Geometry Problem booklet

Assoc. Prof. Cornel Pintea

E-mail: cpintea math.ubbcluj.ro

Contents

1	Week 1: Vector algebra		
	1.1	Brief theoretical background. Free vectors	
		1.1.1 Operations with vectors	
		• The addition of vectors	
		• The multiplication of vectors with scalars	
		1.1.2 The vector structure on the set of vectors	
	1 2	Problems	

Module leader: Assoc. Prof. Cornel Pintea

Department of Mathematics, "Babeş-Bolyai" University 400084 M. Kogălniceanu 1, Cluj-Napoca, Romania

1 Week 1: Vector algebra

This section briefly presents the theoretical aspects covered in the tutorial. For more details please check the lecture notes.

1.1 Brief theoretical background. Free vectors

Vectors Let \mathcal{P} be the three dimensional physical space in which we can talk about points, lines, planes and various relations among them. If $(A, B) \in \mathcal{P} \times \mathcal{P}$ is an ordered pair, then A is called the *original point* or the *origin* and B is called the *terminal point* or the *extremity* of (A, B).

Definition 1.1.1. The ordered pairs (A, B), (C, D) are said to be equipollent, written $(A, B) \sim (C, D)$, if the segments [AD] and [BC] have the same midpoint.

Pairs of equipollent points $(A,B) \sim (C,D)$

Remark 1.1.2. If the points A, B, C, $D \in \mathcal{P}$ are not collinear, then $(A, B) \sim (C, D)$ if and only if ABDC is a parallelogram. In fact the length of the segments [AB] and [CD] is the same whenever $(A, B) \sim (C, D)$.

Proposition 1.1.3. *If* (A, B) *is an ordered pair and* $O \in \mathcal{P}$ *is a given point, then there exists a unique point* X *such that* $(A, B) \sim (O, X)$.

Proposition 1.1.4. *The equipollence relation is an equivalence relation on* $\mathcal{P} \times \mathcal{P}$.

Definition 1.1.5. *The equivalence classes with respect to the equipollence relation are called* (free) vectors.

Denote by \overrightarrow{AB} the equivalence class of the ordered pair (A, B), that is $\overrightarrow{AB} = \{(X, Y) \in \mathcal{P} \times \mathcal{P} \mid (X, Y) \sim (A, B)\}$ and let $\mathcal{V} = \mathcal{P} \times \mathcal{P} /_{\sim} = \{\overrightarrow{AB} \mid (A, B) \in \mathcal{P} \times \mathcal{P}\}$ be the set of (free) vectors. The *length* or the *magnitude* of the vector \overrightarrow{AB} , denoted by $\|\overrightarrow{AB}\|$ or by $|\overrightarrow{AB}|$, is the length of the segment [AB].

Remark 1.1.6. If two ordered pairs (A, B) and (C, D) are equipplient, i.e. the vectors \overrightarrow{AB} and \overrightarrow{CD} are equal, then they have the same length, the same direction and the same sense. In fact a vector is determined by these three items.

Proposition 1.1.7. 1. $\overrightarrow{AB} = \overrightarrow{CD} \Leftrightarrow \overrightarrow{AC} = \overrightarrow{BD}$.

- 2. $\forall A, B, O \in \mathcal{P}, \exists ! X \in \mathcal{P} \text{ such that } \overrightarrow{AB} = \overrightarrow{OX}.$
- 3. $\overrightarrow{AB} = \overrightarrow{A'B'}, \overrightarrow{BC} = \overrightarrow{B'C'} \Rightarrow \overrightarrow{AC} = \overrightarrow{A'C'}.$

Definition 1.1.8. If O, $M \in \mathcal{P}$, the the vector OM is denoted by \overrightarrow{r}_M and is called the *position vector of M with respect to O*.

Corollary 1.1.9. The map $\varphi_O: \mathcal{P} \to \mathcal{V}$, $\varphi_O(M) = \overrightarrow{r}_M$ is one-to-one and onto, i.e bijective.

1.1.1 Operations with vectors

• The addition of vectors Let \overrightarrow{a} , $\overrightarrow{b} \in \mathcal{V}$ and $O \in \mathcal{P}$ be such that $\overrightarrow{a} = \overrightarrow{OA}$, $\overrightarrow{b} = \overrightarrow{AB}$. The vector \overrightarrow{OB} is called the *sum* of the vectors \overrightarrow{a} and \overrightarrow{b} and is written $\overrightarrow{OB} = \overrightarrow{OA} + \overrightarrow{AB} = \overrightarrow{a} + \overrightarrow{b}$.

