Familia de microcontrollere 80C51

- Introducere
- Adresarea memoriei
- Sistemul de întreruperi
- Regiştrii sistemului de timere
- Comunicaţia serială

Introducere

- Microcontrollerele inglobează diferite circuite necesare unui sistem de calcul:
 - processor boolean
 - -memorie
 - -numărătoare/timere
 - -sistem de întreruperi
 - -porturi de intrare/iesire

- Caracteristicile familiei de microcontrollere 80C51:
 - Unitate centrala de procesare 8051
 - 4k*8 ROM
 - 128*8 RAM
 - 3*16-biti numărătoare/timere
 - procesor boolean
 - Capabilitate de adresare a memoriei externe
 - 64k*8 ROM (program)
 - 64k*8 RAM (data)
 - 6 întreruperi cu 2 nivele de prioritate
 - 4*8-biti porturi I/O
 - UART full–duplex
 - port asincron de reset

 Circuitele integrate în microcontroller comunica prin intermediul unor magistrale interne pe care se pot vehicula adrese, date sau semnale de control

Schema internă a portului 0

- Semnalul CONTROL comandă multiplexorul astfel încât portul 0 să poată genera adrese sau date sau sa poata fi folosit ca şi port de uz general.
- Dacă semnalul CONTROL are valoarea logică 1, portul 0 este folosit pentru magistrala de adrese şi date folosind rezistenţe de ridicare interne. Ieşirea porţii ŞI-NU nu este influenţată de semnalul CONTROL, deci, starea tranzistorului Mp este determinată doar de starea logică a adreselor sau datelor transmise.
- Dacă semnalul CONTROL are valoarea logică 0, portul 0 este un port bidirectional open-drain. Ieşirea porții ŞI-NU este 1, deci, tranzistorul Mp este în starea blocată, determinând configurația open-drain a portului. Aşadar, dacă portul este folosit ca și ieșire, se folosesc rezistențe de ridicare externe. Dacă portul este folosit ca și port de intrare, valoarea lógică 1 este setată prin program la pin, deci, tranzistorul Mn este în starea blocată și intrarea este flotantă.

Adresarea memoriei

Ciclul de citire şi configuraţia memoriei de program externe

Ciclii de citire/scriere şi configuratia memoriei de date externe

- Organizarea memoriei
- Spaţii de adresă separate pentru memoria de program şi date.
- Memoria de program este o memorie nevolatilă având o lungime de până la 64K*8.
- Rolul pinului EA\

- Acceseaza atât de memorie de date internă cât şi externă.
- Memoria de date internă este de 128*8 RAM plus un număr de Regiştri cu Funcţiuni Speciale (Special Function Registers SFRs).
- Memoria de date externă poate avea o lungime de până la 64K*8, fiind o memorie de tip RAM.

- Cele mai mici 128*8 adrese pot fi impărţite în 3 segmente:
 - Register Banks 0-3
 - Bit Addressable Area
 - Scratch Pad Area

	◆ 8 OCTETI →		
78 H		7FH	
70 H		77H	
68H		6FH	
60H		67H	
58H		5FH	SCRATCH
50H		57 H	PAD AREA
48H		4FH	
40H		47H	
38H		3FH	
30H		37 H	
28H	7FH	2FH	BIT ADDRESSABLE
20H	0	27H	SEGMENT
18H	3	1FH	
10H	2	17H	REGISTER
H80	1	0FH	BANKS
00H	0	07 H	

 Regiştrii cu funcţiuni speciale marcaţi cu * sunt adresabili atât pe bit cât şi pe octet. Ceilalţi regiştri sunt adresabili doar pe octet. După reset, fiecare registru este încărcat cu o valoare care nu interferă cu posibile valori utilizator. Regiştrii adresabili atât pe octet cât şi pe bit se află pe prima coloană.

