Practical 5

Section -G2903

Name- Priyanshu

Reg. no. – 11906705

date of submission - 03/10/21

Aim:

To design the active filter (band pass filter and band reject filter)

Design and observation and result:

For band pass filter →

Excel data observation

Calculation →

For high pass filter =>

 $R = 1k\Omega$ and $c = 1\mu F$

F_ch= 1/2*3.14*1000*10^-6=159.235hz

For low pass filter =>

 $R=1k\Omega$ and $c=1\mu F$

 $F_cl = 1/2*3.14*1000*10^-6 = 159.235hz$

Now F max = (F cl*F ch) 1 =159.235hz (theoretical value)

Calculated from graph = 158.489hz

 $V_{max} = 999.20$ so $V_{max} / 1.414 = 706.64$ corresponding frequency is F2 = 384.41, f1 = 65.946

So band width = f2-f1=(384.41-65.946)hz = 318.486hz

Quality factor = f_max/bandwidth = 318.486/158.489=2.00095

For band reject filter→

Calculation:

For high pass filter =>

 $R = 1k\Omega$ and $c = 1\mu F$

F_ch= 1/2*3.14*1000*10^-6 = 159.235hz

For low pass filter =>

 $R=10k\Omega$ and $c=1\mu F$

 $F_cl = 1/2*3.14*1000*10^-6 = 15.9235hz$

Now F max = (F cl*F ch) 1 2 =50.354hz (theoretical value)

Calculated from graph = 50.118hz

So band width = $f_ch-f_cl= (159.235-15.923)hz = 143.312hz$

Quality factor = f_max/bandwidth = 50.118/143.312=0.3497