## LANDOLT-BÖRNSTEIN

Numerical Data and Functional Relationships in Science and Technology

New Series
Editor in Chief: K.-H. Hellwege

Group III: Crystal and Solid State Physics

## Volume 3 Ferro- and Antiferroelectric Substances

by Toshio Mitsui and

R. Abe · Y. Furuhata · K. Gesi · T. Ikeda · K. Kawabe

Y. Makita · M. Marutake · E. Nakamura · S. Nomura

E. Sawaguchi · Y. Shiozaki · I. Tatsuzaki · K. Toyoda

Editors: K.-H. Hellwege and A. M. Hellwege



Springer-Verlag Berlin · Heidelberg · New York 1969

BEST AVAILABLE COPY

|                      | Pure compound                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | s of simple typ                                                                                                                                    | e                                                                                                      |              |  |  |  |
|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|--------------|--|--|--|
| ٧r.                  | 7A-1 Bi <sub>8</sub> TiNbO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                                                                                                                                                  |                                                                                                        |              |  |  |  |
| a                    | Dielectric anoma<br>1960.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ly associated wit                                                                                                                                  | th a phase transition was reported by ISMAILZADE in                                                    | 6011         |  |  |  |
| b                    | phase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | п                                                                                                                                                  | I                                                                                                      |              |  |  |  |
|                      | state                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                    | Pa)                                                                                                    | *)6011       |  |  |  |
|                      | crystal system                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | orthorhombicb)                                                                                                                                     | tetragonal <sup>b</sup> )                                                                              | b)62S17      |  |  |  |
|                      | space group                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Fmm2-C <sub>2</sub>                                                                                                                                | I4/mmm-D <sub>th</sub>                                                                                 |              |  |  |  |
|                      | <del>0</del> *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 900 · · ·                                                                                                                                          | 950 °Cb)                                                                                               |              |  |  |  |
|                      | $\varrho = 6.4 \cdot 10^3  \mathrm{kg}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | m-3.                                                                                                                                               |                                                                                                        | 62517        |  |  |  |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5.44  Å, c = 25.1                                                                                                                                  |                                                                                                        |              |  |  |  |
| \$                   | Temperature de<br>Linear thermal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | pendence of latti<br>expansion: Fig. 8                                                                                                             | ce parameters: Fig. 868.                                                                               |              |  |  |  |
| 5a                   | Dielectric consta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                    |                                                                                                        | 61514        |  |  |  |
|                      | $\kappa \approx 100$ at RT.<br>The dielectric co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | nstant was not                                                                                                                                     | measured in the vicinity of the transition point be-                                                   | 61511        |  |  |  |
|                      | cause of high co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | anductivity. Ex                                                                                                                                    | trapolation of the Curie temperatures of the solid dielectric measurements indicates a transition tem- |              |  |  |  |
|                      | perature betwee                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | n 900° and 950°                                                                                                                                    | C for Bi <sub>3</sub> TiNbO <sub>9</sub> .                                                             |              |  |  |  |
|                      | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                    |                                                                                                        |              |  |  |  |
| Vr.                  | 7A-2 Bi <sub>3</sub> TiTaO <sub>6</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                    |                                                                                                        |              |  |  |  |
| ia                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                    | of Bi <sub>3</sub> TiNbO <sub>3</sub> was reported by Subbarao in 1962.                                | 62517        |  |  |  |
| b                    | phase mansimon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | II I                                                                                                                                               | I                                                                                                      | 02211        |  |  |  |
| Ĭ                    | state                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                    | P                                                                                                      |              |  |  |  |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | orthorhombic                                                                                                                                       | tetragonal                                                                                             |              |  |  |  |
|                      | crystal system                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                    |                                                                                                        |              |  |  |  |
|                      | space group                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Fmm2-C <sub>27</sub> 870                                                                                                                           | 14/mmm-D <sub>40</sub>                                                                                 | 62517        |  |  |  |
|                      | 05 103 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                    | •                                                                                                      | 02577        |  |  |  |
|                      | $\varrho = 8.5 \cdot 10^3 \text{ kg m}^{-3}$ .<br>a = 5.39  Å, b/a = 1.007, c = 25.1  Å at RT.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                    |                                                                                                        |              |  |  |  |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | xpansion; see Fig. 869.                                                                                                                            |                                                                                                        |              |  |  |  |
| <u> </u>             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | expansion: see F                                                                                                                                   | ig. 607.                                                                                               | l            |  |  |  |
|                      | Linear thermal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | expansion: see F<br>ant: $\kappa \approx 140$ at 1                                                                                                 |                                                                                                        | 62517        |  |  |  |
|                      | Linear thermal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                    |                                                                                                        | 62S17        |  |  |  |
| 5a                   | Linear thermal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | nnt: x ≈ 140 at ]                                                                                                                                  |                                                                                                        | 62517        |  |  |  |
| 4<br>5a<br>Nr.<br>1a | Linear thermal Dielectric consta  7A-3 CaBi <sub>8</sub> Nb <sub>2</sub> C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | nnt: x ≈ 140 at l                                                                                                                                  |                                                                                                        | 62S17        |  |  |  |
| Sa<br>Nr.<br>1a      | Linear thermal Dielectric consta  7A-3 CaBi <sub>8</sub> Nb <sub>2</sub> C  Dielectric anomin 1960.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | nnt: x ≈ 140 at l                                                                                                                                  | RT.                                                                                                    |              |  |  |  |
| 5a<br>Nr.            | Linear thermal Dielectric consta  7A-3 CaBi <sub>2</sub> Nb <sub>2</sub> C  Dielectric anomin 1960. phase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | nnt: x ≈ 140 at l  O  o  ally associated wi                                                                                                        | RT. th a phase transition was discovered by Ismailzade                                                 |              |  |  |  |
| Sa<br>Nr.<br>1a      | Dielectric constant  7A-3 CaBi <sub>8</sub> Nb <sub>2</sub> C  Dielectric anomin 1960.  phase  state                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | nnt: x ≈ 140 at l  O  Raly associated wi                                                                                                           | RT.  th a phase transition was discovered by Ismailzade  I P                                           |              |  |  |  |
| Sa<br>Nr.<br>1a      | Linear thermal Dielectric consta  7A-3 CaBi <sub>8</sub> Nb <sub>2</sub> C  Dielectric anomin 1960. phase state crystal system                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | nnt: x ≈ 140 at 1  O <sub>0</sub> ally associated wi  II  orthorhombic                                                                             | th a phase transition was discovered by Ismailzade  I P tetragonal                                     |              |  |  |  |
| Sa<br>Nr.<br>1a      | Linear thermal Dielectric consta  7A-3 CaBi <sub>2</sub> Nb <sub>2</sub> C  Dielectric anomin 1960. phase state crystal system space group                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ant: x ≈ 140 at 1  O <sub>9</sub> ally associated wi  II  orthorhombic  Fmm2-C <sub>27</sub>                                                       | th a phase transition was discovered by Ismailzade  I P tetragonal I4/mmm-D <sub>th</sub>              |              |  |  |  |
| Sa<br>Nr.<br>1a      | Linear thermal Dielectric consta  7A-3 CaBi <sub>8</sub> Nb <sub>2</sub> C  Dielectric anomin 1960. phase state crystal system space group  6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ant: x ≈ 140 at 1  O   ally associated wi  II  orthorhombic  Fmm2-C <sub>zv</sub> 62:                                                              | th a phase transition was discovered by Ismailzade  I P tetragonal                                     | 6011         |  |  |  |
| Sa<br>Nr.<br>1a      | Linear thermal Dielectric constant TA-3 CaBi <sub>8</sub> Nb <sub>2</sub> C Dielectric anomin 1960. phase state crystal system space group $\Theta$ $\rho = 5.0 \cdot 10^3$ kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ant: x ≈ 140 at 1  O <sub>9</sub> ally associated wi  II  orthorhombic  Fmm2-C <sub>27</sub> 62: m <sup>-3</sup> .                                 | th a phase transition was discovered by Ismailzade  I P tetragonal I4/mmm-D <sub>th</sub> 5°C          | 6011         |  |  |  |
| Sa<br>Nr.<br>1a      | Linear thermal Dielectric constant TA-3 CaBi <sub>8</sub> Nb <sub>2</sub> CaBi <sub>8</sub> CaBi <sub>8</sub> Nb <sub>2</sub> CaBi <sub>8</sub> Nb <sub>2</sub> CaBi <sub>8</sub> CaBi | ant: $\kappa \approx 140$ at 1  O <sub>0</sub> aly associated wi  II  orthorhombic  Fmm2-C <sub>2v</sub> 62:  m <sup>-3</sup> .  = 1.006, $c = 25$ | th a phase transition was discovered by Ismailzade  I P tetragonal I4/mmm-D <sub>th</sub> 5°C          | 60I1<br>60I1 |  |  |  |

