

Computer Networks II

User Datagram Protocol

Amitangshu Pal
Computer Science and Engineering
IIT Kanpur

UDP: User Datagram Protocol

- "No frills," "bare bones" Internet transport protocol
- "Best effort" service, UDP segments may be:
 - Lost, duplicated
 - Delivered out-of-order to app

Src: https://commons.wikimedia.org/wiki/File:Fig2 UDPwork.jpg

Connectionless:

- No handshaking between UDP sender, receiver
- Each UDP segment handled independently of others

UDP: User Datagram Protocol

Why is there a UDP?

- No connection establishment (which can add RTT delay)
- Simple: no connection state at sender, receiver
- Small header size
- No congestion control
 - UDP can blast away as fast as desired!

- UDP use:
 - Streaming multimedia apps (loss tolerant, rate sensitive)
 - DNS
 - DHCP
 - HTTP/3
- If reliable transfer needed over UDP (e.g., HTTP/3):
 - Add needed reliability at application layer
 - Add congestion control at application layer

UDP Segment Header

- Checksum covers UDP segment + IP pseudoheader
 - Optional in IPv4, compulsory in IPv6

UDP segment format

32 bits ver head. type of length service fragment 16-bit identifier flgs offset time to upper header laver live checksum source IP address destination IP address options (if any) payload data (variable length, typically a TCP or UDP segment)

IPv6 datagram format

IPv4 datagram format

Info: https://www.packetmania.net/en/2021/12/26/IPv4-IPv6-checksum/

UDP Checksum

	1	1	1	0	0	1	1	0	0	1	1	0	0	1	1	0
_	1	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1
wraparound	11	0	1	1	1	0	1	1	1	0	1	1	1	0	1	1
sum	1	0	1	1	1	0	1	1	1	0	1	1	1	1	0	0
checksum	0	1	0	0	0	1	0	0	0	1	0	0	0	0	1	1

Transmitted bits: 1110011001100110 1101010101010101 010001000100011

UDP checksum

Goal: Detect errors (i.e., flipped bits) in transmitted segment

Sender:

- Treat contents of UDP segment (including UDP header fields and IP addresses) as sequence of 16-bit integers
- Checksum: addition (one's complement sum) of segment content
- Checksum value put into UDP checksum field

Receiver:

- Compute the addition of the segment contents including the checksum
- Check if computed sum equals to all 1's:
 - Not all 1's error detected
 - All 1's no error detected. But maybe errors nonetheless?

UDP Checksum

Suppose a segment consists of these bits: 111001100110 110101010101010101

Even though numbers have changed (bit flips), no change in checksum!

Summary: UDP

- "No frills" protocol:
 - Segments may be lost, delivered out of order
 - Best effort service: "send and hope for the best"
- UDP has its plusses:
 - No setup/handshaking needed (no RTT incurred)
 - Helps with reliability (checksum)
- Build additional functionality on top of UDP in application layer (e.g., HTTP/3)