Let O' be another point and A', $B' \in \mathcal{P}$ be such that $\overrightarrow{O'A'} = \overrightarrow{a}$, $\overrightarrow{A'B'} = \overrightarrow{b}$. Since $\overrightarrow{OA} = \overrightarrow{O'A'}$ and $\overrightarrow{AB} = \overrightarrow{A'B'}$ it follows, according to Proposition 1.1.4 (3), that $\overrightarrow{OB} = \overrightarrow{O'B'}$. Therefore the vector $\overrightarrow{a} + \overrightarrow{b}$ is independent on the choice of the point O.

Proposition 1.1.10. The set V endowed to the binary operation $V \times V \to V$, $(\overrightarrow{a}, \overrightarrow{b}) \mapsto \overrightarrow{a} + \overrightarrow{b}$, is an abelian group whose zero element is the vector $\overrightarrow{AA} = \overrightarrow{BB} = \overrightarrow{0}$ and the opposite of \overrightarrow{AB} , denoted by \overrightarrow{AB} , is the vector \overrightarrow{BA} .

In particular the addition operation is associative and the vector

$$(\overrightarrow{a} + \overrightarrow{b}) + \overrightarrow{c} = \overrightarrow{a} + (\overrightarrow{b} + \overrightarrow{c})$$

is usually denoted by $\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c}$. Moreover the expression

$$((\cdots (\overrightarrow{a}_1 + \overrightarrow{a}_2) + \overrightarrow{a}_3 + \cdots + \overrightarrow{a}_n) \cdots), \tag{1.1}$$

is independent of the distribution of paranthesis and it is usually denoted by

$$\overrightarrow{a}_1 + \overrightarrow{a}_2 + \cdots + \overrightarrow{a}_n$$
.

Example 1.1.11. If $A_1, A_2, A_3, \ldots, A_n \in \mathcal{P}$ are some given points, then

$$\overrightarrow{A_1A_2} + \overrightarrow{A_2A_3} + \cdots + \overrightarrow{A_{n-1}A_n} = \overrightarrow{A_1A_n}$$
.

This shows that $\overrightarrow{A_1A_2} + \overrightarrow{A_2A_3} + \cdots + \overrightarrow{A_{n-1}A_n} + \overrightarrow{A_nA_1} = \overrightarrow{0}$, namely the sum of vectors constructed on the edges of a closed broken line is zero.

Corolarul 1.1.12. If $\overrightarrow{a} = \overrightarrow{OA}$, $\overrightarrow{b} = \overrightarrow{OB}$ are given vectors, there exists a unique vector $\overrightarrow{x} \in \mathcal{V}$ such that $\overrightarrow{a} + \overrightarrow{x} = \overrightarrow{b}$. In fact $\overrightarrow{x} = \overrightarrow{b} + (-\overrightarrow{a}) = \overrightarrow{AB}$ and is denoted by $\overrightarrow{b} - \overrightarrow{a}$.

• The multiplication of vectors with scalars

Let $\alpha \in \mathbb{R}$ be a scalar and $\overrightarrow{a} = \overrightarrow{OA} \in \mathcal{V}$ be a vector. We define the vector $\alpha \cdot \overrightarrow{a}$ as follows: $\alpha \cdot \overrightarrow{a} = \overrightarrow{0}$ if $\alpha = 0$ or $\overrightarrow{a} = \overrightarrow{0}$; if $\overrightarrow{a} \neq \overrightarrow{0}$ and $\alpha > 0$, there exists a unique point on the half line]OA such that $||OB|| = \alpha \cdot ||OA||$ and define $\alpha \cdot \overrightarrow{a} = \overrightarrow{OB}$; if $\alpha < 0$ we define $\alpha \cdot \overrightarrow{a} = -(|\alpha| \cdot \overrightarrow{a})$. The external binary operation

$$\mathbb{R} \times \mathcal{V} \to \mathcal{V}$$
, $(\alpha, \overrightarrow{a}) \mapsto \alpha \cdot \overrightarrow{a}$

is called the multiplication of vectors with scalars.

