Probabilités et Statistiques 1. Loi d'une variable continue

EPITA Guillaume Euvrard

Variable aléatoire discrète ou continue

Imaginons un serveur qui reçoit des requêtes et considérons les variables aléatoires :

- X= « Nombre de requêtes reçues en 1 minute ». X prend ses valeurs dans $\{0,1,2,\cdots,\}$.
- T= « Temps d'attente avant la prochaine requête ». T prend ses valeurs dans \mathbb{R}^+ .

On dit que X est une variable discrète, T une variable continue.

Variable aléatoire discrète ou continue

Étant donné un espace probabilisé (Ω,Σ,P) , un variable aléatoire est une fonction $X:\Omega\longrightarrow\mathbb{R}.$

L'ensemble de ses valeurs possibles est $X(\Omega)$.

On s'intéresse à la **loi de** X : pour $A\subset X(\Omega)$, on veut définir $P(X\in A)$.

- Quand on peut écrire $X(\Omega)=\{x_0,x_1,x_2,\cdots\}$, on dit que X est une variable discrète.
- f 2 Si $X(\Omega)$ contient des intervalles, X est une variable continue.

Dans ce cas, $X(\Omega)=\{x_n,n\in K\}$ avec K de la forme $[\![1,N]\!]$ ou $K=\mathbb{N}.$

- \bullet Cas fini : $X(\Omega)=\{x_n,n\in [\![1,N]\!]\}=\{x_1,x_2,\cdots,x_N\}$
- Cas infini : $X(\Omega) = \{x_n, n \in \mathbb{N}\} = \{x_0, x_1, x_2, \dots\}$

Dans ce cas, $X(\Omega)=\{x_n,n\in K\}$ avec K de la forme $[\![1,N]\!]$ ou $K=\mathbb{N}.$

- \bullet Cas fini : $X(\Omega)=\{x_n,n\in [\![1,N]\!]\}=\{x_1,x_2,\cdots,x_N\}$
- \bullet Cas infini : $X(\Omega)=\{x_n,n\in\mathbb{N}\}=\{x_0,x_1,x_2,\cdots\}$

On obtient la loi de X par la données des $P(X=x_n), n \in K$.

Dans ce cas, $X(\Omega)=\{x_n,n\in K\}$ avec K de la forme $[\![1,N]\!]$ ou $K=\mathbb{N}.$

- \bullet Cas fini : $X(\Omega)=\{x_n,n\in [\![1,N]\!]\}=\{x_1,x_2,\cdots,x_N\}$
- Cas infini : $X(\Omega)=\{x_n,n\in\mathbb{N}\}=\{x_0,x_1,x_2,\cdots\}$

On obtient la loi de X par la données des $P(X=x_n), n \in K$.

Pour tout $A \subset X(\Omega)$

$$A = \{x_{k_1}, x_{k_2}, \cdots\} \qquad \text{et} \qquad P(X{\in}A) = \sum P(X{=}x_{k_n}\}$$

Dans ce cas, $X(\Omega)=\{x_n,n\in K\}$ avec K de la forme $[\![1,N]\!]$ ou $K=\mathbb{N}.$

- \bullet Cas fini : $X(\Omega)=\{x_n,n\in [\![1,N]\!]\}=\{x_1,x_2,\cdots,x_N\}$
- Cas infini : $X(\Omega)=\{x_n,n\in\mathbb{N}\}=\{x_0,x_1,x_2,\cdots\}$

On obtient la loi de X par la données des $P(X=x_n), n \in K$.

Pour tout $A \subset X(\Omega)$ et pour $B \subset \mathbb{R}$, on prend $A = B \cap X(\Omega)$.

$$A = \{x_{k_1}, x_{k_2}, \cdots\} \qquad \text{et} \qquad P(X{\in}A) = \sum P(X{=}x_{k_n}\}$$

Dans ce cas, les évènements « $X \in \{x_n\}$ » engendrent $\mathcal{P}\big(X(\Omega)\big)$. Ils permettent de définir

$$P: \left\{ \begin{array}{ccc} \mathcal{P}(X(\Omega)) & \longrightarrow & \mathbb{R} \\ A & \longmapsto & P(X \in A) \end{array} \right.$$

On en déduit $P(X{\in}A)$ pour tout $A\subset X(\Omega)$, puis pour tout $A\subset\mathbb{R}.$