	•			. 8	octeti		,
F8H							
F0H	В						
E8H							
E0H	ACC						
D8H							
D0H	PSW						
C8H							
C0H							
B8H	IP						
B0H	P3						
A8H	Œ						
A0H	P2						
98 H	SCON	SBUF					
90 H	P1						
88H	TCON	TMOD	TL0	TL1	TH0	TH1	
80H	P0	SP	DPL	DPH			PCON

Simbol	Descriere	Adresa	Valoare reset
ACC*	Accumulator	E0H	00000000
B*	B Register	F0H	00000000
PSW*	Program Status Word	D0H	00000000
SP	Stack Pointer	81H	00000111
DPTR	Data Pointer 2 Bytes		
DPL	Low Byte	82H	00000000
DPH	High Byte	83H	00000000
P0*	Port 0	80H	11111111
P1*	Port 1	90H	11111111
P2*	Port 2	A0H	11111111
P3*	Port 3	B0H	11111111
$\mathbf{I} \mathbf{P}^*$	Interrupt Priority Control	B8H	xxx00000
E*	Interrupt Enable Control	A8H	0xx00000
TMOD	Timer/Counter Mode Control	89H	00000000
TCON*	Timer/Counter Control	88H	00000000
TH0	Timer/Counter 0 High Byte	8CH	00000000
TL0	Timer/Counter 0 Low Byte	8AH	00000000
TH1	Timer/Counter 1 High Byte	8DH	00000000
TL1	Timer/Counter 1 Low Byte	8BH	00000000
SCON*	Serial Control	98H	00000000
SBUF	Serial Data Buffer	99H	xxxxxxx
PCON	Power Control	87H	00xx0000

Sistemul de întreruperi

 La apariţia unei intreruperi, microcontrollerul suspendă temporar execuţia programului şi execută rutina de tratare a întreruperii care deserveşte întreruperea. După aceea, continuă execuţia programului.

ISR: Interrupt Service Routine

- Pentru a executa rutina de tratare a întreruperii microcontrollerul parcurge urmatorii paşi:
 - Salvează pe stivă locaţia urmatoarei instructiuni (2 octeţi) şi PSW (2 octeţi).
 - Determină sursa de întrerupere (numărul întreruperii). Fiecare sursă de întrerupere are un vector de întrerupere care este încărcat cu o instrucţiune de salt la adresa rutinei de tratare a întreruperii. Adresa vectorului este calculată automat de catre microcontroller. Vectorii de întrerupere (8 octeţi) se află in tabela vectorilor de întrerupere.

https://yadavdharm.wordpress.com/2019/03/09/interrupts-in-8051/

- Pentru a executa rutina de tratare a întreruperii microcontrollerul parcurge urmatorii paşi: (continuare)
 - Accesează tabela vectorilor de întrerupere folosind vectorul de întrerupere ca index pentru a determina adresa rutinei de tratare a întreruperii.
 - Execută rutina de tratare a întreruperii.
 - Întreruperea se termină cu instructiunea IRET care încarcă de pe stivă locaţia următoarei instrucţiuni (2 octeţi) şi PSW (2 octeţi)

https://yadavdharm.wordpress.com/2019/03/09/interrupts-in-8051/

- Pentru implementarea întreruperilor, trebuie parcurşi următorii paşi:
 - Se setază bitul EA din registrul IE la valoarea logică 1. Această setare permite activarea intreruperilor.
 - Se seteaza la valoarea logică 1 în registrul IE biţii de activare a întreruperii pentru întreruperile care vor fi folosite.
 - Adresa de început a rutinei de tratare a întreruperii va corespunde adresei vectorului întreruperii respective. Fiecare vector va fi încărcat cu o instrucţiune long jump la adresa rutinei de tratare a întreruperii.
 - In plus, pentru întreruperile externe, pinii INT0\ (P3.2) şi INT1\ (P3.3) trebuie setaţi la valoarea logică 1, şi biţii corespunzatori (IT0 şi IT1) din registrul TCON trebuie resetaţi sau setaţi pentru activarea întreruperii pe nivel sau pe front.
- Întreruperile microcontrollerelor din familia 80C51

