MATH 2132 Problem Workshop 5

- 1. Find general solutions for the following differential equations
 - (a) 3y''' + 8y'' + 19y' + 10y = 0
 - (b) 6y'''' + y'' y = 0
 - (c) y'' + 3y' + ay = 0, where a > 3 is a constant.
 - (d) $y'' + 2y' 3y = 4e^{5x} x$
 - (e) $y''' + 3y'' 4y' = 2e^x + \cos 4x$
 - (f) $y'' + 6y' 2y = 3x + \sin x$
 - (g) $4y''' 3y'' + 7y' + 2y = e^{-x/4}$
- 2. The roots of an auxiliary equation $\phi(m) = 0$ associated with the differential equation $\phi(D)y = 0$ are

$$2 \pm \sqrt{3}i$$
, $2 \pm \sqrt{3}i$, ± 4 , ± 4 , ± 4 , 2 , $-1 \pm \sqrt{6}$

What is the general solution of the differential equation?

3. The roots of an auxiliary equation $\phi(m) = 0$ associated with the differential equation

$$\phi(D)y = 13x^2e^{3x} + e^x\cos 2x + 4x^3 - 5$$

are

$$3, 3, 3, -1 \pm 2i, 1 \pm 2i, 3 \pm \sqrt{6}, 0, 0, -14$$

What is the form of the particular solutions as predicting by the method of undtermined coefficients?

- 4. (a) A 100 gram mass is suspended from a spring with constant 60 N/m. It is lifted 15 cm. above its equilibrium position and given velocity 2 metres per second upward. During its motion, it is acted on by air resistance that is equal, in Newtons, to 5 times the velocity of the mass. Find the position of the mass as a function of time.
 - (b) What is the maximum displacement from equilibrium experienced by the mass?
 - (c) When, if at all, does the mass pass through its equilibrium position?
- 5. Recall Newton's Law is that the rate that the temperature changes is proportional to $T_a T$ where T is the temperature of the object and T_a is the ambient temperature.
 - (a) Suppose a potato with initial temperature $20^{\circ}C$ is placed in an oven with temperature $200^{\circ}C$. Find the temperature of the potato as a function of time.
 - (b) Suppose a potato with initial temperature $20^{\circ}C$ is placed in an oven with temperature starting at $20^{\circ}C$ but rises (linearly) to $200^{\circ}C$ in 5 minutes. Find the temperature of the potato as a function of time.