ELETTRONICA DIGITALE

Corso di Laurea in Ingegneria Informatica

Prova scritta del 20 luglio 2017

Esercizio A

		_	
$R_1 = 50 \Omega$	$R_{11} = 500 \Omega$	V _{cc} $_{\blacktriangle}$	V _{cc} ▲
$R_2=8\;k\Omega$	$R_{12}=10\;k\Omega$	V cc ↑	$\sum_{\mathbf{p}} \mathbf{c}_{\mathbf{r}} \mathbf{c}_{\mathbf{r}} \mathbf{d}$
$R_3=10\;k\Omega$	$R_{13} = 1.5 \text{ k}\Omega$	R. \$	R_7 R_8 R_{10} R_{11}
$R_4=20\;k\Omega$	$C_1 = 1 \mu F$		
$R_5 = 8 \text{ k}\Omega$	$C_2 = 8.2 \text{ nF}$		Q_1 Q_2 R_{12}
$R_7 = 500 \Omega$	$C_3 = 5.6 \text{ nF}$	$C_1 \stackrel{\downarrow}{+} R_3 \stackrel{\downarrow}{>}$	
$R_8=24\ k\Omega$	C ₄ = 100 nF		R_{2} R_{9} R_{13} R_{13}
$R_9 = 6 \text{ k}\Omega$	$V_{CC} = 18 \text{ V}$	пп	
$R_{10} = 4 \text{ k}\Omega$			$\eta \eta \eta$

 Q_1 e Q_2 sono transistori MOS a canale n resistivi, con la corrente di drain in saturazione data da $I_D=k(V_{GS}-V_T)^2$ con k=0.5 mA/V² e $V_T=1$ V;

Con riferimento al circuito in figura:

- Calcolare il valore della resistenza R₆ in modo che, in condizioni di riposo, la tensione sul drain di Q₂ sia 10 V. Determinare, inoltre, il punto di riposo dei due transistori e verificarne la saturazione. (R: R₆ = 7500 Ω)
- 2) Determinare l'espressione e il valore di V_U/V_i alle frequenze per le quali C_1 , C_2 , C_3 e C_4 possono essere considerati dei corto circuiti. (R: $V_U/V_i = -3.77$)
- 3) (<u>Solo per 12 CFU</u>) Determinare la funzione di trasferimento V_U/V_i e tracciarne il diagramma di Bode quotato asintotico del modulo. (R: $f_{z1}=f_{p1}$; $f_{z2}=0$ Hz; $f_{p2}=20672$ Hz; $f_{z3}=3789$ Hz; $f_{p3}=5926$ Hz; $f_{z4}=0$ Hz; $f_{p4}=110$ Hz)

Esercizio B

Progettare una porta logica in tecnologia CMOS, utilizzando la tecnica della pull-up network e della pull-down network, che implementi la funzione logica:

$$Y = \overline{AD} \left(\overline{B} C + \overline{C} \overline{E} \right) + C \left(A \overline{B} + \overline{A} \overline{E} \right) + \overline{B} D$$

Determinare il numero dei transistori necessari e disegnarne lo schema completo. Dimensionare inoltre il rapporto (W/L) di tutti i transistori, assumendo, per l'inverter di base, W/L pari a 2 per il MOS a canale n e pari a 5 per quello a canale p. Si specifichino i dettagli della procedura di dimensionamento dei transistori.

Esercizio C

$R_1 = 200 \Omega$	$R_5 = 24.16 \text{ k}\Omega$
$R_2 = 5 \text{ k}\Omega$	$R_6 = 1 \text{ k}\Omega$
$R_3 = 50 \Omega$	C = 940 pF
$R_4 = 800~\Omega$	$V_{CC} = 6 V$