Dans ce cas, les évènements « $X \in \{x_n\}$ » engendrent $\mathcal{P}\big(X(\Omega)\big)$. Ils permettent de définir

$$P: \left\{ \begin{array}{ccc} \mathcal{P}(X(\Omega)) & \longrightarrow & \mathbb{R} \\ A & \longmapsto & P(X \in A) \end{array} \right.$$

On en déduit $P(X{\in}A)$ pour tout $A\subset X(\Omega)$, puis pour tout $A\subset\mathbb{R}.$

If y a une contrainte :
$$\sum_{n \in K} P(X{=}x_n) = 1$$

Cas d'une variable continue

Définition

Une variable aléatoire X est continue si l'ensemble $X(\Omega)$ de ses valeurs possibles est un intervalle de $\mathbb R$.

Cas d'une variable continue

Définition

Une variable aléatoire X est continue si l'ensemble $X(\Omega)$ de ses valeurs possibles est un intervalle de $\mathbb R$.

Théorème

Aucun intervalle de R n'est dénombrable.

On ne peut donc pas écrire $X(\Omega) = \{x_1, x_2, x_3, \dots\}$.

Cas d'une variable continue

Définition

Une variable aléatoire X est continue si l'ensemble $X(\Omega)$ de ses valeurs possibles est un intervalle de \mathbb{R} .

Théorème

Aucun intervalle de R n'est dénombrable.

On ne peut donc pas écrire $X(\Omega)=\{x_1,x_2,x_3,\cdots\}$.

Pour s'en sortir, on ne va pas chercher à définir $P(X{\in}A)$ pour tout $A\subset\mathbb{R}.$

Exemple : si on pose $P(X \in]-\infty,3])=0.3$, on peut déduire

$$P(X \in \emptyset) = 0$$
 $P(X \in]3, +\infty[) = 0.7$ $P(X \in \mathbb{R}) = 1$

On dit que $\Sigma = \{\emptyset,]-\infty, 3],]3, +\infty[, \mathbb{R}\}$ est une *tribu*.

Un peu de formalisme

Définition

Une tribu de $\mathbb R$ est un ensemble $\Sigma\subset\mathcal P(\mathbb R)$ tel que :

- $\mathbf{0} \ \mathbb{R} \in \Sigma$
- ② Pour tout $A \in \Sigma$, $\overline{A} \in \Sigma$

Un peu de formalisme

Définition

Une tribu de $\mathbb R$ est un ensemble $\Sigma\subset\mathcal P(\mathbb R)$ tel que :

- \bullet $\mathbb{R} \in \Sigma$
- $\textbf{ 9} \text{ Pour toute famille } (A_n, n \in K) \text{ de } \Sigma \text{ (avec } K \subset \mathbb{N}), \ \bigcup_{n \in K} A_n \in \Sigma$

Exemple:
$$\Sigma = \{\emptyset,]-\infty, 3],]3, +\infty[, \mathbb{R}\}.$$

 Σ est la plus petite tribu qui contient $]-\infty,3].$ C'est la tribu $\it engendr\'ee$ par $]-\infty,3].$

Un peu de formalisme

Définition

Une tribu de $\mathbb R$ est un ensemble $\Sigma\subset\mathcal P(\mathbb R)$ tel que :

- $\mathbf{0} \ \mathbb{R} \in \Sigma$
- **3** Pour toute famille $(A_n, n \in K)$ de Σ (avec $K \subset \mathbb{N}$), $\bigcup_{n \in K} A_n \in \Sigma$

Définition

Une loi de probabilité sur Σ est une fonction $P:\Sigma\longrightarrow\mathbb{R}^+$ telle que :

- $P(X \in \mathbb{R}) = 1$
- ② Pour toute famille disjointe $(A_n, n \in K)$ de Σ (avec $K \subset \mathbb{N}$),

$$P\left(X \in \bigsqcup_{n \in K} A_n\right) = \sum_{n \in K} P(X \in A_n)$$

Exemples

Définition

Une loi de probabilité sur Σ est une fonction $P:\Sigma\longrightarrow\mathbb{R}^+$ telle que :

