In the Claims:

This listing of claims will replace all prior versions, and listings of the claims in the application.

Please amend claim 53, as follows:

1-40. (canceled).

41. (previously presented) A compound of general formula (A)

in which:

 R^2 and R^3 are independently hydrogen, $(C_1 - C_{12})$ alkyl, substituted $(C_1 - C_{12})$ alkyl, or unsaturated $(C_2 - C_{12})$ comprising one or more C = C bond or C = C bond, $(C_6$ or $C_{10})$ aryl or $(C_6$ or $C_{10})$ heteroaryl, or a combination thereof to form a linked or fused ring system, or $(C_1 - C_{10})$ alkoxy, $(C_1 - C_{10})$ thioalkoxy, hydroxyl, $(C_1 - C_{10})$ hydroxylalkyl, halo, $(C_1 - C_{10})$ haloalkyl, eyano, nitro, amino, amido, $(C_1 - C_{10})$ alkylamino, $(C_1 - C_{10})$ alkylarbonyloxy, $(C_1 - C_{10})$ alkoxycarbonyl, $(C_1 - C_{10})$ alkylsulfonyl, $(C_1 - C_{10})$ alkylsulfonyl, in which the saturated or an unsaturated hydrocarbon chain is optionally interrupted by O, S, NR, CO, C(NR), $N(R)SO_2$, $SO_2N(R)$, N(R)C(O)O, OC(O)N(R), N(R)C(O)N(R), OC(O), OC(O), OSO_2 , OC(O), alkynyl, OC(O), where OC(O) alkyl, OC(O), OC(O), alkyl, OC(O), OC(O), alkyl, OC(O), alkyl, OC(O), alkyl, OC(O), alkyl, OC(O), alkoxy, OC(O), alkyl, OC(O), alkoxy, OC(O), alkyl, OC(O), alkoxy, hydroxyl, OC(O), alkoxyl, OC(O), alkyl, OC(O), alkoxyl, OC(O), alkoxyl, OC(O), alkoxyl, OC(O), alkoxyl, halo, OC(O),

alkylsulfonylamino, aminosulfonyl, or $(C_1 - C_{10})$ alkylsulfonyl, or R^2 and R^3 optionally form a $(C_6$ or $C_{10})$ aryl, $(C_6$ or $C_{10})$ arylalkyl, a 6- or 10-membered ring system having one or more heteroatoms in the ring, $(C_3 - C_8)$ heterocycloalkenyl, $(C_5 - C_8)$ cycloalkene ring, $(C_5 - C_8)$ cycloalkyl, $(C_5 - C_8)$ heterocycloalkyl linked or fused ring system, optionally containing up to 3 heteroatoms selected from oxygen, nitrogen, sulphur, and phosphorous;

 R_4 is hydrogen, unsubstituted or substituted C_1 - C_{10} alkyl, an unsaturated hydrocarbon chain of up to ten carbon atoms comprising one or more carbon-carbon double bonds, C_6 or C_{10} aryl, a 5 to 10 membered heterocyclic group, C_1 - C_{10} alkoxy, C_1 - C_{10} thioalkoxy, hydroxyl, halo, cyano, nitro, amino, amido, $(C_1$ - C_{10} alkyl)thiocarbonyl, $(C_1$ - C_{10} alkyl)sulfonylamino, aminosulfonyl, C_1 - C_{10} alkylsufinyl, C_1 - C_{10} alkylsuffonyl, or a saturated or unsaturated C_3 - C_{12} hydrocarbon chain interrupted by O, S, NR, CO, C(NR), $C(R)SO_2$, or OC(O)O, wherein R is as defined above and the saturated or unsaturated hydrocarbon chain is optionally substituted as defined above:

n is equal to 0, 1 or 2;

X is hydroxyl (-OH), -OR, NHR, hydroxamate (-NHOH), NHOR, NROR, NRNHR, or SR, where each R is independently hydrogen, C₁-C₆ alkyl or substituted C₁-C₆ alkyl; and

Y is 0, 1 or 2 oxygen atoms, or NR where R is H, OH, C_1 - C_6 alkyl, or substituted C_1 - C_6 alkyl;

in which V and W are as follows:

a single carbon-carbon bond;

V is CR and W is N, saturated or unsaturated:

V is N and W is CR, saturated or unsaturated;

a linkage of the form VW or WV = RRC-O or RRC-S, wherein V and W are each optionally substituted $(C_1\text{-}C_6)$ alkyl, C_6 aryl or heterocycle; and in which each R is independently defined.

