MATH 519, Homework 1

Colin Roberts

February 6, 2018

Solutions

Problem 1. Use the CREs to show that $f(z) = e^{-y} \sin x - i e^{-y} \cos x$ is entire.

Proof. We must show that f(z) = f(x,y) = u(x,y) + iv(x,y) from above satisfies $u_x = v_y$ and $u_y = -v_x$ for all $z \in \mathbb{C}$. We have

$$u_x = e^{-y} \cos x$$

$$u_y = -e^{-y} \sin x$$

$$v_x = e^{-y} \sin x$$

$$v_y = e^{-y} \cos x$$

This shows that $u_x = v_y$ and $u_y = -v_x$, and thus f is entire.

Problem 2. Where are the Cauchy-Riemann equations satisfied for $g(z) = z\Im(z)$?

Proof. First we write this in terms of x and y so we get

$$g(z) = z\Im(z)$$

$$\implies g(x,y) = (x+iy)(y)$$

$$= x^2 + iy^2.$$

This gives us that

$$u(x, y) = x^2$$
$$v(x, y) = y^2.$$

Then, taking the partial derivatives,

$$u_x = 2x$$

$$u_y = 0$$

$$v_x = 0$$

$$v_y = 2y.$$

Then, asserting that $u_x = v_y$ and $u_y = -v_x$, we find that we must have x = y. Thus the CREs are satisfied only when x = y.

Problem 3. S&S 1.1. Describe geometrically the sets of points z in the complex plane defined by the following relations:

- (a) $|z z_1| = |z z_2|$ where $z_1, z_2 \in \mathbb{C}$.
- (b) $1/z = \overline{z}$.
- (c) $\Re(z) = 3$.
- (d) $\Re(z) > c$, (resp., $\geq c$) where $c \in \mathbb{R}$.
- (e) $\Re(az+b) > 0$ where $a, b \in \mathbb{C}$.
- (f) $|z| = \Re(z) + 1$.
- (g) $\Im(z) = c$ with $c \in \mathbb{R}$.

:

Proof.

- (a) This is the set of points that are equidistant from z_1 and z_2 . In fact, the set is a line of points that passes through the midpoint of the two points z_1 and z_2 . The line will have slope that is orthogonal to the line between z_1 and z_2 .
- (b) This is the unit circle.
- (c) This is the vertical line that passes through 3 on the real axis.
- (d) This is all complex numbers that are to the right of the vertical line passing through c on the real line, but not including the line passing through c itself (except when we allow for $\geq c$).
- (e) Note that az + b is an affine translation of the complex plane. b moves the origin, and a scales and rotates the plane. Now, since we just want the real part of this to be positive, we just need the real part of az and b to both be positive. Then the way a affects the set of points z that satisfy $\Re(az + b)$ is a bit more complicated. But what will happen is we will end up with an open half plane that is rotated by the argument of a (i.e., $a = re^{i\theta}$ and $\arg(a) = \theta$) and translated by b.
- (f) Here we have that z = x + iy and that

$$|z|^2 = (x+1)^2$$

$$\implies x^2 + y^2 = x^2 + 2x + 1$$

$$\implies y^2 = 2x + 1.$$

This is a parabola.

(g) This is a horizontal line that is c units above the real axis.

Problem 4. S&S 1.3. With $\omega = se^{i\varphi}$, where $s \ge 0$ and $\varphi \in \mathbb{R}$, solve the equation $z^n = \omega$ in \mathbb{C} where n is a natural number. How many solutions are there?

:

Proof. There are n unique solutions. We note that if $z = \sqrt[n]{s}e^{i\varphi/n}$ then $z^n = \omega$. However, we also have that $z = \sqrt[n]{s}e^{i\left(\frac{\varphi}{n} + \frac{2\pi ik}{n}\right)}$ for $k = 0, 1, \ldots, n-1$ are solutions (with the k = 0 being the first case I mentioned).

Problem 5. S&S 1.10. Show that

$$4\frac{\partial}{\partial z}\frac{\partial}{\partial \overline{z}} = 4\frac{\partial}{\partial \overline{z}}\frac{\partial}{\partial z} = \Delta,$$

where Δ is the **Laplacian**

$$\Delta = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}.$$

:

Proof. We have that

$$\frac{\partial}{\partial z} = \frac{1}{2} \left(\frac{\partial}{\partial x} + \frac{1}{i} \frac{\partial}{\partial y} \right)$$
$$\frac{\partial}{\partial \overline{z}} = \frac{1}{2} \left(\frac{\partial}{\partial x} - \frac{1}{i} \frac{\partial}{\partial y} \right).$$

Then we have

$$\begin{split} 4\frac{\partial}{\partial z}\frac{\partial}{\partial \overline{z}} &= 4\frac{1}{4}\left(\frac{\partial}{\partial x} + \frac{1}{i}\frac{\partial}{\partial y}\right)\left(\frac{\partial}{\partial x} - \frac{1}{i}\frac{\partial}{\partial y}\right) \\ &= \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} \\ &= \Delta \\ &= 4\frac{\partial}{\partial \overline{z}}\frac{\partial}{\partial z}. \end{split}$$

Note the last equality is due to commutivity.

Problem 6. S&S 1.11. Use Exercise 10 to prove that if f is holomorphic in the open set Ω , then the real and imaginary parts of f are **harmonic**; that is, their Laplacian is zero.

Proof. If f is holomorphic on Ω , then for $z_0 \in \Omega$, $\frac{\partial f}{\partial \overline{z}}(z_0) = 0$. Thus $\Delta = 0$ since $\frac{\partial}{\partial \overline{z}} = 0$.

Problem 7. S&S 1.13ab. Suppose that f is holomorphic in an open set Ω . Prove that in any one of the following cases:

- (a) $\Re(f)$ is constant;
- (b) $\Im(f)$ is constant;

one can conclude that f is constant.

:

Proof. Use the CREs. We have f(x,y) = u(x,y) + iv(x,y). If $\Re(f)$ is constant, then $v_x = v_y = 0$ and hence $u_x = u_y = 0$ and thus f is constant. The proof for (b) is analogous.

Problem 8. S&S 1.24. Let γ be a smooth curve in $\mathbb C$ parametrized by $z(t)\colon [a,b]\to\mathbb C$. Let γ^- denote the curve with the same image as γ but with the reverse orientation. Prove that for any continuous function f on γ

$$\int_{\gamma} f(z)dz = -\int_{\gamma} f(z)dz.$$

Proof. We have

:

$$\begin{split} \int_{\gamma} f(z)dz &= \int_{a}^{b} f(z(t))z'(t)dt \\ &= \int_{a}^{b} f(z(b+a-t))(-z'(b+a-t))dt \\ &= -\int_{a}^{b} f(z(b+a-t))z'(b+a-t)dt \\ &= -\int_{\gamma^{-}} f(z)dz. \end{split}$$