

Lesekontrollfragen Woche 1: 277 Eingaben

Erste Versuche

Hauptschwierigkeiten:

- Def. elektrische Feldstärke
- Kraft zwischen zwei Ladungen

Merke

Während sich die als *elektrische Feldstärke* bezeichnete vektorielle Raumzustandsgröße auf einen speziellen Raumpunkt bezieht, kennzeichnet man mit dem Begriff *elektrisches Feld* die Gesamtheit der Feldvektoren in allen Raumpunkten.

Lesekontrollfragen Woche 1: 277 Eingaben

Erste Versuche

Brückenkurs und Lerntests (Stand 22.09. 08:00)

ETH Zürich Brückenkurs Mathematik 2025

Selbsteinschätzungstest

227-0001-00L 2025 [228000]

[Elektrotech. + Inf.tech. BSc]

Beteiligung	$\frac{181}{243}$	74%
Erreichbare Punktzahl	32	
Maximal erreichte Punktzahl	32	
Minimal erreichte Punktzahl	2	
Arithmetisches Mittel	20.82	

Lerntestaufgaben

Integral rechnung (A)

227-0001-00L 2025 [228000]

[Elektrotech. + Inf.tech. BSc]

Beteiligung	$\frac{22}{243}$	9%
Erreichbare Punktzahl	7	
Maximal erreichte Punktzahl	7	
Minimal erreichte Punktzahl	1	
Arithmetisches Mittel	4.36	

Lerntestaufgaben

Vektorgeometrie (A)

227-0001-00L 2025 [228000]

[Elektrotech. + Inf.tech. BSc]

Beteiligung	$\frac{18}{243}$	7%
Erreichbare Punktzahl	8	
Maximal erreichte Punktzahl	8	
Minimal erreichte Punktzahl	4	
Arithmetisches Mittel	6.17	

Bonusaufgaben Woche 1: 276 Eingaben

Erste Versuche

Hauptschwierigkeiten:

- Kugelkoordinaten
- Hüllflächenintegrale

Lesekontrollfragen Woche 2: 254 Eingaben

Erste Versuche

Hauptschwierigkeiten:

- Potentialdifferenz
- Tangentiale Feldstärke

ETH zürich

Das elektrostatische Feld (2/3)

Manfred Albach, «Elektrotechnik», Kapitel 1

227-0001-00L «Netzwerke und Schaltungen 1»

Woche 2

- Konzept des «Feldes»
- Darstellung von Feldern: «Feldlinien» und «Äquipotentialflächen»
- Potential und Spannung
- Elektrische Flussdichte
- Influenz

Lernziele - Das elektrostatische Feld (2/3)

Nach dieser Woche (Lesen im Buch, Vorlesungsstunde, Übungsstunde sowie dem <u>eigenständigen</u> Lösen von Übungsaufgaben) werden Sie in der Lage sein:

- das elektrostatische Feld f
 ür einfache Ladungsanordnungen zu berechnen,
- die zum elektrostatischen Feld gehörigen Äquipotentialflächen und Feldlinien darzustellen,
- die elektrische Spannung aus den Feldgrößen zu bestimmen,

ETH zürich

• Elektrisches (ruhende Ladung, Quellenfeld)

- Magnetisches (bewegte Ladung, Wirbelfeld)
- Verknüpfung beider

Feldarten:

[Paul, Grundlagen der Elektrotechnik 1]

22.09.2025

TH zürich

Magnetisches (bewegte Ladung, Wirbelfeld)

Verknüpfung beider

TH zürich

Verknüpfung beider

Darstellung von Feldern

Abbildung 1.7: Konstruktion der Feldlinie

Darstellung von Feldern

Abbildung 1.8: Feldlinienbild einer positiven Punktladung

«Sichtbar machen» von elektrische Feldlinien

Das Experiment auf dem YouTube-Kanal der ETH D-PHYS Vorlesungsexperimente. (<u>link</u>)

Beispiele aus Kapitel 1.7.1 (bitte zu Hause nachrechnen)

[Tipler, Physik]

High Voltage Laboratory

[Tipler, Physik]

ETH zürich

qualitative Darstellung von Feldbildern

1) Das Feld in unmittelbarer Nähe einer Punktladung ist radialsymmetrisch.

2) Im grossen Abstand verhält sich Feld wie Punktladung mit Gesamtladung im Ladungsschwerpunkt.

qualitative Darstellung von Feldbildern

 Bei verschwindender Gesamtladung gehen keine Feldlinien zur unendlichen Hülle. Nur zwischen den Punktladungen.

