Лекция 2. АВЛ-деревья

Даниил Михайлович Берлизов

Старший преподаватель Кафедры вычислительных систем СибГУТИ **E-mail:** sillyhat34@gmail.com

Курс «Структуры и алгоритмы обработки данных» Осенний семестр, 2021 г.

Двоичные деревья поиска

- Операции над двоичным деревом имеют трудоёмкость,
 пропорциональную высоте h дерева
- В среднем случае высота дерева *O*(logn)
- В худшем случае элементы добавляются по возрастанию (убыванию)
 ключей дерево вырождается в список длины O(n)

bstree_add(1, value)
bstree_add(2, value)
bstree_add(3, value)
bstree_add(4, value)

Сбалансированные деревья поиска

Сбалансированное дерево поиска (self-balancing binary search tree) — дерево поиска, в котором высота поддеревьев любого узла различается не более, чем на заданную константу k

Сбалансированные деревья поиска:

- Красно-чёрные деревья (red-black trees)
- ABЛ-деревья (AVL trees)
- 2-3-деревья (2-3 trees)
- В-деревья (B-trees)
- AA trees
- ***** ...

АВЛ-дерево (AVL tree) — сбалансированное по высоте двоичное дерево поиска, в котором у любой вершины высота левого и правого поддеревьев различаются не более, чем на 1

Авторы: Г. М. Адельсон-Вельский, Е. М. Ландис Адельсон-Вельский Г. М., Ландис Е. М. Один алгоритм организации информации // Доклады АН СССР. — 1962. Т. 146, № 2. — С. 263–266.

Применение: GNU libavl, libdict, Python avlib

Г. М. Адельсон-Вельский

Е. М. Ландис

Операция	Средний случай (average case)	Худший случай (worst case)
Add(key, value)	O(logn)	O(logn)
Lookup(key)	O(logn)	O(logn)
Remove(key)	O(logn)	O(logn)
Min	O(logn)	O(logn)
Max	O(logn)	O(logn)

Сложность по памяти (space complexity): O(n)

- Основная идея:
 - Если вставка или удаление элемента приводит к нарушению сбалансированности дерева, то необходимо выполнить его балансировку
- **Коэффициент сбалансированности узла** (balance factor) это разность высот его левого и правого поддеревьев
- В АВЛ-дереве коэффициент сбалансированности любого узла принимает значения из множества **{-1, 0, 1}**
- Высота узла (height) это длина наибольшего пути от него до дочернего узла, являющегося листом

Балансировка АВЛ-дерева

- После добавления нового элемента необходимо обновить коэффициенты сбалансированности родительских узлов
- Если любой родительский узел принял значение -2 или 2, то необходимо выполнить балансировку поддерева путем поворота (rotation)

Повороты:

- Одиночный правый поворот (R-rotation, single right rotation)
- Одиночный левый поворот (L-rotation, single left rotation)
- Двойной лево-правый поворот (LR-rotation, double left-right rotation)
- Двойной право-левый поворот (RL-rotation, double right-left rotation)

Правый поворот АВЛ-дерева (R-rotation)

- В левое поддерево узла 3 добавили элемент 1
- Дерево с корнем в узле 3 не сбалансировано
- h(left) = 1 > h(right) = -1
- Необходимо увеличить высоту правого поддерева

Поворачиваем ребро, связывающее *корень* и его левый дочерний узел, вправо

Правый поворот АВЛ-дерева (R-rotation)

Правый поворот в общем случае:

В левое поддерево вставлен элемент x, дерево не сбалансировано: h(left) > h(right)

Правый поворот АВЛ-дерева (R-rotation)

Правый поворот в общем случае:

В левое поддерево вставлен элемент x, дерево не сбалансировано: h(left) > h(right)

```
function AVLTree RRotate(P)
    P.left = L.right
    L.right = P
    P.height = 1 + max(P.left.height, P.right.height)
    L.height = 1 + max(L.left.height, P.height)
end function
```

