n维向量的概念

1. 定义1: 由数 41.42. " 4n 组成的有序数组

为n维何量, 简称为何量。

向量通常用斜体希腊字母α,β,γ等表示。

$$\alpha=(a_1,a_2,\cdots,a_n),$$

行向量

$$\alpha = \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{pmatrix} = (a_1, a_2, \dots, a_n)^T$$

$$A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix}$$
 $(a_{i1}, a_{i2}, \dots, a_{mn})$ $i = 1, 2, \dots m.$

矩阵A的列向量

$(a_{i1}, a_{i2}, \dots, a_{in})$

矩阵A的行向量

$$\mathbf{0} = (0,0,\dots,0)$$

零向量

$$-\alpha = (-a_1, -a_2, \cdots, -a_n)$$

$\alpha = \beta \Leftrightarrow$ $\begin{cases} \mathbf{44} & \mathbf{30} & \mathbf{10} & \mathbf{10} \\ a_i = b_i, i = 1, 2, \dots, n. \end{cases}$

2. 定义2: $\alpha = (a_1, a_2, \dots, a_n)$, 数值 $\sqrt{a_1^2 + a_2^2 + \dots + a_n^2}$ 称为何量 α 的长度或范数或模,记为 $\|\alpha\|$.

$$\|\alpha\| = 0 \Leftrightarrow \alpha = 0$$
 $\alpha \neq 0 \Rightarrow \|\alpha\| > 0$

α = 1 称 α 为单位何量。

$$\alpha = (\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}), \beta = (\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}), \gamma = (\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}).$$

$$e_1 = (1,0,0), e_2 = (0,1,0), e_3 = (0,0,1).$$

$$e_1 = (1,0,\cdots,0), e_2 = (0,1,\cdots,0),\cdots, e_n = (0,0,\cdots,1).$$

.线性组合

定义: 设向量 $\beta,\alpha_1,\alpha_2,\cdots,\alpha_m$, 若存在一组数

 $(k_1, k_2, \dots, k_m \not \not \not p \beta = k_1\alpha_1 + k_2\alpha_2 + \dots + k_m\alpha_m$

则称向量 β 可由向量 $\alpha_1,\alpha_2,\cdots,\alpha_m$ 线性表示,

或称向量 β 是向量 $\alpha_1,\alpha_2,\cdots,\alpha_m$ 的线性组合。

$$\alpha = (a_1, a_2, \dots, a_n) = a_1 e_1 + a_2 e_2 + \dots + a_n e_n$$

例1: 设 $\alpha_1 = (1,2,-1), \alpha_2 = (2,-3,1), \alpha_3 = (4,1,-1),$

证明: α, 是α, α, 的线性组合。

证明: 设 $\alpha_3 = k_1 \alpha_1 + k_2 \alpha_2$, 即:

$$(4,1,-1)=k_1(1,2,-1)+k_2(2,-3,1),$$

$$\Rightarrow \begin{cases} 4 = k_1 + 2k_2, \\ 1 = 2k_1 - 3k_2, \\ -1 = -k_1 + k_2. \end{cases} \Rightarrow \begin{cases} k_1 = 2, \\ k_2 = 1. \end{cases}$$

数 $\alpha_3 = 2\alpha_1 + \alpha_2$.

何量组的等价

1. 定义1: 设有两个n维向量组 (1): α₁,α₂,...,α_r

 $(II): \beta_1, \beta_2, \cdots, \beta_s$

若何量组(/)中每个何量都可由何量组(//)线

性表示,则称何量组(/)可由何量组(//)线性表示;

若何量组(1)与何量组(11)可以互相线性表示,

则称向量组(1)与向量组(11)等价。

向量组的等价关系具有自反性、对称性、传递性。

设 $\alpha_1 = (1, 2, -1), \alpha_2 = (2, -3, 1), \alpha_3 = (4, 1, -1),$

证明: $\{\alpha_1, \alpha_2, \alpha_3\}$ 与 $\{\alpha_1, \alpha_2\}$ 等价。

 α_3 可由 α_1 , α_2 线性表示。

例2: 设n维何量组 $\alpha_1,\alpha_2,\cdots,\alpha_n$, 若 e_1,e_2,\cdots,e_n 可由它们线性表示,证明 $\alpha_1,\alpha_2,\cdots,\alpha_n$ 与 e_1,e_2,\cdots,e_n 等价。

 e_1,e_2,\cdots,e_n 等价。 证: $::\alpha_1,\alpha_2,\cdots,\alpha_n$ 显然可由 e_1,e_2,\cdots,e_n 线性表示,又由题设 e_1,e_2,\cdots,e_n 可由 $\alpha_1,\alpha_2,\cdots,\alpha_n$ 线性表示: $:\alpha_1,\alpha_2,\cdots,\alpha_n$ 与 e_1,e_2,\cdots,e_n 等价。

