UNIVERSIDAD DE SAN CARLOS DE GUATEMALA

Facultad de Ingeniería Escuela Mecanica Industrial

REPORTE 1

Investigación de Operaciones 1

NOMBRE	CARNET
André Joaquin Ortega De Paz	201900597
Erick Enrique González Chávez	201900621
Carlos Daniel Santos Sanchez	201900167
Rodrigo Eduardo Carcuz Ortega	201700633
Paulo Vlademir Argueta Ortega	202010751

GRUPO: K

ÍNDICE

OBJETIVOS	3
GENERAL:	3
ESPECÍFICO:	3
INTRODUCCIÓN	4
PROBLEMAS	5
PROBLEMA 1:	5
PROBLEMA 2:	6
PROBLEMA 3:	8
PROBLEMA 4:	10
CONCLUSIÓN	16

OBJETIVOS

GENERAL:

Verificar que el estudiante pueda colocar en práctica todos los conocimientos aprendidos del curso de Investigación de Operaciones 1, tanto de la parte magistral como de la parte práctica del curso. Esto para poder dar solución a problemas.

ESPECÍFICO:

- Aprender a reconocer que tipo de problema y como darle solución, por medio de los datos que se nos presenten.
- Reconocer cuales son las restricciones que el problema nos está presentando por medio de su enunciado.
- Aplicar los conocimientos del curso para resolver problemas por método el método que el problema requiera.

INTRODUCCIÓN

Este reporte es realizado para que los estudiantes del curso de Investigación de Operaciones 1, puedan aprender a afrontar problemas que se nos puedan presentar, problemas de los cuales pueden solicitar tanto una maximización de ganancias o una minimización de costos, esto por medio de diversos métodos de solución como pueden ser metodo grafico, metodo simplex, metodo por 2 fases o incluso metodo M.

PROBLEMAS

PROBLEMA 1:

2,000 de ace	al y aceite sint eite sintético. ubricante vien		aceite requer	idos en la fab	ricación de	
	Lubric		Lubricante 2	Lubrica	ento 2	
Aceite Mine			3	3	inte 3	
Aceite Sinté			3	4		
	LUBRICANTE 1	LUBRICANTE 2	LUBRICANTE 3	TOTAL ACEITES		
ACEITE MINERAL	6	3	3	1500)	
ACEITE WIINERAL			_	2000		
	2	3	4	2000)	
ACEITE SINTETICO		3 20		2000)	
ACEITE MINERAL ACEITE SINTETICO PRECIO DE VENTA MAXIMIZAR INGRE	25	_		2000		
ACEITE SINTETICO PRECIO DE VENTA	25	20		2000	X3= LUBRICA	NTE 3
ACEITE SINTETICO PRECIO DE VENTA MAXIMIZAR INGRE	25 SOS	20 E 1	15	2000		NTE 3
ACEITE SINTETICO PRECIO DE VENTA MAXIMIZAR INGRE F.O	25 SOS X1=LUBRICANT	20 E 1 +15X3	15	2000		NTE 3
ACEITE SINTETICO PRECIO DE VENTA	25 SOS X1=LUBRICANT X0=25X1+20X2	20 E 1 +15X3 =1500	15	2000		NTE 3
ACEITE SINTETICO PRECIO DE VENTA MAXIMIZAR INGRE F.O	25 SOS X1=LUBRICANT X0=25X1+20X2- 6X1+3X2+3X3<	20 E 1 +15X3 =1500 =2000	15	2000		NTE 3

Restricción 1: Tiene signo " \leq " (menor igual) por lo que se agregará la variable de holgura S_1 .

Restricción 2: Tiene signo " \leq " (menor igual) por lo que se agregará la variable de holgura S_2 .

Restricción 3: Tiene signo " \leq " (menor igual) por lo que se agregará la variable de holgura S_3 .

A continuación, se muestra el problema en la forma estándar. Se colocará el coeficiente 0 (cero) donde corresponda para crear nuestra matriz:

Función Objetivo

Maximizar:
$$Z = 25X_1 + 20X_2 + 15X_3 + 0S_1 + 0S_2 + 0S_3$$

Sujeto a:

$$6X_1 + 3X_2 + 3X_3 + 1S_1 + 0S_2 + 0S_3 = 1500$$

$$2X_1 + 3X_2 + 4X_3 + 0S_1 + 1S_2 + 0S_3 = 2000$$

$$1X_1 + 1X_2 + 1X_3 + 0S_1 + 0S_2 + 1S_3 = 400$$

$$X_1, X_2, X_3, S_1, S_2, S_3 \ge 0$$

Matriz Inicial

Tabla 1	C _j	25	20	15	0	0	0	
C _b	Base	X ₁	X ₂	X ₃	S_1	S_2	S_3	R
0	S_1		3	3	1	0	0	1500
0	S_2	2	3	4	0	1	0	2000
0	S_3	1	1	1	0	0	1	400
	Z	-25	-20	-15	0	0	0	0

