Package 'romic'

September 21, 2023

```
Type Package
```

Title R for High-Dimensional Omic Data

Version 1.1.3

Maintainer Sean Hackett < sean@calicolabs.com>

Description Represents high-dimensional data as tables of features, samples and measurements, and a design list for tracking the meaning of individual variables. Using this format, filtering, normalization, and other transformations of a dataset can be carried out in a flexible manner. 'romic' takes advantage of these transformations to create interactive 'shiny' apps for exploratory data analysis such as an interactive heatmap.

Depends R (>= 3.2.3)

biocViews

Imports checkmate, cli, dplyr, ggplot2, glue, purrr, readr, reshape2, rlang, shiny (>= 1.5.0), stringr, tibble, tidyr (>= 1.0.0)

Suggests knitr, impute, lazyeval, plotly, rmarkdown, usethis, testthat (>= 3.0.0)

License MIT + file LICENSE

Encoding UTF-8

LazyData true

RoxygenNote 7.2.3

VignetteBuilder knitr

Config/testthat/edition 3

NeedsCompilation no

Author Sean Hackett [aut, cre] (https://orcid.org/0000-0002-9553-4341), Calico Life Sciences LLC [cph, fnd]

Repository CRAN

Date/Publication 2023-09-21 05:40:02 UTC

R topics documented:

add_pcs
app_flow
app_heatmap
app_pcs
brauer_2008
center_tomic
check_tidy_omic
check_tomic
check_triple_omic
convert_wide_to_tidy_omic
create_tidy_omic
create_triple_omic
downsample_heatmap
export_tomic_as_tidy
export_tomic_as_triple
export_tomic_as_wide
filterInput
filterServer
filter_tomic
format_names_for_plotting
get_design_tbl
get_tomic_table
ggBivOutput
ggBivServer
ggplotOutput
ggplotServer
ggUnivOutput
ggUnivServer
hclust_order
impute_missing_values
infer_tomic_table_type
lassoInput
lassoServer
organizeInput
organizeServer
plotsaverInput
plotsaverServer
plot_bivariate
plot_heatmap
plot_univariate
prepare_example_datasets
reconcile_triple_omic
remove_missing_values
shiny_filter_test
shiny_ggbiv_test
shiny_ggplot_test

add_pcs 3

```
48
Index
50
```

add_pcs

Add PCA Loadings

Description

Add Principal Components Analysis Loadings to a tidy or triple omics dataset.

Usage

```
add_pcs(
  tomic,
  value_var = NULL,
  center_rows = TRUE,
  npcs = NULL,
  missing_val_method = "drop_samples",
  label_percent_varex = TRUE,
  verbose = TRUE
)
```

Arguments

```
tomic Either a tidy_omic or triple_omic object
value_var An abundance value to use with hclust
center_rows center rows before performing PCA
```

4 app_flow

npcs

number of principal component loadings to add to samples (default is number of samples)

missing_val_method

Approach to remove missing values:

drop_features Drop features with missing values

drop_samples Drop samples which are missing all features, then drop features

impute Impute missing values

label_percent_varex

If true then PCs will be labelled by the percent of variability they explain.

verbose extra reporting messages

Value

A tomic object with principal components added to samples.

Examples

```
add_pcs(brauer_2008_triple, npcs = 5)
```

app_flow

Flow

Description

Using shiny comb through datasets by iterating between plotting steps, and lassoing steps to select points of interest.

Usage

```
app_flow(tomic)
```

Arguments

tomic

Either a tidy_omic or triple_omic object

Value

A shiny app

app_heatmap 5

Examples

```
if (interactive()) {
    # library(reactlog)
    # reactlog_enable()
    app_flow(brauer_2008_triple)
    # shiny::reactlogShow()
}
```

app_heatmap

Interactive Heatmap

Description

Generate a shiny interactive heatmap that allows for on demand filtering, ordering and faceting by variables of interest.

Usage

```
app_heatmap(tomic)
```

Arguments

tomic

Either a tidy_omic or triple_omic object

Value

A shiny app

```
if (interactive()) {
  app_heatmap(brauer_2008_tidy)
}
```

6 brauer_2008

app_pcs

PC Plot

Description

Generate a Shiny interactive scatter plot which allows visualization of features, measurements, and samples (with principal components added).

Usage

```
app_pcs(tomic)
```

Arguments

tomic

Either a tidy_omic or triple_omic object

Value

A shiny app

Examples

```
if (interactive()) {
  app_pcs(brauer_2008_tidy)
}
```

brauer_2008

Brauer 2008

Description

An RNA expression (microarray) dataset looking at how yeast gene expression changes as nutrient sources and nutrient richness changes.

```
brauer_2008 formatted as a tidy_omic object
brauer_2008 formatted as a triple_omic object
```

```
brauer_2008
brauer_2008_tidy
brauer_2008_triple
```

center_tomic 7

Format

A tibble with 18,000 rows and 8 columns:

name Common gene name

BP Gene ontology biological process of the gene

MF Gene ontology molecular function of the gene

sample Sample name

nutrient Which nutrient limits growth (Glucose, Nitrogen, Phosphorous, Sulfur, Uracil, Leucine

DR Dilution rate of the culture - basically how fast the cells are growing

expression Expression level of the gene, log2 observation relative to a replicate of G0.3

An object of class tidy_omic (inherits from tomic, general) of length 2.

An object of class triple_omic (inherits from tomic, general) of length 4.

Details

This version of the dataset contains only 500 genes randomly selected from the ~6K genes in the complete dataset.

Source

```
https://pubmed.ncbi.nlm.nih.gov/17959824/
```

center_tomic

Center T* Omic

Description

Center each measurement by subtracting the mean.

