kd education academy (9582701166)

Time: 5 Hour

STD 11 Science chemistry kd700+ neet target ch-6 equilibrium (Ionic) part -2

[500] * Chemistry

1.	Amongst the given	options whic	n of the	following	molecules/	ion acts	s as a	Lewis
	acid?							

(A) OH^-

(B) NH_3

(C) H_2O

(D) BF_3

Total Marks: 500

2. The pH of the solution containing $50\,mL$ each of $0.10\,M$ sodium acetate and $0.01\,M$ acetic acid is

[Given pK_a of $CH_3COOH = 4.57$]

(A) 3.57

(B) 4.57

(C) 2.57

(D) 5.57

3. Which among the following salt solutions is basic in nature?

(A) Sodium acetate

(B) Ammonium chloride

(C) Ammonium sulphate

(D) Ammonium nitrate

4. The solubility product for a salt of the type AB is 4×10^{-8} . What is the molarity of its standard solution?

(A) $4 imes 10^{-4} \ mol/L$

(B) $2 \times 10^{-4} \frac{mol}{L} \frac{10^{-16} mol}{L}$ (D) $2 \times 10^{-16} mol/L$

5. Find out the solubility of $Ni(OH)_2$ in 0.1MNaOH. Given that the lonic product of $Ni(OH)_2$ is 2×10^{-15}

(A) $1 \times 10^8 M$

(B) $2 \times 10^{-13} M$

(C) $2 \times 10^{-8} M$

Add- Gali No- 21, A-1 Block Near Gupta Hard, Open and Gali Colon, Sant Hayar, Burar, Hemis, 110

6. Conjugate base for Bronsted acids $\mathrm{H}_2\mathrm{O}$ and HF are

- (A) $\mathrm{OH^-}$ and $\mathrm{H_2F^+}$ respectively
- (B) H_3O^+ and F^- , respectively
- (C) OH⁻ and F⁻, respectively
- (D) H_3O^+ and H_2F^+ , respectively

7. The pH of 0.01~M~NaOH(aq) solution will be

(A) 7.01

(B) 2

(C) 12

(D) 9

8. pH of a saturated solution of $Ca(OH)_2$ ts 9. The solublity product (K_{sp}) of $Ca(OH)_2$ is

(A) 0.5×10^{-15}

(B) 0.25×10^{-10}

(C) 0.125×10^{-15}

(D) 0.5×10^{-10}

9. Which will make basic buffer?

(A) 50 mL of 0.1 MNaOH + 25 mL of $0.1 \text{MCH}_3 \text{COOH}$

	(B) 100mL of 0.1MCH	$_3\mathrm{COOH} + 100\mathrm{mL}$ of $0.1\mathrm{M}$	MNaOH	
	(C) 100mL of 0.1MHC	$ m l + 200mL$ of $0.1MNH_4O$	Н	
	(D) 100mL of 0.1MH	${ m Cl} + 100 { m mL}$ of $0.1 { m MNaOH}$	H	
10.	HCl of different conditions (a) 60 mL $\frac{M}{10}$ HCl + 40 $\frac{M}{10}$ HCl + 45 $\frac{M}{10}$ HCl + 25 $\frac{M}{10}$ HCl + 25 $\frac{M}{10}$ HCl + 10 $\frac{M}{10}$ HCl + 10	tentrations $\mathrm{mL} rac{\mathrm{M}}{10} \mathrm{NaOH}$ $\mathrm{mL} rac{\mathrm{M}}{10} \mathrm{NaOH}$ $\mathrm{mL} rac{\mathrm{M}}{5} \mathrm{NaOH}$	ing different volumes	of $NaOH$ and
	(A) (b)	(B) (a)	(C) (d)	(D) (c)
11.		he Ag^+ ions in a ubility product of Ag_2C	saturated solution o C_2O_4 is	f $Ag_2C_2O_4$ is (D) $2.42 imes 10^{-8}$
12				
12.	would be	(B) $1.6 \times 10^{-9} M$	luct $1.6 imes 10^{-10}$ in $0.1M$	NaCl solution (D) zero.
13.		One Day One Day Oth & 10 MAT	orms pyridinium ion (C	$G_5H_5N^+H)$ in a
		ine solution (K_b for C_5	n & 12th	,
	(A) 0.0060%	(B) 0.013% IIT- JEE, N	EF(C) 0.77% FT	(D) 1.6%
14.	0.01MHCl are mixed	udling (IS.S Electronics Hoss, Regular) Respond College, (IN). Add- Gali No- 21, A-1 Block Near Gupta Ha		
	(A) 2	(B) 7	(C) 1.04	(D) 12.65
15.			is not an acidic buffer	
	(A) CH_3COOH and C		(B) H_2CO_3 and Na_2CO_3	
	(C) H_3PO_4 and Na_3P		(D) $HClO_4$ and $NaClO$	4
16.	Which of the following (A) <i>KCl</i>	g salts will give highes (B) $NaCl$	t pH in water? (C) Na_2CO_3	(D) $CuSO_4$
17.	The pH of 1 N H_2O is (A) 7	(B) > 7	(C) < 7	(D) 0
10			(C) < 1	(D) 0
10.	The pH of $10^{-7}NHCl$		(C) o	(D) 10
4.0	(A) 6	(B) 6.97	(C) 8	(D) 10
19.		^{-9}M aqueous HCl solu		(5)
	(A) 9	(B) between 6 to 7	(C) 7	(D) can't determine

