WOJSKOWA AKADEMIA TECHNICZNA

im. Jarosława Dąbrowskiego

WYDZIAŁ CYBERNETYKI

Sprawozdanie

z zajęć laboratoryjnych z przedmiotu

Podstawy podzespołów komputerów

Temat: Badanie układów kombinacyjnych

Sprawozdanie wykonał: Godlevskyi Andrii

Numer grupy: WCYKY1S1

Prowadzący: Tomasz Żentara

1. Badanie multipleksera

Funkcja logiczna zadana przez prowadzącego została przedstawiona poniżej:

$$Y = \left(\overline{A} + C\right) \oplus \overline{B} \oplus \overline{D}$$

Rys. 1 Binarny diagram decyzyjny dla zadanej funkcji

Dla zadanej funkcji opracowano binarny diagram decyzyjny (przedstawiony na rysunku 1), a następnie na podstawie uzyskanych wyników wypełniono tablicę Karnaugha (tabela 1).

Tabela 1. Tablica opisująca działanie układu kombinacyjnego

BA DC	00	01	11	10
00	0	1	0	1
01	0	0	1	1
11	1	1	0	0
10	1	0	1	0

Ze względu na fakt, iż liczba zmiennych funkcji jest większa od liczby wejść adresowych multipleksera, w kolejnym kroku wykonano numerację poszczególnych komórek bez uwzględnienia zmiennej wejściowej, która będzie podawana na wejścia informacyjne. W celu ułatwienia rozróżniania wejść adresowych układu oraz nazw zmiennych przyjęto, iż wejścia adresowe układu A, B, C będą w dalszej części sprawozdania określane symbolami Au, Bu, Cu. Na tym etapie realizacji zadania przyjęto, iż:

- zmienna A zostanie przypisana do wejścia adresowego Au układu multipleksera,
- zmienna **B** zostanie przypisana do wejścia adresowego **B**_u układu multipleksera,
- zmienna C zostanie przypisana do wejścia adresowego Cu układu multipleksera,
- zmienna **D** będzie podawana na wejścia informacyjne układu multipleksera.

Na podstawie powyższej tablicy określono wartości podawane na poszczególne wejścia danych układu multipleksera:

$$D0 = D$$
; $D1 = notD$; $D2 = notD$; $D3 = D$; $D4 = D$; $D5 = D$; $D6 = notD$; $D7 = notD$;

W kolejnym kroku realizacji zadania zbudowano układ realizujący zadaną funkcję, z użyciem układu Multipleksera 74151. Schemat zaprojektowanego układu przedstawiono na rysunku 2.

Rys. 3 Schemat układu zbudowanego z użyciem multipleksera

Następnie przeprowadzono proces sprawdzenia poprawności działania opracowanych rozwiązań, wykorzystując program Multisim. Uzyskane przebiegi czasowe dla zaprojektowanych układów przedstawiono na rysunku 3.

Rys. 3 Przebiegi czasowe dla układu zbudowanego z użyciem bramek logicznych

Na podstawie rezultatów analizy sposobu działania zaprojektowanego układu, realizującego zadaną przez prowadzącego funkcję można stwierdzić, że wyniki są zgodne z tabelą 1, co świadczy o poprawności realizacji zadania.