AD-A175 344

INSTALLATION RESTORATION PROGRAM PHASE II-CONFIRMATION/QUANTIFICATION STAGE 1

FOR AIR FORCE PLANT PJKS WATERTON, COLORADO

VOLUME II

PREPARED BY:

ENGINEERING-SCIENCE

DESIGN • RESEARCH • PLANNING 1100 STOUT STREET, SUITE 1100 DENVER, COLORADO 80204 SELECTE DEC 1 9 1986

OCTOBER 1986

FINAL REPORT FOR PERIOD OCTOBER 1985 TO OCTOBER 1986

Approved for Public Release, Distribution is Unlimited

PREPARED FOR:

HEADQUARTERS AERONAUTICAL SYSTEMS DIVISION FACILITIES MANAGEMENT DIVISION (ASD/PMDA) OHIO 45433-6503

AND

HEADQUARTERS AIR FORCE SYSTEMS COMMAND
COMMAND BIOENVIRONMENTAL ENGINEER (AFSC/SGPB)
ANDREWS AIR FORCE BASE, D.C. 20334-5000

UNITED STATES AIR FORCE
OCCUPATIONAL & ENVIRONMENTAL HEALTH
LABORATORY (USAFOEHL)
TECHNICAL SERVICES DIVISION (TS)
BROOKS AIR FORCE BASE, TEXAS 78235-5501

国の

INSTALLATION RESTORATION PROGRAM PHASE II - CONFIRMATION/QUANTIFICATION STAGE 1

FOR

AIR FORCE PLANT PJKS, WATERTON, COLORADO

VOLUME II

PREPARED BY:

ENGINEERING-SCIENCE, INC. DENVER, COLORADO

OCTOBER 1986
FINAL REPORT FOR PERIOD OCTOBER 1985 TO OCTOBER 1986

APPROVED FOR PUBLIC RELEASE, DISTRIBUTION IS UNLIMITED

PREPARED FOR:

HEADQUARTERS AERONAUTICAL SYSTEMS DIVISION FACILITIES MANAGEMENT DIVISION (ASD/PMDA) WRIGHT-PATTERSON AIR FORCE BASE, OHIO 45433-6503

AND

HEADQUARTERS AIR FORCE SYSTEMS COMMAND COMMAND BIOENVIRONMENTAL ENGINEER (AFSC/SGPB) ANDREWS AIR FORCE BASE, D.C. 20334-5000

UNITED STATES AIR FORCE
OCCUPATIONAL & ENVIRONMENTAL HEALTH LABORATORY (USAFOEHL)
TECHNICAL SERVICES DIVISION (TS)
BROOKS AIR FORCE BASE, TEXAS 78235-5501

INSTALLATION RESTORATION PROGRAM PHASE II - CONFIRMATION/QUANTIFICATION STAGE 1

Final Report For

Air Force Plant PJKS, Waterton, Colorado

Headquarters Aeronautical Systems Division
Facilities Management Division (ASD/PMDA)
Wright-Patterson AFB,
Ohio 45433-6503

And

Headquarters Air Force Systems Command Command Bioenvironmental Engineer (AFSC/SGPB) Andrews Air Force Base, D.C. 20334-5000

United States Air Force
Occupational & Environmental Health Laboratory (USAFOEHL)
Technical Services Division (TS)
Brooks Air Force Base, Texas 78235-5501

October 1986

PREPARED BY
Engineering-Science, Inc.
Denver, Colorado

USAF CONTRACT NO. F33615-84-D-4403, DELIVERY ORDER NO. 0012

USAFOEHL TECHNICAL PROGRAM MANAGER

John K. Yu, Ph.D.

Technical Program Manager/Consulting Hydrologist

USAF OCCUPATIONAL & ENVIRONMENTAL HEALTH LABORATORY (USAFOEHL)
TECHNICAL SERVICES DIVISION (TS)
BROOKS AIR FORCE BASE, TEXAS 78235-5501

12.25

Special

Accession For

Yes an sunced | Juniification

Availability Codes
Avail and/or

TOTAL TAB

NOTICE

This report has been prepared for the United States Air Force by Engineering-Science, Inc., for the purpose of aiding in the implementation of the Air Force Installation Restoration Program (AFIRP). It is not an indorsement of any product. The views expressed herein are those of the contractor and do not necessarily reflect the official views of the publishing agency, the United States Air Force, or the Department of Defense.

Copies of this report may be purchased from:

以此時日本為其中 一日本文化学出版人 一一一一一一一一一一一一一一一一一一一一一一一一

National Technical Information Service 5285 Port Royal Road Springfield, VA 22161

			REPORT DOCUM	MENTATION	PAGE		
A REPORT S	ECURITY CLASS	IFICATION		16. RESTRICTIVE		-	
Un	classified	!		N/A			
SECURITY	CLASSIFICATION N/A	N AUTHORITY		3. DISTRIBUTION	-	·	
D. DECLASSI		MGRADING SCHEDL	Jul	Approved :		•	
	N/A	ION REPORT NUMBI					
I, PERPORMI		NA KEPUKI NUMBI	E4(2)	S. MONITORING		I REPORT NUM	BEK(S)
	N/A				N/A		
		ORGANIZATION	6b. OFFICE SYMBOL (If applicable)	7a. NAME OF MO	ONITORING OR	GANIZATION	
Engin	eering-Sc:	ience, Inc.		USAFOEHL/	rss		
L ADDRESS	(City, State, and	ZIP Code)	····	76 ADDRESS (Cir.	y, State, and Z	UP Code)	
_		eet, Suite 11	.00	1			
Denve	r, Colorad	io 80204		Brooks AF	B, Texas /	78235-5501	
Sa. NAME OF	FUNDING/SPO	NSORING	8b. OFFICE SYMBOL (If applicable)	9 PROCUREMENT	INSTRUMENT	IDENTIFICATION	NUMBER
•	EHL/TSS		(m apputable)	Contract	Number: E	F33615-84-	D-4403
	(City, State, and	ZIP Code)		10 SOURCE OF F		IERS	
				PROGRAM ELEMENT NO.	PROJECT NO.	TASK NO.	WORK UN
Brook	s AFB, Tex	kas 78235-550)1		1		
12. PESONA 13a. TYPE OF Inter	L AUTHOR(S)	Engineering 13b. TIME CO FROM 10	Phase II Initierton, Colorado g-Science, Inc. OVERED 0/85 TO 10/86	14. DATE OF REPO 1986, 96	RT <i>(Year, Man</i> tet. 6	th, Cay) 15. Pi	AGE COUNT
12. PESONA 13a. TYPE OF Inter 16. SUPPLEMI	REPORT / ENTARY NOTAT	Engineering 135. TIME C FROM 10	-Science, Inc. OVERED 0/85 TO 10/86	1986, 00	e if necessary a		46
12. PESONA 13a. TYPE OF Inter 16. SUPPLEMI	REPORT / ENTARY NOTAT	Engineering 135. TIME C FROM 10	-Science, Inc. OVERED 0/85 TO 10/86	1986, 00 Continue on reverse ontamination	e if necessary a		46
12. PERSONAL 13a. TYPE OF Inter 16. SUPPLEMI 17. FIELD 19. ABSTRAC	REPORT / Im ENTARY NOTAT COSATI (GROUP I (Continue on a	Engineering 13b. TIME C FROM 10 TON CODES SUB-GROUP reverse if necessary	TEON, Colorado S-Science, Inc. OVERED 0/85 TO 10/86 18. SUBJECT TERMS (IRP C Hazardous W and identify by block of	Continue on reverse ontamination aste Ph	et. 6 if necessary a ase II ce of hezerdo	and identify by	block number)
12. PESONAL 13a. TYPE OF Inter 16. SUPPLEMI 17. FIELD Air was wat Haz pro sel con min sig to mig hum	REPORT Tim ENTARY NOTAT COSATI (GROUP A field invertes include to the includ	Engineering 13b. TIME C FROM 10 TON CODES SUB-GROUP Poverse if necessary estigntion was con PJKS near Vatertha development an and sediments, as inces found at to zine), phenola, as inces foun	rton, Colorado -Science, Inc. OVERED 0/85 TO 10/86 18. SUBJECT TERMS (IRP C Hazardous W and identify by block of	Continue on reverse ontamination aste Photomer) I deny the presentities at the placements. The firm and sampling of under TCE and otherword metals, included TCE and otherword metals, included the contamination of contamination of contamination of contamination of contamination of contamination exists. Placementations exception exists.	e if necessary asserts ase II ce of hazardout that coul ald program if eight growner halocarb luding arsenits downgradies us—thorium all tion needs to on of soils a on and a le 4, 5, and 11 dding standar ans for futur	ous wastes at id have gener included sampl md water mon ons, NDMA (a ic, hexavalent not from a lan loy. Since me be established sediments ck of pathway was judged to de or guideli	eight sites at sted hazardous ing of surface itoring wells. decomposition chronium, and dfill known to satural uranium had before the was determined ye for offsite be moderately nes to protect
12. PESONAL 13a. TYPE OF Inter 15. SUPPLEMI 17. FIELD 19. ABSTRACT Air was wat. Heas pro- sell com min sig to mig nin sou	REPORT Tim ENTARY NOTAT COSATI GROUP A field invertee Plent tes include ters, soils, ardous substanduct of hydrauenium. Elevatein a small deralisation on ificance of the of low siration. Continuitient because health, and rees and externing and exter	Engineering 13b. TIME C FROM 10 100N CODES SUB-GROUP Estigation was con PJKS near Veterthe development an and sediments, an inces found at tizine), phenole, at ted levels of raceure (25 kilograceure (25 ki	TEON, Colorado S-Science, Inc. OVERED 0/85 TO 10/86 18. SUBJECT TERMS (IRP C Hazardous W and identify by block of moducted to confirm on on, Colorado. Activ nd testing of rocket nd the installation he eight sites inclind trace amounts of h distion were detected and of low-level rad area, the background action can be determine of the low level ace and ground waters ants occurred at cone for contaminant migra	Continue on reversion tamination aste Photomory of deny the presentities at the placement of the second of the sec	e if necessary and ase II ce of hazardount that could be a second as a second a sec	ous wastes at id have gener included sampl nd water mon one, NDMA (a ic, hexavalent nt from a lam iloy. Since me be established sediments ck of pathway was judged to de or guidelire studies to	eight sites at ated hazardous ing of surface itoring wells, decomposition chronium, and dfill known to satural uranium had before the was determined ye for offsite be moderately nes to protect
IZ. PESONAL ISA. TYPE OF INTER IT. FIELD AIT VAL HAS PTO SIGN SIGN	REPORT Tim ENTARY NOTAT COSATI GROUP A field inv. Force Plant tes include ters, soils, ardous substaduct of hydra: enium. Elevatein a small deralization on ificante of its ration. Continuitient because health, and rees and externitient on the continuitient because health, and rees and externitient on the continuitient because health, and rees and externitient on the continuitient because health, and rees and externitient of the continuitient because health, and rees and externitient because health and rees and externitient because health and rees and re	Engineering 13b. TIME C FROM 10 100 100 100 100 100 100 100	-Science, Inc. OVERED 0/85 TO 10/86 18. SUBJECT TERMS (IRP C Hazardous W and identify by block of mounted to confirm on on, Colorade. Active nd testing of rocket nd the installation he eight sites inclin nd trace amounts of h diation were detected area, the background stion can be determine of the low level ace and ground water ants occurred at cone for contaminant signs ground water contami	Continue on reverse ontamination aste Phonomerical Phonom	ase II ce of hazardo int that coul eld program i eight grow her halocarb luding erseni s downgradie un-thorium al tion needs to on of soils a lon and a le 4, 5, and 11 iding standar ans for futur loped.	ous wastes at id have gener included sampl nd water mon one, NDMA (a ic, hexavalent nt from a lam iloy. Since me be established sediments ck of pathway was judged to de or guidelire studies to	eight sites at ated hazardous ing of surface itoring wells, decomposition chronium, and dfill known to satural uranium had before the was determined ye for offsite be moderately nes to protect
12. PESONAL 13a. TYPE OF Inter 15. SUPPLEMI 17. FIELD 19. ABSTRACT Air was wat. Haz pro sel. con min sig to uig sig hum sou 20. DISTRIBU 22a. NAME O	REPORT. TIME COSATI (GROUP I (Continue on a A field invertes include the continue of a continue on a continue of the conti	Engineering 13b. TIME C FROM 10 100 100 100 100 100 100 100	IS. SUBJECT TERMS (IRP C Hazardous W and identify by block of middeted to confirm or on, Colorado. Active detesting of rocket mid the installation he eight sites inclin detrace amounts of hi distion were detected area, the background action can be determin se of the low level ace and ground waters ants occurred at cone for contaminant migra ground water contami	Continue on reversion tamination aste Photomory of deny the presentities at the placement of the second of the sec	et. 6 if necessary a ase II ce of hazardo int that coul eld program if eight grow her halocarb luding arseni tion needs to on of soils a on and a le 4, 5, and 11 dding standar ans for futur loped. CURITY CLASSIF fied	ous wastes at id have gener included sampl nd water mon one, NDNA (a ic, hexavalent of pathway was judged to do or guidelire studies to	eight sites at sted hazardous ing of surface itoring wells. decomposition chromium, and dfill known to satural uranium had before the was determined by for offsite be moderately mas to protect determine the
12. PESONAL 13a. TYPE OF Inter 15. SUPPLEMI 17. FIELD 19. ABSTRACT Air was was. Haz pro- sel con min sig to mig sig hum sou 20. OISTRIBU 22a. NAME C Lt Peter	REPORT Tim ENTARY NOTAT COSATI GROUP A field inv. Force Plant tes include ters, soils, ardous substaduct of hydra: enium. Elevatein a small deralization on ificante of its ration. Continuitient because health, and rees and externitient on the continuitient because health, and rees and externitient on the continuitient because health, and rees and externitient on the continuitient because health, and rees and externitient of the continuitient because health, and rees and externitient because health and rees and externitient because health and rees and re	Engineering 135. TIME C FROM 10 100N CODES SUB-GROUP SUB-GROUP SUB-GROUP SUB-GROUP SUB-GROUP SUB-GROUP SUB-GROUP Freeze if necessary estigntion was co FJKS near Watert. he development an end sediments, an inces found at the sine), phenols, an inces	TEON, Colorado S-Science, Inc. OVERED 0/85 TO 10/86 18. SUBJECT TERMS (IRP C Hazardous W And identify by block of miducted to confirm or on, Colorade. Active ind testing of rocket ind the installation he eight sites inclin ind trace amounts of h distion were detected ease) of low-level rad area, the background see end ground waters ants occurred at confirm ease of the low level ace and ground waters ants occurred at confirm ground water contaming RPT. □ DTIC USERS	Concinue on reversion tamination aste Photomore on the presentities at the place of the property of the proper	et. 6 if necessary a ase II ce of hazardo but that coul eld program if eight grow her halocarb luding arseni s downgradie un-thorium al tion needs to on of soils a lon and a le 4, 5, and 11 dding standar ans for futur loped. CURITY CLASSI fied actude Area Co	ous wastes at id have gener included sampled, hexavalent of be established sediments of pathway was judged to do or guideline studies to AS	eight sites at ated hazardous ing of surface itoring wells. decomposition chronium, and dfill known to satural uranium had before the was determined by for offsite be moderately nes to protect determine the D/PMDA
12. PESONAL 13a. TYPE OF Inter 15. SUPPLEMI 17. FIELD 19. ABSTRACT Air was was. Haz pro- sel con min sig to mig sig hum sou 20. OISTRIBU 22a. NAME C Lt Peter	REPORT COSATI COSATI GROUP (Continue on a series include to substantial duct of hydrasenium. Elevation a small deralization on ificance of the of low significance because health, and rese and extention. Continuificant because health, and rese and extentions of the of low significant because health, and rese and extentions. Continuificant because health, and research and extentions. Continuificant because and extentions of the continuity of RESPONSIBLE Reynolds	Engineering 135. TIME C FROM 10 100N CODES SUB-GROUP SUB-GROUP SUB-GROUP SUB-GROUP SUB-GROUP SUB-GROUP SUB-GROUP Freeze if necessary estigntion was co FJKS near Watert. he development an end sediments, an inces found at the sine), phenols, an inces	IS. SUBJECT TERMS (IRP C Hazardous W and identify by block of miducted to confirm on on, Colorado. Active id testing of rocket ind the installation he eight sites inclined trace amounts of id distion were detected area, the background action can be determined of the low level ace and ground waters ants occurred at confor contaminant migra ground water contami	Concinue on reversion tamination aste Photomore on the presentities at the place of the property of the proper	ase II ce of hazardo at that coul ald program is eight growner halocarbluding arsents downgradies was thorium all tion needs to on of soils a low and a leading standar and for futuriloped. CURITY CLASSIFIED COUNTY CLASSIFIED C	ous wastes at id have gener included sampled, hexavalent of be established sediments of pathway was judged to do or guideline studies to AS	eight sites at sted hazardous ing of surface itoring wells. decomposition chronium, and dfill known to stural uranium had before the was determined to protect determine the form of the beauty of the step of the beauty of the step of t

20. DISTRIBUTION/AVAILABILITY OF ABSTRACT QUNCLASSIFIED/UNLIMITED SAME AS RPT. DTIC USER	21. ABSTRACT SECURITY CLASSIFICATION Unclassified	-
228. NAME OF RESPONSIBLE INDIVIDUAL Lt Peter Reynolds	225, TELEPHONE ROCIUSE Area Code) 22c. OFFICE SYMBOL ASD/PMDA	

TABLE OF CONTENTS

		Page
EXECUTIVE	SUMMARY	ES-1
SECTION 1	.0 - INTRODUCTION	1-1
1.1	Background and Authority	1-1
1.2	Purpose and Scope	1-2
1.3	Program Duration	1-4
1.4	Background Information	1-4
	1.4.1 T-8A Containment Pond Area (Site 1)	1-7
	1.4.2 EPL Test Cells, Valve Shop, Ready Storage Area, and Soils Cones (Site 2)	1-7
	1.4.3 EPL Building T-6 and T-20A (Site 3)	1-12
	1.4.4 T-31 Storage Tank (Site 4)	1-12
	1.4.5 D-1 Landfill (Site 5)	1-12
	1.4.6 Systems and Components Test Facilities Storage Tanks (Site 7)	1-13
	1.4.7 Construction Material Fill Area (Site 10)	1-13
	1.4.8 East Fork of Brush Creek (Site 11)	1-14
1.5	Potential Contaminants	1-14
1.6	Project Team	1-15
1.7	Factors of Concern	1-16
SECTION 2	.0 - ENVIRONMENTAL SETTING	2-1
2.1	Geography and Topography	2-1
	Meteorology	2-1
2.3		2-4
2.3	2.3.1 Surface Water Drainages	2-4
	2.3.2 Surface Water Quality	2-6
2.4	· · · · · · · · · · · · · · · · · · ·	2-9
	2.4.1 Regional Geology	2-9
	2.4.2 Site Geology	2-9
	2.4.2.1 Stratigraphy	2-9
	2.4.2.2 Structure	2-13
	2.4.2.3 Economic Geology	2-15
2.5		2-15
	2.5.1 Regional Hydrogeology	2-15
	2.5.2 Site Hydrogeology	2-16
	2.5.2.1 Quaternary Deposits	2-16
•	2.5.2.2 Fountain Formation	2-17
	2.5.2.3 Precambrian Units	2-17
	2.5.3 Locations of Nearby Wells	2-18
	2.5.4 Ground Water Quality	2-18
2.6	Issues of Concern	2-10

TABLE OF CONTENTS (Continued)

				Page
SECTION 3	3.0 - F	ELD PROGR	AM	3-1
3.1	Progra	m Develop	ment	3-2
	3.1.1	Surface	Geophysical Surveys	3-2
	3.1.2	Monitor Sampling	Well Installation and Ground Water	3-2
	3.1.3	Soil Sam	pling	3-2
	3.1.4	Surface	Water and Sediment Sampling	3-2
	3.1.5	Flow Mea	surements of Brush Creek	3-2
	3.1.6	Analytic	al Program	3-3
3.2	Progra	ım Implemen	ntation	3-3
	3.2.1	Schedule	of Activities	3-3
	3.2.2	Geophysic	cal Surveys	3-3
			Magnetometer Survey	3-3
			Electrical Resistivity Survey	3-4
	3.2.3	Drilling	and Sampling Program	3-4
			Drilling and Soil Sampling	3-4
			Well Construction and Development	3-6
			Ground Water Sampling	3-7
			Surface Water Sampling	3-10
			Sediment Sampling	3-11
			Flow Measurements	3-11
	3.2.4		cific Field Program Details	3-11
			T-8A Containment Pond Area (Site 1)	3-11
			EPL Test Cells, Valve Shop, Ready	3-14
			Storage Area and Soil Cone Areas (Site 2)	
		3.2.4.3	EPL Building T-6 and T-20 (Site 3)	3-14
		3.2.4.4		3-15
		3.2.4.5	Components Test Facilities Storage Tanks (Site 7)	3-15
		3.2.4.6	(Site 10)	3-15
		3.2.4.7	East Fork of Brush Creek (Site 11)	3-16
	3.2.5	Sample Pr	reservation and Integrity	3-16
		3.2.5.1	Sample Containers, Preservatives, and Holding Times	3-16
		3.2.5.2	Laboratories	3-16
		3.2.5.3		3-17
			Chain-of-Custody Record	3-17
	3.2.6	Analytica	al Program	3-17
			Dual Column Analyses and Confirmation	3-17

S. S. K. C. S. S. S.

The second of th

1.77

TABLE OF CONTENTS (Continued)

		Page
SECTION 4	.0 - RESULTS AND SIGNIFICANCE OF FINDINGS	4-1
4.1	Introduction	4-1
	Surface Water Hydrology Results	4-1
	4.2.1 Flow in the East Fork of Brush Creek	4-1
	4.2.2 Contributions to Pond T-8A	4-4
4.3	Results of Subsurface Investigations	4-5
	4.3.1 Site 1	4-5
	4.3.2 Site 2	4-8
	4.3.3 Site 3	4-10
	4.3.4 Sites 4 and 5	4-10
	4.3.5 Site 7	4-12
	4.3.6 Site 10	4-12
	4.3.7 Summary	4-15
4.4	Field and Laboratory Analytical Results	4-15
	4.4.1 Site 1	4-19
	4.4.2 Site 2 4.4.3 Site 3	4-23
	4.4.4 Sites 4 and 5	4-25 4-25
	4.4.5 Site 7	4-29
	4.4.6 Site 10	4-29
	4.4.7 Site 11	4-31
4.5	Significance of Findings	4-36
443	4.5.1 Significance of Contamination on AFP PJKS	4-39
	Property	
	4.5.1.1 Site 1 - Ground Waters	4-39
	4.5.1.2 Site 1 - Soils and Sediments	4-41
	4.5.1.3 Site 1 - Surface Water	4-43
	4.5.1.4 Site 2 - Ground Waters	4-43
	4.5.1.5 Site 2 - Soils	4-44
	4.5.1.6 Site 3 - Soils	4-45
	4.5.1.7 Sites 4 and 5 - Ground Waters	4-45
	4.5.1.8 Site 7 - Sediments	4-48
	4.5.1.9 Site 10 - Ground Water	4-49
	4.5.1.10 Site 11 - Surface Water	4-50
	4.5.1.11 Site 11 - Sediment	4-51
	4.5.1.12 Summary	4-52
	4.5.2 Evaluation of Contaminant Migration Offsite	4-52
SECTION 5	.O ALTERNATIVE MEASURES	5-1
5.1	Site 1	5-1
	Site 2 and 3	5-2
	Sites 4 and 5	5-2
	Site 7	5-3
	Site 10	5-4
~ A	Sita 11	5-4

THE SECOND SECTION OF SECTIONS OF SECTIONS OF SECTIONS OF SECTIONS OF SECTIONS OF SECTIONS OF SECTIONS

K

X

TABLE OF CONTENTS (Continued)

同处

3

Š

8

Ä

	Page
SECTION 6 RECOMMENDATIONS	6-1
6.1 Introduction	6-1
6.2 Category 1 - Sites Requiring No Further Action	6-1
6.3 Category 2 - Sites Requiring Additional Phase II Effort	6-1
6.3.1 General Recommendations	6-1
6.3.2 Methodology	6-3
6.3.3 Site 1	6-4
6.3.4 Sites 2 and 7	6-6
6.3.5 Sites 7 and 10	6-6
6.3.6 Sites 4 and 5	6-7
6.3.7 Site 11	6-8
APPENDIX A - REFERENCES	A-1
APPENDIX B - DEFINITIONS, NOMENCLATURE AND UNITS OF MEASUREMENT	B-1
APPENDIX C - DELIVERY ORDER	C-1
APPENDIX D - RESUMES OF PROJECT PERSONNEL	D-1
APPENDIX E - NEARBY WATER WELL DATA	E-1
APPENDIX F - WELL AND SOIL BORING DATA	F-1
Soil Boring Logs	F-1 F-26
Well Construction Details	F-20 F-33
Well and Soil Boring Survey Data APPENDIX G - GEOPHYSICAL SURVEY DATA	r-33 G-1
	G-1 G-1
Sites 4 and 5 Site 10	G-16
APPENDIX H	H-1
Detection Limits, Preservatives, and Holding Times	H-1
Detection Limits for Base/Neutral Compounds	H-4
Elapsed Time Between Sampling and Lab Analyses for	H-5
PJKS Samples	·· 0
Sampling Numbering System	H-8
Sample Handling and Packaging	H-14
APPENDIX I - CHAIN OF CUSTODY RECORDS	I-1 J-1
APPENDIX J - QA/QC LABORATORY RESULTS SUMMARY APPENDIX K - LIST OF CONTACTS	K-1
APPENDIX L - LABORATORY ANALYSES FOR SAMPLING PROGRAM	L-1
Hydrazine and NDMA Analyses for all sites	L-1
Site 1 - Soil Samples	L-9
Site 2 - Soil Samples	L-110
Site 3 - Soil Samples	L-171
Site 7 - Soil Samples	L-209
Site 11 - Surface Water and Soil Samples	L-240
Pond Water and Sediment Samples	L-300
Ground Water Analyses	L-317
APPENDIX M - RESPONSES TO REGULATORY AGENCIES COMMENTS	M-1
U.S. Environmental Protection Agency	M-1
Colorado Department of Health	M-4

APPENDIX I
LABORATORY ANALYSES FOR SAMPLING PROGRAM

Results of Hydrazine and NDMA for all Samples Analyzed

33

California Analytical Laboratories, Inc. 2544 Industrial Boulevard • West Sacramento, CA 95691 • (916) 372-1393

January 29, 1986 Lab No's: 23165/23308/ 23343/23344/23357/ 23410/23470/23517/ 23532/23541 PJKS-AF-Denver Project

John Adamson
Engineering Science
57 Executive Park Four, Suite 590
Atlanta, GA 30329

Twenty-two water samples were received in one quart amber bottles and seventy soil/sediment samples were received in one quart mason jars to be analyzed for hydrazine and NDMA (nitrosodimethylamine).

CAL I.D. 23165-1 -2 -3 -4	SAMPLE I.D. 8-1-SW-1 8-2-SW-1 8-1-SD-1 8-2-SD-1	12/3/85 12/3/85 12/3/85 12/3/85	MATRIX WATER WATER SOIL SOIL	DATE RECEIVED 12/4/85 12/4/85 12/4/85 12/4/85
23308-1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -12 -13 -14 -15 -16 -17 -19	1-ES-3-SS-1 1-ES-3-SS-3 1-ES-3-SS-4 1-ES-3-SS-6 1-ES-3-SS-6 1-ES-4-SS-1 1-ES-4-SS-4 1-ES-4-SS-4 1-ES-4-SS-4 1-ES-4-SS-6 1-ES-5-SS-6 1-ES-5-SS-6 1-ES-5-SS-6	12/13/85 12/13/85 12/13/85 12/13/85 12/13/85 12/13/85 12/13/85 12/13/85 12/13/85 12/13/85 12/13/85 12/13/85 12/13/85 12/16/85 12/16/85 12/16/85 12/16/85 12/16/85	SOIL SOIL SOIL SOIL SOIL SOIL SOIL SOIL	12/17/85 12/17/85 12/17/85 12/17/85 12/17/85 12/17/85 12/17/85 12/17/85 12/17/85 12/17/85 12/17/85 12/17/85 12/17/85 12/17/85 12/17/85 12/17/85 12/17/85 12/17/85
23343-1 -2 -3 -4 -5 -6 -7 -8 -9	8-3-SW-1 8-3-SD-1 8-4-SW-1 8-4-SD-1 8-5-SW-1 8-5-SW-1 8-6-SW-1 8-6-SD-1 8-5-SW-2	12/18/85 12/18/85 12/18/85 12/18/85 12/18/85 12/13/85 12/18/85 12/18/85	WATER SOIL WATER SOIL WATER SOIL WATER SOIL WATER	12/19/85 12/19/85 12/19/85 12/19/85 12/19/85 12/19/85 12/19/85 12/19/85

Control Texts of the Control

Page 2.

The same of the property of the same of th

CAL I.D. 23343-10 -11 -12 -13 -14 -15 -16 -17 -18 -19 -20 -21 -22	SAMPLE I.D. 8-5-SD-2 8-7-SW-1 8-8-SW-1 8-7-SD-1 8-8-SD-1 8-9-SD-1 8-10-SD-1 8-1-SD-2 8-2-SD-2 8-1-SW-2 8-2-SW-2 8-9-SW-1 8-10-SW-1	12/18/85 12/18/85 12/18/85 12/18/85 12/18/85 12/18/85 12/18/85 12/18/85 12/18/85 12/18/85 12/18/85 12/18/85 12/18/85	MATRIX SOIL WATER WATER SOIL SOIL SOIL SOIL SOIL SOIL WATER WATER WATER WATER WATER	DATE RECEIVED 12/19/85 12/19/85 12/19/85 12/19/85 12/19/85 12/19/85 12/19/85 12/19/85 12/19/85 12/19/85 12/19/85 12/19/85 12/19/85
23344-1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11	ES-7(1')-SS-1 ES-7(3')-SS-2 ES-7(6')-SS-3 ES-7(10')-SS-4 ES-7(15')-SS-5 ES-7(20')-SS-6 ES-6(1')-SS-1 ES-6(3')-SS-2 ES-6(6')-SS-3 ES-6(10')-SS-4 ES-6(15')-SS-5 ES-6(20')-SS-6	12/17/85 12/17/85 12/17/85 12/17/85 12/17/85 12/17/85 12/17/85 12/17/85 12/17/85 12/17/85 12/17/85	SOIL SOIL SOIL SOIL SOIL SOIL SOIL SOIL	12/19/85 12/19/85 12/19/85 12/19/85 12/19/85 12/19/85 12/19/85 12/19/85 12/19/85 12/19/85 12/19/85
23357-1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -12 -13	7-1-SD-1 7-2-SD-1 7-3-SD-1 ES-9-SS-1 ES-9-SS-2 ES-9-SS-3 ES-9-SS-4 ES-9-SS-5 7-4-SD-1 7-5-SD-1 7-6-SD-1 7-8-SD-1 7-9-SD-1	12/19/85 12/19/85 12/19/85 12/19/85 12/19/85 12/19/85 12/19/85 12/19/85 12/19/85 12/19/85 12/19/85 12/19/85 12/19/85	SOIL SOIL SOIL SOIL SOIL SOIL SOIL SOIL	12/20/85 12/20/85 12/20/85 12/20/85 12/20/85 12/20/85 12/20/85 12/20/85 12/20/85 12/20/85 12/20/85 12/20/85 12/20/85

Page 3.

CAL I.D.	SAMPLE I.D.		MATRIX	DATE RECEIVED
23410-1	ES-11-SS-1	12-30-85	SOIL	01/02/86
-2 -3	ES-11-SS-2	12-30-85	SOIL	01/02/86
- 3	ES-11-SS-3	12-30-85	SOIL	01/02/86
-4	ES-11-SS-4	12-30-85	SOIL	01/02/86
-5	ES-11-SS-5	12-30-85	SOIL	01/02/86
-6	ES-13-SS-1	12-31-85	SOIL .	01/02/86
-7	ES-13-SS-2	12-31-85	SOIL	01/02/86
-8	ES-13-SS-3	12-31-85	SOIL	01/02/86 01/02/86
-9 -10	ES-14-SS-1	12-31-85 12-31-85	SOIL SOIL	01/02/86
-10 -11	ES-14-SS-2 ES-14-SS-3	12-31-85	SOIL	01/02/86
-12 ⁻	ES-14-SS-4	12-31-85	SOIL	01/02/86
-13	ES-14-SS-5	12-31-85	SOIL	01/02/86
.,	20 14 00 7	,. 0,	JUI 7,	0.702700
		_		
23470-1	1-SW-1, SITE 1	01-09-86	WATER	01/10/86
-2	1-SD-1,SITE 1	01-09-86	SOIL	01/10/86
23517-1	MW-1,GW-1	01-14-86	WATER	01/15/86
-2 -2	MW-2,GW-1	01-14-86	WATER	01/15/86
	m - Z y Q n - 1	01-14-00	WALDI	01717700
23532-1	MW-8-10MW-8,GW-1	1 01-15-86	WATER	01/16/86
-2	MW-3-2-2MW-3,GW-		WATER	01/16/86
-3	MW-6-4-2MW-6,GW-	-1 01-15-86	WATER	01/16/86
			••	
07544 4	WU A A WU A OU A	. 04 46 06	ii A mをわ	04437/06
23541-1	MW-4,4-MW-4,GW-1		WATER	01/17/86
-2	MW-5,4-MW-5,GW-1		WATER WATER	01/17/86 01/17/86
- 3	MW-7,2-MW-7,GW-1	1 01-10-00	MATEL	01/11/00

Analysis of sample set 23165 was cancelled by Tim Shangraw on 12/23/86.

METHODS

A. NDMA (nitrosodimethylamine).

1. Water Samples. Sample aliquots were extracted, concentrated, and analyzed using EPA method 607.

2. Soil/sediment Samples. Sub-samples (10g) were extracted with 20 mL of a dichloromethane-methanol mixture (5:1,v:v) by shaking for one hour. A 10 mL aliquot (5g of soil) was removed, concentrated under nitrogen to about 2 mL, and adjusted to 5.0 mL in methanol. The final extracts were analyzed by GC-NPD as described in EPA Method 607.

Page 4.

B.Hydrazine

- 1. Water Samples. Sample aliquots (10 mL) were combined with 10 mL of 2.5% p-dimethylaminobenzaldehyde in a 25 mL volumetric flask. After 30 minutes the mixture was brought to 25 mL with glacial acetic acid. A 1:25 dilution in glacial acetic acid was then prepared and the absorbance at 480 nm read against a standard curve prepared using reference standards of hydrazine, treated in the same fashion. The method is based on NIOSH Method S237-1 (copy attached).
- 2. Soil/Sediment Samples. Sub-samples (10g) were extracted with 20 mL of 0.1 N hydrochloric acid by shaking for one hour. A 10 mL aliquot (5g of soil) was removed to a 25 mL volumetric flask and made slightly alkaline (pH 8-9) using 1 M aqueous sodium hydroxide. This solution was then treated with p-dimethylaminobenzaldehyde and processed as described above. The absorbance readings were again compared to a standard curve and the results calculated back to the original 10g soil sub-sample.

RESULTS

CAL I.D. 23308-1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -12 -13 -14 -15 -16 -17	NDMA (ppb) <250 ug/Kg	Hydrazine (ppm) <6 mg/Kg
	<250 ug/Kg <250 ug/Kg <250 ug/Kg <250 ug/Kg	<6 mg/Kg <6 mg/Kg <6 mg/Kg <6 mg/Kg

Page 5.		
CAL I.D. 23343-1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -12 -13 -14 -15 -16 -17 -18 -19 -20 -21 -22	NDMA (ppb) <pre></pre>	Hydrazine (ppm) <1 mg/L <6 mg/Kg <1 mg/L <1 mg/L <1 mg/L <1 mg/Kg <1 mg/L <1 mg/L <1 mg/Kg <1 mg/L <1 mg/L
23344-1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -12	<250 ug/Kg	<pre><6 mg/Kg <6 mg/Kg</pre>
23357-1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -12 -13 -14	<250 ug/Kg	<pre><6 mg/Kg <6 mg/Kg<!--6 mg/Kg</p--> <6 mg/Kg <6 mg/Kg<</pre>
	•	

Page	6.
------	----

CAL I.D. 23410-1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -12 -13	NDMA (ppb) C250	Hydrazine (ppm) <pre></pre>
23470-1 50 -2 50	<pre><5 ug/L (no <250 ug/Kg</pre>	ote b) <1 mg/L <6 mg/Kg
23517 - 1	0.61 ug/L	<1 mg/L
- 2	0.23 ug/L	<1 mg/L
23532-1	5.2 ug/L	<1 mg/L
-2	0.28 ug/L	<1 mg/L
-3	<0.25 ug/L	<1 mg/L
23541-1	<0.25 ug/L	<1 mg/L
-2	<0.25 ug/L	<1 mg/L
-3	<0.25 ug/L	<1 mg/L

Notes: a Sample was broken at CAL Lab.

Extract final volume mistakenly taken to 5.0 mL, precluding the usual 0.25 ug/L detection limit.

Charles J. Soderquist, PhD Vice President

Don Fredrickson Staff Chemist Ben N. Buechler GC Lab Manager ds

TABLE I

QUALITY ASSURANCE RESULTS
HYDRAZINE

e U	A. Soil Samples.	sample result	duplicate result	spike added	spike found	percent
	CAL I.D. 23308-8 -17	(mg/Kg) <6 <6	(mg/Kg) <6 <6	(mg/Kg) 50 500	(mg/Kg) 0.85 176	<u>recovery</u> 1.7 35
	23343-16	< 6	<6	50	6.2	12
-	23344-7	< 6	< 6	500	193	. 39
e e	23357-4a -4b -4c	<6 <6 <6	<6 <6 <6	50 50 500	3.0 8.2 364	6.0 16 73
M A	23357-11	< 6	< 6	500	118	24

Average recovery at 50 ppm spike level = 8.9%

Average recovery at 500 ppm spike level = 43% ...

B. Water Samples. Spikes of water are redundant since the colorimetric method standard curve is actually a series of water spikes.

TABLE II

QUALITY ASSURANCE RESULTS

NDMA

A. Water Samples. CAl I.D. 23343 (tap water) 23470-1 23517 (tap water)	sample result (ug/L) <5	spike added (ug/L) 10 10	spike found (ug/L) 4.7 13	duplicate spike found (ug/L) 9.8	average percent recovery 73% 130%
B. Soil Samples. CAL I.D. 23308-1	sample result (ug/Kg) <250	spike added (ug/Kg) 10,000	spike found (ug/Kg) 5600	duplicate spike found (ug/Kg) 4600	average percent recovery 51%
23344-1	<250	10,000	3500	. 3400	35%
23357-4	<250	10,000	2600	2400	25%
23343-2	<250	10,000	5100	. 6500	58%
23410-1	<250	10,000	4200	4500	44%

Results for Site 1 8010, 8020, Metals and Inorganic Parameters

Ž,

ANALYTICAL RESULTS SUMMARY Halogenated Volatile Organics SW Method 8010 (first of two pages)

Page	1	of	<u> 2</u>
Repor	t _		

ES Job No56528	Lab Sample No. 12-55-1116
Client U.S. Air Force	Field Sample No. 1-Es-3, SS-1
Project PJKS (Denver	Date Collected 1.3-/6-85
Client No.	Date Received 12/17/85
Laboratory Supervisor Approval:	Date Analyzed
Sample Matrix	QC Report No
/_/ Water (ug/L)	Dilution Factor
<u>/X</u> / Soil (ug/g)	*Moisture
/ / Other	

-	Benzyl chloride	4	<10	<u> </u>	40.9	<u>, </u>
	bis(2-chloroethoxy) methane	12	C12		44.2	
Si	bis(2-chloroisopropyl) ether	25	125		42.2	•
7	Bromobenzene	8	<10		29.18	
-	Bromodichloromethane	2	<10		15.69	
K	Bromoform	4	<10		21.24	
	Bromomethane	24	<24		2.85	!
	Carbon tetrachloride	3	<10	ŀ	15.47	:
•	Chloroacetaldehyde	10	<10		11.6	
§	Chloral	10	<10		18.7	
N.	Chlorobenzene	5	<10		26.01	!
io -	Chloroethane	10	<10		4.51	
	Chloroform	1	<10		13.01	i
	1-Chlorohexane	2	<10		26.58	j i
	2-Chloroethyl vinyl ether	3	<10		19.49	! !
•	Chloromethane	2	<10		1.95	
	Chloromethyl methyl ether	20	LAC	•	9.37	
	Chlorotoluene	4	<10		37.9	!
	Dibromochloromethane	2	<10	<u> </u>	18.68	· •
	continued on back					
r -			L-9			
ত্ব	862 <i>J</i> 137					

ANALYTICAL RESULTS SUMMARY Halogenated Volatile Organics SW Method 8010 (second of two pages)

12-85-116

8

<u>\$</u>

Compound		Concentration		Retentio		Notes
	Det Lim	Column 1	Column 2	Column 1	Column 2	-
Dibromomethane	1	<10		13.09	1 .	
1,2-Dichlorobenzene	3	<10	 	60.10	<u>i</u>	<u> </u>
1,3-Dichlorobenzene	6	<10	<u> </u>	42.90	<u>:</u>	<u> </u>
1,4-Dichlorobenzene	5	<10	!	37.28		:
Dichlorodifluoromethane	30	<30		3.54	!	!
1,1-Dichloroethane	1	<10		11.67	! !	<u>i</u>
1,2-Dichloroethane	1	<10		13.55	: 	<u> </u>
1,1-Dichloroethylene	3	<10		10.31	i	1
trans-1,2-Dichloroethylene	2	<10		12.35	1	İ
Dichloromethane	5	<10		7.50		!
1,2-Dichloropropane	1	<10		17.19	!	-
				17.24		1
1,3-Dichloropropylene	6	<10		18.68		
1,1,2,2-Tetrachloroethane	7	<10		23.47		
1,1,1,2-Tetrachloroethane	7	<10		21.04		
Tetrachloroethylene	1	<10		23.47		1
1,1,1-Trichloroethane	1	<10		14.76		
1,1,2-Trichloroethane	1	<10		18.68	i i	
Trichloroethylene	2	<10		17.91	i 1	
Trichlorofluoromethane	1	<10	1.	8.58	į	1
Trichloropropane	2	<10		23.01	!	
Vinyl chloride	4	<10		3.54		
	!			1	į	
	1				i	
					•	
·	:			:		
			•	!	· · · · · · · · · · · · · · · · · · ·	

^{*} If % moisture is reported, results are presented on a dry-weight basis.

ANALYTICAL RESULTS SUMMARY Halogenated Volatile Organics SW Method 8010 (first of two pages)

Page	1	of	٢
Repor	t _		

ES Job No. <u>56528</u>	Lab Sample No. 12-85 - 1117
Client U.S. Air Force	Field Sample No. 1-ES-3, SS-2
Project PJKS (Denver	Date Collected /2-/6 85
Client No.	Date Received 12/17/85
Laboratory Supervisor Approval:	Date Analyzed 12/23/85
Johnny R Colombon Sample Matrix	QC Report No. PJKS -01
/_/ Water (ug/L)	Dilution Factor
/X / Soil (ug/g)	*Moisture
/ / Other	

Compound	٠.	oncentrat	ion Retenti	on Time Notes
-	Det Lim	Column 1	Column 2 Column 1	Column 2
Benzyl chloride	4	<10	40.9	,
<pre>bis(2-chloroethoxy) methane</pre>	12	<12	- 44.2	
bis(2-chloroisopropyl) ether	25	425	42.2	;
Bromobenzene	8	<10	29.18	
Bromodichloromethane	2	<10	15.69	
Bromoform	4	<10	21.24	:
Bromomethane	24	∠ 24	2.85	
Carbon tetrachloride	3	<10	15.47	
Chloroacetaldehyde	10	<10	11.6	
Chloral	10	<10	18.7	· !
Chlorobenzene	5	<10	26.01	1
Chloroethane	10	<10	4.51	!
Chloroform	1	<10	13.01	
1-Chlorohexane	2	<10	26.58	1
2-Chloroethyl vinyl ether	3	<10	19.49	† :
Chloromethane	2	<10	1.95	
Chloromethyl methyl ether	20	Kau	9.37	
Chlorotoluene	4	<10	37.9	
Dibromochloromethane	2	<10	18.68	

continued on back

ANALYTICAL RESULTS SUMMARY Halogenated Volatile Organics SW Method 8010 (second of two pages)

Compound	Co	ncentrati	.on	Retention Time		Notes
	Det Lim	Column 1	Column 2	Column 1	Column 2	
Dibromomethane	1	<10		13.09		
1,2-Dichlorobenzene	3	<10		60.10	<u>:</u>	
1,3-Dichlorobenzene	6	<10		42.90	1	
1,4-Dichlorobenzene	5	<10_	<u> </u>	37.28	ı	1
Dichlorodifluoromethane	30	<3€		3.54	:	
1,1-Dichloroethane	1	<10		11.67		
1,2-Dichloroethane	1	<10		13.55		! !
1,1-Dichloroethylene	3	<10		10.31		
trans-1,2-Dichloroethylene	2	<10		12.35	ŀ	
Dichloromethane	5	<10		7.50		!
1,2-Dichloropropane	1	<10		17.19		
•				17.24	 	i
1,3-Dichloropropylene	6	<10		18.68		
1,1,2,2-Tetrachloroethane	7	<10		23.47		1
1,1,1,2-Tetrachloroethane	7	<10		21.04		
Tetrachloroethylene	1	<10		23.47		
1,1,1-Trichloroethane	1	<10		14.76		ŀ
1,1,2-Trichloroethane	1	<10		18.68	† !	
Trichloroethylene	2	<10		17.91	i	
Trichlorofluoromethane	1	<10		8.58		
Trichloropropane	2	<10		23.01		
Vinyl chloride	4	<10		3.54	į	†
	!			!		1
	:			i		i i
						ļ
	:	!		: .		
				!		1

^{*} If % moisture is reported, results are presented on a dry-weight basis.

