VI.-CIRCUITOS SECUENCIALES (CLS)

1.- INTRODUCCION.

a) Definición

Un **Circuito Lógico Secuencial (CLS)** es un arreglo de lógica combinacional (CLC) y elementos de memoria, en donde la salida en el tiempo **t+1** está en función de las entradas y de las condiciones del circuito en el tiempo **t.**

b) FLIP FLOP

Un **Flip Flop** es el **Elemento Básico de Memoria** y puede almacenar un bit (0 ó 1). La información contenida en un **Flip Flop** o conjunto de **Flip Flop's** se le llama **ESTADO** del circuito.

Los **Flip Flop's** están formados por compuertas y siempre tienen 2 salidas, una válida y la otra negada. El número de entradas (una o dos) dependen del tipo de **Flip Flop**.

c) Tipos de Flip Flop's

i) Flip Flop RS (Set-Reset) Asíncrono

TABLA DE VERDAD DEL FF RS

S	R	Q	Q´	
0	0	Q	Q´	← MANTIENE
0	1	0	1	← APAGA
1	0	1	0	← ENCIENDE
1	1	Χ	Χ	← NO VALIDA

RESUMIENDO: LA CONDICION 00 MANTIENE, R APAGA, S ENCIENDE Y 11 NO VALIDA OJO: AL REALIZAR EL ANALISIS DEL FUNCIONAMIENTO DEL FF, PODEMOS OBSERVAR QUE SI LAS ENTRADAS S Y R CAMBIAN ANTES DE QUE EL FF SE ESTABILICE, EL CIRCUITO SE VUELVE INESTABLE Y PUEDE GENERAR SALIDAS NO DESEADAS

¿QUE PODEMOS HACER?, ¿QUE SE NECESITA?

SINCRONIZAR LA PRESENCIA DE LAS ENTRADAS CON EL FUNCIONAMIENTO DEL FF

PERO ANTES DE SEGUIR:

TAREA !!!!!!!!

DETERMINAR EL FUNCIONAMIENTO DE UN FF RS
IMPLEMENTADO CON COMPUERTAS NAND (RECUERDEN
LA R (RESET) APAGA Y LA S (SET) ENCIENDE

ii) Flip Flop RS Síncrono

PODEMOS OBSERVAR EN ESTE CIRCUITO QUE LAS ENTRADAS R Y S, SOLO AFECTAN CUANDO COINCIDEN CON UN PULSO DEL RELOJ (CK) DE TAL FORMA QUE SI:

EL CIRCUITO ES ESTABLE

- Tabla característica del FF RS

Qt	S	R	Q T+1
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	Χ
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	Χ

- Tabla característica Reducida del FF RS

S	R	Q T+1
0	0	Qτ
0	1	0
1	0	1
1	1	Х

- Tabla de Excitación del FF RS

Qt—	Q T+1	S	R
0	0	0	Χ
0	1	1	0
1	0	0	1
1	1	Χ	0

LA TABLA DE EXCITACIÓN NOS PROPORCIONA EL VALOR DE LAS ENTRADAS PARA LOGRAR EL CAMBIO DE ESTADO DESEADO

- Función Booleana del FF RS

	S	R	Q _{T+1}
	0	0	Qτ
	0	1	0
	1	0	1
	1	1	Χ
	S		
R		0	1
	0	QT	1
	1	0	$\langle x \rangle$

- Simbología del FF RS

 $\mathbf{Q}_{\mathsf{T+1}} = \mathbf{S} + \mathbf{Q}_{\mathsf{T}} \mathbf{R}'$

iii) Flip Flop **D** (**Delay**)

- Diagrama Lógico

- Tabla característica del FF D

Qt	D	Q T+1
0	0	0
0	1	1
1	0	0
1	1	1

- Tabla característica Reducida del FF D

PODEMOS OBSERVAR EN ESTE FF D
"ALMACENA" (GUARDA) LO QUE LE METES A
LA ENTRADA

D	Q _{T+1}
0	0
1	1

- Tabla de Excitación del FF D

Qt—	Q T+1	D
0	0	0
0	1	1
1	0	0
1	1	1

- Función Booleana del FF D

Qt	D	Q T+1
0	0	0
0	1	1
1	0	0
1	1	1

QT D 0 1 0 0 0 1 1 1 1

$$Q_{T+1} = D$$

- Simbología del FF D

iv) Flip Flop **JK**

- Tabla característica del FF JK

Qt	J	K	QT+1	
0	0	0	0	
0	0	1	0	
0	1	0	1	
0	1	1	1 ←	— INVIERTE
1	0	0	1	
1	0	1	0	
1	1	0	1	
1	1	1	0 ←	- INVIERTE

PODEMOS OBSERVAR EN ESTE CIRCUITO
QUE EL FF JK ES UN FF RS MEJORADO

DONDE LA J ENCIENDE Y LA K APAGA

- Tabla característica Reducida del FF JK

J	K	Q T+1
0	0	Qτ
0	1	0
1	0	1
1	1	Qт′

- Tabla de Excitación del FF JK

Qt—	Q T+1	J	K
0	0	0	Χ
0	1	1	Χ
1	0	Χ	1
1	1	Χ	0

- Función Booleana del FF JK

	J	K	QT+1
	0	0	Qτ
	0	1	0
	1	0	1
	1	1	Q _T ′
	J		
K		0	1
	0 (Qτ	1
	1	0	Q _T
	$\mathbf{Q}_{T+1} = \mathbf{J}\mathbf{Q}_{T}' + \mathbf{K}'\mathbf{Q}_{T}$		
	·		

- Simbología del FF JK

v) Flip Flop **T (Toggle)**

PODEMOS OBSERVAR EN ESTE CIRCUITO QUE EL FF T ES UN FF JK CON LAS ENTRADAS PUENTEADAS

- Tabla característica del FF T

Qt	T	Q T+1
0	0	0
0	1	1
1	0	1
1	1	0

- Tabla característica Reducida del FF T

Т	QT+1
0	Qт
1	Qτ΄

•

- Tabla de Excitación del FF T

Qt—	Q T+1	Т
0	0	0
0	1	1
1	0	1
1	1	0

- Función Booleana del FF T

Т	Q _{T+1}
0	Qτ
1	Qτ´

$$\mathbf{Q}_{\mathsf{T+1}} = \mathbf{T} \oplus \mathbf{Q}_{\mathsf{T}}$$

- Simbología del FF T

This document was created with Win2PDF available at http://www.win2pdf.com. The unregistered version of Win2PDF is for evaluation or non-commercial use only. This page will not be added after purchasing Win2PDF.