Bibliografía

Básica

- Computabilidad, Complejidad Computacional y Verificación de Programas. Rosenfeld & Irazábal. EDULP. 2013. http://sedici.unlp.edu.ar/handle/10915/27887. *Para la materia básica*.
- Teoría de la Computación y Verificación de Programas. Rosenfeld & Irazábal. McGraw Hill y EDULP. 2010. Libro físico (en Biblioteca). Para las materias básica y avanzada.
- http://sedici.unlp.edu.ar/handle/10915/61426. Para las materias básica y avanzada. Lógica para Informática. Pons, Rosenfeld & Smith. EDULP. 2017.

Complementaria (algunos libros relevantes, todos en Biblioteca)

- Program Verification. Nissim Francez. Addison-Wesley. 1992.
- Verification of Sequential and Concurrent Programs. Apt y Olderog. Springer. 1997.
- Logic in Computer Science. M. Huth y M. Ryan. Cambridge University Press. 2004.

Introducción

- Para la verificación de programas, utilizaremos los siguientes artefactos:
- Un lenguaje de especificación para describir los problemas.
- Un **lenguaje de programación** para describir las soluciones.
- Un método de verificación de programas con axiomas y reglas para verificar un programa con respecto a una especificación.

- Marco de estudio (introductorio):
- Especificaciones: con la lógica de predicados.
- Programas: con un lenguaje secuencial imperativo (variables e instrucciones que las transforman).
- Approachs para verificar programas:
- Semántico (u operacional): se analiza cómo una computación transforma las variables, desde el inicio hasta el final. Prohibitivo cuando se tratan programas muy complejos, en especial concurrentes.
- Sintáctico (o axiomático): las pruebas se desarrollan utilizando axiomas y reglas de inferencia, cada uno asociado a una instrucción del lenguaje de programación. Analizaremos este approach.
- Autómatico (o model checking): cuando los programas se pueden modelizar apropiadamente, verificación puede automatizarse (con autómatas finitos o algoritmos sobre grafos, y lógica temporal).

Ejemplo de prueba axiomática en la aritmética

Prueba de 1 + 1 = 2

Axiomas y reglas a utilizar:

Axiomas y Reglas de la Lógica de Predicados

 $K_1: A \to (B \to A)$

 $\begin{array}{l} K_2^{:}: (\mathsf{A} \to \dot{(}\mathsf{B} \to \dot{\mathsf{C}})) \to ((\mathsf{A} \to \mathsf{B}) \to (\mathsf{A} \to \mathsf{C})) \\ K_3^{:}: ((\neg \mathsf{A}) \to (\neg \mathsf{B})) \to (\mathsf{B} \to \mathsf{A}) \\ K_4^{:}: (\forall \mathsf{x}) \, \mathsf{A}(\mathsf{x}) \to \mathsf{A}(\mathsf{x}|\mathsf{t}), \, \text{si las variables de t están libres en } \mathsf{A}(\mathsf{A}) \\ K_5^{:}: (\forall \mathsf{x}) \, (\mathsf{A} \to \mathsf{B}) \to (\mathsf{A} \to (\forall \mathsf{x}) \, \mathsf{B}), \, \text{si x no está libre en } \mathsf{A} \\ \mathsf{Axiomas de la Igualdad} \, (K_6 \, \mathsf{a} \, K_{10}) \end{array}$

Regla del Modus Ponens (MP): a partir de A y de A \rightarrow B se infiere B

Regla de la Generalización: de A se infiere (∀x) A

Axiomas de la Aritmética

 $\begin{array}{l} N_1: (\forall x) \, \neg (f(x)=0) \\ N_2: (\forall x) (\forall y) (f(x)=f(y) \rightarrow x=y) \\ N_3: (\forall x) (x+0=x) \\ N_4: (\forall x) (\forall y) (x+f(y)=f(x+y)) \\ N_5: (\forall x) (\forall y) (x,0=0) \\ N_6: (\forall x) (\forall y) (x,f(y)=x,y+x) \\ N_7: P(0) \rightarrow ((\forall x) (P(x) \rightarrow P(f(x))) \rightarrow (\forall x) P(x)), \ x \ libre \ en \ P(x) \end{array}$