ASSESSED ASSESSED RESPONSED RESIDENCE SESSEDENT

ANALYTICAL RESULTS SUMMARY Halogenated Volatile Organics SW Method 8010 (first of two pages)

Page	1	of	<u> </u>
Repor	t		

ES Job No56528	Lab Sample No. 12 - 35 - 1115
Client U.S. Air Force	Field Sample No. /-ES-3 SS-3
Project PJKS (Denver	Date Collected 12-16-85
Client No.	Date Received 12/17/65
Laboratory Supervisor Approval:	Date Analyzed 12/24/85
Sample Matrix	QC Report No. 35/5 - 2:
/ / Water (ug/L)	Dilution Factor
/X / Soil (ug/g)	*Moisture
/ / Other	

Compound	C	oncentrat	ion	Retenti	on Time Notes
	Det Lim	Column 1	Column 2	Column 1	Column 2
Benzyl chloride	4	<10		40.9	•
bis(2-chloroethoxy) methane	12	<12	-	44.2	
bis(2-chloroisopropyl) ether	25	ر عع		42.2	i .
Bromobenzene	8	<10		29.18	
Bromodichloromethane	2	<10		15.69	
Bromoform	4	<10		21.24	
Bromomethane	24	 	!	2.85	
Carbon tetrachloride	3	<10		15.47	<u> </u>
Chloroacetaldehyde	10	<10		11.6	
Chloral	10	<10		18.7	
Chlorobenzene	5	<10		26.01	· · · · · · · · · · · · · · · · · · ·
Chloroethane	10	<10		4.51	
Chloroform	11	<10		13.01	
1-Chlorohexane	2	<10		26.58	1
2-Chloroethyl vinyl ether	3	<10		19.49	
Chloromethane	2	<10		1.95	
Chloromethyl methyl ether	20	120		9.37	
Chlorotoluene	4	<10	1	37.9	1
Dibromochloromethane	2	<10	<u> </u>	18.68	· .

continued on back

ANALYTICAL RESULTS SUMMARY Halogenated Volatile Organics SW Method 8010 (second of two pages)

Compound	Co	Concentration		Retention Time		Notes
	Det Lim	Column 1	Column 2	Column 1	Column 2	
Dibromomethane	1	<10		13.09	!	
1,2-Dichlorobenzene	3	<10		60.10]	i
1,3-Dichlorobenzene	6	<10		42.90	:	
1,4-Dichlorobenzene	5	<10		37.28	,	i
Dichlorodifluoromethane	- 30	<3°		3.54	!	!
1,1-Dichloroethane	1	<10		11.67		
1,2-Dichloroethane	1	<10		13.55	•	1
1,1-Dichloroethylene	3	<10		10.31	i	
trans-1,2-Dichloroethylene	2	<10		12.35	:	İ
Dichloromethane	5	<10		7.50	į	!
1,2-Dichloropropane	1	<10		17.19	i	ŧ
				17.24	†	
1,3-Dichloropropylene	6	<10		18.68		1
1,1,2,2-Tetrachloroethane	7	<10		23.47		1
1,1,1,2-Tetrachloroethane	7	<10		21.04		
Tetrachloroethylene	1	<10		23.47		ļ
1,1,1-Trichloroethane	1	<10		14.76		
1,1,2-Trichloroethane	1	<10		18.68	1	
Trichloroethylene	2	<10		17.91	i t	1
Trichlorofluoromethane	1	<10		8.58	!	
Trichloropropane	2	<10		23.01	!	
Vinyl chloride	4	<10		3.54	!	
					t	-
	1				!	!
	1					İ
	:		1			
	i	!	•	!		1

^{*} If % moisture is reported, results are presented on a dry-weight basis.

ANALYTICAL RESULTS SUMMARY Halogenated Volatile Organics SW Method 8010 (first of two pages)

Page _	1	of	_2
Report	: _		

ES Job No. <u>56528</u>	Lab Sample No. $13-35-1119$
Client U.S. Air Force	Field Sample No. 1-65-3. 51-4
Project PJKS (Denver	Date Collected /2-//:-35
Client No.	Date Received /2/17/85
Laboratory Supervisor Approval:	Date Analyzed 12/24/85
Johnny R Cidamon Sample Matrix:	QC Report No. PSKJ - 01
/_/ Water (ug/L)	Dilution Factor
/X / Soil (ug/g)	*Moisture
/ / Other	

Compound	Concentration			Retention Time		Notes
	Det Lim	Column 1	Column 2	Column 1	Column 2	
Benzyl chloride	4	<10		40.9		•
bis(2-chloroethoxy) methane	12	112		44.2		
bis(2-chloroisopropyl) ether	25	425		42.2		
Bromobenzene	8	<10		29.18		i
Bromodichloromethane	2	<10		15.69		
Bromoform	4	<10		21.24		
Bromomethane	24	124		2.85		!
Carbon tetrachloride	_3	<10		15.47		i
Chloroacetaldehyde	10	<10		11.6		
Chloral	10	<10		18.7		
Chlorobenzene	5	<10		26.01		
Chloroethane	10	<10		4.51		
Chloroform	11	<10		13.01		
1-Chlorohexane	2	<10	<u> </u>	26.58	1	,
2-Chloroethyl vinyl ether	3	<10		19.49		
Chloromethane	2	<10		1.95		
Chloromethyl methyl ether	20	420		9.37		
Chlorotoluene	4	<10		37.9		
Dibromochloromethane	2	<10		18.68	!	<u> </u>

continued on back

THE PROPERTY CONTRACTOR STATES OF STREET, STRE

ANALYTICAL RESULTS SUMMARY Halogenated Volatile Organics SW Method 8010 (second of two pages)

12-85-1119

Compound	Concentration				Retention Time	
	Det Lim	Column 1	Column 2	Column 1	Column 2	1
Dibromomethane	1	<10		13.09	<u> </u>	İ
1,2-Dichlorobenzene	3	<10		60.10	: 	! !
1,3-Dichlorobenzene	. 6	<10	<u> </u>	42.90	:	
1,4-Dichlorobenzene	5	<10	<u> </u>	37.28	·	
Dichlorodifluoromethane	30	<3c	<u> </u>	3.54	!	!
1,1-Dichloroethane	1	<10		11.67	}	!
1,2-Dichloroethane	1	<10		13.55	! .	
1,1-Dichloroethylene	3	<10		10.31	<u> </u>	<u> </u>
trans-1,2-Dichloroethylene	2	<10		12.35		:
Dichloromethane	5	<10	<u> </u>	7.50	:	,
1,2-Dichloropropane	ı	<10	<u> </u>	17.19	1	1
				17.24	1	1
1,3-Dichloropropylene	6	<10		18.68	!	<u> </u>
1,1,2,2-Tetrachloroethane	7_	<10	<u> </u>	23.47	!	1
1,1,1,2-Tetrachloroethane	7	<10		21.04		į
Tetrachloroethylene	1	<10_		23.47	İ	<u> </u>
1,1,1-Trichloroethane	1	<10	<u> </u>	14.76	<u> </u>	
1,1,2-Trichloroethane	1 1	<10		18.68	<u> </u>	1
Trichloroethylene	2	<10		17.91	<u>!</u>	
Trichlorofluoromethane	1	<10		8.58	!	
Trichloropropane	2	<10		23.01	!	<u> </u>
Vinyl chloride	4_	<10		3.54		i
	!	İ		1		
		1			1	
	1	1	1			!
	!	<u> </u>	!	1		• ;
	<u>:</u>	!	,	!		i

^{*} If % moisture is reported, results are presented on a dry-weight basis.

ANALYTICAL RESULTS SUMMARY Halogenated Volatile Organics SW Method 8010 (first of two pages)

Page _	1	of	_2_
Report	_		

ES Job No. <u>56528</u>	Lab Sample No	25
Client U.S. Air Force	Field Sample No. /- = 5 - 3 - 55	5
Project PJKS (Denver	Date Collected /2-16-95	
Client No ·	Date Received 12/17/65	
Laboratory Supervisor Approval:	Date Analyzed 12/24/85	
Sample Matrix:	OC Report No. PJKS -3/	
/_/ Water (ug/L)	Dilution Factor	
/X / Soil (ug/g)	*Moisture	
/ / Other		

Compound	Concentration			Retention 'me		Notes
_	Det Lim	Column 1	Column 2	Column 1	Column 2	
Benzyl chloride	4	<10		40.9		•
<pre>bis(2-chloroethoxy) methane</pre>	12	112		44.2		
<pre>bis(2-chloroisopropyl) ether</pre>	25	Las		42.2		
Bromobenzene	8	<10		29.18		
Bromodichloromethane	2	<10		15.69		
Bromoform	4	<10		21.24		•
Bromomethane	24	124		2.85		
Carbon tetrachloride	3	<10		15.47		
Chloroacetaldehyde	10	<10		11.6	:	
Chloral	10	<10		18.7		
Chlorobenzene	5	<10		26.01		
Chloroethane	10	<10		4.51		
Chloroform	1	<10		13.01		
1-Chlorohexane	2	<10		26.58		1
2-Chloroethyl vinyl ether	3	<10		19.49		
Chloromethane	2	<10		1.95		
Chloromethyl methyl ether	20	८२०		9.37		
Chlorotoluene	4	<10		37.9		
Dibromochloromethane	2	<10		18.68		•

continued on back

ANALYTICAL RESULTS SUMMARY Halogenated Volatile Organics SW Method 8010 (second of two pages)

12-85-1120

Ĺ

Compound	Concentration				Retention Time	
	Det Lim	Column 1	Column 2	Column 1	Column 2	İ
Dibromomethane	1	<10		13.09	<u> </u>	!
1,2-Dichlorobenzene	3	<10		60.10		1
1,3-Dichlorobenzene	6	<10		42.90		
1,4-Dichlorobenzene	5	<10	-	37.28	· ·	
Dichlorodifluoromethane	. 30	130	İ	3.54		
1,1-Dichloroethane	11	<10		11.67		
1,2-Dichloroethane	! 1	<10	<u> </u>	13.55	: :	;
1,1-Dichloroethylene	3	<10	<u> </u>	10.31	:	;
trans-1,2-Dichloroethylene	: 2	<10		12.35		(
Dichloromethane	5	<10	<u> </u>	7.50		
1,2-Dichloropropane	1 1	<10		17.19	:	
	•			17.24		1
1,3-Dichloropropylene	6	<10		18.68		<u> </u>
1,1,2,2-Tetrachloroethane	7	<10		23.47		
1,1,1,2-Tetrachloroethane	7	<10		21.04	1	
Tetrachloroethylene	1	<10		23.47		
1,1,1-Trichloroethane	! 1	<10		14.76	:	
1,1,2-Trichloroethane	<u> </u>	<10	<u> </u>	18.68	<u>:</u>	İ
Trichloroethylene	2	<10	!	17.91		
Trichlorofluoromethane	1	<10		8.58		1
Trichloropropane	ⁱ 2	<10		23.01		1
Vinyl chloride	4	<10		3.54		
	1			1		
		1	1	1		1
	:	1				
		!	:			
		:				!

^{*} If % moisture is reported, results are presented on a dry-weight basis.

KOOKERS TOTALLE DEPOSITES. INVAVANT SESSEES

Continues residence and and and and

A 1 MA GRANDON BENEVARIAN BENEVARIAN PROPERTY OF THE CONTROL OF TH

ANALYTICAL RESULTS SUMMARY Halogenated Volatile Organics SW Method 8010 (first of two pages)

Page		of	2
Repor	t _		

ES Job No56528	Lab Sample No. 12-33-1/21
Client U.S. Air Force	Field Sample No. 1-EJ-3 SJ-6
Project PJKS (Denver	Date Collected /2-16-35
Client No.	Date Received 12//7/85
Laboratory Supervisor Approval:	Date Analyzed 12/26/55
John R. Cidonson Sample Matrix	QC Report No. PJKS -0!
/_/ Water (ug/L)	Dilution Factor
<u>/X</u> / Soil (ug/g)	*Moisture
/ / Other	

Compound	c	oncentrat:	ion	Retenti	on Time	Notes
-	Det Lim	Column 1	Column 2	Column 1	Column 2	•
Benzyl chloride	4	<10	•	40.9	,	•
<pre>bis(2-chloroethoxy) methane</pre>	12	<12	-	44.2		:
bis(2-chloroisopropyl) ether	25	<25		42.2		
Bromobenzene	. 8	<10		29.18		·
Bromodichloromethane	2	<10		15.69		
Bromoform	4	<10		21.24		
Bromomethane	24	/24		2.85		
Carbon tetrachloride	3	<10		15.47		
Chloroacetaldehyde	10	<10		11.6		
Chloral	10	<10		18.7	Į.	
Chlorobenzene	. 5	<10		26.01	1	
Chloroethane	10	<10		4.51		
Chloroform	1	<10		13.01	1	
1-Chlorohexane	2	<10		26.58	1	1
2-Chloroethyl vinyl ether	3	<10		19.49	1	_
Chloromethane	2	<10		1.95		
Chloromethyl methyl ether	20	(20		9.37		
Chlorotoluene	4	<10		37.9	!	1
Dibromochloromethane	2	<10		18.68		

continued on back

ANALYTICAL RESULTS SUMMARY Halogenated Volatile Organics SW Method 8010 (second of two pages)

Compound		Concentration			Retention Time		
	Det Lim	Column 1	Column 2	Column 1	Column 2		
Dibromomethane	1	<10		13.09	1		
1,2-Dichlorobenzene	3	<10		60.10	•	1	
1,3-Dichlorobenzene	5	<10		42.90			
1,4-Dichlorobenzene	5	<10	!	37.28			
Dichlorodifluoromethane	, 30	230		3.54	:		
1,1-Dichloroethane	1	<10		11.67	:		
1,2-Dichloroethane	1	<10		13.55	!	;	
1,1-Dichloroethylene	3	<10	1	10.31			
trans-1,2-Dichloroethylene	2	<10		12.35			
Dichloromethane	5	<10	!	7.50	î	:	
1,2-Dichloropropane	1	<10		17.19		i	
	:		!	17.24	!	1	
1,3-Dichloropropylene	6	<10		18.68	!		
1,1,2,2-Tetrachloroethane	7	<10		23.47	1	†	
1,1,1,2-Tetrachloroethane	7	<10		21.04	1	1	
Tetrachloroethylene	<u> </u>	<10		23.47		Ì	
1,1,1-Trichloroethane	1	<10		14.76		!	
1,1,2-Trichloroethane	1	<10		18.68	•		
Trichloroethylene	2	<10		17.91		:	
Trichlorofluoromethane	1	<10		8.58	!	!	
Trichloropropane	2	<10		23.01		i	
Vinyl chloride	4	<10		3.54	<u>!</u>	İ	
	!	1			:		
		1	!	1	1	!	
	•		:	!			
		!					
		:				:	

^{*} If % moisture is reported, results are presented on a dry-weight basis.

economic represent l'expreses, inspente debrete querents expenses contract and the

ANALYTICAL RESULTS SUMMARY Halogenated Volatile Organics SW Method 8010 (first of two pages)

Page _	1	of	
Report	_		

ES Job No56528	Lab Sample No.
Client U.S. Air Force	Field Sample No. 1-FS-3 SS-7
Project PJKS (Denver	Date Collected 12-16 35
Client No.	Date Received
Laboratory Supervisor Approval:	Date Analyzed 12/20/85
Jehrne R. Cidamon Sample Matrix:	QC Report No. PJKS -01
/_/ Water (ug/L)	Dilution Factor
/X / Soil (ug/g)	*Moisture
<u>/</u> _/ Other	

Compound	С	oncentrat	tion	Retenti	on Time Note
	Det Lim	Column 1	Column	2 Column 1	Column 2
Benzyl chloride	4	<10		40.9	•
<pre>bis(2-chloroethoxy) methane</pre>	12	८12		44.2	
bis(2-chloroisopropyl) ether	25	425		42.2	
Bromobenzene	8	<10		29.18	
Bromodichloromethane	2	<10		15.69	1
Bromoform	4	<10		21.24	
Bromomethane	24	424		2.85	1
Carbon tetrachloride	3	<10		15.47	
Chloroacetaldehyde	10	<10		11.6	
Chloral	10	<10		18.7	
Chlorobenzene	5	<10		26.01	
Chloroethane	10	<10	1	4.51	:
Chloroform	1	<10		13.01	
1-Chlorohexane	2	<10		26.58	•
2-Chloroethyl vinyl ether	3	<10	.	19.49	
Chlcromethane	2	<10		1.95	
Chloromethyl methyl ether	20	(20		9.37	İ
Chlorotoluene	4	<10	!	37.9	
Dibromochloromethane	2	<10	i	18.68	

continued on back

PROPERTY CONTRACTOR OF THE PROPERTY CONTRACTOR CONTRACTOR

ANALYTICAL RESULTS SUMMARY Halogenated Volatile Organics SW Method 8010 (second of two pages)

Compound	C	oncentration	Retention Time	Notes
	Det Lim	Column 1 Column	2 Column 1 Column 2	
Dibromomethane	1	<10	13.09	
1,2-Dichlorobenzene	3	<10	60.10	
1,3-Dichlorobenzene	6	<10	42.90	i
1,4-Dichlorobenzene	5	<10	37.28	:
Dichlorodifluoromethane	30	30	3.54	1
1,1-Dichloroethane	1	<10	11.67	1
1,2-Dichloroethane	1	<10	13.55	1
1,1-Dichloroethylene	3	<10	10.31	
trans-1,2-Dichloroethylene	2	<10	12.35	i i
Dichloromethane	5	<10	7.50	1
1,2-Dichloropropane	1	<10	17.19	
			17.24	1
1,3-Dichloropropylene	6	<10	18.68	
1,1,2,2-Tetrachloroethane	7	<10	23.47	1
1,1,1,2-Tetrachloroethane	'7	<10	21.04	-
Tetrachloroethylene	1	<10	23.47	
1,1,1-Trichloroethane	1 1	<10	14.76	1
1,1,2-Trichloroethane	1	<10	18.68	!
Trichloroethylene	2	<10	17.91	-
Trichlorofluoromethane	1	<10	8.58	
Trichloropropane	2	<10	23.01	1
Vinyl chloride	4	<10	3.54	İ
	1		t :	1
			,	!
	1			İ
		1		!

^{*} If % moisture is reported, results are presented on a dry-weight basis.

Page		of	2
Report	_		

ES Job No56528	Lab Sample No. $12 - 85 - 1123$
Client U.S. Air Force	Field Sample No. 1-E1-7 51-1
ProjectPJKS (Denver	Date Collected /2-/6 85
Client No.	Date Received
Laboratory Supervisor Approval:	Date Analyzed .2/26/55
Sample Matrik:	OC Report No. 05/15-01
/_/ Water (ug/L)	Dilution Factor
<u>/X</u> / Soil (ug/g)	*Moisture
/_/ Other	· · · · · · · · · · · · · · · · · · ·

	alogenated SW 1			3	Page / Report	of <u>2</u>
ES Job No. 56528		I	Lab Sample N	io.	12-85-	3 211
Client U.S. Air Force	•	_	Field Sample	-		
Project PJKS (Denver			Date Collect		•	
Client No.			ate Receive			
Laboratory Supervisor Appr			ate Analyze			
Johnny R. Cida	mar <u>m</u>					
Sample Matrix:		_				
/ / Water (ug/L)			oilution Fac			
<u>/X</u> / Soil (ug/g)		#M	Moisture	 .	 	
/_/ Other						
	1 -			5 - 1 1 - 1		
Compound			tion 1 Column 2			
				· · · · · · · ·	1	
Benzyl chloride bis(2-chloroethoxy)	4	<10		40.9		•
methane	12_	<12		44.2		
bis(2-chloroisopropyl) ether	25	425		42.2	1	1
Bromobenzene	8	<10		29.18	<u> </u>	
Bromodichloromethane	$\frac{3}{2}$	<10		15.69	!	
Bromoform	4	<10		21.24		. 1
Bromomethane	24	∠ 24		2.85		
Carbon tetrachloride	3	<10		15.47	1	
Chloroacetaldehyde	10	<10		11.6		
Chloral	10	<10		18.7	:	•
Chlorobenzene	5	<10		26.01	i	
Chloroethane	1 10	<10		4.51		
Chloroform	1	<10		13.01		
1-Chlorohexane	2	<10		26.58	1	,
2-Chloroethyl vinyl ether	3	<10		19.49	i	
Chloromethane	2	<10		1.95		
Chloromethyl methyl ether	.20	حدي		9.37		
Chlorotoluene	4	<10		37.9		i
Dibromochloromethane	2	<10	İ	18.68		
continued on back		-23				

Compound		Concentration				Retention Time		
	Det	Lim	Column 1	Column 2	Column 1	Column 2		
Dibromomethane		1	<10		13.09			
1,2-Dichlorobenzene		3	<10		60.10	i :	!	
1,3-Dichlorobenzene		6	<10		42.90	1	<u> </u>	
1,4-Dichlorobenzene		5	<10		37.28	: 	-	
Dichlorodifluoromethane		30	30		3.54		<u> </u>	
1,1-Dichloroethane	<u> </u>	1	<10		11.67		!	
1,2-Dichloroethane		1	<10		13.55			
1,1-Dichloroethylene	<u> </u>	3	<10		10.31		<u> </u>	
trans-1,2-Dichloroethylene	<u> </u>	2	<10		12.35	!	<u> </u>	
Dichloromethane	:	5	<10		7.50	1	!	
1,2-Dichloropropane	<u>!</u> .	1	<10		17.19	!		
					17.24			
1,3-Dichloropropylene	i 	6	<10		18.68	<u> </u>	<u> </u>	
1,1,2,2-Tetrachloroethane	; 	7	<10		23.47	!	!	
1,1,1,2-Tetrachloroethane	!	7	<10		21.04		<u> </u>	
Tetrachloroethylene	<u>i</u>	1	<10_		23.47	<u>!</u>	1	
1,1,1-Trichloroethane	<u> </u>	1	<10	ļ	14.76	·	<u> </u>	
1,1,2-Trichloroethane	! 	1	<10	<u>i</u>	18.68	1		
Trichloroethylene	<u>:</u>	2	<10	<u> </u>	17.91	<u> </u>	1	
Trichlorofluoromethane	!	1	<10		8.58	!	1	
Trichloropropane		2	<10	<u> </u>	23.01	!		
Vinyl chloride	<u> </u>	4	<10		3.54	<u>i</u>		
	}				!	1	<u> </u>	
			1	i		1	İ	
	i		1	!	!	1	<u> </u>	
			ļ	:			-	

^{*} If % moisture is reported, results are presented on a dry-weight basis.

hormony housewall becomes honoring assessed bonnon; indicated and indicate and assessed

ANALYTICAL RESULTS SUMMARY Halogenated Volatile Organics SW Method 8010 (first of two pages)

Page	1	of	2
Repor	t_		

ES Job No. <u>56528</u>	Lab Sample No. 12 - 85 - 1124
Client U.S. Air Force	Field Sample No. 1-ES-4, SS-2
Project PJKS (Denver	Date Collected /2-/6-35
Client No.	Date Received /2/,7/%5
Laboratory Supervisor Approval:	Date Analyzed 12/20185
Jehn R. Coloman Sample Matrix:	QC Report No. 25/13-31
/_/ Water (ug/L)	Dilution Factor
/X / Soil (ug/g)	*Moisture
/ / Other	

Compound	Concentration			Retention Time Notes		
	Det Lim	Column 1	Column 2	Column 1	Column 2	
Benzyl chloride	4	<10		40.9	•	
<pre>bis(2-chloroethoxy) methane</pre>	12	<12		44.2		
bis(2-chloroisopropyl) ether	`25	145		42.2		
Bromobenzene	8	<10		29.18		
Bromodichloromethane	2	<10		15.69		
Bromoform	4	<10		21.24		
Bromomethane	24	424		2.85		
Carbon tetrachloride	3	<10		15.47		
Chloroacetaldehyde	10	<10		11.6	:	
Chloral	10	<10		18.7	!	
Chlorobenzene	5	<10		26.01		
Chloroethane	10	<10		4.51		
Chloroform	1	<10		13.01	:	
1-Chlorohexane	2	<10		26.58	• .	
2-Chloroethyl vinyl ether	3	<10		19.49	+	
Chloromethane	2	<10		1.95	!	
Chloromethyl methyl ether	20	<10		9.37		
Chlorotoluene	4	<10		37.9	i	
Dibromochloromethane	2	<10		18.68		

continued on back

ANTERIOR PARACAMENTA POTOCONO INTERIOR CONTROL OF THE CONTROL OF STATES OF THE TANK OF THE CONTROL OF THE TANK OF THE CONTROL

12-85-1124

Compound	Concentration			Retention Time		Notes
	Det Lim	Column 1	Column 2	Column 1 C	Column 2	
Dibromomethane	1	<10		13.09	······	
1,2-Dichlorobenzene	3	<10		60.10		ļ
1,3-Dichlorobenzene	6	<10	<u> </u>	42.90		<u> </u>
1,4-Dichlorobenzene	5	<10		37.28	**	1
Dichlorodifluoromethane	30	430	<u> </u>	3.54		
1,1-Dichloroethane	11	<10		11.67		1
1,2-Dichloroethane	11	<10		13.55		
1,1-Dichloroethylene	3	<10		10.31		ļ
trans-1,2-Dichloroethylene	2	<10		12.35		
Dichloromethane	5	<10		7.50		
1,2-Dichloropropane	1	<10		17.19		!
				17.24		1
1,3-Dichloropropylene	6	<10		18.68		
1,1,2,2-Tetrachloroethane	.7	<10		23.47		
1,1,1,2-Tetrachloroethane	7	<10		21.04		
Tetrachloroethylene	1	<10		23.47		1
1,1,1-Trichloroethane	1	<10		14.76		
1,1,2-Trichloroethane	1	<10		18.68		
Trichloroethylene	2	<10		17.91		1
Trichlorofluoromethane	1	<10		8.58		
Trichloropropane	2	<10		23.01		
Vinyl chloride	4	<10		3.54		İ
						1
	!			1		į
				!		
		!	1	1		
	-			!		i

^{*} If % moisture is reported, results are presented on a dry-weight basis.

ANALYTICAL RESULTS SUMMARY Halogenated Volatile Organics SW Method 8010 (first of two pages)

Page _	1	of	_2
Report	-		

ES Job No. 56528	Lab Sample No.
Client U.S. Air Force	Field Sample No. 1-E5-4 55-3
Project PJKS (Denver	Date Collected 12-16-85
Client No.	Date Received 12/17/8
Laboratory Supervisor Approval:	Date Analyzed 12/26/85
John R Calconson Sample Matrix:	OC Report No. 25/15-2/
/ / Water (ug/L)	Dilution Factor
/X_/ Soil (ug/g)	*Moisture
/ / Other	

Compound	Concentration			Retention Time		Notes
	Det Lim	Column 1	Column 2	Column 1	Column 2	
Benzyl chloride	4	<10		40.9	•	,
<pre>bis(2-chloroethoxy) methane</pre>	12	<12		44.2		
bis(2-chloroisopropyl) ether	25	· <25		42.2		
Bromobenzene	8	<10		29.18		
Bromodichloromethane	2	<10		15.69		
Bromoform	4	<10		21.24	!	:
Bromomethane	24	(24		2.85	!	
Carbon tetrachloride	3	<10		15.47	!	
Chloroacetaldehyde	10	<10		11.6		
Chloral	10	<10		18.7	1	_
Chlorobenzene	5	<10		26.01	İ	
Chloroethane	10	<10		4.51		
Chloroform	1	<10		13.01		
1-Chlorohexane	2	<10		26.58))	•
2-Chloroethyl vinyl ether	3	<10		19.49	!	
Chloromethane	2	<10		1.95		
Chloromethyl methyl ether	20	420		9.37	ļ L	
Chlorotoluene	4	<10		37.9	1	i
Dibromochloromethane	· 2	<10	. 1	18.68		

K1.7

Compound		oncentrati	· · · · · · · · · · · · · · · · · · ·		Retention Time	
	Det Lim	Column 1	Column 2	Column 1	Column 2	i I
Dibromomethane	1	<10		13.09	1	!
1,2-Dichlorobenzene	3	<10		60.10		!
1,3-Dichlorobenzene	6	<10		42.90	: 	'
1,4-Dichlorobenzene	. 5	<10	<u> </u>	37.28		
Dichlorodifluoromethane	30	435		3.54	<u> </u>	
1,1-Dichloroethane	1	<10		11.67	1	!
1,2-Dichloroethane	1	<10		13.55	1	
1,1-Dichloroethylene	-3	<10		10.31	!	!
trans-1,2-Dichloroethylene	2	<10		12.35		i
Dichloromethane	5	<10		7.50	İ	
1,2-Dichloropropane	1	<10		17.19	•	<u> </u>
				17.24		:
1,3-Dichloropropylene	<u>6</u>	<10		18.68	! :	
1,1,2,2-Tetrachloroethane	7	<10		23.47		i
1,1,1,2-Tetrachloroethane	7	<10	<u> </u>	21.04	i	İ
Tetrachloroethylene	1	<10		23.47	!	!
1,1,1-Trichloroethane	1	<10		14.76	! :	<u> </u>
1,1,2-Trichloroethane	<u> </u>	<10	<u> </u>	18.68	i	İ
Trichloroethylene	2	<10		17.91	1	
Trichlorofluoromethane	1	<10		8.58	1	1
Trichloropropane	2	<10		23.01	!	
Vinyl chloride	4	<10		3.54		!
		1		!	i	
	!				t.	1
		1			1	1
	:		!	1		i

^{*} If % moisture is reported, results are presented on a dry-weight basis.

ANALYTICAL RESULTS SUMMARY Halogenated Volatile Organics SW Method 8010 (first of two pages)

Page _	/_	of .	<u> 2</u>
Report	= _		

Client U.S. Air Force Field Sample No. 1-ES-4 SS-4 Project PJKS (Denver Date Collected /2-16-35 Client No. Date Received 12/17/85 Laboratory Supervisor Approval: Date Analyzed 12/265 OC Report No. PJKS -02 Sample Matrix: // Water (ug/L) Dilution Factor /X / Soil (ug/g) *Moisture	ES JOD NO. 56528	Lab Sample No. $\frac{12-35-1126}{12}$
Client No. Date Received 12/17/85 Laboratory Supervisor Approval: Date Analyzed 12/26/85 Och Port No. Port -02 Sample Matrix: // Water (ug/L) Dilution Factor // Soil (ug/g) *Moisture	Client U.S. Air Force	Field Sample No. 1-ES-4 SJ-4
Laboratory Supervisor Approval: Date Analyzed 12/26/55 OC Report No. PIKS -02 Sample Matrix: // Water (ug/L) Dilution Factor /X / Soil (ug/g) *Moisture	ProjectPJKS (Denver	Date Collected /2-jc-35
Sample Matrix: // Water (ug/L) // Soil (ug/g) OC Report No. PJKS -02 Dilution Factor *Moisture	Client No.	Date Received
/_/ Water (ug/L) Dilution Factor /X / Soil (ug/g) *Moisture	Laboratory Supervisor Approval:	Date Analyzed 12/26/55
/X / Soil (ug/g) *Moisture		QC Report No. PJKS -02
	/_/ Water (ug/L)	Dilution Factor
/_/ Other	/X / Soil (ug/g)	*Moisture
	/_/ Other	

Compound	Concentration Retent			Retenti	ention Time	
_	Det Lim	Column 1	Column 2	Column 1	Column 2	
Benzyl chloride	4	<10		40.9		•
bis(2-chloroethoxy) methane	12	112	-	44.2		
bis(2-chloroisopropyl) ether	25	425		42.2		
Bromobenzene	8	<10		29.18		İ
Bromodichloromethane	2	<10		15.69		i
Bromoform	4	<10		21.24		
Bromomethane	24	24		2.85		
Carbon tetrachloride	3	<10		15.47		· !
Chloroacetaldehyde	. 10	<10		11.6		
Chloral	10	<10		18.7		
Chlorobenzene	5	<10		26.01		
Chloroethane	10	<10		4.51		
Chloroform	. 1	<10		13.01		
1-Chlorohexane	2	<10		26.58		1
2-Chloroethyl vinyl ether	3	<10		19.49		
Chloromethane	2	<10		1.95		
Chloromethyl methyl ether	20	(20		9.37		
Chlorotoluene	4	<10		37.9		
Dibromochloromethane	2	<10		18.68	!	

continued on back

A 1 CS III CS 120 CS 12

12-85-1126

Compound	Concentration				Retention Time	
	Det Lim	Column 1	Column	2 Column 1	Column 2	
Dibromomethane	1	<10		13.09		1
1,2-Dichlorobenzene	3	<10	<u> </u>	60.10	! 	1
1,3-Dichlorobenzene	6	<10		42.90	:	!
1,4-Dichlorobenzene	5	<10	<u> </u>	37.28		
Dichlorodifluoromethane	30	<30	<u> </u>	3.54		i
1,1-Dichloroethane	11	<10		11.67		:
1,2-Dichloroethane	1	<10		13.55	: !	;
1,1-Dichloroethylene	3	<10		10.31		!
trans-1,2-Dichloroethylene	2	<10		12.35		
Dichloromethane	5	<10	•	7.50		,
1,2-Dichloropropane	1	<10		17.19		
				17.24		; !
1,3-Dichloropropylene	6	<10		18.68		
1,1,2,2-Tetrachloroethane	7	<10		23.47		
1,1,1,2-Tetrachloroethane	7	<10		21.04		
Tetrachloroethylene	1	<10		23.47		İ
1,1,1-Trichloroethane	1 1	<10		14.76		!
1,1,2-Trichloroethane	1	<10		18.68		1
Trichloroethylene	2	<10		17.91		
Trichlorofluoromethane	1 1	<10		8.58		
Trichloropropane	i 2	<10		23.01		!
Vinyl chloride	i 4	<10		3.54		i
	1		1	l ·		1
		i	1			
	i		i			1
	:	!	:	,		
	:	:		:		1

^{*} If % moisture is reported, results are presented on a dry-weight basis.

Page	/	of	2
Repor	t _		

ES Job No. <u>56528</u>	Lab Sample No.
Client U.S. Air Force	Field Sample No. 1-55-4 55-5
Project PJKS (Denver	Date Collected
Client No.	Date Received 12/17/55
Laboratory Supervisor Approval:	Date Analyzed 12/26/55
John R. Colombian Sample Matrix:	QC Report No. PJK5-02
/ / Water (ug/L)	Dilution Factor
/X / Soil (ug/g)	*Moisture
/ / Other	

-	logenated	L RESULTS S d Volatile Method 8010	Organics)	Page / of 2 Report
	(first	of two pag		
ES Job No. <u>56528</u>				12-85-1127
Client U.S. Air Force				-ES-4 SS-5
Project PJKS (Denver				12-16 95
Client No.		_	Received //	
Laboratory Supervisor Appro	oval:	Date	Analyzed	12/26/35
Johnny R. C.da	~~~	ي	Report No. 25	1.5-02
Sample Matrix:				
/_/ Water (ug/L)			ution Factor	
/X / Soil (ug/g)		*Mois	sture	*
/_/ Other				
				
Compound				ion Time Notes
	Det Lim	COLUMN 1 C	Column 2 Column	COTUMN 2
Benzyl chloride	4	<10	40.9	i ·
<pre>bis(2-chloroethoxy) methane</pre>	12	<12	44.2	
bis(2-chloroisopropyl)			44.2	
ether	25	L 25	42.2	
Bromobenzene	-18	<10	29.18	;
Bromodichloromethane	2	<10	15.69	<u> </u>
Bromoform	4	<10	21.24	1 .
Bromomethane	24	₹7 #	2.85	<u> </u>
Carbon tetrachloride	. 3	<10	15.47	1
Chloroacetaldehyde	10	<10	11.6	-
Chloral	10	<10	18.7	
Chlorobenzene	5	<10	26.01	<u> </u>
Chloroethane	:10	<10	4.51	· · · · · · · · · · · · · · · · · · ·
Chloroform	1	<10	13.01	<u> </u>
1-Chlorohexane	2	<10	26.58	<u> </u>
2-Chloroethyl vinyl ether	3	<10	19.49	
Chloromethane	2	<10	1.95	
Chloromethyl methyl ether	. 20	120	9.37	
Chilorome any 1 me chiy 1 caner	. 4	<10	37.9	
Chlorotoluene		i .	1	1
	2	<10	18.68	
Chlorotoluene	2	-31	18.68	

12-35-1127

0

£

}

Compound		oncentrat:		Retenti	Notes	
	Det Lim	Column 1	Column 2	Column 1	Column 2	1
Dibromomethane	1	<10	1	13.09	1	Ì
1,2-Dichlorobenzene	. 3	<10		60.10	:	!
1,3-Dichlorobenzene	6	<10	l !	42.90	:	<u>:</u>
1,4-Dichlorobenzene	5	<10	İ	37.28		
Dichlorodifluoromethane	30	30		3.54		!
1,1-Dichloroethane	. 1	<10	<u> </u>	11.67	i	:
1,2-Dichloroethane	11	<10		13.55	:	<u>;</u>
1,1-Dichloroethylene	3	<10		10.31	:	•
trans-1,2-Dichloroethylene	2	<10		12.35		!
Dichloromethane	5	<10	!	7.50	:	i
1,2-Dichloropropane	1	<10	i	17.19	:	
				17.24		
1,3-Dichloropropylene	6	<10	<u> </u>	18.68	<u> </u>	
1,1,2,2-Tetrachloroethane	7	<10		23.47	!	•
1,1,1,2-Tetrachloroethane	7	<10		21.04	İ	
Tetrachloroethylene	11	<10	!	23.47	<u>.i.</u>	<u> </u>
1,1,1-Trichloroethane	1	<10	<u> </u>	14.76	· 	
1,1,2-Trichloroethane	! 1	<10	<u>i</u>	18.68	i	<u> </u>
Trichloroethylene	2	<10		17.91	<u> </u>	
Trichlorofluoromethane	1	<10		8.58		
Trichloropropane	2	<10	<u> </u>	23.01	'	: !
Vinyl chloride	4	<10		3.54		ì
	!			1		i
		į	:	,		:
	:		i	!	· ———	1
			:			1
		:				1

^{*} If % moisture is reported, results are presented on a dry-weight basis.

Symmetry Section of the Company of t

ANALYTICAL RESULTS SUMMARY Halogenated Volatile Organics SW Method 8010 (first of two pages)

Page _	1	of	2
Report	_		

ES Job No. <u>56528</u>	Lab Sample No. $\frac{12-35-1128}{}$
Client U.S. Air Force	Field Sample No. 1-E5-4, SS-6
Project PJKS (Denver	Date Collected 12-16 85
Client No.	Date Received /2/17/85
Laboratory Supervisor Approval:	Date Analyzed 12/26/95
Johnne R adamsin Sample Matrix:	OC Report No. 35KS-02
/_/ Water (ug/L)	Dilution Factor
<pre>/X / Soil (ug/g)</pre>	*Moisture
/ / Other	

Compound	Concentration			Retenti	on Time Notes
	Det Lim	Column 1	Column 2	Column 1	Column 2
Benzyl chloride	:4	<10		40.9	•
<pre>bis(2-chloroethoxy) methane</pre>	12	42		44.2	
<pre>bis(2-chloroisopropyl) ether</pre>	25	125		42.2	
Bromobenzene	8	<10		29.18	1
Bromodichloromethane	2	<10		15.69	
Bromoform	.4	<10		21.24	
Bromomethane	24	424		2.85	* · ·
Carbon tetrachloride	3	<10		15.47	į.
Chloroacetaldehyde	10	<10		11.6	
Chloral	10	<10		18.7	
Chlorobenzene	5	<10		26.01	•
Chloroethane	10	<10		4.51	
Chloroform	1	<10		13.01	•
1-Chlorohexane	2	<10		26.58	•
2-Chloroethyl vinyl ether	3	<10		19.49	
Chloromethane	2	<10		1.95	!
Chloromethyl methyl ether	20	20		9.37	1
Chlorotoluene	4	<10		37.9	
Dibromochloromethane	2	<10	1	18.68	!

continued on back

X X X

12-85-1128

Compound		oncentrati		Retention Time	Notes
	Det Lim	Column 1	Column 2	Column 1 Column 2	
Dibromomethane	1	<10		13.09	Ī
1,2-Dichlorobenzene	3	· <10		60.10	1
1,3-Dichlorobenzene	6	<10	!	42.90	
1,4-Dichlorobenzene	5	<10		37.28	
Dichlorodifluoromethane	30	40		3.54	:
1,1-Dichloroethane	1	<10		11.67	!
1,2-Dichloroethane	1	<10		13.55	<u> </u>
1,1-Dichloroethylene	3	<10		10.31	
trans-1,2-Dichloroethylene	2	<10	! !	12.35	!
Dichloromethane	5	<10	!	7.50	
1,2-Dichloropropane	1	<10		17.19	1
	•			17.24	1
1,3-Dichloropropylene	6	<10		18.68	
1,1,2,2-Tetrachloroethane	7	<10		23.47	
1,1,1,2-Tetrachloroethane	7	<10		21.04	1
Tetrachloroethylene	1	<10		23.47	İ
1,1,1-Trichloroethane	1	<10		14.76	1
1,1,2-Trichloroethane	1	<10		18.68	İ
Trichloroethylene	2	<10		17.91	i
Trichlorofluoromethane	11	<10		8.58	1
Trichloropropane	2	<10		23.01	
Vinyl chloride	. 4	<10		3.54	
·			i	:	!
					ì
	I		<u> </u>		į
		1	!		1
		:			

^{*} If % moisture is reported, results are presented on a dry-weight basis.

TOTAL TRANSPORTER STATE

CACACO INCAMANA

ALIGORORI ELECTRICA DESCRIPTO DE LA CONTROL DE CONTROL

Ž

**

3

7

Ç.

7.

ANALYTICAL RESULTS SUMMARY Halogenated Volatile Organics SW Method 8010 (first of two pages)

Page	1	of	2
Repor	t_		

ES Job No56528	Lab Sample No. 12-85-/124
Client U.S. Air Force	Field Sample No. /-=5-5 SS-1
ProjectPJKS (Denver	Date Collected 12-16-95
Client No.	Date Received 12/17/65 ·
Laboratory Supervisor Approval:	Date Analyzed /2/27/85
John R Cdonsin	OC Report No. PJK5-32
/_/ Water (ug/L)	Dilution Factor
/X / Soil (ug/g)	*Moisture
/_ / Other	

Compound	Concentration			Retent	ion Time Notes
	Det Lim	Column	1 Column 2	Column	Column 2
Benzyl chloride	4	<10		40.9	,
<pre>bis(2-chloroethoxy) methane</pre>	12	CI2		44.2	
bis(2-chloroisopropyl) ether	25	L 25	·	42.2	1
Bromobenzene	,8	<10	İ	29.18	
Bromodichloromethane	2	<10		15.69	
Bromoform	4	<10		21.24	
Bromomethane	24	124		2.85	1
Carbon tetrachloride	3	<10		. 15.47	1
Chloroacetaldehyde	10	<10		11.6	
Chloral	10	<10		18.7	•
Chlorobenzene	- 5	<10		26.01	
Chloroethane	10	<10		4.51	
Chloroform	1	<10		13.01	1
1-Chlorohexane	2	<10		26.58	1
2-Chloroethyl vinyl ether	3	<10	1	19.49	
Chloromethane	2	<10		1.95	
Chloromethyl methyl ether	20	40		9.37	
Chlorotoluene	4	<10	:	37.9	
Dibromochloromethane	2	<10	1	18.68	i i

12-85-1129

X

Compound		oncentrat		Retenti	Notes	
	Det Lim	Column 1	Column 2	Column 1	Column 2	
Dibromomethane	1	<10		13.09	!	
1,2-Dichlorobenzene	3	<10	İ	60.10	<u> </u>	!
1,3-Dichlorobenzene	6	<10		42.90	:	İ
1,4-Dichlorobenzene	. 5	<10	İ	37 • 28		•
Dichlorodifluoromethane	30	.30		3.54		!
1,1-Dichloroethane	1	<10		11.67		
1,2-Dichloroethane	1	<10		13.55	1	
1,1-Dichloroethylene	3	<10	ļ	10.31	!	
trans-1,2-Dichloroethylene	2	<10	!	12.35		-
Dichloromethane	5	<10	!	7.50		!
1,2-Dichloropropane	1	<10	-	17.19	:	-
				17.24		i
1,3-Dichloropropylene	6	<10		18.68		į
1,1,2,2-Tetrachloroethane	7	<10	ļ	23.47		-
1,1,1,2-Tetrachloroethane	7	<10		21.04		
Tetrachloroethylene	1	<10		23.47		-
1,1,1-Trichloroethane	1	<10		14.76	1	
1,1,2-Trichloroethane	1	<10		18.68	1	!
Trichloroethylene	2	<10		17.91	!	
Trichlorofluoromethane	1	<10		8.58	!	
Trichloropropane	2	<10		23.01	1	
Vinyl chloride	4	<10		3.54		
				1		
				!		
•				:		
		!		!		

^{*} If % moisture is reported, results are presented on a dry-weight basis.

ANALYTICAL RESULTS SUMMARY Halogenated Volatile Organics SW Method 8010 (first of two pages)

Page _	_	of	2
Report			

ES Job No. <u>56528</u>	Lab Sample No. 12-85-1135
Client U.S. Air Force	Field Sample No. 1-ES-5, 55-2
Project PJKS (Denver	Date Collected /2-/6 45
Client No.	Date Received 12/17/85
Laboratory Supervisor Approval:	Date Analyzed 12/27/85
Johnny R adamson Sample Matrix:	QC Report No. 25/15-02
/ / Water (ug/L)	Dilution Factor
/X / Soil (ug/g)	*Moisture
/ / Other	

Compound	C	Concentration			n Time Notes
_	Det Lim	Column	1 Column 2	Column 1	Column 2
Benzyl chloride	4	<10		40.9	1
bis(2-chloroethoxy) methane	12	くに		44.2	1
bis(2-chloroisopropyl) ether	25	حکر		42.2	
Bromobenzene	ઇ	<10		29.18	'
Bromodichloromethane	2	<10		15.69	
Bromoform	. 4	<10		21.24	
Bromomethane	24	८ 24		2.85	
Carbon tetrachloride	. 3	<10		15.47	
Chloroacetaldehyde	10	<10		11.6	
Chloral	10	<10		18.7	
Chlorobenzene	5	<10		26.01	:
Chloroethane	10	<10		4.51	
Chloroform	1	<10		13.01	
1-Chlorohexane	2	<10		26.58	. 1
2-Chloroethyl vinyl ether	3	<10		19.49	
Chloromethane	2	<10		1.95	
Chloromethyl methyl ether	20	රා		9.37	
Chlorotoluene	4	<10		37.9	
Dibromochloromethane	2	<10	i	18.68	1

12-85-1135

Compound	Concentration				Retention Time	Notes
	Det	Lim	Column 1	Column 2	Column 1 Column 2	
Dibromomethane		1	<10	<u> </u>	13.09	
1,2-Dichlorobenzene	<u>.</u>	3	<10		60.10	
1,3-Dichlorobenzene		6	<10		42.90	
1,4-Dichlorobenzene	ļ	5	<10		37.28	
Dichlorodifluoromethane	3	30	30		3.54	
1,1-Dichloroethane	i	1	<10		11.67	İ
1,2-Dichloroethane	!	1	<10		13.55	<u> </u>
1,1-Dichloroethylene		3	<10	<u> </u>	10.31	
trans-1,2-Dichloroethylene	i	2	<10		12.35	
Dichloromethane		5	<10		7.50	:
1,2-Dichloropropane	<u> </u>	1	<10		17.19	
					17.24	
1,3-Dichloropropylene	! !	6	<10		18.68	1
1,1,2,2-Tetrachloroethane	<u> </u>	7	<10	<u> </u>	23.47	
1,1,1,2-Tetrachloroethane	1	7	<10	1	21.04	
Tetrachloroethylene	i	1	<10		23.47	
1,1,1-Trichloroethane	<u> </u>	1	<10		14.76	
1,1,2-Trichloroethane	<u>!</u> .	1	<10	<u> </u>	18.68	
Trichloroethylene	<u>:</u>	2	<10		17.91	
Trichlorofluoromethane	<u> </u>	1	<10		8.58	
Trichloropropane		2	<10		23.01	1
Vinyl chloride	<u> </u>	4	<10		3.54	
	!					
	!		<u> </u>			
	!		!		:	
	i		!	•	! .	

^{*} If % moisture is reported, results are presented on a dry-weight basis.

