MedBot – An NLP based Chat-Bot for Diabetes Prediction using Logistic Regression

Sreekar K, Aswin V, Vishnu Narayanan. Amrita Vishwa Vidyapeetham

(A) GOAL & CONTRIBUTIONS

Our goal is to streamline the process of diabetes prediction

- Introducing a Chat-Bot that can give preliminary prediction of diabetes given user data.
 We have explored a number of Machine Learning techniques for classification/prediction, and, implemented using Logistic Regression.
- The Chat-Bot interaction data-stream has been implemented using NLP mechanisms, facilitating a coherent conversation involving user queries regrading diabetes.

 ${\it Keywords: Chat-Bot, Logistic Regression, Natural Language Processing, Diabetes, Telegram, Health Care.}$

(C) Chat-Bot API Flow and Interaction

(D) Dataset Description

The dataset is divided into TRAIN,TEST sub directories for easy access. The train-test split after extraction was done was 70-30.

Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	BMI	DiabetesPedigreeFunction	Age	Outcome

Dataset Link: https://www.kaggle.com/datasets/uciml/pima-indians-diabetes-database

(E) SMOTE Analysis

SMOTE class from the imbalanced-learn library to oversample the minority class in the dataset. The fit_resample method is used to apply SMOTE and obtain the resampled feature matrix (X_resampled) and target variable (y_resampled).

```
import pandas as pd
from imblearn.over_sampling import SMOTE

data = pd.read_csv(r'C:\Users\Darksoul\Desktop\PIMA Indian Dataset\archive (2)\diabetes.csv')

x = data.drop(['Outcome', 'BloodPressure', 'Age'], axis=1)
y = data['Outcome']

smote = SMOTE(random_state=42)
X_resampled, y_resampled = smote.fit_resample(X, y)
print("Original dataset shape:", X.shape, y.shape)
print("Original dataset shape: X_resampled.shape, y_resampled.shape)

Original dataset shape: (768, 6) (768,)
Resampled dataset shape: (1000, 6) (1000,)
```

(F) Pre-Processing

We handle the dataset by first identifying the columns that help in diabetes prediction and eliminate the rest. Then, we impute the missing values by replacing the missing data points by arithmetic mean (or) mode, depending on the type of data.

	Pregnancies	Glucose	BloodPressure	Insulin	DiabetesPedigreeFunction	Outcome
				79.799479		
		85.0	66.0	79.799479	0.351	
			64.0	79.799479	0.672	
		89.0	66.0	94.000000	0.167	
				168.000000	2.288	
2] df	.shape					
	58, 6)					

(G) Logistic Regression Architecture

(H) Hyper Parameters Logistic Regression

Parameter Name	Purpose	Value
Penality	Specifies the type of regularization to be applied. 'l2' refers to L2 regularization	12
С	Inverse of regularization strength. Smaller values of C result in stronger regularization.	1.0
Random State	Provides seed for random number generation.	None
max_iter	Maximum number of iterations taken for the solvers to converge.	100

Accuracy: 0.73					Confus	on Matrix
Classification	Report: precision	recall	f1-score	support		20
9	0.77	0.67	0.71	99		
1	0.71	0.80	0.75	101		
accuracy			0.73	200	25	76
macro avg	0.74	0.73	0.73	200		100
weighted avg	0.74	0.73	0.73	200		

(I) Hyper Parameters KMeans with KNN

Parameter Name	Purpose	Value
Test size	To split the dataset into training and testing in a ratio	0.3
Random State	This parameter sets the seed for the random number generator used by the data splitter. By using a fixed seed, the random splitting process becomes deterministic, allowing for result reproducibility.	42
No. of Clusters	Number of the centroid which will be formed	3
No. of Neighbours	Its specifies the number of neighbors to consider when making predictions for a data point	Sqrt (no of clusters)

				KMeans & KNN
support	f1-score	recall	precision	
154	0.99	0.99	0.99	class 0
12	1.00	1.00	1.00	class 1
65	0.98	0.98	0.98	class 2
231	0.99			accuracy
231	0.99	0.99	0.99	macro avg
231	0.99	0.99	0.99	weighted avg

(J) Hyper Parameters Decision Tree

Parameter Name	Purpose	Value
Test size	To split the dataset into training and testing in a ratio	0.2
Random State	This parameter sets the seed for the random number generator used by the data splitter. By using a fixed seed, the random splitting process becomes deterministic, allowing for result reproducibility.	42
Grid Search CV	The grid search explores various alpha values using 5-fold cross-validation.	5-fold cross-
		validatio

(K) Accuracy							
S.No.	Model	Precision	Accuracy				
1.	Logistic Regression	0.74	0.74				
2.	KMeans with KNN	0.99	0.99				
3.	Decision Tree	0.70	0.72				
4.	Fuzzy CMeans with KNN	0.74	0.76				

(I.) Ann Demo

(M)References

- [1] J.-A. Moldt, T. Festl-Wietek, A. Madany Mamlouk, K. Nieselt, W. Fuhl, and A. Herrmann-Werner, "Chatbots for future docs: exploring medical students' attitudes and knowledge towards artificial intelligence and medical chatbots," Med. Educ. Online, vol. 28, no. 1, p. 2182659, 2023.
- [2] D. Choubey, S. Paul, S. Kumar, and S. Kumar, "Classification of Pima indian diabetes dataset using naive bayes with genetic algorithm as an attribute selection," in Communication and Computing Systems, 2016.
- [3] M. Abedini, A. Bijari, and T. Banirostam, "Classification of Pima Indian diabetes dataset using ensemble of decision tree, logistic regression and neural network," Nternational J. Adv. Res. Comput. Commun. Eng., vol. 9, no. 7, pp. 1–4, 2020.