Particle spectrograph

Wave operator and propagator

Multiplicities	1	8	3	<u>κ</u>	10	#1 2 ⁺ A #1 2 ⁺ f	αβ † αβ † **	$ \begin{array}{c} t_1 \\ 2^+ \mathcal{A} \alpha \beta \\ \frac{t_1}{2} \\ \frac{i \ k \ t}{\sqrt{2}} \\ 0 \end{array} $	$ \begin{array}{c} $	(#1 2 ⁺ σ† 2 ⁺ τ† 1 σ†	αβ αβ <u>i</u>	$\sigma_{\alpha\beta} \stackrel{\text{#1}}{\overset{\text{2}}{\overset{\text{1}}}{\overset{\text{1}}{\overset{\text{1}}}{\overset{\text{1}}{\overset{\text{1}}}{\overset{1}}{\overset{\text{1}}{\overset{\text{1}}}{\overset{\text{1}}{\overset{\text{1}}{\overset{\text{1}}{\overset{\text{1}}{\overset{\text{1}}}{\overset{1}}{\overset{\text{1}}{\overset{\text{1}}}{\overset{\text{1}}}{\overset{\text{1}}{\overset{\text{1}}}{\overset{\text{1}}{\overset{\text{1}}}}}{\overset{\text{1}}{\overset{\text{1}}{\overset{\text{1}}{\overset{\text{1}}{\overset{\text{1}}}{\overset{\text{1}}{\overset{\text{1}}{\overset{1}}{\overset{1}}}}}{\overset{\text{1}}{\overset{1}}}}{\overset{\text{1}}{\overset{1}}}}}}}}}}$	0	βχ										
	$0 = g_D \iota^{\alpha} g \theta$	$\partial_\chi \partial_\beta \partial^\alpha t^{\beta\chi} == \dot{Q} \partial^\chi \partial_\beta t^{\alpha\beta} + 2 \ \partial_\delta \partial^\delta \partial_\chi \partial_\beta \sigma^{\alpha\beta\chi}$	$\partial_{\alpha}\partial_{\beta}\partial_{\alpha}\iota^{\beta\chi} = \partial_{\alpha}\partial_{\beta}\iota^{\beta\alpha}$	$\partial_{\chi}\partial^{\beta}t^{\chi\alpha} + \partial_{\chi}\partial^{\chi}t^{\alpha\beta} + 2 \ \partial_{\sigma}\partial_{\chi}\partial^{\alpha}\sigma^{\beta\chi\delta} + 2 \ \partial_{\sigma}\partial^{\delta}\partial_{\chi}\sigma^{\alpha\beta\chi} + \partial_{\chi}\partial^{\beta}t^{\alpha\chi} + 2 \ \partial_{\sigma}\partial_{\chi}\partial^{\alpha}\sigma^{\alpha\beta\chi}$		$S == \iiint (f^{\alpha\beta} \ \tau_{\alpha\beta} + \mathcal{R}^{\alpha\beta\chi} \ \sigma_{\alpha\beta\chi} + t_1 (\mathcal{R}_{i\zeta} _{\theta} \ \mathcal{R}^{i\theta\zeta} + \mathcal{R}^{i\theta}_{,} \ \mathcal{R}^{\zeta}_{\theta\zeta} + 2 \ f^{i\theta} \ \partial_{\theta} \mathcal{R}^{\zeta}_{,\zeta} - 2 \ \partial_{\theta} \mathcal{R}^{i\theta}_{,} - 2 \ f^{i\theta} \ \partial_{\zeta} \mathcal{R}^{\zeta}_{,\theta} + 2 \ f^{i\theta} \ \partial_{\zeta} \mathcal{R}^{i\theta}_{,\zeta} + 2 \ f^{i\theta} \ \partial_{\theta} \mathcal{R}^{i\zeta}_{,\zeta} - 2 \ \partial_{\theta} \mathcal{R}^{i\theta}_{,\zeta} - 2 \ f^{i\theta} \ \partial_{\zeta} \mathcal{R}^{\zeta}_{,\theta} + 2 \ f^{i\theta} \ \partial_{\zeta} \mathcal{R}^{i\theta}_{,\zeta} + 2 \ f^{i\theta} \ \partial_{\theta} \mathcal{R}^{i\zeta}_{,\zeta} - 2 \ \partial_{\theta} \mathcal{R}^{i\theta}_{,\zeta} - 2 \ f^{i\theta} \ \partial_{\zeta} \mathcal{R}^{i\theta}_{,\theta} + 2 \ f^{i\theta} \ \partial_{\zeta} \mathcal{R}^{i\theta}_{,\zeta} + 2 \ f^{i\theta} \ \partial_{\theta} \mathcal{R}^{i\zeta}_{,\zeta} - 2 \ \partial_{\theta} \mathcal{R}^{i\theta}_{,\zeta} - 