Usage

```
center_tomic(tomic, measurement_vars = "all")
```

Arguments

```
\begin{tabular}{ll} to mic & Either a \ tidy\_omic \ or \ triple\_omic \ object \\ measurement\_vars \end{tabular}
```

measurement variables to center

Value

A tomic object where one or more measurements have been centered on a feature-by-feature basis.

```
center_tomic(brauer_2008_tidy)
```

8 check_tomic

check_tidy_omic

Check Tidy Omic

Description

Check a tidy omic dataset for consistency between the data and design and validate that the dataset follows the tidy_omic/tomic specification.

Usage

```
check_tidy_omic(tidy_omic, fast_check = TRUE)
```

Arguments

tidy_omic

an object of class tidy_omic produced by create_tidy_omic

fast_check

if TRUE then skip some checks which are slow and that are generally only

needed when a tomic object is first created.

Value

0 invisibly

check_tomic

Check T*Omic

Description

Check a tidy or triple 'omic object for common pathologies, such as a mismatch between data and schema and non-uniqueness of primary keys.

Usage

```
check_tomic(tomic, fast_check = TRUE)
```

Arguments

tomic

Either a tidy_omic or triple_omic object

fast_check

if TRUE then skip some checks which are slow and that are generally only

needed when a tomic object is first created.

Value

0 invisibly

```
check_tomic(brauer_2008_triple)
```

check_triple_omic 9

check_triple_omic

Check Triple Omic

Description

Check a triple omic dataset for consistency between the data and design and validate that the dataset follows the triple_omic/tomic specification.

Usage

```
check_triple_omic(triple_omic, fast_check = TRUE)
```

Arguments

triple_omic an object of class triple_omic produced by create_triple_omic

fast_check if TRUE then skip some checks which are slow and that are generally only

needed when a tomic object is first created.

Value

0 invisibly

```
convert_wide_to_tidy_omic
```

Convert Wide to Tidy Omic

Description

Convert a wide dataset of species' abundances (gene product, metabolites, lipids, ...) into a triple_omic dataset (one observation per row)

```
convert_wide_to_tidy_omic(
  wide_df,
  feature_pk,
  feature_vars = NULL,
  sample_var = "sample",
  measurement_var = "abundance",
  omic_type_tag = "general",
  verbose = TRUE
)
```

10 create_tidy_omic

Arguments

a data.frame (or tibble) containing 1+ columns of feature attributes and many wide_df columns of samples A unique identifier for features feature_pk feature_vars a character vector of additional feature-level variables (or NULL if there are no additional variables) variable name to use for samples sample_var

measurement_var

variable name to use for measurements

an optional subtype of omic data: metabolomics, lipidomics, proteomics, geomic_type_tag

nomics, general

verbose extra reporting messages

Value

A tidy_omic object as produced by create_tidy_omic.

Examples

```
library(dplyr)
wide_measurements <- brauer_2008_triple[["measurements"]] %>%
  tidyr::spread(sample, expression)
wide_df <- brauer_2008_triple[["features"]] %>%
  left_join(wide_measurements, by = "name")
convert_wide_to_tidy_omic(wide_df,
  feature_pk = "name",
  feature_vars = c("BP", "MF", "systematic_name")
)
```

create_tidy_omic

Create Tidy Omic

Description

A tidy omics object contains a formatted dataset and a summary of the experimental design.

```
create_tidy_omic(
  df,
  feature_pk,
  feature_vars = NULL,
```

create_tidy_omic 11

```
sample_pk,
sample_vars = NULL,
omic_type_tag = "general",
verbose = TRUE
)
```

Arguments

df a data.frame (or tibble) containing some combination of feature, sample and

observation-level variables

feature_pk A unique identifier for features

feature_vars a character vector of additional feature-level variables (or NULL if there are no

additional variables)

sample_pk A unique identifier for samples

sample_vars a character vector of additional sample-level variables (or NULL if there are no

additional variables)

omic_type_tag an optional subtype of omic data: metabolomics, lipidomics, proteomics, ge-

nomics, general

verbose extra reporting messages

Value

An S3 tidy_omic/tomic object built on a list:

data A tibble with one row per measurement (i.e., features x samples)

design A list which organized the dataset's meta-data:

feature_pk variable specifying a unique feature

sample_pk variable specifying a unique sample

features tibble of feature attributes **samples** tibble of sample attributes

measurements tibble of measurement attributes

```
library(dplyr)

measurement_df <- tidyr::expand_grid(
  feature_id = 1:10,
  sample_id = LETTERS[1:5]
) %>%
  dplyr::mutate(value = rnorm(n()))

feature_df <- tibble(
  feature_id = 1:10,
  feature_group = rep(c("a", "b"), each = 5)
)
sample_df <- tibble(</pre>
```

12 create_triple_omic

```
sample_id = LETTERS[1:5],
  sample_group = c("a", "a", "b", "b", "b")
)

triple_omic <- create_triple_omic(
  measurement_df, feature_df, sample_df,
  "feature_id", "sample_id"
)

raw_tidy_omic <- triple_to_tidy(triple_omic)$data

create_tidy_omic(raw_tidy_omic,
  feature_pk = "feature_id",
  feature_vars = "feature_group", sample_pk = "sample_id",
  sample_vars = "sample_group"
)</pre>
```

create_triple_omic

Create Triple Omic

Description

A triple omics class contains three data.frames, one for features, one for samples, and one for abundances. This is a good format when there is a large amount of meta data associated with features or samples.