INTERRUPT SOURCE	DESCRIPTION	VECTOR ADDRESS
IE0	External interrupt 0	0003H
TF0	Timer 0 overflow	000BH
IE1	External interrupt 1	0013H
TF1	Timer 1 overflow	001BH
RI&TI	Serial interrupts	0023H
TF2&EXF2	Timer 2 overflow or external interrupts	002BH

- Structura registrului IE
- Adresabil atât pe octet cât şi pe bit. Dacă EA este 0, toate întreruperile sunt dezactivate. Dacă EA este 1, o întrerupere este activată prin setarea bitului corespunzator la 1. Dacă bitul corespunzator este 0 întreruperea este dezactivată. Funcţiile biţilor:
 - EA, IE.7: dacă EA=0, nici o întrerupere nu va fi achitată.
 Dacă EA=1, fiecare sursă de întrerupere poate fi activată sau dezactivată individual.
 - ET2, IE.5: timer 2 overflow sau întrerupere de captură (doar 8052)
 - ES, IE.4: întrerupere port serial
 - ET1, IE.3: întrerupere Timer 1 overflow
 - EX1, IE.2: întrerupere externă 1
 - ET0, IE.1: întrerupere Timer 0 overflow
 - EX0, IE.0: întrerupere externă 0

EA	-	ET2	ES	ET1	EX1	ET0	EX0
----	---	-----	----	-----	-----	-----	-----

- Sistemul de priorităţi al întreruperilor
- Două nivele de prioritate.
 - O prioritate mai mare poate întrerupe o prioritate mai mică.
 - O prioritate mai mică nu poate întrerupe o prioritate mai mare.
- Pentru asignarea unei priorităţi mai mari sau mai mici unei întreruperi bitul corespunzător din registrul IP trebuie setat la 1 sau 0.
- În acelaşi nivel de prioritate sunt mai multe priorităţi.
 - Prioritățile din același nivel nu pot fi întrerupte de alte priorități din acelasi nivel chiar dacă în interiorul nivelului de prioritate acele priorități au un nivel mai mare.
 - Priorităţile în interiorul unui nivel se folosesc doar pentru rezolvarea cererilor simultane ale aceluiaşi nivel de prioritate.
- Priorităţile de la mare la mic: IE0, TF0, IE1, TF1, RI sau TI şi TF2 sau EXF2.

- Structura registrului IP
- Adresabil atât pe octet cât şi pe bit. Dacă bitul este 0, întreruperea corespunzătoare are o prioritate mai mică. Dacă bitul este 1, întreruperea corespunzatoare are o prioritate mai mare. Funcţiile biţilor:
 - PT2, IP.5: nivelul de prioritate al întreruperii Timer 2 (doar 8052)
 - PS, IP.4: nivelul de prioritate al întreruperii portului serial
 - PT1, IP.3: nivelul de prioritate al întreruperii Timer 1
 - PX1,IP.2: nivelul de prioritate al întreruperii externe 1
 - PT0, IP.1: nivelul de prioritate al întreruperii Timer 0
 - PX0, IP.0: nivelul de prioritate al întreruperii externe 0

