

**Interactive Fortran IV Computer Programs for the
Thermodynamic and Transport Properties of
Selected Cryogens (Fluids Pack)**

**(U.S.) National Bureau of Standards
Washington, DC**

Prepared for

**National Aeronautics and Space Administration
Houston, TX**

Oct 80

PPR1-125809

NBS TECHNICAL NOTE 1025

Interactive Fortran IV Computer Programs for the Thermodynamic and Transport Properties of Selected Cryogens (Fluids Pack)

PRINTED IN
**NATIONAL TECHNICAL
INFORMATION SERVICE**
U.S. DEPARTMENT OF COMMERCE
SPRINGFIELD, VA 22161

NATIONAL BUREAU OF STANDARDS

The National Bureau of Standards¹ was established by an act of Congress on March 3, 1901. The Bureau's overall goal is to strengthen and advance the Nation's science and technology and facilitate their effective application for public benefit. To this end, the Bureau conducts research and provides: (1) a basis for the Nation's physical measurement system, (2) scientific and technological services for industry and government, (3) a technical basis for equity in trade, and (4) technical services to promote public safety. The Bureau's technical work is performed by the National Measurement Laboratory, the National Engineering Laboratory, and the Institute for Computer Sciences and Technology.

THE NATIONAL MEASUREMENT LABORATORY provides the national system of physical and chemical and materials measurement; coordinates the system with measurement systems of other nations and furnishes essential services leading to accurate and uniform physical and chemical measurement throughout the Nation's scientific community, industry, and commerce; conducts materials research leading to improved methods of measurement, standards, and data on the properties of materials needed by industry, commerce, educational institutions, and Government; provides advisory and research services to other Government agencies; develops, produces, and distributes Standard Reference Materials; and provides calibration services. The Laboratory consists of the following centers:

Absolute Physical Quantities² — Radiation Research — Thermodynamics and Molecular Science — Analytical Chemistry — Materials Science.

THE NATIONAL ENGINEERING LABORATORY provides technology and technical services to the public and private sectors to address national needs and to solve national problems; conducts research in engineering and applied science in support of these efforts; builds and maintains competence in the necessary disciplines required to carry out this research and technical service; develops engineering data and measurement capabilities; provides engineering measurement traceability services; develops test methods and proposes engineering standards and code changes; develops and proposes new engineering practices; and develops and improves mechanisms to transfer results of its research to the ultimate user. The Laboratory consists of the following centers:

Applied Mathematics — Electronics and Electrical Engineering — Mechanical Engineering and Process Technology — Building Technology — Fire Research — Consumer Product Technology — Field Methods.

THE INSTITUTE FOR COMPUTER SCIENCES AND TECHNOLOGY conducts research and provides scientific and technical services to aid Federal agencies in the selection, acquisition, application, and use of computer technology to improve effectiveness and economy in Government operations in accordance with Public Law 89-306 (40 U.S.C. 759), relevant Executive Orders, and other directives; carries out this mission by managing the Federal Information Processing Standards Program, developing Federal ADP standards guidelines, and managing Federal participation in ADP voluntary standardization activities; provides scientific and technological advisory services and assistance to Federal agencies; and provides the technical foundation for computer-related policies of the Federal Government. The Institute consists of the following centers:

Programming Science and Technology — Computer Systems Engineering.

¹Headquarters and Laboratories at Gaithersburg, MD, unless otherwise noted; mailing address Washington, DC 20234.

²Some divisions within the center are located at Boulder, CO 80303.

Interactive Fortran IV Computer Programs for the Thermodynamic and Transport Properties of Selected Cryogens (Fluids Pack)

R. D. McCarty

**Thermophysical Properties Division
National Engineering Laboratory
National Bureau of Standards
Boulder, Colorado 80303**

U.S. DEPARTMENT OF COMMERCE, Philip M. Klutznick, Secretary

Luther H. Hodges, Jr., Deputy Secretary

Jordan J. Baruch, Assistant Secretary for Productivity, Technology and Innovation

NATIONAL BUREAU OF STANDARDS, Ernest Ambler, Director

Issued October 1980

National Bureau of Standards Technical Note 1025

Nat. Bur. Stand. (U.S.), Tech. Note 1025, 112 pages (October 1980)

CODEN: NBTNAE

**U.S. GOVERNMENT PRINTING OFFICE
WASHINGTON: 1980**

For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C. 20402

Contents

	Page
Abstract	1
1. Introduction	1
2. Uncertainty of the Calculated Properties	2
3. Computer Routines	3
4. Conclusions	4
5. Properties of Hydrogen	15
6. Properties of Helium	19
7. Properties of Neon	23
8. Properties of Nitrogen	27
9. Properties of Oxygen	31
10. Properties of Argon	35
11. Properties of Methane	39
12. References	43
Appendix 1: Example of the Use of the Program	44
Appendix 2: Program Listings	47

List of Tables

	Page
Table 1. List of Subprograms	5
Table 2. Properties and Associated Estimated Uncertainties for Hydrogen	16
Table 3. Pressure and Temperature Range for Hydrogen	17
Table 4. Properties for Computer Program Performance Test for Hydrogen	18
Table 5. Properties and Associated Estimated Uncertainties for Helium	20
Table 6. Pressure and Temperature Range for Helium	21
Table 7. Properties for Computer Program Performance Test for Helium	22
Table 8. Properties and Associated Estimated Uncertainties for Neon . .	24
Table 9. Pressure and Temperature Range for Neon	25
Table 10. Properties for Computer Program Performance Test for Neon. .	26
Table 11. Properties and Associated Estimated Uncertainties for Nitrogen	28
Table 12. Pressure and Temperature Range for Nitrogen	29
Table 13. Properties for Computer Program Performance Test for Nitrogen	30
Table 14. Properties and Associated Estimated Uncertainties for Oxygen	32
Table 15. Pressure and Temperature Range for Oxygen	33
Table 16. Properties for Computer Program Performance Test for Oxygen	34
Table 17. Properties and Associated Estimated Uncertainties for Argon	36
Table 18. Pressure and Temperature Range for Argon	37
Table 19. Properties for Computer Program Performance Test for Argon	38
Table 20. Properties and Associated Estimated Uncertainties for Methane	40
Table 21. Pressure and Temperature Range for Methane	41
Table 22. Properties for Computer Program Performance Test for Methane	42

INTERACTIVE FORTRAN IV COMPUTER PROGRAMS FOR THE THERMODYNAMIC
AND TRANSPORT PROPERTIES OF SELECTED CRYOGENS [FLUIDS PACK]*

R. D. McCarty

Thermophysical Properties Division
National Engineering Laboratory
National Bureau of Standards
Boulder, Colorado 80303

The thermodynamic and transport properties of selected cryogens have been programmed into a series of computer routines. Input variables are any two of P, ρ or T in the single phase regions and either P or T for the saturated liquid or vapor state. The output is pressure, density, temperature, entropy, enthalpy for all of the fluids and in most cases specific heat capacity and speed of sound. Viscosity and thermal conductivity are also given for most of the fluids. The programs are designed for access by remote terminal; however, they have been written in a modular form to allow the user to select either specific fluids or specific properties for particular needs.

The program includes properties for hydrogen, helium, neon, nitrogen, oxygen, argon, and methane. The programs include properties for gaseous and liquid states usually from the triple point to some upper limit of pressure and temperature which varies from fluid to fluid. Computer listings of the FORTRAN IV codings are presented. Copies of the programs may be obtained from either the Thermophysical Properties Division of the National Bureau of Standards at Boulder, Colorado, or from Walter Scott at the NASA-Johnson Space Center in Houston, Texas.

Key Words: Argon; computer programs; density; enthalpy; entropy; equation of state; heat capacity at constant pressure; heat capacity at constant volume; helium; hydrogen; methane; neon; nitrogen; oxygen; thermal conductivity; velocity of sound; viscosity.

1. Introduction

Recent technological developments which made possible personal interaction with large computer systems by remote terminal has proved to be a real advantage in situations where immediate response to requests for data are important. This computer program was developed in response to a need for thermodynamic and transport property data in an interactive mode. The program makes possible the

* Work sponsored by NASA-Johnson Space Center on Contract No. PO T-6570C.

acquisition of thermodynamic and in some cases the transport properties of seven different cryogenic fluids. Those fluids are: hydrogen, helium, neon, nitrogen, oxygen, argon, and methane. All of the properties are calculated from empirical equations which are derived from the existing experimental data via weighted least squares fit of mathematical models to those data. The reader who is interested in the details of the correlations is referred to the sources cited for each fluid in the sections to follow.

Five of the fluids (hydrogen, nitrogen, oxygen, argon and methane) utilize the same mathematical model of the equation of state, and four of the fluids (nitrogen, oxygen, argon and methane) utilize the same correlating function for the transport properties. No transport properties for hydrogen, or neon, are given. Using the same functional form for the properties of several different fluids greatly simplifies the computer programs, since all that is needed to switch from one fluid to another is a different set of coefficients to the equations.

The properties of helium and neon are calculated from empirical functions which are different than those of the other five as well as each other. The addition of these two fluids represents approximately half of the total length (core storage) of the entire program.

The programs have been written with a dual purpose in mind. As has already been mentioned the primary purpose is to make available to the user in an interactive mode, the thermodynamic and transport properties of selected fluids. The second purpose is to provide the necessary subroutines to the user who has a very specialized need. Therefore the program has been written in a modular form which allows the user to extract almost any combination of fluids and properties.

The remainder of this report includes a section devoted to each fluid and an additional section describing the general part of the program.

2. Uncertainty of the Calculated Properties

When calculating thermodynamic properties from an empirical equation of state, one should be aware of certain problem areas where it is difficult to estimate realistically what the uncertainties really are in a given property. In the critical region ($p_c \pm 0.2 p_c$ and $T_c \pm 0.05 T_c$), the calculated density may be in error by several percent, while the calculated pressure or temperature will not be as inaccurate. Specific heat capacities and the thermal conductivity in

the critical region become very large values and no realistic estimate of the uncertainty may be made. Saturation boundaries, gas, liquid and solid are potential areas of large uncertainties for derived thermodynamic properties, especially heat capacities. In the compressed liquid, calculated pressures will have an uncertainty of several percent. This is a consequence of the nature of the surface and is in no way the fault of the equation of state.

In each of the following sections on the individual fluids, uncertainty estimates will be given for that particular fluid. These estimates have been obtained from the source documents and do not reflect the potential large uncertainties of the problem areas outlined above.

3. Computer Routines

The thermodynamic properties produced by the computer program listed in Appendix A are all calculated using a mathematical model of the equation of state of the fluid and classical thermodynamic relationships. The reader who is interested in the thermodynamics and mathematics of the problem is referred to McCarty (1975). Table 1 lists all of the subprograms with pertinent information for each.

In general eleven or twelve significant figures need to be carried in the property calculations to insure no round off errors in the result, and sample values for checking performance are included in each of the sections on the properties of a particular fluid. Performance should be checked periodically when running on a time-share system.

The program, once executed, leads the user through a series of input requests and the use of the program should be self-explanatory after the particular system requirements for access and execution are satisfied.

Upper and lower pressure and temperature limits have been imposed on each fluid according to the range of validity as claimed by the original source document. The lower pressure limit is an indication of where the program fails due to the limitations of the computer calculations. All of the functions reduce to the ideal gas in the limit of zero pressure but because of some terms in the equation which have very large exponents, the iterative solution for density fails at very low pressures. Because these models are empirical and cannot be trusted to give even reasonable results outside their ranges of pressure and temperature, the user is cautioned not to change the pressure and temperature limits originally set in the program.

4. Conclusions

The preparation of this program has demonstrated the utility of maintaining functional form when modeling properties of several different fluids. With a single functional form, the change from one fluid to another becomes a matter of switching constants and even more important the addition of more fluids to the scope of the program becomes very simple.

The author wishes to acknowledge the support of NASA, without which this work would not have been possible, and in particular the support and encouragement of Walter Scott at the Johnson Space Center.

Table 1. List of Subprograms

(Note: The list of symbols appearing in columns labeled "Arguments," "Input," and "Output" are:
 P = pressure in atmospheres, D = density in moles per liter, T = temperature in Kelvin,
 S = entropy in Joules per mole Kelvin, C_p and C_v = specific heat capacity at
constant pressure or volume in the same units of S , H = enthalpy in Joules per mole,
 W = velocity of sound in meters per second, λ = thermal conductivity and η = viscosity.
Any deviations from the above will be noted in the text.

NAME	PURPOSE	ARGUMENTS	INPUT	OUTPUT
PROGRAM FLUIDS - MAIN PROGRAM				
SUBROUTINE DATA CH4	Sets constants for Methane.	none	none	none
SUBROUTINE DATA N2	Sets constants for Nitrogen	none	none	none
SUBROUTINE DATA O2	Sets constants for Oxygen	none	none	none
SUBROUTINE DATA PH2				
with entry points				
NH2, OH2, EH2 and FH2	Sets constants for Hydrogen	one	r,one	
SUBROUTINE PROPS	Main Property Routine of the 32 Term MBWR	r, T	D, T	D (a dummy variable)
ENTRY POINTS				
PRESS	Calculates pressure	P,D,I	U,T	F = press

Table 1. Continued

NAME	PURPOSE	ARGUMENTS	INPUT	OUTPUT
DPDD	Partial derivative of pressure with respect to density	P,D,T	D,T	$P = \left(\frac{\partial P}{\partial D}\right)_T$
DPDT	Partial derivative of pressure with respect to temperature	P,D,T	D,T	$P = \left(\frac{\partial P}{\partial T}\right)_D$
DSDR	One limit of the integral for entropy	P,D,T	D,T	$P = S_1$
DUDN	One limit of the integral for internal energy	P,D,T	D,T	$P = I_1$
TDSDT	One limit of the integral for specific heat capacity of constant volume	P,D,T	D,T	$P = C_V$
DP202	Second partial derivative of pressure with respect to density of a fluid	P,D,T	D,T	$P = \left(\frac{\partial^2 P}{\partial D^2}\right)_T$
FUNCTION VPN	Calculates the vapor pressure for a fluid input of pressure	T	T	P_{SAT}
FUNCTION FINDTV	Calculates the saturation temperature given a saturation pressure of a fluid	P	P	T_{SAT}
FUNCTION CV	Calculates the specific heat capacity of constant volume of a fluid	D,T	D,T	C_V
FUNCTION FINDD	Solves the equation of state for a density given pressure and temperature	P,T	P,T	D

Table 1. Continued

NAME	PURPOSE	ARGUMENTS	INPUT	OUTPUT
SUBROUTINE REGULA	Regula-Falsi iteration, used when Newton's Iteration in FINDD fails	P,D,T	P,D,T	D
FUNCTION CP	Calculates specific heat capacity at constant volume of a fluid	D,T	D,T	C_p
FUNCTION DPDTVP	Calculates the derivative dP/dT of the vapor pressure curve of a fluid	T	T	$(dP/dT)_{SAT}$
FUNCTION FINDM	An alternative for D with a first guess for D as an input parameter	P,T,D	P,T,D	D
FUNCTION ENTROP	Calculates the entropy of a fluid	D,T	D,T	S
FUNCTION ENTHAL	Calculates the enthalpy of a fluid	D,T	D,T	H
FUNCTION SATL	Calculates the saturated liquid density of a fluid	T	T	D_{SATL}
ENTRY POINT SATV	Calculates the saturated vapor density of a fluid	T	T	D_{SATV}
FUNCTION SOUND	Calculates the velocity of sound of a fluid	D,T	D,T	W
FUNCTION VISC	Calculates the viscosity of a fluid	D,T	D,T	$\eta \text{ } \mu\text{g/cm-s}$
FUNCTION THERM	Calculates the thermal conductivity of a fluid	D,T	D,T	$\lambda \text{ mH/m-K}$
FUNCTION EXCESV	Calculates the "excess" viscosity of a fluid	D,g/cm ³ ,T	D,g/cm ³ ,T	$\Delta\eta \text{ } \mu\text{g/cm-s}$

Table 1. Continued

ENTRY POINT	NAME	PURPOSE	ARGUMENTS	INPUT	OUTPUT
	EXCESS	Calculates the "excess" thermal conductivity of a fluid	D,g/cm ³ ,T	D,g/cm ³ ,T	$\Delta\lambda \text{ mW/m-K}$
FUNCTION	FDCV	Calculates the first density correction for the viscosity of a fluid	D,g/cm ³ ,T	D,g/cm ³ ,T	$\Delta\eta \mu\text{g/cm-s}$
ENTRY POINT	FDCT	Calculates the first density correction for the thermal conductivity of a fluid	D,g/cm ³ ,T	D,g/cm ³ ,T	$\Delta\lambda \text{ mW/m-K} \times 10^{-2}$
	FUNCTION CRITC	Calculates the critical region enhancement for the thermal conductivity of a fluid	D,g/cm ³ ,T	D,g/cm ³ ,T	$\Delta\lambda \text{ mW/m-K}$
∞	FUNCTION SENG	Equation of state for the critical region (used only by FUNCTION CRITC)	D,g/cm ³ ,T	D,g/cm ³ ,T	compressibility
FUNCTION	DILV	Calculates the dilute gas contribution of the viscosity and thermal conductivity of a fluid	T	T	$\Delta\eta \mu\text{g/cm-s}$
ENTRY	DILT		T	T	$\Delta\lambda \text{ mW/m-K}$
FUNCTION	CPI	Calculates ideal gas specific heat heat capacity at constant pressure of a fluid	T	T	c_p
ENTRY POINTS	H1	Calculates ideal gas enthalpy of a fluid	T	T	H
	SI	Calculates ideal gas entropy of a fluid	T	T	S

Table 1. Continued

NAME	PURPOSE	ARGUMENTS	INPUT	OUTPUT
FUNCTION CP0	Calculates ideal gas specific heat capacity at constant pressure for hydrogen	T	T	Cp
FUNCTION CP0H	Calculates ideal gas enthalpy for hydrogen	T	T	H
FUNCTION CP0S	Calculates ideal gas entropy for hydrogen	T	T	S
FUNCTION ATKINT	Numerical x-y interpolation routine	X, YMAT, XMAT, N, NMAX, NES, ACRCY (see listing for explanation of arguments)	X, YMAT, XMAT, N, NMAX, NES, ACRCY (see listing for explanation of arguments)	Y
9	SUBROUTINE REPRO	Used by Main Program to assemble properties for output	P, T, IL	PRINT
	SUBROUTINE LIMITS	Prints limits of equations of state when exceeded	P, T, IL	
	SUBROUTINE DATA NE	Assembles all neon properties for printout	none	none
	SUBROUTINE DATA HE	Assembles all helium properties for printout	none	none
	SUBROUTINE INFO	Gives general information	none	all He properties information
	SUBROUTINE H2INFO	Gives brief description of ORTHO-PARA states of hydrogen	none	information
	SUBROUTINE SOURCE	Gives source of program	none	information

Table 1. Continued

NAME	PURPOSE	ARGUMENTS	INPUT	OUTPUT
FUNCTION FNDHIE	Solves the helium equation of state for density	P,T D,T	P,T D,T	D P
FUNCTION FNDPHE	Main properties subprogram for helium	D,T		
ENTRY POINTS				
DPDTHE	Calculates $(\frac{\partial P}{\partial T})_p$ for helium	D,T	D,T	$\left(\frac{\partial P}{\partial T}\right)_p$
DPDDHE	Calculates $(\frac{\partial P}{\partial \rho})_T$ for helium	D,T	D,T	$\left(\frac{\partial P}{\partial \rho}\right)_T$
ENTRHE	Calculates entropy for helium	D,T	D,T	S
ENTHHE	Calculates enthalpy for helium	D,T	D,T	H
CVHE	Calculates specific heat capacity at constant volume for helium	D,T	D,T	C_V
FUNCTION SOUNHE	Calculates the velocity of sound for helium	D,T	D,T	W
FUNCTION VIRB	Calculates the second virial coefficient for helium	D,T	D,T	B
FUNCTION DBDT	Calculates the temperature derivative of the second virial for helium	T	T	B
FUNCTION DZDBDT	Calculates the second temperature derivative of the second virial for helium	T	T	B
FUNCTION VPHHE	Calculates the vapor pressure of helium	T	T	B
FUNCTION CPHE	Calculates specific heat capacity at constant pressure for helium	T	T	P
				C_p

Table 1. Continued

NAME	PURPOSE	ARGUMENTS	INPUT	OUTPUT
FUNCTION DELT	Calculates a correction to the 1968 helium temperature scale	T	T	ΔT
FUNCTION VPTEHE	Solves the vapor pressure equation for temperature for helium	P	P	T
FUNCTION DVPNHE	Calculates dP/dT of the vapor pressure for helium	T	T	$(\frac{\partial P}{\partial T})_P$
FUNCTION TRANSP	Calculates thermal conductivity and viscosity of helium	D,T	T	
ENTRY POINTS THREE	Calculates the thermal conductivity for helium	D,T	T	$d \frac{mW}{cm K}$
VISCHE	Calculates viscosity for helium	D,T	T	η micropoise
FUNCTION VISCX	Calculates the dilute gas viscosity of helium from 100 K to 300 K	T	T	η micropoise
FUNCTION DELC	Calculates excess thermal conductivity for helium	D,T	D,T	$\lambda \frac{mW}{cm K}$
FUNCTION CONZ	Used with DELC	T	T	
FUNCTION VISCT	Calculates viscosity of helium for temperatures below 300 K	D,T	D,T	η micropoise

Table 1. Continued

NAME	PURPOSE	ARGUMENTS	INPUT	OUTPUT
FUNCTION CRITIC	Calculates critical enhancement of thermal conductivity for helium	D, gm/cm ³ , T	D,T	$\lambda \frac{\text{W}}{\text{cm s}}$
FUNCTION DSATV	Calculates density of saturated liquid and gaseous helium	T	T	D, g/cm ³
ENTRY POINTS				
DSATV	gas	T	T	D, g/cm ³
DSATL	liquid	T	T	D, g/cm ³
FUNCTION PMELT	Calculates a melting pressure for helium	T	T	F
FUNCTION FNPINE	Redefinition of the pressure function	D,T	D,T	P
FUNCTION ENTHA	Calculates enthalpy for neon	P	P,D,T	H
FUNCTION DLIQNE	Calculates the density of saturated liquid neon	T	T	D
FUNCTION DPDNE	Calculates $\left(\frac{\partial P}{\partial T}\right)_T$ for neon	DT	D,T	$\left(\frac{\partial P}{\partial T}\right)_T$
FUNCTION ENTR	Calculates the entropy of neon - liquid phase, i.e., T < T _c and P > P _{sat}	D,T	D,T	S $\frac{\text{liter atm}}{\text{mol-K}}$
SUBROUTINE DATN	Sets the constants for the neon equation of state	none	none	A1 thru A14
FUNCTION PC	Calculates the pressure for neon	D,T	D,T	P
FUNCTION FINDNE	Solves the neon equation of state for temperature	P,D	P,D	T

Table 1. *continued*

NAME	PURPOSE	ARGUMENTS	INPUT	OUTPUT
FUNCTION FINDP	Checks the pressure of various fluids	D,T	D,T	P
FUNCTION DPDTE	Calculates $\left(\frac{\partial P}{\partial T}\right)_P$ for neon	D,T	D,T	$\left(\frac{\partial P}{\partial T}\right)_P$
FUNCTION FDOTHE	Solves the helium equation of state for temperature	P,D	P,D	T
FUNCTION FINDT	Solves the 32 term BWR equation of state for temperature	P,D	P,D	T
FUNCTION CPOSNE	Calculates the ideal gas entropy for neon	T	T	S
FUNCTION CPDNE	Calculates the ideal gas enthalpy for neon	T	T	H
FUNCTION FDODNE	Solves the neon equation of state for density	P,T	P,T	D
FUNCTION ENTH	Calculates enthalpy for neon - liquid region, i.e., $T < T_c$, $P > P_{sat}$	P,D,T	P,D,T	H
FUNCTION VPTENE	Solves to vapor-pressure of neon for temperature	P	P	T
FUNCTION ENTHNE	Calculates enthalpy for neon - gaseous phase	P,D,T	P,D,T	H
FUNCTION ENTRNE	Calculate entropy for neon in the gaseous phase	D,T	D,T	S

Table 1. Continued

NAME	PURPOSE	ARGUMENTS	INPUT	OUTPUT
FUNCTION VPNNE	Calculates the saturated vapor pressure of neon	T	T	P
FUNCTION DVPNNE	Calculates $\left(\frac{\partial P}{\partial T}\right)_{sat}$ for neon	T	T	$\left(\frac{dp}{dT}\right)_{sat}$

5. Properties of Hydrogen

The thermodynamic properties of hydrogen are calculated from a 32 term empirical equation of state. The source of the equation of state is NBSIR 75-814 (Roder and McCarty, 1975). The program allows the option of ortho, para, and normal hydrogen modifications. The properties for normal and ortho hydrogen are obtained by changing the ideal gas thermodynamic properties from parahydrogen to ortho or normal hydrogen. This changes the derived thermodynamic properties but does nothing to the PVT surface. Therefore the PVT for all of the hydrogen options are the same.

Table 2. Properties and Associated Estimated Uncertainties for Hydrogen

Property	All Uncertainties in Percent (Except Enthalpy)		
	Liquid (below T_c)	Gas (below T_c)	Fluid (above T_c)
pressure	5.0	0.25	0.20
density	0.1	0.25	0.2
temperature	0.1	0.25	0.2
enthalpy	1 J/mol	3 J/mol	5.10 J/mol
entropy	1.0	1.0	1
C_p	3.0	2.0	3.0
C_v	3.0	2.0	3.0
speed of sound	2.0	1.0	1.0

The above are based on the estimated average difference between calculated and true value, including problem areas as described in section 2.

Table 3. Pressure and Temperature Range for Hydrogen

Temperature range	13.8 to 400 K -434.83 to 260.43°F
Pressure range	0** to 1200 bar 0 to 17404.5 psia
<u>Fixed Points</u>	
Triple Point Temperature	13.8 K* -434.83°F
Triple Point Pressure	0.07043101 bar** 1.0215154 psia
Triple Point Density-Vapor	0.0632229 moles/liter 0.007956667 lb/cu ft
Liquid	.21429 moles/liter 4.809273 lb/cu ft
Critical Point Temperature	32.938 K* -459.67°F
Critical Point Pressure	12.83768 bar 186.19481 psia
Critical Point Density	15.556 moles/liter* 1.95774 lb/cu ft

*This particular value is used to define the point in the sense that it was used as input into the program.

**See Section 3 for more detailed explanation of the lower limits of pressure.

Table 4. Properties for Computer Program Performance Test for Hydrogen

Density mol/L	Temp K	H J/mol	S J/mol-K	C _p J/mol-K	C _v J/mol-K	Sound Velocity m/s
<u>Saturated Vapor at 1.01325 bar</u>						
para	20.27686	381.4283	60.38879	24.67806	13.31149	354.0753
normal	20.27686	1444.122	78.76558	24.67806	13.31149	354.0753
ortho	20.27686	1798.340	78.65680	24.67806	13.31149	354.0753
<u>Saturated Liquid at 1.01325 bar</u>						
para	35.11883	20.27686	-516.5543	16.10387	19.48814	11.42787
normal	35.11883	20.27686	546.1399	34.48066	19.48814	11.42787
ortho	35.11883	20.27686	900.3573	34.37187	19.48814	11.42787
<u>Single Phase at 30C K and 1000 bar</u>						
para	24.42809		72.63775	31.56691	22.95644	2138.057
normal	24.42809		84.32367	30.48744	21.87697	2152.397
ortho	24.42809		9916.192	81.98481	30.12762	21.51714

6. Properties of Helium

The thermodynamic properties of helium are calculated from a 32 term modified Benedict-Webb-Rubin equation of state. The source of the equation of state is a paper by McCarty (1973). The transport properties for helium are from NBS Technical Note 631 (McCarty, 1972). Tabular values of the thermodynamic and transport properties of helium are given in Technical Note 631 and are identical to those produced by this computer program.

