Санкт-Петербургский Политехнический Университет Петра Великого Институт компьютерных наук и технологий Кафедра компьютерных систем и программных технологий

ОТЧЕТ по расчетному заданию

«Линейное программирование» Системный анализ и принятие решений

Работу выполнил студент группа 33501/4 Дьячков В.В. Преподаватель

Сабонис С.С.

Санкт-Петербург 10 ноября 2017 г.

1. Техническое задание

- 1. Привести задачу к канонической форме;
- 2. Решить задачу геометрическим методом;
- 3. Обозначить все опорные точки (в том числе недопустимые) и записать соответствующие им наборы базисных переменных, рассчитать значение целевой функции в каждой опорной точке (решить задачу методом полного перебора опорных точек);
- 4. Решить задачу симплекс-методом в матричной форме;
- 5. Решить задачу симплекс-методом в табличной форме;
- 6. Ввести дополнительное ограничение, отсекающее оптимальную точку. Решить новую задачу двойственным симплекс-методом в табличной форме, в качестве начального базиса новой задачи использовать оптимальный базис исходной задачи;
- 7. Сформулировать задачу, двойственную по отношению к исходной.

2. Исходные данные

Вариант 32 Дана задача линейного программирования:

$$\begin{cases}
\max (2x_1 + 3x_2) \\
x_1 + x_2 \leqslant 4.8 \\
-3x_1 - x_2 \leqslant -3.5 \\
x_1 \geqslant 0 \\
x_2 \geqslant 0
\end{cases}$$
(2.1)

3. Приведение к канонической форме

Приведём задачу к канонической форме при помощи введения новых переменных x_3 и x_4 и домножения второго ограничения на -1:

$$\begin{cases}
\max (2x_1 + 3x_2) \\
x_1 + x_2 + x_3 = 4.8 \\
3x_1 + x_2 - x_4 = 3.5 \\
x_i \geqslant 0, i = \overline{1, 4}
\end{cases}$$
(3.1)

4. Решение геометрическим методом

На рис. 4.1 изображено геометрическое представление системы 2.1.

Рис. 4.1: Решение геометрическим методом

Полученный выпуклый 4-угольник является областью допустимых решений. Зелеными точками на рисунке изображены допустимые опорные точки, красными – недопустимые. Можно заметить, что максимальное значение в области допустимых значений прямая $2x_1 + 3x_2 = C$ принимает в точке $x_1 = 0, x_2 = 4.8$, следовательно эта опорная точка и является единственным решением задачи.

5. Решение методом полного перебора опорных точек

1.
$$\begin{cases} x_1 + x_2 = 4.8 \\ 3x_1 + x_2 = 3.5 \end{cases} \Rightarrow \begin{cases} x_2 = 4.8 - x_1 \\ 2x_1 + 4.8 = 3.5 \end{cases} \Rightarrow \begin{cases} x_1 = -0.65 \\ x_2 = 5.45 \end{cases} \Rightarrow f = 15.05$$

2.
$$\begin{cases} x_1 + x_2 = 4.8 \\ x_1 = 0 \end{cases} \Rightarrow \begin{cases} x_1 = 0 \\ x_2 = 4.8 \end{cases} \Rightarrow f = 14.4$$

3.
$$\begin{cases} x_1 + x_2 = 4.8 \\ x_2 = 0 \end{cases} \Rightarrow \begin{cases} x_1 = 4.8 \\ x_2 = 0 \end{cases} \Rightarrow f = 9.6$$

4.
$$\begin{cases} 3x_1 + x_2 = 3.5 \\ x_1 = 0 \end{cases} \Rightarrow \begin{cases} x_1 = 0 \\ x_2 = 3.5 \end{cases} \Rightarrow f = 10.5$$

5.
$$\begin{cases} 3x_1 + x_2 = 3.5 \\ x_2 = 0 \end{cases} \Rightarrow \begin{cases} x_1 = \frac{3.5}{3} \approx 1.17 \\ x_2 = 0 \end{cases} \Rightarrow f \approx 2.34$$

6.
$$\begin{cases} x_1 = 0 \\ x_2 = 0 \end{cases} \Rightarrow f = 0$$

При проверке найденных опорных точек на допустимость в системе уравнений 2.1 видно, что точки 1 и 6 являются недопустимыми. Максимальное значение функция принимает в точке 1, но так как данная точка является недопустимой, оптимальной точкой является точка 2 ($x_1 = 0, x_2 = 4.8$).

