EOM

September 24, 2021

1 6DOF Equations of Motion

Acronym	Meaning
$\overline{\text{CG}}$	Center of Gravity
DAVE-ML	Dynamic Aerospace Vehicle Exchange Markup Language
EOM	Equations of Motion
FRD	Forward Right Down
IC	Initial Condition
LLA	Latitude, Longitude and Altitude
MathML	Mathematical Markup Language
NED	North, East, Down
PCPF	Planet Centered, Planet Fixed (aka, ECEF on Earth)
SI	International System of Units

The goal of the software is to implement a generic set of the EOM that could be used for dynamic simulations on any planet with any/no atmosphere.

The software implements flat earth and the oblate rotating planet EOM as derived in Stevens and Lewis. Stevens and Lewis derives the equations of motion; therefore they are not described here.

All internal calculations are in SI.

To upgrade jupyter: pip3 install -upgrade jupyterlab

1.1 Greek Alphabet

alpha αA	beta βB	gamma $\gamma \Gamma$
delta $\delta \Delta$	epsilon ϵE	zeta ζZ
eta ηH	theta $\theta \Theta$	iota ιI
kappa κK	lambda $\lambda \Lambda$	mu μM
nu νN	$xi \xi \Xi$	omicron oO
pi $\pi \Pi$	rho ρP	sigma $\sigma \Sigma$
tau τT	upsilon $v \Upsilon$	phi $\phi \Phi$
chi χX	psi $\psi \Psi$	omega $\omega \Omega$

1.2 Unit Test Class

Create a base class for doing unit testing. Other classes derive from this class.

1.3 Conversion Class

Create a class for doing common conversions.

unit	abbreviation
second	s
minute	min
inch	inch
foot	ft
meter	m
nautical mile	nmi
statute mile	smi
kilometer	km
centimeter	cm
millimeter	mm
pound force	lbf
Newton	N
kilogram force	kgf
kilogram	kg
pound mass	lbm
slug	slug
degree	\deg
radian	rad
knot (nmi/hr)	kt
nondimensional	nd

```
[2]: import math

class ppConvert(ppUnitTest):
    KnotToFps = 1.6878097112860893
    FpsToKnot = (1.0 / KnotToFps)
```

```
MinToSec = 60.0
FeetToMeter = 0.3048
MeterToFeet = (1.0 / FeetToMeter)
NmToFeet = 6076.115485564304
FeetToNm = (1.0 / NmToFeet)
SqMeterToSqFeet = (MeterToFeet*MeterToFeet)
SqFeetToSqMeter = 1.0 / SqMeterToSqFeet
PoundToNewton = 4.4482216152605
NewtonToPound = 1.0 / PoundToNewton
SlugToKg = 14.593902937
KgToSlug = 1.0 / SlugToKg
Slugft2ToKgm2 = 1.3558179618926
Kgm2ToSlugft2 = 1.0 / Slugft2ToKgm2
DegToRad = math.radians(1.0)
RadToDeg = math.degrees(1.0)
MpsToKt = 1.94384
EnglishToSI = {
    "lbf": PoundToNewton,
    "slug": SlugToKg,
    "slugft2": Slugft2ToKgm2,
    "ft": FeetToMeter,
    "ft_s": FeetToMeter,
    "ft2": SqFeetToSqMeter,
    "deg": DegToRad,
    "deg_s": DegToRad,
    "km": 1000.0,
    "km_s": 1000.0,
    "nd": 1
}
SiToEnglish = {
    "m": MeterToFeet,
    "m2": SqMeterToSqFeet,
    "rad": RadToDeg,
    "rad_s": RadToDeg,
    "m_s": MpsToKt,
    "n": NewtonToPound,
    "kg": KgToSlug,
    "kgm2": Kgm2ToSlugft2,
    "s": 1
}
# Convert English units to SI
def SetIC(self, inIC):
   print("====== SetIC =======")
    icData = {}
```

```
for key,value in inIC.items():
           units = value[1].lower()
           factor = 1
           if units in self.EnglishToSI:
               factor = self.EnglishToSI[units]
           elif units not in self.SiToEnglish:
               warnStr = units + " not recognized in ppConvert. No conversion_
⇔done."
               logging.warning(warnStr)
           icData[key] = factor * value[0]
       return icData
   def ToSI(self, value, inUnits):
       units = inUnits.lower()
       factor = 1
       if units in self.EnglishToSI:
           factor = self.EnglishToSI[units]
       elif units not in self.SiToEnglish:
           warnStr = inUnits + " not recognized in ppConvert. No conversion ∪
→done."
           logging.warning(warnStr)
       return value*factor
   # Convert SI to English units
   def ToEnglish(self, value, inUnits):
       units = inUnits.lower()
       factor = 1
       if units in self.SiToEnglish:
           factor = self.SiToEnglish[units]
       elif units in self.EnglishToSI:
           warnStr = inUnits + " not recognized in ppConvert. No conversion_
⇔done."
           logging.warning(warnStr)
       convertedValue = []
       for v in value:
           convertedValue.append(v*factor)
       return convertedValue
   def UnitTest(self):
       self.TestValue(123.0, 72.876*self.KnotToFps, "ppConst KnotToFps", 0.001)
       self.TestValue(78.8, 133.0*self.FpsToKnot, "ppConst FpsToKnot", 0.001)
       self.TestValue(300.0, 5.0*self.MinToSec, "ppConst MinToSec", 1e-12)
       self.TestValue(395.9352, 1299.0*self.FeetToMeter, "ppConst_"
→FeetToMeter", 0.0001)
       self.TestValue(1299.0, 395.9352*self.MeterToFeet, "ppConst_

→MeterToFeet", 0.0001)
```

```
self.TestValue(3967703.4, 653.0*self.NmToFeet, "ppConst NmToFeet", 0.1)
       self.TestValue(653.0, 3967703.4*self.FeetToNm, "ppConst FeetToNm", 0.1)
       self.TestValue(10.763910, self.SqMeterToSqFeet, "ppConst_"

¬SqMeterToSqFeet", 1e-6)
       self.TestValue(13.0, 2.92252*self.PoundToNewton, "ppConst_
→PoundToNewton", 1e-4)
       self.TestValue(1.0, 0.73756215*self.Slugft2ToKgm2, "ppConst_"
→Slugft2ToKgm2", 1e-7)
       self.TestValue(54.864, self.FeetToMeter*180.0, "ppConvert_")
→FeetToMeters", 0.0001)
       self.TestValue(1742.12598, self.MeterToFeet*531.0, "ppConvert_

→MetersToFeet", 0.00001)
       self.TestValue(178.5596, self.SqFeetToSqMeter*1922.0, "ppConvert_

¬SqFeetToSqMeters", 0.0001)
       self.TestValue(4412.64, self.PoundToNewton*992.0, "ppConvert_
→PoundsToNewtons", 0.01)
       self.TestValue(21.6930872, self.Slugft2ToKgm2*16.0, "ppConvert_
→SlugFt2ToKgM2", 1e-6)
       self.TestValue(161.0256, self.ToSI(36.2,"lbf"), "ppConvert ToSI_\(\text{L}\)
\rightarrowlbf->N", 1e-3)
       self.TestValue(161.0256, self.ToSI(36.2, "LBf"), "ppConvert ToSI<sub>II</sub>
\rightarrowlbf->N", 1e-3)
       self.TestValue(105.7538001, self.ToSI(78.0, "slugft2"), "ppConvert ToSI__
\rightarrowslugf2->kgm2", 1e-6)
       self.TestValue(531.0, self.ToSI(1742.12598,"ft"), "ppConvert ToSI_
\rightarrow f->m'', 1e-5)
       self.TestValue(9.7536, self.ToSI(32.0, "ft_s"), "ppConvert ToSI_
\hookrightarrowfps-mps", 1e-4)
       self.TestValue(140.6552, self.ToSI(1514, "ft2"), "ppConvert ToSI f2-m2", u
→1e-4)
       self.TestValue(math.pi, self.ToSI(180.0, "deg"), "ppConvert ToSI__
\rightarrowdeg->rad", 1e-6)
       self.TestValue(0.25*math.pi, self.ToSI(45.0, "deg_s"), "ppConvert ToSI_
→dps->rps", 1e-6)
       self.TestValue(93200, self.ToSI(93.2,"km"), "ppConvert ToSI km->m", u
-1e-6)
       self.TestValue(4221, self.ToSI(4.221, "km s"), "ppConvert ToSI
\rightarrowkm_s->m_s", 1e-6)
       icTest = {
            "newtonTest": [36.2, "lbf"],
            "inertiaTest": [78.0, "slugft2"],
            "feetTest": [1742.12598, "ft"],
            "fpsTest": [32.0, "ft_s"],
```

```
"ft2Test": [1514, "ft2"],
           "degTest": [180, "deg"],
           "dpsTest": [45.0, "deg_s"],
           "kmTest": [93.2, "km"],
           "kpsTest": [4.221, "km_s"]
       }
       icData = self.SetIC(icTest)
       self.TestValue(161.0256, icData["newtonTest"], "ppConvert IC lbf->N", __
\rightarrow1e-3)
       self.TestValue(105.7538001, icData["inertiaTest"], "ppConvert ICL
\rightarrowslugf2->kgm2", 1e-6)
       self.TestValue(531.0, icData["feetTest"], "ppConvert IC f->m", 1e-5)
       self.TestValue(9.7536, icData["fpsTest"], "ppConvert IC fps-mps", 1e-4)
       self.TestValue(140.6552, icData["ft2Test"], "ppConvert IC f2-m2", 1e-4)
       self.TestValue(math.pi, icData["degTest"], "ppConvert IC deg->rad", __
→1e-6)
       self.TestValue(0.25*math.pi, icData["dpsTest"], "ppConvert IC"
self.TestValue(93200, icData["kmTest"], "ppConvert IC km->m", 1e-6)
       self.TestValue(4221, icData["kpsTest"], "ppConvert IC km_s->m_s", 1e-6)
       #TODO: add ToEnglish unit tests
       print("Number of ppConvert failed tests: ", self.FailCount)
```

Create an instance of the conversion class to be used globally.

daveNs = "{http://daveml.org/2010/DAVEML}"

[3]: gvConvert = ppConvert()

def Tag(name):

```
return (daveNs + name)
class ppVarDefStruct:
   name = None
   varID = None
   units = None
   axisSystem = None
           = None
   sign
   alias
              = None
   symbol = None
   hasInitialValue = False
   initialValue = 0
   hasMath = False
   code = compile("1", "<string>", "eval")
   codeText = None
   isInput = True
isOutput = False
   isStdAIAA = False
   isState = False
   isStateDeriv = False
class ppBpDefStruct:
   name = None
   bpID = None
   units = None
   bpVals = []
   def Clear(self):
       self.bpVals.clear()
class ppGtDefStruct:
   name = None
   gtID = None
   units = None
   bpRef = []
   dataTableStr = None
   dataTable = []
   def Clear(self):
       self.bpRef.clear()
       self.dataTable.clear()
class ppFunctionStruct:
   name = None
   fdName = None
```

```
gtID = None
numBreakPts = 0
dependentVarID = None
independentVarRef = []
bpVals = []
dataTable = []
def Clear(self):
    self.independentVarRef.clear()
    self.bpVals.clear()
    self.dataTable.clear()
def Evaluate(self, data):
    index = 0
    if self.numBreakPts == 1:
        inValue = data[self.independentVarRef[0].varID]
        i = 0
        for v in self.bpVals[0]:
            if v <= inValue:</pre>
                #print("i: ", i, "v: ", v, "inValue: ", inValue)
                i += 1
        index = i - 1
    elif self.numBreakPts == 2:
        x = data[self.independentVarRef[1].varID]
        y = data[self.independentVarRef[0].varID]
        #print("::: iv x: ", self.independentVarRef[1].varID)
        #print("::: iv y: ", self.independentVarRef[0].varID)
        jmax = len(self.bpVals[1])
        i = 0
        for a in self.bpVals[1]:
            if a <= x:
                #print("i: ", i, "a: ", a, "x: ", x)
        i -= 1
        j = 0
        for b in self.bpVals[0]:
            if b <= y:
                #print("j: ", j, "b: ", b, "y: ", y)
                j += 1
        j -= 1
        index = j*jmax + i
        #print("i: ", i, " j: ", j, " jmax: ", jmax, " index: ", index)
```

```
data[self.dependentVarID] = self.dataTable[index]
        return
class ppFunctionVarStruct:
    varID = None
    min = 0
   max = 0
    extrapolate = "neither"
    interpolate = "linear"
class ppAeroModel:
    A class hold the DAVE-ML aerodynamic data
    Attributes
    _____
    Data : dictionary
        a key-value pair containing aero data
    VarIdMap : dictionary
        a key-value pair for varID elements
    Methods
    _____
    Clear()
        delete all values in the model
    Update()
        update the values of the aero data
    Data = \{\}
    NameToId = \{\}
    IdToName = {}
    VarDef = []
    BpDef = []
    GtDef = []
    FunctionDef = []
    def Clear(self):
        self.Data.clear()
        self.NameToId.clear()
        self.IdToName.clear()
        self.VarDef.clear()
        for b in self.BpDef:
            b.Clear()
        self.BpDef.clear()
        for g in self.GtDef:
```

```
g.Clear()
       self.GtDef.clear()
      for f in self.FunctionDef:
           f.Clear()
      self.FunctionDef.clear()
  def HasName(self, inName):
      return inName in self.NameToId
  def DataFromName(self, inName):
      outVarID = self.NameToId[inName]
      return self.Data[outVarID]
  def Set(self, inName, inValue = 0):
       if not (inName in self.NameToId):
           infoStr = inName + " not in DAVE model. Value set to " +_
→str(inValue)
           logging.info(infoStr)
           self.NameToId[inName] = inName
           self.Data[inName] = inValue
       else:
           self.Data[self.NameToId[inName]] = inValue
  def PreProcess(self):
       # Change variable names in equations to self.Data[] dictionary
      for v in self.VarDef:
           # function variables are not inputs
           for f in self.FunctionDef:
               if v.varID == f.dependentVarID:
                   v.isInput = False
           if v.hasMath:
               print(" ===> ", v.varID, " -> ", v.codeText)
               newText = v.codeText.replace("{", "self.Data[\"")
               newText = newText.replace("}", "\"]")
               print(" *** equation: ", newText)
              v.code = compile(newText, "<string>", "eval")
      print("++++ MODEL INPUTS AND OUTPUTS +++++")
      for v in self.VarDef:
           if v.isInput:
              print("++> Input: ", v.varID)
           if v.isOutput:
               print("++> Output: ", v.varID)
      print("+++++++++++++++++++++++++++++")
       # connect the gridded tables with break points to functions
      for f in self.FunctionDef:
```

```
for gt in self.GtDef:
                if f.gtID == gt.name:
                    f.dataTable = gt.dataTable
                    print("----> depVar: ", f.dependentVarID)
                    print("---> f.dataTable: ", f.dataTable)
                    print("---> bpRef: ", gt.bpRef)
                    print("---> gt.name: ", gt.name)
                    print("---> f.gtID: ", f.gtID)
                    bpv = []
                    for bpr in gt.bpRef:
                        for bp in self.BpDef:
                            if bp.bpID == bpr:
                                #f.bpVals = bp.bpVals
                                bpv.append(bp.bpVals)
                                print("---> f.bp name: ", bpr)
                                print("---> f.bpVals: ", bp.bpVals)
                                print("---> bpv: ", bpv)
                    f.bpVals = bpv
   def Update(self):
        # Update all the functions
        for f in self.FunctionDef:
            f.Evaluate(self.Data)
        # Evaluate the MATH-ML equations
        for v in self.VarDef:
            if v.hasMath:
                self.Data[v.varID] = eval(v.code)
gvAeroModel = ppAeroModel()
def FileHeader(e):
   print("Model: ", e.get('name'))
   for fhTag in e:
        if fhTag.tag == Tag("creationDate"):
            print("creation date: ", fhTag.get('date'))
        if fhTag.tag == Tag("fileVersion"):
            print("file version: ", fhTag.text)
def VariableDef(e):
   print("-variableDef-")
   varDefStruct = ppVarDefStruct();
   varDefStruct.name = e.get('name')
   varDefStruct.varID = e.get('varID')
    varDefStruct.units = e.get('units')
```

```
varDefStruct.axisSystem = e.get('axisSystem')
varDefStruct.sign = e.get('sign')
varDefStruct.alias = e.get('alias')
varDefStruct.symbol = e.get('symbol')
varDefStruct.initialValue = e.get('initialValue')
value = 0
if varDefStruct.initialValue != None:
    value = varDefStruct.initialValue
    #value = gvConvert.ToSI( float(value), e.get('units'))
    varDefStruct.hasInitialValue = True
    varDefStruct.isInput = False
gvAeroModel.Data[varDefStruct.varID] = float(value)
gvAeroModel.NameToId[varDefStruct.name] = varDefStruct.varID
gvAeroModel.IdToName[varDefStruct.varID] = varDefStruct.name
for label in e:
    if label.tag == Tag("isStdAIAA"):
        varDefStruct.isStdAIAA = True
    if label.tag == Tag("isOutput"):
        varDefStruct.isOutput = True
        varDefStruct.isInput = False
    if label.tag == Tag("isState"):
        varDefStruct.isState = True
    if label.tag == Tag("isStateDeriv"):
        varDefStruct.isStateDeriv = True
    if label.tag == Tag("calculation"):
        varDefStruct.hasMath = True
        varDefStruct.isInput = False
        for pl in label:
            if pl.tag == Tag("python"):
                varDefStruct.codeText = pl.text
# TODO: add MathML
gvAeroModel.VarDef.append(varDefStruct)
print(" varDefStruct.name: ", varDefStruct.name)
print(" varDefStruct.varID: ", varDefStruct.varID)
print(" varDefStruct.units: ", varDefStruct.units)
print(" varDefStruct.axisSystem: ", varDefStruct.axisSystem)
print(" varDefStruct.sign: ", varDefStruct.sign)
print(" varDefStruct.alias: ", varDefStruct.alias)
print(" varDefStruct.symbol: ", varDefStruct.symbol)
print(" varDefStruct.hasInitialValue: ", varDefStruct.hasInitialValue)
print(" varDefStruct.initialValue: ", varDefStruct.initialValue)
```

```
print(" varDefStruct.isStdAIAA: ", varDefStruct.isStdAIAA)
   print(" varDefStruct.isOutput: ", varDefStruct.isOutput)
   print(" varDefStruct.hasMath: ", varDefStruct.hasMath)
   print(" varDefStruct.codeText: ", varDefStruct.codeText)
def BreakpointDef(e):
   print("-bpDefStruct-")
   bpDefStruct = ppBpDefStruct()
   bpDefStruct.name = e.get('name')
   bpDefStruct.bpID = e.get('bpID')
   bpDefStruct.units = e.get('units')
   for label in e:
        if label.tag == Tag("bpVals"):
            print(" bpVals:", label.text)
            bpList = []
            for i in label.text.split(','):
                bpList.append( float(i) )
            #bpDefStruct.bpVals.append( bpList )
            bpDefStruct.bpVals = bpList
   gvAeroModel.BpDef.append(bpDefStruct)
   print(" bpDefStruct.name: ", bpDefStruct.name)
   print(" bpDefStruct.bpID: ", bpDefStruct.bpID)
   print(" bpDefStruct.units: ", bpDefStruct.units)
   print(" bpDefStruct.bpVals: ", bpDefStruct.bpVals)
def GriddedTableDef(e):
   print("-gtDefStruct-")
   gtDefStruct = ppGtDefStruct()
   gtDefStruct.name = e.get('name')
   gtDefStruct.gtID = e.get('gtID')
   gtDefStruct.units = e.get('units')
   gtDefStruct.bpRef.clear()
   bpr = []
   for label in e:
        if label.tag == Tag("breakpointRefs"):
            for refs in label:
                if refs.tag == Tag("bpRef"):
                    bpr.append( refs.get('bpID') )
        if label.tag == Tag("dataTable"):
            gtDefStruct.dataTableStr = label.text
   gtDefStruct.bpRef = bpr
   gtDefStruct.dataTable.clear()
   dt = []
```

```
for i in gtDefStruct.dataTableStr.split(','):
        dt.append( float(i) )
   gtDefStruct.dataTable = dt
   gvAeroModel.GtDef.append(gtDefStruct)
   print(" gtDefStruct.name: ", gtDefStruct.name)
   print(" gtDefStruct.gtID: ", gtDefStruct.gtID)
   print(" gtDefStruct.units: ", gtDefStruct.units)
   print(" gtDefStruct.bpRef: ", gtDefStruct.bpRef)
   print(" gtDefStruct.dataTableStr: ", gtDefStruct.dataTableStr)
   print(" gtDefStruct.dataTable: ", gtDefStruct.dataTable)
# TODO: add ungridded table parsing
def UngriddedTableDef(e):
   logging.info("-UngriddedTableDef-: COMING SOON")
def Function(e):
   print("-functionStruct-")
   funDefStruct = ppFunctionStruct()
   funDefStruct.name = e.get('name')
   funDefStruct.independentVarRef.clear()
   iVar = []
   for label in e:
        if label.tag == Tag("independentVarRef"):
            indVar = ppFunctionVarStruct()
            indVar.varID = label.get('varID')
            indVar.min = float( label.get('min') )
            indVar.max = float( label.get('max') )
            indVar.extrapolate = label.get('extrapolate')
            indVar.interpolate = label.get('interpolate')
            iVar.append(indVar)
        if label.tag == Tag("dependentVarRef"):
            funDefStruct.dependentVarID = label.get('varID')
        if label.tag == Tag("functionDefn"):
            funDefStruct.fdName = label.get('name')
            for tVar in label:
                if tVar.tag == Tag("griddedTableRef"):
                    funDefStruct.gtID = tVar.get('gtID')
                if tVar.tag == Tag("griddedTable"):
                    funDefStruct.gtID = tVar.get('name')
                    GriddedTableDef(tVar)
   funDefStruct.independentVarRef = iVar
   funDefStruct.numBreakPts = len(funDefStruct.independentVarRef)
    gvAeroModel.FunctionDef.append(funDefStruct)
```

```
print(" funDefStruct.name: ", funDefStruct.name)
    print(" funDefStruct.fdName: ", funDefStruct.name)
    print(" funDefStruct.gtID: ", funDefStruct.gtID)
    print(" funDefStruct.numBreakPts: ", funDefStruct.numBreakPts)
    print(" funDefStruct.dependentVarID: ", funDefStruct.dependentVarID)
    for iv in funDefStruct.independentVarRef:
        print(" independentVarRef.varID: ", iv.varID)
        print(" independentVarRef.min: ", iv.min)
        print(" independentVarRef.max: ", iv.max)
        print(" independentVarRef.extrapolate: ", iv.extrapolate)
        print(" independentVarRef.interpolate: ", iv.interpolate)
class ppSignalStruct:
    signalType = None
    signalName = None
    signalUnits = None
    varID = None
    signalID = None
    signalValue = 0
    tol = 1e-6
class ppCheckData:
    name = []
    signal = []
    numSignals = []
    def Clear(self):
        self.name.clear()
        self.signal.clear()
        self.numSignals.clear()
gvCheckData = ppCheckData()
def CheckData(e):
    print("-checkData-")
    for ssTag in e:
        if ssTag.tag == Tag("staticShot"):
            print("staticShot: ", ssTag.get('name'))
            gvCheckData.name.append(ssTag.get('name'))
            numSignals = 0
            for signalType in ssTag:
                for signal in signalType:
                    if signal.tag == Tag("signal"):
                        localSignal = ppSignalStruct()
                        print(" signal type: ", signalType.tag)
                        localSignal.signalType = signalType.tag
```

```
numSignals += 1
                        for oneSignal in signal:
                            if oneSignal.tag == Tag("signalName"):
                                localSignal.signalName = oneSignal.text
                                print(" signal name: ", localSignal.signalName)
                            if oneSignal.tag == Tag("signalID"):
                                localSignal.signalID = oneSignal.text
                                print(" signal ID: ", localSignal.signalID)
                            if oneSignal.tag == Tag("varID"):
                                localSignal.varID = oneSignal.text
                                print(" signal varID: ", localSignal.varID)
                            if oneSignal.tag == Tag("signalUnits"):
                                localSignal.signalUnits = oneSignal.text
                                print(" signal units: ", localSignal.
→signalUnits)
                            if oneSignal.tag == Tag("signalValue"):
                                localSignal.signalValue = float(oneSignal.text)
                                print(" signal value: ", localSignal.
→signalValue)
                            if oneSignal.tag == Tag("tol"):
                                localSignal.tol = oneSignal.text
                                print(" signal tol: ", localSignal.tol)
                        print(" [ localSignal append ] -> ", ssTag.get('name'), __
→" signal #: ", numSignals)
                        gvCheckData.signal.append(localSignal)
            gvCheckData.numSignals.append(numSignals)
            print(numSignals, " signals in ", ssTag.get('name'))
def ppLoadDml(dmlFile):
    """Pass in DAVE-ML model format file"""
    # TODO add a quiet mode to not print out all loading data
    gvAeroModel.Clear()
    gvCheckData.Clear()
    root = ET.parse(dmlFile).getroot()
    print("root tag: ", root.tag)
    #if root.tag == "DAVEfunc":
    if root.tag == Tag("DAVEfunc"):
        for daveFcn in root:
            if daveFcn.tag == Tag("fileHeader"):
                FileHeader(daveFcn)
            if daveFcn.tag == Tag("variableDef"):
                VariableDef(daveFcn)
            if daveFcn.tag == Tag("breakpointDef"):
                BreakpointDef(daveFcn)
            if daveFcn.tag == Tag("griddedTableDef"):
```

```
GriddedTableDef(daveFcn)
if daveFcn.tag == Tag("ungriddedTableDef"):
        UngriddedTableDef(daveFcn)
if daveFcn.tag == Tag("function"):
        Function(daveFcn)
if daveFcn.tag == Tag("checkData"):
        CheckData(daveFcn)

print("\n--- PreProcess Equations and Functions ---")
gvAeroModel.PreProcess()

print("Parse complete")

print("Number of check cases: ", len(gvCheckData.name))

for i in gvAeroModel.VarDef:
    print(i.name)
```

1.5 Check Model Function

Function to run the check cases.

```
[5]: import logging
     def CheckModel():
         print("\n---- CheckModel ----\n")
         print("numSignals: ", gvCheckData.numSignals)
         i = 0
         shotCount = 0
         for ss in gvCheckData.name:
             prevSignalType = Tag("checkInputs")
             for si in range(gvCheckData.numSignals[shotCount]):
                 signal = gvCheckData.signal[i]
                 name = signal.varID if signal.signalName == None else signal.
      \hookrightarrowsignalName
                 i += 1
                 if signal.signalType == Tag("checkInputs"):
                     gvAeroModel.Data[signal.varID] = float(signal.signalValue)
                 if signal.signalType != prevSignalType:
                     gvAeroModel.Update()
                 if signal.signalType == Tag("internalValues"):
                     modelValue = gvAeroModel.Data[signal.varID]
                     checkValue = signal.signalValue
                     if abs(modelValue - checkValue) > float(signal.tol):
```

1.5.1 1-D Gridded Table

Load and Check the DAVE-ML model. Start with some test models.

```
[6]: ppLoadDml('models/tests/oneD_table.dml')
    CheckModel()
    root tag: {http://daveml.org/2010/DAVEML}DAVEfunc
    Model: One Dimensional Table Test
    creation date: 2021-04-26
    file version: $Revision: 100 $
    -variableDef-
     varDefStruct.name: angleOfAttack
     varDefStruct.varID: alpha
     varDefStruct.units: deg
     varDefStruct.axisSystem: None
     varDefStruct.sign: None
     varDefStruct.alias: None
     varDefStruct.symbol: None
     varDefStruct.hasInitialValue: False
     varDefStruct.initialValue: None
     varDefStruct.isStdAIAA: False
     varDefStruct.isOutput: False
     varDefStruct.hasMath: False
     varDefStruct.codeText: None
    -variableDef-
     varDefStruct.name: Cnp
     varDefStruct.varID:
     varDefStruct.units: nd
     varDefStruct.axisSystem:
                              None
     varDefStruct.sign: None
```

```
varDefStruct.alias: None
 varDefStruct.symbol: None
 varDefStruct.hasInitialValue: False
 varDefStruct.initialValue: None
 varDefStruct.isStdAIAA: False
 varDefStruct.isOutput: False
 varDefStruct.hasMath: False
 varDefStruct.codeText: None
-bpDefStruct-
 bpVals: -10., -5., 0., 5., 10., 15., 20., 25., 30., 35., 40., 45.
 bpDefStruct.name: alpha
bpDefStruct.bpID:
                   ALPHA1
bpDefStruct.units: deg
 bpDefStruct.bpVals: [-10.0, -5.0, 0.0, 5.0, 10.0, 15.0, 20.0, 25.0, 30.0,
35.0, 40.0, 45.0]
-functionStruct-
-gtDefStruct-
                   Cnp_table
gtDefStruct.name:
gtDefStruct.gtID: None
 gtDefStruct.units: None
gtDefStruct.bpRef: ['ALPHA1']
 gtDefStruct.dataTableStr:
             .061, .052, .052, -.012, -.013, -.024, .050, .150, .130, .158,
.240, .150
 gtDefStruct.dataTable: [0.061, 0.052, 0.052, -0.012, -0.013, -0.024, 0.05,
0.15, 0.13, 0.158, 0.24, 0.15]
funDefStruct.name: Cnp
funDefStruct.fdName: Cnp
 funDefStruct.gtID: Cnp_table
 funDefStruct.numBreakPts: 1
 funDefStruct.dependentVarID: cnp
 independentVarRef.varID: alpha
 independentVarRef.min: -10.0
 independentVarRef.max: 45.0
 independentVarRef.extrapolate:
 independentVarRef.interpolate:
-checkData-
staticShot: AOA 5 deg
 signal type: {http://daveml.org/2010/DAVEML}checkInputs
 signal name: angleOfAttack 5 deg
 signal varID:
               alpha
 signal value: 5.0
 [localSignal append] -> AOA 5 deg signal #:
 signal type: {http://daveml.org/2010/DAVEML}checkOutputs
 signal name: Cnp at 5 deg
 signal varID: cnp
```

```
signal value: -0.012
signal tol: 0.000001
 [localSignal append] -> AOA 5 deg signal #: 2
2 signals in AOA 5 deg
staticShot: AOA 10 deg
signal type: {http://daveml.org/2010/DAVEML}checkInputs
signal name: angleOfAttack 10 deg
signal varID: alpha
signal value: 10.0
[localSignal append] -> AOA 10 deg signal #: 1
signal type: {http://daveml.org/2010/DAVEML}checkOutputs
signal name: Cnp at 10 deg
signal varID: cnp
signal value: -0.013
signal tol: 0.000001
[localSignal append] -> AOA 10 deg signal #: 2
2 signals in AOA 10 deg
staticShot: AOA 29 deg
signal type: {http://daveml.org/2010/DAVEML}checkInputs
signal name: AOA at 29 deg
signal varID: alpha
signal value: 29.0
[localSignal append] -> AOA 29 deg signal #: 1
signal type: {http://daveml.org/2010/DAVEML}checkOutputs
signal name: Cnp at 29 deg AOA
signal varID: cnp
signal value: 0.15
signal tol: 0.000001
[localSignal append] -> AOA 29 deg signal #: 2
2 signals in AOA 29 deg
--- PreProcess Equations and Functions ---
+++++ MODEL INPUTS AND OUTPUTS +++++
++> Input: alpha
----> depVar: cnp
---> f.dataTable: [0.061, 0.052, 0.052, -0.012, -0.013, -0.024, 0.05, 0.15,
0.13, 0.158, 0.24, 0.15]
----> bpRef: ['ALPHA1']
----> gt.name: Cnp_table
----> f.gtID: Cnp_table
----> f.bp name: ALPHA1
----> f.bpVals: [-10.0, -5.0, 0.0, 5.0, 10.0, 15.0, 20.0, 25.0, 30.0, 35.0,
40.0, 45.0]
---> bpv: [[-10.0, -5.0, 0.0, 5.0, 10.0, 15.0, 20.0, 25.0, 30.0, 35.0, 40.0,
45.0]]
Parse complete
Number of check cases: 3
```

```
angleOfAttack
    Cnp
    ---- CheckModel -----
    numSignals: [2, 2, 2]
    ---- END CheckModel ----
    Do a short test to check of the function cnp which is a function of alpha.
[7]: gvAeroModel.Data["alpha"] = 29.0
     gvAeroModel.Update()
     print("f cnp: ", gvAeroModel.Data["cnp"])
    f cnp: 0.15
    1.5.2 2-D Gridded Table
[8]: ppLoadDml('models/tests/twoD_table.dml')
     CheckModel()
    root tag: {http://daveml.org/2010/DAVEML}DAVEfunc
    Model: 2D gridded table
    file version: $Revision: 108 $
    -variableDef-
     varDefStruct.name:
                         angleOfAttack
     varDefStruct.varID: ALPHA
     varDefStruct.units: deg
     varDefStruct.axisSystem:
     varDefStruct.sign: None
     varDefStruct.alias: None
     varDefStruct.symbol: #x3B1
     varDefStruct.hasInitialValue: False
     varDefStruct.initialValue: None
     varDefStruct.isStdAIAA: False
     varDefStruct.isOutput: False
     varDefStruct.hasMath: False
     varDefStruct.codeText: None
    -variableDef-
     varDefStruct.name: Mach
     varDefStruct.varID: MACH
     varDefStruct.units: ND
     varDefStruct.axisSystem:
                               None
     varDefStruct.sign: None
     varDefStruct.alias: None
     varDefStruct.symbol: M
     varDefStruct.hasInitialValue: False
```

```
varDefStruct.initialValue: None
varDefStruct.isStdAIAA: False
varDefStruct.isOutput: False
varDefStruct.hasMath: False
varDefStruct.codeText: None
-variableDef-
varDefStruct.name: coefficientOfLift
varDefStruct.varID: CL
varDefStruct.units: ND
varDefStruct.axisSystem:
                          None
varDefStruct.sign: None
varDefStruct.alias: None
varDefStruct.symbol: CL
varDefStruct.hasInitialValue: False
varDefStruct.initialValue: None
varDefStruct.isStdAIAA: False
varDefStruct.isOutput: False
varDefStruct.hasMath: False
varDefStruct.codeText: None
-bpDefStruct-
bpVals: -4.0, 0., 4.0, 8.0, 12.0, 16.0
bpDefStruct.name: alpha
bpDefStruct.bpID: ALPHA1
bpDefStruct.units: deg
bpDefStruct.bpVals: [-4.0, 0.0, 4.0, 8.0, 12.0, 16.0]
-bpDefStruct-
         0.0, 0.4, 0.8, 0.9, 0.95, 0.99, 1.00, 1.01, 1.05, 1.2
bpVals:
bpDefStruct.name: mach
bpDefStruct.bpID: MACH1
bpDefStruct.units: ND
bpDefStruct.bpVals: [0.0, 0.4, 0.8, 0.9, 0.95, 0.99, 1.0, 1.01, 1.05, 1.2]
-gtDefStruct-
gtDefStruct.name: CL_TABLE
gtDefStruct.gtID: None
gtDefStruct.units: None
gtDefStruct.bpRef: ['MACH1', 'ALPHA1']
gtDefStruct.dataTableStr:
     9.5013e-01, 6.1543e-01, 5.7891e-02, 1.5274e-02, 8.3812e-01, 1.9343e-01,
     2.3114e-01, 7.9194e-01, 3.5287e-01, 7.4679e-01, 1.9640e-02, 6.8222e-01,
     6.0684e-01, 9.2181e-01, 8.1317e-01, 4.4510e-01, 6.8128e-01, 3.0276e-01,
     4.8598e-01, 7.3821e-01, 9.8613e-03, 9.3181e-01, 3.7948e-01, 5.4167e-01,
     8.9130e-01, 1.7627e-01, 1.3889e-01, 4.6599e-01, 8.3180e-01, 1.5087e-01,
     7.6210e-01, 4.0571e-01, 2.0277e-01, 4.1865e-01, 5.0281e-01, 6.9790e-01,
     4.5647e-01, 9.3547e-01, 1.9872e-01, 8.4622e-01, 7.0947e-01, 3.7837e-01,
     1.8504e-02, 9.1690e-01, 6.0379e-01, 5.2515e-01, 4.2889e-01, 8.6001e-01,
     8.2141e-01, 4.1027e-01, 2.7219e-01, 2.0265e-01, 3.0462e-01, 8.5366e-01,
```

```
4.4470e-01, 8.9365e-01, 1.9881e-01, 6.7214e-01, 1.8965e-01, 5.9356e-01
 gtDefStruct.dataTable: [0.95013, 0.61543, 0.057891, 0.015274, 0.83812,
0.19343, 0.23114, 0.79194, 0.35287, 0.74679, 0.01964, 0.68222, 0.60684, 0.92181,
0.81317, 0.4451, 0.68128, 0.30276, 0.48598, 0.73821, 0.0098613, 0.93181,
0.37948, 0.54167, 0.8913, 0.17627, 0.13889, 0.46599, 0.8318, 0.15087, 0.7621,
0.40571, 0.20277, 0.41865, 0.50281, 0.6979, 0.45647, 0.93547, 0.19872, 0.84622,
0.70947, 0.37837, 0.018504, 0.9169, 0.60379, 0.52515, 0.42889, 0.86001, 0.82141,
0.41027, 0.27219, 0.20265, 0.30462, 0.85366, 0.4447, 0.89365, 0.19881, 0.67214,
0.18965, 0.59356]
-functionStruct-
 funDefStruct.name: Basic CL
 funDefStruct.fdName: Basic CL
 funDefStruct.gtID: CL_TABLE
 funDefStruct.numBreakPts: 2
 funDefStruct.dependentVarID:
 independentVarRef.varID: MACH
 independentVarRef.min: 0.3
 independentVarRef.max: 0.95
 independentVarRef.extrapolate:
 independentVarRef.interpolate:
 independentVarRef.varID: ALPHA
 independentVarRef.min: 0.0
 independentVarRef.max: 15.0
 independentVarRef.extrapolate: both
 independentVarRef.interpolate:
-checkData-
staticShot: AOA 4 deg; Mach 0.9
              {http://daveml.org/2010/DAVEML}checkInputs
 signal type:
 signal name: AOA
 signal varID: ALPHA
 signal value: 4.0
 [localSignal append] -> AOA 4 deg; Mach 0.9 signal #: 1
 signal type: {http://daveml.org/2010/DAVEML}checkInputs
 signal name: MACH number
 signal varID: MACH
 signal value: 0.9
 [localSignal append] -> AOA 4 deg; Mach 0.9 signal #: 2
 signal type: {http://daveml.org/2010/DAVEML}checkOutputs
 signal name: CL
signal varID: CL
 signal value: 0.0098613
 signal tol: 0.000001
 [localSignal append] -> AOA 4 deg; Mach 0.9 signal #: 3
3 signals in AOA 4 deg; Mach 0.9
--- PreProcess Equations and Functions ---
```

+++++ MODEL INPUTS AND OUTPUTS +++++

```
++> Input: ALPHA
    ++> Input: MACH
    ----> depVar: CL
    ---> f.dataTable: [0.95013, 0.61543, 0.057891, 0.015274, 0.83812, 0.19343,
    0.23114, 0.79194, 0.35287, 0.74679, 0.01964, 0.68222, 0.60684, 0.92181, 0.81317,
    0.4451, 0.68128, 0.30276, 0.48598, 0.73821, 0.0098613, 0.93181, 0.37948,
    0.54167, 0.8913, 0.17627, 0.13889, 0.46599, 0.8318, 0.15087, 0.7621, 0.40571,
    0.20277, 0.41865, 0.50281, 0.6979, 0.45647, 0.93547, 0.19872, 0.84622, 0.70947,
    0.37837, 0.018504, 0.9169, 0.60379, 0.52515, 0.42889, 0.86001, 0.82141, 0.41027,
    0.27219, 0.20265, 0.30462, 0.85366, 0.4447, 0.89365, 0.19881, 0.67214, 0.18965,
    0.59356]
    ----> bpRef: ['MACH1', 'ALPHA1']
    ----> gt.name: CL_TABLE
    ----> f.gtID: CL_TABLE
    ---> f.bp name: MACH1
    ----> f.bpVals: [0.0, 0.4, 0.8, 0.9, 0.95, 0.99, 1.0, 1.01, 1.05, 1.2]
    ----> bpv: [[0.0, 0.4, 0.8, 0.9, 0.95, 0.99, 1.0, 1.01, 1.05, 1.2]]
    ----> f.bp name: ALPHA1
    ----> f.bpVals: [-4.0, 0.0, 4.0, 8.0, 12.0, 16.0]
    ----> bpv: [[0.0, 0.4, 0.8, 0.9, 0.95, 0.99, 1.0, 1.01, 1.05, 1.2], [-4.0, 0.0,
    4.0, 8.0, 12.0, 16.0]]
    Parse complete
    Number of check cases: 1
    angleOfAttack
    Mach
    coefficientOfLift
    ---- CheckModel -----
    numSignals:
                 [3]
    ---- END CheckModel -----
    1.5.3 Various DAVE-ML Tests
[9]: ppLoadDml('models/tests/test.dml')
    CheckModel()
    root tag: {http://daveml.org/2010/DAVEML}DAVEfunc
    Model: Test File
    creation date: 2009-06-01
    file version: $Revision: 1 $
    -variableDef-
    varDefStruct.name: rtd
    varDefStruct.varID: rtd
```

varDefStruct.units: deg_rad

varDefStruct.axisSystem: None

varDefStruct.sign: None
varDefStruct.alias: None
varDefStruct.symbol: None

varDefStruct.hasInitialValue: True varDefStruct.initialValue: 57.29577951

varDefStruct.isStdAIAA: False
varDefStruct.isOutput: False
varDefStruct.hasMath: False
varDefStruct.codeText: None

-variableDef-

varDefStruct.name: angleOfAttack

varDefStruct.varID: alpha
varDefStruct.units: nd

varDefStruct.axisSystem: None

varDefStruct.sign: None
varDefStruct.alias: None
varDefStruct.symbol: None

varDefStruct.hasInitialValue: False
varDefStruct.initialValue: None
varDefStruct.isStdAIAA: False
varDefStruct.isOutput: False
varDefStruct.hasMath: False
varDefStruct.codeText: None

-variableDef-

varDefStruct.name: beta
varDefStruct.varID: beta
varDefStruct.units: deg

varDefStruct.axisSystem: None

varDefStruct.sign: None
varDefStruct.alias: None
varDefStruct.symbol: None

varDefStruct.hasInitialValue: True
varDefStruct.initialValue: 5.0
varDefStruct.isStdAIAA: False
varDefStruct.isOutput: False
varDefStruct.hasMath: False
varDefStruct.codeText: None

-variableDef-

varDefStruct.name: Avariable

varDefStruct.varID: a
varDefStruct.units: nd

varDefStruct.axisSystem: None

varDefStruct.sign: None varDefStruct.alias: None varDefStruct.symbol: None

varDefStruct.hasInitialValue: True varDefStruct.initialValue: 2.0 varDefStruct.isStdAIAA: False
varDefStruct.isOutput: False
varDefStruct.hasMath: False
varDefStruct.codeText: None

-variableDef-

varDefStruct.name: Bvariable

varDefStruct.varID: b
varDefStruct.units: nd

varDefStruct.axisSystem: None

varDefStruct.sign: None
varDefStruct.alias: None
varDefStruct.symbol: None

varDefStruct.hasInitialValue: False
varDefStruct.initialValue: None
varDefStruct.isStdAIAA: False
varDefStruct.isOutput: False
varDefStruct.hasMath: False
varDefStruct.codeText: None

-variableDef-

varDefStruct.name: cnp
varDefStruct.varID: cnp
varDefStruct.units: nd

varDefStruct.axisSystem: None

varDefStruct.sign: None
varDefStruct.alias: None
varDefStruct.symbol: None

varDefStruct.hasInitialValue: False
varDefStruct.initialValue: None
varDefStruct.isStdAIAA: False
varDefStruct.isOutput: False
varDefStruct.hasMath: False
varDefStruct.codeText: None

-variableDef-

varDefStruct.name: dtr
varDefStruct.varID: dtr
varDefStruct.units: r_d

varDefStruct.axisSystem: None

varDefStruct.sign: None
varDefStruct.alias: None
varDefStruct.symbol: None

varDefStruct.hasInitialValue: False
varDefStruct.initialValue: None
varDefStruct.isStdAIAA: False
varDefStruct.isOutput: False
varDefStruct.hasMath: True

varDefStruct.codeText: 3.14159265/180.0

-variableDef-

varDefStruct.name: alpr

```
varDefStruct.varID: ALPR
varDefStruct.units: rad
varDefStruct.axisSystem:
                          None
varDefStruct.sign: None
varDefStruct.alias: None
varDefStruct.symbol: None
varDefStruct.hasInitialValue: False
varDefStruct.initialValue: None
varDefStruct.isStdAIAA: False
varDefStruct.isOutput: False
varDefStruct.hasMath: True
varDefStruct.codeText: {alpha} * {dtr}
-variableDef-
varDefStruct.name:
                    dummy
varDefStruct.varID: dummy
varDefStruct.units: nd
varDefStruct.axisSystem:
                          None
varDefStruct.sign: None
varDefStruct.alias: None
varDefStruct.symbol: None
varDefStruct.hasInitialValue: False
varDefStruct.initialValue: None
varDefStruct.isStdAIAA: False
varDefStruct.isOutput: False
varDefStruct.hasMath: True
varDefStruct.codeText: 10 * (25 - 15) + 8/2 + 9 * 9 + 3 + 2
-variableDef-
varDefStruct.name: Xvar
varDefStruct.varID: x
varDefStruct.units: nd
varDefStruct.axisSystem:
varDefStruct.sign: None
varDefStruct.alias: None
varDefStruct.symbol: None
varDefStruct.hasInitialValue: False
varDefStruct.initialValue: None
varDefStruct.isStdAIAA: False
varDefStruct.isOutput: False
varDefStruct.hasMath: True
varDefStruct.codeText: 5.0 ** {a}
-variableDef-
varDefStruct.name:
varDefStruct.varID: y
varDefStruct.units: nd
varDefStruct.axisSystem:
varDefStruct.sign: None
varDefStruct.alias: None
varDefStruct.symbol: None
```

```
varDefStruct.hasInitialValue: False
varDefStruct.initialValue: None
varDefStruct.isStdAIAA: False
varDefStruct.isOutput: False
varDefStruct.hasMath: True
varDefStruct.codeText: {cnp} + 0.0
-variableDef-
varDefStruct.name: Cz1
varDefStruct.varID: cz1
varDefStruct.units: nd
varDefStruct.axisSystem:
                          None
varDefStruct.sign: down
varDefStruct.alias: None
varDefStruct.symbol: None
varDefStruct.hasInitialValue: False
varDefStruct.initialValue: None
varDefStruct.isStdAIAA: False
varDefStruct.isOutput: False
varDefStruct.hasMath: True
varDefStruct.codeText: {czt}*(1.-({beta}/{rtd})**2)-0.19*{del}
-variableDef-
varDefStruct.name: cnt
varDefStruct.varID: cnt
varDefStruct.units: nd
varDefStruct.axisSystem: None
varDefStruct.sign: nose right
varDefStruct.alias: None
varDefStruct.symbol: None
varDefStruct.hasInitialValue: False
varDefStruct.initialValue: None
varDefStruct.isStdAIAA: False
varDefStruct.isOutput: False
varDefStruct.hasMath: True
varDefStruct.codeText: -10 if {beta} < 0 else 10</pre>
-variableDef-
varDefStruct.name: ALP UNLIM
varDefStruct.varID: ALP UNLIM
varDefStruct.units: deg
varDefStruct.axisSystem:
                          None
varDefStruct.sign: None
varDefStruct.alias: None
varDefStruct.symbol: None
varDefStruct.hasInitialValue: False
varDefStruct.initialValue: None
varDefStruct.isStdAIAA: False
varDefStruct.isOutput: False
varDefStruct.hasMath: False
varDefStruct.codeText: None
```

```
-variableDef-
 varDefStruct.name: ALP_MAX_LIM
 varDefStruct.varID: ALP_MAX_LIM
 varDefStruct.units: deg
varDefStruct.axisSystem: None
 varDefStruct.sign: None
 varDefStruct.alias: None
varDefStruct.symbol: None
 varDefStruct.hasInitialValue: True
varDefStruct.initialValue: 5.0
 varDefStruct.isStdAIAA: False
 varDefStruct.isOutput: False
 varDefStruct.hasMath: False
varDefStruct.codeText: None
-variableDef-
 varDefStruct.name: Limited_angle_of_attack
 varDefStruct.varID: ALP
 varDefStruct.units: deg
 varDefStruct.axisSystem: None
 varDefStruct.sign: anu
varDefStruct.alias: None
 varDefStruct.symbol: None
varDefStruct.hasInitialValue: False
 varDefStruct.initialValue: None
 varDefStruct.isStdAIAA: False
 varDefStruct.isOutput: False
 varDefStruct.hasMath: True
 varDefStruct.codeText: -2.0 if {ALP_UNLIM} < -2 else {ALP_MAX_LIM} if
{ALP_UNLIM} > {ALP_MAX_LIM} else {ALP_UNLIM}
-variableDef-
 varDefStruct.name: sinTest
 varDefStruct.varID: sinTest
 varDefStruct.units: nd
 varDefStruct.axisSystem:
                          None
varDefStruct.sign: none
 varDefStruct.alias: None
varDefStruct.symbol: None
 varDefStruct.hasInitialValue: False
varDefStruct.initialValue: None
 varDefStruct.isStdAIAA: False
 varDefStruct.isOutput: False
 varDefStruct.hasMath: True
 varDefStruct.codeText: math.sin(0.5235987756)
-bpDefStruct-
 bpVals: -10., -5., 0., 5., 10., 15., 20., 25., 30., 35., 40., 45.
 bpDefStruct.name: alpha
 bpDefStruct.bpID: ALPHA1
 bpDefStruct.units: deg
```

```
[-10.0, -5.0, 0.0, 5.0, 10.0, 15.0, 20.0, 25.0, 30.0,
 bpDefStruct.bpVals:
35.0, 40.0, 45.0]
-functionStruct-
-gtDefStruct-
gtDefStruct.name:
                   Cnp table
 gtDefStruct.gtID:
                   None
gtDefStruct.units: None
 gtDefStruct.bpRef:
                    ['ALPHA1']
                            .061, .052, .052, -.012, -.013, -.024, .050, .150,
gtDefStruct.dataTableStr:
.130, .158, .240,
        .150
 gtDefStruct.dataTable: [0.061, 0.052, 0.052, -0.012, -0.013, -0.024, 0.05,
0.15, 0.13, 0.158, 0.24, 0.15]
 funDefStruct.name: Cnp
 funDefStruct.fdName: Cnp
 funDefStruct.gtID: Cnp_table
 funDefStruct.numBreakPts: 1
 funDefStruct.dependentVarID: cnp
 independentVarRef.varID: alpha
 independentVarRef.min: -10.0
 independentVarRef.max: 45.0
 independentVarRef.extrapolate: neither
 independentVarRef.interpolate:
-checkData-
staticShot: Nominal
 signal type: {http://daveml.org/2010/DAVEML}checkInputs
signal name: Bvariable
 signal varID: b
 signal value: -2.5
 [localSignal append] -> Nominal signal #: 1
 signal type: {http://daveml.org/2010/DAVEML}checkInputs
 signal name:
              angleOfAttack
 signal varID: alpha
 signal value: 5.0
 [localSignal append] -> Nominal signal #: 2
 signal type: {http://daveml.org/2010/DAVEML}checkInputs
 signal name: ALP UNLIM
 signal varID: ALP_UNLIM
 signal value: -1.0
 [localSignal append] -> Nominal signal #: 3
 signal type: {http://daveml.org/2010/DAVEML}checkInputs
 signal name:
              angleOfSideslip
 signal varID:
               beta
 signal value: 5.0
 [localSignal append] -> Nominal signal #: 4
 signal type: {http://daveml.org/2010/DAVEML}checkInputs
 signal name: elevatorDeflection
 signal varID: del
```

```
signal units: d
signal value: 0.0
[localSignal append] -> Nominal signal #: 5
signal type:
             {http://daveml.org/2010/DAVEML}checkInputs
signal name: czt
signal varID: czt
signal units: d
signal value: -49.5
[localSignal append] -> Nominal signal #: 6
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal name: Radian to degree
signal varID: rtd
signal value: 57.29577951
[localSignal append] -> Nominal signal #: 7
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal name: Degree to radian
signal varID: dtr
signal value: 0.01745329252
[localSignal append] -> Nominal signal #: 8
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal name: a
signal varID: a
signal value: 2.0
[localSignal append] -> Nominal signal #: 9
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal name: b
signal varID: b
signal value: -2.5
[localSignal append] -> Nominal signal #: 10
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal name: beta
signal varID: beta
signal value: 5.0
[localSignal append] -> Nominal signal #: 11
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal name: ALP_UNLIM
signal varID: ALP UNLIM
signal value:
              -1.0
[localSignal append] -> Nominal signal #: 12
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal name: sinTest
signal varID: sinTest
signal value: 0.5
[localSignal append] -> Nominal signal #: 13
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal name: ALPR
signal varID: ALPR
signal value: 0.0872665
```

```
[localSignal append] -> Nominal signal #: 14
signal type: {http://daveml.org/2010/DAVEML}checkOutputs
signal name: dummy
signal varID: dummy
signal value:
               190.0
signal tol: 0.000001
 [localSignal append] -> Nominal signal #: 15
signal type: {http://daveml.org/2010/DAVEML}checkOutputs
signal name: Xvar
signal varID: x
signal value:
               25.0
signal tol: 0.000001
 [localSignal append] -> Nominal signal #: 16
signal type: {http://daveml.org/2010/DAVEML}checkOutputs
signal name: cz1
signal varID: cz1
signal value: -49.123036
signal tol: 0.000001
 [localSignal append] -> Nominal signal #: 17
signal type: {http://daveml.org/2010/DAVEML}checkOutputs
signal name: y
signal varID: y
signal value: -0.012
signal tol: 0.000001
 [localSignal append] -> Nominal signal #: 18
signal type: {http://daveml.org/2010/DAVEML}checkOutputs
signal name: cnt
signal varID: cnt
signal value: 10.0
signal tol: 0.000001
[localSignal append] -> Nominal signal #: 19
signal type: {http://daveml.org/2010/DAVEML}checkOutputs
signal name: Limited_angle_of_attack
signal varID: ALP
signal value: -1.0
signal tol: 0.000001
[localSignal append] -> Nominal signal #:
signal type: {http://daveml.org/2010/DAVEML}checkOutputs
signal name: Cnp
signal varID: cnp
signal value: -0.012
signal tol: 0.000001
[localSignal append] -> Nominal signal #: 21
21 signals in Nominal
--- PreProcess Equations and Functions ---
===> dtr -> 3.14159265/180.0
 *** equation: 3.14159265/180.0
```

```
===> ALPR -> {alpha} * {dtr}
 *** equation: self.Data["alpha"] * self.Data["dtr"]
 ==> dummy -> 10 * (25 - 15) + 8/2 + 9 * 9 + 3 + 2
  *** equation: 10 * (25 - 15) + 8/2 + 9 * 9 + 3 + 2
==> x -> 5.0 ** {a}
 *** equation: 5.0 ** self.Data["a"]
==> y -> \{cnp\} + 0.0
 *** equation: self.Data["cnp"] + 0.0
===> cz1 \rightarrow {czt}*(1.-({beta}/{rtd})**2)-0.19*{del}
 *** equation: self.Data["czt"]*(1.-(self.Data["beta"]/self.Data["rtd"])**2)-0
.19*self.Data["del"]
 ===> cnt -> -10 if {beta} < 0 else 10
 *** equation: -10 if self.Data["beta"] < 0 else 10
 ===> ALP -> -2.0 if {ALP_UNLIM} < -2 else {ALP_MAX_LIM} if {ALP_UNLIM} >
{ALP_MAX_LIM} else {ALP_UNLIM}
  *** equation: -2.0 if self.Data["ALP_UNLIM"] < -2 else
self.Data["ALP_MAX_LIM"] if self.Data["ALP_UNLIM"] > self.Data["ALP_MAX_LIM"]
else self.Data["ALP_UNLIM"]
===> sinTest -> math.sin(0.5235987756)
 *** equation: math.sin(0.5235987756)
+++++ MODEL INPUTS AND OUTPUTS +++++
++> Input: alpha
++> Input: b
++> Input: ALP UNLIM
----> depVar: cnp
----> f.dataTable: [0.061, 0.052, 0.052, -0.012, -0.013, -0.024, 0.05, 0.15,
0.13, 0.158, 0.24, 0.15]
----> bpRef: ['ALPHA1']
----> gt.name: Cnp_table
----> f.gtID: Cnp_table
----> f.bp name: ALPHA1
---> f.bpVals: [-10.0, -5.0, 0.0, 5.0, 10.0, 15.0, 20.0, 25.0, 30.0, 35.0,
40.0, 45.0]
----> bpv: [[-10.0, -5.0, 0.0, 5.0, 10.0, 15.0, 20.0, 25.0, 30.0, 35.0, 40.0,
45.0]]
Parse complete
Number of check cases: 1
rtd
angleOfAttack
beta
Avariable
Bvariable
cnp
dtr
alpr
dummy
Xvar
```

```
У
     Cz1
     cnt
     ALP_UNLIM
     ALP_MAX_LIM
     Limited_angle_of_attack
     sinTest
     ---- CheckModel -----
     numSignals:
                  [21]
     ---- END CheckModel -----
[10]: ppLoadDml('models/cannonballNoAero/cannonballNoAero.dml')
     CheckModel()
     root tag: {http://daveml.org/2010/DAVEML}DAVEfunc
     Model: Cannon Ball Aerodynamics Model
     creation date: 2010-02-01
     file version: $Revision: 1 $
     -variableDef-
      varDefStruct.name: XBodyPositionOfMRC
      varDefStruct.varID: xcgr
      varDefStruct.units: nd
      varDefStruct.axisSystem:
      varDefStruct.sign: None
      varDefStruct.alias: None
      varDefStruct.symbol: None
      varDefStruct.hasInitialValue: True
      varDefStruct.initialValue: 0.1
      varDefStruct.isStdAIAA: True
      varDefStruct.isOutput: False
      varDefStruct.hasMath: False
      varDefStruct.codeText: None
     -variableDef-
      varDefStruct.name: referenceWingChord
      varDefStruct.varID: cbar
      varDefStruct.units: m
      varDefStruct.axisSystem: None
      varDefStruct.sign: None
      varDefStruct.alias: None
      varDefStruct.symbol: None
      varDefStruct.hasInitialValue: True
      varDefStruct.initialValue: 0.2
      varDefStruct.isStdAIAA: True
      varDefStruct.isOutput: False
```

varDefStruct.hasMath: False
varDefStruct.codeText: None

-variableDef-

varDefStruct.name: referenceWingSpan

varDefStruct.varID: bspan
varDefStruct.units: m

varDefStruct.axisSystem: None

varDefStruct.sign: None
varDefStruct.alias: None
varDefStruct.symbol: None

varDefStruct.hasInitialValue: True
varDefStruct.initialValue: 0.2
varDefStruct.isStdAIAA: True
varDefStruct.isOutput: False
varDefStruct.hasMath: False
varDefStruct.codeText: None

-variableDef-

varDefStruct.name: referenceWingArea

varDefStruct.varID: swing
varDefStruct.units: m2

varDefStruct.axisSystem: None

varDefStruct.sign: None
varDefStruct.alias: None
varDefStruct.symbol: None

varDefStruct.hasInitialValue: True varDefStruct.initialValue: 0.0314159

varDefStruct.isStdAIAA: True
varDefStruct.isOutput: False
varDefStruct.hasMath: False
varDefStruct.codeText: None

-variableDef-

varDefStruct.name: aeroBodyForceCoefficient_X

varDefStruct.varID: cx
varDefStruct.units: nd

varDefStruct.axisSystem: None

varDefStruct.sign: FWD
varDefStruct.alias: None
varDefStruct.symbol: None

varDefStruct.hasInitialValue: True
varDefStruct.initialValue: 0.0
varDefStruct.isStdAIAA: True
varDefStruct.isOutput: True
varDefStruct.hasMath: False
varDefStruct.codeText: None

