Rozwiązania zadań z logik modalnych

Wojciech Kołowski

Zad. 1 Dla danej struktury Kripkego K=(S,R,L) i poniższych formuł wyznacz zbiór światów, w których formuła jest lokalnie spełniona.

Rozwiązanie: zacznijmy od interpretacji reguł lokalnej spełnialności, żeby było nam łatwo odczytywać je z obrazka.

- Dla \square mamy regułę $K, s \models \square \varphi$ wtw $(\forall s, s' \in S)(R(s, s') \implies K, s' \models \varphi)$. Językiem obrazkowym: wszystkie strzałki wychodzące z s prowadzą do światów, w których φ jest spełnione.
- Dla \Diamond mamy regułę $K, s \models \Diamond \varphi$ wtw $(\exists s' \in S)(R(s, s') \land K, s' \models \varphi)$. Językiem obrazkowym: z s wychodzi strzałka do jakiegoś świata, w którym φ jest spełnione.
- V interpretujemy jako sumę zbiorów światów, ∧ jako przecięcie zbiorów światów, zaś ¬ jako dopełnienie zbiorów światów.

Poczyńmy teraz pewne spostrzeżenia, które pomogą nam przekształcać formuły do postaci bardziej przyjaznej obrazkowi.

- Pierwsze głosi, że $p \implies q \equiv \neg p \lor q$. Wynika ono wprost z definicji relacji \models obydwa te zdania są spełnione, gdy $K, s \not\models \varphi$ lub $K, s \models \psi$.
- Drugie spotrzeżenie głosi, że $\neg \neg p \equiv p$ również wynika ono wprost z definicji relacji \models (o ile nasza metalogika jest klasyczna chyba?).
- Mamy też dualności $\neg \Box \varphi \equiv \Diamond \neg \varphi$ oraz $\neg \Diamond \varphi \equiv \Box \neg \varphi$.

Teraż możemy przerysować obrazek w nieco bardziej czytelny sposób. W naszym modelu mamy:

$$S = \{v_0, v_1, v_2, v_3, v_4\}$$

$$R = \{v_0v_1, v_1v_0, v_1v_1, v_0v_2, v_1v_2, v_2v_3, v_2v_4, v_3v_4, v_4v_4\}$$

$$L(v_0) = L(v_4) = \{p, q\}$$

$$L(v_1) = \emptyset$$

$$L(v_2) = \{q\}$$

$$L(v_3) = \{p\}$$

Po przekształceniu naszych zdań za pomocą powyższych równoważności możemy łatwo odczytać z obrazka zbiory światów, w których są lokalnie spełnione.

(a) $\Box p \implies \Box \Diamond p \equiv \neg \Box p \lor \Box \Diamond p \equiv \Diamond \neg p \lor \Box \Diamond p$

p	v_0, v_3, v_4
$\neg p$	v_1, v_2
$\Diamond \neg p$	v_0, v_1
$\Diamond p$	v_1, v_2, v_3, v_4
$\Box\Diamond p$	v_0, v_2, v_3, v_4
$\Box p \implies \Box \Diamond p$	v_0, v_1, v_2, v_3, v_4

(b)
$$\Box \Diamond p \implies p \equiv \neg \Box \Diamond p \lor p \equiv \Diamond \Box \neg p \lor p$$

$\Box \neg p$	v_0
$\Diamond\Box\neg p$	v_1
$\Box \Diamond p \implies p$	v_0, v_1, v_3, v_4

(c) $\Diamond\Diamond(p \wedge q)$

(1 1)		
q	v_0, v_2, v_4	
$p \wedge q$	v_0, v_4	
$\Diamond(p \land q)$	v_1, v_2, v_3, v_4	
$\Diamond\Diamond(p\wedge q)$	v_0, v_1, v_2, v_3, v_4	

(d)
$$p \implies \Box p \lor \Diamond (p \implies q) \equiv \neg p \lor \Box p \lor \Diamond (\neg p \lor q)$$

- '- '-	
$\Box p$	v_2, v_3, v_4
$\neg p \lor q$	v_0, v_1, v_2, v_4
$\Diamond(\neg p\vee q)$	v_0, v_1, v_2, v_3, v_4
$p \implies \Box p \lor \Diamond(p \implies q)$	v_0, v_1, v_2, v_3, v_4

(e)
$$\Diamond\Box\neg q \implies \Diamond\Diamond p \equiv \neg\Diamond\Box\neg q \lor \Diamond\Diamond p \equiv \Box\Diamond q \lor \Diamond\Diamond p$$

