3. ЛАБОРАТОРНАЯ РАБОТА 3. РЕАЛИЗАЦИЯ АЛГОРИТМОВ С ЦИКЛИЧЕСКОЙ СТРУКТУРОЙ. ЦИКЛЫ WHILE И FOR.

3.1. СПРАВОЧНЫЙ МАТЕРИАЛ

Циклические конструкции Python представлены циклами 2 типов (таблица 1).

Таблица 1. Циклические конструкции Python

Цикл While	Цикл For							
Используется, когда указанный	Цикл удобно использовать при							
блок повторяется до тех пор, пока	переборе элементов любого типа							
указанное логическое выражение в	данных (числа, строки или списка)							
цикле будет истинно.								
While [логическое выражение]:	For int in range():							
Команда 1	Команда 1							
Команда 2	Команда 2							
Команда m	Команда m							

Переменная **int** - это значение первого элемента функции **range**(). Далее выполняются команды. Затем переменной **int** присваивается следующее по порядку значение и так далее до тех пор, пока не будут перебраны все элементы функции **range**().

Функция **range**() является универсальной функцией Python для создания списков (list) содержащих арифметическую прогрессию. Чаще всего она используется в циклах **for**.

range(старт, стоп, шаг) - так выглядит стандартный вызов функции range() в python. По умолчанию старт равняется нулю, шаг единице.

Также цикл **for** применяться для прохода по элементам списка, кортежа, словаря, набора, файла с использование операции **in**, например:

```
spisok = [10, 40, 20, 30]
for element in spisok:
    print(element)
```

Цикл **for** может применяться в комбинации с условиями, например, две строчки кода на Python, выведут список из двух элементов [3, 4] :

```
lst1 = [1, 2, 3, 4, 5, 6]
print ([x for x in lst1 if 5 > x > 2])
```

Циклы могут быть вложенными друг в друга.

Операторы прерывания циклов

В некоторых случаях необходимо прервать повторение цикла, проанализировав какие-то условия внутри тела цикла. Это может потребоваться в тех случаях, когда проверки условия для окончания цикла громоздкие, требуют многоэтапного сравнения и сопоставления каких-то данных, и все эти проверки просто невозможно разместить в выражении условия операторов циклов. Для этого можно использовать оператор **break**. Он прерывает выполнение тела любого цикла **for** или **while** и передает управление следующему за циклом выполняемому оператору.

Например, следующий цикл выведет первые 5 чисел (от 0 до 4):

```
for i in range(10):
    if i == 5:
        break
    print(i)
```

Результат:

Для прерывания циклов, размещенных в функциях, можно воспользоваться стандартным оператором завершения функции **return**. В отличие от оператора **break**, оператор **return** прерывает не только выполнение цикла, но и выполнение той функции, в которой расположен цикл.

Иногда внутри тела цикла возникает необходимость прервать только выполнение текущей итерации и перейти к следующей. В этом случае можно воспользоваться стандартным оператором **continue**, который передает управление в заголовок цикла.

Следующий цикл выведет все числа от 0 до 9, кроме числа 5.

```
for i in range(10):
    if i == 5:
        continue
    print(i)
```

Результат:

3.2. ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ

Пример 1. Вычисление факториала числа.

```
number = int(input("Найти факториал числа: "))
i=1
factorial = 1
while i <= number:
    factorial = factorial * i
    i = i+1
print("Факториал числа равен: ", factorial)

Результат выполнения программы:
Найти факториал числа: 4
факториал числа равен: 24
```

Пример 2. Нарисовать блок-схему алгоритма для вычисления суммы всех целых чисел от 1 до n.

Решение:

Пример 3. Найти сумму n (вводится с клавиатуры) членов ряда: 1; -2; 4; -8; 16.... Данный ряд знакочередующийся, состоит из элементов $\sum_{n=0}^{\infty} (-2)^n$.

Результат выполнения программы:

```
Ввведите количество элементов последовательности: 4

1
-2
4
-8
Сумма 4 членов ряда равна: -5
```

3.3. ЗАДАНИЯ ДЛЯ САМОСТОЯТЕЛЬНОЙ РАБОТЫ

Общие задания для всех вариантов

- 1. Нарисовать блок-схему алгоритма, написать и отладить программу для примера 1.
- 2. Написать программу для блок-схемы алгоритма из примера 2.
- 3. Нарисовать блок-схему алгоритма, написать и отладить программу для примера 3.
- 4. Посчитать сумму ряда $\sum_{x=1}^{N} \frac{\sqrt{x+2}}{x}$ для **N** членов. Распечатывать номер шага цикла и каждое слагаемое, а по завершении цикла посчитанную сумму.
- 5. Рассчитать приближенное значение бесконечной суммы:

$$\sum_{i=1}^{\infty} \frac{(-1)^i}{i!}$$

где: i ! =1 × 2 × 3 × ... × i — факториал числа.

