THEORY OF COMPUTATION (BCS503)

MODULE - 2

ASSIGNMENT QUESTIONS

- 1. Define Regular Expression. Write the RE for the following Languages.
 - a) Strings of a's and b's having substring aa.
 - b) Strings of a's and b's whose tenth symbol from right end is 'a'
 - c) The set of strings 0's and 1's whose number of 0's is divisible by 5.
 - d) The set of strings a's and b's ending with 'b' and has no substring aa.
 - e) To accept the words with two or more letters but beginning and ending with the same letter where $\Sigma = \{a,b\}$.
 - f) Strings of 0's and 1's having no two consecutive zeros.
 - g) Strings of a's and b's starting with 'a' and ending with 'b'.
- 2. Construct a RE from the following DFA using State Elimination Method

3. Construct a RE from the following DFA using State Elimination Method.

	0	1
$\rightarrow *p$	s	p
q	p	s
r	r	\boldsymbol{q}
s	q	r

4. Convert the following regular expressions to NFA's with € - Transitions.

- a) (0+1)01
- b) 00(0+1)*
- c) 01*
- d) 0+01*
- e) $a^* + b^* + c^*$
- f) (a+b)*aa(a+b)*
- 5. State and prove the pumping Lemma theorem for regular language.
 - a) Show that $L=\{0^n10^n \mid n>=1\}$ is not regular.
 - b) Show that $L=\{a^nb^n \mid n>=0\}$ is not regular.
 - c) Show that $L = \{0^n 1^m \mid n \le m\}$ is not regular.
 - d) Show that $L = \{0^n 1^{2n} \mid n \ge 1\}$ is not regular.

- 6. List out closure properties of regular sets.
- 7. Show that regular languages are closed under complement and intersection
- 8. Define distinguishable and indistinguishable states. Minimize the following DFA

	0	1
\rightarrow A	В	A
В	A	С
С	D	В
*D	D	A
E	D	F
F	G	E
G	F	G
Н	G	D

- 9. Consider the transition table of DFA.
- a) Draw the table of distinguishabilities for this automaton.
- b) Construct the minimum-state equivalent DFA.

	0	1
$\rightarrow A$	В	E
В	C	F
*C	D	H
D	E	H
\boldsymbol{E}	F	I
*F	G	B
G	H	В
H	I	C
*I	A	E

10.

Minimize the following DFA.

