实验六 计数器/移位寄存器显示学号

宋渝杰 18340146

一、计数器顺时针显示学号(实际上显示 17340256)

1. 实验内容

次态表:

当态			次态			
Q2	Q1	Q0	Q2	Q1	Q0	
0	0	1	1	1	1	
1	1	1	0	1	1	
0	1	1	1	0	0	
1	0	0	0	0	0	
0	0	0	0	1	0	
0	1	0	1	0	1	
1	0	1	1	1	0	
1	1	0	0	0	1	

J-K 触发器性质:

Qn	Qn+1	J	K
0	0	0	X
0	1	1	X
1	0	X	1
1	1	X	0

函数表达式:

$$J2 = Q0 + Q1$$
, $J1 = Q0 + Q2$ 反, $J0 = Q1$ $K2 = Q1 + Q0$ 反, $K1 = Q2$ 反 + $Q0$ 反, $K0 = Q2$ 反* $Q1 + Q2*Q1$ 反

设计思路说明:

使用书本的方法: 次态表->触发器性质->卡诺图(上面省略)->函数表达式->连线(下图)即可。

2. 仿真电路与结果

上图为 17340256 的一个截图

3、实验结果与分析

结果分析论证:

实验箱中没有或门,实验中把或表达式转换为与非表达式后,使用与非门实现,其他情况合乎预期。

二、74LS194 移位寄存器显示学号

1. 实验内容

194 输出与学号 BCD 码对应关系表:

194 输出			BCD 码(18340146)								
Q4	Q3	Q2	Q1	D3	D2	D1	D0	D3	D2	D1	D0
0	1	1	1	0	0	0	1	0	0	0	0
1	0	1	1	1	0	0	0	0	0	0	1
1	1	0	1	0	0	1	1	0	1	0	0
1	1	1	0	0	1	0	0	0	1	1	0

函数表达式:

左: D3 = Q3 反, D2 = Q1 反, D1 = Q2 反, D0 = Q4 反 + Q2 反

右: D3 = 0, D2 = Q2 反 + Q1 反, D1 = Q1 反, D0 = Q3 反

设计思路说明:

根据实验书上的图连接好 74LS194,实现 0111->1011->1101->1110 的循环输出,将该输出接入到 7 段管的显示选择端,然后根据上述学号函数表达式,输入到 7 段管的 BCD 码端,即可实现。

2. 仿真电路与结果

由于仿真 7 段管的输入端结构与实验箱上有很大区别,使用了 74LS47 进行编码,数码管位选通段也加了反相器(共阳极),实现效果基本一致。

上图中 A0 波形为时钟,A2-A5 为 4 位数码管端选通信号,A7-A10,A11-A14 为 8 位 BCD 码的波形

3. 实验结果与分析

结果分析论证:

结果基本符合预期。

三、实验总结

实验中遇到的问题:

- 1. 仿真中用了几个或门,而实验箱中没有或门;
- 2. 实验课前没学过移位寄存器和实验十五的内容

解决方案:

- 1. 用逻辑等价变换把"或"改成"与非",然后用实验箱的与非门实现
- 2. 自己翻书思考了半个小时后大致搞懂

收获:

- 1. 按时完成了两个实验
- 2. 提前学会了移位寄存器的原理和 74LS194 的用法