Team04_lab3_report

```
1. File structure
team04\_lab3
|-team04_lab3_report.pdf
-src
 |-DE2_115
  |-DE2_115.sv
  |-ModeDecoder.sv
  |-SevenHexDecoder.sv
  |-SpeedDecoder.sv
  |-StateDecoder.sv
  |-Debounce.sv
|-Top.sv
|-I2C.sv
|-AudioRecorder.sv
|-AudioPlayer.sv
|-AudioDSP.v
```

2. Block Diagram

Top

3. FSM and Hardware Scheduling

Top:

Top為錄音機的主要操控模組。包括透過I2C模組來initialize WM8731, 並透過控制訊號去執行錄音和撥放的操作。錄音過程, 需要透過Top模組, 去控制AudioRecorder, 並將AUD_ADCDAT存到指定SRAM的address(SRAMADDR)。此外, 播放過程也會需要透過Top模組的控制訊號, 去控制DSP去access SRAM的data, 經過訊號處理後, 把16bit資料傳給AudioPlayer, 最後將AUD DACDAT傳給WM8731。

如下圖所示, Top總共有6個state。當**state_r == S_I2C**, init_start會拉成high, 這時 I2C模組會開始初始化WM8731, 直到初始化完成, init_finished會變成1;同時, **state_r**變成 **S_IDLE**, 等待i_key_0或i_key_1拉高, 才會開始錄音或撥放。當**state_r == S_IDLE**且使用者按下key[0](i_key_0拉高), 這時state_r會進入到S_RECD, 並拉高record_start, 開

始錄音。倘若在S_RECD時再按下key[0](i_key_0拉高),則會進入S_RECD_PAUSE,並停止錄音。要再次按下key[0](i_key_0拉高),才會重新開始錄音。反之,當state_r == S_IDLE且使用者按下key[1](i_key_1拉高),這時state_r會進入到S_PLAY,並拉高play_start,並開始播放錄音結果。倘若在S_PLAY時再按下key[1](i_key_1拉高),則會進入S_PLAY_PAUSE,並停止播放。要再次按下key[1](i_key_1拉高),才會重新開始錄音。此外,當state_r == S_RECD、state_r == S_RECD_PAUSE、state_r == S_PLAY 或state_r == S_PLAY_PAUSE,使用者按下key[2](i_key_2拉高),則會進入S_IDLE,等待使用者輸入錄音或撥放指令。

Top 控制訊號:

init start = (state r == S I2C)

record start = i key 0 && ((state $r == S IDLE) \parallel state r == S RECD PAUSE)$

record pause = i key 0 && (state r == S RECD);

record_stop = $i_{e_r} = i_{e_r} = S_RECD_{e_r} =$

 $play_en = (state_r == S_PLAY);$

play start = i key 1 && (state r == S IDLE || state r == S PLAY PAUSE);

play pause = i key 1 && (state r == S PLAY);

play stop = i key 2 && (state $r == S PLAY \parallel state r == S PLAY PAUSE)$;

此外,Top模組有許多控制訊號,分別控制I2C、DSP、AudioRecorder、AudioPlayer等模組。

如透過PLL產生的100kHZ的CLK, TOP會用init_start去控制I2C模組, 並等待init_finished拉高後, 變換state。

此外, 當record_start == 1, 開始錄音; record_pause == 1, 停止錄音; record_stop == 1, 暫停錄音, 同時 state進入**S IDLE**。

再者, 當play_start == 1, DSP開始訊號處理, 並從SRAM拿資料, 並做完音訊處理後, 交給AudioPlayer播放; play_pause == 1, 停止信號處理; play_stop == 1, 暫停訊號處理, 同時 state進入**S_IDLE**。

再者, 當play en == 1, 開始播放聲音, 將AUD DAC DAT傳給WM8731。

I2C:

在12C裡面,會進行Initialize WM8731的動作,總共有5個state: IDLE, START, SEND_DATA, FINISH, S_STOP,而在SEND_DATA裡又有3個substate: UPDATE, READ, DOWN。當按下st鍵時,會進入IDLE,當i_start拉高時,state會跳到START,準備開始initialize。在START的時候,會對sclk和sdat做符合I2C protocol的改變,並在下一個cycle時state自動跳到SEND_DATA。在SEND_DATA時,因為每個要初始化的setting都有24bit,我們切三段來傳送,用一個datatype從0~3來記錄,當datatype < 3時,才會去看substate的狀態,substate在UPDATE時將sclk拉高,並自動跳到READ。在READ時,將sclk拉低,並自動跳到DOWN。在DOWN時,再更新傳出去的sdat,如此即完成1bit的傳送,並會用bitCounter從0跑到8,來看這8bit傳完與否,等到bitCounter == 8,datatype就會加一。等datatype == 3時,state就會跳到FINISH。在FINISH的時候,會進行sdat拉高,sdat拉滴,sclk拉低的一連串動作,以符合12C protocol去stop或是準備下一組setting資料,當sdat == 0 && sclk == 1 && bitCounter == 0時,state就會跳到S_STOP。在S_STOP時,若data != 0,也就是10組setting資料還沒全部initialize,則跳回SEND_DATA,繼續傳送資料,否則就繼續待在S_STOP,並將o_finish拉高,傳給TOP module表示已initialize結束。

控制訊號

i_start:

⇒ 控制開始進行Initialize, state將從IDLE跳到LEFT WAIT。

datatype:

⇒ 控制一組24bit setting中, 第幾份8bit資料正在傳送。

bitCounter:

⇒控制一份8bit資料中, 第幾個bit正在傳送。

AudioRecorder:

在AudioRecorder裡面有4個state: IDLE, PAUSE, LEFT, 和LEFT_WAIT。當按下st鍵時,就會進到IDLE,接著會等待i_start拉高後,就會進到LEFT_WAIT,因為我們只存單聲道的音訊,將會等待i_lrc拉高。當state在LEFT_WAIT時,如果i_stop拉高,則會停止錄音回到IDLE;如果i_pause拉高,state則會跳到PAUSE;否則若i_lrc拉剛以後,state就會跳到LEFT,以開始接收音訊。當state在LEFT時候,AudioPlayer會接收來自WM8731的音訊i_data,並藉由傳送o_address給SRAM,把音訊存到SRAM裡面。如果i stop或是i pause拉高時,也是會分別進入IDLE以及PAUSE。因為我們要符合I2S

protocol的傳輸協定,我們用一個counter從0跑到16,一次存一個bit,將要傳出去給 SRAM的o_data存成一個16b個要存進SRAM的資料,當counter == 16時,等到i_lrc拉低 後,因為進入存另一聲道的期間,state就會回到LEFT_WAIT,並同時更新o_address。當在PAUSE時,則是錄音暫停的階段,若i_stop拉高,則會跳回IDLE,否則,若i_start拉高,則跳到LEFT WAIT,錄音繼續。

控制訊號

i lrc:

⇒從WM8731進來的Audio CODEC DAC LR Clock, 用來控制正在儲存音訊給左聲道或是右聲道。

counter r, counter w:

⇒用來控制存入o data第幾個bit,從0跑到16,每次存入來自WM8731的1bit資料i data

AudioDSP:

DSP主要有3個state, 當reset完之後, **state_r = S_IDLE**。 DSP會等待i_start == 1時, 進入**S_PLAY**。如果遇到i_stop == 1或是sram_addr_r >= i_stop_addr(i.e DSP準備要 access的address超過錄音錄到的address), state會進入**S_IDLE**。倘若i_pause == 1, state則

會從S_PLAY 進入 S_PAUSE。在S_PAUSE的狀態, 倘若i_start 又被拉高, 則state 進入 S_PLAY;倘若i_stop == 1, 則進入S_IDLE。

控制訊號

prev_daclrck_w = i_daclrck , prev_daclrck_r

⇒用來記錄前一個cycle是屬於甚麼聲道傳輸。

prev data w, prev data r

⇒用來記錄前一次傳輸的資料,可以用在一次內插法。

speed = i speed + 1

⇒用來記錄實際加速倍數。

counter r, counter w

⇒用在慢速撥放,計算要在同一個sram address停留幾個cycle。

DSP主要做的事情是根據傳進來的i_sram_data, 以及各種速度模式的訊號 (normal, i_fast, i_slow_0, i_slow_1, i_speed [2:0])去做音訊處理, 並傳出處理完的數位訊號o_dac_data以及下一筆data的sram's address (o_sram_addr)。值得注意的是, 我們要確保當切換至左聲道時(prev_daclrck && ~i_daclrck), 再更新sram_addr_w。

