Exercice 1

- Voir correction —

Déterminer la nature des intégrales impropres suivantes :

a)
$$\int_{1}^{+\infty} \frac{1}{x\sqrt{x+2}} \, \mathrm{d}x$$

d)
$$\int_{1}^{+\infty} \frac{1}{x^2 \ln x} \, \mathrm{d}x$$

$$g) \int_0^{+\infty} \frac{e^x}{x+1} \, \mathrm{d}x$$

b)
$$\int_0^{+\infty} \frac{1}{\sqrt{(x+1)(x+2)}} \, \mathrm{d}x$$

e)
$$\int_{1}^{+\infty} \frac{\ln x}{x+1} \, \mathrm{d}x$$

$$h) \int_0^{+\infty} \frac{x e^x + 1}{x e^{2x} + 1} dx$$

c)
$$\int_0^{+\infty} \frac{x^2 + 1}{x^5 + 1} \, \mathrm{d}x$$

$$f) \int_0^{+\infty} \frac{1}{x e^x + 1} \, \mathrm{d}x$$

Exercice 2

- Voir correction -

Déterminer la nature des intégrales impropres suivantes :

a)
$$\int_{1}^{+\infty} \frac{\sin x}{x^2} \, \mathrm{d}x$$

c)
$$\int_{-\infty}^{0} \frac{\sin^3 x}{x^2} \, \mathrm{d}x$$

e)
$$\int_0^{\pi} \ln(2x + 3\sin x) \, \mathrm{d}x$$

b)
$$\int_0^{+\infty} \frac{\sin x + \cos x}{\sqrt{x^3 + 1}} \, \mathrm{d}x$$

$$\mathrm{d}) \int_{-\infty}^{0} \mathrm{e}^{x} \cos x \, \mathrm{d}x$$

f)
$$\int_{0}^{+\infty} x^4 e^{-x^2} dx$$

— Voir correction –

Le but de cet exercice est de démontrer la formule de Stirling : $n! \sim \sqrt{2\pi n} \frac{n^n}{\alpha^n}$.

Pour tout $n \in \mathbb{N}^*$ on pose $u_n = \frac{n!}{\left(\frac{n}{n}\right)^n \sqrt{n}}$ et $v_n = \ln u_n$.

- a) À l'aide d'un développement limité, montrer que $v_n v_{n+1} = \frac{1}{n \to +\infty} \frac{1}{12n^2} + \left(\frac{1}{n^2}\right)$. 1)
 - b) En déduire que la suite (v_n) converge.
 - c) En déduire l'existence d'un réel C>0 tel que $n! \underset{n\to +\infty}{\sim} C\sqrt{n} \frac{n^n}{e^n}$.
- 2) Montrons dans cette question que $C = \sqrt{2\pi}$. Pour tout $n \in \mathbb{N}$, on pose $W_n = \int_0^{\frac{\pi}{2}} \sin^n(x) dx$ (intégrale de Wallis)
 - a) Calculer W_0 et W_1 .
 - b) Montrer que (W_n) converge.
 - c) Montrer que pour tout $n \in \mathbb{N}$, $W_n = \int_0^{\frac{\pi}{2}} \cos^n(t) dt$
 - d) En déduire W_2 .
 - e) À l'aide d'une intégration par partie, montrer que pour tout $n \in \mathbb{N}$, $W_{n+2} = \frac{n+1}{n+2}W_n$.
 - f) En déduire que pour tout $n \in \mathbb{N}$, $(n+1)W_nW_{n+1} = \frac{\pi}{2}$.
 - g) Montrer que $\lim_{n\to +\infty}W_n=0$, $\lim_{n\to +\infty}\frac{W_n}{W_{n+1}}=1$, et $\lim_{n\to +\infty}\sqrt{n}W_n=\sqrt{\frac{\pi}{2}}$.
 - h) Montrer que pour tout $n \in \mathbb{N}$, $W_{2n} = \frac{(2n)!}{2^{2n}(n!)^2} \frac{\pi}{2}$
 - i) En déduire que $C = \sqrt{2\pi}$.

- Exercice 4 ———— Voir correction —

- 1) Montrer à l'aide du changement de variable $x = e^u$ que l'intégrale $\int_{-\infty}^{+\infty} \sin(e^u) du$ converge.
- 2) Montrer à l'aide du changement de variable $t=u^{1/3}$ que l'intégrale $\int_0^{+\infty} \frac{\mathrm{d}u}{u^{2/3}+u^{4/3}}$ converge et la calculer.

Exercice 5 -

Soit $\theta \in \mathbb{R}$ et $n \in \mathbb{N}^*$ tels que $\sin(n\theta) \neq 0$. On considère le polynôme $P(X) = \sum_{k=1}^{n} \binom{n}{k} \sin(k\theta) X^k$

- 1) Montrer que $P(X) = \frac{1}{2i} (1 + e^{i\theta} X)^n \frac{1}{2i} (1 + e^{-i\theta} X)^n$
- 2) En déduire que λ est racine du polynôme P si et seulement si $\exists k \in [0, n-1], \lambda = \frac{e^{\frac{2ik\pi}{n}} 1}{e^{i\theta} e^{\frac{2ik\pi}{n}} e^{-i\theta}}$.
- 3) Montrer que toutes les racines de P sont réelles.

- Exercice 6 ----

On considère la suite (u_n) définie par $u_1=1$ et $\forall n\in\mathbb{N}^*,\ u_{n+1}=u_n+\left(\ln\left(1+\frac{1}{u_n}\right)\right)^2$. Le but de cet exercice est de déterminer un équivalent de u_n lorsque $n\to+\infty$. On admet le théorème de Cesàro :

Si
$$\lim_{n \to +\infty} a_n = \ell$$
 avec $\ell \in \mathbb{R}$ alors $\lim_{n \to +\infty} \frac{1}{n} \sum_{k=1}^n a_k = \ell$

- 1) Montrer que la suite (u_n) est bien définie.
- 2) Étudier le sens de variation de (u_n) puis montrer que $\lim_{n \to +\infty} u_n = +\infty$.
- 3) Soit β un réel non nul. Montrer que $u_{n+1}^{\beta} u_n^{\beta} = \beta u_n^{\beta-3} + o(u_n^{\beta-3})$.
- 4) Déterminer une valeur de β telle que $u_{n+1}^{\beta} u_n^{\beta}$ converge vers une limite finie.
- 5) En déduire à l'aide du théorème admis que $u_n \underset{n \to +\infty}{\sim} \sqrt[3]{3n}$.

Exercice 7

Pour tout $x \in]0; +\infty[$, on appelle **fonction Gamma d'Euler** la fonction définie par $\Gamma(x) = \int_{-\infty}^{+\infty} e^{-t} t^{x-1} dt$.

- 1) Montrer que Γ est bien définie sur $]0; +\infty[$.
- 2) Montrer que pour tout x > 0, $\Gamma(x+1) = x\Gamma(x)$
- 3) Calculer $\Gamma(1)$ puis en déduire que $\forall n \in \mathbb{N}, \, \Gamma(n+1) = n!$
- 4) Calculer $\Gamma\left(\frac{1}{2}\right)$ puis $\Gamma\left(\frac{3}{2}\right)$. On pourra admettre la valeur de l'intégrale de Gauss : $\int_{0}^{+\infty} e^{-x^2} dx = \frac{\sqrt{\pi}}{2}$.

Le coin des Khûbes

Exercice 8

- Voir correction -

(ENSAE 2013) Soit $f:[0,1] \to [0,1]$ une fonction continue. On suppose qu'il existe une constante 0 < c < 1 telle que, pour tous x, y dans [0, 1],

$$|f(x) - f(y)| \le c|x - y|$$

Démontrer que l'équation f(x) = x admet une unique solution dans [0,1].

