```
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt

df = pd.read_csv("aerofit_treadmill.CSV")
```

df

_ *		Product	Age	Gender	Education	MaritalStatus	Usage	Fitness	Income	Miles
	0	KP281	18	Male	14	Single	3	4	29562	112
	1	KP281	19	Male	15	Single	2	3	31836	75
	2	KP281	19	Female	14	Partnered	4	3	30699	66
	3	KP281	19	Male	12	Single	3	3	32973	85
	4	KP281	20	Male	13	Partnered	4	2	35247	47
	175	KP781	40	Male	21	Single	6	5	83416	200
	176	KP781	42	Male	18	Single	5	4	89641	200
	177	KP781	45	Male	16	Single	5	5	90886	160
	178	KP781	47	Male	18	Partnered	4	5	104581	120
	179	KP781	48	Male	18	Partnered	4	5	95508	180
	180 rc	ows × 9 col	umns							

df.shape

→ (180, 9)

we have 180 rows and number of columns = 9

df.info()

```
</pre
   RangeIndex: 180 entries, 0 to 179
   Data columns (total 9 columns):
    # Column
             Non-Null Count Dtype
   0 Product
                 180 non-null
                              object
   int64
                              object
                              int64
                               object
                               int64
                               int64
    7 Income
8 Miles
                  180 non-null
                               int64
                  180 non-null
                               int64
   dtypes: int64(6), object(3)
   memory usage: 12.8+ KB
```

df.describe(include="all")

df[['Income', 'Miles']].describe()

$\overline{}$			
<u> </u>		Income	Miles
	count	180.000000	180.000000
	mean	53719.577778	103.194444
	std	16506.684226	51.863605
	min	29562.000000	21.000000
	25%	44058.750000	66.000000
	50%	50596.500000	94.000000
	75%	58668.000000	114.750000
	max	104581.000000	360.000000

df[['Product','Income', 'Miles']].groupby('Product').describe().T

	Product	KP281	KP481	KP781
Income	count	80.000000	60.000000	40.000000
	mean	46418.025000	48973.650000	75441.575000
	std	9075.783190	8653.989388	18505.836720
	min	29562.000000	31836.000000	48556.000000
	25%	38658.000000	44911.500000	58204.750000
	50%	46617.000000	49459.500000	76568.500000
	75%	53439.000000	53439.000000	90886.000000
	max	68220.000000	67083.000000	104581.000000
Miles	count	80.000000	60.000000	40.000000
	mean	82.787500	87.933333	166.900000
	std	28.874102	33.263135	60.066544
	min	38.000000	21.000000	80.000000
	25%	66.000000	64.000000	120.000000
	50%	85.000000	85.000000	160.000000
	75%	94.000000	106.000000	200.000000
	max	188.000000	212.000000	360.000000

df.isnull()

None of Columns have missing values.

OBSERVATION FROM THE ABOVE TABLE.

- 1. There are no missing values in the given data.
- 2. There are 3 unique product in the dataset.
- 3. KP281 is the most frequent product.
- 4. Minimum & Maximum age of the person is 18 & 50, mean is 28.79 and 75% of persons have age less than or equal to 33.

- 5. Out of 180 data points, 104's gender is Male and rest are female.
- 6. Most of the people are having 16 years of education i.e., 75% of persons are having educartion <= 16 years.
- 7. Standard devation for Income & Miles is very high. These variables might have the outliers in it .

Univariate Analysis of data:

Understanding the distribution of the data for the quantitative attributes:

- 1. Age
- 2. Education
- 3. Usage
- 4. Fitness
- 5. Income
- 6. Miles

```
draw, axis = plt.subplots(nrows=3, ncols=2, figsize=(8,7))
draw.subplots_adjust(top=1.2)
sns.histplot(df,x="Age",kde=True,ax=axis[0,0])
sns.histplot(df,x="Education",kde=True,ax=axis[0,1])
sns.histplot(df,x="Usage",kde=True,ax=axis[1,0])
sns.histplot(df,x="Fitness",kde=True,ax=axis[1,1])
sns.histplot(df,x="Income",kde=True,ax=axis[2,0])
sns.histplot(df,x="Miles",kde=True,ax=axis[2,1])
plt.show()
```


Start coding or generate with AI.