向量组的线性相天性

一、线性相关性

1. 定义: 设向量组 a_1, a_2, \cdots, a_m ,若存在一组不全零的数 k_1, k_2, \cdots, k_m 使

$$k_1\alpha_1+k_2\alpha_2+\cdots+k_m\alpha_m=0,$$

则称向量组 a_1,a_2,\cdots,a_m 线性相关。否则你向量 a_1,a_2,\cdots,a_m 线性无关。

向量组的线性相关性

一、线性相关性

设 $\alpha_1 = (1, 2, -1), \alpha_2 = (2, -3, 1), \alpha_3 = (4, 1, -1),$ 证明: α_3 是 α_1 , α_2 的线性组合。

 $\Rightarrow \alpha_1, \alpha_2, \alpha_3$ 是线性相关的。

$$\alpha_3 = 2\alpha_1 + \alpha_2 \Rightarrow 2\alpha_1 + \alpha_2 - \alpha_3 = 0.$$

(1) 当向量组只含一个向量时,

若该向量是零向量,则它线性相关; 1·0=0. 若该向量是非零向量,则它线性无关。

 $k\alpha = 0, \alpha \neq 0, \Rightarrow k = 0.$

注意

(2) 两个何量线性相关的充要条件是其对应分量成比例。

$$k_1\alpha + k_2\beta = 0$$
, $\Rightarrow k_1\alpha = -k_2\beta$. 若 $k_1 \neq 0$, $\Rightarrow \alpha = -\frac{k_2}{k_1}\beta$. $\alpha = -\frac{k_2}{k_1}\beta = k\beta$. $\beta = k$

细门红

- (1) 当何量组只含一个何量时,若该何量是零何量,则它线性相关;若该何量是非零何量,则它线性无关。
- (2) 两个向量线性相关的充要条件是其对应分量成 比例。
 - (3) 任一含有零何量的何量组线性相关。

例2: 设向量组 α_1 , α_2 , α_3 线性无关 β_1 = α_1 + α_2 , β_2 = α_2 + α_3 β_3 = α_3 + α_1 ,讨论向量组 β_1 , β_2 , β_3 ,的相关性。

解: 设 $k_1\beta_1 + k_2\beta_2 + k_3\beta_3 = 0$, 即

 $(k_1+k_3)\alpha_1+(k_1+k_2)\alpha_2+(k_2+k_3)\alpha_3=0.$

因为 α_1 , α_2 , α_3 线性无关 $\Rightarrow k_1 + k_3 = 0$,

 $k_1+k_2=0,$

 $k_2 + k_3 = 0.$

 $\Rightarrow k_1 = k_2 = k_3 = 0,$

判定向量组相天和无天的方法

- 1.设组合式为零
- 2.讨论组合系数是否全为零
- 3.得出结论

1.线性相关与线性组合的关系定理

定理1: 何量组 $\alpha_1, \alpha_2, \dots, \alpha_m (m \ge 2)$ 线性相关的充要条件是其中

至少有一个何量可由其余 m-1 何量线性表示。

证:"⇒"若向量组α₁, α₂,..., α_m(m≥2) 线性相关,则一定存在一

组不全为零的数 k1, k2,..., km, 使

 $k_1\alpha_1+k_2\alpha_2+\cdots+k_m\alpha_m=0$

不妨设 $k_1 \neq 0$, 于是有: $\alpha_1 = -\frac{k_2}{k_1}\alpha_2 - \cdots - \frac{k_m}{k_1}\alpha_m$

"=" 不妨误 $\alpha_1 = k_2\alpha_2 + \dots + k_m\alpha_m \Rightarrow -\alpha_1 + k_2\alpha_2 + \dots + k_m\alpha_m = 0$

