b) Dérivabilité de h^{-1} ?

h étant dérivable et de dérivée non nulle sur]1; $+\infty$ [, h^{-1} est dérivable $sur\ h(\]1; +\infty$ [) =]- ∞ ; $\frac{1}{2}$ [.

c) Résolution de l'équation $h^{-1}(x) = e$?

$$h^{-1}(x) = e \operatorname{ssi} x = h(e) = \frac{-e^2}{2};$$

d'où l'ensemble des solutions $S = \{\frac{-e^2}{2}\}.$

d) Tracé de la courbe de g et celle de h^{-1} ?

<u>Légende</u> : _ Tracé de C_g ; _ Tracé de $C_{h^{-1}}$

Exercice 5

$$f(x) = (2x+1) e^{-x}$$

1. Variation de f?

*
$$f(x)$$
 existe sur \mathbb{R} ; $D_f = \mathbb{R} =]-\infty$; $+\infty[$.

$$*f'(x) = 2e^{-x} - (2x+1)e^{-x} = e^{-x} (1-2x).$$

$$f'(x) \ge 0 \text{ ssi } 1-2x \ge 0 \text{ ssi } x \le \frac{1}{2}$$
.

* Tableau de variation

X	-∞	$\frac{1}{2}$	+∞
f'(x)	+	0	-
f	-∞/	≠ 2e =	$\frac{1}{2}$

$$* \lim_{x \to -\infty} f(x) = ?$$

$$\lim_{x \to -\infty} 2x + 1 = -\infty \text{ et } \lim_{x \to -\infty} e^{-x} = +\infty,$$

par produit $\lim_{x \to -\infty} f(x) = -\infty$.

*
$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} 2xe^{-x} + e^{-x} = ?$$

Or $\lim_{x \to +\infty} xe^{-x} = 0$ et $\lim_{x \to +\infty} e^{-x} = 0$, donc par somme

$$\lim_{x \to +\infty} f(x) = 0.$$

2. (C) coupe (Δ) : y = x en un unique point ?

(C) coupe (Δ): y = x en un unique point d'abscisse α sur $[1; \frac{3}{2}]$ ssi l'équation f(x) = x admet α comme une unique solution sur $[1; \frac{3}{2}]$.

ssi l'équation f(x) - x = 0 admet α comme une unique solution sur $[1; \frac{3}{2}]$.

Soit
$$g(x) = f(x) - x$$
;

g étant la somme de fonctions continues et dérivables sur

 $[1; \frac{3}{2}]$, g est continue et dérivable sur $[1; \frac{3}{2}]$.

$$g'(x) = f'(x) - 1$$
; or $f'(x) < 0$ sur $[1; \frac{3}{2}]$,

donc g'(x) < 0 sur $[1; \frac{3}{2}]$.

$$g(1) = 3e^{-1} - 1 \cong 0.1$$
; $g(\frac{3}{2}) = 4e^{-\frac{3}{2}} - \frac{3}{2} \cong -0.6$.

g est continue et strictement décroissante sur $[1; \frac{3}{2}]$; de plus

 $g(1)g(\frac{3}{2}) < 0$, donc l'équation g(x) = 0 admet une unique solution α sur $[1; \frac{3}{2}]$. Par conséquent (C) coupe (Δ) en un unique point d'abscisse α appartenant à $[1; \frac{3}{2}]$.

 $\begin{array}{ccc} \underline{\text{Légende}} : & & \text{Tracé de } C_f \\ & & & \text{Tracé de } C_g \end{array}$

4. a) f admet une bijection réciproque sur $]\frac{1}{2}$; $+\infty[$? f étant continue et strictement décroissante sur $]\frac{1}{2}$; $+\infty[$, f est une bijection de $]\frac{1}{2}$; $+\infty[$ sur $f(]\frac{1}{2}$; $+\infty[$) =]0; $2e^{\frac{-1}{2}}[$;

par conséquent elle admet une bijection réciproque f^{-1} définie sur]0; $2e^{\frac{-1}{2}}[$.

b) Image de]0; α] par f^{-1} ?

 f^{-1} est continue et strictement décroissante (car elle varie dans le même sens que f) ;

d'où
$$f^{-1}(]0; \alpha]) = [f^{-1}(\alpha); \lim_{x \to 0} f^{-1}(x)];$$

Or $g(\alpha) = 0$ donc on $a f(\alpha) = \alpha$ d'où $\alpha = f^{-1}(\alpha)$.

D'autre part
$$f(]\frac{1}{2}; + \infty[]) =]0; 2e^{\frac{-1}{2}}[$$

ssi
$$f^{-1}(]0; 2e^{\frac{-1}{2}}[] =]\frac{1}{2}; + \infty[$$

ssi]
$$f^{-1}(2e^{\frac{-1}{2}})$$
; $\lim_{x\to 0} f^{-1}(x)[=]\frac{1}{2}$; $+\infty[$;

d'où $\lim_{x\to 0} f^{-1}(x) = +\infty$ et par conséquent

$$f^{-1}(]0\;;\alpha]) = [\alpha\;; +\infty[$$

5. Tracé de la courbe de g?

$$g(x) = |2x+1|e^{-x} = |2x+1||e^{-x}|$$

$$= |(2x+1)e^{-x}| = |f(x)| ; d'où g(x) = \begin{cases} f(x) & \text{si } f(x) \ge 0 \\ -f(x) & \text{si } f(x) \le 0 \end{cases}.$$

Par conséquent :

- Si $f(x) \ge 0$ (c'est-à-dire C_f au dessus de l'axe (x'x)) alors C_g et C_f sont confondues.
- Si $f(x) \le 0$ (c'est-à-dire C_f au dessus de l'axe (x'x)) alors C_g est le symétrique de C_f par rapport à l'axe (x'x).

