

01.112 Machine Learning, Fall 2019 Homework 5

Due 13 Dec 2019, 5pm

This homework will be graded by Zihan Chen

In this homework, we would like to look at the Bayesian Networks. You are given a Bayesian network as below. All nodes can take 2 different values: $\{1, 2\}$.

Question 1. Without knowing the actual value of any node, are node X_2 and X_6 independent of each other? What if we know the value of node X_7 and X_{11} ? (5 points)

Answer Without knowing the actual value of any node, node X_2 and X_6 are independent of each other. This is because there does not exist any path from X_2 to X_6 that is open. Based on the Bayes' ball algorithm, X_2 and X_6 are independent of each other.

If we know the value of node X_7 and X_{11} , then the two variables X_2 and X_6 become dependent. This is because there exist a path connecting X_2 and X_6 that is open: $X_2-X_3-X_4-X_5-X_8-X_9-X_{10}-X_{11}-X_{10}-X_9-X_6$ or $X_2-X_3-X_4-X_5-X_7-X_5-X_8-X_9-X_{10}-X_{11}-X_{10}-X_9-X_6$. Based on the Bayes' ball algorithm, X_2 and X_6 are dependent.

Question 2. What is the number of *free* parameters needed to for this Bayesian network? What would be the number of *free* parameters for the same network if node X_3 and X_9 can take 3 different values: $\{1, 2, 3\}$, and all other nodes can only take 5 different values: $\{1, 2, 3, 4, 5\}$? (5 points)

Answer The number of parameters correspond to the number of entries in the probability table of each node in the Bayesian network. Assume the number of values for node k to take is r_k . For a node i with parents pa_i , the number of rows is $\prod_{j\in pa_i} r_j$. The number of columns is r_i . However the values in the last column can be uniquely determined from the other columns since the values of each row sum to 1. This means for the node i there are $(r_i-1)\prod_{j\in pa_i} r_j$ free/independet/effective parameters involved.

Therefore in the initial Bayesian network, the number of free parameters is:

$$1(X_1) + 2 \times 1(X_2) + 2 \times 1(X_3) + 2 \times 1(X_4) + 2 \times 1(X_5) + 1(X_6) + 2 \times 1(X_7) + 2 \times 1(X_8) + 2 \times 2 \times 2 \times 1(X_9) + 2 \times 1(X_{10}) + 2 \times 1(X_{11}) = 26$$

If node X_3 and X_9 can take 3 different values: $\{1, 2, 3\}$, and all other nodes can only take 5 different values: $\{1, 2, 3, 4, 5\}$, the number of free parameters is:

$$4(X_1) + 5 \times 4(X_2) + 5 \times 2(X_3) + 3 \times 4(X_4) + 5 \times 4(X_5) + 4(X_6) + 5 \times 4(X_7) + 5 \times 4(X_8) + 5 \times 5 \times 5 \times 2(X_9) + 3 \times 4(X_{10}) + 5 \times 4(X_{11}) = 392$$

Question 3. If we have the following probability tables (next page) for the nodes. Compute the following probabilities. Clearly write down all the necessary steps.

$\begin{array}{ c c c } \hline & \mathbf{X}_1 \\ & 1 & 2 \\ \hline & 0.5 & 0.5 \\ \hline \end{array}$			X ₁ 1 2	1 0.2 0.3			X ₂ 1 2	X ₃ 1 2 0.3 0.7 0.3 0.7		X_3 1 2		$egin{array}{cccc} \mathbf{X}_4 & & & \\ 1 & 2 & & \\ 0.1 & 0.9 & \\ 0.5 & 0.5 & \\ \end{array}$).9	X ₄ 1 2	0.5 0		2 0.5 0.4	1 0.6	$\begin{bmatrix} 2 \\ 0.4 \end{bmatrix}$	
							v	v		,	l .	\mathbf{X}_9	2								
							X	\mathbf{X}	.7 1	8	1		2								
							1	1		1	0.8		.2			**			-	_	7
	\mathbf{X}_7				\mathbf{X}_8		1	1		2	0.1	. 0	.9	$\ \mathbf{X}_{10} \ $			\mathbf{X}_{11}				
\mathbf{X}_5	1	2	\mathbf{X}	5	1	2	1	2	2	1	0.9	0	.1	\mathbf{X}_9	1		2	\mathbf{X}_{10}	1	2	
1	0.2	0.8	1	0	.8	0.2	1	2	2 :	2	0.7	0	.3	1	0.8	3 (0.2	1	0.7	0.3	1
2	0.3	0.7	2	0	.7	0.3	2	1		1	0.3	3 0	.7	2	0.8	3 (0.2	2	0.8	0.2	
				'			2	1		2	0.2	2 0	.8		_				_		_
							2	2	2	1	0.2	2 0	.8								
							2	2	, ,	2.	0.9	0	1								

