Capstone Project

Canadian Immigration Prediction

Submitted By:

Tirth Patel

Nachiketbhai Prajapati

Submitted to: - Rahim Samei

Introduction

This document outlines the challenges faced, solutions implemented, and methodologies applied during the development of a predictive model for Canadian immigration trends from 2024 to 2028. The project utilized datasets sourced from Kaggle.com and Canadalmmigration.com, focusing on immigration statistics across multiple countries.

Project Challenges and Solutions

Data Acquisition and Understanding

Challenges:

- The dataset contained inconsistent formats and missing values.
- Certain columns were irrelevant or redundant.

Solutions:

- Performed initial data exploration to understand the structure and content.
- Dropped unnecessary columns and handled missing values through imputation techniques.

Data Preprocessing

Challenges:

- Null values in crucial columns affected data reliability.
- High-dimensional data required dimensionality reduction.

Solutions:

- Applied null value imputation techniques using statistical methods (mean/mode imputation).
- Utilized Linear Discriminant Analysis (LDA) for dimensionality reduction.

Modeling

Challenges:

- Choosing appropriate models to predict immigration trends accurately.
- Balancing model interpretability and performance.

Solutions:

- Implemented multiple models: Linear Regression for trend prediction, Time Series Analysis for patterns, and Random Forest for feature importance.
- Smoothed time-series data to enhance prediction accuracy.

Methodology

Dataset Preparation

- Collected datasets from Kaggle.com and Canadalmmigration.com.
- Preprocessed data through:
 - Handling null values.
 - Removing redundant columns.
 - Dimensionality reduction with LDA.

Exploratory Data Analysis (EDA)

- Identified top 5 and bottom 5 countries by immigration statistics.
- Visualized relationships and trends using Seaborn for better insights into data distribution.

Modeling Techniques

- Linear Regression:
 - Predicted immigration trends for 2024-2028 with a focus on India and random countries.
- Time Series Analysis:
 - Smoothed data for accurate forecasting.
- Random Forest Classifier:
 - Determined feature importance for immigration trends.
- LDA:
 - Reduced data dimensionality for better model performance.

Key Findings

- The project successfully predicted immigration trends for Canada with notable insights:
 - Linear Regression effectively modeled trends for India and other selected countries.
 - Random Forest identified significant features influencing immigration.
 - Time Series Analysis highlighted long-term patterns and trends.

Challenges Faced

1. Understanding and Cleaning Data:

 Resolved issues of missing and inconsistent data using systematic cleaning techniques.

2. Model Selection and Implementation:

 Selected models based on their suitability for trend prediction and feature importance.

3. Data Visualization:

 Leveraged Seaborn for creating intuitive and presentation-ready visuals.

How Challenges Were Resolved

- Conducted thorough EDA to gain insights into the data.
- Applied appropriate preprocessing steps to address missing and inconsistent data.
- Experimented with different models to determine the best fit for our dataset and objectives.

Contributions

- Tirth:
 - Conducted Linear Regression and Time Series Analysis.
 - Handled dataset preparation and EDA.
- Nachiket:
 - Implemented Random Forest Classifier and LDA.
 - Focused on data smoothing and feature selection.

Summary of Findings

- The project showcased the potential of predictive models in analyzing immigration trends, offering:
 - o Insights into country-wise immigration patterns.
 - Key features influencing Canadian immigration.
 - Effective trend predictions using a combination of statistical and machine learning models.

Future Enhancements

- Expand the dataset to include additional variables like economic indicators.
- Utilize advanced models, such as neural networks, for enhanced predictions.
- Apply findings to real-world scenarios, such as policy-making and resource allocation.