20. If a solution of $10^{-6}MHCl$ is diluted 100 times, the pH of solution is				5
	(A) 8	(B) 6	(C) 6.96	(D) 7.04
21.	Which of the following	g has highest pH		
	(A) $0.1MHCl$	(B) $0.2MHCl$	(C) $0.1 M CH_3 COOH$	(D) $0.15MHNO_3$
22.	If two acids of equimo	olar concentration are t	aken then which optio	n is correct
	(A) $lpha_1^2K_{a_1}=lpha_2^2K_{a_2}$	(B) $lpha_1 K_{a_1}^2 = lpha_2 K_{a_2}^2$	(C) $lpha_1^2K_{a_2}=lpha_2^2K_{a_1}$	(D) $lpha_1 K_{a_2}^2 = lpha_2 K_{a_1}^2$
23.	Number of equivalent 5.	is of H_2SO_4 present in	100mL of its solution.	. Whose pH is
	(A) 10^{-4}	(B) 10^{-6}	(C) 10^{-2}	(D) 10^{-5}
24.	The aqueous solution	of ammonium chloride	e is	
	(A) Neutral	(B) Basic	(C) Acidic	(D) Amphoteric
25.	Hydrolysis constant fo	or a salt of weak acid a	nd weak base would be	e
	(A) $K_h=rac{K_w}{K_a}$	(B) $K_h=rac{K_w}{K_b}$	(C) $K_h=rac{K_w}{K_aK_b}$	(D) None of these
26.	In hydrolysis of a salt	of weak acid and stror	ng base, $A^- + H_2O \rightleftharpoons H$	$A + OH^-, \; the$
	hydrolysis constant (A	(h) is equal to	M. 9582701166	
	(A) $\frac{K_w}{K_a}$	(B) $\frac{K_w}{K_b}$ (D. EDUGI	(C) $\sqrt{\frac{K_a}{K_a}}$	(D) $rac{K_w}{K_a imes K_b}$
27.	On adding solid potas	sium cyanide to water	s, science & s.st	
	(A) pH will increase	MATHS, PHYSICS, BIOLOGY, HISTORY,,E		
	(B) pH will decrease	larks in Every Subjects 1-10th BOARD CBSE "We Believe on result		
	(C) pH will not change	18-12th BOARD CBSE Lutional Shire Olympiad (11 Rank) Lorin 1800 In (B.S.C Electronics Hons, Regular)	र्जी हे आगे आपकी सर्जी है।	
	(D) Electrical conducta	ance will hot change	ware Bangali Colony, Sant Nagar, Burari, Delhi- 110084	
28.	pH of $NaCl$ solution is	5		
	(A) 7	(B) 0	(C) > 7	(D) < 7
29.	A solution of sodium of	chloride in contact with	atmosphere has a $\it pH$	of about
	(A) 3.5	(B) 5	(C) 7	(D) 1.4
30.	By adding $20 \ ml \ 0.1 \ N$ will be	HCl to 20 ml 0.1 N K	OH, the pH of the obtain	ained solution
	(A) 0	(B) 7	(C) 2	(D) 9
31.		is mixed with $50ml$ of of water in the resulti		$Z_a=4.7)$. The
	(A) $1.8 imes 10^{-13}$	(B) $1.8 imes 10^{-15}$	(C) 1.8×10^{-14}	(D) $3.6 imes 10^{-13}$
32.		olution is added to $99r$ ion change by X units.	•	on of $NaCl$ so
	(A) 2	(B) 5	(C) 7	(D) 1

