Capítulo 1

Solución de ecuaciones algebraicas

Tener cuidado con la ortografía

Hay ocaciones en las que ecuaciones algebraicas tienen una dificil solución analítica y en esas cituaciones recurrimos a los métodos numéricos que serán descritos en este capítulo, hablaremos de métodos tanto abiertos como cerrados, ventajas y desventajas de los mismos.

1.1. Métodos cerrados

También llamados metodos de encierro, se basan en limitar con un intervaloque se va recortando hasta que se acerca a la solución.

1.1.1. Bisección

Es un algoritmo de búsqueda de raíces que trabaja dividiendo el intervalo a la mitad y seccionando el subintervalo que tiene la raíz, y es posible describirlo en los siguientes pasos.

Espacios y orden en fórmulas

- 1. Se eligen los valores limitantes a, b tales que f(a) f(b) < 0.
- 2. aproximamos la solución con la formula del punto medio $c = \frac{a+b}{2}$

1.1.2. Método de falsa posición o regula fals Nombre de método

Para localizar el punto c, se busca la ecuación de una recta que pasa por los dos puntos de la <u>funci</u>"on lo que se obtiene es una raíz falsa con una recta el presedimiento se muestra descrito en el siguiente algoritmo.

1.2. Métodos abiertos

Son métodos en los que solo necesitamos un valor inicial al que llamamos x_0 y son capaces de encontrar raíces tangentes al eje x.

1.2.1. Método de Newton-Raphson

Consiste en sacas la ecuación de las tangentes de la función.

$$y - f(x_o) = f'(x_o)(x - x_0)$$
(1.1)

$$x_1 = x_o - \frac{f(x_1)}{f'(x_1)} \tag{1.2}$$

$$x_2 = x_1 - \frac{f(x_1)}{f'(x_1)} \tag{1.3}$$

$$x_{2} = x_{1} - \frac{f(x_{1})}{f'(x_{1})}$$

$$x_{k+1} = x_{k} - \frac{f(x_{k})}{f'(x_{k})}$$

$$(1.3)$$

Cálculo de error

1.2.2. Método Secante

Se trata de un método donde se traza una recta secante entro los últimos 2 puntos. Se utilizan derivadas centrales para más precisión y el costo computacional sea menor.

$$(x_k, f(x_k+1)) \qquad (x_k, f(x_k))$$
$$y - f(x_k) = \frac{f(x_k) - f(x_{k-1})}{x_k - x_{k-1}}$$
(1.5)

$$y - f(x_k) = \frac{f(x_k) - f(x_{k-1})}{x_k - x_{k-1}}$$

$$x_{k+1} = x_k - \frac{f(x_k)}{\frac{f(x_k) - f(x_{k-1})}{x_k - x_{k-1}}}$$
(1.5)

Backtracking

Es un método de búsqueda de soluciones exhaustiva sobre grafos dirigidos a ciclos, el cual se acelera mediante poda de ramas poco prometedoras. Es decir se trata de buscar estados solución del problema.

Las condiciones de partida son:

- 1. Alcanza la solución
- 2. Se alcanzan todos los estados sde solución

3

Resumen del cápitulo

Los métodos aquí mostrados son utilizadon para encontrar raíces de funciones y todos llevan al mismo resultado, la gran diferencia esta en el tiempo de computo utilizado para el resultado y la presición de este.

Velocidad de convergencia

La velocida de convergencia que hace referencia al timepo que tarda el ordenador en arrojar un resultado, se muestra en seguida para métodos cerrados y abiertos

Métodos Velocidad de convergencia
Bisección Lineal [Lento]
Falsa posición Lineal y super lineal
Newton-Raphson Cuadrática [Rápido]
Secante Cuadrática [Rápido]

Iteraciones con y sin backtraking en metodos abiertos

Si el algoritmo converge en k iteraciones :

 $\begin{array}{ccc} \text{Newton-Raphson} & 2k_1 \\ \text{Secante} & k_2+1 \\ \text{Newton-Raphson con B.} & 2k_3+Nb_1 \\ \text{Secante con B.} & k_4+1+Nb_2 \end{array}$

Y esta hoja?

Capítulo 2

Solución de sistemas de ecuaciones

El objetivo de estos métodos es encontrar un vector solución para una matriz dada partiendo de la ecuación Ax = b. En este capítulo se describirán métodos directos y métodos iterativos. Y lo primero es recordar algunas operaciones y propiedades básicas de las matrices vistas en Álgebra lineal.

2.1. Operaciones algebráicas con matrices

2.1.1. Suma de matrices

Es posible sumar dos matrces siempre y cuado sean del mismo tamaño haciendo una adición de sus elementos correspondientes.