42. (previously presented) A compound of general formula (B1)

$$\begin{array}{c}
\downarrow \\
S \\
Z \\
R_1
\end{array}$$
(B1)

...

in which:

 $R^1 \text{ is } (C_6 \text{ or } C_{10}) \text{ aryl, } (C_6 \text{ or } C_{10}) \text{ arylalkyl, a 6- or 10-membered ring system having one or more heteroatoms in the ring, } (C_6 \text{ or } C_{10}) \text{ heteroaryl, } (C_3\text{-}C_8) \text{ heterocycloalkenyl, } (C_5\text{-}C_8) \text{ cycloalkene ring, } (C_5\text{-}C_8) \text{ cycloalkene ring, } (C_5\text{-}C_8) \text{ cycloalkene ring, } (C_5\text{-}C_8) \text{ cycloalkyl, } (C_5\text{-}C_8) \text{ heterocycloalkyl or a combination thereof to form a linked or fused ring system, the cyclic moiety being optionally substituted with } (C_1\text{-}C_{10}) \text{ alkyl, } (C_1\text{-}C_{10}) \text{ alkoxy, } (C_1\text{-}C_{10}) \text{ alkoxyl, } (C_1\text{-}C_{10}) \text{ alkynyl, } (C_1\text{-}C_{10}) \text{ alkoxy, } (C_1\text{-}C_{10}) \text{ alkylamino, } (C_1\text{-}C_{10}) \text{ hydroxylalkyl, halo, } (C_1\text{-}C_{10}) \text{ haloalkyl, amino, amido, } (C_1\text{-}C_{10}) \text{ alkylamino, } (C_1\text{-}C_{10}) \text{ alkylthiocarbonyl, } (C_1\text{-}C_{10}) \text{ alkylsulfonylamino, aminosulfonyl, } (C_1\text{-}C_{10}) \text{ alkylsulfinyl, } \text{ or } (C_1\text{-}C_{10}) \text{ alkylsulfonyl, } \text{ or } (C_1\text{-}C_1\text{$

 R^3 is hydrogen, $(C_1 - C_{12})$ alkyl, substituted $(C_1 - C_{12})$ alkyl, or unsaturated $(C_2 - C_{12})$ comprising one or more C = C bond or C = C bond, $(C_6 \text{ or } C_{10})$ aryl or $(C_6 \text{ or } C_{10})$ heteroaryl, or a combination thereof to form a linked or fused ring system, or $(C_1 - C_{10})$ alkoxy, $(C_1 - C_{10})$ thioalkoxy, hydroxyl, $(C_1 - C_{10})$ hydroxylalkyl, halo, $(C_1 - C_{10})$ haloalkyl, cyano, nitro, amino, amido, $(C_1 - C_{10})$ alkylamino, $(C_1 - C_{10})$ alkylcarbonyloxy, $(C_1 - C_{10})$ alkoxycarbonyl, $(C_1 - C_{10})$ alkylcarbonyl, $(C_1 - C_{10})$ alkylsulfinylamino, aminosulfonyl, $(C_1 - C_{10})$ alkylsulfinyl, or $(C_1 - C_{10})$ alkylsulfonyl, in which the saturated or an unsaturated hydrocarbon chain is optionally interrupted by $(C_1 - C_1)$ alkylsulfonyl, $(C_1 - C_1)$ alkylsulfonyl, $(C_1 - C_1)$ alkylsulfonyl, $(C_1 - C_1)$ alkyl, $(C_1 - C_1)$ alkyl, $(C_1 - C_1)$ alkyl, $(C_1 - C_1)$ alkoxy, $(C_1 - C_1)$ alkyl, $(C_1 - C_1)$ alkyl, $(C_1 - C_1)$ alkoxy, $(C_1 - C_1)$ hydroxylalkyl, hydroxyl, $(C_1 - C_1)$ haloalkyl, where each of the saturated or unsaturated hydrocarbon chains are optionally substituted with $(C_1 - C_1)$ alkyl, $(C_1 - C_{10})$ alkoxy, hydroxyl, hydroxyl, $(C_1 - C_1)$ hydroxylalkyl, halo, $(C_1 - C_1)$ haloalkyl, amino, $(C_1 - C_{10})$ alkylcarbonyloxy, $(C_1 - C_{10})$ alkoxycarbonyl, $(C_1 - C_{10})$ alkylcarbonyl, $(C_1 - C_{10})$

alkylsulfonylamino, aminosulfonyl, or (C1-C10) alkylsulfonyl,

n is equal to 0, 1 or 2;

X is hydroxyl (-OH), -OR, NHR, hydroxamate (-NHOH), NHOR, NROR, NRNHR, or SR, where each R is independently hydrogen, C_1 - C_6 alkyl or substituted C_1 - C_6 alkyl; and

 $Y \ is \ 0, \ 1 \ or \ 2 \ oxygen \ atoms, \ or \ NR \ where \ R \ is \ H, \ OH, \ C_1 - C_6 \ alkyl_2 \ or \ substituted \ C_1 - C_6 \ alkyl; \ and$

Z is a one atom linkage of N, CH, or CR or a two-atom linkage of varying combinations of atoms of CH, CR, O, N, S, SO, SO₂, wherein R is C₁-C₆ alkyl or substituted C₁-C₆ alkyl.

