Um Resumo Sobre Somatórios

Pedro Henrique Amorim Sá¹

¹Pontifícia Universidade Católica de Minas Gerais (PUC Minas) Belo Horizonte, Minas Gerais, Brasil

1. Somatórios

Somatórios, em essência, consistem na adição sucessiva de uma sequência de valores. Um somatório pode ser representado pela seguinte forma:

$$a_1 + a_2 + ... + a_n$$

onde cada a_i representa um número definido, sendo que estes elementos são chamados de termos.

Uma outra maneira de representar somatórios é por meio da notação sigma:

$$\sum_{i=0}^{n} a_i$$

que, no exemplo acima, define precisamente os termos a_i , cujo índice i é um número inteiro no intervalo de 0 a n.

Somatórios podem ser manipulados de modo a transformar sua representação ∑ em outra mais simples e que atenda a um determinado objetivo. Isso é feito com a utilização de algumas regras de transformação e propriedades [Graham et al. 1994].

Somatórios são de fundamental importância na Ciência da Computação, pois permitem expressar a complexidade de tempo de um algoritmo. Além disso, os laços *while* e *for*, por exemplo, são essencialmente uma expressão de somatórios na computação. [Cormen et al. 2009].

References

Cormen, T. H., Leiserson, C. E., Rivest, R. L., and Stein, C. (2009). *Introduction to Algorithms*. The MIT Press, Cambridge, Masachusetts; London, 3rd edition.

Graham, R. L., Knuth, D. E., and Patashnik, O. (1994). *Concrete Mathematics: A Foundation for Computer Science*. Addison-Wesley Longman Publishing Co., Inc., USA, 2nd edition.