Table 5. Properties and Associated Estimated Uncertainties for Helium

Property	All Uncertainties in Percent (Except Enthalpy)		
	Liquid (below T_c)	Gas (below T_c)	Fluid (above T_c)
pressure	10.0	0.2	0.2
density	0.5	0.2	0.2
temperature	.5	0.2	0.2
enthalpy	2.0	1.0	1.0
entropy	2.0	1.0	1.0
C_p	2.0	2.0	.5
C_v	2.0	1.5	.5
speed of sound	2.0	1.0	.5
thermal conductivity	10.0	10.0	10.0
viscosity	8.0	8.0	10.0

The above are based on the estimated average difference between calculated and true value, including problem areas as described in section 2.

Table 6. Pressure and Temperature Range for Helium

Temperature range	2 to 1500 K -456.07 to 2240.33°F
Pressure range	0** to 1000 bar 0 to 14504. psia
<u>Fixed Points</u>	
Lambda Temperature	2.1720 K* -455.760°F
Lambda Pressure	.04963285 bar** .71986364 psia
Lambda Density-Vapor	.2904484 moles/liter .72575547 lb/cu ft
Liquid	36.53426 moles/liter 9.1289672 lb/cu ft
Critical Point Temperature	5.2014 K* -450.307°F
Critical Point Pressure	2.274640 bar 32.990864 psia
Critical Point Density	17.3987 moles/liter* 4.347485 lb/cu ft

*This particular value is used to define the point in the sense that it was used as input into the program, the program does not reproduce this number exactly.

**See Section 3 for more detailed explanation of the lower limits of pressure.

Table 7. Properties for Computer Program Performance Test for Helium

Density mol/L	Temp K	H J/mol	S J/mol-K	C_p	C_v	Sound Velocity m/s	Thermal Conductivity mW/m-K	Viscosity $\mu\text{g}/\text{cm}\cdot\text{s}$
<u>Saturated Vapor at 1.01325 bar</u>								
4.219020	4.224449	120.5928	33.16956	39.12776	13.40124	100.1654	10.62098	12.46551
<u>Saturated Liquid at 1.01325 bar</u>								
31.22392	4.224449	38.86948	13.82407	19.93710	9.477176	171.9782	19.63999	31.69095
<u>Single Phase at 300 K and 1000 bar</u>								
28.07788	7544.967	68.82269	20.89332	13.63682	1366.437	201.1403	222.7074	

7. Properties of Neon

The thermodynamic properties of neon are calculated from an 18 term empirical equation of state by McCarty and Stewart (1965). No specific heat capacities are calculated for neon because the accuracy of the model of the equation of state does not warrant the calculation. Transport properties for neon are not available in the form of a mathematical model as is the case for some of the other fluids.

Table 8. Properties and Associated Estimated Uncertainties for Neon

Property	All Uncertainties in Percent (Except Enthalpy)		
	Liquid (below T_c)	Gas (below T_c)	Fluid (above T_c)
pressure	10.0	0.5	0.5
density	2.0	1.0	1.0
temperature	2.0	1.0	1.0
enthalpy	20.0	1.0	10.0
entropy	20.0	1.0	10.0

The above are based on the estimated average difference between calculated and true value, including problem areas as described in section 2.

Table 9. Pressure and Temperature Range for Neon

Temperature range	25 to 300 K -414.67 to 80.33°F
Pressure range	.1** to 200 bar 1.450 to 2901. psia

Fixed Points

Triple Point Temperature	25 K* -414.67°F
Triple Point Pressure	.5102339 bar** 7.4003172 psia
Triple Point Density-Vapor	.2528246 moles/liter .31855482 lb/cu ft
Liquid	61.45071 moles/liter 77.42688 lb/cu ft
Critical Point Temperature	44.40 K* -379.75°F
Critical Point Pressure	26.57086 bar 385.37775 psia
Critical Point Density	23.93 moles/liter* 30.151 lb/cu ft

*This particular value is used to define the point in the sense that it was used as input into the program.

**See Section 3 for more detailed explanation of the lower limits of pressure.

Table 10. Properties for Computer Program Performance Test for Neon

Density	Temp	H	S	C_p	C_v	Sound	Thermal	Viscosity
mol/L	K	J/mol	J/mol-K	J/mol-K	J/mol-K	m/s	mW/m-K	$\mu\text{g}/\text{cm-s}$
<u>Saturated Vapor at 1.01325 bar</u>								
.4734012	27.09186	1838.933	68.000152	-	-	-	-	-
<u>Saturated Liquid at 1.01325 bar</u>								
59.69732	27.09186	101.6894	3.875716	-	-	-	-	-
<u>Single Phase at 300 K and 200 bar</u>								
7.339088		7648.066	74.11069	-	-	-	-	-

8. Properties of Nitrogen

The thermodynamic properties are calculated from a 32 term modified equation of state taken from Jacobsen, et al. (1973). The same functional form of the equation of state used for nitrogen has also been used here for hydrogen, oxygen, argon and methane. The transport properties are from Hanley, et al. (1974).

Table 11. Properties and Associated Estimated Uncertainties for Nitrogen

Property	All Uncertainties in Percent (Except Enthalpy)		
	Liquid (below T_c)	Gas (below T_c)	Fluid (above T_c)
pressure	5.0	0.3	0.3
density	0.5	0.3	0.2
temperature	0.5	0.3	0.2
enthalpy	3.0	1.0	1.0
entropy	2.0	1.0	1.0
C_p	5.0	5.0	5.0
C_v	5.0	5.0	5.0
speed of sound	2.0	0.25	1.0
thermal conductivity	4.0	4.0	6.0
viscosity	2.0	2.0	2.0

The above are based on the estimated average difference between calculated and true value, including problem areas as described in section 2.

Table 12. Pressure and Temperature Range for Nitrogen

Temperature range	63.15 to 1900 K 346 to 2960.33°F
Pressure range	0** to 1000 bar 0 to 145040. psia
<u>Fixed Points</u>	
Triple Point Temperature	63.15 K* 346 °F
Triple Point Pressure	.1246399 bar** 1.807749 psia
Triple Point Density-Vapor	.2396164 moles/liter .04190847 lb/cu ft
Liquid	30.57717 moles/liter 54.178504 lb/cu ft
Critical Point Temperature	126.26 K* -232.402°F
Critical Point Pressure	34.10034 bar 484.5836 psia
Critical Point Density	11.21 moles/liter* 19.606 lb/cu ft

*This particular value is used to define the point in the sense that it was used as input into the program.

**See Section 3 for more detailed explanation of the lower limits of pressure.

Table 13. Properties for Computer Program Performance Test for Nitrogen

Density mol/L	Temp K	H J/mol	S J/mol-K	C _p	C _v	Sound m/s	Thermal Conductivity mW/m-K	Viscosity μg/cm-s
<u>Saturated Vapor at 1.01325 bar</u>								
.1646146	77.36267	2163.506	151.447	31.95042	21.58560	174.8439	7.569252	52.81762
<u>Saturated Liquid at 1.01325 bar</u>								
28.86246	77.36267	-3400.812	79.53773	57.79680	27.82053	938.8844	133.6724	1515.714
<u>Single Phase at 300 K and 1000 bar</u>								
23.93016	8447.358	128.3785	37.85003	23.93016	840.4759	85.35870	523.9142	

9. Properties of Oxygen

The thermodynamic properties of oxygen are calculated from a 32 term empirical equation of state given in NBSIR 78-882 by Weber (1978). The functional form of the oxygen equation of state is the same as was used for hydrogen, nitrogen, oxygen and methane. The transport properties are from Hanley et al. (1974).

Table 14. Properties and Associated Estimated Uncertainties for Oxygen

Property	All Uncertainties in Percent (Except Enthalpy)		
	Liquid (below T_c)	Gas (below T_c)	Fluid (above T_c)
pressure	5.0	0.25	0.15
density	0.1	0.25	0.15
temperature	0.1	0.2	0.1
enthalpy	0.5	0.25	0.5
entropy	0.5	0.25	0.5
C_p	3.0	5.0	3.0
C_v	3.0	5.0	3.0
speed of sound	2.0	0.5	0.5
thermal conductivity	4.0	4.0	6.0
viscosity	2.0	2.0	2.0

The above are based on the estimated average difference between calculated and true value, including problem areas as described in section 2.

Table 15. Pressure and Temperature Range for Oxygen

Temperature range	54.359 to 400 K -361.8238 to 260.33°F
Pressure range	0** to 1200 bar 0 to 17404. psia

Fixed Points:

Triple point Temperature	54.359 K* -361.8238°F.
Triple Point Pressure	.001490085 bar** .021611856 psia
Triple Point Density-Vapor	.0003275488 moles/liter 6.5431796×10^{-4} lb/cu ft
Liquid	40.81997 moles/liter 81.542780 lb/cu ft
Critical Point Temperature	154.481 K* -181.4242°F
Critical Point Pressure	50.42218 bar 731.31190 psia
Critical Point Density	13.63 moles/liter* 27.228 lb/cu ft

*This particular value is used to define the point in the sense that it was used as input into the program.

**See Section 3 for more detailed explanation of the lower limits of pressure.

Table 16. Properties for Computer Program Performance Test for Oxygen

Density mol/L	Temp K	H J/mol	S J/mol-K	C_p	C_v	Sound Velocity m/s	Thermal Conductivity mW/m-K	Viscosity $\mu\text{J}/\text{cm-s}$
<u>Saturated Vapor at 1.01325 bar</u>								
.1399257	90.19135	2537.538	169.5844	31.34338	21.71976	177.4626	8.460045	66.97377
<u>Saturated Liquid at 1.01325 bar</u>								
35.65789	90.19135	-4260.782	94.19495	54.22163	29.53503	905.4406	71.85019	716.0933
<u>Single Phase at 300 K and 1000 bar</u>								
24.42347	6930.248	140.4206	40.44384	24.67886	732.8926	66.50174	597.4560	

10. Properties of Argon

The thermodynamic properties of argon have been calculated from a 32 term empirical equation of state from Hanley, et al. (1974). The functional form of the argon equation of state is the same as was used for hydrogen, nitrogen, oxygen and methane. The transport properties for argon were also taken from Hanley, et al. (1974).

Table 18. Pressure and Temperature Range for Argon

Temperature range	83.80 to 400 K -308.83 to 260.33°F
Pressure range	0** to 1000 bar 0 to 14504. psia
<u>Fixed Points</u>	
Triple Point Temperature	83.80 K* -308.83°F
Triple Point Pressure	.6890708 bar** 9.9941271 psia
Triple Point Density-Vapor	.1015395 moles/liter .25322653 lb/cu ft
Liquid	35.40018 moles/liter 88.283522 lb/cu ft
Critical Point Temperature	150.86 K* -188.122°F
Critical Point Pressure	48.98050 bar 710.40210 psia
Critical Point Density	13.41 moles/liter* 33.443 lb/cu ft

*This particular value is used to define the point in the sense that it was used as input into the program.

**See Section 3 for more detailed explanation of the lower limits of pressure.

Table 19. Properties for Computer Program Performance Test for Argon

Density mol/L	Temp K	H J/mol	γ	C_p	C_v	Sound Velocity m/s	Thermal Conductivity mW/m-K	Viscosity $\mu\text{g}/\text{cm}\cdot\text{s}$
<u>Saturated Vapor at 1.01325 bar</u>								
.1445217	87.28153	9425.279	128.5414	23.29635	13.59023	170.3420	5.856927	72.51142
<u>Saturated Liquid at 1.01325 bar</u>								
34.87034	87.28153	2952.449	53.37806	51.00242	34.11186	608.5500	128.0897	2594.300
<u>Single Phase at 300 K and 1000 bar</u>								
38	12354.77	90.55855	31.30528	15.70327	716.8781	72.17791	750.1518	
24.07985								

11. Properties of Methane

The thermodynamic properties of methane are calculated from a 32 term empirical equation of state by McCarty (1974). The functional form of the methane equation of state is the same as was used for hydrogen, nitrogen, oxygen, and argon. The transport properties are from Hanley, et al. (1977).

Table 20. Properties and Associated Estimated Uncertainties for Methane

Property	All Uncertainties in Percent (Except Enthalpy)		
	Liquid (below T_c)	Gas (below T_c)	Fluid (above T_c)
pressure	5.0	0.25	0.25
density	0.1	0.25	0.25
temperature	0.1	0.25	0.25
enthalpy	1.0	0.5	0.5
entropy	0.5	0.5	0.5
C_p	2.0	5.0	2.0
C_v	2.0	5.0	2.0
speed of sound	1.0	0.3	0.3
thermal conductivity	5.0	5.0	4.0
viscosity	3.0	3.0	2.0

The above are based on the estimated average difference between calculated and true value, including problem areas as described in section 2.

Table 21. Pressure and Temperature Range for Methane

Temperature range	90.68 to 500 K -296.446 to 440.33°F
Pressure range	0** to 350 bar 0 to 5076. psia
<u>Fixed Points</u>	
Triple Point Temperature	90.68 K* -296.446°F
Triple Point Pressure	.1174350 bar** 1.7032507 psia
Triple Point Density-Vapor	.01569094 moles/liter .015713995 lb/cu ft
Liquid	28.15114 moles/liter 28.192503 lb/cu ft
Critical Point Temperature	190.555 K* -116.671°F
Critical Point Pressure	45.98838 bar 667.00507 psia
Critical Point Density	10.23 moles/liter* 10.245 lb/cu ft

*This particular value is used to define the point in the sense that it was used as input into the program.

**See Section 3 for more detailed explanation of the lower limits of pressure.

Table 22. Properties for Computer Program Performance Test for Methane

Density mol/l	Temp K	H J/mol	S J/mol-K	C _p J/mol-K	C _v J/mol-K	Velocity m/s	Sound Velocity m/s	Thermal Conductivity mW/m-K	Viscosity μg/cm-s
<u>Saturated Vapor at 1.01325 bar</u>									
.1131362	111.6319	12781.80	152.5707	35.28294	25.73168	271.5553	13.21587	44.74053	
<u>Saturated Liquid at 1.01325 bar</u>									
26.34296	111.6319	4588.008	79.17229	55.81038	32.76708	1351.590	186.0727	1178.028	
<u>Single Phase at 300 K and 350 bar</u>									
14.36660	15715.38	128.9694	55.42562	31.19452	704.7618		81.50882	272.0201	

12. References

- [1] Roder, H. M. and McCarty, R. D., A Modified Benedict-Webb-Rubin Equation of State for Parahydrogen-II, Nat. Bur. Stand. (U.S.), Interagency Report NBSIR 75-814 (1975).
- [2] McCarty, R. D., Thermodynamic Properties of Helium 4 From 2 to 1500 K at Pressures to 10^8 Pa, J. Phys. Chem. Ref. Data 2, No. 4, 923-1042 (1973).
- [3] McCarty, R. D., Thermophysical Properties of Helium-4 From 2 to 1500 K with Pressures to 1000 Atmospheres, Nat. Bur. Stand. (U.S.), Tech. Note 631 (1972).
- [4] McCarty, R. D. and Stewart, R. B., Thermodynamic Properties of Neon from 25 to 300 K Between 0.1 and 200 Atmospheres, Advances in Thermophysical Properties at Extreme Temperatures and Pressures, The American Society of Mechanical Engineers (1965).
- [5] Jacobsen, R. T., Stewart, R. B., McCarty, R. D. and Hanley, H. J. M., Thermophysical Properties of Nitrogen from the Fusion Line to 3500 R [1944 K] for Pressures to 150,000 PSIA [10342×10^5 N/m²], Nat. Bur. Stand. (U.S.), Tech. Note 648 (Dec 1973).
- [6] Hanley, H. J. M., McCarty, R. D. and Haynes, W. M., The Viscosity and Thermal Conductivity for Dense Gaseous and Liquid Argon, Krypton, Xenon, Nitrogen and Oxygen, J. Phys. Chem. Ref. Data 3, No. 4, 979-1017 (1974).
- [7] Weber, L. A., A Modified Benedict-Webb-Rubin Equation of State for Gaseous and Liquid Oxygen, Nat. Bur. Stand. (U.S.), Interagency Report NBSIR 78-882 (1978).
- [8] McCarty, R. D., A Modified Benedict-Webb-Rubin Equation of State for Methane Using Recent Experimental Data, Cryogenics 14, No. 5, 276-80 (May 1974).
- [9] Hanley, H. J. M., Haynes, W. M. and McCarty, R. D., The Viscosity and Thermal Conductivity Coefficients for Dense Gaseous and Liquid Methane, J. Phys. Chem. Ref. Data 6, No. 2, 597-609 (1977).

Appendix 1

Example of the Use of the Program

CALL, ITROPS

HI, WELCOME TO THE WORLD OF FLUID PROPERTIES. IF YOU ARE NOT FAMILIAR WITH
PROGRAM PLEASE ENTER A 0.

? 0

WHEN THE PROGRAM ASKS FOR A FLUID SELECTION, ENTER THE APPROPRIATE NUMBER.
AN INAPPROPRIATE NUMBER WILL TERMINATE THE PROGRAM.

WHEN THE PROGRAM ASKS FOR A PRESSURE, DENSITY, AND
TEMPERATURE, ENTER ANY 2 OF THE THREE AND A 0 FOR THE THIRD.
THE ORDER MUST BE P, D,T, AND ONE OF THE THREE MUST BE 0.

IF ALL THREE ARE 0 THE PROGRAM ASKS FOR A NEW FLUID.

IF YOU ARE INTERESTED IN A DEFINITION OF THE VARIOUS
MODIFICATIONS OF HYDROGEN ENTER A 1, IF NOT ENTER A 0.

? 0

IF YOU ARE INTERESTED IN THE SOURCES OF THESE PROGRAMS
ENTER A 1 IF NOT ENTER A 0.

? 0

SELECT A FLUID FROM THE FOLLOWING LIST

PARA HYDROGEN=1
NORMAL HYDROGEN=10
ORTHO HYDROGEN=11
HELIUM=2
NEON=3
NITROGEN=4
OXYGEN=5
ARGON=6
METHANE=7

TERMINATION=8

? 4

THE RANGE OF TEMPERATURE FOR NITROGEN IS 63.15 TO 1900K
WITH PRESSURES TO 10000 BAR

DO YOU PREFER ENGINEERING UNITS OR METRIC UNITS ?
ENTER A 0 FOR ENGINEERING UNITS OR A 1 FOR METRIC

? 1

DO YOU WANT SATURATION PROPERTIES ?
ENTER 0 FOR YES OR 1 FOR NO

? 1

DO YOU WANT A SINGLE POINT OR A TABLE OF PROPERTIES ?
ENTER A 0 FOR A SINGLE POINT OR A 1 FOR A TABLE

? 1

ENTER A PRESSURE, A STARTING TEMPERATURE, A FINAL
TEMPERATURE AND A TEMPERATURE INCREMENT, IN BARS, DEGREES
K, AND IN THAT ORDER

? 10,100,200,10

PRESSURE	DENSITY	TEMP	H	S	CP	CV	S SOUND	COND	VISC
BAR	MOL/L	K	J/MOL	J/MOL-K	J/MOL-K	M/S	MW/M-N	MJ F °M-S	
10.00	24.6342	100.00	-2032.40	94.64	64.36	26.23	616.75	98.53	731.3
10.00	1.3169	110.00	2731.63	140.55	40.17	23.18	194.20	12.77	79.7
10.00	1.1452	120.00	3111.38	143.85	36.25	22.33	208.92	13.35	85.5
10.00	1.0226	130.00	3462.67	146.67	34.19	21.85	221.53	14.02	91.5
10.00	.9282	140.00	3797.88	149.15	32.94	21.56	232.83	14.73	97.5
10.00	.8523	150.00	4122.94	151.39	32.12	21.36	243.20	15.47	103.4
10.00	.7894	160.00	4441.10	153.45	31.55	21.23	252.87	16.23	109.2
10.00	.7360	170.00	4754.35	155.35	31.13	21.14	261.98	17.00	114.9
10.00	.6901	180.00	5063.95	157.12	30.81	21.07	270.64	17.76	120.6
10.00	.6499	190.00	5370.75	158.78	30.56	21.02	278.93	18.53	126.1
10.00	.6145	200.00	5675.36	160.34	30.37	20.98	286.88	19.29	131.5

ENTER A PRESSURE, A STARTING TEMPERATURE, A FINAL
TEMPERATURE AND A TEMPERATURE INCREMENT, IN BARS, DEGREES
K, AND IN THAT ORDER

? 0,0,0,0

SELECT A FLUID FROM THE FOLLOWING LIST

PARA HYDROGEN=1
NORMAL HYDROGEN=10
ORTHO HYDROGEN=11
HEL IUM=2
NEON=3
NITROGEN=4
OXYGEN=5
ARGON=6
METHANE=7

TERMINATION=8

0
EXIT.

Appendix 2

Program Listings

```

PROGRAM FLUIDS(INPUT=130,OUTPUT)
DIMENSION B(32),VP(9)
COMMON/DATA/B,R,GAMMA,UP,BTP,PCC,PFP,TC,TTP,TUL,TLL,FUL,DCC
COMMON /CONT/IF
COMMON/CRIT/EM,EOK,RM,TC,PC,X,PC,BIG
100 FORMAT(* HI, WELCOME TO THE WORLD OF FLUID PROPERTIES, IF YOU ARE NOT
1NOT FAMILIAR WITH THE PROGRAM PLEASE ENTER A 0 *)
PRINT 100
READ 101,I
IF(I,EQ,0)CALL INFO
101 FORMAT(11)
99 PRINT 102
PRINT 104
102 FORMAT(* SELECT A FLUID FROM THE FOLLOWING LIST*)
104 FORMAT(* PARA HYDROGEN=1/* NORMAL HYDROGEN=10/* ORTHO H
1YDROGEN=11/* HELIUM=2/* NEON=3/* NITROGEN=4/* OXYG
2EN=5/* ARGON=6/* METHANE=7/*)
4 TERMINATION=8*)
READ *,IF
GO TO(1,2,3,4,5,6,7,999,999,10,11),IF
1 CALL DATA PH2
GO TO 13
2 CALL DATA HE
GO TO 99
3 CALL DATA NE
GO TO 99
4 CALL DATA N2
GO TO 13
5 CALL DATA O2
GO TO 13
6 CALL DATA AR
GO TO 13
7 CALL DATA CH4
GO TO 13
10 CALL NH2
GO TO 13
11 CALL OH2
GO TO 13
13 PRINT 105
105 FORMAT(* DO YOU PREFER ENGINEERING UNITS OR METRIC UNITS ?*
1/* ENTER A 0 FOR ENGINEERING UNITS OR A 1 FOR METRIC*)
READ 101,IU
PRINT 106
106 FORMAT(* DO YOU WANT SATURATION PROPERTIES ?*
1/* ENTER 0 FOR YES OR 1 FOR NO*)
READ 101,IC
PRINT 107
107 FORMAT(* DO YOU WANT A SINGLE POINT OR A TABLE OF PROPERTIES ?*
1/* ENTER A 0 FOR A SINGLE POINT OR A 1 FOR A TABLE*)
READ 101,IV
21 IF(IC,EQ,0)GO TO 30
IF(IV,EQ,1)GO TO 40
22 IF(IU,EQ,0)GO TO 19
PRINT 103
READ *,P,D,T
P=P/1.01325
GO TO 20
19 PRINT 108
108 FORMAT(* ENTER PRESSURE IN LB/SQ IN, DENSITY IN LB/CU FT, AND*
1/* TEMPERATURE IN DEGREES F*)
READ *,P,D,T
P=P/14.695949
D=D*16.01846371/EM

```

```

1 IF(T.EQ.0.0)GO TO 20
T=(T-32.)/1.8+273.15
20 IF(P.LE.0.0)GO TO 14
103 FORMAT(* ENTER PRESSURE IN BAR, DENSITY IN MOLES/LITER, AND TEMPER
1ATURE IN KELVINS*)
IF(D.LE.0.0)GO TO 17
IF(T.LE.0.0)GO TO 12
GO TO 22
12 IF(P.LE.0.OR.D.LE.0.0)GO TO 99
T=FIND T(P,D)
CALL LIMITS(P,T,IL)
IF(IL.LE.0)GO TO 22
GO TO 16
17 IF(T.LE.0.OR.P.LE.0)GO TO 99
CALL LIMITS(P,T,IL)
IF(IL.LE.0)GO TO 22
D=FIND D(P,T)
GO TO 16
14 IF(D.LE.0.0.OR.T.LE.0)GO TO 99
P=FIND P(D,T)
CALL LIMITS(P,T,IL)
IF(IL.LE.0)GO TO 22
16 CALL REPRO(P,D,T,IU,IV,IC,IP,TF,DELT)
GO TO 22
30 PRINT 109
109 FORMAT(* DO YOU WANT SATURATED LIQUID OR SATURATED VAPOR*
1/* ENTER 0 FOR LIQUID OR 1 FOR VAPOR*)
READ 101,IP
IF(IV.EQ.1)GO TO 40
PRINT 111
111 FORMAT(* DO YOU WANT TO ENTER WITH TEMPERATURE OR PRESSURE *
1/* ENTER 0 FOR TEMPERATURE OR 1 FOR PRESSURE*)
READ 101,II
IF(II.EQ.1)GO TO 35
211 IF(IU.EQ.1)GO TO 31
112 FORMAT(* ENTER A TEMPERATURE IN DEGREES F*)
PRINT 112
READ *,TI
T=(TI-32.)/1.8+273.15
IF(T.LE.0.0)GO TO 99
GO TO 33
31 PRINT 113
113 FORMAT(* ENTER A TEMPERATURE IN DEGREES K*)
READ *,T
33 IF(T.LE.0.0)GO TO 99
IF(T.GT.TCC.OR.T.LT.TTP)GO TO 34
P=VPN(T)
IF(IP.EQ.0)P=P+.00001
D=FIND D(P,T)
CALL RE PRO(P,D,T,IU,IV,IC,IP,TF,DELT)
GO TO 211
34 PRINT 114,TCC, TTP
114 FORMAT(* YOUR INPUT TEMPERATURE IS OUTSIDE THE RANGE OF THE*
1/* SATURATION TEMPERATURES FOR THIS FLUID.*/
2/* TC=*,F6.2,* TTP=*,F6.2,* TRY AGAIN*/
GO TO 211
35 IF(IU.EQ.1)GO TO 36
PRINT 115
115 FORMAT(* ENTER A PRESSURE IN LB/SQ IN*)
READ *,PI
IF(PI.LE.0.0)GO TO 99
P=PI/14.695949
GO TO 37

