Binary Search Trees: **AVL** Trees

Daniel Kane

Department of Computer Science and Engineering University of California, San Diego

Data Structures Fundamentals Algorithms and Data Structures

Learning Objectives

- Understand what the height of a node is.
 - State the AVL property.
 - Show that trees satisfying the AVL property have low depth.

Outline

1 Basic Idea

2 Analysis

Balance

- Want to maintain balance.
- Need a way to measure balance.

Height

Definition

The height of a node is the maximum depth of its subtree.

Problem

What is the height of the selected node?

Problem

What is the height of the selected node?

Recursive Definition

```
N.Height equals
```

1 if N is a leaf,

1 + max(N.Left.Height, N.Right.Height)

otherwise.

Field

Add height field to nodes.

Field

Add height field to nodes.

(Note: We'll have to work to ensure that this is kept up to date)

Balance

- Height is a rough measure of subtree size.
- Want size of subtrees roughly the same.
- Force heights to be roughly the same.

AVL Property

AVL trees maintain the following property: For all nodes N,

 $|\mathit{N}.\mathtt{Left}.\mathtt{Height} - \mathit{N}.\mathtt{Right}.\mathtt{Height}| \leq 1$

We claim that this ensures balance.

Outline

1 Basic Idea

2 Analysis

Idea

Need to show that AVL property implies $Height = O(\log(n))$.

Idea

Need to show that AVL property implies Height = O(log(n)).

Alternatively, show that large height implies many nodes.

Result

Theorem

Let N be a node of a binary tree satisfying the AVL property. Let h = N.Height. Then the subtree of N has size at least the Fibonacci Number F_h .

Recall

$$F_n = egin{cases} 0, & n = 0 \, , \ 1, & n = 1 \, , \ F_{n-1} + F_{n-2}, & n > 1 \, . \end{cases}$$

Recall

$$F_n = \begin{cases} 0, & n = 0, \\ 1, & n = 1, \\ F_{n-1} + F_{n-2}, & n > 1. \end{cases}$$

 $F_n > 2^{n/2} \text{ for } n \ge 6$.

Proof

Proof.

By induction on *h*.

Proof

Proof.

By induction on h. If h = 1, have one node.

Proof

Proof.

By induction on h.

If h = 1, have one node.

Otherwise, have one subtree of height h-1 and another of height at least h-2.

By inductive hypothesis, total number of nodes is at least $F_{h-1} + F_{h-2} = F_h$.

Large Subtrees

So node of height h has subtree of size at least $2^{h/2}$.

In other words, if n nodes in the tree, have height $h \le 2 \log_2(n) = O(\log(n))$.

Conclusion

AVL Property

If you can maintain the AVL property, you can perform operations in $O(\log(n))$ time.