INFORMÁTICA GENERAL (PARTE A:TEORÍA)

A4T: SOFTWARE DE APLICACIONES: BASES DE DATOS

1º GRADO EN INGENIERÍA INFORMÁTICA Mª del Carmen de Castro Cabrera

Índice

- 0. Objetivos específicos
- 1. Limitaciones de los sistemas de ficheros.
- 2. Base de datos y sistema de gestión de bases de datos. Conceptos básicos.
- 3. Arquitectura de las BDs y de los SGBDs.
- 4. Evolución histórica de las BBDD.
- 5. Tipos de bases de datos
- 6. El modelo relacional. Relaciones. Lenguajes de consulta.

Objetivos específicos (1/2)

Al terminar el tema (asignatura) el/la estudiante *debe ser* capaz de:

- 1. Describir los inconvenientes de los sistemas de gestión de datos basados en archivos.
- 2. Describir los requisitos que debe tener un sistema de gestión de bases de datos.
- 3. Definir Base de Datos, describir su estructura y los conceptos relacionados.
- 4. Conocer la evolución de las Bases de Datos.

Objetivos específicos (2/2)

Al terminar el tema (asignatura) el/la estudiante debe ser capaz de:

- **5**. Definir, describir y diferenciar: los distintos tipos de Bases de Datos.
- 6. Describir y definir un SGBD (DBMS).
- **7**. Responder adecuadamente a cuestiones y ejercicios relacionados con los conceptos tratados y razonar las respuestas.

1. Limitaciones de los sistemas de ficheros.

- Difícil mantenimiento: duplicidad de información, actualización.
- Redundancia y duplicidad de la información: Cada aplicación utiliza sus propios ficheros exclusivos.
- •Restricciones de búsqueda: en un fichero se guardan datos para acceder a ellos de determinada forma
- Dependencia de las aplicaciones: La representación física de los datos en el soporte de información y la técnica utilizada para el acceso están integradas en el propio código de la aplicación.
- Confidencialidad y seguridad: (no permitir acceso a determinados usuarios e impedir modificaciones por parte de usuarios no autorizados). Este control lo lleva el programa y el sistema operativo.

2. Base de datos y SGBD. Conceptos básicos (1/5) Requisitos de un buen sistema de base de datos:

- Acceso múltiple
- Uso múltiple
- >Flexibilidad
- Confidencialidad y seguridad
- Protección contra fallos
- Independencia física
- Independencia lógica
- Redundancia controlada
- Interfaz de alto nivel
- Interactiva ("query")

2. Base de datos y SGBD. Conceptos básicos (2/5).

- Una base de datos es un sistema formado por conjunto de datos y un software que lo gestiona.
- •Una base de datos es un conjunto de datos persistentes utilizado por los sistemas de aplicación de una organización concreta [DAT 04].
- Colección de datos interrelacionados almacenados conjuntamente sin redundancias perjudiciales o innecesarias.
 Su finalidad es servir a una o más aplicaciones del mejor modo posible.
- Los datos se almacenan de modo que resulten independientes de los programas que los usan. Se utilizan métodos bien definidos para incluir nuevos datos y modificar o consultar los ya existentes (Martín, 1975).

2. Base de datos y SGBD. Conceptos básicos (3/5)

•Un sistema de gestión de bases de datos (SGBD o DBMS) es el software que tiene como fin la creación, control y manipulación de la información de una base de datos.

- Un sistema de gestión de bases de datos (SGBD o DBMS) es una capa software que gestiona todos los accesos a la base de datos y oculta a los usuarios de la base de datos los detalles a nivel de hardware. Actúa de intermediario entre los programas de aplicación y el sistema operativo.
- Para realizar sus funciones utiliza:
 - •DDL: Lenguaje de Descripción de Datos
 - •DML: Lenguaje de Manipulación de datos.

2. Base de datos y SGBD. Conceptos básicos (4/5).

Funciones del SGBD:

- Aceptar definiciones de datos en la forma fuente y convertirlas a la forma objeto correspondiente. Incluye un procesador DDL para cada uno de los *lenguajes de definición de datos*.
- Procesar peticiones para recuperar, actualizar y eliminar datos de la BD, o añadir nuevos datos a ésta. Incluye un procesador DML para el lenguaje de manipulación de datos.
- Optimización y ejecución: Las peticiones de manipulación de datos deben procesarse por el optimizador, que determina una manera eficiente de realizarlas.
- Seguridad e integridad de los datos: El SGBD tiene que supervisar las peticiones del usuario e impedir todo intento de violar las restricciones de seguridad e integridad definidas por el DBA (Administrador de la Base de Datos).