以下是o_dac_data和o_sram_addr更新的rule。

Mode	o_dac_data	o_sram_addr
Normal	o_dac_data_w = i_sram_data	sram_addr_r + 1
Fast	o_dac_data_w = i_sram_data	sram_addr_r + speed
Slow0(constant	o_dac_data_w = i_sram_data	(counter_r > i_speed) ?

interpolation)		sram_addr_r + 1: sram_add_r
Slow1(linear interpolation)	o_dac_data_w = (prev_data_r*(speed - counter_r) + i_sram_data*(counter_r)) / speed	(counter_r > i_speed) ? sram_addr_r + 1: sram_add_r

AudioPlayer:

AudioPlayer 共有3個state: IDLE, LEFT, 和 LEFT_WAIT。當按下rst鍵時state會進入IDLE,接著等待從DSP進入的控制訊號i_en拉高,以及i_daclrck拉低以後,state就會進入LEFT。由於我們是在只傳送左聲道音訊給WM8731,故會在i_daclrck為0時傳送資料。在LEFT的時候就會開始傳送資料,為了傳送16bit資料,需要符合I2S的protocol,故利用counter從0跑到15,一次傳1bit,等到counter == 15時即傳送完該筆16bit資料,於是state就跳到LEFT_WAIT。由於我們不會傳送右聲道的音訊,所以在i_daclrck拉高時,state會跳到IDLE,等到下一筆從DSP的資料進來後,再等待傳送左聲道資料。

控制訊號

i en:

⇒從DSP傳進來,決定當state在IDLE時,資料是否已收到,可以準備送左聲道音訊。

i daclrck:

⇒ 從WM8731進來的Audio CODEC DAC LR Clock, 用來控制正在傳送音訊給左聲道或是右聲道。

counter_r, counter_w:

⇒ 每當一筆16bit data進來時, counter從0跑到15, 傳送data的第(15-**counter_r**)個bit, 重複16次。

4. Bonus

A. 我們可以不用暫停就可以切換播放速度(fast, slow 0, slow 1)。

由於我們速度控制都是在DSP裡的S_PLAY的 state做判斷,因此我們只要在播放狀態時切換速度,就可以隨時切換播放速度,不用按暫停調整或是reset後調整。

B. 我們有利用七段顯示器去顯示錄音和播放的秒數

在Top裡面我們用一個counter,從0跑到12M,以及一個傳出去給七段顯示器的秒數訊號o_time。若是在Top的state為**S_RECD**或是**S_PLAY**時,counter 每過一個cycle就會加一,直到counter等於12M後,o_time就會加一,最多跑到32為止,表示只能錄到或播到32秒。

C.我們利用七段顯示器去顯示現在Top在哪個state以及顯示播放速度、播放模式透過把top的state接出去給DE2_115的模組,我們可以把現在的工作狀態(S_INIT(0), S_IDLE(1), S_RECD(2), S_RECD_PAUSE(3), S_PLAY(4), S_PLAY_PAUSE(5))印在七段顯示器。

我們透過把SW[2:0](switch),接到七段顯示器,以顯示正在播放的速度 (0~7) i speed。此外,把SW[5:3],接到七段顯示器,去顯示speed mode。

D.我們利用LEDR來顯示錄音以及撥放進度條, LEDG顯示閒置及暫停狀態

5. Fitter Summary

6. Time analyer

Timing Closure Recommendations

Summary [hide details]

This design contains failing setup paths with a worst-case slack of -47.640 ns. Run Report Timing Closure Recommendations for recommendations on how to do particular path, click the appropriate link in the table below.

