Cost of Capital

Objectives

- Calculate the cost of equity using the CAPM
 - Describe how to calculate beta, the risk-free rate, and the market risk premium
- Describe how to calculate the cost of debt for a firm
- Calculate a WACC
- Suggested problems from Chapter 13:
 - 10th edition: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13
 - 11th edition: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13
 - 12th edition: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13

Discounted cash flow valuation

- This is our fundamental valuation technique
- The DCF approach has its foundation in the Present Value Rule:

$$Value = \sum_{t=1}^{n} \frac{FCF \ to \ Firm_t}{(1+r)^t}$$

Where:

n = life of the asset

FCF to firm_t = expected free cash flow to firm in period t r = an appropriate discount rate

Estimating discount rates

- Critical ingredient to any discounted cash flow valuation
- Mistakes in estimating the rate can lead to serious valuation errors
 - Too high a rate will lead us to underestimate value
 - Too low a rate will lead us to overestimate value
- Intuitively, the discount should be consistent with riskiness of cash flows
 - The higher the risk, the higher the discount rate

What we are after...

- We need a discount rate that captures the riskiness of the firm
- It should capture the:
 - Return required by debtholders
 - Return required by stockholders
- This is the Weighted Average Cost of Capital:

$$WACC = \frac{D}{V} \times (1 - t) \times r_D + \frac{E}{V} \times r_E$$

where
$$V = D + E$$

- r_D is the cost of debt
- r_E is the cost of common stock
- D is the market value of debt, E is the market value of equity
- V is the market value of the firm, t is the firm's marginal tax rate

Relationship between returns and cost of capital

- Investors require a certain return on their investment
 - They don't give money to entrepreneurs/firms for free
 - This is true for common stock, preferred stock, bonds, ...
- The return that the firm must pay to investors is a cost for the firm
- In this sense, returns and the cost of capital are the same thing, but from a different perspective

Cost of Equity

How to estimate the cost of equity?

- Simply use the CAPM!
 - This is the most widely used method
 - There are other techniques, but we will not cover them in this course
- We know the CAPM gives us the expected return from the shareholders' perspective
 - Why is that the same thing as the cost of equity financing from the firm's perspective?

CAPM – Estimation of Parameters

- Risk-free rate R_f:
 - Use the current value of R_f. But which one?
 - In the U.S., use the Treasury Bond yield
 - For a single-year application, use the one-year Treasury yield
 - In a multi-year application, the expected average one-year
 Treasury yield should be used
 - As an approximation, we choose a Treasury security with a maturity that matches the length of the project

Estimating the risk-free rate

Home World U.S. Politics Economy Business Tech Markets Opinion Books & Arts Real Estate Life & Work U.S. Treasurys 11:24 AM EDT 10/08/21 30-Year Bond COUPON (%) PRICE CHG YIELD (%) YIELD CHG 2.18% 30-Year Bond -30/322.176 0.040 10-Year Note 1.25 -25/32 1.612 0.035 7-Year Note 1.25 -2/321.396 0.033 2.16 5-Year Note 0.875 -2/321.056 0.033 3-Year Note 0.375 -1/320.585 0.025 2.14 2-Year Note 0.25 0/32 0.314 0.000 1-Year Bill 0 0/32 0.095 -0.001 6-Month Bill 0 0/32 0.063 0.003 2.12 6:00 pm Oct. 8 6:00 am 12:00 pm 3-Month Bill 0 0/32 0.050 0.000 1-Month Bill 0 0/32 0.025 0.002 30-Year Bond 😌 5D 3М YTD 1Y 3Y

View Treasury Quotes Page

CAPM – Estimation of Parameters

- Market Risk Premium (MRP):
 - In the U.S., the most common estimate is 5.5%, but there's a lot of uncertainty
 - Outside of U.S., Market Risk Premiums depend on underlying economy variance, political risk, structure of the market:

Emerging + Political Risk (South America)	8.5%
Emerging (Mexico, Asia, Central Europe)	7.5%
Developed Markets (USA, Japan, UK)	5.5%
Developed with Large Companies	4.5%-5.5%
Developed + "Super Stable" (Germany, Switzerland)	3.5%-4.0%

Survey on the market risk premium used in 2021

Survey of finance/economics professors, analysts, and managers

Table 2. Market Risk Premium (MRP) used for 88 countries in 2021

MRP	Number of Answers	Average	Median	MAX	min
USA	1756	5,5%	5,5%	8,0%	3,1%
Spain 2021	539	6,4%	6,4%	11,4%	4,0%
Angola	11	11,5%	11,7%	15,0%	6,0%
Argentina	16	17,4%	16,5%	60,0%	4,0%
Australia	31	6,4%	6,3%	10,0%	2,0%
Austria	96	5,9%	6,0%	8,0%	4,0%
Bangladesh	13	7,0%	7,1%	15,0%	1,1%
Barbados	10	11,1%	11,3%	12,4%	8,0%
Belgium	98	5,9%	6,0%	8,0%	4,0%
Bolivia	11	9,1%	9,4%	10,5%	6,6%
Bosnia	9	10,1%	10,3%	11,4%	6,8%
Brazil	42	7,7%	7,8%	12,0%	2,0%
Bulgaria	15	6,8%	6,7%	8,1%	6,3%
Canada	38	5,6%	5,5%	9,2%	3,5%

 Fernandez/Bañuls/Acín, "Survey: Market Risk Premium and Risk-Free Rate used for 88 countries in 2021", IESE Business School

