Package 'ordinalTables'

September 18, 2025

Type Package

Title Fit Models to Two-Way Tables with Correlated Ordered Response Categories

Version 1.0.0.3

Description Fit a variety of models to two-way tables with ordered categories.

Most of the models are appropriate to apply to tables of that have correlated ordered response categories. There is a particular interest in rater data and models for rescore tables. Some utility functions (e.g., Cohen's kappa and weighted kappa) support more general work on rater agreement.

Because the names of the models are very similar, the functions that implement them are organized by last name of the primary author of the article or book that suggested the model, with the name of the function beginning with that author's name and an underscore. This may make some models more difficult to locate if one doesn't have the original sources. The vignettes and tests can help to locate models of interest. For more dertails see the following references:

Agresti, A. (1983) <doi:10.1016/0167-7152(83)90051-2> ``A Simple Diagonals-Parameter Symmetry And Quasi-Symmetry Model",

Agrestim A. (1983) <doi:10.2307/2531022> ``Testing Marginal Homogeneity for Ordinal Categorical Variables'',

Agresti, A. (1988) <doi:10.2307/2531866> ``A Model For Agreement Between Ratings On An Ordinal Scale",

Agresti, A. (1989) <doi:10.1016/0167-7152(89)90104-

1> ``An Agreement Model With Kappa As Parameter",

Agresti, A. (2010 ISBN:978-0470082898) ``Analysis Of Ordinal Categorical Data",

Bhapkar, V. P. (1966) <doi:10.1080/01621459.1966.10502021> ``A Note On The Equivalence Of Two Test Criteria For Hypotheses In Categorical Data",

Bhapkar, V. P. (1979) <doi:10.2307/2530344> ``On Tests Of Marginal Symmetry And Quasi-Symmetry In Two And Three-Dimensional Contingency Tables",

Bowker, A. H. (1948) <doi:10.2307/2280710> ``A Test For Symmetry In Contingency Tables", Clayton, D. G. (1974) <doi:10.2307/2335638> ``Some Odds Ratio Statistics For The Analysis Of Ordered Categorical Data",

Cliff, N. (1993) <doi:10.1037/0033-

2909.114.3.494> ``Dominance Statistics: Ordinal Analyses To Answer Ordinal Questions", Cliff, N. (1996 ISBN:978-0805813333) ``Ordinal Methods For Behavioral Data Analysis", Goodman, L. A. (1979) <doi:10.1080/01621459.1979.10481650> ``Simple Models For The Analysis Of Association In Cross-Classifications Having Ordered Categories",

Goodman, L. A. (1979) <doi:10.2307 2335159=""> ``Multiplicative Models For Square Contin-</doi:10.2307>
gency Tables With Ordered Categories",
Ireland, C. T., Ku, H. H., & Kullback, S. (1969) <doi:10.2307 2286071=""> ``Symme-</doi:10.2307>
try And Marginal Homogeneity Of An r × r Contingency Table", Ishi-kuntz, M. (1994 ISBN:978-0803943766) ``Ordinal Log-linear Models",
McCullah, P. (1977) <doi:10.2307 2345320=""> ` `A Logistic Model For Paired Compar-</doi:10.2307>
isons With Ordered Categorical Data",
McCullagh, P. (1978) <doi:10.2307 2335224=""> A Class Of Parametric Models For The Analy-</doi:10.2307>
sis Of Square Contingency Tables With Ordered Categories``,
McCullagh, P. (1980) <doi:10.1111 j.2517-<="" td=""></doi:10.1111>
6161.1980.tb01109.x> "Regression Models For Ordinal Data``,
Penn State: Eberly College of Science (undated) https://online.stat.psu.edu/stat504/
lesson/11> "Stat 504: Analysis of Discrete Data, 11. Advanced Topics I``,
Schuster, C. (2001) <doi:10.3102 10769986026003331=""> "Kappa As A Parameter Of A Symme-</doi:10.3102>
try Model For Rater Agreement``,
Shoukri, M. M. (2004 ISBN:978-1584883210). "Measures Of Interobserver Agreement``,
Stuart, A. (1953) <doi:10.2307 2333101=""> "The Estimation Of And Compari-</doi:10.2307>
son Of Strengths Of Association In Contingency Tables`,
Stuart, A. (1955) <doi:10.2307 2333387=""> "A Test For Homogeneity Of The Marginal Distribu-</doi:10.2307>
tions In A Two-Way Classification``,
von Eye, A., & Mun, E. Y. (2005 ISBN:978-
0805849677) "Analyzing Rater Agreement: Manifest Variable Methods".
License MIT + file LICENSE
Encoding UTF-8
LazyData true
Imports MASS
RoxygenNote 7.3.2
Suggests knitr, rmarkdown, testthat
Config/testthat/edition 3
Depends R (>= 3.5)
VignetteBuilder knitr
NeedsCompilation no
Author John R. Donoghue [aut, cre]
Maintainer John R. Donoghue <jdonoghue0823@gmail.com></jdonoghue0823@gmail.com>
Repository CRAN
Date/Publication 2025-09-18 08:00:02 UTC
Contents
Agrarti bisaatian
Agresti_dempute_lembde
Agresti_compute_lambda
Agresti_compute_pi
Agresti_create_design_matrix

Agresti_equation_	1	 	 	 	 	 			
Agresti_equation_									
Agresti_equation_									
Agresti_extract_de									
Agresti_f									
Agresti_kappa_agi									
Agresti_simple_di									
Agresti_starting_v									
Agresti_weighted_									
Agresti_w_diff .									
Agresu_w_difi . Bhapkar_marginal									
Bhapkar_quasi_sy	•								
Bowker_symmetry									
budget_actual									
budget_expected									
Clayton_marginal_									
Clayton_stratified_									
Clayton_summariz									
Clayton_summariz	e_stratified	 	 	 	 	 			
Clayton_two_way	_association	 	 	 	 	 			
Cliff_as_d_matrix		 	 	 	 	 			
Cliff_compute_d		 	 	 	 	 			
Cliff_counts_2 .		 	 	 	 	 			
Cliff_counts_3 .		 	 	 	 	 			
Cliff_counts_4 .									
Cliff_counts_5 .									
Cliff_counts_6 .									
Cliff_dependent .									
Cliff_dependent_c									
Cliff_dependent_c									
Cliff_dependent_c									
Cliff_dependent_c									
Cliff_dependent_c									
Cliff_independent									
Cliff_independent_									
Cliff_independent_	_from_table	 	 	 	 	 			•
Cliff_independent_									
Cliff_weighted_d_	matrix	 	 	 	 	 			
coal_g									
constant_of_integr	ation	 	 	 	 	 			
depression		 	 	 	 	 			
dogs		 	 	 	 	 			
dreams		 	 	 	 	 			
dumping									
esophageal_cancer									
expand									
expit									
-							•	• •	•

Goodman_diagonals_parameter_sym	mater	•	-					
Goodman_fixed_parameter								
Goodman_fixed_parameter								
Goodman_model_i								
Goodman_model_ii								
Goodman_model_ii_star								
Goodman_model_in_star								
Goodman_null_association								
Goodman_pi								
Goodman_pi_matrix								
Goodman_symmetric_association_m								
Goodman_uniform_association								
handle_max_i_i								
handle_max_i_k								
handle_max_k_k2								
handle_one_maximum								
handle_tied_below_maximum								
handle_tied_maximum								
handle_untied_below_maximum								
homicide_black_black								
homicide_black_white			 	 	 	 	 	
homicide_white_black			 	 	 	 	 	
homicide_white_white			 	 	 	 	 	
hypothalamus_1			 	 	 	 	 	
hypothalamus_2			 	 	 	 	 	
interference_12			 	 	 	 	 	
interference_control_1			 	 	 	 	 	
interference_control_2			 	 	 	 	 	
Ireland_marginal_homogeneity								
Ireland_mdis			 	 	 	 	 	
Ireland_normalize_for_truncation .								
Ireland_quasi_symmetry								
Ireland_quasi_symmetry_model								
Ireland_symmetry								
is invertible								
is_missing_or_infinite								
kappa								
likelihood_ratio_chisq								
loadRData								
logit								
log_likelihood								
log_linear_add_all_diagonals								
log_linear_append_column								
log_linear_create_coefficient_names								

log_linear_equal_weight_agreement_design
log_linear_fit
log_linear_main_effect_design
log_linear_matrix_to_vector
log_linear_quasi_symmetry_model_design
log_linear_remove_column
log_linear_symmetry_design
McCullagh_compute_condition
McCullagh_compute_cumulatives
McCullagh_compute_cumulative_sums
McCullagh_compute_c_plus
McCullagh_compute_df
McCullagh_compute_gamma
McCullagh_compute_gamma_from_phi
McCullagh_compute_gamma_plus_1_from_phi
McCullagh_compute_generalized_cumulatives
McCullagh_compute_generalized_pi
McCullagh_compute_lambda
McCullagh_compute_log_l
McCullagh_compute_Nij
McCullagh_compute_omega
McCullagh_compute_phi
McCullagh_compute_phi_matrix
McCullagh_compute_pi
McCullagh_compute_pi_from_beta
McCullagh_compute_pi_from_gamma
McCullagh_compute_regression_weights
S - 1
McCullagh_compute_update
McCullagh_compute_z
McCullagh_conditional_symmetry
McCullagh_conditional_symmetry_compute_s
McCullagh_conditional_symmetry_initialize_phi
McCullagh_conditional_symmetry_maximize_phi
McCullagh_conditional_symmetry_maximize_theta
McCullagh_conditional_symmetry_pi
McCullagh_derivative_condition_wrt_psi
McCullagh_derivative_gamma_plus_1_wrt_phi
McCullagh_derivative_gamma_wrt_phi
McCullagh_derivative_gamma_wrt_y
McCullagh_derivative_lagrangian_wrt_delta
McCullagh_derivative_lagrangian_wrt_delta_vec
McCullagh_derivative_lagrangian_wrt_psi
McCullagh_derivative_log_l_wrt_alpha
McCullagh_derivative_log_l_wrt_beta
McCullagh_derivative_log_l_wrt_c
c = c = c = -
McCullagh_derivative_log_l_wrt_delta
McCullagh derivative log l wrt delta vec

McCullagh_derivative_log_l_wrt_params	. 92
McCullagh_derivative_log_1_wrt_phi	. 92
McCullagh_derivative_log_l_wrt_psi	. 93
McCullagh_derivative_omega_wrt_alpha	
McCullagh_derivative_omega_wrt_c	
McCullagh_derivative_omega_wrt_delta	
McCullagh_derivative_omega_wrt_delta_vec	
McCullagh_derivative_omega_wrt_psi	
McCullagh_derivative_phi_wrt_gamma	
McCullagh_derivative_pij_wrt_alpha	
McCullagh_derivative_pij_wrt_c	
McCullagh_derivative_pij_wrt_delta	
McCullagh_derivative_pij_wrt_delta_vec	
McCullagh_derivative_pij_wrt_psi	
McCullagh_derivative_pi_wrt_alpha	
McCullagh_derivative_pi_wrt_c	
McCullagh_derivative_pi_wrt_delta	. 101
McCullagh_derivative_pi_wrt_delta_vec	. 101
McCullagh_derivative_pi_wrt_psi	. 102
McCullagh_extract_weights	
McCullagh_fit_location_regression_model	
McCullagh_generalized_palindromic_symmetry	
McCullagh_generalized_pij_qij	
McCullagh_generate_names	
McCullagh_get_statistics	
McCullagh_gradient_log_l	
McCullagh_hessian_log_l	
McCullagh_initialize_beta	
McCullagh_initialize_delta	
McCullagh_initialize_delta_vec	
McCullagh_initialize_psi	
McCullagh_initialize_x	
McCullagh_is_in_constraint_set	
McCullagh_is_pi_invalid	
McCullagh_logistic_model	. 111
McCullagh_logits	. 111
McCullagh_log_L	. 112
McCullagh_maximize_q_symmetry	. 112
McCullagh_newton_raphson_update	
McCullagh_palindromic_symmetry	
McCullagh_penalized	
McCullagh_pij_qij	
McCullagh_proportional_hazards	
McCullagh_quasi_symmetry	
McCullagh_q_symmetry_initialize_alpha	
McCullagh_q_symmetry_initialize_phi	
McCullagh_q_symmetry_pi	
McCullagh second order lagrangian wrt psi 2	. 118

MC II I I I I I I I I I I I I I I I I I	110
McCullagh_second_order_lagrangian_wrt_psi_alpha	
McCullagh_second_order_lagrangian_wrt_psi_delta	
McCullagh_second_order_lagrangian_wrt_psi_delta_vec	
$McCullagh_second_order_log_l_wrt_alpha_2\ .\ .\ .\ .\ .\ .\ .\ .\ .\ .\ .\ .\ .\$	
$McCullagh_second_order_log_l_wrt_alpha_c \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $	
$McCullagh_second_order_log_l_wrt_beta_2 \dots \dots$	
$McCullagh_second_order_log_l_wrt_c_2 \ \dots $	
$McCullagh_second_order_log_l_wrt_delta_2 \ \dots $	
$McCullagh_second_order_log_l_wrt_delta_alpha \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $	
$McCullagh_second_order_log_l_wrt_delta_c \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $	
$McCullagh_second_order_log_l_wrt_delta_vec_2\ .\ .\ .\ .\ .\ .\ .\ .\ .\ .\ .\ .\ .\$. 126
McCullagh_second_order_log_l_wrt_delta_vec_alpha	. 127
McCullagh_second_order_log_l_wrt_delta_vec_c	. 128
McCullagh_second_order_log_1_wrt_parms	. 128
McCullagh_second_order_log_1_wrt_psi_2	. 129
McCullagh_second_order_log_l_wrt_psi_alpha	
McCullagh_second_order_log_l_wrt_psi_c	
McCullagh_second_order_log_l_wrt_psi_delta	
McCullagh_second_order_log_l_wrt_psi_delta_vec	
McCullagh_second_order_omega_wrt_alpha_2	
McCullagh_second_order_omega_wrt_alpha_c	
McCullagh_second_order_omega_wrt_c_2	
McCullagh_second_order_omega_wrt_delta_2	
McCullagh_second_order_omega_wrt_delta_alpha	
McCullagh_second_order_omega_wrt_delta_c	
McCullagh_second_order_omega_wrt_delta_vec_2	
McCullagh_second_order_omega_wrt_delta_vec_alpha	
McCullagh_second_order_omega_wrt_delta_vec_c	
McCullagh_second_order_omega_wrt_psi_2	
McCullagh_second_order_omega_wrt_psi_alpha	
McCullagh_second_order_omega_wrt_psi_c	
McCullagh_second_order_omega_wrt_psi_delta	
McCullagh_second_order_omega_wrt_psi_delta_vec	
McCullagh_second_order_pi_wrt_alpha_2	
McCullagh_second_order_pi_wrt_alpha_c	
$McCullagh_second_order_pi_wrt_c_2\ \dots$	
$McCullagh_second_order_pi_wrt_delta_2\ .\ .\ .\ .\ .\ .\ .\ .\ .\ .\ .\ .\ .\$	
McCullagh_second_order_pi_wrt_delta_alpha	
$McCullagh_second_order_pi_wrt_delta_c \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $	
$McCullagh_second_order_pi_wrt_delta_vec_2 $	
$McCullagh_second_order_pi_wrt_delta_vec_alpha \ \ . \ . \ . \ . \ . \ . \ . \ . \ . $	
$McCullagh_second_order_pi_wrt_delta_vec_c . \ . \ . \ . \ . \ . \ . \ . \ . \ .$. 149
$McCullagh_second_order_pi_wrt_psi_2\ \dots$. 149
$McCullagh_second_order_pi_wrt_psi_alpha \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $. 150
McCullagh_second_order_pi_wrt_psi_c	. 151
McCullagh_second_order_pi_wrt_psi_delta	
McCullagh_second_order_pi_wrt_psi_delta_vec	
McCullagh_update_parameters	

McCullagh_v_inverse	154
mental_health	
model_ii_effects	. 155
model_ii_fHat	156
model_ii_ksi	156
model_ii_starting_values	. 157
model_ii_star_effects	
model_ii_star_fHat	
model_ii_star_update_phi	
model_ii_update_alpha	
model_ii_update_beta	
model_ii_update_rho	
model_ii_update_sigma	
model_i_column_theta	
model_i_effects	
model_i_fHat	
model_i_normalize_fHat	
model_i_row_column_odds_ratios	
model_i_row_theta	
model_i_starting_values	
model_i_star_effects	
model_i_star_fHat	
model_i_star_update_theta	
model_i_update_alpha	
model_i_update_beta	166
model_i_update_delta	167
model_i_update_gamma	
model_i_zeta	168
movies	
new_orleans_data	
null_association_fHat	
occupational_status	170
paranoia	. 170
pearson_chisq	
radiology	
Schuster_compute_df	
Schuster_compute_pi	. 172
Schuster_compute_starting_values	
Schuster_derivative_log_l_wrt_kappa	
Schuster_derivative_log_l_wrt_marginal_pi	
Schuster_derivative_log_l_wrt_v	174
Schuster_derivative_pi_wrt_kappa	175
Schuster_derivative_pi_wrt_marginal_pi	. 175
Schuster_derivative_pi_wrt_v	176
Schuster_derivative_v_wrt_v	
Schuster_enforce_constraints_on_v	
Schuster_gradient	. 178
Schuster hessian	178

203
winnipeg_data
weighted_var
weighted_kappa
weighted_cov
von_Eye_weight_by_response_category_design
von_Eye_main_effect
von_Eye_linear_by_linear
von_Eye_equal_weight_diagonal_linear
von_Eye_equal_weighted_diagonal
- • - • - • - • -
von_Eye_diagonal_linear_by_linear
von_Eye_diagonal
vision_data_men
vision_data
var_weighted_kappa
var_kappa
uniform_association_update_theta
uniform_association_fHat
tv
tonsils
teaching_style
teachers
taste
Stuart_marginal_homogeneity
social_status2
social_status
Schuster_v_tilde
Schuster update
Schuster_symmetric_rater_agreement_model
Schuster_solve_for_v1
Schuster_second_deriv_pi_wit_v_2
Schuster_second_deriv_pi_wrt_marginai_pi_v
Schuster_second_deriv_pi_wrt_marginal_pi_kappa
Schuster_second_deriv_pi_wrt_marginal_pi_2
Schuster_second_deriv_pi_wrt_marginal_pi_2
Schuster_second_deriv_pi_wrt_kappa_2
Schuster_second_deriv_log_l_wrt_marginal_pi_v
Schuster_second_deriv_log_l_wrt_marginal_pi_kappa
Schuster_second_deriv_log_l_wrt_marginal_pi_2
Schuster_second_deriv_log_l_wrt_kappa_v
Schuster_second_deriv_log_l_wrt_kappa_2
Schuster_newton_raphson
Schuster_is_pi_valid

Index

Agresti_bisection

Solves equation $Agresti_f() = 0$ for delta by method of bisection..

Description

Solves equation Agresti_f() = 0 for delta by method of bisection..

Usage

```
Agresti_bisection(p, pi_margin, x_low = 0, x_high = 1)
```

Arguments

p matrix of observed proportions

pi_margin current value of (row and column) marginal proportion

x_low lower bound for search. Default value is 0.0x_high upper bound for search. Default value is 1.0

Value

value of kappa that makes the function 0.0

Agresti_compute_lambda

Computes value of lambda parameter

Description

Computes value of lambda parameter

Usage

```
Agresti_compute_lambda(p, pi)
```

Arguments

p matrix of observed proportions

pi matrix of model-supplied proportions

Value

value of the lambda parameter

Agresti_compute_pi 11

Agresti_compute_pi

Computes the matrix pi of model-based proportions

Description

Computes the matrix pi of model-based proportions

Usage

```
Agresti_compute_pi(pi_margin, kappa)
```

Arguments

pi_margin

current value of (row and column) marginal proportion

kappa

current estimate of kappa coefficient

Value

matrix of model-based proportions

```
Agresti_create_design_matrix
```

Creates the design matrix for Agresti's simple diagonal quasisymmetry model.

Description

This parameterization does not match equation (2.2) in the paper, but it yields results that are identical to those in the paper. Agresti, A. (1983), A simple diagonals-parameter symmetry and quasi-symmetry model. Statistics and Probability Letters I, 313-316.

Usage

```
Agresti_create_design_matrix(n_dim)
```

Arguments

n_dim

the size of the date matrix

Value

the design matrix for the model, that can bee used with ml_for_log_linear

12 Agresti_equation_2

Agresti_equation_1 First equation in section 3. Solved for kappa.

Description

First equation in section 3. Solved for kappa.

Usage

```
Agresti_equation_1(p, pi_margin, kappa)
```

Arguments

p matrix of observed proportions

pi_margin current value of (row and column) marginal proportion

kappa current value of coefficient kappa

Agresti_equation_2 Second equation in section 3. Solved for pi_margin.

Description

Second equation in section 3. Solved for pi_margin.

Usage

```
Agresti_equation_2(p, pi_margin, lambda, kappa)
```

Arguments

p matrix of observed proportions

pi_margin current value of (row and column) marginal proportion

lambda value of quantity lambda defined in third equation

kappa current value of coefficient kappa

Agresti_equation_3

Agresti_equation_3 Third equation in section 3. Solved for lambda

Description

Third equation in section 3. Solved for lambda

Usage

```
Agresti_equation_3(p, pi_margin, kappa)
```

Arguments

p matrix of observed proportions

pi_margin current value of (row and column) marginal proportion

kappa current valye of coefficient kappa

Agresti_extract_delta Extracts the quasi-symmetry information from the result provided.

Description

Extracts the quasi-symmetry information from the result provided.

Usage

```
Agresti_extract_delta(result)
```

Arguments

result result of call to log_linear_fit()

Value

list consisting of beta: the beta coefficient se: the standard error of beta z: the ratio beta / se delta: the delta coefficient = $\exp(2.0 * \text{beta})$

Agresti_f

Function value for first equation in section 3.

Description

```
Used by Agresti_bisection()
```

Usage

```
Agresti_f(p, pi_margin, kappa)
```

Arguments

p matrix of observed proportions

pi_margin current value of (row and column) marginal proportion

kappa current estimate of kappa coefficient

Agresti_kappa_agreement

Fits Agresti's agreement model that includes kappa as a parameter.

Description

Agresti, A. (1989). An agreement model with kappa as a parameter. Statistics and Probability Letters, 7, 271-273.

Usage

```
Agresti_kappa_agreement(n, verbose = FALSE)
```

Arguments

n matrix of observed counts

verbose should cycle-by-cycle info be printed as messages? The default is FALSE.

Value

a list containing kappa: value of kappa coefficient pi_margin: value of marginal p-values. They apply to rows and columns chisq: Pearson X^2 df: degrees of freedom expected: fitted frequencies

Agresti_simple_diagonals_parameter_quasi_symmetry

Agresti's simple diganal quasi-symmetry model.

Description

This parameterization does not match equation (2.2) in the paper, but it yields results that are identical to those in the paper. Agresti, A. (1983), A simple diagonals-parameter symmetry and quasi-symmetry model. Statistics and Probability Letters I, 313-316.

Usage

```
Agresti_simple_diagonals_parameter_quasi_symmetry(n)
```

Arguments

n

the matrix of observed counts

Value

a list containing expected: matrix of expected cell frequencies, chisq: Pearson X^2 g_squared: likelihood ratio G^2 df: degrees of freedom beta: the parameter estimated sigma_beta: standard error of beta z: z-score for beta delta: transformation of the the parameter into the model formulation

Examples

```
Agresti_simple_diagonals_parameter_quasi_symmetry(vision_data)
```

Agresti_starting_values

Computes staring values for marginal pi.

Description

Computes staring values for marginal pi.

Usage

```
Agresti_starting_values(p)
```

Arguments

р

matrix of observed proportions

Value

vector containing pi

16 Agresti_w_diff

Agresti_weighted_tau

Computes weighted tau from Section 2.1. Agresti, A. (1983). Testing marginal homogeneity for ordinal categorical variables. Biometrics, 39(2), 505-510.

Description

Computes weighted tau from Section 2.1. Agresti, A. (1983). Testing marginal homogeneity for ordinal categorical variables. Biometrics, 39(2), 505-510.

Usage

```
Agresti_weighted_tau(n)
```

Arguments

n

matrix of observed counts

Value

a list containing tau: value of tau-d coefficient sigma_tau: SE(tau) z_tau: z-score for tau

Agresti_w_diff

Computes the weighted statistics listed in section 2.3.

Description

Computes weighted contrast of the two margins. Agresti, A. (1983). Testing marginal homogeneity for ordinal categorical variables. Biometrics, 39(2), 505-510.

Usage

```
Agresti_w_diff(w, n)
```

Arguments

w a vector of weights to be treated as scores

n matrix of observed counts

Value

a list containing diff: the weighted contrast computed using weights w sigma_diff: SE(diff) z_diff: z-score for diff

Examples

```
weights = c(-3.0, -1.0, 1.0, 3.0)
Agresti_w_diff(weights, vision_data)
```

Bhapkar_marginal_homogeneity

Bhapkar's (1979) test for marginal homogeneity

Description

Fits the marginal homogeneity model using WLS.

Usage

```
Bhapkar_marginal_homogeneity(n)
```

Arguments

n

matrix containing the table to analyze

Details

See: Bhapkar, V. P. (1966). A Note on the Equivalence of Two Test Criteria for Hypotheses in Categorical Data. Journal of the American Statistical Association, 61(313), pp.228-235.

Value

a list containing the chi-square statistic, the df and p-value.

Examples

```
Bhapkar_marginal_homogeneity(vision_data)
```

```
Bhapkar_quasi_symmetry
```

Bhapkar's 1979 test for quasi-symmetry.

Description

Fits the quasi-symmetry model using WLS. Bhapkar, V. P. (1979). On tests of marginal symmetry and quasi-symmetry in two and three-dimensional contingency tables. Biometrics 35(2), 417-426.

Usage

```
Bhapkar_quasi_symmetry(n)
```

Arguments

n

the matrix to be analyzed

18 budget_actual

Value

a list containing the chi-square and df.

