Àlgebra Multilineal i Geometria

Grau en Matemàtiques, FME (UPC)

Tema 3: Àlgebra Multilineal: Tensors

Curs 2020/2021

- **1.** Sigui $f: \mathbb{R}^3 \longrightarrow \mathbb{R}^2$ una aplicació lineal definida per f(x,y,z) = (2x+y,y-z) i siguin $\mathcal{B}_1 = \{u_1 = (1,1,0), u_2 = (0,1,0), u_3 = (0,1,-1)\}$ i $\mathcal{V}_1 = \{v_1 = (1,0), v_2 = (1,1)\}$ bases de \mathbb{R}^3 i \mathbb{R}^2 respectivament.
 - (a) Sigui $\mathcal{B}_2^* = \{e_1^*, e_2^*, e_3^*\}$ la base dual de la base canònica de \mathbb{R}^3 . Si $\mathcal{B}_1^* = \{u_1^*, u_2^*, u_3^*\}$ és la base dual de \mathcal{B}_1 , és certa la igualtat $u_1^* = e_1^* + e_2^*$?
 - (b) Trobeu les components de $w = 2e_1^* + e_2^* e_3^*$ en base \mathcal{B}_1^* .
 - (c) Determineu la matriu $M_{\mathcal{V}_1^*,\mathcal{B}_1^*}(f^*)$ de l'aplicació dual de f en les bases \mathcal{V}_1^* i \mathcal{B}_1^* , duals de \mathcal{V}_1 i \mathcal{B}_1 , respectivament.
- **2.** Siguin E i F **k**-espais vectorials de dimensió finita. Doneu un isomorfisme canònic (és a dir, que és independent d'eleccions de bases) entre $\mathcal{L}_2(E,F;\mathbf{k})$ i $\mathcal{L}(E;F^*)$. (Nota: recordeu que per espais vectorials E,F, denotem per $\mathcal{L}_2(E,F;\mathbf{k})$ el conjunt d'aplicacions bilineals de $E \times F$ en \mathbf{k}).
- **3.** Sigui E un espai vectorial sobre un $\cos \mathbf{k}$. Sigui $\varphi: E \times E^* \to \mathbf{k}$ definida per $\varphi(x, \omega) = \omega(x)$.
 - (1) Proveu que φ és un tensor mixte 1-covariant i 1-contravariant.
 - (2) Sigui F un subespai vectorial de E i G un subespai vectorial de E^* . Proveu que $F^{\perp} = \{\omega \in E^* \mid \varphi(x,\omega) = 0 \text{ per a tot } x \text{ de } F\}$ i $G^{\perp} = \{x \in E \mid \varphi(x,\omega) = 0 \text{ per a tot } \omega \text{ de } G\}$ són subespais vectorials de E^* i E, respectivament, i que dim F + dim F^{\perp} = dim E i dim G + dim G^{\perp} = dim E.
 - (3) Proveu que $F^{\perp \perp} = F$ i que $G^{\perp \perp} = G$.
 - (4) $F_1 \subseteq F_2 \iff F_1^{\perp} \supseteq F_2^{\perp} \text{ i } G_1 \subseteq G_2 \Leftrightarrow G_1^{\perp} \supseteq G_2^{\perp}$.
 - (5) $(F_1 + F_2)^{\perp} = F_1^{\perp} \cap F_2^{\perp} \text{ i } (G_1 + G_2)^{\perp} = G_1^{\perp} \cap G_2^{\perp}.$
 - (6) $(F_1 \cap F_2)^{\perp} = F_1^{\perp} + F_2^{\perp} i (G_1 \cap G_2)^{\perp} = G_1^{\perp} + G_2^{\perp}.$
 - (7) Hi ha bijecció $Sev(E) \leftrightarrow Sev(E^*)$, definida per $F \to F^{\perp}$ i $G \to G^{\perp}$.
- **4.** Si $E = \mathbb{R}^3$, proveu que $f: E \times E \to \mathbb{R}$, definida per $f(x,y) = 2x_1y_3 3x_2y_3 + x_2y_1 x_3y_2$, és un tensor 2-covariant. Expresseu-lo en la base $\{e_i^* \otimes e_j^*\}_{1 \leq i,j \leq 3}$, on $\mathcal{B} = \{e_1, e_2, e_3\}$ indica la base canònica d'E i $\mathcal{B}^* = \{e_1^*, e_2^*, e_3^*\}$ la seva base dual. Trobeu la matriu de f en la base \mathcal{B} .
- **5.** Sigui $\mathcal{B} = \{e_1, e_2\}$ una base de E. Proveu que el tensor $e_1 \otimes e_2 + e_2 \otimes e_1 \in T^2(E)$ no es pot escriure com $x \otimes y$ amb $x, y \in E$.
- **6.** Sigui $\mathcal{B} = \{u_1, u_2, u_3\}$ una base de l'espai vectorial E. Sigui $\Phi : E \to T^2(E)$, definida per $\Phi(x) = u_1 \otimes x$. Proveu que Φ és una aplicació lineal injectiva i trobeu la matriu en bases naturals.
- 7. Sigui $\mathcal{B} = \{e_1, e_2\}$ la base de canònica de \mathbb{R}^2 i $\mathcal{B}^* = \{e_1^*, e_2^*\}$ la seva base dual. Considereu el 3-tensor covariant $\varphi : \mathbb{R}^2 \times \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}$, definit per:

