COMP20003 Workshop Week 11 Graph Algorithms & Assignment 3

- SSSP (1S*D) and Dijkstra's Algorithm
- APSP (*S*D) with Floyd-Warshall Algorithm
- Uniform-Cost Search and A*

Lab:

- Assignment 3: Q&A
- Implementing Floyd-Warshall Algorithm

Review: Graph Search So Far

BFS and DFS both explore all nodes reachable from a source, but only BFS guarantees the shortest paths in unweighted graphs.

Task	Find the shortest paths (SP) from <mark>0</mark> to all other vertices							
a SP from 0 to 6	$0 \rightarrow 1 \rightarrow 3 \rightarrow 4 \rightarrow 6$ length = 4	$0 \rightarrow 1 \rightarrow 3 \rightarrow 5 \rightarrow 4 \rightarrow 6$ length = 24						
How?	BFS(0) Using a queue to explore nodes in order of their <i>depth</i> from the root. → Nodes enqueued first are dequeued (visited) first.	Dijkstra(0) Using a min priority queue to explore nodes in order of their distance from the root. → Nodes with smaller tentative distances are dequeued (visited) first.						
Example								

Using Dijkstra's Algorithm for the SSSP on weighted graphs

Dijkstra's Algorithm from s set dist[v] = ∞ , prev[v]=-1 for each v set dist[s] = 0set PQ= min PQ of all (v, dist[v]) while (PQ not empty) u= deleteMin(PQ) // found SP to u for each neighbour v of u if (dist[u]+w(u,v)< dist[v]): update dist[v], pred[v], PQ

```
1
2
3
3
3
6
6
2
8
10
5
```

```
Start with \begin{aligned} &\text{dist}[] = \{ \ 0, \, \infty, \, \infty, \, \infty, \, \infty, \, \infty, \, \infty, \, \infty \} \\ &\text{prev}[] = \{ -1, \, -1, \, -1, \, -1, \, -1, \, -1, \, -1 \}; \\ &\text{PQ} = \{ \ (0, \, 0), \, (1, \, \infty), \, (2, \, \infty), \, (3, \, \infty), \, (4, \, \infty), \, (5, \, \infty), \, (6, \, \infty) \, \} \end{aligned}
```

```
loop while PQ is not empty:
    u= node removed from PQ (having smallest dist)
    for each v in the adjacency list of u
        if a shorter path is found:
            update dist[v],
            set prev[v]= u,
            change the priority of v in PQ to new dist[v]
```

Note:

At the end, prev[] is used to reconstruct the shortest path by backtracking from the destination node to the source.

Example: tracing Dijkstra's Algorithm and Interpreting Its Outputs

Removed from PQ, shortest path found

Example: tracing Dijkstra's Algorithm and Interpreting Its Outputs

	0	1	2	3	4	5	6
	0 , nil	∞, nil	∞,nil	∞,nil	∞,nil	∞,nil	∞,nil
0		2,0	6,0	∞,nil	∞,nil	∞,nil	∞,nil
1			5,1	7,1	∞,nil	∞,nil	∞,nil
2				7,1	∞,nil	∞,nil	∞,nil
3					22,3	17,3	∞,nil
5					20,5		30,5
4							26,4
6							

Length of Shortest Paths:

- from 0 to 5 = ?
- from 0 to 6 = ?
- from 3 to 6 = ?

The actual SP:

- from 0 to 5 = ?
- from 0 to 6 = ?

Dijkstra's algorithm & Complexity when using Adjacency Lists

```
set dist[u]= ∞, prev[u]=nil for all u
set dist[s]= 0
set PQ= minPQ from all V with dist[] as priority
while (PQ not empty)
    u= deleteMin(PQ) O(log V) x V steps = O(V log V)
    visit u
    for all (u, v) in G:
    if (dist[u]+w(u, v)<dist[v]):
        update dist[v] and prev[v]
        decrease priority of v in PQ
    using Adjacency Lists: O(log V) x E steps = O(E log V)</pre>
```

Programming note:

```
"update dist[v] and pred[v]": dist[v] = dist[u] + w(u, v), prev[v] = u "decrease priority of v in PQ" includes:
```

- locate \mathbf{v} in \mathbf{PQ} (can be done in O(1), but a bit tricky)
- change the priority of v to dist[v] then upheap (done in O(logV))

Total Complexity if using adjacency matrix:

• count complexity for each node and edge (as above), and add up $\rightarrow O((V+E) \log V)$

