目 录

一、高等数学	1
(一) 函数、极限、连续	1
(二) 一元函数微分学	5
(三)一元函数积分学	13
(四) 向量代数和空间解析几何	20
(五)多元函数微分学	29
(六)多元函数积分学	35
(七)无穷级数	40
(八)常微分方程	47
二、线性代数	52
(一) 行列式	52
(二)矩阵	54
(三) 向量	57
(四)线性方程组	60
(五)矩阵的特征值和特征向量	62
(六)二次型	63
三、概率论与数理统计	66
(一)随机事件和概率	66
(二)随机变量及其概率分布	70
(三)多维随机变量及其分布	72
(四)随机变量的数字特征	75
(五)大数定律和中心极限定理	78
(六)数理统计的基本概念	79
(七)参数估计	81
(八)假设检验	84
经常用到的初等数学公式	86
平面几何	91

一、高等数学

(一) 函数、极限、连续

考试内容	公式、定理、概念		
函数和隐 函数	函数:设有两个变量 x 和 y ,变量 x 的定义域为 D ,如果对于 D 中的每一个 x 值,按照一定的法则,变量 y 有一个确定的值与之对应,则称变量 y 为变量 x 的函数,记作: $y = f(x)$		
基本初等 超	基本初等函数包括五类函数: 1 幂函数: $y = x^{\mu} (\mu \in R)$; 2 指数函数 $y = a^{x} (a > 0 \perp a \neq 1)$; 3 对数函数: $y = \log_{a} x (a > 0 \perp a \neq 1)$; 4 三角函数: $y = \sin x, y = \cos x, y = \tan x$ 等; 5 反三角函数: 如 $y = \arcsin x, y = \arctan x$ 等. 初等函数: 由常数 C 和基本初等函数经过有限次四则运算与有限此复合步骤所构成,并可用一个数学式子		
数 场 极 限 极 极 极 极 及 及 其 函 极 成 皮 其 函 极 成 方 还 极 风	表示的函数,称为初等函数. $1\lim_{x\to x_0} f(x) = A \Leftrightarrow f(x_0) = f_+(x_0) = A$ $2\lim_{x\to x_0} f(x) = A \Leftrightarrow f(x_0) = A + a(x), 其中 \lim_{x\to x_0} a(x) = 0$ 3(保号定理)		

与右极限					
	当 $x \in (x_0 - \delta, x_0 + \delta)$,且 $x \neq x_0$ 时, $f(x) > 0$ (或 $f(x) < 0$)				
	$\lim_{\alpha \to \infty} \alpha(x) = 0, \lim_{\alpha \to \infty} \beta(x) = 0$				
	(1)若 $\lim \frac{\alpha(x)}{\beta(x)} = 0$,则 $\alpha(x)$ 是比 $\beta(x)$ 高阶的无穷小,				
	记为α(x)=o(β(x)).				
	(2) 若 $\lim \frac{\alpha(x)}{\beta(x)} = \infty$,则 $\alpha(x)$ 是比 $\beta(x)$ 低阶的无穷小,				
	(3)若 $\lim \frac{\alpha(x)}{\beta(x)} = c(c \neq 0)$,则 $\alpha(x)$ 与 $\beta(x)$ 是同阶无穷小,				
无穷小和	(4) 若 $\lim \frac{\alpha(x)}{\beta(x)} = 1$,则 $\alpha(x)$ 与 $\beta(x)$ 是等价的无穷小,				
无穷大的	记为α(x)~β(x)				
概念及其 关系,无	(5)若 $\lim \frac{\alpha(x)}{\beta^k(x)} = c(c \neq 0), k > 0, 则 \alpha(x) 是 \beta(x)$ 的k阶无穷小				
穷小的性	常用的等阶无穷小: 当 $x \to 0$ 时				
质及无穷 小的比较	$\begin{vmatrix} \sin x \\ \cdot \end{vmatrix}$				
7 11700	$\frac{\arcsin x}{\tan x} \qquad 1 - \cos x \sim \frac{1}{2}x^2$				
	$\begin{cases} $				
	$\ln(1+x) \qquad \qquad (1+x)^n - 1 \sim -x \\ n$				
	e^x-1				
	无穷小的性质				
	(1) 有限个无穷小的代数和为无穷小				
	(2) 有限个无穷小的乘积为无穷小				
	(3) 无穷小乘以有界变量为无穷小				
	Th 在同一变化趋势下, 无穷大的倒数为无穷小; 非零的				

	无穷小的倒数为无穷大			
极限的四 则运算	lim $f(x) = A$, lim $g(x) = B$.則 (1) lim($f(x) \pm g(x)$) = $A \pm B$; (2) lim $f(x)g(x) = A \cdot B$; (3) lim $\frac{f(x)}{g(x)} = \frac{A}{B}(B \neq 0)$			
极的则有和则重限限两:界夹,要:在准调则准个极	1 (夹逼定理)设在 x_0 的邻域内,恒有 $\varphi(x) \le f(x) \le \phi(x)$, 且 $\lim_{x \to x_0} \varphi(x) = \lim_{x \to x_0} \phi(x) = A$,则 $\lim_{x \to x_0} f(x) = A$ 2 单调有界定理:单调有界的数列必有极限 3 两个重要极限: (1) $\lim_{x \to 0} \frac{\sin x}{x} = 1$ (2) $\lim_{x \to 0} (1+x)^{\frac{1}{x}} = e$ 重要公式: $\lim_{x \to \infty} \frac{a_0 x^n + a_1 x^{n-1} + \dots + a_{n-1} x + a_n}{b_0 x^m + b_1 x^{m-1} + \dots + b_{m-1} x + b_m} = \begin{cases} \frac{a_0}{b_0}, n = m \\ 0, n < m \end{cases}$ 4 几个常用极限特例 $\lim_{n \to \infty} \sqrt[n]{n} = 1, \qquad \lim_{x \to +\infty} \arctan x = \frac{\pi}{2}$ $\lim_{x \to +\infty} \arctan x = -\frac{\pi}{2} \qquad \lim_{x \to +\infty} \operatorname{arccot} x = 0,$			

	$\lim_{x \to -\infty} \operatorname{arc} \cot x = \pi$	$\lim_{x\to-\infty}\mathbf{e}^x=0,$
	$\lim_{x\to+\infty}\mathbf{e}^x=\infty,$	$\lim_{x\to +0^+} x^x = 1,$
函的函点型函续区续性数概数的:数性间函质连念间类初的:上数	在 $[a,b]$ 上有界,即 \exists 常数 f $ f(x) \le M$. (2) (最値定理) 设函数 $f(x)$ $f(x)$ 至少取得最大値与量 $f(\xi) = \max_{a \le x \le b} \{f(x)\}, \xi \in [f(\eta) = \min_{a \le x \le b} \{f(x)\}, \eta \in [f(\eta) = \max_{a \le x \le b} \{f(x)\}, \eta \in [f(\eta) = \min_{a \le x \le b} \{f(x)\}, \eta \in [f(\eta) = \min_{a \le x \le b} \{f(x)\}, \eta \in [f(\eta) = \min_{a \le x \le b} \{f(x)\}, \eta \in [f(\eta) = \min_{a \le x \le b} \{f(x)\}, \eta \in [f(\eta) = \min_{a \le x \le b} \{f(x)\}, \eta \in [f(\eta) = \min_{a \le x \le b} \{f(x)\}, \eta \in [f(\eta) = \min_{a \le x \le b} \{f(x)\}, \eta \in [f(\eta) = \min_{a \le x \le b} \{f(x)\}, \eta \in [f(\eta) = \inf_{a \le x \le b} \{f(x)\}, \eta \in [f(\eta) = \inf_{a \le x \le b} \{f(x)\}, \eta \in [f(\eta) = \inf_{a \le x \le b} \{f(x)\}, \eta \in [f(\eta) = \inf_{a \le x \le b} \{f(x)\}, \eta \in [f(\eta) = \inf_{a \le x \le b} \{f(x)\}, \eta \in [f(\eta) = \inf_{a \le x \le b} \{f(x)\}, \eta \in [f(\eta) = \inf_{a \le x \le b} \{f(x)\}, \eta \in [f(\eta) = \inf_{a \le x \le b} \{f(x)\}, \eta \in [f(\eta) = \inf_{a \le x \le b} \{f(x)\}, \eta \in [f(\eta) = \inf_{a \le x \le b} \{f(x)\}, \eta \in [f(\eta) = \inf_{a \le x \le b} \{f(x)\}, \eta \in [f(\eta) = \inf_{a \le x \le b} \{f(x)\}, \eta \in [f(\eta) = \inf_{a \ge x \le$	设函数 $f(x)$ 在 $[a,b]$ 上连续,则 $f(x)$ $M>0$,对任意的 $x \in [a,b]$,恒有 (x)

$$f(\xi) = 0. \quad (a < \xi < b)$$

(二) 一元函数微分学

考试内容	对应公式、定理、概念		
	1导数定义: $f'(x_0) = \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}$ (1)		
导数和微	或 $f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$ (2)		
分的概念	$x \rightarrow x_0$ $x \rightarrow x_0$ $x \rightarrow x_0$		
左右导数	2 函数 $f(x)$ 在 x_0 处的左、右导数分别定义为:		
导数的几	左导数:		
何意义和			
物理意义	$f'_{-}(x_0) = \lim_{\Delta x \to 0^{-}} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x} = \lim_{x \to x_0^{-}} \frac{f(x) - f(x_0)}{x - x_0}, (x = x_0 + \Delta x)$		
	右导数: $f'_+(x_0) = \lim_{\Delta x \to 0^+} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x} = \lim_{x \to x_0^+} \frac{f(x) - f(x_0)}{x - x_0}$		
	Th1: 函数 $f(x)$ 在 x_0 处可微 \Leftrightarrow $f(x)$ 在 x_0 处可导		
 函数的可	Th2: 若函数 $y = f(x)$ 在点 x_0 处可导,则 $y = f(x)$ 在点 x_0 处		
函数的的 导性与连	连续,反之则不成立.即函数连续不一定可导.		
续性之间	Th3: $f'(x_0)$ 存在 $\Leftrightarrow f'(x_0) = f'_+(x_0)$		
的关系,	设函数 $f(x)$ 在 $x = x_0$ 处可导,则 $f(x)$ 在 $M(x_0, y_0)$ 处的		
平面曲线			
的切线和	切线方程: $y - y_0 = f'(x_0)(x - x_0)$		
法线			
	法线方程: $y-y_0 = -\frac{1}{f'(x_0)}(x-x_0), f'(x_0) \neq 0.$		
导数和微	四则运算法则:设函数 $u=u(x)$, $v=v(x)$ 在点 x 可导则		
分的四则	(1) $(u \pm v)' = u' \pm v'$ $d(u \pm v) = du \pm dv$		
运算,初	(2) $(uv)' = uv' + vu' \qquad d(uv) = udv + vdu$		

等函数的

导数,

(3)
$$(\frac{u}{v})' = \frac{vu' - uv'}{v^2} (v \neq 0)$$
 $d(\frac{u}{v}) = \frac{vdu - udv}{v^2}$

基本导数与微分表

基本导致与倾分衣
(1)
$$y=c$$
 (常数) $y'=0$

$$y' = 0$$

$$dy = 0$$

(2)
$$y = x^{\alpha} (\alpha 为实数)$$
 $y' = \alpha x^{\alpha-1}$ $dy = \alpha x^{\alpha-1} dx$

$$\mathbf{v'} = \alpha \mathbf{x}^{\alpha-1}$$

$$dv = \alpha x^{\alpha - 1} dx$$

(3)
$$v = a^3$$

$$y' = a^x \ln a$$

(3)
$$y = a^x$$
 $y' = a^x \ln a$ $dy = a^x \ln a dx$

$$(e^x)' = e$$

特例
$$(e^x)' = e^x$$
 $d(e^x) = e^x dx$

$$(4) \quad y' = \frac{1}{x \ln a} dx$$

$$dy = \frac{1}{x \ln a} dx$$

$$(\ln x)' = \frac{1}{x}$$

特例
$$y = \ln x$$
 $(\ln x)' = \frac{1}{x}$ $d(\ln x) = \frac{1}{x} dx$

$$(5) \quad y = \sin x$$

$$y' = \cos x$$

(5)
$$y = \sin x$$
 $y' = \cos x$ $d(\sin x) = \cos x dx$
(6) $y = \cos x$ $y' = -\sin x$ $d(\cos x) = -\sin x dx$

(6)
$$y = \cos x$$

$$v' = -\sin x$$

$$d(\cos x) = -\sin x dx$$

$$(7) \quad y = \tan x$$

(7)
$$y = \tan x$$
 $y' = \frac{1}{\cos^2 x} = \sec^2 x$ $d(\tan x) = \sec^2 x dx$

(8)
$$y = 0$$

(8)
$$y = \cot x$$
 $y' = -\frac{1}{\sin^2 x} = -\csc^2 x$ $d(\cot x) = -\csc^2 x dx$

$$d(\cot x) = -\csc^2 x$$

$$(9) \quad y = \sec \theta$$

$$\sec x$$
 $y' = \sec x \tan x$

(9)
$$y = \sec x$$
 $y' = \sec x \tan x$ $d(\sec x) = \sec x \tan x dx$

$$(10) y = 0$$

$$y' = -\csc x \cot x$$

(10)
$$y = \csc x$$
 $y' = -\csc x \cot x$ $d(\csc x) = -\csc x \cot x dx$

$$y' = \frac{1}{\sqrt{1 - x^2}}$$

(11)
$$y = \arcsin x$$
 $y' = \frac{1}{\sqrt{1 - x^2}}$ $d(\arcsin x) = \frac{1}{\sqrt{1 - x^2}} dx$

$$y' = -\frac{1}{\sqrt{1-x^2}}$$

(12)
$$y = \arccos x$$
 $y' = -\frac{1}{\sqrt{1 - x^2}}$ $d(\arccos x) = -\frac{1}{\sqrt{1 - x^2}}dx$

$$\cot x \qquad y' = \frac{1}{1+x}$$

(13)
$$y = \arctan x$$
 $y' = \frac{1}{1+x^2}$ $d(\arctan x) = \frac{1}{1+x^2}dx$

$$(14) \quad y = arc$$

$$y' = -\frac{1}{1+x^2}$$

(14)
$$y = \operatorname{arc} \cot x$$
 $y' = -\frac{1}{1+x^2}$ $d(\operatorname{arc} \cot x) = -\frac{1}{1+x^2}dx$

	(15) y = shx	v' - chv	d(shx) = chxdx
	(16) y = shx $(16) y = chx$	•	d(shx) = chxdx $d(chx) = shxdx$
	(10) y = cnx	y = snx	a(cnx) = snxax
	1 反函数的运算法	E则: 设 $y = f(x)$	在点 x 的某邻域内单调连
	续,在点x处可导	且 $f'(x) \neq 0$, 则	J其反函数在点 x 所对应的
	y 处可导,并且有	$\vec{\exists} \frac{dy}{dx} = \frac{1}{\frac{dx}{dy}}$	
复合函	2 复合函数的运算	「法则:若 $\mu = \varphi(x)$	在点 x 可导,而 $y = f(\mu)$
数,反函			下函数 $y = f(\varphi(x))$ 在点 x 可
数,隐函数,	导,且 $y' = f'(\mu) \cdot \varphi$		1 Δ 3λ y
数以及参			
数方程所	3 隐函数导数 $\frac{dy}{dx}$ 自	的求法一般有三种	种方法:
确定的函	(1)方程两边对 <i>x</i> 5	求导, 要记住 y 爿	\mathbb{E}_{x} 的函数,则 y 的函数是
数的微分法,	x 的复合函数.例如	$ \prod \frac{1}{y}, y^2, \ln y, $	e^{y} 等均是 x 的复合函数.
	对 x 求导应按复合	合函数连锁法则值	故.
	(2)公式法.由 F(x,	$y) = 0 \text{fil} \frac{dy}{dx} = -1$	$\frac{F'_x(x,y)}{F'_y(x,y)}$,其中, $F'_x(x,y)$,
	$F'_{y}(x,y)$ 分别表示	F(x,y)对 x 和 y	的偏导数
	(3)利用微分形式	不变性	
	常用高阶导数公司	t	
高阶导数,一阶	(1) $(a^x)^{(n)} = a^x \ln a$	$a^n a (a > 0)$	$(e^x)^{(n)} = e^x$
微分形式的 不 变	$(2) (\sin kx)^{(n)} = k$		
性,	$(3) (\cos kx)^{(n)} = k$	$k^n \cos(kx + n \cdot \frac{\pi}{2})$	
		7	

(4)
$$(x^m)^{(n)} = m(m-1)\cdots(m-n+1)x^{m-n}$$

(5) $(\ln x)^{(n)} = (-1)^{(n-1)} \frac{(n-1)!}{x^n}$
(6) 莱布尼兹公式: 若 $u(x), v(x)$ 均 n 阶可导,则
 $(uv)^{(n)} = \sum_{i=0}^n c_u^i u^{(i)} v^{(n-i)}$,其中 $u^{(0)} = u$, $v^{(0)} = v$
Th1(费马定理)若函数 $f(x)$ 满足条件:
(1)函数 $f(x)$ 在 x_0 的某邻域内有定义,并且在此邻域内恒有 $f(x) \le f(x_0)$ 或 $f(x) \ge f(x_0)$,
(2) $f(x)$ 在 x_0 处可导,则有 $f'(x_0) = 0$
Th2 (罗尔定理) 设函数 $f(x)$ 满足条件:
(1)在闭区间 $[a,b]$ 上连续;
(2)在 (a,b) 内可导,则在 (a,b) 内ョ一个 ξ ,使 $f'(\xi) = 0$
Th3 (拉格朗日中值定理) 设函数 $f(x)$ 满足条件:
(1)在 $[a,b]$ 上连续; (2)在 (a,b) 内可导;则在 (a,b) 内ョ一个
 ξ ,使 $\frac{f(b)-f(a)}{b-a} = f'(\xi)$
Th4 (柯西中值定理) 设函数 $f(x)$, $g(x)$ 满足条件:
(1)在 $[a,b]$ 上连续; (2)在 (a,b) 内可导且 $f'(x)$, $g'(x)$ 均存在,且 $g'(x) \ne 0$ 则在 (a,b) 内ョー个 ξ ,使 $\frac{f(b)-f(a)}{g(b)-g(a)} = \frac{f'(\xi)}{g'(\xi)}$
洛必达法则:
法则 I $(\frac{0}{0}$ 型)设函数 $f(x)$, $g(x)$ 满足条件:

 $\lim_{x \to x_0} f(x) = 0$, $\lim_{x \to x_0} g(x) = 0$; f(x), g(x) 在 x_0 的邻域内可导

(在 x_0 处可除外)且 $g'(x) \neq 0$; $\lim_{x \to x_0} \frac{f'(x)}{g'(x)}$ 存在(或 ∞).则

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = \lim_{x \to x_0} \frac{f'(x)}{g'(x)}.$$

法则 I' $(\frac{0}{0}$ 型)设函数 f(x), g(x)满足条件:

$$\lim_{x \to \infty} f(x) = 0, \lim_{x \to \infty} g(x) = 0; \exists \neg \uparrow X > 0, \stackrel{\text{def}}{\Rightarrow} |x| > X$$

时, f(x), g(x) 可导,且 $g'(x) \neq 0$; $\lim_{x \to x_0} \frac{f'(x)}{g'(x)}$ 存在(或 ∞).则

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = \lim_{x \to x_0} \frac{f'(x)}{g'(x)}.$$

法则 $\Pi(\frac{\infty}{\alpha}$ 型) 设函数 f(x), g(x) 满足条件:

 $\lim_{x \to x_0} f(x) = \infty, \lim_{x \to x_0} g(x) = \infty; \qquad f(x), g(x) 在 x_0 的邻域内可$

导(在 x_0 处可除外)且 $g'(x) \neq 0$; $\lim_{x \to x_0} \frac{f'(x)}{g'(x)}$ 存在(或 ∞).则

 $\lim_{x \to x_0} \frac{f(x)}{g(x)} = \lim_{x \to x_0} \frac{f'(x)}{g'(x)}.$ 同理法则 II' ($\frac{\infty}{\infty}$ 型) 仿法则 I' 可写出

泰勒公式: 设函数 f(x) 在点 x_0 处的某邻域内具有 n+1 阶导数,则对该邻域内异于 x_0 的任意点 x ,在 x_0 与 x 之间至少 3 一个 ε ,使得

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{1}{2!}f''(x_0)(x - x_0)^2 + \cdots$$

$$+ \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n + R_n(x)$$
其中 $R_n(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!}(x - x_0)^{n+1}$ 称为 $f(x)$ 在点 x_0 处的
$$n 阶泰勒余项.令 x_0 = 0, \quad \text{则} n 阶泰勒公式$$

$$f(x) = f(0) + f'(0)x + \frac{1}{2!}f''(0)x^2 + \cdots + \frac{f^{(n)}(0)}{n!}x^n + R_n(x)$$

$$\cdots (1)$$
其中 $R_n(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!}x^{n+1}, \quad \xi \to 0 = x \to 0$ 点 (1)式称为麦克
劳林公式
常用五种函数在 $x_0 = 0$ 处的泰勒公式
$$e^x = 1 + x + \frac{1}{2!}x^2 + \cdots + \frac{1}{n!}x^n + \frac{x^{n+1}}{(n+1)!}e^\xi$$

$$\vec{y} = 1 + x + \frac{1}{2!}x^2 + \cdots + \frac{1}{n!}x^n + o(x^n)$$

$$\sin x = x - \frac{1}{3!}x^3 + \cdots + \frac{x^n}{n!}\sin\frac{n\pi}{2} + \frac{x^{n+1}}{(n+1)!}\sin(\xi + \frac{n+1}{2}\pi)$$

或
$$= x - \frac{1}{3!}x^3 + \dots + \frac{x^n}{n!}\sin\frac{n\pi}{2} + o(x^n)$$

$$\cos x = 1 - \frac{1}{2!}x^2 + \dots + \frac{x^n}{n!}\cos\frac{n\pi}{2} + \frac{x^{n+1}}{(n+1)!}\cos(\xi + \frac{n+1}{2}\pi)$$

1函数单调性的判断:

函性别的函形性 人线数绘大小数性,极数的,及,图函值值单的回拐新用形数和,调到数,图凸点近路描最最

Th1 设函数 f(x) 在 (a,b) 区间内可导,如果对 $\forall x \in (a,b)$,都有 f'(x) > 0(或 f'(x) < 0),则函数 f(x) 在 (a,b) 内是单调增加的(或单调减少)

Th2 (取极值的必要条件)设函数 f(x) 在 x_0 处可导,且在 x_0 处取极值,则 $f'(x_0) = 0$.

