"Podstawy Sztucznej Inteligencji"

Scenariusz 6

Temat ćwiczenia: Budowa i działanie sieci Kohonena dla WTM.

1. Sieć Kohonena – jedna z podstawowych typów sieci samoorganizujących się typu konkurencyjnego. Uczona jest w trybie bez nauczyciela. Konkurencyjne uczenie w sieciach tego typu polega na prezentowaniu sieci wzorców uczących X. Wagi poszczególnych neuronów adaptują się w taki sposób, że neurony te stają się reprezentantami poszczególnych klas sygnałów wejściowych. Można wyróżnić dwa podstawowe typy sieci Kohonena: WTA oraz WTM. W obu przypadkach dla każdego wektora wejściowego X najpierw jest określana odległość pomiędzy wektorem wejściowym X oraz wektorem wag W w poszczególnych neuronach. Konkurencję wygrywa ten neuron, którego wektor wag W jest najbardziej podobny do wzorca uczącego X. Sieci Kohonena znane są też pod nazwami Self-Organizing Maps, Competitive Filters.

Działanie sieci Kohonena polega na tym, iż dane wejściowe trafiają do neuronów, a następnie są odwzorowywane na warstwę topologiczną, co daje siatkę neuronów z efektem działania sieci. Neurony mogą być ułożone w siatkę hexagonalną lub prostokątną.

 Reguła WTM (Winner Takes Most) – opiera się na takiej samej zasadzie rywalizacji jak WTA (neurony konkurują ze sobą), ale oprócz zwycięzcy uaktualniają swoje wagi również neurony z jego sąsiedztwa:

$$w_i = w_i + \eta_i G(i, x) [x - w_i]$$

dla wszystkich neuronów i należących do sąsiedztwa S_{j^*} zwycięzcy. Definiując G(i,x) w postaci:

$$G(i,x) = \begin{cases} 1 & i = j * \\ 0 & i \neq j * \end{cases}$$

3. Listing programu

```
1 - close all; clear all; clc;
2
      %ABCDEFGHIKLJMNOPRSTU
3 -
    WE=[0 1 0 1 1 1 0 1 1 1 1 1 1 0 1 1 0 1 1 1;
      1 1 1 1 1 1 1 0 0 1 0 0 0 1 1 1 1 1 0 0;
       1 1 1 1 1 1 1 0 0 1 0 0 0 1 1 1 1 1 0 1;
5
       6
7
       11111111111111111111111;
       0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0;
8
9
       0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1;
       1 1 0 1 0 0 0 1 0 1 0 0 1 1 1 1 1 0 0 1 0;%
10
11
       1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 0 0 1 0;
12
       1 1 0 0 1 1 0 1 0 0 1 0 0 0 1 1 1 1 0 1;
       1 1 0 0 1 1 1 1 0 0 0 0 1 0 1 1 1 0 0 0:
13
       1001001101010011000010;%
15
       1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 0 0 1 0;
16
       17
      18
19
       1 1 1 1 1 1 0 1 1 0 1 1 1 0 1 1 1 0 0 0;
       20
21
       0 1 1 1 1 0 1 0 0 0 0 1 0 1 0 0 1 0 1;
       1 0 1 0 1 0 1 1 0 1 1 1 1 1 0 0 1 0 0 0;%
22
23
       ];
24
25
```

```
26
27
28 -
       % parametry
      dimensions = [4 5];
29 -
      coverSteps = 100;
30 -
      initNeighbor = 1;
31 -
      topologyFcn = 'gridtop';
      distanceFcn = 'dist';
32 -
33
34
35
       % Tworzenie SOM
36 -
      net = selforgmap(dimensions,coverSteps,initNeighbor,topologyFcn,distanceFcn);
37 -
      net.trainParam.epochs = 2000;
38
39
       % Trenowanie sieci
40 -
      [net,tr] = train(net,WE);
41 -
       y = net(WE);
42 -
       classes = vec2ind(y);
```

4. W programie wykorzystałem prostokątną siatkę neuronów, uczenie wg reguły Kohonena i WTM. Program odwzorowuje istotne cechy liter alfabetu na podstawie otrzymanych danych. Wymiar sieci to siatka, taka jak wymiary liter, czyli 4x5. Sąsiedztwo wynosi 1. Wyniki działania programu znajdują się poniżej.

5. Wnioski

- WTM w porównaniu do WTA nie pozwala na dominacje małej ilości neuronów w sieci.
- Na efekt działania sieci duży wpływ ma sąsiedztwo oraz ilość neuronów.
- Przy sieciach z dużą liczbą neuronów reguła WTM sprawdzi się lepiej niż WTA.
- Współczynnik uczenia kontroluje przydział wag dla neuronów.
- Ważne jest, aby odpowiednio dostosować ilość neuronów w sieci , aby otrzymać wystarczająco dokładne wyniki przy maksymalnie krótkim czasie obliczeń.