* * *
Exercice 9 ———— Voir correction —

(ENS 2016) Soit $f: \mathbb{R}_+ \to \mathbb{R}$ une fonction dérivable telle que $f(x)f(y) \le f(xy)$ pour tout $x, y \ge 0$ et f(1) = 1.

- 1) Montrer que $f(x) \ge 0$ pour tout $x \ge 0$
- 2) Montrer que $f(x) \ge f(x^{1/n})^n$ pour tout x > 0 et $n \ge 1$
- 3) En déduire qu'il existe un réel p tel que $f(x) \ge x^p$ pour tout $x \ge 0$
- 4) Montrer que p > 0
- 5) Montrer que $f(x) = x^p$ pour tout $x \ge 0$.

Correction des exercice

Correction de l'exercice 1 :

a) La fonction f définie sur $[1; +\infty[$ par $f(x) = \frac{1}{x\sqrt{x+2}}$ est continue sur $[1; +\infty[$.

Il faut donc étudier la convergence de l'intégrale en $+\infty$.

 $f(x) \equiv x \to +\infty \frac{1}{x^{3/2}}$. Or l'intégrale $\int_1^{+\infty} \frac{1}{x^{3/2}} \, \mathrm{d}x$ est une intégrale de Riemann qui converge car $\frac{3}{2} > 1$, donc d'après le théorème d'équivalence sur les intégrales de fonctions positives, $\int_1^{+\infty} \frac{1}{x\sqrt{x+2}} \, \mathrm{d}x$ converge.

Remarque: On peut aussi utiliser le théorème de comparaison pour les intégrales de fonctions positives en remarquant que $\sqrt{x+2} \ge \sqrt{x}$ donc $\frac{1}{x\sqrt{x+2}} \le \frac{1}{x\sqrt{x}} = \frac{1}{x^{3/2}}$

b) La fonction $f: x \mapsto \frac{1}{\sqrt{(x+1)(x+2)}}$ est continue sur $[0; +\infty[$. Il faut donc étudier la convergence de l'intégrale en

$$f(x) \underset{x \to +\infty}{\sim} \frac{1}{\sqrt{x^2}} = \frac{1}{x}$$

L'intégrale $\int_1^{+\infty} \frac{1}{x} dx$ diverge, donc d'après le théorème d'équivalence pour les intégrales de fonctions positives, $\int_1^{+\infty} f(x) dx$ diverge

Comme f est continue sur [0;1], $\int_0^1 f(x) dx$ converge. On en conclut que $\boxed{\int_0^{+\infty} \frac{1}{\sqrt{(x+1)(x+2)}} dx \text{ diverge.}}$

c) La fonction $f: x \longmapsto \frac{x^2+1}{x^5+1}$ est continue sur $[0; +\infty[$.

Il faut donc étudier la convergence de l'intégrale en $+\infty$.

$$f(x) \underset{x \to +\infty}{\sim} \frac{1}{x^3}$$

L'intégrale $\int_1 +\infty \frac{1}{x^3} dx$ est une intégrale de Riemann qui converge car 3 > 1.

D'après le théorème de comparaison pour les intégrales de fonctions positives, on en déduit que $\int_1^{+\infty} f(x) dx$ converge. Or f est continue sur [0;1] donc $\int_0^1 f(x) dx$ converge.

On en conclut que $\int_0^{+\infty} \frac{x^2+1}{x^5+1} dx$ converge.

d) La fonction $f: x \longmapsto \frac{1}{x^2 \ln x}$ est continue sur]1; $+\infty$ [.

On étudie donc la convergence de l'intégrale en $+\infty$ et en 1.

Pour tout $x \ge 2$, $\ln x \ge \ln(2)$ donc $\frac{1}{x^2 \ln(x)} \le \frac{1}{x^2 \ln(2)}$

L'intégrale $\int_2^{+\infty} \frac{1}{r^2} dx$ est une intégrale de Riemann convergente car 2 > 1, donc d'après le théorème de comparaison

pour les intégrales de fonctions positives, $\int_{2}^{+\infty} \frac{1}{x^2 \ln x} dx$ converge.

Étudions la convergence de $\int_1^2 \frac{1}{x^2 \ln x} dx$. Au voisinage de 1 on a $\frac{1}{x^2 \ln(x)} \sim \frac{1}{\ln(x)}$ et on a $\ln(x) = x - 1 + o(x - 1)$,

donc $\frac{1}{x^2 \ln(x)} \sim \frac{1}{x-1}$

Or $\int_1 2 \frac{1}{x-1} dx$ a la même nature que $\frac{0}{1} \frac{1}{u} du$ par changement de variable u = x - 1, donc diverge.

Finalement, l'intégrale $\int_1^{+\infty} \frac{1}{x^2 \ln(x)} dx$ diverge.

e) La fonction $f: x \longmapsto \frac{\ln x}{x + 1}$ est continue sur $[1; +\infty[$.

Pour $x \ge e$, on a $\ln(x) \ge \ln(e) = 1$, et donc $\frac{\ln x}{x+1} \ge \frac{1}{x+1}$.

Or $\frac{1}{x+1} \sim \frac{1}{x\to +\infty} \frac{1}{x}$, et l'intégrale $\int_e^{+\infty} \frac{1}{x} dx$ est une intégrale de Riemann divergente.

D'après le théorème d'équivalence pour les intégrales de fonctions positives, l'intégrale $\int_{e}^{+\infty} \frac{1}{x+1} dx$ est donc divergente.

Ainsi d'après le théorème de comparaison pour les intégrales de fonctions positives, l'intégrale $\int_{e}^{+\infty} \frac{\ln x}{x+1} dx$ est diver-

Comme f est continue sur [1; e], l'intégrale $\int_1^e \frac{\ln x}{x+1} dx$ converge, donc finalement $\int_1^{+\infty} \frac{\ln x}{x+1} dx$ diverge.

f) La fonction $f: x \longmapsto \frac{1}{x e^x + 1}$ est continue sur $[0; +\infty[$.

Il faut étudier la convergence de l'intégrale en $+\infty$.

Pour
$$x \ge 1$$
, $x e^x + 1 \ge e^x$ donc $\frac{1}{x e^x + 1} \le \frac{1}{e^x} = e^{-x}$

Pour tout
$$X > 0$$
, $\int_1^X e^{-x} dx = \left[-e^{-x} \right]_1^X = e^{-1} - e^{-X}$

donc
$$\int_1^X e^{-x} dx \xrightarrow[X \to +\infty]{} e^{-1} donc \int_1^{+\infty} e^{-x} dx$$
 converge.

D'après le théorème de comparaison pour les intégrales de fonctions positives, on en déduit que $\int_1^{+\infty} \frac{1}{x e^x + 1} dx$ converge.

Or, f est continue sur [0;1] donc $\int_0^1 \frac{1}{x e^x + 1} dx$ converge.

On en conclut que
$$\int_0^{+\infty} \frac{1}{x e^x + 1} dx \text{ converge}$$

g) La fonction $f: x \longmapsto \frac{e^x}{x+1}$ est continue sur $[0; +\infty[$.

Il faut donc étudier la convergence de l'intégrale en $+\infty$.

Pour tout
$$x \ge 0$$
, $\frac{e^x}{x+1} \ge \frac{1}{x+1}$.