Th3 (取极值的第一充分条件)设函数 f(x) 在 x_0 的某一邻域内可微,且 $f'(x_0) = 0$ (或 f(x) 在 x_0 处连续,但 $f'(x_0)$ 不存在.)

- (1)若当x经过 x_0 时,f'(x)由"+"变"-",则 $f(x_0)$ 为极大值;
- (2)若当x经过 x_0 时,f'(x)由"-"变"+",则 $f(x_0)$ 为极小值;

(3)若 f'(x) 经过 $x = x_0$ 的两侧不变号,则 $f(x_0)$ 不是极值.

Th4 (取极值的第二充分条件)设 f(x) 在点 x_0 处有 $f''(x) \neq 0$,且 $f'(x_0) = 0$,则 当 $f''(x_0) < 0$ 时, $f(x_0)$ 为极大值;

当 $f''(x_0) > 0$ 时, $f(x_0)$ 为极小值.

注: 如果 $f''(x_0)=0$, 此方法失效.

- 2 渐近线的求法:
- (1)水平渐近线 若 $\lim_{x \to +\infty} f(x) = b$, 或 $\lim_{x \to -\infty} f(x) = b$, 则 y = b

称为函数 y = f(x) 的水平渐近线.

(2)铅直渐近线 若 $\lim_{x \to x_0^-} f(x) = \infty$,或 $\lim_{x \to x_0^+} f(x) = \infty$,则 $x = x_0$

称为 y = f(x) 的铅直渐近线.

(3)斜渐近线 若 $a = \lim_{x \to \infty} \frac{f(x)}{x}$, $b = \lim_{x \to \infty} [f(x) - ax]$, 则

y = ax + b 称为 y = f(x) 的斜渐近线

3函数凹凸性的判断:

Th1 (凹凸性的判别定理) 若在 $I \perp f''(x) < 0$ (或 f''(x) > 0), 则 f(x) 在 I 上是凸的(或凹的).

Th2 (拐点的判别定理 1)若在 x_0 处 f''(x) = 0 , (或 f''(x) 不存在),当 x 变动经过 x_0 时, f''(x) 变号,则 $(x_0, f(x_0))$ 为拐点.

Th3 (拐点的判别定理 2)设 f(x) 在 x_0 点的某邻域内有三阶导数,且 f''(x) = 0, $f'''(x) \neq 0$,则 $(x_0, f(x_0))$ 为拐点

(三)一元函数积分学

考试内容	对应公式、定理、概念
	基本性质
原函数和	$1 \int kf(x)dx = k \int f(x)dx \qquad (k \neq 0 为常数)$
不定积分	
的概念,	$2\int [f_1(x) \pm f_2(x) \pm \dots \pm f_k(x)] dx = \int f_1(x) dx \pm \int f_2(x) dx \pm \dots \pm \int f_k(x) dx$
不定积分	
的基本性	3 求导: $[\int f(x)dx]' = f(x)$ 或微分: $d\int f(x)dx = f(x)dx$
质	·
	$4\int F'(x)dx = F(x) + C $ 或 $\int dF(x) = F(x) + C $ (C 是任意常数)
基本积分	$\int x^{k} dx = \frac{1}{k+1} x^{k+1} + C \qquad (k \neq -1)$
公式	$\int \frac{1}{x^2} dx = -\frac{1}{x} + C \qquad \qquad \int \frac{1}{\sqrt{x}} dx = 2\sqrt{x} + C$

$$\int \frac{1}{x} dx = \ln|x| + C$$

$$\int a^x dx = \frac{a^x}{\ln a} + C \quad (a > 0, a \neq 1) \qquad \int e^x dx = e^x + C$$

$$\int \cos x dx = \sin x + C \qquad \int \sin x dx = -\cos x + C$$

$$\int \frac{1}{\cos^2 x} dx = \int \sec^2 x dx = \tan x + C$$

$$\int \frac{1}{\sin^2 x} dx = \int \csc^2 x dx = -\cot x + C$$

$$\int \frac{1}{\sin x} dx = \int \csc x dx = \ln|\csc x - \cot x| + C$$

$$\int \frac{1}{\cos x} dx = \int \sec x dx = \ln|\sec x + \tan x| + C$$

$$\int \sec x \tan x dx = \sec x + C \quad \int \csc x \cot x dx = -\csc x + C$$

$$\int \tan x dx = -\ln|\cos x| + C \quad \int \cot x dx = \ln|\sin x| + C$$

$$\int \frac{dx}{a^2 + x^2} = \frac{1}{a} \arctan \frac{x}{a} + C \quad \int \frac{dx}{1 + x^2} = \arctan x + C$$

$$\int \frac{dx}{a^2 - x^2} = \arcsin \frac{x}{a} + C \quad \int \frac{dx}{1 - x^2} = \arcsin x + C$$

$$\int \frac{dx}{a^2 - x^2} = \frac{1}{2a} \ln \left| \frac{a + x}{a - x} \right| + C \quad \int \frac{dx}{1 - x^2} = \frac{1}{2} \ln \left| \frac{1 + x}{1 - x} \right| + C$$

$$\int \frac{dx}{\sqrt{x^2 \pm a^2}} = \ln \left| x + \sqrt{x^2 \pm a^2} \right| + C$$
重要公式

$$(1) \partial_x f(x) \Delta x = \int_0^t [f(x) + f(-x)] dx$$

贝山

$$= \begin{cases} 0, \exists f(x) \ \text{为奇函数} \\ 2\int_0^t f(x)dx, \exists f(x) \ \text{为偶函数} \end{cases}$$

(2) 设f(x) 是以T为周期的连续函数,a为任意实数,

$$\int_{a}^{a+T} f(x)dx = \int_{0}^{T} f(x)dx = \int_{-\frac{T}{2}}^{\frac{T}{2}} f(x)dx.$$

$$(3) \int_0^a \sqrt{a^2 - x^2} dx = \frac{1}{4} \pi a^2$$

$$(4)\int_{0}^{\frac{\pi}{2}}\sin^{n}xdx = \int_{0}^{\frac{\pi}{2}}\cos^{n}xdx \begin{cases} \frac{n-1}{n} \cdot \frac{n-3}{n-2} \cdots \frac{1}{2} \cdot \frac{\pi}{2}, \leq n$$
为偶数
$$\frac{n-1}{n} \cdot \frac{n-3}{n-2} \cdots \frac{2}{3} \cdot 1, \leq n$$
为奇数

$$(5) \int_{-\pi}^{\pi} \sin nx \cos mx dx = \int_{0}^{2\pi} \sin nx \cos mx dx = \begin{cases} \pi, n = m \\ 0, n \neq m \end{cases}$$

$$\int_{-\pi}^{\pi} \sin nx \cos mx dx = \int_{0}^{2\pi} \sin nx \cos mx dx = 0$$

$$\int_{-\pi}^{\pi} \cos nx \cos mx dx = \int_{0}^{2\pi} \cos nx \cos mx dx = 0 = \begin{cases} \pi, n = m \\ 0, n \neq m \end{cases}$$

定积分的 概念和基 本性质, 定积分中 值定理

1. 定积分的基本性质

(1)定积分只与被积函数和积分限有关,而与积分变量无关,即 $\int_a^b f(x)dx = \int_a^b f(t)dt = \int_a^b f(u)du = \cdots$

$$(2)\int_a^b f(x)dx = -\int_b^a f(x)dx$$

$$(3)\int_a^b dx = b - a$$

$$(4) \int_{a}^{b} [f(x) \pm g(x)] dx = \int_{a}^{b} f(x) dx \pm \int_{a}^{b} g(x) dx$$

$$(5)\int_a^b kf(x)dx = k\int_a^b f(x)dx(k为常数)$$

$$(6) \int_{a}^{b} f(x) dx = \int_{a}^{c} f(x) dx + \int_{c}^{b} f(x) dx$$

(7)比较定理: 设 $f(x) \le g(x), x \in [a,b], 则 \int_a^b f(x) dx \le \int_a^b g(x) dx.$

推论: 1. 当 $f(x) \ge 0, x \in [a,b]$ 时, $\int_a^b f(x)dx \ge 0$;

$$2. \left| \int_a^b f(x) dx \right| \le \int_a^b \left| f(x) \right| dx$$

- (8)估值定理: 设 $m \le f(x) \le M, x \in [a,b]$,其中m,M为常数,则 $m(b-a) \le \int_a^b f(x)dx \le M(b-a)$
- (9)积分中值定理: 设f(x)在[a,b]上连续,则在[a,b]上至少 \exists 一个 ξ ,使 $\int_{a}^{b} f(x)dx = (b-a)f(\xi)$

$$f(\xi) = \frac{1}{b-a} \int_{a}^{b} f(x) dx - \dots -$$
平均值公式

Th1 设图

设函数f(x) 在[a, b]上连续, $x \in [a$, b],则变上限积分 $F(x) = \int_{-x}^{x} f(t)dt \, dt \, dt \, dt$

积分上限 的函数及 其导数,

其导数, 牛顿—— 兹布尼兹

莱布尼兹 公式

且有
$$F'(x) = \frac{d}{dx}F(x) = \frac{d}{dx}(\int_a^x f(t)dt) = f(x)$$

推论1 设 $F(x) = \int_a^{\varphi(x)} f(t)dt$,则 $F'(x) = f[\varphi(x)] \cdot \varphi'(x)$.

推论2
$$\left(\int_{\phi(x)}^{\varphi(x)} f(t)dt\right)_{x} = f[\varphi(x)]\varphi'(x) - f[\phi(x)] \cdot \phi'(x)$$

推论3
$$(\int_{a}^{\varphi(x)} f(t)g(x)dt)_{x} = (g(x)\int_{a}^{\varphi(x)} f(t)dt)_{x}$$

$$= g'(x) \int_{a}^{\varphi(x)} f(t)dt + g(x) f[\varphi(x)] \cdot \varphi'(x)$$

Th2 设f(x)在[a,b]上连续, $x \in [a,b]$,则 $\int_{a}^{x} f(x)dt \mathcal{L}f(x)$ 在[a,b]上的一个原函数

Th3牛顿-莱布尼茨公式: 设f(x)在[a,b]上连续, F(x)

是
$$f(x)$$
的原函数,则 $\int_a^b f(x)dx = F(x)|_a^b = F(b) - F(a)$

1 不定积分:

分部积分法: $\int udv = uv - \int vdu$ 选择 u, dv 的原则: 积分

容易者选作 dv, 求导简单者选为 u

换元积分法: 设 $\int f(u)du = F(u) + C$,

則 $\int f[\varphi(x)]\varphi'(x)dx = \int f[\varphi(x)]d\varphi(x)$

不定积分 和定积分 的换元积 分法与分 部积分法

2. 定积分

换元法: 设函数f(x) 在 [a, b] 上连续,若 $x=\varphi(t)$ 满足:

 $(1) \varphi(t)$ 在 $[\alpha, \beta]$ 上连续,且 $\varphi'(t) \neq 0$.

 $(2)\varphi(a) = a \cdot \varphi(\beta) = b$.并且当t在 [α , β] 上变化时, $\varphi(t)$ 的值在 [a, b] 上变化,则

$$\int_{a}^{b} f(x)dx = \int_{\alpha}^{\beta} f[\varphi(t)]\varphi'(t)dt.$$

分部积分公式

设
$$u(x)$$
, $v(x)$ 在 [a , b] 上具有连续导函数 $u'(x)$, $v'(x)$,则

$$\int_{b}^{a} u(x)v'(x)dx = u(x)v(x)|_{b}^{a} - \int_{b}^{a} v(x)u'(x)dx$$

3. 定积分不等式证明中常用的不等式

$$(1)a^2 + b^2 \ge 2ab$$

$$(2)a > 0, a + \frac{1}{a} \ge 2$$

(3)柯西不等式:

$$\left(\int_{a}^{b} f(x)g(x)dx\right)^{2} \leq \left(\int_{a}^{b} f^{2}(x)dx\right) \cdot \left(\int_{a}^{b} g^{2}(x)dx\right),$$

其中 $f(x)$, $g(x)$ 在 [a, b] 上连续

1. 三角函数代换

有数函理单数分积积用理三的和理积的广和的产和的产和的

函数 $f(x)$ 含根式	所作代换	三角形示意图
$\sqrt{a^2-x^2}$	$x = a \sin t$	a x $\sqrt{a^2-x^2}$
$\sqrt{a^2+x^2}$	$x = a \tan t$	X X X X
$\sqrt{x^2-a^2}$	$x = a \sec t$	$\sqrt{x^2-a^2}$

有理函数积分

$$(1)\int \frac{A}{x-a} dx = A \ln|x-a| + C$$

$$(2)\int \frac{A}{(x-a)^n} dx = -\frac{A}{n-1} \frac{1}{(x-a)^{n-1}} + C(n \neq 1)$$

$$(3) \int \frac{dx}{(x^2 + px + q)^n} = \int \frac{dx}{[(x + \frac{p}{2})^2 + \frac{4q - p^2}{4}]^n} \xrightarrow{\frac{x_1 + \frac{p}{2} = u}{4}} \int \frac{du}{(u^2 + a^2)^n}$$

$$(4)\int \frac{x+a}{(x^2+px+q)^n} dx = -\frac{1}{2(n-1)} \frac{1}{(x^2+px+q)^{n-1}} + (a-\frac{p}{2}) \int \frac{dx}{(x^2+px+q)^n}$$

$$(p^2-4q<0)$$

(1) 无穷限的广义积分(无穷积分)

设
$$f(x)$$
 连续,则
$$1.\int_a^{+\infty} f(x)dx = \lim_{b \to +\infty} \int_a^b f(x)dx$$

$$2.\int_{-\infty}^{b} f(x)dx = \lim_{a \to -\infty} \int_{a}^{b} f(x)dx$$

$$3.\int_{-\infty}^{+\infty} f(x)dx = \int_{-\infty}^{c} f(x)dx + \int_{c}^{+\infty} f(x)dx$$

无界函数的广义积分(瑕积分)

$$1.\int_{a}^{b} f(x)dx = \lim_{\varepsilon \to 0^{+}} \int_{a}^{b-\varepsilon} f(x)dx, (\stackrel{\text{\tiny \perp}}{=} x \to b^{-} \text{\tiny $|$} \text{\tiny $|$} f(x) \to \infty)$$

$$2.\int_{a}^{b} f(x)dx = \lim_{\varepsilon \to 0^{+}} \int_{a+\varepsilon}^{b} f(x)dx, (\stackrel{\text{def}}{=} x \to a^{+} \text{BF}, f(x) \to \infty)$$

$$3.\int_{a}^{b} f(x)dx = \lim_{\varepsilon \to 0^{+}} \int_{a}^{c-\varepsilon} f(x)dx + \lim_{\eta \to 0^{+}} \int_{c+\eta}^{b} f(x)dx$$
$$(\stackrel{\text{th}}{=} x \to c \stackrel{\text{th}}{=} , f(x) \to \infty)$$

(四) 向量代数和空间解析几何

考试内容	对应公式、定理、概念	
向量的概 念,向量 的线性运 算,	1.向量: 既有大小又有方向的量,又称矢量. 2.向量的模: 向量 \bar{a} 的大小.记为 $ \bar{a} $. 3.向量的坐标表示: 若向量用坐标表示 $\bar{a} = x\bar{i} + y\bar{j} + z\bar{k} = \{x, y, z\}$,则 $ \bar{a} = \sqrt{x^2 + y^2 + z^2}$ 4 向量的运算法则: I 加减运算 设有矢量 $\bar{a} = \{x_1, y_1, z_1\}$, $\bar{b} = \{x_2, y_2, z_2\}$,则 $\bar{a} \pm \bar{b} = \{x_1 \pm x_2, y_1 \pm y_2, z_1 \pm z_2\}$. II.数乘运算 数乘运算 Δ 矢量 \bar{a} 与一数量 λ 之积 $\lambda \bar{a}$, \bar{a} = $\{\lambda \bar{a} \mid \bar{a}^0 = \lambda < 0, \text{即与ā同向} \}$ \bar{a} 记,即为零矢量 设 $\bar{a} = \{x_1, y_1, z_1\}$,则 $- \lambda \bar{a} \bar{a}^0 = \lambda < 0, \text{即与ā反向}$ $\lambda \bar{a} = \{\lambda x_1, \lambda y_1, \lambda z_1\}$.	
向量的数 量积和向 量积,向 量的混合 积,	1 矢量的数积(点积,内积): 矢量 \bar{a} 与 \bar{b} 的数量积 $\bar{a}\cdot\bar{b}= \bar{a} \bar{b} \cos(\bar{a},\bar{b})$. 设 $\bar{a}=\{x_1,y_1,z_1\}$, $\bar{b}=\{x_2,y_2,z_2\}$,则 $\bar{a}\cdot\bar{b}=x_1x_2+y_1y_2+z_1z_2$. 2 矢量的向量积(叉积,外积): 设有两个向量 \bar{a} 与 \bar{b} ,若 3	

一个矢量 \bar{c} ,满足如下条件

- (1) $|\vec{c}| = |\vec{a}| |\vec{b}| \sin(\vec{a}, \vec{b});$
- (2) $\vec{c} \perp \vec{a}, \vec{c} \perp \vec{b}$, 即 \vec{c} 垂直于 \vec{a} , \vec{b} 所确定的平面;
- (3) \bar{a} , \bar{b} , \bar{c} 成右手系.则称矢量 \bar{c} 为矢量 \bar{a} 与 \bar{b} 的矢量积,记 $\bar{c}=\bar{a}\times\bar{b}$.

设 $\vec{a} = \{x_1, y_1, z_1\} \vec{b} = \{x_2, y_2, z_2\}$,则

$$\vec{a} \times \vec{b} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ x_1 & y_1 & z_1 \\ x_2 & y_2 & z_2 \end{vmatrix} = \begin{vmatrix} y_1 & z_1 \\ y_2 & z_2 \end{vmatrix} \vec{i} - \begin{vmatrix} x_1 & z_1 \\ x_2 & z_2 \end{vmatrix} \vec{j} + \begin{vmatrix} x_1 & y_1 \\ x_2 & y_2 \end{vmatrix} \vec{k}.$$

3 混合积: 设有三个矢量 \bar{a},\bar{b},\bar{c} , 若先作 \bar{a} , \bar{b} 的叉积 $\bar{a}\times\bar{b}$,

再与 \bar{c} 作点积 $(\bar{a}\times\bar{b})\cdot\bar{c}$,则这样的数积称为矢量 \bar{a} , \bar{b} , \bar{c} 的

混合积,记为(a,b,c),即 $(a,b,c)=(\bar{a}\times\bar{b})\cdot\bar{c}$.