Chapitre 4 : NOMBRES COMPLEXES SIMILITUDES DIRECTES

Exercice 1

Forme algébrique de :

1) *
$$\mathbf{Z_1} = \frac{1}{2 - i\sqrt{3}} = \frac{1(2 + i\sqrt{3})}{2^2 + \sqrt{3}^2}$$
; d'où $\mathbf{Z_1} = \frac{2}{7} + i\frac{\sqrt{3}}{7}$.
* $\mathbf{Z_2} = \frac{i - 3}{-1 - 2i} = \frac{(i - 3)(-1 + 2i)}{1^2 + 2^2}$; d'où $\mathbf{Z_2} = \frac{1}{5} - \frac{7}{5}$ i.
2) * $\mathbf{Z_1} = (\mathbf{z} + \mathbf{2})(\mathbf{2z} - \mathbf{i}) = [(x + 2) + iy][2x + i(2y - 1)]$

$$= [2x(x + 2) - y(2y - 1)] + i[y(2x) + (x + 2)(2y - 1)]$$

$$= (2x^2 + 4x - 2y^2 + y) + i(2xy + 2xy - x + 4y - 2)$$

$$= (2x^2 + 4x - 2y^2 + y) + i(4xy - x + 4y - 2)$$
.
* $\mathbf{Z_2} = \frac{\mathbf{z} + 1 - i}{\mathbf{z} - 2} = \frac{x + 1 + i(y - 1)}{x - 2 + iy}$

$$= \frac{[(x + 1) + i(y - 1)][(x - 2) - iy]}{(x - 2)^2 + y^2}$$

$$= \frac{[(x + 1)(x - 2) + y(y - 1)] + i[(y - 1)(x - 2) - y(x + 1)]}{(x - 2)^2 + y^2}$$

$$= \frac{x^2 - x + y^2 - y - 2}{(x - 2)^2 + y^2} + i\frac{-x - 3y + 2}{(x - 2)^2 + y^2}.$$

Exercice 2

Forme trigonométrique et exponentielle de :

1)
$$\mathbf{z} = \mathbf{1} - \mathbf{i} \sqrt{3} = \sqrt{1^2 + \sqrt{3}^2} \left(\frac{1}{2} + \frac{-\sqrt{3}}{2} i \right)$$

$$= 2[\cos(\frac{-\pi}{3}) + i\sin(\frac{-\pi}{3})] = 2e^{-i\frac{\pi}{3}}.$$
2) $\mathbf{z} = -\mathbf{1} - \mathbf{i} = \sqrt{1^2 + 1^2} \left(\frac{-1}{\sqrt{2}} + \frac{-1}{\sqrt{2}} i \right)$

$$= \sqrt{2} \left(\cos \frac{5\pi}{4} + i \sin \frac{5\pi}{4} \right) = \sqrt{2} e^{i\frac{5\pi}{4}}.$$
3) $\mathbf{z} = -\sqrt{6} + \mathbf{i} \sqrt{2} = \sqrt{\sqrt{6}^2 + \sqrt{2}^2} \left(\frac{-\sqrt{6}}{2\sqrt{2}} + \frac{\sqrt{2}}{2\sqrt{2}} i \right)$

$$= 2\sqrt{2} \left(\frac{-\sqrt{3}}{2} + \frac{1}{2} i \right) = 2\sqrt{2} \left(\cos \frac{5\pi}{6} + i \sin \frac{5\pi}{6} \right)$$

$$= 2\sqrt{2} e^{i\frac{5\pi}{6}}.$$

4)
$$\mathbf{z} = -\sin 2\theta + 2\mathbf{i}\cos^2\theta = (2\cos\theta)(-\sin\theta + \mathbf{i}\cos\theta)$$

<u>1er cas</u>: Si $\theta \in]0; \frac{\pi}{2}[, \cos \theta > 0, d'où$

$$z = (2\cos\theta)[\cos(\frac{\pi}{2} + \theta) + i\sin(\frac{\pi}{2} + \theta)] = (2\cos\theta)e^{i(\frac{\pi}{2} + \theta)}.$$

<u>2eme cas</u>: Si $\theta \in \frac{\pi}{2}$; π], cos $\theta < 0$ d'où

$$z = (-2\cos\theta)(\sin\theta - i\cos\theta)$$

=
$$(-2\cos\theta)[\cos(\frac{\pi}{2} - \theta) - i\sin(\frac{\pi}{2} - \theta)]$$

$$= (-2\cos\theta)[\cos(\theta - \frac{\pi}{2}) + i\sin(\theta - \frac{\pi}{2})] = (-2\cos\theta)e^{i(\theta - \frac{\pi}{2})}.$$

3eme cas: Si
$$\theta = \frac{\pi}{2}$$
, cos $\theta = 0$ d'où z = 0.

5)
$$z = 1 + cosx + isinx = 2cos^2(\frac{x}{2}) + 2isin(\frac{x}{2})cos(\frac{x}{2})$$

= $2cos(\frac{x}{2})[cos(\frac{x}{2}) + isin(\frac{x}{2})]$.

Or
$$\pi < x < 2\pi$$
 donc $\frac{\pi}{2} < \frac{x}{2} < \pi$,

d'où $\cos(\frac{x}{2}) < 0$ et par conséquent

$$z = -2\cos(\frac{x}{2})[-\cos(\frac{x}{2}) - i\sin(\frac{x}{2})]$$

$$= -2\cos(\frac{x}{2})[\cos(\pi + \frac{x}{2}) + i\sin(\pi + \frac{x}{2})] = -2\cos(\frac{x}{2})e^{i(\pi + \frac{x}{2})}.$$

Exercice 3

$$\overline{A(1; -3)}$$
, $B(4; 5)$ et $C(-3; 2)$

1. Affixe de A, B, C, \overrightarrow{AB} , \overrightarrow{AC} et \overrightarrow{BC} ?

$$* z_A = 1 - 3i$$
. $* z_B = 4 + 5i$. $* z_C = -3 + 2i$.

$$*z_{\overrightarrow{AR}} = z_R - z_A = 3 + 8i. *z_{\overrightarrow{AC}} = z_C - z_A = -4 + 5i.$$

*
$$z_{\vec{BC}} = z_C - z_B = -7 - 3i$$
.

2. Affixe de I milieu de [AB] et de G barycentre de (A; I), (B; I)

$$*\,z_I = \frac{z_A + z_B}{2} = \frac{5 + 2i}{2} \;.\; *\,z_G = \frac{(1)z_A + (2)z_B + (3)z_C}{6} = \frac{13i}{6} \;.$$

3. $\overrightarrow{AD} = 2 \overrightarrow{AB} + \overrightarrow{AC} \text{ et } 3\overrightarrow{BE} = \overrightarrow{BC}$, $z_D \text{ et } z_E$?

* $\overrightarrow{AD} = 2 \overrightarrow{AB} + \overrightarrow{AC}$; en passant aux affixes, on obtient

$$z_D - z_A = 2(z_B - z_A) + z_C - z_A \sin z_D = 2z_B - 2z_A + z_C = 3 + 18i$$
.

* $3\overrightarrow{BE} = \overrightarrow{BC}$; en passant aux affixes, on obtient

$$3(z_E - z_B) = z_C - z_B \operatorname{ssi} z_E = \frac{2z_B + z_C}{3} = \frac{5 + 12i}{3}$$
.

4. A, D, E alignés?

Montrons qu'il existe un nombre réel k, tel que $\overrightarrow{AD} = k \overrightarrow{AE}$?

