Теория вероятностей «Производящая функция. Характеристическая функция»

Производящая функция дискретной случайной величины

Рассмотрим вероятностное пространство $(\Omega, \mathcal{F}, \mathbb{P})$ и дискретную случайную величину ξ , принимающую целые неотрицательные значения с вероятностями $\mathbb{P}\{\xi = n\} = p_n$.

Определение 1. Производящей функцией целочисленной неотрицательной случайной величины ξ называется функция комплексного аргумента

$$g_{\xi}(z) \stackrel{\text{def}}{=} \mathbb{E}\left[z^{\xi}\right] = \sum_{n=0}^{\infty} p_n z^n, \quad z \in \mathbb{C}.$$

В силу $\sum_{n=0}^{\infty} p_n = 1$ имеем: $g_{\xi}(1) = 1$. Следовательно, радиус сходимости не меньше единицы.

Перечислим некоторые важные свойства производящей функции дискретной случайной величины.

- 1. $g_{\xi}(0) = p_0, g_{\xi}(1) = 1.$
- 2. $g_{\varepsilon}^{(k)}(0) = k! p_k$.
- 3. Производящая функция однозначно определяет распределение целочисленной неотрицательной случайной величины, т. е. $g_{\xi}(z) \equiv g_{\eta}(z)$ тогда и только тогда, когда ξ и η имеют одинаковые распределения. Действительно, если производящие функции $g_{\xi}(z)$ и $g_{\eta}(z)$ совпадают, то совпадают и их производные любого порядка, а значит, в силу свойства 2 совпадают и вероятности $\mathbb{P}\{\xi=n\}=\mathbb{P}\{\eta=n\}$ для всех неотрицательных целых чисел n.
- 4. $\mathbb{E}\xi=g_{\xi}'(1)$ (при условии, что $\mathbb{E}|\xi|<\infty$) и $\mathbb{D}\xi=g_{\xi}''(1)+g_{\xi}'(1)-(g_{\xi}'(1))^2$ (при условии, что $\mathbb{E}\left[\xi^2\right]<\infty$). Во-первых,

$$g'_{\xi}(1) = \sum_{n=0}^{\infty} n \cdot 1^{n-1} \cdot p_n = \sum_{n=0}^{\infty} n p_n = \mathbb{E}\xi.$$

Во-вторых,

$$g_{\xi}''(1) = \sum_{n=0}^{\infty} n(n-1) \cdot 1^{n-2} \cdot p_n = \sum_{n=0}^{\infty} n^2 p_n - \sum_{n=0}^{\infty} n p_n = \mathbb{E}[\xi^2] - \mathbb{E}\xi,$$

а значит,

$$\mathbb{D}\xi = \mathbb{E}[\xi^2] - (\mathbb{E}\xi)^2 = g_{\xi}''(1) + g_{\xi}'(1) - (g_{\xi}'(1))^2.$$

5. Если $\xi_1, \xi_2, \dots, \xi_n$ — независимые в совокупности случайные величины, то для случайной величины $\eta_n = \sum\limits_{k=1}^n \xi_k$ производящая функция равна

$$g_{\eta_n}(z) = \prod_{k=1}^n g_{\xi_k}(z).$$

Это свойство следует из того, что мат. ожидание произведения независимых случайных величин равно произведению их мат. ожиданий:

$$g_{\eta_n}(z) = \mathbb{E}\left[z^{\eta_n}\right] = \mathbb{E}\left[\sum_{k=1}^n \xi_k\right] = \mathbb{E}\left[\prod_{k=1}^n z^{\xi_k}\right] = \prod_{k=1}^n \mathbb{E}\left[z^{\xi_k}\right] = \prod_{k=1}^n g_{\xi_k}(z).$$

Упражнение 1. Найдите производящую функцию случайной величины ξ такой, что:

- a) $\xi \sim \text{Be}(p)$;
- b) $\xi \sim \text{Binom}(n, p)$;
- c) $\xi \sim \text{Poisson}(\lambda)$;
- d) $\xi \sim \text{Geom}(p)$;
- e) $\xi \sim NB(n, p)$.

