Pushdown Automata PDAs

Pushdown Automaton -- PDA

Input String

Initial Stack Symbol

bottom special symbol Appears at time 0

The States

stack

$$\underbrace{q_1} \xrightarrow{a, \lambda \to c} \underbrace{q_2}$$

$$\begin{array}{ccc}
 & a, & b \to \lambda \\
\hline
 & q_1
\end{array}$$

stack

stack

Pop from Empty Stack

If the automaton attempts to pop from empty stack then it halts and rejects input

Non-Determinism

PDAs are non-deterministic

Allowed non-deterministic transitions

 λ – transition

Example PDA

$$\mathsf{PDA}\ M:$$

$$L(M) = \{a^n b^n : n \ge 0\}$$

$$L(M) = \{a^n b^n : n \ge 0\}$$

Basic Idea:

Execution Example: Time 0

Input

Input

Input

Input

Input

Input

Input

Input

Input

A string is accepted if there is a computation such that:

All the input is consumed AND

The last state is an accepting state

we do not care about the stack contents at the end of the accepting computation

Input

Input

Input

Input

Input

Stack

reject

There is no accepting computation for aab

The string aab is rejected by the PDA

Another PDA example

PDA
$$M: L(M) = \{vv^R : v \in \{a,b\}^*\}$$

$$a, \lambda \rightarrow a$$
 $a, a \rightarrow \lambda$
 $b, \lambda \rightarrow b$ $b, b \rightarrow \lambda$
 $\downarrow q_0$ $\lambda, \lambda \rightarrow \lambda$ $\downarrow q_1$ $\lambda, \$ \rightarrow \$$ $\downarrow q_2$

Basic Idea:

$$L(M) = \{vv^R : v \in \{a,b\}^*\}$$

Execution Example: Time 0

Input

$$a, \lambda \rightarrow a$$

$$b, \lambda \rightarrow b$$

$$a, a \rightarrow \lambda$$

$$b, b \rightarrow \lambda$$

$$\lambda, \lambda \rightarrow \lambda$$

Input

$$b, \lambda \rightarrow b$$

$$b, b \rightarrow \lambda$$

$$\lambda, \lambda \rightarrow \lambda$$

$$\lambda$$
, \$ \rightarrow \$

Input

$$a, a \rightarrow \lambda$$

$$b, b \rightarrow \lambda$$

Input

Guess the middle of string

 $a, \lambda \rightarrow a$ / $a, a \rightarrow \lambda$ Stack

$$b, \lambda \rightarrow b$$

 $a, a \rightarrow \lambda$ $b, b \rightarrow \lambda$

 $\lambda, \lambda \rightarrow \lambda$ q_1 $\lambda, \$ \rightarrow$

Input

$$a, a \rightarrow \lambda$$

$$b, b \rightarrow \lambda$$

$$\lambda, \$ \rightarrow \$$$

$$b, \lambda \rightarrow b$$

$$\lambda, \lambda \rightarrow \lambda$$

$$\lambda, \$ \rightarrow \$$$

Input

$$a, \lambda \rightarrow a$$

$$b, \lambda \rightarrow b$$

$$a, a \rightarrow \lambda$$

$$b, b \rightarrow \lambda$$

Rejection Example:

Time 0

Input

Stack

$$a, \lambda \rightarrow a$$

$$b, \lambda \rightarrow b$$

$$b, b \rightarrow \lambda$$

 $a, a \rightarrow \lambda$

$$\lambda, \lambda \rightarrow \lambda$$

 $\langle q_1 \rangle \quad \lambda, \$ \rightarrow \$$

Input

$$b, \lambda \rightarrow b$$

$$a, a \rightarrow \lambda$$

$$b, b \rightarrow \lambda$$

Input

$$a, a \rightarrow \lambda$$

$$b, b \rightarrow \lambda$$

Input

Guess the middle of string

Stack

 $a, \lambda \rightarrow a$ / $a, a \rightarrow \lambda$

$$b, \lambda \rightarrow b$$

 $a, a \rightarrow \lambda$ $b, b \rightarrow \lambda$

 $\lambda, \lambda \to \lambda$

Input

Input

There is no possible transition.

Input is not consumed

Stack

$$a, \lambda \rightarrow a$$

$$b, \lambda \rightarrow b$$

$$b, b \rightarrow \lambda$$

 $a, a \rightarrow \lambda$

Another computation on same string:

