 \sin \beta$.
 - (1.2) Абсолютный показатель преломления среды: $n = \frac{c}{n}$
- 2. Соотношение частот и длин волн при переходе монохроматического света через границу раздела двух оптических сред: $\nu_1 = \nu_2, \ n_1 \lambda_1 = n_2 \lambda_2.$
- 3. Предельный угол полного внутреннего отражения: $\sin \alpha_{\rm пp} = \frac{n_2}{n_1}$.
- 4. Преломление света в линзе:
 - (4.1) Фокусное расстояние и оптическая сила: $D = F^{-1}$.
 - (4.2) Формула тонкой линзы для собирающей линзы при действительном изображении (d > F): $\frac{1}{d} + \frac{1}{f} = \frac{1}{F}$.
 - (4.3) Формула тонкой линзы для собирающей линзы при мнимом изображении (d < F): $\frac{1}{d} \frac{1}{f} = \frac{1}{F}$.
 - (4.4) Формула тонкой линзы для рассеивающей линзы (изображение всегда мнимое): $\frac{1}{d} \frac{1}{f} = -\frac{1}{F}$.
 - (4.5) Увеличение, даваемое линзой:
 $\Gamma = \frac{h}{H} = \frac{f}{d}.$
- 5. Условия наблюдения максимумов и минимумов в интерференционной картине от двух когерентных источников:
 - (5.1) Максимумы: $\Delta = 2m\frac{\lambda}{2}, m = 0, \pm 1, \pm 2, \pm 3...$
 - (5.2) Минимумы: $\Delta = (2m+1) \frac{\lambda}{2}, \ m = 0, \pm 1, \pm 2, \pm 3 \dots$
- 6. * Формула разности хода в точке с координатой x на экране при освещении его двумя когерентными источниками света, находящихся на расстоянии a друг от друга и на расстоянии L от экрана: $\Delta = \frac{aa}{L}$
- 7. Условие наблюдения максимумов при нормальном падении монохроматического света на дифракционную решётку: $d \sin \varphi = m\lambda$, $m = 0, \pm 1, \pm 2, \pm 3...$

13 Квантовая физика

- λ длина волны излучения;
- ν частота излучения;
- $h = 6, 6 \cdot 10^{-34}$ постоянная Планка;
- Авых работа выхода электрона из металла;
- $\nu_{
 m kp}$ частота красной границы фотоэффекта;
- Uзап запирающее напряжение в фотоэффекте;
- *m_p* масса протона;
- *m_n* масса нейтрона;
- M масса ядра;
- T период полураспада.
- 1. Характеристики фотона (v = c, m = 0):
 - (1.1) Энергия фотона: $E = h\nu$.
 - (1.2) Импульс фотона: $p = \frac{E}{c} = \frac{h}{\lambda}$.
- 2. Формулы теории относительности (v < c, m > 0):
 - (2.1) Энергия частицы: $E = \frac{mc^2}{\sqrt{1 \frac{v^2}{c^2}}}$.

 - $(2.2) \ \, \mbox{Энергия частицы: } E_0 = mc^2. \\ (2.3) \ \, \mbox{Импульс частицы } p = \frac{mv}{\sqrt{1-\frac{v^2}{c^2}}}.$
- 3. Уравнение Эйнштейна для фотоэффекта: $h\nu = A_{\text{вых}} + E_{\text{max}},$ где: $A_{\text{вых}} = h\nu_{\text{кр}},~E_{\text{max}} = q_e U_{\text{зап}}.$
- 4. Длина волны де Бройля движущейся частицы: $\lambda = \frac{h}{p} = \frac{h}{mv}$.
- 5. Излучение и поглощение фотонов при переходе атома с одного уровня энергии на другой: $h\nu_{mn} = \frac{hc}{\lambda_{mn}} = |E_n E_m|$.
- 6. Спектр уровней энергии атома водорода: $E_n = \frac{-13,6 \text{ эВ}}{n^2}, \ n=1,2,3,\ldots$

- 7. Дефект массы ядра ${}_Z^AX\colon \Delta m=Z\cdot m_p+(A-Z)\cdot m_n-M.$
- 8. Уравнения радиоактивных распадов:
- (8.1) α -распад: ${}^A_ZX \to {}^{A-4}_{Z-2}Y + {}^4_2He$. (8.2) β -распад: ${}^A_ZX \to {}^A_{Z+1}Y + {}^0_{-1}e$. 9. Закон радиоактивного распада: $N\left(t\right) = N_0 \cdot 2^{-t/T}$.