En passant aux affixes, on obtient $z_D - z_A = k(z_E - z_A)$;

d'où
$$k = \frac{z_D - z_A}{z_E - z_A}$$
. Or $\frac{z_D - z_A}{z_E - z_A} = 3$ donc $k = 3$;

k étant un réel, les points A, D et E sont alignés.

Exercice 4

$$a = 5\sqrt{2}(1+i)$$
 et $b = -5(1+i\sqrt{3})$

1. Module et argument de a, b et $\frac{b}{a}$?

*
$$a = 5\sqrt{2} \left[\sqrt{2} \left(\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} i \right) \right] = 10(\cos \frac{\pi}{4} + i \sin \frac{\pi}{4}),$$

d'où |a| = 10 et arg $a = \frac{\pi}{4}$.

*
$$b = 5\left[\sqrt{1^2 + \sqrt{3}^2}\left(\frac{-1}{2} + i\frac{-\sqrt{3}}{2}\right)\right] = 10\left(\cos\frac{4\pi}{3} + i\sin\frac{4\pi}{3}\right),$$

d'où |b| = 10 et arg $b = \frac{4\pi}{3}$.

*
$$\left| \frac{b}{a} \right| = \frac{|b|}{|a|} = 1$$
 ; arg $\left(\frac{b}{a} \right) = \arg b - \arg a = \frac{13\pi}{12}$

2. Forme algébrique et trigonométrique de Z?

*
$$Z = \frac{b}{a} = \frac{-1 - i\sqrt{3}}{\sqrt{2} + i\sqrt{2}}$$
, donc $Z = \frac{(-1 - i\sqrt{3})(\sqrt{2} - i\sqrt{2})}{\sqrt{2}^2 + \sqrt{2}^2}$

d'où Z =
$$\frac{-\sqrt{2}-\sqrt{6}}{4} + i \frac{\sqrt{2}-\sqrt{6}}{4}$$
 (1)

*
$$Z = \frac{b}{a}$$
; or $|\frac{b}{a}| = 1$ et arg $(\frac{b}{a}) = \frac{13\pi}{12}$.
donc $Z = \cos\frac{13\pi}{12} + i\sin\frac{13\pi}{12}$ (2)

3. Valeurs exactes de $\cos \frac{13\pi}{12}$ et $\sin \frac{13\pi}{12}$?

D'après les égalités (1) et (2), on a

$$\cos \frac{13\pi}{12} = \frac{-\sqrt{2}-\sqrt{6}}{4}$$
 et $\sin \frac{13\pi}{12} = \frac{\sqrt{2}-\sqrt{6}}{4}$. (car deux nombres complexes sont égaux s'ils ont la même partie réelle et la même partie imaginaire).

Remarque

Pour déterminer le module et l'argument de Z, il était possible d'utiliser la forme exponentielle de a et b comme ci-dessous :

$$Z = \frac{b}{a} = \frac{10e^{i\frac{4\pi}{3}}}{10e^{i\frac{\pi}{4}}} \cdot \text{d'où } Z = e^{i(\frac{4\pi}{3} - \frac{\pi}{4})} = e^{i\frac{13\pi}{12}}; \text{d'où}$$

$$|Z| = 1 \text{ et arg} Z = \frac{13\pi}{12}.$$

Exercice 5

$$z = (\sqrt{6} + \sqrt{2}) + i(\sqrt{6} - \sqrt{2})$$

1. Calcul de z^2 ?

$$z^{2} = (\sqrt{6} + \sqrt{2})^{2} + i^{2}(\sqrt{6} - \sqrt{2})^{2} + 2i(\sqrt{6} + \sqrt{2})(\sqrt{6} - \sqrt{2})$$
$$= 8\sqrt{3} + 8i$$

2. Module et argument de z^2 ?

$$z^{2} = 8\left[\sqrt{\sqrt{3}^{2} + 1^{2}\left(\frac{\sqrt{3}}{2} + \frac{1}{2}i\right)}\right] = 16\left(\cos\frac{\pi}{6} + i\sin\frac{\pi}{6}\right);$$

d'où $|z^{2}| = 16$ et arg $z^{2} = \frac{\pi}{6}$.

* Module et argument de z?

$$|z^2| = 16 \text{ ssi } |z|^2 = 16 \text{ ssi } |z| = 4.$$

 $\text{arg } z^2 = \frac{\pi}{6} \text{ ssi } 2 \text{arg } z = \frac{\pi}{6} + 2 \text{k} \pi \text{ ssi } \text{arg } z = \frac{\pi}{12} + \text{k} \pi \text{ ;}$
donc $\text{arg } z = \frac{\pi}{12}$.

$3. n ? z^n$ imaginaire pur ?

$$z^n \in i\mathbb{R}^*$$
 ssi arg $z^n = \frac{\pi}{2} + k\pi$ ssi narg $z = \frac{\pi}{2} + k\pi$
ssi $n(\frac{\pi}{12}) = \frac{\pi}{2} + k\pi$ ssi $n = 6 + 12k\pi, k \in \mathbb{Z}$.

Autre méthode

$$z^{n} = \left[4\left(\cos\frac{\pi}{12} + i\sin\frac{\pi}{12}\right)\right]^{n} = 4^{n}\left(\cos\frac{n\pi}{12} + i\sin\frac{n\pi}{12}\right) \quad \text{(Moivre)}$$

$$z^{n} \text{ imaginaire pur ssi Re}(z^{n}) = 0 \text{ ssi } \cos\frac{n\pi}{12} = 0 \text{ ssi } \frac{n\pi}{12} = \frac{\pi}{2} + k\pi \text{ .}$$

Exercice 6

$$A(1+i)$$
; $B(-3-i)$; $C(2i)$

1. Pour placer ces points, on détermine leurs coordonnées :

A(1; 1), B(-3; -1) et C(0; 2).

Nature du triange ABC?

$$\begin{aligned} \text{AB} &= |z_B - z_A| = |-4 - 2\mathrm{i}|, \text{ d'où AB} = \sqrt{4^2 + 2^2} = \sqrt{20} \text{ .} \\ \text{AC} &= |z_C - z_A| = |-1 + \mathrm{i}|, \text{ d'où AC} = \sqrt{1^2 + 1^2} = \sqrt{2} \text{ .} \\ \text{BC} &= |z_C - z_B| = |3 + 3\mathrm{i}|, \text{ d'où BC} = \sqrt{3^2 + 3^2} = \sqrt{18} \text{ .} \\ \text{AC}^2 + \text{BC}^2 = 2 + 18 = 20 \end{aligned}$$

 $=\sqrt{20}^2 = BC^2$; donc ABC est un triangle rectangle en C.

