Chapter VI

DOUBLE INTEGRALS

1 Iterated Integrals. Definitions and Properties

Consider $D=[a,b]\times [c,d]$ a rectangle in $\mathbb{R}^2,\ g:[a,b]\times [c,d]\to \mathbb{R}$ a function, and partitions

$$a = t_0 < t_1 < \dots < t_n = b$$

of [a, b],

$$c = s_0 < s_1 < \dots < s_m = d$$

of [c,d],

such that g(x,y) has the constant value K_{ij} if $(x,y) \in D_{i,j} = (t_{i-1},t_i) \times (s_{j-1},s_j)$.

The integral of g is defined as a sum of $m \cdot n$ terms:

$$\iint\limits_{D} g(x,y)dxdy = \sum_{i=1,j=1}^{n,m} K_{ij} \cdot area(D_{i,j}),$$

where $D \subset \mathbb{R}^2$.

Remark If $g(x,y) \geq 0$, the integral of g is exactly the area under its graph.

Proposition 1.1. 1. If g is continuous on D, then g is integrable on D. 2. If $D = D_1 \cup D_2$ and g is integrable on D_1 and D_2 , then g is integrable on D, and

$$\iint\limits_{D}g(x,y)dxdy=\iint\limits_{D_{1}}g(x,y)dxdy+\iint\limits_{D_{2}}g(x,y)dxdy.$$

3. If g_1, g_2 are two integrable functions on D and if $g_1 \leq g_2$ on D, then

$$\iint\limits_{D} g_1(x,y)dxdy \le \iint\limits_{D} g_2(x,y)dxdy.$$

4. If $g(x,y) = k, \forall (x,y) \in D$, then

$$\iint\limits_{D} g(x,y)dxdy = k \cdot Area(D).$$

5.

$$\iint\limits_{D} (\alpha g_1(x,y) + \beta g_2(x,y)) dx dy = \alpha \iint\limits_{D} g_1(x,y) dx dy + \beta \iint\limits_{D} g_2(x,y) dx dy,$$

for any two scalars $\alpha, \beta \in \mathbb{R}$ and for any two integrable functions g_1 and g_2 .

Remark: The iterated integral

$$\int_{a}^{b} dx \int_{c}^{d} g(x, y) dy$$

or

$$\int_{a}^{d} dy \int_{a}^{b} g(x,y) dx$$

is evaluated from the inside out. One first holds y fixed and evaluates $\int_a^b g(x,y)dx$ with respect to x; the result is a function of y, which is then integrated from c to d.

Example: Evaluate

$$\int_{0}^{2} dx \int_{1}^{3} x^{2}y dy.$$

Solution:

$$\int_{0}^{2} dx \int_{1}^{3} x^{2}y dy = \int_{0}^{2} x^{2} (\frac{y^{2}}{2} \mid_{1}^{3}) dx$$
$$= 4 \int_{0}^{2} x^{2} dx = \frac{32}{3}.$$

Proposition 1.2. The double integral equals the iterated integral: for $D = [a, b] \times [c, d]$, f integrable on D, we have:

$$\iint\limits_{D}g(x,y)dxdy=\int\limits_{a}^{b}dx\int\limits_{c}^{d}g(x,y)dy=\int\limits_{c}^{d}dy\int\limits_{a}^{b}g(x,y)dx.$$

Example: Evaluate $\iint_D e^{2x+y} dxdy$ on the rectangle $D = [0,1] \times [0,3]$.

Solution We express the double integral as an iterated integral, as follows:

$$\iint_{D} e^{2x+y} dx dy = \int_{0}^{1} dx \int_{0}^{3} e^{2x+y} dy$$

$$= \int_{0}^{1} (e^{2x+y} \mid_{0}^{3}) dx = \int_{0}^{1} (e^{2x+3} - e^{2x}) dx$$

$$= (\frac{e^{2x+3}}{2}) \mid_{0}^{1} - (\frac{e^{2x}}{2}) \mid_{0}^{1}$$

$$= \frac{1}{2} (e^{5} - e^{3} - e^{2} + 1).$$

2 Double Integral Over General Regions

Let $f: D \to \mathbb{R}$ be an integrable function on D, D is **NOT** a rectangle. We assume that $D \subset D^*$ is contained in some rectangle D^* , and $f^*: D^* \to \mathbb{R}$,

$$f^*(x,y) = \begin{cases} f(x,y), & (x,y) \in D \\ 0, & (x,y) \notin D \end{cases}$$

Definition 2.1. If f^* is integrable on D^* , then we say that f is integrable on D, and we define

$$\iint\limits_D f(x,y)dxdy = \iint\limits_{D^*} f^*(x,y)dxdy.$$

Definition 2.2. We shall define two simple type of regions, called **elementary regions**. Other regions can be broken into elementary ones.

$$D = \{(x, y), \ x \in [a, b], y \in [\varphi_1(x), \varphi_2(x)]\},\$$

where $\varphi_1(x), \varphi_2(x)$ two continuous functions on [a, b]. In this case, D is said to be of type 1.

Figure 1

$$D = \{(x, y), y \in [c, d], x \in [\psi_1(y), \psi_2(y)]\},\$$

where $\psi_1(x), \psi_2(x)$ two continuous functions on [c, d]. In this case, D is said to be of type 2.

Figure 2

Proposition 2.1. If f is continuous on the elementary region D, then f is integrable on D and:

$$\iint\limits_{D} f(x,y) dx dy = \int\limits_{a}^{b} (\int\limits_{\varphi_{1}(x)}^{\varphi_{2}(x)} f(x,y) dy) dx,$$

if D is of type 1, or

$$\iint\limits_{D} f(x,y)dxdy = \int\limits_{c}^{d} (\int\limits_{\psi_{1}(y)}^{\psi_{2}(y)} f(x,y)dx)dy,$$

if D is of type 2.

3 Applications of Double Integrals

1. Center of mass $G(x_G, y_G)$, where

$$x_G = \frac{\iint\limits_D x \cdot \rho(x, y) dx dy}{\iint\limits_D \rho(x, y) dx dy}, \quad y_G = \frac{\iint\limits_D y \cdot \rho(x, y) dx dy}{\iint\limits_D \rho(x, y) dx dy},$$

where $\rho(x,y)$ is the variable density of the plate D.

2. The area of $D \in \mathbb{R}^2$:

$$\mathcal{A}(D) = \iint_{D} dx dy.$$

3. If f is integrable on D, the ratio

$$\frac{\iint\limits_{D} f(x,y)dxdy}{\iint\limits_{D} dxdy}$$

is called **the average value of** f **on** D.

4 Integrals in Polar Coordinates

If f is an integrable function on the domain $D \in \mathbb{R}^2$, then:

$$\iint\limits_{D} f(x,y) dx dy = \iint\limits_{D'} f(r\cos\theta, r\sin\theta) \cdot r dr d\theta, r \ge 0, \theta \in [0, 2\pi],$$

where D' is the region corresponding to D in the variables r and θ .