ANALYTICAL RESULTS SUMMARY Halogenated Volatile Organics SW Method 8010 (first of two pages)

Page _	/	of	2
Report	_		

ES JOD NO. <u>56528</u>	Lab sample No.
Client U.S. Air Force	Field Sample No. 1-=5-5 51-3
Project PJKS (Denver	Date Collected 12-16-85
Client No.	Date Received
Laboratory Supervisor Approval:	Date Analyzed 12/27/85
John R. Colombia Sample Matrix:	OC Report No. PJKS - 32
/_/ Water (ug/L)	Dilution Factor
/X / Soil (ug/g)	*Moisture
/ / Other	

Compound	С	oncentrat	ion	Retention Time		Notes
-	Det Lim	Column 1	Column 2	Column 1	Column 2	
Benzyl chloride	4	<10		40.9	j	!
<pre>bis(2-chloroethoxy) methane</pre>	12	(12		44.2		
<pre>bis(2-chloroisopropyl) ether</pre>	25	425		42.2		
Bromobenzene	8	<10		29.18		:
Bromodichloromethane	2	<10		15.69		1
Bromoform	4	<10		21.24	<u> </u>	
Bromomethane	24	Q4		2.85	1	1
Carbon tetrachloride	3	<10		15.47		
Chloroacetaldehyde	10	<10		11.6	:	
Chloral	10	<10		18.7	<u>!</u>	
Chlorobenzene	5	<10	<u> </u>	26.01	<u>i</u>	
Chloroethane	10	<10		4.51	<u>.</u>	
Chloroform	1	<10		13.01	i i	
1-Chlorohexane	2	<10		26.58	<u> </u>	,
2-Chloroethyl vinyl ether	3	<10		19.49		
Chloromethane	2	<10		1.95		
Chloromethyl methyl ether	20	420		9.37	1	
Chlorotoluene	4	<10		37.9	!	1
Dibromochloromethane	2	<10		18.68		i

continued on back

AND THE THE THE THE CONTROL BY SEE IN SECURIOR STREET, AND THE

ANALYTICAL RESULTS SUMMARY Halogenated Volatile Organics SW Method 8010 (second of two pages)

12-85-1131

5.5

Compound		oncentrati		Retenti	Notes	
	Det Lim	Column 1	Column 2	Column 1	Column 2	İ
Dibromomethane	1	<10		13.09	1	
1,2-Dichlorobenzene	3	<10		60.10	<u> </u>	!
1,3-Dichlorobenzene	6	<10	 	42.90	:	1
1,4-Dichlorobenzene	5	<10		37.28	·	ţ i
Dichlorodifluoromethane	30	<i>(</i> 30	<u> </u>	3.54	<u> </u>	
1,1-Dichloroethane	1	<10		11.67	!	į
1,2-Dichloroethane	1	<10		13.55	<u>!</u>	1
1,1-Dichloroethylene	3	<10		10.31	1	!
trans-1,2-Dichloroethylene	2	<10		12.35		
Dichloromethane	5	<10	ļ	7.50		
1,2-Dichloropropane	1	<10		17.19		
,				17.24		1
1,3-Dichloropropylene	66	<10		18.68		
1,1,2,2-Tetrachloroethane	7	<10	<u> </u>	23.47		
1,1,1,2-Tetrachloroethane	7	<10		21.04		
Tetrachloroethylene	1	<10		23.47		
1,1,1-Trichloroethane	11	<10		14.76	i	
1,1,2-Trichloroethane	<u> </u>	<10		18.68	1	
Trichloroethylene	2	<10		17.91		
Trichlorofluoromethane	1	<10		8.58		
Trichloropropane	2	<10		23.01		
Vinyl chloride	4	<10		3.54		
] !					
					!	
	1		ĺ			
	!	!	1	:	:	
	i	1	•	!		

^{*} If % moisture is reported, results are presented on a dry-weight basis.

Page	1	of	2
Repor	t _		

ES Job No. 56528	Lab Sample No. $12-85-1/3\lambda$
Client U.S. Air Force	Field Sample No. 1-ES-5, CS-7
ProjectPJKS (Denver	Date Collected 12-16 85
Client No.	Date Received 12/17/85
Laboratory Supervisor Approval:	Date Analyzed /2/27/85
John R Cidanian Sample Matrix:	QC Report No. 95% -32
/_/ Water (ug/L)	Dilution Factor
/X / Soil (ug/g)	*Moisture
/_/ Other	

8	<u> </u>			SUMMARY e Organic		Page / of Report
- 7€			Method 80 of two p			
		(_	_		
न्त	ES Job No. <u>56528</u>					12-55-113.
N	Client U.S. Air Force					ES-5 (1-9)
Š	Project PJKS (Denver		_			2-16.85
	Client No.					117/85
	Laboratory Supervisor Appr	oval:	Da	te Analyz	ed	12/27/85
	Sample Matrix:	C26-	<u>~</u> oc	Report No	o. <u>P</u> 3	「九 -32
N	/// Water (ug/L)		Di	lution Fa	ctor	
	<pre>/X / Soil (ug/g)</pre>		*Mo	isture		·
N	<u>/</u> / Other					
ca.						
	Compound					on Time No
Š		Det Lim	Column 1	Column 2	Column 1	Column 2
٠,	Benzyl chloride	4	<10		40.9	
<u></u>	bis(2-chloroethoxy)					
4	methane bis(2-chloroisopropyl)	12	1/12	1	44.2	1 ;
∿ i	ether	25	125		42.2	
Ş	Bromobenzene	8	<10		29.18	
	Bromodichloromethane	2	<10		15.69	1
P	Bromoform	4	<10		21.24	
·- •	Bromomethane	24	QH		2.85	!
<u> </u>	Carbon tetrachloride	3	<10		15.47	1
	Chloroacetaldehyde	10	<10		11.6	
3	Chloral	10	<10		18.7	
$\bar{\mathbb{R}}$	Chlorobenzene	5	<10		26.01	
	Chloroethane	10	<10		4.51	
• -	Chloroform	1	<10		13.01	
8		. 2	<10		26.58	1
22	1-Chlorohexane				19.49	
	1-Chlorohexane 2-Chloroethyl vinyl ether	3	<10	.1		
32		3 2	<10		1.95	•
Ž.	2-Chloroethyl vinyl ether	2	1		1.95	•
	2-Chloroethyl vinyl ether Chloromethane	2	<10			

12-85-1132

<u>.</u>

Compound		oncentrat			Retention Time		
	Det Lim	Column 1	Column	2 Column 1	Column 2	1	
Dibromomethane	1	<10		13.09		İ	
1,2-Dichlorobenzene	,3	<10	1 1	60.10	·	!	
1,3-Dichlorobenzene	6	<10	1	42.90		:	
1,4-Dichlorobenzene	5	<10		37.28			
Dichlorodifluoromethane	30	30	1	3.54		1	
1,1-Dichloroethane	1	<10		11.67	:	į	
1,2-Dichloroethane	1	<10	1	13.55	: !		
1,1-Dichloroethylene	3	<10	!	10.31	:	į.	
trans-1,2-Dichloroethylene	2	<10	ļ	12.35		1	
Dichloromethane	5	<10		7.50			
1,2-Dichloropropane	. 1	<10		17.19			
				17.24	!	!	
1,3-Dichloropropylene	6	<10		18.68		1	
1,1,2,2-Tetrachloroethane	7	<10		23.47	!		
1,1,1,2-Tetrachloroethane	7	<10		21.04		!	
Tetrachloroethylene	1	<10		23.47			
1,1,1-Trichloroethane	1	<10	1	14.76		!	
1,1,2-Trichloroethane	1	<10	i	18.68	l. '	1	
Trichloroethylene	2	<10		17.91		1	
Trichlcrofluoromethane	1	<10		8.58		1	
Trichloropropane	2	<10	<u> </u>	23.01		i	
Vinyl chloride	4	<10		3.54			
				†	:	1	
		}	1	;			
	!	1	ì	!			
	:	!				!	
						:	

^{*} If % moisture is reported, results are presented on a dry-weight basis.

MANAGEMENT RESERVED TO SERVED TO THE RESERVED TO SERVED

22.23

33

ANALYTICAL RESULTS SUMMARY Halogenated Volatile Organics SW Method 8010 (first of two pages)

Page	_	of	2_
Report	_		

ES Job No. <u>56528</u>	Lab Sample No	12-85-1133
Client U.S. Air Force	Field Sample No.	1-ES-5, SS-5
Project PJKS (Denver	Date Collected	12-16-45
Client No.	Date Received	12/17/85
Laboratory Supervisor Approval:	Date Analyzed	12/27/55
Johnny R. Calamon Sample Matrix:	QC Report No.	PJK5-02
/_/ Water (ug/L)	Dilution Factor _	
/X / Soil (ug/g)	*Moisture	
/ / Other		

Compound	Concentration			Retention Time		Notes
1	Det Lim	Column 1	Column 2	Column 1	Column 2	
Benzyl chloride	4	<10		40.9		1
<pre>bis(2-chloroethoxy) methane</pre>	12	<12		44.2		İ
<pre>bis(2-chloroisopropyl) ether</pre>	25	125		42.2		ļ
Bromobenzene	8	<10		29.18		ţ
Bromodichloromethane	2	<10		15.69		1
Bromoform	4	<10		21.24		1
Bromomethane	24	44		2.85		i
Carbon tetrachloride	3	<10		15.47		
Chloroacetaldehyde	10	<10		11.6	1	
Chloral	10	<10		18.7		
Chlorobenzene	5	<10		26.01	i	
Chloroethane	10	<10		4.51	:	
Chloroform	1	<10		13.01		
1-Chlorohexane	2	<10		26.58		1
2-Chloroethyl vinyl ether	3	<10		19.49		
Chloromethane	2	<10		1.95		
Chloromethyl methyl ether	20	120		9.37		
Chlorotoluene	4	<10		37.9	!	1
Dibromochloromethane	2	<10		18.68	•	†

Compound	C	oncentrat	ion	Retentio	Retention Time		
	Det Lim	Column 1	Column 2	Column 1	Column 2	;	
Dibromomethane	11	<10	İ	13.09	: :	<u> </u>	
1,2-Dichlorobenzene	3	<10		60.10	·	1	
1,3-Dichlorobenzene	6	<10	1	42.90		:	
1,4-Dichlorobenzene	5	<10	<u> </u>	37.28			
Dichlorodifluoromethane	30	<3 &		3.54	:	i	
1,1-Dichloroethane	1	<10		11.67		;	
1,2-Dichloroethane	1	<10	<u> </u>	13.55			
1,1-Dichloroethylene	3	<10	!	10.31	<u> </u>	!	
trans-1,2-Dichloroethylene	2	<10		12.35		!	
Dichloromethane	5	<10	<u> </u>	7.50			
1,2-Dichloropropane	1	<10	<u> </u>	17.19	:	1	
		İ		17.24		!	
1,3-Dichloropropylene	6	<10		18.68		<u> </u>	
1,1,2,2-Tetrachloroethane	7	<10		23.47			
1,1,1,2-Tetrachloroethane	7	<10	!	21.04	<u>i</u>		
Tetrachloroethylene	1	<10	1	23.47	<u>!</u>	<u>!</u>	
1,1,1-Trichloroethane	1	<10		14.76	<u>:</u>		
1,1,2-Trichloroethane	11	<10		18.68	•	!	
Trichloroethylene	2	<10		17.91			
Trichlorofluoromethane	1	<10	1	8.58	<u>!</u>		
Trichloropropane	2	<10		23.01	!		
Vinyl chloride	4	<10	1	3.54			
	,		İ	1			
			!	1	!		
		<u> </u>	1	!			
		!	·	:			
		<u>:</u>		:			

^{*} If % moisture is reported, results are presented on a dry-weight basis.

ANALYTICAL RESULTS SUMMARY Halogenated Volatile Organics SW Method 8010 (first of two pages)

Page /	of	2
Report		

ES Job No. <u>56528</u>	Lab Sample No. $\frac{12-85-1134}{}$
Client U.S. Air Force	Field Sample No. 1-ES-5, 55-6
Project PJKS (Denver	Date Collected /2-/6-95
Client No.	Date Received
Laboratory Supervisor Approval:	Date Analyzed 12/27/55
John R adamson Sample Matrix:	OC Report No. PJK1 - 52
/ / Water (ug/L)	Dilution Factor
/X / Soil (ug/g)	*Moisture
/ / Other	

Compound	Concentration			Retention Time No	
	Det Lim	Column 1	Column 2	Column 1	Column 2
Benzyl chloride	4	<10		40.9	•
bis(2-chloroethoxy) methane	12	112		44.2	
bis(2-chloroisopropyl) ether	25	<15		42.2	:
Bromobenzene	8	<10		29.18	k .
Bromodichloromethane	2	<10		15.69	
Bromoform	4	<10		21.24	
Bromomethane	24	₹3#		2.85	
Carbon tetrachloride	3	<10		15.47	
Chloroacetaldehyde	10	<10		11.6	
Chloral	10	<10		18.7	
Chlorobenzene	5	<10		26.01	
Chloroethane	10	<10		4.51	
Chloroform	1	<10		13.01	
1-Chlorohexane	2	<10		26.58	•
2-Chloroethyl vinyl ether	3	<10		19.49	
Chloromethane	2	<10		1.95	
Chloromethyl methyl ether	·20	ત્રં 0		9.37	
Chlorotoluene	4	<10		37.9	
Dibromochloromethane	2	<10		18.68	;

particle control lensisted best matter branch

ANALYTICAL RESULTS SUMMARY Halogenated Volatile Organics SW Method 8010 (second of two pages)

12-85-113+

X

Compound		ncentrat		Retention Time		Notes
	Det Lim	Column 1	Column	2 Column 1	Column 2	
Dibromomethane	1	<10	<u> </u>	13.09	<u>:</u>	
1,2-Dichlorobenzene	3.	<10		60.10	·	!
1,3-Dichlorobenzene	6	<10		42.90	:	<u> </u>
1,4-Dichlorobenzene	5	<10	<u> </u>	37.28		
Dichlorodifluoromethane	30	∠3 0		3.54	:	i
1,1-Dichloroethane	11	<10		11.67	:	:
1,2-Dichloroethane	1	<10	<u> </u>	13.55	:	
1,1-Dichloroethylene	3	<10	!	10.31	1	!
trans-1,2-Dichloroethylene	2	<10		12.35	:	
Dichloromethane	5	<10	!	7.50	!	1
1,2-Dichloropropane	11	<10	1	17.19	:	!
			!	17.24	1	:
1,3-Dichloropropylene.	6	<10		18.68		<u> </u>
1,1,2,2-Tetrachloroethane	7	<10	1	23.47	İ	-
1,1,1,2-Tetrachloroethane	7	<10		21.04		!
Tetrachloroethylene	1	<10	1	23.47	!	:
1,1,1-Trichloroethane	11	<10		14.76		i
1,1,2-Trichloroethane	<u> </u>	<10		18.68	1	!
Trichloroethylene	2	<10		17.91	•	!
Trichlorofluoromethane	1	<10		8.58	!	ļ
Trichloropropane	2	<10	!	23.01		1
Vinyl chloride	4	<10		3.54	1	
	!		<u> </u>	!	·	
		<u>!</u>	<u> </u>		:	
	·	<u> </u>	!	!		-
	·	<u> </u>				;
						,

^{*} If % moisture is reported, results are presented on a dry-weight basis.

ANALYTICAL RESULTS SUMMARY Halogenated Volatile Organics SW Method 8010 (first of two pages)

Page _	/	of	2
Report	_		

/_/ Other	
/X / Soil (ug/g)	*Moisture
/_/ Water (ug/L)	Dilution Factor
Sample Matrix: 3	
John, Radamson Sample Matrix:	QC Report No. 25/13-02
Laboratory Supervisor Approval:	Date Analyzed 12/28/85
Client No.	Date Received 12/18/85
Project PJKS (Denver	Date Collected /2-/7-95
Client U.S. Air Force	Field Sample No. 1-ES-6, SS-1
ES Job No. <u>56528</u>	Lab Sample No. 12-85-1144

Compound	C	oncentrat:	ion	Retention Time		Notes
_	Det Lim	Column 1	Column 2	Column 1	Column 2	
Benzyl chloride	4	<10		40.9	1	,
<pre>bis(2-chloroethoxy) methane</pre>	12	<12	-	44.2	1	
bis(2-chloroisopropyl) ether	25	L 15		42.2		
Bromobenzene	8	<10		29.18		
Bromodichloromethane	2	<10		15.69	i	
Bromoform	4	<10		21.24	i	
Bromomethane	24	124		2.85	<u>!</u>	<u>. </u>
Carbon tetrachloride	3	<10		15.47	•	· · · · · · · · · · · · · · · · · · ·
Chloroacetaldehyde	10	<10		11.6		
Chloral	10	<10		18.7	:	
Chlorobenzene	5	<10		26.01	i	
Chloroethane	10	<10		4.51	:	
Chloroform	1	<10		13.01	I	
1-Chlorohexane	2	<10		26.58	i	1
2-Chloroethyl vinyl ether	3	<10		19.49	: :	
Chloromethane	2	<10		1.95	:	
Chloromethyl methyl ether	20	L 20		9.37	i	
Chlorotoluene	4	<10		37.9	!	
Dibromochloromethane	2	<10		18.68		

continued on back

L-47

Discupring in clock noted.

8

12-55-1144

Compound		ncentrat		Retentio			
	Det Lim	Column 1	Column 2	Column 1	Column 2		
Dibromomethane	1	<10		13.09	<u>:</u>		
1,2-Dichlorobenzene	3	<10	<u> </u>	60.10	!	•	
1,3-Dichlorobenzene	6	<10		42.90		į .i	
1,4-Dichlorobenzene	5	<10		37.28		·	
Dichlorodifluoromethane	30	30		3.54	:	!	
1,1-Dichloroethane	1	<10		11.67	: :	:	
1,2-Dichloroethane	1	<10		13.55	!	:	
1,1-Dichloroethylene	3	<10		10.31	!	1	
trans-1,2-Dichloroethylene	2	<10	<u> </u> 	12.35		i	
Dichloromethane	5	<10	!	7.50	į	-	
1,2-Dichloropropane	1	<10	<u> </u>	17.19	:	!	
				17.24	1	1	
1,3-Dichloropropylene	6	<10		18.68		<u> </u>	
1,1,2,2-Tetrachloroethane	7	<10	<u> </u>	23.47	<u> </u>		
1,1,1,2-Tetrachloroethane	! 7	<10	ļ	21.04	į		
Tetrachloroethylene	1	<10	<u> </u>	23.47	!	!	
1,1,1-Trichloroethane	11	<10		14.76	!		
1,1,2-Trichloroethane	11	<10		18.68	<u> </u>	<u> </u>	
Trichloroethylene	2	<10		17.91	<u>;</u>		
Trichlorofluoromethane	1	<10		8.58	!		
Trichloropropane	2	<10		23.01	:	•	
Vinyl chloride	4	<10		3.54		i	
	?		•	!			
		1				1	
	1	!				Į .	
			·				
		:				ļ	

^{*} If % moisture is reported, results are presented on a dry-weight basis.

ANALYTICAL RESULTS SUMMARY Halogenated Volatile Organics SW Method 8010 (first of two pages)

Page	_/_	of	2
Repor	t _		

ES Job No. <u>56528</u>	Lab Sample No.	
Client U.S. Air Force	Field Sample No. $\underline{/-E}$	5-6 55-2
Project PJKS (Denver	Date Collected	12-17-85
Client No.	Date Received	12-18-55
Laboratory Supervisor Approval:	Date Analyzed	12/28/85
John R Colombia	QC Report No. PJ	x5-03
/ / Water (ug/L)	Dilution Factor	
/X / Soil (ug/g)	*Moisture	96
/ / Other		

Compound	Concentration			Retent	Notes	
	Det Lim	Column 1	Column 2	Column	Column 2	
Benzyl chloride	4	<10		40.9	•	1
<pre>bis(2-chloroethoxy) methane</pre>	12	<12		44.2		
<pre>bis(2-chloroisopropyl) ether</pre>	25	L 25		42.2	ļ	
Bromobenzene	8	<10		29.18	1	
Bromodichloromethane	2	<10		15.69		
Bromoform	4	<10		21.24	1	
Bromomethane	24	224		2.85		
Carbon tetrachloride	3	<10		15.47	1	
Chloroacetaldehyde	10	<10		11.6		
Chloral	10	<10		18.7		
Chlorobenzene	5	<10		26.01	!	
Chloroethane	10	<10		4.51	:	
Chloroform	1	<10		13.01	i	
1-Chlorohexane	2	<10		26.58	į	
2-Chloroethyl vinyl ether	3	<10		19.49	š į	
Chloromethane	2	<10		1.95	1	
Chloromethyl methyl ether	20	420		9.37	i	
Chlorotoluene	4	<10		37.9	1	
Dibromochloromethane	2	<10		18.68		

continued on back

Dieupmen un clock notrel

the second representation of the second seco

CONTROL CONTRO

ANALYTICAL RESULTS SUMMARY Halogenated Volatile Organics SW Method 8010 (second of two pages)

12-85-1145

Compound	Co	ncentrat	ion	Retentio	on Time	Notes
	Det Lim	Column 1	Column	2 Column 1	Column 2	-
Dibromomethane	1	<10		13.09	<u> </u>	
1,2-Dichlorobenzene	3	<10		60.10	<u> </u>	!
1,3-Dichlorobenzene	6	<10		42.90	<u> </u>	<u> </u>
1,4-Dichlorobenzene	. 5	<10_	!	37.28		
Dichlorodifluoromethane	30	130		3.54	<u> </u>	!
1,1-Dichloroethane	11	<10		11.67	<u> </u>	!
1,2-Dichloroethane	11	<10	<u> </u>	13.55	<u> </u>	
1,1-Dichloroethylene	3	<10		10.31	<u> </u>	
trans-1,2-Dichloroethylene	2	<10		12.35	1	1
Dichloromethane	5	<10		7.50	•	
1,2-Dichloropropane	1	<10		17.19	!	1
				17.24		1
1,3-Dichloropropylene	6	<10		18.68		
1,1,2,2-Tetrachloroethane	7_	<10		23.47		
1,1,1,2-Tetrachloroethane	. 7	<10	<u> </u>	21.04	<u> </u>	
Tetrachloroethylene	1	<10		23.47	!	<u> </u>
1,1,1-Trichloroethane	1	<10	<u> </u>	14.76		
1,1,2-Trichloroethane	1	<10	<u> </u>	18.68	<u>!</u>	İ
Trichloroethylene	2	<10		17.91	!	
Trichlorofluoromethane	1	<10		8.58	<u> </u>	<u> </u>
Trichloropropane	2	<10	!	23.01	! 	
Vinyl chloride	4	<10	!	3.54		
	<u> </u>			!	1	
	:					!
	!	<u> </u>	i	:	:	
	: 	<u>!</u>				i

^{*} If % moisture is reported, results are presented on a dry-weight basis.

ANALYTICAL RESULTS SUMMARY Halogenated Volatile Organics SW Method 8010 (first of two pages)

Page _	\angle	of	<u> </u>
Report			

ES Job No. <u>56528</u>	Lab Sample No. 12-85-1146	
Client U.S. Air Force	Field Sample No. 1-ES-6, 55-3	
Project PJKS (Denver	Date Collected 12-17-35	
Client No.	Date Received /2-/8-85	
Laboratory Supervisor Approval:	Date Analyzed	
Johnny R. Odamour Sample Matrix:	OC Report No. FTKS - C3	
/_/ Water (ug/L)	Dilution Factor	
/X / Soil (ug/g)	*Moisture	
/ / Other		

	8	Engineering-Science A	logenated SW !	L RESULTS d Volatile Method 80 of two pa	e Organics 10	3	Page / Report _	of _
		ES Job No. 56528	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		b Sample 1	No.	(2 - x 5 -	114/
	~ ≀	Client U.S. Air Force		-				
1		Project PJKS (Denver		Field Sample No				
		Client No.	_ 		te Receive			
		Laboratory Supervisor Appro			te Analyze			
		Johnny R. Orda	_~~20~				•	
,	(- ,	Sample Matrix:						
•	\$	/_/ Water (ug/L)		Di	lution Fac	tor		
	<i>7</i> .	/X / Soil (ug/g)		*Mo:	isture			
		/_/ Other		·				
	r	Compound		oncentrat:			on Time	• •
•			Det Lim	Column 1	Column 2	Column 1	Column 2	:
	•	Benzyl chloride	4	<10		40.9		i
1	Í	<pre>bis(2-chloroethoxy) methane</pre>	12	<12		44.2		ł
		bis(2-chloroisopropyl) ether	25	415		42.2		: !
		Bromobenzene	8	<10		29.18		į
		Bromodichloromethane	2	<10		15.69		1
		Bromoform	4	<10		21.24	<u> </u>	
	! ≥ "	Bromomethane	24	424		2.85	!	1
		Carbon tetrachloride	3	<10		15.47		
		Chloroacetaldehyde	10	<10		11.6	!	
	T	Chloral	10	<10		18.7	!	
	7 3	Chlorobenzene	5	<10		26.01	!	
	rs.	Chloroethane	10	<10		4.51		
	2	Chloroform	1	<10		13.01		
		1-Chlorohexane	2	<10		26.58	į t	,
	3	2-Chloroethyl vinyl ether	3	<10		19.49	1	
	7)	Chloromethane	2	<10		1.95		
		Chloromethyl methyl ether	20	<20		9.37	i	
		Chlorotoluene	4	<10		37.9	, ,	1
	3	Dibromochloromethane	2	<10	!	18.68		1
	Š	continued on back		7 61				
	p.e.	^		L-51	\	+ i		
	5 7	862J137 Decep	~~~	m ch	cele r	へでしま	•	

12-55-1146

Compound			Retentio	Retention Time		
	Det Lim	Column 1	Column 2	Column 1	Column 2	
Dibromomethane	11	<10		13.09		
1,2-Dichlorobenzene	3	<10	1	60.10	1	!
1,3-Dichlorobenzene	6	<10	1	42.90	1	
1,4-Dichlorobenzene	5	<10		37.28		;
Dichlorodifluoromethane	30	130		3.54	1	•
1,1-Dichloroethane	1	<10	<u> </u>	11.67	<u> </u>	ļ
1,2-Dichloroethane	1	<10		13.55	<u> </u>	!
1,1-Dichloroethylene	3	<10		10.31	<u> </u>	!
trans-1,2-Dichloroethylene	2	<10		12.35	i	İ
Dichloromethane	5	<10		7.50	İ	į
1,2-Dichloropropane	1	<10	<u> </u>	17.19	1	
				17.24	!	(
1,3-Dichloropropylene	6	<10		18.68		
1,1,2,2-Tetrachloroethane	77	<10	1-	23.47	1	
1,1,1,2-Tetrachloroethane	7	<10		21.04		
Tetrachloroethylene	1	<10		23.47	!	-
1,1,1-Trichloroethane	1	<10		14.76	!	
1,1,2-Trichloroethane	1	<10	<u> </u>	18.68	!	
Trichloroethylene	2	<10	<u> </u>	17.91	i :	
Trichlorofluoromethane	11	<10	!	8.58	!	
Trichloropropane	2	<10		23.01	!	
Vinyl chloride	4	<10		3.54		į
	!			!	1	
					1	
	1	<u> </u>		!	1	<u> </u>
	!		:	<u>:</u>	1	
	i 	!		!		1

^{*} If % moisture is reported, results are presented on a dry-weight basis.

parti essenti escenta escenta especial especial especial especial especial especial especial especial especial

ANALYTICAL RESULTS SUMMARY Halogenated Volatile Organics SW Method 8010 (first of two pages)

Page /	of 2
Report	

ES Job No. <u>56528</u>	Lab Sample No	12-85-1147
Client U.S. Air Force	Field Sample No.	1-ES-6,55.4
Project PJKS (Denver		12-17-85
Client No.	Date Received	1.2-19-85
Laboratory Supervisor Approval:	Date Analyzed	1/3/86
Johnny R. Colamo	QC Report No	PJKS-C-3
/ / Water (ug/L)	Dilution Factor	
/X / Soil (ug/g)	*Moisture	<u> </u>
/ / Other		

Compound	Concentration			Retenti	on Time Notes
	Det Lim Column 1 Column 2			Column 1	Column 2
Benzyl chloride	4	<10	+	40.9	
<pre>bis(2-chloroethoxy) methane</pre>	12	くは	-	44.2	
bis(2-chloroisopropyl) ether	25	L25		42.2	
Bromobenzene	8	<10		29.18	
Bromodichloromethane	2	<10		15.69	:
Bromoform	4	<10		21.24	
Bromomethane	24	424		2.85	,
Carbon tetrachloride	3	<10		15.47	
Chloroacetaldehyde	10	<10		11.6	:
Chloral	10	<10		18.7	
Chlorobenzene	5	<10		26.01	
Chloroethane	10	<10		4.51	!
Chloroform	1	<10		13.01	
1-Chlorohexane	2	<10		26.58	
2-Chloroethyl vinyl ether	3	<10		19.49	
Chloromethane	2	<10		1.95	
Chloromethyl methyl ether	20	 		9.37	
Chlorotoluene	4	<10	·	37.9	
Dibromochloromethane	2	<10	1	18.68	

continued on back

AND SOUTH AND SO

RECORDED TO THE PROPERTY OF TH

ANALYTICAL RESULTS SUMMARY Halogenated Volatile Organics SW Method 8010 (second of two pages)

12-85-1147

Compound		oncentrati		Retention Time		Notes
	Det Lim	Column 1	Column 2	Column 1	Column 2	İ
Dibromomethane	1	<10		13.09	!	
1,2-Dichlorobenzene	33	<10	! !	60.10	<u> </u>	<u> </u>
1,3-Dichlorobenzene	6	<10	<u>!</u>	42.90	; 	<u> </u>
1,4-Dichlorobenzene	5	<10	İ	37.28	· · · · · · · · · · · · · · · · · · ·	:
Dichlorodifluoromethane	30	<30		3.54	<u> </u>	
1,1-Dichloroethane	1	<10		11.67	<u> </u>	;
1,2-Dichloroethane	1	<10		13.55	;	! !
1,1-Dichloroethylene	3	<10		10.31	1	!
trans-1,2-Dichloroethylene	2	<10		12.35		
Dichloromethane	5	<10		7.50		!
1,2-Dichloropropane	1	<10		17.19	t t	
				17.24	1	:
1,3-Dichloropropylene	6	<10		18.68		
1,1,2,2-Tetrachloroethane	7	<10	<u> </u>	23.47	!	!
1,1,1,2-Tetrachloroethane	7	<10		21.04		
Tetrachloroethylene	1	<10	<u> </u>	23.47		<u> </u>
1,1,1-Trichloroethane	11	<10	<u> </u>	14.76	<u>!</u>	
1,1,2-Trichloroethane	1	<10		18.68	i !	
Trichloroethylene	2	<10		17.91	İ	<u> </u>
Trichlorofluoromethane	1	<10	1	8.58	!	
Trichloropropane	2	<10		23.01	1	i
Vinyl chloride	4	<10		3.54		1
		<u> </u>		!	: !	İ
· · · · · · · · · · · · · · · · · · ·					i	
				<u> </u>	· :	<u> </u>
	!		•			-
	į			!		İ

^{*} If % moisture is reported, results are presented on a dry-weight basis.

CONTRACTOR CONTRACTOR

7

Special Princescon Department December (Accordance Accordance Department December)

St. Princescon Department December (Accordance December)

St. Princescon December (Accordance December)

St. Princescon December (Accordance December)

ANALYTICAL RESULTS SUMMARY Halogenated Volatile Organics SW Method 8010 (first of two pages)

Page _	<u>[</u>	of	2
Report	_		

ES Job No. <u>56528</u>	Lab Sample No	12-85-1148
Client U.S. Air Force	Field Sample No.	1-ES-6, 55-5
Project PJKS (Denver	Date Collected	12-17-85
Client No.	· Date Received	12-18-55
Laboratory Supervisor Approval:	Date Analyzed	1/3/86
Sample Matrix	QC Report No.	PJKS-C3
/_/ Water (ug/L)	Dilution Factor _	
/X / Soil (ug/g)	*Moisture	
/_ / Other		

Compound	· c	oncentrat	ion	Retenti	on Time Notes
	Det Lim	Column 1	Column 2	Column 1	Column 2
Benzyl chloride	4	<10	1	40.9	i
<pre>bis(2-chloroethoxy) methane</pre>	12	<12	-	44.2	
bis(2-chloroisopropyl) - ether	25	225		42.2	:
Bromobenzene	8	<10		29.18	1
Bromodichloromethane	2	<10		15.69	
Bromoform	4	<10		21.24	i i
Bromomethane	24	124		2.85	1
Carbon tetrachloride	3	<10		15.47	
Chloroacetaldehyde	10	<10		11.6	
Chloral	10	<10		18.7	
Chlorobenzene	5	<10		26.01	
Chloroethane	10	<10		4.51	
Chloroform	11	<10		13.01	
1-Chlorohexane	2	<10		26.58	
2-Chloroethyl vinyl ether	3	<10		19.49	
Chloromethane	2	<10		1.95	
Chloromethyl methyl ether	20	/ 20	1	9.37	
Chlorotoluene .	4	<10	•	37.9	
Dibromochloromethane	^ 2	<10	ł	18.68	!

Compound	Co	oncentrati	.on_	Retention Time		Notes
	Det Lim	Column 1	Column 2	Column 1	Column 2	f #
Dibromomethane	11	<10		13.09		!
1,2-Dichlorobenzene	3	<10	<u> </u>	60.10		1
1,3-Dichlorobenzene	6	<10	! !	42.90		:
1,4-Dichlorobenzene	5	<10		37.28		
Dichlorodifluoromethane	30	130		3.54		
1,1-Dichloroethane	11	<10		11.67		
1,2-Dichloroethane	1	<10		13.55	·	
1,1-Dichloroethylene	3	<10	! 	10.31		
trans-1,2-Dichloroethylene	.2	<10		12.35		
Dichloromethane	5	<10	!	7.50		4
1,2-Dichloropropane	1	<10		17.19		
				17.24		;
1,3-Dichloropropylene	б	<10		18.68		Ì
1,1,2,2-Tetrachloroethane	7	<10	<u>.</u>	23.47		1
1,1,1,2-Tetrachloroethane	7	<10	i	21.04		i
Tetrachloroethylene	1	<10	<u>{</u>	23.47		i
1,1,1-Trichloroethane	1	<10	<u> </u>	14.76		i.
1,1,2-Trichloroethane	1	<10		18.68		Į.
Trichloroethylene	2	<10	<u>.</u>	17.91		1
Trichlorofluoromethane	1	<10	l t	8.58		
Trichloropropane	2	<10	i I	23.01		1
Vinyl chloride	4	<10	į	3.54		ţ
						:
		İ		•		
	:			!		
						į

^{*} If % moisture is reported, results are presented on a dry-weight basis.

STATEMENT OF THE STATEMENT STATEMENT OF THE STATEMENT OF

3

Ŝ

3

2

A 1 SS IN STANDS ON SW CONTROL BUTCHER STANDS

ANALYTICAL RESULTS SUMMARY Halogenated Volatile Organics SW Method 8010 (first of two pages)

Page _	_ of	2
Report		

ES Job No. 56528		Lab Sample No.	12-35-1149
Client U.S. A	r Force	Field Sample N	10. 1-ES-E, SS-E
Project PJKS (I	enver	Date Collected	12-17-95
Client No.		Date Received	12-18-85
Laboratory Supervis	sor Approval:	Date Analyzed	1/3/86
John, R Sample Matrix	adamsin	QC Report No.	P.JKS -03
<u>/</u> / Water (ug]/L)	Dilution Facto	or
/X / Soil (ug,	/ g)	*Moisture	•
/_/ Other			

Compound	Concentration		ion	Retenti	on Time	Notes
	Det Lim	Column 1	Column 2	Column 1	Column 2	!
Benzyl chloride	4	<10		40.9		•
<pre>bis(2-chloroethoxy) methane</pre>	12	(12		44.2		i
bis(2-chloroisopropyl) ether	25	L 25		42.2		:
Bromobenzene	8	<10		29.18	!	i
Bromodichloromethane	2	<10		15.69		
Bromoform	4	<10		21.24		
Bromomethane	24	<24		2.85		
Carbon tetrachloride	3	<10		15.47		
Chloroacetaldehyde	10	<10		11.6		
Chloral	10	<10		18.7		
Chlorobenzene	5	<10		26.01	!	٠.
Chloroethane	10	<10		4.51		
Chloroform	1	<10		13.01		
1-Chlorohexane	2	. <10		26.58		,
2-Chloroethyl vinyl ether	3	<10		19.49		
Chloromethane	2	<10		1.95		
Chloromethyl methyl ether	20	420		9.37		
Chlorotoluene	4	<10		37.9	:	
Dibromochloromethane	2	<10		18.68		

Property services appropriate assume the services and the services appropriate the services and the services and the services and the services and the services and the services and the services are services and the services are services and the services are services and the services are services and the services are services and the services are services and the services are services and the services are services and the services are services and the services are services are services and the services are services are services and the services are services a

BANDON KENNIK BEBERAR BEKERAR BUILDIN

ANALYTICAL RESULTS SUMMARY Halogenated Volatile Organics SW Method 8010 (second of two pages)

Concentration				Retention Time	
Det Lim	Column 1	Column 2	Column 1	Column 2	
1	<10	1	13.09		
3	<10	!	60.10		!
6	<10	<u>i</u>	42.90		
5	<10	!	37.28		
30	<u> </u>	!	3.54		
1	<10		11.67	·····	,
1	<10		13.55		
3	<10	ļ	10.31	- 	<u> </u>
2	<10	i : : :	12.35		1
55	<10	1	7.50		1
1	<10	<u> </u>	17.19		1
 - 	!	!	17.24		
6	<10		18.68		<u> </u>
7	<10	! ! <u>:</u>	23.47		!
7	<10	<u> </u>	21.04		!
1	<10	!	23.47		!
· 1	<10	<u> </u>	14.76		
11	<10		18.68		!
. 2	<10		17.91		
1	<10	!	8.58		!
2	<10	<u> </u>	23.01		:
4	<10		3.54		į
	1	<u> </u>	!		!
	!	!	,		:
: 	1	:			!
	!				i
	Det Lim 1 3 6 5 30 1 1 3 2 5 1 6 7 1 1 1 2 1 2	Det Lim Column 1	Det Lim Column 1 Column 2 1	Det Lim Column 1 Column 2 Column 1	Det Lim Column 1 Column 2 Column 1 Column 2 1

^{*} If % moisture is reported, results are presented on a dry-weight basis.

¥.

H

2.4.5

ANALYTICAL RESULTS SUMMARY Halogenated Volatile Organics SW Method 8010 (first of two pages)

Page		of	2
Repor	't _		

ES Job No. <u>56528</u>	Lab Sample No. 12-55-1156
Client U.S. Air Force	Field Sample No. 1-55-7, 55-1
Project PJKS (Denver	Date Collected /2-/8-35
Client No.	Date Received 12-19-85
Laboratory Supervisor Approval:	Date Analyzed 1/1/86
Johnne R Codemoin Sample Matrix	OC Report No. PJKS - 03
/ / Water (ug/L)	Dilution Factor
/X / Soil (ug/g)	*Moisture%
/_ / Other	

Compound	c	oncentrat	ion	Retenti	on Time Notes
	Det Lim	Column 1	Column 2	Column 1	Column 2:
Benzyl chloride	4	<10		40.9	•
<pre>bis(2-chloroethoxy) methane</pre>	12	 		44.2	:
<pre>bis(2-chloroisopropyl) ether</pre>	25	425		42.2	
Bromobenzene	8	<10		29.18	
Bromodichloromethane	1 2	<10		15.69	
Bromoform	4	<10		21.24	
Bromomethane	24	424		2.85	1
Carbon tetrachloride	3	<10		15.47	:
Chloroacetaldehyde	10	<10		11.6	
Chloral	10	<10		18.7	
Chlorobenzene	5	<10		26.01	
Chloroethane	10	<10		4.51	1
Chloroform	1	<10		13.01	
1-Chlorohexane	2	<10		26.58	<u>, </u>
2-Chloroethyl vinyl ether	3	<10		19.49	
Chloromethane	2	<10		1.95	
Chloromethyl methyl ether	20	420		9.37	
Chlorotoluene	4	<10		37.9	
Dibromochloromethane	2	<10		18.68	

Retention Time	
1 Column 2	
9	
o :	
0	<u> </u>
8	
4	!
7	<u> </u>
5 :	;
1	
5	i
0	:
9	
4	<u> </u>
8	
7	
4	
7 !	
6	
8 !	İ
1	
8 '	
1	1
4	
i	
	}

^{*} If % moisture is reported, results are presented on a dry-weight basis.

ANALYTICAL RESULTS SUMMARY Halogenated Volatile Organics SW Method 8010 (first of two pages)

Page	of	2
Report		

ES Job No	56528	Lab Sample No	12-85-115	7_
Client	U.S. Air Force	Field Sample No.	1-ES-7, SS 2	
Project	PJKS (Denver	Date Collected _	_	
Client No.		Date Received	12-19-85	
Laboratory S	Supervisor Approval:	Date Analyzed _	1/1/86	
Sample Matri	R Codamoin	QC Report No	PJKS - (3	
<u>/</u> / Wa	iter (ug/L)	Dilution Factor		
<u>/X</u> / Sc	oil (ug/g)	*Moisture		8
<u>/</u> / Ot	ther			_

9	Compound	C	oncentra	tion	Retention	Time Note
		Det Lim	Column	Column 2	Column 1 C	column 2
	Benzyl chloride	4	<10		40.9	•
	bis(2-chloroethoxy) methane	12	<12	-	44.2	
<u>.</u>	bis(2-chloroisopropyl) ether	25	425		42.2	
	Bromobenzene	8	<10		29.18	
	Bromodichloromethane	2	<10		15.69	
	Bromoform	4	<10		21.24	
	Bromomethane	24	124		2.85	
3	Carbon tetrachloride	3	<10		15.47	
ŭ	Chloroacetaldehyde	10	<10		11.6	
5	Chloral	10	<10		18.7	
3 2	Chlorobenzene	5	<10		26.01	
4	Chloroethane	10	<10		4.51	
ş Y	Chloroform	1	<10	<u> </u>	13.01	
	1-Chlorohexane	2	<10	· .	26.58	1
	2-Chloroethyl vinyl ether	3	<10		19.49	
2	Chloromethane	2	<10		.1.95	
	Chloromethyl methyl ether	20	420		9.37	
•	Chlorotoluene	4	<10	<u> </u>	37.9	1
s j,	Dibromochloromethane	2	<10	i	18.68	
	continued on back		L-61			
b						
ر .	862J137					

ANALYTICAL RESULTS SUMMARY Halogenated Volatile Organics SW Method 8010 (second of two pages)

12-85-1157

B

Compound		ncentrat:			Retention Time		
	Det Lim	Column 1	Column	Column 1	Column 2		
Dibromomethane	1	<10	<u> </u>	13.09			
1,2-Dichlorobenzene	3	<10		60.10	•	<u> </u>	
1,3-Dichlorobenzene	66	<10	1	42.90	:	<u> </u>	
1,4-Dichlorobenzene	5	<10	1	37.28		:	
Dichlorodifluoromethane	30	430		3.54		i	
1,1-Dichloroethane	1	<10		11.67	: !	!	
1,2-Dichloroethane	1	<10		13.55	† : :	1	
1,1-Dichloroethylene	3	<10		10.31	:	İ	
trans-1,2-Dichloroethylene	. 2	<10		12.35	ı	İ	
Dichloromethane	5	<10		7.50			
1,2-Dichloropropane	1	<10		17.19	i		
				17.24		i	
1,3-Dichloropropylene	6	<10		18.68		<u> </u>	
1,1,2,2-Tetrachloroethane	7	<10	}	23.47			
1,1,1,2-Tetrachloroethane	7	<10		21.04	1		
Tetrachloroethylene	1	<10		23.47	!	!	
1,1,1-Trichloroethane	1	<10		14.76	:		
1,1,2-Trichloroethane	1	<10		18.68	•	!	
Trichloroethylene	2	<10		17.91	<u>. </u>		
Trichlorofluoromethane	11	<10	1	8.58	Ì		
Trichloropropane	2	<10	!	23.01	į		
Vinyl chloride	4	<10		3.54		ì	
					•		
			1			:	
			i		i		
		1					
		:				1	

^{*} If % moisture is reported, results are presented on a dry-weight basis.

RESERVED ASSESSMENT RESERVED ASSESSMENT ASSESSMENT

ANALYTICAL RESULTS SUMMARY Halogenated Volatile Organics SW Method 8010 (first of two pages)

Page _	<u> </u>	of	2
Report	_		

ES Job No. 56528	Lab Sample No. 12-85-1155
Client U.S. Air Force	Field Sample No. 1-ES-7, 55-3
Project PJKS (Denver	Date Collected /2-18-85
Client No.	Date Received
Laboratory Supervisor Approval:	Date Analyzed 1/1/86
John R. Colombia Sample Matrix:	OC Report No. PJKS -C3
/_/ Water (ug/L)	Dilution Factor
/X / Soil (ug/g)	*Moisture
/_/ Other	

Compound	Concentration			Retenti	on Time Notes
1	Det Lim	Column 1	Column 2	Column 1	Column 2
Benzyl chloride	4	<10		40.9	
<pre>bis(2-chloroethoxy) methane</pre>	12	<12		44.2	
bis(2-chloroisopropyl) ether	25	125		42.2	
Bromobenzene	8	<10		29.18	,
Bromodichloromethane	2	<10		15.69	
Bromoform	4	<10		21.24	
Bromomethane	24	4 24		2.85	
Carbon tetrachloride	3	<10		15.47	
Chloroacetaldehyde	10	<10		11.6	
Chloral	10	<10		18.7	1
Chlorobenzene	5_	<10		26.01	
Chloroethane	10	<10		4.51	
Chloroform	1	<10		13.01	
1-Chlorohexane	2	<10		26.58	•
2-Chloroethyl vinyl ether	3	<10		19.49	
Chloromethane	2	<10		1.95	
Chloromethyl methyl ether	20	120		9.37	
Chlorotoluene	4	<10		37.9	
Dibromochloromethane	2	<10		18.68	

continued on back

AND THE TASK THE TASK TO THE TASK TO THE TASK THE TASK THE TASK TO THE TASK

ANALYTICAL RESULTS SUMMARY Halogenated Volatile Organics SW Method 8010 (second of two pages)

12-35-1158

Compound	Concentration			Retentio	Notes	
	Det Lim	Column 1	Column 2	Column 1	Column 2	
Dibromomethane	1	<10		13.09		
1,2-Dichlorobenzene	3	<10		60.10	i	
1,3-Dichlorobenzene	6	<10		42.90	<u> </u>	<u> </u>
1,4-Dichlorobenzene	5	<10		37.28		
Dichlorodifluoromethane	30	(30		3.54	!	i
1,1-Dichloroethane	1	<10		11.67		1
1,2-Dichloroethane	1	<10		13.55	1	!
1,1-Dichloroethylene	3	<10		10.31	1	
trans-1,2-Dichloroethylene	2	<10		12.35	;	<u> </u>
Dichloromethane	5	<10	<u> </u>	7.50	<u> </u>	!
1,2-Dichloropropane	1	<10		17.19	<u> </u>	
				17.24	<u> </u>	1
1,3-Dichloropropylene	6	<10		18.68		1
1,1,2,2-Tetrachloroethane	7	<10	•	23.47	<u>!</u>	
1,1,1,2-Tetrachloroethane	7	<10		21.04		
Tetrachloroethylene	1	<10		23.47	<u> </u>	
1,1,1-Trichloroethane	1	<10	<u></u>	14.76		
1,1,2-Trichloroethane	11	<10		18.68	1	
Trichloroethylene	2	<10		17.91	•	
Trichlorofluoromethane	1	<10		8.58	1	
Trichloropropane	1.2	<10		23.01	!	
Vinyl chloride	. 4	<10		3.54		İ
					1	
					i	1
				ļ	;	!
	!			!		
	<u>:</u>		,	!		i

^{*} If % moisture is reported, results are presented on a dry-weight basis.

