Испит из Релационих база података, септембар 1 2021. год. (И смер)

Број индекса	Име и презиме						

Задаци се раде 240 минута. Максималан број поена је 200. Број поена се израчунава тако што се саберу освојени поени по задацима, добијени збир подели са 2 и заокружи. Број поена по задацима је:

Задатак	1	2	3	4	Збир 1-4		5	6	7	8	Збир 5-8		Укупно
Поена	12	24	28	16	80	Збир/2	25	25	40	30	120	3бир $/2$	
Освојено													

- 1. Написати SQL упит којим се за сваки предмет издвајају подаци о испитним роковима у којима је добијена највећа оцена са којом је икада положен испит из тог предмета. Издвојити податке само за предмете који су положени у бар једном испитном року. Издвојити назив предмета, назив испитног рока и број испита на којима је у том испитном року добијена највећа оцена са којом је положен предмет. Резултат уредити према називу предмета у растућем поретку, броју положених испита са највећом оценом у опадајућем поретку и називу испитног рока у растућем поретку.
- 2. Написати SQL упит којим се за сваки пар студената који су дипломирали, имају исто име и полагали су бар 5 истих предмета издвајају следећи подаци:
 - имена и презимена студената. За сваког студента име и презиме издвојити у једној колони са називом *ime i prezime*.
 - број предмета на којима су студенти добили исту оцену. Колону назвати *Broj predmeta sa istom ocenom*.
 - број предмета на којима су студенти добили исту оцену и за које постоји и трећи имењак који је добио исту оцену. Колону назвати *Broj predmeta sa istom ocenom i trecim imenjakom*.
- 3. (a) Написати SQL наредбу за прављење табеле diplomirali_stat која ће садржати податке о студентима који су дипломирали. Табела има колоне:
 - *indeks* индекс студента;
 - prosek просечна оцена на положеним испитима;
 - *br_polozenih* број положених испита.

Дефинисати примарни кључ за табелу diplomirali stat.

- (b) Написати SQL наредбу за прављење окидача diplomirali који након измене датума дипломирања студента у табели dosije на вредност која није недостајућа за студента о коме нема података у табели diplomirali_stat, уноси индекс и просек тог студента у табелу diplomirali_stat. Уколико желите да проверите да ли сте добро дефинисали окидач, можете променити датум дипломирања за студента са индексом 20150090.
- (c) Написати SQL наредбу за ажурирање броја положених испита у табели $diplomirali_stat$ за студенте о којима постоје подаци у табели.
- (d) Написати SQL наредбу за брисање табеле diplomirali stat.
- 4. Написати упит који издваја парове студента који су рођени у истом месту и за првог студент у пару важи да је полагао испите у свим испитним роковима. Издвојити индексе студената и њихово име. Задатак решити на
 - релационој алгебри
 - релационом рачуну

- 5. a) Детаљно опишите различите предности које познајете рада са базом података у односу на рад са подацима који се налазе у датотекама. Примедба: само навођење предности без описа неће бити признато као делимично урађен задатак.
 - б) ДЕТАЉНО описати услове за ажурирање погледа у СУБП ДБ2.
- 6. а) Написати кориснички дефинисану функцију nazivi_tabela(naziv_atributa) која за унети аргумент враћа тај аргумент иза кога следи листа назива табела које је у последњих 13 месеци направио корисник који извршава упит и које имају атрибут са унетим називом. Атрибут naziv_atributa је ниска максималне дужине 20, а резултат функције је ниска максималне дужине 2000. Аргумент је од листе назива табела раздвојен цртицом, а називи табела у листи су раздвојени зарезима и сортирани у опадајућем поретку (према азбучном редоследу). У телу функције не користити кључне речи begin/end. На пример, за унети аргумент 'INDEKS', позив функције nazivi_tabela('INDEKS') треба да врати INDEKS POLOZENI_ISPITI, NAZIV_PROGRAMA, IZVESTAJ, ISPIT, DOSIJE
 - б) Навести правила којима се повећава ефикасност SELECT наредбе.
- 7. a) Зашто је важно затворење скупа функционалних зависности? Навести Армстронгове аксиоме и додатна правила која могу да се изведу из њих.
 - б) Нека је дата релациона променљива $R = \{A, B, C, D, E, F, G\}$ и скуп F Φ 3:

1) $AB \longrightarrow C$	$5) D \longrightarrow EG$
$2) \ C \longrightarrow A$	$6) BE \longrightarrow C$
$3) \ BC \longrightarrow D$	$7) \ CG \longrightarrow BD$
4) $ACD \longrightarrow B$	8) $CE \longrightarrow AG$

- а) Одредити минимални покривач скупа функционалних зависности
- б) Одредити све кандидате за кључ релације R.
- в) Нека је релација $R_1 = \{C, D, F\}$ пројекција релације R. Одредити скуп функционалних зависности које су важеће у R_1 .

ОБАВЕЗНО ОБРАЗЛОЖИТИ СВЕ СВЕ КОРАКЕ У РАДУ. Навођење само резултата појединих корака (нпр. затворења скупа атрибута без објашњења поступка како се до њега дошло) неће бити признато као делимично урађен задатак.

- 8. Нека за нумеричку вредност А из базе трансакције Т1, Т2 и Т3 извршавају следеће операције:
 - Т1: Додаје један на А
 - Т2: Дуплира вредност А
 - Т3: Приказује А на екрану и после тога поставља А на један
 - а) Нека се трансакције Т1, Т2 и Т3 извршавају конкурентно. Ако је почетна вредност А једнака нули, навести све могуће коректне резултате који могу да се добију, као и редослед извршавања трансакција који те резултате производи.
 - б) Нека је интерна структура трансакција Т1, Т2 и Т3 представљена наредним псеудокодом. Ако се трансакције извршавају без икаквог закључавања, колико има различитих распореда извршавања?

T1	T2	Т3
R1: FETCH A INTO a1;	R2: FETCH A INTO a2;	R3: FETCH A INTO a3;
a1:=a1+1;	a2:=a2*2;	прикажи а3;
U1: UPDATE A FROM a1;	U2: UPDATE A FROM a2;	U3: UPDATE A FROM 1;

- в) Нека је поново почетна вредност A једнака нули. Да ли постоји неки (испреплетани) редослед извршавања трансакција чија је структура приказана у б) (ако постоји навести га) који производи коректан резултат а да није серијализабилан?
- г) Да ли постоји неки редослед испреплетаног извршавања трансакција чија је структура приказана у б) (ако постоји навести га) који је у суштини серијализабилан, али не може да се јави ако све три трансакције примењују двофазни протокол закључавања?