

DUT 大连疆三大学

DALIAN UNIVERSITY OF TECHNOLOGY

第3章 逐次逼近法

非线性方程的迭代解法

工程实际与科学计算中都遇到大量求解非线性方程的问题。 设非线性方程

$$f(x) = 0 \tag{3-17}$$

求数 α ,使 $f(\alpha)$ =0,则称 α 为方程(3-17)的根,或称函数f(x)的零点。

常见的非线性方程有,代数方程(二次、三次等)超越方程(三角方程,指数、对数方程等)。

但是我们发现即使是最基本的代数方程,当次数超过4时,在一般情况下就不能用公式表示方程的根,即难于用解析法求出方程的根,对于超越方程那就更难了。

因此,研究用数值方法计算非线性方程的根就显得非常必要。在求根时通常假设非线性方程 f(x)=0中的函数 是关于x的连续函数。

若令

$$y = f(x)$$

则它在平面直角坐标系 O-xy 下的图象为连续曲线,

可见, 求 f(x) = 0 的根, 就是求 y = f(x) 与 X 轴的交点 α

如果 f(x) = 0在区间 [a,b] 上仅有一个根,则称 [a,b] 为方程的单根区间;若方程在 [a,b] 上有多个根,则称 [a,b] 为方程的多根区间。

方程的单根区间和多根区间统称为方程的有根区间。为了研究方便,我们主要研究方程在单根区间上的求解方法。

DUT

DALIAN UNIVERSITY OF TECHNOLOGY

3.2.1 简单迭代法

首先将方程 f(x) = 0 化为一个与它同解的方程

$$x = \varphi(x) \tag{3-18}$$

其中 $\varphi(x)$ 为 x 的连续函数。即如果数 α 使 $f(\alpha) \equiv 0$,则也有 $\alpha \equiv \varphi(\alpha)$,反之,若 $\alpha \equiv \varphi(\alpha)$,则也有 $f(\alpha) \equiv 0$ 。

任取一个初始值 x_0 ,代入(3-18)的右端,得到 $x_1 = \varphi(x_0)$ 再将 x_1 代入(3-18)右端得 $x_2 = \varphi(x_1)$,继为之,得到一个数列, 其一般表示形式为

$$x_{k+1} = \varphi(x_k)$$
 $(k = 0, 1, 2, \dots)$ (3-19)

通常称(3-19)为求解非线性方程的简单迭代法,也称迭代法或迭代过程或迭代格式, $\varphi(x)$ 称为迭代函数, x_k 称第k步的迭代值或简称迭代值。

如果由迭代格式产生的数列收敛,即

$$\lim_{k\to\infty} x_k = \alpha$$

则称<mark>迭代法收敛</mark>,否则称<mark>迭代法发散</mark>。若迭代法收敛于 α ,则 α 就是方程(3-17)的根,即有 $f(\alpha) \equiv 0$ 。

DUT

DALIAN UNIVERSITY OF TECHNOLOGY

几何直观:

在曲线 $y = \varphi(x)$ 上得到点列 P_1, P_2, \cdots ,其横坐标分别为由公式

$$x_{k+1} = \varphi(x_k)$$
 $(k = 0, 1, 2, \cdots)$

所确定的迭代值 x_1, x_2, \cdots ,若迭代法收敛 $\lim_{k\to\infty} x_k = \alpha$,则点列 P_1, P_2, \cdots 将越来越逼近所求的交点 $P(\alpha) = P^*$ 。

勿1 用迭代法求 $f(x) = 2x^3 - x - 1 = 0$ 的根。

解 (1) 化方程为等价方程

$$x = \sqrt[3]{\frac{x+1}{2}} = \varphi(x)$$
 迭代公式: $x_{k+1} = \sqrt[3]{\frac{x_k+1}{2}} = \varphi(x_k)$

取初始值 $x_0 = 0$,则迭代值为

$$x_1 = \sqrt[3]{\frac{1}{2}} = \sqrt[3]{0.5} \approx 0.79$$
, $x_2 = \sqrt[3]{\frac{1+0.79}{2}} = \sqrt[3]{0.895} \approx 0.964$,

$$x_3 = \sqrt[3]{\frac{1+0.964}{2}} \approx 0.994$$
, … ,显然,当 $k \to \infty$ 时, $x_k \to 1$ 。

即 $f(1) \equiv 0$,即迭代法收敛于1,x=1就是方程f(x)=0的根。

(2) 化 f(x) = 0 为等价方程: $x = 2x^3 - 1 = \varphi(x)$,同样取初始值 $x_0 = 0$,其迭代格式为: $x_{k+1} = 2x_k^3 - 1$ 。 此时, $x_1 = 2 \times 0 - 1 = -1$, $x_2 = 2(-1)^3 - 1 = -3$, $x_3 = 2(-3)^3 - 1 = -55$,显然,当 $k \to \infty$ 时, $x_k \to -\infty$,故迭代法发散。

