Department of Engineering Cybernetics

TTK4215 Adaptive Control

Assignment 12: Adaptive Backstepping

Problem 4 on page 317 of Adaptive Control Tutorial by Ioannou and Fidan (note made available on Blackboard). Assume that $g_1(0) = 0$ and that g_1 twice continuously differentiable.

4. Consider the system

$$\dot{x}_1 = x_2 + \theta_1^{*^T} g_1(x_1),
\dot{x}_2 = x_3,
\dot{x}_3 = u + \theta_2^{*^T} g_2(x_1, x_2, x_3),$$

where g_1 , g_2 are known nonlinear differentiable functions and u is the control input.

- (a) Design a stabilizing control law assuming that θ_1^* , θ_2^* are known.
- (b) Design an adaptive control law and show that it guarantees signal boundedness and convergence of the states to zero when θ_1^* , θ_2^* are unknown.

Hint for part b): See Section 2 of the paper: (made available on Blackboard) M. Krstic, I. Kanellakopoulos and P.V. Kokotovic, "Adaptive nonlinear control without overparametrization," Systems & Control Letters 19 (1992) 177-185.