- $P(X \in \mathbb{R}) = 1$
- ② Pour toute famille disjointe $(A_n, n \in K)$ de Σ (avec $K \subset \mathbb{N}$),

$$P\left(X \in \bigsqcup_{n \in K} A_n\right) = \sum_{n \in K} P(X \in A_n)$$

• $\Sigma = \left\{\emptyset, \]-\infty, 3], \]3, +\infty[, \mathbb{R} \right\}$ et posons $P\big(X \in]-\infty, 3]\big) = 0.3$ On déduit : $P\big(X \in \emptyset) = 0$ $P\big(X \in]3, +\infty[\big) = 0.7$ $P\big(X \in \mathbb{R}) = 1$ On dit que Σ est la tribu engendrée par $]-\infty, 3]$.

Exemples

Définition

Une loi de probabilité sur Σ est une fonction $P:\Sigma\longrightarrow\mathbb{R}^+$ telle que :

- $P(X \in \mathbb{R}) = 1$
- ② Pour toute famille disjointe $(A_n, n \in K)$ de Σ (avec $K \subset \mathbb{N}$),

$$P\left(X \in \bigsqcup_{n \in K} A_n\right) = \sum_{n \in K} P(X \in A_n)$$

- $\Sigma = \{\emptyset,]-\infty, 3],]3, +\infty[,\mathbb{R}\}$ et posons $P\big(X\in]-\infty, 3]\big) = 0.3$ On déduit : $P\big(X\in\emptyset\big) = 0$ $P\big(X\in]3, +\infty[\big) = 0.7$ $P\big(X\in\mathbb{R}\big) = 1$ On dit que Σ est la tribu *engendrée* par $]-\infty, 3].$
- Tribu engendrée par $\{]-\infty,3],]-\infty,5]\}$? Que peut-on déduire de $P\big(X\in]-\infty,3]\big)$ et $P\big(X\in]-\infty,5]\big)$?

Tribu borélienne sur $\mathbb R$ et fonction de répartition

Définition

- **1** La tribu borélienne est la tribu Σ engendrée par tous les intervalles $]-\infty,x],\ x\in\mathbb{R}.$
- $oldsymbol{\circ}$ La fonction de répartition d'une variable aléatoire X est la fonction

$$F_X: \left\{ \begin{array}{ccc} \mathbb{R} & \longrightarrow & [0,1] \\ x & \longmapsto & P(X \in]-\infty, x] \right)$$

Tribu borélienne sur $\mathbb R$ et fonction de répartition

Définition

- **1** La tribu borélienne est la tribu Σ engendrée par tous les intervalles $]-\infty,x],\ x\in\mathbb{R}.$
- $oldsymbol{ol}oldsymbol{ol}ol{ol}}}}}}}}}}}}}}}}}}}}}}$

$$F_X: \left\{ \begin{array}{ccc} \mathbb{R} & \longrightarrow & [0,1] \\ x & \longmapsto & P(X \in]-\infty, x] \right\}$$

Exemple:
$$F_X(x) = \left| \begin{array}{ccc} 0 & \text{si } x < 0 \\ \frac{x}{2} & \text{si } 0 \leqslant x < 2 \\ 1 & \text{si } 2 \leqslant x \end{array} \right|$$

Tribu borélienne sur $\mathbb R$ et fonction de répartition

Définition

- **1** La tribu borélienne est la tribu Σ engendrée par tous les intervalles $]-\infty,x],\ x\in\mathbb{R}.$
- $oldsymbol{Q}$ La fonction de répartition d'une variable aléatoire X est la fonction

$$F_X: \left\{ \begin{array}{ccc} \mathbb{R} & \longrightarrow & [0,1] \\ x & \longmapsto & P(X \in]-\infty, x] \right\}$$

Exemple :
$$F_X(x) = \left| \begin{array}{ccc} 0 & \text{si } x < 0 \\ \frac{x}{2} & \text{si } 0 \leqslant x < 2 \\ 1 & \text{si } 2 \leqslant x \end{array} \right|$$

La fonction de répartition F vérifie :

- $oldsymbol{0}$ F est croissante
- $2 \lim_{x \to -\infty} F(x) = 0 \quad \text{et } \lim_{x \to +\infty} F(x) = 1$

La fonction de répartition F vérifie :

- $oldsymbol{0}$ F est croissante
- $2 \lim_{x \to -\infty} F(x) = 0 \quad \text{et } \lim_{x \to +\infty} F(x) = 1$

