

Universidad de Buenos Aires

FACULTAD DE CIENCIAS EXACTAS
DEPARTAMENTO DE MATEMÁTICA

Comportamiento asintótico del tiempo de covertura en arboles de Galton-Watson

Joaquin E. Viera

Directora: Inés Armendariz Co-Director: Santiago Saglietti

Fecha: 12 de agosto de 2025

Resumen / Abstract

Aquí va el resumen del trabajo. Puedes incluir objetivos, metodología, resultados y conclusiones más importantes.

Palabras clave: palabra1, palabra2, palabra3.

Agradecimientos

Aquí puedes agradecer a quienes colaboraron en el desarrollo del trabajo: familiares, profesores, instituciones, etc.

Índice general

\mathbf{R}	esumen / Abstract	1
\mathbf{A}_{i}	gradecimientos	2
1.	Introducción	4
	1.1. Contexto	4
	1.2. Motivación	4
	1.3. Objetivos	
	1.4. Estructura del documento	
2.	Presentación del modelo y preliminares	5
	2.1. Concepto 1	5
	2.2. Concepto 2	
3.	Relación del cover timer con el branching process/GFF	6
	3.1. Diseño del estudio	6
	3.2. Procedimientos	6
4.	Resultado sobre el branching process	7
	4.1. Resultado sobre la ultima generación	7
	4.1.1. Cota superior	7
	4.1.2. Cota inferior	8
	4.2. Resultado sobre todo el arbol	8
5 .	Conclusiones	9
	5.1. Conclusiones generales	9
	5.1. Conclusiones generales	_

Introducción

1.1. Contexto

Describe el contexto general del tema tratado.

1.2. Motivación

Explica por qué elegiste este tema.

1.3. Objetivos

Menciona los objetivos generales y específicos.

1.4. Estructura del documento

Describe brevemente qué se trata en cada capítulo.

Presentación del modelo y preliminares

2.1. Concepto 1

Explicación y fuentes.

2.2. Concepto 2

Más teoría relacionada.

Relación del cover timer con el branching process/GFF

3.1. Diseño del estudio

Describe el enfoque.

3.2. Procedimientos

Explica cómo se llevó a cabo.

Resultado sobre el branching process

4.1. Resultado sobre la ultima generación

Durante esta sección, para no sobrecargar de notación, dado un arbol de Galton-Watson T que no se extingue vamos a considerar $\mathbb{P}(\cdot|T) = \mathbb{P}(\cdot)$, analogamente con la esperanza.

Teorema 1. Dado un GFF $\eta = (\eta_v)_{v \in T_n}$, construido como antes. Entonces,

$$\mathbb{E}[\max_{v \in L_n} \eta_v] = n\sqrt{2\log m} (1 + o(1)). \tag{4.1}$$

4.1.1. Cota superior

Sea $\bar{Z}_n = \sum_{v \in L_n} \mathbf{1}_{S_v > (1+\epsilon)x^*n}$, que cuenta la cantidad de vertices, en la *n*-th generación, se encuentran por arriba de $nx^*(1+\epsilon)$. Aplicando el metodo del primer momento: tenemos, para todo $v \in L_n$,

$$\mathbb{E}\bar{Z}_n = |L_n|\mathbb{P}(S_v > n(1+\epsilon)x^*) \le CWk^n e^{-nI((1+\epsilon)x^*)},$$

Donde aplicamos la desigualdad de Chebyshev en la ultima desigualdad y la definicion de I. Además, por la monotonia estricta de I, tenemos que $\mathbb{E}\bar{Z}_n \leq e^{-nc(\epsilon)}$, para algun $c(\epsilon) > 0$. Por lo tanto,

$$\mathbb{P}(M_n > (1+\epsilon)nx^*) \le \mathbb{E}[\bar{Z}_n] \le CWe^{-c(\epsilon)n}. \tag{4.2}$$

Por otro lado,

$$\mathbb{E}M_n \le \mathbb{E}M_n \mathbf{1}_{M_n \ge 0} = \int_0^\infty \mathbb{P}(M_n > t)dt = \int_0^{(1+\epsilon)nx^*} \mathbb{P}(M_n > t)dt + \int_{(1+\epsilon)nx^*}^\infty \mathbb{P}(M_n > t)dt$$
(4.3)

Luego, usando la cota de 4.2 en el segundo integrando de 4.3 e integrando, llegamos a que,

$$\mathbb{E}M_n \le nx^*(1+\epsilon) + nx^* \frac{CWe^{-2nI(x^*)\epsilon}}{2nI(x^*)}.$$
(4.4)

Para todo $\epsilon > 0$. Haciendo $\epsilon \to 0$ obtenemos la cota superior.

4.1.2. Cota inferior

4.2. Resultado sobre todo el arbol

Comparación con literatura o hipótesis.

Conclusiones

5.1. Conclusiones generales

Resumen de hallazgos.

5.2. Trabajo futuro

Ideas para desarrollos posteriores.

Bibliografía

- [1] Apellido, Nombre. Título del libro o artículo. Editorial, Año.
- [2] Otro Apellido, Otro Nombre. Otro título. Otra Editorial, 2021.