## This Page Is Inserted by IFW Operations and is not a part of the Official Record

## BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

## IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

PAT-NO:

JP02003179402A

DOCUMENT-IDENTIFIER: JP 2003179402 A

TITLE:

WIDEBAND HIGH-FREQUENCY SWITCH

PUBN-DATE:

June 27, 2003

INVENTOR-INFORMATION:

**NAME** 

**COUNTRY** 

TARUI, YUKINORI

N/A

**ASSIGNEE-INFORMATION:** 

NAME

**COUNTRY** 

MITSUBISHI ELECTRIC CORP

N/A

APPL-NO: JP2002045743

APPL-DATE: February 22, 2002

PRIORITY-DATA: 2001309679 (October 5, 2001)

INT-CL (IPC): H01P001/15, H04B001/44

### ABSTRACT:

PROBLEM TO BE SOLVED: To provide a small-sized high frequency switch which

has a wide band and high withstand power.

SOLUTION: PIN diodes are used only in parallel, thereby ensuring high withstand power characteristics. Frequency characteristics due to a transmission line which is connected with a branch part and has a 1/4 wavelength at the center frequency, and a PIN diode of a cutoff port in the state matching the transmission lines constituted of a single or a plurality of line widths of the lines having a 1/2 wavelength at the center frequency of a pass port, and a parallel transmission line (stub) serving as a bias circuit in which the tip of 1/4 wavelength at the center frequency is shorted in a high frequency manner by a DC blocking capacitor, thereby obtaining the small-sized

high-frequency switch having a wide band.

COPYRIGHT: (C)2003,JPO

DERWENT-ACC-NO: 2003-510449

**DERWENT-WEEK:** 

200348

COPYRIGHT 1999 DERWENT INFORMATION LTD

TITLE:

Wide range high frequency switch for radar,

communication system, has branch track provided with two transmission lines and stub with mutually different track

lengths to satisfy predetermined equations

PATENT-ASSIGNEE: MITSUBISHI ELECTRIC CORP[MITQ]

PRIORITY-DATA: 2001JP-0309679 (October 5, 2001)

**PATENT-FAMILY:** 

PUB-DATE LANGUAGE **PUB-NO PAGES** 

MAIN-IPC

JP 2003179402 A June 27, 2003 N/A 800 H01P

001/15

**APPLICATION-DATA:** 

APPL-DESCRIPTOR APPL-NO PUB-NO

APPL-DATE

2002JP-0045743 JP2003179402A N/A February 22,

2002

INT-CL (IPC): H01P001/15, H04B001/44

ABSTRACTED-PUB-NO: JP2003179402A

**BASIC-ABSTRACT:** 

NOVELTY - Each of the branch tracks branched from an input terminal (1)

has

transmission lines (3a,3b,5a,5b) and stubs (7a,7b) with mutually different track lengths to satisfy the following conditions L1=Lb= lambda c/4 and L2= lambda c/2 where L1,L2 and Lb are the track lengths of transmission lines and

the stubs, lambda c is the wavelength corresponding to central operating frequency.

USE - Wide range high frequency switch for communication system, radar.

ADVANTAGE - Enables calculating track length of each transmission line uniquely. Prevents influence due to impedance of bias line path on switch to obtain an electric power proof switch. Calculates characteristic impedance of each transmission line uniquely. Enables obtaining a switch with wide operating range.

DESCRIPTION OF DRAWING(S) - The figure shows the block circuit diagram of the wide range high frequency switching circuit. (Drawing includes non-English language text).

input terminal 1

DC shunt capacitors 2a,2b,8a,8b,10a,10b

transmission lines 3a,3b,5a,5b,6a,6b

PIN diodes 4a,4b

stubs 7a,7b

bias terminals 9a,9b

output terminals 11a,11b

CHOSEN-DRAWING: Dwg.1/10

# TITLE-TERMS: WIDE RANGE HIGH FREQUENCY SWITCH RADAR COMMUNICATE SYSTEM BRANCH TRACK TWO TRANSMISSION LINE STUB MUTUAL TRACK

LENGTH SATISFY
PREDETERMINED EQUATE

**DERWENT-CLASS: W02** 

EPI-CODES: W02-A04A5; W02-G02;

SECONDARY-ACC-NO:

Non-CPI Secondary Accession Numbers: N2003-405521

04/12/2004, EAST Version: 1.4.1

(19)日本国特許庁(JP)

