For annotation, I used the model I trained on the previous class to label the competition data. The logic is the same as my college, so I would highlight some differences.

Preprocessing:

- using the TweetTokenizer from nltk
- using the twitter **GloVe** embedding dictionary to replace_token_with_index https://nlp.stanford.edu/projects/glove/

The CNN model summary:

Model: "sequential"

Layer (type)	Output	Shape	Param #
features (Embedding)	(None,	30, 25)	3117200
conv1d (Conv1D)	(None,	29, 64)	3264
global_max_pooling1d (Global	(None,	64)	0
dense (Dense)	(None,	100)	6500
dense_1 (Dense)	(None,	1)	101

Total params: 3,127,065 Trainable params: 3,127,065 Non-trainable params: 0

The performance of this model:

Classification Report

<pre>print(classification_report(y_test_1d, y_pred_1d))</pre>							
	precision	recall	f1-score	support			
NEGATIVE POSITIVE	0.78 0.78	0.78 0.78	0.78 0.78	159494 160506			
accuracy macro avg weighted avg	0.78 0.78	0.78 0.78	0.78 0.78 0.78	320000 320000 320000			

Accuracy Score

```
accuracy_score(y_test_1d, y_pred_1d)
0.78078125
```

Summary:

- In practice, GloVe performs almost the same with Word2Vec
- Accuracy score is almost the same with LSTM

Output:

	text	label	score	elapsed_time
0	hey swissborg like article coindesk simple fai	POSITIVE	0.887344	0.028207
1	global insight survey finding highnetworth ind	NEUTRAL	0.566071	0.047597
2	digital evolution wealth management emerging t	NEUTRAL	0.610986	0.066294
3	rise roboadvisers uae lowcost platform targeti	POSITIVE	0.830619	0.082792
4	never get second chance brand	NEGATIVE	0.398817	0.098139
11803	secure money advisor premier retirement planni	NEUTRAL	0.552806	189.579415
11804	million woman could saving adequately retireme	NEGATIVE	0.136557	189.597675
11805	million already investing w cbinsights mikequi	NEUTRAL	0.556318	189.615027
11806	million already investing w cbinsights mikequi	NEUTRAL	0.556318	189.631894
11807	wealth private client investment manager offer	NEUTRAL	0.477278	189.649198

11808 rows × 4 columns

Rough look, neutral tweet is easier to classify positive or negative, compared LSTM.

Next Step:

- Correct Annotation: compared with the LSTM model, to find out the different annotations, and then manually annotate tweet.
- Optimize the model: because the model training take a lot of time, I have not finished gird researching.