A Linguagem é Infinita?

Por Matheus Pimenta, UNB 🔯 Brasil

Timelimit: 2

Gramática livre-do-contexto - GLC - é uma estrutura matemática utilizada para gerar cadeias, que são sequências finitas de símbolos terminais. Dizemos que o conjunto de todas as cadeias que podem ser geradas por uma GLC G é a linguagem de G, escrito L(G). Neste problema, dada uma GLC G, você deve determinar se L(G) é um conjunto vazio, finito, ou infinito.

Uma GLC é uma 4-upla (V, Σ, R, S), onde

- 1. Vé um conjunto finito e não-vazio cujos elementos chamamos de variáveis.
- 2. Σ é um conjunto finito e não-vazio, disjunto de V, cujos elementos chamamos de símbolos terminais.
- 3. Ré um conjunto regras. Uma regra tem a forma

$$A \rightarrow U_1 U_2 ... U_k$$
 onde $A \in V, k \ge 0$ e $U_i \in V \cup \Sigma$ para $i = 1, 2, ..., k$

4. $S \in V$ é a variável inicial.

Para gerar uma cadeia utilizando uma GLC, realizamos o seguinte procedimento.

Primeiro, escrevemos a variável inicial S. Em seguida, escolhemos uma regra para substituir S, digamos, $S \rightarrow U_1U_2...U_k$. Após esta escolha, apagamos o S e escrevemos em seu lugar a cadeia de variáveis e/ou terminais $U_1U_2...U_k$. Repetimos este processo até que não restem variáveis escritas. Se não é possível gerar uma cadeia sem variáveis partindo apenas da variável inicial, dizemos que a linguagem da GLC é vazia.

Por exemplo, seja a GLC abaixo, onde S é a variável inicial.

$$S \rightarrow aSa$$

$$S \rightarrow bSb$$

 $S \rightarrow a$

 $S \rightarrow b$

5 →

Utilizando a GLC acima, podemos gerar qualquer palíndromo feito de a's e b's. Por exemplo:

$$S \rightarrow aSa \rightarrow abSba \rightarrow abba$$

Observe que a cadeia vazia é uma cadeia válida. Logo, se uma GLCG gera, por exemplo, apenas a cadeia vazia, L(G) é finita, mas não é vazia.

Neste problema, as variáveis serão palavras feitas somente de letras maiúsculas, ou seja, caracteres entre A e Z. Os símbolos terminais serão letras minúsculas, ou seja, caracteres entre a e z. As regras serão dadas conforme descrito na próxima seção. A variável inicial será sempre a primeira variável do caso de teste.

Entrada

A entrada contém vários casos de teste. Cada caso de teste fornece a descrição de uma gramática livre-docontexto.

A primeira linha de um caso de teste contém dois inteiros \mathbf{v} e \mathbf{r} , onde \mathbf{v} é a quantidade de variáveis da GLC, \mathbf{r}

é a quantidade de regras, $1 \le v \le 10^2$ e $0 \le r \le 2 \cdot 10^2$.

Cada uma das próximas **v** linhas contém uma palavra feita somente de letras maiúsculas, ou seja, uma variável da GLC. A variável da primeira linha é a variável inicial.

Cada uma das próximas \mathbf{r} linhas descreve uma regra da GLC. É dada uma palavra de letras maiúsculas, um inteiro $0 \le \mathbf{k} \le 10^2$ e uma sequência de \mathbf{k} elementos, onde cada elemento é uma variável, ou um símbolo terminal.

Saída

Para cada caso de teste, imprima uma linha com a palavra "vazia" se a GLC não gera nenhuma cadeia de terminais, ou a palavra "finita" se a GLC gera alguma, mas não infinitas cadeias de terminais, ou a palavra "infinita" se a GLC gera infinitas cadeias de terminais.

Exemplo de Entrada	Exemplo de Saída
1 0	vazia
VARINICIAL	vazia
1 1	finita
S	finita
S 1 S	finita
1 1	infinita
S	
S 0	
1 3	
S	
S 0	
S 2 a a	
S 1 b	
2 3	
S	
A	
S 2 S A	
S 1 b	
A 0	
1 5	
S	
S 3 a S a	
S 3 b S b	
S 1 a	
S 1 b	
S 0	