Entregable 2

Alex Pérez

30 de octubre de 2024

Título del Proyecto

Machine Learning Applied for Cybersecurity of Energy Management Systems

(Aprendizaje Automático Aplicado a la Ciberseguridad del Manejo de Sistemas Energéticos)

Tutor: Felipe Grijalva

Autor: Alex Pérez

Visualización del Dataset Original

					Demand				
1	10729	11031	11081	11132	11139	11194	11607	30051	3007
2	69.040000000000002	39.41917999999998	14.39	37.43	71.9999999999999	63.570000000000014	43.43000000000001	25.26	21.24
3	71.92	38.38917999999999	13.9999999999998	38.9400000000000026	70.99	62.220000000000056	38.57	24.630000000000003	21.1
4	67.39000000000001	32.53918000000001	13.96	62.78000000000005	63.180000000000014	60.76	34.30000000000001	26.05	21.16
5	65.7599999999999	29.629179999999995	13.9099999999998	31.24999999999975	50.5699999999998	49.1899999999999	31.40999999999997	31.49	21.03
6	64.36	27.99918000000001	14.0100000000000002	30.21999999999985	47.26999999999975	41.41000000000001	26.1400000000000008	34.2	19.62
7	63.38	26.959179999999986	14.09	31.79999999999976	42.96	38.50999999999984	25.110000000000007	37.91	15.31
8	64.95	27.87918000000001	13.99	28.61999999999965	44.490000000000016	40.680000000000014	24.62	42.82	15.23999999999999
9	65.42	28.169179999999987	14.71	31.5599999999998	46.1899999999998	46.67000000000003	29.15999999999997	48.86	15.27
10	68.82000000000001	29.779180000000007	16.5999999999998	36.84	54.4399999999998	50.96000000000005	31.15	48.9299999999999	15.44
11	74.84	34.63918	15.82	43.78000000000003	69.6	75.02000000000001	34.68	47.18	15.3
2	71.71000000000001	46.35918000000001	15.47	47.260000000000003	77.9299999999998	82.61000000000001	40.2999999999999	46.62	15.22
3	73.100000000000002	44.30918000000002	15.73999999999998	51.140000000000015	88.6799999999998	86.47	48.57999999999999	46.61	15.4
4	74.06	42.06918000000002	15.82999999999998	85.01	99.71	75.53000000000006	42.73	46.26	15.47
5	73.0	41.159180000000006	14.29	93.54000000000003	97.2499999999999	89.8399999999997	40.64	46.38	15.54
6	75.4899999999998	44.04918000000001	14.34	78.3999999999998	98.22000000000003	86.6099999999997	44.570000000000014	47.16	15.5099999999999
7	80.21	43.31918	14.9299999999998	55.43000000000001	102.8899999999992	91.51000000000003	50.41999999999995	54.03	15.48
8	81.430000000000002	58.93918000000004	15.05	71.9399999999997	124.38	123.710000000000002	68.86000000000000	51.8	15.5099999999999
9	83.95	68.57918000000002	14.95999999999996	92.0000000000000	142.6499999999998	148.2499999999997	74.98	42.74	15.4
0	82.96	67.25918	15.24999999999998	96.34000000000003	128.41000000000005	131.22000000000003	64.83999999999997	28.42	15.46
1	76.73	58.65917999999999	14.11	77.9799999999999	116.2499999999996	109.0799999999998	50.180000000000014	27.75	15.87
22	75 15	E2 1001900000000	12.71	66 10000000000001	09.0	00.00	49.61000000000000	27.74	1E 02

Figura: Dataset de Demanda

Dataset Utilizado

Datos de Entrenamiento:

- Cada transformador tiene 25,000 mediciones temporales.
- Dataset total: 17 transformadores.

Distribución de Datos:

- Entrenamiento: Datos 0 a 17,500.
- Validación: Datos 17,501 a 20,000.
- Testing (prototipo FDIA): Datos 20,001 a 22,500.
- Evaluación final FDIA: Últimos 2,500 datos.

Frecuencia de las Mediciones:

• Cada medición representa 1 hora de datos, lo que implica un total de 25.000 horas.

Frecuencia Fundamental y Ciclo Diario (Análisis Espectral

Frecuencia Fundamental:

- Frequencia identificada: $f \approx 0.0418 \, \text{Hz}$.
- Esta frecuencia corresponde a un ciclo completo cada 24 horas.

