3.11. Теорема Чёрча-Россера (б/д). Единственность нормальной формы.

Теорема (Чёрча-Россера (б/д)). Если для некоторого λ -терма A имеется два варианта редукции $A \to_{\beta} B$ и $A \to_{\beta} C$, то существует такой λ -терм D, что $B \to_{\beta} D$ и $C \to_{\beta} D$.

Определение. Термы M и N называются равными, если существует такой терм T, что M сводится (некоторым количеством α и β редукций) к T и N сводится к T.

Определение. Говорят, что терм M находится в *нормальной форме*, если к нему нельзя применить β -редукцию даже после нескольких α -конверсий.

Говорят, что N – нормальная форма терма M, если M=N и N в нормальной форме.

Следствие (из теоремы Чёрча-Россера). У каждого λ -терма есть не более одной нормальной формы.

Доказательство. Предположим, что у терма A две нормальные формы: B и C (то есть $A \to_{\beta} B$ и $A \to_{\beta} C$). По теореме Чёрча-Россера существует такой D, что $B \to_{\beta} D$ и $C \to_{\beta} D$. Но по определению B и $C - \lambda$ -термы, к которым нельзя применить β -редукцию. Противоречие.

Замечание. Не у всех λ -термов есть нормальная форма. Например, $\Omega = (\lambda x.xx)(\lambda x.xx)$ редуцируется сам в себя.