Instructions: During the class session, you will be divided in to groups for this exercise. This exercise will not be graded but will account for extra credit.

Use the provided dataset to answer the following questions:

- 1. Does the dataset have any missing information?
- 2. Does the dataset have any outliers?
- 3. Which of the variables within the dataset are not normally distributed?
- 4. Show the descriptive statistics of all the continuous variables within the dataset.

Group Members

1. Remmy Bisimbeko - B26099 - J24M19/011 My GitHub - https://github.com/RemmyBisimbeko/Data-Science

Recommended Libraries

```
In []: import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
```

Read Excel File

```
In [ ]: df = pd.read_excel("Data Sets/Assignment1_Cars-1.xlsx")
```

Display first five rows of data

```
In [ ]: df.head()
```

Out[]:		model	mpg	cyl	disp	hp	drat	wt	qsec	vs	am	gear	carb
	0	Mazda RX4	21.0	6	160.0	110	3.90	2.620	16.46	0	1	4	4
	1	Mazda RX4 Wag	21.0	6	160.0	110	3.90	2.875	17.02	0	1	4	4
	2	Datsun 710	22.8	4	108.0	93	3.85	2.320	18.61	1	1	4	1
	3	Hornet 4 Drive	21.4	6	258.0	110	3.08	3.215	19.44	1	0	3	1
	4	Hornet Sportabout	18.7	8	360.0	175	3.15	3.440	17.02	0	0	3	2

Display bottom five rows (optional)

```
In [ ]: df.tail()
```

Out[]:		model	mpg	cyl	disp	hp	drat	wt	qsec	vs	am	gear	carb
	58	Acura	21.4	4	121.0	109	4.11	2.78	18.6	1	1	4	2
	59	Toyota Tacoma	40.6	2	75.7	52	4.93	17.02	0.0	0	3	2	1
	60	GMC Sierra	22.8	4	140.8	95	3.92	3.15	22.9	1	0	4	2
	61	Nissan Xtrail	17.3	8	275.8	180	3.07	3.73	17.6	0	0	3	3
	62	Merc C-class	15.2	8	275.8	180	3.07	3.78	18.0	0	0	3	3

What is the Shape of our Data frame? (rows, cols)

Data types of each column

```
In []: df.dtypes

Out[]: model    object
    mpg    float64
    cyl    int64
    disp    float64
    hp    int64
    drat    float64
```

drat float64
wt float64
qsec float64
vs int64
am int64
gear int64
carb int64
dtype: object

More information on the Data Frame

```
In [ ]: df.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 63 entries, 0 to 62
Data columns (total 12 columns):

#	Column	Non-Null Count	Dtype
0	model	63 non-null	object
1	mpg	63 non-null	float64
2	cyl	63 non-null	int64
3	disp	63 non-null	float64
4	hp	63 non-null	int64
5	drat	63 non-null	float64
6	wt	63 non-null	float64
7	qsec	63 non-null	float64
8	VS	63 non-null	int64
9	am	63 non-null	int64
10	gear	63 non-null	int64
11	carb	63 non-null	int64
d+vn	es: floa	t64(5) int64(6)	object(1

dtypes: float64(5), int64(6), object(1)

memory usage: 6.0+ KB

Describe the Data

In []: df.describe()

TII [].	di.uesciibe()												
Out[]:		mpg	cyl	disp	hp	drat	wt						
	count	63.000000	63.000000	63.000000	63.000000	63.000000	63.000000	63.					
	mean	20.207937	6.190476	234.887302	149.285714	3.594286	3.758873	17					
	std	6.755172	1.924856	122.607423	68.567703	0.558678	2.590846	3					
	min	10.400000	2.000000	71.100000	52.000000	2.760000	1.513000	0.					
	25%	15.200000	4.000000	130.900000	95.000000	3.075000	2.780000	16.					
	50%	18.700000	6.000000	225.000000	150.000000	3.690000	3.440000	17.					
	75%	22.800000	8.000000	334.000000	180.000000	3.920000	3.780000	18.					
	max	40.600000	8.000000	472.000000	335.000000	4.930000	17.020000	22.					

My Observations are as follows: -We have 63 Vehicles -Highest Miles per gallon for all cars is 40.6

QN 1. Does the dataset have any missing information?

```
In [ ]: df.isnull()
```

Out[]:		model	mpg	cyl	disp	hp	drat	wt	qsec	vs	am	gear	carb
	0	False											
	1	False											
	2	False											
	3	False											
	4	False											
	•••												
	58	False											
	59	False											
	60	False											
	61	False											
	62	False											

63 rows × 12 columns

How many are they?

```
In [ ]: df.isnull().sum()
Out[]: model
                   0
         mpg
                   0
         cyl
                   0
         disp
                   0
                   0
         hp
         drat
                   0
         wt
                   0
                   0
         qsec
         ٧S
                   0
         am
         gear
         carb
         dtype: int64
         Data Set appears to have no missing values!
```

QN 2. Does the dataset have any outliers?

