

Fisica dello Stato Solido

Appendice n.2 Richiami di statistica

Corso di Laurea Specialistica Ingegneria Elettronica a.a.07-08

http://www.de.unifi.it/FISICA/Bruzzi/bruzzi_dida_fss.html

Un gas composto da un numero N molto grande di particelle è contenuto in un recipiente cubico di lato L. L'energia di ogni particella è:

$$\varepsilon = \frac{1}{2}mv_x^2 + \frac{1}{2}mv_y^2 + \frac{1}{2}mv_z^2 = \frac{p_x^2}{2m} + \frac{p_y^2}{2m} + \frac{p_z^2}{2m}$$

Utilizzando la relazione di de Broglie: $\lambda = \frac{h}{p} = \frac{h}{mv}$ La condizione perchè la particella sia nel recipiente è che essa corrisponda ad un'onda stazionaria: $L = \frac{n}{2}\lambda$

$$p_i 2L = n_i h$$
 n_i intero per $i = x,y,z$

$$\varepsilon = \frac{h^2}{8mL^2} (n_x^2 + n_y^2 + n_z^2) \qquad \Longrightarrow \quad \text{L'energia risulta quantizzata}$$

Tutti gli stati con stesso $n_x^2 + n_y^2 + n_z^2$ corrispondono alla stessa energia: si dicono STATI DEGENERI.

Probabilità di una distribuzione

Siano:

N = numero totale di particelle

 ε_i = energia del livello i-esimo i = 1, ..., s

 n_i = numero di particelle nel livello ad energia ε_i

 g_i = degenerazione del livello ε_i

$$N=\sum n_i$$
 = numero totale particelle = costante
$$U_{\rm int}=\sum n_i \mathcal{E}_i$$
 = energia interna totale del sistema = costante

Per determinare la probabilità di una distribuzione di N particelle negli stati ε_i devo calcolare il numero di configurazioni possibili con cui tale distribuzione si può ottenere.

Caso classico: Distribuzione di Maxwell - Boltzmann

Parto con l'inserimento di n_1 particelle nel livello ε_1 . Scelgo la prima particella: vi sono N modi per farlo. Poi prendo la seconda, vi sono N-1 modi per sceglierla. Per la terza i modi sono N-2, per l'ultima i modi sono N- n_1 +1. Perciò i modi con cui possono essere scelte le particelle sono:

$$W_1' = N(N-1)(N-2)....(N-n_1+1) = \frac{N!}{(N-n_1)!}$$

Così abbiamo considerato come disposizione diversa ogni sequenza separata in cui le n_1 particelle potrebbero essere scelte. Tuttavia a noi serve sapere solo quali n_1 particelle scegliamo, non in che sequenza appaiono. Perciò dobbiamo dividere per il numero di sequenze diverse in cui n1 oggetti possono essere disposti, cioè n_1 !.

$$W_{1} = \frac{N!}{n_{1}!(N-n_{1})!}$$

Esempio

$$N = 5, n_1 = 3$$

$$W_{_{1}} = \frac{5!}{3!2!} = 10$$

Sono state considerate identiche le diverse sequenze delle stesse particelle: $n_1! = 6$. Per il caso 1 2 3:

Per il livello
$$\varepsilon_2$$
: $W_2 = \frac{(N - n_1)!}{n_2!(N - n_1 - n_2)!}$

Perchè solo N - n₁ particelle rimangono libere di essere scelte. Analogamente per il terzo livello:

$$W_3 = \frac{(N - n_1 - n_2)!}{n_3!(N - n_1 - n_2 - n_3)!}$$

Il numero di modi di distribuire le N particelle negli s stati è perciò

$$W = \frac{N!}{n_1!(N-n_1)!} \frac{(N-n_1)!}{n_2!(N-n_1-n_2)!} \dots \frac{(N-n_1-n_2...-n_{s-1})!}{n_s!(N-n_1-n_2....-n_s)!}$$

$$W = \frac{N!}{n_1! n_2! n_3! ... n_s!}$$

Ogni livello è caratterizzato da una degenerazione g_i . Ci sono cioè g_i stati degeneri in cui poter disporre le n_i particelle, percui ogni particella può essere disposta in questi stati in g_i modi diversi.

 g_i^{ni} = numero di modi di disporre le n_i particelle negli stati degeneri.