Or $\int_1^{+\infty} \frac{1}{x+1} dx$ diverge (voir question e)) donc d'après le théorème de comparaison pour les intégrales de fonctions positives, $\int_1^{+\infty} \frac{e^x}{x+1} dx$ diverge.

Or f est continue sur [0;1] donc $\int_0^1 f(x) dx$ converge. On en déduit que $\int_0^{+\infty} \frac{e^x}{x + 1} dx$ diverge.

h) La fonction $f: x \longmapsto \frac{x e^x + 1}{x e^{2x} + 1}$ est continue sur $[0; +\infty[$.

On étudie la convergence de l'intégrale en $+\infty$.

$$\frac{x e^x + 1}{x e^{2x} + 1} \underset{x \to +\infty}{\sim} \frac{x e^x}{x e^{2x}} = \frac{1}{e^x}$$

Or l'intégrale
$$\int_0^{+\infty} e^{-x} dx$$
 converge car pour tout $X > 0$, $\int_0^X e^{-x} dx = \left[-e^{-x} \right]_0^X = 1 - e^{-X} \xrightarrow[X \to +\infty]{} 1$.

D'après le théorème d'équivalence pour les intégrales de fonctions positives, on en déduit que $\int_0^{+\infty} \frac{x e^x + 1}{x e^{2x} + 1} dx$ converge.

Correction de l'exercice 2 :

a) La fonction $f: x \longmapsto \frac{\sin x}{x^2}$ est continue sur $[1; +\infty[$.

On étudie la convergence de l'intégrale en $+\infty$.

Pour tout
$$x \ge 1$$
, $\left| \frac{\sin x}{x^2} \right| \le \frac{1}{x^2}$

Or l'intégrale $\int_1^{+\infty} \frac{1}{x^2} dx$ est une intégrale de Riemann convergente, donc d'après le théorème de comparaison pour les intégrales de fonctions positives, l'intégrale $\int_1^{+\infty} \frac{\sin x}{x^2} dx$ est absolument convergente, donc convergente.

b) La fonction $f: x \longmapsto \frac{\sin x + \cos x}{\sqrt{x^3 + 1}}$ est continue sur $[0; +\infty[$.

On étudie donc la convergence de l'intégrale en $+\infty$.

Pour tout $x \in [0; +\infty[$, $|\sin x + \cos x| \le |\sin x| + |\cos x| \le 2$

Ainsi,
$$\left| \frac{\sin x + \cos x}{\sqrt{x^3 + 1}} \right| \le \frac{2}{\sqrt{x^3 + 1}}$$

Ainsi, $\left|\frac{\sin x + \cos x}{\sqrt{x^3 + 1}}\right| \leqslant \frac{2}{\sqrt{x^3 + 1}}$. Or, $\frac{2}{\sqrt{x^3 + 1}} \mathop{\sim}_{x \to +\infty} \frac{2}{x^{3/2}}$, et $\int_1^{+\infty} \frac{1}{x^{3/2}} \, \mathrm{d}x$ est une intégrale de Riemann convergente car $\frac{3}{2} > 1$, donc d'après le théorème d'équivalence pour les intégrales de fonctions positives, $\int_1^{+\infty} \frac{2}{\sqrt{x^3+1}} dx$ converge.

Ainsi, d'après le théorème de comparaison pour les intégrales de fonctions positives, $\int_1^{+\infty} \left| \frac{\sin x + \cos x}{\sqrt{x^3 + 1}} \right| dx$ converge. Finalement, $\int_1^{+\infty} \frac{\sin x + \cos x}{\sqrt{x^3 + 1}} dx$ est absolument convergente, donc convergente. Comme $\int_0^1 \frac{\sin x + \cos x}{\sqrt{x^3 + 1}} dx$ converge par continuité de f sur [0;1], on en déduit que $\int_0^{+\infty} \frac{\sin x + \cos x}{\sqrt{x^3 + 1}} dx$ converge.

c) En faisant le changement de variable t=-x, l'intégrale $\int_{-\infty}^{0} \frac{\sin^3 x}{x^2} dx$ est de même nature que l'intégrale $\int_{0}^{+\infty} \frac{\sin^3 t}{t^2} dt$. Or, $\left|\frac{\sin^3 t}{t^2}\right| \leqslant \frac{1}{t^2}$ et $\int_{1}^{+\infty} \frac{1}{t^2} dt$ est une intégrale de Riemann convergente, donc d'après le théorème de comparaison pour les intégrales de fonctions positives, $\int_{1}^{+\infty} \frac{\sin^3 t}{t^2} dt$ converge absolument.

De plus, $\sin(t) \sim t$ donc $\sin^3(t) \sim t^3$ et ainsi $\frac{\sin^3 t}{t^2} \sim t$ donc $\int_0^1 \frac{\sin^3(t)}{t^2} dt$ converge.

Ainsi, $\int_0^{+\infty} \frac{\sin^3 t}{t^2} dt$ converge donc $\int_{-\infty}^0 \frac{\sin^3 x}{x^2} dx$ converge.

d) En faisant le changement de variable t=-x, l'intégrale $\int_{-\infty}^{0} e^{x} \cos x \, dx$ est de même nature que l'intégrale $\int_{0}^{+\infty} e^{-t} \cos t \, dt$. Or $|e^{-t} \cos t| \le e^{-t}$ et l'intégrale $\int_{0}^{+\infty} e^{-t} \, dt$ converge car

$$\int_0^X e^{-t} dt = \left[-e^{-t} \right]_0^X = 1 - e^{-X} \xrightarrow[X \to +\infty]{} 1$$

Ainsi, d'après le théorème de comparaison pour les intégrales de fonctions positives, $\int_0^{+\infty} |\mathbf{e}^{-t} \cos t| \, dt$ converge, donc $\int_0^{+\infty} \mathbf{e}^{-t} \cos t \, dt$ converge absolument.

On en conclut que $\int_{-\infty}^{0} e^x \cos x \, dx$ converge.

e) La fonction $f: x \longmapsto \ln(2x + 3\sin x) dx$ est continue sur $]0; \pi]$.

On étudie la convergence de l'intégrale en 0.

Par développement limité en 0,

$$\ln(2x + 3\sin x) = \ln(2x + 3(x + o(x)))$$

$$= \ln(5x + o(x))$$

$$= \ln(5x(1 + o(1)))$$

$$= \ln(5x) + \ln(1 + o(1))$$

$$\sim \ln(5x)$$

$$\sim \ln(5) + \ln(x)$$

$$\sim \cos x \to 0$$

Or, $-\ln x \ge 0$ pour tout $x \in [0;1]$ et $-x^{1/2} \ln x \xrightarrow[x \to 0]{} 0$ donc $-\ln(x) = o\left(\frac{1}{x^{1/2}}\right)$ et $\int_0^1 \frac{1}{x^{1/2}} \, \mathrm{d}x$ est une intégrale de

Riemann convergente donc par théorème de comparaison pour les fonctions positives, $\int_0^1 (-\ln x) dx$ converge.

D'après le théorème d'équivalence pour les intégrales de fonctions positives, on en conclut que $\int_0^1 (-\ln(2x+3\sin x)) dx$ converge, donc que $\int_0^1 \ln(2x+3\sin x) dx$ converge.

Enfin, comme f est continue sur $[1; \pi]$, $\int_1^{\pi} \ln(2x+3\sin x) dx$ converge, donc finalement $\int_0^{\pi} \ln(2x+3\sin x) dx$ converge.

f) La fonction $f: x \longmapsto x^4 e^{-x^2}$ est continue sur $[0; +\infty[$ comme produit et composée de fonctions continues sur \mathbb{R} . On étudie la convergence de l'intégrale en $+\infty$.

