

Joint Probability (ABB)

PCAGE)

For Independent events

P(AGB) = P(A)xPLB)

For dependent events

P(AGB) = P(B|A) P(A)

Syrobability of 2 events

occurry together

example: getting head on

coin & rolling 4 in die

P(h Gzy) = P(h) x P (M)

= (1/2) × (1/2) = 1/12

Marginal Probability

discrete

P(A) = \(\alpha \) P(A \) B = \(\beta \)

continous

P(A) = \(\beta \) P(A \) B = \(\beta \) B

for basility of a single event regardles of other events 22

example a k = rainy

a B = temp > 20

P(A) = P(A \) B) + P(A \) - B

Confusion Matrix:

Predicted Class

		Positive	Negative	
Actual Class	Positive	True Positive (TP)	False Negative (FN) Type II Error	Sensitivity $\frac{TP}{(TP+FN)}$
	Negative	False Positive (FP) Type I Error	True Negative (TN)	Specificity $\frac{TN}{(TN+FP)}$
		$\frac{TP}{(TP+FP)}$	Negative Predictive Value $\frac{TN}{(TN + FN)}$	$\frac{Accuracy}{TP + TN}$ $\frac{TP + TN}{(TP + TN + FP + FN)}$

2, Ability to identify
all regative cases
2, overall corrections of Classification Model

accuracy of the predictions

Surprise 1 probability
(Information) & pt, suprise 1 but there is no supik = 1 6 1 (p(heads) = 1 (4) (+ails) = 1 undefined os Introducing logs 2 - when 2 outputs to bring linearity helation = log (1)=0 1 p(heads) = log (p(heads) p (tails) = log (pflail) = log(1) =1091-1090 = undefined or as suprise of romething that were happens

0-9 plhead)=log2(10)=log2(10)=20.15 example: () r Utail) 2 log2 (] = log2(10) = 3.32 Plipping com 3 times

H H T

0.9'0.9 0.1 $= \frac{\log 1}{\log 2} \left(\frac{1}{0.9 \times 0.9 \times 0.1} \right) = -\log_{1} \left(0.9 \times 0.9 \times 0.1 \right)$ $= -\left[\log_{2} \left(0.9 \right) + \log_{2} \left(0.9 \right) + \log_{2} \left(0.1 \right) \right]$ $=-\left(0.15+0.15+3.32\right)$ head tril
0.9 0.1

10 92 (1) 0.15 3.32

Total surprise after flipping coin 100 hines

Joint Entropy = $H(x,y) = - \leq p(x,y) \log_2 p(x,y)$ bits

conditional Entropy=

HCyrx) = - \le p(y \x) \log_2 (p(y \x)) Bt