The structure of persistence

(An introspection)

Ulrich Bauer

TUM

Apr 24, 2019

Part 1: 1-parameter persistence

(Barcodes & persistence diagrams)

Joint work with Michael Lesnick (Albany)

What is persistent homology?

What is persistent homology?

Inerval decompositions and persistence modules

Theorem (Crawley-Boewey 2015)

Any pointwise finite-dimensional (pfd) persistence module (a diagam $M : \mathbb{R} \to \mathbf{vect}$) has an essentially unique decomposition as a direct sum of indecomposable interval modules, isomorphic to

$$0 \to \cdots \to 0 \to \underbrace{\mathbb{K} \to \cdots \to \mathbb{K}}_{\text{supported by an interval } I \subseteq \mathbb{R}} \to 0 \to \cdots$$

▶ The corresponding collection (multiset) of intervals is the *persistence barcode* of M.

Inerval decompositions and persistence modules

Theorem (Crawley-Boewey 2015)

Any pointwise finite-dimensional (pfd) persistence module (a diagam $M : \mathbb{R} \to \mathbf{vect}$) has an essentially unique decomposition as a direct sum of indecomposable interval modules, isomorphic to

$$0 \to \cdots \to 0 \to \underbrace{\mathbb{K} \to \cdots \to \mathbb{K}}_{supported \ by \ an \ interval \ I \subseteq \mathbb{R}}_{} \to 0 \to \cdots$$

- ightharpoonup The corresponding collection (multiset) of intervals is the *persistence barcode* of M.
- ▶ The points in the *persistence diagram* are the endpoints of the intervals in the barcode.

Inerval decompositions and persistence modules

Theorem (Crawley-Boewey 2015)

Any pointwise finite-dimensional (pfd) persistence module (a diagam $M : \mathbb{R} \to \mathbf{vect}$) has an essentially unique decomposition as a direct sum of indecomposable interval modules, isomorphic to

$$0 \to \cdots \to 0 \to \underbrace{\mathbb{K} \to \cdots \to \mathbb{K}}_{supported \ by \ an \ interval \ I \subseteq \mathbb{R}} \to 0 \to \cdots$$

- ightharpoonup The corresponding collection (multiset) of intervals is the *persistence barcode* of M.
- ▶ The points in the *persistence diagram* are the endpoints of the intervals in the barcode.
- This is not a diagram in the sense of category theory (functor)!

point cloud $P \subset \mathbb{R}^d$ Hausdorff distance

The category of matchings

Consider the category Mch (a subcategory of the category Rel of sets and relations) with

- objects: sets,
- morphisms: matchings (partial bijections).

Composition:

(Co)kernel/(co)image:

The category of matchings

Consider the category Mch (a subcategory of the category Rel of sets and relations) with

- objects: sets,
- morphisms: matchings (partial bijections).

Composition:

(Co)kernel/(co)image:

Mch is a *Puppe-exact (p-exact)* category:

- ▶ it has a zero object (∅)
- ▶ it has all (co)kernels
- every mono (epi) is (co)kernel
- every morphism $f: A \to B$ has an epi-mono factorization $A \twoheadrightarrow \operatorname{im} f \hookrightarrow B$

The category of matchings

Consider the category Mch (a subcategory of the category Rel of sets and relations) with

- objects: sets,
- morphisms: matchings (partial bijections).

Composition:

(Co)kernel/(co)image:

Mch is a *Puppe-exact (p-exact)* category:

- ▶ it has a zero object (∅)
- ▶ it has all (co)kernels
- every mono (epi) is (co)kernel
- every morphism $f: A \to B$ has an epi-mono factorization $A \twoheadrightarrow \operatorname{im} f \hookrightarrow B$

but not additive:

it does not have all (co)products

▶ A barcode (collection of intervals) can be read as a diagram $\mathbb{R} \to \mathbf{Mch}$:

$$t \mapsto \{\text{intervals in barcode containing } t\}$$

$$(s \le t) \mapsto \{\text{intervals containing both } s, t\}$$

▶ A barcode (collection of intervals) can be read as a diagram $\mathbb{R} \to \mathbf{Mch}$:

 $t \mapsto \{\text{intervals in barcode containing } t\}$

$$(s \le t) \mapsto \{\text{intervals containing both } s, t\}$$

► A matching diagram defines a barcode:

▶ A barcode (collection of intervals) can be read as a diagram $\mathbb{R} \to \mathbf{Mch}$:

 $t \mapsto \{\text{intervals in barcode containing } t\}$

$$(s \le t) \mapsto \{\text{intervals containing both } s, t\}$$

► A matching diagram defines a barcode:

intervals formed by equivalence classes of matched elements

▶ A barcode (collection of intervals) can be read as a diagram $\mathbb{R} \to \mathbf{Mch}$:

 $t \mapsto \{\text{intervals in barcode containing } t\}$

$$(s \le t) \mapsto \{\text{intervals containing both } s, t\}$$

A matching diagram defines a barcode:

intervals formed by equivalence classes of matched elements

Turn this into an equivalence of categories $\mathbf{Barc} \simeq \mathbf{Mch}^{\mathbb{R}}$

A category of barcodes

Proposition

The functor category $\mathbf{Mch}^{\mathbb{R}}$ is equivalent to \mathbf{Barc} , the category with

- objects: barcodes (as a disjoint union of intervals),
- ▶ morphisms: overlap matchings of barcodes $U \nrightarrow V$:

A category of barcodes

Proposition

The functor category $\mathbf{Mch}^{\mathbb{R}}$ is equivalent to \mathbf{Barc} , the category with

- objects: barcodes (as a disjoint union of intervals),
- ▶ morphisms: overlap matchings of barcodes $U \nrightarrow V$: if $I \in U$ is matched to $J \in V$, then I overlaps J above:
 - ▶ *I* bounds *J* above (every $s \in J$ is bounded above by some $t \in I$),
 - J bounds I below,
 - $I \cap J \neq \emptyset$.

A category of barcodes

Proposition

The functor category $\mathbf{Mch}^{\mathbb{R}}$ is equivalent to \mathbf{Barc} , the category with

- objects: barcodes (as a disjoint union of intervals),
- ▶ morphisms: overlap matchings of barcodes $U \nrightarrow V$: if $I \in U$ is matched to $J \in V$, then I overlaps J above:
 - ▶ I bounds J above (every $s \in J$ is bounded above by some $t \in I$),
 - J bounds I below,
 - $I \cap J \neq \emptyset$.
- ▶ composition of overlap matchings: $\tau \bullet \sigma = \{(I, K) \in \tau \circ \sigma \mid I \text{ overlaps } K \text{ above}\}$ (where $\tau \circ \sigma$ is the standard composition of matchings)

- δ -matching between barcodes U, V:
 - matched intervals have δ -close endpoints
 - unmatched intervals are 2δ -trivial (shorter than 2δ)

- δ -matching between barcodes U, V:
 - matched intervals have δ -close endpoints
 - unmatched intervals are 2δ -trivial (shorter than 2δ)

Bottleneck distance: $d_B(U, V) = \inf\{\delta \mid \exists \delta \text{-matching } U \nrightarrow V\}$

- δ -matching between barcodes U, V:
 - matched intervals have δ -close endpoints
 - unmatched intervals are 2δ -trivial (shorter than 2δ)

Bottleneck distance: $d_B(U, V) = \inf\{\delta \mid \exists \delta \text{-matching } U \nrightarrow V\}$

▶ δ-interleaving between diagrams X, Y indexed over \mathbb{R} (in any category): natural transformations $f_t : X_t \to Y_{t+\delta}, g_t : Y_t \to X_{t+\delta}$ yielding commutative diagrams

$$X_{t-\delta} \longrightarrow X_t \longrightarrow X_{t+\delta}$$

$$X_{t-\delta} \longrightarrow Y_t \longrightarrow Y_{t+\delta}$$

$$\forall t \in \mathbb{R}.$$

- δ -matching between barcodes U, V:
 - matched intervals have δ -close endpoints
 - unmatched intervals are 2δ -trivial (shorter than 2δ)

