

21. Minimum spanning tree 最小生成樹

中國文化大學 資訊工程學系 張耀鴻 112學年度第2學期

Scenario 情境

- > A town has a set of houses and a set of roads.
- > A road connects 2 and only 2 houses.
- > A road connecting houses u and v has a repair cost w(u,v)
- Goal: Repair enough (and no more) roads such that
 - 1. everyone stays connected: can reach every house from all other houses, and
 - 2. total repair cost is minimum.

Scenario 情境

- 某個小鎮有些房子和幾條路.
- > 每條路只能連接2間房子.
- > 房子 u 和 v 之間的路, 其維修成本為 w(u,v)
- > 目標: 儘可能維修最多的路並且滿足以下條件
 - 1. 讓任何一間房子都能到達其他的房子 (connected), and
 - 2. 總維修成本最小.

Minimum Spanning Tree Problem

Model as a graph:

- ightharpoonup Undirected graph G = (V, E). 無向圖
- ▶ Weight w(u,v) on each edge $(u,v) \in E$.
- ▶ Find $T \subseteq E$ such that 每條邊上權重為 w(u,v)
 - \checkmark 1. T connects all vertices (T is a **spanning tree**), and
 - ✓ 2. $w(T) = \sum_{(u,v) \in T} w(u,v)$ is minimized.

- 一個加權圖之最小生成樹
- 1. 為此圖之生成樹
- 2. 且權重和為最小者

21.1 Growing a MST 建構MST(一般式)

$Generic_MST(G, w)$

- 1. $A \leftarrow \phi$
- 2. while (A 還不是生成樹)
- 3. do 找一條safe edge (u, v)
- $4. \qquad A \leftarrow A \cup \{(u,v)\}$
- 5. return A

- 1. 建構一個邊集合 A.
- 2. Initially, A 為空集合
- 3. 加入邊的過程中,維持迴圈不變量 (loop invariant):
 A 為 MST 的子集.
- 4. 加入新的邊時不可違背此原則:
- 5. 若新邊為安全邊, 則加入後A仍為MST的子集 i.e.,

Edge (u, v) is safe

 \iff

 $A \cup \{(u,v)\}$ is a subset of MST

Some definitions 名詞定義

- ightharpoonup A cut (S, V S) of an undirected graph G = (V, E) is a partition of V.
 - 圖G = (V, E)上的CUT將所有節點V分割為兩集合S和V S
- Edge (u,v) *crosses* the cut (S,V-S) if one of its endpoints is in S and the other is in V-S. $\mathfrak{g}(u,v)$ 穿越 cut 表示兩項點分別位於不同的集合 S 和 V-S
- > A cut respects the set A of edges if no edge in A crosses the cut.
 - 一個 cut 尊敬某個邊所成的集合表示沒有邊會穿越這個cut
- An edge is a light edge crossing a cut if its weight is the minimum edge crossing the cut. (Note that there can be more than one light edge crossing a cut in case of ties.)

所有穿越cut的邊中權重最小那個叫做輕邊

cut: (S, V-S)light edge: min $(u,v) \in E$ cross the cut (S, V-S)

安全邊定理

Theorem 21.1 (Safe-edge theorem)

Let A be a subset of some MST, (S, V-S) be a cut that respects A, and (u, v) be a light edge crossing the cut.

令A為MST之子集 (S, V-S)為尊敬A的cut (u,v)為穿越此cut的輕邊

Then (u, v) is safe for A.

穿越cut的輕邊很安全

貪婪特性: 假設區域最佳解為全域最佳解的一部份

Greedy-choice property

A locally optimal choice is globally optimal.

Proof of theorem

考慮T中一條從 u 到 v 的簡單路徑

考慮T中一條從 u 到 v 的簡單路徑

把該路徑中連接 A 與 V - A 的邊以 (u, v) 取代

考慮T中一條從 u 到 v 的簡單路徑

把該路徑中連接 A 與 V - A 的邊以 (u, v) 取代

最後得出一個權重比了更小的生成樹.

