

Pontificia Universidad Católica de Chile Departamento de Estadística Facultad de Matemática

Profesor: Fernando Quintana Ayudante: Daniel Acuña León

Ayudantía 8 EPG3310 - Probabilidad 8 de Mayo

1. Sea $\{E_i\}_{i\geq 1}$ una sucesión de subconjuntos de S. Demuestre que

$$I_{\limsup E_i}(s) = \limsup I_{E_i}(s), \ \forall s \in S$$

y que

$$I_{\text{lim inf } E_i}(s) = \text{lim inf } I_{E_i}(s), \ \forall s \in S$$

2. Sea S un conjunto numerable y sea $\Sigma_0 = \{A \subseteq S : |A| < \infty \text{ o } |A^c| < \infty\}$. Sea μ_0 una función en S definida como

$$\mu_0(A) = \begin{cases} 0 & \text{si } A \text{ es finito} \\ 1 & \text{si } A^c \text{ es finito} \end{cases}$$

- a) Demuestre que Σ_0 es un álgebra pero no una σ -álgebra.
- b) Muestre que μ_0 es aditiva finita pero no aditiva numerable en Σ_0 .
- c) Muestre que existe una sucesión $\{A_i\}_{i\geq 1}$ de elementos de Σ_0 tal que $A_i \uparrow S$ y $\mu_0(A_i) = 0$ para todo $i \geq 1$.
- 3. Sea F una función de distribución continua en \mathbb{R} . Sea μ la medida de Lebesgue-Stieltjes definida como $\mu(a,b] = F(b) F(a)$. Muestre que $\mu(A) = 0$ si A es un subconjunto numerable de \mathbb{R} .
- 4. Sea (S, Σ) un espacio medible y f una función positiva y Σ -medible. Para $n \in \mathbb{N}$, sea $\alpha_n : [0, \infty] \to [0, \infty]$, definida como

$$\alpha_n(x) = \begin{cases} 0 & \text{si } x = 0\\ (i-1)2^{-n} & \text{si } (i-1)2^{-n} < x \le i2^{-n}, i = 1, 2, \dots, n2^n\\ n & \text{si } n < x \end{cases}$$

Muestre que $f_n \uparrow f$, donde $f_n = \alpha_n \circ f$.

5. Sea X una variable aleatoria en un espacio de probabilidad (Ω, \mathcal{F}, P) . Sea $|\phi_X(t)|$ la norma dada por

$$|\phi_X(t)| = [(E[\cos tX])^2 + (E[\sin tX])^2]^{1/2}$$

Muestre que $|\phi_X(t_0)|=1$ para algún $t_0\neq 0$ si y sólo si existe un $a\in\mathbb{R}$ y un $h\neq 0$ tales que

$$P\{X \in \{a+jh : j \in \mathbb{Z}\}\} = 1$$

6. Sea $Y \sim N_n(0, I_n)$ y sean A y B matrices simétricas. Muestre que la f.g.m conjunta de Y^tAY y Y^tBY es $[det(I_n - 2sA - 2tB)]^{-1/2}$. Con esto muestre que dos formas cuadráticas son independientes si $AB = \mathbf{0}$.