LINMA2111 Algorithmes et complexité CM 10

Mélanie Sedda - Benoît Sluysmans

30 mai 2015

Halting problem:

Input : A Matlab code "M.m", an input for this matlab code Output : YES if M(x) halts after a finite time, NO otherwise

This is a decision problem, i.e. a problem with output YES or NO. A decision problem is decidable iff it is computable.

Theorem (Turing;1936): The halting problem for Matlab machines is undecidable. Proof: By contradiction: we assume that there is a Matlab code "Halt.m" solving the halting problem. We build "Diagonal.m", a program wich take as argument another Matlab code "M.m" with a string of char as input.

Algorithm 1 Diagonal(M)

```
if halt(M,M) = YES % M halts on input "M.m" then
   while TRUE % infinite loop
else
   STOP % if M does not halt on M, then stop
end if
```

What happens if we call Diagonal(Diagonal)?

- If it stops then halt(Diagonal,Diagonal) = YES \Rightarrow infinite loop, does not stop
- If it does not stop, then it stops

 \Rightarrow "Halt.m" does not exist.

This is called a diagonal argument. Why?

		$ x_1 $	x_2	x_3	x_4	
We create this array:	M1.m	Halt	NotHalt	NotHalt	Halt	
	M2.m	Halt	\mathbf{Halt}	NotHalt	Halt	
	M3.m	NotHalt	NotHalt	$\mathbf{NotHalt}$	Halt	
	:	:	:	:	:	

Where x_i represent all strings of char, and "M.i" represent all codes with string of char as inputs. We have entry (i,j) = Halt iff $Mi(x_j)$ halts.

We now change all entries of the diagonal: If $Mi(x_i) = "Halt"$ then Diagonal(i) = "NotHalt" and conversely.

In our case, we obtain (Diagonal(1),Diagonal(2),Diagonal(3),...) = ("NotHalt","NotHalt","Halt",...). This row is not in the array, by construction. That means that "Diagonal.m" \neq "Mi.m, $\forall i$.

Cantor (1891) invented the diagonal argument to prove that [0,1] (or \mathbb{R} , etc) is not countable, i.e. it does not exist a surjection $\mathbb{N} \to [0,1]$. If there exists a surjection $c: \mathbb{N} \to [0,1]$, it follows that $[0,1] = \{c_0, c_1, c_2, \ldots\}$.

From which we create a new number x = 0.202... $(0 \to 1, 1 \to 2, 2 \to 3, ..., 9 \to 0)$. We now see that x is not in the array, by construction $\Rightarrow x \neq c_i \ \forall i$, which is a contradiction.

What about the decision problems (from integer or string of char to YES or NO)?

 a
 b
 ...
 aa
 ...

 0
 1
 2
 3
 ...

 YES
 YES
 NO
 YES
 ...

 1
 1
 0
 1
 ...

Where the third row characterizes the decision proble P, and we can create $x_P \in [0, 1]$ from the last row : $x_P = 0.1101...$ That means that $\forall x \in [0, 1]$, I can create a decision problem. So decision problems are uncountable because in bijection with [0, 1].

Matlab codes are countable (e.g. string of char, ASCII codes \Rightarrow integer $\in \mathbb{N}$). And every Matlab code can solve at most one decision problem. So most decision problems are undecidable! But Turing's proof is interesting because it provides a specific, interesting decision problem that is undecidable.

2