Институт по математика и информатика-БАН Съюз на математиците в България Фондация Георги Чиликов

Седмица на олимпийската математика на ИМИ София, 2-7 януари 2024 г.

Контролно по теория на числата, 05.01.2024

Задача 1. Естествените числа a, b, c, които не са задължително различни, са такива, че a + bc, b + ca и c + ab са точни квадрати. Да се докаже, че

$$a^{2}(b+c) + b^{2}(c+a) + c^{2}(a+b) + 2abc$$

може да се запише като сума на два точни квадрата.

Решение: Да положим $x^2 = a + bc$, $y^2 = b + ca$, $z^2 = c + ab$. Ще използваме следното известно твърдение:

 ${\it Лема}$. Естествено число n се записва като сума на два точни квадрата тогава и само тогава, когато за всяко просто $p\equiv 3\pmod 4$ числото $v_p(n)$ е четно.

Да забележим, че изразът от условието се записва като

$$S = a^{2}(b+c) + b^{2}(c+a) + c^{2}(a+b) + 2abc = (a+b)(b+c)(c+a).$$

От лемата е достатъчно да докажем, че за всяко просто $p \equiv 3 \pmod 4$ числото $v_p(S)$ е четно. Ще докажем по-силното твърдение, че $v_p(a+b)$ (и цикличните пермутации) е четно за всяко такова p.

Нека $p \equiv 3 \pmod 4$ е просто, за което $v_p(a+b) > 0$. Да забележим, че

$$x^2 + y^2 = (a+b)(c+1) \equiv 0 \pmod{p},$$

откъдето $p\mid x,y$. Ще докажем, че $c\not\equiv -1\pmod p$. Наистина, ако допуснем $c\equiv -1\pmod p$, получаваме:

$$0 \equiv x^2 \equiv a + bc \equiv a - b \pmod{p}.$$

Тъй като $p\mid a+b$, това означава, че $p\mid a$. Но тогава $z^2\equiv c+ab\equiv -1\pmod p$, което е невъзможно, защото $p\equiv 3\pmod 4$. Така $p\nmid c+1$ и използвайки $p\equiv 3\pmod 4$ и лемата, получаваме

$$0 \equiv v_p(x^2 + y^2) = v_p((a+b)(c+1)) = v_p(a+b) + v_p(c+1) = v_p(a+b) \pmod{2}.$$

Задача 2. Да се намерят всички полиноми P(x) с цели коефициенти такива, че за всяко естествено число n>2024 стойността на P(n) е положителна, а числата

$$n^n + 2^n$$
 и $2^{P(n)} + 1$

не са взаимно прости.

Решение: Ще докажем, че такъв полином не съществува. Да допуснем противното. Да положим $n=2^k$ за k>10. Тогава $n^n+2^n=2^{k2^k}+2^{2^k}=2^{2^k}(2^{(k-1)2^k}+1)$. Тъй като числото $2^{P(2^k)}+1$ е нечетно, то числата $2^{(k-1)2^k}+1$ и $2^{P(2^k)}+1$ имат общ прост делител. Да припомним, че ако за някои естествени числа a и b е изпълнено $\mathrm{HOД}(2^a+1,2^b+1)>1$, то $v_2(a)=v_2(b)$. Наистина, ако p е общ прост делител на двете числа, лесно се вижда, че $v_2(a)=v_2(b)=v_2(ord_p(2))-1$. В нашия случай получаваме, че за всяко k>10

$$v_2(k-1) + k = v_2(P(2^k)).$$

Да запишем $P(x) = x^s Q(x)$, където $Q \in \mathbb{Z}[X]$ е такъв, че $Q(0) \neq 0$. Тогава за $k > \max(v_2(Q(0)), 10)$ имаме $v_2(P(2^k)) = sk + v_2(Q(0))$. Но тъй като $k \mapsto v_2(k-1) + k$ не е линейна за достатъчно големи k, получаваме исканото противоречие.

Задача 3. Да се докаже, че за всяко естествено число N съществува двойка естествени числа (a,b), за които $b>a>N, a-1\mid b-1,$ но a^n-1 не дели b^n-1 за никое естествено n>1.

Решение: Нека $l\equiv 2\pmod{22}$ е естествено число такова, че l>11N. Нека a=2k, където $k=\frac{3l^2+10}{22}$ и $b=3l^2$. Тогава $a-1=\frac{3l^2-1}{11}|b-1$. От друга страна, ако допуснем, че $a^n-1|b^n-1$ за някое n>1, то n трябва да е нечетно, защото иначе $3|a^n-1$, което е невъзможно. Сега нека p е прост делител на a^n-1 , сравним с $3\pmod{4}$. Да отбележим, че съществуват нечетен брой такива(броени с кратностите), защото $a^n-1\equiv 3\pmod{4}$. Сега т.к $p|b^n-1$ и n е нечетно получаваме, че $(\frac{b}{p})=1$, но $b=3l^2$ значи, че $(\frac{3}{p})=1$. От закона за квадратична реципрочност получаваме, че $(\frac{p}{3})=-1$, т.е $p\equiv 2\pmod{3}$. Така получаваме, че всички прости делители $p\equiv 3\pmod{4}$ на a^n-1 са също сравними с p=10 (mod 3), но те са нечетен брой, а всички останали прости делители на p=11 са сравними с p=12 (mod 3), откъдето следва, че p=13 (mod 3), т.е p=13 (mod 3), което е противоречие.