RÉDUCTION GÉOMÉTRIQUE

Eléments propres

Solution 1

• Supposons $\lambda = 0$. Alors $\text{Ker}(g \circ f) \neq \{0_E\}$ et donc $g \circ f$ est non inversible. Ainsi $\det(g \circ f) = 0$. Mais alors

$$\det(f \circ g) = \det(f)\det(g) = \det(g \circ f) = 0$$

Donc $f \circ g$ est non inversible i.e. 0 est valeur propre de $f \circ g$.

• Supposons $\lambda \neq 0$. Alors il existe un vecteur $x \in E$ non nul tel que $g \circ f(x) = \lambda x$. Par conséquent, $f \circ g \circ f(x) = \lambda f(x)$. On ne peut avoir $f(x) = 0_E$ sinon on aurait $g \circ f(x) = \lambda x = 0_E$, ce qui est impossible puisque $\lambda \neq 0$ et $x \neq 0_E$. Ainsi f(x) est un vecteur propre de $f \circ g$ associée à la valeur propre λ .

Solution 2

Rappelons que tout endomorphisme d'un espace vectoriel complexe E de dimension finie possède au moins une valeur propre (son polynôme caractéristique admet au moins une racine complexe) et donc également un vecteur propre.

- Supposons que v admet une valeur propre λ autre que a. Soit alors x un vecteur propre associé. Alors $u \circ v(x) = au(x) + bv(x)$ i.e. $\lambda u(x) = au(x) + \lambda bx$. Puisque $\lambda \neq a$, $u(x) = \frac{\lambda b}{\lambda a}x$: x est donc un vecteur propre commun à u et v.
- Supposons que v admet a pour seule valeur propre. Soit x un vecteur propre de v associé à cette valeur propre. Or $u \circ v(x) = au(x) + bv(x)$, ce qui donne $abx = 0_E$. Comme x est non nul, on a soit a = 0, soit b = 0. Remarquons également que le polynôme caractéristique de v est $(X a)^n$, où $n = \dim E$. Enfin l'égalité $u \circ v = au + bv$ peut également s'écrire

$$u \circ (v - a \operatorname{Id}_{E}) = bv = b(v - a \operatorname{Id}_{E}) + ab \operatorname{Id}_{E} = b(v - a \operatorname{Id}_{e})$$

puisque ab = 0.

- Si $v = a \operatorname{Id}_{E}$, alors tout vecteur propre de u (il en existe d'après la remarque préliminaire) est également vecteur propre de v pour la valeur propre de a.
- Si $v \neq a \operatorname{Id}_{E}$, alors il existe un vecteur x de E n'appartenant pas au noyau de $v a \operatorname{Id}_{E}$. De plus, $v a \operatorname{Id}_{E}$ est nilpotent puisque le polynôme caractéristique de v est $(X a)^n$. Notons k le plus grand entier naturel tel que $(v a \operatorname{Id}_{E})^k(x) \neq 0_E$ (on a en particulier $k \geq 1$). Puisque $u \circ (v a \operatorname{Id}_{E}) = b(v a \operatorname{Id}_{E})$, $u \circ (v a \operatorname{Id}_{E})^k = b(v a \operatorname{Id}_{E})^k$ et donc $(v a \operatorname{Id}_{E})^k(x)$ est vecteur propre de u pour la valeur propre b. Mais par définition de k, $(v a \operatorname{Id}_{E})^k(x) = (v a \operatorname{Id}_{E})^{k+1}(x) = 0$, ce qui équivaut à $v((v a \operatorname{Id}_{E})^k(x)) = a(v a \operatorname{Id}_{E})^k(x)$: $(v a \operatorname{Id}_{E})^k(x)$ est donc un vecteur propre de v pour la valeur propre a.

Solution 3

Soient λ une valeur propre de $u \circ v$ et x un vecteur propre associé à cette valeur propre.

- Si $\lambda \neq 0$, alors $v(x) \neq 0_E$ sinon $u \circ v(x) = 0_E$ et donc $\lambda x = 0_E$, ce qui est impossible puisque $\lambda \neq 0$ et $x \neq 0_E$. De plus, $v \circ u \circ v(x) = \lambda v(x)$ et λ est donc une valeur propre de λ de u.
- Si $\lambda = 0$, alors $u \circ v$ n'est pas inversible, d'où $\det(u \circ v) = 0$. De plus, $\det(v \circ u) = \det(v) \det(u) = \det(u) \det(v) = \det(u) \det(v) = 0$. Ainsi, $v \circ u$ n'est pas inversible i.e. 0 est valeur propre de $v \circ u$.

On a montré que toute valeur propre de $u \circ v$ est une valeur propre de $v \circ u$. La réciproque se montre de manière symétrique.

Solution 4

Soient λ une valeur propre de A et X un vecteur propre associé dont on note x_i les composantes. On a donc pour $1 \le i \le n$:

$$(\lambda - a_{i,i})x_i = \sum_{j \neq i} a_{i,j}x_j$$

Choisissons un indice i pour lequel $|x_i|$ est maximal. En particulier, $x_i \neq 0$ car X est non nul (c'est un vecteur propre). Ainsi

$$\begin{split} |\lambda - a_{i,i}| &= \left| \sum_{j \neq i} a_{i,j} \frac{x_j}{x_i} \right| \\ &\leq \sum_{j \neq i} |a_{i,j}| \frac{|x_j|}{|x_i|} & \text{par inégalité triangulaire} \\ &\leq \sum_{i \neq i} |a_{i,j}| = \mathbf{R}_i & \text{car } |x_j| \leq |x_i| \text{ pour } 1 \leq j \leq n \end{split}$$

Ceci signifie bien que $\lambda \in D_i$.

Solution 5

Soient $\lambda \in \mathbb{K}$ et $P \in \mathbb{K}[X]$ non nul. Posons $P = \sum_{k=0}^{n} a_k X^k$ avec $n = \deg P$, $(a_0, \dots, a_n) \in \mathbb{K}^{n+1}$ et $a_n \neq 0$. Alors $\varphi(P) = \lambda P$ si et seulement si $\lambda a_k = k a_k$ pour tout $k \in [0, n]$. Puisque $a_n \neq 0$, ceci équivaut à $\lambda = n$ et $a_0 = a_1 = \dots = a_{n-1} = 0$. Ainsi les valeurs propres de φ sont les entiers naturels et pour tout $n \in \mathbb{N}$, $E_n(\varphi) = \operatorname{vect}(X^n)$.

Solution 6

1. T est linéaire par linéarité d l'intégrale.

Soit $f \in E$. Alors $x \mapsto \int_0^x f(t)e^t dt$ est \mathcal{C}^{∞} comme primitive de la fonction de classe \mathcal{C}^{∞} $t \mapsto f(t)e^t$. Enfin, T(f) est \mathcal{C}^{∞} comme produit de fonctions de classe \mathcal{C}^{∞} . Ainsi $T(f) \in E$.

2. Soient $\lambda \in \mathbb{R}$ et $f \in E$ tels que $T(f) = \lambda f$. Alors pour tout $x \in \mathbb{R}$, $\lambda f(x)e^x = \int_0^x f(t)e^t dt$ ou encore $\lambda g(x) = \int_0^x g(t) dt$ en posant $g(x) = f(x)e^x$.

Si $\lambda = 0$, alors $\int_0^x g(t)e^t dt = 0$ pour tout $x \in \mathbb{R}$. En dérivant, on obtient g = 0 puis f = 0, ce qui prouve que 0 n'est pas valeur propre de T.

Supposons $\lambda \neq 0$. Alors $g(x) = \frac{1}{\lambda} \int_0^x g(t) dt$ pour tout $x \in \mathbb{R}$, ce qui prouve que g est dérivable. On remarque également que g(0) = 0.

En dérivant, on obtient $g'(x) = \frac{1}{\lambda}g(x)$ pour tout $x \in \mathbb{R}$. Par unicité de la solution du problème de Cauchy $\begin{cases} y' = \frac{1}{\lambda}y, \\ y(0) = 0 \end{cases}$, g est nulle et y(0) = 0

f également de sorte que λ n'est pas valeur propre de f.

Finalement, T n'admet aucune valeur propre.

- 1. La fonction $t \mapsto \frac{f(t)}{t}$ est continue sur \mathbb{R}_+^* et, puisque f est de classe \mathcal{C}^1 et nulle en 0, elle admet une limite finie en 0 à savoir f'(0). Cette fonction est donc prolongeable par continuité en 0 en une fonction continue sur \mathbb{R}_+ , ce qui justifie la définition de l'intégrale $\int_0^x \frac{f(t)}{t} dt \text{ pour tout } x \in \mathbb{R}_+.$
- 2. La linéarité de Φ provient de la linéarité de l'intégrale. Soit $f \in E$. Il est clair que $\Phi(f)(0) = 0$ et $\Phi(f)$ est de classe \mathcal{C}^1 sur \mathbb{R}_+ en tant que primitive d'une fonction continue, à savoir $t \mapsto \frac{f(t)}{t}$ prolongée par continuité en 0. Ainsi $\Phi(f) \in E$.
- 3. Soient $\lambda \in \mathbb{R}$ et $f \in E$ tels que $\Phi(f) = \lambda f$. Alors $\Phi(f)' = \lambda f'$ et donc $f(x) = \lambda x f'(x)$ pour tout $x \in \mathbb{R}_+$. Si $\lambda = 0$, alors f = 0 de sorte que 0 n'est pas une valeur propre de Φ . Supposons donc $\lambda \neq 0$. Ainsi $f'(x) = \frac{f(x)}{\lambda x}$ pour tout $x \in \mathbb{R}_+^*$. On en déduit qu'il existe $A \in \mathbb{R}$ tel que $f(x) = Ax^{\frac{1}{\lambda}}$ pour tout $x \in \mathbb{R}_+^*$. De plus, $f'(x) = \frac{A}{\lambda}x^{\frac{1}{\lambda}-1}$ pour tout $x \in \mathbb{R}_+^*$. Or f est de classe \mathcal{C}^1 donc f' admet une limite finie en 0. Si $\lambda < 0$ ou $\lambda > 1$, alors nécessairement A = 0 de sorte que f = 0. Dans ce cas, λ n'est pas

une valeur propre de Φ .

