

ANNÉE 2013-2014 CC Novembre 2013

LICENCE Sciences et Technologie – 2^{ère} année Contrôle terminal Unité : ECS33 Logique Combinatoire 1h00mn

> Aucun document autorisé Calculatrice non autorisée

Chaque candidat doit, en début d'épreuve, porter son nom dans le coin de la copie qu'il cachera par collage <u>après</u> avoir été pointé. Le sujet étant à rendre, le candidat devra porter son n° de place sur celui-ci.

1.) Vérifier la véracité des expressions (les calculs seront détaillés sur le verso du sujet ou sur une copie) :

$$F_{1} = a + \overline{a} \cdot \overline{b} + \overline{a} \cdot \overline{b} \cdot \overline{c} + \overline{a} \cdot \overline{b} \cdot \overline{c} \cdot d = a + b + c + d$$

$$F_{2} = abc + ab\overline{c} + a\overline{b}c + \overline{a} \cdot \overline{b}c + a\overline{b} \cdot \overline{c} = a + \overline{b} \cdot \overline{c}$$

$$F_{3} = \overline{(a+b)c} + bc = \overline{b} + \overline{c}$$

2.) Retrouver l'expression algébrique de F et la simplifier.

Figure 1

3.) Remplir le tableau de Karnaugh à partir de l'expression de X(d,c,b,a) (a : LSB et d : MSB) et donner la forme minimale de $X = \sum (0,2,4,5,8,10,13,15)$

. 1	_						
ba dc	00	01	11	10			
00							
01							
11							
10							

$$X =$$

4.) Extraire l'expression **minimale** de la fonction logique F(e,d,c,b,a) représentée sous la forme du tableau de Karnaugh donné ci-dessous. Écrire le résultat sous le tableau :

e = 0						
ba dc	00	01	11	10		
00	1	0	0	1		
01	0	1	1	0		
11	0	1	1	0		
10	1	0	0	1		

e = 1							
ba dc	00	01	11	10			
00	0	0	0	0			
01	0	1	0	0			
11	1	1	0	0			
10	1	0	0	1			

$$F(e,d,c,b,a) =$$

5.) Synthèse logique : détecteur de parité

Vous devez fournir une machine logique ayant une sortie (S) et 3 entrées binaires (XYZ). La sortie de cette machine est à « 1 » lorsque le nombre d'entrée à « 1 » est pair.

- Donner la table de vérité de cette machine.
- Minimiser l'expression booléenne de la sortie
- Dessiner le logigramme obtenu.