-	-	PT2	PS	PT1	PX1	PT0	PX0
---	---	-----	----	-----	-----	-----	-----

Regiştrii sistemului de timere

- Structura registrului TCON
- Adresabil atât pe octet cât şi pe bit. Funcţiile biţilor:
 - TF1, TCON.7: Flag Timer 1 overflow. Setat hardware la overflow Timer 1. Şters hardware când procesorul execută rutina de tratare a întreruperii.
 - TR1, TCON.6: Bit de control funcţionare Timer 1. Dacă TR1=1, Timer 1 ON. Dacă TR1=0, Timer 1 OFF.
 - TF0, TCON.5: Flag Timer 0 overflow. Setat hardware la overflow Timer 0. Şters hardware când procesorul execută rutina de tratare a întreruperii.
 - TR0, TCON.4: Bit de control funcţionare Timer 0. Dacă TR0=1, Timer 0 ON. Dacă TR0=0, Timer 0 OFF.
 - IE1, TCON.3: Flag de front întrerupere externă 1. Setat hardware când este detectat frontul la întreruperea externă 1, şters hardware când întreruperea este procesată.
 - IT1, TCON.2: Bit de control tip întrerupere 1. Dacă IT1=1, întreruperea 1 este declanşată de un front căzător. Dacă IT1=0, întreruperea 1 este declanşată de nivelul logic 0.
 - IE0, TCON.1: Flag de front întrerupere externă 0. Setat hardware când este detectat frontul la întreruperea externa 0, şters hardware când întreruperea este procesată.
 - IT0, TCON.0: Bit de control tip întrerupere 0. Dacă IT0=1, întreruperea 0 este declanşată de un front căzător. Dacă IT0=0, întreruperea 0 este declanşată de nivelul logic 0.

TF1	TR1	TF0	TR0	${ m I\!E}1$	IT1	\mathbf{E}_0	IT0
-----	-----	-----	-----	--------------	-----	----------------	-----

- Structura registrului TMOD
- Adresabil pe octet. Funcţiile biţilor:
- GATE: Dacă GATE=1, TIMERx va rula doar atât timp cât TRx=1 şi INTx=1 (control hardware). Dacă GATE=0, TIMERx va rula doar atât timp cât TRx=1 (control software).
- C/T\, Selector Timer sau Counter. Dacă C/T\=0, operare Timer (intrare de la ceasul sistem intern). Dacă C/T\=1, operare Counter (intrare de la pinul de intrare Tx).
- M1: Bit de selectie mod.
- M0: Bit de selectie mod.

M1	M0	MOD DE OPERARE
0	0	Timer 13-biți
0	1	Timer/Counter 16-biți
1	0	Timer/Counter 8-biți cu Auto-Reload
1	1	(Timer 0) TL0 Timer/Counter 8-biți controlat prin biții de control standard corespunzători Timer 0. TH0 Timer 8 biți controlat prin biții de control corespunzători Timer 1.
1	1	(Timer 1) Timer/Counter 1 OFF.

GATE C/T\ M1 M0 GATE C/T\ M1 M0

TIMER 1

TIMER 0

Comunicația serială

- Structura registrului SCON
- Adresabil atât pe octet cât şi pe bit. Funcţiile biţilor:
 - SM0: Bit 0 mod Port Serial (MSB).
 - SM1: Bit 1 mod Port Serial (LSB).
 - SM2: Acivează caracteristica de comunicare multiprocesor în modurile 2 şi 3. În modurile 2 sau 3, dacă SM2=1, RI va fi activat (setat la 1) doar dacă al 9-lea bit de date recepţionat (RB8) este 1. În modul 1, dacă SM2=1, RI va fi activat doar dacă un bit de stop valid a fost recepţionat. În modul 0, SM2=0.
 - REN: Setat/şters prin software pentru a Activa/Dezactiva recepţia.
 - TB8: Al 9-lea bit care va fi transmis în modurile 2 şi 3.
 - RB8: În modurile 2 şi 3, este al 9-lea bit de date recepţionat. În modul 1, dacă
 SM2=0, RB8 este bitul de stop recepţionat. În modul 0, RB8 nu este folosit.
 - TI: Flag de întrerupere la transmisie. Setat prin hardware. Trebuie şters prin software.
 - RI: Flag de întrerupere la recepţie. Setat prin hardware. Trebuie şters prin software.

