Digital Image Processing

Lecture No – 51

Detection of Discontinuities

Dr. Sapna Katiyar Professor, ECE Department

00:56

Detection of Discontinuities

02:24

02:47

02:58

Detection of Discontinuities

Point Detection

An isolated point is a point whose grey level is significantly different from its background in a homogeneous area

Detection of Discontinuities

Point Detection

An isolated point is a point whose grey level is significantly different from its background in a homogeneous area

3×3

w_1	w_2	w_3
w_4	w_5	w_6
w_7	w_8	W ₉

3x3

z_1	z_2	z_3		
z_4	z_5	z_6		
Z7	Zo	Zo		

Mask

Image

Response of the mask:

$$R = \sum_{i=1}^{9} w_i z_i$$

04:22

Detection of Discontinuities

Point Detection

An isolated point is a point whose grey level is significantly different from its background in a homogeneous area

3×3 W_4

 w_1 W2 W3 W5 w_6 W7 WR Wg

	3x3			
1	z_1	z_2	z_3	
3	z_4	z_5	z_6	
	z_7	z_8	z_9	

Response of the mask:

$$R = \sum_{i=1}^{9} w_i z_i$$

Mask

Image

If,

|R| ≥ T, a point is detected where,

T is a non negative integer

-1	-1	-1
-1	8	-1
-1	-1	-1

Sample Mask for Point Detection

05:42

Detection of Discontinuities

Line Detection

In line detection, four types of masks are used to get the responses i,e, R₁, R₂, R₃ and R₄ for the directions vertical, horizontal, +45⁰ and -45⁰ respectively

Horizontal

-1	2	-1
-1	2	-1
-1	2	-1

Vertical

$$\begin{array}{c|cccc}
-1 & -1 & 2 \\
-1 & 2 & -1 \\
2 & -1 & -1
\end{array}$$

+450

-45°

06:24

Detection of Discontinuities

In line detection, **four types of masks** are used to get the responses i,e, R_1 , R_2 , R_3 and R_4 for the directions vertical, horizontal, +45° and -45° respectively

-1	-1	2
-1	~2	-1
~2	-1	-1

Horizontal

Vertical

+450

-45°

Response of the mask:

$$\vee R_{k} = \stackrel{4}{\succeq} \omega_{k} z_{k}$$

If, at a certain point in the image, |R_i|>|R_j| for all j ≠ i, that **point** is said to be more likely associated with a **line** in the direction of mask i

07:42

Detection of Discontinuities

Line Detection

In line detection, **four types of masks** are used to get the responses i,e, R₁, R₂, R₃ and R₄ for the directions vertical, horizontal, +45⁰ and -45⁰ respectively

1				
-1	2	-1		
-1	2	-1		
-1	2	-1		

Vertical

-1	-1	2
-1	~2	-1
~2	-1	-1
	-	

 $+45^{\circ}$

-45°

RINLR Horizontal

R2 - TB

Response of the mask:

$$VR_{k} = \frac{4}{5} \omega_{k} Z_{k}$$

If, at a certain point in the image, $|R_i| > |R_j|$ for all $j \neq i$, that **point** is said to be more likely associated with a **line** in the direction of mask i

Edge Detection

- ☐ An edge is a set of connected pixels that lies on the boundary between two regions which differ in grey value. Pixels on edge is known as edge points
- ☐ Edges provide an outline of the object

Magnitude:
$$\nabla f = \text{mag}(\nabla \mathbf{f}) = \left[G_x^2 + G_y^2\right]^{1/2} \approx \left|G_x\right| + \left|G_y\right|$$

Direction of gradient: $\tan^{-1}\left(\frac{Gy}{Gx}\right)$

This stage may be performed explicitly or implicitly

Vector: $\nabla \mathbf{f} = \begin{bmatrix} G_x \\ G_y \end{bmatrix} = \begin{bmatrix} \partial f / \partial x \\ \partial f / \partial y \end{bmatrix}$

location of edge

✓ Magnitude: $\nabla f = \text{mag}(\nabla \mathbf{f}) = \left[G_x^2 + G_y^2\right]^{1/2} \approx \left|G_x\right| + \left|G_y\right|$

 \checkmark Direction of gradient: $tan^{-1} \left(\frac{Gy}{Gx} \right)$

19:31

Detection of Discontinuities

Edge Detection

20:00

Detection of Discontinuities

Edge Detection

Edge Detection Algorithms

Types

Matching

Gaussian Derivatives

Pattern Fit Approach

20:01

20:15

Detection of Discontinuities Edge Detection Edge Detection Algorithms

Detection of Discontinuities

Edge Detection

- □ An edge is a set of connected pixels that lies on the boundary between two regions which differ in grey value. Pixels on edge is known as edge points
 □ Edges provide an outline of the object
- 00

In physical plane, **edge corresponds** to the **discontinuities in** depth, Surface orientation, change in material properties, light variations etc.

- It locates sharp changes in the intensity function
- Edges are pixels where brightness changes abruptly
- ❖ An edge can be extracted by computing the derivative of the image function
 - ✓ Magnitude of the derivative, indicates the strength or contrast of edge
 - ✓ Direction of the derivative vector, indicates the edge orientation