Detecting outliers using BoxPlots

```
fig, axis = plt.subplots(nrows=3, ncols=2, figsize=(6, 5))
fig.subplots_adjust(top=1.0)
sns.boxplot(data=df, x="Age", orient='h', ax=axis[0,0])
sns.boxplot(data=df, x="Education", orient='h', ax=axis[0,1])
sns.boxplot(data=df, x="Usage", orient='h', ax=axis[1,0])
sns.boxplot(data=df, x="Fitness", orient='h', ax=axis[1,1])
sns.boxplot(data=df, x="Income", orient='h', ax=axis[2,0])
sns.boxplot(data=df, x="Miles", orient='h', ax=axis[2,1])
plt.show()
```


Observations: Even from the boxplots it is quite clear that:

- · Age, Education and Usage are having very few outliers.
- · While Income and Miles are having more outliers.

Understanding the distribution of the data for the qualitative attributes:

- 1. Product
- 2. Gender
- 3. MaritalStatus

```
fig, axs = plt.subplots(nrows=1, ncols=3, figsize=(10,5))
sns.countplot(data=df, x='Product', ax=axs[0])
sns.countplot(data=df, x='Gender', ax=axs[1])
sns.countplot(data=df, x='MaritalStatus', ax=axs[2])

axs[0].set_title("Product - counts", pad=10, fontsize=14)
axs[1].set_title("Gender - counts", pad=10, fontsize=14)
axs[2].set_title("MaritalStatus - counts", pad=10, fontsize=14)
plt.show()
```


Observations

- KP281 is the most frequent product.
- · There are more Males in the data than Females.
- More Partnered persons are there in the data

To be more precise - and to get the proper analysis of customer who purchased the different product, and the percentage of the purchase of each category.

```
df1 = df[["Product","Gender","MaritalStatus"]].melt()
df1.groupby(["variable","value"])["value"].count()/len(df)
```

		value
variable	value	
Gender	Female	0.422222
	Male	0.577778
MaritalStatus	Partnered	0.594444
	Single	0.405556
Product	KP281	0.444444
	KP481	0.333333
	KP781	0.222222

Observations

dtvna: float64

Product

- 1. 44.44% of the customers have purchased KP2821 product.
- 2. 33.33% of the customers have purchased KP481 product.
- 3. 22.22% of the customers have purchased KP781 product

Gender

• 57.78% of the customers are Male.

MaritalStatus

• 59.44% of the customers are Partnered.

Bivariate Analysis:

Checking if features - Gender or MaritalStatus have any effect on the product purchased.

```
sns.set_style(style='whitegrid')
fig, axs = plt.subplots(nrows=1, ncols=2, figsize=(10, 6.5))
sns.countplot(data=df, x='Product', hue='Gender', edgecolor="0.15",
palette='Set2', ax=axs[0])
sns.countplot(data=df, x='Product', hue='MaritalStatus',
edgecolor="0.15", palette='Set3', ax=axs[1])
axs[0].set_title("Product vs Gender", pad=10, fontsize=14)
axs[1].set_title("Product vs MaritalStatus", pad=10, fontsize=14)
plt.show()
```


Observations

Product vs Gender

- · Equal number of males and females have purchased KP281 product and Almost same for the product KP481
- Most of the Male customers have purchased the KP781 product.

Product vs MaritalStatus

· Customer who is Partnered, is more likely to purchase the product.

