Notwendige und hinreichende Bedingungen dafür, dass bei geteilten Ressourcen die Kapazität den Bedarf abdeckt

Johannes Lieberherr

10. März 2024

1 Problemstellung

Sei $n \in \mathbb{N}$ und $N := \{1, 2, 3, ..., n\}$.

- Bedarf $(b_i)_{i \in N}$: Für jedes $i \in N$ ist der Bedarf als eine natürliche Zahl b_i gegeben.
- Kapazität $(k_I)_{I\subseteq N, I\neq\emptyset}$: Für jede Teilmenge $I\subseteq N, I\neq\emptyset$ ist die Kapazität als eine nicht-negative ganze Zahl k_I gegeben.

Beispiel 1. Jeder Unterricht in einer Schule benötigt einen Raum von einem gewissen Raumtyp $i \in N$. Ein Raum ist einem oder mehreren Raumtypen zugeordnet. Es werden b_i Räume vom Raumtyp $i \in N$ benötigt und es stehen k_I Räume, welche genau den Raumtypen $i \in I$ zugeordnet sind, zur Verfügung.

Definition 1 (Abdeckung des Bedarfs). Der Bedarf $(b_i)_{i\in N}$ kann durch die Kapazität $(k_I)_{I\subset N,I\neq\emptyset}$ abgedeckt werden, falls es eine Familie $(x_I^i)_{I\subseteq N,I\neq\emptyset,i\in I}$ von nicht-negativen ganzen Zahlen gibt, sodass

- die Gleichungen $b_i = \sum_{I \subset N, I \neq \emptyset, i \in I} x_I^i$ für alle $i \in N$ und
- die Ungleichungen $\sum_{i \in I} x_I^i \leq k_I$ für alle nicht-leeren Teilmengen $I \subseteq N$ erfüllt sind.

2 Notwendige und hinreichende Bedingungen

Damit der Bedarf $(b_i)_{i\in N}$ durch die Kapazität $(k_I)_{I\subset N,I\neq\emptyset}$ abgedeckt werden kann, muss für alle nichtleeren $I\subseteq N$ eine Ungleichung erfüllt sein, nämlich:

$$\sum_{i \in I} b_i \le \sum_{J \subseteq N, J \cap I \neq \emptyset} k_J \tag{1}$$

Weniger klar ist, dass diese Bedingungen auch hinreichend sind:

Satz 1. Wenn für alle nichtleeren Teilmengen $I \subseteq N$ Ungleichung 1 erfüllt ist, so wird der Bedarf durch die Kapazität abgedeckt.

Beweis. (Idee von Jan Draisma). Wir konstruieren folgendes Netzwerk:

- Links die Quelle s.
- In der ersten Schicht einen Knoten i und eine Kante (s,i) mit Kapazität b_i für jedes $i \in N$.
- In der zweiten Schicht einen Knoten I für jede nichtleere Teilmenge $I \subseteq N$ und für jedes nichtleere $I \subseteq N$ und jedes $i \in I$ eine Kante (i, I) mit unendlicher Kapazität.
- Rechts die Senke t und eine Kante (I, t) mit Kapazität k_I für jede nichtleere Teilmenge $I \subseteq N$.

Zunächst stellen wir fest, dass der Bedarf genau dann abgedeckt wird, wenn der Wert des maximalen Fluss des Netzwerkes gleich der Summe $b_1 + b_2 + ... + b_n$ ist.

Wir nehmen an, dass der Bedarf nicht abgedeckt wird und demnach der Wert eines maximalen Flusses kleiner als $b_1+b_2+\ldots+b_n$ ist. Nach dem Max-Flow-Min-Cut-Theorem gibt es dann einen Schnitt (S,T) mit Kapazität kleiner als $b_1+b_2+\ldots+b_n$. Sei $I:=S\cap N$. Aus $I=\emptyset$ würde folgen, dass die Kapazität des Schnitts $\geq b_1+b_2+\ldots+b_n$ ist. Wir können also $I\neq\emptyset$ voraussetzen. Da die Kanten vom ersten zum zweiten Layer unendliche Kapazität haben, muss für alle $J\subseteq N$ mit $J\cap I\neq\emptyset$ auch $J\in S$ sein. Die Kapazität des Schnittes ist also gleich $\sum_{i\in N\setminus I}b_i+\sum_{J\subseteq N, J\cap I\neq\emptyset}k_J$. Es folgt die Ungleichung $\sum_{i\in N\setminus I}b_i+\sum_{J\subseteq N, J\cap I\neq\emptyset}k_J< b_1+b_2+\ldots+b_n$ und nach Abzug von $\sum_{i\in N\setminus I}b_i$ auf beiden Seiten $\sum_{J\subseteq N, J\cap I\neq\emptyset}k_J<\sum_{i\in I}b_i$. Die Ungleichung 1 ist für I also nicht erfüllt.

