# LECTURE NOTES IN GRAPH THEORY

Isagani B. Jos, PhD
Department of Mathematics
De La Salle University-Manila

July 6, 2020

## 1 Undirected graphs

#### 1.1 Simple Graph, Multigraph and Pseudograph

**Definition 1.1.** A graph G is an ordered pair (V(G), E(G)). The set V = V(G) called the *vertex set* of G is a set of vertices and the set E = E(G), called the *edge set* of G is a set of unordered pairs of distinct elements of V. The cardinality of the V(G) and of E(G) are called the *order* and *size* of G, respectively.

**Example 1.1.** Let G = (V, E), where  $V = \{x_1, x_2, x_3, x_4, x_5\}$  and

$$E = \{ [x_1, x_3], [x_1, x_5], [x_2, x_4], [x_3, x_5], [x_4, x_1], [x_4, x_3], [x_5, x_2] \}.$$

A graph can be shown pictorially. The vertices of a graph can be represented by points and edges can be represented by lines connecting the vertices. A pictorial representation of the graph G is given in Example 1.1 is given in Figure 1 below.



Figure 1: The graph G

We will use the notation  $x_i x_j$  to denote the edge  $[x_i, x_j]$ . Furthermore, if  $x_i x_j$  is an edge of the graph G, we then say that  $x_i$  and  $x_j$  are adjacent and the vertices  $x_i$  and  $x_j$  are incident with the edge  $x_i x_j$ .

**Remark 1.1.** We note that the definition of a graph in Definition 1.1 permits no edges of the form  $x_i x_i$ , that is edges joining points to itself. These edges are called *loops*.

There are several variations of a graph. Two of these are called multigraph and pseudographs. A *multigraph* do not allow loops but allows multiple edges connecting the same vertices. A *pseudograph* allows both loops and multiple edges.

A graph which has neither loops nor multiple edges is called a *simple graph*. For this notes, when we say graphs, we mean simple graphs.

**Definition 1.2.** A subgraph H = (V(H), E(H)) of the graph G = (V(G), E(G)) is the graph satisfying  $V(H) \subseteq V(G)$  and  $E(H) \subseteq E(G)$ . If V(H) = V(G), then H is called a spanning subgraph of G.

**Example 1.2.** Consider the graph in Exmp. 1.1. Let H = (V(H), E(H)), where  $V = \{x_1, x_2, x_3, x_4, x_5\}$  and  $E(H) = \{x_1x_5, x_2x_4, x_3x_5, x_4x_1, x_4x_3\}$ . The graph H is a spanning subgraph of G.



Figure 2: The spanning subgraph H of G

**Definition 1.3.** Let  $S \subseteq V(G)$ , where G is a graph. The *induced subgraph*  $\langle S \rangle$  is the maximal subgraph of G with point set S. In other words, two vertices of S are adjacent in  $\langle S \rangle$  if and only if they are adjacent is G.

**Remark 1.2.** A subgraph H of a graph G may be obtained by performing the following operations:

- 1. Removal of a point. Let G be a graph and  $v_i$  be a vertex of G. The removal of  $v_i$  results in a subgraph  $G v_i$  of G consisting of all the vertices of G except  $v_i$  and all edges incident to  $v_i$ . Thus,  $G v_i$  is a maximal subgraph of G not containing  $v_i$ ;
- 2. Removal of an edge  $e_j$ . Let G be a graph and  $e_j$  be an edge of G. The removal of the edge  $e_j$  results in a subgraph  $G e_j$  of G consisting of all edges of G except  $e_j$ . Thus,  $G e_j$  is a spanning subgraph of G.

**Example 1.3.** Consider the graph in Exmp. 1.1. The graph  $G - x_2$  is



Figure 3: The graph  $G - x_2$ 

**Example 1.4.** Consider the graph in Exmp. 1.1. The graph  $G - x_1x_5$  is



Figure 4: The graph  $G - x_1x_5$ 

**Example 1.5.** Let G = (V, E) be graph with

$$V = \{x_1, x_2, x_3, x_4, x_5, y_1, y_2, y_3, y_4, y_5\}$$

and

 $E = \{x_1x_3, x_1x_4, x_2x_4, x_2x_5, x_3x_5, x_1y_1, x_2y_2, x_3y_3, x_4y_4, x_5y_5, y_1y_2, y_2y_3, y_3y_4, y_4y_5, y_5y_1\}.$ 

Do the following:

- 1. Draw a pictorial representation of G;
- 2. Let H = (V(H), E(H)) be a subgraph of G, where  $E(H) = \{x_i y_i | i = 1, 2, 3, 4, 5\}.$
- 3. Draw a pictorial representation of  $\langle S_1 \rangle$ , where  $S_1 = \{x_1, x_2, x_3, x_4, x_5\}$ .
- 4. Draw a pictorial representation of  $\langle S_2 \rangle$ , where  $S_2 = \{y_1, y_2, y_3, y_4, y_5\}$ .

