Analysis II Cheatsheet

Luna Lorea Zehnder

1. November 2024

Def. 0.0 Contribution:

Falls du Fehler findest oder dinge fehlen öffne doch ein issue auf <u>GitHub</u> bzw. kannst du auch einen Pullrequest machen wenn du die Zeit dafür hast :)

(Dort findest du jeweils auch gleich die neuste Version dieses Cheatsheets)

1 Basics

1.1 Lineare Algebra

Def. 0.0 Skalarprodukt:

Def. 0.1 Norm:

Für $u \in \mathbf{R}^n, ||u|| = \sqrt[2]{u_1^2 + \dots + u_n^2}$

Def. 0.2 Definite Matrizen:

 $A \in \mathbb{R}^{n \times n}$ heist...

...positiv definit falls $\forall v \in \mathbb{R}^n \setminus \{0\} : v^T A v > 0$

...positiv semidefinit falls $\forall v \in \mathbb{R}^n \setminus \{0\} : v^T A v < 0$

...negativ definit falls $\forall v \in \mathbb{R}^n \setminus \{0\} : v^T A v < 0$

...negativ semidefinit falls $\forall v \in \mathbb{R}^n \setminus \{0\} : v^T A v > 0$

...indefinit falls es v, w gibt mit $v^T A v > 0 \wedge w^T A w < 0$

Für die eigenwerte λ von A gilt:

A pos. def. $\iff \forall \lambda : \lambda > 0$

A pos. semidef. $\iff \forall \lambda : \lambda > 0$

A neg. def. $\iff \forall \lambda : \lambda < 0$

A neg. semidef. $\iff \forall \lambda : \lambda < 0$

A indef. \iff A hat pos. und neg. eigenwerte.

 $det(A) \neq 0 \implies \forall \lambda : \lambda \neq 0$

1.2 Notation

Def. 0.3 Landau Notation:

$$U \in \mathbb{R}^n, h: U \to \mathbb{R}, y \in U$$

$$* o(h) = \{ f: U \to \mathbb{R} \mid \lim_{\substack{x \to y \\ x \neq y}} \frac{f(x)}{h(x)} = 0 \}$$

 $* f = o(h) := f \in o(h)$

 $* o(f) = o(h) := o(f) \in o(h)$

 $* f = o(1) \iff \lim_{x \to y} f(x) = 0$

* $\lambda o(h) + \mu o(h) = o(h) \ \forall \lambda, \mu \in \mathbb{R}$

 $* g \cdot o(h) = o(gh) = o(g) \cdot o(h)$

* $o(h^d) = o(h^e) \ \forall e \leq d$ * Für Monome p in $x_i - y_i$ von Grad $d: p = o(||x - y||^e) \ \forall e \leq d \ \& \ o(p) = o(||x - y||^d)$

2 Differenzielle Analysis in Rⁿ

2.1 Parzielle Ableitungen

Def. 3.3.11 Gradient und Divergent:

Gradient: Wenn für die Funktion $f: U \to \mathbb{R}$ alle partiellen Ableitungen existieren für $x_0 \in U$, dann ist der Vektor

$$\begin{pmatrix} \partial_{x_1} f(x_0) \\ \vdots \\ \partial_{x_n} f(x_0) \end{pmatrix}$$

Divergent Wenn für eine Funktion $f = \{f_1, ..., f_m\} : U \to \mathbb{R}^m$ alle partiellen ableitungen für alle f_i bei $x_0 \in U$ existieren, ist der Divergent die Trace der Jakobimatrix

$$div(f)(x_0) = Tr(J_f(x_0))$$

2.2 Das Differential

${\bf Def.\ 3.4.2}\ {\it Differenzierbarkeit:}$

Wenn $U \in \mathbb{R}^n$ eine offene Menge, $f: U \to R^m$ eine Funktion und $A: \mathbb{R}^n \to \mathbb{R}^m$ eine affine Abbildung ist, dann ist f bei $x_0 \in U$ differenzierbar mit Differenzial A, falls:

$$\lim_{\substack{x \to x_0 \\ x \neq x_0}} \frac{f(x) - f(x_0) - A(x - x_0)}{||x - x_0||} = 0$$