CASCASSA PARAMENTAL CARRASSA PARAMENTAL CONSIDER.

17 02

7.7

ANALYTICAL RESULTS SUMMARY Halogenated Volatile Organics SW Method 8010 (first of two pages)

Page _	1	of	2
Report	· _		

ES Job No56528	Lab Sample No	12-55-1159
Client U.S. Air Force	Field Sample No.	1-ES-7 55-4
Project PJKS (Denver	Date Collected _	
Client No.	Date Received _	12-14-85
Laboratory Supervisor Approval:	Date Analyzed _	1/1/36
Johnny R. Golomonnosample Matrix:	QC Report No	PJKS-CS
/_/ Water (ug/L)	Dilution Factor	
/X / Soil (ug/g)	*Moisture	٩
/ / Other		

Compound	Concentration			Retention Time		Notes
	Det Lim	Column 1	Column 2	Column 1	Column 2	!
Benzyl chloride	4	<10		40.9		ı
bis(2-chloroethoxy) methane	12	<12		44.2		
bis(2-chloroisopropyl) ether	25	425		42.2		!
Bromobenzene	8	<10		29.18		!
Bromodichloromethane	2	<10		15.69		
Bromoform	4	<10		21.24		
Bromomethane	24	人とよ		2.85		
Carbon tetrachloride	3	<10		15.47		
Chloroacetaldehyde	10	<10		11.6		
Chloral	10	<10		18.7		
Chlorobenzene	5	<10		26.01		
Chloroethane	10	<10		4.51		
Chloroform	1	<10		13.01		
1-Chlorohexane	2	<10		26.58		1
2-Chloroethyl vinyl ether	3	<10		19.49		
Chloromethane	2	<10		1.95		
Chloromethyl methyl ether	20	420		9.37		
Chlorotoluene	4	<10		37.9		
Dibromochloromethane	2	<10		18.68		

continued on back

ANALYTICAL RESULTS SUMMARY Halogenated Volatile Organics SW Method 8010 (second of two pages)

12-85-1159

Compound		ncentrat:		Retentio	Notes	
	Det Lim	Column 1	Column 2	Column 1	Column 2	
Dibromomethane	11	<10		13.09	!	<u> </u>
1,2-Dichlorobenzene	3	<10		60.10		
1,3-Dichlorobenzene	6	<10	1 .	42.90	1	1
1,4-Dichlorobenzene	5	<10		37.28		<u> </u>
Dichlorodifluoromethane	30	<u> </u>		3.54	!	!
1,1-Dichloroethane	1	<10		11.67		İ
1,2-Dichloroethane	11	<10		13.55	! 1	
1,1-Dichloroethylene	3	<10	1	10.31	i	!
trans-1,2-Dichloroethylene	2	<10		12.35	!	<u> </u>
Dichloromethane	5	<10		7.50		!
1,2-Dichloropropane	1	<10		17.19		
				17.24		1
1,3-Dichloropropylene	6	<10		18.68		
1,1,2,2-Tetrachloroethane	7	<10		23.47	1	
1,1,1,2-Tetrachloroethane	7	<10		21.04		
Tetrachloroethylene	1	<10		23.47		
1,1,1-Trichloroethane	.1	<10	<u> </u>	14.76	1 i 1	
1,1,2-Trichloroethane	1	<10	<u> </u>	18.68	i i	
Trichloroethylene	2	<10		17.91	į	
Trichlorofluoromethane	1	<10		8.58	!	
Trichloropropane	2	<10		23.01	!	
Vinyl chloride	4	<10		3.54		
	i				i	
		<u> </u>	İ		:	.
	:	!	1	!		
	i 	!		!		ļ

^{*} If % moisture is reported, results are presented on a dry-weight basis.

appear accounted between beautiful foreverse forwards

ANALYTICAL RESULTS SUMMARY Halogenated Volatile Organics SW Method 8010 (first of two pages)

Page _	1	of	2_
Report	:		

	<u>ĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸ</u>	ng puligraphing publication and	er er en state fan de state fan de state fan de state fan de state fan de state fan de state fan de state fan d	neren sakarakan k	ra fire also, a so a lear	education returns in the trade of the contraction o		
1 1 1 1 1 1 1 1 1 1								
<i>\$35</i> 5	Engineering-Science			Organics O		Page / of 2		
	ES Job No. 56528		Lab	Sample N	10.	12-55-1160		
	ClientU.S. Air For	се	_ Fie	ld Sample	No. 1-	ES 7, SS 5		
	Project PJKS (Denver		Dat	e Collect	ed	12-18-85		
6	Client No.		Dat	Date Received /2-19-85				
	Laboratory Supervisor Ap			e Analyze				
	Johnson R Co	Lamon	oc :	Report No	. <u>PJ</u>	TKS - C3		
	/_/ Water (ug/L)		Dil	ution Fac	tor			
	/X / Soil (ug/g)		*Moi	sture		8		
	/_/ Other							
ç	Compound	c	oncentrati	on	Retenti	on Time Notes		
		Det Lim	Column 1	Column 2	Column 1	Column 2		
	Benzyl chloride	4	<10		40.9	i		
	<pre>bis(2-chloroethoxy) methane</pre>	12	LI 2	•	44.2			
	bis(2-chloroisopropyl)		1			1		

Compound	Concentration			Retenti	on Time Note:
-	Det Lim	Column 1	Column 2	Column 1	Column 2
Benzyl chloride	4	<10		40.9	
<pre>bis(2-chloroethoxy) methane</pre>	12	1/12	•	44.2	
bis(2-chloroisopropyl) ether	25	< 15		42.2	
Bromobenzene	8	<10		29.18	!
Bromodichloromethane	2	<10		15.69	
Bromoform	.4	<10		21.24	
Bromomethane	24	<u> </u>		2.85	! i
Carbon tetrachloride	3	<10		15.47	<u> </u>
Chloroacetaldehyde	10	<10		11.6	
Chloral	10	<10		18.7	
Chlorobenzene	5	<10		26.01	<u>.</u>
Chloroethane	10	<10		4.51	·
Chloroform	1	<10	<u> </u>	13.01	<u>i</u>
1-Chlorohexane	2	<10	<u> </u>	26.58	<u> </u>
2-Chloroethyl vinyl ether	33	<10		19.49	<u> </u>
Chloromethane	2	<10		. 1.95	<u>.</u>
Chloromethyl methyl ether	20	\70		9.37	
Chlorotoluene	4	<10		37.9	! !
Dibromochloromethane	i ₂	<10		18.68	l

continued on back

ANALYTICAL RESULTS SUMMARY Halogenated Volatile Organics SW Method 8010 (second of two pages)

12-55-1160

3

Compound		oncentrat	ion	Retention	Time Notes
	Det Lim	Column 1	Column 2	Column 1 Col	umn 2
Dibromomethane	11	<10		13.09	
1,2-Dichlorobenzene	3	<10	1	60.10	<u>;</u>
1,3-Dichlorobenzene	6	<10	<u> </u>	42.90	<u> </u>
1,4-Dichlorobenzene	5	<10	<u> </u>	37.28	
Dichlorodifluoromethane	30	<30	<u> </u>	3.54	
1,1-Dichloroethane	11	<10		11.67	1
1,2-Dichloroethane	11	<10		13.55	
1,1-Dichloroethylene	3	<10	1	10.31	:
trans-1,2-Dichloroethylene	. 2	<10		12.35	;
Dichloromethane	5	<10		7.50	
1,2-Dichloropropane	1	<10		17.19	
				17.24	·
1,3-Dichloropropylene	6	<10		18.68	
1,1,2,2-Tetrachloroethane	7	<10	<u> </u>	23.47	
1,1,1,2-Tetrachloroethane	7	<10		21.04	
Tetrachloroethylene	1	<10		23.47	
1,1,1-Trichloroethane	1	<10		14.76	
1,1,2-Trichloroethane	1 1	<10		18.68	
Trichloroethylene	2	<10		17.91	
Trichlorofluoromethane	. 1	<10		8.58	1
Trichloropropane	2	<10		23.01	· · · · · · · · · · · · · · · · · · ·
Vinyl chloride	4	<10		3.54	
				!	
	:				
	1				
	:				
	i	!		!	

^{*} If % moisture is reported, results are presented on a dry-weight basis.

**

N

2,2,2

33

3

SEPTEMBER SCHOOLS BUILDING BUILDING BUILDING BUILDING BUILDING

ANALYTICAL RESULTS SUMMARY Halogenated Volatile Organics SW Method 8010 (first of two pages)

Page	1	of	2.
Repor	t _		

ES Job No56528	Lab Sample No	_
Client U.S. Air Force	Field Sample No. 1-ES-7, 55-6	
Project PJKS (Denver	Date Collected 12 - 18 - 85	
Client No.	Date Received 12-19-5	
Laboratory Supervisor Approval:	Date Analyzed 1/1/86	
John R adamo Sample Matrix:	QC Report No. PJKS - C4	_
/_/ Water (ug/L)	Dilution Factor	
/X / Soil (ug/g)	*Moisture	ķ
/ / Other		

Compound	C	oncentrat	ion	Retention Time Not		Notes
	Det Lim	Column 1	Column 2	Column 1	Column 2	 i
Benzyl chloride	4	<10		40.9	<u> </u>	١ _,
<pre>bis(2-chloroethoxy) methane</pre>	12	<12	-	44.2		1
<pre>bis(2-chloroisopropyl) ether</pre>	2 5	<25		42.2		: !
Bromobenzene	8	<10		29.18	!	1
Bromodichloromethane	2	<10		15.69		ı
Bromoform	.4	<10		21.24	<u> </u>	
Bromomethane	. 24	ZZ4		2.85		
Carbon tetrachloride	3	<10		15.47		
Chloroacetaldehyde	10	<10		11.6		
Chloral	10	<10		18.7		
Chlorobenzene	5	<10		26.01		_
Chloroethane	.10	<10		4.51	1	
Chloroform	1	<10		13.01		
1-Chlorohexane	. 2	<10		26.58	;	,
2-Chloroethyl vinyl ether	3	<10		19.49		
Chloromethane	2	<10		1.95		
Chloromethyl methyl ether	20	120		9.37		
Chlorotoluene	4	<10		37.9	1	
Dibromochloromethane	2	<10		18.68		

continued on back

Compound		ncentrati		Retention Time		Notes
	Det Lim	Column 1	Column 2	Column 1	Column 2	
Dibromomethane	1	<10	!	13.09		İ
1,2-Dichlorobenzene	3	<10	1	60.10		į
1,3-Dichlorobenzene	6	<10	1	42.90		į
1,4-Dichlorobenzene	5	<10	<u>.</u>	37.28		
Dichlorodifluoromethane	30	430		3.54	·	
1,1-Dichloroethane	1	<10		11.67		ŧ
1,2-Dichloroethane	. 1	<10		13.55	:	;
1,1-Dichloroethylene	3	<10	!	10.31	•	!
trans-1,2-Dichloroethylene	2	<10		12.35		: :
Dichloromethane	5	<10		7.50		
1,2-Dichloropropane	1	<10		17.19		:
•				17.24	1	!
1,3-Dichloropropylene	5	<10		18.68		<u> </u>
1,1,2,2-Tetrachloroethane	7	<10	!	23.47	!	!
1,1,1,2-Tetrachloroethane	7	<10	i	21.04	•	l :
Tetrachloroethylene	. 1	<10	<u> </u>	23.47	!	<u> </u>
1,1,1-Trichloroethane	11	<10		14.76	:	
1,1,2-Trichloroethane	<u> </u>	<10		18.68	•	!
Trichloroethylene	2	<10		17.91	;	
Trichlorofluoromethane	1	<10		8.58		T
Trichloropropane	2	<10	ļ.	23.01	•	:
Vinyl chloride	4	<10	<u> </u>	3.54		i
	1			1		
				1		
	:	1		1		
	_	:			- 	

^{*} If % moisture is reported, results are presented on a dry-weight basis.

Page _	of	: __
Report		

ES Job No. 56528	Lab Sample No. <u>4-55-1116</u>
Client U.S. Air Force	Field Sample No. 1-25-3 55-1:0-1.5
ProjectFJKS (Denver)	Date Collected (2/16/85
Client No.	Date Received 12/,7/85
Laboratory Supervisor Approval:	Date Analyzed 12/23/85
Johnny R adamson Sample Matrix:	OC Report No. 56528-1
/ / Water (ug/L)	Dilution Factor
/X / Soil (ug/g)	*Moisture
/_/ Other	

Compound	C	Concentration			on Time	Notes
	Det Lim	Column 1	Column 2	Column 1	Column 2	
Benzene	4	<10		2.26		
Chlorobenzene	.'4	<10		16.46		
1,2-Dichlorobenzene	.8	<10		27.93	<u> </u>	
1,3-Dichlorobenzene	. 8	<10		26.40		
1,4-Dichlorobenzene	6	<10		22.51		
Ethyl benzene	.4	<10		7.18		
Toluene	. 4	<10		5.47		
Xylenes (Dimethyl benzene)	4	<10		15.26 16.91 17.77		
						<u> </u>

^{*} If % moisture is reported, results are presented on a dry-weight basis.

ANALYTICAL RESULTS SUMMARY Aromatic Volatile Organics SW Method 8020

Page _	1_	of	
Report	_		

3

ES Job No.	56528	Lab Sample No	12-85-1117
Client	U.S. Air Force	Field Sample No.	1-65-3 55-2:4.0-5.
Project	PJKS (Denver)	Date Collected _	12/16/85
Client No.		Date Received _	12/17/85
Laboratory	Supervisor Approval:	Date Analyzed	12/23/85
Sample Mati	R. Colamon	OC Report No	56528-1
<u>/_</u> / v	Water (ug/L)	Dilution Factor _	
<u>/x</u> / s	Soil (ug/g)	*Moisture	
/ / 0	Other		

Compound	Concentration			Retention Time		Notes
	Det Lim	Column 1	Column 2	Column 1	Column 2	
Benzene	. ,4	<10		2.26		
Chlorobenzene	4	<10		16.46		
1,2-Dichlorobenzene	. 48	<10		27.93	<u> </u>	
1,3-Dichlorobenzene		<10		26.40		
1,4-Dichlorobenzene		<10		22.51		
Ethyl benzene	4	<10		7.18		
Toluene	4	<10		5.47	1	
Xylenes (Dimethyl benzene)	4	<10		15.26 16.91 17.77		

^{*} If % moisture is reported, results are presented on a dry-weight basis.

Page _	_ of
Report	

ES Job No.	56528	Lab Sample No.	12-E5-111R
Client	U.S. Air Force	Field Sample No.	1-ES-3 SS-3; 6.5-8.
Project	PJKS (Denver)	Date Collected	12/16/85
Client No.		Date Received _	12/17/85
Laboratory	Supervisor Approval:	Date Analyzed	12/24/85
Sample Mati	R. adamson	OC Report No	565 28-1
<u>/</u> / v	Nater (ug/L)	Dilution Factor _	
<u>/x</u> _/ s	Soil (ug/g)	*Moisture	*
/ / (Other		

Compound	Concentration			Retenti	on Time	Notes
	Det Lim	Column 1	Column 2	Column 1	Column	2
Benzene	. 4	<10		2.26		
Chlorobenzene	4	<10		16.46	<u> </u>	1
1,2-Dichlorobenzene	.8	<10		27.93		
1,3-Dichlorobenzene	8	<10		26.40		
1,4-Dichlorobenzene	6	<10		22.51		
Ethyl benzene	. 4	<10		7.18		
Toluene	4	<10		5.47		
Xylenes (Dimethyl benzene)	4	<10		15.26 16.91 17.77		
	•		1	 	<u> </u>	<u> </u>

^{*} If % moisture is reported, results are presented on a dry-weight basis.

Page _	<u>t</u>	of	
Report	_		

ES Job No.	56528	Lab Sample No	12-85-1119
Client	U.S. Air Force	Field Sample No.	1-ES-3 SS-4: 9.5-10, 2
Project	PJKS (Denver)	Date Collected _	12/16/85
Client No.		Date Received _	12/17/85
Laboratory	Supervisor Approval:	Date Analyzed _	124/85
Johnn Sample Mat	R. adamson	OC Report No	56528-1
/_/	Water (ug/L)	Dilution Factor	
<u>/x</u> /	Soil (ug/g)	*Moisture	•
/	Other		

Compound	C	oncentrat	ion	Retention Time		Notes
	Det Lim	Column 1	Column 2	Column 1	Column 2	
Benzene	.4	<10		2.26		
Chlorobenzene	4	<10		16.46		
1,2-Dichlorobenzene	8	<10		27.93		
1,3-Dichlorobenzene	: 8	<10		26.40		
1,4-Dichlorobenzene	. 6	<10		22.51		
Ethyl benzene	. 4	<10		7.18		
Toluene	4	<10		5.47		
Xylenes (Dimethyl benzene)	. 4	<10		15.26 16.91 17.77		
	•					

^{*} If % moisture is reported, results are presented on a dry-weight basis.

A USA Proposition and the State of the State

RECORDED COCCOCCO BRECEVER DESCRIPE PERSONS

y Y

X

Page _	<u>1</u>	o£	1_
Report	_		

ES Job No.	56528	Lab Sample No	12-85-1120
Client _	U.S. Air Force	Field Sample No.	1-ES-3 SS-5; 12.5-14
Project _	PJKS (Denver)	Date Collected	12/16/85
Client No	•	Date Received _	12/17/85
Laboratory	y Supervisor Approval:	Date Analyzed	12/24/85
Sample Mar	R. adams.	OC Report No	56528-1
/_/	Water (ug/L)	Dilution Factor _	·
<u>/x</u> _/	Soil (ug/g)	*Moisture	\$
<u>/_</u> /	Other		

Compound	Concentration			Retention Time		Notes
	Det Lim	Column 1	Column 2	Column 1	Column 2	
Benzene	4	<10		2.26		
Chlorobenzene	4	<10		16.46		
1,2-Dichlorobenzene	. 8	<10		27.93		
1,3-Dichlorobenzene	. 8	<10		26.40		
1,4-Dichlorobenzene	. 6	<10		22.51		
Ethyl benzene	. 4	<10		7.18		
Toluene	4	<10		5.47		<u>.</u>
Xylenes (Dimethyl benzene)	4	<10		15.26 16.91 17.77		
	<u> </u>			 		<u> </u>
	• •	 				<u> </u>

^{*} If % moisture is reported, results are presented on a dry-weight basis.

PATRICE CONTRACTOR PROPERTY CONTRACTOR

Page _	1_	of	
Report	_		

ES Job No. 56528	Lab Sample No. 12-85-1121
Client U.S. Air Force	Field Sample No. 1-ES-3 55-6: 16.5-18.
Project PJKS (Denver)	Date Collected 12/16/55
Client No.	Date Received 12/17/85
Laboratory Supervisor Approval:	Date Analyzed 12/26/85
Johnny R. Odamon Sample Matrix	OC Report No. 56528-1
/_/ Water (ug/L)	Dilution Factor
<u>/X</u> / Soil (ug/g)	*Moisture
/_/ Other	

Compound	C	oncentrati	Lon	Retent	ion Time	Notes
	Det Lim	Column 1	Column 2	Column	1 Column 2	
Benzene	4	<10		2.26		
Chlorobenzene	. 4	<10	<u></u>	16.46		
1,2-Dichlorobenzene	. 8	<10		27.93		<u></u>
1,3-Dichlorobenzene	8	<10		26.40		
1,4-Dichlorobenzene	6	<10		22.51		
Ethyl benzene	. 4	<10		7.18		
Toluene	4	<10		5.47		
Xylenes (Dimethyl benzene)	4	<10		15.26 16.91 17.77		
				 	-	<u> </u>

^{*} If % moisture is reported, results are presented on a dry-weight basis.

ANALYTICAL RESULTS SUMMARY Aromatic Volatile Organics SW Method 8020

Page		of	
Repor	t _		

ES Job No.	56528	Lab Sample No.	12-85-1122	
Client	U.S. Air Force	Field Sample No. !	-Es-35S-7;19.5-2c.	َز
Project	PJKS (Denver)	Date Collected	12/10/85	
Client No.		Date Received	12/17/85	
Laboratory	Supervisor Approval:	Date Analyzed	12/26-185	
Sample Mat	R. alaman	OC Report No.	56528-1	
/	Water (ug/L)	Dilution Factor		
<u>/x</u> _/	Soil (ug/g)	*Moisture		
/ /	Other			

Det Lim		Column 2	Column 1	Column 2	
4			L	1	
	<10		2.26		
. 4	<10		16.46		
. 8	<10		27.93		
8	<10		26.40		
.6	<10		22.51		
4	<10		7.18		
_4	<10	-	5.47		
4	.<10		15.26 16.91 17.77		
· · · · · · · · · · · · · · · · · · ·					
• .					
	. 8 . 6 . 4 . 4	. 8 <10 . 8 <10 . 6 <10 . 4 <10 . 4 <10	. 8 <10 . 8 <10 . 6 <10 . 4 <10 . 4 <10	. 8 <10 27.93 .8 <10 26.40 .6 <10 22.51 .4 <10 7.18 .4 <10 5.47 .15.26 .16.91 .17.77	. 8 <10 27.93 . 8 <10 26.40 . 6 <10 22.51 . 4 <10 7.18 . 4 <10 5.47 . 15.26 . 16.91 . 17.77

^{*} If % moisture is reported, results are presented on a dry-weight basis.

gang besteven bossessy kompan kulkeles promise managar kompass kenska kakessa kanasa lasa Kati on the september of the of the one and the september of the september of the september of the september of

ANALYTICAL RESULTS SUMMARY Aromatic Volatile Organics SW Method 8020

Page		of	
Repor	t _	_	

Į.

223 - 224

ES Job No.	56528	Lab Sample No.	12-85-1123
Client	U.S. Air Force	Field Sample No. 1	-ES-T, SS-1:1,0-2.0
Project	PJKS (Denver)	Date Collected	12/16/85
Client No.		Date Received	12/17/85
Laboratory	Supervisor Approval:	Date Analyzed	12/26/85
Sample Matr	R. adamsı	OC Report No.	56528-1
<u>/</u> / v	Water (ug/L)	Dilution Factor	
<u>/x</u> / s	Soil (ug/g)	*Moisture	\$
/ / 0	Other		

Compound	С	oncentrat	ion	Retenti	on Time	Notes
	Det Lim	Column 1	Column 2	Column 1	Column 2	
Benzene	. 4	<10		2.26		
Chlorobenzene	4	<10		16.46		
1,2-Dichlorobenzene	8	<10		27.93		
1,3-Dichlorobenzene	8	<10		26.40		
1,4-Dichlorobenzene	6	<10		.22.51		
Ethyl benzene	44	<10		7.18		
Toluene	4	<10		5.47		
Xylenes (Dimethyl benzene)	4	<10		15.26 16.91 17.77		
			<u> </u>		ļ <u></u> -	
	• :				<u> </u>	

^{*} If % moisture is reported, results are presented on a dry-weight basis.

AND SEED OF THE SECOND SECONDS SECONDS

CONTRACTOR CONSTRUCTION CONTRACTOR CONTRACTOR (CO.S.)

RESOLUTION AND SELECTION OF THE PROPERTY OF TH

1

大

. ;

Page _	1	of	1
Report			

ES Job No. 56528	Lab Sample No. 12-85-1124
Client U.S. Air Force	Field Sample No. 1- ES-+ SS-2: 5.0-7.0
Project PJKS (Denver)	Date Collected (2/86/85
Client No.	Date Received 12/;7/85
Laboratory Supervisor Approval:	Date Analyzed 12/26/85
John R. adamor Sample Matrix	OC Report No. 56528-1
/_/ Water (ug/L)	Dilution Factor
/X / Soil (ug/g)	*Moisture%
/_/ Other	

Compound	Concentration			Retention Time		Notes
	Det Lim	Column 1	Column 2	Column 1	Column 2	
Benzene	4	<10		2.26		
Chlorobenzene	4	<10		16.46		
1,2-Dichlorobenzene	, e	<10		27.93	İ	
1,3-Dichlorobenzene	.8	<10		26.40		
1,4-Dichlorobenzene	6	<10_		22.51		
Ethyl benzene	4	<10		7.18		
Toluene	. ".4	<10		5.47		
Xylenes (Dimethyl benzene)	4	. <10		15.26 16.91 17.77		
······································	<u> </u>					

^{*} If % moisture is reported, results are presented on a dry-weight basis.

Page	1	of	1
Repor	: ŧ		

ES Job No.	56528	Lab Sample No.	12-85-1125
Client	U.S. Air Force	Field Sample No.	1-45-4, 55-3: 8.5-1
Project	PJKS (Denver)	Date Collected	12/16/85
Client No.		Date Received	12/12/85
Laboratory	Supervisor Approval:	Date Analyzed	12/26/85
Sample Mat:	ng R adamoin	OC Report No.	56528-1
/_/ 1	Water (ug/L)	Dilution Factor _	
<u>/x</u> / 9	Soil (ug/g)	*Moisture	8
/ / (Other		

Compound	C	oncentrat:	ion	Retenti	Notes	
	Det Lim	Column 1	Column 2	Column 1	Column 2	
Benzene	.4	<10		2.26		
Chlorobenzene	4	<10		16.46		
1,2-Dichlorobenzene	8	<10		27.93	<u> </u>	
1,3-Dichlorobenzene	88	<10		26.40		
1,4-Dichlorobenzene	6	<10		22.51		
Ethyl benzene	4	<10		7.18		
Toluene	. 4	<10		5.47		
Xylenes (Dimethyl benzene)	-4	<10	·	15.26 16.91 17.77		
						1
	<u></u>		<u> </u>			
	<u> </u>					
	<u> </u>	 	 	 	 	<u> </u>

^{*} If % moisture is reported, results are presented on a dry-weight basis.

SAMONERS WOODERS BEERESSE COORDER

Page		of	1
Repor	t		

ES Job No.	56528	Lab Sample No	12-85-1126
Client	U.S. Air Force	Field Sample No.	1-E5-4 55-4: 11.5-12.1
Project	PJKS (Denver)	Date Collected _	12/16/85
Client No.		Date Received	12/17/85
Laboratory	Supervisor Approval:	Date Analyzed _	12/26/85
Sample Matr	R adamson	OC Report No	56528-2
<u>/_</u> / W	Water (ug/L)	Dilution Factor _	
<u>/x</u> / s	Soil (ug/g)	*Moisture	<u> </u>
/_/ 0	ther		

					Column 2
Benzene	.4	<10	<u> </u>	2.26	
Chlorobenzene	4	<10		16.46	
1,2-Dichlorobenzene	8	<10		27.93	
1,3-Dichlorobenzene	8	<10	<u> </u>	26.40	
1,4-Dichlorobenzene	6	<10		22.51	
Ethyl benzene	4	<10		7.18	
Toluene	4	<10		5.47	
				15.26	
Xylenes (Dimethyl be	enzene) 4	<10		16.91 17.77	
. Aylenes (bline chyl be	1			1,,,,	
				<u> </u>	
				<u> </u>	
			 		
* If % moisture is 1	reported result	<u> </u>	ocented o		<u> </u>
II & moisture is i	eporced, resul	cs are pr	esenced of	n a ury-w	reight bas
	L	-81			

^{*} If % moisture is reported, results are presented on a dry-weight basis.

ANALYTICAL RESULTS SUMMARY Aromatic Volatile Organics SW Method 8020

Page / of /

2

X

ES Job No	56528	Lab Sample No.	12-85-1127
Client _	U.S. Air Force	Field Sample No.	1- 25-4 55-5314.5-11
Project _	PJKS (Denver)	Date Collected	12/16/85
Client No	•	Date Received _	12/17/85
Laborator	y Supervisor Approval:	Date Analyzed	12/26/85
Sample Mar	ng R Odamon	OC Report No	56528-2
/	Water (ug/L)	Dilution Factor _	
<u>/x</u> /	Soil (ug/g)	*Moisture	<u> </u>
/ /	Other		

Compound	С	oncentrat	ion	Retenti	on Time	ime Notes	
	Det Lim	Column 1	Column 2	Column 1	Column 2		
Benzene	. 4	<10		2.26			
Chlorobenzene	4	<10		16.46			
1,2-Dichlorobenzene	.8	<10		27.93			
1,3-Dichlorobenzene	8	<10	<u> </u>	26.40			
1,4-Dichlorobenzene	6	<10		22.51			
Ethyl benzene	4	<10		7.18			
Toluene	4	<10		5.47			
Xylenes (Dimethyl benzene)	4	<10		15.26 16.91 17.77			
	•						

^{*} If % moisture is reported, results are presented on a dry-weight basis.

Page _	1	of	_ {
Report			

ES Job No.	56528	Lab Sample No	12-85-1128
Client	U.S. Air Force	Field Sample No.	1- =5-4 55-61 19.0-20,5
Project _	PJKS (Denver)	Date Collected _	12/16/55
Client No.	· <u></u>	Date Received _	12/17/95
Laboratory	Supervisor Approval:	Date Analyzed	12/20185
Johnn Sample Mat	R. alamoin	OC Report No.	56528-2
<u>/_</u> /	Water (ug/L)	Dilution Factor	
<u>/x</u> /	Soil (ug/g)	*Moisture	9
/_/	Other		

3	Engineering-Science A						
Ĭ	Engineering-Science A	NALYTICAL 7 matic 7 1 ws	L RESULTS Volatile Method 80	SUMMARY Organics 20		Page /	of <u>1</u>
4 4 5	ES Job No. 56528		_ La	ab Sample 1	No	12 - 85 -	1128
3.	Client U.S. Air Force		_ Fi	eld Sampl	e No. 1-	=5-4 SS.	-6:19
-	Project PJKS (Denver)		_ Da	te Collec	ted	12/16/5	5
	Client No			te Receiv			
•	Laboratory Supervisor Appro			te Analyz			
	Johnny R adan	~o(~		Report N		,	
<u>نې</u>	Sample Matrix:		=				
3	/ / Water (ug/L)		Di	lution Fac	ctor		
•	/X / Soil (ug/g)			oisture			
	/ / Other						
	<u></u>						
	Compound	C	oncentrat	ion	Retenti	on Time	Notes
·	Compound			Column 2			
· ar							!
Í	Benzene	4	<10	1	2.26	1	i
-	Chlorobenzene	. 4	<10	ļ	16.46	<u> </u>	1
3	1,2-Dichlorobenzene	8	<10		27.93		
·5	1,3-Dichlorobenzene	8	<10	<u> </u>	26.40		
L	1,4-Dichlorobenzene	6	<10		22.51		
	Ethyl benzene	. 4	<10		7.18		
	Toluene	.4	<10		5.47		
					15.26		
r.,			_		16.91		
Ć.	Xylenes (Dimethyl benzene)	4	<10	 	17.77		
				-		-	<u> </u>
		1			!		
		i	 				
<u>.</u>							<u> </u>
	* If % moisture is reporte	ed, resul	ts are pr	esented of	n a dry-v	weight bas	is.
Q 7						•	
~							
		L-	-83				
·-	862J137						

^{*} If % moisture is reported, results are presented on a dry-weight basis.

ANALYTICAL RESULTS SUMMARY Aromatic Volatile Organics SW Method 8020 Page 1 of 1
Report

Š

ES Job No56528	Lab Sample No. 12-85-1129	
Client U.S. Air Force	Field Sample No. 1-65-5 <5 ; 10-	<u>= </u>
Project PJKS (Denver)	Date Collected	
Client No.	Date Received	,
Laboratory Supervisor Approval:	Date Analyzed 12/27/85	
John R. adamson Sample Matrix	OC Report No. 56528-1	
/_/ Water (ug/L)	Dilution Factor	
/X / Soil (ug/g)	*Moisture	
/ / Other		

Compound	С	Concentration			Retention Time		
_	Det Lim	Column 1	Column 2	Column 1	Column 2		
Benzene	. 4	<10	ļ	2.26			
Chlorobenzene	. 4	<10		16.46			
1,2-Dichlorobenzene	8	<10	<u> </u>	27.93			
1,3-Dichlorobenzene	3	<10		26.40			
1,4-Dichlorobenzene	. 6	<10		22.51			
Ethyl benzene	4	<10		7.18			
Toluene	4	<10		5.47			
Xylenes (Dimethyl benzene)	4	<10		15.26 16.91 17.77			
				<u> </u>	<u> </u>		
						<u> </u>	
	· • · · · · · · · · · · · · · · · · · ·					ļ	

^{*} If % moisture is reported, results are presented on a dry-weight basis.

Page _		of	1
Report	_		

Lab Sample No. 12-85-1130
Field Sample No. 1-25-5 55-2: 2-4
Date Collected 12/16/85
Date Received 12/17/85
Date Analyzed 12/27/85
OC Report No. <u>56528-2</u>
Dilution Factor
*Moisture

Compound	C	oncentrat	ion	Retenti	on_Time	Notes
	Det Lim	Column 1	Column 2	Column 1	Column 2	
Benzene	.4	<10	ļ	2.26		
Chlorobenzene	4	<10		16.46		
1,2-Dichlorobenzene	8	<10		27.93		
1,3-Dichlorobenzene	8	<10		26.40		
1,4-Dichlorobenzene	.6	<10		22.51	'	
Ethyl benzene	.0.4	<10		7.18		
Toluene	4	<10		5.47		
Xylenes (Dimethyl benzene)	4	<10	•	15.26 16.91 17.77		
						<u> </u>
					<u> </u>	

^{*} If % moisture is reported, results are presented on a dry-weight basis.

Page _	of	
Report		

ES Job No. 56528	Lab Sample No. 12-85-1131
Client U.S. Air Force	Field Sample No. 1-ES-5, 353: 4-6
Project PJKS (Denver)	Date Collected 12/16/85
Client No.	Date Received 12/17/85
Laboratory Supervisor Approval:	Date Analyzed 12/27/85
Johnn Radanson Sample Matrix	OC Report No. 56528-2
/_/ Water (ug/L)	Dilution Factor
<pre>/X / Soil (ug/g)</pre>	*Moisture
// Other	

C	Concentration			on Time	Notes
Det Lim	Column 1	Column 2	Column 1	Column 2	
. :4	<10		2.26		
4	<10		16.46		
. 8	<10		27.93		
8	<10		26.40		
6	<10		22.51	<u> </u>	
. 4	<10		7.18		
4	<10		5.47		
4	<10		15.26 16.91 17.77		
<u> </u>					
i					
	4 4 8 8 	.:4 <10 4 <10 .:8 <10 .:8 <10 .:6 <10 .:4 <10 4 <10	.:4 <10 4 <10 .:8 <10 .:8 <10 .:8 <10 .:6 <10 .:4 <10 4 <10	.4 <10	4 <10 16.46 . 8 <10 27.93 . 8 <10 26.40 6 <10 22.51 . 4 <10 7.18 4 <10 5.47 15.26 16.91

^{*} If % moisture is reported, results are presented on a dry-weight basis.

ANALYTICAL RESULTS SUMMARY Aromatic Volatile Organics SW Method 8020

Page _	1	of	_!_
Report	_		

ES Job No. <u>56528</u>	Lab Sample No.	12-85-1132
Client U.S. Air Force	Field Sample No.	1-ES-5, SS+: 9-11
Project PJKS (Denver)	Date Collected	12/16/85
Client No.	Date Received	12/17/85
Laboratory Supervisor Approval:	Date Analyzed	12/27/85
Johnny R Cidamon Sample Matrix	OC Report No	56528-2
/ / Water (ug/L)	Dilution Factor _	
/X / Soil (ug/g)	*Moisture	8
/_/ Other		

Compound	Concentration			Retenti	on Time	Notes
	Det Lim	Column 1	Column 2	Column 1	Column 2	
Benzene	. 4	<10		2.26		
Chlorobenzene	.'4	<10		16.46		
1,2-Dichlorobenzene	.8	<10		27.93		
1,3-Dichlorobenzene	.8	<10		26.40		
1,4-Dichlorobenzene	:6	<10		22.51		
Ethyl benzene	4	<10		7.18		
Toluene	.4	<10		5.47		
Xylenes (Dimethyl benzene)	4	<10		15.26 16.91 17.77		
				· .		
<u> </u>	 					

^{*} If % moisture is reported, results are presented on a dry-weight basis.

Page	of	_1
Report		

ES Job No.		Lab Sample No	12-85-1133
Client _	U.S. Air Force	Field Sample No.	1-=5-5, 555: 14-16
Project _	PJKS (Denver)	Date Collected	
Client No.	•	Date Received	12/17/85
Laborator	y Supervisor Approval:	Date Analyzed	12/27/85
Gohn Sample Mar	ny R. adamson	OC Report No	56528-2
/	Water (ug/L)	Dilution Factor _	
<u>/x</u> _/	Soil (ug/g)	*Moisture	•
/	Other		

Compound		Concentra	ion	Retenti	on Time	Notes
	Det Li	m Column	Column 2	Column 1	Column 2	
Benzene .	4	<10		2.26		
Chlorobenzene	.4	<10		16.46		
1,2-Dichlorobenzene	<u>8'</u>	<10		27.93		
1,3-Dichlorobenzene	в	<10		26.40		
1,4-Dichlorobenzene	·6	<10		22.51		
Ethyl benzene	. 4	<10		7.18		
Toluene	4	<10		5.47		
Xylenes (Dimethyl benzene)	4	<10		15.26 16.91 17.77		
		1				<u> </u>
						1
			-		 	<u> </u>

^{*} If * moisture is reported, results are presented on a dry-weight basis.

STATES OF THE PROPERTY OF THE

8

Ž,

3

ķ

}

7. 3.

N.

:{

7

3. 58

Page	1	of	1
Report	_		

ES Job No56528	Lab Sample No
Client U.S. Air Force	Field Sample No. 1-65-5, 556; 19-22.
Project PJKS (Denver)	Date Collected 12/16/85
Client No.	Date Received
Laboratory Supervisor Approval:	Date Analyzed 12/27/85
Sample Matrix: R. Adamoca—	OC Report No
/_/ Water (ug/L)	Dilution Factor
/X / Soil (ug/g)	*Moisture
/ / Other	·

Compound	C	oncentrat	ion	Retent	Notes	
	Det Lim	Column 1	Column 2	Column	Column 2	
Benzene	4	<10		2.26		
Chlorobenzene	. 4	<10		16.46		
1,2-Dichlorobenzene	.8	<10		27.93		
1,3-Dichlorobenzene	. 8	<10		26.40	<u> </u>	
1,4-Dichlorobenzene	6	<10		22.51		
Ethyl benzene	. 4	<10		7.18		
Toluene	: .4	<10		5.47		
Xylenes (Dimethyl benzene)	. 4	<10		15.26 16.91 17.77		
·						

^{*} If % moisture is reported, results are presented on a dry-weight basis.

ANALYTICAL RESULTS SUMMARY Aromatic Volatile Organics SW Method 8020

Page _	1	of	1
Report	_		

ES Job No 56528	Lab Sample No. 12-85-1144
Client U.S. Air Force	Field Sample No. 1-ES-6 55-1:0-2
Project PJKS (Denver)	Date Collected 12/17/85
Client No.	Date Received 12/18/85
Laboratory Supervisor Approval:	Date Analyzed
Johnny R. Odamoan Sample Matrix.	OC Report No. <u>56528 - 2</u>
/_/ Water (ug/L)	Dilution Factor
/X / Soil (ug/g)	*Moisture
/_/ Other	

Compound	C	oncentrati	ion	Retenti	on Time	Notes
	Det Lim	Column 1	Column 2	Column 1	Column 2	
Benzene	. 4	<10		2.26		
Chlorobenzene	.4	<10		16.46		
1,2-Dichlorobenzene	. 18	<10		27.93		
1,3-Dichlorobenzene)8	<10		26.40		
1,4-Dichlorobenzene	`6	<10		22.51		
Ethyl benzene	4	<10_		7.18		
Toluene	14	<10		5.47		
Xylenes (Dimethyl benzene))4	<10		15.26 16.91 17.77		
					<u> </u>	

^{*} If % moisture is reported, results are presented on a dry-weight basis.

Discipancy in Clock noted.

STANTE STANTES SECURIOR STANTES

T.

Exercised becomes become

į

33

ANALYTICAL RESULTS SUMMARY Aromatic Volatile Organics SW Method 8020

Page	of	1
Report _		

ES Job No. 56528	Lab Sample No. 12-85-1145
Client U.S. Air Force	Field Sample No. 1-E5-6, SS-2, 2-4
Project PJKS (Denver)	Date Collected 12/17/85
Client No.	Date Received 12/18/85
Laboratory Supervisor Approval:	Date Analyzed 12/28/85
Johnny R. Odanson Sample Matrix:	OC Report No. 56528-3
/_/ Water (ug/L)	Dilution Factor
/X / Soil (ug/g)	*Moisture
/_/ Other	

Compound	C	Concentration			Retention Time		
	Det Lim	Column 1	Column 2	Column 1	Column 2		
Benzene	4	<10		2.26			
Chlorobenzene .	4	<10		16.46			
1,2-Dichlorobenzene	8	<10		27.93			
1,3-Dichlorobenzene	8	<10		26.40			
1,4-Dichlorobenzene	6	<10		22.51		<u> </u>	
Ethyl benzene	. 4	<10		7.18			
Toluene	4	<10		5.47			
Xylenes (Dimethyl benzene)	4	<10		15.26 16.91 17.77			
						i	
				1	!	!	
		<u> </u>			1	,	

^{*} If % moisture is reported, results are presented on a dry-weight basis.

Discrepancy in clock noted.

ANALYTICAL RESULTS SUMMARY Aromatic Volatile Organics SW Method 8020

Page _	1	of	1
Report	_		

8

Ŧ

;) (.)

3

ES Job No.	56528	Lab Sample No	12-85-1146
Client _	U.S. Air Force	Field Sample No.	1-ES-6, SS- 3 5-71
Project _	PJKS (Denver)	Date Collected	12/17/85
Client No.	•	Date Received	12/18/85
Laboratory	y Supervisor Approval:	Date Analyzed	12/28/85
Johnn Sample Mat	uph Odamoun	OC Report No	56528-3
/	Water (ug/L)	Dilution Factor _	
<u>/x</u> _/	Soil (ug/g)	*Moisture	
<u>/_</u> /	Other		

Compound	Concentration			Retenti	on Time	Notes
	Det Lim	Column 1	Column 2	Column	Column 2	
Benzene	4	<10		2.26		
Chlorobenzene	4	<10		16.46		
1,2-Dichlorobenzene	. 3	<10		27.93		
1,3-Dichlorobenzene	- 8	<10		26.40		
1,4-Dichlorobenzene	6	<10		22.51		
Ethyl benzene	4	<10		7.18		
Toluene	4	<10		5.47		
Xylenes (Dimethyl benzene	; ;	<10		15.26 16.91 17.77		
			1		1	
						<u> </u>

^{*} If % moisture is reported, results are presented on a dry-weight basis.

Discrepancy in clock noted.

RESERVED REPORTED BASES IN TAXABLE DESCRIPTION

ANALYTICAL RESULTS SUMMARY Aromatic Volatile Organics SW Method 8020

Page	of	1
Report		1

ES Job No. <u>56528</u>	Lab Sample No. 12-85-1147
Client U.S. Air Force	Field Sample No. 1- FS-6, SS-4, 9-11
Project PJKS (Denver)	Date -Collected 12/17/85
Client No.	Date Received 12/18/85
Laboratory Supervisor Approval:	Date Analyzed 1/3/86
Johnny R. adamson Sample Matrix	OC Report No. 56528-3
/_/ Water (ug/L)	Dilution Factor
<u>/X</u> / Soil (ug/g)	*Moisture
/ / Other	

Compound	C	oncentrat	ion	Retent	ion Time	Notes
	Det Lim	Column 1	Column 2	Column	Column 2	
Benzene	. 4	<10		2.26	İ	
Chlorobenzene	. 4	<10		16.46		
1,2-Dichlorobenzene	\18	<10		27.93		
1,3-Dichlorobenzene	8	<10		26.40		
1,4-Dichlorobenzene	:6	<10		22.51		
Ethyl benzene	. 4	<10		7.18		
Toluene	. 4	<10		5.47		
Xylenes (Dimethyl benzene)	. 4	<10		15.26 16.91 17.77		
						
	-				İ	

^{*} If % moisture is reported, results are presented on a dry-weight basis.

THE POPULAR OF THE POPULAR PROPERTY OF THE POPULAR PROPERTY OF THE POPULAR PROPERTY OF THE POPULAR POP

ANALYTICAL RESULTS SUMMARY Aromatic Volatile Organics SW Method 8020

Page _	1_	of	1
Report	_		

25

 \bar{S}

ES Job No.	56528	Lab Sample No	12-83-1148
Client	U.S. Air Force	Field Sample No.	1-ES-6,55-5, 14-16
Project	PJKS (Denver)	Date Collected	12/17/85
Client No.		Date Received _	12/18/85
Laboratory	Supervisor Approval:	Date Analyzed _	1/3/86
Johnn Sample Mati	R. Odamon —	OC Report No	56528-3
<u>/</u> / v	Nater (ug/L)	Dilution Factor	
<u>/x</u> / s	Soil (ug/g)	*Moisture	<u></u> *
<u>/</u> / (Other		

Compound	Concentration			Retenti	Notes	
	Det Lim	Column 1	Column 2	Column 1	Column 2	
Benzene	. 4	<10		2.26		
Chlorobenzene	. 4	<10		16.46		
1,2-Dichlorobenzene	.8	<10		27.93		
1,3-Dichlorobenzene	8	<10		26.40		
1,4-Dichlorobenzene	6	<10	<u> </u>	22.51		
Ethyl benzene	4	<10		7.18		
Toluene	. 4	<10		5.47	<u> </u>	
Xylenes (Dimethyl benzene)	4	<10		15.26 16.91 17.77		
					<u> </u>	
				1	- 	,

^{*} If % moisture is reported, results are presented on a dry-weight basis.

Page _	1_	of	1
Report	_		

ES Job No. 56528	Lab Sample No.	12-85-1149
Client U.S. Air Force	Field Sample No.	1-ES-6, SS-6, 19-21
Project PJKS (Denver)	Date Collected _	12/17/85
Client No.	Date Received _	12/18/85
Laboratory Supervisor Approval:	Date Analyzed _	1/3/86
Johnny R adamson Sample Matrix	OC Report No.	5-6528-3
/_/ Water (ug/L)	Dilution Factor	
<pre>/X / Soil (ug/g)</pre>	*Moisture	•
/ / Other		

Compound	C	Retention Time			Notes		
	Det Lim	Column 1	Column 2	Column	1 Co	lumn 2	
Benzene	.4	<10		2.26			
Chlorobenzene	4	<10	·	16.46			
1,2-Dichlorobenzene		<10		27.93			
1,3-Dichlorobenzene	8	<10		26.40			<u> </u>
1,4-Dichlorobenzene	. 6	<10		22.51			
Ethyl benzene	. 4	<10		7.18			
Toluene	. 4	<10		5.47			
Xylenes (Dimethyl benzene)	.4	<10		15.26 16.91 17.77			
							<u> </u>
							ļ !
					I		-

^{*} If % moisture is reported, results are presented on a dry-weight basis.