Bottleneck distance: $d_B(U, V) = \inf\{\delta \mid \exists \delta \text{-matching } U \nrightarrow V\}$

▶ δ -interleaving between diagrams X, Y indexed over \mathbb{R} (in any category): natural transformations $f_t : X_t \to Y_{t+\delta}, g_t : Y_t \to X_{t+\delta}$ yielding commutative diagrams

$$X_{t-\delta} \longrightarrow X_t \longrightarrow X_{t+\delta}$$

$$X_{t-\delta} \longrightarrow Y_t \longrightarrow Y_{t+\delta}$$

$$\forall t \in \mathbb{R}$$

Interleaving distance: $d_B(U, V) = \inf\{\delta \mid \exists \delta \text{-interleaving } X \leftrightarrow Y\}$

- δ -matching between barcodes U, V:
 - matched intervals have δ -close endpoints
 - unmatched intervals are 2δ -trivial (shorter than 2δ)

Bottleneck distance: $d_B(U, V) = \inf\{\delta \mid \exists \delta \text{-matching } U \nrightarrow V\}$

▶ δ -interleaving between diagrams X, Y indexed over \mathbb{R} (in any category): natural transformations $f_t : X_t \to Y_{t+\delta}, g_t : Y_t \to X_{t+\delta}$ yielding commutative diagrams

$$X_{t-\delta} \longrightarrow X_t \longrightarrow X_{t+\delta}$$

$$X_{t-\delta} \longrightarrow Y_t \longrightarrow Y_{t+\delta}$$

$$\forall t \in \mathbb{R}$$

Interleaving distance: $d_B(U, V) = \inf\{\delta \mid \exists \delta \text{-interleaving } X \leftrightarrow Y\}$

Proposition

 $d_I = d_B$ (using the equivalence **Barc** \simeq **Mch**^{\mathbb{R}}).

Non-functoriality of persistence barcodes

Can a pfd persistence module $M : \mathbf{vect}^{\mathbb{R}}$ be mapped to its barcode $B(M) : \mathbf{Mch}^{\mathbb{R}}$ by a functor $B : \mathbf{vect} \to \mathbf{Mch}$ (or $\mathbf{vect}^{\mathbb{R}} \to \mathbf{Mch}^{\mathbb{R}}$)?

ightharpoonup This would preserve δ-interleavings, and thus yield stability of persistence barcodes.

Non-functoriality of persistence barcodes

Can a pfd persistence module $M : \mathbf{vect}^{\mathbb{R}}$ be mapped to its barcode $B(M) : \mathbf{Mch}^{\mathbb{R}}$ by a functor $B : \mathbf{vect} \to \mathbf{Mch}$ (or $\mathbf{vect}^{\mathbb{R}} \to \mathbf{Mch}^{\mathbb{R}}$)?

ightharpoonup This would preserve δ-interleavings, and thus yield stability of persistence barcodes.

Non-functoriality of persistence barcodes

Can a pfd persistence module $M : \mathbf{vect}^{\mathbb{R}}$ be mapped to its barcode $B(M) : \mathbf{Mch}^{\mathbb{R}}$ by a functor $B : \mathbf{vect} \to \mathbf{Mch}$ (or $\mathbf{vect}^{\mathbb{R}} \to \mathbf{Mch}^{\mathbb{R}}$)?

This would preserve δ-interleavings, and thus yield stability of persistence barcodes.

Proposition

There is no functor $\mathbf{vect} \to \mathbf{Mch}$ sending every vector space V to a set of cardinality $\dim V$ (equivalently: sending a linear map f to a matching of cardinality $\operatorname{rank} f$).

Non-functoriality of persistence barcodes

Can a pfd persistence module $M : \mathbf{vect}^{\mathbb{R}}$ be mapped to its barcode $B(M) : \mathbf{Mch}^{\mathbb{R}}$ by a functor $B : \mathbf{vect} \to \mathbf{Mch}$ (or $\mathbf{vect}^{\mathbb{R}} \to \mathbf{Mch}^{\mathbb{R}}$)?

