

Современные нейросетевые технологии

Лекция 6. Процесс обучения сетей

Вопросы

- 1. Препроцессинг данных и инициализация весов
- 2. Поиск гиперпараметров
- 3. Продвинутая регуляризация
- 4. Transfer learning

github.com/balezz/modern_dl Срок сдачи A6 – 08.10.2022 г.

Источники:

- dlcourse.ai
- cs231n.stanford.edu
- cs230.stanford.edu

НА ПРОШЛОМ ЗАНЯТИИ

Neural Networks

Linear score function:

$$f = Wx$$

2-layer Neural Network

$$f = W_2 \max(0, W_1 x)$$

$$\frac{dL}{dx} = \frac{dh}{dx} \cdot \frac{ds}{dh} \cdot \frac{dL}{ds}$$

на прошлом занятии

Learning network parameters through optimization


```
# Vanilla Gradient Descent

while True:
    weights_grad = evaluate_gradient(loss_fun, data, weights)
    weights += - step_size * weights_grad # perform parameter update
```

Landscape image is CC0 1.0 public domain Walking man image is CC0 1.0 public domain

Activation Functions

Sigmoid

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

Leaky ReLU

tanh

tanh(x)

ReLU

 $\max(0, x)$

Maxout

$$\max(w_1^T x + b_1, w_2^T x + b_2)$$

ELU

$$\begin{cases} x & x \ge 0 \\ \alpha(e^x - 1) & x < 0 \end{cases}$$

на прошлом занятии

Convolutional Layer

activation map

Перед процессом обучения

- 1. Определите препроцессинг данных.
- 2. Выберите простую архитектуру сети.
- 3. Проверьте loss на необученных весах. (e.g. 2.3 for 10 classes)
- 4. Проверьте, что сеть переобучается на малой выборке (20 samples per class).

```
Finished epoch 195 / 200: cost 0.002694, train: 1.000000, val 1.000000, lr 1.000000e-03 Finished epoch 196 / 200: cost 0.002674, train: 1.000000, val 1.000000, lr 1.000000e-03 Finished epoch 197 / 200: cost 0.002655, train: 1.000000, val 1.000000, lr 1.000000e-03 Finished epoch 198 / 200: cost 0.002635, train: 1.000000, val 1.000000, lr 1.000000e-03 Finished epoch 199 / 200: cost 0.002617, train: 1.000000, val 1.000000, lr 1.000000e-03 Finished epoch 200 / 200: cost 0.002597, train: 1.000000, val 1.000000, lr 1.000000e-03 Finished optimization. best validation accuracy: 1.000000
```

Препроцессинг данных

tf.keras.layers.Normalization()

Batch Normalization

[loffe and Szegedy, 2015]

Input: Values of x over a mini-batch: $\mathcal{B} = \{x_{1...m}\}$; Parameters to be learned: γ , β

Output: $\{y_i = BN_{\gamma,\beta}(x_i)\}$

$$\mu_{\mathcal{B}} \leftarrow \frac{1}{m} \sum_{i=1}^{m} x_i$$
 // mini-batch mean

$$\sigma_{\mathcal{B}}^2 \leftarrow \frac{1}{m} \sum_{i=1}^m (x_i - \mu_{\mathcal{B}})^2$$
 // mini-batch variance

$$\widehat{x}_i \leftarrow \frac{x_i - \mu_{\mathcal{B}}}{\sqrt{\sigma_{\mathcal{B}}^2 + \epsilon}}$$
 // normalize

$$y_i \leftarrow \gamma \hat{x}_i + \beta \equiv BN_{\gamma,\beta}(x_i)$$
 // scale and shift

Note: at test time BatchNorm layer functions differently:

The mean/std are not computed based on the batch. Instead, a single fixed empirical mean of activations during training is used.