## (12) 公開特許公報(A)

(11)特許出願公開番号 特開2003-179402

(P2003-179402A)

(43)公開日 平成15年6月27日(2003.6.27)

| (51) Int.Cl. <sup>7</sup> |      | 識別記号 | FΙ       | テーマコード(参考)   |
|---------------------------|------|------|----------|--------------|
| H01P                      | 1/15 |      | H01P 1/1 | 15 5 J O 1 2 |
| H 0 4 B                   | 1/44 |      | H04B 1/4 | 44 5 K O 1 1 |

#### 審査請求 未請求 請求項の数7 OL (全 8 頁)

|             |                             | <b>一位</b> 五明 八 | 不明不 明不久の数 1 しし (主 6 兵)         |
|-------------|-----------------------------|----------------|--------------------------------|
| (21)出願番号    | 特願2002-45743(P2002-45743)   | (71)出顧人        | 000006013                      |
| (22)出願日     | 平成14年2月22日(2002.2.22)       |                | 三菱電機株式会社<br>東京都千代田区丸の内二丁目2番3号  |
|             |                             | (72)発明者        |                                |
| (31)優先権主張番号 | 特願2001-309679(P2001-309679) |                | 東京都千代田区丸の内二丁目2番3号 三            |
| (32)優先日     | 平成13年10月5日(2001.10.5)       |                | 菱電機株式会社内                       |
| (33)優先権主張国  | 日本(JP)                      | (74)代理人        | 100102439                      |
|             | •                           |                | 弁理士 宮田 金雄 (外1名)                |
|             |                             | Fターム(参         | 考) 5J012 BA03 BA04             |
|             |                             |                | 5K011 DA02 DA22 DA25 FA01 KA03 |
|             |                             |                | KA13                           |
|             |                             |                | •                              |
|             |                             |                |                                |

#### (54) 【発明の名称】 広帯域高周波スイッチ

#### (57)【要約】

【課題】 小型、広帯域、高耐電力な高周波スイッチを 提供する。

【解決手段】 PINダイオードを並列にのみ用いて高耐電力特性を確保し、分岐部に接続される中心周波数で1/4波長の伝送線路と遮断ポートのON状態のPINダイオードとによるf特を、通過ポートの中心周波数で1/2波長の単一または複数の線路幅で構成された伝送線路と、中心周波数で1/4波長の先端がDCカットキャパシタにより高周波的にショートされたバイアス回路と兼用する並列伝送線路(スタブ)とにより整合させ、小型、広帯域な高周波スイッチを得る。



04/12/2004, EAST Version: 1.4.1

#### 【特許請求の範囲】

【請求項1】 能動素子にPINダイオードを用い、1つ の入力端子と前記入力端子から分岐する2つの分岐線路 と、前記分岐線路毎にそれぞれ有する2つの出力端子と を備える広帯域高周波スイッチにおいて、前記分岐線路 は、第一のDCカットキャパシタと、Liの線路長を有する 第一の伝送線路と、L2の線路長を有する第二の伝送線路 と、第一の並列PINダイオードと、Laの線路長を有する 第一のスタブと、バイアス端子と、第二のDCカットキャ パシタと、第三のDCカットキャパシタとを備え、

 $L_1 = \lambda c / 4$ 

 $L_2 = \lambda c/2$ 

 $L_b = \lambda c / 4$ 

(Acは広帯域高周波スイッチの動作中心周波数での波 長)であることを特徴とする広帯域高周波スイッチ。

【請求項2】 請求項1記載の広帯域高周波スイッチで あって、前記第一の伝送線路の特性インピーダンスを Z1、前記第二の伝送線路の特性インピーダンスをZ2、前 記第一のスタブの特性インピーダンスをZuとし、スイッ チの終端抵抗を20としたとき、前記各特性インピーダン 20 スについて、

 $Z_1 = Z_0$ 

 $Z_2 = (\sqrt{2}) * Z_0$ 

 $Z_b = 2 Z_0$ 

であることを特徴とする広帯域高周波スイッチ。

【請求項3】 請求項1記載の広帯域高周波スイッチで あって、前記分岐線路は、第一のDCカットキャパシタ と、Liの線路長を有する前記第一の伝送線路と、Li(i  $=2\sim n$ ;  $n \ge 3$ )の線路長を有する第iの伝送線路と、 前記第一の並列PINダイオードと、Loの線路長を有する 前記第一のスタブと、前記バイアス端子と、前記第二の DCカットキャパシタと、第三のDCカットキャパシタとを 備え、

