Задание 1 по курсу "Вычислительная математика"

Лукашевич Илья, 792 группа 21 сентября 2019 г.

1 Теоретические задачи

1. Докажите, что $\max_{i,j} |a_{ij}|$ не является матричной нормой.

Решение.

Приведем пример двух матриц A и B таких, что не выполнено свойство субмильпликативности:

$$A = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}, B = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, AB = \begin{pmatrix} 1 & 2 \\ 1 & 1 \end{pmatrix}. \tag{1}$$

При этом получаем, что

$$||AB|| = 2 > ||A|| \cdot ||B|| = 1 \cdot 1 = 1.$$

Таким образом, нарушается свойство субмультипликативности, следовательно, $\max_{i,j} |a_{ij}|$ не является матричной нормой.

2. Доказать, что

$$||xy^*||_F = ||xy^*||_2 = ||x||_2 ||y||_2 \quad \forall x, y \in \mathbb{C}^n.$$

Решение.

Рассмотрим произвольные $x,y\in\mathbb{C}^n$. Учитывая, что $|y|=|\overline{y}|$, запишем цепочку равенств

$$||x||_{2}||y||_{2} = \left(\sum_{i=1}^{n} |x_{i}|^{2}\right)^{1/2} \cdot \left(\sum_{j=1}^{n} |y_{j}|^{2}\right)^{1/2} = \left(\sum_{i=1}^{n} \sum_{j=1}^{n} |x_{i}|^{2} |y_{j}|^{2}\right)^{1/2} = \left(\sum_{i=1}^{n} \sum_{j=1}^{n} |(xy^{*})_{ij}|^{2}\right)^{1/2} = ||xy^{*}||_{F}.$$

$$(2)$$

Таким образом, одно из равенств доказано. Докажем еще одну равенство.

Введем обозначение $Z = xy^*$ и рассмотрим матрицу Z^*Z . Имеем:

$$Z^*Z = (xy^*)^*xy^* = yx^*xy^* = y\overline{x^T}xy^* = ||x||_2^2yy^*.$$

Рассмотрим матрицу yy^* . Она имеет вид

$$\begin{pmatrix} y_1\overline{y_1} & y_1\overline{y_2} & \dots & y_1\overline{y_n} \\ y_2\overline{y_1} & y_2\overline{y_2} & \dots & y_2\overline{y_n} \\ \vdots & \vdots & \ddots & \vdots \\ y_n\overline{y_1} & y_n\overline{y_2} & \dots & y_n\overline{y_n} \end{pmatrix}.$$

Заметим, что ранг рассматриваемой матрицы равен единице. Тогда у данной матрицы существует единственное собственное значение, отличное от нуля, и

соответствующий ему собственный вектор. Это утверждение также справедливо и для матрицы Z^*Z . Заметим, что вектор y как раз и является этим собственным вектором, так как

$$(Z^*Z)y = ||x||_2^2 y y^* y = ||x||_2^2 y ||y||_2^2 = ||x||_2^2 ||y||_2^2 y.$$

Следовательно, собственное значение равно $\lambda = \|x\|_2^2 \|y\|_2^2$. По определению второй нормы матрицы имеем

$$||xy^*||_2 = ||Z||_2 = \max_k \sigma_k = \max_k \sqrt{\lambda_k(Z^*Z)} = \sqrt{\lambda} = ||x||_2 ||y||_2.$$

Таким образом, доказано, что $||xy^*||_F = ||xy^*||_2 = ||x||_2 ||y||_2 \quad \forall x,y \in \mathbb{C}^n$.

3. Пусть $A=I+\alpha uu^*,\ \alpha\in\mathbb{C},\ u\in\mathbb{C}^n,\ \|u\|_2=1.$ Найдите все α , при которых матрица A будет унитарной.

Решение.

Найдем эрмитово-сопряженную матрицу для матрицы A:

$$A^* = (I + \alpha uu^*)^* = I^* + (\alpha uu^*)^* = I + \alpha^*(uu^*) = I + \overline{\alpha}uu^*.$$

Найдем произведение AA^* :

$$AA^* = (I + \alpha uu^*)(I + \overline{\alpha}uu^*) = I + \overline{\alpha}uu^* + \alpha uu^* + \alpha uu^* \overline{\alpha}uu^* =$$

$$= I + (\alpha + \overline{\alpha})uu^* + \alpha \overline{\alpha}uu^*uu^* = I + (\alpha + \overline{\alpha})uu^* + |\alpha|^2 ||u||_2^2 uu^* =$$

$$= I + (\alpha + \overline{\alpha} + |\alpha|^2)uu^*.$$
(3)

По определению, матрица A называется унитарной, если выполнено условие $A^{-1}=A^*$. Тогда $AA^*=AA^{-1}=I$. Следовательно, должно выполняться условие $\alpha+\overline{\alpha}+|\alpha|^2=0$. Обозначим $Re(\alpha)=a$, $Im(\alpha)=b$. Тогда получаем, что

$$a + bi + a - bi + a^{2} + b^{2} = 0,$$

$$2a + a^{2} + b^{2} = 0,$$

$$b = \pm \sqrt{-a(a+2)}.$$
(4)

Понятно, что подкоренное выражение должно быть неотрицательно, следовательно $a \in [-2,0]$. Таким образом, матрица A будет унитарной, если для α выполнено:

$$\begin{cases}
Re(\alpha) \in [-2, 0], \\
Im(\alpha) = \pm \sqrt{-Re(\alpha)(Re(\alpha) + 2)}.
\end{cases}$$
(5)