33	Match the column	I with column	$_{ m I}I$ and mark the	appropriate choice
JJ.	Match the Column .	I WILL COLUITI	i 11 ana mark tile	appropriate choice

Column <i>I</i>	Column II
$(A) \ CH_3COONa$	(i) Almost neutral, $pH>7$ or <7
$(B) NH_4Cl$	(ii) Acidic, $pH < 7$
$(C) NaNO_3$	(iii) Alkaline, $pH>7$
$(D) CH_3COONH_4$	(iv) Neutral, $pH=7$

$$\overline{ ext{(A) }A
ightarrow (i), B
ightarrow (ii), C
ightarrow (iii), D
ightarrow (iv)}$$

(B)
$$A \rightarrow (ii), B \rightarrow (iii), C \rightarrow (iv), D \rightarrow (i)$$

(C)
$$A \rightarrow (iii), B \rightarrow (ii), C \rightarrow (iv), D \rightarrow (iv)$$

(D)
$$A
ightarrow (iv), B
ightarrow (i), C
ightarrow (iii), D
ightarrow (ii)$$

34. Correct order of pH of 0.1 M solution is

(A)
$$NaCl < NH_4Cl < NaCN < HCl$$

(B)
$$NaCN < NH_4Cl < NaCl < HCl$$

(C)
$$HCl < NaCl < NaCN < NH_4Cl$$

(D)
$$HCl < NH_4Cl < NaCl < NaCN^{
m P \ VERMA \ SIR}$$
 M. 9582701166

35. A weak acid HX has the dissociation constant $1 \times 10^{-5} M$. It forms a salt NaXon reaction with alkali. The percentage hydrolysis of 0.1 M solution of NaX is

..... % (A) 0.0001

- (D) 0.15
- 36. Approximate pH of 0.01 M Na is calculated by 1.00 and 1.00 and 1.00 and 1.00 and 1.00 Approximate p_{11} are ionization constant of H_2A and Gali No-21, A-1 Block Near Gupta Hardware Bangali Colony, Sant Nagar, Burari, Delhi 110084 $\log C$ (B) $pH = 7 - \frac{pK_{a_1}}{2} - \frac{\log C}{2}$

(A)
$$pH = 7 + \frac{pK_{a_1}}{2} + \frac{\log C}{2}$$

(B)
$$pH = 7 - \frac{pK_{a_1}}{2} - \frac{\log C}{2}$$

(C)
$$pH=rac{pK_{a_1}+pK_{a_2}}{2}$$

(D)
$$pH=rac{pK_{a_1}-pK_{a_2}}{2}$$

37. The correct formula to calculate the hydroxyl ion concentration of an aqueous solution of NH_4NO_3 is

(A)
$$\sqrt{rac{C imes K_w}{K_b}}$$

(B)
$$\sqrt{rac{K_w imes K_b}{C}}$$

(C)
$$\sqrt{\frac{C \times K_w}{K_c}}$$

(D)
$$\sqrt{rac{K_a imes K_w}{C}}$$

- 38. A weak acid HX has the dissociation constant $1 \times 10^{-5} M$. It forms a salt NaX on reaction with alkali. The percentage hydrolysis of $0.1\,M$ solution of NaX is %.
 - (A) 0.0001
- (B) 0.01

(C) 0.1

- (D) 0.15
- 39. What will be the pH of an aqueous solution of $1.0\,M$ ammonium formate ? (Given: $pK_a = 3.8$ and $pK_b = 4.8$)
 - (A) 7.5