Левый поворот АВЛ-дерева (L-rotation)

- В правое поддерево узла 1 добавили элемент 3
- Дерево с корнем в узле 1 не сбалансировано
- h(left) = -1 < h(right) = 1
- Необходимо увеличить высоту левого поддерева

Поворачиваем ребро, связывающее *корень* и его правый дочерний узел, влево

Левый поворот АВЛ-дерева (L-rotation)

Левый поворот в общем случае:

В правое поддерево вставлен элемент x, дерево не сбалансировано: h(left) < h(right)

Левый поворот АВЛ-дерева (L-rotation)

Левый поворот в общем случае:

В правое поддерево вставлен элемент x, дерево не сбалансировано: h(left) < h(right)

```
function AVLTree LRotate(P)
    P.right = R.left
    R.left = P
    P.height = 1 + max(P.left.height, P.right.height)
    R.height = 1 + max(R.right.height, P.height)
end function
                                                 T_{LeftRotate} = O(1)
```

LR-поворот выполняется после добавления узла в правое поддерево левого дочернего узла дерева

LR-поворот выполняется после добавления узла в правое поддерево левого дочернего узла дерева

- 1. L-поворот левого поддерева Р
- 2. R-поворот нового дерева с корнем Р

```
function AVLTree_LRRotate(P)
    P.left = AVLTree_LRotate(P.left)
    P = AVLTree_RRotate(P)
end function

T_LeftRightRotate = O(1)
```

Двойной право-левый поворот АВЛ-дерева (RL-rotation)

RL-поворот выполняется после добавления узла в левое поддерево правого дочернего узла дерева

Двойной право-левый поворот АВЛ-дерева (RL-rotation)

RL-поворот выполняется после добавления узла в левое поддерево правого дочернего узла дерева

- 1. R-поворот правого поддерева Р
- 2. L-поворот нового дерева с корнем Р

```
function AVLTree_RLRotate(P)
    P.right = AVLTree_RRotate(P.right)
    P = AVLTree_LRotate(P)
end function

T<sub>RightLeftRotate</sub> = O(1)
```

- Оценим сверху высоту h АВЛ-дерева, содержащего N внутренних узлов (узлов, имеющих дочерние вершины)
- Обозначим через N(h) минимальное количество **внутренних** узлов, необходимых для формирования АВЛ-дерева высоты h

- Значения *N*(*h*): **0**, **1**, **2**, **4**, **7**, **12**, **20**, **33**, **54**, ...
- Заметим, что

$$N(h) = N(h-1) + N(h-2) + 1$$
, для $h = 2, 3, ...$

• Значения последовательности N(h) можно выразить через значения последовательности Фибоначчи:

$$F_n = F_{n-1} + F_{n-2}, \qquad F_0 = 0, F_1 = 1$$

- Значения *F*_n: **0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, ...**
- Значения *N*(*h*): **0, 1, 2, 4, 7, 12, 20, 33, 54, ...**

- Выразим из N(h) = F(h+2) 1, значение высоты h АВЛ-дерева, состоящего из N(h) внутренних узлов
- По формуле Бине можно найти приближенное значение *n*-го члена последовательности Фибоначчи:

$$F_{n} = \frac{\left(\frac{1+\sqrt{5}}{2}\right)^{n} - \left(\frac{1-\sqrt{5}}{2}\right)^{n}}{\sqrt{5}} = \frac{\phi^{n} - (-\phi)^{-n}}{\phi - (-\phi)^{-1}} = \frac{\phi^{n} - (-\phi)^{-n}}{2\phi - 1};$$

$$\phi = \frac{1+\sqrt{5}}{2}$$
 — отношение золотого сечения

$$F_n=[\frac{\phi^n}{\sqrt{5}}], n\geq 0.$$

$$N(h) = \left[\frac{\phi^{h+2}}{\sqrt{5}}\right] - 1 > \frac{\phi^{h+2}}{\sqrt{5}} - 2;$$

