

Machine Learning Fundamentals – DTSC102

Lecture 3 Clustering II

1. Hierarchical Clustering

- ➤ Advantages & Disadvantages
- >Implementation Details

Hierarchical Clustering

- Is an approach to build hierarchy of clusters based on hierarchical relationships between datapoints
- Is a deterministic process: cluster assignments won't change by running algorithm multiple times on the same input data

Hierarchical Clustering

Can be implemented by either a bottom-up or top-down approach:

- Agglomerative Clustering
 - Bottom-up Approach
 - Starts by finding the two most similar points
 - Merges the two points that are the most similar until all points have been merged into a single cluster

Divisive Clustering

- Top-down Approach
- Starts with all points in the same cluster
- Splits the least similar clusters at each step until only single data points remain

These methods produce a tree-based hierarchy of points called a

Hierarchical Clustering: Agglomerative Clustering

- > Idea: ensures near-by points end up in the same cluster
- > Algorithm
 - Initially, each data instance represents a Cluster
 - Repeat:
 - 1. Pick the two closest clusters
 - 2. Merge them into a new cluster
 - 3. Stop when there is only one cluster left
- Produces a family of clusters represented by a Dendrogram

Agglomerative Hierarchical Clustering

1. Each point represents a Cluster

- A & B are now one cluster
- The height of the edge in the dendrogram corresponds to the distance between the two clusters

2. Look for a pair of clusters with minimum distance between them

J & K are now one cluster

2. Look for a pair of clusters with minimum distance between them

C & D are now one cluster

2. Look for a pair of clusters with minimum distance between them

 A, B, C & D are now one cluster

3. Stop when you end up with one cluster

➤ How to decide on clusters?

Pick a threshold distance and cut the tree at that distance

Agglomerative Clustering

Agglomerative Clustering

➤ How should we define "closest" for clusters with multiple elements?

Various options:

- 1. Closest Pair (single link clustering)
- 2. Farthest Pair (complete link clustering)
- 3. Average of all Pairs

Closest pair (single-link clustering)

Farthest pair (complete-link clustering)

Hierarchical Clustering

Strengths

- Reveals finer details about the relationships between data objects
- Provides an interpretable dendrogram

Weaknesses

- Computationally expensive due to algorithm complexity
- Sensitive to noise and outliers

2. DBSCAN

- ➤ What is Density-based Clustering
- ➤ DBSCAN: When & Why?
- ➤ Steps & Assessment

Density-based Clustering

Why do we need another clustering approach?

- ➤ K-Means (Representative Clustering) & Hierarchical Clustering both fail to create clusters of non-uniform shapes
- ➤ Cluster **shapes** are not the only way to form clusters, they can also be formed based on varying densities of data points

> Example:

Dataset shown has 3 different dense clusters in the form of concentric circles, with some noise points not belonging to either 3 clusters

Density-based Clustering

Clustering the dataset into 4 clusters:

≥ 3 obvious ones, plus a separate cluster for noise

Density-based Clustering

- ✓ Correct Clustering
- ✓ Noise Detection

Density-Based Spatial Clustering of Applications with Noise

- ➤ Works on the assumption that clusters are dense regions in space separated by regions of high density
- ➤ Identifies clusters according to local density of data points
- ➤ Identifies noise points as separate cluster
- Doesn't need to pre-assign the number of clusters

Density-Based Spatial Clustering of Applications with Noise

> Requires only 2 parameters:

1. Epsilon

Is the radius of the circle to be created around each data point to check the density

2. MinPoints

Is the minimum number of data points required inside that circle for that data point to be classified as a Core point

➤ Based on the number of points inside each points' circle of radius epsilon, a data point is classified as one of the following:

1. Core point

X is a core point if it has at least *minpoints* neighbors within *eps* distance of itself

2. Border Point

X is a border point if it DOES NOT have at least *minpoints* neighbors within *eps* distance of itself, but is a neighbor of a core point

3. Noise point

X is a noise point if it DOES NOT have at least minpoints neighbors within eps distance of itself, and IS NOT a neighbor of a core point

➤ Based on the number of points inside each points' circle of radius epsilon, a data point is classified as Core, Border or Noise

How clusters are formed? Reachability & Connectivity

- Reachability states if a data point can be accessed from another data point directly or indirectly
- > Connectivity states whether two data points belong to the same cluster or not

Thus; two points in DBSCAN are classified as either:

- ➤ Directly Density-Reachable
- ➤ Density-Reachable
- Density-Connected

Two points in DBSCAN are classified as either:

➤ Directly Density-Reachable

A point *X* is directly density-reachable from point *Y* w.r.t *epsilon*, *minPoints* if:

- 1. X belongs to the neighborhood of Y, i.e, $dist(X, Y) \le epsilon$
- 2. Y is a core point

Here, **X** is directly densityreachable from Y, but vice versa is not valid.

Two points in DBSCAN are classified as either:

> Density-Reachable

A point X is density-reachable from point Y w.r.t *epsilon*, *minPoints* if there is a chain of points p1, p2, p3, ..., pn and p1=X and pn=Y such that pi+1 is directly density-reachable from pi.

Here, X is densityreachable from Y with X being directly densityreachable from P2, P2 from P3, a nd P3 from Y. But, the inverse of this is not valid.

Two points in DBSCAN are classified as either:

Density-Connected

A point X is density-connected from point Y w.r.t *epsilon*, *minPoints* f there exists a point O such that both X and Y are density-reachable from O w.r.t to epsilon and minPoints.

Here, both X and Y are density-reachable from O, therefore, we can say that X is density-connected from Y.

Final Step: Cluster forming & Noise Detection

- \succ Cluster: choose core point q, a cluster C contains all points that are density reachable by q
- ➤ Noise: any point not in a cluster

Parameter Selection: Epsilon

➤ Can be decided from the K-distance graph using elbow method

If Epsilon is too small

More clusters are created, more data points are labeled as noise

If Epsilon is too big

Various small clusters will merge into a big cluster, details are lost

Parameter Selection: MinPoints

- > The value of MinPoints should at least be one greater than the number of dimensions of the dataset
- > Generally, a good start point is at twice the dimensions
- > Domain Knowledge should aid in deciding value

Clustering Evaluation: Silhouette Score

- ➤ Silhouette coefficient or silhouette score is a metric used to calculate the goodness of a clustering technique
- ➤ Based on two measures:
- **1. Cohesion**: How similar a point is to its own cluster similarity of i to its own cluster: $a(i) = \frac{1}{|C_i| 1} \sum_{i=1}^{n} d(i, j)$

- **2. Separation**: How far away a point is from other clusters $dissimilarity \ of \ i \ to \ other \ clusters: <math>b(i) = \min_{i \neq j} \frac{1}{|C_i|} \sum_{i \in C_i} d(i,j)$
- > $s(i) = \frac{b(i) a(i)}{\max(a(i), b(i))}$ has a value ranging between [-1,1], as the value gets higher it means that a point is placed in the correct cluster