$$\varphi = e_1^* \otimes e_1^* \otimes e_1^* + e_1^* \otimes e_1^* \otimes e_2^* \otimes e_2^* - e_1^* \otimes e_2^* \otimes e_1^* - e_2^* \otimes e_1^* \otimes e_1^* + e_2^* \otimes e_2^* \otimes e_1^* + e_2^* \otimes e_2^* \otimes e_2^*.$$

Trobeu $\varphi((x_1, x_2), (y_1, y_2), (z_1, z_2))$. És φ un tensor simètric?

- **8. Canvi de base.** Siguin $\mathcal{B}_1 = \{u_1, \dots, u_n\}$ i $\mathcal{B}_2 = \{v_1, \dots, v_n\}$ bases de l'espai vectorial E amb $v_j = \sum_i s_j^i u_i$. Sigui $S = M_{\mathcal{B}_2, \mathcal{B}_1} = (s_j^i)$, la matriu dels vectors de \mathcal{B}_2 en funció dels de \mathcal{B}_1 , entenent que el super-índex denota la fila i el sub-índex, la columna. Sigui $T = (S^\top)^{-1}$. Denotem $T = (t_i^i)$.
 - (a) Proveu que si $\mathcal{B}_1^* = \{u_1^*, \dots, u_n^*\}$ i $\mathcal{B}_2^* = \{v_1^*, \dots, v_n^*\}$ són les bases duals respectives i $f \in T_2(E)$ és tal que

$$f = \sum_{i,j} \lambda_{ij} u_i^* \otimes u_j^*, \qquad f = \sum_{i,j} \mu_{ij} v_i^* \otimes v_j^*, \text{ aleshores } \mu_{ij} = \sum_{k,l} s_i^k s_j^l \lambda_{kl}.$$

- (b) Trobeu una fórmula anàloga per a un tensor contravariant $\varphi \in T^2(E)$.
- (c) Si $F \in T_1^1(E)$ és

$$F = \sum_{i,j} \lambda_{ij} \, u_i^* \otimes u_j = \sum_{i,j} \mu_{ij} \, v_i^* \otimes v_j \,, \text{ proveu que } \mu_{ij} = \sum_{k,l} s_i^k t_j^l \lambda_{kl}.$$

- (d) Comproveu que si $F \in T_2(E)$, aleshores $\overline{A} = S^t A S$, i que si $G \in T_1^1(E)$, aleshores $\overline{A} = S^t A (S^t)^{-1}$.
- **9.** Sigui $\mathcal{B} = \{e_1, e_2\}$ una base de l'espai vectorial E i siguin $u_1 = 2e_1 + e_2$, $u_2 = -e_1 + 3e_2$. Trobeu les components del tensor $t = -e_1^* \otimes e_1^* + 2e_2^* \otimes e_1^* + e_2^* \otimes e_2^* \in T_2(E)$ en la base $\{u_i^* \otimes u_j^*\}_{1 \leq i,j \leq 2}$.
- 10. Considerem la forma bilineal $\varphi:\mathbb{R}^2\times\mathbb{R}^2\to\mathbb{R}$ definida per

$$\varphi(x,y) = \varphi((x_1, x_2), (y_1, y_2)) = x_1y_1 + x_2y_2 - x_1y_2 + 2x_2y_1.$$

