

الامتحان الوطني الموحد للبكالوريا الدورة العادية 1020 الموضوع

9	المعامل:	الرياضيات الرياضيات	المــــادة:
4	مدة الإنجاز:	شعبة العلوم الرياضية (أ) و (ب)	الشعب(ة) أو المسلك:

- مدة إنجاز الموضوع هي أربع (4) ساعات.
- يتكون الموضوع من خمسة تمارين مستقلة فيما بينها .
- يمكن إنجاز التمارين حسب الترتيب الذي يرغب فيه المترشح.
- التمرين الأول يتعلق بالبنيات الجبرية (3.5ن) - التمرين الثاني يتعلق بالأعداد العقدية (3.5ن) - التمرين الثالث يتعلق بالحسابيات (ن) - التمرين الرابع يتعلق بالتحليل (6.25ن) - التمرين الخامس يتعلق بالتحليل (3,75ن)

لا يسمح باستعمال الآلة الحاسبة القابلة للبرمجة لا يسمح باستعمال اللون الأحمر بورقة التحرير

NS24

التمرين الأول: (3.5 نقط) الجزءان I و II مستقلان فيما بينهما.

نزود المجموعة $]0,+\infty[$ بقانون التركيب الداخلي * المعرف بما يلي:

$$(\forall (a,b) \in I \times I)$$
 $a * b = e^{\ln(a) \cdot \ln(b)}$

- I بين أن القانون * تبادلي و تجميعي في I 0.5
- بین أن القانون * یقبل عنصر ا محایدا arepsilon فی I یتم تحدیده.
- (1) امرومة من 1) ($I\setminus\{1\},*$) زمرة تبادلية. ($I\setminus\{1\}\}$ هي المجموعة Iمحرومة من 1) (3) امرومة من 1)
 - . $(I\setminus\{1\},*)$ بين أن $]1,+\infty$ زمرة جزئية للزمرة]0.25
 - نزود I بقانون التركيب الداخلي imes (imes هو الضرب في \square)
 - \times أ- بين أن القانون * توزيعي بالنسبة للقانون
 - بین أن $(I,\times,*)$ جسم تبادلي.

$$A = \begin{pmatrix} 1 & 1 & -2 \\ -1 & -1 & 2 \\ -2 & -2 & 0 \end{pmatrix}$$
 : عتبر المصفوفة : -II

- $A^3 \ 0.5$
- . استنتج أن المصفوفة A لا تقبل مقلوبا $(2 \mid 0.5)$

التمرين الثاني: (3.5 نقط)

المستوى العقدي منسوب إلى معلم متعامد ممنظم و مباشر $(O; \vec{u}, \vec{v})$

- 3+4i: حدد الجذرين المربعين للعدد العقدي (1 0.25
- $(E):4z^2-10iz-7-i=0$: المعادلة المجموعة المجموعة 0.5
- يكن a و d حلي المعادلة (E) حيث: $\operatorname{Re}(a) < 0$ والنقطتين A و B صورتي a و d على التوالي.

$$\frac{b}{a} = 1 - i$$
 أ- تحقق أن: 0.25

0.75

- AOB متساوي الساقين و قائم الزاوية في AOB متساوي الساقين و قائم الزاوية في AOB
- C وتخالف النقطة A ولتكن D صورة النقطة B بالدوران الذي مركزه C وزاويته $\frac{\pi}{2}$ ولتكن D صورة النقطة D بالإزاحة التي متجهتها D وزاويته D
 - D أ- حدد بدلالة c العدد العقدى d لحق النقطة d
 - . L العدد العقدي ℓ لحق النقطة c العدد بدلالة c العدد بدلالة ℓ
 - ACL ثم استنتج طبيعة المثلث في ج- حدد الكتابة الجبرية للعدد العقدي $\frac{\ell-c}{a-c}$ ثم استنتج طبيعة المثلث

NS2

التمرين الثالث: (3 نقط)

1

0.25

0.5

0.5

$$m^2 + 1 \equiv 0$$
 [5] حدد الأعداد الصحيحة الطبيعية m بحيث:

يكن
$$p=3+4k$$
 : عدد اوليا بحيث $p=3+4k$ عدد صحيح طبيعي.

$$n^2 + 1 \equiv 0$$
 [p] :حيث معددا صحيحا طبيعيا

$$\left(n^2\right)^{1+2k} \equiv -1 \left[p\right]$$
 أ- تحقق أن:

$$p$$
 بين أن p و p أوليان فيما بينهما.

$$\left(n^2\right)^{1+2k} \equiv 1 \left[p\right]$$
 استنتج أن: $\left[0.75\right]$

$$n^2+1\equiv 0$$
 [p] يحقق: n يحقق عدد صحيح طبيعي مما سبق أنه لا يوجد عدد صحيح طبيعي

التمرين الرابع: (6.25 نقط)

 $f(x) = 4xe^{-x^2}$ بما يلي: f المعرفة على المجال fنعتبر الدالة العددية f المعرفة على المجال f

. $\left(O; \vec{i}; \vec{j}
ight)$ و ليكن $\left(C
ight)$ المنحنى الممثل للدالة f في المستوى المنسوب إلى معلم متعامد ممنظم

$$+\infty$$
 عند f عند الدالة f عند f عند f

. الدالة
$$f$$
 على المجال $0;+\infty$ ثم ضع جدول تغيراتها (2 0.75

$$(C)$$
 عدد معادلة نصف المماس للمنحنى (C) في أصل المعلم ثم أنشئ (C) عدد معادلة نصف المماس للمنحنى

$$((C)$$
 و نقبل أن النقطة التي أفصولها $\sqrt{\frac{3}{2}}$ النقطة التي أفصولها $||\vec{i}|| = ||\vec{j}|| = 2cm$ (نأخذ

رمين المنحنى المحصور بين المنحنى $a = \int_0^1 f(x) dx$ المحصور بين المنحنى المحصور بين المنحنى $a = \int_0^1 f(x) dx$