Pour tout $(a,b) \in \mathbb{R}^2$ tel que $a \leqslant b$,

- $\ \, \boldsymbol{2} \ \,]a,b] \in \Sigma \quad \text{et} \quad P\big(\boldsymbol{X} {\in}]a,b] \big) = F(b) F(a)$

La fonction de répartition F vérifie :

- $oldsymbol{0}$ F est croissante
- $2 \lim_{x \to -\infty} F(x) = 0 \quad \text{et } \lim_{x \to +\infty} F(x) = 1$

Pour tout $(a,b) \in \mathbb{R}^2$ tel que $a \leqslant b$,

- $\ \, \boldsymbol{2} \ \,]a,b] \in \Sigma \quad \text{et} \quad P\big(\boldsymbol{X} {\in}]a,b] \big) = F(b) F(a)$

La fonction de répartition F vérifie :

- $oldsymbol{0}$ F est croissante
- $2 \lim_{x \to -\infty} F(x) = 0 \quad \text{et } \lim_{x \to +\infty} F(x) = 1$

Pour tout $(a,b) \in \mathbb{R}^2$ tel que $a \leqslant b$,

$$\ \, \boldsymbol{2} \ \,]a,b] \in \Sigma \quad \text{et} \quad P\big(\boldsymbol{X} {\in}]a,b] \big) = F(b) - F(a)$$

$$\qquad \qquad \bullet \quad [a,+\infty[\in \Sigma \quad \text{et} \quad P\big(X \in [a,+\infty[\big) = 1 - \lim_{x \to a^-} F(x) \big)$$

La fonction de répartition F vérifie :

- $oldsymbol{0}$ F est croissante

Pour tout $(a,b) \in \mathbb{R}^2$ tel que $a \leqslant b$,

- $2 \quad]a,b] \in \Sigma \quad \text{et} \quad P\big(X \in]a,b]\big) = F(b) F(a)$
- $\qquad \qquad \bullet \quad [a,+\infty[\in \Sigma \quad \text{et} \quad P\big(X \in [a,+\infty[\big) = 1 \lim_{x \to a^-} F(x) \big)$

Remarque: si F continue en a, alors

$$P(X \in [a, a]) = F(a) - \lim_{x \to a^{-}} F(x) = 0$$

Si
$$x \in [a, b]$$
, $F(x) = \frac{x - a}{b - a}$

Si
$$x \in [a, b]$$
, $F(x) = \frac{x - a}{b - a}$

Ainsi,
$$P\big(X \in [x_1,x_2]\big) = \frac{x_2-x_1}{b-a}$$

Si
$$x\in[a,b],\quad F(x)=rac{x-a}{b-a}$$
 Ainsi, $Pig(X\in[x_1,x_2]ig)=rac{x_2-x_1}{b-a}$

Si
$$x \in [a, b]$$
, $F(x) = \frac{x - a}{b - a}$

Ainsi,
$$P(X \in [x_1, x_2]) = \frac{x_2 - x_1}{b - a}$$

$$P(X=x_1) = F(x_1) - \lim_{x_1^-} F(x) = 0.5$$

Si
$$x\in[a,b],\quad F(x)=rac{x-a}{b-a}$$
 Ainsi, $Pig(X\in[x_1,x_2]ig)=rac{x_2-x_1}{b-a}$

$$P(X=x_1) = F(x_1) - \lim_{x_1^-} F(x) = 0.5$$

$$P(X=x_2) = F(x_2) - \lim_{x_2^-} F(x) = 0.3$$

$$P(X=x_3) = F(x_3) - \lim_{x_3^-} F(x) = 0.2$$

Si
$$x \in [a, b]$$
, $F(x) = \frac{x - a}{b - a}$

Ainsi,
$$P(X \in [x_1, x_2]) = \frac{x_2 - x_1}{b - a}$$

Fonction de densité

Soit X une variable aléatoire et F sa fonction de répartition.

Définition

S'il existe une fonction f telle que $F(x) = \int_{-\infty}^x f(t) \, \mathrm{d}t$ alors f est une densité de X.

Fonction de densité

Soit X une variable aléatoire et F sa fonction de répartition.

Définition

S'il existe une fonction f telle que $F(x) = \int_{-\infty}^x f(t) \, \mathrm{d}t$ alors f est une densité de X.