Usage

```
create_triple_omic(
  measurement_df,
  feature_df = NULL,
  sample_df = NULL,
  feature_pk,
  sample_pk,
  omic_type_tag = "general"
)
```

Arguments

```
measurement_df A data.frame (or tibble) of measurements - one row for each combination of feature and sample

feature_df A data.frame (or tibble) of features - one row per feature

sample_df A data.frame (or tibble) of samples - one row per sample

feature_pk A unique identifier for features

sample_pk A unique identifier for samples

omic_type_tag an optional subtype of omic data: metabolomics, lipidomics, proteomics, genomics, general
```

create_triple_omic 13

Details

for now primary keys are unique (rather than allowing for a multi-index)

Value

```
An S3 triple_omic/tomic object built on a list:

features A tibble of feature meta-data (one row per feature)

samples A tibble of sample meta-data (one row per sample)

measurements A tibble with one row per measurement (i.e., features x samples)

design A list which organized the dataset's meta-data:

feature_pk variable specifying a unique feature

sample_pk variable specifying a unique sample

features tibble of feature attributes

samples tibble of sample attributes

measurements tibble of measurement attributes
```

```
library(dplyr)

measurement_df <- tidyr::expand_grid(
   feature_id = 1:10,
   sample_id = LETTERS[1:5]
) %>%
   dplyr::mutate(value = rnorm(n()))

feature_df <- tibble(
   feature_id = 1:10,
   feature_group = rep(c("a", "b"), each = 5)
)

sample_df <- tibble(
   sample_id = LETTERS[1:5],
   sample_group = c("a", "a", "b", "b", "b")
)

triple_omic <- create_triple_omic(
   measurement_df, feature_df, sample_df,
   "feature_id", "sample_id"
)</pre>
```

downsample_heatmap

Downsample Heatmap

Description

Combine rows to speed up rendering of large heatmaps

Usage

```
downsample_heatmap(
  tidy_data,
  value_var,
  design,
  max_display_features = 1000,
  verbose = TRUE
)
```

Arguments

tidy_data The data frame from a tidy_omic object containing ordered feature and sample

primary keys defined by ordered_featureId and ordered_sampleId.

value_var which variable in "measurements" to use for quantification.

design a list summarizing the design of the tidy dataset

max_display_features

aggregate and downsample distinct feature to this number to speed to up heatmap

rendering.

verbose extra reporting messages

Value

tidy_data with rows collapsed if the number of distinct features is greater than max_display_features

```
export_tomic_as_tidy Export T*Omic in Tidy Format
```

Description

Export a data table including all fields from features, samples and measurements.

```
export_tomic_as_tidy(tomic, dir_path, name_preamble, verbose = TRUE)
```

export_tomic_as_triple 15

Arguments

tomic Either a tidy_omic or triple_omic object

dir_path path to save outputs
name_preamble start of output file name
verbose extra reporting messages

Value

Export one table which is one row per peak, which includes all feature and sample attributes.

Examples

```
if (interactive()) {
  export_tomic_as_tidy(brauer_2008_triple, "/tmp", "brauer")
}
```

```
export_tomic_as_triple
```

Export T*Omic as Triple

Description

Export features, samples and measurements tables

Usage

```
export_tomic_as_triple(tomic, dir_path, name_preamble, verbose = TRUE)
```

Arguments

tomic Either a tidy_omic or triple_omic object

dir_path path to save outputs
name_preamble start of output file name
verbose extra reporting messages

Value

Export three tables:

- features: one row per features measured (i.e., a metabolite)
- sample: one row per sample
- measurements: one row per measurement (i.e., one metabolite in one sample)

Examples

```
if (interactive()) {
   export_tomic_as_triple(brauer_2008_triple, "/tmp", "brauer")
}
```

```
export_tomic_as_wide Export T*Omic as Wide Data
```

Description

abundances form a matrix with metabolites as rows and samples as columns. Use transpose to treat samples as rows filename

Usage

```
export_tomic_as_wide(
  tomic,
  dir_path,
  name_preamble,
  value_var = NULL,
  transpose = FALSE,
  verbose = TRUE
)
```

Arguments

```
tomic Either a tidy_omic or triple_omic object
dir_path path to save outputs
name_preamble start of output file name
value_var measurement variable to use for the matrix
transpose if TRUE then samples will be stored as rows
verbose extra reporting messages
```

Value

Export one table which contains metabolites as rows and samples as columns.

```
if (interactive()) {
  export_tomic_as_wide(brauer_2008_triple, "/tmp", "brauer")
}
```

filterInput 17

filterInput Filter Input

Description

UI components for the filter module.

Usage

```
filterInput(id, filter_table)
```

Arguments

id An ID string that corresponds with the ID used to call the module's UI function.

filter_table table to filter

Value

A shiny UI

filterServer Filter Server

Description

Server components for the filter module.

Usage

```
filterServer(id, tidy_omic, filter_table)
```

Arguments

id An ID string that corresponds with the ID used to call the module's UI function.

tidy_omic an object of class tidy_omic produced by create_tidy_omic

filter_table table to filter

Value

A tidy_omic with some features and/or samples filtered.

18 filter_tomic

filter_tomic

Filter T* Omics

Description

Filter a tidy or triple omic to entries of interest.

Usage

```
filter_tomic(
  tomic,
  filter_type,
  filter_table,
  filter_value,
  filter_variable = NULL
)
```

Arguments

```
filter_type

category filter filter_variable to categories specified in filter_value

range filter filter_variable to using the range (i.e., lower and upper limit) provided in filter_value

apply a quosure as a filter_value to a table of interest

filter_table

filter_value

values to filter based on

filter_variable

variable to apply the filter to
```

Value

A tomic object where a subset of features, samples or measurmenets have been filtered.

```
filter_tomic(
  brauer_2008_triple,
  filter_type = "category",
  filter_table = "features",
  filter_variable = "BP",
  filter_value = c("biological process unknown", "vacuolar acidification")
)

filter_tomic(
  brauer_2008_triple,
  filter_type = "category",
```

```
filter_table = "samples",
 filter_variable = "DR",
 filter_value = 0.05
)
filter_tomic(
 brauer_2008_tidy,
 filter_type = "range",
 filter_table = "samples",
 filter_variable = "DR",
 filter_value = c(0, 0.2)
)
filter_tomic(
 brauer_2008_triple,
 filter_type = "quo",
 filter_table = "features",
 filter_value = rlang::quo(BP == "biological process unknown")
)
```

format_names_for_plotting

Format Names for Plotting

Description

Wrap long names over multiple lines so that they will look better on plots.

