NGUARD: A Game Bot Detection Framework for NetEase MMORPGs

Jiarong Xu

xujr@zju.edu.cn

June 13th, 2018

MMORPG反外挂背景

MMORPG 大型多人在线角色扮演游戏

游戏外挂客户端截图

游戏外挂脚本界面

外挂严重破坏游戏的生态圈 降低游戏的公平性和可玩性

Instanced quest

Interval

Count

Level

OFFLINE TRAINING PREPROCESSING Time-Interval Player Feature Game Event2vec Bahavior Extraction Logs Sequence Pre-Trained Embedding Preprocessed Segmentation Matrix Player Bahavior Sampling Sequence Sequence Autoencoder Supervised Learning Pre-Trained Pre-Trained Unsupervised Learning **Embedding** RNN Cell \mathbf{G} Matrix Matrix SA-ABLSTM Classification TL-ABLSTM ABLSTM Game Operation Fine-Tuned Fine-Tuned Teams SA-DBSCAN > Clustering **Embedding** RNN Cell D Matrix Matrix ➤ SA-ABLSTM New Botset Short-Term Daily Instanted Main Detection Mark Auto-Iteration quest quest Humanset Human Long-Term → TL-ABLSTM ← Resampling Auto-Iteration Learning

Framework

- Preprocessing segment sampling
- Offline Training training the models offline
- Online Inference online service
- Auto-iteration mechanism short-term long-term

Offline Training

- Pre-training
 Time-interval Event2vec
 Sequence Autoencoder
- Modeling SA-ABLSTM
- Transfer-learning

Time-interval Event2vec

Time-interval Event2vec

Word2vec

- Time-interval Event2vec considers the time elapsed between two events.
- The event within shorter time gaps to the target event should contribute more in predicting the target event.

Sequence Autoencoder

SA-ABLSTM

Input

Event sequence {E₁,...,E_n} Extra features: Interval, Count, Level

- Bi-LSTM for Event sequence
- Knowledge-based method for extra features

Knowledge-based method for extra features

Interval

Gamma distribution: Interval_h $\sim \Gamma (\alpha_{i,h}, \beta_{i,h})$ Interval_b $\sim \Gamma (\alpha_{i,b}, \beta_{i,b})$

$$I_{i,h} = f\left(t_i; \, \alpha_{i,h}, \beta_{i,h}\right) \,, \, I_{i,b} = f\left(t_i; \, \alpha_{i,b}, \beta_{i,b}\right)$$

Count

Gamma distribution : Count_h ~ $\Gamma(\alpha_{c, h}, \beta_{c, h})$ Count_b ~ $\Gamma(\alpha_{c, b}, \beta_{c, b})$

$$C_{i,h} = f(c_i; \alpha_{c,h}, \beta_{c,h}), C_{i,b} = f(c_i; \alpha_{c,b}, \beta_{c,b})$$

Level

$$L_{i} = P(l_{i}) = \frac{N_{bot}^{l,e}}{N_{bot}^{l,e} + N_{human}^{l,e}}$$

bias

$$B_i = P(e_i) = \frac{N_{bot}^e}{N_{bot}^e + N_{human}^e}$$

- Output of Bi-LSTM: H=[h₁, ..., h_n]
- Concat H with the statistical values:

$$h'_{i} = h_{i} \circ I_{i,h} \circ I_{i,b} \circ C_{i,h} \circ C_{i,b} \circ L_{i} \circ B_{i}$$

Self-attention:

$$a_i = softmax(w_i^T H' + b_i), r_i = a_i \odot h'_i$$

Online Inference

Supervised solution

Classification: SA-ABLSTM

Unsupervised solution

Clustering: SA-DBSCAN

- 1. Extract the vector representation of event sequences from the well-trained Sequence Autoencoder
- 2. Perform DBSCAN on the vector representation of event sequence

Auto-iteration Mechanism

- Humanset Resampling
- New Botset Detection
 Known game bots, Mutated game bots, Unknown game bots clusters of SA-DBSCAN
- Short-term Auto-iteration ABLSTM
- Long-term Auto-iteration
 SA-ABLSTM

Comparisons of supervised solutions

Experiments

Type of game bot	Model	Precision	Recall	F1
Main quest	MLP	0.9618	0.9773	0.9694
	CNN	0.9721	0.9807	0.9764
	Bi-LSTM	0.9809	0.9865	0.9837
	ABLSTM	0.9851	0.9882	0.9866
	TL-ABLSTM from Daily quest	0.9893	0.9906	0.9902
	TL-ABLSTM from Instanced quest	0.9878	0.9896	0.9881
	SA-ABLSTM	0.9904	0.9912	0.9908
Daily quest	MLP	0.9528	0.9609	0.9568
	CNN	0.9633	0.9712	0.9672
	Bi-LSTM	0.9709	0.9728	0.9718
	ABLSTM	0.9716	0.9774	0.9745
	TL-ABLSTM from Main quest	0.9771	0.9742	0.9785
	TL-ABLSTM from Instanced quest	0.9736	0.9721	0.9763
	SA-ABLSTM	0.9838	0.9861	0.9815
Instanced quest	MLP	0.9441	0.9571	0.9506
	CNN	0.9552	0.9643	0.9597
	Bi-LSTM	0.9612	0.9732	0.9672
	ABLSTM	0.9674	0.9786	0.973
	TL-ABLSTM from Daily quest	0.9698	0.9801	0.9742
	TL-ABLSTM from Main quest	0.9704	0.9808	0.9753
	SA-ABLSTM	0.9721	0.9816	0.9768

Experiments

Evaluations of unsupervised solution: SA-DBSCAN

Main quest Daily quest Instanced quest

The necessity of the auto-iteration mechanism

Experiments

谢谢