

知乎 News Feed 中的机器学习实践

张瑞

知乎个性化推荐及 Feed 业务技术负责人

下载极客时间App 获取有声IT新闻、技术产品专栏,每日更新

扫一扫下载极客时间App

人工智能基础课

"通俗易懂的人工智能入门课,,

AI技术内参

你的360度人工智能信息助理

关注落地技术,探寻AI应用场景

- 14万AI领域垂直用户
- 8000+社群技术交流人员,不乏行业内顶级技术专家
- 每周一节干货技术分享课
- AI一线领军人物的访谈
- AI大会的专家干货演讲整理
- 《AI前线》月刊
- AI技能图谱
- 线下沙龙

扫码关注带你涨姿势

成为软件技术专家 全球软件开发大会 的必经之路

[北京站] 2018

会议: 2018年4月20-22日 / 培训: 2018年4月18-19日

北京·国际会议中心

团购享受更多优惠

识别二维码了解更多

2018 · 深圳站

从2012年开始算起,InfoQ已经举办了9场ArchSummit全球架构师峰会,有来自Microsoft、Google、Facebook、Twitter、LinkedIn、阿里巴巴、腾讯、百度等技术专家分享过他们的实践经验,至今累计已经为中国技术人奉上了近干场精彩演讲。

限时7折报名中, 名额有限, 速速报名吧!

2012.08.10-12 深圳站

2018.07.06-09 深圳站

会议: 07.06-07.07 培训: 07.08-07.09

个人介绍

- •教育经历
 - •北京邮电大学网络技术研究院硕士
- •工作经历
 - •百度 NLP & KS
 - •高级研发工程师 机器学习方向
 - •豌豆荚-搜索部门
 - •InAppSearch 搜索质量高级研发工程师及内容推荐技术负责人
 - •知乎
 - •组建知乎机器学习和数据挖掘部门,担任知乎机器学习团队技术负责人
 - •目前担任知乎个性化 Feed 与推荐业务技术负责人
- 研究领域和兴趣
 - 自然语言处理
 - •搜索及个性化推荐业务中的架构与策略

目录

- 知乎 News Feed 产品简介
- 知乎 News Feed 后端策略演进
 - Edge Rank
 - Learning to Rank
 - DNN Based Recommendation
- ●总结

知乎 News Feed 产品简介

多种来源: 主动 (关注),被动 (推荐),编辑精选

多种内容:问题/回答/文章/专栏/Live/电子书/视频/.....

Edge Rank: 打破「时间序」的尝试

- 背景
 - 用户增长: 信噪比增大, 信息过载
 - 时效性?相关度?
- 优点
 - 足够简单,可解释性强
 - 易于对「相关度」「时效性」「内容类型」 等进行权衡和调整
- 缺点
 - 过于简单,对数据的使用能力差
 - 调整参数没有有效的指导

s: 来源相关性

def affinity_score(display, up, down, previous_score): // 根据用户对内容来源的交互更新 Affnity Score w: 类型权重

<u> </u>	
用户关注问题	3.0
用户收藏答案	2.0
用户创建回答	1.0
用户赞同文章	0.8

Learning to Rank: 流程与要素

流程

训练数据采集

特征提取

目标选择

模型训练

评估/验证

要素

数据

训练数据收集 清洗无效数据 对数据进行采样

特征

特征选择 特征变换

目标

根据业务目标设计需要优化的目标函数,确定 loss

模型

根据业务场景、数据 情况、开发周期等选 择合适的模型

效果

在线/离线效果评估,确认模型效果和收益

Learning to Rank: 模型选择

LR

- 广义线性模型: 简单,可解释性好
- 训练和推断效率高;并行化及 Online Update 简单方便
- 特征工程繁琐: 离散化和特征组 合等

GBDT

- 能够自动、有效地捕捉非线性
- 计算复杂度高;模型容量有限
- 没有支持特别好的并行化和在线学习 版本
- 对稀疏特征的效果不好

GBDT+LR

- 融合 GBDT 和 LR 的优点
- 实际场景中的效果需要验证

Learning to Rank: 特征体系

用户特征

- 用户类别:阅读型/写作性用户, 新/老用户
- 人口学特征:地域,性别,学历, 职业.....
- 历史偏好: 历史点击率,阅读文章的平均长度......

上下文特征

- 访问时间
- 机型/平台
- 非严格重复(同 Session 中同类 内容条数)
-

交叉特征

- 是否关注内容源
- 是否关注创作者
- 对内容 Tag 的兴趣度(Max/Min/ Avg)
- 用户对该类型内容的历史点击率

-

内容特征

- 历史交互信息: 历史 CTR, 获得 赞同/反对数.....
- 文本特征: 类型, 长度, 格式 (html 标签数, img 标签数, 分段)......
- 作者信息:权威度, People

Rank,关注者数量……

Learning to Rank: 训练样本收集

- •主要问题
 - 负样本比例和正样本比例不平衡: 展现但不点击的样本数倍于有点击的样本
 - 维度特征占比过低: 部分特征维度上, 非缺省值样本占比较低
 - •实时特征的易变性: 在收集样本时候得到的特征和线上预测时使用的特征发生变化
 - •用户行为的时间相关性:易受到短期行为波动的影响
- •解决方案
 - •负样本欠采样,正负样本 1:1 分布;可以为 AUC 带来 2% 左右的提升
 - •对某些重要且有特征样本占比低的特征,增强非特征缺失的样本在训练集中的比例
 - 后端预抽样落地实时特征
 - •随机选择较大的时间范围(2w 1m)抽取数据

