Introduction to Computer Graphics

Animation 动画

第九章动画

- 动画的概念
- 关键帧插值
- Blend Shape
- LBS (Linear Blend Skinning)
 - Rigging
 - Skinning
- •动作捕捉(Motion Capture)
 - 前向运动学/反向运动学
- 仿真与模拟
 - 质点-弹簧系统

Animation

动画的概念

- 随时间改变的形状->关于时间的形状函数
- 一组快速播放的图像,使人感觉图像里的 物体是运动的
- 帧速要求
 - 电影24fps
 - 视频30fps
 - VR眼镜 90fps

动画的概念

关键帧插值

- 关键帧制作
 - 关键帧的制作耗时费力

- 关键帧插值
 - 线性插值
 - 非线性插值

BlendShape

•定义一组关键形状

BlendShape

• 通过线性组合得到新的人脸表情

BlendShape

- 通过线性组合得到新的人脸表情
- \bullet F=F0+w1*(F1-F0)+w2*(F2-F0)+...

•某一个点受不同变换的影响,用线性加权组合而成

$$\mathbf{q}_i = \sum_j w_{ij} M_j \mathbf{p}_i$$

•骨架控制形体变换

- •Rigging:为动画设置必要控制元素的总称
 - 绑定骨架
 - 设置关键帧
 - 设置blendshape

•Skinning (蒙皮)

• Skinning (蒙皮)

动作捕捉(Motion Capture)

- •用于获取人体运动姿态
 - 光学系统
 - 惯性系统
 - 机械系统
 - 磁系统

动作捕捉(Motion Capture)

动作捕捉(Motion Capture)

•前向运动学(FK)/反向运动学(IK)

FK: 已知姿态, 求端点位置

IK: 已知端点位置, 求姿态

•质点弹簧系统-柔性物质的模拟

•质点弹簧系统-柔性物质的模拟

$$f_1 = -\left[k_s(|p_1-p_2|-l_0) + k_d\left(\frac{(v_1-v_2)\cdot(p_1-p_2)}{|p_1-p_2|}\right)\right] \cdot \frac{(p_1-p_2)}{|p_1-p_2|}$$

$$f_2 = -f_1$$

•质点弹簧系统-柔性物质的模拟

$$a = \frac{f}{m}$$
 $\Delta v = at$ $\Delta x = vt$

•已知物体1质量为m1,物体2质量为m2,给定弹性系数和阻尼系数,以及两个物体各自的位置,求其运动情况?

• 构建布料弹簧系统

Types of springs

Structural ——
$$[i, j] - [i, j + 1]; [i, j] - [i + 1, j]$$
Shear ——
$$[i, j] - [i + 1, j + 1]; [i + 1, j] - [i, j + 1]$$
Flexion (bend) ——
$$[i, j] - [i, j + 2]; [i, j] - [i + 2, j]$$

•根据各自连接关系,写出各个顶点的受力情况

Types of springs

Structural ——
$$[i, j] - [i, j + 1]; [i, j] - [i + 1, j]$$
Shear ——
$$[i, j] - [i + 1, j + 1]; [i + 1, j] - [i, j + 1]$$
Flexion (bend) ——
$$[i, j] - [i, j + 2]; [i, j] - [i + 2, j]$$

•在时间上进行位置、受力、速度、加速度更新。

$$v_{n+1} = v_n + a_n \cdot \Delta t$$
$$p_{n+1} = p_n + v_n \cdot \Delta t$$

•显式迭代。当步长较大时,容易造成数值不稳定。

- Runge-Kutta
- 对于时间步长h, 其算法如下:

$$\mathbf{v}_{1} = \mathbf{v}^{t} \qquad \mathbf{a}_{1} = \mathbf{f} \left(\mathbf{x}^{t}, \mathbf{v}^{t} \right) / m$$

$$\mathbf{v}_{2} = \mathbf{v}^{t} + \frac{h}{2} \mathbf{a}_{1} \qquad \mathbf{a}_{2} = \mathbf{f} \left(\mathbf{x}^{t} + \frac{h}{2} \mathbf{v}_{1}, \mathbf{v}^{t} + \frac{h}{2} \mathbf{a}_{1} \right) / m$$

$$\mathbf{v}_{3} = \mathbf{v}^{t} + \frac{h}{2} \mathbf{a}_{2} \qquad \mathbf{a}_{3} = \mathbf{f} \left(\mathbf{x}^{t} + \frac{h}{2} \mathbf{v}_{2}, \mathbf{v}^{t} + \frac{h}{2} \mathbf{a}_{2} \right) / m$$

$$\mathbf{v}_{4} = \mathbf{v}^{t} + h \mathbf{a}_{3} \qquad \mathbf{a}_{4} = \mathbf{f} \left(\mathbf{x}^{t} + h \mathbf{v}_{3}, \mathbf{v}^{t} + h \mathbf{a}_{3} \right) / m$$

$$\mathbf{x}^{t+1} = \mathbf{x}^{t} + \frac{h}{6} \left(\mathbf{v}_{1} + 2 \mathbf{v}_{2} + 2 \mathbf{v}_{3} + \mathbf{v}_{4} \right) \qquad \mathbf{v}^{t+1} = \mathbf{v}^{t} + \frac{h}{6} \left(\mathbf{a}_{1} + 2 \mathbf{a}_{2} + 2 \mathbf{a}_{3} + \mathbf{a}_{4} \right)$$

引入外力

- •重力、风力
- •碰撞

引入外力

布料模拟效果

Fast Simulation of Mass-Spring Systems

Tiantian Liu¹
Adam W. Bargteil²
James F. O'Brien³
Ladislav Kavan¹

¹University of Pennsylvania ²University of Utah ³University of California, Berkeley