Réciproquement soit $\lambda \in]0,1]$ et posons $f_{\lambda}(x) = x^{\frac{1}{\lambda}}$ pour tout $x \in \mathbb{R}^*$ et f(0) = 0. On vérifie que f_{λ} est de classe \mathcal{C}^1 sur \mathbb{R}_+ . De plus, pour tout $x \in \mathbb{R}_+$,

$$T(f_{\lambda})(x) = \int_0^x \frac{f_{\lambda}(t)}{t} dt = \int_0^x t^{\frac{1}{\lambda} - 1} dt = \left[\lambda t^{\frac{1}{\lambda}}\right]_0^x = \lambda f_{\lambda}(x)$$

Ainsi λ est bien valeur propre de Φ et f_{λ} est un vecteur propre associé.

Finalement, λ est valeur propre de Φ si et seulement si $\lambda \in]0,1]$ et, dans ce cas, $E_{\lambda}(\Phi) = \text{vect}(f_{\lambda})$.

Solution 8

1. Tout d'abord, l'application $x \in \mathbb{R} \mapsto \int_0^x f(t) dt$ est continue sur \mathbb{R} en tant que primitive de application continue f. On en déduit que $x \in \mathbb{R}^* \mapsto \frac{1}{x} \int_0^x f(t) dt$ est continue sur \mathbb{R}^* .

De plus, l'application $x \in \mathbb{R} \mapsto \int_0^x f(t) dt$ est dérivable en 0 en tant que primitive de application continue f et sa dérivée en 0 vaut donc f(0). On en déduit que

$$\lim_{x\to 0} \mapsto \frac{1}{x} \int_0^x f(t) \, \mathrm{d}t = f(0)$$

ce qui prouve que $x \in \mathbb{R}_+^* \mapsto \frac{1}{x} \int_0^x f(t) dt$ est prolongeable en 0 en une application continue sur \mathbb{R}_+ .

- 2. La linéarité de T provient de la linéarité de l'intégrale. La question précédente montre que si $f \in E$, alors $T(f) \in E$.
- 3. Soient $\lambda \in \mathbb{R}$ et $f \in E$ tels que $\mathrm{T}(f) = \lambda f$. Si $\lambda = 0$, alors $\mathrm{T}(f) = 0$ d'où $\int_0^x f(t) \, \mathrm{d}t = 0$ pour tout $x \in \mathbb{R}_+^*$. En dérivant, f est nulle sur \mathbb{R}_+^* . Finalement, f est nulle sur \mathbb{R}_+ car f est continue en 0 ou bien car $f(0) = \mathrm{T}(f)(0) = 0$. Ainsi 0 n'est pas valeur propre de T . Supposons $\lambda \neq 0$. Alors $f = \frac{1}{\lambda}\mathrm{T}(f)$. Puisque $\mathrm{T}(f)$ est dérivable sur \mathbb{R}_+^* , f l'est également. De plus, $\lambda x f(x) = \int_0^x f(t) \, \mathrm{d}t$ pour tout

 $x \in \mathbb{R}_+$ donc, en dérivant, $f'(x) = \frac{1-\lambda}{\lambda x} f(x)$ pour tout $x \in \mathbb{R}_+^*$. On en déduit qu'il existe $A \in \mathbb{R}$ tel que $f(x) = Ax^{\frac{1-\lambda}{\lambda}}$ pour tout $x \in \mathbb{R}_+$. Si $\lambda < 0$ ou $\lambda > 1$, f n'admet une limite finie en 0 que si A = 0 de sorte que f est nulle. Dans ce cas, λ n'est pas valeur propre de f.

Réciproquement, soit $\lambda \in]0,1]$ et posons $f_{\lambda}: x \in \mathbb{R}_+ \mapsto \begin{cases} x^{\frac{1-\lambda}{\lambda}} & \text{si } x > 0 \\ 0 & \text{sinon} \end{cases}$. On vérifie que f_{λ} est continue sur \mathbb{R}_+ et pour tout $x \in \mathbb{R}_+^*$

$$T(f_{\lambda})(x) = \frac{1}{x} \int_0^x f_{\lambda}(t) dt = \frac{1}{x} \int_0^x t^{\frac{1-\lambda}{\lambda}} dt = \frac{1}{x} \left[\lambda t^{\frac{1}{\lambda}} \right]_0^x = \lambda x^{\frac{1-\lambda}{\lambda}} = \lambda f_{\lambda}(x)$$

Cette égalité est encore valable pour x = 0 par continuité de f_{λ} et $T(f_{\lambda})$ en 0 de sorte que $T(f_{\lambda}) = \lambda f_{\lambda}$. Finalement, λ est valeur propre de T si et seulement si $\lambda \in]0,1]$ et, dans ce cas, $E_{\lambda}(T) = \text{vect}(f_{\lambda})$.

Solution 9

- **1.** En posant $U \in \mathcal{M}_{n,1}(\mathbb{R})$ dont tous les coefficients valent 1, AU = U de sorte que $1 \in Sp(A)$.
- **2.** Soit $\lambda \in \operatorname{Sp}_{\mathbb{C}}(A)$ et V un vecteur propre associé. Alors

$$\forall j \in [1, n], \ \sum_{j=1}^{n} A_{i,j} V_j = \lambda V_i$$

Notons i_0 l'indice d'un coefficient de V de module maximal. Par inégalité triangulaire

$$|\lambda||V_{i_0}| = \left|\sum_{j=1}^n A_{i_0,j} V_j\right| \le \sum_{j=1}^n |A_{i_0,j} V_j|$$

Mais les $A_{i_0,j}$ sont des réels positifs et $|V_j| \le |V_{i_0}|$ pour tout $j \in [1, n]$ de sorte que

$$|\lambda||V_{i_0}| \le |V_{i_0}| \sum_{j=1}^n A_{i_0,j} = |V_{i_0}|$$

Enfin, $|V_{i_0}| = ||V||_{\infty} > 0$ car, sinon, V serait nul. On en déduit que $|\lambda| < 1$.

Solution 10

1. Φ est linéaire par linéarité de l'intégration. Soit $f \in E$. Par la relation de Chasles

$$\forall x \in [0, 1], \ \Phi(f)(x) = \int_0^x t f(t) \ dt - x \int_1^x f(t) \ dt$$

D'après le théorème fondamental de l'analyse, $\Phi(f)$ est donc dérivable et a fortiori continue. Ainsi $\Phi(f) \in E$. Φ est donc bien un endomorphisme de E.

2. Soit $f \in E$. D'après la question précédente, $\Phi(f)$ est dérivable et on a donc

$$\forall x \in [0, 1], \ \Phi(f)'(x) = xf(x) - \int_{1}^{x} f(t) \ dt - xf(x) = -\int_{1}^{x} f(t) \ dt$$

 $\Phi(f)'$ est à nouveau dérivable et $\Phi(f)'' = -f$.

Soit λ une valeur propre de Φ et f un vecteur propre associé.

Si $\lambda = 0$, on a $\Phi(f) = 0$ et donc $f = -\Phi(f)'' = 0$, ce qui contredit le fait que f est un vecteur propre. Ainsi 0 n'est pas valeur propre de Φ .

Supposons donc $\lambda \neq 0$. Alors $f = \frac{1}{\lambda}\Phi(f)$. Ainsi f est deux fois dérivable et $f'' = \frac{1}{\lambda}\Phi(f)'' = -\frac{1}{\lambda}f$. Par ailleurs, $f(0) = \frac{1}{\lambda}\Phi(f)(0) = 0$ et $f'(1) = \frac{1}{\lambda}\Phi(f)'(1) = 0$.

Supposons $\lambda < 0$. Comme $f'' = -\frac{1}{\lambda}f$, il existe $(\alpha, \beta) \in \mathbb{R}^2$ tel que

$$\forall x \in [0, 1], \ f(x) = \alpha \operatorname{ch}\left(\frac{x}{\sqrt{-\lambda}}\right) + \beta \operatorname{sh}\left(\frac{x}{\sqrt{-\lambda}}\right)$$

Comme $f(0)=0, \alpha=0$. Puis comme $f'(1)=0, \beta=0$. Ainsi f=0 et λ ne peut être valeur propre de Φ .

Supposons $\lambda > 0$. Comme $f'' = -\frac{1}{\lambda}f$, il existe $(\alpha, \beta) \in \mathbb{R}^2$ tel que

$$\forall x \in [0, 1], \ f(x) = \alpha \cos\left(\frac{x}{\sqrt{\lambda}}\right) + \beta \sin\left(\frac{x}{\sqrt{\lambda}}\right)$$

Comme f(0) = 0, $\alpha = 0$. Puis comme f'(1) = 0, $\beta \cos(\frac{1}{\sqrt{\lambda}}) = 0$. On ne peut avoir $\beta = 0$ sinon f = 0. Ainsi $\cos(\frac{1}{\sqrt{\lambda}}) = 0$. Il existe donc $n \in \mathbb{N}$ tel que $\frac{1}{\sqrt{\lambda}} = \frac{\pi}{2} + n\pi$. Ainsi $\lambda = \frac{1}{\left(\frac{\pi}{2} + n\pi\right)^2}$.

Par conséquent, les valeurs propres de Φ sont les $\lambda_n = \frac{1}{\left(\frac{\pi}{2} + n\pi\right)^2}$ et les sous-espaces propres associés sont les $\text{vect}(f_n)$ où $f_n : x \in [0,1] \mapsto \sin\left(\left(\frac{\pi}{2} + n\pi\right)x\right)$ pour $n \in \mathbb{N}$.

Solution 11

Déterminons dans un premier temps le noyau de ϕ . Comme (a, b) est libre

$$x \in \operatorname{Ker} \varphi$$

 $\iff \langle a \mid x \rangle = \langle b \mid x \rangle = 0$
 $\iff x \in \operatorname{vect}(a, b)^{\perp}$

Ainsi Ker $\phi = \text{vect}(a, b)^{\perp}$.

Par ailleurs, comme a et b sont unitaires,

$$\phi(a+b) = (1 + \langle a \mid b \rangle)(a+b)$$

$$\phi(a-b) = (1 - \langle a \mid b \rangle)(a+b)$$

Ainsi si $\langle a \mid b \rangle = 0$,

$$Ker(\phi - Id_E) = vect(a + b, a - b) = vect(a, b)$$

et sinon

$$Ker(\phi - (1 + \langle a \mid b \rangle) Id_{E}) = vect(a + b)$$
$$Ker(\phi - (1 - \langle a \mid b \rangle) Id_{E}) = vect(a - b)$$

Pour récapituler, 0 est valeur propre et le sous-espace propre associé est $\text{vect}(a, b)^{\perp}$.