Autres méthodes

En représentant les points, on voit que ABC est un triangle rectangle en C et pour le démontrer :

a) il suffit de prouver que $\overrightarrow{AC}.\overrightarrow{BC} = 0$?

$$\overrightarrow{AC}$$
 (-1; 1) et \overrightarrow{BC} (3; 3). $\overrightarrow{AC} \cdot \overrightarrow{BC} = (-1)(3) + (1)(3) = 0$ d'où

 \overrightarrow{AC} et \overrightarrow{BC} orthogonaux et par conséquent ABC est un triangle rectangle en C.

b) il suffit de prouver que $(\overrightarrow{CA}, \overrightarrow{CB}) = \pm \frac{\pi}{2}$?

$$(\overrightarrow{CA}, \overrightarrow{CB}) = \arg(\frac{z_B - z_C}{z_A - z_C}) = \arg(\frac{-3 - 3i}{1 - i}),$$

donc (\overrightarrow{CA} , \overrightarrow{CB}) = arg(-3i) = arg($3e^{-i\frac{\pi}{2}}$), d'où (\overrightarrow{CA} , \overrightarrow{CB}) = $-\frac{\pi}{2}$ et par conséquent, le triangle ABC est rectangle en C.

2. D?, ADBC parallélogramme.

ADBC parallélogramme ssi $\overrightarrow{AD} = \overrightarrow{CB}$; en passant aux affixes, on obtient $z_D - z_A = z_B - z_C$ ssi $z_D = z_B - z_C + z_A = -2 - 2i$.

- 3. Ensemble des points M(z) tels que
- a) |z 2i| = 3?

Soit z = x + iy.

$$|z - 2i| = 3 \text{ ssi } |x + i(y - 2)| = 3 \text{ ssi } \sqrt{x^2 + (y - 2)^2} = 3$$

ssi $x^2 + (y - 2)^2 = 9$. d'où cet ensemble est le cercle de centre

I(0:2) et de rayon 3. (on remarque que I est le point C)

Autre méthode

$$|z - 2i| = 3$$
? Or M(z) et C(2i),

donc $|z - 2i| = 3 \text{ ssi } |z_M - z_C| = 3 \text{ ssi CM} = 3$; d'où l'ensemble des points M est le cercle de centre C et de rayon 3.

b)
$$|\mathbf{z} - \mathbf{1} \cdot \mathbf{i}| = |\mathbf{z} + \mathbf{3} + \mathbf{i}|$$
 ssi $|\mathbf{z} - (1 + \mathbf{i})| = |\mathbf{z} - (-3 - \mathbf{i})|$

ssi $|z_M - z_A| = |z_M - z_B|$ ssi AM = BM; d'où cet ensemble de points est la médiatrice du segment [AB].

c)
$$|\overline{z} - 1 + i| = 1$$
 ssi $|\overline{z} - 1 + i| = 1$ ssi $|z - 1 - i| = 1$
ssi $|z_M - z_A| = 1$ ssi AM = 1;

d'où cet ensemble est le cercle de centre A et de rayon 1.

d)
$$|\mathbf{iz} + 2| = 3$$
 ssi $|\mathbf{i}(z + \frac{2}{i})| = 3$ ssi $|\mathbf{i}||z - 2\mathbf{i}| = 3$ ssi $|z_M - z_C| = 3$ ssi CM = 3; d'où l'ensemble des points M est le cercle de centre C et de rayon 3.

Remarque

On retrouve les mêmes résultats pour les questions b), c) et d) en posant z = x + iy et en calculant les modules.

Exercice 7

 $Z = \frac{z+1}{z-2i}$. Ensemble des points tels que :

1. Z soit un réel?

Soit
$$z = x + iy$$
; $Z = \frac{(x+1)+iy}{x+i(y-2)} = \frac{[(x+1)+iy][x-i(y-2)]}{x^2+(y-2)^2}$; d'où
$$Z = \frac{[x(x+1)+y(y-2)]+i[yx-(x+1)((y-2)]}{x^2+(y-2)^2} = \frac{(x^2+x+y^2-2y)+i(2x-y+2)}{x^2+(y-2)^2}.$$

Z est un réel ssi Im(Z) = 0 ssi 2x - y + 2 = 0; d'où cet ensemble est la droite (d): 2x - y + 2 = 0 privée du point A(2i).

Autres méthodes

a) Soit
$$z = x + iy$$
. Z est un réel ssi $Z = \overline{Z}$ ssi $\frac{z+1}{z-2i} = \overline{(\frac{z+1}{z-2i})}$

ssi
$$\frac{z+1}{z-2i} = \frac{\bar{z}+1}{\bar{z}+2i}$$

ssi
$$2i(z + \bar{z}) - (z - \bar{z}) + 4i = 0$$
;

or
$$z + \overline{z} = 2x$$
, $z - \overline{z} = 2iy$ et $z\overline{z} = x^2 + y^2$ donc

$$2i(z + \bar{z}) - (z - \bar{z}) + 4i = 0 \text{ ssi } 2x - y + 2 = 0;$$

d'où l'ensemble des points M est la droite (d) : 2x - y + 2 = 0 privée du point A(2i)

b)
$$Z = \frac{z+1}{z-2i} = \frac{z-(-1)}{z-2i} = \frac{z_M - z_B}{z_M - z_A}$$
, où A(2i) et B(-1).

Z est un réel

ssi
$$z_M = z_B$$
 ou arg $(\frac{z_M - z_B}{z_M - z_A}) = 0(\pi)$ dans le cas $z_M \neq z_B$.

ssi
$$z_M = z_B$$
 ou $(\overrightarrow{MA}, \overrightarrow{MB}) = 0(\pi)$

Donc cet ensemble est B ou la droite (AB) privée de A et B;

Autrement, l'ensemble des points M(z) tels que Z soit réel est la droite (AB) privée de A.

2. Z soit un imaginaire pur ?

$$Z = \frac{(x^2 + x + y^2 - 2y) + i(2x - y + 2)}{x^2 + (y - 2)^2}$$

Z est un imaginaire pur ssi Re(Z) = 0

ssi
$$x^2 + x + y^2 - 2y = 0$$

ssi
$$(x + \frac{1}{2})^2 - (\frac{1}{2})^2 + (y - 1)^2 - (1)^2 = 0$$

ssi $(x + \frac{1}{2})^2 + (y - 1)^2 = \frac{5}{4}$; d'où cet ensemble est le cercle de centre $J(-\frac{1}{2}; 1)$ et de rayon $\frac{\sqrt{5}}{2}$, privé du point A.

