ĐẠI HỌC QUỐC GIA THÀNH PHỐ HÒ CHÍ MINH TRƯỜNG ĐẠI HỌC KHOA HỌC TỰ NHIỀN KHOA CÔNG NGHỆ THÔNG TIN

BÀI BÁO CÁO LAB 01

SINH VIÊN THỰC HIỆN Nguyễn Anh Thư – 18127227

GIÁO VIÊN HƯỚNG DẪN Thầy Lý Quốc Ngọc Thầy Phạm Minh Hoàng Thầy Phạm Thanh Tùng

BỘ MÔN: XỬ LÝ ẢNH SỐ VÀ VIDEO SỐ

Thành phố Hồ Chí Minh – 04/2021

MỤC LỤC

I.]	Nội dung yêu cầu:	3
II.		Nội dung thực hiện:	3
1	1.	Đổi từ ảnh màu sang ảnh xám:	
		Đổi từ ảnh màu RGB sang ảnh màu HSV:	
		Đổi độ sáng ảnh màu hoặc ảnh xám:	
		Đổi độ tương phản ảnh màu hoặc ảnh xám:	
		Vẽ lược đồ xám hoặc lược đồ màu:	
		Cân bằng lược đồ xám hoặc lược đồ màu:	
		Tài liêu tham khảo:	

I. Nội dung yêu cầu:

STT	YÊU CÂU	HOÀN THÀNH
1	Đọc ảnh đầu vào từ file	100%
2	Lưu ảnh kết quả vào file	100%
3	Đổi từ ảnh màu sang ảnh xám	100%
4	Đổi ảnh từ không gian màu RGB sang không gian màu HSV	100%
5	Đổi độ sáng của ảnh màu hoặc ảnh xám	100%
6	Đổi độ tương phản của ảnh màu hoặc ảnh xám	100%
7	Vẽ lược đồ đồ xám của ảnh xám hoặc lược đồ màu của ảnh màu	100%
8	Cân bằng lược đồ độ xám của ảnh xám hoặc lược đồ màu của ảnh màu	100%

II. Nội dung thực hiện:

- 1. Đổi từ ảnh màu sang ảnh xám:
- Input: ảnh màu RGB f (x, y)
- Output: ảnh xám g (x, y)
- Thuật toán sử dụng:

$$g(x, y) = 0.3*f(x, y).R + 0.59*f(x, y).G + 0.11*f(x, y).B$$

- Chạy chương trình và kết quả:

2. Đổi từ ảnh màu RGB sang ảnh màu HSV:

- Input: ảnh màu RGB f (x, y)
- Output: ảnh màu HSV g (x, y)

- Thuật toán sử dụng:

$RGB \leftrightarrow HSV$

In case of 8-bit and 16-bit images, R, G, and B are converted to the floating-point format and scaled to fit the 0 to 1 range.

$$V \leftarrow max(R,G,B)$$

$$S \leftarrow \begin{cases} \frac{V - min(R,G,B)}{V} & \text{if } V \neq 0 \\ 0 & \text{otherwise} \end{cases}$$

$$H \leftarrow \begin{cases} 60(G-B)/(V - min(R,G,B)) & \text{if } V = R \\ 120 + 60(B-R)/(V - min(R,G,B)) & \text{if } V = G \\ 240 + 60(R-G)/(V - min(R,G,B)) & \text{if } V = B \\ 0 & \text{if } R = G = B \end{cases}$$

If H < 0 then $H \leftarrow H + 360$. On output $0 \leq V \leq 1, \, 0 \leq S \leq 1, \, 0 \leq H \leq 360$.

The values are then converted to the destination data type:

- 8-bit images: $V \leftarrow 255V, S \leftarrow 255S, H \leftarrow H/2 \text{(to fit to 0 to 255)}$
- 16-bit images: (currently not supported) V < -65535V, S < -65535S, H < -H
- . 32-bit images: H, S, and V are left as is

See also

cv::COLOR_BGR2HSV, cv::COLOR_RGB2HSV, cv::COLOR_HSV2BGR, cv::COLOR_HSV2RGB

OpenCV: Color conversions

3. Đổi độ sáng ảnh màu hoặc ảnh xám:

- Input: ảnh màu hoặc ảnh xám f (x, y)
- Output: ảnh màu hoặc ảnh xám g(x, y)
- Thuật toán sử dụng:

$$g(x, y) = f(x, y) + b$$

4. Đổi độ tương phản ảnh màu hoặc ảnh xám:

- Input: ảnh màu hoặc ảnh xám f(x, y)
- Output: ảnh màu hoặc ảnh xám g(x, y)
- Thuật toán sử dụng:

$$g(x, y) = f(x, y) * c$$

5. Vẽ lược đồ xám hoặc lược đồ màu:

- Input: ảnh màu hoặc ảnh xám f(x, y)

- Output: ånh histogram H

- Thuật toán sử dụng:

$$H[f(x, y)] += 1$$

6. Cân bằng lược đồ xám hoặc lược đồ màu:

- Input: ảnh màu hoặc ảnh xám f (x, y)
- Output: ảnh màu hoặc ảnh xám g (x, y)
- Thuật toán sử dụng:

3.1.3.1. Histogram Equalization (Algorithm)

Step1. Create an array H of length nG initialized with 0 values (for an NxM image f of nG grey-levels).

Step2. Form the image histogram of f, save to H H[f(x, y)] + = 1

Step3. Form the cumulative image histogram of f, save to T T[0] = H[0]; T[p] = T[p-1] + H[p], p = 1,2,...,nG-1

Step4. Constructing a lookup table **T** in range [0;nG-1] T[p] = round((nG-1)/NM)T[p])

Step5. Form the **output image** g:g(x,y) = T[f(x,y)]

Tham khảo từ slide lý thuyết

III. Tài liệu tham khảo:

- (1) Slide lý thuyết Image Pre-processing
- (2) OpenCV: Color conversions