上述例子表明,迭代法的收敛与发散,依赖于迭代函数的构造,迭代函数构造的方法很多。

例如, $x = x - f(x) = \varphi(x)$ 中的 就是(3-17)的 迭代函数。而且很容易证明 $\varphi(x) = x - k(x)f(x)$ ($k(x) \neq 0$) 也是(3-17)的迭代函数。

对于同一个方程,由于构造出来的迭代函数 不同,有的迭代函数所构成的迭代法收敛,有的 迭代函数所构成的迭代法却发散。那么迭代函数 须满足什么条件,迭代法才能收敛。

从而, 迭代函数满足条件: $|\varphi'(x)| < 1$ 时, 迭代法收敛。

从而, 当 $\varphi'(x) < -1$ 或 $1 < \varphi'(x)$ 时, 迭代法发散。

定理3.5 设迭代函数 $\varphi(x)$ 满足

- (1) 当 $x \in [a,b]$ 时, $a \le \varphi(x) \le b$
- (2) 存在正数0 < L < 1,对任意 $x \in [a,b]$ 均有 $|\varphi'(x)| \le L$

则 $x = \varphi(x)$ 在 [a,b] 内存在唯一根 α ,且对任意初始值 $x_0 \in [a,b]$, 迭代法

$$x_{k+1} = \varphi(x_k)$$
 $(k = 0,1,2,\cdots)$

收敛于 α , 且

1.
$$|x_k - \alpha| \le \frac{L}{1 - L} |x_k - x_{k-1}|$$
 (3-20)

2.
$$|x_k - \alpha| \le \frac{L^k}{1 - L} |x_1 - x_0|$$
 (3-21)

DUT 大连疆三大学

证 满足条件(1)、(2)时,易证方程 $x = \varphi(x)$

在[a,b]内存在唯一根 α 。因为 $x_{k+1} = \varphi(x_k)$,且 $\alpha = \varphi(\alpha)$,

根据微分中值定理可得

$$x_{k+1} - \alpha = \varphi(x_k) - \varphi(\alpha) = \varphi'(\xi_1)(x_k - \alpha)$$
$$x_{k+1} - x_k = \varphi(x_k) - \varphi(x_{k-1}) = \varphi'(\xi_2)(x_k - x_{k-1})$$

其中 $\xi_1, \xi_2 \in [a,b]$ 由条件 (2) 得

$$\begin{cases} |x_{k+1} - \alpha| = |\varphi'(\xi_1)| |x_k - \alpha| \le L |x_k - \alpha| \\ |x_{k+1} - x_k| = |\varphi'(\xi_2)| |x_k - x_{k-1}| \le L |x_k - x_{k-1}| \end{cases}$$
(3-22)

又因为

$$|x_{k} - \alpha| \le |x_{k} - x_{k+1}| + |x_{k+1} - \alpha|$$

 $\le L |x_{k} - x_{k-1}| + L |x_{k} - \alpha|$

将上式移项整理后,得 $(1-L)|x_k-\alpha| \le L|x_k-x_{k-1}|$,从而

$$|x_k - \alpha| \leq \frac{L}{1 - L} |x_k - x_{k-1}|$$

即(3-20)成立。再反复使用(3-22)的第2式,得

$$|x_{k+1} - x_k| \le L |x_k - x_{k-1}| \le \dots \le L^k |x_1 - x_0|$$

将上式代入(3-20)即得(3-21)成立。

DUT 大连醒三大学

DALIAN UNIVERSITY OF TECHNOLOGY

又因为L < 1,所以根据(3-21)得

$$\lim_{k\to\infty} |x_k - \alpha| = 0 \qquad \text{II} \quad \lim_{k\to\infty} x_k = \alpha$$

故迭代法收敛。

当迭代函数满足定理3.5的条件且 L较小时,根据(3-20)式可知,只要相邻两次计算值的偏差 $x_k - x_{k-1}$ 达到事先给定的精度要求 δ (即 $x_k - x_{k-1} | \leq \delta$)时,迭代过程就可以终止, x_k 就可作为 α 的近似值。因此,(3-20)式也是判断迭代是否可终止的依据。 如果对 L的大小可作出估计时,由(3-21)式就可以大概估计

出迭代过程所需要的迭代次数,即 $|x_k - \alpha| \le \delta$ 时, k 的大小范围。

由于定理3.5的条件一般难于验证,而且在大区间 [a,b]上,这些条件也不一定都成立,所以在使用迭代法时往往在根 α 的附近进行。只要假定 $\varphi'(x)$ 在 α 的附近连续,且满足 $|\varphi'(\alpha)|<1$