Input

$$a, a \rightarrow \lambda$$

$$b, \lambda \rightarrow b$$

$$b, b \rightarrow \lambda$$

$$\lambda, \lambda \rightarrow \lambda$$

Input

Stack

$$\begin{array}{c}
a, \lambda \to a \\
b, \lambda \to b
\end{array}$$

$$\begin{array}{c}
\lambda, \lambda \to \lambda
\end{array}$$

 λ , \$ \rightarrow \$

Input

$$a, \lambda \rightarrow a$$

$$(b, \lambda \rightarrow b)$$

$$a, a \rightarrow \lambda$$

$$b, b \rightarrow \lambda$$

Input

$$a, \lambda \rightarrow a$$

$$(b, \lambda \rightarrow b)$$

$$a, a \rightarrow \lambda$$

$$b, b \rightarrow \lambda$$

Input

No accept state is reached

b	-
b	
b	
a	
\$	

$$a, \lambda \rightarrow a$$

$$b, \lambda \rightarrow b$$

$$a, a \rightarrow \lambda$$

$$b, b \rightarrow \lambda$$

There is no computation that accepts string abbb

 $abbb \notin L(M)$

$$a, \lambda \rightarrow a$$
 $a, a \rightarrow \lambda$
 $b, \lambda \rightarrow b$ $b, b \rightarrow \lambda$
 q_0 $\lambda, \lambda \rightarrow \lambda$ q_1 $\lambda, \$ \rightarrow \$$ q_2

Pushing & Popping Strings

Example:

Another PDA example

$$L(M) = \{w \in \{a,b\}^*: n_a(w) = n_b(w)\}$$

PDA M

$$a, \$ \rightarrow 0\$$$
 $b, \$ \rightarrow 1\$$
 $a, 0 \rightarrow 00$ $b, 1 \rightarrow 11$
 $a, 1 \rightarrow \lambda$ $b, 0 \rightarrow \lambda$

$$\lambda, \$ \rightarrow \$$$

$$q_1$$

$$\lambda, \$ \rightarrow \$$$

Execution Example: Time 0

Input

$$a, \$ \rightarrow 0\$$$
 $b, \$ \rightarrow 1\$$
 $a, 0 \rightarrow 00$ $b, 1 \rightarrow 11$

$$a, 1 \rightarrow \lambda$$
 $b, 0 \rightarrow \lambda$

current state

Input

$$a, 0 \rightarrow 00$$
 $b, 1 \rightarrow 11$

$$(a, 1 \rightarrow \lambda)$$
 $b, 0 \rightarrow \lambda$

Stack

$$a, 0 \rightarrow 00$$
 $b, 1 \rightarrow 11$

$$(a, 1 \rightarrow \lambda)$$
 $b, 0 \rightarrow \lambda$

Stack

Formalities for PDAs

$$\underbrace{q_1} \xrightarrow{a, w_1 \to w_2} \underbrace{q_2}$$

Transition function:

$$\delta(q_1,a,w_1) = \{(q_2,w_2)\}$$

Transition function:

$$\delta(q_1,a,w_1) = \{(q_2,w_2), (q_3,w_3)\}$$

Formal Definition

Pushdown Automaton (PDA)

Instantaneous Description

Example:

Instantaneous Description

 $(q_1,bbb,aaa\$)$

Time 4:

Input

 $a, \lambda \rightarrow a$

Stack

 \boldsymbol{a}

 \boldsymbol{a}

 $\underbrace{q_0}^{\lambda,\lambda\to\lambda} q_1$

 $b, a \rightarrow \lambda \qquad \lambda, \$ \rightarrow \$ \qquad q_3$

 $b, a \rightarrow \lambda$

Example:

Instantaneous Description

 $(q_2,bb,aa\$)$

Time 5:

 $a, \lambda \rightarrow a$

 $b, a \rightarrow \lambda$

Stack

 \boldsymbol{a}

We write:

```
(q_1,bbb,aaa\$) \succ (q_2,bb,aa\$)
```

Time 4

Time 5

A computation:

$$(q_{0}, aaabbb,\$) \succ (q_{1}, aaabbb,\$) \succ$$

 $(q_{1}, aabbb, a\$) \succ (q_{1}, abbb, aa\$) \succ (q_{1}, bbb, aaa\$) \succ$
 $(q_{2}, bb, aa\$) \succ (q_{2}, b, a\$) \succ (q_{2}, \lambda,\$) \succ (q_{3}, \lambda,\$)$

$$(q_{0}, aaabbb,\$) \succ (q_{1}, aaabbb,\$) \succ$$

 $(q_{1}, aabbb, a\$) \succ (q_{1}, abbb, aa\$) \succ (q_{1}, bbb, aaa\$) \succ$
 $(q_{2}, bb, aa\$) \succ (q_{2}, b, a\$) \succ (q_{2}, \lambda,\$) \succ (q_{3}, \lambda,\$)$

For convenience we write:

$$(q_0, aaabbb,\$) \stackrel{*}{\succ} (q_3, \lambda,\$)$$

Language of PDA

Language L(M) accepted by PDA M:

$$L(M) = \{w : (q_0, w, z) \stackrel{*}{\succ} (q_f, \lambda, s)\}$$
Initial state

Accept state

Example:

$$(q_0, aaabbb,\$) \succ (q_3, \lambda,\$)$$

 $aaabbb \in L(M)$

PDA M:

$$(q_0, a^n b^n, \$) \succ (q_3, \lambda, \$)$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$a^n b^n \in L(M)$$

PDA M:

Therefore:
$$L(M) = \{a^n b^n : n \ge 0\}$$

PDAM:

