CORRECTION SESSION NORMALE ARCHITECTURE DES ORDINATEURS INF 121 (2021-2022)

Proposez par: GROUPE GENIUS REPETITION

Par: Joël_yk

Exercice 01:06 pts

On veut organiser une mémoire centrale de 2Go, organisée en mot de 2 octets.

- 1- Quelle est la largeur n du bus d'adresse et quelle est la largeur m du bus de données ? 1pts
 - ✓ Chaque octet de la mémoire doit être adressable donc $n = log_2 2Go = 31$.
 - ✓ Le bus de données doit pouvoir transporter un mot : m = 2*8 = 16
- 2~ On considère des barrettes mémoire de capacité 1 Go.
 - a) Pour implémenter la mémoire centrale ci-dessus combien de barrettes mémoire (n1) faut-il si elles sont organisées en mot de 1 octet ? 1pts (n1)=2Go /1Go= 2 barrettes.1pts
 - b) Combien faut-il de barrettes (n2) si elles sont organisées en mot de 2 octets ? 1pts
 - (n2)=2Go/1Go=2 barrettes. 1pts

Exercice 02:04 pts

On représente des entiers signes sur 16 bits en convention signe + valeur absolue.

- 3. Ecrire en **valeur absolue**, les entiers précédents en base hexadécimal et décimal : Le plus Grand entier positif que l'on puisse écrire : en Hexadécimal : 7FFF et en binaire : 0111 1111 1111 1111 , Le plus Grand entier négatif que

l'on puisse écrire : en Hexadécimal : 0000 et en binaire : 0000 0000 0000 0000

4. Complément a 1 et 2 du plus Grand entier positif : C2=0111 1111 1111 1111

Exercice 03:06 pts

1) <u>Multiplexeur</u> | Rôle: il permet d'aiguiller une entrée parmi les 2ⁿ entrées du circuit vers une sortie unique S en fonction d'entrée de sélection ou de contrôle.

Table de vérité : Ainsi un multiplexeur 2 vers 1, permet d'orienter à l'aide d'une entrée de sélection s_0 , 2 entrées d'information $E(E_1E_0)$ vers une sortie S:

so	S
0	Eo
1	\mathbf{E}_1

- 2) Réalisons ensemble pas à pas un Multiplexeur (MUX) 4 vers 1 :
 - a) Déterminons les entrées du mux, les bits de sélection et la sortie.
 - → Ce multiplexeur possède 4 entrées E(E₃E₂E₁E₀) ceci s'observe juste à partir du nom MUX (4) vers 1.
 - \rightarrow Soit s le nombre de bits de sélection de notre mux il se détermine grâce à la formule : $\mathbf{s} = \log_2 E$ AN : $\mathbf{s} = \log_2 4 = 2$, nous avons donc besoin de 2 bits de sélection $\mathbf{s}_1\mathbf{s}_0$.
 - \rightarrow Un mux a toujours une et une seul sortie unique S.
 - b) Bien élaborons maintenant la table de vérité de notre MUX.

_			 	
	Bits de Sélection		Sortie du MUX	
	S 1	So	S	
	0	0	Eo	
	0	1	\mathbf{E}_1	Entrées du MUX E(E ₃ E ₂ E ₁ E ₀)
	1	0	\mathbf{E}_2	
	1	1	E ₃	

EQUATION DE SORTIE : $S = E_0 \overline{s_1} \overline{s_0} + E_1 \overline{s_1} s_0 + E_2 s_1 \overline{s_0} + E_3 s_1 s_0$

c) Schéma logique à l'aide des Portes NON, ET, OU:

- 3) On souhaite construire un circuit combinatoire qui permet de tester la parité d'un mot binaire $b_3b_2b_1b_0$ en entree. La sortie vaut 1 si le nombre de bits a 1 du mot est pair (par exemple, 1001) et 0 sinon (par exemple, 0111).
 - a) Ecrire la table de vérité encodant la fonction logique correspondante.

b_3	b_2	b_1	bo	S
0	0	0	0	0
0	0	0	1	0
0	0	1	0	0
0	0	1	1	1
0	1	0	0	0
0	1	0	1	1
0	1	1	0	1
0	1	1	1	0
1	0	0	0	0
1	0	0	1	1
1	0	1	0	1
1	0	1	1	0
1	1	0	0	1
1	1	0	1	0

1	1	1	0	0
1	1	1	1	1

b) Utiliser un multiplexeur 16 vers 1 pour réaliser cette fonction.

Exercice 04:06 pts

- 1. Expression Logique des entrées : 2pts $R1=Q_2E$, $R_2=\overline{Q_1}$ \overline{E} , $S_1=\overline{Q_2}E$, $S_2=Q_1\overline{E}$
- 2. Donnez la table de transition de la Bascule R-S et son mode de fonctionnement. 2pts

S	R	Qn	Q^{n+1}
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	
1	1	1	

S	R	Mode de Fonctionnement
0	0	Mémorisation (Hold) = Q^n
0	1	Mise à Zéro (Reset) = 0
1	0	Mise à Un (Set) = 1
1	1	Etat Interdit

- 3. Lorsque E = 0 on a $R_1 = S_1 = 0$ & $R_2 = Q_1$, $S_2 = Q_1$ la bascule 1 est en mode mémoire alors que la bascule 2 est en mode écriture (set ou reset). La bascule 2 recopie les sorties de la bascules 1. 1pts
- 4. Lorsque E = 1 on a $R_2 = S_2 = 0$ & $R_1 = Q_2$, $S_1 = Q_2$ la bascule 2 est en mode mémoire alors que la bascule 1 est en mode écriture (set ou reset). La bascule 1 enregistre les variations de l'entrée E sans que les sorties de la bascules 2 changent. 1pts
- 5. Fonction: Schéma d'une bascule D synchrone basée sur deux bascules RS asynchrones (Maitre-Esclave) 1pts

Bonne chance pour le rattrapage les amies.

Contact WhatsApp: +237 $6_{58}^{39}_{59}^{78}$ | Réaliser Par Joël_Yk .

[&]quot;La persévérance, c'est ce qui rend l'impossible possible, le possible probable et le probable réalisé. "