Usage

```
format_names_for_plotting(chars, width = 40, truncate_at = 80)
```

Arguments

chars a character vector (or a variable that can be converted to one)

width Positive integer giving target line width (in number of characters). A width less

than or equal to 1 will put each word on its own line.

truncate_at max character length

Value

a reformatted character vector of the same length as the input.

```
chars <- "Lorem ipsum dolor sit amet, consectetur adipiscing elit. Integer
    ac arcu semper erat porttitor egestas. Etiam sagittis, sapien at mattis."
format_names_for_plotting(chars)</pre>
```

20 get_tomic_table

get_design_tbl

Get Design Table

Description

Get a tabular summary of all variables.

Usage

```
get_design_tbl(tomic)
```

Arguments

tomic

Either a tidy_omic or triple_omic object

Value

a tibble reflecting the tomic object's design.

Examples

```
get_design_tbl(brauer_2008_triple)
```

get_tomic_table

Get Tomic Table

Description

Extract one of the specific tables from a tomic object

Usage

```
get_tomic_table(tomic, table_type)
```

Arguments

tomic

Either a tidy_omic or triple_omic object

table_type

The type of table to extract from the tomic object.

tidy one row per measurements with feature and sample attributes added. Equivalent to the \$data field of a tidy omic object

measurements one row per measurements defined a feature and sample foreign key. Equivalent to the \$measurements field of a triple omic object

features one row per feature defined by a feature primary key. Equivalent to the \$features field of a triple omic object

samples one row per sample defined by a sample primary key. Equivalent to the \$samples field of a triple omic object

ggBivOutput 21

Value

a tibble matching the table_type of the tomic object

Examples

```
get_tomic_table(brauer_2008_triple, "samples")
get_tomic_table(brauer_2008_tidy, "features")
```

ggBivOutput

ggBivariate Output

Description

UI components for the ggBivariate module.

Usage

```
ggBivOutput(id, return_brushed_points = FALSE)
```

Arguments

id An ID string that corresponds with the ID used to call the module's UI function. return_brushed_points

Return values selected on the plot

Value

A shiny UI

ggBivServer

ggBivariate Server

Description

Server components for the ggBivariate module.

Usage

```
ggBivServer(id, tomic, plot_table, return_brushed_points = FALSE)
```

Arguments

id An ID string that corresponds with the ID used to call the module's UI function.

tomic Either a tidy_omic or triple_omic object plot_table table containing the data to be plotted

return_brushed_points

Return values selected on the plot

22 ggplotServer

Value

```
a tomic_table if return_brushed_points is TRUE, and 0 otherwise
```

ggplotOutput

ggplot Output

Description

UI components for the ggplot module.

Usage

```
ggplotOutput(
  id,
  default_data_type = "samples",
  default_plot_type = "univariate"
)
```

Arguments

```
id An ID string that corresponds with the ID used to call the module's UI function.

default_data_type

Default data type selection

default_plot_type

Default plot type selection
```

Value

 $A \; \mathsf{shiny} \; UI$

ggplotServer

ggplot Server

Description

Server components for the ggplot module.

```
ggplotServer(id, tomic, return_brushed_points = FALSE)
```

ggUnivOutput 23

Arguments

id An ID string that corresponds with the ID used to call the module's UI function.

tomic Either a tidy_omic or triple_omic object

return_brushed_points

Return values selected on the plot

Value

a tibble of selected observations if return_brushed_points is TRUE. Otherwise, returns NULL.

ggUnivOutput

ggUnivariate Output

Description

UI components for the ggUnivariate module.

Usage

```
ggUnivOutput(id, return_brushed_points = FALSE)
```

Arguments

 $\label{eq:contraction} An \ ID \ string \ that \ corresponds \ with \ the \ ID \ used \ to \ call \ the \ module's \ UI \ function.$ $\ return_brushed_points$

Return values selected on the plot

Value

A shiny UI

ggUnivServer

ggUnivariate Server

Description

Server components for the ggUnivariate module

```
ggUnivServer(id, tomic, plot_table, return_brushed_points = FALSE)
```

24 hclust_order

Arguments

id An ID string that corresponds with the ID used to call the module's UI function.

tomic Either a tidy_omic or triple_omic object
plot_table table containing the data to be plotted

return_brushed_points

Return values selected on the plot

Value

a tomic_table if return_brushed_points is TRUE, and 0 otherwise.

hclust_order

Hierarchical clustering order

Description

Format and hierarchically cluster a data.frame. If helust could not normally be produced (usually because no samples are in common for a feature) pad the matrix with zeros and still calculate the distance

Usage

```
hclust_order(
   df,
   feature_pk,
   sample_pk,
   value_var,
   cluster_dim,
   distance_measure = "dist",
   hclust_method = "ward.D2"
)
```

