Number Theory

Introduction

- review integer arithmetic, concentrating on divisibility
- finding the greatest common divisor using the Euclidean algorithm

Integer Arithmetic

- In integer arithmetic, we use a set and a few operations.
- You are familiar with this set and the corresponding operations, but they are reviewed here to create a background for modular arithmetic.
- Set of Integers
- Binary Operations
- Integer Division
- Divisibility

Set of Integers

• The set of integers, denoted by Z, contains all integral numbers (with no fraction) from negative infinity to positive infinity.

$$\mathbf{Z} = \{ \ldots, -2, -1, 0, 1, 2, \ldots \}$$

Binary Operations

 In cryptography, we are interested in three binary operations applied to the set of integers. A binary operation takes two inputs and creates one output.

Binary Operations

- The following shows the results of the three binary operations on two integers.
- Because each input can be either positive or negative, we can have four cases for each operation.

Add:
$$5 + 9 = 14$$
 $(-5) + 9 = 4$ $5 + (-9) = -4$ $(-5) + (-9) = -14$
Subtract: $5 - 9 = -4$ $(-5) - 9 = -14$ $5 - (-9) = 14$ $(-5) - (-9) = +4$

Multiply:
$$5 \times 9 = 45$$
 $(-5) \times 9 = -45$ $5 \times (-9) = -45$ $(-5) \times (-9) = 45$

Integer Division

- In integer arithmetic, if we divide a by n, we can get q and r.
- $a = q \times n + r$
- Assume that a = 255 and n = 11. We can find q = 23 and r = 2 using the division algorithm.

Two Restrictions

- When we use division relationship in cryptography, we impose two restrictions
 - Divisor should be a positive integer (n>0)
 - Remainder should be a nonnegative integer (n>=0)

Two Restrictions

- When we use a computer or a calculator, r and q are negative when a is negative.
- How can we apply the restriction that r needs to be positive?
 - We decrement the value of q by 1 and
 - we add the value of n to r to make it positive.

$$-255 = (-23 \times 11) + (-2)$$
 \leftrightarrow $-255 = (-24 \times 11) + 9$

- If a is not zero and we let r = 0 in the division relation, we get
- $a = q \times n$
- If the remainder is zero, a|n
- If the remainder is not zero, a
 mid n

• The integer 4 divides the integer 32 because $32 = 8 \times 4$. We show this as

4|32

• The number 8 does not divide the number 42 because $42 = 5 \times 8 + 2$. There is a remainder, the number 2, in the equation. We show this as

8 + 42

Properties

- Property 1: if $a \mid 1$, then $a = \pm 1$.
- Property 2: if a | b and b | a, then a = \pm b.
- Property 3: if a | b and b | c, then a | c.
- Property 4: if a|b and a|c, then
 a|(m × b + n × c), where m
 and n are arbitrary integers

a. We have 13|78, 7|98, -6|24, 4|44, and 11|(-33).

b. We have 13 + 27, 7 + 50, -6 + 23, 4 + 41, and 11 + (-32).

- a. Since 3|15 and 15|45, according to the third property, 3|45.
- b. Since 3|15 and 3|9, according to the fourth property, $3|(15 \times 2 + 9 \times 4)$, which means 3|66.

• Fact 1: The integer 1 has only one divisor, itself.

• Fact 2: Any positive integer has at least two divisors, 1 and itself (but it can have more).

Common divisors of two integers

Common divisors of two integers

- Greatest Common Divisor
- The greatest common divisor of two positive integers is the largest integer that can divide both integers.

- Euclidean Algorithm
- Fact 1: gcd(a, 0) = a
- Fact 2: gcd (a, b) = gcd (b, r), where r is the remainder of dividing a by b

a. Process

```
r_{1} \leftarrow a; \quad r_{2} \leftarrow b; \quad \text{(Initialization)}
\text{while } (r_{2} > 0)
\{
q \leftarrow r_{1} / r_{2};
r \leftarrow r_{1} - q \times r_{2};
r_{1} \leftarrow r_{2}; \quad r_{2} \leftarrow r;
\}
\text{gcd } (a, b) \leftarrow r_{1}
```

b. Algorithm

• When gcd(a, b) = 1, we say that a and b are relatively prime.