|        | 404                              |                              |                  |                      |                                |               |                                       |                                                  |                                               |
|--------|----------------------------------|------------------------------|------------------|----------------------|--------------------------------|---------------|---------------------------------------|--------------------------------------------------|-----------------------------------------------|
| Tab.   | 104. Tempe                       | rature dep                   | endence of       | the lattice          | paramete                       | rs of CaBi    | Nb <sub>2</sub> O, and                | CaBi <sub>2</sub> Ta <sub>2</sub> O <sub>9</sub> | [60]1]                                        |
| T      | 20                               | 100                          | 150              | 200                  | 250                            | 300           | 350                                   | 400                                              | °C                                            |
|        | 1 5445                           |                              |                  | CaBi <sub>2</sub>    | Nb <sub>2</sub> O,             |               | · · · · · · · · · · · · · · · · · · · |                                                  | <u>'                                     </u> |
| a<br>b | 5.442<br>5.482 <sub>5</sub>      | _                            | 5.453            | _                    | 5.458                          |               | 5.465                                 | 1 -                                              | Į Å                                           |
| C      | 24.920                           |                              | 5.484            | -                    | 5.487                          | 1             | 5.491                                 | -                                                | Å                                             |
| b/a    | 1.0075                           | _                            | 24.955<br>1.0056 | _                    | 24.990                         |               | 25.035                                | _   _                                            | Å                                             |
| V      | 743.5                            | _                            | 746.0            | _                    | 1.005<br>748.5                 | 3 -           | 1.0047<br>751.0                       | '   -                                            | Å*                                            |
|        |                                  | '                            | , , , , ,        | CaBi,                | •                              | 1             | 1 751.0                               | 1 —                                              | A*                                            |
| a<br>b | 5.435                            | 5.438                        |                  | 5.444                | -                              | 5.452         | 2 1 —                                 | 5.464                                            | ı A                                           |
| 6      | 5.468 <sub>5</sub><br>24.970     | 5.471                        | -                | 5.475 <sub>6</sub>   | -                              | 5.479         | i i                                   | 5.482 <sub>6</sub>                               | Ā                                             |
| b/a    | 1.006                            | 24.980                       | -                | 25.015               | _                              | 25.040        | )                                     | 25.060                                           | Å                                             |
| v      | 742.0                            | 1.006<br>743.2               | _                | 1.005                | -                              | 1.005         | 5   -                                 | 1.003 <sub>8</sub>                               | ١. ا                                          |
| T      | 450                              | T                            |                  | 745.6                |                                | 748.0         |                                       | 750.6                                            | ų                                             |
|        | 1 430                            | 500                          | 550              |                      | 75                             | 600           | 650                                   | 700                                              | •c.                                           |
| а      | 5.480                            | . 5 405                      |                  | CaBi,1               |                                |               |                                       |                                                  |                                               |
| ь      | 5.496,                           | 5.485<br>5.501 <sub>a</sub>  | 5.48             | - 1                  | 495,                           | - 1           | 5.502                                 | 5.504                                            | Å                                             |
| c      | 25.070                           | 25.080                       | 5.50<br>25.09    |                      | 503,                           | -             | 5.502 <sub>s</sub>                    | 5.504                                            | Ā                                             |
| b/a    | 1.0036                           | 1.0029                       |                  |                      | 0015                           | _             | 25.125<br>1.000                       | 25.140<br>1.000                                  | Å                                             |
| V      | 755.0                            | 756.8                        | 758.0            | 759.3                |                                | _             | 760.7                                 | 761.6                                            | Å۶                                            |
| _      | i                                |                              |                  | CaBi <sub>2</sub> 7  | Γa <sub>•</sub> O <sub>•</sub> | •             |                                       |                                                  |                                               |
| a<br>b | _                                | 5.470                        | 5.47             |                      | -                              | 5.479         | 5.484                                 | - 1                                              | Ā                                             |
| c      | _                                | 5.483,                       | 5.48             | 1                    | -                              | 5.479         | 5.484                                 | -                                                | Å                                             |
| b/a    |                                  | 25.070<br>1.002 <sub>s</sub> | 25.08            |                      | -                              | 25.085        | 25.105                                | -                                                | Å                                             |
| V      | _                                | 751.9                        | 752.8            | Z <sub>q</sub>       | ٠   ,                          | 1.000<br>30.0 | 1.000                                 | -                                                | Å۵                                            |
| Nr. 7  | A-4 CaBi, T                      |                              | 1 /32.0          | , –                  | - , ,                          | 30.0 j        | 755.0                                 | _ '                                              | A,                                            |
| 1a     | Dielectric and in 1960.          |                              | iated with       | a phase tran         | sition was                     | discovered    | by Tewayraa                           | DE 60I1                                          |                                               |
| ь      | phase                            |                              |                  |                      |                                | disco relog   | Oy ISBRILZA                           | DE                                               | - 1                                           |
|        | state                            |                              | <u> </u>         |                      | _                              |               |                                       | 6011                                             | - 1                                           |
|        | crystal system                   |                              |                  | P                    | _                              |               |                                       | İ                                                | - 1                                           |
|        | space group                      |                              |                  | tetragonal           | _                              |               |                                       |                                                  |                                               |
| ľ      | Θ group                          | Fmm                          |                  | /mmm-D <sub>4h</sub> | _                              |               |                                       |                                                  |                                               |
| .      | $\varrho = 7.5 \cdot 10^{a}$     | kg m-3                       | 575 °C           |                      |                                |               |                                       | 2074                                             |                                               |
|        | a = 5.428  A,                    | b/a = 1.006                  | c = 24.90        | À at RT.             |                                |               |                                       | 60I1<br>61S11                                    |                                               |
| 4      | remperature                      | dependence                   | of lattice       | parameter: s         | see Tab. 10                    | )4.           |                                       | -                                                |                                               |
| 5a     | Protectific COI                  | nstant: Fig.                 | 872.             |                      |                                |               | <del></del>                           |                                                  |                                               |
| Nr. 7  | A-5 SrBi <sub>2</sub> NI         | $O_1O_0$                     |                  |                      |                                |               |                                       | ı                                                |                                               |
| 1a     | Dielectric and in 1961.          | omaly associ                 | ated with a      | phase trans          | sition was                     | discovered    | by Smolensi                           | KII 61511                                        |                                               |
| b      | phase                            | 11                           |                  | I                    |                                |               | ·                                     |                                                  | 7.                                            |
|        | state                            |                              |                  |                      | -                              | . •           |                                       |                                                  | - 1                                           |
|        | crystal system                   | m orthorh                    | ombic            | tetragonal           | -                              |               |                                       |                                                  |                                               |
|        | 0                                |                              | 420              |                      | -                              |               |                                       | 61511                                            |                                               |
|        | $\varrho = 6.9 \cdot 10^{\circ}$ | ka m-20)                     | 440*) (          | C                    |                                |               | •                                     | a)62S17                                          |                                               |
|        | $\mu = 5.506 \text{ A},$         | b/a = 1.000                  | c = 25.05        | Å at RT.             |                                |               |                                       | 62515                                            |                                               |
| 5a     | Dielectric con $x = C/(T - C)$   | nstant · Fig                 | 072 . 4          | 00 4 70 70           | 200 °C                         |               | ····                                  |                                                  | $\dashv$                                      |
| 7a     | Piezoelectric                    | $ity: d_{33} = 1.$           | 0 · 10-11 C      | ν-1.                 | . 390 °C.                      |               |                                       | 62517                                            |                                               |
|        |                                  |                              | 0                | •                    |                                |               |                                       | 1 02317                                          | 1                                             |