CAPM: Beta Estimation

- Beta measures how sensitive a stock is to overall market movements.
 - How much does the stock go up or down when the market goes up or down?
- We can think of beta as the slope from the following regression:

```
R_i = \alpha_i + \beta_i R_M + \varepsilon_i
where \varepsilon = \text{firm} - \text{specific risk(i.e., diversifiable risk)}
\beta = \text{sensitivity to market returns}
R^2 = \text{explained variance(fraction of returns explained by the market)}
```

Determinants of Beta

- Equity beta risk has two sources:
 - Business risk (the risk of the firm's cash flows)
 - Financial risk
 - The magnification of the business risk from the perspective of the equity holders because of the presence of debt in the capital structure.
 - The higher the use of debt financing (i.e., the higher leverage), the higher is the financial risk

What we are after...

- We need a discount rate that captures the riskiness of the firm
- It should capture the:
 - Return required by debtholders
 - Return required by stockholders
- This is the Weighted Average Cost of Capital:

$$WACC = \frac{D}{V} \times (1 - t) \times r_D + \frac{E}{V} \times r_E$$

where
$$V = D + E$$

- r_D is the cost of debt
- r_E is the cost of common stock
- D is the market value of debt, E is the market value of equity
- V is the market value of the firm, t is the firm's marginal tax rate

Cost of Debt

Cost of Debt

- The cost of debt is the return that investors require when they invest in bonds
- In contrast to the cost of equity, the cost of debt is directly observable
- It's the Yield-to-Maturity (YTM) on outstanding debt
 - Recall that the YTM is the required rate of return that makes the discounted cash flows from a bond equal to the bond's price. YTM is a rate that is determined by 'market'!

Complications to estimating the cost of debt

- What if your company has several debt issues?
- Compute weighted average of YTMs of all debt issues!

	Market Value (\$ Mil)	YTM
Issue A	75	10.5%
Issue B	150	11.0%
Issue C	200	10.0%

What is the company's cost of debt r_D?

$$r_D = w_A YTM_A + w_B YTM_B + w_C YTM_C$$

 $r_D =$

Tax deductibility of interest payments

- Interest payments are treated as costs by accountants
 - Therefore, interest payments lower taxable income
 - Interest payments lower taxes!!
- Example: In 2003, JMI Inc., had sales of \$100 mil, costs of \$50 mil. The company paid depreciation expenses of \$20 mil.

Q: What taxes did the company pay assuming a tax rate of 35%?

A: Taxes = T_C * (Sales – Costs – Depr.) = 0.35 * (100 – 50 – 20) = \$10.5 mil

 Assume now that the company has D=\$100 mil of debt issued. Company pays r=10% interest on the debt issued.

Q: What taxes did the company paid now?

A: Taxes = T_C * (Sales – Costs – Depr. – r*D) = 0.35 * (100 – 50 – 20 – 10) = \$7 mil

Tax deductibility of interest payments

- Therefore, by issuing \$100 mil of debt with 10% interest rate, the company saved \$3.5 mil (=T_C*r*D) on taxes.
- Is the 10% interest rate the true rate the company pays on its debt?
 - No, the company pays interest payments of r*D = \$10 mil, but by doing it the company saves T_C*r*D = \$3.5 mil. As the result, the company pays only:
 - $r^*D T_C^*r^*D = $10 \text{ mil-} $3.5 \text{mil} = $6.5 \text{ mil of interest payments}$ which corresponds to paying the interest rate of r *(1-T_C) = 6.5%
- Implication: Because of tax deductibility of interest payments, the true cost of debt for the company is:

Cost of debt =
$$r_D$$
 * (1- T_C)

Example: Calculate Eastman Chemical's WACC

- Eastman Chemical has 78.26 million shares of common stock outstanding. The book value per share is \$22.40 but the stock sells for \$58. The market value of equity is \$4.54 billion. Eastman's stock beta is .90. T-bills yield 4.5%, and the market risk premium is assumed to be 9.2%. The tax rate is 35%.
- The firm has four debt issues outstanding:

Coupon	Book Value	Market Value	Yield-to-Maturity
6.375% 7.250% 7.635% 7.600% Total	\$ 499m 495m 200m <u>296m</u> \$1,490m	\$ 501m 463m 221m <u>289m</u> \$ 1,474m	6.32% 7.83% 6.76% 7.82%

Practice Problem #2

- ABC Manufacturing's current capital structure is comprised of 35% debt and 65% equity (based on market values). Their current equity beta is 1.40. The company's bonds have a 7% annual coupon, 20-years to maturity, and currently trade at \$1100. The risk-free rate is 4.5% on long-term government bonds. The market risk premium is 5.25%. Assume a marginal tax rate of 35%.
- What is ABC's weighted average cost of capital?

Can Apple reduce the WACC by optimizing the capital structure?

- r_D = Apple's long-term bond yields are currently around ___%
 - finra.org/marketdata
 - Use the longest available maturity
- The cost of equity is roughly:
 - Apple's beta = ___ (<u>Yahoo Finance</u>)
 - r_F = Treasury yield 30 year = ___% (<u>WSJ</u>)
 - Market risk premium = 5.5% (assumption)
 - $r_E = r_F + beta * 0.055 = ___% (CAPM)$
- E = \$____ billion, D = \$___ billion
- WACC =
- Can Apple reduce its WACC by issuing more debt?
 - How does the WACC change if D/V increases to 50%?