Arguments

df data.frame to cluster

feature_pk variable uniquely defining a row sample_pk variable uniquely defining a sample value_var An abundance value to use with hclust

cluster_dim rows, columns, or both

distance_measure

variable to use for computing dis-similarity

corr pearson correlationdist euclidean distance

hclust_method method from stats::hclust to use for clustering

Value

a list containing a hierarchically clustered set of rows and/or columns

Examples

```
library(dplyr)

df <- tidyr::crossing(letters = LETTERS, numbers = 1:10) %>%
  mutate(noise = rnorm(n()))
hclust_order(df, "letters", "numbers", "noise", "rows")
```

impute_missing_values Impute Missing Values

Description

Impute missing values using K-nearest neighbors imputation

Usage

```
impute_missing_values(
  tomic,
  impute_var_name = "imputed",
  value_var = NULL,
  ...
)
```

Arguments

```
tomic Either a tidy_omic or triple_omic object impute_var_name variable to create for imputed measurements value_var An abundance value to use with hclust additional arguments to pass to impute.knn
```

Value

A tomic object with imputed measurements.

```
impute_missing_values(brauer_2008_triple)
```

26 lassoInput

```
infer_tomic_table_type
```

Infer Tomic Table Type

Description

From a tomic_table, choose whether it reflects features, samples or measurements

Usage

```
infer_tomic_table_type(tomic, tomic_table)
```

Arguments

tomic Either a tidy_omic or triple_omic object

tomic_table A table taken from a tidy (i.e., augmented measurements) or triple omic dataset

Value

features, samples or measurements

lassoInput

Lasso Input

Description

UI components for the lasso module.

Usage

```
lassoInput(id)
```

Arguments

id

An ID string that corresponds with the ID used to call the module's UI function.

Value

A shiny UI

lassoServer 27

|--|

Description

Take a subset of entries from a tomic table (generally selected using the lasso function) and then either filter a tomic object to these entries or tag the entries of interest with a user-specified variable.

Usage

```
lassoServer(id, tomic, tomic_table)
```

Arguments

id An ID string that corresponds with the ID used to call the module's UI function.

tomic Either a tidy_omic or triple_omic object

tomic_table A table taken from a tidy (i.e., augmented measurements) or triple omic dataset

Value

A tomic object amended based on the lasso selection.

org	anizeInput	Organize Input

Description

UI components for the organize input module.

Usage

```
organizeInput(id)
```

Arguments

id An

An ID string that corresponds with the ID used to call the module's UI function.

Value

A shiny UI

28 plotsaverInput

	organizeServer	Organize Servers		
--	----------------	------------------	--	--

Description

Server components for the organize input module.

Usage

```
organizeServer(id, tidy_omic, feature_vars, sample_vars, value_var)
```

Arguments

id An ID string that corresponds with the ID used to call the module's UI function.

tidy_omic an object of class tidy_omic produced by create_tidy_omic

feature_vars variables available for arranging features
sample_vars variables available for arrange samples
value_var An abundance value to use with hclust

Value

A tomic with sorted features and/or samples.

Description

UI components for the plot saver module.

Usage

```
plotsaverInput(id, ui_format = "tall")
```

Arguments

id An ID string that corresponds with the ID used to call the module's UI function.

ui_format Set UI appearance

tall stack all UI elements

wide UI elements are side-by-side

Value

```
a shiny UI
```

plotsaverServer 29

plotsaverServer

Plot Saver Server

Description

Server components for the plot saver module.

Usage

```
plotsaverServer(id, grob, filename = "grob.png")
```

Arguments

id An ID string that corresponds with the ID used to call the module's UI function.

grob a ggplot2 plot

filename filename for saving plot. The extension will be respected by ggsave.

Value

None

plot_bivariate

Bivariate Plot

Description

Create a scatter or boxplot from a tomic dataset.

```
plot_bivariate(
   tomic_table,
   x_var,
   y_var,
   color_var = NULL,
   shape_var = NULL,
   alpha_var = NULL,
   size_var = NULL
)
```

plot_heatmap

Arguments

tomic_table A table taken from a tidy (i.e., augmented measurements) or triple omic dataset x_var x-axis variable

y_var y-axis variable

color_var coloring variable (NULL to suppress coloring)

shape_var shape variable (NULL to suppress shape)

alpha_var alpha variable or numeric for constant alpha (NULL to suppress alpha)

size_var size variable or integer/numeric for constant size (NULL to suppress size)

Value

```
a ggplot2 grob
```

Examples

```
library(dplyr)

brauer_augmented <- brauer_2008_tidy %>%
   add_pcs(npcs = 5) %>%
   tomic_to("triple_omic")

tomic_table <- brauer_augmented$samples
   plot_bivariate(tomic_table, "PC1", "PC2", "nutrient", "nutrient", 0.5, 10)
   plot_bivariate(tomic_table, "PC1", "PC2", NULL)
   plot_bivariate(tomic_table, "nutrient", "PC2", "nutrient")</pre>
```

plot_heatmap

Plot Heatmap

Description

Generate a heatmap visualization of a features x samples matrix of measurements.

```
plot_heatmap(
  tomic,
  feature_var = NULL,
  sample_var = NULL,
  value_var = NULL,
  cluster_dim = "both",
  distance_measure = "dist",
  hclust_method = "ward.D2",
  change_threshold = Inf,
  plot_type = "grob",
  max_display_features = 800,
```

plot_heatmap 31

```
x_label = NULL,
y_label = NULL,
colorbar_label = NULL)
```

Arguments

```
tomic
                  Either a tidy_omic or triple_omic object
                  variable from "features" to use as a unique feature label.
feature_var
sample_var
                  variable from "samples" to use as a unique sample label.
value_var
                  which variable in "measurements" to use for quantification.
cluster_dim
                  rows, columns, or both
distance_measure
                  variable to use for computing dis-similarity
                  corr pearson correlation
                  dist euclidean distance
hclust_method
                  method from stats::hclust to use for clustering
change_threshold
                  values with a more extreme absolute change will be thresholded to this value.
plot_type
                  plotly (for interactivity) or grob (for a static ggplot)
max_display_features
                  aggregate and downsample distinct feature to this number to speed to up heatmap
                  rendering.
x_label
                  label for x-axis (if NULL then use feature_var)
y_label
                  label for y-axis (if NULL then use sample_var)
colorbar_label label for color-bar; default is log2 abundance
```

