

UMELÁ INTELIGENCIA

Ing. Lukáš Kohútka, PhD.

Ako sa pracuje na tomto predmete?

- □ Prednášky (utorok 08:00):
 - zapájať sa, počúvať, pýtať sa, ...
- Cvičenia:
 - písanie programov riešenie zadaní
 - konzultácie k zadaniam
 - odovzdávanie zadaní
- □ Doma:
 - vypracovanie zadaní

Vyučujúci

- □ Prednášky (utorok 08:00):
 - Lukáš Kohútka (1. až 8. prednáška)
 - Martin Komák (9. a 10. prednáška)
 - Odborníci z praxe (11. a 12. prednáška)
- □ Cvičiaci:
 - Ivan Kapustík
 - Martin Komák

Podmienky absolvovania predmetu

- Účasť na prednáškach a cvičeniach je povinná
- Celkovo môžete získať 100 bodov, pričom platí štandardná stupnica fakulty a univerzity
- □ 50 bodov − 3 zadania cez semester (min. 28 b.)
 - 1. zadanie 15 b. (6 b. minimum)
 - 2. zadanie 15 b. (6 b. minimum)
 - 3. zadanie 20 b. (8 b. minimum)
- □ 50 bodov skúška

Plagiátorstvo

- Všetko, čo sa predkladá na hodnotenie, musí byť vlastná samostatná práca študenta alebo musí byť označené ako prevzaté
- Samozrejme, body možno získať len za vlastnú prácu. Opisovanie sa netoleruje
- Pokiaľ sa pokúšate absolvovať tento predmet nie vlastnou prácou, najmä, ak neupozorníte cvičiaceho, že odovzdané riešenie (alebo jeho časť) je prebratá z iného zdroja, kvalifikujete sa na FX

Čo chcem, aby ste si odniesli z Ul

- Základný prehľad o princípoch, metódach a postupoch používaných v Ul na riešenie problémov
- Teoretické, ale aj praktické vedomosti z vybraných oblastí, ktoré spadajú pod Ul, ako napr.:
 - návrh agentov
 - neurónové siete
 - strojové učenie
 - prehľadávanie stavového priestoru
 - evolučné algoritmy
 - genetické programovanie
 - a iné ...

Dôležité termíny!

- Odovzdanie zadaní najneskorší možný termín:
 - Zadanie 1 začiatok 4. cvičenia
 - □ Zadanie 2 začiatok 8. cvičenia
 - Zadanie 3 začiatok 12. cvičenia
 - Termíny sa neposúvajú!
 (pokúste sa odovzdať vždy o niečo skôr)

Otázky?

Literatúra

- Odporúčaná literatúra:
 - Návrat, Beňušková, Bieliková, Grmanová, Kapustík a Pospíchal: Umelá Inteligencia, Nakladateľstvo STU Bratislava, 2015.
- Vzorová svetová literatúra:
 - 1. Russell, Norvig: Artificial Intelligence: A Modern Approach. Prentice Hall, 1995. Tiež druhé vydanie 2002
- Literatúra v blízkych jazykoch:
 - 1. Kelemen a spol.: Základy umelej inteligencie. Alfa 1992.
 - 2. I.M. Havel: Robotika. Úvod do teórie kognitívnych robotov. SNTL 1981.
 - Mařík a spol: Umělá inteligence (1), (2), (3) a (4), Academia
 Praha, 1993, 1997, 2000 a 2003.

Umelá inteligencia

- Cieľom Ul je vytvoriť, zostrojiť inteligentné objekty a porozumieť im
- Metóda Ul je vo svojej podstate spätá s použitím výpočtových procesov

Čo je umelá inteligencia?

- Či sa skúma alebo sa usiluje o myšlienkové procesy a usudzovanie na jednej strane alebo o správanie sa na druhej strane,
- Či sa hodnotí úspech podľa podobnosti s ľudským konaním alebo s ideálnou predstavou o inteligencii tzv. rozumnosťou. Systém je rozumný, ak robí správnu vec.

