9

Fall 2024

Home

Smart Search

Announcements

Assignments

Discussions

Grades

People

Pages

Files

Syllabus

Quizzes

Modules

Collaborations

Google Drive

Office 365

Panopto Video

Apporto Virtual Labs

E-Reserves

Labster Dashboard

IA-VitalSource

Course Ratings

WK Lippincott Connect

c166f24 Quiz 1- Requires Respondus LockDown Browser

Due Sep 13 at 8:50am **Points** 30

Questions 17

Available Sep 13 at 8am - Sep 13 at 8:55am 55 minutes

Time Limit 45 Minutes

Requires Respondus LockDown Browser

Instructions

Calculate answers to two decimal places for accuracy.

This quiz was locked Sep 13 at 8:55am.

Attempt History

	Attempt	Time	Score
LATEST	Attempt 1	24 minutes	30 out of 30

(!) Correct answers are hidden.

Score for this quiz: **30** out of 30 Submitted Sep 13 at 8:33am This attempt took 24 minutes.

Question 1

2 / 2 pts

The following MDP world consists of 5 states and 3 actions:

(1, 1)	(1, 2)
Actions: down, right	Action: Exit = -2
(2, 1)	(2, 2)
Actions: down, right	Action: Exit = -2
(3, 1)	
Action: Exit = 10	

When taking action down, it is successful with probability 0.8, otherwise you go right.

When taking action right, it is successful with probability 0.8, otherwise you go down.

When taking action Exit, it is successful with probability 1.0.

The only reward is when taking action Exit, and there is no discounting.

Submission Details:

Time:	24 minutes
Current	30 out of
Score:	30
Kept Score:	30 out of
	30

Calculate the value of states using Value Iteration algorithm for required time step: Provide the value for State (1,1) at time step 0: $V_0(1,1) = 0$

Question 2

2 / 2 pts

The following MDP world consists of 5 states and 3 actions:

(1, 1)	(1, 2)
Actions: down, right	Action: Exit = -2
(2, 1)	(2, 2)
Actions: down, right	Action: Exit = -2
(3, 1)	
Action: Exit = 10	

When taking action down, it is successful with probability 0.8, otherwise you go right.

When taking action right, it is successful with probability 0.8, otherwise you go down.

When taking action Exit, it is successful with probability 1.0.

The only reward is when taking action Exit, and there is no discounting.

Calculate the value of states using Value Iteration algorithm for required time step:

Provide the value for State (1,1) at time step 1:

V₁(1,1) =

0

Question 3

2 / 2 pts

The following MDP world consists of 5 states and 3 actions:

(1, 1)	(1, 2)
Actions: down, right	Action: Exit = -2
(2. 1)	(2, 2)

Actions: down, right	Action: Exit = -2
(3, 1) Action: Exit = 10	

When taking action down, it is successful with probability 0.8, otherwise you go right.

When taking action right, it is successful with probability 0.8, otherwise you go down.

When taking action Exit, it is successful with probability 1.0.

The only reward is when taking action Exit, and there is no discounting.

Calculate the value of states using Value Iteration algorithm for required time step:

Provide the value for State (1,1) at time step 2:

 $V_2(1,1) =$

-0.4

Question 4

2 / 2 pts

The following MDP world consists of 5 states and 3 actions:

(1, 1)	(1, 2)
Actions: down, right	Action: Exit = -2
(2, 1)	(2, 2)
Actions: down, right	Action: Exit = -2
(3, 1)	
Action: Exit = 10	

When taking action down, it is successful with probability 0.8, otherwise you go right.

When taking action right, it is successful with probability 0.8, otherwise you go down.

When taking action Exit, it is successful with probability 1.0.

The only reward is when taking action Exit, and there is no discounting.

Calculate the value of states using Value Iteration algorithm for required time step:

Provide the value for State (1,2) at time step 0:

 $V_0(1,2) =$

Question 5

2 / 2 pts

The following MDP world consists of 5 states and 3 actions:

(1, 1)	(1, 2)
Actions: down, right	Action: Exit = -2
(2, 1)	(2, 2)
Actions: down, right	Action: Exit = -2
(3, 1)	
Action: Exit = 10	

When taking action down, it is successful with probability 0.8, otherwise you go right.

When taking action right, it is successful with probability 0.8, otherwise you go down.

When taking action Exit, it is successful with probability 1.0.

The only reward is when taking action Exit, and there is no discounting.

Calculate the value of states using Value Iteration algorithm for required time step:

Provide the value for State (1,2) at time step 1:

V₁(1,2) =

-2

Question 6

2 / 2 pts

The following MDP world consists of 5 states and 3 actions:

(1, 1)	(1, 2)
Actions: down, right	Action: Exit = -2
(2, 1)	(2, 2)
Actions: down, right	Action: Exit = -2
(3, 1)	
Action: Exit = 10	

When taking action down, it is successful with probability 0.8, otherwise you go right.

When taking action right, it is successful with probability 0.8, otherwise you go down.

When taking action Exit, it is successful with probability 1.0.

The only reward is when taking action Exit, and there is no discounting.

