Data Structures and Algorithms Homework 1

Due Wednesday Sept 4; Joseph Sepich (jps6444)

1 Problem 1

I understand the course policies.

2 Problem 2

Part a. Prove that if a and b are even, then gcd(a, b) = 2gcd(a/2, b/2)

- 1. By the definition of even we can state that a = 2n and b = 2m, where n and m are both integers.
- 2. Using the definition in step 1 we can write gcd(a, b) = gcd(2n, 2m).
- 3. Since 2 is a common divisor we can also write gcd(2n, 2m) = 2gcd(n, m).
- 4. Using step 1, we also know that $n = \frac{a}{2}$ and $m = \frac{b}{2}$.

 5. Plugging step 4 into the equalities in step 2 and 3 we get gcd(a, b) = gcd(2n, 2m) = 2gcd(n, m) = 2gcd(n, m) $2\gcd(\frac{a}{2},\frac{b}{2}).$

Therefore if a and b are both even, $\gcd(a,\,b)=2\gcd(\frac{a}{2},\,\frac{b}{2}).$

2.2 Part b. Prove that if a is even and b is odd, then gcd(a, b) = gcd(a/2, b)

- 1. By the definition of even we can state that a = 2n, where n is an integer.
- 2. Using the definition in step 1 we can write gcd(a, b) = gcd(2n, b).
- 3. Since b is odd, it cannot be divided by 2, so the 2 in the term 2n is unnecessary information (cannot contribute to the gcd). We can then write gcd(a, b) = gcd(n, b).
- 4. Using step 1, we also know that $n = \frac{a}{2}$.
- 5. Plugging step 4 into the equalities in step 2 and 3 we get $gcd(a, b) = gcd(2n, b) = gcd(n, b) = gcd(\frac{a}{2}, b)$.

Therefor if a is even abd b is odd, then $gcd(a, b) = gcd(\frac{a}{2}, b)$.

2.3 Part c. Prove that if a and b are both odd and a >= b, then gcd(a, b) = gcd((a-b)/2, b)

- 1. By the definition of odd we can state that a = 2n + 1 and b = 2m + 1, where n and m are both integers.
- 2. a b = (2n + 1) (2m + 1) = 2n 2m + 1 1 = 2(n-m). This must be greater than 0, since a >= b.
- 3. a b is therefore by definition an even number since 2(n m) can be written as 2x = (a-b) where x is the integer n m.
- 4. Definition of gcd means that $d \mid a$ and $d \mid b$, where d is an integer. This means a = d * z and b = d * z and b = d * z where z and y are integers.
- 5. Through step 4 b a = d(z y), so d must also divide the integer (z y). This means gcd(a, b) = gcd(a-b, b).
- 6. Since we determined in step 3 a-b is even (and b is even) and in step 5 gcd(a, b) = gcd(a-b, b), then through the proof in part b of the problem we can conclude that $gcd(a, b) = gcd(\frac{a-b}{2}, b)$.

2.4 Part d.

We know that by the defintion of gcd

```
int gcd(int a, int b) {
    // input a >= b
    int d = 1;
    if (a == b) return a;
    bool a = isEven(a); // test parity of variables
    bool b = isEven(b); // unit time
    while (a > 0 \&\& b > 0) {
      if (a is odd and b is even) \{ // 2 \text{ is not a common divisor (part b)} 
        a = a / 2;
      } else if (a is even and b is odd) { // 2 is not a common divisor (part b)
        b = b / 2;
      } else if (a is odd and b is odd) { // part c
        a = (a - b) / 2; // our input requires a > b
      } else { // both a and b are even, so both can be divded by 2 (as in part a)
        a = a / 2;
        b = b / 2;
        d += 1;
      }
    }
    // d is how many times divided by 2
    // a is non even part of gcd
    return a * 2<sup>d</sup>;
}
```

Now let us asses running time. We are assuming testing parity and halving are in unit time, so let's focus on subtraction. As we can recall a positive integer a has at most $\log(a)$ bits, and here a is the larger number. Subtraction two n bit integer taskes O(n) time, so here it would take us $O(\log(a))$ time. Therefore the algorithm meets the requirements of the problem.

3 Problem 3

- a) $f(n) = \Omega(g(n))$, this is true because we know with polynomials, the higher degree will always grow faster.
- b) $f(n) = \Theta(g(n))$, this is true because $2^{n-1} = 2 * 2^n$ and we know that coefficients do not make a difference in larger values of n.
- c) $f(n) = \Omega(g(n))$, this is true because f(n) has an exponent which grows, while g(n) has a constant exponent, therefore f(n) must grow faster.
- d) $f(n) = \Omega(g(n))$, this is true because in g(n) the 2ⁿ term is dominant. While 2ⁿ and 3ⁿ both have the same exponent term of n, the integer that has the exponent is greater in f(n).
- e) $f(n) = \Theta(g(n))$, this is true because you can transform the exponent on each into a coefficient, due to properties of logarithms, then change the c you put in front of g(n) to obtain an identical function.
- f) $f(n) = \Omega(g(n))$, this is true because f(n) is growing a constant rate, while g(n) is growing at less than a constant rate.
- g) f(n) = O(g(n)), this is true because for each additional n, f(n) is multiplied by 2, but g(n) is multiplied by n, so it must be growing faster.
- h) f(n) = O(g(n)), this is true because by the logarithm properties you are comparing nlog(e) and nlog(n), and since we don't look at coefficients for growth rates you are comparing n and nlog(n), so while f(n) grows at a constant rate, g(n) is a function that increases at an increasing rate.
- i) $f(n) = \Theta(g(n))$, this is true because n in each equation is the dominating term. This makes both equations $\Theta(n)$, since $\log(n)$ grows more slowly than n.
- j) $f(n) = \Theta(g(n))$, this is true because of the same concept in the last part. n grows faster than both $\log(n)$ and $n^{0.5}$. If you chose c to be 5, then they would be identical equations.