 $L_1 = \lambda c / 4$ 

 $L_i < \lambda c / 8$  (  $i = 2 \sim n - 1$  )

 $\Sigma L_i (i = 2 \sim n) = \lambda c/2$ 

 $L_b = \lambda c / 4$ 

であることを特徴とする広帯域高周波スイッチ。

【請求項4】 請求項3記載の広帯域高周波スイッチで タと、Liの線路長を有する前記第一の伝送線路と、L i(i = 2~n; n≥3)の線路長を有する第iの伝送線路 と、第j(j=1~n-1; n≥3)の伝送線路と第(j+ 1)の伝送線路の間に装荷される第jの並列PINダイオー ドと、Loの線路長を有する前記第一のスタブと、前記バ イアス端子と、前記第二のDCカットキャパシタと、前記 第三のDCカットキャパシタとを備え、

 $L_1 = \lambda c / 4$ 

 $L_i < \lambda c / 8$  (  $i = 2 \sim n - 1$ )

 $\Sigma L_i (i = 2 \sim n) = \lambda c/2$ 

 $l_b = \lambda c / 4$ 

であることを特徴とする広帯域高周波スイッチ。

【請求項5】 請求項1~4のいずれか1項に記載の広 帯域高周波スイッチであって、前記バイアス端子に直列 抵抗を備えたことを特徴とする広帯域高周波スイッチ。 【請求項6】 請求項1~5のいずれか1項に記載の広 帯域高周波スイッチであって、第k(k=1~n)の伝送 線路と前記第一のスタブからなる全ての伝送線路は同一 の誘電体基板上に形成され、前記誘電体基板はビアホー 10 ルを備え、前記第一、前記第二および前記第三のDCカッ トキャパシタは前記誘電体基板上に実装され、ボンディ ングワイヤにより前記伝送線路と接続され、前記PINダ イオードは前記ビアホールに、または直近に実装され、 ボンディングワイヤにより前記伝送線路と接続されるこ とを特徴とする広帯域高周波スイッチ。

【請求項7】 請求項1~6のいずれか1項に記載の広 帯域高周波スイッチであって、出力端子をm(≥3)個と し、入力端子から分岐する分岐線路をm個備えたことを 特徴とする広帯域高周波スイッチ。

#### 【発明の詳細な説明】

【0001】この発明は通信及びレーダーに用いる広帯 域高周波スイッチに関するものである。

[0002]

【従来の技術】図10は特開平10-284901号公 報に示された従来の広帯域・高耐電力スイッチの一例を 示す。図において41は入力端子、42a, 42b(以 下、42と呼ぶ),50a,50b(以下、50と呼 ぶ)はDCカットキャパシタ、43a,43b(以下、4 3と呼ぶ), 45a, 45b (以下、45と呼ぶ) は伝 30 送線路、44a, 44b(以下、44と呼ぶ)はPINダ イオード、46a, 46b (以下、46と呼ぶ) はテー パー線路、47a,47b(以下、47と呼ぶ)はバイ アス回路、51a,51b(以下、51と呼ぶ)は出力 端子である。

【0003】次に動作を説明する。本方式の広帯域スイ ッチでは通過ポートのPINダイオード44をON状態とし、 遮断ポートのそれをOFF状態とする。ON状態のPINダイオ ード44は低抵抗で近似でき、OFF状態のそれは低容量 のキャパシタで近似できる。ここで伝送線路43が1/ あって、前記分岐線路は、前記第一のDCカットキャパシ 40 4波長となっているために、分岐部から遮断ポート側を みると中心周波数でOPENとなる。一方、通過ポートでは PINダイオード44は低容量のキャパシタとなるため、 通過周波数では擬似OPENとなり信号が通過する。このよ うに、入力端子41から入力した信号は中心周波数にお いて通過ポート側のみに伝播する。しかし、伝送線路4 3は中心周波数で1/4波長であるため中心周波数を外 れると分岐部から見てOPENの状態からずれ、スイッチと しての特性が劣化する問題があった。この問題に対して 従来の技術では、1/4波長の高インピーダンス伝送線 50 路45とテーパー線路46からなる整合部により広帯域

