

非线性声学回声消除技术

范展 华为云视频

01 什么是非线性声学回声

02 双耦合声学回声消除算法

03 实验结果分析

04 总结

什么是非线性声学回声

- 什么是非线性声学回声
- 非线性回声产生原因
- 非线性回声研究现状
- 技术难点

PART

1. 什么是非线性声学回声?

A: 线性时不变

C: 线性时变

B: 线性时不变 or 非线性时变

D: 线性时不变

2. 非线性声学回声产生的原因

原因1: 声学器件的小型化与廉价化

原因2: 声学结构设计不合理

3. 手机声学特性调研

- 针对市面上317款手机机型的声学特性进行调研
- 超过半数机型的声学特性不够理想
- 导致回声消除亦不理想(漏回声、双讲剪切)

4. 非线性声学回声消除技术研究现状

Showing 1-25 of 3,402 for ((("// ▼ Filters Applied: 1920 - 2021		"All Metadata":Echo Canceling) OR "Al	Metadata":Echo Suppression) ×	一 "声学回声消除"
☐ Conferences (2,444)	☐ Journals (892)	☐ Magazines (40)	☐ Early Access Articles (15)	
□ Books (7)	☐ Standards (4)			3402篇文献
Showing 1-25 of 254 for (((("All Metadata":Nonlinear of suppression) NOT "All Metadata": Filters Applied: 1920 - 2021	data":array) ×	":Nonlinear acoustic echo cancellation	NOT "All Metadata":nonlinear residual echo	"非线性声学回》
☐ Conferences (187)	☐ Journals (63)	☐ Magazines (3)	☐ Early Access Articles (1)	254 篇文献
, , , , , , , , , , ,	·····································	ary,共有 <mark>5,273,000</mark> +篇	·→あチ	
	学回声消除"文献数为	,		
1	线性声学回声消除"艾			
- -1-	- 级压产于四户内际 2	く用人女人ノングラー		•

"非线性声学回声消除" 254篇文献

5. 非线性声学回声消除的技术难点

	线性	非线性
系统传递函数	缓慢时变	快变、突变
优化模型	完备的线性优化模型	缺少有效模型支撑
强混响问题	存在	存在
延时跳变问题	存在	存在
啸叫问题	存在	存在
双讲问题	存在	存在

双耦合声学回声消除算法

- 非线性声学回声系统建模构建优化准则
- 模型求解

1. 非线性声学回声系统建模

$$y[k] = x[k] * w'_n[k] * w'_l[k] + z[k]$$

- $w'_n[k]$ ——非线性回声路径传递函数
- $w'_l[k]$ ——线性回声路径传递函数
- z[k]——近端语音+背景噪声

> 模型化简

$$y[k] = x[k] * w'_n[k] * w'_l[k] + z[k]$$

• 假设 $w'_n[k]$ 可分解为非线性系统 $w'_{nn}[k]$ 与线性系统 $w'_{nl}[k]$ 的组合,即

$$w'_n[k] = w'_{nn}[k] + w'_{nl}[k]$$

$$y[k] = x[k] * (w'_l[k] * w'_{nn}[k] + w'_l[k] * w'_{nl}[k]) + z[k]$$

• $\Leftrightarrow w_n[k] = w'_l[k] * w'_{nn}[k], \quad w_l[k] = w'_l[k] * w'_{nl}[k]$

$$y[k] = x[k] * (w_l[k] + w_n[k]) + z[k]$$

2020 北京

$$e[k] = y[k] - x[k - \Delta] * (w_l[k] + w_n[k])$$

- 构建优化准则
- 求解滤波器权系数 W_l 和 W_n
- 构建耦合机制

3. 双耦合滤波器设计(1)——构建优化准则

2020 北京

▶ 非线性声学回声特性分析

$$f_{x,y}(T) = E \left\{ \frac{\sum_{d=k-T/2}^{k+T/2} x[d] y^{H}[d] e^{j\varphi}}{\sqrt{\sum_{d=k-T/2}^{k+T/2} |x[d]|^{2}} \sqrt{\sum_{d=k-T/2}^{k+T/2} |y[d]|^{2}}} \right\}$$

- *T*——短时窗长
- φ——相位校正因子

短时相关度

> 短时相关度比较

图例说明

- 绿色数据对应的线性度最好
- 黄色数据有较弱的非线性失真
- 红色数据有较强的非线性失真
- 蓝色数据是信号与噪声短时相关度

结果分析

- "短时相关度"能够客观反映声学系统的回声线性度特性
- 非线性失真严重的系统,其在短时观测窗内 (如T<100ms) 依然具有较强的相关度

$$\epsilon(k,T) = \sum_{d=k-T/2}^{k+T/2} ||(\boldsymbol{W}_l + \boldsymbol{W}_n[k])^H \boldsymbol{X}[d] - \boldsymbol{Y}[d]||^2$$