• Find the greatest common divisor of 25 and 60.

- Find the greatest common divisor of 25 and 60.
- We have gcd(25, 65) = 5.

q	r_I	r_2	r
0	25	60	25
2	60	25	10
2	25	10	5
2	10	5	0
	5	0	

• Find the greatest common divisor of 2740 and 1760.

• Find the greatest common divisor of 2740 and 1760.

q	r_1	r_2	r
1	2740	1760	980
1	1760	980	780
1	980	780	200
3	780	200	180
1	200	180	20
9	180	20	0
	20	0	

Modular Arithmetic

- The division relationship ($a = q \times n + r$) has two inputs (a and n) and two outputs (q and r).
- In modular arithmetic, we are interested in only one of the outputs, the remainder r.
- Topics:
 - Modular Operator
 - Set of Residues
 - Congruence
 - Operations in Z_n
 - Addition and Multiplication Tables
 - Different Sets

Modular Arithmetic

• We use modular arithmetic in our daily life; for example, we use a clock to measure time. Our clock system uses modulo 12 arithmetic. However, instead of a 0 we use the number 12.

Modulo Operator

- The modulo operator is shown as mod.
 - The second input (n) is called the modulus.
 - The output r is called the residue.

Division algorithm and modulo operator

Modulo Operator

- Find the result of the following operations:
- a. 27 mod 5
- c. -18 mod 14

- b. 36 mod 12
- d. -7 mod 10

Modulo Operator

- Find the result of the following operations:
- a. 27 mod 5

b. 36 mod 12

• c. -18 mod 14

d. -7 mod 10

- Solution:
- a. Dividing 27 by 5 results in r = 2
- b. Dividing 36 by 12 results in r = 0.
- c. Dividing -18 by 14 results in r = -4. After adding the modulus r = 10
- d. Dividing -7 by 10 results in r = -7. After adding the modulus to -7, r = 3.

Set of Residues

• The modulo operation creates a set, which in modular arithmetic is referred to as the set of least residues modulo n, or Z_n .

$$\mathbf{Z}_n = \{ 0, 1, 2, 3, \dots, (n-1) \}$$

$$\mathbf{Z}_2 = \{ 0, 1 \}$$

$$\mathbf{Z}_6 = \{0, 1, 2, 3, 4, 5\}$$

$$\mathbf{Z}_{11} = \{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 \}$$

Some Z_n sets

• To show that two integers are congruent, use the congruence operator (≡).

 To show that two integers are congruent, use the congruence operator (≡). For example, we write:

$$2 \equiv 12 \pmod{10}$$
 $13 \equiv 23 \pmod{10}$
 $3 \equiv 8 \pmod{5}$ $8 \equiv 13 \pmod{5}$

$$-8 \equiv 2 \equiv 12 \equiv 22 \pmod{10}$$

Congruence Relationship
Information Security, Dr. Reema Patel, B.Tech, IIIT Surat

- Properties of Congruence:
 - 1. $a \equiv b \pmod{n}$ if $n \mid (a b)$.
 - 2. $a \equiv a \pmod{n}$ for all a (Reflexive)
 - 3. $a \equiv b \pmod{n}$ implies $b \equiv a \pmod{n}$ (Symmetric)
 - 4. $a \equiv b \pmod{n}$ and $b \equiv c \pmod{n}$ imply $a \equiv c \pmod{n}$. (Transitive)

- Examples: for 1st property
 - $23 \equiv (8 \mod 5)$ because $(23 8) = 15 = 5 \times 3$
 - $-11 \equiv (5 \mod 8)$ because $(-11 5) = -16 = 8 \times -2$

• Some standard rules for congruence :

- 1. If $a \equiv a' \mod n$ and $b \equiv b' \mod n$, then $(a + b) \equiv (a' + b') \mod n$
- 2. If $a \equiv a' \mod n$ and $b \equiv b' \mod n$, then $(ab) \equiv (a'b') \mod n$