Top Failing Paths [hide details]

	Slack	From	То	Recommendations
1	-47.640	Top:top0 AudDSP:dsp0 counter_r[0]	Top:top0 AudPlayer:player0 o_data_r	Report recommendations for this path
2	-47.638	Top:top0 AudDSP:dsp0 counter_r[0]	Top:top0 AudPlayer:player0 o_data_r	Report recommendations for this path
3	-47.631	Top:top0 AudDSP:dsp0 counter_r[0]	Top:top0 AudPlayer:player0 o_data_r	Report recommendations for this path
4	-47.629	Top:top0 AudDSP:dsp0 counter_r[0]	Top:top0 AudPlayer:player0 o_data_r	Report recommendations for this path
5	-47.626	Top:top0 AudDSP:dsp0 counter_r[0]	Top:top0 AudPlayer:player0 o_data_r	Report recommendations for this path

n Rep	ort - DE2_115	×	
Slow	1200mV OC Model Minimu	ım Pulse W	idth Summary
	Clock	Slack	End Point TNS
1	AUD_BCLK	-3.210	-250.945
2	CLOCK_50	9.799	0.000
3	pll0 altpll_0 sd1 pll7 clk[0]	41.375	0.000
4	pll0 altpll_0 sd1 pll7 clk[1]	4999.689	0.000

able of Contents # #	Slow	1200mV	OC Model Setup: 'AUD_BCLK'			
■ Minimum Pulse Width:		Slack	From Node	To Node	Launch Clock	Latch Cloc
Minimum Pulse Width:	1	-43.082	Top:top0 AudDSP:dsp0 counter r[0]	Top:top0 AudPlayer:player0 o data r	AUD BCLK	AUD BCLK
Minimum Pulse Width:	2	-43.009	Top:top0 AudDSP:dsp0 counter_r[2]	Top:top0 AudPlayer:player0 o_data_r	AUD_BCLK	AUD_BCLK
> 🗀 Datasheet Report	3	-42.913	Top:top0 AudDSP:dsp0 counter_r[1]	Top:top0 AudPlayer:player0 o_data_r	AUD_BCLK	AUD_BCLK
Metastability Summary	4	-42.679	Top:top0 AudDSP:dsp0 counter_r[3]	Top:top0 AudPlayer:player0 o_data_r	AUD_BCLK	AUD_BCLK
✓ Image: Slow 1200mV 0C Model	5	-41.851	Top:top0 state_r.S_RECD	Top:top0 AudPlayer:player0 o_data_r	AUD_BCLK	AUD BCLK
	6	-40.440	Top:top0 AudDSP:dsp0 prev_data_r[0]	Top:top0 AudPlayer:player0 o data r	AUD BCLK	AUD BCLK
■ Setup Summary	7	-40.440	Top:top0 AudDSP:dsp0 prev_data_r[1]	Top:top0 AudPlayer:player0 o_data_r	AUD BCLK	AUD BCLK
■ Hold Summary	8	-40.440	Top:top0 AudDSP:dsp0 prev_data_r[2]	Top:top0 AudPlayer:player0 o data r	AUD BCLK	AUD BCLK