$$W_{MB} = N! \prod_{i=1}^{S} \frac{g_i^{n_i}}{n_i!}$$

Distribuzione di Maxwell Boltzmann

Ludwig Boltzmann

	I livello	II livello	III livello
1	1	2	3
2	3	1	3 2
3	2	3	1
4	3 2 2 1	1	3
1 2 3 4 5 6 7 8 9	1	1 3 2 3 1 2	2
6	3	2	1
7	1 2	3	
8		1 2	3
	1 2		3
10	3	12	
		3	1 2
12	3		12
11 12 13	1 3	2	
14		1 3	2 2
14 15	1 3		2
16	2	1 3	
17		13	1 3
18	2		13

Esempio

$$g_i=3, n_i=3: g_i^{ni}=27$$

	I livello	II livello	III livello
19	1 2 3		
20		1 2 3	
21			1 2 3
22	2 3	1	
23		2 3	1
24	2 3		1
2223242526	1	2 3	
26		3	2 3
27	1		2 3

Distribuzione di Fermi Dirac

Assunzioni:

- 1. Le particelle obbediscono al principio di esclusione di Pauli (spin semi-intero, non possono avere stessi numeri quantici)
- 2. Particelle **INDISTINGUIBILI**. Discende dal principio di indeterminazione di Heisenberg, poichè non possono essere determinate precisamente le loro traiettorie

Determino il numero delle distribuzioni distinguibili di n_i particelle tra i livelli degeneri g_i .

La prima particella può essere disposta in uno qualunque dei g_i stati, la seconda può essere disposta in g_i -1, la terza in g_i - 2 e così via fino a gi - n_i + 1. In questo modo però considero distinte le distribuzioni che si ottengono permutando le particelle tra loro, cosa che non posso fare se le particelle sono tra loro indistingubili. Così devo dividere per n_1 !

$$W_1 = \frac{g_1(g_1 - 1)(g_1 - 2)....(g_1 - n_1 + 1)}{n_1!} = \frac{g_1!}{n_1!(g_1 - n_1)!}$$

Nel totale:

Enrico Fermi

$$W_{FD} = \prod_{i=1}^{S} \frac{g_i!}{n_i!(g_i - n_i)!}$$

Distribuzione di Fermi-Dirac

Paul Adrien Maurice Dirac

Esempio

Determinare la degenerazione dei primi sei livelli energetici di un elettrone libero confinato in un cubo di lato L.

Soluzione: Le energie di una particella di massa m confinata in un recipiente cubico di lato L è: $\varepsilon = \varepsilon_0 \left(n_x^2 + n_y^2 + n_z^2 \right) \, \text{con} \, \varepsilon_0 = \frac{h^2}{8mL^2}. \quad \text{I primi sei livelli hanno energia e degenerazione come indicato in tabella 1.}$

Energia	Stati di stessa energia	Ordine di degenerazione
$3\varepsilon_0$	(1,1,1)	1
6ε ₀	(2,1,1)(1,2,1)(1,1,2)	3
$9\varepsilon_0$	(2,2,1)(2,1,2)(1,2,2)	3
11ε ₀	(3,1,1)(1,3,1)(1,1,3)	3
$12\varepsilon_0$	(2,2,2)	1
$14\epsilon_0$	(1,2,3)(1,3,2)(2,1,3)(2,3,1)(3,1,2)(3,2,1)	6

Tabella 1

Distribuzione di Bose Einstein

Assunzioni:

- 1. Non ci sono limiti alla popolazione di ciascun livello
- 2. Particelle **INDISTINGUIBILI**.

Considero il livello ε_i come una scatola con $g_i + n_i - 1$ palline colorate. g_i -1 palline nere dividono la scatola in g_i spazi in cui possono essere inserite le palline bianche. I g_i spazi sono i livelli degeneri, le n_i palline bianche sono le particelle.

Il numero di possibili permutazioni di n_i+g_i-1 oggetti distinguibili è $(n_i+g_i-1)!$. Per particelle indistinguibili devo dividere tale valore per $n_i!$ e $(g_i-1)!$.

Per il livello 1:
$$W_1 = \frac{(g_1 + n_1 - 1)!}{n_1!(g_1 - 1)!}$$

Nel totale:

$$W_{BE} = \prod_{i=1}^{S} \frac{(g_i + n_i - 1)!}{n_i!(g_i - 1)!}$$

Distribuzione di Bose Einstein

Albert Einstein

Determinazione della distribuzione più probabile all'equilibrio

Assumiamo che la probabilità di ottenere questa partizione delle particelle negli stati sia proporzionale alla distribuzione. Quindi d'ora in poi porremo:

$$P_{MB} = W_{MB}$$
; $P_{FD} = W_{FD}$; $P_{BE} = W_{BE}$.

