DIGITÁLIS MÉRÉSTECHNIKA

CCD detektor jegyzőkönyv

Mérés időpontja: 2023.10.30

Mérést végezte: Koroknai Botond (AT5M0G)

Jegyzőkönyv leadásának időpontja: 2023.12.07

1. A CCD termosztátjának vizsgálata

Míg vártam, hogy a termosztát hőmérséklete közel állandó legyen, írtam egy rövid scriptet, ami másodpercenként kiolvassa a termosztát hőmérsékletét és egy listába gyűtji össze azt.

Ezen értékek és ábra segítségével meghatározhatjuk a termosztát hőmérsékleti felbontását, azaz azt a legkisebb hőmérsékletkülönbséget, amit még meg tud különböztetni. Jelen esetben ez $\approx 0.01413^{\circ}C$ -nak adódott.

1.1. Hűtés

A következő feladat keretein belűl a termoszát hőmérsékletét $-5^{\circ}C$ -ra állítottam és az előzőhöz hasonlóan egy másodpercenként elmentettem a termosztát hőmérsékeltét.

A rögzített adatokat megvizsgálja kb a 87-88-89. másodperc környékén történik meg hogy előszőr, hogy a két lépés közti differencia egyik lépésben +x, másikban -x tehát egy érték körül ingadozik, vagy hogy tökéletesen nulla

A hűlési görbe különleges karakterisztikájára az a magyarázat szerintem, hogy lassú az adatcsere a szenzor és hűtést vezérlő egység között, így az előszőr túlhűti a termosztátot és mikor észreveszi, hogy túl hideg, a Peltier-elem kikapcsol és a termosztát szépen lassan visszamelegszik a megfelelő hőmérsékletre.

1.2. Melegedés

Ebben a részfeladatban kikapcsoltam a termosztátot, és hagytam hogy melegedjen a CCD detektor. Az adat rögzítési eljárás továbbra sem változott. További feladatom volt, hogy meghatározzam a melegdés időállandóját, ehhez egy

$$y(t) = -a \cdot e^{\frac{-t}{T}} + b$$

alakú függvényt illesztettem a mért adatokra. Ahol T jelöli az időállandót. A pontosabb illesztés érdekében az illesztésnél az első 10 adatok nem vettem figyelembe, mert azok még nem az exponenciális karakterisztikát mutatták.

paraméter	a	b	T
érték	38.22	23.25	19.86
hiba	0.15	0.02	0.08

1. táblázat. Az illesztett paraméterek

A táblázat alapján tehát a melegedés időállandója $19.86 \pm 0.08\,s$

2. CCD termikus zajának és a forró pixeleinek vizsgálata

A termosztátot lekapcsoltam és lezártam a kamera nyílását a dark kép készítéséshez. A detektor hőmérsékletét másodpercenként rögzítettem a kép készítése során és az átlagát vettem a végső értéknek: $23.23^{\circ}C$.

1. kép. Dark kép

2.1. Hisztogramm

Első lépésként az értékeket átskáláztam a hagyományos szürke árnyalatos képnek megfelelő értékekre, azaz, hogy a pixel értékek 0 és 255 között mozogjanak.

2. kép. Pixelintenzitás-hisztogramm

A pixelek átlagos értéke 7.42-nek adódott, ami a hisztogrammot, és a képet tekintve sem meglepetés, mert egyértelműen a fekete az uralkodó szín. A zaj kiszámításához a következőképpen jártam el. Vettem a pixelértékek átlagtól való eltéréseit és lenormáltam őket a tömb hosszával, így egy átlagos zaj kapva:

$$zaj=0.0555$$

Ezt követően elvégeztem a számolásokat úgy, hogy a forro pixeleket kiszűrtem a képből. Ezt úgy valósítottam meg, hogy miután megvizsgáltam az adatsort azt találtam, hogy a leggyakoribb értékek 10 alatt mozogtak, így a 10 feletti értékeket eldobtam.

3. kép. Pixelintenzitás-hisztogramm

A pixelek átlagos értéke ebben az esetben 4.76-nak adódott, és a zaj értéke 0.0055 lett.

2.2. Különböző hőmérsékletek

Ezen mérés során megismételtem az előző mérést, csak most minden mérést követően csökkentettem a detektor hőmérsékletét.

