ELEMENTOS Y PROPIEDADES DE TRIÁNGULOS — 1ro de secundaria.

Marco teórico

I. DEFINICIÓN

El triángulo es la figura geométrica que se forma al unir tres puntos no colineales (vértices) mediante segmentos de recta (lados).

II. ELEMENTOS

Vértices: A, B y C Lados: \overline{AB} , \overline{BC} y \overline{CA}

Notación:

 Δ ABC:

Se lee: triángulo de vértices A, B y C.

III.REGIONES DETERMINADAS EN EL PLANO POR EL TRIÁNGULO Y LOS ÁNGULOS ASOCIADOS

En la figura, las medidas de los ángulos:

Interiores: α, β, θExteriores: x, y, z

Del gráfico, las longitudes de los lados:

$$AB = c$$
; $BC = a$ y $CA = b$

Longitud del perímetro de la región triangular ABC (2p)

$$2p=a+b+c$$

Semiperímetro de la región triangular ABC (p):

$$p = \frac{a+b+c}{2}$$

IV.PROPIEDADES FUNDAMENTALES DEL TRIÁNGULO

1. En todo triángulo, la suma de las medidas de los ángulos interiores es igual a 180°.

 En todo triángulo, la suma de las medidas de dos ángulos interiores es igual a la medida del tercer ángulo exterior.

3. En todo triángulo, la suma de las medidas de los ángulos exteriores (una por vértice) es igual a 360°.

Propiedades adicionales

*

$$x = \alpha + \beta + \theta$$

*

Ejercicios propuestos:

1. Calcula "x".

2. Calcula "x".

3. Calcula "x".

4. Calcula "x".

Resolución:

Nos piden "x" En el gráfico, completando ángulos.

Luego: $x + 80^{\circ} + 20^{\circ} = 180^{\circ}$ $x = 180^{\circ} - 100^{\circ}$ Por tanto: $x = 80^{\circ}$ 5. Calcula "x".

6. Calcula "x".

7. Calcula "x".

8. Calcula "x".

Resolución:

Nos piden "x"

En el gráfico, completando ángulos.

Propiedad: 🛆

$$2x + x + 100^{\circ} = 160^{\circ}$$

$$3x = 60^{\circ}$$

Por tanto: $x = 20^{\circ}$

9. Calcula "x".

10. Calcula "x + y".

11. Calcula "x".

12. Calcula "x".

Resolución:

Nos piden "x".

En el gráfico, completando ángulos.

Por propiedad:

$$x + 90^{\circ} = 45^{\circ} + 60^{\circ}$$

$$x = 105^{\circ} - 90^{\circ}$$

Por tanto: $x = 15^{\circ}$

13. Calcula "x".

14. Calcula "x".

Ejercicios pre-uni y concursos nacionales:

- 1. Dado el triángulo ABC, en las prolongaciones de \overline{AB} y \overline{AC} se ubican los puntos M y T respectivamente; tal que: $\langle BMT = \langle BCT; AC = 6 \rangle$ y BC = 4, calcular la suma del máximo y mínimo valor entero de AB.
- 2. En un triángulo ABC, las longitudes de los lados \overline{AC} y \overline{BC} suman 18. Se ubica el punto S en la región exterior relativa a \overline{AB} , tal que \overline{SA} y \overline{SB} miden 8 y 4, respectivamente. Halle el máximo valor entero de SC.
- 3. Tres pueblos se encuentran ubicados como muestra el gráfico. La distancia entre el pueblo A y el pueblo B es 5 km, la distancia entre los pueblos B y C es 8 km y el ángulo que forman las distancias hacia A es menor en medida al ángulo que forman las distancias hacia B. Calcule la suma entre la mínima y la máxima distancia entre los pueblos A y C.

- 4. En un cuadrilátero convexo ABCD, AB = 6, BD = CD = 2 y AC = 8. Halla AD + BC.
- 5. En un triángulo ABC: $< A = 30^{\circ} \text{ y} < B = 120^{\circ}$. Sobre la prolongación de \overline{AB} se ubica el punto P y sobre \overline{AC} se ubica el punto Q, tal que AB = BP = QC. Calcula el < PQC.