Rôzne pohľady na Ul

- Systémy, ktoré myslia ako ľudia
 - GPS (general problem solver všeobecný riešič problémov) (Newell a Simon, 1961)
 - Kognitívna veda spája skúmanie výpočtových modelov z UI a experimentálnych metód psychológie s cieľom nájsť presné a overiteľné teórie fungovania ľudského rozumu
- Systémy, ktoré konajú ako ľudia
 - Turingov test: systém koná ako človek (t.j. inteligentne), ak dokáže prekabátiť vyšetrovateľa tak, že ho nedokáže rozlíšiť od človeka
- Systémy, ktoré myslia rozumne
 - sylogizmy vyjadrujú vzory správneho myslenia
- Systémy, ktoré konajú rozumne
 - systém koná tak, aby dosiahol svoje ciele s ohľadom na tvrdenia, ktorých pravdivosť predpokladá (ktorým verí).

Alan Turing

- 23. jún 1912 Maida Vale, London,
 Anglicko 7. jún 1954 Wilmslow,
 Cheshire, Anglicko)
- 1934 Bc matematika, King's
 College Cambridge
- 1938 PhD matematika, Princeton (školiteľ Alonzo Church)
- Anglický matematik, logik, kryptoanalytik, informatik
- Formalizácia pojmov algoritmus a výpočet – Turingov stroj
- Problém zastavenia
- □ 1950 Môžu stroje myslieť? Turingov test

Turingov test

Myslíte si, že Ul je pre ľudstvo hrozbou?

Umelá inteligencia

- Disciplína, ktorá skúma rozumných konateľov a spôsoby ich zostrojovania
- Konateľ (agent) je systém, ktorý vníma a koná
- Ústrednou hypotézou v tomto prístupe je chápanie inteligencie ako rozumného konania

Umelá inteligencia vs strojové učenie vs hlboké učenie

Since an early flush of optimism in the 1950s, smaller subsets of artificial intelligence – first machine learning, then deep learning, a subset of machine learning – have created ever larger disruptions.

Rozumný konateľ

- Ideálny rozumný konateľ by mal pre ľubovoľnú možnú postupnosť vnemov vykonať na základe faktov získaných postupnosťou vnemov a všetkých znalostí, ktoré má v sebe zapísané takú akciu, od ktorej sa očakáva čo najväčšie ohodnotenie mierou úspešnosti
 - vstup: postupnosť vnemov
 - výstup: konanie (akcia), ktoré je reakciou na postupnosť vnemov
- Navrhnúť ideálny rozumný konateľ znamená špecifikovať, akú akciu má vykonať ako odpoveď na ľubovoľnú postupnosť vnemov
- □ Rozumný konateľ = program + technické zariadenie

Konateľ – agent

Agent

- Vnem: vstup, ktorý agent získa vnímaním
- Postupnosť vnemov: úplná história všetkého, čo agent vnímal
- Funkcia: zobrazenie l'ubovol'nej postupnosti vnemov do akcie
- Program: vykonáva sa na fyzickej architektúre agenta, realizuje jeho funkciu
- □ Agent = architektúra + program

Opis úlohy agenta

- Úspešnosť (performance measure)
 - objektívna miera hodnotiaca úspešnosť konania agenta
- □ Prostredie
- Aktuátory
- Senzory

Automatizovaný taxík

- □ Úspešnosť:
 - bezpečnosť, dosiahnutie cieľa, zisk, dodržiavanie predpisov, pohodlie zákazníka, ...
- □ Prostredie:
 - európska cestná sieť, iní účastníci cestnej premávky, chodci, počasie
- Aktuátory:
 - volant, rýchlostný pedál, brzda, klaksón, displej, ...
- □ Senzory:
 - tachometer, otáčkomer, snímače stavu motora, okolia (napr. kamera, IR kamera, LiDAR), GPS, ...

Internetový kupujúci

- □ Úspešnosť:
 - cena, kvalita, vhodnosť, efektívnosť, ...
- □ Prostredie:
 - súčasné aj budúce webové sídla, predajcovia, dodávatelia, ...
- □ Aktuátory:
 - displej pre používateľa, prechod na inú stránku podľa URL, ...
- □ Senzory:
 - HTML stránky (text, grafika, skripty), ...

