ネットワーク第1回 Naganeo Takahito

ネットワークとは何か?

- 一般的には?
 - ∘物流、電話網、交通、血管や神経etc...
- 共通点:「網」「運ぶ」
- ネットワークとは
 - 何かと何かが、何かによって網状に繋がって、 何かを運ぶこと。

コンピュータ視点で捉えると

- コンピュータとコンピュータがケーブルで網状に 繋がって、データを運ぶ。
- これが「コンピュータ・ネットワーク」と呼ばれる。

ネットワークの歴史 スニーカーネットワーク

- メディアに保存したデータを人間が運ぶ
 - 文書を印刷したい!
 - 。 →USBメモリにデータを入れプリンタまで歩く
 - バージョン管理が困難
 - リクエスト集中で混乱
 - プリンタ大量購入 → 破産
 - 。 リソースの無駄が発生する

ネットワークの進化

LAN

- Local Area Networkの略
- 比較的狭い範囲で通信可能なネットワーク
 - 家庭、企業の1フロアetc...
- LAN内の全員がリソースを共有しあう
 - ∘ リソース=プリンタ、データetc...

LAN

- 高速な接続を提供
 - 一般的に、1秒間に10Mビット(10Mbps)
 - 10メガビット=1,000,000ビット 半角英数文字1つ=1バイト=8ビット →10Mbps=1秒に125,000バイト=125,000文字 →すごい
- 高品質な接続を提供
 - 近距離通信な分、ノイズが少ない
- LAN内のデバイスは**いつでも**LAN内の他のデバイ スと接続できる。

ネットワークの進化

WAN

- Wide Area Networkの略
- LANとLANを繋いでデータを送受信
- 何で繋ぐ?

ネットワークの進化

WAN

- Wide Area Networkの略
- LANとLANを繋いでデータを送受信
- 何で繋ぐ?→通信事業者にケーブルを借りる
- いつでも他のデバイスに接続できるとは限らない
 - 通信事業者との契約による(従量課金etc...)

ネットワーク用語 プロトコル

- 通信を行う際に使用する**ルール**のこと
- 日常の中のプロトコル
 - 日本語を話す
 - 「あれ取って」の「あれ」は○○
- TCP/IP
 - インターネットワークで利用されるプロトコル

ネットワーク用語

帯域幅

- 本意:使用できる周波数の幅
- ケーブルの性能・規格を説明するときに使う言葉
- 転じて、データ転送速度
- 単位: bps

ネットワーク用語

帯域幅

• 「道路の幅」みたいなもの

道幅が広い

- →車両がたくさん通れる
- →車両運搬測度が速い!

帯域幅が広い

- →データがたくさん通れる
- →データ転送速度が速い!

ネットワーク用語

帯域幅

- 使用例
 - 「このデータは大きいから、帯域幅を使う」
 - 道路2車線分の大きい車両のイメージ
 - ブロードバンド(<->ナローバンド)

ネットワーク・モデル

- モデル = 統一された規格
 - 使用する機器
 - ケーブルを流れる信号
 - 。データの表現方法 etc...
- なぜ必要?
 - 規格に合わせて作れば、相互に通信が可能
 - NECと富士通のパソコン同士が通信できない、 とかは困る

ネットワーク・モデル

- 各ベンダーは相互通信可能にするためにこのモデルに従う
- ただし、あくまでモデルでしかない

例えるなら...

- ベンダー = 画家
- ネットワークモデル = 被写体
- 製品 = 絵画

ベンダー(画家)は相互通信可能なネットワークモデル(被写体)を題材に製品をつくる(絵を描く)

14

ネットワーク・モデル

• 作成者:ISO(国際基準化機構)

• 名称 : OSI参照モデル(ややこしい...)