| r. 7A-6 SrB              | i.T2.O.           |                                            |                                                                                          |         |
|--------------------------|-------------------|--------------------------------------------|------------------------------------------------------------------------------------------|---------|
|                          |                   | C-B: To O wa                               | s reported by Smolenskii in 1961.                                                        | 61511   |
|                          | ctricity ii       | II                                         | I                                                                                        | 61511   |
| phase                    | -                 | F F                                        |                                                                                          |         |
| state                    |                   | orthorhombic                               | tetragonal                                                                               |         |
| crystal s                | ystem             | 310                                        |                                                                                          |         |
| 6                        | 1                 |                                            | C                                                                                        | 61511   |
| $\varrho = 7.5$          | · 10³ kg n        | $n^{-3}$ . = 1.000, $c = 25$               | 000 Å at RT.                                                                             | 62S15   |
|                          |                   | nt: Fig. 874. × 9                          |                                                                                          |         |
| Dielectri $\kappa = C/U$ | $T - \Theta_n$ ). | $C = 2.0 \cdot 10^6  ^{\circ}$             | $\frac{1}{C}$ , $\Theta_{\rm p} = 190$ °C.                                               | 62517   |
| Spontan                  | eous pola         | rization: Ps =                             | 5.8 · 10 <sup>-2</sup> C m <sup>-2</sup> at 25 °C.                                       | 62S17   |
| Piezoele                 | ctric cons        | $stant: d_{83} = 2.3$                      | · 10 <sup>-11</sup> C N <sup>-1</sup> .                                                  | 62S17   |
| r. 7A-7 Ba               |                   |                                            |                                                                                          |         |
|                          |                   |                                            | h a phase transition was discovered by Sмо́LENSKII                                       | 61511   |
| phase                    | 1                 | II i                                       | Ī                                                                                        |         |
|                          | <del></del>       |                                            | P                                                                                        |         |
| state                    |                   | orthorhombic                               | tetragonal                                                                               |         |
| crystal s                | system            | 210                                        | °C                                                                                       | 61511   |
| θ                        |                   | 200                                        |                                                                                          | a)62S17 |
| $\varrho = 6.3$          | · 10* kg          | m <sup>-3</sup> .                          | E 60 Å at PT                                                                             | 62515   |
| a = 5.5                  | 54 A, b/a         | = 1.000, $c = 2$<br>nt: Fig. 875. $\times$ | 3.00 A at K1.                                                                            | 62517   |
| a Dielecti<br>in 1961.   | ric anoma         | aly associated wi                          | th a phase transition was discovered by Smolenskii                                       | 61511   |
| b phase                  |                   | II                                         | <u> </u>                                                                                 | 1       |
| state                    |                   |                                            | P                                                                                        | 61511   |
| crystal                  | system            | orthorhombic                               |                                                                                          | a)62S17 |
| 0                        |                   |                                            | ρ) °C                                                                                    | 61511   |
| Accord                   | ing to [61        | <i>1511</i> ] ⊖ is 70 °C                   |                                                                                          | 01311   |
| $\varrho = 8.4$          | 1. 10° kg         | $m^{-3}$ . $a = 1.000, c = 2$              | 25.50 Å at RT.                                                                           | 62515   |
| a = 3.                   | ric const         | ant: Fig. 876. ×                           | = 400 at RT.                                                                             | 62517   |
|                          |                   |                                            |                                                                                          |         |
| Nr. 7A-9 P               | ric anom          | alv associated v                           | with a phase transition in PbBi <sub>2</sub> Nb <sub>2</sub> O <sub>9</sub> was reported | 5958    |
| ia Dielect               | OLBNSKII          | in 1959.                                   |                                                                                          |         |
| b phase                  |                   | II                                         |                                                                                          |         |
| state                    |                   |                                            | P                                                                                        | 5958    |
|                          | system            | orthorhombic                               | tetragonal                                                                               | 77.50   |
| 9                        |                   | 52<br>55                                   | 26 °C<br>50a) °C                                                                         | e)61S15 |
| $\varrho = 7$            | 6 · 10° kg        | 1                                          | •                                                                                        | 62S15   |
|                          |                   | re: Fig. 877.                              |                                                                                          |         |
| 4 Tempe                  | erature de        | ependence of lat                           | tice parameters: Fig. 878.                                                               | -       |
| 5 Dieles                 | tric const        | bant Fig 879, 1                            | s = 170 at RT.<br>°K, Θ <sub>p</sub> = 510 °C.                                           | 62517   |
| 7a Piezoe                | electric co       | onstant: $d_{33} = 1$                      | .5 · 10 <sup>-11</sup> C N <sup>-1</sup> .                                               | 62517   |
| (                        |                   |                                            | D bee Nomuse Nakamusa                                                                    |         |

| 1a       |                                                                         | was reported by S                                                          | SUBBARAC                        | o*) and Smolenskiib) independently in 1961.                                                                                                            |                |
|----------|-------------------------------------------------------------------------|----------------------------------------------------------------------------|---------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| b        |                                                                         | II                                                                         | I                               | <del></del>                                                                                                                                            | Þ)61S11        |
|          | state                                                                   | - F                                                                        | P                               |                                                                                                                                                        |                |
|          | crystal system                                                          | orthorhombic                                                               | tetrag                          | onal                                                                                                                                                   | 61515          |
|          | Θ                                                                       | 430                                                                        | <b>℃</b>                        |                                                                                                                                                        | 61511          |
|          |                                                                         | a = 1.000, c = 2                                                           |                                 |                                                                                                                                                        | 62515          |
| 5a       | Dielectric const $\kappa = C/(T - \Theta_{p})$                          | ant: Fig. 880. $\kappa = 3.7 \cdot 10^4$ °C                                | = 180 at $C$ , $\Theta_p = 3$   | RT.<br>325 °C.                                                                                                                                         | 62517          |
| 7a       | Piezoelectric co                                                        | $nstant: d_{33} = 5.$                                                      | 10-12 C N                       | -1                                                                                                                                                     | 62517          |
| ٧r       | . 7A-11 Bi <sub>4</sub> Ti <sub>3</sub> O <sub>12</sub>                 |                                                                            |                                 |                                                                                                                                                        |                |
| 1a       | T                                                                       | · · · · · · · · · · · · · · · · · · ·                                      | reported                        | by Van Ultert et al. in 1961.                                                                                                                          | 44770          |
| ъ        |                                                                         | II II                                                                      | reported                        | I                                                                                                                                                      | 61 V 2         |
|          | state                                                                   | F                                                                          | ·                               |                                                                                                                                                        | (47/2)         |
|          |                                                                         | monoclinic                                                                 | 2)*                             | <del></del>                                                                                                                                            | 61V2           |
|          | crystal system                                                          | (pseudo-orthorh                                                            |                                 | tetragonal                                                                                                                                             | a)67C6         |
|          | 0                                                                       |                                                                            | 675                             | °C                                                                                                                                                     |                |
|          | Dorth = 5.448 A,<br>Relations betwee<br>P <sub>s</sub> lies in a direct | $c_{orth} = 32.85 \text{ A a}$<br>en crystallograph:<br>tion tilted at app | t RT.<br>ic axes: I<br>roximate | th the lattice parameters: $a_{\text{orth}} = 5.411 \text{ Å}$ , Fig. 881. ly 7° (or less) from the major crystal surprhombic $b - c$ plane.           | 6706           |
| 2a       |                                                                         |                                                                            |                                 | consisting of 100 Bi <sub>2</sub> O <sub>3</sub> and 5 TiO <sub>2</sub> (weight                                                                        | 67C6<br>61 V 2 |
| 3        | Crystal structure                                                       | e: Fig. 882.                                                               |                                 |                                                                                                                                                        | <u> </u>       |
| 4        | Temperature de<br>Thermal expans                                        | pendence of lattic                                                         | e parame                        | ter: Fig. 883.                                                                                                                                         |                |
| 5a       | Dielectric consta                                                       |                                                                            |                                 |                                                                                                                                                        |                |
| С        | L vecouning to lo                                                       | al. measured P <sub>s</sub><br>1.99 · 10 <sup>-2</sup> C m <sup>-3</sup> . | eous pola                       | by applying a field parallel to the $c_{orth}$ $13 \cdot 10^4 \ V \ m^{-1}$ . arization lies in the pseudo-orthorhombic $\cdot 10^{-2} \ C \ m^{-2}$ . | 63T1<br>67C6   |
| 7        |                                                                         | stant: $d_{33} = 2.0$ .                                                    |                                 |                                                                                                                                                        | 61517          |
| )        | Conductivity: se                                                        | е                                                                          |                                 |                                                                                                                                                        | 64P3           |
| la       | Domain structur<br>Domains have b                                       | e: see<br>een observed by p                                                | olarized                        | light.                                                                                                                                                 | 64P3<br>66C7   |
| b        | Switching: Fig. 8<br>See also Fig. 892                                  | <b>388, 889</b> .                                                          |                                 |                                                                                                                                                        | 66P6           |
| 7        | Twinning structi                                                        | ire: see                                                                   |                                 |                                                                                                                                                        | 64P3           |
| lr.      | 7A-12 BaBi,Ti,N                                                         | PO <sup>13</sup>                                                           |                                 |                                                                                                                                                        |                |
| a        | Dielectricanomal                                                        | y associated with a                                                        | phase tra                       | ansition was reported by SUBBARAO in 1961.                                                                                                             | 61515          |
| ь        | phase                                                                   | II                                                                         | 1                               | 1                                                                                                                                                      | 1              |
|          | state                                                                   |                                                                            |                                 | P                                                                                                                                                      |                |
| 1        | crystal system                                                          | pseudo-tetragor                                                            | al to                           | etragonal                                                                                                                                              | 61515          |
| ļ        | $\Theta = 3.874 \text{ Å, } c =$                                        | 33.70 Å at RT                                                              | 270 °C                          |                                                                                                                                                        |                |
| - 1      |                                                                         |                                                                            |                                 | '                                                                                                                                                      |                |
| ]<br>Jr. | 7A-13 PbBi.Ti.N                                                         |                                                                            |                                 |                                                                                                                                                        |                |
| Ir.      | 7A-13 PbBi <sub>3</sub> Ti <sub>2</sub> N                               |                                                                            | mbac t                          | nsition was reported by Subbarao in 1961.                                                                                                              | 4404-          |