All'equilibrio le particelle sono disposte nella configurazione di probabilità massima, ottenibile derivando opportunamente le funzioni di distribuzione. Matematicamente, si preferisce derivare il logaritmo di P.

$$\ln(P_{MB}) = n_1 \ln g_1 + n_2 \ln g_2 + n_3 \ln g_3 + \dots - \ln(n_1!) - \ln(n_2!) - \ln(n_3!) - \dots$$

Usando la formula di Stirling: $ln(x!) \approx x ln(x) - x$

Assumendo che n_1 , n_2 , n_3 ... siano grandi numeri, otteniamo:

$$\ln(P_{MB}) = n_1 \ln g_1 + n_2 \ln g_2 + n_3 \ln g_3 + \dots - (n_1 \ln(n_1) - n_1) - (n_2 \ln(n_2) - n_2) - (n_3 \ln(n_3) - n_3)$$

$$= -n_1 \ln(\frac{n_1}{g_1}) - n_2 \ln(\frac{n_2}{g_2}) - n_3 \ln(\frac{n_3}{g_3}) - \dots + (n_1 + n_2 + n_3 + \dots) = N - \sum_i n_i \ln(\frac{n_i}{g_i})$$

Imponiamo:
$$d(\ln P) = -d\left(\sum n_i \ln(\frac{n_i}{g_i})\right) = 0$$

$$-\sum dn_i \ln(\frac{n_i}{g_i}) - \sum n_i d\left[\ln(\frac{n_i}{g_i})\right] = -\sum dn_i \ln(\frac{n_i}{g_i}) - \sum n_i (\frac{dn_i}{n_i}) = -\sum dn_i \ln(\frac{n_i}{g_i}) - \sum dn_i \ln(\frac{n_i}{g_i})$$

Poiché devono valere le due condizioni: $\sum dn_i = dN = 0$ e $dU_{\rm int} = \sum dn_i \mathcal{E}_i = 0$

E' necessario introdurre due moltiplicatori indeterminati (moltiplicatori di Lagrange), α e β tali che:

$$\sum \left[\alpha + \beta \varepsilon_i + \ln(\frac{n_i}{g_i}) \right] dn_i = 0$$

La condizione di equilibrio diviene: $\alpha + \beta \varepsilon_i + \ln(\frac{n_i}{g_i}) = 0$

$$n_i = g_i e^{-\alpha - \beta \varepsilon_i}$$

Parametri fisici associati ai moltiplicatori di Lagrange

Si può dimostrare che il parametro β è direttamente relazionato con la temperatura assoluta:

$$\beta = \frac{1}{k_B T}$$

Con k_B = Costante di Boltzmann = 1.38x10⁻²³ J/K = 8.617x10⁻⁵ eV/K

Il parametro α è relazionato al numero totale di particelle tramite la:

$$N = \sum n_i = \sum g_i e^{-\alpha - \beta \varepsilon_i} = e^{-\alpha} \sum g_i e^{-\beta \varepsilon_i} = Z e^{-\alpha}$$

con Z = funzione di partizione. $e^{-\alpha} = \frac{N}{Z}$

$$e^{-\alpha} = \frac{N}{Z}$$

Quindi la legge di distribuzione di Maxwell Boltzmann diviene: $n_i = \frac{N}{Z}e^{-\frac{\mathcal{E}_i}{k_BT}}$

$$n_i = \frac{N}{Z} e^{-\frac{\varepsilon_i}{k_B T}}$$

Determinazione della distribuzione più probabile all'equilibrio

Seguendo lo stesso metodo, cioè calcolando il massimo di probabilità per le funzioni di distribuzione di Fermi Dirac e Bose Einstein e introducendo i moltiplicatori di Lagrange otteniamo:

$$n_i = \frac{g_i}{e^{\alpha + \beta \varepsilon_i} + 1}$$

Legge di distribuzione di Fermi Dirac

$$n_i = \frac{g_i}{e^{\alpha + \beta \varepsilon_i} - 1}$$

Legge di distribuzione di Bose Einstein

Ancora, si può porre:
$$\beta = \frac{1}{k_B T}$$

Mentre per il parametro α , determinato dalla condizione : $N=\sum n_i$ nella distribuzione di Fermi-Dirac viene espresso tramite l'energia di Fermi : $\mathcal{E}_F=-\alpha \ k_BT$ e nella distribuzione di Bose Einstein rimane indicata come α .