2do axioma de la multiplicación 1er axioma de la multiplicación 2do axioma del sucesor 2do axioma de la suma 1er axioma del sucesor 1er axioma de la suma inducción

Desarrollo de la prueba:

1.
$$(\forall x)(x + 0 = x)$$

2. $(\forall x)(x + 0 = x) \rightarrow 1 + 0 = 1$

6.
$$(\forall y)(1 + f(y) = f(1 + y))$$

7.
$$(\forall y)(1 + f(y) = f(1 + y)) \rightarrow 1 + f(0) = f(1 + 0)$$

8.
$$1 + f(0) = f(1 + 0)$$

9.
$$x = y \rightarrow f(x) = f(y)$$

10.
$$1 + 0 = 1 \rightarrow t(1 + 0) = t(1)$$

12.
$$(\forall x)(\forall y)(\forall z)(x = y \rightarrow (y = z \rightarrow z)$$

12.
$$(\forall x)(\forall y)(\forall z)(x = y \rightarrow (y = z \rightarrow x = z))$$

13. $1 + f(0) = f(1 + 0) \rightarrow (f(1 + 0) = f(1) \rightarrow 1 + f(0) = f(1))$
14. $f(1 + 0) = f(1) \rightarrow 1 + f(0) = f(1)$
15. $1 + f(0) = f(1)$
16. $1 + 1 = 2$

demostrado (abrev.) desde 12

demostrado (abrev.) desde 9

MP entre 6 y 7

axioma N₂

axioma K₄

MP entre 4 y 5

axioma K₄ axioma N₄

MP entre 1 y 2

axioma N₃ axioma K_4 MP entre 3 y 10

teorema

En 15, f(0) se puede abreviar

MP entre 11 y 14

MP entre 8 y 13

con 1 y f(1) con 2

14.
$$f(1+0) = f(1) \rightarrow 1 + f(0) = f(1)$$

5.
$$1 + f(0) = f(1)$$

16.
$$1+1=2$$

no es completa, existen enunciados verdaderos que no puede probar (Teorema de Incompletitud de Gödel). Al Esta axiomática es sensata (sound), no produce enunciados falsos (p.ej., no permite probar 1 + 1 = 3). Pero

ser incompleta también **es indecidible**: no puede decidirse la verdad o falsedad de algunos enunciados.

90

Idea fuerza sostenida

Basarse en el método axiomático para contribuir a la obtención de programas correctos por construcción (esencia del desarrollo sistemático de software).

Desde el punto de vista didáctico, que seguiremos, se acostumbra a presentar el método con pruebas "a posteriori": dados un programa y una especificación, probar que el programa satisface la especificación.

- **Especificaciones:** formadas por predicados como true, x + 1 = y, $\neg(x < z)$, $x = 0 \lor x > 0$, $\exists x \forall y$: x < y, etc.
- **Programas (notación Backus-Naur)**: $S :: skip \mid x := e \mid S_1 \; ; \; S_2 \mid \text{if B then } S_1 \; \text{else } S_2 \; \text{fi} \mid \text{while B do } S_1 \; \text{od},$ siendo e una expresión entera y B una expresión booleana.

Programa S_{fac} que devuelve x! en la variable y

$$S_{fac}$$
 :: $a := 1$; $y := 1$; while $a < x$ do

$$a := a + 1; y := y . a$$

00

Especificación del programa S_{fac}

$$(x > 0, y = x!)$$

Se usan dos predicados, conocidos como precondición y postcondición, describiendo las condiciones de entrada y salida de S_{fac}

Notar que si x < 0, S_{fac} obtiene y = x! = 1, lo que es falso. ¿Esto quiere decir que el programa es incorrecto?

Visión gráfica de $\{x > 0\}$ S_{fac} $\{y = x!\}$

Terna de Hoare o fórmula de correctitud asociada

$$\{x > 0\} S_{fac} \{y = x!\}$$

Establece que a partir de x > 0, el programa S_{fac} devuelve en la variable y el valor x! Genéricamente se usa $\{p\}$ S $\{q\}$.

