Lecture 28 Conformal Mapping_2

Dr. Mahesha Narayana

Intended learning Outcomes

At the end of this lecture, student will be able to:

- Illustrate conformal mapping
- Discuss the properties of standard conformal mappings
- Solve application oriented problems using conformal mappings

Topics

- Complex function as mapping
- Exponential mapping
- Reciprocal function
- Translation and rotation
- Magnification
- Power function
- Conformal mapping

Complex Functions as Mapping

The complex function w = f(z) = u(x, y) + iv(x, y)may be considered as the planar transformation. We also call w = f(z) is the image of z under f.

Exponential Mapping $f(z) = e^z$

- Consider $\text{Re}(z) = \alpha$ (a constant) which represents lines parallel to imaginary axis, then $z = \alpha + iy$, $0 \le y < \infty$, $w = f(z) = e^{\alpha} e^{iy}$. This represents a semicircle with center w = 0 and radius $r = e^{\alpha}$ in w plane.
- Consider $Im(z) = \beta$ (a constant) which represents lines parallel to real axis, then $z = x + i\beta$, $-\infty \le x \le \infty$, $w = f(z) = e^x e^{i\beta}$. This represents a ray with Arg w = b and $|w| = e^x$ in w plane.

Reciprocal function f(z) = 1/z

- The function f(z) = 1/z = u + iv has domain $z \neq 0$ with $u(x,y) = x/(x^2+y^2)$ and $v(x,y) = -y/(x^2+y^2)$.
- For $a \neq 0$, u(x, y) = a represents family of circles $(x \alpha)^2 + y^2 = \alpha^2$ (where $\alpha = \frac{1}{2}a$) in w plane.
- For $b \neq 0$, v(x, y) = b represents family of circles $x^2 + (y + \beta)^2 + = \beta^2$ (where $\beta = \frac{1}{2}b$) in w plane.

Translation and Rotation

- ightharpoonup The function $f(z) = z + z_0$ is interpreted as a translation.
- ightharpoonup The function $g(z) = e^{i\theta_0}z$ is interpreted as a rotation.

Example

Find a complex function that maps $-1 \le y \le 1$ onto $2 \le x \le 4$.

Solution

We find that $-1 \le y \le 1$ is first rotated through 90° and shifted 3 units to the right. Thus the mapping is

Magnification

A magnification is the function $f(z) = \alpha z$, where α is a fixed positive real number. Note that $|w| = |\alpha z| = \alpha |z|$.

Examples

- 1. Consider g(z) = az + b where $a = r_0 e^{i\theta_0}$ then the vector is rotated through θ_0 , magnified by a factor r_0 , and then translated using b
- 2. The function as $f(z) = \frac{1}{2}z + (1+i)$ maps the disk $|z| \le 1$ onto the disk $|w (1+i)| \le \frac{1}{2}$.

Power Function

A complex function $f(z) = z^{\alpha}$ where α is a fixed positive number, is called a real power function. If $z = re^{i\theta}$, then $w = f(z) = r^{\alpha}e^{i\alpha\theta}$.

Conformal Mappings

A complex mapping w = f(z) defined on a domain D is called conformal t $z = z_0$ in D when f(z) preserves the angle between two curves in D that intersect at the point $z = z_0$.

Important Result

If f(z) is analytic in the domain D and $f'(z) \neq 0$, then f is conformal at $z = z_0$

Examples

- 1. The analytic function $f(z) = e^z$ is conformal at all points, since $f'(z) = e^z$ is never zero.
- 2. The analytic function $g(z) = z^2$ is conformal at all points except z = 0, since $g'(z) = 2z \neq 0$.

The mapping $f(z) = \sin z$

- The vertical strip $-\pi/2 \le x \le \pi/2$ is called the fundamental region of the trigonometric function $w = \sin z$.
- A vertical line x = a in the interior of the region can be described by z = a + it, $-\infty \le t \le \infty$. Then $u + iv = \sin(a + it) = \sin a \cosh t + i \cos a \sinh t$. Since $\cosh^2 t \sinh^2 t = 1$, we have $\frac{u^2}{\sin^2 a} \frac{v^2}{\cos^2 a} = 1$
- A horizontal line y = b in the interior of the region can be described by z = t + ib, $-\infty \le t \le \infty$. Then

$$\frac{u^2}{\cosh^2 b} + \frac{v^2}{\sin^2 b} = 1$$

Session Summary

- A complex function w = f(z) gives a **mapping of its domain** in the complex z-plane onto its **range of values** in the complex w-plane. If f(z) is analytic, this mapping is **conformal**, that is, **angle-preserving**, i.e., The angle between any two intersecting curves and the corresponding angle between their image curves are the same.
- Linear fractional transformations, also called Möbius
 transformations map the extended complex plane onto itself.
- They solve the problems of mapping half-planes onto half-planes or disks, and disks onto disks or half-planes.

