DATA SCIENCE BCG INSIDE SHERPA CASE PowerCo is looking to solve one of its problem to see whether price sensitivity can be used to predict customers behaviour to churn or not. **Merging Data** import pandas as pd import numpy as np from datetime import datetime, timedelta import matplotlib.pyplot as plt import matplotlib import seaborn as sns dt1 = pd.read_csv('.../Data/ml_case_training_data.csv') print('Shape of the data: {0[0]} rows with {0[1]} columns.'.format(dt1.shape)) Shape of the data: 16096 rows with 32 columns. dt2 = pd.read csv('../Data/ml case training hist data.csv') print('Shape of the data: {0[0]} rows with {0[1]} columns.'.format(dt2.shape)) Shape of the data: 193002 rows with 8 columns. In [4]: dt3 = pd.read csv('../Data/ml case training output.csv') print('Shape of the data: {0[0]} rows with {0[1]} columns.'.format(dt3.shape)) Shape of the data: 16096 rows with 2 columns. df = pd.merge(dt1, dt2, on = 'id') df = pd.merge(df, dt3, on = 'id') print('Shape of the data: {0[0]} rows with {0[1]} columns.'.format(df.shape)) Shape of the data: 193002 rows with 40 columns. Peeking and Cleaning the Data # Find features with missing values and understand the missing values ratio. def check_na(df): nas = pd.DataFrame([(x, df[x].isnull().sum()*100/len(df)) for x in df]).rename(columns= {0: 'Nas_Featur if nas['Missing Values Ratio'].sum() == 0: print('No Missing Values Found.') else: return nas[nas['Missing Values Ratio'] != 0] check_na(df) Out[7]: Nas_Features Missing Values Ratio 1 59.290577 activity_new 2 campaign_disc_ele 100.000000 3 channel_sales 26.214754 0.010881 8 date_end 9 78.216806 date_first_activ 0.971493 10 date_modif_prod 11 date_renewal 0.247148 12 forecast_base_bill_ele 78.216806 13 forecast_base_bill_year 78.216806 78.216806 14 forecast_bill_12m 15 78.216806 forecast_cons 0.780821 18 forecast_discount_energy 0.780821 forecast_price_energy_p1 0.780821 21 forecast_price_energy_p2 0.780821 22 forecast_price_pow_p1 25 0.080828 margin_gross_pow_ele 0.080828 26 margin_net_pow_ele 28 0.093263 net_margin 30 0.539891 origin_up 0.018653 31 pow_max 33 0.704138 price_p1_var 34 0.704138 price_p2_var 35 0.704138 price_p3_var 0.704138 36 price_p1_fix 37 0.704138 price_p2_fix 38 0.704138 price_p3_fix **Exploratory Data Analysis** Top 8 activity with customer churning at the end df.groupby('activity_new').agg(sum)['churn'].sort_values(ascending = False)[0:8] Out[8]: activity_new apdekpcbwosbxepsfxclislboipuxpop 1116 ${\tt kkklcdamw} {\tt fafdcfwofuscwfwadblfmce}$ 455 384 fmwdwsxillemwbbwelxsampiuwwpcdcb $\verb|kwuslieomapmswolewpobpplkaooaaew|$ 359 wxemiwkumpibllwklfbcooafckufkdlm $\verb"cluecxlameloamldmasudocsbmaoamdw"$ 168 156 ckfxocssowaeipxueikxcmaxdmcduxsa cwofmuicebbcmiaaxufmfimpowpacobu Name: churn, dtype: int64 Top 8 channel sales with customer churning at the end In [9]: df.groupby('channel_sales').agg(sum)['churn'].sort_values(ascending = False)[0:8] Out[9]: channel sales foosdfpfkusacimwkcsosbicdxkicaua 11041 $usil xuppase \verb|mubllop| kaafes \verb|mlibmsdf|$ 1798 1390 lmkebamcaaclubfxadlmueccxoimlema 983 ewpakwlliwisiwduibdlfmalxowmwpci sddiedcslfslkckwlfkdpoeeailfpeds fixdbufsefwooaasfcxdxadsiekoceaa 0 epumfxlbckeskwekxbiuasklxalciiuu Name: churn, dtype: int64 plt.figure(figsize = (12, 6))sns.distplot(df['price_p1_var'], label = 'First Period Energy Price') sns.distplot(df['price p2 var'], label = 'Second Period Energy Price') sns.distplot(df['price_p3_var'], label = 'Third Period Energy Price') plt.title('Distribution Graph for First, Second, and Third Period