43. (previously presented) A compound of general formula (B2)

$$R_1R_2N$$

(B2)

in which:

 R^1 is $(C_6$ or $C_{10})$ aryl, $(C_6$ or $C_{10})$ arylalkyl, a 6- or 10-membered ring system having one or more heteroatoms in the ring, $(C_6$ or $C_{10})$ heteroaryl, $(C_3$ - $C_8)$ heterocycloalkenyl, $(C_5$ - $C_8)$ cycloalkene ring, $(C_5$ - $C_8)$ cycloalkene ring, $(C_5$ - $C_8)$ cycloalkyl, $(C_5$ - $C_8)$ heterocycloalkyl or a combination thereof to form a linked or fused ring system, the cyclic moiety being optionally substituted with $(C_1$ - $C_{10})$ alkyl, $(C_1$ - $C_{10})$ alkoxy, $(C_1$ - $C_{10})$ alkoxy, hydroxyl, $(C_1$ - $C_{10})$ hydroxylalkyl, halo, $(C_1$ - $C_{10})$ haloalkyl, amino, amido, $(C_1$ - $C_{10})$ alkylamino, $(C_1$ - $C_{10})$ alkylcarbonyloxy, $(C_1$ - $C_{10})$ alkoxycarbonyl, $(C_1$ - $C_{10})$ alkylsulfonyl, or $(C_1$ - $C_{10})$ alkylsulfonyl, or $(C_1$ - $C_{10})$ alkylsulfonyl, or $(C_1$ - $C_{10})$ alkylsulfonyl,

 R^2 and R^3 are each independently hydrogen, (C_1-C_{12}) alkyl, substituted (C_1-C_{12}) alkyl, or unsaturated (C_2-C_{12}) comprising one or more C=C bond or C=C bond, $(C_6$ or $C_{10})$ aryl or $(C_6$ or $C_{10})$ heteroaryl, or a combination thereof to form a linked or fused ring system, or (C_1-C_{10})

alkoxy, (C_1-C_{10}) thioalkoxy, hydroxyl, (C_1-C_{10}) hydroxylalkyl, halo, (C_1-C_{10}) haloalkyl, cyano, nitro, amino, amido, (C_1-C_{10}) alkylamino, (C_1-C_{10}) alkylcarbonyloxy, (C_1-C_{10}) alkoxycarbonyl, (C_1-C_{10}) alkylcarbonyl, (C_1-C_{10}) alkylcarbonyl, (C_1-C_{10}) alkylsulfonyl, in which the saturated or an unsaturated hydrocarbon chain is optionally interrupted by O, S, NR, CO, C(NR), N(R)SO₂, SO₂N(R), N(R)C(O)O, OC(O)N(R), N(R)C(O)N(R), OC(O), C(O)O, OSO₂, SO₂O, or OC(O)O, where R is independently hydrogen, (C_1-C_{10}) alkyl, (C_1-C_{10}) alkenyl, (C_1-C_{10}) alkyl, (C_1-C_{10}) alkyl, where each of the saturated or unsaturated hydrocarbon chains are optionally substituted with (C_1-C_{10}) alkyl, (C_1-C_{10}) alkenyl, (C_1-C_{10}) alkoxy, hydroxyl, hydroxyl, (C_1-C_{10}) hydroxylalkyl, halo, (C_1-C_{10}) haloalkyl, amino, (C_1-C_{10}) alkoxy, hydroxyl, (C_1-C_{10}) alkoxycarbonyl, (C_1-C_{10}) alkylcarbonyl, (C_1-C_{10}) alkylsulfonylamino, aminosulfonyl, or (C_1-C_{10}) alkylsulfonyl; or

 R^2 and R^3 optionally form a $(C_6 \text{ or } C_{10})$ aryl, $(C_6 \text{ or } C_{10})$ arylalkyl, a 6- or 10-membered ring system having one or more heteroatoms in the ring, $(C_3\text{-}C_8)$ heterocycloalkenyl, $(C_5\text{-}C_8)$ cycloalkene ring, $(C_5\text{-}C_8)$ cycloalkene ring, $(C_5\text{-}C_8)$ cycloalkyl, $(C_5\text{-}C_8)$ heterocycloalkyl linked or fused ring system, optionally containing up to 3 heteroatoms, e.g. oxygen, nitrogen, sulphur or phosphorous; or

 R^1 and R^2 optionally form a $(C_6$ or $C_{10})$ aryl, $(C_6$ or $C_{10})$ arylalkyl, $(C_6$ or $C_{10})$ heteroaryl, $(C_3$ - $C_8)$ heterocycloalkenyl, $(C_5$ - $C_8)$ cycloalkene ring, $(C_5$ - $C_8)$ cycloalkyl, $(C_5$ - $C_8)$ heterocycloalkyl linked or fused ring system, optionally the ring formed is further substituted with a group R^1 as defined above, or the ring formed is fused to a further C_6 aryl group which is optionally substituted with a group R^1 as defined above, or a group R^1 R 2 N, with R^1 and R^2 as defined above.