• 通信機能があるルールに基づいた階層ごとに分かれているモデル

• 郵便ネットワーク:誰かに手紙で意思を伝える

• 郵便ネットワーク:誰かに手紙で意思を伝える

手順

- 1. 内容を決める
- 2. 言葉の表現を決める (時候は?敬語?)
- 3. 封筒に入れ、宛名を書き、切手を貼る
- 4. 投函→局員が仕分け→バイクで運ぶ

• 郵便ネットワーク:誰かに手紙で意思を伝える

手順

- 1. 内容を決める (内容)
- 2. 言葉の表現を決める(時候は?敬語?) (表現)
- 3. 封筒に入れ、宛名を書き、切手を貼る(伝送物)
- 4. 投函→局員が仕分け→バイクで運ぶ(伝送)

郵便ネットワーク:誰かに手紙で意思を伝える それぞれの段階でルールが必要になる。

段階	Todo	ルール
内容	伝えたいことを考える	明瞭に・簡潔に
表現	手紙に書く	公用語・文語文で
伝送物	便箋・封筒・宛名	定型郵便・楷書で
伝送	局員・トラック	宛先への経路決定

OSI参照モデル・7つの層

第7層	アプリケーション層	Application Layer
第6層	プレゼンテーション層	Presentation Layer
第5層	セッション層	Session Layer
第4層	トランスポート層	Transport Layer
第3層	ネットワーク層	Network Layer
第2層	データリンク層	Data-Link Layer
第1層	物理層	Physical Layer

名前と順番は死んでも覚える (アプセトネデブ)

それぞれざっと説明

アプリケーション層

- ネットワークサービスそのものを提供する
 - 通信可能かどうか判断する層

プレゼンテーション層

• データの形式(使う言語)を決定する

セッション層

データの送信、受信のまとまりを管理する層

それぞれざっと説明

トランスポート層

- 信頼性の高い通信サービスを保障する
 - エラーを減らす、確実に届けるetc...

ネットワーク層

• データ伝送、ルート決定、宛先決定etc...

データリンク層

ケーブルでつながれた機器とのデータ授受の制御

それぞれざっと説明

物理層

- 電気・機械的なルールを決めた層
 - 。ビット列をどう電気信号に変換するかetc...
 - 結局は電気通信の話に帰着する

OSI参照モデルの意義

- 送信側:第7層から処理を行う。(カプセル化)
- 受信側:第1層から処理を行う。(非カプセル化)
- カプセル化
 - 処理情報(ヘッダ)を付加してデータを"包み込んでいく"こと
- 非カプセル化
 - 付加された処理情報(ヘッダ)を"取り外していく"こと

OSI参照モデルの意義

// TODO MACアドレス // TODO NIC

ここからはレイヤ3の話

なぜなら超重要だから

- インターネットワークにおける、ネットワーク間の接続を担当する。
- インターネットワーク
 - ネットワークのネットワーク、のこと(定義に戻れば…)
 - 特にTCP/IPプロトコルで接続されたインターネットワークのことを**インターネット**という
- ネットワークをネットワークの集まりに細分化する、ということ
 - ○トラフィックの制御が可能になる

- レイヤ3では**論理アドレス**を用いる
- 論理アドレス:
 - どこに、何があるかを表すアドレス
- 論理アドレスを使って、データ伝送の際に経由するネットワークを探索する。
 - 。これを**ルーティング**という

- ネットワーク間をルータが接続する。
- ルータは論理アドレスを元にデータ伝送に最適な 経路を選択する。
- ルータがなければネットワーク間の接続は行えない

インターネットプロトコル

- インターネットではTCP/IPプロトコルを用いて通信を行う。
- TCP/IPプロトコル:
 - 複数のプロトコルの集合体
- データ転送はIPが担当する

インターネットプロトコル

手順

- 1. 受信側の論理アドレスを決定する。
- 2. 経路を設定する。
- 3. 転送する。(コネクションレス型通信)
- コネクション型通信:
 - ベストエフォート、送ったら送りっぱなし
 - 経路確保の事前やり取りなしのデータ送信

インターネットプロトコル

IPヘッダ

- レイヤ4では、ヘッダが付加され**セグメント**が完成
- レイヤ3では、セグメントにIPへッダを付加し、パケットにする。
- IPヘッダには、**送信元、宛先の論理アドレス**が含まれる。

20~60バイト	0~65,515バイト
IPヘッダ	セグメント

論理アドレス

- 論理アドレスは、ネットワーク管理者が各デバイ スのネットワークとの接続点ごとにつける。
 - パソコンが故障して交換したとしても、接続点が同じなら同じ論理アドレスを持つ。
 - 逆に、同じパソコンでも、所属するネットワークが変われば論理アドレスも変わる。

論理アドレス

- 論理アドレスは、所属するネットワークの番号+ ホストの番号という形式
 - ネットワーク番号:接続されているすべてのネットワークでユニークでなきゃいけない。
 - ホスト番号:所属するネットワーク内でユニー クでなきゃいけない。
 - 場所が変わるとアドレスも変わる(2回目)

IPアドレス

- TCP/IPプロトコルで用いる論理アドレスをIPアドレスという。
 - プロトコルごとに論理アドレスが異なる、ということ
- IPアドレスは32ビット
 - 0または1が32個ならぶ
 - 0または1が8*4個ならぶ
 - 0~255のいずれかの数が4個ならぶ

IPアドレス

IPアドレスは論理アドレスなので...