| lb                   | phase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | II                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                            |                                         |                                                             |
|----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|-------------------------------------------------------------|
|                      | state                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                            |                                         |                                                             |
|                      | crystal system                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | pseudo-tetrage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | onal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | tetragonal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                            |                                         |                                                             |
|                      | Θ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ) °C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                            |                                         | 61515                                                       |
|                      | a = 3.687  Å, c =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | = 33.55 Å at RT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                            |                                         | 61515                                                       |
| Vr.                  | 7A-14 BaBi,Ti,C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                            |                                         |                                                             |
| a                    | Dielectric anom                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | alv. accociated uni                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Io) 111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | nase transition was<br>1961. Ferroelect                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | as reported inder<br>ric activity was                                                                                                      | endently by<br>reported in-             | *)61S15<br>*)61S11<br>*)61F7                                |
| ъ                    | phase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ı II                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | , I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                            |                                         |                                                             |
|                      | state                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                            |                                         | 61F7                                                        |
|                      | crystal system                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | orthorho<br>(or pseudo-ort                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | nbic) tetrago                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | nal                                                                                                                                        |                                         |                                                             |
|                      | Θ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 375 °C<br>395∗) °C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                            |                                         | *)61S15                                                     |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | a = 1.000, c = 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.85 Å                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | at RT.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                            |                                         | 62515                                                       |
| 3                    | Crystal structur                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | - A DT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                            |                                         |                                                             |
| ja<br>—              | $\kappa = C/(T - \Theta_{\rm p})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ant: Fig. 891. $\kappa$ ), $C = 2.5 \cdot 10^5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | K, Op                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | = 335 °C.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                            |                                         | 61515                                                       |
| 7a                   | Piezoelectric con                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $nstant: d_{23} = 2.3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3 · 10-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ¹ C N−¹.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                            |                                         | 62517                                                       |
| 7                    | rab. 105. BaBi Ti<br>compariso                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | O <sub>15</sub> , Ba <sub>2</sub> Bi <sub>4</sub> Ti <sub>5</sub> O<br>n with those of I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 18, Bi <sub>4</sub> 1<br>BaTiO <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\begin{bmatrix} i_s O_{1g}, Ba Ti O_s \end{bmatrix} \begin{bmatrix} t_s = t_{\infty} \end{bmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | or comparison). $\exp(+\alpha/E), t_{\rm s} =$                                                                                             | = switching ti                          | me                                                          |
| 7                    | rab. 105. BaBi Ti<br>compariso                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | n with those of l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | BaTiO <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $[62FI]. \ t_{\rm s} = t_{\infty}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\exp(+\alpha/\mathcal{L}), t_{\rm g} =$                                                                                                   | = switching ti                          | me                                                          |
| 7                    | rab. 105. BaBi <sub>t</sub> Ti<br>compariso                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | BaTiO <sub>3</sub> Bi <sub>4</sub> T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | i <sub>3</sub> O <sub>12</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $[62F1]. \ t_s = t_{\infty}$ $BaBi_4Ti_4O_{15}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\exp(+\alpha/\mathcal{L}), t_8 =$ $Ba_9Bi_4Ti_5O_{18}$                                                                                    | = switching ti                          | me                                                          |
| 1                    | compariso                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | m with those of I  BaTiO <sub>3</sub> $Bi_4T$ 6.1 41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | BaTiO <sub>3</sub><br>'i <sub>3</sub> O <sub>12</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\begin{bmatrix} 62FI \end{bmatrix}.  t_s = t_{\infty}$ $BaBi_4Ti_4O_{15}$ $23$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\frac{\exp(+\alpha/L)}{\operatorname{Ba}_{2}\operatorname{Bi}_{4}\operatorname{Ti}_{5}\operatorname{O}_{18}}$                             | 105 V m <sup>-1</sup>                   | me                                                          |
|                      | compariso $\frac{\alpha}{t_{\infty}}$ 7A-15 PbBi <sub>4</sub> Ti <sub>4</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\begin{array}{c c} \text{n with those of I} \\ \hline \text{BaTiO}_3 & \text{Bi}_4\text{T} \\ \hline & 6.1 & 41 \\ \hline & 0.4 & 10 \\ \hline \text{O}_{15} \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | BaTiO <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $ \begin{array}{c c} [62FI]. & t_8 = t_{\infty} \\  & \text{BaBi}_4 \text{Ti}_4 \text{O}_{15} \\ \hline  & 23 \\ \hline  & 1.5 \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\frac{\exp(+\alpha/L), i_{6}}{\operatorname{Ba}_{2}\operatorname{Bi}_{4}\operatorname{Ti}_{5}\operatorname{O}_{18}}$ $\frac{76}{10^{-2}}$ | 10° V m <sup>-1</sup> μ sec             | inc                                                         |
| Ŋr.                  | compariso $\frac{\alpha}{t_{\infty}}$ 7A-15 PbBi <sub>4</sub> Ti <sub>4</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\begin{array}{c c} \text{n with those of I} \\ \hline \text{BaTiO}_3 & \text{Bi}_4\text{T} \\ \hline & 6.1 & 41 \\ \hline & 0.4 & 10 \\ \hline \text{O}_{15} \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | BaTiO <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $ \begin{array}{c c} [62FI]. & t_8 = t_{\infty} \\  & \text{BaBi}_4 \text{Ti}_4 \text{O}_{15} \\ \hline  & 23 \\ \hline  & 1.5 \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\frac{\exp(+\alpha/L)}{\operatorname{Ba}_{2}\operatorname{Bi}_{4}\operatorname{Ti}_{5}\operatorname{O}_{18}}$                             | 10° V m <sup>-1</sup> μ sec             | 61S15                                                       |
| Ŋr.                  | compariso $\frac{\alpha}{t_{\infty}}$ 7A-15 PbBi <sub>4</sub> Ti <sub>4</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\begin{array}{c c} \text{n with those of I} \\ \hline \text{BaTiO}_3 & \text{Bi}_4\text{T} \\ \hline & 6.1 & 41 \\ \hline & 0.4 & 10 \\ \hline \text{O}_{15} \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | BaTiO <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $ \begin{array}{c c} [62FI]. & t_8 = t_{\infty} \\  & \text{BaBi}_4 \text{Ti}_4 \text{O}_{15} \\ \hline  & 23 \\ \hline  & 1.5 \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\frac{\exp(+\alpha/L), i_{6}}{\operatorname{Ba}_{2}\operatorname{Bi}_{4}\operatorname{Ti}_{5}\operatorname{O}_{18}}$ $\frac{76}{10^{-2}}$ | 10° V m <sup>-1</sup> μ sec             | inc                                                         |
| Nr.<br>la            | compariso  α  t <sub>∞</sub> 7A-15 PbBi <sub>4</sub> Ti <sub>4</sub> Dielectric anoma                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\begin{array}{c c} \text{n with those of I} \\ \hline \text{BaTiO}_3 & \text{Bi}_4\text{T} \\ \hline 6.1 & 41 \\ \hline 0.4 & 10 \\ \hline 0_{15} \\ \hline \text{aly associated with} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | BaTiO <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $[62FI]. \ t_{8} = t_{\infty}$ $BaBi_{4}Ti_{4}O_{15}$ $23$ $1.5$ se transition was                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\frac{\exp(+\alpha/L), i_{6}}{\operatorname{Ba}_{2}\operatorname{Bi}_{4}\operatorname{Ti}_{5}\operatorname{O}_{18}}$ $\frac{76}{10^{-2}}$ | 10° V m <sup>-1</sup> μ sec             | inc                                                         |
| Nr.<br>la            | compariso  α  t <sub>∞</sub> 7A-15 PbBi <sub>4</sub> Ti <sub>4</sub> Dielectric anomaphase                                                                                                                                                                                                                                                                                                                                                                                                                                                   | BaTiO <sub>3</sub> Bi <sub>4</sub> T  6.1 41  0.4 10  O <sub>15</sub> ally associated with orthorhombic (possibly)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3aTiO <sub>3</sub> (i <sub>3</sub> O <sub>12</sub> ()-2 ()-2 () tet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | [62F1]. $t_8 = t_{\infty}$ BaBi <sub>4</sub> Ti <sub>4</sub> O <sub>15</sub> 23  1.5  se transition was 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\frac{\exp(+\alpha/L), i_{6}}{\operatorname{Ba}_{2}\operatorname{Bi}_{4}\operatorname{Ti}_{5}\operatorname{O}_{18}}$ $\frac{76}{10^{-2}}$ | 10° V m <sup>-1</sup> μ sec             | inc                                                         |
| Nr.<br>la            | compariso $ \frac{\alpha}{t_{\infty}} $ 7A-15 PbBi <sub>4</sub> Ti <sub>4</sub> Dielectric anomation phase state  crystal system $ \theta $ $ a = 6.6 \cdot 10^{-3} \text{ k} $                                                                                                                                                                                                                                                                                                                                                              | No with those of F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | i <sub>3</sub> O <sub>12</sub> i <sub>3</sub> O <sub>12</sub> chapha tet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\frac{\exp(+\alpha/L), i_{6}}{\operatorname{Ba}_{2}\operatorname{Bi}_{4}\operatorname{Ti}_{5}\operatorname{O}_{18}}$ $\frac{76}{10^{-2}}$ | 10° V m <sup>-1</sup> μ sec             | 61S15<br>61S15                                              |
