Chapter 1

∞ -category theory

1.1 Motivations

Exercise 1.1.1. We fix a base field k. Let $X = \mathbb{P}^1_k$ and let U_0 and U_1 be the standard open affine cover of \mathbb{P}^1_k . For any k-algebra A, we have:

$$U_0(A) \coloneqq \{ [x_0 : x_1] \in \mathbb{P}^1_k(A) \mid x_0 \neq 0 \}, \qquad U_1(A) \coloneqq \{ [x_0 : x_1] \in \mathbb{P}^1_k(A) \mid x_1 \neq 0 \}.$$

Let $U_{01}=U_0\cap U_1$ be their intersection. Show that the canonical functor

$$h(\mathcal{D}(\mathbb{P}^1_k)) \to h(\mathcal{D}(U_0)) \times_{h(\mathcal{D}(U_{01}))} h(\mathcal{D}(U_1))$$

is essentially surjective but not fully faithful.

Exercise 1.1.2. Let \mathcal{C} be a triangulated category where countable products and countable direct sums exist. Show that if there exists a functor Tr from the category of arrows \mathcal{C}^{Δ^1} to the category of exact triangles in \mathcal{C} , then every triangle in \mathcal{C} is split. (See [4, Proposition II.1.2.13].)

1.2 Reminders on simplicial sets

Exercise 1.2.1. Show that the nerve functor N: Cat \rightarrow sSet is fully faithful and its essential image is spanned by those simplicial sets K satisfying the following lifting condition: for every $n \ge 2$ and for every 0 < i < n every lifting problem

has a unique solution.

Solution. The nerve of a category \mathcal{C} is:

$$(N\mathcal{C})_n = \{(f_1, \dots, f_n) | \text{ composable morphisms}\}.$$

The face maps are:

$$d_j(f_1, \dots, f_n) = \begin{cases} (f_1, \dots, f_{n-1}), & j = 0\\ (f_1, \dots, f_j \circ f_{j-1}, \dots, f_n), & 0 < j < n\\ (f_2, \dots, f_n), & j = n. \end{cases}$$

The degeneracy s_i is obtained by inserting an identity map in the j^{th} slot.

A functor $F: \mathcal{C} \to \mathcal{D}$, induces a simplicial map:

$$N(F)_n : (N\mathfrak{C})_n \to (N\mathfrak{D})_n$$

 $(f_1, \dots, f_n) \mapsto (F(f_1), \dots, F(f_n)).$

If two functors F, F' induce simplicial maps N(F) = N(F') which agree, then F(f) = F'(f) for every morphism f. Hence N is faithful. Given a simplicial map $G: N\mathcal{C} \to N\mathcal{D}$, we define a functor $F: \mathcal{C} \to \mathcal{D}$ to be G_0 on objects and G_1 on morphisms. We show that F respects composition. Let f_1, f_2 be two composable morphisms in \mathcal{C} and denote by x the 2-simplex (f_1, f_2) . Then:

$$F(f_2 \circ f_1) = G(d_1 x) = d_1 G(x) = F(f_2) \circ F(f_1).$$

This proves that N is also full.

We move on to the essential image. Let K be the nerve of a category. The data of a map $\Lambda_i^n \to K$ is the same as the data of maps $y_j : \Delta^{n-1} \to K$ for $j \neq i$, which are compatible along their faces. By Yoneda, this is the same as simplices $\{y_j \in K_{n-1}\}_{j\neq i}$ compatible along faces. Given this data, we define the horn filler $x \in K_n$ by:

$$x = ((d_0)^{n-2}y_{n-1}, (d_0)^{n-3}d_ny_{n-1}, \dots, d_0(d_n)^{n-3}y_{n-1}, (d_n)^{n-2}y_0).$$

The simplicial identities ensure that $d_j x = y_j$ for $j \neq i$. Using the compatibility of the y_j along faces, x is the unique solution to the lifting problem.