SM0	SM1	Descriere
0	0	Registru de shiftare
0	1	UART pe 8 biți
1	0	UART pe 9 biţi
1	1	UART pe 9 biți

SM0	SM1	SM2	REN	TB8	RB8	TI	RI

- În modul 0 portul serial comunică la rata baud fixă.
- Rata Baud = Osc Freq/12
- Pentru configurarea acestui mod trebuie definit doar registrul SCON. Nu este necesară setarea unui Timer/Counter.
- În acest mod portul de comportă ca şi un registru de shiftare de opt biţi transmiţând si recepţionând date la rata baud. Datele sunt transmise cu LSB primul bit si intră şi ies din UART prin pinul RXD. În consecinţă acest mod nu suportă comunicaţia full duplex. Transmisia începe când registrul SBUF este încărcat cu date. Octetul este transmis şi bitul TI este setat când transmisia este completă. Recepţia incepe când bitul REN din registrul SCON este setat. Bitul RI este setat când octetul este recepţionat.

- În modul 1 rata baud este variabilă fiind generată de Timer 1 care este folosit în modul 2 (Auto-Reload).
- Rata Baud = (K * Osc Freq)/{32 * 12 * [256 (TH1)]}
- Bitul SMOD din registrul PCON determină valoarea parametrului K. Dacă SMOD = 0, K = 1, dacă SMOD = 1, K = 2.
- TH1 = 256 (K * Osc Freq) / (384 * Rata Baud)
- Formatul cadrului: 1 bit de start, 8 biţi de date, 1 bit de stop.
- Semnalele de întrerupere TI şi RI sunt activate atunci când un cadru a fost transmis sau recepţionat.

- In modul 2 portul serial comunică la rata baud fixă.
- SMOD = 1, Rata Baud = 1/32*Osc Freq.
- SMOD = 0, Rata Baud = 1/64*Osc Freq.
- Pentru configurarea acestui mod trebuie definit doar registrul SCON.
 Nu este necesară setarea unui Timer/Counter.
- Formatul cadrului: 1 bit de start, 8 biţi de date, al 9-lea (stick) bit, şi 1 bit de stop. Valoarea celui de-al 9-lea bit este determinată de bitul TB8 la transmiţător și este recepționată în bitul RB8. Acest bit este folosit pentru comunicații interprocesor. UART-ul poate fi inițializat prin setarea bitului SM2 să genereze o întrerupere la recepție doar atunci când bitul al 9-lea este setat. Un octet de adresă sau comandă poate fi transmis cu al 9-lea bit setat. Toate procesoarele sunt întrerupte și bitul recepționat este procesat pentru a se vedea dacă este necesară recepționarea mesajului. Daca microcontrollerul trebuie să recepționeze mesajul, bitul SM2 este șters si restul mesajului este recepționat. Dácă microcontrollerul nu trebuie sa recepționeze mesajul, bitul SM2 este lăsat setat și mesajul nu va genera o întrerupere.
- Modul 3 este similar modului 2 în termenii formatului cadrului şi folosirii celui de-al 9-lea bit. Ratele baud sunt similare modului 1.

Probleme rezolvate

- Sa se proiecteze un sistem cu microcontroller 80C51 avand urmatoarele blocuri:
 - oscilator cu quartz avand frecventa de 12MHz
 - circuit de reset
 - 8k*8 memorie de program externa avand adresa de baza 0000H
 - 8k*8 memorie de date si program externa avand adresa de baza 2000H
 - 8k*8 memorie de date externa avand adresa de baza 4000H

 oscilator cu quartz avand frecventa de 12MHz

 semnal obtinut la apasarea unei taste

• circuit de reset

- 8k*8 memorie de program externa avand adresa de baza 0000H
- 8k*8 memorie de date si program externa avand adresa de baza 2000H
- 8k*8 memorie de date externa avand adresa de baza 4000H

64k*8	A15	A14	A13
8k*8	0	0	0
8k*8	0	0	1
8k*8	0	1	0
8k*8	0	1	1
8k*8	1	0	0
8k*8	1	0	1
8k*8	1	1	0
8k*8	1	1	1

- 8k*8 memorie de program externa avand adresa de baza 0000H
- mag. adrese: P0 si P2
- mag. date: P0
- mag. control: ALE,
 PSEN\ si EA\

