Prova P1

(08/04/2010)

Nome:

R.A.: _

1. O circuito abaixo $[I_A=4A, V_B=10V,$ $R_1=3\Omega$ e $R_2=5\Omega$] alimenta uma carga não linear que apresenta o seguinte gráfico para sua característica V xI. Pede-se o **equivalente Norton** do circuito alimentador da carga e com a utilização deste gráfico determine o ponto de operação (V,I) do circuito

$$R_N = 5\Omega$$
 $I_N = 6A$

$$(V,I) = (22.5, 1.5)$$

2. Para o mesmo circuito acima, substitua a carga dada por duas cargas em paralelo idênticas a anterior. Determine o novo ponto de operação (V,I) do circuito e as **potências** nas duas fontes, caracterizando se **fornecida** ou recebida

$$(V,I) = (17, 2.6)$$
 $P_A=116W (F)$ $P_B= 14W [R]$

$$P_{\Delta} = 116W (F)$$

$$P_{B} = 14W [R]$$

3. Para o circuito abaixo $R_1 = 12\Omega$, $R_2 = 12\Omega$, $R_3 = 6\Omega$, $E_A = 3V$, $I_B = 2.5A$, a = 6 e b = 0.25. Sabe-se pelo teorema da máxima transferência de potência a uma carga resistiva R, que esta deve ser igual a R_{TH} do **equivalente Thevenin** do circuito alimentador desta carga. Determine este valor de \mathbf{R} , o valor de \mathbf{V}_{TH} e a **potência** dissipada em R.

4. Para o circuito abaixo $I_F=10A$, $E_F=15V$, $R_1=1\Omega$, $R_2=2\Omega$, $R_3=3\Omega$, $R_4=4\Omega$, a=2 e b=3. **Desenhe** uma **árvore própria** que contenha o **resistor** R_1 para determinar, pelo **método dos laços fundamentais**, os valores da **tensão** em R_3 e da corrente I_4

 $R = 4.5\Omega$

 $V_3 = -9V$

5. Considere o circuito do exercício anterior **agora** com $\mathbf{R_1}$ =4 Ω e $\mathbf{R_4}$ =11 Ω e mesmos valores dos outros parâmetros. Baseando-se no **método dos nós**, e usando o conceito de "**super-nó**" a fim de obter o **menor numero possível** de equações, determine os valores das tensões em $\mathbf{R_1}$ e na fonte $\mathbf{I_F}$.

 $I_4 = 7A$

$$V_1 = 12.3V$$

$$V_F = -15.5V$$

6. Para o circuito abaixo: $E_A=6V$, $I_B=6A$, $R_1=1\Omega$, $R_2=4\Omega$, $R_3=1\Omega$, $R_4=2\Omega$, a=4, b=1.5. **Desenhe** uma **árvore própria** que **agora** contenha o **resistor R₂** para determinar, pelo **método dos cortes fundamentais,** os valores da tensão em R_3 e da corrente I_1

$$V_3 = -4V I_1 = 2A$$

7. Considere o circuito do exercício anterior , **agora** com $\mathbf{R_1} = 6\Omega$ e $\mathbf{R_4} = 5\Omega$ e mesmos valores dos outros parâmetros. Baseando-se no **método das malhas** e usando o conceito de **"super-malha"** a fim de obter o **menor numero possível** de equações, determine os valores das tensões em $\mathbf{R_2}$ e $\mathbf{R_4}$.

$$V_2 = -10.5V$$
 $V_4 = -11.25V$

8. Suponha que a resistência de entrada do amplificador operacional da figura abaixo é infinita e que a resistência de saída é nula e o ganho de malha aberta $\bf A$ seja pequeno. Sejam $R_1=15k\Omega$ e $R_2=135k\Omega$; para $\bf V_g=0.4V$, A=90 e $R_L=10k\Omega$ determine $\bf V_o$, $\bf E$, $\bf I_g$ e a corrente $\bf I$ na saída do Amp Op.

9. Para o mesmo circuito do exercício anterior suponha **agora** que o Amp OP seja **ideal**. Com $V_A=0.4V$ e $R_L=10k\Omega$, quais os novos valores de \textbf{V}_o , E, \textbf{I}_g e a corrente I na saída do Amp Op ?

$$V_0 = -3.6V$$
 $\epsilon = 0$ $I_g = 26.6 uV$ $I = -387 uA$

10. Para o circuito abaixo os Amp Ops são **ideais**. São dados: $V_A=4cos(6t)$ [V], $R_1{=}3k\Omega,~R_2{=}10k\Omega,~R_3{=}2k\Omega,~R_4{=}6k\Omega,~R_5{=}10k\Omega$, $R_6{=}12k\Omega$ e $R_7{=}4k\Omega$. Quais os valores de $\textbf{V_0}$ e das correntes $\textbf{I_1}$ e $\textbf{I_2}$ nas saídas dos Amp Ops ?.

$$V_0 = 8 \cos(6t) V$$
 $I_1 = -5.333\cos(6t) mA$ $I_2 = 4\cos(6t) mA$