-variableDef-

varDefStruct.name: aeroBodyForceCoefficient_Y

varDefStruct.varID: cy
varDefStruct.units: nd

```
varDefStruct.axisSystem: None
varDefStruct.sign: RIGHT
varDefStruct.alias: None
varDefStruct.symbol: None
varDefStruct.hasInitialValue: True
varDefStruct.initialValue: 0.0
varDefStruct.isStdAIAA: True
varDefStruct.isOutput: True
varDefStruct.hasMath: False
varDefStruct.codeText: None
-variableDef-
varDefStruct.name: aeroBodyForceCoefficient_Z
varDefStruct.varID: cz
varDefStruct.units: nd
varDefStruct.axisSystem:
                          None
varDefStruct.sign: DOWN
varDefStruct.alias: None
varDefStruct.symbol: None
varDefStruct.hasInitialValue: True
varDefStruct.initialValue: 0.0
varDefStruct.isStdAIAA: True
varDefStruct.isOutput: True
varDefStruct.hasMath: False
varDefStruct.codeText: None
-variableDef-
varDefStruct.name: aeroBodyMomentCoefficient_Roll
varDefStruct.varID: cl
varDefStruct.units: nd
varDefStruct.axisSystem:
                          None
varDefStruct.sign: RWD
varDefStruct.alias: None
varDefStruct.symbol: None
varDefStruct.hasInitialValue: True
varDefStruct.initialValue: 0.0
varDefStruct.isStdAIAA: True
varDefStruct.isOutput: True
varDefStruct.hasMath: False
varDefStruct.codeText: None
-variableDef-
varDefStruct.name: aeroBodyMomentCoefficient_Pitch
varDefStruct.varID: cm
varDefStruct.units: nd
varDefStruct.axisSystem:
                          None
varDefStruct.sign: ANU
varDefStruct.alias: None
varDefStruct.symbol: None
varDefStruct.hasInitialValue: True
```

varDefStruct.initialValue: 0.0

```
varDefStruct.isStdAIAA: True
varDefStruct.isOutput: True
 varDefStruct.hasMath: False
 varDefStruct.codeText: None
-variableDef-
 varDefStruct.name: aeroBodyMomentCoefficient_Yaw
 varDefStruct.varID: cn
 varDefStruct.units: nd
 varDefStruct.axisSystem:
                         None
 varDefStruct.sign: ANR
varDefStruct.alias: None
 varDefStruct.symbol: None
 varDefStruct.hasInitialValue:
 varDefStruct.initialValue: 0.0
 varDefStruct.isStdAIAA: True
varDefStruct.isOutput: True
 varDefStruct.hasMath: False
 varDefStruct.codeText: None
-checkData-
staticShot: Internal Constants
 signal type: {http://daveml.org/2010/DAVEML}internalValues
signal name: Wind Chord
 signal varID: cbar
 signal value: 0.2
 [localSignal append] -> Internal Constants signal #: 1
 signal type: {http://daveml.org/2010/DAVEML}internalValues
 signal name: Wind Span
 signal varID: bspan
signal value: 0.2
 [localSignal append] -> Internal Constants signal #: 2
2 signals in Internal Constants
--- PreProcess Equations and Functions ---
+++++ MODEL INPUTS AND OUTPUTS +++++
++> Output: cx
++> Output:
            СV
++> Output: cz
++> Output: cl
++> Output: cm
++> Output: cn
Parse complete
Number of check cases: 1
XBodyPositionOfMRC
referenceWingChord
referenceWingSpan
referenceWingArea
aeroBodyForceCoefficient_X
```

```
aeroBodyForceCoefficient_Y
     aeroBodyForceCoefficient_Z
     aeroBodyMomentCoefficient_Roll
     aeroBodyMomentCoefficient_Pitch
     aeroBodyMomentCoefficient_Yaw
     ---- CheckModel -----
     numSignals: [2]
     ---- END CheckModel ----
     1.5.4 F-16 model
[11]: ppLoadDml('models/F16/F16_aero.dml')
     CheckModel()
     root tag: {http://daveml.org/2010/DAVEML}DAVEfunc
     Model: F-16 Subsonic Aerodynamics Model (a la Garza)
     creation date: 2003-06-10
     file version: $ Revision: 394 $
     -variableDef-
      varDefStruct.name: trueAirspeed
      varDefStruct.varID: vt
      varDefStruct.units: ft_s
      varDefStruct.axisSystem:
      varDefStruct.sign: None
      varDefStruct.alias: None
      varDefStruct.symbol: Vt
      varDefStruct.hasInitialValue: False
      varDefStruct.initialValue: None
      varDefStruct.isStdAIAA: True
      varDefStruct.isOutput: False
      varDefStruct.hasMath: False
      varDefStruct.codeText: None
     -variableDef-
      varDefStruct.name: angleOfAttack
      varDefStruct.varID: alpha
      varDefStruct.units: deg
      varDefStruct.axisSystem:
                               None
      varDefStruct.sign: None
      varDefStruct.alias: None
      varDefStruct.symbol:
      varDefStruct.hasInitialValue: False
      varDefStruct.initialValue: None
      varDefStruct.isStdAIAA: True
```

varDefStruct.isOutput: False

varDefStruct.hasMath: False
varDefStruct.codeText: None

-variableDef-

varDefStruct.name: angleOfSideslip

varDefStruct.varID: beta
varDefStruct.units: deg

varDefStruct.axisSystem: None

varDefStruct.sign: wind in right ear

varDefStruct.alias: None

varDefStruct.symbol:

varDefStruct.hasInitialValue: False
varDefStruct.initialValue: None
varDefStruct.isStdAIAA: True
varDefStruct.isOutput: False
varDefStruct.hasMath: False
varDefStruct.codeText: None

-variableDef-

varDefStruct.name: rollBodyRate

varDefStruct.varID: p
varDefStruct.units: rad_s
varDefStruct.axisSystem: None

varDefStruct.sign: right wing down
varDefStruct.alias: None

varDefStruct.alias: None
varDefStruct.symbol: p

varDefStruct.hasInitialValue: False
varDefStruct.initialValue: None
varDefStruct.isStdAIAA: True
varDefStruct.isOutput: False
varDefStruct.hasMath: False
varDefStruct.codeText: None

-variableDef-

varDefStruct.name: pitchBodyRate

varDefStruct.varID: q
varDefStruct.units: rad_s
varDefStruct.axisSystem: None

varDefStruct.sign: aircraft nose up

varDefStruct.alias: None
varDefStruct.symbol: q

varDefStruct.hasInitialValue: False
varDefStruct.initialValue: None
varDefStruct.isStdAIAA: True
varDefStruct.isOutput: False
varDefStruct.hasMath: False
varDefStruct.codeText: None

-variableDef-

varDefStruct.name: yawBodyRate

varDefStruct.varID: r
varDefStruct.units: rad_s

varDefStruct.axisSystem: None

varDefStruct.sign: aircraft nose right

varDefStruct.alias: None
varDefStruct.symbol: r

varDefStruct.hasInitialValue: False
varDefStruct.initialValue: None
varDefStruct.isStdAIAA: True
varDefStruct.isOutput: False
varDefStruct.hasMath: False
varDefStruct.codeText: None

-variableDef-

varDefStruct.name: elevatorDeflection

varDefStruct.varID: el
varDefStruct.units: deg

varDefStruct.axisSystem: None

varDefStruct.sign: trailing edge down

varDefStruct.alias: None
varDefStruct.symbol: e

varDefStruct.hasInitialValue: False
varDefStruct.initialValue: None
varDefStruct.isStdAIAA: True
varDefStruct.isOutput: False
varDefStruct.hasMath: False
varDefStruct.codeText: None

-variableDef-

varDefStruct.name: aileronDeflection

varDefStruct.varID: ail
varDefStruct.units: deg
varDefStruct.axisSystem: None
varDefStruct.sign: left roll

varDefStruct.alias: None
varDefStruct.symbol: a

varDefStruct.hasInitialValue: False
varDefStruct.initialValue: None
varDefStruct.isStdAIAA: True
varDefStruct.isOutput: False
varDefStruct.hasMath: False

-variableDef-

varDefStruct.name: rudderDeflection

varDefStruct.varID: rdr
varDefStruct.units: deg

varDefStruct.axisSystem: None

varDefStruct.codeText: None

varDefStruct.sign: TEL
varDefStruct.alias: None
varDefStruct.symbol: r

varDefStruct.hasInitialValue: False varDefStruct.initialValue: None varDefStruct.isStdAIAA: True
varDefStruct.isOutput: False
varDefStruct.hasMath: False
varDefStruct.codeText: None

-variableDef-

varDefStruct.name: XBodyPositionOfCG

varDefStruct.varID: xcg
varDefStruct.units: nd

varDefStruct.axisSystem: None

varDefStruct.sign: aft
varDefStruct.alias: None
varDefStruct.symbol: None

varDefStruct.hasInitialValue: False
varDefStruct.initialValue: None
varDefStruct.isStdAIAA: True
varDefStruct.isOutput: False
varDefStruct.hasMath: False
varDefStruct.codeText: None

-variableDef-

varDefStruct.name: rtd
varDefStruct.varID: rtd
varDefStruct.units: rad_deg
varDefStruct.axisSystem: None

varDefStruct.sign: None
varDefStruct.alias: None
varDefStruct.symbol: None

varDefStruct.hasInitialValue: True varDefStruct.initialValue: 57.2957795

varDefStruct.isStdAIAA: False
varDefStruct.isOutput: False
varDefStruct.hasMath: False
varDefStruct.codeText: None

-variableDef-

varDefStruct.name: XBodyPositionOfMRC

varDefStruct.varID: xcgr varDefStruct.units: nd

varDefStruct.axisSystem: None

varDefStruct.sign: None
varDefStruct.alias: None
varDefStruct.symbol: None

varDefStruct.hasInitialValue: True
varDefStruct.initialValue: 0.35
varDefStruct.isStdAIAA: True
varDefStruct.isOutput: False
varDefStruct.hasMath: False
varDefStruct.codeText: None

-variableDef-

varDefStruct.name: referenceWingChord

varDefStruct.varID: cbar
varDefStruct.units: ft

varDefStruct.axisSystem: None

varDefStruct.sign: None
varDefStruct.alias: None
varDefStruct.symbol: None

varDefStruct.hasInitialValue: True
varDefStruct.initialValue: 11.32
varDefStruct.isStdAIAA: True
varDefStruct.isOutput: False
varDefStruct.hasMath: False
varDefStruct.codeText: None

-variableDef-

varDefStruct.name: referenceWingSpan

varDefStruct.varID: bspan
varDefStruct.units: ft

varDefStruct.axisSystem: None

varDefStruct.sign: None
varDefStruct.alias: None
varDefStruct.symbol: None

varDefStruct.hasInitialValue: To varDefStruct.initialValue: 30. varDefStruct.isStdAIAA: True varDefStruct.isOutput: False varDefStruct.hasMath: False varDefStruct.codeText: None

-variableDef-

varDefStruct.name: del
varDefStruct.varID: del
varDefStruct.units: nd

varDefStruct.axisSystem: None

varDefStruct.sign: None
varDefStruct.alias: None
varDefStruct.symbol: None

varDefStruct.hasInitialValue: False
varDefStruct.initialValue: None
varDefStruct.isStdAIAA: False
varDefStruct.isOutput: False
varDefStruct.hasMath: True

varDefStruct.codeText: {el} / 25.0

-variableDef-

varDefStruct.name: dail
varDefStruct.varID: dail
varDefStruct.units: nd

varDefStruct.axisSystem: None

varDefStruct.sign: None
varDefStruct.alias: None
varDefStruct.symbol: None

```
varDefStruct.hasInitialValue: False
varDefStruct.initialValue: None
varDefStruct.isStdAIAA: False
varDefStruct.isOutput: False
varDefStruct.hasMath: True
varDefStruct.codeText: {ail} / 20.0
-variableDef-
varDefStruct.name: drdr
varDefStruct.varID: drdr
varDefStruct.units: nd
varDefStruct.axisSystem: None
varDefStruct.sign: None
varDefStruct.alias: None
varDefStruct.symbol: None
varDefStruct.hasInitialValue: False
varDefStruct.initialValue: None
varDefStruct.isStdAIAA: False
varDefStruct.isOutput: False
varDefStruct.hasMath: True
varDefStruct.codeText: {rdr}/30.0
-variableDef-
varDefStruct.name: CX0
varDefStruct.varID: cxt
varDefStruct.units: nd
varDefStruct.axisSystem: None
varDefStruct.sign: forward
varDefStruct.alias: None
varDefStruct.symbol: None
varDefStruct.hasInitialValue: False
varDefStruct.initialValue: None
varDefStruct.isStdAIAA: False
varDefStruct.isOutput: False
varDefStruct.hasMath: False
varDefStruct.codeText: None
-variableDef-
varDefStruct.name: CYO
varDefStruct.varID: cy0
varDefStruct.units: nd
varDefStruct.axisSystem:
                          None
varDefStruct.sign: right
varDefStruct.alias: None
varDefStruct.symbol: None
varDefStruct.hasInitialValue: False
varDefStruct.initialValue: None
varDefStruct.isStdAIAA: False
varDefStruct.isOutput: False
varDefStruct.hasMath: True
```

varDefStruct.codeText: -0.02*{beta} + 0.021*{dail} + 0.086*{drdr}

```
-variableDef-
 varDefStruct.name: CZO
 varDefStruct.varID: czt
varDefStruct.units: nd
 varDefStruct.axisSystem: None
 varDefStruct.sign: down
varDefStruct.alias: None
 varDefStruct.symbol: None
varDefStruct.hasInitialValue: False
 varDefStruct.initialValue: None
 varDefStruct.isStdAIAA: False
 varDefStruct.isOutput: False
 varDefStruct.hasMath: False
 varDefStruct.codeText: None
-variableDef-
 varDefStruct.name: CZ1
 varDefStruct.varID: cz1
 varDefStruct.units: nd
varDefStruct.axisSystem: None
 varDefStruct.sign: down
 varDefStruct.alias: None
 varDefStruct.symbol: None
 varDefStruct.hasInitialValue: False
varDefStruct.initialValue: None
 varDefStruct.isStdAIAA: False
 varDefStruct.isOutput: False
 varDefStruct.hasMath: True
 varDefStruct.codeText: {czt}*(1.0 - ({beta}/{rtd})**2) - 0.19*{del}
-variableDef-
 varDefStruct.name: tvt
varDefStruct.varID: tvt
varDefStruct.units: ft_s
varDefStruct.axisSystem: None
varDefStruct.sign: None
 varDefStruct.alias: None
 varDefStruct.symbol: None
 varDefStruct.hasInitialValue: False
 varDefStruct.initialValue: None
varDefStruct.isStdAIAA: False
 varDefStruct.isOutput: False
varDefStruct.hasMath: True
 varDefStruct.codeText: 2*{vt}
-variableDef-
 varDefStruct.name: b2v
 varDefStruct.varID: b2v
varDefStruct.units: s
 varDefStruct.axisSystem: None
 varDefStruct.sign: None
```

varDefStruct.alias: None
varDefStruct.symbol: None

varDefStruct.hasInitialValue: False
varDefStruct.initialValue: None
varDefStruct.isStdAIAA: False
varDefStruct.isOutput: False
varDefStruct.hasMath: True

varDefStruct.codeText: {bspan}/{tvt}

-variableDef-

varDefStruct.name: cq2v
varDefStruct.varID: cq2v
varDefStruct.units: nd

varDefStruct.axisSystem: None

varDefStruct.sign: None
varDefStruct.alias: None
varDefStruct.symbol: None

varDefStruct.hasInitialValue: False
varDefStruct.initialValue: None
varDefStruct.isStdAIAA: False
varDefStruct.isOutput: False
varDefStruct.hasMath: True

varDefStruct.codeText: {cbar}*{q}/{tvt}

-variableDef-

varDefStruct.name: absbeta
varDefStruct.varID: absbeta
varDefStruct.units: deg

varDefStruct.axisSystem: None

varDefStruct.sign: None
varDefStruct.alias: None
varDefStruct.symbol: None

varDefStruct.hasInitialValue: False
varDefStruct.initialValue: None
varDefStruct.isStdAIAA: False
varDefStruct.isOutput: False
varDefStruct.hasMath: True

varDefStruct.codeText: abs({beta})

-variableDef-

varDefStruct.name: absCl0
varDefStruct.varID: absCl0
varDefStruct.units: nd

varDefStruct.axisSystem: None

varDefStruct.sign: None
varDefStruct.alias: None
varDefStruct.symbol: None

varDefStruct.hasInitialValue: False
varDefStruct.initialValue: None
varDefStruct.isStdAIAA: False
varDefStruct.isOutput: False

varDefStruct.hasMath: False varDefStruct.codeText: None -variableDefvarDefStruct.name: absCn0 varDefStruct.varID: absCn0 varDefStruct.units: nd varDefStruct.axisSystem: None varDefStruct.sign: None varDefStruct.alias: None varDefStruct.symbol: None varDefStruct.hasInitialValue: False varDefStruct.initialValue: None varDefStruct.isStdAIAA: False varDefStruct.isOutput: False varDefStruct.hasMath: False varDefStruct.codeText: None -variableDefvarDefStruct.name: Cl0 varDefStruct.varID: clt varDefStruct.units: nd varDefStruct.axisSystem: None varDefStruct.sign: right wing down varDefStruct.alias: None varDefStruct.symbol: None varDefStruct.hasInitialValue: False varDefStruct.initialValue: None varDefStruct.isStdAIAA: False varDefStruct.isOutput: False varDefStruct.hasMath: True varDefStruct.codeText: -{absCl0} if {beta} < 0 else {absCl0}</pre> -variableDefvarDefStruct.name: Cm0 varDefStruct.varID: cmt varDefStruct.units: nd varDefStruct.axisSystem: None varDefStruct.sign: nose up varDefStruct.alias: None varDefStruct.symbol: None varDefStruct.hasInitialValue: False varDefStruct.initialValue: None varDefStruct.isStdAIAA: False varDefStruct.isOutput: False varDefStruct.hasMath: False varDefStruct.codeText: None -variableDef-

varDefStruct.name: Cn0 varDefStruct.varID: cnt varDefStruct.units: nd

46

varDefStruct.axisSystem: None varDefStruct.sign: nose right varDefStruct.alias: None varDefStruct.symbol: None varDefStruct.hasInitialValue: False varDefStruct.initialValue: None varDefStruct.isStdAIAA: False varDefStruct.isOutput: False varDefStruct.hasMath: True varDefStruct.codeText: -{absCn0} if {beta} < 0 else {absCn0}</pre> -variableDefvarDefStruct.name: CXq varDefStruct.varID: cxq varDefStruct.units: _rad varDefStruct.axisSystem: None varDefStruct.sign: fwd/+up varDefStruct.alias: None varDefStruct.symbol: None varDefStruct.hasInitialValue: False varDefStruct.initialValue: None varDefStruct.isStdAIAA: False varDefStruct.isOutput: False varDefStruct.hasMath: False varDefStruct.codeText: None -variableDefvarDefStruct.name: CYr varDefStruct.varID: cyr varDefStruct.units: _rad varDefStruct.axisSystem: None varDefStruct.sign: right/+right varDefStruct.alias: None varDefStruct.symbol: None varDefStruct.hasInitialValue: False varDefStruct.initialValue: None varDefStruct.isStdAIAA: False varDefStruct.isOutput: False varDefStruct.hasMath: False varDefStruct.codeText: None -variableDefvarDefStruct.name: CYp varDefStruct.varID: cyp varDefStruct.units: _rad varDefStruct.axisSystem: None varDefStruct.sign: right/+right varDefStruct.alias: None varDefStruct.symbol: None varDefStruct.hasInitialValue: False varDefStruct.initialValue: None

varDefStruct.isStdAIAA: False varDefStruct.isOutput: False varDefStruct.hasMath: False varDefStruct.codeText: None -variableDefvarDefStruct.name: CZq varDefStruct.varID: czq varDefStruct.units: _rad varDefStruct.axisSystem: None varDefStruct.sign: down/+up varDefStruct.alias: None varDefStruct.symbol: None varDefStruct.hasInitialValue: False varDefStruct.initialValue: None varDefStruct.isStdAIAA: False varDefStruct.isOutput: False varDefStruct.hasMath: False varDefStruct.codeText: None -variableDefvarDefStruct.name: Clr varDefStruct.varID: clr varDefStruct.units: rad varDefStruct.axisSystem: None varDefStruct.sign: right/+right varDefStruct.alias: None varDefStruct.symbol: None varDefStruct.hasInitialValue: False varDefStruct.initialValue: None varDefStruct.isStdAIAA: False varDefStruct.isOutput: False varDefStruct.hasMath: False varDefStruct.codeText: None -variableDefvarDefStruct.name: Clp varDefStruct.varID: clp varDefStruct.units: sr-1 varDefStruct.axisSystem: None varDefStruct.sign: right/+right varDefStruct.alias: None varDefStruct.symbol: None varDefStruct.hasInitialValue: False varDefStruct.initialValue: None varDefStruct.isStdAIAA: False varDefStruct.isOutput: False varDefStruct.hasMath: False varDefStruct.codeText: None

-variableDef-

varDefStruct.name: Cmq

varDefStruct.varID: cmq
varDefStruct.units: sr-1

varDefStruct.axisSystem: None
varDefStruct.sign: up/+up
varDefStruct.alias: None

varDefStruct.symbol: None

varDefStruct.hasInitialValue: False
varDefStruct.initialValue: None
varDefStruct.isStdAIAA: False
varDefStruct.isOutput: False
varDefStruct.hasMath: False
varDefStruct.codeText: None

-variableDef-

varDefStruct.name: Cnr
varDefStruct.varID: cnr
varDefStruct.units: sr-1
varDefStruct.axisSystem: None
varDefStruct.sign: right/+right

varDefStruct.alias: None
varDefStruct.symbol: None

varDefStruct.hasInitialValue: False
varDefStruct.initialValue: None
varDefStruct.isStdAIAA: False
varDefStruct.isOutput: False
varDefStruct.hasMath: False
varDefStruct.codeText: None

-variableDef-

varDefStruct.name: Cnp
varDefStruct.varID: cnp
varDefStruct.units: sr-1

varDefStruct.axisSystem: None
varDefStruct.sign: right/+right

varDefStruct.alias: None
varDefStruct.symbol: None

varDefStruct.hasInitialValue: False
varDefStruct.initialValue: None
varDefStruct.isStdAIAA: False
varDefStruct.isOutput: False
varDefStruct.hasMath: False

-variableDef-

varDefStruct.name: C1DA
varDefStruct.varID: dclda
varDefStruct.units: d-1

varDefStruct.codeText: None

varDefStruct.axisSystem: None varDefStruct.sign: right/+left

varDefStruct.alias: None
varDefStruct.symbol: None

varDefStruct.hasInitialValue: False varDefStruct.initialValue: None varDefStruct.isStdAIAA: False varDefStruct.isOutput: False varDefStruct.hasMath: False varDefStruct.codeText: None

-variableDef-

varDefStruct.name: ClDR varDefStruct.varID: dcldr varDefStruct.units: d-1

varDefStruct.axisSystem: None varDefStruct.sign: right/+left

varDefStruct.alias: None varDefStruct.symbol: None

varDefStruct.hasInitialValue: False varDefStruct.initialValue: None varDefStruct.isStdAIAA: False varDefStruct.isOutput: False varDefStruct.hasMath: False varDefStruct.codeText: None

-variableDef-

varDefStruct.name: CnDA varDefStruct.varID: dcnda varDefStruct.units: d-1

varDefStruct.axisSystem: None varDefStruct.sign: right/+left

varDefStruct.alias: None varDefStruct.symbol: None

varDefStruct.hasInitialValue: False varDefStruct.initialValue: None varDefStruct.isStdAIAA: False varDefStruct.isOutput: False varDefStruct.hasMath: False varDefStruct.codeText: None

-variableDef-

varDefStruct.name: CnDR varDefStruct.varID: dcndr varDefStruct.units: d-1

varDefStruct.axisSystem: None varDefStruct.sign: right/+left

varDefStruct.alias: None varDefStruct.symbol: None

varDefStruct.hasInitialValue: False varDefStruct.initialValue: None varDefStruct.isStdAIAA: False varDefStruct.isOutput: False varDefStruct.hasMath: False varDefStruct.codeText: None

```
-variableDef-
 varDefStruct.name: Cl1
varDefStruct.varID: cl1
 varDefStruct.units: nd
 varDefStruct.axisSystem: None
 varDefStruct.sign: None
varDefStruct.alias: None
 varDefStruct.symbol: None
 varDefStruct.hasInitialValue: False
 varDefStruct.initialValue: None
 varDefStruct.isStdAIAA: False
 varDefStruct.isOutput: False
 varDefStruct.hasMath: True
varDefStruct.codeText: {clt} + {dclda}*{dail} + {dcldr}*{drdr}
-variableDef-
varDefStruct.name: Cn
 varDefStruct.varID: cn1
varDefStruct.units: nd
 varDefStruct.axisSystem: None
 varDefStruct.sign: None
 varDefStruct.alias: None
varDefStruct.symbol: None
 varDefStruct.hasInitialValue: False
 varDefStruct.initialValue: None
 varDefStruct.isStdAIAA: False
 varDefStruct.isOutput: False
 varDefStruct.hasMath: True
 varDefStruct.codeText: {cnt} + {dcnda}*{dail} + {dcndr}*{drdr}
-variableDef-
 varDefStruct.name: aeroBodyForceCoefficient_X
 varDefStruct.varID: cx
varDefStruct.units: nd
 varDefStruct.axisSystem:
                         None
 varDefStruct.sign: FWD
varDefStruct.alias: None
 varDefStruct.symbol: None
 varDefStruct.hasInitialValue: False
 varDefStruct.initialValue: None
 varDefStruct.isStdAIAA: True
 varDefStruct.isOutput: True
varDefStruct.hasMath: True
varDefStruct.codeText: {cq2v}*{cxq} + {cxt}
-variableDef-
 varDefStruct.name: aeroBodyForceCoefficient_Y
varDefStruct.varID: cy
 varDefStruct.units: nd
 varDefStruct.axisSystem: None
 varDefStruct.sign: RIGHT
```

```
varDefStruct.alias: None
varDefStruct.symbol: None
varDefStruct.hasInitialValue: False
varDefStruct.initialValue: None
varDefStruct.isStdAIAA: True
varDefStruct.isOutput: True
varDefStruct.hasMath: True
varDefStruct.codeText: \{b2v\}*(\{cyp\}*\{p\} + \{cyr\}*\{r\}) + \{cy0\}
-variableDef-
varDefStruct.name: aeroBodyForceCoefficient_Z
varDefStruct.varID: cz
varDefStruct.units: nd
varDefStruct.axisSystem:
                          None
varDefStruct.sign: DOWN
varDefStruct.alias: None
varDefStruct.symbol: None
varDefStruct.hasInitialValue: False
varDefStruct.initialValue: None
varDefStruct.isStdAIAA: True
varDefStruct.isOutput: True
varDefStruct.hasMath: True
varDefStruct.codeText: {cq2v}*{czq} + {cz1}
-variableDef-
varDefStruct.name: aeroBodyMomentCoefficient_Roll
varDefStruct.varID: cl
varDefStruct.units: nd
varDefStruct.axisSystem:
                          None
varDefStruct.sign: RWD
varDefStruct.alias: None
varDefStruct.symbol: None
varDefStruct.hasInitialValue: False
varDefStruct.initialValue: None
varDefStruct.isStdAIAA: True
varDefStruct.isOutput: True
varDefStruct.hasMath: True
varDefStruct.codeText: \{b2v\}*(\{c1p\}*\{p\} + \{c1r\}*\{r\}) + \{c11\}
-variableDef-
varDefStruct.name: aeroBodyMomentCoefficient_Pitch
varDefStruct.varID: cm
varDefStruct.units: nd
varDefStruct.axisSystem: None
varDefStruct.sign: ANU
varDefStruct.alias: None
varDefStruct.symbol: None
varDefStruct.hasInitialValue: False
varDefStruct.initialValue: None
varDefStruct.isStdAIAA: True
varDefStruct.isOutput: True
```

```
varDefStruct.hasMath:
                      True
 varDefStruct.codeText: \{cq2v\}*\{cmq\} + \{cmt\} + \{cz\}*(\{xcgr\} - \{xcg\})\}
-variableDef-
                    aeroBodyMomentCoefficient_Yaw
 varDefStruct.name:
 varDefStruct.varID:
                     cn
 varDefStruct.units:
 varDefStruct.axisSystem:
varDefStruct.sign: ANR
 varDefStruct.alias: None
varDefStruct.symbol: None
 varDefStruct.hasInitialValue: False
 varDefStruct.initialValue: None
 varDefStruct.isStdAIAA: True
varDefStruct.isOutput:
 varDefStruct.hasMath: True
 ({cbar}*{cy}*({xcgr}-{xcg})) / {bspan}
-bpDefStruct-
 bpVals: -10., -5., 0., 5., 10., 15., 20., 25., 30., 35., 40., 45.
 bpDefStruct.name: alpha
 bpDefStruct.bpID: ALPHA1
bpDefStruct.units: d
bpDefStruct.bpVals: [-10.0, -5.0, 0.0, 5.0, 10.0, 15.0, 20.0, 25.0, 30.0,
35.0, 40.0, 45.0]
-bpDefStruct-
 bpVals: 0.0, 5.0, 10.0, 15.0, 20.0, 25.0, 30.0
 bpDefStruct.name: beta
 bpDefStruct.bpID: BETA1
 bpDefStruct.units: d
 bpDefStruct.bpVals: [0.0, 5.0, 10.0, 15.0, 20.0, 25.0, 30.0]
-bpDefStruct-
 bpVals: -30.0, -20.0, -10.0, 0.0, 10.0, 20.0, 30.0
 bpDefStruct.name: beta
bpDefStruct.bpID: BETA2
bpDefStruct.units: d
 bpDefStruct.bpVals: [-30.0, -20.0, -10.0, 0.0, 10.0, 20.0, 30.0]
-bpDefStruct-
bpVals: -24., -12., 0., 12., 24.
bpDefStruct.name: el
bpDefStruct.bpID: DE1
bpDefStruct.units: d
 bpDefStruct.bpVals: [-24.0, -12.0, 0.0, 12.0, 24.0]
-functionStruct-
-gtDefStruct-
 gtDefStruct.name: CX_table
 gtDefStruct.gtID: None
 gtDefStruct.units: None
 gtDefStruct.bpRef: ['DE1', 'ALPHA1']
```

gtDefStruct.dataTableStr:

```
-.099, -.081, -.081, -.063, -.025, .044, .097, .113, .145, .167,
.174, .166,
               -.048, -.038, -.040, -.021, .016, .083, .127, .137, .162, .177,
.179, .167,
               -.022, -.020, -.021, -.004, .032, .094, .128, .130, .154, .161,
.155, .138,
               -.040, -.038, -.039, -.025, .006, .062, .087, .085, .100, .110,
.104, .091,
               -.083, -.073, -.076, -.072, -.046, .012, .024, .025, .043, .053,
.047, .040
 gtDefStruct.dataTable: [-0.099, -0.081, -0.081, -0.063, -0.025, 0.044, 0.097,
0.113, 0.145, 0.167, 0.174, 0.166, -0.048, -0.038, -0.04, -0.021, 0.016, 0.083,
0.127, 0.137, 0.162, 0.177, 0.179, 0.167, -0.022, -0.02, -0.021, -0.004, 0.032,
0.094, 0.128, 0.13, 0.154, 0.161, 0.155, 0.138, -0.04, -0.038, -0.039, -0.025,
0.006, 0.062, 0.087, 0.085, 0.1, 0.11, 0.104, 0.091, -0.083, -0.073, -0.076,
-0.072, -0.046, 0.012, 0.024, 0.025, 0.043, 0.053, 0.047, 0.04
 funDefStruct.name: Basic CX
funDefStruct.fdName: Basic CX
 funDefStruct.gtID: CX_table
 funDefStruct.numBreakPts: 2
 funDefStruct.dependentVarID: cxt
 independentVarRef.varID: el
 independentVarRef.min: -24.0
 independentVarRef.max: 24.0
 independentVarRef.extrapolate:
                                 neither
 independentVarRef.interpolate:
 independentVarRef.varID: alpha
 independentVarRef.min: -10.0
 independentVarRef.max: 45.0
 independentVarRef.extrapolate:
                                 neither
 independentVarRef.interpolate:
-functionStruct-
-gtDefStruct-
 gtDefStruct.name: CZO_table
 gtDefStruct.gtID: None
 gtDefStruct.units: None
 gtDefStruct.bpRef:
                     ['ALPHA1']
 gtDefStruct.dataTableStr:
                             .770,.241,-.100,-.416,-.731,-1.053,
        -1.366,-1.646,-1.917,-2.120,-2.248,-2.229
 gtDefStruct.dataTable: [0.77, 0.241, -0.1, -0.416, -0.731, -1.053, -1.366,
-1.646, -1.917, -2.12, -2.248, -2.229]
 funDefStruct.name: Basic CZ
 funDefStruct.fdName: Basic CZ
 funDefStruct.gtID: CZ0_table
```

```
funDefStruct.numBreakPts: 1
 funDefStruct.dependentVarID:
 independentVarRef.varID: alpha
 independentVarRef.min: -10.0
 independentVarRef.max:
                         45.0
 independentVarRef.extrapolate:
                                 neither
 independentVarRef.interpolate:
-functionStruct-
-gtDefStruct-
 gtDefStruct.name:
                    Cm0_table
 gtDefStruct.gtID:
                    None
 gtDefStruct.units: None
 gtDefStruct.bpRef:
                     ['DE1', 'ALPHA1']
 gtDefStruct.dataTableStr:
                .205, .168, .186, .196, .213, .251, .245, .238, .252, .231,
.198, .192,
                .081, .077, .107, .110, .110, .141, .127, .119, .133, .108,
.081, .093,
               -.046, -.020, -.009, -.005, -.006, .010, .006, -.001, .014,
.000, -.013, .032,
-.174, -.145, -.121, -.127, -.129, -.102, -.097, -.113, -.087, -.084, -.069, -.006,
-.259, -.202, -.184, -.193, -.199, -.150, -.160, -.167, -.104, -.076, -.041, -.005
 gtDefStruct.dataTable: [0.205, 0.168, 0.186, 0.196, 0.213, 0.251, 0.245,
0.238, 0.252, 0.231, 0.198, 0.192, 0.081, 0.077, 0.107, 0.11, 0.11, 0.141,
0.127, 0.119, 0.133, 0.108, 0.081, 0.093, -0.046, -0.02, -0.009, -0.005, -0.006,
0.01, \ 0.006, \ -0.001, \ 0.014, \ 0.0, \ -0.013, \ 0.032, \ -0.174, \ -0.145, \ -0.121, \ -0.127,
-0.129, -0.102, -0.097, -0.113, -0.087, -0.084, -0.069, -0.006, -0.259, -0.202,
-0.184, -0.193, -0.199, -0.15, -0.16, -0.167, -0.104, -0.076, -0.041, -0.005]
 funDefStruct.name: Basic Cm
funDefStruct.fdName: Basic Cm
 funDefStruct.gtID: CmO_table
 funDefStruct.numBreakPts: 2
 funDefStruct.dependentVarID:
 independentVarRef.varID: el
 independentVarRef.min: -24.0
 independentVarRef.max: 24.0
 independentVarRef.extrapolate:
                                 neither
 independentVarRef.interpolate:
 independentVarRef.varID: alpha
 independentVarRef.min:
                         -10.0
 independentVarRef.max:
                         45.0
 independentVarRef.extrapolate:
                                  neither
 independentVarRef.interpolate:
-functionStruct-
-gtDefStruct-
```

```
['BETA1', 'ALPHA1']
 gtDefStruct.bpRef:
 gtDefStruct.dataTableStr:
                                                                        0.,
                 0.,
                       0.,
                             0.,
                                   0.,
                                         0.,
                                               0.,
                                                     0.,
                                                           0.,
                                                                 0.,
                                                                              0.,
0.,
-.001, -.004, -.008, -.012, -.016, -.022, -.022, -.021, -.015, -.008, -.013, -.015,
-.003, -.009, -.017, -.024, -.030, -.041, -.045, -.040, -.016, -.002, -.010, -.019,
-.001, -.010, -.020, -.030, -.039, -.054, -.057, -.054, -.023, -.006, -.014, -.027,
.000, -.010, -.022, -.034, -.047, -.060, -.069, -.067, -.033, -.036, -.035, -.035,
.007, -.010, -.023, -.034, -.049, -.063, -.081, -.079, -.060, -.058, -.062, -.059,
.009,-.011,-.023,-.037,-.050,-.068,-.089,-.088,-.091,-.076,-.077,-.076
gtDefStruct.dataTable:
                         0.0, -0.001, -0.004, -0.008, -0.012, -0.016, -0.022, -0.022, -0.021, -0.015,
-0.008, -0.013, -0.015, -0.003, -0.009, -0.017, -0.024, -0.03, -0.041, -0.045,
-0.04, -0.016, -0.002, -0.01, -0.019, -0.001, -0.01, -0.02, -0.03, -0.039,
-0.054, -0.057, -0.054, -0.023, -0.006, -0.014, -0.027, 0.0, -0.01, -0.022,
-0.034, -0.047, -0.06, -0.069, -0.067, -0.033, -0.036, -0.035, -0.035, 0.007,
-0.01, -0.023, -0.034, -0.049, -0.063, -0.081, -0.079, -0.06, -0.058, -0.062,
-0.059, 0.009, -0.011, -0.023, -0.037, -0.05, -0.068, -0.089, -0.088, -0.091,
-0.076, -0.077, -0.076]
funDefStruct.name: Basic Cl
 funDefStruct.fdName: Basic Cl
 funDefStruct.gtID: Cl0_table
 funDefStruct.numBreakPts: 2
 funDefStruct.dependentVarID:
 independentVarRef.varID:
                           absbeta
 independentVarRef.min: 0.0
 independentVarRef.max: 30.0
 independentVarRef.extrapolate:
                                 neither
 independentVarRef.interpolate:
 independentVarRef.varID: alpha
 independentVarRef.min: -10.0
 independentVarRef.max: 45.0
 independentVarRef.extrapolate:
                                 neither
 independentVarRef.interpolate:
-functionStruct-
-gtDefStruct-
gtDefStruct.name:
                    Cn0_table
 gtDefStruct.gtID:
                    None
 gtDefStruct.units:
                     None
 gtDefStruct.bpRef:
                     ['BETA1', 'ALPHA1']
 gtDefStruct.dataTableStr:
```

gtDefStruct.name:

gtDefStruct.gtID:

gtDefStruct.units:

ClO_table

None

None

```
0., 0., 0., 0., 0., 0., 0., 0.,
                                                                   0., 0.,
0.,
               .018, .019, .018, .019, .019, .018, .013, .007,
.004, -.014, -.017, -.033,
               .038, .042, .042, .042, .043, .039, .030, .017,
.004, -.035, -.047, -.057,
               .056, .057, .059, .058, .058, .053, .032, .012,
.002, -.046, -.071, -.073,
               .064, .077, .076, .074, .073, .057, .029, .007,
.012, -.034, -.065, -.041,
               .074, .086, .093, .089, .080, .062, .049, .022,
.028,-.012,-.002,-.013,
               .079, .090, .106, .106, .096, .080, .068, .030, .064, .015,
.011,-.001
0.0, 0.018, 0.019, 0.018, 0.019, 0.019, 0.018, 0.013, 0.007, 0.004, -0.014,
-0.017, -0.033, 0.038, 0.042, 0.042, 0.042, 0.043, 0.039, 0.03, 0.017, 0.004,
-0.035, -0.047, -0.057, 0.056, 0.057, 0.059, 0.058, 0.058, 0.053, 0.032, 0.012,
0.002, -0.046, -0.071, -0.073, 0.064, 0.077, 0.076, 0.074, 0.073, 0.057, 0.029,
0.007, 0.012, -0.034, -0.065, -0.041, 0.074, 0.086, 0.093, 0.089, 0.08, 0.062,
0.049, 0.022, 0.028, -0.012, -0.002, -0.013, 0.079, 0.09, 0.106, 0.106, 0.096,
0.08, 0.068, 0.03, 0.064, 0.015, 0.011, -0.001
funDefStruct.name: Basic Cn
funDefStruct.fdName: Basic Cn
 funDefStruct.gtID: Cn0_table
 funDefStruct.numBreakPts: 2
 funDefStruct.dependentVarID: absCn0
 independentVarRef.varID: absbeta
 independentVarRef.min: 0.0
 independentVarRef.max: 30.0
 independentVarRef.extrapolate: neither
 independentVarRef.interpolate:
 independentVarRef.varID: alpha
 independentVarRef.min: -10.0
 independentVarRef.max: 45.0
 independentVarRef.extrapolate:
 independentVarRef.interpolate:
-functionStruct-
-gtDefStruct-
 gtDefStruct.name:
                   CXq_table
 gtDefStruct.gtID:
                   None
gtDefStruct.units: None
gtDefStruct.bpRef: ['ALPHA1']
 gtDefStruct.dataTableStr:
                          -.267, -.110, .308, 1.34, 2.08, 2.91, 2.76, 2.05,
1.50, 1.49, 1.83, 1.21
```

```
gtDefStruct.dataTable: [-0.267, -0.11, 0.308, 1.34, 2.08, 2.91, 2.76, 2.05,
1.5, 1.49, 1.83, 1.21]
funDefStruct.name: CXq
 funDefStruct.fdName: CXq
 funDefStruct.gtID: CXq table
 funDefStruct.numBreakPts:
 funDefStruct.dependentVarID: cxq
 independentVarRef.varID: alpha
 independentVarRef.min: -10.0
 independentVarRef.max: 45.0
 independentVarRef.extrapolate:
                                neither
 independentVarRef.interpolate:
-functionStruct-
-gtDefStruct-
 gtDefStruct.name:
                   CYr_table
 gtDefStruct.gtID:
                   None
gtDefStruct.units: None
                    ['ALPHA1']
 gtDefStruct.bpRef:
 gtDefStruct.dataTableStr:
                             .882, .852, .876, .958, .962, .974, .819, .483,
.590, 1.21, -.493, -1.04
 gtDefStruct.dataTable: [0.882, 0.852, 0.876, 0.958, 0.962, 0.974, 0.819,
0.483, 0.59, 1.21, -0.493, -1.04
 funDefStruct.name: CYr
 funDefStruct.fdName: CYr
 funDefStruct.gtID: CYr_table
 funDefStruct.numBreakPts:
 funDefStruct.dependentVarID:
 independentVarRef.varID: alpha
 independentVarRef.min: -10.0
 independentVarRef.max: 45.0
 independentVarRef.extrapolate:
                                neither
 independentVarRef.interpolate:
-functionStruct-
-gtDefStruct-
 gtDefStruct.name:
                   CYp_table
 gtDefStruct.gtID: None
gtDefStruct.units: None
 gtDefStruct.bpRef: ['ALPHA1']
 gtDefStruct.dataTableStr:
                           -.108, -.108, -.188, .110, .258, .226, .344, .362,
.611, .529, .298,
        -.227
 gtDefStruct.dataTable: [-0.108, -0.108, -0.188, 0.11, 0.258, 0.226, 0.344,
0.362, 0.611, 0.529, 0.298, -0.227
 funDefStruct.name: CYp
 funDefStruct.fdName: CYp
 funDefStruct.gtID: CYp_table
 funDefStruct.numBreakPts: 1
```

```
funDefStruct.dependentVarID: cyp
 independentVarRef.varID: alpha
 independentVarRef.min: -10.0
 independentVarRef.max: 45.0
 independentVarRef.extrapolate: neither
 independentVarRef.interpolate:
-functionStruct-
-gtDefStruct-
 gtDefStruct.name: CZq_table
 gtDefStruct.gtID: None
gtDefStruct.units:
                    None
 gtDefStruct.bpRef:
                     ['ALPHA1']
                            -8.80, -25.8, -28.9, -31.4, -31.2, -30.7, -27.7,
 gtDefStruct.dataTableStr:
-28.2, -29.0, -29.8,
        -38.3, -35.3
 gtDefStruct.dataTable: [-8.8, -25.8, -28.9, -31.4, -31.2, -30.7, -27.7, -28.2,
-29.0, -29.8, -38.3, -35.3]
funDefStruct.name: CZq
funDefStruct.fdName: CZq
 funDefStruct.gtID: CZq table
 funDefStruct.numBreakPts: 1
 funDefStruct.dependentVarID: czq
 independentVarRef.varID: alpha
 independentVarRef.min: -10.0
 independentVarRef.max: 45.0
 independentVarRef.extrapolate:
                                neither
 independentVarRef.interpolate:
-functionStruct-
-gtDefStruct-
                   Clr_table
 gtDefStruct.name:
 gtDefStruct.gtID:
 gtDefStruct.units: None
 gtDefStruct.bpRef:
                     ['ALPHA1']
                           -.126, -.026, .063, .113, .208, .230, .319, .437,
 gtDefStruct.dataTableStr:
.680, .100, .447,
        -.330
gtDefStruct.dataTable: [-0.126, -0.026, 0.063, 0.113, 0.208, 0.23, 0.319,
0.437, 0.68, 0.1, 0.447, -0.33
 funDefStruct.name: Clr
 funDefStruct.fdName: Clr
 funDefStruct.gtID: Clr_table
 funDefStruct.numBreakPts: 1
 funDefStruct.dependentVarID: clr
 independentVarRef.varID: alpha
 independentVarRef.min: -10.0
 independentVarRef.max: 45.0
 independentVarRef.extrapolate:
                                neither
 independentVarRef.interpolate:
```

```
-functionStruct-
-gtDefStruct-
gtDefStruct.name:
                   Clp_table
gtDefStruct.gtID:
                   None
gtDefStruct.units: None
gtDefStruct.bpRef:
                    ['ALPHA1']
gtDefStruct.dataTableStr:
                            -.360, -.359, -.443, -.420, -.383, -.375, -.329,
-.294, -.230, -.210,
        -.120, -.100
gtDefStruct.dataTable: [-0.36, -0.359, -0.443, -0.42, -0.383, -0.375, -0.329,
-0.294, -0.23, -0.21, -0.12, -0.1]
funDefStruct.name: Clp
funDefStruct.fdName:
funDefStruct.gtID: Clp_table
funDefStruct.numBreakPts: 1
funDefStruct.dependentVarID:
independentVarRef.varID: alpha
independentVarRef.min: -10.0
independentVarRef.max: 45.0
independentVarRef.extrapolate:
                                neither
independentVarRef.interpolate:
-functionStruct-
-gtDefStruct-
gtDefStruct.name: Cmq_table
gtDefStruct.gtID:
                   None
gtDefStruct.units:
                    None
gtDefStruct.bpRef:
                     ['ALPHA1']
gtDefStruct.dataTableStr:
                            -7.21, -5.40, -5.23, -5.26, -6.11, -6.64, -5.69,
-6.00, -6.20, -6.40,
        -6.60, -6.00
gtDefStruct.dataTable: [-7.21, -5.4, -5.23, -5.26, -6.11, -6.64, -5.69, -6.0,
-6.2, -6.4, -6.6, -6.0]
funDefStruct.name: Cmq
funDefStruct.fdName:
                      Cmq
funDefStruct.gtID: Cmq table
funDefStruct.numBreakPts: 1
funDefStruct.dependentVarID: cmq
independentVarRef.varID: alpha
independentVarRef.min: -10.0
independentVarRef.max: 45.0
independentVarRef.extrapolate:
                                neither
independentVarRef.interpolate:
-functionStruct-
-gtDefStruct-
gtDefStruct.name:
                   Cnr_table
gtDefStruct.gtID:
                   None
gtDefStruct.units: None
gtDefStruct.bpRef: ['ALPHA1']
```

```
-.380, -.363, -.378, -.386, -.370, -.453, -.550,
 gtDefStruct.dataTableStr:
-.582, -.595, -.637,
        -1.02, -.840
 gtDefStruct.dataTable: [-0.38, -0.363, -0.378, -0.386, -0.37, -0.453, -0.55,
-0.582, -0.595, -0.637, -1.02, -0.84]
 funDefStruct.name: Cnr
funDefStruct.fdName: Cnr
funDefStruct.gtID: Cnr_table
 funDefStruct.numBreakPts: 1
 funDefStruct.dependentVarID:
 independentVarRef.varID: alpha
 independentVarRef.min: -10.0
 independentVarRef.max:
                        45.0
 independentVarRef.extrapolate:
                                neither
 independentVarRef.interpolate:
-functionStruct-
-gtDefStruct-
 gtDefStruct.name:
                   Cnp_table
 gtDefStruct.gtID: None
 gtDefStruct.units: None
gtDefStruct.bpRef:
                    ['ALPHA1']
 gtDefStruct.dataTableStr:
                             .061, .052, .052, -.012, -.013, -.024, .050, .150,
.130, .158, .240,
        .150
 gtDefStruct.dataTable: [0.061, 0.052, 0.052, -0.012, -0.013, -0.024, 0.05,
0.15, 0.13, 0.158, 0.24, 0.15]
 funDefStruct.name: Cnp
 funDefStruct.fdName: Cnp
 funDefStruct.gtID: Cnp_table
 funDefStruct.numBreakPts: 1
 funDefStruct.dependentVarID:
 independentVarRef.varID: alpha
 independentVarRef.min: -10.0
 independentVarRef.max: 45.0
 independentVarRef.extrapolate: neither
 independentVarRef.interpolate:
-functionStruct-
-gtDefStruct-
 gtDefStruct.name:
                   dlda_table
 gtDefStruct.gtID:
                   None
 gtDefStruct.units: None
 gtDefStruct.bpRef: ['BETA2', 'ALPHA1']
 gtDefStruct.dataTableStr:
              -.041, -.052, -.053, -.056, -.050, -.056, -.082, -.059, -.042,
-.038, -.027, -.017,
              -.041, -.053, -.053, -.053, -.050, -.051, -.066, -.043, -.038,
```

```
-.027, -.023, -.016,
              -.042, -.053, -.052, -.051, -.049, -.049, -.043, -.035, -.026,
-.016, -.018, -.014,
              -.040, -.052, -.051, -.052, -.048, -.048, -.042, -.037, -.031,
-.026, -.017, -.012,
              -.043, -.049, -.048, -.049, -.043, -.042, -.042, -.036, -.025,
-.021, -.016, -.011,
              -.044, -.048, -.048, -.047, -.042, -.041, -.020, -.028, -.013,
-.014, -.011, -.010,
              -.043, -.049, -.047, -.045, -.042, -.037, -.003, -.013, -.010,
-.003, -.007, -.008
gtDefStruct.dataTable: [-0.041, -0.052, -0.053, -0.056, -0.05, -0.056, -0.082,
-0.059, -0.042, -0.038, -0.027, -0.017, -0.041, -0.053, -0.053, -0.053, -0.05,
-0.051, -0.066, -0.043, -0.038, -0.027, -0.023, -0.016, -0.042, -0.053, -0.052,
-0.051, -0.049, -0.049, -0.043, -0.035, -0.026, -0.016, -0.018, -0.014, -0.04,
-0.052, -0.051, -0.052, -0.048, -0.048, -0.042, -0.037, -0.031, -0.026, -0.017,
-0.012, -0.043, -0.049, -0.048, -0.049, -0.043, -0.042, -0.042, -0.036, -0.025,
-0.021, -0.016, -0.011, -0.044, -0.048, -0.048, -0.047, -0.042, -0.041, -0.02,
-0.028, -0.013, -0.014, -0.011, -0.01, -0.043, -0.049, -0.047, -0.045, -0.042,
-0.037, -0.003, -0.013, -0.01, -0.003, -0.007, -0.008]
 funDefStruct.name: dlda
funDefStruct.fdName: dlda
 funDefStruct.gtID: dlda_table
 funDefStruct.numBreakPts: 2
 funDefStruct.dependentVarID: dclda
 independentVarRef.varID: beta
 independentVarRef.min: -30.0
 independentVarRef.max:
                        30.0
 independentVarRef.extrapolate:
 independentVarRef.interpolate:
 independentVarRef.varID: alpha
 independentVarRef.min: -10.0
 independentVarRef.max: 45.0
 independentVarRef.extrapolate:
 independentVarRef.interpolate:
-functionStruct-
-gtDefStruct-
gtDefStruct.name:
                   dldr_table
 gtDefStruct.gtID:
                   None
 gtDefStruct.units: None
 gtDefStruct.bpRef: ['BETA2', 'ALPHA1']
 gtDefStruct.dataTableStr:
               .005,
                      .017, .014, .010, -.005, .009, .019,
                                                                .005, .000,
-.005, -.011,
               .008,
```

.016, .014, .014, .013, .009, .012,

.005, .000,

.007,

```
.004,
       .009,
              .007,
                                     .012,
               .013,
                       .013,
                              .011,
                                            .011,
                                                    .009,
                                                           .008,
                                                                  .005,
                                                                         .000,
.005,
       .003,
              .005,
               .018,
                                     .014,
                                            .014,
                                                    .014,
                                                           .014,
                       .015,
                              .015,
                                                                  .015,
                                                                         .013,
.011,
       .006,
              .001,
               .015,
                       .014,
                              .013,
                                     .013,
                                            .012,
                                                    .011,
                                                           .011,
                                                                  .010,
                                                                         .008,
.008,
       .007,
              .003,
               .021,
                       .011,
                              .010,
                                     .011,
                                            .010,
                                                    .009,
                                                           .008,
                                                                  .010,
                                                                         .006,
.005,
       .000,
              .001,
               .023,
                       .010,
                              .011,
                                     .011,
                                            .011,
                                                    .010,
                                                           .008,
                                                                  .010,
                                                                         .006,
.014,
              .000
       .020,
                          [0.005, 0.017, 0.014, 0.01, -0.005, 0.009, 0.019,
gtDefStruct.dataTable:
0.005, 0.0, -0.005, -0.011, 0.008, 0.007, 0.016, 0.014, 0.014, 0.013, 0.009,
0.012, 0.005, 0.0, 0.004, 0.009, 0.007, 0.013, 0.013, 0.011, 0.012, 0.011,
0.009, 0.008, 0.005, 0.0, 0.005, 0.003, 0.005, 0.018, 0.015, 0.015, 0.014,
0.014, 0.014, 0.014, 0.015, 0.013, 0.011, 0.006, 0.001, 0.015, 0.014, 0.013,
0.013, 0.012, 0.011, 0.011, 0.01, 0.008, 0.008, 0.007, 0.003, 0.021, 0.011,
0.01, 0.011, 0.01, 0.009, 0.008, 0.01, 0.006, 0.005, 0.0, 0.001, 0.023, 0.01,
0.011, 0.011, 0.011, 0.01, 0.008, 0.01, 0.006, 0.014, 0.02, 0.0
 funDefStruct.name: dldr
 funDefStruct.fdName: dldr
 funDefStruct.gtID: dldr_table
 funDefStruct.numBreakPts: 2
 funDefStruct.dependentVarID: dcldr
 independentVarRef.varID: beta
 independentVarRef.min:
                         -30.0
 independentVarRef.max:
                         30.0
 independentVarRef.extrapolate:
                                  neither
 independentVarRef.interpolate:
 independentVarRef.varID: alpha
 independentVarRef.min: -10.0
 independentVarRef.max: 45.0
 independentVarRef.extrapolate:
                                 neither
 independentVarRef.interpolate:
-functionStruct-
-gtDefStruct-
 gtDefStruct.name:
                    dnda_table
 gtDefStruct.gtID:
                    None
 gtDefStruct.units: None
 gtDefStruct.bpRef:
                     ['BETA2', 'ALPHA1']
 gtDefStruct.dataTableStr:
               .001, -.027, -.017, -.013, -.012, -.016, .001,
                                                                  .017,
                                                                         .011,
.017,
       .008,
              .016,
               .002, -.014, -.016, -.016, -.014, -.019, -.021,
                                                                  .002,
                                                                         .012,
```