(B) 3.4

(C) 6.5

(D) 10.2

40.	Which is the correct Ag_2CrO_4	ect representation of	the solubility product	constant of
	(A) $[Ag^+]^2 [CrO_4^{-2}]$		(B) $[Ag^+] \ [CrO_4^{-2}]$	
	(C) $[2Ag^+]$ $[CrO_4^{-2}]$		(D) $[2Ag^+]^2 \ [CrO_4^{-2}]$	
41.	If K_{sp} for $HgSO_4$ is G	$6.4 imes10^{-5},$ then solubility	of the salt is	
	(A) $8 imes 10^{-3}$	(B) 8×10^{-6}	(C) $6.4 imes10^{-5}$	(D) $6.4 imes 10^{-3}$
42.	The solubility of PbC	${\mathcal C}l_2$ is		
	(A) $\sqrt{K_{sp}}$	(B) $^3\sqrt{K_{sp}}$	(C) $^3\sqrt{rac{K_{sp}}{4}}$	(D) $\sqrt{8K_{sp}}$
43.	If solubility of calciu	m hydroxide is $\sqrt{3}$, then	its solubility product w	ill be
	(A) 27	(B) 3	(C) 9	(D) $12\sqrt{3}$
44.	K_{sp} for sodium chlo	ride is $36 \; mol^2/litre^2$. Th	e solubility of sodium c	hloride is
	(A) $\frac{1}{36}$	(B) $\frac{1}{6}$	(C) 6	(D) 3600
45.	What is the minimu	m concentration of SO_2^2	$^{2-}_4$ required to precipita	te $BaSO_4$ in a
	solution containing	$1.0 imes10^{-4}mol$ Ba^{2+} (K_{sp}	for $BaSO_4$ is 4×10^{-10})	
	(A) $4 imes 10^{-10}M$	(B) $2 \times 10^{-7} M$	(C) $4 \times 10^{-6} M$	(D) $2 imes 10^{-3}M$
46.	Solubility product fo	or salt AB_2 is 4×10^{-12} .	alculate solubility	
	(A) $1 imes 10^{-3}~gm~mol$ /	litre 11t	h (B) $1 imes 10^{-5} gm mol / lit$	tre
	(C) $1 imes 10^{-4} \ gm \ mol$ /	litre BIOLOGY, HISTORY	(D) $1 imes 10^{-2}gmmol/liv$	tre
47.	K_{sp} for $Cr(OH)_3$ is 2	100s. Marks in Every Subjects CLASS-10th BOARD CESE CLASS-10th BOA	lubility in moles / litre.	
		Graduation (B) $_{N}$ $_{$		(D) 0.18×10^{-8}
48.	If the solubility pro moles/litre will be	duct of lead iodide (Pb	(l_2) is $3.2 imes 10^{-8},$ then it	s solubility in
	(A) 2×10^{-3}	(B) $4 imes 10^{-4}$	(C) $1.6 imes 10^{-5}$	(D) $1.8 imes 10^{-5}$
49.	-	or $CuS,\ Ag_2S$ and HgS af their solubility in water		⁴ respectively.
	(A) $Ag_2S>HgS>Ca$	uS	(B) $HgS>CuS>Ag_2S$	
	(C) $HgS > Ag_2S > C$	uS	(D) $Ag_2S>CuS>HgS$	
50.	The solubility produ	ct of As_2S_3 is $2.8 imes 10^{-72}$. What is the solubility c	of As_2S_3
	(A) $1.09 imes 10^{-15}\ mole_{s}$	/litre	(B) $1.72 imes 10^{-15}\ mole/li$	tre
	(C) $2.3 imes 10^{-16}\ mole/c$	litre	(D) $1.65 imes 10^{-36}\ mole/li$	tre
51.	If solubility product	of $HgSO_4$ is $6.4 imes 10^{-5}$, t	hen its solubility is	
	(A) $8 imes 10^{-3}\ mole/lite$	re	(B) $6.4 imes10^{-5}\ mole/litre$	

(C)
$$6.4 \times 10^{-3} \, mole/litre$$

(D)
$$2.8 imes 10^{-6} \, mole/litre$$

- 52. Solubility product (K_{sp}) of salts of type MX, MX_2 , M_3X at temperature T are 4×10^{-8} , 3.2×10^{-14} and 2.7×10^{-15} respectively. Solubility of the salts at temperature T are in the order
 - (A) $MX > MX_2 > M_3X$
 - (B) $M_3X > MX_2 > MX$
 - (C) $MX_2 > M_3X > MX$
 - (D) $MX > M_3X > MX_2$
- 53. MX is a salt formed by neutralisation of strong base, MOH, and weak acid, HX. If the dissociation constant of HX is K_a and solubility product of MX is k_{sn} , then the solubility of MX in aqueous acidic solution may be given as