2 \ f^{i\theta} \ \partial_{\zeta} \mathcal{R}^{i\theta}_{,\theta} + 2 \ f^{i\theta} \ \partial_{\zeta} \mathcal{R}^{i\theta}_{,\zeta} + 2 \ f^{i\theta} \ \partial_{\theta} \mathcal{R}^{i\zeta}_{,\zeta} - 2 \ \partial_{\theta} \mathcal{R}^{i\theta}_{,\zeta} - 2 \ f^{i\theta} \ \partial_{\zeta} \mathcal{R}^{i\zeta}_{,\theta} + 2 \ f^{i\theta} \ \partial_{\zeta} \mathcal{R}^{i\theta}_{,\zeta} + 2 \ f^{i\theta} \ \partial_{\zeta} \mathcal{R}^{i\theta}_{,\zeta} - 2 \ \partial_{\theta} \mathcal{R}^{i\theta}_{,\zeta} - 2 \ \partial_$																				
Spin-parity form Covariant form					<	$^{#2}_{1}$	0	0	0	$\frac{2i \ k}{t_1 + 2k^2 t_1}$	$\frac{i\sqrt{2}k}{(1+2k^2)^2t_1}$	0	$\frac{2k^2}{(1+2k^2)^2t_1}$													
						$^{\#1}_{1}$ $^{ aulpha}$				0	0		0									#1 0 ⁷ σ	0	0 t ₁		
						$^{#2}_{1}\sigma_{lpha}$	0 0	0 0	0 0	$\frac{\sqrt{2}}{t_1 + 2k^2t_1}$	$\frac{1}{(1+2\lambda^2)^2t_1}$	0 0	$\frac{i\sqrt{2}k}{(1+2k^2)^2t_1}$	#1 :	#2	#1	# 2	#2	#2	#2	$0^+ \tau 0^+ \tau$	or	0 0			
						$^{\#1}_{1}\sigma_{lpha}$	0	0	0	0	$\frac{\sqrt{2}}{t_1 + 2 k^2 t_1}$	0	$\frac{2i k}{t_1 + 2 k^2 t_1}$	$1^{+1} \mathcal{A} \uparrow$ $1^{+} \mathcal{A} \uparrow$	$ \begin{array}{c} $	$\frac{1}{1} \mathcal{A}_{\alpha\beta}$ $-\frac{t_1}{\sqrt{2}}$	$\frac{1}{1} f \alpha \beta$ $-\frac{i k t}{\sqrt{2}}$	$1^{\frac{1}{1}}\mathcal{A}_{\alpha}$	$ \begin{array}{c c} & 1^{\frac{2}{3}} \mathcal{A}_{\alpha} \\ \hline & 0 \end{array} $	$f_{\alpha}^{\sharp 1}$	$\frac{1^2}{1}f_{\alpha}$	#1 0+0	0 € 4 £ £ £ £ £ £ £ £ £ £ £ £ £ £ £ £ £ £	0 0		
					generators:	1^{*1} $\tau^{\alpha\beta}$	$\frac{i\sqrt{2} k}{t_1 + k^2 t_1}$	$\frac{i \ k}{(1+k^2)^2 t_1}$	$\frac{k^2}{(1+k^2)^2t_1}$					1 + A † "	$-\frac{v_1}{\sqrt{2}}$	0	0 (0		0	0	++ ++ ++		$0^+ \tau \uparrow 0^+ \tau \uparrow 0^- \sigma \uparrow$		
	9	0	9,	$\alpha\beta + i k_1^{+2} \alpha\beta == 0$	Total expected gauge gen		•		_	0	0	0	0	$1^{+1}f$	$\frac{i \ k \ t}{\sqrt{2}}$	0	0 (0		0	0		0 ^{#1} A	0 ^{#1} f	0 ⁺ f	^{#1} <i>∄</i>
	υ==0	$\frac{*^2}{1^-} \frac{\alpha}{\tau} + 2 i k_1^{*2} \frac{\alpha}{\sigma} = =$	0 =				$-\frac{\sqrt{2}}{t_1+k^2t_1}$	$\frac{1}{(1+k^2)^2 t_1}$	$-\frac{i \ k}{(1+k^2)^2 t_1}$	0	0	0	0	$\overset{\sharp 1}{1}\mathscr{R} \overset{lpha}{\dagger}$	0	0 0		$-\frac{t_1}{2}$	$\frac{t_1}{\sqrt{2}}$	0	i k ţ	0 ^{#1} <i>9</i> (i √2 k t	0	0
						$1^{*1} \sigma_{\alpha\beta}$	0	$\frac{\sqrt{2}}{t_1 + k^2 t_1}$	$\frac{i\sqrt{2}k}{t_1+k^2t_1}$	0	0	0	0	$1^{2}\mathcal{F}_{1}^{\alpha}$	0	0	0	$\frac{t_1}{\sqrt{2}}$	0	0	0		-i √2 k	<u>t</u> 0	0	0
						CI	βπ	βπ	αβ +	$\sigma^{+\alpha}$	σ+α	$\frac{*1}{1}r + \frac{\alpha}{1}$	$\frac{*2}{1}$ τ	$1 f \uparrow^{\alpha}$	0	0	0 0		0	0	0	#2 0 ⁺ f		0	D	0
Spi	#2 0 ⁺ τ	#2 1	1.	#1 1 ⁺ 1	Tot		$1^{*1} \sigma^{+}$	$^{#2}_{1}$	1^+	#1 1_0	$^{#2}_{1}$	1.	#2 1	${\overset{\#^2}{1}}f + {}^{\alpha}$	0	0 0		-ī k <u>t</u>	0	0	0	#1 0 <i>3</i> (0	0	0	-t ₁

Massive and massless spectra

Unitarity conditions