Remaining topics

1. Predict C = f([Not bad]), where $C \in \{Positive, Negative\}$ and f is a Bernoulli Naive-Bayes classifier. The train set is given as follows: (Show the computation) [3]

Ans.

Vocab = {good, not, bad, can, praise, enough}

word	P(word positive)	P(word negative)		
good	1+1 2+2	1+1 2+2		
not	1+1 2+2	1+1 2+2		
bad	<u>0+1</u> 2+2	1+1 2+2		
can	1+1 2+2	<u>0+1</u> 2+2		
praise	1+1 2+2	<u>0+1</u> 2+2		
enough	1+1 2+2	0+1 2+2		

$$P(Positive|\ Not\ Bad) = \frac{2}{4} * \frac{2}{4} * \frac{1}{4} * (1 - \frac{2}{4})(1 - \frac{2}{4})(1 - \frac{2}{4})(1 - \frac{2}{4})$$

$$= (\frac{2}{4})^2 * \frac{1}{4} * (1 - \frac{2}{4})^4$$

$$= (\frac{1}{2})^2 * \frac{1}{4} * (\frac{1}{2})^4 = \frac{1}{2^{2+2+4}}$$
 (1.25 mark)
$$= P(Positive|\ Not\ Bad) = \frac{1}{2^8} \qquad(i)$$

$$P(Negative|\ Not\ Bad) = \frac{2}{4} * \frac{2}{4} * \frac{2}{4} * (1 - \frac{2}{4})(1 - \frac{1}{4})^3$$

$$= \frac{1}{2^3} * \frac{1}{2} * (\frac{3}{4})^3$$

$$= \frac{1}{2^3} * \frac{1}{2} * \frac{3}{2^6} \qquad (1.25\ mark)$$

=>
$$P(Negative | Not Bad) = \frac{3^3}{2^{10}} = \frac{3^3}{2^2} * \frac{1}{2^8}$$
(ii)

From (i) and (ii),

As, P(Negative | Not Bad) > P(Positive | Not Bad)

$$C = f([Not Bad]) = Negative$$
 (0.5 mark)

(1.25 mark)

2. In multi-class classification, mention the scenarios when macro-average and weighted-average F1 scores are the preferred choices, respectively? [1]

Ans. In the multi-class classification, the macro-average is generally used when the data is balanced.

In the multi-class classification, the weighted-average is generally used when the data is imbalanced.

- 3. You have to choose one machine out of the following two to predict a hailstorm in a real scenario. Which machine are you going to choose and why? (You are required to provide proper reasoning for your answer)

 [1]
 - a. Machine 1: Having 70% precision but 85% recall for predicting whether there will be a hailstorm or not.
 - b. Machine 2: Having 85% precision but 70% recall for predicting whether there will be a hailstorm or not.

Ans. a) Machine 1

The high recall relates to a low false-negative rate whereas high precision relates to a low false-positive rate. For predicting the hailstorm, false-negative should be less, i.e., there should be less number of instances when the model predicts no hailstorm when there is actually a hailstorm. Therefore, high recall.

- 1. In CNN, if the input has a dimension of $m \times n$ and we expect the convolution output to be $h \times d$, what should be the dimension of convolution filter? [1]

 Ans. Dimension of filter = $(m-h+1) \times (n-d+1)$
- 2. Perform syntax transfer on the following sentences in English-Hindi MT. First give appropriate translations for both interpretations of the sentence in target language. [3*2]
 - a. I saw a girl with a telescope. (telescope is with me)
 - b. I saw a girl with a telescope. (telescope is with the girl.)