则根据连续函数的性质,一定存在 α 的某个邻域 $S:|x-\alpha| \le \delta$, $\varphi(x)$ 在S上满足定理3.5的条件。

犬连醒三大学

故在S中任取初始值 x_0 , 迭代格式

$$x_k = \varphi(x_{k-1})$$

收敛于方程的根 α ,即 $f(\alpha) = 0$,称这种收敛为局部收敛。

Ø2 求方程 $x = e^{-x}$ 在 x = 0.5 附近的一个根,要求 精度 $\delta = 10^{-3}$ 。 $(f(x) = xe^x - 1 = 0)$

解 由于 $\varphi'(x) = (e^{-x})' = -e^{-x}$, 故当 $x \in [0.5,0.7]$ 时, $|\varphi'(x)| = |-e^{-x}| = e^{-x} \le 0.61 < 1$

因此,迭代格式 $x_{k+1} = e^{-x_k}$,对于初始值 $x_0 = 0.5$ 是收敛的。

DUT

DALIAN UNIVERSITY OF TECHNOLOGY

迭代的数值结果表

k	\mathcal{X}_k	$x_{k+1} = e^{-x_k}$	$ x_{k+1}-x_k $
0	0.5	0.60531	
1	0.60531	0.545239	0.061292
2	0.545239	0.579703	0.034464
3	0.579703	0.560065	0.019638
4	0.560065	0.571172	0.011107
5	0.571172	0.564863	0.006309
6	0.564863	0.568439	0.003576
7	0.568439	0.566409	0.002030
8	0.566409	0.567560	0.001151
9	0.567560	0.566907	0.000653
10	0.566907	0.567277	0.000370

DUT 大连疆三大学

DALIAN UNIVERSITY OF TECHNOLOGY

从定理3.5的(3-21)式可以看出,当L或| $\varphi'(x)$ |在 [a,b]上的值越小,迭代过程的收敛速度就越快。但当 L<1且接近于1时,迭代法虽然收敛,但是收敛速度很慢。 为了使收敛速度有定量的判断,特引入收敛速度的阶的概念,作为判断迭代法收敛速度的重要标准。

设迭代格式 $x_{k+1} = \varphi(x_k)$, 当 $k \to \infty$ 时, $x_{k+1} \to \alpha$, 并记

$$e_k = x_k - \alpha$$
.

DUT 大连醒三大学

DALIAN UNIVERSITY OF TECHNOLOGY

定义3.2

若存在实数 $p \ge 1$ 和 c > 0 满足

$$\lim_{k \to \infty} \frac{|e_{k+1}|}{|e_k|^p} = c \tag{3-23}$$

则称迭代法是P阶收敛。当p=1时,称线性收敛,当p>1时称超线性收敛,当p=2时,称平方收敛。

- P 越大迭代法的收敛速度也越快。但是在实际使用中
- P 很难直接确定,常常采用一些其他的方法来确定收敛的阶。 使用Taylor展开式是一种常用的方法。

如果 $\varphi(x)$ 在根 α 处充分光滑(各阶导数存在),则可对 $\varphi(x)$ 在 α 处进行Taylor展开,得

$$x_{k+1} = \varphi(x_k) = \varphi(\alpha) + \varphi'(\alpha)(x_k - \alpha) + \frac{\varphi''(\alpha)}{2!}(x_k - \alpha)^2 + \dots + \frac{\varphi^{(p-1)}(\alpha)}{(p-1)!}(x_k - \alpha)^{p-1} + \frac{\varphi^{(p)}(\xi_k)}{p!}(x_k - \alpha)^p$$

如果 $\varphi'(\alpha) = \varphi''(\alpha) = \cdots = \varphi^{(p-1)}(\alpha) = 0$, 但是 $\varphi^{(p)}(\alpha) \neq 0$, 则

$$x_{k+1} - \varphi(\alpha) = x_{k+1} - \alpha =$$

即
$$\frac{|x_{k+1} - \alpha|}{|x_k - \alpha|^p} = \frac{|\varphi^{(p)}(\xi_k)|}{p!}$$

$$\lim_{k \to \infty} \frac{|x_{k+1} - \alpha|}{|x_k - \alpha|^p} = \lim_{k \to \infty} \frac{|e_{k+1}|}{|e_k|^p} = \lim_{k \to \infty} \frac{|\varphi^{(p)}(\xi_k)|}{p!} = \frac{|\varphi^{(p)}(\alpha)|}{p!} \circ$$

定理3.6 如果 $x=\varphi(x)$ 中的迭代函数 $\varphi(x)$ 在根 α

附近满足:

(1) $\varphi(x)$ 存在 p 阶导数且连续;

