Particle Tracking Using Neural Networks

Cameron Marcus and Peter Larsen

Problem Outline

"Build an algorithm that quickly reconstructs particle tracks from 3D points left in the silicon detectors."

Data

- Four 70Gb training set
- Each set with 1800 events
 - Each event has 120,000 Hits
- Features
 - (x, y, z) coordinates of hits in detector (as well as the volume, layer, and module of the silicon detector.
 - Particles: Each particle's initial position (vx, vy, vz),
 momentum (px, py, pz), charge (q) and number of hits.
 - Cells (location of where each particle hit a certain module and energy deposited)

Evaluation

- Hits near the center and near the end have a larger weight than those on the outside
- Hits that from straight tracks have a greater weight
- Random or short tracks have no weight
- Sum of the weights of all hits in an event is 1

Density Based Spatial Clustering of Applications with Noise (DBSCAN)

- Arbitrary shape and number of groups
- Clusters groups based on density of points
- Two parameters
 - o Eps: Radius of neighborhood
 - MinPts: Minimum number of points in the neighborhood
- N_{Eps}(q): {p belongs to D | dist(p,q) <= Eps}
- Core point condition: |N_{Eps}(q)| >= MinPts
- Points can be density-reachable by multiple core points to form density-connected clusters
- Results: 0.204

Neural Network

- Binary classification (seeing if two hits are from same particle track)
- 6 fully-connected layers
- Number of neurons in layers goes from 1024 and decreases each layer by a factor of 2.
- Uses leaky-relu activation function
- Last fully connected layer has a output of one with a sigmoid activation function
- Training took around 40 minutes on a Nvidia GTX 1080
- Predicting takes around 2.5 hours.

Prediction

	H1	H2	H3	H4	H5
H1		0.42	0.13	0.24	0.75
H2	0.42		0.27	0.84	0.34
H3	0.13	0.27		0.58	0.66
H4	0.24	0.84	0.58		0.29
H5	0.75	0.34	0.66	0.29	

	H1	H2	H3	H4	H5
H1		0:42	0:13	0:24	<mark>→</mark> 0.75
H2	0.42		0.27	0.84	0.34
Н3	0.13	0.27		0.58	0.66
H4	0.24	0.84	0.58		0.29
H5	0.75	0.34	0.66	0.29	

	•	Track	1 = Hit 1	$1 o Hit \ 5 o$	Hit 3
--	---	-------	-----------	-------------------	-------

- Track 2 = Hit 2 → Hit 4
- Track 3 = Hit 3 \rightarrow Hit 5 \rightarrow Hit 1
- Similarities are then merged

	H1	H2	H3	H4	H5
H1		0.42	0.13	0.24	0.75
H2	0.42		0.27	0.84	0.34
Н3	0.13	0.27		0.58	0.66
H4	0.24	0.84	0.58		0.29
H5	0.75	0.34	0.66	0.29	

	H1	H2	Н3	H4	H5
H1		0:42	0:13	0:24	<mark>-</mark> 0.75
H2	0.42		0.27	0.84	0.34
H3	0.13	0.27		0.58	0.66
H4	0.24	0.84	0.58		0.29
H5	0.75	0.34	0.66	0.29	

That's cool and all but what about Results?

0.4535

Sources

https://home.cern/news/news/physics/higgs-boson-one-year

http://www.sciencemag.org/news/2015/02/five-things-scientists-could-learn-their-new-improved-particle-accelerator

https://www.kaggle.com/c/trackml-particle-identification

https://www.kaggle.com/c/trackml-particle-identification/discussion/63256

https://www.kaggle.com/outrunner/trackml-2-solution-example

https://www.pinterest.com/pin/384002305709354069/