n is equal to 0, 1 or 2,

 $\label{eq:continuous} X \mbox{ is hydroxyl (-OH), -OR, NHR, hydroxamate (-NHOH), NHOR, NROR, NRNHR, or \\ SR, \mbox{ where each R is independently hydrogen, C_1-C_6 alkyl or substituted C_1-C_6 alkyl, and }$

Y is 0, 1 or 2 oxygen atoms, or NR where R is H, OH, OR or C, where R is C_1 - C_6 alkyl or substituted C_1 - C_6 alkyl,

and Z is a one atom linkage of N, CH or CR, or a two-atom linkage of varying combinations of atoms of CH, CR, O, N, S, SO, SO₂ and in which each R is independently C_1 - C_6 alkyl or

substituted C1-C6 alkyl.

(previously presented) A compound of general formula (C)

(C)

in which:

 R^3 is hydrogen, $(C_1 - C_{12})$ alkyl, substituted $(C_1 - C_{12})$ alkyl, or unsaturated $(C_2 - C_{12})$ comprising one or more C = C bond or C = C bond, $(C_6 \text{ or } C_{10})$ aryl or $(C_6 \text{ or } C_{10})$ heteroaryl, or a combination thereof to form a linked or fused ring system, or $(C_1 - C_{10})$ alkoxy, $(C_1 - C_{10})$ thioalkoxy, hydroxyl, $(C_1 - C_{10})$ hydroxylalkyl, halo, $(C_1 - C_{10})$ haloalkyl, cyano, nitro, amino, amido, $(C_1 - C_{10})$ alkylamino, $(C_1 - C_{10})$ alkylcarbonyloxy, $(C_1 - C_{10})$ alkoxycarbonyl, $(C_1 - C_{10})$ alkylcarbonyl, $(C_1 - C_{10})$ alkylsulfonylamino, aminosulfonyl, $(C_1 - C_{10})$ alkylsulfinyl, or $(C_1 - C_{10})$ alkylsulfonyl, in which the saturated or an unsaturated hydrocarbon chain is optionally interrupted by $(C_1 - C_1)$ alkylsulfonyl, $(C_1 - C_1)$ alkylsulfonyl, $(C_1 - C_1)$ alkylsulfonyl, $(C_1 - C_1)$ alkyl, $(C_1 - C_1)$ alkyl, $(C_1 - C_1)$ alkyl, $(C_1 - C_1)$ alkoxy, $(C_1 - C_1)$ alkyl, $(C_1 - C_1)$ alkyl, $(C_1 - C_1)$ alkoxy, $(C_1 - C_1)$ hydroxylalkyl, hydroxyl, $(C_1 - C_1)$ haloalkyl, where each of the saturated or unsaturated hydrocarbon chains are optionally substituted with $(C_1 - C_1)$ alkyl, $(C_1 - C_{10})$ alkoxy, $(C_1 - C_{10})$ alkoxy, hydroxyl, hydroxyl, hydroxyl, $(C_1 - C_1)$ hydroxylalkyl, halo, $(C_1 - C_1)$ haloalkyl, amino, $(C_1 - C_{10})$ alkylcarbonyloxy, $(C_1 - C_{10})$ alkylsulfonylamino, aminosulfonyl, or $(C_1 - C_1)$ alkylsulfonyl;

n is equal to 0, 1 or 2;

 $\label{eq:continuous} X \mbox{ is hydroxyl (-OH), -OR, NHR, hydroxamate (-NHOH), NHOR, NROR, NRNHR, or \\ SR, where each R \mbox{ is independently hydrogen, C_1-C_6 alkyl or substituted C_1-C_6 alkyl;}$

Y is 0, 1 or 2 oxygen atoms, or NR where R is H, OH, OR or C, where R is $C_1\text{-}C_6$ alkyl

or substituted C1-C6 alkyl; and

 R^4 and R^5 are each independently hydrogen, unsubstituted or substituted C_1 - C_{10} alkyl, an unsaturated hydrocarbon chain of up to ten carbon atoms comprising one or more carbon-carbon double bonds, C_6 or C_{10} aryl, a 5- to 10-membered heterocyclic group, C_1 - C_{10} alkoxy, C_1 - C_{10} thioalkoxy, hydroxyl, halo, cyano, nitro, amino, amido, $(C_1$ - C_{10} alkyl)carbonyloxy, $(C_1$ - C_{10} alkoxy)carbonyl, $(C_1$ - C_{10} alkyl)carbonyl, $(C_1$ - C_{10} alkyl)suflonylamino, aminosulfonyl, C_1 - C_{10} alkylsulfinyl, C_1 - C_{10} alkylsulfonyl, or a saturated or unsaturated C_3 - C_{12} hydrocarbon chain interrupted by C_1 - C_1 - C_2 - C_1 - C_2 - C_2 - C_3 - C_3 - C_4 - C_4 - C_4 - C_5 -