Checking if following features have any effect on the product purchased:

1. Age

- 2. Education
- 3. Usage
- 4. Fitness
- 5. Income
- 6. Miles

```
attrs = ['Age', 'Education', 'Usage', 'Fitness', 'Income',
    'Miles']
sns.set_style("white")
fig, axs = plt.subplots(nrows=2, ncols=3, figsize=(12, 8))
fig.subplots_adjust(top=1.2)
count = 0
for i in range(2):
    for j in range(3):
        sns.boxplot(data=df, x='Product', y=attrs[count],
    ax=axs[i,j], palette='Set3')
axs[i,j].set_title(f"Product vs {attrs[count]}",
    pad=8, fontsize=13)
count += 1
```

```
<ipython-input-34-d86400db52a8>:9: FutureWarning:
    Passing `palette` without assigning `hue` is deprecated and will be removed in v0.14.0. Assign the `x` variable to `hue` and set `leg«
      sns.boxplot(data=df, x='Product', y=attrs[count],
    <ipython-input-34-d86400db52a8>:9: FutureWarning:
    Passing `palette` without assigning `hue` is deprecated and will be removed in v0.14.0. Assign the `x` variable to `hue` and set `leg«
      sns.boxplot(data=df, x='Product', y=attrs[count],
    <ipython-input-34-d86400db52a8>:9: FutureWarning:
    Passing `palette` without assigning `hue` is deprecated and will be removed in v0.14.0. Assign the `x` variable to `hue` and set `lege
      sns.boxplot(data=df, x='Product', y=attrs[count],
    <ipython-input-34-d86400db52a8>:9: FutureWarning:
    Passing `palette` without assigning `hue` is deprecated and will be removed in v0.14.0. Assign the `x` variable to `hue` and set `leg«
      sns.boxplot(data=df, x='Product', y=attrs[count],
    <ipython-input-34-d86400db52a8>:9: FutureWarning:
    Passing `palette` without assigning `hue` is deprecated and will be removed in v0.14.0. Assign the `x` variable to `hue` and set `leg«
      sns.boxplot(data=df, x='Product', y=attrs[count],
    <ipython-input-34-d86400db52a8>:9: FutureWarning:
    Passing `palette` without assigning `hue` is deprecated and will be removed in v0.14.0. Assign the `x` variable to `hue` and set `leg«
      sns.boxplot(data=df, x='Product', y=attrs[count],
        50
                                                    50
                                                                                               50
                                                                                                        0
                             0
                                                                         0
                                                                                     00
                                                                                                                     0
                                                                                                                                 00
                                         00
        45
                                         0
                                                    45
                                                                                     0
                                                                                                45
                                                                                                                                 0
                                         0
                                                                                     0
                                                                                                                                 0
                                                                                                                                 0
                                         0
                                                                                     0
        40
                                                    40
                                                                                                40
                                                                                            Age 35
     Age 35
                                                Age 35
        30
                                                    30
                                                                                               30
        25
                                                    25
                                                                                               25
        20
                                                    20
                                                                                               20
                                                                                                      KP281
               KP281
                           KP481
                                       KP781
                                                           KP281
                                                                       KP481
                                                                                   KP781
                                                                                                                  KP481
                                                                                                                               KP781
                                                                                                                  Product
                          Product
                                                                      Product
                                                                                                            Product vs Age
        50
                                                             0
                                                                                                        0
                                                    50
                                                                                               50
                             0
                                         8
                                                                         0
                                                                                     8
                                                                                                                     0
                                                                                                                                 8
        45
                                         0
                                                    45
                                                                                     0
                                                                                                45
                                                                                                                                 0
                                         0
                                                                                     0
                                                                                                                                 0
                                                                                     0
                                                                                                                                 0
        40
                                         0
                                                    40
                                                                                                40
     Age 35
                                                                                            Age 35
                                                Age 35
        30
                                                    30
                                                                                               30
        25
                                                    25
                                                                                               25
        20
                                                    20
                                                                                               20
               KP281
                           KP481
                                       KP781
                                                          KP281
                                                                       KP481
                                                                                   KP781
                                                                                                      KP281
                                                                                                                  KP481
                                                                                                                               KP781
                          Product
                                                                      Product
                                                                                                                  Product
```

Observations:

1.Product vs Age

- Customers purchasing products KP281 & KP481 are having same Age median value.
- Customers whose age lies between 25-30, are more likely to buy KP781 product.