Recovery Summary	9	-40.440	Top:top0 AudDSP:dsp0 prev data r[3]	Top:top0 AudPlayer:player0 o data r	AUD BCLK	AUD BCLK
Removal Summary	10	-40.440	Top:top0 AudDSP:dsp0 prev_data_r[4]	Top:top0 AudPlayer:player0 o_data_r	AUD BCLK	AUD BCLK
■ Minimum Pulse Width Su	11	-40,440	Top:top0 AudDSP:dsp0 prev_data_r[5]	Top:top0 AudPlayer:player0 o data r	AUD BCLK	AUD BCLK
✓ Worst-Case Timing Paths	12	-40.440	Top:top0 AudDSP:dsp0 prev_data_r[6]	Top:top0 AudPlayer:player0 o_data_r	AUD BCLK	AUD BCLK
■ Setup: 'AUD_BCLK'	13	-40.440	Top:top0 AudDSP:dsp0 prev_data_r[7]	Top:top0 AudPlayer:player0 o_data_r	AUD_BCLK	AUD_BCLK
ः Setup: 'pll0 altpll_0 sc	14	-40.440	Top:top0 AudDSP:dsp0 prev data r[8]	Top:top0 AudPlayer:player0 o data r	AUD BCLK	AUD BCLK
ः Setup: 'pll0 altpll_0 sc	15	-40.440	Top:top0 AudDSP:dsp0 prev_data_r[9]	Top:top0 AudPlayer:player0 o_data_r	AUD BCLK	AUD BCLK
ः Hold: 'pll0 altpll_0 sd:	16	-40.440	Top:top0 AudDSP:dsp0 prev_data_r[10]	Top:top0 AudPlayer:player0 o_data_r	AUD BCLK	AUD BCLK
ः Hold: 'pll0 altpll_0 sd:	17	-40,440	Top:top0 AudDSP:dsp0 prev_data_r[11]	Top:top0 AudPlayer:player0 o_data_r	AUD BCLK	AUD BCLK
■ Hold: 'AUD_BCLK'	18	-40.440	Top:top0 AudDSP:dsp0 prev_data_r[12]	Top:top0 AudPlayer:player0 o_data_r	AUD_BCLK	AUD_BCLK
■ Minimum Pulse Width:	19	-40.440	Top:top0 AudDSP:dsp0 prev data r[13]	Top:top0 AudPlayer:player0 o data r	AUD BCLK	AUD BCLK
Minimum Pulse Width:	20	-40.440	Top:top0 AudDSP:dsp0 prev_data_r[14]	Top:top0 AudPlayer:player0 o_data_r	AUD_BCLK	AUD BCLK
ः ■ Minimum Pulse Width:	21	-40.440	Top:top0 AudDSP:dsp0 prev_data_r[15]	Top:top0 AudPlayer:player0 o_data_r	AUD_BCLK	AUD_BCLK
Minimum Pulse Width:	22	-8.547	Top:top0 AudDSP:dsp0 sram addr r[4]	Top:top0 AudPlayer:player0 o data r	AUD BCLK	AUD BCLK
> Datasheet Report	23	-8.531	Top:top0 AudDSP:dsp0 sram_addr_r[6]	Top:top0 AudPlayer:player0 o_data_r	AUD_BCLK	AUD_BCLK
Metastability Summary	24	-8.517	Top:top0 AudDSP:dsp0 sram_addr_r[5]	Top:top0 AudPlayer:player0 o_data_r	AUD BCLK	AUD BCLK
Fact 1200mV 0C Model	~-	0.017	T	T . al. lace ! al. i. f		

