1

(3)

Note Title

13/10/2023

Sourua e cuterserioue di sottospari

Riassunto teoria.

Siano V e W due s.sp. vett. di uno stesso sparsio vettoriale X

Allora

→ VNW à aucora un s.sp. vett.

→ V+W= { v+w: v ∈ V, w ∈ W} è aucora un 5.50. vett.

e vale le FORMULA DI GRASSMANN

$$\dim(V+W) + \dim(V\cap W) = \dim(V) + \dim(W)$$

Se inoltre VNW = {0}, allora la somma si dice DIRETTA e Si Scrive

WOV

e a questo punto squi vettore in VDW si sorive in modo

unico come v+w con v∈ V e w∈ W.

_	•
F 20	1110
$-\sigma$	Jam
	— \~

X	V	\overline{W}	$\dim(V)$	$\dim(W)$	$\dim(V\cap W)$	$\dim(V+W)$
\mathbb{R}^2	(1,0)	(1,1)	1	1	0	2
\mathbb{R}^2	(1,1)	(2,2) $(3,3)$	ㅓ	7	ᅱ	1
\mathbb{R}^2	(1,2)	(3,4) $(5,6)$	1	2	ᅱ	2

y $(\underline{4})$

W= Span (1,1)

VnW = {(0,0)}

V+W = Span ((1,0), (1,1)) = R2 sous una base

Scenari possibili: souo 3.
<u>1º modo</u>] Per capire du è la somma, 055ens de
v+w=Spau (vs, vz, ws, wz) e provo a vedere se sous Diu. indip.
20 mars Per capire du è l'outersessione, provo a risolvere
a(1,2,0,1)+b(3,0,-1,0)=c(1,0,1,0)+d(0,2,-1,1)
Se trovo come unica solut. $a=b=c=d=0$, allora $V \cap W = \{0\}$
e quiudi staus nello scenario 0+4. (Osserviano de il conto equivale alla lineare indip.)
1. Spazio vettoriale $X = \mathbb{R}^3$.
(a) $V = \{(x, y, z) \in \mathbb{R}^3 : 2x + 3y = z\},$ $W = \text{Span}\{(1, -1, 1), (0, 1, 0)\};$ (b) $V = \{(x, y, z) \in \mathbb{R}^3 : 2x + 3y = z, \ x - z = 0\},$ $W = \{(x, y, z) \in \mathbb{R}^3 : 3x + 2y = z, \ x + z = 0\};$ (c) $V = \{(x, y, z) \in \mathbb{R}^3 : x + y + z = 0\},$ $W = \text{Span}\{(1, 2, 3)\}$
(a) $V = piauo = Spau((1,0,2),(0,1,3))$ W = piauo
$\begin{pmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 $
VNW = netta (che volendo trovo), V+W = IR3
per Girassmann.
(b) V = retta due se voglio trovo = Spau (v) W = = Spau (w)
Je v e w sour mutipli, allora V=W=V+W=VnW
Se up NNW= foj e V+W= piano = Span (v, w).