4. kép. Dark képek különböző hőmérsékleten

Szabadszemmel nem sok változást látok az egyes képek között, ezért vizsgáljuk meg a hisztogrammokat is.

5. kép. A különböző hőmérsékletű Dark képek hisztogrammjai

6. kép. A zaj hőmérsékletfüggése

Már a hisztogrammokat megvizsgálva látszik, hogy a zaj mondhatni majdnem lineárisan nő a hőmrséklet függvényében, és ezt a zaj értékének vizsgálata csak mégjobban alátámasztja.

2.3. Különböző expozíciós idők

Másodjára is megismételtem a méréseket, csak most a fotó expozíciós idejét változtatgattam a képek között.

7. kép. Dark képek különböző expozíciós időkkel

Szabad szemmel itt sem tudtam érdemi különbséget tenni a képek között.

8. kép. A különböző expozíció idős Dark képek hisztogrammjai

9. kép. A zaj időfüggése

Ezt a mérést nem mondhatom teljesen tökéletesnek, mert érdekes ugrálások jelentkeztek menet közben, viszont az eredendő tendencia, amit elvárunk, hogy az expozíciós idő növelésével nőjön a zaj végső soron teljesül.

3. Kalibrált szürkeárnyalatos felvétel

A felvétel elkészítéséhez a blende nyílást minimálisra állítottam, majd mivel a teremben igen kevés fényt volt 5 másodperc hosszúra állítottam az expozíciós időt.

10. kép. A figuráról készített felvétel

És ezt követően ábrázoltam a képhez tartozó pixel intenzítás hisztogrammot.

11. kép. Pixelintenzitás-hisztogramm

3.1. Flat kép készítése

A flat képek készítéséhez a kamera elé helyeztem egy fehér kartondobozt, és így 4 képet készítettem (ötödik véletlenül lemaradt). A flat képek segítségével a ccd detektorok pixeleinek fényérzékenységét vizsgáljuk.

12. kép. Flat kép

Mint ahogy az általam készített felvételen is látszódik közel sem egyenletes az egyes pixelek által érzékelt fényintenzítás.

3.2. Dark kép

Ezt követően ismét eltakartam az objektív nyílásást, és felvettem 10 dark felvételt, az előzővel megegyező expozíciós idővel, majd kiátalgoltam.

13. kép. 10 darkkép átlaga

Valamint elkészítettem a képhez tartozó hisztogrammot is.

14. kép. Pixelintenzitás-hisztogramm

A termikus fotonok eloszlása a hisztogramm alapján valóban nagyon közel áll a Poisson eloszláshoz.

3.3. Bias felvételek

A dark képek elkészítése után a következő feladat a bias képek felvétele volt.

15. kép. bias felvétel

A hozzá készített hisztogramm

16. kép. Pixelintenzitás-hisztogramm

4. Kép kalibrálása

Az $I=\frac{R-D}{F}$ összefüggés alapján, ahol R az eredeti képünk, D a dark képek átlaga, és F a Bias felvétel. Az így kapott képet ezt követően ábrázoltam.

17. kép. Szűrt figura

és a hisztogrammja

18. kép. Pixelintenzitás-hisztogramm

Sajnos a szűrt kép szerintem nem hogy szebb lenne, de talán mintha még pár extra fekete folt is megjelent volna az eredetihez képest.

5. Színes felvétel készítése

A már korábban is fotózott báburól készítettem egy-egy képet a három színszűrűvel, majd a képeken elvégeztem a kalibrálást.

19. kép. Szűrt figura - zold

20. kép. Szűrt figura - kek

21. kép. Szűrt figura - piros

Itt valamivel simább képet kapunk a szűrés után, de a tökéletestől távol állunk azért.

5.1. Az eredti kép kikeverése

Megpróbáltam a színszűrűkkel készített képekből egy színes képet alkotni olymódon, hogy mindegyik színszűrűvel készített képek értékeinek a harmadát vettem és összeadtam őket.

22. kép. Végeredméyn

Sajnálatos módon ezt egyáltalán nem mondhatom sikeres próbálkozásnak. A sikertelenséget több probléma is okozhatta. Először is a Flat kép készítésénél véletlenül a detektor mozgatásával értem el, hogy a doboz fókuszon kívűl helyezkedjen el, nem pedig a doboz mozgatásával, ami azt eredményezte, hogy a figurát nem tudtam tökéletesen visszaállítani a fóksuzba utánna.