Value

```
a ggplot2 grob
```

```
library(dplyr)

tomic <- brauer_2008_triple %>%
  filter_tomic(
    filter_type = "category",
    filter_table = "features",
    filter_variable = "BP",
    filter_value = c(
        "protein biosynthesis",
        "rRNA processing", "response to stress"
    )
)
```

32 plot_univariate

```
plot_heatmap(
  tomic = tomic,
  value_var = "expression",
  change_threshold = 5,
  cluster_dim = "rows",
  plot_type = "grob",
  distance_measure = "corr"
)
```

plot_univariate

Univariate Plot

Description

Create a histogram from a tomic dataset.

Usage

```
plot_univariate(tomic_table, x_var, color_var = NULL)
```

Arguments

tomic_table A table taken from a tidy (i.e., augmented measurements) or triple omic dataset

x_var x-axis variable

color_var coloring variable (NULL to suppress coloring)

Value

A ggplot2 grob

```
library(dplyr)

brauer_augmented <- brauer_2008_tidy %>%
   add_pcs(npcs = 5) %>%
   tomic_to("triple_omic")

plot_univariate(brauer_augmented$samples, "PC1", "nutrient")
plot_univariate(brauer_augmented$measurements, "expression", NULL)
```

```
prepare_example_datasets
```

Prepare Example Datasets

Description

Format example datasets and add them to the package.

Usage

```
prepare_example_datasets(seed = 1234)
```

Arguments

seed

a seed value used to reproducibly sample random genes.

Value

None; used for side-effects.

```
{\tt reconcile\_triple\_omic} \ \ \textit{Reconcile Triple Omic}
```

Description

If some samples, feature or measurements have been dropped; update other tables.

Usage

```
reconcile_triple_omic(triple_omic)
```

Arguments

```
triple_omic an object of class triple_omic produced by create_triple_omic
```

Value

```
a triple_omic object
```

remove_missing_values Remove Missing Values

Description

Account for missing values by dropping features, samples or using imputation.

Usage

```
remove_missing_values(
  tomic,
  value_var = NULL,
  missing_val_method = "drop_samples",
  verbose = TRUE
)
```

Arguments

Value

A tomic object where missing values have been accounted for.

```
remove_missing_values(brauer_2008_triple)
```

shiny_filter_test 35

shiny_filter_test

Shiny Filter Test

Description

Tests the shiny filter module as a stand-alone application.

Usage

```
shiny_filter_test(tidy_omic, filter_table = "features")
```

Arguments

```
tidy_omic an object of class tidy_omic produced by create_tidy_omic filter_table table to filter
```

Value

A shiny app

Examples

```
if (interactive()) {
   shiny_filter_test(brauer_2008_tidy)
}
```

shiny_ggbiv_test

Shiny ggBivariate Test

Description

Test the shiny ggBivariate module as a stand-alone application.

Usage

```
shiny_ggbiv_test(tomic, plot_table = "samples")
```

Arguments

```
tomic Either a tidy_omic or triple_omic object plot_table table containing the data to be plotted
```

Value

```
a shiny app
```

36 shiny_ggplot_test

Examples

```
if (interactive()) {
    shiny_ggbiv_test(
        add_pcs(brauer_2008_triple, npcs = 5),
        plot_table = "samples"
)
    shiny_ggbiv_test(
        brauer_2008_triple,
        plot_table = "measurements"
)
}
```

shiny_ggplot_test

Shiny ggplot Test

Description

Test the shiny ggplot module as a stand-alone application.

Usage

```
shiny_ggplot_test(tomic)
```

Arguments

 ${\tt tomic}$

Either a tidy_omic or triple_omic object

Value

A shiny app

```
if (interactive()) {
   shiny_ggplot_test(add_pcs(brauer_2008_triple, npcs = 5))
   shiny_ggplot_test(brauer_2008_triple)
}
```

shiny_gguniv_test 37

shiny_gguniv_test

Shiny ggUnivariate Test

Description

Test the shiny ggUnivariate module as a stand-alone application.

Usage

```
shiny_gguniv_test(tomic, plot_table = "samples")
```

Arguments

tomic Either a tidy_omic or triple_omic object plot_table table containing the data to be plotted

Value

A shiny app

Examples

```
if (interactive()) {
    shiny_gguniv_test(
        add_pcs(brauer_2008_triple, npcs = 5),
        plot_table = "samples"
    )
    shiny_gguniv_test(brauer_2008_triple, plot_table = "measurements")
    shiny_gguniv_test(brauer_2008_triple, plot_table = "features")
}
```

shiny_lasso_test

Shiny Lasso Test

Description

Tests the shiny lasso module as a stand-alone application.

Usage

```
shiny_lasso_test(tomic, tomic_table)
```

Arguments

tomic Either a tidy_omic or triple_omic object

tomic_table A table taken from a tidy (i.e., augmented measurements) or triple omic dataset

Value

```
A shiny app
```

Examples

```
if (interactive()) {
  tomic <- brauer_2008_triple
  tomic_table <- tomic[["samples"]] %>% dplyr::filter(nutrient == "G")
  shiny_lasso_test(tomic, tomic_table)
}
```

```
shiny_lasso_test_reactval
```

Shiny Lasso Test w/ Reactive Values

Description

Tests the shiny lasso module as a stand-alone application when the tomic is a reativeVal.

