EE-381 Robotics-1 UG ELECTIVE

Lecture 12

Dr. Hafsa Iqbal

Department of Electrical Engineering,

School of Electrical Engineering and Computer Science,

National University of Sciences and Technology,

Pakistan

Introduction

- The three key questions in Mobile Robotics
 - Where I am?
 - Where am I going?
 - How do I get there?
- To answer these questions the robot has to
 - Have a model of the environment (given or autonomously built)
 - Perceive and analyze the environment
 - Find its position/situation within the environment
 - Plan and execute the movement

Autonomous Robotics (Mobile)

See, think and act cycle

Perception- sensors

Outlines

- Optical encoders
- Heading sensors
 - Compass
 - Gyroscopes
- Accelerometer
- IMU
- GPS
- Range sensors
 - Sonar
 - Laser
 - Structured light
- Camera

Sensors

- Why should a robotics engineer know about sensors?
 - Is the **key technology** for perceiving the environment
 - Understanding the physical principle enables appropriate use
- Understanding the physical principle behind sensors enables us:
 - To properly select the sensors for a given application
 - To properly model the sensor system, e.g. resolution, bandwidth, uncertainties

BIBA Robot, BlueBotics SA

Classification of Sensors

What:

- Proprioceptive sensors
 - measure values internal to the system (robot),
 - e.g., motor speed, wheel load, heading of the robot, battery status
- Exteroceptive sensors
 - information from the robots environment
 - distances to objects, intensity of the ambient light, unique features.

How:

- Passive sensors
 - Measure energy coming from the environment (microphones, cameras, temperature probes etc)
- Active sensors
 - emit their proper energy and measure the reaction (ultrasonic sensors and rangefinders etc)
 - better performance, but some influence on environment

General Classification

General classification (typical use)	Sensor Sensor System	PC or EC	A or P
Tactile sensors	Contact switches, bumpers Optical barriers	EC EC	P A
(detection of physical contact or closeness; security switches)	Noncontact proximity sensors	EC	A
Wheel/motor sensors	Brush encoders	PC	P
(wheel/motor speed and position)	Potentiometers	PC	P
	Synchros, resolvers	PC	A
	Optical encoders	PC	A
	Magnetic encoders	PC	A
	Inductive encoders	PC	A
	Capacitive encoders	PC	A
Heading sensors	Compass	EC	P
(orientation of the robot in relation to	Gyroscopes	PC	P
a fixed reference frame)	Inclinometers	EC	A/P

A, active; P, passive; P/A, passive/active; PC, proprioceptive; EC, exteroceptive.

General Classification

General classification (typical use)	Sensor Sensor System	PC or EC	A or P
Ground-based beacons (localization in a fixed reference frame)	GPS Active optical or RF beacons Active ultrasonic beacons Reflective beacons	EC EC EC EC	A A A
Active ranging (reflectivity, time-of-flight, and geometric triangulation)	Reflectivity sensors Ultrasonic sensor Laser rangefinder Optical triangulation (1D) Structured light (2D)	EC EC EC EC EC	A A A A
Motion/speed sensors (speed relative to fixed or moving objects)	Doppler radar Doppler sound	EC EC	A A
Vision-based sensors (visual ranging, whole-image analysis, segmentation, object recognition)	CCD/CMOS camera(s) Visual ranging packages Object tracking packages	EC	Р

Characterizing Sensor Performance

Measurement in real world environment is error prone

- Basic sensor response ratings
 - Dynamic range
 - ratio between upper and lower limits, usually in decibels (dB, power)
 - e.g. power measurement from 1 mW to 20 W

$$10 \cdot \log \left[\frac{20}{0.001} \right] = 43 \, dB$$

e.g. voltage measurement from 1 mV to 20 V

$$20 \cdot \log \left[\frac{20}{0.001} \right] = 86dB$$

$$P = U \cdot I = \frac{1}{R}U^2$$

 20 instead of 10 because square of voltage is equal to power!!

Characterizing Sensor Performance

- Basic sensor response ratings (cont.)
 - Range
 - upper limit
 - Resolution
 - minimum difference between two values
 - usually: lower limit of dynamic range = resolution
 - for digital sensors it is usually the A/D resolution.
 - e.g. 5*V* / 255 (8 bit)

Characterizing Sensor Performance

- Basic sensor response ratings (cont.)
 - Linearity
 - variation of output signal as function of the input signal

$$x \to f(x) \qquad \alpha \cdot x + \beta \cdot y \to f(\alpha \cdot x + \beta \cdot y) = \alpha \cdot f(x) + \beta \cdot f(y)$$
$$y \to f(y)$$

- Bandwidth or Frequency
 - the speed with which a sensor can provide a stream of readings (formally the number of measurements per second)
 - usually there is an upper limit depending on the sensor and the sampling rate
 - lower limit is also possible, e.g. acceleration sensor
 - one has also to consider phase (delay) of the signal

In Situ Sensor Performance

Characteristics that are especially relevant for real world environments

- Sensitivity
 - ratio of output change to input change
 - however, in real world environment, the sensor has very often high sensitivity to other environmental changes, e.g. illumination
- Cross-sensitivity (and cross-talk)
 - sensitivity to other environmental parameters (e.g. temperature, magnetic field)
 - influence of other active sensors error

$$\left(accuracy = 1 - \frac{m - v}{v}\right)$$

m = measured value v = true value

- Error / Accuracy
 - difference between the sensor's output and the true value

In Situ Sensor Performance

Characteristics that are especially relevant for real world environments

- Systematic error -> deterministic errors
 - caused by factors that can (in theory) be modeled -> prediction
 - e.g. calibration of a laser sensor or of the distortion caused by the optic of a camera
- Random error -> non-deterministic
 - no prediction possible
 - however, they can be described probabilistically
 - e.g. Hue instability of camera, black level noise of camera...
- Precision
 - reproducibility of sensor results

$$precision = \frac{range}{\sigma}$$
 σ is the standard deviation

Characterizing Error: The Challenges in Mobile Robotics

- Mobile Robot has to perceive, analyze and interpret the state of the surrounding
- Measurements in real world environment are dynamically changing and error prone.
- Examples:
 - changing illuminations
 - specular reflections
 - light or sound absorbing surfaces
 - cross-sensitivity of sensor, robot-environment dynamics
 - rarely possible to model -> error blurring: appear as "random" errors but are neither systematic nor random.
 - systematic errors and random errors might be well defined in controlled environment. This is not the case for mobile robots!!

Multi-Modal Error Distributions: The Challenges in ...

- Sensors modeled by probability distribution (random errors)
 - usually very little knowledge about the causes of random errors
 - often assumed to be symmetric or even Gaussian
 - however, it is important to realize how wrong this can be!
 - Examples:
 - Sonar (ultrasonic) sensor might overestimate the distance in real environment and is therefore not symmetric
 - Thus the sonar sensor might be best modeled by two modes:
 - mode for the case that the signal returns directly
 - mode for the case that the signals returns after multi-path reflections.
 - Stereo vision system might correlate to images incorrectly, thus causing results that make no sense at all

Sensors: outline

- Optical encoders
- Heading sensors
 - Compass
 - Gyroscopes
- Accelerometer
- IMU
- GPS
- Range sensors
 - Sonar
 - Laser
 - Structured light
- Vision (next lectures)