4) Symmetrien!

a) zylindersymmetrisch

TH zürich

Magnetisches (bewegte Ladung, Wirbelfeld)

Verknüpfung beider

Arbeit = Kraft · Weg

$$W_e = -\int_{P_0}^{P_1} \vec{\mathbf{F}} \cdot d\vec{\mathbf{s}} = -Q \int_{P_0}^{P_1} \vec{\mathbf{E}} \cdot d\vec{\mathbf{s}}$$

! Linienintegral!

Abbildung 1.11: Bewegung einer Punktladung entlang eines geschlossenen Weges

Gravitationsfeld und potentielle Energie

Bergsteigen = Arbeit verrichten

Aufsteigen = Erhöhung der potentiellen Energie

	Gravitationsfeld	Elektrisches Feld
Definition	Körper (Masse) erfährt Gravitationskraft	Ladung erfährt elektrische Kraft
Ursache	Masse von Körpern	Elektrische Ladungen
Betrag der «Feldstärke»	$g = \vec{F}_{G} /m$	$E = \frac{ \vec{F}_{\rm E} }{q}$
Richtung	Richtung der Kraft auf Probekörper (-masse)	Richtung der Kraft auf positive Probeladung

	Gravitationsfeld	Elektrisches Feld	
Definition	Körper (Masse) erfährt Gravitationskraft	Ladung erfährt elektrische Kraft	
Ursache	Masse von Körpern	Elektrische Ladungen	
Betrag der «Feldstärke»	$g = \vec{F}_{G} /m$	$E = \frac{ \vec{F}_{\rm E} }{q}$	
Richtung	Richtung der Kraft auf Probekörper (-masse)	Richtung der Kraft auf positive Probeladung	
Potentiale	$\varphi = W/_{m} = g \cdot h$	$\varphi = W/_{q} = E \cdot s$	

Bezugspunkt $\varphi = 0$ «im Unendlichen»

Ladung über «Erdplatte» oder Freileitung über Boden

Elektrische Schaltung

Netzstecker

2 - Elektrostatisches Potential

Ein Elektron wird in einem elektrischen Feld verschoben und auf ein um 1V höheres elektrostatisches Potential gebracht. Anschließend werden im gleichen elektrischen Feld zwei Elektronen um die gleiche Wegstrecke verschoben. Um wieviel höher ist das elektrostatische Potential der beiden Elektronen dann?

(0.25 V
N 4	/ U.Z.J V

2.0 V

4.0 \

$$\varphi_e\left(\mathbf{P}_1\right) = \frac{W_e\left(\mathbf{P}_1\right)}{Q} \stackrel{(1.23)}{=} - \int_{\mathbf{P}_0}^{\mathbf{P}_1} \vec{\mathbf{E}} \cdot d\vec{\mathbf{s}}$$

$$\tag{1.25}$$

berechnen.

Merke

Das elektrostatische Potential $\varphi_e(P)$ an der Stelle eines Punktes P ist der Quotient aus der Arbeit, die nötig ist, um eine Ladung Q von einem Punkt P_0 mit dem Bezugspotential $\varphi_e(P_0)=0$ zu dem betrachteten Punkt P zu bringen, und der Ladung.

22.09.2025

Feldlinien stehen senkrecht auf Äquipotentiallinien

Sonst müsste man Arbeit verrichten um ein geladenes Teilchen entlang einer Äquipotentiallinie zu verschieben.

$$\varphi_e(P_1) - \varphi_e(P_0) = 0 \stackrel{(1.23)}{=} - \int_{P_0}^{P_1} \vec{\mathbf{E}} \cdot d\vec{\mathbf{s}}.$$
 (1.28)

Elektrodenoberflächen sind Äquipotentialflächen

TH zürich

Verknüpfung beider

Die elektrische Spannung

Potentialdifferenz zwischen zwei Punkten P₁ und P₂

mit willkürlichem Bezugspunkt P_0 mit $\varphi_e(P_0)=0$

Das Ergebnis ist unabhängig vom Bezugspunkt P₀

TH zürich

Die elektrische Spannung

Potentialdifferenz zwischen zwei Punkten P_1 und P_2 mit willkürlichem Bezugspunkt P_0 mit $\varphi_e(P_0)=0$

Das Ergebnis ist unabhängig vom Bezugspunkt P_0 und wird als elektrische Spannung U_{12} zwischen P_1 und P_2 bezeichnet

$$U_{12} = \varphi_e\left(\mathbf{P}_1\right) - \varphi_e\left(\mathbf{P}_2\right) = \int\limits_{\mathbf{P}_1}^{\mathbf{P}_2} \vec{\mathbf{E}} \cdot d\vec{\mathbf{s}}$$

Kann zum Beispiel auch Spannung zwischen den Polen einer Batterie sein

3 - Elektrische Spannung

Welche Informationen aus dem Bild brauchen Sie NICHT um das Potential zwischen den beiden Punkten zu berechnen? (Mehrfachnennung möglich).