 $\lim_{x\to +\infty} x^6 \, \mathrm{e}^{-x^2} = \lim_{X\to +\infty} X^3 \, \mathrm{e}^{-X} \text{ par croissance comparée et par composition de } x\mapsto x^2 \, \mathrm{par} \, x\mapsto x^3 \, \mathrm{e}^{-x}, \, \mathrm{donc \ en} \, +\infty$ on a $x^4 \, \mathrm{e}^{-x^2} = o\left(\frac{1}{x^2}\right)$.

Or, $\int_1^{+\infty} \frac{1}{x^2} dx$ est une intégrale de Riemann convergente, donc d'après le théorème de négligeabilité pour les intégrales de fonctions positives l'intégrale $\int_1^{+\infty} x^4 e^{-x} dx$ converge.

Enfin, comme f est continue sur [0;1], $\int_0^1 x^4 e^{-x} dx$ converge, donc finalement $\int_0^{+\infty} x^4 e^{-x} dx$ converge.

Correction de l'exercice 3:

1) a) Pour tout $n \in \mathbb{N}$,

$$v_n - v_{n+1} = \ln \left(\frac{n! \times \left(\frac{n+1}{e}\right)^{n+1} \sqrt{n+1}}{(n+1)! \times \left(\frac{n}{e}\right)^n \sqrt{n}} \right)$$

$$= \ln\left(\frac{(n+1)^{n+1} e^n \sqrt{n+1}}{(n+1) \times n^n e^{n+1} \times \sqrt{n}}\right)$$

$$= \ln\left(\left(\frac{n+1}{n}\right)^n \sqrt{\frac{n+1}{n}}\right) - \ln(e)$$

$$= n\ln\left(1 + \frac{1}{n}\right) + \frac{1}{2}\ln\left(1 + \frac{1}{n}\right) - 1$$

$$n\left(\frac{1}{n} - \frac{1}{2n^2} + \frac{1}{3n^3} + o\left(\frac{1}{n^3}\right)\right) + \frac{1}{2}\left(\frac{1}{n} - \frac{1}{2n^2} + o\left(\frac{1}{n^2}\right)\right) - 1$$

$$= 1 - \frac{1}{2n} + \frac{1}{3n^2} + \frac{1}{2n} - \frac{1}{4n^2} - 1 + o\left(\frac{1}{n^2}\right)$$

$$= \frac{1}{12n^2} + o\left(\frac{1}{n^2}\right)$$

- b) $v_n v_{n+1} \sim \frac{1}{12n^2}$ d'après la question précédente, donc la suite $(v_n v_{n+1})$ est à termes positifs à partir d'un certain rang, et la série $\sum \frac{1}{12n^2}$ est une série de Riemann convergente, donc par comparaison de séries à termes positifs on en conclut que la série $\sum (v_n v_{n+1})$ converge.

 Or, pour tout $n \in \mathbb{N}^*$, $\sum_{k=1}^n (v_k v_{k+1}) = v_1 v_{n+1}$ par télescopage, donc puisque le membre de gauche admet une limite réelle lorsque $n \to +\infty$, le membre de droite aussi. On en conclut que (v_{n+1}) converge donc que (v_n)
- c) Soit ℓ la limite de (v_n) , alors puisque $\forall n \in \mathbb{N}$, $u_n = \mathrm{e}^{v_n}$ on en déduit que $\lim_{n \to +\infty} u_n = \mathrm{e}^{\ell}$ par continuité de l'exponentielle. Finalement, en posant $C = \mathrm{e}^{\ell}$, on a $\lim_{n \to +\infty} \frac{n!}{C\left(\frac{n}{e}\right)^n \sqrt{n}} = 1$ donc $n! \sim C\sqrt{n} \frac{n^n}{\mathrm{e}^n}$.
- 2) a)

converge.

$$W_0 = \int_0^{\frac{\pi}{2}} \sin^0(x) \, \mathrm{d}x$$
$$= \int_0^{\frac{\pi}{2}} 1 \, \mathrm{d}x$$
$$= \frac{\pi}{2}$$

$$W_1 = \int_0^{\frac{\pi}{2}} \sin(x) dx$$
$$= \left[-\cos x \right]_0^{\frac{\pi}{2}}$$
$$= -\cos(\frac{\pi}{2}) + \cos 0$$
$$= 1$$

b) Pour tout $n \in \mathbb{N}$, $W_n \ge 0$ car c'est l'intégrale d'une fonction positive sur $[0, \frac{\pi}{2}]$. De plus, (W_n) est une suite décroissante. En effet, pour tout $x \in [0, \frac{\pi}{2}]$, $0 \le \sin(x) \le 1$ donc $\sin^{n+1}(x) \le \sin^n(x)$. Ainsi, pour tout entier naturel n,

$$W_{n+1} = \int_0^{\frac{\pi}{2}} \sin^{n+1}(x) dx$$
$$\leq \int_0^{\frac{\pi}{2}} \sin^n(x) dx$$
$$\leq W_n$$

 (W_n) est donc une suite décroissante et minorée par 0 donc elle converge vers un réel $\ell > 0$.

c) On pose le changement de variable $t = \frac{\pi}{2} - x$, donc dt = -dx. On a donc

$$\int_0^{\frac{\pi}{2}} \sin^n(x) \, dx = \int_{\frac{\pi}{2} - 0}^{\frac{\pi}{2} - \frac{\pi}{2}} \sin^n(\frac{\pi}{2} - t)(-dt)$$
$$= -\int_{\frac{\pi}{2}}^0 \cos^n(t) \, dt$$
$$= \int_0^{\frac{\pi}{2}} \cos^n(t) \, dt$$

d) On en déduit que $W_2=\int_0^{\frac{\pi}{2}}\sin^2(x)\,\mathrm{d}x=\int_0^{\frac{\pi}{2}}\cos^2(x)\,\mathrm{d}x.$ donc

$$2W_2 = \int_0^{\frac{\pi}{2}} \sin^2(x) \, dx + \int_0^{\frac{\pi}{2}} \cos^2 x \, dx$$
$$= \int_0^{\frac{\pi}{2}} (\sin^2(x) + \cos^2(x)) \, dx$$
$$= \int_0^{\frac{\pi}{2}} 1 \, dx$$
$$= \frac{\pi}{2}$$

On en déduit que $W_2 = \frac{\pi}{4}$

e) Pour tout entier naturel n, on a par intégration par partie

$$W_{n+2} = \int_0^{\frac{\pi}{2}} \sin^{n+2}(x) \, \mathrm{d}x = \left[-\cos(x) \sin^{n+1}(x) \right]_0^{\frac{\pi}{2}} - \int_0^{\frac{\pi}{2}} -\cos(x) \times (n+1) \cos(x) \sin^n(x) \, \mathrm{d}x$$

$$= 0 + (n+1) \int_0^{\frac{\pi}{2}} \cos^2(x) \sin^n(x) \, \mathrm{d}x$$

$$= (n+1) \int_0^{\frac{\pi}{2}} (1 - \sin^2(x)) \sin^n(x) \, \mathrm{d}x$$

$$= (n+1) \int_0^{\frac{\pi}{2}} \sin^n(x) \, \mathrm{d}x - (n+1) \int_0^{\frac{\pi}{2}} \sin^{n+2}(x) \, \mathrm{d}x$$

$$= (n+1) W_n - (n+1) W_{n+2}$$

On en déduit donc

$$(n+2)W_{n+2} = (n+1)W_n$$
$$W_{n+2} = \frac{n+1}{n+2}W_n$$

f) Montrons que la suite $\left((n+1)W_nW_{n+1}\right)_{n\in\mathbb{N}}$ est une suite constante. On note pour tout $n\in\mathbb{N},\,V_n=(n+1)W_nW_{n+1}.$ Alors

$$\forall n \in \mathbb{N}, V_{n+1} = (n+2)W_{n+1}W_{n+2}$$

$$= (n+2)W_{n+1}\frac{n+1}{n+2}W_n$$
 d'aprè

d'après la question 5

$$= (n+1)W_n W_{n+1}$$
$$= V_n$$

donc (V_n) est bien une suite constante, et de plus $V_0 = (0+1)W_0W_1 = 1 \times \frac{\pi}{2} \times 1 = \frac{\pi}{2}$ d'après la question 1. Finalement, pour tout $n \in \mathbb{N}$, $V_n = \frac{\pi}{2}$ donc $(n+1)W_nW_{n+1} = \frac{\pi}{2}$.