Estado de un programa

El estado σ corriente de un programa tiene los contenidos de todas sus variables en un momento dado. P.ej., $\sigma(a) = 1$. La expresión $\sigma \vDash p$ indica que se cumple el predicado p según σ (o σ satisface p). P.ej., si $\sigma(a)=1$, $\sigma(y)=1$, p=(a=y), vale $\sigma \models p$.

El predicado *true* denota todos los estados. A partir de todo estado $\sigma_1 = x > 0$, S termina en un estado $\sigma_2 = y = x!$. Y a partir de un estado $\sigma_3 \neq x > 0$, no importa cómo actúa S.

Método axiomático

- Contiene axiomas y reglas para cada instrucción del lenguaje de programación.
- Por medio de los axiomas y reglas el método permite probar fórmulas {p} S {q}.

. Axioma del skip (SKIP)	
ma d	
ma d	Ω
ma d	$\overline{\mathbf{Z}}$
ma d	S
ma d	\sim
ma d	÷
ma d	S
Ξ	D
Ξ	0
⊏	$\boldsymbol{\omega}$
. Axio	⊏
¥.	<u>0</u>
۹.	×
	⋖
~	.

$$\{b[x|e]\}\ x := e\{b(x)\}$$

El predicado r hace de nexo entre
$$S_1$$
 y S_2 , y luego se elimina. La regla se puede generalizar a más de dos premisas.

$$\{p \land B\} S_1 \{q\}, \{p \land \neg B\} S_2 \{q\}$$

 $\{p\} \text{ if B then } S_1 \text{ else } S_2 \text{ fi } \{q\}$

También notar que REP no asegura la terminación del while (enseguida veremos cómo completar la regla). Notar que en un sentido los axiomas y reglas **definen la semántica** de las cinco instrucciones del lenguaje.

Ejemplo 1. Verificación de un programa de s*wap* (intercambio de valores) entre dos variables.

• Dado S_{swap} :: z := x; x := y; y := z, se quiere probar:

$$\{x = X \land y = Y\} S_{swap} \{y = X \land x = Y\}$$

X e Y se conocen como *variables lógicas*, no son del programa. Por la forma de S_{swap}, recurrimos al axioma ASI tres veces, una por cada asignación, y al final completamos la prueba utilizando la regla SEC:

1.
$$\{z = X \land x = Y\} \ y := z \{y = X \land x = Y\}$$

2. $\{z = X \land y = Y\} \times := y \{z = X \land x = Y\}$
3. $\{x = X \land y = Y\} \ z := x \{z = X \land y = Y\}$
4. $\{x = X \land y = Y\} \ z := x; x := y; y := z \{y = X \land x = Y\} \ (1,2,3,SEC)$

$$(ASI)$$

- Notar cómo el axioma ASI establece una forma de prueba de la postcondición a la precondición. Hay otra forma de axioma ASI, de la precondición a la postcondicíón, más complicada y menos difundida.
- También notar que obviamente se cumple la fórmula $\{y = Y \land x = X\}$ z := x; x := y; $y := z \{y = X \land x = Y\}$, pero las reglas planteadas hasta el momento no alcanzan para probarla.

En verdad el método cuenta con una sexta regla, la regla de consecuencia (CONS), que permite reemplazar pre y postcondiciones por otras que las impliquen o sean implicadas por ellas, según el caso.

En el ejemplo, como $(y = Y \land x = X) \rightarrow (x = X \land y = Y)$, aplicando la regla CONS la prueba se completa así:

5.
$$\{y = Y \land x = X\} \ z := x; \ x := y; \ y := z \ \{y = X \land x = Y\} \ (4,CONS) \longrightarrow \{p\} \longrightarrow \{p\}$$

Ejemplo 2. Verificación de un programa que calcula el valor absoluto.