Ingresa la variable X_1 y sale de la base la variable S_1 . El elemento pivote es 6

Tabla 2	C _j	25	20	15	0	0	0	
C _b	Base	X ₁	X ₂	X ₃	S_1	S_2	S_3	R
25	X ₁	1	1/2	1/2	1/6	0	0	250
0	S_2	0	2	3	-1/3	1	0	1500
0	S_3	0		1/2	-1/6	0	1	150
	Z	0	-15/ 2		25/ 6		0	6250

Ingresa la variable X_2 y sale de la base la variable S_3 . El elemento pivote es 1/2

Tabla 3	$c_{\mathbf{j}}$	25	20	15	0	0	0	
$C_{\mathbf{b}}$	Base	X ₁	X ₂	X ₃	S_1	S_2	S_3	R
25	X ₁	1	0	0	1/3	0	-1	100
0	S_2	0	0	1	1/3	1	-4	900
20	X ₂	0	1	1	-1/3	0	2	300
	Z	0	0	5	5/3	0	15	8500

La solución óptima es Z = 8500

 $X_1 = 100, X_2 = 300, X_3 = 0, S_1 = 0, S_2 = 900, S_3 = 0$

PROBLEMA 2:

2. Se desea plantear una estrategia de para fabricar celulares guatemaltecos, se tiene a consideración celulares con mejor cámara y celulares con mejor batería. Los estudios de mercado han mostrado que: Los celulares con mejor cámara lo compran el 2 % de personas de ingresos altos y al 3 % de personas de ingresos medios. Los celulares con mejor batería lo compran el 3 % de las personas de ingresos altos y al 6 % de las personas de ingresos medios.

Fabricar cada celular con mejor batería tiene un costo de 500 quetzales y los celulares con mejor cámara tiene un costo de fabricación de 2000 quetzales. La meta es obtener al menos una venta como mínimo del 36 % de las personas de ingresos altos y mínimo 60 % de las personas de ingresos medios minimizando los costos de fabricación.

	alto	medio	Costo			
compran mejor camara	2%	3%	2000			
compran mejor bateria	3%	6%	500			
ventas	36%	60%				
x1= cantidad a fabricar de ceculares con mejor camara						
x2= cantidad a fabr	icar de cecula	res con mejor	bateria			
min	x0 = 2000	x1 + 500x2				
Sujeto a:						
2x1 + 3x2 >= 36						
3x1 + 6x2 >= 60						

2x1 + 3x2 = 36	x1=0	v1 = /26 2v2\/2			
x2=36/3		x1 = (36-3x2)/2			
x2=12		3(18-(3/2)x2) + 6x2 = 60			
XZ-1Z		54-9/2x2+6x2 = 60			
		1.5x2 = 60-54			
2x1 + 3x2 = 36	x2=0	x2 = 4			
x1=36/2					
x1=18		x1 = (36-3(4))/2			
		x1 = 12			
3x1 + 6x2 = 60	x1=0				
x2=60/6		x0 = 2000x1 + 500x2	x1	x2	x0
x2=10			0	12	6000
			18	0	36000
3x1 + 6x2 = 60	x2=0		0	10	5000
x1=60/3			20	0	40000
x1=20			12	4	26000

Para minimizar la mayor cantidad de costos no se debe de producir ningún celular con mejor cámara y se deben producir 12 celulares con mejor batería.

PROBLEMA 3:

Una empresa de productos metálicos fabrica dos tamaños de tubos mecánicos soldados para vender. Para fabricar el tubo del tipo A utiliza 1g de cobre y 1.5g de acero y se vende a Q25. El tubo de tipo B se vende a Q30 y lleva 1.5 g de cobre y 1g de acero. Si en la fábrica se dispone de 750g de cada metal, ¿Cuántas piezas se han de fabricar de cada tipo de tubo para obtener el máximo beneficio?