g) On a montré à la question 2 que (W_n) convergeait vers un réel ℓ . Pour tout $n \in \mathbb{N}$, $W_n W_{n+1} = \frac{\pi}{2(n+1)}$ d'après la question précédente. Or $\lim_{n \to +\infty} W_n = \lim_{n \to +\infty} W_{n+1} = \ell$ et $\lim_{n\to+\infty}\frac{\pi}{2(n+1)}=0 \text{ donc par passage à la limite on obtient } \ell^2=0 \text{ donc } \ell=0$

Intéressons nous maintenant à la suite $\frac{W_n}{W_{n+1}}$.

On a montré à la question 2 que (W_n) était décroissante, ainsi pour tout entier n on a $W_{n+1} \leq W_n$ et $W_{n+2} \leq W_n$

Ainsi,
$$\frac{W_n}{W_{n+1}} \ge 1$$
 et de plus, $\frac{n+2}{n+1} = \frac{W_n}{W_{n+2}} \ge \frac{W_n}{W_{n+1}} \ge 1$ car $W_n > 0$.

Comme $\lim_{n\to+\infty} \frac{n+1}{n+2} = 1$, on en déduit par théorème d'encadrement que $\lim_{n\to+\infty} \frac{W_{n+1}}{W_n} = 1$.

On a ainsi $W_n \underset{n \to \infty}{\sim} W_{n+1}$, donc d'après la question précédente $\frac{\pi}{2} = (n+1)W_nW_{n+1} \underset{n \to \infty}{\sim} nW_n^2$. Ainsi, $\lim_{n \to +\infty} \sqrt{n}W_n = 0$ $\sqrt{\frac{\pi}{2}} \operatorname{donc} \lim_{n \to +\infty} \sqrt{n} W_n = \sqrt{\frac{\pi}{2}}.$

h) Pour tout $n \in \mathbb{N}$, d'après la question 5, on a

$$\begin{split} W_{2n} &= \frac{2n-1}{2n} W_{2n-2} \\ &= \frac{(2n-1)(2n-3)}{2n(2n-2)} W_{2n-4} \\ &= \frac{(2n-1) \times (2n-3) \times \dots \times 1}{2n \times (2n-2) \times \dots \times 2} \times W_0 \\ &= \frac{(2n-1) \times (2n-3) \times \dots \times 1}{2n \times (2n-2) \times \dots \times 2} \times \frac{\pi}{2} \\ &= \frac{((2n-1) \times (2n-3) \times \dots \times 1) \times (2n \times (2n-2) \times \dots \times 2)}{(2n \times (2n-2) \times \dots \times 2)^2} \times \frac{\pi}{2} \\ &= \frac{(2n)!}{2^{2n} \times (n \times (n-1) \times \dots \times 1)^2} \times \frac{\pi}{2} \\ &= \frac{(2n)!}{2^{2n} (n!)^2} \frac{\pi}{2} \end{split}$$

Pour le rédiger plus rigoureusement, on raisonne par récurrence :

- **Initialisation :** Pour n = 0, $W_0 = \frac{\pi}{2}$ et $\frac{0!}{2^0 \times 0!^2} \frac{\pi}{2} = \frac{\pi}{2}$, donc l'égalité est vraie au rang 0.
- **Hérédité**: Supposons qu'il existe un entier naturel n tel que $W_{2n} = \frac{(2n)!}{2^{2n}(n!)^2} \frac{\pi}{2}$, et montrons que $W_{2n+2} = \frac{\pi}{2^{2n}(n!)^2}$ $\frac{(2n+2)!}{2^{2n+2}(n+1)!^2}\frac{\pi}{2}$ Alors,

$$W_{2(n+1)}=W_{2n+2}$$

$$=\frac{2n+1}{2n+2}W_{2n}$$
 d'après la question 5
$$=\frac{(2n+1)(2n)!}{(2n+2)2^{2n}(n!)^2}\frac{\pi}{2}$$
 par hypothèse de récurrence

$$= \frac{(2n+2)!}{(2n+2)^2 2^{2n} (n!)^2} \frac{\pi}{2}$$
 en multipliant par $\frac{2n+2}{2n+2}$
$$= \frac{(2n+2)!}{2^2 (n+1)^2 2^{2n} (n!)^2} \frac{\pi}{2}$$

$$= \frac{(2n+2)!}{2^{2n+2} ((n+1)!)^2} \frac{\pi}{2}$$

donc l'égalité est vraie au rang n+1

- Conclusion : Par principe de récurrence on en conclut que pour tout $n \in \mathbb{N}$ on a $W_{2n} = \frac{(2n)!}{2^{2n}(n!)^2} \frac{\pi}{2^n}$
- i) D'après la question g) on a $W_{2n} \sim \sqrt{\frac{\pi}{4n}}$ et d'après la question h) $W_{2n} = \frac{(2n)!}{2^{2n}(n!)^2} \frac{\pi}{2}$, donc en utilisant l'équivalent trouvé à la question $1: \frac{C\sqrt{2n}\frac{(2n)^{2n}}{\mathrm{e}^{2n}}}{2^{2n}C^2n\frac{n^{2n}}{\mathrm{e}^{2n}}} \frac{\pi}{2} \sim \sqrt{\frac{\pi}{4n}}$ d'où $C \sim \frac{\sqrt{2\sqrt{n}(2n)^{2n}\sqrt{\pi}\sqrt{n}}}{2^{2n}n^{2n+1}} \sim \sqrt{2\pi}$

donc $C = \sqrt{2\pi}$ par limites de constantes.

Correction de l'exercice 4:

1) La fonction $u \mapsto \sin(e^u)$ est continue sur $[0; +\infty[$ comme composition de fonctions continues sur \mathbb{R} , à l'aide du changement de variable $x = e^u$, $dx = e^u du$ ($du = \frac{dx}{x}$) on peut écrire pour tout A > 0:

$$\int_0^A \sin(e^u) du = \int_1^{e^A} \frac{\sin x}{x} dx$$

$$= \left[\frac{-\cos x}{x} \right]_1^{e^A} + \int_1^{e^A} \frac{\cos x}{x^2} dx$$

$$= \cos(1) - \cos(e^A) e^{-A} + \int_1^{e^A} \frac{\cos x}{x^2} dx$$

Or $\left|\frac{\cos x}{x^2}\right| \leq \frac{1}{x^2}$ et puisque l'intégrale $\int_1^{+\infty} \frac{1}{x^2} dx$ converge alors l'intégrale $\int_1^{+\infty} \frac{\cos x}{x^2} dx$ est absolument convergente donc convergente. On en conclut en faisant tendre A vers $+\infty$ que $\int_0^{+\infty} \sin(e) du$ converge.