设
$$\vec{a} = \{x_1, y_1, z_1\}$$
, $\vec{b} = \{x_2, y_2, z_2\}$, $\vec{c} = \{x_3, y_3, z_3\}$,

则
$$(a,b,c) = \begin{vmatrix} x_1 & y_1 & z_1 \\ x_2 & y_2 & z_2 \\ x_3 & y_3 & z_3 \end{vmatrix}$$

1向量之间的位置关系及结论

设
$$\vec{a} = \{x_1, y_1, z_1\}$$
, $\vec{b} = \{x_2, y_2, z_2\}$, $\vec{c} = \{x_3, y_3, z_3\}$

(1)
$$\vec{a} \perp \vec{b} \Leftrightarrow \vec{a} \cdot \vec{b} = 0 \Leftrightarrow x_1 x_2 + y_1 y_2 + z_1 z_2 = 0$$
;

(2)
$$\vec{a}//\vec{b} \Leftrightarrow \vec{a} \times \vec{b} = \vec{0} \Leftrightarrow \frac{x_1}{x_2} = \frac{y_1}{y_2} = \frac{z_1}{z_2}$$
;

其中 x_2, y_2, z_2 之中有一个为"0",如 $x_2 = 0$,应理解为 $x_1 = 0$;

- (3) \bar{a} , \bar{b} 不共线 \Leftrightarrow 3 不全为零的数 λ , μ 使 $\lambda \bar{a} + \mu \bar{b} = \bar{0}$;
- (4) 矢量 \bar{a} 与 \bar{b} 的夹角,可由下式求出

$$\cos(\vec{a}^{\wedge}\vec{b}) = \frac{x_1 x_2 + y_1 y_2 + z_1 z_2}{\sqrt{x_1^2 + y_1^2 + z_1^2} \cdot \sqrt{x_2^2 + y_2^2 + z_2^2}};$$

(5) \bar{a} , \bar{b} , \bar{c} 共面 \Leftrightarrow 3 不全为零的数 λ, μ, ν , 使

$$\lambda \vec{a} + \mu \vec{b} + v\vec{c} = \vec{0}$$
 或者 $(a,b,c) = 0$

2 单位向量: 模为 1 的向量. 向量 \bar{a} 的单位向量记作 \bar{a}^0 ,

$$\overline{a^0} = \frac{\overline{a}}{|\overline{a}|} = \left\{ \frac{x}{\sqrt{x^2 + y^2 + z^2}}, \frac{y}{\sqrt{x^2 + y^2 + z^2}}, \frac{z}{\sqrt{x^2 + y^2 + z^2}} \right\}.$$

3向量的方向余弦:

$$\cos \alpha = \frac{x}{\sqrt{x^2 + y^2 + z^2}}, \cos \beta = \frac{y}{\sqrt{x^2 + y^2 + z^2}}, \cos \gamma = \frac{z}{\sqrt{x^2 + y^2 + z^2}},$$

其中 α, β, γ 为向量 \bar{a} 与各坐标轴正向的夹角.

4 单位向量的方向余弦: 显然 $\overline{a^0} = \{\cos\alpha, \cos\beta, \cos\gamma\}$,且有 $\cos^2\alpha + \cos^2\beta + \cos^2\gamma = 1.$

曲面方程 和空间曲 线方程的 概念,平 面方程, 直线方 程,平面 与平面、 平面与直 线、直线 与直线的 以及平 行、垂直 的条件, 点到平面 和点到官 线的距离

1平面方程

- (1)一般式方程 Ax+By+Cz+D=0, 法矢量 $\vec{n}=\{A,B,C\}$, 若方程中某个坐标不出现,则平面就平行于该坐标轴,例如 平面Ax+Cz+D=0// y 轴
- (2) 平面的点法式方程 $A(x-x_0)+B(y-y_0)+C(z-z_0)=0$ $M(x_0,y_0,z_0)$ 为平面上已知点, $\vec{n}=\{A,B,C\}$ 为法矢量

| (3)三点式方程 |
$$x-x_1 \quad y-y_1 \quad z-z_1$$
 | $x_2-x_1 \quad y_2-y_1 \quad z_2-z_1$ | $x_3-x_1 \quad y_3-y_1 \quad z_3-z_1$ |

 $M_1(x_1, y_1, z_1)$, $M_2(x_2, y_2, z_2)$, $M_3(x_3, y_3, z_3)$ 为平面上的三个点

(4)截距式方程 $\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$, a,b,c 分别为平面上坐标轴上

的截距,即平面通过三点 (*a*,0,0),(0,*b*,0),(0,0,*c*)

2直线方程

一般式方程(两平面交线): $\begin{cases} A_1x + B_1y + C_1x + D_1 = 0 & \text{平面}\pi_1 \\ A_2x + B_2y + C_2x + D_2 = 0 & \text{平面}\pi_2 \end{cases}$

平面 π_1 与平面 π_2 的法矢量分别为 $\overline{n_1} = \{A_1, B_1, C_1\}$,

$$\overrightarrow{n_2} = \{A_2, B_2, C_2\}$$
 , 直线的方向矢量为 $\overrightarrow{s} = \overrightarrow{n_1} \times \overrightarrow{n_2} = \begin{vmatrix} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \\ A_1 & B_1 & C_1 \\ A_2 & B_2 & C_2 \end{vmatrix}$

(2)标准式方程

$$\frac{x-x_0}{l} = \frac{y-y_0}{m} = \frac{z-z_0}{n}$$
 $M(x_0, y_0, z_0)$ 为直线上已知点,

 $\vec{s} = \{l, m, n\}$ 为直线的方向矢量

(3)两点式方程
$$\frac{x-x_1}{x_2-x_1} = \frac{y-y_1}{y_2-y_1} = \frac{z-z_1}{z_2-z_1}$$

其中 $M_1(x_1, y_1, z_1)$, $M_2(x_2, y_2, z_2)$ 为直线上的两点

(4)参数式方程
$$\begin{cases} x = x_0 + lt \\ y = y_0 + mt \\ z = z_0 + nt \end{cases} M(x_0, y_0, z_0)$$
 为直线上已知

点, $\vec{s} = \{l, m, n\}$ 为直线的方向矢量

3平面间的关系

设有两个平面: 平面 π_1 : $A_1x+B_1y+C_1z+D_1=0$ 平面 π_2 :

$$A_2 x + B_2 y + C_2 z + D_2 = 0$$

(1)
$$\overline{+}$$
 $\overline{\equiv}$ $\pi_1 // \overline{+}$ $\overline{\equiv}$ $\pi_2 \Leftrightarrow \frac{A_1}{A_2} = \frac{B_1}{B_2} = \frac{C_1}{C_2}$

$$(2)$$
 $\overline{+}$ \overline{m} $\pi_1 \perp \overline{+}$ \overline{m} $\pi_2 \Leftrightarrow A_1A_2 + B_1B_2 + C_1C_2 = 0$

(3)平面 π_1 与平面 π_2 的夹角 θ ,由下式确定

$$\cos \theta = \frac{A_1 A_2 + B_1 B_2 + C_1 C_2}{\sqrt{A_1^2 + B_1^2 + C_1^2} \sqrt{A_2^2 + B_2^2 + C_2^2}}$$

4平面与直线间关系

直线
$$L: \frac{x-x_0}{l} = \frac{y-y_0}{m} = \frac{z-z_0}{n}$$

平面 π_1 : $A_1 x + B_1 y + C_1 z + D_1 = 0$

(1)
$$L//\pi \Leftrightarrow Al + Bm + Cn = 0$$

(2)
$$L \perp \pi \Leftrightarrow \frac{A}{l} = \frac{B}{m} = \frac{C}{n}$$

(3)
$$L$$
 与 π 的夹角 θ ,由下式确定

$$\sin \theta = \frac{Al + Bm + Cn}{\sqrt{A^2 + B^2 + C^2} \sqrt{l^2 + m^2 + n^2}}$$

5 直线间关系

设有两直线: 直线
$$L_1$$
: $\frac{x-x_1}{l_1} = \frac{y-y_1}{m_1} = \frac{z-z_1}{n_1}$
直线 L_2 : $\frac{x-x_2}{l_2} = \frac{y-y_2}{m_2} = \frac{z-z_2}{n_2}$

(1)
$$L_1 // L_2 \Leftrightarrow \frac{l_1}{l_2} = \frac{m_1}{m_2} = \frac{n_1}{n_2}$$

(2)
$$L_1 \perp L_2 \iff l_1 l_2 + m_1 m_2 + n_1 n_2 = 0$$

(3)直线 L_1 与 L_2 的夹角 θ ,由下式确定

$$\cos\theta = \frac{\left|l_1 l_2 + m_1 m_2 + n_1 n_2\right|}{\sqrt{l_1^2 + m_1^2 + n_1^2} \sqrt{l_2^2 + m_2^2 + n_2^2}}$$

6 点到平面的距离: $M(x_0, y_0, z_0)$ 到平面

$$\pi: Ax + By + Cz + D = 0$$
的距离为

$$d = \frac{|Ax_0 + By_0 + Cz_0 + D|}{\sqrt{A^2 + B^2 + C^2}}$$

7点到直线的距离: $M(x_0, y_0, z_0)$ 到直线

$$L_1: \frac{x-x_1}{l_1} = \frac{y-y_1}{m_1} = \frac{z-z_1}{n_1}$$
 距离为

$$d = \frac{\left| \overrightarrow{M_1 M_0} \times \overrightarrow{M_1 P} \right|}{\overrightarrow{M_1 P}} = \frac{\left| \begin{array}{cccc} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \\ x_0 - x_1 & y_0 - y_1 & z_0 - z_1 \\ l & m & n \end{array} \right|}{\sqrt{l^2 + m^2 + n^2}}$$

球线坐柱转标转方母于的旋坐旋的

准线为各种形式的柱面方程的求法

(1) 准线为
$$_{\Gamma}$$
:
$$\begin{cases} f(x,y) = 0, \text{ 因线 } //z \text{ 轴的柱面方程为} \\ z = 0 \end{cases}$$

准线为 Γ : $\begin{cases} \varphi(x,z) = 0 \\ y = 0 \end{cases}$, 母线 // y 轴的柱面方程为

$$\varphi(x,z)=0,$$

准线为 Γ : $\begin{cases} \psi(y,z) = 0 \\ x = 0 \end{cases}$, 母线 // x 轴的柱面方程为

$$\psi(y,z)=0.$$

(2) 准线为 Γ : $\begin{cases} f(x,y,z) = 0 \\ g(x,y,z) = 0 \end{cases}$, 母线的方向矢量为 $\{l,m,n\}$

的柱面方程的求法

首先,在准线上任取一点(x,y,z),则过点(x,y,z)的母线方程

为
$$\frac{X-x}{l} = \frac{Y-y}{m} = \frac{Z-z}{n}$$

其中 X,Y,Z 为母线上任一点的流动坐标,消去方程组

$$\begin{cases} f(x, y, z) = 0 \\ g(x, y, z) = 0 \\ \frac{X - x}{l} = \frac{Y - y}{m} = \frac{Z - z}{n} \end{cases}$$

中的x,y,z便得所求的柱面方程

常见的柱面方程

常次程形曲数一程曲标投用曲及,线方般,线面影方的面其空的程方空在上曲程二方图间参和方间坐的线...

名称	方程	图形	
圆柱面	$x^2 + y^2 = R^2$,	
椭圆柱面	$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$	5	
双曲柱面	$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$	a Para A	
抛物柱面	$x^2 = 2py, (p > 0)$	z x	
标准二次方程及其图形			
名称 方程		图形	

椭球面	$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$ (a,b,c 均为正数)	z c vo + - b y
单叶双曲面	$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1$ (a,b,c 均为正数)	x y
双叶双曲面	$-\frac{x^{2}}{a^{2}} - \frac{y^{2}}{b^{2}} + \frac{z^{2}}{c^{2}} = 1$ (a,b,c 均为正数)	x y
椭圆的抛物面	$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 2pz$ (a,b,p) 为正数)	x 0
双曲抛物面 (又名马鞍面)	$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 2pz$ $(a,b,p 均为正数)$	

(五)多元函数微分学

考试内容	对应公式、定理、概念
多元函数	二元函数 $z = f(x, y)$ 连续,可导(两偏导存在)与可微三
的概念,	
二元函数	者的关系如下:
的几何意	可导←可微→函数连续"←→"表示可推出
义,二元	用全微分定义验证一个可导函数的可微性,只需验证:
函数的极	
限和连续	$\lim_{\rho \to \infty} \frac{\Delta z - f_x(x, y) \Delta x - f_y(x, y) \Delta y}{\rho}$ 是否为0
的概念,	$ ho ightarrow\infty$ $ ho$
有界闭区	基本原理
域上多元	Th1(求偏导与次序无关定理)
连续函数	, , , , , , , , , , , , , , , , , , ,
的性质,	
多元函数	在区域 D 内连续,则有 $f_{xy}^{"}(x,y) = f_{yx}^{"}(x,y)$
偏导数和	TI 2/司海上伯马左左的关系应用、某 (/)左D/)
全微分,	Th2(可微与偏导存在的关系定理)若 $z = f(x, y)$ 在 $P(x, y)$
全微分存	点处可微,则在该点处 $\frac{\partial z}{\partial x}$, $\frac{\partial z}{\partial y}$ 必存在,且有 $dz = \frac{\partial z}{\partial x} dx + \frac{\partial z}{\partial y} dy$
在的必要	CX CY CX CY
条件和充	

分条件,

Th3(偏导存在与可微的关系定理)

若z = f(x, y)的两个偏导数 $\frac{\partial z}{\partial y}$, $\frac{\partial z}{\partial y}$ 在P(x, y)

上的某领域内存在, 且在P(x, y)连续,

则z = f(x, y)在P(x, y)点处可微

多元复合 函数、隐 函数的求 导法,二 阶偏导 数,方向 导数和梯 度,

1 复合函数微分法

$$(1) \overset{\text{i.t.}}{\nabla z} = f(u,v), u = \varphi(x,y), v = \phi(x,y), \text{ for } \begin{cases} \frac{\partial z}{\partial x} = \frac{\partial z}{\partial u} \cdot \frac{\partial u}{\partial x} + \frac{\partial z}{\partial v} \cdot \frac{\partial v}{\partial x} \\ \frac{\partial z}{\partial y} = \frac{\partial z}{\partial u} \cdot \frac{\partial u}{\partial y} + \frac{\partial z}{\partial v} \cdot \frac{\partial v}{\partial y} \end{cases}$$

 $(2) \stackrel{\text{th}}{\nabla} z = f(u, v), u = \varphi(x), v = \phi(x),$

则 $\frac{\mathrm{d}z}{\mathrm{d}x} = \frac{\partial z}{\partial u} \cdot \frac{du}{dx} + \frac{\partial z}{\partial v} \cdot \frac{dv}{dx}$,称之为z的全导数

(3) $\forall z = f(x, u, v), u = \varphi(x, y), v = \phi(x, y),$

$$\begin{bmatrix} \frac{\partial z}{\partial x} = \frac{\partial f}{\partial x} + \frac{\partial f}{\partial u} \cdot \frac{\partial u}{\partial x} + \frac{\partial f}{\partial v} \cdot \frac{\partial v}{\partial x} \\ \frac{\partial z}{\partial y} = 0 + \frac{\partial f}{\partial u} \cdot \frac{\partial u}{\partial y} + \frac{\partial f}{\partial v} \cdot \frac{\partial v}{\partial y} \end{bmatrix}$$

注:复合函数一定要设中间变量,抽象函数的高阶偏导数, 其中间变量用数字 1, 2, 3 ……表示更简洁.

2 隐函数微分法

(1)设
$$F(x, y) = 0$$
,则 $\frac{dy}{dx} = -\frac{F'_x(x, y)}{F'_y(x, y)}$

$$(2)F(x,y,z) = 0, \text{III} \frac{\partial z}{\partial x} = -\frac{F'_x(x,y,z)}{F'_z(x,y,z)}, \frac{\partial z}{\partial y} = -\frac{F'_y(x,y,z)}{F'_z(x,y,z)}$$

(2)
$$F(x, y, z) = 0$$
,则 $\frac{\partial z}{\partial x} = -\frac{F'_x(x, y, z)}{F'_z(x, y, z)}$, $\frac{\partial z}{\partial y} = -\frac{F'_y(x, y, z)}{F'_z(x, y, z)}$
(3)设由方程组
$$\begin{cases} F(x, y, z) = 0 \\ G(x, y, z) = 0 \end{cases}$$
 确定的隐函数 $y = y(x)$, $z = z(x)$,

则 $\frac{dy}{dx}$, $\frac{dz}{dx}$ 可通过解关于 $\frac{dy}{dx}$, $\frac{dz}{dx}$ 的线性方程组

$$:\begin{cases} F'_x + F'_y \frac{dy}{dx} + F'_z \bullet \frac{dz}{dy} = 0 \\ G'_x + G'_y \frac{dy}{dx} + G'_z \frac{dz}{dx} = 0 \end{cases} \Rightarrow \begin{cases} F'_y \frac{dy}{dx} + F'_z \frac{dz}{dx} = -F'_x, \\ G'_y \frac{dy}{dx} + G'_z \frac{dz}{dx} = -G'_x \end{cases}$$
 $\Re \Re R$

方向导数和梯度

Th1 设 z = f(x, y) 在 $M_0(x_0, y_0)$ 处 可 微 , 则 f(x, y) 在 点 $M_0(x_0, y_0)$ 沿任意方向 $l = (\cos \alpha, \cos \beta)$ 存在方向导数且 $\frac{\partial f(x_0, y_0)}{\partial l} = \frac{\partial f(x_0, y_0)}{\partial x} \cos \alpha + \frac{\partial f(x_0, y_0)}{\partial y} \cos \beta$

在平面上1除了用方向角表示外也可用极角表示:

 $l = (\cos \theta, \sin \theta)$, θ 是l的极角, $\theta \in [0, 2\pi]$ 此时相应的方向导

数的计算公式为
$$\frac{\partial f(x_0, y_0)}{\partial l} = \frac{\partial f(x_0, y_0)}{\partial x} \cos \theta + \frac{\partial f(x_0, y_0)}{\partial y} \sin \theta$$

Th2 设三元函数 u = f(x, y, z) 在 $M_0(x_0, y_0, z_0)$ 处可微,则 u = f(x, y, z) 在点 $M_0(x_0, y_0, z_0)$ 沿任意方向

 $l = (\cos \alpha, \cos \beta, \cos \gamma)$ 存在方向导数且有

$$\frac{\partial f(x_0, y_0, z_0)}{\partial l} = \frac{\partial f(x_0, y_0, z_0)}{\partial x} \cos \alpha + \frac{\partial f(x_0, y_0, z_0)}{\partial y} \cos \beta$$
$$+ \frac{\partial f(x_0, y_0, z_0)}{\partial z} \cos \gamma$$

梯度: z = f(x, y) 在点 M_0 的方向导数计算公式可改写成

$$\frac{\partial f(x_0, y_0)}{\partial l} = \left(\frac{\partial f(x_0, y_0)}{\partial x}, \frac{\partial f(x_0, y_0)}{\partial y}\right) \bullet (\cos \alpha, \cos \beta)$$

$$= \operatorname{grad}(f(x_0, y_0)) \cdot l = \left| \operatorname{grad}f(x_0, y_0) \right| \cos \langle \operatorname{grad}(f(x_0, y_0), l) \rangle$$

这里向量
$$\operatorname{grad} f(x_0, y_0) = (\frac{\partial f(x_0, y_0)}{\partial x}, \frac{\partial f(x_0, y_0)}{\partial y})$$
 成为
$$z = f(x, y) \, \text{在点} \, M_0 \, \text{的梯度} (向量)$$

$$\frac{\partial f(x_0, y_0)}{\partial l} \text{随} l \text{而变化} \, l = \frac{\operatorname{grad} (f(x_0, y_0)}{|\operatorname{grad} (f(x_0, y_0)|})|$$
 即沿梯度方向时,方 向导数取最大值 $|\operatorname{grad} f(x_0, y_0)|$

1. 曲线的切线及法平面方程

(1)曲线
$$\begin{cases} x = x(t) \\ y = y(t) \dot{\Xi}(x_0, y_0, z_0) \leftrightarrow t = t_0 \\ z = z(t) \end{cases}$$

处的切线方程:
$$\frac{x-x_0}{x'(t_0)} = \frac{y-y_0}{y'(t_0)} = \frac{z-z_0}{z'(t_0)}$$

空间曲线 的 法平面的 知识 由 面 和 即 面 和 即 面 和 现 。

法平面方程:
$$x'(t_0)(x-x_0)+y'(t_0)(y-y_0)+z'(t_0)(z-z_0)=0$$

(2)空间曲线Γ的一般式方程为
$$\begin{cases} F(x, y, z) = 0 \\ G(x, y, z) = 0 \end{cases}$$

则在曲线 Γ 的 $P(x_0, y_0, z_0)$ 处的

切线方程:
$$\frac{x-x_0}{\frac{\partial(F,G)}{\partial(y,z)}\Big|_p} = \frac{y-y_0}{\frac{\partial(F,G)}{\partial(z,x)}\Big|_p} = \frac{z-z_0}{\frac{\partial(F,G)}{\partial(x,y)}\Big|_p}$$

法线方程:

$$\frac{\partial(F,G)}{\partial(y,z)}\bigg|_{R} (x-x_0) + \frac{\partial(F,G)}{\partial(z,x)}\bigg|_{R} (y-y_0) + \frac{\partial(F,G)}{\partial(x,y)}\bigg|_{R} (z-z_0) = 0$$

2. 空间曲面在其上某点处的切平面和法线方程

(1)设曲面 \sum 为显示方程z = f(x, y),则在 \sum 上一点 $P(x_0, y_0, z_0)$ 处的

切平面方程:
$$\frac{\partial z}{\partial x}\Big|_{p}(x-x_0) + \frac{\partial z}{\partial y}\Big|_{p}(y-y_0) - (z-z_0) = 0.$$

法线方程:
$$\frac{x-x_0}{\frac{\partial z}{\partial x}\Big|_p} = \frac{y-y_0}{\frac{\partial z}{\partial y}\Big|_p} = \frac{z-z_0}{-1}$$

(2)设曲面 \sum 为隐式方程F(x,y,z)=0,则在 \sum 上一点 $P(x_0,y_0,z_0)$ 的

切平面方程:
$$F'_x|(x-x_0)+F'_y|_p(y-y_0)+F'_z|_p(z-z_0)=0$$

法线方程:
$$\frac{x-x_0}{F'_x|_p} = \frac{y-y_0}{F'_y|_p} = \frac{z-z_0}{F'_z|_p}$$

1多元函数的极值

二元函数 的二阶泰 勒公式, 多元函数

的极值和

条件极 值,多元

函数的最

定义:

设函数z = f(x, y)在 $P(x_0, y_0)$ 的某邻域内有定义,若对于该邻域

内异于 $P(x_0, y_0)$ 点的任一 点Q(x, y) 恒有

$$f(x,y) > f(x_0, y_0) (\vec{y} < f(x_0, y_0))$$

则称 $f(x_0, y_0)$ 为f(x, y)的极小值(极大值)

大值、最 | Th1(取

小值及其

简单应用

Th1(取极值的必要条件)

设
$$z = f(x, y)$$
在 $P(x_0, y_0)$ 点的一阶偏导数存在,且

$$P(x_0, y_0)$$
是 $z = f(x, y)$ 的极值点,则
$$\begin{cases} f_x(x_0, y_0) = 0 \\ f_y(x_0, y_0) = 0 \end{cases}$$

Th2(函数取极值的充分条件)

设z = f(x, y)在 $P(x_0, y_0)$ 点的某邻域内有连续的二阶偏导数, 且 $f'_x(x_0, y_0) = 0$, $f'_y(x_0, y_0) = 0$

$$[f''_{xy}(x_0, y_0)]^2 - f''_{x}(x_0, y_0) \cdot f''_{y}(x_0, y_0) < 0$$

则 $P(x_0, y_0)$ 是z = f(x, y)的一个极值点

- (1)若 $f''_x^2(x_0, y_0) > 0$ (或 $f''_y^2(x_0, y_0) > 0$),则 $P(x_0, y_0)$ 为极小值点。
- (2) 若 $f_{x_0}^{2}(x_0, y_0) < 0$ (或 $f_{y_0}^{2}(x_0, y_0) < 0$),则 $P(x_0, y_0)$ 为极大值点。

2 无条件极值

解题程序:

- (1)求出z = f(x, y)的驻点 (x_0, y_0) ;
- (2)用Th2判别 (x_0, y_0) 是否为极值点; 是,则 $f(x_0, y_0)$ 为

z = f(x, y) 的极值。

- 3条件极值(拉格朗日乘数法)
- 1) 由条件 $\varphi(x, y) = 0$, 求z = f(x, y)的极值

解题程序:

 $\diamondsuit F(x, y) = f(x, y) + \lambda \varphi(x, y)$;

解方程组
$$\begin{cases} f'_x(x,y) + \lambda \varphi'_x(x,y) = 0 \\ f'_y(x,y) + \lambda \varphi'_y(x,y) = 0 \end{cases}$$
 求驻点 (x_0, y_0) ; $\varphi(x,y) = 0$

 $f(x_0, y_0)$ 即为f(x, y)的极值(存在的话)

2) 由条件 $\varphi(x, y, z)=0$, 求u=f(x, y, z)的极值。解题程序: 令 $F(x, y, z)+\lambda\varphi(x, y, z)$;

解方程组
$$\begin{cases} f'_{x}(x,y,z) + \lambda \varphi'_{x}(x,y,z) = 0 \\ f'_{y}(x,y,z) + \lambda \varphi'_{y}(x,y,z) = 0 \\ f'_{z}(x,y,z) + \lambda \varphi'_{z}(x,y,z) = 0 \\ \varphi(x,y,z) = 0 \end{cases}$$

若 (x_0, y_0, z_0) 为其解 $f(x_0, y_0, z_0)$ 即为f(x, y, z)的极值(若存在的话)

3) 由条件 $\varphi_1(x, y, z) = 0$. $\varphi_2(x, y, z) = 0$ 求函数u = f(x, y, z)的极值解题程序:

令
$$F(x, y, z) = f(x, y, z) + \lambda_1 \varphi_1(x, y, z) + \lambda_2 \varphi_2(x, y, z)$$

以下仿 1),2)

(六)多元函数积分学

考试内容	对应公式、定理、概念
二重积分	1二重积分:
与三重积	$\sum_{n=1}^{\infty} c_{n}(x) = \sum_{n=1}^{\infty} c_{n}(x)$
分的概	$I = \iint_{\mathbb{D}} f(x, y) d\sigma = \lim_{d \to 0} \sum_{i=1}^{n} f(\xi_{i,} \eta_{i}) \Delta \sigma_{i}, $
念、性质、	d_i 为 $\Delta\sigma_{\mathrm{i}}$ 的直径($i=1,2,\cdots n$)
计算和应	儿門思义:
用	当 $z = f(x, y) \ge 0, (x, y) \in D$ 时,而二重积分I表示以 $z = f(x, y)$
	为曲顶,以D为底的柱体体积。

2三重积分:

$$I=\iiint_{\mathbb{D}} F(x,y,z)dv = \lim_{d\to 0} \sum_{i=1}^{n} f(\xi_{i,}\eta_{i,}\tau_{i})\Delta v_{i}, 其中d = \max_{1\leq i\leq n} \left\{d_{i}\right\},$$
 d_{i} 为 Δv_{i} 的直径($i=1,2,\cdots n$)

物理意义:

三重积分I表示体密度为 $\mu = f(x, y, z)$ 的空间形体 Ω 的质量。

3 性质(只叙述二重积分的性质,三重积分类似)

(1)
$$\iint_{D} kf(x, y) d\sigma = k \iint_{D} f(x, y) d\sigma, k$$
为常数

(2)
$$\iint_{D} [f(x, y) \pm g(x, y)] d\sigma = \iint_{D} f(x, y) d\sigma \pm g(x, y) d\sigma$$

(3)
$$\iint\limits_D f(x,y)d\sigma = \sum_{i=1}^n \iint\limits_{D_i} f(x,y)d\sigma$$
, 其中 D_i 为 D 的构成子域且任

两个子域没有重迭部分 $(i=1,2,\cdots,m)$

$$(4)$$
 $\iint_{D} d\sigma = A$,其中 A 为 D 的面积。

(5) (比较定理)

若在
$$D$$
上恒有 $f(x, y) \le g(x, y)$,则 $\iint_D f(x, y) d\sigma \le \iint_D g(x, y) d\sigma$

(6)(估值定理)设M,m分别为f(x,y)在闭域D上的最大与最小值,

A为D的面积,则
$$mA \le \iint_{\Sigma} f(x, y) d\sigma \le MA$$

(7)(中值定理) 若f(x,y)在闭域D上连续,A为D的面积,则在D上至少3一点(ξ , η),使 $\iint f(x,y)d\sigma=f(\xi,\eta)A$

(8)二重积分的对称性原理

1) 如果积分域D关于x轴对称,f(x,y)为y的奇偶函数,则二重和分 $\iint f(x,y) dx$

则二重积分
$$\iint_{\mathbb{D}} f(x,y) d\sigma$$

$$= \begin{cases} 0, f 关于y为奇函数,即 $f(x,-y) = -f(x,y) \\ 2 \iint\limits_{D_i} f(x,y) d\sigma, f 关于y为偶函数,即 $f(x,-y) = f(x,y), \end{cases}$$$$

D,为D在上半平面部分

这个性质的几何意义见图(a)、(b)

2) 如果积分域D关于y轴对称,f(x,y)为x的奇偶函数,

则二重积分
$$\iint_{\mathbb{D}} f(x,y) d\sigma$$

$$=\begin{cases} 0, f 关于x$$
的奇函数,即 $f(-x, y) = -f(x, y) \\ 2 \iint_{D_2} f(x, y) d\sigma, f 关于x$ 为偶函数,即 $f(-x, y) = f(x, y)$,

D。为D在右半平面部分

3) 如果D关于原点对称,f(x, y)同时为x, y的奇偶函数,

则二重积分 $\iint_{\mathbb{D}} f(x,y) d\sigma$

$$= \begin{cases} 0, f \\ \text{关于x}, \text{ y} \\ \text{的奇函数}, & \text{即} \\ f(-x, -y) = -f(x, y) \\ 2 \\ \underset{D_2}{\iint} f(x, y) \\ d\sigma, f \\ \text{关于x}, & \text{y} \\ \text{为偶函数}, & \text{即} \\ f(-x, -y) = f(x, y), \end{cases}$$

D₁为D在上半平面部分

4) 如果D关于直线
$$y = x$$
对称,则 $\iint_{\mathbb{D}} f(x, y) d\sigma = \iint_{\mathbb{D}} f(x, y) d\sigma$

注: 注意到二重积分积分域 D 的对称性及被积函数 f(x,y) 的奇偶性,一方面可减少计算量,另一方面可避免出差错,要特别注意的是仅当积分域 D 的对称性与被积函数 f(x,y) 的奇偶性两者兼得时才能用性质 8.

1平面曲线积分与路径无关的四个等价条件

设函数 P(x,y), Q(x,y) 在单连通区域 D 上具有一阶连续偏导

数,则 $\int_{L} Pdx + Qdy$ 与路径无关

 $\Leftrightarrow \frac{\partial Q}{\partial x} = \frac{\partial P}{\partial y}, \forall (x, y) \in D$

 $\Leftrightarrow \oint_{L} Pdx + Qdy = 0, L$ 为一简单分段光滑封闭曲线

 \Leftrightarrow 存在函数 $u(x, y), (x, y) \in D$ 使 du(x, y) = Pdx + Qdy, 且

$$u(x, y) = \int_{(x_0, y_0)}^{(x, y)} Pdx + Qdy$$

2 格林公式: 设平面上的有界闭区域 D 由分段光滑的曲线 L 围成,函数 P(x,y),Q(x,y) 在有 D 连续的一阶偏导数,则有

$$\iint\limits_{D} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx dy = \oint_{L} P dx + Q dy$$

两积念及两积系公面分无类分、计类分,式曲与关件曲的性算曲的格,线路的,线概质,线关林平积径条

	或者 $\iint (\frac{\partial Q}{\partial x} + \frac{\partial P}{\partial y}) dxdy = \oint_L P dx - Q dy$	
二全原两积念及两积系公托元微函类分、计类分,式充公函分数曲的性算曲的高,克式数的,面概质,面关斯斯,	1 高斯(Gauss)公式 设 Ω 是空间中的有界闭区域,由分块光滑的曲面所 S 围成,函数 $P(x,y,z),Q(x,y,z),R(x,y,z)$ 在 Ω 由连续的一阶偏导数,则	+ Rd
散度和旋	1 散度的计算公式	

度的概念 及计算, 曲线和面如 分的应用

设
$$\overrightarrow{A} = P(x, y, z)\overrightarrow{i} + Q(x, y, z)\overrightarrow{j} + R(x, y, z)\overrightarrow{k}; P, Q, R$$
均可导,则 \overrightarrow{A}

在
$$P(x, y, z)$$
 点处的散度为 $div\overline{A} = \frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z}$

2 旋度的计算公式

设有矢量场 $\overline{A}=P(x,y,z)\overline{i}+Q(x,y,z)\overline{j}+R(x,y,z)\overline{k}$,其中

P,Q,R 均有连续的一阶偏导数,则旋度 $rot\overline{A}$ 为:

$$rot\overline{A} = \begin{vmatrix} \overline{i} & \overline{j} & \overline{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ P & Q & R \end{vmatrix}$$

(七)无穷级数

考试内容	对应公式、定理、概念
常数项级	oo oo
数的收敛	1 级数 $\sum u_n$ 的性质:
与发散的	n=1
概念,收	(1)设 $c \neq 0$ 的常数,则 $\sum_{n=0}^{\infty} u_n$ 与 $\sum_{n=0}^{\infty} cu_n$ 有相同敛散性
敛级数的	n=1 $n=1$ $n=1$ $n=1$
和的概念	(2) 设有两个数级 $\sum_{n=0}^{\infty} u_n = \sum_{n=0}^{\infty} v_n$
级数的基	$\sum_{n=1}^{\infty} u_n = \sum_{n=1}^{\infty} v_n$
本性质与	∞ ∞ ∞
收敛的必	若 $\sum u_n = s, \sum v_n = \sigma, $ 则 $\sum (u_n \pm v_n) = s \pm \sigma.$
要条件	n=1 n =1 n =1
	若 $\sum_{n=1}^{\infty} u_n$ 收敛, $\sum_{n=1}^{\infty} v_n$ 发散,则 $\sum_{n=1}^{\infty} (u_n \pm v_n)$ 发散.

若 $\sum_{n=1}^{\infty} u_n \sum_{n=1}^{\infty} v_n$ 均发散,则 $\sum_{n=1}^{\infty} (u_n \pm v_n)$ 敛散性不定.

注:添加或去消有限项不影响一个级数的敛散性.

设级数 $\sum_{n=1}^{\infty} u_n$ 收敛,则对其各项任意加括号后所得新级数仍

收敛于原级数的和

几与以的性级性法何 p 及 收 , 数 数 们 敛 项 敛别

正项级数 $\sum_{n=0}^{\infty} u_n$ ($u_n \ge 0$) 的判敛法

(1)比较判敛法:设 $0 \le u_n \le v_n$,若

$$\sum_{n=1}^{\infty} u_n$$
收敛,则 $\sum_{n=1}^{\infty} v_n$ 收敛

 $\sum_{n=1}^{\infty} u_n$ 发散,则 $\sum_{n=1}^{\infty} v_n$ 发散

(2)比较法的极限形式: 设 $\sum_{n=1}^{\infty} u_n \mathcal{D} \sum_{n=1}^{\infty} v_n$ 均为正项级数

$$1.$$
若 $0 \le A < +\infty$,且 $\sum_{n=1}^{\infty} v_n$ 收敛,则 $\sum_{n=1}^{\infty} u_n$ 收敛

$$2.$$
若 $0 < A \le +\infty$,且 $\sum_{n=1}^{\infty} v_n$ 发散,则 $\sum_{n=1}^{\infty} u_n$ 发散

两个常用的比较级数

$$i$$
)等比级数 $\sum_{n=1}^{\infty} ar^{n-1} = \begin{cases} \frac{a}{1-r}, |r| < 1\\$ 发散, $|r| \ge 1$

$$ii)p-级数\sum_{n=1}^{\infty}\frac{1}{n^{p}}=\begin{cases} \psi$$
敛, $p>1$ 时
发散, $p\leq 1$ 时

(3)**比值判别法**(达朗贝尔准则)(适用于通项 u_n 中含有 n!

或关于 n 的若干连乘积形式)

设
$$u_n \ge 0, n = 1, 2 \cdots$$
对于 $\sum_{i=1}^{\infty} u_n$ 来讲

交错级数 与莱布尼 兹定理,

然足理, 任意项级 数的绝对

收敛与条 件收敛, 1. 交错级数 $\sum_{n=1}^{\infty} (-1)^{n-1} u_n, (u_n > 0)$ 的判敛法

莱布尼兹准则: 若交错级数 $\sum_{n=1}^{\infty} (-1)^{n-1} u_n, (u_n > 0)$ 满足条件:

$$(1)u_n \ge u_{n+1}, (n=1,2,\dots); (2)\lim_{n\to\infty} u_n = 0,$$

则交错级数收敛,其和 $S \le u_1$,其n项余和的绝对值| $R_n \le u_{n+1}$.

函数项级 数的收敛 域与和函 数的概

数的概 念,幂级 数及其收 敛半径,

收敛区间 (指开区 间)和收

敛域,幂 级数的和 (1)用比值(或根值)法求 $\rho(x)$,即

 $\lim_{n\to\infty}\frac{|u_{n+1}(x)|}{|u_n(x)|}=\rho(x)(\exists \vec{x}\lim_{n\to\infty}\sqrt[n]{|u_n(x)|}=\rho(x));$

1 幂级数: $a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n + \dots = \sum_{n=0}^{\infty} a_n x^n$

2. 函数项级数 $\sum_{n=0}^{\infty} u_n(x)$ 收敛域的求法步骤:

收敛半径,若 $\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = \rho$,则 $R = \frac{1}{\rho}$.

函数,	(2)解不等式方程 $\rho(x)$ < 1, 求出 $\sum_{n=1}^{\infty} u_n(x)$ 的收敛区间 (a,b) ;
	(3)考察 $x = a($ 或 $x = b)$ 时, $\sum_{n=1}^{\infty} u_n(a)($ 或 $\sum_{n=1}^{\infty} u_n(b))$ 的敛散性
	(4) 写出 $\sum_{n=1}^{\infty} u_n(x)$ 的收敛域
	1幂级数的四则运算性质:
	设 $\sum_{n=0}^{\infty} a_n x^n = f(x), \sum_{n=0}^{\infty} b_n x^n = g(x),$ 其收敛半径分别为
	$R_1, R_2, R = \min(R_1, R_2)$,则对 $\forall x \in (-R, R)$,有
	$(1)\sum_{n=0}^{\infty}a_{n}x^{n}\pm\sum_{n=0}^{\infty}b_{n}x^{n}=\sum_{n=0}^{\infty}(a_{n}\pm b_{n})x^{n}=f(x)\pm g(x),$ 且在(-R, R)
事级数在 其收敛区	内绝对收敛
共収数位	$(2) \left(\sum_{n=0}^{\infty} a_n x^n \right) \left(\sum_{n=0}^{\infty} b_n x^n \right) = \sum_{n=0}^{\infty} (a_0 b_n + a_1 b_{n-1} + \dots + a_{n-1} b_1 + a_n b_0) x^n$
本性质,	n=0
简单幂级	=f(x)g(x)
数的和函	(3) 设 $b_0 \neq 0$,则在 $x = 0$ 的足够小邻域内
数的求 法,初等	$\frac{f(x)}{g(x)} = \frac{a_0 + a_1 x + \dots + a_n x^n + \dots}{b_0 + b_1 x + \dots + b_n x^n + \dots} = C_0 + C_1 x + C_2 x^2 + \dots + C_n x^n + \dots$
幂级数展	
开式	利用多项式的长除法可得: $C_0 = \frac{a_0}{b_0}, C_1 = \frac{a_1b_0 - a_0b_1}{b_0^2}, \dots$
	2幂级数的分析性质:
	设幂级数 $\sum_{n=0}^{\infty} a_n x^n$ 的收敛半径为 R ,则在($-R$, R)内有
	$(1)\sum_{n=0}^{\infty}a_{n}x^{n}$ 的和函数 $f(x)$ 是连续的。

(2)
$$\sum_{n=0}^{\infty} a_n x^n$$
可逐项微分,且 $f_x' = (\sum_{n=0}^{\infty} a_n x^n)'$

$$= \sum_{n=0}^{\infty} (a_n x^n)' = \sum_{n=0}^{\infty} n a_n x^{n-1}$$

(3)
$$\sum_{n=0}^{\infty} a_n x^n$$
可逐项积分,且 $\int_0^x f(t) dt = \int_0^x (\sum_{n=0}^{\infty} a_n t^n) dt$

$$= \sum_{n=0}^{\infty} \left(\int_{0}^{x} a_{n} t^{n} dt \right) = \sum_{n=0}^{\infty} \frac{a_{n}}{n+1} x^{n+1}$$

3函数的幂级数展开

泰勒级数 设f(x) 在 $x=x_0$ 的某一邻域内具有任意阶导数,

级数:
$$\sum_{n=0}^{\infty} \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n = f(x_0) + f'(x_0)(x - x_0) + \frac{f''(x_0)}{2!} (x - x_0)^2 + \cdots$$
$$+ \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n + \cdots$$

称为f(x) 在 $x = x_0$ 处的泰勒级数。

当
$$x_0 = 0$$
时,级数化为 $\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n = f(0) + f'(0)x + \frac{f''(0)}{2!} x^2 + \cdots + \frac{f^{(n)}(0)}{n!} x^n + \cdots$

称为麦克劳林级数

Th设f(x)在 $x = x_0$ 某领域内具有任意阶导数,

则泰勒级数
$$\sum_{n=0}^{\infty} \frac{f^{(n)}(x_0)}{n!} (x-x_0)^n$$

收敛于f(x)的充分条件 $\lim_{n\to\infty} R_n(x) = 0$,

其中
$$\mathbf{R}_n(x) = \frac{1}{(n+1)!} f^{(n+1)}[x_0 + \theta(x-x_0)](x-x_0)^{n+1}, 0 < \theta < 1.$$

4 常见的幂级数展开式:

$$(1)\frac{1}{1-u} = 1 + u + u^2 + \dots + u^n + \dots = \sum_{n=0}^{\infty} u^n, (-1,1)$$

$$(2)\frac{1}{1+u} = 1 - u + u^2 - \dots + (-1)^n u^n + \dots = \sum_{n=0}^{\infty} (-1)^n u^n, (-1,1)$$

(3)
$$e^{u} = 1 + u + \frac{u^{2}}{2!} + \dots + \frac{u^{n}}{n!} + \dots = \sum_{n=0}^{\infty} \frac{u^{n}}{n!}, (-\infty, +\infty)$$

$$(4)\sin u = u - \frac{u^3}{3!} + \dots + (-1)^n \frac{u^{2n+1}}{(2n+1)!} + \dots = \sum_{n=0}^{\infty} (-1)^n \frac{u^{2n+1}}{(2n+1)!}, (-\infty, +\infty)$$

$$(5)\cos u = 1 - \frac{u^2}{2!} + \frac{u^4}{4!} - \dots + (-1)^n \frac{u^{2n}}{(2n)!} + \dots = \sum_{n=0}^{\infty} (-1)^n \frac{u^{2n}}{(2n)!}, (-\infty, +\infty)$$

(6)
$$\ln(1+u) = u - \frac{u^2}{2} + \frac{u^3}{3} - \dots + (-1)^n \frac{u^{n+1}}{n+1} + \dots \sum_{n=0}^{\infty} (-1)^n \frac{u^{n+1}}{n+1}, (-1,1)$$

(7)
$$(1+u)^a = 1 + au + \frac{a(a-1)}{2!}u^2 + \dots + \frac{a(a-1)\cdots(a-n+1)}{n!}u^n \cdots$$

(随 a 的不同而不同,但在(-1,1)总有意义)

函数的傅 立叶系数 与傅立叶

1设f(x)是以 2π 为周期的函数,且在 $[-\pi, \pi]$ 或 $[0,2\pi]$ 上可积,则

级数,狄 利克雷定 理,函数

在 [-l,l]

上的傅立 叶级数

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx dx = \frac{1}{\pi} \int_{0}^{2\pi} f(x) \cos nx dx, (n = 0, 1, 2, \dots)$$

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx dx = \frac{1}{\pi} \int_{0}^{2\pi} f(x) \sin nx dx, (n = 1, 2, \dots)$$

称为f(x)的傅立叶系数

$$2 f(x)$$
的傅立叶系数为系数的三角级数 $\frac{1}{2}a_0 + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx)$

称为
$$f(x)$$
的傅立叶级数,记为 $f(x) \sim \frac{1}{2}a_0 + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx)$

3设f(x)是以2l为周期的函数,且在[-l,l]上可积,则以

$$a_n = \frac{1}{l} \int_{-l}^{l} f(x) \cos \frac{n\pi}{l} x dx, (n = 0, 1, 2 \cdots)$$

$$b_n = \frac{1}{l} \int_{-l}^{l} f(x) \sin \frac{n\pi}{l} x dx, (n = 0, 1, 2 \cdots)$$

为系数的三角级数
$$\frac{1}{2}a_0 + \sum_{n=1}^{\infty} (a_n \cos \frac{n\pi}{l} x + b_n \sin \frac{n\pi}{l} x)$$

称为
$$f(x)$$
的傅立叶级数,记为 $f(x) \sim \frac{1}{2}a_0 + \sum_{n=1}^{\infty} (a_n \cos \frac{n\pi}{l}x + b_n \sin \frac{n\pi}{l}x).$

- 3 狄里赫莱收敛定理: 设函数f(x)在 $[-\pi,\pi]$ 上满足条件:
- (1)除有限个第一类间断点外都连续。
- (2) 只有有限个极值点,则f(x)的傅立叶级数在 $[-\pi, \pi]$ 上收敛,且有

函数在
$$\frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos x + b_n \sin nx) = \begin{cases} f(x), x \mid f(x) \mid \text{的连续点}; \\ \frac{1}{2} [f(x_0 - 0) + f(x_0 + 0)], x_0 \mid f(x) \mid \text{ 的第一类问断点}; \\ \frac{1}{2} [f(-\pi + 0) + f(\pi_0 + 0)], x = \pm \pi. \end{cases}$$
 函数在
$$[0, l] \perp$$
 的正弦级数与余弦 数 与余弦数 为 与余弦数 为
$$\frac{f(x)}{f(-x), -l \le x < 0} \mid f(x) \sim \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos \frac{n\pi}{l} x \text{ (余弦级数)}, \text{ 其中: } a_n = \frac{2}{l} \int_0^l f(x) \cos \frac{n\pi}{l} x dx \text{ (n=0, 1, 2,)}$$

$$2f(x) \mid f(x) \mid f($$

(八)常微分方程

常微分方 程的基本 概念,变 量可分分 的微分方 程

- 1 常微分方程 含有自变量、未知函数及未知函数的某些导数的方程式称微分方程,而当未知函数是一元函数时称为常微分方程。
- 2 可分离变量方程 $f_1(x)g_1(y)dx + f_2(x)g_2(y)dy = 0$

解法: 两边同除
$$g_1(y)f_2(x) \neq 0$$
, 得 $\frac{f_1(x)}{f_2(x)}dx + \frac{g_2(y)}{g_1(y)}dy = 0$

$$\int \frac{f_1(x)}{f_2(x)} dx + \int \frac{g_2(y)}{g_1(y)} dy = C$$

1 齐次方程
$$y' = f(\frac{y}{x})$$

解法: 令
$$u = \frac{y}{x}$$
, 则 $y = ux$, $y' = u + x \frac{du}{dx}$ 于是,

原方程

$$\Rightarrow u + x \frac{du}{dx} = f(u) \Rightarrow \frac{du}{f(u) - u} = \frac{dx}{x} \Rightarrow \int \frac{du}{f(u) - u} = \ln x + C$$

阶线性微 2 可化为齐次型的方程
$$\frac{dy}{dx} = f\left(\frac{a_1x + b_1y + c_1}{a_2x + b_2y + c_2}\right)$$

解法: (1)当 $c_1 = c_2 = 0$ 时

$$\frac{dy}{dx} = f\left(\frac{a_1x + b_1y}{a_2x + b_2y}\right) = f\left(\frac{a_1 + b_1\frac{y}{x}}{a_2 + b_2\frac{y}{x}}\right) = g(\frac{y}{x}) \text{ if } \mp(2)$$

(2).
$$\begin{vmatrix} a_1 & b_1 \\ a_2 & b_2 \end{vmatrix} = 0$$
, 即 $\frac{a_1}{a_2} = \frac{b_1}{b_2} = \lambda$ 则

$$\frac{dy}{dx} = f\left(\frac{\lambda(a_2x + b_2y) + c_1}{a_2x + b_2y + c_2}\right) = g(a_2x + b_2y)$$

令
$$a_2x + b_2y = u$$
 ,则 $\frac{du}{dx} = a_2 + b_2f(u)$ 属于(1)

(3).
$$\begin{vmatrix} a_1 & b_1 \\ a_2 & b_2 \end{vmatrix} \neq 0, c_1, c_2$$
 不全为 0 解方程组 $\begin{cases} a_1 x + b_1 y + c_1 = 0 \\ a_2 x + b_2 y + c_2 = 0 \end{cases}$

求交点 (α, β)

令
$$x = X + \alpha, y = Y + \beta$$
, 则原方程 $\Rightarrow \frac{dy}{dX} = \varphi(\frac{X}{Y})$ 属于 (2)

3一阶线性方程 y'+p(x)y=q(x)

解法: 用常数变易法求

(1)求对应齐次方程
$$y'+p(x)y=0$$
 的通解 $y=Ce^{-\int p(x)dx}$

(2)令原方程的解为
$$y = C(x)e^{-\int p(x)dx}$$

(3)代入原方程整理得

$$C'(x)e^{-\int p(x)dx} = q(x) \Rightarrow C(x) = \int q(x)e^{\int p(x)dx}dx + \tilde{C}$$

(4)原方程通解
$$y = [\int q(x)e^{\int p(x)dx}dx + \tilde{C}]e^{-\int p(x)dx}$$

4 贝努里方程
$$y'+p(x)y=q(x)y^n$$
, 其中 $n \neq 0,1$

解法: 令
$$Z = y^{1-n}$$
, 则方程 $\Rightarrow \frac{1}{1-n} \frac{dz}{dx} + p(x)z = q(x)$,

$$\frac{dz}{dx} + (1-n)p(x)z = (1-n)q(x) 属于 3$$

5 全微分方程 M(x,y)dx + N(x,y)dy = 0 为全微分方程

	$\Leftrightarrow \frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$.通解为 $\int_{x_0}^x M(x, y_0) dx + \int_{y_0}^y N(x, y) dy = C$
可的换某方降阶程微解及构用变求些程阶微,分的解定简量解微,的分线方性的理解代的分可高方性程质结果	注:这里只限于讨论二阶线性方程,其结论可推广到更高阶的方程,二阶线性方程的一般形式为 $y''+p(x)y'+q(x)y=f(x)$ (8.1)其中 $p(x),q(x),f(x)$ 均为连续函数,当右端项 $f(x)\equiv 0$ 时,称为二阶线性齐次方程,否则称为非齐次方程. 解的性质与结构(以下性质可推广到任意高阶的线性方程)分以下几种: 1 若 $y_1(x),y_2(x)$ 为齐次方程 $y''+p(x)y'+q(x)y=0$ (8.2)的两个特解,则其线性组合 $C_1y_1(x)+C_2y_2(x)$ 仍为(8.2)的解,特别地,若 $y_1(x),y_2(x)$ 线性无关(即 $\frac{y_1(x)}{y_2(x)}\neq \lambda$ (常数)),则(8.2)的通解为 $y(x)=C_1y_1(x)+C_2y_2(x)$ 2 设 $y_1(x),y_2(x)$ 为非线性方程(8.1)的两个特解,则其差 $y_1(x)-y_2(x)$ 为相应齐次方程(8.2)的特解 3 设 $y^*(x)$ 为非齐次方程(8.1)的一个特解, $y(x)$ 为齐次方程 (8.2)的任意特解,则其和 $y^*(x)+y(x)$ 为(8.1)的解,特别地,若 $y_1(x),y_2(x)$ 为(8.2)两个线性无关的特解,则(8.1)的通解为 $y(x)=y^*(x)+C_1y_1(x)+C_2y_2(x)$,其中 C_1,C_2 为任意常数. 1 二阶常系数线性齐次方程 $y^*+py^*+qy=0$ (1) 其中 p,q
数奇次线 性微分方	均为常数

程,高于 二阶的某 些常系数 奇次线性 微分方程

解法:特征方程: $\lambda^2 + p\lambda + q = 0$

- (I) 当 λ_1 , λ_2 为相异的特征根时,方程(1)通解为 $y(x) = C_1 e^{\lambda_1 x} + C_2 e^{\lambda_2 x}$
 - (II) 当 $\lambda_1 = \lambda_2$ 时,通解为 $y(x) = (C_1 + C_2 x)e^{\lambda_1 x}$
 - (III) 当 $\lambda = \alpha \pm i\beta$ (复根) 时,通解为

$$y(x) = e^{\alpha x} (C_1 \cos \beta x + C_2 \sin \beta x)$$

2 *n* 阶常系数齐次线性方程 此种方程的一般形式为

$$y^{(n)} + p_1 y^{(n-1)} + p_2 y^{(n-2)} + \dots + p_n y = 0 \ (*), \ \ \sharp \Phi$$

 $p_i(i=1,2,\cdots,n)$ 为常数,相应的特征方程为

$$\lambda^{n} + p_{1}\lambda^{(n-1)} + p_{2}\lambda^{(n-2)} + \dots + p_{n} = 0$$

特征根与通解的关系同二阶方程的情形相类似,具体结果为:

- (1)若 $\lambda_1, \lambda_2, \dots, \lambda_n$ 是个n相异实根,则方程(*)的通解为 $y(x) = C_1 e^{\lambda_1 x} + C_2 e^{\lambda_2 x} + \dots + C_n e^{\lambda_n x}$
- (2)若 $\lambda = \lambda_0$ 为特征方程的 $k(k \le n)$ 重实根,则(*)的通解中含有: $(C_1 + C_2 x + \dots + C_k x^{k-1})e^{\lambda_0 x}$
- (3)若 $\alpha+i\beta$ 为特征方程的 $k(2k \le n)$ 重共轭复根,则(*)的通解中含有:

 $e^{\alpha x}[(C_1 + C_2 x + \dots + C_k x^{k-1})\cos \beta x + (D_1 + D_2 x + \dots + D_k x^{k-1})\sin \beta x]$ 由于我们不能求出一般的三次以上代数方程的根,也就是说 对于三次以上的特征方程一般不能得到齐特征根,自然也就 不能求出三阶以上常系数齐次线性微分方程的通解,能够求 出的只是某些特殊情形 简单的二 1 二阶常系数线性非齐次方程 v''+pv'+av=f(x) (2)其中 阶常系数 非奇次线 p,a均为常数 性微分方 解法: 通解的求法程序 程, 欧拉 (1). 求对应齐次方程的通解 Y(x) 方程,微 (2). 求出(2)的特解 v*(x) 分方程简 单应用 (3). 方程(2)的通解 y = Y(x) + y*(x)方程(2)特解 $v^*(x)$ 的求法有三种: 微分算子法、常数变易法、 待定系数法. 2 形如 $x^n y^{(n)} + a_n x^{n-1} y^{(n-1)} + \dots + a_{n-1} x y' + a_n y = 0$ 的方程成为欧 拉方程.

二、线性代数

(一) 行列式

考试内容	
------	--

行列式的 概念和质、 行列式列 行(开定 开定理

行列式按行(列)展开定理

$$| \overrightarrow{\mathfrak{P}}_{i} a_{1i} A_{1j} + a_{2i} A_{2j} + \dots + a_{ni} A_{nj} = \begin{cases} |A|, i = j \\ 0, i \neq j \end{cases}$$

即
$$AA^* = A^*A = |A|E$$
, 其中

$$A^* = \begin{pmatrix} A_{11} & A_{21} \cdots & A_{n1} \\ A_{12} & A_{22} \cdots & A_{n2} \\ \cdots & \cdots & \cdots \\ A_{1n} & A_{2n} \cdots & A_{nn} \end{pmatrix} = (A_{ji}) = (A_{jj})^T$$

(2)设A, B为n阶方阵,则|AB| = |A||B| = |B||A| = |BA|

$$\left| \left| \left| A \pm B \right| \right| = \left| A \right| \pm \left| B \right|$$
 不一定成立

- (3) $|kA| = k^n |A|$, A为n阶方阵
- (4) 设A为n阶方阵,则 $|A^T|=|A|$; $|A^{-1}|=|A|^{-1}$ (若A可逆) $|A^*|=|A|^{n-1}$ ($n \ge 2$)

$$(5)\begin{vmatrix} A & O \\ O & B \end{vmatrix} = \begin{vmatrix} A & C \\ O & B \end{vmatrix} = \begin{vmatrix} A & O \\ C & B \end{vmatrix} = |A||B|, A, B为方阵,$$

$$\left| \Box \begin{vmatrix} O & A_{m \times m} \\ B_{n \times n} & O \end{vmatrix} = (-1)^{mn} \cdot |A| |B|.$$

(6)范德蒙行列式
$$D_n = \begin{vmatrix} 1 & 1 & \cdots & 1 \\ x_1 & x_2 & \cdots & x_n \\ \cdots & \cdots & \cdots & \cdots \\ x_1^{n-1} & x_2^{n-1} & \cdots & x_n^{n-1} \end{vmatrix} = \prod_{1 \leq j < i \leq n} (x_i - x_j)$$
 设 A 是 n 阶方阵, $\lambda_i (i = 1, 2 \cdots, n)$ 是 A 的 n 个特征值,则

 $\mid A \mid = \prod_{i=1}^{n} \lambda_{i}$

考试内容	对应公式、定理、概念
矩阵的概 念,矩阵 的线性运 算,矩阵 的乘法,	矩阵: $m \times n$ 个数 a_{ij} 排成 m 行 n 列的表格 $\begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ & & & & \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}$ 称
	为矩阵,简记为 A ,或 $(a_{ij})_{m\times n}$.若 $m=n$,则称 A 是 n 阶矩阵或 n
	阶方阵. 矩阵的线性运算 1 矩阵的加法 设 $A = (a_{ij}), B = (b_{ij})$ 是两个 $m \times n$ 矩阵,则 $m \times n$
	矩阵 $C = (c_{ij}) = a_{ij} + b_{ij}$ 称为矩阵 A 与 B 的和,记为 $A + B = C$
	2 矩阵的数乘 设 $A = (a_{ij})$ 是 $m \times n$ 矩阵, k 是一个常数,则
	$m \times n$ 矩阵 (ka_{ij}) 称为数 k 与矩阵 A 的数乘,记为 kA .

(二)矩阵

3 矩阵的乘法 设 $A = (a_{ij})$ 是 $m \times n$ 矩阵, $B = (b_{ij})$ 是 $n \times s$ 矩阵,

那么 $m \times s$ 矩阵 $C = (c_{ii})$,其中

 $c_{ij} = a_{i1}b_{1j} + a_{i2}b_{2j} + \dots + a_{in}b_{nj} = \sum_{k=1}^{n} a_{ik}b_{kj}$ 称为 A与B的乘积的乘积,记为 C = AB

$1A^{T}$ 、 A^{-1} 、A* 三者之间的关系

$$1)(A^{T})^{T} = A,(AB)^{T} = B^{T}A^{T},(kA)^{T} = kA^{T},(A \pm B)^{T} = A^{T} \pm B^{T}$$

2)
$$(A^{-1})^{-1} = A, (AB)^{-1} = B^{-1}A^{-1}, (kA)^{-1} = \frac{1}{k}A^{-1},$$

 $(A \pm B)^{-1} = A^{-1} \pm B^{-1}$ 不一定成立,

 $3)(A^*)^* = |A|^{n-2} A(n \ge 3), \quad (AB)^* = B^*A^*,$

 $(kA)^* = k^{n-1}A^*(n \ge 2)$. 但 $(A \pm B)^* = A^* \pm B^*$ 不一定成立

 $4)(A^{-1})^{T} = (A^{T})^{-1}, (A^{-1})^{*} = (A^{*})^{-1}, (A^{*})^{T} = (A^{T})^{*}$

2 有关 A*的结论

1) $AA^* = A * A = |A|E$

2) $|A^*| = |A|^{n-1}$ $(n \ge 2), (kA)^* = k^{n-1}A^*, (A^*)^* = |A|^{n-2} A(n \ge 3)$

3)若 A 可逆,则 $A^* = A \mid A^{-1}, (A^*)^* = \frac{1}{\mid A \mid} A$

4)若 A 为 n 阶方阵,则 $r(A^*) = \begin{cases} n, & r(A) = n \\ 1, & r(A) = n-1 \\ 0, & r(A) < n-1 \end{cases}$

方幂乘列 阵置阵和矩的阵方的,铁式的逆概质可要的阵行矩转矩念,逆条

件,伴随

矩阵,

3 有关 A⁻¹ 的结论

$$A$$
可逆 $\Leftrightarrow AB = E; \Leftrightarrow |A| \neq 0; \Leftrightarrow r(A) = n;$

- ⇔ A可以表示为初等矩阵的乘积:
- ⇔ A无零特征值; ⇔ Ax = 0只有零解

1有关矩阵秩的结论

- 1) 秩 r(A)=行秩=列秩;
- 2) $r(A_{m \times n}) \leq \min(m, n);$
- 3) $A \neq 0 \Rightarrow r(A) \geq 1$;
- 4) $r(A \pm B) \le r(A) + r(B)$;
- 5) 初等变换不改变矩阵的秩

及其运算

6)
$$r(A)+r(B)-n \le r(AB) \le \min(r(A),r(B))$$
, 特别若 $AB=O$ 则 $r(A)+r(B) \le n$

- 7) 若 A^{-1} 存在 $\Rightarrow r(AB) = r(B)$; 若 B^{-1} 存在
- 的秩, 矩 $\Rightarrow r(AB) = r(A)$;

若
$$r(A_{m\times n}) = n \Rightarrow r(AB) = r(B)$$
;

若
$$r(A_{m\times s}) = n \Rightarrow r(AB) = r(A);$$

8) $r(A_{m\times s}) = n \Leftrightarrow Ax = 0$ 只有零解

2 分块求逆公式

$$\begin{pmatrix} A & O \\ O & B \end{pmatrix}^{-1} = \begin{pmatrix} A^{-1} & O \\ O & B^{-1} \end{pmatrix};$$

$$\begin{pmatrix} A & C \\ O & B \end{pmatrix}^{-1} = \begin{pmatrix} A^{-1} & -A^{-1}CB^{-1} \\ O & B^{-1} \end{pmatrix};$$

$$\begin{pmatrix} A & O \\ C & B \end{pmatrix}^{-1} = \begin{pmatrix} A^{-1} & O \\ -B^{-1}CA^{-1} & B^{-1} \end{pmatrix};$$

$$\begin{pmatrix} O & A \\ B & O \end{pmatrix}^{-1} = \begin{pmatrix} O & B^{-1} \\ A^{-1} & O \end{pmatrix} \quad \text{这里 A, B 均为可逆方阵}$$

(三) 向量

有关向量组的线性表示 (a_1, a_2, \cdots, a_s) 线性相关 \Leftrightarrow 至少有一个向量可以用其余向
量线性表示. 2) 若 $lpha_1, lpha_2, \cdots, lpha_s$ 线性无关, $lpha_1, lpha_2, \cdots, lpha_s$, eta 线性相关 \Leftrightarrow eta
「以由 $\alpha_1, \alpha_2, \dots, \alpha_s$ 惟一线性表示. 3) β 可以由 $\alpha_1, \alpha_2, \dots, \alpha_s$ 线性表示 ⇒ $\mathbf{r}(\alpha_1, \alpha_2, \dots, \alpha_s) = \mathbf{r}(\alpha_1, \alpha_2, \dots, \alpha_s, \beta)$ 有关向量组的线性相关性 1) 部分相关,整体相关;整体无关,部分无关. 2) ① $\mathbf{n} \wedge \mathbf{n}$ 维向量 $\mathbf{r}(\alpha_1, \alpha_2, \dots, \alpha_n) \neq 0$, $\mathbf{n} \wedge \mathbf{n}$ 维向量 $\alpha_1, \alpha_2, \dots, \alpha_n$ 线性相关 ⇒ $ [\alpha_1, \alpha_2, \dots, \alpha_n] = 0$, ② $\mathbf{n} + 1 \wedge \mathbf{n}$ 维向量线性相关.

	③若 $\alpha_1, \alpha_2 \cdots \alpha_s$ 线性无关,则添加分量后仍线性无关;
	或一组向量线性相关,去掉某些分量后仍线性相关
向量组的 极大线性 无关组, 等价向量 组,的秩	1 有关向量组的线性表示 (1) $\alpha_1, \alpha_2, \cdots, \alpha_s$ 线性相关 \Leftrightarrow 至少有一个向量可以用其余向量线性表示. (2) 若 $\alpha_1, \alpha_2, \cdots, \alpha_s$ 线性无关, $\alpha_1, \alpha_2, \cdots, \alpha_s$, β 线性相关 \Leftrightarrow β 可以由 $\alpha_1, \alpha_2, \cdots, \alpha_s$ 惟一线性表示. (3) β 可以由 $\alpha_1, \alpha_2, \cdots, \alpha_s$ 线性表示 $\Leftrightarrow r(\alpha_1, \alpha_2, \cdots, \alpha_s) = r(\alpha_1, \alpha_2, \cdots, \alpha_s, \beta)$
	$\rightarrow \wedge (\alpha_1, \alpha_2, \cdots, \alpha_s) - \wedge (\alpha_1, \alpha_2, \cdots, \alpha_s, \rho)$
向 秩 的 的 向 及 的 阵 间 , 间 概 念	1 设 $r(A_{m\times n}) = r$,则 A 的秩 $r(A)$ 与 A 的行列向量组的线性相关性关系为: $(1) $
n 维向量 空间的基 变换和坐 标变换, 过渡矩阵	1 基变换公式及过渡矩阵 若 $\alpha_1,\alpha_2,\cdots,\alpha_n$ 与 $\beta_1,\beta_2,\cdots,\beta_n$ 是向量空间 V 的两组基,则基 变换公式为

$$(\beta_{1}, \beta_{2}, \dots, \beta_{n}) = (\alpha_{1}, \alpha_{2}, \dots, \alpha_{n}) \begin{bmatrix} c_{11} & c_{12} & \dots & c_{1n} \\ c_{21} & c_{22} & \dots & c_{2n} \\ & \dots & & & \\ c_{n1} & c_{n2} & \dots & c_{nn} \end{bmatrix} = (\alpha_{1}, \alpha_{2}, \dots, \alpha_{n})C$$

其中C是可逆矩阵,称为由基 $\alpha_1,\alpha_2,\cdots,\alpha_n$ 到基 $\beta_1,\beta_2,\cdots,\beta_n$ 的过渡矩阵

2 坐标变换公式

若向量 γ 在基 $\alpha_1,\alpha_2,\dots,\alpha_n$ 与基 $\beta_1,\beta_2,\dots,\beta_n$ 的坐标分别是

$$X = (x_1, x_2, \dots, x_n)^T$$
, $Y = (y_1, y_2, \dots, y_n)^T$

 $\gamma = x_1\alpha_1 + x_2\alpha_2 + \dots + x_n\alpha_n = y_1\beta_1 + y_2\beta_2 + \dots + y_n\beta_n$,则向量坐标变换公式为 X = CY或 $Y = C^{-1}X$ 其中 C 是从基 $\alpha_1, \alpha_2, \dots, \alpha_n$ 到基 $\beta_1, \beta_2, \dots, \beta_n$ 的过渡矩阵

内积: $(\alpha, \beta) = a_1b_1 + a_2b_2 + \dots + a_nb_n = \alpha^T\beta = \beta^T\alpha$

Schmidt 正交化

若 $\alpha_1, \alpha_2, \cdots, \alpha_s$ 线性无关,则可构造 $\beta_1, \beta_2, \cdots, \beta_s$ 使其两两正交,且 β_i 仅是 $\alpha_1, \alpha_2, \cdots, \alpha_i$ 的线性组合 $(i=1,2,\cdots,n)$,再把 β_i 单位化,记 $\gamma_i = \frac{\beta_i}{|\beta_i|}$,则 $\gamma_1, \gamma_2, \cdots, \gamma_i$ 是规范正交向量组.其中

	$eta_1 = lpha_1$, $eta_2 = lpha_2 - rac{(lpha_2, eta_1)}{(eta_1, eta_1)} eta_1$
	$\beta_3 = \alpha_3 - \frac{(\alpha_3, \beta_1)}{(\beta_1, \beta_1)} \beta_1 - \frac{(\alpha_3, \beta_2)}{(\beta_2, \beta_2)} \beta_2$
	$\beta_s = \alpha_s - \frac{(\alpha_s, \beta_1)}{(\beta_1, \beta_1)} \beta_1 - \frac{(\alpha_s, \beta_2)}{(\beta_2, \beta_2)} \beta_2 - \dots - \frac{(\alpha_s, \beta_{s-1})}{(\beta_{s-1}, \beta_{s-1})} \beta_{s-1}$
规范正交 基,正交 矩阵及其 性质	1 正交基及规范正交基 向量空间一组基中的向量如果两两正交,就称为正交基;若 正交基中每个向量都是单位向量,就称其为规范正交基

(四)线性方程组

考试内容	对应公式、定理、概念
线性方程 组的克莱 姆法则, 奇次线性 方程组有	1 克莱姆法则
非零解的 充分必要	D= A ≠0,则方程组有唯一解
条件	$x_1 = \frac{D_1}{D}, x_2 = \frac{D_2}{D}, \dots, x_n = \frac{D_n}{D}$,其中 D_j 是把 D 中第 j 列元素换

	成方程组右端的常数列所得的行列式.
	2 n阶矩阵 A 可逆 \Leftrightarrow $Ax = 0$ 只有零解. \Leftrightarrow $\forall b, Ax = b$ 总有唯
	一解,一般地,
	$r(A_{m\times n}) = n \Leftrightarrow Ax = 0$ 只有零解.
	1 设 A 为 $m \times n$ 矩阵,若 $r(A_{m \times n}) = m$,则对 $Ax = b$ 而言必有
非奇次线	r(A) = r(A:b) = m, 从而 $Ax = b$ 有解.
性方程组	2 设 $x_1, x_2, \dots x_s$ 为 $Ax = b$ 的解,则 $k_1x_1 + k_2x_2 + \dots + k_sx_s$ 当
有解的充	$k_1 + k_2 + \dots + k_s = 1$ 时仍为 $Ax = b$ 的解;但当 $k_1 + k_2 + \dots + k_s = 0$
分必要条 件,线性	时,则为 $Ax = 0$ 的解.特别 $\frac{x_1 + x_2}{2}$ 为 $Ax = b$ 的解; $2x_3 - (x_1 + x_2)$
方程组解	为 $Ax = 0$ 的解.
的性质和	
解的结构	3 非齐次线性方程组 $Ax = b$ 无解 $\Leftrightarrow r(A) + 1 = r(A) \Leftrightarrow b$ 不能
	由 A 的列向量 $\alpha_1,\alpha_2,\cdots,\alpha_n$ 线性表示.
	1 齐次方程组 $Ax = 0$ 恒有解(必有零解).当有非零解时,由于
	解向量的任意线性组合仍是该齐次方程组的解向量,因此
) 奇次线性	Ax=0的全体解向量构成一个向量空间,称为该方程组的解
方程组的	空间,解空间的维数是 $n-r(A)$,解空间的一组基称为齐次
基础解系	方程组的基础解系.
和通解,	2 $\eta_1, \eta_2, \dots, \eta_r$ 是 $Ax = 0$ 的基础解系,即
解空间,	(1) $\eta_1, \eta_2, \dots, \eta_r \not\in Ax = 0$ 的解;
非奇次线	(2) η, η ₂ , ···, η _t 线性无关;
性方程组	(3) $Ax = 0$ 的任一解都可以由 $\eta_1, \eta_2, \dots, \eta_t$ 线性表出.
的通解.	$k_1\eta_1 + k_2\eta_2 + \dots + k_t\eta_t$ 是 $Ax = 0$ 的通解,其中 k_1, k_2, \dots, k_t 是任意
	常数.
	111 3%

(五)矩阵的特征值和特征向量

考试内容	对应公式、定理、概念
矩阵的特 征值量 征向 极态 质,	1 设 λ 是 A 的一个特征值,则 kA , $aA+bE$, A^2 , A^m , $f(A)$, A^T , A^{-1} , $A*$ 有一个特征值分别为 $k\lambda$, $a\lambda+b$, λ^2 , λ^m , $f(\lambda)$, λ , λ^{-1} , $\frac{ A }{\lambda}$, 且对应特征向量相同(A^T 例外). 2 若 λ_1 , λ_2 ,, λ_n 为 A 的 n 个特征值,则 $\sum_{i=1}^n \lambda_i = \sum_{i=1}^n a_{ii}$, $\prod_{i=1}^n \lambda_i = A $ 从而 $ A \neq 0 \Leftrightarrow A$ 没有特征值. 3 设 λ_1 , λ_2 ,, λ_s 为 A 的 s 个特征值,对应特征向量为 α_1 , α_2 ,, α_s , 若 $\alpha = k_1\alpha_1 + k_2\alpha_2 + \cdots + k_s\alpha_s$, 则 $A^n\alpha = k_1A^n\alpha_1 + k_2A^n\alpha_2 + \cdots + k_sA^n\alpha_s = k_1\lambda_1^n\alpha_1 + k_2\lambda_2^n\alpha_2 + \cdots + k_s\lambda_s^n\alpha_s$
相似变换、相似矩阵的概念及性质,	1 若 $A \sim B$,则 $(1) A^{T} \sim B^{T}, A^{-1} \sim B^{-1}, A^{*} \sim B^{*}.$ $(2) A = B , \sum_{i=1}^{n} A_{ii} = \sum_{i=1}^{n} b_{ii}, r(A) = r(B)$ $(3) \lambda E - A = \lambda E - B , $
矩阵可相似为充分 要条件及相似对角	1 设 A 为 n 阶 方 阵,则 A 可 对 角 L 会 对 每 个 k_i 重 根 特 征 值 λ_i ,有 $n-r(\lambda_i E-A)=k_i$ 2 设 A 可 对 角 L ,则 由 $P^{-1}AP=\Lambda$,有 $A=P\Lambda P^{-1}$,从 而 $A^n=P\Lambda^n P^{-1}$

	3 重要结论
	(1) 若 $A \sim B, C \sim D$,则 $\begin{bmatrix} A & O \\ O & C \end{bmatrix} \sim \begin{bmatrix} B & O \\ O & D \end{bmatrix}$.
	(2)若 $A \sim B$,则 $f(A) \sim f(B), f(A) \sim f(B) $,其中 $f(A)$ 为关
	于n阶方阵A的多项式.
	(3)若 A 为可对角化矩阵,则其非零特征值的个数(重根重复
	计算)=秩(A)
	1 相似矩阵:设 A,B 为两个 n 阶方阵,如果存在一个可逆矩
	阵 P , 使得 $B = P^{-1}AP$ 成立, 则称矩阵 $A = B$ 相似, 记为 $A \sim B$.
	2 相似矩阵的性质
	如果 A~B 则有
实对称矩 阵的特征 值、特征 向量及相 似对角阵	$(1) A^T \sim B^T$
	(2) A ⁻¹ ~ B ⁻¹ (若A,B均可逆)
	$(3) A^k \sim B^k(k$ 为正整数)
	$(4) \lambda E - A = \lambda E - B $,从而 A, B 有相同的特征值
	(5) A = B ,从而 A , B 同时可逆或同时不可逆
	(6) 秩 (A) = 秩 (B) , $ \lambda E - A = \lambda E - B $, $A \times B$ 不一定相似

(六)二次型

考试内容	对应公式、定理、概念
二次型及	$1n$ 个变量 x_1, x_2, \dots, x_n 的二次齐次函数

$$f(x_1, x_2, \dots, x_n) = \sum_{i=1}^n \sum_{j=1}^n a_{ij} x_i y_j$$
, $\sharp \vdash a_{ij} = a_{ji} (i, j = 1, 2, \dots, n)$,

称为n元二次型,简称二次型. 若令

$$x = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}, A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix}$$
,这二次型 f 可改写成矩阵

向量形式 $f = x^T A x$. 其中 A 称为二次型矩阵,因为 $a_{ij} = a_{ji} (i, j = 1, 2, \cdots, n)$,所以二次型矩阵均为对称矩阵,且 二次型与对称矩阵——对应,并把矩阵 A 的秩称为二次型的秩.

1 惯性定理

对于任一二次型,不论选取怎样的合同变换使它化为 仅含平方项的标准型,其正负惯性指数与所选变换无关, 这就是所谓的惯性定理.

惯性定 理,二次 型的标准 形和规范

形

2标准形

二次型 $f = (x_1, x_2, \dots, x_n) = x^T A x$ 经过合同变换 x = C y 化为

$$f = x^{T} A x = y^{T} C^{T} A C y = \sum_{i=1}^{r} d_{i} y_{i}^{2}$$
 称为

 $f(r \le n)$ 的标准形.在一般的数域内,二次型的标准形不是唯一的,与所作的合同变换有关,但系数不为零的平方项的个数由r(A的秩)唯一确定.

3规范形

	任一实二次型 f 都可经过合同变换化为规范形
	$f = z_1^2 + z_2^2 + \dots + z_p^2 - z_{p+1}^2 - \dots - z_r^2$,其中 r 为A 的秩, p 为正惯
	性指数, $r-p$ 为负惯性指数,且规范型唯一.
	1 设 A 正定 $\Rightarrow kA(k>0), A^T, A^{-1}, A*$ 正定; $ A >0$, A 可逆;
	$a_{ii}>0$, $\mathbb{H} A_{ii} >0$
	2 A, B 正定 ⇒ A+B 正定, 但 AB, BA 不一定正定
	3 A 正定 $\Leftrightarrow f(x) = x^T Ax > 0, \forall x \neq 0$
用正交变	⇔ A 的各阶顺序主子式全大于零
 換和配方	⇔ A 的所有特征值大于零
法化二次	⇔ A 的正惯性指数为 n
型为标准	\Leftrightarrow 习可逆阵 P 使 $A = P^T P$
形,二次	
型及其矩	(λ_1)
阵的正定	\Leftrightarrow 存在正交矩阵 Q,使 $Q^TAQ = Q^{-1}AQ = \begin{pmatrix} \lambda_1 & & \\ & \ddots & \\ & & 1 \end{pmatrix}$
性	$igg(\lambda_n igg)$
	其中 $\lambda_i > 0, i = 1, 2, \dots, n$. 正定 $\Rightarrow kA(k > 0), A^T, A^{-1}, A *$ 正定;
	$ A >0$, A 可逆; $a_{ii}>0$,且 $ A_{ii} >0$

三、概率论与数理统计

(一)随机事件和概率

考试内容	对应概念、定理、公式
	1 事件的关系与运算
	(1)子事件: $A \subset B$,若 A 发生,则 B 发生.
	(2)相等事件: A=B,即 $A \subset B$,且 $B \subset A$.
	(3)和事件: $A \cup B$ (或 A+B), A 与 B 中至少有一个发生.
	(4)差事件: A-B, A 发生但 B 不发生.
	(5)积事件: $A \cap B$ (或 AB), A 与 B 同时发生.
 随机事件	(6)互斥事件(互不相容): $A \cap B = \emptyset$.
与样本空	(7)互逆事件(对立事件):
间,事件	$A \cap B = \emptyset$,且 $A \cup B = \Omega$,记 $A = \overline{B}$ 或 $B = \overline{A}$
的关系与	2运算律:
运算,完	(1)交换律: $A \cup B = B \cup A$, $A \cap B = B \cap A$
全事件组	(2)结合律: $(A \cup B) \cup C = A \cup (B \cup C)$;
	$(A \cap B) \cap C = A \cap (B \cap C)$
	(3)分配律: $(A \cup B) \cap C = (A \cap C) \cup (B \cap C)$
	3 德•摩根律: $\overline{A \cup B} = \overline{A} \cap \overline{B}, \overline{A \cup B} = \overline{A} \cup \overline{B}$
	4 完全事件组: A_1 , A_2 …, A_n , 两两互斥,且和事件为必然事
	件,即 $A_i \cap A_j = \varnothing$, $\mathrm{i} \neq \mathrm{j}$, $\bigcup_{\mathrm{i}=1}^{\mathrm{n}} = \Omega$ 。
概率的概	1 概率:事件发生的可能性大小的度量,其严格定义如下:
念,概率 的基本性	概率 $P(\bullet)$ 为定义在事件集合上的满足下面 3 个条件的函数:

质,古典 概率,几 何型概率

- (1)对任何事件 A, P(A)≥0;
- (2)对必然事件 Ω , $P(\Omega)=1$;
- (3)对 A_1 , A_2 ,…, A_n ,…,若 $A_iA_j = \emptyset$ ($i \neq j$),则P($\bigcup_{i=1}^{\infty} A_i$) = $\sum_{i=1}^{\infty} P(A)$.
- 2概率的基本性质
- (1) $P(\bar{A}) = 1 P(A)$;
- (2) P(A-B) = P(A) P(AB);
- (3) $P(A \cup B) = P(A) + P(B) P(AB)$; 特别,

当 $B \subset A$ 时, P(A-B) = P(A) - P(B) 且 $P(B) \leq P(A)$;

$$P(A \cup B \cup C) = P(A) + P(B) + P(C) - P(AB) - P(BC)$$

$$-P(AC)+P(ABC);$$

- (4)若 A_1, A_2, \dots, A_n 两两互斥,则 $P(\bigcup_{i=1}^n A_i) = \sum_{i=1}^n (P(A_i).$
- 3 古典型概率:实验的所有结果只有有限个,

且每个结果发生的可能性相同,其概率计算公式:

4几何型概率:样本空间 Ω 为欧氏空间中的一个区域,

且每个样本点的出现具有等可能性,其概率计算公式:

 $P(A) = \frac{A$ 的度量(长度、面积、体积) Ω 的度量(长度、面积、体积)

概率的基 本公式, 事件的独 立性,独 立重复试 验

1 概率的基本公式:

(1)条件概率:

$$P(B|A) = \frac{P(AB)}{P(A)}$$
, 表示A发生的条件下, B发生的概率

(2)全概率公式:

$$P(A) = \sum_{i=1}^{n} P(A \mid B_i) P(B_i), B_i B_j = \emptyset, i \neq j, \bigcup_{i=1}^{n} B_i = \Omega.$$

(3) Bayes
$$\triangle \mathbb{R}$$
: $P(B_j \mid A) = \frac{P(A \mid B_j)P(B_j)}{\sum_{i=1}^{n} P(A \mid B_i)P(B_i)}, j = 1, 2, \dots, n$

注:上述公式中事件 B, 的个数可为可列个.

(4)乘法公式:

$$P(A_1A_2) = P(A_1)P(A_2 \mid A_1) = P(A_2)P(A_1 \mid A_2)$$

$$P(A_1 A_2 \cdots A_n) = P(A_1) P(A_2 \mid A_1) P(A_3 \mid A_1 A_2) \cdots P(A_n \mid A_1 A_2 \cdots A_{n-1})$$

2事件的独立性

(2)A, B, C 两两独立

$$\Leftrightarrow P(AB) = P(A)P(B);$$
 $P(BC) = P(B)P(C);$

P(AC) = P(A)P(C);

(3)A, B, C 相互独立

$$\Leftrightarrow P(AB) = P(A)P(B);$$
 $P(BC) = P(B)P(C);$

$$P(AC) = P(A)P(C);$$
 $P(ABC) = P(A)P(B)P(C).$

3 独立重复试验:将某试验独立重复 n 次,若每次实验中事件 A 发生的概率为 p,则 n 次试验中 A 发生 k 次的概率为:

$$P(X = k) = C_n^k p^k (1-p)^{n-k}$$
.

4 重要公式与结论

$$(1)P(\bar{A}) = 1 - P(A)$$

$$(2)P(A \cup B) = P(A) + P(B) - P(AB)$$

$$P(A \cup B \cup C) = P(A) + P(B) + P(C) - P(AB) - P(BC)$$

$$-P(AC) + P(ABC)$$

$$(3)P(A-B) = P(A) - P(AB)$$

$$(4)P(A\overline{B}) = P(A) - P(AB), P(A) = P(AB) + P(A\overline{B}),$$

$$P(A \cup B) = P(A) + P(\overline{A}B) = P(AB) + P(A\overline{B}) + P(\overline{A}B)$$

(5)条件概率 P(•| B) 满足概率的所有性质,

例如:
$$P(\overline{A}_1 \mid B) = 1 - P(A_1 \mid B)$$

$$P(A_1 \cup A_2 \mid B) = P(A_1 \mid B) + P(A_2 \mid B) - P(A_1 A_2 \mid B)$$

 $P(A_1 A_2 \mid B) = P(A_1 \mid B)P(A_2 \mid A_1 B)$

(6)若
$$A_1, A_2, \dots, A_n$$
相互独立,则 $P(\bigcap_{i=1}^n A_i) = \prod_{i=1}^n P(A_i)$,

$$P(\bigcup_{i=1}^{n} A_i) = \prod_{i=1}^{n} (1 - P(A_i))$$

(7) 互斥、互逆与独立性之间的关系:

 $A 与 B 互逆 \Rightarrow A 与 B 互斥,但反之不成立,<math>A 与 B 互$ 斥(或互逆)且均非零概率事件 $\Rightarrow A 与 B$ 不独立.