に整合を取ることにより、出力端子での反射を改善して スイッチの広帯域化を図っている。また、PINダイオー ド44を並列にのみ使用しているためにダイオードの選 択により10数W程度の高い耐電力特性が得られる。

#### [0004]

【発明が解決しようとする課題】ところが、従来の広帯 域スイッチでは広帯域化を図るため、整合回路を構成す る伝送線路45及びテーパー線路46はそれぞれ1/3 波長、1/2波長のように大型化する傾向があった。ま た、従来の広帯域スイッチのバイアス回路は、高周波特 10 Li $<\lambda$ c/8 ( $i=2\sim n-1$ ) 性を改善するためには高周波的に"見えなく"する必要 があり、チョークコイルや、高インピーダンス線路と高 抵抗の組み合わせ等により構成する必要があった。この ため、チョークコイルを用いる場合は、スイッチが大型 化して二次実装が困難になる課題があり、高抵抗を用い る場合はON時の電流より消費電力が上昇するという課題 があった。

【0005】本発明は、このような従来の技術に存在す る課題を解決するためになされたものであり、分岐部か ら1/4波長の線路を介して並列にPINダイオードを装 荷する構成において、分岐線路に設けた伝送線路とバイ アス回路と兼用するショートスタブにより広帯域を図る ことにより、広帯域、小形、高耐電力な高周波スイッチ を提供することを目的とする。

#### [0006]

【課題を解決するための手段】第一の発明による広帯域 高周波スイッチは、能動素子にPINダイオードを用い、 1つの入力端子と前記入力端子から分岐する2つの分岐 線路と、前記分岐線路毎にをそれぞれ有する2つの出力 端子とを備える広帯域高周波スイッチにおいて、前記分 30 岐線路は、第一のDCカットキャパシタと、Liの線路長を 有する第一の伝送線路と、L2の線路長を有する第二の伝 送線路と、第一の並列PINダイオードと、Lbの線路長を 有する第一のスタブと、バイアス端子と、第二のDCカッ トキャパシタと、第三のDCカットキャパシタとを備え、

 $L1 = \lambda c/4$ 

 $L2 = \lambda c/2$ 

 $Lb = \lambda c/4$ 

(Acは広帯域高周波スイッチの動作中心周波数での波 長)であることを特徴とするものである。

【0007】第二の発明による広帯域高周波スイッチ は、第一の発明において、前記第一の伝送線路の特性イ ンピーダンスをZi、前記第二の伝送線路の特性インピー ダンスを72、前記第一のスタブの特性インピーダンスを Zbとし、スイッチの終端抵抗をZbとしたとき、前記各特 性インピーダンスについて、

Z 1 = Z 0

 $Z2 = (\sqrt{2}) * Z0$ 

Z3 = 2Z0

であることを特徴とするものである。

【0008】第三の発明による広帯域高周波スイッチ は、第一の発明において、前記分岐線路は、第一のDCカ ットキャパシタと、Liの線路長を有する前記第一の伝送 線路と、Li(i = 2~n; n≥3)の線路長を有する第i の伝送線路と、前記第一の並列PINダイオードと、Loの 線路長を有する前記第一のスタブと、前記バイアス端子 と、前記第二のDCカットキャパシタと、第三のDCカット キャパシタとを備え、

 $L1 = \lambda c/4$ 

 $\Sigma L i (i = 2 \sim n) = \lambda c/2$ 

 $Lb = \lambda c/4$ 

であることを特徴とするものである。

【0009】第四の発明による広帯域高周波スイッチ は、第一の発明において、前記分岐線路は、前記第一の DCカットキャパシタと、Liの線路長を有する前記第一の 伝送線路と、 $L_i(i=2\sim n; n \geq 3)$ の線路長を有する 第iの伝送線路と、第j(j=1 $\sim$ n-1)の伝送線路と第 (j+1)の伝送線路の間に装荷される第jの並列PINダ イオードと、Laの線路長を有する前記第一のスタブと、 前記バイアス端子と、前記第二のDCカットキャパシタ と、前記第三のDCカットキャパシタとを備え、

 $L1 = \lambda c/4$ 

Li $<\lambda$ c/8 (i= $2\sim$ n-1)

