Integrated Modeling: Bridging Across Disciplines

Diversity across disciplines:

- Modeling approaches
- Representative models
- Model variables
- Integration frameworks

Natural Models

Agriculture Models

Economic Models

Social Models Infrastructure Models

Mediation at many levels

Problem framing

Model selection

Variable mapping

Data ingestion

Runtime coordination

Model Coupling

Interleaved Execution

Sliced execution by time tic: first one model, then another, in a round-robin way

eg: CSDMS

Implicit Interleaving

Collection of equations that are designed to be solved together, then a solver runs them.

eg: CGE economic models

Code Merging

MPI code to implement all models

eg: earthquake simulations

Shared Memory

Models share a R/W memory

eg: Synthetic Information

Model Combination

Result Chaining

The result of a model is input to another model, as in a workflow

eg: pSIMS, CEMSA

Output Comparison

Results from several models (or the same model) are aggregated (eg, an ensemble)

eg: regional weather prediction

Output Analysis

Same model is run with many configurations or parameter values, to do parameter estimation, sensitivity analysis, or uncertainty quantification

Model Distribution

Code Parallelization

The model is implemented as parallel code (eg to process each grid cell separately)

Interleaved Behavior

Individual agents proceed based on information made available to their simulation environment

Ex: agent-based frameworks

Integrated Behavior

Agents are given several behavior models that determine their actions