ICPSR 2017 "Advanced Maximum Likelihood": Survival Analysis Day Two

August 8, 2017

A General Parametric Model

$$f(t) = \lim_{\Delta t \to 0} \frac{\Pr(t \le T < t + \Delta t)}{\Delta t}$$
 $S(t) = \Pr(T \ge t)$ $= 1 - \int_0^t f(t) dt$

= 1 - F(t)

$$h(t) = \frac{f(t)}{S(t)}$$

$$= \lim_{\Delta t \to 0} \frac{\Pr(t \le T < t + \Delta t | T \ge t)}{\Delta t}$$

Likelihood

$$L = \prod_{i=1}^{N} [f(T_i)]^{C_i} [S(T_i)]^{1-C_i}$$

$$\ln L = \sum_{i=1}^{N} \{C_{i} \ln [f(T_{i})] + (1 - C_{i}) \ln [S(T_{i})]\}$$

$$\ln L|\mathbf{X},\boldsymbol{\beta} = \sum_{i=1}^{N} \left\{ C_{i} \ln \left[f(T_{i}|\mathbf{X},\boldsymbol{\beta}) \right] + (1 - C_{i}) \ln \left[S(T_{i}|\mathbf{X},\boldsymbol{\beta}) \right] \right\}$$

The Exponential Model

$$h(t) = \lambda$$

$$H(t) = \int_0^t h(t) dt$$
$$= \lambda t$$

$$S(t) = \exp[-H(t)]$$

= $\exp(-\lambda t)$

The Exponential Model, Illustrated

Covariates

$$\lambda_i = \exp(\mathbf{X}_i \beta).$$

$$S_i(t) = \exp(-e^{\mathbf{X}_i\beta}t).$$

Exponential (log-)Likelihood

$$\ln L = \sum_{i=1}^{N} \left\{ C_i \ln \left[\exp(\mathbf{X}_i \beta) \exp(-e^{\mathbf{X}_i \beta} t) \right] + (1 - C_i) \ln \left[\exp(-e^{\mathbf{X}_i \beta} t) \right] \right\}$$

$$= \sum_{i=1}^{N} \left\{ C_i \left[(\mathbf{X}_i \beta) (-e^{\mathbf{X}_i \beta} t) \right] + (1 - C_i) (-e^{\mathbf{X}_i \beta} t) \right\}$$

Exponential: "AFT"

$$\ln T_i = \mathbf{X}_i \gamma + \epsilon_i$$

$$T_i = \exp(\mathbf{X}_i \gamma) \times u_i$$

$$\epsilon_i = \ln T_i - \mathbf{X}_i \gamma$$

Interpretation: Hazard Ratios

$$\mathsf{HR}_k = \dfrac{h(t) |\widehat{X_k} = 1}{h(t) |\widehat{X_k} = 0} \ h_i(t) = \exp(eta_0) \exp(\mathbf{X}_i eta)$$

$$\begin{split} \mathsf{HR}_k &= \frac{h(t)\widehat{|X_k} = 1}{h(t)\widehat{|X_k} = 0} \\ &= \frac{\exp(\hat{\beta}_0 + X_1\hat{\beta}_1 + ... + \hat{\beta}_k(1) + ...)}{\exp(\hat{\beta}_0 + X_1\hat{\beta}_1 + ... + \hat{\beta}_k(0) + ...)} \\ &= \frac{\exp(\hat{\beta}_k \times 1)}{\exp(\hat{\beta}_k \times 0)} \\ &= \exp(\hat{\beta}_k) \end{split}$$

More Generally

$$\mathsf{HR}_k = \frac{\hat{h}(t)|X_k + \delta}{\hat{h}(t)|X_k}$$
$$= \exp(\delta \, \hat{\beta}_k)$$

$$\mathsf{HR}_{\frac{i}{j}} = \frac{\mathsf{exp}(\mathbf{X}_{i}\hat{\beta})}{\mathsf{exp}(\mathbf{X}_{j}\hat{\beta})}$$

