

Lecture 1 System Architecture 2 DM2112

Digital Entertainment Systems

PC Today

Today's PC are designed with customisable parts

- It all began with the transistor
 - Basic building block of electronics today

First transistor were in vacuum tubes

Replacing a bad tube meant checking among ENIAC's 19,000 possibilities.

- Silicon-based transistors were key to creating complex circuitry required for modern processors
- Today's processors
 easily have hundreds
 of millions of
 transistors

Examples of Transistors

History of Computer

- Have a read of the history of computers
- http://www.computersciencelab.com/ComputerHistory/History.htm

Graphic Cards

Graphic Cards

- Computer Expansion Card
- Dedicated graphic rendering device
- Graphics Processing Unit (GPU)
 - Accelerate building of images in a frame buffer for output to a display
 - First GPU is GeForce 256 byNvidia in 1999

Intel Integrated Graphics

- Built into the motherboard's northbridge
 - Will touch on northbridge in future
- Later moved to the CPU

- 2010 HD Graphics released
- 2011 HD Graphics 2000, 3000 released with Sandy Bridge
- 2012 HD Graphics 2500, 4000 releasing with Ivy Bridge

Intel Integrated Graphics

Intended for Mainstream Games

Dedicated Graphic Cards

 Computer expansion card dedicated to fast rendering of images for realtime display on computer display

- Has its own processor (GPU)
- Commonly handles vector operations
 - Will touch on this in future topics

Graphic Cards Connection

Taken from wiki

http://en.wikipedia.org/wiki/Video_card#Motherboard_interface

Chronologically, connection systems between video card and motherboard were, mainly:

- S-100 bus: designed in 1974 as a part of the Altair 8800, it was the first industry-standard bus for the microcomputer industry.
- ISA: Introduced in 1981 by IBM, it became dominant in the marketplace in the 1980s. It was an 8 or 16-bit bus clocked at 8 MHz.
- NuBus: Used in Macintosh II, it was a 32-bit bus with an average bandwidth of 10 to 20 MB/s.
- MCA: Introduced in 1987 by IBM it was a 32-bit bus clocked at 10 MHz.
- EISA: Released in 1988 to compete with IBM's MCA, it was compatible with the earlier ISA bus. It was a 32-bit bus clocked at 8.33 MHz.
- VLB: An extension of ISA, it was a 32-bit bus clocked at 33 MHz.
- PCI: Replaced the EISA, ISA, MCA and VESA buses from 1993 onwards. PCI allowed dynamic connectivity between devices, avoiding the manual adjustments required with jumpers. It is a 32-bit bus clocked 33 MHz.
- UPA: An interconnect bus architecture introduced by Sun Microsystems in 1995. It had a 64-bit bus clocked at 67 or 83 MHz.
- USB: Although mostly used for miscellaneous devices, such as secondary storage devices and toys, USB displays and display adapters exist.
- . AGP: First used in 1997, it is a dedicated-to-graphics bus. It is a 32-bit bus clocked at 66 MHz.
- PCI-X: An extension of the PCI bus, it was introduced in 1998. It improves upon PCI by extending the width of bus to 64-bit and the clock frequency
 to up to 133 MHz.
- PCI Express: Abbreviated PCIe, it is a point to point interface released in 2004. In 2006 provided double the data-transfer rate of AGP. It should not be confused with PCI-X, an enhanced version of the original PCI specification.

Graphic Cards Connection

GPU (Graphics Processing Unit)

- GPUs operate on a pipeline
- Prior to shaders, this pipeline is fixed
- Programmable step = shaders
 - Vertex shader
 - Pixel/Fragment shader
 - More on these in other modules

Work of a GPU

- Takes graphic information
 - i.e. graphics primitives building blocks to create complicated scenes
 - 2D primitives lines, circles
 - 3D primitives points (vertices), lines, triangles, quads
- Draw these on a memory space called a frame buffer

 GPUs commonly process multiple sets of data units at once (i.e. as a vector)