```

```

36 PRINT 116
116 FORMAT(* ENTER A PRESSURE IN BAR*)
READ *,P1
IF(P1.LE.0.0)GO TO 99
P=PI/1.01325
37 IF(P.GT.PCC.OR.P.LT.PTP)GO TO 38
I=FIND D(P)
P=VPN(I)
IF(IP.EQ.0.0)P=P+.0001
D=FIND D(P,I)
CALL RE PRO(P,D,T,IU,IV,IC,IP,TF,DELT)
GO TO 35
38 PRINT 117,PCC,PTP
117 FORMAT(* YOUR INPUT PRESSURE IS OUTSIDE THE RANGE OF SATURATION*
1/* PRESSURES FOR THIS FLUID.*/
2/* PC=*,F6.3,* PTP=*,F6.5,* TRY AGAIN*/
GO TO 35
40 IF(IC.EQ.1)GO TO 50
IF(IU.EQ.1)GO TO 41
PRINT 118
118 FORMAT(* ENTER A STARTING TEMPERATURE, A FINAL TEMPERATURE*
1/* AND A TEMPERATURE INCREMENT, IN DEGREES F AND IN THAT ORDER*/
READ *,TS,TF,DELT
IF(DELT.LE.0.0)GO TO 99
TS=(13-32.)/1.8+273.15
TF=(TF-32.)/1.8+273.15
DELT=DELT/1.8
IF(TS.LT.TTP.OR.TS.GT.TCC)GO TO 45
IF(TF.LT.TTP.OR.TF.GT.TCC)GO TO 45
GO TO 42
41 PRINT 119
119 FORMAT(* ENTER A STARTING TEMPERATURE, A FINAL TEMPERATURE*
1/* AND A TEMPERATURE INCREMENT IN KELVINS AND IN THAT ORDER*/
READ *,TS,TF,DELT
IF(DELT.LE.0.0)GO TO 99
IF(TS.LT.TTP.OR.TS.GT.TCC)GO TO 45
IF(TF.LT.TTP.OR.TF.GT.TCC)GO TO 45
42 T=TS
P=VPN(T)
IF(IP.EQ.0.0)P=P+.0001
D=FIND D(P,T)
CALL RE PRO(P,D,T,IU,IV,IC,IP,TF,DELT)
GO TO 40
45 PRINT 120,TCC,TTF
120 FORMAT(* EITHER YOUR STARTING OR FINAL TEMPERATURE IS OUTSIDE*
1/* THE RANGE OF SATURATION TEMPERATURES.*/
2/* TC=*,F6.2,* TTF=*,F6.2,* TRY AGAIN*/
GO TO 40
50 IF(IU.EQ.1)GO TO 51
PRINT 121
121 FORMAT(* ENTER PRESSURE, STARTING TEMPERATURE, FINAL TEMPERATURE*
1/* AND A TEMPERATURE INCREMENT, IN LB/CU FT, DEGREES F, AND IN*
2/* THE ABOVE ORDER*/
READ *,PI,TS,TF,DELT
IF(DELT.LE.0.0)GO TO 99
P=PI/14.695949
T=(TS-32.)/1.8+273.15
TF=(TF-32.)/1.8+273.15
DELT=DELT/1.8
CALL LIMITS(P,T,IL)
IF(IL.LE.0)GO TO 50
CALL LIMITS(P,TF,IL)
IF(IL.LE.0)GO TO 50

```

```

      GO TO 52
51 PRINT 122
122 FORMAT(* ENTER A PRESSURE, A STARTING TEMPERATURE, A FINAL*
1/* TEMPERATURE AND A TEMPERATURE INCREMENT, IN BARS, DEGREES*
2/* K, AND IN THAT ORDER*)
      READ *,P1,T1,TF,DELT
      IF(DELT.LE.0.0)GO TO 99
      T=T1
      P=P1/1.01325
      CALL LIMITS(P,T,IL)
      IF(IL.LE.0)GO TO 50
      CALL LIMITS(P,TF,IL)
      IF(IL.LE.0)GO TO 50
52 D=FIND D(P,T)
      CALL RE PRO(P,D,T,IU,IV,IC,IP,TF,DELT)
      GO TO 50
999 CONTINUE
      STOP
      END
      SUBROUTINE DATA ET
      PRINT 100
100 FORMAT(* ETHANE IS SCHEDULED TO BE ADDED TO THE FLUIDS*
1/* PACK IN THE NEXT FISCAL YEAR*)
      RETURN
      ENTRY DATA PR
      PRINT 101
101 FORMAT(* PROPANE IS SCHEDULED TO BE ADDED TO THE FLUIDS*
1/* PACK AFTER FY78*)
      RETURN
      ENTRY DATA NH3
      PRINT 102
102 FORMAT(* AMMONIA IS SCHEDULED TO BE ADDED TO THE FLUIDS*
1/* PACK DURING FY78*)
      RETURN
      ENTRY DATA SH
      ENTRY DATA SO
      PRINT 103
103 FORMAT(* THE SLUSH PROGRAMS WILL BE ADDED TO THE FLUIDS*
1/* PACK IN FY78*)
      RETURN
      END
      SUBROUTINE RE PRO(P,D,T,IU,IV,IC,IP,TF,DELT)
      DIMENSION G(32),VP(9)
      COMMON/DATA/G,R,GAMMA,VP,DTP,PCC,PTP,TCC,ITP,TUL,TLL,PUL
      COMMON/CONT/IC
      COMMON/CRIT/EM,EOK,RM,TC,DC,X,PC,SIG
      N=500
      IF(IV.EQ.0)TF=T-1.
      PRINT 100
      IF(IU.EQ.0)GO TO 1
      PRINT 102
      GO TO 2
1 PRINT 103
1 PRINT 104
2 CONTINUE
DO 10 I=1,N
IF(I.EQ.1)GO TO 3
D=FIND D(P,T)
3 H=ENTHAL(PV
      S=ENTROP(D,T)
      W=SOUND(D,T)
      CPP=CP(D,T)
      CVV=CV(D,T)

```

```

Q=P#1.01325
IF(IU.EQ.0)GO TO 21
IF(IC.EQ.1.OR.IC.EQ.10.OR.IC.EQ.11)GO TO 20
IF(IC.EQ.9)GO TO 20
TH=THERM(D,T)
V=VISC(D,T)
PRINT 101,Q,D,T,H,S,CPP,CVV,W TH,V
GO TO 9
20 PRINT 101,Q,D,T,H,S,CPP,CVV,W
GO TO 9
101 FORMAT(F8.2,F8.4,F9.2,F8.2,2F7.2,F8.2,F7.2,F7.1)
100 FORMAT(* PRESSURE DENSITY TEMP H S CP CV S
1 SOUND COND VISC*)
102 FORMAT(* BAR MOL/L K J/MOL J/MOL-K J/MOL-K
1M/S MW/M-K MIG/CM-S*)
103 FORMAT(* LB/SQ IN LB/CU FT DEG F BTU/LB BTU/LB-F
1 F/S BTU LB/FT-S*)
104 FORMAT(*
1 FT-HR-F E+7*)
21 H=H/(2.324445*EM)
S=S/(4.184001*EM)
CPP=CPP/(4.184001*EM)
CVV=CVV/(4.184001*EM)
W=W*3.280840
PO=P#14.695949
DO=D*EM/16.01846371
TO=T*1.8-459.67
IF(IC.EQ.1.OR.IC.GT.8)GO TO 22
TH=THERM(D,T)*.000378176
V=VISC(D,T)*.0067196897
PRINT 105,PO,DO,TO,H,S,CPP,CVV,W,TH,V
105 FORMAT(F8.1,F8.3,2F9.2,F8.2,2F7.3,F8.0,F7.4,F7.3)
GO TO 9
22 PRINT 101,PO,DO,TO,H,S,CPP,CVV,W
9 T=T+DELT
IF(T.GT.TF+.01)GO TO 11
IF(IQ.EQ.0)P=VPN(T)
IF(IP.EQ.0)P=P+.0001
10 CONTINUE
11 CONTINUE
RETURN
END

```

```

SUBROUTINE DATA CH4
DIMENSION G(32),VP(9),GI(11)
DIMENSION GV(9),GT(9),FV(4),FT(4),EV(8),ET(8)
DIMENSION A(20)
COMMON/SEN/BETA,X0,DELTA,E1, E2, AGAM
COMMON/CPID/GI
COMMON/CRIT/ EM, EOK, RM, TC, DC, X , PC, SIG
COMMON/DATA/B,R,GAMMA,VP,DTP,PCC,PTP,TCC,TTP,IUL,TLL,PUL,UCC
COMMON/DATA1/GV,GT,FV,FT,EV,ET
COMMON/ISP/N,NW,NWW
COMMON/SATC/A,DTPV
NWW=0
PRINT 100
100 FORMAT(* THE RANGE OF TEMPERATURE FOR METHANE IS 90.68 TO 500 K*
1/* WITH PRESSURES TO 350 BAR*)
N=0 $ NW=0
EM=16.042 $ EOK=168. $ RM=4.101E-08 $ TC=190.555
DC=0.1627 $ X=1.7124 $ PC=45.95 $ SIG=3.68
X0=0.164 $ BETA=0.355 $ DELTA=4.352 $ E1=2.03 $ E2=0.287
AGAM=1.190
C PARAMETERS FOR TRANSPORT
C PROPERTIES - HANLEY ET. AL. JOURNAL
C OF PHY. CHEM. REF. DATA VOL 6 NO 2
C 1977
C DATA SUBROUTINE FOR METHANE
GV(1)=-2.090974/942E+2
GV(2)=2.6472692181E+2
GV(3)=-1.4728175613E+2
GV(4)=4./16/401921E+1
GV(5)=-9.4918721789E+0
GV(6)=1.2199792872E+0
GV(7)=-9.62799355746E-2
GV(8)=4.2741516570E-3
GV(9)=-8.1415307247E-05
GI(1)=-2.1476213125E+5
GT(2)=2.1904610575E+5
GT(3)=-8.61809/3719E+4
GT(4)=1.4960986936E+4
GT(5)=-4.7306603177E+2
GT(6)=-2.3311779643E+2
GT(7)=3.7784390759E+1
GT(8)=-2.3204806092E+0
GT(9)=5.3117637687E-2
EV(1)=-1.0350606586E+1
EV(2)=4.2903609488E-2
EV(3)=1.7571599671E+1
EV(4)=6.1276818706E+3
EV(5)=-3.0193918656E+3
EV(6)=1.8873011594E+2
EV(7)=1.4529023444E+2
EV(8)=0.162
FV(1)=1.6969859271
FV(2)=-.13337234608
FV(3)=1.4
FV(4)=168.
FV(4)=168.
FT(1)=-.252762921
FT(2)=.3343285931
FT(3)=1.12
FT(4)=168.
ET(1)=-7.0403639907
ET(2)=-.74421462902
ET(3)=12.319512908

```

```

ET(4)=2.2209758501E+3
ET(5)=-8.8525979943E+2
ET(6)=72.835897919
ET(7)=-2.9706914540
ET(8)=0.1628
C PARAMETERS FOR THERMODYNAMIC
C PROPERTIES - MCCARTY, CRYOGENICS
C VOL 14 NO 5 MAY 1974 AND GOODWIN
C NBS TECH NOTE 653 APRIL 74
C R=.08205616
C GAMMA=-.0094
GI(1)=-1.8044750507E+6
A( 1)= .183603246136E+02
A( 2)= -.182553840603E-01
A( 3)= .586623807178E+00
A( 4)= -.106005894683E+02
A( 5)= .167157622432E+03
A( 6)= -.155569173217E+03
A( 7)= .106609415022E+03
A( 8)= -.341087933790E+02
A( 9)= .973203073452E+01
A(10)= -.388410018388E+02
A(11)= .529573454771E+02
A(12)= -.291075304738E+02
A(13)= .585307647478E+01
A(14)= -.637276532186E+00
A(15)= .994444109622E-03
A(16)= -.392314821657E-01
A(17)= .728820880748E+00
A(18)= -.625821815315E+01
A(19)= .295561390641E+01
A(20)= -.763972649504E+00
GI(2)=7.7426666393E+4
GI(3)=-1.3241658754E+3
GI(4)=1.5438149595E+1
GI(5)=-5.1479905257E-2
GI(6)=1.0809172196E-4
GI(7)=-6.550174343E-8
GI(8)=-6.7490056171E+0
GI(9)=.3E+4
GI(10)=GI(11)=0
T0=298.15
H0=19196.1
GI(10)=H0-HI(T0)
T0=300.
S0=186.4854941
GI(11)=S0-SI(T0)
G( 1)= -.187027997685E-01
G( 2)= .103387108009E+01
G( 3)= -.155387625619E+02
G(4)= .772311478564E+03
G( 5)= -.377103300895E+05
G( 6)= .846818843475E-03
G( 7)= -.496415884529E+00
G( 8)= .869909352414E+02
G( 9)= -.322821592493E+05
G(10)= -.395843026318E-04
G(11)= .266772318035E-01
G(12)= -.304010057839E+01
G(13)= .191584507536E-03
G(14)= -.195587933458E-03
G(15)= .607479967879E+01
G(16)= -.529609525984E-03

```

```

G(17)= .152264284004E-04
G(18)= -.109952182842E-01
G(19)= .191395549929E-03
G(20)= .386470003746E+05
G(21)= -.157930582612E+07
G(22)= .195270144401E+03
G(23)= .165996081629E+07
G(24)= .603051146711E+00
G(25)= .376485162808E+02
G(26)= .125593680622E-02
G(27)= -.343570032513E+02
G(28)= -.540945094139E-05
G(29)= .185622284663E-02
G(30)= .770786979245E-08
G(31)= -.286868318650E-05
G(32)= .372376961647E-04
DTP=.2815114381423E+02
DTPV=.1590041545160E-01
VP(1)=4.77748580
VP(2)=1.76065363
VP(3)=-.56788894
VP(4)=1.32786231
VP(5)=1.5
VP(6)=.1158993
VP(7)=90.68
VP(8)=190.555
VP(9)=0.0
TCC=VP(8)
PCC=VPN(TCC)*1.01325
PTP=VP(6)*1.01325
TTP=VP(7)
TUL=500.
TLL=TTP
PUL=350.
DCC=10.23
RETURN
END
SUBROUTINE DATA N2
DIMENSION G(32),VP(9),GI(11)
DIMENSION GV(4),GT(9),FV(4),FT(4),EV(8),ET(8)
DIMENSION A(20)
COMMON/CRIT/ EM, EOK, RM, TC, DC, X , PC, SIG
COMMON/SATC/A,DTPV
COMMON/DATA1/GV,GT,FV,FT,EV,ET
COMMON/SEN/BETA,XO,DELTA,E1, E2, AGAM
COMMON/DATA/B,R,GAMMA,VP,DTP,PCC,PTP,TCC,TTP,TUL,TLL,PUL,DCC
COMMON/CPID/GI
COMMON/ISP/N,NW,NWW
NWW=0
PRINT 100
100 FORMAT(* THE RANGE OF TEMPERATURE FOR NITROGEN IS 63.15 TO 1900K*
1/* WITH PRESSURES TO 10000 BAR*)
N=0 $ NW=1
EM=28.016 $ EOK=118. $ RM=3.933E-08 $ TC=126.24
DC=.3139 $ X=1.67108 $ PC=33.98 $ SIG=3.54
XO=0.164 $ BETA=0.355 $ DELTA=4.352 $ E1=2.17 $ E2=0.287
AGAM=1.190
C PARAMETERS FOR TRANSPORT
C PROPERTIES FROM HANLEY ET. AL.
C JOUR. PHY. CHEM. REF DATA VOL3, NO 4
C 1974
GV(1)=-1.8224240000E+2 $ GV(2)=1.9915327374E+2
GV(3)=-9.1542324494E+1 $ GV(4)=2.3255484059E+1

```

GV(5)=-3.6307214228 * GV(6)=3.6457506811E-1
 GV(7)=-2.2261880817E-2 * GV(8)=7.8053904895E-4
 GV(9)=-1.1894029104E-5
 GT(1)=-2.0029573972E+4 * GT(2)=4.9765746684E+3
 GT(3)=8.0188959378E+3 * GT(4)=-5.5022716888E+3
 GT(5)=1.5363738965E+3 * GT(6)=-2.2974737257E+2
 GT(7)=1.9360547346E+1 * GT(8)=-8.5677385768E-1
 GT(9)=1.5564670935E-2
 EV(1)=-9.8255690362 * EV(2)=5.7156092139E-001
 EV(3)=1.6094611148E+001 * EV(4)=3.6954086158E+003
 EV(5)=-8.0889801180E+002 * EV(6)=6.8464435640E+001
 EV(7)=-2.1241135912 * EV(8)=0.315
 FV(1)=-1.1217739623 * FV(2)=0.32912317244
 FV(3)=1.4 * FV(4)=118.
 FT(1)=.53875666637 * FT(2)=.061027911104
 FT(3)=1.2 * FT(4)=118.
 ET(1)=-2.9402951255E+1 * ET(2)=3.7201743333E+1
 ET(3)=-3.9013509079E+1 * ET(4)=-3.1826109485E+1
 C THERMODYNAMIC PROPERTIES FROM
 C NBS TECH NOTE 648 - DEC 7/
 C JACOBSEN ET. AL.
 R=8.20539E-2
 GAMMA=-.0056
 GI(1)=-0.735210401157252E 03
 GI(2)= 0.342239980411978E 02
 GI(3)=-0.557648284567620E 00
 GI(4)= 0.350404228308756E 01
 GI(5)=-0.173390185081005E-04
 GI(6)= 0.174650849766463E-07
 GI(7)=-0.356892033544348E-11
 GI(8)= 0.100538722808834E 01
 GI(9)= 0.335340610000000E 04
 TO=298.15 * SO=191.502 * HO=8669.0
 GI(10)=GI(11)=0
 GI(10)=HO-HI(TO)
 GI(11)=SO-SI(TO)
 G(1)= 0.136224769272827E-02
 G(2)= 0.107032469908591E 00
 G(4)=-0.243900721871413E 01
 G(4)= 0.341007449376470E 02
 G(5)=-0.422374309466167E 04
 G(6)= 0.105098600246494E-03
 G(7)=-0.112594826522081E-01
 G(8)= 0.142600789270907E-03
 G(9)= 0.184698501609007E 05
 G(10)= 0.811140082588776E-07
 G(11)= 0.233011645038006E-02
 G(12)=-0.507752586350986E 00
 G(13)= 0.485027881931214E-04
 G(14)=-0.113656764115364E-02
 G(15)=-0.707430273540575E 00
 G(16)= 0.751706648852680E-04
 G(17)=-0.111614119537424E-05
 G(18)= 0.368796562233495E-03
 G(19)=-0.201317691347729E-05
 G(20)=-0.149717444755949E 05
 G(21)=-0.119719240044192E 06
 G(22)=-0.975218272038281E 02
 G(23)= 0.554639713151823E 05
 G(24)=-0.179920450443470E 00
 G(25)=-0.256582926077184E 01
 G(26)=-0.413707715090789E-03
 G(27)=-0.256245415300293E 00

```

G(28)= -0.12422237340063E-06
G(29)= 0.103556535840165E-04
G(30)= -0.538699166558303E-09
G(31)= -0.757415412839596E-08
A( 1)= -.158453465507E+02
A( 2)= .419136911423E-01
A( 3)= -.101965371660E+01
A( 4)= .134763743799E+02
A( 5)= -.109930399087E+03
A( 6)= .925518835497E+02
A( 7)= -.956233831320E+02
A( 8)= .100104366710E+03
A( 9)= -.701857937398E+02
A(10)= .900076998647E+01
A(11)= .286981120347E+02
A(12)= -.216767601780E+02
A(13)= .496558226471E+01
A(14)= .218307928477E+02
A(15)= -.126493309807E+00
A(16)= .241544188633E+01
A(17)= -.245256871794E+02
A(18)= .935925207124E+02
A(19)= -.360938251632E+02
A(20)= .757453271989E+01
G(32)= 0.585367172069521E-07
VP(1)=5.1113192094 $ VP(2)=6.482667539E-1
VP(3)=-1.5108730916E-1 $ VP(4)=7.4028493342E-1
VP(5)=1.5 $ VP(6)=.123 $ VP(7)=63.15 $ VP(8)=126.26
VP(9)=0.0
DTP=.3097717741477E+2
DTPV=.242822085710E-1
TCC=VP(8)
PCC=VP(1)*1.01325
PTP=VP(6)*1.01325
TTP=VP(7)
TLL=TTP
TUL=1900.
PUL=10000.
DCC=11.21
RETURN $ END
SUBROUTINE DATA AR
DIMENSION G(32),VP(9),GI(11)
DIMENSION GV(9),GT(9),FV(4),FT(4),EV(8),ET(8)
DIMENSION A(20)
COMMON/SEN/BETA,X0,DELTA,E1, E2, AGAM
COMMON/SATC/A,DTPV
COMMON/CRIT/ EM, EOK, RM, TC, DC, X , PC, SIG
COMMON/DATA/G,R,GAMMA,VP,DTP,PCC,PTP,TCC,TTP,TUL,PUL,DCC
COMMON/DATA1/GV,GT,FV,FT,EV,ET
COMMON/CPID/GI
COMMON/ISP/N,NW,NWW
NWW=0
N=0 $ NW 1
EM=39.948 $ EOK=152.8 $ RM=3.669E-08 $ TC=150.725
DC=0.533 $ X=1.7124 $ PC=47.983 $ SIG=3.297
X0=0.183 $ BETA=0.355 $ DELTA=4.352 $ E1=2.27 $ E2=0.287
AGAM=1.190
C TRANSPORT PROPERTIES
C FROM HANLEY ET. AL.
C J. PHY. CHEM. REF DATA VOL 3
C NO 4 1974
GV(1)=6.1145472787E+1
GV(2)=-1.0394390312E+2

```

```

GV(3)=6.7594614619E+1
GV(4)=-2.25346509380E+1
GV(5)=4.2593950148
GV(6)=-4.7252671093E-1
GV(7)=3.1795275425E-2
GV(8)=-1.1629083740E-3
GV(9)=1.8043010592E-3
GT(1)=6.2777703742E+3   GT(2)=-9.6096376637E+3
GT(3)=5.8887549191E+3   GT(4)=-1.8920926320E+3
GT(5)=3.4886571437E+2   GT(6)=-3.8016786193E+1
GT(7)=2.5207283167   GT(8)=-9.1098744478E-2
GT(9)=1.3990842942E-3
EV(1)=-1.0010993993E+1   EV(2)=2.0694685712E-1
EV(3)=1.6029145122E+1   EV(4)=1.1717461351E+3
EV(5)=-5.6995898780E+2   EV(6)=4.0136071933E+1
EV(7)=3.9870122403E+1   EV(8)=.537
FV(1)=1.4653652433   FV(2)=-0.77487424965
FV(3)=1.4   FV(4)=152.8
FT(1)=.2414210327   FT(2)=.075696234255
FT(3)=1.   FT(4)=152.8
ET(1)=-2.4116686960E+1
ET(2)=            3.0694859971E+1
ET(3)=2.2956551674E+3
ET(4)=            -3.5559415848E+2
C TRANSPORT PROPERTIES FROM
C HANLEY ET. AL. J. PHY. CHEM. REF
C DATA VOL 3 NO 4 1974 AND
C GOSMAN ET. AL. NSRDS MON 27 1964
R=.08205616
GAMMA=-.0055
GI(1)=GI(2)=GI(3)=0
GI(4)=GI(9)=2.5
GI(5)=GI(6)=GI(7)=0
GI(8)=0
GI(10)=GI(11)=0
T0=87.28   S0=129.1786   H0=9504.8916
GI(10)=H0-HI(T0)
GI(11)=S0-SI(T0)
G(1)=3.4342657242351E-3
G(2)=5.7857036681387E-2
G(3)=-2.6982470812264E+0
G(4)=1.6481655285291E+2
G(5)=-1.2849472420416E+4
G(6)=-3.2636490894686E-4
G(7)=2.4629470190841E-1
G(8)=-6.9585445697842E+1
G(9)=1.9196156939788E+4
G(10)=1.6603909805594E-5
G(11)=-1.0860316345366E-2
G(12)=3.3231759004885E+0
G(13)=2.1776361947053E-5
G(14)=5.1615085812771E-3
G(15)=-1.1366705407293E+0
G(16)=-2.9018517618854E-4
G(17)=3.7898289698060E-6
G(18)=1.1030489790987E-3
G(19)=-1.4674092942955E-5
G(20)=-1.1479610716179E+4
G(21)=-3.9393312963830E+5
G(22)=-9.9620084307336E+1
G(23)=-1.8575347046011E+4
G(24)=-2.9393483871136E-1
G(25)=1.6408588086762E+1

```

```

G(16)= 4.044/1742.99455E-4
G(17)= 2.082000/1659.66E+0
G(18)= 5.476930649612E-2
G(19)= 7.613740527/667E-5
G(20)= 2.8667425518207E-10
G(21)= 6.3003223866834E-8
G(22)= 2.5287413440936E-6
A( 1)= -1.7026297377E+02
A( 2)= -1.31040241866E+00
A( 3)= -2.67486438128E+01
A( 4)= -3.00176804406E+02
A( 5)= -8.75999149426E+02
A( 6)= -1.40H26/436456E+02
A( 7)= -1.104268066451L+03
A( 8)= -6.71238977379L+02
A( 9)= -1.15100299352011E+02
A(10)= -3.31245336632E+02
A(11)= -8.3196217911E+02
A(12)= -4.27149706999E+02
A(13)= -1.005999900030E+02
A(14)= -1.37682084200E+02
A(15)= -1.664630363191E+02
A(16)= -1.3336878.1'30E+01
A(17)= -1.1443/146.5244E+02
A(18)= -6019384/2000E+02
A(19)= -23088846388/E+02
A(20)= -465318358887L+01
VP(1)= 4.4151115519 $ VP(2)= 1.1910812519
VP(3)= 3.40/6.32334E-1 $ VP(4)= 8.9505895251E-1
VP(5)= 1.5 $ VP(6)= .68000 $ VP(7)= 83.80 $ VP(8)= 150.86
VP(9)= 0.0
DTP=.3540027619188E+02
DTPV=.102922/0.22329
PRINT 100

```

```

100 FORMAT(* THE TEMPERATURE RANGE FOR ARGON IS 83.8 TO 400 K*
1/* WITH PRESSURES TO 1000 BAR*)
TCC=VP(8)
PCC=VPN(TCC)*1.01325
PTP=VP(6)*1.01325
TTP=VP(/)
TUL=400.
TLL=TTP
PUL=1000.
DCC=13.41
RETURN $ END
SUBROUTINE DATA 02
DIMENSION G(32),VP(9),A(11)
DIMENSION GV(9),BT(9),FV(4),IT(4),EV(8),ET(8)
DIMENSION A(20)
COMMON/SATC/A,DTPV
COMMON/DATA1/GV,BT,FV,ET,EV,ET
COMMON/SEN/BETA,XU,DELTA,E1, E2, AGAM
COMMON/CRIT/ EM, EOK, RM, TC, DC, X , PC, SIG
COMMON/DATA/B,R,GAMMA,VP,DTP,PCC,PTP,TCC,TTP,TUL,TLL,PUL,DCC
COMMON/ISP/N,NW,NWW
COMMON/CP1D/GI
NWW=0
N=0 $ NW=1
X0=0.183 $ BETA=0.355 $ DELTA=4.352 $ E1=2.21 $ E2=0.287
EM=31.9988 $ EOK=113.0 $ RM=3.8896E-08 $ TC=154.575
DC=0.4362 $ X=2.210636 $ PC=49.770 $ SIG=3.437
AGAM = 1.190

```

C

TRANSPORT PROPERTIES

C FROM HANLEY ET. AL.