Conversely, given a K which has unique solutions to all lifting problems of inner horns, we define a category \mathcal{C} such that $K \cong \mathcal{C}$. Let K_0 be the objects of \mathcal{C} , and for $X, Y \in K_0$, define:

$$\text{Hom}(X,Y) := \{ f \in K_1 | d_1 f = X, d_0 f = Y \}.$$

Given $f_1: X \to Y$ and $f_2: Y \to Z$, define a lifting problem by mapping the 1-simplices $0 \to 1$ and $1 \to 2$ in Λ_1^2 to f_1 and f_2 , respectively. We define $f_2 \circ f_1$ to be d_1 of the unique lift. Associativity of this composition follows from the unique filling of the horn Λ_1^3 ; we don't give the details here.

Exercise 1.2.2. Let S, S' be sets, seen as discrete simplicial set. Show that any morphism $f: S \to S'$ is a Kan fibration, and that f is a trivial Kan fibration if and only if f is a bijection.

Solution. Since S and S' are sets, all k-simplices are of the form $s^k x$, for x a 0-simplex. Given a lifting problem:

$$\begin{array}{ccc}
\Lambda_i^n & \longrightarrow S \\
\downarrow & & \downarrow f \\
\Delta^n & \longrightarrow S'
\end{array}$$

all k-simplices of Λ_i^n , for k > 0, must map to degenerate k-simplices in S. Hence Λ_i^n maps to a point $s \in S$. Similarly, Δ^n maps to f(s). The constant map from Δ^n to s is then the unique solution to the lifting problem. It follows that f is a Kan fibration, and moreover that all sets S are ∞ -groupoids.

By definition, f is a weak equivalence if it induces a weak equivalence on geometric realizations. |S| and |S'| are discrete topological spaces, therefore |f| is a weak equivalence iff it is a bijection.

Exercise 1.2.3. Let G and H be simplicial groups and let $f: G \to H$ be a surjective group homomorphism. Show that f is a Kan fibration.

Solution. There is an algorithm for constructing fillers on nLab. ² We don't have any intuition for it, so we should work on building that.

The algorithm produces unique fillers for all horns, so in particular simplicial groups are ∞ -groupoids.

Note that it's essential that both y_0 and y_{n-1} are available to use in the definition of x, i.e. that Λ_i^n is an inner horn. https://ncatlab.org/nlab/show/simplicial+group

1.3 ∞-categories 3

Exercise 1.2.4. Let $\partial \Delta^2$ be the smallest full subsimplicial set of Δ^2 spanned by its non-degenerate edges $\Delta^1 \to \Delta^2$. Show that $\partial \Delta^2$ fits into a coequalizer diagram

$$(\Delta^0)^{\coprod 6} \rightrightarrows (\Delta^1)^{\coprod 3} \to \partial \Delta^2.$$

(Hint: Have a look at [2, Theorem III.3.1].)

Exercise 1.2.5. Let S be a set, seen as a discrete simplicial set. Show that $\operatorname{cosk}_n(S)$ satisfies the following property: for every $m \ge n$ and every $0 \le i \le m$ the lifting problem

$$\Lambda_i^n \longrightarrow \operatorname{cosk}_n(S)$$

$$\downarrow^{\qquad \qquad \qquad }$$

$$\Lambda^n$$

has a solution. In particular, deduce that $cosk_0(S)$ is a Kan complex.

1.3 ∞ -categories

Exercise 1.3.1. Show that every Kan complexes and 1-categories are ∞ -categories (quasicategories).

Solution. Kan complexes have fillers for all horns. 1-categories have unique fillers for all inner horns. In particular, both have fillers for all inner horns, which is the definition of ∞ -categories.

Exercise 1.3.2. A morphism $f: X \to Y$ in an ∞ -category \mathfrak{C} is said to be an equivalence if its image in $h(\mathfrak{C})$ is an isomorphism. Define $S^{\infty} := \cos k_0(\{0,1\})$ and let $j: \Delta^1 \to S^{\infty}$ be the map classified by

$$sk_0(\Delta^1) = \{0, 1\} \xrightarrow{id} \{0, 1\}.$$

To give a morphism $f: X \to Y$ in an ∞ -category \mathcal{C} it is equivalent to specify a morphism of simplicial sets $e_f: \Delta^1 \to \mathcal{C}$. Show that f is an equivalence if and only if the lifting problem

$$\begin{array}{ccc}
\Delta^1 & \xrightarrow{e_f} & \mathcal{C} \\
\downarrow^j & & \\
S^{\infty} & & & \\
\end{array}$$

has at least one solution. Next, show that any two such solution are homotopic. (Hint: have a look at Exercises 1.2.5 and 1.4.1.)

