

What is Point Cloud

- A collection of Un-ordered points with
 - Geometry: expressed as [x, y, z]
 - Color Attributes: [r g b], or [y u v]
 - Additional info: normal, timestamp, ...etc.
- Key difference from mesh: no order info

Point Cloud Capture

Passive: Camera array stereo depth sensor

Active: LiDAR, mmWave, TOF sensors

Shape From X

Recovery of 3D (shape) from one or two 2D images

- Given many images, how can we
 - a) figure out where they were all taken from?
 - b) build a 3D model of the scene?

This is (roughly) the structure from motion problem

Applications

- Object Recognition
- Robotics
- Computer Graphics
- Image Retrieval
- Localization

- Input: images with points in correspondence $p_{i,j} = (u_{i,j}, v_{i,j})$
- Output
 - structure: 3D location \mathbf{x}_i for each point p_i
 - motion: camera parameters \mathbf{R}_i , \mathbf{t}_j
- Objective function: minimize reprojection error

Input

Camera calibration & triangulation

- Suppose we know 3D points
 - and have matches between these points and an image
 - How can we compute the camera parameters?
- Suppose we have known camera parameters, each of which observes a point
 - How can we compute the 3D location of that point?

- SfM solves both of these problems at once
- A kind of chicken-and-egg problem
 - (but solvable)

First step: how to get correspondence?

Feature detection and matching

Feature detection

Detect features using SIFT [Lowe, IJCV 2004]

Feature detection

Detect features using SIFT [Lowe, IJCV 2004]

Feature matching

Match features between each pair of images

Feature matching

Estimate fundamental matrix between each pair (with RANSAC)

Correspondence estimation

 Link up pairwise matches to form connected components of matches across several images

Re-projection Error

Problem size

What are the variables need to be solved? R t P

Trevi Fountain collection

466 input photos

+ > 100,000 3D points

= very large optimization problem

Constraints vs #Unknowns

$$\underset{\{P_i\},K,\{R_i\},\{T_i\}}{\operatorname{min}} \sum_{j=1}^{M} \sum_{i=1}^{N} (u_i^j - f(K,R_j,T_j,P_i))^2 + (v_i^j - g(K,R_j,T_j,P_i))^2$$

M camera posesN points2MN point constraints

Minimize sum of squared reprojection errors:

Minimizing this function is called bundle adjustment