 $\Sigma L i (i = 2 \sim n) = \lambda c/2$ 

 $Lb = \lambda c/4$ 

であることを特徴とするものである。

【0010】第五の発明による広帯域高周波スイッチ は、第一〜第四の発明において、前記バイアス端子に直 列抵抗を備えるものである。

【0011】第六の発明による広帯域高周波スイッチ は、第一~第五の発明において、第 $k(k=1\sim n)$ の伝 送線路と前記第一のスタブからなる全ての伝送線路は同 一の誘電体基板上に形成され、前記誘電体基板はビアホ ールを備え、前記第一、前記第二および前記第三のDCカ ットキャパシタは前記誘電体基板上に実装され、ボンデ ィングワイヤにより前記伝送線路と接続され、前記PIN ダイオードは前記ビアホールに、または直近に実装さ れ、ボンディングワイヤにより前記伝送線路と接続され 40 るものである。

【0012】第七の発明による広帯域高周波スイッチ は、第一~第六の発明において、出力端子をm(≥3)個 とし、入力端子から分岐する分岐線路をm個備えるもの である。

[0013]

【発明の実施の形態】実施の形態1.図1は、本発明の 実施の形態1による広帯域高周波スイッチである。図2 は本発明の実施の形態1を簡略化した等価回路である。 1は入力端子、2a, 2b, 8a, 8b, 10a, 10 50 b(以下、各々2, 8, 10と呼ぶ)はDCカットキャパシタ、

3a,3b(以下、3と呼ぶ)は広帯域高周波スイッチの動作中心周波数(以下、中心周波数と呼ぶ)において1/4波長の線路長を有する第一の伝送線路、4a,4b(以下、4と呼ぶ)はPINダイオード、5a,5b(以下、5と呼ぶ)は第二の伝送線路,6a,6b(以下、6と呼ぶ)は第三の伝送線路であり、第二、第三の伝送線路の線路長を併せて中心周波数において1/2波長となり、7a,7b(以下、7と呼ぶ)は中心周波数におけるの線路長を有するスタブ、9a,9b(以下、9と呼ぶ)はバイアス端子、11a,11b(以下、11と 10呼ぶ)は出力端子である。

【0014】次に動作を説明する。入力端子1から入力された高周波信号は分岐部で通過ポート側を通り、通過ポート側のDCカットキャパシタ2および第一の伝送線路3を通って、第二、第三の伝送線路5,6を通り、先端がDCカットキャパシタ8でショートされたスタブ7によりインピーダンス変換された後、DCカットキャパシタ10を通って通過ポート側出力端子11に出力される。

【0015】ここで、符号のサフィックスであるa側を通過ポートとし、b側を遮断ポートとすれば、a側のPI 20 Nダイオードには、バイアス端子9aよりマイナスの電位を与えてOFF状態とし低容量のキャパシタ(Coff = 0)とし、b側にはバイアス端子9bよりプラスの電位を与えて電流の流れるON状態とし、低抵抗(Ron = 0)とする。このとき、図2のように、b側の遮断ポートでは低抵抗で接地されるので、擬似SHORTとなり、中心周波数で1/4波長の第一の伝送線路3bを介して遮断ポート側を見たインピーダンスは中心周波数においてOPENとなり、電力はすべて通過ポート側に流れ、スイッチの機能を得る。 30

【0016】しかし、中心周波数以外では、分岐部からみたインピーダンスはOPENとはならず、周波数特性を有する。図3は図2の分岐線路の各点から共通ポート側を見たfc~3fcの広帯域な反射係数を示すスミスチャート図であるが、スミスチャート図で見た場合、図3(a)のように、中心周波数(fc=2fo)では50Ωとなるが、低周波数(fo)でL性、高周波数(3fo)でC性の周波数特性が生じる。スイッチの広帯域化を図ることは、この周波数特性を小さくしてfo~3foの帯域内すべての周波数について、中心の50Ω部に持ってくることと等40価であり、このとき広帯域に低損失なスイッチを得ることができる。

【0017】このため、本実施の形態では、まず、1/4 被長となる第一の伝送線路 3 a と低容量キャパシタであるPINダイオード4と1/2 波長となる第二、第三の伝送線路 5 a, 6 a により、図 3 のスミスチャート上で5 0  $\Omega$  を中心として位相を回す。前記伝送線路 3 a, 5 a, 6 a の線路長は併せて中心周波数では 3/4 波長となるが、周波数に応じて、5 では 3/8 波長、3 foでは 3/8 波長の線路長に相当する。従って、5 では 5