(e.g. can be estimated during training with running averages)

First idea: Small random numbers
 (gaussian with zero mean and 1e-2 standard deviation)

$$W = 0.01* np.random.randn(D,H)$$

Works ~okay for small networks, but problems with deeper networks.

input layer had mean 0.000927 and std 0.998388 hidden layer 1 had mean -0.000117 and std 0.213081 hidden layer 2 had mean -0.000001 and std 0.047551 hidden layer 3 had mean -0.000002 and std 0.018630 hidden layer 4 had mean 0.000001 and std 0.002378 hidden layer 5 had mean 0.000002 and std 0.000532 hidden layer 6 had mean -0.000000 and std 0.000119 hidden layer 7 had mean 0.000000 and std 0.000026 hidden layer 8 had mean -0.000000 and std 0.000006 hidden layer 9 had mean 0.000000 and std 0.000001 hidden layer 10 had mean -0.000000 and std 0.000000

Forward pass: layers outputs becomes to zeros Backward pass: gradients are zeros too

Initialization too small:

Activations go to zero, gradients also zero.
No learning

Initialization too big:

Activations saturate (for tanh), Gradients zero, no learning

Initialization just right:

Nice distribution of activations at all layers, Learning proceeds nicely

This works with tanh activations

input layer had mean 0.001800 and std 1.001311 hidden layer 1 had mean 0.001198 and std 0.627953 hidden layer 2 had mean -0.000175 and std 0.486051 hidden layer 3 had mean 0.000055 and std 0.4876051 hidden layer 4 had mean -0.000306 and std 0.357108 hidden layer 5 had mean 0.000142 and std 0.320917 hidden layer 6 had mean -0.000389 and std 0.292116 hidden layer 7 had mean -0.000228 and std 0.292116 hidden layer 8 had mean -0.000291 and std 0.2543387 hidden layer 9 had mean 0.000361 and std 0.2549366 hidden layer 10 had mean 0.000139 and std 0.228008

W = np.random.randn(fan_in, fan_out) / np.sqrt(fan_in) # layer initialization

"Xavier initialization" [Glorot et al., 2010]

Reasonable initialization. (Mathematical derivation assumes linear activations)

This works with ReLU activations

процесс обучения

Поиск оптимальных гиперпараметров

Random Search vs. Grid Search

Random Search for Hyper-Parameter Optimization Bergstra and Bengio, 2012

Illustration of Bergstra et al., 2012 by Shayne Longpre, copyright CS231n 2017

Beyond Training Error

Better optimization algorithms help reduce training loss But we really care about error on new data - how to reduce the gap?

Early Stopping

Stop training the model when accuracy on the validation set decreases

Or train for a long time, but always keep track of the model snapshot that worked best on val

Regularization: Dropout

In each forward pass, randomly set some neurons to zero Probability of dropping is a hyperparameter; 0.5 is common

Regularization: Dropout

How can this possibly be a good idea?

Forces the network to have a redundant representation; Prevents co-adaptation of features

Regularization: Data Augmentation

Data Augmentation

Horizontal Flip

Color Jitter

Simple: Randomize contrast and brightness

Продвинутая регулиризация

Data Augmentation Random crops and scales

Training: sample random crops / scales ResNet:

- 1. Pick random L in range [256, 480]
- Resize training image, short side = L
- 3. Sample random 224 x 224 patch

- 1. Resize image at 5 scales: {224, 256, 384, 480, 640}
- 2. For each size, use 10 224 x 224 crops: 4 corners + center, + flips

Transfer learning

Transfer Learning with CNNs

1. Train on Imagenet

FC-1000 FC-4096 FC-4096 MaxPool Conv-512 Conv-512 MaxPool Conv-512 Conv-512 MaxPool Conv-256 Conv-256 MaxPool Conv-128 Conv-128 MaxPool Conv-64 Conv-64 Image

2. Small Dataset (C classes)

Donahue et al, "DeCAF: A Deep Convolutional Activation Feature for Generic Visual Recognition", ICML 2014 Razavian et al, "CNN Features Off-the-Shelf: An Astounding Baseline for Recognition", CVPR Workshops 2014

3. Bigger dataset