(a) Calculate the following conditional probability:

$$P(\mathbf{X}_3 = 1 | \mathbf{X}_4 = 1)$$

(6 points)

Answer One standard approach is to start by computing the following marginal probability:

$$P(X_3, X_4) = \sum_{X_1, X_2} P(X_1)P(X_2|X_1)P(X_3|X_2)P(X_4|X_3)$$

Compute $P(X_3 = 1, X_4 = 1)$ and $P(X_3 = 2, X_4 = 1)$ respectively, and then compute $P(X_4 = 1) = P(X_3 = 1, X_4 = 1) + P(X_3 = 2, X_4 = 1)$. The conditional probability $P(X_3 = 1 | X_4 = 1) = P(X_3 = 1, X_4 = 1) / P(X_4 = 1)$.

$$P(X_3 = 1, X_4 = 1) = P(X_1 = 1)P(X_2 = 1|X_1 = 1)P(X_3 = 1|X_2 = 1)P(X_4 = 1|X_3 = 1) \\ + P(X_1 = 1)P(X_2 = 2|X_1 = 1)P(X_3 = 1|X_2 = 2)P(X_4 = 1|X_3 = 1) \\ + P(X_1 = 2)P(X_2 = 1|X_1 = 2)P(X_3 = 1|X_2 = 1)P(X_4 = 1|X_3 = 1) \\ + P(X_1 = 2)P(X_2 = 2|X_1 = 2)P(X_3 = 1|X_2 = 2)P(X_4 = 1|X_3 = 1) \\ = 0.5 \times 0.2 \times 0.3 \times 0.1 + 0.5 \times 0.9 \times 0.3 \times 0.1 + 0.5 \times 0.3 \times 0.3 \times 0.1 \\ + 0.5 \times 0.7 \times 0.3 \times 0.1 = 0.003 + 0.0135 + 0.0045 + 0.0105 = 0.0315$$

$$\begin{split} P(X_3 = 2, X_4 = 1) &= P(X_1 = 1)P(X_2 = 1|X_1 = 1)P(X_3 = 2|X_2 = 1)P(X_4 = 1|X_3 = 2) \\ &+ P(X_1 = 1)P(X_2 = 2|X_1 = 1)P(X_3 = 2|X_2 = 2)P(X_4 = 1|X_3 = 2) \\ &+ P(X_1 = 2)P(X_2 = 1|X_1 = 2)P(X_3 = 2|X_2 = 1)P(X_4 = 1|X_3 = 2) \\ &+ P(X_1 = 2)P(X_2 = 2|X_1 = 2)P(X_3 = 2|X_2 = 2)P(X_4 = 1|X_3 = 2) \\ &= 0.5 \times 0.2 \times 0.7 \times 0.5 + 0.5 \times 0.9 \times 0.7 \times 0.5 + 0.5 \times 0.3 \times 0.7 \times 0.5 \\ &+ 0.5 \times 0.7 \times 0.7 \times 0.5 = 0.035 + 0.1575 + 0.0525 + 0.1225 = 0.3675 \end{split}$$

$$P(X_3 = 1 | X_4 = 1) = \frac{P(X_3 = 1, X_4 = 1)}{P(X_4 = 1)} = \frac{0.0315}{0.0315 + 0.3675} \approx 0.079$$

(b) Calculate the following conditional probability:

$$P(\mathbf{X}_5 = 2 | \mathbf{X}_3 = 2, \mathbf{X}_{11} = 2, \mathbf{X}_1 = 2)$$

(9 points)

(Hint: find a short answer. The values in some of the probability tables may reveal some useful information.)

Answer We can have the following two observations from the tables:

- Distribution of X_3 doesn't change no matter what values X_2 takes.
- Distribution of X_{10} doesn't change no matter what values X_9 takes.

Thus, we have X_2 and X_3 are independent, X_9 and X_{10} are independent. There is no path connecting X_1 to X_5 and X_5 to X_{11} .

$$P(X_5|X_3, X_{11}, X_1) = P(X_5|X_3)$$

$$= \frac{P(X_3, X_5)}{P(X_3)}$$

$$= \frac{\sum_{X_4} P(X_3) P(X_4|X_3) P(X_5|X_4)}{P(X_3)}$$

$$= \sum_{X_5} P(X_4|X_3) P(X_5|X_4)$$

$$P(X_5 = 2|X_3 = 2, X_{11} = 2, X_1 = 2) = P(X_4 = 1|X_3 = 2)P(X_5 = 2|X_4 = 1)$$

 $+ P(X_4 = 2|X_3 = 2)P(X_5 = 2|X_4 = 2)$
 $= 0.5 \times 0.5 + 0.5 \times 0.4 = 0.45$