GX Dataset - Comparing F30 and M30 Stimulation

Overview

The goal of this analysis is to examine and compare behavioral and physiological outcomes from Experiment 2 of the GX dataset.

The GX dataset explored the use of various tES types on enhancing vigilance and attention.

The dataset included behavioral and neurophysiological outcomes quantifying stimulation related changes.

In these analyses we focus on outcomes from:

- Karolinska Sleepiness Scale (KSS)
- Compensatory Tracking Task (CTT deviation)
- Electrocardiographic monitoring (ECG RMSSD and LF/HF ratio)
- Electroencephalographic (EEG PSD Frequency bandpower ratios)

Author: Nigel Gebodh

Last updated: April 18th 2024

Email: nigel.gebodh@gmail.com

Table of Contents

Overview	1
Background Info	2
What is the GX dataset?	
Where can I find the GX dataset and Code?	2
Data Used Here	2
Required Files	3
General Set-up	
Clear residuals	3
Folder Set-up	3
Set Up Stats Holder	
Statistics	
_ooking at the KSS data	
Cardiac HRV Outcomes	

EG Outcomes	. 12
Organize All Statistics	. 19
BH Correct p-values	
Show Significant Outcomes	
Save Stats Outcomes	

Background Info

What is the GX dataset?

A dataset combining high-density electroencephalography (EEG) with physiological and continuous behavioral metrics during transcranial electrical stimulation (tES; including tDCS and tACS). Data includes within participant application of nine High-Definition tES (HD-tES) types targeted three brain regions (frontal, motor, parietal) with three waveforms (DC, 5Hz, 30Hz), with more than 783 total stimulation trials over 62 sessions with EEG, physiological (ECG or EKG, EOG), and continuous behavioral vigilance/alertness metrics.

The dataset data descriptor can be found here:

 Gebodh, N., Esmaeilpour, Z., Datta, A. et al. Dataset of concurrent EEG, ECG, and behavior with multiple doses of transcranial electrical stimulation. Nature Sci Data 8, 274 (2021). https://doi.org/10.1038/s41597-021-01046-y

Where can I find the GX dataset and Code?

You can access the GX dataset in multiple formats.

- Raw EEG, ECG, EOG data in .cnt formant
- Raw <u>EEG, ECG, EOG data</u> formated to comply with <u>BIDS</u> standard where data are in .set format (<u>EEGlab</u>)
- Raw downsampled EEG, ECG, EOG data (1k Hz) in .mat format for <u>Experiment 1</u> and <u>Experiment 2</u> (works with <u>MATLAB</u> and <u>Python</u>)
- Raw behavioral CTT data .csv format
- Questionnaire data in .xlsx format

The main code repository contains processing scripts and examples of how to use the GX dataset:

https://github.com/ngebodh/GX tES EEG Physio Behavior

Data Used Here

The data used here were extracted from Experiment 2 of the GX dataset.

EEG and ECG data were minimally preprocessed and measures extracted using the YASA and Systole libraries in Python.

For the EEG we extract PSD bandpower ratios and for the ECG we extract time (RMSSD) and frequency (LF/HF ratio) heart rate variability metrics.

The following data files are used within this code:

- GX KKS Exp2.x1sx This contains the KSS data for F30 and M30, pre and post intervention
- HRV_Perf_mean.csv This contains the CTT deviation from during to pre stimulation
- HRV RMSSD.csv This contains the RMSSD data from during to pre stimulation
- HRV_lf_hf_ratio.csv This contains the LF/HF ratio data from during to pre stimulation
- EEG_stats_Allfeats.csv This contains channel-wise EEG data for PSD band power changes as well as CTT deviation data (Post-Pre)

Note:

- The data from the HRV analysis only computes DURING PRE Stimulation
- The data from the EEG analysis only computes POST PRE Stimulation.
- The CTT measure that comes from the HRV is DURING-PRE
- The CTT measure that comes from the EEG is POST- PRE

Required Files

To run this file you will need the following helper files:

- helper importfile GX KSS Exp2.p imports KSS scores
- helper GX PlottingOutcomes Fig Stats.p runs the stats and plots figures
- fdr_bh.m computes the BH correction to the p-values. Can be downloaded here.

