Algorytm Sito Eratostenesa 34 (Sieve of Eratosthenes)

Wojtek Zrałek

Wprowadzenie 🌟

Służy on do znajdowania liczb pierwszych w danym przedziale [2 ,n]

Został wymyślony przez greckiego matematyka Eratostenesa z Cyreny, który żył w latach $276-194\ p.n.e.$

Opiera się on na eliminacji liczby złożonych, czyli takich, które mają więcej niż dwa dzielniki, z przedziału [2 ,n] poprzez wykreślanie wielokrotności liczb pierwszych.

Algorytm ten jest jednym z najstarszych wynalezionych algorytmów do znajdowania liczb pierwszych.

Schemat blokowy

Pseudokod 🧩


```
n = input
T[n] = array<bool>
for s = 2, 3, 4, ..., n:
T[s] = prawda
i = 2
while i * i <= n:
 if T[i] == True:
  j = i * i
 while j <= n:</pre>
  T[j] = False
  j = j + i
 i = i + 1
for a = 2, 3, 4, ..., n:
 if T[a] == True:
 print a
```

Kod algorytmu w Javie 🥮


```
import java.util.Arrays;
import java.util.Scanner;
public class SieveOfEratosthenes {
    void main() {
        Scanner scanner = new Scanner(System.in);
        System.out.print("Podaj liczbe n: ");
        int n = scanner.nextInt();
        boolean[] isPrime = new boolean[n + 1];
        Arrays.fill(isPrime, true);
        int i = 2;
        while (i * i <= n) {
            if (isPrime[i]) {
               int j = i * i;
               while (j <= n) {
                    isPrime[j] = false;
                    j = j + i;
            i = i + 1;
        System.out.println("Liczby pierwsze od 2 do " + n + ":");
        for (int a = 2; a <= n; a++) {</pre>
            if (isPrime[a]) {
                System.out.print(a + " ");
```

Złożoność obliczeniowa 🧭

Dla zakresu do n, algorytm Sita Eratostenesa ma złożoność obliczeniową O(n log log n).

Jest to złożoność <u>asymptotyczna</u>, ponieważ zależy ona od rozmiaru danych wejściowych.

Algorytm jest szybszy od takiego sprawdzającego każdą liczbę z zakresu od 2 do n.

Operacja dominująca w algorytmie 💳

W algorytmie Sita Eratostenesa operacją dominującą jest oznaczanie (czyli "wykreslanie" lub "odznaczanie") wielokrotności liczb pierwszych.

Oznaczanie wielokrotności polega na ustawianiu flagi lub usuwaniu liczby z listy, co odpowiada operacji O(1) dla każdej zaznaczonej liczby.

Zanimowanie działania algorytmu

Dla tablicy n = 120

	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100
101	102	103	104	105	106	107	108	109	110
111	112	113	114	115	116	117	118	119	120

Prime numbers

Dzięki 💙

Źródła 🔗

Wikipedia

zpe.gov.pl

ChatGPT