- 3. Given the following word-level alignment, compute the translation probability of the following. [1*2]
 - a. P(girl | लड़की)
 - b. P (एक | a)

Sentence 2	Sentence 3
। (मैंने)	। (मैंने)
saw (देखी)	saw (को)
a (लड़की)	saw (देखा)
girl (लड़की)	a (एक)
with (वाली)	girl (लड़की)
a (साइकिल)	with (के)
bicycle (साइकिल)	with (साथ)
. (1)	a (एक)
	cat (बिल्ली)
	. (1)
	। (मैंने) saw (देखी) a (लड़की) girl (लड़की) with (वाली) a (साइकिल) bicycle (साइकिल)

[Note: If you're not comfortable with Hindi, imagine the hindi words as some special symbols. E.g., imagine दूरबीन as X, लड़की as Y, etc.]

Ans.

- a. P(girl | लड़की) = #(girl, लड़की) / #(लड़की) = 3/4
- b. P (एक | a) = # (एक, a) / #(a) = 3/6 = 1/2
- 4. Create a phrase table (with max length of any phrase <= 4) using the above alignment. [6]

	मैंने	दूरबीन	से	एक	लड़की	को	देखा
I	>						
Saw						V	V
а				V			
girl					V		
with			V				
а		~					

telescope		V					
	- मैंने			saw		- को देखा	
aw	- को			saw a girl		- एक लड़की	को देखा
aw	- देखा			a girl		- एक लड़की	
n	- एक			a girl with		- से एक लड़	की
girl	- लड़की			a telescope	e	- दूरबीन	
vith	- से			with a teles	scope	- दूरबीन से	
n	- दूरबीन			a girl with a	a telescop	oe - दूरबीन	से एक लड़
elescope	- दूरबीन						

2. Given the following grammar G and a sentence S, show the complete parsing process (including parse tree construction) using Earley parser.

G: S \rightarrow NP VP NP → NN | DT NN | NP PP → VBD NP VΡ VΡ \rightarrow VP PP \rightarrow IN NP PΡ → building | bullets | gunman NN VBD → sprayed DT → the IN \rightarrow with


```
911 × 020 V
                                   L . - 7
                              15
             NP > × NN
                              16
                     F1 94 961 x
                               18
        [3:4] N ST -> the +
                               19 [18]
        [3:47 NP -> BT + NN
4
          building
         [3:7] NM -> building *
                               21 [18,20]
         [3:5] NP > DT NN 4
 5
                               22 [21]
         [3:5] NP -> NP + PP
                                23
          CS:5] PP > x IN NP
           with
                                 24
          * LS:6] IN > with *
                                 25 [24]
            [2: 4] bb -> IN * Nb
            [6:6] NP ->*NN
                                 26
   6
            [e:6] NA > = DT NN
                                 27
            [6:6] NP -> * NP PP
                                 28
         bulleti
```

[6:6] NP
$$\Rightarrow$$
 x BT NN 27

[6:6] NP \Rightarrow x NP PP 28

[6:7] NN \Rightarrow bulleti \times 29

[5:7] PP \Rightarrow 1N NP \Rightarrow 30

[24,30]

[3:4] NP \Rightarrow NP PP \Rightarrow 32

[21,31]

[2:7] VP \Rightarrow VBB NP \Rightarrow 33

[0:7] S \Rightarrow NP VP \Rightarrow 34

[9,23]

[0:7] S \Rightarrow NP VP \Rightarrow 35

[3:4]

- 3. For the following sentences, give the PoS tag sequences and devise a (combined) grammar G to parse both. Also, show the parse trees. [10 marks]
 - a. The old man the boat.
 - b. The complex houses married and single soldiers and their families.

[Note: PoS tag: (1+1), Grammar: (2+4), Parse tree: (1+1)]

VBG DT Cample Louses The AT ringle CC their PRP NP -> DT NN | NP CC NP NP -> ADJP NNS / PRP NNS VP -> VBG NP JJ CC JJ ADJP

4. Using the grammar generated in the previous question, parse the sentences in 3a and 3b following bottom-up (shift-reduce) parser. Report the number of conflicts observed during the parsing process for each sentence. [4+4+2 marks]

Suft [The * old man the boot]

Reduce [DT * old man the boot]

Suft [DT old * man the boot]

Reduce [DT NN * man the boot]