The graph G in Example 1.5 is called the *Petersen graph*.



Figure 5: The Petersen graph

#### 1.2 Walk, path, cycle of a graph

**Definition 1.4.** A walk of length n in a graph is a sequence of vertices  $x_1, x_2, \ldots, x_n, x_{n+1}$  such that  $x_i x_{i+1}$  is an edge for each  $i = 1, 2, \ldots, n$ . A walk is said to be closed if  $x_1 = x_{n+1}$ .

**Definition 1.5.** A walk is called a path if  $x_1, x_2, \ldots, x_n, x_{n+1}$  are distinct.

**Definition 1.6.** A closed walk is called a *cycle* if (n+1) > 1 and  $x_1, x_2, \ldots, x_n$  is a path.

**Remark 1.3.** A cycle with three vertices is called a *triangle*. The length n of a walk is the number of edges in it.

**Definition 1.7.** The *girth* of a graph G, denoted by g(G), is the length of the shortest cycle in G. The *circumference* of a graph G, denoted by c(G) if the length of the longest cycle.

**Remark 1.4.** The terms girth and circumference of G are undefined if G has no cycles.

### 1.3 Connected graph, components of a graph and regular graphs

**Definition 1.8.** A graph is said to be *connected* if every pair of vertices are joined by a path. A maximal connected subgraph of G is called a *connected component* or simply a *component* of G.

**Definition 1.9.** Let G be a graph and v be a vertex of G. The *degree* of v, denoted by deg(v), is the number edges incident with it. If for every vertex  $v_i$  of G,  $deg(v_i) = r$ , we then say that G is r-regular.

**Remark 1.5.** We can see that the Petersen graph is a connected graph and is 3-regular.

**Example 1.6.** Given the graph below. Is this graph connected? If not,



how many component does it have? Is this a regular graph?

**Theorem 1.1.** Let G = (V, E). The sum of the degrees of the vertices of a graph G is twice the number of edges,

$$\sum_{v \in V} deg(v) = 2|E|.$$

Corollary 1.1.1. In any graph, the number of vertices of odd degree is even.

#### 1.4 The adjacency matrix

For every graph G of order n, there is an associated  $n \times n$  matrix called the adjacency matrix of G. We define the adjacency matrix below.

**Definition 1.10.** Let G be a graph of order n with  $V(G) = \{x_1, x_2, \dots, x_n\}$ . The  $n \times n$  matrix denoted by  $\mathcal{A}(G) = [a_{ij}]$  and defined by

$$a_{ij} = \begin{cases} 1 \text{ if } x_i x_j \in E(G) \\ 0 \text{ if } x_i x_j \notin E(G) \end{cases}$$

is called the adjacency matrix of G.

**Example 1.7.** The adjacency matrix of the graph given in Example 1.1 is

$$\mathcal{A}(G) = \begin{bmatrix} 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 1 & 1 \\ 1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 \end{bmatrix}.$$

**Example 1.8.** Give the adjacency matrices for the Petersen graph and the graph given in Example 1.6.

## 2 Some special classes of graphs

This chapter introduces some special classes of graphs.

#### 2.1 Path

**Definition 2.1.** The path of order n which is denoted by  $P_n$ , is defined to be the graph with  $V(P_n) = \{x_1, x_2, \dots, x_n\}$  and  $E(P_n) = \{x_i x_{i+1} | i = 1, 2, \dots, n-1\}.$ 

The path of order 6 is illustrated in Figure 6



Figure 6: The path  $P_6$ 

**Example 2.1.** The paths of orders 4 and 7 are given below. Give the adjacency matrices  $\mathcal{A}(P_4)$  and  $\mathcal{A}(P_7)$ .



Figure 7: The path  $P_4$ 



Figure 8: The path  $P_7$ 

### 2.2 Cycle

**Definition 2.2.** The cycle of order n, denoted by  $C_n$ , is the graph with  $V(C_n) = \{x_1, x_2, \ldots, x_n\}$  and  $E(C_n) = \{x_i x_{i+1} | i = 1, 2, \ldots, n-1\} \cup \{x_n x_1\}.$ 

The cycle of order 6,  $C_6$  is given in Figure 9.



Figure 9: The cycle  $C_6$ 

**Example 2.2.** The cycles of orders 4 and 7 are given below. Give the adjacency matrices  $\mathcal{A}(C_4)$  and  $\mathcal{A}(C_7)$ .



