Empirie und Experimentieren in der Softwaretechnik

M. Danz, T. Gräf, C. Michel*

Advisor: Andrei Miclaus†

Karlsruhe Institute of Technology (KIT) Pervasive Computing Systems – TECO

*danz@teco.edu

tobias.graef@student.kit.edu

michel@teco.edu

† miclaus@teco.edu

Original Question

How can students compare two software architectures?

Students' Issues with Scientific Working

- "Students had problems constructing well-formulated [...] questions."
- "Students used limited criteria for identifying the best or better evidence [...]"
- "Students used a very limited number of search terms."

• . . .

Many students lack knowledge about scientific working and experiment design.

Original Question Revised

How can students compare two software architectures?

How to support students in scientific working and experiment design?

How to Support Students in Scientific Working and Experiment Design?

- Evidence-Based Software Engineering (EBSE) [KDJ04]
- Scientific Method [SMOP]
- SEED [JR08]
- Evidence Map [EBS]
- Workflow Graph [RB08]

Tools not tailored for students

We created a process and guiding documents for students.

6.3.2017

Process as Guidelines for Students

EBSE Process Steps:

- 1. Ask an answerable question.
- 2. Find the best evidence that answers that question.
- 3. Critically appraise this evidence.
- 4. Apply the evidence (and critical appraisal).
- 5. Evaluate the performance in previous steps.

Process as Guidelines for Students

EBSE Process Steps:

- 1. Ask an answerable question.
- 2. Find the best evidence that answers that question.
- 3. Critically appraise this evidence.
- 4. Apply the evidence (and critical appraisal).
- 5. Evaluate the performance in previous steps.

FORMULATE QUESTION FORMULATE HYPOTHESIS SEARCH FOR EXISTING EVIDENCE SUBSTANTIAL **EVIDENCE?** Yes No) **EXPERIMENT ANSWER QUESTION DISCUSSION EVALUATE PROCESS**

Scientific Method

FORMULATE QUESTION **FORMULATE HYPOTHESIS SEARCH FOR EXISTING EVIDENCE** SUBSTANTIAL **EVIDENCE?** Yes No` **EXPERIMENT ANSWER QUESTION DISCUSSION EVALUATE PROCESS**

Mapping on Scientific Method

FORMULATE QUESTION FORMULATE HYPOTHESIS SEARCH FOR EXISTING EVIDENCE SUBSTANTIAL **EVIDENCE?** Yes No` **EXPERIMENT ANSWER QUESTION DISCUSSION EVALUATE PROCESS**

Mapping on Scientific Method

Focus on experimenting, therefore unrolled respective nodes.

Process Document - Overview

Process Document - Details

Process Document - Tools

P opulation	What specific population are you interested in?	
Intervention (Technology)	What is the investigational technology/ intervention?	
C omparison Group	What is the main alternative/ baseline to compare with the intervention	
Outcome	What do you intend to accomplish, measure, improve or affect?	
T ime	What is the appropriate follow-up time to assess outcome?	

F easible	 Adequate number of subjects Adequate technical expertise Affordable in time and money Manageable in scope
Interesting	 Getting the answer intrigues investigator, peers and community
N ovel	 Confirms, refutes or extends previous findings
Ethical	 Amendable to a study that institutional review board will approve
Relevant	 To scientific knowledge To clinical and health policy To future research

After Action Review (AAR)

- What was supposed to happen?
- What actually happened?
- ▶ Why were there differences?
- What did we learn?

Postmortem Analysis (PA)

- What went so well that we want to repeat it?
- What was useful but could have gone better?
- What were the mistakes that we want to avoid for the future?
- What were the reasons for the success or mistakes?

REFERENCES

FINER, PICOT: Farrugia, P., Petrisor, B.A., Farrokhyar, F., Bhandari, M.: Practical tips for surgical research: Research questions, hypotheses and objectives. Canadian journal of surgery. Journal canadien de chirurgie 53(4), 278–281 (2009)

Checklist, AAR, PA: Dybå, T., Kitchenham, B.A., Jorgensen, M.: Evidence-based software engineering for practitioners. IEEE Software 22(1), 58-65 (2005)

Briefing Form

- Analog concept
- Template for paper summary
- Assistance for experiment design
- Easier to search existing work

Future Work

- Digitalize Briefing Form
- Should be evaluated using students' thesis
 - (Two upcoming, maybe four)
 - → Revise Process Document tools
 - → Refine Briefing Form

Scientific Working Basics missing in Education?