Relación Matemática:

$$T = \frac{1}{f} = \frac{1}{0.0418} \approx 24 \, \text{horas}$$
 (1)

Interpretación:

 Relación con el tamaño de ventana: un ciclo completo captura la variabilidad cíclica diaria de la demanda energética.

Ventana de Aprendizaje (sin Análisis Espectral)

Figura: 10023 T&V vs WindowSize

Figura: 10193 T&V vs WindowSize

Figura: 10292 T&V vs WindowSize

Figura: 30118 T&V vs WindowSize

6/14

Resultados de Evaluación de Modelos por Transformador (Conjunto de Test / Ventana de 24 horas)

M./T.	10023	10193	10292	10370	10729	11031	11081	11132	11139	11194	11607	30051	30079	30086	30095	30110	30118
IVI./ I.	LSTM (improved: 128 hidden dim., 3 layers, dropout 30 %)																
MSE	0.0048	0.0059	0.0091	0.0045	0.0035	0.0058	0.0046	0.0096	0.0047	0.0035	0.0091	0.0025	0.0013	0.0070	0.0016	0.0055	0.0030
MAE	0.0507	0.0556	0.0720	0.0528	0.0430	0.0589	0.0330	0.0753	0.0526	0.0438	0.0725	0.0354	0.0207	0.0539	0.0279	0.0532	0.0360
RMSE	0.0691	0.0771	0.0956	0.0670	0.0589	0.0762	0.0675	0.0979	0.0685	0.0590	0.0956	0.0500	0.0356	0.0835	0.0397	0.0743	0.0543
R ²	0.8807	0.7732	0.6468	0.9199	0.8315	0.8070	0.7660	0.7712	0.8216	0.8641	0.6539	0.9617	0.9804	0.8941	0.9819	0.8175	0.9402
	TRANSFORMERS																
MSE	0.0093	0.0080	0.0100	0.0089	0.0048	0.0087	0.0068	0.0173	0.0067	0.0064	0.0100	0.0070	0.0014	0.0121	0.0084	0.0086	0.0094
MAE	0.0745	0.0679	0.0780	0.0755	0.0541	0.0723	0.0542	0.0996	0.0601	0.0607	0.0763	0.0552	0.0195	0.0712	0.0563	0.0713	0.0792
RMSE	0.0964	0.0893	0.1002	0.0945	0.0690	0.0934	0.0824	0.1317	0.0820	0.0797	0.1002	0.0838	0.0375	0.1102	0.0919	0.0926	0.0971
R ²	0.7676	0.6958	0.6123	0.8404	0.7690	0.7104	0.6518	0.5859	0.7447	0.7521	0.6195	0.8925	0.9783	0.8157	0.9032	0.7161	0.8091
									TCN								
MSE	0.0091	0.0081	0.0100	0.0096	0.0043	0.0080	0.0069	0.0158	0.0071	0.0068	0.0098	0.0079	0.0021	0.0109	0.0081	0.0079	0.0059
MAE	0.0755	0.0700	0.0762	0.0776	0.0498	0.0691	0.0580	0.0963	0.0606	0.0596	0.0734	0.0668	0.0363	0.0663	0.0596	0.0660	0.0483
RMSE	0.0954	0.0902	0.1001	0.0980	0.0658	0.0897	0.0832	0.1257	0.0841	0.0822	0.0989	0.0886	0.0457	0.1046	0.0901	0.0889	0.0770
R ²	0.7723	0.6896	0.6133	0.8285	0.7898	0.7331	0.6450	0.6231	0.7316	0.7364	0.6294	0.8799	0.9677	0.8338	0.9070	0.7384	0.8799

Comparación de Modelos Predictivos (LSTM, TCN y Transformers

- Se analizaron los modelos en términos de las métricas RMSE y R².
- Los valores promedio de las métricas fueron calculados para cada modelo en todos los transformadores.

- **LSTM** resultó ser el mejor modelo con un RMSE promedio más bajo y un R² promedio más alto.
- TCN mostró un RMSE promedio y R² promedio ligeramente mejores que Transformers → se propone un Modelo Híbrido que combine LSTM y TCN.