即向量组 α_1 , α_2 ,..., α_m ($m \ge 2$) 线性相关。

定理2: 设向量组α₁, α₂,..., α_m线性无关, 而向量组β, α₁, α₂,..., α_m 线性相关, 则β可由α₁, α₂,..., α_m 线性表示且表示式惟一。

证: '问量组 β,α_1 , α_2 ,..., α_m 线性相关,则一定存在一组不全为零的数 k,k_1 , k_2 ,..., k_m , 使 $k\beta+k_1\alpha_1+k_2\alpha_2+...+k_m\alpha_m=0$ 这里必有 $k\neq 0$, 否则,有 $k_1\alpha_1+k_2\alpha_2+...+k_m\alpha_m=0$ 由 向量组 α_1 , α_2 ,..., α_m 线性无关知: $k_1=k_2=...=k_m=0$ 故 β 可由 α_1 , α_2 ,..., α_m 线性表示。

下面证明表示式惟一。

J 家证法

林松上

$$\beta = k_1 \alpha_1 + k_2 \alpha_2 + \dots + k_m \alpha_m \} \Rightarrow$$

$$\beta = l_1 \alpha_1 + l_2 \alpha_2 + \dots + l_m \alpha_m \} \Rightarrow$$

$$(k_1 - l_1)\alpha_1 + (k_2 - l_2)\alpha_2 + \dots + (k_m - l_m)\alpha_m = 0.$$

由向量组 α_1 , α_2 ,..., α_m 线性无关知:

$$k_i = l_i, i = 1, 2, \dots, m.$$

所以表示式惟一。

2.相关性的判定定理

定理3:在一个向量组中,若有一个部分向量组线性相关,则整个向量组也必定线性相关。

反之不对

 $\alpha_1 = (1, 2, -1), \alpha_2 = (2, -3, 1), \alpha_3 = (4, 1, -1).$

你能举个 反例吗?

一个线性无关的何量组的任何非空的部分何量 组都线性无关。

V 野遊海湖灣 一定強星機

2.相关性的判定定理

定理4: m 个 n 维 何 量 $\alpha_i = (a_{i1}, a_{i2}, \dots, a_{in})$ $(i = 1, 2, \dots m)$ 线 相关的充要条件是由 a;(i=1,2,...m) 构成的矩阵

$$A = \begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_m \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \cdots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}$$

$$\mathbf{B} \mathbf{K} r(A) < m.$$

例3: 讨论 $\alpha_1 = (1,2,-1), \alpha_2 = (2,-3,1), \alpha_3 = (4,1,-1)$ 的相关性。

$$A = \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_3 \end{pmatrix} = \begin{pmatrix} 1 & 2 & -1 \\ 2 & -3 & 1 \\ 4 & 1 & -1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 2 & -1 \\ 0 & -7 & 3 \\ 0 & -7 & 3 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 2 & -1 \\ 0 & -7 & 3 \\ 0 & 0 & 0 \end{pmatrix},$$

$$\therefore r(A) = 2 < 3,$$

 $\Rightarrow \alpha_1, \alpha_2, \alpha_3$ 线性相关。

 λ 为何值时,何量组 $\alpha_1 = (1,1,1,1,2), \alpha_2 = (2,1,3,2,3),$ $\alpha_3 = (2,3,2,2,5), \alpha_4 = (1,3,-1,1,\lambda)$ 线性相关?

$$A = \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_3 \\ \alpha_4 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 & 1 & 2 \\ 2 & 1 & 3 & 2 & 3 \\ 2 & 3 & 2 & 2 & 5 \\ 1 & 3 & -1 & 1 & \lambda \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 1 & 1 & 2 \\ 0 & -1 & 1 & 0 & -1 \\ 0 & 1 & 0 & 0 & 1 \\ 0 & 2 & -2 & 0 & \lambda - 2 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 1 & 1 & 2 \\ 0 & -1 & 1 & 0 & -1 \\ 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & \lambda - 4 \end{pmatrix}$$

 $\Rightarrow \lambda = 4$ 时, r(A) = 3 < 4, $\alpha_1, \alpha_2, \alpha_3, \alpha_4$ 线性相关。

定理5: 若m个r维何量 $\alpha_{i} = (a_{i1}, a_{i2}, \dots, a_{ir}) \quad (i = 1, 2, \dots, m)$ 线性无关,则对应的m个r+1维何量 $\beta_{i} = (a_{i1}, a_{i2}, \dots, a_{ir}, a_{i,r+1}) \quad (i = 1, 2, \dots, m)$ 也线性无关。

用语言叙述为:

线性无关的向量组,添加分量后仍旧线性无关

建トナリ胎

拉龙类

向量组的极大无关组

定义1: 设向量组T的部分向量组 $\alpha_1,\alpha_2,\cdots,\alpha_r$ 满足

- (i) $\alpha_1, \alpha_2, \dots, \alpha_r$ 线性无关;
- (ii) T 中向量均可由 $\alpha_1, \alpha_2, \cdots, \alpha_r$ 线性表示。

或T 中任一何量 α . α , α ₁, α ₂, ..., α _r 线性相关

则称 $\alpha_1,\alpha_2,\cdots,\alpha_r$ 是向量组T 的一个极大线性

无关组, 简称极大无关组。

向量组的极大无天组

极大无关组的含义有两层: 1无关性; 2.极大性。

注:

- 1.线性无关向量组的极大无关组就是其本身
- 2. 何量组与其极大无关组等价;
- 3.同一个向量组的极大无关组不惟一,但它们之间是等价的。

极大无天组的性质

定理1:设有两个n维向量

(I)
$$\alpha_1, \alpha_2, \cdots, \alpha_r$$

(I)
$$\alpha_1, \alpha_2, \dots, \alpha_r$$
, (II) $\beta_1, \beta_2, \dots, \beta_s$,

若向量组(I)线性无关,且可由向量组(II)线性表示,则 $r \leq s$.

$$= \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_r \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \cdots & \vdots \\ a_{r1} & a_{r2} & \cdots & a_{rn} \end{pmatrix}, B = \begin{pmatrix} \beta_1 \\ \beta_2 \\ \vdots \\ \beta_s \end{pmatrix} = \begin{pmatrix} b_{11} & b_{12} & \cdots & b_{1n} \\ b_{21} & b_{22} & \cdots & b_{2n} \\ \vdots & \vdots & \cdots & \vdots \\ b_{s1} & b_{s2} & \cdots & b_{sn} \end{pmatrix}, C = \begin{pmatrix} \beta_1 \\ \beta_2 \\ \vdots \\ \beta_s \\ \vdots \\ \alpha_r \end{pmatrix}$$

$$\therefore r = r(A) \le r(C) \le s.$$

推论1: 若向量组 $\alpha_1,\alpha_2,\cdots,\alpha_r$ 可由向量组 $\beta_1,\beta_2,\cdots,\beta_s$

线性表示, 且 r>s

则向量组 $\alpha_1, \alpha_2, \cdots, \alpha_r$ 线性相关。

后证法老不相关

21

5台557年

推论2: 任意两个线性无关的等价向量组所含向量的个

数相等。

$$\emptyset(2 \quad \Re \ a_1 = \begin{bmatrix} 1 \\ -1 \\ 1 \\ -1 \end{bmatrix}, a_2 = \begin{bmatrix} 3 \\ 1 \\ 1 \\ 3 \end{bmatrix}, b_1 = \begin{bmatrix} 2 \\ 0 \\ 1 \\ 1 \end{bmatrix}, b_2 = \begin{bmatrix} 1 \\ 1 \\ 0 \\ 2 \end{bmatrix}, b_3 = \begin{bmatrix} 3 \\ -1 \\ 2 \\ 0 \end{bmatrix}.$$

证明向量组 4., 4. 与向量组 5., 5., 5. 等价。

征 记 A = (a, a₁), B = (b, b₁, b₃). 根据定理2的推论,只要证 R(A) = R(B) = R(A, B). 为此把矩阵(A, B)化成行除排形:

$$(A.B) = \begin{bmatrix} 1 & 3 & 2 & 1 & 3 \\ -1 & 1 & 0 & 1 & -1 \\ 1 & 1 & 1 & 0 & 2 \end{bmatrix} - \begin{bmatrix} 1 & 3 & 2 & 1 & 3 \\ 0 & 4 & 2 & 2 & 2 \\ 0 & -2 & -1 & -1 & -1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} - \begin{bmatrix} 1 & 3 & 2 & 1 & 3 \\ 0 & 2 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix},$$

可见,R(A)=2,R(A,B)=2.

容易看出矩阵 B 中有不等于 0 的 2 阶子式。故 $R(B) \ge 2$,又 $R(B) \le R(A,B) = 2$.

