CS & IT ENGINEERING

Theory of Computation

Regular Languages

Lecture No.- 10

Recap of Previous Lecture

Regular Language Vs Regular Expression

Topics to be Covered

Topic

Regular Language Vs Regular Expression

Home work

WE fa, b}* Ma(W) = even (a b'a) (aa) * (aa) b * (aa)* (aa)* bul not gow * (aba) * * (aba) b* (b*abab)*b aabaa

* (* a b a b) = (b*ab*ab*)* b* = b*(bab*) = (b*ab*ab*)* + b = (b*ab*a)* b = & (abab)*

b (bab*ab*)*b* -> b*(b*ab*ab*) b*= b*ab*ab* =(bxaba)* b* = b* (ab* qb*)*

.

TOPIC:

$$R = (aa)^*$$

(42)
$$\{\omega \mid \omega \in \mathring{\alpha}, \operatorname{Na}(\omega) = \operatorname{odd} \}$$

$$R = a (aa)^*$$

$$\eta_{\alpha}(w) = odd$$

$$= \alpha, \alpha, \alpha, \alpha, \alpha, \alpha, \ldots$$

$$Ma(w) = even$$

$$= \varepsilon, aa, a, a, a, ...$$

$$= (aa)^{2} \times (aa)^{2} = (aa)^{2} = a^{2} \times (aa)^{$$

TOPIC:

$$(44)$$
 $\{\omega \mid \omega \in \{a,b\}^{*}, \ Na(\omega) = 3n+1, \ n \ge 0\}$

$$= \{a \mid (aaa)^{*}\}$$

$$= \{a \mid (aaaa)^{*}\}$$

$$= (a a a)^{*} \alpha^{1}$$

$$\gamma_a(\omega) \% 3 = 1$$

$$\#a(\omega) = 1$$
 $= 1$
 $= 10$
 $= 13$
 $= 13$
 $= 30+1$

$$\{\omega | \omega \in \{a,b\}^*, Na(\omega) \% 3 = 2\}$$

2 mins Summary

Topic

Regular Languages

Topic

Regular Expressions

THANK - YOU