1.
$$P(a,b) = p(a,b,c=0) + p(a,b,c=1)$$

$$= 90.33b \quad a=0 \quad b=0$$

$$0.26u \quad a=0 \quad b=1$$

$$0.26b \quad a=1 \quad b=0$$

$$0.16u \quad a=0 \quad b=1$$

$$0.26b \quad a=1 \quad b=0$$

$$0.16u \quad a=0 \quad b=1$$

$$0.16u \quad a=0 \quad b=1$$

$$0.16u \quad a=0 \quad b=0$$

$$0.16u \quad a=0 \quad b=0$$

$$0.16u \quad a=0 \quad b=0$$

$$0.16u \quad b=0 \quad b=0$$

$$0.16u \quad b=0 \quad b=0$$

$$0.16u \quad b=0 \quad b=0$$

$$0.16u \quad a=0 \quad b=0 \quad c=0$$

$$0.16u \quad a=0 \quad b=0 \quad c=1$$

$$0.16u \quad a=0 \quad c=0$$

$$0.16u \quad a=0$$

$$0.16u \quad a=0 \quad c=0$$

$$0.16u \quad a=0$$

$$0.16u \quad$$

$$p(b|c) = \frac{p(b,c)}{p(c)} = \begin{cases} 0.800 & b=0 & c=0 \\ 0.400 & b=0 & c=0 \\ 0.500 & b=1 & c=0 \\ 0.600 & b=1 & c=0 \end{cases}$$

Thus, p(G=1, b=1 | C=0) = p(a=1 | C=0 | p(b=1) C=0) = 0.1 p(a,blc)= p(alc)p(blc)

2.
$$p(a) = p(a,b=0) + p(a,b=1) = poib a=0$$

$$p(b|c) = \frac{p(b,c)}{p(c)} = \frac{p(b,c)}{p(c)} = \frac{p(a,b=1)}{p(a,b=1)} = \frac{p(a,b=1)}{p(a,b=1)} = \frac{p(a,c)}{p(a,b=1)} = \frac{p(a,c)}{p(a,b=1)} = \frac{p(a,c)}{p(a,c)} = \frac{p($$

Thus p(a,b,c) = p(a) p(c(a)p(b|c)) = + le + fable.

$$\bigcirc \rightarrow \bigcirc \rightarrow \bigcirc$$

4. By Bayes Thm:
$$p(\theta(x) \propto p(x|\theta) p(\theta))$$

In $p(\theta(x) \propto lnp(x|\theta) + lnp(\theta))$

In $p(\theta(x) \propto lnp(x|\theta) + lnp(\theta))$

$$= ln \left[\sum_{z} p(x,z|\theta) \right] \cdot p(\theta) \right]$$

Then $Q'(\theta,\theta_{ab}) = \sum_{z} p(z|x,\theta_{ab}) \ln p(x,z|\theta) + lnp(\theta)$

$$= \sum_{z} p(z|x,\theta_{ab}) \ln p(x,z|\theta) + lnp(\theta)$$

$$= \sum_{z} p(z|x,\theta_{ab}) \ln p(x,z|\theta) + lnp(\theta)$$

$$= Q(\theta,\theta_{ab}) + lnp(\theta)$$

$$= Q(\theta,\theta_{ab}) + lnp(\theta)$$

I. $\frac{\partial lnp}{\partial z} = \frac{\partial}{\partial z} \sum_{z=1}^{N} lnan = \sum_{z=1}^{N} \frac{\partial a_{z}}{\partial z}$

Where $\Omega_{z} = \sum_{z=1}^{N} lnan = \sum_{z=1}^{N} \frac{\partial a_{z}}{\partial z}$

Since $\frac{\partial lnN(x_{1})nk(z)}{\partial z} = -\frac{1}{2} \sum_{z=1}^{N} ln(x_{1})nk(z)$