Si $\langle a \mid b \rangle = 0$, 1 est valeur propre et le sous-espace propre associé est vect(a, b).

Si $\langle a \mid b \rangle \neq 0, 1 + \langle a \mid b \rangle$ et $1 - \langle a \mid b \rangle$ sont valeurs propres et leurs sous-espaces propres associés respectifs sont vect(a + b) et vect(a - b). Dans tous les cas, la somme des dimensions de ces sous-espaces propres est égale à la dimension de E donc on a bien trouvé toutes les valeurs propres de ϕ . On peut également en conclure que ϕ est diagonalisable. On aurait aussi pu constater que ϕ est un endomorphisme symétrique pour justifier qu'il était diagonalisable. En effet, pour tout $(x, y) \in E^2$,

$$\langle \phi(x) \mid y \rangle = \langle x \mid \phi(y) \rangle = \langle a \mid x \rangle \langle a \mid y \rangle + \langle b \mid x \rangle \langle b \mid y \rangle$$

Solution 12

φ est clairement linéaire. De plus,

$$\forall k \in [0, n], \ \varphi(X^k) = (k - n)X^{k+1} + kX^k \in \mathbb{R}_n[X]$$

Par linéarité, $\varphi(\mathbb{R}_n[X]) \subset \mathbb{R}_n[X]$ de sorte que φ est bien un endomorphisme de $\mathbb{R}_n[X]$. La matrice de φ dans la base canonique de $\mathbb{R}_n[X]$ est triangulaire inférieure et ses coefficients diagonaux sont $0, 1, \dots, n$. On en déduit que $\mathrm{Sp}(\varphi) = [\![0, n]\!]$ et que tous les sous-espaces propres sont de dimension 1.

Soit $k \in [0, n]$ et P_k le vecteur propre unitaire associé à la valeur propre k. Alors $\varphi(P) = kP$ ou encore

$$\frac{P_k'}{P_k} = \frac{nX+k}{X(X+1)} = \frac{k}{X} + \frac{n-k}{X}$$

On en déduit que $P_k = X^k(X+1)_k^n$.

Solution 13

Soit $\lambda \in \operatorname{Sp}(u)$ et M un vecteur propre associé. Alors $M + \operatorname{tr}(M)I_n = \lambda M$ puis en considérant la trace des deux membres, $(n+1)\operatorname{tr}(M) = \lambda \operatorname{tr}(M)$. Si $\lambda = n+1$ ou $\operatorname{tr}(M) = 0$. Si $\operatorname{tr}(M) = 0$ alors $M = \lambda M$ et donc $\lambda = 1$. Ainsi $\operatorname{Sp}(u) \subset \{1, n+1\}$.

Déterminons les sous-espaces propres associés à ces potentielles valeurs propres. Clairement, le sous-espace associé à la valeur propre 1 est l'hyperplan des matrices de traces nulles. De plus, I_n est clairement un vecteur propre associé à la valeur propre n+1 donc le sous-espace propre associé à la valeur propre n+1 est $\text{vect}(I_n)$ puisque la somme des dimensions des sous-espaces propres ne peut excéder la dimension de $\mathcal{M}_n(\mathbb{R})$.

Remarque. On constate que u est diagonalisable puisque la somme des dimensions des sous-espaces propres est égale à la dimension de $\mathcal{M}_n(\mathbb{R})$.

Remarque. Si n = 1, 1 n'est en fait pas valeur propre puisqu'alors le sous-espace vectoriel des matrices de trace nulle est le sous-espace nul.

Polynôme caractéristique

1. Pour tout $\lambda \in \mathbb{K}$:

$$\begin{split} \chi_{u \circ v}(\lambda) &= \det(u \circ v - \lambda \operatorname{Id}_{E}) \\ &= \det(u \circ (v - \lambda u^{-1})) \\ &= \det(u) \det(v - \lambda u^{-1}) \\ &= \det(v - \lambda u^{-1}) \det(u) \\ &= \det((v - \lambda u^{-1}) \circ u) \\ &= \det(v \circ u - \lambda \operatorname{Id}_{E}) = \chi_{v \circ u}(\lambda) \end{split}$$

On en déduit que $\chi_{u \circ v} = \chi_{v \circ u}$ puisque ces deux polynômes coïncident sur l'ensemble infini \mathbb{K} .

2. Soit $\lambda \in \mathbb{K}$. Pour tout $\mu \in \mathbb{K} \setminus \operatorname{Sp}(u)$, $u - \mu \operatorname{Id}_{E}$ est inversible donc d'après la question précédente

$$\det((u - \mu \operatorname{Id}_{E}) \circ v - \lambda \operatorname{Id}_{E}) = \det(v \circ (u - \mu \operatorname{Id}_{E}) - \lambda \operatorname{Id}_{E})$$

Les deux membres de cette égalité définissent des fonctions polynomiales de la variable μ qui coïncident sur l'ensemble infini $\mathbb{K}\setminus \mathrm{Sp}(u)$. Elles coïncident donc en tout point de \mathbb{K} et notamment en 0. Ainsi pour tout $\lambda\in\mathbb{K}$, $\chi_{u\circ v}(\lambda)=\chi_{v\circ u}(\lambda)$ et donc $\chi_{u\circ v}=\chi_{v\circ u}$.

Solution 15

- Les coefficients dans les cofacteurs de A sont du type -A_{ij} ou λ A_{ij}, ce qui explique que chaque cofacteur de A est polynomial en λ. De plus, chaque cofacteur de A possède exactement n 1 coefficients du type λ A_{ii} donc est de degré au plus n 1 en λ. On en déduit le résultat demandé.
- **2.** Notons $C_1(\lambda), \dots, C_n(\lambda)$ les vecteurs colonnes de $\lambda I_n A$, de sorte que

$$P(\lambda) = \det(\lambda I_n - A) = \det(C_1(\lambda), \dots, C_n(\lambda))$$

Par multilinéarité du déterminant, on obtient

$$P'(\lambda) = \sum_{k=1}^{n} \det(C_1(\lambda), \dots, C_{k-1}(\lambda), C'_k(\lambda), C_{k+1}(\lambda), \dots, C_n(\lambda))$$

Or $C'_k(\lambda) = E_k$ où E_k est le k-ème vecteur de la base canonique de \mathbb{K}^n . En développant

$$\det(C_1(\lambda), \dots, C_{k-1}(\lambda), C'_k(\lambda), C_{k+1}(\lambda), \dots, C_n(\lambda))$$

par rapport à la k-ème colonne, on trouve que celui-ci vaut le cofacteur en position (k,k) de la matrice $\lambda I_n - A$, autrement dit B_{kk} . Ainsi $P'(\lambda) = \sum_{k=1}^n B_{kk} = \text{tr}(B)$.

3. Pour tout $\lambda \in \mathbb{K}$, $P'(\lambda) = tr(B(\lambda))$ i.e.

$$n\lambda^{n-1} - p_1(n-1)\lambda^{n-2} \cdots - p_{n-1} = \lambda^{n-1} \operatorname{tr}(I_n) + \lambda^{n-2} \operatorname{tr}(B_1) \cdots + \operatorname{tr}(B_{n-1})$$

En identifiant coefficient par coefficient, on obtient $p_k(n-k) = -\operatorname{tr}(B_k)$.

Par ailleurs, $(\lambda I_n - A)B(\lambda) = \det(\lambda I_n - A)I_n = P(\lambda)I_n$ pour tout $\lambda \in \mathbb{K}$, ce qui s'écrit également

$$(\lambda I_n - A) \sum_{k=0}^{n-1} \lambda^{n-1-k} B_k = (\lambda^n - \sum_{k=1}^n p_k \lambda^{n-k}) I_n$$

Après un changement d'indice et en tirant parti du fait que $B_n = 0$, on trouve pour tout $\lambda \in \mathbb{K}$

$$\lambda^n \mathbf{B}_0 + \sum_{k=1}^n \lambda^k (\mathbf{B}_k - \mathbf{A} \mathbf{B}_{k-1}) = \lambda^n \mathbf{I}_n - \sum_{k=1}^n p_k \lambda^{n-k} \mathbf{I}_n$$

En identifiant «coefficient» par «coefficient» (les coefficients des puissances de λ sont des matrices, mais on peut raisonner indépendamment sur chaque coefficient des matrices si cela vous choque), on obtient $B_0 = I_n$ et $B_k - AB_{k-1} = -p_kI_n$ i.e. $B_k = AB_{k-1} - p_kI_n$ pour $1 \le k \le n$.

En reportant cette expression de B_k dans la relation $p_k(n-k) = -\operatorname{tr}(B_k)$ trouvée plus haut, on obtient

$$p_k(n-k) = -\operatorname{tr}(AB_{k-1} - p_kI_n) = -\operatorname{tr}(AB_{k-1}) + np_k$$

ce qui s'écrit encore $p_k = \frac{1}{k} \operatorname{tr}(AB_{k-1})$ pour $1 \le k \le n$.

4. On sait que $B_n = AB_{n-1} - p_nI_n$ d'après la question précédente et on a posé $B_n = 0$ donc $AB_{n-1} = p_nI_n$. A est donc inversible si $p_n \neq 0$ et dans ce cas, $A^{-1} = \frac{1}{p_n}B_{n-1}$.

```
5. from numpy.polynomial import Polynomial
  import numpy as np
  def polycar(A):
    n,p=A.shape
    if n!=p:
      return
    Id=np.eye(n)
    B=Id
    X=Polynomial([0,1])
    P=X**n
    for k in range(1,n+1):
      p=np.trace(A@B)/k
      B=A@B-p*Id
      P=P-p*X**(n-k)
    return P
  def inverse(A):
    n,p=A.shape
    if n!=p:
      return
    Id=np.eye(n)
    B=Id
    for k in range(1,n):
      p=np.trace(A@B)/k
      B=A@B-p*Id
    p=np.trace(A@B)/n
    return B/p
```

Solution 16

Remarquons tout d'abord que E_p est un espace vectoriel de dimension p. On peut par exemple voir que l'application $\begin{cases} E_p & \longrightarrow & \mathbb{C}^p \\ (u_n) & \longmapsto & (u_0,u_1,\dots,u_{p-1}) \end{cases}$ est un isomorphisme.