$$\sqrt{5}(N(h)+2) > \phi^{h+2}$$

$$\log_{\phi}(\sqrt{5}(N(h)+2)) > h+2$$

$$h < \log_{\phi}\sqrt{5} + \log_{\phi}(N(h)+2) - 2$$

$$h < \frac{\lg\sqrt{5}}{\lg\phi} + \frac{1}{\log_{2}\phi}\log_{2}(N(h)+2) - 2$$

$$h < \frac{\lg\sqrt{5}}{\lg\phi} + \frac{\lg 2}{\lg\phi}\log_{2}(N(h)+2) - 2$$

$$h < \frac{\lg\sqrt{5}}{\lg\phi} + \frac{\lg 2}{\lg\phi}\log_2(N(h) + 2) - 2$$

$$h < 1.6723 + 1.44 \log_2(N(h) + 2) - 2$$

$$h < 1.4405\log_2(N(h) + 2) - 0.3277$$

$$h = O(\log(n+2))$$

• Представлены следующие оценки эффективности АВЛ-деревьев:

$$\log_2(n+1) \le h(n) < 1.4405 \log_2(n+2) - 0.3277$$

Кнут Д. Искусство программирования, Том 3. Сортировка и поиск. — М.: Вильямс, 2007. — 824 с.

Вирт Н. Алгоритмы и структуры данных. — М.: Мир, 1989. — 360 с.

$$\lfloor \log_2 n \rfloor \le h(n) < 1.4405 \log_2(n+2) - 1.3277$$

Левитин А.В. Алгоритмы: введение в разработку и анализ. — М.: Вильямс, 2006. — 576 с.

Программная реализация АВЛ-дерева, структура узла

```
struct avltree {
    int key;
    char *value;
    int height;
    struct avltree *left;
    struct avltree *right;
};
```

Удаление всех узлов дерева, обход в обратном порядке

```
void avltree free(struct avltree *tree)
{
    if (tree == NULL)
        return;
    avltree_free(tree->left);
    avltree free(tree->right);
    free(tree);
```

 $T_{Free} = O(n)$

Поиск узла в АВЛ-дереве по ключу

```
struct avltree *avltree lookup(struct avltree *tree, int key)
    while (tree != NULL) {
        if (key == tree->key) {
            return tree;
        } else if (key < tree->key) {
            tree = tree->left;
        } else {
            tree = tree->right;
    return tree;
                                                                 T_{Lookup} = O(\log n)
```

Создание узла

```
struct avltree *avltree create(int key, char *value)
{
    struct avltree *node;
    node = malloc(sizeof(*node));
    if (node != NULL) {
        node->key = key;
        node->value = value;
        node->left = NULL;
        node->right = NULL;
        node->height = 0;
    return node;
                                                                  T_{Create} = O(1)
```

Высота и баланс узла АВЛ-дерева

```
int avltree height(struct avltree *tree)
    return (tree != NULL) ? tree->height : -1;
}
int avltree_balance(struct avltree *tree)
{
    return avltree_height(tree->left) - avltree_height(tree->right);
                                                                    T_{\text{Height}} = T_{\text{Balance}} = O(1)
```

Добавление узла в АВЛ-дерево

```
struct avltree *avltree_add(struct avltree *tree, int key, char *value)
{
   if (tree == NULL) {
      return avltree_create(key, value);
   }
```

Добавление узла в АВЛ-дерево (продолжение)

```
if (key < tree->key) {
   /* Insert into left subtree */
   tree->left = avltree add(tree->left, key, value);
    if (avltree height(tree->left) - avltree height(tree->right) == 2)
       /* Subtree is unbalanced */
       if (key < tree->left->key) {
           /* Left left case */
            tree = avltree right rotate(tree);
        } else {
           /* Left right case */
            tree = avltree leftright rotate(tree);
```