2. Base de datos y SGBD. Conceptos básicos (5/5).

2. Base de datos y SGBD. Conceptos básicos (6/6).

Entidades: objetos o elementos sobre los que se almacena Información.

Atributos: datos que se almacenan de cada entidad (características o propiedades).

Identificador: es el atributo o conjunto de atributos que identifican de manera única a cada elemento.

Llave de búsqueda: puede o no coincidir con el identificador.

Relaciones: son las relaciones existentes entre las entidades y se almacenan junto a la base de datos (simples o complejas).

Subesquema o vista: descripción de la estructura lógica de una parte de la base de datos usada por un programa o usuario.

3. Arquitectura de las BDs y de los SGBDs (I).

Arquitectura ANSI/SPARC. Fue propuesta por el Grupo de Estudio en Sistemas de Administración de Bases de Datos. Consta de tres niveles:

- *Nivel interno*. Representación de *bajo nivel* de la BD y es descrito por el *esquema interno*, que define los tipos de los registros almacenados, la secuencia de almacenamiento de los mismos, los índices existentes, la representación interna de los campos, ...
- *Nivel conceptual*. Representación de *toda la información* de la BD, la cual difiere del modo en que cualquier usuario específico ve los datos. Es una vista de los datos *tal como son*, en vez de tal como los usuarios están obligados a verlos por las limitaciones del lenguaje o el *hardware* específico que utilicen.
- •Está descrito por el esquema conceptual, que además de la definición de cada uno de los diversos tipos de registros, incluye las restricciones de seguridad e integridad.

3. Arquitectura de las BDs y de los SGBDs (II)

- Nivel externo. Es el nivel correspondiente al usuario individual, el cual puede ser un programador de aplicaciones o un usuario final.
- Todos los lenguajes que se usan incluyen un sublenguaje de datos, es decir, un DDL y un DML. La mayoría de los sistemas actuales soportan SQL (Structured Query Language).
- Un usuario individual se interesará por una parte de la BD. Una *vista externa* es el contenido de una BD como lo percibe dicho usuario. Cada vista externa viene descrita por un *esquema externo*, que se ocupa de definir cada uno de los distintos tipos de *registros externos* de esa vista.

3. Arquitectura de las BDs y de los SGBDs (III)

Además de los niveles vistos, la arquitectura ANSI/SPARC comprende una transformación conceptual/interna y varias externas/conceptual.

- Transformación conceptual/interna. Define la correspondencia entre la vista conceptual y la BD almacenada, y específica cómo se representan los registros y campos conceptuales en el nivel interno.
- Transformación externa/conceptual. Describe la correspondencia entre una vista externa concreta y la vista conceptual. Puede existir cualquier número de vistas externas simultáneamente, y cada una de éstas puede ser compartida por cualquier número de usuarios.

3. Arquitectura de las BDs y de los SGBDs (IV)

4. Evolución histórica delas BDs

- →A principios de la década de los años 60, concepto de Base de Datos.
- → En 1970, el Dr. Codd propone como modelo de datos: el modelo relacional.
- → En 1971, el grupo de trabajo de *Codasyl* publicó las especificaciones de un *SGBD*, basado en el modelo en red.
- → En 1975, se propone la arquitectura ANSI/X3/SPARC.
- → Entre 1974 y 75 surge el lenguaje SEQUEL, que a finales de 1979 cambia su nombre por SQL
- → En los años 80 aparece el primer SGBD relacional comercial: Oracle.
- →En los 90, nuevas plataformas (cliente/servidor)
- →A finales de los años 90 surgen las BDOO, los SGBOO y los lenguajes de programación orientados a objetos.

5. Tipos de Bases de Datos (I)

Bases de datos jerárquicas: tiene estructuras de árbol y no se pueden definir relaciones muchos a muchos.

Figura 11.19. Esquema de una base de datos jerárquica.

Bases de datos en red: Hay dos tipos:

- a) Red compleja
- b) Red simple

5. Tipos de Bases de Datos (II)

Bases de datos relacionales: Está formada por *relaciones* que se representan en forma de tabla (estructura bidimensional compuesta por una colección de registros del mismo tipo).

