General Branch and Bound method (B&B). Example

- Branch and bound is a method for solving optimization problems by breaking them down into smaller sub-problems and using a bounding function to eliminate sub-problems that cannot contain the optimal solution.
- It's used for solving NP-hard combinatorial optimization.
- Branch and Bound is commonly used in problems like the traveling salesman and job scheduling.
- The general procedure requires us to create a state space tree (just like in backtracking). However now we need a way to create a lower bound for each node of the tree. The implementation of this differs for every problem we are trying to solve.
- Generic procedure for minimization (f(x)) is the objective function):
 - 1. Use a heuristic to find an upper bound B for the problem. An upper bound means that the optimal solution needs to be smaller or equal to this result. If no heuristic exists then just set if to infinity
 - 2. Generate partial solutions, representing the second level in the state space tree. Add those solutions to a queue
 - 3. Loop until the queue is empty:
 - a. Take a node N off the queue
 - b. If N is a leaf node that represents a solution x and $f(x) \leq B$, then set B = f(x)
 - c. Else, create new branches on N to create new nodes $N_i.$
 - i. If the estimated lower bound on N_i is greater than B then ignore this branch
 - ii. Else, store N_i on the queue.