CS234 Problem Session Solutions

Week 4: Feb 2

1) [CA Session] Last Visit Monte Carlo

Prove that last visit Monte Carlo is not guaranteed to converge almost surely to V^{π} for all finite MDPs with bounded rewards and $\gamma \in [0, 1]$. You may reference Khintchine's Strong Law of Large Numbers:

[Khintchine Strong Law of Large Numbers]

Let $\{X_i\}_{i=1}^{\infty}$ be independent and identically distributed random variables. Then $(\frac{1}{n}\sum_{i=1}^{n}X_i)_{n=1}^{\infty}$ is a sequence of random variables that converges almost surely to $\mathbb{E}[X_1]$.

Solution Define the MDP with $S = \{s_1, s_{end}\}$, $A = \{a_1\}$, $P(s_1, a_1, s_{end}) = 0.5$, $P(s_1, a_1, s_1) = 0.5$, $R_t = 1$ if $S_{t+1} = s_1$, and $R_t = 0$ if $S_{t+1} = s_{end}$. The starting state is s_1 , s_{end} is a terminal state, and $\gamma = 0.5$. Let π be the only policy that always selects action a_1 . Notice that $V^{\pi}(s_1) = 1$.

Last visit Monte Carlo computes returns from state s_1 and since it only uses the last visit, the returns from state s_1 will all be for the transition to s_{end} , where the return is zero. Thus, the last visit Monte Carlo estimate for $V^{\pi}(s_1)$ after n episodes will be $\frac{1}{n} \sum_{i=1}^{n} 0$.

Hence,
$$\lim_{n\to\infty} \hat{V}^{\pi}(s_1) = \lim_{n\to\infty} \frac{1}{n} \sum_{i=1}^{n} 0 = 0.$$

Finally,
$$Pr[\lim_{n\to\infty} \hat{V}^{\pi}(s_1) = V^{\pi}(s_1)] = Pr[\lim_{n\to\infty} \frac{1}{n} \sum_{i=1}^n 0 = 1] = 0.$$

2) [CA Session] Optimal Policy in Modified MDP

Consider a finite MDP with bounded rewards, $M = (S, A, R, P, \gamma)$. Let $\gamma < 1$. Let π^* be a deterministic optimal policy for this MDP. Let $M' = (S', A', R', P', \gamma')$ be a new MDP that is the same as M, except that a positive constant, c, is subtracted from R_t if A_t is not the action that π^* would select. Is π^* necessarily always an optimal policy for M'. Prove your answer. If it is not, prove that it is not, and if it is, prove that it is.

Solution First, notice that for all $s \in \mathcal{S}$ and $a \in \mathcal{A}$, $R(s, a) \geq R'(s, a)$. Notice for all $s \in \mathcal{S}$:

$$V_M^{\pi^*}(s) = \mathbb{E}\left[\sum_{k=0}^{\infty} \gamma^k R_{t+k} | S_t = s, \pi^*, M\right]$$
 (1)

$$= \mathbb{E}\left[\sum_{k=0}^{\infty} \gamma^k R_{t+k} \middle| S_t = s, \pi^*, M'\right]$$
 (2)

$$=V_{M'}^{\pi^*}(s)$$
, because when $A_t \sim \pi^*, R_t$ is unchanged. (3)

Next, we see for all pi and for all $s \in \mathcal{S}$,

$$V_M^{\pi}(s) = \mathbb{E}[\sum_{k=0}^{\infty} \gamma^k R_{t+k} | S_t = s, \pi, M]$$
 (4)

$$= \mathbb{E}[\sum_{k=0}^{\infty} \gamma^k R(S_{t+k}, A_{t+k}) | S_t = s, \pi, M]$$
 (5)

$$\geq \mathbb{E}[\sum_{k=0}^{\infty} \gamma^{k} R'(S_{t+k}, A_{t+k}) | S_{t} = s, \pi, M']$$
 (6)

$$=V_{M'}^{\pi}(s). \tag{7}$$

Finally, notice that because π^* is optimal in M, we have that for all π and $s \in \mathcal{S}$, $V_M^{\pi^*}(s) \geq V_M^{\pi}(s)$.

Combining equations, we have that for all π and $s \in \mathcal{S}$,

$$V_{M'}^{\pi*}(s) = V_{M}^{\pi*}(s) \ge V_{M}^{\pi}(s) \ge V_{M'}^{\pi}(s).$$

Thus, $\pi^* \geq \pi$ for all policies π , and therefore π^* is optimal in M'.

Questions 1 and 2 are borrowed from Phil Thomas. ¹

¹https://people.cs.umass.edu/pthomas/courses/CMPSCI 687 Fall2018/687 F18 main.pdf

3) [Breakout Rooms] Bellman Operator with Function Approximation

Consider an MDP $M = (S, A, R, P, \gamma)$ with finite discrete state space S and action space A. Assume M has dynamics model P(s'|s,a) for all $s,s' \in S$ and $a \in A$ and reward model R(s,a) for all $s \in S$ and $a \in A$.

Recall that the Bellman operator B applied to a function $V: S \to \mathbb{R}$ is defined as

$$B(V)(s) = \max_{a} (R(s, a) + \gamma \sum_{s'} P(s'|s, a)V(s'))$$
(8)

(a) Now, consider a new operator which first applies a Bellman backup and then applies a function approximation, to map the value function back to a space representable by the function approximation. We will consider a linear value function approximator over a continuous state space. Consider the following graphs:

The graphs show linear regression on the sample $X_0 = \{0, 1, 2\}$ for hypothetical underlying functions. On the left, a target function f (solid line), that evaluates to f(0) = f(1) = f(2) = 0 and its corresponding fitted function $\hat{f}(x) = 0$. On the right, another target function g (solid line) that evaluates to g(0) = 0 and g(1) = g(2) = 1, and its fitted function $\hat{g}(x) = \frac{7}{12}x$.

What happens to the distance between points $\{f(0), f(1), f(2)\}$ and $\{g(0), g(1), g(2)\}$ after we do the linear approximation? In other words, compare $\max_{x \in X_0} |f(x) - g(x)|$ and $\max_{x \in X_0} |\hat{f}(x) - \hat{g}(x)|$.

Solution We compute $\max_{x \in X_0} |f(x) - g(x)| = 1$ and $\max_{x \in X_0} |\hat{f}(x) - \hat{g}(x)| = \frac{7}{6}$. Note $\max_{x \in X_0} |f(x) - g(x)| < \max_{x \in X_0} |\hat{f}(x) - \hat{g}(x)|$. The distance between the points increases after the linear approximation.

(b) Is the linear function approximator here a contraction operator? Explain your answer.

Solution Let L be the linear approximation operator such that $\hat{f} = Lf$ and $\hat{g} = Lg$. From part a), we see that $||Lf - Lg||_{\infty} > ||f - g||_{\infty}$ where $||\cdot||_{\infty}$ is the infinity norm. Then, the linear function approximator L is not a contraction operator.

(c) Will the new operator be guaranteed to converge to a single value function? If yes, will this be the optimal value function for the problem? Justify your answers.

Solution While the Bellman operator B is a contraction operator, the composite operator $L \circ B$ that first applies a Bellman backup and then the linear approximation is not necessarily a contraction operator because the linear function approximator L is not a contraction operator. Since we do not have the contraction property, the composite operator does not necessarily converge.