# VPI University Program

Photonics Curriculum Version 7.0 Lecture Series



Chromatic Dispersion and Kerr Nonlinearities

Fiber 2



Developed in cooperation with Prof. Klaus Petermann and his group at Technische Universität Berlin



Author: J.K. Fischer



#### **Module Prerequisites**

Fiber 1: Basics of Fiber Propagation

#### Module Objectives

- Dispersion, dispersion slope
- Dispersion compensation and management
- Kerr nonlinearities
  - Self-phase modulation (SPM)
  - Cross-phase modulation (XPM)
  - Four-wave mixing (FWM)
- Nonlinear transmission



#### Propagation of pulses

Electrical field:

$$E(z,t) = \text{Re}\{\underline{A}(z,t) \exp(j\omega t - j\beta z)\},$$

with propagation constant

$$\beta = \frac{2\pi \cdot n}{\lambda},$$

where *n* is the effective refractive index.





 $\underline{A}(z, t)$ : slowly varying complex field envelope  $|\underline{A}(z, t)|^2$ : pulse shape in time domain



# Nonlinear Schrödinger Equation (NLSE)

Equation (NLSE)
Pulse evolution along a fiber is governed by the NLSE.

$$\frac{\partial \underline{A}(z,t)}{\partial z} = -\frac{\alpha}{2}\underline{A}(z,t) + i\frac{\beta_2}{2}\frac{\partial^2 \underline{A}(z,t)}{\partial t^2} + \frac{\beta_3}{6}\frac{\partial^3 \underline{A}(z,t)}{\partial t^3} - i\gamma |\underline{A}(z,t)|^2\underline{A}(z,t)$$

attenuation

1<sup>st</sup> order GVD 2<sup>nd</sup> order GVD

Kerr nonlinearities

Characterized by the dispersion parameter D [ps/(km.nm)]

$$D = -\frac{2\pi \cdot c}{\lambda^2} \beta_2$$

Characterized by the differential-dispersion parameter (dispersion slope)
S [ps/(km.nm²)]

$$S = \frac{dD}{d\lambda} = \left(\frac{2\pi \cdot c}{\lambda^2}\right)^2 \beta_3 - \frac{2}{\lambda} D$$



Pulse broadening in the time-domain due to dispersion leads to an increased eye-closure.

Characterized by accumulated dispersion  $D_{acc}$  [ps/nm].

$$D_{acc} = D \cdot L$$











#### Dispersion length

Consider a Gaussian shaped pulse with

$$\underline{A}(0,t) = \underline{A}_0 \exp\left(-\frac{1}{2}\frac{t^2}{T_0^2}\right)$$

Dispersion length is defined as:

$$L_D = \frac{T_0^2}{\left|\beta_2\right|}$$

Pulse-shape at  $z=L_D$ ?

Broadening factor at  $z=L_D$ :

$$\frac{T_1}{T_0} = \sqrt{2}$$





# Dispersion compensation

Dispersion is a linear effect. — It can be compensated.

Commonly used: dispersion-compensating fiber (DCF)





Positive dispersion parameter: Negative dispersion parameter:

$$D_{SMF} \approx 17 \frac{ps}{km \cdot nm}$$



$$D_{DCF} \approx -100 \frac{ps}{km \cdot nm}$$

Requirement for complete compensation of 1<sup>st</sup> order GVD at a single wavelength:

$$L_{SMF}D_{SMF} = -L_{DCF}D_{DCF}$$



#### Dispersion slope

Dispersion parameter D is a function of  $\lambda$ .



Consider transmission of four wavelength channels.

Requirement for ideal 2<sup>nd</sup> order GVD compensation

$$\frac{S_{SMF}}{S_{DCF}} = \frac{D_{SMF}}{D_{DCF}} \quad \text{(for all } \lambda\text{)}$$







#### Dispersion-compensation

Postcompensation:

schemes



Precompensation:



Hybridcompensation:





#### Kerr nonlinearities

In general, the refractive index varies with the power of the optical field.

*n*<sub>2</sub>: nonlinear-index coefficient

 $A_{eff}$ : effective core area

$$n'=n+\frac{P}{A_{eff}}$$
nonlinear
contribution

Propagation constant becomes power dependent.

Nonlinearity coefficient: 
$$\gamma = \frac{k_0 n_2}{A_{\text{eff}}}$$

NLSE:

$$\frac{\partial \underline{A}(z,t)}{\partial z} = -\frac{\alpha}{2}\underline{A}(z,t) + i\frac{\beta_2}{2}\frac{\partial^2 \underline{A}(z,t)}{\partial t^2} + \frac{\beta_3}{6}\frac{\partial^3 \underline{A}(z,t)}{\partial t^3} - \frac{i\gamma |\underline{A}(z,t)|^2}{\underline{A}(z,t)}\underline{A}(z,t)$$



# Effective interaction length L<sub>eff</sub>

Signal power decreases exponentially with distance z.

