# Nonlinear Modeling

## Nonlinear Relations wrt X – Linear wrt $\beta^s$

1) Polynomial Models:  $E\{Y_i\} = \beta_0 + \beta_1 X_i + \beta_2 X_i^2$ 

$$\frac{\partial E\{Y_i\}}{\partial X_i} = \frac{\partial}{\partial X_i} \left[ \beta_0 + \beta_1 X_i + \beta_2 X_i^2 \right] = 0 + \beta_1 + 2\beta_2 X_i = h(X_i)$$

$$\frac{\partial E\{Y_i\}}{\partial \beta_0} = 1 \qquad \frac{\partial E\{Y_i\}}{\partial \beta_1} = X_i \qquad \frac{\partial E\{Y_i\}}{\partial \beta_2} = X_i^2 \quad \text{None are functions of } \boldsymbol{\beta} = \begin{bmatrix} \beta_0 \\ \beta_1 \\ \beta_2 \end{bmatrix}$$

2) Transformed Variable Models: 
$$E\left\{\sqrt{Y_i}\right\} = \beta_0 + \beta_1 \ln\left(X_{i1}\right) + \beta_2 \left(\frac{1}{X_{i2}}\right)$$

$$\frac{\partial E\left\{\sqrt{Y_{i}}\right\}}{\partial X_{i1}} = \beta_{1}\left(\frac{1}{X_{i1}}\right) = h_{1}\left(X_{i1}\right) \qquad \frac{\partial E\left\{\sqrt{Y_{i}}\right\}}{\partial X_{i2}} = -\beta_{2}\left(\frac{1}{X_{i2}^{2}}\right) = h_{2}\left(X_{i2}\right)$$

$$\frac{\partial E\{Y_i\}}{\partial \beta_0} = 1 \qquad \frac{\partial E\{Y_i\}}{\partial \beta_1} = \ln(X_{i1}) \qquad \frac{\partial E\{Y_i\}}{\partial \beta_2} = \left(\frac{1}{X_{i2}}\right) \quad \text{None are functions of } \mathbf{\beta} = \begin{bmatrix} \beta_0 \\ \beta_1 \\ \beta_2 \end{bmatrix}$$

In each case:  $E\{Y_i\} = f(\mathbf{X_i}, \boldsymbol{\beta}) = \mathbf{X_i'}\boldsymbol{\beta}$ 

Case 1: 
$$\mathbf{X}'_{i} = \begin{bmatrix} 1 & X_{i} & X_{i}^{2} \end{bmatrix}$$
 Case 2:  $\mathbf{X}'_{i} = \begin{bmatrix} 1 & \ln(X_{i1}) & \frac{1}{X_{i2}} \end{bmatrix}$ 

## Nonlinear Regression Models

Nonlinear Regression models often use  $\gamma$  as vector of coefficients to distinguish from linear models: Exponential Regression Models (Often used for modeling growth, where rate of growth changes):

$$E\{Y_i\} = \gamma_0 \exp(\gamma_1 X_i) \implies \frac{\partial E\{Y_i\}}{\partial \gamma_0} = \exp(\gamma_1 X_i) \qquad \frac{\partial E\{Y_i\}}{\partial \gamma_1} = \gamma_0 X_i \exp(\gamma_1 X_i) \qquad \text{functions of } \gamma$$

$$f(\mathbf{X_i}, \gamma) = \gamma_0 \exp(\gamma_1 X_i) \neq \mathbf{X_i'} \gamma$$

More general exponential model (with errors independent and  $N(0, \sigma^2)$ ):

$$Y_i = \gamma_0 + \gamma_1 \exp(\gamma_2 X_i) + \varepsilon_i$$
 Typically,  $\gamma_0 > 0$ ,  $\gamma_1 < 0$ ,  $\gamma_2 < 0$ 