▶ This would preserve δ -interleavings, and thus yield stability of persistence barcodes.

Proposition

There is no functor $\mathbf{vect} \to \mathbf{Mch}$ sending every vector space V to a set of cardinality $\dim V$ (equivalently: sending a linear map f to a matching of cardinality $\operatorname{rank} f$).

But: there is a barcode functor for subcategories of monos/epis of persistence modules $\mathbf{vect}^{\mathbb{R}}$:

Structure of persistence sub-/quotient modules

Proposition

Let $M \rightarrow N$ be an epimorphism.

Then there is an injection of barcodes $B(N) \hookrightarrow B(M)$ such that if J is mapped to I, then

- ▶ I and J are aligned below, and
- ▶ I bounds J above.

This construction is functorial.

Dually, there is an injection $B(M) \hookrightarrow B(N)$ for monomorphisms $M \hookrightarrow N$.

Persistence sub-/quotient modules and their matching diagrams

Structure of persistence sub-/quotient modules, rephrased for $\mathbf{Mch}^{\mathbb{R}}$:

Proposition

There is a functor from epimorphisms of persistence modules to epimorphisms of matching diagrams.

Dually, there is a functor from monos to monos.

Consider an interleaving $f_t: M_t \to N_{t+\delta}, g_t: N_t \to M_{t+\delta} \ (\forall t \in \mathbb{R})$:

Consider an interleaving $f_t: M_t \to N_{t+\delta}$, $g_t: N_t \to M_{t+\delta}$ ($\forall t \in \mathbb{R}$):

Consider an interleaving $f_t: M_t \to N_{t+\delta}, g_t: N_t \to M_{t+\delta} \ (\forall t \in \mathbb{R})$:

Consider an interleaving $f_t: M_t \to N_{t+\delta}$, $g_t: N_t \to M_{t+\delta}$ ($\forall t \in \mathbb{R}$):

Consider an interleaving $f_t: M_t \to N_{t+\delta}, g_t: N_t \to M_{t+\delta} \ (\forall t \in \mathbb{R})$:

Consider an interleaving $f_t: M_t \to N_{t+\delta}$, $g_t: N_t \to M_{t+\delta}$ ($\forall t \in \mathbb{R}$):

Consider an interleaving $f_t: M_t \to N_{t+\delta}, g_t: N_t \to M_{t+\delta} \ (\forall t \in \mathbb{R})$:

Induced matchings

For $f: M \to N$ a morphism of pfd persistence modules, the epi-mono factorization

$$M \rightarrow \inf f \hookrightarrow N$$

gives an *induced matching* $\chi(f)$ between their barcodes:

Induced matchings

For $f: M \to N$ a morphism of pfd persistence modules, the epi-mono factorization

$$M \rightarrow \inf f \hookrightarrow N$$

gives an *induced matching* $\chi(f)$ between their barcodes:

▶ compose the functorial injections $B(M) \leftarrow B(\operatorname{im} f) \hookrightarrow B(N)$ from before to a matching

$$\chi(f): B(M) \nrightarrow B(N).$$

Induced matchings

For $f: M \to N$ a morphism of pfd persistence modules, the epi-mono factorization

$$M \twoheadrightarrow \operatorname{im} f \hookrightarrow N$$

gives an *induced matching* $\chi(f)$ between their barcodes:

▶ compose the functorial injections $B(M) \leftarrow B(\operatorname{im} f) \hookrightarrow B(N)$ from before to a matching

$$\chi(f): B(M) \nrightarrow B(N).$$

Theorem

Assume that $\ker f$ is δ -trivial. If I is matched to J, then

- (i) I overlaps I, and J overlaps $I(\delta)$.
- (ii) Any unmatched interval of B(M) is δ-trivial.

There is a dual statement for coker f δ -trivial.

The categorified induced matching theorem

Induced matching theorem, rephrased in $\mathbf{Mch}^{\mathbb{R}}$:

Theorem

If $f: M \to N$ has δ -trivial (co)kernel, then so does the induced matching $\chi(f): B(M) \nrightarrow B(N)$.