1				
lch	brauche	alle In	format	tionen

	1.7
$\overline{}$	L

		Tat 1 .		÷
-	\Box	Richtung	von	Ŀ

$$\square$$
 Δ_2

3 - Elektrische Spannung

Welche Informationen aus dem Bild brauchen Sie NICHT um das Potential zwischen den beiden Punkten zu berechnen? (Mehrfachnennung möglich).

- Ich brauche alle Informationen.
- \square $|\vec{E}|$
- Richtung von \vec{E}
- X
 - Δy

0

4 - Elektrostatisches Potential

Eine elektrisch leitende Vollkugel trägt eine von Null verschiedene Gesamtladung. Das elektrostatische Potential der Kugel ist ...

- im Kugelmittelpunkt am größten.
- an der Kugeloberfläche am größten.
- an einem Ort zwischen Kugelmittelpunkt und Kugeloberfäche am größten.
- über das Kugelvolumen konstant.

- Im elektrostatischen Feld besitzt ein leitender K\u00f6rper ein konstantes Potential.
- Seine Oberfläche wird zur Äquipotentialfläche, auf der die elektrische Feldstärke senkrecht steht.
- Das Leiterinnere ist feldfrei.

Elektrode 1

frei «floatend»

Elektrode 2

ETH zürich

Verknüpfung beider

Die elektrische Flussdichte

$$\varepsilon_0 \vec{\mathbf{E}} = \vec{\mathbf{D}}$$

Der elektrische Fluss

$$\Psi = \iint_{A} \vec{\mathbf{D}} \cdot d\vec{\mathbf{A}}$$

Bonusaufgabe 4

$$\Psi = \iint_{A} \vec{\mathbf{D}} \cdot d\vec{\mathbf{A}} = Q$$

(1.36)

Auch genannt:

Gaußsches Gesetz

Johann Carl Friedrich Gauß (1777-1855)

[wikipedia.org]

1. Maxwellgleichung (von 4)

James Clerk Maxwell (1831-1879)

ETH zürich

5 - Verhalten von Feldgrössen bei Flächenladungen

Es soll das Verhalten der *Normal*komponente des elektrischen Feldes beim Durchgang durch eine Flächenladung mit Hilfe des Hüllflächenintegrals untersucht werden. Welche der folgenden Formen kann eine Hüllfläche dabei vorteilhafter Weise haben? (Mehrfachnennung möglich)

Die Form ist eigentlich egal, hauptsache die Hüllfläche ist geschlossen.

5 - Verhalten von Feldgrössen bei Flächenladungen

Es soll das Verhalten der *Normal*komponente des elektrischen Feldes beim Durchgang durch eine Flächenladung mit Hilfe des Hüllflächenintegrals untersucht werden. Welche der folgenden Formen kann eine Hüllfläche dabei vorteilhafter Weise haben? (Mehrfachnennung möglich)

Die Form ist eigentlich egal, hauptsache die Hüllfläche ist geschlossen.

Das Verhalten der Feldgrössen bei einer Flächenladung → Normalkomponente

Abbildung 1.16: Flächenladungsverteilung

Das Verhalten der Feldgrössen bei einer Flächenladung

- Vektorzerlegung
- Normalkomponente Gesetzmässigkeit
- Tangentialkomponente Gesetzmässigkeit
- Vektoraddition

stärke mit der Länge ds. Aus dem geforderten Verschwinden des Umlaufintegrals nach Gl. (1.22) folgt unmittelbar die Stetigkeit der Tangentialkomponente der elektrischen Feldstärke auf beiden Seiten der Flächenladung

$$E_{t2} ds - E_{t1} ds = 0 \rightarrow E_{t1} = E_{t2}$$
 (1.44)

Lesekontrollfrage 5

Erklärung des vorher Besprochenen - Die Influenz

Die Influenz

Abbildung 1.21: Leitender Körper im elektrischen Feld

Aufgaben für Übungsstunde und zu Hause

Feld um zwei Punktladungen

Homogen geladene Kugel