Autres méthodes

a) Z est un imaginaire pur ssi $Z = -\bar{Z}$. On procède comme pour la question 1), en faisant apparaître $z + \bar{z}$, $z - \bar{z}$ et $z\bar{z}$ et en posant z = x + iy pour obtenir l'équation du cercle.

b)
$$Z = \frac{z_M - z_B}{z_M - z_A}$$
.

Z est un imaginaire pur

ssi
$$z_M = z_B$$
 ou arg $(\frac{z_M - z_B}{z_M - z_A}) = \frac{\pi}{2} (\pi) (z_M \neq z_B)$
ssi $z_M = z_B$ ou $(\overrightarrow{MA}, \overrightarrow{MB}) = \frac{\pi}{2} (\pi)$

Donc cet ensemble est B ou le cercle de diamètre [AB] privée de A et B;

Autrement, l'ensemble des points M(z) tels que Z soit un imaginaire pur est le cercle de diamètre [AB] privé de A.

3. Z est un réel strictement positif

ssi arg
$$\left(\frac{z_M - z_B}{z_M - z_A}\right) = 0(2\pi)$$

ssi
$$(\overrightarrow{MA}, \overrightarrow{MB}) = 0(2\pi)$$
;

d'où cet ensemble est la droite (AB) privée du segment [AB].

4.
$$Z = bi$$
, $b < 0$ (ou bien $Z \in i\mathbb{R}_{-}^{*}$)

ssi
$$\operatorname{arg}(\frac{z_M - z_B}{z_M - z_A}) = \frac{-\pi}{2} (2\pi)$$

ssi $(\overline{MA}, \overline{MB}) = \frac{-\pi}{2} (2\pi)$;

d'où cet ensemble est l'un des demi-cercles de diamètre [AB], privé des points A et B.

Remarque

Pour déterminer de quel demi-cercle il s'agit, on représente le cercle de diamètre [AB], puis on détermine lequel des demi-cercles a ses points M qui vérifient $(\overline{MA}, \overline{MB}) = \frac{-\pi}{2}$.

$$5. |Z| = 1$$
?

$$Z = \frac{z_M - z_B}{z_M - z_A};$$

$$|\mathbf{Z}| = 1 \text{ ssi } \frac{|z_M - z_B|}{|z_M - z_A|} = 1$$

ssi
$$\frac{BM}{AM} = 1$$
 ssi AM = BM;

d'où cet ensemble est la médiatrice du segment [AB].

Exercice 8

1. sin5x en fonction de cosx et sinx?

* $(cosx + isinx)^5 = cos5x + isin5x$ (1) (en utilisant la formule de Moivre)

* $(cosx + isinx)^5 = cos^5x + 5(cos^4x)(isinx) + 10(cos^3x)(isinx)^2 + 10(cos^2x)(isinx)^3 + 5(cosx)(isinx)^4 + (isinx)^5$. (en utilisant la formule du binôme de Newton)

Donc
$$(cosx + isinx)^5 = cos^5x - 10cos^3xsin^2x + 5cosxsin^4x + i(5cos^4xsinx - 10cos^2xsin^3x + sin^5x)$$
 (2)

D'après (1) et (2) on a

 $\sin 5x = 5\cos^4 x \sin x - 10\cos^2 x \sin^3 x + \sin^5 x.$

2. Linéariser $\cos^3 x \sin^2 x$?

$$\cos^{3}x \sin^{2}x = \left(\frac{e^{ix} + e^{-ix}}{2}\right)^{3} \left(\frac{e^{ix} - e^{-ix}}{2i}\right)^{2}$$

$$= \frac{-1}{32} \left[(e^{i3x} + 3e^{ix} + 3e^{-ix} + e^{-3ix})(e^{2ix} - 2 + e^{-2ix}) \right]$$

$$= \frac{-1}{32} \left[(e^{5ix} + e^{-5ix}) + (e^{3ix} + e^{-3ix}) - 2(e^{ix} + e^{-ix}) \right]$$

$$= \frac{-1}{32} (2\cos 5x + 2\cos 3x - 4\cos x)$$

$$= \frac{-1}{32} (\cos 5x + \cos 3x - 2\cos x).$$

Exercice 9

Résoudre dans C:

1)
$$\frac{iz}{z+i} = 1 + 2i$$
. l'équation existe ssi $z \neq -i$.

$$\frac{iz}{z+i} = 1 + 2i \text{ ssi iz} = (z+i)(1+2i) \text{ ssi } z(1+i) = 2-i \text{ ssi } z = \frac{1-3i}{2}$$

L'ensemble des solutions $S = \{\frac{1-3i}{2}\}$.

2)
$$z^2 + z - 6 = 0$$
; $\Delta = (1)^2 - 4(1)(-6) = (5)^2$.

$$z_1 = \frac{-1-5}{2} = -3$$
; $z_2 = \frac{-1+5}{2} = 2$ d'où S = { -3; 2}

3)
$$4z^2 + 4z + 1 = 0$$
; $\Delta' = (2)^2 - (4)(1) = 0$

$$z_0 = \frac{-2}{4} = \frac{-1}{2}$$
, d'où S = $\{\frac{-1}{2}\}$.

4)
$$z^2 + z + 1 = 0$$
; $\Delta = (1)^2 - 4(1)(1) = -3$. $\Delta = 3i^2 = (i\sqrt{3})^2$

$$z_1 = \frac{-1 - i\sqrt{3}}{2}$$
; $z_2 = \frac{-1 + i\sqrt{3}}{2}$ d'où $S = \{\frac{-1 - i\sqrt{3}}{2}; \frac{-1 - i\sqrt{3}}{2}\}$.

5) $z^2 = 3 - 4i$; résoudre cette équation revient à déterminer les racines carrées de 3 - 4i. Soit z = x + iy;

$$z^{2} = 3 - 4i \text{ ssi} \begin{cases} x^{2} + y^{2} = \sqrt{3^{2} + 4^{2}} & (1) \\ x^{2} - y^{2} = 3 & (2) \\ 2xy = -4 & (3) \end{cases}$$

En calculant (1) + (2) et (1) - (2), on obtient :

on obtient
$$\begin{cases} 2x^2 = 8 \\ 2y^2 = 2 \\ xy = -2 \end{cases}$$
 ssi
$$\begin{cases} x = 2 \\ y = -1 \end{cases}$$
 ou
$$\begin{cases} x = -2 \\ y = 1 \end{cases}$$
.

D'où $S = \{ 2-i ; -2+i \}.$

6)
$$\mathbf{z}^2 + 2\mathbf{i}\mathbf{z} - \mathbf{1} - \mathbf{i} = \mathbf{0}$$
; $\Delta' = (i)^2 - (1)(-1 - i) = i$.