(8)若 $A_1, A_2, \dots, A_m, B_1, B_2, \dots, B_n$ 相互独立,则 $f(A_1, A_2, \dots, A_m)$ 与

 $g(B_1, B_2, \dots, B_n)$ 也相互独立,其中 $f(\bullet), g(\bullet)$ 分别表示对相应事件做任意事件运算后所得的事件,另外,概率为 1 (或 0)的事件与任何事件相互独立.

(二)随机变量及其概率分布

考试内容	对应公式、概念、定理
随机变 量,随机 变量的分 部函数的 概念及质 性质	1 随机变量及概率分布: 取值带有随机性的变量, 严格地说是定义在样本空间上, 取值于实数的函数称为随机变量, 概率分布通常指分布函数或分布律 2 分布函数的概念与性质 定义: $F(x) = P(X \le x), -\infty < x < +\infty$ 性质: $(1) 0 \le F(x) \le 1$ $(2) F(x) 单调不减 (3) 右连续 F(x+0) = F(x) (4) F(-\infty) = 0, F(+\infty) = 1$
离散型随 机变量的 概率 连机 概率 连机 概率 连机 概率 连机 概 性质	1 离散型随机变量的概率分布 $P(X = x_i) = p_i, i = 1, 2, \dots, n, \dots \qquad p_i \ge 0, \sum_{i=1}^{\infty} p_i = 1$ 2 连续型随机变量的概率密度 概率密度 $f(x)$; 非负可积,且 $(1) f(x) \ge 0,$ $(2) \int_{-\infty}^{+\infty} f(x) dx = 1$ $(3) x 为 f(x)$ 的连续点,则 $f(x) = F'(x)$ 分布函数 $F(x) = \int_{-\infty}^{x} f(t) dt$
常见随机 变量的概 率分布,	1 常见分布 (1) 0-1 分布: $P(X = k) = p^{k} (1-p)^{1-k}, k = 0,1$

随机变量 函数的概 率分布

(2) 二项分布 B(n, p):

$$P(X = k) = C_n^k p^k (1-p)^{n-k}, k = 0,1,\dots,n$$

(3) Poisson 分布 $p(\lambda)$:

$$P(X = k) = \frac{\lambda^{k}}{k!} e^{-\lambda}, \lambda > 0, k = 0, 1, 2 \cdots$$

- (4) 均匀分布 U (a, b): $f(x) = \begin{cases} \frac{1}{b-a}, a < x < b \\ 0, 其他 \end{cases}$
- (5) 正态分布 $N(\mu, \sigma^2)$:

$$\varphi(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}}, \sigma > 0, -\infty < x < +\infty$$

(6)指数分布
$$E(\lambda)$$
: $f(x) = \begin{cases} \lambda e^{-\lambda x}, x > 0, \lambda > 0 \\ 0, 其他 \end{cases}$

(7)几何分布
$$G(p)$$
: $P(X = k) = (1-p)^{k-1}p, 0$

(8)超几何分布

$$H(N,M,n): P(X=k) = \frac{C_M^k C_{N-M}^{n-k}}{C_N^n}, \ k = 0,1,\dots,\min(n,M)$$

2 随机变量函数的概率分布

(1)离散型:
$$P(X = x_1) = p_i, Y = g(X)$$
则

$$P(Y = y_j) = \sum_{g(x_i) = y_i} P(X = x_i)$$

(2)连续型:
$$X \sim f_X(x), Y = g(x)$$
则

$$F_{y}(y) = P(Y \le y) = P(g(X) \le y) = \int_{g(x) \le y} f_{x}(x) dx,$$

$$f_Y(y) = F'_Y(y)$$

3 重要公式与结论

$$(1)X \sim N(0,1) \Rightarrow \varphi(0) = \frac{1}{\sqrt{2\pi}}, \Phi(0) = \frac{1}{2},$$

$$\Phi(-a) = P(X \le -a) = 1 - \Phi(a)$$

$$(2)X \sim N(\mu, \sigma^2) \Rightarrow \frac{X - \mu}{\sigma} \sim N(0, 1) \perp P(X \le a) = \Phi(\frac{a - \mu}{\sigma})$$

$$(3)X \sim E(\lambda) \Longrightarrow P(X > s + t \mid X > s) = P(X > t)$$

$$(4)X \sim G(p) \Longrightarrow P(X = m + k \mid X > m) = P(X = k)$$

- (5)离散型随机变量的分布函数为阶梯间断函数;连续型随机变量的分布函数为连续函数,但不一定为处处可导函数.
- (6)存在既非离散也非连续型随机变量.

(三)多维随机变量及其分布

考试内容	对应公式、概念、定理			
	1 二维随机变量及其联合分布			
多维随机	由两个随机变量构成的随机向量(X,Y),			
变量及其	联合分布为 $F(x, y) = P(X \le x, Y \le y)$			
分布,二	2 二维离散型随机变量的联合概率分布、边缘分布、条件分			
维离散型				
随机变量	布(1)联合概率分布律 $P\{X = x_i, Y = y_j\} = p_{ij}; i, j = 1, 2, \cdots$			
的概率分	(2) 边缘分布律 $p_i = \sum_{i=1}^{\infty} p_{ii}, i = 1, 2, \cdots$			
布、边缘	(2) 边缘分布律 $p_{i.} = \sum_{j=1}^{\infty} p_{ij}, i = 1, 2, \cdots$			
分布和条	$p_{\cdot,j} = \sum_{i=1}^{\infty} p_{ij}, j = 1, 2, \cdots$			
件分布	$P \cdot j = \sum_{i} P_{ij}, J = 1, 2,$			
	(3) 条件分布律			

	$P\{X = x_i \mid Y = y_j\} = \frac{p_{ij}}{p_{.j}}$			
	$P\{Y = y_j \mid X = x_i\} = \frac{p_{ij}}{p_{i}}$			
二维连续性随机变	1 联合概率密度 $f(x, y)$: $(1) f(x, y) \ge 0$ $(2) \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(x, y) dx dy = 1$			
量的概率密度、边	2 分布函数: $F(x,y) = \int_{-\infty}^{x} \int_{-\infty}^{y} f(u,v) du dv$			
缘概率密 度和条件 密度	3 边缘概率密度: $f_X(x) = \int_{-\infty}^{+\infty} f(x, y) dy \qquad f_Y(y) = \int_{-\infty}^{+\infty} f(x, y) dx$			
	4 条件概率密度: $f_{X Y}(x y) = \frac{f(x,y)}{f_Y(y)}$ $f_{Y X}(y x) = \frac{f(x,y)}{f_X(x)}$			
	1 常见二维随机变量的联合分布			
随机变量	(1) 二维均匀分布: $(x, y) \sim U(D)$, $f(x, y) = \begin{cases} \frac{1}{S(D)}, (x, y) \in D \\ 0, 其他 \end{cases}$			
か独立性 和不相关 性,常用	(2)二维正态分布: $(X, Y) \sim N(\mu_1, \mu_2, \sigma_1^2, \sigma_2^2, \rho)$			
二维随机变量的分	$f(x, y) = \frac{1}{2\pi\sigma_1\sigma_2\sqrt{1-\rho^2}}$			
布	• $\exp\left\{\frac{-1}{2(1-\rho^2)}\left[\frac{(x-\mu_1)^2}{\sigma_1^2}-2\rho\frac{(x-\mu_1)(y-\mu_2)}{\sigma_1\sigma_2}+\frac{(y-\mu_2)^2}{\sigma_2^2}\right]\right\}$			
	2 随机变量的独立性和相关性			

	X和Y的相互独立 \Leftrightarrow $F(x,y) = F_X(x)F_Y(y)$,
	$\Leftrightarrow p_{ij} = p_{i} \cdot p_{.j}$ (离散型) $\Leftrightarrow f(x, y) = f_X(x) f_Y(y)$ (连续型)
	X 和 Y 的相关性:相关系数 $\rho_{xy} = 0$ 时,称 X 和 Y 不相关,
	否则称 X 和 Y 相关
	1两个随机变量简单函数的概率分布
	(1)离散型:
	$P(X = x_i, Y = y_i) = p_{ij}, Z = g(X, Y)$ 则
	$P(Z = z_k) = P\{g(X,Y) = z_k\} = \sum_{g(x_i, y_i) = z_k} P(X = x_i, Y = y_j)$
	(2)连续型:
	$(X,Y) \sim f(x,y), Z = g(X,Y)$ 则
两个及两 个以上随	$F_z(z) = P\{g(X,Y) \le z\} = \iint_{g(x,y) \le z} f(x,y) dxdy, f_z(z) = F'_z(z)$
机变量简	2 重要公式与结论
单函数的 分布	(1) 边缘密度公式:
77.714	$f_X(x) = \int_{-\infty}^{+\infty} f(x, y) dy, \qquad f_Y(y) = \int_{-\infty}^{+\infty} f(x, y) dx.$
	$(2) P\{(X,Y) \in D\} = \iint_D f(x,y) dx dy$
	(3)若(X,Y)服从二维正态分布 $N(\mu_1, \mu_2, \sigma_1^2, \sigma_2^2, \rho)$ 则有
	① $X \sim N(\mu_1, \sigma_1^2), Y \sim N(\mu_2, \sigma_2^2).$
	②X 与 Y 相互独立 $\Leftrightarrow \rho = 0$,即 X 与 Y 不相关.

$$3C_1X + C_2Y \sim N(C_1\mu_1 + C_2\mu_2, C_1^2\sigma_1^2 + C_2^2\sigma_2^2 + 2C_1C_2\sigma_1\sigma_2\rho).$$

$$N(\mu_1 + \rho \frac{\sigma_1}{\sigma_2}(y - \mu_2), \sigma_1^2(1 - \rho^2)).$$

⑤Y 关于 X=x 的条件分布为:

$$N(\mu_2 + \rho \frac{\sigma_2}{\sigma_1}(x - \mu_1), \sigma_2^2(1 - \rho^2)).$$

(4)若 X 与 Y 独立, 且分别服从 $N(\mu_1, \sigma_1^2)$, $N(\mu_1, \sigma_2^2)$,

则
$$(X,Y) \sim N(\mu_1, \mu_2, \sigma_1^2, \sigma_2^2, 0),$$

$$C_1X + C_2Y \sim N(C_1\mu_1 + C_2\mu_2, C_1^2\sigma_1^2 + C_2^2\sigma_2^2).$$

(5)若X与Y相互独立,f(x)和g(x)为连续函数,

则 f(X)与g(Y) 也相互独立.

(四)随机变量的数字特征

考试内容	对应概念、定义、定理、公式
随机变量	1 数学期望
的数学期	离散型: $P\{X = x_i\} = p_i, E(X) = \sum x_i p_i$; 连续型:
望(均	因似主。 $I(X-x_i)-p_i, L(X)-\sum_i x_i p_i$, 过实主。
值)、方差	(+ ⁴⁰
和标准差	$X \sim f(x), E(X) = \int_{-\infty}^{+\infty} x f(x) dx$
及其性质	性质:
	(1) E(C) = C, E[E(X)] = E(X)
	$(2) E(C_1X + C_2Y) = C_1E(X) + C_2E(Y)$

(3)若X和Y独立,则
$$E(XY) = E(X)E(Y)$$

$$(4)[E(XY)]^2 \le E(X^2)E(Y^2)$$

2 方差:
$$D(X) = E[X - E(X)]^2 = E(X^2) - [E(X)]^2$$

$$3$$
标准差: $\sqrt{D(X)}$,

4 离散型:
$$D(X) = \sum_{i} [x_i - E(X)]^2 p_i$$

5 连续型:
$$D(X) = \int_{-\infty}^{+\infty} \left[x - E(X) \right]^2 f(x) dx$$

性质:

$$(1) D(C) = 0, D[E(X)] = 0, D[D(X)] = 0$$

(2)X 与 Y 相互独立, 则
$$D(X \pm Y) = D(X) + D(Y)$$

(3)
$$D(C_1X + C_2) = C_1^2 D(X)$$

$$D(X \pm Y) = D(X) + D(Y) \pm 2Cov(X, Y) = D(X) + D(Y) \pm 2\rho\sqrt{D(X)}\sqrt{D(Y)}$$

$$(5) D(X) < E(X - C)^2, C \neq E(X)$$

$$(6) D(X) = 0 \Leftrightarrow P\{X = C\} = 1$$

函数的数 学期望, 矩、加克 差,相关 系数的数

随机变量

1 随机变量函数的数学期望

(1)对于函数Y = g(x)

X 为离散型: $P\{X = x_i\} = p_i, E(Y) = \sum_i g(x_i)p_i$; X 为连续

型:
$$X \sim f(x), E(Y) = \int_{-\infty}^{+\infty} g(x) f(x) dx$$

字特征

(2)
$$Z = g(X,Y)$$
; $(X,Y) \sim P\{X = x_i, Y = y_i\} = p_{ij}$;

$$E(Z) = \sum_{i} \sum_{j} g(x_i, y_j) p_{ij}$$

$$(X,Y) \sim f(x,y)$$
; $E(Z) = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} g(x,y) f(x,y) dx dy$

2 协方差
$$Cov(X,Y) = E[(X - E(X)(Y - E(Y))]$$

3 相关系数
$$\rho_{XY} = \frac{Cov(X,Y)}{\sqrt{D(X)}\sqrt{D(Y)}}$$
,k 阶原点矩 $E(X^k)$;

k 阶中心矩
$$E\{[X-E(X)]^k\}$$

性质:

(1)
$$Cov(X,Y) = Cov(Y,X)$$

$$(2)$$
 $Cov(aX,bY) = abCov(Y,X)$

(3)
$$Cov(X_1 + X_2, Y) = Cov(X_1, Y) + Cov(X_2, Y)$$

$$(4) \left| \rho(X,Y) \right| \le 1$$

(5)
$$\rho(X,Y) = 1 \Leftrightarrow P(Y = aX + b) = 1, \not\exists + a > 0$$

$$\rho(X,Y) = -1 \Leftrightarrow P(Y = aX + b) = 1, \text{ \sharp} + a < 0$$

4 重要公式与结论

(1)
$$D(X) = E(X^2) - E^2(X)$$

(2)
$$Cov(X,Y) = E(XY) - E(X)E(Y)$$

(3)
$$|\rho(X,Y)| \le 1,$$
 且

$$\rho(X,Y) = 1 \Leftrightarrow P(Y = aX + b) = 1, 其中a > 0$$

$$\rho(X,Y) = -1 \Leftrightarrow P(Y = aX + b) = 1, 其中a < 0$$

$$(4) 下面 5 个条件互为充要条件:$$

$$\rho(X,Y) = 0$$

$$\Leftrightarrow Cov(X,Y) = 0$$

$$\Leftrightarrow E(X,Y) = E(X)E(Y)$$

$$\Leftrightarrow D(X+Y) = D(X) + D(Y)$$

$$\Leftrightarrow D(X-Y) = D(X) + D(Y)$$
注: X 与 Y 独立为上述 5 个条件中任何一个成立的充分条件,但非必要条件.

(五)大数定律和中心极限定理

考试内容	对应概念、定理、重要公式		
	1 切比雪夫不等式: $P\{ X-E(X) ≥ ε\} ≤ \frac{D(X)}{ε^2}$ 或		
切比雪夫 (Cheby) $P\{ X-E(X) <\varepsilon\} \ge 1 - \frac{D(X)}{\varepsilon^2}$			
shev) 不	2 切比雪夫大数定律:设 $X_1, X_2,, X_n,$ 相互独立,且		
等式,切 比雪夫大	$E(X_i) = \mu, D(X_i) = \sigma^2 (i = 1, 2, \cdots)$,则对于任意正数 ε ,有		
数定律	$\lim_{n\to\infty} P\left\{ \left \frac{1}{n} \sum_{i=1}^{n} X_i - \mu \right < \varepsilon \right\} = 1$		
伯努利大 1 伯努利大数定律			
数定律, 辛钦	设 $X_1, X_2,, X_n,$ 相互独立,同 0 -1 分布 $B(1, p)$,则对任意		

(Khinc hine)大 数定律	正数 ε ,有 $\lim_{n\to\infty} P\left\{\left \frac{1}{n}\sum_{i=1}^n X_i - p\right < \varepsilon\right\} = 1$			
	2 辛钦大数定律			
	设 $X_1, X_2, \dots, X_n, \dots$ 相互独立同分布, $EX_i = \mu, i = 1, 2$,则对于			
	任			
	意正数 ε ,有 $\lim_{n\to\infty} P\left\{\left \frac{1}{n}\sum_{i=1}^n X_i - \mu\right < \varepsilon\right\} = 1$			
	1 棣莫弗拉普斯定理			
	设 $\eta_n \sim B(n,p)$, (即 $X_1, X_2 \cdots, X_n$, 相互独立且同服从 0-1 分布			
隶莫弗一 拉普拉斯	$\eta_n = \sum_{i=1}^n X_i$)则有			
(De Movire-L aplace)	$\lim_{n \to \infty} P\left\{ \frac{\eta_n - np}{\sqrt{np(1-p)}} \le x \right\} = \int_{-\infty}^x \frac{1}{\sqrt{2\pi}} e^{-\frac{t^2}{2}} dt$			
定理,列	2 列维林德伯格定理			
维一林德 伯格	设 $X_1, X_2 \cdots, X_n, \cdots$ 相互独立分布,			
(Levy-	$E(X_i) = \mu, D(X_i) = \sigma^2(\sigma \neq 0)i = 1, 2, \dots,$			
Undbe) 定理	则 $\lim_{n \to \infty} P\left\{\frac{\sum_{i=1}^{n} X_i - n\mu}{\sqrt{n\sigma}} \le x\right\} = \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi}} e^{-\frac{t^2}{2}} dt$			

(六)数理统计的基本概念

考试内容	对应公式、概念、定理		
总体,个	总体:研究对象的全体,它是一个随机变量,用 X 表示		

体, 简单 随机样 本,统计 量,样本 均值,样 本方差和 样本矩

个体: 组成总体的每个基本元素

简单随机样本:来自总体 X 的 n 个相互独立且与总体同分 布的随机变量 X_1, X, \dots, X_n , 称为容量为n的

简单随机样本, 简称样本

统计量:设 X_1, X, \dots, X_n ,是来自总体X的一个样本, $g(X_1, X, \dots, X_n)$)是样本的连续函数,且 $g(\bullet)$ 中不

含任何未知参数,则称 $g(X_1,X_2,...,X_n)$ 为统计量

样本均值: $\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_{i}$

样本方差: $S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X})^2$

样本矩: 样本 k 阶原点矩: $A_k = \frac{1}{n} \sum_{i=1}^{n} X_i^k, k = 1, 2, \cdots$

样本 k 阶中心矩: $B_k = \frac{1}{n} \sum_{i=1}^{n} (X_i - \bar{X})^k, k = 1, 2, \dots$

 χ^2 分布: $\chi^2 = X_1^2 + X_2^2 + \dots + X_n^2 \sim \chi^2(n)$, 其中 X_1, X_2, \dots, X_n

相互独立, 且同服从 N(0.1)

χ^2 分布,

t 分布: $T = \frac{X}{\sqrt{V/n}} \sim t(n)$ 其中 $X \sim N(0,1), Y \sim \chi^2(n),$ 且 X, Y

t 分布, F | 相互独立

分布,分 F 分布: $F = \frac{X/n_1}{Y/n_2} \sim F(n_1, n_2)$,其中 $X \sim \chi^2(n_1), Y \sim \chi^2(n_2)$,且

X,Y相互独立

分位数: 若 $P(X \le x_{\alpha}) = \alpha$, 则称 x_{α} 为 X 的 α 分位数

正态总体 的常用样

1 设 X_1, X_2, \dots, X_n 为来自正态总体 $N(\mu, \sigma^2)$ 的样本,

(七)参数估计

考试 内容	对应公式、概念、定理
点估	
计的	$1\hat{ heta}$ 为 $ heta$ 的矩估计, \mathbf{g} (\mathbf{x})为连续函数,则 \mathbf{g} ($\hat{ heta}$)为 \mathbf{g} ($ heta$)的
概	