Usage

```
shiny_lasso_test_reactval(tomic, tomic_table)
```

Arguments

tomic Either a tidy_omic or triple_omic object

tomic_table A table taken from a tidy (i.e., augmented measurements) or triple omic dataset

Value

A shiny app

```
if (interactive()) {
  tomic <- brauer_2008_triple
  tomic_table <- tomic[["samples"]] %>% dplyr::filter(nutrient == "G")
  shiny_lasso_test_reactval(tomic, tomic_table)

tomic_table <- tomic[["measurements"]] %>% dplyr::filter(expression < -3)
  shiny_lasso_test_reactval(tomic, tomic_table)
}</pre>
```

shiny_organize_test 39

Description

Tests the shiny organization module as stand-alone application.

Usage

```
shiny_organize_test(tidy_omic, feature_vars, sample_vars, value_var)
```

Arguments

```
tidy_omic an object of class tidy_omic produced by create_tidy_omic
feature_vars variables available for arranging features
sample_vars variables available for arrange samples
value_var An abundance value to use with hclust
```

Value

a shiny app

Examples

```
if (interactive()) {
    shiny_organize_test(
        brauer_2008_tidy,
        feature_vars = c("BP", "MF"),
        sample_vars = c("sample", "nutrient", "DR"),
        value_var = "expression"
    )
}
```

Description

Test the shiny plotsaver module as a stand-alone application.

Usage

```
shiny_plotsaver_test()
```

shiny_sort_test

Value

```
a shiny app
```

Examples

```
if (interactive()) {
   shiny_plotsaver_test()
}
```

shiny_sort_test

Shiny Sort Test

Description

Test the shiny sorting module as a stand-alone app.

Usage

```
shiny_sort_test(triple_omic, valid_sort_vars, value_var)
```

Arguments

Value

```
a shiny app
```

```
if (interactive()) {
    shiny_sort_test(brauer_2008_triple,
       valid_sort_vars = c("sample", "nutrient", "DR"),
       value_var = "expression"
    )
}
```

sortInput 41

Description

UI components for the sort module.

Usage

```
sortInput(id, sort_table)
```

Arguments

id An ID string that corresponds with the ID used to call the module's UI function. sort_table table to sort

Value

A shiny UI

sortServer Sort Server

Description

Server components for the sort module.

Usage

```
sortServer(id, tomic, sort_table, valid_sort_vars = NULL, value_var = NULL)
```

Arguments

id An ID string that corresponds with the ID used to call the module's UI function.

tomic Either a tidy_omic or triple_omic object

sort_table samples or features

valid_sort_vars

variables available for categorical arranging

value_var An abundance value to use with hclust

Value

A sorted tomic object.

42 sort_tomic

sort_tomic

Sort Triple Omic

Description

Sort a dataset's features or samples

Usage

```
sort_tomic(
  tomic,
  sort_type,
  sort_table,
  sort_variables = NULL,
  value_var = NULL
)
```

Arguments

tomic Either a tidy_omic or triple_omic object

sort_type hclust Arrange samples by hierarchical clustering of a provided value_var

arrange Arrange samples by the factor or alphanumeric ordering of a set of

sort_variables

sort_table samples or features

sort_variables A set of attributes in sort_table to sort with in arrange.

value_var An abundance value to use with hclust

Details

sort_tomic supports the reordering of features or samples using either hierarchical clustering or based on the levels of other variables. Sorting occurs by turning either the feature or sample primary key into a factor whose levels reflect the sort.

Value

A tomic object where feature or sample primary keys have been turned into a factor reflecting how they are sorted.

```
library(dplyr)
sort_tomic(brauer_2008_triple,
    sort_type = "arrange", sort_table = "samples",
    sort_variables = c("nutrient", "DR")
) %>%
```

sort_triple_arrange 43

```
sort_tomic(
  sort_type = "hclust",
  sort_table = "features",
  value_var = "expression"
)
```

Description

Sort a triple_omic object based on the values of one or more variables.

Usage

```
sort_triple_arrange(triple_omic, sort_table, sort_variables)
```

Arguments

```
triple_omic an object of class triple_omic produced by create_triple_omic sort_table samples or features sort_variables A set of attributes in sort_table to sort with in arrange.
```

Value

A triple_omic with sorted features or samples.

Description

Sort a triple_omic object using hierarchical clustering

Usage

```
sort_triple_hclust(triple_omic, sort_table, value_var)
```

Arguments

```
triple_omic an object of class triple_omic produced by create_triple_omic sort_table samples or features
value_var An abundance value to use with hclust
```

Value

A triple_omic with clustered features or samples.

44 tomic_sort_status

tidy_to_triple

Tidy omic to triple omic

Description

Convert a tidy_omic object into a triple_omic object.

Usage

```
tidy_to_triple(tidy_omic)
```

Arguments

tidy_omic

an object of class tidy_omic produced by create_tidy_omic

Details

The data table will be converted into features, samples, and measurements tables using the design to determine which variables belong in each table. The design will be preserved as-is.

Value

A triple_omic object as created by create_triple_omic

Examples

```
tidy_to_triple(brauer_2008_tidy)
```

tomic_sort_status

T* Omic Sort Status

Description

Determine whether features &/or samples have been sorted and stored as ordered_featureId and ordered_sampleId.

Usage

```
tomic_sort_status(tomic)
```

Arguments

tomic

Either a tidy_omic or triple_omic object

Value

length 1 character string indicating whether the tomic is sorted.

tomic_to 45

Examples

```
tomic_sort_status(brauer_2008_tidy)
```

tomic_to

T* Omic To

Description

Takes in any romic reprsentation of a dataset and returns a specific representation.

