Data Science Capstone Project

Daksh Vashist

https://www.github.com/dakshvashist 12/01/2024

Outline

- Executive Summary
- Introduction
- Methodology
- Results
- Conclusion
- Appendix

Executive Summary

- Data collection from SpaceX API and Wikipedia page.
- Data exploration using SQL, utilized Dash and Folium for data visualization. Gathered relevant columns to be used as features.
- One hot encoding.
- Used GridSearchCV for optimal hyperparameters.
- ML models used: Logistic Regression, SVM, KNN, and Decision Tree Classifier. All the models produced similar results with accuracy rate of about 83.33%. More data is needed for better model determination and accuracy. Type 1 problem persistent for models.

Introduction

- Space X has best pricing (\$62 million vs. \$165 million USD)
- The ability to recover part of rocket (Stage 1)
- Space Y wants to compete with Space X

Problem:

 We help Space Y train a machine learning model to predict the successful Stage 1 landing

Methodology

- Data collection methodology:
 - Collected data from SpaceX API and Wikipedia page
- Data wrangling
- Exploratory data analysis using SQL and Python
- Data visualization using Plotly Dash and Folium
- Perform predictive analysis using classification models

Methodology

Overview of data collection, wrangling, visualization, dashboard, and model methods

Data Collection – SpaceX API

- 1. Request (SpaceX API)
- 2. Obtain .JSON file
- 3. Convert json file to pandas DataFrame
- 4. Filter data
- 5. Impute missing values

Data Collection – Web Scraping

- 1. Request HTML data
- 2. Parse data using Beautiful Soup
- 3. Iterate data to extract into a dictionary
- 4. Cast the dictionary into a DataFrame

EDA with Data Visualization

Exploratory Data Analysis performed on various variables

Plots Used:

Scatter plots, line charts, and bar plots used to visualize relationships between variables

Flight Number vs. Payload Mass, Flight Number vs. Launch Site, Payload Mass vs. Launch Site, Orbit vs. Success Rate, Flight Number vs. Orbit, Payload vs Orbit, and Success Yearly Trend

EDA with SQL

- Imported into IBM Database.
- Data queries using SQL Python(SQLAlchemy)
- Queries helped attain a finder understanding of the dataset
- Queried information about launch site names, various pay load sizes of customers and booster versions, mission outcomes, and landing outcomes

Build an interactive map with Folium

Folium maps mark Launch Sites, successful and unsuccessful landings, and a proximity example to key locations: Railway, Highway, Coast, and City.

This allows us to understand why launch sites may be located where they are. Also visualizes successful landings relative to location.

Build a Dashboard with Plotly Dash

Dashboard includes a pie chart and a scatter plot.

Pie chart can be selected to show distribution of successful landings across all launch sites and can be selected to show individual launch site success rates.

Scatter plot takes two inputs: All sites or individual site and payload mass on a slider between 0 and 10000 kg.

The pie chart is used to visualize launch site success rate.

The scatter plot can help us see how success varies across launch sites, payload mass, and

booster version category.

Predictive analysis (Classification)

EDAwith Vasalization

Exploratory data analysis with seaborn plots

Payload vs. Launch Site

Payload vs. Orbit type

Flight Number vs. Launch Site

Flight Number vs. Orbit type

```
In []: # Plot a scatter point chart with x axis to be FlightNumber and y axis to be the Orbit, and hue to be the class value sns.catplot(x="FlightNumber", y="Orbit", hue="Class", data=df, aspect = 5) plt.ylabel("Orbit", fontsize=20) plt.xlabel("Flight Number", fontsize=20) plt.show()

### Plot a scatter point chart with x axis to be FlightNumber and y axis to be the Orbit, and hue to be the class value sns.catplot(x="FlightNumber", fontsize=20) plt.ylabel("Orbit", fontsize=20) plt.xlabel("Flight Number", fontsize=20) plt.show()

#### Plot a scatter point chart with x axis to be FlightNumber and y axis to be the Orbit, and hue to be the class value sns.catplot(x="FlightNumber", fontsize=20) plt.ylabel("Orbit", fontsize=20) plt.xlabel("Flight Number", fontsize=20) plt.show()

##### Plot a scatter point chart with x axis to be FlightNumber and y axis to be the Orbit, and hue to be the class value sns.catplot(x="FlightNumber", fontsize=20) plt.ylabel("FlightNumber", fontsize=20) plt.xlabel("FlightNumber", fontsize=20) plt.xlabel("Flig
```

Success rate vs. Orbit type

```
In []: # HINT use groupby method on Orbit column and get the mean of Class column
        success_by_orbit = df[['Orbit', 'Class']].groupby('Orbit').mean()
        success_by_orbit.sort_values(by='Class', inplace=True, ascending=False)#.plot(kind='barh', color='q')
        success_by_orbit.reset_index(inplace=True)
        success by orbit
        sns.barplot(x='Class', y='Orbit', data=success_by_orbit, color='g')
        plt.xlabel('Success Rate')
        plt.show()
           ES-L1
            GEO
            HEO
            SSO
           VLEO
            LEO
            MEO
             PO
             ISS
            GTO
             50
               0.0
                        0.2
                                0.4
                                         0.6
                                                 0.8
                                                          1.0
                                  Success Rate
```

Launch Success Yearly Trend

EDA with SQL

Exploratory data analysis in python with SQLAlchemy

All Launch Site Names

Query unique launch site names from database.

