

<u>Gameboard</u>

Maths

Complex Numbers: Equations to Quartics 3i

Complex Numbers: Equations to Quartics 3i

Part A $z^4=16$

The roots of the equation $z^4=16$ can be written in the form x+iy.

Give the solution with positive x.

The following symbols may be useful: i

Give the solution with negative x.

The following symbols may be useful: ${\tt i}$

Give the solution with positive y.

The following symbols may be useful: i

Give the solution with negative y.

The following symbols may be useful: i

Part B Another quartic

Of the two roots that are purely real - that is, $\mathrm{Im}(w)=0$ - give the larger root.

Of the two roots that are purely real - that is, $\mathrm{Im}(w)=0$ - give the smaller root.

The other two roots are complex, and can be written in the form x + iy.

Give the complex root with positive y.

The following symbols may be useful: i

Give the complex root with negative y.

The following symbols may be useful: i

Adapted with permission from UCLES, A Level, Jan 2010, Paper 4727, Question 4.

Gameboard

Maths

Argand Diagrams: Solving Inequalities 3i

Argand Diagrams: Solving Inequalities 3i

Figure 1: C and l are shown on a single Argand diagram.

The Argand diagram above shows a half-line l and a circle C. The circle has centre 3i and passes through the origin.

Give the equation of C in the form

$$|z-z_1|=a$$

where z_1 is complex and a is real.

The following symbols may be useful: i, z

The equation of l can be written in the form

$$rg(z-z_1)=a\pi$$

where z_1 is complex and a is real.

Give z_1 in the form x+iy.

The following symbols may be useful: i, pi, z_2

Give the value of a in exact form.

The following symbols may be useful: a

Part C Inequalities

The shaded region is defined by two inequalities. [The shaded region includes the boundaries.]

They are in the form

$$|z-z_1|$$
 inequality a

and

$$b\pi \leq rg(z-z_2)$$

$$rg(z-z_2) \leq c\pi$$

where inequality indicates either <, >, \ge or \le .

Give the full expression for the first inequality.

The following symbols may be useful: \langle , \langle =, \rangle , \rangle =, i, z

Give the value of b in the second inequality.

The following symbols may be useful: b

Give the value of c in the third inequality.

The following symbols may be useful: c

Adapted with permission from UCLES, A Level, June 2013, Paper 4725, Question 6.

Gameboard:

STEM SMART Double Maths 48 - Complex Numbers,

Matrices & Geometry Revision

Gameboard

Maths

Complex Numbers: De Moivre 4ii

Complex Numbers: De Moivre 4ii

Part A $\cos^6 heta$

By expressing $\cos \theta$ in terms of $e^{i\theta}$, write $\cos^6 \theta$ in terms of $\cos(n\theta)$.

Give your answer in the form

$$\cos^6 heta = \mathrm{f}(\cos 6 heta, \cos 4 heta, \cos 2 heta)$$

The following symbols may be useful: cos(), theta

Part B Solutions to an equation

Hence solve, for $0 \leqslant \theta \leqslant \pi$,

$$\cos 6\theta + 6\cos 4\theta + 2\cos 2\theta = 3.$$

Give your solutions in increasing order, in radians, to 3 significant figures.

What is θ_1 ?

What is θ_2 ?

What is θ_3 ?

Adapted with permission from UCLES, A Level, June 2017, Paper 4727, Question 7.

Gameboard:

STEM SMART Double Maths 48 - Complex Numbers,

Matrices & Geometry Revision

Gameboard

Maths

Algebra and Roots: Cubics with Substitution 3i

Algebra and Roots: Cubics with Substitution 3i

The cubic equation $x^3 + 2x^2 + 3x + 4 = 0$ has roots α , β and γ .

Part A Substitution

Use the substitution $x=\frac{1}{u+1}$ to find a cubic equation in u with the form $au^3+bu^2+cu+d=0$ where a,b,c and d are integers.

The following symbols may be useful: u

Part B
$$\left(\frac{1}{\alpha}-1\right)\left(\frac{1}{\beta}-1\right)\left(\frac{1}{\gamma}-1\right)$$

Hence, find the value of $\left(\frac{1}{\alpha}-1\right)\left(\frac{1}{\beta}-1\right)\left(\frac{1}{\gamma}-1\right)$ as a single fraction.

Adapted with permission from UCLES, A Level, June 2018, Paper 4725, Question 5.

Gameboard:

STEM SMART Double Maths 48 - Complex Numbers,

Matrices & Geometry Revision

<u>Gameboard</u>

Maths

Algebra Matrices

Matrices - Linear Equations 1

Matrices - Linear Equations 1

Use matrix notation to solve the following set of three equations:

$$x+ky-z=3 \ 3x+ky=1 \ -x+4y+z=3.$$

where k is a constant.