Calculate the value of states using Value Iteration algorithm for required time step:

Provide the value for State (3,1) at time step 0:

 $V_0(3,1) =$

0

Question 7

2 / 2 pts

The following MDP world consists of 5 states and 3 actions:

(1, 1)	(1, 2)
Actions: down, right	Action: Exit = -2
(2, 1)	(2, 2)
Actions: down, right	Action: Exit = -2
(3, 1)	
Action: Exit = 10	

When taking action down, it is successful with probability 0.8, otherwise you go right.

When taking action right, it is successful with probability 0.8, otherwise you go down.

When taking action Exit, it is successful with probability 1.0.

The only reward is when taking action Exit, and there is no discounting.

Calculate the value of states using Value Iteration algorithm for required time step:

Provide the value for State (3,1) at time step 1:

 $V_1(3,1) =$

10

2 / 2 pts

The following MDP world consists of 5 states and 3 actions:

(1, 1)	(1, 2)
Actions: down, right	Action: Exit = -2
(2, 1)	(2, 2)
Actions: down, right	Action: Exit = -2
(3, 1)	
Action: Exit = 10	

When taking action down, it is successful with probability 0.8, otherwise you go right.

When taking action right, it is successful with probability 0.8, otherwise you go down.

When taking action Exit, it is successful with probability 1.0.

The only reward is when taking action Exit, and there is no discounting.

Calculate the value of states using Value Iteration algorithm for required time step:

Provide the value for State (2,1) at time step 0:

 $V_0(2,1) =$

O

Question 9

2 / 2 pts

The following MDP world consists of 5 states and 3 actions:

(1, 1)	(1, 2)
Actions: down, right	Action: Exit = -2
(2, 1)	(2, 2)
Actions: down, right	Action: Exit = -2
(3, 1)	
Action: Exit = 10	

When taking action down, it is successful with probability 0.8, otherwise you go right.

When taking action right, it is successful with probability 0.8, otherwise you go down.

When taking action Exit, it is successful with probability 1.0.

The only reward is when taking action Exit, and there is no discounting.

Calculate the value of states using Value Iteration algorithm for

required time step:	
Provide the value for State (2,1) at time step 1:	
V ₁ (2,1) =	
0	

Question 10

2 / 2 pts

The following MDP world consists of 5 states and 3 actions:

(1, 1)	(1, 2)
Actions: down, right	Action: Exit = -2
(2, 1)	(2, 2)
Actions: down, right	Action: Exit = -2
(3, 1)	
Action: Exit = 10	

When taking action down, it is successful with probability 0.8, otherwise you go right.

When taking action right, it is successful with probability 0.8, otherwise you go down.

When taking action Exit, it is successful with probability 1.0.

The only reward is when taking action Exit, and there is no discounting.

Calculate the value of states using Value Iteration algorithm for required time step:

Provide the value for State (2,1) at time step 2:

V₂(2,1) =

7.6

Question 11

2 / 2 pts

The following MDP world consists of 5 states and 3 actions:

(1, 1)	(1, 2)
Actions: down, right	Action: Exit = -2
(2, 1)	(2, 2)

Actions: down, right	Action: Exit = -2
(3, 1) Action: Exit = 10	

When taking action down, it is successful with probability 0.8, otherwise you go right.

When taking action right, it is successful with probability 0.8, otherwise you go down.

When taking action Exit, it is successful with probability 1.0.

The only reward is when taking action Exit, and there is no discounting.

Calculate the value of states using Value Iteration algorithm for required time step:

Provide the value for State (1,1) at time step 3:

 $V_3(1,1) =$

5.68

Question 12

2 / 2 pts

The following MDP world consists of 5 states and 3 actions:

(1, 1)	(1, 2)
Actions: down, right	Action: Exit = -2
(2, 1)	(2, 2)
Actions: down, right	Action: Exit = -2
(3, 1)	
Action: Exit = 10	

When taking action down, it is successful with probability 0.8, otherwise you go right.

When taking action right, it is successful with probability 0.8, otherwise you go down.

When taking action Exit, it is successful with probability 1.0.

The only reward is when taking action Exit, and there is no discounting.

Calculate the value of states using Value Iteration algorithm for required time step:

Provide the value for State (2,1) at time step 3:

 $V_3(2,1) =$

Question 13	2 / 2 pts		
The following MDP world consists of 5 states and 3 actions:			
(1, 1)	(1, 2)		
Actions: down, right	Action: Exit = -2		
(2, 1)	(2, 2)		
Actions: down, right	Action: Exit = -2		
(3, 1) Action: Exit = 10			
When taking action down, it is successful with probability 0.8, otherwise you go right. When taking action right, it is successful with probability 0.8, otherwise you go down. When taking action Exit, it is successful with probability 1.0. The only reward is when taking action Exit, and there is no discounting. Calculate the value of states using Value Iteration algorithm for required time step:			
Provide the value for State (3,1) at time step 3: $V_3(3,1) =$			
10			

Question 14 Based on the values from V₃, what would policy extraction return for state (1, 1)? Down Right Exit

Question 15	1 / 1 pts
Based on the values from V_3 , what wou extraction return for state (2, 1)?	ld policy
© Down	

Quiz Score: 30 out of 30

◆ Previous
Next •