Babeş-Bolyai University, Faculty of Mathematics and Computer Science Bachelor, Computer Science, Groups 911-917, Academic Year 2019-2020

Mathematical Analysis Seminar 5

- 1. Find the local extrema of $f: \mathbb{R}^3_+ \to \mathbb{R}$, f(x,y,z) = xyz subject to x+y+z=1.
- **2.** Let $a = (1,2) \in \mathbb{R}^2$. Find the point on the unit circle (2d-sphere) $S := \{x = (x_1, x_2) \in \mathbb{R}^2 : ||x|| = 1\}$ which lies closest to a. Formulate and solve this as an Optimization problem.
- 3. The box of fixed volume and minimal surface.

Find the minimum of $f: \mathbb{R}^3_+ \to \mathbb{R}$, f(x, y, z) = 2xy + 2yz + 2zx subject to xyz = 1.

- **4.** Maximize f(x, y, z) = 2x + 3y + 5z on the sphere $x^2 + y^2 + z^2 = 1$.
- 5. A large container in the shape of a rectangular solid must have a volume of $480m^3$. The bottom of the container costs $5/m^2$ to construct whereas the top and sides cost $3/m^2$ to construct. Use Lagrange multipliers to find the dimensions of the container that has minimum cost.