Prop. 3.4.4 Eigenschaften von differenzierbaren Funktionen:

Wenn $U \in \mathbb{R}^n$ eine offene Menge, $f: U \to R^m$ eine differenzierbare Funktion dann gilt:

1. Die Funktion f ist stetig auf U

2. Für die Funktion $f=[f_1,...,f_m]$ existieren alle $\partial_{x_j}f_i$ mit $1\leq j\leq n, 1\leq i\leq m$

Prop. 3.4.6 Differenzierbarkeit bei Funktionsoperationen:

 $U \in \mathbb{R}^n$ offen, $f,g:U \to \mathbb{R}^m$ differenzierbar:

- 1. f + g ist differenzierbar und $d(f + g)(x_0) = df(x_0) + dg(x_0)$
- 2. Falls $m = 1 : f \cdot g$ differenzierbar.
- 3. Falls $m = 1, g \neq 0 : \frac{f}{g}$ differenzierbar.

Prop. 3.4.7 Differenzial von elementaren Funktionen:

Prop. 3.4.9 Kettenregel:

 $U \in \mathbb{R}^n$ und $V \in \mathbb{R}^m$ offen, $f: U \to V, g: V \to \mathbb{R}^p$ differenzierbar.

Funktionen: Dann ist $g \circ f$ differenzierbar und $d(g \circ f)(x_0) = dg(f(x_0)) \circ df(x_0)$.

Jakobi Matrizen: $J_{q \circ f}(x_0) = J_q(f(x_0) \cdot J_f(x_0).$

Gradienten: $\nabla_{g \circ f} = Jg \circ f^T$, $\nabla_g = J_g^T$ also $\nabla_{g \circ f}(x_0) = J_f(x_0)^T \cdot \nabla_g(f(x_0))$.

Def. 3.4.11 Der Tangentialraum:

 $U \in \mathbb{R}^n$ offen, $f: U \to \mathbb{R}^m$ differenzierbar, $x_0 \in U$, $A = df(x_0)$. Der Tangentialraum bei x_0 des Graphen von f ist der Graph von $g(x) = f(x_0) + A(x - x_0)$, also $T = \{(x, g(x)) \mid x \in \mathbb{R}^n\} \subseteq \mathbb{R}^n \times \mathbb{R}^m$.

Def. 3.4.13 Richtungsableitung:

 $U \in \mathbb{R}^n$ offen, $f: U \to \mathbb{R}^m, v \in \mathbb{R}^n \setminus \{0\}, x_0 \in U$. Die Richtungsableitung von f bei x_o in Richtung v ist

$$D_v f(x_o) := J_g(0) = \begin{pmatrix} g'(0)_1 \\ \vdots \\ g'(0)_m \end{pmatrix} \in \mathbb{R}^m$$

für die Hilfsfunktion $g:\{t\in\mathbb{R}\mid x_0+tv\in U\}\to\mathbb{R}^m$ $g(t)=f(x_0+tv)$

Prop. 3.4.15 Richtungsableitung von differenzierbaren Funktionen Berechnen:

 $U \in \mathbb{R}^n$ offen, $f: U \to \mathbb{R}^m$ differenzierbar, $v \in \mathbb{R}^m \setminus \{0\}, x_0 \in U$.

 $\Longrightarrow D_v f(x_0) = df(x_0)(v) = J_f(x_0) \cdot v$ was auch bedeutet, dass die Richtungsableitung linear vom Richtungsvektor abhängen.

$$\implies D_{\lambda_1 v_1 + \lambda_2 v_2} = \lambda_1 D_{v_1} f(x_0) + \lambda_2 D_{v_2} f(x_0)$$

Ex. 3.4.17 Richtungsableitung von allgemeinen stetigen Funktionen berechnen.:

 $D_v f(x_0) = \lim_{t \to 0} \frac{f(x_0 + tv) - f(x_0)}{t}$ Sollte die daraus resultierende Funktion nicht linear von v abhängig sein, so ist f nicht differenzierbar.