- Examples:
 - Compute 1093028 · 190301 mod 100
 - $1093028 \equiv 28 \mod 100 \text{ and } 190301 \equiv 1 \mod 100$

- Examples:
 - Compute 1093028 · 190301 mod 100

- Examples:
 - Compute 1093028 · 190301 mod 100
- $1093028 \equiv 28 \mod 100$ and $190301 \equiv 1 \mod 100$

last two digits of 1093028

- Examples:
 - Compute 1093028 · 190301 mod 100
 - $1093028 \equiv 28 \mod 100 \text{ and } 190301 \equiv 1 \mod 100$
- We can compute as
 - 10930<mark>28</mark> · 19030<mark>1</mark>
 - $= [1093028 \mod 100] \cdot [190301 \mod 100] \mod 100$
 - $= 28 \cdot 1 \mod 100$
 - = 28
- Computing the product 1093028·190301 and then reducing the answer modulo 100 is very much time consuming.

Residue Classes

- A residue class [a] or [a]_n is the set of integers congruent modulo n.
- It is the set of all integers such that $x \equiv a \pmod{n}$
- E.g. for n=5

- Residue Classes
 - A residue class [a] or [a]_n is the set of integers congruent modulo n.

$$[0] = \{..., -15, -10, -5, 0, 5, 10, 15, ...\}$$

$$[1] = \{..., -14, -9, -4, 1, 6, 11, 16, ...\}$$

$$[2] = \{..., -13, -8, -3, 2, 7, 12, 17, ...\}$$

$$[3] = \{..., -12, -7, -5, 3, 8, 13, 18, ...\}$$

$$[4] = \{..., -11, -6, -1, 4, 9, 14, 19, ...\}$$

Comparison of Z and Z_n using graphs

 The three binary operations that we discussed for the set Z can also be defined for the set Zn. The result may need to be mapped to Zn using the mod operator.

- Perform the following operations (the inputs come from Zn):
- a. Add 7 to 14 in Z15.
- b. Subtract 11 from 7 in Z13.
- c. Multiply 11 by 7 in Z20.

• Solution:

```
(14+7) \mod 15 \rightarrow (21) \mod 15 = 6

(7-11) \mod 13 \rightarrow (-4) \mod 13 = 9

(7 \times 11) \mod 20 \rightarrow (77) \mod 20 = 17
```

- Perform the following operations (the inputs come from either Z or Z_n):
- a. Add 17 to 27 in Z₁₄.
- b. Subtract 43 from 12 in Z₁₃.
- c. Multiply 123 by −10 in Z₁₉.

```
First Property: (a+b) \bmod n = [(a \bmod n) + (b \bmod n)] \bmod n
```

Second Property: $(a - b) \mod n = [(a \mod n) - (b \mod n)] \mod n$

Third Property: $(a \times b) \mod n = [(a \mod n) \times (b \mod n)] \mod n$

a. Original process

b. Applying properties

• The following shows the application of the above properties:

1.
$$(1,723,345 + 2,124,945) \mod 11 = (8 + 9) \mod 11 = 6$$

2.
$$(1,723,345 - 2,124,945) \mod 16 = (8 - 9) \mod 11 = 10$$

3.
$$(1,723,345 \times 2,124,945) \mod 16 = (8 \times 9) \mod 11 = 6$$

• In arithmetic, we often need to find the remainder of powers of 10 when divided by an integer.

• In arithmetic, we often need to find the remainder of powers of 10 when divided by an integer.

$$10^n \mod x = (10 \mod x)^n$$
 Applying the third property *n* times.

10 mod 3 = 1
$$\rightarrow$$
 10ⁿ mod 3 = (10 mod 3)ⁿ = 1
10 mod 9 = 1 \rightarrow 10ⁿ mod 9 = (10 mod 9)ⁿ = 1
10 mod 7 = 3 \rightarrow 10ⁿ mod 7 = (10 mod 7)ⁿ = 3ⁿ mod 7

• We have been told in arithmetic that the remainder of an integer divided by 3 is the same as the remainder of the sum of its decimal digits. We write an integer as the sum of its digits multiplied by the powers of 10.

