Lucy Y. Pao Lecture 19 Page 1 ECEN 5458

More on Estimator Design and Duality

- Observability matrix of observer canonical form
 - Controllability matrix of control canonical form
- Designing estimators for systems in observer canonical form
 - Transformation method

Duality

Observability Matrix Example

Example: Find O for the following 3rd-order system in observer canonical form.

$$G(z) = \frac{b_1 z^2 + b_2 z + b_3}{z^3 + a_1 z^2 + a_2 z + a_3}$$

$$\Phi_o = \begin{bmatrix} \mathbf{I} - a_1 & \mathbf{1} & \mathbf{0} \\ \mathbf{I} - a_2 & \mathbf{0} & \mathbf{1} \\ \mathbf{I} - a_3 & \mathbf{0} & \mathbf{0} \end{bmatrix}, \quad \Gamma_o = \begin{bmatrix} \mathbf{b}_1 \\ \mathbf{b}_2 \\ \mathbf{I} \end{bmatrix}, \quad \Pi_o = \begin{bmatrix} \mathbf{1} & \mathbf{0} & \mathbf{0} \end{bmatrix}, \quad J_o = \mathbf{0}$$

$$\mathbf{Q}_{o} = \begin{bmatrix} \mathbf{H}_{o} & \mathbf{I} \\ \mathbf{H}_{o} \mathbf{\Phi}_{o} \end{bmatrix} \\ \mathbf{H}_{o} \mathbf{\Phi}_{o}^{2}$$

Lucy Y. Pao Lecture 19 Page 3

General n^{th} -order observer canonical form system has O:

ECEN 5458

$$\mathbf{Q}_{0} = \begin{bmatrix} \mathbf{1} & \mathbf{0} & \cdots & \mathbf{0} & \mathbf{0} \\ \mathbf{X} & \mathbf{1} & \ddots & \vdots & \mathbf{0} \\ \mathbf{X} & \mathbf{X} & \ddots & \mathbf{0} & \mathbf{0} \\ \mathbf{X} & \mathbf{X} & \mathbf{X} & \mathbf{1} & \mathbf{0} \end{bmatrix}$$

What is the controllability matrix of a system in control canonical form?

Lucy Y. Pao Lecture 19 Page 4 ECEN 5458

Estimator Design for Systems in Observer Canonical Form

Closed-loop estimator system matrix:

$$\mathbf{\Phi}_{o} - \mathbf{L}_{o}\mathbf{H}_{o} = \begin{bmatrix} -a_{1} & 1 & 0 & 0 \\ -a_{2} & 0 & \ddots & 0 \\ \vdots & \vdots & \ddots & 1 \end{bmatrix} - \begin{bmatrix} \ell_{1o} \\ \ell_{2o} \end{bmatrix} \begin{bmatrix} 1 & 0 & \cdots & 0 \end{bmatrix}$$

$$\begin{bmatrix} -a_{1} & 0 & \cdots & 0 \end{bmatrix} \begin{bmatrix} -a_{1} & 0 & \cdots & 0 \end{bmatrix} \begin{bmatrix} -a_{1} & 0 & \cdots & 0 \end{bmatrix}$$

$$\begin{bmatrix} \mathbf{a} - a_1 - \ell_{1o} & \mathbf{1} & \mathbf{0} \\ \mathbf{a} - a_2 - \ell_{2o} & \mathbf{0} & \ddots & \mathbf{0} \\ \mathbf{a} & \vdots & \vdots & \ddots & \mathbf{1} \\ \mathbf{a} - a_n - \ell_{no} & \mathbf{0} & \cdots & \mathbf{0} \end{bmatrix}$$

Lucy Y. Pao Lecture 19

Page 5

ECEN 5458

$$\implies \det(z\mathbf{I} - \Phi_o + \mathbf{L}_o\mathbf{H}_o) = z^n + (a_1 + \ell_{1o})z^{n-1} + \cdots + (a_n + \ell_{no})$$

