LINEARLY REDUCTIVE GROUPS

Theorem 0.1 (Rigidity). Let G be an anti-affine algebraic group, let Z be a separated k-scheme with G-action and let $f: G \times_k Y \to Z$ be a G-equivariant morphism of k-schemes. Suppose that e is the unit of G and g is a g-point of g. Denote the g-point g-poi

$$\mathbf{G} \times_k \mathbf{Y} \xrightarrow{\operatorname{pr}_{\mathbf{Y}}} \mathbf{Y} \xrightarrow{\cong} \operatorname{Spec} k(e) \times_k \mathbf{Y} \xrightarrow{f_{|\operatorname{Spec} k(e) \times_k \mathbf{Y}}} \mathbf{Z}$$

Proof. Let $\mathcal{J} \subseteq \mathcal{O}_Z$ be the quasi-coherent ideal determining the closed immersion $\operatorname{Spec} k(z) \hookrightarrow Z$ and let \mathcal{I} be the quasi-coherent ideal determining $\mathbf{G} \times_k \operatorname{Spec} k(y)$ as a closed subscheme of $\mathbf{G} \times_k Y$. Then $f^{-1}\mathcal{J} \cdot \mathcal{O}_Z \subseteq \mathcal{I}$ and hence $f^{-1}\mathcal{J}^n \cdot \mathcal{O}_Z \subseteq \mathcal{I}^n$ for every positive integer n. This implies that for each positive integer n the morphism $f_{|\mathbf{G} \times_k \operatorname{Spec} \mathcal{O}_{Y,u}/\mathfrak{m}_v^n}$ factors through a morphism

$$h_n: \mathbf{G} \times_k \operatorname{Spec} \mathcal{O}_{Y,y}/\mathfrak{m}_y^n \to \operatorname{Spec} \mathcal{O}_{Z,z}/\mathfrak{m}_z^n$$

Since h_n is a morphism into an affine k-scheme, it is uniquely determined by k-algebra morphism induced on global sections

$$\Gamma(h_n^{\sharp}, \operatorname{Spec} \mathcal{O}_{Z,z}/\mathfrak{m}_z^n) : \mathcal{O}_{Z,z}/\mathfrak{m}_z^n \to \Gamma\left(\mathbf{G} \times_k \operatorname{Spec} \mathcal{O}_{Y,y}/\mathfrak{m}_y^n, \mathcal{O}_{\mathbf{G} \times_k \operatorname{Spec} \mathcal{O}_{Y,y}/\mathfrak{m}_y^n}\right)$$

By Theorem ?? we have canonical identification

$$\Gamma\left(\mathbf{G}\times_{k}\operatorname{Spec}\mathcal{O}_{Y,y}/\mathfrak{m}_{y}^{n},\mathcal{O}_{\mathbf{G}\times_{k}\operatorname{Spec}\mathcal{O}_{Y,y}/\mathfrak{m}_{y}^{n}}\right)=\Gamma\left(\mathbf{G},\mathcal{O}_{\mathbf{G}}\right)\otimes_{k}\mathcal{O}_{Y,y}/\mathfrak{m}_{y}^{n}=\mathcal{O}_{Y,y}/\mathfrak{m}_{y}^{n}$$

This implies that $\Gamma(h_n^\#,\operatorname{Spec}\mathcal{O}_{Z,z}/\mathfrak{m}_z^n)$ factors through $\mathcal{O}_{Y,y}/\mathfrak{m}_y^n$ and hence $f_{|\mathbf{G}\times_k\operatorname{Spec}\mathcal{O}_{Y,y}/\mathfrak{m}_y^n}$ equals

$$\mathbf{G} \times_k \operatorname{Spec} \mathcal{O}_{Y,y}/\mathfrak{m}_y^n \xrightarrow{\operatorname{pr}_n} \operatorname{Spec} \mathcal{O}_{Y,y}/\mathfrak{m}_y^n \xrightarrow{\cong} \operatorname{Spec} k(e) \times_k \operatorname{Spec} \mathcal{O}_{Y,y}/\mathfrak{m}_y^n \xrightarrow{f_{|\operatorname{Spec} k(e)} \times_k \operatorname{Spec} \mathcal{O}_{Y,y}/\mathfrak{m}_y^n}} Z$$

for every positive integer n. Now consider a closed subscheme $i : E \hookrightarrow \mathbf{G} \times_k Y$ that is a kernel of a pair consisting of f and the morphism

$$\mathbf{G} \times_k Y \xrightarrow{\operatorname{pr}_Y} Y \xrightarrow{\cong} \operatorname{Spec} k(e) \times_k Y \xrightarrow{f|\operatorname{Spec} k(e) \times_k Y} Z$$

Then by what we proved above we deduce that $\mathbf{G} \times_k \operatorname{Spec} \mathcal{O}_{Y,y}/\mathfrak{m}_y^n$ is a subscheme of E for every positive integer n. This implies that $\mathbf{G} \times_k \operatorname{Spec} \mathcal{O}_{Y,y}$ is a subscheme of E.

REFERENCES

[ML98] Saunders Mac Lane. Categories for the working mathematician, volume 5 of Graduate Texts in Mathematics. Springer-Verlag, New York, second edition, 1998.

[Mon19a] Monygham. Categories of presheaves. github repository: "Monygham/Pedo-mellon-a-minno", 2019.

[Mon19b] Monygham. Geometry of k-functors. github repository: "Monygham/Pedo-mellon-a-minno", 2019.