Since $\frac{\partial lnN(x_{1})nk(z)}{\partial z} = \frac{\partial}{\partial z} \sum_{z=1}^{N} ln(x_{1})nk(z)$

$$= \sum_{z=1}^{N} ln(x_{1})nk(z)$$

$$= \sum_{k=1}^{K} \prod_{k} N(\chi_{n}|M_{k}, \Sigma) \cdot (-\frac{1}{2} \sum_{k=1}^{J} \sum_{n_{k}} \Sigma^{J})$$

$$= \sum_{n=1}^{N} \frac{1}{2n} \frac{2n}{2n}$$

$$= \sum_{n=1}^{N} \frac{1}{2n} \frac{2n}{2n} \frac{1}{2n} \frac{2n}{2n} \cdot (-\frac{1}{2} \sum_{k=1}^{J} + \frac{1}{2} \sum_{n_{k}} \Sigma^{J})$$

$$= \sum_{n=1}^{N} \frac{1}{2n} \frac{2n}{2n} \cdot (-\frac{1}{2} \sum_{n=1}^{J} + \frac{1}{2} \sum_{n_{k}} \Sigma^{J})$$

$$= \sum_{n=1}^{N} \frac{1}{2n} \frac{2n}{2n} \cdot (-\frac{1}{2} \sum_{n=1}^{J} + \frac{1}{2} \sum_{n_{k}} \Sigma^{J})$$

$$= -\frac{1}{2} \left(\sum_{n=1}^{N} \sum_{k=1}^{K} N(2n_{k}) \times 1 + \frac{1}{2} \sum_{n=1}^{J} \sum_{k=1}^{N} M(2n_{k}) \times 1 \right)$$

$$= \sum_{n=1}^{N} \sum_{k=1}^{K} N(2n_{k}) \times 1 + \frac{1}{2} \sum_{n=1}^{J} \sum_{k=1}^{N} M(2n_{k}) \times 1 = 0$$

$$= \sum_{n=1}^{N} \sum_{k=1}^{K} N(2n_{k}) \times 1 = 0$$

$$= \sum_{n=1}^{N} \sum_{k=1}^{N} N(2n_{k}) \times 1 = 0$$

b. assume
$$k$$
 is fixed for Bota prior M_k

$$p(M_k; | a_k, b_k) = \frac{r(a_k + b_k)}{r(a_k) r(b_k)} M_{ki} (1 - M_k)^{b_{k-1}}$$

$$Con tibution to $p(0) = \sum_{k=1}^{k} \sum_{i=1}^{k} (a_{i-1}) l_n M_{ki} + (b_{i-1}) l_n (1 - M_{ki})$

$$p(\pi(d)) = \frac{r(d_0)}{\prod_{k=1}^{k} M(d_k)} K_{k-1} T_k$$$$

Then

Contribution to Dirichlet pior $\ln p(\theta) = \sum_{k=1}^{k} (a_k-1) \ln \pi_k$ $Q'(\theta,\theta_{old}) = E_Z(\ln p) + \sum_{k=1}^{k} \sum_{i=1}^{k} [(a_i-1) \ln \mu_k; +(b_i-1) \ln \mu_k]$ $+ \sum_{k=1}^{k} (a_k-1) \ln \pi_k$

