Al Workshop: Foundations, Applications, and Ethics

Ronald Wesonga (PhD)

March 19, 2025

Definition of Al

Artificial Intelligence (AI) refers to the simulation of human intelligence in machines that can perform tasks requiring cognitive functions such as learning, reasoning, and problem-solving.

- Machine Learning (ML): Algorithms that allow computers to learn from data.
- **Deep Learning**: A subset of ML using neural networks for complex pattern recognition.
- Natural Language Processing (NLP): Al-driven language understanding and generation.

[Goodfellow et al., 2021, LeCun et al., 2015]

Historical Development of Al

- 1950s: Alan Turing's "Computing Machinery and Intelligence" [Turing, 1950]
- 1956: Dartmouth Conference Al recognized as a field
- 1980s: Expert systems and symbolic Al
- 2000s: Rise of big data and deep learning breakthroughs
- Present: Al in healthcare, finance, academia, and beyond

Al and Statistics: A Symbiotic Relationship

- Al leverages statistical methods for predictive analytics.
- Machine learning extends traditional statistical models (e.g., regression, classification).
- Al enables data-driven decision-making in diverse fields.

[Murphy, 2012]

Enhancing Traditional Statistical Approaches

- Regression: Al enhances accuracy through non-linear models.
- Classification: Neural networks improve upon logistic regression.
- **Clustering**: Deep learning uncovers hidden patterns in complex datasets.

[Bishop, 2013]

Live AI Demonstration

Tools Used:

- Python Libraries: scikit-learn, TensorFlow, PyTorch, Keras
- Jupyter Notebooks for interactive coding
- Google Colab for cloud-based AI model execution
- OpenAl's GPT models for NLP applications
- R-based Al Tools: caret, randomForest, xgboost, TensorFlow for R, h2o.ai

Supervised and Unsupervised Learning

- **Supervised Learning:** Predictive modeling using labeled data (e.g., classification, regression)
- **Unsupervised Learning:** Identifying hidden structures in unlabeled data (e.g., clustering, dimensionality reduction)
- Demonstrations using datasets such as MNIST (image classification) and Titanic (survival prediction)

Al in Real-World Statistical Applications

- Population Science: Al-driven epidemiological models for disease spread prediction
- Econometrics: Predictive modeling for market trends and economic forecasting
- Actuarial Science: Al-powered risk assessment, fraud detection, and insurance analytics
- Healthcare: Al-assisted diagnostics, personalized medicine, and medical image analysis

Al Tools in Education

Key AI Tools:

- ChatGPT Al-powered assistant for content generation and student support: https://openai.com
- Grammarly Al-driven writing enhancement tool: https://www.grammarly.com
- Perplexity AI AI-powered research assistant: https://www.perplexity.ai
- Khanmigo (Khan Academy) Al tutoring for personalized learning: https://www.khanacademy.org

Al Tools in Research

Key AI Tools:

- Zotero Al-enhanced reference management tool: https://www.zotero.org
- Connected Papers Al-assisted literature review visualization: https://www.connectedpapers.com
- **Scite.ai** Al-powered citation analysis and research validation: https://scite.ai
- Elicit Al-driven research discovery tool: https://elicit.org

Bias, Fairness, and Accountability

- Bias in Al models due to skewed training data [Bolukbasi et al., 2016]
- Transparency in AI decision-making processes
- Mitigating automation bias and misinformation spread

Ethical Al Principles

- Privacy: Secure data handling and user consent
- Transparency: Explainability in Al models
- Accountability: Al should enhance, not replace, human judgment

Conclusion

Key Takeaways:

- Al is transforming multiple industries.
- Integration of AI and statistics is crucial for data-driven insights.
- Ethical considerations are necessary for responsible AI deployment.

For details, see... [Russell and Norvig, 2010, Murphy, 2012, Turing, 1950, Bolukbasi et al., 2016]

- Christopher M Bishop. Pattern recognition and machine learning. *Journal of the American Statistical Association*, 108(502):500–501, 2013.
- Tolga Bolukbasi, Kai-Wei Chang, James Y Zou, Venkatesh Saligrama, and Adam T Kalai. Man is to computer programmer as woman is to homemaker? debiasing word embeddings. *Advances in neural information processing systems*, 29, 2016.
- Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning: A statistical perspective. *Annual Review of Statistics and Its Application*, 8:219–249, 2021.
- Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. *Nature*, 521:436–444, 2015.
- Kevin P Murphy. *Machine learning: a probabilistic perspective*. MIT press, 2012.
- Stuart Russell and Peter Norvig. *Artificial intelligence: A modern approach*. Prentice Hall, 2010.
- Alan M Turing. Computing machinery and intelligence. *Mind*, 59(236): 433–460, 1950.