EPU GBM2

Dosage d'espèces chimiques

La teneur en espèce chimique à doser d'un mélange gazeux est mesurée par son action sur la conduction thermique du fluide en contact avec un élément chauffant (voir figure 1).

La température d'équilibre T (en °C) du fluide est liée à la concentration X (en moles / litre) de l'élément à doser par : T = a.(1 - b.X), a et b étant des constantes.

La température est mesurée à l'aide d'un capteur intégré qui délivre un courant I lié à la température T par : $I = \lambda . T + I_0$; λ étant sa sensibilité et I_0 un courant constant.

Le capteur est conditionné par une tension E alimentant un montage différentiel comportant le capteur, 2 résistances R et une résistance R' fixes comme l'indique la figure 2.

Les résistances R et R' sont ajustées pour avoir une tension de sortie $V = S_T.T$, S_T étant la sensibilité thermique.

On prendra pour les applications numériques : E = 6 volts, λ = 1 μA / °C , I_0 = 300 μA , S_T = 4 mV / °C, a = 100 et b = 50.

- 1. Déterminer les dimensions et unités des constantes a et b. Quelles seraient les valeurs numériques de a et b si la concentration X était exprimée en milimoles / litre.
- 2. Déterminer l'étendue de mesure en moles / litre sachant que le fonctionnement correct de l'installation exige une température T comprise entre 0 et 100°C.
- 3. On mesure une tension V_1 = 360 mV avec une précision de \pm 1%. Déduire la température T_1 puis la concentration X_1 correspondantes. Calculer les incertitudes absolues sur T_1 et sur X_1 dues à l'imprécision sur la mesure de V_1 .
- 4. Déterminer (expression littérale et valeur numérique) la sensibilité chimique S_x du montage définie par $S_x = \Delta V / \Delta X$.
- 5. Déterminer la valeur de R. Calculer le courant I' traversant R' et en déduire la valeur de la résistance R'.

EPU GBM2

Figure 2

NB : - les questions sont indépendantes,

- donner les expressions littérales avant les applications numériques