Нужное приближение считается полученным, если очередное слагаемое меньше E (0 < E < 1). На каждом шаге цикла распечатывать очередное слагаемое. По завершении цикла распечатать значение полученной суммы и количество шагов цикла. Рекомендуемое значение E=0.001. Можно задать E=0.0001 или, наоборот, E=0.01 и посмотреть, как меняется число шагов цикла.

Задачи для различных вариантов

- 1. Перемножить все числа от **m** до **n**, где **m**, **n** целые числа, **m** < **n**.
- 2. Вычислить: $y = \sqrt{x^2 m^2}$

для x, изменяющихся от —6 до 10 с шагом 2. \mathbf{m} — вводится с консоли. Вывести на экран каждое значение \mathbf{x} и соответствующее значение \mathbf{y} .

3. Вычислить:

$$Y = \frac{1}{X^2}$$

при изменении X в интервале [-5, +20] с шагом 5. Вывести на экран каждое значение X и соответствующее значение Y.

4. Дано натуральное число **N.** Вычислить:

$$\sqrt{2+\sqrt{2+\ldots+\sqrt{2}}}$$

Здесь **N** слагаемых.

5. Дано натуральное число **N**. Вычислить:

$$\frac{1}{2} \times \frac{3}{4} \times \frac{5}{6} \dots$$

3десь N сомножителей.

6. Вычислить:

$$Z = \sum_{i=1}^{10} \frac{X_i}{\sqrt{i + X_i}},$$

где X_i изменяется от 5 с шагом 0,5 одновременно с i. Вывести на экран каждое значение X и соответствующее значение Y.

- 7. Вводится натуральное число **N**. Определить, сколько цифр в числе и чему равна их сумма.
- 8. Определить, сколько цифр в числе **N!** (**N!=1*2*3*...*N**). **N** вводится с консоли.
- 9. Найти сумму натуральных чисел меньших **N** и кратных 9. **N** вводится с консоли.
- 10. Найти сумму натуральных чисел меньших ${\bf N}$ и делящихся на 5 с остатком 3. ${\bf N}$ вводится с консоли.
- 11. Определить ближайшее четное число меньше заданного числа ${\bf N}$, которое делится на 5 без остатка. ${\bf N}$ вводится с консоли.
- 12. Определить ближайшее нечетное число меньше заданного числа N, которое делится на 4 с остатком 3. N вводится с консоли
- 13. Определить ближайшее нечетное число больше заданного числа **N**, которое делится на 5 с остатком 1. **N** вводится с консоли
- 14. Найти сумму натуральных чисел меньших \mathbf{N} и делящихся на 6 с остатком 1. \mathbf{N} вводится с консоли.
- 15. Вводится натуральное число **N**. Напечатать все простые делители этого числа. Простые делители это числа, на которые **N** делится без остатка.

5

16. Вычислить:

$$Y = \begin{cases} x^2, ecnu \ x \le 0 \\ 2, ecnu \ 0 < x > 15 \\ \sqrt{x}, ecnu \ x \ge 15 \end{cases}$$

- Здесь, значения x изменяются от -10 до 25 с шагом 4. Вывести на экран каждое значение \mathbf{X} и соответствующее значение \mathbf{Y} .
- 17. Вводятся натуральные числа N и M. Получить сумму M последних цифр числа N.
- 18. Вводится целое число N. Найти среднее арифметическое нечетных чисел, меньших N.
- 19. Вычислить:

$$Y = \frac{X\sqrt{X}}{5+X^2}$$
 при изменении X от 3до 20 с шагом 4. Вывести на экран каждое значение **X** и соответствующее значение **Y**.

