Let A be a $n\times n$ diagonal matrix with characteristic polynomial

$$(x-c_1)^{d_1}(x-c_2)^{d_2}\dots(x-c_k)^{d_k},$$

where c_1, c_2, \ldots, c_k are distinct (which means that c_1 appears d_1 times on the diagonal, c_2 appears d_2 times on the diagonal, etc. and $d_1 + d_2 + \cdots + d_k = n$). Let V be the space of all $n \times n$ matrices B such that AB = BA. Prove that the dimension of V is

AB = BA. Prove that the dimension of V is

$$d_1^2 + d_2^2 + \dots + d_k^2.$$