(A)
$$\sqrt{k_{sp}}$$

(B)
$$\sqrt{k_{sp}.k_a}$$

(C)
$$\sqrt{k_{sp}.\left(1+rac{[H^+]}{K_a}
ight)}$$
 (D) $\sqrt{k_{sp}.\left(1+rac{k_a}{[H^+]}
ight)}$

(D)
$$\sqrt{k_{sp}.\left(1+rac{k_a}{[H^+]}
ight)}$$

54. A salt MX has $K_{sp}=4 imes 10^{-10}\,$. What value of $K_{sp}\,$ must another salt MX_3 have if the molar solubility of the two salts is to be identical

(A)
$$3.2 \times 10^{-10}$$

(B)
$$1.024 \times 10^{-19}$$

(C)
$$1.78 \times 10^{-5}$$

(D)
$$4.32 \times 10^{-18}$$

55. The solubility of $Ba_3(AsO_4)_2$ (molar mass = 690) is $6.9 \times 10^{-2} \, g/100 \, mL$. What is the value of its K_{sp} ?

(A)
$$1.08 \times 10^{-11}$$

(B)
$$1.08 \times 10^{-13}_{\text{MATHS, PHYSICS, c}}(\text{C})_{\text{s}}^{21}, 0 \times 10^{-15}_{\text{sir}}$$

$$_{ extsf{S}_{ extsf{C}}}$$
 (C) $_{ extsf{S}}1.0 imes10^{-1}_{ extsf{S}}$

(D)
$$6.0 \times 10^{-13}$$

molar solubility $^{\text{EE}}$ of $^{\text{EI}}$: $^{\text{NDA}}$ $Ag_2CO_3(K_{sp}=4 imes10^{-13})$ 56. What $0.1\,M\,Na_2CO_3$ solution 2th Board CBSE column 2 the County of Santon Share Company of Santon Share

(A)
$$10^{-6}$$

(D)
$$2 \times 10^{-7}$$

57. K_{SP} of $Mg(OH)_2$ is 1×10^{-12} . $0.01\,M\,MgCl_2$ will show precipitation in a solution of pH reater than:-

58. Solubility product expression of salt MX_4 which is sparingly soluble with a solubility (S) can be given as

(A)
$$256S^5$$

(B)
$$16S^3$$

(C)
$$5S$$

(D)
$$25S^4$$

59. Zirconium phosphate $[Zr_3(PO_4)_4]$ dissociates into three zirconium cations of charge +4 and four phosphate anions of charge -3. If molar solubility of zirconium phosphate is denoted by S and its solubility product by K_{sp} then which of the following relationship between S and K_{sp} is correct?

