

主要内容

- ■元定理
- ■理论与模型
- ■判定问题

元定理

- ■逻辑系统:
 - 推论Γ ⊨ Q
 - 演绎Γ⊢Q

- ■可靠性
- ■完全性
- ■一致性
- ■独立性

- 定义5.2.2 如果对于任意公式Q, $\Gamma \vdash Q$,则 Γ 称不协调,否则称 Γ 协调。
- 定理5.2.6 若 $\Gamma \vdash \neg Q \land Q$,则 Γ 不协调。
- 定理5.2.7 若 Γ 协调,则 Γ 可满足。

协调性

- 定理5.2.6 若 $\Gamma \vdash \neg Q \land Q$,则 Γ 不协调。
- 证明: 下面我们证明对任意合式公式R, $\Gamma \vdash R$

•
$$A_1 = \neg Q \wedge Q$$

$$\Gamma \vdash \neg Q \land Q$$

•
$$A_2 = \neg(\neg Q \rightarrow \neg Q)$$

$$P \wedge Q \equiv \neg (P \rightarrow \neg Q)$$

•
$$A_3 = \neg(\neg Q \rightarrow \neg Q) \rightarrow (\neg R \rightarrow \neg(\neg Q \rightarrow \neg Q))$$

•
$$A_4 = \neg R \rightarrow \neg (\neg Q \rightarrow \neg Q)$$

$$A_3 = A_2 \rightarrow A_4$$

•
$$A_5 = (\neg R \rightarrow \neg (\neg Q \rightarrow \neg Q)) \rightarrow ((\neg Q \rightarrow \neg Q) \rightarrow R)$$

$$\mathcal{A}_3$$

•
$$A_6 = (\neg Q \rightarrow \neg Q) \rightarrow R$$

$$A_5 = A_4 \rightarrow A_6$$

•
$$A_7 = \neg Q \rightarrow \neg Q$$

$$\vdash Q \rightarrow Q$$

•
$$A_8 = R$$

$$A_6 = A_7 \rightarrow A_8$$

因此, Γ不协调

可靠性定理(1)—公理1~3

- 定理5.2.2 如果 $\Gamma \vdash Q$,则 $\Gamma \vDash Q$ 。
- 证明:
- (1) n = 1时,若 Q_i 是公理,则 Q_i 是永真式。
 - · 公理模式∞₁
 - $-\sigma(Q → (R → Q))$
 - $-\sigma(Q) \rightarrow (\sigma(R) \rightarrow \sigma(Q))$
 - 如果 $\sigma(Q) = 1$,则 $\sigma(Q) \rightarrow (\sigma(R) \rightarrow \sigma(Q)) = 1$
 - 如果 $\sigma(Q) = 0$,则 $\sigma(Q) \rightarrow (\sigma(R) \rightarrow \sigma(Q)) = 1$
 - 公理模式∞₂
 - $-(P \to (Q \to R)) \to ((P \to Q) \to (P \to R))$
 - 同理 $\sigma((P \to (Q \to R)) \to ((P \to Q) \to (P \to R))) = 1$
 - - $(\neg Q \rightarrow \neg R) \rightarrow (R \rightarrow Q)$
 - 同理 $\sigma((\neg Q \rightarrow \neg R) \rightarrow (R \rightarrow Q)) = 1$

可靠性定理(2)—公理4

- 设 Q_i 是公理模式 \mathcal{M} 的实例 $\forall x Q(x) \rightarrow Q(x)[x/d]$
 - 任取解释I和赋值 σ
 - 若 $\sigma(\forall x Q(x)) = 0$, 则 $\sigma(\forall x Q(x) \rightarrow Q(x)[x/d]) = 1$
 - 若 $\sigma(\forall x Q(x)) = 1$, 则对于每个 $d \in D$, $\sigma(Q(x)[x/d]) = 1$
 - 所以 $\sigma(Q(x)[x/d]) = 1$
 - 这表明 Q_i 是永真式,即 $\Gamma \vDash Q_i$

可靠性定理(3)一公理5

- 设 Q_i 是公理模式 \mathscr{A} 的实例 $\forall x(Q \rightarrow R(x)) \rightarrow (Q \rightarrow xR(x))$,其中x不是公式Q的自由变元
 - 若 $\sigma(\forall x(Q \to R(x))) = 0$, 则 $\sigma(\forall x(Q \to R(x)) \to (Q \to \forall x R(x))) = 1$
 - 若 $\sigma(\forall x(Q \to R(x))) = 1$, 且 $\sigma(Q) = 0$, 则 $\sigma(Q \to \forall x R(x)) = 1$, 所以 $\sigma(\forall x(Q \to R(x)) \to (Q \to \forall x R(x))) = 1$
 - 若 $\sigma(\forall x(Q \to R(x))) = 1$,且 $\sigma(Q) = 1$,则对于任意 $d \in D$, $\sigma(Q \to R(x)[x/d]) = 1$ 。因为 $\sigma(Q) = 1$,所以 $\sigma(R(x)[x/d]) = 1$ 。从而 $\sigma(\forall x R(x)) = 1$,即 $\sigma((Q \to \forall x R(x))) = 1$,因此有 $\sigma(\forall x (Q \to R) \to (Q \to \forall x R(x))) = 1$