of Energy Price') plt.legend(); Distribution Graph for First, Second, and Third Period of Energy Price First Period Energy Price Second Period Energy Price Third Period Energy Price 200 150 100 50 0.00 0.05 0.10 0.15 0.20 0.25 0.30 price_p3_var plt.figure(figsize = (12, 6)) sns.distplot(df['price p1 fix'], label = 'First Period Power Price') sns.distplot(df['price_p2_fix'], label = 'Second Period Power Price') sns.distplot(df['price p3 fix'], label = 'Third Period Power Price') plt.title('Distribution Graph for First, Second, and Third Period of Power Price') plt.legend(); Distribution Graph for First, Second, and Third Period of Power Price First Period Power Price Second Period Power Price Third Period Power Price 0.8 0.6 0.4 0.2 20 price_p3_fix ax = df.groupby('churn').agg('sum')['net_margin'].plot(kind = 'bar', color = 'red',) plt.title('Churn and Net Margin Relation') plt.xticks([0, 1],['Not Churn', 'Churn'], rotation = 45) plt.xlabel('') plt.ylabel('Value in Million Dollars') ax.get_yaxis().set_major_formatter(matplotlib.ticker.FuncFormatter(lambda x, p: format(int(x)/10**6, ','))) for p in ax.patches: width = p.get_width() height = p.get_height() $x, y = p.get_xy()$ ax.annotate(f'\${height:.2f}', (x + width/2, y + height*.5), ha='center') Churn and Net Margin Relation 35.0 30.0 Value in Million Dollars 25.0 20.0 \$37243405.67 15.0 10.0 5.0 \$4785123.28 0.0 Identifying values with high correlation. numeric_features = df.drop('churn', axis = 1).dtypes[df.dtypes != 'object'].index corrmat = df[numeric_features].corr() plt.figure(figsize=(10,10)) g = sns.heatmap(corrmat,annot=False,cmap="RdYlGn") campaign_disc_ele ~ cons_12m ~ cons_gas_12m ⁻ - 0.8 cons last month forecast_base_bill_ele forecast base bill year 7 forecast_bill_12m --0.6 forecast cons forecast_cons_12m ~ forecast_cons_year ~ - 0.4 forecast_discount_energy forecast_meter_rent_12m forecast_price_energy_p1 ~ - 0.2 forecast_price_energy_p2 ~ forecast_price_pow_pl ~ imp_cons ~ margin_gross_pow_ele -- 0.0 margin_net_pow_ele 1 nb_prod_act ~ net_margin = - -0.2 num_years_antig ~ pow_max price_p1_var ~ - -0.4 price_p2_var price_p3_var 1 price_p1_fix ~ price p2 fix ~ -0.6 price_p3_fix : forecast_discount_energy forecast_meter_rent_12m forecast_price_energy_p1 forecast_price_energy_p2 cons_gas_12m forecast base_bill_ele forecast bill 12m margin_net_pow_ele num_years_antig pow_max price_p2_fix forecast cons forecast_cons_12m forecast_cons_year recast_price_energy_p2 forecast_price_pow_pl margin_gross_pow_ele nb prod act net_margin price_p1_var price pl fix price_p3_fix cons last month forecast base bill year price p2 var Simple Imputer to fill missing values with their average. First we shall convert the skewed data into more of a normal distribution using log transformation. In [14]: i = 1fig, axs = plt.subplots(2, 2, figsize = (8, 8))for x in ['forecast base bill ele', 'forecast base bill year', 'forecast bill 12m', 'forecast cons']: plt.subplot(2, 2, i) sns.distplot(df[x]) df[x] = df[x].fillna(df[x].mean(skipna=True))fig.suptitle('Forecasts Data', fontsize=16) plt.tight layout() Forecasts Data 0.0025 0.0025 0.0020 0.0020 0.0015 0.0015 0.0010 0.0010 0.0005 0.0005 0.0000 0.0000 2500 5000 7500 10000 12500 2500 5000 7500 10000 12500 forecast_base_bill_ele forecast_base_bill_year 0.00030 0.0035 0.00025 0.0030 0.0025 0.00020 0.0020 0.00015 0.0015 0.00010 0.0010 0.00005 0.0005 0.00000 0.0000 20000 40000 60000 80000 2000 4000 6000 8000 10000 forecast_bill_12m forecast_cons check na(df) Nas_Features Missing Values Ratio activity_new 