- (a) Trobeu $M_{\mathcal{B}_1}(\varphi)$, la matriu de φ en la base canònica $\mathcal{B}_1 = \{e_1, e_2\}$.
- (b) Trobeu $M_{\mathcal{B}_2}(\varphi)$, la matriu de φ en la base $\mathcal{B}_2 = \{u_1, u_2\}$, on $u_1 = (1, 1)$ i $u_2 = (1, 2)$.
- (c) Existeix alguna base \mathcal{B}_3 de \mathbb{R}^2 tal que $M_{\mathcal{B}_3}(\varphi)$ sigui simètrica?
- (d) Expresseu el tensor $\varphi \in T_2(\mathbb{R}^2)$ en base $\{e_i^* \otimes e_j^*\}_{1 \leq i,j \leq 2}$ i en base $\{u_i^* \otimes u_j^*\}_{1 \leq i,j \leq 2}$.
- 11. Proveu que si $\{e_1, e_2, e_3\}$ és una base de l'espai vectorial E, aleshores el tensor

$$\varphi = e_1^* \otimes e_1^* + 2e_1^* \otimes e_2^* - e_1^* \otimes e_3^* + 2e_2^* \otimes e_1^* + 3e_2^* \otimes e_3^* + 3e_3^* \otimes e_2^* - e_3^* \otimes e_1^* \in T_2(E)$$

és simètric i el tensor $\eta = e_1^* \otimes e_2^* + e_1^* \otimes e_3^* - e_2^* \otimes e_1^* - e_3^* \otimes e_1^*$ és antisimètric.

- 12. (a) Proveu que un tensor 2-covariant és simètric (resp. antisimètric) si i només si la seva matriu és simètrica (resp. antisimètrica).
 - (b) Sigui A la matriu d'un tensor 2-covariant ϕ en una base B. Demostreu que les matrius de $S(\phi)$ i $A(\phi)$ en la base $\mathcal B$ són $\frac{1}{2}(A+A^\top)$ i $\frac{1}{2}(A-A^\top)$, respectivament.
- 13. Contracció tensorial: sigui E un espai vectorial de dimensió n, amb base $\mathcal{B}_1 = \{e_1, \dots, e_n\}$. Considerem un tensor $T \in T_p^q(E)$ que s'escriu en la base B com

$$\sum_{1 \leq i_r, j_s \leq n} \alpha_{i_1, \dots, i_p; j_1, \dots, j_q} e_{i_1}^* \otimes \dots \otimes e_{i_p}^* \otimes e_{j_1} \otimes \dots \otimes e_{j_q}.$$

La contracció tensorial c_1^1 de T es defineix com

$$\widetilde{T} = \sum_{1 \leq i_r, j_s \leq n} \alpha_{i_1, \dots, i_p; j_1, \dots, j_q} e_{i_1}^*(e_{j_1}) e_{i_2}^* \otimes \dots \otimes e_{i_p}^* \otimes e_{j_2} \otimes \dots \otimes e_{j_q}.$$

- (a) Demostreu que $\widetilde{T} \in T_{p-1}^{q-1}(E)$. És cert que si $T_1, T_2 \in T_2^1(E)$ aleshores $\widetilde{T_1 + T_2} = \widetilde{T_1 + T_2}$?
- (b) Siguin $v \in E$ i $f \in E^*$. Proveu que $\widetilde{f \otimes v} = f(v)$.
- (c) Sigui $T = \sum_{i,j} \alpha_{ij} e_i^* \otimes e_j$. Proveu que \widetilde{T} és l'escalar $\sum_{1 \leq i \leq n} \alpha_{ii}$.
- (d) Sigui $T = \sum_{i,j,k,l} \alpha_{ijkl} e_i^* \otimes e_j^* \otimes e_k \otimes e_l$. Calculeu $\widetilde{\widetilde{T}}$.
- (e) Sigui $E = \mathbb{R}^2$, $\mathcal{B}_2 = \{(1,1), (-1,1)\}$. Calculeu la contracció, en la base \mathcal{B}_2 , del tensor

$$T = 2e_1 \otimes e_2 \otimes e_1^* - e_2 \otimes e_2 \otimes e_1^* + 3e_2 \otimes e_1 \otimes e_1^*.$$