Part A Matrix form

Write these equations in matrix form $\mathbf{A}\mathbf{x} = \mathbf{b}$.

If the matrix **A** is written in the form

$$\mathbf{A} = egin{pmatrix} a_{11} & a_{12} & a_{13} \ a_{21} & a_{22} & a_{23} \ a_{31} & a_{32} & a_{33} \end{pmatrix}$$

give the values of the following elements of the matrix ${f A}$.

Give the value of a_{12} .

The following symbols may be useful: k

Give the value of a_{21} .

Give the value of a_{23} .

Give the value of a_{32} .

Part B No unique solution

Find an expression for the condition that there is no unique solution to this set of equations.

The following symbols may be useful: ${\bf k}$

Part C The inverse matrix

Find \mathbf{A}^{-1} , the inverse of \mathbf{A} .

If the matrix \mathbf{A}^{-1} is written in the form

$$\mathbf{A}^{-1} = egin{pmatrix} lpha_{11} & lpha_{12} & lpha_{13} \ lpha_{21} & lpha_{22} & lpha_{23} \ lpha_{31} & lpha_{32} & lpha_{33} \end{pmatrix}$$

give expressions for the following elements of \mathbf{A}^{-1} .

Give an expression for α_{13} .

The following symbols may be useful: k

Give an expression for α_{21} .

The following symbols may be useful: k

Give an expression for α_{31} .

Give an expression for α_{32} .

The following symbols may be useful: $\ensuremath{\mathbf{k}}$

Part D Solution to the set of equations

Using ${f A}^{-1}$, find the solutions for x , y and z in terms of k .								
Find an expression for x .								
The following symbols may be useful: k								
Find an expression for y .								
The following symbols may be useful: k								
Find an expression for z .								
The following symbols may be useful: k								

Created for isaacphysics.org by Julia Riley

Gameboard:

STEM SMART Double Maths 48 - Complex Numbers,

Matrices & Geometry Revision

Gameboard

Maths

Algebra Matrices

Matrices - Transformations 2

Matrices - Transformations 2

 ${f A}$, ${f B}$ and ${f C}$ are 3 imes 3 matrices such that ${f C} = {f B} {f A}$ and

$$\mathbf{B} = egin{pmatrix} -1 & 0 & 0 \ 0 & k & 0 \ 0 & 0 & 1 \end{pmatrix}$$

and

$$\mathbf{C} = egin{pmatrix} p & 0 & q \ 0 & r & 0 \ s & 0 & t \end{pmatrix}$$

Part A Matrix \mathbf{B}^{-1}

Find ${\bf B}^{-1}$. Give expressions for the elements of ${\bf B}^{-1}$ on the leading diagonal i.e. β_{11} , β_{22} and β_{33} .

Give an expression for β_{11} .

The following symbols may be useful: k

Give an expression for β_{22} .

The following symbols may be useful: k

Give an expression for β_{33} .

Part B Matrix A

Use \mathbf{B}^{-1} to deduce the form of the matrix \mathbf{A} .

Give your answer by writing the elements in each row in brackets in the form (a_{m1}, a_{m2}, a_{m3}) where m = 1, 2 or 3. Thus, if $a_{21} = 1$, $a_{22} = 2$ and $a_{23} = 0$, type: (1,2,0) with no spaces.

Give the elements in the top row (m=1) of the matrix, writing them in the form indicated above.

Give the elements in the second row (m=2) of the matrix, writing them in the form indicated above.

Give the elements in the bottom row (m=3) of the matrix, writing them in the form indicated above.

Part C Transformation produced by A

If the matrix A	• represents	rotation a	nticlockwise	about the	y-axis tl	hrough an	angle $\it L$) deduce t	he
expressions for	or p,q,r,s a	nd $\frac{r}{k}$.							

Deduce the expression for p.

The following symbols may be useful: D, cos(), k, sin(), tan()

Deduce an expression for q.

The following symbols may be useful: D, cos(), k, sin(), tan()

Deduce an expression for $\frac{r}{k}$.

The following symbols may be useful: cos(), k, r, sin(), tan()

Deduce an expression for s.

The following symbols may be useful: D, cos(), k, sin(), tan()

Deduce an expression for t.

The following symbols may be useful: D, cos(), k, sin(), tan()

Part D Reflection in the z=0 plane

If ${\bf C}$ represents reflection in the z=0 plane deduce the values of r and D.

Deduce the value of r.

Deduce the value of the angle D. Give your answer in radians and assume $0 \le D < 2\pi$.