可靠性定理(4)—MP规则

- 若 $Q_i \in \Gamma$, 则 $\Gamma \vdash Q_i$,
 - 对于 $\sigma(\Gamma) = 1$, $Q_i \in \Gamma$ 有 $\sigma(Q_i) = 1$,
 - 所以 $\Gamma \vDash Q_i$
- (2) 假设m < n时,定理成立。
- 证明m = n时,
 - 设 Q_i 由 Q_j , Q_k 用MP规则推出,其中j,k < i,
 - $egin{aligned} oldsymbol{Q}_{oldsymbol{i}} & oldsymbol{Q}_{oldsymbol{k}} & = oldsymbol{Q}_{oldsymbol{j}}
 ightarrow oldsymbol{Q}_{oldsymbol{i}} \circ oldsymbol{Q}_{oldsymbol{i}} \end{aligned}$
 - 由归纳假设知, $\Gamma \vdash Q_j \perp \Gamma \vdash Q_j \rightarrow Q_i$, 所以 $\Gamma \vDash Q_j$, $\Gamma \vDash Q_j \rightarrow Q_i$, $\Gamma \vDash Q_i$ 。
 - 因此Γ ⊨ Q
- 即 $\Gamma \vDash Q$

可靠性定理(5)—UG规则

- 证明i = n时,
 - 设 Q_i 由 Q_k 用UG规则推出,其中k < i,
 - Q_k
 - $Q_i = \forall x Q_k$
 - 由归纳假设知, $\Gamma \vdash Q_k$,所以 $\Gamma \vDash Q_k$ 。
 - 因为 $Q_i = \forall x Q_k$,对于任意 $d \in D$, $Q_k(x)[x/d] = 1$,所以, $\sigma(\forall x Q_k) = 1$
 - 因此 $\Gamma \vDash Q_n$
- $\Pi\Gamma \vDash Q$ 。

完全性定理

- 定理5.2.3 若 $\Gamma \vDash Q$,则 $\Gamma \vdash Q$ 。
- 证明:
 - · 若真值指派 σ 满足 Γ ,则它必满足Q,即不可满足 $\neg Q$,
 - 所以Γ∪{¬Q}不可满足。
 - 因此, Γ∪{¬Q}不协调。
 - 所以有Γ∪{¬Q} ⊢ Q。
 - 由演绎定理有 $\Gamma \vdash \neg Q \rightarrow Q$ 。
 - 由 $\vdash (\neg Q \rightarrow Q) \rightarrow Q$, 因此, $\Gamma \vdash Q$

完全性定理一谓词

- 定理5.2.3 若 $\Gamma \vDash Q$,则 $\Gamma \vdash Q$
- 证明:
 - •设R是Q的闭包。
 - 若解释I满足 Γ ,必然满足R,即不满足 $\neg R$,
 - 所以 $\Gamma \cup \{\neg R\}$ 不可满足, $\Gamma \cup \{\neg R\}$ 不协调,
 - $\Gamma \cup \{\neg R\} \vdash R$.
 - 由演绎定理知, $\Gamma \vdash \neg R \rightarrow R$,
 - 因为 $\vdash (\neg R \to R) \to R$, 故 $\Gamma \vdash R$,
 - 因此, Γ ⊢ Q。

- 定义5.2.3 关于公理系统的一致性,有几种定义:
 - (1) 一致性的古典定义:一公理系统是一致的,当且仅当,不存在任何公式Q,Q和非Q都在该系统里可证
 - (2) 一致性的语义定义:一公理系统是一致的,当且仅当,
 - 一切在该系统里可证的公式都是真的
 - (3) 一致性的语法定义:一公理系统是一致的,当且仅当, 并非任一公式都在该系统里可证
- ■命题演算的一致性
 - 是在古典的意义下一致的:对任一公式Q,Q和非Q不能都是命题演算定理
 - 是语义一致的: 命题演算的定理都是重言式
 - 是语法一致的,并非任一公式都是命题演算的定理
- 一致性在公理系统内不可证

独立性

- 定义5.2.4 一公式集合M是独立的,如果M中的任一公式Q都不能根据给定的推演规则从M中其他公式推演出来。
- 命题逻辑公理与谓词逻辑公理都是独立的
- 弗雷格公理系统不是独立的
 - $Q \rightarrow (R \rightarrow Q)$
 - $(P \rightarrow (Q \rightarrow R)) \rightarrow ((P \rightarrow Q) \rightarrow (P \rightarrow R))$
 - $(P \rightarrow (Q \rightarrow R)) \rightarrow (Q \rightarrow (P \rightarrow R))$
 - $(Q \rightarrow R) \rightarrow (\neg R \rightarrow \neg Q)$
 - $\neg \neg Q \rightarrow Q$
 - $Q \rightarrow \neg \neg Q$

带等词的一阶公理系统

- $\blacksquare t = t$
- $lacksquare t_{11} = t_{21} \land \dots \land t_{1n} = t_{2n} \rightarrow f(t_{11}, \dots, t_{1n}) = f(t_{21}, \dots, t_{2n})$
- $lacksquare t_{11} = t_{21} \land ... \land t_{1n} = t_{2n} \rightarrow R(t_{11}, ..., t_{1n}) = R(t_{21}, ..., t_{2n})$
- ■可靠性定理
 - 若 $\Gamma \vdash Q$,则 $\Gamma \vDash Q$
- 完全性定理
 - 若 $\Gamma \vDash Q$,则 $\Gamma \vdash Q$