Universidade de São Paulo

Instituto de Física de São Carlos

Lista 5

Pedro Calligaris Delbem 5255417

Professor: Attilio Cucchieri

Sumário

1	Exercício 1	2
2	Exercício 2	3
3	Exercício 3	4

1 Exercício 1

Tarefa: Na lista 5, foi considerado o poço de potencial infinito no intervalo [0, L], para uma partícula de massa m, ou seja, a equacção

$$-\frac{\hbar^2}{2m}\nabla^2\psi_j(x) = E_j\psi_j(x). \tag{1}$$

Para encontrar as autofunções

$$\psi_j(x) \propto \sin\left(\frac{j\pi x}{L}\right)$$

foi considerada a matriz

$$\begin{pmatrix}
-2 & 1 & 0 & \cdots & 0 \\
1 & -2 & 1 & \cdots & 0 \\
0 & 1 & -2 & \cdots & 0 \\
\vdots & \vdots & \ddots & \ddots & \vdots \\
0 & 0 & 0 & 1 & -2
\end{pmatrix}$$

Agora, considere a matriz

$$\begin{pmatrix}
-1 & 1 & 0 & \cdots & 0 \\
1 & -2 & 1 & \cdots & 0 \\
0 & 1 & -2 & \cdots & 0 \\
\vdots & \vdots & \ddots & \ddots & \vdots \\
0 & 0 & 0 & 1 & -2
\end{pmatrix}$$
(2)

Que tipo de solucções para o poço de potencial infinito você espera encontrar nesse caso? Motive sua resposta.

Resposta:

Para um ponto no extremo inicial da grade, a discretização de diferenças finitas para a primeira derivada é:

$$\left. \frac{d\psi}{dx} \right|_{x=0} \approx \frac{\psi_1 - \psi_0}{h} \tag{3}$$

A Condição de Contorno de Neumann é:

$$\left. \frac{d\psi}{dx} \right|_{x=0} = 0 \tag{4}$$

O que nos leva a

$$\psi_0 = \psi_1 \tag{5}$$

Substituindo isto na discretização de diferenças finitas para a segunda derivada - no ponto x_i , temos:

$$\left. \frac{d^2 \psi}{dx^2} \right|_{x=x_1} \approx \frac{\psi_2 - 2\psi_1 + (\psi_1)}{h^2} = \frac{\psi_2 - \psi_1}{h^2} \tag{6}$$

Que resulta em dois termos, justamente com os coeficientes -1 e 1, que temos na matriz dada. Logo, espera-se que a solução seja tal que obedeça a condição de contorno de Neumann e portanto o resultado será:

$$\psi_j(x) \propto \cos\left(\frac{j\pi x}{2L}\right)$$

2 Exercício 2

Tarefa: Usando o power method e a matriz (2), calcule a energia do estado fundamental E_0 com precisão de 10^{-4} . Compare o resultado com o valor exato. Faça um gráfico da autofuncção normalizada e compare com a soluçção exata.

O código foi compilado com o comando:

gfortran -ffree-form -ffree-line-length-none P2-5255417-ex-2.f90 -Wall -Wextra -pedantic -o P2-5255417-ex-2.exe

Resultados:

Utilizou-se N=100000 como se fosse N=infinito, obtendo a energia:

```
pedro@Pedro-Lenovo ~/Documentos/GitHub/quanticacomp/projeto2
> $ ./P2-5255417-ex-2.exe
  Insert matrix dimension:
100000
  Insert tolerance
1.0e-4
computed E0:  2.4674258 real E0:  2.4674011
```

E obteve-se a seguinte autofunção:

Vê-se que a função analítica e a numérica se sobrepõe totalmente, de modo que o método numérico corresponde perfeitamente à função analítica conhecida. (O autovetor resultante foi salvo no arquivo "P2-5255417-ex-2-results.txt")

3 Exercício 3

Tarefa: Considere o método de Householder, estudado na lista 6. Naquele caso, para os elementos fora da diagonal k_i , foi usado o sinal oposto de $a_{i-1,i}$. O que acontece quando o sinal de k_i é o mesmo de $a_{i-1,i}$? Estude o problema para a mesma matriz considerada na lista 6, ou seja

$$A = \begin{pmatrix} -\frac{5}{2} & \frac{4}{3} & -\frac{1}{12} & 0 & 0 & 0\\ \frac{4}{3} & -\frac{5}{2} & \frac{4}{3} & -\frac{1}{12} & 0 & 0\\ -\frac{1}{12} & \frac{4}{3} & -\frac{5}{2} & \frac{4}{3} & -\frac{1}{12} & 0\\ 0 & -\frac{1}{12} & \frac{4}{3} & -\frac{5}{2} & \frac{4}{3} & -\frac{1}{12}\\ 0 & 0 & -\frac{1}{12} & \frac{4}{3} & -\frac{5}{2} & \frac{4}{3}\\ 0 & 0 & 0 & -\frac{1}{12} & \frac{4}{3} & -\frac{5}{2} \end{pmatrix}$$

Qual é a relacção entre a matriz tridiagonal obtida neste caso e a matriz tridiagonal obtida na lista 6?