Решение. a) $g_{\xi}(z) = \mathbb{E}\left[z^{\xi}\right] = z^{0}(1-p) + z^{1}p = 1 + p(z-1).$

b) Пусть η_1, \dots, η_n — независимые случайные величины имеющие распределение Бернулли с параметром p. Тогда случайная величина $\xi \stackrel{\text{def}}{=} \sum_{k=1}^n \eta_k \sim \text{Binom}(n,p)$. Из свойства 5 и предыдущего пункта получаем:

$$g_{\xi}(z) = \prod_{k=1}^{n} g_{\eta_k}(z) = (1 + p(z-1))^n$$

c)
$$g_{\xi} = \mathbb{E}\left[z^{\xi}\right] = \sum_{k=0}^{\infty} z^k \cdot \frac{\lambda^k}{k!} e^{-\lambda} = e^{\lambda z} \cdot e^{-\lambda} = e^{\lambda(z-1)}.$$

- d) $g_{\xi}(z) = \sum_{n=0}^{\infty} z^n p (1-p)^n = \frac{p}{1-z(1-p)}$. Отметим, что случайная величина, имеющая геометрическое распределение, имеет смысл числа неудач в серии испытаний Бернулли, проводимой до первого успеха.
- е) Случайная величина, имеющая отрицательное биномиальное распределение NB(n,p), как мы уже отмечали, имеет смысл числа неудач в серии испытаний Бернулли, проводимой до n-го успеха, т. е. если η_1,\ldots,η_n независимые случайные величины, имеющие геометрическое распределение, то $\xi=\sum\limits_{k=1}^n\eta_k$, а значит,

$$g_{\xi}(z) = (g_{\eta_1}(z))^n = \left(\frac{p}{1 - z(1 - p)}\right)^n.$$

Упражнение 2. Пусть ξ_1, ξ_2, \ldots одинаково распределённые случайные величины, независимые вместе со случайной величиной N (все величины целочисленные). Пусть $\eta = \sum\limits_{k=1}^N \xi_k$. Найдите производящую функцию η . Рассмотрите случай, когда $N \sim \operatorname{Poisson}(\lambda), \xi_i \sim \operatorname{Be}(p)$ (прореживание пуассоновского процесса).

Решение. Сначала найдём общую формулу:

$$g_{\eta}(z) = \mathbb{E}[z^{\eta}] = \sum_{n=0}^{\infty} \mathbb{E}[z^{\eta}|N=n] \,\mathbb{P}\{N=n\} = \sum_{n=0}^{\infty} \mathbb{E}[z^{\xi_{1}+\dots+\xi_{n}}|N=n] \,\mathbb{P}\{N=n\}$$

$$= \sum_{n=0}^{\infty} \mathbb{P}\{N=n\} \prod_{i=1}^{n} \mathbb{E}[z^{\xi}] = \sum_{n=0}^{\infty} (g_{\xi_{1}}(z))^{n} \,\mathbb{P}\{N=n\} = \mathbb{E}[(g_{\xi_{1}}(z))^{N}]$$

$$= g_{N}(g_{\xi_{1}}(z)).$$

Если $N \sim \text{Poisson}(\lambda), \xi_i \sim \text{Be}(p)$, то

$$g_n(z) = \exp(\lambda(g_{\varepsilon_1}(z) - 1)) = \exp(\lambda(1 - p + pz - 1)) = \exp(\lambda p(z - 1)),$$

то есть η имеет производящую функцию, как у случайной величины, имеющей пуассоновское распределение с параметром λp , а значит, по свойству 3 мы получаем, что $\eta \sim \text{Poisson}(\lambda p)$ (отсюда и название).