. 2 عددا صحيحا طبيعيا أكبر من أو يساوي n -II

 $f_n\left(x
ight) = 4x^n e^{-x^2}$: بما يلي : $\left[0;+\infty\right[$ المعرفة على المجال المعرفة على المجال المعرفة على المجال

$$(\forall x > 1)$$
 $e^{-x^2} < e^{-x}$: أ- بين أن (1 0.25

$$+\infty$$
 باستنتج نهایة الدالة f_n عندما تؤول x المي $-$ 0.25

. ادرس تغيرات الدالة
$$f_n$$
 على المجال $[0;+\infty[$ ثم ضع جدول تغيراتها (2 $]$

$$f_n(u_n) = 1$$
 : بين أنه يوجد عدد حقيقي وحيد u_n من المجال]0.1 بين أنه يوجد عدد حقيقي وحيد u_n

$$(\forall n \ge 2)$$
 $f_{n+1}(u_n) = u_n$: أ- تحقق أن (4 | 0.25

. ب- بين أن المتتالية
$$(u_n)_{n>2}$$
 تزايدية قطعا ثم استنتج أنها متقاربة $(u_n)_{n>2}$

الصفحة	
4	

NS24

الامتحان الوطني الموحد للبكالوريا -الدورة ا**لعادية ١٥٥٥** – **الموضوع** - مادة: **الرياضيات -** شعبة العلوم الرياضية (أ) و (ب)

$$\ell = \lim_{n \to +\infty} u_n :$$
 نضع (5

$$0 < \ell \le 1$$
: ابين أن

0.25

0.25

0.5

0.25

0.75

0.75

$$(\forall n \ge 2)$$
 $-\frac{\ln(4)}{n} < \ln(u_n) < \frac{1}{n} - \frac{\ln(4)}{n}$: بين أن

$$\ell$$
 =1 : استنتج أن

التمرين الخامس: (3.75 نقط)

$$F(x) = \int_{x}^{2x} \frac{1}{\ln(1+t^2)} dt$$
 : يعتبر الدالة العددية F المعرفة على F المعرفة على الدالة العددية F

. بين أن الدالة F فردية ($1 \mid 0.25$

$$\varphi(x) = \int_{1}^{x} \frac{1}{\ln(1+t^{2})} dt$$
 : نضع]0,+∞[نضع x كل (2

$$(\forall x > 0)$$
 $F(x) = \varphi(2x) - \varphi(x)$ أ- تحقق أن: 0.25

$$x>0$$
 من أجل $F'(x)$ من أحسب $f'(x)$ من أجل $f'(x)$ من أجل $f'(x)$ من أجل $f'(x)$ من أجل $f'(x)$

.]0,+
$$\infty$$
[استنتج منحى تغيرات الدالة F على المجال 0.5

$$(\forall x > 0) (\exists c \in]x, 2x[) : F(x) = \frac{x}{\ln(1+c^2)}$$
 ناب استعمال مبر هنة التزايدات المنتهية ، بين أن: (3 0.5

$$(\forall x > 0)$$
 :
$$\frac{x}{\ln(1+4x^2)} < F(x) < \frac{x}{\ln(1+x^2)}$$
 : $\frac{x}{\ln(1+x^2)}$

$$F\left(\frac{\sqrt{e-1}}{2}\right) > \frac{\sqrt{e-1}}{2}$$
 و $F\left(\sqrt{e-1}\right) < \sqrt{e-1}$: د- تحقق أن

$$[0,+\infty[$$
 ثم استنتج أن المعادلة $F(x)=x$ تقبل حلا وحيدا في

I أن * قانون تبادلي في المجموعة

I د b عنصرین من a

$$a*b = e^{\ln(a).\ln(b)}$$
 : ليينا $= e^{\ln(b).\ln(a)}$ $= b*a$

و منه : * قانون تبادلي في a*b=b*a

لنبين أن * قانون تجميعي في المجموعة 1.

Lلیکن a و b و b عناصر من

$$a * (b * c) = e^{\ln(a).\ln(b*c)}$$

$$= e^{\ln(a).\ln(e^{\ln(b).\ln(c)})}$$

$$= e^{\ln(a).\ln(b).\ln(c)}$$

$$= e^{\ln(e^{\ln(a).\ln(b)}).\ln(c)}$$

$$= e^{\ln(a*b).\ln(c)}$$

$$= (a * b) * c$$

إذن القانون * تجميعي في المجموعة 1.

 $e^{\ln(a).\ln(b)} \neq 1$ و $e^{\ln(a).\ln(b)} > 0$: نستنتج أن

 $e^{\ln(a).\ln(b)} \in I \setminus \{1\}$: فذا يعني بكل بساطة أن $a * b \in I \setminus \{1\}$:

 $I \setminus \{1\}$ و منه * قانون تركيب داخلى في المجموعة

 $I\setminus\{1\}$ تبادلية و تجميعية القانون * في المجموعة Iنستنتجه من المجموعة I لأن $\{1\}$ جزء من

بما أن القانون * تبادلي و تجميعي في [فإن * تبادلي و تجميعي $I \setminus \{1\} \subset I$ كذلك في المجموعة $\{1\} \setminus I$ لأن $I \supset \{1\}$

I هو العنصر المحايد للقانون * في المجموعة

 $I \setminus \{1\}$ هو العنصر المحايد للقانون * في المجموعة e $e \in I \setminus \{1\}$ لأن $e \neq 1$

 $I \setminus \{1\}$ المجموعة a اليكن a عنصرا من المجموعة

 $I \setminus \{1\}$ مقلوب للعنصر α في المجموعة χ

a * x = x * a = e يعنى :

a * x = e ننطلق من الكتابة

 $\ln(a).\ln(x)=1$: و منه $e^{\ln(a).\ln(x)}=e$ هذا يعنى أن

 $x = e^{\frac{1}{\ln(a)}}$: يعني $\ln(x) = \frac{1}{\ln(a)}$

 $a \neq 1$ فإن $a \in I \setminus \{1\}$: بما أن

 $ln(a) \neq 0$: أن يعنى أن

 $e^{\frac{1}{\ln(a)}} \neq 1$: يعني $\frac{1}{\ln(a)} \neq 0$ $e^{\frac{1}{\ln(a)}} \in I \setminus \{1\}$: أي

نستنتج أن كل عنصر a من المجموعة $\{1\}$ بقبل $I\setminus\{1\}$ من نفس المجموعة $e^{\frac{1}{\ln(a)}}$ مقلوبا

خلاصة : لقد تمكنا من أن نبر هن على أن * قانون تركيب داخلي في المجموعة $\{1\}$ و له عنصر محايد e و كل عنصر $I\setminus\{1\}$ $I\setminus\{1\}$ مقلوبا $e^{\frac{1}{\ln{(a)}}}$ في المجموعة

و بالتالي $(*, \{1\} \setminus I)$ زمرة تبادلية.