Dijkstra's Algorithm: Notes

Complexity:

- O((V+E) log V) if using adjacency lists
 - \rightarrow O(V log V) for sparse graphs, O(V² log V) for dense graphs
- $O((V^2) \log V)$ if using adjacency matrix
 - \rightarrow O(V² log V) for all graphs

Conditions:

- all weights must be non-negative
- graphs can be weighted/unweighted(ie. all edges have weight 1), directed/undirected, cyclic/acyclic

If there are negative weights (but with no negative cycle):

- Dijkstra's Algorithm is not applicable
- use Bellman-Ford algorithm instead (this algorithm has the same complexity)

W11.4: run Dijkstra's Algorithm for this graph

Find a shortest path:

- From A to B
- From A to C
- From A to F
- From A to any other node

Tracing Dijkstra's Algorithm

Dijkstra's Algorithm: tracing

	Α	В	С	D	E	F
	0, nil	∞,nil	∞,nil	∞,nil	∞,nil	∞,nil
А		1,A	8,A	∞,nil	∞,nil	∞,nil
В			8,A	4, B	5,B	∞,nil
D						

Find a shortest path:

- From A to B
- From A to C
- From A to F
- From A to any other node

Dijkstra's Algorithm: full tracing

The dist at A is 0, there is an edge A->C with length 8, so we can reach C from A with distance 0+8, and 8 is better than previously-found distance of ∞

done	Α	В	С	D	E	F
	0, nil	∞,nil	∞,nil	∞,nil	∞,nil	∞,nil
А		1,A	[₹] 8,A	∞,nil	∞,nil	∞,nil
В			8,A	4, B	5,B	∞,nil
D			√ <mark>5,D</mark>		<mark>5,B</mark>	13,D
С	Update this cell because now we can reach C from				5,B	11,C
E	D with distance 4 (of D) + 1 (of edge D→C), and 5 is					11,C
С	better th					

At this pointy, we can reach E from D with distance 4 (of D) + 1 (of edge D→E), but new distance 5 is **not better** than the previously found 5, so no update!

Find a shortest path:From A to B

From A to C

From A to F

• SP A->F=

Dijkstra's Algorithm: Interpreting the result

What's the found shortest path from A to F? distance= 11, path= $A \rightarrow B \rightarrow D \rightarrow C \rightarrow F$

done	Α	В	С	D	E	F
	<mark>0, nil</mark>	∞,nil	∞,nil	∞,nil	∞,nil	∞,nil
А		1,A	8,A	∞,nil	∞,niḷ	∞,nil
В			8,A	4,B	5,B	∞,nil
D			<mark>5,D</mark> ←		5,B	13,D
С					<mark>5,B</mark>	11,C
Е						11,C
С						

Find a shortest path:

- From A to B
- From A to C
- From A to F
- SP A->F=

pred[B]= A: $A \rightarrow B \rightarrow D \rightarrow C \rightarrow F$

> pred[D]= B: $B \rightarrow D \rightarrow C \rightarrow F$

pred[C]= D: $D \rightarrow C \rightarrow F$

pred[F]= $\frac{C}{C}$, that is we came to F from C: $\frac{C}{C}$

the shortest distance from A to F is 11

Floyd-Warshall Algorithm - APSP (APSP == *S*D)

The Task:

- Given a weighted graph G=(V,E,w(E))
- Find shortest path (path with min weight) between all pairs of vertices. (*S*D)

?:

- can we use Dijkstra's Algorithm for the task?
- why Floyd-Warshall's ?

Floyd-Warshall Algorithm

use dist = adjacency matrix of G, for the initial shortest path length

$$dist[s][t] = \begin{cases} w(s,t) & \text{if there is and edge from } s \rightarrow t \\ 0 & \text{if } s == t \\ \infty & \text{otherwise} \end{cases}$$

IDEA: If we use node i as an intermediate stepstone, we can find some new paths by

for each pair (s,t):

if path s->i->t is shorter than path s->t // found a shorter path update dist[s][t] with new path length

Using all possible i in that way to create all possible paths!

example path from 0 to 4

At the start:

path from $0 \rightarrow 4$ has dist(0,4)=10

Using node 1: found new paths

$$0 \rightarrow 1 \rightarrow 4$$
 dist $(0,4) == 8$

$$0 \to 1 \to 2$$
 dist(0,2) == 3

Using node 2:

. . .