El siguiente programa devuelve en y el valor absoluto de x:

 S_{va} :: if x > 0 then y := x else y := -x fi

- Se quiere probar: $\{true\} S_{va} \{y \ge 0\}$
- La prueba es la siguiente:

1.
$$\{x \ge 0\}$$
 y := x $\{y \ge 0\}$ (ASI)

2.
$$\{-x \ge 0\}$$
 y := $-x$ $\{y \ge 0\}$

3.
$$\{\text{true } \land x > 0\} \ y := x \{y \ge 0\}$$

4.
$$\{\text{true} \land \neg(x > 0)\}\ y := -x \{y \ge 0\}$$

5. {true} if
$$x > 0$$
 then $y := x$ else $y := -x$ fi $\{y \ge 0\}$ $(3,4,COND)$

(2,CONS)

$$\{p \land B\} S_1 \{q\}, \{p \land \neg B\} S_2 \{q\} \}$$
 $\{p\}$ if B then S_1 else S_2 fi $\{q\}$

- En el paso 3 se reemplaza el predicado $x \ge 0$ por el predicado true $\wedge x > 0$, que lo implica.
- En el paso 4 se reemplaza el predicado $-x \ge 0$ por el predicado true \wedge \neg (x > 0), que lo implica.
- Las fórmulas obtenidas en dichos pasos permiten aplicar al final la regla COND.

Ejemplo 3. Verificación de un programa que calcula el factorial.

Ya presentamos antes el programa S_{fac} para calcular el factorial de un número natural. Se quiere probar:

$$\{x > 0\}$$
 $S_{fac} :: a := 1; y := 1; while $a < x do a := a + 1; y := y . a od $\{y = x!\}$$$

Se propone como invariante del while: $p = (y = a! \land a \le x)$

Desarrollo de la prueba:

```
\{p\} while B do S od \{p \land \neg B\}
                                                                                                                                                                                                                                                                                                                                                              {b \ B} S {b}
                                (ASI)
(ASI)
(1,2,SEC,CONS)
                                                                                                                                                                                                                                                                                                                                                      7. \{y = a! \land a \le x\} (4,5,SEC,CONS) 7. \{y = a! \land a \le x\} (4,5,SEC,CONS) 8. \{y = a! \land a \le x\} while a < x do a := a + 1; y := y and \{y = a! \land a \le x \land \neg (a < x)\} (6,REP) 8. \{y = a! \land a \le x\} while a < x do a := a + 1; y := y and \{y = x!\}
                                                                                                                                                                                                                                                                       (ASI)
(ASI)
                                                                                                                                                                                                                                                                  4. \{y . a = a! \land a \le x\} \ y := y . a \ \{y = a! \land a \le x\}
5. \{y . (a + 1) = (a + 1)! \land (a + 1) \le x\} \ a := a + 1 \ \{y . a = a! \land a \le x\}
6. \{y = a! \land a \le x \land a < x\} \ a := a + 1; y := y . a \ \{y = a! \land a \le x\}
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    Paso final componiendo las dos pruebas anteriores
                                           1. \{1 = a! \land a \le x\} y := 1 \{y = a! \land a \le x\}
                                                                                        2. \{1 = 1! \land 1 \le x\} a := 1 \{1 = a! \land a \le x\}
3. \{x > 0\} a := 1; y := 1 \{y = a! \land a \le x\}
Prueba del fragmento previo al while
```

Esta prueba establece que **si S_{fac} termina a partir de x > 0**, obtiene x! en la variable y. **Falta probar su** terminación

(3,8,SEC)

9. $\{x > 0\}$ a := 1; y := 1; while a < x do a := a + 1; y := y . a od $\{y = x!\}$

Ampliación del método axiomático de verificación de programas para probar terminación

Para la prueba de terminación de un while se amplía la regla REP (para distinguirla la vamos a llamar REP*, y vamos a usar los símbolos () en lugar de { }):

Regla de la terminación (REP*)

$$\langle p \wedge B \rangle S \langle p \rangle$$
, $\langle p \wedge B \wedge t = Z \rangle S \langle t < Z \rangle$, $p \rightarrow t \geq 0$

 $\langle p \rangle$ while B do S od $\langle p \wedge \neg B \rangle$

- Se le agrega un variante, que es una función entera t definida, como el invariante, en términos de las variables del programa.
- La variable Z es una variable lógica, no aparece en p ni en t, su objetivo es conservar el valor de t antes de la ejecución del cuerpo del *while*.
- La primera premisa es la de REP (p es el invariante).
- Por la segunda premisa, t se decrementa en cada iteración.
- Por la tercera premisa, t arranca y se mantiene positiva.
- cadena infinita de números naturales que cumpla: $n_1 > n_2 > n_3 > ...$ De esta manera, el while debe terminar, es imposible que haya una

El valor de t decrece de iteración en iteración. Como t es una función entera positiva, indefectiblemente la cadena descendente de los t_i es finita, termina.