$$\frac{1}{1} \frac{1}{1} \frac{1}{1} = \frac{1}{1} \frac$$

hw3

Enbo Tian

2022/2/28

Graphical Model 1

```
a)
rm(list = ls())
X <- c("cold", "hot", "mild")</pre>
day0 = replicate(5, sample(X, size = 1, prob=c(1/3, 1/3, 1/3)))
# function of day
dayk <- function(day){</pre>
  dayk \leftarrow rep(0,5)
  for (i in 1:5){
    if (day[i] == "cold"){
    dayk[i] = sample(c("cold", "hot", "mild"), size = 1, prob = c(1/2, 1/4,
1/4))
    else if (day[i] == "hot"){
    dayk[i] = sample(c("cold", "hot", "mild"), size = 1, prob = c(1/3, 1/3,
1/3))
    else if(day[i] == "mild"){
      dayk[i] = sample(c("cold", "hot", "mild"), size = 1, prob = c(1/4, 1/4,
1/2))
    }
  }
  dayk
}
# day 1:5
day1 <- dayk(day0)</pre>
day2 <- dayk(day1)</pre>
day3 <- dayk(day2)</pre>
day4 <- dayk(day3)</pre>
day <- data.frame(day0, day1, day2, day3, day4)</pre>
day
     day0 day1 day2 day3 day4
## 1 mild mild hot hot mild
## 2 mild hot cold hot hot
## 3 cold cold mild mild cold
```

```
## 4 hot cold hot mild mild
## 5 mild cold hot mild mild
b)
# P(day0)
p0 \leftarrow c(1/3,1/3,1/3)
\# p (k given k-1)
pgiven <- matrix(c(1/2,1/4,1/4,1/3,1/3,1/3,1/4,1/4,1/2),ncol=3)
# marginal prob
p1 <- pgiven%*%p0
p2 <- pgiven%*%p1
p3 <- pgiven%*%p2
margp <- data.frame(p0,p1,p2,p3)</pre>
margp
##
            p0
                       p1
                                 p2
## 1 0.3333333 0.3611111 0.3634259 0.3636188
## 2 0.3333333 0.2777778 0.2731481 0.2727623
## 3 0.3333333 0.3611111 0.3634259 0.3636188
c)
# 3|2hot
p3g2 \leftarrow c(1/3,1/3,1/3)
p3g2
## [1] 0.3333333 0.3333333 0.3333333
\# p(1|2="hot") = p(2|1)*p(1)/p(2 = "hot")
p1 <- c(p1)
p2 \leftarrow c(p2)
p3 < - c(p3)
p1g2 <- pgiven * p1 / p2
p1g2 <- c(p1g2[,2])
p1g2
## [1] 0.3312102 0.3389831 0.3312102
 # p(0|1) = p(1|0)*p(0)/p(1|2="hot") 
p0g1 <- pgiven * p0 /p1g2
p0g1
                        [,2]
                                   [,3]
             [,1]
## [1,] 0.5032051 0.3354701 0.2516026
## [2,] 0.2458333 0.3277778 0.2458333
## [3,] 0.2516026 0.3354701 0.5032051
d)
# give day2 is hot
day2 = "hot"
# get most probable day1
if (max(p1g2) == p1g2[1]){
```

```
day1 = "cold"
  i = 1
}else if(max(p1g2) == p1g2[2]){
  day1 = "hot"
  i = 2
}else if(max(p1g2) == p1g2[3]){
  day1 = "mild"
  i = 3
}
# get most probable day0
new_p0g1 <- p0g1[,i]</pre>
if (max(new_p0g1) == new_p0g1[1]){
  day0 = "cold"
}else if(max(new_p0g1) == new_p0g1[2]){
  day0 = "hot"
}else if(max(new_p0g1) == new_p0g1[3]){
  day0 = "mild"
}
# Same prob for day3 given hot of day2
c(day0,day1,day2)
## [1] "cold" "hot" "hot"
```

the most probable report for day 0 to 2 are "cold" "hot" "hot", and we have the same probability for day3.

