

Laboratory Report

Laboratory Exercise No.:	4	Date Performed:	Sept. 22, 2025	
Laboratory Exercise Title:	Memory Interfacing			
Name of Student: Arnold Joseph C. Najera Jr.		Document Version:	1	

Activity #1

Simulated address decoding and RAM write/read data.

Address (A ₁₉ A ₀))	M/IO	WR	ВНЕ	Memory Set Enabled	HWR	LWR	Observations
0000 0000 1111 0000 0001	00F01H	1	0	0	RAM Set 2	0	1	High bank 8 bit transfer (write)
1111 1100 0110 1000 0010	FC680H	1	0	1	ROM Set 4	1	0	Low bank 8 bit transfer (write)
0000 0101 1010 0111 1100	05A7CH	1	1	0	none	1	1	Address out of range
1111 1111 0000 0000 0010	FF002H	0	0	0	none	0	1	Accessing isolated
0000 0001 1111 1111 1111	01FFFH	1	1	1	RAM set 4	1	1	Read from memory
0000 0000 0000 0000 0001	00001H	1	1	0	RAM set 1	1	1	Read from memory
1111 1011 1111 0000 0011	FBF03H	1	0	0	none	0	1	Address out of range
0000 0000 1111 1100 1110	00FCEH	0	1	1	none	1	1	Accessing isolated
0000 0100 0000 0000 0000	04000H	1	0	0	none	0	1	Address out of range
0000 0010 0110 0101 1001	02659H	1	0	1	RAM set 5	1	1	No bank enabled

a. How many RAM and ROM chips are used?

There are:

- RAM chips = Number of sets * 2 banks = 8 * 2 = 16 chips
- ROM chips = Number of sets * 2 banks = 4 * 2 = 8 chips
- b. What is the chip size of the RAM and ROM?
 - The RAM chip size is 2K x 8
 - The ROM chip size is 4K x 8
- c. Determine the address range of the RAM and ROM

RAM chip size: **2K = 007FFH**

Set #	Start Address (Previous End + 1)	End Address (Current Start + Previous End)	Address Range (Start Address - End Address)
1	00000H	00000H + 007FFH = 007FFH	00000H – 007FFH
2	007FFH + 1 = 00800H	00800H + 007FFH = 00FFFH	00800H – 00FFFH
3	00FFFH + 1 = 01000H	01000H + 007FFH = 017FFH	01000H – 017FFH

4	017FFH + 1 = 01800H	01800H + 007FFH = 01FFFH	01800H – 01FFFH
5	01FFFH + 1 = 02000H	02000H + 007FFH = 027FFH	02000H – 027FFH
6	027FFH + 1 = 02800H	02800H + 007FFH = 02FFFH	02800H – 02FFFH
7	02FFFH + 1 = 03000H	03000H + 007FFH = 037FFH	03000H – 037FFH
8	037FFH + 1 = 03800H	03800H + 007FFH = 03FFFH	03800H – 03FFFH

ROM chip size: **4K = 00FFFH**

Set #	Start Address (Current End - Chip Size)	End Address (Previous Start - 1)	Address Range (Start Address - End Address)
1	FFFFH – 00FFFH = FF000H	FFFFFH	FF000H – FFFFFH
2	FEFFFH – 00FFFH = FE000H	FF000H – 1 = FEFFFH	FE000H – FEFFFH
3	FDFFFH – 00FFFH = FD000H	FE000H – 1 = FDFFFH	FD000H – FDFFFH
4	FCFFFH – 00FFFH = FC000H	FD000H – 1 = FCFFFH	FC000H – FCFFFH

- a. Suggest an actual RAM (static RAM) and ROM (EPROM) integrated circuit (IC) with the same size as determined in (b).
 - RAM 16K = 2K x 8 = IDT6116SA CMOS Static RAM 16K (2K x 8-Bit)

ROM 32K = 4K x 8 = M2732A NMOS 32K (4K x 8) UV EPROM

24 V_{CC} A6 [2 23 A8 22 A9 A5 [3 A4 🛮 4 21 A11 A3 [5 20 GV_{PP} M2732A 19 A10 A2 [6 18 D E A1 🛮 7 8 D 0A 17 DQ7 **6**000 16 h Q6 Q1 [10 15 Q5 14 DQ4 Q2 [11 V_{SS} [12 13 Q3 AI00781

Figure 2. DIP Pin Connections

References:

alldatasheet.com. "IDT6116SA PDF." Alldatasheet.com, 2017,
www.alldatasheet.com/datasheet-pdf/view/65726/IDT/IDT6116SA html. Accessed 3

www.alldatasheet.com/datasheet-pdf/view/65726/IDT/IDT6116SA.html. Accessed 22 Sept. 2025.

---. "M2732A PDF." Alldatasheet.com, 2025,

www.alldatasheet.com/datasheet-pdf/view/22811/STMICROELECTRONICS/M2732A.html. Accessed 22 Sept. 2025.