Semiconductores y fotodiodos

Ivo Alani Juan Döppler

29 de Abril de 2014

Laboratorio 5, FCEN-UBA

Esquema de la charla

- Tipos de materiales
- Dopaje de semiconductores
- Diodo semiconductor
- Fotodiodo: características, eficiencia y responsividad, tiempo de respuesta.
- Modos de operación del fotodiodo
- Celdas y paneles solares

Tipos de Materiales según sus bandas de energía:

- A T=0K, todos los electrones están en la banda de valencia, y la banda de conducción está vacía.
- A T>0K, los electrones de valencia pueden adquirir energía para saltar a la banda

de conducción.

<u>Dopaje de Semiconductores: Tipo P y Tipo N</u>

Un semiconductor
 extrínseco se obtiene al
 insertar elementos del
 grupo III A (AI, Ga, In) o V
 A (P, As, Sb) en el
 material.

Modificación de las bandas de energía.

Diodo semiconductor

- Se obtiene al unir un material tipo p y un tipo n, construídos en la misma base (Ge o Si).
- Luego de un proceso de difusión, se tendrá una región con pocos portadores, y una acumulación de iones, produciendo una barrera de potencial.

Curva característica I-V

Fotodiodo

- El fotodiodo consiste en una unión pn sensible a la incidencia de luz.
- La corriente se genera al incidir fotones en la interfase pn. (E> Eg)
- La corriente inversa es aproximandamente proporcional a la intensidad

Material	Longitud de onda (nm)
<u>Silicio</u>	190-1100
<u>Germanio</u>	800-1700
Indio galio arsénico	800-2600
(<u>InGaAs</u>)	
sulfuro de plomo	1000-3500

Circuito equivalente

- El fotodiodo ideal se puede considerar como una fuente de corriente, paralela a un diodo semiconductor. Un modelo un poco más completo incluye R's y C.
- La región de agotamiento se comporta como un capacitor

<u>Tiempo de respuesta</u>

 La resistencia y capacidad del diodo junto a la resistencia del circuito dan el tiempo de respuesta

$$T = RC$$

Eficiencia (QE) y responsividad del fotodiodo (R)

- Se define la QE η como la probabilidad de que un fotón incidente genere una carga. Depende de la longitud de onda.
- R mide el ratio de Ampere de fotocorriente generado por Watt de potencia incidente de luz.
- Depende de la QE
- La maxima obtenible en teoría se corresponde con la detección de cada fotón incidente.

$$R = \frac{fotocorriente}{watt incidente} = \frac{q \, \lambda \, \eta}{hc} = \frac{\lambda \, \eta}{1.24 * 10^{-6}} A/W$$

Modo fotoconductivo

- •Se polariza el diodo inversamente, la región de agotamiento crece, disminuye la capacidad y aumenta el tiempo de respuesta.
- •Aumenta la corriente oscura.
- Fotodiodos polarizados.

Modo fotovoltaico

- •No se polariza el diodo.
- •Respuesta más lenta.
- Corriente oscura es mínima.
- Celdas solares

Paneles solares

- Consisten en fotodiodos en modo fotovoltaico.
- El flujo de electrones-huecos produce una corriente aprovechable.
- La eficiencia depende del gap de energía. Es máxima (33.7%) para 1.34 eV. Para el silicio 1.1 eV

Linealidad de la respuesta

- Con
 polarización
 inversa, la
 tensión en la
 carga es lineal
 con la
 intensidad.
- En modo fotovoltaico, solo es lineal en un rango.

