1 Aufgabe: Deskriptive Statistik

1. Die folgende Tabelle zeigt Nettokaltmieten pro m^2 für 1- und 2-Raum Wohnungen.

	1	2	3	4	5	6	7	8	9	10
1-Raum	8.70	11.28	13.24	8.37	12.16	11.04	10.47	11.16	4.28	19.54
2-Raum	3.36	18.35	5.19	8.35	13.10	15.65	4.29	11.36	9.09	

Tabelle 1: Nettokaltmieten für Ein- und Zweiraumwohnungen

- (a) Bestimmen Sie für beide Gruppen den Mittelwert und die Varianz.
- (b) Berechnen Sie zudem Median und den Interquartilsabstand (IQR).
- (c) Interpretieren Sie ihre Ergebnisse aus den ersten beiden Aufgaben. Gehen Sie dabei besonders auf das Verhältnis von Mittelwert und Median sowie von IQR und Varianz ein.
- 2. Die Stadt Leipzig will die Altersstruktur ihrer Einwohner untersuchen. In der folgenden Tabelle finden Sie die Daten aus dem Jahr 2008.

Alter	Absolute H'keit	Relative H'keit	Kumulierte relative H'keit
		Tteracive ii ker	Rumaneree relative if kert
0 bis 10	40529		
10 bis 20	33585		
20 bis 30	85450		
30 bis 40	71229		
40 bis 50	77920		
50 bis 60	65970		
60 bis 70	62639		
70 und älter	78147		
Gesamt	515469		

Tabelle 2: Einwohner nach Altersgruppen: Stand 31.12.2008

- (a) Berechnen Sie die relativen und kumulierten relativen Häufigkeiten.
- (b) Zeichnen Sie das Histogramm und die empirische Verteilungsfunktion.

2 Aufgabe: Würfeln

- 1. Wieviele Würfe mit je zwei Würfeln braucht man mindestens, um mit einer Wahrscheinlichkeit von mehr als 50% mindestens eine Doppel-Sechs zu erzielen?
- 2. Beim Mensch-Ärger-Dich-Nicht-Spiel darf nur der Spieler starten, der (mit einem Würfel) eine Sechs würfelt. Wieviele Runden braucht man durchschnittlich für einen Start?
- 3. Bei einem Würfelspiel mit zwei Würfeln betrachten wir die Ereignisse

- A: Erster Würfel zeigt eine gerade Zahl.
- B: Zweiter Würfel zeigt eine ungerade Zahl.
- C: Die Summe der Augenzahlen beider Würfel ist gerade.

Man zeige, dass je zwei der drei Ereignisse unabhängig sind, aber alle drei Ereignisse abhängig sind.

3 Aufgabe: Notation und Unabhängigkeit

- 1. A,B und C seien drei Ereignisse eines Zufallsexperiments mit der Ergebnismenge Ω . Man gebe in mengentheoretischer Schreibweise die Ereignisse an, dass
 - (a) A und B eintreten, aber nicht C.
 - (b) A oder C eintreten, aber nicht B.
 - (c) Keines der drei Ereignisse eintritt.
 - (d) Genau eines der drei Ereignisse eintritt.
 - (e) Höchstens zwei der drei Ereignisse eintreten.
- 2. Man zeige: Sind die Ereignisse A und B unabhängig, so sind auch
 - (a) A und \bar{B} unabhängig.
 - (b) \bar{A} und \bar{B} unabhängig.
 - (c) \bar{A} und \bar{B} unabhängig.

4 Aufgabe: Labortest

Ein Labortest zur Erkennung einer Krankheit K, an der 5% der Gesamtbevölkerung leiden, besitze die folgenden Eigenschaften:

- Hat eine Person die Krankheit K, so erkennt dies der Test mit einer Wahrscheinlichkeit von 95% ($True\ Positiv\ Value$).
- Hat eine Person die Krankheit K nicht, so ist das Testergebnis mit einer Wahrscheinlichkeit von 16% dennoch positiv (False Positiv Value).

Die Ereignismenge für die tatsächlicher Erkrankung ist gegeben als $\{K, \bar{K}\}$ und für das Testergebnis als $\{T, \bar{T}\}$. Man berechne die Wahrscheinlichkeit, dass eine zufällig gewählte Person aus der Gesamtbevölkerung:

- 1. An Krankheit K leidet (Ereignis: K), obwohl der Test keine Erkrankung erkennt (Ereignis: \bar{T}).
- 2. Nicht an Krankheit K leidet (Ereignis: \bar{K}), obwohl der Test eine Erkrankung erkennt (Ereignis: T).
- 3. Nicht an Krankheit K leidet (Ereignis: \bar{K}), wenn der Test auch Entwarnung bezüglich der Erkrankung gibt (Ereignis: \bar{T}).

Übungsleiter:

Bernd Klaus (Dipl. Wi-Math) Mail: bernd.klaus@uni-leipzig.de Verena Zuber (M.Sc.) Mail: vzuber@uni-leipzig.de