Graphical Model 2

```
a)
mi \leftarrow c(-2, 2, 0)
# height function
height <- function(statep){</pre>
  m <- replicate(5, sample(mi, size = 1, prob = statep))</pre>
  y \leftarrow rep(0,5)
  for (i in 1:5){
    y[i] \leftarrow rnorm(1,m,1)
  }
  У
}
# get height
y0 <- height(p0)</pre>
y1 <- height(p1)</pre>
y2 <- height(p2)
y3 <- height(p3)
datay <- data.frame(y0,y1,y2,y3)</pre>
datay
```

```
ν0
                y1
                                      ν2
## 1 2.511762 -1.536019 0.03102007 -0.88238828
## 2 2.133691 -2.829667 -0.71771823 -0.03544213
## 3 2.609272 -2.645629 -0.45645577 1.62213386
## 4 1.782848 -1.309067 -0.26663822 -0.52945762
## 5 1.400379 -2.158521 -0.42731199 0.83383134
b)
m \leftarrow c(2,0,-2,-2)
y0 <-replicate(5,rnorm(1,m[1],1))</pre>
y1 <-replicate(5,rnorm(1,m[2],1))</pre>
y2 <-replicate(5,rnorm(1,m[3],1))</pre>
y3 <-replicate(5,rnorm(1,m[4],1))
data2y<- data.frame(y0,y1,y2,y3)</pre>
data2y
##
             y0
                                       y2
                          у1
## 1 1.6746606 -0.7783034 -1.6931646 -1.7411468
## 2 1.3366571 -0.6038038 0.1484034 -3.7888110
## 3 0.9875342 1.2656318 -2.1430355 -1.2360920
## 4 1.7316862 -1.1488038 -1.0097901 -0.8994421
## 5 2.4540002 -0.9465946 -1.6004229 -1.1189140
c)
Y0 = 0.7
Y1 = 1.5
Y2 = -1.8
Y3 = -1
#p(y0|x0)
d\theta \leftarrow rep(0,3)
d0[1] \leftarrow dnorm(Y0, -2, 1)
d0[2] \leftarrow dnorm(Y0,0,1)
d0[3] \leftarrow dnorm(Y0,2,1)
#p(y1|x1)
d1 \leftarrow rep(0,3)
d1[1] \leftarrow dnorm(Y1, -2, 1)
d1[2] \leftarrow dnorm(Y1,0,1)
d1[3] \leftarrow dnorm(Y1,2,1)
\#p(v2|x2)
d2 \leftarrow rep(0,3)
d2[1] \leftarrow dnorm(Y2, -2, 1)
d2[2] \leftarrow dnorm(Y2,0,1)
d2[3] \leftarrow dnorm(Y2,2,1)
#p(y1|x1)
d3 \leftarrow rep(0,3)
d3[1] \leftarrow dnorm(Y3, -2, 1)
d3[2] \leftarrow dnorm(Y3,0,1)
d3[3] \leftarrow dnorm(Y3,2,1)
# p(x0)*p(y0|x0)*p(x1|x0)*p(y1|x1)*p(x2|x1)*p(y2|x2)*p(x3|x2)*p(y3|x3)
```

```
mp <- p0*d0*pgiven*d1*pgiven*d2*pgiven*d3
sum(mp[,1])

## [1] 4.060199e-06
sum(mp[,2])

## [1] 9.549811e-06
sum(mp[,3])

## [1] 4.031672e-06</pre>
```

Gaussian Mixture Model

```
a)
rm(list = ls())
library("readxl")
data <- read_excel("gmm_data.xlsx")
plot(data$Var1,data$Var2)</pre>
```


the number

of clusters is 3.

```
b)
library(fMultivar)
## 载入需要的程辑包: timeDate
```

```
## 载入需要的程辑包: timeSeries
## 载入需要的程辑包: fBasics
msnFit(data)
##
## Title:
## Skew Normal Parameter Estimation
##
## Call:
## msnFit(x = data)
##
## Model:
## Skew Normal Distribution
## Estimated Parameter(s):
## $beta
##
                   Var2
           Var1
## [1,] 1.455257 3.191867
##
## $Omega
            Var1
                    Var2
##
## Var1 8.146794 11.70847
## Var2 11.708474 22.46951
##
## $alpha
##
         Var1
                    Var2
## -0.8598872 -10.2055688
##
##
## Description:
## Mon Feb 28 19:07:39 2022 by user: 11193
library(ellipse)
##
## 载入程辑包: 'ellipse'
## The following object is masked from 'package:graphics':
##
##
      pairs
rho = cor(data)
y_on_x <- lm(data$Var2 ~ data$Var1)</pre>
x on y <- lm(data$Var1 ~ data$Var2)</pre>
plot(data, xlab = "X", ylab = "Y",col = "grey")
lines(ellipse(rho), col="red")
lines(ellipse(rho, level = .99), col="green")
```

```
lines(ellipse(rho, level = .90), col="blue")
abline(y_on_x)
abline(x_on_y, col="brown")
legend(3,1,legend=plot_legend,cex = .5, bty = "n")
```