6. Решение симплекс-методом в матричной форме

Запишем матрицу коэффициентов системы 2.1:

$$A = \begin{pmatrix} 1 & 1 & 1 & 0 \\ 3 & 1 & 0 & -1 \end{pmatrix}$$

Из данной матрицы невозможно выделить единичную подматрицу, поэтому введем переменную x_5 . Тогда система приобретает следующий вид:

$$\begin{cases}
\max (2x_1 + 3x_2) \\
x_1 + x_2 + x_3 = 4.8 \\
3x_1 + x_2 - x_4 + x_5 = 3.5 \\
x_i \geqslant 0, i = \overline{1,5}
\end{cases}$$
(6.1)

Перепишем систему 6.1 в матричной форме:

$$A = \begin{pmatrix} 1 & 1 & 1 & 0 & 0 \\ 3 & 1 & 0 & -1 & 1 \end{pmatrix}, b = \begin{pmatrix} 4.8 \\ -3.5 \end{pmatrix}, c = \begin{pmatrix} 2 & 3 & 0 & 0 & 0 \end{pmatrix}^T, x = \begin{pmatrix} x_1 & \cdots & x_5 \end{pmatrix}^T$$

$$\begin{cases} \max(c^T x) \\ Ax = b \\ b \geqslant 0 \\ x \geqslant 0 \end{cases}$$
(6.2)

Переменные x_3 и x_5 формируют единичную подматрицу $P=\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ в матрице A, следовательно выберем их как базисные переменные, а x_1 , x_2 и x_4 как свободные переменные.

1.
$$x^{\mathrm{B}} = P^{-1}b = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 4.8 \\ 3.5 \end{pmatrix} = \begin{pmatrix} 4.8 \\ 3.5 \end{pmatrix} \geqslant 0 \Rightarrow$$
 базис допустим. $c^{\mathrm{B}} = \begin{pmatrix} 0 & 0 \end{pmatrix}$

Для свободных переменных найдем Δ_i (i=1,2,4):

$$\Delta_1 = c^{\mathrm{B}} P^{-1} A_1 - c_1 = \begin{pmatrix} 0 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 3 \end{pmatrix} - 2 = -2$$

$$\Delta_2 = c^{\mathrm{B}} P^{-1} A_2 - c_2 = \begin{pmatrix} 0 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} - 3 = -3$$

$$\Delta_4 = c^{\mathrm{B}} P^{-1} A_4 - c_4 = \begin{pmatrix} 0 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 0 \\ -1 \end{pmatrix} - 0 = 0$$

$$\Delta = \begin{pmatrix} -2 & -3 & 0 \end{pmatrix}^T \ngeq 0 \Rightarrow \text{базис не оптимален.}$$

Вводим в базис переменную x_k , т.ч. $k = \operatorname{argmin} \Delta_i = 2 \Rightarrow x_2$.

Определим вектор
$$z = P^{-1}A_k = P^{-1}A_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}.$$

Выводим из базиса переменную x_r , т.ч. $r = \operatorname*{argmin}_j \left(\left. \frac{x_j^{\mathrm{B}}}{z_j} \right|_{z_j > 0} \right) = 5 \Rightarrow x_5.$

2. Меняем местами x_2 и x_5 , следовательно новый базис состоит из x_2 и x_3 , а x_1 , x_4 и x_5 – свободные переменные.

$$P = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} \Rightarrow P^{-1} = \begin{pmatrix} 0 & 1 \\ 1 & -1 \end{pmatrix}$$
 $x^{\mathrm{B}} = P^{-1}b = \begin{pmatrix} 0 & 1 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} 4.8 \\ 3.5 \end{pmatrix} = \begin{pmatrix} 3.5 \\ 1.3 \end{pmatrix} \geqslant 0 \Rightarrow$ базис допустим. $c^{\mathrm{B}} = \begin{pmatrix} 3 & 0 \end{pmatrix}$

Для свободных переменных найдем Δ_i (i=1,4,5):

$$\Delta_1 = c^{\mathsf{E}} P^{-1} A_1 - c_1 = \begin{pmatrix} 3 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} 1 \\ 3 \end{pmatrix} - 2 = 9 - 2 = 7$$

$$\Delta_4 = c^{\mathrm{E}} P^{-1} A_4 - c_4 = \begin{pmatrix} 3 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} 0 \\ -1 \end{pmatrix} - 0 = -3 - 0 = -3$$

$$\Delta_5 = c^{\mathrm{E}} P^{-1} A_5 - c_5 = \begin{pmatrix} 3 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \end{pmatrix} - 0 = 3 - 0 = 3$$

$$\Delta = \begin{pmatrix} 7 & -3 & 3 \end{pmatrix}^T \not\geqslant 0 \Rightarrow$$
 базис не оптимален.

