18 декабря 2023 года

Нормирования и валюации

ОПРЕДЕЛЕНИЕ: Пусть K — поле. Нормированием называется отображение $|\cdot|: K \to \mathbb{R}_{\geqslant 0}$ такое, что (1) $|x| = 0 \Leftrightarrow x = 0$; (2) |xy| = |x||y|; (3) $|x+y| \leqslant |x| + |y|$.

ОПРЕДЕЛЕНИЕ: Если верна более сильная аксиома (3') $|x + y| \le \max(|x|,|y|)$, нормирование называется **неархимедовым**.

Нормирования и валюации

ОПРЕДЕЛЕНИЕ: Пусть K — поле. Нормированием называется отображение $|\cdot|: K \to \mathbb{R}_{\geqslant 0}$ такое, что (1) $|x| = 0 \Leftrightarrow x = 0$; (2) |xy| = |x||y|; (3) $|x+y| \leqslant |x| + |y|$.

ОПРЕДЕЛЕНИЕ: Если верна более сильная аксиома (3') $|x + y| \le \max(|x|,|y|)$, нормирование называется **неархимедовым.**

ОПРЕДЕЛЕНИЕ: Пусть Γ — упорядоченная абелева группа. Отображение $\nu: K \to \Gamma \cup \{\infty\}$ называется валюацией, если (1) $\nu(x) = \infty \Leftrightarrow x = 0$; (2) $\nu(xy) = \nu(x) + \nu(y)$; (3) $\nu(x+y) \geqslant \min(\nu(x), \nu(y))$.

ЗАМЕЧАНИЕ: Если $\Gamma \subset \mathbb{R}$, а ν — валюация, то $|x|_{\nu} = e^{-\nu(x)}$ — неархимедово нормирование.

Нормирования и валюации

ОПРЕДЕЛЕНИЕ: Пусть K — поле. Нормированием называется отображение $|\cdot|: K \to \mathbb{R}_{\geqslant 0}$ такое, что (1) $|x| = 0 \Leftrightarrow x = 0$; (2) |xy| = |x||y|; (3) $|x+y| \leqslant |x| + |y|$.

ОПРЕДЕЛЕНИЕ: Если верна более сильная аксиома (3') $|x + y| \le \max(|x|,|y|)$, нормирование называется **неархимедовым.**

ОПРЕДЕЛЕНИЕ: Пусть Γ — упорядоченная абелева группа. Отображение $\nu: K \to \Gamma \cup \{\infty\}$ называется **валюацией**, если (1) $\nu(x) = \infty \Leftrightarrow x = 0$; (2) $\nu(xy) = \nu(x) + \nu(y)$; (3) $\nu(x+y) \geqslant \min(\nu(x), \nu(y))$.

ЗАМЕЧАНИЕ: Если $\Gamma \subset \mathbb{R}$, а ν — валюация, то $|x|_{\nu} = e^{-\nu(x)}$ — неархимедово нормирование.

ПРИМЕР: Если X — аффинная кривая, всякая точка $x \in X$ определяет валюацию на поле функций k(X): $\nu_x(f)$ есть порядок полюса f в x.

ПРИМЕР: Если p — простое число, p-адическая валюация на $\mathbb Q$ определяется как $\nu(n/p^km)=k$, где m,n не делятся на p.

ОПРЕДЕЛЕНИЕ: Нормирование определяет метрику d(x,y) = |x-y|, а потому и топологию. Если она дискретна, нормирование называется **тривиальным.** Нормирования, определяющие одинаковую топологию, называются **эквивалентными.** Классы эквивалентности нормирований называются **местами.**

ОПРЕДЕЛЕНИЕ: Нормирование определяет метрику d(x,y) = |x-y|, а потому и топологию. Если она дискретна, нормирование называется **тривиальным.** Нормирования, определяющие одинаковую топологию, называются **эквивалентными.** Классы эквивалентности нормирований называются **местами.**

TEOPEMA: (A. M. Островский, 1916) Нетривиальные места поля \mathbb{Q} это стандартный модуль и p-адические нормирования. \blacksquare

ОПРЕДЕЛЕНИЕ: Нормирование определяет метрику d(x,y) = |x-y|, а потому и топологию. Если она дискретна, нормирование называется **тривиальным.** Нормирования, определяющие одинаковую топологию, называются **эквивалентными.** Классы эквивалентности нормирований называются **местами.**

TEOPEMA: (A. M. Островский, 1916) Нетривиальные места поля \mathbb{Q} это стандартный модуль и p-адические нормирования. \blacksquare

TEOPEMA: Нетривиальные места поля $\mathbb{F}_p(t)$ это deg и π -адические нормирования для всех неприводимых многочленов $\pi \in \mathbb{F}_p[t]$.

TEOPEMA: Нетривиальные места поля k(t), **тривиальные на** k, это deg и π -адические нормирования для всех неприводимых многочленов $\pi \in k[t]$.

ОПРЕДЕЛЕНИЕ: Нормирование определяет метрику d(x,y) = |x-y|, а потому и топологию. Если она дискретна, нормирование называется **тривиальным.** Нормирования, определяющие одинаковую топологию, называются **эквивалентными.** Классы эквивалентности нормирований называются **местами.**

TEOPEMA: (A. M. Островский, 1916) Нетривиальные места поля \mathbb{Q} это стандартный модуль и p-адические нормирования. \blacksquare

TEOPEMA: Нетривиальные места поля $\mathbb{F}_p(t)$ это deg и π -адические нормирования для всех неприводимых многочленов $\pi \in \mathbb{F}_p[t]$.