Example: King et al. (1990) Data

> summary(KABL)

id	country	durat	ciep12	
Min. : 1.00	Min. : 1.000	Min. : 0.50	Min. :0.0000	
1st Qu.: 79.25	1st Qu.: 4.000	1st Qu.: 6.00	1st Qu.:1.0000	
Median :157.50	Median : 7.000	Median :14.00	Median :1.0000	
Mean :157.50	Mean : 7.182	Mean :18.44	Mean :0.8631	
3rd Qu.:235.75	3rd Qu.:10.000	3rd Qu.:28.00	3rd Qu.:1.0000	
Max. :314.00	Max. :15.000	Max. :59.00	Max. :1.0000	
fract	polar	format	invest	
Min. :349.0	Min. : 0.00	Min. :1.000	Min. :0.0000	
1st Qu.:677.0	1st Qu.: 3.00	1st Qu.:1.000	1st Qu.:0.0000	
Median :719.0	Median :14.50	Median :1.000	Median :0.0000	
Mean :718.8	Mean :15.29	Mean :1.904	Mean :0.4522	
3rd Qu.:788.0	3rd Qu.:25.00	3rd Qu.:2.000	3rd Qu.:1.0000	
Max. :868.0	Max. :43.00	Max. :8.000	Max. :1.0000	
numst2	eltime2	caretk2		
Min. :0.0000	Min. :0.0000	Min. :0.0000	00	
1st Qu.:0.0000	1st Qu.:0.0000	1st Qu.:0.0000	00	
Median :1.0000	Median :0.0000	Median :0.0000	00	
Mean :0.6306	Mean :0.4873	Mean :0.054	14	
3rd Qu.:1.0000	3rd Qu.:1.0000	3rd Qu.:0.0000	00	
Max. :1.0000	Max. :1.0000	Max. :1.0000	00	

Cabinet Durations: Kaplan-Meier

Exponential Model (AFT form)

(Intercept) 3.72460 0.630834 5.90 3.54e-09 fract -0.00116 0.000905 -1.29 1.98e-01 polar -0.01610 0.006097 -2.64 8.28e-03 format -0.09097 0.045544 -2.00 4.58e-02 invest -0.36937 0.139398 -2.65 8.06e-03 numst2 0.51464 0.129233 3.98 6.83e-05 eltime2 0.72316 0.134999 5.36 8.47e-08

caretk2 -1.30035 0.259566 -5.01 5.45e-07

Scale fixed at 1

```
Exponential distribution

Loglik(model) = -1025.6 Loglik(intercept only) = -1100.7

Chisq= 150.21 on 7 degrees of freedom, p= 0

Number of Newton-Raphson Iterations: 4

n= 314
```

Exponential Model (hazard form)

Exponential: Hazard Ratios

- > KABL.exp.HRs<-exp(-KABL.exp.AFT\$coefficients)
- > KABL.exp.HRs

(Intercept) fract polar format invest numst2 0.02412278 1.00116446 1.01622875 1.09523102 1.44681993 0.59771361

eltime2 caretk2 0.48521587 3.67058030

Hazard Ratios: Interpretation

- On average, an investiture requirement increases the hazard of cabinet failure by $100 \times (1.447 1) = 44.7$ percent.
- On average, an investiture requirement decreases the predicted survival time by

$$100 \times [1 - \exp(-0.369)] = 100 \times (1 - 0.691)$$

= 30.1 percent.

Comparing Predicted Survival

Can use predict, or...

Comparing Predicted Survival

The Weibull Model, I

$$h(t) = \lambda p(\lambda t)^{p-1}$$

$$S(t) = \exp \left[-\int_0^t \lambda p(\lambda t)^{p-1} dt \right]$$
$$= \exp(-\lambda t)^p$$

$$f(t) = \lambda p(\lambda t)^{p-1} \times \exp(-\lambda t)^{p}$$

The Importance of p

- p=1 o exponential model
- p>1 o rising hazards
- 0

Weibull Hazards Illustrated

Weibull Survival

Covariates

$$\lambda_i = \exp(\mathbf{X}_i \beta)$$

Weibull: AFT

$$T_i = \exp(\mathbf{X}_i \gamma) \times \sigma u_i$$

Means:

$$p = 1/\sigma$$

$$\beta = -\gamma/\sigma$$

Weibull Example (AFT)

```
> KABL.weib.AFT<-survreg(MODEL,data=KABL,dist="weibull")
> summary(KABL.weib.AFT)
Call:
survreg(formula = MODEL, data = KABL, dist = "weibull")
              Value Std. Error z
(Intercept) 3.69641 0.491590 7.52 5.51e-14
fract
           -0.00106 0.000705 -1.50 1.33e-01
polar -0.01508 0.004677 -3.22 1.26e-03
format -0.08675 0.035133 -2.47 1.35e-02
invest -0.33019 0.106991 -3.09 2.03e-03
numst2 0.46352 0.100367 4.62 3.87e-06
eltime2 0.66381 0.104265 6.37 1.93e-10
caretk2 -1.31758
                     0.201065 -6.55 5.64e-11
Log(scale) -0.26079
                     0.049971 -5.22 1.80e-07
Scale= 0.77
Weibull distribution
Loglik(model) = -1013.5 Loglik(intercept only) = -1100.6
Chisq= 174.23 on 7 degrees of freedom, p= 0
```

Number of Newton-Raphson Iterations: 5

n = 314

Weibull Example (hazard)

```
> KABL.weib.PH<-(-KABL.weib.AFT$coefficients)/(KABL.weib.AFT$scale)
```

> KABL.weib.PH

(Intercept) fract polar format invest -4.797770943 0.001374065 0.019573990 0.112598478 0.428574214

numst2 eltime2 caretk2 -0.601628072 -0.861597589 1.710156135

Weibull Hazard Ratios

```
> KABL.weib.HRs<-exp(KABL.weib.PH)
> KABL.weib.HRs

(Intercept) fract polar format invest numst2
0.008248112 1.001375009 1.019766817 1.119182466 1.535067285 0.547918858
eltime2 caretk2
0.422486583 5.529824807
```

Interpretation:

• On average, an investiture requirement *increases* the *hazard* of cabinte failure by $100 \times (1.535 - 1) = 53.5$ percent.

Comparing Predicted Survival Curves

The Gompertz Model (hazard)

$$h(t) = \exp(\lambda) \exp(\gamma t)$$

$$S(t) = \exp\left[-rac{e^{\lambda}}{\gamma}(e^{\gamma t}-1)
ight]$$

with

$$\lambda_i = \exp(\mathbf{X}_i \beta)$$

γ is for "Gompertz"

- $\gamma = 0 \rightarrow \text{constant hazard}$
- $\gamma > 0
 ightarrow {
 m rising\ hazard}$
- $\gamma < 0
 ightarrow ext{declining hazard}$

Gompertz Hazards

Gompertz Estimates

```
> library(flexsurv)
> KABL.Gomp<-flexsurvreg(MODEL,data=KABL,dist="gompertz")
> KABL.Gomp
```

Call:

flexsurvreg(formula = MODEL, data = KABL, dist = "gompertz")

Estimates:

	data mean	est	L95%	U95%	exp(est)	L95%	U95%
shape	NA	0.02320	0.01150	0.03490	NA	NA	NA
rate	NA	0.01520	0.00407	0.05680	NA	NA	NA
fract	719.00000	0.00140	-0.00039	0.00319	1.00000	1.00000	1.00000
polar	15.30000	0.01890	0.00666	0.03120	1.02000	1.01000	1.03000
format	1.90000	0.10700	0.01590	0.19800	1.11000	1.02000	1.22000
invest	0.45200	0.41200	0.13700	0.68600	1.51000	1.15000	1.99000
numst2	0.63100	-0.60800	-0.86800	-0.34900	0.54400	0.42000	0.70500
eltime2	0.48700	-0.87300	-1.15000	-0.59400	0.41800	0.31600	0.55200
caretk2	0.05410	1.46000	0.94500	1.98000	4.32000	2.57000	7.24000

```
N = 314, Events: 271, Censored: 43 Total time at risk: 5789.5 Log-likelihood = -1018.317, df = 9 ATC = 2054.634
```

