2 Návrh regulačných obvodov použitím evolučných algoritmov (genetického algoritmu)

2.1 Princíp

Návrh / optimalizácia parametrov regulačného obvodu (dynamického systému)

Fitness f.: číslicová simulácia dynamického systému + vyčíslenie vhodného (integrálneho) kritéria

Vyhodnotenie fitness – 2 kroky:

1.simulácia

Cieľ: minimalizácia plochy

Optimálne navrhnutý regulátor

PID regulátor: $R_{PID}(s) = P + I/s + Ds$

Ret'azec : r = [P,I,D]

PI regulátor : $R_{PI}(s) = P + I/s$

Ret'azec : r = [P,I]

Plocha kritéria kvality regulácie IAE uzavretého regulačného obvodu s PI regulátorom

Výpočet kriteriálnej funkcie (fitness) v Matlabe

$$J = \sum_{k=1}^{N_{sim}} |e_k| - > J = sum(abs(e))$$

$$T \neq konšt$$

$$J = sum(T.abs(e))$$

Evolúcia PID regulátora

Príklady rôznych kriteriálnych funkcií

1.
$$J = \int_{0}^{T} (\alpha |e| + \beta |e'| + \gamma |e''|) dt$$

Tlmenie kmitania

 $2. J = \alpha \eta + (1 - \alpha)t$

$$\mathbf{3.} \quad J_{ISE} = \int_{0}^{T} e^{2}(t)dt$$

$$J_{TAE} = \int_{0}^{T} t |e(t)| dt$$

5.
$$J = \int_{0}^{T} (y - y_r)^2 dt$$

6.
$$J = \sum_{k=1}^{N_{sim}} (|e_k| + a|de_k| + b|u_k| + c|du_k|)$$
Tlmenie kmitania (preregulovania)
Tlmenie zmien akčnej veličiny

Tlmenie veľkosti akčnej veličiny

Evolúcia PID regulátora

Rôzne váhy krit.f.

b = 0; c = 0

3 spustenia GA

Evolúcia parametrov reg.

Kritérium 6, c=0

Stabilita regulátora

Nestabilné koeficienty regulátora zhoršujú kvalitu regulácie a teda aj hodnotu fitness.

Algoritmus (GA) tlačí koeficienty do stabilných regiónov.

Stabilita je implicitná vlastnosť metódy návrhu pomocou EA / GA

Možné dodatočné rozšírenia účel.f.

- obmedzenie počtu prekmitov (inflexných bodov) prech. char.
- dodržanie požadovanej amplitúdovej a fázovej rezervy v stabilite (alebo ich maximalizácia)
- test stability ...

Objekt optimalizácie – ľubovolný regulačný obvod, ľubovolný typ regulátora (nelinearity, MIMO,poruchy, šum ... všetko čo vieme odsimulovať)

$$J_{IAE} = \int_{T_1}^{T_2} |e(t)| dt = \int_{T_1}^{T_2} |w(t) - y(t)| dt$$

Návrh riadenia polohového systému s PID regulátorom, lead kompenzátorom a Luenbergerovým pozorovateľom

chromozóm:

$$ch = \{P, I, D, a_1, a_0, b_0\}$$

Polohový systém s PID regulátorom, lead kompenzátorom (LC), Luenbergerovým pozorovateľom (LO), generátor sily (GF).

$$Fitness = \int_{0}^{T} (\alpha |e(t)| + \beta |e'(t)| + \gamma |e''(t)|) dt$$

$$\alpha = 1, \beta = 0.5, \gamma = 0$$

$$LC = \frac{a_1 z + a_0}{z + b_0}$$

	P	I	D	a ₁	\mathbf{a}_2	B ₂
Pole-placement	4737.4	99220	75.3882	20	-19.8425	-0.8425
GA	45100	4.8020	780.2274	1.5315	-1.4123	-0.4219

2.2 Návrh robustných regulátorov

Zvýšenie robustnosti riešenia

$$J = \int_{0}^{T} |e_a| dt + \int_{0}^{T} |e_b| dt + \int_{0}^{T} |e_c| dt \qquad \text{viac prac. bodov}$$

Zahrnutie najnepriaznivejších porúch a situácií do evolúcie

2.3 Návrh riadenia MIMO systémov

$$r = [P_1, I_1, D_1, q_{11}, q_{10}, r_{12}, r_{11}, P_2, I_2, D_2, q_{21}, q_{20}, r_{22}, r_{21}]$$

$$J = \int_{0}^{T} (|e_1| + 2|e_1'|) dt + \int_{0}^{T} (|e_2| + 2|e_2'|) dt$$

2.4 Identifikácia dynamických systémov

$$S(s)=B(s)/A(s)$$

 $r = [a_0, a_1, ..., a_n, b_0, b_1, ..., b_m]$

$$J = \int_{0}^{T} (y - y_{m})^{2} dt$$

Pre MIMO systém

$$J = \int_{0}^{T} \sum_{i=1}^{N} (y_i - y_{m,i})^2 dt$$

Návrh / optimalizácia funkcií príslušností fuzzy systému

Návrh/optimalizácia prvkov bázy pravidiel

de/e	NB	NS	ZE	PS	PB
NB	NB	NS	ZE	ZE	ZE
NS	NB	NS	NS	ZE	PS
ZE	NS	ZE	ZE	PS	PB
PS	ZE	ZE	PS	PB	PB
PB	ZE	ZE	PS	PB	PB

Reťazec: prvky FS

Fitness: stredná kvadratická chyba, IAE, ...

(podľa aplikácie)

Návrh a optimalizácia systémov s umelými neurónovými sieťami

Reťazec: prvky UNS

Fitness: stredná kvadratická chyba, ...

Neuro regulátor

Reťazec: prvky UNS

Fitness: IAE, ...

Priebeh regulácie nelineárneho systému pomocou neuro-PID regulátora a konvenčného PID regulátora