念,	矩估计.					
估计						
量与	$2\hat{\theta}$ 为 θ 的极大似数估计, $g(x)$ 为单调函数,则 $g(\hat{\theta})$ 为 $g(\theta)$ 的					
估计	极大似然估计	极大似然估计				
値, 矩估	$3 E(\bar{X}) = E(X)$	$S(S), E(S^2) = D(X), \ \mathbb{H} \ \overline{X}, S^2$	分别为总体			
计	E(X), $D(X)$)的无偏估计量.				
法,						
最大	4 由大数定	律易知 \bar{X} , S^2 也分别是 B	E(X), $D(X)$ 的一致估量.			
似然		۸				
估计	$5 若 E(\hat{\theta}) = \theta$	$D(\hat{\theta}) \to 0 (n \to \infty) \mathbb{M} \hat{\theta} \mathbb{h} \theta$	的一致估计.			
法						
估计	4 71.11 目 44.14					
量的	1 估计量的选取标准: 无偏性、有效性、相合性					
评选	2(0,0) 4.0					
标准	$2(\theta_1,\theta_2)/30$	$2(\hat{\theta}_1,\hat{\theta}_2)$ 为 θ 的置信度是 $1-\alpha$ 的置信区间, $g(x)$ 为单调增加(或				
区间	英国对小人 巫教 、则、(â、 / â、 / â、 / â、 / 4~(0) 故思 / b 中					
估计	单调减少)函数,则 $(g(\hat{\theta}_1),g(\hat{\theta}_2)$ 或 $g(\hat{\theta}_2),g(\hat{\theta}_1)$)为 $g(\theta)$ 的置信度					
的概						
念	是 $1-lpha$ 的置信区间					
单个	正态总体均值与方差的置信区间					
正态	待估参数	抽样分布	双侧置信区间			
总体		_	(V V			
的均	σ^2	$U = \frac{\overline{X} - \mu}{\frac{\sigma}{\sqrt{n}}} \sim N(0, 1)$	$(\overline{X} - \mu_{\frac{\alpha}{2}}, \overline{X} + \mu_{\frac{\alpha}{2}})$			
值和	<i>μ</i> 己知	$\frac{\sigma}{\Gamma}$	$P\{\big \mu\big \geq\mu_{\frac{\alpha}{2}}\}=\alpha$			
方差		\sqrt{n}	$\frac{\alpha}{2}$			

的区 间估 计, 两个		σ² 未知	$T = \frac{\overline{X} - \mu}{S/\sqrt{n}} \sim t(n-1)$	$(\overline{X} - t_{\frac{\alpha}{2}} \cdot \frac{S}{\sqrt{n}}, \overline{X} + t_{\frac{\alpha}{2}} \cdot \frac{S}{\sqrt{n}})$ $P\{ T \ge t_{\frac{\alpha}{2}}\} = \alpha$
正总的值和差的间计态体均差方比区估计	σ^2	μ 已知	$W' = \frac{1}{\sigma^2} \sum_{i=1}^{n} (X_i - \mu)^2$ $\sim \chi^2(n)$	$ \frac{\sum_{i=1}^{n} (X_{i} - \mu)^{2}}{\chi^{2}_{\frac{\alpha}{2}}(n)}, \frac{\sum_{i=1}^{n} (X_{i} - \mu)^{2}}{\chi^{2}_{\frac{1-\alpha}{2}}(n)}) $ $ P\{W' \ge \chi^{2}_{\frac{\alpha}{2}}(n)\} = $ $ P\{W' \le \chi^{2}_{\frac{1-\alpha}{2}}(n)\} = \frac{\alpha}{2} $
		μ 未知	$W = \frac{(n-1)S^2}{\sigma^2} \sim \chi^2 (n-1)$	$\left(\frac{(n-1)S^{2}}{\chi_{\frac{\alpha}{2}}^{2}(n-1)}, \frac{(n-1)S^{2}}{\chi_{1-\frac{\alpha}{2}}^{2}(n-1)}\right)$
	$\mu_1 \ - \ \mu_2$	$\sigma_1^{2},\sigma_2^{2}$ 已知	$U = \frac{(\overline{X_1} - \overline{X_2}) - (\mu_1 - \mu_2)}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}}$ $\sim N(0, 1)$	$\left((\overline{X_1} - \overline{X_2}) - \mu_{\frac{\alpha}{2}} \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}, (\overline{X_1} - \overline{X_2}) + \mu_{\frac{\alpha}{2}} \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}\right)$ $P\{ U \ge \mu_{\frac{\alpha}{2}}\} = \alpha$
		已知 $\sigma_1^2 = \sigma_2^2$ $= \sigma^2,$ 但 σ^2 未知	$T = \frac{(\overline{X_1} - \overline{X_2}) - (\mu_1 - \mu_2)}{S\sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} \sim t(n_1 + n_2 - 2)$ $S^2 = \frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{n_1 + n_2 - 2}$	$\left((\overline{X_1} - \overline{X_2}) - t_{\underline{\alpha}}(n_1 + n_2 - 2) \cdot S \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}, (\overline{X_1} - \overline{X_2}) + t_{\underline{\alpha}}(n_1 + n_2 - 2) \cdot S \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}\right)$ $P\{ T \ge t_{\underline{\alpha}}\} = \alpha$

$$\frac{\sigma_{1}^{2}}{\sigma_{2}^{2}} \qquad F = \frac{\frac{S_{1}^{2}}{\sigma_{2}^{2}}}{\frac{S_{1}^{2}}{\sigma_{2}^{2}}} \sim F(n_{1} - 1, n_{2} - 1) \qquad \frac{F_{\frac{\alpha}{2}}(n_{1} - 1, n_{2} - 1) \cdot \frac{S_{1}^{2}}{S_{2}^{2}}}{F(n_{1} - 1, n_{2} - 1)} = \frac{\alpha}{2}$$

$$P\{F \geq F_{\frac{\alpha}{2}}(n_{1} - 1, n_{2} - 1)\} = \frac{\alpha}{2}$$

$$P\{\frac{1}{F} \geq F_{\frac{\alpha}{2}}(n_{2} - 1, n_{1} - 1)\} = \frac{\alpha}{2}$$

(八)假设检验

考试 内容	对应公式、概念、定理				
	1 假设检验的一般步骤 (1) 确定所要检验的基本假设 H_0 ;				
	(2)选择检验的统计量,并要求知道其在一定条件下的分布;				
显著	(3)对确定的显著性水平α,查相应的概率分布,得临界值,从而				
性检	确定否定域;				
验,	(4) 由样本计算统计量,并判断其是否落入否定域,从而对假设 H_0				
假设 检验	作出拒绝还是接受的判断				
的两	2 假设检验的两类错误				
类错	统计推断是由样本推断总体,所作的结论不能保证绝对不				
误	犯错误,而只能以较大概率来保证其可靠性.				
	第一类错误是否定了真实的假设,即假设本来成立,但被				
	错误地否认了,成为"弃真",检验水平 α 就是犯第一类错误的				
	概率的最大允许值.				

	第二类错误是把本来不成立的假设错误地接受了, 称为"存伪". 犯这类错误的大小一般用 β 表示, 它的大小要视具体			
	情况	元这类错记 记而定.	大时人小 $-$ 权用 p 农小,	占的人小安 代 共平
		原假设 <i>H</i> ₀	H_0 下的检验统计量及分布	H_0 的拒绝域
	一 个	$\mu = \mu_0$ (σ^2 已知)	$U = \frac{\overline{X} - \mu_0}{\sigma / \sqrt{n}}$ $\sim N(0,1)$	$ u = \left \frac{\overline{x} - \mu_0}{\sigma / \sqrt{n}} \right \ge u_{\frac{a}{2}}$
単个 及两 个正	正态、	$\mu = \mu_0$ $(\sigma^2 未知)$	$T = \frac{\overline{X} - \mu_0}{S / \sqrt{n}}$ $\sim t(n-1)$	$ t = \left \frac{\overline{x} - \mu_0}{S / \sqrt{n}} \right \ge t_{\frac{\alpha}{2}}(n-1)$
态总 体的	总体	$\sigma^2 = \sigma_0^2$	$W = \sum_{i=1}^{n} \left(\frac{X_i - \mu}{\sigma_0} \right)^2$	$w = \sum_{i=1}^{n} \left(\frac{x_i - \mu}{\sigma_0} \right)^2 \ge \chi_{\frac{a}{2}}^2(n)$
均值 和方 差的		(μ 已知)	$\sim \chi^2(n)$	或 $w \le \chi_{1-\frac{a}{2}}^2(n)$
假设检验		$\sigma^2 = \sigma_0^2$	$W = \frac{(n-1)S^2}{\sigma_0^2}$	$w = \frac{(n-1)S^2}{\sigma_0^2} \ge \chi_{\frac{a}{2}}^2(n-1)$
		(μ 未知)	$\sim \chi^2(n-1)$	或 $w \le \chi_{1-\frac{a}{2}}^2(n-1)$
	两个正	$\mu_1 - \mu_2 = \delta$ $(\sigma_1^2, \sigma_2^2$ 己知)	$U = \frac{\bar{X}_1 - \bar{X}_2 - \delta}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}}$ $\sim N(0, 1)$	$ u = \frac{\overline{X}_1 - \overline{X}_2 - \delta}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}} \ge u_{\frac{\alpha}{2}}$

态总体	$\mu_1 - \mu_2 = \delta$ $(\sigma_1^2, \sigma_2^2 未知$ 但 $\sigma_1^2 = \sigma_2^2)$	$T = \frac{\overline{X}_1 - \overline{X}_2 - \delta}{S_W \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}$ $\sim t(n_1 + n_2 - 2)$ $S_W^2 = \frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{n_1 + n_2 - 2}$	$ t = \frac{ \bar{X}_1 - \bar{X}_2 - \delta }{ S_W \sqrt{\frac{1}{n_1} + \frac{1}{n_2}} }$ $\geq t_{\frac{a}{2}}(n_1 + n_2 - 2)$
	$\sigma_1^2 = \sigma_2^2$ (μ_1 , μ_2 未知)	$F = \frac{S_1^2}{S_2^2}$ $\sim F(n_1 - 1, n_2 - 1)$	$f = \frac{S_1^2}{S_2^2} \ge F_{\frac{a}{2}}(n_1 - 1, n_2 - 1)$ 或 $f \le F_{\frac{a}{2}}^{-1}(n_2 - 1, n_1 - 1)$

经常用到的初等数学公式

初等代数

1. 乘法公式与因式分解

$$(1)(a\pm b)^2 = a^2 \pm 2ab + b^2$$

$$(2)(a+b+c)^2 = a^2+b^2+c^2+2ab+2ac+2bc$$

$$(3)a^2-b^2=(a-b)(a+b)$$

$$(4)(a\pm b)^3 = a^3 \pm 3a^2b + 3ab^2 \pm b^3$$

$$(5)a^3 \pm b^3 = (a \pm b)(a^2 \mp ab + b^2)$$

$$(6)a^{n} - b^{n} = (a - b)(a^{n-1} + a^{n-2}b + a^{n-3}b^{2} + \dots + ab^{n-2} + b^{n-1})$$

2. 比例
$$(\frac{a}{b} = \frac{c}{d})$$

(1)合比定理
$$\frac{a+b}{b} = \frac{c+d}{d}$$

(2)分比定理
$$\frac{a-b}{b} = \frac{c-d}{d}$$

(3)合分比定理
$$\frac{a+b}{a-b} = \frac{c+d}{c-d}$$

(4)若
$$\frac{a}{b} = \frac{c}{d} = \frac{e}{f}$$
,则令 $\frac{a}{b} = \frac{c}{d} = \frac{e}{f} = t$.于是 $\frac{a}{b} = \frac{c}{d} = \frac{e}{f} = \frac{a+c+e}{b+d+f}$

(5)若y与x成正比,则y=kx(k为比例系数)

(6)若y与x成反比,则y =
$$\frac{k}{r}$$
(k为比例系数)

3. 不等式

(1) 设
$$a > b > 0, n > 0$$
, 则 $a^n > b^n$

(2) 设
$$a > b > 0$$
, n 为正整数,则 $\sqrt[n]{a} > \sqrt[n]{b}$

(3)设
$$\frac{a}{b} < \frac{c}{d}$$
,则 $\frac{a}{b} < \frac{a+c}{b+d} < \frac{c}{d}$

(4)非负数的算术平均值不小于其几何平均值,即

$$\frac{a+b}{2} \ge \sqrt{ab}$$
,

$$\frac{a+b+c}{3} \ge \sqrt[3]{abc},$$

$$\frac{a_1 + a_2 + a_3 \cdot \dots + a_n}{n} \ge \sqrt[n]{a_1 a_2 \cdot \dots \cdot a_n}$$

(5)绝对值不等式

1)
$$|a+b| \le |a| + |b|$$

$$|a-b| \le |a| + |b|$$

$$3)|a-b| \ge |a|-|b|$$

$$4)-|a| \le a \le |a|$$

4. 二次方程 $ax^2 + bx + c = 0$

(1)根:
$$x_1 = \frac{-b + \sqrt{b^2 - 4ac}}{2a}, x_2 = \frac{-b - \sqrt{b^2 - 4ac}}{2a}$$

(2) 韦达定理:
$$x_1 + x_2 = -\frac{b}{a}, x_1 x_2 = \frac{c}{a}$$

$$(3)$$
判别式 $\Delta = b^2 - 4ac$ $\begin{cases} > 0, 方程有两不等实根 \\ = 0, 方程有两相等实根 \\ < 0, 方程有两共轭虚根 \end{cases}$

5. 一元三次方程的韦达定理:

若
$$x^3 + px^2 + qx + r = 0$$
的三个根分别为 x_1, x_2, x_3 ,则 $x_1 + x_2 + x_3 = -p$ $x_1 \cdot x_2 + x_2 \cdot x_3 + x_3 \cdot x_1 = q$ $x_1 \cdot x_2 \cdot x_3 = -r$

6. 指数

$$(1)a^m \bullet a^n = a^{m+n}$$

$$(2)a^m \div a^n = a^{m-n}$$

$$(3)(a^m)^n = a^{mn}$$

$$(4)(ab)^n = a^n b^n$$

$$(5)(\frac{a}{h})^m = \frac{a^m}{h^m}$$

$$(6)a^{-m} = \frac{1}{a^m}$$

7. 对数 $\log_a N, (a > 0, a \neq 1, N > 0)$

(1)对数恒等式 $N = a^{\log_a N}$. 更常用 $N = e^{\ln N}$

$$(2)\log_a(MN) = \log_a M + \log_a N$$

$$(3)\log_a(\frac{M}{N}) = \log_a M - \log_a N$$

$$(4)\log_{a}(M^{n}) = n\log_{a}M$$

$$(5)\log_a \sqrt[n]{M} = \frac{1}{n}\log_a M$$

(6)换底公式
$$\log_a M = \frac{\log_b M}{\log_b a}$$

$$(7)\log_a 1 = 0$$

$$(8) \log_a a = 1$$

8. 数列

(1) 等差数列

设
$$a_1$$
----首项, a_n ----通项

S_n----前 n 项和

1)
$$a_n = a_1 + (n-1)d$$

$$2)S_n = \frac{a_1 + a_n}{2}n = na_1 + \frac{n(n-1)}{2}d$$

3)设a,b,c成等差数列,则等差中项 $b = \frac{1}{2}(a+c)$

(2) 等比数列

设
$$a_1$$
----首项, q -----公比, a_n -----通项,则

1)通项
$$a_n = a_1 q^{n-1}$$

2)前
$$n$$
项和 $S_n = \frac{a_1(1-q^n)}{1-q} = \frac{a_1-a_nq}{1-q}$

(3) 常用的几种数列的和

1)1+2+3+...+
$$n = \frac{1}{2}n(n+1)$$

$$2)1^{2} + 2^{2} + 3^{2} + \dots + n^{2} = \frac{1}{6}n(n+1)(2n+1)$$

$$3)1^3 + 2^3 + 3^3 + \dots + n^3 = \left[\frac{1}{2}n(n+1)\right]^2$$

4)1•2+2•3+···+
$$n(n+1) = \frac{1}{3}n(n+1)(n+2)$$

$$4)1 \cdot 2 \cdot 3 + 2 \cdot 3 \cdot 4 + \dots + n(n+1)(n+2) = \frac{1}{4}n(n+1)(n+2)(n+3)$$

9. 排列、组合与二项式定理

(1) 排列

$$P_n^m = n(n-1)(n-2)\cdots[n-(m-1)]$$

(2) 全排列

$$P_n^n = n(n-1)\cdots 3 \cdot 2 \cdot 1 = n!$$

(3) 组合

$$C_n^m = \frac{n(n-1)\cdots(n-m+1)}{m!} = \frac{n!}{m!(n-m)!}$$

组合的性质:

$$1)C_n^m = C_n^{n-m}$$

$$2)C_n^m = C_{n-1}^m + C_{n-1}^{m-1}$$

(4) 二项式定理

$$(a+b)^{n} = a^{n} + na^{n-1}b + \frac{n(n-1)}{2!}a^{n-2}b^{2} + \dots + \frac{n(n-1)\cdots[n-(k-1)]}{k!}a^{n-k}b^{k} + \dots + b^{n}$$

平面几何

1、图形面积

(1) 任意三角形

$$S = \frac{1}{2}bh = \frac{1}{2}ab\sin C = \sqrt{s(s-a)(s-b)(s-c)},$$
 $\sharp + s = \frac{1}{2}(a+b+c)$

平行四边形

$$S = bh = ab\sin\varphi$$

(2) 梯形 S=中位线×高

(3) 扇形
$$S = \frac{1}{2}rl = \frac{1}{2}r^2\theta$$

2、旋转体

(1) 圆拄

设 R----底圆半径, H----拄高, 则

- 1) 侧面积 $S_{\text{\tiny m}} = 2\pi RH$,
- 2) 全面积 $S_{\pm} = 2\pi R(H+R)$
- 3) 体积 $V = \pi R^2 H$

(2) 圆锥 (
$$l = \sqrt{R^2 + H^2}$$
 母线)

- 1) 侧面积 $S_{\parallel} = \pi R l$
- 2) 全面积 $S_{\pm} = \pi R(l+R)$
- 3) 体积 $V = \frac{1}{3}\pi R^2 H$
 - (3) 球

设 R---- 半径, d---- 直径, 则

- 1) 全面积 $S_{\pm} = 4\pi R^2$
- 2) 体积 $V = \frac{4}{3}\pi R^3$
 - (4) 球缺(球被一个平面所截而得到的部分)
- 1) 面积 $S = 2\pi Rh$ (不包括底面)
- 2) 体积 $V = \pi h^2 (R \frac{h}{3})$
- 3. 棱拄及棱锥

设 S----底面积, H----高:

- (1) 棱拄体积 V = SH
- (2) 棱锥体积 $V = \frac{1}{3}SH$

(3) 正棱锥侧面积 $A = \frac{1}{2} \times 母线 \times 底周长$

三、平面三角

1. 三角函数间的关系

(1)
$$\sin \alpha \csc \alpha = 1$$

(2)
$$\cos \alpha \sec \alpha = 1$$

(3)
$$\tan \alpha \cot \alpha = 1$$

$$(4) \sin^2 \alpha + \cos^2 \alpha = 1$$

(5)
$$1 + \tan^2 \alpha = \sec^2 \alpha$$

(6)
$$1 + \cot^2 \alpha = \csc^2 \alpha$$

(7)
$$\tan \alpha = \frac{\sin \alpha}{\cos \alpha}$$

(8)
$$\cot \alpha = \frac{\cos \alpha}{\sin \alpha}$$

2 倍角三角函数

$$(1)\sin 2\alpha = 2\sin \alpha \cos \alpha$$

$$(2)\cos 2\alpha = \cos^2 \alpha - \sin^2 \alpha = 1 - 2\sin^2 \alpha = 2\cos^2 \alpha - 1$$

(3)
$$\tan 2\alpha = \frac{2 \tan \alpha}{1 - \tan^2 \alpha}$$

$$(4) \cot \alpha \ge \frac{1 - \cot \alpha}{2 \cot \alpha}$$

$$(5)\sin^2\alpha = \frac{1-\cos 2\alpha}{2}$$

$$(6) c \delta \alpha = \frac{1 + c o s d^2}{2}$$

3. 三角函数的和差化积与积化和差公式

$$(1)\sin\alpha + \sin\beta = 2\sin\frac{\alpha+\beta}{2}\cos\frac{\alpha-\beta}{2}$$

$$(2)\sin\alpha - \sin\beta = 2\cos\frac{\alpha+\beta}{2}\sin\frac{\alpha-\beta}{2}$$

$$(3)\cos\alpha + \cos\beta = 2\cos\frac{\alpha+\beta}{2}\cos\frac{\alpha-\beta}{2}$$

$$(4)\cos\alpha - \cos\beta = -2\sin\frac{\alpha+\beta}{2}\sin\frac{\alpha-\beta}{2}$$

$$(5)\sin\alpha\cos\beta = \frac{1}{2}[\sin(\alpha+\beta) + \sin(\alpha-\beta)]$$

(6)
$$\cos \alpha \cos \beta = \frac{1}{2} [\cos(\alpha + \beta) + \cos(\alpha - \beta)]$$

$$(7)\cos\alpha\sin\beta = \frac{1}{2}[\sin(\alpha+\beta) - \sin(\alpha-\beta)]$$

$$(8)\sin\alpha\sin\beta = \frac{1}{2}[\cos(\alpha+\beta) - \cos(\alpha-\beta)]$$

4. 边角关系

(1) 正弦定理

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} = 2R$$
,R 为外接圆半径

(2) 余弦定理

$$a^{2} = b^{2} + c^{2} - 2bc \cos A$$

 $b^{2} = c^{2} + a^{2} - 2ca \cos B$

$$c^2 = a^2 + b^2 - 2ab\cos C$$

5. 反三角函数

恒等式

(1)
$$\arcsin x \pm \arcsin y = \arcsin(x\sqrt{1+y^2} \pm y\sqrt{1-x^2})$$

(2)
$$\arccos x \pm \arccos y = \arccos(xy \mp \sqrt{(1-x^2)(1-y^2)})$$

(3)
$$\arctan x \pm \arctan y = \arctan(\frac{x \pm y}{1 \mp xy})$$

(4)
$$\arcsin x + \arccos x = \frac{\pi}{2}$$

(5)
$$\arctan x + \operatorname{arc} \cot x = \frac{\pi}{2}$$