1 Show that wk is the smallest topology on $\mathscr X$ such that each x^* in $\mathscr X^*$

Must show that an arbitrary open set in wk can be generated by some collection of sets of the form $x^{*-1}(V)$.

Start with an arbitrary open set U. Since X with wk is a locally convex set, $\bigcap_{i=1}^n \{x \in \mathcal{X} : p_j(x-x_0) < \varepsilon_j\} \subseteq U$ for some finite list of ε and p, where $p_{x^*} = |< x, x^* > |$. Say it's $x_1^*, x_2^* \dots x_n^*$. Since U is generated by the subbase of preimages of the collection of x^* and

Since U is generated by the subbase of preimages of the collection of x^* and U is arbitrary, all open sets of wk are generated in this way, thus is the smallest possible topology.