Intro to Math Reasoning HW 4a

Ozaner Hansha

October 3, 2018

Problem 1

Problem: Consider the predicate C(x, y) where x and y are real numbers. Let the sets S_1 and S_2 :

$$S_1 = \{ x \in \mathbb{R} \mid (\forall y \in \mathbb{R}) \ C(x, y) \}$$

$$S_2 = \{ y \in \mathbb{R} \mid (\forall x \in \mathbb{R}) \ \neg C(x, y) \}$$

Can both S_1 and S_2 be nonempty?

Solution: No, either S_1 or S_2 must be empty. We can make this clearer by renaming x and y in the definition of S_2 :

$$S_1 = \{ x \in \mathbb{R} \mid (\forall y \in \mathbb{R}) \ C(x, y) \}$$

$$S_2 = \{ x \in \mathbb{R} \mid (\forall y \in \mathbb{R}) \ \neg C(y, x) \}$$

They both cannot be nonempty if $C(x,y) \equiv C(y,x)$. But even if this didn't hold, they still coudln't be nonempty. This is because whatever the predicate is, it has to hold for all y in S_1 and not hold for all y in S_2 . This means we would have to be able to distinguish between x and y in the predicate but if we could then whatever held for all in one case wouldn't in the other.

Problem 2

Consider the predicate $P(A, B, C) \equiv (C \setminus A = C \setminus B) \rightarrow A = B$.

Part a

Problem: Is there an A, B and C such that P(A, B, C) is true?

Solution: Yes there is. $A = \{1\}, B = \{1\}, \text{ and } C = \{1, 2, 3\}$

$$C \setminus A = \{2, 3\} = C \setminus B$$
$$A = \{1\} = B$$

Both the antecedent and the consequent are true, thus the predicate is satisfied.

Part b

Problem: Is there a unique (A, B, C) such that P(A, B, C) is true?

Solution: No. It suffices to show two examples of this. One was shown above, another is $A = \{1\}$, $B = \{2\}$, and $C = \{1, 2, 3\}$

$$C \setminus A = \{1\} \neq C \setminus B = \{2\}$$
$$A = \{1\} \neq B = \{2\}$$

The antecedent is false and the consequent is false, thus the predicate is satisfied.

Part c

Problem: Is there an A, B and C such that P(A, B, C) is false?

Solution: Yes there is. $A = \{0, 1\}, B = \{1\}, \text{ and } C = \{2, 3\}$

$$C \setminus A = \{2,3\} = C \setminus B = \{2,3\}$$

 $A = \{0,1\} \neq B = \{1\}$

The antecedent is true and the consequent is false, thus the predicate is not satisfied.

Problem 3

Problem: For all sets A, B, and C is the following true:

$$A \cup B \subseteq C \implies (C \setminus (A \cup B) = (C \setminus A) \cap (C \setminus B))$$

Solution: The proposition is true. To prove it let us first note the definition of the antecedent:

$$A \cup B = \{x \mid x \in A \lor x \in B\}$$

$$A \cup B \subseteq C \equiv (x \in A \cup B) \implies x \in C$$

$$\equiv (x \in A \lor x \in B) \implies x \in C$$

We can rename the atomic propositions in the above compound proposition like so:

$$(a \lor b) \to c$$

Now we do the same for the first half of the consequent:

$$A \cup B = \{x \mid x \in A \lor x \in B\}$$

$$C \setminus (A \cup B) = \{x \mid x \in C \land \neg (x \in A \cup B)\}$$

$$= \{x \mid x \in C \land \neg (x \in A \lor x \in B)\}$$

Like above, we can rename the propositions like so:

$$c \land \neg (a \lor b)$$

Finally we do the same for the second half of the antecedent:

$$C \setminus A = \{x \mid x \in C \land x \notin A\}$$

$$C \setminus B = \{x \mid x \in C \land x \notin B\}$$

$$(C \setminus A) \cap (C \setminus B) = \{x \mid (x \in C \setminus A) \land (x \in C \setminus B)\}$$

$$= \{x \mid (x \in C \land x \notin A) \land (x \mid x \in C \land x \notin B)\}$$

Again, we can rename the propositions like so:

$$(c \wedge \neg a) \wedge (c \wedge \neg b) \equiv c \wedge (\neg a \wedge \neg b)$$
 (distributive property)
$$\equiv c \vee \neg (a \vee b)$$
 (De Morgan's law)

Now we simply have to prove the following:

$$((a \lor b) \to c) \to (c \land \neg (a \lor b) \equiv c \land \neg (a \lor b))$$

However notice that the consequent is trivially a tautology (it is literally the same expression on both sides). Since the consequent is always true, the truth of the antecedent is irrelevant and the statement as a whole is true.