Reduce [NP * man the boot]

Reduce [NP man * the boot]

Reduce [NP vBG * the boot]

Suft [NP vBG the * boot]

Reduce [NP vBG DT boot *]

Red [NP vBG DT NN *]

Red [NP vBG NP *]

Accept, No conflict

S-R [NP VBG NP CC PRP families

- 5. Extract the minimal set of rules for a grammar G for the following two parse trees.
 - a. (S (NP (PRP My) (NN cat)) (ADVP (RB also)) (VP (VBZ likes) (S (VP (VBG eating) (NP (NNS mangoes))))) (. .))
 - b. (S (NP (PRP He)) (VP (VBZ is) (VP (VBG enjoying) (NP (PRP his) (NN coffee)))) (..))

ADVP → RB

NP → PRP NN | PRP | NNS

VP → VBZ VP | VBZ S | VBG NP

PRP → He | My | His

NN → Cat | Coffee

NNS → mangoes

RB → also

VBZ → likes | is

VBG → enjoying | eating

Note:

- 1 mark deduction if grammar is given separately for both trees
- 0.25 deduction if missed 1-2 productions.
- 1 mark deduction if missed either terminals/lexicon or non-terminals/production
 - 6. Convert the following grammar into Chomsky Normal Form (CNF). [2 marks]