Dass es einen maximalen Fluss mit ganzzahligen Werten auf jeder Kante gibt, folgt aus dem Algorithmus von Ford und Fulkerson. \Box

```
Beispiel 2. N = \{1, 2, 3\}.

Bedarf(b_i)_{i \in N}: b_1 = 20, b_2 = 14, b_3 = 10.

Kapazitäten(k_I)_{I \subset N, I \neq \emptyset}:
```


Totalsumme der Kapazitäten: $\sum_{I\subseteq N, I\neq\emptyset} k_I = 39$. Test der Ungleichungen:

I	$\sum_{i \in I} b_i$	$\sum_{J\subseteq N, J\cap I\neq\emptyset} k_J$	Erfüllt?
{1}	20	8 + 7 + 6 + 4 = 25	ok
{2}	14	9 + 7 + 0 + 4 = 20	ok
{3}	15	5 + 6 + 0 + 4 = 15	ok
$\{1,2\}$	20 + 14 = 34	39 - 5 = 34	ok
$\{1, 3\}$	20 + 10 = 30	39 - 9 = 30	ok
$\{2,3\}$	14 + 10 = 24	39 - 8 = 31	ok
$\{1, 2, 3\}$	20 + 14 + 10 = 44	39	nok

3 Vorgehen in der Praxis

In der Praxis ist $k_I = 0$ für die meisten nichtleeren $I \subseteq N$. Um zu prüfen, ob die Kapazität den Bedarf abdeckt, müssen deshalb deutlich weniger als $|\mathcal{P}(N)| - 1 = 2^n - 1$ der Ungleichungen 1 geprüft werden. Dabei kann folgende Tatsache verwendet werden:

Lemma 1. Sei $I \subseteq N$ nichtleer und $I = I_1 \cup I_2$ eine Partition von I (d.h. $\emptyset \neq I_1 \subseteq N$, $\emptyset \neq I_2 \subseteq N$, $I_1 \cap I_2 = \emptyset$). Wenn $k_J = 0$ für alle nichtleeren $J \subseteq N$ mit $I_1 \cap J \neq \emptyset$ und $I_2 \cap J \neq \emptyset$, dann folgt die Ungleichung 1 für I aus den beiden Ungleichungen 1 für I_1 und I_2 .

Beweis. Die Summanden, welche sowohl auf der rechten Seite der Ungleichung 1 für I_1 als auch für I_2 vorkommen, sind genau diejenigen k_J , für welche $J \cap I_1 \neq \emptyset$ und $J \cap I_2 \neq \emptyset$ gilt. Da für diese nach Voraussetzung $k_J = 0$ ist, folgt die Ungleichung 1 für I deshalb aus der Summe der Ungleichung 1 für I_1 und I_2 .

Beim algorithmischen Erzeugen der Teilmengen von N wird in einem Schritt zur aktuellen Teilmenge I jeweils ein neues Element j hinzugefügt. Falls $k_J=0$

für alle nichtleeren $J\subseteq N$ mit $I\cap J\neq\emptyset$ und $\{1\}\cap J\neq\emptyset$ gilt, so kann dieser und alle darauf aufbauenden Schritte wegen des obigen Lemmas übersprungen werden.

Damit kann die Anzahl der zu berücksichtigenden Ungleichungen massiv reduziert werden.

Beispiel 3. Wenn ein Element j mit keinem anderen Element in N eine gemeinsame Kapazität zur Verfügung stellt (d.h. $k_J = 0$ für alle $J \subseteq N$ mit $j \in J$ und |J| > 1 gilt), so ist dafür nur die Ungleichung 1 für $\{j\}$ relevant. Diese ist in diesem Falle besonders einfach: $b_j \leq k_{\{j\}}$.

Beispiel 4. Sei $N := \{1,2,3\}$ und $k_{\{2,3\}} = k_{\{1,2,3\}} = 0$. Dann sind nur die Ungleichungen 1 für die Teilmengen $\{1\}$, $\{2\}$, $\{3\}$, $\{1,2\}$, $\{1,3\}$ und $\{1,2,3\}$, nicht jedoch für $\{2,3\}$ relevant.