The categorified induced matching theorem

Induced matching theorem, rephrased in $\mathbf{Mch}^{\mathbb{R}}$:

Theorem

If $f: M \to N$ has δ -trivial (co)kernel, then so does the induced matching $\chi(f): B(M) \nrightarrow B(N)$.

Note:

- We always have $B(\operatorname{im} f) = \operatorname{im} \chi(f)$ by construction.
- ▶ But $\ker \chi(f)$ may differ from $B(\ker f)$.
- ▶ The induced matching may strictly decrease the triviality of the kernel.

A general criterion for δ -trivial (co)kernels

Lemma

For a natural transformation $f: M \to N$ between diagrams $M, N: \mathbf{R} \to \mathbf{A}$ in a Puppe-exact \mathbf{A} , consider the epi-mono factorization

$$f: M \stackrel{q}{\twoheadrightarrow} \operatorname{im} f \stackrel{i}{\hookrightarrow} N.$$

A general criterion for δ -trivial (co)kernels

Lemma

For a natural transformation $f: M \to N$ between diagrams $M, N: \mathbf{R} \to \mathbf{A}$ in a Puppe-exact \mathbf{A} , consider the epi-mono factorization

$$f: M \stackrel{q}{\twoheadrightarrow} \operatorname{im} f \stackrel{i}{\hookrightarrow} N.$$

Moreover, let $s: M \to M(\delta)$ be given by the internal morphisms $\{M_t \to M_{t+\delta}\}_{t \in \mathbb{R}}$.

A general criterion for δ -trivial (co)kernels

Lemma

For a natural transformation $f: M \to N$ between diagrams $M, N: \mathbf{R} \to \mathbf{A}$ in a Puppe-exact \mathbf{A} , consider the epi-mono factorization

$$f: M \stackrel{q}{\twoheadrightarrow} \operatorname{im} f \stackrel{i}{\hookrightarrow} N.$$

Moreover, let $s: M \to M(\delta)$ be given by the internal morphisms $\{M_t \to M_{t+\delta}\}_{t \in \mathbb{R}}$.

By a diagram chase, the following are equivalent:

- (i) $\ker f$ is δ -trivial;
- (ii) the image epimorphism $M \rightarrow im s$ factors (through q) as

$$M \stackrel{q}{\Rightarrow} \operatorname{im} f \twoheadrightarrow \operatorname{im} s$$
.

A dual statement holds for coker f.

Lemma

Let $f: M \twoheadrightarrow N$ be an epimorphism. If $\ker f$ is δ -trivial, then so is $\ker \chi(f)$. (Dually for monos.)

Lemma

Let $f: M \twoheadrightarrow N$ be an epimorphism. If $\ker f$ is δ -trivial, then so is $\ker \chi(f)$. (Dually for monos.)

Proof outline.

As before, let $s: M \to M(\delta)$ be the shift morphism.

Lemma

Let $f: M \twoheadrightarrow N$ be an epimorphism. If $\ker f$ is δ -trivial, then so is $\ker \chi(f)$. (Dually for monos.)

Proof outline.

As before, let $s: M \to M(\delta)$ be the shift morphism.

▶ Since $\ker f$ is δ -trivial, the image epimorphism $M \twoheadrightarrow \operatorname{im} s$ factors through f as

$$M \stackrel{f}{\Rightarrow} N \rightarrow \text{im } s.$$

Lemma

Let $f: M \twoheadrightarrow N$ be an epimorphism. If $\ker f$ is δ -trivial, then so is $\ker \chi(f)$. (Dually for monos.)

Proof outline.

As before, let $s: M \to M(\delta)$ be the shift morphism.

▶ Since $\ker f$ is δ -trivial, the image epimorphism $M \twoheadrightarrow \operatorname{im} s$ factors through f as

$$M \stackrel{f}{\twoheadrightarrow} N \rightarrow \text{im } s.$$

▶ By functoriality on epis, the canonical epimorphism $B(M) \twoheadrightarrow \operatorname{im} \chi(s)$ factors through $\chi(f)$:

$$B(M) \stackrel{\chi(f)}{\twoheadrightarrow} B(N) \twoheadrightarrow \operatorname{im} \chi(s).$$

Lemma

Let $f: M \twoheadrightarrow N$ be an epimorphism. If $\ker f$ is δ -trivial, then so is $\ker \chi(f)$. (Dually for monos.)