General Set-up

Clear residuals

```
%Set code parameters
SveAllpics=1; %Save figures 0-No, 1-Yes
closefigs =0; %Close figures after saving 0-No, 1-Yes
export_date = '04182024';%Folder name with date code was run
pathsave = 'Results\'; %Folder to hold plots and stats outputs
sub_folder_name = ['FigOutput_' export_date];
warning ('off','all');
```

Folder Set-up

%Create folders for results and figures

```
prefix = strcat(pathsave);

if SveAllpics==1 %1-Save output pics, 0-Don'd save output pics

existance=exist(strcat(pathsave,sub_folder_name));
   if existance==0
        [s,m,mm]=mkdir(pathsave,sub_folder_name);
        prefix = strcat(pathsave,sub_folder_name,'\');

else
   %Delete existing files
   dat_type_delete = {'fig', 'png', 'pdf', 'eps','txt'};
   for item_in =1:numel(dat_type_delete)
        delete([pathsave sub_folder_name '\*.' dat_type_delete{item_in}]);
   end
        prefix = strcat(pathsave,sub_folder_name,'\');
   end
end
```

Set Up Stats Holder

```
%Collect all stats outcomes
all_p_values={};
Table_p_val={};
stats_results ={};
```

Statistics

All data were tested for adherence to normality with the Anderson-Darling's test (adtest function).

A two-tailed paired t-test (ttest function) or Wilcoxon signed rank test (signrank function) was conducted under the null hypothesis that the difference between groups came from a normal distribution with unknown variances at a significance level or 5%. Data were gated between non/parametric tests based on the Anderson-Darling's test.

Corrections for multiple comparisons were performed using the Benjamini & Hochberg procedure (fdr_bh function).

Effect sizes were calculated using Robust Cohen's *d* (*meanEffectSize* function with *Effect* = '*robustcohen*') or matched-pairs rank biserial correlation coefficient for the Wilcoxon signed-rank test, *r*.

Looking at the KSS data

Here we import the KSS outcomes. Once imported we look at the changes from pre to post for both F30 and M30 and compare arms.

We use the Wilcoxon signed rank test for between group comparisons.

```
%Import the KSS values
GXKKSExp2 = helper_GX_ImportKSS_Exp2('GX_KKS_Exp2.xlsx', "Sheet1", [2, 16]);
for ii=1 %Added to keep code block together
    t1=[];
    t1 = stack(GXKKSExp2, {["KSSpre1" "KSSpre2"] ...
                           ["KSSpost1" "KSSpost2"]...
                           ["Arm1" "Arm2"]},...
                    "NewDataVariableName",...
                           ["KSSPre" "KSSPost" "Arm"],...
                    "IndexVariableName", "Treatment");
    t1(:,{'Sub','AgeYears','GenderMF',...
          'Heightcm', 'Weightkg',...
          'KSSPre', 'KSSPost', 'Arm'})
    t1 F30=t1( t1.Arm=='F30',:);
    ii = (t1_F30.KSSPost - t1_F30.KSSPre);
    [~,~,idx] = unique(t1_F30.StartingID,'stable');
    t1_F30_merged=accumarray(idx,ii,[],@median);
    t1 M30=t1( t1.Arm=='M30',:);
    ii = (t1 M30.KSSPost - t1 M30.KSSPre);
    [~,~,idx] = unique(t1 M30.StartingID, 'stable');
    t1_M30_merged=accumarray(idx,ii,[],@median);
    y_var='KSS';
    var_in= y_var;
    diff period ='Po-Pr';
    figure;
    [stats out,p] = helper GX PlottingOutcomes Fig Stats(var in,...
                    t1_F30_merged,t1_M30_merged, diff_period);
    fprintf ('\n%s\n',stats_out)
```

```
stats_results{end+1}=stats_out;
Table_p_val{end+1,1}=var_in;
Table_p_val{end,2}=p;

fname=[strcat('GX_F30vM30_Behavior_', var_in)];

if SveAllpics==1
    h = gcf;
    saveas(h,strcat(prefix,fname,'.fig'),'fig');
    print(h,'-dpng', strcat(prefix,fname,'.png'), '-r600');
    print(h,'-dpdf', [prefix,fname], '-r600');

end
if closefigs==1, close all, end
```