Problem 4

Problem: For all sets A, B, and C is the following always true:

$$A \cup B \subseteq C \implies C \setminus (A \cup B) \subseteq C \setminus A$$

Solution: Yes this is true and we can prove it in the same way as above. Start with the antcedent:

$$A \cup B = \{x \mid x \in A \lor x \in B\}$$

$$A \cup B \subseteq C \equiv (x \in A \cup B) \implies x \in C$$

$$\equiv (x \in A \lor x \in B) \implies x \in C$$

$$\equiv a \lor b \to c$$

Now the consequent

$$C \setminus (A \cup B) = \{x \mid x \in C \land \neg (x \in A \cup B)\}$$

$$\equiv \{x \mid x \in C \land \neg (x \in A \lor x \in B)\}$$

$$\equiv c \land \neg (a \lor b)$$

$$C \setminus A = \{x \mid x \in C \land x \not\in A\}$$

$$\equiv c \land \neg a$$

$$C \setminus (A \cup B) \subseteq C \setminus A = (x \in C \setminus (A \cup B)) \rightarrow (x \in C \setminus A)$$

$$\equiv c \land \neg (a \lor b) \rightarrow c \land \neg a$$

So now we just have to prove the following:

$$(a \lor b \to c) \to (c \land \neg (a \lor b) \to c \land \neg a)$$

However consider the consequent, which is itself an implication:

$$\begin{array}{l} c \wedge \neg (a \vee b) \rightarrow c \wedge \neg a \\ \equiv c \wedge (\neg a \wedge \neg b) \rightarrow c \wedge \neg a \\ \equiv (c \wedge \neg a) \wedge \neg b \rightarrow c \wedge \neg a \end{array} \qquad \text{(De Morgan's law)}$$

With the last statement clearly being a tautology (simplification of a conjunction). Remember that the tautology above is the consequent of the bigger statement that we set out to prove. As a result of this, the statement we set out to prove is also a tautology, since its consequent is always true.

Problem 5

Part a

Problem: Is the following true proposition always true:

$$(A \to B) \to C \equiv A \to (B \to C)$$

Solution: No. Here's a truth table:

A	B	C	$A \to B$	$B \to C$	$(A \to B) \to C$	$A \to (B \to C)$
F	F	F	Т	Τ	F	T
\mathbf{F}	\mathbf{F}	${\rm T}$	${ m T}$	${ m T}$	${ m T}$	${ m T}$
F	\mathbf{T}	F	${ m T}$	\mathbf{F}	\mathbf{F}	${ m T}$
F	${\rm T}$	${\rm T}$	${ m T}$	${ m T}$	${ m T}$	${ m T}$
\mathbf{T}	F	F	\mathbf{F}	${ m T}$	${ m T}$	\mathbf{F}
${\rm T}$	F	\mathbf{T}	\mathbf{F}	${ m T}$	${ m T}$	${ m T}$
${\rm T}$	${\rm T}$	\mathbf{F}	${ m T}$	\mathbf{F}	\mathbf{F}	\mathbf{F}
${\rm T}$	${\rm T}$	\mathbf{T}	${ m T}$	${ m T}$	${ m T}$	${ m T}$

As we can see the left and right hand propositions are not equivalent thus the proposition is false.

Part b

Problem: Is it the case that either $(A \to B) \to C$ or $A \to (B \to C)$ must be true?

Solution: No. Here's a truth table:

A	B	C	$(A \to B) \to C$	$A \to (B \to C)$	$(A \to B) \to C \oplus A \to (B \to C)$
F	F	F	F	T	T
\mathbf{F}	\mathbf{F}	\mathbf{T}	${ m T}$	${ m T}$	${f F}$
\mathbf{F}	Τ	F	\mathbf{F}	${ m T}$	${ m T}$
\mathbf{F}	Τ	\mathbf{T}	${ m T}$	${ m T}$	\mathbf{F}
${ m T}$	\mathbf{F}	\mathbf{F}	${ m T}$	\mathbf{F}	${ m T}$
${ m T}$	\mathbf{F}	\mathbf{T}	${ m T}$	${ m T}$	\mathbf{F}
${\rm T}$	Τ	F	\mathbf{F}	\mathbf{F}	\mathbf{F}
\mathbf{T}	\mathbf{T}	\mathbf{T}	${ m T}$	${ m T}$	\mathbf{F}

The exclusive disjunction of the two statements indeed does not form a tautology. And so the statement we set out to disprove is false.