| Nr.<br>la            | compariso $ \frac{\alpha}{t_{\infty}} $ 7A-15 PbBi <sub>4</sub> Ti <sub>4</sub> Dielectric anomal phase state  crystal system $ \Theta $ $ \varrho = 6.6 \cdot 10^{-3} \text{ A} $ $ a = 5.437 \text{ Å}, b$                                                                                                                                                                                                                                                                                                                                 | m with those of I  BaTiO <sub>3</sub> Bi <sub>4</sub> T  6.1 41  0.4 10  O <sub>15</sub> ally associated with orthorhombic (possibly)  57 $a = 1.000, c = 4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | BaTiO <sub>3</sub> i <sub>3</sub> O <sub>12</sub> i <sub>3</sub> O <sub>12</sub> chapha tet 0° °C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $[62FI]. \ t_s = t_{\infty}$ $BaBi_4Ti_4O_{15}$ $23$ $1.5$ se transition was: $I$ $P$ $Tagonal$ at RT.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\frac{\exp(+\alpha/L), i_{6}}{\operatorname{Ba}_{2}\operatorname{Bi}_{4}\operatorname{Ti}_{5}\operatorname{O}_{18}}$ $\frac{76}{10^{-2}}$ | 10° V m <sup>-1</sup> μ sec             | 61S15<br>61S15<br>62S15                                     |
| Nr.<br>1a<br>b       | compariso $\frac{\alpha}{t_{\infty}}$ 7A-15 PbBi <sub>4</sub> Ti <sub>4</sub> Dielectric anomy phase state  crystal system $\theta$ $\theta = 6.6 \cdot 10^{-3} \text{ l}$ $a = 5.437 \text{ Å}, b$ Dielectric const $x = C/(T - \theta)$                                                                                                                                                                                                                                                                                                    | m with those of F  BaTiO <sub>3</sub> Bi <sub>4</sub> T  6.1 41  0.4 10  O <sub>15</sub> aly associated with orthorhombic (possibly)  57  ag m <sup>-3</sup> a = 1.000, $c = 4$ ant: Fig. 893. $\times$ a), $C = 1.4 \cdot 10^5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | BaTiO <sub>3</sub> i <sub>3</sub> O <sub>12</sub> i <sub>3</sub> O <sub>12</sub> chapha tet 0°C 41.35 Å c = 220°C, Θ <sub>p</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $[62FI]. \ t_s = t_{\infty}$ $BaBi_4Ti_4O_{15}$ $23$ $1.5$ $se transition was the property of the $ | $\frac{\exp(+\alpha/L), i_{6}}{\operatorname{Ba}_{2}\operatorname{Bi}_{4}\operatorname{Ti}_{5}\operatorname{O}_{18}}$ $\frac{76}{10^{-2}}$ | 10° V m <sup>-1</sup> μ sec             | 61S15<br>61S15<br>62S15<br>61S15<br>62S17                   |
| Nr.<br>la<br>b       | compariso $\frac{\alpha}{t_{\infty}}$ 7A-15 PbBi <sub>4</sub> Ti <sub>4</sub> Dielectric anomy phase state  crystal system $\theta$ $\theta = 6.6 \cdot 10^{-3} \text{ l}$ $a = 5.437 \text{ Å}, b$ Dielectric const $x = C/(T - \theta)$                                                                                                                                                                                                                                                                                                    | BaTiO <sub>3</sub>   Bi <sub>4</sub> T     BaTiO <sub>3</sub>   Bi <sub>4</sub> T     6.1   41     0.4   10     O <sub>15</sub>     aly associated with     orthorhombic (possibly)     57     tg m <sup>-3</sup>     a = 1.000, c = 4     ant. Fig. 893   8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | BaTiO <sub>3</sub> i <sub>3</sub> O <sub>12</sub> i <sub>3</sub> O <sub>12</sub> chapha tet 0°C 41.35 Å c = 220°C, Θ <sub>p</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $[62FI]. \ t_s = t_{\infty}$ $BaBi_4Ti_4O_{15}$ $23$ $1.5$ $se transition was the property of the $ | $\frac{\exp(+\alpha/L), i_{6}}{\operatorname{Ba}_{2}\operatorname{Bi}_{4}\operatorname{Ti}_{5}\operatorname{O}_{18}}$ $\frac{76}{10^{-2}}$ | 10° V m <sup>-1</sup> μ sec             | 61S15<br>61S15<br>62S15<br>61S15                            |
| Nr.<br>1a<br>b       | compariso $\alpha$ $t_{\infty}$ 7A-15 PbBi <sub>4</sub> Ti <sub>4</sub> Dielectric anomorphase  state  crystal system $\Theta$ $\varrho = 6.6 \cdot 10^{-3}$ if $\alpha = 5.437$ Å, b)  Dielectric const $\alpha = C/(T - \Theta)$ Piezoelectric co.  7A-16 SrBi <sub>4</sub> Ti <sub>4</sub>                                                                                                                                                                                                                                                | m with those of F  BaTiO <sub>3</sub> Bi <sub>4</sub> T  6.1 41  0.4 10  O <sub>15</sub> aly associated with orthorhombic (possibly)  57  ag m <sup>-3</sup> a = 1.000, c = 4  cant: Fig. 893. ×  co), C = 1.4 · 105  constant: $d_{33} = 2$ .  O <sub>15</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | BaTiO <sub>3</sub> $(i_3O_{12})$ $(i_3O$ | $[62FI]. \ t_s = t_{\infty}$ $BaBi_4Ti_4O_{15}$ $23$ $1.5$ se transition was: $\frac{I}{P}$ ragonal $at \ RT.$ $0 \ at \ RT.$ $= 552 \ ^{\circ}C.$ $^{11} \ C \ N^{-1}.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\frac{\text{Ba}_{2}\text{Bi}_{4}\text{Ti}_{5}\text{O}_{18}}{76}$ $\frac{76}{10^{-2}}$ reported by Subb                                    | 10 <sup>5</sup> V m <sup>-1</sup> μ sec | 61S15<br>61S15<br>62S15<br>61S15<br>62S17<br>62S17          |
| Nr.<br>1a<br>b       | compariso $\frac{\alpha}{t_{\infty}}$ 7A-15 PbBi <sub>4</sub> Ti <sub>4</sub> Dielectric anomorphase  state  crystal system $\theta$ $\varrho = 6.6 \cdot 10^{-3} \text{ I}$ $a = 5.437 \text{ Å}, b/$ Dielectric const $\kappa = C/(T - \theta)$ Piezoelectric co. 7A-16 SrBi <sub>4</sub> Ti <sub>4</sub> Dielectric anomorphise                                                                                                                                                                                                           | m with those of F  BaTiO <sub>3</sub> Bi <sub>4</sub> T  6.1 41  0.4 10  O <sub>15</sub> ally associated with orthorhombic (possibly)  57 $a = 1.000, c = 4$ $a = 1.000, c = 4$ $a = 1.4 \cdot 10^5$ onstant: $d_{33} = 2.5$ O <sub>15</sub> ally associated with orthorhombic (possibly)  ally associated with orthorhombic (possibly)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | BaTiO <sub>3</sub> $(i_3O_{12})$ $(i_3O$ | $[62FI]. \ t_s = t_{\infty}$ $BaBi_4Ti_4O_{15}$ $23$ $1.5$ se transition was: $I$ $P$ $Tagonal$ $at RT.$ $2 at RT.$ $552 ^{\circ}C.$ $11 C N^{-1}.$ ase transition was                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\frac{\exp(+\alpha/L), i_{6}}{\operatorname{Ba}_{2}\operatorname{Bi}_{4}\operatorname{Ti}_{5}\operatorname{O}_{18}}$ $\frac{76}{10^{-2}}$ | 10 <sup>5</sup> V m <sup>-1</sup> μ sec | 61S15<br>61S15<br>62S15<br>61S15<br>62S17<br>62S17          |
| Nr.<br>1a<br>b       | compariso $\frac{\alpha}{t_{\infty}}$ 7A-15 PbBi <sub>4</sub> Ti <sub>4</sub> Dielectric anomorphase  state  crystal system $\theta$ $\varrho = 6.6 \cdot 10^{-3} \text{ I}$ $a = 5.437 \text{ Å, b}$ Dielectric const $x = C/(T - \theta)$ Piezoelectric anomorphase                  | m with those of F  BaTiO <sub>3</sub> Bi <sub>4</sub> T  6.1 41  0.4 10  O <sub>15</sub> aly associated with orthorhombic (possibly)  57  ag m <sup>-3</sup> a = 1.000, c = 4  cant: Fig. 893. ×  co), C = 1.4 · 105  constant: $d_{33} = 2$ .  O <sub>15</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | BaTiO <sub>3</sub> $(i_3O_{12})$ $(i_3O$ | $[62FI]. \ t_s = t_{\infty}$ $BaBi_4Ti_4O_{15}$ $23$ $1.5$ se transition was: $I$ $P$ $Tagonal$ $at RT.$ $0 at RT.$ $= 552 ^{\circ}C.$ $U C N^{-1}.$ as e transition was: $I$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\frac{\text{Ba}_{2}\text{Bi}_{4}\text{Ti}_{5}\text{O}_{18}}{76}$ $\frac{76}{10^{-2}}$ reported by Subb                                    | 10 <sup>5</sup> V m <sup>-1</sup> μ sec | 61S15<br>61S15<br>62S15<br>61S15<br>62S17<br>62S17          |
| Nr. 1a b 5a 7a Nr    | compariso $\frac{\alpha}{t_{\infty}}$ 7A-15 PbBi <sub>4</sub> Ti <sub>4</sub> Dielectric anomorphase  state  crystal system $\theta$ $\varrho = 6.6 \cdot 10^{-3} \text{ I}$ $a = 5.437 \text{ Å}, b/$ Dielectric const $\kappa = C/(T - \theta)$ Piezoelectric co. 7A-16 SrBi <sub>4</sub> Ti <sub>4</sub> Dielectric anomorphise                                                                                                                                                                                                           | m with those of F  BaTiO <sub>3</sub> Bi <sub>4</sub> T  6.1 41  0.4 10  O <sub>15</sub> ally associated with orthorhombic (possibly)  57 $a = 1.000, c = 4$ $a = 1.000, c = $                                                                                                 | BaTiO <sub>3</sub> $f_{i_2O_{12}}$ $f_{$ | $[62FI]. \ t_s = t_{\infty}$ $BaBi_4Ti_4O_{15}$ $23$ $1.5$ se transition was: $I$ $P$ $Tagonal$ $at RT.$ $2 at RT.$ $552 ^{\circ}C.$ $11 C N^{-1}.$ ase transition was                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\frac{\text{Ba}_{2}\text{Bi}_{4}\text{Ti}_{5}\text{O}_{18}}{76}$ $\frac{76}{10^{-2}}$ reported by Subb                                    | 10 <sup>5</sup> V m <sup>-1</sup> μ sec | 61S15<br>61S15<br>62S15<br>61S15<br>62S17<br>62S17          |
| Nr.<br>1a<br>b       | compariso $\frac{\alpha}{t_{\infty}}$ 7A-15 PbBi <sub>4</sub> Ti <sub>4</sub> Dielectric anomomorphase state crystal system $\theta$ $\varrho = 6.6 \cdot 10^{-3} \text{ l}$ $a = 5.437 \text{ Å, b}$ Dielectric const $x = C/(T - \theta)$ Piezoelectric const $x = C/(T - \theta)$ Piezoelectric const $x = C/(T - \theta)$ Piezoelectric anomomomorphase state crystal system                                                                                                                                                             | m with those of F  BaTiO <sub>3</sub> Bi <sub>4</sub> T  6.1 41  0.4 10  O <sub>15</sub> ally associated with orthorhombic (possibly)  57 $a = 1.000, c = 4$ $a = 1.000, c = $                                                                                                 | 3aTiO <sub>3</sub> i <sub>2</sub> O <sub>12</sub> chapha tet co °C 41.35 Å c= 220 °C, Øp 3 · 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $[62FI]. \ t_s = t_{\infty}$ $BaBi_4Ti_4O_{15}$ $23$ $1.5$ se transition was: $I$ $P$ ragonal  at RT. $0 \text{ at RT.}$ $= 552 \text{ °C.}$ $u \text{ C N}^{-1}$ use transition was: $I$ $P$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\frac{\text{Ba}_{2}\text{Bi}_{4}\text{Ti}_{5}\text{O}_{18}}{76}$ $\frac{76}{10^{-2}}$ reported by Subb                                    | 10 <sup>5</sup> V m <sup>-1</sup> μ sec | 61S15<br>61S15<br>62S15<br>61S15<br>62S17<br>62S17          |
| Nr. 1a b 5a 7a Nr    | compariso $\frac{\alpha}{t_{\infty}}$ 7A-15 PbBi <sub>4</sub> Ti <sub>4</sub> Dielectric anomality phase state  crystal system $\theta$ $\varrho = 6.6 \cdot 10^{-3} \text{ k}$ $a = 5.437 \text{ Å}, b/$ Dielectric const $\kappa = C/(T - \theta)$ Piezoelectric const $\kappa = C/(T - \theta)$ Piezoelectric anomality phase state  crystal system $\theta$ $\rho = 5.2 \cdot 10^{3} \text{ kg}$                                                                                                                                         | m with those of F  BaTiO <sub>3</sub> Bi <sub>4</sub> T  6.1 41  0.4 10  O <sub>15</sub> ally associated with orthorhombic (possibly)  57 $a = 1.000, c = 4$ $a = 1.000, c = $                                                                                                 | BaTiO <sub>3</sub> $i_3O_{12}$ $i_3O_{12}$ $i_3O_{12}$ $i_3O_{12}$ $i_4O_{12}$ $i_4O_{13}$ $i_4O_{12}$ $i_5O_{12}$ $i_5O_{1$ | $[62FI]. \ t_s = t_{\infty}$ $BaBi_4Ti_4O_{15}$ $23$ $1.5$ se transition was: $I$ $P$ $Tagonal$ at RT. $= 552 ^{\circ}C.$ $U C N^{-1}.$ $I$ $P$ $Tagonal$ $I$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\frac{\text{Ba}_{2}\text{Bi}_{4}\text{Ti}_{5}\text{O}_{18}}{76}$ $\frac{76}{10^{-2}}$ reported by Subb                                    | 10 <sup>5</sup> V m <sup>-1</sup> μ sec | 61S15<br>61S15<br>62S15<br>61S15<br>62S17<br>62S17          |
| Nr.  1a b  5a Nr  1a | compariso $\frac{\alpha}{t_{\infty}}$ 7A-15 PbBi <sub>4</sub> Ti <sub>4</sub> Dielectric anomation phase state  crystal system $\theta$ $\varrho = 6.6 \cdot 10^{-3} \text{ k}$ $a = 5.437 \text{ Å, } b/$ Dielectric const $\kappa = C/(T - \theta)$ Piezoelectric const $\kappa = C/(T - \theta)$ $\kappa = 5.428 \text{ Å, } b/$ Dielectric const | m with those of F  BaTiO <sub>3</sub> Bi <sub>4</sub> T  6.1 41  0.4 10  O <sub>15</sub> ally associated with a sociated with the second of the | BaTiO <sub>3</sub> $i_3O_{12}$ $i_3O_{12}$ $i_3O_{12}$ $i_3O_{12}$ $i_4O_{12}$ $i_4O_{13}$ $i_4O_{12}$ $i_5O_{12}$ $i_5O_{1$ | BaBi <sub>4</sub> Ti <sub>4</sub> O <sub>15</sub> BaBi <sub>4</sub> Ti <sub>4</sub> O <sub>15</sub> 23  1.5  se transition was:  I P ragonal  at RT.  at RT.  552 °C.  C N <sup>-1</sup> ragonal  tat RT.  as transition was  I P tragonal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\frac{\text{Ba}_{2}\text{Bi}_{4}\text{Ti}_{5}\text{O}_{18}}{76}$ $\frac{76}{10^{-2}}$ reported by Subb                                    | 10 <sup>5</sup> V m <sup>-1</sup> μ sec | 61S15<br>61S15<br>62S15<br>61S15<br>62S17<br>62S17<br>61S15 |

