

## UNIVERSIDADE FEDERAL DO TOCANTINS CIÊNCIA DA COMPUTAÇÃO APRENDIZADO DE MÁQUINA

ERIC JONAI COSTA SOUZA

Trabalho final

Palmas, Junho de 2023

## Introdução

O dataset escolhido para a realização deste trabalho é o <u>Credit Card Fraud | Kaggle</u>, que traz várias colunas referentes a informações de compras efetuadas por um cartão de crédito. Entre essas variáveis, estão a distância da transação em relação à residência, a distância entre a transação atual e a anterior, a relação entre o valor da compra atual e a média das compras, indicadores sobre o tipo de transação (como se foi feita por aproximação ou por meio de um código PIN) e se a compra foi realizada online. O objetivo principal é identificar se uma transação é fraudulenta ou não, o que torna esse problema um desafio de classificação binária.

Ao explorar o dataset, é possível notar a presença de uma classe minoritária representando as transações fraudulentas, enquanto a classe majoritária representa as transações autênticas. Isso indica a existência de um desequilíbrio de classe, o que pode afetar o desempenho dos modelos de aprendizado de máquina. Para abordar esse problema, faz-se necessário considerar técnicas de reamostragem, como undersampling ou oversampling. Todas as informações do dataset são numéricas e este não possui dados faltantes, o que colabora com a redução do esforço no pré-processamento da informação. Existem aproximadamente 1 milhão de registros no dataset.

A escolha deste dataset é antiga, pois um trabalho similar foi solicitado na disciplina de deep learning, apesar disso, a rede neural de classificação apresentada é única para as demandas deste trabalho. O objetivo é treinar uma rede neural adequadamente precisa para identificar fraudes, o imenso quantitativo de registros permite o treinamento adequado da rede neural, enquanto o desbalanço é facilmente contornado ao repartir o conjunto de treinamento em partes menos desbalanceadas. O resultado esperado é uma rede que seja capaz de deixar o menor valor possível de falsos negativos, isto é, operações fraudulentas confundidas como autênticas, enquanto possui um moderado grau de tolerância para falsos positivos.

| # distance_f =         | # distance_f =          | # ratio_to_m =          | # repeat_ret = | # used_chip = | # used_pin = | # online_order = | # fraud = |
|------------------------|-------------------------|-------------------------|----------------|---------------|--------------|------------------|-----------|
| 57.877856583897<br>23  | 0.3111400080477<br>545  | 1.9459399775518<br>593  | 1.0            | 1.0           | 0.0          | 0.0              | 0.0       |
| 10.829942699255<br>545 | 0.1755915022816<br>6587 | 1.2942188106198<br>573  | 1.0            | 0.0           | 0.0          | 0.0              | 0.0       |
| 5.0910794906169<br>96  | 0.8051525945853<br>258  | 0.4277145611942<br>7587 | 1.0            | 0.0           | 0.0          | 1.0              | 0.0       |
| 2.2475643282963<br>613 | 5.6000435470723<br>2    | 0.3626625780570<br>9584 | 1.0            | 1.0           | 0.0          | 1.0              | 0.0       |
| 44.190936002618<br>37  | 0.5664862680583<br>477  | 2.2227672978404<br>707  | 1.0            | 1.0           | 0.0          | 1.0              | 0.0       |
| 5.5864076741864<br>07  | 13.261073268058<br>121  | 0.0647684653704<br>6335 | 1.0            | 0.0           | 0.0          | 0.0              | 0.0       |
| 3.7240191247148<br>107 | 0.9568379284821<br>842  | 0.2784649449081<br>5554 | 1.0            | 0.0           | 0.0          | 1.0              | 0.0       |
|                        |                         |                         |                |               |              |                  |           |

Primeiras linhas do dataset

## Metodologia

Como o dataset é por padrão composto exclusivamente de números, o pré-processamento dos dados é relativamente curto e simples. Não existem dados faltantes e existem apenas três colunas viáveis para busca e eliminação de outliers, distância de casa, distância da última compra e relação entre esta compra e a média de todas as compras. Entendi que estes valores são relevantes e potencialmente verdadeiros e valiosos demais para remoção mesmo em casos extremos, observado que uma pessoa autêntica efetuar uma compra muito maior do que a média ocasionalmente e um fraudador obter acesso a um cartão em outro país são ambas ocorrências possíveis. Assim, não houve tratamento para outliers.

O desbalanceamento do dataset foi sobrepujado de forma simples, a biblioteca Panda, do Python, permite que eu selecione linhas do arquivo de forma discriminada, ainda que aleatoriamente. Assim, selecionei 40 mil linhas dentre as que representavam uma transação fraudulenta e 60 mil linhas dentre 900 mil que marcaram transações autênticas. Estes números específicos foram obtidos por tentativa e erro, apesar da relação extrema onde 40% de todas as transações são fraudulentas no conjunto de treinamento, a rede neural obteve um excelente desempenho no final. Para informativo de comparação, meu primeiro conjunto de treinamento foi feito com 400 mil linhas de transações autênticas (10% de fraudulentas), mas a rede neural fez um trabalho pior, classificando a maior parte das transações como autênticas e criando falsos negativos, violando o resultado esperado.

Com a biblioteca Tensorflow, criei a rede neural propriamente dita. Escolhi a ativação ReLU já que não teria uso para valores negativos e linearidade nos dados obtidos. Para a camada de saída, escolhi a ativação sigmoid por se tratar de um problema de classificação binária (ou é fraudulenta, ou é autêntica). Utilizei o meu conhecimento adquirido no trabalho 3, onde cada nova camada inserida na rede neural perde gradativamente a capacidade de se atualizar, e, por isso, optei por manter apenas 4 camadas, onde duas são ocultas. Também por tentativa e erro, mantive 64, 32, 32 e 128 neurônios, um número menor causava a rede a inserir uma grande quantidade de falsos negativos, o que indicava que a rede possuía menor capacidade de reconhecimento de padrões. Não cheguei a testar com mais neurônios.

Por fim, emiti gráficos de loss, validation loss e matriz de confusão. A rede obteve acurácia entre 95% e 99% durante o treinamento, mas não considerei esta informação valiosa porque a grande quantidade de transações autênticas causava a acurácia a sempre encontrar valores altos. O gráfico de loss suaviza no final, o que indica que a rede neural estava alcançando o limite do seu conhecimento possível, e o validation loss variava de forma caótica sempre abaixo do loss, mas obteve

aumento no final, indicando que o treinamento foi encerrado no momento adequado. Não acreditando que exista algo mais a ser feito, fico satisfeito com a rede neural.

## Resultados





A linha de loss aponta quão distantes estão as previsões do modelo em relação aos valores reais, e mostra que a rede neural estava chegando no ápice ao possuir gradativamente menos redução de erro em relação às épocas. A informação de validation loss na rede neural é uma métrica calculada durante o treinamento, mas usando um conjunto de validação separado, dentre muitas coisas, útil para encontrar overfitting. O fato dela obter um leve aumento após a época 8 indica que o treinamento do modelo foi encerrado no tempo adequado, ou a rede poderia ter decaído na qualidade.

Por fim, plotei a matriz de confusão. Como a camada de saída com ativação sigmoid retorna valores fracionados entre 0 e 1, já que a camada ReLU não emite valores negativos, considerei todo valor acima de 0.5 como fraudulento e abaixo de 0.5 como autênticos. O resultado foi uma matriz que eu considero excelente, uma alta relação de acertos por erros somada a uma quantidade extremamente baixa de falsos negativos mostram que a rede neural chegou ao resultado que eu esperava.

