Blockchain

Community, Politics and Regulation

Contents

- Technical, Business, Cultural, Ethical and Regulatory Challenges
- Stakeholders: who's in charge
- Regulating and Mitigating Illegal Behaviours

Technical, Business and Cultural Challenges

- Technical
 - Privacy
 - Scaling
- Business
 - Use Cases for 'blockchain'
 - Private blockchains vs public blockchains
- Cultural
 - Blockchain and criminality
 - Environmental harm

Privacy

- There are serious implications of every single one of your financial transaction being identifiable and traceable
 - great for Anti Money Laundering (AML)
 - great for Credit Risk Analysis
 - · great for identifying advertising opportunities
 - great for cross marketing campaigns
 - great for deep health analysis (you are what you eat)
 - great for tracking social graphs
 - · data scientists will never be out of work

Privacy combined with Control

- Now let's add the ability to censor transactions into that mix:
 - great for preventing criminals buying things they shouldn't (drugs, guns, etc.)
 - great for freezing/seizing criminals' financial assets
 - great for identifying associates of criminals and freezing/seizing their assets as well, pending investigation
 - great for temporarily restricting purchases (no alcohol before 1200)
 - great for health (can't buy more cigarettes/donuts today!)
 - great for restricting movement (on bail = cannot buy plane ticket/rent a car/buy fuel/take a taxi/train/rent a bike etc.)

Scaling (recap)

Platform	Transactions Per Second
Bitcoin	3 - 5
Ethereum (public)	10 - 15
Ethereum (private)	100 - 400
SWIFT	300
Paypal	500
Hyperledger Fabric (private)	700
VISA (standard)	2,000
VISA (peak)	65,000
Alipay (singles day)	255,000

Scaling

- There are a few mechanisms to scale public chains
 - Ignore the public chain and use a private chain/database
 - Lots of centralised databases connected to public chains (exchanges, Liquid)
 - Side chains (BTC too expensive? Try ETH, or LTC, or xDAI or OMG)
 - Payment Channels (BTC, ETH)
 - Complex technically, use public chain as settlement layer, in operation now (Lightning Network ***) but very small operation (20k BTC). Capable of enormous scale (500k TPS)
 - ZKRollups (ETH)
 - Complex technically *, still work in progress
 - Plasma Chains
 - Complex technically, still security considerations, none in operation currently **

^{*} https://docs.ethhub.io/ethereum-roadmap/layer-2-scaling/zk-rollups/

^{**} https://docs.plasma.group/en/latest/src/plasma/sidechains.html

^{***} https://decrypt.co/resources/bitcoin-lightning-network

Business Challenges

- Years of enterprise blockchain projects using private blockchains
- Not appreciably different to a central service with a DB
- Ignore the primary novelty of blockchain (consensus) in return for shared traceability/accountability
- Ignored cryptocurrency use cases, to avoid being tainted by BTC association
- Tendency to inject a slow, expensive database into a digitisation need to gain differentiation from other platform

Business Challenges – Use Cases

- Production enterprise blockchain platforms rare, while actual production blockchain platforms common:
- Exchanges regulated or unregulated, handling billions of \$\$\$
- Wallets
- Custody Solutions (Xapo, Coinbase Custody)
- ICOs as VC replacement
- Decentralised Finance platforms
- Now: staking services
- All of the above are linked to public blockchains and cryptocurrency, not
- business processes and a desire to inject a blockchain into a use case

Business Challenges

- Focus on private chains by enterprise
 - Unwillingness to interact with public chains (BTC taint)
 - Obsession for transactional throughput ("we need XTPS")
 - Fear of public blockchain failure *
 - Fear of lack of privacy due to obsession with putting data on chain (Quorum)
 - Desire for control of the platform in the hands of a few friendly corporations
 - Need to interact with 'trusted' entities, not wild and woolly internet people
 - Ignoring SoV, ToV use cases entirely

^{*} https://www.ethstats.net/

Business Challenges

Private chains

- Are basically a slow, expensive database
- Require a governing body/organisation
- Lends itself to trusted third-party paradigms
- Require expertise/OPEX to run **
- Have limited privacy, leading to complex privacy solutions
- Limited to small numbers of validators (<20)
- Are blockchains in name only, like calling Excel a database