Examples

```
Bhapkar_quasi_symmetry(vision_data)
```

Bowker_symmetry

Computes Bowker's test of symmetry.

Description

Computes the test of table symmetry in Bowker (1948). Bowker, A. H. (1948). A test for symmetry in contingency tables. Journal of the American Statistical Association 43, 572-574.

Usage

```
Bowker_symmetry(n)
```

Arguments

n

the matrix to be tested for symmetry

Value

a list containing the chi-square: Pearson X^2 g_square: likelihood ratio G^2 df: degrees of freedom p-value: p-value for Pearson X^2 expected: fitted values

Examples

```
Bowker_symmetry(vision_data)
```

budget_actual

Participation in household budgeting by psychiatric patients. Rows are ratings by patient, columns are ratings by relative. 1 - not at all 2 - doing some 3 - doing regularly

Description

Participation in household budgeting by psychiatric patients. Rows are ratings by patient, columns are ratings by relative. 1 - not at all 2 - doing some 3 - doing regularly

Usage

budget_actual

budget_expected 19

Format

'budget_actual' A matrix with 3 rows and 3 columns

Source

Schuster, C, (2001). Kappa as a parameter of a symmetry model for rater agreement. Journal of Educational and Behavioral Statistics, 26(3), 331-342.

budget_expected Ratings of expected participation in household budgeting by psychiatric patients. Rows are ratings by patient, columns are ratings by relative. 1 - not at all 2 - doing some 3 - doing regularly

Description

Ratings of expected participation in household budgeting by psychiatric patients. Rows are ratings by patient, columns are ratings by relative. 1 - not at all 2 - doing some 3 - doing regularly

Usage

budget_expected

Format

'budget_expected' a matrix with 3 rows and 3 columns.

Source

Schuster, C, (2001). Kappa as a parameter of a symmetry model for rater agreement. Journal of Educational and Behavioral Statistics, 26(3), 331-342.

Clayton_marginal_location

Fits the tests comparing locations of the margins of a two-way table.

Description

The measure is based on the weighted cdfs. No "scores" are used, just the weighted (cumulative sums). Clayton, D. G. (1974) Odds ratio statistics for the analysis of ordered categorical data. Biometrika, 61(3), 525-531.

Usage

Clayton_marginal_location(wx, wy)

Arguments

wx vector containing frequencies for the first margin of the table
wy vector containing frequencies for the second margin of the table

Value

a list of results odds_ratios: odds ratios comparing cumulative frequencies of adjacent categories log_theta_hat: log of estimate of the common odds-ratio theta_hat: estimate of the common odds-ratio log_mh_theta_hat: log of the Mantel-Haenssel type odds-ratio mh_theta_hat: Mantel-Haenszel type odds-ratio var_log_theta_hat = variance of the log of the odds-ratios chisq_theta_hat: chi-square for odds-ratio chisq_mh_theta_hat: chi-square for Mantel-Haenszel odds-ratio df: degrees of freedom for chis-square = 1

Examples

```
Clayton_marginal_location(tonsils[1,], tonsils[2,])
```

Clayton_stratified_marginal_location

Clayton's stratified version of the marginal location comparison.

Description

Compares marginal location conditional on a stratifying variable. Clayton, D. G. (1974) Odds ratio statistics for the analysis of ordered categorical data. Biometrika, 61(3), 525-531.

Usage

```
Clayton_stratified_marginal_location(mx, my)
```

Arguments

mx matrix with
my matrix with

Value

a list of results odds_ratios: odds ratios comparing cumulative frequencies of adjacent categories log_theta_hat: log of estimate of the common odds-ratio theta_hat: estimate of the common odds-ratio log_mh_theta_hat: log of the Mantel-Haenssel type odds-ratio mh_theta_hat: Mantel-Haenszel type odds-ratio var_log_theta_hat = variance of the log of the odds-ratios chisq_theta_hat: chi-square for odds-ratio chisq_mh_theta_hat: chi-square for Mantel-Haenszel odds-ratio df: degrees of freedom for chis-square = 1

See Also

```
[Clayton_marginal_location()]
```

Clayton_summarize 21

Clayton_summarize

Computes summary, cumulative proportions up to index provided

Description

Computes summary, cumulative proportions up to index provided

Usage

```
Clayton_summarize(weights, m)
```

Arguments

weights matrix of counts

m index of summation, weights[1:m]

Value

a list containing: n: the sum of the weights p: matrix of proportion values gamma: cumulative proportions 1:m

```
Clayton_summarize_stratified
```

Analysis stratified by column variable j.

Description

Analysis stratified by column variable j.

Usage

```
Clayton_summarize_stratified(weight_matrix, m)
```

Arguments

```
weight_matrix matrix of cell weights from the table m the column index to stratify on
```

Value

a list containing: n: the number of strata p: matrix of proportion values gamma: cumulative proportions

See Also

```
[Clayton_summarize()]
```

22 Cliff_as_d_matrix

Clayton_two_way_association

Clayton's stratified measure of association

Description

Quantifies association between two ordinal variables. Clayton, D. G. (1974) Odds ratio statistics for the analysis of oordered categorical data. Biometrika, 61(3), 525-531.

Usage

```
Clayton_two_way_association(f)
```

Arguments

f matrix of frequencies

Value

a list of results log_theta_hat: log odds-ratio measure of association theta_hat: odds-ratio measure of association log_mh_theta_hat: log of Mantel-Haenszel odds-ratio measure of association mh_theta_hat: Mantel-Haenszel odds-ratio measure of association var_log_theta_hat: variance of the log odds-ration measures chisq_theta_hat: chi-square for measure of association chisq_mh_theta_hat: chi-square for Mantel-Haenszel measure of association df: degress of freedom = 1, corr_theta_hat: theta-hat association converted to correlation metric corr_mh_theta_hat: Mantel-Haenszel theta-hat converted to correlation metric

 ${\tt Cliff_as_d_matrix}$

Converts two vectors containing scores and integer frequencies (cell counts) into a d-matrix

Description

Converts two vectors containing scores and integer frequencies (cell counts) into a d-matrix

Usage

```
Cliff_as_d_matrix(scores, cells, nrow = NULL)
```

Arguments

scores	vector of scores.	typically 1:r

cells vector of integer weights, i.e. cell frequencies

nrow number of score categories in table. Default is NULL. If NULL, takes 1:length(scores)

Cliff_compute_d 23

Value

d-matrix of results

 ${\tt Cliff_compute_d}$

Computes between groups dominance matrix "d".

Description

Computes between groups dominance matrix "d".

Usage

```
Cliff_compute_d(x, y)
```

Arguments

x first vector of scores

y second vector of scores

Value

N X N dominance matrix

Cliff_counts_2

Generates counts from table frequencies for 2 category items

Description

Generates counts from table frequencies for 2 category items

Usage

```
Cliff_counts_2(mij)
```

Arguments

mij

Matrix of counts.

```
a list containing wm1m1: for -1, -1 wm10: for -1, 0 wm11: for -1, 1 w00: for 0, 0 w01: for 0, 1 w11: for 1, 1
```

24 Cliff_counts_4

Cliff_counts_3

Generates counts from table frequencies for 3 category items

Description

Generates counts from table frequencies for 3 category items

Usage

```
Cliff_counts_3(mij)
```

Arguments

mij

Matrix of counts.

Value

```
a list containing wm1m1: for -1, -1 wm10: for -1, 0 wm11: for -1, 1 w00: for 0, 0 w01: for 0, 1 w11: for 1, 1
```

Cliff_counts_4

Generates counts from table frequencies for 4 category items

Description

Generates counts from table frequencies for 4 category items

Usage

```
Cliff_counts_4(mij)
```

Arguments

mij

Matrix of counts.

```
a list containing wm1m1: for -1, -1 wm10: for -1, 0 wm11: for -1, 1 w00: for 0, 0 w01: for 0, 1 w11: for 1, 1
```

Cliff_counts_5

 $Cliff_counts_5$

Generates counts from table frequencies for 5 category items

Description

Generates counts from table frequencies for 5 category items

Usage

```
Cliff_counts_5(mij)
```

Arguments

mij

Matrix of counts.

Value

```
a list containing wm1m1: for -1, -1 wm10: for -1, 0 wm11: for -1, 1 w00: for 0, 0 w01: for 0, 1 w11: for 1, 1
```

Cliff_counts_6

Generates counts from table frequencies for 6 category items

Description

Generates counts from table frequencies for 6 category items

Usage

```
Cliff_counts_6(mij)
```

Arguments

mij

Matrix of counts.

```
a list containing wm1m1: for -1, -1 wm10: for -1, 0 wm11: for -1, 1 w00: for 0, 0 w01: for 0, 1 w11: for 1, 1
```

Cliff_dependent

Computes Cliff's dependent d-statistics based on a dominance matrix.

Description

Takes the dominance matrix provided and computes the d-statistics: dw - within-subjects d-statistic db - between-subjects d-statistic db_dw - sum of dw and db, omnibus test of whether one group is higher than the other Cliff, N. (1993). Dominance statistics: Ordinal analyses to answer ordinal questions. Psychological Bulletin, 114(3), 494-509. Cliff, N. (1996). Ordinal methods for behavioral data analysis. Mawhaw NJ: Lawerence Erlbaum.

Usage

```
Cliff_dependent(d_matrix)
```

Arguments

d_matrix

N x N within-subjects dominance matrix

Value

a list containing dw: within-subjects d-statistic sigma_dw: SE of dw z_dw: z-score for dw db: between-subjects d-statistic sigma_db: SE of db z_db: z-score for db db_dw: sum db + dw, omnibus measure sigma_db_dw: SE of db + dw z_db_dw: z-score of db _ dw cov_db_dw: covariance between db and dw

Examples

```
Cliff_dependent(interference_control_1)
```

```
Cliff_dependent_compute_cov
```

Computes sum term in covariance db-dw for weighted dominance matrix.

Description

Computes sum term in covariance db-dw for weighted dominance matrix.

Usage

```
Cliff_dependent_compute_cov(wd)
```

Arguments

wd

weighted dominance matrix

Cliff_dependent_compute_cov_from_d

Compute the sum in the covariance of db+dw

Description

Compute the sum in the covariance of db+dw

Usage

```
Cliff_dependent_compute_cov_from_d(d_matrix)
```

Arguments

d_matrix

d-matrix of dominances

Value

the sum for the covariance term

Cliff_dependent_compute_from_matrix

Computes Cliff's dependent d-statistics based on a dominance matrix.

Description

Takes the dominance matrix provided and computes the d-statistics: dw - within-subjects d-statistic db - between-subjects d-statistic db_dw - sum of db and dw, omnibus test of whether one group is higher than the other Cliff, N. (1993). Dominance statistics: Ordinal analyses to answer ordinal questions. Psychological Bulletin, 114(3), 494-509. Cliff, N. (1996). Ordinal methods for behavioral data analysis. Mawhaw NJ: Lawerence-Erlbaum.

Usage

```
Cliff_dependent_compute_from_matrix(d_matrix)
```

Arguments

d matrix

N x N within-subjects dominance matrix

Value

a list containing dw: within-subjects d-statistic sigma_dw: SE of dw z_dw: z-score for dw db: between-susbjects d-statistic sigma_db: SE of db z_db: z-score for db db_dw: sum db + dw, omnibus measure sigma_db_dw: SE of db + dw z_db_dw: z-score of db _ dw cov_db_dw: covariance between db and dw

Examples

```
Cliff_dependent_compute_from_matrix(interference_control_1)
```

Cliff_dependent_compute_from_table

Computes Cliff's dependent d-statistics based on a table of frequency counts.

Description

Takes the r X r table and returns: dw - within-subjects d-statistic db - between-subjects d-statistic db_dw - sum of dw and db, omnibus test of whether one group is higher than the other No intermediate dominance matrix is computed, so this is much faster than Cliff_dependent_compute_from_matrix(). Large number of terms are needed to compute intermediate d_ij_ji. These are contained in separate functions for $r \le 6$. Results for r [7, 10] are available, but the files are so large that they cause an error if included in the library.

Usage

```
Cliff_dependent_compute_from_table(mij)
```

Arguments

mij

an r x r table of paired observations

Details

See: Cliff, N. (1993). Dominance statistics: Ordinal analyses to answer ordinal questions. Psychological Bulletin, 114(3), 494-509. Cliff, N. (1996). Ordinal methods for behavioral data analysis. Mawhaw NJ: Lawerence-Erlbaum.

Value

a list containing dw: within-subjects d-statistic sigma_dw: SE of dw z_dw: z-score for dw db: between-susbjects d-statistic sigma_db: SE of db z_db: z-score for db db_dw: sum db + dw, omnibus measure sigma_db_dw: SE of db + dw z_db_dw: z-score of db _ dw cov_db_dw: covariance between db and dw

See Also

```
[Cliff dependent compute paired d()]
```

Examples

```
Cliff_dependent_compute_from_table(movies)
```

Cliff_dependent_compute_paired_d

Computes Cliff's dependent d-statistics based on cell frequencies.

Description

Computes d-matrix and then analyzes it. This can be time consuming. Try Cliff_dependent_from_table() instead. The current function is provided mainly for comparison & validation. For an example, compare running this function on vision_data to running Cliff_dependent_from_table(vision_data).

Usage

```
Cliff_dependent_compute_paired_d(cells)
```

Arguments

cells

r x r matrix of frequencies

Details

dw - within-subjects d-statistic db - between-subjects d-statistic db_dw - sum of dw and db, omnibus test of whether one group is higher than the other Cliff, N. (1993). Dominance statistics: Ordinal analyses to answer ordinal questions. Psychological Bulletin, 114(3), 494-509. Cliff, N. (1996). Ordinal methods for behavioral data analysis. Mawhaw NJ: Lawerence-Erlbaum.

Value

a list containing dw: within-subjects d-statistic sigma_dw: SE of dw z_dw: z-score for dw db: between-subjects d-statistic sigma_db: SE of db z_db: z-score for db db_dw: sum db + dw, omnibus measure sigma_db_dw: SE of db + dw z_db_dw: z-score of db _ dw cov_db_dw: covariance between db and dw

See Also

```
[Cliff_dependent_compute_from_table()]
```

Examples

Cliff_dependent_compute_paired_d(movies)

Cliff_independent

Computes the independent groups d-statistic comparing the two vectors provided.

Description

Computes the independent groups d-statistic comparing the two vectors provided.

Usage

```
Cliff_independent(x, y)
```

Arguments

x vector of scores for first group

y vector of scores for second group

Value

list containing d, SE(d) and z(d)

```
Cliff_independent_from_matrix
```

Computes d-statistic from dominance matrix provided.

Description

Computes d-statistic from dominance matrix provided.

Usage

```
Cliff_independent_from_matrix(d)
```

Arguments

d N X M dominance matrix

Value

list containing d, SE(d) and z(d)

Cliff_independent_from_table

Computes independent group's d-statistic from the matrix of frequencies provided.

Description

Computes intermediate d-matrix, so can be slow for large N

Usage

```
Cliff_independent_from_table(n)
```

Arguments

n matrix of counts

Value

list containing d, SE(d) and z(d)

```
Cliff_independent_weighted
```

Computes d-statistic based on scores and integer weights(frequencies) for each group.

Description

Computes d-statistic based on scores and integer weights(frequencies) for each group.

Usage

```
Cliff_independent_weighted(x, w_x, y, w_y)
```

Arguments

x first vector of scores

w_x weights associated with first vector of scores

y second vector of scores

w_y weights associated with second vector of scores

Value

list containing d, SE(d) and z(d)

32 coal_g

```
Cliff_weighted_d_matrix
```

Computes weighted version of dominance matrix "d"

Description

Arguments are scores and associated weights. Not useful for tables. Use Cliff_compute_d_matrix instead.

Usage

```
Cliff_weighted_d_matrix(x, y, w.x = rep(1, length(x)), w.y = rep(1, length(y)))
```

Arguments

X	first vector of scores
٧	second vector of scores

w.x
first vector of weights, to apply to x. Defaults to vector of 1.0
w.y
second vector of weights, to apply to y. Defaults to vector of 1.0

Value

an n X m d-matrix, where n is length(x) and m is length(y)

coal_g

Degree of disease measured at two points in time for mine workers.

Description

Based on radiological measurements, the matrix contains the degree of pneumoconiosis in coal workers. 1 = least severe disease and 4 = most severe.

Usage

coal_g

Format

'coal_g' A matrix with 4 rows and 4 columns.

Source

McCullagh, P. (1977). A logistic model for paired comparisons with ordered categorical data. Biometrika, 64(3), 449-453.

constant_of_integration 33

```
constant\_of\_integration
```

Computes the constant of integration of a multinomial sample.

Description

```
N! / product(n[i]!)
```

Usage

```
constant_of_integration(n, exclude_diagonal = FALSE)
```

Arguments

n Matrix of observed counts

exclude_diagonal

logical. Should the diagonal cells of a square matrix be excluded from the computation. Default is FALSE,

Value

value of constant of integration for observed matrix provided

depression

Ratings of severity of patient's depression by two therapists.

Description

```
1 = slight 2 = moderate 3 = severe
```

Usage

depression

Format

'depression' A matrix with 3 rows and 3 columns.

Source

von Eye, A. & Mun, E. Y. (2005, p.41). Analyzing rater agreement: Manifest variable methods. Mahwah, NJ: Lawrence Erlbaum.

34 dreams

dogs

Dehydration in dogs data set.

Description

An interrater agreement data set from Shourki, M. M. (2005, p.80). It is agreement study of two clinicians evaluating whether dogs were dehydrated. The lowest score indicates normal, and the highest score indicates dehydrated (above 10 The "g" in the name indicates that this is taken from mine "G" in the original study.

Usage

dogs

Format

'dogs' A matrix with 4 rows and 4 columns.

Source

Shoukri, M. M. (2005). The measurement of interobserver agreement. New York: Chapman & Hall.

dreams

Severity of disturbing dreams in adolescent boys, measured at two ages..

Description

Severity of disturbing dreams in adolescent boys, measured at two ages...

Usage

dreams

Format

'dreams' A matrix with 4 rows and 4 columns.

Source

McCullagh, P. (1980, p.117). Regression models for ordinal data. Journal of the Royal Statistical Society, Series B, 42(2), 109-142.

dumping 35

dumping

Occurrence of side effects after gastro-intestinal surgery.

Description

Columns 1 = None 2 = Slight 3 = Moderate

Usage

dumping

Format

'dumping' A matrix with 4 rows and 3 columns

Details

Rows Hospital A Hospital B Hospital C Hospital D

Source

Agresti, A. (1984, p. 63). Analysis of ordinal categorical data. Naew York: Wiley.

esophageal_cancer

Ratings of number of hot drinks consumed by cases with cancer of the esophagus, compared with control subjects.

Description

Ratings of number of hot drinks consumed by cases with cancer of the esophagus, compared with control subjects.

Usage

esophageal_cancer

Format

'esophageal_cancer' A matrix with 4 rows and 4 columns.

Source

Agresti, A. (1984, p. 217). Analysis of ordinal categorical data. New York, Wiley.

36 expit

expand	Converts weighted (x, w) pairs into unweighted data by replicating $x[i]$ w[i] times

Description

Takes a set of (value, weight) pairs and converts into unweighted vector (w[i]) for each i Weights are assumed to be integers

Usage

```
expand(x, w)
```

Arguments

x Numeric vector of scores.

w Numeric vector of weights. These are assumed to be integers

Value

new unweighted vector of scores

expit

Computes the "expit" function – inverse of logit.

Description

Computes the "expit" function – inverse of logit.

Usage

```
expit(z)
```

Arguments

z Numeric. Real valued argument to expit() function.

```
\exp(z) / (1.0 + \exp(z))
```

family_income 37

family_income	Family income for two years from US census.	

Description

Family income for two years from US census.

Usage

family_income

Format

'family_income' A matrix with 2 rows and 7 columns. Rows are years 1960 and 1970. Columns are income range.

Source

McCullagh, P. (1980, p.114). Regression models for ordinal data. Journal of the Royal Statistical Society, Series B, 42(2), 109-142.

gender_vision	Ratings of visual acuity for men and women employed at the Royal Ordinance factories, 1943-1946.

Description

1 = best visual acuity 4 = worst visual acuity

Usage

gender_vision

Format

'gender_vision' A matrix with 2 rows for the genders and 4 columns for visual acuity.

Source

McCullagh, P. (1980, p. 119). Regression models for ordinal data. Journal of the Royal Statistical Society, Series B, 42(2), 109-142.

Goodman_constrained_diagonals_parameter_symmetry

Fits the model where some of the delta parameters are constrained to be equal to one another.

Description

Fits the model where some of the delta parameters are constrained to be equal to one another.

Usage

Goodman_constrained_diagonals_parameter_symmetry(n, equality)

Arguments

n the matrix of observed counts

equality logical vector indicating whether corresponding delta the parameter is part of

the equality set.

Value

a list containing pooled_chisq: Pearson chi-square for the pooled delta values pooled_df: degrees of freedom for pooled chisq omnibus_chisq: Pearson chi-square for overall model fit, subject to equality constraints omnibus_df; degrees of freedom for omnibus_chisq equality_chisq: Pearson chi-square for test that remaining deltas are all equal equality_df: degrees of freedom for equality_chisq delta_pooled: estimate of pooled delta

Examples

```
equality = c(TRUE, TRUE, FALSE)
Goodman_diagonals_parameter_symmetry(vision_data)
```

Goodman_diagonals_parameter_symmetry

Fit's Goodman's diagonals parameter symmetry model.

Description

Goodman, L. A. (1979). Multiplicative models for square contingency tables with ordered categories. Biometrika, 66(3), 413-316.

Usage

Goodman_diagonals_parameter_symmetry(n)

Arguments

the matrix of obsever counts n

Value

a list containing individual_chisq: chi-square value for each diagonal individual_df: degrees of freedom for individual_chisq omnibus_chisq: overall chi-square for the model omnibus_df: degrees for freedom for omnibus_chisq equality_chisq: chi-square for test that all delta values are equal equality_df: degrees of freedom from equality_chisq delta: the vector of estimated delta values (without any equality constraints)

Examples

```
Goodman_diagonals_parameter_symmetry(vision_data)
```

Goodman_fixed_parameter

Fits the model with given parameters fixed to specific values.

Description

The model has simple closed form solutions when fitting either the unconstrained version of the version that species equality of delta parameters. However, I could not see how to adapt that to the case where specific parameters were constrained to have a specific value. This routine is to fit that model. It will also fit the unconstrained model, but Goodman gives the estimator for that case.

Usage

```
Goodman_fixed_parameter(
 n,
  delta,
  fixed,
  convergence = 1e-04,
 max_iter = 50,
  verbose = FALSE
)
```

Arguments

n	the r X r matrix of observed counts
delta	the vector of asymmetry r - 1 parameters
fixed	r - 1 logical vector that specifies whether a delta parameter is fixed (TRUE) or allowed to be estimated (FALSE).
convergence	maximum change in a parameter across iterations. Default is 1.0e-4

maximum number of iterations, Default is 50. max_iter

verbose should progress information be printed to the console. Default is FALSE, do not

print.

40 Goodman_ml

Value

list containing phi, delta, max_change largest change in parameter for last the iteration, chisq: Pearson chi-square g_squared: likelihood ratio G^2 df: degrees of freedom

See Also

```
[Goodman_diagonals_parameter_symmetry()]
[Goodman_ml()]
```

Examples

```
fixed <- c(FALSE, TRUE, FALSE)
delta <- c(1.0, 1.0, 1.0)
phi <- matrix(0.0, nrow=4, ncol=4)
diag(phi) = rep(1.0, 4)
Goodman_fixed_parameter(vision_data, delta, fixed)</pre>
```

Goodman_ml

Performs ML estimation of the model.

Description

The model has simple closed form solutions when fitting either the unconstrained version of the version that species equality of delta parameters. However, I could not see how to adapt that to the case where specific parameters were constrained to have a specific value. This routine is to fit that model. It will also fit the unconstrained model, but Goodman gives the estimator for that case.

Usage

```
Goodman_ml(n, phi, delta, fixed)
```

Arguments

n	the r X r matrix of observed counts
phi	the symmetric matrix parameter

delta the vector of asymmetry r - 1 parameters

fixed r - 1 logical vector that specifies whether a delta parameter is fixed (TRUE) or

allowed to be estimated (FALSE).

Value

list containing new estimates of phi amd delta

See Also

[Goodman_diagonals_parameter_symmetry()]

Goodman_model_i 41

Examples

```
fixed <- c(FALSE, TRUE, FALSE)
delta <- c(1.0, 1.0, 1.0)
phi <- matrix(0.0, nrow=4, ncol=4)
for (i in 1:4) {
   phi[i, i] = 1.0
}
Goodman_ml(vision_data, phi, delta, fixed)</pre>
```

Goodman_model_i

Fits Goodman's (1979) Model I

Description

Fits Goodman's (1979) Model I

Usage

```
Goodman_model_i(
    n,
    row_effects = TRUE,
    column_effects = TRUE,
    max_iter = 25,
    verbose = FALSE,
    exclude_diagonal = FALSE
)
```

Arguments

n matrix of observed counts

row_effects should row effects be included in the model? Default is TRUE

column_effects should column effects be included in the model? Default is TRUE

max_iter maximum number of iterations. Default is 10

verbose logical. Should cycle-by-cycle output be printed? Default is no

exclude_diagonal

logical. For square tables, should the cells on the diagonal be excluded? Default is FALSE, include all cells

Value

a list containing alpha: row effects beta: column effects gamma: row location weights delta: column location weights log_likelihood: log(likelihood) g_squared: G^2 fit measure chisq: X^2 fit measure df: degrees of freedom

42 Goodman_model_ii

Goodman_model_ii

Fits Goodman's (1979) Model II

Description

Fits Goodman's (1979) Model II

Usage

```
Goodman_model_ii(
    n,
    rho = 1:nrow(n) - (nrow(n) + 1)/2,
    sigma = 1:ncol(n) - (ncol(n) + 1)/2,
    update_rows = TRUE,
    update_columns = TRUE,
    max_iter = 25,
    verbose = FALSE,
    exclude_diagonal = FALSE
)
```

Arguments

n matrix of observed counts

rho values of row locations. Default is 1:nrow(n) - (nrow(n) + 1) / 2

sigma values of column locations. Default is 1:ncol(n) - (ncol(n) + 1) / 2

update_rows should values of row locations be updated? Default is TRUE, update

update_columns should value of column locations be updated? Default is TRUE, update

max_iter maximum number of iterations to perform. Default is 10

verbose should cycle-by-cycle output be produced? Default is FALSE

exclude_diagonal

logical. Should the diagonal be excluded from the computation. Default is FALSE.