$\Diamond q$	v_0, v_1, v_2, v_3, v_4
$\Box \Diamond q$	v_0, v_1, v_2, v_3, v_4
$\Diamond \Box \neg q \implies \Diamond \Diamond p$	v_0, v_1, v_2, v_3, v_4

(f) $\Box p \wedge \Box \neg q$ — ponieważ $\Diamond q$ jest spełniona wszędzie, to $\Box \neg q \equiv \neg \Diamond q$ nie jest spełniona nigdzie, a zatem cała formuła $\Box p \wedge \Box \neg q$ także nie jest spełniona w żadnym świecie.

Zad. 2 Chcemy strukturę K = (S, R, L), gdzie S i R są jak w poprzednim zadaniu, ale L ma być takie, żeby formuła $\Diamond p \Longrightarrow \Box q$ była globalnie spełniona.

Rozwiązanie: aby implikacja była globalnie spełniona wystarczy aby jej konkluzja była globalnie spełniona. Niech więc $S = \{v_0\}, R = \{v_0v_0\}, L(_) = \{q\}$. Wtedy q jest spełnione wszędzie, czyli $\Box q$ także jest spełnione wszędzie, a zatem cała formuła $\Diamond p \implies \Box q$ także jest spełniona wszędzie.

Zad. 3 Chcemy strukturę K=(S,R,L), gdzie S i R są jak w poprzednim zadaniu, ale L ma być takie, żeby formuła $\neg(\Diamond p \vee \Box \neg p)$ była lokalnie spełniona.

Rozwiązanie: zauważmy, że $\Diamond p \equiv \neg \Box \neg p$, a zatem $\neg (\Diamond p \lor \Box \neg p) \equiv \neg (\neg \Box \neg p \lor \Box \neg p)$ — nasza formuła to zaprzeczenie prawa wyłączonego środka, które jest globalnie spełnione, a zatem nie może być lokalnie spełniona w żadnym świecie.

Zad. 4 Chcemy skonstruować strukturę K=(S,R,L), w której lokalnie spełnione jest zdanie $\Box p \wedge \Diamond \Box (q \wedge \Diamond p) \wedge (p \implies \neg q)$.

Rozwiązanie: będziemy konstruować K rozważając każdy człon koniunkcji z osobna idąc od prawej do lewej. Zacznijmy od świata v_0 , w którym mamy $L(v_0) = \emptyset$. W v_0 spełnione są $\neg p$ oraz $\neg q$, a zatem spełnione jest także zdanie $p \implies \neg q$.

Teraz dorzućmy świat v_1 , dla którego $L(v_1) = \{p, q\}$ i który ma ścieżkę do samego siebie. W v_1 spełnione jest q oraz $\Diamond p$, a ponieważ możemy z niego przejść tylko do niego samego, to spełnione jest także $\Box(q \land \Diamond p)$. Jeżeli podłączymy do v_0 świat v_1 , to w v_0 spełniona będzie formuła $\Diamond \Box(q \land \Diamond p)$.

Ponieważ z v_0 możemy dojść tylko do v_1 , a tam lokalnie spełnione jest p, to w v_0 lokalnie spełnione jest $\square p$. Voilà! Ostatecznie nasza struktura prezentuje się tak:

$$S = \{v_0, v_1\}$$

$$R = \{v_0v_1, v_1v_1\}$$

$$L(v_0) = \emptyset$$

$$L(v_1) = \{p, q\}$$

$$v_0 = \emptyset$$

$$\downarrow$$

$$v_1 = pq$$

$$\uparrow$$

Zad. 5

(a) Chcemy pokazać $\vdash_K p \implies \Diamond \Diamond \Diamond p$.

Przypomnijmy, że w logice K nie ma żadnych ograniczeń na możliwe ramy. Jeżeli wyobrazimy sobie nasze zdanie, to mówi ono, że w każdym świecie p nie zachodzi lub istnieje ścieżka długości 3 prowadząca do świata, w którym p zachodzi — jest to bardzo podejrzane. Rozważmy model K = (S, R, L), gdzie $S = \{v\}$, $R = \emptyset$ oraz $L(v) = \{p\}$. Ponieważ w v zachodzi p, to poprzednik implikacji jest spełniony. Ponieważ v nie jest połączony z żadnym innym światem, to następnik implikacji nie jest spełniony, a zatem $\not\vdash_K p \implies \Diamond \Diamond \Diamond p$.