Inteligentný vysávač

- 2 miesta: miestnost' A, miestnost' B
- Agent vníma miesto a jeho stav (čisté/špinavé) (dirty/not dirty)
- □ Akcie: doľava, doprava, vysávaj, no_op

Vysávací agent

Percept sequence	Action
[A, Clean]	Right
[A, Dirty]	Suck
[B, Clean]	Left
[B, Dirty]	Suck
[A, Clean], [A, Clean]	Right
[A, Clean], [A, Dirty]	Suck
1	

```
function Reflex-Vacuum-Agent([location,status]) returns an action if status = Dirty then return Suck else if location = A then return Right else if location = B then return Left
```

- Aký je "správny" spôsob vyplnenia tabuľky?
- "Správny" spôsob robí agenta dobrým/inteligentným

Rozumnost'

- □ "robit' správnu vec", formálnejšie:
 - rozumný agent je taký, ktorý koná tak, aby dosahoval najlepší výsledok alebo, ak je neurčitosť, najlepší očakávaný výsledok
- Otázky:
 - Čo to znamená "najlepší"?
 - Čo je výsledok?
 - Čo to stojí dosiahnuť výsledok?
 - Čo všetko treba na vypočítanie "očakávaného" výsledku?

Rozumnost'

- □ Čo je rozumné závisí od:
 - kritérií úspešnosti
 - postupnosti vnemov
 - agentových apriorných znalostí o prostredí
 - akcií, ktoré dokáže vykonávať
- □ Rozumný agent si vyberá akciu:
 - tak, aby maximalizovala úspešnosť agenta
 - na základe faktov daných postupnosťou vnemov
 - na základe apriórnych znalostí o danom prostredí

Miera úspešnosti

- Opatrne s voľbou!
 - vyšávací agent: merať úspešnosť množstvom špiny vyčistenej počas 8-hodinovej smeny
- Navrhovať podľa toho, čo chceme dosiahnuť v prostredí, nie podľa toho, ako sa má agent správať

Je vysávací agent rozumný?

- □ Áno, za týchto predpokladov:
 - mierka úspešnosti: 1 bod za každú čistú miestnosť
 - pozná rozmiestnenie miestností ale nepozná ktoré sú špinavé ani ktorá má byť jeho začiatočná pozícia
 - □ čisté miestnosti zostávajú čisté, vysávanie čistí
 - pohyby dol'ava alebo doprava nezavedú agenta mimo prostredie
 - dostupné akcie: doľava, doprava, vysávaj, NoOp
 - agent vie, kde sa nachádza a je to miesto špinavé

Je vysávací agent rozumný?

- Ale za iných predpokladov by vysávací agent nebol rozumný
 - mierka úspešnosti určená pokutou za zbytočný pohyb
 - ak sa čisté miesta môžu stať špinavými
 - ak celé prostredie nie je známe
 - **-** ...

Viac o rozumnosti

- □ Rozumnost' nie je vševedomost'
- □ Rozumnosť nie je jasnovidnosť
- □ Rozumnosť nemusí zaručene viesť k úspechu!
- Rozumné správanie často vyžaduje
 - zbieranie informácií: skúmanie neznámeho prostredia
 - učenie sa: zistiť, ktorá akcia pravdepodobne povedie k želanému výsledku (a získať spätnú väzbu z prostredia o úspechu)
- Takže rozumný agent by mal byť autonómny (nespolieha sa výlučne len na apriórnu vedomosť jeho návrhára, učí sa zo svojej skúsenosti)

Prostredie agenta

- □ Prostredie môže byť
 - skutočné alebo umelé
 - jednoduché (napr. dopravníkový pás) alebo zložité (letový simulátor)
- Rozhoduje zložitosť vzťahov medzi správaním sa robota, postupnosťou vnemov generovanou prostredím a mierou pre úspešnosť

- Úplná alebo čiastočná pozorovateľnosť
 - úplná: agentove senzory sprístupňujú úplný stav prostredia v každom okamihu
 - efektívne úplná: (stačí ak) senzory rozpoznajú všetky aspekty relevantné pre výber akcie (tak, ako určuje miera pre úspešnosť)
 - úplná: agent nepotrebuje vnútorný stav na reprezentovanie stavu prostredia