I ليكن ε العنصر المحايد القانون ε في المجموعة

 $(\forall a \in I)$; $a * \varepsilon = \varepsilon * a = a$: وهذا يعنى

 $\varepsilon * a = a$ أو $a * \varepsilon = a$ لتحديد قيمة ع ننطلق من إحدى المتساويتين . $a * \varepsilon = a$: الكتابة

 $e^{\ln(a).\ln(\varepsilon)} = a$: تعنی

 $\ln(a).\ln(\varepsilon) = \ln(a)$: تعني

 $\ln(\varepsilon) = \frac{\ln(a)}{\ln(a)} = 1$: تعني

 $\varepsilon = e$: تعنی

 $]0;+\infty[$ نتأكد من أن ينتمى إلى المجال

0 من فطعا من $e \approx 2.72$

 $e\epsilon I$: إذن

و منه القانون يقبل عنصر ا محايدا و هو العدد e

■ (3)(ب)

 $]1; +\infty[\subset I \setminus \{1\}]$ أولا ، نلاحظ أن

 $I \setminus \{1\} = [0; 1[\cup]1; +\infty[:]]$ لأن

 $]1; +\infty[\neq\emptyset]$ و كذلك :

 $I \setminus \{1\}$ و هذا يعنى أن $]\infty+[1]$ جزء غير منعدم من المجموعة

 $I \setminus \{1\}$ ايكن a و b عنصرين من المجموعة

 $b \neq 1$ و $a \neq 1$ هذا يعنى أن

 $ln(a) \neq 0$ و منه : $n(b) \neq 0$

 $\ln(a).\ln(b) \neq 0$: يعنى

 $e^{\ln(a).\ln(b)} \neq 1$: و منه

أجوبة الدورة العادية 2010 من إعداد الأستاذ بدر الدين الفاتحى: (

·(j)(3) **=**

الصفحة: 173

) رمضان 2012

(4) ■

 \mathbb{R}^* لدينا I جزء غير منعدم من

I ليكن x و y عنصرين من

. $x \times y^{-1} > 0$: $\frac{x}{y} > 0$. و منه : 0 > 0 . 0 > 0 . 0 > 0 . 0 > 0 . 0 > 0 . 0 > 0 . 0 > 0 . 0 > 0 .

 (\mathbb{R}^*,\times) زمرة جزئية من (I,\times) إذن

و لدينا حسب السؤال4 : * توزيعي بالنسبة لـ \times .

و لدينا كذلك : حسب السؤال $oxedsymbol{(i)}$ $oxedsymbol{(i)}$ زمرة تبادلية .

و بالتالي (*, imes, I) جسم تبادلي .

—(1)(II) **■**

بعد الحساب سوف تحصل على النتائج التالية:

$$A^{2} = \begin{pmatrix} 4 & 4 & 0 \\ -4 & -4 & 0 \\ 0 & 0 & 0 \end{pmatrix} \quad \mathfrak{s} \quad A^{3} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

. $\mathscr{M}_3(\mathbb{R})$ قترض أن A تقبل مقلوبا A^{-1} في المجموعة

. $A \times A^{-1} = A^{-1} \times A = I$: إذْن

 $egin{pmatrix} 1 & 0 & 0 \ 0 & 1 & 0 \ 0 & 0 & 1 \end{pmatrix}$: هو ضرب المصفوفات و I هي المصفوفة : imes هو ضرب الكتابة $A imes A^{-1} = I$ ننطلق من الكتابة .

 $A^3 \times A^{-1} = A^2$: نضرب طرفي هذه المتساوية في A^2 نحصل على

$$A^2 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \quad :$$
إذن

 $A^2 = \begin{pmatrix} 4 & 4 & 0 \\ -4 & -4 & 0 \\ 0 & 0 & 0 \end{pmatrix}$: ناقض واضح لأن :

 $\mathcal{M}_3(\mathbb{R})$ و بالتالي المصفوفة A لا تقبل مقلوبا في

التمرين الثاني: (3,5 ن)

____(i)(1)

3+4i: ليكن العدد العقدي x+iy جذر ا مربعا للعدد العقدي

 $(x+iy)^2 = 3+4i$ نفذا يعني أن

$$\Leftrightarrow x^{2} - y^{2} + i(2xy) = 3 + 4i$$

$$\Leftrightarrow \begin{cases} x^{2} - y^{2} = 3 \\ 2xy = 4 \end{cases}$$

$$\Leftrightarrow \begin{cases} x^{2} - y^{2} = 3 \\ xy = 2 \end{cases}$$

 $x^2 = \frac{4}{v^2}$: من المعادلة الثانية نحصل على

 $\frac{4}{y^2} - y^2 = 3$: نعوض x^2 في المعادلة الأولى نجد

 $y^4 + 3y^2 - 4 = 0$: يعني

 $]1,+\infty[$ يكفي الآن أن نبر هن على نه إذا كان a و a عنصرين من

 $I\setminus\{1\}$ في b بحيث b' هو مقلوب $a*b'\epsilon]$ 1, $+\infty[$

$$a*b'=a*\left(e^{rac{1}{\ln b}}
ight)$$
 : ننطاق من الكتابة $=e^{\ln(a).\ln\left(e^{rac{1}{\ln b}}
ight)}$ $=e^{\ln(a).rac{1}{\ln(b)}}$ $=e^{rac{\ln(a)}{\ln(b)}}$

 $b\epsilon$ ا المناجهة أخرى لدينا: ∞ من جهة أخرى لدينا: 0

a>1 و b>1

 $\frac{\ln(a)}{\ln(b)} > 0$ يعني $\ln a > 0$ و $\ln b > 0$

 $e^{\frac{\ln(a)}{\ln(b)}}>1$ و منه $e^{\frac{\ln(a)}{\ln(b)}}\epsilon$]1, $+\infty$ [: إذن :

 $a*b'\epsilon$ یعنی: $[1,+\infty[$

الوضعية التي نتوفر عليها الآن هي $(*,\{1\},I)$ زمرة تبادلية .