Вводим в базис переменную x_k , т.ч. $k = \underset{\cdot}{\operatorname{argmin}} \Delta_i = 4 \Rightarrow x_4$.

Определим вектор
$$z = P^{-1}A_k = P^{-1}A_4 = \begin{pmatrix} 0 & 1 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} 0 \\ -1 \end{pmatrix} = \begin{pmatrix} -1 \\ 1 \end{pmatrix}.$$

Выводим из базиса переменную
$$x_r$$
, т.ч. $r = \operatorname*{argmin}_j \left(\left. \frac{x_j^{\mathrm{B}}}{z_j} \right|_{z_j > 0} \right) = 3 \Rightarrow x_3.$

3. Меняем местами x_3 и x_4 , следовательно новый базис состоит из x_2 и x_4 , а x_1 , x_3 и x_5 – свободные переменные.

$$P = \begin{pmatrix} 1 & 0 \\ 1 & -1 \end{pmatrix} \Rightarrow P^{-1} = \begin{pmatrix} 1 & 0 \\ 1 & -1 \end{pmatrix}$$
 $x^{\mathrm{B}} = P^{-1}b = \begin{pmatrix} 1 & 0 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} 4.8 \\ 3.5 \end{pmatrix} = \begin{pmatrix} 4.8 \\ 1.3 \end{pmatrix} \geqslant 0 \Rightarrow$ базис допустим. $c^{\mathrm{B}} = \begin{pmatrix} 3 & 0 \end{pmatrix}$

Для свободных переменных найдем Δ_i (i=1,3,5):

$$\Delta_{1} = c^{B} P^{-1} A_{1} - c_{1} = \begin{pmatrix} 3 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} 1 \\ 3 \end{pmatrix} - 2 = 3 - 2 = 1$$

$$\Delta_{3} = c^{B} P^{-1} A_{3} - c_{3} = \begin{pmatrix} 3 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} - 0 = 3 - 0 = 3$$

$$\Delta_{5} = c^{B} P^{-1} A_{5} - c_{5} = \begin{pmatrix} 3 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \end{pmatrix} - 0 = 0 - 0 = 0$$

$$\Delta = \begin{pmatrix} 1 & 3 & 0 \end{pmatrix}^{T} \geqslant 0 \Rightarrow \text{базис оптимален.}$$

Следовательно точка $x^{opt} = \begin{pmatrix} 0 & 4.8 & 0 & 1.3 & 0 \end{pmatrix}$ является оптимальным решением, что соотносится с геометрическим решением $x_1 = 0, x_2 = 4.8.$ Значение функции при этом равно $x^{opt} \cdot c = 14.4.$

7. Решение симплекс-методом в табличной форме

Переменные x_3 и x_5 составляют в матрице A единичную подматрицу, следовательно выберем их как базисные переменные, значит x_1 , x_2 и x_4 – свободные переменные. Выразим через них базисные переменные:

$$\begin{cases} \max(2x_1 + 3x_2) \\ x_1 + x_2 + x_3 = 4.8 \\ 3x_1 + x_2 - x_4 + x_5 = 3.5 \\ x_i \geqslant 0, i = \overline{1,5} \end{cases} \Rightarrow \begin{cases} x_3 = 4.8 - x_1 - x_2 \\ x_5 = 3.5 - 3x_1 - x_2 + x_4 \end{cases}$$

В таблице 7.1 приведена таблица симплекс метода для первого базиса.

№1.1	x_1	x_2	x_4	b
x_3	-1	-1	0	4.8
x_5	-3	-1	1	3.5
f	2	3	0	0

Таблица 7.1: Базис x_3, x_5

Базис является допустимым, так как $b \geqslant 0$, но не является оптимальным, так как $c \not\leqslant 0$. Выберем x_2 как разрешающий столбец, а x_5 как разрешающую строку. На их пересечении находится разрешающий элемент -1. В таблице 7.2 приведена промежуточная таблица симплекс метода, в которой поменяны местами x_2 и x_5 и базисными являются x_2 и x_3 .

Таблица 7.2: Промежуточная таблица базиса x_2, x_3

№2.1	x_1	x_5	x_4	b
x_3	-2	-1	1	-1.3
x_2	3	1	-1	-3.5
f	7	3	-3	-10.5

Разделив каждый элемент таблицы на разрешающий элемент (-1), получили симплекс таблицу 7.3 для второго базиса.

