SPHERIC International Workshop, 17-20 Oct. 2017, Beijing, China

SPH simulation of drop impact on a hot wall with vaporization effects

Xiufeng YANG, Iowa State University, USA Song-Charng KONG, Iowa State University, USA Moubin LIU, Peking University, China

Acknowledgement: Ford Research and Innovation Center

Outline

- Background
- SPH method for vaporization
 - Governing equations
 - Particle splitting and merging
- Validation
 - Stefan problem
 - Vaporization of a static drop
- Drop impact on a wall at different temperatures
 - Different outcomes
- Summary

Background

- Drop-wall interactions are common and important in industrial applications.
- For IC engines, the fuel drops may impact on solid surfaces.
- Engineering models of drop-wall interaction use empirical formulations.

SPH method

Governing equations

$$\frac{d\rho}{dt} = -\rho \nabla \cdot \boldsymbol{u} + \dot{\boldsymbol{m}}''' \longrightarrow \text{Vaporization}$$

$$\frac{d\boldsymbol{u}}{dt} = \boldsymbol{g} - \frac{1}{\rho} \nabla p + \frac{\mu}{\rho} \nabla^2 \boldsymbol{u}$$

$$\frac{dT}{dt} = \frac{1}{\rho C_p} \nabla \cdot (\kappa \nabla T) + \frac{h_v}{\rho C_p} \dot{\boldsymbol{m}}'''$$

$$\frac{dY}{dt} = \frac{\nabla \cdot (\rho D \nabla Y)}{\rho}$$

$$p = c^2 (\rho - \rho_r) + p_r$$

Continuity equation of vapor species

Y is vapor mass fraction

Mass evaporation rate

$$\dot{m} = \frac{dm}{dt} = \frac{V\nabla \cdot (\rho D\nabla Y)}{1 - Y}$$

$$\dot{m}''' = \frac{\dot{m}}{V} = \frac{\nabla \cdot (\rho D\nabla Y)}{1 - Y}$$

Saturated vapor mass fraction

$$Y_s = \frac{X_s M_v}{(1 - X_s) M_g + X_s M_v}$$

$$X_s = \frac{p_s}{p_{ag}} = \exp \left[-\frac{h_v M_v}{R} \left(\frac{1}{T_s} - \frac{1}{T_B} \right) \right]$$

SPH method

SPH formulas

SPH method

Particle splitting

 Particle a will be split into two smaller particles when the following condition is satisfied.

$$\frac{m_a}{m_r} > \gamma_{\text{max}}$$

$$0 \quad 0 \quad 0 \quad 0$$

$$0 \quad 0 \quad 0$$

$$0 \quad 0 \quad 0$$

- Particle merging
 - Particle a will merge with its nearest particle b when the following condition is satisfied.

Physical properties of fluids

Physical properties of the liquid and gas phases

	ρ (kg/m³)	μ (kg/m/s)	K (W/m/K)	C _p (J/kg/K)	M (kg/mol)	h _v (J/kg)	Т _В (K)	D _v (m ² /s)
Air	1.2	2×10 ⁻⁵	0.046	1000	0.029			
Water	1000	1×10 ⁻³	0.6	4180	0.018	2.3×10 ⁶	373	2×10 ⁻⁵
Nitrogen	1.25	3×10 ⁻⁵	0.026	1040	0.028			4 > 4 4 0 5
n-Heptane	684	4×10 ⁻⁴	0.12	2220	0.1	3.3×10 ⁵	372	1×10 ⁻⁵
Air	1.2	2×10 ⁻⁵	0.046	1000	0.029			0 > 4 0 6
iso-Octane	692	4×10 ⁻⁴	0.1	2100	0.114	3.1×10 ⁵	372	9×10 ⁻⁶

Validation

Stefan problem

$$\dot{m}_{v}'' = \frac{\rho D_{v}}{H} \ln \left(\frac{1 - Y_{v,H}}{1 - Y_{v,s}} \right)$$

Validation

Vaporization of a static drop

$$\left(2\ln\frac{r_L}{r_s} + 1\right)\left(\frac{r_s}{r_0}\right)^2 = 1 - 4K\frac{t}{r_0^2}$$

$$K = \frac{\rho_g D_v}{\rho_l} \ln\frac{1 - Y_{v,L}}{1 - Y_{v,s}}$$

Drop impact on a surface

- Tw = 50 °C
- D = $50 \mu m$
- U = 2 m/s
- Deposition
- U = 5 m/s
- Contact-splash

- U = 50 m/s
- Contact-breakup

Drop impact on a surface

- Tw = 50 °C
- D = $50 \mu m$
- U = 2 m/s
- Deposition
- U = 5 m/s
- Contact-splash

- U = 50 m/s
- Contact-breakup

Drop impact on a hot surface

- Tw = 250 °C
- D = $50 \mu m$
- U = 1 m/s
- Rebound

- U = 5 m/s
- Film-splash

- U = 50 m/s
- Film-breakup

Drop impact on a hot surface

- Tw = 250 °C
- D = $50 \mu m$
- U = 1 m/s
- Rebound

- U = 5 m/s
- Film-splash

- U = 50 m/s
- Film-breakup

Impact regimes

Deposition Contact-Splash Bounce Film-Splash 10¹ 100 200 300 400

Tw(°C)

Summary

- An SPH method for evaporating flows was presented.
- The SPH method was validated by two numerical examples.
- The SPH method was applied to study drop impact on a heated surface at different temperatures.
- Different outcomes of drop-wall interaction were obtained, such as deposition, splash, breakup, and Leidenfrost phenomenon.