Resultados de Evaluación de Modelos por Transformador (Conjunto de Test / Ventana de 24 horas)

	10023	10193	10292	10370	10729	11031	11081	11132	11139	11194	11607	30051	30079	30086	30095	30110	30118
M./T.	HYBRID (TCN + LSTM (standard: 64 hidden dim., 1 layer, dropout 20 %))																
MSE	0.0047	0.0064	0.0089	0.0046	0.0040	0.0060	0.0072	0.0091	0.0050	0.0032	0.0103	0.0023	0.0031	0.0064	0.0015	0.0050	0.0030
MAE	0.0498	0.0610	0.0711	0.0523	0.0461	0.0581	0.0584	0.0734	0.0536	0.0417	0.0759	0.0353	0.0405	0.0496	0.0275	0.0522	0.0366
RMSE	0.0687	0.0801	0.0946	0.0677	0.0632	0.0775	0.0849	0.0955	0.0705	0.0568	0.1017	0.0484	0.0554	0.0797	0.0392	0.0707	0.0546
R ²	0.8820	0.7552	0.6547	0.9181	0.8064	0.8008	0.6299	0.7825	0.8111	0.8743	0.6082	0.9642	0.9525	0.9035	0.9823	0.8348	0.9397
	HYBRID (TCN + LSTM (improved: 128 hidden dim., 3 layers, dropout 30%))																
MSE	0.0051	0.0060	0.0094	0.0059	0.0038	0.0060	0.0091	0.0085	0.0054	0.0040	0.0099	0.0023	0.0025	0.0066	0.0027	0.0046	0.0030
MAE	0.0521	0.0589	0.0732	0.0596	0.0475	0.0593	0.0736	0.0707	0.0550	0.0458	0.0762	0.0354	0.0312	0.0531	0.0366	0.0506	0.0355
RMSE	0.0714	0.0776	0.0968	0.0769	0.0619	0.0773	0.0954	0.0924	0.0734	0.0631	0.0995	0.0484	0.0501	0.0811	0.0516	0.0681	0.0548
R ²	0.8723	0.7698	0.6382	0.8943	0.8144	0.8015	0.5331	0.7960	0.7952	0.8447	0.6250	0.9641	0.9611	0.9001	0.9694	0.8465	0.9391

Comparación de Modelos Híbridos con Modelo LSTM

• Se evaluaron las métricas RMSE y R².

- LSTM mantuvo el mejor rendimiento global.
- Se propone utilizar solamente esta arquitectura para modelo MIMO.

One-Class SVM para la Detección de Anomalías

- No requiere datos etiquetados.
- Menos dependiente de la distribución.
- Enfoque en una sola clase.
- Fácil de ajustar.

Lo que se va a hacer:

- Obtener las predicciones, usando el modelo LSTM, de nuevos datos normales proporcionados.
- Entrenar el modelo One-Class SVM con dichas predicciones.
- Usar One-Class SVM para detectar posibles anomalías en nuevos datos.

Detección de anomalías - Nuevos Datos normales

• Para el transformador 30095, con $R^2 = 0.9839$ y RMSE = 0.0375.

```
Cantidad total de datos analizados: 2476
Cantidad total de anomalías detectadas: 25
Porcentaje de datos marcados como anomalías: 1.01%
```


Detección de anomalías - Nuevos Datos infectados

- Para el transformador 30095, con $R^2 = 0.9839$ y RMSE = 0.0375.
- Con un factor de ruido de 0.3. El factor de ruido de 0.3 indica que se han añadido desviaciones aleatorias a los valores originales, con una amplitud del 30 % de la magnitud del dato original.

```
Cantidad total de datos analizados: 2476
Cantidad total de anomalías detectadas: 916
Porcentaje de datos marcados como anomalías: 37.00%
```


Referencias

- [1] Zhang, Y., Wang, X., & Liu, J. (2020). Detecting False Data Injection Attacks in Smart Grids Using CNNs and LSTMs. *IEEE Transactions on Smart Grid*, 11(4), 3043-3051. https://arxiv.org/pdf/2006.11477.
- [2] Stanford University. (2024). Recurrent Neural Networks cheatsheet. Recuperado de https://stanford.edu/~shervine/teaching/cs-230/cheatsheet-recurrent-neural-networks.
- [3] Cayci, S., & Eryilmaz, A. (2024). Convergence of Gradient Descent for Recurrent Neural Networks: A Nonasymptotic Analysis. arXiv preprint arXiv:2402.12241. Recuperado de https://arxiv.org/abs/2402.12241.
- [4] Staudemeyer, R. C., & Morris, E. R. (2019). Understanding LSTM a tutorial into Long Short-Term Memory Recurrent Neural Networks. *arXiv preprint arXiv:1909.09586*. Recuperado de https://arxiv.org/abs/1909.09586.