Devoir surveillé n°2

- ► La présentation, la lisibilité, l'orthographe, la qualité de la rédaction et la précision des raisonnements entreront pour une part importante dans l'appréciation des copies.
- ▶ On prendra le temps de vérifier les résultats dans la mesure du possible.
- ► Les calculatrices sont interdites.

Exercice 1.

Soit $\omega = e^{\frac{2i\pi}{5}}$. On pose $A = \omega + \omega^4$ et $B = \omega^2 + \omega^3$.

- 1. Montrer que $A = 2\cos\frac{2\pi}{5}$ et $B = 2\cos\frac{4\pi}{5}$.
- 2. Calculer A + B et AB. En déduire les valeurs exactes de A et B.
- 3. En déduire les valeurs de $\cos \frac{\pi}{5}$, $\cos \frac{2\pi}{5}$, $\cos \frac{3\pi}{5}$ et $\cos \frac{4\pi}{5}$.

EXERCICE 2.

- **1.** On considère l'équation (E) : $(1+iz)^5 = (1-iz)^5$ d'inconnue $z \in \mathbb{C}$.
 - a. Soit $\theta \in \mathbb{R}$ non congru à $\frac{\pi}{2}$ modulo π . Montrer que $\frac{e^{2i\theta}-1}{e^{2i\theta}+1}=i\tan\theta$.
 - **b.** Déterminer les solutions complexes de (E) à l'aide des racines cinquièmes de l'unité. On exprimera les solutions à l'aide de la fonction tan.
 - c. Développer $(1+iz)^5$ et $(1-iz)^5$ à l'aide de la formule du binôme de Newton. En déduire les solutions de (E) sous une autre forme.
 - **d.** Déterminer le sens de variation de la fonction tan sur l'intervalle $\left]-\frac{\pi}{2}, \frac{\pi}{2}\right[$. En déduire les valeurs de tan $\frac{\pi}{5}$ et tan $\frac{2\pi}{5}$.
- 2. On se donne maintenant $\alpha \in \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[$ et on considère l'équation

$$(E_{\alpha}): (1+iz)^{5}(1-i\tan{\alpha}) = (1-iz)^{5}(1+i\tan{\alpha})$$

d'inconnue $z \in \mathbb{C}$.

- **a.** Montrer que $\frac{1+i\tan\alpha}{1-i\tan\alpha}=e^{2i\alpha}$.
- **b.** Résoudre l'équation $Z^5=e^{2\mathrm{i}\alpha}$ d'inconnue $Z\in\mathbb{C}.$
- c. En déduire les solutions de (E_{α}) que l'on exprimera à l'aide de la fonction tan.

Exercice 3.

1. Soit $(z_1, z_2) \in \mathbb{C}^2$. Montrer que

$$|z_1 + z_2|^2 + |z_1 - z_2|^2 = 2|z_1|^2 + 2|z_2|^2$$

2. Soient $(z_1,z_2)\in\mathbb{C}^2$ et u une racine carrée du produit z_1z_2 . Montrer que

$$|z_1| + |z_2| = \left| \frac{z_1 + z_2}{2} - \mathbf{u} \right| + \left| \frac{z_1 + z_2}{2} + \mathbf{u} \right|$$

3. Soit $m \in \mathbb{C}$. On note a et b les racines de l'équation $z^2 + 2mz + 1 = 0$. Montrer que |a| + |b| = |m-1| + |m+1|.

Exercice 4.

On pose $\varphi(z) = |z^3 - z + 2|$ pour $z \in \mathbb{C}$. On souhaite déterminer la valeur maximale de $\varphi(z)$ lorsque z décrit \mathbb{U} .

- **1.** Soit $\theta \in \mathbb{R}$. Exprimer $\cos 3\theta$ en fonction de $\cos \theta$.
- **2.** Soit $z \in \mathbb{U}$ et θ un de ses arguments. Exprimer $|z^3 z + 2|^2$ uniquement en fonction de $\cos \theta$.
- 3. Soit f la fonction définie par

$$\forall x \in \mathbb{R}, \ f(x) = 4x^3 - x^2 - 4x + 2$$

Déterminer les variations de f sur \mathbb{R} .

4. Répondre à la question initialement posée. On précisera pour quelle(s) valeur(s) de $z \in \mathbb{U}$ cette valeur maximale est atteinte.

Exercice 5.

Soient (x_n) et (y_n) deux suites réelles définies par $x_0=1$, $y_0=0$ et par $\forall n\in\mathbb{N}, \begin{cases} x_{n+1}=x_n+y_n\\ y_{n+1}=y_n-x_n \end{cases}$. On pose $z_n=x_n+iy_n$ pour tout $n\in\mathbb{N}$.

- **1.** Calculer z_0, z_1, z_2 et z_3 .
- 2. Montrer que (z_n) est une suite géométrique. On donnera sa raison sous formes algébrique et exponentielle.
- 3. Exprimer $A_n = \sum_{k=0}^n z_k$, $B_n = \sum_{k=0}^n x_k$, $C_n = \sum_{k=0}^n y_k$ en fonction de n à l'aide des fonctions cos et sin.

EXERCICE 6.

 $\text{Pour } n \in \mathbb{N} \text{ et } \theta \in \mathbb{R} \text{, on pose } D_n(\theta) = \sum_{k=-n}^n e^{ki\theta} \text{ et } F_n(\theta) = \sum_{k=0}^n D_k(\theta).$

1. Montrer que si $\theta \not\equiv 0[2\pi]$, $D_n(\theta) = \frac{\sin\left(\left(n + \frac{1}{2}\right)\theta\right)}{\sin\left(\frac{\theta}{2}\right)}$.

Préciser également la valeur de $D_n(\theta)$ lorsque $\theta \equiv 0[2\pi]$.

2. Montrer que si $\theta \not\equiv 0[2\pi]$, $F_n(\theta) = \frac{\sin^2\left(\frac{(n+1)\theta}{2}\right)}{\sin^2\left(\frac{\theta}{2}\right)}$.

Préciser également la valeur de $F_n(\theta)$ lorsque $\theta \equiv 0[2\pi]$.