Multi-User Energy Consumption Monitoring and Anomaly Detection with Partial Context Information

Pandarasamy Arjunan¹, Harshad D Khadilkar², Tanuja Ganu², Zainul M Charbiwala², Amarjeet Singh¹, and Pushpendra Singh¹

Indraprastha Institute of Information Technology (IIIT), Delhi, India¹
IBM Research, Bangalore, India²

BuildSys 2015 November 4, 2015

Smart electricity meters

Smart electricity meters

Enabler for fine-grained electricity monitoring!

Hourly electricity usage of a commercial building

Hourly electricity usage of a commercial building

Potential abnormal energy usage event

Hourly electricity usage of a commercial building

Problem definition

Identifying potential abnormal energy usage events in buildings (residential and commercial) using the hourly smart meter readings and readily available meta data

Problem definition

Identifying potential abnormal energy usage events in buildings (residential and commercial) using the hourly smart meter readings and readily available meta data

Timestamp

Temporal context – for accounting temporal energy usage patterns e.g. day, night, holiday, seasons, etc.

Location

Extracted neighborhood (functional/administrative) information – for accounting the effect of unknown context variables e.g. rare events.

Methodology

Algorithm

1

 Split meter data based on temporal context sets

2

Compute self anomaly score

3

 Neighborhood based adjustment

Algorithm

Algorithm

Neighborhood based adjustment

| Self Anomaly Score – W x Correlation between other meters |

Dataset description

Properties	Commercial	Residential
Country	Sweden (KYAB)	India (IIIT-Delhi)
Building type	School	Apartment complex
# buildings	10	18
Usage	Classrooms, Office space Mostly fixed schedule	Family, Irregular schedule
Devices	Lighting, Air-conditioning, etc.	Household appliances
Data collection duration and interval	~ 3 years 1 – 10 minutes	~ 2 years 30 – 60 seconds

Experimental Setup

- Ground truth
 - Commercial Manually annotated by the data owner
 - Residential Injected known anomaly events
- Temporal context sets
 - Workingday-Daytime, Workingday-Nighttime, Holiday
- Neighborhood information
 - Provided by a domain expert or using existing methods
- Comparison with 3 baseline methods
 - Self Anomaly No Context (SANC)
 - Self Anomaly, but using Temporal Context (SATC)
 - Anomaly detection HP (SAHP)
- Case by case analysis of known anomalies

Correlation between the electricity meters for an year

Usage of temporal context sets and neighborhood based adjustment

What weightage to give for neighbors?

Correlation between the electricity meters for an year

Usage of temporal context sets and neighborhood based adjustment

What weightage to give for neighbors?

Conclusion

- Anomaly detection method using readily available meta data (timestamp and location) for accounting the temporal and rare events.
- Usage of temporal context and neighborhood based adjustment improves the detection accuracy. It works relatively better for commercial buildings than residential.