Question 1. Show that the vectors $\begin{pmatrix} +2\\-1\\+1 \end{pmatrix}$, $\begin{pmatrix} +1\\-3\\-5 \end{pmatrix}$ and $\begin{pmatrix} +3\\-4\\-4 \end{pmatrix}$ form the vertices of a right angled triangle.

Solution. Let \vec{A}, \vec{B} and \vec{C} be given vectors such that $\vec{A} = \begin{pmatrix} +2 \\ -1 \\ +1 \end{pmatrix}$,

$$\vec{B} = \begin{pmatrix} +1 \\ -3 \\ -5 \end{pmatrix}$$
 and $\vec{C} = \begin{pmatrix} +3 \\ -4 \\ -4 \end{pmatrix}$.

To show that \vec{A} , \vec{B} and \vec{C} form the vertices of a right angled triangle. First we need to show that \vec{A} , \vec{B} and \vec{C} are indeed vertices of a triangle.

For this we need to see if the vertices satisfy triangle inequality. Let a, b and c denote the length of vectors $(\vec{A} - \vec{B}), (\vec{B} - \vec{C})$ and $(\vec{C} - \vec{A})$. Now,

 $a = \sqrt{41}$, $b = \sqrt{6}$ and $c = \sqrt{35}$. We can see that a + b > c, a + c > b and b + c > a. Thus, the given vectors \vec{A} , \vec{B} and \vec{C} form the vertices of a triangle.

Figure 1

To prove, the $\triangle ABC$ is a right triangle, we need to calculate the inner

product of all the below vectors and check if any one of them is 0.:

$$\langle \vec{A} - \vec{C}, \vec{B} - \vec{C} \rangle = (\vec{A} - \vec{C})^T (\vec{B} - \vec{C}) = (-1 + 3 + 5) \begin{pmatrix} -2 \\ +1 \\ -1 \end{pmatrix} = 0$$
 (1)

$$\langle \vec{\boldsymbol{A}} - \vec{\boldsymbol{B}}, \vec{\boldsymbol{C}} - \vec{\boldsymbol{B}} \rangle = (\vec{\boldsymbol{A}} - \vec{\boldsymbol{B}})^T (\vec{\boldsymbol{C}} - \vec{\boldsymbol{B}}) = (+1 + 2 + 6) \begin{pmatrix} +2 \\ -1 \\ +1 \end{pmatrix} = 6$$
 (2)

$$\langle \vec{B} - \vec{A}, \vec{C} - \vec{A} \rangle = (\vec{B} - \vec{A})^T (\vec{C} - \vec{A}) = (-1 - 2 - 6) \begin{pmatrix} +1 \\ -3 \\ -5 \end{pmatrix} = 35$$
 (3)

Clearly, from (1) we can see that $\triangle ABC$ is right angled at C.