Effective interaction length  $L_{eff}$  is the length of a fiber with zero attenuation, which has the same nonlinear impact as a

fiber with attenuation  $\alpha_{.15}$ 



$$L_{\text{eff}} = \frac{1 - \exp(-\alpha \cdot L)}{\alpha}$$





#### Self-phase modulation (SPM)

- Phase of one wavelength channel is modulated by its power.
- Phase shift is time dependent, since signal power varies with time.

Example: Gaussian and super Gaussian pulses

Normalized pulse shape:

$$\left|\underline{U}(z,t)\right|^2 = \frac{\left|\underline{A}(z,t)\right|^2}{P_0 \exp(-\alpha z)}$$

 $P_0$ : pulse peak power

Gaussian shape:

$$\left|\underline{U}(0,t)\right|^2 = \exp\left(-\frac{t^{2m}}{T_0^{2m}}\right)$$





# Self-phase modulation (SPM)

Nonlinear phase shift after a fiber of length L is given by:

$$\phi_{NL}(L,t) = \left| U(O,t) \right|^2 \frac{L_{eff}}{L_{NL}}$$

Where the *nonlinear length*  $L_{NI}$  is defined as:

$$L_{NL} = \frac{1}{\gamma \cdot P_0}$$

 $L_{NL} = \frac{1}{\gamma \cdot P_0}$ A time dependent phase shift leads to a variation of frequency with time (chirp dw)

$$\delta\omega = -rac{\partial\phi_{
m NL}}{\partial t}$$





### Self-phase modulation (SPM)

Through the frequency chirp  $\delta\omega$ , SPM generates new frequency components when a pulse propagates along a fiber. This leads to spectral broadening.

#### Example:

Gaussian and super Gaussian pulse with pulse shape

$$\left|\underline{U}(0,t)\right|^2 = \exp\left(-\frac{t^{2m}}{T_0^{2m}}\right)$$

 $f_c$ : carrier frequency

Spectral evolution?





#### Cross-phase modulation (XPM)

When several waves co-propagate inside a fiber, the nonlinear contribution to the refractive index depends on the power of all co-propagating waves.

Phase in one wavelength channel is modulated by the power in all other wavelength channels.



Nonlinear phase shift in channel  $j: \phi_{NL,j} = \gamma \cdot L_{eff} \left( \frac{P_j}{P_j} + \frac{2\sum_{m \neq j}^{M} P_m}{2\sum_{m \neq j}^{M} P_m} \right)$ 



### Cross-phase modulation (XPM)

XPM arises when two pulses of different WDM channels cross each other in the time domain.







Complete crossing of pulses leaves timing jitter due to fiber attenuation.



# Four-wave mixing (FWM)

- The intensity dependence of the refractive index also leads to frequency mixing of optical waves.
- Consider three copropagating optical fields with carrier frequencies  $f_1$ ,  $f_2$ , and  $f_3$ .
- Four-wave mixing generates new mixing products at frequencies:

$$f_n = f_i + f_j - f_k$$

with  $f_i, f_i \neq f_k$ .

#### Example:

FWM products at  $f_5$ :

$$f_5 = f_1 + f_2 - f_3$$
 and  $f_5 = 2f_1 - f_2$ 





#### **Effects of FWM**

- Loss of signal power in all wavelength channels
- Coherent interchannel crosstalk between wavelength channels in systems employing equidistant channel spacing

In WDM systems with many channels, FWM effects can be considered as a degradation of signal-to-noise ratio.

How can the effects of FWM be minimized?

Large channel spacing
 Unequal channel spacings
 Lower FWM-efficiency
 Incoherent out-of-band crosstalk
 Large fiber dispersion



#### Dispersion management

Dispersion compensation has to accommodate different needs depending on system design.

Linear transmission systems:

- Zero residual dispersion at receiver
- Optimization of signal-to-noise ratio at receiver

Additionally in nonlinear transmission systems:

Minimization of nonlinear effects

Optimization of the GVD profile along a transmission link with respect to the impact of fiber nonlinearities is commonly referred to as *dispersion management*.



#### Dispersion management

#### Optimization of GVD profile through:

- choice of compensation scheme
- amount of residual dispersion per span





Slight under- or overcompensation can reduce the accumulation of nonlinear perturbations.



#### Summary

- Nonlinear Schrödinger Equation
- Dispersion and dispersion-compensation schemes
- Kerr nonlinearities
  - Self-phase modulation (SPM)
  - Cross-phase modulation (XPM)
  - Four-wave mixing (FWM)
- Dispersion-management

Proceed with the *Interactive Learning Module*