Exercise 1.3.3. In [3] a functor of ∞ -categories $f: \mathcal{C} \to \mathcal{D}$ is said to be a *categorical equivalence* if and only if the induced functor $\mathfrak{C}[f]: \mathfrak{C}[\mathcal{C}] \to \mathfrak{C}[\mathcal{D}]$ is an equivalence of simplicial categories. Show that f is a categorical equivalence if and only if it is fully faithful and essentially surjective.

Exercise 1.3.4. Let E denote the walking isomorphism (i.e. the 1-category with two objects and an isomorphism between them). Recall the definition of S^{∞} from the previous exercise. Show that there is a canonical map $E \to S^{\infty}$ and that this is a categorical equivalence. In particular, for every ∞ -category \mathcal{C} , the functor

$$\operatorname{Fun}(S^{\infty}, \mathfrak{C}) \to \operatorname{Fun}(E, \mathfrak{C})$$

is a categorical equivalence. (This is a very simple example of what an "internal rectification theorem" looks like.)

Exercise 1.3.5. Let \mathcal{C} be an ∞ -category. Let S_0 be a collection of *objects* in \mathcal{C} . Let \mathcal{C}_0 be the smallest full subsimplicial set of \mathcal{C} containing S_0 (explicitly, an *n*-simplex $\sigma \colon \Delta^n \to \mathcal{C}$ belongs to \mathcal{C} if and only if for every morphism $\Delta^0 \to \Delta^n$ the composition $\Delta^0 \to \Delta^n \to \mathcal{C}$ belongs to S_0 .) Show that \mathcal{C}_0 is an ∞ -category. Furthermore, show that the inclusion $\mathcal{C}_0 \hookrightarrow \mathcal{C}$ of simplicial sets is a fully faithful functor of ∞ -categories.

Exercise 1.3.6. Let \mathcal{C} be an ∞ -category. Let S_0 be a collection of *morphisms* in \mathcal{C} , and suppose that S_0 is closed under composition, in the sense that for every 2-simplex

is \mathcal{C} , if f and g belong to S_0 then so does h. Let \mathcal{C}_0 be the smallest full subsimplicial set of \mathcal{C} containing S_0 (explicitly, an n-simplex $\sigma \colon \Delta^n \to \mathcal{C}$ belongs to \mathcal{C} if and only if for every morphism $\Delta^1 \to \Delta^n$ the composition $\Delta^1 \to \Delta^n \xrightarrow{\sigma} \mathcal{C}$ belongs to S_0). Show that \mathcal{C}_0 is an ∞ -category.

Exercise 1.3.7. Let \mathcal{C} be an ∞ -category. Show that the collection of equivalences in \mathcal{C} is closed under composition, in the sense of the previous exercise. Let \mathcal{C}^{\simeq} be the ∞ -subcategory of \mathcal{C} spanned by equivalences in \mathcal{C} . Show that \mathcal{C}^{\simeq} is a Kan complex.

1.4 Localization of ∞ -categories

Exercise 1.4.1. Let \mathcal{C} be an ∞ -category (seen as a quasicategory). Let $\mathcal{C} \to \widetilde{\mathcal{C}}$ be a fibrant replacement for the Kan model structure on sSet. Show that $\widetilde{\mathcal{C}}$ enjoys the following universal property: for every ∞ -category \mathcal{D} the functor of ∞ -categories

$$\operatorname{Fun}(\widetilde{\mathcal{C}}, \mathfrak{D}) \to \operatorname{Fun}(\mathcal{C}, \mathfrak{D})$$

is fully faithful and its essential image is spanned by those morphisms $f : \mathcal{C} \to \mathcal{D}$ that send every morphism in \mathcal{C} into an equivalence in \mathcal{D} . Thus, there is a categorical equivalence $\tilde{\mathcal{C}} \simeq \mathcal{C}[W^{-1}]$, where W denotes the collection of all arrows in \mathcal{C} . Deduce that if \mathcal{C} is an ∞ -category where every morphism is invertible, then \mathcal{C} is categorically equivalent to a Kan complex.