(2)
$$\varphi'(\alpha) = \varphi''(\alpha) = \dots = \varphi^{(p-1)}(\alpha) = 0, \ \varphi^{(p)}(\alpha) \neq 0$$

则迭代法 $x_{k+1} = \varphi(x_k)$ 是 P 阶收敛。

例 取迭代函数 $\varphi(x) = x - \alpha(x^2 - 5)$

要使如下迭代法收敛到 $x^* = \sqrt{5}$,则 α 的取值范围? 且当 α 取何值时,其至少为平方收敛?

$$x_{k+1} = \varphi(x_k)$$

解: $|\varphi'(x)| = |1 - 2\alpha x|$, 令 $|\varphi'(\sqrt{5})| = |1 - 2\alpha \sqrt{5}| < 1$, 即有

$$-1 < 1 - 2\alpha \sqrt{5} < 1 \implies 0 < \alpha < \frac{1}{\sqrt{5}}$$

显然, 当 $\alpha \neq \frac{1}{2\sqrt{5}}$ 时, $0 \neq |\varphi'(\sqrt{5})| < 1$ 。 故其线性收敛。

而当 $\alpha = \frac{1}{2\sqrt{5}}$ 时, $\left| \varphi'\left(\sqrt{5}\right) \right| = 0$ 。 故其至少平方收敛。

设 f(x) = 0 且 $f(\alpha) = 0, f'(\alpha) \neq 0$ 证明由

$$x = x - \frac{f(x)}{f'(x)} = \varphi(x)$$
 (3-24)

建立的迭代格式至少是平方收敛。

证 根据定理3.6,只需证明 $\varphi'(\alpha) = 0$ 。因为

$$\varphi'(\alpha) = \left[x - \frac{f(x)}{f'(x)} \right]_{x=\alpha}' = \left[1 - \frac{(f'(x))^2 - f(x)f''(x)}{(f'(x))^2} \right]_{x=\alpha} = \left[\frac{f(x)f''(x)}{(f'(x))^2} \right]_{x=\alpha} = 0$$

故该迭代法至少是平方收敛。

由(3-24)式建立的迭代法就是有名的Newton法。

3.2.2 Newton迭代法及其变形

用迭代法解非线性方程时,如何构造迭代函数是非常重要的,那么怎样构造的迭代函数才能保证迭代法收敛呢?不管非线性方程 f(x) = 0 的形式如何,总可以构造

$$x = \varphi(x) = x - k(x) f(x) \quad (k(x) \neq 0)$$
 (3-25)

作为方程(3-17) 求解的迭代函数。 因为

$$\varphi'(x) = 1 - k'(x)f(x) - k(x)f'(x)$$

而且 $|\varphi'(x)|$ 在根 α 附近越小, 其局部收敛速度越快,

DUT

DALIAN UNIVERSITY OF TECHNOLOGY

故可令

$$\varphi'(\alpha) = 1 - k'(\alpha)f(\alpha) - k(\alpha)f'(\alpha) = 1 - k(\alpha)f'(\alpha) = 0$$

若 $f'(\alpha) \neq 0$ (即不是的重根),则

$$k(\alpha) = \frac{1}{f'(\alpha)}$$

故可取 $k(x) = \frac{1}{f'(x)}$ 代入(3-25)式, 得

$$x = x - \frac{f(x)}{f'(x)}$$

DUT 大连疆三大学

DALIAN UNIVERSITY OF TECHNOLOGY

定理3.7

设方程 f(x) = 0的根为 α , 且 $f'(\alpha) \neq 0$

则迭代法

$$\overline{x}$$

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)} \qquad (k = 0, 1, 2, \dots)$$
(3-26)

至少是平方收敛,并称(3-26)为Newton迭代法。

由于Newton迭代法带有 f(x) 的导数 f'(x), 使用起来不太方便。为了不求导数,可用导数的近似式替代 f'(x)。因为

$$f'(x_k) \approx \frac{f(x_k) - f(x_{k-1})}{x_k - x_{k-1}}$$

将它代入(3-26)的 $f'(x_k)$ 中, 得

DUT

DALIAN UNIVERSITY OF TECHNOLOGY

(3-27)

$$x_{k+1} = x_k - \frac{f(x_k)}{\left[\frac{f(x_k) - f(x_{k-1})}{x_k - x_{k-1}}\right]} = x_k - \frac{f(x_k)}{f(x_k) - f(x_{k-1})}(x_k - x_{k-1})$$

则 $x_{k+1} =$

(3-27)就是弦截法。 由于弦截法采用了导数的近似值,故在Newton法和弦截法都收敛的情况下,弦截法的收敛阶为 $p = \frac{1+\sqrt{5}}{2} \approx 1.618$,低于Newton法,为超线性收敛。