Value

a list containing alpha: row effects beta: column effects rho: centered row locations mu: row locations sigma: centered column locations nu: column locations log_likelihood: log(likelihood) g_squared: G^2 fit measure chisq: X^2 fit measure df: degrees of freedom

Goodman_model_ii_star Fits Goodman's (1979) model II*, where row and column effects are equal.

Description

Fits Goodman's (1979) model II*, where row and column effects are equal.

Usage

```
Goodman_model_ii_star(
    n,
    exclude_diagonal = FALSE,
    max_iter = 25,
    verbose = FALSE
)
```

Arguments

n matrix of observed counts

exclude_diagonal

should the cells of the main diagonal be excluded? Default is FALSE, include

all cells

max_iter maximum number of iterations

verbose should cycle-by-cycle information be printed out? Default is FALSE, do not

print

Value

a list containing alpha: vector of alpha (row) parameters beta: vector of beta (column) parameters phi: vector of common row/column effects log_likelihood: value of the log(likelihood) function at completion g_squared: G^2 fit measure chisq: X^2 fit measure df: degrees of freedom

```
{\tt Goodman\_model\_i\_star} \quad \textit{Fits Goodman's (1979) Model I*}
```

Description

Fits Goodman's (1979) Model I*

Usage

```
Goodman_model_i_star(
    n,
    max_iter = 25,
    verbose = FALSE,
    exclude_diagonal = FALSE
)
```

Arguments

n matrix of observed counts

max_iter maximum number of iterations

verbose should cycle-by-cycle information be printed out? Default is FALSE, do not

print

exclude_diagonal

should the cells along the main diagonal be excluded? Default is FALSE, in-

clude all cells

Value

a list containing alpha: vector of row parameters beta: vector of column parameters theta: vector of common row/column estimates $log_likelihood$: log(likelihood) at completion $g_squared$: G^2 fit measure chisq: X^2 fit measure df: degrees of freedom

Goodman_null_association

Fits Goodman's L. A. (1979) Simple Models for the Analysis of Association in Cross-Classifications Having Ordered Categories

Description

null association model

Usage

```
Goodman_null_association(
   n,
   max_iter = 25,
   verbose = FALSE,
   exclude_diagonal = FALSE
)
```

Goodman_pi 45

Arguments

n matrix of observed counts

max_iter maximum number of iterations. Default is 10

verbose should cycle-by-cycle info be printed? Default is FALSE

exclude_diagonal

logical, Should the diagonal be excluded from the computations. Default is

FALSE

Value

a list containing alpha: row effects beta: column effects log_likelihood: log(likelihood) g_squared: G^2 fit measure chisq: X^2 fit measure df: degrees of freedom

Goodman_pi

Computes the model-based probability for cell i, j

Description

Computes the model-based probability for cell i, j

Usage

```
Goodman_pi(phi, delta, i, j)
```

Arguments

phi symmetry matrix

delta vector of asymmetry parameters

i row index

j column index

Value

pi for that cell

Goodman_pi_matrix

Computes the full matrix of model-based cell probabilities.

Description

Computes the full matrix of model-based cell probabilities.

Usage

```
Goodman_pi_matrix(phi, delta)
```

Arguments

phi the symmetric matrix

delta the vector of asymmetry parameters

Value

matrix of model-based probabilities

Goodman_symmetric_association_model

Fits the symmetric association model from Goodman (1979). Note the model is a reparameterized version of the quasi-symmetry model, so the quasi-symmetry model has the same fit indices.

Description

Fits the symmetric association model from Goodman (1979). Note the model is a reparameterized version of the quasi-symmetry model, so the quasi-symmetry model has the same fit indices.

Usage

```
Goodman_symmetric_association_model(n)
```

Arguments

n matrix of observed counts

Value

a list containing x: design matrix used for the glm() regression beta: parameter estimates se: standard errors of beta g_squared: G^2 measure of fit chisq: X^2 measure of fit df: degrees of freedom expected: model-based expected cell counts

Goodman_uniform_association

Fits Goodman's (1979) uniform association model

Description

Fits Goodman's (1979) uniform association model

Usage

```
Goodman_uniform_association(
   n,
   max_iter = 25,
   verbose = FALSE,
   exclude_diagonal = FALSE
)
```

Arguments

n matrix of observed counts

max_iter maximum number of iterations. Default is 10.

verbose should cycle-by-cycle info be printed out? Default is FALSE

exclude_diagonal

logical. Should the cells of the main diagonal be excluded from the computations? Default is FALSE, include all cells.

Value

a list containing alpha: row effects beta: column effects theta: uniform association parameter $log_likelihood$: log(likelihood) $g_squared$: G^2 fit measure chisq: X^2 fit measure df: degrees of freedom

```
handle_max_i_i
```

Case where j == r, i == k == k2

Description

```
Case where j == r, i == k == k2
```

Usage

```
handle_max_i_i(i, marginal_pi, kappa, v)
```

48 handle_max_i_k

Arguments

i index into marginal_pi

marginal_pi expected proportions for each category kappa current estimate of kappa coefficient

v symmetry matrix

Value

second-order derivative

handle_max_i_k

Case where j == r, i != k, i == k2

Description

Case where j == r, i != k, i == k2

Usage

handle_max_i_k(i, k, marginal_pi, kappa, v)

Arguments

i index into pi

 $k \hspace{1cm} index \ into \ v \ (other \ is \ i)$

marginal_pi expected proportions for each category kappa current estimate of kappa coefficient

v symmetry matrix

Value

second-order derivative

handle_max_k_k2 49

```
handle_max_k_k2 Case where j == r, i != k && i != k2
```

Description

```
Case where j == r, i != k &  i != k2
```

Usage

```
handle_max_k_k2(i, k, k2, marginal_pi, kappa, v)
```

Arguments

i index into pi

k first index into marginal_pik2 second index into marginal_pi

marginal_pi expected proportions for each category kappa current estimate of kappa coefficient

v symmetry matrix

Value

second-order derivative

handle_one_maximum

Case where pi[i, r] with k and k2

Description

Case where pi[i, r] with k and k2

Usage

```
handle_one_maximum(i, j, k, k2, marginal_pi, kappa, v)
```

Arguments

i	first index of pi	
j	second index of pi	

k first index into marginal_pik2 second index into marginal_pi

marginal_pi expected proportions for each category kappa current estimate of kappa coefficient

v symmetry matrix

50 handle_tied_maximum

Value

second order derivative

```
handle_tied_below_maximum
```

```
Case where i == j, i < r, j < r
```

Description

```
Case where i == j, i < r, j < r
```

Usage

```
handle_tied_below_maximum(j, k, k2, marginal_pi, kappa, v)
```

Arguments

j index of pi

k first index into marginal_pik2 second index into marginal_pi

marginal_pi expected proportions for each of the categories

kappa current estimate of kappa coefficient

v symmetry matrix

Value

derivative

handle_tied_maximum $Case\ where\ pi[r,\ r]\ with\ k\ and\ k2$

Description

Case where pi[r, r] with k and k2

Usage

```
handle_tied_maximum(k, k2, marginal_pi, kappa, v)
```

Arguments

k first index into marginal_pik2 second index into marginal_pi

marginal_pi expected proportions for each category kappa current estimate of kappa coefficient

v symmetry matrix

Value

second order derivative

handle_untied_below_maximum

Case where i != j, i < r && j < r

Description

Case where i != j, i < r && j < r

Usage

handle_untied_below_maximum(i, j, k, k2, marginal_pi, kappa, v)

Arguments

i first index of pi

j second index of pi

k first index of marginal_pi

k2 second index of marginal_pi

marginal_pi expected proportions of each of the categories

kappa current value of kappa coefficient

v symmetry matrix

homicide_black_black Data about charges of homicide in the state of Florida.

Description

Counts of cases charged with homicide. The rows and columns indicate whether there was an additional charge of a felony occurring in addition to the homicide. The data is actually 3-dimensional. It is stored as 4 related matrices, each with the leading word "homicide_" The rest of the name gives the race of the defendant and the race of the victim, separated by an underscore

Usage

homicide_black_black

Format

'homicide_black_black' Each is a matrix with 3 rows and 3 columns. Rows are classification by police and columns are classification by the court/prosecutor. 1 = No felony 2 = Possible felony 2 = Felony

Source

Agresti, A. (1984, p. 211). Analysis of ordinal categorical data. New York: Wiley.

Description

Counts of cases charged with homicide. The rows and columns indicate whether there was an additional charge of a felony occurring in addition to the homicide. The data is actually 3-dimensional. It is stored as 4 related matrices, each with the leading word "homicide_" The rest of the name gives the race of the defendant and the race of the victim, separated by an underscore.

Usage

homicide_black_white

Format

'homicide_black_white' Each is a matrix with 3 rows and 3 columns. Rows are classification by police and columns are classification by the court/prosecutor. 1 = No felony 2 = Possible felony 2 = Felony

Source

Agresti, A. (1984, p. 211). Analysis of ordinal categorical data. New York: Wiley.

homicide_white_black Data about charges of homicide in the state of Florida.

Description

Counts of cases charged with homicide. The rows and columns indicate whether there was an additional charge of a felony occurring in addition to the homicide. The data is actually 3-dimensional. It is stored as 4 related matrices, each with the leading word "homicide_" The rest of the name gives the race of the defendant and the race of the victim, separated by an underscore

Usage

homicide_white_black

Format

'homicide_white_black' Each is a matrix with 3 rows and 3 columns. Rows are classification by police and columns are classification by the court/prosecutor. 1 = No felony 2 = Possible felony 2 = Felony

Source

Agresti, A. (1984, p. 211). Analysis of ordinal categorical data. New York: Wiley.

Description

Counts of cases charged with homicide. The rows and columns indicate whether there was an additional charge of a felony occurring in addition to the homicide. The data is actually 3-dimensional. It is stored as 4 related matrices, each with the leading word "homicide_" The rest of the name gives the race of the defendant and the race of the victim, separated by an underscore

Usage

homicide_white_white

Format

'homicide_white_white' Each is a matrix with 3 rows and 3 columns. Rows are classification by police and columns are classification by the court/prosecutor. 1 = No felony 2 = Possible felony 2 = Felony

Source

Agresti, A. (1984, p. 211). Analysis of ordinal categorical data. New York: Wiley.

54 hypothalamus_2

hypothalamus_1

Measures of men's hypothalamus taken from cadavers. First data set.

Description

Measures of men's hypothalamus taken from cadavers. First data set.

Usage

hypothalamus_1

Format

'hypothalamus_1' Each set is a dominance matrix (see e.g., Cliff 1996).

Source

Cliff, N. (1996), Ordinal methods for behavioral data analysis. Mahwah NJ: Lawrence Erlbaum.

hypothalamus_2

Measures of men's hypothalamus taken from cadavers. Second data set.

Description

Measures of men's hypothalamus taken from cadavers. Second data set.

Usage

hypothalamus_2

Format

'hypothalamus_2' Each set is a dominance matrix (see e.g., Cliff 1996).

Source

Cliff, N. (1996), Ordinal methods for behavioral data analysis. Mahwah NJ: Lawrence Erlbaum.

interference_12 55

interference_12

Measures of interference in memory recall study.

Description

Measures are within subjects, comparing a control condition to two conditions with interference. Interference condition 1 v. interference condition 2

Usage

```
interference_12
```

Format

'interference_control_1', 'interference_control_2', 'interference_12' Within-persons dominance matrices.

Source

Cliff, N. (1996). Ordinal methods for behavioral data analysis. Mahwah NJ: Lawrence Erlba

```
interference_control_1
```

Measures of interference in memory recall study.

Description

Measures are within subjects, comparing a control condition to two conditions with interference. Control v. interference condition 1

Usage

```
interference_control_1
```

Format

'interference_control_1', 'interference_control_2', 'interference_12' Within-persons dominance matrices.

Source

Cliff, N. (1996). Ordinal methods for behavioral data analysis. Mahwah NJ: Lawrence Erlbaum.

```
interference_control_2
```

Measures of interference in memory recall study.

Description

Measures are within subjects, comparing a control condition to two conditions with interference. Control v. interference condition 2

Usage

```
interference_control_2
```

Format

'interference_control_1', 'interference_control_2', 'interference_12' Within-persons dominance matrices.

Source

Cliff, N. (1996). Ordinal methods for behavioral data analysis. Mahwah NJ: Lawrence Erlba

```
Ireland_marginal_homogeneity
```

Fits marginal homogeneity model

Description

Fits the marginal homogeneity model according to the minimum discriminant information. Ireland, C. T., Ku, H. H., & Kullback, S. (1969). Symmetry and marginal homogeneity of an $r \times r$ contingency table. Journal of the American Statistical Association, 64(328), 1323-1341.

Usage

```
Ireland_marginal_homogeneity(
   n,
   truncated = FALSE,
   max_iter = 15,
   verbose = FALSE
)
```

Arguments

n matrix of observed counts

truncated should the diagonal be excluded. Default is FALSE, include the diagonal.

max_iter maximum number of iterations to perform

verbose should cycle-by-cycle information be printed out. Default is FALSE.

Ireland_mdis 57

Value

a list containing mdis: value of the minimum discriminant information statistic (appox chi-squared) df: dgrees of freedom x_star: matrix of model-based counts p_star: matrix of model-based p-values

Examples

Ireland_marginal_homogeneity(vision_data)

Ireland_mdis

Computes the MDIS between the two matrices provided.

Description

Computes the MDIS between the two matrices provided.

Usage

```
Ireland_mdis(n, x_star, truncated = FALSE)
```

Arguments

n first matrix (usually observed counts)
x_star second matrix (usually model-based)

truncated should the diagonal be ignored. Default is FALSE, include the diagonal ele-

ments.

Value

value of the MDIS criterion

Ireland_normalize_for_truncation

Renormalize counts to account for truncation of diagonal

Description

Renormalize counts to account for truncation of diagonal

Usage

```
Ireland_normalize_for_truncation(n)
```

Arguments

n matrix of observed counts

Value

matrix n with diagonal set to 0.0

Ireland_quasi_symmetry

Fit for quasi-symmetry model. Obtained by subtraction, so no model-based probabilities.

Description

Fit for quasi-symmetry model. Obtained by subtraction, so no model-based probabilities.

Usage

```
Ireland_quasi_symmetry(n, truncated = FALSE)
```

Arguments

n matrix of observed counts

truncated should the diagonal be excluded, Default is FALSE, include the diagonal.

Value

a list with mdis = MDIS value and df = degrees of freedom for quasi-symmetry model

See Also

```
[Ireland_quasi_symmetry_model()]
```

Examples

```
Ireland_quasi_symmetry(vision_data)
```

Ireland_quasi_symmetry_model

Fitss the quasi-symmetry model.

Description

Fits the model according to the MDIS criterion.

Ireland_symmetry 59

Usage

```
Ireland_quasi_symmetry_model(
   n,
   truncated = FALSE,
   max_iter = 5,
   verbose = FALSE
)
```

Arguments

n matrix of observed counts

truncated should the diagonal be excluded. Default is FALSE, include diagonal cells.

max_iter maximum number of iterations in minimizing the criterion. Default is 4

verbose logical variable, should cycle-by-cycle info be printed. Default is FALSE.

Value

a list containing mdis: value of the MDIS at termination df: degrees of freedom x_star: matrix of model-reproduced counts p_star: matrix of model-reproduced p-values

See Also

```
[Ireland_quasi_symmetry()]
```

Examples

Ireland_quasi_symmetry_model(vision_data)

Ireland_symmetry Fits s

Fits symmetry model.

Description

Ireland, C. T., Ku, H. H., & Kullback, S. (1969). Symmetry and marginal homogeneity of an $r \times r$ contingency table. Journal of the American Statistical Association, 64(328), 1323-1341.

Usage

```
Ireland_symmetry(n, truncated = FALSE)
```

Arguments

n matrix of observed counts

truncated should the diagonal be excluded. Default is FALSE, include the diagonal.

is_missing_or_infinite

Value

a list containing mdis: value of the minimum discriminant information statistic (appox chi-squared) df: dgrees of freedom x_star: matrix of model-based counts p_star: matrix of model-based p-values

Examples

Ireland_symmetry(vision_data)

is_invertible

Tests whether a square matrix is invertible (non singular)

Description

from stackoverflow: https://stackoverflow.com/questions/24961983/how-to-check-if-a-matrix-has-an-inverse-in-the-r-language

Usage

```
is_invertible(X)
```

Arguments

Χ

Matrix to be tested. It is assumed X is square

Value

logical: TRUE if inversion succeeds, FALSE otherwise

```
is_missing_or_infinite
```

Determines if its argument is not a valid number.

Description

Determines if its argument is not a valid number.

Usage

```
is_missing_or_infinite(x)
```

Arguments

Х

Numeric. Number of be evaluated

Value

TRUE if is.na(), is.nan(), or is.infinite() returns TRUE. FALSE otherwise.

kappa 61

kappa

Computes Cohen's 1960 kappa coefficient

Description

Computes Cohen's 1960 kappa coefficient

Usage

kappa(n)

Arguments

n

matrix of observed counts

Value

kappa coefficient

likelihood_ratio_chisq

Computes the likelihood ratio G^2 measure of fit.

Description

Computes the likelihood ratio G^2 measure of fit.

Usage

```
likelihood_ratio_chisq(n, pi, exclude_diagonal = FALSE)
```

Arguments

n Matrix of observed counts

pi Matrix of same dimensions as n. Model-based matrix of predicted proportions exclude_diagonal

logical. Should the diagonal cells of a square matrix be excluded from the computation. Default is FALSE. The effect of setting it to TRUE for non-square matrices may be unintuitive and should he avoided.

Value

G^2

logit

loadRData

Function to load a data set written out using save().

Description

The first (should be the only) element read from the RData file is returned From: https://stackoverflow.com/questions/5577221 can-i-load-an-object-into-a-variable-name-that-i-specify-from-an-r-data-file

Usage

```
loadRData(file_name)
```

Arguments

file_name

Character. Name of the file containing the RData

Details

```
usage x <- loadRData(file_name="")</pre>
```

Value

the first object from the restored RData

logit

Computes the log-odds (logit) for the value provided

Description

Computes the log-odds (logit) for the value provided

Usage

```
logit(p)
```

Arguments

р

Numeric. Assumed to lie in interval(0, 1)

Value

```
log(p / (1.0 - p))
```

log_likelihood 63

log_likelihood

Computes the multinomial log(likelihood).

Description

Computes the multinomial log(likelihood).

Usage

```
log_likelihood(n, pi, exclude_diagonal = FALSE)
```

Arguments

n Matrix of observed counts

pi Matrix of same dimensions as n. Model-based matrix of predicted proportions exclude_diagonal

logical. Should diagonal cells of square matrix be excluded from the computation? Default is FALSE. The effect of setting it to TRUE for non-square matrices may be unintuitive and should he avoided.

Value

log(likelihood)

```
log_linear_add_all_diagonals
```

Adds indicator variables for the diagonal cells in table n.

Description

Adds indicator variables for the diagonal cells in table n.

Usage

```
log_linear_add_all_diagonals(n, x)
```

Arguments

n the matrix of observed counts

x the design matrix to be augmented

Value

new design matrix with nrow(n) columns added. The columns are all 0 unless the row corresponds to a diagonal cell in n, in which case the entry is 1

Examples

```
x <- log_linear_main_effect_design(vision_data)
x_prime <- log_linear_add_all_diagonals(vision_data, x)</pre>
```

log_linear_append_column

Appends a column to an existing design matrix.

Description

Takes the design matrix provided and appends the new column

Usage

```
log_linear_append_column(x, x_new, position = ncol(x) + 1)
```

Arguments

x the original design matrix
 x_new the column to be appended
 position column index within the new matrix for the new column. Defaults to last position = appending the column

Value

the new design matrix

Examples

log_linear_create_coefficient_names

Creates missing column names

Description

Creates missing column names

Usage

```
log_linear_create_coefficient_names(x, n, effect_names = NULL)
```

Arguments

x the design matrix being modifiedn the matrix of observed counts

effect_names user specified names to be applied to effects after the intercept and main effects.

Default is NULL

Value

vector of names to apply to x

```
log_linear_create_linear_by_linear
```

Creates a vector containing the linear-by-linear vector.

Description

Uses the ordinal ranks (1, 2, ..., nrow(n)) as data.

Usage

```
log_linear_create_linear_by_linear(n, centered = FALSE)
```

Arguments

n the matrix of observed cell counts

centered should the variables be centered before the product is computed

Value

a vector containing the new variable

Examples

```
linear <- log_linear_create_linear_by_linear(vision_data)
x <- log_linear_equal_weight_agreement_design(vision_data)
x_prime <- log_linear_append_column(x, linear)</pre>
```

```
log_Linear_create_log_n
```

Computes the logs of the cell frequencies.

Description

In the case of an observed 0, epsilon is inserted into the cell before the log is taken.

Usage

```
log_Linear_create_log_n(n, epsilon = 1e-06, all_cells = FALSE)
```

Arguments

n matrix of cell counts

epsilon amount to be inserted into cell with observed 0.

all_cells add epsilon to all cells or just those with 0 observed frequencies

Value

a list containing: log_n - a vector of log frequencies and dat - modified version of the cell counts data

```
log_linear_equal_weight_agreement_design
```

Creates design matrix for model with main effects and a single agreement parameter delta.

Description

The model has main effects for rows and for columns, plus an additional parameter for the agreement (diagonal) cells.

Usage

```
log_linear_equal_weight_agreement_design(n, n_raters = 2)
```

log_linear_fit 67

Arguments

n the matrix of cell counts

n_raters number of raters. Currently only 2 (the default) are supported. This is an exten-

sion point for future work.

Value

design matrix for the model

Examples

```
x <- log_linear_equal_weight_agreement_design(vision_data)</pre>
```

log_linear_fit

Fits a log-linear model to the data provided, using the design matrix provided. Names for the effects will be "rows1", "cols1" etc. If there are remaining entries, they can be specified as the "effect_names" character vector. This function is a wrapper around a call to glm() that handles some of the details of the call and packages the output in a more convenient form.

Description

Fits a log-linear model to the data provided, using the design matrix provided. Names for the effects will be "rows1", "cols1" etc. If there are remaining entries, they can be specified as the "effect_names" character vector. This function is a wrapper around a call to glm() that handles some of the details of the call and packages the output in a more convenient form.

Usage

```
log_linear_fit(n, x, effect_names = NULL)
```

Arguments

n matrix of observed counts to be fitx design matrix for predictor variables

 ${\tt effect_names} \qquad {\tt character} \ \ {\tt vector} \ \ {\tt of} \ \ {\tt additional} \ \ {\tt names} \ \ {\tt to} \ \ {\tt apply} \ \ {\tt to} \ \ {\tt the} \ \ {\tt default} \ \ {\tt is}$

NULL, in which case the columns will be labeled "model1" etc.

Value

a list containing x: the design matrix beta: the regression parameters se: the vector of standard errors g_squared: G^2 fit measure chisq: X^2 fit measure df: degrees of freedom expected: matrix of expected frequencies

```
log_linear_main_effect_design
```

Design matrix for baseline independence model with main effects for rows and columns.

Description

It is intended as a straw-man model as it assumes no agreement beyond chance.

Usage

```
log_linear_main_effect_design(n, n_raters = 2)
```

Arguments

n the matrix of cell counts

n_raters number of raters. Currently only 2 (the default) are supported. This is an exten-

sion point for future work.

Value

the design matrix for the model

Examples

```
x <- log_linear_main_effect_design(vision_data)</pre>
```

```
log_linear_matrix_to_vector
```

Converts a matrix of data into a vector suitable for use in analysis with the design matrices created. Unlike simply calling vector() on the matrix the resulting vector is organized by rows, then columns. This order corresponds to the order in the design matrix.

Description

Converts a matrix of data into a vector suitable for use in analysis with the design matrices created. Unlike simply calling vector() on the matrix the resulting vector is organized by rows, then columns. This order corresponds to the order in the design matrix.

Usage

```
log_linear_matrix_to_vector(dat)
```

Arguments

dat

the matrix to be converted a vector

Value

a vector suitable to use as dependent variable, e.g. in a call to glm()

```
log\_linear\_quasi\_symmetry\_model\_design
```

Creates the design matrix for a quasi-symmetry design

Description

Creates the design matrix for a quasi-symmetry design

Usage

```
log_linear_quasi_symmetry_model_design(n)
```

Arguments

n

matrix of observed counts

Value

design matrix for quasi-symmetry design

```
log_linear_remove_column
```

Removes a column from an existing design matrix.

Description

Takes the design matrix provided and removes the column in the position specified

Usage

```
log_linear_remove_column(x, position = ncol(x))
```

Arguments

x the original design matrix

position column index within the new matrix for the new column. Defaults to last posi-

tion

Value

the new design matrix

Examples

```
x <- log_linear_main_effect_design(vision_data)
linear <- log_linear_create_linear_by_linear(vision_data)
x_prime <- log_linear_append_column(x, linear)
x_again <- log_linear_remove_column(x_prime, ncol(x_prime))</pre>
```

log_linear_symmetry_design

Creates design matrix for symmetry model.

Description

Creates design matrix for symmetry model.

Usage

```
log_linear_symmetry_design(n)
```

Arguments

n

matrix of observed counts

Value

design matrix for the model

```
McCullagh_compute_condition
```

Compute the linear constraint on psi elements for identifiablity.