C VOL 3, NO 4, 1974

UV(1)=-9.7076378593E+1 \$ UV(2)=8.2801254201E+1
UV(3)=-2.4668758803E+1 \$ UV(4)=2.1324360243
UV(5)=3.7851049522E-1 \$ UV(6)=-1.0487216090E-1
UV(7)=1.1134441304E-2 \$ UV(8)=-5.3676093757E-4
UV(9)=1.0279379641E-5
GT(1)=-2.0395052193E+5 \$ GT(2)=2.4088141709E+5
GT(3)=-1.2014175183E+5 \$ GT(4)=3.295494919E+4
GT(5)=-5.4244239598E+3 \$ GT(6)=5.4734865540E+2
GT(7)=-3.2854821539E+1 \$ GT(8)=1.0753572103
GT(9)=-1.4610986820E-2
EV(1)=-1.2152387017E+1 \$ EV(2)=-3.1421728994E-1
EV(3)=1.8201161468E+1 \$ EV(4)=2.7390429525E+2
EV(5)=-2.7498956948E+3 \$ EV(6)=2.4340689667E+2
EV(7)=1.1911504104E+2 \$ EV(8)=.435
FV(1)=4.3526515153 \$ FV(2)=-2.0361263878
FV(3)=1.4 \$ FV(4)=100.
FT(1)=.3060 \$ FT(2)=.2785
FT(3)=1.12 \$ FT(4)=100.
ET(1)=-1.2310400765E+1 \$ ET(2)=1.6799504261E+1
ET(3)=-2.9944878721E+3 \$ ET(4)=4.7350508788E+2

C THERMODYNAMIC PROPERTIES

C FROM WEBER - TO BE PUBLISHED

R=8.20539E-2

GAMMA=-.0056

GI(1)=-0.498199853711943E 04
GI(2)= 0.230247779995218E 03
GI(3)=-0.345565323510732E 01
GI(4)= 0.352187677367116E 01
GI(5)=-0.435420216024420E-04
GI(6)= 0.134635345013162E-07
GI(7)= 0.162059825959105E-10
GI(8)= 0.103146851572565E 01
GI(9)= 0.223918105000000E 04
GI(10)=GI(11)=0
T0=298.15 \$ HO=8682. \$ SO=205.037
GI(10)=HO-HI(T0)
G(1)=-.4308768468E-03
G(2)= .1979591095E+00
G(3)=-.4143014968E+01
G(4)= .1853654396E+03
G(5)=-.1270637452E+05
G(6)= .1536388737E-04
G(7)= .1326068945E-02
G(8)=-.2199275123E+01
G(9)= .4705445127E+04
G(10)= .4728198017E-06
G(11)= .2430408198E-02
G(12)=-.1896759615E+00
G(13)=-.6887067207E-05
G(14)=-.6132885180E-03
G(15)=-.1836518694E+00
G(16)= .2575663871E-04
G(17)=-.2415604646E-06
G(18)= .1438680831E-03
G(19)=-.1703915986E-05
G(20)=-.2353705917E+04
G(21)=-.2271707669E+06
G(22)=-.2753815471E+02
G(23)= .9277648729E+05
G(24)=-.4114926856E-01
G(25)= .1982233262E+01

```

B(26)= -.1239651142E-03
B(27)= -.6322588664E+00
B(28)= -.2443207666E-07
B(29)= .1328704370E-04
B(30)= -.1146313812E-09
B(31)= -.1021169305E-07
B(32)= .2334998237E-06
GI(11)=8C-SI(T0)
A( 1)= .581394753076E+02
A( 2)= -.490241196133E-01
A( 3)= .168328893252E+01
A( 4)= -.325161223398E+02
A( 5)= .550300989872E+03
A( 6)= -.510968506115E+03
A( 7)= .315091559049E+03
A( 8)= -.232566659258E+02
A( 9)= -.488425479359E+02
A(10)= -.150624217523E+03
A(11)= .280441603851E+03
A(12)= -.176693896861E+03
A(13)= .403247747449E+02
A(14)= .252198688365E+01
A(15)= -.136098316472E-01
A(16)= .282316159403E+00
A(17)= -.286645905341E+01
A(18)= .617024212284E+01
A(19)= -.810220795462E+00
A(20)= -.279601068969E+00
VP(1)=7.568956 $ VP(2)=5.004836 $ VP(3)=-2.137460
VP(4)=3.454481 $ VP(5)=1.514 $ VP(6)=.0014606
VP(7)=54.359 $ VP(8)=154.581
VP(9)=0.0
DTP=.4081997364372E+02
DTPV=.3318894767078E-03
PRINT 100
100 FORMAT(* THE TEMPERATURE RANGE FOR OXYGEN IS 54.359 TO 400 K*
1/* WITH PRESSURES TO 1200 BAR*)
TCC=VP(8)
PCC=VPN(TCC)*1.01325
PTP=VP(6)*1.01325
TTP=VP(7)
TUL=400.
TLL=TTP
PUL=1200.
DCC=13.63
RETURN * END
SUBROUTINE DATA P H2
DIMENSION B(32),VP(9),GI(11)
DIMENSION GV(9),GT(9),FV(4),FT(4),EV(8),ET(8)
DIMENSION A(20)
COMMON/SATC/A,DTPV
COMMON/CPID/GI
COMMON/CRIT/ EM, EOK, RM, TC, DC, X , PC, SIG
COMMON/DATA/B,R,GAMMA,VP,DTP,PCC,PTP,TCC,TTP,TUL,TLL,PUL,DCC
COMMON/DATA1/GV,GT,FV,FT,EV,ET
COMMON/ PARA/PERCENT
COMMON/ISP/N
N=1
GO TO 1
ENTRY N H2
N=2
GO TO 1
ENTRY O H2

```

```

N=3
GO TO 1
ENTR E H2
N=4
GO TO 1
ENTRY F H2
N=5
1 CONTINUE
C NO TRANSPORT PROPERTIES FOR HYDROGEN
C THERMODYNAMIC PROPERTIES FROM
C RODER AND MCCARTY IN 75-814 AND
C IR 74-397
C R=.08205616
C GAMMA=-.0041
G( 1) = 4.614387755654E-4
G( 2) = 4.233184556086E-2
G( 3) = -5.096556226503E-1
G( 4) = 2.923059738269E+0
G( 5) = 2.987609147211E+1
G( 6) = 1.883148601410E-5
G( 7) = -1.322256954639E-3
G( 8) = 3.016504431701E-1
G( 9) = 5.093705560851E+1
G(10) = 1.973828324919E-7
G(11) = 2.858492039828E-4
G(12) = -2.228279239123E-2
G(13) = -2.257481136764E-6
G(14) = 2.414272369746E-5
G(15) = -1.695713398588E-3
G(16) = -5.393676391275E-7
G(17) = 3.998955244328E-9
G(18) = 1.142457561274E-6
G(19) = -1.252566225896E-8
G(20) = -4.917861934882E+1
G(21) = -1.585666017368E+2
G(22) = -1.901602946272E-1
G(23) = 9.198020862500E+0
G(24) = -3.180455518810E-4
G(25) = 1.191057791926E-3
G(26) = -3.791352773225E-7
G(27) = -3.983377699095E-5
G(28) = -1.234510854688E-10
G(29) = 1.950266293499E-9
G(30) = -2.380343917109E-13
G(31) = -4.073576608192E-13
A( 1)= .916617720187E+02
A( 2)= -.179492524446E+00
A( 3)= .454671158395E+01
A( 4)= -.658499589788E+02
A( 5)= .734466804535E+03
A( 6)= -.682501045175E+03
A( 7)= .631783674710E+03
A( 8)= -.539408873282E+03
A( 9)= .430923811783E+03
A(10)= -.300295738811E+03
A(11)= .156567165346E+03
A(12)= -.504103608225E+02
A(13)= .720706926514E+01
A(14)= -.123944440318E+03
A(15)= .140334800142E+01
A(16)= -.211023804313E+02
A(17)= .173254622817E+03
A(18)= -.44294580871E+03

```

```

A(19)= .138699365355E+03
A(20)= -.235774161015E+02
G(32) = 8.80130493077E-12
VP(1)=3.05300134164
VP(2)=2.80810926813
VP(3)=-0.655461216067
VP(4)=1.59514439374
VP(5)=1.5814454428
VP(7)=13.8
VP(6)=0.0695
VP(8)=32.938
VP(9)=0
DTF=.3821428945438E+02
DTFU=.6322296353698E-01
EM=2.01594
PRINT 100
100 FORMAT(* THE TEMPERATURE RANGE FOR HYDROGEN IS 13.8 TO 400 K*
1/* WITH PRESSURES TO 1200 BAR*)
TCC=VP(8)
PCC=VPN(TCC)*1.01325
PTP=VP(6)*1.01325
TTP=VP(7)
TUL=400.
TLL=TTP
PUL=1200.
DCC=15.556
RETURN
END
SUBROUTINE PROPS(PP,DD,TT)
C THE 32 TERM EQUATION OF STATE, INPUT IS DENSITY(MOLES/L),
C TEMPERATURE(K), OUTPUT (PP) IS PRESSURE IN ATM,OR DP/DD IN
C LITER-ATM/MOLE OR DP/DT ATM/K OR S,H,OR CV AT ONE (1M1) IF
C INTEGRATION
      DIMENSION X(33)
      DIMENSION B(33),G(32)
      EQUIVALENCE (B,X)
      COMMON/DATA/B,R,GAMMA
      COMMON/1/B
      DATA(ID=1)
      DATA(IZ=1)
1 CONTINUE
IF(IZ.LE.0)GO TO 2
IZ=0
2 CONTINUE
D=DD
P=PP
T=TT
GM=GAMMA
D2=D*D
D3=D2*D
D4=D3*D
D5=D4*D
D6=D5*D
D7=D6*D
D8=D7*D
D9=D8*D
D10=D9*D
D11=D10*D
D12=D11*D
D13=D12*D
TS=SQRT (T)
T2=T*T
T3=T2*T

```

```

T4=T3*T
T5=T4*T
F=EXP (GM*D2)
GO TO (100,200,300,400,500,600,700),K
ENTRY PRESS
C ENTRY FOR PRESSURE, INPUT IS DENSITY
C AND TEMP. IN MOL/L AND K, OUTPUT IS IN ATM.
K=1
GO TO 1
100 CONTINUE
B( 1)=D2*T
B( 2)=D2*T$S
B( 3)=D2
B( 4)=D2/T
B( 5)=D2/T2
B( 6)=D3*T
B( 7)=D3
B( 8)=D3/T
B( 9)=D3/T2
B(10)=D4*T
B(11)=D4
B(12)=D4/T
B(13)=D5
B(14)=D6/T
B(15)=D6/T2
B(16)=D7/T
B(17)=D8/T
B(18)=D8/T2
B(19)=D9/T2
B(20)=D3*F/T2
B(21)=D3*F/T3
B(22)=D5*F/T2
B(23)=D5*F/T4
B(24)=D7*F/T2
B(25)=D7*F/T3
B(26)=D9*F/T2
B(27)=D9*F/T4
B(28)=D11*F/T2
B(29)=D11*F/T3
B(30)=D13*F/T2
B(31)=D13*F/T3
B(32)=D13*F/T4
IF(ID.GT.0)GO TO 102
B(33)=P-R*D*T
RETURN
102 P=0
M=32
DO 101 I=1,M
101 P=P+B(I)*G(I)
P=P+R*D*T
PP=P
RETURN
ENTRY DFDD
C PARTIAL OF PRESSURE WITH RESPECT TO
C DENSITY - SEE PRESSURE
C ENTRY FOR UNITS
K=2
GO TO 1
200 CONTINUE
F1=2.000*F*GM*D
F21=3.000*F*D2 +F1*D3
F22=5.000*F*D4 +F1*D5
F23=7.000*F*D6 +F1*D7

```

```

F24=9.000*F*D8 +F1*D9
F25=11.00*F*D10+F1*D11
F26=13.00*F*D12+F1*D13
B( 1)=2.00*D*T
B( 2)=2.00*D*TS
B( 3)=2.00*D
B( 4)=2.00*D/T
B( 5)=2.00*D/T2
B( 6)=3.00*D2*T
B( 7)=3.00*D2
B( 8)=3.00*D2/T
B( 9)=3.00*D2/T2
B(10)=4.00*D3*T
B(11)=4.00*D3
B(12)=4.00*D3/T
B(13)=5.00*D4
B(14)=6.00*D5/T
B(15)=6.00*D5/T2
B(16)=7.00*D6/T
B(17)=8.00*D7/T
B(18)=8.00*D7/T2
B(19)=9.00*D8/T2
B(20)=F21/T2
B(21)=F21/T3
B(22)=F22/T2
B(23)=F22/T4
B(24)=F23/T2
B(25)=F23/T3
B(26)=F24/T2
B(27)=F24/T4
B(28)=F25/T2
B(29)=F25/T3
B(30)=F26/T2
B(31)=F26/T3
B(32)=F26/T4
M=32
IF(ID.GT.0)GO TO 202
B(33)=P-R*T
RETURN
202 P=0
DO 201 I=1,M
201 P=P+B(I)*G(I)
P=P+R*T
PP=P
RETURN
ENTRY DFDT
C PARTIAL OF PRESSURE WITH RESPECT
C TO TEMPERATURE - SEE PRESSURE
C ENTRY FOR UNITS
K=3
GO TO 1
300 CONTINUE
X( 1)=D2
X( 2)=D2/(2.00*TS)
X( 3)=0
X( 4)=-D2/T2
X( 5)=-2.00*D2/T3
X( 6)=D3
X( 7)=0
X( 8)=-D3/T2
X( 9)=-2.00*D3/T3
X(10)=D4
X(11)=0

```

```

X(12)=-D4/T2
X(13)=0
X(14)=-D6/T2
X(15)=-2.00*D6/T3
X(16)=-D7/T2
X(17)=-D8/T2
X(18)=-2.00*D8/T3
X(19)=-2.00*D9/T3
X(20)=-2.00*D3*F/T3
X(21)=-3.00*D3*F/T4
X(22)=-2.00*D5*F/T3
X(23)=-4.00*D5*F/T5
X(24)=-2.00*D7*F/T3
X(25)=-3.00*D7*F/T4
X(26)=-2.00*D9*F/T3
X(27)=-4.00*D9*F/T5
X(28)=-2.00*D11*F/T3
X(29)=-3.00*D11*F/T4
X(30)=-2.00*D13*F/T3
X(31)=-3.00*D13*F/T4
X(32)=-4.00*D13*F/T5
IF(1D.GT.0)GO TO 302
X(33)=PP-R*D
RETURN
302 P=0
DO 301 I=1,32
301 P=P+G(I)*X(I)
PP=P+R*D
RETURN
ENTRY DSDN
C PARTIAL OF ENTROPY WITH
C RESPECT TO THE G COEFFICIENTS
K=4
GO TO 1
400 CONTINUE
C S=S0-R*XLOGF(D*R*T/P0)+(DSDN(D)-DSDN(0))*101.325 +CP0S(T)
G1=F/(2.00*GM)
G2=(F*D2-2.00*G1)/(2.00*GM)
G3=(F*D4-4.00*G2)/(2.00*GM)
G4=(F*D6-6.00*G3)/(2.00*GM)
G5=(F*D8-8.00*G4)/(2.00*GM)
G6=(F*D10-10.00*G5)/(2.00*GM)
X( 1)=-D
X( 2)=-D/(2.00*TS)
X( 3)=0.D0
X( 4)=+D/T2
X( 5)=2.00*D/T3
X( 6)=-D2/2.00
X( 7)=0.D0
X( 8)=D2/(2.00*T2)
X( 9)=D2/T3
X(10)=-D3/3.00
X(11)=0.D0
X(12)=D3/(3.00*T2)
X(13)=0.D0
X(14)=D5/(5.00*T2)
X(15)= 2.00*D5/(5.00*T3)
X(16)=D6/(6.00*T2)
X(17)=D7/(7.00*T2)
X(18)=2.00*D7/(7.00*T3)
X(19)=D8/(4.00*T3)
X(20)=2.00*G1/T3
X(21)=3.00*G1/T4

```

```

X(22)=2.00*G2/T3
X(23)=4.00*G2/T5
X(24)=2.00*G3/T3
X(25)=3.00*G3/T4
X(26)=2.00*G4/T3
X(27)=4.00*G4/T5
X(28)=2.00*G5/T3
X(29)=3.00*G5/T4
X(30)=2.00*G6/T3
X(31)=3.00*G6/T4
X(32)=4.00*G6/T5
IF(ID.GT.0)GO TO 402
RETURN
402 P=0
DO 401 I=1,32
401 P=P+G(I)*X(I)
PP=P
RETURN
ENTRY DUDN
C TERMS NEEDED FOR ENTHALPY CALCULATION
K=5
GO TO 1
500 CONINUE
C H=HO+(1*DSDN(D)-DSDN(0))*101.325+(DUDN(D-DUDN(0))*101.325+CPOH(T)
C +(P/D-R*T)*101.325
C G1=F/(2.00*GM)
C G2=(F*D2-2.00*G1)/(2.00*GM)
C G3=(F*D4-4.00*G2)/(2.00*GM)
C G4=(F*D6-6.00*G3)/(2.00*GM)
C G5=(F*D8-8.00*G4)/(2.00*GM)
C G6=(F*D10-10.00*G5)/(2.00*GM)
X( 1)=D*T
X( 2)=D*T5
X( 3)=D
X( 4)=D/T
X( 5)=D/T2
X( 6)=D2*T/2.00
X( 7)=D2/2.00
X( 8)=D2/(2.00*T)
X( 9)=D2/(2.00*T2)
X(10)=D3*T/3.00
X(11)=D3/3.00
X(12)=D3/(3.00*T)
X(13)=D4/4.00
X(14)=D5/(5.00*T)
X(15)=D5/(5.00*T2)
X(16)=D6/(6.00*T)
X(17)=D7/(7.00*T)
X(18)=D7/(7.00*T2)
X(19)=D8/(8.00*T2)
X(20)=G1/T2
X(21)=G1/T3
X(22)=G2/T2
X(23)=G2/T4
X(24)=G3/T2
X(25)=G3/T3
X(26)=G4/T2
X(27)=G4/T4
X(28)=G5/T2
X(29)=G5/T3
X(30)=G6/T2
X(31)=G6/T3
X(32)=G6/T4

```

```

IF(ID.GT.0)GO TO 502
RETURN
502 P=0
DO 501 I=1,32
501 P=P+G(I)*X(I)
PP=P
RETURN
ENTRY TL'D1
C TEMP. TIMES THE PARTIAL OF
C ENTROPY WITH RESPECT TO TEMP.
K=6
GO TO 1
600 CONTINUE
C CV=CV0+(TDSDN(/)-TDSDN(D))*101.325
G1=F/(2.00*GM)
G2=(F*D2-2.00*G1)/(2.00*GM)
G3=(F*D4-4.00*G2)/(2.00*GM)
G4=(F*D6-6.00*G3)/(2.00*GM)
G5=(F*D8-8.00*G4)/(2.00*GM)
G6=(F*D10-10.00*G5)/(2.00*GM)
X(1)=0
X( 2)=-D/(4.00*TS)
X(3)=0
X( 4)=2.00*D/T2
X( 5)=6.00*D/T3
X(6)=0
X(7)=0
X( 8)=D2/T2
X( 9)=3.00*D2/T3
X(10)=0
X(11)=0
X(12)=(2.00*D3)/(3.00*T2)
X(13)=0
X(14)=(2.00*D5)/(5.00*T2)
X(15)=(6.00*D5)/(5.00*T3)
X(16)=D6/(3.00*T2)
X(17)=(2.00*D7)/(7.00*T2)
X(18)=(6.00*D7)/(7.00*T3)
X(19)=(3.00*D8)/(4.00*T3)
X(20)=6.000*G1/T3
X(21)=12.00*G1/T4
X(22)=6.000*G2/T3
X(23)=20.00*G2/T5
X(24)=6.000*G3/T3
X(25)=12.00*G3/T4
X(26)=6.000*G4/T3
X(27)=20.00*G4/T5
X(28)=6.000*G5/T3
X(29)=12.00*G5/T4
X(30)=6.000*G6/T3
X(31)=12.00*G6/T4
X(32)=20.00*G6/T5
IF(ID.GT.0)GO TO 602
RETURN
602 P=0
DO 601 I=1,32
601 P=P+G(I)*X(I)
PP=P
RETURN
ENTRY DP2D2
C SECOND PARTIAL OF PRESSURE WITH
C RESPECT TO DENSITY SQUARED
K=7

```

```

GO TO 1
700 CONTINUE
F1=2.*F*GM*D
F12=2.*F1*GM*D+2.*F*GM
F212=3.*F1*D2+3.*2.*D*F+F12*D3+F1*3.*D2
F222=5.*F1*D4+5.*4.*D3*F+5.*D4*F1+F12*D5
F232=7.*F1*D6+7.*6.*D5*F+7.*D6*F1+F12*D/
F242=9.*F1*D8+9.*8.*D7*F+9.*D8*F1+F12*D9
F252=11.*F1*D10+10.*11.*D9*F+11.*D10*F1+F12*D11
F262=13.*F1*D12+13.*12.*D11*F+13.*D12*F1+F12*D13
B(1)=2.*T $ B(2)=2.*TS $ B(3)=2.
B(4)=2./T $ B(5)=2./T2 $ B(6)=6.*D*T
B(7)=6.*D $ B(8)=6.*D/T $ B(9)=6.*D/T2
B(10)=12.*D2*T $ B(11)=12.*D2 $ B(12)=12.*D2/T
B(13)=20.*D3 $ B(14)=30.*D4/T $ B(15)=30.*D4/T2
B(16)=42.*D5/T $ B(17)=56.*D6/T $ B(18)=56.*D6/T2
B(19)=72.*D7/T2 $ B(20)=F212/T2 $ B(21)=F212/T3
B(22)=F222/T2
B(23)=F222/T4 $ B(24)=F232/T2 $ B(25)=F232/T3
B(26)=F242/T2 $ B(27)=F242/T4 $ B(28)=F252/T2
B(29)=F252/T3 $ B(30)=F262/T2 $ B(31)=F262/T3
B(32)=F262/T4
M=32
IF(ID.GT.0)GO TO 702
B(33)=PP
RETURN
702 P=0
DO 701 I=1,M
701 P=P+B(I)*G(I)
PP=P
RETURN
END
FUNCTION VPN(TT)
C CALCULATES VAPOUR PRESSURE IN ATMOSPHERES
C FOR AN INPUT TEMPERATURE IN KELVIN
DIMENSION G(32),VP(9)
COMMON/DATA/G,R,GAMMA,VP
T=TT
X=(1.-VP(7)/T)/(1.-VP(7)/VP(8))
VPN=VP(6)*EXP (VP(1)*X+VP(2)*X*X+VP(3)*X**3+VP(9)*X**4+VP(4)***
1(1.-X)**VP(5))
RETURN
END
FUNCTION FINDTV(P0BS)
C ITERATES THE VAPOUR PRESSURE EQUATION
C FOR A TEMPERATURE ( IN KELVIN)
C GIVEN AN INPUT PRESSURE IN ATMOSPHERES
COMMON/DATA/G,R,GAMMA,VP,DTP
DIMENSION G(32),VP(9)
T=VP(8)
DO 7 I=1,10
P=VPN(T)
IF(ABS (P-P0BS)-.000001*P0BS)8,8,6
6 CONTINUE
CORR=(P0BS-P)/DPDTVP(T)
7 T=T+CORR
8 CONTINUE
FINDTV=T
RETURN
END
FUNCTION CV(D,T)
C CALCULATES SPECIFIC HEAT CAPACITY
C AT CONSTANT VOLUME FOR AN INPUT

```

```

C OF DENSITY AND TEMPERATURE IN MOLE/L AND K
DATA(R=8.31434)
DD=D
TT=T
CALL TDSDT(DD,DD,TT)
DD=0
CALL TDSDT(CC,DD,TT)
CV=CPI(TT)+(CO-CD)*101.325
CV=CV-R
RETURN
END
FUNCTION FIND D(P,T)
C ITERATES EQUATION OF STATE
C FOR DENSITY, GIVEN PRESSURE
C AND TEMP. IN ATM. AND KELVIN. IF
C ITERATION FAILS TRY USING
C FUNCTION CALLED FIND M
DIMENSION G(32),VP(9)
COMMON/DATA/G,R,GAMMA,VP,DTP,PCC,PTP,TCC,TTT,TUL,PUL,DCC
TT=1
IF(TT.GT.VP(8))GO TO 100
IF( P.GT.VPN(TT))GO TO 101
DD=SATV(TT)
GO TO 102
100 PC=PCC/1.01325
X=(1.1/(9.*PC))*P+.7/9.
DD=P/(R*T*X)
IF(P/PC.GT.20.,AND.T/VP(8).LT.2.5)DD=DTP
GO TO 102
101 DD=SATL(TT)
102 CONTINUE
DO 10 I=1,50
IF(DD.LE.0.0,OR,DD.GT.50.)GO TO 11
CALL PRESS(PP,DD,TT)
IF(PP.LE.0.0)GO TO 11
P2=PP
IF(ABS (P-P2)-1.E-7*P)20,20,1
1 CALL DFDD(PP,DD,TT)
DP=PP
CURRE=(P2-P)/DP
IF(ABS (CURRE)-1.E-7*DD)20,20,10
10 DD=DD-CURRE
11 CALL REGULA(P,DD,T)
20 FIND D=DD
RETURN
END
SUBROUTINE REGULA(PI,DD,TT)
C ITERATES EQUATION OF STATE FOR DENSITY WHEN FIND D FAILS
DIMENSION G(32),VP(9)
COMMON/DATA/G,R,GAMMA,VP,DTP,PCC,PTP,TCC,TTT,TUL,PUL,DCC
T=TT
P=PI
D2=0
IF(T.LT.TCC)GO TO 10
DO=DCC*TCC/T
GO TO 20
10 PP=VPN(T)
IF(P.GT.PP)GO TO 15
DO=SATV(T)
DO 11 I=1,150
CALL PRESS(P0,DO,T)
IF(P0.GE.P)GO TO 12
11 DO=DO+.0001*DO

```

```

GO TO 42
12 D1=D0
13 CALL PRESS(P1,D1,T)
IF(P1.LT.P)GO TO 14
IF(D1.LE..1*PTP)GO TO 42
D0=D1
Z=(P1-P)/P
IF(Z.LT..1)Z=.1
IF(Z.GT..9)Z=.7
D1=D1-Z*D1
GO TO 13
14 CALL PRESS(P0,D0,T)
DO 140 I=1,50
D=D1
P3=P1
IF(ABS(P-P1).LT..00001*P)GO TO 40
P2=P-P1
D1=D1+(D1-D0)*P2/(P1-P0)
IF(ABS(D-D1).LE..00001*D)GO TO 40
IF(ABS(P-P1).LT..005*P)D2=FIND M(P,T,D1)
IF(D2.GT.0.0.AND.D2.LT.50.)D1=D2
D2=0
CALL PRESS(P1,D1,T)
IF(P0.GT.P.AND.P1.GT.P)GO TO 120
IF(P0.LT.P.AND.P1.LT.P)GO TO 120
GO TO 140
120 P0=P3
D0=D
140 CONTINUE
GO TO 41
15 D0=SATL(T)
DO 16 I=1,10
CALL PRESS(P0,D0,T)
IF(P0.LE.P)GO TO 17
16 D0=D0-.0001*D0
GO TO 42
17 D1=D0
18 CALL PRESS(P1,D1,T)
IF(D1.GE.50.)GO TO 42
IF(P1.GT.P)GO TO 14
D0=D1
Z=(P-P1)/P
Z=Z*10
IF(T/TCC.LT..6)Z=1.
IF(Z.LT.1.)Z=1.
IF(Z.GT.9.)Z=9.
D1=D1+.01*D1*Z
GO TO 18
20 CALL PRESS(P0,D0,T)
IF(P.LE.P0)GO TO 30
D1=D0
21 CALL PRESS(P1,D1,T)
IF(P1.GE.P)GO TO 14
IF(D1.GE.50.)GO TO 42
D0=D1
Z=(P-P1)/P
Z=Z*10
IF(Z.LT.1)Z=1
IF(Z.GT.9)Z=9
D1=D1+.1*D1*Z
GO TO 21
30 D1=D0
31 CALL PRESS(P1,D1,T)

```

```

IF(P1.LE.P)GO TO 14
IF(D1.LE.,1#PTP)GO TO 42
D0=D1
Z=(P1-P)/P
Z=Z*10
IF(Z.LT.1)Z=1
IF(Z.GT.9)Z=9
D1=D1-.1*D1*Z
GO TO 31
40 DD=D1
RETURN
41 PRINT 101,P,T,D
102 FORMAT(* REGULA FAILED AT P=*,F7.2,* AND T=*,F7.2)
101 FORMAT(* DENSITY ITERATION FAILED AT P=*,F7.2,* AND T=*,F7.2,
1/* DENSITY RETURNED IS*,E17.8)
RETURN
42 PRINT 102,P,T
RETURN
END
FUNCTION CP(D,T)
C CALCULATE SPECIFIC HEAT CAPACITY
C AT CONSTANT PRESSURE FOR INPUT OF
C DENSITY AND TEMPERATURE IN MOL/L AND K
C CP IS IN JOULES/MOL-K
CVEE=CV(D,T)
CALL DPDT(DPT,D,T)
CALL DPDD(DPD,D,T)
CP=CVEE+(T/(D**2)*(DPT**2)/DPD)*101.325
RETURN
END
FUNCTION DPDTVP(TT)
C CALCULATES THE DERIVATIVE OF PRESSURE
C WITH RESPECT TO TEMPERATURE AT
C SATURATION. INPUT IS TEMP. IN K, OUTPUT IS ATM/K.
COMMON/DATA/G,R,GAMMA,VP
DIMENSION G(32),VP(9)
T=TT
IF(TT.GT.VP(8))GO TO 1
X=(1.-VP(7)/T)/(1.-VP(7)/VP(8))
DXDT=(VP(7)/T**2)/(1.-VP(7)/VP(8))
DPDT=VP(1)*DXDT+2.*VP(2)*X*DXDT+VP(3)*3.*X**2*DXDT+VP(4)*
1((1.-X)**VP(5))*DXDT+VP(4)*X*((1.-X)**(VP(5)-1.))*VP(5)*(-DXDT)
DPDT=DPDT*VPN(T)
DPDTVP=DPDT
RETURN
1 DPDTVP=0
RETURN
END
FUNCTION FIND M(P,T,DD)
C ALTERNATIVE FOR FIND D, INPUT IS
C PRESSURE IN ATM., T IN KELVIN AND
C DENSITY IN MOL/L. INPUT DENSITY
C IS A STARTING VALUE FOR ITERATION
C OF EQUATION OF STATE FOR SOLUTION FOR P AND T
TT=T
DO 10 I=1,50
CALL PRESS(PP,DD,TT)
P2=PP
IF(ABS (P-P2)-1.E-7*P)20,20,1
1 CALL DPDD(PP,DD,TT)
DP=PP
CORR=(P2-P)/DP
D=DD