• We have been told in arithmetic that the remainder of an integer divided by 3 is the same as the remainder of the sum of its decimal digits. We write an integer as the sum of its digits multiplied by the powers of 10.

$$a = a_n \times 10^n + \dots + a_1 \times 10^1 + a_0 \times 10^0$$

For example: $6371 = 6 \times 10^3 + 3 \times 10^2 + 7 \times 10^1 + 1 \times 10^0$

$$a \bmod 3 = (a_n \times 10^n + \dots + a_1 \times 10^1 + a_0 \times 10^0) \bmod 3$$

$$= (a_n \times 10^n) \bmod 3 + \dots + (a_1 \times 10^1) \bmod 3 + (a_0 \times 10^0) \bmod 3$$

$$= (a_n \bmod 3) \times (10^n \bmod 3) + \dots + (a_1 \bmod 3) \times (10^1 \bmod 3) + (a_0 \bmod 3) \times (10^0 \bmod 3)$$

$$= a_n \bmod 3 + \dots + a_1 \bmod 3 + a_0 \bmod 3$$

$$= (a_n + \dots + a_1 + a_0) \bmod 3$$

$$= (a_n + \dots + a_1 + a_0) \bmod 3$$

$$= (a_n + \dots + a_1 + a_0) \bmod 3$$

- Example:
 - 8756 mod 3
 - 9878 mod 3
 - 1095676 mod 3

Modular Arithmetic Operations

- Exponentiation is performed by repeated multiplication.
- Example:
- Find 11⁷ mod 13

Modular Arithmetic Operations

- Exponentiation is performed by repeated multiplication.
- Example:
- Find 11⁷ mod 13
 - $11^2 = 121 \equiv 4 \pmod{13}$
 - $11^4 = (11^2)^2 \equiv 4^2 \equiv 3 \pmod{13}$
 - $11^7 = 11 \times 4 \times 3 \equiv 132 \equiv 2 \pmod{13}$

Modular Arithmetic Operations

• Example: 17¹⁰ mod 14

Inverses

- When we are working in modular arithmetic, we often need to find the inverse of a number relative to an operation.
- We are normally looking for an additive inverse (relative to an addition operation) or a multiplicative inverse (relative to a multiplication operation).

• In Z_n, two numbers a and b are additive inverses of each other if

• In Z_n, two numbers a and b are additive inverses of each other if

$$a + b \equiv 0 \pmod{n}$$

- In modular arithmetic, each integer has an additive inverse.
- The sum of an integer and its additive inverse is congruent to 0 modulo n.

• Find all additive inverse pairs in Z₁₀.

• Find all additive inverse pairs in Z₁₀.

• Solution:

• The six pairs of additive inverses are (0, 0), (1, 9), (2, 8), (3, 7), (4, 6), and (5, 5).

• In Zn, two numbers a and b are the multiplicative inverse of each other if

 In Zn, two numbers a and b are the multiplicative inverse of each other if

$$a \times b \equiv 1 \pmod{n}$$

- In modular arithmetic, an integer may or may not have a multiplicative inverse.
- When it does, the product of the integer and its multiplicative inverse is congruent to 1 modulo n.

• Find the multiplicative inverse of 8 in Z₁₀.

• Find the multiplicative inverse of 8 in Z₁₀.

Solution:

- In other words, we cannot find any number between 0 and 9 such that when multiplied by 8, the result is congruent to 1.
- There is no multiplicative inverse because gcd (10, 8) = $2 \neq 1$.

• Find all multiplicative inverses in Z₁₀.

• Find all multiplicative inverses in Z₁₀.

Solution:

- There are only three pairs: (1, 1), (3, 7) and (9, 9).
- The numbers 0, 2, 4, 5, 6, and 8 do not have a multiplicative inverse.

• Find all multiplicative inverses in Z₁₁.