Упражнение 3. Дана последовательность из независимых в совокупности, одинаково распределенных (из абсолютно непрерывного распределения) случайных величин: $x_1, x_2, x_3 \dots x_n$. Найдите математическое ожидание числа беспорядков в этой последовательности. (Беспорядком называется пара i < j такая, что $x_i > x_j$).

Peшение. Введем случайную величину ξ_i равную количеству пар (i,j), где j от i+1 до n, и $x_i > x_j$.

Тогда $\xi = \sum_{i=1}^{n-1} \xi_i$ есть искомая случайная величина – кол-во беспорядков.

Найдем производящую функцию для ξ_i . В силу того, что x_i независимые в совокупности и имеют одно и то же непрерывное распределение: $\mathbb{P}\{\xi_i=k\}=\frac{1}{n-i+1}$. Тогда

$$g_{\xi_i}(z) = \sum_{k=0}^{n-i} \mathbb{P}\{\xi_i = k\} z^k = \frac{1}{n-i+1} \sum_{k=0}^{n-i} z^k$$

Найдем g_{ξ} . Из независимости x_i следует независимость ξ_i , тогда:

$$g_{\xi}(z) = \prod_{i=1}^{n-1} g_{\xi_i}(z)$$

Найдем мат.ожидание:

$$\mathbb{E}\xi = g'_{\xi}(1) = \left(\prod_{i=1}^{n-1} g_{\xi_i}(z)\right)' \Big|_{z=1} = \sum_{i=1}^{n-1} g'_{\xi_i}(1) = \sum_{i=1}^{n-1} \frac{1}{n-i+1} \sum_{k=1}^{n-i} k = \sum_{i=1}^{n-1} \frac{n-i}{2} = \frac{n(n-1)}{4}$$

Характеристическая функция случайной величины

До этого момента полное описание свойств случайной величины мы могли получить из функции распределения. Оказывается, существует и другой способ не менее полного описания свойств случайной величины, который опирается на *характеристическую функцию* случайной величины.

Для начала нужно договориться, что под комплекснозначной случаной величиной x мы будем понимать такой случайный объект ξ , что $\xi = \xi_1 + i\xi_2$, где ξ_1, ξ_2 — случайные величины. Естественно положить $\mathbb{E}[\xi] = \mathbb{E}\xi_1 + i\mathbb{E}\xi_2$. Комплекснозначные величины $\xi = \xi_1 + i\xi_2$ и $\eta = \eta_1 + i\eta_2$ называются **независимыми**, если σ -алгебры $\sigma(\xi_1, \xi_2)$ и $\sigma(\eta_1, \eta_2)$, порождённые случайными векторами $(\xi_1, \xi_2)^{\top}$ и $(\eta_1, \eta_2)^{\top}$, являются независимыми.

Определение 2. Характеристической функцией вещественной случайной величины ξ называется комплекснозначная функция действительного аргумента $t \in \mathbb{R}$:

$$\varphi_{\xi}(t) \stackrel{\text{def}}{=} \mathbb{E}\left[e^{it\xi}\right] = \int_{\mathbb{R}} e^{itx} dF(x),$$

где интеграл справа называется интегралом Фурье-Стильтьеса.

Замечание 1. Заметим, что характеристическая функция существует для любой случайной величны ξ , т. к. всегда существует соответствующий интеграл, что следует из простой выкладки:

$$|\varphi_{\xi}(t)| = \left| \int_{\mathbb{R}} e^{itx} dF(x) \right| \leqslant \int_{\mathbb{R}} |e^{itx}| dF(x) = \int_{\mathbb{R}} dF(x) = 1.$$

Замечание 2. Если случайная величина ξ имеет дискретное распределение, то

$$\varphi_{\xi}(t) = \sum_{k} e^{itx_k} \mathbb{P}\{\xi = x_k\},\,$$

где x_1, x_2, \ldots не более чем счётный набор значений, которые принимает случайная величина ξ . Заметим, что в случае целочисленной неотрицательной случайной величины характеристическая функция связана с производящей функцией формулой:

$$\varphi_{\xi}(t) = \sum_{n=0}^{\infty} e^{it \cdot n} \mathbb{P}\{\xi = n\} = g_{\xi}(e^{it}).$$

Замечание 3. Если случайная величина ξ имеет абсолютно непрерывное распределение с плотностью f(x), то

$$\varphi_{\xi}(t) = \int_{\mathbb{R}} e^{itx} f(x) dx,$$

то есть характеристическая функция есть (обратное) преобразование Фурье функции f(x).