- IPアドレスは、**ネットワーク管理者**が**各デバイス** の**ネットワークとの接続点ごとに**つける。
 - パソコンが故障して交換したとしても、接続点が同じなら同じIPアドレスを持つ。
 - 逆に、同じパソコンでも、所属するネットワークが変わればIPアドレスも変わる。(3回目)

- インターネット内のすべてのネットワークのネットワーク番号はユニークでなければいけない
- 統括的なネットワーク管理者が必要になる
- それがICANN(あいきゃん)
- ICANNが考えたポリシーに基づいてインターネット内の各ネットワークに論理アドレスを割り振る。
- 実際に割り振りを担当するのは、国ごとに存在するNIC(Network Information Center)という機関
 - 日本の場合はJPNIC

• ICANNは、インターネットのネットワーク番号を 管理するのに、**クラス**という概念を用いる。

	第1オクテット	第2オクテット	第3オクテット	第4オクテット
クラスA	ネットワーク部	ホスト部		
クラスB	ネットワ	一ク部	ホスト部	
クラスC	ネットワーク部			ホスト部
クラスD	マルチキャスト用			
クラスE	実験用			

	第1オクテット	第2オクテット	第3オクテット	第4オクテット	
クラスA	ネットワーク部	ホスト部			
クラスB	ネットワ	フーク部 ホス		卜部	
クラスC	ネットワーク部			ホスト部	
クラスD	マルチキャスト用				
クラスE	実験用				

A: 政府・国家機関・大企業

B: 中規模企業

C: 小規模企業・プロバイダ

D, E: 商用には用いられない

どのクラスのアドレスかは、先頭の数ビットで判断する

クラス	先頭ビット列	アドレス範囲
Α	0	0.X.X.X ~ 127.X.X.X
В	10	128.X.X.X ~ 191.X.X.X
С	110	192.X.X.X ~ 223.X.X.X
D	1110	224.X.X.X ~ 239.X.X.X
Е	11110	240.X.X.X ~ 247.X.X.X

クラスA				
o 7bit	8bit	8bit	8bit	
クラスB				
1 0 6bit	8bit	8bit	8bit	
クラスC				
1 1 0 5bit	8bit	8bit	8bit	
クラスD				
1 1 1 0	28bit			
クラスE				
1111	28bit			

赤:ネットワーク部、青:ホスト部 クラスがわかればそれぞれがわかる。

予約済アドレス

- ネットワークアドレス
 - ネットワーク自体を表すアドレス
 - ホスト部のビットがすべて0
- ブロードキャストアドレス
 - ネットワーク内の全ホストに送信するためのアドレス
 - ホスト部のビットがすべて1

問題点

- 大雑把すぎて無駄が多い
- ネットワーク部が同じコンピュータは全て同一の リンクに接続する必要がある
- 例えば、クラスAの場合、1つのネットワークに対して後半24ビット分のホスト部が与えられるが、ホスト数として2^24=約1600万というのは多すぎる。
- インターネットが大きくなるにつれてネットワークアドレスが不足する。

サブネッティング

- 今日、IPアドレスはクラスレスアドレス
- IPアドレス単体では、ネットワーク部、ホスト部がそれぞれ何かはわからない。
- ここで、サブネットマスクという32ビットの正整 数値を導入することにより、ネットワーク部、ホスト部の識別を実現する。

サブネッティング

ネットワーク部が先頭nビットのサブネットマスク:

- 32ビットの正整数値で、
- 先頭nビットが1で、
- それ以降が0であるもの。

例:

ネットワーク部が先頭24ビットのサブネットマスク
→ 11111111 1111111 1111111 00000000
ネットワーク部が先頭24ビットのサブネットマスク
→ 11111111 11111111111111111111

サブネッティング

ネットワークアドレスを求めるには、IPアドレスとサ ブネットマスクをAND演算する。

サブネットマスク

例:

IPアドレス: 192.168.10.85

サブネットマスク:255.255.255.192

IPアドレス

= 11000000 10101000 00001010 01010101 サブネットマスク

= 11111111 11111111 1111111 11000000

AND演算

- → 11000000 10101000 00001010 01000000
- →これがネットワークアドレス!