1 59.290577 campaign_disc_ele 100.000000 channel_sales 3 26.214754 8 date_end 0.010881 9 date_first_activ 78.216806 0.971493 10 date_modif_prod date_renewal 0.247148 **18** forecast_discount_energy 0.780821 forecast_price_energy_p1 **21** forecast_price_energy_p2 0.780821 forecast_price_pow_p1 0.780821 margin_gross_pow_ele 25 0.080828 26 margin_net_pow_ele 0.080828 28 net_margin 0.093263 30 origin_up 0.539891 31 0.018653 pow_max 33 price_p1_var 0.704138 34 price_p2_var 0.704138 35 price_p3_var 0.704138 36 price_p1_fix 0.704138 37 price_p2_fix 0.704138 0.704138 38 price_p3_fix Some features are filled with a lot of missing values. Also we have some columns that we probably won't need for this problem. The next step is to deal with this problem. # Imputing Missing values on dates data def impute_dates(df): columns_dates = ['date_modif_prod','date_end', 'date_renewal'] for col in columns_dates: df.loc[df[col].isnull(), col] = df[col].value_counts().index[0] impute_dates(df) # Convert date information to date data type def convert_to_dates(df): col_to_convert = ['date_activ', 'date_modif_prod', 'price_date', 'date_end', 'date_renewal'] for col in col_to_convert: df[col] = pd.to_datetime(df[col], format = '%Y-%m-%d') convert_to_dates(df) In [19]: # Replace Negative Values with averages. def replace negatives(df): col_to_find = df.drop('churn', axis = 1).dtypes[(df.dtypes == 'int64') | (df.dtypes == 'float64')].index for x in list(col_to_find): df.loc[df[x] < 0 , x] = df.loc[df[x]>0, x].mean()replace_negatives(df) # Fill in Missing Categorical information def fill na(df): col to impute = ['activity new', 'channel sales', 'id', 'origin up'] for col in col_to_impute: name = 'Missing ' + col df[col_to_impute] = df[col_to_impute].fillna(name_) fill na(df) # Fill in Missing Numeric Variable def impute numeric(df): col_to_find = df.drop('churn', axis = 1).dtypes[df.dtypes == 'float64'].index for x in list(col_to_find): median = df[x].median(skipna = True) df.loc[df[x].isnull(), x] = medianimpute numeric(df) list to drop = ['campaign disc ele', 'date first activ'] df.drop(list_to_drop, inplace = True, axis = 1 ,errors = 'raise') df.dropna(axis = 0, inplace = True) check na(df) print('Shape of the data: {0[0]} rows with {0[1]} columns.'.format(df.shape)) No Missing Values Found. Shape of the data: 193002 rows with 38 columns. In [24]: Out[24]: channel_sales cons_12m cons_gas_12m c activity_new 0 48ada52261e7cf58715202705a0451c9 esoiiifxdlbkcsluxmfuacbdckommixw lmkebamcaaclubfxadlmueccxoimlema 309275.0 0.0 1 48ada52261e7cf58715202705a0451c9 esoiiifxdlbkcsluxmfuacbdckommixw lmkebamcaaclubfxadlmueccxoimlema 309275.0 0.0 **2** 48ada52261e7cf58715202705a0451c9 esoiiifxdlbkcsluxmfuacbdckommixw Imkebamcaaclubfxadlmueccxoimlema 309275.0 0.0 3 48ada52261e7cf58715202705a0451c9 esoiiifxdlbkcsluxmfuacbdckommixw lmkebamcaaclubfxadlmueccxoimlema 309275.0 0.0 4 48ada52261e7cf58715202705a0451c9 esoiiifxdlbkcsluxmfuacbdckommixw lmkebamcaaclubfxadlmueccxoimlema 309275.0 192997 563dde550fd624d7352f3de77c0cdfcd Missing_activity_new Missing_activity_new 8730.0 0.0 192998 563dde550fd624d7352f3de77c0cdfcd Missing_activity_new Missing_activity_new 8730.0 0.0 192999 563dde550fd624d7352f3de77c0cdfcd Missing_activity_new Missing_activity_new 8730.0 0.0 **193000** 563dde550fd624d7352f3de77c0cdfcd Missing_activity_new Missing_activity_new 0.0 8730.0 563dde550fd624d7352f3de77c0cdfcd Missing_activity_new Missing_activity_new 8730.0 0.0 193002 rows × 38 columns Loading [MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js