- 20. Одноклеточная амеба каждые 3 часа делится на 2 клетки. Определить, сколько клеток будет через 24 часа.
- 21. Вычислить сумму квадратов нечетных чисел от 1 до 500. Итоги вывода: сумма и количество чисел.
- 22. Вычислить сумму чисел кратных 3 от 1 до 500. Итоги вывода: сумма и количество чисел.
- 23. Вычислить сумму чисел кратных 3 от 100 до 1000. Итоги вывода: сумма и количество чисел.
- 24. Вычислить сумму чисел кратных 5 от 1 до 500. Итоги вывода: сумма и количество чисел.
- 25. Вычислить сумму чисел кратных 5 от 100 до 1000. Итоги вывода: сумма и количество чисел.
- 26. Вычислить произведение чисел кратных 3 от 1 до 500. Итоги вывода: сумма и количество чисел.
- 27. Вычислить произведение чисел кратных 3 от 100 до 1000. Итоги вывода: сумма и количество чисел.
- 28. Вычислить произведение чисел кратных 6 от 1 до 500. Итоги вывода: сумма и количество чисел.
- 29. Вычислить произведение чисел кратных 6 от 100 до 1000. Итоги вывода: сумма и количество чисел.
- 30. Вычислить произведение чисел кратных 7 от 1 до 500. Итоги вывода: сумма и количество чисел.
- 31. Вычислить произведение чисел кратных 7 от 100 до 1000. Итоги вывода: сумма и количество чисел.
- 32. Через сколько лет сумма k, вложенная под i % годовых превысит необходимую S. Величины k, i и S вводятся пользователем (S>k, для расчета использовать формулу сложных процентов).
- 33. Спортсмен каждый день увеличивает время тренировки на 5 минут, начиная тренироваться с 20 минут в первый день. Через сколько дней время его тренировки составит 3 часа?
- 34. Пациенту ежедневно уменьшают дозу гормонального препарата на 0,5 мг в день. Назначено 5 г. приема препарата сегодня. Через сколько дней пациент перестанет принимать препарат совсем?

Бонусное задание. У гусей и кроликов вместе **2*N** лап. **N** – вводится с консоли. Сколько может быть гусей и кроликов (вывести все возможные сочетания).

Распределение задач по вариантам

	1	2	3	4	5	9	7	8	6	10	11	12	13	14	15	16	17	18	19	20
No	Вариант 1	Вариант 2	Вариант 3	Вариант 4	Вариант 5	Вариант 6	Вариант 7	Вариант 8	Вариант 9	Вариант 10	Вариант 11	Вариант 12	Вариант 13	Вариант 14	Вариант 15	Вариант 16	Вариант 17	Вариант 18	Вариант 19	Вариант 20
задачи	Вар	Вар	Bap	Bap	Bap	Bap	Bap	Вар	Вар	Bap	Bap	Вар	Bap	Bap	Bap	Bap	Вар	Вар	Вар	Вар
1.	*							*				*							*	
2.		*							*				*					*		
3.			*					*		*				*						
4.				*					*		*				*					
5.	*				*							*				*				
6.		*				*							*				*			
7.			*				*							*				*		
8.				*				*							*				*	
9.					*				*							*				*
10.	*					*				*							*			
11.		*					*				*							*		
12.			*									*				*			*	
13.				*									*				*			*
14.					*					*				*				*		
15.						*					*				*				*	
16.					*		*									*				*
17.	*							*				*					*			
18.		*				*			*				*							
19.			*				*			*				*						
20.				*							*				*					*
21.	*																			
22.		*																		
23.			*																	
24.				*																
25.					*															
26.						*														
27.							*													
28.								*							*					
29.									*							*				
30.										*										*
31.											*								*	
32.												*						*		
33.													*				*			
34.														*						

Варианты после 20 повторяются в циклическом порядке.

3.4. ОТЧЕТ ПО ЛАБОРАТОРНОЙ РАБОТЕ ДОЛЖЕН ВКЛЮЧАТЬ

- 1. Титульный лист по форме с номером варианта.
- 2. Для каждой задачи из общего списка задач (5 общих задач) и списка задач по вариантам (5 задач по вариантам), всего 10 задач:
 - условие задачи;
 - блок-схема алгоритма;
 - программный код решения этой задачи (листинг);
 - скриншоты выполнения программы.

Внимание! Отчет должен быть набран шрифтом **Times New Roman** и отформатирован: поля: левое -3,5; правое -1,5; нижнее и верхнее -2 см; красная строка (отступ) - 1 см; межстрочный интервал – одинарный; правый край выровнен по ширине; рисунки сопровождены надписями.