于是知 R(B)=2.因此。

R(A) = R(B) = R(A.B).

等价向量组

数学概念

向量组等价的基本判定是: 两个向量组可以互相线性 表示。

需要重点强调的是:等价的向量组的秩相等,但是秩 相等的向量组不一定等价。

向量组A: a1, a2, ...am与向量组B: β1, β2, ...βn 的等价秩相等条件是

R(A) = R(B) = R(A, B),

其中A和B是向量组A和B所构成的矩阵

CITE ON BENEVEN P1 × ≤ 5 3... White DISEY RESIDENT

定理2: 一个何量组的任意两个极大无关组所含何量的 个数相等。

越拔二司证

向量组的秩

定义: 何量组 $\alpha_1,\alpha_2,\cdots,\alpha_m$ 的 极大无关组所含何量的个数, 称为何量组的秩, 记为 $r(\alpha_1,\alpha_2,\cdots,\alpha_m)$.

注: (1)线性无关的向量组的秩=向量的个数

(2) 向量组线性无关⇔ 秩=向量个数。

定理3: 若 $\alpha_1,\alpha_2,\cdots,\alpha_m$ 可由 $\beta_1,\beta_2,\cdots,\beta_s$ 线性表示,则

 $r(\alpha_1, \alpha_2, \cdots, \alpha_m) \leq r(\beta_1, \beta_2, \cdots, \beta_s)$

推论:等价的向量组有相同的秩。反之不对。

即:有相同秩的两个何量组不一定等价。

$$\alpha_1 = (1,0,0,0),$$
 $\beta_1 = (0,0,1,0),$ $r(\alpha_1,\alpha_2) = 2 = r(\beta_1,\beta_2).$ $\alpha_2 = (0,1,0,0).$ $\beta_2 = (0,0,0,1).$ 但 $\{\alpha_1,\alpha_2\} \subseteq \{\beta_1,\beta_2\}$ 不等价。

例3: 设有两个n维向量组 $\alpha_1,\alpha_2,\cdots,\alpha_s$ 与 $\beta_1,\beta_2,\cdots,\beta_s$, 若 $\alpha_1,\alpha_2,\cdots,\alpha_s$ 线性无关且

$$\begin{pmatrix} \beta_{1} \\ \beta_{2} \\ \vdots \\ \beta_{s} \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1s} \\ a_{21} & a_{22} & \cdots & a_{2s} \\ \vdots & \vdots & \ddots & \vdots \\ a_{s1} & a_{s2} & \cdots & a_{ss} \end{pmatrix} \begin{pmatrix} \alpha_{1} \\ \alpha_{2} \\ \vdots \\ \alpha_{s} \end{pmatrix}, \quad K = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1s} \\ a_{21} & a_{22} & \cdots & a_{2s} \\ \vdots & \vdots & \cdots & \vdots \\ a_{s1} & a_{s2} & \cdots & a_{ss} \end{pmatrix}$$

证明: 若 r(K) = s,则 $\beta_1, \beta_2, \cdots, \beta_s$ 线性无关。

 $r(K) = s \Rightarrow K$ 可逆, $\alpha_1, \alpha_2, \dots, \alpha_s$ 可由 $\beta_1, \beta_2, \dots, \beta_s$ 表示。 $\alpha_1, \alpha_2, \dots, \alpha_s$ 与 $\beta_1, \beta_2, \dots, \beta_s$ 等价。

(B) (B) = Q11 A12 ... (A1+

B) (B) = Q11 A12 ... (A1+

B) (B) = Q11 A22 ... (A2+ ... asids .. as 是一种成一个 1: Ky 35 Bill Kill

注: (1)线性无关的向量组的秩=向量的个数。

(2) 向量组线性无关 ⇔ 秩=向量个数。

三人民)二人

d, , dz, dy flotal trite dz, dz, dy flot dz, dz, dy flot dz, dz, dy flot dz, dz, dy flot $|A_{m \times s}B_{s \times n}| \leq \min\{r(A), r(B)\}$ $|A_{n \times m}B_{m \times n} = E_n$, 证明: B 的列向量组装性无关。 $|A_{n \times m}B_{m \times n}| = E_n$, 证明: $|A_{n \times m}B_{m \times n}| = E_n$, 证明: $|A_{n \times m}B_{m \times n}| = E_n$, $|A_{n \times m}B_{m \times m}| = E_n$

r LBJ=n