c)

```
library(MGMM)
d <- as.matrix(data)</pre>
K2GMM <- FitGMM(d,k=2)</pre>
## Objective increment:
                         10.8
## Objective increment:
                        0.793
## Objective increment:
                        0.21
## Objective increment: 0.184
                         0.218
## Objective increment:
## Objective increment: 0.27
## Objective increment: 0.336
## Objective increment: 0.418
## Objective increment:
                         0.519
## Objective increment:
                         0.644
## Objective increment: 0.799
## Objective increment: 0.99
## Objective increment:
                         1.23
## Objective increment:
                         1.52
## Objective increment:
                         1.89
## Objective increment:
                         2.35
## Objective increment:
                         2.93
## Objective increment: 3.67
```

```
## Objective increment:
                          4.6
## Objective increment:
                          5.77
## Objective increment:
                          7.21
## Objective increment:
                          8.89
## Objective increment:
                          10.6
                          12
## Objective increment:
## Objective increment:
                          12.2
## Objective increment:
                          10.8
## Objective increment:
                          8.22
## Objective increment:
                          5.53
## Objective increment:
                          3.51
## Objective increment:
                          2.22
## Objective increment:
                          1.42
## Objective increment:
                          0.928
## Objective increment:
                          0.614
## Objective increment:
                          0.411
## Objective increment:
                          0.276
## Objective increment:
                          0.187
## Objective increment:
                          0.127
## Objective increment:
                          0.0864
## Objective increment:
                          0.059
## Objective increment:
                          0.0403
## Objective increment:
                          0.0276
## Objective increment:
                          0.0189
## Objective increment:
                          0.0129
## Objective increment:
                          0.00888
## Objective increment:
                          0.0061
## Objective increment:
                          0.00419
## Objective increment:
                          0.00288
## Objective increment:
                          0.00198
## Objective increment:
                          0.00136
## Objective increment:
                          0.000935
## Objective increment:
                          0.000643
## Objective increment:
                          0.000442
## Objective increment:
                          0.000304
## Objective increment:
                          0.000209
## Objective increment:
                          0.000144
## Objective increment:
                          9.91e-05
## Objective increment:
                          6.82e-05
## Objective increment:
                          4.69e-05
## Objective increment:
                          3.23e-05
## Objective increment:
                          2.22e-05
## Objective increment:
                          1.53e-05
## Objective increment:
                          1.05e-05
## Objective increment:
                          7.25e-06
## Objective increment:
                          4.99e-06
## Objective increment:
                          3.43e-06
## Objective increment:
                          2.36e-06
## Objective increment:
                          1.63e-06
## Objective increment:
                          1.12e-06
```

```
## Objective increment: 7.71e-07
## 68 update(s) performed before reaching tolerance limit.

plot(data, xlab = "X", ylab = "Y",col = "grey")
points(K2GMM@Means[[1]][1],K2GMM@Means[[1]][2],col = "red")
points(K2GMM@Means[[2]][1],K2GMM@Means[[2]][2],col = "dark green")
```


K3GMM <- FitGMM(d,k=3)

Objective increment: 17.1
Objective increment: 3.64
Objective increment: 1.16
Objective increment: 0.414
Objective increment: 0.163</pre>

d)

Objective increment: 0.02
Objective increment: 0.0126
Objective increment: 0.00851
Objective increment: 0.00604

Objective increment: 0.0716
Objective increment: 0.0356

Objective increment: 0.0044
Objective increment: 0.00325
Objective increment: 0.00241
Objective increment: 0.0018