- Deterministické vs stochastické
 - deterministické ak je nasledujúci stav prostredia úplne určený súčasným stavom a akciou, ktorú agent vykoná
 - čiastočne pozorovateľné prostredie sa môže javiť ako stochastické

- □ Epizodické vs sekvenčné
 - Epizodické prostredie: agentova skúsenosť sa člení na atomické epizódy: každá epizóda pozostáva z vnímania a potom vykonania jednej akcie
 - epizódy sú nezávislé: d'alšia epizóda nezávisí od akcií vykonaných pri predchádzajúcich epizódach
 - napr. klasifikačná úloha: rozpoznanie chybnej súčiastky na montážnej linke
 - sekvenčné: súčasné rozhodnutie môže ovplyvniť všetky budúce rozhodnutia
 - napr. ťah v šachu

- □ Statické vs dynamické
 - Dynamické: prostredie sa môže meniť počas toho, keď agent hľadá ďalšiu akciu
 - čiastočne dynamické (semidynamické): ohodnotenie úspešnosti sa môže meniť v čase, hoci prostredie sa nemení (napr. šach s hodinami)
- □ Diskrétne vs spojité
 - tento rozdiel sa môže vzťahovať na stav prostredia, spôsob práce s časom, vnemy alebo akcie

Jeden agent vs viac agentov

- Ako rozhodnúť, či nejaký iný objekt sa má chápať ako agent?
 - je to agent alebo len stochasticky sa správajúci objekt (napr. vlna na pobreží)?
- Základná otázka: dá sa jeho správanie opísať ako maximalizácia úspešnosti v závislosti od akcií "nášho" agenta?
- Viackonateľské (multiagentové) prostredie sa dá klasifikovať ako (čiastočne) súťaživé a/alebo (čiastočne) spolupracujúce
 - napr. taxíky sú čiastočne súťaživé a čiastočne spolupracujúce

Príklady prostredia

- Solitér: pozorovateľné, deterministické, sekvenčné, diskrétne, statické, jednoagentové
- Backgammon: pozorovateľné, deterministické,
 sekvenčné, diskrétne, semi-statické, multiagentové
- Internetové nakupovanie: čiastočne pozorovateľné, čiastočne deterministické, sekvenčné, semi-statické, diskrétne, jednoagentové (okrem aukcií, napr ebay)
- Jazdenie v taxíku ("skutočný svet"): čiastočne pozorovateľné, nedeterministické, sekvenčné, spojité, multiagentové

Príklady rozumných agentov

Druh agenta	Vnemy	Akcie	Ciele	Prostredie
lekársky diag- nostický systém	symptómy, nálezy, odpo- vede pacienta	otázky, testy, liečebné postupy	zdravý pacient, min. náklady	pacient, nemocnica
systém analýzy satelitných sní- mok	body snímku rôznej inten- zity a farby	vytlačenie ozná- menia o katego- rizácii scény	správna kate- gorizácia	obrazy z obie- hajúceho satelitu
robot na triede- nie súčiastok	body snímku rôznej inten- zity	uchopenie súčias- tky, umiestnenie do koša	súčiastky sú v správnych košoch	bežiaci pás so súčiastkami rôzneho druhu
systém riadenia rafinérie	zosnímané hodnoty tep- loty a tlaku	otvorenie/uzavretie ventilov, prispô- sobenie teploty	ma x imálna čistota, výťa- žok a bezpeč- nosť	rafinéria
vodič ta x i	kamery, GPS, tachometer, mikrofón	smerovanie, brzdenie, zrýchľovanie, komunikácia s pasažierom	bezpečná, poho- dlná, legálna, rýchla doprava do cieľa	cesty, dopravné značky, semafory, chodci a zákazníci
systém na pod- poru učenia sa angličtiny	slová napísané klávesnicou	vytlačenie cvičení, návodov, opráv	ma x . počet bodov študenta na teste	množina študentov

Údaje, informácie a poznatky (znalosti)

Údaje

- numerické alebo alfanumerické reťazce, ktoré samé osebe nemajú žiadny význam
- □ Informácie
 - údaje organizované tak, že majú význam pre toho, kto ich prijíma
- Poznatky (znalosti)
 - reprezentujeme symbolicky položku po položke v báze poznatkov
 - odvodzovaním nad bázou poznatkov a údajmi o probléme získava systém schopnosť riešiť problémy z nejakého okruhu problémov, čiže určitú znalosť tejto problematiky.

