THE CHINESE UNIVERSITY OF HONG KONG

Department of Mathematics MATH1510 Calculus for Engineers (Fall 2021) Coursework 9

Name:	CHF	AN CHO!	LLT, DAVID	Stude	nt No.: _	(1851)	5146	-	
Class: _		MATH	151067						
in bl	academ e to bre	nic work, a eaches of s	am aware of U nd of the disci- uch policy and u.hk/policy/ac	plinary guid l regulations	elines and	l procedure	es applica-	-	
· ,	. (David	r _w	1 Est	W.	(5-11-	2021		
S	Signature			Dat	Date				
PlpeA	lease wr encil. oints wil	ite your a	ill result in a 2 nswers using a nwarded for ans art A along w labeled with *	black or b	lue pen, l ufficient ju	NOT any oustification	other colo		
For inte	ernal use	e only:	-		1				
Ī	1	1.5		1.	Di	()			
123	2	2							
s - 5 4	3						1		
	4	3		ME					

Total

Part A
$$AfB = 0$$

$$-fA+B = |$$

$$4A = -|$$

1. (a) Evaluate $\int \frac{1}{t^2 + 4t - 5} dt A = -\frac{1}{4}$

(b) Using t-substitution and the result in part (a), evaluate

$$\int \frac{1}{2\sin x - 3\cos x - 2} \, dx$$

(a)
$$\int \frac{-1}{4(x+y)} + \frac{1}{4(x-5)} dx$$

(b) Let
$$u = \frac{k}{2u} \frac{k}{r}$$
. $f_{2u}\chi = \frac{2\tan\frac{x}{r}}{1-\frac{tu^{2}x}{r}}$.

$$du = \frac{k}{r} \frac{k}{r} \left(\frac{1}{r}\right) dx$$

$$= \frac{2u}{1-u^{2}}$$

$$= \frac{2u}{1-u^{2}}$$

$$\sin \chi = \frac{2u}{1+u^{2}}$$

$$\cos \chi = \frac{1-u^{2}}{1+u^{2}}$$

t bourtant

$$2\int \frac{1}{4u-3+3u^2-v-3u^2} du \qquad \Rightarrow = -\frac{1}{2} \ln \left| \tan \frac{\kappa}{2} + \frac{1}{3} \ln \left| \tan \frac{\kappa}{2} - \frac{1}{3} \right| \right|$$

$$= 2\int \frac{1}{u^2+4u-5} du \qquad \qquad t \text{ bourfaint}$$
By obtainly the result of (a), we have:

$$sin(a+b) = siha cosb + csasihb$$

$$cos(a+b) = siha cosb - cosa sihb$$

(a)
$$\int x \sin(2x+1) \, dx$$

(b)
$$\int x \arccos x \, dx$$

(c)
$$\int \cos(\ln x) \, dx$$

(a) Let
$$u = 2x + 1$$

$$du = 2 dex \quad x = \frac{u - 1}{2}$$

$$u \quad du$$

$$f(u - 1) shu du$$

$$=\frac{1}{4}\left(\cos u - u\cos u + \sinh u\right) + constant$$

$$= \frac{-2x \cos(2xt1) + \sinh(2xt1)}{4} + courtant$$

(b) Let
$$x = \omega s \theta$$
, arc $\omega s x = 0$

$$dx = \sin \theta d\theta$$

$$\int \theta (\alpha s \theta)(s h \theta) d\theta$$

$$= \frac{1}{2} \int \theta (s h \theta) d\theta$$

$$= \frac{1}{2} \left[\theta (-\frac{1}{2})(cos \theta) - \int (-\frac{1}{2})(s \theta) d\theta \right]$$

$$= \frac{1}{2} \left[\frac{\theta}{\theta} \left(-\frac{1}{2} \right) \left(\cos 2\theta \right) - \int \left(-\frac{1}{2} \right) \left(\sin 2\theta \right) d\theta$$

$$= -\frac{1}{4} \theta \cos \theta + \frac{1}{8} \sin \theta + Constant$$

$$\binom{2}{2} = \chi^2 + \binom{2}{2}$$

$$\binom{2}{2} = \sqrt{(-\chi^2)^2}$$

Let
$$x = e^{u}$$
, $lux = u$
 $dx = e^{u} du$

$$= e^{u}(\omega s u) + \int e^{u}(s i h u) du$$

$$= \frac{e^{u}(\omega su) + e^{u}(shu)}{2} + constant$$

U=

0 (0)) 0:0

41 m

Doda to

Part B

3. Define $I_n = \int \frac{x^n}{\sqrt{2x+1}} dx$ for all non-negative integers n.

- (a) Evaluate I_0 .
- (b) Considering that

$$\int x^{n-1}\sqrt{2x+1} \, dx = \int x^{n-1} \frac{2x+1}{\sqrt{2x+1}} \, dx = 2 \int \frac{x^n}{\sqrt{2x+1}} \, dx + \int \frac{x^{n-1}}{\sqrt{2x+1}} \, dx,$$
show that
$$I_n = \frac{x^n\sqrt{2x+1}}{2n+1} - \frac{n}{2n+1} I_{n-1}$$

for all integers $n \geq 1$.

