© Laurent Garcin MP Dumont d'Urville

Devoir à la maison n°23

- Le devoir devra être rédigé sur des copies doubles.
- Les copies ne devront comporter ni rature, ni renvoi, ni trace d'effaceur.
- Toute copie ne satisfaisant pas à ces exigences devra être intégralement récrite.

Exercice 1 ★★ E3A 2022 MP

- 1. Pour tout réel x, on pose, lorsque cela est possible, $\Gamma(x) = \int_0^{+\infty} t^{x-1} e^{-t} dt$.
 - a. Déterminer l'ensemble de définition Δ de Γ .
 - **b.** Démontrer que pour tout réel x de Δ , $\Gamma(x+1)=x\Gamma(x)$.
 - c. On admet que $\Gamma\left(\frac{1}{2}\right) = \sqrt{\pi}$. Calculer $\Gamma\left(n + \frac{1}{2}\right)$ pour tout entier naturel n. On exprimera le résultat à l'aide de factorielles.
- **2.** Pour tout entier naturel *n*, on pose $I_n = \int_0^{+\infty} t^{2n} \exp\left(-\frac{t^2}{2}\right) dt$.
 - **a.** Justifier l'existence de I_n .
 - **b.** En utilisant la question 1, calculer I_n .
- 3. Pour tout réel x, on pose, lorsque cela est possible, $H(x) = \int_0^{+\infty} \cos(xt) \exp\left(-\frac{t^2}{2}\right) dt$.
 - **a.** Donner le développement en série entière de la fonction cos au voisinage de 0 et préciser son domaine de validité.
 - **b.** Justifier que H est définie sur \mathbb{R} et l'exprimer à l'aide de fonctions usuelles. On citera les théorèmes utilisés en s'assurant que toutes leurs hypothèses sont bien vérifiées.
- **4.** On se propose de retrouver le résultat établi à la question **3.b** par une autre méthode.
 - **a.** Démontrer que H est de classe C^1 sur \mathbb{R} .
 - **b.** Montrer que H est solution d'une équation différentielle linéaire du premier ordre.
 - **c.** Retrouver l'expression de H obtenue à la question **3.b**.