לוגיקה הרצאה 1

טיעון

טיעון תקף - כל פעם שההנחות נכונות גם המסקנות נכונות.

- כל היוונים הם בני אדם
- כל בני האדם הם בני תמותה
 - כל היוונים הם בני תמותה

בני האדם הם הכללה של יוונים לבני אדם יש תכונה של "בני תמותה". ליוונים יש תכונה של בני תמותה.

 ${\cal C}$ הוא ${\cal A}$ ולכן כל ${\cal C}$ הוא ${\cal B}$ הוא ${\cal A}$

למשל הנחות:

- (הכלה) כל המרובעים הם מצולעים.
- (תכונה) כל המצולעים הם בעלי היקף.

<u>מסקנה:</u>

• כל המרובעים הם בעלי היקף.

דוגמה נוספת:

- (תכונה) כל העורבים שחורים.
 - (הכללה) כל שחור הוא צבע.
- (מסקנה שגויה) כל העורבים הם צבע.

<u>מסקנה:</u>

• שפה טבעים לא פסיק ברורה ולכן צריך שפה פורמלית כדי שנוכל להוכיח דברים.

:טענות

אמירות/נוסחאות שהן אמת או שקר בעולם.

תחשיב(סינטקס):

איזה נוסחאות חוקיות בשפה.

סמנטיקה:

מתי נוסחה היא אמת או שקר.

מערכת הוכחה פורמלית:

נרצה לקשר בין הסמנטיקה למערכת ולומר שהנוסחאות היכיחות (ניתנות להוכחה) הן נכונות. <u>כל</u> נוסחה נכונה ניתנת להוכחה.

הגדרה אינדוקטיבית של קבוצה:

- . נתונה קבוצה W העולם \bullet
- .(הבסיס) $B\subseteq W$ נתונה קבוצה •
- F נתונה קבוצה של כללי יצירה של \bullet

nב־ל שלהם) אנריות לכל האיברים בתחום שלהם) אנריות ל-Fכל מוגדרות שלהם) אנריות ל-Fכלשהו.

$$f: W^n \to W$$

 $X_{B,F}\subseteq W$ נגדיר את הקבוצה

באים: הבאים עד התחת את הדברים הבאים: (F תחת את הדברים הבאים:

$$B \subseteq X_{B,F}$$
 .1

$$f:W^n o W,\, f \in F$$
 .2 .2 .5. לכל $f:X_1,x_2,\dots,x_n \in X_{B,F}$ אז גם $x_1,x_2,\dots,x_n \in X_{B,F}$ אם

3. אין ב $X_{B,F}$ איברים מיותרים כלומר $X_{B,F}$ מכילה רק איברים שנדרשים לקיום א' וב'. במילים אחרות: $X_{B,F}$ היא הקבוצה המינימלית שנוצרת ע"י $X_{B,F}$ ו־ $X_{B,F}$

דוגמה:

- a,b כל המילים הסופיות מעל א"ב W
 - $.B = \{ab\}$:בסיס
 - פעולות:
- :מוסיפה aba לצד ימין של המילה.

$$f_1(w) = waba$$

bב במילה ביותר מחליפה את aa את מחליפה 2.

$$f_2(w_1aaw_2) = w_1bw_2 : aa \notin w_1$$

: השמטת bbb השמאלי ביותר (אם קיים):

$$f_3(w_1bbbw_2) = w_1w_2 : bbb \notin w_1$$

דוגמה למילים בשפה: aa,ababa

. ע"ס איס של כאיחוד על ע"ס איס ע"ס א $X_{B,F}$ לבנות נראה נראה נראה נראה ע"ס איס ע"ס

נגדיר:

בהינתן קבוצה איזושהי הינה קבוצת איברים בי W^{-1} הינה קבוצת הינה הינה בי y^{-1} איזשהו איבר בי y^{-1} על איזשהו איבר בידע נגדיר סדרה של קבוצות:

$$X_1 \subseteq X_2 \subseteq \cdots \subseteq X_n$$

באופן הבא:

$$X_{1} = B$$

$$X_{i+1} = X_{i} \cup F(X_{i})$$

$$\overline{X} = \bigcup_{i} X_{i}$$

$$\overline{X} = X_{B,F}$$

:כלומר

$$X_1 = \{ab\}$$

$$X_2 = \{ab, ababa\}$$

$$X_3 = X_2 \cup \{ababa, ababaaba\}$$

$$X_4 = X_3 \cup \{ababba, ababaabaaba\}$$
etc. . .