| Nr. 7A-    | 17 CaBi <sub>e</sub> Ti <sub>e</sub>                                                                                              | O <sub>15</sub>                                                                                                           |                                                                                     |                                                                                                                             |                                              |  |
|------------|-----------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|--|
| 1a Ca      | aBi <sub>4</sub> Ti <sub>4</sub> O <sub>15</sub> wa<br>o dielectric as                                                            | s investigated by S<br>nomaly has been de                                                                                 | SUBBARAO in 1962.                                                                   |                                                                                                                             | 62517                                        |  |
| b O        | Orthorhombic: $a = 5.418 \text{ Å}$ , $b/a = 1.002$ , $c = 40.75 \text{ Å}$ at RT. $\varrho = 4.7 \cdot 10^3 \text{ kg m}^{-3}$ . |                                                                                                                           |                                                                                     |                                                                                                                             |                                              |  |
|            |                                                                                                                                   | tant: Fig. 895. ×=                                                                                                        | = 120 at RT.                                                                        |                                                                                                                             | 61511                                        |  |
| Nr. 7A-    | 18 Bi <sub>5</sub> Ti <sub>2</sub> Ga                                                                                             | O <sub>15</sub>                                                                                                           |                                                                                     |                                                                                                                             | 1 0.0                                        |  |
| 1a Bi      | Ti <sub>3</sub> GaO <sub>15</sub> wa                                                                                              | is investigated by                                                                                                        | SUBBARAO in 1962.                                                                   |                                                                                                                             |                                              |  |
| b Or       | thorhombic:                                                                                                                       | nomaly has been de $a = 5.408 \text{ Å}$ , $b/a =$                                                                        | etected. = $1.006$ , $c = 41.05$ Å at RT.                                           |                                                                                                                             | 62S17<br>62S15                               |  |
| <u> </u>   | = 1.3 . 10 KG                                                                                                                     | $m^{-3}$ .<br>ant: $\kappa = 150$ at R'                                                                                   |                                                                                     |                                                                                                                             |                                              |  |
|            | 19 Ba <sub>z</sub> Bi <sub>t</sub> Ti <sub>s</sub>                                                                                |                                                                                                                           | ••                                                                                  |                                                                                                                             | 62817                                        |  |
|            |                                                                                                                                   |                                                                                                                           |                                                                                     |                                                                                                                             |                                              |  |
| 1a Fe      | aroelectric ac                                                                                                                    |                                                                                                                           | O <sub>18</sub> was observed by Aurivi                                              | LLIUS in 1962.                                                                                                              | 62A 5                                        |  |
| sta        | ase                                                                                                                               |                                                                                                                           | <u>I</u>                                                                            |                                                                                                                             |                                              |  |
|            | stal system                                                                                                                       |                                                                                                                           | P                                                                                   |                                                                                                                             |                                              |  |
| 9          | seer system                                                                                                                       | orthorhombic   325 °                                                                                                      | tetragonal                                                                          |                                                                                                                             |                                              |  |
| 1 -        | - 5 527 Å b.                                                                                                                      | ,+                                                                                                                        | _                                                                                   |                                                                                                                             | 62A5                                         |  |
|            |                                                                                                                                   | = 5.514  Å, c = 50.3                                                                                                      |                                                                                     |                                                                                                                             | 6315                                         |  |
|            |                                                                                                                                   | e: Fig. 896; Tab. 1                                                                                                       |                                                                                     |                                                                                                                             | -                                            |  |
|            |                                                                                                                                   |                                                                                                                           | parameter: Fig. 897.                                                                |                                                                                                                             | <u>                                     </u> |  |
| ×          | electric consta<br>= 360, x'' =                                                                                                   | 22 at RT.                                                                                                                 |                                                                                     |                                                                                                                             | 62A 5                                        |  |
| c Re<br>Co | manent polar<br>ercive field: <i>I</i>                                                                                            | ization: $P_r = 2 \cdot 10^{\circ}$ V m <sup>-</sup>                                                                      | 0-3 C m-3 at RT.<br>1 at RT.                                                        |                                                                                                                             | 62A5                                         |  |
| 4b Sw      | ritching: see I                                                                                                                   | Fig. 892; Tab. 105.                                                                                                       |                                                                                     |                                                                                                                             | ·                                            |  |
|            |                                                                                                                                   | Tab. 106. Ba <sub>2</sub> Bi <sub>4</sub> [62A5]. Sp                                                                      | Ti <sub>5</sub> O <sub>18</sub> . Fractional coordina<br>ace group of I4/mmm was as | ites of atoms                                                                                                               | •                                            |  |
|            |                                                                                                                                   | I4/mmm                                                                                                                    | (0, 0, 0; 1/2, 1/2, 1/2) +                                                          |                                                                                                                             |                                              |  |
|            |                                                                                                                                   | 4 Bi in 4(e): 4 (Bi, Ba) in 4(e): 4 (Bi, Ba) in 4(e): 2 Ti in 2(b): 4 Ti in 4(e): 4 Ti in 4(e): 4 O in 4(c): 4 O in 4(d): | ±0, 0, z:<br>±0, 0, 1/2<br>0, 1/2, 0; 1/2, 0, 0<br>0, 1/2, 1/4; 1/2, 0, 1/4         | z = 0.2255 $z = 0.0420$ $z = 0.1300$ $z = 0.3370$ $z = 0.4185$                                                              |                                              |  |
| Nr. 7A-2   |                                                                                                                                   | 4 O in 4(e): 4 O in 4(e): 4 O in 4(e): 8 O in 8(g): 8 O in 8(g):                                                          | $\pm (0, 1/2, z; 1/2, 0, z)$                                                        | $   \begin{array}{c}     z = 0.2962 \\     z = 0.3378 \\     z = 0.4593 \\     z = 0.0815 \\     z = 0.1630   \end{array} $ |                                              |  |
|            |                                                                                                                                   |                                                                                                                           |                                                                                     |                                                                                                                             |                                              |  |
| b pha      | roelectric act                                                                                                                    |                                                                                                                           | 18 was observed by Subbara                                                          | NO in 1962.                                                                                                                 | 62517                                        |  |
| 1          |                                                                                                                                   | II                                                                                                                        |                                                                                     |                                                                                                                             |                                              |  |
| cry        | stal system                                                                                                                       | orthorhombic                                                                                                              | P<br>tetragonal                                                                     |                                                                                                                             |                                              |  |
| 0          |                                                                                                                                   | (possibly) 310 °C                                                                                                         | tetragonal                                                                          |                                                                                                                             | 62517                                        |  |
| ρ=         | - 6.6 • 10° kg                                                                                                                    | m-3,                                                                                                                      |                                                                                     |                                                                                                                             | 62517                                        |  |
| a =        | = 5.461 Å, b/a                                                                                                                    | = 1.000, c = 49.76                                                                                                        | Å at RT.                                                                            |                                                                                                                             | 62S15                                        |  |