Objective increment: 0.00134
Objective increment: 0.000998
Objective increment: 0.000743

```
## Objective increment: 0.000553
## Objective increment: 0.000412
## Objective increment: 0.000306
## Objective increment: 0.000228
## Objective increment: 0.000169
## Objective increment: 0.000126
## Objective increment: 9.32e-05
## Objective increment: 6.91e-05
## Objective increment: 5.13e-05
## Objective increment: 3.8e-05
## Objective increment: 2.82e-05
## Objective increment: 2.09e-05
## Objective increment: 1.55e-05
## Objective increment: 1.15e-05
## Objective increment: 8.52e-06
## Objective increment: 6.32e-06
## Objective increment: 4.68e-06
## Objective increment: 3.47e-06
## Objective increment: 2.57e-06
## Objective increment: 1.9e-06
## Objective increment: 1.41e-06
## Objective increment: 1.05e-06
## Objective increment: 7.74e-07
## 40 update(s) performed before reaching tolerance limit.
plot(data, xlab = "X", ylab = "Y",col = "grey")
points(K3GMM@Means[[1]][1],K3GMM@Means[[1]][2],col = "red")
points(K3GMM@Means[[2]][1],K3GMM@Means[[2]][2],col = "dark green")
points(K3GMM@Means[[3]][1],K3GMM@Means[[3]][2],col = "blue")
```


Sigma_i = dx * d covariance matrix si <- diff(data\$Var1) %*% diff(rho)</pre> si[1:20,] ## Var1 Var2 [1,] 0.2714496 -0.2714496 ## [2,] 0.7881399 -0.7881399 [3,] 0.7121274 -0.7121274 ## [4,] -0.8031689 0.8031689 [5,] -0.6439405 0.6439405 ## ## [6,] -0.3233667 0.3233667 [7,] 0.8456699 -0.8456699 ## ## [8,] -1.2999374 1.2999374 ## [9,] 1.1007313 -1.1007313 ## [10,] 0.4108798 -0.4108798 ## [11,] 0.1088834 -0.1088834 ## [12,] -0.4082431 0.4082431 ## [13,] 0.5513425 -0.5513425 ## [14,] -0.1791793 0.1791793 ## [15,] 0.5668767 -0.5668767 ## [16,] -1.3834752 1.3834752 ## [17,] 0.2978884 -0.2978884 ## [18,] -0.1558065 0.1558065 ## [19,] 1.0285411 -1.0285411 ## [20,] -0.3159542 0.3159542

e)

Poisson Mixture Model

```
1)
rm(list = ls())
library("readxl")
data <- read_excel("poisson_data.xlsx")
x <- data$X
hist(x)</pre>
```

Histogram of x

From the

plot it may fit two distribution from 1-10 and 10-30 $\,$

```
b)
```

```
library(MASS)
lambda <- fitdistr(x,densfun="Poisson")
lambda

## lambda

## 10.37833333
## (0.09299791)

a <- 0:30
b <- dpois(a,lambda$estimate)
hist(x,xlim=c(0,30),ylim= c(0,250))
par(new=TRUE)
plot(a,b,yaxt="n",xaxt="n",xlab="",ylab="")</pre>
```

Histogram of x

a simple

poisson distribution is not a good fit.

c)

```
library(mixtools)
## mixtools package, version 1.2.0, Released 2020-02-05
## This package is based upon work supported by the National Science Fo
undation under Grant No. SES-0518772.
##
## 载入程辑包: 'mixtools'
## The following object is masked from 'package:ellipse':
##
##
       ellipse
mixture <- normalmixEM(x, lambda = 0.092997, k=2)
## number of iterations= 24
summary(mixture)
## summary of normalmixEM object:
##
           comp 1
                      comp 2
## lambda 0.604878
                   0.395122
         4.722448 19.036712
## sigma 2.052662 4.708305
## loglik at estimate: -3707.207
```

Observed Data Log-Likelihood

Density Curves

e)

the single poisson distribution can not fit the data very well, the mixture model give two poisson distribution and separate the data into two modle, which fit the data better.