#### 2.3 Fan

**Definition 2.3.** The fan of order n + 1, denoted by  $F_n$ , is defined to be the graph with  $V(F_n) = \{x_0, x_1, x_2, \dots, x_n\}$  and  $E(F_n) = \{x_i x_{i+1} | i = 1, 2, \dots, n - 1\} \cup \{x_0 x_i | i = 1, 2, \dots, n\}.$ 

The fan of order 7,  $F_6$  is illustated in Figure 10

**Example 2.3.** The fans of orders 4 and 8 are given below. Give the adjacency matrices  $\mathcal{A}(F_3)$  and  $\mathcal{A}(F_7)$ .



Figure 10: The fan  $F_6$ 





#### 2.4 Wheel

**Definition 2.4.** The wheel of order n + 1, denoted by  $W_n$ , is defined to be the graph with  $V(W_n) = \{x_0, x_1, x_2, \dots, x_n\}$  and  $E(W_n) = \{x_i x_{i+1} | i = 1, 2, \dots, n - 1\} \cup \{x_n x_1\} \cup \{x_0 x_i | i = 1, 2, \dots, n\}.$ 

We can see that if the edge  $x_nx_1$  is added to the edge set of the fan,  $F_n$ , we obtain the wheel of order n+1. The wheel of order 7,  $W_6$  is given in Figure 11



Figure 11: The wheel  $W_6$ 

**Example 2.4.** The wheels of orders 4 and 8 are given below. Give the adjacency matrices  $\mathcal{A}(W_3)$  and  $\mathcal{A}(W_7)$ .



#### 2.5 Star

**Definition 2.5.** The star of order n+1, denoted by  $S_n$ , is the graph with vertex set and edge set as  $V(S_n) = \{x_0, x_1, x_2, \dots, x_n\}$  and  $E(S_n) = \{x_0x_i|i=1,2,\dots,n\}$ .

The star of order 7,  $S_6$  is illustrated in Figure 12.



Figure 12: The star  $S_6$ 

**Example 2.5.** The stars of orders 4 and 8 are given below. Give the adjacency matrices  $\mathcal{A}(S_3)$  and  $\mathcal{A}(S_7)$ .



## 2.6 Complete Graph

**Definition 2.6.** The *complete graph*  $K_n$  is a graph of order n in which every pair of vertices are adjacent to each other.

The complete graph  $K_6$  is illustated in Figure 13.



Figure 13: The graph  $K_6$ 

**Example 2.6.** The complete graphs of orders 3 and 7 are given below. Give the adjacency matrices  $\mathcal{A}(K_3)$  and  $\mathcal{A}(K_7)$ .



**Remark 2.1.** We note that  $K_3$  and  $C_3$  are the same graphs. We say that  $K_3$  and  $C_3$  are isomorphic graphs and write  $K_3 \cong C_3$ . We will have more on isomorphic graphs later.

**Remark 2.2.** Any graph G of order n is a spanning subgraph of  $K_n$ . Furthermore, any graph G of order n is a subgraph of  $K_m$ , where  $m \ge n$ .

#### 2.7 Complete bipartite graph

**Definition 2.7.** The complete bipartite graph  $K_{m,n}$  is a graph whose vertex set can be partitioned into two sets say X and Y containing m and n elements respectively, with the property that every vertex in X is joined by an edge with each of the vertices of Y and no pair of vertices both in X or both in Y are joined by an edge.

The graph is  $K_{4,5}$  illustrated in Figure 14.



Figure 14: The complete bipartite graph  $K_{4,5}$ 

**Remark 2.3.** We note that  $S_n \cong K_{1,n} \cong K_{n,1}$ 

**Remark 2.4.** If the vertex set of a graph G can be partitioned into two sets, X and Y with edges of G joining only points in X with points in Y, then G is said to be a *bipartite graph*.

## 3 Isomorphism of graphs

**Definition 3.1.** Two graphs  $G_1 = (V(G_1), E(G_1))$  and  $G_2 = (V(G_2), E(G_2))$  are *isomorphic* if there exists a bijective mapping  $\phi : V(G_1) \to V(G_2)$  such that  $ab \in E(G_1)$  if and only if  $\phi(a)\phi(b) \in E(G_2)$ . The mapping  $\phi$  is called an *isomorphism*. If  $G_1$  is isomorphic to  $G_2$ , we shall write  $G_1 \cong G_2$ , otherwise, we shall write  $G_1 \ncong G_2$ .

**Example 3.1.** The graphs  $G_1$  and  $G_2$  below are isomorphic. Give the bijective mapping  $\phi$ .



The bijective mapping is

$$\phi(x_i) = y_i, \quad i = 1, 2, \dots, 6.$$

We note that

$$x_i x_j \in E(G_1) \iff y_i y_j = \phi(x_i) \phi(x_j) \in E(G_2).$$

# 4 Some operations on graphs

We consider here some operations on graphs namely: the complement of a graph, the rth power of a graph, the sum of two graphs, the cartesian