Proof outline.

As before, let $s: M \to M(\delta)$ be the shift morphism.

▶ Since $\ker f$ is δ -trivial, the image epimorphism $M \twoheadrightarrow \operatorname{im} s$ factors through f as

$$M \stackrel{f}{\twoheadrightarrow} N \rightarrow \text{im } s.$$

▶ By functoriality on epis, the canonical epimorphism $B(M) \twoheadrightarrow \operatorname{im} \chi(s)$ factors through $\chi(f)$:

$$B(M) \stackrel{\chi(f)}{\twoheadrightarrow} B(N) \twoheadrightarrow \operatorname{im} \chi(s).$$

• Equivalently, $\ker \chi(f)$ is δ -trivial.

Theorem

If $f: M \to N$ has δ -trivial (co)kernel, then so does $\chi(f)$.

Theorem

If $f: M \to N$ has δ -trivial (co)kernel, then so does $\chi(f)$.

Proof outline.

Consider epi-mono factorization

$$f: M \stackrel{q}{\twoheadrightarrow} \operatorname{im} f \stackrel{i}{\hookrightarrow} N.$$

Theorem

If $f: M \to N$ has δ -trivial (co)kernel, then so does $\chi(f)$.

Proof outline.

Consider epi-mono factorization

$$f: M \stackrel{q}{\twoheadrightarrow} \operatorname{im} f \stackrel{i}{\hookrightarrow} N.$$

▶ If $\ker q = \ker f$ is δ -trivial, then so is $\ker \chi(q) = \ker \chi(f)$.

Theorem

If $f: M \to N$ has δ -trivial (co)kernel, then so does $\chi(f)$.

Proof outline.

Consider epi-mono factorization

$$f: M \stackrel{q}{\twoheadrightarrow} \operatorname{im} f \stackrel{i}{\hookrightarrow} N.$$

- If $\ker q = \ker f$ is δ -trivial, then so is $\ker \chi(q) = \ker \chi(f)$.
- ▶ Dually for coker i = coker f.

Theorem

Two pfd persistence modules M and N are δ -interleaved if and only if their barcodes B(M) and B(N) are δ -interleaved. In particular, $d_I(M,N) = d_I(B(M),B(N))$.

Theorem

Two pfd persistence modules M and N are δ -interleaved if and only if their barcodes B(M) and B(N) are δ -interleaved. In particular, $d_I(M,N) = d_I(B(M),B(N))$.

Proof outline.

Forward direction:

▶ A δ -interleaving morphism $f: M \to N(\delta)$ has 2δ -trivial kernel and cokernel.

Theorem

Two pfd persistence modules M and N are δ -interleaved if and only if their barcodes B(M) and B(N) are δ -interleaved. In particular, $d_I(M,N) = d_I(B(M),B(N))$.

Proof outline.

Forward direction:

- ▶ A δ -interleaving morphism $f: M \to N(\delta)$ has 2δ -trivial kernel and cokernel.
- ▶ By the induced matching theorem, the same is true for $\chi(f): B(M) \to B(N(\delta))$.

Theorem

Two pfd persistence modules M and N are δ -interleaved if and only if their barcodes B(M) and B(N) are δ -interleaved. In particular, $d_I(M,N) = d_I(B(M),B(N))$.

Proof outline.

Forward direction:

- ▶ A δ -interleaving morphism $f: M \to N(\delta)$ has 2δ -trivial kernel and cokernel.
- ▶ By the induced matching theorem, the same is true for $\chi(f): B(M) \to B(N(\delta))$.
- ▶ This is equivalent to B(M) and B(N) being δ -interleaved in $\mathbf{Mch}^{\mathbb{R}}$.

Theorem

Two pfd persistence modules M and N are δ -interleaved if and only if their barcodes B(M) and B(N) are δ -interleaved. In particular, $d_I(M,N) = d_I(B(M),B(N))$.

