Report Sample

Student name

Fall 2022

Introduction

Kernel regression is a non-parametric estimator that estimates the conditional expectation of two variables which is random. The goal of a kernel regression is to discover the non-linear relationship between two random variables. To discover the non-linear relationship, kernel estimator or kernel smoothing is the main method to estimate the curve for non-parametric statistics. In kernel estimator, weight function is known as kernel function (Efromovich 2008). Cite this paper (Bro and Smilde 2014).

Methods

The common non-parametric regression model is $Y_i = m(X_i) + \varepsilon_i$, where Y_i can be defined as the sum of the regression function value m(x) for X_i . Here m(x) is unknown and ε_i some errors. With the help of this definition, we can create the estimation for local averaging i.e. m(x) can be estimated with the product of Y_i average and X_i is near to x. In other words, this means that we are discovering the line through the data points with the help of surrounding data points. The estimation formula is printed below (R Core Team 2019):

$$M_n(x) = \sum_{i=1}^n W_n(X_i)Y_i \tag{1}$$

 $W_n(x)$ is the sum of weights that belongs to all real numbers. Weights are positive numbers and small if X_i is far from x.

Analysis and Results

Data and Vizualisation

A study was conducted to determine how...

loading packages library(tidyverse)

library(knitr)

library(ggthemes)

library(ggrepel)

library(dslabs)

Load Data

kable(head(murders))

state	abb	region	population	total
Alabama	AL	South	4779736	135
Alaska	AK	West	710231	19
Arizona	AZ	West	6392017	232

state	abb	region	population	total
Arkansas California	AR CA	South West	$\begin{array}{c} 2915918 \\ 37253956 \end{array}$	93 1257
Colorado	CO	West	5029196	65

```
ggplot1 = murders %>% ggplot(mapping = aes(x=population/10^6, y=total))
ggplot1 + geom_point(aes(col=region), size = 4) +
geom_text_repel(aes(label=abb)) +
scale_x_log10() +
scale_y_log10() +
geom_smooth(formula = "y~x", method=lm,se = F)+
xlab("Populations in millions (log10 scale)") +
ylab("Total number of murders (log10 scale)") +
ggtitle("US Gun Murders in 2010") +
scale_color_discrete(name = "Region")+
theme_wsj()
```


Statistical Modeling

Conlusion

References

Bro, Rasmus, and Age K Smilde. 2014. "Principal Component Analysis." *Analytical Methods* 6 (9): 2812–31. Efromovich, S. 2008. *Nonparametric Curve Estimation: Methods, Theory, and Applications*. Springer Series in Statistics. Springer New York. https://books.google.com/books?id=mdoLBwAAQBAJ.

R Core Team. 2019. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing. https://www.R-project.org.