Из определения характеристической функции случайной величины видно, что она однозначно определяется функцией распределения случайной величины. Оказывается, верно и обратное.

Теорема 1. (**Теорема единственности**). Характеристическая функция $\varphi_{\xi}(t)$ случайной величины ξ однозначно определяет её функцию распределения $F_{\xi}(x)$. Кроме того, верна формула обращения: для любых точек непрерывности x и y функции $F_{\xi}(x)$ выполняется

$$F_{\xi}(y) - F_{\xi}(x) = \frac{1}{2\pi} \lim_{s \to \infty} \int_{-s}^{s} \frac{e^{-itx} - e^{-ity}}{it} \varphi_{\xi}(t) dt.$$

Если функция $\frac{\varphi_{\xi}(t)}{t}$ интегрируема на бесконечности, то становится законным предельный переход под знаком интеграла, и можно записать

$$F_{\xi}(y) - F_{\xi}(x) = \frac{1}{2\pi} \int_{\mathbb{R}} \frac{e^{-itx} - e^{-ity}}{it} \varphi_{\xi}(t) dt.$$

Если распределение с.в. непрерывно и $\varphi(t) \in \mathbb{L}_1(\mathbb{R})$, то

$$f(x) = \frac{1}{2\pi} \int_{\mathbb{R}} e^{-itx} \varphi(t) dt.$$

Характеристические функции очень удобны для исследования свойств сумм случайных величин.

Перечислим важнейшие свойства характеристических функций.

- 1. $\varphi_{\xi}(0) = 1$ и $|\varphi_{\xi}(t)| \leqslant 1$ для всех $t \in \mathbb{R}$. Обе части данного утверждения очевидны, а вторую часть мы показали в замечании 1.
- 2. $\varphi_{a\xi+b}(t)=e^{itb}\varphi_{\xi}(ta),$ где $a,b\in\mathbb{R}$ константы. Действительно,

$$\varphi_{a\xi+b}(t) = \mathbb{E}\left[e^{it(a\xi+b)}\right] = e^{itb}\mathbb{E}\left[e^{iat\xi}\right] = e^{itb}\varphi_{\xi}(ta).$$

3. Если ξ_1,\dots,ξ_n — независимые случайные величины, то характеристическая функция суммы $S_n=\xi_1+\dots+\xi_n$ равна

$$\varphi_{S_n}(t) = \prod_{k=1}^n \varphi_{\xi_k}(t).$$

Так как мат. ожидание произведения независимых случайных величин равно произведению их мат. ожиданий, то

$$\varphi_{S_n}(t) = \mathbb{E}\left[e^{it(\xi_1 + \dots + \xi_n)}\right] = \mathbb{E}\left[\prod_{k=1}^n e^{it\xi_k}\right] = \prod_{k=1}^n \mathbb{E}\left[e^{it\xi_k}\right] = \prod_{k=1}^n \varphi_{\xi_k}(t).$$

4. Характеристическая функция равномерна непрерывна на всей прямой. Докажем это свойство. Рассмотрим для произвольного $t \in \mathbb{R}$ и h > 0 разность

$$\varphi_{\xi}(t+h) - \varphi_{\xi}(t) = \int_{\mathbb{R}} e^{itx} (e^{ixh} - 1) dF(x).$$