Description

Compute the linear constraint on psi elements for identifiablity.

Usage

```
McCullagh_compute_condition(psi)
```

Arguments

psi

symmetry matrix

Value

value of the constraint

McCullagh_compute_cumulatives

Computes the model-based cumulative probability matrices pij and qij

Description

Computes the model-based cumulative probability matrices pij and qij

Usage

```
McCullagh_compute_cumulatives(psi, delta, alpha, c = 1)
```

Arguments

psi the matrix of symmetry parameters
delta the scalar asymmetry parameter
alpha the vector of asymmetry parameters

c the normalizing constant for the pis to sum to 1.0 Default value is 1.0

Value

list containing matrices pij and qij

McCullagh_compute_cumulative_sums

Computes cumulative sums for rows,

Description

Computes cumulative sums for rows,

Usage

```
McCullagh_compute_cumulative_sums(n)
```

Arguments

n matrix of observed counts

Value

R where R[i,] contains cumulative sum of n[i,]

McCullagh_compute_c_plus

Computes sums c+ used in maximizing the log(likelihod)

Description

Computes sums c+ used in maximizing the log(likelihod)

Usage

```
McCullagh_compute_c_plus(phi, alpha)
```

Arguments

phi matrix of symmetry parameters alpha vector of asymmetry parameters

Value

```
list of c_i_plus and c_plus_i
```

 ${\tt McCullagh_compute_df} \quad \textit{Computes the degrees of freedom for the model}$

Description

Computes the degrees of freedom for the model

Usage

```
McCullagh_compute_df(M, generalized = FALSE)
```

Arguments

M the size of the M X M observed matrix

generalized is the generalized model being fit? Default is FALSE, regular model

McCullagh_compute_gamma

Computes gamma from x and beta

Description

Computes gamma from x and beta

Usage

```
McCullagh_compute_gamma(x, beta, s, c)
```

Arguments

x predictor variables

beta vector of regression coefficients
s number of rows in the table
c number of score levels in table

Value

vector of model-based gamma coefficients

```
{\tt McCullagh\_compute\_gamma\_from\_phi}
```

Computes value of gamma from phi. Inverse of usual computation.

Description

Computes value of gamma from phi. Inverse of usual computation.

Usage

```
McCullagh_compute_gamma_from_phi(phi, j, gamma)
```

Arguments

phi value to compute from j index to use in computation

gamma vector of gamma values (model-based cumulative logits)

Value

```
gamma[j] given phi and gamma[j + 1]
```

```
McCullagh_compute_gamma_plus_1_from_phi

Computes value of gamma[j + 1] from phi.
```

Description

Computes value of gamma[j + 1] from phi.

Usage

```
McCullagh_compute_gamma_plus_1_from_phi(phi, j, gamma)
```

Arguments

phi value used in computation
j index to use in computation

gamma vector of gamma values (model-based cumulative logits)

Value

```
gamma[j + 1] given phi and gamma[j]
```

```
McCullagh_compute_generalized_cumulatives
```

Coompute the model-based cumulative probabilities pij and qij.

Description

Coompute the model-based cumulative probabilities pij and qij.

Usage

```
McCullagh_compute_generalized_cumulatives(psi, delta_vec, alpha, c = 1)
```

Arguments

psi symmetry matrix

delta_vec vector of asymmetry parameters alpha vector of asymmetry parameters

c normalizing constant so pis sum to 1. Defaults to 1.0

Value

matrices of model-based cumulative probabilities pij and qij

McCullagh_compute_generalized_pi

Cpompute matrix pi under generalized model.

Description

Cpompute matrix pi under generalized model.

Usage

```
McCullagh_compute_generalized_pi(psi, delta_vec, alpha, c = 1)
```

Arguments

psi the matrix of symmetry parameters
delta_vec the vector asymmetry parameter
alpha the vector of asymmetry parameters

c the normalizing constant for the pis to sum to 1.0 Default value is 1.0

Value

the matrix pi

McCullagh_compute_lambda

Computes lambda, log of cumulative odds.

Description

Computes lambda, log of cumulative odds.

Usage

```
McCullagh_compute_lambda(n, use_half = TRUE)
```

Arguments

n matrix of observed counts

use_half logical whether of not to add half to the cell count before taking the logit. De-

fault value is TRUE.

```
McCullagh_compute_log_l
```

Computes the log(likelihood) for the general nonlinear model.

Description

Computes the log(likelihood) for the general nonlinear model.

Usage

```
McCullagh_compute_log_l(n, phi)
```

Arguments

n matrix of observed counts

phi vector of model-based parameters

Value

log(likelihood)

McCullagh_compute_Nij Compute the observed sums Nij

Description

Compute the observed sums Nij

Usage

```
McCullagh_compute_Nij(n)
```

Arguments

n the matrix of observed counts

Value

a list containing Pij and Qij

McCullagh_compute_omega

Compute the value of the Lagrange multiplier for the constraint on psi.

Description

Compute the value of the Lagrange multiplier for the constraint on psi.

Usage

```
McCullagh_compute_omega(n, pi)
```

Arguments

n matrix of observed counts

pi matrix of model-based probabilities pi.

Value

the value of the Lagrange multiplier.

McCullagh_compute_phi Computes phi based on gamma

Description

Computes phi based on gamma

Usage

```
McCullagh_compute_phi(gamma, j)
```

Arguments

gamma vector of gamma parameters
j index of phi to compute

Value

phi[j]

McCullagh_compute_phi_matrix

Compute matrix of model-based logits

Description

Compute matrix of model-based logits

Usage

```
McCullagh_compute_phi_matrix(gamma)
```

Arguments

gamma matrix of model-based cumulative odds

Value

matrix of model-based logits

Description

Compute the regular (non-cumulative) model-based pi values

Usage

```
McCullagh_compute_pi(psi, delta, alpha, c)
```

Arguments

psi the matrix of symmetry parameters
delta the scalar asymmetry parameter
alpha the vector of asymmetry parameters

c the normalizing constant for the pis to sum to 1.0 Default value is 1.0

Value

the matrix pi

McCullagh_compute_pi_from_beta

Computes matrix of p-values pi based on x and current value of beta.

Description

Computes matrix of p-values pi based on x and current value of beta.

Usage

```
McCullagh_compute_pi_from_beta(n, x, beta)
```

Arguments

n matrix of observed counts

x design matrix

beta current values of location model regression parameters

Value

matrix of model-based pi values

McCullagh_compute_pi_from_gamma

Compute the cell probabilities pi from gamma.

Description

Compute the cell probabilities pi from gamma.

Usage

```
McCullagh_compute_pi_from_gamma(gamma)
```

Arguments

gamma matrix of gamma values

Value

c X c matrix of p-values pi

```
McCullagh_compute_regression_weights   Computes \ \ regression \ \ weights \ \ w; \ \ R\_dot\_j \ \ ^* \ (N - R\_dot\_j[j]) \ \ ^* \ \ (n\_do\_j[j] \ a= na\_dot\_j[j+1] \ )
```

Description

```
Computes regression weights w; R_{dot_j} * (N - R_{dot_j}[j]) * (n_{do_j}[j]) * (n_{do_j}[j]
```

Usage

```
McCullagh_compute_regression_weights(n)
```

Arguments

n matrix of observed counts

Value

list of w, and sum(w)

```
McCullagh_compute_s_plus
```

Compute sums too use in maximizing log(likelihood)

Description

Compute sums too use in maximizing log(likelihood)

Usage

```
McCullagh_compute_s_plus(n)
```

Arguments

n matrix of observed counts

Value

```
list of s_i_plus and s_plus_i
```

McCullagh_compute_update

Compute the Newton-Raphson update.

Description

Compute the Newton-Raphson update.

Usage

```
McCullagh_compute_update(gradient, hessian)
```

Arguments

gradient gradient vector of log(likelihood) wrt parameters

hessian hessian of log(likelihood) wrt parameters

Value

vector with update values for each of the parameters

```
McCullagh_compute_z Computes Z, where z is w * lambda.
```

Description

Computes Z, where z is w * lambda.

Usage

```
McCullagh_compute_z(lambda, w)
```

Arguments

lambda cumulative logits

w weights to apply to the logits

Value

z, sum pf product of lambda

McCullagh_conditional_symmetry

Fits the McCullagh (1978) conditional-symmetry model.

Description

McCullagh, P. (1978). A class of parametric models for the analysis of square contingency tables with ordered categories. Biometrika, 65(2) 413-418.

Usage

```
McCullagh_conditional_symmetry(n, max_iter = 5, verbose = FALSE)
```

Arguments

n matrix of observed counts

max_iter maximum number of iterations to maximize the log(likelihood) verbose should cycle-by-cycle info be printed. Default is FALSE.

Value

a list containing theta: the asymmetry parameter chisq: chi-square g_squared: likelihood ratio G^2 df: degrees of freedom

Examples

```
McCullagh_conditional_symmetry(vision_data)
```

```
{\tt McCullagh\_conditional\_symmetry\_compute\_s}
```

Computes sums used in maximizing theta.

Description

Computes sums used in maximizing theta.

Usage

```
\label{lem:mccullagh_conditional_symmetry_compute_s(n)} \begin{tabular}{ll} McCullagh\_conditional\_symmetry\_compute\_s(n) \\ \end{tabular}
```

Arguments

n matrix of observed counts

Value

list with s_i_plus and s_plus-i

Description

Initializes symmetry matrix phi

Usage

```
{\tt McCullagh\_conditional\_symmetry\_initialize\_phi(M)}
```

Arguments

М

the number of rows/columns in phi

Value

the phi matrix

McCullagh_conditional_symmetry_maximize_phi

*Maximizes log(likelihood) wrt phi.

Description

Maximizes log(likelihood) wrt phi.

Usage

```
McCullagh_conditional_symmetry_maximize_phi(n)
```

Arguments

n

matrix of observed counts

Value

phi matrix

 $\label{local_symmetry_maximize_theta} McCullagh_conditional_symmetry_maximize_theta \\ \textit{Maximizes the log(likelihood) wrt theta.}$

Description

Maximizes the log(likelihood) wrt theta.

Usage

```
McCullagh_conditional_symmetry_maximize_theta(n)
```

Arguments

n matrix of observed counts

Value

value of asymmetry parameter theta

 $\label{local_symmetry_pi} {\it Computes\ model-based\ proportions}.$

Description

Computes model-based proportions.

Usage

```
{\tt McCullagh\_conditional\_symmetry\_pi(phi, theta)}
```

Arguments

phi the symmetric matrix theta the asymmetry parameter

Value

matrix of model-based p-values

McCullagh_derivative_condition_wrt_psi

Derivative of the condition wrt psi[i, j].

Description

Derivative of the condition wrt psi[i, j].

Usage

```
McCullagh_derivative_condition_wrt_psi(i, j)
```

Arguments

- i first index of psi
- j second index of psi

Value

derivative

```
\label{lem:mccullagh_derivative_gamma_plus_1_wrt_phi} Derivative\ of\ gamma\ j+1\ wrt\ phi.
```

Description

Derivative of gamma j + 1 wrt phi.

Usage

```
McCullagh_derivative_gamma_plus_1_wrt_phi(gamma, j, phi)
```

Arguments

gamma vector
j index of gamma to take derivative of
phi scalar phi taking derivative wrt

Value

derivative

```
McCullagh_derivative_gamma_wrt_phi

Derivative of gamma wrt phi.
```

Description

Version given in McCullagh isn't right.

Usage

```
McCullagh_derivative_gamma_wrt_phi(gamma, j, phi)
```

Arguments

gamma vector of cumulative logits
j index of derivative sought
phi scalar phi taking derivative wrt

Value

derivative

```
\begin{tabular}{ll} McCullagh\_derivative\_gamma\_wrt\_y \\ Derivative\ of\ y\ wrt\ gamma. \end{tabular}
```

Description

Assumes a logit link is being used.

Usage

```
\label{local_model} {\tt McCullagh\_derivative\_gamma\_wrt\_y(gamma, i, j)}
```

Arguments

gamma	matrix of gamma values
i	row index of gamma
j	column index of gamma

Value

derivative

```
McCullagh_derivative_lagrangian_wrt_delta

Derivative of Lagrange multiplier wrt scalar delta.
```

Description

Derivative of Lagrange multiplier wrt scalar delta.

Usage

```
McCullagh_derivative_lagrangian_wrt_delta(n, psi, delta, alpha, c = 1)
```

Arguments

```
n matrix of observed counts
psi symmetry matrix
delta scalar asymmetry parameter
alpha vector of asymmetry parameters
c normalizing coefficient so that sum o pi = 1. Default value is 1.0
```

Value

value of the derivative

```
McCullagh_derivative_lagrangian_wrt_delta_vec

Derivative of Lagrangian wrt delta_vec.
```

Description

Derivative of Lagrangian wrt delta_vec.

Usage

```
McCullagh_derivative_lagrangian_wrt_delta_vec(
    n,
    k,
    psi,
    delta_vec,
    alpha,
    c = 1
)
```

Arguments

n matrix of observed counts

k index of delta_vec to compute derivative wrt

psi matrix of symmetry parameters
delta_vec vector asymmetry parameter
alpha vector of asymmetry parameters

c normalizing factor to make pi sum to 1.0. Default is 1.0.

Value

derivative

```
McCullagh_derivative_lagrangian_wrt_psi

Derivative of Lagrangian wrt psi[i1, j1].
```

Description

Derivative of Lagrangian wrt psi[i1, j1].

Usage

```
McCullagh_derivative_lagrangian_wrt_psi(n, i1, j1, psi, delta, alpha, c = 1)
```

Arguments

n	matrix of observed counts
i1	first index of psi
j1	first index of psi
psi	matrix of symmetry parameters
delta	scalar asymmetry parameter
alpha	vector of asymmetry parameters
С	normalizing factor to make pi sum to 1.0. Default is 1.0.

Value

derivative

```
McCullagh_derivative_log_l_wrt_alpha
```

Derivative of log(likelihood) wrt alpha[index].

Description

Derivative of log(likelihood) wrt alpha[index].

Usage

```
McCullagh_derivative_log_l_wrt_alpha(n, index, psi, delta, alpha, c = 1)
```

Arguments

n ma	trix of obse	rved counts
------	--------------	-------------

index index of alpha

psi matrix of symmetry parameters delta scalar asymmetry parameter alpha vector of asymmetry parameters

c normalizing factor to make pi sum to 1.0. Default is 1.0.

Value

derivative

```
McCullagh_derivative_log_l_wrt_beta
```

Derivative of log(likelihood) wrt beta, as given in appendix of McCullagh.

Description

McCullagh, P. (1980). Regression models for ordinal data. Journal of the Royal Stastical Society, Series B, 42(2), 109-142. With assist from appendix of Agresti, (1984). Agresti, A. (1984). Analysis of ordinal categorical data. New York, Wiley, p. 244-246.

Usage

```
McCullagh_derivative_log_l_wrt_beta(n, x, gamma)
```

Arguments

n	matrix of observed counts
x	design matrix for location

gamma matrix of model-based cumulative logits

Value

derivative

```
\begin{tabular}{ll} McCullagh\_derivative\_log\_l\_wrt\_c \\ Derivative\ of\ log(likelihood)\ wrt\ c. \end{tabular}
```

Description

Derivative of log(likelihood) wrt c.

Usage

```
McCullagh_derivative_log_l_wrt_c(n, psi, delta, alpha, c)
```

Arguments

n	matrix of observed counts
psi	matrix of symmetry parameters
delta	scalar asymmetry parameter
alpha	vector of asymmetry parameters
С	normalizing factor to make pi sum to 1.0. Default is 1.0.

Value

derivative

```
\label{log_lwrt_delta} \begin{tabular}{ll} McCullagh\_derivative\_log\_l\_wrt\_delta \\ Derivative\ of\ log(likelihood)\ wrt\ delta\ (scalar\ or\ vector 0. \end{tabular}
```

Description

Derivative of log(likelihood) wrt delta (scalar or vector0.

Usage

```
McCullagh_derivative_log_l_wrt_delta(n, psi, delta, alpha, c = 1, k = 1)
```

Arguments

n	matrix of observed counts
psi	matrix of symmetry parameters
delta	scalar asymmetry parameter
alpha	vector of asymmetry parameters
С	normalizing factor to make pi sum to 1.0. Default is 1.0.
k	index into delta_vac. Defaults to 1.

Value

derivative

```
\label{local_decomposition} \begin{tabular}{ll} McCullagh\_derivative\_log\_l\_wrt\_delta\_vec \\ Derivative\ of\ log(likelihood)\ wrt\ delta\_vec[k]. \end{tabular}
```

Description

Derivative of log(likelihood) wrt delta_vec[k].

Usage

```
McCullagh_derivative_log_l_wrt_delta_vec(n, k, psi, delta_vec, alpha, c = 1)
```

Arguments

n

k	index of delta_vec
psi	matrix of symmetry parameters
delta_vec	vector asymmetry parameter
alpha	vector of asymmetry parameters
С	normalizing factor to make pi sum to 1.0. Default is 1.0.

matrix of observed counts

Value

derivative

```
\label{log_log_log} \begin{tabular}{ll} McCullagh\_derivative\_log\_l\_wrt\_params \\ Derivative\ of\ log(likelihood)\ wrt\ parameters. \end{tabular}
```

Description

Derivative of log(likelihood) wrt parameters.

Usage

```
McCullagh_derivative_log_l_wrt_params(n, x, beta)
```

Arguments

n matrix of observed counts

x design matrix for location model

beta vector of regression parameters for location model

Value

gradient vector

Description

Derivative of log(likelihood) wrt phi[i, j]

Usage

```
McCullagh_derivative_log_l_wrt_phi(n, phi, i, j)
```

Arguments

n	matrix of observed counts
phi	matrix of phi-values
i	row index of phi
j	column index of phi

Value

derivative

```
McCullagh_derivative_log_l_wrt_psi
```

Derivative of log(likelihood) wrt psi.

Description

Derivative of log(likelihood) wrt psi.

Usage

```
McCullagh_derivative_log_l_wrt_psi(n, i1, j1, psi, delta, alpha, c = 1)
```

Arguments

n	matrix of observed counts
i1	row index of psi
j1	column index of psi
psi	matrix of symmetry parameters
delta	scalar asymmetry parameter
alpha	vector of asymmetry parameters
С	normalizing factor to make pi sum to 1.0. Default is 1.0.

Value

derivative

```
McCullagh_derivative_omega_wrt_alpha
```

Derivative of Lagrange multiplier omega wrt alpha[index].

Description

Derivative of Lagrange multiplier omega wrt alpha[index].

Usage

```
McCullagh_derivative_omega_wrt_alpha(n, index, psi, delta, alpha, c = 1)
```

Arguments

n	matrix of observed counts
index	index of alpha
psi	matrix of symmetry parameters
delta	scalar asymmetry parameter
alpha	vector of asymmetry parameters
С	normalizing to make pi sum to 1.0. Default is 1.0.

Value

derivative

```
McCullagh_derivative_omega_wrt_c
```

Derivative of Lagrange multiplier omega wrt c.

Description

Derivative of Lagrange multiplier omega wrt c.

Usage

```
McCullagh_derivative_omega_wrt_c(n, psi, delta, alpha, c)
```

Arguments

n	matrix of observed counts
psi	matrix of symmetry parameters
delta	scalar asymmetry parameter
alpha	vector of asymmetry parameters
С	normalizing factor to make pi sum to 1.0. Default is 1.0.

Value

derivative

```
McCullagh_derivative_omega_wrt_delta
```

Derivative of Lagrange multiplier omega wrt scalar delta.

Description

Derivative of Lagrange multiplier omega wrt scalar delta.

Usage

```
McCullagh_derivative_omega_wrt_delta(n, psi, delta, alpha, c = 1)
```

Arguments

n	matrix of observed counts
psi	matrix of symmetry parameters
delta	scalar asymmetry parameter
alpha	vector of asymmetry parameters

c normalizing factor to make pi sum to 1.0. Default is 1.0.

Value

derivative

```
McCullagh_derivative_omega_wrt_delta_vec
```

Derivative of Lagrange multiplier omega wrt vector delta[k].

Description

Derivative of Lagrange multiplier omega wrt vector delta[k].

Usage

```
McCullagh_derivative_omega_wrt_delta_vec(n, k, psi, delta_vec, alpha, c = 1)
```

Arguments

				•	•	
ı	า	matrix	Ωť	ohse	rved	counts

k index of delta_vec

psi matrix of symmetry parameters
delta_vec scalar asymmetry parameter
alpha vector of asymmetry parameters

c normalizing factor to make pi sum to 1.0. Default is 1.0.

Value

derivative

```
McCullagh_derivative_omega_wrt_psi
```

Derivative of Lagrange multiplier omega wrt psi[i, j].

Description

Derivative of Lagrange multiplier omega wrt psi[i, j].

Usage

```
McCullagh_derivative_omega_wrt_psi(n, i, j, psi, delta, alpha, c = 1)
```

Arguments

n	matrix of observed counts
••	munia of observed counts

i first index of psij second index of psipsi symmetry matrix

delta scalar or vector asymmetry parameter alpha vector of asymmetry parameters

c normalizing factor to make pi sum to 1.0. Defaults to 1.0

McCullagh_derivative_phi_wrt_gamma

Derivative of phi wrt gamma.

Description

Derivative of phi wrt gamma.

Usage

```
McCullagh_derivative_phi_wrt_gamma(gamma, j)
```

Arguments

gamma vector of gamma values

j index of gamma for which to compute the derivative

Value

derivative

Description

Derivative of pij[i, j] wrt alpha[index]

Usage

```
McCullagh_derivative_pij_wrt_alpha(i, j, index, psi, delta, alpha, c = 1)
```

Arguments

i	row index of pij
j	column index of pij
index	index of alpha

psi matrix of symmetry parameters

delta scalar or vector of asymmetry parameters

alpha vector of asymmetry parameters

c normalizing constant to make pi sum to 1.0. Default ot 1.0

Value

derivative

```
\begin{tabular}{ll} McCullagh\_derivative\_pij\_wrt\_c \\ Derivative\ pij[i,j]\ wrt\ c. \end{tabular}
```

Description

Derivative pij[i, j] wrt c.

Usage

```
McCullagh_derivative_pij_wrt_c(i, j, psi, delta, alpha, c)
```

Arguments

i	row index of pij
j	column index of pij

psi matrix of symmetry parameters

delta scalar or vector of asymmetry parameters

alpha vector of asymmetry parameters

c normalizing constant to make pi sum to 1.0

Value

derivative

```
McCullagh_derivative_pij_wrt_delta
```

Derivative of pij[i, j] wrt scalar delta.

Description

Derivative of pij[i, j] wrt scalar delta.

Usage

```
McCullagh_derivative_pij_wrt_delta(i, j, psi, delta, alpha, c = 1)
```

Arguments

i	row index of pij
j	column index of pij

psi matrix of symmetry parameters delta scalar asymmetry parameter alpha vector of asymmetry parameters

c normalizing constant so that pi sum to 1.0. Default value is 1.0

Value

derivative

```
McCullagh_derivative_pij_wrt_delta_vec
```

Derivative pij[i,j] wrt vector delta[k].

Description

Derivative pij[i,j] wrt vector delta[k].

Usage

```
McCullagh_derivative_pij_wrt_delta_vec(i, j, k, psi, delta_vec, alpha, c = 1)
```

Arguments

```
i row index of pijj column index of pijk index of delta
```

psi the matrix of symmetry parameters delta_vec the vector asymmetry parameter alpha the vector of asymmetry parameters

c the normalizing constant for the pis to sum to 1.0 Default value is 1.0

Value

list containing matrices pij and qij

Description

Derivative of pij[a, b] wrt psi[h, k]

Usage

```
McCullagh_derivative_pij_wrt_psi(a, b, h, k, delta, alpha, c = 1)
```

Arguments

а	row index of pi
b	column index of pi
h	row index of phi
k	column index of phi
delta	scalar or vector version of asymmetry parameters
alpha	vector of asymmetry parameters
С	normalizing constant for to make pi sum to 1. Defaults to 1.0

Value

derivative

```
\label{local_model} \begin{tabular}{ll} McCullagh\_derivative\_pi\_wrt\_alpha \\ Derivative\ of\ pi[i,\ j]\ wrt\ alpha[index]. \end{tabular}
```

Description

Derivative of pi[i, j] wrt alpha[index].

Usage

```
McCullagh_derivative_pi_wrt_alpha(i, j, index, psi, delta, alpha, c = 1)
```

Arguments

i row index of pij column index of piindex index of alpha

psi the matrix of symmetry parameters
delta the scalar asymmetry parameter
alpha the vector of asymmetry parameters

c the normalizing constant for the pis to sum to 1.0 Default value is 1.0

Value

derivative

McCullagh_derivative_pi_wrt_c

Derivative pi[i, j] wrt c.

Description

Derivative pi[i, j] wrt c.

Usage

McCullagh_derivative_pi_wrt_c(i, j, psi, delta, alpha, c)

Arguments

i row index of pij column index of pi

psi the matrix of symmetry parameters

delta the scalar or vector asymmetry parameter

alpha the vector of asymmetry parameters

c the normalizing constant for the pis to sum to 1.0

Value

derivative

```
McCullagh_derivative_pi_wrt_delta

*Derivative of pi[i, j] wrt delta.
```

Description

Derivative of pi[i, j] wrt delta.

Usage

```
McCullagh_derivative_pi_wrt_delta(i, j, psi, delta, alpha, c = 1)
```

Arguments

i	row index of pi
j	column index of pi
psi	the matrix of symmetry parameters
delta	the scalar asymmetry parameter
alpha	the vector of asymmetry parameters
С	the normalizing constant for the pis to sum to 1.0 Default value is 1.0

Value

derivative

```
McCullagh_derivative_pi_wrt_delta_vec

Derivative pi[i, j] wrt delta[k].
```

Description

Derivative pi[i, j] wrt delta[k].

