Chemistry Fundamentals

Lecture 7: Isotopes

Mohamed Kamal

Isotopes - Same Element, Different Mass

Definition

Atoms of the same element with different numbers of neutrons

Key Characteristics

Same Z (protons), different A (mass number), different N (neutrons)

Properties

Chemical: Nearly identical due to same electron configuration

Physical: Different mass, density, nuclear stability

Most elements exist as mixtures of isotopes in nature. Notation examples: ¹H, ²H, ³H are all hydrogen isotopes.

Common Misconception: Isotopes are different elements (they're not!)

Hydrogen Isotopes - The Classic Example

1

Protium (¹H)

1 proton, 0 neutrons, 1 electron

Abundance: 99.985%

Most common isotope in universe

2

Deuterium (²H or D)

1 proton, 1 neutron, 1 electron

Abundance: 0.015%

Used in heavy water (D₂O)

3

Tritium (³H or T)

1 proton, 2 neutrons, 1 electron

Radioactive with 12.3-year half-life

Used in nuclear weapons and luminous watch dials

Carbon Isotopes and Radioactive Dating

Carbon-12 (12C)

•

6 protons, 6 neutrons

98.89% abundance

Stable isotope, reference standard for atomic mass

Carbon-13 (¹³C)

6 protons, 7 neutrons

1.11% abundance

Stable, used in NMR spectroscopy

Carbon-14 (14C)

3

6 protons, 8 neutrons

Radioactive, 5,730-year half-life

Formed by cosmic ray bombardment in atmosphere

Carbon Dating: Living organisms maintain constant ¹⁴C/¹²C ratio.

After death, ¹⁴C decays and ratio decreases predictably. Effective for samples up to ~50,000 years old.

Uranium Isotopes and Nuclear Applications

99.28%

0.72%

²³⁸U Abundance

²³⁵U Abundance

92 protons, 146 neutrons

92 protons, 143 neutrons

Half-life: 4.47 billion years

Half-life: 704 million years

0.0055%

²³⁴U Abundance

92 protons, 142 neutrons

Decay product of ²³⁸U

²³⁵U is fissile and can sustain nuclear chain reactions, while ²³⁸U cannot sustain chain reactions alone.

Enrichment increases ²³⁵U concentration for nuclear fuel used in power plants, weapons, and medical isotopes.

Isotope Abundance and Mass Spectrometry

Mass spectrometry separates and identifies isotopes by:

- 1. Ionizing the sample
- 2. Accelerating through magnetic field
- 3. Separating by mass/charge ratio

Each element has a characteristic isotope pattern or "fingerprint".

Example: Chlorine MS Pattern

- Peak at m/z 35: ³⁵Cl (75.77%)
- Peak at m/z 37: ³⁷Cl (24.23%)
- Peak height ratio reflects abundance

Applications include forensics, environmental monitoring, and pharmaceutical analysis. Can distinguish isotopes differing by just 1 amu with high precision.

Calculating Isotope Problems

Problem Type 1: Finding Average Atomic Mass

Example: Bromine isotopes

• ⁷⁹Br: 78.92 amu (50.69%)

• ⁸¹Br: 80.92 amu (49.31%)

Average mass = $(78.92 \times 0.5069) + (80.92 \times 0.4931) = 79.90$ amu

Problem Type 2: Finding Isotope Abundance

Given average mass and one isotope, find other isotope abundance

Strategy: Set up algebraic equation using x + y = 1 and weighted average formula

Important Tips: Always use decimal form for abundance in calculations. Match significant figures to the precision of given data.

Stable vs. Radioactive Isotopes

Nuclear Stability Factors

- Depends on neutron-to-proton ratio
- Light Elements: N/P ratio ≈ 1 for stability
- Heavy Elements: N/P ratio >1 for stability (need more neutrons)

Decay Types

Radioactive isotopes emit alpha, beta, or gamma radiation during decay

Half-Life: Time for half of radioactive sample to decay

The "Band of Stability" graph shows where stable isotopes exist. Isotopes outside this band undergo radioactive decay to achieve stability.

Medical applications use radioisotopes for both diagnosis and treatment.

Isotope Applications in Science and Technology

Medical

⁹⁹mTc for bone scans, ²⁰¹Tl for heart imaging, ¹³¹I for thyroid cancer treatment, ⁶⁰Co for radiation therapy

Dating

¹⁴C for organic materials (archaeology), K-Ar for rocks (geology)

Energy

²³⁵U fission provides clean nuclear power

Research

Tracers for following chemical pathways in biological systems, isotope labeling in biochemistry

Food

Gamma irradiation for food preservation by killing bacteria

Next Lecture: Atomic Mass of Elements

Mohamed Kamal