DUT 大连疆三大学

DALIAN UNIVERSITY OF TECHNOLOGY

Newton 迭代法的几何意义

使用Newton迭代格式,就是过曲线上的点 x_k 作切线与x 轴的交点即为 x_{k+1} ,故Newton法也称切线法。

DUT 大连疆三大学

DALIAN UNIVERSITY OF TECHNOLOGY

快速弦截法 (割线法) 的几何意义

在几何上是一种以直代曲的近似方法。即用弦来替代曲线用在轴上截取的值,即弦与 x 轴的交点 x_k 作为 α 的近似值,故称弦截法。

DUT 大连醒三大学

DALIAN UNIVERSITY OF TECHNOLOGY

单步弦截法的几何意义

从Newton和弦截法的迭代格式中可以看到,弦截 法虽然不需要求导数值 f'(x) ,但是使用时需要有前两 两步的值,即开始时需要有两个初始值 x_0, x_1 ; Newton 法虽然需求 f'(x) ,但是使用时只用到前一步的值,即 只需要给出一个初始值就可以进行迭代计算。

由于Newton法的收敛性是在根 α 附近讨论的,因此,初始值的选取与Newton法的收敛很有关系,使用时必须充分注意到初始值的选取。

用Newton法和弦截法分别计算方程

$$f(x) = x^3 - x - 1 = 0$$

在 x = 1.5 附近的根 α 。

解 (1)使用Newton法,并取 $x_0 = 1.5$

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)} = x_k - \frac{x_k^3 - x_k - 1}{3x_k^2 - 1}$$

$$x_1 = x_0 - \frac{x_0^3 - x_0 - 1}{3x_0^2 - 1} = 1.5 - \frac{(1.5)^3 - 1.5 - 1}{3(1.5)^2 - 1} \approx 1.34783$$

$$x_2 = x_1 - \frac{x_1^3 - x_1 - 1}{3x_1^2 - 1} \approx 1.32520$$

$$x_3 = x_2 - \frac{x_2^3 - x_2 - 1}{3x_2^2 - 1} \approx 1.32472$$

$$x_4 = x_3 - \frac{x_3^3 - x_3 - 1}{3x_3^2 - 1} \approx 1.32472$$

迭代3次就得到具有6位有效数字的结果。

DALIAN UNIVERSITY OF TECHNOLOGY

(2) 使用弦截法, 并取 $x_0 = 1.5, x_1 = 1.4$

$$x_{k+1} = x_k - \frac{f(x_k)}{f(x_k) - f(x_{k-1})}(x_k - x_{k-1}) = x_k - \frac{x_k^3 - x_k - 1}{x_k^2 + x_{k-1}x_k + x_{k-1}^2 - 1}$$

$$x_2 = 1.4 - \frac{1.4^3 - 1.4 - 1}{1.4^2 + 1.4 \times 1.5 + 1.5^2 - 1} \approx 1.33522$$

$$x_3 = 1.33522 - \frac{1.33522^3 - 1.33522 - 1}{1.33522^2 + 1.33522 \times 1.4 + 1.4^2 - 1} \approx 1.32541$$

$$x_4 = 1.32541 - \frac{1.32541^3 - 1.32541 - 1}{1.32541^2 + 1.32541 \times 1.4 + 1.4^2 - 1} \approx 1.32476$$

• • • • • •

几个具代表性的Newton迭代法收敛和发散的例子来观察局部收敛性的内涵:

初始值的选取对Newton法是否收敛的重要性

(I)在上例中取 x_0 =0,使用Newton法计算方程的根。使用公式(3-23)进行迭代计算后得

$$x_1 = -1$$
, $x_2 = -0.5$, $x_3 \approx 0.33$, $x_4 \approx -1.44$, ...

这个结果不但偏离所求的根,而且还看不出它的收敛性。

(II)用Newton迭代法求方程 $f(x) = \arctan(x) = 0$ 的根时,如果取初始值 $x_0=1.45$,则产生的迭代序列为:

$$x_1 = -1.550263297$$
, $x_2 = 1.845931751$, $x_3 = -2.889109054$,

…, 离散震荡。

如果取初始值足够接近根 $x^*=0$,则可得到一个收敛的序列。即,如果取初始值 $x_0=0.5$,,则:

$$x_0 = 0.5$$
, $x_1 = -0.079559511$, $x_2 = 0.000335302$, $x_3 = 0.00000000$ \circ

(III) 设方程 $y=x^3-x-3=0$ 时,如果取初始值 $x_0=0$,则产生 的迭代序列为: $x_1 = -3.000000$, $x_2 = -1.961538$, $x_3 = -1.147176$, $x_4 = -0.006579$, $x_5 = -3.000389$, $x_6 = -1.961818$, $x_7 = -1.147430$, ... 这里,陷入了一个循环之中,即当 $x_{k+4} \approx x_4$ 时,有 $k=0,1,\cdots$ (如图所示)。