Proof outline.

Forward direction:

- ▶ A δ -interleaving morphism $f: M \to N(\delta)$ has 2δ -trivial kernel and cokernel.
- ▶ By the induced matching theorem, the same is true for $\chi(f): B(M) \to B(N(\delta))$.
- ▶ This is equivalent to B(M) and B(N) being δ -interleaved in $\mathbf{Mch}^{\mathbb{R}}$.

Converse direction:

Apply the free functor Mch → Vect.

- ► Goal: construct barcode/matching diagram of persistence module *without* decomposition
- ▶ At each index in the matching diagram, the set should be natural numbers $\{1, ..., n\}$

- ▶ Goal: construct barcode/matching diagram of persistence module without decomposition
- ightharpoonup At each index in the matching diagram, the set should be natural numbers $\{1, \ldots, n\}$

Approach:

Order intervals in barcode (lexicographically) by birth (increasing), then death (decreasing)

- ▶ Goal: construct barcode/matching diagram of persistence module without decomposition
- ightharpoonup At each index in the matching diagram, the set should be natural numbers $\{1,\ldots,n\}$

Approach:

- Order intervals in barcode (lexicographically) by birth (increasing), then death (decreasing)
- ightharpoonup At each index t, enumerate the intervals containing t in that order

- ▶ Goal: construct barcode/matching diagram of persistence module without decomposition
- ▶ At each index in the matching diagram, the set should be natural numbers $\{1, ..., n\}$

Approach:

- Order intervals in barcode (lexicographically) by birth (increasing), then death (decreasing)
- ightharpoonup At each index t, enumerate the intervals containing t in that order
- Between any two indices, match numbers according to their associated barcode intervals

Barcodes from scratch

- ▶ Goal: construct barcode/matching diagram of persistence module without decomposition
- ▶ At each index in the matching diagram, the set should be natural numbers $\{1, ..., n\}$

Approach:

- Order intervals in barcode (lexicographically) by birth (increasing), then death (decreasing)
- ightharpoonup At each index t, enumerate the intervals containing t in that order
- Between any two indices, match numbers according to their associated barcode intervals

M: persistence module, *D*: corresponding barcode (ordered by birth, then death).

▶ Which j are in D_t ? This is $\{j \mid j \leq \dim M_t\}$.

- ▶ Which j are in D_t ? This is $\{j \mid j \leq \dim M_t\}$.
- ▶ Which $j \in D_t$ are matched to some $i \in D_s$? This is $\{j \mid j \leq \operatorname{rank} M_{s,t}\}$.

- ▶ Which j are in D_t ? This is $\{j \mid j \leq \dim M_t\}$.
- ▶ Which $j \in D_t$ are matched to some $i \in D_s$? This is $\{j \mid j \le \text{rank } M_{s,t}\}$.
- ▶ Given $j \in D_t$, to which $i \in D_s$ is it matched? The difference i - j is the number of bars that
 - (a) are born before the jth interval at index t, and
 - (b) die between *s* and *t*:

- ▶ Which j are in D_t ? This is $\{j \mid j \leq \dim M_t\}$.
- ▶ Which $j \in D_t$ are matched to some $i \in D_s$? This is $\{j \mid j \leq \text{rank } M_{s,t}\}$.
- ▶ Given $j \in D_t$, to which $i \in D_s$ is it matched? The difference i - j is the number of bars that
 - (a) are born before the jth interval at index t, and
 - (b) die between s and t:
- ▶ Given $j \in D_t$, what are the lower bounds for the jth interval at index t? This is $\{r < t \mid \operatorname{rank} M_{r,t} < j\}$.

