

Programação e IoT Laboratório 02 - Conceitos

OBJETIVO

Conhecer os periféricos utilizados em IoT; Conhecer os conceitos de tensão e corrente; Conhecer os medidores de tensão e corrente; Aprofundar sobre os recursos do tinkercad.

MATERIAL UTILIZADO

- Computador com: sistema operacional Windows, porta USB e acesso à internet;
- Tinkercad.

Programação e IoT Laboratório 02 - Conceitos

TEORIA

TEORIA – Led

Na língua portuguesa, a palavra LED significa diodo emissor de luz. Trata-se de um componente eletrônico capaz de emitir luz visível transformando energia elétrica em energia luminosa.

TEORIA – Resistor

Resistores são dispositivos que oferecem uma resistência a passagem da corrente elétrica. A função do resistor é converter a energia elétrica em energia térmica, este efeito de conversão de energia é chamado de efeito Joule.

TEORIA – Tensão

Tensão é a diferença de energia potencial elétrica entre dois pontos, sendo sua unidade Volts (V). Temos dois tipos de tensão, contínua e alternada, que representamos respectivamente por VDC e VAC. Neste experimento, estudaremos apenas tensão contínua.

A tensão contínua é aquela que não muda de polaridade com o tempo, isto é, apresenta um pólo sempre positivo e outro sempre

negativo. $v \stackrel{\downarrow}{=} v \stackrel{\downarrow}{\leftarrow}$

Bateria Fonte de tensão

Corrente Alternada

Corrente Continua

https://www.youtube.com/watch?v=9BkRC2a9WSM

TEORIA – Corrente

Corrente elétrica (representada pela letra " i ") é o movimento ordenado de elétrons em um meio condutor, sendo sua unidade Ampére [A], tendo como submúltiplos:

- Miliampére (mA) 1mA = 1.10^{-3} A
- Microampére (μ A) 1μ A = 1.10^{-6} A
- Nanoampére (nA) 1nA = 1.10⁻⁹A

Temos dois tipos de corrente: contínua e alternada, conforme características na sua geração. Nesta experiência, estudaremos a corrente contínua, que é aquela resultante da aplicação de uma tensão contínua em uma carga resistiva.

TEORIA - Voltímetro

Um **voltímetro** é um instrumento eletrônico usado para medir o potencial entre dois pontos em um circuito elétrico ou eletrônico em volts.

Um **voltímetro** pode exibir leituras em forma analógica (um ponteiro através de uma escala em fração da tensão do circuito) ou digital (mostra a tensão diretamente como números).

Um **voltímetro**, também conhecido como medidor de tensão, é um instrumento usado para medir a diferença de potencial, ou tensão, entre dois pontos em um circuito elétrico ou eletrônico.

TEORIA – Amperimetro

O amperímetro é o instrumento utilizado para medidas de corrente e que também faz parte do multímetro.

Para efetuarmos uma medida de corrente, ela deve circular pelo instrumento. Para tanto temos que interromper o circuito e intercalar o amperímetro.

TEORIA – Circuito série, circuito paralelo e seus medidores

Exemplos das ligações dos medidores de corrente e de tensão:

TEORIA – Lei de Ohm

"Em um bipolo ôhmico, a tensão aplicada aos seus terminais é diretamente proporcional à intensidade de corrente que o atravessa". Assim sendo, podemos escrever:

$$V = R . I$$

Onde:

V - tensão aplicada (V);

R - resistência elétrica (Ω);

I - intensidade de corrente (A).

Programação e loT Laboratório 02 - Conceitos

PROCEDIMENTOS

1. Com o uso do simulador Tinkercad criar um circuito série utilizando resistores de $1k\Omega$ e uma fonte conforme circuito abaixo:

2. Habilitar a simulação e verificar o funcionamento do circuito utilizando um voltímetro digital.

3. Com o uso do simulador Tinkercad criar um circuito paralelo utilizando resistores de $1k\Omega$ e uma fonte conforme circuito abaixo:

4. Habilitar a simulação e verificar o funcionamento do circuito utilizando um amperímetro digital.

5. Monte o circuito abaixo utilizando a fonte CC e a matriz de contatos do tinkercad, meça e anote as tensões entre os pontos, conforme a tabela.

Valores de tensão	Valor medido	Valor calculado
VAB		
V _{BC}		
Vcd		
VAD		

6. Monte o circuito abaixo utilizando a fonte CC e a matriz de contatos do tinkercad, meça e anote as correntes entre os pontos, conforme a tabela.

Valores de corrente	Valor medido	Valor calculado
Ponto A		
Ponto B		
Ponto C		
Ponto D		

6. Monte o circuito abaixo utilizando a fonte CC (ajustada em 10V) e a matriz de contatos do tinkercad. No resistor colocar o valor de 100Ω e no potenciômetro colocar $10K\Omega$.

7. Com o movimento do potenciometro identifique a corrente máxima do led (nesse caso, pelo aviso apresentado ao lado do led).

Programação e IoT Laboratório 02 - Conceitos

COMENTÁRIOS FINAIS

COMENTÁRIOS FINAIS

- Fazer o upload do Relatório do Laboratório até a próxima aula;
- Usar o modelo padrão disponibilizado no canvas.

RELATÓRIO DO LABORATÓRIO

Atenção na elaboração do Relatório do Laboratório:

- 1. Objetivo
- 2. Introdução
- 3. Materiais utilizados
- 4. Procedimento experimental
- 5. Análise de dados
- 6. Conclusão

Referências

Anexos