.016, .015,

.011,

```
-.006, -.008, -.006, -.005, -.008, -.005,
                                                                .007, .004,
.007,
             .006,
      .006,
              -.011, -.011, -.010, -.009, -.008, -.006, .000,
                                                                .004, .007,
.010,
              .010,
       .004,
              -.015, -.015, -.014, -.012, -.011, -.008, -.002,
                                                                .002.
.012,
       .011,
             .011,
              -.024, -.010, -.004, -.002, -.001, .003, .014,
                                                                .006, -.001,
.004,
       .004,
              .006,
              -.022, .002, -.003, -.005, -.003, -.001, -.009, -.009, -.001,
.003, -.002,
             .001
                        [0.001, -0.027, -0.017, -0.013, -0.012, -0.016, 0.001,
gtDefStruct.dataTable:
0.017, 0.011, 0.017, 0.008, 0.016, 0.002, -0.014, -0.016, -0.016, -0.014,
-0.019, -0.021, 0.002, 0.012, 0.016, 0.015, 0.011, -0.006, -0.008, -0.006,
-0.006, -0.005, -0.008, -0.005, 0.007, 0.004, 0.007, 0.006, 0.006, -0.011,
-0.011, -0.01, -0.009, -0.008, -0.006, 0.0, 0.004, 0.007, 0.01, 0.004, 0.01,
-0.015, -0.015, -0.014, -0.012, -0.011, -0.008, -0.002, 0.002, 0.006, 0.012,
0.011, 0.011, -0.024, -0.01, -0.004, -0.002, -0.001, 0.003, 0.014, 0.006,
-0.001, 0.004, 0.004, 0.006, -0.022, 0.002, -0.003, -0.005, -0.003, -0.001,
-0.009, -0.009, -0.001, 0.003, -0.002, 0.001]
 funDefStruct.name: dnda
 funDefStruct.fdName: dnda
 funDefStruct.gtID: dnda_table
 funDefStruct.numBreakPts: 2
 funDefStruct.dependentVarID: dcnda
 independentVarRef.varID: beta
 independentVarRef.min: -30.0
 independentVarRef.max: 30.0
 independentVarRef.extrapolate:
 independentVarRef.interpolate:
 independentVarRef.varID: alpha
 independentVarRef.min: -10.0
 independentVarRef.max: 45.0
 independentVarRef.extrapolate:
                                neither
 independentVarRef.interpolate:
-functionStruct-
-gtDefStruct-
 gtDefStruct.name:
                   dndr_table
gtDefStruct.gtID: None
 gtDefStruct.units: None
 gtDefStruct.bpRef:
                    ['BETA2', 'ALPHA1']
 gtDefStruct.dataTableStr:
              -.018, -.052, -.052, -.052, -.054, -.049, -.059, -.051, -.030,
-.037, -.026, -.013,
              -.028, -.051, -.043, -.046, -.045, -.049, -.057, -.052, -.030,
-.033, -.030, -.008,
```

```
-.037, -.041, -.038, -.040, -.040, -.038, -.037, -.030, -.027,
-.024, -.019, -.013,
              -.048, -.045, -.045, -.045, -.044, -.045, -.047, -.048, -.049,
-.045, -.033, -.016,
              -.043, -.044, -.041, -.041, -.040, -.038, -.034, -.035, -.035,
-.029, -.022, -.009,
              -.052, -.034, -.036, -.036, -.035, -.028, -.024, -.023, -.020,
-.016, -.010, -.014,
              -.062, -.034, -.027, -.028, -.027, -.027, -.023, -.023, -.019,
-.009, -.025, -.010
gtDefStruct.dataTable: [-0.018, -0.052, -0.052, -0.052, -0.054, -0.049,
-0.059, -0.051, -0.03, -0.037, -0.026, -0.013, -0.028, -0.051, -0.043, -0.046,
-0.045, -0.049, -0.057, -0.052, -0.03, -0.033, -0.03, -0.008, -0.037, -0.041,
-0.038, -0.04, -0.04, -0.038, -0.037, -0.03, -0.027, -0.024, -0.019, -0.013,
-0.048, -0.045, -0.045, -0.045, -0.044, -0.045, -0.047, -0.048, -0.049, -0.045,
-0.033, -0.016, -0.043, -0.044, -0.041, -0.041, -0.04, -0.038, -0.034, -0.035,
-0.035, -0.029, -0.022, -0.009, -0.052, -0.034, -0.036, -0.036, -0.035, -0.028,
-0.024, -0.023, -0.02, -0.016, -0.01, -0.014, -0.062, -0.034, -0.027, -0.028,
-0.027, -0.027, -0.023, -0.023, -0.019, -0.009, -0.025, -0.01
funDefStruct.name: dndr
 funDefStruct.fdName: dndr
 funDefStruct.gtID: dndr_table
 funDefStruct.numBreakPts: 2
 funDefStruct.dependentVarID: dcndr
 independentVarRef.varID: beta
 independentVarRef.min: -30.0
 independentVarRef.max:
                        30.0
 independentVarRef.extrapolate:
 independentVarRef.interpolate:
 independentVarRef.varID: alpha
 independentVarRef.min: -10.0
 independentVarRef.max: 45.0
 independentVarRef.extrapolate:
                                neither
 independentVarRef.interpolate:
-checkData-
staticShot: Nominal
 signal type:
              {http://daveml.org/2010/DAVEML}checkInputs
signal name: trueAirspeed
signal varID: vt
signal units: ft_s
 signal value:
               300.0
 [localSignal append] -> Nominal signal #: 1
              {http://daveml.org/2010/DAVEML}checkInputs
 signal type:
 signal name:
              angleOfAttack
 signal varID:
               alpha
 signal units:
               deg
 signal value:
               5.0
```

```
[localSignal append] -> Nominal signal #: 2
signal type: {http://daveml.org/2010/DAVEML}checkInputs
signal name:
             angleOfSideslip
signal varID:
              beta
signal units:
              deg
signal value:
              0.0
[localSignal append] -> Nominal signal #: 3
signal type: {http://daveml.org/2010/DAVEML}checkInputs
signal name: rollBodyRate
signal varID: p
signal units: rad_s
signal value: 0.0
[localSignal append] -> Nominal signal #:
             {http://daveml.org/2010/DAVEML}checkInputs
signal type:
signal name: pitchBodyRate
signal varID: q
signal units: rad_s
signal value: 0.0
[localSignal append] -> Nominal signal #: 5
signal type: {http://daveml.org/2010/DAVEML}checkInputs
signal name: yawBodyRate
signal varID: r
signal units: rad_s
signal value: 0.0
[localSignal append] -> Nominal signal #: 6
signal type: {http://daveml.org/2010/DAVEML}checkInputs
             elevatorDeflection
signal name:
signal varID: el
signal units:
              deg
signal value:
              0.0
[localSignal append] -> Nominal signal #: 7
signal type: {http://daveml.org/2010/DAVEML}checkInputs
signal name: aileronDeflection
signal varID: ail
signal units: deg
signal value:
              0.0
[localSignal append] -> Nominal signal #: 8
signal type: {http://daveml.org/2010/DAVEML}checkInputs
signal name: rudderDeflection
signal varID: rdr
signal units:
              deg
signal value:
              0.0
[localSignal append] -> Nominal signal #: 9
signal type: {http://daveml.org/2010/DAVEML}checkInputs
signal name: XBodyPositionOfCG
signal varID: xcg
signal units:
              nd
signal value: 0.25
```

```
[localSignal append] -> Nominal signal #: 10
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: vt
signal value:
              300.0
[localSignal append] -> Nominal signal #: 11
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: alpha
signal value: 5.0
[localSignal append] -> Nominal signal #: 12
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: beta
signal value: 0.0
[localSignal append] -> Nominal signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: p
signal value: 0.0
[localSignal append] -> Nominal signal #: 14
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: q
signal value: 0.0
[localSignal append] -> Nominal signal #: 15
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: r
signal value: 0.0
[localSignal append] -> Nominal signal #: 16
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: el
signal value: 0.0
[localSignal append] -> Nominal signal #: 17
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: ail
signal value: 0.0
[localSignal append] -> Nominal signal #: 18
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: rdr
signal value: 0.0
[localSignal append] -> Nominal signal #: 19
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: xcg
signal value: 0.25
[localSignal append] -> Nominal signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: rtd
signal value: 57.2957795
[ localSignal append ] -> Nominal signal #: 21
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: xcgr
signal value: 0.35
```

```
[localSignal append] -> Nominal signal #: 22
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: cbar
signal value:
              11.32
[localSignal append] -> Nominal signal #: 23
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: bspan
signal value: 30.0
[localSignal append] -> Nominal signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: del
signal value: 0.0
[localSignal append] -> Nominal signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: dail
signal value: 0.0
[localSignal append] -> Nominal signal #:
signal type:
             {http://daveml.org/2010/DAVEML}internalValues
signal varID: drdr
signal value:
              0.0
[localSignal append] -> Nominal signal #: 27
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: cxt
signal value:
              -0.004
[localSignal append] -> Nominal signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: cy0
signal value: 0.0
[ localSignal append ] -> Nominal signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: czt
signal value: -0.416
[localSignal append] -> Nominal signal #: 30
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: cz1
signal value: -0.416
[localSignal append] -> Nominal signal #: 31
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: tvt
signal value: 600.0
[localSignal append] -> Nominal signal #: 32
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: b2v
signal value: 0.05
[localSignal append] -> Nominal signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: cq2v
signal value: 0.0
```

```
[localSignal append] -> Nominal signal #: 34
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: absbeta
signal value:
              0.0
[localSignal append] -> Nominal signal #: 35
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: absCl0
signal value: 0.0
[localSignal append] -> Nominal signal #: 36
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: absCn0
signal value: 0.0
[localSignal append] -> Nominal signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: clt
signal value: 0.0
[localSignal append] -> Nominal signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: cmt
signal value: -0.005
[localSignal append] -> Nominal signal #: 39
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: cnt
signal value: 0.0
[localSignal append] -> Nominal signal #: 40
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: cxq
signal value: 1.34
[localSignal append] -> Nominal signal #: 41
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: cyr
signal value: 0.958
[localSignal append] -> Nominal signal #: 42
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: cyp
signal value: 0.11
[localSignal append] -> Nominal signal #: 43
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: czq
signal value: -31.4
[localSignal append] -> Nominal signal #: 44
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: clr
signal value: 0.113
[localSignal append] -> Nominal signal #: 45
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: clp
signal value: -0.42
```

```
[localSignal append] -> Nominal signal #: 46
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: cmq
signal value:
              -5.26
[localSignal append] -> Nominal signal #: 47
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: cnr
signal value: -0.386
[localSignal append] -> Nominal signal #: 48
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: cnp
signal value: -0.012
[localSignal append] -> Nominal signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: dclda
signal value: -0.052
[localSignal append] -> Nominal signal #: 50
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: dcldr
signal value: 0.014
[localSignal append] -> Nominal signal #: 51
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: dcnda
signal value:
             -0.009
[localSignal append] -> Nominal signal #: 52
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: dcndr
signal value:
             -0.045
[localSignal append] -> Nominal signal #: 53
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: cl1
signal value: 0.0
[localSignal append] -> Nominal signal #: 54
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: cn1
signal value: 0.0
[localSignal append] -> Nominal signal #: 55
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: cx
signal value: -0.004
[localSignal append] -> Nominal signal #: 56
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: cy
signal value: 0.0
[localSignal append] -> Nominal signal #: 57
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: cz
signal value: -0.416
```

```
[localSignal append] -> Nominal signal #: 58
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: cl
signal value: 0.0
[localSignal append] -> Nominal signal #: 59
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: cm
signal value: -0.04659999999999999
[localSignal append] -> Nominal signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID:
              cn
signal value: 0.0
[localSignal append] -> Nominal signal #:
signal type: {http://daveml.org/2010/DAVEML}checkOutputs
signal name: aeroBodyForceCoefficient_X
signal varID: cx
signal units: None
signal value: -0.004
signal tol: 0.000001
[localSignal append] -> Nominal signal #: 62
signal type: {http://daveml.org/2010/DAVEML}checkOutputs
signal name: aeroBodyForceCoefficient Y
signal varID: cy
signal units: None
signal value: 0.0
signal tol: 0.000001
[localSignal append] -> Nominal signal #: 63
signal type: {http://daveml.org/2010/DAVEML}checkOutputs
signal name: aeroBodyForceCoefficient_Z
signal varID: cz
signal units: None
signal value: -0.416
signal tol: 0.000001
[localSignal append] -> Nominal signal #: 64
signal type: {http://daveml.org/2010/DAVEML}checkOutputs
signal name: aeroBodyMomentCoefficient_Roll
signal varID: cl
signal units: None
signal value: 0.0
signal tol: 0.000001
[localSignal append] -> Nominal signal #: 65
signal type: {http://daveml.org/2010/DAVEML}checkOutputs
signal name: aeroBodyMomentCoefficient_Pitch
signal varID: cm
signal units: None
signal value: -0.0466
signal tol: 0.000001
[localSignal append] -> Nominal signal #: 66
```

```
signal type: {http://daveml.org/2010/DAVEML}checkOutputs
signal name: aeroBodyMomentCoefficient_Yaw
signal varID:
               cn
signal units:
              None
signal value: 0.0
signal tol: 0.000001
 [localSignal append] -> Nominal signal #: 67
67 signals in Nominal
staticShot: Positive sideslip
              {http://daveml.org/2010/DAVEML}checkInputs
signal type:
signal name: trueAirspeed
signal varID: vt
signal units: ft_s
signal value: 300.0
[localSignal append] -> Positive sideslip signal #: 1
signal type: {http://daveml.org/2010/DAVEML}checkInputs
signal name: angleOfAttack
signal varID: alpha
signal units:
               deg
signal value: 5.0
 [localSignal append] -> Positive sideslip signal #: 2
signal type: {http://daveml.org/2010/DAVEML}checkInputs
signal name: angleOfSideslip
signal varID: beta
signal units:
               deg
               2.34
signal value:
 [localSignal append] -> Positive sideslip signal #: 3
signal type: {http://daveml.org/2010/DAVEML}checkInputs
signal name: rollBodyRate
signal varID: p
signal units: rad_s
signal value: 0.0
[localSignal append] -> Positive sideslip signal #: 4
signal type: {http://daveml.org/2010/DAVEML}checkInputs
signal name: pitchBodyRate
signal varID: q
signal units: rad s
signal value: 0.0
 [localSignal append] -> Positive sideslip signal #: 5
signal type: {http://daveml.org/2010/DAVEML}checkInputs
signal name: yawBodyRate
signal varID: r
signal units: rad_s
signal value: 0.0
[localSignal append] -> Positive sideslip signal #: 6
signal type: {http://daveml.org/2010/DAVEML}checkInputs
signal name: elevatorDeflection
signal varID: el
```

```
signal units:
              deg
signal value:
              0.0
[localSignal append] -> Positive sideslip signal #: 7
signal type:
             {http://daveml.org/2010/DAVEML}checkInputs
signal name: aileronDeflection
signal varID: ail
signal units: deg
signal value: 0.0
[localSignal append] -> Positive sideslip signal #: 8
signal type: {http://daveml.org/2010/DAVEML}checkInputs
signal name: rudderDeflection
signal varID: rdr
signal units:
              deg
signal value:
              0.0
[localSignal append] -> Positive sideslip signal #: 9
signal type: {http://daveml.org/2010/DAVEML}checkInputs
signal name: XBodyPositionOfCG
signal varID: xcg
signal units:
              nd
signal value:
              0.25
[localSignal append] -> Positive sideslip signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: vt
signal value:
              300.0
[localSignal append] -> Positive sideslip signal #: 11
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: alpha
signal value:
              5.0
[localSignal append] -> Positive sideslip signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: beta
signal value:
              2.34
[localSignal append] -> Positive sideslip signal #: 13
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: p
signal value: 0.0
[localSignal append] -> Positive sideslip signal #: 14
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: q
signal value: 0.0
[localSignal append] -> Positive sideslip signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: r
signal value: 0.0
[localSignal append] -> Positive sideslip signal #: 16
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID:
              el
signal value: 0.0
```

```
[ localSignal append ] -> Positive sideslip signal #: 17
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: ail
signal value:
              0.0
[localSignal append] -> Positive sideslip signal #: 18
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: rdr
signal value: 0.0
[localSignal append] -> Positive sideslip signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: xcg
signal value: 0.25
[ localSignal append ] -> Positive sideslip signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: rtd
signal value: 57.2957795
[ localSignal append ] -> Positive sideslip signal #:
signal type:
             {http://daveml.org/2010/DAVEML}internalValues
signal varID: xcgr
signal value: 0.35
[localSignal append] -> Positive sideslip signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: cbar
signal value: 11.32
[localSignal append] -> Positive sideslip signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: bspan
              30.0
signal value:
[localSignal append] -> Positive sideslip signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID:
              del
signal value:
              0.0
[localSignal append] -> Positive sideslip signal #: 25
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: dail
signal value: 0.0
[localSignal append] -> Positive sideslip signal #: 26
signal type:
             {http://daveml.org/2010/DAVEML}internalValues
signal varID: drdr
signal value: 0.0
[localSignal append] -> Positive sideslip signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: cxt
              -0.004
signal value:
[ localSignal append ] -> Positive sideslip signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: cy0
signal value: -0.0468
```

```
[localSignal append] -> Positive sideslip signal #: 29
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: czt
signal value:
              -0.416
[localSignal append] -> Positive sideslip signal #: 30
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: cz1
signal value: -0.41530612733186895
[localSignal append] -> Positive sideslip signal #: 31
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: tvt
signal value: 600.0
[ localSignal append ] -> Positive sideslip signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: b2v
signal value: 0.05
[ localSignal append ] -> Positive sideslip signal #:
signal type:
             {http://daveml.org/2010/DAVEML}internalValues
signal varID: cq2v
signal value: 0.0
[localSignal append] -> Positive sideslip signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: absbeta
signal value:
              2.34
[localSignal append] -> Positive sideslip signal #: 35
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: absCl0
signal value:
              -0.005615999999999995
[localSignal append] -> Positive sideslip signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID:
              absCn0
signal value:
              0.00889199999999999
[localSignal append] -> Positive sideslip signal #: 37
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: clt
signal value:
              -0.005615999999999995
[localSignal append] -> Positive sideslip signal #: 38
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID:
              cmt
signal value: -0.005
[localSignal append] -> Positive sideslip signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: cnt
              0.00889199999999999
signal value:
[ localSignal append ] -> Positive sideslip signal #: 40
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: cxq
signal value: 1.34
```

```
[localSignal append] -> Positive sideslip signal #: 41
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: cyr
signal value: 0.958
[localSignal append] -> Positive sideslip signal #: 42
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: cyp
signal value: 0.11
[localSignal append] -> Positive sideslip signal #: 43
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: czq
signal value: -31.4
[ localSignal append ] -> Positive sideslip signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: clr
signal value: 0.113
[ localSignal append ] -> Positive sideslip signal #: 45
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: clp
signal value: -0.42
[localSignal append] -> Positive sideslip signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: cmq
signal value:
              -5.26
[localSignal append] -> Positive sideslip signal #: 47
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: cnr
signal value:
              -0.386
[localSignal append] -> Positive sideslip signal #: 48
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: cnp
signal value:
              -0.012
[localSignal append] -> Positive sideslip signal #: 49
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: dclda
signal value: -0.05129799999999996
[localSignal append] -> Positive sideslip signal #: 50
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: dcldr
signal value: 0.013766
[localSignal append] -> Positive sideslip signal #: 51
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: dcnda
              -0.00970199999999999
signal value:
[ localSignal append ] -> Positive sideslip signal #: 52
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: dcndr
signal value: -0.044064
```

```
[ localSignal append ] -> Positive sideslip signal #: 53
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: cl1
signal value: -0.005615999999999995
[localSignal append] -> Positive sideslip signal #: 54
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: cn1
signal value: 0.00889199999999999
[localSignal append] -> Positive sideslip signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: cx
signal value: -0.004
[localSignal append] -> Positive sideslip signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: cy
              -0.0468
signal value:
[ localSignal append ] -> Positive sideslip signal #:
             {http://daveml.org/2010/DAVEML}internalValues
signal type:
signal varID: cz
signal value: -0.41530612733186895
[localSignal append] -> Positive sideslip signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: cl
signal value:
              -0.005615999999999995
[localSignal append] -> Positive sideslip signal #: 59
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID:
signal value:
              -0.046530612733186885
[localSignal append] -> Positive sideslip signal #:
signal type:
             {http://daveml.org/2010/DAVEML}internalValues
signal varID:
              cn
signal value: 0.01065791999999998
[localSignal append] -> Positive sideslip signal #: 61
signal type: {http://daveml.org/2010/DAVEML}checkOutputs
signal name: aeroXBodyForceCoefficient
signal varID: cx
signal units: None
signal value: -0.004
signal tol: 0.000001
[localSignal append] -> Positive sideslip signal #: 62
signal type: {http://daveml.org/2010/DAVEML}checkOutputs
signal name:
             aeroYBodyForceCoefficient
signal varID: cy
signal units: None
signal value:
              -0.0468
signal tol: 0.000001
[localSignal append] -> Positive sideslip signal #: 63
signal type: {http://daveml.org/2010/DAVEML}checkOutputs
```

```
signal name: aeroZBodyForceCoefficient
signal varID: cz
signal units: None
signal value: -0.41530612733219
signal tol: 0.000001
 [localSignal append] -> Positive sideslip signal #: 64
signal type: {http://daveml.org/2010/DAVEML}checkOutputs
signal name: aeroRollBodyMomentCoefficient
signal varID: cl
signal units: None
signal value: -0.005616
signal tol: 0.000001
 [localSignal append] -> Positive sideslip signal #: 65
signal type: {http://daveml.org/2010/DAVEML}checkOutputs
signal name: aeroPitchBodyMomentCoefficient
signal varID: cm
signal units: None
signal value: -0.04653061273322
signal tol: 0.000001
 [localSignal append] -> Positive sideslip signal #: 66
signal type: {http://daveml.org/2010/DAVEML}checkOutputs
signal name: aeroYawBodyMomentCoefficient
signal varID: cn
signal units: None
signal value: 0.01065792
signal tol: 0.000001
 [localSignal append] -> Positive sideslip signal #: 67
67 signals in Positive sideslip
staticShot: Negative sideslip
signal type: {http://daveml.org/2010/DAVEML}checkInputs
signal name: trueAirspeed
signal varID: vt
signal units: ft_s
signal value: 300.0
 [localSignal append] -> Negative sideslip signal #: 1
signal type: {http://daveml.org/2010/DAVEML}checkInputs
signal name: angleOfAttack
signal varID: alpha
signal units:
               deg
signal value: 5.0
[localSignal append] -> Negative sideslip signal #: 2
signal type: {http://daveml.org/2010/DAVEML}checkInputs
signal name: angleOfSideslip
signal varID: beta
signal units: deg
signal value: -2.34
 [localSignal append] -> Negative sideslip signal #: 3
signal type: {http://daveml.org/2010/DAVEML}checkInputs
```

```
signal name: rollBodyRate
signal varID:
signal units: rad_s
signal value:
              0.0
[localSignal append] -> Negative sideslip signal #: 4
signal type:
             {http://daveml.org/2010/DAVEML}checkInputs
signal name: pitchBodyRate
signal varID: q
signal units: rad_s
signal value: 0.0
[localSignal append] -> Negative sideslip signal #: 5
signal type: {http://daveml.org/2010/DAVEML}checkInputs
signal name:
             yawBodyRate
signal varID: r
signal units: rad_s
signal value:
              0.0
[ localSignal append ] -> Negative sideslip signal #: 6
signal type:
             {http://daveml.org/2010/DAVEML}checkInputs
signal name: elevatorDeflection
signal varID: el
signal units:
              deg
signal value:
              0.0
[localSignal append] -> Negative sideslip signal #: 7
signal type: {http://daveml.org/2010/DAVEML}checkInputs
signal name: aileronDeflection
signal varID:
              ail
signal units:
              deg
signal value:
              0.0
[localSignal append] -> Negative sideslip signal #: 8
signal type: {http://daveml.org/2010/DAVEML}checkInputs
signal name: rudderDeflection
signal varID: rdr
signal units:
              deg
signal value:
              0.0
[localSignal append] -> Negative sideslip signal #: 9
             {http://daveml.org/2010/DAVEML}checkInputs
signal type:
signal name: XBodyPositionOfCG
signal varID: xcg
signal units:
              nd
signal value: 0.25
[localSignal append] -> Negative sideslip signal #:
signal type:
             {http://daveml.org/2010/DAVEML}internalValues
signal varID: vt
signal value:
              300.0
[ localSignal append ] -> Negative sideslip signal #:
signal type:
             {http://daveml.org/2010/DAVEML}internalValues
signal varID:
              alpha
signal value:
              5.0
```

```
[localSignal append] -> Negative sideslip signal #: 12
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: beta
signal value: -2.34
[localSignal append] -> Negative sideslip signal #: 13
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: p
signal value: 0.0
[localSignal append] -> Negative sideslip signal #: 14
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: q
signal value: 0.0
[localSignal append] -> Negative sideslip signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: r
signal value: 0.0
[ localSignal append ] -> Negative sideslip signal #: 16
             {http://daveml.org/2010/DAVEML}internalValues
signal type:
signal varID: el
signal value: 0.0
[ localSignal append ] -> Negative sideslip signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: ail
signal value:
              0.0
[localSignal append] -> Negative sideslip signal #: 18
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: rdr
signal value:
              0.0
[localSignal append] -> Negative sideslip signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: xcg
signal value:
              0.25
[localSignal append] -> Negative sideslip signal #: 20
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: rtd
signal value: 57.2957795
[localSignal append] -> Negative sideslip signal #: 21
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: xcgr
signal value: 0.35
[ localSignal append ] -> Negative sideslip signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: cbar
signal value: 11.32
[ localSignal append ] -> Negative sideslip signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: bspan
signal value:
              30.0
```

```
[localSignal append] -> Negative sideslip signal #: 24
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: del
signal value:
              0.0
[localSignal append] -> Negative sideslip signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: dail
signal value: 0.0
[ localSignal append ] -> Negative sideslip signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: drdr
signal value: 0.0
[ localSignal append ] -> Negative sideslip signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: cxt
signal value:
              -0.004
[ localSignal append ] -> Negative sideslip signal #:
signal type:
             {http://daveml.org/2010/DAVEML}internalValues
signal varID: cy0
signal value: 0.0468
[ localSignal append ] -> Negative sideslip signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: czt
signal value:
              -0.416
[localSignal append] -> Negative sideslip signal #: 30
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: cz1
signal value:
              -0.41530612733186895
[localSignal append] -> Negative sideslip signal #:
signal type:
             {http://daveml.org/2010/DAVEML}internalValues
signal varID: tvt
signal value:
              600.0
[localSignal append] -> Negative sideslip signal #: 32
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: b2v
signal value: 0.05
[localSignal append] -> Negative sideslip signal #: 33
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: cq2v
signal value: 0.0
[localSignal append] -> Negative sideslip signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: absbeta
              2.34
signal value:
[ localSignal append ] -> Negative sideslip signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: absCl0
signal value: -0.005615999999999995
```

```
[localSignal append] -> Negative sideslip signal #: 36
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: absCn0
signal value:
              0.00889199999999999
[localSignal append] -> Negative sideslip signal #: 37
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: clt
signal value: 0.005615999999999995
[ localSignal append ] -> Negative sideslip signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID:
              cmt
signal value: -0.005
[ localSignal append ] -> Negative sideslip signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: cnt
signal value:
              -0.00889199999999999
[ localSignal append ] -> Negative sideslip signal #: 40
             {http://daveml.org/2010/DAVEML}internalValues
signal type:
signal varID: cxq
signal value:
              1.34
[localSignal append] -> Negative sideslip signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: cyr
signal value: 0.958
[localSignal append] -> Negative sideslip signal #: 42
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: cyp
signal value: 0.11
[localSignal append] -> Negative sideslip signal #: 43
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: czq
signal value:
              -31.4
[localSignal append] -> Negative sideslip signal #: 44
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: clr
signal value: 0.113
[localSignal append] -> Negative sideslip signal #: 45
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: clp
signal value: -0.42
[localSignal append] -> Negative sideslip signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: cmq
              -5.26
signal value:
[localSignal append] -> Negative sideslip signal #: 47
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: cnr
signal value: -0.386
```

```
[localSignal append] -> Negative sideslip signal #: 48
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: cnp
signal value:
              -0.012
[localSignal append] -> Negative sideslip signal #: 49
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: dclda
signal value: -0.051766
[ localSignal append ] -> Negative sideslip signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: dcldr
signal value: 0.013532
[localSignal append] -> Negative sideslip signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: dcnda
signal value:
              -0.008298
[ localSignal append ] -> Negative sideslip signal #:
             {http://daveml.org/2010/DAVEML}internalValues
signal type:
signal varID: dcndr
signal value:
              -0.04383
[localSignal append] -> Negative sideslip signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: cl1
signal value: 0.005615999999999995
[localSignal append] -> Negative sideslip signal #: 54
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: cn1
signal value:
              -0.00889199999999999
[localSignal append] -> Negative sideslip signal #:
signal type:
             {http://daveml.org/2010/DAVEML}internalValues
signal varID:
              СX
signal value:
              -0.004
[localSignal append] -> Negative sideslip signal #: 56
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: cy
signal value: 0.0468
[localSignal append] -> Negative sideslip signal #: 57
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: cz
signal value: -0.41530612733186895
[ localSignal append ] -> Negative sideslip signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: cl
signal value: 0.005615999999999995
[ localSignal append ] -> Negative sideslip signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: cm
signal value: -0.046530612733186885
```

```
[localSignal append] -> Negative sideslip signal #: 60
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID:
signal value:
               -0.01065791999999998
 [localSignal append] -> Negative sideslip signal #: 61
signal type: {http://daveml.org/2010/DAVEML}checkOutputs
signal name: aeroXBodyForceCoefficient
signal varID: cx
signal units: None
signal value: -0.004
signal tol: 0.000001
 [localSignal append] -> Negative sideslip signal #: 62
signal type: {http://daveml.org/2010/DAVEML}checkOutputs
signal name: aeroYBodyForceCoefficient
signal varID:
               су
signal units:
               None
signal value:
               0.0468
signal tol: 0.000001
 [localSignal append] -> Negative sideslip signal #: 63
signal type: {http://daveml.org/2010/DAVEML}checkOutputs
signal name: aeroZBodyForceCoefficient
signal varID: cz
signal units: None
signal value: -0.41530612733219
signal tol: 0.000001
 [localSignal append] -> Negative sideslip signal #: 64
signal type: {http://daveml.org/2010/DAVEML}checkOutputs
signal name:
              aeroRollBodyMomentCoefficient
signal varID:
               cl
signal units: None
signal value:
               0.005616
signal tol: 0.000001
 [localSignal append] -> Negative sideslip signal #: 65
signal type: {http://daveml.org/2010/DAVEML}checkOutputs
signal name: aeroPitchBodyMomentCoefficient
signal varID:
               cm
signal units: None
signal value: -0.04653061273322
signal tol: 0.000001
[localSignal append] -> Negative sideslip signal #: 66
signal type: {http://daveml.org/2010/DAVEML}checkOutputs
signal name:
              aeroYawBodyMomentCoefficient
signal varID:
               cz
signal units: None
signal value:
               -0.01065792
signal tol: 0.000001
 [localSignal append] -> Negative sideslip signal #: 67
67 signals in Negative sideslip
```

```
staticShot: Positive roll rate
              {http://daveml.org/2010/DAVEML}checkInputs
signal type:
signal name:
              trueAirspeed
signal varID:
               vt
signal units: ft s
signal value:
               300.0
 [localSignal append] -> Positive roll rate signal #: 1
signal type: {http://daveml.org/2010/DAVEML}checkInputs
signal name: angleOfAttack
signal varID: alpha
signal units:
               deg
               5.0
signal value:
 [ localSignal append ] -> Positive roll rate signal #:
              {http://daveml.org/2010/DAVEML}checkInputs
signal type:
signal name:
              angleOfSideslip
signal varID: beta
signal units:
               deg
signal value:
               0.0
 [localSignal append] -> Positive roll rate signal #:
signal type: {http://daveml.org/2010/DAVEML}checkInputs
signal name: rollBodyRate
signal varID: p
signal units: rad_s
signal value: 3.42
[localSignal append] -> Positive roll rate signal #: 4
signal type: {http://daveml.org/2010/DAVEML}checkInputs
signal name: pitchBodyRate
signal varID: q
signal units:
               rad_s
signal value:
               0.0
 [localSignal append] -> Positive roll rate signal #:
signal type:
              {http://daveml.org/2010/DAVEML}checkInputs
signal name:
              yawBodyRate
signal varID: r
signal units: rad s
signal value: 0.0
 [localSignal append] -> Positive roll rate signal #:
signal type:
              {http://daveml.org/2010/DAVEML}checkInputs
signal name: elevatorDeflection
signal varID:
               el
signal units:
               deg
signal value:
               0.0
 [localSignal append] -> Positive roll rate signal #:
              {http://daveml.org/2010/DAVEML}checkInputs
signal type:
signal name:
              aileronDeflection
signal varID: ail
signal units:
               deg
signal value:
               0.0
```

```
[ localSignal append ] -> Positive roll rate signal #:
signal type: {http://daveml.org/2010/DAVEML}checkInputs
signal name: rudderDeflection
signal varID: rdr
signal units:
              deg
signal value:
              0.0
[localSignal append] -> Positive roll rate signal #:
signal type: {http://daveml.org/2010/DAVEML}checkInputs
signal name: XBodyPositionOfCG
signal varID: xcg
signal units:
              nd
signal value: 0.25
[localSignal append] -> Positive roll rate signal #: 10
             {http://daveml.org/2010/DAVEML}checkOutputs
signal type:
signal name:
             aeroXBodyForceCoefficient
signal varID: cx
signal units: None
signal value: -0.004
signal tol: 0.000001
[localSignal append] -> Positive roll rate signal #: 11
signal type: {http://daveml.org/2010/DAVEML}checkOutputs
signal name: aeroYBodyForceCoefficient
signal varID: cy
signal units: None
signal value: 0.01881
signal tol: 0.000001
[localSignal append] -> Positive roll rate signal #: 12
signal type: {http://daveml.org/2010/DAVEML}checkOutputs
signal name:
             aeroZBodyForceCoefficient
signal varID: cz
signal units: None
signal value: -0.416
signal tol: 0.000001
[localSignal append] -> Positive roll rate signal #:
signal type: {http://daveml.org/2010/DAVEML}checkOutputs
signal name: aeroRollBodyMomentCoefficient
signal varID: cl
signal units: None
signal value: -0.07182
signal tol: 0.000001
[localSignal append] -> Positive roll rate signal #: 14
signal type: {http://daveml.org/2010/DAVEML}checkOutputs
             aeroPitchBodyMomentCoefficient
signal name:
signal varID:
signal units:
              None
signal value:
              -0.0466
signal tol: 0.000001
[localSignal append] -> Positive roll rate signal #: 15
```

```
signal type: {http://daveml.org/2010/DAVEML}checkOutputs
signal name: aeroYawBodyMomentCoefficient
signal varID:
               cn
signal units:
               None
signal value: -0.002761764
signal tol: 0.000001
 [localSignal append] -> Positive roll rate signal #:
16 signals in Positive roll rate
staticShot: Negative roll rate
signal type: {http://daveml.org/2010/DAVEML}checkInputs
signal name: trueAirspeed
signal varID: vt
signal units: ft_s
signal value: 300.0
[localSignal append] -> Negative roll rate signal #: 1
signal type: {http://daveml.org/2010/DAVEML}checkInputs
signal name: angleOfAttack
signal varID: alpha
signal units:
               deg
signal value: 5.0
 [ localSignal append ] -> Negative roll rate signal #:
signal type: {http://daveml.org/2010/DAVEML}checkInputs
signal name: angleOfSideslip
signal varID: beta
signal units:
               deg
signal value:
               0.0
 [localSignal append] -> Negative roll rate signal #:
signal type: {http://daveml.org/2010/DAVEML}checkInputs
signal name: rollBodyRate
signal varID: p
signal units: rad_s
signal value: -3.42
 [localSignal append] -> Negative roll rate signal #: 4
signal type: {http://daveml.org/2010/DAVEML}checkInputs
signal name: pitchBodyRate
signal varID: q
signal units: rad s
signal value: 0.0
 [ localSignal append ] -> Negative roll rate signal #:
signal type: {http://daveml.org/2010/DAVEML}checkInputs
signal name: yawBodyRate
signal varID: r
signal units: rad_s
signal value: 0.0
 [localSignal append] -> Negative roll rate signal #:
signal type: {http://daveml.org/2010/DAVEML}checkInputs
signal name:
              elevatorDeflection
signal varID: el
```

```
signal units:
              deg
signal value:
              0.0
[localSignal append] -> Negative roll rate signal #: 7
signal type:
             {http://daveml.org/2010/DAVEML}checkInputs
signal name: aileronDeflection
signal varID: ail
signal units: deg
signal value:
              0.0
[localSignal append] -> Negative roll rate signal #:
signal type: {http://daveml.org/2010/DAVEML}checkInputs
signal name: rudderDeflection
signal varID: rdr
signal units:
              deg
signal value:
              0.0
[localSignal append] -> Negative roll rate signal #:
signal type: {http://daveml.org/2010/DAVEML}checkInputs
signal name: XBodyPositionOfCG
signal varID: xcg
signal units:
              nd
signal value:
              0.25
[localSignal append] -> Negative roll rate signal #: 10
             {http://daveml.org/2010/DAVEML}internalValues
signal type:
signal varID: vt
              300.0
signal value:
[localSignal append] -> Negative roll rate signal #: 11
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: alpha
signal value:
              5.0
[localSignal append] -> Negative roll rate signal #: 12
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID:
              beta
signal value:
              0.0
[localSignal append] -> Negative roll rate signal #: 13
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: p
signal value: -3.42
[localSignal append] -> Negative roll rate signal #: 14
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID:
              q
signal value: 0.0
[ localSignal append ] -> Negative roll rate signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: r
signal value: 0.0
[ localSignal append ] -> Negative roll rate signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID:
              el
signal value: 0.0
```

```
[localSignal append] -> Negative roll rate signal #: 17
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: ail
signal value:
              0.0
[localSignal append] -> Negative roll rate signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: rdr
signal value: 0.0
[localSignal append] -> Negative roll rate signal #: 19
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: xcg
signal value: 0.25
[localSignal append] -> Negative roll rate signal #:
             {http://daveml.org/2010/DAVEML}internalValues
signal type:
signal varID: rtd
signal value: 57.2957795
[localSignal append] -> Negative roll rate signal #:
             {http://daveml.org/2010/DAVEML}internalValues
signal type:
signal varID: xcgr
signal value:
              0.35
[localSignal append] -> Negative roll rate signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: cbar
signal value: 11.32
[localSignal append] -> Negative roll rate signal #: 23
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: bspan
signal value:
              30.0
[localSignal append] -> Negative roll rate signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
              del
signal varID:
signal value:
              0.0
[localSignal append] -> Negative roll rate signal #: 25
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: dail
signal value: 0.0
[localSignal append] -> Negative roll rate signal #: 26
signal type:
             {http://daveml.org/2010/DAVEML}internalValues
signal varID: drdr
signal value: 0.0
[ localSignal append ] -> Negative roll rate signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: cxt
              -0.004
signal value:
[ localSignal append ] -> Negative roll rate signal #: 28
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: cy0
signal value: 0.0
```

```
[localSignal append] -> Negative roll rate signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: czt
signal value:
              -0.416
[localSignal append] -> Negative roll rate signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: cz1
signal value: -0.416
[ localSignal append ] -> Negative roll rate signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: tvt
signal value: 600.0
[ localSignal append ] -> Negative roll rate signal #:
             {http://daveml.org/2010/DAVEML}internalValues
signal type:
signal varID: b2v
signal value:
              0.05
[ localSignal append ] -> Negative roll rate signal #:
             {http://daveml.org/2010/DAVEML}internalValues
signal type:
signal varID: cq2v
signal value:
              0.0
[localSignal append] -> Negative roll rate signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: absbeta
signal value:
              0.0
[localSignal append] -> Negative roll rate signal #: 35
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: absCl0
signal value:
              0.0
[localSignal append] -> Negative roll rate signal #:
signal type:
             {http://daveml.org/2010/DAVEML}internalValues
signal varID:
              absCn0
signal value:
              0.0
[localSignal append] -> Negative roll rate signal #: 37
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: clt
signal value: 0.0
[localSignal append] -> Negative roll rate signal #:
signal type:
             {http://daveml.org/2010/DAVEML}internalValues
signal varID:
              cmt
signal value: -0.005
[ localSignal append ] -> Negative roll rate signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: cnt
              0.0
signal value:
[ localSignal append ] -> Negative roll rate signal #: 40
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: cxq
signal value: 1.34
```

```
[localSignal append] -> Negative roll rate signal #: 41
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: cyr
signal value: 0.958
[localSignal append] -> Negative roll rate signal #: 42
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: cyp
signal value: 0.11
[localSignal append] -> Negative roll rate signal #: 43
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: czq
signal value: -31.4
[localSignal append] -> Negative roll rate signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: clr
signal value: 0.113
[ localSignal append ] -> Negative roll rate signal #: 45
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: clp
signal value: -0.42
[localSignal append] -> Negative roll rate signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: cmq
signal value:
              -5.26
[localSignal append] -> Negative roll rate signal #: 47
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID:
              cnr
signal value:
              -0.386
[localSignal append] -> Negative roll rate signal #: 48
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID:
              cnp
signal value:
              -0.012
[localSignal append] -> Negative roll rate signal #: 49
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: dclda
signal value:
              -0.052
[localSignal append] -> Negative roll rate signal #: 50
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: dcldr
signal value: 0.014
[localSignal append] -> Negative roll rate signal #: 51
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: dcnda
              -0.009
signal value:
[localSignal append] -> Negative roll rate signal #: 52
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: dcndr
signal value: -0.045
```

```
[localSignal append] -> Negative roll rate signal #: 53
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: cl1
signal value:
              0.0
[localSignal append] -> Negative roll rate signal #: 54
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: cn1
signal value: 0.0
[ localSignal append ] -> Negative roll rate signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: cx
signal value: -0.004
[ localSignal append ] -> Negative roll rate signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: cy
              -0.01881
signal value:
[ localSignal append ] -> Negative roll rate signal #: 57
             {http://daveml.org/2010/DAVEML}internalValues
signal type:
signal varID: cz
signal value: -0.416
[localSignal append] -> Negative roll rate signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: cl
signal value: 0.07182
[localSignal append] -> Negative roll rate signal #: 59
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID:
signal value:
              -0.0465999999999999
[localSignal append] -> Negative roll rate signal #: 60
signal type:
             {http://daveml.org/2010/DAVEML}internalValues
signal varID:
              cn
              0.002761764
signal value:
[localSignal append] -> Negative roll rate signal #: 61
signal type: {http://daveml.org/2010/DAVEML}checkOutputs
signal name: aeroXBodyForceCoefficient
signal varID: cx
signal units: None
signal value:
             -0.004
signal tol: 0.000001
[localSignal append] -> Negative roll rate signal #: 62
signal type: {http://daveml.org/2010/DAVEML}checkOutputs
signal name: aeroYBodyForceCoefficient
signal varID: cy
signal units: None
signal value:
              -0.01881
signal tol: 0.000001
[localSignal append] -> Negative roll rate signal #: 63
signal type: {http://daveml.org/2010/DAVEML}checkOutputs
```

```
signal name: aeroZBodyForceCoefficient
signal varID: cz
signal units: None
signal value: -0.416
signal tol: 0.000001
 [localSignal append] -> Negative roll rate signal #: 64
signal type: {http://daveml.org/2010/DAVEML}checkOutputs
signal name: aeroRollBodyMomentCoefficient
signal varID: cl
signal units: None
signal value: 0.07182
signal tol: 0.000001
 [localSignal append] -> Negative roll rate signal #: 65
signal type: {http://daveml.org/2010/DAVEML}checkOutputs
signal name: aeroPitchBodyMomentCoefficient
signal varID: cm
signal units: None
signal value: -0.0466
signal tol: 0.000001
 [localSignal append] -> Negative roll rate signal #:
signal type: {http://daveml.org/2010/DAVEML}checkOutputs
signal name: aeroYawBodyMomentCoefficient
signal varID: cn
signal units: None
signal value: 0.002761764
signal tol: 0.000001
 [localSignal append] -> Negative roll rate signal #: 67
67 signals in Negative roll rate
staticShot: Positive pitch rate
signal type: {http://daveml.org/2010/DAVEML}checkInputs
signal name: trueAirspeed
signal varID: vt
signal units: ft_s
signal value: 300.0
 [localSignal append] -> Positive pitch rate signal #: 1
signal type: {http://daveml.org/2010/DAVEML}checkInputs
signal name: angleOfAttack
signal varID: alpha
signal units:
               deg
signal value: 5.0
[localSignal append] -> Positive pitch rate signal #:
signal type: {http://daveml.org/2010/DAVEML}checkInputs
signal name: angleOfSideslip
signal varID: beta
signal units:
               deg
signal value: 0.0
 [localSignal append] -> Positive pitch rate signal #: 3
signal type: {http://daveml.org/2010/DAVEML}checkInputs
```

```
signal name: rollBodyRate
signal varID:
signal units: rad_s
signal value:
              0.0
[localSignal append] -> Positive pitch rate signal #: 4
signal type:
             {http://daveml.org/2010/DAVEML}checkInputs
signal name: pitchBodyRate
signal varID:
              q
signal units: rad_s
signal value: 0.98
[localSignal append] -> Positive pitch rate signal #:
signal type: {http://daveml.org/2010/DAVEML}checkInputs
signal name:
             yawBodyRate
signal varID: r
signal units: rad_s
              0.0
signal value:
[ localSignal append ] -> Positive pitch rate signal #:
             {http://daveml.org/2010/DAVEML}checkInputs
signal type:
signal name: elevatorDeflection
signal varID:
              el
signal units:
              deg
signal value:
              0.0
[localSignal append] -> Positive pitch rate signal #: 7
signal type: {http://daveml.org/2010/DAVEML}checkInputs
signal name: aileronDeflection
signal varID:
              ail
signal units:
              deg
signal value:
              0.0
[localSignal append] -> Positive pitch rate signal #: 8
signal type: {http://daveml.org/2010/DAVEML}checkInputs
signal name: rudderDeflection
signal varID: rdr
signal units:
              deg
signal value:
              0.0
[localSignal append] -> Positive pitch rate signal #: 9
signal type:
             {http://daveml.org/2010/DAVEML}checkInputs
signal name: XBodyPositionOfCG
signal varID: xcg
signal units:
              nd
signal value: 0.25
[localSignal append] -> Positive pitch rate signal #: 10
signal type:
             {http://daveml.org/2010/DAVEML}internalValues
signal varID: vt
signal value:
              300.0
[ localSignal append ] -> Positive pitch rate signal #: 11
signal type:
             {http://daveml.org/2010/DAVEML}internalValues
signal varID:
              alpha
signal value:
              5.0
```

```
[localSignal append] -> Positive pitch rate signal #: 12
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: beta
signal value:
              0.0
[localSignal append] -> Positive pitch rate signal #: 13
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: p
signal value: 0.0
[localSignal append] -> Positive pitch rate signal #: 14
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: q
signal value: 0.98
[ localSignal append ] -> Positive pitch rate signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: r
signal value: 0.0
[ localSignal append ] -> Positive pitch rate signal #: 16
signal type:
             {http://daveml.org/2010/DAVEML}internalValues
signal varID: el
signal value: 0.0
[localSignal append] -> Positive pitch rate signal #: 17
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: ail
signal value: 0.0
[localSignal append] -> Positive pitch rate signal #: 18
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: rdr
signal value:
              0.0
[localSignal append] -> Positive pitch rate signal #: 19
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: xcg
signal value:
              0.25
[localSignal append] -> Positive pitch rate signal #: 20
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: rtd
signal value: 57.2957795
[localSignal append] -> Positive pitch rate signal #: 21
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: xcgr
signal value: 0.35
[localSignal append] -> Positive pitch rate signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: cbar
signal value: 11.32
[ localSignal append ] -> Positive pitch rate signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: bspan
signal value:
              30.0
```

```
[localSignal append] -> Positive pitch rate signal #: 24
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: del
signal value:
              0.0
[localSignal append] -> Positive pitch rate signal #: 25
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: dail
signal value: 0.0
[ localSignal append ] -> Positive pitch rate signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: drdr
signal value: 0.0
[ localSignal append ] -> Positive pitch rate signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: cxt
signal value: -0.004
[ localSignal append ] -> Positive pitch rate signal #:
signal type:
             {http://daveml.org/2010/DAVEML}internalValues
signal varID: cy0
signal value: 0.0
[localSignal append] -> Positive pitch rate signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: czt
signal value:
              -0.416
[localSignal append] -> Positive pitch rate signal #: 30
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: cz1
signal value:
              -0.416
[localSignal append] -> Positive pitch rate signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: tvt
signal value:
              600.0
[localSignal append] -> Positive pitch rate signal #: 32
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: b2v
signal value: 0.05
[localSignal append] -> Positive pitch rate signal #: 33
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: cq2v
signal value: 0.0184893333333333333
[localSignal append] -> Positive pitch rate signal #: 34
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: absbeta
              0.0
signal value:
[ localSignal append ] -> Positive pitch rate signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID:
              absCl0
signal value:
              0.0
```

```
[localSignal append] -> Positive pitch rate signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: absCn0
signal value:
              0.0
[localSignal append] -> Positive pitch rate signal #: 37
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: clt
signal value: 0.0
[localSignal append] -> Positive pitch rate signal #: 38
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID:
              cmt
signal value: -0.005
[ localSignal append ] -> Positive pitch rate signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: cnt
signal value: 0.0
[ localSignal append ] -> Positive pitch rate signal #:
             {http://daveml.org/2010/DAVEML}internalValues
signal type:
signal varID: cxq
signal value: 1.34
[localSignal append] -> Positive pitch rate signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: cyr
signal value: 0.958
[localSignal append] -> Positive pitch rate signal #: 42
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: cyp
signal value: 0.11
[localSignal append] -> Positive pitch rate signal #: 43
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: czq
signal value:
              -31.4
[localSignal append] -> Positive pitch rate signal #: 44
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: clr
signal value: 0.113
[localSignal append] -> Positive pitch rate signal #: 45
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: clp
signal value: -0.42
[localSignal append] -> Positive pitch rate signal #: 46
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: cmq
              -5.26
signal value:
[ localSignal append ] -> Positive pitch rate signal #: 47
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: cnr
signal value: -0.386
```

```
[localSignal append] -> Positive pitch rate signal #: 48
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: cnp
signal value:
              -0.012
[localSignal append] -> Positive pitch rate signal #: 49
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: dclda
signal value: -0.052
[localSignal append] -> Positive pitch rate signal #: 50
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: dcldr
signal value: 0.014
[ localSignal append ] -> Positive pitch rate signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: dcnda
signal value:
              -0.009
[ localSignal append ] -> Positive pitch rate signal #: 52
             {http://daveml.org/2010/DAVEML}internalValues
signal type:
signal varID: dcndr
signal value:
              -0.045
[localSignal append] -> Positive pitch rate signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: cl1
signal value: 0.0
[localSignal append] -> Positive pitch rate signal #: 54
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: cn1
signal value:
              0.0
[localSignal append] -> Positive pitch rate signal #: 55
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID:
              СX
signal value: 0.02077570666666668
[localSignal append] -> Positive pitch rate signal #: 56
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: cy
signal value: 0.0
[localSignal append] -> Positive pitch rate signal #: 57
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: cz
signal value: -0.9965650666666666
[localSignal append] -> Positive pitch rate signal #: 58
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: cl
signal value: 0.0
[ localSignal append ] -> Positive pitch rate signal #: 59
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: cm
signal value: -0.2019103999999996
```

```
[localSignal append] -> Positive pitch rate signal #:
              {http://daveml.org/2010/DAVEML}internalValues
signal type:
signal varID:
               cn
signal value:
               0.0
 [localSignal append] -> Positive pitch rate signal #:
signal type: {http://daveml.org/2010/DAVEML}checkOutputs
signal name: aeroXBodyForceCoefficient
signal varID: cx
signal units: None
signal value: 0.02077570666667
signal tol: 0.000001
 [localSignal append] -> Positive pitch rate signal #:
signal type:
              {http://daveml.org/2010/DAVEML}checkOutputs
signal name:
              aeroYBodyForceCoefficient
signal varID:
               су
signal units:
               None
signal value:
               0.0
signal tol: 0.000001
 [localSignal append] -> Positive pitch rate signal #:
signal type: {http://daveml.org/2010/DAVEML}checkOutputs
signal name: aeroZBodyForceCoefficient
signal varID: cz
signal units: None
signal value: -0.99656506666667
signal tol: 0.000001
 [localSignal append] -> Positive pitch rate signal #:
signal type: {http://daveml.org/2010/DAVEML}checkOutputs
signal name:
              aeroRollBodyMomentCoefficient
signal varID:
               cl
signal units:
               None
signal value:
               0.0
signal tol: 0.000001
 [localSignal append] -> Positive pitch rate signal #:
signal type: {http://daveml.org/2010/DAVEML}checkOutputs
signal name: aeroPitchBodyMomentCoefficient
signal varID:
               cm
signal units: None
signal value:
               -0.2019104
signal tol: 0.000001
[localSignal append] -> Positive pitch rate signal #:
signal type: {http://daveml.org/2010/DAVEML}checkOutputs
signal name:
              aeroYawBodyMomentCoefficient
signal varID:
               cn
signal units:
               None
signal value:
signal tol: 0.000001
 [localSignal append] -> Positive pitch rate signal #:
67 signals in Positive pitch rate
```

```
staticShot: Negative pitch rate
signal type:
              {http://daveml.org/2010/DAVEML}checkInputs
              trueAirspeed
signal name:
signal varID:
               vt
signal units: ft_s
signal value:
               300.0
 [localSignal append] -> Negative pitch rate signal #: 1
signal type: {http://daveml.org/2010/DAVEML}checkInputs
signal name: angleOfAttack
signal varID: alpha
signal units:
               deg
signal value:
               5.0
 [ localSignal append ] -> Negative pitch rate signal #:
signal type:
              {http://daveml.org/2010/DAVEML}checkInputs
signal name:
              angleOfSideslip
signal varID: beta
signal units:
               deg
signal value:
               0.0
 [ localSignal append ] -> Negative pitch rate signal #:
signal type: {http://daveml.org/2010/DAVEML}checkInputs
signal name: rollBodyRate
signal varID: p
signal units: rad_s
signal value:
               0.0
[localSignal append] -> Negative pitch rate signal #: 4
signal type: {http://daveml.org/2010/DAVEML}checkInputs
signal name: pitchBodyRate
signal varID: q
signal units: rad_s
signal value:
               -0.98
 [localSignal append] -> Negative pitch rate signal #:
signal type:
              {http://daveml.org/2010/DAVEML}checkInputs
signal name:
              yawBodyRate
signal varID: r
signal units: rad s
signal value: 0.0
[localSignal append] -> Negative pitch rate signal #:
signal type:
              {http://daveml.org/2010/DAVEML}checkInputs
signal name: elevatorDeflection
signal varID:
               el
signal units:
               deg
signal value:
               0.0
 [ localSignal append ] -> Negative pitch rate signal #:
              {http://daveml.org/2010/DAVEML}checkInputs
signal type:
              aileronDeflection
signal name:
signal varID:
               ail
signal units:
               deg
signal value:
               0.0
```

```
[localSignal append] -> Negative pitch rate signal #: 8
signal type: {http://daveml.org/2010/DAVEML}checkInputs
signal name: rudderDeflection
signal varID: rdr
signal units:
              deg
signal value:
              0.0
[localSignal append] -> Negative pitch rate signal #: 9
signal type: {http://daveml.org/2010/DAVEML}checkInputs
signal name: XBodyPositionOfCG
signal varID: xcg
signal units:
              nd
signal value:
              0.25
[ localSignal append ] -> Negative pitch rate signal #:
             {http://daveml.org/2010/DAVEML}internalValues
signal type:
signal varID: vt
signal value:
              300.0
[ localSignal append ] -> Negative pitch rate signal #: 11
             {http://daveml.org/2010/DAVEML}internalValues
signal type:
signal varID:
              alpha
signal value: 5.0
[localSignal append] -> Negative pitch rate signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: beta
signal value:
              0.0
[localSignal append] -> Negative pitch rate signal #: 13
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: p
signal value: 0.0
[localSignal append] -> Negative pitch rate signal #: 14
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID:
              q
signal value:
              -0.98
[localSignal append] -> Negative pitch rate signal #: 15
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: r
signal value: 0.0
[localSignal append] -> Negative pitch rate signal #: 16
signal type:
             {http://daveml.org/2010/DAVEML}internalValues
signal varID:
              el
signal value: 0.0
[ localSignal append ] -> Negative pitch rate signal #: 17
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: ail
              0.0
signal value:
[ localSignal append ] -> Negative pitch rate signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: rdr
signal value:
              0.0
```

```
[localSignal append] -> Negative pitch rate signal #: 19
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: xcg
signal value:
              0.25
[localSignal append] -> Negative pitch rate signal #: 20
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: rtd
signal value: 57.2957795
[localSignal append] -> Negative pitch rate signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: xcgr
signal value: 0.35
[ localSignal append ] -> Negative pitch rate signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: cbar
signal value: 11.32
[ localSignal append ] -> Negative pitch rate signal #:
             {http://daveml.org/2010/DAVEML}internalValues
signal type:
signal varID: bspan
signal value:
              30.0
[localSignal append] -> Negative pitch rate signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: del
signal value:
              0.0
[localSignal append] -> Negative pitch rate signal #: 25
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: dail
signal value:
              0.0
[localSignal append] -> Negative pitch rate signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID:
              drdr
signal value:
              0.0
[localSignal append] -> Negative pitch rate signal #: 27
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: cxt
signal value: -0.004
[localSignal append] -> Negative pitch rate signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: cy0
signal value: 0.0
[localSignal append] -> Negative pitch rate signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: czt
signal value: -0.416
[ localSignal append ] -> Negative pitch rate signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: cz1
signal value: -0.416
```

```
[localSignal append] -> Negative pitch rate signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: tvt
signal value:
              600.0
[localSignal append] -> Negative pitch rate signal #: 32
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: b2v
signal value: 0.05
[localSignal append] -> Negative pitch rate signal #: 33
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: cq2v
signal value: -0.0184893333333333333
[ localSignal append ] -> Negative pitch rate signal #:
             {http://daveml.org/2010/DAVEML}internalValues
signal type:
signal varID:
              absbeta
signal value:
              0.0
[ localSignal append ] -> Negative pitch rate signal #:
             {http://daveml.org/2010/DAVEML}internalValues
signal type:
signal varID:
              absCl0
signal value:
              0.0
[localSignal append] -> Negative pitch rate signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: absCn0
signal value:
              0.0
[localSignal append] -> Negative pitch rate signal #: 37
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: clt
signal value:
              0.0
[localSignal append] -> Negative pitch rate signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID:
              cmt
signal value:
              -0.005
[localSignal append] -> Negative pitch rate signal #: 39
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: cnt
signal value: 0.0
[localSignal append] -> Negative pitch rate signal #: 40
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: cxq
signal value: 1.34
[ localSignal append ] -> Negative pitch rate signal #: 41
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: cyr
signal value: 0.958
[ localSignal append ] -> Negative pitch rate signal #: 42
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: cyp
signal value: 0.11
```

```
[localSignal append] -> Negative pitch rate signal #: 43
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: czq
signal value:
              -31.4
[localSignal append] -> Negative pitch rate signal #: 44
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: clr
signal value: 0.113
[localSignal append] -> Negative pitch rate signal #: 45
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: clp
signal value: -0.42
[ localSignal append ] -> Negative pitch rate signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: cmq
signal value:
              -5.26
[ localSignal append ] -> Negative pitch rate signal #:
             {http://daveml.org/2010/DAVEML}internalValues
signal type:
signal varID: cnr
signal value:
              -0.386
[localSignal append] -> Negative pitch rate signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: cnp
signal value:
              -0.012
[localSignal append] -> Negative pitch rate signal #: 49
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: dclda
signal value:
              -0.052
[localSignal append] -> Negative pitch rate signal #: 50
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID:
             dcldr
signal value:
              0.014
[localSignal append] -> Negative pitch rate signal #: 51
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: dcnda
signal value:
              -0.009
[localSignal append] -> Negative pitch rate signal #: 52
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: dcndr
signal value: -0.045
[localSignal append] -> Negative pitch rate signal #: 53
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: cl1
signal value: 0.0
[ localSignal append ] -> Negative pitch rate signal #: 54
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: cn1
signal value: 0.0
```

```
[localSignal append] -> Negative pitch rate signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: cx
signal value:
              -0.02877570666666668
[localSignal append] -> Negative pitch rate signal #: 56
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: cy
signal value: 0.0
[localSignal append] -> Negative pitch rate signal #: 57
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: cz
signal value: 0.1645650666666665
[ localSignal append ] -> Negative pitch rate signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: cl
              0.0
signal value:
[ localSignal append ] -> Negative pitch rate signal #:
             {http://daveml.org/2010/DAVEML}internalValues
signal type:
signal varID:
              cm
signal value:
              0.1087103999999998
[localSignal append] -> Negative pitch rate signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: cn
signal value:
              0.0
[localSignal append] -> Negative pitch rate signal #:
signal type: {http://daveml.org/2010/DAVEML}checkOutputs
             aeroXBodyForceCoefficient
signal name:
signal varID: cx
signal units:
              None
              -0.02877570666667
signal value:
signal tol: 0.000001
[ localSignal append ] -> Negative pitch rate signal #:
signal type: {http://daveml.org/2010/DAVEML}checkOutputs
signal name: aeroYBodyForceCoefficient
signal varID: cy
signal units: None
signal value: 0.0
signal tol: 0.000001
[ localSignal append ] -> Negative pitch rate signal #:
signal type: {http://daveml.org/2010/DAVEML}checkOutputs
signal name: aeroZBodyForceCoefficient
signal varID: cz
signal units:
              None
              0.16456506666667
signal value:
signal tol: 0.000001
[localSignal append] -> Negative pitch rate signal #:
signal type: {http://daveml.org/2010/DAVEML}checkOutputs
signal name: aeroRollBodyMomentCoefficient
```

```
signal varID:
               cl
signal units:
               None
signal value:
               0.0
signal tol: 0.000001
 [localSignal append] -> Negative pitch rate signal #:
signal type: {http://daveml.org/2010/DAVEML}checkOutputs
signal name: aeroPitchBodyMomentCoefficient
signal varID:
               cm
signal units: None
signal value: 0.1087104
signal tol: 0.000001
 [localSignal append] -> Negative pitch rate signal #:
              {http://daveml.org/2010/DAVEML}checkOutputs
signal type:
signal name:
              aeroYawBodyMomentCoefficient
signal varID:
               cn
signal units:
               None
signal value:
               0.0
signal tol: 0.000001
 [ localSignal append ] -> Negative pitch rate signal #:
67 signals in Negative pitch rate
staticShot: Positive yaw rate
              {http://daveml.org/2010/DAVEML}checkInputs
signal type:
signal name: trueAirspeed
signal varID: vt
signal units: ft_s
signal value: 300.0
 [localSignal append] -> Positive yaw rate signal #: 1
signal type:
              {http://daveml.org/2010/DAVEML}checkInputs
signal name:
              angleOfAttack
signal varID: alpha
signal units:
               deg
signal value:
               5.0
 [localSignal append] -> Positive yaw rate signal #: 2
signal type: {http://daveml.org/2010/DAVEML}checkInputs
signal name:
              angleOfSideslip
signal varID: beta
signal units:
               deg
signal value:
 [localSignal append] -> Positive yaw rate signal #: 3
signal type: {http://daveml.org/2010/DAVEML}checkInputs
signal name: rollBodyRate
signal varID: p
signal units: rad_s
signal value:
               0.0
 [localSignal append] -> Positive yaw rate signal #: 4
signal type: {http://daveml.org/2010/DAVEML}checkInputs
signal name: pitchBodyRate
signal varID: q
```

```
signal units:
              rad_s
signal value:
              0.0
[localSignal append] -> Positive yaw rate signal #: 5
signal type:
             {http://daveml.org/2010/DAVEML}checkInputs
signal name: yawBodyRate
signal varID: r
signal units: rad s
signal value: 2.92
[localSignal append] -> Positive yaw rate signal #: 6
signal type: {http://daveml.org/2010/DAVEML}checkInputs
signal name: elevatorDeflection
signal varID:
              el
signal units:
              deg
signal value:
              0.0
[localSignal append] -> Positive yaw rate signal #: 7
signal type: {http://daveml.org/2010/DAVEML}checkInputs
signal name: aileronDeflection
signal varID: ail
signal units:
              deg
signal value:
              0.0
[localSignal append] -> Positive yaw rate signal #: 8
             {http://daveml.org/2010/DAVEML}checkInputs
signal type:
signal name: rudderDeflection
signal varID: rdr
signal units:
              deg
              0.0
signal value:
[localSignal append] -> Positive yaw rate signal #: 9
signal type:
             {http://daveml.org/2010/DAVEML}checkInputs
signal name: XBodyPositionOfCG
signal varID: xcg
signal units:
              nd
signal value:
              0.25
[localSignal append] -> Positive yaw rate signal #: 10
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: vt
signal value:
              300.0
[localSignal append] -> Positive yaw rate signal #: 11
signal type:
             {http://daveml.org/2010/DAVEML}internalValues
signal varID:
              alpha
signal value: 5.0
[localSignal append] -> Positive yaw rate signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
              beta
signal varID:
              0.0
signal value:
[localSignal append] -> Positive yaw rate signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: p
signal value: 0.0
```

```
[localSignal append] -> Positive yaw rate signal #: 14
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: q
signal value: 0.0
[localSignal append] -> Positive yaw rate signal #: 15
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: r
signal value: 2.92
[localSignal append] -> Positive yaw rate signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID:
              el
signal value: 0.0
[localSignal append] -> Positive yaw rate signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: ail
signal value: 0.0
[localSignal append] -> Positive yaw rate signal #:
             {http://daveml.org/2010/DAVEML}internalValues
signal type:
signal varID: rdr
signal value:
              0.0
[localSignal append] -> Positive yaw rate signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: xcg
signal value: 0.25
[localSignal append] -> Positive yaw rate signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: rtd
signal value:
              57.2957795
[localSignal append] -> Positive yaw rate signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: xcgr
signal value:
              0.35
[localSignal append] -> Positive yaw rate signal #: 22
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: cbar
              11.32
signal value:
[localSignal append] -> Positive yaw rate signal #: 23
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: bspan
signal value: 30.0
[localSignal append] -> Positive yaw rate signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: del
signal value: 0.0
[ localSignal append ] -> Positive yaw rate signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: dail
signal value:
              0.0
```

```
[ localSignal append ] -> Positive yaw rate signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID:
             drdr
signal value:
              0.0
[localSignal append] -> Positive yaw rate signal #: 27
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: cxt
signal value: -0.004
[localSignal append] -> Positive yaw rate signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: cy0
signal value: 0.0
[localSignal append] -> Positive yaw rate signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID:
              -0.416
signal value:
[localSignal append] -> Positive yaw rate signal #:
             {http://daveml.org/2010/DAVEML}internalValues
signal type:
signal varID: cz1
signal value:
              -0.416
[localSignal append] -> Positive yaw rate signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: tvt
              600.0
signal value:
[localSignal append] -> Positive yaw rate signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: b2v
signal value:
              0.05
[localSignal append] -> Positive yaw rate signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: cq2v
signal value: 0.0
[localSignal append] -> Positive yaw rate signal #: 34
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: absbeta
signal value:
              0.0
[localSignal append] -> Positive yaw rate signal #: 35
signal type:
             {http://daveml.org/2010/DAVEML}internalValues
signal varID:
              absCl0
signal value:
             0.0
[localSignal append] -> Positive yaw rate signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
              absCn0
signal varID:
              0.0
signal value:
[localSignal append] -> Positive yaw rate signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: clt
signal value:
              0.0
```

```
[localSignal append] -> Positive yaw rate signal #: 38
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: cmt
signal value:
              -0.005
[localSignal append] -> Positive yaw rate signal #: 39
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: cnt
signal value: 0.0
[localSignal append] -> Positive yaw rate signal #: 40
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: cxq
signal value: 1.34
[localSignal append] -> Positive yaw rate signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: cyr
signal value: 0.958
[ localSignal append ] -> Positive yaw rate signal #: 42
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: cyp
signal value: 0.11
[localSignal append] -> Positive yaw rate signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: czq
signal value:
              -31.4
[localSignal append] -> Positive yaw rate signal #: 44
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: clr
signal value: 0.113
[localSignal append] -> Positive yaw rate signal #: 45
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: clp
signal value:
              -0.42
[localSignal append] -> Positive yaw rate signal #: 46
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: cmq
signal value:
             -5.26
[localSignal append] -> Positive yaw rate signal #: 47
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: cnr
signal value: -0.386
[localSignal append] -> Positive yaw rate signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: cnp
signal value:
              -0.012
[ localSignal append ] -> Positive yaw rate signal #: 49
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: dclda
signal value: -0.052
```

```
[ localSignal append ] -> Positive yaw rate signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: dcldr
signal value:
             0.014
[localSignal append] -> Positive yaw rate signal #: 51
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: dcnda
signal value: -0.009
[localSignal append] -> Positive yaw rate signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: dcndr
signal value: -0.045
[localSignal append] -> Positive yaw rate signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: cl1
signal value: 0.0
[localSignal append] -> Positive yaw rate signal #:
             {http://daveml.org/2010/DAVEML}internalValues
signal type:
signal varID: cn1
signal value:
             0.0
[localSignal append] -> Positive yaw rate signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: cx
signal value:
             -0.004
[localSignal append] -> Positive yaw rate signal #: 56
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: cy
signal value: 0.139868
[localSignal append] -> Positive yaw rate signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: cz
signal value:
             -0.416
[localSignal append] -> Positive yaw rate signal #: 58
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: cl
signal value: 0.016498
[localSignal append] -> Positive yaw rate signal #:
signal type:
             {http://daveml.org/2010/DAVEML}internalValues
signal varID:
              cm
[localSignal append] -> Positive yaw rate signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: cn
              -0.06163368586666666
signal value:
[ localSignal append ] -> Positive yaw rate signal #: 61
signal type:
             {http://daveml.org/2010/DAVEML}checkOutputs
signal name:
             aeroXBodyForceCoefficient
signal varID: cx
```

```
signal units: None
signal value: -0.004
signal tol: 0.000001
 [localSignal append] -> Positive yaw rate signal #: 62
signal type: {http://daveml.org/2010/DAVEML}checkOutputs
signal name: aeroYBodyForceCoefficient
signal varID: cy
signal units: None
signal value: 0.139868
signal tol: 0.000001
 [localSignal append] -> Positive yaw rate signal #: 63
signal type: {http://daveml.org/2010/DAVEML}checkOutputs
              aeroZBodyForceCoefficient
signal name:
signal varID: cz
signal units: None
signal value: -0.416
signal tol: 0.000001
 [localSignal append] -> Positive yaw rate signal #: 64
signal type: {http://daveml.org/2010/DAVEML}checkOutputs
signal name: aeroRollBodyMomentCoefficient
signal varID: cl
signal units: None
signal value: 0.016498
signal tol: 0.000001
 [localSignal append] -> Positive yaw rate signal #: 65
signal type: {http://daveml.org/2010/DAVEML}checkOutputs
signal name: aeroPitchBodyMomentCoefficient
signal varID: cm
signal units: None
signal value: -0.0466
signal tol: 0.000001
 [localSignal append] -> Positive yaw rate signal #: 66
signal type: {http://daveml.org/2010/DAVEML}checkOutputs
signal name: aeroYawBodyMomentCoefficient
signal varID: cn
signal units: None
signal value: -0.06163368586667
signal tol: 0.000001
 [localSignal append] -> Positive yaw rate signal #: 67
67 signals in Positive yaw rate
staticShot: Negative yaw rate
signal type: {http://daveml.org/2010/DAVEML}checkInputs
signal name: trueAirspeed
signal varID: vt
signal units: ft_s
signal value: 300.0
[localSignal append] -> Negative yaw rate signal #: 1
signal type: {http://daveml.org/2010/DAVEML}checkInputs
```

```
signal name:
             angleOfAttack
signal varID:
              alpha
signal units:
              deg
              5.0
signal value:
[localSignal append] -> Negative yaw rate signal #: 2
             {http://daveml.org/2010/DAVEML}checkInputs
signal type:
signal name: angleOfSideslip
signal varID: beta
signal units:
              deg
signal value:
              0.0
[localSignal append] -> Negative yaw rate signal #: 3
signal type: {http://daveml.org/2010/DAVEML}checkInputs
             rollBodyRate
signal name:
signal varID: p
signal units: rad_s
              0.0
signal value:
[localSignal append] -> Negative yaw rate signal #: 4
             {http://daveml.org/2010/DAVEML}checkInputs
signal type:
signal name: pitchBodyRate
signal varID: q
signal units: rad_s
signal value: 0.0
[localSignal append] -> Negative yaw rate signal #: 5
signal type: {http://daveml.org/2010/DAVEML}checkInputs
signal name: yawBodyRate
signal varID: r
signal units: rad_s
signal value:
              -2.92
[localSignal append] -> Negative yaw rate signal #: 6
signal type: {http://daveml.org/2010/DAVEML}checkInputs
signal name: elevatorDeflection
signal varID: el
signal units:
              deg
signal value:
              0.0
[localSignal append] -> Negative yaw rate signal #: 7
signal type:
             {http://daveml.org/2010/DAVEML}checkInputs
signal name: aileronDeflection
signal varID: ail
signal units:
              deg
signal value: 0.0
[localSignal append] -> Negative yaw rate signal #: 8
             {http://daveml.org/2010/DAVEML}checkInputs
signal type:
             rudderDeflection
signal name:
signal varID: rdr
signal units:
              deg
signal value:
              0.0
[localSignal append] -> Negative yaw rate signal #: 9
signal type: {http://daveml.org/2010/DAVEML}checkInputs
```

```
signal name: XBodyPositionOfCG
signal varID:
              xcg
signal units:
              nd
signal value:
              0.25
[localSignal append] -> Negative yaw rate signal #: 10
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: vt
signal value: 300.0
[ localSignal append ] -> Negative yaw rate signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: alpha
signal value: 5.0
[localSignal append] -> Negative yaw rate signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: beta
signal value:
              0.0
[ localSignal append ] -> Negative yaw rate signal #: 13
             {http://daveml.org/2010/DAVEML}internalValues
signal type:
signal varID: p
signal value: 0.0
[localSignal append] -> Negative yaw rate signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: q
signal value: 0.0
[localSignal append] -> Negative yaw rate signal #: 15
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: r
signal value: -2.92
[localSignal append] -> Negative yaw rate signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID:
              el
signal value:
              0.0
[localSignal append] -> Negative yaw rate signal #: 17
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: ail
signal value: 0.0
[localSignal append] -> Negative yaw rate signal #: 18
signal type:
             {http://daveml.org/2010/DAVEML}internalValues
signal varID: rdr
signal value: 0.0
[localSignal append] -> Negative yaw rate signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: xcg
signal value: 0.25
[localSignal append] -> Negative yaw rate signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: rtd
signal value: 57.2957795
```

```
[localSignal append] -> Negative yaw rate signal #: 21
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: xcgr
signal value:
              0.35
[localSignal append] -> Negative yaw rate signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: cbar
signal value: 11.32
[localSignal append] -> Negative yaw rate signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: bspan
signal value: 30.0
[localSignal append] -> Negative yaw rate signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: del
signal value:
              0.0
[localSignal append] -> Negative yaw rate signal #:
             {http://daveml.org/2010/DAVEML}internalValues
signal type:
signal varID: dail
signal value:
              0.0
[ localSignal append ] -> Negative yaw rate signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: drdr
signal value:
              0.0
[localSignal append] -> Negative yaw rate signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: cxt
signal value:
              -0.004
[localSignal append] -> Negative yaw rate signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID:
              cy0
signal value:
              0.0
[localSignal append] -> Negative yaw rate signal #: 29
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: czt
signal value: -0.416
[localSignal append] -> Negative yaw rate signal #: 30
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: cz1
signal value: -0.416
[localSignal append] -> Negative yaw rate signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: tvt
              600.0
signal value:
[ localSignal append ] -> Negative yaw rate signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: b2v
signal value: 0.05
```

```
[localSignal append] -> Negative yaw rate signal #: 33
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: cq2v
signal value:
              0.0
[localSignal append] -> Negative yaw rate signal #: 34
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: absbeta
signal value: 0.0
[localSignal append] -> Negative yaw rate signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: absCl0
signal value: 0.0
[localSignal append] -> Negative yaw rate signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: absCn0
signal value:
              0.0
[localSignal append] -> Negative yaw rate signal #:
             {http://daveml.org/2010/DAVEML}internalValues
signal type:
signal varID: clt
signal value: 0.0
[localSignal append] -> Negative yaw rate signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: cmt
signal value:
              -0.005
[localSignal append] -> Negative yaw rate signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: cnt
signal value:
              0.0
[localSignal append] -> Negative yaw rate signal #: 40
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: cxq
signal value:
              1.34
[localSignal append] -> Negative yaw rate signal #: 41
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: cyr
signal value: 0.958
[localSignal append] -> Negative yaw rate signal #: 42
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: cyp
signal value: 0.11
[localSignal append] -> Negative yaw rate signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: czq
signal value: -31.4
[localSignal append] -> Negative yaw rate signal #: 44
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: clr
signal value: 0.113
```

```
[localSignal append] -> Negative yaw rate signal #: 45
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: clp
signal value:
              -0.42
[localSignal append] -> Negative yaw rate signal #: 46
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: cmq
signal value: -5.26
[localSignal append] -> Negative yaw rate signal #: 47
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: cnr
signal value: -0.386
[localSignal append] -> Negative yaw rate signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: cnp
signal value:
              -0.012
[ localSignal append ] -> Negative yaw rate signal #:
signal type:
             {http://daveml.org/2010/DAVEML}internalValues
signal varID: dclda
signal value:
              -0.052
[localSignal append] -> Negative yaw rate signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: dcldr
signal value: 0.014
[localSignal append] -> Negative yaw rate signal #: 51
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: dcnda
signal value:
              -0.009
[localSignal append] -> Negative yaw rate signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: dcndr
signal value:
              -0.045
[localSignal append] -> Negative yaw rate signal #: 53
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: cl1
signal value: 0.0
[localSignal append] -> Negative yaw rate signal #: 54
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: cn1
signal value: 0.0
[localSignal append] -> Negative yaw rate signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: cx
signal value: -0.004
[ localSignal append ] -> Negative yaw rate signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: cy
signal value: -0.139868
```

```
[localSignal append] -> Negative yaw rate signal #: 57
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: cz
signal value:
             -0.416
[localSignal append] -> Negative yaw rate signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: cl
signal value: -0.016498
[localSignal append] -> Negative yaw rate signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID:
              cm
[localSignal append] -> Negative yaw rate signal #:
             {http://daveml.org/2010/DAVEML}internalValues
signal type:
signal varID:
              0.06163368586666666
signal value:
[ localSignal append ] -> Negative yaw rate signal #: 61
             {http://daveml.org/2010/DAVEML}checkOutputs
signal type:
signal name:
             aeroXBodyForceCoefficient
signal varID: cx
signal units: None
signal value: -0.004
signal tol: 0.000001
[localSignal append] -> Negative yaw rate signal #: 62
signal type: {http://daveml.org/2010/DAVEML}checkOutputs
signal name: aeroYBodyForceCoefficient
signal varID:
             су
signal units: None
              -0.139868
signal value:
signal tol: 0.000001
[localSignal append] -> Negative yaw rate signal #:
             {http://daveml.org/2010/DAVEML}checkOutputs
signal type:
signal name: aeroZBodyForceCoefficient
signal varID: cz
signal units: None
signal value:
              -0.416
signal tol: 0.000001
[localSignal append] -> Negative yaw rate signal #: 64
signal type: {http://daveml.org/2010/DAVEML}checkOutputs
signal name: aeroRollBodyMomentCoefficient
signal varID: cl
signal units: None
              -0.016498
signal value:
signal tol: 0.000001
[localSignal append] -> Negative yaw rate signal #:
signal type: {http://daveml.org/2010/DAVEML}checkOutputs
signal name:
             aeroPitchBodyMomentCoefficient
signal varID: cm
```

```
signal units: None
signal value:
               -0.0466
signal tol: 0.000001
 [localSignal append] -> Negative yaw rate signal #: 66
signal type: {http://daveml.org/2010/DAVEML}checkOutputs
signal name: aeroYawBodyMomentCoefficient
signal varID: cn
signal units: None
signal value: 0.06163368586667
signal tol: 0.000001
 [localSignal append] -> Negative yaw rate signal #: 67
67 signals in Negative yaw rate
staticShot: Positive elevator
signal type:
              {http://daveml.org/2010/DAVEML}checkInputs
signal name: trueAirspeed
signal varID: vt
signal units: ft_s
               300.0
signal value:
 [localSignal append] -> Positive elevator signal #: 1
signal type: {http://daveml.org/2010/DAVEML}checkInputs
signal name: angleOfAttack
signal varID: alpha
signal units: deg
signal value: 5.0
 [localSignal append] -> Positive elevator signal #: 2
signal type: {http://daveml.org/2010/DAVEML}checkInputs
signal name:
              angleOfSideslip
signal varID: beta
signal units:
               deg
signal value:
               0.0
 [ localSignal append ] -> Positive elevator signal #: 3
signal type:
              {http://daveml.org/2010/DAVEML}checkInputs
signal name: rollBodyRate
signal varID: p
signal units: rad s
signal value: 0.0
 [localSignal append] -> Positive elevator signal #: 4
signal type: {http://daveml.org/2010/DAVEML}checkInputs
signal name: pitchBodyRate
signal varID: q
signal units: rad_s
signal value:
               0.0
 [localSignal append] -> Positive elevator signal #: 5
signal type:
              {http://daveml.org/2010/DAVEML}checkInputs
              yawBodyRate
signal name:
signal varID: r
signal units: rad_s
signal value: 0.0
```

```
[ localSignal append ] -> Positive elevator signal #: 6
signal type: {http://daveml.org/2010/DAVEML}checkInputs
             elevatorDeflection
signal name:
signal varID:
              el
signal units:
              deg
signal value:
              12.92
[localSignal append] -> Positive elevator signal #: 7
signal type: {http://daveml.org/2010/DAVEML}checkInputs
signal name: aileronDeflection
signal varID: ail
signal units:
              deg
signal value:
              0.0
[localSignal append] -> Positive elevator signal #: 8
signal type:
             {http://daveml.org/2010/DAVEML}checkInputs
signal name: rudderDeflection
signal varID: rdr
signal units:
              deg
signal value:
              0.0
[localSignal append] -> Positive elevator signal #: 9
signal type: {http://daveml.org/2010/DAVEML}checkInputs
signal name: XBodyPositionOfCG
signal varID: xcg
signal units: nd
              0.25
signal value:
[localSignal append] -> Positive elevator signal #: 10
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: vt
signal value:
              300.0
[localSignal append] -> Positive elevator signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID:
              alpha
signal value:
              5.0
[localSignal append] -> Positive elevator signal #: 12
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: beta
signal value: 0.0
[localSignal append] -> Positive elevator signal #: 13
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: p
signal value: 0.0
[localSignal append] -> Positive elevator signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: q
signal value: 0.0
[ localSignal append ] -> Positive elevator signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: r
signal value: 0.0
```

```
[ localSignal append ] -> Positive elevator signal #: 16
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID:
              el
signal value:
              12.92
[localSignal append] -> Positive elevator signal #: 17
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: ail
signal value: 0.0
[localSignal append] -> Positive elevator signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: rdr
signal value: 0.0
[ localSignal append ] -> Positive elevator signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: xcg
signal value: 0.25
[localSignal append] -> Positive elevator signal #:
             {http://daveml.org/2010/DAVEML}internalValues
signal type:
signal varID: rtd
signal value: 57.2957795
[localSignal append] -> Positive elevator signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: xcgr
signal value:
              0.35
[localSignal append] -> Positive elevator signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: cbar
signal value:
              11.32
[localSignal append] -> Positive elevator signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: bspan
signal value:
              30.0
[localSignal append] -> Positive elevator signal #: 24
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: del
signal value: 0.5168
[localSignal append] -> Positive elevator signal #: 25
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: dail
signal value: 0.0
[localSignal append] -> Positive elevator signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: drdr
              0.0
signal value:
[localSignal append] -> Positive elevator signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: cxt
signal value: -0.028603333333333335
```

```
[ localSignal append ] -> Positive elevator signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID:
              cy0
signal value:
              0.0
[localSignal append] -> Positive elevator signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: czt
signal value: -0.416
[localSignal append] -> Positive elevator signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: cz1
signal value: -0.514192
[ localSignal append ] -> Positive elevator signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: tvt
              600.0
signal value:
[localSignal append] -> Positive elevator signal #:
             {http://daveml.org/2010/DAVEML}internalValues
signal type:
signal varID: b2v
signal value: 0.05
[ localSignal append ] -> Positive elevator signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: cq2v
signal value: 0.0
[localSignal append] -> Positive elevator signal #: 34
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: absbeta
signal value:
              0.0
[localSignal append] -> Positive elevator signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
              absCl0
signal varID:
signal value:
              0.0
[localSignal append] -> Positive elevator signal #: 36
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: absCn0
signal value:
              0.0
[localSignal append] -> Positive elevator signal #: 37
signal type:
             {http://daveml.org/2010/DAVEML}internalValues
signal varID: clt
signal value: 0.0
[localSignal append] -> Positive elevator signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID:
              cmt
signal value:
              -0.13206
[ localSignal append ] -> Positive elevator signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID:
              cnt
signal value:
              0.0
```

```
[ localSignal append ] -> Positive elevator signal #: 40
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: cxq
signal value:
              1.34
[localSignal append] -> Positive elevator signal #: 41
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: cyr
signal value: 0.958
[ localSignal append ] -> Positive elevator signal #: 42
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: cyp
signal value: 0.11
[ localSignal append ] -> Positive elevator signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: czq
signal value: -31.4
[localSignal append] -> Positive elevator signal #: 44
             {http://daveml.org/2010/DAVEML}internalValues
signal type:
signal varID: clr
signal value: 0.113
[localSignal append] -> Positive elevator signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: clp
signal value:
              -0.42
[localSignal append] -> Positive elevator signal #: 46
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: cmq
signal value:
              -5.26
[localSignal append] -> Positive elevator signal #: 47
signal type:
             {http://daveml.org/2010/DAVEML}internalValues
signal varID:
              cnr
signal value:
              -0.386
[localSignal append] -> Positive elevator signal #: 48
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: cnp
signal value: -0.012
[localSignal append] -> Positive elevator signal #: 49
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: dclda
signal value: -0.052
[localSignal append] -> Positive elevator signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: dcldr
signal value: 0.014
[localSignal append] -> Positive elevator signal #: 51
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: dcnda
signal value: -0.009
```

```
[ localSignal append ] -> Positive elevator signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: dcndr
signal value:
              -0.045
[ localSignal append ] -> Positive elevator signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: cl1
signal value: 0.0
[ localSignal append ] -> Positive elevator signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID:
              cn1
              0.0
signal value:
[localSignal append] -> Positive elevator signal #:
             {http://daveml.org/2010/DAVEML}internalValues
signal type:
signal varID:
              -0.028603333333333335
signal value:
[ localSignal append ] -> Positive elevator signal #:
             {http://daveml.org/2010/DAVEML}internalValues
signal type:
signal varID:
              су
signal value:
              0.0
[localSignal append] -> Positive elevator signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: cz
              -0.514192
signal value:
[localSignal append] -> Positive elevator signal #: 58
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: cl
signal value:
              0.0
[localSignal append] -> Positive elevator signal #:
signal type:
             {http://daveml.org/2010/DAVEML}internalValues
signal varID:
              cm
signal value:
              -0.1834792
[localSignal append] -> Positive elevator signal #: 60
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: cn
signal value: 0.0
[localSignal append] -> Positive elevator signal #: 61
signal type:
             {http://daveml.org/2010/DAVEML}checkOutputs
signal name: aeroXBodyForceCoefficient
signal varID: cx
signal units: None
              -0.02860333333333
signal value:
signal tol: 0.000001
[localSignal append] -> Positive elevator signal #: 62
signal type: {http://daveml.org/2010/DAVEML}checkOutputs
signal name:
             aeroYBodyForceCoefficient
signal varID:
              су
signal units:
              None
```

```
signal value: 0.0
signal tol: 0.000001
 [localSignal append] -> Positive elevator signal #: 63
              {http://daveml.org/2010/DAVEML}checkOutputs
signal type:
signal name: aeroZBodyForceCoefficient
signal varID: cz
signal units: None
signal value: -0.514192
signal tol: 0.000001
 [localSignal append] -> Positive elevator signal #: 64
signal type: {http://daveml.org/2010/DAVEML}checkOutputs
signal name: aeroRollBodyMomentCoefficient
signal varID:
               cl
signal units:
               None
signal value:
               0.0
signal tol: 0.000001
 [localSignal append] -> Positive elevator signal #:
signal type: {http://daveml.org/2010/DAVEML}checkOutputs
signal name: aeroPitchBodyMomentCoefficient
signal varID: cm
signal units: None
signal value: -0.1834792
signal tol: 0.000001
 [ localSignal append ] -> Positive elevator signal #:
signal type: {http://daveml.org/2010/DAVEML}checkOutputs
signal name:
              aeroYawBodyMomentCoefficient
signal varID:
               cn
signal units:
               None
signal value:
               0.0
signal tol: 0.000001
 [ localSignal append ] -> Positive elevator signal #: 67
67 signals in Positive elevator
staticShot: Negative elevator
signal type: {http://daveml.org/2010/DAVEML}checkInputs
signal name: trueAirspeed
signal varID: vt
signal units: ft_s
signal value: 300.0
 [ localSignal append ] -> Negative elevator signal #: 1
signal type: {http://daveml.org/2010/DAVEML}checkInputs
signal name: angleOfAttack
signal varID: alpha
signal units:
               deg
signal value:
               5.0
 [localSignal append] -> Negative elevator signal #: 2
signal type: {http://daveml.org/2010/DAVEML}checkInputs
signal name:
              angleOfSideslip
signal varID: beta
```

```
signal units:
              deg
signal value:
              0.0
[localSignal append] -> Negative elevator signal #: 3
signal type:
             {http://daveml.org/2010/DAVEML}checkInputs
signal name:
             rollBodyRate
signal varID: p
signal units: rad s
signal value:
              0.0
[localSignal append] -> Negative elevator signal #: 4
signal type:
             {http://daveml.org/2010/DAVEML}checkInputs
signal name: pitchBodyRate
signal varID:
              q
signal units:
              rad_s
signal value:
              0.0
[localSignal append] -> Negative elevator signal #: 5
             {http://daveml.org/2010/DAVEML}checkInputs
signal type:
signal name:
             yawBodyRate
signal varID: r
signal units: rad_s
signal value:
              0.0
[localSignal append] -> Negative elevator signal #: 6
signal type:
             {http://daveml.org/2010/DAVEML}checkInputs
signal name: elevatorDeflection
signal varID: el
signal units:
              deg
signal value:
              -12.92
[localSignal append] -> Negative elevator signal #: 7
signal type:
             {http://daveml.org/2010/DAVEML}checkInputs
signal name:
             aileronDeflection
              ail
signal varID:
signal units:
              deg
signal value:
              0.0
[localSignal append] -> Negative elevator signal #: 8
             {http://daveml.org/2010/DAVEML}checkInputs
signal type:
             rudderDeflection
signal name:
signal varID:
              rdr
signal units:
              deg
signal value:
              0.0
[ localSignal append ] -> Negative elevator signal #: 9
signal type: {http://daveml.org/2010/DAVEML}checkInputs
signal name: XBodyPositionOfCG
signal varID: xcg
signal units:
              nd
signal value:
              0.25
[ localSignal append ] -> Negative elevator signal #:
signal type:
             {http://daveml.org/2010/DAVEML}internalValues
signal varID:
              vt
signal value:
              300.0
```

```
[ localSignal append ] -> Negative elevator signal #: 11
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: alpha
signal value:
              5.0
[localSignal append] -> Negative elevator signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: beta
signal value: 0.0
[localSignal append] -> Negative elevator signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: p
signal value: 0.0
[localSignal append] -> Negative elevator signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: q
signal value: 0.0
[ localSignal append ] -> Negative elevator signal #: 15
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: r
signal value: 0.0
[localSignal append] -> Negative elevator signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: el
signal value:
              -12.92
[localSignal append] -> Negative elevator signal #: 17
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: ail
signal value:
              0.0
[localSignal append] -> Negative elevator signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: rdr
signal value:
              0.0
[localSignal append] -> Negative elevator signal #: 19
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: xcg
signal value: 0.25
[localSignal append] -> Negative elevator signal #: 20
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: rtd
signal value: 57.2957795
[ localSignal append ] -> Negative elevator signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: xcgr
signal value: 0.35
[ localSignal append ] -> Negative elevator signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: cbar
signal value: 11.32
```

```
[localSignal append] -> Negative elevator signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: bspan
signal value:
              30.0
[localSignal append] -> Negative elevator signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: del
signal value: -0.5168
[localSignal append] -> Negative elevator signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: dail
              0.0
signal value:
[ localSignal append ] -> Negative elevator signal #:
             {http://daveml.org/2010/DAVEML}internalValues
signal type:
signal varID:
              drdr
              0.0
signal value:
[ localSignal append ] -> Negative elevator signal #:
             {http://daveml.org/2010/DAVEML}internalValues
signal type:
signal varID: cxt
signal value:
              -0.024220000000000005
[ localSignal append ] -> Negative elevator signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: cy0
signal value:
              0.0
[localSignal append] -> Negative elevator signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID:
              czt
signal value:
              -0.416
[localSignal append] -> Negative elevator signal #:
signal type:
             {http://daveml.org/2010/DAVEML}internalValues
signal varID:
              cz1
signal value:
              -0.317808
[localSignal append] -> Negative elevator signal #: 31
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: tvt
signal value:
              600.0
[localSignal append] -> Negative elevator signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: b2v
signal value: 0.05
[ localSignal append ] -> Negative elevator signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: cq2v
signal value: 0.0
[ localSignal append ] -> Negative elevator signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: absbeta
signal value:
              0.0
```

```
[localSignal append] -> Negative elevator signal #: 35
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: absCl0
signal value:
              0.0
[localSignal append] -> Negative elevator signal #: 36
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: absCn0
signal value: 0.0
[ localSignal append ] -> Negative elevator signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: clt
signal value: 0.0
[ localSignal append ] -> Negative elevator signal #:
             {http://daveml.org/2010/DAVEML}internalValues
signal type:
signal varID:
              0.116593333333333334
signal value:
[localSignal append] -> Negative elevator signal #:
             {http://daveml.org/2010/DAVEML}internalValues
signal type:
signal varID: cnt
signal value:
              0.0
[localSignal append] -> Negative elevator signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: cxq
              1.34
signal value:
[localSignal append] -> Negative elevator signal #: 41
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID:
              cyr
signal value:
              0.958
[localSignal append] -> Negative elevator signal #: 42
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID:
              сур
signal value: 0.11
[localSignal append] -> Negative elevator signal #: 43
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: czq
signal value: -31.4
[localSignal append] -> Negative elevator signal #: 44
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: clr
signal value: 0.113
[ localSignal append ] -> Negative elevator signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: clp
signal value: -0.42
[ localSignal append ] -> Negative elevator signal #: 46
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: cmq
signal value: -5.26
```

```
[localSignal append] -> Negative elevator signal #: 47
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID:
              cnr
signal value:
              -0.386
[localSignal append] -> Negative elevator signal #: 48
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: cnp
signal value: -0.012
[ localSignal append ] -> Negative elevator signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: dclda
signal value: -0.052
[ localSignal append ] -> Negative elevator signal #:
             {http://daveml.org/2010/DAVEML}internalValues
signal type:
signal varID: dcldr
              0.014
signal value:
[localSignal append] -> Negative elevator signal #:
             {http://daveml.org/2010/DAVEML}internalValues
signal type:
signal varID: dcnda
signal value:
              -0.009
[localSignal append] -> Negative elevator signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: dcndr
              -0.045
signal value:
[localSignal append] -> Negative elevator signal #: 53
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: cl1
signal value:
              0.0
[localSignal append] -> Negative elevator signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID:
              cn1
signal value:
              0.0
[localSignal append] -> Negative elevator signal #: 55
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: cx
signal value: -0.02422000000000005
[localSignal append] -> Negative elevator signal #: 56
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: cy
signal value: 0.0
[localSignal append] -> Negative elevator signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: cz
signal value: -0.317808
[ localSignal append ] -> Negative elevator signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: cl
signal value: 0.0
```

```
[localSignal append] -> Negative elevator signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID:
              cm
signal value:
              0.08481253333333336
[localSignal append] -> Negative elevator signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: cn
signal value: 0.0
[ localSignal append ] -> Negative elevator signal #:
signal type: {http://daveml.org/2010/DAVEML}checkOutputs
signal name:
             aeroXBodyForceCoefficient
signal varID:
              cx
signal units:
              None
signal value:
              -0.02422
signal tol: 0.000001
[localSignal append] -> Negative elevator signal #:
signal type: {http://daveml.org/2010/DAVEML}checkOutputs
signal name: aeroYBodyForceCoefficient
signal varID:
              су
signal units: None
signal value: 0.0
signal tol: 0.000001
[localSignal append] -> Negative elevator signal #:
signal type: {http://daveml.org/2010/DAVEML}checkOutputs
signal name: aeroZBodyForceCoefficient
signal varID:
              cz
signal units: None
signal value:
              -0.317808
signal tol: 0.000001
[localSignal append] -> Negative elevator signal #: 64
signal type: {http://daveml.org/2010/DAVEML}checkOutputs
signal name:
             aeroRollBodyMomentCoefficient
              cl
signal varID:
signal units:
              None
signal value:
              0.0
signal tol: 0.000001
[localSignal append] -> Negative elevator signal #: 65
signal type: {http://daveml.org/2010/DAVEML}checkOutputs
signal name: aeroPitchBodyMomentCoefficient
signal varID: cm
signal units: None
              0.08481253333333
signal value:
signal tol: 0.000001
[localSignal append] -> Negative elevator signal #:
signal type:
             {http://daveml.org/2010/DAVEML}checkOutputs
signal name:
             aeroYawBodyMomentCoefficient
signal varID:
              cn
signal units:
              None
```

```
signal value: 0.0
signal tol: 0.000001
 [localSignal append] -> Negative elevator signal #: 67
67 signals in Negative elevator
staticShot: Positive aileron
signal type: {http://daveml.org/2010/DAVEML}checkInputs
signal name: trueAirspeed
signal varID: vt
signal units: ft_s
signal value: 300.0
 [localSignal append] -> Positive aileron signal #: 1
signal type: {http://daveml.org/2010/DAVEML}checkInputs
signal name: angleOfAttack
signal varID: alpha
signal units:
               deg
               5.0
signal value:
 [localSignal append] -> Positive aileron signal #: 2
              {http://daveml.org/2010/DAVEML}checkInputs
signal type:
signal name:
              angleOfSideslip
signal varID: beta
signal units: deg
signal value: 0.0
[localSignal append] -> Positive aileron signal #: 3
signal type: {http://daveml.org/2010/DAVEML}checkInputs
signal name: rollBodyRate
signal varID: p
signal units: rad_s
signal value: 0.0
 [localSignal append] -> Positive aileron signal #: 4
signal type: {http://daveml.org/2010/DAVEML}checkInputs
signal name: pitchBodyRate
signal varID: q
signal units: rad_s
signal value: 0.0
 [localSignal append] -> Positive aileron signal #: 5
signal type: {http://daveml.org/2010/DAVEML}checkInputs
signal name: yawBodyRate
signal varID: r
signal units: rad_s
signal value: 0.0
[localSignal append] -> Positive aileron signal #: 6
              {http://daveml.org/2010/DAVEML}checkInputs
signal type:
              elevatorDeflection
signal name:
signal varID: el
signal units:
               deg
signal value:
               0.0
[localSignal append] -> Positive aileron signal #: 7
signal type: {http://daveml.org/2010/DAVEML}checkInputs
```

```
signal name: aileronDeflection
signal varID:
              ail
signal units:
              deg
signal value:
              24.1
[localSignal append] -> Positive aileron signal #: 8
             {http://daveml.org/2010/DAVEML}checkInputs
signal type:
signal name: rudderDeflection
signal varID: rdr
signal units:
              deg
signal value:
              0.0
[localSignal append] -> Positive aileron signal #: 9
signal type: {http://daveml.org/2010/DAVEML}checkInputs
signal name: XBodyPositionOfCG
signal varID: xcg
signal units:
              nd
              0.25
signal value:
[localSignal append] -> Positive aileron signal #: 10
             {http://daveml.org/2010/DAVEML}internalValues
signal type:
signal varID: vt
signal value:
              300.0
[ localSignal append ] -> Positive aileron signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: alpha
signal value:
              5.0
[localSignal append] -> Positive aileron signal #: 12
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: beta
signal value:
              0.0
[localSignal append] -> Positive aileron signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID:
              р
signal value: 0.0
[localSignal append] -> Positive aileron signal #: 14
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: q
signal value: 0.0
[localSignal append] -> Positive aileron signal #:
signal type:
             {http://daveml.org/2010/DAVEML}internalValues
signal varID: r
signal value: 0.0
[ localSignal append ] -> Positive aileron signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
              el
signal varID:
signal value: 0.0
[ localSignal append ] -> Positive aileron signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: ail
signal value:
              24.1
```

```
[ localSignal append ] -> Positive aileron signal #: 18
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: rdr
signal value:
              0.0
[localSignal append] -> Positive aileron signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: xcg
signal value: 0.25
[localSignal append] -> Positive aileron signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: rtd
signal value: 57.2957795
[localSignal append] -> Positive aileron signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: xcgr
signal value:
              0.35
[localSignal append] -> Positive aileron signal #:
             {http://daveml.org/2010/DAVEML}internalValues
signal type:
signal varID: cbar
signal value: 11.32
[ localSignal append ] -> Positive aileron signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: bspan
signal value:
              30.0
[localSignal append] -> Positive aileron signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: del
signal value:
              0.0
[localSignal append] -> Positive aileron signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: dail
signal value:
              1.205
[localSignal append] -> Positive aileron signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: drdr
signal value: 0.0
[localSignal append] -> Positive aileron signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: cxt
signal value: -0.004
[ localSignal append ] -> Positive aileron signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: cy0
signal value: 0.025305000000000005
[ localSignal append ] -> Positive aileron signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: czt
signal value: -0.416
```

```
[ localSignal append ] -> Positive aileron signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: cz1
signal value:
              -0.416
[localSignal append] -> Positive aileron signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: tvt
signal value: 600.0
[localSignal append] -> Positive aileron signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: b2v
signal value: 0.05
[localSignal append] -> Positive aileron signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: cq2v
signal value: 0.0
[localSignal append] -> Positive aileron signal #:
             {http://daveml.org/2010/DAVEML}internalValues
signal type:
signal varID: absbeta
signal value:
              0.0
[localSignal append] -> Positive aileron signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: absCl0
signal value:
              0.0
[localSignal append] -> Positive aileron signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: absCn0
signal value:
              0.0
[localSignal append] -> Positive aileron signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
              clt
signal varID:
signal value:
              0.0
[localSignal append] -> Positive aileron signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: cmt
signal value:
              -0.005
[localSignal append] -> Positive aileron signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: cnt
signal value: 0.0
[localSignal append] -> Positive aileron signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: cxq
signal value: 1.34
[localSignal append] -> Positive aileron signal #: 41
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: cyr
signal value: 0.958
```

```
[localSignal append] -> Positive aileron signal #: 42
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: cyp
signal value: 0.11
[localSignal append] -> Positive aileron signal #: 43
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: czq
signal value: -31.4
[localSignal append] -> Positive aileron signal #: 44
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: clr
signal value: 0.113
[localSignal append] -> Positive aileron signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: clp
signal value: -0.42
[localSignal append] -> Positive aileron signal #: 46
             {http://daveml.org/2010/DAVEML}internalValues
signal type:
signal varID: cmq
signal value:
              -5.26
[localSignal append] -> Positive aileron signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: cnr
signal value:
              -0.386
[localSignal append] -> Positive aileron signal #: 48
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: cnp
signal value:
              -0.012
[localSignal append] -> Positive aileron signal #: 49
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: dclda
signal value:
              -0.052
[localSignal append] -> Positive aileron signal #: 50
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: dcldr
signal value: 0.014
[localSignal append] -> Positive aileron signal #: 51
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: dcnda
signal value: -0.009
[localSignal append] -> Positive aileron signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: dcndr
              -0.045
signal value:
[localSignal append] -> Positive aileron signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: cl1
signal value: -0.06266000000000001
```

```
[ localSignal append ] \rightarrow Positive aileron signal #: 54
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: cn1
signal value:
              -0.010845
[localSignal append] -> Positive aileron signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: cx
signal value: -0.004
[localSignal append] -> Positive aileron signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: cy
signal value: 0.025305000000000005
[localSignal append] -> Positive aileron signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: cz
signal value: -0.416
[localSignal append] -> Positive aileron signal #:
             {http://daveml.org/2010/DAVEML}internalValues
signal type:
signal varID: cl
signal value:
              -0.06266000000000001
[localSignal append] -> Positive aileron signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: cm
              -0.0465999999999999
signal value:
[localSignal append] -> Positive aileron signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID:
signal value:
              -0.011799842
[localSignal append] -> Positive aileron signal #:
signal type: {http://daveml.org/2010/DAVEML}checkOutputs
signal name: aeroXBodyForceCoefficient
signal varID: cx
signal units: None
              -0.004
signal value:
signal tol: 0.000001
[localSignal append] -> Positive aileron signal #:
signal type: {http://daveml.org/2010/DAVEML}checkOutputs
signal name: aeroYBodyForceCoefficient
signal varID: cy
signal units: None
signal value: 0.025305
signal tol: 0.000001
[localSignal append] -> Positive aileron signal #:
signal type: {http://daveml.org/2010/DAVEML}checkOutputs
signal name: aeroZBodyForceCoefficient
signal varID: cz
signal units: None
signal value: -0.416
```

```
signal tol: 0.000001
 [localSignal append] -> Positive aileron signal #:
              {http://daveml.org/2010/DAVEML}checkOutputs
signal type:
              aeroRollBodyMomentCoefficient
signal name:
signal varID: cl
signal units: None
signal value: -0.06266
signal tol: 0.000001
[localSignal append] -> Positive aileron signal #:
signal type:
              {http://daveml.org/2010/DAVEML}checkOutputs
              aeroPitchBodyMomentCoefficient
signal name:
signal varID:
signal units:
               None
signal value:
               -0.0466
signal tol: 0.000001
[localSignal append] -> Positive aileron signal #:
signal type: {http://daveml.org/2010/DAVEML}checkOutputs
              \verb"aeroYawBodyMomentCoefficient"
signal name:
signal varID:
               cn
signal units: None
signal value: -0.011799842
signal tol: 0.000001
[localSignal append] -> Positive aileron signal #: 67
67 signals in Positive aileron
staticShot: Negative aileron
              {http://daveml.org/2010/DAVEML}checkInputs
signal type:
signal name: trueAirspeed
signal varID: vt
signal units:
               ft_s
               300.0
signal value:
[localSignal append] -> Negative aileron signal #: 1
signal type: {http://daveml.org/2010/DAVEML}checkInputs
signal name: angleOfAttack
signal varID: alpha
signal units:
               deg
signal value: 5.0
[localSignal append] -> Negative aileron signal #: 2
              {http://daveml.org/2010/DAVEML}checkInputs
signal type:
signal name:
              angleOfSideslip
signal varID: beta
signal units:
               deg
signal value:
               0.0
 [localSignal append] -> Negative aileron signal #: 3
              {http://daveml.org/2010/DAVEML}checkInputs
signal type:
signal name: rollBodyRate
signal varID: p
signal units: rad_s
signal value:
               0.0
```

```
[localSignal append] -> Negative aileron signal #: 4
signal type: {http://daveml.org/2010/DAVEML}checkInputs
signal name: pitchBodyRate
signal varID:
signal units: rad s
signal value: 0.0
[localSignal append] -> Negative aileron signal #: 5
signal type: {http://daveml.org/2010/DAVEML}checkInputs
signal name: yawBodyRate
signal varID: r
signal units: rad_s
signal value: 0.0
[localSignal append] -> Negative aileron signal #:
             {http://daveml.org/2010/DAVEML}checkInputs
signal type:
signal name:
             elevatorDeflection
signal varID: el
signal units:
              deg
signal value:
              0.0
[localSignal append] -> Negative aileron signal #: 7
signal type: {http://daveml.org/2010/DAVEML}checkInputs
signal name: aileronDeflection
signal varID: ail
signal units: deg
              -24.1
signal value:
[localSignal append] -> Negative aileron signal #: 8
signal type: {http://daveml.org/2010/DAVEML}checkInputs
             rudderDeflection
signal name:
signal varID: rdr
signal units:
              deg
signal value:
              0.0
[localSignal append] -> Negative aileron signal #: 9
signal type:
             {http://daveml.org/2010/DAVEML}checkInputs
signal name: XBodyPositionOfCG
signal varID: xcg
signal units: nd
signal value: 0.25
[localSignal append] -> Negative aileron signal #:
signal type:
             {http://daveml.org/2010/DAVEML}internalValues
signal varID: vt
signal value: 300.0
[ localSignal append ] -> Negative aileron signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID:
              alpha
              5.0
signal value:
[ localSignal append ] -> Negative aileron signal #:
signal type:
             {http://daveml.org/2010/DAVEML}internalValues
signal varID: beta
signal value:
              0.0
```

```
[localSignal append] -> Negative aileron signal #: 13
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: p
signal value: 0.0
[localSignal append] -> Negative aileron signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: q
signal value: 0.0
[localSignal append] -> Negative aileron signal #: 15
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: r
signal value: 0.0
[ localSignal append ] -> Negative aileron signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID:
              el
signal value:
              0.0
[ localSignal append ] -> Negative aileron signal #: 17
             {http://daveml.org/2010/DAVEML}internalValues
signal type:
signal varID: ail
signal value: -24.1
[ localSignal append ] -> Negative aileron signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: rdr
signal value:
              0.0
[localSignal append] -> Negative aileron signal #: 19
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: xcg
signal value:
              0.25
[localSignal append] -> Negative aileron signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: rtd
signal value: 57.2957795
[localSignal append] -> Negative aileron signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: xcgr
signal value: 0.35
[localSignal append] -> Negative aileron signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: cbar
signal value: 11.32
[ localSignal append ] -> Negative aileron signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: bspan
              30.0
signal value:
[ localSignal append ] -> Negative aileron signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID:
              del
signal value:
              0.0
```

```
[localSignal append] -> Negative aileron signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: dail
signal value:
              -1.205
[localSignal append] -> Negative aileron signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: drdr
signal value: 0.0
[localSignal append] -> Negative aileron signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: cxt
signal value: -0.004
[ localSignal append ] -> Negative aileron signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: cy0
signal value:
              -0.025305000000000005
[localSignal append] -> Negative aileron signal #:
             {http://daveml.org/2010/DAVEML}internalValues
signal type:
signal varID: czt
signal value:
              -0.416
[localSignal append] -> Negative aileron signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: cz1
signal value:
              -0.416
[localSignal append] -> Negative aileron signal #: 31
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: tvt
signal value:
              600.0
[localSignal append] -> Negative aileron signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: b2v
signal value: 0.05
[localSignal append] -> Negative aileron signal #: 33
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: cq2v
signal value: 0.0
[localSignal append] -> Negative aileron signal #:
signal type:
             {http://daveml.org/2010/DAVEML}internalValues
signal varID:
              absbeta
signal value: 0.0
[ localSignal append ] -> Negative aileron signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID:
              absCl0
              0.0
signal value:
[ localSignal append ] -> Negative aileron signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID:
              absCn0
signal value:
              0.0
```

```
[localSignal append] -> Negative aileron signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: clt
signal value:
              0.0
[localSignal append] -> Negative aileron signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: cmt
signal value: -0.005
[localSignal append] -> Negative aileron signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: cnt
signal value: 0.0
[ localSignal append ] -> Negative aileron signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: cxq
signal value: 1.34
[localSignal append] -> Negative aileron signal #: 41
             {http://daveml.org/2010/DAVEML}internalValues
signal type:
signal varID: cyr
signal value: 0.958
[ localSignal append ] -> Negative aileron signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: cyp
signal value: 0.11
[localSignal append] -> Negative aileron signal #: 43
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: czq
signal value:
              -31.4
[localSignal append] -> Negative aileron signal #: 44
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID:
              clr
signal value: 0.113
[localSignal append] -> Negative aileron signal #: 45
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: clp
signal value: -0.42
[localSignal append] -> Negative aileron signal #: 46
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: cmq
signal value: -5.26
[localSignal append] -> Negative aileron signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID:
              cnr
              -0.386
signal value:
[localSignal append] -> Negative aileron signal #: 48
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: cnp
signal value: -0.012
```

```
[localSignal append] -> Negative aileron signal #: 49
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: dclda
signal value:
              -0.052
[localSignal append] -> Negative aileron signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: dcldr
signal value: 0.014
[localSignal append] -> Negative aileron signal #: 51
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: dcnda
signal value: -0.009
[ localSignal append ] -> Negative aileron signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: dcndr
              -0.045
signal value:
[localSignal append] -> Negative aileron signal #:
             {http://daveml.org/2010/DAVEML}internalValues
signal type:
signal varID: cl1
signal value: 0.06266000000000001
[localSignal append] -> Negative aileron signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: cn1
signal value: 0.010845
[localSignal append] -> Negative aileron signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: cx
signal value:
              -0.004
[localSignal append] -> Negative aileron signal #:
signal type:
             {http://daveml.org/2010/DAVEML}internalValues
signal varID:
              су
              -0.025305000000000005
signal value:
[localSignal append] -> Negative aileron signal #: 57
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: cz
signal value: -0.416
[localSignal append] -> Negative aileron signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: cl
signal value: 0.0626600000000001
[ localSignal append ] -> Negative aileron signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID:
              cm
              -0.0465999999999999
signal value:
[ localSignal append ] -> Negative aileron signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: cn
signal value: 0.011799842
```

```
[localSignal append] -> Negative aileron signal #: 61
signal type: {http://daveml.org/2010/DAVEML}checkOutputs
              aeroXBodyForceCoefficient
signal name:
signal varID:
               сx
signal units: None
signal value:
               -0.004
signal tol: 0.000001
[localSignal append] -> Negative aileron signal #:
signal type: {http://daveml.org/2010/DAVEML}checkOutputs
signal name:
              aeroYBodyForceCoefficient
signal varID:
               су
signal units: None
               -0.025305
signal value:
signal tol: 0.000001
 [localSignal append] -> Negative aileron signal #: 63
signal type: {http://daveml.org/2010/DAVEML}checkOutputs
signal name:
              aeroZBodyForceCoefficient
signal varID: cz
signal units: None
signal value:
               -0.416
signal tol: 0.000001
 [localSignal append] -> Negative aileron signal #:
signal type: {http://daveml.org/2010/DAVEML}checkOutputs
signal name: aeroRollBodyMomentCoefficient
signal varID: cl
signal units: None
signal value: 0.06266
signal tol: 0.000001
 [localSignal append] -> Negative aileron signal #:
signal type: {http://daveml.org/2010/DAVEML}checkOutputs
              aeroPitchBodyMomentCoefficient
signal name:
signal varID:
               cm
signal units:
               None
               -0.0466
signal value:
signal tol: 0.000001
 [localSignal append] -> Negative aileron signal #:
signal type: {http://daveml.org/2010/DAVEML}checkOutputs
              aeroYawBodyMomentCoefficient
signal name:
signal varID: cn
signal units: None
signal value: 0.011799842
signal tol: 0.000001
 [localSignal append] -> Negative aileron signal #: 67
67 signals in Negative aileron
staticShot: Positive rudder
signal type: {http://daveml.org/2010/DAVEML}checkInputs
signal name: trueAirspeed
signal varID: vt
```

```
signal units:
              ft_s
signal value:
              300.0
[localSignal append] -> Positive rudder signal #: 1
signal type:
             {http://daveml.org/2010/DAVEML}checkInputs
signal name:
             angleOfAttack
signal varID: alpha
signal units:
              deg
signal value: 5.0
[localSignal append] -> Positive rudder signal #: 2
signal type: {http://daveml.org/2010/DAVEML}checkInputs
signal name:
             angleOfSideslip
signal varID: beta
signal units:
              deg
signal value:
              0.0
[localSignal append] -> Positive rudder signal #: 3
signal type: {http://daveml.org/2010/DAVEML}checkInputs
signal name: rollBodyRate
signal varID: p
signal units: rad_s
signal value:
              0.0
[localSignal append] -> Positive rudder signal #: 4
signal type:
             {http://daveml.org/2010/DAVEML}checkInputs
signal name: pitchBodyRate
signal varID: q
signal units: rad_s
              0.0
signal value:
[localSignal append] -> Positive rudder signal #: 5
signal type:
             {http://daveml.org/2010/DAVEML}checkInputs
signal name:
             yawBodyRate
signal varID: r
signal units: rad_s
signal value:
              0.0
[localSignal append] -> Positive rudder signal #: 6
signal type: {http://daveml.org/2010/DAVEML}checkInputs
             elevatorDeflection
signal name:
signal varID:
              el
signal units:
              deg
signal value:
              0.0
[localSignal append] -> Positive rudder signal #: 7
signal type: {http://daveml.org/2010/DAVEML}checkInputs
signal name: aileronDeflection
signal varID: ail
signal units:
              deg
signal value:
              0.0
[localSignal append] -> Positive rudder signal #: 8
signal type:
             {http://daveml.org/2010/DAVEML}checkInputs
signal name: rudderDeflection
signal varID: rdr
```

```
signal units:
              deg
signal value:
              12.03
[localSignal append] -> Positive rudder signal #: 9
             {http://daveml.org/2010/DAVEML}checkInputs
signal type:
signal name: XBodyPositionOfCG
signal varID: xcg
signal units: nd
signal value: 0.25
[localSignal append] -> Positive rudder signal #: 10
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: vt
signal value: 300.0
[localSignal append] -> Positive rudder signal #:
             {http://daveml.org/2010/DAVEML}internalValues
signal type:
signal varID:
              alpha
              5.0
signal value:
[localSignal append] -> Positive rudder signal #: 12
             {http://daveml.org/2010/DAVEML}internalValues
signal type:
signal varID: beta
signal value:
              0.0
[localSignal append] -> Positive rudder signal #: 13
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: p
signal value: 0.0
[localSignal append] -> Positive rudder signal #: 14
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: q
signal value: 0.0
[localSignal append] -> Positive rudder signal #: 15
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: r
signal value: 0.0
[localSignal append] -> Positive rudder signal #: 16
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: el
signal value: 0.0
[localSignal append] -> Positive rudder signal #: 17
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: ail
signal value: 0.0
[localSignal append] -> Positive rudder signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: rdr
signal value:
             12.03
[localSignal append] -> Positive rudder signal #: 19
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: xcg
signal value: 0.25
```

```
[localSignal append] -> Positive rudder signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: rtd
signal value: 57.2957795
[localSignal append] -> Positive rudder signal #: 21
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: xcgr
signal value: 0.35
[localSignal append] -> Positive rudder signal #: 22
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: cbar
signal value: 11.32
[localSignal append] -> Positive rudder signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: bspan
signal value:
              30.0
[localSignal append] -> Positive rudder signal #: 24
signal type:
             {http://daveml.org/2010/DAVEML}internalValues
signal varID: del
signal value: 0.0
[localSignal append] -> Positive rudder signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: dail
signal value: 0.0
[localSignal append] -> Positive rudder signal #: 26
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: drdr
             0.4009999999999997
signal value:
[localSignal append] -> Positive rudder signal #: 27
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: cxt
signal value:
              -0.004
[localSignal append] -> Positive rudder signal #: 28
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: cy0
signal value: 0.03448599999999996
[localSignal append] -> Positive rudder signal #: 29
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: czt
signal value: -0.416
[localSignal append] -> Positive rudder signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: cz1
signal value: -0.416
[localSignal append] -> Positive rudder signal #: 31
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: tvt
signal value: 600.0
```

```
[localSignal append] -> Positive rudder signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: b2v
signal value:
              0.05
[localSignal append] -> Positive rudder signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: cq2v
signal value: 0.0
[localSignal append] -> Positive rudder signal #: 34
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: absbeta
signal value: 0.0
[localSignal append] -> Positive rudder signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: absCl0
signal value:
              0.0
[localSignal append] -> Positive rudder signal #:
             {http://daveml.org/2010/DAVEML}internalValues
signal type:
signal varID:
              absCn0
signal value:
              0.0
[localSignal append] -> Positive rudder signal #: 37
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: clt
signal value: 0.0
[localSignal append] -> Positive rudder signal #: 38
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID:
              cmt
signal value:
              -0.005
[localSignal append] -> Positive rudder signal #:
signal type:
             {http://daveml.org/2010/DAVEML}internalValues
signal varID:
              cnt
signal value:
              0.0
[localSignal append] -> Positive rudder signal #: 40
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: cxq
signal value: 1.34
[localSignal append] -> Positive rudder signal #: 41
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: cyr
signal value: 0.958
[localSignal append] -> Positive rudder signal #: 42
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: cyp
signal value: 0.11
[localSignal append] -> Positive rudder signal #: 43
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: czq
signal value: -31.4
```

```
[ localSignal append ] -> Positive rudder signal #: 44
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: clr
signal value: 0.113
[localSignal append] -> Positive rudder signal #: 45
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: clp
signal value: -0.42
[ localSignal append ] -> Positive rudder signal #: 46
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: cmq
signal value: -5.26
[localSignal append] -> Positive rudder signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID:
              -0.386
signal value:
[localSignal append] -> Positive rudder signal #: 48
             {http://daveml.org/2010/DAVEML}internalValues
signal type:
signal varID:
             cnp
signal value:
              -0.012
[localSignal append] -> Positive rudder signal #: 49
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: dclda
signal value:
              -0.052
[localSignal append] -> Positive rudder signal #: 50
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: dcldr
signal value: 0.014
[localSignal append] -> Positive rudder signal #: 51
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: dcnda
signal value:
              -0.009
[localSignal append] -> Positive rudder signal #: 52
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: dcndr
signal value:
              -0.045
[localSignal append] -> Positive rudder signal #: 53
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: cl1
signal value: 0.005614
[localSignal append] -> Positive rudder signal #: 54
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: cn1
signal value:
              -0.018045
[localSignal append] -> Positive rudder signal #: 55
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: cx
signal value: -0.004
```

```
[localSignal append] -> Positive rudder signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID:
              су
signal value:
              0.03448599999999996
[localSignal append] -> Positive rudder signal #: 57
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: cz
signal value: -0.416
[localSignal append] -> Positive rudder signal #: 58
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: cl
signal value: 0.005614
[localSignal append] -> Positive rudder signal #:
             {http://daveml.org/2010/DAVEML}internalValues
signal type:
signal varID:
              -0.04659999999999999
signal value:
[localSignal append] -> Positive rudder signal #: 60
             {http://daveml.org/2010/DAVEML}internalValues
signal type:
signal varID:
signal value:
              -0.01934627173333333
[localSignal append] -> Positive rudder signal #:
signal type: {http://daveml.org/2010/DAVEML}checkOutputs
signal name: aeroXBodyForceCoefficient
signal varID: cx
signal units: None
signal value: -0.004
signal tol: 0.000001
[localSignal append] -> Positive rudder signal #: 62
             {http://daveml.org/2010/DAVEML}checkOutputs
signal type:
signal name: aeroYBodyForceCoefficient
signal varID:
              су
signal units:
              None
signal value:
              0.034486
signal tol: 0.000001
[localSignal append] -> Positive rudder signal #:
signal type: {http://daveml.org/2010/DAVEML}checkOutputs
signal name: aeroZBodyForceCoefficient
signal varID: cz
signal units: None
signal value: -0.416
signal tol: 0.000001
[localSignal append] -> Positive rudder signal #: 64
             {http://daveml.org/2010/DAVEML}checkOutputs
signal type:
signal name:
             aeroRollBodyMomentCoefficient
signal varID:
              cl
signal units:
              None
signal value:
              0.005614
signal tol: 0.000001
```

```
[ localSignal append ] -> Positive rudder signal #: 65
signal type: {http://daveml.org/2010/DAVEML}checkOutputs
signal name: aeroPitchBodyMomentCoefficient
signal varID:
               cm
signal units: None
signal value:
               -0.0466
signal tol: 0.000001
[localSignal append] -> Positive rudder signal #: 66
signal type: {http://daveml.org/2010/DAVEML}checkOutputs
signal name:
              aeroYawBodyMomentCoefficient
signal varID:
               cn
signal units: None
signal value: -0.01934627173333
signal tol: 0.000001
 [localSignal append] -> Positive rudder signal #: 67
67 signals in Positive rudder
staticShot: Negative rudder
              {http://daveml.org/2010/DAVEML}checkInputs
signal type:
signal name: trueAirspeed
signal varID: vt
signal units: ft s
signal value: 300.0
[localSignal append] -> Negative rudder signal #: 1
signal type: {http://daveml.org/2010/DAVEML}checkInputs
signal name: angleOfAttack
signal varID: alpha
signal units:
               deg
signal value:
               5.0
 [localSignal append] -> Negative rudder signal #: 2
signal type: {http://daveml.org/2010/DAVEML}checkInputs
signal name: angleOfSideslip
signal varID: beta
signal units:
               deg
signal value:
               0.0
 [localSignal append] -> Negative rudder signal #: 3
signal type: {http://daveml.org/2010/DAVEML}checkInputs
signal name: rollBodyRate
signal varID: p
signal units: rad_s
signal value: 0.0
[localSignal append] -> Negative rudder signal #: 4
signal type: {http://daveml.org/2010/DAVEML}checkInputs
signal name: pitchBodyRate
signal varID: q
signal units: rad_s
signal value: 0.0
 [localSignal append] -> Negative rudder signal #: 5
signal type: {http://daveml.org/2010/DAVEML}checkInputs
```

```
signal name:
             yawBodyRate
signal varID:
              r
signal units: rad_s
signal value:
              0.0
[localSignal append] -> Negative rudder signal #: 6
             {http://daveml.org/2010/DAVEML}checkInputs
signal type:
signal name:
             elevatorDeflection
signal varID:
signal units:
              deg
signal value:
              0.0
[localSignal append] -> Negative rudder signal #: 7
signal type: {http://daveml.org/2010/DAVEML}checkInputs
             aileronDeflection
signal name:
signal varID: ail
signal units:
              deg
signal value:
              0.0
[localSignal append] -> Negative rudder signal #: 8
             {http://daveml.org/2010/DAVEML}checkInputs
signal type:
signal name: rudderDeflection
signal varID: rdr
signal units: deg
signal value: -12.03
[localSignal append] -> Negative rudder signal #: 9
signal type: {http://daveml.org/2010/DAVEML}checkInputs
signal name: XBodyPositionOfCG
signal varID: xcg
signal units:
              nd
signal value:
              0.25
[localSignal append] -> Negative rudder signal #: 10
signal type:
             {http://daveml.org/2010/DAVEML}internalValues
signal varID:
              vt
signal value:
              300.0
[localSignal append] -> Negative rudder signal #: 11
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: alpha
signal value: 5.0
[localSignal append] -> Negative rudder signal #: 12
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: beta
signal value: 0.0
[localSignal append] -> Negative rudder signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: p
signal value: 0.0
[localSignal append] -> Negative rudder signal #: 14
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: q
signal value: 0.0
```

```
[localSignal append] -> Negative rudder signal #: 15
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: r
signal value: 0.0
[localSignal append] -> Negative rudder signal #: 16
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: el
signal value: 0.0
[localSignal append] -> Negative rudder signal #: 17
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: ail
signal value: 0.0
[localSignal append] -> Negative rudder signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: rdr
signal value: -12.03
[localSignal append] -> Negative rudder signal #: 19
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: xcg
signal value: 0.25
[localSignal append] -> Negative rudder signal #: 20
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: rtd
signal value: 57.2957795
[localSignal append] -> Negative rudder signal #: 21
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: xcgr
signal value: 0.35
[localSignal append] -> Negative rudder signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: cbar
signal value: 11.32
[localSignal append] -> Negative rudder signal #: 23
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: bspan
signal value: 30.0
[localSignal append] -> Negative rudder signal #: 24
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: del
signal value: 0.0
[localSignal append] -> Negative rudder signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: dail
signal value: 0.0
[localSignal append] -> Negative rudder signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: drdr
signal value: -0.4009999999999997
```

```
[localSignal append] -> Negative rudder signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: cxt
signal value:
              -0.004
[localSignal append] -> Negative rudder signal #: 28
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: cy0
signal value: -0.03448599999999996
[localSignal append] -> Negative rudder signal #: 29
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: czt
signal value: -0.416
[localSignal append] -> Negative rudder signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: cz1
signal value:
              -0.416
[localSignal append] -> Negative rudder signal #: 31
             {http://daveml.org/2010/DAVEML}internalValues
signal type:
signal varID: tvt
signal value: 600.0
[localSignal append] -> Negative rudder signal #: 32
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: b2v
signal value:
             0.05
[localSignal append] -> Negative rudder signal #: 33
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: cq2v
signal value: 0.0
[localSignal append] -> Negative rudder signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID:
              absbeta
signal value:
              0.0
[localSignal append] -> Negative rudder signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: absCl0
signal value: 0.0
[localSignal append] -> Negative rudder signal #: 36
signal type:
             {http://daveml.org/2010/DAVEML}internalValues
signal varID:
              absCn0
signal value: 0.0
[localSignal append] -> Negative rudder signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: clt
signal value: 0.0
[ localSignal append ] -> Negative rudder signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: cmt
signal value: -0.005
```

```
[localSignal append] -> Negative rudder signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: cnt
signal value:
              0.0
[localSignal append] -> Negative rudder signal #: 40
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: cxq
signal value: 1.34
[localSignal append] -> Negative rudder signal #: 41
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: cyr
signal value: 0.958
[localSignal append] -> Negative rudder signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: cyp
signal value: 0.11
[localSignal append] -> Negative rudder signal #: 43
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: czq
signal value: -31.4
[localSignal append] -> Negative rudder signal #: 44
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: clr
signal value: 0.113
[localSignal append] -> Negative rudder signal #: 45
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: clp
signal value:
              -0.42
[localSignal append] -> Negative rudder signal #: 46
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID:
              cmq
signal value:
              -5.26
[localSignal append] -> Negative rudder signal #: 47
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: cnr
signal value: -0.386
[localSignal append] -> Negative rudder signal #: 48
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: cnp
signal value: -0.012
[localSignal append] -> Negative rudder signal #: 49
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: dclda
              -0.052
signal value:
[localSignal append] -> Negative rudder signal #: 50
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: dcldr
signal value: 0.014
```

```
[localSignal append] -> Negative rudder signal #: 51
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: dcnda
signal value:
              -0.009
[localSignal append] -> Negative rudder signal #: 52
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: dcndr
signal value: -0.045
[ localSignal append ] -> Negative rudder signal #: 53
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: cl1
signal value: -0.005614
[localSignal append] -> Negative rudder signal #: 54
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: cn1
              0.018045
signal value:
[localSignal append] -> Negative rudder signal #: 55
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: cx
signal value: -0.004
[localSignal append] -> Negative rudder signal #: 56
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: cy
signal value:
              -0.034485999999999996
[localSignal append] -> Negative rudder signal #: 57
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: cz
signal value:
              -0.416
[localSignal append] -> Negative rudder signal #: 58
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: cl
signal value:
              -0.005614
[localSignal append] -> Negative rudder signal #: 59
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: cm
signal value: -0.04659999999999999
[localSignal append] -> Negative rudder signal #: 60
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: cn
signal value: 0.01934627173333333
[localSignal append] -> Negative rudder signal #: 61
signal type: {http://daveml.org/2010/DAVEML}checkOutputs
signal name: aeroXBodyForceCoefficient
signal varID: cx
signal units: None
signal value: -0.004
signal tol: 0.000001
[localSignal append] -> Negative rudder signal #: 62
```

```
signal type: {http://daveml.org/2010/DAVEML}checkOutputs
signal name: aeroYBodyForceCoefficient
signal varID: cy
signal units: None
signal value: -0.034486
signal tol: 0.000001
 [localSignal append] -> Negative rudder signal #:
signal type: {http://daveml.org/2010/DAVEML}checkOutputs
signal name: aeroZBodyForceCoefficient
signal varID: cz
signal units: None
signal value: -0.416
signal tol: 0.000001
 [localSignal append] -> Negative rudder signal #: 64
signal type: {http://daveml.org/2010/DAVEML}checkOutputs
signal name: aeroRollBodyMomentCoefficient
signal varID: cl
signal units: None
signal value: -0.005614
signal tol: 0.000001
 [localSignal append] -> Negative rudder signal #:
signal type: {http://daveml.org/2010/DAVEML}checkOutputs
signal name: aeroPitchBodyMomentCoefficient
signal varID: cm
signal units: None
signal value: -0.0466
signal tol: 0.000001
 [localSignal append] -> Negative rudder signal #:
signal type: {http://daveml.org/2010/DAVEML}checkOutputs
signal name: aeroYawBodyMomentCoefficient
signal varID:
               cn
signal units:
               None
signal value: 0.01934627173333
signal tol: 0.000001
 [localSignal append] -> Negative rudder signal #: 67
67 signals in Negative rudder
staticShot: Aft CG
signal type: {http://daveml.org/2010/DAVEML}checkInputs
signal name: trueAirspeed
signal varID: vt
signal units: ft_s
signal value: 300.0
 [ localSignal append ] -> Aft CG signal #: 1
signal type: {http://daveml.org/2010/DAVEML}checkInputs
signal name: angleOfAttack
signal varID: alpha
signal units:
               deg
signal value: 5.0
```

```
[localSignal append] -> Aft CG signal #: 2
signal type: {http://daveml.org/2010/DAVEML}checkInputs
signal name:
             angleOfSideslip
signal varID:
              beta
signal units:
              deg
signal value:
              0.0
[localSignal append] -> Aft CG signal #: 3
signal type: {http://daveml.org/2010/DAVEML}checkInputs
signal name: rollBodyRate
signal varID: p
signal units: rad_s
signal value: 0.0
[localSignal append] -> Aft CG signal #: 4
signal type: {http://daveml.org/2010/DAVEML}checkInputs
signal name: pitchBodyRate
signal varID: q
signal units: rad_s
signal value: 0.0
[localSignal append] -> Aft CG signal #: 5
signal type: {http://daveml.org/2010/DAVEML}checkInputs
signal name: yawBodyRate
signal varID: r
signal units: rad_s
signal value: 0.0
[localSignal append] -> Aft CG signal #: 6
signal type: {http://daveml.org/2010/DAVEML}checkInputs
             elevatorDeflection
signal name:
signal varID: el
signal units:
              deg
signal value:
              0.0
[localSignal append] -> Aft CG signal #: 7
signal type: {http://daveml.org/2010/DAVEML}checkInputs
signal name: aileronDeflection
signal varID: ail
signal units: deg
signal value:
              0.0
[localSignal append] -> Aft CG signal #: 8
signal type: {http://daveml.org/2010/DAVEML}checkInputs
signal name: rudderDeflection
signal varID: rdr
signal units:
              deg
signal value:
              0.0
[localSignal append] -> Aft CG signal #: 9
signal type: {http://daveml.org/2010/DAVEML}checkInputs
signal name: XBodyPositionOfCG
signal varID: xcg
signal units:
              nd
signal value: 0.35
```

```
[localSignal append] -> Aft CG signal #: 10
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: vt
signal value:
              300.0
[ localSignal append ] -> Aft CG signal #: 11
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: alpha
signal value: 5.0
[localSignal append] -> Aft CG signal #: 12
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: beta
signal value: 0.0
[localSignal append] -> Aft CG signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: p
signal value: 0.0
[localSignal append] -> Aft CG signal #: 14
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: q
signal value: 0.0
[localSignal append] -> Aft CG signal #: 15
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: r
signal value: 0.0
[localSignal append] -> Aft CG signal #: 16
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: el
signal value: 0.0
[localSignal append] -> Aft CG signal #: 17
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: ail
signal value: 0.0
[localSignal append] -> Aft CG signal #: 18
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: rdr
signal value: 0.0
[localSignal append] -> Aft CG signal #: 19
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: xcg
signal value: 0.35
[ localSignal append ] -> Aft CG signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: rtd
signal value: 57.2957795
[localSignal append] -> Aft CG signal #: 21
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: xcgr
signal value: 0.35
```

```
[localSignal append] -> Aft CG signal #: 22
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: cbar
signal value:
              11.32
[localSignal append] -> Aft CG signal #: 23
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: bspan
signal value: 30.0
[localSignal append] -> Aft CG signal #: 24
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: del
signal value: 0.0
[ localSignal append ] -> Aft CG signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: dail
signal value:
              0.0
[ localSignal append ] -> Aft CG signal #:
             {http://daveml.org/2010/DAVEML}internalValues
signal type:
signal varID: drdr
signal value:
              0.0
[localSignal append] -> Aft CG signal #: 27
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: cxt
signal value:
             -0.004
[localSignal append] -> Aft CG signal #: 28
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: cy0
signal value: 0.0
[localSignal append] -> Aft CG signal #: 29
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: czt
signal value: -0.416
[localSignal append] -> Aft CG signal #: 30
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: cz1
signal value: -0.416
[localSignal append] -> Aft CG signal #: 31
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: tvt
signal value: 600.0
[localSignal append] -> Aft CG signal #: 32
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: b2v
signal value: 0.05
[localSignal append] -> Aft CG signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: cq2v
signal value: 0.0
```

```
[localSignal append] -> Aft CG signal #: 34
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: absbeta
signal value:
              0.0
[localSignal append] -> Aft CG signal #: 35
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: absCl0
signal value: 0.0
[localSignal append] -> Aft CG signal #: 36
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: absCn0
signal value: 0.0
[localSignal append] -> Aft CG signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: clt
signal value: 0.0
[localSignal append] -> Aft CG signal #: 38
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: cmt
signal value: -0.005
[localSignal append] -> Aft CG signal #: 39
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: cnt
signal value: 0.0
[localSignal append] -> Aft CG signal #: 40
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: cxq
signal value: 1.34
[localSignal append] -> Aft CG signal #: 41
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: cyr
signal value: 0.958
[localSignal append] -> Aft CG signal #: 42
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: cyp
signal value: 0.11
[localSignal append] -> Aft CG signal #: 43
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: czq
signal value: -31.4
[localSignal append] -> Aft CG signal #: 44
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: clr
signal value: 0.113
[localSignal append] -> Aft CG signal #: 45
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: clp
signal value: -0.42
```

```
[localSignal append] -> Aft CG signal #: 46
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: cmq
signal value:
              -5.26
[localSignal append] -> Aft CG signal #: 47
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: cnr
signal value: -0.386
[localSignal append] -> Aft CG signal #: 48
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: cnp
signal value: -0.012
[localSignal append] -> Aft CG signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: dclda
signal value: -0.052
[ localSignal append ] -> Aft CG signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: dcldr
signal value: 0.014
[localSignal append] -> Aft CG signal #: 51
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: dcnda
signal value:
              -0.009
[localSignal append] -> Aft CG signal #: 52
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: dcndr
signal value:
             -0.045
[localSignal append] -> Aft CG signal #: 53
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: cl1
signal value: 0.0
[localSignal append] -> Aft CG signal #: 54
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: cn1
signal value: 0.0
[localSignal append] -> Aft CG signal #: 55
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: cx
signal value: -0.004
[localSignal append] -> Aft CG signal #: 56
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: cy
signal value: 0.0
[ localSignal append ] -> Aft CG signal #: 57
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: cz
signal value: -0.416
```

```
[localSignal append] -> Aft CG signal #: 58
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: cl
signal value: 0.0
[localSignal append] -> Aft CG signal #: 59
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: cm
signal value: -0.005
[localSignal append] -> Aft CG signal #: 60
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID:
              cn
signal value: 0.0
[ localSignal append ] -> Aft CG signal #:
signal type: {http://daveml.org/2010/DAVEML}checkOutputs
signal name: aeroXBodyForceCoefficient
signal varID: cx
signal units: None
signal value: -0.004
signal tol: 0.000001
[localSignal append] -> Aft CG signal #: 62
signal type: {http://daveml.org/2010/DAVEML}checkOutputs
signal name: aeroYBodyForceCoefficient
signal varID: cy
signal units: None
signal value: 0.0
signal tol: 0.000001
[localSignal append] -> Aft CG signal #: 63
signal type: {http://daveml.org/2010/DAVEML}checkOutputs
signal name: aeroZBodyForceCoefficient
signal varID: cz
signal units: None
signal value: -0.416
signal tol: 0.000001
[localSignal append] -> Aft CG signal #: 64
signal type: {http://daveml.org/2010/DAVEML}checkOutputs
signal name: aeroRollBodyMomentCoefficient
signal varID: cl
signal units: None
signal value: 0.0
signal tol: 0.000001
[ localSignal append ] -> Aft CG signal #:
signal type: {http://daveml.org/2010/DAVEML}checkOutputs
signal name: aeroPitchBodyMomentCoefficient
signal varID: cm
signal units: None
signal value: -0.005
signal tol: 0.000001
[localSignal append] -> Aft CG signal #: 66
```

```
signal type: {http://daveml.org/2010/DAVEML}checkOutputs
signal name: aeroYawBodyMomentCoefficient
signal varID:
               cn
signal units:
               None
signal value: 0.0
signal tol: 0.000001
 [localSignal append] -> Aft CG signal #: 67
67 signals in Aft CG
staticShot: Skewed inputs
              {http://daveml.org/2010/DAVEML}checkInputs
signal type:
signal name: trueAirspeed
signal varID: vt
signal units: ft_s
signal value: 300.0
[localSignal append] -> Skewed inputs signal #: 1
signal type: {http://daveml.org/2010/DAVEML}checkInputs
signal name: angleOfAttack
signal varID: alpha
signal units:
               deg
signal value: 16.2
 [localSignal append] -> Skewed inputs signal #: 2
signal type: {http://daveml.org/2010/DAVEML}checkInputs
signal name: angleOfSideslip
signal varID: beta
signal units: deg
signal value: -3.24
 [localSignal append] -> Skewed inputs signal #:
signal type: {http://daveml.org/2010/DAVEML}checkInputs
signal name: rollBodyRate
signal varID: p
signal units: rad_s
signal value: 0.56
[localSignal append] -> Skewed inputs signal #: 4
signal type: {http://daveml.org/2010/DAVEML}checkInputs
signal name: pitchBodyRate
signal varID: q
signal units: rad s
signal value: -0.76
[localSignal append] -> Skewed inputs signal #: 5
signal type: {http://daveml.org/2010/DAVEML}checkInputs
signal name: yawBodyRate
signal varID: r
signal units: rad_s
signal value: -0.94
[localSignal append] -> Skewed inputs signal #: 6
signal type: {http://daveml.org/2010/DAVEML}checkInputs
signal name:
              elevatorDeflection
signal varID: el
```

```
signal units:
              deg
              4.567
signal value:
[localSignal append] -> Skewed inputs signal #: 7
signal type: {http://daveml.org/2010/DAVEML}checkInputs
signal name: aileronDeflection
signal varID: ail
signal units: deg
signal value: 7.654
[localSignal append] -> Skewed inputs signal #: 8
signal type: {http://daveml.org/2010/DAVEML}checkInputs
signal name: rudderDeflection
signal varID: rdr
signal units: deg
signal value:
              -2.991
[localSignal append] -> Skewed inputs signal #: 9
signal type: {http://daveml.org/2010/DAVEML}checkInputs
signal name: XBodyPositionOfCG
signal varID: xcg
signal units: nd
signal value: 0.123
[ localSignal append ] -> Skewed inputs signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: vt
signal value: 300.0
[localSignal append] -> Skewed inputs signal #: 11
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: alpha
signal value:
              16.2
[localSignal append] -> Skewed inputs signal #: 12
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: beta
signal value:
              -3.24
[ localSignal append ] -> Skewed inputs signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: p
signal value: 0.56
[localSignal append] -> Skewed inputs signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: q
signal value: -0.76
[ localSignal append ] -> Skewed inputs signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: r
signal value: -0.94
[localSignal append] -> Skewed inputs signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: el
signal value: 4.567
```

```
[localSignal append] -> Skewed inputs signal #: 17
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: ail
signal value: 7.654
[localSignal append] -> Skewed inputs signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: rdr
signal value: -2.991
[localSignal append] -> Skewed inputs signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: xcg
signal value: 0.123
[ localSignal append ] -> Skewed inputs signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: rtd
signal value: 57.2957795
[localSignal append] -> Skewed inputs signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: xcgr
signal value: 0.35
[localSignal append] -> Skewed inputs signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: cbar
signal value: 11.32
[localSignal append] -> Skewed inputs signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: bspan
signal value:
              30.0
[localSignal append] -> Skewed inputs signal #: 24
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID:
             del
signal value: 0.18268
[ localSignal append ] -> Skewed inputs signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: dail
signal value: 0.3827
[localSignal append] -> Skewed inputs signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: drdr
signal value: -0.0997
[localSignal append] -> Skewed inputs signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: cxt
signal value: 0.08915927333333333
[localSignal append] -> Skewed inputs signal #: 28
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: cy0
signal value: 0.0642625
```

```
[localSignal append] -> Skewed inputs signal #: 29
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: czt
signal value: -1.12812
[localSignal append] -> Skewed inputs signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: cz1
signal value: -1.1592217522084587
[localSignal append] -> Skewed inputs signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: tvt
signal value: 600.0
[ localSignal append ] -> Skewed inputs signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: b2v
signal value: 0.05
[localSignal append] -> Skewed inputs signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: cq2v
signal value: -0.014338666666666666
[localSignal append] -> Skewed inputs signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: absbeta
signal value:
              3.24
[localSignal append] -> Skewed inputs signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: absCl0
signal value:
              -0.014256
[ localSignal append ] -> Skewed inputs signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: absCn0
signal value: 0.0108864
[localSignal append] -> Skewed inputs signal #: 37
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: clt
signal value: 0.014256
[localSignal append] -> Skewed inputs signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: cmt
signal value: -0.03276327333333335
[ localSignal append ] -> Skewed inputs signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: cnt
              -0.0108864
signal value:
[localSignal append] -> Skewed inputs signal #: 40
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: cxq
signal value: 2.874
```

```
[localSignal append] -> Skewed inputs signal #: 41
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: cyr
signal value: 0.9368
[localSignal append] -> Skewed inputs signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: cyp
signal value: 0.2543200000000005
[localSignal append] -> Skewed inputs signal #: 43
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: czq
signal value: -29.9799999999997
[localSignal append] -> Skewed inputs signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: clr
signal value: 0.25136000000000003
[ localSignal append ] -> Skewed inputs signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: clp
signal value: -0.36396
[localSignal append] -> Skewed inputs signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: cmq
signal value:
              -6.412
[localSignal append] -> Skewed inputs signal #: 47
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: cnr
signal value:
              -0.47628000000000004
[localSignal append] -> Skewed inputs signal #: 48
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: cnp
signal value:
              -0.00623999999999982
[localSignal append] -> Skewed inputs signal #: 49
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: dclda
signal value: -0.04688399999999995
[localSignal append] -> Skewed inputs signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: dcldr
signal value: 0.01230224
[localSignal append] -> Skewed inputs signal #: 51
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: dcnda
signal value: -0.00544127999999999
[localSignal append] -> Skewed inputs signal #: 52
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: dcndr
signal value: -0.04297872
```

```
[localSignal append] -> Skewed inputs signal #: 53
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: cl1
signal value: -0.004913040127999998
[localSignal append] -> Skewed inputs signal #: 54
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: cn1
signal value: -0.008683799472
[localSignal append] -> Skewed inputs signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: cx
signal value: 0.04794994533333333
[localSignal append] -> Skewed inputs signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: cy
signal value: 0.027353860000000008
[localSignal append] -> Skewed inputs signal #: 57
             {http://daveml.org/2010/DAVEML}internalValues
signal type:
signal varID: cz
signal value:
              -0.7293485255417921
[ localSignal append ] -> Skewed inputs signal #:
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: cl
signal value: -0.026917840128000005
[localSignal append] -> Skewed inputs signal #: 59
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID: cm
signal value:
              -0.10638585796465347
[localSignal append] -> Skewed inputs signal #: 60
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal varID:
              cn
signal value: 0.011183654767653334
[localSignal append] -> Skewed inputs signal #: 61
signal type: {http://daveml.org/2010/DAVEML}checkOutputs
signal name: aeroXBodyForceCoefficient
signal varID: cx
signal units: None
signal value: 0.04794994533333
signal tol: 0.000001
[localSignal append] -> Skewed inputs signal #:
signal type: {http://daveml.org/2010/DAVEML}checkOutputs
signal name: aeroYBodyForceCoefficient
signal varID: cy
signal units: None
signal value:
              0.02735386
signal tol: 0.000001
[localSignal append] -> Skewed inputs signal #:
signal type: {http://daveml.org/2010/DAVEML}checkOutputs
```

```
signal name: aeroZBodyForceCoefficient
 signal varID: cz
 signal units: None
 signal value: -0.72934852554344
 signal tol: 0.000001
 [localSignal append] -> Skewed inputs signal #: 64
 signal type: {http://daveml.org/2010/DAVEML}checkOutputs
 signal name: aeroRollBodyMomentCoefficient
 signal varID: cl
 signal units: None
 signal value: -0.026917840128
 signal tol: 0.000001
 [localSignal append] -> Skewed inputs signal #:
 signal type: {http://daveml.org/2010/DAVEML}checkOutputs
 signal name: aeroPitchBodyMomentCoefficient
 signal varID: cm
 signal units: None
 signal value: -0.10638585796503
 signal tol: 0.000001
 [localSignal append] -> Skewed inputs signal #: 66
 signal type: {http://daveml.org/2010/DAVEML}checkOutputs
 signal name: aeroYawBodyMomentCoefficient
 signal varID: cn
 signal units: None
 signal value: 0.01118365476765
 signal tol: 0.000001
 [localSignal append] -> Skewed inputs signal #: 67
67 signals in Skewed inputs
--- PreProcess Equations and Functions ---
 ===> del -> {el} / 25.0
  *** equation: self.Data["el"] / 25.0
 ===> dail -> {ail} / 20.0
 *** equation: self.Data["ail"] / 20.0
 ==> drdr -> {rdr}/30.0
  *** equation: self.Data["rdr"]/30.0
 ==> cy0 -> -0.02*{beta} + 0.021*{dail} + 0.086*{drdr}
  *** equation: -0.02*self.Data["beta"] + 0.021*self.Data["dail"] +
0.086*self.Data["drdr"]
 ===> cz1 \rightarrow {czt}*(1.0 - ({beta}/{rtd})**2) - 0.19*{del}
  *** equation: self.Data["czt"]*(1.0 -
(self.Data["beta"]/self.Data["rtd"])**2) - 0.19*self.Data["del"]
 ===> tvt -> 2*{vt}
 *** equation: 2*self.Data["vt"]
 ===> b2v -> \{bspan\}/\{tvt\}
  *** equation: self.Data["bspan"]/self.Data["tvt"]
 ===> cq2v -> \{cbar\}*\{q\}/\{tvt\}
 *** equation: self.Data["cbar"]*self.Data["q"]/self.Data["tvt"]
```

```
===> absbeta -> abs({beta})
 *** equation: abs(self.Data["beta"])
 ===> clt -> -{absCl0} if {beta} < 0 else {absCl0}
  *** equation: -self.Data["absCl0"] if self.Data["beta"] < 0 else
self.Data["absCl0"]
 ===> cnt -> -{absCn0} if {beta} < 0 else {absCn0}
 *** equation: -self.Data["absCn0"] if self.Data["beta"] < 0 else
self.Data["absCn0"]
===> cl1
ERROR:root:internal: Positive sideslip -> [absCl0] Calculated 0.0, Expected
-0.005615999999999995
ERROR:root:internal: Positive sideslip -> [absCn0] Calculated 0.0, Expected
0.00889199999999999
ERROR:root:internal: Positive sideslip -> [clt] Calculated 0.0, Expected
-0.005615999999999995
ERROR:root:internal: Positive sideslip -> [cnt] Calculated 0.0, Expected
0.00889199999999999
ERROR:root:internal: Positive sideslip -> [dclda] Calculated -0.052, Expected
-0.05129799999999999
ERROR:root:internal: Positive sideslip -> [dcldr] Calculated 0.014, Expected
0.013766
ERROR:root:internal: Positive sideslip -> [dcnda] Calculated -0.009, Expected
-0.00970199999999999
ERROR:root:internal: Positive sideslip -> [dcndr] Calculated -0.045, Expected
-0.044064
ERROR:root:internal: Positive sideslip -> [cl1] Calculated 0.0, Expected
-0.005615999999999995
ERROR:root:internal: Positive sideslip -> [cn1] Calculated 0.0, Expected
0.00889199999999999
ERROR:root:internal: Positive sideslip -> [cl] Calculated 0.0, Expected
-0.005615999999999995
ERROR:root:internal: Positive sideslip -> [cn] Calculated 0.0017659199999999999,
Expected 0.01065791999999998
ERROR:root:output: Positive sideslip -> [aeroRollBodyMomentCoefficient]
Calculated 0.0, Expected -0.005616
ERROR:root:output: Positive sideslip -> [aeroYawBodyMomentCoefficient]
Calculated 0.001765919999999999, Expected 0.01065792
ERROR:root:internal: Negative sideslip -> [absCl0] Calculated 0.0, Expected
-0.005615999999999995
ERROR:root:internal: Negative sideslip -> [absCn0] Calculated 0.0, Expected
0.00889199999999999
ERROR:root:internal: Negative sideslip -> [clt] Calculated -0.0, Expected
0.005615999999999999
ERROR:root:internal: Negative sideslip -> [cnt] Calculated -0.0, Expected
-0.00889199999999999
ERROR:root:internal: Negative sideslip -> [dclda] Calculated -0.051, Expected
-0.051766
```

```
-> {clt} + {dclda}*{dail} + {dcldr}*{drdr}
  *** equation: self.Data["clt"] + self.Data["dclda"]*self.Data["dail"] +
self.Data["dcldr"]*self.Data["drdr"]
===> cn1 -> {cnt} + {dcnda}*{dail} + {dcndr}*{drdr}
  *** equation: self.Data["cnt"] + self.Data["dcnda"]*self.Data["dail"] +
self.Data["dcndr"]*self.Data["drdr"]
==> cx -> {cq2v}*{cxq} + {cxt}
 *** equation: self.Data["cq2v"]*self.Data["cxq"] + self.Data["cxt"]
===> cy \rightarrow {b2v}*({cyp}*{p} + {cyr}*{r}) + {cy0}
  *** equation: self.Data["b2v"]*(self.Data["cyp"]*self.Data["p"] +
self.Data["cyr"]*self.Data["r"]) + self.Data["cy0"]
 ===> cz \rightarrow \{cq2v\}*\{czq\} + \{cz1\}
 *** equation: self.Data["cq2v"]*self.Data["czq"] + self.Data["cz1"]
===> cl \rightarrow {b2v}*({clp}*{p} + {clr}*{r}) + {cl1}
  *** equation: self.Data["b2v"]*(self.Data["clp"]*self.Data["p"] +
self.Data["clr"]*self.Data["r"]) + self.Data["cl1"]
 ===> cm -> \{cq2v\}*\{cmq\} + \{cmt\} + \{cz\}*(\{xcgr\} - \{xcg\})
  *** equation: self.Data["cq2v"]*self.Data["cmq"] + self.Data["cmt"] +
self.Data["cz"]*(self.Data["xcgr"] - self.Data["xcg"])
===> cn -> \{b2v\}*(\{cnp\}*\{p\} + \{cnr\}*\{r\}) + \{cn1\} -
({cbar}*{cy}*({xcgr}-{xcg})) / {bspan}
  *** equation: self.Data["b2v"]*(self.Data["cnp"]*self.Data["p"] +
self.Data["cnr"]*self.Data["r"]) + self.Data["cn1"] -
(self.Data["cbar"]*self.Data["cy"]*(self.Data["xcgr"]-self.Data["xcg"])) /
self.Data["bspan"]
+++++ MODEL INPUTS AND OUTPUTS +++++
++> Input: vt
++> Input: alpha
++> Input: beta
++> Input: p
++> Input: q
++> Input: r
++> Input: el
++> Input: ail
++> Input: rdr
++> Input: xcg
++> Output: cx
++> Output: cy
++> Output: cz
++> Output:
            cl
++> Output: cm
++> Output: cn
----> depVar: cxt
----> f.dataTable: [-0.099, -0.081, -0.081, -0.063, -0.025, 0.044, 0.097,
0.113, 0.145, 0.167, 0.174, 0.166, -0.048, -0.038, -0.04, -0.021, 0.016, 0.083,
0.127, 0.137, 0.162, 0.177, 0.179, 0.167, -0.022, -0.02, -0.021, -0.004, 0.032,
0.094, 0.128, 0.13, 0.154, 0.161, 0.155, 0.138, -0.04, -0.038, -0.039, -0.025,
```

```
0.006, 0.062, 0.087, 0.085, 0.1, 0.11, 0.104, 0.091, -0.083, -0.073, -0.076,
-0.072, -0.046, 0.012, 0.024, 0.025, 0.043, 0.053, 0.047, 0.04]
----> bpRef: ['DE1', 'ALPHA1']
----> gt.name: CX_table
----> f.gtID: CX table
----> f.bp name: DE1
----> f.bpVals: [-24.0, -12.0, 0.0, 12.0, 24.0]
----> bpv: [[-24.0, -12.0, 0.0, 12.0, 24.0]]
----> f.bp name: ALPHA1
----> f.bpVals: [-10.0, -5.0, 0.0, 5.0, 10.0, 15.0, 20.0, 25.0, 30.0, 35.0,
40.0, 45.0]
----> bpv: [[-24.0, -12.0, 0.0, 12.0, 24.0], [-10.0, -5.0, 0.0, 5.0, 10.0,
15.0, 20.0, 25.0, 30.0, 35.0, 40.0, 45.0]]
----> depVar: czt
----> f.dataTable: [0.77, 0.241, -0.1, -0.416, -0.731, -1.053, -1.366, -1.646,
-1.917, -2.12, -2.248, -2.229]
----> bpRef: ['ALPHA1']
----> gt.name: CZO_table
----> f.gtID: CZO_table
---> f.bp name: ALPHA1
----> f.bpVals: [-10.0, -5.0, 0.0, 5.0, 10.0, 15.0, 20.0, 25.0, 30.0, 35.0,
40.0, 45.0]
----> bpv: [[-10.0, -5.0, 0.0, 5.0, 10.0, 15.0, 20.0, 25.0, 30.0, 35.0, 40.0,
45.0]]
----> depVar: cmt
---> f.dataTable: [0.205, 0.168, 0.186, 0.196, 0.213, 0.251, 0.245, 0.238,
0.252, 0.231, 0.198, 0.192, 0.081, 0.077, 0.107, 0.11, 0.11, 0.141, 0.127,
0.119, 0.133, 0.108, 0.081, 0.093, -0.046, -0.02, -0.009, -0.005, -0.006, 0.01,
0.006, -0.001, 0.014, 0.0, -0.013, 0.032, -0.174, -0.145, -0.121, -0.127,
-0.129, -0.102, -0.097, -0.113, -0.087, -0.084, -0.069, -0.006, -0.259, -0.202,
-0.184, -0.193, -0.199, -0.15, -0.16, -0.167, -0.104, -0.076, -0.041, -0.005]
----> bpRef: ['DE1', 'ALPHA1']
----> gt.name: CmO_table
----> f.gtID: CmO_table
----> f.bp name: DE1
----> f.bpVals: [-24.0, -12.0, 0.0, 12.0, 24.0]
----> bpv: [[-24.0, -12.0, 0.0, 12.0, 24.0]]
----> f.bp name: ALPHA1
----> f.bpVals: [-10.0, -5.0, 0.0, 5.0, 10.0, 15.0, 20.0, 25.0, 30.0, 35.0,
40.0, 45.0]
----> bpv: [[-24.0, -12.0, 0.0, 12.0, 24.0], [-10.0, -5.0, 0.0, 5.0, 10.0,
15.0, 20.0, 25.0, 30.0, 35.0, 40.0, 45.0]]
----> depVar: absCl0
-0.001, -0.004, -0.008, -0.012, -0.016, -0.022, -0.022, -0.021, -0.015, -0.008,
-0.013, -0.015, -0.003, -0.009, -0.017, -0.024, -0.03, -0.041, -0.045, -0.04,
-0.016, -0.002, -0.01, -0.019, -0.001, -0.01, -0.02, -0.03, -0.039, -0.054,
-0.057, -0.054, -0.023, -0.006, -0.014, -0.027, 0.0, -0.01, -0.022, -0.034,
```

```
-0.047, -0.06, -0.069, -0.067, -0.033, -0.036, -0.035, -0.035, 0.007, -0.01,
-0.023, -0.034, -0.049, -0.063, -0.081, -0.079, -0.06, -0.058, -0.062, -0.059,
0.009, -0.011, -0.023, -0.037, -0.05, -0.068, -0.089, -0.088, -0.091, -0.076,
-0.077, -0.076]
----> bpRef: ['BETA1', 'ALPHA1']
----> gt.name: ClO_table
----> f.gtID: ClO_table
----> f.bp name: BETA1
----> f.bpVals: [0.0, 5.0, 10.0, 15.0, 20.0, 25.0, 30.0]
----> bpv: [[0.0, 5.0, 10.0, 15.0, 20.0, 25.0, 30.0]]
----> f.bp name: ALPHA1
----> f.bpVals: [-10.0, -5.0, 0.0, 5.0, 10.0, 15.0, 20.0, 25.0, 30.0, 35.0,
40.0, 45.0]
----> bpv: [[0.0, 5.0, 10.0, 15.0, 20.0, 25.0, 30.0], [-10.0, -5.0, 0.0, 5.0,
10.0, 15.0, 20.0, 25.0, 30.0, 35.0, 40.0, 45.0]]
----> depVar: absCn0
0.018, 0.019, 0.018, 0.019, 0.019, 0.018, 0.013, 0.007, 0.004, -0.014, -0.017,
-0.033, 0.038, 0.042, 0.042, 0.042, 0.043, 0.039, 0.03, 0.017, 0.004, -0.035,
-0.047, -0.057, 0.056, 0.057, 0.059, 0.058, 0.058, 0.053, 0.032, 0.012, 0.002,
-0.046, -0.071, -0.073, 0.064, 0.077, 0.076, 0.074, 0.073, 0.057, 0.029, 0.007,
0.012, -0.034, -0.065, -0.041, 0.074, 0.086, 0.093, 0.089, 0.08, 0.062, 0.049,
0.022, 0.028, -0.012, -0.002, -0.013, 0.079, 0.09, 0.106, 0.106, 0.096, 0.08,
0.068, 0.03, 0.064, 0.015, 0.011, -0.001]
----> bpRef: ['BETA1', 'ALPHA1']
----> gt.name: CnO_table
----> f.gtID: CnO_table
---> f.bp name: BETA1
----> f.bpVals: [0.0, 5.0, 10.0, 15.0, 20.0, 25.0, 30.0]
----> bpv: [[0.0, 5.0, 10.0, 15.0, 20.0, 25.0, 30.0]]
----> f.bp name: ALPHA1
----> f.bpVals: [-10.0, -5.0, 0.0, 5.0, 10.0, 15.0, 20.0, 25.0, 30.0, 35.0,
40.0, 45.0]
----> bpv: [[0.0, 5.0, 10.0, 15.0, 20.0, 25.0, 30.0], [-10.0, -5.0, 0.0, 5.0,
10.0, 15.0, 20.0, 25.0, 30.0, 35.0, 40.0, 45.0]]
----> depVar: cxq
----> f.dataTable: [-0.267, -0.11, 0.308, 1.34, 2.08, 2.91, 2.76, 2.05, 1.5,
1.49, 1.83, 1.21]
----> bpRef: ['ALPHA1']
----> gt.name: CXq_table
----> f.gtID: CXq_table
----> f.bp name: ALPHA1
----> f.bpVals: [-10.0, -5.0, 0.0, 5.0, 10.0, 15.0, 20.0, 25.0, 30.0, 35.0,
40.0, 45.0]
----> bpv: [[-10.0, -5.0, 0.0, 5.0, 10.0, 15.0, 20.0, 25.0, 30.0, 35.0, 40.0,
45.0]]
----> depVar: cyr
---> f.dataTable: [0.882, 0.852, 0.876, 0.958, 0.962, 0.974, 0.819, 0.483,
```

```
0.59, 1.21, -0.493, -1.04]
----> bpRef: ['ALPHA1']
----> gt.name: CYr_table
----> f.gtID: CYr_table
---> f.bp name: ALPHA1
----> f.bpVals: [-10.0, -5.0, 0.0, 5.0, 10.0, 15.0, 20.0, 25.0, 30.0, 35.0,
40.0, 45.0]
----> bpv: [[-10.0, -5.0, 0.0, 5.0, 10.0, 15.0, 20.0, 25.0, 30.0, 35.0, 40.0,
45.0]]
----> depVar: cyp
----> f.dataTable: [-0.108, -0.108, -0.188, 0.11, 0.258, 0.226, 0.344, 0.362,
0.611, 0.529, 0.298, -0.227
----> bpRef: ['ALPHA1']
----> gt.name: CYp_table
----> f.gtID: CYp_table
---> f.bp name: ALPHA1
----> f.bpVals: [-10.0, -5.0, 0.0, 5.0, 10.0, 15.0, 20.0, 25.0, 30.0, 35.0,
40.0, 45.0]
----> bpv: [[-10.0, -5.0, 0.0, 5.0, 10.0, 15.0, 20.0, 25.0, 30.0, 35.0, 40.0,
45.0]]
----> depVar: czq
----> f.dataTable: [-8.8, -25.8, -28.9, -31.4, -31.2, -30.7, -27.7, -28.2,
-29.0, -29.8, -38.3, -35.3]
----> bpRef: ['ALPHA1']
----> gt.name: CZq_table
----> f.gtID: CZq_table
----> f.bp name: ALPHA1
----> f.bpVals: [-10.0, -5.0, 0.0, 5.0, 10.0, 15.0, 20.0, 25.0, 30.0, 35.0,
40.0, 45.0]
----> bpv: [[-10.0, -5.0, 0.0, 5.0, 10.0, 15.0, 20.0, 25.0, 30.0, 35.0, 40.0,
45.0]]
----> depVar: clr
----> f.dataTable: [-0.126, -0.026, 0.063, 0.113, 0.208, 0.23, 0.319, 0.437,
0.68, 0.1, 0.447, -0.33]
---> bpRef: ['ALPHA1']
----> gt.name: Clr_table
----> f.gtID: Clr_table
----> f.bp name: ALPHA1
----> f.bpVals: [-10.0, -5.0, 0.0, 5.0, 10.0, 15.0, 20.0, 25.0, 30.0, 35.0,
40.0, 45.0]
----> bpv: [[-10.0, -5.0, 0.0, 5.0, 10.0, 15.0, 20.0, 25.0, 30.0, 35.0, 40.0,
45.0]]
----> depVar: clp
----> f.dataTable: [-0.36, -0.359, -0.443, -0.42, -0.383, -0.375, -0.329,
-0.294, -0.23, -0.21, -0.12, -0.1]
----> bpRef: ['ALPHA1']
----> gt.name: Clp_table
----> f.gtID: Clp_table
```

```
---> f.bp name: ALPHA1
----> f.bpVals: [-10.0, -5.0, 0.0, 5.0, 10.0, 15.0, 20.0, 25.0, 30.0, 35.0,
40.0, 45.0]
----> bpv: [[-10.0, -5.0, 0.0, 5.0, 10.0, 15.0, 20.0, 25.0, 30.0, 35.0, 40.0,
45.0]]
----> depVar: cmq
----> f.dataTable: [-7.21, -5.4, -5.23, -5.26, -6.11, -6.64, -5.69, -6.0, -6.2,
-6.4, -6.6, -6.0
----> bpRef: ['ALPHA1']
----> gt.name: Cmq_table
----> f.gtID: Cmq_table
---> f.bp name: ALPHA1
----> f.bpVals: [-10.0, -5.0, 0.0, 5.0, 10.0, 15.0, 20.0, 25.0, 30.0, 35.0,
40.0, 45.0]
----> bpv: [[-10.0, -5.0, 0.0, 5.0, 10.0, 15.0, 20.0, 25.0, 30.0, 35.0, 40.0,
45.0]]
----> depVar: cnr
----> f.dataTable: [-0.38, -0.363, -0.378, -0.386, -0.37, -0.453, -0.55,
-0.582, -0.595, -0.637, -1.02, -0.84]
---> bpRef: ['ALPHA1']
----> gt.name: Cnr_table
----> f.gtID: Cnr_table
----> f.bp name: ALPHA1
----> f.bpVals: [-10.0, -5.0, 0.0, 5.0, 10.0, 15.0, 20.0, 25.0, 30.0, 35.0,
40.0, 45.0]
----> bpv: [[-10.0, -5.0, 0.0, 5.0, 10.0, 15.0, 20.0, 25.0, 30.0, 35.0, 40.0,
45.0]]
----> depVar: cnp
----> f.dataTable: [0.061, 0.052, 0.052, -0.012, -0.013, -0.024, 0.05, 0.15,
0.13, 0.158, 0.24, 0.15]
----> bpRef: ['ALPHA1']
----> gt.name: Cnp_table
----> f.gtID: Cnp_table
----> f.bp name: ALPHA1
----> f.bpVals: [-10.0, -5.0, 0.0, 5.0, 10.0, 15.0, 20.0, 25.0, 30.0, 35.0,
40.0, 45.0]
----> bpv: [[-10.0, -5.0, 0.0, 5.0, 10.0, 15.0, 20.0, 25.0, 30.0, 35.0, 40.0,
45.0]]
----> depVar: dclda
----> f.dataTable: [-0.041, -0.052, -0.053, -0.056, -0.05, -0.056, -0.082,
-0.059, -0.042, -0.038, -0.027, -0.017, -0.041, -0.053, -0.053, -0.053, -0.05,
-0.051, -0.066, -0.043, -0.038, -0.027, -0.023, -0.016, -0.042, -0.053, -0.052,
-0.051, -0.049, -0.049, -0.043, -0.035, -0.026, -0.016, -0.018, -0.014, -0.04,
-0.052, -0.051, -0.052, -0.048, -0.048, -0.042, -0.037, -0.031, -0.026, -0.017,
-0.012, -0.043, -0.049, -0.048, -0.049, -0.043, -0.042, -0.042, -0.036, -0.025,
-0.021, -0.016, -0.011, -0.044, -0.048, -0.048, -0.047, -0.042, -0.041, -0.02,
-0.028, -0.013, -0.014, -0.011, -0.01, -0.043, -0.049, -0.047, -0.045, -0.042,
-0.037, -0.003, -0.013, -0.01, -0.003, -0.007, -0.008]
```

```
---> bpRef: ['BETA2', 'ALPHA1']
----> gt.name: dlda_table
----> f.gtID: dlda_table
----> f.bp name: BETA2
----> f.bpVals: [-30.0, -20.0, -10.0, 0.0, 10.0, 20.0, 30.0]
----> bpv: [[-30.0, -20.0, -10.0, 0.0, 10.0, 20.0, 30.0]]
---> f.bp name: ALPHA1
----> f.bpVals: [-10.0, -5.0, 0.0, 5.0, 10.0, 15.0, 20.0, 25.0, 30.0, 35.0,
40.0, 45.0]
----> bpv: [[-30.0, -20.0, -10.0, 0.0, 10.0, 20.0, 30.0], [-10.0, -5.0, 0.0,
5.0, 10.0, 15.0, 20.0, 25.0, 30.0, 35.0, 40.0, 45.0]]
----> depVar: dcldr
----> f.dataTable: [0.005, 0.017, 0.014, 0.01, -0.005, 0.009, 0.019, 0.005,
0.0, -0.005, -0.011, 0.008, 0.007, 0.016, 0.014, 0.014, 0.013, 0.009, 0.012,
0.005, 0.0, 0.004, 0.009, 0.007, 0.013, 0.013, 0.011, 0.012, 0.011, 0.009,
0.008, 0.005, 0.0, 0.005, 0.003, 0.005, 0.018, 0.015, 0.015, 0.014, 0.014,
0.014, 0.014, 0.015, 0.013, 0.011, 0.006, 0.001, 0.015, 0.014, 0.013, 0.013,
0.012, 0.011, 0.011, 0.01, 0.008, 0.008, 0.007, 0.003, 0.021, 0.011, 0.01,
0.011, 0.01, 0.009, 0.008, 0.01, 0.006, 0.005, 0.0, 0.001, 0.023, 0.01, 0.011,
0.011, 0.011, 0.01, 0.008, 0.01, 0.006, 0.014, 0.02, 0.0]
----> bpRef: ['BETA2', 'ALPHA1']
----> gt.name: dldr_table
----> f.gtID: dldr_table
----> f.bp name: BETA2
----> f.bpVals: [-30.0, -20.0, -10.0, 0.0, 10.0, 20.0, 30.0]
----> bpv: [[-30.0, -20.0, -10.0, 0.0, 10.0, 20.0, 30.0]]
----> f.bp name: ALPHA1
----> f.bpVals: [-10.0, -5.0, 0.0, 5.0, 10.0, 15.0, 20.0, 25.0, 30.0, 35.0,
40.0, 45.0]
----> bpv: [[-30.0, -20.0, -10.0, 0.0, 10.0, 20.0, 30.0], [-10.0, -5.0, 0.0,
5.0, 10.0, 15.0, 20.0, 25.0, 30.0, 35.0, 40.0, 45.0]]
----> depVar: dcnda
----> f.dataTable: [0.001, -0.027, -0.017, -0.013, -0.012, -0.016, 0.001,
0.017, 0.011, 0.017, 0.008, 0.016, 0.002, -0.014, -0.016, -0.016, -0.014,
-0.019, -0.021, 0.002, 0.012, 0.016, 0.015, 0.011, -0.006, -0.008, -0.006,
-0.006, -0.005, -0.008, -0.005, 0.007, 0.004, 0.007, 0.006, 0.006, -0.011,
-0.011, -0.01, -0.009, -0.008, -0.006, 0.0, 0.004, 0.007, 0.01, 0.004, 0.01,
-0.015, -0.015, -0.014, -0.012, -0.011, -0.008, -0.002, 0.002, 0.006, 0.012,
0.011, 0.011, -0.024, -0.01, -0.004, -0.002, -0.001, 0.003, 0.014, 0.006,
-0.001, 0.004, 0.004, 0.006, -0.022, 0.002, -0.003, -0.005, -0.003, -0.001,
-0.009, -0.009, -0.001, 0.003, -0.002, 0.001]
----> bpRef: ['BETA2', 'ALPHA1']
----> gt.name: dnda_table
----> f.gtID: dnda_table
----> f.bp name: BETA2
----> f.bpVals: [-30.0, -20.0, -10.0, 0.0, 10.0, 20.0, 30.0]
----> bpv: [[-30.0, -20.0, -10.0, 0.0, 10.0, 20.0, 30.0]]
----> f.bp name: ALPHA1
```

```
----> f.bpVals: [-10.0, -5.0, 0.0, 5.0, 10.0, 15.0, 20.0, 25.0, 30.0, 35.0,
40.0, 45.0]
---> bpv: [[-30.0, -20.0, -10.0, 0.0, 10.0, 20.0, 30.0], [-10.0, -5.0, 0.0,
5.0, 10.0, 15.0, 20.0, 25.0, 30.0, 35.0, 40.0, 45.0]]
----> depVar: dcndr
----> f.dataTable: [-0.018, -0.052, -0.052, -0.052, -0.054, -0.049, -0.059,
-0.051, -0.03, -0.037, -0.026, -0.013, -0.028, -0.051, -0.043, -0.046, -0.045,
-0.049, -0.057, -0.052, -0.03, -0.033, -0.03, -0.008, -0.037, -0.041, -0.038,
-0.04, -0.04, -0.038, -0.037, -0.03, -0.027, -0.024, -0.019, -0.013, -0.048,
-0.045, -0.045, -0.045, -0.045, -0.045, -0.047, -0.048, -0.049, -0.045, -0.033,
-0.016, -0.043, -0.044, -0.041, -0.041, -0.04, -0.038, -0.034, -0.035, -0.035,
-0.029, -0.022, -0.009, -0.052, -0.034, -0.036, -0.036, -0.035, -0.028, -0.024,
-0.023, -0.02, -0.016, -0.01, -0.014, -0.062, -0.034, -0.027, -0.028, -0.027,
-0.027, -0.023, -0.023, -0.019, -0.009, -0.025, -0.01
----> bpRef: ['BETA2', 'ALPHA1']
----> gt.name: dndr_table
----> f.gtID: dndr_table
---> f.bp name: BETA2
----> f.bpVals: [-30.0, -20.0, -10.0, 0.0, 10.0, 20.0, 30.0]
----> bpv: [[-30.0, -20.0, -10.0, 0.0, 10.0, 20.0, 30.0]]
---> f.bp name: ALPHA1
----> f.bpVals: [-10.0, -5.0, 0.0, 5.0, 10.0, 15.0, 20.0, 25.0, 30.0, 35.0,
40.0, 45.0]
----> bpv: [[-30.0, -20.0, -10.0, 0.0, 10.0, 20.0, 30.0], [-10.0, -5.0, 0.0,
5.0, 10.0, 15.0, 20.0, 25.0, 30.0, 35.0, 40.0, 45.0]]
Parse complete
Number of check cases: 17
trueAirspeed
angleOfAttack
angleOfSideslip
rollBodyRate
pitchBodyRate
yawBodyRate
elevatorDeflection
aileronDeflection
rudderDeflection
XBodyPositionOfCG
XBodyPositionOfMRC
referenceWingChord
referenceWingSpan
del
dail
drdr
CXO
CYO
CZ0
CZ1
```

```
tvt
b2v
cq2v
absbeta
absC10
absCn0
C10
CmO
Cn0
CXq
\mathtt{CYr}
CYp
CZq
Clr
Clp
Cmq
Cnr
Cnp
ClDA
ClDR
CnDA
CnDR
C11
Cn
aeroBodyForceCoefficient_X
aeroBodyForceCoefficient_Y
aeroBodyForceCoefficient_Z
aeroBodyMomentCoefficient_Roll
aeroBodyMomentCoefficient_Pitch
aeroBodyMomentCoefficient_Yaw
---- CheckModel -----
ERROR:root:internal: Negative sideslip -> [dcldr] Calculated 0.012, Expected
0.013532
ERROR:root:internal: Negative sideslip -> [dcnda] Calculated -0.006, Expected
-0.008298
ERROR:root:internal: Negative sideslip -> [dcndr] Calculated -0.04, Expected
ERROR:root:internal: Negative sideslip -> [cl1] Calculated 0.0, Expected
0.005615999999999999
ERROR:root:internal: Negative sideslip -> [cn1] Calculated -0.0, Expected
-0.00889199999999999
ERROR:root:internal: Negative sideslip -> [cl] Calculated 0.0, Expected
0.0056159999999999995
```

```
ERROR:root:internal: Negative sideslip -> [cn] Calculated
-0.001765919999999999, Expected -0.01065791999999999
ERROR:root:output: Negative sideslip -> [aeroRollBodyMomentCoefficient]
Calculated 0.0, Expected 0.005616
ERROR:root:output: Negative sideslip -> [aeroYawBodyMomentCoefficient]
Calculated -0.41530612733186895, Expected -0.01065792
ERROR:root:internal: Positive elevator -> [cxt] Calculated -0.025, Expected
-0.02860333333333333
ERROR:root:internal: Positive elevator -> [cmt] Calculated -0.127, Expected
-0.13206
ERROR:root:internal: Positive elevator -> [cx] Calculated -0.025, Expected
-0.02860333333333333
ERROR:root:internal: Positive elevator -> [cm] Calculated -0.1784192, Expected
-0.1834792
ERROR:root:output: Positive elevator -> [aeroXBodyForceCoefficient] Calculated
-0.025, Expected -0.02860333333333
ERROR:root:output: Positive elevator -> [aeroPitchBodyMomentCoefficient]
Calculated -0.1784192, Expected -0.1834792
ERROR:root:internal: Negative elevator -> [cxt] Calculated -0.063, Expected
-0.024220000000000005
ERROR:root:internal: Negative elevator -> [cmt] Calculated 0.196, Expected
0.11659333333333333
ERROR:root:internal: Negative elevator -> [cx] Calculated -0.063, Expected
-0.024220000000000005
ERROR:root:internal: Negative elevator -> [cm] Calculated 0.1642192, Expected
0.08481253333333333
ERROR:root:output: Negative elevator -> [aeroXBodyForceCoefficient] Calculated
-0.063, Expected -0.02422
ERROR:root:output: Negative elevator -> [aeroPitchBodyMomentCoefficient]
Calculated 0.1642192, Expected 0.08481253333333
ERROR:root:internal: Skewed inputs -> [cxt] Calculated 0.094, Expected
0.08915927333333333
ERROR:root:internal: Skewed inputs -> [czt] Calculated -1.053, Expected -1.12812
ERROR:root:internal: Skewed inputs -> [cz1] Calculated -1.0843419673257337,
Expected -1.1592217522084587
ERROR:root:internal: Skewed inputs -> [absCl0] Calculated 0.0, Expected
ERROR:root:internal: Skewed inputs -> [absCn0] Calculated 0.0, Expected
0.0108864
ERROR:root:internal: Skewed inputs -> [clt] Calculated -0.0, Expected 0.014256
ERROR:root:internal: Skewed inputs -> [cmt] Calculated 0.01, Expected
-0.03276327333333333
ERROR:root:internal: Skewed inputs -> [cnt] Calculated -0.0, Expected -0.0108864
ERROR:root:internal: Skewed inputs -> [cxq] Calculated 2.91, Expected 2.874
ERROR:root:internal: Skewed inputs -> [cyr] Calculated 0.974, Expected 0.9368
ERROR:root:internal: Skewed inputs -> [cyp] Calculated 0.226, Expected
0.25432000000000005
```