2) On pose $t=u^{1/3}$ avec $\mathrm{d}t=\frac{1}{3}u^{-2/3}\,\mathrm{d}u$ donc $\mathrm{d}u=3t^2\,\mathrm{d}t.$ Soit $\varepsilon>0$, on a :

$$\int_{\varepsilon}^{1} \frac{\mathrm{d}u}{u^{2/3} + u^{4/3}} = \int_{\varepsilon^{1/3}}^{1} \frac{3t^{2} \, \mathrm{d}t}{t^{2} + t^{4}}$$

$$= 3 \int_{\varepsilon^{1/3}}^{1} \frac{1}{1 + t^{2}} \, \mathrm{d}t$$

$$= 3 \left[\arctan t\right]_{\varepsilon^{1/3}}^{1}$$

$$= 3 \arctan(1) - 3 \arctan(\varepsilon^{1/3})$$

$$\xrightarrow{\varepsilon \to 0} 3 \arctan(1) = \frac{3\pi}{4}$$

donc $\int_0^1 \frac{\mathrm{d}u}{u^{2/3} + u^{4/2}}$ converge et vaut $\frac{\pi}{2}$. De même, pour A > 0 :

$$\int_{1}^{A} \frac{\mathrm{d}u}{u^{2/3} + u^{4/3}} = \int_{1}^{A^{1/3}} \frac{3t^{2} \, \mathrm{d}t}{t^{2} + t^{4}}$$

$$= \int_{1}^{A^{1/3}} \frac{1}{1+t^2} dt$$

$$= 3 \left[\arctan(t)\right]_{1}^{A^{1/3}}$$

$$= 3 \arctan(A^{1/3}) - 3 \arctan(1)$$

$$\xrightarrow{A \to +\infty} \frac{3\pi}{2} - \frac{3\pi}{4}$$

 $\operatorname{donc} \int_{1}^{+\infty} \frac{\mathrm{d}u}{u^{2/3} + u^{4/2}} \text{ converge et vaut } \frac{3\pi}{2} - \frac{3\pi}{4}. \text{ Finalement } \int_{0}^{+\infty} \frac{\mathrm{d}u}{u^{2/3} + u^{4/3}} \text{ converge et vaut } \frac{3\pi}{4} + \frac{3\pi}{2} - \frac{3\pi}{4} = \frac{3\pi}{2}.$

Correction de l'exercice 5 :

1) On remarque qu'on peut ajouter le terme k=0 dans la somme :

$$P(X) = \sum_{k=0}^{n} \binom{n}{k} \frac{\mathrm{e}^{ik\theta} - \mathrm{e}^{-ik\theta}}{2i} X^k = \frac{1}{2i} \sum_{k=0}^{n} \binom{n}{k} (\mathrm{e}^{i\theta} \, X)^k 1^{n-k} - \frac{1}{2i} \sum_{k=0}^{n} (\mathrm{e}^{i\theta} \, X)^k 1^{n-k} = \frac{1}{2i} (1 + \mathrm{e}^{i\theta} \, X)^n - \frac{1}{2i} (1 + \mathrm{e}^{-i\theta} \, X)^n - \frac{1}$$

2) Soit $\lambda \in \mathbb{C}$. $P(\lambda) = 0 \iff \frac{1}{2i} (1 + e^{i\theta} \lambda)^n = \frac{1}{2i} (1 + e^{-i\theta} \lambda)^n \iff \left(\frac{1 + e^{i\theta} \lambda}{1 + e^{-i\theta} \lambda}\right)^n = 1 \text{ et } 1 + e^{-i\theta} \lambda \neq 0$ Or, on peut vérifier que si $1 + e^{-i\theta} \lambda = 0$, alors $P(\lambda) \neq 0$. En effet, si $1 + e^{-i\theta} \lambda = 0$ alors $\lambda = -e^{i\theta}$ donc $P(\lambda) = \frac{1}{2i} (1 - 2e^{2i\theta})^n = \frac{e^{ni\theta}}{2i} (e^{-i\theta} - e^{i\theta})^n = -e^{ni\theta} \sin^n \theta$. Or $\sin \theta = 0 \Rightarrow \exists k \in \mathbb{Z}, \theta = k\pi \text{ donc } \sin(n\theta) = 0$. Puisque $\sin(n\theta) \neq 0$ on en déduit que $\sin \theta \neq 0$ donc que $P(\lambda) \neq 0$.

De plus, dans
$$\mathbb{C}$$
, $z^n = 1 \iff \exists k \in \llbracket 0, n-1 \rrbracket$, $z = e^{\frac{2ik\pi}{n}}$. Ainsi, $P(\lambda) = 0 \iff \exists k \in \llbracket 0, n-1 \rrbracket$, $\frac{1 + e^{i\theta} \lambda}{1 + e^{-i\theta} \lambda} = e^{\frac{2ik\pi}{n}} \iff \lambda \left(e^{i\theta} - e^{\frac{2ik\pi}{n}} e^{-i\theta} \right) = e^{\frac{2ik\pi}{n}} - 1 \iff \exists k \in \llbracket 0, n-1 \rrbracket$, $\lambda = \frac{e^{\frac{2ik\pi}{n}} - 1}{e^{i\theta} - e^{\frac{2ik\pi}{n}} e^{-i\theta}}$.

On vérifie que $e^{i\theta} - e^{\frac{2ik\pi}{n}} e^{-i\theta} \neq 0$:

$$e^{i\theta} - e^{\frac{2ik\pi}{n}} e^{-i\theta} = 0 \Rightarrow e^{\frac{2ik\pi}{n}} = e^{2i\theta} \Rightarrow e^{2ik\pi} = e^{2in\theta} \Rightarrow \exists k' \in \mathbb{Z}, \ 2in\theta = 2ik\pi + 2k'\pi \Longleftrightarrow n\theta = (k - k')\pi$$

Or puisque $\sin(n\theta) \neq 0$ on a $n\theta \neq (k - k')\pi$ pour tout $k, k' \in \mathbb{Z}$ donc $e^{i\theta} - e^{\frac{2ik\pi}{n}} e^{-i\theta} \neq 0$

3) Montrons que
$$\overline{\left(\frac{\mathrm{e}^{\frac{2ik\pi}{n}}-1}{\mathrm{e}^{i\theta}-\mathrm{e}^{\frac{2ik\pi}{n}}\,\mathrm{e}^{-i\theta}}\right)} = \frac{\mathrm{e}^{\frac{2ik\pi}{n}}-1}{\mathrm{e}^{i\theta}-\mathrm{e}^{\frac{2ik\pi}{n}}\,\mathrm{e}^{-i\theta}}:$$

$$\overline{\left(\frac{\mathrm{e}^{\frac{2ik\pi}{n}} - 1}{\mathrm{e}^{i\theta} - \mathrm{e}^{\frac{2ik\pi}{n}} \, \mathrm{e}^{-i\theta}}\right)} = \frac{\mathrm{e}^{\frac{-2ik\pi}{n}} - 1}{\mathrm{e}^{-i\theta} - \mathrm{e}^{-\frac{2ik\pi}{n}} \, \mathrm{e}^{-i\theta}}$$

$$= \frac{1 - \mathrm{e}^{\frac{2ik\pi}{n}}}{\mathrm{e}^{\frac{2ik\pi}{n}} \, \mathrm{e}^{-i\theta} - \mathrm{e}^{i\theta}}$$

$$= \frac{\mathrm{e}^{\frac{2ik\pi}{n}} - 1}{\mathrm{e}^{i\theta} - \mathrm{e}^{\frac{2ik\pi}{n}} \, \mathrm{e}^{-i\theta}}$$
en multipliant par $\mathrm{e}^{\frac{2ik\pi}{n}}$

