Homework 05

Due Date: 111/03/23

Instruction. Do not submit part B.

A Homework Problems

- 1. Let T be a normal operator on a finite-dimensional inner product space V.
 - (a) Prove that $\ker(T) = \ker(T^*)$ and $\operatorname{Im}(T) = \operatorname{Im}(T^*)$.
 - (b) Assume V is a complex vector space and suppose W is a T-invariant subspace of V. Prove that W is also T^* -invariant.
- 2. Assume that T is a linear operator on a complex (not necessarily finite-dimensional) inner product space V with an adjoint T^* . Prove the following results.
 - (a) If T is self-adjoint, then $\langle T(x), x \rangle$ is real for all $x \in V$.
 - (b) If T satisfies $\langle T(x), x \rangle = 0$ for all $x \in V$, then T = 0. (*Hint*. Replace x by x + y and then by x + iy.)
 - (c) If $\langle T(x), x \rangle$ is real for all $x \in V$, then $T = T^*$.
 - (d) Does the results (2b), (2c) above hold if we assume that *V* is a real inner product space? Prove or give a counterexample.

Definition A.1.

- (i) A linear operator T on a finite-dimensional inner product space is called **positive definite** [**positive semidefinite**] if T is self-adjoint and $\langle T(x), x \rangle > 0$ [$\langle T(x), x \rangle \geq 0$] for all $x \neq 0$.
- (ii) An $n \times n$ matrix A with entries from \mathbb{R} or \mathbb{C} is called **positive definite** [positive semidefinite] if L_A is positive definite [positive semidefinite].
- 3. Let T be a self-adjoint linear operators on an n-dimensional inner product space V, and let $A = [T]_{\beta}$, where β is an orthonormal basis for V. Prove the following results.
 - (a) T is positive definite [semidefinite] if and only if all of its eigenvalues are positive [nonnegative].
 - (b) T is positive definite if and only if

$$\sum_{i,j=1}^{n} A_{ij} a_j \overline{a_i} > 0$$

for all nonzero *n*-tuples $(a_1, a_2, \dots, a_n) \in \mathbb{C}^n$. That is, $x^*Ax > 0$ for all nonzero $x \in \mathbb{C}^n$.

- (c) (Cholesky decomposition) T is positive semidefinite if and only if $A = B^*B$ for some square matrix $B \in M_n(\mathbb{C})$.
- 4. Let

$$A = \begin{bmatrix} 6 & 1 & 0 \\ 1 & 2 & 1 \\ 0 & 1 & 2 \end{bmatrix} \in M_3(\mathbb{R}).$$

Find $B \in M_3(\mathbb{R})$ such that $B^*B = A$ (so A is positive semidefinite).

B Supplementary Problems

- 5. Let $A \in M_n(\mathbb{C})$ and have eigenvalues $\lambda_1, \dots, \lambda_n$. Show that the following assertions are equivalent:
 - (a) A is normal.
 - (b) I A is normal.
 - (c) Every eigenvector of A is an eigenvector of A^* .

(d)
$$\operatorname{tr}(A^*A) = \sum_{i,j=1}^n |a_{ij}|^2 = \sum_{i=1}^n |\lambda_i|^2$$
.

- (e) $\operatorname{tr}(A^*A)^2 = \operatorname{tr}((A^*)^2 A^2)$.
- (f) $||Ax|| = ||A^*x||$ for all $x \in \mathbb{C}^n$.
- (g) $A + A^*$ and $A A^*$ commute.
- (h) $A^*A AA^*$ is positive semidefinite.
- (i) A commutes with A^*A .
- (j) A commutes with $AA^* A^*A$.
- 6. Let $A \in M_n(\mathbb{C})$. Show that the following assertions are equivalent:
 - (a) A is Hermitian.
 - (b) x^*Ax is real for all $x \in \mathbb{C}^n$.
 - (c) $A^2 = A^*A$.
 - (d) $A^2 = AA^*$.
 - (e) $\operatorname{tr}(A^2) = \operatorname{tr}(A^*A)$.
- 7. (Courant-Fischer min-max theorem) Let $A \in M_n(\mathbb{C})$ be Hermitian and $\lambda_1 \leq \cdots \leq \lambda_n$ be its eigenvalues repeated with multiplicity. For $1 \leq k \leq n$, show that

$$\lambda_k = \min_{\dim S_k = k} \max_{0 \neq x \in S_k} \frac{x^* A x}{x^* x}$$

$$= \max_{\dim S_{n-k+1} = n-k+1} \min_{0 \neq x \in S_{n-k+1}} \frac{x^* A x}{x^* x}.$$

where S_k and S_{n-k+1} runs over all subspaces of \mathbb{C}^n with dimension k and n-k+1 respectively. (*Hint*: Let $\{v_1,\ldots,v_n\}$ be an orthonormal set of eigenvectors of A. For the first equality, choose a non-zero vector in $S_k \cap \text{span}\{v_k,\ldots,v_n\}$ to prove \geq , and choose $S_k = \text{span}\{v_1,\ldots,v_k\}$ to prove \leq . Similar for the second equality.)