ERROR:root:internal: Skewed inputs -> [czq] Calculated -30.7, Expected

```
-29.9799999999997

ERROR:root:internal: Skewed inputs -> [clr] Calculated 0.23, Expected 0.2513600000000003

ERROR:root:internal: Skewed inputs -> [clp] Calculated -0.375, Expected -0.36396

ERROR:root:internal: Skewed inputs -> [cmq] Calculated -6.64, Expected -6.412

ERROR:root:internal: Skewed inputs -> [cnr] Calculated -0.453, Expected -0.4762800000000004

FRROR:root:internal: Skewed inputs -> [cnr] Calculated -0.024 Expected
```

ERROR:root:internal: Skewed inputs -> [cnp] Calculated -0.024, Expected -0.00623999999999992

ERROR:root:internal: Skewed inputs -> [dclda] Calculated -0.049, Expected -0.0468839999999995

ERROR:root:internal: Skewed inputs -> [dcldr] Calculated 0.009, Expected 0.01230224

ERROR:root:internal: Skewed inputs -> [dcnda] Calculated -0.008, Expected -0.00544127999999999

ERROR:root:internal: Skewed inputs -> [dcndr] Calculated -0.038, Expected -0.04297872

ERROR:root:internal: Skewed inputs -> [cl1] Calculated -0.0196496, Expected -0.004913040127999998

ERROR:root:internal: Skewed inputs \rightarrow [cn1] Calculated 0.00072699999999999, Expected -0.008683799472

ERROR:root:internal: Skewed inputs -> [cx] Calculated 0.05227447999999999, Expected 0.04794994533333333

ERROR:root:internal: Skewed inputs -> [cy] Calculated 0.0248125, Expected 0.02735386000000008

ERROR:root:internal: Skewed inputs -> [cz] Calculated -0.644144900659067, Expected -0.7293485255417921

ERROR:root:internal: Skewed inputs -> [cl] Calculated -0.0409596, Expected -0.026917840128000005

ERROR:root:internal: Skewed inputs -> [cm] Calculated -0.04101214578294153, Expected -0.10638585796465347

ERROR:root:internal: Skewed inputs -> [cn] Calculated 0.01922069358333333,
Expected 0.011183654767653334

ERROR:root:output: Skewed inputs -> [aeroXBodyForceCoefficient] Calculated
0.05227447999999999, Expected 0.04794994533333

ERROR:root:output: Skewed inputs -> [aeroYBodyForceCoefficient] Calculated 0.0248125, Expected 0.02735386

ERROR:root:output: Skewed inputs -> [aeroZBodyForceCoefficient] Calculated -0.644144900659067, Expected -0.72934852554344

ERROR:root:output: Skewed inputs -> [aeroRollBodyMomentCoefficient] Calculated -0.0409596, Expected -0.026917840128

ERROR:root:output: Skewed inputs -> [aeroPitchBodyMomentCoefficient] Calculated -0.04101214578294153, Expected -0.10638585796503

ERROR:root:output: Skewed inputs -> [aeroYawBodyMomentCoefficient] Calculated 0.01922069358333333, Expected 0.01118365476765

⁻⁻⁻⁻ END CheckModel -----

Environments

Create a planet class that has an atmosphere and gravity model.

1.6.1 US Standard Atmosphere 1976

The height is geopotential height (Z) in meters above MSL. The reference for the US Standard Atmosphere 1976. The reference for the pressure equation.

Layer	Height (m)	Pressure (Pa)	Temperature (K)	Temperature Lapse Rate (K/m)
0	0	101,325	288.15	-0.0065
1	11,000	22,632.1	216.65	0
2	20,000	5,474.89	216.65	0.001
3	32,000	868.019	228.65	0.0028
4	47,000	110.906	270.65	0
5	51,000	66.9389	270.65	-0.0028
6	71,000	3.95642	214.65	-0.002

1.6.2 Gravity

The J_2 gravity model. Reference is Aircraft Control and Simulation, Third Edition on page 25.

$$G^{ecef} = -\frac{GM}{r^2}\mathbf{p}$$

$$\mathbf{p_x} = [1 + 1.5(\frac{a}{r})^2 J_2 (1 - 5\sin^2 \psi)] p_x / r$$

$$\begin{aligned} \mathbf{p_x} &= [1 + 1.5(\frac{a}{r})^2 J_2 (1 - 5 \mathrm{sin}^2 \psi)] \; p_x / r \\ \mathbf{p_y} &= [1 + 1.5(\frac{a}{r})^2 J_2 (1 - 5 \mathrm{sin}^2 \psi)] \; p_y / r \\ \mathbf{p_z} &= [1 + 1.5(\frac{a}{r})^2 J_2 (3 - 5 \mathrm{sin}^2 \psi)] \; p_z / r \end{aligned}$$

$$\mathbf{p_z} = [1 + 1.5(\frac{a}{r})^2 J_2(3 - 5\sin^2 \psi)] p_z/r$$

where p_x , p_y and p_z are ECEF position components and $\sin(\psi) = p_z/r$.

The equations for the WGS84 gravity model.

$$e=\frac{\sqrt{a^2-b^2}}{a},\,a=$$
 semi-major axis, $b=$ semi-minor axis $N=\frac{a}{(1-e^2\sin^2\phi)^{1/2}},\,\phi=$ geodetic Latitude

$$N = \frac{a}{(1-e^2\sin^2\phi)^{1/2}}, \ \phi = \text{geodetic Latitude}$$

$$P_r(h,\phi) = (N+h)\cos\phi, h = \text{altitude MSL}$$

$$g_0 = \frac{a(g_e)\cos^2\phi + b(g_p)\sin^2\phi}{\sqrt{a^2\cos^2\phi + b^2\sin^2\phi}}$$

$$g_0 = \frac{a(g_e)\cos^2\phi + b(g_p)\sin^2\phi}{\sqrt{a^2\cos^2\phi + b^2\sin^2\phi}}$$

$$f = \frac{a-b}{a}, m = \frac{\omega^2 a^2 b}{GM}, \omega = \text{Earth rotation rate}$$

$$g_h = g_0 \left[1 - \frac{2h}{a} \left(1 + f + m - 2f \sin^2 \phi\right) + \frac{3h^2}{a^2}\right]$$

where
$$g_e = \text{gravity}$$
 at the equator (9.7803253359) and $g_p = \text{gravity}$ at the poles (9.8321849378) $f = \frac{a-b}{a}, m = \frac{\omega^2 a^2 b}{GM}, \omega = \text{Earth rotation rate}$ $g_h = g_0[1 - \frac{2h}{a}(1 + f + m - 2f\sin^2\phi) + \frac{3h^2}{a^2}]$ $\vec{g}_h = -g_h \begin{pmatrix} \cos\phi \cos\lambda \\ \cos\phi \sin\lambda \\ \sin\phi \end{pmatrix}, \lambda = \text{geodetic Longitude}$

$$a_{hc} = \omega^2 P_2(h, \phi)$$

$$a_{hc} = \omega^2 P_2(h, \phi)$$

$$\vec{a_{hc}} = a_{hc} \begin{pmatrix} \cos \lambda \\ \sin \lambda \\ 0 \end{pmatrix}$$

$$\begin{split} g^{\vec{}}_{hG} &= g^{\vec{}}_{h} - a^{\vec{}}_{hc} \\ g_{hG} &= |g^{\vec{}}_{hG}| = \sqrt{g^2_{hGx} + g^2_{hGy} + g^2_{hGz}} \end{split}$$

1.6.3 ECEF to LLA

J. Zhu. Conversion of earth-centered earth-fixed coordinates to geodetic coordinates. Technical Report IEEE Log NO. T-AES/30/3/1666, IEEE, December 1993.

Reference for PcpfToLlaOsen is: Karl Osen. Accurate Conversion of Earth-Fixed Earth-Centered Coordinates to Geodetic Coordinates. Research Report Norwegian University of Science and Technology. 2017. ffhal-01704943v2f located here.