- $\Rightarrow$  Intercept:  $E(Y_i | X_i = 0) = \gamma_0 + \gamma_1(1) = \gamma_0 + \gamma_1$
- $\Rightarrow$  Asymptote:  $E(Y_i | X_i \rightarrow \infty) = \gamma_0 + \gamma_1(1) = \gamma_0$

$$\Rightarrow \text{"Half-way" Point: } E\left(Y_i \mid X_i = \frac{0.693}{|\gamma_2|}\right) = \gamma_0 + \gamma_1 \exp\left(\gamma_2 \left(\frac{0.693}{|\gamma_2|}\right)\right) = \gamma_0 + \gamma_1 \exp\left(-0.693\right) = \gamma_0 + \left(\frac{\gamma_1}{2}\right)$$

## Data Description - Orlistat

- 163 Patients assigned to one of the following doses (mg/day) of orlistat: 0, 60,120,150,240,300,480,600,1200
- Response measured was fecal fat excretion (purpose is to inhibit fat absorption, so higher levels of response are considered favorable).
- Plot of raw data displays a generally increasing but nonlinear pattern and large amount of variation across subjects.



## Nonlinear Regression Model - Example

$$Y = \gamma_0 + \frac{\gamma_1 x}{\gamma_2 + x} + \varepsilon$$

Simple Maximum Effect model:

- □  $\gamma_0$  ≡ Mean Response at Dose 0
- $\gamma_1 \equiv$  Maximal Effect of Orlistat ( $\gamma_0 + \gamma_1 =$  Maximum Mean Response)
- $\gamma_2 \equiv$  Dose providing 50% of maximal effect (ED<sub>50</sub>)

### **Nonlinear Least Squares**

$$f\left(\mathbf{X}_{i},\boldsymbol{\gamma}\right) = f_{i}\left(\boldsymbol{\gamma}\right) = f\left(\gamma_{0},\gamma_{1},\gamma_{2}\right) = \gamma_{0} + \frac{\gamma_{1}X_{i}}{\gamma_{2} + X_{i}}$$

$$\frac{\partial f\left(\mathbf{X}_{i},\boldsymbol{\gamma}\right)}{\partial \boldsymbol{\gamma}^{'}} = F_{i}\left(\boldsymbol{\gamma}\right) = \frac{\partial f_{i}\left(\boldsymbol{\gamma}\right)}{\partial \boldsymbol{\gamma}^{'}} = \begin{bmatrix} 1 & \frac{X_{i}}{\gamma_{2} + X_{i}} & \frac{-\gamma_{1}X_{i}}{\left(\gamma_{2} + X_{i}\right)^{2}} \end{bmatrix}$$

$$\mathbf{Y} = \begin{bmatrix} Y_{1} \\ \vdots \\ Y_{n} \end{bmatrix} \qquad \mathbf{f}\left(\boldsymbol{\gamma}\right) = \begin{bmatrix} f_{1}\left(\boldsymbol{\gamma}\right) \\ \vdots \\ f_{n}\left(\boldsymbol{\gamma}\right) \end{bmatrix} = \begin{bmatrix} \gamma_{0} + \frac{\gamma_{1}X_{1}}{\gamma_{2} + X_{1}} \\ \vdots \\ \gamma_{0} + \frac{\gamma_{1}X_{n}}{\gamma_{2} + X_{n}} \end{bmatrix}$$

$$\mathbf{F}\left(\boldsymbol{\gamma}\right) = \begin{bmatrix} 1 & \frac{X_{1}}{\gamma_{2} + X_{1}} & \frac{-\gamma_{1}X_{1}}{\left(\gamma_{2} + X_{n}\right)^{2}} \\ \vdots & \vdots & \vdots \\ 1 & \frac{X_{n}}{\gamma_{2} + X_{n}} & \frac{-\gamma_{1}X_{n}}{\left(\gamma_{2} + X_{n}\right)^{2}} \end{bmatrix}$$