Resultados:

Obteve-se os seguintes resultados:

```
pedro@Pedro-Lenovo ~/Documentos/GitHub/quanticacomp/projeto2
Insert matrix dimension:
10
  ----> N = 10 <-----
Original Matrix A (first 5x5):
             1.333333 -0.083333 0.000000
  -2.500000
                                                 0.000000
                         1.333333 -0.083333 0.000000
   1.333333
             -2.500000
  -0.083333
              1.333333 -2.500000
                                     1.333333 -0.083333
             -0.083333
                         1.333333 -2.500000
                                                 1.333333
   0.000000
   0.000000
              0.000000 -0.083333
                                     1.333333
                                                -2.500000
 Tridiagonal Matrix T (first 5x5):
                         0.000000
1.333384
   -2.500000
             -1.335935
                                                 0.000000
                                     0.000000
   -1.335935
              -2.666018
                                      0.000000
                                                 0.000000
             1.333384
                                                -0.000000
   0.000000
                         -2.666649
                                     1.333335
                                     -2.666666
                                                 1.333333
                         1.333335
   0.000000
              0.000000
   0.000000
              0.000000
                         -0.000000
                                     1.333333
                                                -2.666667
 --- Transformation Verification O^T A O = At ---
Difference norm ||At - 0^T A 0||: 0.38752E-14
Smallest eigenvalue (lambda_min): -0.08384774
Largest eigenvalue (lambda_max): -5.20135675
--- Verification for Eigenvalue smallest ---
Eigenvalue: -0.08384774
Norm of residual ||Ay - lambday||: 0.21547E-07
--- Verification for Eigenvalue biggest ---
Eigenvalue: -5.20135675
Norm of residual ||Ay - lambday||: 0.15036E-05
```

```
> $ ./P2-5255417-ex-3b.exe
 Insert matrix dimension:
10
-----> N = 10 <-----
 Original Matrix A (first 5x5):
  -2.500000
              1.333333 -0.083333
                                    0.000000
                                                 0.000000
   1.333333
             -2.500000
                        1.333333 -0.083333
                                                 0.000000
  -0.083333
              1.333333 -2.500000 1.333333
                                               -0.083333
   0.000000
                         1.333333 -2.500000
             -0.083333
                                                 1.333333
    0.000000
              0.000000 -0.083333
                                     1.333333
                                                -2.500000
 Tridiagonal Matrix T (first 5x5):
   -2.500000
              1.335935
                        -0.000000
                                    -0.000000
                                                -0.000000
                                   -0.000000
   1.335935
              -2.666018
                        -1.333384
                                                -0.000000
   -0.000000
              -1.333384
                         -2.666649
                                     1.333335
                                                -0.000000
   -0.000000
              -0.000000
                          1.333335
                                     -2.666666
                                                 1.333333
  -0.000000
              -0.000000
                         -0.000000
                                     1.333333
                                                -2.666667
 --- Transformation Verification O^T A O = At ---
Difference norm ||At - 0^T A 0||: 0.67461E-14
Smallest eigenvalue (lambda_min): -0.08384774
Largest eigenvalue (lambda_max): -5.20135675
--- Verification for Eigenvalue smallest ---
Eigenvalue: -0.08384774
Norm of residual ||Ay - lambday||: 0.17713E-07
--- Verification for Eigenvalue biggest ---
Eigenvalue: -5.20135675
Norm of residual ||Ay - lambday||: 0.15179E-05
```

```
> $ diff A eingenvector-a.txt A eingenvector-b.txt
2,10d1
< -0.2328
11a3,11
> -0.2328
> 0.3226
> -0.3868
> 0.4202
> -0.4202
> 0.3868
> -0.3226
> 0.2328
> -0.1249
13.22c13.22
        -0.1142
-0.2271
-0.3216
-0.3894
-0.4247
-0.4247
```

```
pedro@Pedro-Lenovo ~/Documentos/GitHub/quanticacomp/projeto2
 $ diff At eingenvector-a.txt At eingenvector-b.txt
13c13
15,21c15,21
```

Nota-se que todas as verificações - em ambos os códigos - resultaram em valores pequenos, mostrando que o método funcionou bem para ambos os códigos. Entretando, ao comparar os arquivos que contêm os autovetores resultantes ("At_eingenvectors-a.txt"e "A_eingenvectors-a.txt" para o sinal original e "At_eingenvectors-b.txt"e "A_eingenvectors-b.txt" para o sinal modificado) - além de comparar as matrizes impressas como resultado dos códigos - percebe-se que há uma diferença de sinal em alguns elementos da matriz, enquanto os autovetores apresentam - além da diferença de sinal - uma inversão da "ordem" dos elementos (apesar de serem os mesmos). Deste modo, percebe-se que o método funcionou bem para ambos os sinais - encontrando, para cada sinal, uma das duas soluções possíveis. O erro esperado - devido ao erro de subtração numérica - não foi um problema devido a utilização de dupla precissão nas contas.