1.6.4 Planet Base Class

```
[12]: class ppPlanet(ppUnitTest):
          GM = 0
          J2 = 0
          Latitude = 0
          Longitude = 0
          Altitude = 0
          RotationRate = 0
          SemiMajor = 0
          Flattening = 0
          SemiMinor
                     = 0
          Eccentricity = 0
          EccentricitySquared = 0
          def CalcSemiMinor(self):
              self.SemiMinor = self.SemiMajor * ( 1.0 - self.Flattening )
          def CalcEccentricity(self):
              a = self.SemiMajor
              b = self.SemiMinor
              self.Eccentricity = (math.sqrt( a * a - b * b ) / a)
              self.EccentricitySquared = (self.Eccentricity) ** 2
          def LlaToPcpf(self):
              a = self.SemiMajor
              e2 = self.EccentricitySquared
              sinLat = math.sin( self.Latitude )
              N = a / math.sqrt(1.0 - (e2*sinLat*sinLat))
             cosLat = math.cos( self.Latitude )
              # set the planet centered, planet fixed (PCPF) x,y,z vector in meters
              x = (N + self.Altitude) * cosLat * math.cos(self.Longitude)
              y = (N + self.Altitude) * cosLat * math.sin(self.Longitude)
```

```
z = (N*(1.0 - e2) + self.Altitude) * sinLat
                return x, y, z
      def PcpfToLlaZhu(self, x, y, z):
               a = self.SemiMajor
               b = self.SemiMinor
                e = self.Eccentricity
                e2 = self.EccentricitySquared
               assert b != 0, "SemiMinor axis is 0"
               ep = e * a / b
               ep2 = ep * ep
               r = math.sqrt(x*x + y*y)
               F = 54.0 * b*b * z*z
               G = r*r + (1.0 - e2) * z*z - e2*(a*a - b*b)
               c = e2*e2*F*r*r/(G*G*G)
                s = (1.0 + c + math.sqrt(c*c + 2.0*c)) ** (1.0 / 3.0)
               P = F / (3.0*((s + 1.0/s + 1.0)**2.0)*G*G)
                Q = math.sqrt(1.0 + 2.0 * e2*e2 * P)
               r0 = -P*e2*r/(1.0 + Q) + math.sqrt(0.5*a*a*(1.0 + 1.0/Q) - (P*(1.0 + 1.0/Q)) - (P*(1
\rightarrow 0-e2)*z*z)/(Q + Q*Q) - 0.5*P*r*r)
                U = math.sqrt( (r-e2*r0)**2.0 + z*z )
               V = math.sqrt( (r-e2*r0)**2.0 + (1.0 - e2)*z*z )
                z0 = (b*b*z)/(a*V)
                self.Latitude = math.atan((z + ep2*z0)/r)
                self.Longitude = math.atan2(y , x)
                self.Altitude = U * (1.0 - (b*b)/(a*V))
      def PcpfToLlaOsen(self, x, y, z):
               WGS84 INVAA = +2.45817225764733181057e-0014 # 1/(a^2)
               WGS84\_EED2 = +3.34718999507065852867e-0003 # (e^2)/2
               WGS84 EEEE = +4.48147234524044602618e-0005 # e^{2}
                WGS84 EEEED4 = +1.12036808631011150655e-0005 # (e^4)/4
               WGS84_P1MEE = +9.93305620009858682943e-0001 # 1-(e^2)
                WGS84 P1MEEDAA = +2.44171631847341700642e-0014 \# (1-(e^2))/(a^2)
                WGS84 INVCBRT2 = +7.93700525984099737380e-0001 # 1/(2^(1/3))
                WGS84 INV3 = +3.333333333333333333333-0001 # 1/3
                                               WGS84_INV6
               ww = x * x + y * y
               m = ww * WGS84_INVAA
               n = z * z * WGS84_P1MEEDAA
               mpn = m + n
               p = WGS84_INV6 * (mpn - WGS84_EEEE)
                G = m * n * WGS84_EEEED4
```

```
H = 2 * p * p * p + G
C = ((H + G + 2 * math.sqrt(H * G))**WGS84_INV3) * WGS84_INVCBRT2
assert C != 0, "PcpfToLLaOsen C is 0"
i = -WGS84\_EEEED4 - 0.5 * mpn
P = p * p
beta = WGS84_INV3 * i - C - (P / C)
k = WGS84_EEEED4 * (WGS84_EEEED4 - mpn)
# Compute left part of t
t1 = beta * beta - k
assert t1 >= 0, "PcpfToLLaOsen t1 is negative. t1: {0}".format(t1)
t2 = math.sqrt(t1)
t3 = t2 - 0.5 * (beta + i)
assert t3 >= 0, "PcpfToLLaOsen t3 is negative"
t4 = math.sqrt(t3)
# Compute right part of t
t5 = 0.5 * (beta - i)
# t5 may accidentally drop just below zero due to numeric turbulence
# This only occurs at latitudes close to +- 45.3 degrees
t5 = abs(t5)
t6 = math.sqrt(t5)
t7 = t6 \text{ if } (m < n) \text{ else } -t6
# Add left and right parts
t = t4 + t7
# Use Newton-Raphson's method to compute t correction
j = WGS84\_EED2 * (m - n)
g = 2 * j
tt = t * t
ttt = tt * t
tttt = tt * tt
F = tttt + 2 * i * tt + g * t + k
dFdt = 4 * ttt + 4 * i * t + g;
dt = -F / dFdt
# compute latitude (range -PI/2..PI/2)
u = t + dt + WGS84\_EED2
v = t + dt - WGS84\_EED2
w = math.sqrt(ww)
zu = z * u
wv = w * v
self.Latitude = math.atan2(zu, wv)
# compute altitude
assert (u*v) != 0, "PcpfToLlaOsen (u*v) is 0"
invuv = 1 / (u * v)
dw = w - wv * invuv
```

```
dz = z - zu * WGS84_P1MEE * invuv
da = math.sqrt(dw * dw + dz * dz)
self.Altitude = -da if (u < 1) else da

# compute longitude (range -PI..PI)
self.Longitude = math.atan2(y, x);</pre>
```

1.6.5 Earth Class

```
[13]: class ppEarth(ppPlanet):
         def __init__(self):
                                              # GM constant in m3/s2
            self.GM = 3.986004418e14
            self.J2 = 1.082626684e-3
            self.RotationRate = 7.292115e-5 # Earth Rotation Rate (rad/sec, East)
            self.SemiMajor = 6378137.0 # WGS84 defined
            self.Flattening = 1/298.257223563 # WGS84 defined
            self.CalcSemiMinor()
            self.CalcEccentricity()
         def StdAtm1976(self, altitude):
            # Geopotential Alt (m) table ranges for 1976 US standard atmosphere
            # 0 1 2 3 4 5 6
            Z = [0.0, 11000.0, 20000.0, 32000.0, 47000.0, 51000.0, 71000.0]
            # Temperature (K) at start of air layer
            # 0 11000 20000 32000 47000 51000 71000
            T = [288.15, 216.65, 216.65, 228.65, 270.65, 270.65, 214.65]
            # Pressure (Pa) at start air layer
            # 0 11000 20000 32000 47000 51000 71000
            P = [101325.0, 22632.10, 5474.89, 868.02, 110.91, 66.94, 3.96]
            # Temperature Gradient (K/m) for the altitude ranges
            # 0 11000 20000 32000 47000 51000 71000
            TG = [-6.5e-3, 0, 1.0e-3, 2.8e-3, 0, -2.8e-3, -2.0e-3]
            radiusEarth = 6356766.0 # Earth radius for geopotential alt conversion
                               # pressure at sea level (Pa)
            p0 = 101325.0
                                 # Gas constant (N m / kg K)
# gravity at sea level (m / s^2)
            Rgc = 287.0528
            g0 = 9.806645
            M = 0.0289644
                                  # molar mass of Earth's air (kg/mol)
            Rstar = 8.3144598 # universal gas constant [J/(mol \cdot K)]
            airGamma = 1.4
                                  # gamma value for air
            # Convert geometric altitude to geopotential as the standard atmosphere
```

```
# altitude layers are geopotential.
       z0 = radiusEarth * altitude / (radiusEarth + altitude)
       # get the index of the atmosphere layer
       i = -1
       count = 0
       for z in Z:
           if count != 0:
               if z0 < z and i == -1:
                   i = count - 1
           count += 1
       deltaZ = z0 - Z[i]
       temperature = TG[i] * deltaZ + T[i]
       temperature = temperature if (temperature > 0.0) else 0
       pressure = 0
       # The pressure is calculated differently depending
       # on the temperature lapse rate of the air layer.
       if abs(TG[i]) < 1e-12:</pre>
           pressure = P[i] * math.exp( (-g0 * M * deltaZ) / (Rstar * T[i]) )
       else:
           pe = (-g0 * M) / (Rstar * TG[i])
           pressure = P[i] * ((T[i] + TG[i] * deltaZ) / T[i])**pe
       airDensity = (pressure / (Rgc * temperature)) if (temperature > 0.0)
⇔else 0
       assert temperature >= 0, "temp: {}, alt: {}".format(temperature, __
→altitude)
       speedOfSoundMps = math.sqrt( airGamma * Rgc * temperature )
       return airDensity, temperature, pressure, speedOfSoundMps
   def AirDensity(self, altitude):
       result = self.StdAtm1976(altitude)
       return result[0]
   def GravityConstant(self):
       return 9.80665
   def GravityWgs84(self, latRad, lonRad, h):
       a = self.SemiMajor
       b = self.SemiMinor
       E = self.Eccentricity
       sinPhi = math.sin(latRad)
```

```
sin2Phi = sinPhi**2
       N = a / math.sqrt(1 - E*E*sin2Phi)
       cosPhi = math.cos(latRad)
       cos2Phi = cosPhi**2
       Pr = (N + h) * cosPhi
       ge = 9.7803253359
       gp = 9.8321849378
       g0 = (a*ge + cos2Phi + b*gp*sin2Phi) / math.sqrt(a*a*cos2Phi +
→b*b*sin2Phi)
       f = (a - b) / a
       w = self.RotationRate
       m = w*w*a*a*b / self.GM
       gh = g0*(1 - 2/a * (1 + f + m - 2*f*sin2Phi)*h + (3*h*h)/(a*a))
       cosLambda = math.cos(lonRad)
       sinLambda = math.sin(lonRad)
       #Ghx = -gh * cosPhi
       GhX = -gh*cosPhi*cosLambda
       GhY = -gh*cosPhi*sinLambda
       GhZ = -gh*sinPhi
       ahc = w*w*Pr
       AhcX = ahc*cosLambda
       AhcY = ahc*sinLambda
       AhcZ = 0
       GhGX = GhX - AhcX
       GhGY = GhY - AhcY
       GhGZ = GhZ - AhcZ
       return GhGX, GhGZ, GhGZ
   def GravityJ2(self, x, y, z):
       r2 = x*x + y*y + z*z
       r = math.sqrt(r2)
       assert r != 0, "Gravity J2 r is 0"
       gmOverR3 = -self.GM / (r**3)
       j2Term = (1.5 * self.J2) * (self.SemiMajor)**2 / (r**4)
       z2 = 5.0 * z * z
       gx = x * gmOverR3 * (1 - j2Term*(z2 - r2))
       gy = y * gmOverR3 * (1 - j2Term*(z2 - r2))
       gz = z * gmOverR3 * (1 - j2Term*(z2 - 3*r2))
       return gx, gy, gz
   def GravityJ2SL(self, x, y, z):
       r = math.sqrt(x*x + y*y + z*z)
       assert r != 0, "Gravity J2 r is 0"
```

```
sinPsi2 = (z / r)**2
       aOverR2 = 1.5 * self.J2 * (self.SemiMajor / r)**2
       gmOverR2 = -self.GM/(r**2)
       gx = gmOverR2 * (1 + aOverR2 * (1.0 - 5.0*sinPsi2)) * (x / r)
       gy = gmOverR2 * (1 + aOverR2 * (1.0 - 5.0*sinPsi2)) * (y / r)
       gz = gmOverR2 * (1 + aOverR2 * (3.0 - 5.0*sinPsi2)) * (z / r)
       return gx, gy, gz
   def GravityR2(self, x, y, z):
       r2 = x*x + y*y + z*z
       assert r2 != 0, "GravityR2 r2 is 0"
       return self.GM/r2
   def UnitTest(self):
       self.TestValue(6356752, self.SemiMinor, "ppEarth b", 1)
       self.TestValue(8.18191908426e-2, self.Eccentricity, "ppEarthu
# TODO: fix gravity unit tests
       #self.TestValue(9.7879, self.GravityJ2(0,0), "ppEarth gravity", 1e-4)
       #self.TestValue(9.7848, self.GravityJ2(1000,math.radians(12.34)),
→ "ppEarth gravity", 1e-4)
       #self.TestValue(9.7725, self.GravityJ2(5000,math.radians(24.6621)), u
→ "ppEarth gravity", 1e-4)
       #self.TestValue(9.72, self.GravityJ2(25000,math.radians(45.0)),
→ "ppEarth gravity", 1e-2)
       #self.TestValue(9.56, self.GravityJ2(75000,math.radians(65.0)),
→ "ppEarth gravity", 1e-2)
       di = 0 # air density index
       self.TestValue(1.225, self.StdAtm1976(0)[di], "ppEarth StdAtm1976_
→Density Om", 1e-3)
       ti = 1 # temperature index
       self.TestValue(288.15, self.StdAtm1976(0)[ti], "ppEarth StdAtm1976 Tempu
\rightarrow 0m", 1e-2)
       self.TestValue(275.156, self.StdAtm1976(2000)[ti], "ppEarth StdAtm1976"
\hookrightarrowTemp 2km", 1e-2)
       self.TestValue(255.676, self.StdAtm1976(5000)[ti], "ppEarth StdAtm1976"
\hookrightarrowTemp 5km", 1e-2)
       self.TestValue(216.65, self.StdAtm1976(12000)[ti], "ppEarth StdAtm1976_L
→Temp 12km", 1e-2)
       self.TestValue(222.544, self.StdAtm1976(26000)[ti], "ppEarth StdAtm1976_L
\rightarrowTemp 26km", 1e-2)
```

```
pi = 2 # pressure index
       self.TestValue(101325, self.StdAtm1976(0)[pi], "ppEarth StdAtm1976<sub>U</sub>
→Press Om", 1)
       self.TestValue(79505.1, self.StdAtm1976(2000)[pi], "ppEarth StdAtm1976_L
→Press 2km", 10)
       self.TestValue(54048.8, self.StdAtm1976(5000)[pi], "ppEarth StdAtm1976_
→Press 5km", 10)
       self.TestValue(19401, self.StdAtm1976(12000)[pi], "ppEarth StdAtm1976_
→Press 12km", 10)
       self.TestValue(2188.41, self.StdAtm1976(26000)[pi], "ppEarth StdAtm1976_L
→Press 26km", 1)
       si = 3 # speed of sound index
       self.TestValue(340.294, self.StdAtm1976(0)[si], "ppEarth StdAtm1976_
\hookrightarrowSound Om", 1e-3)
       self.PcpfToLlaOsen(1191786.0, -5157122.0, 3562840.0)
       self.TestValue(34.123456, math.degrees(self.Latitude), "ppPlanet latu
\hookrightarrow Olsen", 1e-6)
       self.TestValue(-76.987654, math.degrees(self.Longitude), "ppPlanet long"
→Olsen", 1e-6)
       self.TestValue(9000.0, self.Altitude, "ppPlanet alt Olsen", 1)
       self.PcpfToLlaZhu(1191786.0, -5157122.0, 3562840.0)
       self.TestValue(34.123456, math.degrees(self.Latitude), "ppPlanet latu
\rightarrowZhu", 1e-6)
       self.TestValue(-76.987654, math.degrees(self.Longitude), "ppPlanet lonu

→Zhu", 1e-6)

       self.TestValue(9000.0, self.Altitude, "ppPlanet alt Zhu", 1)
       self.Latitude = math.radians(34.123456)
       self.Longitude = math.radians(-76.987654)
       self.Altitude = 9000.0
       [x, y, z] = self.LlaToPcpf()
       self.TestValue(1191786.0, x, "ppPlanet X", 1)
       self.TestValue(-5157122.0, y, "ppPlanet Y", 1)
       self.TestValue(3562840.0, z, "ppPlanet Z", 1)
       print("Number of ppEarth failed tests: ", self.FailCount)
```

1.6.6 Moon Class

The reference for the moon parameters is NESC Academy Presentation.

```
[14]: class ppMoon(ppPlanet):
          def __init__(self):
              self.RotationRate = 2.6617072235e-6 # Moon Rotation Rate (rad/sec, L
       \rightarrow East)
              self.GM = 4.90154449e12
              self.SemiMajor = 1738140.0
              self.Flattening = 1.0 / 800.98618
              self.CalcSemiMinor()
              self.CalcEccentricity()
          def AirDensity(self, altitude):
              return 0
          def Gravity(self, altitude, latRad):
              r = altitude + self.SemiMajor
              gravity = self.GM/r/r
              return gravity
          def UnitTest(self):
              self.TestValue(1.62242, self.Gravity(0,0), "ppMoon gravity", 1e-6)
              print("Number of ppMoon failed tests: ", self.FailCount)
```

1.6.7 Mars Class

The reference for the Mars atmosphere model.

```
[15]: class ppMars(ppPlanet):
    def __init__(self):
        self.GM = 42828.371901284e9
        self.RotationRate = 7.0882181e-5  # Mars Rotation Rate (rad/sec, East)
        self.SemiMajor = 3.396196e6
        self.J2 = 0.00195545367944545
        self.CalcSemiMinor()

def AirDensity(self, altitude):
        temperatureC = 0
        if altitude > 7000:
            temperatureC = -31 - 0.000998 * altitude
        else:
            temperatureC = -23.4 - 0.00222 * altitude

        pressureKPa = 0.699 * math.exp( -0.00009 * altitude )
        airDensity = pressurePa / (0.1921 * (temperatureC + 273.1))
```

```
return airDensity
          def Gravity(self, altitude, latRad):
              marsGM = self.GM
              marsRadiusMeter = self.SemiMajor
              J2 = self.J2
              J3 = 3.14498094262035e-5
              J4 = -1.53773961526397e-5
              cosPhi = math.cos( 0.5*math.pi - latRad )
              r = altitude + marsRadiusMeter
              rr = marsRadiusMeter / r
              gravity = marsGM*(1.0 - 1.5 * J2 * ( 3.0 * cosPhi*cosPhi - 1.0 ) *_{\sqcup}
       →rr*rr - 2.0 * J3 * cosPhi
                  * (5.0 * cosPhi*cosPhi - 3.0 ) * rr*rr*rr - (5.0/8.0) * J4 * (35.
       \rightarrow 0 * cosPhi**4
                  - 30.0 * cosPhi*cosPhi + 3.0 ) * rr**4.0 ) / (r*r);
              return gravity
          def UnitTest(self):
              self.TestValue(3.724179, self.Gravity(0,0), "ppMars gravity", 1e-6)
              print("Number of ppMars failed tests: ", self.FailCount)
[16]: earth = ppEarth()
      earth.UnitTest()
      moon = ppMoon()
      moon.UnitTest()
     mars = ppMars()
      mars.UnitTest()
      def ToGeopotential(altitude):
          radiusEarth = 6356766.0
          z0 = radiusEarth * altitude / (radiusEarth + altitude)
          return round(z0)
      alt = [0, 2000, 5000, 12000, 26000, 37500, 50000, 60000, 75000]
      print("\nGeopotential table")
      for a in alt:
          geoTable = "{:=6d} -> {:=6d}".format(a, ToGeopotential(a))
          print(geoTable)
```

```
print("=== gravity ===")
      print("-- J2 --")
      myGx, myGy, myGz = earth.GravityJ2( earth.SemiMajor + 9144, 0, 0)
      print(myGx, myGy, myGz)
      print("-- J2 Steven & Lewis --")
      myGx, myGy, myGz = earth.GravityJ2SL( earth.SemiMajor + 9144, 0, 0)
      print(myGx, myGy, myGz)
      print("-- WGS84 --")
      wgx, wgy, wgz = earth. Gravity Wgs84(0.0, 0.0, 9144.0) # 30,000 ft
      print(wgx, wgy, wgz)
     Number of ppEarth failed tests: 0
     Number of ppMoon failed tests: 0
     Number of ppMars failed tests: 0
     Geopotential table
          0 ->
                    0
       2000 -> 1999
       5000 -> 4996
      12000 -> 11977
      26000 -> 25894
      37500 -> 37280
      50000 -> 49610
      60000 -> 59439
      75000 -> 74125
     === gravity ===
     -- J2 --
     -9.786072112297859 -0.0 -0.0
     -- J2 Steven & Lewis --
     -9.786072112297857 -0.0 -0.0
     -- WGS84 --
     -9.786116284019755 -0.0 -0.0
[17]: import matplotlib.pyplot as plt
      h = []
      t76 = []
      for i in range(90):
         alt = i * 1000.0
          h.append(i)
          [airDensity, temperature, pressure, speedOfSoundMps] = earth.StdAtm1976(alt)
          t76.append(temperature)
      plt.plot(t76, h, '-.', color='blue')
      plt.xlabel('temperature (K)')
```

```
plt.ylabel('altitude (km)')
plt.title('Standard Atmosphere 1976')
plt.xlim([100, 300])
plt.ylim([0, 100])
#plt.grid()
```

[17]: (0.0, 100.0)


```
[18]: from IPython.display import Image
Image(url= "images/StdAtm1976.png")
```

[18]: <IPython.core.display.Image object>

1.7 Vector Class

Make a vector class for 3 element vectors.

```
class ppVector3(ppUnitTest):

    def __init__(self, x, y, z):
        self.X = x
        self.Y = y
        self.Z = z
```

```
# defining how to print the class
def __str__(self):
   return "(%s, %s, %s)" % (self.X, self.Y, self.Z)
# overloading the + to add vectors
def __add__(self, o):
   x = self.X + o.X
   y = self.Y + o.Y
   z = self.Z + o.Z
   return ppVector3(x,y,z)
# overloading the - to subtract vectors
def __sub__(self, o):
   x = self.X - o.X
   y = self.Y - o.Y
   z = self.Z - o.Z
   return ppVector3(x,y,z)
# overloading the ^ for cross product
def __xor__(self, o):
   x = self.Y * o.Z - self.Z * o.Y
   y = self.Z * o.X - self.X * o.Z
   z = self.X * o.Y - self.Y * o.X
   return ppVector3(x,y,z)
# overloading the * to multiply scalars to a vector
def __mul__(self, s):
   x = self.X * s
   y = self.Y * s
   z = self.Z * s
   return ppVector3(x,y,z)
# overloading the / to divide a vector by a scalar
def __truediv__(self, s):
   x = self.X / s
   y = self.Y / s
   z = self.Z / s
   return ppVector3(x,y,z)
__rmul__ = __mul__
def Set(self, x, y, z):
   self.X = x
   self.Y = y
   self.Z = z
def Magnitude(self):
```

```
magnitude = math.sqrt(self.X*self.X + self.Y*self.Y + self.Z*self.Z)
    return magnitude
def UnitTest(self):
   v1 = ppVector3(21,33,19)
   self.TestValue(21, v1.X, "ppVector3 init X", 1e-6)
    self.TestValue( 33, v1.Y, "ppVector3 init Y", 1e-6)
   self.TestValue( 19, v1.Z, "ppVector3 init Z", 1e-6)
   v2 = ppVector3(21,33,19)
   v3 = ppVector3(79,67,81)
    v1 = v2 + v3
   self.TestValue( 100, v1.X, "ppVector3 add X", 1e-6)
   self.TestValue( 100, v1.Y, "ppVector3 add Y", 1e-6)
    self.TestValue( 100, v1.Z, "ppVector3 add Z", 1e-6)
   v4 = ppVector3(0,3,-4)
    self.TestValue(5, v4.Magnitude(), "ppVector3 magnitude", 1e-6)
   v4.Set(87, 16.9, -3.1)
    self.TestValue( 87, v4.X, "ppVector3 Set X", 1e-6)
    self.TestValue( 16.9, v4.Y, "ppVector3 Set Y", 1e-6)
    self.TestValue( -3.1, v4.Z, "ppVector3 Set Z", 1e-6)
   v5 = v3 - v2
    self.TestValue(58, v5.X, "ppVector3 sub X", 1e-6)
   self.TestValue( 34, v5.Y, "ppVector3 sub Y", 1e-6)
   self.TestValue( 62, v5.Z, "ppVector3 sub Z", 1e-6)
    v5 = v2 - v3
    self.TestValue( -58, v5.X, "ppVector3 sub X", 1e-6)
   self.TestValue( -34, v5.Y, "ppVector3 sub Y", 1e-6)
   self.TestValue( -62, v5.Z, "ppVector3 sub Z", 1e-6)
   v6 = ppVector3(4,12,2)
   v7 = ppVector3(13,5,7)
    v8 = v6 ^ v7
    self.TestValue( 74, v8.X, "ppVector3 cross X", 1e-6)
    self.TestValue( -2, v8.Y, "ppVector3 cross Y", 1e-6)
    self.TestValue( -136, v8.Z, "ppVector3 cross Z", 1e-6)
    v9 = 2 * v6
    self.TestValue( 8, v9.X, "ppVector3 mul X", 1e-6)
   self.TestValue( 24, v9.Y, "ppVector3 mul Y", 1e-6)
   self.TestValue( 4, v9.Z, "ppVector3 mul Z", 1e-6)
   v10 = v7 / 2
    self.TestValue( 6.5, v10.X, "ppVector3 div X", 1e-6)
    self.TestValue( 2.5, v10.Y, "ppVector3 div Y", 1e-6)
   self.TestValue( 3.5, v10.Z, "ppVector3 div Z", 1e-6)
    v11 = v10
   self.TestValue( 6.5, v11.X, "ppVector3 = X", 1e-6)
   self.TestValue( 2.5, v11.Y, "ppVector3 = Y", 1e-6)
    self.TestValue( 3.5, v11.Z, "ppVector3 = Z", 1e-6)
```

```
print("Number of ppVector3 failed tests: ", self.FailCount)
```

Number of ppVector3 failed tests: 0

1.8 Quaternion Class

Create a quaternion class. Reference for checking quaternion rotation. Quaternion multiplication checked here.

$$t = q * r = t_0 + \mathbf{i}t_1 + \mathbf{j}t_2 + \mathbf{k}t_3$$

$$t_0 = q_0r_0 - q_1r_1 - q_2r_2 - q_3r_3$$

$$t_1 = q_1r_0 + q_0r_1 - q_3r_2 + q_2r_3$$

$$t_2 = q_2r_0 + q_3r_1 + q_0r_2 - q_1r_3$$

$$t_3 = q_3r_0 - q_2r_1 + q_1r_2 + q_0r_3$$
System b to a -> $q_{b/a}$

$$u^b = q_{b/a}^{-1} * u^a * q_{b/a}, \text{ and } q_{b/a}^{-1} = q_{a/b}$$

$$u^c = q_{c/b}^{-1}q_{b/a}^{-1}u^a q_{b/a}q_{c/b}$$

$$v^{frd} = q_{\phi}^{-1}q_{\theta}^{-1}q_{\psi}^{-1}v^{ned}q_{\psi}q_{\theta}q_{\phi}$$

$$q_{frd/ned} = q_{\psi}q_{\theta}q_{\phi} = \begin{cases} \cos\frac{\phi}{2}\cos\frac{\phi}{2}\cos\frac{\psi}{2} + \sin\frac{\phi}{2}\sin\frac{\phi}{2}\sin\frac{\psi}{2} \\ \cos\frac{\phi}{2}\sin\frac{\phi}{2}\cos\frac{\psi}{2} + \sin\frac{\phi}{2}\cos\frac{\phi}{2}\sin\frac{\psi}{2} \\ \cos\frac{\phi}{2}\sin\frac{\psi}{2} - \cos\frac{\phi}{2}\sin\frac{\psi}{2}\cos\frac{\psi}{2} + \sin\frac{\phi}{2}\cos\frac{\psi}{2}\sin\frac{\psi}{2} \\ \cos\frac{\phi}{2}\sin\frac{\psi}{2}\cos\frac{\psi}{2} + \sin\frac{\phi}{2}\cos\frac{\psi}{2}\sin\frac{\psi}{2}\cos\frac{\psi}{2} \\ \cos\frac{\phi}{2}\sin\frac{\psi}{2}\cos\frac{\psi}{2} + \sin\frac{\phi}{2}\cos\frac{\psi}{2}\sin\frac{\psi}{2}\cos\frac{\psi}{2} \end{cases}$$

$$q_{ned/ecf} = \frac{\cos\frac{1}{2}\cos(\frac{1}{2}t + 45^\circ)}{\sin\frac{1}{2}\sin(\frac{1}{2}t + 45^\circ)}$$

$$\sin\frac{1}{2}\sin(\frac{1}{2}t + 45^\circ)$$

$$\sin\frac{1}{2}\cos(\frac{1}{2}t + 45^\circ)$$

$$\sin\frac{1}{2}\cos\frac{1}{2}t + 45^\circ$$

$$\sin\frac{1}{2}\cos\frac{1}{2}t + 45^\circ$$

$$\sin\frac{1}{2}\cos\frac{1}{2$$

[21]: class ppQuaternion(ppUnitTest):

```
def __init__(self, n, x, y, z):
       self.N = n
       self.X = x
       self.Y = y
       self.Z = z
   # defining how to print the class
   def __repr__(self):
       return "(%s, %s, %s, %s)" % (self.N, self.X, self.Y, self.Z)
   # overloading the ~ for quaternion inverse
   def __invert__(self):
       n = self.N
       x = -self.X
       y = -self.Y
       z = -self.Z
       return ppQuaternion(n,x,y,z)
   # overloading the + to add quaternions
   def __add__(self, o):
      n = self.N + o.N
       x = self.X + o.X
       y = self.Y + o.Y
       z = self.Z + o.Z
       return ppQuaternion(n,x,y,z)
   # overlaoding the st to multiply quaternions and multiple scalars and _{f L}
\rightarrow quaternions
   def __mul__(self,o):
       n=0
       x=0
       \lambda = 0
       z=0
       if isinstance(o, ppQuaternion):
           n = self.N*o.N - self.X*o.X - self.Y*o.Y - self.Z*o.Z
           x = self.N*o.X + self.X*o.N + self.Y*o.Z - self.Z*o.Y
           y = self.N*o.Y + self.Y*o.N + self.Z*o.X - self.X*o.Z
           z = self.N*o.Z + self.Z*o.N + self.X*o.Y - self.Y*o.X
       elif isinstance(o, ppVector3):
           n = -(self.X*o.X + self.Y*o.Y + self.Z*o.Z)
           x = self.N*o.X + self.Y*o.Z - self.Z*o.Y
           y = self.N*o.Y + self.Z*o.X - self.X*o.Z
           z = self.N*o.Z + self.X*o.Y - self.Y*o.X
       else:
           n = self.N * o
           x = self.X * o
           y = self.Y * o
```

```
z = self.Z * o
       return ppQuaternion(n,x,y,z)
   # so that scalar * quaternion is the same as quaternion * scalar
   __rmul__ = __mul__
   def Normalize(self):
       magnitude = math.sqrt(self.N*self.N + self.X*self.X + self.Y*self.Y +
\rightarrowself.Z*self.Z)
       if magnitude != 0:
           self.N = self.N / magnitude
           self.X = self.X / magnitude
           self.Y = self.Y / magnitude
           self.Z = self.Z / magnitude
   def SetRollPitchYaw(self, roll, pitch, yaw):
       qroll = ppQuaternion( math.cos(0.5*roll) , math.sin(0.5*roll), 0.0
            , 0.0)
       qpitch = ppQuaternion( math.cos(0.5*pitch), 0.0
                                                                       , math.
\rightarrowsin(0.5*pitch), 0.0)
       qyaw = ppQuaternion( math.cos(0.5*yaw) , 0.0
                                                                       , 0.0
             , math.sin(0.5*yaw))
       # ZYX rotation
       q = qyaw*qpitch*qroll
       q.Normalize()
       self.N = q.N
       self.X = q.X
       self.Y = q.Y
       self.Z = q.Z
   def SetLatLon(self, lat, lon):
       n = math.cos(0.5*lon)*math.cos(0.5*lat + 0.25*math.pi)
       x = math.sin(0.5*lon)*math.sin(0.5*lat + 0.25*math.pi)
       y = -math.cos(0.5*lon)*math.sin(0.5*lat + 0.25*math.pi)
       z = math.sin(0.5*lon)*math.cos(0.5*lat + 0.25*math.pi)
       q = ppQuaternion( n, x, y, z )
       q.Normalize()
       self.N = q.N
       self.X = q.X
       self.Y = q.Y
       self.Z = q.Z
```

```
def SetQfrdWrtEcf(self, roll, pitch, yaw, lat, lon):
       qroll = ppQuaternion( math.cos(0.5*roll) , math.sin(0.5*roll), 0.0
            , 0.0)
       qpitch = ppQuaternion( math.cos(0.5*pitch), 0.0
                                                                      , math.
\rightarrowsin(0.5*pitch), 0.0)
       qyaw = ppQuaternion( math.cos(0.5*yaw) , 0.0
                                                                      , 0.0
            , math.sin(0.5*yaw))
       hLon = 0.5*lon
       hLat = 0.5*lat + 0.25*math.pi
       qlon = ppQuaternion(math.cos(hLon), 0, 0, math.sin(hLon))
       qlat = ppQuaternion(math.cos(hLat), 0, -math.sin(hLat), 0)
       # ZYX rotation
       q = qlon*qlat*qyaw*qpitch*qroll
       self.N = q.N
       self.X = q.X
       self.Y = q.Y
       self.Z = q.Z
   def SetPlanetRotation(self, rotationAngle_rad):
       n = math.cos(0.5*rotationAngle_rad)
       z = math.sin(0.5*rotationAngle_rad)
       q = ppQuaternion(n, 0.0, 0.0, z)
       q.Normalize()
       self.N = q.N
       self.X = q.X
       self.Y = q.Y
       self.Z = q.Z
   def EulerAnglesFromQ(self):
       q0 = self.N
       q1 = self.X
       q2 = self.Y
       q3 = self.Z
       c11 = q0*q0 + q1*q1 - q2*q2 - q3*q3
       c12 = 2.0*(q1*q2 + q0*q3)
       c13 = 2.0*(q1*q3 - q0*q2)
       c23 = 2.0*(q2*q3 + q0*q1)
       c33 = q0*q0 - q1*q1 - q2*q2 + q3*q3
       roll = math.atan2(c23,c33)
       pitch = -math.asin(c13)
```

```
= math.atan2(c12,c11)
    return [roll, pitch, yaw]
def EulerAnglesFromQold(self):
    qnn = self.N * self.N
    qxx = self.X * self.X
   qyy = self.Y * self.Y
    qzz = self.Z * self.Z
   img = qxx + qyy + qzz + qnn
    assert img != 0, "EulerAnglesFromQ all elements 0 for quaternion"
    img = 1.0 / img
   m11 = (qnn + qxx - qyy - qzz)*img
   m12 = 2.0*(self.X*self.Y + self.Z*self.N)*img
   m13 = 2.0*(self.X*self.Z - self.Y*self.N)*img
   m23 = 2.0*(self.Y*self.Z + self.X*self.N)*img
   m33 = (qnn - qxx - qyy + qzz)*img
   roll = 0
   pitch = 0
   yaw = 0
    if abs(m13) >= 1.0:
        m21 = 2.0*(self.X*self.Y - self.Z*self.N)*img
        m31 = 2.0*(self.X*self.Z + self.Y*self.N)*img;
        roll = 0.0
       halfPi = 0.5*math.pi
        pitch = -halfPi if (m13 > 0.0) else halfPi
            = math.atan2(-m21, -m31/m13)
    else:
        roll = math.atan2(m23,m33) # Roll
                                # Pitch
        pitch = math.asin(-m13)
        yaw = math.atan2(m12,m11) # Yaw
   return [roll, pitch, yaw]
def UnitTest(self):
    q0 = ppQuaternion(4,7,8,9)
    q0i = ~q0
    self.TestValue( 4, q0i.N, "ppQuaternion inverse", 1e-6)
   self.TestValue(-7, q0i.X, "ppQuaternion inverse", 1e-6)
   self.TestValue(-8, q0i.Y, "ppQuaternion inverse", 1e-6)
   self.TestValue(-9, q0i.Z, "ppQuaternion inverse", 1e-6)
   q1 = ppQuaternion(2,3,4,5)
   q2 = ppQuaternion(8,9,10,11)
    q3 = q1 + q2
```

```
self.TestValue(10, q3.N, "ppQuaternion add", 1e-6)
self.TestValue(12, q3.X, "ppQuaternion add", 1e-6)
self.TestValue(14, q3.Y, "ppQuaternion add", 1e-6)
self.TestValue(16, q3.Z, "ppQuaternion add", 1e-6)
q4 = q1 * q2
self.TestValue(-106, q4.N, "ppQuaternion multiply", 1e-6)
self.TestValue(36, q4.X, "ppQuaternion multiply", 1e-6)
self.TestValue(64, q4.Y, "ppQuaternion multiply", 1e-6)
self.TestValue(56, q4.Z, "ppQuaternion multiply", 1e-6)
q5 = 7.0 * q1
self.TestValue(14, q5.N, "ppQuaternion scalar multiply", 1e-6)
self.TestValue(21, q5.X, "ppQuaternion scalar multiply", 1e-6)
self.TestValue(28, q5.Y, "ppQuaternion scalar multiply", 1e-6)
self.TestValue(35, q5.Z, "ppQuaternion scalar multiply", 1e-6)
q6 = q2 * 10
self.TestValue(80, q6.N, "ppQuaternion scalar multiply", 1e-6)
self.TestValue(90, q6.X, "ppQuaternion scalar multiply", 1e-6)
self.TestValue(100, q6.Y, "ppQuaternion scalar multiply", 1e-6)
self.TestValue(110, q6.Z, "ppQuaternion scalar multiply", 1e-6)
q6.SetRollPitchYaw(0.3,-0.7,3.11)
self.TestValue(-0.0365642, q6.N, "ppQuaternion Euler", 1e-6)
self.TestValue(0.3412225, q6.X, "ppQuaternion Euler", 1e-6)
self.TestValue(0.1350051, q6.Y, "ppQuaternion Euler", 1e-6)
self.TestValue(0.9295181, q6.Z, "ppQuaternion Euler", 1e-6)
[roll, pitch, yaw] = q6.EulerAnglesFromQ()
self.TestValue( 0.3, roll, "ppQuaternion EulerFromQ", 1e-6)
self.TestValue(-0.7, pitch, "ppQuaternion EulerFromQ", 1e-6)
self.TestValue(3.11, yaw, "ppQuaternion EulerFromQ", 1e-6)
q7 = ppQuaternion(0.6680766, 0.2325211, 0.1160514, 0.6972372)
[roll, pitch, yaw] = q7.EulerAnglesFromQ()
self.TestValue(0.5, roll, "ppQuaternion EulerFromQ", 1e-6)
self.TestValue(-0.17, pitch, "ppQuaternion EulerFromQ", 1e-6)
self.TestValue(1.57, yaw, "ppQuaternion EulerFromQ", 1e-6)
q8 = ppQuaternion(6,-6,6,6)
q8.Normalize()
self.TestValue( 0.5, q8.N, "ppQuaternion Normalize", 1e-6)
self.TestValue(-0.5, q8.X, "ppQuaternion Normalize", 1e-6)
self.TestValue( 0.5, q8.Y, "ppQuaternion Normalize", 1e-6)
self.TestValue(0.5, q8.Z, "ppQuaternion Normalize", 1e-6)
q9 = ppQuaternion(1,3,-2,7)
q9.Normalize()
mag = math.sqrt(1 + 9 + 4 + 49)
self.TestValue( 1.0/mag, q9.N, "ppQuaternion Normalize 2", 1e-6)
self.TestValue( 3.0/mag, q9.X, "ppQuaternion Normalize 2", 1e-6)
self.TestValue(-2.0/mag, q9.Y, "ppQuaternion Normalize 2", 1e-6)
self.TestValue( 7.0/mag, q9.Z, "ppQuaternion Normalize 2", 1e-6)
```

```
print("Number of ppQuaternion failed tests: ", self.FailCount)
```

```
[22]: q1 = ppQuaternion(9,4,5,6)
q1.UnitTest()
```

Number of ppQuaternion failed tests: 0

1.9 Matrix Class

Create a 3x3 matrix class.

```
[23]: class ppMatrix3x3(ppUnitTest):
          A11 = 1
          A12 = 0
          A13 = 0
          A21 = 0
          A22 = 1
          A23 = 0
          A31 = 0
          A32 = 0
          A33 = 1
          def __mul__(self, v):
              if isinstance(v, ppVector3):
                  x = self.A11 * v.X + self.A12 * v.Y + self.A13 * v.Z
                  y = self.A21 * v.X + self.A22 * v.Y + self.A23 * v.Z
                  z = self.A31 * v.X + self.A32 * v.Y + self.A33 * v.Z
                  return ppVector3(x,y,z)
              elif isinstance(v, ppMatrix3x3):
                  a11 = self.A11*v.A11 + self.A12*v.A21 + self.A13*v.A31
                  a12 = self.A11*v.A12 + self.A12*v.A22 + self.A13*v.A32
                  a13 = self.A11*v.A13 + self.A12*v.A23 + self.A13*v.A33
                  a21 = self.A21*v.A11 + self.A22*v.A21 + self.A23*v.A31
                  a22 = self.A21*v.A12 + self.A22*v.A22 + self.A23*v.A32
                  a23 = self.A21*v.A13 + self.A22*v.A23 + self.A23*v.A33
                  a31 = self.A31*v.A11 + self.A32*v.A21 + self.A33*v.A31
                  a32 = self.A31*v.A12 + self.A32*v.A22 + self.A33*v.A32
                  a33 = self.A31*v.A13 + self.A32*v.A23 + self.A33*v.A33
                  a = ppMatrix3x3()
                  a.SetRow1( a11, a12, a13 )
                  a.SetRow2( a21, a22, a23 )
                  a.SetRow3( a31, a32, a33 )
                  return a
```

```
else:
        a11 = self.A11 * v
        a12 = self.A12 * v
        a13 = self.A13 * v
        a21 = self.A21 * v
        a22 = self.A22 * v
        a23 = self.A23 * v
        a31 = self.A31 * v
        a32 = self.A32 * v
        a33 = self.A33 * v
        a = ppMatrix3x3()
        a.SetRow1( a11, a12, a13 )
        a.SetRow2( a21, a22, a23 )
        a.SetRow3( a31, a32, a33 )
        return a
def SetRow1(self, a11, a12, a13):
    self.A11 = a11
    self.A12 = a12
    self.A13 = a13
def SetRow2(self, a21, a22, a23):
    self.A21 = a21
    self.A22 = a22
    self.A23 = a23
def SetRow3(self, a31, a32, a33):
    self.A31 = a31
    self.A32 = a32
    self.A33 = a33
# defining how to print the class
def __str__(self):
    row1 = "(%s, %s, %s)\n" % (self.A11, self.A12, self.A13)
    row2 = "(\%s, \%s, \%s) \n" \% (self.A21, self.A22, self.A23)
    row3 = "(%s, %s, %s)" % (self.A31, self.A32, self.A33)
    return row1+row2+row3
def Determinant(self):
    d1 = self.A11*(self.A22*self.A33 - self.A23*self.A32)
    d2 = self.A12*(self.A23*self.A31 - self.A21*self.A33)
    d3 = self.A13*(self.A21*self.A32 - self.A22*self.A31)
    return d1+d2+d3
def Inverse(self):
```

```
D = self.Determinant()
       im = ppMatrix3x3()
       # make sure D is not O
       if abs(D) > 1e-12:
           a11 = (self.A22*self.A33 - self.A23*self.A32)/D
           a12 = (self.A13*self.A32 - self.A12*self.A33)/D
           a13 = (self.A12*self.A23 - self.A13*self.A22)/D
           a21 = (self.A23*self.A31 - self.A21*self.A33)/D
           a22 = (self.A11*self.A33 - self.A13*self.A31)/D
           a23 = (self.A13*self.A21 - self.A11*self.A23)/D
           a31 = (self.A21*self.A32 - self.A22*self.A31)/D
           a32 = (self.A12*self.A31 - self.A11*self.A32)/D
           a33 = (self.A11*self.A22 - self.A12*self.A21)/D
           im.SetRow1(a11, a12, a13)
           im.SetRow2(a21, a22, a23)
           im.SetRow3(a31, a32, a33)
       return im
   def Transpose(self):
       at = ppMatrix3x3()
       at.SetRow1(self.A11, self.A21, self.A31)
       at.SetRow2(self.A12, self.A22, self.A32)
       at.SetRow3(self.A13, self.A23, self.A33)
       return at
   def QuaternionToMatrix(self, q):
      n = q.N;
       x = q.X;
       y = q.Y;
       z = q.Z;
       self.SetRow1( n*n + x*x - y*y - z*z, 2.0*(x*y - n*z),
\rightarrow 0*(x*z + n*y))
                          2.0*(x*y + n*z), n*n - x*x + y*y - z*z,
       self.SetRow2(
                                                                           2.
\hookrightarrow 0*(y*z - n*x))
       self.SetRow3( 2.0*(x*z - n*y), 2.0*(y*z + n*x), n*n - x*x - 1
\rightarrow y*y + z*z)
   def UnitTest(self):
       m1 = ppMatrix3x3()
       m1.SetRow1(1,2,3)
```

```
m1.SetRow2(4,5,6)
m1.SetRow3(7,3,9)
self.TestValue(-30, m1.Determinant(), "ppMatrix3x3 Determinant", 1e-6)
m1.SetRow1(1,2,3)
m1.SetRow2(0,1,4)
m1.SetRow3(5,6,0)
self.TestValue(1, m1.Determinant(), "ppMatrix3x3 Determinant", 1e-6)
m1 = m1.Inverse()
self.TestValue(-24, m1.A11, "ppMatrix3x3 Inverse A11", 1e-6)
self.TestValue( 18, m1.A12, "ppMatrix3x3 Inverse A12", 1e-6)
self.TestValue( 5, m1.A13, "ppMatrix3x3 Inverse A13", 1e-6)
self.TestValue( 20, m1.A21, "ppMatrix3x3 Inverse A21", 1e-6)
self.TestValue(-15, m1.A22, "ppMatrix3x3 Inverse A22", 1e-6)
self.TestValue( -4, m1.A23, "ppMatrix3x3 Inverse A23", 1e-6)
self.TestValue( -5, m1.A31, "ppMatrix3x3 Inverse A31", 1e-6)
self.TestValue( 4, m1.A32, "ppMatrix3x3 Inverse A32", 1e-6)
self.TestValue( 1, m1.A33, "ppMatrix3x3 Inverse A33", 1e-6)
m2 = ppMatrix3x3()
m2.SetRow1(1,2,3)
m2.SetRow2(4,5,6)
m2.SetRow3(7,2,9)
m2 = m2.Inverse()
self.TestValue(-11/12, m2.A11, "ppMatrix3x3 Inverse A11", 1e-6)
self.TestValue( 1/3, m2.A12, "ppMatrix3x3 Inverse A12", 1e-6)
self.TestValue( 1/12, m2.A13, "ppMatrix3x3 Inverse A13", 1e-6)
self.TestValue( -1/6, m2.A21, "ppMatrix3x3 Inverse A21", 1e-6)
self.TestValue( 1/3, m2.A22, "ppMatrix3x3 Inverse A22", 1e-6)
self.TestValue( -1/6, m2.A23, "ppMatrix3x3 Inverse A23", 1e-6)
                3/4, m2.A31, "ppMatrix3x3 Inverse A31", 1e-6)
self.TestValue(
self.TestValue( -1/3, m2.A32, "ppMatrix3x3 Inverse A32", 1e-6)
self.TestValue( 1/12, m2.A33, "ppMatrix3x3 Inverse A33", 1e-6)
m3 = ppMatrix3x3()
m3.SetRow1(1,2,3)
m3.SetRow2(-4,5,6)
m3.SetRow3(7,8.1,9)
m4 = m3.Transpose()
self.TestValue(
                  1, m3.A11, "ppMatrix3x3 Transpose A11", 1e-6)
self.TestValue( 2, m3.A12, "ppMatrix3x3 Transpose A12", 1e-6)
                3, m3.A13, "ppMatrix3x3 Transpose A13", 1e-6)
self.TestValue(
self.TestValue( -4, m3.A21, "ppMatrix3x3 Transpose A21", 1e-6)
self.TestValue( 5, m3.A22, "ppMatrix3x3 Transpose A22", 1e-6)
self.TestValue(6, m3.A23, "ppMatrix3x3 Transpose A23", 1e-6)
self.TestValue( 7, m3.A31, "ppMatrix3x3 Transpose A31", 1e-6)
self.TestValue( 8.1, m3.A32, "ppMatrix3x3 Transpose A32", 1e-6)
self.TestValue(
                  9, m3.A33, "ppMatrix3x3 Transpose A33", 1e-6)
```

```
self.TestValue(
                 1, m4.A11, "ppMatrix3x3 Transpose A11", 1e-6)
               -4, m4.A12, "ppMatrix3x3 Transpose A12", 1e-6)
self.TestValue(
self.TestValue(
                 7, m4.A13, "ppMatrix3x3 Transpose A13", 1e-6)
                  2, m4.A21, "ppMatrix3x3 Transpose A21", 1e-6)
self.TestValue(
                  5, m4.A22, "ppMatrix3x3 Transpose A22", 1e-6)
self.TestValue(
self.TestValue( 8.1, m4.A23, "ppMatrix3x3 Transpose A23", 1e-6)
                  3, m4.A31, "ppMatrix3x3 Transpose A31", 1e-6)
self.TestValue(
self.TestValue(
                  6, m4.A32, "ppMatrix3x3 Transpose A32", 1e-6)
                  9, m4.A33, "ppMatrix3x3 Transpose A33", 1e-6)
self.TestValue(
q = ppQuaternion(0.7, 0.4, 3.2, -0.87)
q.Normalize()
m4.QuaternionToMatrix(q)
self.TestValue( -0.8883823, m4.A11, "ppMatrix3x3 Quaternion A11", 1e-7)
self.TestValue( 0.3243782, m4.A12, "ppMatrix3x3 Quaternion A12", 1e-7)
self.TestValue( 0.3248933, m4.A13, "ppMatrix3x3 Quaternion A13", 1e-7)
self.TestValue( 0.1152238, m4.A21, "ppMatrix3x3 Quaternion A21", 1e-7)
self.TestValue( 0.8425504, m4.A22, "ppMatrix3x3 Quaternion A22", 1e-7)
self.TestValue( -0.5261486, m4.A23, "ppMatrix3x3 Quaternion A23", 1e-7)
self.TestValue( -0.4444101, m4.A31, "ppMatrix3x3 Quaternion A31", 1e-7)
self.TestValue( -0.4299857, m4.A32, "ppMatrix3x3 Quaternion A32", 1e-7)
self.TestValue( -0.7858829, m4.A33, "ppMatrix3x3 Quaternion A33", 1e-7)
m1.SetRow1(2,6,3)
m1.SetRow2(1,1,8)
m1.SetRow3(5,7,-6)
v1 = ppVector3(9,11,-4)
v2 = m1 * v1
self.TestValue( 72, v2.X, "ppMatrix3x3 Matrix * Vector X", 1e-7)
self.TestValue( -12, v2.Y, "ppMatrix3x3 Matrix * Vector Y", 1e-7)
self.TestValue( 146, v2.Z, "ppMatrix3x3 Matrix * Vector Z", 1e-7)
m1.SetRow1(6,3,17)
m1.SetRow2(-4,-0.1,7)
m1.SetRow3(14,5,-1)
m2.SetRow1(5,0,-6)
m2.SetRow2(3,8,2)
m2.SetRow3(-1,-4,-9)
m3 = m1 * m2
                   22, m3.A11, "ppMatrix3x3 Matrix * Matrix A11", 1e-7)
self.TestValue(
self.TestValue( -44, m3.A12, "ppMatrix3x3 Matrix * Matrix A12", 1e-7)
self.TestValue( -183, m3.A13, "ppMatrix3x3 Matrix * Matrix A13", 1e-7)
self.TestValue( -27.3, m3.A21, "ppMatrix3x3 Matrix * Matrix A21", 1e-7)
self.TestValue( -28.8, m3.A22, "ppMatrix3x3 Matrix * Matrix A22", 1e-7)
self.TestValue( -39.2, m3.A23, "ppMatrix3x3 Matrix * Matrix A23", 1e-7)
                  86, m3.A31, "ppMatrix3x3 Matrix * Matrix A31", 1e-7)
```

```
self.TestValue(
                  44, m3.A32, "ppMatrix3x3 Matrix * Matrix A32", 1e-7)
                  -65, m3.A33, "ppMatrix3x3 Matrix * Matrix A33", 1e-7)
self.TestValue(
m5 = m2 * 2
self.TestValue(
                  10, m5.A11, "ppMatrix3x3 Matrix * Scalar A11", 1e-7)
self.TestValue(
                   0, m5.A12, "ppMatrix3x3 Matrix * Scalar A12", 1e-7)
                  -12, m5.A13, "ppMatrix3x3 Matrix * Scalar A13", 1e-7)
self.TestValue(
self.TestValue(
                    6, m5.A21, "ppMatrix3x3 Matrix * Scalar A21", 1e-7)
                  16, m5.A22, "ppMatrix3x3 Matrix * Scalar A22", 1e-7)
self.TestValue(
self.TestValue(
                   4, m5.A23, "ppMatrix3x3 Matrix * Scalar A23", 1e-7)
                   -2, m5.A31, "ppMatrix3x3 Matrix * Scalar A31", 1e-7)
self.TestValue(
self.TestValue(
                  -8, m5.A32, "ppMatrix3x3 Matrix * Scalar A32", 1e-7)
self.TestValue(
                  -18, m5.A33, "ppMatrix3x3 Matrix * Scalar A33", 1e-7)
print("Number of ppMatrix3x3 failed tests: ", self.FailCount)
```

```
[24]: myMatrix = ppMatrix3x3()
print(myMatrix)
myMatrix.UnitTest()
```

```
(1, 0, 0)
(0, 1, 0)
(0, 0, 1)
Number of ppMatrix3x3 failed tests: 0
```

1.10 Equations of Motion

The equations of motion.

```
class ppSimulation(ppConvert):
    Time = 0.0
    TimeStep = 0.1
    Data = {}
    IC = {}

    AeroModelInput = []

    ReferenceWingSpan = 0
    ReferenceWingChord = 0
    ReferenceWingArea = 0

    Position = ppVector3(0, 0, 0)

    TotalMass = 0
    GrossWeight = 0
    TrueAirspeed = 0
    BodyVelocity = ppVector3(0, 0, 0)

BodyAccel = ppVector3(0, 0, 0)
```

```
BodyForce = ppVector3(0, 0, 0)
  BodyAngle = ppVector3(0, 0, 0)
  BodyAngularRate = ppVector3(0, 0, 0)
  BodyAngularAccel = ppVector3(0, 0, 0)
  gvJx = 0
  gvJy = 0
  gvJz = 0
  gvJxz = 0
  Gamma = 0
  InertiaMatrix = ppMatrix3x3()
  InertiaMatrixInverse = ppMatrix3x3()
  # moment components
  Ml = 0
  Mm = 0
  Mn = 0
  totalCoefficientOfDrag = 0
  # define outputs
  EnglishLabels = ['gePosition_ft_X', 'gePosition_ft_Y', 'gePosition_ft_Z',
                   'feVelocity_ft_s_X', 'feVelocity_ft_s_Y', _
\hookrightarrow 'feVelocity_ft_s_Z',
                    'altitudeMsl_ft', 'longitude_deg', 'latitude_deg', |
'eulerAngle_deg_Yaw', 'eulerAngle_deg_Pitch',
\hookrightarrow 'eulerAngle_deg_Roll',
                   'bodyAngularRateWrtEi_deg_s_Roll',_
→'bodyAngularRateWrtEi_deg_s_Pitch',
                    'bodyAngularRateWrtEi_deg_s_Yaw',
                   'altitudeRateWrtMsl_ft_min', 'speedOfSound_ft_s', _
'ambientPressure_lbf_ft2', 'ambientTemperature_dgR',
                   'aero_bodyForce_lbf_X', 'aero_bodyForce_lbf_Y',

¬'aero_bodyForce_lbf_Z',
                    'aero_bodyMoment_ftlbf_L', 'aero_bodyMoment_ftlbf_M', __
'mach', 'dynamicPressure_lbf_ft2', 'trueAirspeed_nmi_h']
  EnglishData = {}
  time = []
  eiPosition_m_X = []
  eiPosition_m_Y = []
   eiPosition_m_Z = []
```

```
gePosition_m_X = []
gePosition_m_Y = []
gePosition_m_Z = []
feVelocity_m_s_X = []
feVelocity_m_s_Y = []
feVelocity_m_s_Z = []
altitudeMsl_m = []
longitude_rad = []
latitude rad = []
localGravity_m_s2 = []
eulerAngle_Roll = []
eulerAngle_Pitch = []
eulerAngle_Yaw = []
bodyAngularRateWrtEi_rad_s_Roll = []
bodyAngularRateWrtEi_rad_s_Pitch = []
bodyAngularRateWrtEi_rad_s_Yaw = []
trueAirspeed = []
def AdvanceTime(self):
    self.time.append(self.Time)
    self.Time += self.TimeStep
def AddAeroModelInput(self, input):
    self.AeroModelInput = input
def EvaluateAeroModel(self):
    for d in self.AeroModelInput:
        gvAeroModel.Set(d, self.Data[d])
    gvAeroModel.Update()
def Clear(self):
    self.Time = 0.0
    self.Data.clear()
    self.EnglishData.clear()
    self.AeroModelInput.clear()
    self.time.clear()
    self.eiPosition_m_X.clear()
    self.eiPosition m Y.clear()
    self.eiPosition_m_Z.clear()
    self.gePosition_m_X.clear()
    self.gePosition_m_Y.clear()
    self.gePosition_m_Z.clear()
    self.feVelocity_m_s_X.clear()
    self.feVelocity_m_s_Y.clear()
    self.feVelocity_m_s_Z.clear()
    self.altitudeMsl_m.clear()
```

```
self.longitude_rad.clear()
       self.latitude rad.clear()
       self.localGravity_m_s2.clear()
      self.eulerAngle_Roll.clear()
      self.eulerAngle_Pitch.clear()
      self.eulerAngle_Yaw.clear()
      self.bodyAngularRateWrtEi rad s Roll.clear()
      self.bodyAngularRateWrtEi_rad_s_Pitch.clear()
       self.bodyAngularRateWrtEi_rad_s_Yaw.clear()
      self.trueAirspeed.clear()
  def GenerateEnglishUnits(self):
      self.EnglishData.clear()
      for key in self.EnglishLabels:
           self.EnglishData[key] = []
       # TODO: extract units from name
       self.EnglishData['gePosition_ft_X'] = self.ToEnglish(self.

    gePosition_m_X,"m")
       self.EnglishData['gePosition_ft_Y'] = self.ToEnglish(self.
self.EnglishData['gePosition_ft_Z'] = self.ToEnglish(self.
self.EnglishData['feVelocity_m_s_X'] = self.ToEnglish(self.
→feVelocity_m_s_X,"m")
       self.EnglishData['feVelocity_m_s_Y'] = self.ToEnglish(self.
→feVelocity_m_s_Y,"m")
       self.EnglishData['feVelocity_m_s_Z'] = self.ToEnglish(self.
→feVelocity_m_s_Z,"m")
       self.EnglishData['altitudeMsl_ft'] = self.ToEnglish(self.
→altitudeMsl_m,"m")
       self.EnglishData['longitude_deg'] = self.ToEnglish(self.
→longitude_rad,"rad")
       self.EnglishData['latitude_deg'] = self.ToEnglish(self.
→latitude_rad, "rad")
       self.EnglishData['localGravity_ft_s2'] = self.ToEnglish(self.
→localGravity_m_s2,"m")
       self.EnglishData['eulerAngle_deg_Roll'] = self.ToEnglish(self.
→eulerAngle_Roll, "rad")
      self.EnglishData['eulerAngle deg Pitch'] = self.ToEnglish(self.
→eulerAngle Pitch, "rad")
```

```
self.EnglishData['eulerAngle_deg_Yaw'] = self.ToEnglish(self.
→eulerAngle_Yaw, "rad")
       self.EnglishData['bodyAngularRateWrtEi deg s Roll'] = \
           self.ToEnglish(self.bodyAngularRateWrtEi_rad_s_Roll, "rad")
       self.EnglishData['bodyAngularRateWrtEi deg s Pitch'] = \
           self.ToEnglish(self.bodyAngularRateWrtEi rad s Pitch, "rad")
       self.EnglishData['bodyAngularRateWrtEi_deg_s_Yaw'] = \
           self.ToEnglish(self.bodyAngularRateWrtEi_rad_s_Yaw,"rad")
       self.EnglishData['trueAirspeed_nmi_h'] = self.ToEnglish(self.
→trueAirspeed,"m_s")
  def NormalizeAngle(self, value, lower, upper):
       Returns a value between the range lower and upper.
       Example: NormalizeAngle(181, -180, 180) returns -179
       angleRange = upper - lower
      rangeValue = value - lower
      return (rangeValue - (math.floor(rangeValue / angleRange) *
→angleRange)) + lower
  def SetValue(self, label, defValue = 0):
      value = 0.0
       infoStr = "none"
       if label in self.IC:
           value = self.IC[label]
           infoStr = "[IC case]"
       else:
           value = defValue
           infoStr = "[default]"
       print("++", label, "=", value, infoStr)
       return value
  def ResetSimulation(self, ic):
      self.Clear()
       self.IC.clear()
       self.IC = self.SetIC(ic)
       #self.IC = ic.copy()
      print(self.IC)
       #self.GrossWeight = self.SetValue("grossWeight", 1)
       self.TimeStep = self.SetValue("timeStep", 0.1)
```

```
self.TotalMass = self.SetValue("totalMass", 1)
      assert self.TotalMass != 0, "TotalMass is 0"
      self.ReferenceWingSpan = self.SetValue("referenceWingSpan")
      self.ReferenceWingChord = self.SetValue("referenceWingChord")
      wingArea = self.ReferenceWingSpan * self.ReferenceWingChord
      self.ReferenceWingArea = self.SetValue("referenceWingArea", wingArea)
      gvAeroModel.Set("aeroBodyForceCoefficient X")
      gvAeroModel.Set("aeroBodyForceCoefficient_Y")
      gvAeroModel.Set("aeroBodyForceCoefficient_Z")
      gvAeroModel.Set("aeroBodyMomentCoefficient_Roll")
       gvAeroModel.Set("aeroBodyMomentCoefficient_Pitch")
       gvAeroModel.Set("aeroBodyMomentCoefficient_Yaw")
      self.TrueAirspeed = self.SetValue("trueAirspeed")
      angleOfAttack = self.SetValue("angleOfAttack")
      angleOfSideslip = self.SetValue("angleOfSideslip")
      u = self.TrueAirspeed * math.cos(angleOfAttack) * math.
→cos(angleOfSideslip);
      v = self.TrueAirspeed * math.sin(angleOfSideslip);
      w = self.TrueAirspeed * math.sin(angleOfAttack) * math.
self.BodyVelocity.Set(u, v, w)
      self.BodyAccel.Set(0, 0, 0)
       # Set the rotation quaternion based on the Euler angles
      rollEulerAngle = self.SetValue("eulerAngle_Roll")
      pitchEulerAngle = self.SetValue("eulerAngle_Pitch")
      yawEulerAngle = self.SetValue("eulerAngle_Yaw")
       self.BodyAngle.Set( rollEulerAngle, pitchEulerAngle, yawEulerAngle )
       # Set angular rates
      P = self.SetValue("eulerAngleRate_Roll")
      Q = self.SetValue("eulerAngleRate_Pitch")
      R = self.SetValue("eulerAngleRate_Yaw")
       self.BodyAngularRate.Set( P, Q, R )
       # Set the inertia matrix
      i11 = self.SetValue("bodyMomentOfInertia X")
      i12 = -self.SetValue("bodyProductOfInertia_XY")
       i13 = -self.SetValue("bodyProductOfInertia_XZ")
```

```
i21 = -self.SetValue("bodyProductOfInertia_YX")
    i22 = self.SetValue("bodyMomentOfInertia_Y")
    i23 = -self.SetValue("bodyProductOfInertia_YZ")
    i31 = -self.SetValue("bodyProductOfInertia_XZ")
    i32 = -self.SetValue("bodyProductOfInertia_YZ")
    i33 = self.SetValue("bodyMomentOfInertia_Z")
    self.InertiaMatrix.SetRow1(i11, i12, i13)
    self.InertiaMatrix.SetRow2(i21, i22, i23)
    self.InertiaMatrix.SetRow3(i31, i32, i33)
    self.InertiaMatrixInverse = self.InertiaMatrix.Inverse()
    self.gvJx = self.InertiaMatrix.A11
    self.gvJy = self.InertiaMatrix.A22
    self.gvJz = self.InertiaMatrix.A33
    self.gvJxz = self.InertiaMatrix.A13
    self.Gamma = (self.gvJx*self.gvJz) - (self.gvJxz*self.gvJxz)
    self.Ml = 0
    self.Mm = 0
    self.Mn = 0
def AdamsBashforth(self, current, past):
    k2 = [1.5, -0.5]
    k3 = [23.0/12.0, -16.0/12.0, 5.0/12.0]
    x = self.TimeStep * (k2[0]*current.X + k2[1]*past.X)
    y = self.TimeStep * (k2[0]*current.Y + k2[1]*past.Y)
    z = self.TimeStep * (k2[0]*current.Z + k2[1]*past.Z)
    return [x, y, z]
def RungeKutta4(self, Fdot, arg):
    h = self.TimeStep
    k1 = \prod
    arg1 = []
    for (a, f) in zip(arg, Fdot):
        k = h*f(arg)
        k1.append(k)
        arg1.append(a + 0.5*k)
    k2 = []
    arg2 = []
```

```
for (a, f) in zip(arg, Fdot):
           k = h*f(arg1)
           k2.append(k)
           arg2.append(a + 0.5*k)
       k3 = []
       arg3 = []
       for (a, f) in zip(arg, Fdot):
           k = h*f(arg2)
           k3.append(k)
           arg3.append(a + k)
       k4 = []
       for f in Fdot:
           k4.append( h*f(arg3))
       result = []
       for (a, kc1, kc2, kc3, kc4) in zip(arg, k1, k2, k3, k4):
           result.append(a + (kc1 + 2.0*kc2 + 2.0*kc3 + kc4) / 6.0)
       return result
   def Reset(self, ic):
       pass
   def Operate(self):
       pass
   def Run(self, numberOfSeconds):
       endTime = int(numberOfSeconds / self.TimeStep) + 1
       for i in range(endTime):
           self.Operate()
       print("=====done=====")
   def UnitTest(self):
       # test normalize angle between -180 and 180 (and -pi and pi)
       pi = math.pi
       for i in range(360):
           ang = i
           if ang > 179:
               ang -= 360
           self.TestValue(ang, self.NormalizeAngle(i, -180.0, 180.0),

¬"NormalizeAngle", 0.001)
           ri = math.radians(i)
           rang = math.radians(ang)
```

```
self.TestValue(rang, self.NormalizeAngle(ri, -pi, pi),⊔
→"NormalizeAngle", 1e-6)

print("Number of ppSimulation failed tests: ", self.FailCount)
```

```
[26]: import matplotlib.pyplot as plt
      simUnitTest = ppSimulation()
      simUnitTest.UnitTest()
      # make a plot normalizing the angles between -180 and 180
      t = []
      x = []
      nx = []
      rx = []
      rnx = []
      for a in range(1440):
         t.append(a)
          x.append(a - 720)
          na = simUnitTest.NormalizeAngle( (a-720.0), -180.0, 180.0 )
          nx.append( na )
          rx.append( math.radians(a-720.0) )
          rna = simUnitTest.NormalizeAngle( math.radians(a-720.0), -math.pi, math.pi )
          rnx.append( rna )
      figAng1, (pa1, pa2) = plt.subplots(1,2)
      pa1.plot(t,x,t,nx)
      pa1.set(title='Normalize -180 to 180')
      pa2.plot(t,rx,t,rnx)
      pa2.set(title='Normalize -pi to pi')
```

Number of ppSimulation failed tests: 0

[26]: [Text(0.5, 1.0, 'Normalize -pi to pi')]

1.10.1 Flat Earth

Create a simulation for a flat Earth model. Singularities exist at the poles. Vehicle must be symmetric about the x body axis. Vehicle pitch must stay below 90°.