|     | _                                                                                                                                                                |                                          | II 7 Laye                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | r-stru        | cture oxides  | F                                                            | igures p. 380ff |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|---------------|--------------------------------------------------------------|-----------------|
| 5a  | Dielectric consta                                                                                                                                                | int: Fig. 899.                           | κ = 400 at 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | RT.           |               |                                                              | 62517           |
|     | $\kappa = C/(T - \Theta_p), C = 4.1 \cdot 10^5 \text{ °K}, \Theta_p = 280 \text{ °C}.$                                                                           |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |               |               | 62517                                                        |                 |
| С_  |                                                                                                                                                                  |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |               |               |                                                              | 62517           |
| 7a. | Piezoelectric con                                                                                                                                                | $a_{33}=2$                               | .5 · 10-4 C r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ų —·.         |               |                                                              | 1 02317         |
| Nr. | 7A-21 Sr <sub>2</sub> Bi <sub>4</sub> Ti <sub>5</sub> (                                                                                                          | O <sub>18</sub>                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |               |               |                                                              |                 |
| 1a  | Ferroelectric ac                                                                                                                                                 | tivity in Sr.Bi.                         | Ti,O <sub>18</sub> was o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | bserv         | ed by Subbai  | rao in 1962.                                                 | 62517           |
| ь   | phase                                                                                                                                                            | II I                                     | ļ I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |               |               |                                                              |                 |
|     | state                                                                                                                                                            | F                                        | P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |               |               |                                                              |                 |
|     | crystal system                                                                                                                                                   | orthorhombic<br>(possibly)               | tetrago                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | nal           |               |                                                              |                 |
|     | Θ                                                                                                                                                                | 2                                        | 85 °C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |               |                                                              | 62517           |
|     | $\varrho = 5.3 \cdot 10^{2} \text{ kg}$<br>a = 5.461  Å, b/c                                                                                                     | $m^{-3}$ . $a = 1.000, c =$              | 48.80 Å at 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | RT.           |               |                                                              | 62515           |
| 5a  | Dielectric const. $\kappa = C/(T - \Theta_p)$                                                                                                                    | ant: Fig. 900.<br>), $C = 0.47 \cdot 10$ | $\kappa = 280 \text{ at } 10^{5} \text{ °K}, \Theta_{p} = 10^{10} \text{ or } 10^{1$ | RT.<br>255 °C | <b>C</b> .    |                                                              | 62517           |
| С   | Spontaneous po                                                                                                                                                   |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |               |               |                                                              | 62517           |
| 7a  | Piezoelectric co                                                                                                                                                 |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |               |               |                                                              | 62517           |
| NY. | ′<br>7A-22 Bi₂Ti₄O <sub>11</sub>                                                                                                                                 |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |               |               |                                                              |                 |
|     |                                                                                                                                                                  |                                          | with a phase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | trans         | sition was ob | served in Bi <sub>2</sub> Ti <sub>4</sub> O <sub>11</sub> by |                 |
| 1a  | Subbarao in 19                                                                                                                                                   |                                          | with a phase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | - 11011       |               | ,or , our = -1 = -1 = -1                                     | 62516           |
| b   | phase                                                                                                                                                            | Į III                                    | II                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |               | I             |                                                              | 65]4            |
|     | crystal system                                                                                                                                                   | monoclinic                               | monocl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | inic          |               |                                                              |                 |
|     | space group                                                                                                                                                      | C2/c-C <sub>2h</sub>                     | C2/m-4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Can<br>can    |               |                                                              |                 |
|     | 0                                                                                                                                                                | . <del> </del>                           | 250°)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 120           | )Oa) °C       |                                                              | a)62S16         |
|     | $\varrho = (6.12 \pm 0.02) \cdot 10^3 \text{ kg m}^{-3}.$ $a = (14.612 \pm 0.006) \text{ Å}, b = (3.799 \pm 0.004) \text{ Å}, c = (14.946 \pm 0.006) \text{ Å},$ |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |               |               |                                                              | 65]4<br>65]4    |
| L   | $\beta = (93.13 \pm 0)$                                                                                                                                          |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |               | ) TTY 72'     | - 001 000 Tab 107                                            | CSTA            |
| 3   |                                                                                                                                                                  |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |               |               | 65]4                                                         |                 |
| 4   | Thermal expans                                                                                                                                                   |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |               |               |                                                              | -               |
| 5a  | Dielectric const                                                                                                                                                 |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | _             |               | ••                                                           | (251)           |
| c   | No hysteresis lo                                                                                                                                                 | oops could be o                          | btained betv                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | veen 2        | 5 °C and 290  | ა.                                                           | 62516           |
|     |                                                                                                                                                                  | Tab. 107.                                | Bi <sub>g</sub> Ti <sub>g</sub> O <sub>11</sub> . A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | tomic         | parameters    | at RT [65]4]                                                 |                 |
|     |                                                                                                                                                                  | Atom                                     | x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |               | у             | z                                                            |                 |
|     | 0(1                                                                                                                                                              | )   0.0                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.26          | 2 + 0.012     | 0.250                                                        |                 |

