Solver: Fienny Angelina

Email Address: fien0001@e.ntu.edu.sg

1. (a) An agreed standard for representation of data structures and primitive values. It is needed because irrespective of the communication form used, data are transmitted as a sequence of bytes. Client and server may have different representations of the same data type. Thus, a standard is needed.

```
(b)
```

(i)

```
public interface Server extends Remote {
        void registerNotification(Teacher t, String courseCode) throws RemoteException;
        void registerCourse(int matricNumber, String courseCode) throws RemoteException;
   }
public interface Teacher extends Remote {
        void callback(int matricNumber) throws RemoteException;
```

(ii) Remote objects, such as Teacher is passed by reference. Non remote objects, such as matricNumber and courseCode is passed by value.

2. (a)

}

N60 -> N125 -> N10 -> N45

N	K	([log2(k -n)]+1)	
60	43	7	
125	43	6	
10	43	6 (goes to N45)	
45			

N60 table.

60 + 1	N100
60 + 2	N100
60 + 4	N100
60 + 8	N100
60 + 16	N100

CSEC 20th - Past Year Paper Solution 2018-2019 Sem2 CE/CZ4013 - Distributed System

60 + 32	N100
60 + 64	N125

N106 table.

106 + 1	N125
106 + 2	N125
106 + 4	N125
106 + 8	N125
106 + 16	N125
106 + 32	N10
106 + 64	N45

(b) Let p be the predecessor of the new node n and let s be the successor of the new node n. For each i (where $1 \le i \le 7$), the i-th fingers of nodes $\in (p-2^{(i-1)}, n-2^{(i-1)}]$ need to be updated from s to n.

In this case, p=60, s=100, n=66

i	p-2^(i-1)	n-2^(i-1)	Node in range
1	59	65	N60
2	58	64	N60
3	56	62	N60
4	52	58	-
5	44	50	N45
6	28	34	N30
7	-4	2	-

For every line in the table, the node in range needs to update the i-th entry to N66

3. (a)

- (i) No. If we set back the clock at that point, we would not know the rate of the error for the clock. E.g 1 seconds error for every 10 hour.
- (ii) Assume, the rate of the error is R. Then the correct time = the time read from the clock R * 20 seconds 10 seconds.

- (b)
- (i) t_D-t_C
- (ii) $[t_{min}, t_D-t_C 2t_{min}]$
- (iii) To minimize error, time taken from B to C = $(t_{min} + t_D t_C 2 * t_{min}) / 2 = (t_D t_C t_{min}) / 2$ Therefore, time to set at C = time at B when it sends data + time taken to send from B->C = $t_B + (t_D - t_C - t_{min}) / 2$
- 4. (a) e_1^1 , e_1^2 , e_1^3 , e_2^1 , e_2^2
 - (b) e_{2^3} , e_{2^4} , e_{2^5} ,
 - (c)

- 5. (a) Time between one process exiting the critical section and the next process entering it.
 - (b)

Central server algorithm: 2 message transmission (No condition)

Ring based algorithm: 1 message transmission (when a process wants to enter critical section, the token is currently in the previous node)

Ricart-and-Agrawala algorithm: 1 message transmission (No condition)

- (c) No.
- 6. (a) abc = 012, 014, 042
 - (b) abc = 013, 032, 034
 - (c)

W=4, R=3

W=5, R=2

W=6, R=1

(d) Crash failure = 6 - 1 = 5, Byzantine failures = floor((6 - 1)/2) = 2

All the best for your exams!