0000H: **000**0.....0b 2000H: **001**0.....0b 4000H: **010**0.....0b

A15 A14 A13 A12 A11... A0 Selectie bloc 13 linii adresa

- 8k*8 memorie de date externa avand adresa de baza 4000H
- mag. adrese: P0 si P2
- mag. date: P0
- mag. control: ALE, RD\ si WR\

0000H: **000**0.....0b 2000H: **001**0.....0b 4000H: **010**0.....0b

A15 A14 A13 A12 A11... A0 Selectie bloc 13 linii adresa

8k*8 memorie de date si program externa avand adresa de baza 2000H

mag. adrese: P0 si P2

mag. date: P0

mag. control: ALE, RD\, PSEN\ si WR\

Citire: memorie de date si program (RD\ sau PSEN\)

RD\	PSEN\	OE\ (functie SI)
0	0	0
0	1	0
1	0	0
1	1	1

Scriere: memorie de date (WR\)

0000H: **000**0.....0b **2000**H: **001**0.....0b 4000H: **010**0.....0b

A15 A14 A13 A12 A11... A0 Selectie bloc 13 linii adresa

- Sa se proiecteze un sistem cu microcontroller 80C51 avand urmatoarele blocuri:
 - oscilator cu quartz avand frecventa de 12MHz
 - circuit de reset
 - 8k*8 memorie de program externa avand adresa de baza 0000H
 - port de iesire la adresa 011XXXXXXXXXXXXX
 - port de intrare la adresa 111XXXXXXXXXXXXXI la care sunt conectate 2 taste

- 8k*8 memorie de program externa avand adresa de baza 0000H
- port de iesire la adresa 011XXXXXXXXXXXXb
- port de intrare la adresa 111XXXXXXXXXXXXX la care sunt conectate 2 taste

 $RD\setminus$

WR\

PSEN\

000 000b	memorie de program externa 0000H
011 XXXb	port de iesire, selectie partiala
111 XXXb	port de intrare, selectie partiala

A15 A14 A13 A12 A11... A0 Selectie bloc 13 linii ad memorie

Calactic bloc						
Selectie bloc memorie	Y3	0	1	1		
Selectie porturi	Y4	1	0	0		
Colocus portain	colocito partiala		Y5	1	0	1
	P2.0/A8 21 22		Y6	1	1	0
	P2.0/A8 P2.1/A9 P2.2/A10 P2.3/A11 P2.4/A12 P2.5/A13		Y7	1	1	1
	P2.6/A14 P2.7/A15		5 G2BY0 15 Y1 14 A Y2 15 2 A Y2 15	— Y0		

A15

0

0

DCD

 $\mathbf{Y0}$

Y1

A14

0

0

A13

0

0

RD\	WR\	PSEN\	NAND
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	1

- 8k*8 memorie de program externa avand adresa de baza 0000H
- mag. adrese: P0 si P2
- mag. date: P0
- mag. control: ALE,
 PSEN\ si EA\

0000H: **000**0.....0b

- port de iesire la adresa 011XXXXXXXXXXXXXXb
- port de intrare la adresa
 111XXXXXXXXXXXXXXXIII
 care sunt conectate 2 taste
- mag. adrese: P0 si P2
- mag. date: P0
- mag. control: ALE, RD\ si WR\

011XX....Xb port de iesire111XX....Xb port de intrare

A15 A14 A13 A12 A11... A0 Selectie porturi selectie partiala

Port de iesire la adresa 011XXXXXXXXXXXXXXD – registru 74374 Scrierea datelor in registrul 74374 se face pe frontul pozitiv al semnalului CLK atunci cand Y3\ = 0 si WR\ = 0

Port de intrare la adresa 111XXXXXXXXXXXXX la care sunt conectate 2 taste - amplificator unidirectional 74244

