State Space Models, Lecture 1 Introduction to SSMs

26 March 2018

© 2019 Adobe Inc.

Why State-Space Models?

Flexible time-series analysis:

- Forecasting
 - Predictive distribution / interval
- Anomaly detection
- Multiple related time series
- Decomposition:
 - local level
 - local linear trend
 - periodicity
 - shocks
 - noise
- Smoothing
- Missing data
- ► Time-varying linear regression / factor analysis

Time Series Models

- ► Joint probability distribution over random variables V1. V2.....Vt.....
- Variable y_i may be scalars or vectors.
- ► Discrete y_i : $Pr(y_1 = Y_1, ..., y_t = Y_t \mid \theta)$
- ► Continuous y_i : $Pr(Y_1 - \epsilon \le y_1 \le Y_1 + \epsilon, ..., Y_t - \epsilon \le y_t \le Y_t + \epsilon \mid \theta)$
- Derive algorithms from model:
 - Estimation of parameters
 - ightharpoonup Forecasting of future y_i (or sums)
 - with prediction intervals / quantiles
 - ► Decomposition (local level & linear trend, periodicity, shocks)

A Model Hierarchy

- General time-series models:
 - arbitrary joint distribution
- State-space models:
 - ▶ hidden state sequence $\alpha_1, \alpha_2, \ldots$ with Markov property
 - observation distribution for y_t conditioned on state α_t .

- Dynamic (generalized) linear models
 - α_{t+1} is linear fct of α_t , plus Gaussian noise
 - y_t (or $f(y_t)$) has distribution with mean μ_t that is linear fct of α_t .
 - $y_t \sim \text{Normal}(\mu_t, \sigma^2)$ for DLM.
 - $y_t \sim \text{Poisson}\left(\exp\left(\mu_t\right)\right)$ for dynamic Poisson (counts).

Summing DLMs

Suppose that

- $u_1, u_2, \ldots, u_t, \ldots \sim \mathrm{DLM}_u$
- \triangleright $v_1, v_2, \ldots, v_t, \ldots \sim \mathrm{DLM}_v$
- $\triangleright y_t = u_t + v_t$

Then

$$\triangleright$$
 $y_1, y_2, \ldots, y_t, \ldots \sim DLM_y$

Similarly for generalized DLM.

Basis for decomposition—sum up

- DLM for local linear trend
- DLM for "random walk" deviations from trend
- DLM for daily/weekly patterns
- ▶ DLM for effects of external events

White Noise

$$y_t \sim \text{Normal}(\mu, \sigma^2)$$

 $\theta = (\mu, \sigma^2)$

Linear Regression

$$y_t = \beta t + \gamma + \epsilon_t$$

$$\epsilon_t \sim \text{Normal}(0, \sigma^2)$$

$$\theta = (\beta, \gamma, \sigma^2)$$

Linear Regression (Alternate Form)

$$\alpha_{1} = \beta + \gamma$$

$$\alpha_{t+1} = \alpha_{t} + \beta$$

$$y_{t} = \alpha_{t} + \epsilon_{t}$$

$$\epsilon_{t} \sim \text{Normal}(0, \sigma^{2})$$

Suggests generalizations:

- $\alpha_1 \sim \text{Normal}(\mu, \sigma_0^2)$
- Let β vary slowly over time.

Random Walk

$$y_{1} \sim \text{Normal} (\mu, \sigma_{0}^{2})$$

$$y_{t+1} = y_{t} + \epsilon_{t}$$

$$\epsilon_{t} \sim \text{Normal} (0, \sigma_{\epsilon}^{2})$$

$$\theta = (\mu, \sigma_{0}^{2}, \sigma_{\epsilon}^{2})$$

Local Level Model

Random walk + white noise.

$$\alpha_{1} \sim \text{Normal} (\mu, \sigma_{0}^{2})$$

$$\alpha_{t+1} = \alpha_{t} + \eta_{t}$$

$$\eta_{t} \sim \text{Normal} (0, \sigma_{\eta}^{2})$$

$$y_{t} = \alpha_{t} + \epsilon_{t}$$

$$\epsilon_{t} \sim \text{Normal} (0, \sigma_{\epsilon}^{2})$$

$$\theta = (\mu, \sigma_{0}^{2}, \sigma_{\eta}^{2}, \sigma_{\epsilon}^{2})$$

Local Level Model (plot)

$$\sigma_{\eta}=$$
 0.1, $\sigma_{\epsilon}=1$

Random Walks Can Wander Far

Square-root growth.

AR(1)

Mostly stay within $\mu \pm \sigma_0$. Random-walk behavior with variance $\sigma_{\rm rw}^2$.

$$\begin{aligned} y_1 &\sim \text{Normal}\left(\mu, \sigma_0^2\right) \\ y_{t+1} &= \mu + \phi\left(y_t - \mu\right) + \epsilon_t \\ \epsilon_t &\sim \text{Normal}\left(0, \sigma_{\text{rw}}^2\right) \\ \phi &= \sqrt{1 - \frac{\sigma_0^2}{\sigma_{\text{rw}^2}}} \end{aligned}$$

AR(1) example plot

$$\sigma_{\mathrm{rw}=1}$$
, $\sigma_0=4$, $\mu=0$

AR(1) example plot repeated

Integrated Random Walk

Let $y_{t+1} - y_t$ be a random walk:

$$y_1 \sim \text{Normal} \left(\mu_{y0}, \sigma_{y0}^2 \right)$$

 $y_{t+1} = y_t + \beta_t$

and

$$\beta_{1} \sim \text{Normal} \left(\mu_{\beta 0}, \sigma_{\beta 0}^{2} \right)$$
$$\beta_{t+1} \sim \beta_{t} + \epsilon_{t}$$
$$\epsilon_{t} \sim \text{Normal} \left(0, \sigma_{\epsilon}^{2} \right)$$

Compare to alternate form of lin regr.

Integrated Random Walk (plot)

Integrated AR(1)

Let $y_{t+1} - y_t$ be a random walk:

$$y_1 \sim \text{Normal} (\mu_{y0}, \sigma_{y0}^2)$$

 $y_{t+1} = y_t + \beta_t$

and

$$\beta_{1} \sim \text{Normal} \left(\mu_{\beta 0}, \sigma_{\beta 0}^{2} \right)$$
$$\beta_{t+1} \sim \mu_{\beta 0} + \phi \left(\beta_{t} - \mu_{\beta 0} \right) + \epsilon_{t}$$
$$\epsilon_{t} \sim \text{Normal} \left(0, \sigma_{\epsilon}^{2} \right)$$

Integrated AR(1) (plot)