- 14. Sigui $\mathcal{B} = \{e_1, e_2, e_3, e_4\}$ base d'un espai vectorial E. Calculeu el simetritzat i l'antisimetritzat dels tensors següents:
 - (a) $e_1 \otimes e_3 + 2e_2 \otimes e_4 e_3 \otimes e_4$.
 - (b) $2e_1 \otimes e_1 \otimes e_2 e_1 \otimes e_1 \otimes e_3 2e_1 \otimes e_4 \otimes e_2 + e_1 \otimes e_4 \otimes e_3$.
- 15. Siguin E un espai vectorial, $S_p(E)$ el conjunt dels p-tensors covariants simètrics i $A_p(E)$ el conjunt dels p-tensors covariants antisimètrics.
 - (a) Proveu que $A_p(E) \cap S_p(E) = 0$, per a tot $p \ge 2$.
 - (b) Proveu que $T_2(E) = A_2(E) \oplus S_2(E)$.
 - (c) És cert $T_p(E) = A_p(E) \oplus S_p(E)$, per a p > 2?
- 16. Tensors simètrics: Sigui E un espai vectorial i $\mathcal{B} = \{e_1, \ldots, e_n\}$ una base de E.
 - (a) Proveu que $\{S(e_{i_1}^* \otimes \cdots \otimes e_{i_p}^*)\}_{1 \leq i_1 \leq \cdots \leq i_p \leq n}$ és una base de $S_p(E)$ i deduïu que $S_p(E)$ té dimensió $\binom{n+p-1}{p}$.
 - (b) Sigui $\mathbf{k}[t_1, \dots, t_n]$ l'anell de polinomis de *n*-variables i denotem per $\mathbf{k}[t_1, \dots, t_n]^{(p)}$ l'espai vectorial dels polinomis homogenis de grau p. Proveu que l'aplicació lineal φ definida sobre els elements de la base anterior per

$$\varphi: S_p(E) \longrightarrow \mathbf{k}[t_1, \dots, t_n]^{(p)}$$
$$S(e_{i_1}^* \otimes \dots \otimes e_{i_n}^*) \longmapsto t_{i_1} \dots t_{i_n}$$

és un isomorfisme d'espais vectorials.

(c) Definim el producte simètric de dos tensors simètrics $f \in S_p(E), g \in S_q(E)$ per

$$f \odot g = \frac{(p+q)!}{p!q!} S(f \otimes g),$$

on S és el morfisme de simetrització. Proveu que el producte simètric \odot satisfà les propietats:

- (a) $f \odot (g+h) = f \odot g + f \odot h$, $(\lambda f) \odot g = \lambda (f \odot g) = f \odot (\lambda g)$.
- (b) $f \odot (g \odot h) = (f \odot g) \odot h$.
- (c) $f \odot g = g \odot f$.
- (d) Deduïu de l'apartat anterior que $\varphi(f \odot g) = \varphi(f)\varphi(g)$. Proveu que φ defineix un isomorfisme d'anells $S(E) = \bigoplus_p S_p(E) \longrightarrow \mathbf{k}[t_1, \dots, t_n]$.

Observació: l'isomorfisme φ no és canònic, depèn de la base de E escollida.

17. Considereu els tensors de $T_2(\mathbb{R}^3)$ següents:

$$f_1(x,y) = 2x_1y_3 - 3x_2y_3 + x_2y_1 - x_3y_2,$$

$$f_2(x,y) = 5x_2y_2 - x_1y_3 + 4x_3y_2 + 2x_3y_3.$$

Antisimetritzeu-los i feu el producte exterior dels seus antisimetritzats.

