Generalized additive models via direct optimization of regularized decision stump forests

Table 1. Train and test RMSE, model size (number of parameters) and training time (average \pm standard deviation over 5 runs) for different GAMs. N refers to the dataset size, D is the feature dimension. Green color is the best test error, and blue is the second best.

Dataset		ORSF	GB	EBM	Splines	NAM	FLAM	FastSparse
Cpuact N=8.2k D=21	train test size time (s)	2.12±0.01 2.37±0.03 642±0 184±25 9.4±0.3	2.20±0.04 2.43±0.06 3.4k±133 46±17	$\begin{array}{c} 2.19{\pm}0.02\\ 2.50{\pm}0.05\\ 16.6k{\pm}36\\ 39{\pm}2 \end{array}$	$\begin{array}{c} 2.53 {\pm} 0.02 \\ 2.69 {\pm} 0.06 \\ 271 {\pm} 3 \\ 37 {\pm} 0.03 \end{array}$	$\begin{array}{c} 3.38 {\pm} 0.26 \\ 3.41 {\pm} 0.28 \\ 134 k {\pm} 0 \\ 99 {\pm} 1 \end{array}$	2.88±0.01 2.99±0.05 77.9k±123 85±2	2.76±0.03 2.91±0.17 119±4 3.8±0.5
Wine N=6.5k D=11	$\begin{array}{l} \text{train} \times 10^{-2} \\ \text{test} \times 10^{-2} \\ \text{size} \\ \text{time (s)} \end{array}$	65.70±0.15 70.02±0.66 724±12 64±3 6.0±0.3	$\begin{array}{c} 68.13 {\pm} 0.27 \\ 70.92 {\pm} 0.51 \\ 770 {\pm} 32 \\ 2.87 {\pm} 0.58 \end{array}$	66.73±0.27 70.12±0.39 3.9k±11 4.44±1.33	$\begin{array}{c} 67.99 {\pm} 0.29 \\ 71.79 {\pm} 1.40 \\ 197 {\pm} 7 \\ 56 {\pm} 16 \end{array}$	$\begin{array}{c} 74.40{\pm}0.16 \\ 76.07{\pm}2.11 \\ 70.1k{\pm}0 \\ 64{\pm}0 \end{array}$	67.39 ± 0.21 70.19 ± 0.84 5041 ± 11 53 ± 3	68.01±0.25 71.77±0.63 182±4 0.57±0.07
$\begin{array}{c} \textbf{Housing} \\ N{=}21k \\ D{=}8 \end{array}$	$\begin{array}{l} \text{train} \times 10^{-2} \\ \text{test} \times 10^{-2} \\ \text{size} \\ \text{time (s)} \end{array}$	51.84±0.16 54.80±0.65 1.4k±20 600±140 13.6±0.4	54.24±0.27 56.15±0.58 2.4k±31 42±8	52.70±0.04 55.23±0.68 7.2k±8 36±2	53.37±0.21 55.49±0.61 528±2 37±2	$\begin{array}{c} 71.56 {\pm} 0.30 \\ 72.23 {\pm} 0.88 \\ 51.0 {k} {\pm} 0 \\ 175 {\pm} 2 \end{array}$	55.08±0.20 56.24±0.74 118k±101 73±2	54.62±0.20 56.29±0.65 579±9 3.94±0.73
Diamond N=54k D=26	$\begin{array}{l} \text{train} \times 10^2 \\ \text{test} \times 10^2 \\ \text{size} \\ \text{time (s)} \end{array}$	9.95±0.02 10.15±0.08 934±16 648±20 25.1±0.9	$\begin{array}{c} 10.07{\pm}0.05 \\ 10.19{\pm}0.08 \\ 1182{\pm}81 \\ 140{\pm}58 \end{array}$	$\begin{array}{c} 10.11{\pm}0.03\\ 10.23{\pm}0.06\\ 3.4k{\pm}7\\ 20{\pm}2 \end{array}$	$\begin{array}{c} 10.02{\pm}0.02\\ 10.96{\pm}1.45\\ 273{\pm}24\\ 42{\pm}0.4 \end{array}$	$\begin{array}{c} 13.53 {\pm} 0.22 \\ 13.59 {\pm} 0.25 \\ 86 {k} {\pm} 0 \\ 708 {\pm} 2 \end{array}$	11.75±0.03 11.70±0.12 4139±12 805±11	10.01±0.02 10.17±0.09 516±11 45±10
Year N=423k D=90	train test size time (s)	9.12±0.03 9.30±0.01 1379±0.8 9681±205 1402±43	9.30±0.03 9.35±0.00 1490±25 4368±256	7.53±0.02 9.82±0.02 368k±0 4262±437	$\begin{array}{c} 9.14{\pm}0.03 \\ 9.38{\pm}0.03 \\ 2158{\pm}55 \\ 3618{\pm}45 \end{array}$	10.22±0.05 10.22±0.08 573k±0 8858±88	out of time > 2 days	9.14±0.03 9.29±0.01 2601±63 973±65
FPS N=401k D=100	train test size time (s)	55.40±0.09 55.41±0.34 983±37 6010±314 798±21	55.48±0.09 55.45±0.34 824±57 1803±466	55.42±0.09 55.42±0.34 2372±12 655±84	55.41±0.09 55.42±0.34 411±1 2043±2	56.23±0.10 55.62±0.24 288k±0 4397±10	out of time > 2 days	55.41±0.09 55.42±0.34 1250±17 625±10