Proposition 1.1.13. *The following properties hold:*

$$(v1) \ (\alpha + \beta) \cdot \stackrel{\rightarrow}{a} = \alpha \cdot \stackrel{\rightarrow}{a} + \beta \cdot \stackrel{\rightarrow}{a}, \ \forall \alpha, \beta \in \mathbb{R}, \ \stackrel{\rightarrow}{a} \in \mathcal{V}.$$

$$(v2) \ \alpha \cdot (\overrightarrow{a} + \overrightarrow{b}) = \alpha \cdot \overrightarrow{a} + \alpha \cdot \overrightarrow{b}, \ \forall \alpha \in \mathbb{R}, \ \overrightarrow{a}, \overrightarrow{b} \in \mathcal{V}.$$

(v3)
$$\alpha \cdot (\beta \cdot \overrightarrow{a}) = (\alpha \beta) \cdot \overrightarrow{a}, \forall \alpha, \beta \in \mathbb{R}.$$

$$(v4) \ 1 \cdot \overrightarrow{a} = \overrightarrow{a}, \ \forall \ \overrightarrow{a} \in \mathcal{V}.$$

1.1.2 The vector structure on the set of vectors

Theorem 1.1.14. The set of (free) vectors endowed with the addition binary operation of vectors and the external binary operation of multiplication of vectors with scalars is a real vector space.

Example 1.1.15. If A' is the midpoint of the egde [BC] of the triangle ABC, then

$$\overrightarrow{AA'} = \frac{1}{2} (\overrightarrow{AB} + \overrightarrow{AC}).$$

1.2 Problems

- 1. ([4, Problema 3, p. 1]) Let \overrightarrow{OABCDE} be a regular hexagon in which $\overrightarrow{OA} = \overrightarrow{a}$ and $\overrightarrow{OE} = \overrightarrow{b}$. Express the vectors \overrightarrow{OB} , \overrightarrow{OC} , \overrightarrow{OD} in terms of the vectors \overrightarrow{a} and \overrightarrow{b} . Show that $\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC} + \overrightarrow{OD} + \overrightarrow{OE} = 3$ \overrightarrow{OC} .
- 2. ([4, Problema 11, p. 3]) Consider two parallelograms, $A_1A_2A_3A_4$, $B_1B_2B_3B_4$ in \mathcal{P} , and M_1 , M_2 , M_3 , M_4 the midpoints of the segments $[A_1B_1]$, $[A_2B_2]$, $[A_3B_3]$, $[A_4B_4]$ respectively. Show that:
 - 2 $\overrightarrow{M_1M_2} = \overrightarrow{A_1A_2} + \overrightarrow{B_1B_2}$ and 2 $\overrightarrow{M_3M_4} = \overrightarrow{A_3A_4} + \overrightarrow{B_3B_4}$.

- M_1 , M_2 , M_3 , M_4 are the vertices of a parallelogram.
- 3. ([4, Problema 12, p. 3]) Let M, N be the midpoints of two opposite edges of a given quadrilateral ABCD and P be the midpoint of [MN]. Show that

$$\overrightarrow{PA} + \overrightarrow{PB} + \overrightarrow{PC} + \overrightarrow{PD} = 0$$

4. ([4, Problema 13, p. 3]) If *G* is the centroid of a tringle *ABC* and *O* is a given point, show that

$$\overrightarrow{OG} = \frac{\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC}}{3}.$$

- 5. ([4, Problema 14, p. 4]) Consider the triangle *ABC* alongside its orthocenter *H*, its circumcenter *O* and the diametrically opposed point *A'* of *A* on the latter circle. Show that:
 - (a) $\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC} = \overrightarrow{OH}$.
 - (b) $\overrightarrow{HB} + \overrightarrow{HC} = \overrightarrow{HA'}$.
 - (c) $\overrightarrow{HA} + \overrightarrow{HB} + \overrightarrow{HC} = 2 \overrightarrow{HO}$.

