МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«Вятский государственный университет» (ФГБОУ ВО «ВятГУ»)

Факультет автоматики и вычислительной техники Кафедра электронных вычислительных машин

ИССЛЕДОВАНИЕ СРЕДСТВ ИЗМЕРЕНИЙ С АДДИТИВНОЙ И МУЛЬТИПЛИКАТИВНОЙ ПОГРЕШНОСТЬЮ

Отчет по лабораторной работе №5 по дисциплине «Метрология, стандартизация и сертификация» Вариант 2

Выполнил студент группы ИВТ-32	/Рзаев А. Э./
Проверил доцент кафедры ЭВМ	/Скворцов А. А./

1 Цель работы

Цель данной лабораторной работы — изучение характера погрешностей, воздействующих на измерительные преобразователи.

2 Задание

1. Собрать схему преобразователя, представленную на рис. 4.

Выбрать модель ОУ LM741 в библиотеке «lm». Установить параметры сопротивлений R_1 =5.3 кОм, R_2 =53 кОм и R_3 =27 кОм. Остальные параметры – согласно представленной схеме.

- 2. Меняя положение переключателя переменного сопротивления R_3 , снять зависимость выходной величины $U_{\text{вых}}$ от входной X(R). Данные записать в табл. Все ключи при этом должны находиться в состоянии, показанном на приведенной схеме.
- 3. Построить функцию преобразования $U_{\mathit{выx}} = f(X)$. Определить коэффициент преобразования K преобразователя.
- 3. Нажатием клавиши «*K*» имитировать воздействие влияющего фактора «Неточность установки нуля прибора».
- 4. Снять зависимость выходной величины $U_{\it ebix} = f(X)$ от входной при воздействии данного влияющего фактора. Заполнить табл.
- 5. Построить функциональную зависимость выходной величины от входной и определить абсолютную погрешность прибора.
- 6. Построить график зависимости относительной погрешности от входной величины $\gamma = f(X)$.
- 7. Нажатием клавиши «K» разомкнуть переключатель. Замкнуть переключатель «Изменение напряжения питающей сети» нажатием клавиши «B» на клавиатуре, тем самым имитировать воздействие влияющего фактора изменение напряжения питающей цепи.
- 8. Снять зависимость выходной величин от входной $U_{\it ebix} = f(X)$ при изменении напряжения питающей сети. Заполнить табл.
- 9. Построить функциональную зависимость выходной величины от входной и определить максимальную абсолютную погрешность прибора.
- 10. Построить график зависимости относительной погрешности от входной величины $\gamma = f(X)$ и определить значение относительной мультипликативной погрешности.
- 11. Нажать клавишу «K». В этом случае будет сымитировано воздействие двух влияющих факторов: неточности установки нуля и измерения напряжения питающей сети.
- 12. Снять зависимость выходной величины от входной $U_{\it вых} = f(X)_{\it при}$ воздействии двух влияющих факторов. Заполнить табл.

- 13. Построить функциональную зависимость выходной величины от входной и определить максимальную абсолютную погрешность прибора.
- 14. Построить график зависимости относительной погрешности от входной величины $\gamma = f(X)$.

3 Выполнение задания

Рисунок 1 – Схема исследования прибора

Таблица 1 – Результаты эксперимента №1 (без влияющих факторов)

таолица т – Результаты эксперимента №1 (оез влияющих факторов)					
X(R),%	5	10	15	20	25
U_{gblx}, B	17,77	17,41	17,05	16,68	16,32
X(R),%	30	35	40	45	50
U_{eblx}, B	15,95	15,59	15,22	14,86	14,49
X(R),%	55	60	65	70	75
U_{eblx}, B	14,13	13,77	13,40	13,04	12,67
X(R),%	80	85	90	95	100
U_{eblx}, B	12,31	11,94	11,58	11,21	10,85

Коэффициент преобразования K = Ycp/Xcp = 14,312/52,5 = 0,2726.