Ejemplo 4. Prueba de terminación del programa que calcula el factorial.

- Se quiere probar que efectivamente el programa S_{fac} termina a partir de la precondición x > 0:
 - ⟨x > 0⟩ S_{fac} :: a := 1; y := 1; while a < x do a := a + 1; y := y . a od ⟨true⟩
- Se propone como invariante, $p = (a \le x)$, más simple que el de la prueba anterior, $p = (y = a! \land a \le x)$. Es que ahora la postcondición es simplemente true, sólo se busca probar la terminación del programa.
- Se propone como variante: t = x a.

Notar que t: al comienzo es positiva (x > 0 y a = 1), se decrementa en cada iteración (se hace a := a + 1 encada iteración), y nunca se hace negativa (del while se sale con x=a).

La prueba es la siguiente:

Para las inicializaciones (al final se cumple el invariante propuesto por primera vez):

```
(ASI, SEC, CONS)
     1. (x > 0) a := 1; y := 1 (a \le x)
```

Para la repetición hay que probar (a) $\langle p \land B \rangle S \langle p \rangle$, (b) $\langle p \land B \land t = Z \rangle S \langle t < Z \rangle$, (c) $p \to t \ge 0$ siendo: $p = (a \le x), t = x - a, B = a < x, S :: a := a + 1; y := y . a$

```
(ASI, SEC, CONS)
                                      (ASI,SEC,CONS)
2. (a \le x \land a < x) a := a + 1; y := y . a (a \le x)
3. (a \le x \land a < x \land x - a = Z) a := a + 1; y := y . a (x - a < Z)
```

$$\leq x \rightarrow x - a \geq 0$$
 (MAT)

5.
$$(a \le x)$$
 while $a < x$ do $a := a + 1$; $y := y$. $a \text{ od } (a \le x \land \neg (a < x))$ (2,3,4,REP*) ———

$$a < x \text{ do } a := a + 1$$
; $y := y \cdot a \text{ od } \langle a \le x \land \neg (a < x) \rangle$ $(2,3,4, \text{REP}^*)$ $(2,3,4, \text{REP}^*)$

Finalmente, considerando las 2 pruebas de arriba, se llega a:

6.
$$(x > 0)$$
 a := 1; y := 1; while a < x do a := a + 1; y := y . a od (true) (1,5,SEC,CONS)

(p) while B do S od (p < ¬B)

Algo más sobre las especificaciones

- Una especificación establece la relación entre los estados iniciales y finales de un programa.
- Por ejemplo, (x = X, x = 2.X) es satisfecha por cualquier programa que duplica su entrada x. La variable x es una variable de programa, y la variable X es una variable lógica (no es parte del programa, se utiliza para fijar valores, y así para relacionar la precondición con la postcondición)
- Especificar un programa que termine con la condición x > y:
 - . Una posible especificación es $(x = X \land y = Y, x > y)$.
- Otra más simple es (true, x > y), porque no se dice nada de x ni de y al principio.
- Antes usamos como especificación para probarlo, para simplificar: (true, $y \ge 0$). El programa del valor absoluto era: S_{va} :: if x > 0 then y := x else y := -x fi
- Una limitación de la lógica de predicados es que no puede expresar propiedades sobre computaciones, lo que sí puede hacer la **lógica temporal**. P.ej., la expresión G(x = 1) significa que siempre se cumple x = 1.
- No es una especificación correcta. ¿Por qué? ¿Cuál sería una especificación correcta del programa?
- Notar por ejemplo que el programa S :: y := 0 satisface la especificación pero no es el programa esperado.
 - Una especificación correcta sería: (x = X, y = |X|).
- Algo similar sucede con el programa del factorial: S_{fac} :: a := 1; y := 1; while a < x do a := a + 1; y := y . a od Antes usamos para simplificar la especificación (x > 0, y = x!).

