

Capstone Project

Luis Morales

Luis Morales

- Data Engineer, ML and Al enthusiast
- Drummer at @darleofficial
- Dogs person
- Coffee lover
- LinkedIn: luis-morales-ponce/

Important Notes

Identify yourself in Zoom, using your name and last name

Mute your microphone along the course

Use the chat for questions during the Q&A sections

Focus your questions on the presented topic

Turn off your camera in case of connection issues

Academy Code of Conduct

Be respectful, there are no bad questions or ideas.

Be welcoming and patient

Be careful in the words that you choose

Session Goal

At the end of this session, you will be able to:

- Identify the main technologies used to reach the data-engineering capstone project.
- Recognize the steps to build all layers.
- Answer some important questions about the data.
- Determine next steps.

Agenda

Introduction

Create an **end-to-end** data solution throughout a **Cloud Service** to answer specific questions and make analytics.

This capstone project can be splitted into 3 main parts:

- Build an Airflow Cluster in the cloud
- Manage databases though Airflow
- Construct an ETL pipeline implementation
- Make analytics

Agenda

Infrastructure

Technologies and Services

- GKE
- Service Accounts
- Cloud SQL
- Cloud Storage
- Airflow
- Dataproc
- Terraform
- Among others

Architecture Overview

Agenda

ww.wizeline.com

Airflow Dag

Usage of:

- Jinja Templates
- GCS operators
- Postgres Operator

Agenda

Analytics

 How many reviews were done in California, NY and Texas?

 How many reviews were done in California, NY, and Texas with an apple device? And how many for each device type?

		Count
location	device	
California	Computer	698
	Mobile	703
	Tablet	656
New York	Computer	640
	Mobile	661
	Tablet	656
Texas	Computer	638
	Mobile	650
	Tablet	727

 Which location has more reviews from a computer in a Chrome browser?

	Count - Chrome Browser	
location		
Massachussets	159	
Montana	156	
South Dakota	154	
Nevada	151	
Washington	148	

Analytics

 Which device is the most used to write reviews in the east and which one in the west?

	Count - East
device	
Mobile	7347
Tablet	7347
Computer	7289

 What are the states with more and fewer reviews in 2021?

	Count
location	
Georgia	2100
Vermont	1888

More Analytics

V

Distribution of variables

Distribution of Variables

Reviews by State

Positives Reviews

36%

32%

Regression models and outlier removal

Relation betwen Number of Reviews and Amount Spent

Mahalanobis Distance

$$d_m(\vec{u}, \vec{v}) = \sqrt{(\vec{u} - \vec{v})^T \Sigma^{-1} (\vec{u} - \vec{v})}$$

 \vec{u} , \vec{v} vectors

 Σ the covariance matrix

 χ^2 test to determine statistical significance

Regression models

Relation betwen Number of Reviews and Amount Spent

Lessons learned

- GCP Serverless services are cool, but quite expensive.
- Add trigger rules when instantiating GCP services through airflow.
- Be sure what IAM permissions you need.

Next Steps

- Create Dim Tables and Fact table in GCP.
- Implement an NLP algorithm to classify movies with more accuracy.
- Add sensors to the DAG to identify failures.
- Use different approaches to test and improve performance.

Thank you

