Muhammad Raheel.

Design and Analysis of Algorithms.

CID#103415.

SID#62793.

Submitted to: Sir Muhammad Fahad.

Mathematical Preliminaries are very important for the lossless data compression as we have to gather the compression without losing the data at any cost. So here are some models and papers discussed which are used in the compression.

	T	T =	Ι
Problem Statement with Mathematical Model.	Dependence.	Further Work.	Advancement.
One of the most popular way of representing data is	There can be a	It doesnot require to be	Markov
through the markovs model as it is a process of	dependence in the linear	linear only for image it can	model can be
discrete time markovs chain with sequence in kth	manner as output will be	have the white and black	used in the
order of markovs chain.	given by white noise	pixel also on which one	text
	having equation.	pixel is dependent on	compression
		another pixel which is:	as the
$P(x_n x_{n-1},\ldots,x_{n-k}) = P(x_n x_{n-1},\ldots,x_{n-k},\ldots).$		P(b/w)	probability of
$I(\lambda_n \lambda_{n-1},\ldots,\lambda_{n-k})=I(\lambda_n \lambda_{n-1},\ldots,\lambda_{n-k},\ldots).$	$x_n = \rho x_{n-1} + \epsilon_n$		preceding
	**************************************	$\sim \sim \sim$	letter is
		$P(w w)$ S_w S_b $P(b b)$	heavily
			depended on
			the next
		P(w/b)	letter.
		1,009	The kth of the
			markov model
			is widely
			known as
			finite context
			model.
Data compression is most widely used technique for	In this technique the data	Input data sequence is	This is also
the representation of the data in fewer bits as	bits can be represented	checked where it is even or	one of the
compared to what it has been in its original form. It	into it half as 128 bits will	odd. If even then process or	good data
helps in reducing hard disk space and transmission	be represented in the 64	if odd then add a bit either	compression
bandwidth. There are two types of compression	bits. Similarly 64 bits into	0 or 1 depend on last bit. If	techniques
techniques Lossy and lossless. In lossless technique	32 bits and going on. The	the last bit of input	but it must be
every bit in the file remain as orginal after the	truth table will be.	sequence is 0 then add 0 or	looked into
compression while in Lossy some redundant	A B Z	if the last bit of input	the concern
information can be reduced.	0 0 0	sequence is 1 then add	with how it
		1.Then it feed to our	decodes to
COMPRESSED DATA CODE STREAM OF STREAM OF	0 1 0	proposed technique. In this	the further
COMPRESSION MEDIUM	1 0 1	method two bits are	the on big
STREAM OF BITS		collected and converted it	data because
CODES	1 1 1	into one bit using table 1.	reducing bits
	Truth table of proposed technique	So we can get compress	on large data
	In table 1:	data.	can cause
OUTPUT DATA	Resultant output is 0 when two input bits are 0 and 0	a	problems but
DECOMPRESSION		w •	it can be
	Resultant output is 1 when two input bits are 1 and 1	00 0 0 11 0 0 0 0 11	handled if
	Resultant output is $\overline{0}$ when two input bits are 0 and 1	DIFIT BUT OUTPUT BUT	taken care of
	Resultant output is $\overline{\mathbf{I}}$ when two input bits are 1 and 0	1 /	properly.
		n — 1 /	
	Í		i l

The neural network is massively parallel distributed processor that has a natural propensity for storing experiential knowledge and making it available for the use. The artificial neural network is similar to that of how a brain works. It has the input layer which takes some input and make summation then place the output in such a manner.

Sigmoid function is a function which gives the sigmoid curve given by formula

$$S(t) = \frac{1}{1 + e^{-t}}.$$

Sigmoid functions are very similar to the inputoutput relationships of biological neurons, although not exactly the same. Sigmoid function exhibits smoothness and has the desired asymptotic properties. The sigmoid curve is shown in below. As t goes to minus infinity, S(t) goes to 0. As t goes to infinity, S(t) goes to 1. As t =0, S(t) =0.5

Error correction is a technique which is used to measure the actual output to the desired output. Error values can be used by back propagation and adjusting the weights of the input in the first layer

If error is greater than the threshold then using the back propagation check updated weights and compute the summation. The ANN can be used in the prediction of the rainfall using back propagation as well as comparison of Dynamic and Static neural network can also be made. The model can also be used for the long-range parameters and pattern recognition.

Source output consists of 4 bit word {0,1,2,....,15}. The source encoder encodes each value by shifting out the less significant bit. The output alphabet for the source coder is {0,1,2,......,7}. At the receiver we cannot recover the original value. Let X be random variable that takes values from source alphabet X={x0,x1,.....,xn-1} and Y takes the random variable values form reconstruction variable Y={y0,y1,....,ym-1}.

$$H(X) = -\sum_{i=0}^{N-1} P(x_i) \log_2 P(x_i)$$

$$H(Y) = -\sum_{j=0}^{M-1} P(y_j) \log_2 P(y_j).$$

A measure of relationship between two random variables is called conditional entropy.

$$i(A) = \log \frac{1}{P(A)} = -\log P(A).$$

In a similar manner, the conditional self-information of an event A, given that another event B has occurred, can be defined as

$$i(A|B) = \log \frac{1}{P(A|B)} = -\log P(A|B).$$

As In case of selfinformation we are generally interested in the average value of the selfinformation. The conditional entropy with source and reconstruction is defined as:

$$H(X|Y) = -\sum_{i=0}^{N-1} \sum_{j=0}^{M-1} P(x_i|y_j) P(y_j) \log_2 P(x_i|y_j)$$

$$H(Y|X) = -\sum_{i=0}^{N-1} \sum_{j=0}^{M-1} P(x_i|y_j) P(y_j) \log_2 P(y_j|x_i).$$

The amount of uncertainty About source X and reconstruct Y. The additional knowledge of Y should reduce uncertain X.

$$H(X|Y) \leq H(X)$$

While Paper 3 consists of the artificial neural network which helps in solving the rice problem in some state of India.

Reference:

1) Introduction to data compression by Khalid Sayood

Markov model 2.3.3 page 23-26

- 2) An Improved Data Compression Method for General Data by Salauddin Mahmud
- 3) DESIGN AND DEVELOPMENT OF ARTIFICIAL NEURAL NETWORKING (ANN) SYSTEM USING SIGMOID ACTIVATION FUNCTION TO PREDICT ANNUAL RICE PRODUCTION IN TAMILNADU S.Arun Balaji1 and K.Baskaran2
- 4) Introduction to data compression by Khalid Sayood

Conditional Entropy 8.4.1 page 202-204