Notatka dla chmury Azure

Narzędzia Analityczne i Big Data

Narzędzie	Zastosowanie	Opis
Azure Synapse Analytics	Hurtownia danych + analiza Big Data	Umożliwia integrację danych z Data Lake, obsługuje T-SQL, Spark, pipeline'y
Azure Data Lake Storage Gen2	Przechowywanie danych	Rozszerzenie Blob Storage – skalowalny, hierarchiczny system plików dla analityki
Azure Data Factory	Orkiestracja ETL / ELT	Graficzne pipeline'y do integracji danych z wielu źródeł
Azure Stream Analytics	Przetwarzanie strumieniowe	Analiza danych w czasie rzeczywistym np. z IoT, Event Hub
Azure Event Hubs / IoT Hub	Ingest danych	Wysokowydajne przetwarzanie danych telemetrycznych / zdarzeń
Azure Cosmos DB (Analytical Store)	Przechowywanie danych operacyjnych i analitycznych	Baza NoSQL z trybem analitycznym (synapse link)

Narzędzia SI oraz ML:

Narzędzie	Zastosowanie	Opis
Azure Machine Learning	Trening i deployment modeli ML	Wsparcie dla AutoML, klasyczne ML, MLOps, integracja z Git i MLflow
Azure Cognitive Services	Gotowe modele AI	Vision, Speech, Language, Decision (np. OCR, tłumaczenie, analiza sentymentu)
Azure OpenAI Service	Generatywna AI (GPT-4)	Umożliwia integrację LLM z aplikacjami (czaty, podsumowania, kod)
Azure Databricks	Spark + AI	Przetwarzanie danych, trening ML, integracja z Delta Lake i MLflow
Azure Cognitive Search	Wyszukiwanie semantyczne	Przeszukiwanie dokumentów i danych nieliniowych (np. PDF, pliki Office)

Narzędzia do wizualizacji i monitoringu:

Narzędzie	Zastosowanie	Opis
Power BI	BI i raportowanie	Wizualizacja danych z wielu źródeł, w tym bezpośrednio z Azure
Azure Monitor / Log	Monitoring systemów i	Telemetria, alerty, analiza dzienników (Log
Analytics	danych	Analytics Query Language)
Microsoft Fabric	Nowa platforma	Lakehouse, BI, AI i DataOps zintegrowane w
(preview)	analityczna all-in-one	jednym środowisku

Przykład:

"Robisz PoC na wykrycie anomalii z linii produkcyjnej (jakieś IoT). Jakich narzędzi użyjesz np. w Azure. Jak będzie wyglądało PoC."

Kolejne etapy PoC:

Etap	Opis	
I Integracia danven in i	Podłączenie czujników do IoT Hub, symulacja danych (np. w Pythonie lub z CSV).	
2. Przetwarzanie danych	Prosty przepływ: IoT Hub → Stream Analytics → Data Lake	
3 Trenino modelli VII	Analiza danych historycznych w Azure ML (z Data Lake), trening modelu do wykrywania anomalii.	
4 Scaring aniine iiin attiine	Wykorzystanie wytrenowanego modelu do klasyfikacji nowych obserwacji.	
5 Dashboard Lalerty	Tworzenie prostego Power BI dashboardu + konfiguracja alertów w Monitorze.	

Ten PoC pokazuje, jak w chmurze Azure można zbudować system do automatycznego wykrywania anomalii na linii produkcyjnej, korzystając z danych z czujników IoT.

- Zbiera dane telemetryczne (np. temperatura) z urządzeń za pomocą Azure IoT Hub.
- Przetwarza dane w czasie rzeczywistym z użyciem Azure Stream Analytics lub Databricks.
- Przechowuje dane w Data Lake do dalszej analizy.
- Uczy model ML w Azure Machine Learning, który wykrywa anomalie.
- Wyświetla wyniki w Power BI i wysyła alerty, gdy wykryje potencjalne problemy.