ANALYTICAL RESULTS SUMMARY Aromatic Volatile Organics SW Method 8020

Page _	of	_1
Report	<u> </u>	

ES Job No. 56528	Lab Sample No. 12-85-1156
Client U.S. Air Force	Field Sample No. 1-ES-7 SS-1 0-2
Project PJKS (Denver)	Date Collected 12/18/85
Client No.	Date Received 12/19/85
Laboratory Supervisor Approval:	Date Analyzed 1/1/86
Johnny R. adamon Sample Matrix	OC Report No. <u>56528-3</u>
/_/ Water (ug/L)	Dilution Factor
/X / Soil (ug/g)	*Moisture %
/ / 045	

Compound	C	oncentrat:	ion	Retenti	Notes	
	Det Lim	Column 1	Column 2	Column 1	Column 2	
Benzene	4	<10	•	2.26		
Chlorobenzene	. 14	<10		16.46		
1,2-Dichlorobenzene	8	<10		27.93		
1,3-Dichlorobenzene	8	<10		26.40		
1,4-Dichlorobenzene	66	<10		22.51	<u> </u>	
Ethyl benzene	.4	<10		7.18		
Toluene	4	<10		5.47		
Xylenes (Dimethyl benzene)	4	<10		15.26 16.91 17.77		
						1
		<u> </u>				,

^{*} If % moisture is reported, results are presented on a dry-weight basis.

ASSESSED FOR SECRETARIA SECRETARIA REGIONALE ACTUALISMO

ANALYTICAL RESULTS SUMMARY Aromatic Volatile Organics SW Method 8020

Page _	_ of	_1_
Report		

ES Job No. 56528	Lab Sample No. 12-85-1157
Client U.S. Air Force	Field Sample No. 1-ES-7, SS-2, 2-4
Project PJKS (Denver)	Date Collected 12)18/65
Client No.	Date Received 12/14/85
Laboratory Supervisor Approval:	Date Analyzed 1/1/86
Johnny R. adamson Sample Matrix	OC Report No. <u>56528-3</u>
/_/ Water (ug/L)	Dilution Factor
<u>/X</u> / Soil (ug/g)	*Moisture
/ / Other	•

Compound	Concentration				Retenti	on_	Time	•	Notes
	Det	Lim	Column 1	Column 2	Column	Co	lumn	2	į
Benzene		4	<10		2.26				
Chlorobenzene	· _	4	<10		16.46		·	İ	
1,2-Dichlorobenzene		8	<10		27.93			-	
1,3-Dichlorobenzene	<u> </u>	8	<10		26.40				
1,4-Dichlorobenzene	,	6	<10		22.51			. !	
Ethyl benzene	.,	4	<10		7.18				
Toluene		4	<10		5.47			i	
Xylenes (Dimethyl benzene)		4	<10		15.26 16.91 17.77			1	
					!				
								İ	
				1					1

^{*} If % moisture is reported, results are presented on a dry-weight basis.

DESCRIPTION OF THE PROPERTY SECRECAL SECTION S

5

Ä

5

Y

};

\$

ANALYTICAL RESULTS SUMMARY Aromatic Volatile Organics SW Method 8020

Page _	L of	1
Report		

ES Job No. <u>56528</u>	Lab Sample No. 12-85-1158	_
Client U.S. Air Force	Field Sample No. $1-ES-7$, $SS-3$, S	<u>-</u> フ
Project PJKS (Denver)	Date Collected 12/18/85	_
Client No.	Date Received 12/19/85	_
Laboratory Supervisor Approval:	Date Analyzed 1/1/86	_
John R. adamson Sample Matrix	OC Report No. 50528-3	-
/_/ Water (ug/L)	Dilution Factor	_
/X / Soil (ug/g)	*Moisture	8
/ / Other		

Compound	C	oncentrat:	ion	Retention Time		Notes
	Det Lim	Column 1	Column 2	Column 1	Column 2	
Benzene	4	<10		2.26		
Chlorobenzene	4	<10	<u> </u>	16.46		
1,2-Dichlorobenzene	.8	<10	· ·	27.93		<u> </u>
1,3-Dichlorobenzene	. 8	<10	<u> </u>	26.40		
1,4-Dichlorobenzene	- 6	<10		22.51	<u> </u>	
Ethyl benzene	4	<10		7.18		
Toluene	. 4	<10		5.47	<u> </u>	İ
Xylenes (Dimethyl benzene)	4	<10		15.26 16.91 17.77		
!						
			<u> </u>	<u> </u>		
· · · · · · · · · · · · · · · · · · ·		<u> </u>	<u> </u>		<u> </u>	·
		<u> </u>			<u> </u>	
		-		ļ		,

^{*} If % moisture is reported, results are presented on a dry-weight basis.

MANAGEMENT RESPONSE INVESTIGATION OF THE PARTY OF THE PAR

7

 $\ddot{3}$

表

777

3

KOCCOCK PSYSYNI BOXXESO, INTERESO SESSION

ANALYTICAL RESULTS SUMMARY Aromatic Volatile Organics SW Method 8020

Page | of | Report ____

ES Job No56528	Lab Sample No. 12-	85-1159
Client U.S. Air Force	Field Sample No. 1-ES-7	, ss-4, 9-11°
Project PJKS (Denver)	Date Collected 12	118/85
Client No.	Date Received	119185
Laboratory Supervisor Approval:	Date Analyzed	186
Johnny R. adamson Sample Matrix	OC Report No. 5652	<u>8-3</u>
/_/ Water (ug/L)	Dilution Factor	
/X / Soil (ug/g)	*Moisture	*
/ / Other		

Compound	C	oncentrat	ion	Retenti	on Time	Notes
	Det Lim	Column 1	Column 2	Column 1	Column 2	
Benzene	4	<10		2.26		
Chlorobenzene	4	<10		16.46		
1,2-Dichlorobenzene	.8	<10		27.93	1	
1,3-Dichlorobenzene	8	<10	<u> </u>	26.40	<u> </u>	
1,4-Dichlorobenzene	.6	<10		22.51		İ
Ethyl benzene	4	<10		7.18		
Toluene	. 4	<10		5.47	ļ	
Xylenes (Dimethyl benzene)	. 4	<10		15.26 16.91 17.77		
		,	<u> </u>	<u> </u>	1	· · ·
· · · · · · · · · · · · · · · · · · ·						:
					1)

^{*} If % moisture is reported, results are presented on a dry-weight basis.

ANALYTICAL RESULTS SUMMARY Aromatic Volatile Organics SW Method 8020

Page	<u>l</u> of	:
Report		

ES Job No. <u>56528</u>	Lab Sample No.	12-85-1160
Client U.S. Air Force	Field Sample No. 1	-ES-7 SS-5, 14-16
Project PJKS (Denver)	Date Collected	12/18/85
Client No.	Date Received	12/19/85
Laboratory Supervisor Approval:	Date Analyzed	1/1/86
Johnny R. adamson Sample Matrix:	OC Report No.	5 0528-3
/_/ Water (ug/L)	Dilution Factor	
<u>/X</u> / Soil (ug/g)	*Moisture	
/ / Other		

Compound	Concentration		Retenti	Notes		
	Det Lim	Column 1	Column 2	Column 1	Column 2	
Benzene	. 4	<10		2.26		
Chlorobenzene	4	<10		16.46	1	
1,2-Dichlorobenzene	. 8	<10		27.93		
1,3-Dichlorobenzene	.8	<10		26.40	<u> </u>	
1,4-Dichlorobenzene	. 6	<10		22.51		
Ethyl benzene	.4	<10		7.18		
Toluene	4	<10		5.47		
				15.26 16.91		
Xylenes (Dimethyl benzene)	4	<10		17.77		
			<u>:</u> 	1		
			1			
	_	ļ				,

^{*} If % moisture is reported, results are presented on a dry-weight basis.

ANALYTICAL RESULTS SUMMARY Aromatic Volatile Organics SW Method 8020 Page of Report

ES Job No.	56528	Lab Sample No.	12-85-1161
Client	U.S. Air Force	Field Sample No.	1-85-7,55-6,19-21
Project	PJKS (Denver)	Date Collected	12/18/85
Client No.		Date Received	12/19/85
Laboratory :	Supervisor Approval:	Date Analyzed	1/1/86
Sample Matri	R. adamsin	OC Report No	56528-4
<u>/</u> / Wa	ater (ug/L)	Dilution Factor _	
<u>/X</u> / So	oil (ug/g)	*Moisture	
/_/ 01	ther		•

Compound	C	oncentrati	ion	Retent	ion Time	Notes
	Det Lim	Column 1	Column 2	Column	1 Column 2	
Benzene	.4	<10		2.26		
Chlorobenzene	. 4	<10		16.46		
1,2-Dichlorobenzene	. 8	<10		27.93		
1,3-Dichlorobenzene	8	<10		26.40	.	
1,4-Dichlorobenzene	6	<10		22.51		
Ethyl benzene	. 4	<10		7.18		
Toluene	. 4	<10		5.47		
Xylenes (Dimethyl benzene)	. 4	<10		15.26 16.91 17.77		
-						

^{*} If % moisture is reported, results are presented on a dry-weight basis.

Johnson R. adamoer aboratory supervisor Approvat: C. Report Bo. Environmental Quality Parameters 11/ Soil (ug/g) (ug/Kg) ANALYTICAL RESULTS SUMMARY Water (ug/L) Sample Matrix: // Other ES JOD NO. 56578 WSAF Engincering-Science Date Received Date Collected Client No. Project Client

22-52-52

CANADAM PERENCE | Washing | December

Field Sample No.	Lab Sample No.	~0N	NOz	Phenolia	TKN	C. H		-	Potes
PJKS. 1-85, 55-10-15 1285-1116	9111-5821	Ó. 13	5.0	9.0	919	4017-			İ
17KS 1-25-3 55-2:45	4111- 1	1.9	21.0	٠,٦	180	<0.17			i
PSKS 1-55-3,55-31658	8111	0.09	0.7	\$107	110	<0.17			
PJKS 1-25-3.55-49-12	6111	0. اک	Z1.0	{0,5	150	(t) (0)	-		
PJK5 1-25-35-125-1	97//	0.12	5.0	₹S•0>	401	50,13-			İ
P1K5,1-25-3,55-6:45-481	1777	D-349	$0.\tau$	* \$10>	20%	<0.17			
P5K5 1-25-3,58-7:115-20	77/1 /3	0.088	6.17	40.5*	×4×	<0,1₹1,0>			
1-1:1-55-4-53-1:1-7	1/23	514.0	5.5	<0.5*	190x	O. 17			
PTKC1-25-455-25-7	7411	5159.0	7.0	<0,5⁴	₹100°	<u>*</u> -0			
PTKS.1-25-455.3.85.10	JT// /	51.0	9	40.5 *	130€1	<0.13			
							-		
Date Analyzed	M	12,0	120	3+8#	21 School Cl	12 + 16			
Analytical Method		EFI) 354.1	352.1	1.064		8PA 7 196			
								١	

L-102

^{*} If A moisture is reported, results are presented on a dry-weight basis.

Page / of Report 1 Environmental Quality Parameters 3 ANALYTICAL RESULTS SUMMARY 5 See real and 3 Engineering-Science

gesta personal responsa possessa parecena respecta ancesses processes

X

Aporatory Supervisor Approval: CC Report In.

Yehrmy R. Chamour ni fution Factor

Sample Matrix:

PJKS

Client No.

Project

Client

56528

ES Job No.

MSHF

• Moisture

5.3/9/77 Date Collected Date Received

127 Soil (ug/y) (ug/kg) /_/ Water (ug/l.)

										100
		Tab Sample No.	NO.	7//)	Production C. M.	TKN	H C			
	Field Sample No.		4	3	11000	1				
	711-25-11 11311111111111111111111111111111111	11-56-1126	0.13	∞	<0.5	0	<013:			
	7564175-55 7-52-15461		7.	(001	4	<u>ب ر</u>			
L-	7-30-1 CCV-10.5-6	11)7-	0 - ()		707	9	7777			
-10		3(1)	41.1	X	4.0	58	<0.13			
3	1-2-4 55-6 11-6-1				\ <	633	←1'0>			
	12-81-85 J-35-1	113	0.000		200		1			
		971	71.0	<u>√</u>	0,0	288	0.21			
	7-2-25 5=53-1			-	7 7/		70.17			
	7-7-2-5	113	0.23	7	C 102	1				
	2000		700	۲.	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	44	- t) '0'			
	1-5-5-5-1	1132	0:43	25.5	7		1			
		271	0/0	- V	01	50	401			
	1- 11:5-52 -2-53-1		1	-		000	7 1			
	31(-6), 1-1) 31311 1	±≈=	960.0	イント	50,5	90	1			
	V 65 5 5 10 1			-						
		: 								
					1	4		1	\	
	Date Analyzed	Ξ	~\\ \\	<u>^</u>	1/2	300	100			
	7	2	2	ながり		361.3				
	Analyrical Method		EPM 354.	1 21/135	うらいて 493 子子子 4193 1、OCH 493 1、ことには 11.1926 1193	学さら	361C t/d3			
		_	-	-						

. If A moisture is reported, results are presented on a dry-weight basis.

11111658

* andlyses performed on laits have a

Column R. Colomon. OC Report No. Moisture Environmental Quality Parameters // Soil ((ug/g)) (ug/kg) ANALYTICAL RESULTS SUMMARY / / Water (ug/L) Sample Matrix: 56528 USAF Engineering-Science Date Received Date Collected ES Job No. Client No. Project Client

Field Sample No.	Lab Sample No.	10°	NU	NU2 Phonelic TKN Crt	ŤKN	で、世		भिर्माण्ड
PIKS 1-25-6 SS-11-1	hh11-53-71	91.0	7	40.5	840	50,02		
h-t't-55		*70.0	イーナ	<0,5	300	<0,0>		i
1.58-55	9411	p. 0	1>	O. 7	520			
J+671-SS	1711	0.00€¥	* 1ン	<0,5	30			
9-14-15	8/11	0.038*	* -	<0.5	150×			
1/2-1/1-1/	 	₹ 690.0	メーン	40.5	160 K	41.02		
				•				
Date Analyzed	M	120427	12.042	7/2-	- Xizin	7/2		
Analytical Method		\$P11.354.1	5 PM 352.1	PA 420.	E-15E 113	2615 893	 	
# 1f & moieture is reported		S are ore	sonter or	results are presented on a dry-wolaht basis.	ight bagi	3.		

L-104

8593111

Indicates clate and

Late and west and to have the

757 BIX

Z

ŝ

T;

N

?

.

3

ł

0

The same of the second

, 1	E	-	}	<u> </u>	<u>-</u>	<u> </u>						
	Potes											
		-								,		
	成分	0.30	₹0,13	F1.0>	<0,0>	YOUR-	<01(7)					
	TKN	730	ران <i>0</i>	120	30	34	73					
	Physica TKN CT	20,5	<0,5	40.5	70.5	<0.5	<0.5					
/ Other	N0,	17	7	 >	< l	17	17					
7	100	17.0	6.13	20.08	20.08	80.07	X0.07					
18/6/	Lab Sample No.	7511-58-81	1 1157	8511	1154	07//	19//					
Date Received /1/1/9/	Field Sample No.	PTKS 1-25-755-10-21 12-85-1156	, 7- 2'2-8,	x-3 €-55°	,11-b't-ss	91-11 >-55	15-4. 1-21					
Date Rec	Field Sa	PTKS 1-						 				

L-105

Analytical Method

Date Analyzed

2PM XC4.1 | EPM XX.1 | EPM 420.1 | EPM 351.3 | EPM 745

[·] If a moisture is reported, results are presented on a dry-weight basis.

7- 30-7 Aboratory Supervisor Approval: Report Parie Diffution Exetor CC Report No. Moisture Environmental Quality Parameters Soil (ug/g) (ug/kg) ANALYTICAL RESULTS SUMMARY Water (ug/L) Sample Matrix: Other 3] 56528 PJKS WSAF Engineering-Science Date Collected Date Received ES Job No. Client No. Project Client

CONTRACT STREET

12.22.22

STATES IN THE STATES IN THE STATES IN THE STATES IN

Field Sample No.	No.	Lab Sample No.	10°	10 N	Phunchia TKN CrIT	TKN	CY		Notes
PTKS 1-25 55:10-15 1255-1116	5-10-15	9111-55-111	C. /3	0.5	9.0	616	₹1°0>		
	5+X-5	€11/- 1	1.9	0.12	4,0	180	<0.17 √1.0>		
PTKS 1-55-3 55-315-3	5-37,5-3	\$111	C.039	0.1	5107	1100	1100 <0.17		
	-49.7	61.1	5/ 2	21.0	(0.5	150°	1500 (0,17)		
PTK 1-25-355-5 1254	5 1250	97/	C 12	5.0	<0.5	40	40 . <0.17		
17K5 1-25-3,5-1, 65.75	,S+.J.9.	[7//	F28-3		40,54	50°			
PTK 1-25-3 55-7 17.22	7.50.1	77//	0.058	41.0	<0.5°		54~ (0,13		
17.4.1-82-4.85-1.7.7	, <u>,</u>	24//	5/4/0		<0.5>		190, 0:17		
1-37-55 4-58-1 3740	1-37-	カイル	0.694	2.0	40.5>	< 609	0.190		
PTKS. 1-85-455-31570	5 5 70	して	5/10	9	40.5		K1.0>		
Date Analyzed		E	2/3/2	7,	3+8	in introducti	17.		
Analytical Method	thod		Ei) 354.	1.50% 1.00%	1.064	43011 EPA 581.3 STR 7196	3719 7196		
		10000	ľ	100	and the contract of a designation of	inch haci	U		

If a moisture is reported, results are presented on a dry-weight basis.

1

R

1

7

Š

-

京 男 名 要

S. S.

8

8

.

RY Paye / of /	QC Report No.	Laboratory Supervisor Approval:	Colomox K Como and	Difution Faction	Kg) *Moisture
ANALYTICAL RESULTS SUMMARY Environmental Quality Parameters	ı	1	Sample Matrix:	/ / Water (ug/L)	/// Soil (ug/q) (ug/kg)
ngineering-Science	s Job 110. 56528	11ent USAF	roject VJKS	lient No.	ate Collected /1/1/51

Date Received

3

Field Sample No.	ole No.	Lab Sample No.	$\mathcal{M}_{\mathcal{L}}$		NU, Phendia TKN C. XI	TKN	は、対		Notes
15KS 25-4	71-541 20-55	15K5 - 28-45 4545457 2-85-128	810	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	<0,5	011	<0.0>		
	9-371-58 71-58-1	±011	11.0	77	<0.5	67	₹1,0>		
-107	2-16-18-18-18-18-1	8111	11.7	7	€,0	28	40,13		
	12-011-25 -5-53-1	ben	O. 20. 0		5,0	633	40,17		
15.53-1	1-55-5 5-53-1	1130	71.7	\ \	0,5	889	0,21		
1-82-1	1-6:8-55 5-53-1	1811	2 ()	77	<012	413	t-0		
2-73-1	11-3-5-56-4:8-11	1/32	6.35	3.5	<0,5	72	₹ (C, D		
1. 38. 1.	1-21-55-133-1	5113	0.10	7	071	50	<0,0>		
\$ 5.3 × 12	345-p. 7-75 5 33 1 1	ガベニ	910.3		5'0>	28	<0.17		
Date Analyzed	/z ed	W Q	02	12,43	-4	12/2	(2,2)		
Analytical Method	Method		निर्म अरहा	1 7 58 11.13	7616 413 7456 413 1. OCH 433 1 7 SE 11-13 1. 1978 1975	热数机场	2616 443		

If a moisture is reported, results are presented on a dry-weight basis.

Aboratory Supervigor Approval: Report Paye Dilution Factor CC Report No. 'Moisture Environmental Quality Parameters Soil ('ug/g) (ug/kg) ANALYTICAL RESULTS SUMMARY Water (ug/l) Sample Matrix: Other K PTKS Plant 52578 (1SAF Engineering-Science Date Collected Date Received ES Job No. Client No. Project Client

KSSENSEN FEBRUAREN KERLENDE JOSEPHER

,,							 		 	_		
Rotes												
-												
は、世	B-40 40.12	<0,0>			€,0	人(),17					ر اوند آ	28 H 493
TKN	840	300	520	30	50 ×	×09					12:00	8.158 493
NU2 Phonelic TKN COTT	510>	<0,5	Q. 4	<0.5	<0.5	40,5					1/2	24 1 3 1 3 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1
NUz		く1×	7 /	ベー×	×	417					47.4	1538 11/3
10N	. 91.0	1,400	pt.0	- ×20.0	C.038x	0.069 1					1. 4	1.4 × 1113
Lab Sample No.	hh11-33-71	5711	9511	1711	87/1	1149					E	
Field Sample No.	PIKS 1-25-6 SS-12-21	1 <5-1,1-4	1.5 8-55	11-64-55	9-11/5-55	17-17-17					Date Analyzed	Analytical Method

L-108

If a moisture is reported, results are presented on a dry-weight basis.

4

17

区

×

Jaboratory Supervisor Approval: of ---Report Parje Dilution Edtor OC Report No. (ahmon) Moisture Environmental Quality Parameters Soil (19/9) (19/Kg) ANALYTICAL RESULTS SURMARY Water (ug/L) Sample Matrix: / / Other 1 Date Received 12/195 58/81/81 ES JOB NO. 56528 TASK! Engineering-Science Date Collected Client No. Project Client

Notes											-
はい	0.30	4100 40.17	<0.0>	€1:0>	4000	<010>				\ \ \\S	2817893
TKN	40,5 730	200	120	30	34	73				1/6	E1158 Hd3
NO, Phrylip TKN CIT	20,5	<0,5	40.5	15.07	<0.5	<0.5				70	1.00m fld3
N03	71	<u> </u>	< l	17	7	۲.				\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	261 / 2 Pit X 1.1 [EPA 430.1 [EPA 351.3 EPA 7196
NO	17.0	(, ,)	20.02	Z0.65	70.08	\$0.02				21/20 20/20	l'an les
Lab Sample No.	9511-58-11	£311]	8311	5511	07//	19//				£ O	
Field Sample No.	9511-28-11 12-21-18-18-18-18	7-7'7.5	\$ -36-8	11-67-55	1-71 V-55	12-11-54 11-21				Date Analyzed	Analytical Method

L-109

It & moisture is reported, results are presented on a dry-weight basis.

Results for Site 2 8010, 8020, Metals and Inorganic Parameters

ANALYTICAL RESULTS SUMMARY Halogenated Volatile Organics SW Method 8010 (first of two pages)

Page	<u> </u>	of	2
Repor	t _		

ES Job No. <u>56528</u>	Lab Sample No	12-85-1192
Client U.S. Air Force	Field Sample No.	2-ES-9, SS-1
Project PJKS (Denver	Date Collected	12-19-35
Client No.	Date Received	12-20-35
Laboratory Supervisor Approval:	Date Analyzed	1/2/86
John R Odansi- Sample Matrix?	QC Report No.	PJK5-65
/_/ Water (ug/L)	Dilution Factor _	
/X / Soil (ug/g)	*Moisture	
/ / Other		

Compound	Concentration			Retention Time		Notes
	Det Lim	Column 1	Column 2	Column 1	Column 2	
Benzyl chloride	. 4	<10		40.9	<u> </u>	•
<pre>bis(2-chloroethoxy) methane</pre>	.12	くね		44.2		1
bis(2-chloroisopropyl) ether	25	125		42.2		:
Bromobenzene	8	<10		29.18		i
Bromodichloromethane	2	<10		15.69		
Bromoform	4	<10		21.24		
Bromomethane	24	124		2.85		
Carbon tetrachloride	3	<10		15.47		
Chloroacetaldehyde	:0	<10		11.6		<u> </u>
Chloral	10	<10		18.7	1	
Chlorobenzene	5	<10		26.01	1	
Chloroethane	10	<10		4.51	:	
Chloroform	1	<10		13.01		
1-Chlorohexane	2	<10		26.58	i	ı
2-Chloroethyl vinyl ether	. 3	<10		19.49	<u> </u>	
Chloromethane	2	<10		1.95		
Chloromethyl methyl ether	20	120		9.37		
Chlorotoluene	.4	<10		37.9	İ	1
Dibromochloromethane	. 2	<10	1	18.68	1	1

continued on back

STATES STATES STATES STATES STATES

RECORDED INSTITUTION INTERPRETARION

X

C

ĵ.

*

ANALYTICAL RESULTS SUMMARY Halogenated Volatile Organics SW Method 8010 (second of two pages)

Compound	Co	ncentrati	.on	Retention Time		Notes
	Det Lim	Column 1	Column 2	Column 1	Column 2	
		400		1 42 00		<u> </u>
Dibromomethane	.1	<10		13.09		
1,2-Dichlorobenzene	3	<10	<u> </u> 	60.10		<u> </u>
1,3-Dichlorobenzene	.6	<10		42.90		<u> </u>
1,4-Dichlorobenzene	.5	<10		37.28	1	
Dichlorodifluoromethane	.30	(30		3.54		<u> </u>
1,1-Dichloroethane	1	<10		11.67	<u> </u>	
1,2-Dichloroethane	1	<10		13.55		<u> </u>
1,1-Dichloroethylene	3	<10		10.31	1	
trans-1,2-Dichloroethylene	. 2	<10		12.35	!	
Dichloromethane	5	<10		7.50		
1,2-Dichloropropane	1	<10		17.19		
				17.24	Ţ	1
1,3-Dichloropropylene	. 6	<10		18.68		
1,1,2,2-Tetrachloroethane	. 7	<10		23.47		1
1,1,1,2-Tetrachloroethane	7ر	<10		21.04	1	
Tetrachloroethylene	1	<10		23.47		
1,1,1-Trichloroethane	1	<10		14.76		!
1,1,2-Trichloroethane	1	<10		18.68	1	
Trichloroethylene	2	<10		17.91	!	
Trichlorofluoromethane	. 1	<10		8.58		1
Trichloropropane	2	<10		23.01	!	
Vinyl chloride	4	<10		3.54		
	<u>!</u>			!	; :	İ
	!			1	1	!
	!			ļ	į	1
	•			l		1
			.	!		İ

^{*} If % moisture is reported, results are presented on a dry-weight basis.

ANALYTICAL RESULTS SUMMARY Halogenated Volatile Organics SW Method 8010 (first of two pages)

Page	1	of	2
Repor	't _		

ES Job No. 56528	Lab Sample No. 12-85-1173	<u>\$</u>
Client U.S. Air Force	Field Sample No. 2-ES-9, SS-2	
ProjectPJKS (Denver	Date Collected 12-F1-45	
Client No.	Date Received	_
Laboratory Supervisor Approval:	Date Analyzed 1/2/86	_
John R Cdams, m	OC Report No. PJKS CS	
/_/ Water (ug/L)	Dilution Factor	
/X / Soil (ug/g)	*Moisture	*
/_ / Other		

Compound	Concentration			Retention Time		Notes
_	Det Lim	Column 1	Column 2 Co	lumn 1	Column 2	
Benzyl chloride	4	<10		40.9		•
bis(2-chloroethoxy) methane	12	<12		44.2		
bis(2-chloroisopropyl) ether	25	<25		42.2		:
Bromobenzene	3	<10		29 . 18		
Bromodichloromethane	2	<10		15.69		
Bromoform	4	<10		21.24		; 1
Bromomethane	24	424		2.85		i
Carbon tetrachloride	3	<10		15.47		
Chloroacetaldehyde	10	<10		11.6		
Chloral	10	<10		18.7		
Chlorobenzene	5	<10		26.01		
Chloroethane	10	. <10		4.51		
Chloroform	1	<10		13.01		
1-Chlorohexane	2	<10		26.58		,
2-Chloroethyl vinyl ether	3	<10		19.49		
Chloromethane	2	<10		1.95		
Chloromethyl methyl ether	- 20	120		9.37		
Chlorotoluene	. 4	<10		37.9		
Dibromochloromethane	2	<10		18.68		

continued on back

ANALYTICAL RESULTS SUMMARY Halogenated Volatile Organics SW Method 8010 (second of two pages)

12-85-1193

Compound		ncentrati		Retentio	Notes	
·	Det Lim	Column 1	Column 2	Column 1	Column 2	
Dibromomethane	1	<10		13.09	!	
1,2-Dichlorobenzene	3	<10		60.10		
1,3-Dichlorobenzene	. 6	<10		42.90	:	
1,4-Dichlorobenzene	5	<10		37.28	!	
Dichlorodifluoromethane	30	<3c		3.54	<u>:</u>	<u> </u>
1,1-Dichloroethane	11	<10		11.67	1	ţ
1,2-Dichloroethane	1	<10		13.55	:	<u>.</u>
1,1-Dichloroethylene	3	<10		10.31		!
trans-1,2-Dichloroethylene	2	<10		12.35		İ
Dichloromethane	5	<10		7.50	•	1
1,2-Dichloropropane	1	<10		17.19		!
				17.24		:
1,3-Dichloropropylene	6	<10	<u> </u>	18.68		
1,1,2,2-Tetrachloroethane	7	<10		23.47	1	
1,1,1,2-Tetrachloroethane	7	<10		21.04	İ	
Tetrachloroethylene	1	<10		23.47	!	
1,1,1-Trichloroethane	1	<10		14.76	<u>i</u>	
1,1,2-Trichloroethane	1	<10		18.68	1	
Trichloroethylene	2	<10		17.91	:	
Trichlorofluoromethane	1	<10		8.58	!	
Trichloropropane	2	<10		23.01	!	
Vinyl chloride	4	<10		3.54		
				!		
•					i	
					!	
		!		1		
				:		

^{*} If % moisture is reported, results are presented on a dry-weight basis.

PERCENCENT PERSONAL PROPERTY SOCIETY OF PERSONAL GOODINGS CONTINUE

S.

3

8

3

2

ANALYTICAL RESULTS SUMMARY Halogenated Volatile Organics SW Method 8010 .(first of two pages)

Page _	1	of	2
Report	= _		

ES Job No	66528	Lab Sample No	12-85-1194
Clientt	J.S. Air Force	Field Sample No.	2-ES-1 SS-3
ProjectI	JKS (Denver	Date Collected	12-19-95
Client No		Date Received	12-20-85
Laboratory Su	pervisor Approval:	Date Analyzed	1/2/86
Johnn	R Odansin	QC Report No.	PJKS-CS
Sample Matrix	::-)		
// Wat	er (ug/L)	Dilution Factor _	
<u>/X</u> / So:	.1 (ug/g)	*Moisture	*
/ / Otl	ner		

Compound	Concentration			Retenti	on Time Notes
	Det Lim	Column 1	Column 2	Column 1	Column 2
Benzyl chloride	4	<10	•	40.9	•
<pre>bis(2-chloroethoxy) methane</pre>	12	112		44.2	
<pre>bis(2-chloroisopropyl) ether</pre>	. 25	125		42.2	:
Bromobenzene	8	<10		29.18	,
Bromodichloromethane	2	<10		15.69	
Bromoform	4	<10		21.24	·
Bromomethane	24	<24		2.85	
Carbon tetrachloride	3	<10		15.47	1
Chloroacetaldehyde	10	<10		11.6	: !
Chloral	10	<10		18.7	
Chlorobenzene	. 5	<10		26.01	
Chloroethane	10	<10		4.51	i
Chloroform	11	<10		13.01	
1-Chlorohexane	2	<10	<u> </u>	26.58	•
2-Chloroethyl vinyl ether	3	<10		19.49	
Chloromethane	. 2	<10		1.95	
Chloromethyl methyl ether	20			9.37	
Chlorotoluene	4	<10		37.9	•
Dibromochloromethane	2	<10		18.68	:

continued on back

NAMES AND DESCRIPTION OF THE PROPERTY AND PARTY OF

ANALYTICAL RESULTS SUMMARY Halogenated Volatile Organics SW Method 8010 (second of two pages)

Compound	Concentration			Retentio	Retention Time		
	Det Lim	Column 1	Column	2 Column 1	Column 2		
Dibromomethane		<10		13.09	1		
1,2-Dichlorobenzene	3	<10		60.10			
1,3-Dichlorobenzene	6	<10		42.90		:	
1,4-Dichlorobenzene	. 5	<10		1 37.28			
Dichlorodifluoromethane	30	<30	!	3.54			
1,1-Dichloroethane	1	<10		11.67	1	4	
1,2-Dichloroethane	11	<10		13.55	:	1	
1,1-Dichloroethylene	3	<10	1	10.31		:	
trans-1,2-Dichloroethylene	2	<10		12.35			
Dichloromethane	5	<10	ı	7.50	:		
1,2-Dichloropropane	1	<10		17.19	•	į	
			1	17.24	:	:	
1,3-Dichloropropylene	6	<10	<u> </u>	18.68	i	<u> </u>	
1,1,2,2-Tetrachloroethane	7	<10	1	23.47	!	1	
1,1,1,2-Tetrachloroethane	7	<10	<u> </u>	21.04	ı	ļ	
Tetrachloroethylene	1	<10	1	23.47		<u> </u>	
1,1,1-Trichloroethane	1	<10	<u> </u>	14.76		İ	
1,1,2-Trichloroethane	11	<10	<u>i</u>	18.68	1	1	
Trichloroethylene	. 2	<10	!	17.91		1	
Trichlorofluoromethane	1	<10	•	8.58		<u>i</u>	
Trichloropropane	2	<10	!	23.01	_		
Vinyl chloride	4	<10	!	3.54		į .	
				1			
		į		1		1	
	;						
		!					
		:				;	

^{*} If % moisture is reported, results are presented on a dry-weight basis.

recess sergest booksky brasson jassoosk

3

ANALYTICAL RESULTS SUMMARY Halogenated Volatile Organics SW Method 8010 (first of two pages)

Page _	_	of	2-
Report	_		

ES Job No. 56528

Client U.S. Air Force

Project PJKS (Denver

Client No.

 Lab Sample No.
 12-85-1195

 Field Sample No.
 2-ES-9, 55-4

 Date Collected
 /2-19-95

 Date Received
 /2-20-85

 Date Analyzed
 1/2/86

7, 0 (

Laboratory Supervisor Approval:

OC Report No. PTKS CS

Sample Matrix:

/_/ Water (ug/L)

Dilution Factor ____

/X / Soil (ug/g)

*Moisture ____

/_/ Other ____

Compound	Concentration			Retention Time		Notes
	Det Lim	Column 1	Column 2	Column 1	Column 2	
Benzyl chloride	4	<10		40.9		'
<pre>bis(2-chloroethoxy) methane</pre>	12	412	-	44.2		,
bis(2-chloroisopropyl) ether	25	L 25		42.2		
Bromobenzene	8	<10		29.18	,	
Bromodichloromethane	2	<10		15.69	1	
Bromoform	4	<10		21.24	1	
Bromomethane	24	/2 4		2.85	1	
Carbon tetrachloride	3	<10		15.47		
Chloroacetaldehyde	. 10	<10		11.6		
Chloral	10	<10		18.7		
Chlorobenzene	5	<10		26.01		
Chloroethane	10	<10		4.51		
Chloroform	. 1	<10		13.01	1	
1-Chlorohexane	2	<10		26.58	•)
2-Chloroethyl vinyl ether	3	<10		19.49		
Chloromethane	2	<10		1.95		
Chloromethyl methyl ether	20	120		9.37		
Chlorotoluene	. 4	<10)	37.9		
Dibromochloromethane	2	·<10	<u>i</u>	18.68		

continued on back

	logenated SW N	RESULTS Volatile Hethod 80 of two	e Organics 10		12-85-	1155
Compound		ncentrat		Retentio		Notes
	Det Lim	Column 1	Column 2	Column 1	Column 2	İ
Dibromomethane	1	<10		13.09	:	İ
1,2-Dichlorobenzene	. 3	<10	1	60.10	:	1
1,3-Dichlorobenzene	6	<10		42.90		•
1,4-Dichlorobenzene	5	<10	!	37.28		
Dichlorodifluoromethane	30	<30		3.54		i
1,1-Dichloroethane	1	<10		11.67	1	:
1,2-Dichloroethane	. 1	<10		13.55	· ·	
1,1-Dichloroethylene	. 3	<10		10.31		i
trans-1,2-Dichloroethylene	2	<10		12.35		
Dichloromethane	3	<10	!	7.50		,
1,2-Dichloropropane	1	<10	ļ	17.19		!
				17.24	1	!
1,3-Dichloropropylene	6	<10		18.68	!	1
1,1,2,2-Tetrachloroethane	7	<10		23.47	!	1
1,1,1,2-Tetrachloroethane	7	<10		21.04		I
Tetrachloroethylene	1	<10	1	23.47	:	1
1,1,1-Trichloroethane	. 1	<10		14.76	t	!
1,1,2-Trichloroethane	- 1	<10	i !	18.68		1
Trichloroethylene	2	<10	!	17.91	1	i i
Trichlorofluoromethane	1	<10	!	8.58	!	
Trichloropropane	2	<10	<u> </u>	23.01		!
Vinyl chloride	. 4	<10		3.54	:	1 -
	: 		!	•		<u> </u>
		<u> </u>	!		1	!
		<u> </u>	<u> </u>			<u> </u>
		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·			:
		<u>:</u>				
* If % moisture is reported	d, result	s are pro	esented on	a dry-we	eight bas	is.
	•					
	т	-117				
	L	-11/				
862J137						

ANALYTICAL RESULTS SUMMARY Halogenated Volatile Organics SW Method 8010 (first of two pages)

Page	1	of	2
Repor	t _		

ES Job No56528	Lab Sample No	12-55-1196
Client U.S. Air Force	Field Sample No.	2-ES-9, SS 5
Project PJKS (Denver	Date Collected	12-17-95
Client No	Date Received	12-20-35
Laboratory Supervisor Approval:	Date Analyzed	1/2/86
Form R. Colamon Sample Matrix:	QC Report No.	PJKS 05
/_/ Water (ug/L)	Dilution Factor _	
/X / Soil (ug/g)	*Moisture	
// Other		
Johnne R. Colombia Sample Matrix: \(\frac{\lambda}{\text{X} \infty} \) Water (ug/L) \(\frac{\text{X}}{\text{X}} \) Soil (ug/g)	OC Report No.	

Compound		Concentrat	ion Retention	Time Notes
	Det Lim	Column 1	Column 2 Column 1 Col	umn 2
Benzyl chloride	1	<10	40.9	· ·
bis(2-chloroethoxy) methane	12	<12	. 44.2	
bis(2-chloroisopropyl) ether	25	رع د	42.2	
Bromobenzene	. в	<10	29.18	
Bromodichloromethane	2	<10	15.69	
Bromoform	4	<10	21.24	
Bromomethane	24	124	2.85	
Carbon tetrachloride	. 3	<10	15.47	
Chloroacetaldehyde	10	<10	11.6	
Chloral	10	<10	18.7	
Chlorobenzene	. 5	<10	26.01	
Chloroethane	10	<10	4.51	
Chloroform	1	<10	13.01	
1-Chlorohexane	. 2	<10	26.58	•
2-Chloroethyl vinyl ether	3	<10	19.49	
Chloromethane	2	<10	1.95	
Chloromethyl methyl ether	20	120	9.37	
Chlorotoluene	4	<10	37.9	!
Dibromochloromethane	2	<10	18.68	1

continued on back

Ž

À

1

\ A

7

'n

ACCES RESERVED ESCRIPTION INVESTIGATION ENTREES

ANALYTICAL RESULTS SUMMARY Halogenated Volatile Organics SW Method 8010 (second of two pages)

Compound	<u> </u>	Concentration			Retention Time	
	Det Lim	Column 1	Column 2	Column 1	Column 2	i
Dibromomethane	1	<10		13.09		
1,2-Dichlorobenzene	3	<10	1	60.10		İ
1,3-Dichlorobenzene	5	<10	1	42.90		:
1,4-Dichlorobenzene	. 5	<10	<u> </u>	37.28		
Dichlorodifluoromethane	30	430		3.54		:
1,1-Dichloroethane	: 1	<10	<u> </u>	11.67	;	·
1,2-Dichloroethane	. 1	<10		13.55	!	;
1,1-Dichloroethylene	<u> </u>	<10	 	10.31	1	i
trans-1,2-Dichloroethylene	2	<10		12.35		i
Dichloromethane	5	<10	!	7.50		
1,2-Dichloropropane	. ,1	<10		17.19	:	İ
	1			17.24	!	
1,3-Dichloropropylene	5	<10		18.68	<u> </u>	<u> </u>
1,1,2,2-Tetrachloroethane	7	<10		23.47)	
1,1,1,2-Tetrachloroethane	7	<10	!	21.04		
Tetrachloroethylene	i i	<10		23.47	<u> </u>	!
1,1,1-Trichloroethane	i 1	<10		14.76	;	
1,1,2-Trichloroethane	1	<10		18.68		1
Trichloroethylene	2	<10		17.91		
Trichlorofluoromethane	1	<10		8.58	!	
Trichloropropane	ʻ . 2	<10		23.01	!	1
Vinyl chloride	_4	<10	1	3.54		!
	!		<u> </u>	:		1
		!	1	i	1	:
	1		Į	1		į
		:				-
				1		:

^{*} If % moisture is reported, results are presented on a dry-weight basis.

ANALYTICAL RESULTS SUMMARY Halogenated Volatile Organics SW Method 8010 (first of two pages)

Page	1	of	2
Repor	t_		

ES Job No56528	Lab Sample No
Client U.S. Air Force	Field Sample No. 2-ES-11, SS-1
Project PJKS (Denver	Date Collected
Client No.	Date Received /-2-86
Laboratory Supervisor Approval:	Date Analyzed 1/6/86
Johnny R. adamoin Sample Matrix?	QC Report No. PJKS -C7
/_/ Water (ug/L)	Dilution Factor
/X / Soil (ug/g)	*Moisture
/_/ Other	

Compound	C	Concentration		Retenti	on Time	Notes
_	Det Lim	Column 1	Column 2	Column 1	Column 2	
Benzyl chloride	4	<10		40.9		ł
bis(2-chloroethoxy) methane	12	<12		44.2		1
bis(2-chloroisopropyl) ether	25	(25		42.2		
Bromobenzene	88	<10		29.18		
Bromodichloromethane	2	<10		15.69		
Bromoform	4	<10		21.24	1	
Bromomethane	24	1		2.85	1	
Carbon tetrachloride	3	<10	<u> </u>	15.47		<u> </u>
Chloroacetaldehyde	10	<10	<u> </u>	11.6	<u> </u>	!
Chloral	10	<10	<u> </u>	18.7	<u> </u>	<u> </u>
Chlorobenzene	5	<10	<u> </u>	26.01		
Chloroethane	10	<10		4.51	<u> </u>	: !
Chloroform	11	<10		13.01		!
1-Chlorońexane	2	<10		26.58)
2-Chloroethyl vinyl ether	3	<10	<u> </u>	19.49	<u> </u>	!
Chloromethane	2	<10		1.95	1	<u> </u>
Chloromethyl methyl ether	20	Lao		9.37		<u> </u>
Chlorotoluene	4	<10		37.9		
Dibromochloromethane	2	<10	<u> </u>	18.68	<u> </u>	

CANTON CONTROL OF THE PROPERTY

N

3

大公

ğ

ANALYTICAL RESULTS SUMMARY Halogenated Volatile Organics SW Method 8010 (second of two pages)

Compound		ncentrati		Retentio		Notes
	Det Lim	Column 1	Column	2 Column 1	Column 2	
Dibromomethane	1	<10		13.09		
1,2-Dichlorobenzene	3	<10		60.10		
1,3-Dichlorobenzene	6	<10		42.90	!	
1,4-Dichlorobenzene	5	<10	ļ	37.28	: !	
Dichlorodifluoromethane	_30	حرع ه		3.54		
1,1-Dichloroethane	1	<10		11.67		<u> </u>
1,2-Dichloroethane	1	<10		13.55		
1,1-Dichloroethylene	3	<10		10.31		<u> </u>
trans-1,2-Dichloroethylene	. 2	<10		12.35	! 	
Dichloromethane	5	<10		7.50		
1,2-Dichloropropane	1	<10		17.19	! ·	<u>i</u>
			}	17.24		
1,3-Dichloropropylene	6	<10		18.68		
1,1,2,2-Tetrachloroethane	7	<10		23.47		
1,1,1,2-Tetrachloroethane	7	<10		21.04		
Tetrachloroethylene	1	<10		23.47		
1,1,1-Trichloroethane	11_	<10		14.76		
1,1,2-Trichloroethane	1	<10	<u> </u>	18.68	<u> </u>	
Trichloroethylene	2	<10		17.91		
Trichlorofluoromethane	1	<10	<u> </u>	8.58	<u> </u>	
Trichloropropane	2	<10		23.01	<u> </u>	
Vinyl chloride	4	<10		3.54		
					<u> </u>	
		<u> </u>	<u> </u>			
	<u> </u>	!			<u>i</u>	<u> </u>
	!	 	<u> </u>	<u> </u>	<u>i</u>	
	<u> </u>	!	!	!	! !	<u> </u>

^{*} If % moisture is reported, results are presented on a dry-weight basis.

ANALYTICAL RESULTS SUMMARY Halogenated Volatile Organics · SW Method 8010 (first of two pages)

Page	_	of	2
Report			

ES Job No. <u>56528</u>	Lab Sample No	1-86-1003
Client U.S. Air Force	Field Sample No.	2-ES-11, SS-Z
Project PJKS (Denver)	Date Collected	1-1-86
Client No.	Date Received	1-2-86
Laboratory Supervisor Approval:	Date Analyzed	1/6/86
Johnny R adamson Sample Matrix:	QC Report No.	PJKS -07
/_/ Water (ug/L)	Dilution Factor _	
<u>/X</u> / Soil (ug/g)	*Moisture	
/_/ Other		

Compound	С	Time Notes		
	Det Lim	Column 1	Column 2 Column 1 Co	olumn 2
Benzyl chloride	· 4	<10	40.9	•
<pre>bis(2-chloroethoxy) methane</pre>	12	1/12	44.2	
bis(2-chloroisopropyl) ether	25	LYS	42.2	
Bromobenzene	8	<10	29.18	ļ
Bromodichloromethane	2	<10	15.69	
Bromoform	4	<10	21.24	
Bromomethane	24	1	2.85	
Carbon tetrachloride	3	<10	15.47	
Chloroacetaldehyde	10	<10	11.6	i
Chloral	10	<10	18.7	
Chlorobenzene	5	<10	26.01	•
Chloroethane	10	<10	4.51	
Chloroform	1	<10	13.01	1
1-Chlorohexane	2	<10	26.58	ı
2-Chloroethyl vinyl ether	3	<10	19.49	!
Chloromethane	2	<10	1.95	
Chloromethyl methyl ether	20	<20	9.37	
Chlorotoluene	4	<10	37.9	
Dibromochloromethane	2	<10	18.68	1

continued on back

Compound		ncentrati		Retentio		Notes
	Det Lim	Column 1	Column 2	Column 1	Column 2	
Dibromomethane	1	<10		13.09		
1,2-Dichlorobenzene	3	<10		60.10		
1,3-Dichlorobenzene	6	<10		42.90	:	
1,4-Dichlorobenzene	5	<10		37.28	· ·	!
Dichlorodifluoromethane	30	430		3.54	1	<u> </u>
1,1-Dichloroethane	11	<10		11.67	<u> </u>	!
1,2-Dichloroethane	11_	<10		13.55	1	<u> </u>
1,1-Dichloroethylene	3	<10		10.31		!
trans-1,2-Dichloroethylene	2	<10	<u> </u>	12.35	i	<u> </u>
Dichloromethane	55	<10	!	7.50		!
1,2-Dichloropropane	<u> </u>	<10		17.19		}
				17.24		
1,3-Dichloropropylene	66_	<10		18.68	Ì	<u> </u>
1,1,2,2-Tetrachloroethane	7	<10	}	23.47	!	
1,1,1,2-Tetrachloroethane	7	<10		21.04		
Tetrachloroethylene	1	<10		23.47	1	
1,1,1-Trichloroethane	11	<10		14.76	1	
1,1,2-Trichloroethane	1	<10		18.68		
Trichloroethylene	2	<10		17.91	!	
Trichlorofluoromethane	11	<10		8.58	<u> </u>	
Trichloropropane	2	<10		23.01	1]
Vinyl chloride	4	<10		3.54		
	!			1		
	i		1		Į.	
			<u> </u>		<u> </u>	
				}	1	
	<u>i</u>		,	!		<u> </u>

^{*} If * moisture is reported, results are presented on a dry-weight basis.