```

```

      IF (ABS (CORR)-1.E-2*D)20,20,10
10 DD=DD-CORR
      FIND M=0
      RETURN
20 FIND M=DD
      RETURN
END
FUNCTION ENTHAL(P,D,T)
C CALCULATES ENTHALPY FOR INPUT OF
C PRESSURE, DENSITY AND TEMP. IN
C ATM., MOL/L AND K. OUTPUT IS IN
C JOULES/MOL
R=.08205616
DD=D
TT=T
CALL DSDN(SD,DD,TT)
CALL DUDN(UD,DD,TT)
DD=0
CALL DSDN(S0,DD,TT)
CALL DUDN(U0,DD,TT)
ENTHAL=T*(SD-S0)*101.325+(UD-U0)*101.325+HI(T)+(P/D-R*T)*101.325
RETURN
END
FUNCTION ENTROP(D,T)
C CALCULATES ENTROPY
C FOR AN INPUT OF DENSITY AND
C TEMP. IN MOL/L AND K. OUTPUT IS IN
C JOULES/MOL-K
R=.08205616
DD=D
TT=T
CALL DSDN(SD,DD,TT)
DD=0
CALL DSDN(S0,DD,TT)
ENTROP=(SD-S0)*101.325-R*ALOG(D*R*T)*101.325+SI(T)
RETURN
END
FUNCTION SATL(TT)
C CALCULATES THE DENSITY OF THE
C SATURATED LIQUID AT TEMP., T IN KELVIN.
C OUTPUT IS IN MOL/L.
DIMENSION A(20)
DIMENSION G(32),VP(9)
COMMON//DATA/G,R,GAMMA,VP,DTP,PCC,PTF,TCC,TTP,TUL,TLL,PUL,DCC
COMMON//SATC/A,DTPV
K=14
KK=7
GO TO 10
ENTRY SATV
K=1
KK=13
10 IF(T.GE.TCC)GO TO 20
T=TT
ITT=TCC
IF(ITT+1-T.LT.1.)T=ITT
X=(T-TCC)/(ITT-TCC)
D=A(K)*ALOG(X)
DO 11 I=2,KK
K=K+1
MM=I
IF(MM.GE.5)MM=MM+1
11 D=D+A(K)*(1.-X**((MM-5)/3.))
IF(K.LT.14)GO TO 12

```

```

D=BCC+EXP(B)*(BTP-BCC)
GO TO 13
12 D=BCC+EXP(B)*(BTPV-BCC)
13 SATL=D
IF(ITT+1-TT,LT,1,)SATL=D-(B-BCC)*(TT-T)
RETURN
20 DSATL=BCC
RETURN
END
FUNCTION SOUND(D,T)
C CALCULATES THE SPEED OF SOUND
C FOR AN INPUT OF DENSITY AND TEMP,
C IN MOL/L AND KELVIN. OUTPUT IS IN
C METERS/SECOND.
COMMON/CRIT/W
CALL DFDD(DP,D,T)
SOUND=((CP(D,T)/CV(D,T))*DP#101325./W)**.5
RETURN
END
FUNCTION VISC(DD,T)
C RETURNS VISCOSITY IN (G/CM-S)*E+6,
C T IN K, D IN MOL/L
COMMON/CRIT/EM
D=DD*EM/1000.
VISC=DILV(T)+FDCV(D,T)+EXCESV(D,T)
RETURN
END
FUNCTION THERM(DD,T)
C RETURNS TC IN MW/M-K, T IN K, D IN MOL/L
COMMON/HAN/CR,TCI
COMMON/ISP/N,NW
COMMON/CRIT/EM
D=DD*EM/1000.
IF(NW.EQ.0 ) GO TO 3
CR=CRITC(D,T)
THER=DILT(T)+FDCT(D,T)*100.+EXCEST(D,T)+CR
TCI=THER-CR
THERM=THER
RETURN
3 CR=CRITC(D,T)
THERM=DILT(T)+FDCT(D,T)+EXCEST(D,T)+CR
TCI=THERM-CR
RETURN
END
FUNCTION EXCESV(D,T)
C CALCULATES EXCESS VISCOSITY
COMMON/DATA1/GV,GT,FV,FT,EV,ET
COMMON/ISP/N,NW
DIMENSION GV(9),GT(9),FV(4),FT(4),EV(8),ET(8)
R2=D**(.5)*((D-EV(8))/EV(8))
R=D**(.1)
X=EV(1)+EV(2)*R2+EV(3)*R+EV(4)*R2/(T*T)+EV(5)*R/T**1.5+EV(6)/T
1+EV(7)*R2/T
X1=EV(1)+EV(6)/T
EXCESV=EXP (X)-EXP (X1)
RETURN
ENTRY EXCEST
C CALCULATES EXCESS THERMAL CONDUCTIVITY
IF(NW.EQ.0 ) GO TO 3
R=D**(.1)
X=ET(1)+ET(2)*R+ET(3)*R/T**1.5+ET(4)/T
X1=ET(1)+ET(4)/T
EXCESV=(EXP (X)-EXP (X1))/10.
RETURN

```

```

3. R2=0.5*(C(5)*C(6)-E1(8))/ET(8))
R=0.5*(C(1)
X=ET(1)+ET(2)*R2+ET(3)*R*ET(4)*R2/(T*T)+ET(5)*R/T**2*(1.5)+ET(6)/T
1+ET(7)*R2/T
X1=E1(1)+ET(6)/T
EXCESSV=EXP(X)-EXP(X1)
RETURN
END
FUNCTION FDCV(D,T)
C FIRST DENSITY CORRECTION
C FOR VISCOSITY AND THERMAL CONDUCTIVITY
COMMON/DATA1/AV,B1,FV,FT,FV,ET
DIMENSION GV(9),B1(9),FV(4),FT(4),EV(8),ET(8)
FDCV=(FV(1)+FV(2)*FV(3)-ALOG(T/FV(4)))*2*D
RETURN
ENTRY FDC1
FDCV=(FT(1)+FT(2)*(FT(3)-ALOG(T/FT(4)))*2*D
RETURN
END
FUNCTION CRITC(D,T)
C CALCULATES CRITICAL ENHANCEMENT
C FOR THERMAL CONDUCTIVITY
COMMON/CRIT/ EM, EOK, RM, TC, DC, X , PC, SIG
COMMON/CHECK/DELD,DELT,DSTAR,TSTAR
COMMON/HJM/EPS1,CPCV,RRR,AKT
COMMON/ISP/N,NW,NWW
C D IN G/CM3 , T IN K
C OUTPUT UNITS ARE MW/M.K
AV=6.0225E+23 $ BK=1.38054E-16
DELD=ABS (D-DC)/DC $ DELT=ABS (T-TC)/TC
C CALCULATE DISTANCE PARAMETER
R=(RM**2.5)*(D**0.5)*(AV/EM)**0.5
R=R*(EOK**0.5)**X/(T**0.5)
RRR=R
C GENERAL EQUATION
DX=D*1000.0/EM
CALL DPNT(DPT,DX,T)
C DPDT IN ATS PER DEG.
DPT=DPT*1.01325E+6
C DPDT NOW IN DYNES PRR DEG
CALL DPDD(DPD,DX,T)
C DPDD UN ATS, MOL/L
DFD=DPD*(1.01325E+6)*(1000.0/EM)
CDPDD NOW IN DYNES, GM/CM3
IF( DPD.LT.0.0) DFD=1.0
94 VIS=VISC(DX,T)*(1.0E-06)
C VISCOSITY IN GM/CM.S
IF(DELD.EQ.0.25, OR, DELD.LT. 0.25) 8,10
8 IF(DELT.EQ.0.025, OR, DELT.LT.0.025 ) 9, 10
9 COMPRES=SENG(D,T)
GO TO 12
10 COMPRES=1.0/(D*DFD)**0.5
12 EX=BK*T**2*(DPT**2)*COMPRES
EXB=R*((BK*T)**0.5)*(D**0.5)*((AV/EM)**0.5)
CRIT=EX/(EXB*6.0*3.14159*VIS)
C PUT IN DAMPING FACTOR
BDD=((D-DC)/DC)**4
BTT=((T-TC)/TC)**2
FACT=EXP (-18.66*BTT - 4.25*BDD)
DEL0=CRIT*FACT/100.0
CRITC=DEL0
AKT=COMPRES*COMPRES
EPSI=R*R*BK*T*(AV*D/EM)*AKT
EPSI=EPSI**0.5

```

```

C   CALC  CP-CV
C   CPCV=T*(DPT**2)*WKT/D
C   RETURN
C   END
C   FUNCTION SENG(D,T)
C   SCALED EQUATION OF STATE FOR CRITICAL REGION
COMMON/CRIT/ EM, EOK, RM, TC, DC, X , PC, SIG
COMMON/BEN/BETA,X0,DELTA,E1, E2, AGAM
COMMON/CHECK/DELD,DELT,DSTAR,TSTAR
DSTAR= D/DC + TSTAR*T/TC
BET0=1./BETA
XX=DELT/DELD***BET0
AG=AGAM-1.0
BET2= 2.0*BETA
AGB=AG/BET2
DEL1=DELTA-1.0
AGBB=(AG-BET2)/BET2
XX0=(XX+ X0)/X0
XXB=XX0***BET2
BRAK=1.0 + E2*XXB
BRAK1=BRAK***AGB
H=E1*X0*BRAK1
HPRIM=(E1/X0)*BRAK1 + (AG/X0)*E1*E2*(XXB)*(BRAK***AGBB)
RCOM=(DELD***DEL1)*(DELTA*H - (XX/BETA)*HPRIM )
RCOMP=1.0/(RCOM*DSTAR**2)
RCM=RCOMP/(PC*1.01325E+06)
C   RCM IN DYNES
RCM=RCM**0.5
C
SENG=RCM
RETURN
END
FUNCTION DILV(T)
C   GIVES DILUTE GAS VISCOSITY AND THERMAL
C   CONDUCTIVITY FOR AN INPUT TEMP. IN
C   KELVIN.  OUTPUT UNITS ARE SAME AS
C   THOSE IN VISC AND THERM
COMMON/ISP/N,NW,NWW
COMMON/DATA1/GV,GT,FU,FT,EV,ET
DIMENSION GV(9),GT(9),FU(4),FT(4),EV(8),ET(8)
SUM=0
TF=T**(.1/3.)
TFF=T**(-4./3.)
DO 10 I=1,9
TFF=TFF*TF
10 SUM=SUM+GV(I)*TFF
IF(NWW.EQ.7) GO TO 9
DILV=SUM*1000.
GO TO 11
9 DILV=SUM
11 RETURN
ENIRY DILT
TF=T**(.1/3.)
TFF=T**(-4./3.)
SUM=0
DO 20 I=1,9
TFF=TFF*TF
20 SUM=SUM+GT(I)*TFF
DILV=SUM
RETURN
END
FUNCTION CPI(T)
C   CALCULATES IDEAL GAS THERMO PROPERTIES

```

```

C FOR ALL FLUIDS EXCEPT H2. INPUT IS IN
C NELVIN, OUTPUT IS IN JOULES, MOL/L AND K
COMMON/CPI/G(11)
COMMON/ISP/N
IF(N.NE.0)GO TO 5
K=1
1 U=G(9)/T
EU=EXP(U)
TS=1./T**4
GO TO (2,3,4),K
2 CPI=G(8)*U*U*EU/(EU-1.)**2
DO 10 I=1,7
TS=TS*T
10 CPI=CPI+G(I)*TS
CPI=CPI*8.31434
RETURN
5 CPI=CPO(T,N)
RETURN
ENTRY SI
IF(N.NE.0)GO TO 6
K=2
GO TO 1
3 CPI=G(8)*(U/(EU-1.)- ALOG(1.-1./EU))
1-G(1)*TS*T/3,-G(2)*TS*T*T/2,-G(3)/T+G(4)*ALOG(T)+G(5)*T+G(6)*T*T/2
2.+G(7)*T**3/3.
CPI=CPI*8.31434+G(11)
RETURN
6 CPI=CPOS(T,N)
RETURN
ENTRY HI
IF(N.NE.0)GO TO 7
K=3
GO TO 1
4 CPI=G(8)*U*T/(EU-1.)-G(1)/(2.*T*T)-G(2)/T+G(3)*ALOG(T)+G(4)*T
1+G(5)*T*T/2,+G(6)*T**3/3.+G(7)*T**4/4.
CPI=CPI*8.31434+G(10)
RETURN
7 CPI=CPOH(T,N)
RETURN
END
FUNCTION (PO(TI,N)
DIMENSION T(58),CPP(58),CPN(58),CPO(58),CPE(58)
COMMON/ PARA/PERCENT
CALCULATES IDEL GAS SPECIFIC HEAT FOR H2 BY INTERPOLATING
DATA TAKEN FROM RP 1932, UNITS OF THE TABLES ARE CAL/MOL DEG S.
UNITS OF OUTPUT ARE JOULES/MOL DEG K. THE INDEX N DETERMINES THE
SPECIES, FOR N=1, PARAHYDROGEN, N=2 NORMAL, N=3 ORTHO, N=4 EQUILIB
N=5, SOME ORTHO-PARA MIXTURE SPECIFIED BY COMMON / PARA/, PERCENT
RANGE OF TEMP IS FROM 10 TO 5000K.
DATA(T=
1 10.0, 12.0, 14.0, 16.0, 18.0, 20.0, 25.0, 30.0, 35.0, 40.0, 45.0,
2 50.0, 55.0, 60.0, 65.0, 70.0, 75.0, 80.0, 85.0, 90.0, 95.0, 100.0,
3 105.0, 110.0, 115.0, 120.0, 125.0, 130.0, 135.0, 140.0, 145.0, 150.0, 160.0,
4 170.0, 180.0, 190.0, 200.0, 210.0, 220.0, 230.0, 240.0, 250.0, 260.0, 270.0,
5 280.0, 290.0, 300.0, 350.0, 400.0, 500.0, 600., 700., 1000., 1500., 2000.,
6 3000., 4000., 5000.)
DATA((CPE(I),I=1,58)=4.968 ,4.96884,4.97447,5.01153,5.07451,5.208
11.5,83508,6.81282,7.87989,8.60613,9.00231,9.08005,8.93278,8.65894,
28.33603,8.01207,7.71009,7.4416,7.21109,7.01858,6.85857,6.72557,6.6
32055,6.53555,6.46904,6.42003,6.38403,6.36151,6.34602,6.33753,6.340
401,6.34577,6.37276,6.413,6.45925,6.50975,6.5605,6.6095,6.65724,
/
6.692,6.734,6.771,6.804,6.832,
56.856,6.877,6.895,6.950,6.974,6.993,7.009,7.036,7.219,7.220,8.195,

```

```

68,859,9,342,9,748)
DATA(CPO=
14.968,4.968,4.968,4.968,4.968,4.968,4.968,4.968,4.968,4.968,
24.968,4.968,4.968,4.968,4.969,4.972,4.975,4.981,4.990,5.002,5.018,5.039,
35.064,5.094,5.129,5.169,5.213,5.261,5.313,5.369,5.427,5.487,5.612,
45.741,5.868,5.992,6.109,6.219,6.320,6.411,6.493,6.566,6.629,6.684,
56.732,6.773,6.808,6.917,6.962,6.993,7.009,7.036,7.219,7.720,8.195,
68.859,9.342,9.748)
DATA(CPH=
14.968,4.968,4.968,4.968,4.968,4.968,4.968,4.968,4.968,4.968,
25.006,5.048,5.114,5.207,5.328,5.475,5.646,5.835,6.036,6.245,6.454,
36.659,6.854,7.037,7.203,7.351,7.480,7.590,7.681,7.753,7.807,7.870,
47.883,7.858,7.808,7.742,7.667,7.591,7.516,7.445,7.380,7.322,7.270,
57.225,7.186,7.152,7.050,7.010,6.998,7.010,7.037,7.219,7.720,8.159,
68.859,9.342,9.748)
DATA(CPN=
14.968,4.968,4.968,4.968,4.968,4.968,4.968,4.968,4.968,4.968,
24.977,4.988,5.005,5.029,5.061,5.100,5.147,5.201,5.261,5.325,5.393,
35.463,3.534,5.606,5.677,5.748,5.816,5.882,5.947,6.008,6.067,6.177,
46.276,6.366,6.446,6.517,6.581,6.638,6.687,6.731,6.769,6.802,6.831,
56.855,6.876,6.894,6.950,6.974,6.993,7.009,7.036,7.219,7.720,8.159,
68.859,9.342,9.748)
GO TO(1,2,3,4,5),N
1 CPO=ATKINT(TI,CPP,T,58, 6,NES,.01)*4.184
RETURN
2 CPO=ATKINT(TI,CPN,T,58, 6,NES,.01)*4.184
RETURN
3 CPO=ATKINT(TI,CPO,T,58, 6,NES,.01)*4.184
RETURN
4 CPO=ATKINT(TI,CPE,T,58, 6,NES,.01)*4.184
RETURN
5 TUP=TI+.5
TIN=TI-.5
HUF=CPOH(TUP,5)
HDN=CPOH(TDN,5)
CPG=(HUP-HDN)
RETURN
END
FUNCTION CPOH(TI,N)
DIMENSION T(58),HP(58),HN(58),HO(58),HE(58)
COMMON/ PARA /PERCENT
C CALCULATES THE ENTHALPY OF THE IDEAL GAS FOR H2 BY INTERPOLATION
C DATA TAKEN FROM RP 1932, UNITS OF TABLES ARE CAL/MOL
C UNITS OF OUTPUT ARE JOULE/MOL. THE INDEX N DETERMINES THE SPECIES
C SPECIES, FOR N=1, PARAHYDROGEN, N=2 NORMAL, N=3 ORTHO, N=4 EQUILIB
C N=5, SOME ORTHO-PARA MIXTURE SPECIFIED BY COMMON /PARA/, PERCENT
C RANGE OF TEMP IS FROM 10 TO 5000K.
DATA(T=
1 10.0, 12., 14.0, 16.0, 18.0, 20.0, 25.0, 30.0, 35.0, 40.0, 45.0,
2 50.0, 55.0, 60.0, 65.0, 70.0, 75.0, 80.0, 85.0, 90.0, 95.0, 100.0,
3 105.0, 110.0, 115.0, 120.0, 125.0, 130.0, 135.0, 140.0, 145.0, 150.0, 160.0,
4 170.0, 180.0, 190.0, 200.0, 210.0, 220.0, 230.0, 240.0, 250.0, 260.0, 270.0,
5 280.0, 290.0, 300.0, 350.0, 400.0, 500.0, 600., 700., 1000., 1500., 2000.,
6 3000., 4000., 5000.)
DATA(HN=
1 303.67, 313.60, 323.54, 333.48, 343.41, 353.35, 378.19, 403.03,
1 427.86, 452.71, 477.56, 502.43, 527.34, 552.32, 577.40, 602.62,
3 628.02, 653.64, 679.51, 705.66, 732.13, 758.92, 786.06, 813.55,
4 841.40, 869.61, 898.17, 927.08, 956.33, 985.91, 1015.80, 1045.99,
5 1107.22, 1169.49, 1232.71, 1296.78, 1361.60, 1427.10, 1493.20, 1559.84,
6 1626.93, 1694.44, 1762.30, 1830.48, 1898.91, 1967.57, 2036.43, 2382.74,
7 2330.94, 3429.46, 4129.51, 4831.66, 6966.23, 10697.2, 14679.2,
8 23230.9, 32345., 41895.)

```

```

DATA(HP=
1 49.68, 59.61, 69.55, 79.49, 89.42, 99.36, 124.20, 149.04,
2 173.88, 198.73, 223.61, 248.58, 273.21, 299.11, 324.90, 351.22,
3 378.22, 406.01, 434.71, 464.38, 495.09, 526.84, 559.62, 593.41,
4 628.14, 663.75, 700.14, 737.23, 774.92, 813.10, 851.69, 890.60,
5 969.04, 1047.84, 1126.58, 1204.93, 1282.69, 1359.74, 1436.03, 1511.56,
6 1586.36, 1660.49, 1733.99, 1806.95, 1879.42, 1951.47, 2023.15, 2377.83,
7 2729.17, 3429.24, 4129.48, 4831.65, 6966.23, 10697.2, 14679.2,
8 23230.9, 32345., 41895.)
```

```

DATA(HU=
1 388.63, 398.27, 408.20, 418.14, 428.07, 438.01, 462.85, 487.69,
2 512.53, 537.37, 562.21, 587.05, 611.89, 636.73, 661.57, 686.42,
3 711.29, 736.18, 761.11, 786.09, 811.14, 836.28, 861.54, 886.93,
4 912.49, 938.23, 964.18, 990.37, 1016.80, 1043.51, 1070.50, 1097.78,
5 1153.27, 1210.04, 1268.09, 1327.39, 1387.91, 1449.56, 1512.26, 1575.93,
6 1640.46, 1705.76, 1771.74, 1838.32, 1905.41, 1972.94, 2040.86, 2384.38,
7 2731.52, 3429.53, 4129.52, 4831.66, 6966.23, 10697.2, 14679.2,
8 23230.9, 32345., 41895.)
```

```

DATA(HE=
1 49.68, 59.62, 69.57, 79.56, 89.66, 99.96, 127.50, 159.12,
2 195.77, 236.90, 280.97, 326.24, 371.33, 415.35, 457.36, 498.74,
3 538.05, 575.93, 612.56, 648.13, 682.82, 716.78, 750.14, 783.03,
4 815.54, 847.76, 879.77, 911.63, 943.40, 975.11, 1006.80, 1038.52,
5 1102.11, 1166.03, 1230.39, 1295.23, 1360.58, 1426.43, 1492.76, 1559.55,
6 1626.75, 1694.32, 1762.23, 1830.43, 1898.88, 1967.55, 2036.42, 2382.74,
7 2730.94, 3429.46, 4129.51, 4831.66, 6966.23, 10697.2, 14679.2,
8 23230.9, 32345., 41895.)
```

```

GO TO(1,2,3,4,5),N
1 CPOH=ATKINT(TI,HP,T,58, 6,NES,.01)*4.184
  RETURN
2 CPOH=ATKINT(TI,HN,T,58, 6,NES,.01)*4.184
  RETURN
3 CPOH=ATKINT(TI,HO,T,58, 6,NES,.01)*4.184
  RETURN
4 CPOH=ATKINT(TI,HE,T,58,6 ,NES,.01)*4.184
  RETURN
5 PERCE =PERCENT /100.
CPOH=(ATKINT(TI,HO,T,58,6,NES,.01)*(1.-PERCE )+
1ATKINT(TI,HP,T,58,6,NES,.01)*PERCE )*4.184
  RETURN
END
FUNCTION CPOS(TI,N)
DIMENSION T(60),SP(60),SN(60),SO(60),SE(60)
COMMON/ PARA/PERCENT
C CALCULATES THE ENTROPY OF THE IDEAL GAS FOR H2 BY INTERPOLATING
C BAKEN FROM RP 1932, UNITS OF THE TABLES ARE CAL/MOL DEG K. 1
C UNITS OF OUTPUT ARE JOULES/MOL DEG K. THE INDEX N DETERMINES THE
C SPECIES, FOR N=1,PARAHYDROGEN, N=2 NORMAL, N=3 ORTHO, N=4 EQUIILTR
C N=5,SOME ORTHO-PARA MIXTURE SPECIFIED BY COMMON / PARA/,PERCENT
C RANGE OF TEMP IS FROM 10 TO 5000K.
DATA(T=
1 10.0, 12.0, 14.0, 16.0, 18.0, 20.0, 25.0, 30.0, 35.0, 40.0, 45.0,
2 50.0, 55.0, 60.0, 65.0, 70.0, 75.0, 80.0, 85.0, 90.0, 95.0, 100.0,
3 105.0, 110.0, 115.0, 120.0, 125.0, 130.0, 135.0, 140.0, 145.0, 150.0, 160.0,
4 170.0, 180.0, 190.0, 200.0, 210.0, 220.0, 230.0, 240.0, 250.0, 260.0, 270.0,
5 280.0, 290.0, 300.0, 350.0, 400.0, 450.0, 500.0, 550.0, 600.0, 700.0, 1000.0,
6 1500.0, 2000.0, 3000.0, 4000.0, 5000.0)
```

```

DATA(SP=
011,214,12,120,12,886,13,54,14,135,14,658,15,766,16,672,17,438,
118,102,18,688,19,214,19,693,20,135,20,548,20,938,21,310,21,669,
022,017,22,356,22,688,23,014,23,334,23,648,23,957,24,260,24,557,
424,848,25,132,25,410,25,681,25,945,26,451,26,928,27,379,27,802,
528,201,28,577,28,932,29,268,29,586,29,889,30,177,30,402,30,716,
```

```

630.969,31.212,32.305,33.244,34.069,34.806,35.473,36.082,37.165,
739.701,42.720,45.007,51.221,53.839,55.969)
DATA(S0=
115.581,16.486,17.252,17.916,18.501,19.024,20.133,21.038,21.804,
222.468,23.053,23.576,24.050,24.482,24.880,25.248,25.591,25.912,
326.215,26.500,26.771,27.029,27.275,27.512,27.739,27.958,28.170,
428.375,28.575,28.769,28.958,29.143,29.502,29.846,30.177,30.498,
530.808,31.109,31.401,31.684,31.958,32.225,32.484,32.735,32.979,
633.216,33.446,34.505,35.432,36.253,36.989,37.656,38.265,39.348,
741.884,44.903,47.190,51.221,53.839,55.969)
DATA(SN=
115.607,16.512,17.278,17.941,18.527,19.050,20.159,21.064,21.830,
222.494,23.079,23.603,24.078,24.513,24.914,25.288,25.638,25.969,
326.283,26.582,26.868,27.143,27.407,27.663,27.911,28.151,28.384,
428.611,28.832,29.047,29.256,29.461,29.856,30.234,30.595,30.942,
531.274,31.594,31.901,32.197,32.483,32.758,33.025,33.282,33.531,
733.772,34.005,35.073,36.003,36.825,37.561,38.228,38.836,39.920,
742.455,45.475,47.762,51.221,53.839,55.969)
DATA(SE=
111.215,12.120,12.887,13.554,14.149,14.692,15.918,17.069,18.196,
219.294,20.331,21.285,22.145,22.911,23.592,24.198,24.740,25.229,
325.674,26.080,26.455,26.804,27.129,27.435,27.724,27.999,28.260,
428.510,28.750,28.980,29.203,29.418,29.828,30.216,30.584,30.934,
531.269,31.591,31.899,32.196,32.482,32.758,33.024,33.282,33.531,
633.772,34.005,35.073,36.003,36.825,37.561,38.228,38.836,39.920,
742.455,45.475,47.762,51.221,53.839,55.969)
GO TO(1,2,3,4,5),N
1 CPOS=ATKINT(TI,SP,T,60, 6,NES,.01)*4.184
RETURN
2 CPOS=ATKINT(TI,SN,T,60, 6,NES,.01)*4.184
RETURN
3 CPOS=ATKINT(TI,S0,T,60, 6,NES,.01)*4.184
RETURN
4 CPOS=ATKINT(TI,SE,T,60, 6,NES,.01)*4.184
RETURN
5 PERCE =PERCENT /100.
CPOS=(ATKINT(TI,S0,T,60,6,NES,.01)*(1.-PERCE )+
1ATKTNT(TI,SP,T,60,6,NES,.01)*PERCE )*4.184
C THE EXPRESSION FOR THE ENTROPY OF EQUILIBRIUM H2 IS INCORRECT,
C THE ENTROPY OF MIXING MUST BE ADDED TO MAKE IT COMPLETE
REURN
END
FUNCTION ATKINT(X,YMAT,XMAT,NELMTS,NMAX,NESSY,ACRCY)
C THIS PROGRAM HAS BEEN CHANGED SO THAT THE OSCILLATING NATURE OF
C THE MATRIX TO BE INTERPOLATED EXISTS ONLY AT THE UPPER END OF THE
C TABLE
C THIS ROUTINE WILL TAKE INPUT MATRICES OF UP TO 999 ELEMENTS EACH,
C ARRANGED SO THAT THE X MATRIX(XMAT) IS IN EITHER ASCENDING OR
C DESCENDING ORDER, SELECT NMAX OF THESE POINTS, CHOSEN SO THAT
C SUCESSIVE X VALUES OSCILATE ABOUT THE VALUE OF THE ARGUMENT X
C UNLFSS THE ENDS OF THE XMATRIX INTERFERE (IN THIS CASE THE
C OSCILLATORY NATURE IS LOST BUT THE PROGRAM WILL STILL PERFORM AN
C INTERPOLATION), INTERPOLATE ON THESE NMAX PAIRS OF DATA BY
C AN OSCILATING VARIABLE POINT AITKEN INTERPOLATION ALGORITHM
C EITHER UNTIL THE PERCENTAGE CHANGE IN THE INTERPOLANT IS LESS
C THAN THE ACRCY ARGUMENT (THE ARGUMENT NESSY INDICATES THE
C NUMBER OF THE POINT JUST BEFORE THE LAST ONE CHECKED) OR UNTIL
C THE NMAX POINTS ARE ALL USED. IT IS SUGGESTED THAT NMAX
C BE LESS THAN 10, AND OF COURSE LESS THAN NELMTS. NELMTS
C INDICATES THE NUMBER OF ELEMENTS IN XMAT OR YMAT.
C IF NESSY IS ZERO IT INDICATES THAT THE INTERPOLATION REQUIREMENT
C HAS NOT BEEN SATISFIED. IF NESSY IS 1 IT MEANS THAT THE VALUE OF
C X LIES OUT SIDE THE RANGE OF XMAT.

