Find Each Other Compass

- Compass pointing to another person
- Useful for team sports like Airsoft on large outdoor fields

Equipment

- XIAO ESP32-C3
- BN-880 GPS, which includes
- HMC5883 Magnetometer
- MPU6050 Accelerometer
- SSD1306 OLED Display
- External antenna
- Buzzer
- Battery
- Molle Tourniquet Pouch

Communication

- Send GPS location to each other
- Peer-to-peer using <u>ESP-NOW</u>
- 100m range using external antenna

Calibrate magnetometer

- Magnetometer 100% unreliable without calibration
- North pointing to all kinds of directions when in different orientations
- Calibrate after device is assembled to compensate for small magnetic interferences of components inside the device
- Calibration for each device is unique

Hard-iron calibration

- Finding calibration values
 - Rotate 360 degrees around each 3D axis
 - Record and save min/max magnetometer values
 - Can save these values to EPROM
- Using calibration values
 - Offset new values with min/max values

Roll

Pitch

Soft-iron calibration

- My own method
- Need
 - Real compass
 - Cardboard box to ensure no magnetic interference
 - Draw 8 precise markings on cardboard box indicating 8 compass directions
 - Show magnetometer degrees on OLED display

Step 1 – Establish ground truth North

Place real compass on box

Rotate box so North on box points to North needle on compass

Secure box position

Step 2 – Document North angle error

- Place device on North aligned box
- Device should show zero degrees when also pointing North

Document what it actually shows

Example

Expected Angle	Actual Angle
0	18
45	
90	
135	
180	
225	
270	
315	

Step 3 – Document all angle errors

- Keep box North aligned and point device in other directions
- Document what it actually shows

Example

Expected Angle	Actual Angle
0	18
45	45
90	69
135	92
180	118
225	209
270	308
315	345

For fun, I plotted errors of two devices

Step 4 – Use values at runtime

- Calc magnetometer angle
- Find the two "Actual Angles" where new angle lies between
- Calc interpolation factor using the two "Actual Angles"
- Interpolate "Expected Angles" to find correct calibrated angle

Example

- Magnetometer measures 57 degrees
- 57 is an uncalibrated "actual angle"
- 57 is 50% between "actual angles" 45 and 69
- "Actual angles" 45 and 69 correlates to "expected angles" 45 and 90
- 50% between "expected angles" 45 and 90 is 67.5
- Therefore, correct calibrated value is 67.5 degrees

Expected Angle	Actual Angle
0	18
45	45 57
68.5 90	69
135	92
180	118
225	209
270	308
315	345

Tilt corrected compass

- Compass requires to be held perfectly horizontal
- Tilted angles can give North up to 100 degrees off!
- Add tilt correction using accelerometer data
- Doesn't work without magnetometer calibration

Used method from

https://github.com/pololu/lsm303-arduino/blob/master/LSM303.h

Battery lifetime

- Using small 850 mAh Lipo battery
- Originally only lasted 1.5 hours
- After optimizations lasting 3.5 hours

Optimizations

- Send GPS coordinates less frequently, e.g. only every 5 seconds
- Do expensive calculations less frequently, e.g. pitch and roll every half second
- Turn display off when at rotation angles larger than 30 degrees
- Stop doing some calculations when display is off, e.g. sin/cos to draw needle
- Disable output to Serial
- Code cleanup, removing redundent lines of code