如果取初始值足够接近根 $x^* \approx 1.671699881$,则可得到一个收敛的序列。即,如果取初始值 x_0 =2,则 x_1 =1.72727272, x_2 =1.67369173, x_3 =1.671702570, x_4 =1.671699881。

一种大范围收敛的Newton型方法

使用Newton法时,为了防止迭代发散,我们在迭代格式中附加一个条件:

$$| f(x_{k+1}) | < | f(x_k) |$$

即要求 $|f(x_k)|$ 的值单调下降。为此,引入 $0 < \lambda \le 1$,

建立如下迭代公式

$$x_{k+1} = x_k - \lambda \frac{f(x_k)}{f'(x_k)} \quad 0 < \lambda \le 1$$
 (3-29)

使 $|f(x_{k+1})| < |f(x_k)|$ 。其中 λ 称下山因子。称迭代法(3-29)为Newton下山法。

下山因子的选择一般采用试算法。 即由迭代得到计算值 x_k 后,取不同的 λ 值试算,例如,取 $\lambda=1,\frac{1}{2},\frac{1}{2^2},\frac{1}{2^3},\cdots$ 用(3-29)进行试算,对用公式(3-29)算出的 x_{k+1}

DALIAN UNIVERSITY OF TECHNOLOGY

均需要接着计算 $f(x_{k+1})$, 如果 $|f(x_{k+1})| < |f(x_k)|$ 成立, 则计算值 x_{k+1} 即为第 k+1 步的迭代值。再取 $\lambda = 1, \frac{1}{2}, \frac{1}{2}$ … 用求得的 x_{k+1} 和(3-29)仿照前面的过程计算第 k+2步的迭代值。如果计算过程中碰到一个迭代值 x_k 取不 到满足要求的 λ 值,则称"下山失败"需要另取初始值 x_0 ,仿照上述过程重算。 若 $|f(x_k)| < \varepsilon_1$ 或 $|x_{k+1} - x_k| < \varepsilon_2$ (其中 ε_1 和 ε_2 是事先给定的精度要求值)时,迭代 终止, 并取 $\alpha \approx x_{k+1}$ 作为根的计算值; 如果取不到满足 要求的 x_0 迭代终止。

用Newton下山法求方程

$$f(x) = \frac{x^3}{3} - x = 0$$

的一个根。 取 $x_0 = -0.99$, 终止条件: $|x_k - x_{k-1}| \le 10^{-5}$ 。

Newton下山法迭代公式:

$$x_{k+1} = x_k - \lambda \frac{x_k^3 - 3x_k}{3(x_k - 1)}, \quad |f(x_{k+1})| < |f(x_k)|, \quad \lambda = 1, \frac{1}{2}, \frac{1}{4}, \dots$$

如果不用下山法,取 x_0 =-0.99, 使用Newton法进行迭代,从图中的动态轨迹显示,是难于求出根的。下表是使用Newton下山法计算的结果。

迭代终止条件为: $|x_{k+1}-x_k| \leq 10^{-5}$ 。

k	λ	\mathcal{X}_k	$f(x_k)$	$f'(x_k)$	$\frac{f(x_k)}{f'(x_k)}$
0		-0.99	0.66657	-0.01990	-33.49589
1		32.50598	11416.51989		
		15.75799	1233.55136		
		7.38400	126.81613		
		3.19700	7.69495		
		1.10350	-0.65559	0.21771	-3.01131
2	1	4.11481	19.10899		
		2.60916	3.31162		
		1.85633	0.27594	2.44594	0.11281
3	1	1.74352	0.02316	2.03985	0.01135
4	1	1.73217	0.00024	2.00041	0.00012
5	1	1.73205	0.00000	2.00000	0.00000
6	1	1.73205			

DUT

DALIAN UNIVERSITY OF TECHNOLOGY

3.2.3 多根区间上的逐次逼近法

方程 f(x) = 0 在多根区间 [a,b] 上,根的情况主要有两种: 其一,均为单根; 其二,有重根。 现在分别讨论如下:

一、[a,b] 是 f(x) = 0 仅有单根的多根区间

1) 求单根区间

设 f(x) = 0 在 [a,b] 上有 m 个根。 $f(a) \cdot f(b) < 0$

将[a, b]分成n个小区间:

$$[b_0,b_1], [b_1,b_2], \cdots, [b_{n-1},b_n],$$

(其中
$$b_0=a, b_n=n$$
)

