From James Stewart's Multivariable Calculus 7E page 834

9 Theorem If θ is the angle between \mathbf{a} and \mathbf{b} (so $0 \le \theta \le \pi$), then $|\mathbf{a} \times \mathbf{b}| = |\mathbf{a}| |\mathbf{b}| \sin \theta$

PROOF From the definitions of the cross product and length of a vector, we have

$$|\mathbf{a} \times \mathbf{b}|^{2} = (a_{2}b_{3} - a_{3}b_{2})^{2} + (a_{3}b_{1} - a_{1}b_{3})^{2} + (a_{1}b_{2} - a_{2}b_{1})^{2}$$

$$= a_{2}^{2}b_{3}^{2} - 2a_{2}a_{3}b_{2}b_{3} + a_{3}^{2}b_{2}^{2} + a_{3}^{2}b_{1}^{2} - 2a_{1}a_{3}b_{1}b_{3} + a_{1}^{2}b_{3}^{2}$$

$$+ a_{1}^{2}b_{2}^{2} - 2a_{1}a_{2}b_{1}b_{2} + a_{2}^{2}b_{1}^{2}$$

$$= (a_{1}^{2} + a_{2}^{2} + a_{3}^{2})(b_{1}^{2} + b_{2}^{2} + b_{3}^{2}) - (a_{1}b_{1} + a_{2}b_{2} + a_{3}b_{3})^{2}$$

$$= |\mathbf{a}|^{2}|\mathbf{b}|^{2} - (\mathbf{a} \cdot \mathbf{b})^{2}$$

$$= |\mathbf{a}|^{2}|\mathbf{b}|^{2} - |\mathbf{a}|^{2}|\mathbf{b}|^{2}\cos^{2}\theta \qquad \text{(by Theorem 12.3.3)}$$

$$= |\mathbf{a}|^{2}|\mathbf{b}|^{2}(1 - \cos^{2}\theta)$$

$$= |\mathbf{a}|^{2}|\mathbf{b}|^{2}\sin^{2}\theta$$

Taking square roots and observing that $\sqrt{\sin^2 \theta} = \sin \theta$ because $\sin \theta \ge 0$ when $0 \le \theta \le \pi$, we have

$$|\mathbf{a} \times \mathbf{b}| = |\mathbf{a}| |\mathbf{b}| \sin \theta$$