8. The following questions consider the **partial trace** of a matrix (usually Hermitian). Let V be an m-dimensional subspace of \mathbb{C}^n , the **partial trace** of a Hermitian matrix $A \in M_n(\mathbb{C})$ with respect to V is defined to be

$$tr(A|_V) = \sum_{i=1}^m v_i^* A v_i$$
 (B.1)

where $\{v_i\}_{i=1}^m$ is an orthonormal basis of V.

(a) Show that the definition of partial trace (B.1) is independent of the choice of orthonormal basis $\{v_i\}_{i=1}^m$. That is, if both $\{v_i\}_{i=1}^m$ and $\{w_i\}_{i=1}^m$ are orthonormal basis of V, we must have

$$\sum_{i=1}^{m} v_i^* A v_i = \sum_{i=1}^{m} w_i^* A w_i.$$

Hence, the partial trace of A with respect to V only depends on V.

(b) **(Extremal Partial Trace)** Let $A \in M_n(\mathbb{C})$ be Hermitian and $\lambda_1 \leq \cdots \leq \lambda_n$ be its eigenvalues repeated with multiplicity. For $1 \leq k \leq n$, show that

$$\lambda_1 + \lambda_2 + \dots + \lambda_k = \inf_{\dim S_k = k} \operatorname{tr}(A|_{S_k})$$

$$\lambda_{n-k+1} + \lambda_{n-k+2} + \dots + \lambda_n = \sup_{\dim S_k = k} \operatorname{tr}(A|_{S_k})$$

where S_k runs over all subspaces of \mathbb{C}^n with dimension k. (*Hint*: Let $\{v_1, \ldots, v_n\}$ be an orthonormal set of eigenvectors of A. For the second identity, show \leq by taking $S_k = \operatorname{span}\{v_1, \ldots, v_k\}$ and apply induction on k with the fact $\lambda_n \geq v^*Av$ for all $v \in \mathbb{C}^n$ to show \geq . The first identity follows similarly)

Remark. In fact, this shows that $A \mapsto \lambda_1 + \lambda_2 + \cdots + \lambda_k$ is a convex function and $A \mapsto \lambda_{n-k+1} + \lambda_{n-k+2} + \cdots + \lambda_n$ a concave function.

(c) (Schur-Horn Inequality) Using (8b), show that

$$\lambda_{n-k+1} + \lambda_{n-k+2} + \dots + \lambda_n \le A_{i_1 i_1} + A_{i_2 i_2} + \dots + A_{i_k i_k} \le \lambda_1 + \lambda_2 + \dots + \lambda_k$$

for any $1 \le i_1 < i_2 < \dots < i_k \le n$ (k distinct integers between 1 and n), where A_{11} , A_{22}, \dots, A_{nn} are the diagonal entries of A.

Definition B.1. Let \mathbb{F} be a field and $A \in M_n(\mathbb{F})$. For $1 \leq k \leq n$, define the k-th principal submatrix of A, denoted by $A_k \in M_k(\mathbb{F})$, by $(A_k)_{ij} = A_{ij}$ for $1 \leq i, j \leq k$.

9. **(Cauchy interlacing theorem)** Let $A \in M_n(\mathbb{C})$ be Hermitian and $\lambda_1(A) \leq \cdots \leq \lambda_n(A)$ be its eigenvalues repeated with multiplicity. Let B be the (n-1)-th principal submatrix of A (that is, B is obtained by deleting the n-th row and n-th column of A) and $\lambda_1(B) \leq \cdots \leq \lambda_{n-1}(B)$ be its eigenvalues repeated with multiplicity. Prove that

$$\lambda_1(A) \le \lambda_1(B) \le \lambda_2(A) \le \lambda_2(B) \le \dots \le \lambda_{n-1}(A) \le \lambda_{n-1}(B) \le \lambda_n(A).$$

(*Hint*: Use exercise (7).)

- 10. Let $A \in M_n(\mathbb{C})$ be Hermitian. Prove that the following statements are equivalent:
 - (a) A is positive-definite.
 - (b) **(Sylvester's criterion)** Every determinant of principal submatrix of A is positive. That is, the matrices $M_k = (m_{ij})_{1 \le i,j \le k}$ defined by $m_{ij} = a_{ij}$ have nonnegative determinant for all $1 \le k \le n$.
 - (c) $A = B^*B$ for some $B \in M_n(\mathbb{C})$ invertible.
 - (d) $X^*AX \ge 0$ for all $n \times m$ matrix X.
 - (e) $tr(AX) \ge 0$ for all positive semidefinite matrix X.
 - (f) $X^*AX \ge 0$ for all $n \times m$ matrix X.

(*Hint*: For (10a) \Rightarrow (10b), use exercises (3a) and (9). For (10b) \Rightarrow (10c), consider the LDU decomposition of A.)