Corollary 21.2 (Idea of Kruskal alg)

- u V_C is a set of vertex in a connected component in $G_A = (V, A)$ V_C 為 A中連通節點的集合

Then (u, v) is safe for A. 則 (u, v) 為 A 之安全邊

Proof: Set $S = V_C$, in theorem 21.1

21.2 The algorithms of Kruskal and Prim

Kruskal's algorithm

- ✓ Greedy approach 以貪婪方式求解
- ✓ Pick an edge with minimum weight into spanning tree and repeat 每次都選取權重最小的邊加入 MST
- ✓ Make sure there is no cycle during the process 過程中確保不會產生循環

Prim's algorithm

- ✓ Build one tree A from an arbitrary "root" r 任意挑一個根節點
- ✓ Maintain V V_A as a priority queue Q 以 priority queue 維護不在生成樹中的節點
- \checkmark Pick a light edge crossing cut $(V_A, V V_A)$ into spanning tree and repeat 每次都選取權重最小的輕邊加入 MST
- ✓ Make sure there is no cycle during the process 過程中確保不會產生循環

Kruskal's algorithm

```
MST-KRUSKAL(G, w)
4 sort the edge of E by nondecreasing weight w \vdash O(E \lg E) 把所有邊依權重排序
  for each edge (u,v) \in E, taken from the sorted list
                                       逐一檢查已排序的邊(u,v),
                                       若u, v 在不同的集合,

→ 則將(u, v) 納入 MST,

並將u, v 併入同一集合中
  do if FIND-SET(u) \neq FIND-SET(v)
    then A \leftarrow A \cup \{(u,v)\}
        UNION (u, v)
                                        O(E) FIND-SET
  return A
                                        and UNION, O(\alpha(V)) each
```

Complexity $O(E \lg E)$

Chapter 21 P.16

To be continue

Prim's algorithm

```
MST-PRIM(G, w, r)
   Q = \phi
   for each u \in G.V
                       將所有節點插入PQ中
   do u.key = \infty
                      \vdash O(V \lg V)
      u. \pi = NIL
       INSERT(Q, u) 」把根節點r的鍵值設成0
   DECREASE-KEY(Q, r, 0) \rightarrow O(\lg V)
   while Q \neq \phi
   do u = EXTRACT-MIN(Q)
9
      for each v \in G.Adj[u]
      do if v \in Q and w(u, v) \le v.key
10
11
         then v. \pi = u
               DECREASE-KEY(Q, v, w(u, v))
12
```

Complexity: $O(E \lg V)$

NOTE:

若將 priority queue 改成
Fibonacci heap (Ch 19),
則 Decrease-Key 可在
O(1) 時間內攤銷完畢
→ Complexity: O(V lg V+E)

取出PQ中鍵值最小的節點u, 檢查所有Q中與u相連的節點

|V| EXTRACT-MIN $\rightarrow O(V \lg V)$

 $|\Lambda|$

|E| DECREASE-KEY $\rightarrow O(E \lg V)$

若該邊的權重比v目前的鍵值更小, 則令u為v的前一點,並將v的鍵值 改成新的權重

Analysis of Prim

$$Time = \Theta(V) \cdot T_{\text{EXTRACT-MIN}} + \Theta(E) \cdot T_{\text{DECREASE-KEY}}$$

Q	$T_{ m EXTRACT-MIN}$	$T_{ m DECREASE-KEY}$	Total
array	O(V)	<i>O</i> (1)	$O(V^2)$
binary heap	$O(\lg V)$	$O(\lg V)$	$O(E \lg V)$
Fibonacci heap	O(lg V) amortized	O(1) amortized	$O(V \lg V + E)$ worst case

Chapter 21

Summary

- > Minimum spanning tree
- > Definitions
 - ✓ safe, cut, cross, respect, light edge
- > Theorem 21.1: Safe edge theorem
- \triangleright Kruskal's algorithm $O(E \lg E)$
- > Prim's algorithm O(E lg V)

 $\rightarrow O(V \lg V + E)$ Fibonacci heap