然后计算 $f(b_i)(i=1,2,\cdots,n)$ 的值,由图3-1可知,当 $f(b_i)\cdot f(b_{i+1})<0$ 时,f(x)=0 在 $[b_i,b_{i+1}]$ 上至少有一个根。 如果有根区间的个数却为 m ,则所得到的有根区间就都是单根区间。如果有根区间的个数小于 m 时,再将有些小区间对分, 设对分点为 $b_{i+\frac{1}{2}}$,然后计算 $f\left(b_{i+\frac{1}{2}}\right)$ 再搜索有根区间,直到有根区间的个数是m为止。

DALIAN UNIVERSITY OF TECHNOLOGY

2) 在单根区间 [c,d] 上求根

单根区间上求根的方法在前面已作介绍。 在此介绍一种根的搜索法,它可用于求迭代法的初始值, 也可用于求 f(x) = 0 的近似根。

将区间 [c,d] 对分,设对分点(即区间中点)为 $x_0 = \frac{1}{2}(c+d)$,计算 $f(x_0)$,如果 $f(x_0)$ 与 f(c) 同号,说明方程的根 α 在 x_0 的右侧,此时令 $x_0 = c_1, d = d_1$ 否则令 $c = c_1, x_0 = d_1$ 。不管是那种情况,新的有根区间为 $[c_1, d_1]$,其长度为原来区间 [c,d] 的一半。

DUT

DALIAN UNIVERSITY OF TECHNOLOGY

用同样方法可将含根区间的长度再压缩一半。如此继续下去,可使有根区间为 $[c_n,d_n]$,其长度为

$$d_n - c_n = \frac{1}{2^n} (d - c)$$

只要 n 足够大,有根区间 $[c_n,d_n]$ 的长度就足够小,当 d_n-c_n 达到根的精度要求时, 取

$$x_n = \frac{1}{2}(d_n + c_n)$$

就可作为根 \alpha 的近似值。这种搜索根的方法称二分法。

DUT

DALIAN UNIVERSITY OF TECHNOLOGY

$$c \qquad \qquad \mathcal{E}_{\overline{f}} \stackrel{\underline{c}+\underline{d}}{=} \underbrace{t}_{t} \stackrel{\underline{d}}{=} \underbrace{t}_{1} \qquad d_{1}d = d$$

$$f(c) \cdot f(t) > 0, \quad f(d) \cdot f(t) < 0$$

$$f(c_{1}) \cdot f(t) < 0, \quad f(d_{1}) \cdot f(t) > 0$$

$$\cdots$$

$$[c,d]\supset [c_1,d_1]\supset\cdots\supset [c_n,d_n]$$

$$|x-\alpha| < \frac{d-c}{2^n}$$

DALIAN UNIVERSITY OF TECHNOLOGY

如果发现用二分法求根的过程中, 有根区间趋于零的速度较慢, 此时, 可以从某个区间 $[c_i,d_i]$ 开始使用其他迭代法求解,将 c_i 或 d_i 作为迭代法的初始值。

求 $f(x) = x^3 - 11.1x^2 + 38.79x - 41.769 = 0$ 在[0, 8]中

的三个根。

解

首先将有根区间[0,8]三等分,得

[0, 2.7]

[2.7, 5.4]

[5.4, 8]

DALIAN UNIVERSITY OF TECHNOLOGY

搜索单根区间:

[0, 2.7]
$$f(0) \cdot f(2.7) = (-41.768) \cdot (1.728) < 0$$

[2.7,5.4]
$$f(2.7) \cdot f(5.4) = (1.728) \cdot (1.485) > 0$$

[5.4,8]
$$f(5.4) \cdot f(8) = (1.485) \cdot (70.151) > 0$$

再将区间[2.7,5.4]等分,得

[2.7,4]
$$f(2.7) \cdot f(4) = (1.7) \cdot (-0.209) < 0$$

[4,5.4]
$$f(4) \cdot f(5.4) = (-0.2) \cdot (1.4) < 0$$

故 f(x) = 0 的三个根分别在区间 [0, 2.7], [2.7, 4], [4, 5.4] 中。用计算单根的方法, 可求出三个区间上的计算根。

DALIAN UNIVERSITY OF TECHNOLOGY

二、f(x) = 0 在 [a,b] 上有重根

设 α 是 f(x) = 0 的 m 重根,其中 $m \ge 2$ 整数,则有

$$f(x) = (x - \alpha)^m g(x)$$
 $g(\alpha) \neq 0$

此时

$$f(\alpha) = f'(\alpha) = f''(\alpha) = \cdots = f^{(m-1)}(\alpha) = 0, \quad f^{(m)}(\alpha) \neq 0$$