(A)
$$S = \left\{ K_{sp}/144 \right\}^{1/7}$$

(B)
$$S=\left\{K_{sp}/(6912)^7
ight\}$$

(C)
$$S = (K_{sp}/6912)^{1/7}$$

(A) $< K_{SP}$

(B) $> K_{SP}$

(C) $\approx K_{SP}$

Page 7

(D) None of these

80.	On passing H_2S gas is not precipitated because	through a highly acidio cause	solution containing (Cd^{2+} ions, CdS
	(A) Of common ion ef	ffect		
	(B) The solubility of <i>C</i>	dS is low		
	_	orm complex with $H_2 S$		
	(D) The solubility prod	duct of CdS is low		
81.	When NH_4Cl is add hydroxide is reduced.	ed to NH_4OH solution NH_4OH	on, the dissociation o	of ammonium
	(A) Common ion effect	ct .	(B) Hydrolysis	
	(C) Oxidation		(D) Reduction	
82.	In the reaction: $H_2S =$ (A) S^{2-} is precipitate	$ ho = 2H^+ + S^{2-}$, when NH	I_4OH is added, then	
	(B) No action takes pl	aces		
	(C) Concentration of a			
	(D) Concentration of			
02	Λ	to saturated $BaCl_2$ sol	M. 9582701166	7 · hocause
05.		Chatelier's principle 8		i ₂ , because
	(B) Of common-ion et	Day-1 9th & 10 MATH	HS, SCIENCE & S.ST	
		$^{ ext{MATHS, PHYSICS}}_{++},(Cl^-)$ remains const	r & rztri CHEMISTRY, (By KD Sir) antrinta saturated solu	tion
		erature, the product (E		
	solution CLAS:	s- 12th BOARD CBSE International Silver Olympiad (71 Rank) to From ISRO TOTAL STATE OF THE STAT	र्गी है डागे डाएकी सर्जी है।	
84.	The solubility of $AgCl$	ion (3.45 Electronics News. Regular) Marchine (2009) Marchine	dware Bangali Colony, Sant Nagar, Burari, Delhi- 110084	
	(A) $AgNO_3\left(0.1M ight)$	(B) $H_{2}O\left(l ight)$	(C) $NaCl (0.4 M)$	(D) $BaCl_{2}\left(0.3M ight)$
85.	The pH of a simple so	odium acetate buffer i	s given by $pH=pK_a+$	$\lograc{[Salt]}{[Acid]}$ K_a of
	acetic acid $= 1.8 \times 10^{-5}$ about	⁵ If [Salt] = [Acid] = 0.1	M, the pH of the solu	tion would be
	(A) 7	(B) 4.7	(C) 5.3	(D) 1.4
86.		should be added to a $(K_a $		<i>OOH</i> to give a
	(A) 0.1	(B) 0.2	(C) 1	(D) 10
87.	Which of the following	g is a buffer		
	(A) $NaOH + CH_3COOR$	Na	(B) $NaOH + Na_2SO_4$	
	(C) $K_2SO_4 + H_2SO_4$		(D) $NH_4OH + CH_3COC$	ONH_4
88.	When a buffer solutio	n of sodium acetate ar	nd acetic acid is diluted	with water

	(A) Acetate ion con	centration increases				
	(B) H^+ ion concentration increases					
	(C) OH^- ion concentration increases					
	(D) H^+ ion concentr	ation remain unaltered	d			
89.	Which of the follow	ing solutions cannot ac	ct as a buffer			
	(A) $NaH_2PO_4 + H_3P$	$^{\circ}O_4$	(B) $CH_3COOH + CD$	H_3COONa		
	(C) $HCl + NH_4Cl$		(D) $H_3PO_4+Na_2H_3$	PO_4		
90.	A solution which is base is known as	resistant to change of	f pH upon the additio	on of an acid or a		
	(A) A colloid	(B) A crystalloid	(C) A buffer	(D) An indicator		
91.	for HX is 10^{-8} . The					
	(A) 3	(B) 8	(C) 11	(D) 14		
92.		ecular sodium acetate				
	(A) 7	(B) 9.2 KULDEEP VERMA SIR	(C) 4.74 _{M. 9582701166}	(D) 14		
93.	The condition for m	n <mark>inimum c</mark> hange in pH	for a b <mark>u</mark> ffer solution i	S		
	(A) Isoelectronic species are added 1st to 8th All Subjects 9th & 10 MATHS, SCIENCE & S.ST					
	(B) Conjugate acid	or base is added 1	11th & 12th SICS, CHEMISTRY, (By KD Sir)			
	(C) $pH = pK_a$		NEET. NDA. CUET			
	(D) None of these	100% Marks in Every Subjects CLASS-10th BOARD CBSE 95% Marks in (PCM) CLASS-12th BOARD CBSE				
94.		tant of a certain weak svents Tracerno EXT ave to prepare a buffe	pta Hardware Bangali Colony, Sant Nagar, Burari, Delhi: 110084			
	(A) 1:10	(B) 10:1	(C) 5:4	(D) 4:5		
95.	$50 \ ml$ of $2 \ N$ acetic an approximate pH	acid mixed with $10ml$ o	f $1\ N$ sodium acetate	solution will have		
	(A) 4	(B) 5	(C) 6	(D) 7		
96.	Which of the follow	ing will not function as	a buffer solution			
	(A) $NaCl$ and $NaOH$	I	(B) $NaOH$ and NH_4OH			
	(C) CH_3COONH_4 ar	nd <i>HCl</i>	(D) All of above			
97.		ion of a weak acid (H)	,			
	(A) 4.50	(B) 8	(C) 7	(D) 10		
98.	If $50ml$ of $0.2MKO$ solution is $(K_a=1.8$	^{0}H is added to $40ml$ of $8 imes10^{-4})$	0.5MHCOOH, the pH	H of the resulting		