n Rep	oort - DE2_115	×	
Fast	1200mV OC Model Minimu	m Pulse W	idth Summary
	Clock	Slack	End Point TNS
1	AUD_BCLK	-3.000	-275.983
2	CLOCK_50	9.400	0.000
3	pll0 altpll_0 sd1 pll7 clk[0]	41.446	0.000
4	pll0 altpll_0 sd1 pll7 clk[1]	4999.780	0.000

n Report - DE2_115 × Fast 1200mV OC Model Setup: Slack From Node To Node Launch Clock Latch Clock Top:top0|AudDSP:dsp0|counter_r[0] AUD_BCLK AUD_BCLK Top:top0|AudPlayer:player0|o_data_r -22.320 Top:top0|AudDSP:dsp0|counter_r[2] Top:top0|AudPlayer:player0|o_data_r AUD_BCLK AUD_BCLK 2 3 4 5 6 -22.256 Top:top0|AudDSP:dsp0|counter_r[1] Top:top0|AudPlayer:player0|o_data_r AUD_BCLK AUD_BCLK -22.127 Top:top0|AudDSP:dsp0|counter_r[3] Top:top0|AudPlayer:player0|o_data_r AUD BCLK AUD BCLK Top:top0|AudPlayer:player0|o_data_r Top:top0|state_r.S_RECD AUD BCLK AUD BOLK -21.729 Top:top0|AudDSP:dsp0|prev_data_r[0] -21.004 Top:top0|AudPlayer:player0|o_data_r AUD_BCLK AUD_BCLK -21.004 Top:top0|AudDSP:dsp0|prev_data_r[1] Top:top0|AudPlayer:player0|o_data_r AUD_BCLK AUD_BCLK 8 -21.004 Top:top0|AudDSP:dsp0|prev_data_r[2] Top:top0|AudPlayer:player0|o_data_r AUD_BCLK AUD_BCLK 9 -21.004 Top:top0|AudDSP:dsp0|prev_data_r[3] Top:top0|AudPlayer:player0|o_data_r AUD_BCLK AUD_BCLK Top:top0|AudDSP:dsp0|prev_data_r[4] Top:top0|AudPlayer:player0|o_data_r 10 -21.004 AUD_BCLK AUD_BCLK -21.004 Top:top0|AudDSP:dsp0|prev_data_r[5] Top:top0|AudPlayer:player0|o_data_r AUD BCLK AUD BCLK 11 -21.004 Top:top0|AudDSP:dsp0|prev_data_r[6] Top:top0|AudPlayer:player0|o_data_r AUD_BCLK AUD_BCLK 12 -21.004 Top:top0|AudDSP:dsp0|prev_data_r[7] Top:top0|AudPlayer:player0|o_data_r AUD_BCLK AUD_BCLK 13 14 -21.004 Top:top0|AudDSP:dsp0|prev_data_r[8] Top:top0|AudPlayer:player0|o_data_r AUD_BCLK AUD_BCLK 15 -21.004 Top:top0|AudDSP:dsp0|prev_data_r[9] Top:top0|AudPlayer:player0|o_data_r AUD_BCLK AUD_BCLK Top:top0|AudDSP:dsp0|prev_data_r[10] 16 -21.004 Top:top0|AudPlayer:player0|o_data_r AUD BOLK AUD BCLK Top:top0|AudDSP:dsp0|prev_data_r[11] Top:top0|AudPlayer:player0|o_data_r -21.004 AUD BCLK AUD BCLK 17 -21.004 Top:top0|AudDSP:dsp0|prev_data_r[12] Top:top0|AudPlayer:player0|o_data_r AUD_BCLK AUD_BCLK 18 19 -21.004 Top:top0|AudDSP:dsp0|prev_data_r[13] Top:top0|AudPlayer:player0|o_data_r AUD_BCLK AUD_BCLK 20 -21.004 Top:top0|AudDSP:dsp0|prev_data_r[14] Top:top0|AudPlayer:player0|o_data_r AUD_BCLK AUD_BCLK 21 -21.004 Top:top0|AudDSP:dsp0|prev_data_r[15] Top:top0|AudPlayer:player0|o_data_r AUD_BCLK AUD_BCLK 22 -4.115 Top:top0|AudDSP:dsp0|sram_addr_r[4] Top:top0|AudPlayer:player0|o_data_r AUD BCLK AUD BCLK 23 -4.104 Top:top0|AudDSP:dsp0|sram_addr_r[5] Top:top0|AudPlayer:player0|o data i AUD BCLK AUD BCLK 24 -4.095 Top:top0|AudDSP:dsp0|sram_addr_r[5] Top:top0|AudDSP:dsp0|prev_data_r[11] AUD_BCLK AUD_BCLK