The Log-Logistic Model

$$\operatorname{In}(T_i) = \mathbf{X}_i eta + \sigma \epsilon_i$$
 $S(t) = rac{1}{1 + (\lambda t)^p}$
 $h(t) = rac{\lambda p (\lambda t)^{p-1}}{1 + (\lambda t)^p}$
 $f(t) = rac{\lambda p (\lambda t)^{p-1}}{1 + (\lambda t)^p} imes rac{1}{1 + (\lambda t)^p}$
 $= rac{\lambda p (\lambda t)^{p-1}}{[1 + (\lambda t)^p]^2}$

Log-Logistics Illustrated

Example: Log-Logistic

```
> KABL.loglog<-survreg(MODEL,data=KABL,dist="loglogistic")
> summary(KABL.loglog)
Call:
survreg(formula = MODEL, data = KABL, dist = "loglogistic")
              Value Std. Error
                                  z
(Intercept) 3.333841
                      0.54735 6.09 1.12e-09
fract
          -0.000913 0.00079 -1.15 2.48e-01
polar -0.019092 0.00588 -3.24 1.18e-03
format -0.096975 0.04315 -2.25 2.46e-02
invest -0.357403 0.12876 -2.78 5.51e-03
numst2 0.479507 0.12104 3.96 7.45e-05
eltime2 0.627837 0.12405 5.06 4.16e-07
caretk2 -1.252349
                      0.23151 -5.41 6.32e-08
Log(scale) -0.568276 0.05116 -11.11 1.14e-28
Scale = 0.567
Log logistic distribution
Loglik(model) = -1024 Loglik(intercept only) = -1099
Chisq= 150.05 on 7 degrees of freedom, p= 0
Number of Newton-Raphson Iterations: 4
n = 314
```

The Log-Normal Model

$$S(t) = 1 - \Phi \left[rac{\ln T - \ln(\lambda)}{\sigma}
ight]$$

Example: Log-Normal

```
> KABL.logN<-survreg(MODEL,data=KABL, dist="lognormal")
> summary(KABL.logN)
Call:
survreg(formula = MODEL, data = KABL, dist = "lognormal")
              Value Std. Error
                                   z
(Intercept) 3.092124 0.575242 5.375 7.64e-08
fract
           -0.000696 0.000835 -0.834 4.04e-01
polar -0.019607 0.006176 -3.175 1.50e-03
format -0.109937 0.044710 -2.459 1.39e-02
invest -0.391615 0.134347 -2.915 3.56e-03
numst2 0.569818 0.123161 4.627 3.72e-06
eltime2 0.657003 0.129644 5.068 4.03e-07
caretk2 -1.117251 0.257716 -4.335 1.46e-05
Log(scale) 0.007111 0.043981 0.162 8.72e-01
Scale= 1.01
Log Normal distribution
Loglik(model) = -1025.5 Loglik(intercept only) = -1101.2
Chisq= 151.36 on 7 degrees of freedom, p= 0
Number of Newton-Raphson Iterations: 4
n = 314
```

Other Parametric Survival Models

- Rayleigh (Weibull w/p = 2)
- Logistic
- t
- Generalized Gamma

Software

R:

- survreg (in survival)
- rms package
- flexsurv package
- eha package
- SurvRegCensCov package (Weibull models)

Software

Notes on parametric models with time-varying covariate data:

- · Stata handles time-varying data with aplomb.
- R does not
 - survreg (in the survival package) will not estimate models with time-varying data (it will not take a survival object of the form Surv(start,stop,censor)).
 - · psm (in the rms package) will also not accept time-varying data.
 - aftreg and phreg (part of the eha package) will accept time-varying data. phreg accepts survival objects of the form Surv(start,stop,censor). aftreg does as well, and notes in its documentation that "(I)f there are [sic] more than one spell per individual, it is essential to keep spells together by the id argument. This allows for time-varying covariates." In practice, this functions somewhat inconsistently.
- Recommendations: If you want to use R to fit parametric survival models with time-varying covariate data, stick with proportional hazards formulations, and use phreg. Also, Weibull models tend to be easier to fit than exponentials in this framework.