Force Equations

To rect Equations
$$\dot{U} = RV - QW - g_D \sin \theta + \frac{X_A + X_T}{m}$$

$$\dot{V} = PW - RU + g_D \sin \phi \cos \theta + \frac{Y_A + Y_T}{m}$$

$$\dot{W} = QU - PV + g_D \cos \phi \cos \theta + \frac{Z_A + Z_T}{m}$$
The proof on forms

In vector form,

$$\dot{\vec{v}} = \frac{F}{m} + R_{n/b} \begin{pmatrix} 0 \\ 0 \\ g_D \end{pmatrix} - \vec{\omega} \times \vec{v}$$

where
$$R_{n/b}$$
 is the rotation matrix from NED to body.
$$R_{n/b} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \phi & \sin \phi \\ 0 & -\sin \phi & \cos \phi \end{bmatrix} \begin{bmatrix} \cos \theta & 0 & -\sin \theta \\ 0 & 1 & 0 \\ \sin \theta & 0 & \cos \theta \end{bmatrix} \begin{bmatrix} \cos \psi & \sin \psi & 0 \\ -\sin \psi & \cos \psi & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$R_{b/n} = [R_{n/b}]^T$$

Kinematic equations

$$\dot{\phi} = P + \tan\theta \left(Q \sin\phi + R \cos\phi \right)$$

$$\dot{\theta} = Q\cos\phi - R\sin\phi$$

$$\dot{\psi} = (Q\sin\phi + R\cos\phi)/\cos\theta$$

In vector form,

```
\begin{split} \dot{\Phi} &= H\omega^b, \text{ where } H = \begin{pmatrix} 1 & \sin\phi\tan\theta & \cos\phi\tan\theta \\ 0 & \cos\phi & -\sin\phi \\ 0 & \sin\phi/\cos\theta & \cos\phi/\cos\theta \end{pmatrix} \\ \text{Moment Equations} \\ \Gamma \dot{P} &= J_{xz}[J_x - J_y + J_z]PQ - [J_z(J_z - J_y) + J_{xz}^2]QR + lJ_z + nJ_{xz} \\ J_y \dot{Q} &= (J_z - J_x)PR - J_{xz}(P^2 - R^2) + m \\ \Gamma \dot{R} &= [(J_x - J_y)J_x + J_{xz}^2]PQ - J_{xz}[J_x - J_y + J_z]QR + lJ_{xz}nJ_x \\ \Gamma &= J_xJ_z - J_{xz}^2 \\ \text{In vector form,} \\ \omega_{b/i}^{\dot{b}} &= J^{-1}(M^b - \omega_{b/i}^bJ\omega_{b/i}^b) \\ \text{Navigation Equations} \\ \dot{p_{\dot{B}}} &= Uc\theta c\psi + V(-c\phi s\psi + s\phi s\theta c\psi) + W(s\phi s\psi + c\phi s\theta c\psi) \\ \dot{p}_{\dot{E}} &= Uc\theta s\psi + V(c\phi c\psi + s\phi s\theta s\psi) + W(-s\phi c\psi + c\phi s\theta c\psi) \\ \dot{h} &= Us\theta - Vs\phi c\theta - Wc\phi c\theta \\ \text{In vector form,} \end{split}
```

 $\vec{p} = R_{b/n} \vec{v}$

[27]: class ppFlatEarth(ppSimulation): gD = 0mass = 0Planet = ppEarth() # state values X = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]# state DFE Xdot = [] # the indices of the state list Ui = 0Vi = 1Wi = 2i = 3i = 4i = 5Pi = 6Qi = 7Ri = 8 Ni = 9Ei = 10Zi = 11

```
# aerodynamic forces in body frame
Xa = 0
Ya = 0
Za = 0
# thrust forces in body frame
Xt = 0
Yt = 0
Zt = 0
def Udot(self, state):
    V = state[self.Vi]
    W = state[self.Wi]
    Q = state[self.Qi]
    R = state[self.Ri]
    sin = math.sin(state[self.i])
    assert self.mass != 0.0, "Udot mass is 0"
    value = R*V - Q*W - self.gD*sin + (self.Xa + self.Xt) / self.mass
    return value
def Vdot(self, state):
   U = state[self.Ui]
    W = state[self.Wi]
    P = state[self.Pi]
    R = state[self.Ri]
    sin = math.sin(state[self.i])
    cos = math.cos(state[self.i])
    assert self.mass != 0.0, "Vdot mass is 0"
    value = -R*U + P*W + self.gD*sin*cos + (self.Ya + self.Yt) / self.mass
    return value
def Wdot(self, state):
    U = state[self.Ui]
    V = state[self.Vi]
    P = state[self.Pi]
    Q = state[self.Qi]
    cos = math.cos(state[self.i])
    cos = math.cos(state[self.i])
    assert self.mass != 0.0, "Wdot mass is 0"
    value = Q*U - P*V + self.gD*cos*cos + (self.Za + self.Zt) / self.mass
    return value
def dot(self, state):
```

```
P = state[self.Pi]
      Q = state[self.Qi]
      R = state[self.Ri]
      assert state[self.i] < abs(math.radians(90.0)), "dot tan is 90"</pre>
      tan = math.tan(state[self.i])
      sin = math.sin(state[self.i])
      cos = math.cos(state[self.i])
      value = P + tan * (Q*sin + R*cos)
      return value
  def dot(self, state):
      Q = state[self.Qi]
      R = state[self.Ri]
      cos = math.cos(state[self.i])
      sin = math.sin(state[self.i])
      value = Q*cos - R*sin
      return value
  def dot(self, state):
      Q = state[self.Qi]
      R = state[self.Ri]
      cos = math.cos(state[self.i])
      sin = math.sin(state[self.i])
      cos = math.cos(state[self.i])
      assert cos != 0.0, "dot cos is 0"
      value = (Q*sin + R*cos) / cos
      return value
  def Pdot(self, state):
      P = state[self.Pi]
      Q = state[self.Qi]
      R = state[self.Ri]
      Jx = self.gvJx
      Jy = self.gvJy
      Jz = self.gvJz
      Jxz = self.gvJxz
      l = self.Ml
      n = self.Mn
      assert self.Gamma != 0.0, "Pdot Gamma is 0"
      value = (Jxz * (Jx - Jy + Jz)*P*Q - (Jz*(Jz - Jy) + Jxz*Jxz)*Q*R + Jz*1_{\square}
→+ Jxz*n) / self.Gamma
      return value
```

```
def Qdot(self, state):
       P = state[self.Pi]
       Q = state[self.Qi]
       R = state[self.Ri]
       Jx = self.gvJx
       Jy = self.gvJy
       Jz = self.gvJz
       Jxz = self.gvJxz
       m = self.Mm
       assert Jy != 0.0, "Qdot Jy is 0"
       value = ((Jz - Jx)*P*R - Jxz*(P*P - R*R) + m) / Jy
       return value
   def Rdot(self, state):
       P = state[self.Pi]
       Q = state[self.Qi]
       R = state[self.Ri]
       Jx = self.gvJx
       Jy = self.gvJy
       Jz = self.gvJz
       Jxz = self.gvJxz
       l = self.Ml
       n = self.Mn
       assert self.Gamma != 0.0, "Pdot Gamma is 0"
       value = (((Jx - Jy)*Jx + Jxz*Jxz)*P*Q - Jxz*(Jx - Jy + Jz)*Q*R + Jxz*l_{\square}
\rightarrow+ Jx*n) / self.Gamma
       return value
   def Ndot(self, state):
      U = state[self.Ui]
       V = state[self.Vi]
       W = state[self.Wi]
       cos = math.cos(state[self.i])
       sin = math.sin(state[self.i])
       cos = math.cos(state[self.i])
       sin = math.sin(state[self.i])
       cos = math.cos(state[self.i])
       sin = math.sin(state[self.i])
       value = U*cos *cos + V*(-cos *sin + sin *sin *cos)
       + W*(sin *sin + cos *sin *cos)
       return value
   def Edot(self, state):
```

```
U = state[self.Ui]
       V = state[self.Vi]
      W = state[self.Wi]
       cos = math.cos(state[self.i])
      sin = math.sin(state[self.i])
      cos = math.cos(state[self.i])
      sin = math.sin(state[self.i])
       cos = math.cos(state[self.i])
       sin = math.sin(state[self.i])
      value = U*cos *sin + V*(cos *cos + sin *sin *sin)
      + W*(-sin*cos + cos*sin*sin)
      return value
   def Zdot(self, state):
      U = state[self.Ui]
      V = state[self.Vi]
      W = state[self.Wi]
      cos = math.cos(state[self.i])
       sin = math.sin(state[self.i])
      cos = math.cos(state[self.i])
      sin = math.sin(state[self.i])
      value = U*sin - V*sin *cos - W*cos *cos
      return value
   def Reset(self, ic):
       self.ResetSimulation(ic)
       self.gD = self.Planet.GravityConstant()
       self.mass = self.TotalMass
      self.Xdot.clear()
      self.Xdot = [self.Udot, self.Vdot, self.Wdot, self.dot, self.dot, self.
→ dot,
                    self.Pdot, self.Qdot, self.Rdot, self.Ndot, self.Edot,
⇒self.Zdot]
       self.X[self.Ui] = self.BodyVelocity.X
       self.X[self.Vi] = self.BodyVelocity.Y
       self.X[self.Wi] = self.BodyVelocity.Z
      self.X[self.i] = self.BodyAngle.X
      self.X[self.i] = self.BodyAngle.Y
      self.X[self.i] = self.BodyAngle.Z
      self.X[self.Pi] = self.BodyAngularRate.X
```

```
self.X[self.Qi] = self.BodyAngularRate.Y
       self.X[self.Ri] = self.BodyAngularRate.Z
       self.X[self.Ni] = self.Position.X
       self.X[self.Ei] = self.Position.Y
       self.X[self.Zi] = self.SetValue("altitudeMsl")
      self.Xa = 0
      self.Ya = 0
      self.Za = 0
      self.Xt = 0
       self.Yt = 0
       self.Zt = 0
  def Operate(self):
       # save output data
       self.localGravity_m_s2.append(self.gD)
       self.altitudeMsl_m.append(self.X[self.Zi])
       self.eulerAngle_Roll.append(self.X[self.i])
       self.eulerAngle_Pitch.append(self.X[self.i])
       self.eulerAngle_Yaw.append( self.NormalizeAngle(self.X[self. i],-math.
→pi,math.pi) )
       self.trueAirspeed.append(self.TrueAirspeed)
       # integrate the equations
       self.X = self.RungeKutta4(self.Xdot, self.X)
       # Now advance time and update state equations
       self.AdvanceTime()
      u = self.X[self.Ui]
       v = self.X[self.Vi]
      w = self.X[self.Wi]
       self.TrueAirspeed = math.sqrt(u*u + v*v + w*w)
       # get dynamic pressure: q = 1/2 rho v^2
       density = self.Planet.AirDensity(self.X[self.Zi])
       dynamicPressure = 0.5 * density * (self.TrueAirspeed)**2
       # Get the qS factor for getting dimensional forces and moments
       qS = dynamicPressure * self.ReferenceWingArea
       # Compute the aerodynamic loads
       assert self.TrueAirspeed != 0, "TrueAirspeed is 0 to model"
       self.Data["trueAirspeed"] = self.TrueAirspeed * self.MeterToFeet
```

```
self.Data["bodyAngularRate_Roll"] = self.X[self.Pi]
self.Data["bodyAngularRate_Pitch"] = self.X[self.Qi]
self.Data["bodyAngularRate_Yaw"] = self.X[self.Ri]
self.EvaluateAeroModel()

# Aero forces (Newtons) body
self.Xa = qS * gvAeroModel.DataFromName("aeroBodyForceCoefficient_X")
self.Ya = qS * gvAeroModel.DataFromName("aeroBodyForceCoefficient_Y")
self.Za = qS * gvAeroModel.DataFromName("aeroBodyForceCoefficient_Z")

# Aero moments
self.Ml = qS * self.ReferenceWingSpan * gvAeroModel.

DataFromName("aeroBodyMomentCoefficient_Roll")
self.Mm = qS * self.ReferenceWingChord * gvAeroModel.

DataFromName("aeroBodyMomentCoefficient_Pitch")
self.Mn = qS * self.ReferenceWingSpan * gvAeroModel.

DataFromName("aeroBodyMomentCoefficient_Pitch")
self.Mn = qS * self.ReferenceWingSpan * gvAeroModel.
```

1.10.2 Oblate, Rotating Earth (Stevens and Lewis)

$$\begin{split} \dot{q_0} &= -0.5*(Pq_1 + Qq_2 + Rq_3) \\ \dot{q_1} &= 0.5*(Pq_0 + Rq_2 - Qq_3) \\ \dot{q_2} &= 0.5*(Qq_0 - Rq_1 + Pq_3) \\ \dot{q_3} &= 0.5*(Rq_0 + Qq_1 - Pq_2) \\ \dot{P_x} &= V_x \\ \dot{P_y} &= V_y \\ \dot{P_z} &= V_z \end{split}$$

where P and V are in the ECEF frame.

$$\begin{split} & \dot{v_x} = \frac{F_x}{m} + 2\omega_e V_y + g_x + P_x \omega_e^2 \\ & \dot{v_y} = \frac{F_y}{m} - 2\omega_e V_x + g_y + P_y \omega_e^2 \\ & \dot{v_z} = \frac{F_z}{m} + g_z \end{split}$$

where ω_e is the rotation rate of Earth. The terms g_x , g_y , and g_z are the J_2 gravity components in ECEF. This acceleration equation is in the ECEF frame.

$$\begin{split} \Gamma \dot{P} &= J_{xz} [J_x - J_y + J_z] PQ - [J_z (J_z - J_y) + J_{xz}^2] QR + lJ_z + nJ_{xz} \\ J_y \dot{Q} &= (J_z - J_x) PR - J_{xz} (P^2 - R^2) + m \\ \Gamma \dot{R} &= [(J_x - J_y) J_x + J_{xz}^2] PQ - J_{xz} [J_x - J_y + J_z] QR + lJ_{xz} nJ_x \\ \text{where } \Gamma &= J_x J_z - J_{xz}^2 \end{split}$$

```
[28]: class slEarthSim(ppSimulation):
    Planet = ppEarth()
    RotationAngle = 0
    EarthRotation = ppQuaternion(0, 0, 0, Planet.RotationRate)

# Earth rotatation in body frame
Per = 0
```

```
Qer = 0
Rer = 0
# quaternion frame rotations
# i = inertial frame ECI
# e = earth centered, earth fixed ECEF
# n = north \ east \ down \ NED
# b = body forward right down FRD
Qe2n = ppQuaternion(1,0,0,0)
Qn2b = ppQuaternion(1,0,0,0)
Qe2b = ppQuaternion(1,0,0,0)
Qi2e = ppQuaternion(1,0,0,0)
QforceEcf = ppQuaternion(0,0,0,0)
# ECEF gravity components
Gx = 0
Gy = 0
Gz = 0
# state values: quaternion, position, acceleration and angular rates
X = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
# the state differential equations
Xdot = []
# the indices of the state list
Qni = 0
Qxi = 1
Qyi = 2
Qzi = 3
Xi = 4
Yi = 5
Zi = 6
Vxi = 7
Vyi = 8
Vzi = 9
Pi = 10
Qi = 11
Ri = 12
def Qstate(self,state):
    q0 = state[self.Qni]
    q1 = state[self.Qxi]
```

```
q2 = state[self.Qyi]
    q3 = state[self.Qzi]
   p = state[self.Pi] - self.Per
    q = state[self.Qi] - self.Qer
   r = state[self.Ri] - self.Rer
   return q0, q1, q2, q3, p, q, r
def QnDot(self, state):
    q0, q1, q2, q3, p, q, r = self.Qstate(state)
    qnDot = -0.5*(q1*p + q2*q + q3*r)
    return qnDot
def QxDot(self, state):
   q0, q1, q2, q3, p, q, r = self.Qstate(state)
    qxDot = 0.5*(q0*p + q2*r - q3*q)
   return qxDot
def QyDot(self, state):
    q0, q1, q2, q3, p, q, r = self.Qstate(state)
    qyDot = 0.5*(q0*q - q1*r + q3*p)
   return qyDot
def QzDot(self, state):
    q0, q1, q2, q3, p, q, r = self.Qstate(state)
    qzDot = 0.5*(q0*r + q1*q - q2*p)
   return qzDot
def PxDot(self, state):
    return state[self.Vxi]
def PyDot(self, state):
   return state[self.Vyi]
def PzDot(self, state):
   return state[self.Vzi]
def VxDot(self, state):
   w = self.Planet.RotationRate
    assert self. Total Mass != 0, "VxDot mass is 0"
   ax = self.QforceEcf.X / self.TotalMass
    #if ax != 0:
    # print("ax:",ax)
   xDot = ax + 2.0 * w * state[self.Vyi] + self.Gx + state[self.Xi] * w**2
   return xDot
def VyDot(self, state):
   w = self.Planet.RotationRate
    assert self. Total Mass != 0, "VyDot mass is 0"
    ay = self.QforceEcf.Y / self.TotalMass
   yDot = ay - 2.0 * w * state[self.Vxi] + self.Gy + state[self.Yi] * w**2
   return yDot
def VzDot(self, state):
    assert self.TotalMass != 0, "VzDot mass is 0"
    az = self.QforceEcf.Z / self.TotalMass
```

```
return (az + self.Gz)
  def Wstate(self, state):
      P = state[self.Pi]
      Q = state[self.Qi]
      R = state[self.Ri]
      Jx = self.gvJx
      Jy = self.gvJy
       Jz = self.gvJz
      Jxz = self.gvJxz
      Gamma = self.Gamma
      1 = self.Ml
      m = self.Mm
      n = self.Mn
      return P, Q, R, Jx, Jy, Jz, Jxz, Gamma, 1, m, n
  def Pdot(self, state):
      P, Q, R, Jx, Jy, Jz, Jxz, Gamma, 1, m, n = self.Wstate(state)
       assert Gamma != 0, "Pdot Gamma is 0"
      pDot = (Jxz * (Jx - Jy + Jz)*P*Q - (Jz*(Jz - Jy) + Jxz*Jxz)*Q*R + Jz*l_{\sqcup}
→+ Jxz*n) / Gamma
      return pDot
  def Qdot(self, state):
      P, Q, R, Jx, Jy, Jz, Jxz, Gamma, 1, m, n = self.Wstate(state)
       assert Jy != 0.0, "Qdot Jy is 0"
       qDot = ((Jz - Jx)*P*R - Jxz*(P*P - R*R) + m) / Jy
      return qDot
  def Rdot(self, state):
      P, Q, R, Jx, Jy, Jz, Jxz, Gamma, 1, m, n = self.Wstate(state)
       assert Gamma != 0.0, "Rdot Gamma is 0"
       rDot = (((Jx - Jy)*Jx + Jxz*Jxz)*P*Q - Jxz*(Jx - Jy + Jz)*Q*R + Jxz*1 +_{\cup}
→Jx*n) / Gamma
       return rDot
  def Reset(self, ic):
       self.ResetSimulation(ic)
      self.RotationAngle = 0
       self.Planet.Latitude = self.SetValue("latitude")
       self.Planet.Longitude = self.SetValue("longitude")
       self.Planet.Altitude = self.SetValue("altitudeMsl")
       [x, y, z] = self.Planet.LlaToPcpf()
       self.Position.X = x
      self.Position.Y = y
      self.Position.Z = z
       # initialize the frd/ecf quaternion
```

```
roll = self.BodyAngle.X
   pitch = self.BodyAngle.Y
        = self.BodyAngle.Z
   lat = self.Planet.Latitude
   lon = self.Planet.Longitude
   self.Qe2b.SetQfrdWrtEcf(roll , pitch , yaw, lat, lon)
    # transform u,v,w to ECEF velocities
   Vecf = ppVector3(0,0,0)
   Vecf = self.Qe2b * self.BodyVelocity * ~self.Qe2b
    #self.mass = self.GrossWeight / self.gD
    self.Xdot.clear()
    self.Xdot = [self.QnDot, self.QxDot, self.QxDot, self.QzDot,
                 self.PxDot, self.PyDot, self.PzDot,
                 self.VxDot, self.VyDot, self.VzDot,
                 self.Pdot, self.Qdot, self.Rdot]
    self.X[self.Qni] = self.Qe2b.N
   self.X[self.Qxi] = self.Qe2b.X
   self.X[self.Qyi] = self.Qe2b.Y
   self.X[self.Qzi] = self.Qe2b.Z
   self.X[self.Xi] = self.Position.X
   self.X[self.Yi] = self.Position.Y
   self.X[self.Zi] = self.Position.Z
   self.X[self.Vxi] = Vecf.X
   self.X[self.Vyi] = Vecf.Y
   self.X[self.Vzi] = Vecf.Z
   print("Vecf: ", Vecf.X, Vecf.Y, Vecf.Z)
    self.X[self.Pi] = self.BodyAngularRate.X
    self.X[self.Qi] = self.BodyAngularRate.Y
    self.X[self.Ri] = self.BodyAngularRate.Z
def Operate(self):
    # create quaternions
    # TODO: need a check case the Q rotations are correct
    # set q frd/ecf (e2b) ECF to body
   self.Qe2b.N = self.X[self.Qni]
   self.Qe2b.X = self.X[self.Qxi]
   self.Qe2b.Y = self.X[self.Qyi]
   self.Qe2b.Z = self.X[self.Qzi]
```

```
# set q ned/ecf (e2n) ECF to NED
                        self.Qe2n.SetLatLon(self.Planet.Latitude, self.Planet.Longitude)
                         # set q frd/ned (n2b) NED to body
                        self.Qn2b = ~self.Qe2n * self.Qe2b
                         # get the euler angles from the quaternion
                         [roll, pitch, yaw] = self.Qn2b.EulerAnglesFromQ()
                         # rotate the ECF position to ECI to get the inertial position
                         self.Qi2e.SetPlanetRotation(self.RotationAngle)
                        qgePosition = ppQuaternion( 0, self.X[self.Xi], self.X[self.Yi], self.
→X[self.Zi] )
                         qeiPosition = self.Qi2e * qgePosition * ~self.Qi2e
                         # save output data
                        self.altitudeMsl m.append(self.Planet.Altitude)
                        self.latitude_rad.append(self.Planet.Latitude)
                        self.longitude_rad.append(self.Planet.Longitude)
                        self.gePosition_m_X.append(self.X[self.Xi])
                        self.gePosition m Y.append(self.X[self.Yi])
                        self.gePosition_m_Z.append(self.X[self.Zi])
                        self.eulerAngle_Roll.append(roll)
                        self.eulerAngle_Pitch.append(pitch)
                        self.eulerAngle_Yaw.append(yaw)
                        self.trueAirspeed.append(self.TrueAirspeed)
                         #cosRot = math.cos(self.RotationAngle)
                         #sinRot = math.sin(self.RotationAngle)
                        \#self.eiPosition\_m\_X.append(cosRot*self.X[self.Xi] - sinRot*self.X[self.Xi] - sinRot*self.X[se
\hookrightarrow Yi7)
                        \#self.eiPosition\_m\_Y.append(sinRot*self.X[self.Xi] + cosRot*self.X[self.Xi] + cosRot*self.X[se
\hookrightarrow Yi7)
                         \#self.eiPosition\_m\_Z.append(self.X[self.Zi])
                        self.eiPosition_m_X.append(qeiPosition.X)
                        self.eiPosition_m_Y.append(qeiPosition.Y)
                        self.eiPosition_m_Z.append(qeiPosition.Z)
                         # get earth rotation in the body frame
                        wEarthFrd = ~self.Qe2b * self.EarthRotation * self.Qe2b
                         # TODO: need to add body forces and rotate them to ECEF frame
                         # set the Earth rotation in the body frame
                        self.Per = wEarthFrd.X
                         self.Qer = wEarthFrd.Y
```

```
self.Rer = wEarthFrd.Z
      x = self.X[self.Xi]
       y = self.X[self.Yi]
       z = self.X[self.Zi]
       [self.Gx, self.Gy, self.Gz] = self.Planet.GravityJ2(x, y, z)
       g = ppVector3(self.Gx, self.Gy, self.Gz)
       self.localGravity_m_s2.append(g.Magnitude())
       # integrate the equations
       self.X = self.RungeKutta4(self.Xdot, self.X)
       # advance time and set up for next integration
       self.AdvanceTime()
       # get the new true airspeed
       vel = ppVector3(self.X[self.Vxi], self.X[self.Vyi], self.X[self.Vzi])
       self.TrueAirspeed = vel.Magnitude()
       # get dynamic pressure: q = 1/2 rho v^2
       density = self.Planet.AirDensity(self.Planet.Altitude)
       dynamicPressure = 0.5 * density * (self.TrueAirspeed)**2
       # Get the qS factor for getting dimensional forces and moments
       qS = dynamicPressure * self.ReferenceWingArea
       # Compute the aerodynamic loads from the DAVE-ML model
       # set the DAVE-ML model inputs
       assert self.TrueAirspeed != 0, "TrueAirspeed is 0 to model"
       self.Data["trueAirspeed"] = self.TrueAirspeed * self.MeterToFeet
       self.Data["bodyAngularRate_Roll"] = self.X[self.Pi]
       self.Data["bodyAngularRate_Pitch"] = self.X[self.Qi]
       self.Data["bodyAngularRate_Yaw"] = self.X[self.Ri]
       self.EvaluateAeroModel()
      drag = qS * self.totalCoefficientOfDrag
       QforceFrb = ppVector3(-drag, 0, 0)
       self.QforceEcf = self.Qe2b * QforceFrb * ~self.Qe2b
       # calculate the dimentionsal aero moments
       self.Ml = qS * self.ReferenceWingSpan * gvAeroModel.
→DataFromName("aeroBodyMomentCoefficient_Roll")
       self.Mm = qS * self.ReferenceWingChord * gvAeroModel.
→DataFromName("aeroBodyMomentCoefficient_Pitch")
       self.Mn = qS * self.ReferenceWingSpan * gvAeroModel.
→DataFromName("aeroBodyMomentCoefficient_Yaw")
```

```
# update the latitude, longitude and altitude from ECEF X, Y, Z position
self.Planet.PcpfToLlaZhu(self.X[self.Xi], self.X[self.Yi], self.X[self.
→Zi])

# rotate the earth
self.RotationAngle = self.Planet.RotationRate * self.Time
```

1.11 Check Cases

1.11.1 Check with Kinematics

[29]: ppLoadDml('models/noAero.dml')

Using 2D constant acceleration kinematics with no aerodynamic effects, the y displacement (height) equation is: $v_f = v_0 + gt$. A true airspeed of 424 m/s at 45° is 300 m/s in x and 300 m/s in y. At the maximum height, $v_f = 0 \, m/s$. Using $g = 9.82 \, m/s^2$, you get 0 = 300 - (9.82)t. Solving for time to reach the maximum height, t = 300/9.82 = 30.55 seconds.

```
root tag: {http://daveml.org/2010/DAVEML}DAVEfunc
Model: Zero Aero Output
creation date: 2021-07-21
file version: Initial version
-variableDef-
 varDefStruct.name: aeroBodyForceCoefficient_X
varDefStruct.varID: CX
 varDefStruct.units: kgm2
varDefStruct.axisSystem:
                          None
 varDefStruct.sign: None
varDefStruct.alias: None
varDefStruct.symbol: None
 varDefStruct.hasInitialValue: True
 varDefStruct.initialValue: 0.0
 varDefStruct.isStdAIAA: True
 varDefStruct.isOutput: True
varDefStruct.hasMath: False
 varDefStruct.codeText: None
-variableDef-
 varDefStruct.name: aeroBodyForceCoefficient_Y
varDefStruct.varID: CY
 varDefStruct.units: kgm2
 varDefStruct.axisSystem:
 varDefStruct.sign: None
 varDefStruct.alias: None
 varDefStruct.symbol: None
 varDefStruct.hasInitialValue: True
```

varDefStruct.initialValue: 0.0
varDefStruct.isStdAIAA: True
varDefStruct.isOutput: True

varDefStruct.hasMath: False varDefStruct.codeText: None -variableDefvarDefStruct.name: aeroBodyForceCoefficient_Z varDefStruct.varID: CZ varDefStruct.units: kgm2 varDefStruct.axisSystem: None varDefStruct.sign: None varDefStruct.alias: None varDefStruct.symbol: None varDefStruct.hasInitialValue: True varDefStruct.initialValue: 0.0 varDefStruct.isStdAIAA: True varDefStruct.isOutput: True varDefStruct.hasMath: False varDefStruct.codeText: None -variableDefvarDefStruct.name: aeroBodyMomentCoefficient_Roll varDefStruct.varID: CLL varDefStruct.units: kgm2 varDefStruct.axisSystem: None varDefStruct.sign: None varDefStruct.alias: None varDefStruct.symbol: None varDefStruct.hasInitialValue: True varDefStruct.initialValue: 0.0 varDefStruct.isStdAIAA: True varDefStruct.isOutput: True varDefStruct.hasMath: False varDefStruct.codeText: None -variableDefvarDefStruct.name: aeroBodyMomentCoefficient_Pitch varDefStruct.varID: CLM varDefStruct.units: kgm2 varDefStruct.axisSystem: None varDefStruct.sign: None varDefStruct.alias: None varDefStruct.symbol: None varDefStruct.hasInitialValue: True varDefStruct.initialValue: 0.0 varDefStruct.isStdAIAA: True varDefStruct.isOutput: True varDefStruct.hasMath: False varDefStruct.codeText: None -variableDefvarDefStruct.name: aeroBodyMomentCoefficient_Yaw

varDefStruct.varID: CLN
varDefStruct.units: kgm2

232

```
varDefStruct.sign: None
      varDefStruct.alias: None
      varDefStruct.symbol: None
      varDefStruct.hasInitialValue: True
      varDefStruct.initialValue: 0.0
      varDefStruct.isStdAIAA: True
      varDefStruct.isOutput: True
      varDefStruct.hasMath: False
      varDefStruct.codeText: None
     --- PreProcess Equations and Functions ---
     +++++ MODEL INPUTS AND OUTPUTS +++++
     ++> Output:
                 CX
     ++> Output:
                 CY
     ++> Output: CZ
     ++> Output:
                 CLL
     ++> Output:
                 CLM
     ++> Output: CLN
     Parse complete
     Number of check cases: 0
     aeroBodyForceCoefficient_X
     aeroBodyForceCoefficient_Y
     aeroBodyForceCoefficient_Z
     aeroBodyMomentCoefficient_Roll
     aeroBodyMomentCoefficient_Pitch
     aeroBodyMomentCoefficient_Yaw
[30]: %%time
     ic = {
         "timeStep": [0.01, "s"],
         "totalMass": [5.0, "kg"],
         "bodyMomentOfInertia_X": [0.1, "kgm2"],
         "bodyMomentOfInertia_Y": [0.1, "kgm2"],
         "bodyMomentOfInertia_Z": [0.1, "kgm2"],
         "altitudeMsl": [10.0, "m"],
         "referenceWingChord": [0.2, "m"],
         "referenceWingSpan": [0.2, "m"],
         "referenceWingArea": [0.031415, "m2"],
         "trueAirspeed": [424.264, "m_s"],
         "angleOfAttack": [-45, "deg"]
     flatEarthSim = ppFlatEarth()
     flatEarthSim.Reset(ic)
     flatEarthSim.Run(61.0)
     ====== SetIC ========
```

varDefStruct.axisSystem:

```
{'timeStep': 0.01, 'totalMass': 5.0, 'bodyMomentOfInertia_X': 0.1,
     'bodyMomentOfInertia_Y': 0.1, 'bodyMomentOfInertia_Z': 0.1, 'altitudeMsl': 10.0,
     'referenceWingChord': 0.2, 'referenceWingSpan': 0.2, 'referenceWingArea':
     0.031415, 'trueAirspeed': 424.264, 'angleOfAttack': -0.7853981633974483}
     ++ timeStep = 0.01 [IC case]
     ++ totalMass = 5.0 [IC case]
     ++ referenceWingSpan = 0.2 [IC case]
     ++ referenceWingChord = 0.2 [IC case]
     ++ referenceWingArea = 0.031415 [IC case]
     ++ trueAirspeed = 424.264 [IC case]
     ++ angleOfAttack = -0.7853981633974483 [IC case]
     ++ angleOfSideslip = 0 [default]
     ++ eulerAngle_Roll = 0 [default]
     ++ eulerAngle_Pitch = 0 [default]
     ++ eulerAngle_Yaw = 0 [default]
     ++ eulerAngleRate_Roll = 0 [default]
     ++ eulerAngleRate_Pitch = 0 [default]
     ++ eulerAngleRate_Yaw = 0 [default]
     ++ bodyMomentOfInertia_X = 0.1 [IC case]
     ++ bodyProductOfInertia XY = 0 [default]
     ++ bodyProductOfInertia_XZ = 0 [default]
     ++ bodyProductOfInertia_YX = 0 [default]
     ++ bodyMomentOfInertia_Y = 0.1 [IC case]
     ++ bodyProductOfInertia_YZ = 0 [default]
     ++ bodyProductOfInertia_XZ = 0 [default]
     ++ bodyProductOfInertia_YZ = 0 [default]
     ++ bodyMomentOfInertia_Z = 0.1 [IC case]
     ++ altitudeMsl = 10.0 [IC case]
     =====done=====
     CPU times: user 603 ms, sys: 23.5 ms, total: 627 ms
     Wall time: 678 ms
[31]: max(flatEarthSim.altitudeMsl_m)
[31]: 4598.721461301354
```

```
[32]: tMax = 300/9.82
      print(tMax)
```

30.54989816700611

The time calculated above (t = 30.55 seconds) matches closely to the plot of the data from the EOM.

The maximum height in kinematics is: $y = \frac{1}{2}(v_0y + v_fy)t + y_0$. Substituting in the equation, you get $y = \frac{1}{2}(300 + 0)(30.55) + 10$.

```
[33]: yMax = 0.5*(300 + 0)*(tMax) + 10
      print(yMax)
```

4592.4847250509165

The maximum height calculated from the 2D kinematics of 4592 meters is within 10 meters of the EOM calculated value of 4600 meters.

1.11.2 Read NESC Check Cases

Function to read in check cases from NESC. The function gets columns of data from the check case CSV files.

```
[35]: import csv
      def GetCheckCaseData(fileName):
          # open the CSV file as read-only
          csvFile = open(fileName, 'r')
          # strip the newline character from the header line
          headerLine = csvFile.readline().rstrip("\n")
          # make a list of headers
          header = headerLine.split(',')
          print("number of headers: ", len(header))
          print(header)
          # create a data dictionary with header names as keys
          Data = \{\}
          for h in header:
              Data[h] = []
          # read each row in the datafile and add the data to the data dictionary
          for row in csv.reader(csvFile):
              for (i,d) in zip(header, row):
                  Data[i].append( float(d) )
          return Data
```

Data checks:

L-2: $D(x,y) = [\Sigma(x_i - y_i)^2]^{1/2}$ L-Infinity-Norm: $\max_i |x_i - y_i|$

Manhattan distance: $\Sigma_i |x_i - y_i|$

```
import matplotlib.pyplot as plt
import numpy as np
import math

def MinDeltaAngleDeg(angle1, angle2):
    """
    Returns the minimum delta between two angles.
    Examples:
        20 is returned if angle1=30 and angle2=10
        20 is returned if angle1=-170 and angle2=170
    """
    delta = angle1 - angle2
    twoPi = 360.0
    if abs(delta) > abs( angle1 - (angle2 - twoPi) ):
        delta = angle1 - (angle2 - twoPi)
        if abs(delta) > abs( (angle1 - twoPi) - angle2 ):
            delta = (angle1 - twoPi) - angle2
    return delta
```

```
print("MinDeltaAngle check")
print(MinDeltaAngleDeg( 170,160),"=", 10)
print(MinDeltaAngleDeg(-160,170),"=", 30)
print(MinDeltaAngleDeg( 20,-20),"=", 40)
def NescCheckData(data, checkData, isAng):
   12Sum = 0
   manSum = 0
   infNorm = 0
   for (x, y) in zip(data, checkData):
       dxy = x - y
       if isAng:
            dxy = MinDeltaAngleDeg( x, y )
       12Sum += dxv**2
       dist = abs(dxy)
       manSum += dist
       if dist > infNorm:
            infNorm = dist
   return math.sqrt(12Sum), infNorm
def PrintErrorTable(tableTitle, labels, simData, checkData):
   print ("{:<25} {:<25} ".format('Variable', 'L2', 'L-Infinity-Norm'))</pre>
   print ("{:<25} {:<25}".format('----', '--', '-----'))</pre>
   barLinf = {}
   for i in labels:
       tmpDist = NescCheckData(checkData[i], simData.EnglishData[i], i.

→find("_deg_"))
       print ("{:<25} {:<25}".format(i, tmpDist[0], tmpDist[1]))</pre>
       barLinf[i] = tmpDist[1]
   plt.rcdefaults()
   fig, ax = plt.subplots()
   y_pos = np.arange(len(barLinf.keys()))
    #plt.xlim([0, 10])
   ax.barh(y_pos, barLinf.values(), align='center')
   ax.set_yticks(y_pos)
   ax.set_yticklabels(barLinf.keys())
   ax.invert_yaxis() # labels read top-to-bottom
   ax.set_xlabel('L-Infinity Norm')
   ax.set_title(tableTitle)
   plt.show()
data1 = [1, 2, 3, 4, 5]
data2 = [1.2, 2.2, 3, 3.9, 5]
```

```
dists = NescCheckData(data1, data2, False)
      print("L-2 Norm: ", dists)
      data3 = [ 160, 20 ]
      data4 = [ -160, 30 ]
      dists = NescCheckData(data3, data4, True)
      print("L-2 Norm: ", dists)
     MinDeltaAngle check
     10 = 10
     30.0 = 30
     40 = 40
     L-2 Norm: (0.30000000000001, 0.200000000000018)
     L-2 Norm: (41.23105625617661, 40.0)
[37]: def MakeFlatEarthPlots(simData, checkData, simCheckLabel):
          fig0, ah = plt.subplots()
          ah.plot(checkData['time'], checkData['altitudeMsl_ft'],'g',
                  simData.time, simData.EnglishData['altitudeMsl_ft'], 'b')
          ah.legend([simCheckLabel, "pierpont"])
          ah.set(xlabel='time (s)', ylabel='Altitude (ft)', title='Flat Earth:
      →Altitude versus Time')
          ah.grid()
          fig1, ad = plt.subplots()
          ad.plot(checkData['time'], checkData['eulerAngle_deg_Roll'],'g',
                  simData.time, simData.EnglishData['eulerAngle_deg_Roll'], 'b')
          ad.legend([simCheckLabel, "pierpont"])
          ad.set(xlabel='time (s)', ylabel='Roll (deg)', title='Flat Earth: Roll
       ⇔versus Time')
          ad.grid()
          fig2, ap = plt.subplots()
          ap.plot(checkData['time'], checkData['eulerAngle_deg_Pitch'],'g',
                  simData.time, simData.EnglishData['eulerAngle_deg_Pitch'], 'b')
          ap.legend([simCheckLabel, "pierpont"])
          ap.set(xlabel='time (s)', ylabel='Pitch (deg)', title='Flat Earth: Pitch⊔
       →versus Time')
          ap.grid()
          fig3, ay = plt.subplots()
          ay.plot(checkData['time'], checkData['eulerAngle_deg_Yaw'],'g',
                  simData.time, simData.EnglishData['eulerAngle_deg_Yaw'], 'b')
          ay.legend([simCheckLabel, "pierpont"])
```

```
[38]: import matplotlib.pyplot as plt
      import matplotlib.gridspec as gridspec
      def MakePlot(simData, checkData, simCaseLabel):
          fig1 = plt.figure(constrained layout=True)
          spec1 = gridspec.GridSpec(ncols=2, nrows=1, figure=fig1)
          ax1 = fig1.add_subplot(spec1[0, 0])
          ax1.plot(checkData['time'], checkData['altitudeMsl_ft'],'g',
                   simData.time, simData.EnglishData['altitudeMsl_ft'], 'b')
          ax1.set(xlabel='time (s)', ylabel='altitude (ft)', title='Altitude versus_
          ax1.legend([simCaseLabel, "pierpont"])
          ax2 = fig1.add_subplot(spec1[0, 1])
          ax2.yaxis.tick right()
          ax2.yaxis.set_label_position("right")
          ax2.plot(checkData['time'], checkData['localGravity_ft_s2'],'g',
                   simData.time, simData.EnglishData['localGravity_ft_s2'], 'b')
          ax2.set(xlabel='time (s)', ylabel='localGravity (ft_s2)', title='Gravity_
       ⇔versus Time')
          ax2.legend([simCaseLabel, "pierpont"])
          fig2, ad = plt.subplots()
          ad.plot(checkData['time'], checkData['gePosition_ft_X'],'g',
                  simData.time, simData.EnglishData['gePosition_ft_X'], 'b')
          ad.legend([simCaseLabel, "pierpont"])
          ad.set(xlabel='time (s)', ylabel='gePosition_ft_X', title='ECEF X versus_
       →Time')
          ad.grid()
          fig5, ad = plt.subplots()
          ad.plot(checkData['time'], checkData['eulerAngle_deg_Roll'],'g',
                  simData.time, simData.EnglishData['eulerAngle_deg_Roll'], 'b')
          ad.legend([simCaseLabel, "pierpont"])
```

```
ad.set(xlabel='time (s)', ylabel='Roll (deg)', title='Oblate Earth: Roll_
⇔versus Time')
  ad.grid()
  fig5a, ap = plt.subplots()
  ap.plot(checkData['time'], checkData['eulerAngle deg Pitch'],'g',
           simData.time, simData.EnglishData['eulerAngle_deg_Pitch'], 'b')
  ap.legend([simCaseLabel, "pierpont"])
  ap.set(xlabel='time (s)', ylabel='Pitch (deg)', title='Oblate Earth: Pitch⊔
→versus Time')
  ap.grid()
  fig5b, ay = plt.subplots()
  ay.plot(checkData['time'], checkData['eulerAngle_deg_Yaw'],'g',
           simData.time, simData.EnglishData['eulerAngle_deg_Yaw'], 'b')
  ay.legend([simCaseLabel, "pierpont"])
  ay.set(xlabel='time (s)', ylabel='Yaw (deg)', title='Oblate Earth: Yawu
→versus Time')
  ay.grid()
```

1.11.3 Dragless Sphere - 1

Property	English Value	SI Value
$\overline{I_{xx}}$	3.6 slug-ft^2	4.881 kg-m^2
I_{yy}	3.6 slug-ft^2	4.881 kg-m^2
I_{zz}	3.6 slug-ft^2	4.881 kg-m^2
m	$1.0 \mathrm{slug}$	14.5939 kg
S	0.1963495 ft^2	$0.0182414654525~\mathrm{m}^2$

```
[39]: ixx = 3.6 * gvConvert.Slugft2ToKgm2
print("ixx=", ixx)
mass = 1.0 * gvConvert.SlugToKg
print("mass=", mass)
S = 0.1963495 * gvConvert.SqFeetToSqMeter
print("S=", S)

ixx= 4.88094466281336
mass= 14.593902937
S= 0.018241465452480003
```

Flat Earth

```
[40]: %%time

#

print("=======")

checkFile = "NESC-check-cases/Atmospheric_checkcases/Atmos_01_DroppedSphere/

→Atmos_01_sim_01.csv"
```

```
gvCC1 = GetCheckCaseData(checkFile)
print("======"")
ppLoadDml('models/noAero.dml')
# 1 slug = 14.5939 kg
# 3.6 slug-ft2 = 4.881 kg-m2
# 30000 ft = 9144 m
\# 0.1963495 \text{ ft2} = 0.0182414654525 \text{ m2}
ic = {
    "totalMass": [1.0, "slug"],
    "bodyMomentOfInertia_X": [3.6, "slugft2"],
    "bodyMomentOfInertia_Y": [3.6, "slugft2"],
    "bodyMomentOfInertia_Z": [3.6, "slugft2"],
    "altitudeMsl": [30000, "ft"],
    "referenceWingChord": [0.2, "ft"],
    "referenceWingSpan": [0.2, "ft"],
    "referenceWingArea": [0.1963495, "ft2"]
}
gvFlatEarthSim = ppFlatEarth()
gvFlatEarthSim.Reset(ic)
gvFlatEarthSim.Run(30.0)
gvFlatEarthSim.GenerateEnglishUnits()
______
number of headers: 31
['time', 'gePosition_ft_X', 'gePosition_ft_Y', 'gePosition_ft_Z',
'feVelocity_ft_s_X', 'feVelocity_ft_s_Y', 'feVelocity_ft_s_Z', 'altitudeMsl_ft',
'longitude_deg', 'latitude_deg', 'localGravity_ft_s2', 'eulerAngle_deg_Yaw',
'eulerAngle_deg_Pitch', 'eulerAngle_deg_Roll',
'bodyAngularRateWrtEi_deg_s_Roll', 'bodyAngularRateWrtEi_deg_s_Pitch',
'bodyAngularRateWrtEi_deg_s_Yaw', 'altitudeRateWrtMsl_ft_min',
'speedOfSound_ft_s', 'airDensity_slug_ft3', 'ambientPressure_lbf_ft2',
'ambientTemperature_dgR', 'aero_bodyForce_lbf_X', 'aero_bodyForce_lbf_Y',
'aero_bodyForce_lbf_Z', 'aero_bodyMoment_ftlbf_L', 'aero_bodyMoment_ftlbf_M',
'aero_bodyMoment_ftlbf_N', 'mach', 'dynamicPressure_lbf_ft2',
'trueAirspeed_nmi_h']
===============
root tag: {http://daveml.org/2010/DAVEML}DAVEfunc
Model: Zero Aero Output
creation date: 2021-07-21
file version: Initial version
-variableDef-
varDefStruct.name: aeroBodyForceCoefficient_X
varDefStruct.varID: CX
 varDefStruct.units: kgm2
varDefStruct.axisSystem: None
```

varDefStruct.sign: None varDefStruct.alias: None varDefStruct.symbol: None varDefStruct.hasInitialValue: True varDefStruct.initialValue: 0.0 varDefStruct.isStdAIAA: True varDefStruct.isOutput: True varDefStruct.hasMath: False varDefStruct.codeText: None -variableDefvarDefStruct.name: aeroBodyForceCoefficient_Y varDefStruct.varID: CY varDefStruct.units: kgm2 varDefStruct.axisSystem: None varDefStruct.sign: None varDefStruct.alias: None varDefStruct.symbol: None varDefStruct.hasInitialValue: True varDefStruct.initialValue: 0.0 varDefStruct.isStdAIAA: True varDefStruct.isOutput: True varDefStruct.hasMath: False varDefStruct.codeText: None -variableDefvarDefStruct.name: aeroBodyForceCoefficient_Z varDefStruct.varID: CZ varDefStruct.units: kgm2 varDefStruct.axisSystem: None varDefStruct.sign: None varDefStruct.alias: None varDefStruct.symbol: None varDefStruct.hasInitialValue: True varDefStruct.initialValue: 0.0 varDefStruct.isStdAIAA: True varDefStruct.isOutput: True varDefStruct.hasMath: False varDefStruct.codeText: None -variableDefvarDefStruct.name: aeroBodyMomentCoefficient_Roll varDefStruct.varID: CLL varDefStruct.units: kgm2 varDefStruct.axisSystem: None varDefStruct.sign: None varDefStruct.alias: None varDefStruct.symbol: None varDefStruct.hasInitialValue: True varDefStruct.initialValue: 0.0

varDefStruct.isStdAIAA: True

varDefStruct.isOutput: True varDefStruct.hasMath: False varDefStruct.codeText: None -variableDefvarDefStruct.name: aeroBodyMomentCoefficient_Pitch varDefStruct.varID: CLM varDefStruct.units: kgm2 varDefStruct.axisSystem: None varDefStruct.sign: None varDefStruct.alias: None varDefStruct.symbol: None varDefStruct.hasInitialValue: True varDefStruct.initialValue: 0.0 varDefStruct.isStdAIAA: True varDefStruct.isOutput: True varDefStruct.hasMath: False varDefStruct.codeText: None -variableDefvarDefStruct.name: aeroBodyMomentCoefficient_Yaw varDefStruct.varID: CLN varDefStruct.units: kgm2 varDefStruct.axisSystem: None varDefStruct.sign: None varDefStruct.alias: None varDefStruct.symbol: None varDefStruct.hasInitialValue: True varDefStruct.initialValue: 0.0 varDefStruct.isStdAIAA: True varDefStruct.isOutput: True varDefStruct.hasMath: False varDefStruct.codeText: None --- PreProcess Equations and Functions ---+++++ MODEL INPUTS AND OUTPUTS +++++ ++> Output: CX ++> Output: CY ++> Output: CZ ++> Output: ++> Output: CLM ++> Output: CLN Parse complete Number of check cases: 0 aeroBodyForceCoefficient_X aeroBodyForceCoefficient_Y aeroBodyForceCoefficient_Z aeroBodyMomentCoefficient_Roll aeroBodyMomentCoefficient_Pitch

```
====== SetIC ========
     {'totalMass': 14.593902937, 'bodyMomentOfInertia X': 4.88094466281336,
     'bodyMomentOfInertia_Y': 4.88094466281336, 'bodyMomentOfInertia_Z':
     4.88094466281336, 'altitudeMsl': 9144.0, 'referenceWingChord':
     0.0609600000000001, 'referenceWingSpan': 0.060960000000001,
     'referenceWingArea': 0.018241465452480003}
     ++ timeStep = 0.1 [default]
     ++ totalMass = 14.593902937 [IC case]
     ++ referenceWingSpan = 0.0609600000000001 [IC case]
     ++ referenceWingChord = 0.0609600000000001 [IC case]
     ++ referenceWingArea = 0.018241465452480003 [IC case]
     ++ trueAirspeed = 0 [default]
     ++ angleOfAttack = 0 [default]
     ++ angleOfSideslip = 0 [default]
     ++ eulerAngle_Roll = 0 [default]
     ++ eulerAngle_Pitch = 0 [default]
     ++ eulerAngle_Yaw = 0 [default]
     ++ eulerAngleRate_Roll = 0 [default]
     ++ eulerAngleRate Pitch = 0 [default]
     ++ eulerAngleRate Yaw = 0 [default]
     ++ bodyMomentOfInertia X = 4.88094466281336 [IC case]
     ++ bodyProductOfInertia_XY = 0 [default]
     ++ bodyProductOfInertia_XZ = 0 [default]
     ++ bodyProductOfInertia_YX = 0 [default]
     ++ bodyMomentOfInertia_Y = 4.88094466281336 [IC case]
     ++ bodyProductOfInertia_YZ = 0 [default]
     ++ bodyProductOfInertia_XZ = 0 [default]
     ++ bodyProductOfInertia_YZ = 0 [default]
     ++ bodyMomentOfInertia_Z = 4.88094466281336 [IC case]
     ++ altitudeMsl = 9144.0 [IC case]
     =====done=====
     CPU times: user 43.2 ms, sys: 7.6 ms, total: 50.8 ms
     Wall time: 47.3 ms
[41]: gvFlatEarthLabel = \
          'altitudeMsl_ft', 'trueAirspeed_nmi_h',
          'eulerAngle_deg_Roll', 'eulerAngle_deg_Pitch', 'eulerAngle_deg_Yaw'
      ]
      PrintErrorTable("Dragless Sphere: Flat Earth", gvFlatEarthLabel, __
       →gvFlatEarthSim, gvCC1)
     Variable
                               L2
                                                         L-Infinity-Norm
     -----
                                                         _____
                               607.9947105071013
                                                         77.22782399366406
     altitudeMsl_ft
     trueAirspeed_nmi_h
                               30.300144397638636
                                                         2.917378529996199
```

aeroBodyMomentCoefficient_Yaw

```
eulerAngle_deg_Roll
                           1.2569020649616232
                                                     0.1253996817079627
eulerAngle_deg_Pitch
                           0.0
                           0.0
                                                     0
eulerAngle_deg_Yaw
```


Oblate, Rotating Earth

```
[42]: %%time
      ic = {
          "totalMass": [1.0, "slug"],
          "bodyMomentOfInertia_X": [3.6, "slugft2"],
          "bodyMomentOfInertia_Y": [3.6, "slugft2"],
          "bodyMomentOfInertia_Z": [3.6, "slugft2"],
          "altitudeMsl": [30000, "ft"],
          "referenceWingChord": [0.2, "ft"],
          "referenceWingSpan": [0.2, "ft"],
          "referenceWingArea": [0.1963495, "ft2"]
      }
      gvOblateRotatingEarth = slEarthSim()
      gvOblateRotatingEarth.Reset(ic)
      gvOblateRotatingEarth.Run(30)
      gvOblateRotatingEarth.GenerateEnglishUnits()
```

====== SetIC ======== {'totalMass': 14.593902937, 'bodyMomentOfInertia X': 4.88094466281336,

```
4.88094466281336, 'altitudeMsl': 9144.0, 'referenceWingChord':
     0.0609600000000001, 'referenceWingSpan': 0.060960000000001,
     'referenceWingArea': 0.018241465452480003}
     ++ timeStep = 0.1 [default]
     ++ totalMass = 14.593902937 [IC case]
     ++ referenceWingSpan = 0.060960000000001 [IC case]
     ++ referenceWingChord = 0.0609600000000001 [IC case]
     ++ referenceWingArea = 0.018241465452480003 [IC case]
     ++ trueAirspeed = 0 [default]
     ++ angleOfAttack = 0 [default]
     ++ angleOfSideslip = 0 [default]
     ++ eulerAngle_Roll = 0 [default]
     ++ eulerAngle_Pitch = 0 [default]
     ++ eulerAngle_Yaw = 0 [default]
     ++ eulerAngleRate_Roll = 0 [default]
     ++ eulerAngleRate_Pitch = 0 [default]
     ++ eulerAngleRate_Yaw = 0 [default]
     ++ bodyMomentOfInertia_X = 4.88094466281336 [IC case]
     ++ bodyProductOfInertia XY = 0 [default]
     ++ bodyProductOfInertia XZ = 0 [default]
     ++ bodyProductOfInertia_YX = 0 [default]
     ++ bodyMomentOfInertia_Y = 4.88094466281336 [IC case]
     ++ bodyProductOfInertia_YZ = 0 [default]
     ++ bodyProductOfInertia_XZ = 0 [default]
     ++ bodyProductOfInertia_YZ = 0 [default]
     ++ bodyMomentOfInertia_Z = 4.88094466281336 [IC case]
     ++ latitude = 0 [default]
     ++ longitude = 0 [default]
     ++ altitudeMsl = 9144.0 [IC case]
     Vecf: 0.0 0.0 0.0
     =====done=====
     CPU times: user 90.6 ms, sys: 4.44 ms, total: 95 ms
     Wall time: 94.2 ms
[43]: gvOblateEarthLabel = \
          'altitudeMsl_ft', 'longitude_deg', 'latitude_deg', 'localGravity_ft_s2',
          'gePosition_ft_X', 'gePosition_ft_Y', 'gePosition_ft_Z',
          'eulerAngle_deg_Roll', 'eulerAngle_deg_Pitch', 'eulerAngle_deg_Yaw'
      ]
      PrintErrorTable("Dragless Sphere: Oblate Earth", gvOblateEarthLabel, u
       →gvOblateRotatingEarth, gvCC1)
     Variable
                               L2
                                                         L-Infinity-Norm
     altitudeMsl_ft
                               0.132658503212526
                                                         0.02048735810240032
```

'bodyMomentOfInertia_Y': 4.88094466281336, 'bodyMomentOfInertia_Z':

longitude_deg	1.840404761574716e-10	3.1393235335245e-11
latitude_deg	0.0	0
localGravity_ft_s2	8.923802486168079e-05	9.171880087421869e-06
<pre>gePosition_ft_X</pre>	0.1343059782985569	0.020609743893146515
<pre>gePosition_ft_Y</pre>	6.717601039765743e-05	1.1453364173519276e-05
<pre>gePosition_ft_Z</pre>	0.0	0
eulerAngle_deg_Roll	2.5437306921432218e-08	2.5527049640761135e-09
eulerAngle_deg_Pitch	3.632333118253663e-19	4.079942171239155e-20
eulerAngle_deg_Yaw	4.446769635169959e-16	3.7272118343786e-17