0Ωを中心として<3/4周、3foでは9/4周位相が回り、このときB点からみた反射係数は図3(b)示すようになる。次に、本実施の形態の広帯域高周波スイッチでは、この位置に中心周波数で1/4波長の線路長を有する先端がDCカットキャパシタ8により高周波数的にショートされたスタブを装荷して広帯域化を図る。

【0018】1/4波長のショートスタブは、fo~2foではL性、2fo~3foではC性となるため、図3(b)の反射特性に対しては、スミスチャート上でfoから2foの周波数では反時計回りに、2foから3foの周波数では時計回りにインピーダンスを動かす作用を有するので、C点からみた反射係数は図3(c)のように、fo~3foの周波数に対して中心の50Ω部近傍に持ってくることができ、広帯域性を得る。なお、各伝送線路の3、5、6、7の線路幅(特性インピーダンス)は、PINダイオード4aのCoffとPINダイオード4bのRonが0とならず、また接続部に起因する寄生成分を無視できない場合は、種々のインピーダンスに最適化され、線路幅は異なる。

0 【0019】このように、バイアス回路と共用する1/ 4波長線路で広帯域を図っているために、直列に接続される線路の線路長が3/4波長と比較的短くなるだけでなく、PINダイオードを用いた高耐電力スイッチの課題であったバイアス回路を小型に構成でき、スイッチ全体の小型化が実現できる。また、高抵抗を使用していないため、付随する消費電力を無くすことができる。

【0020】また、バイアス端子9は、DCカットキャパシタ8により高周波的にショートされるため、接続されるバイアス線路のインピーダンスに全く影響されず、特性の安定したスイッチを得ることができる。また、PINダイオードを並列にのみ用いているために高い耐電力特性が得られる。本実施の形態では、1/2波長伝送線路について、伝送線路5,6という線路幅の異なる2つの線路で構成しているが、単一線路幅としても良いし、逆に3つ以上の異なる線路幅の線路で構成しても良い。異なる線路幅の伝送線路を用いることにより設計の自由度が向上して、PINダイオードやDCカットキャパシタ及びその接続部等に起因する寄生成分の影響を低減しやすくなり、広帯域に良好な性能を有するスイッチを得ることが出来る。

【0021】ここで、図4は、図2においてPINダイオード4aのCoff=0、PINダイオード4bのRon=0、DCカットキャパシタ8aの容量を無限大とし、また接続部に起因する寄生成分を無視できる場合の広帯域高周波スイッチ簡略化した等価回路である。図において、 $Z_1$ 、 $L_1$  は伝送線路3の特性インピーダンスと線路長、 $Z_2$ ,  $L_2$  は前記伝送線路5.6の特性インピーダンスと線路長、 $Z_3$ ,  $L_4$  は前記伝送線路5.6の特性インピーダンスと線路長、 $Z_5$ ,  $Z_6$ ,

周波数での波長)であるため、整合条件より、各伝送線 路の特性インピーダンスを、

Z1 = Z0

 $Z2 = (\sqrt{2}) * Z0$ 

Z3 = 2Z0

と決定することも可能である。図4のように、Coff = 0, Ron = 0の近似が得られるダイオードを用いる場合、前記関係を満たすとき、fo、fc=2fo、3foの3点での整合が完全にとれる。このような場合、各伝送線路インピーダンスを一意的に決定することができ、広帯 10域高周波スイッチの設計が一層容易になる。なお、Coff ≠ 0, Ron ≠ 0の場合でも広帯域高周波スイッチ設計の初期値として利用することができる。

【0022】さらに、図5は、第二の伝送線路5および第三の伝送線路6との間にPINダイオード12を一段追加装荷した広帯域高周波スイッチである。ここで、第二の伝送線路5の線路長は1/8波長以下としてある。このような形態とすることにより、1段のPINダイオードのN抵抗では遮断ポートのアイソレーションが不足する場合にこれを向上させることができる。

【0023】このとき、伝送線路5を1/8波長以下としてあるので、fo~3foまで共振点は現れず、広帯域にアイソレーション特性を向上できる。同様に、1/8波長以下の複数の(3以上)線路を用いてPINダイオードを同数個多段化すれば、さらにアイソレーション特性を向上できる。なお、2つの分岐線路に装荷されるPINダイオードは必ずしも同数である必要はなく、所望のアイソレーション量に応じて例えば、一方の分岐線路のPINダイオードを1段とし、他方の分岐線路のPINダイオードを2段として低コスト化を図ることも可能である。