**F** acts like the **X** matrix in linear regression (but depends on parameters)

### Nonlinear Least Squares

Goal: Choose  $\gamma_0, \gamma_1, \gamma_2$  that minimize error sum of squares:

$$Q = SSE(\gamma) = \sum_{i=1}^{n} \left( Y_{i} - \left[ \gamma_{0} + \frac{\gamma_{1} X_{i}}{\gamma_{2} + X_{i}} \right] \right)^{2} =$$

$$= \left( \mathbf{Y} - \mathbf{f}(\gamma) \right)' \left( \mathbf{Y} - \mathbf{f}(\gamma) \right)$$

$$\frac{\partial Q}{\partial \gamma_{j}} = -2 \sum_{i=1}^{n} \left( Y_{i} - \left[ \gamma_{0} + \frac{\gamma_{1} X_{i}}{\gamma_{2} + X_{i}} \right] \right) F_{i}(\gamma_{j}) \quad j = 0, 1, 2$$

$$\frac{\partial Q}{\partial \gamma'} = -2 \left[ \mathbf{Y} - \mathbf{f}(\gamma) \right]^{T} \mathbf{F}(\gamma) \stackrel{set}{=} \left[ 0 \quad 0 \quad 0 \right]$$

### **Estimated Variance-Covariance Matrix**

$$s^{2} \begin{Bmatrix} \hat{\gamma} \end{Bmatrix} = s^{2} \begin{pmatrix} \hat{\mathbf{F}} & \hat{\mathbf{F}} \end{pmatrix}^{-1}$$

$$s^{2} = \frac{\begin{pmatrix} \mathbf{Y} - \hat{\mathbf{f}} \end{pmatrix}^{\mathbf{T}} \begin{pmatrix} \mathbf{Y} - \hat{\mathbf{f}} \end{pmatrix}^{\mathbf{T}}}{n - p}$$

$$s \begin{Bmatrix} \hat{\gamma}_{i} \end{Bmatrix} = s \sqrt{\begin{pmatrix} \hat{\mathbf{F}} & \hat{\mathbf{F}} \end{pmatrix}^{-1}}$$

$$s \begin{Bmatrix} \hat{\gamma}_{i} \end{Bmatrix} = s \sqrt{\begin{pmatrix} \hat{\mathbf{F}} & \hat{\mathbf{F}} \end{pmatrix}^{-1}}$$

Note: KNNL uses g for γ and D for F

## Orlistat Example

- Reasonable Starting Values:
  - $-\gamma_0$ : Mean of 0 Dose Group: 5
  - $\gamma_1$ : Difference between highest mean and dose 0 mean: 33-5=28
  - $-\gamma_2$ : Dose with mean halfway between 5 and 33: 160
- Create Vectors Y and  $f(\gamma^0)$
- Generate matrix  $F(\gamma^0)$
- Obtain first "new" estimate of  $\gamma$
- Continue to Convergence

### Orlistat Example – Iteration History (Tolerance = .0001)

| iteration | g0     | g1      | g2    | SSE     | Delta(g)    |
|-----------|--------|---------|-------|---------|-------------|
| 0         | 5.0000 | 28.0000 | 160.0 | 13541.6 |             |
| 1         | 6.2379 | 28.5863 | 140.9 | 12945.5 | 365.5745418 |
| 2         | 6.1771 | 28.1281 | 133.7 | 12942.9 | 52.82513814 |
| 3         | 6.1507 | 27.9163 | 129.9 | 12942.2 | 14.44158887 |
| 4         | 6.1361 | 27.7967 | 127.8 | 12942.0 | 4.506448063 |
| 5         | 6.1277 | 27.7272 | 126.5 | 12941.9 | 1.510150161 |
| 6         | 6.1227 | 27.6861 | 125.8 | 12941.9 | 0.526393989 |
| 7         | 6.1197 | 27.6615 | 125.4 | 12941.9 | 0.187692352 |
| 8         | 6.1180 | 27.6467 | 125.1 | 12941.9 | 0.067822683 |
| 9         | 6.1169 | 27.6377 | 125.0 | 12941.9 | 0.024703325 |
| 10        | 6.1162 | 27.6323 | 124.9 | 12941.9 | 0.009040833 |
| 11        | 6.1158 | 27.6291 | 124.8 | 12941.9 | 0.003318268 |
| 12        | 6.1156 | 27.6271 | 124.8 | 12941.9 | 0.001220029 |
| 13        | 6.1155 | 27.6259 | 124.8 | 12941.9 | 0.000449042 |
| 14        | 6.1154 | 27.6251 | 124.7 | 12941.9 | 0.000165379 |
| 15        | 6.1153 | 27.6247 | 124.7 | 12941.9 | 6.09317E-05 |

