Introductory Seminar Advanced Numerical Analysis

Exercise sheet 2, due date: 14.03.2022

Exercise 1 (Convergence of the Jacobi method).

Let $\rho(A)$ denote spectral radius of $A \in \mathbb{R}^{n \times n}$. We say that a matrix norm $\|\cdot\|_1$ is consistent with the vector norm $\|\cdot\|_2$ if

$$||Ax||_2 \le ||A||_1 ||x||_2$$

for every $x \in \mathbb{R}^n$ and every $A \in \mathbb{R}^{n \times n}$.

- (1) Show that every matrix norm which is induced by a vector norm is consistent.
- (2) Consider the splitting A = D (E + F) where D is the diagonal matrix of the diagonal entries of A, E is the lower triangual matrix of entries $e_{ij} = -a_{ij}$ if i > j, $e_{ij} = 0$ if $i \le j$ and F is the upper triangular matrix of entries $f_{ij} = -a_{ij}$ if j > i, $f_{ij} = 0$ if $j \le i$. Let $B_J = D^{-1}(E + F)$ be the iteration matrix of the Jacobi method. Show that if A is strictly diagonally dominant then

$$\rho(B_J) \le ||B_J||_{\infty} < 1.$$

(3) Conclude that the Jacobi method converges for every initial guess x^0 to the solution of the equation Ax = b provided that A is strictly diagonally dominant. (Hint: show that the error $e^k = x - x^k$ converges to zero)

Exercise 2 (Jacobi and Gauss-Seidel method).

Consider a 2×2 -matrix $A \in \mathbb{R}^{2 \times 2}$,

$$A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}.$$

Let A = D - (E + F) be the splitting of A as considered in Exercise 1(2). Let $B_J = D^{-1}(E + F)$ and $B_G = (D - E)^{-1}F$ be the iteration matrix of the Jacobi method and the Gauss-Seidel method, respectively.

- (1) Show that the spectral radius of B_J and B_G satisfies $\rho(B_J) = \sqrt{|\rho(B_G)|}$.
- (2) Deduce that the Jacobi-method for A converges if and only if the Gauss-Seidel method for A converges.
- (3) Let $r \in \mathbb{R}$ and

$$A_r = \begin{pmatrix} 1 & r & r \\ r & 1 & r \\ r & r & 1 \end{pmatrix}.$$

Show that the Gauss-Seidel method for A_r converges provided that $r \in (-\frac{1}{2}, 1)$. Show that the Jacobi-matrix for A_r does not converge if $r \in (\frac{1}{2}, 1)$.

Exercise 3 (Poisson matrix).

Let $Q \in \mathbb{R}^{n \times n}$ be the banded matrix

$$Q = \begin{pmatrix} 2 & -1 & & & \\ -1 & 2 & -1 & & & \\ & \ddots & \ddots & \ddots & \\ & & -1 & 2 & -1 \\ & & & -1 & 2 \end{pmatrix}.$$

- (1) Show that all eigenvalues of Q lie in the interval [0,4].
- (2) Write a Python script which takes $n, m \in \mathbb{N}$ as an input and returns the matrix Q.
- (3) Let $b = (1, 1, ..., 1)^T \in \mathbb{R}^n$ and n = 20. Implement the Gauss-Seidel method and apply 200 iteration for approximating the solution of Ax = b.

Exercise 4 (Eigenvalues).

Let $P_n \in \mathbb{R}^{n \times n}$ be the matrix

$$P_n = \begin{pmatrix} 2 & -1 & & & -1 \\ -1 & 2 & -1 & & & \\ & \ddots & \ddots & \ddots & \\ & & -1 & 2 & -1 \\ -1 & & & -1 & 2 \end{pmatrix}.$$

- (1) Show that all eigenvalues of P_n lie in the interval [0,4].
- (2) Let $z := e^{\frac{2\pi i}{n}} \in \mathbb{C}$ ($i \in \mathbb{C}$ the imaginary unit) and define for $j, k \in \{1, \ldots, n\}$ the values

$$v_k^j \coloneqq z^{jk} = e^{\frac{2\pi i jk}{n}}.$$

Let $v^j = (v_1^j, \dots, v_n^j) \in \mathbb{C}^n$. Determine $\lambda(j)$ such that for every k-th component $(Av^j)_k$ of the matrix-vector product Av^j one has

$$(Av^j)_k = \lambda(j)v_k^j.$$

- (3) Conclude that $\lambda(j)$ is an eigenvalue of A with eigenvector $\text{Re}(v^j)$.
- (4) Define the quantity $m(n) = \min\{|\lambda| : \lambda \text{ eigenvalue of } P_n\}$. Show that

$$\lim_{n \to \infty} m(n) = 0.$$

Exercise 5 (Neumann polynomial preconditioner).

Let $n \in \mathbb{N}$ and let the matrix $Q \in \mathbb{R}^{n \times n}$ be defined as in Exercise 3. Consider the splitting

$$Q = D - N$$

of Q where D is the matrix consisting of the diagonal entries of Q. Further, let $p \in \mathbb{N}_0$ and C_p be the matrix

$$C_p = D^{-1} \sum_{k=0}^{p} (ND^{-1})^k.$$

- (1) Write a Python script which takes n, p as an input and returns the matrix C_p .
- (2) Write a Python script which provides a table of two columns where in the first column we have the values p = 1, ..., 10 and in the second column the corresponding spectral condition number of the matrix C_pQ . What do you observe?