【0024】また、図6のように、バイアス端子9に直列抵抗15を装荷する構成とすることも可能なことは当然である。PINダイオードのON抵抗は、ダイオードを流れる電流により制御されるが、PINダイオードの電流電圧特性は指数関数で表現されるために、ON時において所望の電流をPINダイオードに流してスイッチを動作させようとする場合、電圧感度が高くなって設定が難しくなり特性に影響する場合がある。直列抵抗15はこの電圧感度を低減させる働きを有する。

【0025】ここで、直列抵抗15は高周波特性には全 40 く影響しないため、所望の電圧において必要なON電流が得られるよう自由に設定でき、本スイッチを上位のコンポーネントに格納する際、コンポーネントの電源電圧値の数を少なくすることができ、全体の低コスト化を図れる。

【0026】本実施の形態では、広帯域高周波スイッチの回路形態を明記しないが、ディスクリートPINダイオードを用いたハイブリッドマイクロ波集積回路(HMIC)としても、PINダイオードをモノリシック化したモノリシックマイクロ波集積回路(MMIC)としても良い。また制御 50

素子にPINダイオードを用いたが、FETその他ON/OFF機能を有するその他の素子を用いることも可能なことは勿論である。

【0027】また、本実施の形態で伝送線路の線路長を特定しているが、PINダイオードやDCカットキャパシタ及びその接続部等に起因する寄生成分が無視できない場合、それらの効果を伝送線路の線路長に変換して等価的に本実施の形態で特定した伝送線路の線路長を実現しても良い。

10 【0028】実施の形態2. 図7は、本発明の実施の形態2による広帯域高周波スイッチであり、図8は、本実施の形態スイッチの実装例である。20は誘電体基板であり、21は入力伝送線路、22~26はボンディングワイヤ、27および28は基板に設けたビアホール、29~31は平行平板キャパシタである。本実施の形態では、伝送線路3,5,6およびスタブ7は、全て同一の誘電体基板上に構成しており、並列PINダイオード4とスタブ7の接地には、それぞれ誘電体基板上に設けたビアホール27,28を用いている。PINダイオード4はディスクリート部品であり、平行平板キャパシタ29~31とともに、ボンディングワイヤ22~26により伝送線路と接続される。

【0029】このようにディスクリートPINダイオード4を用いて、回路を同一の誘電体基板に実装したMIC回路とすることにより、全体の低コスト化とともに小型化が図れる。また、複数枚の誘電体基板に実装するのと比較してスイッチとしての機能確認が容易となり、上位のコンポーネントへの二次実装が容易となる利点を有する。また、本実施の形態ではバイアス回路も伝送線路として30いることと併せて、一枚基板に構成することにより線路のパターン形成の自由度が向上するため、図8のように曲線線路を多用すれば、超小型、広帯域、高出力、低コストなMIC PINスイッチを得ることができる。

【0030】図8では、PINダイオード4とDCカットキャパシタ30はそれぞれビアホール27,28上に実装され、インダクタを低減して高性能化を図っているが、ビアホールをはずしてPINダイオードおよび平行平板キャパシタを実装してもよい。なお、伝送線路3.5,6の長さが実施の形態1で規定した値とはなっていないが、これは主として、平行平板キャパシタの実装パッドの寄生容量とボンディングワイヤのインダクタによるものである。

【0031】実施の形態3. 図9は、本発明の実施の形態3による広帯域高周波スイッチであり、本実施の形態では分岐線路を3個にして1入力3出力のスイッチを構成している。通過側の1つの分岐線路のみPINダイオードをOFFとし、他の2つの分岐線路のPINダイオードをONとして遮断させ、スイッチとして動作させる。通過側の分岐線路について、分岐部から見たインピーダンスは、図3(a)と比較して周波数特性の拡散度は増すが、同様の

