Assignment WW2_202122T1 due 10/16/2021 at 11:00pm HKT

(Click on graph to enlarge)

Evaluate the following expressions.

Note: Enter 'DNE' if the limit does not exist or is not defined

You can just write 'yes' or 'no' for the yes/no questions.

- a) $\lim_{x \to 1} F(x) =$ b) Is F(x) continuous at x = 1
- c) $\lim_{x \to 1} F(x) =$ d) Is F(x) continuous at x = 2
- e) $\lim_{x \to 3} F(x) =$ f) Is F(x) continuous at x = 3

Answer(s) submitted:

- •
- •
- •

(incorrect)

2. (1 point) Let

$$f(x) = \begin{cases} -1+x, & \text{if } x < 3\\ 5-x, & \text{if } x \ge 3 \end{cases}$$

Evaluate the following expressions.

$$\lim_{x \to 3^{-}} f(x) = \underline{\hspace{1cm}}$$

$$\lim_{x \to 3^+} f(x) = \underline{\qquad}$$

$$f(3) =$$

Is the function f continuous at 3? ? Answer(s) submitted:

- •
- •

• (incorrect)

3. (1 point)

Consider the function $f(x) = 3x^3 + 3x^2 + 10$. For what values of k does the Intermediate Value Theorem tell us that there is a c in the interval [0,1] such that f(c) = k?

$$\underline{} \leq k \leq \underline{}$$
. *Answer(s) submitted:*

•

(incorrect)

4. (1 point) Compute the derivative of the given function.

$$f(x) = 9x^{\pi} + 4.3x^{4.3} + \pi^{4.3}$$
.

Note: Use **pi** for π in your answer.

 $f'(x) = \underline{\hspace{1cm}}$.
Answer(s) submitted:

moner(s) suomine

(incorrect)

5. (1 point) Let
$$f(x) = \frac{1}{\left(x^2 - \frac{6}{x}\right)^3}$$
. Find $f'(x)$.

$$f'(x) =$$

Answer(s) submitted:

(incorrect)

6. (1 point) (a) Let $f(x) = \sqrt{9 + 13x^4}$. Find f'(x).

$$f'(x) =$$
(b) Let $f(x) = e^{\sqrt{9+13x^4}}$. Find $f'(x)$.

(b) Let
$$f(x) = e^{\sqrt{9+13x}}$$
. Find $f'(x)$.

Answer(s) submitted:

•

(incorrect)

7. (1 point)

Find the derivative of

$$z(x) = \sqrt[3]{6^x + 7}$$

z'(x) =_____

Answer(s) submitted:

(incorrect)

8. (1 point) Let

$$y = (4 + \cos^2 x)^{13}$$

Answer(s) submitted:

(incorrect)

9. (1 point)

Calculate the derivative using the appropriate rule or combination of rules.

$$f(x) = \frac{e^x}{(e^x + 5)(x + 3)}$$

 $f'(x) = _{-}$

Answer(s) submitted:

(incorrect)

10. (1 point) Let
$$f(x) = \log_2(7x^2 - 4x + 6)$$
. Find $f'(x)$. $f'(x) = \underline{\hspace{1cm}}$

Answer(s) submitted:

(incorrect)

11. (1 point) Let $f(x) = 5^{\sin(x)}$.

f'(x) =_____

Answer(s) submitted:

(incorrect)

12. (1 point)

Let $F(x) = f(x^6)$ and $G(x) = (f(x))^6$. You also know that $a^5 = 3, f(a) = 2, f'(a) = 12, f'(a^6) = 11.$

Find F'(a) =____ and G'(a) =___.

Answer(s) submitted:

(incorrect)

13. (1 point) Let a and b be real numbers and let

$$f(x) = \begin{cases} e^{3x} & \text{if } x < 0; \\ ax + b & \text{if } x \ge 0 \end{cases}$$

Given that f is differentiable at the point x = 0. Find the values of a and b.

a = _____

b = _____

Answer(s) submitted:

(incorrect)

14. (1 point) Let

$$f(x) = \begin{cases} \cos x & \text{for } x < 0, \\ 5x + 1 & \text{for } x \ge 0. \end{cases}$$

Which of the following statements is true?

- A. f is continuous at x = 0 but not differentiable at
- B. $\lim_{x\to 0} f(x)$ exists but f is not continuous at x = 0.
- C. $\lim_{x \to 0} f(x)$ does not exist.
- D. f is differentiable at x = 0.
- E. None of the above.

Answer(s) submitted:

(incorrect)

15. (1 point)

In this problem we will use a limit to find the instantaneous velocity for position function $f(t) = -16t^2 + 150$ at t = 1. As you order the statements below to show that $\lim_{h\to 0} \frac{f(1+h)-f(1)}{h} = -32$, focus on why each statement is $_{h\rightarrow 0}^{h\rightarrow 0}$ true.

0.
$$\lim_{h \to 0} \frac{f(1+h) - f(1)}{h}$$
1.
$$= \lim_{h \to 0} \frac{\left(-16(1+h)^2 + 150\right) - \left(-16(1)^2 + 150\right)}{h}$$
2.
$$= \lim_{h \to 0} \frac{h(-32 - 16h)}{h}$$
3.
$$= -32.$$

 $4. = \lim_{h \to 0} (-32 - 16h)$

For practice, you should work through the algebra that shows

$$\frac{\left(-16(1+h)^2+150\right)-\left(-16(1)^2+150\right)}{h} = -32-16h$$

whenever $h \neq 0$.

Answer(s) submitted:

(incorrect)

Generated by ©WeBWorK, http://webwork.maa.org, Mathematical Association of America