TABELA II Corrente DC e tensão de saída

Corrente DC [A]	V _{saída} sem offset [V]	V _{saída} [V]
1,4	-3,2	-9,33
1,2	-2,78	-8,91
1,0	-2,34	-8,47
0,8	-1,91	-8,04
0,6	-1,43	-7,56
0,4	-0,96	-7,09
0,2	-0,4	-6,53
0	0	-6,13
-0,2	0,53	-5,6
-0,4	1,03	-5,1
-0,6	1,51	-4,62
-0,8	1,93	-4,2
-1,0	2,46	-3,67
-1,2	2,84	-3,29
-1,4	3,29	-2,84

V. Análise dos Resultados

A partir da medida da indutância e das dimensões do circuito (l_g , l_f e A), dadas no roteiro, podemos calcular a permeabilidade da ferrite e a relutância total do circuito com o auxílio das seguintes equações:

$$L = \frac{N^2}{\Re}$$

$$\Re \approx \frac{l_g}{\mu_0 A} + \frac{l_f}{\mu_f A}$$

Sabendo que o enrolamento possui N=50 espiras determinamos a relutância:

$$\Re = \frac{50^2}{170 \times 10^{-6}} = 14705882, 352941 \left[\frac{Ae}{Wb} \right]$$

Assim, determinamos também a permeabilidade do ferrite:

$$\mu_f = \left[\left(\Re - \frac{l_g}{\mu_0 A} \right) \frac{A}{l_f} \right]^{-1} = -4,16207 \times 10^{-5} \left[\frac{H}{m} \right]$$

Após coletar todos os dados e completar a tabela II plotamos a curva da tensão de saída em função da corrente:

Fig. 3. Curva V x I

Analisando o gráfico da figura 3 podemos notar que a tensão de saída se comporta linearmente em função da corrente. Essa caraceristica constata que o circuito é linear.

Para completar, utilizamos a relação $B=\frac{NI}{\Re A}$ para calcular a densidade do campo em função da corrente e plotamos a curva $B\times V$ para analisá-la.

TABELA III Tensão de saída e Densidade do Campo Magnético

V_{saida} sem offset [V]	$\mathbf{B} \left[\frac{Wb}{m^2} \right]$
-3,2	0,238
-2,78	0,204
-2,34	0,170
-1,91	0,136
-1,43	0,102
-0,96	0,068
-0,4	0,034
0	0,000
0,53	-0,034
1,03	-0,068
1,51	-0,102
1,93	-0,136
2,46	-0,170
2,84	-0,204
3,29	-0,238

Fig. 4. Curva B x V

Podemos perceber, devido a natureza linear do circuito, que o módulo da densidade do campo magnético é proporcional ao módulo da corrente aplicada no sensor Hall. Também podemos perceber que o sentido da corrente determina a direção do campo magnético no circuito.

Pelas equações descritas acima vemos que materiais com alta mobilidade elétrica como a ferrite são cruciais para a construção de um bom sensor de Hall, visto que percebe-se que a permeabilidade magnética do ar é cerca de 30 vezes menor que a permeabilidade do ferrite, portanto o aumento da área efetiva composta por ferrite e, como consequência, a redução da área efetiva composta pelo ar diminuiria a sua relutância. Dessa forma o campo magnético B aumentaria e, consequentemente, teríamos uma tensão de Hall mais precisa. Outra opção seria aumentar o número de espiras do sensor, porque também acarretaria em um maior campo magnético.

VI. CONCLUSÃO

Neste experimento ficou claro que as análises da curva de resposta DC no efeito Hall estão em congruência com