Solution. (5a) Let M be the point with the property $\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC} = \overrightarrow{OM}$, namely $\overrightarrow{OA} + \overrightarrow{OC} = \overrightarrow{OM} - \overrightarrow{OB} = \overrightarrow{BM}$. But $\overrightarrow{OA} + \overrightarrow{OC} = \overrightarrow{OO'} \perp \overrightarrow{AC}$, i.e. $\overrightarrow{BM} \perp \overrightarrow{AC}$. One can similarly show that $\overrightarrow{CM} \perp \overrightarrow{AB}$ and $\overrightarrow{AM} \perp \overrightarrow{BC}$. Consequently M = H.

- (5b) A'BHC is a parallelogram as the two pairs of opposite edges are parallel. Indeed one of the pairs is orthogonal to AC and the other one is orthogonal to AB. Consequently $\overrightarrow{HB} + \overrightarrow{HC} = \overrightarrow{HA'}$.
- (5c) $\overrightarrow{HA} + \overrightarrow{HB} + \overrightarrow{HC} = \overrightarrow{HA} + \overrightarrow{HA'} = 2 \overrightarrow{HO}$. For an alternative solution we may observe:

$$\overrightarrow{HA} + \overrightarrow{HB} + \overrightarrow{HC} = \overrightarrow{HO} + \overrightarrow{OA} + \overrightarrow{HO} + \overrightarrow{OB} + \overrightarrow{HO} + \overrightarrow{OC}$$

$$= 3 \overrightarrow{HO} + \overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC} = 3 \overrightarrow{HO} + \overrightarrow{OH} = 2 \overrightarrow{HO}.$$

- 6. ([4, Problema 15, p. 4]) Consider the triangle *ABC* alongside its centroid *G*, its orthocenter *H* and its circumcenter *O*. Show that O, G, H are collinear and $3 \stackrel{\longrightarrow}{HG} = 2 \stackrel{\longrightarrow}{HO}$.
- 7. ([4, Problema 12, p. 7]) Consider two perpendicular chords AB and CD of a given circle and $\{M\} = AB \cap CD$. Show that

$$\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC} + \overrightarrow{OD} = 2 \overrightarrow{OM}$$
.

- 8. ([4, Problema 21(a), p. 9]) In a triangle ABC consider the points M, L on the side AB and N, T on the side AC such that $3\overrightarrow{AL} = 2\overrightarrow{AM} = \overrightarrow{AB}$ and $3\overrightarrow{AT} = 2\overrightarrow{AN} = \overrightarrow{AC}$. Show that $\overrightarrow{AB} + \overrightarrow{AC} = 5\overrightarrow{AS}$, where $\{S\} = MT \cap LN$.
- 9. ([4, Problema 11, p. 94]) Consider two triangles $A_1B_1C_1$ and $A_2B_2C_2$, not necessarily in the same plane, alongside their centroids G_1 , G_2 . Show that $A_1A_2 + B_1B_2 + C_1C_2 = 3 G_1G_2$.
- 10. ([4, Problema 27, p. 13]) Consider a tetrahedron $A_1A_2A_3A_4$ and the midpoints A_{ij} of the edges A_iA_i , $i \neq j$. Show that:
 - (a) The lines $A_{12}A_{34}$, $A_{13}A_{24}$ and $A_{14}A_{23}$ are concurrent in a point G.
 - (b) The medians of the tetrahedron (the lines passing through the vertices and the centroids of the opposite faces) are also concurrent at *G*.
 - (c) Determine the ratio in which the point *G* divides each median.
 - (d) Show that $\overrightarrow{GA_1} + \overrightarrow{GA_2} + \overrightarrow{GA_3} + \overrightarrow{GA_4} = \overrightarrow{0}$.
 - (e) If M is an arbitrary point, show that $\overrightarrow{MA_1} + \overrightarrow{MA_2} + \overrightarrow{MA_3} + \overrightarrow{MA_4} = 4 \overrightarrow{MG}$.

References

[1] Andrica, D., Ţopan, L., Analytic geometry, Cluj University Press, 2004.

- [2] Galbură Gh., Radó, F., Geometrie, Editura didactică și pedagogică-București, 1979.
- [3] Pintea, C. Geometrie. Elemente de geometrie analitică. Elemente de geometrie diferențială a curbelor și suprafețelor, Presa Universitară Clujeană, 2001.
- [4] Radó, F., Orban, B., Groze, V., Vasiu, A., Culegere de Probleme de Geometrie, Lit. Univ. "Babeş-Bolyai", Cluj-Napoca, 1979.