2.3 Höhere Ableitungen

Def. 3.5.1 C Notation:

$$U \subseteq \mathbb{R}^n \text{ offen.}$$

$$C^0(U, \mathbb{R}^m) := \{ f : U \to \mathbb{R}^m \mid f \text{ stetig} \}$$

$$C^k(U, \mathbb{R}^m) := \{ f : U \to \mathbb{R}^m \mid \forall i, j : \partial_j f_i \in C^{k-1} \}$$

$$\{ f : U \to \mathbb{R}^m \mid \text{alle } \partial_{j_i} ... \partial_{j_k} f_i \in C^0(U, \mathbb{R}^m) \} \quad C^{\infty}(U, \mathbb{R}^m) :=$$
= k-mal stetig differenzierbar
$$C^k(U, \mathbb{R}^m)$$

Ex. 3.5.2 Nützliche C Regeln: * Polynome mit n Variablen sind in $C^{\infty}(\mathbb{R}^n, \mathbb{R})$.

$$* f \in C^k \iff f_1, ..., f_m \in C^k$$

 $* C^k$ ist ein **Vektorraum**

* Für $k \neq 0$ ist $\partial_j : C^k(U, \mathbb{R}) \to C^{k-1}(U, \mathbb{R}) * C^k(U, \mathbb{R})$ ist abgeschlossen unter **Produkten** und **Summen**. (sofern diese Definiert sind). * Eine **Verknüpfung** von C^k Funktionen ist wieder C^k .

Prop. 3.5.4 Satz von Schwarz:

 $U \in \mathbb{R}^n$ offen, $f \in C^2(U,\mathbb{R})$. Dann gilt: $\partial_i \partial_j f = \partial_j \partial_i f$. Im Allgemeinen wenn $f \in C^k$ dann lassen sich k parzielle Ableitungen beliebig vertauschen.

Def. 3.5.9 Die Hessische:

 $U \in \mathbb{R}^n$ offen, $f: U \to \mathbb{R}, x_0 \in U$. Die Hessische von f bei $\lfloor x_0$ ist die quadratische $n \times n$ -Matrix

$$H_f(x_0) = (\partial_i \partial_j f(x_0))_{\substack{1 \le i \le n \\ 1 \le j \le n}}$$

Nach dem Satz von Schwarz ist H symmetrisch, falls $f \in C^2(U, \mathbb{R})$.

2.4 Taylorpolynome

Def. 3.7.1 Das k-te Taylorpolynom von f bei y: $f \in C^k(U, \mathbb{R}), y \in U$.

$$T_k f(x) = \sum_{|i| \le k} \frac{\partial_i f(y) \cdot (x - y)^i}{i!}$$
$$f(x) = T_k f(x) + o(||x - y||^k)$$

* $i = (i_1, ..., i_n), i_i \in \mathbb{Z}$ ist ein Tupel.

$$* |i| = i_1 + \dots + i_n$$

$$* \partial_i = \partial_1^{i_1} \dots \partial_n^{i_n}$$

$$*(x-y)^{i} = (x_1-y_1)^{i_1} \cdot \dots \cdot (x_n-y_n)^{i_n}$$

*
$$i! = i_1! \cdot \ldots \cdot i_n!$$

$$f(x) = g(x)h(x)$$

$$\Rightarrow T_k f(x) = T_k g(x)T_k h(x)$$

$$f(x) = g(x) + h(x)$$

$$\Rightarrow T_k f(x) = T_k g(x) + T_k h(x)$$

$$f(x) = g(h(x))$$

$$\Rightarrow T_k f(x) = T_k g(T_k h(x))$$

Nützliche Taylorreihen:

	∞ addiere den Fehler	o(x	_	y
$\sin(x)$	$\lim_{k \to \infty} \sum_{n=0}^{k} (-1)^n \frac{x^{2n+1}}{(2n+1)!}$			
$\forall x \in \mathbb{R}$	$x - \frac{x^3}{6} + \frac{x^5}{120} - \cdots$			
$\cos(x)$	$\sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!}$			
$\forall x \in \mathbb{R}$	$1 - \frac{x^2}{2} + \frac{x^4}{24} - \cdots$			
tan(x)	$\sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!}$			
$\forall x < \frac{\pi}{2}$	$x + \frac{x^3}{3} + \frac{2x^5}{15} + \cdots$			
sec(x)	$\sum_{n=0}^{\infty} (-1)^n \frac{E_{2n}}{(2n)!} x^{2n}$			
$\forall x < \frac{\pi}{2}$	$1 + \frac{x^2}{2} + \frac{5x^4}{24} + \cdots$			
	Do More!			

