Given:

$$\frac{a_0}{2} = \int_{-\pi}^{\pi} \frac{1}{2\pi} f(t) dt$$

$$a_n = \frac{1}{\pi} \int\limits_{-\pi}^{\pi} f(t) \cos(nt) dt$$
 , $n \in \mathbb{Z}$ and $n > 0$

$$b_n = \frac{1}{\pi} \int\limits_{-\pi}^{\pi} f(t) \sin(nt) dt$$
 , $n \in \mathbb{Z}$ and $n > 0$

Change the variable t to $x=\frac{2\pi}{P}t$. In this case $x=\pi$ corresponds to $t=\frac{P}{2}$ and $x=-\pi$ corresponds to $t=-\frac{P}{2}$.

Therefore regarded as a function of t, this is a function with period P. When we make the substitution $x = \frac{2\pi}{P}t$ and $dx = \frac{2\pi}{P}dt$ into the expressions for a_n and b_n we arrive at:

$$a_{n} = \frac{2}{P} \int_{-\frac{P}{2}}^{\frac{P}{2}} f(t) \cos\left(\frac{2n\pi t}{P}\right) dt, n \in \mathbb{Z}, n \ge 0$$

$$b_{n} = \frac{2}{P} \int_{-\frac{P}{2}}^{\frac{P}{2}} f(t) \sin\left(\frac{2n\pi t}{P}\right) dt, n \in \mathbb{Z}, n > 0$$

These integrals will give the Fourier coefficients from a function of period P whose Fourier Series

$$f(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos\left(\frac{2n\pi t}{P}\right) + b_n \sin\left(\frac{2n\pi t}{P}\right) \right)$$

Note: In Differential Equations it is often convenient to write the period P as 2ℓ and in Physics and Engineering it is often written in terms of angular frequency ω as $P=\frac{2\pi}{\omega}$. Those substitutions would result in the following formulas:

$$a_{\scriptscriptstyle n} = \frac{1}{\ell} \int\limits_{-\ell}^{\ell} f(t) \cos \left(\frac{n \pi t}{\ell} \right) dt, n \in \mathbb{Z}, n \geq 0 \text{ for Fourier Series } f(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos \left(\frac{n \pi t}{\ell} \right) + b_n \sin \left(\frac{n \pi t}{\ell} \right) \right) dt$$

And

$$a_n = \frac{\omega}{\pi} \int_{-\frac{\pi}{\omega}}^{\frac{\pi}{\omega}} f(t) \cos\left(n\omega t\right) dt, n \in \mathbb{Z}, n \ge 0 \text{ for Fourier Series } f(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos\left(n\omega t\right) + b_n \sin\left(n\omega t\right)\right)$$

Any convenient integration range of length P , 2ℓ , or $\frac{2\pi}{\omega}$ can be used, and formulas for b_n would follow similarly for those for a_n as shown above.

*Why divide the constant term by 2? To account for the fact that the formula for a_n could be true for all $n \in \mathbb{Z}, n \ge 0$ (which would include the constant term) depending upon how the formula for the Fourier coefficients are written. Recall from problems 6 and 7 for the integration problems combined that $\int\limits_{-\pi}^{\pi} \cos^2(nt) dt = \pi$ when $n \ne 0$ but $\int\limits_{-\pi}^{\pi} \cos^2(nt) dt = 2\pi \text{ when } n = 0 \text{ . Using the formula } a_n = \frac{1}{\pi} \int\limits_{-\pi}^{\pi} f(t) \cos(nt) dt \text{ we could write the Fourier Series as}$ $f(t) = \sum_{n=0}^{\infty} a_n \cos(nt) + \sum_{n=1}^{\infty} b_n \sin(nt) \text{ but in this case } a_n = \frac{1}{\pi} \int\limits_{-\pi}^{\pi} f(t) \cos(nt) dt = \begin{cases} 2a_0, n = 0 \\ a_n, n \ne 0 \end{cases}$. To compensate for this the constant term is customarily written as $\frac{a_0}{2}$.