(b) Chcemy pokazać $\vdash_T p \implies \Diamond \Diamond \Diamond p$.

$$\frac{\frac{\overline{p \vdash_{T} p}}{p \vdash_{T} \Diamond p} \underset{R_{\diamond}}{\operatorname{Ass}}}{\frac{\overline{p \vdash_{T} \Diamond p}}{p \vdash_{T} \Diamond \Diamond p} \underset{R_{\diamond}}{R_{\diamond}}}{R_{\diamond}}}$$

$$\frac{\overline{p \vdash_{T} \Diamond \Diamond p} \underset{P \vdash_{T} \Diamond \Diamond \Diamond p}{R_{\diamond}} R_{\diamond}}{P} \underset{P \vdash_{T} \varphi \varphi \varphi \varphi}{R_{\diamond}} R_{\Rightarrow}}$$

(c) Chcemy pokazać $\vdash_K \Diamond (p \lor q) \implies \Diamond p \lor \Diamond q$.

$$\frac{p \vdash_{K} p, q}{Ass} \frac{q \vdash_{K} p, q}{q \vdash_{K} p, q} L_{\Diamond}$$

$$\frac{p \lor q \vdash_{K} p, q}{\Diamond (p \lor q) \vdash_{K} \Diamond p, \Diamond q} L_{\Diamond}$$

$$\frac{\Diamond (p \lor q) \vdash_{K} \Diamond p \lor \Diamond q}{\Diamond (p \lor q) \vdash_{K} \Diamond p \lor \Diamond q} R_{\Diamond}$$

$$\vdash_{K} \Diamond (p \lor q) \Longrightarrow \Diamond p \lor \Diamond q} R \Longrightarrow$$

(d) Chcemy pokazać $\vdash_T \Box (p \lor q) \implies \Box p \lor \Box q$.

Zdanie to jest bardzo podejrzane. Jego poprzednik głosi, że z każdego świata możemy dojść do takiego, gdzie spełnione jest p lub q, zaś następnik, że z każdego świata możemy dojść do świata spełniającego p lub do świata spełniającego q. Kontrprzykład nasuwa się sam:

$$\bigcirc v_0 = p \longleftrightarrow v_1 = q$$

W powyższym modelu zdanie $\Box(p \lor q)$ jest globalnie spełnione, ale zdania $\Box p$ i $\Box q$ nie są spełnione nigdzie, więc zdania $\Box(p \lor q) \implies \Box p \lor \Box q$ nie da się dowieść w logice T.

(e) Chcemy pokazać $\vdash_T \Box p \implies \Box \Diamond \Box p$.

$$\frac{\frac{p \vdash_{T} \Box p}{p \vdash_{T} \Diamond \Box p} R_{\Diamond}}{\frac{\Box p \vdash_{T} \Box \Diamond \Box p}{\vdash_{T} \Box \Diamond \Box p} R_{\Box}} R_{\Box}}$$

4

Próba zastosowania jedynych słusznych reguł zawiodła. Spróbujmy więc skonstruować model, w którym jest świat, w którym poprzednik implikacji jest spełniony, a następnik nie. Musimy pamiętać jedynie, że w logice T rama musi być zwrotna.

Przyjrzyjmy się światowi v_0 . Gdziekolwiek się nie ruszymy, lądujemy w świecie spełniającym p, a zatem w v_0 zachodzi $\Box p$. Nie zachodzi jednak $\Box \Diamond \Box p$: jeżeli ruszymy się do v_1 , to gdziekolwiek byśmy nie poszli (v_1 lub v_2), zawsze możemy dojść do świata v_2 , w którym nie zachodzi ani p, ani $\Box p$. Ostatecznie konkludujemy, że $\not\vdash_T \Box p \implies \Box \Diamond \Box p$.

(f) Chcemy pokazać $\vdash_{S_5} \Box p \implies \Box \Diamond \Box p$.

$$\frac{\frac{p, \Box p \vdash_{S_5} \Box p}{p, \Box p \vdash_{S_5} \Diamond \Box p} \underset{R_{\Box}}{\text{Ass}}}{\frac{p, \Box p \vdash_{S_5} \Diamond \Box p}{R_{\Box}} R_{\Box}}$$

$$\frac{\neg p \vdash_{S_5} \Box \Diamond \Box p}{\vdash_{S_5} \Box p \implies \Box \Diamond \Box p} R \implies$$