```

```

DIMENSION YMAT(999), XMAT(999),A(21,20)
100 FORMAT(42HINTERPOLATION REQUIREMENT NOT SATISFIED(X=,E16.8,1H)/33H
1LAST 2 APPROXIMATIONS OF Y ARE(Y=,E16.8,1H,,E16.8,1H))
200 FORMAT(55HTHIS REPRESENTS AN EXTRAPOLATION OF THE XMAT MATRIX(X=,
1E16.8,1H)/33HNO CALCULATION HAS BEEN PERFORMED)
300 FORMAT(24HNELMTS IS LESS THAN NMAX)
400 FORMAT(22HNMAX IS LARGER THAN 20)
IF(NMAX>20)71,71,69
69 PRINT 400
ATKINT=0.0
RETURN
71 IF(NMAX-NELMTS)>5,75,73
73 PRINT 300
ATKINT=0.0
RETURN
75 CONTINUE
C FIRST TWO SUCCESSIVE VALUES OF THE XMATRIX THAT STRADDLE THE
C VALUE X WILL BE SOUGHT
JJ1=NELMTS-1
DO 20 I=1,JJ1
DIF1=X-XMAT(I)
DIF2=XMAT(I+1)-X
IF(DIF1)>16,15,16
15 ATKINT=YMAT(I)
NESSY =NMAX
RETURN
16 IF(DIF2)>18,17,18
17 ATKINT=YMAT(I+1)
NESSY =NMAX
RETURN
18 RATIO=DIF1/ DIF2
IF(RATIO)>20,20,19
19 IMID=I
GO TO 32
20 CONTINUE
C AT THIS POINT ONE COULD PRINT THE FOLLOWING STATEMENT
C WRITE OUTPUT TAPE 6,200,X
NESSY=1
ATKINT=0.0
RETURN
32 CONTINUE
C NOTE THAT RATIO IS POSITIVE IF THE TWO POINTS STRADDLE X
C REGARDLESS WHICH IS LARGER
JJJ=IMID
JUP=IMID
JDN=IMID
IF(JJJ+NMAX-NELMTS+1)>98,58,102
98 DO 201 J=1,NMAX
JJJ=IMID+J-1
A(1,J)=XMAT(JJJ)
201 A(2,J)=YMAT(JJJ)
GO TO 203
202 DO 41 J=1,NMAX
JJ=J/2
JOE=J-2*JJ
C JOE IS 0 IF J IS EVEN AND 1 IF J IS ODD
IF(J-1)>33,40,33
33 IF(JDN-1)>34,36,34
34 IF(JUP-NELMTS)>35,37,35
35 IF(JOE)>37,36,37
36 JUP=JUP+1
JJJ=JUP
GO TO 40

```

```

37 JDN=JDN-1
JJ=JDN
GO TO 40
40 A(1,J)=XMAT(JJJ)
A(2,J)=YMAT(JJJ)
41 CONTINUE
203 NNN=NMAX+1
DO 6 J=3,NNN
L=J-1
DO 5 K=L,NMAX
C   J IS THE COL'MN NUMBER
C   K IS THE ROW NUMBER
OA(J,K)=(A(J-1,K)-A(J-1,J-2))*(X-A(1,J-2))/(A(1,K)-A(1,J-2))
1   +A(J-1,J-2)
IF (K-L)3,2,3
2 IF (ABS((A(J,L)-A(J-1,L-1))/A(J,L))-ACRCY/100.0)7,7,3
3 CONTINUE
5 CONTINUE
6 CONTINUE
NESSY=0
C   AT THIS POINT ONE COULD PRINT OUT THE FOLLOWING STATEMENT.
C   WRITE OUTPUT TAPE 6,100,X,A(NNN,NMAX),A(NNN-1,NMAX-1)
ATKINT=A(NNN,NMAX)
RETURN
7 NESSY=J-1
ATKINT=A(J,L)
RETURN
END
SUBROUTINE LIMITS(P,T,IL)
DIMENSION G(32),VP(9)
COMMON/DATA/G,R,GAMMA,VP,BTP,PCC,PTP,TCC,TPP,TUL,TLL,PUP
IF (P.GT.PUP)GO TO 10
IF (T.GT.TUL.OR.T.LT.TLL)GO TO 12
IL=1
RETURN
10 PRINT 11,PUP
11 FORMAT(* THE INPUT PRESSURE IS OUT OF THE RANGE OF THIS EQUATION *
/* THE RANGE FOR THIS EQUATIONS IS FROM 0 TO *,F6.0,* BAR*)
IL=0
RETURN
12 PRINT 13,TLL,TUL
13 FORMAT(* THE INPUT TEMPERATURE IS OUT OF RANGE*
/* THE RANGE FOR THIS EQUATION IS FROM *,F6.2,* TO *,F6.0,* K*)
IL=0
RETURN
14U
SUBROUTINE DATA_NE
PRINT 105
105 FORMAT(* THE TEMPERATURE RANGE OF NEON IS 25 TO 300 KELVIN*
/* WITH PRESSURES TO 200 BAR*
/* YOU MAY ENTER THIS ROUTINE WITH ANY TWO OF THE VARIABLES*
/* P,D OR T, AND 0 FOR THE THIRD , FOR SATURATION ENTER WITH*
/* EITHER P OR T, AND 0 FOR THE OTHER TWO ,IF YOU WANT *
/* TO CHANGE FLUIDS ENTER 0 FOR ALL THREE INPUT VARIABLES*)
D: 44.4
P: 26.54
T: 25.
PUL:200.
TUL:300.
TLL:25.
IM: 20,183
PRINT 104

```

```

104 FORMAT(* DO YOU WANT ENGINEERING UNITS OR METRIC UNITS ??*
17 * ENTER A 0 FOR ENGINEERING UNITS OR A 1 FOR METRIC*)
UNIT DATA N
READ 102,LU
102 FORMAT(1I)
17 IF(LU,1D,0)GO TO 18
PRINT 103
103 FORMAT(* ENTER PRESSURE IN BAR, DENSITY IN MOLES/LITER, AND TEMPER-
ATURE IN KELVINS*)
24 READ *,P,D,T
P=P/1.01325
GO TO 19
18 PRINT 106
106 FORMAT(* ENTER PRESSURE IN LB/SQ IN, DENSITY IN LB/CU FT AND*
1/* TEMPERATURE IN DEGREES F*)
READ *,P,D,T
P=P/14.695949
D=D*16.01846371*EM
T=(T-32.)/1.8+273.15
19 CONTINUE
IF(P,LE,0.0)GO TO 14
IF(D,LE,0.0)GO TO 13
IF(T,LE,0.0)GO TO 12
GO TO 21
12 IF(P,LE,0.0,OR,D,LE,0.0)GO TO 15
T=FNNDTNE(P,D)
IF(P,GT,PUL,OR,T,GT,TUL,OR,T,LT,TLL)GO TO 25
GO TO 16
13 IF(T,LE,0.0,OR,P,LE,0.0)GO TO 15
IF(P,GT,PUL,OR,T,GT,TUL,OR,T,LT,TLL)GO TO 25
131 D=FNDDNE(P,T)
GO TO 16
14 IF(D,LE,0.0,OR,T,LE,0.0)GO TO 15
P=FNNDPNE(D,T)
IF(P,GT,PUL,OR,T,GT,TUL,OR,T,LT,TLL)GO TO 25
16 H=ENTHNE(P,D,T)
S=ENTRNE(D,T)
PP=P*1.01325
IF(IU,EQ,0)GO TO 23
PRINT 100,PP,D,T,H,S
100 FORMAT(* PRESSURE=*,F7.2,* BAR, DENSITY=*,F7.4,* MOLES/LITER, TE*
1/*MPERATURE=*,F6.2,* KELVIN*
2/* ENTHALPY=*,F9.2,* JOULES/MOL, ENTROPY=*,F6.2,* JOULES/MOL-K*)
GO TO 17
23 P0=P*14.695949
T0=T*1.8-459.67
D0=D*EM/16.01846371
H0=H/(2.324445*EM)
S0=S/(4.184001*EM)
PRINT 101,P0,D0,T0,H0,S0
101 FORMAT(* PRESSURE=*,F10.3,* LB/SQ IN, DENSITY=*,F10.4,* LB/CU FT*
1/* TEMPERATURE=*,F8.2,* F, ENTHALPY=*,F9.2,* BTU/LB*
2/* ENTROPY=*,F6.2,* BTU/LB-F*)
GO TO 18
15 IF(P,LE,0.0,AND,I,LE,0.0)GO TO 21
IF(P,GT,0.0)GO TO 20
IF(T,GT,TC,OR,I,LT,ITP)GO TO 22
P=VPNNE(T)
109 FORMAT(* DO YOU WANT SATURATED LIQUID OR VAPOR*
1/* ENTER A J FOR VAPOUR OR A 0 FOR LIQUID*)
PRINT 109

```

```

READ *,IP
IF(IP.GT.0)P=P-.0001
IF(IP.EQ.0)P=P+.00001
GO TO 131
20 IF(P.GT.PC)GO TO 22
T=VPTENE(P)
PRINT 109
READ *,IP
IF(IP.GT.0)P=P-.0001
IF(IP.EQ.0)P=P+.00001
GO TO 131
22 PRINT 107
107 FORMAT(* YOUR INPUT PRESSURE OR TEMPERATURE IS OUT OF RANGE*
1/* OF THE SATURATION CURVE, TC=44.4, PC=26.89, T TRIPLE=25.*
2/* TRY AGAIN*)
GO TO 17
21 RETURN
25 PRINT 108
108 FORMAT(* YOUR INPUT TEMPERATURE OR PRESSURE IS OUT OF RANGE*
1/* TEMP MUST BE BETWEEN 25 AND 300K AND PRESSURE BETWEEN*
2/* 0 AND 200BAR, TRY AGAIN*)
GO TO 17
END
SUBROUTINE DATA HE
PRINT 105
105 FORMAT(* THE TEMPERATURE RANGE OF HELIUM IS 2.177 TO 1500 KELVIN*
1/* WITH PRESSURES TO 1000 BAR*
2/* YOU MAY ENTER THIS ROUTINE WITH ANY TWO OF THE VARIABLES*
3/* P,D OR T, AND 0 FOR THE THIRD, FOR SATURATION ENTER WITH*
4/* EITHER P OR T, AND A 0 FOR THE OTHER TWO , IF YOU WANT *
5/* TO CHANGE FLUIDS ENTER A 0 FOR ALL THREE INPUT VARIABLES*)
TC=5.201
PC=2.245
TTP=2.17
PUL=1000.
TUL=1500.
TLL=2.177
EM=4.0026
PRINT 104
104 FORMAT(* DO YOU WANT ENGINEERING UNITS OR METRIC UNITS ?*
1/* ENTER A 0 FOR ENGINEERING UNITS OR A 1 FOR METRIC*)
READ 102,IU
102 FORMAT(I1)
17 IF(IU.EQ.0)GO TO 18
PRINT 104
103 FORMAT(* ENTER PRESSURE IN BAR, DENSITY IN MOLES/LITER, AND TEMPER-
ATURE IN KELVINS*)
24 READ *,P,D,T
P=P/1.01325
GO TO 19
18 PRINT 106
106 FORMAT(* ENTER PRESSURE IN LB/SQ IN, DENSITY IN LB/CU FT AND*
1/* TEMPERATURE IN DEGREES F*)
READ *,P,D,T
P=P/14.695949
D=D*16.01846371/EM
IF(T.EQ.0.0)GO TO 19
T=(T-32.)/1.8+273.15
19 CONTINUE
IF(P.LE.0.0)GO TO 14
IF(D.LE.0.0)GO TO 13
IF(T.LE.0.0)GO TO 12

```

```

      GO TO 21
12 IF(P.LE.0.0.OR.D.LE.0.0)GO TO 15
      T=FNDBHE(P,D)
      IF(P.GT.PUL.OR.T.GT.TUL.OR.T.LT.TLL)GO TO 25
      GO TO 16
13 IF(T.LE.0.0.OR.P.LE.0.0)GO TO 15
      IF(P.GT.PUL.OR.T.GT.TUL.OR.T.LT.TLL)GO TO 25
131 D=FNDBHE(P,T)
      GO TO 16
14 IF(D.LE.0.0.OR.T.LE.0.0)GO TO 15
      P=FNDBHE(D,T)
      IF(P.GT.PUL.OR.T.GT.TUL.OR.T.LT.TLL)GO TO 25
16 H=ENTHHE(D,T)
      S=ENTRHE(D,T)
      W=SOUNHE(D,T)
      CPP=CPHE(D,T)
      CVV=CVHE(D,T)
      TH=ATHERHE(D,T)*100.
      V=VISCHE(D,T)
      PP=P*1.01325
      IF(IU.EQ.0)GO TO 23
      PRINT 100,PP,D,T,H,S,CPP,CVV,W,TH,V
100 FORMAT(* PRESSURE=*,F8.2,* BAR, DENSITY=*,F7.4,* MOLES/LITER, TE*
1/*MPERATURE=*,F7.2,* KELVIN*
2/* ENTHALPY=*,F9.2,* JOULES/MOL, ENTROPY=*,F6.2,* JOULES/MOL-K*
3/* CP=*,F7.2,* JOULES/MOL-K, CV=*,F7.2,* JOULES/MOL-K*
4/* SPEED OF SOUND=*,F8.2,* METERS/SEC*
5/* THERMAL CONDUCTIVITY=*,F7.2,* M WATS/M-K*
6/* VISCOSITY=*,F7.2,* MICRO G/CM-SEC)
      GO TO 17
23 P0=P*14.695949
      T0=T*1.8-459.67
      D0=D*EM/16.01846371
      H0=H/(2.3244.*EM)
      S0=S/(4.184001*EM)
      CPP0=CPP/(4.184001*EM)
      CVV0=CVV/(4.184001*EM)
      W0=W*3.260840
      TH0=TH*.000578176
      V0=V*.0067176897
      PRINT 101,P0,D0,T0,H0,S0,CPP0,CVV0,W0,TH0,V0
101 FORMAT(* PRESSURE=*,F10.3,* LB/SQ IN, DENSITY=*,F10.4,* LB/CU FT*
1/* TEMPERATURE=*,F8.2,* F, ENTHALPY=*,F9.2,* BTU/LB*
2/* ENTROPY=*,F6.2,* BTU/LB-F*
3/* CP=*,F7.3,* AND CV=*,F7.3,* BTU/LB-F*
4/* SPEED OF SOUND=*,F8.1.* FT/SEC*
5/* THERMAL CONDUCTIVITY=*,F7.2,* BTU/FT-HR-F*
6/* VISCOSITY=*,F7.2,* LB/FT-S X E+7*)
      GO TO 18
15 IF(P.LE.0.0.AND.T.LE.0.0)GO TO 21
      IF(P.GT.0.0)GO TO 20
      IF(T.GT.TC.OR.T.LT.TTP)GO TO 22
      P=VPNHE(T)
      PRINT 109
      READ *,IP
      IF(IP.GT.0)P=F-.0.01
      IF(IP.GE.1)P=F+.00001
109 FORMAT(* DO YOU WANT SATURATED LIQUID OR VAPOR*
1/* ENTER A 1 FOR VAPOR OR A 0 FOR LIQUID*)
      GO TO 131
20 IF(P.GT.FC)GO TO 22
      T=VPTHE(P)

```

```

PRINT 109
READ *,IP
IF(IP.GT.0)P=P-.0001
IF (IP.GE.1)P=P+.00001
GO TO 131
22 PRINT 107
107 FORMAT(* YOUR INPUT PRESSURE OR TEMPERATURE IS OUT OF RANGE*
1/* OF THE SATURATION CURVE, TC=5.201, PC=2.275, T TRIPLE=2.177*
2/* TRY AGAIN*)
GO TO 17
21 RETURN
25 PRINT 108
108 FORMAT(* YOUR INPUT TEMPERATURE OR PRESSURE IS OUT OF RANGE*
1/* TEMP MUST BE BETWEEN 2.177 AND 1500K AND PRESSURE BETWEEN*
2/* 0 AND 1000BAR, TRY AGAIN*)
GO TO 17
END
SUBROUTINE INFO
PRINT 2
2 FORMAT(* WHEN THE PROGRAM ASKS FOR A FLUID SELECTION, ENTER THE APPROPRIATE NUMBER*
2/* AN INAPPROPRIATE NUMBER WILL TERMINATE THE PROGRAM*)
PRINT 1
1 FORMAT(* WHEN THE PROGRAM ASKS FOR A PRESSURE, DENSITY, AND*/* T
1TEMPERATURE, ENTER ANY 2 OF THE THREE AND A 0 FOR THE THIRD.*/* THE
2E ORDER MUST BE P, D,T, AND ONE OF THE THREE MUST BE 0. *
3/* IF ALL THREE ARE 0 THE PROGRAM ASKS FOR A NEW FLUID*)
PRINT 110
110 FORMAT(* IF YOU ARE INTERESTED IN A DEFINITION OF THE VARIOUS*
1/* MODIFICATIONS OF HYDROGEN ENTER A 1, IF NOT ENTER A 0*)
READ *,IC
IF(IC.NE.1)GO TO 111
CALL H2 INFO
111 PRINT 112
112 FORMAT(* IF YOU ARE INTERESTED IN THE SOURCES OF THESE PROGRAMS*
1/* ENTER A 1 IF NOT ENTER A 0*)
READ *,IS
IF(IS.EQ.1)CALL SOURCE
RETURN
END
SUBROUTINE H2 INFO
PRINT 100
100 FORMAT(* THE HYDROGEN MOLECULE IS MADE UP OF TWO HYDROGEN ATOMS*
1/* THERE ARE TWO POSSIBLE RELATIVE ORIENTATIONS OF THE NUCLEAR*
2/* SPIN OF THE ATOMS IN A MOLECULE OF HYDROGEN. I.E. THE SPINS*
3/* MAY BE IN THE SAME DIRECTION (ORTHO) OR IN OPPOSITE DIRECTIONS*
4/* (PARA). THE RELATIVE AMOUNTS OF ORTHO AND PARA HYDROGEN IN*
5/* A SAMPLE OF EQUILIBRIUM HYDROGEN IS TEMPERATURE DEPENDANT*)
PRINT 101
101 FORMAT(* AT ROOM TEMPERATURE EQUILIBRIUM HYDROGEN IS 75 PERCENT*
1/* ORTHO AND 25 PERCENT PARA AND IS CALLED NORMAL HYDROGEN*
2/* AT 20 KELVIN EQUILIBRIUM HYDROGEN IS 99.8 PERCENT PARA.*)
RETURN
END
SUBROUTINE SOURCE
PRINT 100
100 FORMAT(* THIS PROGRAM WAS WRITTEN BY R.D. MCCARTY AT THE NATIONAL*
1/* BUREAU OF STANDARDS IN BOULDER COLORADO UNDER A CONTRACT WITH*
2/* THE JOHNSON SPACE CENTER IN HOUSTON TEXAS. THE NASA CONTRACT*
3/* MONITOR AT JSC IS WALTER SCOTT. THE DOCUMENTATION OF THE*
4/* PROGRAM IS IN PREPARATION AND IS PLANNED AS A JOINT*
5/* NASA-NBS PUBLICATION*)

```

```

      RETURN
      END
      FUNCTION FNDDHE(P,T)
C SOLVES THE HELIUM EQUATION OF STATE FOR DENSITY IN MOLE/LITER
C GIVEN A PRESSURE IN ATMOSPHERES AND A TEMPERATURE IN DEGREES K
      I=11
      P=P1
      IF(T.LT.5.2)GO TO 6
      PM=1001.
      IF(T.LT.15.)PM=PMELT(T)
      IF(PM.LT.P)GO TO 30
      IF(T.GT.100.)GO TO 1
      PC=2.2449+(T-5.2014)*1.76
      IF(P.LT.PC)GO TO 1
      PM=200.+(T-5.2)*12.31
      D=17.399+((PM-PC)/(PM-PC+1.))*2.33*17.399
      GO TO 7
      2  D=.0001
      IF(T.LT.4.2)GO TO 7
      1  VB=VIRBT
      RT=0.0820558*T
      P1=RT/P
      D=1./(P1+VB)
      GO TO 7
      6  IF(P.LT.VPNHE(T))GO TO 2
      DS=46.18+(T-2.)*4.02
      DL=DSATL(T)*1000./4.0026
      DEL=DS-DL
      PM=PMELT(T)
      IF(P.GT.PM)GO TO 30
      D=DL+DEL*P/PM
      7  DO 10 I=1,50
      P2=FNDPHE(D,T)
      IF(ABS(P-P2)-1.E-7*P)20,20,8
      8  DP=DPDDHE(D,T)
      CORR=(P2-P)/DP
      IF(ABS(CORR)-1.E-7*D)20,20,10
      10 D=D-CORR
      FNDDHE=0
      RETURN
      20 FNDDHE=D
      RETURN
      30 FNDDHE=0
      RETURN
      END
      FUNCTION FNDPHE(DD,TT)
C THE MAIN EQUATION OF STATE ROUTINE FOR HELIUM:
C THE INPUT IS DENSITY IN MOLES/LITER AND TEMPERATURE
C IN DEGREES K, THE OUTPUT IS PRESSURE,DP/DD,DP/DT,ENTHALPY,
C ENTRPY AND CV IN ATMOSPHERES AND JOULES
      DIMENSION A(26),B(27,4)
      COMMON/INDEX/ID
      DATA(ID=0)
      DATA((B(I),I=82,108)=
1      5.988310109E-9,-4.9653052187E-7,-3.8116033499E-6,3.68116713
13E-5,-1.4830691828E-4,3.0596174335E-4,-3.3908190224E-4,1.962408024
22E-4,1.5527899/12E-5,-3.6110403503E-5,-1.0839/88073E-5,4.972810121
37E-5,1.938145109E-5,-4.149640896E-4,-5.7465772899E-4,-4.3470945634
4E-3,-6.8383889924E-2,-2.1382474225E-2,2.7106954908E-2,-1.262796778
38E-2,2.5875/5338E-3,7.9041608815E-2,-1.4024724318E-4,-2.8278987249
6E-7,1.7336410358E-6,-2.5454187855E-6,-0.0005)
      DATA((B(I),I=55,81)=-1.4802195348E-8,4.1721791119E-7,-2.3326553271

```

```

1E-7,4.085511088E-7,1.0900567964E-5,-5.0060952775E-5,1.1312765043
2E-4,-1.2539843287E-4,1.9661380688E-6,1.7122932666E-4,2.3051000543
3E-4,-9.65647391E-4,-3.6027 735292E-5,1.6079946555E-3,-2.7441763615
4E-2,,14739506957,-,43559344838,1.3447956079,-1.7040375125,.9026267
54040,5.6875644111E-3,-1.4438146625E-1,3.3768874851E-3,1.0754201218
6E-6,-4.5264622308E-5,3.8597388864E-5,-.0005)
DATA((B(I),I=28,54)=-4.2287454626E-8,4.4529354413E-7,-1.0246150954
1E-5,8.5254608956E-5,-2.5163069255E-4,3.2877709285E-4,-1.060195758
2E-4,-1.0687738074E-4,-3.2120950632E-5,1.415901897E-4,1.4725630701
4E-3,-2.618354941E-3,2.0461501117E-5,1.2746996288E-3,-2.0272929583
5E-2,7.4648036615E-2,-.17217966521,.51053439738,-.40178202497,
6.26829864632,7.906601204E-3,-8.9393485656E-2,-.15076580053,
72.6882494327E-6,-3.3794316835E-5,-2.4495951195E-5, -.0005)
DATA((B(I),I=1,27)=
A -1.5096862619E-7,6.4640898904E-7,4.1362357367E-5,
1-3.7910190353E-4,1.3806454049E-3,-2.5085412058E-3,2.3697560398E-3
2,-9.5726461066E-4,3.7405931828E-5,-6.4103220333E-4,
31.8579366177E-3,7.4007986606E-4,1.4792568148E-4,-3.2531355477E-3,
41.9518739286E-2,-.10571617135,.33164944449,-.51130022535,
53.9940004906E-1,-.15E55244471,4.906264031E-3,-2.6148004377E-2,
63.4221685545E-2,5.4159662622E-6,-1.0687806777E-5,-8.9484651869E-6,
7,.0025)
KP=1
GO TO 10
ENTRY DPDTHE
KP=2
GO TO 10
ENTRY DPDD HE
KP=3
GO TO 10
ENTRY ENTRHE
KP=4
GO TO 10
ENTRY ENTHHE
KP=5
GO TO 10
ENTRY CVHE
KP=6
10 K1=0
KH=1
K=1
KK=1
K4=1
IF(ID.NE.0)GO TO 20
IF(TT.GE.15.)GO TO 20
IF(TT.GT.10)GO TO 30
IF(DD.GT.1/.3987)GO TO 40
11 I=1
T=TT
D=DD
8 GO TO (9,100,200,300,400,500)KP
9 D2=D*D
D3=D2*D
D4=D3*D
D5=D4*D
GAMMA=B(27,1)
EX=EXP(D2*GAMMA)
EXD3=EX*D3
EXD5=EX*D5
M=1
N=1
A(N)=D5*D $ N=N+1

```

```

A(N)=A(N-1)/I   $  N=N+1
DO 2 I=1,6
FI=I
A(N)=D5*T**(.75-FI/4.)
2 N=N+1
DO 3 I=1,4
FI=I
A(N)=D4*I**(1.5-FI)
3 N=N+1
DO 1 I=1,8
FI=I
A(N)=D3*I**(1.5-FI/2.)
N=N+1
1 CONTINUE
DO 4 I=1,3
FI=I
A(N)=EXD3*T**(1.-FI)
4 N=N+1
DO 5 I=1,3
FI=I
A(N)=EXD5*T**(1.-FI)
5 N=N+1
N=N-1
I=M
7 P=0
DO 15 J=1,N
15 P=P+B(J,I)*A(J)
P=P+.0820558*D*T*(1.+VIRB(T)*D)
IF(KH,LT,1)GO TO 413
GO TO(50,50,30,40)K
100 D2=D*D
D3=D**3
D4=D3*D
D5=D4*D
D6=D5*D
T2=T*T
T3=T2*T
T4=T**4
M=I
GAMMA=B(27,M)
EX=EXP(D2*GAMMA)
N=1
R=.0820558
A(N)=0.0   $  N=N+1
A(N)=(-1.)*D6/T2   $  N=N+1
DO 102 I=1,6
FI=I
A(N)=D5*T**(.75-FI/4,-1.)*(1.75-FI/4.)
102 N=N+1
DO 103 I=1,4
FI=I
A(N)=D4*I**(1.5-FI/1,-1.)*(1.5-FI)
103 N=N+1
DO 101 I=1,8
FI=I
A(N)=D3*T**(.5-FI/2,-1.)*(1.5-FI/2.)
101 N=N+1
DO 104 I=1,3
FI=I
A(N)=EX*D3*I**(1.-FI,-1.)*(1.-FI)
104 N=N+1
DO 105 I=1,3

```

```

F1=1
A(N)=EX*B0*T**(-1,-F1-1,0*(1,-F1))
105 N=N+1
N=N-1
P=0
DO 115 J=1,N
115 P=P+A(J)*B(J,M)
P=P+R*T*(1,+VIRB(T)*D0+K0*T*D0*T*D0)
J=M
GO TO(50,50,30,40)K
200 D2=D*D
D3=D2*D
D4=D3*D
D5=D4*D
M=1
GAMMA=B(27,M)
EX=EXP(D2*GAMMA)
DEX=GAMMA**2.*D*D*EX
N=1
R=.0820558
A(N)=6.*D5   $ N=N+1
A(N)=A(N-1)/I   $ N=N+1
DO 202 I=1,6
F1=I
A(N)=5.*D4*T**(-.75-F1/4.)
202 N=N+1
DO 203 I=1,4
FI=I
A(N)=D3*D4.*T**(-1.5-FI)
203 N=N+1
DO 201 I=1,8
FI=I
A(N)=D2*D3.*T**(-1.5-FI/2.)
201 N=N+1
DO 204 I=1,3
FI=I
A(N)=(DEX*D3+3.*D2*EX)*T**(-1.-F1)
204 N=N+1
DO 205 I=1,3
FI=I
A(N)=(DEX*D5+5.*D4*EX)*T**(-1.-F1)
205 N=N+1
N=N-1
P=0
DO 215 J=1,N
215 P=P+A(J)*B(J,M)
I=M
P=P+R*T*(-1.+2.*D*VIRB(T))
GO TO(50,50,30,40)K
300 D2=D*D
D3=D2*D
D4=D3*D
N=1
R=.0820558
M=1
GAMMA=B(27,M)
EX=EXP(D2*GAMMA)
A(N)=0.0   $ N=N+1
A(N)=(D4*D1/5.)*T**(-2.)*(1.)   $ N=N+1
DO 302 I=1,6
F1=I
A(N)=(D4/4.)*T**(-.75-I/1/4.)*(-1.)*((1.-I/4.))