- **18.** Sigui $\mathcal{B} = \{e_1, e_2, e_3\}$ la base canònica de $E = \mathbb{R}^3$. Siguin $f, g, h : \mathbb{R}^3 \to \mathbb{R}$ les aplicacions lineals donades per f(x, y, z) = 3x y, g(x, y, z) = x + y + z i h(x, y, z) = 2z.
 - (a) Escriviu f, g i h en la base $\mathcal{B}^* = \{e_1^*, e_2^*, e_3^*\}$ de $T_1(\mathbb{R}^3) = E^*$.
 - (b) Calculeu $f \wedge g$, $f \wedge h$, $g \wedge h$ i $f \wedge g \wedge h$.
 - (c) Donats els vectors u = (1, -1, 2), v = (0, 3, -1) i w = (-1, 0, 1), calculeu $(f \land g)(u, v)$ i $(f \land g \land h)(u, v, w)$.
- 19. Siguin E un \mathbb{R} -espai vectorial de dimensió finita i $u_1, \ldots, u_r \in E$ vectors linealment independents.
 - (a) Sigui $v \in E$. Proveu que $v \in \langle u_1, \dots, u_r \rangle$ si i només si $u_1 \wedge \dots \wedge u_r \wedge v = 0$.
 - (b) Siguin $F = \langle u_1, \dots, u_r \rangle \subseteq E$ i $\mathcal{B}_2 = \{v_1, \dots, v_r\}$ una altra base de F. Proveu que, si $S = M_{\mathcal{B}_2,\mathcal{B}_1}$ és la matriu del canvi de la base $\mathcal{B}_2 = \{v_1, \dots, v_r\}$ a la base $\mathcal{B}_1 = \{u_1, \dots, u_r\}$, aleshores

$$v_1 \wedge \ldots \wedge v_r = \det(S) \cdot u_1 \wedge \ldots \wedge u_r.$$

- (c) Siguin $w_1, \ldots, w_r \in E$. Proveu que $\langle w_1, \ldots, w_r \rangle = \langle u_1, \ldots, u_r \rangle \Leftrightarrow \langle w_1 \wedge \ldots \wedge w_r \rangle = \langle u_1 \wedge \ldots \wedge u_r \rangle$.
- **20.** Proveu que $\Phi: A^2(\mathbb{R}^3) \to \mathbb{R}^3$, definit per $\Phi(u \wedge v) = u \wedge v = (u_2v_3 u_3v_2, u_3v_1 u_1v_3, u_1v_2 u_2v_1)$ (el segon \wedge , el producte vectorial de dos vectors de \mathbb{R}^3), defineix un isomorfisme.
- **21.** Sigui E un \mathbb{R} -espai vectorial de dimensió finita n. Un tensor $f \in A^p(E)$ es diu descomponible quan existeixen vectors $u_1, \ldots, u_p \in E$ tals que $f = u_1 \wedge \cdots \wedge u_p$. Diem que un subespai de dimensió 1 de $A^p(E)$ és pur si està generat per un tensor descomponible.
 - (a) Sigui $F \subset E$ un subespai i u_1, \ldots, u_p una base de F. Proveu que la recta pura generada per $u_1 \wedge \cdots \wedge u_p$ és independent de la base escollida.
 - (b) Recíprocament, si $f=u_1\wedge\cdots\wedge u_p$ és un vector descomponible, proveu que le nucli de l'aplicació lineal

$$e_f: E \longrightarrow A^{p+1}(E)$$

 $v \longmapsto v \wedge f$

és un subespai de E de dimensió p.

(c) Deduïu dels apartats anteriors que hi ha una bijecció

 $\{\text{subespais de } E \text{ de dimensió } p\} \longleftrightarrow \{\text{rectes pures de} A^p(E)\}.$

- (d) Proveu que si $f \in A^p(E)$, $g \in A^q(E)$ són descomponibles i F_f , F_g són els subespais de E que els correspon, se satisfà:
 - (d_1) $F_f\cap F_g=0\Leftrightarrow f\wedge g\neq 0$ i, en aquest cas, $F_f+F_g=F_{f\wedge g}$
 - (d_2) $F_f \subset F_g \Leftrightarrow \exists h \in A^{q-p}(E), f \land h = g.$
- (e) Proveu que orientar un subespai de dimensió p és equivalent a orientar la recta pura que li correspon.