Launch Site Names Beginning with 'CCA'

Display 5 records where launch sites begin with the string 'CCA'

Select *

From SPACEXTBL

Where Launch_Site like 'CCA%'

Limit 5

* sqlite:///my_data1.db Done.

Out[21]:

:	Date	Time (UTC)	Booster_Version	Launch_Site	Payload	PAYLOAD_MASSKG_	Orbit	Customer	Mission_Outcome	Landing _Outcome
	04-06- 2010	18:45:00	F9 v1.0 B0003	CCAFS LC- 40	Dragon Spacecraft Qualification Unit	0	LEO	SpaceX	Success	Failure (parachute)
	08-12- 2010	15:43:00	F9 v1.0 B0004	CCAFS LC- 40	Dragon demo flight C1, two CubeSats, barrel of Brouere cheese	0	LEO (ISS)	NASA (COTS) NRO	Success	Failure (parachute)
	22-05- 2012	07:44:00	F9 v1.0 B0005	CCAFS LC- 40	Dragon demo flight C2	525	LEO (ISS)	NASA (COTS)	Success	No attempt
	08-10- 2012	00:35:00	F9 v1.0 B0006	CCAFS LC- 40	SpaceX CRS-1	500	LEO (ISS)	NASA (CRS)	Success	No attempt
	01-03- 2013	15:10:00	F9 v1.0 B0007	CCAFS LC- 40	SpaceX CRS-2	677	LEO (ISS)	NASA (CRS)	Success	No attempt

Total Payload Mass from NASA

Average Payload Mass by Falcon 9

This query calculates the average payload mass or launches which used booster version Falcon 9

First Successful Ground Pad Landing Date

Successful drone ship landing with payload between 4000 and 6000

Total Number of Each Mission Outcome

```
In [58]: %%sql
          Select Mission_Outcome, count(Mission_Outcome) as Outcome_count
          From SPACEXTBL
          Group by Mission_Outcome
          Order by 2 desc
           * sqlite:///my_data1.db
          Done.
Out[58]:
                     Mission_Outcome Outcome_count
                                                 99
                              Success
           Success (payload status unclear)
                        Failure (in flight)
```

Boosters that carried Maximum Payload

```
In [42]: %%sql
          Select Booster_Version
          From SPACEXTBL
          Where PAYLOAD_MASS_KG_ = (
               Select Max(PAYLOAD_MASS__KG_)
               From SPACEXTBL
            * sqlite:///my data1.db
          Done.
Out[42]:
           Booster_Version
             F9 B5 B1048.4
             F9 B5 B1049.4
             F9 B5 B1051.3
             F9 B5 B1056.4
             F9 B5 B1048.5
             F9 B5 B1051.4
             F9 B5 B1049.5
             F9 B5 B1060.2
             F9 B5 B1058.3
             F9 B5 B1051.6
             F9 B5 B1060.3
             F9 B5 B1049.7
```

2015 Failed Drone Ship Landing Records

Ranking Counts of Successful Landings Between 2010-06-04 and 2017-03-20

```
In [59]: %%sql
          Select
               "Landing _Outcome", count("Landing _Outcome") as cnt
          From SPACEXTBL
          Where Date Between '04-06-2010' and '20-03-2017'
          Group by "Landing _Outcome"
          Order by 2 desc
           * sqlite:///my data1.db
          Done.
Out[59]:
            Landing _Outcome cnt
                      Success
                              20
                    No attempt
            Success (drone ship)
           Success (ground pad)
             Failure (drone ship)
                       Failure
              Controlled (ocean)
              Failure (parachute)
                    No attempt
```

Interactive Map with Folium

Launch Site Location

Key Location Proximities

Color-Coded Launch Markers

Building a Dashboard with Plotly Dash

Successful Launches Across Launch Sites

Highest Success Rate Launch Site

KSC LC-39A has the highest success rate with 10 successful landings (blue) and 3 failed landings (red).

Predictive Analysis (Classification)

Classification Accuracy

Confusion Matrix

All 4 models performed similar for the test set, the confusion matrix is the same across all models.

APPENDIX

GitHub: https://github.com/dakshvashist/IBM-Data-

Science-Professional-Certificate

Instructors:

Instructors: Rav Ahuja, Alex Aklson, Aije Egwaikhide, Svetlana Levitan, Romeo Kienzler, Polong Lin, Joseph Santarcangelo, Azim Hirjani, Hima Vasudevan, Saishruthi Swaminathan, Saeed Aghabozorgi, Yan Luo

