5.1 Longest Increasing Subsequence

Input file: standard input
Output file: standard output

Time limit: 2 seconds Memory limit: 512 megabytes

Let A[1..n] be an array of integers. Find the largest k $(1 \le k \le n)$ such that there is a sequence of indices i_1, i_2, \ldots, i_k $(1 \le i_1 < i_2 < \cdots < i_k \le n)$ satisfying $A[i_1] < A[i_2] < \cdots < A[i_k]$.

For example, an array A = [5, 3, 2, 4, 6, 1] has two longest increasing subsequences (3, 4, 6) and (2, 4, 6).

Input

The first line contains an integer n ($1 \le n \le 2000$), the number of elements in A.

The second line contains integers $A[1], A[2], \dots, A[n]$ $(1 \le A[i] \le 1000000)$.

Output

The length of the longest increasing subsequence.

Examples

standard input	standard output
6	3
5 3 2 4 6 1	
6	3
1 1 2 2 3 3	
5	1
5 4 3 2 1	

5.2 Edit Distance

Input file: standard input Output file: standard output

Time limit: 2 seconds Memory limit: 512 megabytes

Given two strings u and w.

Find the weighted edit distance between u and w, where the cost of inserting is I, the cost of deletion is D, and the cost of substitution is S.

Input

The first line contains two integers n and m (1 \leq n, m \leq 1000), the length of strings u and w, respectively.

The strings u and w are given in the second and third lines, respectively. Both strings consist of small Latin letters only.

The forth line contains three integers I, D and S ($1 \le I$, D, $S \le 100$).

Output

The minimal cost to transform u to w by single symbol insertions, deletions, and substitutions.

Examples

standard input	standard output
7 8	5
editing	
distance	
1 1 1	
7 8	7
editing	
distance	
1 1 100	
7 8	105
editing	
distance	
100 1 1	
7 8	6
editing	
distance	
1 100 1	

5.4 Make It Sorted

Input file: standard input Output file: standard output

Time limit: 2 seconds Memory limit: 512 megabytes

Let A[1..n] be an array of integers. In one step, you are allowed to add either 1 or -1 to any element of the array. What is the minimum number of steps required to make the array sorted in non-decreasing order $(A[1] \le A[2] \le \cdots \le A[n])$?

Input

The first input line contains one integer n ($1 \le n \le 2000$), the number of elements in A. The second input line contains integers $A[1], A[2], \ldots, A[n]$ ($1 \le A[i] \le 1000$).

Output

The minimum number of steps required to make the sequence sorted.

Examples

standard input	standard output
3	1
1 2 1	
2	0
5 10	
7	4
1 4 2 3 1 4 4	