Remarque: on a alors souvent F'(x) = f(x). Mais pas toujours.

Exemple: loi uniforme sur [a,b].

Exemple de densité : loi exponentielle

$$f(x) = \begin{vmatrix} 0 & \sin x < 0 \\ e^{-x} & \sin x > 0 \end{vmatrix}$$

Exemple de densité : loi exponentielle

$$f(x) = \begin{vmatrix} 0 & \sin x < 0 \\ e^{-x} & \sin x > 0 \end{vmatrix}$$

$$F(x) = \begin{vmatrix} 0 & \sin x < 0 \\ 1 - e^{-x} & \sin x \geqslant 0 \end{vmatrix}$$

Interprétation

Vision exacte

$$P(X \in [a,b]) = \int_a^b f(x) \, \mathrm{d}x$$

Vision approchée

Interprétation

Vision exacte

$$P(X \in [a, b]) = \int_a^b f(x) \, \mathrm{d}x$$

Vision approchée

$$P(X \in [a, b]) \approx \sum_{x_k \in [a, b]} f(x_k) \delta x$$

Propriété de la densité

Soit X une variable aléatoire admettant une densité f.

- $oldsymbol{0}$ f est positive.
- 2 L'intégrale $\int_{-\infty}^{+\infty} f(t) \, \mathrm{d}t$ converge et vaut 1.
- $\qquad \qquad \textbf{9} \ \, \mathsf{Pour} \ \, \mathsf{tout} \, \, [a,b] \subset \mathbb{R}, \, \, P(X \in [a,b]) = \int_a^b f(t) \, \mathsf{d}t.$

Propriété de la densité

Soit X une variable aléatoire admettant une densité f.

- $oldsymbol{0}$ f est positive.
- 2 L'intégrale $\int_{-\infty}^{+\infty} f(t) \, \mathrm{d}t$ converge et vaut 1.
- $\bullet \ \, \mathsf{Pour} \ \mathsf{tout} \ [a,b] \subset \mathbb{R}, \ P(X \in [a,b]) = \int_a^b f(t) \, \mathsf{d}t.$

Inversement, tout fonction f satisfaisant ces propriétés est une densité.

Propriété de la densité

Soit X une variable aléatoire admettant une densité f.

- $oldsymbol{0}$ f est positive.
- 2 L'intégrale $\int_{-\infty}^{+\infty} f(t) \, \mathrm{d}t$ converge et vaut 1.

Inversement, tout fonction f satisfaisant ces propriétés est une densité.

De plus la fonction de répartition F est continue. Ainsi, pour tout $[a,b]\subset\mathbb{R}$:

- P(X=a) = 0
- $P(X \in]a,b] = P(X \in [a,b]) = \int_a^b f(t) dt$

• Pour décrire la distribution d'une variable continue X, on cherche les $P(X \in A)$, mais pas pour tout $A \subset \mathbb{R}$.

- Pour décrire la distribution d'une variable continue X, on cherche les $P(X \in A)$, mais pas pour tout $A \subset \mathbb{R}$.
- ② Toute variable aléatoire X admet une fonction de répartition : $F(x) = P(X \in]-\infty, x]) = P(X \leqslant x)$

- Pour décrire la distribution d'une variable continue X, on cherche les $P(X \in A)$, mais pas pour tout $A \subset \mathbb{R}$.
- ② Toute variable aléatoire X admet une fonction de répartition : $F(x) = P\big(X \in]-\infty, x]\big) = P(X \leqslant x)$
- De nombreuses variables continues admettent une densité :

$$F(x) = \int_{-\infty}^{x} f(t) \, \mathrm{d}t$$

- Pour décrire la distribution d'une variable continue X, on cherche les $P(X \in A)$, mais pas pour tout $A \subset \mathbb{R}$.
- ② Toute variable aléatoire X admet une fonction de répartition : $F(x) = P\big(X \in]-\infty, x]\big) = P(X \leqslant x)$
- De nombreuses variables continues admettent une densité :

$$F(x) = \int_{-\infty}^{x} f(t) \, \mathrm{d}t$$

• Pour tout $[a,b] \subset \mathbb{R}$, $P(X \in [a,b]) = \int_a^b f(t) \, \mathrm{d}t$