Нам нужно показать, что для произвольного $\varepsilon > 0$ мы можем подобрать h таким, что для произвольного t указанная разность по модулю будет меньше ε . Для этого оценим её модуль:

$$|\varphi_{\xi}(t+h) - \varphi_{\xi}(t)| \leqslant \int_{\mathbb{R}} |e^{ixh} - 1| dF(x).$$

Выберем достаточно большое A > 0, чтобы

$$\int_{|x|\geqslant A} dF(x) < \frac{\varepsilon}{4},$$

а для найденного A подберём h>0 таким образом, что

$$|e^{ixh}-1|<rac{arepsilon}{2}$$
 при $x\in [-A,A].$

Тогда

$$|\varphi_{\xi}(t+h) - \varphi_{\xi}(t)| \leqslant \int_{-A}^{A} |e^{ixh} - 1| dF(x) + \int_{|x| \geqslant A} |e^{ixh} - 1| dF(x) \leqslant \frac{\varepsilon}{2} \int_{-A}^{A} dF(x) + 2 \int_{|x| \geqslant A} dF(x) \leqslant \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

5. Если существует абсолютный момент n-го порядка $\mathbb{E}\left[|\xi|^n\right] < \infty, n \geqslant 1$, то существует непрерывная n-я производная функции $\varphi_{\xi}(t)$ и $\varphi_{\xi}^{(n)}(0) = i^n \mathbb{E}\left[\xi^n\right]$. Во-первых, если существует $\mathbb{E}\left[|\xi|^n\right] < \infty$ то для всех $1 \leqslant k \leqslant n$ существуют $\mathbb{E}\left[|\xi|^k\right] < \infty$. Поэтому для всех $1 \leqslant k \leqslant n$

$$\left| \int\limits_{\mathbb{R}} (ix)^k e^{itx} dF(x) \right| \leqslant \int\limits_{\mathbb{R}} |x|^k dF(x) = \mathbb{E}\left[|\xi|^k \right] < \infty,$$

то есть интегралы $\int\limits_{\mathbb{R}} (ix)^k e^{itx} dF(x)$ сходятся равномерно по t, а значит, можно дифференцирование по t менять местами с операцией взятия интеграла, откуда

$$\varphi_{\xi}^{(k)}(t) = i^k \int_{\mathbb{R}} x^k e^{itx} dF(x), \quad \varphi_{\xi}^{(k)}(0) = i^k \int_{\mathbb{R}} x^k dF(x) = i^k \mathbb{E}\left[\xi^k\right].$$

6. $\overline{\varphi_{\xi}}(t)=\varphi_{\xi}(-t)=\varphi_{-\xi}(t)$. Действительно, $\overline{\varphi_{\xi}}(t)=\overline{\mathbb{E}\left[e^{it\xi}\right]}$

Пример 1. Пусть $\xi \sim \mathcal{N}(\mu, \sigma^2)$. Покажите, что $\varphi_{\xi}(t) = e^{it\mu - \frac{t^2\sigma^2}{2}}$.

Доказательство. Рассмотрим для начала $\eta \sim \mathcal{N}(0,1)$. В этом случае

$$\varphi_{\eta}(t) = \frac{1}{\sqrt{2\pi}} \int_{\mathbb{D}} e^{itx - \frac{x^2}{2}} dx.$$

Дифференцируя хар. функцию по t, получим

$$\begin{aligned} \varphi_{\eta}'(t) &= \frac{1}{\sqrt{2\pi}} \int\limits_{\mathbb{R}} ix e^{itx - \frac{x^2}{2}} dx = -\frac{i}{\sqrt{2\pi}} \int\limits_{\mathbb{R}} e^{itx} d\left(e^{-\frac{x^2}{2}}\right) = -\frac{i}{\sqrt{2\pi}} e^{itx} e^{-\frac{x^2}{2}} \Big|_{x = -\infty}^{x = +\infty} + \frac{i^2 t}{\sqrt{2\pi}} \int\limits_{\mathbb{R}} e^{itx - \frac{x^2}{2}} dx \\ &= -\frac{t}{\sqrt{2\pi}} \int\limits_{\mathbb{R}} e^{itx - \frac{x^2}{2}} dx = -t \varphi_{\eta}(t), \end{aligned}$$

откуда следует, что

$$\ln\left(\varphi_{\eta}(t)\right) = -\frac{t^2}{2} + c.$$

Так как $\varphi_{\eta}(0) = 1$, то $c = 0, \varphi_{\eta}(t) = e^{-\frac{t^2}{2}}$.