4

- **22.** (a) Proveu que, si E té dimensió n, tot tensor de $A^{n-1}(E)$ és descomponible.
 - (b) Sigui p > 1. Proveu que tots els tensors de $A^p(E)$ són descomponibles si, i només si, $p \ge n 1$.
- **23.** (a) Sigui $f \in A^2(E)$. Proveu que f és descomponible $\iff f \land f = 0 \in A^4(E)$.
 - (b) Supossant que treballem en $A^2(E)$, doneu un exemple de tensor indescomponible i un exemple de tensor descomponible en què la descomposició no sigui única.
- **24.** Sigui $\mathcal{B} = \{e_1, e_2, e_3, e_4\}$ una base de l'espai vectorial E. Digueu quins dels tensors següents són descomponibles i, quan ho siguin, doneu-ne una descomposició:
 - (a) $e_1 \wedge e_2 + e_3 \wedge e_4$;
 - (b) $e_1 \wedge e_2 + e_2 \wedge e_3$;
 - (c) $e_1 \wedge e_2 \wedge e_3 + e_1 \wedge e_2 \wedge e_4 2e_1 \wedge e_3 \wedge e_4 + 3e_2 \wedge e_3 \wedge e_4$;
 - (d) $(2e_1 \wedge e_4 + 3e_2 \wedge e_3) \wedge (e_1 \wedge e_3 e_1 \wedge e_4 2e_2 \wedge e_3 + e_2 \wedge e_4)$.
- **25.** Sigui E un espai vectorial. Donats $v \in E$ i $\omega \in A_p(E)$ $(p \ge 1)$ es defineix el producte interior $i_v\omega \in A_{p-1}(E)$ per la fórmula

$$(i_v\omega)(v_2,\ldots,v_p) := \omega(v,v_2,\ldots,v_p)$$
.

Si p=0 convenim que $i_v\omega=0$.

- (a) Si $u \in E$ és un altre vector, proveu que $i_v(i_u\omega) = -i_u(i_v\omega)$. Deduïu-ne que $i_v \circ i_v = 0$.
- (b) Proveu que, si $\alpha_1, \ldots, \alpha_p \in E^*$, llavors

$$i_v(\alpha_1 \wedge \cdots \wedge \alpha_p) = \sum_{i=1}^p (-1)^{i-1} \alpha_i(v) \alpha_1 \wedge \cdots \wedge \widehat{\alpha_i} \wedge \cdots \wedge \alpha_p.$$

(Noteu que $i_{v_1}(\alpha_1 \wedge \cdots \wedge \alpha_p)(v_2, \dots, v_p)$ és un determinant; desenvolupeu-lo per la primera columna.)

(c) Si $\omega \in A_p(E)$ i $\theta \in A_q(E)$, proveu que

$$i_v(\omega \wedge \theta) = (i_v\omega) \wedge \theta + (-1)^p \omega \wedge (i_v\theta)$$
.

(Basta provar-ho per a ω i θ descomponibles; per què?)

- (d) Siguin $v = e_1 + e_2 + e_4$, $\theta = 2e^2 \wedge e^4 + e^1 \wedge e^3$, $\eta = e^1 \wedge e^4 e^1 \wedge e^3$, on (e_i) és una base de E i (e^j) la seva base dual. Calculeu $i_v(\theta \wedge \eta)$.
- **26.** Sigui $F \subseteq \mathbb{R}^3$ el subespai generat per $u_1 = (1,1,0)$ i $u_2 = (0,1,-1)$. Siguin $v_1 = (1,2,-1)$ i $v_2 = (1,0,1)$ i $B = \{e_1,e_2,e_3\}$ la base canònica de \mathbb{R}^3 . Sigui $i: F \to \mathbb{R}^3$ la injecció de F en \mathbb{R}^3 .
 - (a) Demostreu que $\{v_1, v_2\}$ genera F. Trobeu l'expressió matricial de i en les dues bases.
 - (b) Calculeu $i^*(e_1^*)$, $i^*(e_3^*)$ i $i^*(e_1^* \wedge e_3^*)$ en les dues bases duals de $\{u_1, u_2\}$ i $\{v_1, v_2\}$.
- **27.** Sigui (E, \langle, \rangle) un \mathbb{R} -espai euclidià i $\mathcal{B} = \{e_1, \dots, e_n\}$ una base ortonormal. Definim l'aplicació bilineal $\langle, \rangle : A^p(E) \times A^p(E) \longrightarrow \mathbb{R}$ determinada sobre els elements de la base per

$$\langle e_{i_1} \wedge \cdots \wedge e_{i_n}, e_{j_1} \wedge \cdots \wedge e_{j_n} \rangle = \det(\langle e_{i_k}, e_{j_\ell} \rangle).$$

(a) Proveu que es defineix així un producte escalar a $A^p(E)$ i que la base $\{e_{i_1} \wedge \cdots \wedge e_{i_p} \mid 1 \leq i_1 < i_2 < \cdots < i_p \leq n\}$ és una base ortonormal.