Posons $\omega_k = \exp\left(\frac{2ik\pi}{p}\right)$ pour $k \in [0, p-1]$. On vérifie que $2\omega_k^n - \omega_k^{n+1} - \omega_k^{n-1} = 2\left(1-\cos\frac{2k\pi}{p}\right)\omega_k^n$. Autrement dit la suite (ω_k^n) est un vecteur propre de D_p associée à la valeur propre $2\left(1-\cos\frac{2k\pi}{p}\right)$. La famille formée des suites (ω_k^n) pour $0 \le k \le p-1$ est libre. On peut par exemple voir qu'elle est orthonormale pour le produit hermitien $((u_n),(v_n))\mapsto \frac{1}{p}\sum_{k=0}^{p-1}u_k\overline{v_k}$. C'est donc une base de E_p .

Ainsi les valeurs propres de D_p sont exactement les $\lambda_k = 2\left(1-\cos\frac{2k\pi}{p}\right)$ pour $0 \le k \le p-1$ et elles sont toutes de multiplicité 1 dans le polynôme caractéristique. Or le coefficient de X dans ce polynôme est $(-1)^{p-1}\sigma_{p-1}$ où σ_{p-1} est la $(p-1)^{\rm ème}$ fonction symétrique des λ_k . Puisque $\lambda_0 = 0$, on a tout simplement $\sigma_{p-1} = \prod_{k=1}^{p-1} \lambda_k$.

Posons
$$P = \prod_{k=1}^{p-1} \left(X^2 - 2\cos\frac{2k\pi}{p} + 1 \right)$$
 de sorte que $\sigma_{p-1} = P(1)$. De plus, $X^2 - 2\cos\frac{2k\pi}{p} + 1 = (X - \omega_k)(X - \overline{\omega_k})$ donc $P = \left(\frac{X^{n-1}}{X-1}\right)^2 = \left(\sum_{k=0}^{p-1} X^k\right)^2$. On en déduit que $\sigma_{p-1} = P(1) = p^2$. Le coefficient de X dans le polynôme caractéristique de D_p est donc $(-1)^{p-1}p^2$.

Solution 17

Notons A, B, et C les matrices de f, g et h dans une base de E. On a alors CB = AC. Comme C est de rang r, il existe deux matrices inversibles P et Q telles que $C = PJ_rQ^{-1}$, où J_r désigne traditionnellement la matrice dont tous les coefficients sont nuls hormis les r premiers coefficients diagonaux qui valent 1. On a donc $PJ_RQ^{-1}B = APJ_RQ^{-1}$ ou encore $J_r(Q^{-1}BQ) = (P^{-1}AP)J_r$. Comme deux matrices semblables ont même polynôme caractéristique, on peut supposer pour simplifier que $J_rB = AJ_r$. En effectuant un calcul par blocs, on trouve que A et B sont

respectivements de la forme $\binom{M}{0} * \det \binom{M}{*} * \det \binom{M}{*} * 0$ où M est un bloc carré de taille r. On en déduit que χ_M , qui est bien un polynôme de degré

r, divise χ_A et χ_B et donc également χ_f et χ_g .

La réciproque est fausse dès que $n \ge 2$. En effet, on peut encore raisonner matriciellement en considèrant A la matrice nulle et B une matrice non nulle nilpotente. Alors $\chi_A = \chi_B = X^n$ de sorte que χ_A et χ_B ont un facteur commun de degré n (à savoir X^n). Mais il n'existe évidemment pas de matrice C de rang n (i.e. inversible) telle que CB = AC car AC est nulle tandis que CB ne l'est pas (C est inversible et C est non nulle).

Solution 18

Remarquons que

$$\left(\begin{array}{c|c} \lambda \mathbf{I}_n & -\mathbf{A} \\ -\mathbf{B} & \mathbf{I}_p \end{array}\right) \cdot \left(\begin{array}{c|c} \mathbf{I}_n & \mathbf{0} \\ \mathbf{B} & \mathbf{I}_p \end{array}\right) = \left(\begin{array}{c|c} \lambda \mathbf{I}_n - \mathbf{A}\mathbf{B} & -\mathbf{A} \\ \mathbf{0} & \mathbf{I}_p \end{array}\right)$$

En considérant les déterminants, on obtient

$$\begin{vmatrix} \lambda I_n & -A \\ -B & I_p \end{vmatrix} = \chi_{AB}(\lambda)$$

Remarquons maintenant que

$$\left(\begin{array}{c|c|c} I_n & 0 \\ \hline B & \lambda I_p \end{array}\right) \cdot \left(\begin{array}{c|c} \lambda I_n & -A \\ \hline -B & I_p \end{array}\right) = \left(\begin{array}{c|c} \lambda I_n & -A \\ \hline 0 & I_p - BA \end{array}\right)$$

En considérant les déterminants, on obtient maintenant

$$\lambda^{p} \left| \frac{\lambda I_{n} - A}{-B I_{p}} \right| = \lambda^{n} \chi_{BA}(\lambda)$$

Finalement, $\lambda^p \chi_{AB}(\lambda) = \lambda^n \chi_B A(\lambda)$. Ceci étant vrai pour tout $\lambda \in \mathbb{K}$,

$$X^p \chi_{AB} = X^n \chi_{BA}$$

Si n = p, on obtient bien $\chi_{AB} = \chi_{BA}$ par intégrité de $\mathbb{K}[X]$.

Solution 19

1. La matrice A de u dans la base (e_1, \dots, e_{2n+1}) est

$$A = \begin{pmatrix} 1 & 1 & 0 & \cdots & 0 \\ 0 & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & 1 & 1 \\ 1 & 0 & \cdots & 0 & 1 \end{pmatrix}$$

Ainsi

$$\chi_{u}(X) = \chi_{A}(X) = \begin{vmatrix} X - 1 & -1 & 0 & \cdots & 0 \\ 0 & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & X - 1 & -1 \\ -1 & 0 & \cdots & 0 & X - 1 \end{vmatrix}$$

En développant par rapport à la première colonne, on obtient

$$\chi_u(X) = (X - 1)^{2n+1} - 1$$

2. $\chi_u(0) = -2 \neq 0$ donc 0 n'est pas valeur propre de u et u est inversible. D'après le théorème de Cayley-Hamilton, $\chi_u(u) = 0$ i.e. $(u - \mathrm{Id}_E)^{2n+1} = \mathrm{Id}_E$. Par conséquent

$$\sum_{k=0}^{2n+1} {2n+1 \choose k} (-1)^{2n+1-k} u^k = \mathrm{Id}_{\mathbf{E}}$$

ou encore

$$u \circ \sum_{k=0}^{2n} {2n+1 \choose k+1} (-1)^{2n-k} u^k = 2 \operatorname{Id}_{\mathbf{E}}$$

Ainsi en posant $P = \sum_{k=0}^{2n} {2n+1 \choose k+1} (-1)^{2n-k} X^k$, on a bien $u^{-1} = P(u)$.

3. Les valeurs propres de u sont les racines de χ_u . Autrement dit,

$$\mathrm{Sp}(u) = 1 + \mathbb{U}_{2n+1} = \left\{ 1 + e^{\frac{2ik\pi}{2n+1}}, \ k \in [0, 2n] \right\} = \left\{ 2e^{\frac{ik\pi}{2n+1}} \cos\left(\frac{k\pi}{2n+1}\right), \ k \in [0, 2n] \right\}$$

4. Comme card $\mathbb{U}_{2n+1} = 2n+1$ et deg $\chi_u = 2n+1$, toutes les valeurs propres de u sont simples (on en déduit également que u est diagonalisable, ce qui n'est pas demandé). D'après les liens entre les coefficients et les racines d'un polynôme

$$\prod_{k=0}^{2n} 2e^{\frac{ik\pi}{2n+1}} \cos\left(\frac{k\pi}{2n+1}\right) = (-1)^{2n+1} \chi_u(0) = 2$$

En notant P_n le produit à calculer,

$$2^{2n+1}P_n \prod_{k=0}^{2n} e^{\frac{ik\pi}{2n+1}} = 2$$

Comme $\sum_{k=0}^{2n} k = n(2n+1)$,

$$\prod_{k=0}^{2n} e^{\frac{ik\pi}{2n+1}} = e^{in\pi} = (-1)^n$$

Finalement,

$$P_n = \frac{(-1)^n}{2^{2n}}$$

Solution 20

Tout d'abord.

$$\chi_{A}(X) = \begin{vmatrix} X & \cdots & \cdots & 0 & a_{0} \\ -1 & \ddots & & \vdots & & a_{1} \\ 0 & \ddots & \ddots & \vdots & & \vdots \\ \vdots & \ddots & \ddots & 0 & a_{n-2} \\ 0 & \cdots & 0 & -1 & X + a_{n-1} \end{vmatrix}$$

En numérotant L_0, \dots, L_{n-1} les lignes de ce déterminant et en effectuant l'opération $L_0 \leftarrow \sum_{k=0}^{n-1} L_k$, on obtient

$$\chi_{A}(X) = \begin{vmatrix} 0 & \cdots & \cdots & 0 & P(X) \\ -1 & \ddots & \vdots & a_{1} \\ 0 & \ddots & \ddots & \vdots & \vdots \\ \vdots & \ddots & \ddots & 0 & a_{n-2} \\ 0 & \cdots & 0 & -1 & X + a_{n-1} \end{vmatrix}$$

avec $P(X) = X^n + \sum_{k=0}^{n-1} a_k X^k$. En développant par rapport à la première ligne, on obtient $\chi_A(X) = P(X)$.

Diagonalisation

Solution 21

La matrice de Φ dans une base adaptée à la décomposition en somme directe $\mathcal{M}_n(\mathbb{K}) = \mathcal{S}_n(\mathbb{K}) \oplus \mathcal{A}_n(\mathbb{K})$ est $\left(\begin{array}{c|c} I_{\underline{n(n+1)}} & 0 \\ \hline 0 & -I_{\underline{n(n-1)}} \\ \hline \end{array}\right)$. On en déduit $\operatorname{tr}(\Phi) = \frac{n(n+1)}{2} - \frac{n(n-1)}{2} = n$.