 $I\setminus\{1\}$ جزء غير منعدم من المجموعة $]1,+\infty[$

 $(\forall (a,b)\epsilon]1; +\infty[) ; a*b'\epsilon]1; +\infty[$

نستنتج من هذه الوضعية أن $(*,]\infty+,1[)$ زمرة جزئية للزمرة $(*,\{1\},1)$.

. I و b و b تلاث عناصر من المجموعة

يكون * توزيعيا بالنسبة للقانون × إذا كان:

$$\begin{cases} a*(b\times c) = (a*b)\times(a*c) \\ (a\times b)*c = (a*c)\times(b*c) \end{cases}$$

$$a*(b \times c) = e^{\ln(a).\ln(b \times c)}$$
 : المنا $e^{\ln(a).\ln(b)+\ln(c)}$ $= e^{\ln(a).\ln(b)+\ln(a)\ln(c)}$ $= e^{\ln(a).\ln(b)} \times e^{\ln(a).\ln(c)}$ $= (a*b) \times (a*c)$

و بما أن القانون * تبادلي نستنتج المتساوية الأخرى

و بالتالي ${}^{\downarrow}_{\downarrow}$ القانون * توزيعي بالنسبة للقانون ${}^{\times}$

من اعداد الأستاذ بدر الدين الفاتحي: (

أجوية الدورة العادية 2010

الصفحة: 174

) رمضان 2012

$$\left| egin{aligned} rac{b-a}{0-a} &= -rac{b}{a} + 1 & & & \\ &= -(1-i) + 1 & & & \\ &= i & & & \\ &= e^{irac{\pi}{2}} & & & & \end{aligned}
ight.$$

$$\frac{b-a}{0-a} = e^{i\frac{\pi}{2}}$$
 : إذن

$$\Leftrightarrow \begin{cases} \frac{AB}{AO} = 1 \\ \left(\overline{AB}, \overline{AO}\right) \equiv \frac{\pi}{2} [2\pi] \end{cases}$$

$$\Leftrightarrow \begin{cases} AB = AO \\ \left(\overline{AB}, \overline{AO}\right) \equiv \frac{\pi}{2} [2\pi] \end{cases}$$

O متساوي الساقين و قائم الزاوية في النقطة O

$$B \xrightarrow{R_c\left(\frac{\pi}{2}\right)} D$$
 : الدينا

 $(d-c)=e^{irac{\pi}{2}}(b-c)$: إذن حسب التعريف العقدي للدوران

$$\Leftrightarrow \quad d = c + i(b - c)$$

$$\Leftrightarrow$$
 $d = c + ib - ic$

$$\Leftrightarrow$$
 $c(1-i) = d - ib$

$$\Leftrightarrow$$
 $c(1-i) = d - i\left(\frac{3}{2}i + \frac{1}{2}\right)$

$$\Leftrightarrow$$
 $c(1-i) = d + \frac{3}{2} - \frac{i}{2}$

$$\Leftrightarrow$$
 $c = \left(\frac{1}{1-i}\right)d + \left(\frac{\frac{3}{2} - \frac{i}{2}}{1-i}\right)$

$$\Leftrightarrow$$
 $c = \frac{1}{2}(1+i)d + \left(1 + \frac{i}{2}\right)$

 $D \xrightarrow{T_{\overrightarrow{AO}}} L$: الدينا

 $\overrightarrow{DL} = \overrightarrow{AO}$: إذن حسب تعريف الإزاحة

$$\Leftrightarrow \quad (\ell - d) = (0 - a)$$

$$\Leftrightarrow \quad \left(\ell + (i - 1)c + \frac{3}{2} - \frac{1}{2}i\right) = -a$$

$$\Leftrightarrow \quad \ell + (i - 1)c + \frac{3}{2} - \frac{1}{2}i = \frac{1}{2} - i$$

$$\Leftrightarrow \quad \ell = (1 - i)c - \frac{i}{2} - 1$$

إذن المعادلة : $y^4 + 3y^2 - 4 = 0$ تقبل أربعة حلول. نعوض كل قيمة لـ y في النطمة لإيجاد قيمة x الموافقة.

$$x=2$$
 : فإن $y=1$ فإن $y=1$ إذا كان $y=-1$ فإن $y=-1$ إذا كان $y=2$ فإن $y=2$ فإن $y=2$ فإن $y=2$ فإن $y=2$ فإن كان $y=2$ فإن $y=2$

بعد ذلك نكتب الجذور المربعة التي حصلنا عليها و هي :

x + iy = 2 + i : في الحالة الأولى : x + iy = -2 - i : في الحالة الثانية : x + iy = -2 - i : في الحالة الثالثة : x + iy = -2 - i :

x + iy = 2 + i : في الحالة الرابعة

و بالتالي : (3+4i) يقبل جذرين مربعين فقط و هما : (2-i) و (2+i)

. (E) : $4z^2 - 10iz - 7 - i = 0$ ندل في \Im المعادلة :

. $\Delta = 4(3+4i)$: بعد حساب المميز Δ نجد

لدينا حسب السؤال $oxed{1}$: $oxed{(j)}$ يقبل جذرين مربعين فقط $oxed{1}$ و $oxed{a}$. $oxed{(-2-i)}$ و $oxed{2+i)}$.

. $\Delta = [2(2+i)]^2$ نحصل على : (2+i) نختار

و منه (E) تقبل الحلين a و b كما يلي :

$$b = \frac{3}{2}i + \frac{1}{2}$$

$$g \quad a = i - \frac{1}{2}$$

عندما نختار الجذر المربع الثاني لـ (41 + 3) نحصل على نفس النتيجة.