- ▶ Which j are in D_t ? This is $\{j \mid j \leq \dim M_t\}$.
- ▶ Which $j \in D_t$ are matched to some $i \in D_s$? This is $\{j \mid j \leq \text{rank } M_{s,t}\}$.
- ▶ Given $j \in D_t$, to which $i \in D_s$ is it matched? The difference i - j is the number of bars that
 - (a) are born before the jth interval at index t, and
 - (b) die between s and t:
- ▶ Given $j \in D_t$, what are the lower bounds for the jth interval at index t? This is $\{r < t \mid \operatorname{rank} M_{r,t} < j\}$.
- ► Together, this yields $i j = \max \{ \operatorname{rank} M_{r,s} \operatorname{rank} M_{r,t} \mid r < s, \operatorname{rank} M_{r,t} < j \}.$

M: persistence module, *D*: corresponding barcode (ordered by birth, then death).

- ▶ Which j are in D_t ? This is $\{j \mid j \leq \dim M_t\}$.
- ▶ Which $j \in D_t$ are matched to some $i \in D_s$? This is $\{j \mid j \leq \operatorname{rank} M_{s,t}\}$.
- ▶ Given $j \in D_t$, to which $i \in D_s$ is it matched? The difference i - j is the number of bars that
 - (a) are born before the jth interval at index t, and
 - (b) die between s and t:
- ▶ Given $j \in D_t$, what are the lower bounds for the jth interval at index t? This is $\{r < t \mid \operatorname{rank} M_{r,t} < j\}$.
- ► Together, this yields $i-j = \max \{ \operatorname{rank} M_{r,s} \operatorname{rank} M_{r,t} \mid r < s, \operatorname{rank} M_{r,t} < j \}.$

This specifies the barcode of M (as a matching diagram) based on ranks only.

The previous construction extents to a functor of epimorphisms M woheadrightarrow N from persistence modules to matching diagrams.

The previous construction extents to a functor of epimorphisms $M \twoheadrightarrow N$ from persistence modules to matching diagrams.

▶ For the record: $i \in D(M)_t$ is matched to $j \in D(N)_t$ iff

 $\max \big\{ \operatorname{rank} M_{s,t} - \operatorname{rank} N_{s,t} \mid s < t, \operatorname{rank} N_{s,t} < j \big\}.$

The previous construction extents to a functor of epimorphisms M woheadrightarrow N from persistence modules to matching diagrams.

▶ For the record: $i \in D(M)_t$ is matched to $j \in D(N)_t$ iff

$$\max \{ \operatorname{rank} M_{s,t} - \operatorname{rank} N_{s,t} \mid s < t, \operatorname{rank} N_{s,t} < j \}.$$

Dually for monomorphisms

The previous construction extents to a functor of epimorphisms M woheadrightarrow N from persistence modules to matching diagrams.

▶ For the record: $i \in D(M)_t$ is matched to $j \in D(N)_t$ iff

$$\max \{ \operatorname{rank} M_{s,t} - \operatorname{rank} N_{s,t} \mid s < t, \operatorname{rank} N_{s,t} < j \}.$$

- Dually for monomorphisms
- Epi-mono factorization yields an induced matching

The previous construction extents to a functor of epimorphisms M woheadrightarrow N from persistence modules to matching diagrams.

▶ For the record: $i \in D(M)_t$ is matched to $j \in D(N)_t$ iff

$$\max \{ \operatorname{rank} M_{s,t} - \operatorname{rank} N_{s,t} \mid s < t, \operatorname{rank} N_{s,t} < j \}.$$

- Dually for monomorphisms
- Epi-mono factorization yields an induced matching
- Coincides with previous induced matching (under the equivalence $\mathbf{Barc} \simeq \mathbf{Mch}^{\mathbb{R}}$)

The previous construction extents to a functor of epimorphisms M woheadrightarrow N from persistence modules to matching diagrams.

▶ For the record: $i \in D(M)_t$ is matched to $j \in D(N)_t$ iff

$$\max \{ \operatorname{rank} M_{s,t} - \operatorname{rank} N_{s,t} \mid s < t, \operatorname{rank} N_{s,t} < j \}.$$

- Dually for monomorphisms
- Epi-mono factorization yields an induced matching
- ► Coincides with previous induced matching (under the equivalence $\mathbf{Barc} \simeq \mathbf{Mch}^{\mathbb{R}}$)

Obtain induced matching and algebraic stability theorems without an interval decomposition

