100 e-mails

25 Spam

75 No spam

25 Spam

75 No spam

Spam

AAAA

AAAA

AAAA

AAAA

No spam

A

A

A

A

A

Quiz: Si un e-mail contiene la palabra "barato", cual es la probabilidad de que sea spam?

) 40%

0 60%

○ 80%

0 100%

Spam No spam

Spam

 $\triangle \triangle \triangle$

A A A

 $\mathbf{A} \mathbf{A} \mathbf{A}$

 $\Delta \Delta \Delta$

A A A

No spam

 Λ

 Λ

 Λ

Quiz: Si un e-mail contiene la palabra "comprar", cual es la probabilidad de que sea spam?

) 40%

) 60%

) 80%

O 100%

60%

"Barato" y "Comprar"

Spam	No spam
$\bowtie \bowtie \bowtie \bowtie \bowtie$	
$\boxtimes\boxtimes\boxtimes\boxtimes$	

"Barato" y "Comprar"

 Spam
 No spam

 M M M M M M
 M M M M M M

 M M M M M M
 M M M M M M

 M M M M M M
 M M M M M M

"Barato" y "Comprar"

"Barato" y "Comprar"

 Spam
 No spam

 Image: Spam
 Image: Spam

 Image: Spam
 Ima

"Barato" y "Comprar"

 Spam
 No spam

 Image: Spam
 Image: Spam

 Image: Spam
 Ima

"Barato" y "Comprar"

"Barato" y "Comprar"

"Barato" y "Comprar"

Spam

No spam

Quiz: Si un e-mail	0	40%
contiene las palabras	Õ	60%
"barato" y "comprar", cual es la probabilidad	Õ	80%
de que sea spam?	Ö	100%

Problema

"Barato" y "Comprar"

12 e-mails

0 e-mails?

12 e-mails

"Barato" y "Comprar"

0 e-mails?

100 e-mails

100 e-mails

5 "Barato"

10 "Comprar"

100 e-mails

5 "Barato" 5% "Barato" 0.5% "Barato" y "Comprar" 10 "Comprar"

100 e-mails

Spam

Spam

25 e-mails 20 "Barato" 4/5

Spam

25 e-mails20 "Barato" 4/515 "Comprar" 3/5

Spam


```
25 e-mails
20 "Barato" 4/5
15 "Comprar" 3/5
```

Spam


```
25 e-mails
20 "Barato" 4/5
15 "Comprar" 3/5 × 25 = 12 "Barato" and "Comprar"
```

No spam

75 e-mails

S

No spam


```
75 e-mails

5 "Barato" 1/15 2/225 × 75 = 2/3 "Barato" y "Comprar

10 "Comprar" 2/15
```


"Barato" y "Comprar" → 94.737%

Spam

No spam

Quiz: Si un e-mail contiene las palabras "barato" y "comprar", cual es la probabilidad de que sea spam?

94.737%

2/3

$$\frac{12}{12 + 2/3} = \frac{36}{38}$$

"Barato" y "Comprar

Bayes ingenuo

	Spam	No spam	
Total			
Barato			
Comprar			
Barato y Comprar			

Bayes ingenuo

	Spam		No spam	
Total	25		75	
Barato	20	4/5	5	1/15
Comprar	15	3/5	10	2/15
Barato y Comprar	12	12/25	2/3	2/225

$$\frac{12}{12 + 2/3} = \frac{36}{38} = 94.737\%$$

Bayes ingenuo

	Spam		No Spam	
Total	25		75	
Barato	20	4/5	5	1/15
Comprar	15	3/5	10	2/15
Trabajo	5	1/5	30	6/15
Barato, Comprar y Trabajo	12/5	12/125	4/15	12/3375

$$\frac{12/5}{12/5 + 4/15} = \frac{36}{40} = 90\%$$

Formulas?

S: Spam

H: Ham (no spam)

B: 'Barato'

$$P(S|B) = \frac{P(B|S)P(S)}{P(B|S)P(S) + P(B|H)P(H)}$$

S: Spam

H: Ham (no spam)

B: 'Barato'

$$P(S|B) = \frac{P(B|S)P(S)}{P(B|S)P(S) + P(B|H)P(H)}$$

P(spam si "Barato") =
$$\frac{25}{25}$$
 $\frac{100}{100}$ + $\frac{5}{75}$ $\frac{75}{100}$

S: Spam

H: Ham (no spam)

B: 'Barato'

$$P(S|B) = \frac{P(B|S)P(S)}{P(B|S)P(S) + P(B|H)P(H)}$$

P(spam si "Barato") =
$$\frac{20}{25} = \frac{25}{100} = 80\%$$

$$\frac{20}{25} = \frac{25}{100} + \frac{5}{75} = \frac{75}{100}$$

S: Spam

H: Ham (no spam)

C: 'Comprar'

$$P(S|C) = \frac{P(C|S)P(S)}{P(C|S)P(S) + P(C|H)P(H)}$$

P(spam si "Comprar") =
$$\frac{\frac{15}{25} \frac{25}{100}}{\frac{15}{25} \frac{25}{100} + \frac{10}{75} \frac{75}{100}} = 60\%$$

Bayes Ingenuo

P("Barato" & "Comprar") = P("Barato") P("Comprar")
$$P(B \cap C) = P(B) P(C)$$
Ingenuo

S: Spam

H: Ham (not spam)

B: 'Barato'

C: 'Comprar'

$$P(S | B \cap C) =$$

Bayes Ingenuo

$$P(B \cap C | S) = P(S)$$
 $P(B \cap C | S) = P(B \cap C | H) = P(H)$

S: Spam

H: Ham (not spam)

B: 'Barato'

C: 'Comprar'

$$P(S | B \cap C) =$$

Bayes Ingenuo

P(B|S)P(C|S)P(S) + P(B|H)P(C|H)P(H)

S: Spam

Bayes Ingenuo

H: Ham (not spam)

B: 'Barato'

C: 'Comprar'

$$P(S | B \cap C) =$$

$$P(B|S)P(C|S)P(S) + P(B|H)P(C|H)P(H)$$