Dataset	λ	Train Error	Test Error	Leaves	Depth	Time
diamond	0.001	out-of-time				
diamond	0.005	out-of-time				
diamond	0.01	2615.15	2741.46	5	5	273.13
diamond	0.05	2806.17	2857.79	2	2	0.70
housing	0.001	0.83	0.96	42	9	0.62
housing	0.005	0.91	0.93	8	5	0.28
housing	0.01	0.90	0.95	5	4	0.20
housing	0.05	0.96	0.99	2	2	0.12
wine	0.001	0.60	0.89	120	11	29.20
wine	0.005	0.72	0.83	26	10	7.87
wine	0.01	0.80	0.80	5	4	2.68
wine	0.05	0.79	0.82	2	2	0.17
cpuact	0.001	out-of-time				
cpuact	0.005	out-of-time				
cpuact	0.01	8.58	19.50	24	11	1658.88
cpuact	0.05	12.39	16.19	8	7	11.03

Depth

1

2

2

9

1

1

1

12

6

4

2

1

Time

0.07

363.54

0.65

18.01

1.61

0.12

0.05

1272.58

166.80

41.59

0.19

0.53

Leaves

1

2

2

27

1

1

1

88

10

4

2

out-of-time

out-of-time

out-of-time

out-of-time

out-of-time

out-of-time

out-of-time

out-of-time

1	10
1	11
1	12
1	13
1	14
1	15
1	16
	17
1	18
1	19
1	20
1	21
	22
	23
1	24
1	25
	26
1	27 28
1	29
	30
1	31
1	32

Dataset

bank

bank

bank

bank

fico

fico

fico

fico

ijcnn

ijcnn

ijenn

ijenn

letter

letter

letter

letter

telco

telco

telco

telco

Alpha

0.001

0.005

0.01

0.05

0.001

0.005

0.01

0.05

0.001

0.005

0.01

0.05

0.001

0.005

0.01

0.05

0.001

0.005

0.01

0.05

Train Error

12.50

30.40

30.40

6.70

10.90

9.40

9.10

10.30

22.40

29.70

33.20

29.40

Test Error

11.16

30.35

30.74

10.27

9.84

9.84

9.84

23.72

25.85

33.85

34.08

26.23

Table 2. As in Table 1 but for classification datasets. The error is a 0/1 misclassification (%).