```

```

302 N=N+1
DO 303 I=1,4
FI=I
A(N)=(D3/3.)* T**(.5-FI-.)*(.5+I)
303 N=N+1
DO 301 I=1,8
FI=I
A(N)=(D2/2.)*T**(.5-FI/2.-.1.)*(1.5-FI/2.)
301 N=N+1
DO 304 I=1,3
FI=I
A(N)=(EX/(2.*GAMMA))*T**(.1.-FI-1.)*(1.-FI)
304 N=N+1
DO 305 I=1,3
FI=I
A(N)=(D2*EX/(2.*GAMMA)-EX/(2.*GAMMA**2))*1T**(.1.-FI-1.)*(1.-FI)
305 N=N+1
N=N-1
SINT=D*R*(VIRB(T)+T*DBDT(T))
DO 306 I=1,N
306 SINT=SINT+B(I,M)*A(I)
N=21
EX=1.
D2=0
DO 310 I=1,3
FI=I
A(N)=(EX/(2.*GAMMA))*T**(.1.-FI-1.)*(1.-FI)
310 N=N+1
DO 311 I=1,3
FI=I
A(N)=(D2*EX/(2.*GAMMA)-EX/(2.*GAMMA**2))*1T**(.1.-FI-1.)*(1.-FI)
311 N=N+1
N=N-1
DO 312 I=21,N
312 SINT=SINT-B(I,M)*A(I)
P=(9.371658+5.193043*ALOG(T/4.2144)-25.31469*(SINT+R*ALOG(R*T*D)))
P=P*4.0026
I=M
GO TO(50,50,30,40)K
400 KH=0
GO TO 9
413 PP=P
KH=1
D2=D*D
D3=D*D2
D4=D3*D
N=1
R=.0820558
M=I
GAMMA=B(27,M)
EX=EXP(D2*GAMMA)
A(N)=(D4*D)/5.    $   N=N+1
A(N)=(D4*D/5.)*(2./T)      $   N=N+1
DO 402 I=1,6
FI=I
A(N)=(D4/4.)*(T**(.75-FI/4.)-T**(.75-FI/4.)*(1.75-FI/4.))
402 N=N+1
DO 403 I=1,4
FI=I
A(N)=(D3/3.)*(T**(.5-FI)-T**(.5-FI)*(1.5-FI))

```

```

403 N=N+1
DO 401 I=1,8
FI=I
A(N)=(D2/2.)*(T**1.5-FI/2.)-T**1.5-FI/2.)*(1.5-FI/2.)
401 M=N+1
DO 404 I=1,3
FI=I
A(N)=(EX/(2.*GAMMA))*(T**1.-FI)-T**1.-FI)*(1.-FI)
404 N=N+1
DO 405 I=1,3
FI=I
A(N)=(D2*EX/(2.*GAMMA)-EX/(2.*GAMMA**2))*(T**1.-FI)-T**1.-FI)
1*(1.-FI)
405 N=N+1
N=N-1
HINT=R*T*T*D*DBDT(T) *(-1.)
DO 406 I=1,N
406 HINT=HINT+B(I,M)*A(I)
N=21
D2=0
EX=1.
DO 410 I=1,3
FI=I
A(N)=(EX/(2.*GAMMA))*(T**1.-FI)-T**1.-FI)*(1.-FI)
410 N=N+1
DO 411 I=1,3
FI=I
A(N)=(D2*EX/(2.*GAMMA)-EX/(2.*GAMMA**2))*(T**1.-FI)-T**1.-FI)
1*(1.-FI)
411 N=N+1
N=N-1
DO 412 I=21,N
412 HINT=HINT-B(I,M)*A(I)
P=21.82282+5.193043*(T-4.2144)+25.31469*(HINT+PP/D-R*T)
P=P*4.0026
I=M
GO TO(50,50,30,40)K
500 D2=D*D
D3=D2*D
D4=D3*D
N=1
R=.0820558
M=I
GAMMA=B(27,M)
EX=EXP(D2*GAMMA)
SINT=T*D*R*(2.*DBDT(T )+D2*DBDT2(T)*T)
A(N)=0.0 $ N=N+1
A(N)=(D4*D/5.)*T**(-2.)*(-1.)*(-2.) $ N=N+1
DO 502 I=1,6
FI=I
A(N)=(D4/4.)*T**(.75-FI/4.-1.)*(1.75-FI/4.)*(1.75-FI/4.-1.)
502 N=N+1
DO 503 I=1,4
FI=I
A(N)=(D3/3.)* T**1.5-FI-1.)*(1.5-FI)*(1.5-FI-1.)
503 N=N+1
DO 501 I=1,8
FI=I
A(N)=(D2/2.)*T**1.5-FI/2.-1.)*(1.5-FI/2.)*(1.5-FI/2.-1.)
501 N=N+1
DO 504 I=1,3
FI=I

```

```

      A(N)=(EX/(2.*GAMMA))*T***(1.-FI-1.)*(1.-FI)*(1.-FI-1.)
504 N=N+1
      DO 505 I=1,3
      FI=I
      A(N)=(D2*EX/(2.*GAMMA)-EX/(2.*GAMMA**2))**
1T***(1.-FI-1.)*(1.-FI)*(1.-FI-1.)
505 N=N+1
      N=N-1
      DO 506 I=1,N
506 SINT=SINT+B(I,M)*A(I)
      P=SINT
      EX=1.
      D2=0
      N=21
      DO 510 I=1,3
      FI=I
      A(N)=(EX/(2.*GAMMA))*T***(1.-FI-1.)*(1.-FI)*(1.-FI-1.)
510 N=N+1
      DO 511 I=1,3
      FI=I
      A(N)=(D2*EX/(2.*GAMMA)-EX/(2.*GAMMA**2))**
1T***(1.-FI-1.)*(1.-FI)*(1.-FI-1.)
511 N=N+1
      N=N-1
      DO 512 I=21,N
512 P=P-B(I,M)*A(I)
      P=5.193043*(3./5.)*4.0026-P*101.3278
      I=M
      GO TO(50,50,30,40)K
20 K=2
      I=3
      IF(ID.NE.0)I=4
      T=TT
      D=DD
      GO TO 8
30 K=3
      GO TO(33,34,35)KK
33 D=DD
      T=TT
      KK=2
      IF(DD.GT.17.3987)GO TO 40
      I=1
      GO TO 8
34 PTI=P
      I=3
      KK=3
      T=TT
      D=DD
      GO TO 8
35 PTIII=P
36 F=(15.-T)/5.
      P=F*PTI+(1.-F)*PTIII
      IF(KH.LT.1)GO TO 413
      FNNDPHE=P
      RETURN
40 IF(K.EQ.3)K1=3
      GO TO(41,42,43,44)K4
41 K=4
      I=2
      K4=2
      D=DD
      IF(K1.EQ.0)T=TT
      GO TO 8

```

```

42 PIID=P
D=17.3987
IF(T.LT.5.2014)D=DSATL(T)*1000./4.0026
K4=3
GO TO 8
43 PIIDC=P
I=1
K4=4
GO TO 8
44 PIDC=P
P=PIDC+(PIID-PIIDC)
K4=1
IF(K1.EQ.3)GO TO 30
FNDPHE=P
50 FNDPHE=P
RETURN
END
FUNCTION CPHE(D,T)
C CSINH(P)
C FOR HELIUM, INPUT IS DENSITY (MOLES/LITER) AND TEMPERATURE(K)
C OUTPUT IS JOULES/MOL-K
C(SEE ALSO NEXT PAGE)
P=CVHE(D,T)+(T*(DPDTHE(D,T)**2)/((D**2)*DPDDHE(D,T)))*101.325
CPHE=P
END
FUNCTION SOUNHE(D,T)
C VELOCITY OF SOUND FOR HELIUM, INPUT IS DENSITY (MOLES/LITER)
C AND TEMPERATURE (KELVIN),OUTPUT IS IN METRES/SEC
S=((CPHE(D,T)/CVHE(D,T))*(DPDDHE(D,T)*2531.))**.5
SOUNHE=S
END
FUNCTION VIRB(T)
DIMENSION A(9),V(45)
DATA(A=-5.0815710041E-7,-1.1168680862E-4,1.1652480354E-2,
1 7.4474587998E-2,-5.3143174768E-1,-9.5759219306E-1,
2 3.9374414843,-5.1370239224,2.0804456338)
C COEFFICIENTS FROM PROGRAM 5/28/70-1630
C THIS SUB PROGRAM CALCULATES THE SECOND VIRIAL COEFFICIENT FOR
C HELIUM. THE RANGE IS FROM 2 TO 1500 DEG K. INPUT IS TEMPÉRATURE
C IN DEGREES KELVIN AND IUSE, IF IUSE IS 0 OR NEGATIVE THE ROUTINE
C CALCULATES B FOR THE EQUATION PV=RT(1+BD+...), FOR OTHER VALUES OF
C IUSE, THE ROUTINE CALCULATES THE VARIANCE OF B AT THE INPUT TEMP
C UNITS ARE ATM, DEG KELVIN, AND MOLES/LITER,4/3/69-1253,R.D.MCCARTY
REVISED 2/12/70-925
1 B=0
DO 5 I=1,9
FI=I
5 B=B+T***(1.5-FI/2.)*A(I)
VIRB=B
RETURN
END
FUNCTION DBDT (T)
DIMENSION A(9),V(45)
C THIS SUB PROGRAM CALCULATES THE SECOND VIRIAL COEFFICIENT FOR
C HELIUM. THE RANGE IS FROM 2 TO 1500 DEG K. INPUT IS TEMPÉRATURE
C IN DEGREES KELVIN AND IUSE, IF IUSE IS 0 OR NEGATIVE THE ROUTINE
C CALCULATES B FOR THE EQUATION PV=RT(1+BD+...), FOR OTHER VALUES OF
C IUSE, THE ROUTINE CALCULATES THE VARIANCE OF B AT THE INPUT TEMP
DATA(A=-5.0815710041E-7,-1.1168680862E-4,1.1652480354E-2,
1 7.4474587998E-2,-5.3143174768E-1,-9.5759219306E-1,
2 3.9374414843,-5.1370239224,2.0804456338)
C UNITS ARE ATM, DEG KELVIN, AND MOLES/LITER,5/28/70-1630,R.D.MCCARTY

```

```

1 B=0
DO 5 I=1,9
FI=I
5 B=B+T**(.5-FI/2.)*A(I)*(1.5-FI/2.)
DBDT=B
RETURN
END
FUNCTION D2DBDT2(T)
DIMENSION A(9)
DATA A/-5.0815710041E-7,-1.1168680862E-4,1.1652480354E-2,
1 7.-474587998E-2,-5.3143174768E-1,-9.5759219306E-1,
2 3.9374414843,-5.1370239224,2.0804456338)
C THIS SUB PROGRAM CALCULATES THE SECOND VIRIAL COEFFICIENT FOR
C HELIUM. THE RANGE IS FROM 2 TO 1500 DEG K. INPUT IS TEMPERATURE
C IN DEGREES KELVIN AND IUSE, IF IUSE IS 0 OR NEGATIVE THE ROUTINE
C CALCULATES B FOR THE EQUATION PV=RT(1+B+...), FOR OTHER VALUES OF
C IUSE, THE ROUTINE CALCULATES THE VARIANCE OF B AT THE INPUT TEMP
C UNITS ARE ATM, DEG KELVIN, AND MOLES/LITER, 5/28/70-1630, R.D.MCCARTY
C
1 B=0
DO 5 I=1,9
FI=I
5 B=B+T**(.5-FI/2.-1.)*(1.5-FI/2.)*(.5-FI/2.)*A(I)
D2DBDT2=B
RETURN
END
FUNCTION VPNEH(TT)
GIVES A VAPOR PRESSURE FOR HELIUM IN ATMOSPHERES GIVEN A
TEMPERATURE IN KELVIN. THE FUNCTION REPRODUCES THE 1968 HELIUM
TEMPERATURE SCALE TO .0001 KELVIN
DIMENSION C(12),D(14)
DATA(C=-3.9394635287,141.27497598,-1640.7741565,11974.557102,
1-55283.309818,166219.56504,-325212.82840,398843.22750,
2-277718.06992,83395.204183)
DATA(D=-49.510540356,651.9236417,-3707.5430856,12880.673491,
1 -30048.545554,49532.267436,-59337.558548,52311.296025,
2-33950.233134,16028.674003,-5354.1038967,1199.0301906,
3 -161.46362959,9.8811553386)
T=TT
T=T-DELT(T)
P=0
IF(T-2.1720)10,10,1
1 DO 5 I=1,10
5 P=P+C(I)*T**2-I)
VP =EXP(P)/.76E+6
VPNHE=VP
RETURN
10 DO 15 I=1,14
15 P=P+D(I)*T**2-I)
VP =EXP(P)/.76E+6
VPNHE=VP
RETURN
END
FUNCTION DELT(TT)
C ADJUSTS THE TEMPERATURE TO A NEW SCALE
T=TT
DELT=.001+.002*T
RETURN
END
FUNCTION VPTEHE(PP)
C SOLVES THE VAPOR PRESSURE EQUATION FOR TEMPERATURE GIVEN A PRESSURE
C THE FLUID IS HELIUM AND THE UNITS ARE ATMOSPHERES AND KELVINS
C P=PP

```

```

IF(P.LT..842105)GO TO 12
T=5.0
PCAL=VPNHE(T)
GO TO 13
12 PCAL=.049737
IF(ABS(P-PCAL)-.0000001*PP)11,1,1
1 T=2.1720
13 DO 10 I=1,26
DP=DVPNHE(T)
DEL=(PCAL-P)/DP
T=T-DEL
PCAL=VPNHE(T)
IF(ABS(P-PCAL)-.0000001*P)11,11,2
2 IF(ABS(DEL)-.0000001*T)11,11,10
10 CONTINUE
PRINT 100,T
11 VPTEHE=T
RETURN
100 FORMAT(* TEMPERATURE ITTERATION FAILED AT T=x,E14.7)
END
FUNCTION DVPNHE(TT)
C GIVES THE DERIVATIVE OF THE VAPOR PRESSURE FOR HELIUM GIVEN A
C TEMPERATURE IN KELVIN9 PRESSURE IS IN ATMOSPHERES
DIMENSION C(12),D(14)
DATA(C=-3.9394635287,141.27497598,-1640.7741565,11974.557102,
1-55283.309818,166219.56504,-325212.82840,398843.22750,
2-277718.06992,83395.204183)
DATA(D=-49.510540356,651.9236417,-3707.5430856,12880.673491,
1 -30048.545554,49532.267436,-59337.558548,52311.296025,
2-33950.233134,16028.674003,-5354.1038967,1199.0301906,
3 -161.46362959,9.8811553386)
P=0
T=TT-DELT(TT)
IF(T>2.1720)10,10,1
1 DO 5 I=1,10
5 P=P+C(I)*T**((1-I)*(2-I))
DVPNHE=P*VPNHE(T)
RETURN
10 DO 15 I=1,14
15 P=P+D(I)*T**((1-I)*(2-I))
DVPNHE=P*VPNHE(T)
RETURN
END
FUNCTION T^ANSP(DD,TT)
C HELIUM
C THIS ROUTINE CALCULATES THERMAL CONDUCTIVITY AND VISCOSITY
C FOR AN INPUT OF DEGREES KELVIN AND DENSITY IN MOLES PER LITER
C THE RANGE OF TEMPERATURE IS FROM 2 TO 2000 K
C FOR TEMPERATURES BELOW 300 K FORMULAS OFD VINCE ARP AND GE STEWARD
C ARE USED, FOR TEMPERATURES ABOVE 300 THE DILUTE GAS OF A CRITICAL
C COMPILATION FROM ENGLAND IS USED FOR BOTH VISCOSITY AND
C THERMAL CONDUCTIVITY AND THE EXCESS FUNCTIONS FROM THE ROUTINES BY
C ARP AND STEWARD) THE EXCESS FUNCTIONS ARE CALCULATED FOR TEMPS
C ABOVE 300 K WITH THE TEMPERATURE DEPENDENCE HELD AT 300 K
C FOR TEMPS BELOW 300 K TO 100 K THE VISCOSITY EXCESS IS CALC
C FROM STEWARTS ROUTINE BUT THE DILUTE GAS VALUES ARE TAKEN FROM
C THE ENGLISH CORRELATION FOR TEMPS BETWEEN 100 AND 110 T
C DILUTE GAS CALCULATION IS AVERAGED
ENTRY THERHE
1 D=DD
T=TT
RHO=D*4.0026E-3

```

```

IF(T.LT.300.) GO TO 5
TH030=VI8CX(300.)*.00781736
TH0300=CONZ(300.)
DEL300=DELC(300.,RHO)
TH0=VI8CX(T)*.00781736+TH0300-THU30
THE=TH030*DEL300-TH0300
TRANSP=TH0+THE
RETURN
5 TRANSP=CONZ(T)*DELC(T,RHO)+CRITIC(T,RHO)
C OUTPUT IN MW/CM.K
RETURN
ENTRY VISCHE
D=DD
T=TT
IF(T.LT.100.) GO TO 10
IF(T.LT.300.) GO TO 8
ETA0=VISCX(T)
ETO30=VISCX(300.)
ETO300=VISCDT(0.0,300.)
ETE300=VISCDT(D,300.)-ETO300
TRANSP=ETA0+ETE300
C OUTPUT UNITS ARE MICROPOISE
RETURN
8 IF(T.LT.110.) GO TO 9
ETA0=VISCX(T)
ETEB=VISCDT(D,T)-VISCDT(0.0,T)
TRANSP=ETA0+ETEB
RETURN
9 ETA1=VISCDT(0.0,100.)
ETA2=VISCX(110.)
ETA0=ETA1+(ETA2-ETA1)*(T-100.)/10.
TRANSP=ETA0+VISCDT(D,T)-VISCDT(0.0,T)
RETURN
10 TRANSP=VISCDT(D,T)
RETURN
END
FUNCTION VISCX( T )
C CALCULATES THE DILUTE GAS VISCOSITY FOR HELIUM
C FOR TEMPERATURES FROM 110K TO 300K
VISCX = 196. * T ** 0.71938 * EXP( 12.451 / T - 295.67 / T / T -
A 4.1249 )
RETURN
END
FUNCTION DELC(TEMP, RHO)
C CALCULATE THE EXCESS THERMAL CONDUCTIVITY FOR HELIUM, INPUT IS
C TEMPERATURE(K) AND DENSITY(MOLES/LITER) OF HELIUM
C K=KZERO*EXP(B(T)*RHO + C(T)*RHO**2)
C THIS PROGRAM RETURNS EXP(B(T)*RHO + C(T)*RHO**2)
1 BB=ALOG(TEMP) $ CC=1.0/TEMP
BETTY = 4.7470660612 - 5.3641468153*BB + 3.4639703698*BB**2
2 -1.0702455443*BB**3 + 0.1571349306*BB**4 -0.00892140047*BB**5
B=EXP(BETTY)
C = 2.2109006708 + 187.74174808*CC - 1281.0947055*CC*CC
3 +3645.2393216*CC**3 - 3486.6937948*CC**4
DELC=EXP(B*RHO+C*RHO*RHO)
RETURN
END
FUNCTION CONZ(TEMP)
C KZERO IN MILLIWATTS/CM-K, T IN KELVIN 22 JUNE 71.
1 ANNE=ALOG(TEMP)
PAT = -4.3611622157 + 1.9250159286*ANNE - 0.52544120165*ANNE**2
1 + 0.090045763885*ANNE**3 - 0.0054773874708*ANNE**4

```

```

CONZ=EXP(PAT)
RETURN
END
FUNCTION VISCDT(DGC,T)
C W.G. STEWARD, 8 DATA 23 JUNE 71
C INPUT UNITS ARE KELVIN AND MOL/LITER
C OUTPUT UNITS ARE MICROPoise
    TL=ALOG(T)      $ R=DGC*4.0026/1000.
    ANNE= -0.135311743/TL + 1.00347841 + 1.20654649*TL
    1 -0.149564551*TL*TL+0.0125208416*TL**3
    BETTY=R*(-47.5295259/TL + 87.6799309 -42.0741589*TL
    1+8.33128289*TL*TL -0.589252385*TL**3)
    CAROL = R*R*(547.309267/TL - 904.870586 + 431.404928*TL
    1-81.4504854*TL*TL + 5.37008433*TL**3)
    DAGMAR=R**3*(-1684.39324/TL + 3331.08630 - 1632.19172*TL
    1+308.804413*TL*TL - 20.2936367*TL**3)
    VISCDT=EXP(ANNE+ BETTY+ CAROL+ DAGMAR)
    RETURN
    END
    FUNCTION CRITIC(TEMP,RHO)
C CRITICAL ANOMALY FOR HE THERM. CON., SCALED FROM H-2
C T IN NELVIN, REQUIRES DENSITY IN GRAMS/CC AND CP IN JOULES/MOLE
C THIS DECK OF 18 SEPT 70, I HAVE USED MCCARTY'S HE DECKS OF 7/18/70
4   T=TEMP
5   DML=RHO/0.0040026
6   IF(T .GE. 11.83) GO TO 11
7   IF(RHO.GT.0.12) GO TO 11
8   CP1=CPHE(DML,T)
9   CP2=CPHE(DML,11.83)
10  CRITIC=0.0026*(CP1-CP2)/4.0026
11  CRITIC=0.0
12  RETURN
    END
    FUNCTION DSATV(TT)
C CALCULATES THE SATURATED LIQUID AND VAPOR DENSITIES FOR HELIUM,
C INPUT IS TEMPERATURE(K) OUTPUT IS GM/CC (SEE NEXT PAGE)
    DIMENSION GV(6),GL(6)
    DATA(GL=.12874326484,-.43128217346,1.7851911824,-3.3509624489,
1  3.0344215824,-1.0981289602)
    DATA(GL=-.069267495322,-.1292532553,.29347470712,-.40806658212,
1  .35809505624,-.11315580397)
    DATA(DC=.06964)
    DATA(TC=5.2014)
    T=TT
    DCAL=DC
    R=(1.-T/TC)
    DO 1 I=1,6
    FI=I
1   DCAL=DCAL+GV(I)*R**((FI/3.))
    DSATV=DCAL
    RETURN
    ENTRY DSATL
    T=TT
    DCAL=DC
    R=(1.-T/TC)
    DO 2 I=1,6
    FI=I
2   DCAL=DCAL+GL(I)*R**((FI/3.))
    DSATV=DCAL
    RETURN
    END

```

```

FUNCTION PMELT(T)
C CALCULATE THE MELTING PRESSURE FOR HELIUM. INPUT IS TEMP K,
C OUTPUT IS PRESSURE IN ATMOSPHERES
DIMENSION A(5)
DATA(A=33.28,-44.156,31.799,-4.8159,0.30313)
T=TT
IF(T.LE.5.2)GO TO 7
PMELT=-17.80+17.31457*T**1.555414
PMELT=PMELT*.98066/1.01325
RETURN
7 P=0.0
DO 9 I=1,5
9 P=P+A(I)*T**(I-1)
PMELT=P*9.80665/10.1325
RETURN
END
FUNCTION FNPDNE(D,T)
C CALCULATES THE PRESSURE IN ATMOSPHERES FOR NEON,
C USES DENSITY (MOLE/LITER) AND TEMPERATURE OF NEON AS INPUT
1 FNPDNE=PC(D,T)
RETURN
END
FUNCTION ENTHA(P,D,T)
COMMON A1,A2,A3,A4,A5,A6,A7,A8,A9,A10,A11,A12,A13,A14,A15,A16,A17
1,A18,A19
D1=D
D2=D**2
D3=D2*D
D4=D3*D
D5=D4*D
T1=T
T2=T*T
T3=T2*T
T4=T3*T
EX=EXP(A19*D2)
EXI1=(EX-1.)/(2.*A19)
EXI3=EX*D*D/(2.*A19)-(EX-1.)/(2.*A19**2)
ENTHA =P/D-A1*T+A4*D3/3.+A5*D4/(T1**2.)
1-A6*D2*T2/2.+A9*D2/T1+3.*A10*D2/(T2**2.)
2+A12*D1+2.*A13*D1/T1+3.*A14*D1/T2
3+3.*A15*EXI1/T2+4.*A16*EXI1/T3
4+3.*A17*EXI3/T2+4.*A18*EXI3/T3
6+A2*D5/5.+A8*D2/2.
C CALCULATES ENTHALPY CHANGE FROM 0 TO FINITE DENSITIES ALONG
C ISOTHERM ACCORDING TO DTRI4
C FOR NEON INPUT IS PRESSURE IN ATMOSPHERES, DENSITY IN MOLES/LITER
C AND TEMPERATURE IN K, OUTPUT IS JOULES PER MOLE.
RETURN
END
FUNCTION DLIQNE(T)
C FOR NEON
IF(T>44.4)1,2,2
1 A=-8.9200910
B=35.44150349
C=-64.720906
D=57.745619
E=-20.25961912
R=(1.0-T/44.4)**(1.0/3.0)
DENR=1.0+A*R+B*R*R+C*R**3+D*R**4+E*R**5
RSATD=10.**DENR
DLIQNE=RSATD*.484*1000.028/20.183
RETURN

