# Projet 4

# Anticipez la consommation électrique de bâtiments



Problématique

Données

Modélisation

**Conclusions** 

**Camille BRODIN** 

### Problématique

### Missions confiées par la ville de Seattle:



#### Base de données de relevés par les agents de la ville :

- Effectués en 2016
- Relevés coûteux à obtenir
- 3 376 bâtiments décrits par 46 colonnes

#### **Trois missions:**

- Prédire les émissions de CO2 des bâtiments hors habitations. Total GreenHouse Gases (GHG)
- Prédire la consommation totale d'énergie de ces bâtiments. Site Energy Use (SEU)
- Evaluer l'intérêt de l'"ENERGYSTARScore" pour la prédiction d'émissions

> Pour atteindre son objectif de ville neutre en émissions de carbone en 2050

### **Problématique**





# **Données : Nettoyage**

| Justifications                                                                                                                                                                                         | Lignes/colonnes restantes | Méthodes                                                                                                                                                                                                            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <u>O. Harmonisation des variables</u>                                                                                                                                                                  | 3376 / 46                 | <pre>data[].apply(lambda x: split_dates(x)) data[].applymap(str.upper)</pre>                                                                                                                                        |
| 1. Filtrage projet : Bâtiments hors habitations                                                                                                                                                        | 3376 / 46 -> 1668 / 46    | data[data['BuildingType'].isin([])]                                                                                                                                                                                 |
| 2. Elimination des lignes inexploitables + colonnes a var nulle et doublons                                                                                                                            | 1668 / 46 -> 1597, 42     | <pre>data.drop(index=data[data[]==0].index) data.drop(columns=["City", "State", "DataYear", "YearsENERGYSTARCertified"])</pre>                                                                                      |
| <u>3. Outliers :</u> Exploration individualisée et connaissances métiers (voir détails annexes)                                                                                                        | 1597, 42 -> 1570, 41      | data.loc[(data["Outlier"] == 'not')] data.loc[data['PropertyGFATotal']<= 1800000.00]                                                                                                                                |
| <ul> <li>4. Imputations des données</li> <li>a) Remplacer par la valeur 0/None (+50%)</li> <li>b) 40 valeurs à imputer sur 3 colonnes</li> <li>c) ENERGYSTARScore non imputé (rempli à 60%)</li> </ul> | 1570, 41 -> 1049, 41      | a)data[c] = data[c].fillna(0) ou .fillna('None') b)knn_impute(data, var_model = filled_cols, var_target='LargestPropertyUseType', 'LargestPropertyUseTypeGFA', 'ZipCode') c)data.dropna(subset=['ENERGYSTARScore']) |



- > 3376 lignes et 46 colonnes sur le jeu de données brut
- > 1049 lignes et 41 colonnes sur le jeu de données nettoyé

### Données : Sélection et création de variables (feature engineering)

#### 2 variables quantitatives cibles

- SiteEnergyUseWN(kBtu)
- TotalGHGEmissions

#### +2 nouvelles variables quantitatives

Age des bâtiments (« BuildingAge »)

2016 – Année de construction

Surface moyenne /étage (« MeanGFAperFloor ») surface totale/(nb d'étages +1)

#### +1 nouvelle variable catégorielle

Principale énergie consommée (« MainEnergy »)
Steam, Electricity, NaturalGas

#### + 9 variables quantitatives existantes et exploitables

• Profil énergétique

**ENERGYSTARScore** 

Usages des bâtiments

LargestPropertyUseTypeGFA, SecondLargestPropertyUseTypeGFA, ThirdLargestPropertyUseTypeGFA,

Surfaces et état du bâtiment

NumberofBuildings, NumberofFloors, PropertyGFATotal, PropertyGFAParking, PropertyGFABuilding(s)

#### + 7 variables catégorielles existantes et exploitables

Usages des bâtiments

BuildingType, PrimaryPropertyType, LargestPropertyUseType, SecondLargestPropertyUseType, ThirdLargestPropertyUseType,

Emplacement des bâtiments
 CouncilDistrictCode, Neighborhood,



- > 1049 lignes et 41 (+3) = 44 colonnes sur le jeu de données nettoyé
- 1049 lignes et 19 features + 2 cibles sur le jeu de données (+3 variables d'ID )