2.5 Kritische Punkte

Def. 3.8.0 Extremstellen:

Für $U \subseteq \mathbb{R}^n$, $f: U \to \mathbb{R}$ Dann hat f bei $y \in U$ ein lokales Minimum falls $\exists \varepsilon > 0$ sodass: $||x - y|| < \varepsilon, x \in U \implies f(y) \le f(x)$

lokales Maximum falls $\exists \varepsilon > 0$ sodass: $||x - y|| < \varepsilon, x \in U \implies f(y) \ge f(x)$

lokales Extremum falls y ein lokales Minimum oder ein lokales Maximum ist.

globales Minimum falls $x \in U \implies f(y) \le f(x)$ globales Minimum falls $x \in U \implies f(y) \ge f(x)$ globales Extremum falls y ein globales Minimum oder ein globales Maximum ist. Bmkg: Globale Extrema sind jeweils auch lokale Extrema

Prop. 3.8.1:

 $y \in U$ eine lokale Extremstelle \implies y ist ein Kritischer Punkt.

Def. 3.8.2:

 $y \in U$ heisst **kritischer Punkt** falls $\nabla f(y) = 0$

Def. 3.8.6 Nicht-degenerierte-Stellenn:

Für $U \in \mathbb{R}^n$ offen und $f: U \to \mathbb{R}^m, f \in C^2$ Ein Punkt $x \in U$ heist nicht-degeneriert, falls für die Hessische $H_f(x)$ gilt, dass $\det(H_f(x)) \neq 0$.

Def. 3.8.7.1 Extremstellen im eindimensionalen bereich:

* $f'(y) = 0, f''(y) > 0 \implies y$ ist lokale Minimalstelle.

* $f'(y) = 0, f''(y) < 0 \implies y$ ist lokale Maximalstelle.

* y ist Sattelpunkt $\implies f'(y) = 0, f''(y) = 0$

Def. 3.8.7.2 Extremstellen auf Funktionen $f:(U \in \mathbb{R}^n) \to \mathbb{R}$:

 $*H_f(y)$ pos. def. \implies y ist lok. Minimalstelle.

 \implies $H_f(y)$ ist pos. semidefinit.

* $H_f(y)$ neg. def. \implies y ist lok. Maximalstelle.

 \implies $H_f(y)$ ist neg. semidefinit

 $*H_f(y)$ indef. \Longrightarrow y ist Sattelpunkt.

 $* \det(H_f) \neq 0$ \Longrightarrow $H_f(y)$ ist pos. def. oder

neg. def. oder indef.

(Siehe Lineare Algebra basics)

Rmrk. 3.8.7.3 Definitheit für 2×2 Matrizen A:

Rmrk. 3.8.8 If someone wants to contribute this pls do Oo. (Sylvester Kriterium):

Umkehrsatz 2.6

Def. 3.10.0 lokale umkehrbarkeit:

 $U \in \mathbb{R}^n$ offen. $f: U \to \mathbb{R}^n$ heisst lokal umkehrbar bei $y \in U$ falls offene $V, W \subseteq \mathbb{R}^n$ existieren mit $y \in V, f(y) \in w$, sodass $f|_V:V\to W$ bijektiv ist.

Bzw. es existiert $g: W \to V$ sodass $f|_V \circ g = id_W, g \circ f|_W =$ id_V . g ist die umkehrfunktion von $f|_V$

Def. 3.10.2 Satz der Umkehrfunktion: $U \in \mathbb{R}^n$ offen, $f: U \to \mathbb{R}^n, f \in C^k, k \geq 1$ und $J_f(y)$ eine invertierbare Matrix, dann ist f lokal umkehrbar bei y, die Umkehrfunktion g ist C^k und

$$J_g(f(y)) = (J_f(y))^{-1}$$