Stochastic Volatility of World Indexes A comparison on the COVID crisis

Luís Simão Ferreira

Finance PhD - ISCTE Asset Pricing II

November 13, 2023

Table of Contents

- Introduction
- 2 Data and Methodology
- Results
- 4 Conclusions

The COVID Crisis

- The COVID pandemic caused an unprecedented exogenous shock to the world's financial markets
- Indexes all over the world suffered one of the largest downturns in recent history
- However, due to the nature of the shock and policy measures, the speed of recovery was also extreme, with some indexes taking only months to reach pre-crisis levels
- This period of heightened volatility has been followed by relatively stable returns, thus making it an important case study for volatility models

Stochastic Volatility

- Stochastic volatility models have been gaining traction in the academic community and industry over the recent decades
- Their theoretical underpinnings make them attractive from a risk management and asset pricing point of view
- While the estimation procedure is much more difficult and slow, the effectiveness of fit has shown that they are in general preferable to classical time series GARCH models
- In this work, we compare the performance of the two models since before the COVID crisis to better understand their behavior

Table of Contents

- Introduction
- 2 Data and Methodology
- Results
- 4 Conclusions

Datasets

- For this study, we focus on six of the world's largest indexes
 - US: S&P 500, NASDAQ, Dow Jones Industrial Average
 - Non-US: FTSE 100 (London), Stoxx 600 (Europe), Nikkei 225 (Japan)
- Data is collected from Yahoo Finance, spanning from February 2020, right before the COVID crisis, to today
 - 951 return observations for each index
 - Collection through Python package yfinance

S&P 500

NASDAQ

Dow Jones

FTSE 100

STOXX 600

NIKKEI 225

Model Specification

Discretized stochastic volatility model:

$$Y_t = \mu + \sqrt{V_t} \varepsilon_t \tag{1}$$

$$\log V_t = \phi_0 + \phi_1 \log V_{t-1} + \sigma_v \eta_t \tag{2}$$

- The parameters to be estimated are μ , ϕ_0 , ϕ_1 and σ_v
- ullet Since V_t is unobservable, we must estimate it as well

Estimation

- Estimation is done by Markov Chain Monte Carlo with the Kim,
 Shephard and Chib (1998) naive implementation
- Normal priors for μ , ϕ_0
- Assume Beta prior for ϕ_1 to ensure stationarity
 - Not a big assumption, since stationarity is expected from the mean reversing behavior of volatility
 - Same hyperparameters as the original paper
 - Independence Metropolis-Hastings
- ullet σ_{v} is assumed to have an Inverse Gamma prior
- Log-volatilities are simulated by independence Metropolis-Hastings

Methodology

- Estimate appropriate ARMA-GARCH model for the data
- GARCH volatilities are used as an initial estimate of log-volatility, as well as other estimated parameters
- 150,000 burn-in samples, 250,000 retained samples

Table of Contents

- Introduction
- 2 Data and Methodology
- Results
- 4 Conclusions

Estimation results

	S&P 500	NASDAQ	DJI	FTSE	STOXX	NIKKEI
μ	0.1057	0.1297	0.0604	0.0607	0.0921	0.0740
s.d.	0.0295	0.0396	0.0275	0.0244	0.0256	0.0357
ϕ_0	0.0037	0.0111	-0.0051	-0.0165	-0.0131	0.0120
s.d.	0.0103	0.0091	0.0108	0.0145	0.0137	0.0096
ϕ_1	0.9557	0.9823	0.9550	0.9451	0.9414	0.9535
s.d.	0.0206	0.0083	0.0206	0.0216	0.0236	0.0202
σ_{v}	0.0937	0.0519	0.1011	0.1577	0.1472	0.0613
s.d.	0.0250	0.0115	0.0251	0.0347	0.0348	0.0167

Stochastic volatility of the S&P 500

Stochastic volatility of the NASDAQ

Stochastic volatility of the Dow Jones

Stochastic volatility of the FTSE

Stochastic volatility of the STOXX 600

Stochastic volatility of the NIKKEI

Performance

- Average run-time was of 120 seconds
- Acceptance rate of ϕ_1 candidates was around 53% for all indexes but NASDAQ, where it was of 64%

Fit: S&P 500

Fit: S&P 500

Fit: NASDAQ

Fit: NASDAQ

Fit: Dow Jones

Fit: Dow Jones

Fit: FTSE

Fit: FTSE

Fit: STOXX

Fit: STOXX

Fit: NIKKEI

Fit: NIKKEI

Table of Contents

- Introduction
- 2 Data and Methodology
- Results
- 4 Conclusions

GARCH vs Stochastic Volatility

- Stochastic volatility models provide a stronger fit in general than simple GARCH models
 - GARCH volatilities appear to dominate SV in periods of higher volatility
 - However, GARCH appears to overshot most estimates
- SV vastly outperforms GARCH in Europe and somewhat in Asia
- Even though GARCH models can be estimated much faster, the estimation time of SV was relatively small
 - Acceleration methods, such as the ones suggested by KSC and other recent developments, reduce even further this problem
 - Serial correlation of the sample may also be an issue, which may be alleviated by using integration samplers, for instance

Estimates

- NASDAQ had distinctively the most persistent volatility and showed the highest average returns
 - This can be explained by the technological nature of the index
 - Most favorable environment for trading volatility derivatives and collecting volatility premiums
 - While not as popular as the S&P 500, volume has been increasing steadily over the recent years
- Europe, on the other hand, had the least persistent volatilities
 - However, we observe significantly higher vol-of-vol, which might give a clue on the difference of performance between the two models

Thank you for your attention!