Пусть теперь $\xi \sim \mathcal{N}(\mu, \sigma^2)$, тогда её можно представить в виде $\xi = \sigma \eta + \mu$, где $\eta \sim \mathcal{N}(0, 1)$. Из свойства 2 мы получаем, что

$$\varphi_{\xi}(t) = e^{it\mu} \cdot e^{\frac{(\sigma t)^2}{2}} = e^{it\mu - \frac{t^2\sigma^2}{2}}.$$

Следствие 1. Если $X \sim \mathcal{N}(\mu_1, \sigma_1^2), Y \sim \mathcal{N}(\mu_2, \sigma_2^2)$ и эти случайные величины независимы, то $X + Y \sim \mathcal{N}(\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2)$.

Пример 2. Пусть $\xi \sim \text{Poisson}(\lambda)$. Докажите, что $\varphi_{\xi}(t) = \exp{(\lambda(e^{it}-1))}$.

Доказательство. Пользуясь тем, что производящая функция пуассоновской случайной величины нами уже посчитана и равна $g_{\xi}(z) = \exp(\lambda(z-1))$, получим

$$\varphi_{\xi}(t) = g_{\xi}(e^{it}) = \exp\left(\lambda(e^{it} - 1)\right).$$

Пример 3. Пусть $\xi \sim \text{Exp}(\lambda)$. Докажите, что $\varphi_{\xi}(t) = \frac{\lambda}{\lambda - it}$

Доказательство. Посчитаем по определению: $\varphi_{\xi}(t) = \int\limits_{0}^{\infty} \lambda e^{-\lambda x + itx} dx = \lambda \frac{e^{x(it-\lambda)}}{it-\lambda} \Big|_{0}^{\infty} = \frac{\lambda}{\lambda - it}.$

Пример 4. Найдите хар. функцию случайной величины, имеющей Гамма распределение

 $Peшение.~~\xi\sim\Gamma(\alpha,\lambda),~f_{\xi}(x)=rac{\lambda^{\alpha}x^{\alpha-1}}{\Gamma(\alpha)}e^{-\lambda x},x\geq0.~{
m B}$ таком случае

$$\varphi_{\xi}(t) = \frac{\lambda^{\alpha}}{\Gamma(\alpha)} \int_{0}^{\infty} x^{\alpha - 1} e^{itx - \lambda x} dx.$$

Дифференцируя по t, получим:

$$\varphi'_{\xi}(t) = \frac{\lambda^{\alpha}}{\Gamma(\alpha)} \int_{0}^{\infty} ix^{\alpha} e^{itx - \lambda x} dx = \frac{i\lambda^{\alpha}}{\Gamma(\alpha)} \left(x^{\alpha} \frac{e^{itx - \lambda}}{it - \lambda} \Big|_{0}^{\infty} + \frac{\alpha}{\lambda - it} \int_{0}^{\infty} x^{\alpha - 1} e^{-\lambda x + itx} \right) = \frac{i\alpha}{\lambda - it} \varphi_{\xi}(t).$$
 Откуда следует, что $\varphi_{\xi}(t) = c(\lambda - it)^{-\alpha}$. Из условия нормировки в 0, получаем, $\varphi_{\xi}(t) = \left(\frac{\lambda}{\lambda - it}\right)^{\alpha}$.