Match coefficients with desired characteristic equation:

$$\alpha_e(z) = z^n + \beta_1 z^{n-1} + \cdots + \beta_n$$

$$\mathcal{C}_{1o} = \beta_1 - a_1 \qquad \Longrightarrow \qquad \mathbf{L}_o = \beta - \mathbf{a}$$

$$\mathcal{C}_{2o} = \beta_2 - a_2$$

$$\vdots \qquad \vdots \qquad \vdots$$

$$\mathcal{C}_{no} = \beta_n - a_n$$

Lucy Y. Pao Lecture 19 Page 6 ECEN 5458

Transformation Method

So another way to design L (besides the Matching Coefficients Method) is to transform system to observer canonical form, compute $L_{\rm o}$, and then transform back.

1. Find T:
$$\left\{\Phi,\Gamma,H,J\right\} \xrightarrow{X=Tz} \left\{\Phi_o,\Gamma_o,H_o,J_o\right\}$$

2. Estimator gain vector for observer canonical form:

$$L_o = \beta - a$$

3. Transform back.

What is the transform matrix T?

Recall the transform matrix T to control canonical form:

Does similarity transformation affect observability?

$$\left\{ \mathbf{\Phi}_{1}, \mathbf{\Gamma}_{1}, \mathbf{H}_{1}, \mathbf{J}_{1} \right\} \leftarrow \mathbf{T} \qquad \left\{ \mathbf{\Phi}_{2}, \mathbf{\Gamma}_{2}, \mathbf{H}_{2}, \mathbf{J}_{2} \right\}$$

$$\mathbf{O}_{2} = \begin{bmatrix} \mathbf{H}_{2} & \mathbf{I} \\ \mathbf{H}_{2} \mathbf{\Phi}_{2} & \mathbf{I} \\ \vdots & \vdots & \vdots \\ \mathbf{H}_{n-1} \mathbf{D}^{n-1} & \mathbf{I} \end{bmatrix}$$

$$\Phi_2 = T^{-1}\Phi_1 T$$

$$\Gamma_2 = T^{-1}\Gamma_1$$

$$H_2 = H_1 T$$

$$Q = QT$$

Transformation Method Formula

Find L such that
$$\tilde{x}(k+1) = (\Phi - LH)\tilde{x}(k)$$

$$x = Tz$$

$$\hat{\mathbf{x}} = \mathbf{T}\hat{\mathbf{z}}$$

Then we have:
$$\tilde{z} = z - \hat{z} = T^{-1}\tilde{x}$$

$$\widetilde{\mathbf{z}}(k+1) = (\Phi_o - \mathbf{L}_o \mathbf{H}_o)\widetilde{\mathbf{z}}(k)$$

$$L = TL_o \Longrightarrow$$

$$L = TL_o \implies L = O^{-1}O_o(\beta - a)$$

Example

$$G(s) = \frac{1}{s(s+1)} = \frac{Y(s)}{U(s)}$$

$$\mathbf{\Phi} = \begin{bmatrix} \mathbf{1} & \mathbf{1} - e^{-T} \\ \mathbf{0} & e^{-T} \end{bmatrix}, \Gamma = \begin{bmatrix} \mathbf{1} + e^{-T} - \mathbf{1} \\ \mathbf{1} - e^{-T} \end{bmatrix}, \quad \mathbf{H} = \begin{bmatrix} \mathbf{1} & \mathbf{0} \end{bmatrix}, \quad \mathbf{J} = \mathbf{0}$$

Desired performance: $t_r < 2 \sec$, $M_p < 40\%$

$$\implies \omega_n = 1 \text{ rad/sec}, \ \zeta = 0.3$$

$$\Rightarrow \alpha_c(z) = z^2 + 0.363z + 0.301$$

Designed K:
$$K = \begin{bmatrix} 0.962 & 0.469 \end{bmatrix}$$

If the states are not all available (measured), we need to design an estimator.