Sí $A = [a_{ij}]$ y $B = [b_{ij}]$ son matrices del mismo tamaño $m \times n$, entonces su suma es la matriz de tamaño $m \times n$.

espacio

$$A + B = [a_{ij} + b_{ij}]$$

2.1.2. Multiplicación por un escalar

Si $A = [\underline{a_{ij}} \text{ es una matriz de tamaño } m \times n \text{ y } c \text{ es un escalar, entonces el multiplo escalar de } A \text{ por } c \text{ es la matriz de tamaño } m \times n \text{ dada por:}$

$$cA = [ca_{ij}]$$

2.1.3. Multiplicación de matrices

Si $A = [a_{ij}]$ es una matriz de $m \times n$ y $B = [b_{ij}]$ es una matriz de $m \times p$, entonces el producto AB es una matriz de $m \times p$

Sea
$$A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \\ a_{31} & a_{32} \end{bmatrix}$$
 y $B = \begin{bmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{bmatrix}$ entonces .

$$AB = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \\ a_{31} & a_{32} \end{bmatrix} \begin{bmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{bmatrix} = \begin{bmatrix} a_{11}b_{11} + a_{12}b_{21} & a_{11}b_{12} + a_{12}b_{22} \\ a_{21}b_{11} + a_{22}b_{21} & a_{21}b_{12} + a_{22}b_{22} \\ a_{31}b_{11} + a_{32}b_{21} & a_{31}b_{12} + a_{32}b_{22} \end{bmatrix}$$

2.1.4. Transpuesta de una matriz

La transpuesta de una matriz se forma al escribir sus columnas como renglones. Por ejemplo, si A es la matriz de $m \times n$ dada por:

$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} & \cdots & a_{1n} \\ a_{21} & a_{22} & a_{23} & \cdots & a_{2n} \\ a_{31} & a_{32} & a_{33} & \cdots & a_{3n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & a_{m3} & \cdots & a_{mn} \end{bmatrix}; A^T = \begin{bmatrix} a_{11} & a_{21} & a_{31} & \cdots & a_{m1} \\ a_{12} & a_{22} & a_{32} & \cdots & a_{m2} \\ a_{13} & a_{23} & a_{33} & \cdots & a_{m3} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{1n} & a_{2n} & a_{3n} & \cdots & a_{mn} \end{bmatrix}$$

2.1.5. Matriz simétrica

Una mátriz A es simetrica si $A = A^T$. Partiendo de esta definición, es evidente que una matriz simétrica debe ser cuadrada. Existen cuatro importantes propiedades de matrices simetricas las cuales son:

1.
$$(A^T)^T = A$$

2.
$$(A+B)^T = A^T + B^T$$

3.
$$(cA)^T = c(A)^T$$

4.
$$(AB)^T = B^T A^T$$

2.1.6. Inversa de una matriz

Una matriz A de $n \times n$ es invertible (o no singular) si existe una matriz B de $n \times n$ tal que AB = BA = I, donde I es la matriz identidad de orden n. La matriz B se denomino inversa (multiplicativa) de A.

Las matrices no cuadradas no tienen inversa.

Si A es una matriz invertible, entonces su inversa es única y se denota por A^{-1} .

AX = I Donde X es la matriz inversa.

7

2.1.7. Determinante de una matriz

El determinante de una matriz está dado por

$$A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}; \quad det(A) = |A| = a_{11}a_{22} - a_{21}a_{12}$$

El determinante es la diferencia de los products de dos diagonales de la matriz. Si A es una matriz triangular de orden n, su determinante es el producto de los elementos en la diagonal principal, $det(A) = |A| = a_{11}a_{22}a_{33} \cdots a_{nm}$

2.2. Descomposición matricial

La descomposición matricial es una forma de factorización de matrices en distintas formas para diferentes propositos y resultados. Las principales descomposiciones son descritas a continuación

2.2.1. Matriz triangular inferior

Una matriz con una trangulación inferior la podemos obtener de como producto de la siguiente formula.

$$x_i = \frac{b_i - \sum_{k=1}^{i-1} a_{ik} x_k}{a_{ii}}$$

$$\begin{bmatrix} a_{11} & 0 & 0 & 0 \\ a_{21} & a_{22} & 0 & 0 \\ a_{31} & a_{32} & a_{33} & 0 \\ a_{41} & a_{42} & a_{43} & a_{44} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \\ b_4 \end{bmatrix}$$

2.2.2. Matriz triangular superior

El contrario de la matris triangular inferior, esta la matriz triangular superior.

$$x_i = \frac{b_i - \sum_{k=i+1}^n a_{ik} x_k}{a_{ii}}$$

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ 0 & a_{22} & a_{23} & a_{24} \\ 0 & 0 & a_{33} & a_{34} \\ 0 & 0 & 0 & a_{44} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ b_4 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \\ b_4 \end{bmatrix}$$

2.3. Métodos directos

Los métodos directos se encargan de transforman el sistema original en otro equivalente y fácil de reolver.

2.3.1. Eliminación Gaussiana

2.3.2. Factorización LU

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ l_{21} & 1 & 0 & 0 \\ l_{31} & l_{32} & 1 & 0 \\ l_{41} & l_{42} & l_{43} & 1 \end{bmatrix} \begin{bmatrix} u_{11} & u_{12} & u_{13} & u_{14} \\ 0 & u_{22} & u_{23} & u_{24} \\ 0 & 0 & u_{33} & u_{34} \\ 0 & 0 & 0 & u_{44} \end{bmatrix}$$

Doolittle

La condición para esta factorización es:

$$l_{ii} = 1$$

Crout

Mientras que para la factorización de Crout es:

$$u_{ii} = 1$$

2.3.3. Factorización LLT Cholesky

2.3.4. Factorización LDLT

2.4. Métodos iterativos

Estos métodos parten de un vector inicial x^o , y la modificación <u>medianre</u> un esquema repetitivo de cálculo hasta llegar a la solución buscada

another edit