| Atom                                         | x                                                                                                                                                            | у                                                                                                                                                       | z                                                                                                                                                              |
|----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| O(1) O(2) O(3) O(4) O(5) O(6) Ti(1) Ti(2) Bi | 0.0<br>0.1828 ± 0.0024<br>0.1408 ± 0.0024<br>0.0814 ± 0.0024<br>0.2662 ± 0.0024<br>0.0546 ± 0.0024<br>0.0530 ± 0.0006<br>0.1461 ± 0.0006<br>0.3211 ± 0.00015 | 0.262 ± 0.012<br>0.246 ± 0.007<br>0.256 ± 0.007<br>0.760 ± 0.007<br>0.747 ± 0.007<br>0.770 ± 0.007<br>0.250 ± 0.002<br>0.759 ± 0.002<br>0.1747 ± 0.0005 | 0.250<br>0.2207 ± 0.0024<br>0.0338 ± 0.0024<br>0.1259 ± 0.0024<br>0.0880 ± 0.0024<br>0.9221 ± 0.0024<br>0.1406 ± 0.0006<br>0.0162 ± 0.0006<br>0.1798 ± 0.00015 |

Thermal parameter  $B=0.33~{\rm \AA}^2$  for all atoms. Coordinates and standard deviations in cell fractions.

## 7B Complex compounds and solid solutions

| Nr. 7B-1 Bi | Me2+Ti | $-$ <sub>2</sub> $Nb_{1+2}$ | Ο, ( | $Me^{s+} =$ | Ba, | St, Pb) |  |
|-------------|--------|-----------------------------|------|-------------|-----|---------|--|
|-------------|--------|-----------------------------|------|-------------|-----|---------|--|

Lattice parameter: Fig. 905. Transition temperature: Fig. 906. 1b Dielectric constant: Fig. 907.

Nr. 7B-2  $Bi_{4-x}Me_x^2+Ti_{3-x}Nb_xO_{12}$  (Me<sup>2+</sup> = Ba, Sr, Pb)

Lattice parameter: Fig. 908. Transition temperature: Fig. 909. Dielectric constant: Fig. 910.

\* The unit cell of phase II has about half the volume of the unit cell of phase III.

|   |        | • |
|---|--------|---|
|   | 3      |   |
|   | (      | - |
|   |        |   |
|   | 7      |   |
|   | کے     |   |
| 5 | E      | 3 |
| 4 | $\geq$ | A |
| _ |        |   |
| ( | Best   | ) |
| C | 2      | ) |
|   |        |   |

| . 1 | 7B-3 Na <sub>0.5</sub> Bi <sub>4.5</sub> T                                                                                                            |                                                 | th a phase transi                       | tion was reported by SUBBARAO                                                                               | in 62S17         |  |  |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|-----------------------------------------|-------------------------------------------------------------------------------------------------------------|------------------|--|--|
| a   | 1962.                                                                                                                                                 | ny associated wi                                | un a pinac u unu                        | acon was reported by a comment                                                                              |                  |  |  |
| ъ   | phase                                                                                                                                                 | II                                              | I                                       |                                                                                                             | ł                |  |  |
|     | state                                                                                                                                                 |                                                 | P                                       |                                                                                                             |                  |  |  |
|     | crystal system                                                                                                                                        | orthorhombic                                    | tetragonal                              |                                                                                                             |                  |  |  |
|     | Θ                                                                                                                                                     | 650                                             | .€                                      |                                                                                                             | 62517            |  |  |
|     | $e = 6.3 \cdot 10^{8} \text{ kg}$<br>a = 5.427  Å, b/a                                                                                                | $m^{-3}$ .<br>= 1.006, $c = 40$                 | ).65 Å at RT.                           |                                                                                                             | 62515            |  |  |
| ia  | Dielectric consta $\kappa = C/(T - \Theta_p)$                                                                                                         | nt: Fig. 911. x<br>, C = 0.79 · 10 <sup>5</sup> | = 200 at RT.<br>°K, $\Theta_p = 610$ °C |                                                                                                             | 62517            |  |  |
| 'a  |                                                                                                                                                       | $stant: d_{33} = 1.0$                           |                                         |                                                                                                             | 62517            |  |  |
| · T |                                                                                                                                                       | _                                               |                                         |                                                                                                             |                  |  |  |
| Vr. | 7B-4 K <sub>0.8</sub> Bi <sub>4.5</sub> Ti <sub>4</sub>                                                                                               |                                                 |                                         | 11                                                                                                          | :- 62517         |  |  |
| a   | Dielectric anoma 1962.                                                                                                                                | lly associated wi                               | th a phase transi                       | tion was reported by SUBBARAO                                                                               | in 62S17         |  |  |
| ъ   | phase                                                                                                                                                 | II                                              | 1                                       |                                                                                                             |                  |  |  |
|     | state                                                                                                                                                 |                                                 | P                                       |                                                                                                             |                  |  |  |
|     | crystal system                                                                                                                                        | orthorhombic                                    | tetragonal                              |                                                                                                             |                  |  |  |
|     | Θ                                                                                                                                                     | 550                                             | ) °C                                    |                                                                                                             | 62517            |  |  |
|     | $\varrho = 6.7 \cdot 10^3 \text{ kg m}^{-3}$ .<br>$\alpha = 5.440 \text{ Å}, b/a = 1.004, c = 41.15 \text{ Å at RT}$ .                                |                                                 |                                         |                                                                                                             |                  |  |  |
| ā   | Dielectric constant: Fig. 912. $\kappa = 140$ at RT. $\kappa = C/(T - \Theta_p)$ , $C = 0.74 \cdot 10^5$ °K, $\Theta_p = 515$ °C.                     |                                                 |                                         |                                                                                                             |                  |  |  |
| 7a  | Piezoelectric constant: $d_{13} = 1.0 \cdot 10^{-11} \text{ C N}^{-1}$ .                                                                              |                                                 |                                         |                                                                                                             |                  |  |  |
|     | •                                                                                                                                                     |                                                 |                                         | O <sub>s</sub> 1b   Transition temper                                                                       | ature: Fig. 913. |  |  |
| Nr. | 7B-5 (Pb <sub>1-x</sub> Ba <sub>x</sub> )                                                                                                             | PINDSO SIIG (1                                  | . D1-E312/D181408                       | 5 Dielectric constan                                                                                        |                  |  |  |
| Nr. | 7B-6 (1-x)Bi <sub>4</sub> Ti <sub>2</sub>                                                                                                             | O <sub>13</sub> - xBaTiO <sub>3</sub>           |                                         | 5   Transition temper                                                                                       | ature: Fig. 915. |  |  |
|     | 7B-7 Bi <sub>4+x</sub> Pb <sub>1-x</sub>                                                                                                              |                                                 |                                         |                                                                                                             |                  |  |  |
|     | A nother formula                                                                                                                                      | for this solid so                               | olution is $(1 - x)$                    | PbBi <sub>s</sub> Ti <sub>s</sub> O <sub>15</sub> · zBi <sub>s</sub> Ti <sub>s</sub> GaO <sub>15</sub> . Pr | ор-              |  |  |
| 1a  | erties of this sol                                                                                                                                    | id solution were                                | studied by Subs                         | ARAO in 1962.                                                                                               | 62S17            |  |  |
| b   | x = 0.25:                                                                                                                                             |                                                 | _                                       |                                                                                                             | 20547            |  |  |
|     | phase                                                                                                                                                 | II                                              | I                                       | <del></del>                                                                                                 | 62517            |  |  |
|     | state                                                                                                                                                 |                                                 | P                                       |                                                                                                             |                  |  |  |
|     | crystal system                                                                                                                                        | orthorhomb<br>(pseudo-tetrag                    | onal) tetrage                           | onal                                                                                                        |                  |  |  |
|     | € 600 °C                                                                                                                                              |                                                 |                                         |                                                                                                             |                  |  |  |
|     | Pseudo-tetragonal cell parameter: $a = 3.842 \text{ Å}$ , $c = 41.40 \text{ Å}$ at RT. Dielectric constant: $x = 180$ at RT; $x = 3035$ at $\Theta$ . |                                                 |                                         |                                                                                                             |                  |  |  |
|     | x = 0.5:                                                                                                                                              |                                                 |                                         |                                                                                                             |                  |  |  |
|     | phase                                                                                                                                                 | II                                              | I                                       |                                                                                                             | 62517            |  |  |
|     | state                                                                                                                                                 |                                                 | P                                       |                                                                                                             | 1                |  |  |
|     | crystal system                                                                                                                                        | orthorhomi<br>(pseudo-tetrag                    |                                         | onal                                                                                                        |                  |  |  |
|     |                                                                                                                                                       | (pseudo-tetragonal)                             |                                         |                                                                                                             |                  |  |  |
|     | θ                                                                                                                                                     |                                                 | 620 °C                                  | c = 41.40 Å at RT.                                                                                          |                  |  |  |