### Analyses univariées des données

### **Variables quantitatives :**

→ Test de normalité (histogramme, Shapiro-Wilk)





- > Distributions non gaussiennes très rassemblées sur la gauche dans les variables d'études p<0,05.
- > Nous testons deux conditions sur le df : scaling MinMax (A) ou transformation logarithme népérien +1 (B)

### Analyses univariées des données

### Variables qualitatives



### Analyses bivariées des données

#### Corrélation de Pearson



### Analyses bivariées des données



### Modélisation



### Modélisation: Features engineering (suite): encodage, transformation

### **ENCODAGE CATEGORIES**

- OneHotEncoder si cardinalité faible (<5 modalités)</li>
- LabelEncoder pour les autres

### TRANSFORMATIONS FEATURES

- MinMaxScaler
- Logarithme népérien (+1)

### **VALIDATION CROISEE**

 GridSearchCV -> ré-entrainement avec hyperparamètres optimisés

### **EVALUATION MODELE REGRESSION**

#### On choisit de calculer :

- Le coefficient de détermination (R2) pour comparer les modèles entre eux.
- L'erreur absolue moyenne (MAE) pour sa pertinence business et son intuitivité.
- L'écart quadratique moyen (RMSE) pour la pénalisation des erreurs opérée.

> Entrainement des modèles sur X\_train (19 features + 5 variables post-encodage, 24 features totales) et y = 1 cible.

# Modélisation 0 : KNN avant validation croisée



> L'algorithme des k plus proches voisins est meilleur qu'une prédiction aléatoire, et qu'un DummyRegressor (mean)

# Modélisation 0 : KNN après validation croisée



> Après validation croisée Gridsearch, les hyperparamètres recommandés sont n\_neighbors = 4 et 10 pour log

# Modélisation 1 : Modèle linéaire | Elastic après CV



# Modélisation 2 : Modèle linéaire | SVR linéaire après CV



# **Modélisation 3 : Bagging | Random Forest après CV**



# Modélisation 3 : Boosting | GBoost, après cv



# Modélisation 3 : Boosting | GBoost, après cv



# Conclusions : Comparaison modèles sur le jeu test

SiteEnergyUseWN(kBtu)





GradientBoostingRegressor ou randomforest?

# Conclusions: Comparaison modèles sur le jeu validation

SiteEnergyUseWN(kBtu)



GradientBoostingRegressor est le meilleur modèle pour prédire la consommation totale d'énergie des bâtiments.

# **Conclusions : Comparaison modèles**

#### TotalGHGEmissions





GradientBoostingRegressor est le meilleur modèle pour prédire les émissions de CO2 des bâtiments.
 (avec transformation log des features et de la cible)

# Conclusions: Le meilleur modèle, GradientBoostingRegressor







Les modèles pourraient être optimisés avec un nombre plus important de données.

### **AVEC ENERGYSTARScore**

### **SANS ENERGYSTARScore**



### Conclusions: Features importances ENERGYSTARScore pour la prédiction d'émissions

TotalGHGEmissions



Malgré son impact positif sur les prédictions, ENERGYSTARScore a une importance moyenne/assez relative dans le classement

### **Conclusion générale**

### Missions confiées par la ville de Seattle:



- ✓ Prédire la consommation totale d'énergie de ces bâtiments.
- ✓ Prédire les émissions de CO2 des bâtiments hors habitations.
- ✓ Evaluer l'intérêt de l'"ENERGYSTARScore" pour la prédiction d'émissions.

### Prédiction de la consommation énergétique

Site Energy Use (SEU) modélisé par 4 grands types de modèles différents.

### Résultat optimal obtenu avec GradientBoostingRegressor

Total GreenHouse Gases (GHG) corrèle fortement avec SEU, et effectivement nous retrouvons les mêmes comportements lors de la modélisation.

### Intérêt de la variable EnergySTARScore

Elle améliore systématiquement les performance des modèles. Importance intermédiaire/relative toutefois dans le classement global des variables.

### Evaluation des performances du modèle

Les modèles pourraient être optimisés avec un nombre plus important de données.