דוגמה לקבוצה אינדוקטיבית:

- $W = \mathbb{N} \bullet$
- $B = \{0\} \bullet$
- (לא ממש פורמלי) $F=\{+2\}$
- (טבעיים אגיים) $X_{B,F}=\mathbb{N}_2$

:טענה

- $\overline{X} = X_{B,F}$ מקיימת את כל הדרישות ולכן \overline{X}
 - $B\subseteq \overline{X}$ נ איימת את 1 נראה ש־1. ג"ל מקיימת את 1. ג"ל מקיימת זה נכון כי: $X_1\subseteq \overline{X}$ ו־1.
 - 2. צ"ל מקיימת את 2:

$$f(x_1,x_2,\ldots,x_n)\in\overline{X}$$
 עבור $x_1,x_2,\ldots,x_n\in\overline{X}$ מתקיים $x_1,x_2,\ldots,x_n\in X_l$ נראה שקיים X_l כלשהו כך שמתקיים $f(x_1,x_2,\ldots,x_n)\in X_{l+1}$ ולכן נוכל להסיק ש־ $f(x_1,x_2,\ldots,x_n)\in\overline{X}$ ולכן ולכן $f(x_1,x_2,\ldots,x_n)\in\overline{X}$

דוגמה:

$$f(a_1, a_2, a_3)$$

$$a_1 \in X_5 , a_2 \in X_{17} , a_3 \in X_1$$

$$\Rightarrow$$

$$f(a_1, a_2, a_3) \in X_{18}$$

X'צריך להוכיח ש־ \overline{X} מקיימת את ג

נוכיח טענה יותר כללית:

- :בסיס
- $X_1=B\subseteq Y$ צ"ל

.1 נכון כיY מקיימת את תנאי

- :צעד
- $X_{i+1} = X_i \cup F(X_i) \subseteq Y$ נניח כי $X_i \subseteq Y$ ונוכיח ש־
- $x_1,x_2,\dots,x_n\in Y$ צ"ל לגבי האיברים אז על $x_1,x_2,\dots,x_n\in X_i$ צ"ל לגבי האיברים ביל לגבי אז על סמך אז על סמך אז מקיימת את ב' אז או ב'ל

מסקנה מהטענה:

היא המינימלית שמספקת את א' וב' ולכן מספקת גם את ג'. \overline{X}

$$\overline{X} = X_{B,F}$$

משפט ההוכחה באינדוקציה

 $X_{B,F}\subseteq Y$ אז יודעים ש
י א א עבור עבור את תנאים את קבוצה שמספקת אם אם אם א

משפט זה מאפשר שיטת הוכחה שנראת "הוכחה באינדוקציית מבנה". יל מנת להוכיח ש־ $X_{B,F}\subseteq Y$ נראה:

- $.B\subseteq Y$.1
- .F סגורה תחת Y .2

. כדי להוכיח ש־ $b \in X_{B,F}$ צריך להראות שקיימת עבורו $b \in X_{B,F}$

:סדרת יצירה

עבור איבר a_1, a_2, \ldots, a_n הינו סדרת הינו מתוך $X_{B,F}$ כך ש

- $.a_n = b .1$
- 1 < i < n לכל.
- $a_i \in B$ או ש־ (א)
- a_i או שי a_i התקבלה מקודמים בסדרה ע"י הפעלת פעולה מ־(ב)

דוגמה עבור
$$B=\{0\}, \qquad F=\{+2\}$$
 נראה ש $X_{B,F}$ יש נראה ש

 $\{0,2,4,6,8\}$: סדרת היצירה שלו

$x otin X_{B,F}$ כדי להראות ש־

(T את מקיים אינו x לכלומר ש־ל $X \notin T$ ונראה ונראה אינו אינו אינו Tונראה ונראה נמצא נמצא .(מונה כלשהי). היא קבוצת האיברים בעלי תכונה כלשהי).

דוגמה:

(שפה שהוגדרה קודם). $aba \notin ABA$ נראה של־

. צ"ל מספר ה־a הוא אי־זוגי.

. אם את התכונה מקיימת אינה בשפה לא aba לא לא אם אם אם אם אונה מקיימת את התכונה.

שיטת ההוכחה:

- .T נבחר תכונה ullet
- נראה שמתקיים:

$$.B\subseteq T$$
 .1

$$f(x_1,x_2,\ldots,x_n)\in T$$
 מתקיים $x_1,x_2,\ldots,x_n\in T$.2

דוגמה:

.(יש a יחיד) $ab \in T$

a של אי־זוגי עם מספר מילה מחזירה מחזירה עם מספר מילה על פעולה על פעולה פעולה על מספר אי־זוגי של