(b) Proveu que si u_i, v_j són vectors de E, aleshores

$$\langle u_1 \wedge \cdots \wedge u_p, v_1 \wedge \cdots \wedge v_p \rangle = \det(\langle u_i, v_j \rangle).$$

Deduïu que $||u_1 \wedge \cdots \wedge u_p||^2 = G(u_1, \dots, u_p)$, on G és el grammià.

(c) Proveu que, si u_1, \ldots, u_n és una base positiva, aleshores

$$u_1 \wedge \cdots \wedge u_n = \sqrt{\det(\langle u_i, u_j \rangle)} e_1 \wedge \cdots \wedge e_n.$$

28. Producte tensorial d'espais vectorials. Siguin E i F dos \mathbb{K} -espais vectorials. Un producte tensorial de E i F és un parell $(E \otimes F, \tau)$ on $E \otimes F$ és un \mathbb{K} -espai vectorial i $\tau : E \times F \to E \otimes F$ és una aplicació bilineal que satisfà la propietat universal següent: per a tot \mathbb{K} -espai vectorial G i tota aplicació bilineal $\varphi : E \times F \to G$ existeix una única aplicació lineal $f_{\varphi} : E \otimes F \to G$ tal que $f_{\varphi} \circ \tau = \varphi$.

$$\tau: \begin{array}{ccc} E \times F & \to E \otimes F \\ \varphi \downarrow & \swarrow f_{\varphi} \\ G \end{array}$$

- (a) Proveu que, si existeix, el producte tensorial $(E \otimes F, \tau)$ és únic llevat d'isomorfisme (de parells).
- (b) Proveu que, si existeix el producte tensorial, aleshores per a tot \mathbb{K} -espai vectorial G es compleix $\mathcal{L}_2(E \times F, G) \simeq \mathcal{L}(E \otimes F, G)$ (isomorfisme d'espais vectorials).
- (c) Proveu que el parell format per $\mathcal{L}_2(E^* \times F^*, \mathbb{K})$ i $\tau(x, y) = x \otimes y$ satisfà la propietat universal de $E \otimes F$ i, per tant, n'és un model.
- (d) Proveu que si $\{u_1, \ldots, u_n\}$ i $\{v_1, \ldots, v_m\}$ són bases de E i F, respectivament, aleshores $\{u_i \otimes v_j\}$, és una base de $E \otimes F$.
- (e) Observeu que si F = E, aleshores $E \otimes E \cong T^2(E)$ i $E^* \otimes E^* \cong T_2(E)$.
- **29.** Producte tensorial d'aplicacions lineals. Siguin $f_i: E_i \longrightarrow F_i, i=1,2$, dues aplicacions lineals entre espais vectorials sobre \mathbf{k} de dimensió finita. Es defineix l'aplicació producte tensorial $f_1 \otimes f_2: E_1 \otimes E_2 \longrightarrow F_1 \otimes F_2$ segons

$$f_1 \otimes f_2(u,v) = f_1(u_1) \otimes f_2(u_2).$$

- (a) Proveu que $f_1 \otimes f_2$ és un isomorfisme si, i només si, ho són f_1 i f_2 i que, en aquest cas se satisfà $(f_1 \otimes f_2)^{-1} = f_1^{-1} \otimes f_2^{-1}$.
- (b) Trobeu la matriu de $f_1 \otimes f_2$ a partir de les matrius de f_1 i f_2 en bases dels espais vectorials involucrats.
- (c) Suposem que $F_i = E_i$, i = 1, 2 i que E_1, E_2 tenem dimensions m i n respectivament. Proveu que

$$\det(f_1 \otimes f_2) = (\det f_1)^n (\det f_2)^m.$$