CLASE DE TUBO	COBRE	ACERO	PRECIO DE VENTA
TUBO A	1 g	1.5 g	q. 25
TUBO B	1.5 g	1 g	q. 30
total	750 g	750 g	

TUBO A: x1 TUBO B: x2

FUNCIÓN OBJETIVO	$X_0 = 25x_1 + 30x_2$
RESTRICCIONES:	$1x1+1.5x2 \le 750$
	$1.5x1+1x1 \le 750$
	s1,s2 >= 0

INTERSECCIONES:

1)x1=0 x2=500; x2=0 x1=750 2)x1=0 x2=750; x2=0 x1=500

3) primer cuadrante.

por lo tanto las intersecciones serian:

- 1) (0,500)
- 2) (300,300)
- 3) (500,0)

F.O Xo = 25x1 + 30x2

Xo1=25(0)+30(500) =15,000.00

Xo2=25(300)+30(300) = 16,500.00

 $X_03=25(500)+30(0) = 12,500.00$

Respuesta: PARA OBTENER EL MÁXIMO BENEFICIO SE DEBEN DE FABRICAR 300 TUBOS TIPO "A" Y 300 TUBOS TIPO "B".

PROBLEMA 4:

4. Una empresa posee 5 plantas en las que elaboran diariamente un determinado producto. La producción máxima de producto en cada planta está dada por las siguientes cantidades: 250, 450, 500, 300 y 250. Los productos de cada planta deben ser transportados diariamente a 4 distribuidoras que demandan como mínimo las siguientes cantidades: 300, 200, 400 y 250. Los costos necesarios para transportar un producto desde las plantas de producción hasta las distribuidoras están dados en la siguiente tabla:

	Distribuidora 1	Distribuidora 2	Distribuidora 3	Distribuidora 4
Planta 1	20	15	18	15
Planta 2	13	18	14	19
Planta 3	17	12	16	17
Planta 4	10	18	13	20
Planta 5	17	13	17	12

variables

x1	x2	x3	x4
x5	x6	x7	x8
x9	x10	x11	x12
x13	x14	x15	x16
x17	x18	x19	x20

función objetivo:

restricciones:

$$20(x1)+15(x2)+18(x3)+15(x4) \le 250$$

 $17(x5)+18(x6)+14(x7)+19(x8) \le 450$
 $17(x9)+12(x10)+16(x11)+17(x12) \le 500$
 $10(x13)+18(x14)+13(x15)+20(x16) \le 300$
 $17(x17)+13(x18)+17(x19)+12(x20) \le 250$
 $x1 \dots x20 \ge 0$

solucion:

- Restricción 1: Tiene signo " \leq " (menor igual) por lo que se agregará la variable de holgura S_1 .
- Restricción 2: Tiene signo " \leq " (menor igual) por lo que se agregará la variable de holgura S_2 .
- Restricción 3: Tiene signo " \leq " (menor igual) por lo que se agregará la variable de holgura S_3 .
- Restricción 4: Tiene signo " \leq " (menor igual) por lo que se agregará la variable de holgura S_4 .
- Restricción 5: Tiene signo " \leq " (menor igual) por lo que se agregará la variable de holgura S_5 .

A continuación se muestra el problema en la forma estándar. Se colocará el coeficiente 0 (cero) donde corresponda para crear nuestra matriz:

Función Objetivo

 $\begin{aligned} &\text{Maximizar: Z = } 300\text{X}_1 + 200\text{X}_2 + 400\text{X}_3 + 250\text{X}_4 + 300\text{X}_5 + 200\text{X}_6 + 400\text{X}_7 + 250\text{X}_8 + 300\text{X} \\ &+ 200\text{X}_{10} + 400\text{X}_{11} + 250\text{X}_{12} + 300\text{X}_{13} + 200\text{X}_{14} + 400\text{X}_{15} + 250\text{X}_{16} + 300\text{X}_{17} + 200\text{X}_{18} + \\ &400\text{X}_{19} + 250\text{X}_{20} + 0\text{S}_1 + 0\text{S}_2 + 0\text{S}_3 + 0\text{S}_4 + 0\text{S}_5 \end{aligned}$

Sujeto a:

$$\begin{aligned} &20X_1 + 15X_2 + 18X_3 + 15X_4 + 0X_5 + 0X_6 + 0X_7 + 0X_8 + 0X_9 + 0X_{10} + 0X_{11} + 0X_{12} + 0X_{13} + \\ &0X_{14} + 0X_{15} + 0X_{16} + 0X_{17} + 0X_{18} + 0X_{19} + 0X_{20} + 1S_1 + 0S_2 + 0S_3 + 0S_4 + 0S_5 = 250 \end{aligned}$$