ans = 30×8 table

Sub AgeYears GenderMF Heightcm Weightkg KSSPre **KSSPost** 1 '11' 21 F 167.64 61.235 3 8 2 '11' 21 F 167.64 61.235 4 4 3 '12' 20 F 2 157.48 68.946 1 4 '12' 20 F 3 157.48 68.946 3 5 '13' F 28 162.56 56.7 3 8 6 '13' 28 | F 162.56 4 8 56.7 7 7 '14' 36 M 172.72 91.63 2 '14' 4 172.72 91.63 4 36 | M 9 '15' Μ 175.2599999... 58.967 6 8 30 10 '15' 30 M 175.2599999... 58.967 7 9 11 '16' 29 | F 3 5 167.64 58.967 12 '16' 29 F 167.64 58.967 4 4 13 '18' 30 M 175.2599999... 58.967 6 8 '18' 8 30 M 175.2599999... 58.967 6

```
F30 Median = 2 ± 2.875
M30 Median = 2 ± 3.25
z = -0.355, p = 0.72234 n=(F30:9,M30:9)
```

MPRB Cor Coef $r = 0.156 \pm 0.311$

There was no significant difference (at an alpha =0.05)in the change in KSS (Po-Pr) ratings between F30 (Median: 2, IQR The effect size measured by MPRB Cor Coef $r = 0.156 \pm 0.311$, indicating a small effect size

Cardiac HRV Outcomes

Here we look at the cardiac outcomes for time (RMSSD) and frequency (LF/HF ratio).

```
files_in_folder=ls('*.csv');
diff_period ='During minus Pre';

HRV_stats_results={};
for file_num=1:size(files_in_folder,1)

file_in = files_in_folder(file_num,:);
if ~contains(file_in,'HRV_All_') && ~contains(file_in,'EEG')

file_in = strrep(file_in,' ','');
  var_in=string(file_in(5:end-4));
```

```
disp(strcat('Running: ', var_in));
    T= readtable([file_in]);
    t1=T
    t1_F30=t1( t1.StimType=="F30" & t1.Participant>10,:);
    t1_F30_merged=t1_F30.(var_in).*100;
    t1_M30=t1( t1.StimType=="M30" & t1.Participant>10,:);
    t1 M30 merged=t1 M30.(var in).*100;
    var_in= strrep(var_in,'_',' ');
    var in=char(var in);
    var_in = [var_in,'(D-Pr)'];
    figure;
    [stats_out,p] = helper_GX_PlottingOutcomes_Fig_Stats(var_in,...
                        t1_F30_merged,t1_M30_merged, diff_period);
    fprintf ('\n%s\n',stats_out);
    stats_results{end+1}=stats_out;
    Table_p_val{end+1,1}=var_in;
    Table_p_val{end,2}=p;
    fname=char([strcat('GX_F30vM30_HRV_', var_in)]);
    if SveAllpics==1
           h = gcf;
           saveas(h,strcat(prefix,fname,'.fig'),'fig');
           saveas(h,strcat(prefix,fname,'.png'),'png');
           print(h,'-dpng', strcat(prefix,fname,'.png'), '-r600');
           print(h,'-depsc', strcat(prefix,fname,'.eps'), '-r600');
           print(h,'-dpdf', [prefix,fname], '-r600');
       end
     if closefigs==1, close all, end
end
end
```

Running:Perf_mean

 $t1 = 18 \times 5 \text{ table}$

	Var1	Perf_mean	Participant	StimType	Period
1	0	-0.01690851465	11	'F30'	'PercentChange'
2	1	0.002508658855	13	'F30'	'PercentChange'
3	2	0.066153561405	14	'F30'	'PercentChange'
4	3	0.008986822931	16	'F30'	'PercentChange'
5	4	-0.05451296452	20	'F30'	'PercentChange'
6	5	-0.22649343781	1219	'F30'	'PercentChange'
7	6	0.056215359779	1518	'F30'	'PercentChange'
8	7	-0.42659283478	212526	'F30'	'PercentChange'
9	8	-0.27414562776	222324	'F30'	'PercentChange'
10	0	0.036844414679	11	'M30'	'PercentChange'
11	1	0.038281631184	13	'M30'	'PercentChange'
12	2	0.117549250053	14	'M30'	'PercentChange'
13	3	0.061660300352	16	'M30'	'PercentChange'
14	4	-0.02653065658	20	'M30'	'PercentChange'

,

F30 Mean = -9.60877 ± 17.1836

M30 Mean = -6.00818 ± 17.7388

t(8) = -6.4991, p = 0.00018828 n=(F30:9,M30:9)

Cohen's d = -0.163(-0.827, -0.079)

There was a significant difference (at an alpha =0.05)in the change in Perf mean(D-Pr) (During minus Pre) ratings be The effect size measured by Cohen's $d = -0.163 \pm 0.084$, indicating a small effect size

Running:RMSSD t1 = 18×5 table

	Var1	RMSSD	Participant	StimType	Period
1	0	0.096823116346	11	'F30'	'PercentChange'
2	1	0.53679218233035	13	'F30'	'PercentChange'
3	2	1.70098205900038	14	'F30'	'PercentChange'
4	3	-0.02493750747	16	'F30'	'PercentChange'
5	4	0.046488315264	20	'F30'	'PercentChange'
6	5	0.119107676142	1219	'F30'	'PercentChange'
7	6	0.328962130952	1518	'F30'	'PercentChange'
8	7	0.068994460019	212526	'F30'	'PercentChange'
9	8	0.030806478680	222324	'F30'	'PercentChange'
10	0	0.416399789653	11	'M30'	'PercentChange'
11	1	0.714688312024	13	'M30'	'PercentChange'
12	2	1.66750387382848	14	'M30'	'PercentChange'
13	3	-0.05563703996	16	'M30'	'PercentChange'
14	4	0.036118335084	20	'M30'	'PercentChange'

:

F30 Median = 9.68231 ± 33.8352

M30 Median = 3.61183 ± 56.785

z = 0.178, p = 0.85895 n=(F30:9,M30:9)

MPRB Cor Coef $r = 0.067\pm0.4$

There was no significant difference (at an alpha =0.05)in the change in RMSSD(D-Pr) (During minus Pre) ratings between the effect size measured by MPRB Cor Coef $r = 0.067 \pm 0.4$, indicating a small effect size

Running:lf_hf_ratio

 $t1 = 18 \times 5 \text{ table}$

	Var1	If_hf_ratio	Participant	StimType	Period
1	0	1.34527690825	11	'F30'	'PercentChange'
2	1	2.43943159013	13	'F30'	'PercentChange'
3	2	1.63532790312	14	'F30'	'PercentChange'
4	3	2.44654830252	16	'F30'	'PercentChange'
5	4	8.27503645458	20	'F30'	'PercentChange'
6	5	0.83683230671	1219	'F30'	'PercentChange'
7	6	3.46218431503	1518	'F30'	'PercentChange'
8	7	2.5814325050694	212526	'F30'	'PercentChange'
9	8	1.48887198640	222324	'F30'	'PercentChange'

	Var1	If_hf_ratio	Participant	StimType	Period
10	0	1.50695600838	11	'M30'	'PercentChange'
11	1	2.38765146011	13	'M30'	'PercentChange'
12	2	0.64461586626	14	'M30'	'PercentChange'
13	3	0.95673571821	16	'M30'	'PercentChange'
14	4	0.99109784889	20	'M30'	'PercentChange'

F30 Median = 243.943 ± 134.865

M30 Median = 99.1098 ± 138.322

z = 1.599, p = 0.10974 n=(F30:9,M30:9)

MPRB Cor Coef $r = 0.6\pm0.267$

There was no significant difference (at an alpha =0.05)in the change in lf hf ratio(D-Pr) (During minus Pre) ratings The effect size measured by MPRB Cor Coef $r = 0.6 \pm 0.267$, indicating a large effect size

EEG Outcomes

Here we look at the EEG outcomes. We also look at the CTT deviation ('Perf mean') for post-pre.

```
files in folder=ls('*.csv');
file in= 'EEG stats Allfeats.csv';
diff_period ='Post minus Pre';
select feats = ["Perf mean", "at", "dt"];
EEG stats results={};
T= readtable([file in]);
t1=T;
t1.Feature=string(t1.Feature);
Features = string(unique(t1.Feature));
Features = Features(contains(Features, select_feats));
for ii feat=1:length(Features)
    var in=Features(ii feat);
    disp(strcat('Running: ', var_in));
    chan mean =["P8","P4","02","P7","P3","01"];
    t1_F30=t1( t1.StimType=="F30" & t1.Participant>10 & t1.Feature==var_in,:);
    t1_F30_merged=mean(t1_F30{:,[chan_mean]}.*100, 2);
    t1_M30=t1( t1.StimType=="M30" & t1.Participant>10 & t1.Feature==var_in,:);
    t1_M30_merged=mean(t1_M30{:,[chan_mean]}.*100, 2);
    if contains(var in, "Perf mean")
        t1_F30.CTT = t1_F30{:,'Fp1'}.*100;%The CTT are just repeated across channels.
        t1_M30.CTT = t1_M30{:,'Fp1'}.*100;
        t1_F30(:,{'Participant','CTT','StimType','Period','Feature'})
        t1_M30(:,{'Participant','CTT','StimType','Period','Feature'})
    else
        t1 F30(:,2:end)
        t1_M30(:,2:end)
    end
    var_in= strrep(var_in,'_',' ');
    var_in=char(var_in);
```

```
if var_in=="at";
        var_in="Alpha Theta Ratio";
    elseif var in=="dt";
        var_in="Delta Theta Ratio";
    elseif var_in=="Perf mean"
        var in = 'Perf mean(Po-Pr)';
    end
    figure;
    [stats out,p] = helper GX PlottingOutcomes Fig Stats(var in,...
                    t1_F30_merged,t1_M30_merged, diff_period);
        fprintf ('\n%s\n',stats_out);
        stats_results{end+1}=stats_out;
        Table_p_val{end+1,1}=var_in;
        Table_p_val{end,2}=p;
        fname=char([strcat('GX_F30vM30_EEG_', var_in)]);
         if SveAllpics==1
               h = gcf;
               saveas(h,strcat(prefix,fname,'.fig'),'fig');
               saveas(h,strcat(prefix,fname,'.png'),'png');
               print(h,'-dpng', strcat(prefix,fname,'.png'), '-r600');
               print(h,'-depsc', strcat(prefix,fname,'.eps'), '-r600');
               print(h,'-dpdf', [prefix,fname], '-r600');
           end
         if closefigs==1, close all,
end
```

Running:Perf_mean

ans = 9×5 table

	Participant	CTT	StimType	Period	Feature
1	11	-4.7347786	'F30'	'PercentChange'	"Perf_mean"
2	13	-3.9573892	'F30'	'PercentChange'	"Perf_mean"
3	14	-3.5847967	'F30'	'PercentChange'	"Perf_mean"
4	16	-4.1841026	'F30'	'PercentChange'	"Perf_mean"

	Participant	CTT	StimType	Period	Feature
5	20	3.9765492	'F30'	'PercentChange'	"Perf_mean"
6	1219	-5.6071924	'F30'	'PercentChange'	"Perf_mean"
7	1518	0.5219996	'F30'	'PercentChange'	"Perf_mean"
8	212526	-6.1725393	'F30'	'PercentChange'	"Perf_mean"
9	222324	2.7046032	'F30'	'PercentChange'	"Perf_mean"

ans = 9×5 table

	Participant	CTT	StimType	Period	Feature
1	11	0.3412398	'M30'	'PercentChange'	"Perf_mean"
2	13	9.0218821	'M30'	'PercentChange'	"Perf_mean"
3	14	1.0662477	'M30'	'PercentChange'	"Perf_mean"
4	16	-3.0597716	'M30'	'PercentChange'	"Perf_mean"
5	20	4.920055	'M30'	'PercentChange'	"Perf_mean"
6	1219	2.7655294	'M30'	'PercentChange'	"Perf_mean"
7	1518	2.9239482	'M30'	'PercentChange'	"Perf_mean"
8	212526	3.2471711	'M30'	'PercentChange'	"Perf_mean"
9	222324	1.7645155	'M30'	'PercentChange' "Perf_mean"	

F30 Mean = -2.33752 ± 3.74503 M30 Mean = 2.55454 ± 3.30419

t(8) = -3.2015, p = 0.012583 n=(F30:9,M30:9)

Cohen's d = -1.212(-3.676, -0.482)

There was a significant difference (at an alpha =0.05)in the change in Perf mean(Po-Pr) (Post minus Pre) ratings bet The effect size measured by Cohen's $d = -1.212 \pm 0.73$, indicating a large effect size

Running:at
ans = 9×36 table

	Fp1	Fpz	Fp2	F7	F3	Fz	F4	F8
1	-0.11965	-0.16330	0.117731	0.01625862	0.030039	-0.07143	-0.18205	-0.28547
2	-0.00166	-0.04672	-0.03165	0.032563	0.015783	0.219414	-0.14573	-0.19076
3	0.104601	-0.03676	0.006694	0.15019525	-0.1190569	0.042349	0.161079	0.070267
4	0.221842	0.066350	0.051553	0.082584	-0.05084	0.119641	0.167083	0.058602
5	-0.19192	-0.14009	-0.17654	-0.00816	0.035546	-0.16307	-0.15553	-0.09432
6	0.230178	0.108072	0.052342	0.091550	0.073502	0.12238692	0.398156	0.284269
7	-0.03842	0.025116	0.208509	0.040300	-0.01371	0.130667	-0.03999	-0.13453
8	0.048655	0.23834826	-0.03612	0.077446	0.059761	0.25775533	0.143999	0.053658
9	-0.12369	-0.07016	-0.09839	-0.06283	-0.12904	-0.06246	-0.06094	-0.05968

ans = 9×36 table

	Fp1	Fpz	Fp2	F7	F3	Fz	F4	F8
1	0.050896	0.129160	0.075431	0.064078	-0.13110	0.081114	-0.10217	-0.16582
2	-0.23414	-0.03305	-0.25875	-0.07645	-0.24933	0.028385	-0.11926	-0.01589

16

	Fp1	Fpz	Fp2	F7	F3	Fz	F4	F8
3	0.34401165	0.230286	0.223528	0.127930	0.075599	0.071174	0.165588	0.248697
4	0.034460	0.101528	-0.05040	-0.13810	0.032966	0.017701	0.181738	-0.11192
5	-0.22466	-0.25966	-0.03829	-0.14351	-0.14534	-0.15937	-0.00775	0.019491
6	-0.06759	-0.02996	-0.08632	0.036708	-0.13482	-0.05272	0.026338	0.042080
7	-0.09531	-0.11231	-0.12642	-0.15354	-0.04653	0.005392	-0.14882	-0.16334
8	-0.00335	-0.04351	-0.08336	-0.05691	-0.05614	-0.01467	0.057058	0.002510
9	0.147765	0.034783	0.027805	0.044836	0.067610	0.090013	0.000695	0.146327

F30 Median = 0.604077 ± 19.5926

M30 Median = 0.654815 ± 7.85086

z = 1.125, p = 0.26039 n=(F30:9,M30:9)

MPRB Cor Coef $r = 0.422\pm0.222$

There was no significant difference (at an alpha =0.05)in the change in Alpha Theta Ratio (Post minus Pre) ratings by The effect size measured by MPRB Cor Coef $r = 0.422 \pm 0.222$, indicating a medium effect size

Running:dt
ans = 9×36 table

	Fp1	Fpz	Fp2	F7	F3	Fz	F4	F8
1	-0.17473	-0.20965	0.237305	-0.11945	0.14767139	-0.14015	0.089272	0.107722
2	-0.08630	-0.04876	0.07227547	-0.06745	-0.03606	0.098430	-0.07152	0.066675

17

	Fp1	Fpz	Fp2	F7	F3	Fz	F4	F8
3	0.012032	0.100072	0.0049043	-0.05544	-0.12327	5.05e-06	0.001920	-0.00506
4	0.027344	0.159549	0.032497	0.220902	0.00571192	0.116222	0.348856	0.277891
5	0.08081087	0.012960	0.052031	-0.08327	0.132593	-0.06415	0.013373	-0.06938
6	0.222757	0.028032	0.095344	-0.09663	0.031676	0.016998	0.118684	0.135270
7	0.004809	-0.10842	-0.05274	-0.11951	0.048406	0.05147883	-0.11147	-0.18547
8	-0.02753	0.081964	0.096975	0.182761	0.07576553	-0.00584	0.005705	-0.05325
9	-0.01588	0.009419	-0.10540	0.078678	-0.07760	0.012307	-0.07420	-0.07498

ans = 9×36 table

. . .

	Fp1	Fpz	Fp2	F7	F3	Fz	F4	F8
1	-0.19661	-0.01893	0.026974	-0.28017	0.018044	0.039542	0.107883	-0.07523
2	0.200651	0.179469	0.163225	0.137766	0.05029887	0.124623	0.350715	0.15090546
3	0.190385	0.080024	0.128968	-0.12178	0.081389	-0.09429	0.100674	0.047246
4	-0.03598	-0.15379	-0.17039	-0.08462	-0.08823	-0.05394	-0.00496	0.014339
5	-0.16009	-0.07156	-0.06416	0.020702	-0.13329	-0.01989	0.056806	-0.05315
6	0.205886	0.116892	0.055609	0.085557	0.055502	-0.01180	0.061326	0.039226
7	-0.01928	-0.01799	0.00083403	0.003485	-0.13438	-0.06974	-0.03063	-0.03379
8	0.006595	-0.03813	0.077764	-0.00599	0.018570	-0.00576	-0.03061	-0.03556
9	-0.01031	0.01086743	0.013191	-0.02493	-0.00763	0.027722	0.098849	0.036512

F30 Mean = 4.57382 ± 5.07161

M30 Mean = 1.01349 ± 5.04552

t(8) = 4.1947, p = 0.0030183 n=(F30:9,M30:9)

Cohen's d = 0.686(0.269, 1.892)

There was a significant difference (at an alpha =0.05)in the change in Delta Theta Ratio (Post minus Pre) ratings be The effect size measured by Cohen's $d = 0.686 \pm -1.207$, indicating a large effect size

Organize All Statistics

Here we gather all the p-values from the statistical tests run above and perform the BH correction.

```
%Get all our collected stats
All_stats_results=reshape(stats_results,size(stats_results,2),1);

TT=cell2table(Table_p_val,'Variable',{'Var','pval'})
```

 $TT = 7 \times 2 \text{ table}$

	Var	pval
1	"KSS"	0.722338991965049
2	"Perf mean(D-Pr)"	0.0001882822248
3	"RMSSD(D-Pr)"	0.858954922737482
4	"If hf ratio(D-Pr)"	0.109744638747013

	Var	pval
5	"Perf mean(Po-Pr)"	0.0125831584162
6	"Alpha Theta Ratio"	0.260392943610483
7	"Delta Theta Ratio"	0.0030182749632

BH Correct p-values

We adjust the p-values using the Benjamini & Hochberg procedure.

The fdr_bh function can be found here.

Out of 7 tests, 3 are significant using a false discovery rate of 0.050000. FDR/FCR procedure used is guaranteed valid for independent or positively dependent tests.

```
TT2.BH_adjusted_pval=adj_p;
TT2.rounded_pval=round(adj_p,3)
```

 $TT2 = 7 \times 4 \text{ table}$

	Var	pval	BH_adjusted_pval	rounded_pval
1	"KSS"	0.722338991965049	0.842728823959224	0.843
2	"Perf mean(D-Pr)"	0.0001882822248	0.00131797557418656	0.001
3	"RMSSD(D-Pr)"	0.858954922737482	0.858954922737482	0.859
4	"If hf ratio(D-Pr)"	0.109744638747013	0.192053117807273	0.192
5	"Perf mean(Po-Pr)"	0.0125831584162	0.0293607029712846	0.029
6	"Alpha Theta Ratio"	0.260392943610483	0.364550121054677	0.365

	Var	pval	BH_adjusted_pval	rounded_pval
7	"Delta Theta Ratio"	0.0030182749632	0.0105639623714256	0.011

These are the p-values for all the otucome measures.

Show Significant Outcomes

Once we have the corrected values we can print our significant outcomes.

```
TT3=table(TT2.Var(h), TT2.pval(h), ...
adj_p(h),...
'VariableNames',...
["VarName","OriginalP","AdjustedP"]);

TT3.RoundedAdjustedP = round(adj_p(h),3)
```

 $TT3 = 3 \times 4 \text{ table}$

	VarName	OriginalP	AdjustedP	RoundedAdjustedP
1	"Perf mean(D-Pr)"	0.0001882822248	0.001317975574	0.001
2	"Perf mean(Po-Pr)"	0.0125831584162	0.029360702971	0.029
3	"Delta Theta Ratio"	0.0030182749632	0.010563962371	0.011

Save Stats Outcomes

Once we have all out stats outcomes we save them to a text file for easy viewing.

```
%Write results to table
fname='All_stats_results.txt';
writecell(All_stats_results,[prefix,fname])

fname='All_stats_results_p_vals.txt';
writetable(TT,[prefix,fname],'Delimiter','|')

fname='All_stats_results_sig_corrected_p_vals.txt';
writetable(TT3,[prefix,fname],'Delimiter','|')
```

```
%Export file to HTML
export('GX_F30vM30_Analysis.mlx', format='html');
export('GX_F30vM30_Analysis.mlx', format='pdf', Margins=[25 84 84 25]);
```