- (previously presented) A compound as claimed in claim 41, in which R² and R³ are both Hydrogen.
- 46. (previously presented) A compound as claimed in claim 41, in which R² is methyl (CH₃) and R³ is Hydrogen.
- 47. (previously presented) A compound as claimed in claim 41, in which R² is Hydrogen and R³ is methyl (CH₃).
- (previously presented) A compound as claimed in claim 41, in which R² and R³ are both methyl (CH₃).
- (previously presented) A compound as claimed in claim 41, in which X is -OH, -OC₂H₅, -OCH₃, or NHOH.
- 50. (previously presented) A compound as claimed in claim 41, in which Y is represented by one or two oxygen atoms.

- 51-52. (canceled).
- 53. (currently amended) A compound of general formula (Ia)

$$\begin{array}{c|c}
X \\
R_1 \\
\hline
X \\
R_2
\end{array}$$

$$\begin{array}{c|c}
X \\
R_3 \\
R_2
\end{array}$$

$$\begin{array}{c|c}
X \\
R_3 \\
R_3 \\
R_4
\end{array}$$
(Ia)

wherein:

R² and R³ are both Hydrogen (H);

Y is two oxygen atoms;

n is 1;

 R^1 is

X is -OH, -CH₃, -OC₂H₅ or NHOH.

54. (previously presented) A compound of general formula (B)

$$R_1 \xrightarrow{S} Q$$

$$R_2 \qquad R_3$$

$$(B)$$

wherein:

R² and R³ are both methyl (CH₃):

Y is zero oxygen atoms;

n is zero:

R₁ is

X is -OCH3, -OC2H5 or -OH.

55. (previously presented) A compound which is:

6-(4-Dimethylamino-phenylsulfanyl)-hexa-2.4-dienoic acid methyl ester (6d).

6-(4-Methoxy-phenylsulfanyl)-hexa-2.4-dienoic acid methyl ester (6e).

6-(4-Chloro-phenylsulfanyl)-hexa-2,4-dienoic acid hydroxyamide (7b),

6-(4-Dimethylamino-phenylsulfanyl)-hexa-2,4-dienoic acid hydroxyamide (7c),

6-(4-Chloro-benzenesulfinyl)-hexa-2.4-dienoic acid methyl ester (8b).

6-(4-Methoxy-benzenesulfinyl)-hexa-2,4-dienoic acid methyl ester (8c),

6-Benzenesulfinyl-hexa-2.4-dienoic acid (8d),

6-(4-Chloro-benzenesulfinyl)-hexa-2,4-dienoic acid hydroxyamide (9a),

6-(4-Methoxy-benzenesulfinyl)-hexa-2,4-dienoic acid hydroxyamide (9b),

6-Benzenesulfonyl-hexa-2,4-dienoic acid (10a),

6-Benzenesulfonyl-hexa-2.4-dienoic acid methyl ester (10b).

6-Benzenesulfonyl-hexa-2,4-dienoic acid hydroxyamide (11a),

6-(Naphthalen-2-ylsulfanyl)-hexa-2,4-dienoic acid methyl ester (13b),

6-(Naphthalen-2-ylsulfanyl)-hexa-2,4-dienoic acid hydroxyamide (14a),

4-(4-Dimethylamino-phenylsulfanyl)-2-methyl-pent-2-enoic acid methyl ester (21b),

6-(4-Dimethylamino-phenylsulfanyl)-4-methyl-hepta-2.4-dienoic acid ethyl ester (24c).

6-(4-Dimethylamino-phenylsulfanyl)-4-methyl-hepta-2,4-dienoic acid hydroxyamide (25c),