Merci pour votre attention

# **ANNEXES**

### **AVEC**

### SiteEnergyUseWN(kBtu)

|   | Modele               | Data | 1-R2 | MAE        | RMSE        | DURATION |
|---|----------------------|------|------|------------|-------------|----------|
| 1 | gboostregr_sec       | test | 0.48 | 1958828.48 | 6112619.57  | 0.24     |
| 1 | rforegr_sec          | test | 0.43 | 2246625.26 | 5824940.84  | 2.89     |
| 1 | svr_sec_log          | test | 0.46 | 2365070.96 | 5992877.76  | 20.75    |
| 1 | ridge_sec_log        | test | 0.54 | 2688168.74 | 6510954.81  | 0.01     |
| 1 | gboostregr_sec_log   | test | 0.69 | 2780256.01 | 7355205.74  | 0.23     |
| 1 | rforegr_sec_log      | test | 0.65 | 2844430.88 | 7157408.64  | 2.58     |
| 1 | bagregr_sec_log      | test | 0.55 | 2936045.60 | 6536997.77  | 1.62     |
| 1 | knn_sec_log          | test | 0.59 | 3094794.78 | 6788227.24  | 0.03     |
| 1 | ridge_sec            | test | 0.45 | 3157783.33 | 5918164.37  | 0.01     |
| 1 | lasso_sec_log        | test | 0.52 | 3160320.33 | 6405679.17  | 0.01     |
| 1 | adaboostregr_sec_log | test | 0.70 | 3398035.41 | 7409787.95  | 0.09     |
| 1 | bagregr_sec          | test | 0.74 | 3542222.21 | 7606234.80  | 1.61     |
| 1 | knn_sec              | test | 0.80 | 3769719.98 | 7931221.63  | 0.04     |
| 1 | elnet_sec_log        | test | 0.90 | 3811849.21 | 8392983.94  | 0.01     |
| 1 | lasso_sec            | test | 0.97 | 5417444.56 | 8737292.26  | 0.01     |
| 1 | elnet_sec            | test | 0.81 | 5565716.66 | 7948774.92  | 0.01     |
| 1 | svr_sec              | test | 1.06 | 6542260.44 | 9093828.79  | 0.11     |
| 1 | adaboostregr_sec     | test | 1.51 | 9541547.65 | 10871831.35 | 0.11     |
|   |                      |      |      |            |             |          |

### TotalGHGEmissions

|   | Modele               | Data | 1-R2 | MAE    | RMSE   | DURATION |
|---|----------------------|------|------|--------|--------|----------|
| 1 | gboostregr_sec_log   | test | 0.24 | 45.60  | 95.89  | 0.23     |
| 1 | rforegr_sec_log      | test | 0.33 | 55.77  | 113.70 | 2.73     |
| 1 | svr_sec_log          | test | 0.57 | 61.54  | 149.75 | 18.00    |
| 1 | rforegr_sec          | test | 0.36 | 62.31  | 118.29 | 3.00     |
| 1 | adaboostregr_sec_log | test | 0.46 | 64.36  | 134.32 | 0.65     |
| 1 | gboostregr_sec       | test | 1.13 | 67.80  | 209.77 | 0.21     |
| 1 | ridge_sec_log        | test | 0.69 | 67.91  | 164.18 | 0.02     |
| 1 | bagregr_sec_log      | test | 0.57 | 68.08  | 149.94 | 1.88     |
| 1 | knn_sec_log          | test | 0.69 | 73.33  | 164.51 | 0.03     |
| 1 | bagregr_sec          | test | 0.85 | 83.36  | 182.84 | 1.60     |
| 1 | lasso_sec_log        | test | 1.01 | 85.27  | 198.42 | 0.01     |
| 1 | elnet_sec_log        | test | 1.01 | 86.52  | 198.80 | 0.01     |
| 1 | knn_sec              | test | 0.97 | 89.05  | 195.24 | 0.03     |
| 1 | ridge_sec            | test | 0.46 | 93.12  | 133.74 | 0.01     |
| 1 | lasso_sec            | test | 1.04 | 104.27 | 201.84 | 0.01     |
| 1 | elnet_sec            | test | 1.03 | 131.13 | 200.63 | 0.01     |
| 1 | svr_sec              | test | 1.39 | 184.90 | 233.47 | 0.09     |
| 1 | adaboostregr_sec     | test | 1.89 | 237.64 | 271.71 | 0.14     |