$$0X_1 + 0X_2 + 0X_3 + 0X_4 + 17X_5 + 18X_6 + 14X_7 + 19X_8 + 0X_9 + 0X_{10} + 0X_{11} + 0X_{12} + 0X_{13} + \\ &0X_{14} + 0X_{15} + 0X_{16} + 0X_{17} + 0X_{18} + 0X_{19} + 0X_{20} + 0S_1 + 1S_2 + 0S_3 + 0S_4 + 0S_5 = 450 \end{aligned}$$

$$0X_1 + 0X_2 + 0X_3 + 0X_4 + 0X_5 + 0X_6 + 0X_7 + 0X_8 + 17X_9 + 12X_{10} + 16X_{11} + 17X_{12} + 0X_{13} + \\ &0X_{14} + 0X_{15} + 0X_{16} + 0X_{17} + 0X_{18} + 0X_{19} + 0X_{20} + 0S_1 + 0S_2 + 1S_3 + 0S_4 + 0S_5 = 500 \end{aligned}$$

$$0X_1 + 0X_2 + 0X_3 + 0X_4 + 0X_5 + 0X_6 + 0X_7 + 0X_8 + 0X_9 + 0X_{10} + 0X_{11} + 0X_{12} + 10X_{13} + 18X_{12} + \\ &0X_{14} + 0X_{15} + 0X_{16} + 0X_{17} + 0X_{18} + 0X_{19} + 0X_{20} + 0S_1 + 0S_2 + 0S_3 + 1S_4 + 0S_5 = 300 \end{aligned}$$

$$0X_1 + 0X_2 + 0X_3 + 0X_4 + 0X_5 + 0X_6 + 0X_7 + 0X_8 + 0X_9 + 0X_{10} + 0X_{11} + 0X_{12} + 10X_{13} + 18X_{12} + \\ &13X_{15} + 20X_{16} + 0X_{17} + 0X_{18} + 0X_{19} + 0X_{20} + 0S_1 + 0S_2 + 0S_3 + 1S_4 + 0S_5 = 300 \end{aligned}$$

$$0X_1 + 0X_2 + 0X_3 + 0X_4 + 0X_5 + 0X_6 + 0X_7 + 0X_8 + 0X_9 + 0X_{10} + 0X_{11} + 0X_{12} + 0X_{13} + 0X_{14} + \\ &0X_{15} + 0X_{16} + 17X_{17} + 13X_{18} + 17X_{19} + 12X_{20} + 0S_1 + 0S_2 + 0S_3 + 0S_4 + 1S_5 = 250$$

$$X_1, X_2, X_3, X_4, X_5, X_6, X_7, X_8, X_9, X_{10}, X_{11}, X_{12}, X_{13}, X_{14}, X_{15}, X_{16}, X_{17}, X_{18}, X_{19}, X_{20}, S_1, S_2, S_3, S_4, S_5 \ge 0$$

Matriz Inicial

Tabla 1	C _j	300	200	400	250	300	200	400	250	300	200	400	250
СЬ	Base	X ₁	X ₂	X ₃	X ₄	X ₅	X ₆	X ₇	X ₈	X 9	X ₁₀	X ₁₁	X ₁₂
0	S ₁	20	15	18	15	0	0	0	0	0	0	0	0
0	S ₂	0	0	0	0	17	18	14	19	0	0	0	0
0	S ₃	0	0	0	0	0	0	0	0	17	12	16	17
0	S ₄	0	0	0	0	0	0	0	0	0	0	0	0
0	S ₅	0	0	0	0	0	0	0	0	0	0	0	0
	Z	-300	-200	-400	-250	-300	-200	-400	-250	-300	-200	-400	-250
4													-

Ingresa la variable X_3 y sale de la base la variable S_1 . El elemento pivote es 18

Iteración 1

Tabla 2	c _j	300	200	400	250	300	200	400	250	300	200	400	:
СР	Base	X ₁	X ₂	Х3	X ₄	X ₅	X ₆	X ₇	Х8	X ₉	X ₁₀	X ₁₁	3
400	Х3	10/9	5/6	1	5/6	0	0	0	0	0	0	0	
0	S ₂	0	0	0	0	17	18	14	19	0	0	0	
0	S ₃	0	0	0	0	0	0	0	0	17	12	16	
0	S ₄	0	0	0	0	0	0	0	0	0	0	0	
0	S ₅	0	0	0	0	0	0	0	0	0	0	0	
	Z	1300/9	400/3	0	250/3	-300	-200	-400	-250	-300	-200	-400	-
4													•

Ingresa la variable $\mathbf{X_7}$ y sale de la base la variable $\mathbf{S_2}$. El elemento pivote es $\mathbf{14}$