Solution 22

Supposons que u et v commutent et donnons-nous $\lambda \in \operatorname{Sp}(u)$. Pour tout $x \in \operatorname{E}_{\lambda}(u)$, $u(v(x)) = v(u(x)) = \lambda v(x)$ donc $v(x) \in \operatorname{E}_{\lambda}(u)$, ce qui prouve que $\operatorname{E}_{\lambda}(u)$ est stable par v.

Supposons maintenant tout sous-espace propre de u stable par v. Puisque u est diagonalisable, $E = \bigoplus_{\lambda \in \operatorname{Sp}(u)} E_{\lambda}(u)$. Soit $x \in E$. Alors il

existe une famille $(x_{\lambda})_{\lambda \in \operatorname{Sp}(u)} \in \prod_{\lambda \in \operatorname{Sp}(u)} \operatorname{E}_{\lambda}(u)$ telle que $x = \sum_{\lambda \in \operatorname{Sp}(u)} x_{\lambda}$. D'une part,

$$v(u(x)) = v\left(u\left(\sum_{\lambda \in \operatorname{Sp}(u)} x_{\lambda}\right)\right) = v\left(\sum_{\lambda \in \operatorname{Sp}(u)} \lambda x_{\lambda}\right) = \sum_{\lambda \in \operatorname{Sp}(u)} \lambda v(x_{\lambda})$$

D'autre part, en notant que $v(x_{\lambda}) \in E_{\lambda}(u)$ pour tout $\lambda \in Sp(u)$

$$u(v(x)) = u\left(v\left(\sum_{\lambda \in \operatorname{Sp}(u)} x_{\lambda}\right)\right) = u\left(\sum_{\lambda \in \operatorname{Sp}(u)} v(x_{\lambda})\right) = \sum_{\lambda \in \operatorname{Sp}(u)} \lambda v(x_{\lambda})$$

Finalement, v(u(x)) = u(v(x)) donc u et v commutent.

Solution 23

Puisque u est diagonalisable, on sait que $E = \bigoplus_{\lambda \in \operatorname{Sp}(u)} E_{\lambda}(u)$. Choisissons une base \mathcal{B} adaptée à cette décomposition en somme directe. On

montre sans peine qu'un endomorphisme de E commute avec u si et seulement si il stabilise ses sous-espaces propres autrement dit si et seulement si sa matrice dans la base \mathcal{B} est diagonale par blocs, chaque bloc diagonal étant de la taille du sous-espace propre correspondant. Il est clair que l'ensemble des matrices de cette forme est un sous-espace vectoriel de dimension $\sum_{\lambda \in S_{n}(u)} (\dim E_{\lambda}(u))^{2}$. Puisque l'application qui

à un endomorphisme associe sa matrice dans la base \mathcal{B} est un isomorphisme, on en déduit que la dimension du commutant de u est également $\sum_{n=1}^{\infty} (\dim E_{\lambda}(u))^2$.

Solution 24

On montre que A est diagonalisable et plus précisément que $A = PDP^{-1}$ avec $D = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix}$ et $P = \begin{pmatrix} 2 & 1 & -1 \\ 1 & 0 & -1 \\ 0 & -1 & -2 \end{pmatrix}$. Le commutant de D est

l'ensemble des matrices de la forme $\begin{pmatrix} a & b & 0 \\ dC & d & 0 \\ 0 & 0 & e \end{pmatrix}$ où (a, b, c, d, e) décrit \mathbb{K}^5 .

Il suffit alors de remarquer que $M \in \mathcal{M}_3(\mathbb{K})$ commute avec D si et seulement si PMP⁻¹ commute avec A. Le commutant de A est donc l'ensemble des matrices de la forme

$$P\begin{pmatrix} a & b & 0 \\ dC & d & 0 \\ 0 & 0 & e \end{pmatrix} P^{-1} = \begin{pmatrix} -2a - c + 4b + 2d + e & 6a + 3c - 8b - 4d - 2e & -2a - c + 2b + d + e \\ -a + 2b + e & 3a - 4b - 2e & -a + b + e \\ dC - 2d + 2e & -3c + 4d - 4e & c - d + 2e \end{pmatrix}$$

où (a, b, c, d, e) décrit \mathbb{K}^5 .

- 1. Soit $\lambda \in \operatorname{Sp}(u)$. Pour tout $x \in \operatorname{F} \cap \operatorname{E}_{\lambda}(u)$, $u(x) = \lambda x \in \operatorname{F} \cap \operatorname{E}_{\lambda}(u)$ donc $\operatorname{F} \cap \operatorname{E}_{\lambda}(u)$ est stable par u. Par conséquent, G est stable par u.
- 2. On sait que F est stable par u et que u est diagonalisable donc $u_{|F}$ est également diagonalisable. De plus, $\operatorname{Sp}(u_{|F}) \subset \operatorname{Sp}(u)$ et quitte à poser $\operatorname{E}_{\lambda}(u_{|F}) = \{0\}$ si $\lambda \notin \operatorname{Sp}(u_{|F})$, on a $\operatorname{F} = \bigoplus_{\lambda \in \operatorname{Sp}(u)} \operatorname{E}_{\lambda}(u_{|F})$. On conclut en remarquant que pour tout $\lambda \in \operatorname{Sp}(u)$

$$E_{\lambda}(u_{|F}) = \operatorname{Ker}(u_{|F} - \lambda \operatorname{Id}_{F}) = \operatorname{Ker}(u - \lambda \operatorname{Id}_{E}) \cap F = E_{\lambda}(u) \cap F$$

3. Soit $F = \bigoplus_{\lambda \in \operatorname{Sp}(u)} F_{\lambda}$ où pour tout $\lambda \in \operatorname{Sp}(u)$, F_{λ} est un sous-espace vectoriel de $E_{\lambda}(u)$. Soit $\lambda \in \operatorname{Sp}(u)$. Alors pour tout $x \in F_{\lambda}$, $u(x) = \lambda x \in F_{\lambda}$ donc F_{λ} est stable par u. Par conséquent, F est stable par u. Réciproquement, soit F un sous-espace stable par u et posons $F_{\lambda} = F \cap E_{\lambda}(u)$ pour tout $\lambda \in \operatorname{Sp}(u)$. Alors F_{λ} est un sous-espace vectoriel de E_{λ} pour tout $\lambda \in \operatorname{Sp}(u)$ et $F = \bigoplus_{\lambda \in \operatorname{Sp}(u)} F_{\lambda}$ d'après la question précédente.

Solution 26

- 1. On montre par exemple aisément que c'est un sous-groupe de $GL_2(\mathbb{R})$.
- 2. Soit $M \in G$. Puisque le morphisme de groupe $\left\{ egin{array}{ll} \mathbb{Z} & \longrightarrow & G \\ M & \longmapsto & M^n \end{array} \right.$ ne peut être injectif puisque \mathbb{Z} est infini et que G est fini. Son noyau contient donc un entier non nul n tel que $M^n = I_2$. On peut même supposer n positif quitte à le changer en son opposé. Puisque le polynôme $X^n 1$ est scindé à racines simples dans \mathbb{C} et annule M, M est diagonalisable. On peut également ajouter que ses valeurs propres sont des racines de l'unité et en particulier des complexes de module 1.

Si M est diagonalisable dans \mathbb{R} , ses valeurs propres ne peuvent être que 1 ou -1. Dans ce cas, M est semblable à I_2 , $-I_2$ ou $\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$.

Dans tous les cas, $M^{12} = I_2$.

Si M n'est pas diagonalisable dans \mathbb{R} , elle l'est quand même dans \mathbb{C} et ses valeurs propres sont des complexes de module 1 conjugués puisque M est à coefficients réels. M est donc semblable à une matrice de la forme $\begin{pmatrix} e^{i\theta} & 0 \\ 0 & e^{-i\theta} \end{pmatrix}$ où $\theta \in \mathbb{R}$. Puisque la trace est un invariant de similitude, $2\cos\theta = \operatorname{tr}(M) \in \mathbb{Z}$. Puisque cos est à valeurs dans [-1,1], $\cos\theta \in \{-1,-1/2,0,1/2,1\}$.

- Si $\cos \theta = \pm 1$, $e^{i\theta} = e^{-i\theta} = \pm 1$ et on est ramené au cas précédent (en fait, M serait diagonalisable dans \mathbb{R} et on a supposé que ce n'était pas le cas).
- Si $\cos\theta = \frac{1}{2}$, alors $\theta \equiv \pm \frac{\pi}{3} [2\pi]$. Il est alors clair que $M^{12} = I_2$.
- Si $\cos \theta = \frac{-1}{2}$, alors $\theta \equiv \pm \frac{2\pi}{3} [2\pi]$. Il est alors clair que $M^{12} = I_2$.
- Si $\cos\theta=0$, alors $\theta\equiv\pm\frac{\pi}{2}[2\pi].$ Il est alors clair que $M^{12}=I_2.$

Solution 27

- 1. Puisque X^2-1 est un polynôme annulateur de A scindé à racines simples, A est diagonalisable et $Sp(A) \subset \{-1,1\}$. Notons $\lambda_1, \dots, \lambda_n$ les valeurs propres de A comptées avec multiplicité. Ainsi pour tout $k \in [1,n]$, $\lambda_k = \pm 1$ et, a fortiori, $\lambda_k \equiv 1[2]$. Puisque $tr(A) = \sum_{k=1}^n \lambda_k$, $tr(A) \equiv n[2]$.
- 2. Les valeurs propres de A ne peuvent pas toutes être égales à 1 ou -1 sinon, A serait semblable à I_n ou $-I_n$ et donc égale à I_n ou $-I_n$. En notant a le nombre de valeurs propres égales à 1 et b le nombre de valeurs propres égales à -1. On a donc a+b=n, $1 \le a \le n-1$ et $1 \le b \le n-1$. Ainsi tr(A) = a-b est compris entre -n+2 et n-2 i.e. $|tr(A)| \le n-2$.