			altpll_0 sd1 pll7 clk[1]'	1 1 6 1		-
	Slack	From Node	To Node	Launch Clock	Latch Clock	Re
1	-2.524	Top:top0 state_r.S_I2C	Top:top0 I2cInitializer:init0 data[111]	AUD_BCLK	pll0 altpll_0 sd1 pll7 dk[1]	1.000
2	-2.524	Top:top0 state_r.S_I2C	Top:top0 I2cInitializer:init0 data[110]	AUD_BCLK	pll0 altpll_0 sd1 pll7 dk[1]	1.000
3	-2.524	Top:top0 state_r.S_I2C	Top:top0 I2cInitializer:init0 data[109]	AUD_BCLK	pll0 altpll_0 sd1 pll7 dk[1]	1.00
1	-2.524	Top:top0 state_r.S_I2C	Top:top0 I2cInitializer:init0 data[108]	AUD_BCLK	pll0 altpll_0 sd1 pll7 dk[1]	1.00
5	-2.524	Top:top0 state_r.S_I2C	Top:top0 I2cInitializer:init0 data[107]	AUD_BCLK	pll0 altpll_0 sd1 pll7 clk[1]	1.00
5	-2.524	Top:top0 state_r.S_I2C	Top:top0 I2cInitializer:init0 data[106]	AUD_BCLK	pll0 altpll_0 sd1 pll7 clk[1]	1.00
7	-2.524	Top:top0 state_r.S_I2C	Top:top0 I2cInitializer:init0 data[105]	AUD_BCLK	pll0 altpll_0 sd1 pll7 clk[1]	1.00
3	-2.524	Top:top0 state_r.S_I2C	Top:top0 I2cInitializer:init0 data[104]	AUD_BCLK	pll0 altpll_0 sd1 pll7 clk[1]	1.00
)	-2.524	Top:top0 state_r.S_I2C	Top:top0 I2cInitializer:init0 data[103]	AUD_BCLK	pll0 altpll_0 sd1 pll7 clk[1]	1.00
0	-2.524	Top:top0 state_r.S_I2C	Top:top0 I2cInitializer:init0 data[102]	AUD_BCLK	pll0 altpll_0 sd1 pll7 clk[1]	1.00
1	-2.524	Top:top0 state_r.S_I2C	Top:top0 I2cInitializer:init0 data[101]	AUD_BCLK	pll0 altpll_0 sd1 pll7 clk[1]	1.00
2	-2.524	Top:top0 state_r.S_I2C	Top:top0 I2cInitializer:init0 data[100]	AUD_BCLK	pll0 altpll_0 sd1 pll7 clk[1]	1.00
3	-2.520	Top:top0 state_r.S_I2C	Top:top0 I2cInitializer:init0 data[131]	AUD_BCLK	pll0 altpll_0 sd1 pll7 clk[1]	1.00
4	-2.520	Top:top0 state_r.S_I2C	Top:top0 I2cInitializer:init0 data[130]	AUD_BCLK	pll0 altpll_0 sd1 pll7 clk[1]	1.00
5	-2.520	Top:top0 state_r.S_I2C	Top:top0 I2cInitializer:init0 data[129]	AUD_BCLK	pll0 altpll_0 sd1 pll7 clk[1]	1.00
6	-2.520	Top:top0 state_r.S_I2C	Top:top0 I2cInitializer:init0 data[128]	AUD_BCLK	pll0 altpll_0 sd1 pll7 clk[1]	1.00
7	-2.520	Top:top0 state_r.S_I2C	Top:top0 I2cInitializer:init0 data[127]	AUD_BCLK	pll0 altpll_0 sd1 pll7 clk[1]	1.00
8	-2.520	Top:top0 state_r.S_I2C	Top:top0 I2cInitializer:init0 data[126]	AUD_BCLK	pll0 altpll_0 sd1 pll7 clk[1]	1.00
9	-2.520	Top:top0 state_r.S_I2C	Top:top0 I2cInitializer:init0 data[125]	AUD_BCLK	pll0 altpll_0 sd1 pll7 clk[1]	1.00
0	-2.520	Top:top0 state_r.S_I2C	Top:top0 I2cInitializer:init0 data[99]	AUD_BCLK	pll0 altpll_0 sd1 pll7 clk[1]	1.00
1	-2.520	Top:top0 state_r.S_I2C	Top:top0 I2cInitializer:init0 data[98]	AUD_BCLK	pll0 altpll_0 sd1 pll7 clk[1]	1.00
2	-2.509	Top:top0 state_r.S_I2C	Top:top0 I2cInitializer:init0 data[15]	AUD_BCLK	pll0 altpll_0 sd1 pll7 clk[1]	1.00
3	-2.509	Top:top0 state_r.S_I2C	Top:top0 I2cInitializer:init0 data[14]	AUD_BCLK	pll0 altpll_0 sd1 pll7 clk[1]	1.00
4	-2.509	Top:top0 state_r.S_I2C	Top:top0 I2cInitializer:init0 data[13]	AUD_BCLK	pll0 altpll_0 sd1 pll7 clk[1]	1.00

7. 問題與心得

- 1. 這次Lab用到比較多protocol, 像是I2C和I2S, 以及我們最後沒做出來的LCD, 都需要去了解傳輸或接收data的方式與限制。
- 2. 在寫DSP的時候, 要確保是左聲道時, 才傳輸訊號, 不然可能導致出去的訊號有雜訊。
- 3. 在top 的module 有許多重要的控制訊號, 如果沒有小心處理, 可能會導致各個模組都沒辦法運作。

- 4. 此外,有時候常常會遇到,同一份code 燒錄到FPGA上,卻有不同的結果,導致 debug 困難。但透過這次的lab也讓我們有很多機會練習。
- 5. 在寫I2C Initializer時,因為很不了解這個protocol在幹嘛,所以翻了很多參考資料,最後才知道原來要怎麼設定sclk, sdat和o_en以進行start, send, acknowledge等步驟,但就算都挺懂這些流程了,前幾次寫完及修改程式後,燒到FPGA上卻還是跑不了,導致後續的錄音、播放等功能都不能測試,經過好幾次的trial and error才成功,但也曾一度遇上有時可以,有時卻不行Initialize的情形,因此光寫好I2C Initializer的時間大概比把recorder和player寫完的時間還久。