- 6-(4-Chloro-phenylsulfanyl)-hexanoic acid methyl ester (28b),
- 7-(4-Chloro-phenylsulfanyl)-heptanoic acid ethyl ester (28c),
- 6-(4-Dimethylamino-phenylsulfanyl)-hexanoic acid methyl ester (28e),
- 6-(4-((4-Chlorobenzyl)-methylamino)-phenylsulfanyl)-hexanoic acid methyl ester (28f),
- 6-(4-(4-Chlorobenzenesulfonylamino)-phenylsulfanyl)-hexanoic acid methyl ester (28g),
- 6-(4-Bromo-phenylylsulfanyl)-hexanoic acid methyl ester (28h),
- 6-(4'-Chloro-biphenyl-4-ylsulfanyl)-hexanoic acid methyl ester (28i),
- 6-(4-Chloro-phenylsulfanyl)-hexanoic acid hydroxyamide (29b),
- 6-(4-Dimethylamino-phenylsulfanyl)-hexanoic acid hydroxamide (29c),
- 6-(4-(4-Chlorobenzenesulfonylamino)-phenylsulfanyl)-hexanoic acid hydroxamide (29g),
- 6-(4'-Chloro-biphenyl-4-ylsulfanyl)-hexanoic acid hydroxamide (29i),
- 6-(4-Chloro-benzenesulfinyl)-hexanoic acid methyl ester (30b),
- 7-(4-Chloro-benzenesulfinyl)-heptanoic acid ethyl ester (30c),
- 6-(4-Dimethylamino-benzenesulfinyl)-hexanoic acid methyl ester (30e),
- 6-(4-((4-Chlorobenzyl)-methylamino)-benzenesulfinyl)-hexanoic acid methyl ester (30f),
- 6-(4'-Chloro-biphenyl-4-ylsulfinyl)-hexanoic acid methyl ester (30i),
- 6-(4-Chloro-benzenesulfinyl)-hexanoic acid hydroxyamide (31a).
- 7-(4-Chloro-benzenesulfinyl)-heptanoic acid hydroxyamide (31c),
- 6-(4-Dimethylamino-benzenesulfinyl)-hexanoic acid hydroxyamide (31e),
- 6-(4-((4-Chlorobenzyl)-methylamino)-benzenesulfinyl)-hexanoic acid hydroxamide (31f).
- 6-(4'-Chloro-biphenyl-4-sulfinyl)-hexanoic acid hydroxyamide (31i).
- (2E,4E)-5-(5-Dimethylamino-benzo[b]thiophen-2-yl)-penta-2,4-dienoic acid ethyl ester (41a),
- (2E,4E)-5-(5-Dimethylaminobenzo[b]thiophen-2-yl)-penta-2,4-dienoic acid hydroxamide (42a).

- (E)-3-(3-(4-Dimethylamino-phenylsulfanyl)-phenyl)-acrylic acid ethyl ester (51a.), or (E)-3-(3-(4-Dimethylamino-phenylsulfanyl)-phenyl)-*N*-hydroxy-acrylamide (52a).
- 56. (previously presented) A pharmaceutical composition comprising a compound of claims 41 to 50, and 53 to 55, and optionally a pharmaceutically acceptable adjuvant and/or diluent.
- 57. (previously presented) A method of inhibiting HDAC activity in an individual comprising administering to said individual a therapeutically effective amount of a compound of general formula (I):

$$R_1$$
 R_2 R_3 Q X

in which:

 $R^1 \text{ is } (C_6 \text{ or } C_{10}) \text{ aryl, } (C_6 \text{ or } C_{10}) \text{ arylalkyl, a 6- or 10-membered ring system having one or more heteroatoms in the ring, } (C_6 \text{ or } C_{10}) \text{ heteroaryl, } (C_3\text{-}C_8) \text{ heterocycloalkenyl, } (C_5\text{-}C_8) \text{ cycloalkene ring, } (C_5\text{-}C_8) \text{ cycloalkene ring, } (C_5\text{-}C_8) \text{ cycloalkyl, } (C_5\text{-}C_8) \text{ heterocycloalkyl or a combination thereof to form a linked or fused ring system, the cyclic moiety being optionally substituted with } (C_1\text{-}C_{10}) \text{ alkyl, } (C_1\text{-}C_{10}) \text{ alkoxyl, } (C_1\text{-}C_{10}) \text{ alkoxyl, } (C_1\text{-}C_{10}) \text{ alkynly, } (C_1\text{-}C_{10}) \text{ alkoxyl, } (C_1\text{-}C_{10}) \text{ hydroxylalkyl, halo, } (C_1\text{-}C_{10}) \text{ haloalkyl, amino, amido, } (C_1\text{-}C_{10}) \text{ alkylamino, } (C_1\text{-}C_{10}) \text{ alkylthiocarbonyl, } (C_1\text{-}C_{10}) \text{ alkylthiocarbonyl, } (C_1\text{-}C_{10}) \text{ alkylsulfonylamino, aminosulfonyl, } (C_1\text{-}C_{10}) \text{ alkylsulfonyl, } (C_1\text{-}C_1\text$

 R^2 and R^3 are each independently hydrogen, (C_1-C_{12}) alkyl, unsaturated (C_2-C_{12}) comprising one or more C=C bond or C=C bond, (C_1-C_{10}) alkoxy, (C_1-C_{10}) thioalkoxy, hydroxyl, (C_1-C_{10}) hydroxylalkyl, halo, or (C_1-C_{10}) haloalkyl; or

