Some draft explaining the GCD machine code to make you understand more while you try to trace in modelsim waveform:

00008020	000000 <mark>000000000010000</mark> 00000100000	
20100078	00100000000 <mark>10000</mark> 0000000001111000	78h , 120d
00008820	0000000000000000 <mark>10001</mark> 00000100000	
201100b4	00100000000 <mark>10001</mark> 0000000010110100	B4h, 180d
00009020	0000000000000000 <mark>10010</mark> 00000100000	
12110006	000100 <mark>10000</mark> 10001	
0211482a	000000 <mark>10000<mark>10001</mark>01001</mark> 00000101010	
11200002	000100 <mark>01001</mark> 000000000000000000010	
02308822	000000 <mark>10001<mark>10000</mark>10001</mark> 00000100010	
08000005	000010000000000000000000000000000000000	
02118022	000000 <mark>10000<mark>10001</mark>10000</mark> 00000100010	
08000005	000010000000000000000000000000000000000	
00109020	0000000000100001001000000100000	
Ac120000	101011000001001000000000000000000000000	

Red: op code, blue: Alu funct, green: immediate value (ex 78, B4)

RsD(A1), RtD(A2), RdD

opCode	jump	aluOp	memWrite	regWrite	regDest	aluSrc	memtoReg	Branch
loadWord	0	00	0	1	0	1	1	0
= 6'b10_0011								
storeWord	0	00	1	0	0	1	1	0
= 6'b10_1011								
rType	0	10	0	1	1	0	0	0
= 6'b00_0000								
addImmediate	0	00	0	1	0	1	0	0
= 6'b00_1000								
branchIfEqual	0	01	0	0	0	0	0	1
= 6'b00_0100								
jump_inst	1	00	0	0	0	0	0	0
$= 6'b00_0010$								
Default	0	00	0	0	0	0	0	0

ALUOp	Funct	ALUControl	Function
00	xxxxxx	010	A + B
01	xxxxxx	100	A - B
10	$add = 6'b10_0000$	010	A + B
	$sub = 6'b10_0010$	100	A - B
	$slt = 6'b10_1010$	110	SLT ^[1]
	mul = 6'b01_1100	101	A * B
Default	xxxxxx	010	A + B

[1] SLT is an abbreviation for **Set Less Than.** This function is responsible for setting the output ALUResult to 1 when SrcA is less than SrcB otherwise ALUResult is set to 0.

Important notes:

Clear condition in the pipe reg

Register file has negedge clock