### SANS

### ■ SiteEnergyUseWN(kBtu)

|   | Modele               | Data | 1-R2 | MAE         | RMSE        | DURATION |
|---|----------------------|------|------|-------------|-------------|----------|
| 1 | svr_sec_log          | test | 0.51 | 2824688.68  | 6303415.78  | 20.31    |
| 1 | rforegr_sec          | test | 0.57 | 2878932.44  | 6687929.52  | 2.88     |
| 1 | gboostregr_sec       | test | 0.54 | 2905201.07  | 6514011.07  | 0.24     |
| 1 | ridge_sec_log        | test | 0.61 | 3011237.62  | 6889252.54  | 0.01     |
| 1 | bagregr_sec_log      | test | 0.60 | 3144668.22  | 6856734.77  | 1.69     |
| 1 | lasso_sec_log        | test | 0.52 | 3160320.33  | 6405679.17  | 0.01     |
| 1 | adaboostregr_sec_log | test | 0.62 | 3178355.79  | 6952007.65  | 0.04     |
| 1 | rforegr_sec_log      | test | 0.74 | 3209309.30  | 7629158.17  | 2.89     |
| 1 | knn_sec_log          | test | 0.62 | 3253755.96  | 6973296.06  | 0.03     |
| 1 | ridge_sec            | test | 0.50 | 3455155.80  | 6249659.28  | 0.01     |
| 1 | elnet_sec_log        | test | 0.90 | 3811849.21  | 8392983.94  | 0.01     |
| 1 | bagregr_sec          | test | 0.83 | 3927821.13  | 8053100.58  | 1.98     |
| 1 | knn_sec              | test | 0.87 | 3983850.81  | 8244331.84  | 0.03     |
| 1 | gboostregr_sec_log   | test | 3.10 | 4190945.62  | 15578872.08 | 0.21     |
| 1 | lasso_sec            | test | 0.97 | 5417444.56  | 8737292.26  | 0.01     |
| 1 | elnet_sec            | test | 0.81 | 5565716.66  | 7948774.92  | 0.01     |
| 1 | svr_sec              | test | 1.25 | 7626652.14  | 9898173.32  | 0.10     |
| 1 | adaboostregr_sec     | test | 1.79 | 10386445.85 | 11856569.68 | 0.12     |

### TotalGHGEmissions

|   | Modele               | Data | 1-R2 | MAE    | RMSE   | DURATION |
|---|----------------------|------|------|--------|--------|----------|
| 1 | rforegr_sec_log      | test | 0.39 | 57.67  | 123.50 | 2.32     |
| 1 | gboostregr_sec_log   | test | 0.54 | 59.82  | 145.22 | 0.21     |
| 1 | svr_sec_log          | test | 0.61 | 65.63  | 154.66 | 11.26    |
| 1 | rforegr_sec          | test | 0.40 | 67.56  | 124.64 | 2.65     |
| 1 | adaboostregr_sec_log | test | 0.53 | 69.08  | 144.13 | 0.10     |
| 1 | gboostregr_sec       | test | 0.72 | 69.44  | 167.68 | 0.21     |
| 1 | bagregr_sec_log      | test | 0.60 | 70.20  | 153.52 | 1.70     |
| 1 | knn_sec_log          | test | 0.67 | 73.37  | 161.87 | 0.03     |
| 1 | ridge_sec_log        | test | 0.77 | 73.90  | 173.28 | 0.01     |
| 1 | lasso_sec_log        | test | 1.01 | 85.27  | 198.42 | 0.01     |
| 1 | elnet_sec_log        | test | 1.01 | 86.52  | 198.80 | 0.01     |
| 1 | bagregr_sec          | test | 0.93 | 90.05  | 190.66 | 1.77     |
| 1 | knn_sec              | test | 1.01 | 91.81  | 199.15 | 0.03     |
| 1 | ridge_sec            | test | 0.55 | 98.52  | 147.26 | 0.01     |
| 1 | lasso_sec            | test | 1.04 | 104.27 | 201.84 | 0.01     |
| 1 | elnet_sec            | test | 1.03 | 131.13 | 200.63 | 0.01     |
| 1 | adaboostregr_sec     | test | 1.71 | 216.03 | 258.67 | 0.15     |
| 1 | svr_sec              | test | 2.15 | 232.60 | 289.62 | 0.09     |