Solution 28

1. Le polynôme caractéristique de A est

$$\chi_A = (X-2)(X-3) - 2 = X^2 - 5X + 4 = (X-1)(X-4)$$

Ainsi A est diagonalisable et le spectre de A est $Sp(A) = \{1, 4\}$. On vérifie que

$$Ax_1 = x_1$$
 avec $x_1 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$

et que

$$Ax_2 = 4x_2$$
 avec $x_2 = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$

Comme A est de taille 2, les sous-espaces propres associés aux valeurs propres 1 et 4 dont donc de dimension 1. Ce sont respectivement $vect(x_1)$ et $vect(x_2)$.

De plus,
$$A = PDP^{-1}$$
 avec $D = \begin{pmatrix} 1 & 0 \\ 0 & 4 \end{pmatrix}$ et $P = \begin{pmatrix} 1 & 1 \\ -1 & 2 \end{pmatrix}$.

2. Soit $M \in \mathcal{M}_2(\mathbb{R})$ telle que $M^2 = A$. Alors $AM = M^3 = MA$. Alors $AMx_1 = MAx_1 = Mx_1$ donc Mx_1 est un vecteur propre de A. Comme le sous-espace propre associé à la valeur propre 1 est $\text{vect}(x_1)$, il existe $\lambda \in \mathbb{R}$ tel que $Mx_1 = \lambda x_1$. Donc $\lambda^2 x_1 = M^2 x_1 = Ax_1 = x_1$. Don $\lambda^2 = 1$ i.e. $\lambda = \pm 1$ et $Mx_1 = \pm x_1$. De même, $Ax_2 = \pm 2x_2$. On peut alors affirmer que

$$M = P \begin{pmatrix} \pm 1 & 0 \\ 0 & \pm 2 \end{pmatrix} P^{-1}$$

Réciproquement ces quatres matrices conviennent.

REMARQUE. Les quatre matrices en question sont

$$\pm \frac{1}{3} \begin{pmatrix} 4 & 1 \\ 2 & 5 \end{pmatrix}$$
 et $\pm \begin{pmatrix} 0 & 1 \\ 2 & 1 \end{pmatrix}$

Solution 29

1. On trouve $\chi_A = X^2 + 7X - 8 = (X + 8)(X - 1)$. De plus, $E_{-8}(A) = \text{vect}\left(\begin{pmatrix} -1 \\ 1 \end{pmatrix}\right)$ et $E_1(A) = \text{vect}\left(\begin{pmatrix} 1 \\ 2 \end{pmatrix}\right)$. Ainsi $A = PDP^{-1}$ avec $D = \begin{pmatrix} -8 & 0 \\ 0 & 1 \end{pmatrix}$ et $P = \begin{pmatrix} -1 & 1 \\ 1 & 2 \end{pmatrix}$.

2. Soit X une éventuelle solution. Alors en posant Y = P⁻¹XP, Y² = D. Alors Y commute avec Y² = D. En notant, Y = $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$, YD = DY donne b = c = 0. Par conséquent Y est diagonale. On a donc $a^2 = -8$ et $b^2 = 1$. Il n'y a donc pas de solution à coefficients réels. Les solutions à coefficients complexes sont les matrices P $\begin{pmatrix} \pm i\sqrt{8} & 0 \\ 0 & \pm 1 \end{pmatrix}$ P⁻¹ (quatre solutions en tout).

Solution 30

- 1. On trouve $A = aI_3 + bJ + cJ^2$.
- 2. On trouve $\chi_I = X^3 1 = (X 1)(X j)(X j^2)$. Comme χ_I est scindé à racines simples, J est diagonalisable.
- 3. Les sous-espaces propres associés à 1, j et j^2 sont respectivement engendrés par $\omega_0 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$, $\omega_1 = \begin{pmatrix} 1 \\ j \\ j^2 \end{pmatrix}$ et $\omega_1 = \begin{pmatrix} 1 \\ j^2 \\ j \end{pmatrix}$. Remarquons que $(\omega_0, \omega_1, \omega_2)$ est une base de $\mathcal{M}_{3,1}(\mathbb{C})$ car J est diagonalisable. Enfin, $A\omega_0 = (a+b+c)\omega_0$, $A\omega_1 = (a+bj+cj^2)\omega_1$, $A\omega_2 = (a+bj^2+cj^4)\omega_2$ donc $(\omega_0, \omega_1, \omega_2)$ est également une base de vecteurs

propres de A. Ainsi A est diagonalisable. En posant $P = a + bX + cX^2$, $D = \begin{pmatrix} P(1) & 0 & 0 \\ 0 & P(j) & 0 \\ 0 & 0 & P(j^2) \end{pmatrix}$ et $Q = \begin{pmatrix} 1 & 1 & 1 \\ 1 & j & j^2 \\ 1 & j^2 & j \end{pmatrix}$, $A = QDQ^{-1}$.

Solution 31

On vérifie que pour tout $k \in [0, n]$, $u((X - a)^k) = k(X - a)^k$. Ainsi tout entier $k \in [0, n]$ est valeur propre de u est un vecteur propre associé est $(X - a)^k$. Comme dim $\mathbb{K}_n[X] = n + 1$, u est diagonalisable et ses valeurs propres sont exactement les entiers compris entre 0 et n.

Solution 32

1. La linéarité de Φ est évidente. Pour montrer que $\Phi(\mathbb{R}_n[X]) \subset \mathbb{R}_n[X]$, il suffit de montrer que $\Phi(X^k) \in \mathbb{R}_n[X]$ pour tout $k \in [0, n]$ car $(X^k)_{0 \le k \le n}$ est une base de $\mathbb{R}_n[X]$.

Soit $k \in [0, n]$. Alors, en convenant qu'une somme indexée sur l'ensemble vide est nulle

$$\Phi(X^k) = (X+1)X^k - X(X+1)^k = (1-k)X^k - \sum_{j=0}^{k-2} {k \choose j} X^j \in \mathbb{R}_n[X]$$

 Φ est donc bien un endomorphisme de $\mathbb{R}_n[X]$.

2. D'après la question précédente, la matrice de Φ dans la base canonique de $\mathbb{R}_n[X]$ est triangulaire supérieure et ses coefficients diagonaux sont les $1-k \in [0,n]$. On peut donc affirmer que les valeurs propres de Φ sont ces mêmes coefficients diagonaux. Φ possède donc n+1 valeurs propres distinctes et dim $\mathbb{R}_n[X] = n+1$ donc Φ est diagonalisable. De plus, on peut préciser que tous les sous-espaces propres de Φ sont de dimension 1.

Recherchons maintenant les éléments propres de Φ . Soit $k \in [0, n]$. Posons $\Gamma_k = \prod_{i=0}^{k-1} X - i$ (en particulier $\Gamma_0 = 1$). On vérifie aisément que $\Phi(\Gamma_k) = (1-k)\Gamma_k$. Comme les sous-espaces propres de Φ sont de dimension 1, le sosu-espace propre associé à la valeur propre 1-k est la droite vectorielle vect (Γ_k) .

Solution 33

Puisque rg(A) = 1, 0 est valeur propre de A et dim $E_0 = \dim \operatorname{Ker} A = n - 1$. Ainsi X^{n-1} divise χ_A . On a alors $\chi_A = X^{n-1}(X - \lambda)$. Comme la trace est égale à la somme des valeurs propres comptées avec multiplicité, $\lambda = \operatorname{tr}(A)$.

Si $\lambda = 0$, alors A n'est pas diagonalisable puisque la multiplicité de 0 dans χ_A n'est pas égale à la dimension du sous-espace propre associé à la valeur propre 0.

Si $\lambda \neq 0$, alors λ est valeur propre de A. Comme E_0 et E_λ sont en somme directe, dim $E_0 + \dim E_\lambda \leq n$ i.e. dim $E_\lambda \leq 1$. De plus, dim $E_\lambda \geq 1$ donc dim $E_\lambda = 1$. La somme des dimensions des sous-espaces propres est alors égale à n et A est diagonalisable.

Solution 34

- 1. On a $f = \mathrm{Id}_{\mathcal{M}_n(\mathbb{R})} + 2g$ avec $g : M \in \mathcal{M}_n(\mathbb{R}) \mapsto M^{\mathsf{T}}$. Comme $\mathrm{Id}_{\mathcal{M}_n(\mathbb{R})}$ et g sont des endomorphismes de $\mathcal{M}_n(\mathbb{R})$, f en est un également.
- 2. Notons $\mathcal{S}_n(\mathbb{R})$ le sous-espace vectoriel des matrices symétriques et $\mathcal{A}_n(\mathbb{R})$ le sous-espace vectoriel des matrices antisymétriques.

$$\forall M \in \mathcal{S}_n(\mathbb{R}), \ f(M) = 3M$$

 $\forall M \in \mathcal{A}_n(\mathbb{R}), \ f(M) = -M$

Ainsi

$$\mathcal{S}_n(\mathbb{R}) \subset \operatorname{Ker}(f - 3\operatorname{Id}_{\mathcal{M}_n(\mathbb{R})})\mathcal{A}_n(\mathbb{R}) \qquad \qquad \subset \operatorname{Ker}(f + \operatorname{Id}_{\mathcal{M}_n(\mathbb{R})})$$

Comme $S_n(\mathbb{R})$ et $\mathcal{A}_n(\mathbb{R})$ sont supplémentaires dans $\mathcal{M}_n(\mathbb{R})$, on peut affirmer (détailler si cela ne semble pas clair) que

$$\operatorname{Ker}(f-3\operatorname{Id}_{\mathcal{M}_n(\mathbb{R})})=\mathcal{S}_n(\mathbb{R})$$

$$\operatorname{Ker}(f+\operatorname{Id}_{\mathcal{M}_n(\mathbb{R})})=\mathcal{A}_n(\mathbb{R})$$

$$\mathcal{M}_n(\mathbb{R})=\operatorname{Ker}(f-3\operatorname{Id}_{\mathcal{M}_n(\mathbb{R})})\oplus\operatorname{Ker}(f+\operatorname{Id}_{\mathcal{M}_n(\mathbb{R})})$$

On en déduit que f est diagonalisable, que ses valeurs propres sont 3 et 1 et que les sous-espaces propres associés respectifs sont $\mathcal{S}_n(\mathbb{R})$ et $\mathcal{A}_n(\mathbb{R})$.