Ohraničená rozumnosť

- Ohraničenými výpočtovými prostriedkami (veľkosť pamäti, čas, dokedy treba rozhodnúť o ďalšom kroku)
- Ohraničenými nákladmi na úsilie, ktoré možno vynaložiť na získanie údajov z prostredia (ohraničenie doby, ktorú získavanie môže najviac trvať, ohraničenie finančných nákladov získavania apod.)
- Neúplnosťou a prípadnou protirečivosťou poznatkov v jeho báze
- Neurčitosťou niektorých poznatkov
- Nepresnosťou niektorých údajov

Hl'adanie riešenia

- Hľadanie riešenia je prístup k riešeniu problémov, pri ktorom nevychádzame z algoritmu riešenia problému
- Riešenie buď nepoznáme (možno preto, že ani neexistuje), alebo ho poznáme, ale pre svoju neefektívnosť je prakticky nepoužiteľné
- Namiesto toho vychádzame z algoritmu, ako riešenie hľadať

Hl'adanie riešenia problému

 Ak si rozumný agent prostredníctvom vnemu určí cieľ, môže problém vyriešiť vyhľadaním postupností akcií, vedúcich do cieľa

```
function JEDNODUCHÝ-KONATEĽ-RIEŠIACI-PROBLÉM(vnem) returns akcia
   static: akcie, postupnosť akcií, na začiatku prázdna
                stav, nejaký opis súčasného stavu sveta
                cieľ, cieľ, na začiatku prázdny
                problém, vyjadrenie problému
   stav ← OBNOV-STAV(stav, vnem)
   if akcie je prázdna then
        ciel' ← VYJADRI-CIEĽ(stav)
        problém ← VYJADRI-PROBLÉM(stav, cieľ)
        akcie ← HĽADAJ(problém)
   akcia ← VYBER-PRVÚ(akcie, stav)
   akcie ← ZVYŠOK-AKCIÍ(akcie, stav)
return akcia
```

Definícia typu problému

- Na vyjadrenie problému treba poznať niekoľko základných informácií:
 - Začiatočný stav
 - Množinu operátorov
 - Množinu všetkých stavov
 - Cieľový test
 - Cenu cesty

datatype PROBLÉM

components: STAVY, ZAČIATOČNÝ-STAV, OPERÁTORY,

CIEĽOVÝ-TEST, CENA-CESTY

Stavový priestor

Strom hl'adania

všimnime si, že pri hľadaní sa niektoré stavy môžu navštíviť viac ráz

Reálne problémy – problém nájdenia cesty

- Problém naplánovania najvýhodnejšej cestovnej trasy z mesta A do mesta B
 - stavy: mestá, ktoré sa uvažujú pri hľadaní
 - začiatočný stav: mesto A
 - operátory: možné presuny z jedného mesta do druhého (existuje cesta na mape)
 - cieľový test: "Sme v meste B?"
 - cena cesty: aplikácia operátora, t.j. presun z jedného mesta do druhého, má cenu rovnajúcu sa vzdialenosti medzi týmito mestami

Reálne problémy – problém obchodného cestujúceho

http://en.wikipedia.org/wiki/Traveling_salesman_problem

Reálne problémy – autonómne roboty

- Autonómny robot pri svojej činnosti rieši množstvo problémov:
 - Rozhodovanie, ktorú z možných akcií je treba vykonať
 - Predchádzanie kolíziám
 - Plánovanie trajektórií
 - Interpretácia veľkého množstva numerických dát, poskytovaných senzormi do kompaktnej zmysluplnej symbolickej reprezentácie
 - Diagnostikovanie, prečo niečo nedopadlo podľa očakávaní
 - Atd'. ...
- Na riešenie týchto problémov je nevyhnutné používať rôzne metódy prehľadávania, pričom v jednom časovom okamihu sa môže vykonávať viacero prehľadávaní súčasne

ĎAKUJEM ZA POZORNOSŤ

lukas.kohutka@stuba.sk