```

```

2 R8ATD=1,
DLIGNE=R8ATD*.494*1000.029/20.183
RETURN
C UNITS ARE IN GM-MOLES/LITER
END
FUNCTION DPDDNE(DD,TT)
DIMENSION G(18)
3 COMMON A1,A2,A3,A4,A5,A6,A7,A8,A9,A10,A11,A12,A13,A14,A15,A16,A17
1,A18,A19
D1=DD
T1=TT
D2=D1**2
D3=D2*D1
D4=D3*D1
D5=D4*D1
T2=T1**2
T3=T2*T1
T4=T3*T1
EX=EXP(A19*D2)
EX1=EX*D1*2.*A19
EX3=3.*D2*EX+D3*EX1
EX5=5.*D4*EX+D5*EX1
G(1)=D5*6. *A2
G(2)=T1*D3*4. *A3
G(3)=D3*4.*A4
G(4)=D4*5.*A5/T1
G(5)=3.*D2*T2*A6
G(6)=3.*D2*T1*A7
G(7)=3.*D2*A8
G(8)=3.*D2*A9/T1
G(9)=3.*D2*A10/T2
G(10)=D1*2.*T1*A11
G(11)=D1*2.*A12
G(12)=D1*2.*A13/T1
G(13)=D1*2.*A14/T2
G(14)=EX3*A15/T2
G(15)=EX3*A16/T3
G(16)=EX5*A17/T2
G(17)=EX5*A18/T3
P2=A1*T1
DO 11 K=1,17
11 P2=P2+G(K)
DPDDNE=P2
C CALCULATES THE FIRST DERIVATIVE OF PRESSURE WITH RESPECT TO
DENSITY ACCORDING TO DTRI4
RETURN
END
FUNCTION ENT(D,T)
COMMON A1,A2,A3,A4,A5,A6,A7,A8,A9,A10,A11,A12,A13,A14,A15,A16,A17
1,A18,A19
D1=D
D2=D**2
D3=D2*D
D4=D3*D
D5=D4*D
T1=T
T2=T*T
T3=T2*T
T4=T3*T
EX=EXP(A19*D2)
EXI1=EX/(A19*2.)
EXI3=EX*D*D/(2.*A19)-(EX)/(2.*A19**2)

```

```

ENT =A5*D4/(T2*4.)-A3*D3/3.-A6*D2*T1
1-A7*D2/2.+A9*D2/(T2*2.)+A10*D2/T3
2-A11*D1+A13*D1/T2+A14*2.*D1/T3
3+A15*2.*EXI1/T3+A16*3.*EXI1/T4
4+A17*2.*EXI3/T3+A18*3.*EXI3/T4
5-A1*ALOG(A1*T*D)
C CALCULATES ENTROPY AT ONE LIMIT OF INTEGRATION, ISOTHERMAL,
C ACCORDING TO DTRI4
RETURN
FUNCTION ENTR(D,T)
C FOR NEON
COMMON A1,A2,A3,A4,A5,A6,A7,A8,A9,A10,A11,A12,A13,A14,A15,A16,A17
1,A18,A19
D1=D
D2=D**2
D3=D2*D
D4=D3*D
D5=D4*D
T1=T
T2=T*T
T3=T2*T
T4=T3*T
EX=EXP(A19*D2)
EXI1=(EX-1.)/(2.*A19)
EXI3=EX*D*D/(2.*A19)-(EX-1.)/(2.*A19**2)
ENTR =A5*D4/(T2*4.)-A3*D3/3.-A6*D2*T1
1-A7*D2/2.+A9*D2/(T2*2.)+A10*D2/T3
2-A11*D1+A13*D1/T2+A14*2.*D1/T3
3+A15*2.*EXI1/T3+A16*3.*EXI1/T4
4+A17*2.*EXI3/T3+A18*3.*EXI3/T4
5-A1*ALOG(A1*T*D)
C CALCULATES ENTROPY ALONG AN ISOTHERM FROM 0 TO A FINITE DENSITY
C ACCORDING TO DTRI4
RETURN
END
C FOR NEON
SUBROUTINE DATA_N
C SETS THE CONSTANTS TO THE EQUATION OF STATE FOR NEON
3 COMMON A1,A2,A3,A4,A5,A6,A7,A8,A9,A10,A11,A12,A13,A14,A15,A16,A17
1,A18,A19
A1=.0820535
A2=.28010178E-07
A3=.14244722E-05
A4=-.14175051E-03
A5=-.28070869E-04
A6=-.10185146E-06
A7=.42496352E-05
A8=.25826979E-02
A9=.12417383
A10=-.62382566E-01
A11=.17237659E-02
A12=-.16730352
A13=-.61781598E+01
A14=.87257402E+02
A15=.19355993E+02
A16=-.84739643E+03
A17=-.65528926E-01
A18=.23453113E+01
A19=-.53186241E-02
RETURN
END

```

```

FUNCTION PC(DD,TT)
C FOR NEON,P IS IN ATMOSPHERES,DD IN MOLES PER LITER
C AND TT IS IN KELVIN
DIMENSION G(18)
3 COMMON A1,A2,A3,A4,A5,A6,A7,A8,A9,A10,A11,A12,A13,A14,A15,A16,A17
1,A18,A19
C CALCUALTES PRESSURE ACCORDING TO DTRIA
D1=DD
T1=TT
D2=D1**2
D3=D2*D1
D4=D3*D1
D5=D4*D1
D6=D5*D1
T2=T1**2
T3=T2*T1
T4=T3*T1
EX=EXP(A19*D2)
Z=D1*A1*T1
G(1)=D6*A2
G(2)=T1*D4*A3
G(3)=D4*A4
G(4)=D5*A5/T1
G(5)=D3*T2*A6
G(6)=D3*T1*A7
G(7)=D3*A8
G(8)=D3*A9/T1
G(9)=D3*A10/T2
G(10)=D2*T1*A11
G(11)=D2*A12
G(12)=D2*A13/T1
G(13)=D2*A14/T2
G(14)=D3*EX*A15/T2
G(15)=D3*EX*A16/T3
G(16)=D5*EX*A17/T2
G(17)=D5*EX*A18/T3
P2=Z
DO 11 K=1,17
11 P2=P2+G(K)
PC=P2
RETURN
END
FUNCTION FNNDTNE(P,D)
C SOLVES THE NEON EQUATION OF STATE FOR TEMPERATURE IN KELVIN
C FOR A INPUT OF PRESSURE IN ATMOSPHERES AND DENSITY IN MOL/L
DATA(DTP=61.78),(DC=23.93)
PP=P
DD=D
IF(DD.GT.DC)GO TO 1
TT=44.4
GO TO 2
1 TT=24.54+(19.86/(DTP-DC))*(DTP-DD)
2 DO 10 I=1,10
P2=FNNDTNE(DD,TT)
IF(ABS(PP-P2)-1.E-7*PP)20,20,22
22 DP=DFDTNE(DD,TT)
CORR=(P2-PP)/DP
IF(ABS(CORR)-1.E-5)20,20,10
10 TT=TT-CORR
20 FNNDTNE=TT
RETURN

```

```

100
1000 FUNCTION FIND_P(B,T)
1001 DIMENSION B(32),VP(9)
1002 COMMON/DATA/B,R,GAMMA,VP,BTP,PCC,PIP,TCC,TP,TUL,TLL,PUL,DCC
1003 DD=0
1004 TT=T
1005 IF (TT,LT,1,CC) GO TO 10
1006 CALL PRESS(PF,DD,TT)
1007 FIND_P=PF
1008 RETURN
1009 10 P=VP(1)
1010 DV=FIND_D(P,0.0001,TT)
1011 DL=FIND_D(P+,0.0001,TT)
1012 IF (DD,LE,DV,UR,DD,GE,DL) GO TO 1
1013 PRINT 100, DV, DL, DD
1014 CALL PRESS(PF,DV,TT)
1015 FIND_P=PF
1016 D=DV
1017 RETURN
100 100 FORMAT(* THE STATE POINT YOU HAVE SPECIFIED CORRESPONDS TO A *
1001 /* DENSITY IN THE LIQUID VAPOR COEXISTENCE REGION*
1002 /* THE DENSITY OF THE SATURATED VAPOR IS *,F6.4,* MOLES/LITER*
1003 /* THE DENSITY OF THE SATURATED LIQUID IS *,F8.4,* MOLES/LITER*
1004 /* AND THE INPUT DENSITY IS *,F8.4,* MOLES/LITER*
1005 /* SATURATED VAPOR IS ASSUMED*)
1006 END
1007 FUNCTION DPDTNE(D,T)
1008 C GIVES THE FIRST DERIVATIVE OF PRESSURE WITH RESPECT TO
1009 C TEMPERATURE FOR NEON
1010 C INPUT PARAMETERS ARE DENSITY(MOLES/LITER) AND TEMPERATURE(K)
1011 DIMENSION B(18)
1012 3 COMMON A1,A2,A3,A4,A5,A6,A7,A8,A9,A10,A11,A12,A13,A14,A15,A16,A17
1013 ,A18,A19
1014 D1=DD
1015 T1=TT
1016 D2=D1**2
1017 D3=D2*D1
1018 D4=D3*D1
1019 D5=D4*D1
1020 D6=D5*D1
1021 T2=T1**2
1022 T3=T2*T1
1023 T4=T3*T1
1024 EX=EXP(A19*D2)
1025 G(1)=0
1026 G(2)=D4*A3
1027 G(3)=0
1028 G(4)=-D5*A5/T2
1029 G(5)=2.*D3*T1*A6
1030 G(6)=D3*A7
1031 G(7)=0
1032 G(8)=-D3*A9/T2
1033 G(9)=-2.*D3*A10/T3
1034 G(10)=D2*A11
1035 G(11)=0
1036 G(12)=-D2*A13/T2
1037 G(13)=-2.*D2*A14/T3
1038 G(14)=-2.*D3*EX*A15/T3
1039 G(15)=-3.*D3*EX*A16/T3
1040 G(16)=-2.*D5*A17*EX/T3
1041 G(17)=-3.*D5*A18*EX/T4
1042 F2=D1*A1

```

```

DO 11 K=1,17
1 P2=P2+0(K)
DPDTNE=P2
RETURN
END
FUNCTION FNDBTHE(P,D)
C SOLVES THE EQUATION OF STATE FOR HELIUM
C FOR A TEMPERATURE(IN KELVIN) GIVEN A PRESSURE IN ATM
C AND A DENSITY IN MOLES/LITER
DATA(DTP=36.514),(DC=17.399)
PP=P
DD=D
IF(DD.GT.DC)GO TO 1
TT=5.201
GO TO 2
1 T1=2.177+(3.024/(DTP-DC))*(DTP-DD)
2 DO 10 I=1,10
P2=FNDFPHE(DD,TT)
IF(ABS(PP-P2)-1.E-7*PP)20,20,11
11 DP=DFDTHE(DD,TT)
CORR=(P2-PP)/DP
IF(ABS(CORR)-1.E-5)20,20,10
10 TT=TT-CORR
20 FNDBTHE=TT
RETURN
END
FUNCTION FINDT(P,D)
C SOLVE THE THIRTY TWO TERM EQUATION OF STATE FOR TEMPERATURE
C IN KELVIN GIVEN A PRESSURE IN ATMOSPHERES AND A DENSITY IN
C MOLES/LITER
DIMENSION G(32),VP(9)
COMMON/DATA/G,R,GAMMA,VP,DTP,PCC,PTP,TCC,TTP,TUL,TLL,PUL,BCC
PP=P
DD=D
IF(P.GE.PCC/1.01425)GO TO 1
TSAT=FINDTV(PP)
DV=FINDU(PP,.00001,TSAT)
DL=FINDU(PP+.0001,TSAT)
IF(DV.GT.DL.AND.DD.LT.DL)GO TO 30
T1=TSAT
GO TO 2
1 T1=TCC
2 DO 10 I=1,10
CALL PRESS(P2,DD,TT)
IF(ABS(PP-P2)-1.E-7*PP)20,20,11
11 CALL DFDT(P2,DD,TT)
CORR=(P2-PP)/DP
IF(ABS(CORR)-1.E-5)20,20,10
10 TT=TT-CORR
20 FINDT=T1
RETURN
30 FINDT=TSAT
D=DV
PRINT 100,DV,DL,DD
100 FORMAT(* THE STATE POINT YOU HAVE SPECIFIED CORRESPONDS TO*
/* A DENSITY IN THE LIQUID VAPOR COEXISTENCE REGION*/
/* DENSITY OF THE SATURATED VAPOR IS*,F8.4,* MOLES/LITER*/
/* DENSITY OF THE SATURATED LIQUID IS*,F8.4,* MOLES/LITER*/
/* INPUT DENSITY IS*,F8.4,* MOLES/LITER*/
/* SATURATED VAPOR CONDITIONS ARE ASSUMED*)
RETURN
END

```

```

FUNCTION CPNE(T)
C CALCULATES THE INTEGRAL OF (CP/T)DT FROM ,T0,T0 T FOR NEON
C TO IS 27.092 AND CP IS AT ZERO PRESSURE,5/2R
C CP =8.31434* ALOG(T/27.092)*2.5
CPOSNE=CP
RETURN
C UNITS ARE JOULES/MOLE-K
END
FUNCTION CP0HNE(T)
C CALCULATES THE INTEGRAL OF (CPT)DT FROM ,T0,T0 T FOR NEON,CP AT
C ZERO PRESSURE, ,T0, IS 27.092
C CP =8.31434*(T-27.092)*2.5
CP0HNE=CP
RETURN
C UNITS ARE JOULES/MOLE-K
END
FUNCTION FNDNE(PP,TT)
C SOLVES THE EQUATION OF STATE FOR NEON FOR DENSITY (MOLES/L)
C GIVEN A PRESSURE IN ATM AND A TEMPERATURE IN KELVIN
P=PP
T=TT
D=20.
IF(TT.GT.44.4)GO TO 2
PSAT=VPNNE(TT)
D=.001
IF(PSAT.GE.PP)GO TO 2
D=DLIQNE(T)+1.
2 CONTINUE
DO 10 I=1,50
P2=PC(D,T)
IF(ABS(P-P2)-1.E-6)11,11,1
1 DP=DPPDDNE(D,T)
IF(ABS((P-P2)/DP)-1.E-6)11,11,10
10 D=D-(P2-P)/DP
FNDNE=0
RETURN
11 FNDNE=D
RETURN
END
FUNCTION ENTH (P,D,T)
COMMON A1,A2,A3,A4,A5,A6,A7,A8,A9,A10,A11,A12,A13,A14,A15,A16,A17
1,A18,A19
D1=D
D2=D**2
D3=D2*D
D4=D3*D
D5=D4*D
T1=T
T2=T*T
T3=T2*T
T4=T3*T
EX:=EXP(A19*D2)
EXI1=EX/(A19*D2)
EXI3=EX*D*D/(2.*A19)-(EX)/(2.*A19**2)
ENTH =P/D+A4*D3/3.+A5*D4/(T1**2.)
1-A6*D2*T2/2.+A9*D2/T1+3.*A10*D2/(T2**2.)
2+A12*D1+2.*A13*D1/T1+3.*A14*D1/T2
3+3.*A15*EXI1/T2+4.*A16*EXI1/T3
4+3.*A17*EXI3/T2+4.*A18*EXI3/T3
6+A2*D5/5.+A8*D2/2.
C CALCUALTES ENTHALPY AT ONE LIMIT OF INTEGRATION ACCORDING
C TO DTRI4,ISOTHERMAL

```

```

100 RETURN
101
102 FUNCTION VPNE(NP)
103   SOLVES THE VAPOUR PRESSURE EQUATION FOR TEMPERATURE GIVEN A PRESSURE
104   THE FLUID IS NEON AND THE UNITS ARE ATMOSPHERES AND KELVINS
105   I.E.
106   PSAT(VPNNE(1))
107   PSAT = PSAT(0)
108   DVAF = DVAF(PSAT)
109   DL = DL(PSAT)
110   ENTRNE = ENTRNE(DL,DVAF)
111   ENTRNE = ENTRNE(DL,DVAF) + 101.325
112   RETURN
113
114 FUNCTION ENTHNE(P)
115   CALCULATES THE ENTHALPY FOR NEON IN JOULES/MOLE GIVEN THE PRESSURE
116   IN ATMOSPHERES, THE DENSITY IN MOLES/LITER AND THE TEMPERATURE IN
117   KELVINS
118   DATA(SU-1.8638645E+1)
119   DL=DL(1.44,4.060,10.0)
120   ENTHNE = H1(PDNNE(DL)+ENTHNE(DL,PSAT)+101.325)
121   RETURN
122   PSAT(VPNNE(1))
123   PSAT = PSAT(0)
124   DVAF = DVAF(PSAT)
125   DL = DL(DVAF)
126   ENTRNE = ENTRNE(DL)
127   ENTRNE = ENTRNE(DL,DVAF) + 101.325
128   H1 = PDUMNE(DL)+ENTHNE(DL,PSAT)+101.325
129   H2 = DPNNE(DL)*1./DVAF + 1./DL*101.325
130   H3 = ENTRNE(DL)-ENTRNE(DL,PSAT)+101.325
131   ENTHNE = H1-H2+H3
132   RETURN
133
134 FUNCTION ENTRNE(D,L)
135   CALCULATES THE ENTHALPY FOR NEON GIVEN DENSITY IN MOLES PER LITER
136   AND TEMPERATURE IN KELVINS, OUTPUT IS IN JOULES/MOLE/K
137   DATA(SU-69.52101455)
138   DL=DL(44.4)GO TO 139
139   ENTRNE = S1+CPDSNE(D)+ENTRNE(D)*101.325
140   RETURN
141   S1 = PSAT - VPNNE(1)
142   PSAT = PSAT - .0001
143   DVAF = DVAF(D,PSAT)
144   IF (D.LE.DVAF) GO TO 145
145   PSAT = PSAT + .0002
146   DL = DL(D,PSAT)
147   S1 = S1+CPDSNE(D)+ENTRNE(DVAF,D)*101.325
148   S2 = DPNNE(D)*1./DVAF + 1./DL*101.325
149   S3 = ENT(D,D)-ENT(DL,DL)*101.325
150   ENTRNE = S1-S2+S3
151   RETURN
152
153 FUNCTION VPNNE(T)
154   GIVES A VAPOUR PRESSURE FOR NEON IN ATMOSPHERES GIVEN A TEMP IN K
155    $P = (2.46116 \times 10^6.090/T - 0.3566168T + 0.00411092) \times 10^6$ 
156   DVAF = (10.0**8/760.0)

```

```
UPNNE=BVAP
RETURN
END
FUNCTION DVPNNE(T)
DERIVATIVE OF THE VAPOR PRESSURE CURVE FOR NEON
U=106.090/T**2-.0356616+2.*.000411092*T
DVNE UPNNE(T)*R$2.303585093
DVNNE=DVNE
RETURN
END
```

U.S. DEPT. OF COMM. BIBLIOGRAPHIC DATA SHEET		1. PUBLICATION OR REPORT NO.	2. TITLE
		NBS TN-1025	INTERACTIVE FORTRAN IV COMPUTER PROGRAMS FOR THE THERMODYNAMIC AND TRANSPORT PROPERTIES OF SELECTED CRYOGENS [FLUIDS PACK]
4. TITLE AND SUBTITLE		5. Publication Date	
INTERACTIVE FORTRAN IV COMPUTER PROGRAMS FOR THE THERMODYNAMIC AND TRANSPORT PROPERTIES OF SELECTED CRYOGENS [FLUIDS PACK]		October 1980	
7. AUTHOR(S)		8. Performing Organization Code	
R. D. McCarty			
9. PERFORMING ORGANIZATION NAME AND ADDRESS		9. Performing Organization Name	
NATIONAL BUREAU OF STANDARDS DEPARTMENT OF COMMERCE WASHINGTON, DC 20234			
12. SPONSORING ORGANIZATION NAME AND COMPLETE ADDRESS (Street, City, State, ZIP)		10. Contract/Grant No.	
NASA-Johnson Space Center Houston, Texas Contract No. PO T-6570C			
13. SUPPLEMENTARY NOTES		11. Type of Report & Period Covered	
<p><input checked="" type="checkbox"/> Document describes a computer program; SF-185, FIPS Software Summary, is attached.</p> <p>15. ABSTRACT (A 200-word or less factual summary of most significant information. If document includes a significant bibliography or literature survey, mention it here.) The thermodynamic and transport properties of selected cryogens have been programmed into a series of computer routines. Input variables are any two of P, ρ or T in the single phase regions and either P or T for the saturated liquid or vapor state. The output is pressure, density, temperature, entropy, enthalpy for all of the fluids and in most cases specific heat capacity and speed of sound. Viscosity and thermal conductivity are also given for most of the fluids. The programs are designed for access by remote terminal; however, they have been written in a modular form to allow the user to select either specific fluids or specific properties for particular needs. The program includes properties for hydrogen, helium, neon, nitrogen, oxygen, argon, and methane. The programs include properties for gaseous and liquid states usually from the triple point to some upper limit of pressure and temperature which varies from fluid to fluid. Computer listings of the FORTRAN four codings are presented. Copies of the programs may be obtained from either the Thermophysical Properties Division of the National Bureau of Standards at Boulder, Colorado, or from Walter Scott at the NASA-Johnson Space Center in Houston, Texas. </p>			
17. KEY WORDS (Up to twelve entries; alphabetical order; capitalize only the first letter of the first key word unless a proper name; separated by semicolons) Argon; computer programs; density; enthalpy; entropy; equation of state; heat capacity at constant pressure; heat capacity at constant volume; helium; hydrogen; methane; neon; nitrogen; oxygen; thermal conductivity; velocity of sound; viscosity.			
18. AVAILABILITY		19. SECURITY CLASS (THIS REPORT)	20. NO. OF PRINTED PAGES
<input type="checkbox"/> For Official Distribution. Do Not Release to NTIS <input checked="" type="checkbox"/> Order From Sup. of Doc., U.S. Government Printing Office, Washington, DC 20402 <input type="checkbox"/> Order From National Technical Information Service (NTIS), Springfield, VA 22161		UNCLASSIFIED	112
		21. SECURITY CLASS (THIS PAGE)	22. Price
		UNCLASSIFIED	\$4.50

USCOMM-DE

NBS TECHNICAL PUBLICATIONS

PERIODICALS

JOURNAL OF RESEARCH—The Journal of Research of the National Bureau of Standards reports NBS research and development in those disciplines of the physical and engineering sciences in which the Bureau is active. These include physics, chemistry, engineering, mathematics, and computer sciences. Papers cover a broad range of subjects, with major emphasis on measurement methodology and the basic technology underlying standardization. Also included from time to time are survey articles on topics closely related to the Bureau's technical and scientific programs. As a special service to subscribers each issue contains complete citations to all recent Bureau publications in both NBS and non-NBS media. Issued six times a year. Annual subscription domestic \$11, foreign \$16. Single copy \$1 domestic, \$1.25 foreign.

NOTE The Journal was formerly published in two sections, Section A "Physics and Chemistry" and Section B "Mathematical Sciences."

DIMENSIONS/NBS—This monthly magazine is published to inform scientists, engineers, business and industry leaders, teachers, students, and consumers of the latest advances in science and technology, with primary emphasis on work at NBS. The magazine highlights and reviews such issues as energy research, fire protection, building technology, metric conversion, pollution abatement, health and safety, and consumer product performance. In addition, it reports the results of Bureau programs in measurement standards and techniques, properties of matter and materials, engineering standards and services, instrumentation, and automatic data processing. Annual subscription domestic \$11, foreign \$13.75.

NONPERIODICALS

Monographs—Major contributions to the technical literature on various subjects related to the Bureau's scientific and technical activities.

Handbooks—Recommended codes of engineering and industrial practice (including safety codes) developed in cooperation with interested industries, professional organizations, and regulatory bodies.

Special Publications—Include proceedings of conferences sponsored by NBS, NBS annual reports, and other special publications appropriate to this grouping such as wall charts, pocket cards, and bibliographies.

Applied Mathematics Series—Mathematical tables, manuals, and studies of special interest to physicists, engineers, chemists, biologists, mathematicians, computer programmers, and others engaged in scientific and technical work.

National Standard Reference Data Series—Provides quantitative data on the physical and chemical properties of materials, compiled from the world's literature and critically evaluated. Developed under a worldwide program coordinated by NBS under the authority of the National Standard Data Act (Public Law 90-396).

NOTE: The principal publication outlet for the foregoing data is the **Journal of Physical and Chemical Reference Data (JPCRD)** published quarterly for NBS by the American Chemical Society (ACS) and the American Institute of Physics (AIP). Subscriptions, reprints, and supplements available from ACS, 1155 Sixteenth St., NW, Washington, DC 20036.

Building Science Series—Disseminates technical information developed at the Bureau on building materials, components, systems and whole structures. The series presents research results, test methods, and performance criteria related to the structural and environmental functions and the durability and safety characteristics of building elements and systems.

Technical Notes—Studies or reports which are complete in themselves but restrictive in their treatment of a subject. Analogous to monographs but not so comprehensive in scope or definitive in treatment of the subject area. Often serve as a vehicle for final reports of work performed at NBS under the sponsorship of other government agencies.

Voluntary Product Standards—Developed under procedures published by the Department of Commerce in Part 10, Title 15, of the **Code of Federal Regulations**. The standards establish nationally recognized requirements for products, and provide all concerned interests with a basis for common understanding of the characteristics of the products. NBS administers this program as a supplement to the activities of the private sector standardizing organizations.

Consumer Information Series—Practical information, based on NBS research and experience, covering areas of interest to the consumer. Easily understandable language and illustrations provide useful background knowledge for shopping in today's technological marketplace.

Under the above NBS publications from Superintendent of Documents, Government Printing Office, Washington, DC 20402.

Under the following NBS publications—FIPS and NBSIR's—from the National Technical Information Services, Springfield, VA 22161.

Federal Information Processing Standards Publications (FIPS PUB)—Publications in this series collectively constitute the **Federal Information Processing Standards Register**. The Register serves as the official source of information in the Federal Government regarding standards issued by NBS pursuant to the **Federal Property and Administrative Services Act of 1949** as amended, Public Law 89-306 (79 Stat. 1127), and as implemented by Executive Order 11717 (38 FR 12315, dated May 11, 1973) and Part 6 of Title 15 CFR (Code of Federal Regulations).

NBS Emergency Reports (NBSER)—A special series of interim or final reports on work performed by NBS for outside sponsors (both government and non-government). In general, initial distribution is handled by the sponsor; public distribution is by the National Technical Information Services, Springfield, VA 22161, in paper copy or microfiche form.

BIBLIOGRAPHIC SUBSCRIPTION SERVICES

The following current-awareness and literature-survey bibliographies are issued periodically by the Bureau:

Cryogenic Data Center Current Awareness Service, A literature survey issued biweekly. Annual subscription domestic \$15, foreign \$45.

Liquified Natural Gas, A literature survey issued quarterly. Annual subscription \$30.

Superconducting Devices and Materials, A literature survey issued quarterly. Annual subscription \$45. Please send subscription orders and remittances for the preceding bibliographic services to the National Bureau of Standards, Cryogenic Data Center (736) Boulder, CO 80303.