Il circuito IC₁ è un NE555 alimentato a $V_{CC} = 6V$, Q_1 ha una $R_{on} = 0$ e $V_T = 1V$ e Q_2 una $R_{on} = 0$ e $V_T = -1V$, gli inverter sono ideali. Determinare la frequenza del segnale di uscita del multivibratore in figura. (R: f = 242027 Hz)

$$t_{01} = \frac{41 + \sqrt{400000 + 1681 - 1600}}{64 \times 10^{3}} = \frac{41 + 9}{64 \times 10^{3}} = \frac{0.78125 \text{ mA}}{0.5 \text{ mA}}$$

$$V_{651} = 6 - 4 = 2V > V_{7}$$
 Sol. and ok

$$R_6 = \frac{V_{01} - V_K}{T_2} = \frac{7500 \ \mathcal{R}}{T_2}$$

$$Q_{1}: \begin{cases} 101 = 0.5 \text{ m}^{3} \\ V_{DS1} = 6 \text{ V} \\ V_{GS1} = 2 \text{ V} \\ 9\text{m} = 10^{-3} \frac{4}{\text{V}} \end{cases}$$

$$V_{u} = \left(-3 m_{z} \overline{z_{gs}}\right) \frac{R_{10}}{R_{10} + R_{11} + R_{12}} \cdot R_{12}$$

Re C1:
$$f_{21} = f_{P1}$$

C2: $f_{22} = \phi H_2$
 $f_{P2} = \frac{1}{2\pi c_2 R_{V2}} = \frac{20672.46 H_2}{2\pi c_2 R_{V2}}$
 $R_{V2} = R_1 + (R_2 || f_{gm1}) = 938.8 \Omega$
C3: $f_{23} = \frac{1}{2\pi c_3 R_6} = \frac{3789.4 H_2}{2\pi c_3 R_{V3}} = \frac{1}{2\pi c_3 R_{V3}} = \frac{5326.285 H_2}{2\pi c_3 R_{V3}}$

$$Y = \overline{AD}(\overline{B}C + \overline{C}\overline{E}) + C(\overline{AB} + \overline{A}\overline{E}) + \overline{BD} =$$

$$= (\overline{A} + \overline{D})(\overline{B}C + \overline{C}\overline{E}) + A\overline{B}C + \overline{A}C\overline{E} + \overline{B}D =$$

$$= (\overline{A} + \overline{D})(\overline{B}C + \overline{C}\overline{E}) + A\overline{B}C + \overline{A}C\overline{E} + \overline{B}D =$$

=
$$\overline{A}\overline{B}C + \overline{A}\overline{C}\overline{E} + \overline{B}C\overline{D} + \overline{C}\overline{D}\overline{E} + \overline{A}\overline{B}C + \overline{A}C\overline{E} + \overline{B}D =$$

PUN:
$$V_8 - V_9 - V_{10} = 3\rho = 15$$

 $V_8 - V_{11} : \frac{1}{x} + \frac{1}{3\rho} = \frac{1}{\rho} = 3\rho = 15$
 $V_8 - V_{11} : \frac{1}{x} + \frac{1}{3\rho} = \frac{1}{\rho} = 3\rho = 15$
 $V_8 - V_6 : \frac{1}{2} = \frac{1}{2\rho} = 10$
 $V_8 - V_7 : \frac{1}{2\rho} = \frac{1}{2\rho} = 10$

Vcc = 6V

$$R_{2}$$
 R_{1}
 R_{2}
 R_{3}
 R_{4}
 R_{2}
 R_{3}
 R_{4}
 R_{5}
 R_{7}
 R_{7

$$I_1 = \frac{V_{CC} - V_{TH}}{R_4} = 2.5 \text{ m/s}$$

$$T_{2} = T_{3} \ln \left(\frac{V_{12} - V_{RL}}{V_{KOR1} - V_{R1}} \right) = 5.42365 \times 10^{-7}$$

 $Q = \phi \quad V_{G1} = 6V \quad V_{S1} \leq V_{CON1} = 3.5V \implies V_{G51} \Rightarrow 2.5V \implies U_{AON} \qquad 6$ $D = \phi \quad V_{G2} = 6V \quad V_{S2} = 6V \implies V_{G52} = \phi V \Rightarrow V_{72} \implies U_{2} OFF$

R3

R2 $V_{i2} = V_{cons} = 3.5V$ $V_{i2} = V_{cons} = 3.5V$ $V_{i2} = V_{cons} = 2V$ $V_{i2} = V_{cons} = 2V$

Rv2 = R211[(R111R3)+R4+R5]= 4166, 6 R C2= Rv2. C = 3.916 MS

T2= 72 ln (Viz-Vfz) = 3.58880 µS

T= T1+ T2 = 4.13177 MS

f= 1 = 242026.33 Az