Algorithm:

Floyd-Warshall Algorithm

```
Main algorithm:

D= adjacency matrix

for (i=0; i<V; i++)
    for (j=0; j<V; j++)
        for (k=0; k<V; k++)
        if (D[s][i]+D[i][t]<D[s][t])
        D[s][t]= D[s][i]+D[i][t];</pre>
```

```
init: dist D = adjacency matrix
for each node i: try it as a stepstone for new paths
for each pair (s,t)

if s → i → t is shorter than current s→t
    update path s→t
```

Conditions=?

- directed or undirected
- weighted (for unweighted, set edge weight to 1)
- negative weights are OK, but **no negative cycles** (similar to the conditions for the Bellman-Ford Algorithm)

Data structures / Graph representation = adjacency matrix or adjacency lists? why?

```
Complexity = \Theta ( V^3 )
```

Step-by-step Example: Tracing FWA for a graph

empty cell for ∞ (note A[s][s] should be zero)

Trace the Floyd-Warshall algorithm.

Step i= 0, 1, 2, 3, 4, 5

-----TO (t) -----

		0	1	2	3	4	5
	0	0				2	
	1		0	2	5	10	
(5)	2			0	2		
-ROM (S)	3				0	2	6
<u> </u>	4					0	2
	, 5						0

Notes:

 when 0, 1, or 5 is used as an intermediate, no change is possible (why?)

	0	1	2	3	4	5
0	0				2	
1		0	2	5	10	
2			0	2		
3				0	2	6
4					0	2
5						0

i= 2 as the stepstone

	0	1	2	3	4	5
0	0				2	
1		0	2	4	10	
2			0	2		
3				0	2	6
4					0	2
5						0

i= 3 as the stepstone

	0	1	2	3	4	5
0	0				2	
1		0	2	4	10	
2			0	2		
3				0	2	6
4					0	2
5						0

i= 4 as the stepstone

	0	1	2	3	4	5
0	0				2	
1		0	2	4	6	10
2			0	2	4	8
3				0	2	6
4					0	2
5						0

i= 4 as the stepstone, done

	0	1	2	3	4	5
0	0				2	4
1		0	2	4	6	8
2			0	2	4	6
3				0	2	4
4					0	2
5						0

i= 4 as the stepstone, done

	0	1	2	3	4	5
0	0				2	4
1		0	2	4	6	8
2			0	2	4	6
3				0	2	4
4					0	2
5						0

Floyd-Warshall Algorithm: How to retrieve the path between s-->t?

```
in addition to matrix dist[s][t] = shortest path length from s to t, also maintain matrix <math>next[s][t] = the choice made for the pair (s, t)
= the first stop on the path s \rightarrow t
at the end, use next[][] to track the shortest path for any desirable pair (s, t)
```

Algorithm:

Peer Activity: All Pairs Shortest Paths

What graph conditions justify running Dijkstra's algorithm on each vertex over using Floyd-Warshall's algorithm?

- a. None: Floyd-Warshall > repeated Dijkstra's for all graphs
- b. Sparse graph ($|E| \approx |V|$)
- c. Dense graph ($|E| \approx |V|^2$)

Do Peer Activities then fill in Big-O complexity for the APSP task (supposing to apply Dijkstra for the APSP task)

	Dijkstra	Floyd-Warshall
General		$\Theta(V^3)$
Sparse		
Dense		

UCS: Uniform-Cost Search

- Typically used for AI, when having implicit graphs
- The Task: 1S1D finding shortest path from the root to (any) winning node
- Can be done with modified Dijkstra's (edge weight==1) or just BFS algorithm:
 - first enqueue only the initial state (the source node, instead of all nodes)
 - when exploring a node after dequeuing it:
 - check if it's a Destination (a winning node), exit if yes
 - enqueue all unseen new neighbours (ie. new states that can get from the current state)
- Note: In the case of typical AI search, the graph is a DAG \rightarrow no need to check for being visited

Example UCS for Al

at the end: delete all nodes (inside and outside PQ)

A* search for 1S1D

A* is UCS guided by a heuristic: it picks the node with the cheapest path so far plus a smart guess to the goal.

Foundation: A* is basically Dijkstra's algorithm, but enhanced with a heuristic guide.

Node Selection: A* expands the node with the smallest total estimated cost, f(n), calculated as:

f(n) = g(n) + h(n)

g(n): cost from start to current node (known cumucost).

h(n): estimated cost from current node to goal (heuristic).

Optimality Guarantee: For A* to find the optimal path, the heuristic h(n) must be *admissible* (it must never overestimate the true cost to the goal).

