Chapter 12: Surface Areas and Volumes

★ Introduction

• You've already learned about **cuboid, cone, cylinder, and sphere** (? Fig. 12.1).

Many real-life objects are combinations of these solids.
E.g. tankers, toys, test tubes, rockets.

12.2 Surface Area of a Combination of Solids

To find the **total surface area (TSA)** of such objects:

Example 1: A cylinder with hemispheres on both ends (**?** Fig. 12.4)

TSA = CSA of cylinder + CSA of 2 hemispheres

 $= 2\pi rh + 2 \times 2\pi r^2$

Example 2: A toy made of a **cone on a hemisphere** (**?** Fig. 12.5, 12.6)

TSA = CSA of cone + CSA of hemisphere

 $= \pi r l + 2\pi r^2$

Example 3: Cube with a hemisphere on top (? Fig. 12.7)

TSA = TSA of cube - base area of hemisphere + CSA of hemisphere

$$= 6a^2 - \pi r^2 + 2\pi r^2 = (6a^2 + \pi r^2)$$

Example 4: Cone on a cylinder († Fig. 12.8)

TSA = CSA of cone + extra base area of cone - base area of cylinder +

CSA of cylinder + base of cylinder =
$$\pi rl + \pi r^2 - \pi r^2 + 2\pi r'h' + \pi r^2$$

Example 5: Bird-bath shaped as a cylinder + hemispherical depression († Fig. 12.9)

TSA = CSA of cylinder + CSA of hemisphere = $2\pi r(h + r)$

12.3 Volume of a Combination of Solids

To find volume: Add individual volumes (no surface loss here).

Example 6: Shed = cuboid + half-cylinder (? Fig. 12.12)

Fig. 12.12

Volume = Volume of cuboid + $\frac{1}{2}$ × Volume of cylinder = $l \times b \times h + (\frac{1}{2})\pi r^2 h$

Example 7: Glass with hemispherical bottom († Fig. 12.13)

Fig. 12.13

Apparent Volume = $\pi r^2 h$

Actual Volume = $\pi r^2 h - (2/3)\pi r^3$

Example 8: Cone on hemisphere († Fig. 12.14)

Fig. 12.14

Volume = Volume of cone + Volume of hemisphere = $(1/3)\pi r^2 h + (2/3)\pi r^3$

Quick Formulas Revision

Surface Area Formulas

Cube (side a) = $6a^2$

Cuboid (l, b, h) = 2(lb + bh + hl)

Cylinder = $2\pi rh + 2\pi r^2$

Cone (slant l) = $\pi r l + \pi r^2$

Sphere = $4\pi r^2$

Hemisphere = $3\pi r^2 (2\pi r^2 CSA + \pi r^2 base)$

Volume Formulas

• Cube = a^3

• Cuboid = $l \times b \times h$ • Cylinder = $\pi r^2 h$

• Cone = $(1/3)\pi r^2 h$ • Sphere = $(4/3)\pi r^3$ • Hemisphere = $(2/3)\pi r^3$

Previous Year Question Trends

Concept	Frequency
Surface area of combination solids	****
Volume of composite solids	***
Real-life application (shed, tank, toys)	***
Capsule-type, rocket-type structures	***

★ Summary

- 1. Combine curved or total surface areas of visible parts only.
- 2. For volume, **simply add** the volumes of the components.
- 3. Always **check units** (convert cm to m or mm if needed).