整合を取ることにより、広帯域、小型、高耐電力な3出 力のスイッチが得られる。また、分岐線路をn個にし て、1入力n出力のスイッチも構成できる。

#### [0032]

【発明の効果】第一の発明によれば、バイアス回路を含 んだ小型な広帯域高周波スイッチが得られ、各伝送線路 の線路長が一意に決定できる効果がある。PINダイオー ドを用いたスイッチを大型化、または消費電力を増加さ せていたバイアス回路の問題点を解消することが出来 周波的に短絡されるため、接続されるバイアス線路のイ ンピーダンスに全く影響されず、特性の安定した高耐電 カスイッチを得る効果がある。

【0033】また、第二の発明によれば、PINダイオー ドON時の抵抗をO、PINダイオードOFF時の容量をOと近似 でき、また接続部に起因する寄生成分の影響が無視でき る場合、各伝送線路の特性インピーダンスが一意的に決 定され、スイッチの設計が容易になる効果がある。

【0034】また、第三の発明によれば、第一のPINダ 有するようにしたので、PINダイオードやDCカットキ ャパシタとその接続部等に起因する寄生成分の影響を低 減しやすくなり、広帯域に良好な性能を有するスイッチ を得る効果がある。

【0035】また、第四の発明によれば、分岐線路あた りのPINダイオードを多段化したので、全体域に亘っ て、遮断ポートのアイソレーション特性を向上できる効 果がある。

【0036】また、第五の発明によれば、バイアス端子 に直列抵抗を備えた構成としたので、PINダイオードON 30 【符号の説明】 時の電圧感度を低減させ、電流設定を容易にできる効果 がある。またON時の駆動電圧を自由に設定できるため、 本発明のスイッチを上位のコンポーネントに実装する際 の電源電圧値の数を低減でき、全体の低コスト化が図れ る効果がある。

【0037】また、第六の発明によれば、全ての伝送線 路を同一の誘電体基板上に形成し、ディスクリートPIN ダイオードと平行平板キャパシタも同一の誘電体基板上 に実装したので、スイッチ全体の低コスト化と小型化を 実現できる。またスイッチ単体の機能確認が容易とな り、上位のコンポーネントへの二次実装が容易となる効

果がある。また誘電体基板上の線路パターン形成の自由 度が向上するため、曲線線路を多用すれば超小型、広帯 ・ 域、高出力、低コストな広帯域高周波スイッチを得るこ とができる。

【0038】また、第七の発明によれば、分岐線路をn 線路備え、出力端子をn個とした構成としたので、小 型、高耐電力な多出力端子のスイッチを得る効果があ る。

#### 【図面の簡単な説明】

(6)

る。またバイアス端子は、DCカットキャパシタにより高 10 【図1】 この発明の実施の形態1による広帯域高周波 スイッチ回路図である。

> 【図2】 この発明の実施の形態1の簡略化した広帯域 高周波スイッチ等価回路図である。

> 【図3】 この発明の実施の形態1の各点のスミスチャ ートである。

> 【図4】 この発明の実施の形態1の広帯域高周波スイ ッチ変形例である。

【図5】 この発明の実施の形態1の簡略化した広帯域 高周波スイッチ等価回路変形例である。

イオードから出力端子までの伝送線路を複数の線路幅を 20 【図6】 この発明の実施の形態1の広帯域高周波スイ ッチ変形例である。

> 【図7】 この発明の実施の形態2の広帯域高周波スイ ッチ回路図である。

> 【図8】 この発明の実施の形態2の広帯域高周波スイ ッチ実装例である。

> 【図9】 この発明の実施の形態3の広帯域高周波スイ ッチ実装例である。

> 【図10】 従来の広帯域高周波スイッチの回路図であ る。

1 入力端子, 2 DCカットキャパシタ, 3 第一の伝 送線路、4 PINダイオード、5 第二の伝送線路、6 第三の伝送線路、7 スタブ、8 DCカットキャパシ タ,9 バイアス端子,10 DCカットキャパシタ,1 1 出力端子, 12 PINダイオード, 15 抵抗, 2 1 誘電体基板, 22~26 ボンディングワイヤ, 2 7,28 ビアホール,29~31 平行平板キャパシ タ,41入力端子,42 DCカットキャパシタ,43 伝送線路, 44 PINダイオード, 45 伝送線路, 4 40 6 テーパー線路, 47 バイアス回路, 49 出力線 路, 50 DCカットキャパシタ, 51 出力端子

【図1】



【図4】 【図6】



04/12/2004, EAST Version: 1.4.1





04/12/2004, EAST Version: 1.4.1

【図10】