Usage

```
McCullagh_derivative_pi_wrt_delta_vec(i, j, k, psi, delta_vec, alpha, c = 1)
```

Arguments

```
i row index of pij column index of pik index of delta_vec
```

psi the matrix of symmetry parameters delta_vec the vector asymmetry parameter alpha the vector of asymmetry parameters

c the normalizing constant for the pis to sum to 1.0 Default value is 1.0

Value

derivative

```
\label{local_model} \begin{tabular}{ll} McCullagh\_derivative\_pi\_wrt\_psi \\ Derivative\ of\ pi[i,\ j]\ wrt\ psi[i1,\ j1]. \end{tabular}
```

Description

```
Derivative of pi[i, j] wrt psi[i1, j1].
```

Usage

```
McCullagh_derivative_pi_wrt_psi(i, j, i1, j1, psi, delta, alpha, c = 1)
```

Arguments

i	row index of pi
j	column index of pi
i1	row index of psi
j1	column index of psi
psi	the matrix of symmetry parameters
delta	the scalar asymmetry parameter
alpha	the vector of asymmetry parameters
С	the normalizing constant for the pis to sum to 1.0 Default value is 1.0

Value

derivative

```
McCullagh_extract_weights
```

Extracts the weights to convert cumulative model-based probabilities to regular probabilities.

Description

Extracts the weights to convert cumulative model-based probabilities to regular probabilities.

Usage

```
McCullagh_extract_weights(i, j, M)
```

Arguments

j column index sought

M the number of rows/columns in observed matrix

Value

a list containing w_psi for when i == j w_pij for when i < j w_qij for when j < i weight populated with correct entry based on actual i and j

McCullagh_fit_location_regression_model Fit location model

Description

Fit location model

Usage

```
McCullagh_fit_location_regression_model(n, x, max_iter = 5, verbose = FALSE)
```

Arguments

n matrix of observed counts

x design matrix for regression model

max_iter maximum number of Fisher scoring iterations

verbose logical: should cycle-by-cycle info be printed out? Default value is FALSE, do

not print

Value

a list containing beta: regression parameter estimates se: matrix of estimated standard errors cov: covariance matrix of parameter estimates g_squared: G^2 likelihood ratio chi-square for model chisq: Pearson chi-square for model df: degrees of freedom

McCullagh_generalized_palindromic_symmetry

Generalized version of palindromic symmetry model

Description

delta now is a vector, varying by index McCullagh, P. (1978). A class of parametric models for the analysis of square contingency tables with ordered categories. Biometrika, 65(2). 413-416.

Usage

```
McCullagh_generalized_palindromic_symmetry(
    n,
    max_iter = 15,
    verbose = FALSE,
    start_values = FALSE
)
```

Arguments

n matrix of observed counts

max_iter maximum number of iterations to maximize log(likelihood)

verbose should cycle-by-cycle information be printed out? Default is FALSE, do not

print

start_values logical should the regular palindomic symmetry model be fit first to get good

starting values. Default is FALSE.

Value

a list containing

a list containing delta: the vector of asymmetry parameter delta sigma_delta: vector of SE(delta) logL: value of log(likelihood) for final estimates chisq: Pearson chi-square for solution df: degrees of freedom for solution chisq psi: matrix of symmetry parameters alpha: c: constraint, sum of pi - values condition: constraint on psi to make model identified, Lagrange multiplier SE: vector of standard errors for all parameters

Examples

McCullagh_generalized_palindromic_symmetry(vision_data)

```
McCullagh_generalized_pij_qij
```

Computes culuative model probabilities for the generalized model using vector delta.

Description

Computes culuative model probabilities for the generalized model using vector delta.

Usage

```
McCullagh_generalized_pij_qij(i, j, psi, delta_vec, alpha, c1 = 1)
```

Arguments

i	row index
j	column index
psi	symmetry matrix
delta_vec	vector of delta values
alpha	vector of asymmetry value

atpha vector of asymmetry values

c1 normalizing value for pi. Defaults to 1.0

Value

model-based cumulative probability pi_ij

```
McCullagh_generate_names
```

Generates names to label the parameters.

Description

Generates names to label the parameters.

Usage

```
McCullagh_generate_names(psi, delta, alpha, c)
```

Arguments

psi	matrix of symmetry parameters
delta	scalar of matrix of asymmetry parameters
alpha	vector of asymmetry parameters
С	scling factor to ensure sup of pi is 1.0

Value

character vector of labels for the SE values

```
{\tt McCullagh\_get\_statistics}
```

Computes summary statistics needed to compute estimate of delta.

Description

Computes summary statistics needed to compute estimate of delta.

Usage

```
McCullagh_get_statistics(m)
```

Arguments

m matrix of observed counts

Value

a list containing: N: matrix of sums above and below the diagonal n: vector, size of binomial r: vector, observed sums, number of successes for binomail

```
McCullagh_gradient_log_l
```

Gradient vector of log(likelihood)

Description

Gradient vector of log(likelihood)

Usage

```
McCullagh_gradient_log_l(n, psi, delta, alpha, c = 1)
```

Arguments

n matrix of observed counts
psi matrix of symmetry parameters
delta scalar or vector asymmetry parameter
alpha vector of asymmetry parameters

c normalizing factor to make pi sum to 1.0. Default is 1.0.

Value

gradient vector of first-order partials wrt log(likelihood0)

```
McCullagh_hessian_log_l
```

Hessian matrix of log(likelihood)

Description

Hessian matrix of log(likelihood)

Usage

```
McCullagh_hessian_log_l(n, psi, delta, alpha, c = 1)
```

Arguments

n	matrix of observed counts
psi	matrix of symmetry parameters
delta	scalar or vector asymmetry parameter
alpha	vector of asymmetry parameters
С	normalizing factor to make pi sum to 1.0. Default is 1.0.

Value

hessian matrix of second-order partials wrt log(likelihood0)

```
McCullagh_initialize_beta
```

Initializes the beta vector.

Description

Initializes the beta vector.

Usage

```
McCullagh_initialize_beta(n, c, v)
```

Arguments

```
n matrix of observed counts
c number of score levels in table
v number of levels of beta beyond c
```

Value

initialized beta vector

McCullagh_initialize_delta

Compute initial values for scalar delta

Description

Compute initial values for scalar delta

Usage

```
McCullagh_initialize_delta(n)
```

Arguments

n matrix of observed counts

Value

value of delta

McCullagh_initialize_delta_vec
Initialize vector delta

Description

Initialize vector delta

Usage

```
McCullagh_initialize_delta_vec(n)
```

Arguments

n matrix of observed counts

Value

vector of delta values

```
McCullagh_initialize_psi
```

Initialize the symmetry matrix psi

Description

Initialize the symmetry matrix psi

Usage

```
McCullagh_initialize_psi(n, delta, alpha, c = 1)
```

Arguments

n matrix of observed counts

delta scalar delta value

alpha vector of asymmetry parameters

c normalizing value of pi. Default is 1.0

Value

matrix psi

```
McCullagh_initialize_x
```

Initialize design matrix for location model.

Description

This is the simplest possible implementation, that fits thresholds and a single group contrast. More complex problems will implement the matrix X themselves.

Usage

```
McCullagh_initialize_x(s, c, v)
```

Arguments

s number of levels of stratification variable

c number of score levels

v number of predictors above thresholds

Value

design matrix X

McCullagh_is_in_constraint_set

Logical test of whether a specific psi will be in the constraint set.

Description

Logical test of whether a specific psi will be in the constraint set.

Usage

```
McCullagh_is_in_constraint_set(i, j)
```

Arguments

- i first index of psi
- j second index of psi

Value

TRUE if it falls within the set, FALSE otherwise.

```
McCullagh_is_pi_invalid
```

Test whether pi matrix is valid, i.e., $0 < all \ values$.

Description

Test whether pi matrix is valid, i.e., 0 < all values.

Usage

```
McCullagh_is_pi_invalid(pi)
```

Arguments

pi matrix of pi values to be tested.

Value

TRUE if all pi > 0, FALSE otherwise.

McCullagh_logistic_model

MCCullagh's logistic model.

Description

McCullah, P. (1977). A logistic model for paired comparisons with ordered categorical data. Biometrika, 64(3), 449-453.

Usage

```
McCullagh_logistic_model(m)
```

Arguments

m

matrix of observed counts

Value

a list containing w_tilde: vector of model weights for sum of normally distributed components delta_tilde: delta parameter computed using w_tilde w_star: vector of weights for Mantel-Haenszel type numerator and denominator delta_star: delta parameter computed using w_star var: variance of delta estimate

Examples

```
McCullagh_logistic_model(coal_g)
```

McCullagh_logits

Computed cumulative logits.

Description

Computed cumulative logits.

Usage

```
McCullagh_logits(cumulative, use_half = TRUE)
```

Arguments

cumulative vector of cumulative counts

use_half logical indicting whether or not to add 0.5 to numerator and denominator counts

before computing logits, Default value is TRUE, add 0.5.

McCullagh_log_L

Computes the log(likelihood).

Description

Computes the log(likelihood).

Usage

```
McCullagh_log_L(n, psi, delta, alpha, c = 1)
```

Arguments

n matrix of observed counts
psi matrix of symmetry parameters
delta scalar or vector asymmetry parameter
alpha vector of asymmetry parameters
c normalizing factor to make pi sum to 1.0. Default is 1.0.

Value

derivative

 ${\tt McCullagh_maximize_q_symmetry}$

Maximize the log(likelihood) wrt parameters phi and alpha

Description

Maximize the log(likelihood) wrt parameters phi and alpha

Usage

```
McCullagh_maximize_q_symmetry(n, phi, alpha)
```

Arguments

n matrix of observed counts
phi matrix of symmetry parameters
alpha vector of asymmetry parameters

Value

list with new values of phi and alpha

```
\label{local_model} {\it McCullagh\_newton\_raphson\_update}. \\ {\it Newton-Raphson\ update}.
```

Using gradient and hessian, it finds the update direction. Then it tries increassingly smaller step sizes until the step*update yields a valid pi matrix.

Usage

```
McCullagh_newton_raphson_update(
    n,
    gradient,
    hessian,
    psi,
    delta,
    alpha,
    c = 1,
    max_iter = 50,
    verbose = FALSE
)
```

Arguments

n	matrix of observed counts
gradient	gradient vector
hessian	hessian matrix
psi	matrix of symmetry parameters
delta	scalar or vector of asymmetry parameters
alpha	vector of asymmetry parameters
С	scaling factor to ensure pi sums to 1.0. Default is 1.0
max_iter	maximum number of iterations. Default is 50.
verbose	should cycle-by-cycle into be printed out. Default is FALSE, do not print.

Value

list containing new parameters psi: matrix of symmetry parameters delta; scalar or vector of asymmetry parameters alpha: vector of asymmetry parameters c: scaling coefficient to ensure pi sums to 1.0

McCullagh_palindromic_symmetry

McCullagh's palindromic symmetry model

Description

McCullagh, P. (1978). A class of parametric models for the analysis of square contingency tables with ordered categories. Biometrika, 65(2). 413-416.

Usage

```
McCullagh_palindromic_symmetry(n, max_iter = 15, verbose = FALSE)
```

Arguments

n matrix of observed counts

max_iter maximum number of iterations to maximize the log(likelihood)

verbose should cycle-by-cycle info be printed out? Default is FALSE, don't print.

Value

a list containing delta: the value of the asymmetry parameter delta sigma_delta: SE(delta) logL: value of log(likelihood) for final estimates chisq: Pearson chi-square for solution df: degrees of freedom for solution chisq psi: matrix of symmetry parameters alpha: c: constraint, sum of pi - values condition: constraint on psi to make model identified, Lagrange multiplier SE: vector of standard errors for all parameters

Examples

McCullagh_palindromic_symmetry(vision_data)

McCullagh_penalized Computes the penalized value of a derivative by adding the derivative

of the penalty to it.

Description

Computes the penalized value of a derivative by adding the derivative of the penalty to it.

Usage

```
McCullagh_penalized(derivative, i1, j1, n, psi, delta, alpha, c = 1)
```

McCullagh_pij_qij 115

Arguments

derivative	the base derivative
i1	first index of psi
j1	second index of psi
n	matrix of observed counts
psi	matrix of symmetry parameters
delta	scalar asymmetry parameter
alpha	vector of asymmetry parameters
С	normalizing factor to make pi sum to 1.0. Default is 1.0.

Value

derivative

McCullagh_pij_qij

Compute model-based cumulative probabilities

Description

Compute model-based cumulative probabilities

Usage

```
McCullagh_pij_qij(i, j, psi, delta, alpha, c = 1)
```

Arguments

i	row index
j	column index
psi	the symmetry matrix
delta	the asymmetry parameter
alpha	the vector of asymmetry parameters
С	the normalizing constant for pi. Default is 1.0

Value

the model-based cumulative probability pi_ij

McCullagh_proportional_hazards

Computes the proportional hazards.

Description

Computes the proportional hazards.

Usage

```
McCullagh_proportional_hazards(n)
```

Arguments

n matrix of observed counts

Value

```
loga(-log(survival))
```

```
McCullagh_quasi_symmetry
```

Fits McCullagh's (1978) quasi-symmetry model.

Description

McCullagh, P. (1978). A class of parametric models for the analysis of square contingency tables with ordered categories. Biometrika, 65(2) 413-418.

Usage

```
McCullagh_quasi_symmetry(n, max_iter = 15, verbose = FALSE)
```

Arguments

n matrix of observed counts

max_iter maximum number of iterations in maximizing log(likelihood), Default is 15. verbose should cycle-by-cycle information be printed out? Default is FALSE, do not

print

Value

a list containing phi: symmetry matrix alpha: vector of asymmetry parameters chisq: Pearson chisquare value df; degrees of freedom

Examples

McCullagh_quasi_symmetry(vision_data)

 $\label{local_pha} {\it McCullagh_q_symmetry_initialize_alpha} \\ {\it Initializes\ the\ asymmetry\ vector\ alpha}$

Description

Initializes the asymmetry vector alpha

Usage

```
McCullagh_q_symmetry_initialize_alpha(M)
```

Arguments

М

size of alpha vector to create = nrow(matrix to analyze)

Value

vector of asymmetry parameters alpha

McCullagh_q_symmetry_initialize_phi

Initializes the phi matrix

Description

Initializes the phi matrix

Usage

```
McCullagh_q_symmetry_initialize_phi(M)
```

Arguments

М

size of the psi matrix to create

Value

the symmetry matrix phi

```
McCullagh_q_symmetry_pi
```

Computes the model-based p-values

Description

Computes the model-based p-values

Usage

```
McCullagh_q_symmetry_pi(phi, alpha)
```

Arguments

```
phi the matrix of symmetry parameters alpha the vector of asymmetry parameters
```

Value

matrix pi of model-based p-values

```
McCullagh_second_order_lagrangian_wrt_psi_2

Second derivative of Lagrangian wrt psi^2.
```

Description

Second derivative of Lagrangian wrt psi^2.

Usage

```
McCullagh_second_order_lagrangian_wrt_psi_2(
    n,
    i1,
    j1,
    i2,
    j2,
    psi,
    delta,
    alpha,
    c = 1
)
```

Arguments

n	matrix of observed counts
i1	first row index of psi
j1	first column index of psi
i2	second row index of psi
j2	second column index of psi
psi	matrix of symmetry parameters
delta	scalar asymmetry parameter
alpha	vector of asymmetry parameters
С	normalizing factor to make pi sum to 1.0. Default is 1.0.

Value

derivative

```
McCullagh_second_order_lagrangian_wrt_psi_alpha

Second derivative of Lagrangian wrt psi[i1, j1] and alpha[index].
```

Description

Second derivative of Lagrangian wrt psi[i1, j1] and alpha[index].

Usage

```
McCullagh_second_order_lagrangian_wrt_psi_alpha(
    n,
    i1,
    j1,
    index,
    psi,
    delta,
    alpha,
    c = 1
)
```

Arguments

n	matrix of observed counts
i1	row index of psi
j1	column index of psi
index	second row index of alpha
psi	matrix of symmetry parameters
delta	scalar asymmetry parameter
alpha	vector of asymmetry parameters
С	normalizing factor to make pi sum to 1.0. Default is 1.0.

Value

derivative

```
McCullagh_second_order_lagrangian_wrt_psi_delta

Second derivative of Lagrangian wrt psi[i1, j1] and delta.
```

Description

Second derivative of Lagrangian wrt psi[i1, j1] and delta.

Usage

```
McCullagh_second_order_lagrangian_wrt_psi_delta(
    n,
    i1,
    j1,
    psi,
    delta,
    alpha,
    c = 1
)
```

Arguments

```
n matrix of observed counts

i1 row index of psi

j1 column index of psi

psi matrix of symmetry parameters

delta scalar asymmetry parameter

alpha vector of asymmetry parameters

c normalizing factor to make pi sum to 1.0. Default is 1.0.
```

Value

```
\label{lem:cullagh_second_order_lagrangian_wrt_psi_delta_vec} \\ Second\ derivative\ of\ Lagrangian\ wrt\ psi[i1,j1]\ and\ delta\_vec[k[.
```

Second derivative of Lagrangian wrt psi[i1, j1] and delta_vec[k[.

Usage

```
McCullagh_second_order_lagrangian_wrt_psi_delta_vec(
    n,
    i1,
    j1,
    k,
    psi,
    delta_vec,
    alpha,
    c = 1
)
```

Arguments

n	matrix of observed counts
i1	row index of psi
j1	column index of psi
k	index of delta_vec
psi	matrix of symmetry parameters
delta_vec	vector asymmetry parameter
alpha	vector of asymmetry parameters
С	normalizing factor to make pi sum to 1.0. Default is 1.0.

Value

```
McCullagh_second_order_log_l_wrt_alpha_2
Second derivative of log(likelihood) wrt alpha^2.
```

Second derivative of log(likelihood) wrt alpha^2.

Usage

```
McCullagh_second_order_log_l_wrt_alpha_2(
    n,
    index_a,
    index_b,
    psi,
    delta,
    alpha,
    c = 1
)
```

Arguments

```
n matrix of observed counts

index_a first index of alpha

index_b second column index of alpha

psi matrix of symmetry parameters

delta scalar asymmetry parameter

alpha vector of asymmetry parameters

c normalizing factor to make pi sum to 1.0. Default is 1.0.
```

Value

derivative

```
\label{local_model} $$ McCullagh\_second\_order\_log\_l\_wrt\_alpha\_c $$ Second derivative of log(likelihood) wrt alpha[index] and c.
```

Description

Second derivative of log(likelihood) wrt alpha[index] and c.

123

Usage

```
McCullagh_second_order_log_l_wrt_alpha_c(n, index, psi, delta, alpha, c)
```

Arguments

n	matrix	of	observed counts
11	maun	$\mathbf{o}_{\mathbf{I}}$	obscived counts

index index of alpha

psi matrix of symmetry parameters
delta scalar asymmetry parameter
alpha vector of asymmetry parameters

c normalizing factor to make pi sum to 1.0.

Value

derivative

McCullagh_second_order_log_l_wrt_beta_2

Expected values of second order derivatives of log(likelihood) wrt beta.

Description

Appendix of McCullagh, P. (1980). Regression models for ordinal data. Journal of the Royal Statistical Society, Series B, 42(2), 109-142. and appendix B3 of Agresti, A. (1984). Analysis of ordinal categorical data, New York, Wiley, p. 242-244.

Usage

```
McCullagh_second_order_log_l_wrt_beta_2(n, x, gamma)
```

Arguments

n matrix of observed counts

x design matrix for location model

gamma current value of model-based cumulative logits.

Value

matrix of second order partial derivatives

```
\label{log_lwrt_c2} $$ McCullagh\_second\_order\_log\_l\_wrt\_c\_2 $$ Second derivative of log(likelihood) wrt c^2.
```

Second derivative of log(likelihood) wrt c^2.

Usage

```
McCullagh_second_order_log_l_wrt_c_2(n, psi, delta, alpha, c)
```

Arguments

n	matrix of observed counts
psi	matrix of symmetry parameters
delta	scalar asymmetry parameter
alpha	vector of asymmetry parameters
С	normalizing factor to make pi sum to 1.0. Default is 1.0.

Value

derivative

```
McCullagh_second_order_log_l_wrt_delta_2

Second derivative of log(likelihood) wrt delta^2.
```

Description

Second derivative of log(likelihood) wrt delta^2.

Usage

```
McCullagh\_second\_order\_log\_l\_wrt\_delta\_2(n, psi, delta, alpha, c = 1)
```

Arguments

n	matrix of observed counts
psi	matrix of symmetry parameters
delta	scalar asymmetry parameter
alpha	vector of asymmetry parameters
С	normalizing factor to make pi sum to 1.0. Default is 1.0.

Value

derivative

```
McCullagh_second_order_log_l_wrt_delta_alpha

Second derivative of log(likelihood) wrt delta and alpha[index].
```

Description

Second derivative of log(likelihood) wrt delta and alpha[index].

Usage

```
McCullagh_second_order_log_l_wrt_delta_alpha(
    n,
    index,
    psi,
    delta,
    alpha,
    c = 1
)
```

Arguments

```
n matrix of observed counts

index index of alpha

psi matrix of symmetry parameters

delta scalar asymmetry parameter

alpha vector of asymmetry parameters

c normalizing factor to make pi sum to 1.0. Default is 1.0.
```

Value

```
\label{local_model} $$ McCullagh\_second\_order\_log\_l\_wrt\_delta\_c $$ Second derivative of log(likelihood) wrt scalar delta and c. $$
```

Second derivative of log(likelihood) wrt scalar delta and c.

Usage

```
McCullagh_second_order_log_l_wrt_delta_c(n, psi, delta, alpha, c)
```

Arguments

```
n matrix of observed counts
psi matrix of symmetry parameters
delta scalar asymmetry parameter
alpha vector of asymmetry parameters
c normalizing factor to make pi sum to 1.0..
```

Value

derivative

```
\label{local_model} $$ McCullagh\_second\_order\_log\_l\_wrt\_delta\_vec\_2 $$ Second derivative of log(likelihood) wrt delta\_vec^2.
```

Description

Second derivative of log(likelihood) wrt delta_vec^2.

Usage

```
McCullagh_second_order_log_l_wrt_delta_vec_2(
    n,
    k1,
    k2,
    psi,
    delta_vec,
    alpha,
    c = 1
)
```

Arguments

```
n matrix of observed counts
k1 first index of delta_vec
k2 second index of delta_vec
psi matrix of symmetry parameters
delta_vec vector asymmetry parameter
alpha vector of asymmetry parameters
```

c normalizing factor to make pi sum to 1.0. Default is 1.0.

Value

derivative

```
McCullagh_second_order_log_l_wrt_delta_vec_alpha

Second derivative of log(likelihood) wrt delta[k] and alpha[index].
```

Description

Second derivative of log(likelihood) wrt delta[k] and alpha[index].

Usage

```
McCullagh_second_order_log_l_wrt_delta_vec_alpha(
    n,
    k,
    index,
    psi,
    delta_vec,
    alpha,
    c = 1
)
```

Arguments

```
n matrix of observed counts
k index of delta_vec
index index of alpha
psi matrix of symmetry parameters
delta_vec vector asymmetry parameter
alpha vector of asymmetry parameters
c normalizing factor to make pi sum to 1.0. Default is 1.0.
```

Value

```
McCullagh_second_order_log_l_wrt_delta_vec_c

Second derivative of log(likeloihood) wrt delta_vec[k] and c.
```

Second derivative of log(likeloihood) wrt delta_vec[k] and c.

Usage

```
McCullagh_second_order_log_l_wrt_delta_vec_c(n, k, psi, delta_vec, alpha, c)
```

Arguments

n matrix of observed counts

k index of delta_vec

psi matrix of symmetry parameters
delta_vec vector asymmetry parameter
alpha vector of asymmetry parameters

c normalizing factor to make pi sum to 1.0

Value

derivative

```
McCullagh_second_order_log_l_wrt_parms

Expected second order derivatives of log(likelihood)
```

Description

Expected second order derivatives of log(likelihood)

Usage

```
McCullagh_second_order_log_l_wrt_parms(n, x, beta)
```

Arguments

n matrix of observed counts

x design matrix for location model

beta vector of regression parameters for location model

Value

matrix of expected second derivatives

```
\label{log_lwrt_psi_2} \begin{tabular}{ll} McCullagh\_second\_order\_log\_l\_wrt\_psi\_2 \\ Second\ derivative\ of\ log(likelihoood)\ wrt\ psi^2. \end{tabular}
```

Second derivative of log(likelihoood) wrt psi^2.

Usage

```
McCullagh_second_order_log_l_wrt_psi_2(
    n,
    i1,
    j1,
    i2,
    j2,
    psi,
    delta,
    alpha,
    c = 1
)
```

Arguments

n	matrix of observed counts
i1	first row index of psi
j1	first column index of psi
i2	second row index of psi
j2	second column index of psi
psi	matrix of symmetry parameters
delta	scalar asymmetry parameter
alpha	vector of asymmetry parameters
С	normalizing factor to make pi sum to 1.0. Default is 1.0.

Value

```
\label{local_matter} $$ McCullagh\_second\_order\_log\_l\_wrt\_psi\_alpha $$ Second derivative of log(likelihoood) wrt ps[i1, j1] and alpha[index].
```

Second derivative of log(likelihoood) wrt ps[i1, j1] and alpha[index].

Usage

```
McCullagh_second_order_log_l_wrt_psi_alpha(
    n,
    i1,
    j1,
    index,
    psi,
    delta,
    alpha,
    c = 1
)
```

Arguments

n	matrix of observed counts
i1	row index of psi
j1	column index of psi
index	index of alpha
psi	matrix of symmetry parameters
delta	scalar asymmetry parameter
alpha	vector of asymmetry parameters
С	normalizing factor to make pi sum to 1.0. Default is 1.0.

Value

```
\label{local_model} $$ McCullagh\_second\_order\_log\_l\_wrt\_psi\_c $$ Second derivative of log(likelihood) wrt psi[i1, j1] and c.
```

Second derivative of log(likelihood) wrt psi[i1, j1] and c.