Sources

- [SMOP]: Garland, Jr., Theodore. "The Scientific Method as an Ongoing Process". U C Riverside. (http://idea.ucr.edu/documents/flash/scientific_method/story.htm)
- FINER, PICOT: Patricia Farrugia, Bradley A. Petrisor, Forough Farrokhyar, and Mohit Bhandari. Practical tips for surgical research: Research questions, hypotheses and objectives. Canadian journal of surgery. Journal canadien de chirurgie, 53(4): 278–281, 2009.
- PMA, AAR: Tore Dybå, Barbara A. Kitchenham, and Magne Jorgensen. Evidence-based software engineering for practitioners.
 IEEE Software, 22(1):58–65, 2005.
- [RHB06]: Austen Rainer, Tracy Hall, and Nathan Baddoo. A preliminary empirical investigation of the use of evidence based software engineering by under- graduate students. 10th International Conference on Evaluation and Assessment in Software Engineering (EASE 2006), 2006.
- [KDJ04]: Barbara A Kitchenham, Tore Dyba, and Magne Jørgensen. Evidence-based software engineering. In Proceedings of the 26th international conference on software engineering, pages 273–281. IEEE Computer Society, 2004.
- [JR08]: David S. Janzen and Jungwoo Ryoo. Seeds of Evidence: Integrating Evidence-Based Software Engineering. In Software Engineering Education Conference, Proceedings, pages 223–232, 2008.
- [EBS]: Evidence Based Software Engineering. https://community.dur.ac.uk/ ebse. accessed 2017-02-25.
- [RB08]: Austen Rainer and Sarah Beecham. Supplementary Guidelines, Assessment Scheme and evidence-based evaluations of the use of Evidence Based Software Engineering, Version 2. (February 2008):1–27, 2008.

- [1] Farrugia, P., Petrisor, B.A., Farrokhyar, F., Bhandari, M.: Practical tips for surgical research: Research questions, hypotheses and objectives. Canadian journal of surgery. Journal canadien de chirurgie 53(4), 278-281 (2009)
- [2] Buddies, S.: A Strong Hypothesis (2010), http://www.sciencebuddies.org/blog/ 2010/02/a-strong-hypothesis.php
- [3] http://dl.acm.org/ccs/ccs.cfm [4] Dybå, T., Kitchenham, B.A., Jorgensen, M.: Evidence-based software engineering for practitioners. IEEE Software 22(1), 58–65 (2005)
- [5] Wohlin, C., Runeson, P., Höst, M., Ohlsson, M. C., Regnell, B., & Wesslén, A. (2012). Experimentation in software engineering. Springer Science & Business Media.

P opulation	What specific population are you interested in?	Feasible	 Adequate number of subjects Adequate technical expertise Affordable in time and money Manageable in scope
Intervention (Technology)	What is the investigational technology/ intervention?	Interesting	 Getting the answer intrigues investigator, peers and community
C omparison Group	What is the main alternative/ baseline to compare with the intervention	N ovel	 Confirms, refutes or extends previous findings
Outcome	What do you intend to accomplish, measure, improve or affect?	Ethical	 Amendable to a study that institutional review board will approve
T ime	What is the appropriate follow-up time to assess outcome?	Relevant	To scientific knowledgeTo clinical and health policyTo future research

Study Appraisal Checklist

- 1. Is there any vested interest?
 - Who sponsored the study?
 - ▶ Do the researchers have any vested interest in the results?
- 2. Is the evidence valid?
 - Was the study's design appropriate to answer the question?
 - How were the tasks, subjects, and setting selected?
 - What data was collected, and what were the methods for collecting the data?
 - Which methods of data analysis were used, and were they appropriate?
- 3. Is the evidence important?
 - What were the study's results?
 - Are the results credible, and, if so, how accurate are they?
 - What conclusions were drawn, and are they justified by the results?
 - Are the results of practical and statistical significance?
- 4. Can the evidence be used in practice?
 - Are the study's findings transferable to other industrial settings?
 - Did the study evaluate all the important outcome measures?
 - Does the study provide guidelines for practice based on the results?
 - Are the guidelines well described and easy to use?
 - Will the benefits of using the guidelines outweigh the costs?
- 5. Is the evidence in this study consistent with the evidence in other available studies?
 - Are there good reasons for any apparent inconsistencies?
 - ▶ Have the reasons for any disagreements been investigated?

After Action Review (AAR)

- What was supposed to happen?
- What actually happened?
- ▶ Why were there differences?
- What did we learn?

Postmortem Analysis (PA)

- What went so well that we want to repeat it?
- What was useful but could have gone better?
- What were the mistakes that we want to avoid for the future?
- What were the reasons for the success or mistakes?

REFERENCES

FINER, PICOT: Farrugia, P., Petrisor, B.A., Farrokhyar, F., Bhandari, M.: Practical tips for surgical research: Research questions, hypotheses and objectives.

Canadian journal of surgery. Journal canadien de chirurgie 53(4), 278–281 (2009)

Checklist, AAR, PA: Dybå, T., Kitchenham, B.A., Jorgensen, M.: Evidence-based software engineering for practitioners. IEEE Software 22(1), 58–65 (2005)

QUESTION
HYPOTHESIS
ПТРОТПЕЗІЗ
EXPERIMENT
VARIABLES
Dependent
Independent
Control
Technique
Statistical Results
Statistical nesults
CONCLUSION
CONCESSION