2. Product vs education

- · Customers whose education is greater than 16, have more chances to purchase the KP781 product.
- · While the customers with Education less than 16 have equal chances of purchasing KP281 or KP481.

3.Product vs Usage

- Customers who are planning to use the treadmill greater than 4 times a week, are more likely to purchase the KP781 product.
- While the other customers are likely to purchasing KP281 or KP481.

4.Product vs Fitness

• The more the customer is fit (fitness >= 3), higher the chances of the customer to purchase the KP781 product.

5.Product vs Income

• Higher the Income of the customer (Income >= 60000), higher the chances of the customer to purchase the KP781 product.

6.Product vs Miles

If the customer expects to walk/run greater than 120 Miles per week, it is more likely that the customer will buy KP781 product.

Multivariate Analysis

attrs = ['Age', 'Education', 'Usage', 'Fitness', 'Income', 'Miles'] sns.set_style("white") fig, axs = plt.subplots(nrows=3, ncols=2, figsize=(12, 8)) fig.subplots_adjust(top=1) count = 0 for i in range(3): for j in range(2): sns.boxplot(data=df, x='Gender', y=attrs[count], hue='Product', ax=axs[i,j], palette='Set3') axs[i,j].set_title(f"Product vs {attrs[count]}", pad=8, fontsize=13) count += 1

```
attrs = ['Age', 'Education', 'Usage', 'Fitness', 'Income', 'Miles']
sns.set_style("white")
fig, axs = plt.subplots(nrows=3, ncols=2, figsize=(12, 8))
fig.subplots_adjust(top=1)
count = 0
for i in range(3):
    for j in range(2):
        sns.boxplot(data=df, x='Gender', y=attrs[count], hue='Product',
ax=axs[i,j], palette='Set3')
axs[i,j].set_title(f"Product vs {attrs[count]}", pad=8,
fontsize=13)
count += 1
```


Observations

• Females planning to use treadmill 3-4 times a week, are more likely to buy KP481 product.

Computing Marginal & Conditional Probabilities:

• Marginal Probability bold text

Conditional Probabilities

Probability of each product given gender:

```
def p_prod_given_gender(gender, print_marginal=False):
  if gender is not "Female" and gender is not "Male":
   return "Invalid gender value."
  df1 = pd.crosstab(index=df['Gender'], columns=[df['Product']])
 p_781 = df1['KP781'][gender] / df1.loc[gender].sum()
  p_481 = df1['KP481'][gender] / df1.loc[gender].sum()
  p_281 = df1['KP281'][gender] / df1.loc[gender].sum()
  if print_marginal:
    print(f"P(Male): {df1.loc['Male'].sum()/len(df):.2f}")
    print(f"P(Female): {df1.loc['Female'].sum()/len(df):.2f}\n")
  print(f"P(KP781/\{gender\}): \{p_781:.2f\}")
  print(f"P(KP481/{gender}): {p_481:.2f}")
  print(f"P(KP281/{gender}): {p_281:.2f}\n")
p_prod_given_gender('Male', True)
p_prod_given_gender('Female')
→ P(Male): 0.58
     P(Female): 0.42
     P(KP781/Male): 0.32
     P(KP481/Male): 0.30
     P(KP281/Male): 0.38
     P(KP781/Female): 0.09
     P(KP481/Female): 0.38
     P(KP281/Female): 0.53
     <>:2: SyntaxWarning: "is not" with a literal. Did you mean "!="? 
<>:2: SyntaxWarning: "is not" with a literal. Did you mean "!="?
     <>:2: SyntaxWarning: "is not" with a literal. Did you mean "!="?
     <>:2: SyntaxWarning: "is not" with a literal. Did you mean "!="?
<ipython-input-48-a583626effe2>:2: SyntaxWarning: "is not" with a literal. Did you mean "!="?
       if gender is not "Female" and gender is not "Male":
     <ipython-input-48-a583626effe2>:2: SyntaxWarning: "is not" with a literal. Did you mean "!="?
       if gender is not "Female" and gender is not "Male":
pd.crosstab(index=df['Gender'], columns=df['Product'])
```