Complexity: In the worst case, its time complexity is the same as Dijkstra's (O(E+VlogV)), but it is often much faster due to the targeted search guided by the heuristic.

A3: understanding, Q&A

Key points:

- Optimization in Algorithm 2 is interesting and simple, do it
- Algorithm 3 is very interesting, but more complicated. Why not try it after finish Algorithm 2?
- Keeping tracks of all malloc for free-ing later
- Smartly using queue
- Stuffs to do with a node after dequeuing it

Spend reasonable time for answering the questions. *Try to build informative graphs!*

Additional Notes

- Attend Week 12 lecture: A* search, Computational Complexity, P & NP (probably unexaminable, but very interesting!)
- Check out https://clementmihailescu.github.io/Pathfinding-Visualizer/ a pretty interactable visualization tool for all the traversals and searches.

The above is a fork of the project:

https://qiao.github.io/PathFinding.js/visual/

Next Workshop:

- Review: past years' exam papers
- Perhaps finish A3 before that?

Additional Slides

Transitive Closure of digraphs

Transitive Closure of a di-graph G:

- is a graph G' where there is a link from i→j if there is a path from i→j in G.
- has an adjacency matrix A where $A_{ij}=1$ iif j is reachable from i in G.

Related Tasks:

Compute the transitive closure for digraph

Find APSP for a weighted graph

Examples: Transitive Closure of digraphs

Draw the transitive closure of the following two graphs: (a) (b)

Warshall's Algorithm for Transitive Closure: very similar to Floyd-Warshall's

Input: adjacent matrix A

Main argument: transitiveness: if there are paths $i \rightarrow k$ and $k \rightarrow j$, then there is path $i \rightarrow j$ which uses k as an intermediate stepstone.


```
Warshall Algorithm

for (i=0; i<V; i++)
    // using i as intermediate
    for (s=0; s<V; s++)
        for (t=0; t<V; t++)
        if (A<sub>si</sub> && A<sub>it</sub>)
        A<sub>st</sub>= 1;
```

Note: The Warshall's algorithm is a simplified version of FWA for using with unweighted digraphs. Tracing is similar, but simpler. DIY with the above graph.

Graph Search: some interesting tasks

- Find a longest path in a weighted (acyclic) graph
- Find an Euler cycle
- Find a Hamiltonian cycle

An **Euler trail** is a way to pass through every edge exactly once. If it ends at the initial vertex then it is an Euler cycle. Note that an Euler trail might pass through a vertex more than once.

A **Hamiltonian path** is a path that passes through every vertex exactly once (NOT every edge). If it ends at the initial vertex then it is a Hamiltonian cycle. Note that a Hamiltonian path may not pass through all edges.

Q: Why an Euler trail, but not a Hamiltonian path, must pass through every edges exactly once?

A: Because Euler and Edge share the same starting letter E

P, NP, NP: Naïve & Intuitive Understanding

Decision Problem: Problem with YES/NO answer. A decision problem is:

- P: iif it can be **solved** in *polynomial time* by an algorithm.
- NP: iif the 'yes'-answers can be **verified** in polynomial time (O(n^k) where n is the problem size, and *k* is a constant).
- NP-Complete: iif it's NP and, so far, there is no polynomial time algorithm for solving.

Notes:

- Some of the above concepts are for intuitive understanding, and are not the definitions.
- For more on P, NP and related interesting theoretical topics: attend live lecture W12.

Graph Search can be a NP-complete task: Hamiltonian cycle

Can we just run DFS or BFS? The complexity would be O(V+E), right?

Graph Search can be a NP task: Hamiltonian cycle

Yes, we can do the path finding in DFS or BFS manner, but the complexity is no longer O(V+E). Why?

The complexity of this task is O(?)

The task belongs to the NP-Complete class.

Graph Search can be a NP task: Hamiltonian cycle

Yes, we can do the path finding in DFS or BFS manner, but the complexity is no longer O(V+E). Why?

The complexity of this task is O(?)

The task belongs to the NP-Complete class. What's that?

Compare Dijkstra's Algorithm with the UCS for Al

Note: The UCS used in Assignment 3 is BFS, not Dijkstra's. The next 2 slides is for understanding only, and should not be used for Assignment 3.

Dijkstra(G=(V,E,W),s)

How to Modify for Al games?

Dijkstra(G=(V,E,W),s)

Modified(G, s): UCS for AI == Algorithm 1