No es una especificación correcta. ¿Por qué? ¿Cuál sería una especificación correcta del programa?

- El x final puede no coincidir con el inicial, pudo cambiar a lo largo de la ejecución del programa. Notar por ejemplo que el programa S :: x := 1; y := 1 satisface la especificación pero no es el programa esperado.
 - Una especificación correcta sería: (x = X ∧ X > 0, y = X!).

Desarrollo sistemático de programas

- Construcción correcta vs verificación a posteriori.
- Idea general.

Supongamos que se quiere construir un programa con forma:

 $S :: S_1$; while B do S_2 od

que satisfaga la especificación (r, q).

Es decir, se busca: $\langle r \rangle S_1$; while B do S_2 od $\langle q \rangle$.

- Descomponer S en sus dos componentes, S₁ y while B do S₂ od.
- Construir S_1 tal que $\langle r \rangle S_1 \langle p \rangle$, y while B do S_2 od tal que $\langle p \rangle$ while B do S_2 od $\langle q \rangle$, siendo:
- 2.1. p un **invariante** del while: $\langle p \wedge B \rangle S_2 \langle p \rangle$.
- 2.2. $(p \land \neg B) \rightarrow q$, es decir, la postcondición del while debe implicar la postcondición q de S.

⟨r⟩ S₁; ⟨p⟩ while B do

 $\begin{array}{c} \langle \text{p} > \text{B} \rangle \\ \langle \text{p} \rangle \\ \langle \text{p} \rangle \\ \text{od} \end{array}$

- t un **variante** del while que decrezca en cada iteración: $\langle p \wedge B \wedge t = Z \rangle S_2 \langle t < Z \rangle$.
- $p \to t \ge 0$, es decir, el invariante debe asegurar que el variante siempre sea positivo. 2.4.

calcularse los componentes S_1 , B y S_2 del programa que se quiere construir: El siguiente esquema, conocido como proof outline, establece cómo deben

Últimos conceptos importantes

- El método presentado es sensato (sound). Las fórmulas que prueba son verdaderas.
- Naturalmente, no serviría un método que por ejemplo probara la fórmula $\{x = 0\} \times 1 = x + 1 = 2\}$.
- Φ El método también tiene la propiedad inversa de la sensatez, es completo: si una fórmula es verdadera, método permite probarla.
- Por ejemplo, el método permite probar $\{x = 0\} \times 1 = x + 1 = 1\}$.
- La sensatez es una propiedad indispensable. La completitud, deseable (no siempre se cumple, depende de lenguajes y el dominio semántico considerados por el método).
- Otra propiedad deseable es la composicionalidad. Se cumple en el método que estudiamos. P.ej., si se cumplen {p} S_1 {q} Y_2 {r}, también se cumple {p} S_1 ; S_2 {r}, independientemente de la forma de los S_1 .
 - Esta propiedad tan relevante no se cumple en la programación concurrente. Es decir, aunque se cumplan las fórmulas $\{p_1\}$ S₁ $\{q_1\}$ y $\{p_2\}$ S₂ $\{q_2\}$, no puede asegurarse que se cumpla la fórmula $\{p_1 \land p_2\}$ S₁ || S₂ $\{q_1 \land q_2\}$.
- Un programa S es parcialmente correcto con respecto a una especificación (p, q) sii para todo estado inicial σ que satisface p, <u>si S termina</u> lo hace en un estado σ´ que satisface q. Se anota así: **{p} S {q}**
- Un programa S es **totalmente correcto** con respecto a una especificación (p, q) sii para todo estado inicial σ que satisface p, <u>S *termina*</u> y lo hace en un estado σ´ que satisface q. Se anota así: **(p) S (q)**.
- Esta separación no es caprichosa, las pruebas son distintas, la correctitud parcial se prueba por inducción (ver la regla REP), mientras que la terminación no (ver la 2da y 3ra premisa de la regla REP*).