Déterminons les racines carrées de Δ' , c'est-à-dire les complexes $\delta = x + iv$ tel que $\delta^2 = \Delta'$.

$$\delta^{2} = \Delta' \operatorname{ssi} \begin{cases} x^{2} + y^{2} = \sqrt{0^{2} + 1^{2}} & (1) \\ x^{2} - y^{2} = 0 & (2) \\ 2xy = 1 & (3) \end{cases}$$

En calculant (1) + (2) et (1) - (2), on obtient :

$$\begin{cases} 2x^{2} = 1 \\ 2y^{2} = 1 \\ xy = \frac{1}{2} \end{cases} \text{ssi} \begin{cases} x = \frac{\sqrt{2}}{2} \\ y = \frac{\sqrt{2}}{2} \end{cases} \text{ou} \begin{cases} x = -\frac{\sqrt{2}}{2} \\ y = -\frac{\sqrt{2}}{2} \end{cases}.$$

D'où $\Delta' = (\frac{\sqrt{2}}{2} + i\frac{\sqrt{2}}{2})^2$. Par conséquent

$$z_1 = -i + \frac{\sqrt{2}}{2} + i \frac{\sqrt{2}}{2}$$
; $z_2 = -i - \frac{\sqrt{2}}{2} - i \frac{\sqrt{2}}{2}$ et

S = {
$$\frac{\sqrt{2}}{2} + i(\frac{\sqrt{2}}{2} - 1); \frac{-\sqrt{2}}{2} + i(\frac{-\sqrt{2}}{2} - 1) }.$$

Exercice 10

(E):
$$z^3 - (3+2i)z^2 + (1+4i)z + 1 - 2i = 0$$

1. a) (E) admet une solution réelle?

Soit a cette solution réelle : on a

$$a^{3} - (3+2i)a^{2} + (1+4i)a + 1 - 2i = 0$$

$$a^{3} - 3a^{2} + a + 1 + i(-2a^{2} + 4a - 2) = 0$$

$$\begin{cases} a^{3} - 3a^{2} + a + 1 = 0 & (1) \\ -2a^{2} + 4a - 2 = 0 & (2) \end{cases}$$

Résolvons (2). (L'équation la plus simple).

$$-2a^2 + 4a - 2 = 0 \text{ ssi } -2(a-1)^2 = 0 \text{ ssi } a = 1.$$

Vérifions si 1 est solution de l'équation (1):

 $(1)^3 - 3(1)^2 + (1) + 1 = 3 - 3 = 0$ donc (E) admet une solution réelle a = 1.

b) Résolution de (E) ?

a = 1 solution de de (E) donc (E) : (z-1)Q(z) = 0.

Déterminons Q(z) par la méthode de Horner :

	1	- 3 – 2i	1 + 4i	1 - 2i
(1)		1	- 2 – 2i	-1 + 2i
	1	-2-2i	-1 + 2i	0

d'où
$$Q(z) = z^2 + (-2 - 2i) z - 1 + 2i$$
.

Par consequent (E) \Leftrightarrow z = 1 ou $z^2 + (-2 - 2i) z - 1 + 2i = 0$

$$\Delta' = (-1 - i)^2 - (1)(-1+2i)$$

= 1 = (1)²

$$z_1 = 1 + i - 1 = i$$
; $z_2 = 1 + i + 1 = 2 + i$

$$S = \{ 1; 2+i; i \}$$

2.
$$z_A = 1$$
; $z_B = i$; $z_C = 2 + i$.

a) Module et argument de $\frac{z_C - z_A}{z_B - z_A}$?

$$\frac{z_{C}-z_{A}}{z_{B}-z_{A}} = \frac{2+i-1}{i-1} = \frac{1+i}{-1+i}; \text{ donc } \frac{z_{C}-z_{A}}{z_{B}-z_{A}} = -i = e^{-i\frac{\pi}{2}}.$$

$$D'où \left| \frac{z_{C}-z_{A}}{z_{B}-z_{A}} \right| = 1 \text{ et } \arg(\frac{z_{C}-z_{A}}{z_{B}-z_{A}}) = \frac{-\pi}{2}.$$

<u>Remarque</u>: En calculant quotient $\frac{z_C - z_A}{z_B - z_A}$ si on obtient une forme algébrique pour laquelle on ne peut pas déterminer l'argument, alors on contourne la difficulté en déterminant d'abord un argument du numérateur, puis un argument du dénominateur.

b) Nature du triangle ABC

*
$$\left| \frac{z_C - z_A}{z_B - z_A} \right| = 1 \text{ ssi } \frac{|z_C - z_A|}{|z_B - z_A|} = 1 \text{ ssi } \frac{AC}{AB} = 1 \text{ ssi } AB = AC$$
;

d'où ABC est un triangle isocèle en A (1)

*
$$\arg(\frac{z_C - z_A}{z_B - z_A}) = \frac{-\pi}{2} \operatorname{ssi}(\overrightarrow{AB}, \overrightarrow{AC}) = \frac{-\pi}{2}$$

d'où ABC est un triangle rectangle en A (2)

Il résulte des propositions (1) et (2) que ABC est un triangle rectangle isocèle en A.

c)
$$r = r (B; \frac{\pi}{2}) \cdot z_D ?, r (A) = D$$

$$r(A) = D ssi z_D - z_B = e^{i\frac{\pi}{2}}(z_A - z_B) ssi z_D = i(1 - i) + i = 1 + 2i$$
.

- d) Montrons que A, B, C et D appartiennent à un cercle dont on déterminera le centre et le rayon?
- * ABC étant un triangle rectangle A, donc les points A, B et C appartiennent à leur cercle circonscrit qui est le cercle (C) de diamètre [BC].
- * Soit I son centre et R son rayon:

I est le milieu de [BC] et R = $\frac{BC}{2}$, d'où

$$z_I = \frac{z_B + z_C}{2} = 1 + i$$
; $R = \frac{BC}{2} = \frac{|z_C - z_B|}{2}$ donc $R = 1$.

* Montrons que D appartient à (C), c'est-à-dire ID = 1 ?

ID = $|z_D - z_I| = 1$ donc D \in (C) et par conséquent les points A, B, C et D appartiennent à (C).