 R^2 and R^3 optionally form a (C_6 or C_{10}) aryl, (C_6 or C_{10}) arylalkyl, a 6- or 10-membered ring system having one or more heteroatoms in the ring, (C_7 - C_8) heteroeycloalkenyl, (C_7 - C_8)

cycloalkene ring, (C_5-C_8) cycloalkyl, (C_5-C_8) heterocycloalkyl linked or fused ring system, optionally containing up to 3 heteroatoms selected from oxygen, nitrogen, sulphur, and phosphorous; or

 R^1 and R^2 optionally form a $(C_6$ or $C_{10})$ aryl, $(C_6$ or $C_{10})$ arylalkyl, $(C_6$ or $C_{10})$ heteroaryl, $(C_3$ - $C_8)$ heterocycloalkenyl, $(C_5$ - $C_8)$ cycloalkene ring, $(C_5$ - $C_8)$ cycloalkyl, $(C_5$ - $C_8)$ heterocycloalkyl linked or fused ring system, optionally the ring formed is further substituted with a group R^1 as defined above, or the ring formed is fused to a further C_6 aryl group which is optionally substituted with a group R^1 as defined above, or a group R^1 R 2 N, with R^1 and R^2 as defined above;

n is equal to 0, 1 or 2;

X is hydroxyl (-OH), -OR, NHR, hydroxamate (-NHOH), NHOR, NROR, NRNHR, or SR, wherein each R is independently hydrogen, C₁-C₆ alkyl or substituted C₁-C₆ alkyl;

Y is 0, 1 or 2 oxygen atoms, or NR where R is H, OH, C_1 - C_6 alkyl, or substituted C_1 - C_6 alkyl;

Q represents

$$\left(\begin{array}{c} R_4 \\ \\ R_5 \end{array} \right)_m \quad \text{ or } \quad \begin{array}{c} R_4 \\ \\ R_5 \end{array}$$

wherein:

m is an integer from 1 to 4;

n is an integer from 1 to 8; and

 R^4 and R^5 each independently represent hydrogen, or unsubstituted or substituted $\mathrm{C_{1}\text{-}C_{10}}$ alkyl;

or a pharmaceutically acceptable salt thereof,

58-63. (canceled).

64. (previously presented) A compound of claim 43, wherein:

 \boldsymbol{X} is NHOH, OH, NROR, or CRROH; and \boldsymbol{Z} is CR or N.

65. (previously presented) The method of claim 57, wherein:

 R^1 is $(C_6$ or $C_{10})$ aryl, optionally substituted by $(C_1\text{-}C_{10})$ alkoxy, halo or $(C_1\text{-}C_{10})$ alkylamino;

 R^2 and R^3 are each independently hydrogen or methyl, or R^2 and R^3 optionally form a C_6 aryl;

n is equal to 0, 1 or 2;

X is hydroxyl (-OH), -OR, NHR, hydroxamate (-NHOH), NHOR, NROR, NRNHR, or SR, wherein each R is independently selected from hydrogen, C₁-C₆ alkyl or substituted C₁-C₆ alkyl;

Y is O, 1, or 2 oxygen atoms;

Q represents

$$\left(\begin{array}{c} R_4 \\ \\ R_5 \end{array} \right)_m \quad \text{or} \quad \begin{array}{c} R_4 \\ \\ R_5 \end{array}$$

wherein:

m is an integer from 1 to 4;

n' is an integer from 1 to 8; and

 $\ensuremath{\mbox{R}}^4$ and $\ensuremath{\mbox{R}}^5$ each independently represent hydrogen or methyl.

66. (previously presented) The method of claim 57, wherein said compound of general formula (I) is:

6-Phenylsulfanyl-hexa-2,4-dienoic acid (6a),

6-(4-Chloro-phenylsulfanyl)-hexa-2,4-dienoic acid methyl ester (6b), or

6-Phenylsulfanyl-hexa-2,4-dienoic acid methyl ester (6c).

67. (previously presented) A method of stimulating hematopoietic cells ex vivo, comprising administering an effective amount of a compound of general formula (I).

68-69, (canceled).

70. (previously presented) A compound of general formula (Ib)

$$R_1$$
 R_2
 R_3
 R_2
 R_3
 R_4

wherein:

 R^1 is $(C_6$ or $C_{10})$ aryl, $(C_6$ or $C_{10})$ arylalkyl, a 6- or 10-membered ring system having one or more heteroatoms in the ring, $(C_6$ or $C_{10})$ heteroaryl, $(C_3\text{-}C_8)$ heterocycloalkenyl, $(C_5\text{-}C_8)$ cycloalkene ring, $(C_5\text{-}C_8)$ cycloalkyl, $(C_5\text{-}C_8)$ heterocycloalkyl or a combination thereof to form a linked or fused ring system, the cyclic moiety being optionally substituted with $(C_1\text{-}C_{10})$ alkyl, $(C_1\text{-}C_{10})$ alkenyl, $(C_1\text{-}C_{10})$ alkynyl, $(C_1\text{-}C_{10})$ alkoy, $(C_1\text{-}C_{10})$ hidoalkyl, amino, amido, $(C_1\text{-}C_{10})$ alkylamino, $(C_1\text{-}C_{10})$ alkylamino, $(C_1\text{-}C_{10})$ alkylamino, $(C_1\text{-}C_{10})$ alkylamino, aminosulfonyl, $(C_1\text{-}C_{10})$ alkylsulfonyl, or $(C_1\text{-}C_{10})$ alkylsulfonyl;