Dataset		ORSF	GB	EBM	Splines	NAM	FLAM	FastSparse
Letter N=20k D=16	train test size time (s)	15.94±0.14 16.40±0.52 403±13 150±9 14.9±0.2	16.38±0.17 16.88±0.41 420±15 32±3	16.12±0.20 16.63±0.42 502±2 31±1	15.87±0.14 16.55±0.70 224±1 58±2	$\begin{array}{c} 21.54 {\pm} 1.1 \\ 22.53 {\pm} 1.88 \\ 68 k {\pm} 0 \\ 153 {\pm} 0 \end{array}$	17.94±0.18 17.95±0.51 510±2 71±1	15.88±0.14 16.57±0.67 399±5 18±2
Churn N=7.0k D=45	train test size time (s)	18.88±0.19 19.28±0.29 129±5 36±8 6.8±0.4	19.00±0.23 19.32±0.37 644±48 3±1	$\begin{array}{c} 18.84 {\pm} 0.08 \\ 19.47 {\pm} 0.51 \\ 7292 {\pm} 11 \\ 15 {\pm} 1 \end{array}$	18.78±0.15 19.32±0.48 40±0.04 0.5±0.03	$\begin{array}{c} \textbf{22.59} \!\pm\! 2.13 \\ \textbf{21.69} \!\pm\! 2.02 \\ \textbf{120k} \!\pm\! 0 \\ \textbf{120} \!\pm\! 2 \end{array}$	19.85±0.18 20.30±0.88 13.7k±15 113±2	18.88±0.11 19.87±0.36 105±8 0.59±0.07
FICO N=10k D=23	train test size time (s)	24.86±0.13 27.33±0.04 550±28 231±18 7.8±0.1	$\begin{array}{c} 26.54 {\pm} 0.15 \\ 27.62 {\pm} 0.30 \\ 1002 {\pm} 66 \\ 1.6 {\pm} 0.6 \end{array}$	$\begin{array}{c} 26.37 {\pm} 0.10 \\ 27.43 {\pm} 0.31 \\ 3680 {\pm} 9 \\ 7 {\pm} 0.2 \end{array}$	$\begin{array}{c} \textbf{26.79} \!\pm\! 0.15 \\ \textbf{27.35} \!\pm\! 0.17 \\ \textbf{83} \!\pm\! 1 \\ \textbf{1.96} \!\pm\! 0.10 \end{array}$	$\begin{array}{c} 28.23 {\pm} 0.41 \\ 28.08 {\pm} 0.61 \\ 130 {k} {\pm} 0 \\ 180 {\pm} 1 \end{array}$	27.15±0.21 27.64±0.52 3791±11 61±1	25.87 ± 0.16 27.80 ± 0.33 196 ± 10 1.74 ± 0.12
IJCNN N=50k D=22	train test size time (s)	4.42±0.05 4.95±0.14 414±23 1090±200 46±1	$\begin{array}{c} \textbf{4.56} {\pm} 0.07 \\ \textbf{5.10} {\pm} 0.15 \\ \textbf{918} {\pm} 21 \\ \textbf{148} {\pm} 24 \end{array}$	$\begin{array}{c} \textbf{4.51} {\pm} 0.03 \\ \textbf{5.00} {\pm} 0.14 \\ \textbf{12.3k} {\pm} 0 \\ \textbf{19} {\pm} 0 \end{array}$	4.44±0.04 4.92±0.20 266±0.5 153±40	$\begin{array}{c} 7.51 {\pm} 0.44 \\ 7.48 {\pm} 0.55 \\ 101 {k} {\pm} 0 \\ 501 {\pm} 1 \end{array}$	6.86±0.08 7.14±0.15 828k±242 249±6	4.84±0.16 5.52±0.21 883±18 47±1
Covtype $N=581k$ $D=54$		22.50±0.03 22.71±0.11 504±4 4354±32 1091±16	22.56±0.02 22.77±0.10 1090±32 1202±49	22.46±0.02 22.68±0.12 6402±4 325±5	$\begin{array}{c} 22.48 {\pm} 0.02 \\ 22.72 {\pm} 0.10 \\ 403 {\pm} 1 \\ 15624 {\pm} 84 \end{array}$	26.16±0.50 26.08±0.54 170k±0 5373±16	out of time > 2 days	22.49±0.02 22.68±0.10 841±15 2763±177
Bank N=41k D=62	train test size time (s)	9.81±0.04 9.83±0.17 231±4 153±11 47±2	10.00±0.03 9.99±0.13 530±15 34±7	9.75±0.05 9.91±0.17 1103±7 40±3	9.79 ± 0.04 9.88 ± 0.12 95 ± 2 22 ± 2	10.09±0.08 9.87±0.26 174k±0 662±10	11.27±0.04 11.23±0.15 1182±1 916±3	9.79±0.04 9.86±0.14 64±4 19.6±3.3

217

Figure 1. The effect of different regularization types in stump forests for the cpuact dataset. The number of stumps T=200. For our final method we use the combination of ℓ_1 -discontinuity and the deviation from the bias regularizations.

Figure 2. Visualization of the resulting additive model shape functions from our optimized stump forests for the UK used car dataset. For the numerical features, the light red bars show the histogram of the training points with the frequency values given on the right y-axis.

Figure 3. EBM shape functions.

Figure 4. PyGAM shape functions.