Blending Techniques

- Methods
 - Linear Combination
 - Neural Networks
 - Tree Blending
 - Quiz Blending
- Compare the Methods

The big picture solution of BellKor's Pragmatic Chaos

The training process – predictor generation

We now have a supervised learning problem

A simple linear blender

Binned linear blending

1. Divide probe set into bins, e.g.

<35 votes: bin0
36..70 votes: bin1
71...146 votes: bin2
147...321 votes: bin3
>321 votes: bin4

2. Estimate blending weights per bin

$$x^{(b)} = (P_b^T P_b)^{-1} P_b^T r_b$$

3. Predict the unknowns

$$\hat{q}_i = \sum_{n=1}^{N} q_{ni} x_n^{(b)}$$

Best result:

PB-100: **RMSE 0.8593**

Neural Network blending - NNBlend

- 1 hidden layer
- 10...20 neurons
- Inputs are normalized

- centering: $\mu = 0$, standard deviation: $\sigma = 1$
- Pure stochastic gradient descent
 - no batch/mini-batch update
- Decrease initial learning rate
 - Linear from 0.0005 to 0.0001. Per epoch subtract: 3e-7
- Outputs are transformed by: $\hat{out} = out \cdot 3.6 + 3$

NNBlend: 75 predictors

(approx. 1200 weights)

Ensemble NNBlend

- Train many small NN's (>1000) on a random subset
 - Per net: 20..40 weights
- Combine them linearly

Blending with Decision Trees

Basics:

- A tree can not model a smooth function
- Per node: (p[k] > thresh ?)
- Per leaf: constant value
- No scaling of the inputs needed

Single tree:

- Use a random subspace idea
- We take the split that reduces the RMSE best
- The depth is limited, max. depth of d=10 works well

Bagged Gradient Boosted Decision Trees - BGBDT

- Bagging: model averaging (→ reduce variance)
- Gradient Boosting: Partial reduce of the residual error $target_{new} = target_{old} \eta \cdot prediction$

Good Parameters:

$$\eta = 0.1$$

$$N_{bag} = 32$$

Best result:

PB-164: **RMSE 0.8592**

Quiz Blending

Compare the Methods

(probe blending)

	Linear Regression	Binned Linear	Neural Network	Neural Network Ensemble	BGBDT Tree Blending
	$\hat{q} = Qx$	Regression $\hat{q}_i = \sum_{n=1}^{N} q_{n1} x_{bn}$		linear blend	
Accuracy (low RMSE=5 stars)	****	****	≟&& & 	****	≜&
Speed (fast=5 stars)	***	***	***	☆☆☆☆	☆☆☆☆☆
Implementation complexity (easy=5 stars)	****	☆☆☆☆☆	☆☆☆☆☆	***	****