 R^2 and R^3 are each independently hydrogen or methyl, or R^2 and R^3 optionally form a $(C_6$ or $C_{10})$ aryl;

n is 0, 1 or 2;

X is hydroxamate (-NHOH); and

Y is 0, 1 or 2 oxygen atoms:

or a pharmaceutically acceptable salt thereof.

71. (previously presented) The method of claim 57, wherein the compound of formula (I) has a structure of general formula (Ia):

$$\begin{array}{c} X \\ X \\ X \\ R_2 \end{array}$$

wherein:

 R^1 is $(C_6$ or $C_{10})$ aryl, $(C_6$ or $C_{10})$ arylalkyl, a 6- or 10-membered ring system having one or more heteroatoms in the ring, $(C_6$ or $C_{10})$ heteroaryl, $(C_3\text{-}C_8)$ heterocycloalkenyl, $(C_5\text{-}C_8)$ cycloalkene ring, $(C_5\text{-}C_8)$ cycloalkene ring, $(C_5\text{-}C_8)$ cycloalkyl, $(C_5\text{-}C_8)$ heterocycloalkyl or a combination thereof to form a linked or fused ring system, the cyclic moiety being optionally substituted with $(C_1\text{-}C_{10})$ alkyl, $(C_1\text{-}C_{10})$ alkenyl, $(C_1\text{-}C_{10})$ alkynyl, $(C_1\text{-}C_{10})$ alkoxy, $(C_1\text{-}C_{10})$ thioalkoxy, hydroxyl, $(C_1\text{-}C_{10})$ hydroxylalkyl, halo, $(C_1\text{-}C_{10})$ haloalkyl, amino, amido, $(C_1\text{-}C_{10})$ alkylamino, $(C_1\text{-}C_{10})$ alkylamino, $(C_1\text{-}C_{10})$ alkylamino, $(C_1\text{-}C_{10})$ alkylamino, aminosulfonyl, $(C_1\text{-}C_{10})$ alkylsulfinyl, or $(C_1\text{-}C_{10})$ alkylsulfonyl,

 $R^2 \ and \ R^3 \ are each independently \ hydrogen, (C_1-C_{12}) \ alkyl, \ unsaturated \ (C_2-C_{12}) \ comprising one or more C=C \ bond \ or \ C=C \ bond, (C_1-C_{10}) \ alkoxy, (C_1-C_{10}) \ thio alkoxy, \ hydroxyl, \ (C_1-C_{10}) \ hydroxylalkyl, \ halo, \ or \ (C_1-C_{10}) \ haloalkyl; \ or$

 R^2 and R^3 optionally form a $(C_6$ or $C_{10})$ aryl, $(C_6$ or $C_{10})$ arylalkyl, a 6- or 10-membered ring system having one or more heteroatoms in the ring, $(C_3$ - $C_8)$ heterocycloalkenyl, $(C_5$ - $C_8)$ cycloalkene ring, $(C_5$ - $C_8)$ cycloalkyl, $(C_5$ - $C_8)$ heterocycloalkyl linked or fused ring system, optionally containing up to 3 heteroatoms, e.g. oxygen, nitrogen, sulphur or phosphorous; or

 R^1 and R^2 optionally form a (C_6 or C_{10}) aryl, (C_6 or C_{10}) arylalkyl, (C_6 or C_{10}) heteroaryl, (C_3 - C_8) heterocycloalkenyl, (C_5 - C_8) cycloalkene ring, (C_5 - C_8) cycloalkyl, (C_5 - C_8) heterocycloalkyl linked or fused ring system, optionally the ring formed is further substituted with a group R^1 as defined above, or the ring formed is fused to a further C_6 aryl group which is optionally substituted with a group R^1 as defined above, or a group R^1 R²N, with R^1 and R^2 as defined above:

n is 0, 1 or 2;

X is hydroxyl (-OH), -OR, NHR, hydroxamate (-NHOH), NHOR, NROR, NRNHR, or

SR, wherein each R is independently hydrogen, C_1 - C_6 alkyl or substituted C_1 - C_6 alkyl; and Y is 0, 1 or 2 oxygen atoms, or NR where R is H, OH, C_1 - C_6 alkyl, or substituted C_1 - C_6 alkyl;

or a pharmaceutically acceptable salt thereof.