Wydział Informatyki i Telekomunikacji Laboratorium Podstaw Elektroniki Sprawozdanie z ćwiczenia		
Tytuł Układy diodowe		Rok akademicki 2019/2020
Data wykonania ćwiczenia 29.05.2020 r.	Data oddania sprawozdania 30.05.2020 r.	Kierunek Informatyka
Skład grupy laboratoryjnej 1. Dawid Królak 2. Michał Matuszak 3. Mateusz Miłkowski 4. Dominik Pawłowski	Rok, semestr, grupa Rok 1, semestr 2, grupa I2.1	Ocena

1. Cel ćwiczenia:

Zapoznanie z działaniem diody prostowniczej.

2. Przykładowy obwód do badania własności diody prostowniczej, składający się z: diody 1N4007, rezystora o oporze $1k\Omega$ oraz źródła o napięciu sinusoidalnym:

Wykonując symulacyjnie pomiary otrzymujemy wykresy napięcia wejściowego (krzywa zielona) oraz wyjściowego (krzywa niebieska):

Korzystając ze wskaźników możemy określić amplitudy obydwu krzywych. Wynoszą one odpowiednio: 4.99V oraz 4.45V.

- 3. Różnica amplitud peak-to-peak wynosi około 5.5 wolta, a różnica amplitud zwykłych wynosi około 0.5 Volta. Różnica jest spowodowana opornością układu, a różnica peak-to-peak jest zwiększona jeszcze o 5 woltów przez zastosowanie diody prostowniczej, która usuwa wartości ujemne sinusoidy wejściowej.
- 4. Powyższy schemat zmodyfikowano poprzez dołączenie kondensatora:

Otrzymano następujące krzywe napięcia wejściowego (zielona) i wyjściowego (niebieska):

Wykres napięcia od czasu pokazuje nam ładowanie kondensatora oraz powolny spadek napięcia na nim, w momencie gdy nasza sinusoida wejściowa, wyprostowana przez diodę, opada i wynosi zero aż do ponownego naładowania kondensatora. Zachowanie to jest cykliczne.

Wniosek: Poprzez zastosowanie kondensatora uzyskujemy prąd bliski prądowi stałemu.