MA 101 - Calculus I

Problem Sheet: Functional Series

- 1. Determine the exact intervals of convergence for the following:
 - (i) $\sum n^2 x^n$ (ii) $\sum \frac{2^n}{n^2} x^n$ (iii) $\sum \frac{x^n}{n^n}$ (iv) $\sum \frac{1}{(n+1)^2 2^n} x^n$ (v) $\sum \frac{(-1)^n}{n^2 4^n} x^n$ (vi) $\sum \sqrt{n} x^n$ (vii) $\sum \frac{3^n}{n \cdot 4^n} x^n$ (viii) $\sum \frac{n^3}{3^n} x^n$ (ix) $\sum \frac{3^n}{\sqrt{n}} x^{2n+1}$ (x) $\sum x^{n!}$
- 2. Consider a power series $\sum a_n x^n$ with radius of convergence R.
 - (a) Prove that if all the coefficients a_n are integers and if infinitely many of them are non-zero,
 - (b) If $|a_n|^{\frac{1}{n}} \to l$, then $R = \begin{cases} 0, & \text{if } l = \infty \\ \infty, & \text{if } l = 0 \\ \frac{1}{l}, & \text{if } 0 < l < \infty \end{cases}$.
 - (c) If $a_n \neq 0$ for all large n and $\frac{|a_{n+1}|}{|a_n|} \to l$, the conclusion of (b) above still holds.
 - (d) Verify the above with the following series whose co-efficients are given as: $\frac{1}{2}$

(i)
$$a_n = \frac{n^3}{3^n}$$
 (ii) $a_n = \frac{2^n}{n!}$ (iii) $a_{2n-1} = \frac{1}{4^n}; a_{2n} = \frac{1}{9^n}.$

- 3. Consider a power series $\sum a_n x^n$ with a finite radius of convergence R. Prove that if all the coefficients $a_n \ge 0$ for all n and if the series converges at R, then the series also converges at -R.
- 4. For each $n \in \mathbb{N}$, let $f_n(x) = (\cos x)^n$. Show that
 - (a) each f_n is continuous.
 - (b) $\lim f_n(x) = 0$ unless x is a multiple of π .
 - (c) $\lim f_n(x) = 1$ if x is an even multiple of π .
 - (d) $\lim f_n(x)$ does not exist if x is an odd multiple of π .
- 5. For each $n \in \mathbb{N}$, let $f_n(x) = \frac{1}{n} \sin x$. Show that
 - (a) each f_n is differentiable.
 - (b) $\lim f_n(x) = 0$ for all $x \in \mathbb{R}$.
 - (c) $\lim f'_n(x)$ need not exist (for instance at $x = \pi$).
- 6. For each $n \in \mathbb{N}$, let $f_n(x) = nx^n$ for $x \in [0,1]$. Show that
 - (a) $\lim f_n(x) = 0$ for all $x \in [0, 1)$.
 - (b) $\lim_{n\to\infty} \int_0^1 f_n(x) \ dx = 1$.
- 7. For each $n \in \mathbb{N}$, let $f_n(x) = \left(x \frac{1}{n}\right)^2$ for $x \in [0, 1]$.
 - (a) Find $f(x) = \lim_{n \to \infty} f_n(x)$.
 - (b) Does (f_n) converge pointwise on [0,1]?
 - (c) Does it also converge uniformly?
- 8. Obtain the Taylor series of the following functions about the indicated point a:
 - (i) $\tan x$; $a = \frac{\pi}{4}$ (ii) $e^{\sin x}$; a = 0 (iii) $\ln(\cos x)$; a = 0 (iv) $\cos^2 x$; a = 0
 - (v) $\cos^2 x$; $a = \frac{\pi}{4}$ (vi) $\frac{1}{x^3}$; a = 7 (vii) $\frac{1}{1+x^4}$; a = 3 (viii) $\tan^{-1} x$; a = 0

1

9. Suppose that f(x) is differentiable on an interval I centered at x=a and that

$$g(x) = b_0 + b_1(x - a) + \dots + b_n(x - a)^n$$

is a polynomial of degree n with constant coefficients b_0, b_1, \ldots, b_n . Let E(x) = f(x) - g(x). Show

- (a) E(a) = 0 (i.e., the approximation error is zero at x = a)
- (b) $\lim_{x\to a} \frac{E(x)}{(x-a)^n} = 0$ (i.e., the error is negligible when compared to $(x-a)^n$)

then $b_k = \frac{f'(a)}{k!}$, k = 0, ..., n. Thus the Taylor's polynomial is the only polynomial of degree less than or equal to n whose error is zero at x = a and negligible when compared to $(x - a)^n$.