```
In []: # Using a Histogram to Visualise the Data
import seaborn as sns

plt.figure(figsize=(10,6))
sns.histplot(df['am'], bins=35, kde=True)
plt.title('Histogram of AM')
plt.xlabel('AM Values')
plt.ylabel('Frequency')
plt.show()
```



```
In []: # Detect the Outliers Using the Z-Score Approach
import scipy.stats as stats

zscores = stats.zscore(df['am'])
threshold = 3
outliers = np.where(np.abs(zscores) > threshold)[0]

print("Outliers:", outliers)
```

Outliers: [32 59]

```
In []: # Visualise the Outliers
    plt.figure(figsize=(10, 6))
    sns.histplot(df['am'], bins=35, kde=True)
    plt.scatter(outliers, df['am'].iloc[outliers], color='cyan', label='Outli
    plt.title('The Identified Outliers')
    plt.xlabel('AM Values')
    plt.ylabel('Frequency')
    plt.show()
```


QN 3. Which of the variables within the dataset are not normally distributed?

```
In []: # Remove non-numeric columns
    numeric_columns = df.select_dtypes(include=[np.number]).columns
    df_numeric = df[numeric_columns]

# Visual inspection of histograms
for column in df_numeric.columns:
    plt.figure(figsize=(8, 4))
    sns.histplot(df_numeric[column], kde=True)
    plt.title(f'Histogram of {column}')
    plt.xlabel('Values')
    plt.ylabel('Frequency')
    plt.show()
```


Histogram of carb


```
In []: # Using the Shapiro-Wilk test for normality
from scipy.stats import shapiro

# Shapiro-Wilk test
non_normal_variables = []
for column in df_numeric.columns:
    stat, p = shapiro(df_numeric[column])
    alpha = 0.05
    if p < alpha:
        non_normal_variables.append(column)
        print(f'{column} is not normally distributed (p-value={p})')
    else:
        print(f'{column} is normally distributed (p-value={p})')

print("\nVariables not normally distributed:", non_normal_variables)</pre>
```

mpg is not normally distributed (p-value=0.00021498681772254538) cyl is not normally distributed (p-value=1.9259465725125302e-08) disp is not normally distributed (p-value=0.0005896648328323517) hp is not normally distributed (p-value=0.004189709579620521) drat is not normally distributed (p-value=0.001560451108193203) wt is not normally distributed (p-value=1.5314964146613204e-13) qsec is not normally distributed (p-value=9.89061646923088e-11) vs is not normally distributed (p-value=1.7410261772405094e-11) am is not normally distributed (p-value=1.795177884425708e-11) gear is not normally distributed (p-value=3.553517270238008e-07) carb is not normally distributed (p-value=1.5340614007820725e-06)

Variables not normally distributed: ['mpg', 'cyl', 'disp', 'hp', 'drat', 'wt', 'qsec', 'vs', 'am', 'gear', 'carb']

QN 4. Show the descriptive statistics of all the continuous variables within the dataset.

```
In []: # Display descriptive statistics of continuous variables
    continuous_variables = df.select_dtypes(include=['number'])
    print(continuous_variables.describe())
```

	mpg	cyl	disp) l	np drat	wt
\						
count	63.000000	63.000000	63.000000	63.00000	00 63.000000	63.000000
mean	20.207937	6.190476	234.887302	149.2857	14 3.594286	3.758873
std	6.755172	1.924856	122.607423	8 68.56770	0.558678	2.590846
min	10.400000	2.000000	71.100000	52.00000	00 2 . 760000	1.513000
25%	15.200000	4.000000	130.900000	95.00000	00 3 . 075000	2.780000
50%	18.700000	6.000000	225.000000	150.00000	3.690000	3.440000
75%	22.800000	8.000000	334.000000	180.00000	00 3 . 920000	3.780000
max	40.600000	8.000000	472.000000	335.00000	00 4 . 930000	17.020000
	qsec	VS	am	gear	carb	
count	63.00000	63.000000	63.000000	63.000000	63.000000	
mean	17.36127	0.396825	0.428571	3.619048	2.825397	
std	3.71618	0.493169	0.665129	0.791662	1.571312	
min	0.00000	0.000000	0.000000	2.000000	1.000000	
25%	16.87000	0.000000	0.000000	3.000000	2.000000	
50%	17.60000	0.000000	0.000000	3.000000	2.000000	
75%	18.90000	1.000000	1.000000	4.000000	4.000000	
max	22.90000	1.000000	3.000000	5.000000	8.000000	

Sources:

https://www.kaggle.com/code/rtatman/data-cleaning-challenge-outliers https://github.com/ipython/ipython https://etna-docs.netlify.app/tutorials/outliers.html https://pythonguides.com/scipy-stats-zscore/ https://www.statology.org/z-score-python/ https://www.geeksforgeeks.org/scipy-stats-zscore-function-python/ https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.zscore.html

My Git Hub Repo https://github.com/RemmyBisimbeko/Data-Science https://www.kaggle.com/remmybisimbeko