Usage

```
McCullagh_second_order_log_l_wrt_psi_c(n, i1, j1, psi, delta, alpha, c)
```

Arguments

Value

derivative

```
\label{local-cond} $$ McCullagh\_second\_order\_log\_l\_wrt\_psi\_delta $$ Second derivative of log(likelihood) wrt psi[i1, j1] and scalar delta..
```

Description

Second derivative of log(likelihood) wrt psi[i1, j1] and scalar delta...

Usage

```
McCullagh_second_order_log_l_wrt_psi_delta(n, i1, j1, psi, delta, alpha, c = 1)
```

Arguments

```
n matrix of observed counts

i1 row index of psi

j1 column index of psi

psi matrix of symmetry parameters

delta scalar asymmetry parameter

alpha vector of asymmetry parameters

c normalizing factor to make pi sum to 1.0. Default is 1.0.
```

Value

derivative

```
\label{local-cond} $\operatorname{McCullagh\_second\_order\_log\_l\_wrt\_psi\_delta\_vec} \\ Second\ derivative\ of\ log(likelihood)\ wrt\ psi[il,\ jl]\ and\ delta\_vec[k].
```

Description

Second derivative of log(likelihood) wrt psi[i1, j1] and delta_vec[k].

Usage

```
McCullagh_second_order_log_l_wrt_psi_delta_vec(
    n,
    i1,
    j1,
    k,
    psi,
    delta_vec,
    alpha,
    c = 1
)
```

Arguments

```
n
                  matrix of observed counts
                  row index of psi
i1
                  column index of psi
j1
                  second row index of delta
k
psi
                  matrix of symmetry parameters
                  vector asymmetry parameter
delta_vec
                  vector of asymmetry parameters
alpha
                  normalizing factor to make pi sum to 1.0. Default is 1.0.
С
```

Value

derivative

```
McCullagh_second_order_omega_wrt_alpha_2
```

Second derivative of Lagrange multiplier omega wrt alpha^2.

Description

Second derivative of Lagrange multiplier omega wrt alpha^2.

Usage

```
McCullagh_second_order_omega_wrt_alpha_2(n, k1, k2, psi, delta, alpha, c = 1)
```

Arguments

n	matrix of observed counts
k1	first index of alpha
k2	second index of alpha
psi	matrix of symmetry parameters
delta	scalar asymmetry parameter
alpha	vector of asymmetry parameters
С	normalizing factor to make pi sum to 1.0. Default is 1.0.

Value

derivative

```
\label{localization} \begin{tabular}{ll} McCullagh\_second\_order\_omega\_wrt\_alpha\_c \\ Second\ derivative\ of\ Lagrange\ multiplier\ omega\ wrt\ alpha[index]\ and \\ c. \end{tabular}
```

Description

Second derivative of Lagrange multiplier omega wrt alpha[index] and c.

Usage

```
McCullagh_second_order_omega_wrt_alpha_c(n, index, psi, delta, alpha, c)
```

Arguments

n	matrix	of	observed counts
П	mauix	ΟI	observed counts

index row index of psi

psi matrix of symmetry parameters delta scalar asymmetry parameter alpha vector of asymmetry parameters

c normalizing factor to make pi sum to 1.0.

Value

derivative

```
{\tt McCullagh\_second\_order\_omega\_wrt\_c\_2}
```

Second derivative of Lagrange multiplier omega wrt c^2.

Description

Second derivative of Lagrange multiplier omega wrt c^2.

Usage

```
McCullagh_second_order_omega_wrt_c_2(n, psi, delta, alpha, c)
```

Arguments

ix of obs	served counts
	ix of obs

psi matrix of symmetry parameters
delta scalar asymmetry parameter
alpha vector of asymmetry parameters

c normalizing factor to make pi sum to 1.0.

Value

```
McCullagh_second_order_omega_wrt_delta_2
```

Second derivative of Lagrange multiplier omega wrt scalae delta^2.

Description

Second derivative of Lagrange multiplier omega wrt scalae delta^2.

Usage

```
McCullagh_second_order_omega_wrt_delta_2(n, psi, delta, alpha, c = 1)
```

Arguments

```
n matrix of observed counts
psi matrix of symmetry parameters
delta scalar asymmetry parameter
alpha vector of asymmetry parameters
c normalizing factor to make pi sum to 1.0. Default is 1.0.
```

Value

derivative

```
McCullagh_second_order_omega_wrt_delta_alpha

Second derivative of Lagrange multiplier omega wrt delta and al-
pha[index].
```

Description

Second derivative of Lagrange multiplier omega wrt delta and alpha[index].

Usage

```
McCullagh_second_order_omega_wrt_delta_alpha(
    n,
    index,
    psi,
    delta,
    alpha,
    c = 1
)
```

Arguments

n matrix of observed counts

index index of alpha

psi matrix of symmetry parameters delta scalar asymmetry parameter alpha vector of asymmetry parameters

c normalizing factor to make pi sum to 1.0. Default is 1.0.

Value

derivative

McCullagh_second_order_omega_wrt_delta_c

 $Second\ derivative\ of\ Lagrange\ multiplier\ omega\ wrt\ scalar\ delta\ and$

c.

Description

Second derivative of Lagrange multiplier omega wrt scalar delta and c.

Usage

```
McCullagh_second_order_omega_wrt_delta_c(n, psi, delta, alpha, c)
```

Arguments

n matrix of observed counts

psi matrix of symmetry parameters delta scalar asymmetry parameter alpha vector of asymmetry parameters

c normalizing factor to make pi sum to 1.0. Default is 1.0.

Value

```
McCullagh_second_order_omega_wrt_delta_vec_2

Second derivative of Lagrange multiplier omega wrt delta_vec^2.
```

Second derivative of Lagrange multiplier omega wrt delta_vec^2.

Usage

```
McCullagh_second_order_omega_wrt_delta_vec_2(
    n,
    k1,
    k2,
    psi,
    delta_vec,
    alpha,
    c = 1
)
```

Arguments

```
n matrix of observed counts
k1 first index of delta_vec
k2 second index of delta_vec
psi matrix of symmetry parameters
delta_vec vector asymmetry parameter
alpha vector of asymmetry parameters
c normalizing factor to make pi sum to 1.0. Default is 1.0.
```

Value

derivative

```
McCullagh_second_order_omega_wrt_delta_vec_alpha

Second derivative of Lagrange multiplier omega wrt delta_vec[k] and alpha[index].
```

Description

Second derivative of Lagrange multiplier omega wrt delta_vec[k] and alpha[index].

Usage

```
McCullagh_second_order_omega_wrt_delta_vec_alpha(
    n,
    k,
    index,
    psi,
    delta_vec,
    alpha,
    c = 1
)
```

Arguments

n matrix of observed counts k index of delta_vec

index index of alpha

psi matrix of symmetry parameters delta_vec vector asymmetry parameter alpha vector of asymmetry parameters

c normalizing factor to make pi sum to 1.0. Default is 1.0.

Value

derivative

```
\begin{tabular}{ll} McCullagh\_second\_order\_omega\_wrt\_delta\_vec\_c \\ Second\ derivative\ of\ Lagrange\ multiplier\ omega\ wrt\ delta\_vec[k]\ and \\ c. \end{tabular}
```

Description

Second derivative of Lagrange multiplier omega wrt delta_vec[k] and c.

Usage

```
McCullagh_second_order_omega_wrt_delta_vec_c(n, k, psi, delta_vec, alpha, c)
```

Arguments

n matrix of observed counts

k index of delta_vec

psi matrix of symmetry parameters delta_vec vector of asymmetry parameter alpha vector of asymmetry parameters

c normalizing factor to make pi sum to 1.0.

Value

derivative

```
McCullagh_second_order_omega_wrt_psi_2
Second derivative of Lagrange multiplier omega wrt psi^2.
```

Description

Second derivative of Lagrange multiplier omega wrt psi^2.

Usage

```
McCullagh_second_order_omega_wrt_psi_2(
    n,
    i1,
    j1,
    i2,
    j2,
    psi,
    delta,
    alpha,
    c = 1
)
```

Arguments

n	matrix of observed counts
i1	first row index of psi
j1	first column index of psi
i2	second row index of psi
j2	second column index of psi
psi	matrix of symmetry parameters
delta	scalar asymmetry parameter
alpha	vector of asymmetry parameters
С	normalizing factor to make pi sum to 1.0. Default is 1.0.

Value

```
McCullagh_second_order_omega_wrt_psi_alpha

Second derivative of Lagrange multiplier omega wrt psi[i1, j1] and alpha[index].
```

Second derivative of Lagrange multiplier omega wrt psi[i1, j1] and alpha[index].

Usage

```
McCullagh_second_order_omega_wrt_psi_alpha(
    n,
    i1,
    j1,
    index,
    psi,
    delta,
    alpha,
    c = 1
)
```

Arguments

```
matrix of observed counts
n
i1
                  row index of psi
                  column index of psi
j1
                  index of alpha
index
                  matrix of symmetry parameters
psi
delta
                  scalar asymmetry parameter
alpha
                  vector of asymmetry parameters
С
                  normalizing factor to make pi sum to 1.0. Default is 1.0.
```

Value

```
McCullagh_second_order_omega_wrt_psi_c
```

Second derivative of Lagrange multiplier omega wrt psi[i1, j1] and c.

Description

Second derivative of Lagrange multiplier omega wrt psi[i1, j1] and c.

Usage

```
McCullagh_second_order_omega_wrt_psi_c(n, i1, j1, psi, delta, alpha, c)
```

Arguments

n	matrix of observed counts
i1	row index of psi
j1	column index of psi
psi	matrix of symmetry parameters
delta	scalar asymmetry parameter
alpha	vector of asymmetry parameters
С	normalizing factor to make pi sum to 1.0. Default is 1.0.

Value

derivative

```
McCullagh_second_order_omega_wrt_psi_delta
```

Second derivative of Lagrange multiplier omega wrt psi and scalar delta.

Description

Second derivative of Lagrange multiplier omega wrt psi and scalar delta.

Usage

```
McCullagh_second_order_omega_wrt_psi_delta(n, i1, j1, psi, delta, alpha, c = 1)
```

Arguments

n	matrix of observed counts
i1	row index of psi
j1	column index of psi
psi	matrix of symmetry parameters
delta	scalar asymmetry parameter
alpha	vector of asymmetry parameters
С	normalizing factor to make pi sum to 1.0. Default is 1.0.

Value

derivative

```
McCullagh_second_order_omega_wrt_psi_delta_vec

Second derivative of Lagrange multiplier omega wrt psi[i1, j1] and delta_vec[k].
```

Description

Second derivative of Lagrange multiplier omega wrt psi[i1, j1] and delta_vec[k].

Usage

```
McCullagh_second_order_omega_wrt_psi_delta_vec(
    n,
    i1,
    j1,
    k,
    psi,
    delta_vec,
    alpha,
    c = 1
)
```

Arguments

```
matrix of observed counts
n
i1
                  row index of psi
j1
                  column index of psi
k
                  index of delta_vec
                  matrix of symmetry parameters
psi
                  vector asymmetry parameter
delta_vec
                  vector of asymmetry parameters
alpha
                  normalizing factor to make pi sum to 1.0. Default is 1.0.
С
```

Value

derivative

```
McCullagh_second_order_pi_wrt_alpha_2 
Second derivative of pi[i, j] wrt alpha^2.
```

Description

Second derivative of pi[i, j] wrt alpha^2.

Usage

```
McCullagh_second_order_pi_wrt_alpha_2(
    i,
    j,
    index1,
    index2,
    psi,
    delta,
    alpha,
    c = 1
)
```

Arguments

```
i row index of pi

j column index of pi

index1 index of first alpha

index2 index of second aloha

psi the matrix of symmetry parameters

delta the scalar asymmetry parameter

alpha the vector of asymmetry parameters

c the normalizing constant for the pis to sum to 1.0 Default value is 1.0
```

Value

```
McCullagh_second_order_pi_wrt_alpha_c

Second derivative of pi[i, j] wrt alpha[index] and c.
```

Second derivaitve of pi[i, j] wrt alpha[index] and c.

Usage

```
McCullagh_second_order_pi_wrt_alpha_c(i, j, index, psi, delta, alpha, c)
```

Arguments

1	row index of pi
j	column index of pi
index	index of alpha
psi	the matrix of symmetry parameters
delta	the scalar asymmetry parameter
alpha	the vector of asymmetry parameters
С	the normalizing constant for the pis to sum to 1.0

Value

derivative

```
McCullagh_second_order_pi_wrt_c_2

Second order derivative of pi[i, j] wrt c^2.
```

Description

Second order derivative of pi[i, j] wrt c^2.

Usage

```
McCullagh_second_order_pi_wrt_c_2(i, j, psi, delta, alpha, c)
```

Arguments

i	row index of pi
j	column index of pi
psi	the matrix of symmetry parameters
delta	the scalar asymmetry parameter
alpha	the vector of asymmetry parameters
С	the normalizing constant for the pis to sum to 1.0 Default value is 1.0

Value

derivative

```
McCullagh_second_order_pi_wrt_delta_2

Second order derivative of pi[i, j] wrt scalar delta.
```

Description

Second order derivative of pi[i, j] wrt scalar delta.

Usage

```
McCullagh_second_order_pi_wrt_delta_2(i, j, psi, delta, alpha, c = 1)
```

Arguments

```
i row index of pi
j column index of pi
psi the matrix of symmetry parameters
delta the scalar asymmetry parameter
alpha the vector of asymmetry parameters
c the normalizing constant for the pis to sum to 1.0 Default value is 1.0
```

Value

derivative

```
McCullagh_second_order_pi_wrt_delta_alpha

Second order deriviative of pi[i, j] wrt scalar delta and alpha[index]
```

Description

Second order deriviative of pi[i, j] wrt scalar delta and alpha[index]

Usage

```
McCullagh_second_order_pi_wrt_delta_alpha(
   i,
   j,
   index,
   psi,
   delta,
   alpha,
   c = 1
)
```

Arguments

i row index of pi
j column index of pi
index index of alpha

psi the matrix of symmetry parameters
delta the scalar asymmetry parameter
alpha the vector of asymmetry parameters

c the normalizing constant for the pis to sum to 1.0 Default value is 1.0

Value

derivative

McCullagh_second_order_pi_wrt_delta_c

Second order derivative of pi[i, j] wrt scalae delta and c.

Description

Second order derivative of pi[i, j] wrt scalae delta and c.

Usage

```
McCullagh_second_order_pi_wrt_delta_c(i, j, psi, delta, alpha, c)
```

Arguments

i row index of pij column index of pi

psi the matrix of symmetry parameters
delta the scalar asymmetry parameter
alpha the vector of asymmetry parameters

c the normalizing constant for the pis to sum to 1.0

Value

```
McCullagh_second_order_pi_wrt_delta_vec_2

Derivative of pi[i, j] wrt delta^2.
```

Derivative of pi[i, j] wrt delta^2.

Usage

```
McCullagh_second_order_pi_wrt_delta_vec_2(
    i,
    j,
    k1,
    k2,
    psi,
    delta_vec,
    alpha,
    c = 1
)
```

Arguments

i	row index of pi
j	column index of pi
k1	first index of delta
k2	second index of delta
psi	the matrix of symmetry parameters
delta_vec the vector asymmetry parameter	
alpha	the vector of asymmetry parameters
С	the normalizing constant for the pis to sum to 1.0 Default value is 1.0

Value

```
McCullagh_second_order_pi_wrt_delta_vec_alpha

Second order dertivative of pi[i, j] wrtt delta[k] alpha[index].
```

Second order dertivative of pi[i, j] wrtt delta[k] alpha[index].

Usage

```
McCullagh_second_order_pi_wrt_delta_vec_alpha(
   i,
   j,
   k,
   index,
   psi,
   delta_vec,
   alpha,
   c = 1
)
```

Arguments

i	row index of pi
j	column index of pi
k	index of delta
index	index of alpha
psi	the matrix of symmetry parameters
delta_vec	the vector asymmetry parameter
alpha	the vector of asymmetry parameters
С	the normalizing constant for the pis to sum to 1.0 Default value is 1.0

Value

```
McCullagh_second_order_pi_wrt_delta_vec_c 
Second derivative of pi[i, j] wrt delta[k] and c.
```

Second derivative of pi[i, j] wrt delta[k] and c.

Usage

```
McCullagh_second_order_pi_wrt_delta_vec_c(i, j, k, psi, delta_vec, alpha, c)
```

Arguments

f pi
ex of pi
ta

psi the matrix of symmetry parameters delta_vec the vector asymmetry parameter alpha the vector of asymmetry parameters

c the normalizing constant for the pis to sum to 1.0 Default value is 1.0

Value

derivative

```
McCullagh_second_order_pi_wrt_psi_2
Second order derivative wrt psi^2.
```

Description

Second order derivative wrt psi^2.

Usage

```
McCullagh_second_order_pi_wrt_psi_2(
    i,
    j,
    i1,
    j1,
    i2,
    j2,
    psi,
```

```
delta,
alpha,
c = 1
)
```

Arguments

i	row index of pi
j	column index of pi
i1	first row index of psi
j1	first column index of psi
i2	second row index of psi
j2	second column index of pis
psi	the matrix of symmetry parameters
delta	the scalar asymmetry parameter
alpha	the vector of asymmetry parameters
С	the normalizing constant for the pis to sum to 1.0 Default value is 1.0

Value

derivative

```
\label{lem:mccullaghsecond_order_pi_wrt_psi_alpha} Second\ order\ derivative\ of\ pi[i,j]\ wrt\ psi[il,jl]\ and\ alpha[index].
```

Description

Second order derivative of pi[i, j] wrt psi[i1, j1] and alpha[index].

Usage

```
McCullagh_second_order_pi_wrt_psi_alpha(
   i,
   j,
   i1,
   j1,
   index,
   psi,
   delta,
   alpha,
   c = 1
)
```

Arguments

i	row index of pi
j	column index of pi
i1	row index of psi
j1	column index of psi
index	index of alpha

psi the matrix of symmetry parameters delta the scalar asymmetry parameter alpha the vector of asymmetry parameters

c the normalizing constant for the pis to sum to 1.0 Default value is 1.0

Value

derivative

```
\label{local_model} \begin{tabular}{ll} McCullagh\_second\_order\_pi\_wrt\_psi\_c \\ Second\ order\ derivative\ of\ pi[i,\ j]\ wrt\ psi[il,\ jl]\ and\ c. \end{tabular}
```

Description

Second order derivative of pi[i, j] wrt psi[i1, j1] and c.

Usage

```
McCullagh_second_order_pi_wrt_psi_c(i, j, i1, j1, psi, delta, alpha, c)
```

Arguments

i	row index of pi
j	column index of pi
i1	row index of psi
j1	column index of psi
psi	the matrix of symme

psi the matrix of symmetry parameters
delta the scalar asymmetry parameter
alpha the vector of asymmetry parameters

c the normalizing constant for the pis to sum to 1.0

Value

McCullagh_second_order_pi_wrt_psi_delta

Second order derivative of pi wrt pshi and scalar delta.

Description

Second order derivaitve of pi wrt pshi and scalar delta.

Usage

```
McCullagh_second_order_pi_wrt_psi_delta(i, j, i1, j1, psi, delta, alpha, c = 1)
```

Arguments

i	row index of pi
j	column index of pi
i1	row index of psi
j1	column index of psi
psi	the matrix of symmetry parameters
delta	the scalar asymmetry parameter
alpha	the vector of asymmetry parameters
С	the normalizing constant for the pis to sum to 1.0 Default value is 1.0

Value

derivative

```
McCullagh_second_order_pi_wrt_psi_delta_vec

Second order derivaitve of pi[i, j] wrt psi[i1, j1] and kelta[k].
```

Description

Second order derivaitve of pi[i, j] wrt psi[i1, j1] and kelta[k].

Usage

```
McCullagh_second_order_pi_wrt_psi_delta_vec(
    i,
    j,
    i1,
    j1,
    k,
    psi,
    delta_vec,
    alpha,
    c = 1
)
```

Arguments

i	row index of pi
j	column index of pi
i1	row index of psi
j1	column index of psi
k	index of delta
psi	the matrix of symmetry parameters
delta_vec	the vector asymmetry parameter
alpha	the vector of asymmetry parameters
С	the normalizing constant for the pis to sum to 1.0 Default value is 1.0

Value

derivative

```
McCullagh_update_parameters
```

Update the parameters based on Newton-Raphson step.

Description

Update the parameters based on Newton-Raphson step.

Usage

```
McCullagh_update_parameters(update, step, psi, delta, alpha, c = 1)
```

154 McCullagh_v_inverse

Arguments

update	vector of update values
step	size of candidate step along direction of update
psi	vector of symmetry parameters
delta	scalar or vector of asymmetry parameters
alpha	vector of asymmetry parameters
С	normalization factor to make sum pf pi = 1.0. Default value is 1.0.

Value

list containing new parameters psi: matrix of symmetry parameters delta; scalar or vector of asymmetry parameters alpha: vector of asymmetry parameters c: scaling coefficient to ensure pi sums to 1.0

Description

Compute v_inverse (from appendix).

Usage

```
McCullagh_v_inverse(gamma, i, j)
```

Arguments

gamma	matrix of cumulative logits
i	row index
i	column index

Value

```
V^{(-1)}: d phi / d gamma[i, j]
```

mental_health 155

mental_health	Relationship between child's mental health and parents' socioeco- nomic status.
---------------	--

Description

Rows are child's mental health (ranging from 1 = well to 4 = impaired), and columns are parents' socioeconomic status, A - F.

Usage

mental_health

Format

'mental_health' A matrix with 4 rows and 6 columns

Source

Goodman, L. A. (1979). Simple models for the analysis of association in cross-classifications having ordered categories.

model_ii_effects

Gets the effects phi, ksi_i_dot and ksi_dot_j for Model II results.

Description

Gets the effects phi, ksi_i_dot and ksi_dot_j for Model II results.

Usage

```
model_ii_effects(result)
```

Arguments

result

a result object from Model II

Value

a list containing: phi: the overall effect ksi_i_dot: the row effects ksi_dot_j: the column effects

model_ii_ksi

model_ii_fHat

Computes expected counts for Model II

Description

Computes expected counts for Model II

Usage

```
model_ii_fHat(alpha, beta, rho, sigma)
```

Arguments

alpha row effects
beta column effects
rho row locations
sigma column locations

Value

matrix of model-based expected counts

model_ii_ksi

Gets the effects phi, ksi_i_dot and ksi_dot_j for Model II matrix of odds-ratios.

Description

Gets the effects phi, ksi_i_dot and ksi_dot_j for Model II matrix of odds-ratios.

Usage

```
model_ii_ksi(odds)
```

Arguments

odds

matrix of adjacent odds-ratios

Value

a list containing: phi: the overall effect in log metric ksi_i_dot: the row effects ksi_dot_j: the column effects

```
model_ii_starting_values
```

Computes crude starting values for Model II

Description

Computes crude starting values for Model II

Usage

```
model_ii_starting_values(n)
```

Arguments

n

matrix of observed counts

Value

a list containing alpha: vector of row parameters beta: vector of column parameters rho: row coefficients sigma: column coefficients mu: alternative row coefficients nu: alternative column coefficients

```
model_ii_star_effects Gets the effects for Model II*
```

Description

Gets the effects for Model II*

Usage

```
model_ii_star_effects(result)
```

Arguments

result

a Model II* result object

Value

a list containing phi: common effect in log metric ksi: vector of ksi parameters

model_ii_star_fHat

Computes expected counts for Model II*

Description

Computes expected counts for Model II*

Usage

```
model_ii_star_fHat(alpha, beta, phi)
```

Arguments

alpha row effects beta column effects

phi row/column locations

Value

matrix of model-based expected counts

```
model_ii_star_update_phi
```

Updates estimate of phi vector

Description

Updates estimate of phi vector

Usage

```
model_ii_star_update_phi(n, fHat, mu, phi, exclude_diagonal = FALSE)
```

Arguments

n matrix of observed counts

fHat current model-based counts for each cell

mu alternative row coefficients

phi vector of column location parameters

exclude_diagonal

logical, Should the cells on the main diagonal be excluded? Default is FALSE,

use all cells

Value

list containing: phi: updated estimate of the phi vector mu: updated estimate of vector mu

model_ii_update_alpha Updates the estimate of the alpha vector for Model II

Description

Updates the estimate of the alpha vector for Model II

Usage

```
model_ii_update_alpha(alpha, n, fHat, exclude_diagonal = FALSE)
```

Arguments

alpha current estimate of alpha
n matrix of observed counts

fHat current model-based counts for each cell

exclude_diagonal

logical, Should the cells on the main diagonal be excluded? Default is FALSE,

use all cells

Value

updated estimate of alpha vector

```
model_ii_update_beta Updates the estimate of the beta vector for Model II
```

Description

Updates the estimate of the beta vector for Model II

Usage

```
model_ii_update_beta(beta, n, fHat, exclude_diagonal = FALSE)
```

Arguments

beta current estimate of beta
n matrix of observed counts

fHat current model-based counts for each cell

exclude_diagonal

logical, Should the cells on the main diagonal be excluded? Default is FALSE,

use all cells

Value

updated estimate of beta vector

model_ii_update_rho

Updates the estimate of the rho vector for Model II

Description

Updates the estimate of the rho vector for Model II

Usage

```
model_ii_update_rho(n, fHat, mu, sigma, exclude_diagonal = FALSE)
```

Arguments

n matrix of observed counts

fHat current model-based counts for each cell

mu alternative row coefficients

sigma vector of column location parameters

exclude_diagonal

logical, Should the cells on the main diagonal be excluded? Default is FALSE,

use all cells

Value

updated estimate of alpha vector

model_ii_update_sigma Updates the estimate of the sigma vector for Model II

Description

Updates the estimate of the sigma vector for Model II

Usage

```
model_ii_update_sigma(n, fHat, nu, rho, exclude_diagonal = FALSE)
```

Arguments

n matrix of observed counts

fHat current model-based counts for each cell

nu vector of column coefficients
rho vector of row location parameters

exclude_diagonal

logical, Should the cells on the main diagonal be excluded? Default is FALSE,

use all cells

model_i_column_theta 161

Value

updated estimate of sigma vector

model_i_column_theta Computes the column association values theta-hat

Description

Computes the column association values theta-hat

Usage

```
model_i_column_theta(fHat)
```

Arguments

fHat

matrix of model-based expected counts

Value

thetaHat vector of association parameters

 $model_i_effects$

Gets the overall effects for Model I.