 $a(1-i) = \left(i - \frac{1}{2}\right)(1-i) :$ $= i + 1 - \frac{1}{2} + \frac{1}{2}i$ $= \frac{1}{2} + \frac{3}{2}i$

أجوبة الدورة العادية 2010 من إعداد الأستاذ بدر الدين الفاتحى : () رمضان 2012 الصفحة : 75

ـــ(3)(ب)

(j)(**2**)■

لیکن p عددا أولیا .و k و n عددین صحیحین طبیعیین

$$n^2+1\equiv 0[p]$$
 : ننطلق إذن من الكتابة

$$\Leftrightarrow n^2 \equiv -1[p]$$

$$\Leftrightarrow (n^2)^{(2uc)} \equiv (-1)^{(uc)}[p]$$

$$\Leftrightarrow (n^2)^{(2k+1)} \equiv -1[p]$$

⊕2■

 $(n^2)^{(2{
m k}+1)} \equiv -1[p]$ لدينا حسب السؤال

$$\Leftrightarrow \ (\exists u \in \mathbb{Z}) \ : \ (n^2)^{(2k+1)} + 1 = pu$$

$$\iff (\exists u \in \mathbb{Z}) : pu + n(\underbrace{-n^{4k}}_{v}) = 1$$

$$\Leftrightarrow (\exists u, v \in \mathbb{Z}) : pu + nv = 1$$

$$n \wedge p = 1$$
 : Bezout و بالتالي حسب

–(হ)(2) ∎

 $n \wedge p = 1$ ولي عدد أولي و الدينا

 $n^{p-1} \equiv 1[p]$: Fermat إذن حسب مبر هنة

$$(n^2)^{2k+1} \equiv 1[p]$$
 : إذن $p = 4k + 3$

(2)(2)■

 $n^2+1\equiv 0$ رهان بالخلف نفترض وجود العدد n بحيث: البرهان بالخلف نفترض وجود العدد

$$\begin{cases} (n^2)^{2k+1} \equiv -1[p] \\ (n^2)^{2k+1} \equiv 1[p] \end{cases}$$
 : إذن

p/2 : أي $1 \equiv -1$

p=2: بما أن p عدد أولي و يقسم العدد الأولي 2 فإن

4k+3=2 و هذا مستحیل لأنه لا وجود لعدد صحیح طبیعی k یحقق

 $n^2 + 1 \equiv 0$ و بالتالي لا وجود لعدد صحيح طبيعي ميت يحقق العدد صحيح طبيعي $n^2 + 1 \equiv 0$

 $\begin{vmatrix} \frac{\ell-c}{a-c} = \frac{(1-i)c - 1 - \frac{i}{2} - c}{i - \frac{1}{2} - c} & : \text{ Let} \\ = \frac{-ic - 1 - \frac{i}{2}}{i - \frac{1}{2} - c} & = \frac{i\left(-c + i - \frac{1}{2}\right)}{i - \frac{1}{2} - c} & = \underbrace{i}$

$$\frac{\ell-c}{a-c}=i=e^{\frac{i\pi}{2}}$$
 : إذن

$$\iff \begin{cases} \frac{CL}{CA} = 1\\ \left(\overline{\overrightarrow{CA}}, \overline{CL}\right) \equiv \frac{\pi}{2} [2\pi] \end{cases}$$

C متساوي الساقين و قائم الزاوية في النقطة ALC و بالتالي المثلث

لتمرين الثالث: (3.0 ن)

(1)■

(€)(3)■

في البداية وجب التذكير بخاصيتين هامتين :

الخاصية الأولى : $\frac{b}{2}$ ، إذا كان $\frac{a}{2}$ يقسم $\frac{b}{2}$ فإنه يقسم $\frac{b}{2}$ كل تأليفة خطية لهما: $\frac{a}{2}$

 $\left\{ egin{array}{ll} a\ /\ b \\ a\ /\ c \end{array}
ight. \Rightarrow (orall u,v\in \mathbb{Z})\colon a/(ub+vc) \ \colon$ بتعبير آخر

(un premier qui divise un produit) الخاصية الثانية

كل عدد أولي يقسم جداء عددين فإنه بالضرورة يقسم أحدهما.

$$\left\{egin{array}{ll} p \in \mathbb{P} \\ p / ab \end{array}
ight. \implies \left(p / a\right)$$
 أو $\left(p / b\right)$: بتعبير آخر

 $m^2+1\equiv 0$ [5] : ننطلق إذن من الكتابة

$$\Leftrightarrow$$
 5 / $(m^2 + 1)$

 $5/(m^2+1-5)$: إذن حسب الخاصية الأولى

$$5/(m-2)(m+2)$$
 : يعني

بما أن 5 عدد أولي فإنه حسب الخاصية الثانية:

5/(m-2) $\frac{1}{2}$ $\frac{5}{m+2}$

و منه حسب الخاصية الأولى:

$$5/(m-2)$$
 1 $5/(m+2-5)$

$$m\equiv 2[5]$$
 أو $m\equiv 3[5]$ يعني:

 $m \in \{\overline{2},\overline{3}\}$ نكتب $\mathbb{Z}/5\mathbb{Z}$ في المجموعة

$\left(e^{-x^2}\right)^{'}=-2xe^{-x^2}$: لاحظ أن $\left(e^{-x^2}\right)^{'}=4xe^{-x^2}$: يعني $\int_0^1 4xe^{-x^2}dx\Big|=-2\left[e^{-x^2}\right]_0^1$ $-\cdots$: يان $\left(e^{-x^2}\right)^1$ $\left(e^{-x^$

مساحة الحيز 3 تقاس باستعمال التكامل التالي :

$$S = \int_0^1 f(x) dx$$

 $2(1-e^{-1})$ بما أن $\|\vec{x}\| = \|\vec{x}\| = 2cm$: بما أن يعني في الواقع يعني في الواقع

 $a=8(1-e^{-1})\ cm^2$ إذن unite=2cm إذن التمرين لدينا المرين الدينا الماني الثاني الثاني

اليكن x عددا حقيقيا أكبر من أو يساوي 1

$$x > 1$$
 $\Rightarrow x^2 > x$: لينا $\Rightarrow -x^2 < -x$ $\Rightarrow e^{-x^2} < e^{-x}$