Следствие 2. Если $X \sim \Gamma(\alpha_1, \lambda), Y \sim \Gamma(\alpha_2, \lambda)$ и эти случайные величины независимы, то $X + Y \sim \Gamma(\alpha_1 + \alpha_2, \lambda)$.

Как ответить на вопрос является ли та или иная функция характеристической? Иногда это можно сделать с помощью перечисленных нами свойств.

Упражнение 4. Может ли функция $\varphi(t)$ быть характеристической функцией некоторой случайной величины, если

- 1) $\varphi(t) = \frac{1}{1+t}$;
- 2) $\varphi(t) = 1 + t$;
- 3) $\varphi(t) = \sin t$;
- 4) $\varphi(t) = \cos t$?

Решение. 1) $\varphi(t) = \frac{1}{1+t}$ не является равномерно непрерывной на \mathbb{R} , т. к. она не непрерывна (есть разрыв в точке t=-1). Значит, она не может быть характеристической функцией.

- 2) $\varphi(t) = 1 + t$ не является характеристической функцией, т. к. она неограниченна (см. свойство 1).
- 3) $\varphi(t) = \sin t$ не является характеристической функцией, т. к. $\sin 0 = 0 \neq 1$.
- 4) $\varphi(t) = \cos t$ является характеристической функцией следующей случайной величины:

$$\xi = \begin{cases} 1, & \text{с вероятностью } \frac{1}{2}, \\ -1, & \text{с вероятностью } \frac{1}{2}. \end{cases}$$

Действительно,

$$\varphi_{\xi}(t) = \frac{1}{2}e^{it} + \frac{1}{2}e^{-it} = \frac{1}{2}(\cos t + i\sin t + \cos t - i\sin t) = \cos t = \varphi(t).$$

В общем случае ответ на вопрос, является ли та или иная функция характеристической, достаточно сложен. Следующая теорема даёт критерий того, является ли функция характеристической для некоторой случайной величины.

Теорема 2. Теорема Бохнера-Хинчина. Для того, чтобы непрерывная функция $\varphi(t)$, обладающая свойством $\varphi(0)=1$, была характеристической, необходимо и достаточно, чтобы она была **неотрицательно определённой**, т. е. чтобы для любого $n\in\mathbb{N}$ для любых действительных t_1,\ldots,t_n и любых комплексных чисел $\lambda_1,\ldots,\lambda_n$ выполнялось

$$\sum_{k,j=1}^{n} \varphi(t_k - t_j) \lambda_k \overline{\lambda_j} \geqslant 0.$$

8

Теорема 3. (Теорема непрерывности). Пусть $\varphi_n(t) = \int\limits_{\mathbb{R}} e^{itx} dF_n(x)$ есть последовательность характеристических функций и $\varphi_n(t) \to \varphi(t)$ при $n \to \infty$ и при каждом t. Тогда следующие условия эквивалентны:

- а) $\varphi(t)$ является характеристической функцией,
- b) $\varphi(t)$ непрерывна в точке t=0,
- с) существует такая функция распределения F(x), что во всех её точках неперывности $F_n(x) \to F(x)$ при $n \to \infty$, причём $\varphi(t) = \int\limits_{\mathbb{D}} e^{itx} dF(x)$.

Часто теоремой непрерывности называют следующий факт, вытекающий из сформулированной выше теоремы.

Следствие 3. Для сходимости $F_n(x)$ к F(x) во всех точках непрерывности F(x) необходимо и достаточно, чтобы $\varphi_n(t) \to \varphi(t)$ при каждом t, где $\varphi(t)$ — характеристическая функция, соответствующая F.

Пример 5. Пусть $\{\xi_n\}_{n=1}^{\infty}$ — последовательность случайных величин таких, что $\xi_n \sim \mathcal{U}[-n,n]$. Показать, что последовательность их характеристических функций сходится к разрывной в нуле функции.