^{* &}lt;a href="https://www.ethstats.net/">https://www.ethstats.net/

^{**} https://www.kaleido.io/

Cultural Challenges

- Bitcoin is mostly used by criminals
- Blockchains are mostly ponzi schemes
- Not sound money (like gold, EUR, USD)
- ICOs are mostly scams
- Too volatile to be money
- Cannot inflate, therefore cannot control inflation
- Cannot create credit, because coins must exist *

^{*} https://www.youtube.com/watch?v=PHe0bXAluk0

Environmental Challenges

- Bitcoin uses the electricity equivalent of Ireland
- Each Bitcoin transaction can power a home for a year
- Why burn electricity for nothing?
- · Note:
 - BTC uses ~80TWh annually
 - EU uses ~20,000TWh annually
 - Transport uses ~ 30,000TWh annually *
- Energy usage from non-renewable resources is an issue
- POW chains convert energy to stored money (sort of)

^{* &}lt;a href="https://digiconomist.net/bitcoin-energy-consumption">https://digiconomist.net/bitcoin-energy-consumption

Ethical and Regulatory Challenges

Ethical

- Potential for complete financial transparency
- Dystopian future (unpeople)
- Hyperbitcoinisation yet another large unproven experiment with money
- Regulatory
 - Banning of ICOs, Cryptocurrencies
 - Legal restrictions on ownership (similar to gold, 1933)
 - · Right to be forgotten
 - · When cryptocurrencies become a threat to state-issued currencies...

Stakeholders: who's in charge?

- Companies (Exchanges)
 - Does Coinbase, XAPO, Gemini, Bitfinex control bitcoin?
- Miners
 - Blocked Segwit for months
 - After UASF threat, forked to Bitcoin Cash
 - Can disrupt minority chains (hidden reorgs, 51% attacks)
- Developers (Bitcoin Core, Ethereum Foundation)
 - The individuals that maintain the bitcoin codebase can block subjectively bad ideas
 - Ethereum hopes Vitalik will solve all problems
- Full nodes, wallets?
 - Full nodes can cause forks with coordinated effort (UASF)
- Hodlers
 - Do crypto whales have power? 40,000 BTC exchanged to pump BCH in Nov, 2017

Regulating and mitigating illegal behaviours

- KYC/AML Regulations
 - Required to buy cryptocurrencies, not required for trades
- NYC Bitlicence
 - Stifled blockchain activity in New York, creator, Benjamin Lawsky, became blockchain consultant, ended up on board of Ripple
- Banning ICOs, or even cryptocurrencies
 - China has banned exchanges and ICOs. Malaysia threatened to ban all crypto
- SEC and Bitcoin ETFs
 - The SEC rejected the Winklevii attempt at a bitcoin ETF, but they have appealed and there are other ETFs coming
- Tether and the Bitcoin price

- Diffie Hellman Key Exchange
- Using RSA: key exchange is relatively simple
 - · Alice provides RSA public key
 - Bob encrypts secret S with Alice PubKey and returns
 - · Alice decrypts S using Alice PrivKey
 - · Alice and Bob use S to encrypt traffic

But what about using Elliptic Curves?

- Diffie Hellman Key Exchange
- Using Elliptic Curves:
 - · Alice provides Bob her PubKey
 - Bob provides Alice his PubKey
 - · Alice uses Alice PrivKey and Bob PubKey to create secret S
 - · Bob uses Bob PrivKey and Alice PubKey to create secret S
 - · Alice and Bob use S to encrypt traffic

How is this possible?

- Elliptic Curve basics:
- Private key is large number P
- Public key is P iterations around curve from generator point G
- G is the same for specific algorithms
- Private Key = P
- Public Key = G * P
- (very, very hard to get P from G*P)

https://www.youtube.com/watch?v=mulv8l6v1aE&t=32s

- So Bob's Public Key is G * P(b)
- And Alice's Public Key is G * P(a)
- So Alice (using P(a) has G * P(b) * P(a))
- And Bob (using P(b) has G * P(a) * P(b))
- G*P(b)*P(a) = G*P(a)*P(b)
- So they can both get the same secret!