ASSESS CONTRACTOR CONTRACTOR

ANALYTICAL RESULTS SUMMARY Halogenated Volatile Organics SW Method 8010 (first of two pages)

Page		of	2
Repor	t _		

ES Job No.	_56528	Lab Sample No	1-86-1003
Client	U.S. Air Force	Field Sample No.	2-ES-11, SS-3
Project	PJKS (Denver	Date Collected	1-1-86
Client No.		Date Received	1-2-86
Laboratory	Supervisor Approval:	Date Analyzed	1/6/86
John Sample Mat	my R. adamon	QC Report No.	PJKS-07
-	Water (ug/L)	Dilution Factor	
<u>/x</u> /	Soil (ug/g)	*Moisture	
/ /	Other		

Compound	Concentration			Retention Time		Notes
	Det Lim	Column 1	Column 2	Column 1	Column 2	1
Benzyl chloride	.4	<10		40.9		9
<pre>bis(2-chloroethoxy) methane</pre>	/2	<12		44.2		
bis(2-chloroisopropyl) ether	25	\25		42.2		
Bromobenzene	8	<10		29.18		
Bromodichloromethane	2	<10		15.69		
Bromoform	4	<10		21.24		
Bromomethane	24	224		2.85		
Carbon tetrachloride	3	<10		15.47		
Chloroacetaldehyde	10	<10		11.6	!	
Chloral	10	<10		18.7	!	:
Chlorobenzene	. 5	<10		26.01		
Chloroethane	10	<10		4.51		
Chloroform	. 1	<10		13.01		i
1-Chlorohexane	2	<10	<u> </u>	26.58		1
2-Chloroethyl vinyl ether	3	<10	<u> </u>	19.49		1
Chloromethane	2	<10		1.95		!
Chloromethyl methyl ether	. 20	(20		9.37		
Chlorotoluene	4	<10		37.9		
Dibromochloromethane	2	<10		18.68	1	

continued on back

Compound		oncentrat:		Notes
	Det Lim	Column 1	Column 2 Column 1 Column 2	
Dibromomethane	1	<10	13.09	
1,2-Dichlorobenzene	3	<10	60.10	
1,3-Dichlorobenzene	6	<10	42.90	
1,4-Dichlorobenzene	5	<10	37.28	
Dichlorodifluoromethane	30	C30	3.54	
1,1-Dichloroethane	11	<10	11.67	!
1,2-Dichloroethane	1	<10	13.55	
1,1-Dichloroethylene	3	<10	10.31	
trans-1,2-Dichloroethylene	2	<10	12.35	
Dichloromethane	5	<10	7.50	
1,2-Dichloropropane	1	<10	17.19	1
			17.24	i
1,3-Dichloropropylene	6	<10	18.68	
1,1,2,2-Tetrachloroethane	7	<10	23.47	
1,1,1,2-Tetrachloroethane	7	<10	21.04	
Tetrachloroethylene	1	<10	23.47	
1,1,1-Trichloroethane	1 1	<10	14.76	
1,1,2-Trichloroethane	1	<10	18.68	
Trichloroethylene	2	<10	17.91	
Trichlorofluoromethane	1	<10	8.58	
Trichloropropane	. 2	<10	23.01	
Vinyl chloride	4	<10	3.54	
	!			
	!	Ī		
	:	-		
	;		: :	

^{*} If % moisture is reported, results are presented on a dry-weight basis.

ANALYTICAL RESULTS SUMMARY Halogenated Volatile Organics SW Method 8010 (first of two pages)

Page _	/	of	2
Report	: _		

?

 $\tilde{\mathbf{g}}$

ES Job No.	56528	Lab Sample No.	1-86-1004
Client	U.S. Air Force	Field Sample No.	2-ES-11, SS-4
Project	PJKS (Denver	Date Collected	1-1-86
Client No.		Date Received	1-2-86
Laboratory	Supervisor Approval:	Date Analyzed	1/6/86
Sample Mati	m R. adamson	QC Report No	PJKS-07
/ \	Water (ug/L)	Dilution Factor _	
/x /	Soil (ug/g)	*Moisture	8
//	Other		

Compound	Co	Concentration			Retention Time	
	Det Lim	Column 1	Column 2	Column 1	Column 2	
Benzyl chloride	4	<10		40.9		, , , ,
bis(2-chloroethoxy) methane	12	<12		44.2		!
bis(2-chloroisopropyl) ether	25	425		42.2		
Bromobenzene	. 8	<10_	<u> </u>	29.18		
Bromodichloromethane	2	<10		15.69		
Bromoform	4	<10		21.24		
Bromomethane	24	424		2.85		
Carbon tetrachloride	3	<10		15.47	<u></u>	
Chloroacetaldehyde	10	<10		11.6		·
Chloral	10	<10		18.7	ļ	
Chlorobenzene	5	<10		26.01		
Chloroethane	10	<10	<u> </u>	4.51		
Chloroform	111	<10		13.01	ļ	•
1-Chlorohexane	2	<10	<u> </u>	26.58	<u> </u>	, ,
2-Chloroethyl vinyl ether	3	<10	<u> </u>	19.49		·
Chloromethane	2	<10		1.95	<u> </u>	1
Chloromethyl methyl ether	20	220	<u> </u>	9.37		!
Chlorotoluene	4_	<10		37.9		
Dibromochloromethane	2	<10		18.68	1	1

continued on back

DESCRIPTION OF THE PROPERTY OF

ANALYTICAL RESULTS SUMMARY Halogenated Volatile Organics SW Method 8010 (second of two pages)

Compound	Co	oncentrati	ion	Retentio	on Time	Notes
·	Det Lim	Column 1	Column 2	Column 1	Column 2	
Dibromomethane	11	<10		13.09		
1,2-Dichlorobenzene	· 3	<10		60.10		
1,3-Dichlorobenzene	66	<10		42.90	1	
1,4-Dichlorobenzene	5	<10		37.28	! !	
Dichlorodifluoromethane	30	430		3.54	}	
1,1-Dichloroethane	1	<10		11.67		İ
1,2-Dichloroethane	1	<10		13.55		
1,1-Dichloroethylene	3	<10		10.31	1	
trans-1,2-Dichloroethylene	2	<10		12.35	!	
Dichloromethane	5	<10		7.50	1	
1,2-Dichloropropane	1	<10		17.19	!	1
				17.24		
1,3-Dichloropropylene	6	<10		18.68		
1,1,2,2-Tetrachloroethane	7	<10]	23.47		
1,1,1,2-Tetrachloroethane	7	<10		21.04		
Tetrachloroethylene	1	<10		23.47		
1,1,1-Trichloroethane	1.	<10		14.76		
1,1,2-Trichloroethane	1. 1	<10		18.68		
Trichloroethylene	i 2	<10		17.91	<u>‡</u>	
Trichlorofluoromethane	1 1	<10		8.58		
Trichloropropane	2	<10		23.01	!	
Vinyl chloride	4	<10		3.54		
	!]	
	1					
				1		
					i	
		!		!		

^{*} If % moisture is reported, results are presented on a dry-weight basis.

PARSON RANDOM PRINTER WINDOM LEAGUE PRINTER PRINTER PRINTER PRINTER CONTROL FRANCE

3

3

^

Ż

7.

ANALYTICAL RESULTS SUMMARY Halogenated Volatile Organics SW Method 8010 (first of two pages)

Page _	/ of	<u>Z</u>
Report		

ES Job No. 56528	Lab Sample No.	1-86-1005
Client U.S. Air Force	Field Sample No.	2-ES-11, SS-5
Project PJKS (Denver	Date Collected	1-1-86
Client No.	Date Received	1-2-86
Laboratory Supervisor Approval:	Date Analyzed	16/86
Sample Matrix: R. Cod amon	QC Report No.	PJKS-07
/_/ Water (ug/L)	Dilution Factor _	
/X / Soil (ug/g)	*Moisture	
/ / Other		

Compound	Concentration			Retenti	Notes	
	Det Lim	Column 1	Column 2	Column 1	Column 2	<u> </u>
Benzyl chloride	4	<10		40.9	•	
<pre>bis(2-chloroethoxy) methane</pre>	12	د اک		44.2		
<pre>bis(2-chloroisopropyl) ether</pre>	25	425		42.2		
Bromobenzene	8	<10		29.18		
Bromodichloromethane	2	<10		15.69		
Bromoform	. 4	<10		21.24		
Bromomethane	24	LA4		2.85		
Carbon tetrachloride	. 3	<10		15.47	1	i
Chloroacetaldehyde	10	<10		11.6	1	
Chloral	10	<10		18.7		
Chlorobenzene	5	<10		26.01		
Chloroethane	10	<10		4.51		
Chloroform	1	<10		13.01		
1-Chlorohexane	2	<10		26.58		
2-Chloroethyl vinyl ether	3	<10		19.49		
Chloromethane	2	<10		1.95		
Chloromethyl methyl ether	20	120		9.37		
Chlorotoluene	4	<10		37.9		
Dibromochloromethane	2	<10		18.68		

continued on back

KARASA PARAMA MARAMA MARAMA MARAMA

THE THE PERSON THE PERSON WINDS TO SELECT THE PERSON TO SELECT THE PERSON THE PERSON TO SELECT THE PERSON TO SELECT THE PERSON TO SELECT THE PERSON TO SELECT THE PERSON TO SELECT THE PERSON THE PERS

ANALYTICAL RESULTS SUMMARY Halogenated Volatile Organics SW Method 8010 (second of two pages)

Compound	Concentration			Retentio	Notes	
	Det Lim	Column 1	Column 2	Column 1	Column 2	
Dibromomethane	1	<10		13.09		
1,2-Dichloropenzene	3	<10		60.10		
1,3-Dichlorobenzene	6	<10		42.90	1	
1,4-Dichlorobenzene	5	<10	<u> </u>	37.28	!	<u> </u>
Dichlorodifluoromethane	30	130		3.54	!	
1,1-Dichloroethane	1	<10		11.67		
1,2-Dichloroethane	1	<10	 	13.55		
1,1-Dichloroethylene	3	<10		10.31		
trans-1,2-Dichloroethylene	2	<10		12.35	!	
Dichloromethane	5	<10		7.50		
1,2-Dichloropropane	1	<10		17.19	1	ĺ
				17.24		
1,3-Dichloropropylene	6	<10		18.68		
1,1,2,2-Tetrachloroethane	7	<10		23.47		
1,1,1,2-Tetrachloroethane	. 7	<10		21.04		
Tetrachloroethylene	. 1	<10		23.47		
1,1,1-Trichloroethane	1	<10		14.76		
1,1,2-Trichloroethane	1	<10		18.68	<u> </u>	
Trichloroethylene	2	<10		17.91	İ	
Trichlorofluoromethane	1	<10		8.58		
Trichloropropane	2	<10		23.01	1	
Vinyl chloride	4	<10		3.54		
	1					
					!	
	<u> </u>				i	
		!			1	
	<u> </u>		1	!	:	

^{*} If % moisture is reported, results are presented on a dry-weight basis.

ANALYTICAL RESULTS SUMMARY Halogenated Volatile Organics SW Method 8010 (first of two pages)

Page _	_	of	2
Report	_		

ES Job No. 56528	Lab Sample No	1-86-1006
ClientU.S. Air Force	Field Sample No.	2-ES-13, 55-1
Project PJKS (Denver	Date Collected	1-1-86
Client No.	Date Received	1-2-86
Laboratory Supervisor Approval:	Date Analyzed	1/6/86
Sample Matrix: R Columnian	QC Report No	PJK5-07
/_/ Water (ug/L)	Dilution Factor _	
/X / Soil (ug/g)	*Moisture	
/ / Other		

Compound	Concentration			Retenti	Notes	
-	Det Lim	Column 1	Column	2 Column 1	Column 2	
Benzyl chloride	4	<10		40.9		
<pre>bis(2-chloroethoxy) methane</pre>	12	<12		44.2		
<pre>bis(2-chloroisopropyl) ether</pre>	25	< 25		42.2		
Bromobenzene	8	<10		29.18		
Bromodichloromethane	2	<10		15.69		
Bromoform	4	<10		21.24		
Bromomethane	. 24	424		2.85		
Carbon tetrachloride	. 3	<10		15.47		
Chloroacetaldehyde	10	<10		11.6		
Chloral	10	<10		18.7	<u> </u>	
Chlorobenzene	5	<10		26.01		
Chloroethane	10	<10		4.51		
Chloroform	1	<10		13.01		_
1-Chlorohexane	2	<10		26.58		
2-Chloroethyl vinyl ether	3	<10		19.49		
Chloromethane	. 2	<10		1.95		
Chloromethyl methyl ether	20	८२०		9.37	!	
Chlorotoluene	4	<10		37.9		
Dibromochloromethane	2	<10	1	18.68		

continued on back

STATES THE CONTRACT THE STATES AND THE STATES AND THE STATES OF THE STAT

505 205 Sec.

STANDS LEAVING TANGERS

3

N.

8

ANALYTICAL RESULTS SUMMARY Halogenated Volatile Organics SW Method 8010 (second of two pages)

Compound	Concentration			Retention Time		Notes
	Det Lim	Column 1	Column 2	Column 1	Column 2	
Dibromomethane	1	<10		13.09		
1,2-Dichlorobenzene	3	<10		60.10		
1,3-Dichlorobenzene	6	<10		42.90	•	
1,4-Dichlorobenzene	5	<10		37.28		
Dichlorodifluoromethane	30	<30		3.54		
1,1-Dichloroethane	1	<10		11.67		
1,2-Dichloroethane	1	<10		13.55	1	
1,1-Dichloroethylene	3	<10		10.31		
trans-1,2-Dichloroethylene	. 2	<10		12.35	ļ .	
Dichloromethane	. 5	<10		7.50		
1,2-Dichloropropane	1	<10		17.19	!	
	İ			17.24		1
1,3-Dichloropropylene	. 6	<10		18.68		
1,1,2,2-Tetrachloroethane	7	<10]	23.47		
1,1,1,2-Tetrachloroethane	7	<10		21.04		
Tetrachloroethylene	11_	<10		23.47		
1,1,1-Trichloroethane	1	<10		14.76		
1,1,2-Trichloroethane	11	<10		18.68		
Trichloroethylene	2	<10		17.91		
Trichlorofluoromethane	1	<10		8.58		
Trichloropropane	2	<10		23.01	1	
Vinyl chloride	4	<10		3.54		
	1					
					ļ	
	<u> </u>		<u> </u>		<u>i</u>	
	<u> </u>			<u> </u>	1	
	<u> </u>		!			

^{*} If % moisture is reported, results are presented on a dry-weight basis.

SEED THE COURSE STATES TO THE PROPERTY OF THE

WENTER SERVER REARDS PERSON VINERAL

ANALYTICAL RESULTS SUMMARY Halogenated Volatile Organics SW Method 8010 (first of two pages)

Page _	1	of	2
Report	=		

3

ES Job No. 56528	Lab Sample No	1-86-1007
Client U.S. Air Force	Field Sample No.	2-ES-13,55-2
Project PJKS (Denver	Date Collected	1-1-86
Client No.	Date Received	1-2-86
Laboratory Supervisor Approval:	Date Analyzed	1/7/86
Johnny R. Colomon Sample Matrix:	QC Report No.	PJKS-07
/_/ Water (ug/L)	Dilution Factor _	
/X / Soil (ug/g)	*Moisture	<u> </u>
/ / Other		

Compound	Concentration			Retention Time		Notes
-	Det Lim	Column 1	Column 2	Column 1	Column 2	
Benzyl chloride	4	<10		40.9		
<pre>bis(2-chloroethoxy) methane</pre>	12	<12		44.2		
<pre>bis(2-chloroisopropyl) ether</pre>	25	125		42.2		
Bromobenzene	8	<10		29.18		
Bromodichloromethane	2	<10		15.69		
Bromoform	4	<10		21.24		
Bromomethane	24	424		2.85		
Carbon tetrachloride	. 3	<10		15.47		
Chloroacetaldehyde	10	<10		11.6		
Chloral	10	<10		18.7		
Chlorobenzene	5	<10 ·		26.01		
Chloroethane	10	<10		4.51		
Chloroform	1	<10		13.01		
1-Chlorohexane	2	<10		26.58		
2-Chloroethyl vinyl ether	3	<10		19.49		
Chloromethane	2	<10		1.95		
Chloromethyl methyl ether	20	120		9.37		
Chlorotoluene	4	<10		37.9		
Dibromochloromethane	2	<10		18.68		

continued on back

ANALYTICAL RESULTS SUMMARY Halogenated Volatile Organics SW Method 8010 (second of two pages)

Compound	Co	oncentrati	on	Retentio	Notes	
	Det Lim	Column 1	Column 2	Column 1	Column 2	
Dibromomethane	. 1	<10		13.09	i	
1,2-Dichlorobenzene	3	<10		60.10		
1,3-Dichlorobenzene	66	<10		42.90		
1,4-Dichlorobenzene	5	<10		37.28		
Dichlorodifluoromethane	30	<30		3.54		
1,1-Dichloroethane	11	<10		11.67		
1,2-Dichloroethane	. 1	<10		13.55		
1,1-Dichloroethylene	3	<10		10.31		
trans-1,2-Dichloroethylene	2	<10		12.35	ļ.	
Dichloromethane	5	<10		7.50		
1,2-Dichloropropane	. 1	<10		17.19		
				17.24		
1,3-Dichloropropylene	6	<10		18.68		
1,1,2,2-Tetrachloroethane	. 7	<10		23.47		}
1,1,1,2-Tetrachloroethane	7	<10		21.04		
Tetrachloroethylene	1	<10		23.47		
1,1,1-Trichloroethane	1	<10		14.76		
1,1,2-Trichloroethane	. 1	<10		18.68		
Trichloroethylene	2	<10		17.91		
Trichlorofluoromethane	1	<10		8.58		
Trichloropropane	2	<10		23.01		
Vinyl chloride	4	<10		3.54		
•						
	1					
	İ				ì	
	<u>i</u>	<u> </u>	1			

^{*} If % moisture is reported, results are presented on a dry-weight basis.

MARKAT REPRESENTATION OF THE PROPERTY AND THE PROPERTY OF THE

ANALYTICAL RESULTS SUMMARY Halogenated Volatile Organics SW Method 8010 (first of two pages)

Page _	<u>/</u>	of	2
Report	_		

ES Job No. 56528	Lab Sample No.	<u>}_</u>
Client U.S. Air Force	Field Sample No. 2-ES-13, 55-3	
Project PJKS (Denver	Date Collected	
Client No.	Date Received /-2-86	
Laboratory Supervisor Approval:	Date Analyzed 1/7/86	
Johnny R. Odanson Sample Matrix:	QC Report No. PJKS-07	
/_/ Water (ug/L)	Dilution Factor	
<u>/X </u>	*Moisture	-8
/_/ Other		

Compound	Concentration			Retention Time		
	Det Lim	Column 1	Column 2	Column 1	Column 2	
Benzyl chloride	. 4	<10		40.9	•	
<pre>bis(2-chloroethoxy) methane</pre>	12	<12		44.2		
bis(2-chloroisopropyl) ether	25	225		42.2		
Bromobenzene	8	<10		29.18		
Bromodichloromethane	. 2	<10		15.69		
Bromoform	4	<10		21.24	•	
Bromomethane	24	<24		2.85		_
Carbon tetrachloride	3	<10		15.47		
Chloroacetaldehyde	. 10	<10		11.6		
Chloral	. 10	<10		18.7		
Chlorobenzene	5	<10		26.01		
Chloroethane	10	<10		4.51	•	
Chloroform	1	<10		13.01		
1-Chlorohexane	2	<10		26.58		
2-Chloroethyl vinyl ether	3	<10		19.49		
Chloromethane	2	<10		1.95		
Chloromethyl methyl ether	20	420		9.37		
Chlorotoluene	. 4	<10		37.9		
Dibromochloromethane	· 2	<10		18.68		

continued on back

THE STATE OF THE STATE OF THE PROPERTY OF THE PARTY OF TH

ANALYTICAL RESULTS SUMMARY Halogenated Volatile Organics SW Method 8010 (second of two pages)

Compound	Co	oncentrati	on	Retentio	Notes	
	Det Lim	Column 1	Column 2	Column 1	Column 2	
Dibromomethane	1	<10		13.09		
1,2-Dichlorobenzene	3	<10	1 	60.10		
1,3-Dichlorobenzene	. 6	<10		42.90		
1,4-Dichlorobenzene	5	<10_		37.28	•	
Dichlorodifluoromethane	30	630		3.54	1	
1,1-Dichloroethane	11	<10		11.67	1	
1,2-Dichloroethane	1	<10		13.55	1	
1,1-Dichloroethylene	3	<10		10.31	•	
trans-1,2-Dichloroethylene	2	<10		12.35	i	
Dichloromethane	5	<10	1	7.50	!	-
1,2-Dichloropropane	1	<10		17.19	1	-
	! 	}	!	17.24		
1,3-Dichloropropylene	6	<10		18.68		
1,1,2,2-Tetrachloroethane	7	<10	1	23.47	!	
1,1,1,2-Tetrachloroethane	7	<10		21.04		
Tetrachloroethylene	1	<10		23.47		
1,1,1-Trichloroethane	11	<10		14.76		
1,1,2-Trichloroethane	11	<10		18.68	1	
Trichloroethylene	2	<10		17.91		
Trichlorofluoromethane	1	<10		8.58		
Trichloropropane	2	<10		23.01	!	
Vinyl chloride	4	<10		3.54		
				1		
•	!			1	!	
	1			1	1	
	•	!	1	1	i	1
	<u> </u>		!	!		1

^{*} If % moisture is reported, results are presented on a dry-weight basis.

ANALYTICAL RESULTS SUMMARY Halogenated Volatile Organics SW Method 8010 (first of two pages)

Page	L	of	<u>Z</u>
Report	_		

1

ES Job No. 56528	Lab Sample No.	86-1009
Client U.S. Air Force	Field Sample No. $2-E$	5-14, 55-1
Project PJKS (Denver	Date Collected	1-1-86
Client No.	Date Received	1-2-86
Laboratory Supervisor Approval:	Date Analyzed 1/7	186
John R. adaman Sample Matrix:	QC Report No. PJA	(5-07
/_/ Water (ug/L)	Dilution Factor	
/X / Soil (ug/g)	*Moisture	
/_/ Other		

Compound	Concentration			Retenti	Retention Time Note	
•	Det Lim	Column 1	Column 2	Column 1	Column 2	
Benzyl chloride	-4	<10		40.9	•	
<pre>bis(2-chloroethoxy) methane</pre>	12	12		44.2		
bis(2-chloroisopropyl) ether	25	425		42.2		
Bromobenzene	8	<10		29.18	!	
Bromodichloromethane	2	<10	1	15.69		
Bromoform	4	<10		21.24		
Bromomethane	24	124		2.85	l ;	
Carbon tetrachloride	. 3	<10		15.47	:	
Chloroacetaldehyde	10	<10	<u> </u>	11.6	! !	
Chloral	10	<10		18.7		
Chlorobenzene	5	<10	<u> </u>	26.01		
Chloroethane	. 10	<10	1	4.51		
Chloroform	1	<10		13.01		
1-Chlorohexane	2	<10		26.58	•	
2-Chloroethyl vinyl ether	3	<10		19.49		
Chloromethane	2	<10		1.95		
Chloromethyl methyl ether	20	420		9.37		
Chlorotoluene	4	<10		37.9		
Dibromochloromethane	2	<10	1	18.68		

continued on back

ANALYTICAL RESULTS SUMMARY Halogenated Volatile Organics SW Method 8010 (second of two pages)

Compound	Concentration		Retention Time		Notes	
	Det Lim	Column 1	Column 2	Column 1	Column 2	
Dibromomethane	1	<10		13.09		
1,2-Dichlorobenzene	3	<10		60.10	1	
1,3-Dichlorobenzene	6	<10		42.90	1	
1,4-Dichlorobenzene	5	<10		37.28	,	;
Dichlorodifluoromethane	30	230		3.54		
1,1-Dichloroethane	1	<10	<u> </u>	11.67	1	!
1,2-Dichloroethane	、 1	<10		13.55		!
1,1-Dichloroethylene	3	<10		10.31	<u> </u>	!
trans-1,2-Dichloroethylene	. 2	<10		12.35	:	
Dichloromethane	5	<10	<u> </u>	7.50	1	!
1,2-Dichloropropane	1	<10		17.19	<u> </u>	!
	Í		1	17.24	[l i
1,3-Dichloropropylene	3	<10		18.68		!
1,1,2,2-Tetrachloroethane	. 7	<10	<u> </u>	23.47	<u> </u>	
1,1,1,2-Tetrachloroethane	7	<10		21.04	<u> </u>	
Tetrachloroethylene	1 1	<10		23.47		
1,1,1-Trichloroethane	11	<10	1	14.76	<u> </u>	
1,1,2-Trichloroethane	i 1	<10		18.68	i !	<u> </u>
Trichloroethylene	2	<10	<u> </u>	17.91	<u> </u>	<u> </u>
Trichlorofluoromethane	111	<10		8.58	i 	
Trichloropropane	2	<10		23.01	!	
Vinyl chloride	4	<10	<u> </u>	3.54	i	
	!	<u> </u>		!	<u> </u>	
	!				i	
	1	1		!	<u>į</u>	
	!	<u> </u>	1	!	!	
	<u>i</u>	1		!	·	İ

^{*} If % moisture is reported, results are presented on a dry-weight basis.

ANALYTICAL RESULTS SUMMARY Halogenated Volatile Organics SW Method 8010 (first of two pages)

Page _	_	of	2
Report	_		

3

ES Job No.	56528	Lab Sample No	1-86-1010
Client _	U.S. Air Force	Field Sample No.	2-ES-14, SS-2
Project _	PJKS (Denver	Date Collected	
Client No.	•	Date Received	1-2-86
Laboratory	Y Supervisor Approval:	Date Analyzed	1/7/86
Sample Mat	2 Colamon	QC Report No.	PJKS-07
/	Water (ug/L)	Dilution Factor _	
<u>/x</u> _/	Soil (ug/g)	*Moisture	*
/_/	Other		··

Compound	Concentration			Retention Time		Notes
	Det Lim	Column 1	Column 2	Column 1	Column 2	
Benzyl chloride	4	<10		40.9		
<pre>bis(2-chloroethoxy) methane</pre>	12	<12		44.2		,
bis(2-chloroisopropyl) ether	25	حد ح		42.2		
Bromobenzene	8	<10		29.18		
Bromodichloromethane	2	<10		15.69		
Bromoform	. 4	<10		21.24		
Bromomethane .	24	<24		2.85	!	
Carbon tetrachloride	3	<10		15.47		1
Chloroacetaldehyde	10	<10		11.6		
Chloral	10	<10		18.7		
Chlorobenzene	5	<10		26.01		
Chloroethane	10	<10		4.51	i	:
Chloroform	. 1	<10		13.01		
1-Chlorohexane	2	<10		26.58)
2-Chloroethyl vinyl ether	. 3	<10		19.49		
Chloromethane	2	<10		1.95		
Chloromethyl methyl ether	20	120		9.37		
Chlorotoluene	4	<10		37.9		
Dibromochloromethane	2	<10	1	18.68		

continued on back

PARSESS PRINCIPAL PROPERTY SALES A TRANSPORT

Compound		ncentrati		Retentio		Notes
	Det Lim	Column 1	Column 2	Column 1	Column 2	
Dibromomethane	. 11	<10		13.09		
1,2-Dichlorobenzene	3	<10		60.10		
1,3-Dichlorobenzene	6	<10		42.90	<u>:</u>	
1,4-Dichlorobenzene	. 5	<10		37.28	<u> </u>	<u> </u>
Dichlorodifluoromethane	30	<30		3.54	<u>}</u>	
1,1-Dichloroethane	1	<10		11.67	<u> </u>	<u> </u>
1,2-Dichloroethane	1	<10		13.55		<u> </u>
1,1-Dichloroethylene	3	<10		10.31	<u> </u>	<u> </u>
trans-1,2-Dichloroethylene	2	<10		12.35	<u> </u>	
Dichloromethane	5	<10		7.50		!
1,2-Dichloropropane	. 1	<10		17.19	i	
				17.24	1	i
1,3-Dichloropropylene	6	<10		18.68		<u> </u>
1,1,2,2-Tetrachloroethane		<10		23.47	<u> </u>	
1,1,1,2-Tetrachloroethane	. 7	<10		21.04		
Tetrachloroethylene	31	<10		23.47		
1,1,1-Trichloroethane	11	<10		14.76	1	
1,1,2-Trichloroethane	1	<10		18.68		
Trichloroethylene	2	<10		17.91		
Trichlorofluoromethane	1	<10		8.58		
Trichloropropane	. 2	<10		23.01	<u> </u>	
Vinyl chloride	1 4	<10		3.54		
	!			1	t t	
	1			1 .		
	<u>!</u>		<u> </u>		į	
	: 	!	!		<u> </u>	
	<u> </u>	<u>!</u>	·	1		

^{*} If % moisture is reported, results are presented on a dry-weight basis.

ANALYTICAL RESULTS SUMMARY Halogenated Volatile Organics SW Method 8010 (first of two pages)

Page /	of <u>2</u>
Report	· ,

ES Job No. <u>56528</u>	Lab Sample No	1-36-1011
Client U.S. Air Force	Field Sample No.	2-ES-14, 55-3
ProjectPJKS (Denver	Date Collected _	1-1-96
Client No.	Date Received · _	1-2-9t
Laboratory Supervisor Approval:	Date Analyzed	1/7/86
Johnen Padanon	QC Report No.	PJKS-03
/_/ Water (ug/L)	Dilution Factor	
/X / Soil (ug/g)	*Moisture	*
/_/ Other		

Compound	Concentration			Retention Time		Notes
	Det Lim	Column 1	Column 2	Column	Column 2	
Benzyl chloride	4	.<10		40.9		
<pre>bis(2-chloroethoxy) methane</pre>	12	612		44.2		
bis(2-chloroisopropyl) ether *	25	{25		42.2		
Bromobenzene	- 8	<10		29.18		
Bromodichloromethane	2	<10		15.69	1	
Bromoform	4	<10		21.24		
Bromomethane	24	224		2.85		
Carbon tetrachloride	3 .	<10		15.47		
Chloroacetaldehyde	10	<10		11.6		
Chloral	10	<10		18.7		
Chlorobenzene	5	<10		26.01	1	
Chloroethane	10	<10		4.51	1	
Chloroform	11	<10		13.01		
1-Chlorohexane	2	<10		26.58	j)
2-Chloroethyl vinyl ether	3	<10		19.49		
Chloromethane	2	<10		1.95		
Chloromethyl methyl ether	20	420		9.37	<u> </u>	
Chlorotoluene	. 4	<10		37.9	!	
Dibromochloromethane	2	<10		18.68		

continued on back

ANALYTICAL RESULTS SUMMARY Halogenated Volatile Organics SW Method 8010 (second of two pages)

Compound	Co	oncentrati	on	Retention Time	Notes
	Det Lim	Column 1	Column 2	Column 1 Column	2
Dibromomethane	1	<10		13.09	
1,2-Dichlorobenzene	3	<10		60.10	
1,3-Dichlorobenzene	6	<10		42.90	
1,4-Dichlorobenzene	5	<10		37.28	
Dichlorodifluoromethane	30	<30	<u> </u>	3.54	
1,1-Dichloroethane	· ·1	<10		11.67	
1,2-Dichloroethane	1	<10		13.55	
1,1-Dichloroethylene	3	<10	 	10.31	
trans-1,2-Dichloroethylene	2	<10		12.35	į .
Dichloromethane	5	<10		7.50	
1,2-Dichloropropane	11	<10		17.19	
				17.24	:
1,3-Dichloropropylene	6	<10		18.68	
1,1,2,2-Tetrachloroethane	. <u>7</u>	<10	•	23.47	
1,1,1,2-Tetrachloroethane	. 7	<10		21.04	
Tetrachloroethylene	<u> </u>	<10		23.47	
1,1,1-Trichloroethane	1	<10		14.76 :	
1,1,2-Trichloroethane	11	<10		18.68	
Trichloroethylene	2	<10		17.91	
Trichlorofluoromethane	1	<10		8.58	
Trichloropropane	. 2	<10		23.01	1
Vinyl chloride	4	<10		3.54	
	! 				
•		!		1	
	·	1	<u> </u>	!	
	: 	<u> </u>	: 		1
		<u>:</u>		:	

^{*} If % moisture is reported, results are presented on a dry-weight basis.

became transfer to the state of the second o

75 •X

ANALYTICAL RESULTS SUMMARY Halogenated Volatile Organics SW Method 8010 (first of two pages)

Page	1	of	2
Repor	t _		

7

Lab Sample No	1-86-1012
Field Sample No.	2-65-14,554
Date Collected	1-1-86
Date Received	1-2-86
Date Analyzed	17186
QC Report No.	PJKS-03
Dilution Factor _	
*Moisture	
	Field Sample No. Date Collected Date Received Date Analyzed OC Report No. Dilution Factor

Compound	Concentration			Retention Time Notes		
_	Det Lim	Column 1	Column 2	Column 1	Column 2	
Benzyl chloride	4	<10	İ	40.9	•	
<pre>bis(2-chloroethoxy) methane</pre>	12	(12		44.2	;	
<pre>bis(2-chloroisopropyl) ether</pre>	25	<25		42.2		
Bromobenzene	9	<10		29.18	1	
Bromodichloromethane	2	<10		15.69		
Bromoform	4	<10		21.24	İ	
Bromomethane	24	Kky		2.85	1	
Carbon tetrachloride	3	<10		15.47	1	
Chloroacetaldehyde	10	<10		11.6		
Chloral	10	<10		18.7	:	
Chlorobenzene	5	<10		26.01	1	
Chloroethane	10	<10		4.51		
Chloroform	11	<10		13.01	<u>i</u>	
1-Chlorohexane	2	<10		26.58	i	
2-Chloroethyl vinyl ether	3	<10		19.49	:	
Chloromethane	2	<10		1.95	!	
Chloromethyl methyl ether	20	/ 20		9.37		
Chlorotoluene	4	<10		37.9	•	
Dibromochloromethane	2	<10	į	18.68	• :	

continued on back

SECRETARION PROFESSION

CHANGE ISSUED WINDS SEEDS STREETS ASSESSED INSTERNA

A 1 - CC RS CO REC CO REC CO SSE DIE SOS

ANALYTICAL RESULTS SUMMARY Halogenated Volatile Organics SW Method 8010 (second of two pages)

Compound	Concentration			Retenti	Notes	
	Det Lim	Column 1	Column 2	Column 1	Column 2	
Dibromomethane	1	<10	· i	13.09		
1,2-Dichlorobenzene	3	<10		60.10	i 	
1,3-Dichlorobenzene	6	<10		42.90	:	
1,4-Dichlorobenzene	5	<10		37.28		
Dichlorodifluoromethane	30	430		3.54	!	į
1,1-Dichloroethane	1	<10		11.67		
1,2-Dichloroethane	11	<10		13.55	1	
1,1-Dichloroethylene	3	<10		10.31		-
trans-1,2-Dichloroethylene	2	<10		12.35		ļ
Dichloromethane	5	<10		7.50		
1,2-Dichloropropane	1	<10		17.19	1	İ
	•		 	17.24		!
1,3-Dichloropropylene	6	<10		18.68		
1,1,2,2-Tetrachloroethane	7	<10		23.47	!	
1,1,1,2-Tetrachloroethane	7	<10		21.04	Ì	
Tetrachloroethylene	1	<10		23.47	!	1
1,1,1-Trichloroethane	1	<10		14.76		
1,1,2-Trichloroethane	. 1	<10		18.68		
Trichloroethylene	2	<10		17.91		!
Trichlorofluoromethane	1	<10	1	8.58	:	
Trichloropropane	2	<10		23.01	!	
Vinyl chloride	4	<10		3.54	i	
				ŗ		
						Ì
					,	
	:	1	:			
		!				1

^{*} If % moisture is reported, results are presented on a dry-weight basis.

ANALYTICAL RESULTS SUMMARY Halogenated Volatile Organics SW Method 8010 (first of two pages)

Page	1	of	<u> </u>
Repor	t _		

ES Job No. <u>56528</u>	Lab Sample No.	1-8c-1613
Client U.S. Air Force	Field Sample No.	2-ES-14,55-5
Project PJKS (Denver	Date Collected	1-1-86
Client No.	Date Received	/ - 2-86
Laboratory Supervisor Approval:	Date Analyzed	17/86
Johnson, R Cidamon	QC Report No.	PJKS-CS
Sample Matrix:		
/ / Water (ug/L)	Dilution Factor _	
/X / Soil (ug/g)	*Moisture	
/_/ Other	·	

Compound	C	oncentrat	ion	Retenti	on Time Notes
	Det Lim	Column 1	Column 2	Column 1	Column 2:
Benzyl chloride	. 4	<10		40.9	•
<pre>bis(2-chloroethoxy) methane</pre>	12	<12		44.2	
<pre>bis(2-chloroisopropyl) ether</pre>	25	(25		42.2	
Bromobenzene	8	<10		29.18	
Bromodichloromethane	2	<10		15.69	
Bromoform	4	<10		21.24	!
Bromomethane	24	/24		2.85	
Carbon tetrachloride	3	<10		15.47	<u> </u>
Chloroacetaldehyde	10	<10		11.6	
Chloral	10	<10		18.7	
Chlorobenzene	5	<10		26.01	
Chloroethane	. 10	<10		4.51	!
Chloroform	11	<10		13.01	
1-Chlorohexane	2	<10		26.58	•
2-Chloroethyl vinyl ether	3	<10		19.49	
Chloromethane	2	<10		1.95	
Chloromethyl methyl ether	20	لاءِ م		9.37	
Chlorotoluene	4	<10	1	37.9	
Dibromochloromethane	2	<10	1	18.68	

continued on back

स्ट्रेस्ट्य जिल्लाका जिल्लाका हिस्ट्रिस्ट्य जिल्लाक्र जिल्लाक्र

Compound	Concentration			Retention Time		Notes
	Det Lim	Column 1	Column 2	Column 1	Column 2	ļ
Dibromomethane	11	<10		13.09		
1,2-Dichlorobenzene	3	<10		60.10	<u> </u>	1
1,3-Dichlorobenzene	6	<10		42.90	:	
1,4-Dichlorobenzene	5	<10		37.28		r
Dichlorodifluoromethane	30	430		3.54		i
1,1-Dichloroethane	1	<10		11.67	i	!
1,2-Dichloroethane	1	<10		13.55		;
1,1-Dichloroethylene	3	<10		10.31	Í	!
trans-1,2-Dichloroethylene	2	<10		12.35	4	
Dichloromethane	5	<10		7.50	i	!
1,2-Dichloropropane	1	<10		17.19	!	
				17.24		
1,3-Dichloropropylene	- 6	<10		18.68		
1,1,2,2-Tetrachloroethane	7	<10		23.47		
1,1,1,2-Tetrachloroethane	7	<10		21.04		
Tetrachloroethylene	1	<10		23.47	!	
1,1,1-Trichloroethane	1	<10		14.76	1 1	
1,1,2-Trichloroethane	1	<10		18.68	i	
Trichloroethylene	. 2	<10		17.91	!	
Trichlorofluoromethane	1	<10		8.58	İ	
Trichloropropane	2	<10		23.01	1	
Vinyl chloride	4	<10		3.54	;	
				1		
	!			1	1	1
		1		1		
	!	!				!
		!	,	!		

^{*} If % moisture is reported, results are presented on a dry-weight basis.

ANALYTICAL RESULTS SUMMARY Aromatic Volatile Organics SW Method 8020

Page _	_ of	_1
Report		

ES Job No.	56528	Lab Sample No	12-85-1192
Client	U.S. Air Force	Field Sample No.	2-Es-955-1, 0-2
Project	FJKS (Denver)	Date Collected	12/14/55
Client No.		Date Received	12/20/95
Laboratory	Supervisor Approval:	Date Analyzed	1/2/86
Qohnn Sample Matr	n R adamson	OC Report No	56528-5
<u>/</u> / W	Nater (ug/L)	Dilution Factor _	
<u>/x</u> _/ s	Soil (ug/g)	*Moisture	*
/ / c	ither		

Compound	C	oncentrati	ion	Retenti	on Time	Notes
	Det Lim	Column 1	Column 2	Column 1	Column 2	
Benzene	. 4	<10		2.26		
Chlorobenzene	. 4	<10	İ	16.46	!	
1,2-Dichlorobenzene	8	<10		27.93		
1,3-Dichlorobenzene	.8	<10		26.40		
1,4-Dichlorobenzene	- 6	<10		22.51		
Ethyl benzene	. 4	<10		7.18		
Toluene	.4	<10		5.47		
Xylenes (Dimethyl benzene)	.4	<10		15.26 16.91 17.77		
	• .					

^{*} If % moisture is reported, results are presented on a dry-weight basis.

ANALYTICAL RESULTS SUMMARY Aromatic Volatile Organics SW Method 8020

Page	1	of	1
Repor	ŧ_		

ES Job No. 56528	Lab Sample No	12-85-1193
Client U.S. Air Force	Field Sample No.	2-ES-9 SS-3, 2-4
ProjectFJKS (Denver)	. Date Collected	12/19/15
Client No.	Date Received	12/36/85
Laboratory Supervisor Approval:	Date Analyzed	1/2/86
Johnn R. adams.	OC Report No.	56528-5
/_/ Water (ug/L)	Dilution Factor _	
<pre>/X / Soil (ug/g)</pre>	*Moisture	
/ / Other		

Compound	c	oncentrat:	ion	Retenti	on_Time	Notes
	Det Lim	Column 1	Column 2	Column 1	Column 2	
Benzene	_4	<10		2.26		
Chlorobenzene	. 4	<10		16.46		
1,2-Dichlorobenzene	8	<10		27.93		
1,3-Dichlorobenzene	8	<10		26.40		
1,4-Dichlorobenzene	6	<10		22.51		
Ethyl benzene	. 4	<10		7.18		
Toluene	4	<10		5.47		
Xylenes (Dimethyl benzene)	4	<10		15.26 16.91 17.77		
	• .			-	 	-

^{*} If % moisture is reported, results are presented on a dry-weight basis.

ANALYTICAL RESULTS SUMMARY Aromatic Volatile Organics SW Method 8020

Page _	1	of	
Report	_		

<u>2</u>

ES Job No. 56528	Lab Sample No.	12-85-1194
Client U.S. Air Force	Field Sample No.	2-ES-9 SS-3 5-7
ProjectPJKS (Denver)	Date Collected	12/19/55
Client No.	Date Received	12/20/85
Laboratory Supervisor Approval:	Date Analyzed	1/2/86
Johnne R. adamon Sample Matrix	OC Report No.	<u> 56528 - 5</u>
/_/ Water (ug/L)	Dilution Factor	
/X / Soil (ug/g)	*Moisture	%
/_/ Other		

Compound		C	oncentrati	ion	Retenti	Retention Time	
		Lim	Column 1	Column 2	Column 1	Column 2	
Benzene		.4	<10		2.26		
Chlorobenzene		.4	<10		16.46		
1,2-Dichlorobenzene		8	<10		27.93		
1,3-Dichlorobenzene		8	<10		26.40		
1,4-Dichlorobenzene		ნ	<10		22.51		
Ethyl benzene		1	<10		7.18		
Toluene		4	<10		5.47		
Xylenes (Dimethyl benzene)		4	<10		15.26 16.91 17.77		
					 		
	• .						

^{*} If % moisture is reported, results are presented on a dry-weight basis.

RECEIVE OF PROPERTY AND PROPERTY OF THE PROPER

Action and an experience of the second secon

Ž.

ζ.

7,

ANALYTICAL RESULTS SUMMARY Aromatic Volatile Organics SW Method 8020

Page	1	of	1
Repor	t _		

ES Job No.	56528	Lab Sample No	12-85-1195
Client _	U.S. Air Force	Field Sample No.	2-ES-955-4 9-11
Project _	PJKS (Denver)	Date Collected	12/19/85
Client No.	·	Date Received	12/20/55
Laboratory	y Supervisor Approval:	Date Analyzed	1/2/86
Sample Ma:	Erid Comon	OC Report No.	56528-5
//	Water (ug/L)	Dilution Factor _	
<u>/x</u> _/	Soil (ug/g)	*Moisture	<u> </u>
/ /	Other		

Compound		oncentrat.	ion	Retention Time		Notes
	Det Lin	Column 1	Column 2	Column 1	Column 2	
Benzene	14	<10		2.26		
Chlorobenzene	4	<10	<u> </u>	16.46		
1,2-Dichlorobenzene	.8	<10		27.93		
1,3-Dichlorobenzene		<10		26.40		
1,4-Dichlorobenzene		<10		22.51		
Ethyl benzene	4	<10		7.18		
Toluene	4	<10		5.47		
Xylenes (Dimethyl benzene)	`4	<10		15.26 16.91 17.77		
	· · · · · · · · · · · · · · · · · · ·					
	• .	•	1			,

^{*} If % moisture is reported, results are presented on a dry-weight basis.

INCOMENS RESERVED PROPERTY

KEESSEE COLORGE WAS AND MANAGED TO DO DO DO DO DE DESCRIPTION DE LA COLORGE DE LA COLO

ANALYTICAL RESULTS SUMMARY Aromatic Volatile Organics SW Method 8020

Page	_ of	_1_
Report		

区

£5

a

ES Job No.	56528	Lab Sample No. $\frac{12-2}{2}$	5-1196
Client	U.S. Air Force	Field Sample No. 2-ES-	1 55-5 14-11
Project	FJKS (Denver)	Date Collected 121,	<u> </u>
Client No.		Date Received 12/2	c185
Laboratory	Supervisor Approval:	Date Analyzed 1/2/9	26
Johnne Sample Matz	R adamoin	OC Report No. <u>56528</u>	-5
/_/ V	Water (ug/L)	Dilution Factor	
<u>/x</u> _/ s	Soil (ug/g)	*Moisture	<u> </u>
, , ,	\+har		

Compound	C	oncentrat	ion	Retention Time		Notes
	Det Lim	Column 1	Column 2	Column 1	Column 2	
Benzene	.4	<10		2.26		
Chlorobenzene	4	<10	ļ	16.46		
1,2-Dichlorobenzene	8	<10		27.93	<u> </u>	·
1,3-Dichlorobenzene	۔8	<10		26.40		
1,4-Dichlorobenzene ·	. ,6	<10	<u> </u>	22.51		
Ethyl benzene	.4	<10		7.18		
Toluene	. 4	<10		5.47		
Xylenes (Dimethyl benzene)	.4	<10 [']		15.26 16.91 17.77		
<u> </u>				ļ 		

^{*} If % moisture is reported, results are presented on a dry-weight basis.