G:
$$S \rightarrow Da \mid b$$

 $D \rightarrow bc \mid d$

$$\begin{array}{c}
 & \otimes & \otimes & \otimes & \otimes & \otimes & \otimes \\
 & \otimes & \otimes & \otimes & \otimes & \otimes & \otimes \\
 & \otimes & \otimes & \otimes & \otimes & \otimes & \otimes \\
 & \otimes & \otimes & \otimes & \otimes & \otimes & \otimes \\
 & \otimes & \otimes & \otimes & \otimes & \otimes & \otimes \\
 & \otimes & \otimes & \otimes & \otimes & \otimes & \otimes \\
 & \otimes & \otimes & \otimes & \otimes & \otimes & \otimes \\
 & \otimes & \otimes & \otimes & \otimes & \otimes & \otimes \\
 & \otimes & \otimes & \otimes & \otimes & \otimes & \otimes \\
 & \otimes & \otimes & \otimes & \otimes & \otimes & \otimes \\
 & \otimes & \otimes & \otimes & \otimes & \otimes & \otimes \\
 & \otimes & \otimes & \otimes & \otimes & \otimes & \otimes \\
 & \otimes & \otimes & \otimes & \otimes & \otimes & \otimes \\
 & \otimes & \otimes & \otimes & \otimes & \otimes & \otimes \\
 & \otimes & \otimes & \otimes & \otimes & \otimes & \otimes \\
 & \otimes & \otimes & \otimes & \otimes & \otimes & \otimes \\
 & \otimes & \otimes & \otimes & \otimes & \otimes & \otimes \\
 & \otimes & \otimes & \otimes & \otimes & \otimes & \otimes \\
 & \otimes & \otimes & \otimes & \otimes & \otimes & \otimes \\
 & \otimes & \otimes & \otimes & \otimes & \otimes & \otimes \\
 & \otimes & \otimes & \otimes & \otimes & \otimes & \otimes \\
 & \otimes & \otimes & \otimes & \otimes & \otimes & \otimes \\
 & \otimes & \otimes & \otimes & \otimes & \otimes & \otimes \\
 & \otimes & \otimes & \otimes & \otimes & \otimes & \otimes \\
 & \otimes & \otimes & \otimes & \otimes & \otimes & \otimes \\
 & \otimes & \otimes & \otimes & \otimes & \otimes & \otimes \\
 & \otimes & \otimes & \otimes & \otimes & \otimes & \otimes \\
 & \otimes & \otimes & \otimes & \otimes & \otimes & \otimes \\
 & \otimes & \otimes & \otimes & \otimes & \otimes & \otimes \\
 & \otimes & \otimes & \otimes & \otimes & \otimes & \otimes \\
 & \otimes & \otimes & \otimes & \otimes & \otimes & \otimes \\
 & \otimes & \otimes & \otimes & \otimes & \otimes & \otimes \\
 & \otimes & \otimes & \otimes & \otimes & \otimes & \otimes \\
 & \otimes & \otimes & \otimes & \otimes & \otimes & \otimes \\
 & \otimes & \otimes & \otimes & \otimes & \otimes & \otimes \\
 & \otimes & \otimes & \otimes & \otimes & \otimes & \otimes \\
 & \otimes & \otimes & \otimes & \otimes & \otimes & \otimes \\
 & \otimes & \otimes & \otimes & \otimes & \otimes & \otimes \\
 & \otimes & \otimes & \otimes & \otimes & \otimes & \otimes \\
 & \otimes & \otimes & \otimes & \otimes & \otimes & \otimes \\
 & \otimes & \otimes & \otimes & \otimes & \otimes & \otimes \\
 & \otimes & \otimes & \otimes & \otimes & \otimes & \otimes \\
 & \otimes & \otimes & \otimes & \otimes & \otimes & \otimes \\
 & \otimes & \otimes & \otimes & \otimes & \otimes & \otimes \\
 & \otimes & \otimes & \otimes & \otimes & \otimes & \otimes \\
 & \otimes & \otimes & \otimes & \otimes & \otimes & \otimes \\
 & \otimes & \otimes & \otimes & \otimes & \otimes & \otimes \\
 & \otimes & \otimes & \otimes & \otimes & \otimes & \otimes \\
 & \otimes & \otimes & \otimes & \otimes & \otimes & \otimes \\
 & \otimes & \otimes & \otimes & \otimes & \otimes & \otimes \\
 & \otimes & \otimes & \otimes & \otimes & \otimes & \otimes \\
 & \otimes & \otimes & \otimes & \otimes & \otimes & \otimes \\
 & \otimes & \otimes & \otimes & \otimes & \otimes & \otimes \\
 & \otimes & \otimes & \otimes & \otimes & \otimes & \otimes \\
 & \otimes & \otimes & \otimes & \otimes & \otimes & \otimes \\
 & \otimes & \otimes & \otimes & \otimes & \otimes & \otimes \\
 & \otimes & \otimes & \otimes & \otimes & \otimes & \otimes \\
 & \otimes & \otimes & \otimes & \otimes & \otimes & \otimes \\
 & \otimes & \otimes & \otimes & \otimes & \otimes & \otimes \\
 & \otimes & \otimes & \otimes & \otimes & \otimes & \otimes \\
 & \otimes & \otimes & \otimes & \otimes & \otimes & \otimes \\
 & \otimes & \otimes & \otimes & \otimes & \otimes & \otimes \\
 & \otimes & \otimes & \otimes & \otimes & \otimes & \otimes \\
 & \otimes & \otimes & \otimes & \otimes & \otimes & \otimes \\
 & \otimes & \otimes & \otimes & \otimes & \otimes & \otimes \\
 & \otimes & \otimes & \otimes & \otimes & \otimes & \otimes \\
 & \otimes & \otimes & \otimes & \otimes & \otimes & \otimes \\
 & \otimes & \otimes & \otimes & \otimes & \otimes & \otimes \\
 & \otimes & \otimes & \otimes & \otimes & \otimes & \otimes \\
 & \otimes & \otimes & \otimes & \otimes & \otimes & \otimes \\
 & \otimes & \otimes & \otimes & \otimes & \otimes & \otimes \\
 & \otimes & \otimes & \otimes & \otimes & \otimes & \otimes \\
 & \otimes & \otimes & \otimes & \otimes & \otimes \\
 & \otimes & \otimes & \otimes & \otimes & \otimes \\
 & \otimes & \otimes & \otimes & \otimes & \otimes \\
 & \otimes & \otimes & \otimes & \otimes & \otimes \\
 &$$