Lucy Y. Pao Lecture 19 Page 10 ECEN 5458

Estimator Design

Choose estimator poles to be faster:

$$\xi = 0.5, \quad \omega_n = 1.5 \text{ rad/sec}$$

$$\Longrightarrow e^{sT} \Big|_{\substack{s = \zeta \omega_n \pm j \omega_n \sqrt{1 - \zeta^2} \\ T = 2}} = -0.1910 \pm j0.1154 = p_{1e}, \quad p_{2e}$$

$$\Longrightarrow \quad \alpha_e(z) = (z - p_{1e})(z - p_{2e}) = z^2 + 0.382z + 0.0498$$

$$L = O^{-1}O_0(\beta - a)$$

$$T = 2 \sec$$

$$G(z) = \frac{1.135z + 0.594}{z^2 - 1.135z + 0.135}, \quad \Phi = \begin{bmatrix} 1 & 1 - e^{-T} \\ 0 & e^{-T} \end{bmatrix}, \quad H = \begin{bmatrix} 1 & 0 \end{bmatrix}$$

$$L = \begin{bmatrix} 1.5173 \\ 0.1385 \end{bmatrix}$$

Lucy Y. Pao Lecture 19 Page 12 ECEN 5458

Duality

Given
$$G(z) = \frac{Y(z)}{U(z)} = \frac{b_1 z^{n-1} + \cdots + b_n}{z^n + a_1 z^{n-1} + \cdots + a_n}$$

Observer canonical form:

$$\Phi_{o} = \begin{bmatrix} -a_{1} & 1 & 0 & 0 \\ -a_{2} & 0 & \ddots & 0 \\ 0 & \vdots & \vdots & \ddots & 1 \end{bmatrix}, \Gamma_{o} = \begin{bmatrix} b_{1} & 0 \\ -b_{2} & 0 \\ 0 & \vdots & \vdots & \ddots & 1 \end{bmatrix}, H_{o} = \begin{bmatrix} 1 & 0 & \cdots & 0 \end{bmatrix}, \\ J_{o} = 0$$

Control canonical form:

$$\Phi_c = \begin{bmatrix} \begin{bmatrix} -a_1 & -a_2 & \cdots & -a_n \\ 1 & 0 & \cdots & 0 \\ 0 & 0 & \ddots & \ddots \\ 0 & 0 & 0 & 1 \end{bmatrix}, \Gamma_c = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}, H_c = \begin{bmatrix} b_1 & b_2 & \cdots & b_n \end{bmatrix},$$

Canonical forms are dual: $\Phi_o = \Phi_c^T$, $\Gamma_o = H_c^T$, $H_o = \Gamma_c^T$

Lucy Y. Pao Lecture 19 Page 13 ECEN 5458

If system $\left\{\Phi,\Gamma,H,J\right\}$ is controllable, its dual form $\left\{\Phi^{T},H^{T},\Gamma^{T},J\right\}$ is observable.

ECEN 5458

Control Problem

Find:
$$K = \begin{bmatrix} k_1 & k_2 & \cdots & k_n \end{bmatrix}$$

 \implies the eigenvalues of Φ - ΓK are satisfactory.

 $\det(zI - \Phi + \Gamma K) = 0 \implies \text{satisfactory poles.}$

Estimator Problem

Find:
$$\mathbf{L} = \begin{bmatrix} \ell_1 \\ \ell_2 \end{bmatrix} \Longrightarrow \text{ the eigenvalues of } \Phi - \mathbf{LHare}$$
 satisfactory.

 \Leftrightarrow det(zI - Φ + LH) = 0 \Longrightarrow satisfactory poles.

Lucy Y. Pao Lecture 19 Page 15 ECEN 5458

The algebra to solve the two problems is the same.

If we have an algorithm to solve the control problem: $\det(z\mathbf{I} - \Phi + \Gamma \mathbf{K}) = \alpha_c(z)$

we can use the same algorithm to solve the estimator problem: $\det(zI - \Phi + LH) = \alpha_{e}(z)$

Solve for K, let $L = K^T$.