	(A) 3.4	(B) 7.5	(C) 5.6	(D) 3.75
99.		lution containg 0.2 mol $(Ka\ ext{for acetic acid is}\ 1$	le per litre CH_3COONa . $8 imes 10^{-5})$	and 1.5 mole
	(A) 4.87	(B) 5.8	(C) 2.4	(D) 9.2
100.		-	xing sodium acetate ard should be $(K_a=10^{-5})$	
	(A) 1:10	(B) 1:1	(C) 10:1	(D) 1:100
101.			xing $5.076\ gm$ of methy hylamine $(CH_3NH_2\ ;\ K$	
102				
102.			$_{i}=2 imes10^{-5})$ and potas	sium acetate
	has $pH=5.18$. The $\frac{ CH }{ CH }$	$\frac{G_3COO^-]}{G_3COOH]}$ ratio in this buff		
	(A) 1:1	(B) 3:1	(C) 5:1	(D) 1:3
103.	Which buffer is preser		M 0502704466	
	(A) $NaH_2PO_4 + Na_2HI$ (C) $CH_3COOH + CH_3COOH$	KULDEEP VERMA SIR KOONa KD. EDUCAT	(B) $H_3PO_4 + NaH_2PO_4$ (D) $H_2CO_3 + HCO_3^-$	
104.	Which of the following	is a b <mark>uffer solution?</mark>	S, SCIENCE & S.ST	
	(A) $500 mL$ of $0.1 N CH$	$T_3COOH+500mL$, of 0.1	$c\tilde{N}_{ extsf{N}}\tilde{N}aOH_{ extsf{KD Sir})}$ eco, polity, geography	
	100% M CLASS	$T_3 COOH + 1000ml$ of 0.1		
	Certificate Graduatio	$COOH + \frac{500 mL}{1000 mL} \text{of } 0.2$		
	(D) $500mL$ of $0.2NCL$	$H_3COOH + 500 ml$ of 0.1	N B $_{2}N$ I $_{4}aQ$, $_{5}H$ Nagar, Burari, Delhi-110084	
105.		•	of an aqueous bufferents titration with stron	
	(A) 7	(B) 4.5	(C) 2.5	(D) 9.5
106.		ion obtained by mixing lution. pKb_{\parallel} for aqueou	$50 \; ml \; \; 0.2 \; M \; \; NH_4Cl$ us NH_3 is 4.74	solution and
	(A) 4.26	(B) 5.22	(C) 8.78	(D) 9.74
107.	$egin{aligned} 1. & NH_3 + NH_4Cl \ 2. & HCl + NaCl \ 3. & NH_3 + HCl ext{ in } 2:1 ext{ } m \end{aligned}$	ing combinations, is but $note$ ratio wer using the code give	·	
	(A) 1 and 2	(B) 1 and 3	(C) 2 and 3	(D) 1,2 and 3

108.		HA is 4.5. The pOH HA acid is ionised is	of an aqueous buffered	solution of HA		
	(A) 4.5	(B) 2.5	(C) 9.5	(D) 7		
109.	20ml solution contains pH will not change (A) Addition of $1ml$?	$0.01MNH_4OH$. By addin	g which one its		
	(B) Addition of $5ml$, $0.1MNH_4Cl$					
	(C) Addition of 5 ml	L , $0.1MNH_4OH$				
	(D) Addition of $10 n$	nl , $0.1MNH_4Cl$				
110.	Which of the follow	ing mixture of solution	n can function as a buffe	r solution ?		
	(A) $50ml$ of $0.1MC$	$H_3COOH + 50ml$ of 0.1	M~NaOH			
	(B) $50ml$ of $0.2MH$	NCl + 50ml of $0.2MNaC$	ЭH			
	(C) $50ml$ of $0.2M$ N	$JH_3 + 50ml$ of $0.2MHC$	l			
	(D) $50ml$ of $0.2M$ N	(D) $50ml$ of $0.2MNH_3 + 50ml$ of $0.1MHCl$				
111.	The pH of an acidic	buffer mixture is	M. 9582701166			
	(A) > 7	K.D. EDUC	AT(B)Y-ACADEMY			
	(C)=7	One Day 1st	$_{\text{to 8tl}}$ (D) Depends upon K	a of acid		
112.	$(A) NH_4OH + NH_4O$ $(C) NH_4OH + HCl$ is	(B) $HCl+NaCl$ in $2:1$ $mole$ ratio $I-JEE$ in Swernusing the code		(D) None of these		
112						
115.	If $20mL$ of $0.1MNaOH$ is added to $30mL$ of $0.2MCH_3COOH$ ($pK_a=4.74$), the pH of the resulting solution is					
	(A) 4.44	(B) 9.56	(C) 8.96	(D) 9.26		
114.	(A) $100 ml 0.1 M CH_3$ (B) $200 ml 0.1 M NH_3$	ving is a buffer solution $_3COOH+100ml,0.05M$, $_4OH+200ml,0.08MHC$ $OH+500ml,0.1MC_6H_5O$	NaOH			
115.	A certain buffer sol X^- is 10^{-10} . The pH	•	oncentration of X^- and	HX . The K_b for		
	(A) 4	(B) 7	(C) 10	(D) 14		
116.	Which is a buffer so	olution				
	(A) $CH_3COOH + CH$	H_3COONa	(B) $CH_3COOH + CH_3COOH + CH_3C$	$COONH_4$		