Exercice 11

1. Résoudre $z^3 = 1$?

Résoudre cette équation revient à déterminer les racines cubiques de 1 qui sont les complexes $z_k=e^{i\frac{2k\pi}{3}}$ où $k\in\{0;1;2\}$ Donc les solutions sont :

$$z_0 = e^{i0} = 1$$
, $z_1 = e^{i\frac{2\pi}{3}} = \frac{-1}{2} + i\frac{\sqrt{3}}{2}$ et $z_2 = e^{i\frac{4\pi}{3}} = \frac{-1}{2} - i\frac{\sqrt{3}}{2}$.

2. a)
$$(\sqrt{2} - i\sqrt{2})^3 = ?$$

$$(\sqrt{2} - i\sqrt{2})^3 = (\sqrt{2})^3 - 3(\sqrt{2})^2 (i\sqrt{2}) + 3(\sqrt{2})(i\sqrt{2})^2 - (i\sqrt{2})^3$$
$$= -4\sqrt{2} - 4i\sqrt{2} = 4\sqrt{2}(-1 - i)$$

b) Solutions de (E) :
$$z^3 = 4\sqrt{2}(-1-i)$$
 ?

$$z^3 = 4\sqrt{2}(-1-i)$$
 ssi $z^3 = (\sqrt{2} - i\sqrt{2})^3$ ssi $(\frac{z}{\sqrt{2} - i\sqrt{2}})^3 = 1$;

En posant $u = \frac{z}{\sqrt{2} - i\sqrt{2}}$, on obtient $u^3 = 1$.

D'après la question 1) les solutions de cette équation sont les complexes $u_k=e^{i\frac{2k\pi}{3}}$ où $k\in\{0;1;2\}$;

or $u_k = \frac{z_k}{\sqrt{z} - i\sqrt{z}}$, donc les solutions de (E) sont les complexes

$$z_k = (\sqrt{2} - i\sqrt{2}) u_k = (\sqrt{2} - i\sqrt{2}) e^{i\frac{2k\pi}{3}}$$
 où $k \in \{0; 1; 2\}$.

* Forme algébrique des solutions de (E) ?

$$z_0 = (\sqrt{2} - i\sqrt{2})(1) = \sqrt{2} - i\sqrt{2}$$
.

$$z_1 = (\sqrt{2} - i\sqrt{2})(\frac{-1}{2} + i\frac{\sqrt{3}}{2}) = \frac{\sqrt{6} - \sqrt{2}}{2} + i(\frac{\sqrt{6} + \sqrt{2}}{2}).$$

$$z_2 = (\sqrt{2} - i\sqrt{2})(\frac{-1}{2} - i\frac{\sqrt{3}}{2}) = \frac{-\sqrt{6} - \sqrt{2}}{2} + i(\frac{-\sqrt{6} + \sqrt{2}}{2}).$$

* Forme trigonométrique des solutions de (E) ?

$$\begin{split} z_k &= \sqrt{2} (1-i) \ e^{i\frac{2k\pi}{3}} = \sqrt{2}.\sqrt{1^2+1^2} \big(\frac{1}{\sqrt{2}}+i\frac{-1}{\sqrt{2}}\big) \ e^{i\frac{2k\pi}{3}} \\ &= 2e^{-i\frac{\pi}{4}} e^{i\frac{2k\pi}{3}}. \ \text{D'où} \\ z_0 &= 2e^{-i\frac{\pi}{4}} e^{i0} = 2e^{-i\frac{\pi}{4}}; \ \text{donc} \ z_0 = 2[\cos(\frac{-\pi}{4}) + i\sin(\frac{-\pi}{4})]. \\ z_1 &= 2e^{-i\frac{\pi}{4}} e^{i\frac{2\pi}{3}} = 2e^{i\frac{5\pi}{12}}; \ \text{donc} \ z_1 = 2(\cos\frac{5\pi}{12} + i\sin\frac{5\pi}{12}). \end{split}$$

$$z_2 = 2e^{-i\frac{\pi}{4}}e^{i\frac{4\pi}{3}} = 2e^{i\frac{13\pi}{12}}$$
; donc $z_1 = 2(\cos\frac{13\pi}{12} + i\sin\frac{13\pi}{12})$.

3. Valeurs exactes de $\cos \frac{5\pi}{12}$ et $\sin \frac{5\pi}{12}$?

D'après la question 2.b)

$$\begin{split} z_1 &= 2(\cos\frac{5\pi}{12} + i\sin\frac{5\pi}{12}) = \frac{\sqrt{6} - \sqrt{2}}{2} + i(\frac{\sqrt{6} + \sqrt{2}}{2}); \text{ il en résulte }: \\ \left\{ 2\cos\frac{5\pi}{12} = \frac{\sqrt{6} - \sqrt{2}}{2} \\ 2\sin\frac{5\pi}{12} = \frac{\sqrt{6} + \sqrt{2}}{2} \\ \sin\frac{5\pi}{12} = \frac{\sqrt{6} + \sqrt{2}}{4} \\ \cdot \sin\frac{5\pi}{12} = \frac{\sqrt{6} + \sqrt{6} + \sqrt{6}}{4} \\ \cdot \sin\frac{5\pi}{12} = \frac{\sqrt{6} + \sqrt{6} + \sqrt{6}}{4} \\ \cdot \sin\frac{5\pi}{12} = \frac{\sqrt{6} + \sqrt{6} + \sqrt{6}}{4} \\ \cdot \sin\frac{5\pi}{12} = \frac{\sqrt{6} + \sqrt{6} + \sqrt{6}}{4} \\ \cdot \sin\frac{5\pi}{12} = \frac{\sqrt{6} + \sqrt{6} + \sqrt{6}}{4} \\ \cdot \sin\frac{5\pi}{12} = \frac{\sqrt{6} + \sqrt{6}}{4} \\ \cdot \sin\frac{5\pi}{12} = \frac{$$

Exercice 12 $1, z^7 = 1$?

Résoudre cette équation revient à déterminer les racines septièmes de 1 qui sont les complexes $z_k = e^{i\frac{2k\pi}{7}}$ où

$$\mathbf{k} \in \{0;1;...;6\}$$
. Donc les solutions sont : $z_0 = 1$; $z_1 = e^{i\frac{2\pi}{7}}$; $z_2 = e^{i\frac{4\pi}{7}}$; $z_3 = e^{i\frac{6\pi}{7}}$; $z_4 = e^{i\frac{8\pi}{7}}$; $z_5 = e^{i\frac{10\pi}{7}}$; $z_6 = e^{i\frac{12\pi}{7}}$.

2. Calcul de
$$1 + u^1 + u^2 + \cdots + u^6$$
, où $u = e^{i\frac{2\pi}{7}}$?

Soit S cette somme; S est la somme de termes consécutifs d'une suite géométrique de raison u, donc $S = 1(\frac{1-u^7}{1-u}) = \frac{1-(e^{i\frac{2\pi u}{7}})^7}{i\frac{2\pi}{2}}$

Or
$$(e^{i\frac{2\pi}{7}})^7 = e^{i2\pi} = 1$$
, donc S = 0.