Peшение. Найдём характеристическую функцию ξ_n :

$$\varphi_{\xi_n}(t) = \int_{-n}^n e^{itx} \cdot \frac{1}{2n} dx = \frac{e^{itn} - e^{-itn}}{2int} = \frac{\sin(tn)}{tn}, \quad t \neq 0,$$

а при t=0 получаем $\varphi(0)=1$. Для любого $t\neq 0$ последовательность $\varphi_{\xi_n}(t)\to 0$ при $n\to\infty$, а при t=0 последовательность $\varphi_{\xi_n}(0)\to 1$ при $n\to\infty$. Получаем, что предельная функция имеет разрыв в нуле.

Многомерное нормальное распределение

Определение 3. Характеристической функцией случайного вектора $\xi = (\xi_1, \dots, \xi_n)^{\top}$ называется комплекснозначная функция от вещественного вектора $t = (t_1, \dots, t_n)^{\top}$, равная

$$\varphi_{\xi}(t) \stackrel{\text{def}}{=} \mathbb{E}\left[e^{it^{\top}\xi}\right] = \mathbb{E}\left[\exp\left(i\sum_{k=1}^{n} t_{k}\xi_{k}\right)\right] = \int_{\mathbb{R}^{n}} \exp\left(i\sum_{k=1}^{n} t_{k}x_{k}\right) d\mathbb{P}_{\xi_{1},\dots,\xi_{n}}(x_{1},\dots,x_{n}).$$

Если существует смешанный момент $\mathbb{E}\left[\xi_1^{k_1}\dots\xi_n^{k_n}\right]$, то $\varphi_{\xi}(t)$ имеет производную порядка $k_1+\dots+k_n$:

$$\frac{\partial \varphi_{\xi}^{k_1+\ldots+k_n}(t)}{\partial t_{1}^{k_1}\ldots\partial t_{n}^{k_n}}\Big|_{t=0} = i^{k_1+\ldots+k_n}\mathbb{E}\left[\xi_{1}^{k_1}\ldots\xi_{n}^{k_n}\right].$$

Определение 4. Нормальным случайным вектором $\xi \sim \mathcal{N}(\mu, \Sigma)$ будем называть случайный вектор, имеющий характеристическую функцию

$$\varphi_{\xi}(t) = e^{it^{\top}\mu - \frac{1}{2}t^{\top}\Sigma t}.$$

Пусть случайные векторы $\xi \in \mathbb{R}^{d_1}$ и $\eta \in \mathbb{R}^{d_2}$ имеют совместное нормальное распределение

$$(\xi, \eta) \sim \mathcal{N}\left(\begin{pmatrix} \mu_{\xi} \\ \mu_{\eta} \end{pmatrix}, \begin{pmatrix} \Sigma_{\xi\xi} & \Sigma_{\xi\eta} \\ \Sigma_{\eta\xi} & \Sigma_{\eta\eta} \end{pmatrix}\right),$$

где $\mu_{\xi} \in \mathbb{R}^{d_1}$, $\mu_{\eta} \in \mathbb{R}^{d_2}$, $\Sigma_{\xi\xi} \in \mathbb{R}^{d_1 \times d_1}$, $\Sigma_{\xi\eta} = \Sigma_{\eta\xi}^{\top} \in \mathbb{R}^{d_1 \times d_2}$, $\Sigma_{\eta\eta} \in \mathbb{R}^{d_2 \times d_2}$.

Тогда

$$\xi \sim \mathcal{N}\left(\mu_{\xi}, \Sigma_{\xi\xi}\right)$$
.

Если $\Sigma_{\xi\xi}$ – невырожденная матрица, то

$$(\eta|\xi=x) \sim \mathcal{N}\left(\mu_{\eta} + \Sigma_{\eta\xi}\Sigma_{\xi\xi}^{-1}(x-\mu_{\xi}), \Sigma_{\eta\eta} - \Sigma_{\eta\xi}\Sigma_{\xi\xi}^{-1}\Sigma_{\xi\eta}\right).$$