ANALYTICAL RESULTS SUMMARY Aromatic Volatile Organics SW Method 8020

Page	(of	<u></u>
Repor	t _		

ES Job No. 56528	Lab Sample No
Client U.S. Air Force	Field Sample No. 2-85-1, 55-1, 0-2
Project PJKS (Denver)	Date Collected
Client No.	Date Received 1/2/86
Laboratory Supervisor Approval:	Date Analyzed 1/6/86
Johnny P. adamon Sample Matrix:	OC Report No. 56528-7
/_/ Water (ug/L)	Dilution Factor
<u>/X</u> / Soil (ug/g)	*Moisture %
/_/ Other	

L.						
·)		Aromatic V	RESULTS SUM Colatile Orga Method 8020		Page _ (c	of .
ડ ા	ES Job No. 56528		Lab Sa	ample No.	1-86-10	יר ,
	Client U.S. Air Force		Field	Sample No. 2	ES-11,55-	1
	Project PJKS (Denver)			Collected	•	
G S	Client No.		Date F	Received	1/2/86	
	Laboratory Supervisor Appro			Analyzed	•	
S.	Johnson P ada-			port No. 50		
T.	Sample Matrix:		ye ner			
	/ / Water (ug/L)		Diluti	on Factor		
-	/X / Soil (ug/g)			ire		
	/_/ Other					
×	Compound	Co	ncentration	Retent	ion Time N	
Š	•			umn 2 Column		
<u>n</u>	Benzene		<10	2.26		
	Chlorobenzene	4	<10	16.46	i i	
					•	
¢.	1.2-Dichlorobenzene		<10	1		
	1,2-Dichlorobenzene	8	<10 <10	27.93		
k k	1,3-Dichlorobenzene	8	<10	27.93		
¥ €	1,3-Dichlorobenzene 1,4-Dichlorobenzene	.8	<10 <10	27.93 26.40 22.51		
	1,3-Dichlorobenzene 1,4-Dichlorobenzene Ethyl benzene	6 4	<10 <10 <10	27.93 26.40 22.51 7.18		
	1,3-Dichlorobenzene 1,4-Dichlorobenzene	.8	<10 <10	27.93 26.40 22.51 7.18 5.47		
	1,3-Dichlorobenzene 1,4-Dichlorobenzene Ethyl benzene Toluene	4	<10 <10 <10	27.93 26.40 22.51 7.18		
	1,3-Dichlorobenzene 1,4-Dichlorobenzene Ethyl benzene	4	<10 <10 <10	27.93 26.40 22.51 7.18 5.47 15.26		
	1,3-Dichlorobenzene 1,4-Dichlorobenzene Ethyl benzene Toluene	4	<10 <10 <10 <10	27.93 26.40 22.51 7.18 5.47 15.26 16.91		
	1,3-Dichlorobenzene 1,4-Dichlorobenzene Ethyl benzene Toluene	4	<10 <10 <10 <10	27.93 26.40 22.51 7.18 5.47 15.26 16.91		
	1,3-Dichlorobenzene 1,4-Dichlorobenzene Ethyl benzene Toluene	4	<10 <10 <10 <10	27.93 26.40 22.51 7.18 5.47 15.26 16.91		
	1,3-Dichlorobenzene 1,4-Dichlorobenzene Ethyl benzene Toluene	4	<10 <10 <10 <10	27.93 26.40 22.51 7.18 5.47 15.26 16.91		
	1,3-Dichlorobenzene 1,4-Dichlorobenzene Ethyl benzene Toluene	4	<10 <10 <10 <10	27.93 26.40 22.51 7.18 5.47 15.26 16.91		
	1,3-Dichlorobenzene 1,4-Dichlorobenzene Ethyl benzene Toluene	4	<10 <10 <10 <10 <10 <10	27.93 26.40 22.51 7.18 5.47 15.26 16.91 17.77	weight basis	3.
	1,3-Dichlorobenzene 1,4-Dichlorobenzene Ethyl benzene Toluene Xylenes (Dimethyl benzene)	4	<10 <10 <10 <10 <10 <10	27.93 26.40 22.51 7.18 5.47 15.26 16.91 17.77	weight basis	
	1,3-Dichlorobenzene 1,4-Dichlorobenzene Ethyl benzene Toluene Xylenes (Dimethyl benzene)	4	<10 <10 <10 <10 <10 <10	27.93 26.40 22.51 7.18 5.47 15.26 16.91 17.77	weight basis	5.
	1,3-Dichlorobenzene 1,4-Dichlorobenzene Ethyl benzene Toluene Xylenes (Dimethyl benzene)	4	<10 <10 <10 <10 <10 <10	27.93 26.40 22.51 7.18 5.47 15.26 16.91 17.77	weight basis	
	1,3-Dichlorobenzene 1,4-Dichlorobenzene Ethyl benzene Toluene Xylenes (Dimethyl benzene)	4	<10 <10 <10 <10 <10 <10	27.93 26.40 22.51 7.18 5.47 15.26 16.91 17.77	weight basis	5.
	1,3-Dichlorobenzene 1,4-Dichlorobenzene Ethyl benzene Toluene Xylenes (Dimethyl benzene)	4	<10 <10 <10 <10 <10 <10	27.93 26.40 22.51 7.18 5.47 15.26 16.91 17.77	weight basis	3.
	1,3-Dichlorobenzene 1,4-Dichlorobenzene Ethyl benzene Toluene Xylenes (Dimethyl benzene)	4	<10 <10 <10 <10 <10 <10 <10 state are preserved.	27.93 26.40 22.51 7.18 5.47 15.26 16.91 17.77	weight basis	5.

^{*} If % moisture is reported, results are presented on a dry-weight basis.

ANALYTICAL RESULTS SUMMARY Aromatic Volatile Organics SW Method 8020

Page	of	1
Report		

5

ES Job No 56528	Lab Sample No.	1-86-1002
Client U.S. Air Force	Field Sample No. 2	-ES-11 SS-2 2.4
Project PJKS (Denver)	Date Collected	
Client No.	Ďate Received	1/2/86
Laboratory Supervisor Approval:	Date Analyzed	1/6/86
Johnny R. Adamon Sample Matrix	OC Report No.	56528-7
/ / Water (ug/L)	Dilution Factor	
/X / Soil (ug/g)	*Moisture	
/ / Other		

Compound	С	oncentrat	ion	Retenti	on Time	Notes
	Det Lim	Column 1	Column 2	Column 1	Column 2	
Benzene	4	<10		2.26		
Chlorobenzene	4	<10		16.46		
1,2-Dichlorobenzene	8	<10		27.93		
1,3-Dichlorobenzene	8	<10		26.40		
1,4-Dichlorobenzene	.6	<10		22.51		
Ethyl benzene	4	<10		7.18		
Toluene	4	<10		5.47		
Xylenes (Dimethyl benzene)	4	<10		15.26 16.91 17.77		
	<u>!</u>					
						,

^{*} If % moisture is reported, results are presented on a dry-weight basis.

COSTA DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DE LA CONTRACTION DE CONTRACTI

ANALYTICAL RESULTS SUMMARY Aromatic Volatile Organics SW Method 8020

Page _	 of	
Report		

ES Job Nc. 56528	Lab Sample No. 1-86-1003
Client U.S. Air Force	Field Sample No. 3-ES-11, SS-3 5-
Project PJKS (Denver)	Date Collected
Client No.	Date Received
Laboratory Supervisor Approval:	Date Analyzed 1/6/86
Johnna R. Adamoin Sample Matrix	OC Report No
/_/ Water (ug/L)	Dilution Factor
/X / Soil (ug/g)	*Moisture %
/ / Other	

Compound	Concentration				Retentio	on Time	Notes	
	Det L	im	Column	Column	2	Column 1	Column	2
Benzene	4		<10			2.26		
Chlorobenzene	4		<10			16.46	1	
1,2-Dichlorobenzene	. 9		<10			27.93		
1,3-Dichlorobenzene	8		<10			26.40		
1,4-Dichlorobenzene	6		<10			22.51		+
Ethyl benzene	4		<10			7.18		
Toluene	4		<10			5.47		
Xylenes (Dimethyl benzene)	.4		<10			15.26 16.91 17.77		
		-		ļ .				
		_						- 1
	i	- }		}			1	

^{*} If % moisture is reported, results are presented on a dry-weight basis.

...

ANALYTICAL RESULTS SUMMARY Aromatic Volatile Organics SW Method 8020

Page _	(of	
Report	:		

ES Job No. 56528	Lab Sample No. 1-86-1064	
Client U.S. Air Force	Field Sample No. 2-£S-11, SS-4,8-	16
Project PJKS (Denver)	Date Collected	
Client No.	Date Received 1/2/86	•
Laboratory Supervisor Approval:	Date Analyzed 1/6/86	
Johnny R. adamon Sample Matrix	OC Report No. <u>56528-7</u>	,
/_/ Water (ug/L)	Dilution Factor	
/X / Soil (ug/g)	*Moisture	
/_/ Other		

c	oncentrati	ion	Retention Time		Notes
Det Lim	Column 1	Column 2	Column	1 Column 2	
.4	<10		2.26		
. 4	<10		16.46		
8	<10		27.93		
-8	<10		26.40		
6	<10		22.51		
. 4	<10		7.18		
4	<10		5.47		
. 4	<10	,	15.26 16.91 17.77		
	Det Lim	Det Lim Column 1 _4 <10 4 <10 8 <10 6 <10 4 <10 4 <10 4 <10 4 <10	_4 <10 4 <10 8 <10 8 <10 6 <10 4 <10 4 <10	Det Lim Column 1 Column 2 Column _4	Det Lim Column 1 Column 2 Column 1 Column 2 _4

^{*} If % moisture is reported, results are presented on a dry-weight basis.

DESCRIPTION DESCRIPTION

4.73

ANALYTICAL RESULTS SUMMARY Aromatic Volatile Organics SW Method 8020

Page _	Ŀ	of	
Report			

			•
ES Job No.	56528	Lab Sample No.	1-86-1005
Client	U.S. Air Force	Field Sample No.	2-ES-11, SS-5- 3-15
Project _	PJKS (Denver)	Date Collected	
Client No.		Date Received	1/2/56
Laboratory	Supervisor Approval:	Date Analyzed _	16186
John Sample Mat	R. adamoin	OC Report No.	<i>56528-7</i>
/	Water (ug/L)	Dilution Factor _	
<u>/x</u> _/	Soil (ug/g)	*Moisture	•
/	Other		

[c	oncentrat:	ion	Retention Time		Notes
Det Lim	Column 1	Column 2	Colama	1 Column 2	·
.4	<10		2.26		
.4	<10		16.46		
. <u>, e</u>	<10		27.93		
)8	<10		26.40		
. 6	<10		22.51		
.4	<10		7.18		
14	<10		5.47		
4	<10		15.26 16.91 17.77		
				-	
	.4 .4 .8 .8 .6	Det Lim Column 1 _4 <10 _4 <10 _8 <10 _6 <10 _4 <10 _4 <10 _4 <10 _4 <10	.4 <10 .4 <10 .8 <10 .8 <10 .6 <10 .4 <10 .4 <10 .4 <10	Det Lim Column 1 Column 2 Column 4 <10 2.26 4 <10 16.46 .8 <10 27.93 8 <10 26.40 .6 <10 22.51 .4 <10 7.18 14 <10 5.47	Det Lim Column Co

^{*} If % moisture is reported, results are presented on a dry-weight basis.

ANALYTICAL RESULTS SUMMARY Aromatic Volatile Organics SW Method 8020

Page _	Ĺ	of	1
Report	_		

ES Job No. 56528	Lab Sample No	
Client U.S. Air Force	Field Sample No. 2-ES-13, SS-1	<u>c-</u>
Project PJKS (Denver)	Date Collected	
Client No.	Date Received 1/2/86	
Laboratory Supervisor Approval:	Date Analyzed //6/86	
John R. Odamon Sample Matrix:	OC Report No. <u>36528-7</u>	_
/_/ Water (ug/L)	Dilution Factor	
/X / Soil (ug/g)	*Moisture	_ %
/_/ Other		

Compound	C	oncentrat:	ion	Retenti	on Time	Notes
	Det Lim	Column 1	Column 2	Column 1	Column 2	
Benzene	. 4	<10		2.26		
Chlorobenzene	ے4_	<10		16.46	<u> </u>	
1,2-Dichlorobenzene		<10		27.93		
1,3-Dichlorobenzene	8	<10		26.40		
1,4-Dichlorobenzene	6	<10		22.51		
Ethyl benzene	4	<10		7.18		
Toluene	.4	<10		5.47	<u> </u>	
Xylenes (Dimethyl benzene)	.4	<10		15.26 16.91 17.77		
				<u></u>		
		ļ		1		,

^{*} If % moisture is reported, results are presented on a dry-weight basis.

BANDOON DASSESSEE BANDOON ISSUESDAY DESCRIPTION

ANALYTICAL RESULTS SUMMARY Aromatic Volatile Organics SW Method 8020

Page 1	of	1
Report		

J	,	
ES Job No. 56528	Lab Sample No.	1-86-1007
Client U.S. Air Force	Field Sample No.	2-E5-13 55-2 2-4
Project PJKS (Denver)	Date Collected _	
Client No.	Date Received	6/2/56
Laboratory Supervisor Approval:	Date Analyzed _	17/86
Johnne R. Gdamson	OC Report No	56528-7
/_/ Water (ug/L)	Dilution Factor	
/X / Soil (ug/g)	*Moisture	<u> </u>
/ / Other		

Compound		Çc	ncentrat	ion	Retenti	on Time	Notes
	Det L	Lm	Column 1	Column	2 Column 1	Column 2	
Benzene	4	Ì	<10		2.26		
Chlorobenzene	4		<10		16.46		
1,2-Dichlorobenzene	. 8		<10		27.93		
1,3-Dichlorobenzene	8		<10		26.40		
1,4-Dichlorobenzene	6		<10		22.51		
Ethyl benzene	4		<10		7.18		
Toluene	. 4		<10		5.47		
Xylenes (Dimethyl benzene)	. 4		<10		15.26 16.91 17.77		
			•				
•		_					
		\dashv					
	•						
:	•	ļ			ł		

^{*} If % moisture is reported, results are presented on a dry-weight basis.

ANALYTICAL RESULTS SUMMARY Aromatic Volatile Organics SW Method 8020

Page _	L	of	
Report			

3

ES Job No. 56528	Lab Sample No.	1-86-1008
Client U.S. Air Force	Field Sample No. $2-$	
Project FJKS (Denver)	Date Collected	
Client No.	Date Received	1/2/86
Laboratory Supervisor Approval:	Date Analyzed	117/86
Johnny R Cidamoin Sample Matrix	OC Report No. 565	7 - 8 = 7
/_/ Water (ug/L)	Dilution Factor	
/X / Soil (ug/g)	*Moisture	
/ / Other		

Compound	C	oncentrat	ion	Retention Time		Notes
	Det Lim	Column 1	Column 2	Column	Column 2	
Benzene	. 4	<10		2.26		
Chlorobenzene	.4	<10		16.46		
1,2-Dichlorobenzene	.е	<10		27.93		
1,3-Dichlorobenzene	8	<10		26.40		
1,4-Dichlorobenzene	6	<10		22.51		
Ethyl benzene	4	<10		7.18		
Toluene	_4	<10		5.47		
Xylenes (Dimethyl benzene)	4	<10		15.26 16.91 17.77		
					-	<u> </u>

^{*} If % moisture is reported, results are presented on a dry-weight basis.

ANALYTICAL RESULTS SUMMARY Aromatic Volatile Organics

Page _	1	of	
Report	_		

		nod 8020	ACDOT C
ES Job No.	56528	Lab Sample No	1-86-1009
Client	U.S. Air Force	Field Sample No.	2-ES-14, SS-1, C-2
Project	PJKS (Denver)	Date Collected _	
Client No.		Date Received _	1/2/86
Laboratory	Supervisor Approval:	Date Analyzed	1/7/86
Sample Matz	R. adamson	OC Report No	50528-7
<u>/</u> / W	Water (ug/L)	Dilution Factor	
<u>/x</u> / s	Soil (ug/g)	*Moisture	ę
<u>/_</u> / 0	Other		·

Compound	C	Concentration			on Time	Notes
	Det Lim	Column 1	Column 2	Column 1	Column 2	
Benzene	4	<10	·	2.26		
Chlorobenzene	.4	<10		16.46		
1,2-Dichlorobenzene	.8	<10		27.93		
1,3-Dichlorobenzene	. 8	<10		26.40		
1,4-Dichlorobenzene	.6	<10		22.51		
Ethyl benzene	4	<10		7.18		
Toluene	. 4	<10		5.47		
Xylenes (Dimethyl benzene)	. 4	<10		15.26 16.91 17.77		

^{*} If % moisture is reported, results are presented on a dry-weight basis.

Š

STATE OF THE PROPERTY OF STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET,

ANALYTICAL RESULTS SUMMARY Aromatic Volatile Organics SW Method 8020

Page _	Ĺ	of	
Report			

国区

ES Job No. 56528	Lab Sample No. $i-86-1010$
Client U.S. Air Force	Field Sample No. 2-25-14 55-2,2-
Project PJKS (Denver)	Date Collected
Client No.	Date Received 1/2/86
Laboratory Supervisor Approval:	Date Analyzed 1/7/86
Sample Matrix:	OC Report No. 56528-7
/_/ Water (ug/L)	Dilution Factor
/x / Soil (ug/g)	*Moisture
/ / Other	

Compound	C	oncentrat:	ion	Retentio	on Time	Notes
	Det Lim	Column 1	Column 2	Column 1	Column 2	
Benzene	ي4ر	<10		2.26		
Chlorobenzene	4د	<10		16.46		
1,2-Dichlorobenzene	8	<10		27.93		
1,3-Dichlorobenzene	8	<10		26.40		
1,4-Dichlorobenzene	. 6	<10		22.51		
Ethyl benzene	.4	<10	<u> </u>	7.18	<u> </u>	
Toluene	4	<10		5.47		
Xylenes (Dimethyl benzene)	.4	<10		15.26 16.91 17.77		
					1	
	,					
				ļ	1	}

^{*} If % moisture is reported, results are presented on a dry-weight basis.

CONTRACT STREET, STREET, SANSTAN SANSTAN SANSTAN

2

ANALYTICAL RESULTS SUMMARY Aromatic Volatile Organics SW Method 8020

Page _	L	of	1
Report			

ES Job No.	56528	Lab Sample No.	1-86-1011	
Client	U.S. Air Force	Field Sample No.	Q-ES-14 55-3	5-7
Project	PJKS (Denver)	Date Collected _	<u> </u>	
Client No.		Date Received _	1/2/86	
Laboratory	y Supervisor Approval:	Date Analyzed	117/86	
Sample Ma:	ng R. adamin	OC Report No	<u>56528-8</u>	
/	Water (ug/L)	Dilution Factor		
<u>/x</u> /	Soil (ug/g)	*Moisture	<u> </u>	
/ /	Other			

Compound	C	oncentrat:	ion	Retenti	on Time	Notes
	Det Lim	Column 1	Column 2	Column	Column 2	
Benzene	4	<10		2.26		
Chlorobenzene	4	<-10		16.46	1	
1,2-Dichlorobenzene	. 8	<10		27.93		
1,3-Dichlorobenzene	8	<10		26.40		
1,4-Dichlorobenzene	6	<10		22.51		
Ethyl benzene	. 4	<10		7.18		
Toluene	. 4	<10		5.47		
Xylenes (Dimethyl benzene)	4	<10		15.26 16.91 17.77		
)

^{*} If % moisture is reported, results are presented on a dry-weight basis.

Secondary of the second secondary assessment to the secondary

POSSESSE PROSESSES DESCRIPTION OF THE PROSESSES

ANALYTICAL RESULTS SUMMARY Aromatic Volatile Organics SW Method 8020

Page	1	of	<u></u>
Repor	t_		

 \overline{y}

ES Job No.	56528	Lab Sample No	1-86-10-12
Client	U.S. Air Force	Field Sample No.	3-E3-14 55-4 9-
Project	FJKS (Denver)	Date Collected _	
Client No.		Date Received	1/2/86
Laboratory	Supervisor Approval:	Date Analyzed	1/7/86
Sample Matz	R. adamon	OC Report No.	54528-8
<u>/_</u> / w	Nater (ug/L)	Dilution Factor _	
<u>/x</u> / s	Soil (ug/g)	*Moisture	
/ / ()+her		

Compound	C	oncentrat:	ion	Retenti	on Time	Notes
	Det Lim	Column 1	Column 2	Column 1	Column 2	
Benzene	_4	<10		2.26		
Chlorobenzene	. 4	<10		16.46		
1,2-Dichlorobenzene	_8	<10		27.93		
1,3-Dichlorobenzene	8	<10		26.40		
1,4-Dichlorobenzene	. 6	<10		22.51		
Ethyl benzene	.4	<10		7.18		
Toluene	4	<10		5.47	ļ <u>i</u>	
Xylenes (Dimethyl benzene)	.4	<10		15.26 16.91 17.77		
· .						
	. •					

^{*} If % moisture is reported, results are presented on a dry-weight basis.

ANALYTICAL RESULTS SUMMARY Aromatic Volatile Organics SW Method 8020

Page _	l of	1
Report		

ES Job No.	56528	Lab Sample No.	1-86-1013
Client	U.S. Air Force	Field Sample No.	2-ES-14 SS-5,14-1
Project	PJKS (Denver)	Date Collected	
Client No.		Date Received	1/2/86
Laboratory	Supervisor Approval:	Date Analyzed	1/7/86
Sample Mat	P Odamoin	OC Report No	56528-8
/_/	Water (ug/L)	Dilution Factor _	
<u>/x</u> /	Soil (ug/g)	*Moisture	•
/ /	Other		

Compound	C	oncentrat	ion	Retenti	on Time	Notes
	Det Lim	Column 1	Column 2	Column 1	Column 2	
Benzene	4	<10	į.	2.26		
Chlorobenzene	4	<10		16.46		
1,2-Dichlorobenzene	8	<10	·	27.93		
1,3-Dichlorobenzene	8	<10		26.40		
1,4-Dichlorobenzene	6	<10		22.51		
Ethyl benzene	4	<10		7.18		
Toluene	_4	<10		5.47		
Xylenes (Dimethyl benzene)	4	<10		15.26 16.91 17.77		
	· · · · · · ·					
	T-10					
	 				1	<u> </u>

^{*} If % moisture is reported, results are presented on a dry-weight basis.

Aboratory Supervisor Approval: o Page (Dilution Factor Kehrm CC Report No. *Moisture Environmental Quality Parameters Soil (ug/g) (ug/kg) ANALYTICAL RESULTS SUMMARY Water (ug/L) Sample Matrix; Other K 13-06-61 19-19-85 8 £5 75 . ON 905 83 Engineering-Science コセンド Date Collected Date Received Client No. Project Client

TODEREN STATISTICS RECORDER PRINCES STATISTICS 1885

同じたられた 自動 マンといれば 自然された こうしん

	40165												- / - / - /
0, 1,	102 1 140016	<0.08 <0.5	50.08 40.5	5'07 8	30/2	5.07							12/
203		1	78	7	1	7.7						7	4
Lab Sample No. TKN	+-	+	-+		11 45 1407	00/ 7511						- C	
Field Sample No.	15 x - 55 - 51 x - 102/61 12 - 85 - 119 2		7.5-67		15.4.94.65	1 505 14 WE						Date Analyzed	A 14 14 14 14 14 14 14 14 14 14 14 14 14

presented on a dry-weight basis.

65.53

Ś

当日 公会

な事

P

		·			#\f \frac{1}{2} \frac{1}{2}	<u> </u>	R.	Š	8	282	
Engineering-Science	AN Envir	ANALYTICAL RESULTS SUMMARY Environmental Quality Parameters	RESULI Qualit	S SUMM	ARY meters				<u>ૄ</u> ૠ	Parje / of Report	0
ES JOB NO. 56528	ļ						χ Report Wo.	rt No.	1		· · · · · · · · · · · · · · · · · · ·
Client USAF	: 1						Laborat	ory Su	pervisa	Laboratory Supervisor Approval:	: levo
Project PTKS DUNGE	Sa	Sample Matrix:	rix:			,	3 1	3	أبح	your K. adam.	7
Client No.	ļ	/_/ Water (ug/L)	ter (ug	(T/			Dilution FactOr	n Fact	\ -\f		1
Date Collected /- 1-86	ļ	(px/bn) ((ng/g)) (ng/kg)	/bn) 11	′bn) ∕(b́,	/Kg)	*	*Moisture	a,			
Date Received $/-2-5/$	ļ	/ / Other	her						1		

	· · · · · ·	i								1		,		
						!								
											i			
														.
C106	210	007	320	90	!								35	EPA 351.3
510>	<0.5	20.5	<0.5	<0.5									1.5	87A40.1
6	71	5.7 "	7.8 4	ፈት ንት									2,+13	8.178 473 1.04 473 1. LZ 493 1.42 511/5
0.373	0,343	1.01	6-858	41									26	1.45.54.1
151-86-1001	ci-81-142	1003	1004	_500/ /									E	
7KS 2-ES-118-1 0-26	K. 2 ES-11 (5.1.274 ES	74/3-5/1/3-5 5-5/8	174.2-5-11 524.8-10-57	P. 2-5-115-5-13-19									Date Analyzed	Analytical Method
	1 0.373	0.373	1 0.373 - 0.343 5 1.01	0.373	0.373	0.373 0.343 7.01 0.553	0.373	0.373 0.843 1.858 0.27	0.373 0.343 1.01 0.27	0.373	0.373 0.343 1.01 1.05 - 0.27	0.373 0.343 0.01 0.27	0.373 0.343 0.01 0.07	0.373 0.343 0.01 0.02 0.02 0.02

^{*} If & moisture is reported, results are presented on a dry-weight basis.

KALCA BOTATION RECECCION LA CALCALLE RECECCION DE SOLO DE TODO DE SOLO DE CALCALDO DE CASA SOLO DE CASA SOLO DE

THE REPORT OF THE PROPERTY OF

				خ			Inter
Lab Sample No.	0.	بي کم/	NO3	Physolic	1752 1		
PJK 2-65-12 61-56-1006		610	7.0	017 7.0 (6.5 306	306		
PTC 25-13 4-12-4 x 1-86-1007		780.0	2,5	<0.5	150		
P 7 KG 255-13, 53 C-21 & 01-86-1008		6.13	2.2	<0.5	40		
	1						
	}_						
	T						
	1						
	1						
Σ	Λ_{\circ}	1	4/5	12	7-		
	1	5173 354.1	EPA 352.	314, 1 8PA 352, 1 8"A420,1 EPA 351.3	Ery 351. 3		

^{*} If & moisture is reported, results are presented on a dry-weight basis.

X

. . . .

では、ひ種

3

,

X

公の・企画

Prye / of Paport Schring R. Coleman Dilution Falgbr CC Report No. (Johnney *Moisture Environmental Quality Parameters Soil((ug/g) (ug/Kg) ANALYTICAL RESULTS SUMMARY // Water (ug/L) Sample Matrix: / / Other PJKS Denver 78-1-1 56528 八八八斤 Engineering-Science Date Collected Date Received ES Job No. Client No. Project Client

	Field Sample No.	Lab Sample No.	NO2	NO3	NO3 Phynolis TKN	, TKN			Notes
	PTKS, 1854 554,8-2 ES 01-86-16.69	67-78-10	26.0	- >	<0.5	596			
		0/0/	1.0.7	١, (٥	5.0>	336			
-16		1101	09%	3.1	<0.5	230	-		F
7		7/0/	1,66.	3.8	<0.5	7			
	856, 2-15-14 55 5 14-11 ES	E101 /	. 449	١٨	<0.5	110			
								,	
	Date Analyzed	M	2/4/2	2/8	15+16	31			
	Analytical Method		inst vid 3	1.288 4733	Pp 354.1 SPA352.1 SPA420.1 SPA 351.3	E158 433			

· If & moisture is reported, results are presented on a dry-weight basis.

Alate A: Best estimated value for nitrate. Note A: Best estimated

8593111

Engineering-Science	ANALYTICAL RESULTS SUMMARY Environmental Quality Parameters	Report
ES JOD NO. 56528		g: Report Ho.
Client DSAF	ı	Laboratory Supervisor Approval:
Project PTKS Denver	Sample Matrix:	Gohmmy K. Vidennoen
Client No:	/_/ Water (ug/L)	Diffuction Factor
Date Collected 1-1-56	W Soil ((ug/g) (ug/kg)	•Moisture
Date Received 1-2-86	/_/ Other	

	Field Sample No.	Lab Sample No.	N02	NO3	NO3 Phenelis TKN	, TKN			Hoter
ے ا	PTKS, 125/14 SS-1,6-21 ES 01-86-100	600/-98-10	0.45	7	<0.5	296			
L:	1713 2-644 612-4 6	0/0/	1 60%	١	40.5x	336			
168	1763-65-1411-3 5-1, 85	110/	· 960°	3.1	<0.51	230			F
	52 11-60-18 th-82 (SYS)	7/01	1669	3.8	<0.5	14			
-	PSES 2-8544 55-5 14-18 ES	1013	· bb 77°	١٨	<0.5%	1011 7.07			
1									
<u> </u>									
1								ĺ	
1									
<u>!</u>									
!									
	Date Analyzed	М	26410	2/8	15+16	1/5			
<u> </u>	Analytical Method		1.428 HJ3	1.288 4193	5.126.0131.05.4931.1 EPA 430.1 EPA 351.3	EPP 351.3			
_ ل	a ff a moioring in	ic reported recults	1 "	seen tool	o drive	are presented on a dry mainth hacis			

Note A: Best estinated

 $\bar{\mathbf{z}}$

7.55

\$

X

îng i neer i ng-Science	ANALYTICAL RESULTS SUMMARY Environmental Quality Parameters	Parje / of / Report
SS JOB NO. 56528	į	CC Report No.
Client WSAF		Laboratory Supervisor Approval:
Post PTKS Denyer	Sample Matrix:	(Johnny K Udemoon)
lient No.	/ / Water (ug/L)	Dilution Fabor
Date Collected $/-1-86$	12 Soil (ug/g) (ug/kg)	*Molsture
Date Received $1-2-86$	// Other	

Field Sample No.	Lab Sample No.	100	NO3	Phynolic	TKN			Notes
PJKS, 2-E5-138-10-2/EG 61-86-10cb	920/-78-19	6)-0-	7.0	7.0 <0.5 306	306			
P545, 2-25-13 4-22-4'EL 11-86-1007	too/-98-14	730.0	2,5	40.5	150			
\$ P3KS, DES-13, 83 35-7'ES 61-86-1008	800/-98-19	0.13	7.2	<0.5	07		į	
-								
Date Analyzed	M	26	5	1/2/	1/2/			
Analytical Method		EPH 354. 1 8PA 352.1 8TA420.1 EPH 351.3	894352.1	1.0chus	Erf 351.3			

^{*} If & moisture is reported, results are presented on a dry-weight basis.

Engineering-Science	ANALYTICAL RESULTS SUMMARY Environmental Quality Parameters	Page / of /
ES Job No. 56528	,	gx: Report In.
Client UNSAF	•	Laboratory Supervison Approval:
Project PTKS Denyer	Sample Matrix:	your K. adamoen
Client No.	/_/ Water (ug/L)	Dilution Faciar
Date Collected $1-1-86$	Les Soil (ug/g) (ug/kg)	*Moisture
Date Received $/-\lambda - 8\zeta$	/ Other	
	1).44:, 1	

STATES AND STATES INCOME. INCOME. STATES OF THE STATES OF

Field Sample No.	Lab Sample No.	10N		NO3 Phynolica TKN	TKN			Hotes
PTKS 2-ES-118-1:02/2 61-86-100	1021-18-195	0.373	Ь	5'0>	200			
TITEC 2 ESH (5.2.2.4/ES) 01-8/-1/02	101-8-10	6.343	- 1>	<0.5	210			
2 PTK 2-ES1151-3: 5-7/EK	(0)	101	81-7.8	5.07	007			
175 2-ES-11 SC4: K+6/ES	700/	828.p	2.8B	<0.5	320			
PXS, 2-55-1155-5-1345/ES	_\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	6.27	4. 7K	<0.5	4.7K 20.5 90			
	>							
Date Analyzed	M	70	27+13	7-	130			·
Analytical Method		1.425/1/3	10.55 495	5.178 893 1.04 493 1.628 APS 1.428 193	EPA 351.3	_		
a ff a mointure in reported	compress rockille	1	Con Fort on	or with a	are precented on a drugonicht basis			

33

3

Z.

Š

\; \; Results of Site 3
8010, 8020, Metals and Inorganic Parameters

小される ちゅう

7,

ANALYTICAL RESULTS SUMMARY Halogenated Volatile Organics SW Method 8010 (first of two pages)

Page	1	of	Z-
Repor	t		

ES Job No. <u>56528</u>	Lab Sample No	1-86-7030
Client U.S. Air Force	Field Sample No.	3-ES-15, SS-1
Project PJKS (Denver	Date Collected _	1-2-96
Client No.	Date Received _	1-3-86
Laboratory Supervisor Approval:	Date Analyzed	1/3/86
Johnny R. C. Comson Sample Matrix:	QC Report No	PIKS - CS
/_/ Water (ug/L)	Dilution Factor	
/X / Soil (ug/g)	*Moisture	
/ / Other		

Compound	C	oncentrat	ion	Retentio	on Time Note	2 S
	Det Lim	Column 1	Column 2	Column 1	Column 2	
Benzyl chloride	4	<10		40.9	1	
bis(2-chloroethoxy) methane	12	<12	-	44.2		
bis(2-chloroisopropyl) ether	. 25	<25		42.2	;	
Bromobenzene	8	<10		29.18	i	
Bromodichloromethane	2	<10		15.69		
Bromoform	4	<10		21.24		
Bromomethane	24	<24		2.85		
Carbon tetrachloride	3	<10		15.47		
Chloroacetaldehyde	10	<10		11.6		
Chloral	10	<10		18.7		
Chlorobenzene	55	<10	<u> </u>	26.01		
Chloroethane	10	<10		4.51		
Chloroform	11	<10		13.01		
1-Chlorohexane	2	<10		26.58	1	
2-Chloroethyl vinyl ether	3	<10		19.49		
Chloromethane	2	<10		1.95		
Chloromethyl methyl ether	20	<20		9.37		
Chlorotoluene	4	<10		37.9	<u> </u>	
Dibromochloromethane	2	<10		18.68	1	

<u>ئ</u>

Compound		oncentrat		Retenti		Note
	Det Lim	Column 1	Column 2	Column 1	Column 2	i
Dibromomethane	1	<10		13.09		<u> </u>
1,2-Dichlorobenzene	3	<10		60.10	. -	!
1,3-Dichlorobenzene	6	<10	1	42.90	<u> </u>	•
1,4-Dichlorobenzene	5	<10		37.28		
Dichlorodifluoromethane	30	<30	-	3.54		
1,1-Dichloroethane	1	<10	<u> </u>	11.67		1
1,2-Dichloroethane	1	<10		13.55	:	
1,1-Dichloroethylene	3	<10	!	10.31	<u> </u>	1
trans-1,2-Dichloroethylene	2	<10	<u>:</u>	12.35		1
Dichloromethane	5	<10	<u> </u>	7.50		
1,2-Dichloropropane	11	<10	İ	17.19		į
				17.24		i
1,3-Dichloropropylene	6_	<10		18.68		!
1,1,2,2-Tetrachloroethane	7	<10	•	23.47	!	1
1,1,1,2-Tetrachloroethane	. 7	<10		21.04	į	1
Tetrachloroethylene	1	<10		23.47		
1,1,1-Trichloroethane	1	<10	1	14.76	<u> </u>	i
1,1,2-Trichloroethane	1	<10	İ	18.68	1	1
Trichloroethylene	2	<10		17.91	:	
Trichlorofluoromethane	1	<10		8.58	:	
Trichloropropane	2	<10	!	23.01		
Vinyl chloride	i 4	<10		3.54	1	
	,			:		
				1	1	
			!			İ
		!	:			!

^{*} If % moisture is reported, results are presented on a dry-weight basis.

PARTIES PROGRAM PARTIES NO PROGRAM PROGRAM PROGRAM

ANALYTICAL RESULTS SUMMARY Halogenated Volatile Organics SW Method 8010 (first of two pages)

Page	_/	of	て
Repor	ŧ_	·	

ES Job No56528	Lab Sample No	1-86-1031
Client U.S. Air Force	Field Sample No.	3-ES-15, SS-2
Project PJKS (Denver	Date Collected	
Client No.	Date Received	1-3-86
Laboratory Supervisor Approval:	Date Analyzed	1/8/36
Johnny R Cidanson Sample Matrix:	QC Report No.	PJKS -C3
/_/ Water (ug/L)	Dilution Factor _	
/X / Soil (ug/g)	*Moisture	
/ / Other		

Compound	Concentration			Retention Time Notes	
	Det Lim	Column 1	Column	2 Column 1 C	column 2;
Benzyl chloride	. 4	<10		40.9	ı
<pre>bis(2-chloroethoxy) methane</pre>	12	 		44.2	:
<pre>bis(2-chloroisopropyl) ether</pre>	25	L25		42.2	
Bromobenzene	8	<10		29.18	
Bromodichloromethane	2	<10		15.69	
Bromoform	4	<10		21.24	
Bromomethane	24	424		2.85	
Carbon tetrachloride	. 3	<10		15.47	
Chloroacetaldehyde	10	<10		11.6	
Chloral	10	<10		18.7	
Chlorobenzene	5	<10		26.01	
Chloroethane	10	<10	1	4.51	
Chloroform	11	<10		13.01	
1-Chlorohexane	2	<10		26.58	1
2-Chloroethyl vinyl ether-	3	<10		19.49	
Chloromethane	2	<10		1.95	
Chloromethyl methyl ether	20	(عرب		9.37	
Chlorotoluene	4	<10	1	37.9	
Dibromochloromethane	2	<10	İ	18.68	1

1-86-1031

Compound	Concentration			Retentio		Notes
	Det Lim	Column 1	Column 2	Column 1	Column 2	
Dibromomethane	111	<10		13.09	:	Ì
1,2-Dichlorobenzene	3	<10	<u>i </u>	60.10		i
1,3-Dichlorobenzene	6	<10		42.90		<u> </u>
1,4-Dichlorobenzene	5	<10		37.28		
Dichlorodifluoromethane	. 30	430	<u> </u>	3.54		!
1,1-Dichloroethane	1	<10		11.67		!
1,2-Dichloroethane	1	<10		13.55	·	:
1,1-Dichloroethylene	3	<10		10.31	: 	i
trans-1,2-Dichloroethylene	2	<10		12.35		:
Dichloromethane	5	<10		7.50		!
1,2-Dichloropropane	! 1	<10		17.19		į
	 			17.24		!
1,3-Dichloropropylene	6	<10		18.68		<u> </u>
1,1,2,2-Tetrachloroethane	7	<10	1	23.47		1
1,1,1,2-Tetrachloroethane	i. 7	<10		21.04		ļ
Tetrachloroethylene	<u> </u>	<10		23.47	!	1
1,1,1-Trichloroethane	1	<10	!	14.76		
1,1,2-Trichloroethane	1	<10	<u>i</u>	18.68	·	1
Trichloroethylene	2	<10		17.91		
Trichlorofluoromethane	1	<10		8.58		
Trichloropropane	2	<10	!	23.01		1
Vinyl chloride	4	<10		3.54		į
				1		1
		1		1		
				!		
		!				
•		;				:

^{*} If % moisture is reported, results are presented on a dry-weight basis.

ANTORES MANAGEM PRESENTAL MANAGEM SESSOON

Second Second

ANALYTICAL RESULTS SUMMARY Halogenated Volatile Organics SW Method 8010 (first of two pages)

Page	/	of	<u>-2</u>
Repor	t _		

ES Job No56528	Lab Sample No	1-36-105-
ClientU.S. Air Force	Field Sample No.	3-E5-15, 55-3
Project PJKS (Denver	Date Collected _	1-4-86
Client No.	Date Received	1-10-86
Laboratory Supervisor Approval:	Date Analyzed	1/13/36
Johnson R. Cidarrosan Sample Matrix:	QC Report No.	PJKS-09
/_/ Water (ug/L)	Dilution Factor	
/X / Soil (ug/g)	*Moisture	8
/_/ Other		•

Compound	Concentration			Retention Time Note	
	Det Lim	Column 1	Column 2	Column 1	Column 2
Benzyl chloride	4	<10		40.9	j
<pre>bis(2-chloroethoxy) methane</pre>	12	<12	-	44.2	
bis(2-chloroisopropyl) ether	25	(25	•	42.2	
Bromobenzene	8	<10		29.18	!
Bromodichloromethane	2	<10		15.69	; t
Bromoform	4	<10		21.24	:
Bromomethane	24	/24		2.85	:
Carbon tetrachloride	3	<10	1	15.47	:
Chloroacetaldehyde	10	<10		11.6	
Chloral	10	<10		18.7	
Chlorobenzene	5	<10		26.01	
Chloroethane	. 10	<10		4.51	
Chloroform	11	<10		-13.01	ŀ
1-Chlorohexane	2	<10		26.58	1
2-Chloroethyl vinyl ether	3	<10	1	19.49	
Chloromethane	2	<10		1.95	
Chloromethyl methyl ether	. 20	(20		9.37	
Chlorotoluene	4	<10		37.9	,
Dibromochloromethane	2	<10	1	18.68	

Compound	Concentration			Retenti		Notes
	Det Lim	Column 1	Column 2	Column 1	Column 2	
Dibromomethane	1	<10		13.09		
1,2-Dichlorobenzene	3	<10		60.10		i
1,3-Dichlorobenzene	66	<10		42.90		!
1,4-Dichlorobenzene	5	<10		37.28		
Dichlorodifluoromethane	30	<30		3.54		
1,1-Dichloroethane	1	<10		11.67	1	
1,2-Dichloroethane	11	<10		13.55		
1,1-Dichloroethylene	3	<10		10.31	:	!
trans-1,2-Dichloroethylene	. 2	<10	<u> </u>	12.35		r
Dichloromethane	5	<10	İ	7.50		
1,2-Dichloropropane	1	<10		17.19		į
				17.24	:	
1,3-Dichloropropylene	б	<10	1	18.68	<u> </u>	!
1,1,2,2-Tetrachloroethane	7	<10	!	23.47	!	
1,1,1,2-Tetrachloroethane	7	<10		21.04		
Tetrachloroethylene	1	<10	1	23.47	:	İ
1,1,1-Trichloroethane	1	<10	i	14.76	1	!
1,1,2-Trichloroethane	1	<10		18.68		ļ
Trichloroethylene	. 2	<10		17.91	i	
Trichlorofluoromethane	.1	<10		8.58	1	!
Trichloropropane	2	<10		23.01	1	
Vinyl chloride	.4	<10		3.54	:	
·						
		i	!	!		1
	•		•	!		1
						1
		;				:

^{*} If % moisture is reported, results are presented on a dry-weight basis.

PROCESSED RESERVED BEAUTY PROCESSED BEAUTY RESERVED RESERVED BEAUTY RESERVED B

Halogenated Volatile Organics

Page _	<u>/</u>	of	2
Report	_		

5	ዿዀዹጛ <i>ፎ</i> ዀጜዀጜዀጜዹጜዄዄዄዄዄዄዄፙፙፙኇ፟ዄጚ ፞ ዄዸዄዹ	ዸቘጜፙፙፙዀዀዀዀዀዀዀዀዀዀዀዀዀዀዀዀዀዀዀዀዀዀዀ	#2.\$\$\P.\$\P.\$\P.\$\P.\$\P.\$\P.\$\P.\$\P.\$\P.\$\
	Engineering-Science	ANALYTICAL RESULTS SUMMARY Halogenated Volatile Organics SW Method 8010 (first of two pages)	Page / of 2 Report
8 🕏	ES Job No. 56528	Lab Sample No.	1-86-1053
	Client U.S. Air F	orce Field Sample No	· 3-ES-15,55-4
	Project PJKS (Denv	rer Date Collected	1-9-86
_	Client No.	. Date Received	1-10-36
	Laboratory Supervisor	Approval: Date Analyzed	1/13/86
	Johnson R Co	James QC Report No.	PJK5-09
6 Ag	/ / Water (ug/L)	Dilution Factor	
	/X / Soil (ug/g)	*Moisture	
t.	/ / O . N		

Compound -	c	oncentrat	ion Retenti	on Time Notes
	Det Lim	Column 1	Column 2 Column	Column 2:
Benzyl chloride	4	<10	40.9	
bis(2-chloroethoxy) methane	12	<12	44.2	:
bis(2-chloroisopropyl) ether	25	८३५	42.2	
Bromobenzene	8	<10	29.18	•
Bromodichloromethane	2	<10	15.69	i (
Bromoform	4	<10	21.24	i
Bromomethane	. 24	1	2.85	
Carbon tetrachloride	3	<10	15.47	
Chloroacetaldehyde	10	<10	11.6	·
Chloral	. 10	<10	18.7	·
Chlorobenzene	5	<10	26.01	
Chloroethane	10	<10	4.51	
Chloroform	1	<10	13.01	<u>i</u>
1-Chlorohexane	. 2	<10	26.58	1
2-Chloroethyl vinyl ether	3	<10	19.49	
Chloromethane	. 2	<10	1.95	
Chloromethyl methyl ether	20	420	9.37	<u> </u>
Chlorotoluene	4	<10	37.9	
Dibromochloromethane	2	<10	18.68	

continued on back

recessare regulation becomes a becomes I was

X

1-86-1083

Compound				Retention Time		
	Det Lim	Column 1	Column 2	Column 1	Column 2	
Dibromomethane	1	<10		13.09	·	
1,2-Dichlorobenzene	3	<10	<u>!</u>	60.10		!
1,3-Dichlorobenzene	66	<10	 	42.90		
1,4-Dichlorobenzene	5	<10		37.28		
Dichlorodifluoromethane	30	(30	<u> </u>	3.54		
1,1-Dichloroethane	1	<10		11.67	i	1
1,2-Dichloroethane	11	<10		13.55	<u>:</u>	:
1,1-Dichloroethylene	3	<10	<u> </u>	10.31	<u> </u>	1
trans-1,2-Dichloroethylene	2	<10	!	12.35		
Dichloromethane	5	<10	!	7.50		:
1,2-Dichloropropane	11	<10		17.19		į
				17.24	1	i
1,3-Dichloropropylene	6	<10	1	18.68	!	<u> </u>
1,1,2,2-Tetrachloroethane	: 7	<10		23.47	!	!
1,1,1,2-Tetrachloroethane	7	<10		21.04	<u>:</u>	!
Tetrachloroethylene		<10		23.47	:	!
1,1,1-Trichloroethane	111	<10		14.76	<u>:</u>	!
1,1,2-Trichloroethane	<u> </u>	<10	<u> </u>	18.68		1
Trichloroethylene	2	<10		17.91	<u>:</u>	+
Trichlorofluoromethane	• 1	<10		8.58		·
Trichloropropane	2	<10	!	23.01		
Vinyl chloride	4	<10	ļ	3.54		
		<u> </u>				<u> </u>
		i				:
		<u> </u>		1		į
		<u>:</u>	·			
		<u>;</u>				1

^{*} If % moisture is reported, results are presented on a dry-weight basis.

The state of the s

The state of the s

CANADA CA

Ti.

T.

3

N.