3. Déjà répondu à la question précédente.

4. Comme la trace et le déterminant d'un endomorphisme sont respectivement la somme et le produit des valeurs propres comptées avec multiplicité et comme *f* est diagonalisable,

$$\operatorname{tr}(f) = 3 \cdot \dim \mathcal{S}_n(\mathbb{R}) + (-1) \cdot \dim \mathcal{A}_n(\mathbb{R}) = 3 \frac{n(n+1)}{2} - \frac{n(n-1)}{2} = n(n+2) \det(f) = 3^{\dim \mathcal{S}_n(\mathbb{R})} \cdot (-1)^{\dim \mathcal{A}_n(\mathbb{R})} = 3^{\frac{n(n+1)}{2}} \cdot (-1)^{\frac{n(n-1)}{2}} = n(n+2) \det(f) = 3^{\frac{n(n+1)}{2}} \cdot (-1)^{\frac{n(n+1)}{2}} = n(n+2) \det(f) = 3^{\frac{n(n+1)}{2}} = n(n+2) \det(f) = n(n+2) \det($$

Solution 35

1. Après un calcul sans difficulté, on trouve que

$$\chi_{A} = (X - 1)^{3}.$$

Si la matrice A était diagonalisable sur \mathbb{R} , elle serait semblable à I_3 donc égale à I_3 , ce qui n'est pas le cas : A n'est pas diagonalisable sur \mathbb{R} .

2. Après tout calcul on trouve que :

$$\chi_{\rm B} = (X+1)^2(X-1)^2$$

et

$$\dim(\operatorname{Ker}(B + I_3)) < 2$$

donc B n'est pas diagonalisable sur \mathbb{R} .

3. On trouve sans peine que

$$\chi_{\rm C} = (X-3)(X+3)(X-1)(X+1).$$

Comme $C \in \mathcal{M}_4(\mathbb{R})$ admet quatre valeurs propres réelles distinctes, C est diagonalisable sur \mathbb{R} .

4. On trouve sans peine que

$$\chi_{\rm D} = X(X-1)(X-2).$$

D est donc diagonalisable que \mathbb{R} en tant que matrice de taille trois admettant trois valeurs propres réelles dictinctes.

Solution 36

Soit $\lambda \in \operatorname{Sp}(v)$. On montre classiquement que $\operatorname{E}_{\lambda} = \operatorname{Ker}(v - \lambda \operatorname{Id}_{\operatorname{E}})$ est stable par u:u induit donc un endomorphisme u_{λ} de $\operatorname{E}_{\lambda}$. Puisque u est diagonalisable, u annule un polynôme scindé à racines simples à coefficients dans \mathbb{K} . A fortiori, u_{λ} annule ce même polynôme et est donc également diagonalisable. Notons \mathcal{B}_{λ} une base de $\operatorname{E}_{\lambda}$ dans laquelle la matrice de u_{λ} est diagonale. Notons alors \mathcal{B} la juxtaposition des bases \mathcal{B}_{λ} pour $\lambda \in \operatorname{Sp}(u)$. Comme v est diagonalisable, E est la somme directe des sous-espaces propres de v et \mathcal{B} est donc une base de E . Par construction, la matrice de u dans \mathcal{B} est diagonale et celle de v l'est évidemment puisque \mathcal{B} est la juxtaposition de bases de sous-espaces propres de v.

Solution 37

Dans la suite, on posera $n = \dim E$.

Supposons u diagonalisable et donnons-nous un sous-espace vectoriel F de E. Fixons une base (f_1, \ldots, f_p) de F. Puisque u est diagonalisable, il existe une base de E formée de vecteurs propres de u. D'après le théorème de la base incomplète, on peut alors compléter la famille libre (f_1, \ldots, f_p) en une base $(f_1, \ldots, f_p, e_{p+1}, \ldots, e_n)$ où e_{p+1}, \ldots, e_n sont des vecteurs propres de u. Le sous-espace vectoriel $G = \text{vect}(e_{p+1}, \ldots, e_n)$ est alors un supplémentaire de F stable par u.

Supposons maintenant que tout sous-espace vectoriel de E admet un supplémentaire dans E stable par u. Soit H un hyperplan de E. Alors il existe une droite supplémentaire de H dans E stable par u. Alors un vecteur directeur e_1 de cette droite est un vecteur propre de u.

Supposons avoir prouvé l'existence d'une famille libre (e_1, \dots, e_p) $(1 \le p \le n-1)$ formée de vecteurs propres de u. Soit alors H un hyperplan contenant les vecteurs e_1, \dots, e_p . A nouveau, il existe une droite supplémentaire de H dans E stable par u et un vecteur directeur e_{p+1} de cette droite est un vecteur propre de u. Puisque H et vect (e_{p+1}) sont en somme directe, la famille (e_1, \dots, e_{p+1}) est libre.

Par récurrence, il existe une famille libre (e_1, \dots, e_n) formée de vecteurs propres de u. Puisque $n = \dim E$, cette famille est une base et u est donc diagonalisable.

1. a. Comme f est bijectif, A est inversible. Alors

$$\chi_{\rm AB} = \det({\rm XI}_n - {\rm AB}) = \det({\rm A}({\rm XA}^{-1} - {\rm B})) = \det({\rm A})\det({\rm XA}^{-1} - {\rm B}) = \det({\rm XA}^{-1} - {\rm B})\det({\rm A}) = \det({\rm XA}^{-1} - {\rm B}) = \det({\rm XI}_n - {\rm BA}) = \chi_{\rm BA}$$

- **b.** Supposons que $f \circ g$ est diagonalisable. Alors AB est diagonalisable et il existe une matrice diagonale D et une matrice inversible P telles que AB = PDP⁻¹. Alors BA = A⁻¹PDP⁻¹A = A⁻¹PD(A⁻¹P)⁻¹. Donc BA est diagonalisable et $g \circ f$ également.
- 2. **a.** Soit $\lambda \in \operatorname{Sp}(f \circ g)$. Si $\lambda \neq 0$, considérons un vecteur propre x associé à λ . Alors $f \circ g(x) = \lambda x$. Remarquons que $g(x) \neq 0_E$ car $\lambda x \neq 0_E$. De plus, $g \circ f(g(x)) = \lambda g(x)$ donc λ est un vecteur propre de $g \circ f$. Si $\lambda = 0$, alors $f \circ g$ n'est pas inversible. Ainsi $\det(f \circ g) = 0$. Par conséquent $\det(g \circ f) = \det(g) \det(g) = \det(f) \det(g) = \det(f \circ g) = 0$. Donc $g \circ f$ n'est pas inversible et $0 \in \operatorname{Sp}(g \circ f)$. On a donc montré que $\operatorname{Sp}(g \circ f) \subset \operatorname{Sp}(f \circ g)$. En inversant les rôles de f et g, on a l'inclusion réciproque de sorte que $\operatorname{Sp}(f \circ g) = \operatorname{Sp}(g \circ f)$.
 - **b.** Posons $A = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$ et $B = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$. Alors $AB = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$ et $BA = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$. AB est diagonale donc diagonalisable mais BA ne l'est pas. En effet, la seule valeur propre de BA est 0, donc, si BA était diagonalisable, elle serait semblable à la matrice nulle donc elle serait nulle, ce qu'elle n'est pas.

Solution 39

1. D'une part, $f = f \circ g - g = (f - \mathrm{Id_E}) \circ g$ donc $\mathrm{Ker}\, g \subset \mathrm{Ker}\, f$. D'autre part, $g = f \circ g - f = f \circ (g - \mathrm{Id_E})$ donc $\mathrm{Im}\, g \subset \mathrm{Im}\, f$. On en déduit que dim $\mathrm{Ker}\, g \leq \dim \mathrm{Ker}\, f$ et que dim $\mathrm{Im}\, g \leq \dim \mathrm{Im}\, f$. Mais, d'après le théorème du rang, on a également

$$\dim \operatorname{Im} g = \dim E - \dim \operatorname{Ker} g \ge \dim E - \dim \operatorname{Ker} f = \dim \operatorname{Im} f$$

donc $\dim \operatorname{Im} f = \dim \operatorname{Im} g$. Or $\operatorname{Im} g \subset \operatorname{Im} f$ donc $\operatorname{Im} g = \dim \operatorname{Im} f$. D'après le théorème du rang, $\dim \operatorname{Ker} g = \dim \operatorname{Ker} f$. Or $\operatorname{Ker} g \subset \operatorname{Ker} f$ donc $\operatorname{Ker} g = \operatorname{Ker} f$.

2. Comme g est diagonalisable, il existe une base (e_1, \dots, e_n) de E formée de vecteurs propres de E. Notons λ_i la valeur propre associée au vecteur propre e_i . Alors $f \circ g(e_i) = f(e_i) + g(e_i)$ i.e. $(\lambda_i - 1)f(e_i) = \lambda_i e_i$. On ne peut avoir $\lambda_i = 1$ sinon on devrait avoir $\lambda_i = 0$ car $e_i \neq 0_E$. Ainsi $f(e_i) = \frac{\lambda_i}{\lambda_{i-1}} e_i$. Les e_i sont donc également des vecteurs propres de f et comme (e_1, \dots, e_n) est une base de E, f est diagonalisable.

Ensuite, $f \circ g(e_i) = \lambda_i f(e_i) = \frac{\lambda_i^2}{\lambda_i - 1} e_i$ donc $f \circ g$ est aussi diagonalisable pour les mêmes raisons. On peut également affirmer que $\operatorname{Sp}(f \circ g) \subset \operatorname{Im} \varphi$ avec $\varphi \colon t \in \mathbb{R} \setminus \{1\} \mapsto \frac{t^2}{t-1}$. φ est dérivable $\operatorname{sur} \mathbb{R} \setminus \{1\}$ et $\varphi'(t) = \frac{t(t-2)}{(t-1)^2}$. On en déduit le tableau de variations suivant.

Ainsi $\operatorname{Sp}(f \circ g) \subset \operatorname{Im} \varphi = \mathbb{R} \setminus]0, 4[.$

Trigonalisation

Solution 40

Remarquons tout d'abord que pour $S \in GL_n(\mathbb{C}), \overline{S^{-1}} = \overline{S}^{-1}$.