3.
$$1 + 2\cos\frac{2\pi}{7} + 2\cos\frac{4\pi}{7} + 2\cos\frac{6\pi}{7} = 0$$
?

$$1 + u^{1} + u^{2} + \dots + u^{6} = 0$$

$$1 + e^{i\frac{2\pi}{7}} + e^{i\frac{4\pi}{7}} + \dots + e^{i\frac{12\pi}{7}} = 0$$

$$1 + \cos\frac{2\pi}{7} + \cos\frac{4\pi}{7} + \dots + \cos\frac{12\pi}{7} + i\left(\sin\frac{2\pi}{7} + \sin\frac{4\pi}{7} + \dots + \sin\frac{12\pi}{7}\right) = 0.$$

$$D^{2}(x) = 1 + \cos^{2\pi} + \cos^{4\pi} + \cos^{6\pi} + \cos^{8\pi} + \cos^{10\pi} + \cos^{12\pi} = 0.$$

D'où
$$1 + \cos\frac{2\pi}{7} + \cos\frac{4\pi}{7} + \cos\frac{6\pi}{7} + \cos\frac{8\pi}{7} + \cos\frac{10\pi}{7} + \cos\frac{12\pi}{7} = 0$$

$$\begin{aligned} &1 + \cos\frac{2\pi}{7} + \cos\frac{4\pi}{7} + \cos\frac{6\pi}{7} + \cos(2\pi - \frac{6\pi}{7}) + \cos(2\pi - \frac{4\pi}{7}) + \cos(2\pi - \frac{2\pi}{7}) = 0 \\ &1 + \cos\frac{2\pi}{7} + \cos\frac{4\pi}{7} + \cos\frac{6\pi}{7} + \cos\frac{6\pi}{7} + \cos\frac{4\pi}{7} + \cos\frac{2\pi}{7} = 0 \\ &1 + 2\cos\frac{2\pi}{7} + 2\cos\frac{4\pi}{7} + 2\cos\frac{6\pi}{7} = 0. \end{aligned}$$

Exercice 13

$$f M(z) \to M'(z'), z' = (1+i)z - 1$$
.

1. f similitude directe?

z' est de la forme az + b où a = 1 + i et b = -1.

 $a \in \mathbb{C}^*$ et $b \in \mathbb{C}$, donc f est une similitude directe.

* Eléments caractéristiques de f?

Soit $\Omega(\omega)$ son centre, k son rapport et θ son angle:

$$\omega = \frac{b}{1-a} = -i.$$

$$k = |a|$$
; or $a = \sqrt{1^2 + 1^2} (\frac{1}{\sqrt{2}} + i\frac{1}{\sqrt{2}}) = \sqrt{2}e^{i\frac{\pi}{4}} donc k = \sqrt{2}$.

$$\theta = \arg a = \frac{\pi}{4}$$
.

2. Image par f de (d) : x - y + 2 = 0?

Déterminons 2 points A et B de (d) à l'aide d'un tableau de valeurs et leurs images A' et B' :

$\boldsymbol{\mathcal{X}}$	-2	0	Soit A(-2) et B(2 i); la droite (d) est la droite (AB).
у	0	2	Soit A(-2) et B(2 <i>i</i>); la droite (d) est la droite (AB). $z_{A'} = (1+i)(-2) - 1 = -3 - 2i$; $z_{B'} = (1+i)(2i) - 1$
	+ 2i.		Al () ()

L'image de (d) par f est (d') la droite (A'B').

* Image par f du cercle (C) de centre I(1-i) et de rayon

R = 2?

Soit
$$I' = f(I)$$
, on a $z_{II} = (1+i)(1-i) - 1 = 1$.

L'image par f de (C) est le cercle (C') de centre I'(1) et de rayon $kR = 2\sqrt{2}$; k étant le rapport de la similitude.

Exercice 14

$$A(-1)$$
; $B(-2 + i)$; $C(i)$ et $D(1-2i)$

1. s?, s(A) = B et s(C) = D

Soit z' = az + b, l'écriture complexe de la similitude s:

$$\begin{cases} s(A) = B \\ s(C) = D \end{cases} \text{SSi} \begin{cases} az_A + b = z_B \quad (1) \\ az_C + b = z_D \quad (2) \end{cases}$$

(1) – (2) entraine que
$$a(z_A - z_C) = z_B - z_D$$

d'où
$$a = \frac{z_B - z_D}{z_A - z_C} = -3i$$
;

or
$$az_A + b = z_B$$
 donc $b = z_B - az_A = -2 - 2i$.

d'où l'écriture complexe de s est z' = -3iz - 2 - 2i

2. Eléments caractéristiques de s'?

Soit Ω son centre, k son rapport et θ son angle.

*
$$s'(A) = A \text{ donc } A = \Omega.$$

* s'(B) = C donc k =
$$\frac{AC}{AB} = \left| \frac{z_C - z_A}{z_B - z_A} \right|$$
 et $\theta = (\overrightarrow{AB}, \overrightarrow{AC}) = \arg(\frac{z_C - z_A}{z_B - z_A})$.

Or
$$\frac{z_C - z_A}{z_B - z_A} = \frac{1+i}{-1+i} = -i$$
 donc $\frac{z_C - z_A}{z_B - z_A} = e^{-i\frac{\pi}{2}}$ d'où $k = 1$ et $\theta = \frac{-\pi}{2}$.

Remarque: la similitude s' de centre A, de rapport 1 et d'angle $\frac{-\pi}{2}$ est la rotation de centre A et d'angle $\frac{-\pi}{2}$.

3. Expression analytique de s''?

s' a pour centre C, pour angle $\frac{\pi}{3}$ et pour rapport 2, donc elle a pour

écriture complexe z'-
$$z_C = 2e^{i\frac{\pi}{3}}(z - z_C)$$
;

d'où z' =
$$(1+i\sqrt{3})z + \sqrt{3}$$
.

Posons
$$z' = x' + iy'$$
 et $z = x + iy$,

on a
$$x' + iy' = (1 + i\sqrt{3})(x + iy) + \sqrt{3}$$

= $x - v\sqrt{3} + \sqrt{3} + i(x\sqrt{3} + v)$:

d'où
$$\begin{cases} x' = x - y\sqrt{3} + \sqrt{3} \\ y' = x\sqrt{3} + y \end{cases}$$
 est l'expression analytique de s''.

Chapitre 5: SUITES NUMERIQUES