TEOPEMA: Нетривиальные места поля k(t), **тривиальные на** k, это deg и π -адические нормирования для всех неприводимых многочленов $\pi \in k[t]$.

ЗАМЕЧАНИЕ: Таким образом, множество мест данного поля весьма похоже на спектр его кольца целых.

ОПРЕДЕЛЕНИЕ: Пусть $k \subset K$ — расширение полей. **Пространством Римана—Зариского** K над k называется множество подколец (не обязательно дискретной) валюации в K, содержащих k. **Базой топологии** на нем служат множества колец, содержащих фиксированное подмножество $S \subset K$.

ОПРЕДЕЛЕНИЕ: Пусть $k \subset K$ — расширение полей. **Пространством Римана—Зариского** K над k называется множество подколец (не обязательно дискретной) валюации в K, содержащих k. **Базой топологии** на нем служат множества колец, содержащих фиксированное подмножество $S \subset K$.

ПРИМЕР: Пусть C — алгебраическая кривая над k, и k(C) — ее поле функций. Пространство Римана—Зариского K/k состоит из тривиального нормирования, и из p-адических нормирований для точек $p \in C$. Оно изоморфно **гладкой проективной модели** кривой C с топологией Зариского, **тривиальное** нормирование при этом соответствует **общей точке.**

ОПРЕДЕЛЕНИЕ: Пусть $k \subset K$ — расширение полей. **Пространством Римана—Зариского** K над k называется множество подколец (не обязательно дискретной) валюации в K, содержащих k. **Базой топологии** на нем служат множества колец, содержащих фиксированное подмножество $S \subset K$.

ПРИМЕР: Пусть C — алгебраическая кривая над k, и k(C) — ее поле функций. Пространство Римана—Зариского K/k состоит из тривиального нормирования, и из p-адических нормирований для точек $p \in C$. Оно изоморфно **гладкой проективной модели** кривой C с топологией Зариского, **тривиальное** нормирование при этом соответствует **общей точке.**

ЗАМЕЧАНИЕ: Уже для полей функций поверхностей пространство Римана—Зариского не изоморфно никакой схеме. Однако в некотором смысле оно неособо, и может служить более слабой версией разрешения особенностей.

ПРИМЕР: Пусть $C = \{f(x,y) = 0\}$ — неприводимая плоская кривая. Если $\varphi \in k(x,y)$ — рациональная функция, то она имеет вид g/f^nh , где g и h взаимно просты с f. Тогда $\nu(g/f^nh) = n$ — дискретная валюация.

ПРИМЕР: Пусть $C = \{f(x,y) = 0\}$ — неприводимая плоская кривая. Если $\varphi \in k(x,y)$ — рациональная функция, то она имеет вид g/f^nh , где g и h взаимно просты с f. Тогда $\nu(g/f^nh) = n$ — дискретная валюация.

ПРИМЕР: Пусть $x \in C$ — точка на кривой. Функция g/h непостоянна на C, так что имеет в x ноль или полюс порядка m. Тогда $\nu_{C,x}(f^ng/h) = (n,m) \in \mathbb{Z}^2$ — недискретная валюация.

ПРИМЕР: Пусть $C = \{f(x,y) = 0\}$ — неприводимая плоская кривая. Если $\varphi \in k(x,y)$ — рациональная функция, то она имеет вид g/f^nh , где g и h взаимно просты с f. Тогда $\nu(g/f^nh) = n$ — дискретная валюация.

ПРИМЕР: Пусть $x \in C$ — точка на кривой. Функция g/h непостоянна на C, так что имеет в x ноль или полюс порядка m. Тогда $\nu_{C,x}(g/f^nh) = (n,m) \in \mathbb{Z}^2$ — недискретная валюация.

ПРИМЕР: Пусть $k=\mathbb{C},\ C'$ — **неалгебраическая** кривая, $x\in C'$ — глад-кая точка. Ограничение $\varphi|_{C'}$ в локальной координате имеет вид $z^ng(z)$, $g(0)\neq 0,\ x=z(0).$ Тогда $\nu_{C',x}(\varphi)=n$ — дискретная валюация.

ПРИМЕР: Пусть $C = \{f(x,y) = 0\}$ — неприводимая плоская кривая. Если $\varphi \in k(x,y)$ — рациональная функция, то она имеет вид g/f^nh , где g и h взаимно просты с f. Тогда $\nu(g/f^nh) = n$ — дискретная валюация.

ПРИМЕР: Пусть $x \in C$ — точка на кривой. Функция g/h непостоянна на C, так что имеет в x ноль или полюс порядка m. Тогда $\nu_{C,x}(g/f^nh) = (n,m) \in \mathbb{Z}^2$ — недискретная валюация.

ПРИМЕР: Пусть $k=\mathbb{C},\ C'$ — **неалгебраическая** кривая, $x\in C'$ — глад-кая точка. Ограничение $\varphi|_{C'}$ в локальной координате имеет вид $z^ng(z)$, $g(0)\neq 0,\ x=z(0).$ Тогда $\nu_{C',x}(\varphi)=n$ — дискретная валюация.

ПРИМЕР: Пусть $k=\mathbb{C}$, γ иррационально, подставим $y=x^{\gamma}$ и рассмотрим у функции $\Phi(x)=\varphi(x,x^{\gamma})$ разложение по (иррациональным) степеням x. Если оно начинается с $x^{n+m\gamma}$, положим $\nu(\varphi)=n+m\gamma$. Это недискретная валюация, ее группа значений плотна в \mathbb{R} .