Таблица 7.3: Базис x_2, x_3

№2.2	x_1	x_5	x_4	b
x_3	2	1	-1	1.3
x_2	-3	-1	1	3.5
f	-7	-3	3	10.5

Базис является допустимым, так как $b \geqslant 0$, но не является оптимальным, так как $c \not \leqslant 0$. Выберем x_4 как разрешающий столбец, а x_3 как разрешающую строку. На их пересечении находится разрешающий элемент -1. В таблице 7.4 приведена промежуточная таблица симплекс метода, в которой поменяны местами x_3 и x_4 и базисными являются x_2 и x_4 .

Таблица 7.4: Промежуточная таблица базиса x_2, x_4

№3.1	x_1	x_5	x_3	b
x_4	-2	-1	1	-1.3
x_2	1	0	1	-4.8
f	1	0	3	-14.4

Разделив каждый элемент таблицы на разрешающий элемент (-1), получили симплекс таблицу 7.5 для третьего базиса.

Таблица 7.5: Базис x_2, x_4

№3.2	x_1	x_5	x_3	b
x_4	2	1	-1	1.3
x_2	-1	0	-1	4.8
f	-1	0	-3	14.4

Базис является допустимым, так как $b \geqslant 0$. Более того, базис является оптимальным, так как $c \leqslant 0$. Следовательно точка $x^{opt} = \begin{pmatrix} 0 & 4.8 & 0 & 1.3 & 0 \end{pmatrix}$ является оптимальным решением, что соотносится с геометрическим решением $x_1 = 0, x_2 = 4.8$. Значение функции в этой точке f = 14.4.

8. Введение дополнительного ограничения

Введем дополнительное ограничение, отрезающее оптимальное решение: $x_2 \leq 4$. Тогда каноническая форма приобретает следующий вид:

$$\begin{cases}
\max (2x_1 + 3x_2) \\
x_1 + x_2 + x_3 = 4.8 \\
3x_1 + x_2 - x_4 + x_5 = 3.5 \\
x_2 + x_6 = 4 \\
x_i \geqslant 0, i = \overline{1, 6}
\end{cases}$$
(8.1)

На рис. 8.1 изображено геометрическое представление системы 8.1.

Рис. 8.1: Решение геометрическим методом

Решим задачу двойственным симплекс методом. Добавим в таблице оптимального базиса 7.5 переменную x_6 к базисным переменным. Для этого выразим x_6 через свободные переменные x_1 , x_3 и x_5 :

$$x_6 = 4 - x_2 = 4 - 4.8 + x_1 + x_3 = x_1 + x_3 - 0.8$$

Получившаяся симплекс таблица приведена в таблице 8.1.

Таблица 8.1: Базис x_2, x_4, x_6

N <u>º</u> 1	x_1	x_5	x_3	b
x_4	2	1	-1	1.3
x_2	-1	0	-1	4.8
x_6	1	0	1	-0.8
f	-1	0	-3	14.4

Так как $b \not\geqslant 0$, то базис является недопустимым. Выберем x_1 как разрешающий столбец, а x_6 как разрешающую строку. На их пересечении находится разрешающий элемент 1. В таблице 8.2 приведена таблица симплекс метода, в которой поменяны местами x_1 и x_6 .

Таблица 8.2: Базис x_1, x_2, x_4

№2	x_6	x_5	x_3	b
x_4	2	1	-3	2.9
x_2	-1	0	0	4
x_1	1	0	-1	0.8
f	-1	0	-2	13.6

Базис является допустимым, так как $b\geqslant 0$. Более того, базис является оптимальным, так как $c\leqslant 0$. Следовательно точка $x^{opt}=\begin{pmatrix} 0.8 & 4 & 0 & 0 & 2.9 & 0 \end{pmatrix}$ является оптимальным решением, что соотносится с геометрическим решением $x_1=0.8, x_2=4$. Значение функции в этой точке f=13.6.

9. Двойственная задача

Сформулируем задачу, двойственную по отношению к исходной:

$$\begin{cases} \max(2x_1 + 3x_2) \\ x_1 + x_2 \leqslant 4.8 \\ -3x_1 - x_2 \leqslant -3.5 \\ x_1 \geqslant 0 \\ x_2 \geqslant 0 \end{cases} \longleftrightarrow \begin{cases} \min(4.8y_1 - 3.5y_2) \\ y_1 - 3y_2 \geqslant 2 \\ y_1 - y_2 \geqslant 3 \\ y_1 \geqslant 0 \\ y_2 \geqslant 0 \end{cases}$$