Usage

```
tomic_to(tomic, to_class)
```

Arguments

tomic

Either a tidy_omic or triple_omic object

to_class

The class to return, either tidy_omic or triple_omic

Value

tomic transformed to to_class class (or un-transformed if it started that way).

Examples

```
tomic_to(brauer_2008_tidy, "triple_omic")
```

triple_to_tidy

Triple Omic to Tidy Omic

Description

Convert a triple_omic object into a tidy_omic oobject.

Usage

```
triple_to_tidy(triple_omic)
```

Arguments

triple_omic an

an object of class triple_omic produced by create_triple_omic

46 try_brushedPoints

Details

Features, samples and measurements will be merged into a single data table, and the design will be preserved as-is.

Value

A tidy_omic object as created by create_tidy_omic.

Examples

```
library(dplyr)
measurement_df <- tidyr::expand_grid(</pre>
  feature_id = 1:10,
  sample_id = LETTERS[1:5]
  dplyr::mutate(value = rnorm(n()))
feature_df <- tibble(</pre>
  feature_id = 1:10,
  feature_group = rep(c("a", "b"), each = 5)
)
sample_df <- tibble(</pre>
  sample_id = LETTERS[1:5],
  sample_group = c("a", "a", "b", "b", "b")
triple_omic <- create_triple_omic(</pre>
  measurement_df, feature_df, sample_df,
  "feature_id", "sample_id"
triple_to_tidy(triple_omic)
```

try_brushedPoints

Try brushedPoints

Description

This function wraps brushedPoints in a try statement to catch cases where the brushing is out-of-sync with the df that is selected.

Usage

```
try_brushedPoints(...)
```

Arguments

... args to pass to brushedPoints

update_tidy_omic 47

Value

a df of brushed points

update_tidy_omic

Update Tidy Omic

Description

Update a Tidy 'Omics data and schema to reflect newly added fields.

Usage

```
update_tidy_omic(tidy_omic, updated_tidy_data, new_variable_tables = c())
```

Arguments

Value

a tidy_omic object with an updated schema and/or data.

```
library(dplyr)

tidy_omic <- brauer_2008_tidy
updated_tidy_data <- tidy_omic$data %>%
    mutate(new_sample_var = "foo") %>%
    select(-DR)
new_variable_tables <- c("new_sample_var" = "samples")</pre>
```

48 var_partial_match

update_tomic

Update T* Omic

Description

Provide an updated features, samples or measurements table to a tomic.

Usage

```
update_tomic(tomic, tomic_table)
```

Arguments

tomic Either a tidy_omic or triple_omic object

tomic_table A table taken from a tidy (i.e., augmented measurements) or triple omic dataset

Value

A tomic object with updated features, samples or measurements.

Examples

```
library(dplyr)
updated_features <- brauer_2008_triple$features %>%
    dplyr::filter(BP == "biological process unknown") %>%
    dplyr::mutate(chromosome = purrr::map_int(systematic_name, function(x) {
        which(LETTERS == stringr::str_match(x, "Y([A-Z])")[2])
     }))

update_tomic(brauer_2008_triple, updated_features)
```

var_partial_match

Var Partial Match

Description

Partial string matching of a provided variable to the variables available in a table

Usage

```
var_partial_match(x, df)
```

Arguments

x a variable name or regex match to a variable name

df a data.frame or tibble

var_partial_match 49

Value

a single variable from df

Index

* datasets	ggUnivServer, 23
brauer_2008, 6	halash andan 24
add_pcs, 3	hclust_order, 24
app_flow, 4	impute.knn, 25
app_heatmap, 5	impute_missing_values, 25
app_pcs, 6	infer_tomic_table_type, 26
app_pcs, 0	
brauer_2008, 6, 6	lassoInput, 26
brauer_2008_tidy (brauer_2008), 6	lassoServer, 27
brauer_2008_triple(brauer_2008),6	
brushedPoints, 46	organizeInput, 27
	organizeServer, 28
center_tomic, 7	plat bivariata 20
check_tidy_omic, 8	plot_bivariate, 29
check_tomic, 8	<pre>plot_heatmap, 30 plot_univariate, 32</pre>
check_triple_omic, 9	plotsaverInput, 28
convert_wide_to_tidy_omic, 9	plotsaverServer, 29
create_tidy_omic, 8, 10, 17, 28, 35, 39, 44,	prepare_example_datasets, 33
46, 47	pi epai e_example_datasets, 55
create_triple_omic, 9, 12, 33, 40, 43-45	<pre>reconcile_triple_omic, 33</pre>
downsample_heatmap, 14	remove_missing_values, 34
30	
export_tomic_as_tidy, 14	shiny_filter_test,35
export_tomic_as_triple, 15	shiny_ggbiv_test,35
export_tomic_as_wide, 16	<pre>shiny_ggplot_test, 36</pre>
	shiny_gguniv_test,37
filter_tomic, 18	shiny_lasso_test, 37
filterInput, 17	shiny_lasso_test_reactval, 38
filterServer, 17	shiny_organize_test, 39
<pre>format_names_for_plotting, 19</pre>	shiny_plotsaver_test, 39
got decign the 20	shiny_sort_test, 40
<pre>get_design_tbl, 20 get_tomic_table, 20</pre>	sort_tomic, 42
ggBivOutput, 21	sort_triple_arrange, 43
ggBivServer, 21	sort_triple_hclust, 43
ggplotOutput, 22	sortInput, 41
ggplotServer, 22	sortServer, 41
ggsave, 29	tidy_to_triple,44
ggUnivOutput, 23	tomic_sort_status, 44
550011 Touchut, 25	

INDEX 51

```
tomic_to, 45
triple_to_tidy, 45
try_brushedPoints, 46
update_tidy_omic, 47
update_tomic, 48
var_partial_match, 48
```