Рисунок 2 – Функция преобразования

Таблица 2 – Результаты эксперимента №2 (неточность установки нуля)

			(J	
X(R),%	5	10	15	20	25
U_{eblx}, B	16,88	16,53	16,19	15,84	15,50
Абс.	0,89	0,88	0,86	0,84	0,82
Отн.	0,05008	0,05055	0,05044	0,05036	0,05025
X(R),%	30	35	40	45	50
$U_{\it bblx}, B$	15,15	14,80	14,46	14,11	13,77
Абс.	0,8	0,79	0,76	0,75	0,72
Отн.	0,05016	0,05067	0,04993	0,05047	0,04969
X(R),%	55	60	65	70	75
U_{eblx}, B	13,42	13,07	12,73	12,38	12,03
Абс.	0,71	0,7	0,67	0,66	0,64
Отн.	0,05025	0,05084	0,05	0,05061	0,0505
X(R),%	80	85	90	95	100
U_{eblx}, B	11,69	11,34	11,00	10,65	10,30
Абс.	0,62	0,6	0,58	0,56	0,55
Отн.	0.05037	0.05025	0.05009	0.04996	

Рисунок 3 – Зависимость выходной величины от входной

Рисунок 4 – График зависимости относительной погрешности от входной величины

Рисунок 5 – График зависимости абсолютной погрешности от входной величины

Таблица 3 – Результаты эксперимента №3 (изменение напряжения питания)

таолица $3-1$ езультаты эксперимента 123 (изменение напряжения питания)						
X(R),%	5	10	15	20	25	
U_{gblx}, B	16,34	15,98	15,62	15,25	14,89	
Абс.	1,43	1,43	1,43	1,43	1,43	
Отн.	0,08047	0,08214	0,08387	0,08573	0,08762	
X(R),%	30	35	40	45	50	
U_{gblx}, B	14,52	14,16	13,79	13,43	13,06	
Абс.	1,43	1,43	1,43	1,43	1,43	
Отн.	0,08966	0,09173	0,09396	0,09623	0,09869	
X(R),%	55	60	65	70	75	
U_{eblx}, B	12,70	12,34	11,97	11,61	11,24	
Абс.	1,43	1,43	1,43	1,43	1,43	
Отн	0,1012	0,1038	0,1067	0,1097	0,1129	
X(R),%	80	85	90	95	100	
U_{eblx}, B	10,88	10,51	10,15	9,783	9,419	
				·		

1,43

0,1235

1,43

 $0,12\overline{76}$

1,43

0,1318

Абс.

Отн.

1,43

0,1162

1,43

0,1198

Рисунок 6 – Зависимость выходной величины от входной

Рисунок 7 – График зависимости относительной погрешности от входной величины

Рисунок 8 — График зависимости абсолютной погрешности от входной величины

Таблица 4 – Результаты эксперимента №4 (неточность установки нуля и изменение напряжения питания)

изменение напряжения питания)					
X(R),%	5	10	15	20	25
U_{eblx}, B	15,52	15,18	14,83	14,48	14,14
Абс.	2,25	2,23	2,22	2,2	2,18
Отн.	0,1266	0,1281	0,1302	0,1319	0,1336
X(R),%	30	35	40	45	50
U_{eblx}, B	13,79	13,45	13,10	12,75	12,41
Абс.	2,16	2,14	2,12	2,11	2,08
Отн.	0,1354	0,1373	0,1393	0,1420	0,1435
X(R),%	55	60	65	70	75
U_{eblx}, B	12,06	11,71	11,37	11,02	10,68
Абс.	2,07	2,06	2,03	2,02	1,99
Отн.	0,1465	0,1496	0,1515	0,1549	0,1571
X(R),%	80	85	90	95	100
U_{eblx}, B	10,33	9,98	9,637	9,291	8,945
Абс.	1,98	1,96	1,943	1,919	1,905
		1		1	

0,1678

0,1712

0,1756

0,1642

0,1608

Отн.

Рисунок 9 – Зависимость выходной величины от входной

Рисунок 10 – График зависимости абсолютной погрешности от входной величины

Рисунок 11 – График зависимости относительной погрешности от входной величины

4 Вывод

В ходе данной лабораторной работы были изучены характеры погрешностей при воздействии на измерительный преобразователь некоторых влияющих факторов: неточности установки нуля прибора, изменения напряжения питающей цепи и их совокупности. Также были вычислены погрешности показаний прибора при воздействии указанных влияющих факторов и построены графики зависимости выходной величины от входной и зависимости погрешности от входной величины.

В результате анализа полученных результатов было установлено, что наименьшая погрешность измерения возникает при воздействии такого фактора как, неточность установки прибора в нуль, более высокая погрешность возникает при изменении напряжения питающей цепи. Соответственно совокупность двух данных факторов дает самую высокую погрешность.