McGill University Department of Mathematics and Statistics MATH 243 Analysis 2, Winter 2017

Assignment 4

You should carefully work out **all** problems. However, you only have to hand in solutions to **problems 2 and 3(b).**

This assignment is due Tuesday, February 7, at 2:30pm in class. Late assignments will not be accepted!

1. Let a, b, c, d be real numbers with $a \le c \le d \le b$. Show that the function

$$f:[a,b] \to \mathbb{R}, \quad f(x) := \begin{cases} 1 & \text{if } x \in [c,d] \\ 0 & \text{if } x \notin [c,d] \end{cases}$$

(called an elementary step function) is Riemann integrable on [a,b] and that $\int_a^b f = d-c$.

2. Let

$$f(x) := \begin{cases} 1 & \text{if } x = \frac{1}{n} \text{ for some } n \in \mathbb{N} \\ 0 & \text{otherwise} \end{cases}$$

Prove that f is Riemann integrable on [0,1] and compute $\int_0^1 f$.

<u>Hint</u>: Use the squeeze theorem.

3. (a) Use induction to prove the summation formula $\sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}.$

(b) Show that x^2 is Riemann integrable on the interval [0,1] and compute $\int_0^1 x^2 dx$. <u>Hint</u>: Consider a partition \mathcal{P} of [0,1] into n intervals of equal width and define step functions α and ω with respect to this partition such that $\alpha(x) \leq x^2 \leq \omega(x)$ for all $x \in [0,1]$. Then compute $\int_0^1 \alpha$ and $\int_0^1 \omega$.

4. (Hard) Let

$$f(x) := \begin{cases} \sin(1/x) & \text{if } x \neq 0 \\ 0 & \text{if } x = 0 \end{cases}$$

Prove that f is Riemann integrable on [0,1].

<u>Hint</u>: Use the squeeze theorem. Note that you are *not* expected to compute $\int_0^1 f$.

5. (a) Suppose that f is continuous on [a, b], that $f(x) \ge 0$ for all $x \in [a, b]$ and that $\int_a^b f = 0$. Prove that f(x) = 0 for all $x \in [a, b]$.

(b) Show by providing a concrete counterexample that the continuity condition in part (a) cannot be dropped.