Commençons par le sens le plus simple : supposons qu'il existe $S \in GL_n(\mathbb{C})$ telle que $A = S\overline{S}^{-1}$. Dans ce cas,

$$A\overline{A} = S\overline{S}^{-1}\overline{S}\overline{\overline{S}^{-1}} = S\overline{S}^{-1}\overline{S}S^{-1} = I_n$$

Pour la réciproque, on raisonne par récurrence sur *n*.

Si n = 1, alors $A = (\lambda)$ avec $|\lambda| = 1$. On a donc $\lambda = e^{i\theta}$ avec $\theta \in \mathbb{R}$. Il suffit alors de prendre $S = \left(e^{\frac{i\theta}{2}}\right)$.

On suppose maintenant la propriété vraie à un rang $n-1 \ge 1$. Soit $A \in \mathcal{M}_n(\mathbb{C})$ telle que $A\overline{A} = I_n$.

Montrons d'abord que toutes les valeurs propres de A sont de module 1. Soient $P, Q \in \mathcal{M}_n(\mathbb{R})$ telles que A = P + iQ. Ainsi $(P + iQ)(P - iQ) = I_n$. En passant aux parties réelle et imaginaire, on obtient $P^2 + Q^2 = I_n$ et QP - PQ = 0. Ainsi P et Q commutent et trigonalisent dans une base commune i.e. il existe $R \in GL_n(\mathbb{C})$ et $U, V \in \mathcal{T}_n^+(\mathbb{C})$ telles que $P = RUR^{-1}$ et $Q = RVR^{-1}$. Posons T = U + iV. On a donc $A = RTR^{-1}$ et $\overline{A} = R\overline{T}R^{-1}$. La diagonale de T contient les valeurs propres de A. Comme $A\overline{A} = I_n$, on en déduit que toutes les valeurs propres de A sont de module 1.

Soit λ une valeur propre de A (il en existe toujours une complexe). On a donc $|\lambda|=1$. On a $\frac{\lambda}{2}$ nouveau $\lambda=e^{i\theta}$ avec $\theta\in\mathbb{R}$. Posons $\mu=e^{i\theta/2}$, de sorte que $\frac{\mu}{\mu}=1$. Soit X un vecteur propre de A associée $\frac{\lambda}{2}$ la valeur propre $\frac{\lambda}{2}$. Dans ce cas, $\frac{\lambda}{2}$ est également un vecteur propre de X associé

à la valeur propre λ . En effet, $AX = \lambda X$ donc $\overline{AX} = \overline{\lambda X}$ puis $A\overline{AX} = \overline{\lambda AX}$. Puisque $A\overline{A} = I_n$, on obtient $\overline{X} = \overline{\lambda AX}$ puis $A\overline{X} = \lambda X$ puisque $\frac{1}{\lambda} = \lambda$. On peut supposer X réel. En effet, les vecteurs $X + \overline{X}$ et $i(X - \overline{X})$ sont réels et l'un des deux est non nul. L'un de ces deux vecteurs est donc un vecteur propre réel associé à la valeur propre λ . On peut compléter X en une base de \mathbb{C}^n à l'aide de vecteurs réels (ceux de la base canonique, par exemple). Notons P la matrice de cette base dans la base canonique. Posons $B = P^{-1}AP$. Cette matrice est de la forme

$$\begin{pmatrix} \lambda & Y^{T} \\ \hline 0 & \\ \vdots & C \\ 0 & \end{pmatrix} \text{ avec } Y \in \mathbb{C}^{n-1} \text{ et } C \in \mathcal{M}_{n-1}(\mathbb{C}). \text{ On a } B\overline{B} = P^{-1}AP\overline{P}^{-1}\overline{AP} = I_{n} \text{ car } \overline{P} = P \text{ et } \overline{P}^{-1} = P^{-1} \text{ (P est à coefficients réels). On}$$

en déduit que $C\overline{C} = I_n$. D'après notre hypothèse de récurrence, il existe $T \in GL_{n-1}(\mathbb{C})$ telle que $C = T\overline{T}^{-1}$.

Montrons qu'il existe $Z \in \mathbb{C}^{n-1}$ tel que $Z - \lambda \overline{Z} = Y^T \overline{T}$. Puisque $B\overline{B} = 0$, on a en particulier $\lambda \overline{Y}^T T + Y^T \overline{T} = 0$. Notons $\varphi(z) = z + \lambda \overline{z}$ et $\psi(z) = z - \lambda \overline{z}$ pour $z \in \mathbb{C}$. φ et ψ sont des endomorphismes du \mathbb{R} -espace vectoriel \mathbb{C} . On vérifie que $\varphi \circ \psi = 0$ en utilisant $|\lambda| = 1$. On a donc $\text{Im } \psi \subset \text{Ker } \varphi$. φ et ψ ne sont pas nuls donc dim $\text{Im } \psi \geq 1 \geq \dim \text{Ker } \varphi$. Ainsi $\text{Im } \psi = \text{Ker } \varphi$. Les composantes de $Y\overline{T}$ sont dans $\text{Ker } \varphi$ donc dans $\text{Im } \psi$, ce qui justifie l'existence de Z.

Posons alors
$$U = \begin{pmatrix} \mu & Z^T \\ \hline 0 \\ \vdots & T \\ 0 \end{pmatrix}$$
. On a alors $\overline{U}^{-1} = \begin{pmatrix} \frac{1}{\mu} & -\frac{1}{\mu}\overline{Z}^T\overline{T}^{-1} \\ \hline 0 & \\ \vdots & T \\ 0 \end{pmatrix}$. On vérifie alors que $U\overline{U}^{-1} = B$. Il suffit alors de poser

 $S = PUP^{-1}$ pour avoir $A = S\overline{S}^{-1}$.

Solution 41

Soit $A \in GL_3(\mathbb{C})$ une matrice semblable à son inverse. Notons α,β,γ les racines du polynôme caractéristique comptée avec multiplicité. On a donc $(A-\alpha I_3)(A-\beta I_3)(A-\gamma I_3)=0$. En multipliant par $\frac{1}{\alpha\beta\gamma}A^{-3}$, on obtient $(A^{-1}-\frac{1}{\alpha}I_3)(A^{-1}-\frac{1}{\beta}I_3)(A^{-1}-\frac{1}{\gamma}I_3)=0$. Ainsi $(X-\frac{1}{\alpha})(X-\frac{1}{\beta})(X-\frac{1}{\gamma})$ est le polynôme caractéristique de A^{-1} . A et A^{-1} étant semblables, elles ont même polynôme caractéristique. On montre alors par l'absurde qu'au moins un des trois complexes α,β,γ est égal à son inverse et donc égal à ± 1 . Il existe donc $\lambda \in \mathbb{C}^*$ telles que les racines du polynôme caractéristique (comptées avec multiplicité) soient $\pm 1,\lambda,\frac{1}{\lambda}$.

Réciproquement soit $A \in GL_3(\mathbb{C})$ dont le polynôme caractéristique admet pour racines $\pm 1, \lambda, \frac{1}{\lambda}$ avec $\lambda \in \mathbb{C}^*$. Quitte à changer A en -A, on peut supposer que les racines sont $1, \lambda, \frac{1}{\lambda}$.

- Si $\lambda \neq \pm 1$, les complexes $1, \lambda, \frac{1}{\lambda}$ sont distincts : A et A^{-1} sont donc diagonalisables et semblables à $\begin{pmatrix} 1 & 0 & 0 \\ 0 & \lambda & 0 \\ 0 & 0 & \frac{1}{\lambda} \end{pmatrix}$. A et A^{-1} sont donc semblables entre elles.
- Si $\lambda = -1$ et si dim $E_{-1}(A) = 2$, alors on a également dim $E_{-1}(A^{-1}) = 2$ et A et A^{-1} sont donc toutes deux diagonalisables et semblables à $\begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$.

- Si $\lambda = -1$ et si dim $E_{-1}(A) = 1$, alors on a également dim $E_{-1}(A^{-1}) = 1$ et A et A^{-1} sont donc toutes semblables à $\begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 1 \\ 0 & 0 & -1 \end{pmatrix}$.
- Si $\lambda = 1$ et si dim $E_1(A) = 3$, alors $A = A^{-1} = I_3$.
- Si $\lambda = 1$ et si dim $E_1(A) = 2$, alors on a également dim $E_{-1}(A^{-1}) = 2$ et A et A^{-1} sont donc toutes deux semblables à $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$.
- Si $\lambda=1$ et si dim $E_1(A)=1$, alors on a également dim $E_{-1}(A^{-1})=1$ et A et A^{-1} sont donc toutes deux semblables à $\begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$.

- 1. Il existe une matrice $P \in GL_n(\mathbb{C})$ telle que $C = P^{-1}BP$ soit trigonale. Notons $\lambda_1, \ldots, \lambda_n$ les coefficients diagonaux de C i.e. les valeurs propres de B. La matrice $\chi_A(C)$ est également triangulaire et a pour coefficients diagonaux $\chi_A(\lambda_1), \ldots, \chi_A(\lambda_n)$. Les spectres de A et B étant disjoints, ces coefficients sont non nuls, ce qui prouve que $\chi_A(C)$ est inversible. Or les matrices $\chi_A(B)$ et $\chi_A(C)$ sont semblables puisque $\chi_A(C) = \chi_A(P^{-1}BP) = P^{-1}\chi_A(B)P$. Donc $\chi_A(B)$ est également inversible.
- 2. On montre par récurrence que $A^nX = XB^n$ pour tout $n \in \mathbb{N}$. On montre ensuite le résultat voulu par bilinéarité du produit matriciel. On a notamment $\chi_A(A)X = X\chi_A(B)$. Or $\chi_A(A) = A$ d'après Cayley-Hamilton donc $X\chi_A(B) = 0$. Comme $\chi_A(B)$ est inversible, X = 0.
- 3. Considérons l'application $\Phi: \left\{ \begin{array}{ccc} \mathcal{M}_n(\mathbb{C}) & \longrightarrow & \mathcal{M}_n(\mathbb{C}) \\ X & \longmapsto & \mathrm{AX-XB} \end{array} \right.$ Φ est clairement un endomorphisme de $\mathcal{M}_n(\mathbb{C})$ et la question précédente montre que $\mathrm{Ker}(\Phi) = \{0\}$ i.e. que Φ est injectif. Puisque $\mathcal{M}_n(\mathbb{C})$ est de dimension finie, Φ est également surjectif, ce qui prouve le résultat voulu.