	(C) $CH_3COOH + NH_4$	$_{c}Cl$	(D) $NaOH+NaCl$			
117.	Phenolphthalein does not act as an indicator for the titration between					
	(A) $NaOH$ and CH_3COOH					
	(B) $H_2C_2O_4$ and $KMnO_4$					
	(C) $Ba(OH)_2$ and HCl					
	(D) KOH and H_2SO_4					
118.	of CH_3COONa . The f	•	lein) added to $0.1M$ aquat exists in colourless for -0.31			
	(A) 0.2	(B) 0.8	(C) 0.5	(D) 0.4		
110		,	, ,			
119.	·		weak monoprotic acid ion required till equiva			
	(A) 10	(B) 6	(C) 12	(D) 8		
120.	CrO_4^{-2} (Yellow) change hence x and y are respectively.	spectively) in $pH=x$ and vice ve	rses in $pH=y$,		
	(A) 6,5	(B) 8,6	(C) 6,8	(D) 7,7		
121.		t of $CuS, \stackrel{ ext{One Day}}{Ag_2S}, \stackrel{ ext{9th & 10 MA}}{HgS}$ a ulphides are in the ord	THS, SCIENCE & S.ST. 10^{-31} , 10^{-44} , 10^{-54} re th & 12th, 10^{-54} rederminately, (by KD Sir)	spectively. The		
	(A) $Ag_2S>CuS>Hg$	BIOLOGY, HISTORY	(B) $Ag_2S>HgS>Cus$			
	(C) $HgS > Ag_2S > Cu$	ASS-10th BOARD CBSE % Marks in (PCM) 5-9-12th BOARD CBSE Platerational Silver Olympiad (11 Rank) TICS ND SIR CD S	(D) $CuS > Ag_2S > HgS$	\mathcal{S}		
122.	Boron halides behave	e as Lewis acids, becau				
	(A) Ionic nature		(B) Acidic nature			
	(C) Covalent nature		(D) Electron deficient	nature		
123.	pH value of $N/10\ Na$	<i>OH</i> solution is				
	(A) 10	(B) 11	(C) 12	(D) 13		
124.	The pH of blood doe base because blood	s not appreciably chan	ge by a small addition	of an acid or a		
	(A) Contains serum p	orotein which acts as b	uffer			
	(B) Contains iron as	a part of the molecule				
	(C) Can be easily coa	gulated				
	(D) It is body fluid					
125.	Consider the following and HF .	ng reaction involving t	two acids shown below	v : formic acid		

Which of the following statements about this reaction are true?

- (A) Formic acid is the strongest Bronsted acid in the reaction
- $(B)\,HF$ is the strongest Bronsted acid in the reaction
- (C) KF is the strongest Bronsted base in the reaction
- $(D) KO_2CH$ is the strongest Bronsted base in the reaction
- (E) The equilibrium favours the reactants
- (F) The equilibrium favours the products
- (G) Formic acid has a weaker conjugate base
- (H) HF has a weaker conjugate base

(A) A,D and F

(B) B, D, and H

(C) A, C, and H

(D) B,D,E and H

----- "काक चेष्टा बको ध्यानं, श्वान निद्रा तथैव च। अल्पाहारी गृहत्यागी, विद्यार्थी पंच लक्षणं।" -- कौवे की तरह प्रयास, बगुले की तरह ध्यान, कुत्ते <mark>की तरह नींद, कम भोजन, और घर त्याग, ये विद्यार्थियों के पां</mark>च लक्षण हैं। -----

