Logic Optimization Heuristic Based

Virendra Singh

Professor

Department of Electrical Engineering & Dept. of Computer Science & Engineering Indian Institute of Technology Bombay http://www.ee.iitb.ac.in/~viren/

E-mail: viren@{ee, cse}.iitb.ac.in

EE-677: Foundations of VLSI CAD

Lecture 27 on 12 Oct 2021

CADSL

Logic Minimization

Heuristic logic minimization

- Provide irredundant covers with "reasonably small"
- Fast and applicable to many functions > SEM Set of P2

 Much faster than exact minimization
- Avoid bottlenecks of exact minimization
 - Prime generation and storage
 - Covering
- Motivation
 - Use as internal engine within multi-level synthesis tools

Minimal or irredundant cover

• f₁ = a'b'c' + a'b'c + ab'c + abc +abc'; f₂ = a'b'c + ab'c

Minimal or irredundant cover

• f₁ = a'b'c' + a'b'c + ab'c + abc +abc'; f₂ = a'b'c + ab'c

Minimum cover

Minimal cover or irredundant cover

Cover of the function that is not a proper superset of another cover. No implicant can be dropped.

Local optimum

Minimal cover w.r. to single implicant containment

Heuristic minimization -- principles

Start from initial cover

- Provided by designer or extracted from hardware language model
- Modify cover under consideration
 - − Make it prime and irredundant ←
 - Perturb cover and re-iterate until a small irredundant cover is obtained
- Typically the size of the cover decreases
 - Operations on limited-size covers are fast

Heuristic minimization - operators

Expand

- Make implicants prime
- Removed covered implicants

Reduce

- Reduce size of each implicant while preserving cover
- Reshape
 - Modify implicant pairs: enlarge one and reduce the other
- Irredundant
 - Make cover irredundant

Example

- Initial cover
 - (without positional cube notation)

```
abcd.
   0000
   0010
2
   0100
   0110
   1000
   1010
   0101
   0111
   1001
   1011
   1101
```

Example

Set of primes

Example of expansion

ad asid -> ad

- Expand 0000 to $\alpha = 0**0$.
 - Drop 0100, 0010, 0110 from the cover.
- Expand $\frac{1000 \text{ to } \beta = *0*0}{5 \text{ d}}$
 - Drop 1010 from the cover.
- Expand 0101 to $Y = 01^{**}$.
 - Drop 0111 from the cover.
- Expand 1001 to $\delta = 10^{**}$.
 - Drop 1011 from the cover.
- Expand 1101 to $\varepsilon = 1*01$.
- Cover is: $\{\alpha, \beta, \gamma, \delta, \epsilon\}$.

→ Reduce 0**0 to nothing.

• Reduce $\beta = *0*0$ to $\beta' = 00*0$. • Reduce $\epsilon = 1*01$ to $\epsilon' = 1101$.

• Cover is: $\{\beta', \gamma, \delta, \epsilon'\}$.

Example of reshape

- Reshape $\{\beta', \delta\}$ to: $\{\beta, \delta'\}$.
 - Where $\delta' = 10*1$.
- Cover is: $\{\beta, \gamma, \delta', \epsilon'\}$.

Example of second expansion

• Expand $\delta' = 10*1$ to $\delta = 10**$.

• Expand $\varepsilon' = 1101$ to $\varepsilon = 1*01$.

Example Summary of the steps taken by MINI

Expansion:

- Cover: $\{\alpha, \beta, \gamma, \delta, \epsilon\}$.
- Prime, redundant, minimal w.r. to scc.

Reduction:

- α eliminated.
- $-\beta = *0*0$ reduced to $\beta' = 00*0$.
- $\varepsilon = 1*01$ reduced to $\varepsilon' = 1101$.
- Cover: $\{\beta', \gamma, \delta, \epsilon'\}$.

Reshape:

- $\{\beta', \delta\}$ reshaped to: $\{\beta, \delta'\}$ where $\delta' = 10*1$.
- Second expansion:
 - Cover: $\{\beta, \gamma, \delta, \epsilon\}$.
 - Prime, irredundant.

foredandery

Example

Summary of the steps taken by ESPRESSO

• Expansion:

- Cover: $\{\alpha, \beta, \gamma, \delta, \epsilon\}$.
- Prime, redundant, minimal w.r. to so
- Irredundant:
 - Cover: $\{\beta, \gamma, \delta, \epsilon\}$.
 - Prime, irredundant.

Rough comparison of minimizers

- MINI
 - − Iterate EXPAND, REDUCE, RESHAPE
- Espresso
 - Iterate EXPAND, IRREDUNDANT, REDUCE
- Espresso guarantees an irredundant cover
 - Because of the irredundant operator
- MINI may return irredundant covers, but can guarantee only minimality w.r.to single implicant containment

Expand: Naïve implementation

- For each implicant
 - For each care literal
 - Raise it to don't care if possible
 - Remove all implicants covered by expanded implicant
- Issues
 - Validity check of expansion
 - Order of expansion

Validity check

- Espresso, MINI
 - Check intersection of expanded implicant with
 OFF-set
 - Requires complementation
- Presto
 - Check inclusion of expanded implicant in the union of the ON-set and DC-set
 - Reducible to recursive tautology check

Thank You