Добавление узла в АВЛ-дерево (продолжение)

```
else if (key > tree->key) {
   /* Insert into right subtree */
    tree->right = avltree add(tree->right, key, value);
    if (avltree height(tree->right) - avltree height(tree->left) == 2)
        /* Subtree is unbalanced */
        if (key > tree->right->key) {
           /* Right right case */
            tree = avltree left rotate(tree);
        } else {
            /* Right left case */
            tree = avltree rightleft rotate(tree);
```

Добавление узла в АВЛ-дерево (окончание)

- Поиск листа для вставки нового элемента выполняется за время O(logn)
- Повороты выполняются за время O(1), их количество не может превышать $O(\log n)$ при подъёме от нового элемента к корню (высота AVL-дерева $O(\log n)$)

Правый поворот (left left case)

```
struct avltree *avltree right rotate(struct avltree *tree)
    struct avltree *left:
    left = tree->left;
    tree->left = left->right;
    left->right = tree;
    tree->height = imax2(avltree height(tree->left), avltree height(tree->right)) + 1;
    left->height = imax2(avltree height(left->left), tree->height) + 1;
    return left;
                                                                        T_{RightRotate} = O(1)
```

Левый поворот (right right case)

```
struct avltree *avltree left rotate(struct avltree *tree)
    struct avltree *right;
    right = tree->right;
    tree->right = right->left;
    right->left = tree;
    tree->height = imax2(avltree_height(tree->left), avltree_height(tree->right)) + 1;
    right->height = imax2(avltree_height(right->right), tree->height) + 1;
    return right;
                                                                         T_{LeftRotate} = O(1)
```

LR- и RL-повороты

```
struct avltree *avltree_leftright_rotate(struct avltree *tree)
{
    tree->left = avltree left rotate(tree->left);
    return avltree_right_rotate(tree);
struct avltree *avltree_rightleft_rotate(struct avltree *tree)
{
    tree->right = avltree right rotate(tree->right);
    return avltree_left_rotate(tree);
                                                                   T_{\text{LeftRightRotate}} = T_{\text{RightLeftRotate}}
```

Удаление узлов из АВЛ-дерева

- Удаление элемента выполняется аналогично добавлению
- После удаления может нарушиться баланс нескольких родительских вершин
- После удаления вершины может потребоваться порядка O(logn) поворотов поддеревьев

Вирт Н. Алгоритмы и структуры данных. — М.: Мир, 1989. **[Глава 4.5, С. 272-286]**

Алгоритм ленивого удаления узлов (lazy deletion)

- С каждым узлом АВЛ-дерева ассоциирован флаг deleted
- При удалении узла находим его в дереве и устанавливаем флаг **deleted = 1** (реализация за время $O(\log n)$)
- При вставке нового узла с таким же ключом, как и у удалённого элемента, устанавливаем у последнего флаг **deleted = 0** (в поле данных копируем новое значение)
- При достижении порогового значения количества узлов с флагом deleted = 1 создаём новое АВЛдерево, содержащее все неудалённые узлы (deleted = 0)
- Поиск неудалённых элементов и их вставка в новое АВЛ-дерево реализуется за время *O(nlogn)*

Дальнейшее чтение

- 1. Более подробно изучить устройство АВЛ-деревьев:
 - Левитин А. В. Алгоритмы: введение в разработку и анализ. М.: Вильямс, 2006. 576 с.
 - Вирт Н. Алгоритмы и структуры данных. М.: Мир, 1989. 360 с.
 - Кнут Д. Искусство программирования, Том 3. Сортировка и поиск. М.: Вильямс, 2007. 824 с.
- 2. Познакомиться со следующими древовидными структурами данных:
 - Косые деревья (splay trees)
 - Списки с пропусками (skip lists)

ご清聴ありがとうございました!

Даниил Михайлович Берлизов

Старший преподаватель Кафедры вычислительных систем СибГУТИ **E-mail:** sillyhat34@gmail.com

Курс «Структуры и алгоритмы обработки данных» Осенний семестр, 2021 г.