1.11.4 Dragless Tumbling Brick - 2

Property	English Value	SI Value
$\overline{I_{xx}}$	$0.001894220 \text{ slug-ft}^2$	$0.002568217477249 \text{ kg-m}^2$
I_{yy}	$0.006211019 \text{ slug-ft}^2$	$0.00842101104799105 \text{ kg-m}^2$
I_{zz}	$0.007194665 \text{ slug-ft}^2$	$0.00975465595123675 \text{ kg-m}^2$
m	0.155404754 slug	2.2679619056149 kg
S	$0.22222 \; \mathrm{ft}^2$	$0.020644913548800003 \text{ m}^2$
b	$0.33333 \; \mathrm{ft}$	0.1016 m
$ar{c}$	0.66667 ft	$0.2032 \mathrm{\ m}$

```
[44]: mass = 0.155404754 * gvConvert.SlugToKg
      print("m=", mass)
      ixx = 0.001894220 * gvConvert.Slugft2ToKgm2
      print("Ixx=", ixx)
      iyy = 0.006211019 * gvConvert.Slugft2ToKgm2
      print("Iyy=", iyy)
      izz = 0.007194665 * gvConvert.Slugft2ToKgm2
      print("Izz=", izz)
      cbar = 0.66667 * gvConvert.FeetToMeter
      print("cbar=", cbar)
      b = 0.33333 * gvConvert.FeetToMeter
      print("b=", b)
      s = 0.22222 * gvConvert.SqFeetToSqMeter
      print("s=", s)
     m= 2.2679618958243624
     Ixx= 0.002568217499776201
     Iyy= 0.008421011121856215
     Izz= 0.009754656036800024
     cbar= 0.203201016
     b= 0.101598984
     s= 0.020644913548800003
     Flat Earth
[45]: %%time
      checkFile = "NESC-check-cases/Atmospheric_checkcases/
      →Atmos_02_TumblingBrickNoDamping/Atmos_02_sim_01.csv"
      gvCC2 = GetCheckCaseData(checkFile)
      #
      print("=======")
      ppLoadDml('models/noAero.dml')
      CheckModel()
      ic = {
          "totalMass": [0.155404754, "slug"],
          "bodyMomentOfInertia_X": [0.001894220, "slugft2"],
          "bodyMomentOfInertia_Y": [0.006211019, "slugft2"],
          "bodyMomentOfInertia_Z": [0.007194665, "slugft2"],
          "altitudeMsl": [30000, "ft"],
          "referenceWingChord": [0.66667, "ft"],
          "referenceWingSpan": [0.33333, "ft"],
          "referenceWingArea": [0.22222, "ft"],
          "eulerAngleRate_Roll": [10, "deg_s"],
          "eulerAngleRate_Pitch": [20, "deg_s"],
          "eulerAngleRate_Yaw": [30, "deg_s"]
      }
      gvFlatEarthSim.Reset(ic)
```

gvFlatEarthSim.Run(30.0)

gvFlatEarthSim.GenerateEnglishUnits()

```
number of headers: 31
['time', 'gePosition_ft_X', 'gePosition_ft_Y', 'gePosition_ft_Z',
'feVelocity_ft_s_X', 'feVelocity_ft_s_Y', 'feVelocity_ft_s_Z', 'altitudeMsl_ft',
'longitude_deg', 'latitude_deg', 'localGravity_ft_s2', 'eulerAngle_deg_Yaw',
'eulerAngle_deg_Pitch', 'eulerAngle_deg_Roll',
'bodyAngularRateWrtEi_deg_s_Roll', 'bodyAngularRateWrtEi_deg_s_Pitch',
'bodyAngularRateWrtEi_deg_s_Yaw', 'altitudeRateWrtMsl_ft_min',
'speedOfSound ft_s', 'airDensity_slug_ft3', 'ambientPressure_lbf_ft2',
'ambientTemperature_dgR', 'aero_bodyForce_lbf_X', 'aero_bodyForce_lbf_Y',
'aero_bodyForce_lbf_Z', 'aero_bodyMoment_ftlbf_L', 'aero_bodyMoment_ftlbf_M',
'aero_bodyMoment_ftlbf_N', 'mach', 'dynamicPressure_lbf_ft2',
'trueAirspeed_nmi_h']
root tag: {http://daveml.org/2010/DAVEML}DAVEfunc
Model: Zero Aero Output
creation date: 2021-07-21
file version: Initial version
-variableDef-
varDefStruct.name: aeroBodyForceCoefficient X
 varDefStruct.varID: CX
 varDefStruct.units: kgm2
 varDefStruct.axisSystem: None
varDefStruct.sign: None
 varDefStruct.alias: None
 varDefStruct.symbol: None
varDefStruct.hasInitialValue:
 varDefStruct.initialValue: 0.0
varDefStruct.isStdAIAA: True
 varDefStruct.isOutput: True
varDefStruct.hasMath: False
 varDefStruct.codeText: None
-variableDef-
 varDefStruct.name: aeroBodyForceCoefficient_Y
 varDefStruct.varID: CY
varDefStruct.units: kgm2
 varDefStruct.axisSystem: None
 varDefStruct.sign: None
 varDefStruct.alias: None
 varDefStruct.symbol: None
 varDefStruct.hasInitialValue:
 varDefStruct.initialValue: 0.0
 varDefStruct.isStdAIAA: True
 varDefStruct.isOutput: True
 varDefStruct.hasMath: False
 varDefStruct.codeText: None
-variableDef-
```

varDefStruct.name: aeroBodyForceCoefficient_Z varDefStruct.varID: CZ varDefStruct.units: kgm2 varDefStruct.axisSystem: None varDefStruct.sign: None varDefStruct.alias: None varDefStruct.symbol: None varDefStruct.hasInitialValue: True varDefStruct.initialValue: 0.0 varDefStruct.isStdAIAA: True varDefStruct.isOutput: True varDefStruct.hasMath: False varDefStruct.codeText: None -variableDefvarDefStruct.name: aeroBodyMomentCoefficient_Roll varDefStruct.varID: CLL varDefStruct.units: kgm2 varDefStruct.axisSystem: None varDefStruct.sign: None varDefStruct.alias: None varDefStruct.symbol: None varDefStruct.hasInitialValue: True varDefStruct.initialValue: 0.0 varDefStruct.isStdAIAA: True varDefStruct.isOutput: True varDefStruct.hasMath: False varDefStruct.codeText: None -variableDefvarDefStruct.name: aeroBodyMomentCoefficient_Pitch varDefStruct.varID: CLM varDefStruct.units: kgm2 varDefStruct.axisSystem: None varDefStruct.sign: None varDefStruct.alias: None varDefStruct.symbol: None varDefStruct.hasInitialValue: True varDefStruct.initialValue: 0.0 varDefStruct.isStdAIAA: True varDefStruct.isOutput: True varDefStruct.hasMath: False varDefStruct.codeText: None -variableDefvarDefStruct.name: aeroBodyMomentCoefficient_Yaw varDefStruct.varID: CLN varDefStruct.units: kgm2 varDefStruct.axisSystem: None varDefStruct.sign: None

varDefStruct.alias: None

```
varDefStruct.symbol: None
 varDefStruct.hasInitialValue: True
 varDefStruct.initialValue: 0.0
 varDefStruct.isStdAIAA: True
 varDefStruct.isOutput: True
 varDefStruct.hasMath: False
 varDefStruct.codeText: None
--- PreProcess Equations and Functions ---
+++++ MODEL INPUTS AND OUTPUTS +++++
++> Output:
++> Output:
            CY
++> Output:
++> Output:
            CLL
++> Output:
            CLM
++> Output:
            CLN
Parse complete
Number of check cases:
aeroBodyForceCoefficient X
aeroBodyForceCoefficient_Y
aeroBodyForceCoefficient Z
aeroBodyMomentCoefficient_Roll
aeroBodyMomentCoefficient_Pitch
aeroBodyMomentCoefficient_Yaw
---- CheckModel -----
numSignals: []
---- END CheckModel ----
====== SetIC ========
{'totalMass': 2.2679618958243624, 'bodyMomentOfInertia_X': 0.002568217499776201,
'bodyMomentOfInertia Y': 0.008421011121856215, 'bodyMomentOfInertia Z':
0.009754656036800024, 'altitudeMsl': 9144.0, 'referenceWingChord': 0.203201016,
'referenceWingSpan': 0.101598984, 'referenceWingArea': 0.067732656,
'eulerAngleRate_Roll': 0.17453292519943295, 'eulerAngleRate_Pitch':
0.3490658503988659, 'eulerAngleRate_Yaw': 0.5235987755982988}
++ timeStep = 0.1 [default]
++ totalMass = 2.2679618958243624 [IC case]
++ referenceWingSpan = 0.101598984 [IC case]
++ referenceWingChord = 0.203201016 [IC case]
++ referenceWingArea = 0.067732656 [IC case]
++ trueAirspeed = 0 [default]
++ angleOfAttack = 0 [default]
++ angleOfSideslip = 0 [default]
++ eulerAngle_Roll = 0 [default]
```

```
++ eulerAngle_Pitch = 0 [default]
++ eulerAngle_Yaw = 0 [default]
++ eulerAngleRate_Roll = 0.17453292519943295 [IC case]
++ eulerAngleRate_Pitch = 0.3490658503988659 [IC case]
++ eulerAngleRate_Yaw = 0.5235987755982988 [IC case]
++ bodyMomentOfInertia_X = 0.002568217499776201 [IC case]
++ bodyProductOfInertia_XY = 0 [default]
++ bodyProductOfInertia_XZ = 0 [default]
++ bodyProductOfInertia_YX = 0 [default]
++ bodyMomentOfInertia_Y = 0.008421011121856215 [IC case]
++ bodyProductOfInertia_YZ = 0 [default]
++ bodyProductOfInertia_XZ = 0 [default]
++ bodyProductOfInertia_YZ = 0 [default]
++ bodyMomentOfInertia_Z = 0.009754656036800024 [IC case]
++ altitudeMsl = 9144.0 [IC case]
=====done=====
CPU times: user 46.8 ms, sys: 8.02 ms, total: 54.8 ms
Wall time: 55.5 ms
```

[46]: PrintErrorTable("Tumbling Brick: Flat Earth", gvFlatEarthLabel, gvFlatEarthSim, ⊔ →gvCC2)

Variable	L2	t L-Infinity-Norm
altitudeMsl_ft	607.972054527782	77.22500410951034
trueAirspeed_nmi_h	30.278799187883976	2.9152206853502776
eulerAngle_deg_Roll	0.9696393367797839	0.1253209330691334
eulerAngle_deg_Pitch	0.8533820770548749	0.11575857923671151
eulerAngle_deg_Yaw	0.2980578394513776	0.03904847535990541

[47]: MakeFlatEarthPlots(gvFlatEarthSim, gvCC2, "sim1")

Oblate, Rotating Earth

```
[48]: %%time
      ic = {
          "totalMass": [0.155404754, "slug"],
          "bodyMomentOfInertia_X": [0.001894220, "slugft2"],
          "bodyMomentOfInertia_Y": [0.006211019, "slugft2"],
          "bodyMomentOfInertia_Z": [0.007194665, "slugft2"],
          "altitudeMsl": [30000, "ft"],
          "referenceWingChord": [0.66667, "ft"],
          "referenceWingSpan": [0.33333, "ft"],
          "referenceWingArea": [0.22222, "ft"],
          "eulerAngleRate_Roll": [10, "deg_s"],
          "eulerAngleRate_Pitch": [20, "deg_s"],
          "eulerAngleRate_Yaw": [30, "deg_s"]
      gvOblateRotatingEarth.Reset(ic)
      gvOblateRotatingEarth.Run(30)
      gvOblateRotatingEarth.GenerateEnglishUnits()
```

====== SetIC ========

```
{'totalMass': 2.2679618958243624, 'bodyMomentOfInertia_X': 0.002568217499776201,
     'bodyMomentOfInertia_Y': 0.008421011121856215, 'bodyMomentOfInertia_Z':
     0.009754656036800024, 'altitudeMsl': 9144.0, 'referenceWingChord': 0.203201016,
     'referenceWingSpan': 0.101598984, 'referenceWingArea': 0.067732656,
     'eulerAngleRate Roll': 0.17453292519943295, 'eulerAngleRate Pitch':
     0.3490658503988659, 'eulerAngleRate_Yaw': 0.5235987755982988}
     ++ timeStep = 0.1 [default]
     ++ totalMass = 2.2679618958243624 [IC case]
     ++ referenceWingSpan = 0.101598984 [IC case]
     ++ referenceWingChord = 0.203201016 [IC case]
     ++ referenceWingArea = 0.067732656 [IC case]
     ++ trueAirspeed = 0 [default]
     ++ angleOfAttack = 0 [default]
     ++ angleOfSideslip = 0 [default]
     ++ eulerAngle_Roll = 0 [default]
     ++ eulerAngle_Pitch = 0 [default]
     ++ eulerAngle_Yaw = 0 [default]
     ++ eulerAngleRate_Roll = 0.17453292519943295 [IC case]
     ++ eulerAngleRate_Pitch = 0.3490658503988659 [IC case]
     ++ eulerAngleRate Yaw = 0.5235987755982988 [IC case]
     ++ bodyMomentOfInertia X = 0.002568217499776201 [IC case]
     ++ bodyProductOfInertia XY = 0 [default]
     ++ bodyProductOfInertia_XZ = 0 [default]
     ++ bodyProductOfInertia_YX = 0 [default]
     ++ bodyMomentOfInertia_Y = 0.008421011121856215 [IC case]
     ++ bodyProductOfInertia_YZ = 0 [default]
     ++ bodyProductOfInertia_XZ = 0 [default]
     ++ bodyProductOfInertia_YZ = 0 [default]
     ++ bodyMomentOfInertia_Z = 0.009754656036800024 [IC case]
     ++ latitude = 0 [default]
     ++ longitude = 0 [default]
     ++ altitudeMsl = 9144.0 [IC case]
     Vecf: 0.0 0.0 0.0
     =====done=====
     CPU times: user 43.1 ms, sys: 3.14 ms, total: 46.2 ms
     Wall time: 45.2 ms
[49]: MakePlot(gvOblateRotatingEarth, gvCC2, "sim1")
```


[50]: PrintErrorTable("Dragless Tumbling Brick: Oblate Earth", gvOblateEarthLabel, u →gvOblateRotatingEarth, gvCC2)

L-Infinity-Norm

L2

Variable

altitudeMsl_ft	0.132658503212526	0.02048735810240032
longitude_deg	1.840404761574716e-10	3.1393235335245e-11
latitude_deg	0.0	0
localGravity_ft_s2	8.923802486168079e-05	9.171880087421869e-06
<pre>gePosition_ft_X</pre>	0.1343059782985569	0.020609743893146515
<pre>gePosition_ft_Y</pre>	6.717601039765743e-05	1.1453364173519276e-05
gePosition_ft_Z	0.0	0
eulerAngle_deg_Roll	0.02661660809333747	0.003678374584481503
eulerAngle_deg_Pitch	0.025190519978331032	0.0034552761165556056
eulerAngle_deg_Yaw	0.01326283857690703	0.0019424252806858888

1.11.5 Tumbling Brick Damping - 3

Tumbling brick with damping check case

Flat Earth Run a simulation for 30 seconds at a time step of 0.1 seconds.

```
"referenceWingArea": [0.22222, "ft2"],
          "eulerAngleRate_Roll": [10, "deg_s"],
          "eulerAngleRate_Pitch": [20, "deg_s"],
          "eulerAngleRate_Yaw": [30, "deg_s"]
 }
 inputs = ["trueAirspeed", "bodyAngularRate_Roll", "bodyAngularRate_Pitch", __
   gvFlatEarthSim.Reset(ic)
 gvFlatEarthSim.AddAeroModelInput(inputs)
 gvFlatEarthSim.Run(30.0)
 gvFlatEarthSim.GenerateEnglishUnits()
number of headers: 31
['time', 'gePosition ft X', 'gePosition ft Y', 'gePosition ft Z',
\label{locity_ft_s_X', 'feVelocity_ft_s_Y', 'feVelocity_ft_s_Z', 'altitudeMsl_ft', feVelocity_ft_s_Z', 'altitudeMsl_ft', feVelocity_ft_s_Z', 'feVelocity_ft_s_Z', 'feVelocity_f
'longitude_deg', 'latitude_deg', 'localGravity_ft_s2', 'eulerAngle_deg_Yaw',
'eulerAngle_deg_Pitch', 'eulerAngle_deg_Roll',
'bodyAngularRateWrtEi_deg_s_Roll', 'bodyAngularRateWrtEi_deg_s_Pitch',
'bodyAngularRateWrtEi_deg_s_Yaw', 'altitudeRateWrtMsl_ft_min',
'speedOfSound_ft_s', 'airDensity_slug_ft3', 'ambientPressure_lbf_ft2',
'ambientTemperature_dgR', 'aero_bodyForce_lbf_X', 'aero_bodyForce_lbf_Y',
'aero bodyForce lbf Z', 'aero bodyMoment ftlbf L', 'aero bodyMoment ftlbf M',
'aero_bodyMoment_ftlbf_N', 'mach', 'dynamicPressure_lbf_ft2',
'trueAirspeed_nmi_h']
root tag: {http://daveml.org/2010/DAVEML}DAVEfunc
Model: Example brick aerodynamic model
creation date: 2012-10-05
file version: Mod D, 2021-05-01
-variableDef-
 varDefStruct.name: referenceWingArea
  varDefStruct.varID: SWING
  varDefStruct.units: ft2
  varDefStruct.axisSystem: None
 varDefStruct.sign: None
 varDefStruct.alias: None
 varDefStruct.symbol: None
  varDefStruct.hasInitialValue: True
  varDefStruct.initialValue: 0.22222
  varDefStruct.isStdAIAA: True
  varDefStruct.isOutput: False
  varDefStruct.hasMath: False
  varDefStruct.codeText: None
-variableDef-
  varDefStruct.name: referenceWingSpan
  varDefStruct.varID: BSPAN
  varDefStruct.units: ft
  varDefStruct.axisSystem: None
```

varDefStruct.sign: None varDefStruct.alias: None varDefStruct.symbol: None varDefStruct.hasInitialValue: True varDefStruct.initialValue: 0.33333 varDefStruct.isStdAIAA: True varDefStruct.isOutput: False varDefStruct.hasMath: False varDefStruct.codeText: None -variableDefvarDefStruct.name: referenceWingChord varDefStruct.varID: CBAR varDefStruct.units: ft varDefStruct.axisSystem: None varDefStruct.sign: None varDefStruct.alias: None varDefStruct.symbol: None varDefStruct.hasInitialValue: True varDefStruct.initialValue: 0.66667 varDefStruct.isStdAIAA: True varDefStruct.isOutput: False varDefStruct.hasMath: False varDefStruct.codeText: None -variableDefvarDefStruct.name: roll damping from roll rate varDefStruct.varID: CLP_DAMPING varDefStruct.units: _rad varDefStruct.axisSystem: None varDefStruct.sign: None varDefStruct.alias: None varDefStruct.symbol: None varDefStruct.hasInitialValue: True varDefStruct.initialValue: -1.0 varDefStruct.isStdAIAA: False varDefStruct.isOutput: False varDefStruct.hasMath: False varDefStruct.codeText: None -variableDefvarDefStruct.name: roll damping from yaw rate varDefStruct.varID: CLR_DAMPING varDefStruct.units: _rad varDefStruct.axisSystem: None varDefStruct.sign: None varDefStruct.alias: None varDefStruct.symbol: None varDefStruct.hasInitialValue: True

varDefStruct.initialValue: 0.0
varDefStruct.isStdAIAA: False

varDefStruct.isOutput: False varDefStruct.hasMath: False varDefStruct.codeText: None -variableDefvarDefStruct.name: pitch damping from pitch rate varDefStruct.varID: CMQ DAMPING varDefStruct.units: rad varDefStruct.axisSystem: None varDefStruct.sign: None varDefStruct.alias: None varDefStruct.symbol: None varDefStruct.hasInitialValue: True varDefStruct.initialValue: -1.0 varDefStruct.isStdAIAA: False varDefStruct.isOutput: False varDefStruct.hasMath: False varDefStruct.codeText: None -variableDefvarDefStruct.name: yaw damping from roll rate varDefStruct.varID: CNP DAMPING varDefStruct.units: rad varDefStruct.axisSystem: None varDefStruct.sign: None varDefStruct.alias: None varDefStruct.symbol: None varDefStruct.hasInitialValue: True varDefStruct.initialValue: 0.0 varDefStruct.isStdAIAA: False varDefStruct.isOutput: False varDefStruct.hasMath: False varDefStruct.codeText: None -variableDefvarDefStruct.name: yaw damping from yaw rate varDefStruct.varID: CNR DAMPING varDefStruct.units: rad varDefStruct.axisSystem: None varDefStruct.sign: None varDefStruct.alias: None varDefStruct.symbol: None varDefStruct.hasInitialValue: True varDefStruct.initialValue: -1.0 varDefStruct.isStdAIAA: False varDefStruct.isOutput: False varDefStruct.hasMath: False varDefStruct.codeText: None -variableDefvarDefStruct.name: trueAirspeed

varDefStruct.varID: VRW

varDefStruct.units: ft_s
varDefStruct.axisSystem: None
varDefStruct.sign: None

varDefStruct.alias: None
varDefStruct.symbol: None

varDefStruct.hasInitialValue: False
varDefStruct.initialValue: None
varDefStruct.isStdAIAA: True
varDefStruct.isOutput: False
varDefStruct.hasMath: False
varDefStruct.codeText: None

-variableDef-

varDefStruct.name: bodyAngularRate_Roll

varDefStruct.varID: PB
varDefStruct.units: rad_s
varDefStruct.axisSystem: None

varDefStruct.sign: RWD
varDefStruct.alias: None
varDefStruct.symbol: None

varDefStruct.hasInitialValue: False
varDefStruct.initialValue: None
varDefStruct.isStdAIAA: True
varDefStruct.isOutput: False
varDefStruct.hasMath: False
varDefStruct.codeText: None

-variableDef-

varDefStruct.name: bodyAngularRate_Pitch

varDefStruct.varID: QB
varDefStruct.units: rad_s
varDefStruct.axisSystem: None

varDefStruct.sign: ANU
varDefStruct.alias: None
varDefStruct.symbol: None

varDefStruct.hasInitialValue: False
varDefStruct.initialValue: None
varDefStruct.isStdAIAA: True
varDefStruct.isOutput: False
varDefStruct.hasMath: False
varDefStruct.codeText: None

-variableDef-

varDefStruct.name: bodyAngularRate_Yaw

varDefStruct.varID: RB
varDefStruct.units: rad_s
varDefStruct.axisSystem: None

varDefStruct.sign: ANR
varDefStruct.alias: None
varDefStruct.symbol: None

varDefStruct.hasInitialValue: False

```
varDefStruct.initialValue: None
varDefStruct.isStdAIAA: True
varDefStruct.isOutput: False
varDefStruct.hasMath: False
varDefStruct.codeText: None
-variableDef-
varDefStruct.name: PBO2V
varDefStruct.varID: PBO2V
varDefStruct.units: nd
varDefStruct.axisSystem: None
varDefStruct.sign: None
varDefStruct.alias: None
varDefStruct.symbol: None
varDefStruct.hasInitialValue: False
varDefStruct.initialValue: None
varDefStruct.isStdAIAA: False
varDefStruct.isOutput: False
varDefStruct.hasMath: True
varDefStruct.codeText: ({BSPAN} * {PB}) / (2.0 * {VRW})
-variableDef-
varDefStruct.name: QCO2V
varDefStruct.varID: QCO2V
varDefStruct.units: nd
varDefStruct.axisSystem: None
varDefStruct.sign: None
varDefStruct.alias: None
varDefStruct.symbol: None
varDefStruct.hasInitialValue: False
varDefStruct.initialValue: None
varDefStruct.isStdAIAA: False
varDefStruct.isOutput: False
varDefStruct.hasMath: True
varDefStruct.codeText: ({CBAR} * {QB}) / (2.0 * {VRW})
-variableDef-
varDefStruct.name: RBO2V
varDefStruct.varID: RBO2V
varDefStruct.units: nd
varDefStruct.axisSystem: None
varDefStruct.sign: None
varDefStruct.alias: None
varDefStruct.symbol: None
varDefStruct.hasInitialValue: False
varDefStruct.initialValue: None
varDefStruct.isStdAIAA: False
varDefStruct.isOutput: False
varDefStruct.hasMath: True
varDefStruct.codeText: ({BSPAN} * {RB}) / (2.0 * {VRW})
-variableDef-
```

varDefStruct.name: totalCoefficientOfLift varDefStruct.varID: CL varDefStruct.units: nd varDefStruct.axisSystem: None varDefStruct.sign: None varDefStruct.alias: None varDefStruct.symbol: None varDefStruct.hasInitialValue: True varDefStruct.initialValue: 0.0 varDefStruct.isStdAIAA: True varDefStruct.isOutput: True varDefStruct.hasMath: False varDefStruct.codeText: None -variableDefvarDefStruct.name: totalCoefficientOfDrag varDefStruct.varID: CD varDefStruct.units: nd varDefStruct.axisSystem: None varDefStruct.sign: None varDefStruct.alias: None varDefStruct.symbol: None varDefStruct.hasInitialValue: True varDefStruct.initialValue: 0.01 varDefStruct.isStdAIAA: True varDefStruct.isOutput: True varDefStruct.hasMath: False varDefStruct.codeText: None -variableDefvarDefStruct.name: aeroBodyForceCoefficient_Y varDefStruct.varID: CY varDefStruct.units: nd varDefStruct.axisSystem: None varDefStruct.sign: None varDefStruct.alias: None varDefStruct.symbol: None varDefStruct.hasInitialValue: True varDefStruct.initialValue: 0.0 varDefStruct.isStdAIAA: True varDefStruct.isOutput: True varDefStruct.hasMath: False varDefStruct.codeText: None -variableDefvarDefStruct.name: aeroBodyMomentCoefficient_Roll varDefStruct.varID: Cl varDefStruct.units: nd varDefStruct.axisSystem: None varDefStruct.sign: None

varDefStruct.alias: None

```
varDefStruct.symbol: None
varDefStruct.hasInitialValue: False
varDefStruct.initialValue: None
varDefStruct.isStdAIAA: True
varDefStruct.isOutput: True
varDefStruct.hasMath: True
varDefStruct.codeText: ({CLP_DAMPING} * {PBO2V}) + ({CLR_DAMPING} * {RBO2V})
-variableDef-
varDefStruct.name: aeroBodyMomentCoefficient Pitch
varDefStruct.varID: Cm
varDefStruct.units: nd
varDefStruct.axisSystem:
                          None
varDefStruct.sign: None
varDefStruct.alias: None
varDefStruct.symbol: None
varDefStruct.hasInitialValue: False
varDefStruct.initialValue: None
varDefStruct.isStdAIAA: True
varDefStruct.isOutput: True
varDefStruct.hasMath: True
varDefStruct.codeText: ({CMQ_DAMPING} * {QCO2V})
-variableDef-
varDefStruct.name: aeroBodyMomentCoefficient_Yaw
varDefStruct.varID: Cn
varDefStruct.units: nd
varDefStruct.axisSystem:
                          None
varDefStruct.sign: None
varDefStruct.alias: None
varDefStruct.symbol: None
varDefStruct.hasInitialValue: False
varDefStruct.initialValue: None
varDefStruct.isStdAIAA: True
varDefStruct.isOutput: True
varDefStruct.hasMath: True
varDefStruct.codeText: ({CNP_DAMPING} * {PBO2V}) + ({CNR_DAMPING} * {RBO2V})
-checkData-
staticShot: Nominal
signal type: {http://daveml.org/2010/DAVEML}checkInputs
signal name: trueAirspeed
signal varID: VRW
signal value: 10.0
signal units: ft_s
 [localSignal append] -> Nominal signal #: 1
signal type: {http://daveml.org/2010/DAVEML}checkInputs
signal name: bodyAngularRate_Roll
signal varID: PB
signal value: 0.3
signal units: rad_s
```

```
[localSignal append] -> Nominal signal #: 2
signal type: {http://daveml.org/2010/DAVEML}checkInputs
signal name: bodyAngularRate_Pitch
signal varID: QB
signal value: 1.5
signal units: rad s
[localSignal append] -> Nominal signal #: 3
signal type: {http://daveml.org/2010/DAVEML}checkInputs
signal name: bodyAngularRate_Yaw
signal varID: RB
signal value: 0.6
signal units: rad_s
[localSignal append] -> Nominal signal #: 4
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal name: referenceWingArea
signal varID: SWING
signal value: 0.22222
signal units: ft2
signal tol: 1e-5
[localSignal append] -> Nominal signal #: 5
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal name: referenceWingSpan
signal varID: BSPAN
signal value: 0.33333
signal units: ft
signal tol: 1e-5
[localSignal append] -> Nominal signal #: 6
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal name: referenceWingChord
signal varID: CBAR
signal value: 0.66667
signal units: ft
signal tol: 1e-5
[localSignal append] -> Nominal signal #: 7
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal name: roll damping from roll rate
signal varID: CLP DAMPING
signal value:
              -1.0
[localSignal append] -> Nominal signal #: 8
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal name: roll damping from yaw rate
signal varID: CLR_DAMPING
signal value: 0.0
[localSignal append] -> Nominal signal #: 9
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal name: pitch damping from pitch rate
signal varID: CMQ_DAMPING
signal value: -1.0
```

```
[localSignal append] -> Nominal signal #: 10
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal name:
             yaw damping from roll rate
signal varID: CNP_DAMPING
signal value: 0.0
[localSignal append] -> Nominal signal #: 11
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal name: yaw damping from yaw rate
signal varID: CNR_DAMPING
signal value:
              -1.0
[localSignal append] -> Nominal signal #: 12
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal name:
             PB02V
signal varID: PBO2V
signal value: 0.005
[localSignal append] -> Nominal signal #: 13
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal name:
             QCO2V
signal varID: QCO2V
signal value: 0.05
[localSignal append] -> Nominal signal #: 14
signal type: {http://daveml.org/2010/DAVEML}internalValues
signal name: RBO2V
signal varID: RBO2V
signal value: 0.01
[localSignal append] -> Nominal signal #: 15
signal type: {http://daveml.org/2010/DAVEML}checkOutputs
signal name: totalCoefficientOfLift
signal varID: CL
signal value: 0.0
[localSignal append] -> Nominal signal #: 16
             {http://daveml.org/2010/DAVEML}checkOutputs
signal type:
signal name: totalCoefficientOfDrag
signal varID: CD
signal value: 0.01
[localSignal append] -> Nominal signal #: 17
signal type: {http://daveml.org/2010/DAVEML}checkOutputs
signal name:
             aeroBodyForceCoefficient_Y
signal varID: CY
signal value: 0.0
[localSignal append] -> Nominal signal #: 18
signal type: {http://daveml.org/2010/DAVEML}checkOutputs
signal name:
             aeroBodyMomentCoefficient_Roll
signal varID: Cl
signal value:
              -0.005
[localSignal append] -> Nominal signal #:
signal type: {http://daveml.org/2010/DAVEML}checkOutputs
signal name: aeroBodyMomentCoefficient_Pitch
```

```
signal varID: Cm
 signal value: -0.05
 [localSignal append] -> Nominal signal #: 20
 signal type: {http://daveml.org/2010/DAVEML}checkOutputs
 signal name: aeroBodyMomentCoefficient Yaw
 signal varID: Cn
 signal value: -0.01
 [localSignal append] -> Nominal signal #: 21
21 signals in Nominal
--- PreProcess Equations and Functions ---
===> PBO2V -> ({BSPAN} * {PB}) / (2.0 * {VRW})
  *** equation: (self.Data["BSPAN"] * self.Data["PB"]) / (2.0 *
self.Data["VRW"])
 ===> QCO2V -> (\{CBAR\} * \{QB\}) / (2.0 * \{VRW\})
  *** equation: (self.Data["CBAR"] * self.Data["QB"]) / (2.0 *
self.Data["VRW"])
===> RB02V -> (\{BSPAN\} * \{RB\}) / (2.0 * \{VRW\})
  *** equation: (self.Data["BSPAN"] * self.Data["RB"]) / (2.0 *
self.Data["VRW"])
===> C1 -> ({CLP DAMPING} * {PBO2V}) + ({CLR DAMPING} * {RBO2V})
  *** equation: (self.Data["CLP DAMPING"] * self.Data["PBO2V"]) +
(self.Data["CLR_DAMPING"] * self.Data["RB02V"])
===> Cm -> ({CMQ_DAMPING} * {QCO2V})
 *** equation: (self.Data["CMQ_DAMPING"] * self.Data["QCO2V"])
 ==> Cn -> ({CNP_DAMPING} * {PBO2V}) + ({CNR_DAMPING} * {RBO2V})
  *** equation: (self.Data["CNP_DAMPING"] * self.Data["PBO2V"]) +
(self.Data["CNR_DAMPING"] * self.Data["RB02V"])
+++++ MODEL INPUTS AND OUTPUTS +++++
++> Input: VRW
++> Input: PB
++> Input: QB
++> Input: RB
++> Output: CL
++> Output: CD
++> Output:
            CY
++> Output:
            Cl
++> Output:
            Cm
++> Output:
            Cn
Parse complete
Number of check cases: 1
referenceWingArea
referenceWingSpan
referenceWingChord
roll damping from roll rate
roll damping from yaw rate
pitch damping from pitch rate
```

```
yaw damping from roll rate
yaw damping from yaw rate
trueAirspeed
bodyAngularRate_Roll
bodyAngularRate Pitch
bodyAngularRate_Yaw
PB02V
QCO2V
RB02V
totalCoefficientOfLift
totalCoefficientOfDrag
aeroBodyForceCoefficient_Y
aeroBodyMomentCoefficient_Roll
aeroBodyMomentCoefficient_Pitch
aeroBodyMomentCoefficient_Yaw
---- CheckModel -----
numSignals:
             [21]
---- END CheckModel -----
======= SetIC ========
{'totalMass': 2.2679618958243624, 'bodyMomentOfInertia_X': 0.002568217499776201,
'bodyMomentOfInertia_Y': 0.008421011121856215, 'bodyMomentOfInertia_Z':
0.009754656036800024, 'altitudeMsl': 9144.0, 'referenceWingChord': 0.203201016,
'referenceWingSpan': 0.101598984, 'referenceWingArea': 0.020644913548800003,
'eulerAngleRate Roll': 0.17453292519943295, 'eulerAngleRate_Pitch':
0.3490658503988659, 'eulerAngleRate_Yaw': 0.5235987755982988}
++ timeStep = 0.1 [default]
++ totalMass = 2.2679618958243624 [IC case]
++ referenceWingSpan = 0.101598984 [IC case]
++ referenceWingChord = 0.203201016 [IC case]
++ referenceWingArea = 0.020644913548800003 [IC case]
++ trueAirspeed = 0 [default]
++ angleOfAttack = 0 [default]
++ angleOfSideslip = 0 [default]
++ eulerAngle_Roll = 0 [default]
++ eulerAngle_Pitch = 0 [default]
++ eulerAngle_Yaw = 0 [default]
++ eulerAngleRate_Roll = 0.17453292519943295 [IC case]
++ eulerAngleRate_Pitch = 0.3490658503988659 [IC case]
++ eulerAngleRate_Yaw = 0.5235987755982988 [IC case]
++ bodyMomentOfInertia_X = 0.002568217499776201 [IC case]
++ bodyProductOfInertia_XY = 0 [default]
++ bodyProductOfInertia_XZ = 0 [default]
++ bodyProductOfInertia_YX = 0 [default]
++ bodyMomentOfInertia_Y = 0.008421011121856215 [IC case]
```

```
++ bodyProductOfInertia_YZ = 0 [default]
++ bodyProductOfInertia_XZ = 0 [default]
++ bodyProductOfInertia_YZ = 0 [default]
++ bodyMomentOfInertia_Z = 0.009754656036800024 [IC case]
++ altitudeMsl = 9144.0 [IC case]
=====done======
CPU times: user 117 ms, sys: 34.9 ms, total: 152 ms
Wall time: 198 ms
```

[52]: MakeFlatEarthPlots(gvFlatEarthSim, gvCC3, "sim1") PrintErrorTable("Tumbling Brick Damping: Flat Earth", gvFlatEarthLabel, →gvFlatEarthSim, gvCC3)

Variable	L2	L-Infinity-Norm
altitudeMsl_ft	607.9829747297271	77.22618244503428
trueAirspeed_nmi_h	30.29929205599481	2.9172948944294603
eulerAngle_deg_Roll	4.115319287865008	0.4073996530980857
eulerAngle_deg_Pitch	2.4299375300946506	0.3420764770645235
eulerAngle_deg_Yaw	9.941099709629293	0.8768454992063255

Oblate, Rotating Earth

```
[53]: %%time
     ic = {
        "totalMass": [0.155404754, "slug"],
        "bodyMomentOfInertia_X": [0.001894220, "slugft2"],
        "bodyMomentOfInertia_Y": [0.006211019, "slugft2"],
        "bodyMomentOfInertia_Z": [0.007194665, "slugft2"],
        "altitudeMsl": [30000, "ft"],
        "referenceWingChord": [0.66667, "ft"],
        "referenceWingSpan": [0.33333, "ft"],
        "referenceWingArea": [0.22222, "ft2"],
        "eulerAngleRate Roll": [10.0, "deg s"],
        "eulerAngleRate_Pitch": [20.0, "deg_s"],
        "eulerAngleRate_Yaw": [30.0, "deg_s"]
     }
     gvOblateRotatingEarth.Reset(ic)
     gvOblateRotatingEarth.AddAeroModelInput(inputs)
     gvOblateRotatingEarth.Run(30)
     gvOblateRotatingEarth.GenerateEnglishUnits()
```

====== SetIC ========

```
{'totalMass': 2.2679618958243624, 'bodyMomentOfInertia_X': 0.002568217499776201,
     'bodyMomentOfInertia_Y': 0.008421011121856215, 'bodyMomentOfInertia_Z':
     0.009754656036800024, 'altitudeMsl': 9144.0, 'referenceWingChord': 0.203201016,
     'referenceWingSpan': 0.101598984, 'referenceWingArea': 0.020644913548800003,
     'eulerAngleRate Roll': 0.17453292519943295, 'eulerAngleRate Pitch':
     0.3490658503988659, 'eulerAngleRate_Yaw': 0.5235987755982988}
     ++ timeStep = 0.1 [default]
     ++ totalMass = 2.2679618958243624 [IC case]
     ++ referenceWingSpan = 0.101598984 [IC case]
     ++ referenceWingChord = 0.203201016 [IC case]
     ++ referenceWingArea = 0.020644913548800003 [IC case]
     ++ trueAirspeed = 0 [default]
     ++ angleOfAttack = 0 [default]
     ++ angleOfSideslip = 0 [default]
     ++ eulerAngle_Roll = 0 [default]
     ++ eulerAngle_Pitch = 0 [default]
     ++ eulerAngle_Yaw = 0 [default]
     ++ eulerAngleRate_Roll = 0.17453292519943295 [IC case]
     ++ eulerAngleRate_Pitch = 0.3490658503988659 [IC case]
     ++ eulerAngleRate Yaw = 0.5235987755982988 [IC case]
     ++ bodyMomentOfInertia X = 0.002568217499776201 [IC case]
     ++ bodyProductOfInertia XY = 0 [default]
     ++ bodyProductOfInertia_XZ = 0 [default]
     ++ bodyProductOfInertia_YX = 0 [default]
     ++ bodyMomentOfInertia_Y = 0.008421011121856215 [IC case]
     ++ bodyProductOfInertia_YZ = 0 [default]
     ++ bodyProductOfInertia_XZ = 0 [default]
     ++ bodyProductOfInertia_YZ = 0 [default]
     ++ bodyMomentOfInertia_Z = 0.009754656036800024 [IC case]
     ++ latitude = 0 [default]
     ++ longitude = 0 [default]
     ++ altitudeMsl = 9144.0 [IC case]
     Vecf: 0.0 0.0 0.0
     =====done=====
     CPU times: user 56.2 ms, sys: 3.37 ms, total: 59.5 ms
     Wall time: 58.7 ms
[54]: MakePlot(gvOblateRotatingEarth, gvCC3, "sim1")
```


[55]: PrintErrorTable("Tumbling Brick Damping: Oblate Earth", gvOblateEarthLabel, ⊔ ⇔gvOblateRotatingEarth, gvCC3)

Variable	L2	t L-Infinity-Norm
altitudeMsl_ft	0.1411402118223276	0.02177725810179254
longitude_deg	2.0649476793351563e-10	3.5255035334494107e-11
latitude_deg	0.0	0
localGravity_ft_s2	1.0779742411875166e-05	6.735199136187475e-07
<pre>gePosition_ft_X</pre>	0.14276753800880893	0.021909743547439575
${\tt gePosition_ft_Y}$	7.537771387173215e-05	1.2863464171175565e-05
${\tt gePosition_ft_Z}$	0.0	0
eulerAngle_deg_Roll	11.016248991497301	0.8105152209742009
eulerAngle_deg_Pitch	2.787238066784144	0.40670110493388734
eulerAngle_deg_Yaw	22.54233249753164	1.5857787776205328

1.11.6 Sphere dropping over rotating, ellipsoidal Earth - 6

```
[56]: %%time
      ppLoadDml('models/NESC/cannonball_inertia.dml')
      CheckModel()
      ic = {
          "totalMass": [1.0, "slug"],
          "bodyMomentOfInertia_X": [3.6, "slugft2"],
          "bodyMomentOfInertia_Y": [3.6, "slugft2"],
          "bodyMomentOfInertia_Z": [3.6, "slugft2"],
          "altitudeMsl": [30000, "ft"],
          "referenceWingChord": [0.2, "ft"],
          "referenceWingSpan": [0.2, "ft"],
          "referenceWingArea": [0.1963495, "ft2"]
      }
      gvOblateRotatingEarth.Reset(ic)
      gvOblateRotatingEarth.totalCoefficientOfDrag = 0.1
      gvOblateRotatingEarth.Run(30)
      gvOblateRotatingEarth.GenerateEnglishUnits()
```

root tag: {http://daveml.org/2010/DAVEML}DAVEfunc
Model: Example cannonball inertia model

creation date: 2012-10-04 file version: Initial version

-variableDef-

varDefStruct.name: bodyMomentOfInertia_Roll

varDefStruct.varID: XIXX
varDefStruct.units: slugft2
varDefStruct.axisSystem: None

varDefStruct.sign: None
varDefStruct.alias: None
varDefStruct.symbol: None

varDefStruct.hasInitialValue: True
varDefStruct.initialValue: 3.6
varDefStruct.isStdAIAA: True
varDefStruct.isOutput: True
varDefStruct.hasMath: False
varDefStruct.codeText: None

-variableDef-

varDefStruct.name: bodyMomentOfInertia_Pitch

varDefStruct.varID: XIYY
varDefStruct.units: slugft2
varDefStruct.axisSystem: None

varDefStruct.sign: None
varDefStruct.alias: None
varDefStruct.symbol: None

varDefStruct.hasInitialValue: True
varDefStruct.initialValue: 3.6
varDefStruct.isStdAIAA: True
varDefStruct.isOutput: True
varDefStruct.hasMath: False
varDefStruct.codeText: None

-variableDef-

varDefStruct.name: bodyMomentOfInertia_Yaw

varDefStruct.varID: XIZZ
varDefStruct.units: slugft2
varDefStruct.axisSystem: None

varDefStruct.sign: None
varDefStruct.alias: None
varDefStruct.symbol: None

varDefStruct.hasInitialValue: True
varDefStruct.initialValue: 3.6
varDefStruct.isStdAIAA: True
varDefStruct.isOutput: True
varDefStruct.hasMath: False
varDefStruct.codeText: None

-variableDef-

varDefStruct.name: bodyProductOfInertia_ZX

varDefStruct.varID: XIZX
varDefStruct.units: slugft2

varDefStruct.axisSystem: varDefStruct.sign: None varDefStruct.alias: None varDefStruct.symbol: None varDefStruct.hasInitialValue: True varDefStruct.initialValue: 0.0 varDefStruct.isStdAIAA: True varDefStruct.isOutput: True varDefStruct.hasMath: False varDefStruct.codeText: None -variableDefvarDefStruct.name: bodyProductOfInertia_XY varDefStruct.varID: XIXY varDefStruct.units: slugft2 varDefStruct.axisSystem: varDefStruct.sign: None varDefStruct.alias: None varDefStruct.symbol: None varDefStruct.hasInitialValue: True varDefStruct.initialValue: 0.0 varDefStruct.isStdAIAA: True varDefStruct.isOutput: True varDefStruct.hasMath: False varDefStruct.codeText: None -variableDefvarDefStruct.name: bodyProductOfInertia_YZ varDefStruct.varID: XIYZ varDefStruct.units: slugft2 varDefStruct.axisSystem: varDefStruct.sign: None varDefStruct.alias: None varDefStruct.symbol: None varDefStruct.hasInitialValue: True varDefStruct.initialValue: 0.0 varDefStruct.isStdAIAA: True varDefStruct.isOutput: True varDefStruct.hasMath: False varDefStruct.codeText: None -variableDefvarDefStruct.name: totalMass varDefStruct.varID: XMASS varDefStruct.units: slug varDefStruct.axisSystem: None varDefStruct.sign: None varDefStruct.alias: None varDefStruct.symbol: None varDefStruct.hasInitialValue: True

varDefStruct.initialValue: 1.0

varDefStruct.isStdAIAA: True varDefStruct.isOutput: True varDefStruct.hasMath: False varDefStruct.codeText: None -variableDefvarDefStruct.name: bodyPositionOfCmWrtMrc_X varDefStruct.varID: DXCG varDefStruct.units: ft varDefStruct.axisSystem: None varDefStruct.sign: FWD varDefStruct.alias: None varDefStruct.symbol: None varDefStruct.hasInitialValue: varDefStruct.initialValue: 0.0 varDefStruct.isStdAIAA: True varDefStruct.isOutput: True varDefStruct.hasMath: False varDefStruct.codeText: None -variableDefvarDefStruct.name: bodyPositionOfCmWrtMrc_Y varDefStruct.varID: DYCG varDefStruct.units: ft varDefStruct.axisSystem: None varDefStruct.sign: RT varDefStruct.alias: None varDefStruct.symbol: None varDefStruct.hasInitialValue: True varDefStruct.initialValue: 0. varDefStruct.isStdAIAA: True varDefStruct.isOutput: True varDefStruct.hasMath: False varDefStruct.codeText: None -variableDefvarDefStruct.name: bodyPositionOfCmWrtMrc_Z varDefStruct.varID: DZCG varDefStruct.units: ft varDefStruct.axisSystem: varDefStruct.sign: DOWN varDefStruct.alias: None varDefStruct.symbol: None varDefStruct.hasInitialValue: True varDefStruct.initialValue: 0. varDefStruct.isStdAIAA: True varDefStruct.isOutput: True varDefStruct.hasMath: False varDefStruct.codeText: None

--- PreProcess Equations and Functions ---

```
+++++ MODEL INPUTS AND OUTPUTS +++++
++> Output: XIXX
++> Output:
            XIYY
++> Output:
            XIZZ
++> Output: XIZX
++> Output:
            XIXY
++> Output: XIYZ
++> Output: XMASS
++> Output: DXCG
++> Output: DYCG
++> Output:
            DZCG
Parse complete
Number of check cases: 0
bodyMomentOfInertia_Roll
bodyMomentOfInertia_Pitch
bodyMomentOfInertia_Yaw
bodyProductOfInertia_ZX
bodyProductOfInertia_XY
bodyProductOfInertia_YZ
totalMass
bodyPositionOfCmWrtMrc X
bodyPositionOfCmWrtMrc_Y
bodyPositionOfCmWrtMrc_Z
---- CheckModel -----
numSignals:
---- END CheckModel ----
====== SetIC ========
{'totalMass': 14.593902937, 'bodyMomentOfInertia_X': 4.88094466281336,
'bodyMomentOfInertia_Y': 4.88094466281336, 'bodyMomentOfInertia_Z':
4.88094466281336, 'altitudeMsl': 9144.0, 'referenceWingChord':
0.0609600000000001, 'referenceWingSpan': 0.0609600000000001,
'referenceWingArea': 0.018241465452480003}
++ timeStep = 0.1 [default]
++ totalMass = 14.593902937 [IC case]
++ referenceWingSpan = 0.0609600000000001 [IC case]
++ referenceWingChord = 0.0609600000000001 [IC case]
++ referenceWingArea = 0.018241465452480003 [IC case]
++ trueAirspeed = 0 [default]
++ angleOfAttack = 0 [default]
++ angleOfSideslip = 0 [default]
++ eulerAngle_Roll = 0 [default]
++ eulerAngle_Pitch = 0 [default]
++ eulerAngle_Yaw = 0 [default]
```

```
++ eulerAngleRate_Roll = 0 [default]
     ++ eulerAngleRate_Pitch = 0 [default]
     ++ eulerAngleRate_Yaw = 0 [default]
     ++ bodyMomentOfInertia_X = 4.88094466281336 [IC case]
     ++ bodyProductOfInertia XY = 0 [default]
     ++ bodyProductOfInertia_XZ = 0 [default]
     ++ bodyProductOfInertia YX = 0 [default]
     ++ bodyMomentOfInertia_Y = 4.88094466281336 [IC case]
     ++ bodyProductOfInertia_YZ = 0 [default]
     ++ bodyProductOfInertia_XZ = 0 [default]
     ++ bodyProductOfInertia_YZ = 0 [default]
     ++ bodyMomentOfInertia_Z = 4.88094466281336 [IC case]
     ++ latitude = 0 [default]
     ++ longitude = 0 [default]
     ++ altitudeMsl = 9144.0 [IC case]
     Vecf: 0.0 0.0 0.0
     =====done=====
     CPU times: user 84.7 ms, sys: 21.8 ms, total: 106 ms
     Wall time: 116 ms
[57]: checkFile = "NESC-check-cases/Atmospheric_checkcases/
      →Atmos_06_DroppedSphereEllipsoidalNoWind/Atmos_06_sim_01.csv"
      gvCC6 = GetCheckCaseData(checkFile)
      MakePlot(gvOblateRotatingEarth, gvCC6, "sim1")
      PrintErrorTable("Dropped Sphere (Cd=0.1): Oblate Earth", gvOblateEarthLabel, u

→gvOblateRotatingEarth, gvCC6)
     number of headers: 31
     ['time', 'gePosition_ft_X', 'gePosition_ft_Y', 'gePosition_ft_Z',
     'feVelocity_ft_s_X', 'feVelocity_ft_s_Y', 'feVelocity_ft_s_Z', 'altitudeMsl_ft',
     'longitude_deg', 'latitude_deg', 'localGravity_ft_s2', 'eulerAngle_deg_Yaw',
     'eulerAngle_deg_Pitch', 'eulerAngle_deg_Roll',
     'bodyAngularRateWrtEi_deg_s_Roll', 'bodyAngularRateWrtEi_deg_s_Pitch',
     'bodyAngularRateWrtEi_deg_s_Yaw', 'altitudeRateWrtMsl_ft_min',
     'speedOfSound_ft_s', 'airDensity_slug_ft3', 'ambientPressure_lbf_ft2',
     'ambientTemperature_dgR', 'aero_bodyForce_lbf_X', 'aero_bodyForce_lbf_Y',
     'aero_bodyForce_lbf_Z', 'aero_bodyMoment_ftlbf_L', 'aero_bodyMoment_ftlbf_M',
     'aero_bodyMoment_ftlbf_N', 'mach', 'dynamicPressure_lbf_ft2',
     'trueAirspeed_nmi_h']
     Variable
                               L2
                                                         L-Infinity-Norm
                                                         _____
     altitudeMsl_ft
                               1623.5211209467052
                                                         325.78303920045437
     longitude_deg
                               2.1152199421624644e-05
                                                         4.07701616992336e-06
     latitude deg
                               0.011438977033606221
                                                         0.002043666399558951
     localGravity_ft_s2
                               0.012094173192575396
                                                         0.0021173060586789916
     gePosition ft X
                               1623.5553863119626
                                                         325.79608972370625
     gePosition_ft_Y
                               7.728925068145949
                                                         1.4894847350385234
     gePosition_ft_Z
                               1789.84846464604
                                                         381.95052822030516
```

eulerAngle_deg_Roll
eulerAngle_deg_Pitch
eulerAngle_deg_Yaw

- 2.113161955755363e-05
- 0.011438987196216907
- 2.1936332786621488e-11
- 4.074494643513393e-06
- 0.00204366739954423
- 2.188531823772246e-12

1.11.7 Stevens and Lewis Orbit

```
[58]: h = 422000 # height in meters (about ISS alt); sim on pg 43 uses 100km gd = 9.80665 a = 6378137.0 wz = 7.292115e-5

vy = math.sqrt(gd*(a + h)) - wz*(a + h) print("vy: ", vy, " m/s")
```

vy: 7670.310336088278 m/s

The vehicle in the simulation is a solid brick. The moment of inertia of a brick:

$$\begin{split} I_x &= \frac{1}{12} m(y^2 + z^2) \\ I_y &= \frac{1}{12} m(x^2 + z^2) \\ I_z &= \frac{1}{12} m(x^2 + y^2) \end{split}$$

The dimensions of the brick as stated by Stevens and Lewis is 2 x 5 x 8 units.

Coordinate origin is at the center of mass of the brick.

8 unit side is parallel to the x-axis

5 unit side is parallel to the y-axis

For simplicity, the brick units are meters and the mass is 1kg.

$$I_x = \frac{1}{12}(1)(2^2 + 5^2) = 2.41667$$

```
I_y = \frac{1}{12}(1)(8^2 + 2^2) = 5.667

I_z = \frac{1}{12}(1)(8^2 + 5^2) = 7.41667
```

```
[59]: %%time
      #ppLoadDml('models/NESC/brick_inertia.dml')
      #CheckModel()
      ppLoadDml('models/noAero.dml')
      #
      ic = {
          "timeStep": [1.0, "s"],
          "totalMass": [1.0, "kg"],
          "bodyMomentOfInertia_X": [2.4167, "kgm2"],
          "bodyMomentOfInertia_Y": [5.667, "kgm2"],
          "bodyMomentOfInertia_Z": [7.417, "kgm2"],
          "altitudeMsl": [100000.0, "m"],
          "trueAirspeed": [9000.0, "m_s"],
          "referenceWingChord": [8.0, "m"],
          "referenceWingSpan": [5.0, "m"]
      }
      gvOblateRotatingEarth.Reset(ic)
      gvOblateRotatingEarth.totalCoefficientOfDrag = 0.0
      gvOblateRotatingEarth.Run(20000)
      gvOblateRotatingEarth.GenerateEnglishUnits()
```

```
root tag: {http://daveml.org/2010/DAVEML}DAVEfunc
Model: Zero Aero Output
creation date: 2021-07-21
file version: Initial version
-variableDef-
varDefStruct.name: aeroBodyForceCoefficient_X
varDefStruct.varID: CX
varDefStruct.units: kgm2
varDefStruct.axisSystem: None
varDefStruct.sign: None
 varDefStruct.alias: None
varDefStruct.symbol: None
varDefStruct.hasInitialValue: True
 varDefStruct.initialValue: 0.0
 varDefStruct.isStdAIAA: True
 varDefStruct.isOutput: True
 varDefStruct.hasMath: False
 varDefStruct.codeText: None
-variableDef-
 varDefStruct.name: aeroBodyForceCoefficient_Y
varDefStruct.varID: CY
 varDefStruct.units: kgm2
 varDefStruct.axisSystem: None
```

varDefStruct.sign: None varDefStruct.alias: None varDefStruct.symbol: None varDefStruct.hasInitialValue: True varDefStruct.initialValue: 0.0 varDefStruct.isStdAIAA: True varDefStruct.isOutput: True varDefStruct.hasMath: False varDefStruct.codeText: None -variableDefvarDefStruct.name: aeroBodyForceCoefficient_Z varDefStruct.varID: CZ varDefStruct.units: kgm2 varDefStruct.axisSystem: varDefStruct.sign: None varDefStruct.alias: None varDefStruct.symbol: None varDefStruct.hasInitialValue: True varDefStruct.initialValue: 0.0 varDefStruct.isStdAIAA: True varDefStruct.isOutput: True varDefStruct.hasMath: False varDefStruct.codeText: None -variableDefvarDefStruct.name: aeroBodyMomentCoefficient_Roll varDefStruct.varID: CLL varDefStruct.units: kgm2 varDefStruct.axisSystem: None varDefStruct.sign: None varDefStruct.alias: None varDefStruct.symbol: None varDefStruct.hasInitialValue: True varDefStruct.initialValue: 0.0 varDefStruct.isStdAIAA: True varDefStruct.isOutput: True varDefStruct.hasMath: False varDefStruct.codeText: None -variableDefvarDefStruct.name: aeroBodyMomentCoefficient_Pitch varDefStruct.varID: CLM varDefStruct.units: kgm2 varDefStruct.axisSystem: None varDefStruct.sign: None varDefStruct.alias: None varDefStruct.symbol: None varDefStruct.hasInitialValue: True varDefStruct.initialValue: 0.0

varDefStruct.isStdAIAA: True

```
varDefStruct.isOutput: True
 varDefStruct.hasMath: False
 varDefStruct.codeText: None
-variableDef-
 varDefStruct.name: aeroBodyMomentCoefficient_Yaw
 varDefStruct.varID: CLN
varDefStruct.units: kgm2
 varDefStruct.axisSystem:
                         None
 varDefStruct.sign: None
 varDefStruct.alias: None
 varDefStruct.symbol: None
varDefStruct.hasInitialValue: True
 varDefStruct.initialValue: 0.0
 varDefStruct.isStdAIAA: True
 varDefStruct.isOutput: True
 varDefStruct.hasMath: False
 varDefStruct.codeText: None
--- PreProcess Equations and Functions ---
+++++ MODEL INPUTS AND OUTPUTS +++++
++> Output:
            CX
++> Output:
            CY
++> Output:
            CZ
++> Output:
            CLL
++> Output:
            CLM
++> Output:
            CLN
Parse complete
Number of check cases: 0
aeroBodyForceCoefficient_X
\verb"aeroBodyForceCoefficient_Y"
aeroBodyForceCoefficient_Z
aeroBodyMomentCoefficient_Roll
aeroBodyMomentCoefficient_Pitch
aeroBodyMomentCoefficient Yaw
====== SetIC ========
{'timeStep': 1.0, 'totalMass': 1.0, 'bodyMomentOfInertia_X': 2.4167,
'bodyMomentOfInertia_Y': 5.667, 'bodyMomentOfInertia_Z': 7.417, 'altitudeMsl':
100000.0, 'trueAirspeed': 9000.0, 'referenceWingChord': 8.0,
'referenceWingSpan': 5.0}
++ timeStep = 1.0 [IC case]
++ totalMass = 1.0 [IC case]
++ referenceWingSpan = 5.0 [IC case]
++ referenceWingChord = 8.0 [IC case]
++ referenceWingArea = 40.0 [default]
++ trueAirspeed = 9000.0 [IC case]
++ angleOfAttack = 0 [default]
++ angleOfSideslip = 0 [default]
```

```
++ eulerAngle_Roll = 0 [default]
     ++ eulerAngle_Pitch = 0 [default]
     ++ eulerAngle_Yaw = 0 [default]
     ++ eulerAngleRate_Roll = 0 [default]
     ++ eulerAngleRate Pitch = 0 [default]
     ++ eulerAngleRate_Yaw = 0 [default]
     ++ bodyMomentOfInertia X = 2.4167 [IC case]
     ++ bodyProductOfInertia_XY = 0 [default]
     ++ bodyProductOfInertia XZ = 0 [default]
     ++ bodyProductOfInertia_YX = 0 [default]
     ++ bodyMomentOfInertia_Y = 5.667 [IC case]
     ++ bodyProductOfInertia_YZ = 0 [default]
     ++ bodyProductOfInertia_XZ = 0 [default]
     ++ bodyProductOfInertia_YZ = 0 [default]
     ++ bodyMomentOfInertia_Z = 7.417 [IC case]
     ++ latitude = 0 [default]
     ++ longitude = 0 [default]
     ++ altitudeMsl = 100000.0 [IC case]
     Vecf: 1.8189894035458565e-12 0.0 9000.0
     ====done=====
     CPU times: user 2.49 s, sys: 60.8 ms, total: 2.55 s
     Wall time: 2.63 s
[60]: from IPython.display import Image
     Image(url= "images/SLOrbit.JPG", width=600, height=600)
[60]: <IPython.core.display.Image object>
[61]: fig1, a = plt.subplots()
     a.plot(gv0blateRotatingEarth.eiPosition_m_X, gv0blateRotatingEarth.
      →eiPosition_m_Z)
     a.set(xlabel='X', ylabel='Z', title='Orbit')
     a.grid()
     fig2, b = plt.subplots()
     b.plot(gvOblateRotatingEarth.trueAirspeed, gvOblateRotatingEarth.altitudeMsl_m)
     b.set(xlabel='speed', ylabel='height', title='Height vs Speed')
     b.grid()
     fig3, c = plt.subplots()
     \verb|c.plot(gvOblateRotatingEarth.time, gvOblateRotatingEarth.||
      gvOblateRotatingEarth.time, gvOblateRotatingEarth.
      c.legend(["latitude","longitude"])
     c.set(xlabel='time', ylabel='lat/lon', title='Lat/Lon vs Time')
     c.grid()
```


[]: