Problem: Minimum Spanning Trees

$$G = (V, E)$$

Algorithm: (Greedy Method, Kruskal)

Step 1: sort edges by lengths

Step 2: for i = 1 to |E|

select the i-th edge as a tree edge if it induces no cycle.

O-1c

Problem: Minimum Spanning Trees

$$G = (V, E)$$

Algorithm: (Greedy Method, Kruskal)

Step 1: sort edges by lengths

Step 2: for i = 1 to |E|

select the i-th edge as a tree edge if it induces no cycle.

Data structure:

- 1 graph G: matrix, lists
- ② sets:

{a}, {b}, {c}, {d}, {e}, {f}

{a, b}, {c}, {d}, {e}, {f}

 $\{e\} \cup \{f\}$

unchanged for 4 {a, b, e, f}, {c}, {d}

{a, b}, {c}, {d}, {e, f}

Problem: Minimum Spanning Trees

$$G = (V, E)$$

Algorithm: (Greedy Method, Kruskal)

Step 1: sort edges by lengths

Step 2: for i = 1 to |E|

select the i-th edge as a tree edge if it induces no cycle.
(two ends are in different sets)

Data structure:

- (1) graph G: matrix, lists
- 2 sets: array, list, tree, ...

Analysis: ①list ②tree → O(|E| |g| |E|)