 \mathbb{R} الدالة $x \to e^x$ تزايدية قطعا على

-⊎1■

$$(\forall x > 1): \ 0 < e^{-x^2} < e^{-x}$$
 : لينا

 $(\forall x > 1): 0 < 4x^n e^{-x^2} < 4x^n e^{-x}$: إذن

من جهة أخرى لدينا:

$$\lim_{x \to +\infty} x^n e^{-x} = \lim_{x \to +\infty} x^n e^{\frac{-nx}{n}} = \lim_{x \to +\infty} \left(x e^{\frac{-x}{n}} \right)^n$$

$$= \lim_{u \to -\infty} (-nue^u)^n = 0$$

$$u = -\frac{x}{n}$$

 $\lim_{x\to +\infty} x^n e^{-x^2} = 0$: بنفس الطريقة نبين أن

$$(\forall x > 1): 0 < 4x^n e^{-x^2} < 4x^n e^{-x}:$$
 المنت المنت

 $\frac{e^x}{x} \xrightarrow{+\infty} +\infty$: نعلم أن

$$\lim_{x \to +\infty} 4xe^{-x^2} = \lim_{x \to +\infty} \left(\frac{4}{x}\right) \times \frac{1}{\left(\frac{e^{x^2}}{x^2}\right)} \quad :$$
لاينا

نضع

-(2) ■

$$\lim_{t o +\infty} \left(rac{4}{\sqrt{t}}
ight) imes rac{1}{\left(rac{e^t}{t}
ight)} = 0$$
 : إذن النهاية تصبح

$$f'(x) = 4e^{-x^2} + (4x)(-2xe^{-x^2})$$
 : لينا
= $(1 - 2x^2)(4e^{-x^2})$

 $1-2x^2$ بما أن : $4e^{-x^2}>0$ فإن إشارة $f^{'}(x)$ تتعلق فقط بإشارة $4e^{-x^2}>0$. وإذا كان : $x=\frac{\sqrt{2}}{2}$: وإذا كان :

$$x = \frac{1}{2}$$
 فإن $x = \frac{1}{2}$ فان $\sqrt{2}$

$$f^{'}(x) < 0$$
 فإن $x > \frac{\sqrt{2}}{2}$: إذا كان

.
$$f^{'}(x)>0$$
 فإن $x<rac{\sqrt{2}}{2}$: إذا كان

و نلخص النتائج في الجدول التالي:

-(3)■

معادلة المماس لـ (ك) في النقطة 0 هي :

$$(\Delta): y = f'(0)(x - 0) + f(0)$$

$$x \ge 0$$
 مع $(\Delta): y = 4x$ يعنى

من إعداد الأستاذ بدر الدين الفاتحي : (الصفحة : 177

ۣ؞ ڿۅڡڿۅڡڿۅڡڿۅۄڿۅڡڿۅڡڿۅڡڿۅڡڿۅڡڿۅڡڿۅۄڿۅۅڿۅڡڿۅڡڿۅڡڿۅڡڿ

جميع النتائج المحصل عليها لحد الآن تخول لنا استعمال مبر هنة القيم الوسيطية و بالتالي : يوجد عدد حقيقي وحيد u_n محصور بين 0 و 1

$$g_n(u_n)=0$$
 : و يحقق

]0,1[من المجال u_n من المجال $f_n(x)=1$ من المجال أو بتعبير آخر المعادلة d_n

(j)(**4**)■

$$f_n(x) = 4x^n e^{-x^2} :$$
 : Let

$$| \Rightarrow f_{n+1}(x) = 4x^{n+1}e^{-x^2}$$

$$\implies f_{n+1}(x) = x \left(4x^n e^{-x^2} \right)$$

$$\Rightarrow f_{n+1}(x) = x f_n(x)$$

$$f_{n+1}(u_n)=u_n.f_n(u_n)$$
 : ومنه

$$f_n(u_n) = 1$$
 (3) لدينا حسب السؤال

$$f_{n+1}(u_n)=u_n$$
. $1=u_n$: خن

 $oldsymbol{(4)}_{oldsymbol{(4)}}$ لدينا f_n دالة متصلة و تزايدية قطعا على $oldsymbol{(0,1)}$.

 $u_n \epsilon]0,1[$ و لدينا كذلك : $u_n < 1$ لأن $f_{n+1}(u_n) < f_{n+1}(u_{n+1})$: إذن

 (\mathfrak{j}) عسب السؤال $f_{n+1}(u_n)=u_n$: لأن

 $f_{n+1}(u_n) = u_n$. 0 $f_{n+1}(u_{n+1}) = 1$. $g_{n+1}(u_{n+1}) = 1$. و $g_{n+1}(u_{n+1}) = 1$.

 $(\ [0,1]$ و بما أن f_{n+1} تقابل $(\$ متصلة و تزايدية قطعا على $u_n < u_{n+1}$.

و منه $(u_n)_n$ متتالیة تزایدیة و بما أنها مکبورة بالعدد 1 ($u_n < 1$) فإنها متقاربة

-(j(**5**)■

 $0 < \lim_{\infty} (u_n) \le 1$: لاننا $0 < u_n < 1$ الدينا $0 < \ell \le 1$. و منه

المتتالية $(u_n)_n$ مكبورة و تزايدية إذن يستحيل أن تكون نهايتها الصفر و هذا ما يبرر الكتابة $\ell \leq 1$ $0 < \ell \leq 1$ الذي ليس قيمة من قيمها لأنها تزايدية . و في هذه الحالة نقول بأن العدد 1 محد علوي للمجموعة $\{u_n, n \geq 2\}$.