Tabla 3	C _j	300	200	400	250	300	200	400	250	300	200	,
СЬ	Base	X ₁	X ₂	X ₃	X ₄	X ₅	X ₆	X ₇	Х8	X ₉	X ₁₀)
400	X ₃	10/9	5/6	1	5/6	0	0	0	0	0	0	
400	X ₇	0	0	0	0	17/14	9/7	1	19/14	0	0	
0	S ₃	0	0	0	0	0	0	0	0	17	12	
0	S ₄	0	0	0	0	0	0	0	0	0	0	
0	S ₅	0	0	0	0	0	0	0	0	0	0	
	Z	1300/9	400/3	0	250/3	1300/7	2200/7	0	2050/7	-300	-200	-
4												-

Ingresa la variable \mathbf{X}_{11} y sale de la base la variable \mathbf{S}_3 . El elemento pivote es $\mathbf{16}$

Iteración 3

Tabla 4	C _j	300	200	400	250	300	200	400	250	300	200
СЬ	Base	X ₁	X ₂	X ₃	X ₄	X ₅	X ₆	X ₇	Х8	X ₉	X ₁₀
400	X ₃	10/9	5/6	1	5/6	0	0	0	0	0	0
400	X ₇	0	0	0	0	17/14	9/7	1	19/14	0	0
400	X ₁₁	0	0	0	0	0	0	0	0	17/16	3/4
0	S ₄	0	0	0	0	0	0	0	0	0	0
0	S ₅	0	0	0	0	0	0	0	0	0	0
	Z	1300/9	400/3	0	250/3	1300/7	2200/7	0	2050/7	125	100
4											-

Ingresa la variable X_{15} y sale de la base la variable S_4 . El elemento pivote es 13

Tabla 5	c _j	300	200	400	250	300	200	400	250	300	200
Сь	Base	X ₁	X ₂	Х3	X ₄	X ₅	X ₆	X ₇	X ₈	X ₉	X ₁₀
400	X ₃	10/9	5/6	1	5/6	0	0	0	0	0	0
400	X ₇	0	0	0	0	17/14	9/7	1	19/14	0	0
400	X ₁₁	0	0	0	0	0	0	0	0	17/16	3/4
400	X ₁₅	0	0	0	0	0	0	0	0	0	0
0	S ₅	0	0	0	0	0	0	0	0	0	0
	Z	1300/9	400/3	0	250/3	1300/7	2200/7	0	2050/7	125	100
4											-

Ingresa la variable X_{19} y sale de la base la variable S_5 . El elemento pivote es 17

Iteración 5

Tabla 6	c _j	300	200	400	250	300	200	400	250	300	200
СЬ	Base	X ₁	X ₂	X ₃	X ₄	X ₅	X ₆	X ₇	X ₈	X ₉	X ₁₀
400	X ₃	10/9	5/6	1	5/6	0	0	0	0	0	0
400	X ₇	0	0	0	0	17/14	9/7	1	19/14	0	0
400	X ₁₁	0	0	0	0	0	0	0	0	17/16	3/4
400	X ₁₅	0	0	0	0	0	0	0	0	0	0
400	X ₁₉	0	0	0	0	0	0	0	0	0	0
	Z	1300/9	400/3	0	250/3	1300/7	2200/7	0	2050/7	125	100
4											-

La solución óptima es Z = 640817500/13923

$$\begin{split} X_1 &= 0, \, X_2 = 0, \, X_3 = 125/9, \, X_4 = 0, \, X_5 = 0, \, X_6 = 0, \, X_7 = 225/7, \, X_8 = 0, \, X_9 = 0, \, X_{10} = 0, \, X_{11} = \\ 125/4, \, X_{12} &= 0, \, X_{13} = 0, \, X_{14} = 0, \, X_{15} = 300/13, \, X_{16} = 0, \, X_{17} = 0, \, X_{18} = 0, \, X_{19} = 250/17, \, X_{20} = 0, \\ S_1 &= 0, \, S_2 = 0, \, S_3 = 0, \, S_4 = 0, \, S_5 = 0 \end{split}$$

CONCLUSIÓN

Para concluir este reporte, encontramos que los estudiantes del grupo K del curso de Investigación de Operaciones 1, lograron resolver los problemas presentados, de los cuales ninguno de los estudiantes presentó problemas para darle solución, a lo cual podemos concluir que, todos los conocimientos dados durante estas semanas, han sido aprendido de manera correcta.

Los estudiantes pudieron descifrar de qué trataba el problema que se presentó y pudieron encontrar por que método se podía resolver, además de poder ubicar correctamente cada restricción de cada uno de los problemas que fueron presentados.