Learning to Rank: 优化目标选择

- •交互:点击(阅读),分享/收藏
 - O-1 目标
 - 套用 CTR 预估框架
- DWellTime: 分级目标
 - Normalized Dwell Time
 - •使用 z-value 压缩 Dwell Time 的范围,进行归一化 $z_i = \frac{\log(t_i) \mu_{C_i}}{\sigma_{C_i}}$
 - •对 z-value 进行分桶: Long/Normal/Short/NoClick
 - •修改 Pesudo Response 而不是 sample 权重

pseudo_response(x) =
$$-g_m(\mathbf{x}_i) \times \text{scale}(label)$$

Learning to Rank: 离线效果评估

- AUC
 - •用于 0 1 分类 (CTR 预估) 场景下的离线效果评估
 - AUC 的变化趋势和线上效果正相关,但难以估计提升量
- DCG Gain

$$ullet$$
 DCG: DCG $_{
m p} = \sum_{i=1}^p rac{rel_i}{\log_2(i+1)}$

- DCG Gain: $DCG_{10,reranked}/DCG_{10,online}-1.0$
- DCG Gain 和线上数据指标(尤其是 CTR)表现正相关,并且相对量上基本对应

Learning to Rank: 线上实验及效果

• 总体效果

•CTR Increase: 100%+

Duration Increase: 40%+

• Views: 15%+

•实验节点

	效果	Remark
EdgeRank -> GBDT LTR	CTR +13%	和 Edge Rank 使用特征类似,加入了内容维度统计特征和 Context 信息
引入实时兴趣	CTR + 15%, duration + 7%	无
拟合 Dwell Time	duration: 3% +, CTR 1.5%-	展示结果中长文本比例增加

DNN Based Recommendation: Why and How?

- GBDT 模型的局限性
 - •容量有限
 - •无法有效利用 ID 类特征
- 业务的发展
 - •「被动式」信息需求越来越多;新用户及低频用户缺少统计信息
 - CF 推荐:数据过于稀疏;计算复杂性高
 - E&E 算法:模型过于简单,E&E 的效果受限于内容池划分、超参数等一系列问题
- DNN Based Recommendation
 - •对用户和内容进行特征 embedding 表示
 - •使用 LSH + KNN 召回

Deep Learning Based Recommendation: 样本收集

• Hold-Out 收集样本

id	feature	label
1	Read: 102, 134, 141 Search: "北京", "游戏"	123
2	Read: 123, 123, 130 Search: "游戏", "历史"	150
3	Read: 123, 105, 232, 151 Search: Null	150
4	Read: 105, 232, 151, 150 Search: "电影"	146
5	Read: 146, 161, 210 Search: "电影", "科幻"	457

- •重采样
 - •用户阅读内容分布非常不平衡(label 频次不均衡),会造成推荐结果偏向于热门
 - •对流量大的内容进行降采样: ratio = sqrt(C/freq)

Deep Learning Based Recommendation: 网络结构

- •使用用户的 LastActions 及其 Profile 特征 MultiLabel SoftMax Layer with Negative 训练 User Embedding 网络,同时得到训 Sampling Sampling 练集中所有内容的 Embedding 128 Relu Neurol Dropout: 0.5
- •使用训练好的 User Embedding 网络,固定网络连接的权重,在线推断出 User Embedding;同时使用单层 SoftMax 网络,得到已分发内容的 Embedding
- •利用 User Embedding 和 Feed Embedding 的结果进行内积运算,为用户推荐内容

Layer with Negative Sampling 128 Relu Neurons, **Dropout: 0.5** 256 Relu Neurons, **Dropout: 0.5 512 Relu Neurons 1024 Relu Neurons** Profile Features(性别 Last Search Last Read Content **1697 Input** Name/Headlines, Embeddings(128 Embeddings(128 **Dimensions** dimensions) Education.....) dimensions)

Deep Learning Based Recommendation: 实验及改进 (一)

- 整体效果
 - Top 100 ACC: 0.26
 - 线上效果:初期持平 E&E 算法的效果; 随用户行为量的增长,基于 DNN 的推 荐展现出优势
- ●时间衰减
 - Feed Embedding 的准确性随时间衰减 需要加入定期重训机制
- 网络复杂度对推荐效果的影响
 - 3 亿样本的情况下, 4 层网络的效果较优

	2	3	4
2层 (1697-256-128)	0.173	0.181	0.177
3层 (1697-512-256-128)	0.194	0.207	0.205
4层 (1697-1024-256-128)	0.209	0.254	0.262
5层 (1697-1536-1024-512-256-128)	0.239	0.252	0.269

Deep Learning Based Recommendation: 实验及改进 (二)

●引入高频 ID 类特征及 FMPooling

	原始网络	Top 2w QueryTag ID 化	Top 2w Query Tag ID 化+Top 2w 文章 Tag ID 化
Average	0.168	0.189	0.196
FMPooling	-	0.195	0.210

- •引入 Last Skip 作为特征
 - 「展示但未读」可以做为负例也可以做为特征
 - Top 100 ACC: 0.26-0.29
- SoftMax 层改进
 - Negative Sampling 改成对 Skip 的内容采样

Deep Learning Based Recommendation: 实验及改进 (三)

• 使用双神经网络实现对新内容的 Embedding 和推荐

Insights & Conclusions

建设业务友好的模型

- •从无到有
 - 架构和数据先行
 - •模型选择需要考虑可维护性、可扩展性及潜力
 - 模型殊途同归
- 从有到优
 - •从业务出发,设计目标、采样方式
 - •由合而分:由统一模型细化成针对各个目标的「小」模型
- •工程质量
 - 重视接入新特征和新数据的模型迭代速度