$$\hat{Y} = 6.12 + \frac{27.62X}{124.7 + X}$$

### Fitted Equation, Raw Data - FFE vs ODD



## Variance Estimates/Confidence Intervals

$$s^{2} = \frac{\sum_{i=1}^{163} \left( Y_{i} - f_{i} \begin{pmatrix} \hat{\gamma} \end{pmatrix} \right)^{2}}{163 - 3} = 80.89$$

$$\mathbf{s}^{2} \left\{ \hat{\gamma} \right\} = s^{2} \begin{pmatrix} \hat{\mathbf{F}} & \hat{\mathbf{F}} \end{pmatrix}^{-1} = \begin{bmatrix} 1.1594 & -0.7219 & 15.609 \\ -0.7219 & 12.081 & 130.14 \\ 15.609 & 130.14 & 2238.76 \end{bmatrix}$$

| Parameter  | Estimate | Std. Error | 95% CI          |
|------------|----------|------------|-----------------|
| <b>7</b> 0 | 6.12     | 1.08       | (3.96, 8.28)    |
| $\gamma_1$ | 27.62    | 3.48       | (20.66, 34.58)  |
| $\gamma_2$ | 124.7    | 47.31      | (30.08, 219.32) |

## Notes on Nonlinear Least Squares

Large-Sample Theory:

When  $\varepsilon_i \sim N(0, \sigma^2)$  independent, for large n:  $\hat{\gamma}$  is approximately normal  $E\left\{\hat{\gamma}\right\} \approx \gamma$  Approximate  $\sigma^2\left\{\hat{\gamma}\right\}$  estimated by  $\hat{\mathbf{s}}^2\left\{\hat{\gamma}\right\} = MSE\left(\hat{\mathbf{F}},\hat{\mathbf{F}}\right)^{-1}$ 

$$\Rightarrow \hat{\gamma} \sim N(\gamma, \sigma^2(\mathbf{F'F})^{-1})$$
 (Approximately)

#### For small samples:

- When errors are normal, independent, with constant variance, we can often use the t-distribution for tests and confidence intervals (software packages do this implicitly)
- When the extent of nonlinearity is extreme, or normality assumptions do not hold, should use bootstrap to estimate standard errors of regression coefficients

## **Example**

Many patients get concerned when a medical test involves an injection of radioactive material. For example, to scan a gallbladder, a few drops of Technetium-99m isotope are used.

Half of the Technetium-99m would be gone in about 6 hours. However, it takes about 24 hours for the radiation levels to reach what we are exposed to in day-to-day activities.

Below is given the relative intensity of radiation as a function of time.

| $t(\mathrm{hrs})$ | 0     | 1     | 3     | 5     | 7     | 9     |
|-------------------|-------|-------|-------|-------|-------|-------|
| $\gamma$          | 1.000 | 0.891 | 0.708 | 0.562 | 0.447 | 0.355 |

If the level of the relative intensity of radiation is related to time via an exponential formula

 $\gamma = Ae^{\lambda t}$ 

The value of the regression constants A and  $\lambda$ ,

# Example contd...

| i                | $t_i$   | $y_i$ | $y_i = \ln y_i$ | $t_i y_i$ | $t_i^2$ |
|------------------|---------|-------|-----------------|-----------|---------|
| 1                | 0       | 1     | 0.00000         | 0.0000    | 0.0000  |
| 2                | 1       | 0.891 | -0.11541        | -0.11541  | 1.0000  |
| 3                | 3       | 0.708 | -0.34531        | -1.0359   | 9.0000  |
| 4                | 5       | 0.562 | -0.57625        | -2.8813   | 25.0000 |
| 5                | 7       | 0.447 | -0.80520        | -5.6364   | 49.0000 |
| 6                | 9       | 0.355 | -1.0356         | -9.3207   | 81.0000 |
| $\sum_{i=1}^{6}$ | 25.0000 |       | -2.8778         | -18.990   | 165.00  |

## Example contd...

$$egin{aligned} A &= e^{a_0} \ &= e^{-2.6150 imes 10^{-4}} \ &= 0.99974 \end{aligned}$$

$$\lambda = a_1 = -0.11505$$