donc $\frac{e^{\frac{2ik\pi}{n}}-1}{e^{i\theta}-e^{\frac{2ik\pi}{n}}e^{-i\theta}} \in \mathbb{R}$. Toutes les racines de P sont donc réelles. On peut même aller plus loin :

$$\frac{e^{\frac{2ik\pi}{n}} - 1}{e^{i\theta} - e^{\frac{2ik\pi}{n}} e^{-i\theta}} = \frac{e^{\frac{ik\pi}{n}} \left(e^{\frac{ik\pi}{n}} - e^{\frac{-ik\pi}{n}}\right)}{e^{\frac{ik\pi}{n}} \left(e^{i\theta} e^{-\frac{ik\pi}{n}} - e^{\frac{ik\pi}{n}} e^{-i\theta}\right)}$$

$$= \frac{e^{\frac{ik\pi}{n}} - e^{-\frac{ik\pi}{n}}}{2i} \times \frac{2i}{e^{i(\theta - \frac{k\pi}{n})} - e^{-i(\theta - \frac{k\pi}{n})}}$$

$$= \frac{\sin\left(\frac{k\pi}{n}\right)}{\sin\left(\theta - \frac{k\pi}{n}\right)}$$

Correction de l'exercice 6 :

- 1) Pour tout $n \in \mathbb{N}^*$, notons $\mathcal{P}(n)$: « u_n est bien défini et $u_n > 0$ » et raisonnons par récurrence sur n.
 - Initialisation : $\mathcal{P}(1)$ est vrai par hypothèse.
 - **Hérédité**: Supposons que $\mathcal{P}(n)$ soit vrai pour un certain rang $n \in \mathbb{N}^*$. Alors $\left(\ln\left(1 + \frac{1}{u_n}\right)\right)^2$ est bien défini et positif donc $u_n + \left(\ln\left(1 + \frac{1}{u_n}\right)\right)^2$ est bien défini et supérieur à u_n . Ainsi, u_{n+1} est bien défini et $u_{n+1} \ge u_n > 0$, donc $\mathcal{P}(n+1)$ est vrai.
 - Conclusion : Par principe de récurrence on en conclut que pour tout $n \in \mathbb{N}$ u_n est bien défini et $u_n > 0$.
- 2) $\forall n \in \mathbb{N}^*, u_{n+1} u_n = \left(\ln\left(1 + \frac{1}{u_n}\right)\right)^2 \ge 0 \text{ donc } (u_n) \text{ est croissante. Il n'y a que deux possibilités, soit } (u_n) \text{ converge soit elle tend vers } +\infty.$ Raisonnons par l'absurde et supposons que $\lim_{n \to +\infty} u_n = \ell$ avec $\ell \in \mathbb{R}$ et $\ell \ge 1$ car $u_1 \ge 1$ et (u_n) croissante. Alors, par continuité de $x \mapsto \ln\left(1 + \frac{1}{x}\right)^2 \text{ sur }]0; +\infty[., \lim_{n \to +\infty} \left(\ln\left(1 + \frac{1}{u_n}\right)\right)^2 = \ln\left(1 + \frac{1}{\ell}\right).$ Par passage à la limite dans l'égalité $u_{n+1} = u_n + \left(\ln\left(1 + \frac{1}{u_n}\right)\right)^2$ on obtient $\ell = \ell + \left(\ln\left(1 + \frac{1}{\ell}\right)\right)^2$ donc $\ln\left(1 + \frac{1}{\ell}\right) = 0$ donc $1 + \frac{1}{\ell} = 1$ donc $\frac{1}{\ell} = 0$ ce qui n'est pas possible. On en conclut que $\lim_{n \to +\infty} u_n = +\infty.$
- 3) Puisque $\lim_{n \to +\infty} u_n = +\infty$ on a $\lim_{n \to +\infty} \frac{1}{u_n} = 0$. Ainsi, $\ln\left(1 + \frac{1}{u_n}\right) = \frac{1}{u_n} + o\left(\frac{1}{u_n}\right)$. On a donc :

$$\begin{aligned} u_{n+1}^{\beta} - u_n^{\beta} &= \left(u_n + \left(\ln \left(1 + \frac{1}{u_n} \right) \right)^2 \right)^{\beta} - u_n^{\beta} \\ &= u_n^{\beta} \left(1 + \frac{1}{u_n} \left(\frac{1}{u_n} + o\left(\frac{1}{u_n} \right) \right)^2 \right)^{\beta} - u_n^{\beta} \\ &= u_n^{\beta} \left(1 + \frac{\beta}{u_n^{\beta - 3}} + o\left(\frac{1}{u_n^{\beta - 3}} \right) \right)^{\beta} - u_n^{\beta} \end{aligned}$$

$$= u_n^{\beta} \left(1 + \frac{\beta}{u_n^{\beta - 3}} + o\left(\frac{1}{u_n^{\beta - 3}} \right) \right)^{\beta} - u_n^{\beta}$$

$$= u_n^{\beta} + \beta u_n^{\beta - 3} - u_n^{\beta} + o\left(u_n^{\beta - 3} \right)$$

$$= \beta u_n^{\beta - 3} + o\left(u_n^{\beta - 3} \right)$$

4) Pour $\beta = 3$ on a $u_{n+1}^{\beta} - u_n^{\beta} = \beta + o(1)$ donc $\lim_{n \to +\infty} u_{n+1}^3 - u_n^3 = 3$. D'après le théorème de Cesàro :

D'après le théorème de Cesaro

$$\lim_{n \to +\infty} \frac{1}{n} \sum_{k=1}^{n} (u_{k+1}^3 - u_k^3) = 3$$

Or, $\sum_{k=1}^{n} u_{n+1}^3 - u_n^3 = u_{n+1}^3 - u_1^3$ donc $\lim_{n \to +\infty} \frac{u_{n+1}^3 - u_1^3}{n} = 3$ donc $\lim_{n \to +\infty} \frac{u_{n+1}^3}{n} = 3$ car $\lim_{n \to +\infty} \frac{u_1^3}{n} = 0$, et donc $\lim_{n \to +\infty} \frac{u_{n+1}^3}{n+1} = 3$ et finalement $\lim_{n \to +\infty} \frac{u_{n+1}^3}{n+1} = 3$. On en conclut que $u_{n+1} \sim \sqrt[3]{3(n+1)}$ donc $u_n \sim \sqrt[3]{3n}$

Correction de l'exercice 7

1) Montrons que pour tout x>0 l'intégrale $\int_0^{+\infty} \mathrm{e}^{-t} \, t^{x-1} \, \mathrm{d}t$ converge. La fonction $t\mapsto \mathrm{e}^{-t} \, t^{x-1}$ est continue sur $[0;+\infty[$ si $x\geq 1,$ et sur $]0;+\infty[$ si x<1. Dans les deux cas il y a une impropriété en $+\infty$. Or $t^2 \, \mathrm{e}^{-t} \, t^{x-1} = t^{x+1} \, \mathrm{e}^{-t} \xrightarrow[t\to +\infty]{} 0$ donc d'après le critère de Riemann l'intégrale $\int_1^{+\infty} \mathrm{e}^{-t} \, t^{x-1} \, \mathrm{d}t$ converge, et ce quel que soit la valeur du réel x. Si $x\geq 1$ alors il n'y a pas d'impropriété en 1

Si 0 < x < 1, alors $e^{-t} t^{x-1} \underset{t \to 0}{\sim} \frac{1}{t^{1-x}}$. Or $\int_0^1 \frac{1}{t^{1-x}} dt$ converge selon le critère de Riemann car 1-x < 1, donc l'intégrale $\int_0^1 e^{-t} t^{x-1} dt$ converge.