短时累计误差函数

$$\min_{W_l} \min_{W_n[d]} E\{\epsilon(k,T)\} = \min_{W_l} \min_{W_n[d]} E\left\{ \sum_{d=k-T/2}^{k+T/2} ||(\boldsymbol{W}_l + \boldsymbol{W}_n[k])^H \boldsymbol{X}[d] - \boldsymbol{Y}[d]||^2 \right\}$$

最小平均短时累计误差准则

4. 双耦合滤波器设计(2)——求解 W_l

• 假设 $W_n^*[k]$ 是 $W_n[k]$ 的最优解,优化问题可以简化为

$$\min_{W_l} E \left\{ \sum_{d=k-T/2}^{k+T/2} \| (\boldsymbol{W}_l + \boldsymbol{W}_n^*[k])^H \boldsymbol{X}[d] - \boldsymbol{Y}[d] \|^2 \right\}$$

- 满足 $E\{W_n^*[k]\} = 0$, $E\{W_n^*[k]^H X[d]\} = 0$
- 得到 W_l 的理论最优解 (Wiener-Hopf) 为 $W_l^* = R_X^{-1} P$
- 采用NLMS算法求解 $W_l[k+1] = W_l[k] + \frac{\mu}{X[k]^H X[k]} e[k] X[k]$

5. 双耦合滤波器设计(2)——求解 $W_n[k]$

• $\mathbf{G}_{\mathbf{W}_{l}}^{*}$ 是 \mathbf{W}_{l} 的最优解,优化问题可简化为

$$\min_{W_n[k]} \sum_{d=k-T/2}^{k+T/2} \| (\boldsymbol{W}_l^* + \boldsymbol{W}_n[k])^H \boldsymbol{X}[d] - \boldsymbol{Y}[d] \|^2$$

$$\Leftrightarrow g[d] = Y[d] - W_l^H X[d], \ \ \ \ \ \min_{W_n[k]} \sum_{d=k-T/2} \|W_n^H[k]X[d] - g[d]\|^2$$

• 得到 $W_n[k]$ 的最小二乘估计 $W_n^*[k] = (\mathbf{X}^H \mathbf{X})^{-1} \mathbf{X}^H \mathbf{G}$

6. 双耦合滤波器设计(3)——构建耦合机制

2020 北京

定义线性度和非线性度因子

$$\rho_{l}[k] = \frac{\|\boldsymbol{W}_{l}^{H}\boldsymbol{X}[k]\|^{2}}{\|\boldsymbol{W}_{l}^{H}\boldsymbol{X}[k]\|^{2} + \|\boldsymbol{W}_{n}^{H}[\boldsymbol{k}]\boldsymbol{X}[k]\|^{2}}$$

$$\rho_n[k] = \frac{\|W_n^H[k]X[k]\|^2}{\|W_l^HX[k]\|^2 + \|W_n^H[k]X[k]\|^2}$$

根据比例调整学习步长

$$\boldsymbol{W}_{l}[k+1] = \boldsymbol{W}_{l}[k] + \frac{\mu \rho_{l}[k]}{\boldsymbol{X}^{H} \boldsymbol{X}} \boldsymbol{e}[k] \boldsymbol{X}$$

$$\boldsymbol{W}_n = (\mathbf{X}^H \mathbf{Q} \mathbf{X})^{-1} \mathbf{X}^H \mathbf{Q} \mathbf{G}$$

 \mathbf{Q} 为对角矩阵,对角元素为 ρ_n

7. 双耦合声学回声消除——定性分析

2020 北京

8. 特性比较

	NLMS算法	双耦合算法
优化准则	最小均方误差准则	最小平均短时累计误差准则
理论最优解	Wiener-Hopf方程解	线性滤波器:Wiener-Hopf方程解 非线性滤波器:最小二乘解
算法运算量	O(M)	$O(M) + O(N^2)$
控制机制	步长控制,相对简单	双系统耦合控制,相对复杂

実验结果分析 ・単讲测试场景 ・双讲测试场景

1. 单讲场景——强非线性失真情况。

2020 北京

回声抑制比ERLE (值越大越好)

 $ERLE = 10log P_d/P_e$

• P_d ——原回声功率 • P_e ——剩余回声功率

2. 单讲场景——弱非线性失真情况

2020 北京

回声抑制比 (值越大越好)

3. 单讲场景——不同手机机型ERLE统计

不同手机机型ERLE比较

4. 双讲测试场景

> 测试用例介绍

回声参考信号

> 线性EC比较

2020 北京

PART 4

1. 认识非线性声学回声

2. 双耦合声学回声消除算法

- 构建了双耦合自适应滤波器结构
- 提出了最小平均短时累计误差准则并进行求解
- 线性滤波器具有wiener-hopf方程解
- 非线性滤波器具有最小二乘解

3. 实验验证

- 双耦合算法在强非线性场景、线性场景和双讲场景下均取得了明显性能提升(相比于NLMS)
- ERLE提高10+dB
- 收敛速度更快 (< 30ms)
- 算法缺点:运算量偏大,耦合控制环节多,相对复杂

MULTIMEDIA BRIDGE TO A WORLD OF VISION

Thank you