10. Find the Fourier Series of the following functions:

(i)
$$f(x) = x^3; -\pi \le x \le \pi$$

(ii)
$$f(x) = x + |x|; -\pi \le x \le \pi$$

(iii)
$$f(x) = \begin{cases} 1, & -\frac{\pi}{2} \leqslant x \leqslant \frac{\pi}{2} \\ -1, & \frac{\pi}{2} < x \leqslant \frac{3\pi}{2} \end{cases}$$

(iii)
$$f(x) = \begin{cases} 1, & -\frac{\pi}{2} \leqslant x \leqslant \frac{\pi}{2} \\ -1, & \frac{\pi}{2} < x \leqslant \frac{3\pi}{2} \end{cases}$$
 (iv) $f(x) = \begin{cases} x, & -\frac{\pi}{2} \leqslant x \leqslant \frac{\pi}{2} \\ \pi - x, & \frac{\pi}{2} < x \leqslant \frac{3\pi}{2} \end{cases}$

(v)
$$f(x) = \begin{cases} 1, & -1 \le x \le 0 \\ -1, & 0 < x \le 1 \end{cases}$$

$$(v) \ f(x) = \begin{cases} 1, & -1 \leqslant x \leqslant 0 \\ -1, & 0 < x \leqslant 1 \end{cases}$$

$$(vi) \ f(x) = \begin{cases} x, & -2 \leqslant x < 0 \\ \pi - x, & 0 < x \leqslant 2 \end{cases}$$

(vii)
$$f(x) = x^3$$
; $-2 \le x \le 2$

(viii)
$$f(x) = x + |x|; \frac{\pi}{2} \le x \le \frac{\pi}{2}$$

11. Expand the following functions such that we obtain (i) only a sine series and (ii) only a cosine series:

(i)
$$f(x) = x$$
; $0 \leqslant x \leqslant 2\pi$

(ii)
$$f(x) = \pi - x$$
: $0 \le x \le \pi$

(ii)
$$f(x) = \pi - x$$
; $0 \le x \le \pi$ (iii) $f(x) = \sin^2 x$; $0 \le x \le \pi$

(iv)
$$f(x) = e^x$$
; $0 \le x \le L$

(v)
$$f(x) = x^2$$
; $0 \le x \le L$

(v)
$$f(x) = x^2$$
; $0 \le x \le L$ (vi) $f(x) = 4 - x^2$; $0 \le x \le L$

12. Find the Fourier series of $f(x) = \frac{(\pi - x)^2}{4}$ on $0 \le x \le 2\pi$ and hence show that

(a)
$$\frac{\pi^2}{6} = \frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \dots$$

(a)
$$\frac{\pi^2}{6} = \frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \dots$$
 (b) $\frac{\pi^2}{12} = \frac{1}{1^2} - \frac{1}{3^2} + \frac{1}{5^2} - \dots$ (c) $\frac{\pi^2}{8} = \frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \dots$

(c)
$$\frac{\pi^2}{8} = \frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \dots$$

- 13. Find the Fourier series of $f(x) = \sqrt{1 \cos x}$ on $(0, 2\pi)$ and hence deduce that $\frac{1}{2} = \sum_{n=1}^{\infty} \frac{1}{4n^2 1}$.
- 14. Let f be a periodic function with period 2π . Let f_n be the trignometric polynomial of order n given as follows

$$f_n(x) = a_0 + \sum_{k=1}^{n} a_k \cos kx + b_k \sin kx.$$

Show that if f_n minimizes the integral of the square of the error in approximating f, viz.,

2

$$\int_{-\pi}^{\pi} [f(x) - f_n(x)]^2 dx,$$

then the coefficients of f_n are given as Fourier coefficients.