Finalement, on a bien montré que pour tout x > 0, l'intégrale $\Gamma(x)$ converge donc Γ est bien définie sur $]0; +\infty[$.

2) On fait une intégration par partie sur l'intervalle $\left[\frac{1}{A};A\right]$ avec A>0:

$$\int_{1/A}^{A} e^{-t} t^{x-1} dt = \left[e^{-t} \frac{t^{x}}{x} \right]_{1/A}^{A} + \int_{1/A}^{A} e^{-t} \frac{t^{x}}{x} dt$$

$$= \frac{A^{x} e^{-A}}{x} - \frac{e^{-1/A} \varepsilon^{x}}{x} + \frac{1}{x} \int_{1/A}^{A} e^{-t} t^{x} dx$$

$$\xrightarrow{A \to +\infty} 0 + \frac{1}{x} \Gamma(x+1)$$

Or le membre de gauche de cette égalité tend vers $\Gamma(x)$ lorsque $A \to +\infty$ d'où l'égalité $\Gamma(x+1) = x\Gamma(x)$

3)
$$\Gamma(1) = \int_0^{+\infty} e^{-t} dt = \lim_{A \to +\infty} \int_0^A e^{-t} dt = \lim_{A \to +\infty} (1 - e^{-A}) = 1$$

On a donc $\Gamma(0+1)=1$, or 0!=1 donc on a bien $\Gamma(0+1)=0!$, l'égalité est vraie pour n=0.

Supposons que l'égalité soit vraie pour un entier n quelconque, alors d'après la question précédente $\Gamma(n+2) = \Gamma(n+1+1) = (n+1)\Gamma(n+1) = (n+1)n! = (n+1)!$. L'égalité est vraie pour n=0 et la propriété est héréditaire, donc elle est vraie pour tout enter n par principe de récurrence.

4)
$$\Gamma\left(\frac{1}{2}\right) = \int_0^{+\infty} e^{-t} t^{-\frac{1}{2}} dt = \int_0^{+\infty} \frac{e^{-t}}{\sqrt{t}} dt.$$

Posons $x = \sqrt{t}$, avec $dx = \frac{1}{2\sqrt{t}} dt$ et dt = 2x dx. Pour tout A > 0 on a

$$\int_0^A \frac{\mathrm{e}^{-t}}{\sqrt{t}} \, \mathrm{d}t = \int_0^{\sqrt{A}} \frac{\mathrm{e}^{-x^2}}{x} 2x \, \mathrm{d}x = \int_0^A \mathrm{e}^{-x^2} \, \mathrm{d}x \xrightarrow[A \to +\infty]{} \frac{\sqrt{\pi}}{2}$$

d'après la valeur admise de l'intégrale de Gauss. Ainsi, $\Gamma\left(\frac{1}{2}\right) = \frac{\sqrt{\pi}}{2}$.

On en déduit que $\Gamma\left(\frac{3}{2}\right) = \Gamma\left(\frac{1}{2} + 1\right) = \frac{1}{2}\Gamma\left(\frac{1}{2}\right) = \frac{\sqrt{\pi}}{4}$ d'après la question 2.

Correction de l'exercice 8 : Existence : Considérons la fonction $g: x \mapsto f(x) - x$. Cette fonction est continue sur [0,1] comme somme de fonctions continues, avec $g(0) = f(0) \ge 0$ et $g(1) = f(1) - 1 \le 0$ car $f(0), f(1) \in [0,1]$. D'après le théorème des valeurs intermédiaires, il existe donc un réel $c \in [0,1]$ tel que g(c) = 0 donc tel que f(c) = c.

<u>Unicité</u>: Supposons qu'il existe $(x,y) \in [0,1]^2$ tels que f(x) = x et f(y) = y. Alors par hypothèe sur f:

$$|f(x) - f(y)| \le c|x - y|$$

donc $|x-y| \le c|x-y$. Si $x \ne y$ on peut diviser de chaque côté par |x-y| et obtenir $1 \le c$, contradiction.

Correction de l'exercice 9:

- 1) Pour tout $x \ge 0$, $x = \sqrt{x} \cdot \sqrt{x}$ donc $f(x) = f(\sqrt{x} \cdot \sqrt{x}) \ge f(\sqrt{x})^2 \ge 0$ par hypothèse sur f.
- 2) On a:

$$f(x^{1/n})^n = \underbrace{f(x^{1/n}) \times \cdots \times f(x^{1/n})}_{n \text{ fois}}$$

$$\leq f(\underbrace{x^{1/n} \times \cdots \times x^{1/n}}_{n \text{ fois}})$$
 par hypothèse sur f
$$\leq f(x)$$

3) Pour tout $x \ge 0$ et tout $n \ge 1$ on a :

$$f(x^{1/n})^n = \exp\left(n\ln(f(x^{1/n}))\right)$$

Or $\lim_{n\to +\infty} x^{1/n} = 1$ et f est dérivable en 1 donc admet un développement limité en 1 :

$$f(x) = f(1) + f'(1)(x-1) + o(x-1)$$

d'où

$$f(x^{1/n}) \underset{n \to +\infty}{=} f(1) + f'(1)(x^{1/n} - 1) + o(x^{1/n} - 1) = 1 + f'(1)(x^{1/n} - 1) + o(x^{1/n} - 1)$$

par composition avec ln, et puisque $\lim_{n\to +\infty} f'(1)(x^{1/n}-1)=0$ on a :

$$\ln(f(x^{1/n}) = f'(1)(x^{1/n} - 1) + o\left(x^{1/n} - 1\right)$$

De plus, $n(x^{1/n} - 1) = n(e^{\ln(x)/n} - 1) \sim \ln(x)$ donc $\lim_{n \to +\infty} n \ln(f(x^{1/n})) = f'(1) \ln(x)$ et finalement

$$\lim_{n \to +\infty} f(x^{1/n})^n = \exp(f'(1)\ln(x)) = x^{f'(1)}$$

Par passage à la limité dans l'inégalité précédente on en déduit odnc :

$$\forall x \ge 0, \forall n \ge 1, \quad f(x) \ge x^{f'(1)}$$

- 4) Si p < 0, alors $\lim_{x \to 0^+} x^p = +\infty$ donc par comparaison $\lim_{x \to 0^+} f(x) = +\infty$. Or f est dérivable sur \mathbb{R}_+ donc continue en 0 et $\lim_{x \to 0^+} f(x) = f(0) \in \mathbb{R}$, contradiction. On en conclut que $p \ge 0$
- 5) Montrons que le résultat est vrai si x > 0 en raisonnant par l'absurde : supposons qu'il existe un réel $x_0 > 0$ tel que $f(x_0) > x_0^p$.

D'après la question 3) $f\left(\frac{1}{x_0}\right) \ge \frac{1}{x_0^p}$ donc par produit d'inégalités :

$$1 = f(1) \ge f(x_0) f\left(\frac{1}{x_0}\right) > x_0^p \times \frac{1}{x_0^p} > 1$$

contradiction. On en déduit donc que pour tout x > 0, $f(x) = x^p$, et par continuité de f on a donc $f(0) = \lim_{x \to 0} x^p = 0$ si $p \neq 0$, et $\lim_{x \to 0} x^p = 1$ si p = 0. Dans tous les cas, $f(x) = x^p$ pour tout $x \geq 0$.