(c) Using parts (a), (b), evaluate I_3 .

(a)
$$I_0 = \int \frac{\chi}{\sqrt{2x+1}} d\chi$$

Let $u = 2x+1$, $\chi = \frac{u+1}{2}$.

 $du = 2d\chi$

$$= \frac{1}{4} \int \frac{u-1}{\sqrt{u}} du$$

$$= \frac{1}{4} \left(\frac{1}{3} \right) \frac{3}{2} - \frac{1}{4} (2) u^{\frac{1}{2}} + \text{ fourtant} \right)$$

$$= \frac{1}{6} (2x+1)^{\frac{1}{2}} - \frac{1}{2} \sqrt{2x+1} + \text{ fourtant}$$

(b)
$$\chi^{n-1} \sqrt{2x+1} d\chi = 2 \text{ In + In-1}$$

$$= 2 \text{ In - In-1} = \frac{\chi^{n} \sqrt{2x+1}}{\eta} - \int \frac{\chi^{n}}{\eta} \cdot \frac{1}{\sqrt{2x+1}} d\chi$$

$$2I_{n}-I_{n-1}=\frac{2^{n}\sqrt{2k+1}}{n}-\frac{1}{n}I_{n}$$

$$\overline{I}_{n}\left(\frac{2nt1}{N_{n}}\right) = \frac{\chi^{n}\sqrt{2\kappa t_{1}}}{t} + \overline{I}_{n-1}$$

$$\overline{I}_{0} = \frac{\chi^{4} \sqrt{2\nu t_{1}}}{2\nu t_{1}} + \left(\frac{\nu}{2\nu t_{1}}\right) \underline{I}_{0} - 1$$

(c)
$$Z_1 = \frac{x\sqrt{2x+1}}{3} + \frac{1}{18}(2x+3)^{\frac{3}{2}} - \frac{1}{2}\sqrt{2x+1}$$
 + Generally $Z_2 = \frac{x^2\sqrt{2x+1}}{3} + \frac{2}{5}\left[\left(\frac{2x+3}{3}-\frac{1}{2}\right)\sqrt{2x+1} - \frac{1}{18}(2x+3)^{\frac{2}{2}}\right]$ + banstant

 $\int_{3} \frac{\chi^{3} \sqrt{2\kappa t}}{7} + \frac{3}{7} \left(\frac{\chi^{2} \sqrt{2\kappa t}}{\sqrt{3}} + \frac{2\kappa^{-3}}{\sqrt{3}} \sqrt{2\kappa t} \right) - \frac{1}{4\pi} \left(2\chi t^{3} \right)^{\frac{3}{2}}$ 4. Define $I_{n} = \int \sec^{n} x \, dx$ for all non-negative integers n.

(a) By applying integration by parts to
$$= \frac{\sqrt[3]{7 + 1}}{\sqrt[3]{35}} + \frac{\sqrt[3]{35}}{\sqrt[3]{35}} + \frac{\sqrt[3]{$$

show that

$$I_{n} = \frac{\sec^{n-2} x \tan x}{n-1} + \frac{n-2}{n-1} I_{n-2} + Constant$$

for all integers $n \geq 2$.

(b) Using (a), find I_4 and I_5 .

(a)
$$\int \sec^{n-2} x \cdot \sec^{2} x \, dx$$

In =
$$\tan x \cdot \sec^{n-2} x - \int \tan x (n-2) \sec^{n-3} x \cdot \sec x \tan x \, dx$$

=
$$\tan x \cdot \sec^{n-2} x - (n-1) \int \tan^2 x \cdot \sec^{n-2} \chi \, dx$$

=
$$\tan x$$
. $\sec^{n-2}x - (n-2)$ $\int \sec^{n}x - \sec^{n-2}x \, dx$

73 = sux tux + flustant seix) + loutent

$$I_{s} = \frac{\sec^{3}k \tan k}{4} + \frac{3}{4} \left(\frac{\sec k \tan k}{2} + \frac{1}{4} \ln \left| \tan k + \sec k \right| \right) + \cosh k \sin k$$

$$= \frac{\sec^{3}k \tan k}{4} + \frac{3}{8} \left(\sec k \tan k \right) + \frac{3}{8} \ln \left| \tan k + \sec k \right|$$

$$+ \cosh k \cot k = \frac{1}{4} \left(\frac{\sec k \tan k}{4} + \frac{3}{8} \ln \left| \tan k + \sec k \right| \right)$$