⊕(5)∎

$$\begin{cases} 0 < u_n < 1 \\ 0 < (u_n)^2 < 1 \end{cases}$$
 : لدينا

$$\Rightarrow 1 < e^{(u_n)^2} < e^{(u_n)^2}$$

$$f(u_n) = 1$$
 : نعلم أن

$$4(u_n)^n e^{-(u_n)^2} = 1$$
 : يعني

الصفحة : 178

$$f_n^{'}(x) = 4e^{-x^2}x^{n-1}(n-2x^2)$$
 : لدينا

$$f_{n}^{'}(x)$$
 فإن إشارة $4e^{-x^{2}}x^{n-1}>0$ بما أن $n-2x^{2}$ فقط بإشارة

.
$$f_n^{'}(x)=0$$
 فإن $x=\sqrt{\frac{n}{2}}$: إذا كان

.
$$f_n^{'}(x) < 0$$
 فإن $x > \sqrt{\frac{n}{2}}$: إذا كان

.
$$f_n^{'}(x)>0$$
 فإن $x<\sqrt{rac{n}{2}}$: إذا كان

$$\lim_{x \to 0} f_n(x) = \lim_{x \to 0} 4x^n e^{-x^2} = 0$$
 : و لدينا

$$\lim_{n \to +\infty} f_n(x) = 0$$

و نلخص النتائج في الجدول التالي :

 f_n لدينا حسب جدول تغيرات الدالة

$$\left[0,\sqrt{rac{n}{2}}
ight]$$
 دالة متصلة و تزايدية قطعا على المجال f_n لنبين أن $\left[0,1
ight]\subset \left[0,rac{\sqrt{n}}{\sqrt{2}}
ight]$ لنبين أن

$$0 \le x \le 1$$
 إذن $x \ge 1$

$$0 \le x^2 \le 1$$
 و منه

$$0 \leq 2 \leq n$$
 : نعلم أن

 $0 \le 2x^2 \le 1$: نضرب هاتين المتفاوتتين طرفا بطرف نحصل على

$$[0,1] \subset \left[0,\frac{\sqrt{n}}{\sqrt{2}}
ight]$$
 : و منه نستنتج أن $0 \leq x \leq \frac{\sqrt{n}}{\sqrt{2}}$

 $[0,1] \subset \left[0,rac{\sqrt{n}}{\sqrt{2}}
ight]$ و لدينا $\left[0,rac{\sqrt{n}}{2}
ight]$ و متصلة و تزايدية قطعا على

[0,1] متصلة و تزايدية قطعا على
$$f_n$$
 إذن

$$\left[0,rac{4}{a}
ight]$$
 و بالتالي يا قابل من f_n نحو صورته

$$g_n(x) = f_n(x) - 1 :$$
نضع

$$g_n(0). g_n(1) = (f_n(0) - 1)(f_n(1) - 1)$$
 : لدينا
$$= (0 - 1)\left(\frac{4}{e} - 1\right)$$

$$\approx -0.47 < 0$$

من إعداد الأستاذ بدر الدين الفاتحى: (

رمضان 2012)

أجوبة الدورة العادية 2010

$$= -\int_{1}^{x} \frac{1}{\ln(1+t^{2})} dt + \int_{1}^{2x} \frac{1}{\ln(1+t^{2})} dt$$

$$= -\varphi(x) + \varphi(2x)$$

(ب)(2)∎

 $F(x) = -\varphi(x) + \varphi(2x)$: لدينا

الدالة $x \to \varphi(x)$ قابلة للإشتقاق

 $\varphi(x)$ دالة متصلة إذن تقبل دالة أصلية و هي الأن أ $\frac{1}{\ln(1+x^2)}$

$$\varphi'(x) = \frac{1}{\ln(1+x^2)} :$$
و لدينا

و لدينا كذلك : $\varphi(2x)$ دالة قابلة للإشتقاق لأنها مركب دالتين قابلتين للاشتقاق

و بالتالي F قابلة للإشتقاق لأنها مجموع دالتين قابلتين للإشتقاق.

$$F'(x) = -\varphi'(x) + 2\varphi'(2x) \qquad : \dot{\varphi}$$

$$= \frac{-1}{\ln(1+x^2)} + \frac{2}{\ln(1+4x^2)}$$

$$= \frac{2\ln(1+x^2) - \ln(1+4x^2)}{\ln(1+4x^2) \cdot \ln(1+x^2)}$$

$$= \frac{\ln[(1+x^2)^2] - \ln(1+4x^2)}{\ln(1+4x^2) \cdot \ln(1+x^2)}$$

$$= \frac{\ln\left(\frac{x^4 + 2x^2 + 1}{1+4x^2}\right)}{\ln(1+4x^2) \cdot \ln(1+x^2)}$$

x > 0: Levil

(হ)(2)∎

 $1 + 4x^2 > 1$, $1 + x^2 > 1$; 0 > 1

 $ln(1+4x^2) . ln(1+x^2) > 0$:

 $ln\left(\frac{x^4+2x^2+1}{1+4x^2}\right)$: و بالتالي إشارة F'(x) تتعلق فقط بإشارة

$$\ln\left(\frac{x^4 + 2x^2 + 1}{1 + 4x^2}\right) = 0 \qquad \text{: included}$$

$$\Leftrightarrow \frac{x^4 + 2x^2 + 1}{1 + 4x^2} = 1$$

$$\Leftrightarrow x^4 + 2x^2 + 1 = 1 + 4x^2$$

$$\Leftrightarrow x^4 - 2x^2 = 0$$

$$\Leftrightarrow x^2(x^2 - 2) = 0$$

$$\Leftrightarrow x = 0 \text{ is } x = \sqrt{2} \text{ is } x = -\sqrt{2}$$

$$e^{(u_n)^2} = 4(u_n)^n$$
 : و منه

 $1 < e^{(u_n)^2} < e$: نظلق من

$$1 < 4(u_n)^n < e$$
 : إذن

: إذن \mathbb{R}^*_{\perp} إذن الدالة \ln إذن الدالة الدا

$$0 < \ln(4(u_n)^n) < 1$$

$$\Leftrightarrow$$
 0 < $\ln(4) + n \ln(u_n) < 1$

$$\iff \frac{-\ln 4}{n} < \ln(u_n) < \frac{1}{n} - \frac{\ln 4}{n}$$

 $\frac{-\ln 4}{n} < \ln(u_n) < \frac{1}{n} - \frac{\ln 4}{n}$ بما أن :

$$\lim_{n \to \infty} \ln(u_n) = 0$$
 إذن بالضرورة :

$$\lim_{n \to \infty} (u_n) = \lim_{n \to \infty} e^{\ln(u_n)} = e^0 = 1$$
 : و منه

$$\ell=1$$
 و بالتالي : $\ell=\ell$

 $F(-x) = \int_{-2x}^{-2x} \frac{1}{\ln(1+t^2)} dt$: لينا

$$dy = -dt$$
 نضع $y = -t$:

.
$$y=x$$
 فإن $t=-x$: إذا كان

.
$$y=2x$$
 فإن $t=-2x$ إذا كان

$$F(-x) = \int_{x}^{2x} \frac{-1}{\ln(1+y^{2})} dy$$
$$= -\int_{x}^{2x} \frac{1}{\ln(1+y^{2})} dy$$
$$= -F(x)$$

إذن: F دالة فردية.

x > 0: ليكن

$$F(x) = \int_{x}^{2x} \frac{1}{\ln(1+t^2)} dt$$
 : المينا
$$= \int_{x}^{1} \frac{1}{\ln(1+t^2)} dt + \int_{1}^{2x} \frac{1}{\ln(1+t^2)} dt$$

من إعداد الأستاذ بدر الدين الفاتحى: (

الصفحة · 179

ڲٶڲڿۅڮٷۅڲۅۅڲۅۅڲڿۅڲٷۅڲۅۅڲۅۅڲۅۅڲۅۅڲۅۅڲۅۅڲۅۅڲۅۅڲ

(€)(3)■

لدينا حسب السؤال

$$\begin{cases} \frac{x}{\ln(1+4x^2)} < F(x) < \frac{x}{\ln(1+x^2)} \end{cases}$$

$$\lim_{x \to +\infty} \frac{x}{\ln(1+x^2)} = +\infty :$$
و لدينا

$$\left(\lim_{x\to+\infty}\frac{\ln x}{x}=0\right)$$
 : يكفي أن نستعمل

$$\lim_{x \to +\infty} \frac{x}{\ln(1+4x^2)} = +\infty$$
 و لدينا كذلك:

$$\left(\lim_{x\to+\infty}F(x)=+\infty\right) : \dot{\psi}$$
اذن

$$\left(\lim_{x\to 0^+} \frac{\ln x}{x} = -\infty\right)$$
 : و بنفس الطريقة و باستعمال النهاية

$$\left(\lim_{x\to+\infty}\frac{F(x)}{x}=0\right)$$
 و $\left(\lim_{x\to0^+}F(x)=+\infty\right)$: نجد

$$F(x) < \frac{x}{\ln(1+x^2)}$$
 لدينا حسب السؤ ال

$$\sqrt{e-1} pprox 1,31 > 0$$
 : و لدينا

$$F(\sqrt{e-1}) < \frac{\sqrt{e-1}}{\ln(1+(e-1))}$$
 إذن :

$$(1)$$
 $F(\sqrt{e-1}) < \sqrt{e-1}$: يعني

$$\frac{\sqrt{e-1}}{2} \approx 0.65 > 0$$
 و لدينا كذلك: $\frac{x}{\ln(1+4x^2)} < F(x)$

$$F\left(\frac{\sqrt{e-1}}{2}\right) > \frac{\frac{\sqrt{e-1}}{2}}{\ln\left(1 + \frac{4(e-1)}{4}\right)}$$
 : نِن

$$(2)$$
 $\left(F\left(\frac{\sqrt{e-1}}{2}\right) > \frac{\sqrt{e-1}}{2}\right)$: يعني

$$G(x) = F(x) - x$$
 : نضع

(3)
$$\left[G\left(\frac{\sqrt{e-1}}{2}\right), G\left(\sqrt{e-1}\right) < 0 \right]$$
 : من (1) و (2) نستنتج

$$\left[0,\sqrt{2}\right]$$
 دللة متصلة و تناقصية قطعا على F لدينا

$$(4)$$
 $\left]0,\sqrt{2}
ight]$ على دالة متصلة و تناقصية قطعا على G

$$G'(x) = F'(x) - 1 < 0$$
 : زنْن

من (3) و (4) نستنتج حسب مبر هنة القيم الوسيطية وجود حل وحيد . G(x)=0 في المجال G(x)=0 في المعادلة G(x)=0

 $]0,+\infty[$ نحن بصدد در اسة تغير ات الدالة F على المجال

إذن سوف نهتم بالحالة
$$x=\sqrt{2}$$
 فقط.

$$x^2(x^2-2) > 0$$
 فإن $x = \sqrt{2}$

$$\frac{x^4 + 2x^2 + 1}{1 + 4x^2} > 1$$
 : و منه

$$ln\left(\frac{x^4 + 2x^2 + 1}{1 + 4x^2}\right) > 0$$
 : يعني

$$F^{'}(x) > 0$$
 : إذن

$$: \left[\sqrt{2}, +\infty \right]$$
 يعني F تزايدية قطعا على

.
$$\left]0,\sqrt{2}\right[$$
 في الحالة الأخرى نجد أن F تناقصية على المجال

2x > 0 ليكن x > 0 ليكن

$$[x,2x] \subset]0,+\infty[$$
 : و منه

 $[0,+\infty[$ و بما أن $[\phi]$ قابلة للإشتقاق على

]x,2x[: فإن φ متصلة و قابلة للإشتقاق على و فابلة للإشتقاق

و منه حسب مبرهنة التزايدات المنتهية:

$$(\exists c \in]x, 2x[) : \frac{\varphi(2x) - \varphi(x)}{2x - x} = \varphi'(c)$$

$$(\exists c \in]x, 2x[): \varphi(2x) - \varphi(x) = x\varphi'(c)$$

$$F(x) = \frac{x}{\ln(1+c^2)}$$
: يعني

$$0 < x < c < 2x$$
 (السؤال السؤال السؤال

⊕(3) ■

$$\implies 0 < x^2 < c^2 < 4x^2$$

$$\Rightarrow 0 < \ln(1+x^2) < \ln(1+c^2) < \ln(1+4x^2)$$

$$\Rightarrow \frac{1}{\ln(1+4x^2)} < \frac{1}{\ln(1+c^2)} < \frac{1}{\ln(1+x^2)}$$

$$\Rightarrow \frac{x}{\ln(1+4x^2)} < \frac{x}{\ln(1+c^2)} < \frac{x}{\ln(1+x^2)}$$

$$\Rightarrow \frac{x}{\ln(1+4x^2)} < F(x) < \frac{x}{\ln(1+x^2)}$$

أجوية الدورة العادية 2010 من إعداد الأستاذ يدر الدين الفاتحي : () رمضان 2012 الصفحة : 80