Description

Gets the overall effects for Model I.

Usage

```
model_i_effects(result)
```

Arguments

result

a Model I result object

Value

a list containing theta: the overall association zeta_i_dot: row effects for association zeta_dot_j: column effects for association

model_i_fHat

Computes model-based expected cell counts for Model I

Description

Computes model-based expected cell counts for Model I

Usage

```
model_i_fHat(alpha, beta, gamma, delta)
```

Arguments

alpha row effects
beta column effects
gamma row location weights
delta column location weights

Value

matrix of model-based expected counts

```
model_i_normalize_fHat
```

Normalizes pi(fHat) to sum to 1.0. If exclude_diagonal is TRUE, the sum of the off-diagonal terms sums to 1.0.

Description

Normalizes pi(fHat) to sum to 1.0. If exclude_diagonal is TRUE, the sum of the off-diagonal terms sums to 1.0.

Usage

```
model_i_normalize_fHat(fHat, exclude_diagonal = FALSE)
```

Arguments

fHat matrix of model-based cell frequencies exclude_diagonal

logical. Should the cells on the main diagonal be excluded? Default is FALSE, include all cells

Value

matrix of model-based proportions pi

```
model_i_row_column_odds_ratios
```

Computes the table of adjacent odds-ratios theta-hat.

Description

Computes the table of adjacent odds-ratios theta-hat.

Usage

```
model_i_row_column_odds_ratios(fHat)
```

Arguments

fHat

matrix of model-based expected counts

Value

thetaHat matrix of adjacent odds-ratios

 $model_i_row_theta$

Computes the row association values theta-hat

Description

Computes the row association values theta-hat

Usage

```
model_i_row_theta(fHat)
```

Arguments

fHat

matrix of model-based expected counts

Value

thetaHat vector of association parameters

model_i_star_effects

```
model_i_starting_values
```

Computes crude starting values for Model I.

Description

Computes crude starting values for Model I.

Usage

```
model_i_starting_values(n)
```

Arguments

n

matrix of observed counts

Value

a list containing alpha: vector of row parameters beta: vector of column parameters gamma: vector of row locations delta: vector of column locations

```
model_i\_star\_effects Gets the Model I^* effects.
```

Description

Gets the Model I* effects.

Usage

```
model_i_star_effects(result)
```

Arguments

result

a Model I* effect object

Value

a list containing theta: the overall association zeta: the row/column effect

model_i_star_fHat 165

model_i_star_fHat

Computes expected frequencies for Model I*

Description

Computes expected frequencies for Model I*

Usage

```
model_i_star_fHat(alpha, beta, theta)
```

Arguments

alpha row effect parameters
beta column effect parameters
theta row/column parameters

Value

matrix of model-based expected cell counts

```
model_i_star_update_theta
```

Updates the row/column parameters for Model I*.

Description

Updates the row/column parameters for Model I*.

Usage

```
model_i_star_update_theta(theta, n, fHat, exclude_diagonal = FALSE)
```

Arguments

theta vector of estimated row/column effects

n matrix of observed counts

fHat matrix of model-based expected frequencies

exclude_diagonal

should the cells of the main diagonal be excluded? Default is FALSE, include

all cells

Value

new value of theta vector

model_i_update_alpha Updates the estimate of the alpha vector for Model I

Description

Updates the estimate of the alpha vector for Model I

Usage

```
model_i_update_alpha(alpha, n, fHat, exclude_diagonal = FALSE)
```

Arguments

alpha current estimate of beta n matrix of observed counts

fHat current model-based counts for each cell

exclude_diagonal

logical. Should the diagonal be excluded from the computation? Default is

FALSE, use all cells.

Value

updated estimate of alpha vector

Description

Updates the estimate of the beta vector for Model I

Usage

```
model_i_update_beta(beta, n, fHat, exclude_diagonal = FALSE)
```

Arguments

beta current estimate of alpha
n matrix of observed counts

fHat current model-based counts for each cell

exclude_diagonal

logical. Should the diagonal be excluded from the computation? Default is

FALSE, use all cells

Value

updated estimate of beta vector

model_i_update_delta 167

Description

Updates the estimate of the delta vector for Model I

Usage

```
model_i_update_delta(delta, n, fHat, exclude_diagonal = FALSE)
```

Arguments

delta current estimate of delta
n matrix of observed counts

fHat current model-based counts for each cell

exclude_diagonal

logical. Should the diagonal be excluded from the computation? Default is

FALSE, use all cells

Value

updated estimate of delta vector

Description

Updates the estimate of the gamma vector for Model I

Usage

```
model_i_update_gamma(gamma, n, fHat, exclude_diagonal = FALSE)
```

Arguments

gamma current estimate of gamma
n matrix of observed counts

fHat current model-based counts for each cell

exclude_diagonal

logical. Should the diagonal be excluded from the computation? Default is

FALSE, use all cells

Value

updated estimate of gamma vector

168 movies

 ${\sf model_i_zeta}$ ${\sf Computes\ the\ overall\ association\ theta\ and\ the\ row\ and\ column\ effects\ zeta}$

Description

Computes the overall association theta and the row and column effects zeta

Usage

```
model_i_zeta(odds)
```

Arguments

odds

matrix of adjacent odds-ratios

Value

a list containing theta: the overall association zeta_i_dot: row effects for association zeta_dot_j: column effects for association

movies

Movie ratings by two film critics, Siskel and Ebert.

Description

Movie ratings by two film critics, Siskel and Ebert.

Usage

movies

Format

'movies' A matrix with 3 rows and 3 columns 1 is con 2 is mixed 3 is pro

Source

https://online.stat.psu.edu/stat504/lesson/11/11.3

new_orleans_data 169

new_orleans_data

Agreement between two clinicians on presence of multiple sclerosis based on file.

Description

See companion winnipeg_data.

Usage

```
new_orleans_data
```

Format

'new_orleans_data' A matrix with 4 rows and 4 columns Ratings range from definite presence of disease to definite absence.

Source

???

Description

Computes expected counts for null association model

Usage

```
null_association_fHat(alpha, beta)
```

Arguments

alpha row effects beta column effects

Value

matrix of model-based expected counts

170 paranoia

occupational_status

Cross tabulation of father's employment status with son's employment status.

Description

Higher numbers correspond to higher status occupation

Usage

```
occupational_status
```

Format

'occupational_status' A matrix with 6 rows and 6 columns

Source

???

paranoia

Interrater agreement of two psychologists' ratings of paranoia.

Description

Severity corresponds to level 1 low 3 high

Usage

paranoia

Format

'paranoia' A matrix with 3 rows and 3 columns.

Source

von Eye, A. & Mun, E. Y. (2005, p. 70). Analyzing rater agreement: Manifest variable methods. Mahwah, NJ: Lawrence Erlbaum.

pearson_chisq 171

pearson_chisq

Computes the Pearson X^2 statistic.

Description

Computes the Pearson X^2 statistic.

Usage

```
pearson_chisq(n, pi, exclude_diagonal = FALSE)
```

Arguments

n Matrix of observed counts

pi Matrix with same dimensions as n. Model-based matrix of predicted proportions exclude_diagonal

logical. Should diagonal cells of square matrix be excluded from the computation? Default is FALSE. The effect of setting it to TRUE for non-square matrices may be unintuitive and should he avoided.

Value

X^2

radiology

Interrater agreement of two radiologists diagnosis of severity of carcinoma.

Description

The data contains a comparison vector of (simulated) covariate data.

Usage

radiology

Format

'radiology' 'covariate' A matrix with 4 rows and 4 columns, and a vector of 16 elements.

Source

von Eye, A. & Mun, E. Y. (2005, p. 60). Analyzing rater agreement: Manifest variable methods. Mahwah, NJ: Lawrence Erlbaum.

Schuster_compute_pi

 ${\tt Schuster_compute_df}$

Computes the degrees of freedom for the model.

Description

Computes the degrees of freedom for the model.

Usage

```
Schuster_compute_df(pi_margin)
```

Arguments

pi_margin

expected proportions for each of the categories

Value

the df for the model

Schuster_compute_pi

Compute matrix of model-based proportions pi.

Description

Compute matrix of model-based proportions pi.

Usage

```
Schuster_compute_pi(marginal_pi, kappa, v, validate = TRUE)
```

Arguments

marginal_pi expected proportions for each category kappa current estimate of the kappa coefficient

v symmetry matrix

validate logical. should the cells be validated within this function? Defaults to TRUE

Value

matrix of model-based cell proportions

Schuster_compute_starting_values

Computes starting values for the model.

Description

Patterned after example in code in appendix to article

Usage

```
Schuster_compute_starting_values(n)
```

Arguments

n matrix of observed counts

Value

a list containing marginal_pi: vector of expected proportions for each category kappa: kappa coefficient of agreement v: matrix of symmetry parameters

```
Schuster_derivative_log_l_wrt_kappa

Derivative of log(likelihood) wrt kappa.
```

Description

Derivative of log(likelihood) wrt kappa.

Usage

```
Schuster_derivative_log_l_wrt_kappa(n, marginal_pi, kappa, v)
```

Arguments

n matrix of observed counts

marginal_pi expected proportions for each category kappa current value of kappa coefficient

v symmetry matrix

Value

derivative of log(L) wrt kappa

```
Schuster_derivative_log_l_wrt_marginal_pi

Derivative of log(likelihood) wrt marginal_pi[k]
```

Derivative of log(likelihood) wrt marginal_pi[k]

Usage

```
Schuster_derivative_log_l_wrt_marginal_pi(n, k, marginal_pi, kappa, v)
```

Arguments

n matrix of observed countsk index into marginal_pi

marginal_pi expected proportions of each of the categories

kappa current value of the kappa coefficient

v symmetry matrix

Value

```
derivative of log(L) wrt marginal_pi[k]
```

```
Schuster_derivative_log_l_wrt_v Derivative\ of\ log(likelihood)\ wrt\ v[i1,j1]
```

Description

```
Derivative of log(likelihood) wrt v[i1, j1]
```

Usage

```
Schuster_derivative_log_l_wrt_v(n, i1, j1, marginal_pi, kappa, v)
```

Arguments

n	matrix	of	observed	counts

i1 first index into vj1 second index into v

marginal_pi expected marginal proportions kappa current value of kappa coefficient

v symmetry matrix

Value

```
derivative of log(L) wrt v[i1, j1]
```

```
{\tt Schuster\_derivative\_pi\_wrt\_kappa}
```

Derivative of pi[i, j] wrt kappa coefficient.

Description

Derivative of pi[i, j] wrt kappa coefficient.

Usage

```
Schuster_derivative_pi_wrt_kappa(i, j, marginal_pi, kappa, v)
```

Arguments

i first index into pij second index into pi

marginal_pi expected proportions in each category kappa current value of kappa coefficient

v symmetry matrix

Value

the derivative of pi[i, j] wrt kappa

```
\label{lem:continuous} Schuster\_derivative\_pi\_wrt\_marginal\_pi\\ Derivative\ of\ pi[i,\ j]\ wrt\ marginal\_pi[k].
```

Description

Derivative of pi[i, j] wrt marginal_pi[k].

Usage

```
Schuster_derivative_pi_wrt_marginal_pi(i, j, k, marginal_pi, kappa, v)
```

Arguments

i first index into pij second index into pik index into marginal_pi

marginal_pi expected proportions for each category kappa current estimate of kappa coefficient

v symmetry matrix

Value

```
derivative of pi[i, j] wrt marginal_pi[k]
```

```
\begin{tabular}{ll} Schuster\_derivative\_pi\_wrt\_v \\ & Computes\ derivative\ of\ pi[i,\ j]\ wrt\ v[il,\ jl] \end{tabular}
```

Description

Computes derivative of pi[i, j] wrt v[i1, j1]

Usage

```
Schuster_derivative_pi_wrt_v(i, j, i1, j1, marginal_pi, kappa, v)
```

Arguments

i first index into pi
 j second index into pi
 i1 first index into v
 j1 second index into v

marginal_pi expected marginal proportions

kappa current estimate of kappa coefficient

v symmetry matrix

Value

value of derivative of specified pi wrt specified element of v

```
Schuster_derivative_v_wrt_v
```

Computes derivative of v[i1, j1] wrt v[i2, j2]

Description

Needed because of computed v terms in column r

Usage

```
Schuster_derivative_v_wrt_v(i1, j1, i2, j2, marginal_pi, kappa, v)
```

Arguments

i1	first index into target v
j1	second index into target v
i2	first index into
j2	second index into
marginal_pi	expected marginal proportions
kappa	current estimate of kappa coefficient
V	matrix of symmetry parameters

Value

```
derivative of v[i1, j1] wrt v[i2, j2]
```

```
Schuster_enforce_constraints_on_v
```

Compute v matrix subject to constraints on rows 1..r-1.

Description

Compute v matrix subject to constraints on rows 1..r-1.

Usage

```
Schuster_enforce_constraints_on_v(marginal_pi, kappa, v)
```

Arguments

```
marginal_pi expected proportions for each category kappa current estimate of kappa coefficient
```

v symmetry matrix

Schuster_hessian

Value

new v matrix with last row/column set to agree with constraints. Element v[r, r] is set to v-tilde

Schuster_gradient

Gradient vector log(L) *wrt parameters.*

Description

Work is delegated to functions that compute partial derivatives. This function is responsible for laying them out in correct positions in the vector.

Usage

```
Schuster_gradient(n, marginal_pi, kappa, v)
```

Arguments

n matrix of observed counts

marginal_pi expected proportions for each response category

kappa current estimate of kappa coefficient

v symmetry matrix

Value

gradient vector

Schuster_hessian

Computes the hessian matrix of second-order partial derivatives of log(L).

Description

Work is delegated to functions that compute second-order partial derivatives. This function is responsible for laying them out in correct positions in the matrix.

Usage

```
Schuster_hessian(n, marginal_pi, kappa, v)
```

Arguments

n matrix of observed counts

marginal_pi expected proportions for each category kappa current estimate of the kappa coefficient

v symmetry matrix

Schuster_is_pi_valid 179

Value

hessian matrix

Description

```
All elements must lie in (0, 1)
```

Usage

```
Schuster_is_pi_valid(pi)
```

Arguments

pi matrix of model-based proportions

Value

logical value indicating whether or not the matrix is valid.

```
Schuster_newton_raphson
```

Performs Newton-Raphson step.

Description

The step size is determined to be the largest that yields valid results for all quantities marginal_pi and v. Both must be positive, and the elements of marginal_pi must be valid proportions that sum to 1.0.

Usage

```
Schuster_newton_raphson(n, marginal_pi, kappa, v)
```

Arguments

n matrix of observed counts

marginal_pi expected proportions for each category kappa current estimate of the kappa coefficient

v symmetry matrix

Value

a list containing updated versions of model quantities marginal_pi kappa v

 $Schuster_second_deriv_log_l_wrt_kappa_2 \\ Second\ order\ partial\ log(L)\ wrt\ kappa^2.$

Description

Second order partial log(L) wrt kappa^2.

Usage

```
Schuster_second_deriv_log_l_wrt_kappa_2(n, marginal_pi, kappa, v)
```

Arguments

n matrix of observed counts

marginal_pi expected proportions for each response category

kappa current estimate of kappa coefficient

v symmetry matrix second derivative of log(L) wrt kappa^2

Schuster_second_deriv_log_l_wrt_kappa_v Second order partial log(L) wrt kappa and v.

Description

Second order partial log(L) wrt kappa and v.

Usage

```
Schuster_second_deriv_log_l_wrt_kappa_v(n, marginal_pi, kappa, v)
```

Arguments

n matrix of observed counts

marginal_pi expected proportions for each response category

kappa current estimate of kappa coefficient

v symmetry matrix second derivative of log(L) wrt kappa and v

 $\label{log_l_wrt_marginal_pi_2} Second\ order\ partial\ log(L)\ wrt\ marginal_pi^2.$

Description

Second order partial log(L) wrt marginal_pi^2.

Usage

```
Schuster_second_deriv_log_l_wrt_marginal_pi_2(n, marginal_pi, kappa, v)
```

Arguments

n matrix of observed counts

marginal_pi expected proportions for each response category

kappa current estimate of kappa coefficient

v symmetry matrix second derivative of log(L) wrt marginal_pi^2

 $Schuster_second_deriv_log_l_wrt_marginal_pi_kappa \\ Second\ order\ partial\ log(L)\ wrt\ marginal_pi\ and\ kappa.$

Description

Second order partial log(L) wrt marginal_pi and kappa.

Usage

```
Schuster_second_deriv_log_l_wrt_marginal_pi_kappa(n, marginal_pi, kappa, v)
```

Arguments

n matrix of observed counts

marginal_pi expected proportions for each response category

kappa current estimate of kappa coefficient

v symmetry matrix second derivative of log(L) wrt marginal_pi and kappa

 $Schuster_second_deriv_log_l_wrt_marginal_pi_v\\ Second\ order\ partial\ log(L)\ wrt\ marginal_pi\ and\ v.$

Description

Second order partial log(L) wrt marginal_pi and v.

Usage

```
Schuster\_second\_deriv\_log\_l\_wrt\_marginal\_pi\_v(n, \ marginal\_pi, \ kappa, \ v)
```

Arguments

n matrix of observed counts

marginal_pi expected proportions for each response category

kappa current estimate of kappa coefficient

v symmetry matrix second derivative of log(L) wrt marginal_pi and v

Schuster_second_deriv_log_l_wrt_v_2 $Second\ order\ partial\ log(L)\ wrt\ v^2.$

Description

Second order partial log(L) wrt v^2.

Usage

```
Schuster_second_deriv_log_l_wrt_v_2(n, marginal_pi, kappa, v)
```

Arguments

n matrix of observed counts

marginal_pi expected proportions for each response category

kappa current estimate of kappa coefficient

v symmetry matrix second derivative of log(L) wrt v^2

```
Schuster_second_deriv_pi_wrt_kappa_2
Second order partial wrt kappa, kappa
```

Description

Derivative is uniformly 0

Usage

```
Schuster_second_deriv_pi_wrt_kappa_2(i, j, marginal_pi, kappa, v)
```

Arguments

i first index of pij second index of pi

marginal_pi expected proportions for each category kappa current estimate of the kappa coefficient

v symmetry matrix

Value

second order partial derivative

```
Schuster_second_deriv_pi_wrt_kappa_v
Second order partial wrt kappa, v
```

Description

Derivative is uniformly 0

Usage

```
Schuster_second_deriv_pi_wrt_kappa_v(i, j, i1, j1, marginal_pi, kappa, v)
```

Arguments

i	first index of pi
j	second index of pi
i1	first index of v
j1	second index of v

marginal_pi expected proportions for each category kappa current estimate of the kappa coefficient

v symmetry matrix

Value

second order partial derivative

```
\label{lem:second_deriv_pi_wrt_marginal_pi_2} Second\ derivative\ of\ pi[i,j]\ wrt\ marginal\_pi[k]^2
```

Description

Second derivative of pi[i, j] wrt marginal_pi[k]^2

Usage

```
Schuster_second_deriv_pi_wrt_marginal_pi_2(i, j, k, k2, marginal_pi, kappa, v)
```

Arguments

i	first index into pi
j	second index into pi
k	index into marginal_pi

k2 second index into marginal_pi

marginal_pi expected proportions for each category kappa current estimate of kappa coefficient

v symmetry matrix

Value

```
second derivative of pi[i, j] wrt marginal_pi^2
```

```
Schuster_second_deriv_pi_wrt_marginal_pi_kappa
Second order partial wrt kappa, marginal_pi
```

Description

Derivative is uniformly 0

Usage

```
Schuster_second_deriv_pi_wrt_marginal_pi_kappa(i, j, k, marginal_pi, kappa, v)
```

Arguments

```
    i first index of pi
    j second index of pi
    k index of marginal_pi
    marginal_pi expected proportions for each category
```

kappa current estimate of the kappa coefficient

v symmetry matrix

Value

second order partial derivative

```
Schuster_second_deriv_pi_wrt_marginal_pi_v

Second order partial pi wrt marginal_pi and v
```

Description

Second order partial pi wrt marginal_pi and v

Usage

```
Schuster_second_deriv_pi_wrt_marginal_pi_v(
    i,
    j,
    k,
    i1,
    j1,
    marginal_pi,
    kappa,
    v
)
```

Arguments

```
    i first index of pi
    j second index of pi
    k index of marginal_pi
    i1 first index of v
    j1 second index of v
    marginal_pi expected proportions of each of the categories
    kappa current value of kappa coefficient
    v symmetry matrix
```

Value

derivative

```
\label{lem:cond_deriv_pi_wrt_v_2} Second\ order\ partial\ wrt\ v^2
```

Description

Derivative is uniformly 0

Usage

```
Schuster_second_deriv_pi_wrt_v_2(i, j, i1, j1, i2, j2, marginal_pi, kappa, v)
```

Arguments

i	first index of pi
j	second index of pi
i1	first index of first v
j1	second index of first v
i2	first index of second v
j2	second index of second
marginal_pi	expected proportions for each category
kappa	current estimate of the kappa coefficient
v	symmetry matrix

Value

second order partial derivative

Schuster_solve_for_v 187

Schuster_solve_for_v Solves for the last row and diagonal of symmetry matrix v (v-tilde) using constraint equations

Description

Solves for the last row and diagonal of symmetry matrix v (v-tilde) using constraint equations

Usage

```
Schuster_solve_for_v(marginal_pi, kappa, v)
```

Arguments

marginal_pi expected proportions for each category kappa current estimate of kappa coefficient

v symmetry matrix

Value

revised version of v matrix with last row and diagonal modified

Schuster_solve_for_v1 Solves for the last row and diagonal of symmetry matrix v (parameteer v-tilde) using linear algebra formulation from paper.

Description

Solves for the last row and diagonal of symmetry matrix v (parameteer v-tilde) using linear algebra formulation from paper.

Usage

```
Schuster_solve_for_v1(marginal_pi, kappa, v)
```

Arguments

marginal_pi expected proportions for each category kappa current estimate of kappa coefficient

v symmetry matrix

Value

revised version of v matrix with last row and diagonal modified

Schuster_update

```
Schuster_symmetric_rater_agreement_model
```

Computes the model that has kappa as a coefficient and symmetry.

Description

Schuster, C. (2001). Kappa as a parameter of a symmetry model for rater agreement. Journal of Educational and Behavioral Statistics, 26(3), 331-342.

Usage

```
Schuster_symmetric_rater_agreement_model(
    n,
    verbose = FALSE,
    max_iter = 10000,
    criterion = 1e-07,
    min_iter = 1000
)
```

Arguments

n the matrix of observed counts

verbose logical. should cycle-by-cycle information be printed out

max_iter integer. maximum number of iterations to perform

criterion number. maximum change in log(likelihood) to decide convergence

min_iter integer. minimum number of iterations to perform

Value

a list containing marginal_pi: vector of expected proportions for each category kappa numeric: kappa coefficient v: matrix of symmetry parameters chisq: Pearson X^2 g_squared: likelihood ratio G^2 df: degrees of freedom

Schuster_update

Computes the Newton-Raphson update

Description

Computes both gradient and hessian, and then solves the system of equations

Usage

```
Schuster_update(n, marginal_pi, kappa, v)
```

Schuster_v_tilde 189

Arguments

n matrix of observed counts

marginal_pi expected proportions for each category kappa current value of kappa coefficient

v symmetry matrix

Value

the vector of updates

Schuster_v_tilde

Computes the common diagonal term v-tilde.

Description

Computes the common diagonal term v-tilde.

Usage

```
Schuster_v_tilde(marginal_pi, kappa, validate = TRUE)
```

Arguments

marginal_pi expected proportions for each category kappa current estimate of kappa coefficient

validate logical. should the value of pi[r,r] be checked for validity? Default is TRUE

Value

v-tilde

 $social_status \qquad \textit{Social mobility data with father's occupational social status and son's}$

occupational social status.

Description

Social mobility data with father's occupational social status and son's occupational social status.

Usage

social_status

Format

'social status' A matrix with 7 rows and 7 columns

Source

Goodman, L. A. (1979). Simple models for the analysis of association in cross-classifications having ordered categories. Journal of the American Statistical Association, 74(367), 537-552.

social_status2

Social mobility data with father's occupational social status and son's occupational social status. * categories instead of 7 in social status..

Description

Social mobility data with father's occupational social status and son's occupational social status. * categories instead of 7 in social status..

Usage

social_status2

Format

'social_status2' A matrix with 8 rows and 8 columns

Source

Goodman, L. A. (1979). Simple models for the analysis of association in cross-classifications having ordered categories. Journal of the American Statistical Association, 74(367), 537-552.

Stuart_marginal_homogeneity

Computes Stuart's Q test of marginal homogeneity.

Description

Stuart, A. (1955). A test for homogeneity of the marginal distributions in a two-way classification. Biometrika, 42(3/4), 412-416.

Usage

Stuart_marginal_homogeneity(n)

Arguments

n matrix of observed counts

taste 191

Value

a list containing q: value of q test-statistic df: degrees of freedom p: upper tail p-value of q

Examples

Stuart_marginal_homogeneity(vision_data)

taste

Taste ratings

Description

Taste ratings

Usage

taste

Format

'taste' A matrix with 5 rows and 5 columns.

Source

McCullagh, P. (1980, p. 119). Regression models for ordinal data. Journal of the Royal Statistical Society, Series B, 42(2), 109-142.

teachers

Teachers ratings of their students intelligence.

Description

Interrater agreement data for two teachers asked to rate the intelligence of their students.

Usage

teachers

Format

'teachers' A matrix with 4 rows and 4 columns. Higher scores correspond to higher estimated intelligence.

Source

von Eye, A. & Mun, E. Y. (2005, p. 36). Analyzing rater agreement: Manifest variable methods. Mahwah, NJ: Lawrence Erlbaum.