データ伝送時に必要なアドレス

- 必須アドレス4種
 - 。 宛先IPアドレス
 - 。 宛 先 M A C ア ド レ ス
 - 送信元IPアドレス
 - 。送信元MACアドレス

データ伝送時に必要なアドレ ス

- 送信元MACアドレス(=自分のMACアドレス)
 - 。 NIC取り付け時点でわかる
- 送信元IPアドレス
 - 静的or動的割り当て
 - ○静的:ネットワーク管理者に割り当ててもらい、手動で入力
 - 動的:サーバーと通信して、IPアドレスを割り 当ててもらう

宛先アドレスを知るには

自分のアドレスは入手できた では、相手方のアドレスはどのように知るか?

まずは、宛先IPアドレスから

- 相手のIPアドレスをすでに知っていれば、それを 使えばよい。
- ホスト名がわかっている場合は、DNSを使用する
 - DNSサーバに対し、ホスト名に対応するIPアドレスを問い合わせる。

宛先アドレスを知るには

あとは、宛先MACアドレス

• ARP(アドレス解決プロトコル)

「このIPアドレスのホストへあなたのMACアドレスを教えて下さい」と聞くと、そのホストがMACアドレスを教えてくれるようなプロトコル

ARP

手順 (宛先IPアドレスは取得済の前提)

- 1. ARPテーブルを参照し、宛先IPアドレスに対応するMACアドレスがあるかどうか調べる。
- 2. なければ、ARP要求をブロードキャスト送信。
- 3. ARP要求を受け取った各ホストは、ARPパケットの中の宛先IPアドレスと自分のIPアドレスを比較する。
 - →一致しなければ無視、一致したらARP応答を送信
- 4. ARP応答を受け取ったホストはMACアドレスをARPテーブルに追加

ルータ

- ネットワークからパケットを受け取り、他のネットワークへ送り出す。
- ルータのポートが各ネットワークに所属する
- ルータを用いないデータ伝送は同じネットワーク 内でしか行えないから
- ルータはルーティングテーブルを持っている

デフォルトゲートウェイ

- ルータはブロードキャストドメイン(データが届く範囲)を分けることができる。
- つまり、ブロードキャストを他のネットワークに 送り出さない。
- しかし、ARPはブロードキャストだったから、他ネットワークにブロードキャストできないと宛先 MACアドレスが入手できないので詰む。
- 実は、いきなり他ネットワーク内のMACアドレスを知るのではなく、いったん同ネットワーク内にARPを投げて、ルータのMACアドレスを取得する、ということをする。

デフォルトゲートウェイ

ネットワーク内の全ホストは、一旦パケットをこのルータに投げる、という意味で、この役割を担うルータをデフォルトゲートウェイと呼ぶ。

ルーティングテーブル

宛先	次のルータ	距離	ポート
192.168.1.0	210.81.36.1	3	1番ポート
91.0.0.0	210.81.36.1	6	1番ポート
172.36.0.0	130.82.10.1	2	2番ポート
221.194.38.0	なし	0	3番ポート

ルーティングテーブル

- 宛先、中継地点、距離、宛先への出口、からなる。
- ルータは、宛先IPアドレスとサブネットマスクから、宛先ネットワークアドレスを決定する(説明済)
- ルーティングテーブルに宛先がない場合、宛先不明としてパケットを破棄する。

ルーティング

- ルーティングテーブルを作るためには、ルータは 他ネットワークへのルートを知る必要がある。
- 知る方法は動的ルーティング、静的ルーティング がある。
- 静的ルーティングは管理者が手動で入力する。
 - 静的ルーティングは最優先される。
 - デフォルトルートも静的ルートである。

ルーティング

- 動的ルーティングは自動でルート情報を交換し合う。
 - 交換し合った情報から最適なルートを選択する。
 - 障害が起きても切り離すことが可能。
 - 帯域幅や処理能力を必要とする。
 - コンバージェンスである必要がある。
 - ルーティングプロトコルで実現される。