Rachunek prawdopodobieństwa i statystyka

Lista zadań nr 6. Tydzień rozpoczynający się 11. kwietnia

Zadania

- 1. Niech $X \sim \text{Geom}(p)$ (rozkład geometryczny). Wykazać, że $M_X(t) = \frac{pe^t}{1 ae^t}$.
- 2. Niech $X \sim \text{Geom}(p)$. Korzystając z funkcji $M_X(t)$ obliczyć E(X) oraz V(X).
- 3. Dla $X \sim N(\mu, \sigma^2)$ mamy $f(x) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right), x \in \mathbb{R}$. Udowodnić, że postać $M_X(t)$ jest następująca: $M_X(t) = \exp\left(\mu t + \frac{1}{2}\sigma^2 t^2\right)$.
- 4. Zmienne X_1, \ldots, X_n są niezależne i $X_k \sim N(\mu, \sigma^2)$. Znaleźć funkcję tworzącą momenty $M_{\bar{X}}(t)$ zmiennej \bar{X} (\bar{X} to średnia z X_1, \ldots, X_n), a następnie zidentyfikować rozkład zmiennej \bar{X} .
 - [**Z. 5–6**] Zmienna $Z \sim \text{Gamma}(b, p)$ ma MGF postaci $M_Z(t) = \left(1 \frac{t}{b}\right)^{-p}$. Dodatkowo wiemy że: $\Gamma(1/2) = \sqrt{\pi}$.
- 5. Niech $X \sim N(\mu, \sigma^2)$. Znaleźć rozkład zmiennej $Y = \left(\frac{X \mu}{\sigma}\right)^2$.
- 6. Zmienne X_1,\ldots,X_n są niezależne oraz $X_k\sim \mathrm{N}(\mu,\sigma^2)$. Znaleźć rozkład zmiennej $Z_n=\sum_{k=1}^n\left(\frac{X_k-\mu}{\sigma}\right)^2.$
 - [Z. 7–8] Znaleźć rozkład, któremu podlega zmienna $Z = \sum_{k=1}^{n} X_k$. O występujących w tych zadaniach zmiennych zakładamy, że są niezależne. Rozwiązujemy zadania używając "MGFy" (funkcje generujące momenty).
- 7. $X_k \sim \text{Gamma}(b, p_k), \quad k = 1, \dots, n.$
- 8. $X_k \sim B(m_k, p), k = 1, ..., n.$
- 9. Zakładamy, że zmienne $X_1, X_2, \ldots, X_n, Y_1, Y_2, \ldots, Y_k$ są niezależne i podlegają rozkładowi N(0,1). W jaki sposób można utworzyć poniższe zmienne:
 - (a) $U \sim \chi^2(k)$,
 - (b) $T \sim t(n)$,
 - (c) $V \sim F(k, n)$
- 10. Zmienna losowa X ma MGF o postaci $M_X(t)$. Zmienna losowa Y jest pewną funkcją zmiennej X. Co można powiedzieć o Y (założenia i od jakich zmiennych zależy Y) jeżeli:
 - (a) $M_Y(t) = M_X(2t) \cdot M_X(4t)$,
 - (b) $M_Y(t) = e^{2t} M_X(t)$,
 - (c) $M_Y(t) = 4M_X(t)$.

[Zadania 11–12] Zakładamy, że niezależne zmienne losowe X_k podlegają rozkładowi N $\left(\mu,\sigma^2\right)$.

$$\sum_{k=1}^{n} (X_k - \mu)^2 = \sum_{k=1}^{n} (X_k - \bar{\mathbf{X}})^2 + n (\bar{\mathbf{X}} - \mu)^2.$$
 (1)

- 11. E1 Znaleźć (wraz z uzasadnieniem) rozkład zmiennej $M = \frac{n}{\sigma^2} \cdot (\bar{\mathbf{X}} \mu)^2$
- 12. **E1** Załóżmy, że zmienne $\bar{\mathbf{X}} = \frac{1}{n} \sum_{k=1}^{n} X_k$ oraz $S^2 = \frac{1}{n} \sum_{k=1}^{n} \left(X_k \bar{\mathbf{X}} \right)^2$ są niezależne.

Korzystając z równania (1) udowodnić, że $\frac{nS^2}{\sigma^2} \sim \chi^2(n-1) \equiv \text{Gamma}\left(\frac{1}{2}, \frac{n-1}{2}\right)$

Witold Karczewski