The following symbols may be useful: pi

Created for isaacphysics.org by Julia Riley

Gameboard:

STEM SMART Double Maths 48 - Complex Numbers,

Matrices & Geometry Revision

Gameboard

Maths

Polar Coordinates: General 3i

Polar Coordinates: General 3i

The equation of a curve, in polar coordinates, is

$$r=\sqrt{3}+ an heta, \quad ext{ for } -rac{1}{3}\pi\leqslant heta\leqslantrac{1}{4}\pi.$$

Part A Tangent at the pole

Find the equation of the tangent at the pole in the form $\theta = \alpha$.

The following symbols may be useful: pi, theta

Part B Greatest value of r

State the greatest value of r.

Part C Corresponding value of θ

State the value of θ at which r takes its greatest value.

The following symbols may be useful: pi

Part D Sketch the curve

Sketch the curve.

Which curve in Figure 1 most resembles your sketch?

Figure 1: Four curves.

- Curve A
- Curve B
- Curve C
- Curve D

Part E Area of region

Given that

$$\int \tan x \, \mathrm{d}x = \ln|\sec x| + C,$$

find the exact area of the region enclosed by the curve and the lines $\theta=0$ and $\theta=\frac{1}{4}\pi$.

The following symbols may be useful: ln(), log(), pi

Adapted with permission from UCLES, A Level, June 2006, Paper 4726, Question 7.

Gameboard:

STEM SMART Double Maths 48 - Complex Numbers,

Matrices & Geometry Revision

Gameboard

Maths

Vectors: Lines and Planes 3i

Vectors: Lines and Planes 3i

The plane Π passes through the points (1,2,1),(2,3,6) and (4,-1,2).

Part A Cartesian equation of Π

Find a cartesian equation of the plane Π .

Give your answer in the form ax + by + cz = 19.

The following symbols may be useful: x, y, z

Part B Intersection of l and Π

The line
$$l$$
 has equation $r=\left(egin{array}{c} -1 \ -2 \ 6 \end{array}\right)+\lambda\left(egin{array}{c} 4 \ 3 \ -2 \end{array}\right).$

Find the value of λ at the point of intersection of Π and l.

Part C Angle between l and Π

Find the acute angle between Π and l.

Give your answer in degrees to 3 significant figures.

<u>Gameboard</u>

Maths

Vectors: Geometry 2i

Vectors: Geometry 2i

(In this question, the notation $\triangle ABC$ denotes the area of the triangle ABC.)

The vector product of two vectors $\underline{\boldsymbol{p}}$ and $\underline{\boldsymbol{q}}$ is given by $\underline{\boldsymbol{p}} \times \underline{\boldsymbol{q}} = |\underline{\boldsymbol{p}}||\underline{\boldsymbol{q}}|\sin\theta\hat{\underline{\boldsymbol{n}}}$ where θ is the angle between $\underline{\boldsymbol{p}}$ and $\underline{\boldsymbol{q}}$, with $0 \leq \theta \leq \pi$, and $\underline{\hat{\boldsymbol{n}}}$ is a unit vector perpendicular to both $\underline{\boldsymbol{p}}$ and $\underline{\boldsymbol{q}}$ in the right-handed sense.

The points P,Q and R have position vectors $p\underline{i},q\underline{j}$ and $r\underline{k}$ respectively, relative to the origin O, where p,q and r are positive. The points O,P,Q and R are joined to form a tetrahedron.

Part A Sketch tetrahedron

Draw a sketch of the tetrahedron.

Which of these sketches is correct?

Figure 1: Four sketches.

- Sketch A
- Sketch B
- Sketch C
- Sketch D

Part B Triangle areas

Write down the values of $\triangle OPQ$, $\triangle OQR$ and $\triangle ORP$.

What is $\triangle OPQ$?

The following symbols may be useful: p, q, r

What is $\triangle OQR$?

The following symbols may be useful: p, q, r

What is $\triangle ORP$?

Part C Vector product and area

Use the definition of the vector product to show that $k|\overrightarrow{RP}\times\overrightarrow{RQ}|$ is equal to the area of one of the tetrahedron's faces, where k is a constant to be found.

Which area is $k|\overrightarrow{RP} imes \overrightarrow{RQ}|$ equal to?

- \bigcirc $\triangle ORP$
- \bigcirc $\triangle OQR$
- \bigcirc $\triangle OPQ$
- \bigcirc $\triangle PQR$

What is the value of k?

Part D Relationship between areas

Show that we can find an equation of the form

$$(\triangle OPQ)^2 + (\triangle OQR)^2 + (\triangle ORP)^2 = \alpha(\triangle PQR)^2$$

where α is a constant to be found.

What is α ?

Adapted with permission from UCLES, A Level, June 2011, Paper 4727, Question 7.