192 tonsils

|--|

Description

Ratings of style of teaching by supervisors. 1 indicates Authoritarian, 2 indicates Democratic, 3 indicates Permissive.

Usage

teaching_style

Format

An object of class matrix (inherits from array) with 3 rows and 3 columns.

Details

@format ## 'teaching_style' A matrix with 3 rows and 3 columns.

@source Agresti, A. (1989). An agreement model with kappa as parameter. Statistics & Probability Letters, 7, 271-273.

tonsils	Relationship between size of child's tonsils and their status as a car-
	rier of a disease.

Description

Relationship between size of child's tonsils and their status as a carrier of a disease.

Usage

tonsils

Format

'tonsils' A matrix with 2 rows and 3 columns. Rows are disease status and columns are ratings of tonsil size.

Source

McCullagh, P. (1980). Regression models for ordinal data. Journal of the Royal Statistical Society, Series B, 42(2), 109-142.

tv 193

tν

Interrater agreement of two journalists' evaluation of proposed TV programs.

Description

Ratings go from low to high probability of the show's success.

Usage

tν

Format

'tv' A matrix of 6 rows and 6 columns.

Source

von Eye, A. & Mun, E. Y. (2005, p. 56). Analyzing rater agreement: Manifest variable methods. Mahwah, NJ: Lawrence Erlbaum.

```
uniform_association_fHat
```

Computes expected counts for uniform association model

Description

Computes expected counts for uniform association model

Usage

```
uniform_association_fHat(alpha, beta, theta)
```

association parameter

Arguments

theta

alpha row effects
beta column effects

Value

matrix of model-based expected counts

194 var_kappa

uniform_association_update_theta

Updates estimate of theta value of the uniform association model

Description

Updates estimate of theta value of the uniform association model

Usage

```
uniform_association_update_theta(theta, n, fHat, exclude_diagonal = FALSE)
```

Arguments

theta current estimate of theta
n matrix of observed counts

fHat current model-based counts for each cell

exclude_diagonal

logical. Should the cells of the main diagonal be excluded from the computa-

tions? Defualt is FALSE, include all cells.

Value

updated estimate of theta parameter

var_kappa

Computes the sampling variance of kappa.

Description

Formulas are from the paper by Fleiss, J. L., Cohen, J., & Everitt, B. S. (1969). Large sample standard errors of kappa and weighted kappa. Two results are returned in a list. var_kappa0 is the null case and would be used for testing the hypothesis that kappa = 0. The second is var_kappa and is for the non-null case, such as constructing CI for estimated kappa. Not that both are in the variance metric. Take the square root to get the standard error.

Usage

```
var_kappa(n)
```

Arguments

n matrix of observe counts

Value

a list containing; var_kappa0: variance for the null case var_kappa: variance for the non-null case.

var_weighted_kappa 195

var_weighted_kappa

Computes the sampling variance of weighted kappa.

Description

Formulas are from the paper by Fleiss, J. L., Cohen, J., & Everitt, B. S. (1969). Large sample standard errors of kappa and weighted kappa. Two results are returned in a list. var_kappa0 is the null case and would be used for testing the hypothesis that kappa = 0. The second is var_kappa and is for the non-null case, such as constructing CI for estimated kappa. Not that both are in the variance metric. Take the square root to get the standard error.

Usage

```
var_weighted_kappa(n, w)
```

Arguments

n matrix of observe counts
w matrix of penalty weights

Value

a list containing; var_kappa0: variance for the null case var_kappa: variance for the non-null case.

vision_data

Visual acuity of women factory workers.

Description

Measurements of unaided visual acuity for women working at the Royal Ordinance factories 1943-1946. Rows are right eye, columns are left eye. 1 indicates best vision, 4 is poorest.

Usage

vision_data

Format

'visual_data' A matrix with 4 rows and 4 columns.

Source

Stuart, A. (1953). The estimation and comparison of strengths of association in contingency tables. Biometrika, 40(1/2), 105-110.

196 von_Eye_diagonal

ision_data_men	
----------------	--

Description

Measurements of unaided visual acuity for men working at the Royal Ordinance factories 1943-1946. Rows are right eye, columns are left eye. 1 indicates best vision, 4 is poorest.

Usage

```
vision_data_men
```

Format

'visual_data_men' A matrix with 4 rows and 4 columns.

Source

Stuart, A. (1953). The estimation and comparison of strengths of association in contingency tables. Biometrika, 40(1/2), 105-110.

von_Eye_diagonal Fits the diagonal effects model, where each category has its own parameter delta[k].

Description

Fits the diagonal effects model, where each category has its own parameter delta[k].

Usage

```
von_Eye_diagonal(n)
```

Arguments

n the matrix of observed counts

Value

a list containing beta: the regression parameters. delta parameters are the final elements of beta g_squared: G^2 fit measure chisq: X^2 fit measure df: degrees of freedom expected: matrix of expected frequencies

```
von_Eye_diagonal_linear_by_linear
```

Fits the diagonal effects model, where each category has its own parameter delta[k], while also incorporating a linear-by-linear term.

Description

Fits the diagonal effects model, where each category has its own parameter delta[k], while also incorporating a linear-by-linear term.

Usage

```
von_Eye_diagonal_linear_by_linear(n, center = TRUE)
```

Arguments

n the matrix of observed counts

center should the linear-by-linear components be centered to have mean 0? Default is

TRUE

Value

a list containing beta: the regression parameters. delta parameters come after rows and columns and finally the linear-by-linear term g_squared: G^2 fit measure chisq: X^2 fit measure df: degrees of freedom expected: matrix of expected frequencies

```
von_Eye_equal_weighted_diagonal
```

Fits the equal weighted diagonal model, where the diagonals all have an additional parameter delta, with the constraint that delta is equal across all categories.

Description

Fits the equal weighted diagonal model, where the diagonals all have an additional parameter delta, with the constraint that delta is equal across all categories.

Usage

```
von_Eye_equal_weighted_diagonal(n)
```

Arguments

n the matrix of observed counts

Value

a list containing beta: the regression parameters g_squared: G^2 fit measure chisq: X^2 fit measure df: degrees of freedom expected: matrix of expected frequencies

```
von_Eye_equal_weight_diagonal_linear
```

Fits the diagonal effects model, where there is a single delta parameter for all categories, while also incorporating a linear-by-linear term.

Description

Fits the diagonal effects model, where there is a single delta parameter for all categories, while also incorporating a linear-by-linear term.

Usage

```
von_Eye_equal_weight_diagonal_linear(n, center = TRUE)
```

Arguments

n the matrix of observed counts

center should the linear-by-linear components be centered to have mean 0? Default is

TRUE

Value

a list containing beta: the regression parameters. delta parameters come after rows and columns and finally the linear-by-linear term g_squared: G^2 fit measure chisq: X^2 fit measure df: degrees of freedom expected: matrix of expected frequencies

```
von_Eye_linear_by_linear
```

Fits the basic independent rows and columns model incorporating a linear-by-linear term.

Description

Fits the basic independent rows and columns model incorporating a linear-by-linear term.

Usage

```
von_Eye_linear_by_linear(n, center = TRUE)
```

von_Eye_main_effect 199

Arguments

n matrix of observed counts

center should the linear-by-linear components be centered to have mean 0? Default is

TRUE

Value

a list containing beta: the regression parameters. The linear-by-linear parameter is last g_squared: G^2 fit measure chisq: X^2 fit measure df: degrees of freedom expected: matrix of expected frequencies

von_Eye_main_effect

Fits the base model with only independent row and column effects.

Description

Fits the base model with only independent row and column effects.

Usage

```
von_Eye_main_effect(n)
```

Arguments

n

the matrix of observed counts

Value

a list containing beta: the regression parameters $g_squared$: G^2 fit measure chisq: X^2 fit measure df: degrees of freedom expected: matrix of expected frequencies

```
von_Eye_weight_by_response_category_design
```

Creates design matrix for weight be response category model.

Description

The model specifies main effects for row and column, and a parameter for the agreement (diagonal) cells. This takes a design matrix for that model and applies domain-specific weights to the agreement parameters.

Usage

```
von_Eye_weight_by_response_category_design(n, x, w, n_raters = 2)
```

200 weighted_cov

Arguments

n	the matrix of cell counts
x	the original design matrix.
W	the vector of weights to apply to the agreement cells. Should have same number of entries as the number of diagonal elements (number of rows & of columns)
n_raters	number of raters. Currently only 2 (the default) are supported. This is an extension point for future work.

Value

new design matrix with weights applied to the agreement cells.

weighted_cov	Computes the weighted covariance

Description

Computes covariance between x and y using case weights in w

Usage

```
weighted_cov(x, y, w, use_df = TRUE)
```

Arguments

x	Numeric vector. First variable
у	Numeric vector. Second variable
W	Numeric vector. case weights
use_df	Logical. should the divisor be sum of weights - 1 (TRUE) or N - 1 (FALSE)

Value

the weighted covariance between x and y

weighted_kappa 201

wei	ghted	d kar	าทล
MCT	KIILE	u nai	JUC

Computes Cohen's 1968 weighted kappa coefficient

Description

Computes Cohen's 1968 weighted kappa coefficient

Usage

```
weighted_kappa(n, w = diag(rep(1, nrow(n))), quadratic = FALSE)
```

Arguments

n matrix of observed counts

w matrix of weights. Defaults to identity matrix

quadratic logical. Should quadratic weights be used? Default is FALSE. If TRUE, quadratic

weights are used. These override the values in w. If FALSE, weights in w are

used

Value

value of weighted kappa

weighted_var

Computes the weighted variance

Description

Computes variance between x and y using case weights in w

Usage

```
weighted_var(x, w, use_df = TRUE)
```

Arguments

x Numeric vector. First variablew Numeric vector. Case weights

use_df Logical. Should the divisor be sum of weights - 1 (TRUE) or N - 1 (FALSE)

Value

the weighted covariance between x and y

202 winnipeg_data

winnipeg_data	Agreement between two clinicians on presence of multiple sclerosis based on file.

Description

See companion new_orleans_data.

Usage

winnipeg_data

Format

'winnipeg_data' A matrix with 4 rows and 4 columns Ratings range from definite presence of disease to definite absence.

Source

???

Index

* datasets	Agresti_create_design_matrix, 11
budget_actual, 18	Agresti_equation_1, 12
budget_expected, 19	Agresti_equation_2, 12
coal_g, 32	Agresti_equation_3, 13
depression, 33	Agresti_extract_delta, 13
dogs, 34	Agresti_f, 14
dreams, 34	Agresti_kappa_agreement, 14
dumping, 35	Agresti_simple_diagonals_parameter_quasi_symmetry,
esophageal_cancer, 35	15
family_income, 37	Agresti_starting_values, 15
gender_vision, 37	Agresti_w_diff, 16
homicide_black_black, 52	Agresti_weighted_tau, 16
homicide_black_white, 52	
homicide_white_black, 53	Bhapkar_marginal_homogeneity, 17
homicide_white_white, 53	Bhapkar_quasi_symmetry, 17
hypothalamus_1, 54	Bowker_symmetry, 18
hypothalamus_2, 54	budget_actual, 18
interference_12, 55	budget_expected, 19
<pre>interference_control_1, 55</pre>	
<pre>interference_control_2, 56</pre>	Clayton_marginal_location, 19
mental_health, 155	Clayton_stratified_marginal_location,
movies, 168	20
new_orleans_data, 169	Clayton_summarize, 21
occupational_status, 170	Clayton_summarize_stratified, 21
paranoia, 170	Clayton_two_way_association, 22
radiology, 171	Cliff_as_d_matrix, 22
social_status, 189	Cliff_compute_d, 23
social_status2, 190	Cliff_counts_2, 23
taste, 191	Cliff_counts_3, 24
teachers, 191	Cliff_counts_4, 24
teaching_style, 192	Cliff_counts_5, 25
tonsils, 192	Cliff_counts_6, 25
tv, 193	Cliff_dependent, 26
vision_data, 195	Cliff_dependent_compute_cov, 26
vision_data_men, 196	Cliff_dependent_compute_cov_from_d, 27
winnipeg_data, 202	Cliff_dependent_compute_from_matrix,
	27
Agresti_bisection, 10	Cliff_dependent_compute_from_table, 28
Agresti_compute_lambda, 10	Cliff_dependent_compute_paired_d, 29
Agresti_compute_pi, 11	Cliff_independent, 30

Cliff_independent_from_matrix, 30	interference_12, 55
Cliff_independent_from_table, 31	<pre>interference_control_1, 55</pre>
Cliff_independent_weighted,31	<pre>interference_control_2, 56</pre>
Cliff_weighted_d_matrix,32	<pre>Ireland_marginal_homogeneity, 56</pre>
coal_g, 32	Ireland_mdis, 57
constant_of_integration, 33	<pre>Ireland_normalize_for_truncation, 57</pre>
0	<pre>Ireland_quasi_symmetry, 58</pre>
depression, 33	<pre>Ireland_quasi_symmetry_model, 58</pre>
dogs, 34	Ireland_symmetry, 59
dreams, 34	is_invertible, 60
dumping, 35	is_missing_or_infinite,60
esophageal_cancer,35	kappa, 61
expand, 36	
expit, 36	likelihood_ratio_chisq,61
	loadRData, 62
family_income, 37	log_likelihood, 63
	<pre>log_linear_add_all_diagonals, 63</pre>
gender_vision,37	log_linear_append_column, 64
Goodman_constrained_diagonals_parameter_symm	ne log ,linear_create_coefficient_names,
38	65
Goodman_diagonals_parameter_symmetry,	<pre>log_linear_create_linear_by_linear, 65</pre>
38	log_Linear_create_log_n, 66
Goodman_fixed_parameter, 39	<pre>log_linear_equal_weight_agreement_design,</pre>
Goodman_ml, 40	66
Goodman_model_i, 41	<pre>log_linear_fit, 67</pre>
Goodman_model_i_star, 43	<pre>log_linear_main_effect_design, 68</pre>
Goodman_model_ii, 42	log_linear_matrix_to_vector, 68
Goodman_model_ii_star,43	<pre>log_linear_quasi_symmetry_model_design,</pre>
Goodman_null_association,44	69
Goodman_pi, 45	log_linear_remove_column, 69
Goodman_pi_matrix,46	log_linear_symmetry_design, 70
Goodman_symmetric_association_model,	logit, 62
46	6,
Goodman_uniform_association,47	McCullagh_compute_c_plus, 72
,	McCullagh_compute_condition, 70
handle_max_i_i,47	McCullagh_compute_cumulative_sums, 71
handle_max_i_k,48	McCullagh_compute_cumulatives, 71
handle_max_k_k2,49	McCullagh_compute_df, 72
handle_one_maximum,49	McCullagh_compute_gamma, 73
handle_tied_below_maximum,50	McCullagh_compute_gamma_from_phi, 73
handle_tied_maximum,50	McCullagh_compute_gamma_plus_1_from_phi,
handle_untied_below_maximum, 51	74
homicide_black_black, 52	McCullagh_compute_generalized_cumulatives,
homicide_black_white, 52	74
homicide_white_black, 53	McCullagh_compute_generalized_pi, 75
homicide_white_white, 53	McCullagh_compute_lambda, 75
hypothalamus_1,54	McCullagh_compute_log_1, 76
hypothalamus_2,54	McCullagh_compute_Nij, 76
Jr	

McCullagh_compute_omega, 77	McCullagh_derivative_omega_wrt_c, 94
McCullagh_compute_phi, 77	McCullagh_derivative_omega_wrt_delta,
McCullagh_compute_phi_matrix,78	94
McCullagh_compute_pi,78	McCullagh_derivative_omega_wrt_delta_vec,
McCullagh_compute_pi_from_beta,79	95
McCullagh_compute_pi_from_gamma, 79	McCullagh_derivative_omega_wrt_psi,95
McCullagh_compute_regression_weights,	McCullagh_derivative_phi_wrt_gamma,96
80	McCullagh_derivative_pi_wrt_alpha,99
McCullagh_compute_s_plus, 80	McCullagh_derivative_pi_wrt_c, 100
McCullagh_compute_update, 81	McCullagh_derivative_pi_wrt_delta, 101
McCullagh_compute_z, 81	<pre>McCullagh_derivative_pi_wrt_delta_vec,</pre>
McCullagh_conditional_symmetry,82	101
<pre>McCullagh_conditional_symmetry_compute_s,</pre>	<pre>McCullagh_derivative_pi_wrt_psi, 102</pre>
82	McCullagh_derivative_pij_wrt_alpha,96
McCullagh_conditional_symmetry_initialize_ph	iMှcCullagh_derivative_pij_wrt_c,97
83	McCullagh_derivative_pij_wrt_delta,98
<pre>McCullagh_conditional_symmetry_maximize_phi,</pre>	<pre>McCullagh_derivative_pij_wrt_delta_vec,</pre>
83	98
McCullagh_conditional_symmetry_maximize_thet	aMcCullagh_derivative_pij_wrt_psi,99
84	McCullagh_extract_weights, 102
McCullagh_conditional_symmetry_pi,84	<pre>McCullagh_fit_location_regression_model,</pre>
McCullagh_derivative_condition_wrt_psi,	103
85	${\tt McCullagh_generalized_palindromic_symmetry},$
McCullagh_derivative_gamma_plus_1_wrt_phi,	104
85	McCullagh_generalized_pij_qij, 105
McCullagh_derivative_gamma_wrt_phi,86	McCullagh_generate_names, 105
McCullagh_derivative_gamma_wrt_y,86	McCullagh_get_statistics, 106
McCullagh_derivative_lagrangian_wrt_delta,	McCullagh_gradient_log_1, 106
87	McCullagh_hessian_log_1, 107
McCullagh_derivative_lagrangian_wrt_delta_ve	
87	McCullagh_initialize_delta, 108
McCullagh_derivative_lagrangian_wrt_psi,	McCullagh_initialize_delta_vec, 108
88	McCullagh_initialize_psi, 109
McCullagh_derivative_log_l_wrt_alpha,	McCullagh_initialize_x, 109
89	McCullagh_is_in_constraint_set, 110
McCullagh_derivative_log_l_wrt_beta,	McCullagh_is_pi_invalid, 110
89	McCullagh_log_L, 112
McCullagh_derivative_log_l_wrt_c,90	McCullagh_logistic_model, 111
McCullagh_derivative_log_l_wrt_delta,	McCullagh_logits, 111
90	McCullagh_maximize_q_symmetry, 112
McCullagh_derivative_log_l_wrt_delta_vec,	McCullagh_newton_raphson_update, 113
91	McCullagh_palindromic_symmetry, 114
<pre>McCullagh_derivative_log_l_wrt_params,</pre>	McCullagh_penalized, 114
92	McCullagh_pij_qij, 115
McCullagh_derivative_log_l_wrt_phi,92	McCullagh_proportional_hazards, 116
McCullagh_derivative_log_l_wrt_psi,93	<pre>McCullagh_q_symmetry_initialize_alpha,</pre>
McCullagh_derivative_omega_wrt_alpha,	117
93	<pre>McCullagh_q_symmetry_initialize_phi,</pre>

117	134
McCullagh_q_symmetry_pi, 118	<pre>McCullagh_second_order_omega_wrt_delta_2,</pre>
McCullagh_quasi_symmetry, 116	135
	McCullagh_second_order_omega_wrt_delta_alpha,
118	135
McCullagh_second_order_lagrangian_wrt_psi_al	
119	136
McCullagh_second_order_lagrangian_wrt_psi_de 120	<pre>lMaCullagh_second_order_omega_wrt_delta_vec_2,</pre>
McCullagh_second_order_lagrangian_wrt_psi_de	lMaCwetagh_second_order_omega_wrt_delta_vec_alpha
121	137
McCullagh_second_order_log_l_wrt_alpha_2, 122	McCullagh_second_order_omega_wrt_delta_vec_c, 138
McCullagh_second_order_log_l_wrt_alpha_c,	McCullagh_second_order_omega_wrt_psi_2,
122	139
<pre>McCullagh_second_order_log_l_wrt_beta_2,</pre>	McCullagh_second_order_omega_wrt_psi_alpha,
123	140
<pre>McCullagh_second_order_log_l_wrt_c_2,</pre>	<pre>McCullagh_second_order_omega_wrt_psi_c,</pre>
124	141
<pre>McCullagh_second_order_log_l_wrt_delta_2,</pre>	<pre>McCullagh_second_order_omega_wrt_psi_delta,</pre>
124	141
${\tt McCullagh_second_order_log_l_wrt_delta_alpha}$	<pre>,McCullagh_second_order_omega_wrt_psi_delta_vec,</pre>
125	142
<pre>McCullagh_second_order_log_l_wrt_delta_c,</pre>	<pre>McCullagh_second_order_pi_wrt_alpha_2,</pre>
126	143
McCullagh_second_order_log_l_wrt_delta_vec_2	
126	144
McCullagh_second_order_log_l_wrt_delta_vec_a	
127	McCullagh_second_order_pi_wrt_delta_2,
McCullagh_second_order_log_l_wrt_delta_vec_c	
128	McCullagh_second_order_pi_wrt_delta_alpha,
McCullagh_second_order_log_l_wrt_parms,	145
McCullagh_second_order_log_l_wrt_psi_2,	McCullagh_second_order_pi_wrt_delta_c, 146
129	McCullagh_second_order_pi_wrt_delta_vec_2,
McCullagh_second_order_log_l_wrt_psi_alpha,	147
130	McCullagh_second_order_pi_wrt_delta_vec_alpha,
McCullagh_second_order_log_l_wrt_psi_c,	148
131	McCullagh_second_order_pi_wrt_delta_vec_c,
McCullagh_second_order_log_l_wrt_psi_delta,	149
131	McCullagh_second_order_pi_wrt_psi_2,
McCullagh_second_order_log_l_wrt_psi_delta_v	· · · · · · · · · · · · · · · · · · ·
132	McCullagh_second_order_pi_wrt_psi_alpha,
<pre>McCullagh_second_order_omega_wrt_alpha_2,</pre>	150
133	<pre>McCullagh_second_order_pi_wrt_psi_c,</pre>
<pre>McCullagh_second_order_omega_wrt_alpha_c,</pre>	151
133	<pre>McCullagh_second_order_pi_wrt_psi_delta,</pre>
<pre>McCullagh_second_order_omega_wrt_c_2,</pre>	152

<pre>McCullagh_second_order_pi_wrt_psi_delta_vec,</pre>	Schuster_derivative_log_l_wrt_v, 174
152	Schuster_derivative_pi_wrt_kappa, 175
McCullagh_update_parameters, 153	<pre>Schuster_derivative_pi_wrt_marginal_pi,</pre>
McCullagh_v_inverse, 154	175
mental_health, 155	Schuster_derivative_pi_wrt_v, 176
model_i_column_theta, 161	Schuster_derivative_v_wrt_v, 177
model_i_effects, 161	Schuster_enforce_constraints_on_v, 177
model_i_fHat, 162	Schuster_gradient, 178
model_i_normalize_fHat, 162	Schuster_hessian, 178
model_i_row_column_odds_ratios, 163	Schuster_is_pi_valid, 179
model_i_row_theta, 163	Schuster_newton_raphson, 179
model_i_star_effects, 164	Schuster_second_deriv_log_l_wrt_kappa_2,
model_i_star_fHat, 165	180
model_i_star_update_theta, 165	Schuster_second_deriv_log_l_wrt_kappa_v,
model_i_starting_values, 164	180
model_i_update_alpha, 166	<pre>Schuster_second_deriv_log_l_wrt_marginal_pi_2,</pre>
model_i_update_beta, 166	181
model_i_update_delta, 167	Schuster_second_deriv_log_l_wrt_marginal_pi_kappa,
model_i_update_gamma, 167	181
model_i_zeta, 168	Schuster_second_deriv_log_l_wrt_marginal_pi_v,
model_ii_effects, 155	182
model_ii_fHat, 156	Schuster_second_deriv_log_l_wrt_v_2,
model_ii_ksi, 156	182
model_ii_star_effects, 157	Schuster_second_deriv_pi_wrt_kappa_2,
model_ii_star_fHat, 158	183
model_ii_star_update_phi, 158	Schuster_second_deriv_pi_wrt_kappa_v,
model_ii_starting_values, 157	183
model_ii_update_alpha, 159	Schuster_second_deriv_pi_wrt_marginal_pi_2,
model_ii_update_beta, 159	184
model_ii_update_rho, 160	Schuster_second_deriv_pi_wrt_marginal_pi_kappa,
model_ii_update_sigma, 160	184
movies, 168	Schuster_second_deriv_pi_wrt_marginal_pi_v, 185
new_orleans_data, 169	Schuster_second_deriv_pi_wrt_v_2, 186
null_association_fHat, 169	Schuster_solve_for_v, 187
	Schuster_solve_for_v1, 187
occupational_status, 170	Schuster_symmetric_rater_agreement_model, 188
paranoia, 170	
pearson_chisq, 171	Schuster_update, 188 Schuster_v_tilde, 189
radiology, 171	social_status, 189
Schuster_compute_df, 172	social_status2, 190
Schuster_compute_pi, 172	Stuart_marginal_homogeneity, 190
Schuster_compute_starting_values, 173	taste, 191
Schuster_derivative_log_l_wrt_kappa,	teachers, 191
173	teaching_style, 192
Schuster_derivative_log_l_wrt_marginal_pi,	tonsils, 192
174	tv, 193
±1.1	,

```
uniform_association_fHat, 193
uniform\_association\_update\_theta, \\ 194
var_kappa, 194
var_weighted_kappa, 195
vision_data, 195
\verb|vision_data_men|, 196|
von_Eye_diagonal, 196
von_Eye_diagonal_linear_by_linear, 197
von_Eye_equal_weight_diagonal_linear,
         198
von_Eye_equal_weighted_diagonal, 197
von_Eye_linear_by_linear, 198
\verb"von_Eye_main_effect", 199"
von_Eye_weight_by_response_category_design,
weighted\_cov, \textcolor{red}{200}
weighted_kappa, 201
weighted_var, 201
winnipeg\_data, \textcolor{red}{202}
```