• Find all multiplicative inverses in Z₁₁.

- Solution:
- We have seven pairs: (1, 1), (2, 6), (3, 4), (5, 9), (7, 8), (9, 5), and (10, 10).

- The extended Euclidean algorithm finds the multiplicative inverses of b in Zn
 - when n and b are given
 - and gcd(n, b) = 1.

• The multiplicative inverse of b is the value of t after being mapped to Zn.

a. Process

b. Algorithm

• Find the multiplicative inverse of 11 in Z₂₆.

• Find the multiplicative inverse of 11 in Z₂₆.

q	r_{I}	r_2	r	t_1 t_2	t
2	26	11	4	0 1	-2
2	11	4	3	1 -2	5
1	4	3	1	-2 5	- 7
3	3	1	0	5 -7	26
	1	0		-7 26	

The gcd (26, 11) is 1; the inverse of 11 is -7 or 19.

• Find the multiplicative inverse of 23 in Z₁₀₀.

• Find the multiplicative inverse of 23 in Z₁₀₀.

q	r_1	r_2	r	t_I	t_2	t
4	100	23	8	0	1	-4
2	23	8	7	1	-4	19
1	8	7	1	-4	9	-13
7	7	1	0	9	-13	100
	1	0		-13	100	

The gcd (100, 23) is 1; the inverse of 23 is -13 or 87.

• Find the inverse of 12 in Z₂₆.

• Find the inverse of 12 in Z₂₆.

q	r_I	r_2	r	t_1	t_2	t
2	26	12	2	0	1	-2
6	12	2	0	1	-2	13
	2	0		-2	13	

The gcd (26, 12) is 2; the inverse does not exist.

Addition and Multiplication Tables

	0	1	2	3	4	5	6	7	8	9
0	0	1	2	3	4	5	6	7	8	9
1	1	2	3	4	5	6	7	8	9	0
2	2	3	4	5	6	7	8	9	0	1
3	3	4	5	6	7	8	9	0	1	2
4	4	5	6	7	8	9	0	1	2	3
5	5	6	7	8	9	0	1	2	3	4
6	6	7	8	9	0	1	2	3	4	5
7	7	8	9	0	1	2	3	4	5	6
8	8	9	0	1	2	3	4	5	6	7
9	9	0	1	2	3	4	5	6	7	8

Addition Table in \mathbf{Z}_{10}

	0	1	2	3	4	5	6	7	8	9
0	0	0	0	0	0	0	0	0	0	0
1	0	1	2	3	4	5	6	7	8	9
2	0	2	4	6	8	0	2	4	6	8
3	0	3	6	9	2	5	8	1	4	7
4	0	4	8	2	6	0	4	8	2	6
5	0	5	0	5	0	5	0	5	0	5
6	0	6	2	8	4	0	6	2	8	4
7	0	7	4	1	8	0	2	9	6	3
8	0	8	6	4	2	0	8	6	4	2
9	0	9	8	7	6	5	4	3	2	1

Multiplication Table in \mathbf{Z}_{10}

Different Sets

$$\mathbf{Z}_6 = \{0, 1, 2, 3, 4, 5\}$$

$$\mathbf{Z}_7 = \{0, 1, 2, 3, 4, 5, 6\}$$

$$\mathbf{Z}_{10} = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$$

$$\mathbf{Z}_6^* = \{1, 5\}$$

$$\mathbf{Z}_7^* = \{1, 2, 3, 4, 5, 6\}$$

$$\mathbf{Z}_{10}^* = \{1, 3, 7, 9\}$$

Some Z_n and Z_{n*} sets

 We need to use Zn when additive inverses are needed; we need to use Zn* when multiplicative inverses are needed.

Different Sets

- Cryptography often uses two more sets: Zp and Zp*.
- The modulus in these two sets is a prime number.

$$Z_{13} = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12\}$$

 $Z_{13} * = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12\}$

• Find the multiplicative inverse of 50 in Z₇₁

• Find the multiplicative inverse of 43 in Z₆₄