Número de vuelo	Avión	Origen	Destino	Hora de salida
27	DC-9	Granada	Madrid	8:45
404	DC-10	Madrid	Oslo	10:37
1 024	B-727	Barcelona	París	9:45
114	B-727	Santiago	Sevilla	17:21
503	DC-9	Madrid	Málaga	15:30

6. El modelo relacional (I)

Bases de datos relacionales: las tablas deben cumplir unas restricciones:

- Todos los registros son del mismo tipo.
- No pueden aparecer campos repetidos.
- No deben existir registros duplicados.
- El orden de los registros en la tabla es indiferente.
- Cada tabla tiene una llave formada por uno o varios campos.

6. El modelo relacional (II)

- Los productos SGBD basados en el modelo relacional han dominado el mercado de las bases de datos.
- Fue presentado en 1969. Se basa en la lógica y en las matemáticas. En la actualidad, la gran mayoría de los sistemas de bases de datos son relacionales y operan prácticamente en todo tipo de plataformas.
- Los datos son percibidos por el usuario como tablas (relaciones).
- Los operadores generan nuevas tablas (relaciones) a partir de las anteriores:
 - Restringir o seleccionar: Extrae las filas especificadas de una tabla.
 - Proyectar: Extrae las columnas especificadas de una tabla.
- *Unir o componer*: Une dos tablas según valores comunes de una tabla común.

6. El modelo relacional (III)

• Ejemplo: Base de datos de departamentos y empleados (dos tablas: EMP y DEPTO).

EMP#	NOMEMP	DEPTO#	SALARIO
E1	López	D1	40000
E2	García	D1	42000
E3	Moreno	D2	30000
E4	Salas	D2	35000

DEPTO#	NOMDEPTO	PRESUPUESTO	
D1	Comercialización	10000000	
D2	Desarrollo	12000000	
D3	Investigación	5000000	

6. El modelo relacional (IV)

• **Restringir** (*select*):obtenemos otra tabla con los registros que cumplen una condición.

SELECT * FROM DEPTO WHERE PRESUPUESTO > 8000000;

DEPTO#	NOMDEPTO	PRESUPUESTO	
D1	Comercialización	10000000	
D2	Desarrollo	12000000	

 Proyectar: obtenemos otra tabla con los mismos registros que la primera pero sólo determinadas columnas.

SELECT DEPTO#, PRESUPUESTO FROM DEPTO;

DEPTO#	PRESUPUESTO		
D1	10000000		
D2	12000000		
D3	5000000		

6. El modelo relacional (V)

• **Unir** (*join*): obtenemos otra tabla unión de otras dos anteriores

```
SELECT EMP#, NOMEMP, SALARIO, EMP.DEPTO#, NOMDEPTO,
PRESUPUESTO
FROM EMP, DPTO
WHERE EMP.DEPTO# = DEPTO.DEPTO#;
```

EMP#	NOMEMP	SALARIO	DEPTO#	NOMDEPTO	PRESUPUESTO
E1	López	40000	D1	Comercialización	10000000
E2	García	42000	D1	Comercialización	10000000
E3	Moreno	30000	D2	Desarrollo	12000000
E4	Salas	35000	D2	Desarrollo	12000000

6. El modelo relacional (VI)

- La mayor parte de los SGBDs incorporan un *procesador de lenguaje de consulta*, mediante el cual el usuario emite solicitudes a la BD de manera interactiva. Estos lenguajes también incluyen operaciones de eliminación, inserción y modificación de datos.
- SQL: Lenguaje estándar para trabajar con bases de datos relacionales soportado por la mayoría de los productos comerciales. Desarrollado por *IBM Research* a principios de los 70s, el estándar actual es SQL 2008.
- En un principio, fue diseñado específicamente como un sublenguaje de datos. Con la incorporación en 1996 de la característica PSM (persistent stored modules) al estándar, SQL pasó a ser un lenguaje completo.

Bibliografía.

[DAT 04] C.J. Date. *Introducción a los sistemas de bases de datos. Octava Edición*. Pearson Educación, 2004.

[ELM 02] R. Elmasri, S.B. Navathe. Fundamentos de sistemas de bases de datos. Cuarta Edición. Pearson Educación, 2002.

[PRI 06] A.Prieto, A. Lloris, J.C. Torres. Introducción a la Informática Cuarta Edición. Mc Graw-Hill, 2006.