

RESUM-FORMULARI TEMA 7

Informació i Seguretat (Universitat Autònoma de Barcelona)

<u>RESUM – FORMULARI</u> <u>TEMA 7 CRIPTOGRAFIA I SEGURETAT</u>

MÈTODES BÀSICS

SUBSTITUCIÓ SIMPLE

Consisteix en substituir cada una de les paraules del nostre missatge per una altra paraula del alfabet utilitzat. Per un alfabet A, tenim |A|! claus (K) possibles.

PER XIFRAR:

 $y = x + k \mod m$

PER DESXIFRAR:

 $x = y - k \mod m$

y: missatge xifrat, x: missatge original, k: clau, m: longitud del nostre alfabet.

TRANSPOSICIÓ SIMPLE

Consisteix en reordenar les paraules del nostre missatge. Hi ha d! claus possibles (d: longitud del missatge).

EXEMPLE:

Si agafem d = 3 i prenem la permutació $\sigma(1)=2$, $\sigma(2)=3$, $\sigma(3)=1$, aleshores,

el missatge **m = CRIPTOGRAFIA** queda xifrat com:

 E_{σ} (m) = ICROPTAGRAFI

CRIPTOSISTEMES SIMÈTRICS / CLAU PRIVADA CLAU XIFRATGE = CLAU DESXIFRATGE

XIFRATGE MATRICIAL O HILT

La clau és una matriu K_{r x r}, que ha de ser **INVERTIBLE**.

PER XIFRAR:

 $C = K \cdot M$

PER DESXIFRAR:

 $M = K^{-1} \cdot C$

Serà invertible si el mcd(det(K), m) = 1.

On m és la longitud del alfabet que estem utilitzant.

$$K^{-1} = \frac{1}{\det(K)} \cdot A_k^T$$

<u>XIFRATGE AFÍ</u>

PER XIFRAR:

 $f(x)=a\cdot x + b \pmod{m}$

on la clau és k=(a, b) i a i b formen part del nostre alfabet.

PER DESXIFRAR:

 $f^{-1}(c) = a^{-1} \cdot (c - b)$

c: missatge xifrat

MÈTODE VIGÈNERE de longitud r

Clau: $k = (k_0, k_1, ..., k_{r-1})$

PER XIFRAR:

 $C_i = m_i + k_i \pmod{m}$

M es divideix en blocs de longitud r.

PER DESXIFRAR:

 $m_i = c_i - k_i$

XAVIER MOLINA

DES

 $C = DES_k(m)$

Utilitza **claus de 56 bits**, per esbrinar la clau hauríem de provar 2⁵⁶ combinacions.

DOBLE DES

 $C = DES_{k2} (DES_{k1} (m))$

No soposa una millora respecte el DES simple, per tant, no s'utilitza.

TRIPLE DES

 $C = DES_{k1} (DES_{k2} (DES_{k1} (m)))$

Assoleix una **seguretat de 112 bits**, per tant, suposa una millora respecte el DES.

En els tres casos el procés de desxifratge és exactament el mateix que el procés de xifratge.

ESTÀNDARD AES

La clau i els blocs poden ser de 128, 192 o 256 bits.

L'algorisme de desxifrat no és el mateix que el de xifrat, per tant no és adequat per sistemes amb poca capacitat de càlcul.

MODES DE XIFRATGE

- ECB
- CBC
- CFB

CRIPTOSISTEMES ASIMÈTRICS / CLAU PÚBLICA CLAU XIFRATGE # CLAU DESXIFRATGE

XIFRATGE RSA

 $\mathbf{n} = \mathbf{p} \cdot \mathbf{q}$ on p i q són nombres primers.

 $\Phi = (p-1) \cdot (q-1)$

Clau pública: [n,e]

Clau privada: $d = e^{-1} \mod \Phi$

e ha de ser INVERTIBLE, mcd(e, Φ)=1

EXEMPLE: Si volem enviar un missatge xifrat d'A a B: $C = m^{e_b} \mod n_b$, utilitzarem per tant la clau pública de <u>B</u> (destí).

XAVIER MOLINA