Exercise 1.4.2. Let \mathcal{C} be an ∞ -category and let S be a (small) collection of arrows in \mathcal{C} . Show that $h(\mathcal{C}[S^{-1}]) \in \text{Cat}$ is canonically equivalent to the 1-categorical localization of $h(\mathcal{C})$ at \overline{S} , the collection of morphism which is the image of S via the canonical functor $\mathcal{C} \to h(\mathcal{C})$.

Exercise 1.4.3. Let \mathcal{C} be an ∞ -category with finite limits and let S be a (small) collection of arrows in \mathcal{C} . Suppose that \mathcal{C} is stable under pullbacks. Then the ∞ -categorical localization $\mathcal{C}[S^{-1}]$ has finite limits and the localization functor $L: \mathcal{C} \to \mathcal{C}[S^{-1}]$ commutes with them.

1.5 Limits and colimits

Exercise 1.5.1. Let S be the ∞ -category of spaces and let X be an object in S. Using [3, Theorem 4.2.4.1] show that the colimit of the diagram

$$*\longleftarrow X\longrightarrow *$$

can be canonically identified with $\Sigma(X)$.

Now fix two points $p, q: * \to X$. Show that the limit of the diagram

$$* \xrightarrow{p} X \xleftarrow{q} *$$

can be canonically identified with the path space $Path_X(p,q)$.

Exercise 1.5.2. *n*-cofinality...

Exercise 1.5.3. \star Let K be a simplicial set and let $F \colon K^{\mathrm{op}} \mathfrak{P}^{\mathrm{L}}$ be an ∞ -functor. Let \mathfrak{C} be a presentable ∞ -category and let $\Delta_{\mathfrak{C}} \colon K^{\mathrm{op}} \to \mathfrak{P}^{\mathrm{L}}$ denote the constant ∞ -functor associated to F. Let $\varphi \colon \Delta_{\mathfrak{C}} \to F$ be a natural transformation in $\mathrm{Fun}(K^{\mathrm{op}}, \mathfrak{P}^{\mathrm{L}})$. We let

$$\Phi \colon \mathfrak{C} \to \underline{\lim}\, F$$

be the induced functor. For every $x \in K$, the functor $\varphi_x \colon \mathcal{C} \to F(x)$ admits a right adjoint, which we denote $\psi_x \colon F(x) \to \mathcal{C}$. Show that there exists an ∞ -functor

$$\overline{\Psi}$$
: $\lim F \to \operatorname{Fun}(K, \mathfrak{C})$

which informally sends $Y = \{Y_x\}_{x \in K} \in \underline{\lim} F$ to the diagram $\overline{\Psi}(Y) \colon K \to \mathcal{C}$ given by

$$\overline{\Psi}(Y)(x) = \psi_x(Y_x).$$

Prove moreover that the composition

$$\varprojlim F \stackrel{\overline{\Psi}}{-\!\!\!-\!\!\!-\!\!\!-\!\!\!-} \operatorname{Fun}(K, \mathfrak{C}) \stackrel{\lim}{-\!\!\!\!-\!\!\!-\!\!\!\!-\!\!\!\!-} \mathfrak{C}$$

can be canonically identified with a right adjoint for Φ .