 Vector processing is also commonly used today on CPUs

- Scalar processing handles the processing of 1 piece of data at a time.
- Vector processing handles a chunk of data at a time. Large amounts of data are processed simultaneously.
- Vector processing is extremely useful when processing graphics data for realtime display
 - Usually repetitive task to be done on large sets of data (e.g. set a colour value to all pixels on screen)
 - Perform in vector = can be processed faster

- But if vector processors are better than scalar processors, why are scalar processors still in use?
 - Only useful for data-intensive task that require vector processing
 - Most of our daily computing processes tends to be sequential in nature
 - single data-single instruction

Sound Cards

Sound Cards

Used to playback audio and convert real-world audio into computer data

- Contains
 - Audio converters (ADC & DAC)
 - A chip for wavetable synthesis (MIDI music)
 - Maybe a chip to manipulate the audio

- Important characteristics
 - Quality of converters
 - Sampling rate
 - Sampling frequency
 - Polyphony (of MIDI playback)
 - Quality of wavetable

Common Audio Formats

- Many different formats
 - usually are slight variants of each other

- Common ones are
 - MIDI
 - Wav
 - MP3

MIDI vs Wav Files

- MIDI and wav files are 2 completely different kinds of audio files
- MIDI operates with a MIDI table and MIDI data
 - MIDI table is a table that contains a map of audio samples from actual instrumental sounds
 - MIDI data files is data that describe the following
 - What notes to play, using which instrument, when to play it
 - Together with MIDI table, processed through wavetable synthesizer to produce an actual sound
 - Output usually sounded synthetic / unnatural
 - Wave table synthesizer is a device (e.g a computer chip on the sound card) that has small files of actual recordings of instruments stored in its ROM. These records are called upon by the sound card when a particular sound effect or note of a particular instrument needs to bbe played back
- Useful when space is limited
 - MIDI was popular in 1990s when HDD size =~ 40MB

MIDI vs Wav Files

- Wav files consist of computer data that contains actual audio recording
 - Usually very large (if uncompressed)
 - MP3 is an example of compressed wav audio data
 - Superior audio reproduction (versus MIDI)
- MIDI files nowadays are used to record / store the musical performance
 - MIDI data can be edited (e.g wrong notes can be fixed easily because it's just computer data)
 - MIDI file can then be played back and output through a very quality software synthesizer (soft synth) that is based on wavetable synthesis

Audio in Games Today

 Today's gaming commonly use a mix of mp3 (or .ogg format) & wav files

- Space is no longer a major concern
 - HDD is reaching in units of terabyte
 - Memory of greater than 4GB is becoming common

Quality is more important than saving space & processing power

Memory

Memory (RAM)

- Data storage that allows for data to be accessed in any order and without physical movement
- Any piece of data can be fetched quickly and in a constant time
- Disadvantages:
 - High cost
 - Loss of data when power is turned off
 - Memory wall: CPU speeds have increased, but memory speeds have not been able to catch up
 - Memory latency

Memory (RAM)

- Comes in many "flavours"
- SRAM
 - Static Ram
 - Faster & consume less power (than DRAM)
 - More expensive
 - Commonly used for processor cache (L1/L2/L3 etc)
- DRAM
 - Dynamic RAM
 - Many revision & types (i.e. DDR, DDR2, DDR3, RDRAM, ...)
 - Cheap to build in large volume
 - Main memory commonly built from these

Cache Memory

- Concept of keep regularly accessed data (i.e. common instructions) in a temporary location
 - Location needs to be faster than main memory
 - Therefore Cache memory (L1, L2, L3)
- Why multiple levels?
 - Trade off speed (latency) vs volume / size
 - Multiple levels maximise cache hit (i.e. successfully locate the data in cache) and overall performance
 - -L1 = 64-128kb
 - $L2 = ^2256 \text{ kb}$
 - $-L3 = ^2-8MB$ (up to 20MB in high end processors)

Virtual Memory

- Main memory space is frequently accessed
 - Read, write, erase
- Difficult to ensure an application always get a contiguous space allocated
- Virtual memory is a technique to make applications see contiguous space when actual allocation is fragmented

That's all for today ©

Diploma in Game Development & Technology