Citirea starii tastelor, realizata prin citirea datelor de la amplificatorul 74244, se face activand semnalele 1G\ si 2G\, atunci cand Y7\ = 0 si RD\ =0

Taste – citirea datelor de la taste se face folosind portul de intrare prin amplificatorul 74244, atunci cand Y7\ = 0 si RD\ =0

- daca tasta nu este apasata, se citeste "1" deoarece circuitul format din tasta si rezistenta este astfel dimensionat incat tensiunea la pinul de intrare al amplificatorului corespunde nivelului logic 1
- daca tasta este apasata, se citeste "0" deoarece circuitul format din tasta si rezistenta este astfel dimensionat incat tensiunea la pinul de intrare al amplificatorului corespunde nivelului logic 0

- Sa se proiecteze un sistem cu microcontroller 80C51 avand urmatoarele blocuri:
 - oscilator cu quartz avand frecventa de 12MHz
 - circuit de reset
 - port de iesire la adresa XXXXXX001XXXXXXXXD
 la care sunt conectate doua display-uri cu LED-uri 7-segmente catod comun pentru care
 V_{LED}=1,7V si I_{LED}=10mA
 - 2 taste conectate la intrarile de intrerupere
 - microcontrollerul foloseste doar memoria interna de program

Port de iesire la adresa XXXXXX001XXXXXXXX la care sunt conectate doua display-uri cu LED-uri 7-segmente catod comun pentru care V_{LED} =1,7V si I_{LED} =10mA

P2					P0										
A15	A14	A13	A12	A11	A10	<mark>89</mark>	<mark>88</mark>	A7	A6	A5	A4	A3	A2	A1	A0
X	Χ	Χ	Χ	Χ	0	0	1	Х	Χ	Χ	Χ	Χ	Χ	Χ	X

Y1\ este activ daca A10A9A8=001 si WR\=0

Calculul rezistentelor conectate la displayuri se face dupa formula:

$$R = (V_{OHTYP} - V_{LED})/I_{LED} = (4,25V-1,7V)/10mA = 255\Omega$$

- 2 taste conectate la intrarile de intrerupere Tastele se vor conecta la pinii INT0\ (P3.2) şi INT1\ (P3.3)
- daca tasta nu este apasata, se citeste "1" deoarece circuitul format din tasta si rezistenta este astfel dimensionat incat tensiunea la pinul INTX\ corespunde nivelului logic 1
- daca tasta este apasata, se citeste "0" deoarece circuitul format din tasta si rezistenta este astfel dimensionat incat tensiunea la pinul INTX\ corespunde nivelului logic 0

microcontrollerul foloseste doar memoria interna de program

https://www.digikey.ro/ro/articles/how-to-implement-hardware-debounce-for-switches-and-relays

Probleme propuse

- Sa se proiecteze un sistem cu microcontroller 80C51 avand urmatoarele blocuri:
 - oscilator cu quartz avand frecventa de 12MHz
 - circuit de reset
 - 32k*8 memorie de date si program externa avand adresa de baza 8000H
 - 2 taste conectate la intrarile de intrerupere

- Sa se proiecteze un sistem cu microcontroller 80C51 avand urmatoarele blocuri:
 - oscilator cu quartz avand frecventa de 12MHz
 - circuit de reset
 - port de iesire la adresa XXX101XXXXXXXXXXXD
 la care sunt conectate doua display-uri cu LED-uri 7-segmente anod comun pentru care
 V_{LED}=1,6V si I_{LED}=30mA
 - pentru tranzistoare se considera β =100
 - microcontrollerul foloseste doar memoria interna de program

- Sa se proiecteze un sistem cu microcontroller 80C51 avand urmatoarele blocuri:
 - oscilator cu quartz avand frecventa de 12MHz
 - circuit de reset
 - 64k*8 memorie de program externa
 - 32k*8 memorie de date externa avand adresa de baza 8000H
 - tastatura matriciala cu 16 taste conectata la Port 1
 - microcontrollerul foloseste doar memoria externa de program