1.6 Left and right fibrations

Exercise 1.6.1. Let X be a connected Kan complex and let F be any other Kan complex. Let us further fix a point $x \in X$. Let $LF_x(X; F)$ be the full subcategory of left fibrations LF(X) over X whose homotopy fiber at x is equivalent to F. Let B(hAut(F)) be the classifying space of the simplicial group of homotopy automorphisms of F. Show that there is a canonical equivalence of ∞ -categories

$$LF_x(X; F) \simeq Fun(X, B(hAut(F))).$$

1.7 Cartesian and coCartesian fibrations

Exercise 1.7.1. Let \mathcal{C} be an ∞ -category and let $X \in \mathcal{C}$ be an object. Let $f: U \to X$ and $g: V \to X$ be two morphisms in \mathcal{C} . For every 2-simplex $\sigma: \Delta^2 \to \mathcal{C}$ such that $d_0(\sigma) = f$ and $d_1(\sigma) = g$, show that there is a pullback square in \mathcal{S} :

$$\operatorname{Path}_{\operatorname{Map}_{\mathfrak{S}}(U,X)}(f,d_{2}(\sigma)) \longrightarrow \operatorname{Map}_{\mathfrak{S}_{/X}}(f,g)$$

$$\downarrow \qquad \qquad \downarrow$$

$$* \xrightarrow{d_{2}(\sigma)} \operatorname{Map}_{\mathfrak{S}}(U,V).$$

(Hint: Use [3, Propositions 2.1.2.1 and 2.4.4.2].)

1.8 Adjunctions

Exercise 1.8.1. Let \mathcal{C} be an ∞ -category with a zero object 0. Suppose that for every object $X \in \mathcal{C}$ the span

$$0 \longleftarrow X \longrightarrow 0$$

has both a limit $\Omega(X)$ and a colimit $\Sigma(X)$. Construct in an explicit way ∞ -functors $\Sigma, \Omega \colon \mathcal{C} \to \mathcal{C}$ informally given by $X \mapsto \Sigma(X)$ and $X \mapsto \Omega(X)$, respectively. Show that Σ and Ω are adjoint by explicitly constructing a fibration $\mathcal{D} \to \Delta^1$ which is both Cartesian and coCartesian.

1.9 Stable ∞ -categories 6

Exercise 1.8.2. Let $F: \mathcal{C} \to \mathcal{D}$ be an ∞ -functor. Show that the following statements are equivalent:

- 1. F has a right adjoint $G: \mathcal{D} \to \mathcal{C}$;
- 2. for every $Y \in \mathcal{D}$ there exists an object $X \in \mathcal{C}$ and a morphism $\varepsilon_X \colon F(X) \to Y$ such that for every other $X' \in \mathcal{C}$ the canonical composition

$$\operatorname{Map}_{\mathfrak{C}}(X',X) \xrightarrow{f} \operatorname{Map}_{\mathfrak{D}}(f(X'),f(X)) \xrightarrow{\varepsilon_{X*}} \operatorname{Map}_{\mathfrak{D}}(f(X'),Y)$$

is a weak homotopy equivalence.

1.9 Stable ∞ -categories

Exercise 1.9.1. Let \mathcal{C} be a stable ∞ -category and let $\mathcal{D} \subseteq \mathcal{C}$ be a full stable subcategory of \mathcal{C} . Let $S := \{f \colon X \to Y \in \mathcal{C} \mid \operatorname{cofib}(f) \in \mathcal{D}\}$. Show that the ∞ -categorical localization $\mathcal{C}[S^{-1}]$ is a stable ∞ -category.

Exercise 1.9.2. It is shown in [1] that $\operatorname{Cat}_{\infty}^{\operatorname{Ex}}$ is a presentable ∞ -category. Prove directly that cofibers in $\operatorname{Cat}_{\infty}^{\operatorname{Ex}}$ exist.

Chapter 2

Derived rings

Chapter 3

Derived stacks

Bibliography

- [1] Andrew J Blumberg, David Gepner, and Gonçalo Tabuada. A universal characterization of higher algebraic k-theory. *Geometry & Topology*, 17(2):733–838, 2013.
- [2] P. Gabriel and M. Zisman. Calculus of fractions and homotopy theory. Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 35. Springer-Verlag New York, Inc., New York, 1967.
- [3] Jacob Lurie. *Higher topos theory*, volume 170 of *Annals of Mathematics Studies*. Princeton University Press, Princeton, NJ, 2009.
- [4] Jean-Louis Verdier. Des catégories dérivées des catégories abéliennes. Astérisque, 1996.