在这种情况下,如果 $f'(x_k) \neq 0$,虽然使用Newton法也可以继续算下去,但是由于Newton法在定理3.7中的条件 $f'(\alpha) \neq 0$ 不满足,它的收敛速度可能较慢。事实上,由 $f(x) = (x - \alpha)^m g(x)$ 且 $g(\alpha) \neq 0$

$$\varphi(x) = x - \frac{f(x)}{f'(x)} = x - \frac{(x - \alpha)^m g(x)}{m(x - \alpha)^{m-1} g(x) + (x - \alpha)^m g'(x)}$$

$$\iiint \varphi'(x) = 1 - \frac{g(x)}{m \cdot g(x) + (x - \alpha)g'(x)} - (x - \alpha) \cdot \left[\frac{g(x)}{m \cdot g(x) + (x - \alpha)g'(x)} \right]$$

$$\varphi'(\alpha) = 1 - \frac{g(\alpha)}{m \cdot g(\alpha) + 0} - 0 = 1 - \frac{1}{m} \neq 0$$

从而得到在这种条件下的Newton法如果收敛,它 必是线性收敛的。为了提高收敛的阶,可取

$$\varphi(x) = x - m \frac{f(x)}{f'(x)} \tag{3-31}$$

此时 (3-30) 变成 $\varphi'(\alpha) = 1 - \frac{m \cdot g(\alpha)}{m \cdot g(\alpha) + 0} - 0 = 1 - \frac{m}{m} = 0$, 从而 $\varphi'(\alpha) = 0$, 故迭代法 (3-31) 至少是平方收敛的。 当m不知道时,可采用试探法或其他变形公式:

$$\mu(x) = \frac{f(x)}{f'(x)} \qquad \varphi(x) = x - \frac{\mu(x)}{\mu'(x)}$$

求方程 $f(x) = x^4 - 4x^2 + 4 = 0$, 二重根 $\sqrt{2}$ 的

计算值。

(1) 使用Newton法

$$x_{k+1} = \varphi(x_k) = x_k - \frac{x_k^4 - 4x_k^2 + 4}{4x_k^3 - 8x_k} = x_k - \frac{x_k^2 - 2}{4x_k}$$

DALIAN UNIVERSITY OF TECHNOLOGY

(2) 使用求重根的Newton公式

$$x_{k+1} = x_k - 2\frac{x_k^2 - 2}{4x_k} = x_k - \frac{x_k^2 - 2}{2x_k}$$

上述两种方法都取初始值 $x_0 = 1.5$, 计算结果见下表。

x_{i}	方法(1)结果	方法(2)结果
1	1. 453333	1. 416667
2	1. 436607	1. 414216
3	1. 425498	1.414214

从上面两种方法的计算解中可以看出,方法(2) 的收敛速度较方法(1)快。

THE END

DUT

DALIAN UNIVERSITY OF TECHNOLOGY

我不知道在别人看来,我是什么样的人;但在我自己看来,我不过就象是一个在海滨玩耍的小孩,为不时发现比寻常更为光滑的一块卵石或比寻常更为美丽的一片贝壳而沾沾自喜,而对于展现在我面前的浩瀚的真理的海洋,却全然没有发现。—牛顿

1643年1月4日,在英格兰林肯郡小镇沃尔索浦的一个自 耕农家庭里,牛顿诞生了。

1727年3月20日,伟大艾萨克•牛顿逝世。同其他很多杰

出的英国人一样,他被埋葬在了威斯敏斯特教堂。他的墓碑上镌刻着:

让人们欢呼这样一位多么伟大的人类荣耀曾经在世界上存在

伟大的成就之一: 建立微积分

伟大的成就之二: 对光学的三大贡献

伟大的成就之三: 构筑力学大厦

DALIAN UNIVERSITY OF TECHNOLOGY

牛顿(Issac Newton, 1642-1727),英国数学家、物理学家, 17世纪科学革命的顶峰人物。在力学上牛顿提出作为近代物理学基础的力学三大定律和万有引力定律;他关于白光由色光组成的发现为物理光学奠定了基础;他还是微积分学的创始人之一。他的《自然哲学的数学原理》是近代科学史上的重要著作。

在牛顿的全部科学贡献中,数学成就占有突出的地位。微积分的创立是牛顿最卓越的数学成就,它为近代科学发展提供了最有效的工具,开辟了数学上的一个新纪元。此外,他的数学工作还涉及代数、解析几何、数值分析、概率论和初等数论等众多领域。

1686年,牛顿写成划时代的伟大著作《自然哲学的数学原理》一书(在1687年出版),在这部书中,牛顿从力学的基本概念(质量、动量、惯性、力)和基本定律(运动三定律)出发,运用他所发明的微积分这一锐利的数学工具,不但从数学上论证了万有引力定律,而且把经典力学确立为完整而严密的体系,把天体力学和地面上的物体力学统一起来,实现了物理学史上第一次大的综合。