INTRO TO DATA SCIENCE

LECTURE 6: CLASSIFICATION - KNN

Paul Burkard 11/11/2015

LAST TIME:

- WHAT IS LINEAR REGRESSION?
 - INPUTS/OUTPUTS?
 - USE CASES?
- WHAT IS CROSS-VALIDATION?
 - TYPES?
- WHAT IS REGULARIZATION?
 - TYPES FOR LINEAR REGRESSION?

TODAY:

I. CLASSIFICATION
II. K-NEAREST NEIGHBORS CLASSIFICATION
HANDS-ON: KNN

LEARNING GOALS

- ▶ What is Classification?
 - What are the inputs and outputs?
 - What are some potential use cases?
- ▶ What is K-Nearest Neighbors?

I. CLASSIFICATION

INTRO TO CLASSIFICATION

Q: What is a Classification model/problem?

A: A functional relationship between input & response variables...

Where the target variables are categorical!

$$y = f(X)$$

The function we seek in a classification problem maps feature vectors to qualitative/categorical target classes

CLASSIFICATION PROBLEMS

Here's (part of) an example dataset:

independent variables

Fisher's Iris Data

Sepal length ¢	Sepal width \$	Petal length ¢	Petal width \$	Species ¢
5.1	3.5	1.4	0.2	I. setosa
4.9	3.0	1.4	0.2	I. setosa
4.7	3.2	1.3	0.2	I. setosa
4.6	3.1	1.5	0.2	I. setosa
5.0	3.6	1.4	0.2	I. setosa
5.4	3.9	1.7	0.4	I. setosa
4.6	3.4	1.4	0.3	I. setosa
5.0	3.4	1.5	0.2	I. setosa

class labels (qualitative)

TYPES OF LEARNING PROBLEMS

	continuous	categorical
supervised	???	???
unsupervised	???	???

TYPES OF LEARNING PROBLEMS

	continuous	categorical
supervised	regression (classification
unsupervised	dim reduction	clustering

Q: What steps does a supervised learning problem require?

- 1) split dataset
- 2) train model
- 3) test model
- 4) make predictions

Underfitting and Overfitting

CLASSIFICATION OVERFITTING - EXAMPLE

II. K-NEAREST NEIGHBORS

KNN CLASSIFICATION

Suppose we want to predict the color of the grey dot.

- 1) Pick a value for k.
- 2) Find colors of k nearest neighbors.
- 3) Assign the most common color to the grey dot.

Our definition of "nearest" implicitly uses the Euclidean distance function.

HANDS-ON: KNN