7

ANALYTICAL RESULTS SUMMARY Halogenated Volatile Organics SW Method 8010 (first of two pages)

. 1	Page	Ĺ	of	2
1	Repor	t_		

ES Job No.	56528	Lab Sample No	1-86-1684
Client	U.S. Air Force	Field Sample No.	3-ES-15, 55.5
Project	PJKS (Denver	Date Collected	1-9-86
Client No.		Date Received	1-10-36
Laboratory	Supervisor Approval:	Date Analyzed	1/13/86
Sample Matz	my R adaman	QC Report No.	PJ\$5-09
<u>/</u> / v	Water (ug/L)	Dilution Factor _	
<u>/x</u> / s	Soil (ug/g)	*Moisture	*
<u>/_</u> /	ther		

Compound	Concentration			Retention Time		Notes
•	Det Lim	Column 1	Column 2	Column	Column 2	
Benzyl chloride	4	<10		40.9		•
bis(2-chloroethoxy) methane	12	<12	-	44.2		
bis(2-chloroisopropyl) ether	25	<25		42.2		!
Bromobenzene	8	<10		29.18	1	:
Bromodichloromethane	2	<10		15.69		f
Bromoform	4	<10		21.24		
Bromomethane	24	224		2.85		i
Carbon tetrachloride	3	<10		15.47		
Chloroacetaldehyde	10	<10		11.6	,	·
Chloral	10	<10		18.7	!	
Chlorobenzene	5	<10		26.01	<u> </u>	<u> </u>
Chloroethane	10	<10		4.51		
Chloroform	1	<10	-	13.01	<u> </u>	
1-Chlorohexane	. 2	<10		26.58	<u> </u>	1
2-Chloroethyl vinyl ether	3	<10		19.49	ļ 4	·
Chloromethane		<10		1.95		
Chloromethyl methyl ether	-20	< 20		9.37		
Chlorotoluene	4	<10		37.9		<u> </u>
Dibromochloromethane	. 2	<10		18.68	:	1

Compound		oncentrat:		Retentio		Notes
	Det Lim	Column 1	Column 2	Column 1	Column 2	
Dibromomethane	1	<10		13.09		
1,2-Dichlorobenzene	3	<10	<u> </u>	60.10		1
1,3-Dichlorobenzene	. 6	<10	<u> </u>	42.90		
1,4-Dichlorobenzene	. 5	<10	<u> </u>	37.28		:
Dichlorodifluoromethane .	30	23c		3.54	t •	!
1,1-Dichloroethane	1	<10		11.67		!
1,2-Dichloroethane	<u>, 1</u>	<10		13.55		į
1,1-Dichloroethylene	٠3	<10		10.31		!
trans-1,2-Dichloroethylene	2	<10		12.35		i
Dichloromethane	-5	<10		7.50		
1,2-Dichloropropane	1	<10		17.19		
				17.24		İ
1,3-Dichloropropylene	5	<10		18.68		<u> </u>
1,1,2,2-Tetrachloroethane	7	<10		23.47		
1,1,1,2-Tetrachloroethane	7	<10		21.04		
Tetrachloroethylene	1	<10		23.47		
1,1,1-Trichloroethane	1	<10		14.76		
1,1,2-Trichloroethane	1	<10		18.68		
Trichloroethylene	2	<10		17.91		
Trichlorofluoromethane	1	<10		8.58		
Trichloropropane	2	<10		23.01	! ·	
Vinyl chloride	4	<10		3.54		
	,					
	:		1			
				!		
	:	!				
	:		•			

^{*} If % moisture is reported, results are presented on a dry-weight basis.

ANALYTICAL RESULTS SUMMARY Halogenated Volatile Organics SW Method 8010 (first of two pages)

Page /	_ of	2
Report		

ES Job No. <u>56528</u>	Lab Sample No	1-86-1083
Client U.S. Air Force	Field Sample No.	3 ES-15, 55 6
Project PJKS (Denver	Date Collected	1-9-96
Client No.	Date Received	1-10-86
Laboratory Supervisor Approval:	Date Analyzed	1/13/56
Johnne R. Cidanison Sample Matrix	QC Report No. P	JKS-07
/_/ Water (ug/L)	Dilution Factor	
/X / Soil (ug/g)	*Moisture	٠
/_/ Other		

Compound	c	oncentrat:	ion	Retention Time N		Notes
	Det Lim	Column 1	Column 2	Column 1	Column 2	
Benzyl chloride	4	<10		40.9	•	•
<pre>bis(2-chloroethoxy) methane</pre>	12	<12	-	44.2		İ
<pre>bis(2-chloroisopropyl) ether</pre>	25	125		42.2		
Bromobenzene	8	<10		29.18		
Bromodichloromethane	2	<10		15.69		
Bromoform	4	<10	_	21.24		
Bromomethane	24	(24		2.85		
Carbon tetrachloride	3	<10		15.47	!	
Chloroacetaldehyde	10	<10		11.6	i	
Chloral	10	<10		18.7	i :	
Chlorobenzene	5	<10		26.01		
Chloroethane	10	<10		4.51	;	
Chloroform	1	<10		13.01		
1-Chlorohexane	2	<10		26.58	<u> </u>	ı
2-Chloroethyl vinyl ether	3	<10		19.49		
Chloromethane	2	<10		1.95		
Chloromethyl methyl ether	20	<10		9.37		
Chlorotoluene	4	<10	! !	37.9	!	<u> </u>
Dibromochloromethane	2	<10		18.68	:	ļ

1-86-1085

Compound		Concentration			Retention Time	
	Det	Lim	Column 1	Column 2	Column 1 Column 2	2
Dibromomethane		•1	<10		13.09	İ
1,2-Dichlorobenzene		3	<10		60.10	
1,3-Dichlorobenzene		5	<10		42.90	
1,4-Dichlorobenzene	<u> </u>	5	<10		37.28	i
Dichlorodifluoromethane		30	<30		3.54	!
1,1-Dichloroethane		1	<10		11.67	!
1,2-Dichloroethane		1	<10		13.55	! !
1,1-Dichloroethylene		3	<10		10.31	
trans-1,2-Dichloroethylene		·2	<10		12.35	İ
Dichloromethane	:	5	<10		7.50	!
1,2-Dichloropropane		1	<10		17.19	
				-	17.24	ì
1,3-Dichloropropylene	<u> </u>	6	<10		18.68	<u> </u>
1,1,2,2-Tetrachloroethane	:	7	<10	<u> </u>	23.47	
1,1,1,2-Tetrachloroethane		7	<10		21.04	
Tetrachloroethylene		1	<10		23.47	
1,1,1-Trichloroethane		1	<10		14.76	
1,1,2-Trichloroethane	! : 	1	<10	<u> </u>	18.68	
Trichloroethylene		2	<10		17.91	
Trichlorofluoromethane		1	<10		8.58	
Trichloropropane	i	2	<10		23.01	
Vinyl chloride	i 	4	<10		3.54	į
						İ
	<u> </u>			İ		
				!	:	
	:		:			i

^{*} If % moisture is reported, results are presented on a dry-weight basis.

7

ANALYTICAL RESULTS SUMMARY Halogenated Volatile Organics SW Method 8010 (first of two pages)

Page	1	of	<u>Z.</u>
Report	-		

ES Job No. 56528	Lab Sample No	1-86-1032
Client U.S. Air Force	Field Sample No.	3-ES16, 55-1
Project PJKS (Denver	Date Collected	1-2-96
Client No.	Date Received	1-3-86
Laboratory Supervisor Approval:	Date Analyzed	1/5/86
John P. Colomon Sample Matrix?	QC Report No.	PJKS-CS
/_/ Water (ug/L)	Dilution Factor _	
/X / Soil (ug/g)	*Moisture	
/ / Other		

Compound	Concentration		Retention Time		Notes	
_	Det Lim	Column 1	Column 2	Column 1	Column 2	
Benzyl chloride	4	<10		40.9)
<pre>bis(2-chloroethoxy) methane</pre>	12	<12		44.2		,
bis(2-chloroisopropyl) ether	25	<25		42.2		
Bromobenzene	8	<10		29.18		
Bromodichloromethane	2	<10		15.69		
Bromoform	4	<10		21.24		
Bromomethane	24	<24		2.85		
Carbon tetrachloride	3	<10		15.47		
Chloroacetaldehyde	10	<10		11.6		
Chloral	10	<10		18.7		
Chlorobenzene	5	<10		26.01		
Chloroethane	10	<10		4.51		
Chloroform	1	<10	·	13.01		
1-Chlorohexane	.2	<10		26.58	•	ļ
2-Chloroethyl vinyl ether	3	<10		19.49		
Chloromethane	2	<10		1.95		
Chloromethyl methyl ether	20	(20		9.37		
Chlorotoluene	4	<10		37.9		
Dibromochloromethane	2	<10		18.68	:	

Wind Control of the C

AND SERVICE I WINDS ARREST AND SERVICES

ANALYTICAL RESULTS SUMMARY Halogenated Volatile Organics SW Method 8010 (second of two pages)

1-86-1032

Compound	Concentration			Retentio		Notes
	Det Lim	Column 1	Column 2	Column 1	Column 2	
Dibromomethane	1	<10		13.09	:	
1,2-Dichlorobenzene	3	<10	<u> </u>	60.10	: : :	
1,3-Dichlorobenzene	6	<10	1	42.90	:	
1,4-Dichlorobenzene	5	<10	1	37.28		
Dichlorodifluoromethane	30	<30		3.54	<u> </u>	İ
1,1-Dichloroethane	. 1	<10		11.67	<u>;</u>	<u> </u>
1,2-Dichloroethane	1	<10	<u> </u>	13.55	: !	1
1,1-Dichloroethylene	3	<10	1	10.31	<u> </u>	!
trans-1,2-Dichloroethylene	2	<10		12.35		<u> </u>
Dichloromethane	5	<10		7.50	1	!
1,2-Dichloropropane	1	<10		17.19	!	
			1	17.24	İ	
1,3-Dichloropropylene	6	<10		18.68		į
1,1,2,2-Tetrachloroethane	7	<10		23.47	<u> </u>	
1,1,1,2-Tetrachloroethane	7	<10		21.04		
Tetrachloroethylene	1	<10		23.47		
1,1,1-Trichloroethane	1	<10		14.76	•	į
1,1,2-Trichloroethane	1	<10		18.68	! !	
Trichloroethylene	2	<10		17.91	į	
Trichlorofluoromethane	1	<10		8.58	†	
Trichloropropane	2	<10		23.01	ř.	
Vinyl chloride	4	<10	1	3.54	i	İ
	1			!	•	!
		-	1		1	i I
	ŧ		i			İ
•		1	:	:		
	:	•	,			i

^{*} If * moisture is reported, results are presented on a dry-weight basis.

ANALYTICAL RESULTS SUMMARY Halogenated Volatile Organics SW Method 8010 (first of two pages)

Page _	<u>İ</u>	of	2.
Report			

ES Job No.	56528	Lab Sample No	1-86-1033
Client	U.S. Air Force	Field Sample No.	3-ES-16,55-2
Project	PJKS (Denver	Date Collected	1-7-96
Client No.		Date Received	1-3-86
Laboratory	Supervisor Approval:	Date Analyzed	1/8/86
Sample Matr	P Champen	QC Report No.	PIKS-CB
<u>/_</u> / w	Nater (ug/L)	Dilution Factor	
<u>/x</u> / s	Soil (ug/g)	*Moisture	
<u>/_</u> / c	ther		

Compound	Concentration			Retention Time		Notes
-	Det Lim	Column 1	Column 2	Column 1	Column 2	•! !
Benzyl chloride	4	<10		40.9	ļ	i
<pre>bis(2-chloroethoxy) methane</pre>	. 12	(12		44.2		1
bis(2-chloroisopropyl) ether	25	4 25		42.2		
Bromobenzene	8	<10		29.18	1	:
Bromodichloromethane	2	<10		15.69		
Bromoform	4	<10		21.24	m m m m m m m m m m m m m m m m m m m	
Bromomethane	24	ر کالا		2.85	i	
Carbon tetrachloride	3	<10		15.47		
Chloroacetaldehyde	10	<10		11.6		
Chloral	10	<10		18.7		
Chlorobenzene	5	<10		26.01	:	
Chloroethane	10	<10		4.51	<u> </u>	
Chloroform	1	<10		13.01	<u> </u>	
1-Chlorohexane	2	<10		26.58	1	1
2-Chloroethyl vinyl ether	3	<10		19.49		
Chloromethane	. 2	<10		1.95		
Chloromethyl methyl ether	. 20	120		9.37		
Chlorotoluene	4	<10		37.9	:	ŀ
Dibromochloromethane	2	<10	ł	18.68	:	

continued on back

1-86-1033

Compound	Concentration			Retention Time		Notes
	Det Lim	Column 1	Column 2	Column 1	Column 2	
Dibromomethane	1	<10		13.09		
1,2-Dichlorobenzene	. 3	<10	1	60.10	:	
1,3-Dichlorobenzene	6	<10		42.90	•	
1,4-Dichlorobenzene	5	<10		37.28		
Dichlorodifluoromethane	30	30		3.54		1
1,1-Dichloroethane	. 1	<10		11.67		İ
1,2-Dichloroethane	1	<10		13.55	1	1
1,1-Dichloroethylene	3	<10		10.31		
trans-1,2-Dichloroethylene	2	<10		12.35		İ
Dichloromethane :	5	<10		7.50	!	i :
1,2-Dichloropropane	1	<10		17.19	i	
				17.24	!	
1,3-Dichloropropylene	6	<10		18.68		
1,1,2,2-Tetrachloroethane	7	<10	!	23.47	1	
1,1,1,2-Tetrachloroethane	.7	<10		21.04		
Tetrachloroethylene	1	<10		23.47		
1,1,1-Trichloroethane	1	<10	<u> </u>	14.76	:	
1,1,2-Trichloroethane	1	<10		18.68	i	
Trichloroethylene	2	<10		17.91		
Trichlorofluoromethane	1	<10		8.58	:	
Trichloropropane	2	<10	!	23.01	ŧ	
Vinyl chloride	4	<10]	3.54	; {	İ
	!			!	1	
			ì			Ì
	!				:	
		!	1			
	:			;		

^{*} If % moisture is reported, results are presented on a dry-weight basis.

INCHESCA CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL

ANALYTICAL RESULTS SUMMARY Halogenated Volatile Organics SW Method 8010 (first of two pages)

Page _	1	of	2
Report	_		

ES Job No. <u>56528</u>	Lab Sample No	1-86-1634
Client U.S. Air Force	Field Sample No.	3-E5-16,553
Project PJKS (Denver	Date Collected	1-2-96
Client No.	Date Received	1-3-86
Laboratory Supervisor Approval:	Date Analyzed	1/9/86
John R Colombia	QC Report No.	PJKS -CG
/_/ Water (ug/L)	Dilution Factor _	
/X / Soil (ug/g)	*Moisture	. %
/_/ Other	· · · · · · · · · · · · · · · · · · ·	•

Compound	C	oncentrat	ion	Retention Time		Notes
_	Det Lim	Column 1	Column 2	Column 1	Column 2	! !
Benzyl chloride	4	<10		40.9		•
<pre>bis(2-chloroethoxy) methane</pre>	12	<12		44.2		:
bis(2-chloroisopropyl) ether	25	125		42.2		1
Bromobenzene	8	<10		29.18		!
Bromodichloromethane	2	<10		15.69	ļ	,
Bromoform	4	<10		21.24		· ·
Bromomethane	24	L 24		2.85		
Carbon tetrachloride	3	<10		15.47		
Chloroacetaldehyde	. 10	<10		11.6		
Chloral	10	<10		18.7	: :	
Chlorobenzene	5	<10		26.01	! . !	
Chloroethane	10	<10		4.51	<u>;</u>	
Chloroform	1	<10		13.01	<u> </u>	<i></i>
1-Chlorohexane	2	<10		26.58	•	•
2-Chloroethyl vinyl ether	3	<10		19.49	<u> </u>	
Chloromethane	2	<10		1.95		
Chloromethyl methyl ether	20	120		9.37		
Chlorotoluene	. 4	<10		37.9		
Dibromochloromethane	2	<10		18.68	•	l

continued on back

PROGRAM SHOWN DOWNERS HANDERS AND AND STONE STONE STREET, STONE STONE STREET

3

7.5

8

33

Compound	Concentration		Retention Time	Notes	
	Det Lin	Column 1	Column 2	Column 1 Column 2	i
Dibromomethane	1	<10		13.09	
1,2-Dichlorobenzene	3	<10		60.10	<u> </u>
1,3-Dichlorobenzene	. 6	<10		42.90	
1,4-Dichlorobenzene	5	<10	1	37.28	:
Dichlorodifluoromethane	30	<30		3.54	
1,1-Dichloroethane	<u>, 1</u>	<10		11.67	
1,2-Dichloroethane	1	<10	<u> </u>	13.55	;
1,1-Dichloroethylene	3	<10		10.31	
trans-1,2-Dichloroethylene	2	<10		12.35	<u> </u>
Dichloromethane	5	<10		7.50	
1,2-Dichloropropane	1	<10		17.19	
	-			17.24	
1,3-Dichloropropylene	6	<10		18.68	<u> </u>
1,1,2,2-Tetrachloroethane	7	<10		23.47	
1,1,1,2-Tetrachloroethane	.7	<10		21.04	
Tetrachloroethylene	1	<10		23.47	
1,1,1-Trichloroethane	. 1	<10		14.76	
1,1,2-Trichloroethane	1	<10		18.68	
Trichloroethylene	2	<10		17.91	
Trichlorofluoromethane	1	<10		8.58	
Trichloropropane	. 2	<10		23.01	
Vinyl chloride	4	<10		3.54	
	!				
	:				
	<u> </u>		<u> </u>	i	
	:	!		:	
	:		:		į

^{*} If % moisture is reported, results are presented on a dry-weight basis.

COMPANY CONDESS. Decreaced Decreaced Acceptant

10 20

83

S

, (

The state of the s

ANALYTICAL RESULTS SUMMARY Halogenated Volatile Organics SW Method 8010 (first of two pages)

Page	1	of	2
Repor	t _		

ES Job No. <u>56528</u>	Lab Sample No	1-86-1035
Client U.S. Air Force	Field Sample No.	3-ES-16,554
Project PJKS (Denver	Date Collected	1-2-86
Client No.	Date Received	1-3-56
Laboratory Supervisor Approval:	Date Analyzed	119/86
Johnny R. Cidamoran Sample Matrix	QC Report No.	PJK5-03
/_/ Water (ug/L)	Dilution Factor _	
/X / Soil (ug/g)	*Moisture	
/_/ Other		

Compound	C	oncentrat	ion	Retention Time		Notes
	Det Lim	Column 1	Column 2	Column 1	Column 2	
Benzyl chloride	4	<10		40.9	,	·
bis(2-chloroethoxy) methane	12	<12	-	44.2		
bis(2-chloroisopropyl) ether	25	425		42.2		
Bromobenzene	88	<10		29.18		
Bromodichloromethane	2	<10		15.69		
Bromoform	4	<10		21.24		
Bromomethane	24	/24		2.85	-	
Carbon tetrachloride	3	<10		15.47	!	
Chloroacetaldehyde	10	<10		11.6	:	
Chloral	10	<10		18.7		
Chlorobenzene	. 5	<10		26.01		
Chloroethane	10	<10		4.51	:	
Chloroform	. 1	<10		13.01	i	
1-Chlorohexane	2	<10		26.58	•	·
2-Chloroethyl vinyl ether	3	<10		19.49		
Chloromethane	. 2	<10		1.95		
Chloromethyl methyl ether	20	/ 20		9.37		
Chlorotoluene	. 4	<10		37.9	!	
Dibromochloromethane	2	<10		18.68	:	

PARAMAN SENSEN BESTOON RECORDS

ANALYTICAL RESULTS SUMMARY Halogenated Volatile Organics SW Method 8010 (second of two pages)

1-86-1635

Compound	Concentration			Retention Time		Notes
	Det Lim	Column 1	Column 2	Column 1	Column 2	Ì
Dibromomethane	1	<10		13.09	!	<u> </u>
1,2-Dichlorobenzene	3	<10		60.10		
1,3-Dichlorobenzene	6	<10		42.90	,	
1,4-Dichlorobenzene	5	<10	ļ	37.28		
Dichlorodifluoromethane	30	<30		3.54	:	i
1,1-Dichloroethane	. 1	<10		11.67	: !	!
1,2-Dichloroethane		<10		13.55	:	!
1,1-Dichloroethylene	3	<10		10.31	<u> </u>	!
trans-1,2-Dichloroethylene	2	<10	<u>i</u>	12.35		<u> </u>
Dichloromethane	. 5	<10		7.50		į
1,2-Dichloropropane	1	<10		17.19	i	<u> </u>
	į			17.24	1	!
1,3-Dichloropropylene	6	<10		18.68		ļ
1,1,2,2-Tetrachloroethane	7	<10	·	23.47	1	
1,1,1,2-Tetrachloroethane	. 7	<10		21.04		
Tetrachloroethylene	1	<10		23.47		
1,1,1-Trichloroethane	<u>.</u> 1	<10		14.76	:	
1,1,2-Trichloroethane	1 1	<10		18.68	1	
Trichloroethylene	. 2	<10		17.91	•	ļ
Trichlorofluoromethane	. 1	<10		8.58	l	
Trichloropropane	2	<10		23.01	!	
Vinyl chloride	1 . 4	<10		3.54	1	!
	!		1	!	1	
	:				1	
				!	1	
	:	!	:	:		•
	;	!		!		

^{*} If % moisture is reported, results are presented on a dry-weight basis.

ANALYTICAL RESULTS SUMMARY Halogenated Volatile Organics SW Method 8010 (first of two pages)

Page		of	2
Repor	t _		

ES Job No. 56528	Lab Sample No.	1-86-1036
Client U.S. Air Force	Field Sample No.	3-ES-16, 55-5
Project PJKS (Denver	Date Collected	
Client No. ·	Date Received	/-3 <i>-3(</i> ;
Laboratory Supervisor Approval:	Date Analyzed	1/9/56
Johnson R. Cadranosa Sample Matrix	QC Report No.	PJK5-08
/_/ Water (ug/L)	Dilution Factor _	
/X / Soil (ug/g)	*Moisture	
/_/ Other		

Compound	c	oncentrat	ion	Retenti	on Time	Notes
	Det Lim	Column 1	Column 2	Column 1	Column 2	
Benzyl chloride	4	<10		40.9)	
bis(2-chloroethoxy) methane	12	د ا>		44.2		
bis(2-chloroisopropyl) ether	25	425		42.2		
Bromobenzene	. 8	<10		29.18	1	
Bromodichloromethane	2	<10		15.69	<u> </u>	,
Bromoform	4	<10		21.24		
Bromomethane	24	/24		2.85		i
Carbon tetrachloride	3	<10		15.47		1
Chloroacetaldehyde	_ 10	<10		11.6	:	
Chloral	10	<10		18.7	!	
Chlorobenzene	5	<10		26.01		
Chloroethane	10	<10		4.51	!	
Chloroform	1	<10		13.01		
1-Chlorohexane	2	<10		26.58	<u> </u>	,
2-Chloroethyl vinyl ether	3	<10		19.49		
Chloromethane	2	<10		1.95		
Chloromethyl methyl ether	20	<20		9.37		
Chlorotoluene	4	<10		37.9		
Dibromochloromethane	· 2	<10		18.68		

ANALYTICAL RESULTS SUMMARY Halogenated Volatile Organics SW Method 8010 (second of two pages)

Compound	C	oncentrat:	ion	Retenti	Notes	
	Det Lim	Column 1	Column 2	Column 1	Column 2	
Dibromomethane	1	<10		13.09		
1,2-Dichlorobenzene	3	<10		60.10	i	1
1,3-Dichlorobenzene	6	<10		42.90		:
1,4-Dichlorobenzene	5	<10		37.28		
Dichlorodifluoromethane	30	(30		3.54	;	
1,1-Dichloroethane	1	<10		11.67	i	i
1,2-Dichloroethane	1	<10		13.55		;
1,1-Dichloroethylene	3	<10	1	10.31	. •	1
trans-1,2-Dichloroethylene	2	<10		12.35		1
Dichloromethane	5	<10		7.50		:
1,2-Dichloropropane	1	<10		17.19		i
				17.24		
1,3-Dichloropropylene	6	<10		18.68		
1,1,2,2-Tetrachloroethane	. 7	<10	•	23.47	İ	
1,1,1,2-Tetrachloroethane	i i 7	<10		21.04	ļ	
Tetrachloroethylene	1	<10		23.47	!	1
1,1,1-Trichloroethane	11	<10		14.76		
1,1,2-Trichloroethane	<u> </u>	<10	<u> </u>	18.68	!	<u> </u>
Trichloroethylene	2	<10		17.91	;	
Trichlorofluoromethane	1	<10		8.58		
Trichloropropane	2	<10		23.01	1	!
Vinyl chloride	4	<10		3.54		į
	!			!	:	
				į	:	1
	!			!	:	Ì
		!	:	:		!
	:			!		1

^{*} If % moisture is reported, results are presented on a dry-weight basis.

MATERIAL SOCIETA SOCIETA SOCIETA CONTROL SAMBLE SOCIETA

ANALYTICAL RESULTS SUMMARY Halogenated Volatile Organics · SW Method 8010 (first of two pages)

Page _	_	of	2
Report	_		

ES Job No. <u>56528</u>	Lab Sample No	1-86-1037
Client U.S. Air Force	Field Sample No.	3-ES-16,55-6
ProjectPJKS (Denver	Date Collected	1-2-96
Client No.	Date Received	1-3.86
Laboratory Supervisor Approval:	Date Analyzed	1/9/86
Jehnes R. Colonson- Sample Matrix	QC Report No.	PIKS-CS
/_/ Water (ug/L)	Dilution Factor _	
/X / Soil (ug/g)	*Moisture	
/ / Other		•

Compound	c	oncentrat	i <u>on</u> Retenti	on Time Notes
	Det Lim	Column 1	Column 2 Column 1	Column 2
Benzyl chloride	4	<10	40.9	•
<pre>bis(2-chloroethoxy) methane</pre>	12	12	44.2	
bis(2-chloroisopropyl) ether	25	<25	42.2	;
Bromobenzene	8	<10	29.18	!
Bromodichloromethane	2	<10	15.69	
Bromoform	4	<10	21.24	
Bromomethane	24	LZ4	2.85	
Carbon tetrachloride	3	<10	15.47	:
Chloroacetaldehyde	10	<10	11.6	
Chloral	10	<10	18.7	;
Chlorobenzene	5	<10	26.01	:
Chloroethane	10	<10	4.51	
Chloroform	1	<10	13.01	1
1-Chlorohexane	2	<10	26.58	i
2-Chloroethyl vinyl ether	. 3	<10	19.49	
Chloromethane	. 2	<10	1.95	
Chloromethyl methyl ether	20	(20	9.37	
Chlorotoluene	4	<10	37.9	
Dibromochloromethane	2	<10	18.68	;

continued on back

particular control horses of the particular controls satisfies of province controls and the particular controls

22.0

3

T)

3

Compound		oncentrati		Retention	Time Notes
	Det Lim	Column 1	Column 2	Column 1 Co	olumn 2
Dibromomethane	1	<10	<u> </u>	13.09	
1,2-Dichlorobenzene	33	<10	1	60.10	<u> </u>
1,3-Dichlorobenzene	6	<10	! :	42.90	
1,4-Dichlorobenzene	5	<10	<u> </u>	37 - 28	· · ·
Dichlorodifluoromethane	_ ٥	<30	<u> </u>	3.54	;
1,1-Dichloroethane	11	<10	<u> </u>	11.67	· · · · · · · · · · · · · · · · · · ·
1,2-Dichloroethane	1	<10		13.55	;
1,1-Dichloroethylene	3	<10		10.31	!
trans-1,2-Dichloroethylene	2	<10	1	12.35	ı
Dichloromethane	5	<10	İ	7.50	:
1,2-Dichloropropane	1	<10		17.19	
	 - -			17.24	:
1,3-Dichloropropylene	6	<10		18.68	
1,1,2,2-Tetrachloroethane	7	<10	1	23.47	
1,1,1,2-Tetrachloroethane	7	<10	!	21.04	-
Tetrachloroethylene	1	<10		23.47	İ
1,1,1-Trichloroethane	1	<10		14.76	İ
1,1,2-Trichloroethane	1	<10		18.68	1
Trichloroethylene	2	<10		17.91	:
Trichlorofluoromethane	11	<10		8.58	
Trichloropropane	2	<10	İ	23.01	!
Vinyl chloride	4	<10	!	3.54	
	:		1		
	:	!	: 	!	· · · · · · · · · · · · · · · · · · ·
	<u> </u>	1	1	·	1

^{*} If * moisture is reported, results are presented on a dry-weight basis.

ANALYTICAL RESULTS SUMMARY Aromatic Volatile Organics SW Method 8020

Page 1	_ of	1
Report		

ES Job No. 56528	Lab Sample No	1-86-1030
Client U.S. Air Force	Field Sample No.	3-ES-15, 55-1,0-2'
Project PJKS (Denver)	Date Collected	•
Client No.	Date Received _	1/3/86
Laboratory Supervisor Approval:	Date Analyzed	1/8/86
Johnna R Odamonn Sample Matrix D	OC Report No	565 28-8
/ / Water (ug/L)	Dilution Factor	
<u>/X</u> / Soil (ug/g)	*Moisture	
/ / Other		

Compound	c	oncentrat:	ion	Retenti	on_ Time	Notes
	Det Lim	Column 1	Column 2	Column 1	Column 2	
Benzene	4_	<10		2.26		
Chlorobenzene	. 4	<10		16.46		
1,2-Dichlorobenzene	8	<10	<u> </u>	27.93		
1,3-Dichlorobenzene	8	<10		26.40		
1,4-Dichlorobenzene	6	<10		22.51		
Ethyl benzene	4	<10		7.18		·
Toluene	4	<10		5.47		
Xylenes (Dimethyl benzene)	. 4	<10		15.26 16.91 17.77		
		ļ		ļ		

^{*} If % moisture is reported, results are presented on a dry-weight basis.

Contract Contracts Contract Described Contracts

ののな

S

ò

1

ANALYTICAL RESULTS SUMMARY Aromatic Volatile Organics SW Method 8020

Page	of	1
Report		

ES Job No. <u>56528</u>	Lab Sample No.	1-86- 1031
Client U.S. Air Force	Field Sample No.	3-ES-15,55 -2 2-4
Project PJKS (Denver)	Date Collected	1/2/86
Client No.	Date Received	1/3/86
Laboratory Supervisor Approval:	Date Analyzed	1/5/86
Johnny R. Odamson Sämple Matrix:	OC Report No.	56528-8
/_/ Water (ug/L)	Dilution Factor _	
<u>/X</u> / Soil (ug/g)	*Moisture	8
// Other		

c	oncentrat	ion	Retentio	on Time	Notes
Det Lim	Column 1	Column 2	Column 1	Column 2	
4	<10		2.26		
4	<10		16.46		
.8	<10		27.93		
8	<10		26.40		
. 6	<10		22.51		
. 4	<10		7.18		
. 4	<10		5.47		
4	<10		15.26 16.91 17.77		
					<u>. </u>
<u> </u>					
	Det Lim	Det Lim Column 1 .4 <10 4 <10 8 <10 6 <10 4 <10 .4 <10 .4 <10	4 <10 4 <10 8 <10 8 <10 6 <10 4 <10 4 <10	Det Lim Column 1 Column 2 Column 1 .4 <10 2.26 4 <10 16.46 .8 <10 27.93 .8 <10 26.40 .6 <10 22.51 .4 <10 7.18 .4 <10 5.47	Det Lim Column 1 Column 2 Column 1 Column 2 .4 <10 2.26 4 <10 16.46 .8 <10 27.93 8 <10 26.40 .6 <10 22.51 .4 <10 7.18 .4 <10 5.47

^{*} If % moisture is reported, results are presented on a dry-weight basis.

Page	of	1
Report _		

ES Job No. 56528	Lab Sample No.	1-86-1082
Client U.S. Air Force	Field Sample No.	3- £8-15, 55-3,5-7
ProjectPJKS (Denver)	Date .Collected _	1/9/86
Client No.	Date Received _	1/10/86
Laboratory Supervisor Approval:	Date Analyzed _	1/13/86
Johnny P. adamson Sample Matrix:	OC Report No	565 28 - 9
/_/ Water (ug/L)	Dilution Factor	
<u>/X</u> / Soil (ug/g)	*Moisture	
/ / Other		

پ ^ي ۽		A		Volatile (Organics 20		Report _	
10000	OT:	ES Job No		La	b Sample N	10.	1-86-	1082
		Client U.S. Air Force						
	(M)	Project FJKS (Denver)					1/9/86	
•		Client No.			te Receive			
	X	Laboratory Supervisor Appro		-	te Analyza			_
22.22.22.22	***	Johnny R. ad.			Report No			
N		Sample Matrix:						
Š		/// Water (ug/L)		Di	lution Fac	tor		
	<i>ម</i> ត	/X / Soil (ug/g)		*Mo	isture			
*****	***	/_/ Other				· · ·	,,	
8	iş Fi	Compound	C		ion	Retenti	on Time	Notes
	R	_	Det Lim	Column 1	Column 2	Column 1	Column 2	
X	ΩÚ	Benzene	4	<10		2.26		
, ce	•	. Chlorobenzene	. 4	<10		16.46		<u> </u>
55555X	S	1,2-Dichlorobenzene	8	<10		27.93		
ď	3	1,3-Dichlorobenzene	8	<10		26.40		
3	_	1,4-Dichlorobenzene	6	<10		22.51		
3-1		Ethyl benzene	4	<10		7.18		
	❖	Toluene	. 4	<10		5.47		
	33			,		15.26		i
3						16.91		
	Sa.	Xylenes (Dimethyl benzene)	4	<10		17.77	<u> </u>	
1000000	X		<u></u>				1	1
	A .		<u>'</u>				1	
	***		}	<u> </u>				1
				<u>'</u>		<u></u>	 	•
	3	* If % moisture is reporte	d, resul	ts are pr	esented or	a dry-w	eight bas	is.
722	왕 왕							
PETERSON MICHAEL	3							
7.	<u> As</u>		L	-197				
N	5	8625137						
22.25	ÔXŶŶŶŶŶŶ							

^{*} If % moisture is reported, results are presented on a dry-weight basis.

Sales Contraction of the Sales

MAGNATURE CONTRACTOR CONTRACTOR STREET

Page 1	_ of	1
Report		

ES Job No.	56528	Lab Sample No. 1-86- 1083	
Client	U.S. Air Force	Field Sample No. 3-ES-15 SC-4 8	-10
Project	PJKS (Denver)	Date-Collected ./9/86	
Client No.		Date Received 1/10/86	
Laboratory	Supervisor Approval:	Date Analyzed 1/13/86	
John Sample Mat	rix: Odamsı	OC Report No	
/	Water (ug/L)	Dilution Factor	
<u>/x</u> _/	Soil (ug/g)	*Moisture	
/	Other		

Compound	C	oncentrat	ion	Retention Time		Notes
•	Det Lim	Column 1	Column 2	Column 1	Column 2	
Benzene	4	<10		2.26		
Chlorobenzene	. 4	<10		16.46		
1,2-Dichlorobenzene	8	<10		27.93		
1,3-Dichlorobenzene	.8	<10		26.40		
1,4-Dichlorobenzene	. 6	<10		22.51		
Ethyl benzene	.4	<10		7.18		<u> </u>
Toluene	.4	<10		5.47	1	
Xylenes (Dimethyl benzene)	.4	<10		15.26 16.91 17.77		
•					1	
					1	

^{*} If % moisture is reported, results are presented on a dry-weight basis.

Page _	L of	1
Report		

ES Job No.	56528	Lab Sample No	1-86-1084	
Client	U.S. Air Force	Field Sample No.	3-ES-15, SS-5,1	1.5-13
Project	PJKS (Denver)	Date -Collected _	119/86	
Client No.		Date Received	1/10/86	
Laboratory	Supervisor Approval:	Date Analyzed	1/13/86	`
Sample Matr	2. Odamom	OC Report No.	56528-9	
/_/ W	Water (ug/L)	Dilution Factor _		
<u>/x</u> / s	Soil (ug/g)	*Moisture	•	
, , ,) the w			

Compound	C	oncentrat:	ion	Retenti	on Time	Notes
	Det Lim	Column 1	Column 2	Column 1	Column 2	
Benzene	.4	<10		2.26		
Chlorobenzene	4	<10		16.46		
1,2-Dichlorobenzene	8	<10		27.93		
1,3-Dichlorobenzene	. 8	<10		26.40		
1,4-Dichlorobenzene	6	<10		22.51		_
Ethyl benzene	. 4	<10		7.18		
Toluene	.4	<10		5.47	!	•
Xylenes (Dimethyl benzene)	. 4	<10		15.26 16.91 17.77		
<u> </u>			ļ			
,			<u> </u>			_

^{*} If % moisture is reported, results are presented on a dry-weight basis.

ANALYTICAL RESULTS SUMMARY Aromatic Volatile Organics SW Method 8020

Page _	_ of	1
Report		

B

Lab Sample No	1-86-1085	
Field Sample No.	3-ES-15, SS-6, 13.4	-15,
Date -Collected	1/4/86	
Date Received	1/10/86	
Date Analyzed	1/13/86	
OC Report No.	56528-9	
Dilution Factor		
*Moisture		
		
	Field Sample No. Date Collected Date Received Date Analyzed OC Report No. Dilution Factor	OC Report No. 56528-9 Dilution Factor

Compound	Concentration			Retenti	Notes	
	Det Lim	Column 1	Column 2	Column 1	Column 2	
Benzene	. 4	<10		2.26		
Chlorobenzene	.4	<10	<u> </u>	16.46		
1,2-Dichlorobenzene		<10		27.93		
1,3-Dichloropenzene	8	<10		26.40		
1,4-Dichlorobenzene	.6	<10		22.51	<u> </u>	
Ethyl benzene	4	<10		7.18		
Toluene	4	<10		5.47		
Xylenes (Dimethyl benzene)	44	<10		15.26 16.91 17.77		
					1	! !
:						<u>.</u>
						<u> </u>

^{*} If % moisture is reported, results are presented on a dry-weight basis.

Page _	<u>t_</u>	of	
Report	_		

ES Job No. 56528	Lab Sample No	1-86-1032
Client U.S. Air Force	Field Sample No.	3-ES-16 SS-1 6-2
Project PJKS (Denver)	Date Collected _	12/86
Client No.	Date Received _	1/3/86
Laboratory Supervisor Approval:	Date Analyzed _	1/8/36
Johnny R. Odamorn Sample Matrix	OC Report No	56528-8
/_/ Water (ug/L)	Dilution Factor	
/X / Soil (ug/g)	*Moisture	
/ / Other		

Compound	Concentration			Retention Time		Notes
	Det Lim	Column 1	Column 2	Column 1	Column 2	•
Benzene	. 4	<10		2.26		
Chlorobenzene	4	<10		16.46	1	
1,2-Dichlorobenzene	. 8	<10		27.93		
1,3-Dichlorobenzene	8	<10		26.40		
1,4-Dichlorobenzene	6	<10		22.51		
Ethyl benzene	_4	<10		7.18		
Toluene	. 4	<10		5.47		
Xylenes (Dimethyl benzene)	. 4	<10		15.26 16.91 17.77		
;						,

^{*} If % moisture is reported, results are presented on a dry-weight basis.

The second of th

Page _	_ of	1
Report		

ES Job No.	56528	Lab Sample No	1-86-1033
Client _	U.S. Air Force	Field Sample No.	3-ES-16 SS-2, 2-4
Project _	PJKS (Denver)	Date Collected	1/2/56
Client No	•	Date Received	1/3/86
Laborator	y Supervisor Approval:	Date Analyzed	10/86
Sample Mar	Lrix P. Odamom	OC Report No.	56528-8
/	Water (ug/L)	Dilution Factor _	
<u>/x</u> _/	Soil (ug/g)	*Moisture	8
/ /	Other		

Compound	Concentration			Retention Time		Notes
	Det Lim	Column 1	Column 2	Column 1	Column 2	
Benzene	4	<10		2.26		
Chlorobenzene	4	<10		16.46	<u> </u>	
1,2-Dichlorobenzene	88	<10		27.93		
1,3-Dichlorobenzene	. 8	<10		26.40		
1,4-Dichlorobenzene	. 6	<10		22.51	<u> </u>	
Ethyl benzene	. 4	<10		7.18		
Toluene	,4	<10		5.47	_	_
Xylenes (Dimethyl benzene)	. 4	<10		15.26 16.91 17.77		
				1		
				1		
	<u> </u>			-		<u> </u>
	<u> </u>			 		

^{*} If % moisture is reported, results are presented on a dry-weight basis.

Page 1	_ of	
Report		

ES Job No. 56528	Lab Sample No. 1-86-1034
Client U.S. Air Force	Field Sample No. 2-FS-K SS-3.5-7
Project PJKS (Denver)	Date Collected 1/2/86
Client No.	Date Received 1/3/66
Laboratory Supervisor Approval:	Date Analyzed 1/9/86
Johnny Colamon Sample Matrix:	OC Report No. <u>56528-8</u>
/_/ Water (ug/L)	Dilution Factor
/X / Soil (ug/g)	*Moisture %
/_/ Other	

Compound	C	cncentrat	ion	Retentio	n_Time	Notes
	Det Lim	Column 1	Column	2 Column 1	Column 2	: !
Benzene	4	<10		2.26		
Chlorobenzene	4	<10		16.46		
1,2-Dichlorobenzene	88	<10		27.93		
1,3-Dichlorobenzene	. 8	<10		26.40		
1,4-Dichlorobenzene	66	<10		22.51		
Ethyl benzene	4	<10		7.18		
Toluene	. 4	<10		5.47		
Xylenes (Dimethyl benzene)	4	<10		15.26 16.91 17.77		
· .					<u> </u>	
					<u> </u>	

^{*} If % moisture is reported, results are presented on a dry-weight basis.

Page _	_ of	
Report		

ES Job No.	56528	Lab Sample No	1-86-103	<u>5</u>
Client	U.S. Air Force	Field Sample No.	3-ES-16, 55-4	_8 -
Project	PJKS (Denver)	Date Collected	12186	_
Client No.		Date Received	1/3/86	
Laboratory	Supervisor Approval:	Date Analyzed	1/9/86	_
<u>John</u> Sample Mat	rix: R adams.	OC Report No.	56528-8	_
/_/	Water (ug/L)	Dilution Factor		_
<u>/x</u> _/	Soil (ug/g)	*Moisture		-8
<u>/_</u> /	Other			
Sample Mat	rix: \(\) Water (ug/L) Soil (ug/g)	Dilution Factor	56528-8	

Compound	C	oncentrat:	ion	Retenti	Notes	
	Det Lim	Column 1	Column 2	Column 1	Column 2	
Benzene	4	<10		2.26		
Chlorobenzene	.4	<10		16.46		ļ
1,2-Dichlorobenzene	. 8	<10		27.93		
1,3-Dichlorobenzene	8	<10		26.40		
1,4-Dichlorobenzene	6	<10		22.51		
Ethyl benzene	4	<10		7.18		
Toluene	.4	<10		5.47		
Xylenes (Dimethyl benzene)	4	<10		15.26 16.91 17.77		
<u> </u>						•

^{*} If % moisture is reported, results are presented on a dry-weight basis.

Page	1	of	1
Repor	-t		

ES Job No.	56528	Lab Sample No.	1-86-1036
Client	U.S. Air Force	Field Sample No.	9- F5-16 55-5 11-12
Project	PJKS (Denver)	Date Collected	
Client No.		Date Received	1/3/86
	Supervisor Approval:	Date Analyzed	1/9/86
Sample Matz	rix: O. adamoin	OC Report No.	56528-8
/_/ V	Nater (ug/L)	Dilution Factor _	·
<u>/x</u> / s	Soil (ug/g)	*Moisture	
/ / 0	other		

Compound	C	oncentrat:	ion	Retenti	on Time	Notes
	Det Lim	Column 1	Column 2	Column 1	Column 2	
Benzene	4	<10		2.26		
Chlorobenzene	.4	<10		16.46		
1,2-Dichlorobenzene	. 8	<10		27.93		
1,3-Dichlorobenzene	8	<10		26.40		
1,4-Dichlorobenzene	. 6	<10		22.51		
Ethyl benzene	. 4	<10		7.18		
Toluene	. 4	<10		5.47		
Xylenes (Dimethyl benzene)	4	<10		15.26 16.91 17.77		
	<u> </u>					
· · · · · · · · · · · · · · · · · · ·					<u> </u>	
		ŀ	1	1		

^{*} If % moisture is reported, results are presented on a dry-weight basis.

ANALYTICAL RESULTS SUMMARY Aromatic Volatile Organics SW Method 8020

Page _	L	of	
Report			

ES Job No.	56528	Lab Sample No.	1-86-1637
Client	U.S. Air Force	Field Sample No.	1-86-1637 3-85-16, SS-6, 14-19
Project	FJKS (Denver)	Date Collected _	1/2/86
Client No.		Date Received _	1/3/86
Laboratory	Supervisor Approval:	Date Analyzed _	1/9/86
Sample Matr	Palamen	OC Report No	54528-8
<u>/_</u> / W	Water (ug/L)	Dilution Factor	
<u>/x</u> / s	Soil (ug/g)	*Moisture	•
<u>/_</u> / c	ther		

Compound		C	oncentrat	ion	Retenti	on Time	Notes
	Det :	Lim	Column 1	Column 2	Column :	Column 2	
Benzene		4	<10		2.26		
Chlorobenzene		4	<10		16.46		
1,2-Dichlorobenzene	<u> </u>	В	<10		27.93		
1,3-Dichlorobenzene		8	<10		26.40		
1,4-Dichlorobenzene		6	<10		22.51		
Ethyl benzene		4	<10		7.18		
Toluene		4	<10		5.47		
Xylenes (Dimethyl benzene)		4	<10		15.26 16.91 17.77		
					-		_
					1		

^{*} If % moisture is reported, results are presented on a dry-weight basis.

,
•

Engineering-Science	ANALYTICAL RESULTS SUMMARY Environmental Quality Parameters .	Page of 1
ES JOB 110. 56528		QC Report No.
Client US A12		Laboratory Supervisor Approval:
Project PJKS Plant	Sample Matrix:	yohim K. Lidaman
Client No.	// Water (ug/L)	Dilution Factor
Date Collected 1/2/86	Soil (ug/g) ug/kg)	*Moisture
Date Received U3/86	/ / Other	

-								<u>)</u>	<u> </u>) 	. · ·		, ,		
Notes														·	
						٠									•
						•									
				•											
			21-1						1.20		<u></u>				
CX	40.17	40,17	40,17		40117	£1'0>	40'17	₹10.0>	<0,17 1×2	40,17	₹0.0>	(0.17)		02+20	2P1792
Lab Sample No.	86-1030	(03)	760)	(033	1034	1035	1036	, (03 7	5C1082	1083	1084	530/ /		Ξ°	
Cab	-10) /			/			→ +5	5-10 /		, ()	7.		·	
Field Sample No.	P3K5, 3-85-15, 51, 10-2' 101-86-1030	155, July 15	PJKS, 3-85-16, 551, 02	55-2,2-4	59.5-1	54,8-10	555, 11-12	٠	13K5.3-85-15-15-35-1/01-86-1082	1 55-4,8-10	, fr-su/5-55	SI-612-55 A		lyzed	Analytical Hethod
Field Sa	P3KS.3-8	\	9755.3-85		207			^ ^	P3K5,3-85			>		Date Analyzed	Analytic

[·] If a moisture is reported, results are presented on a dry-weight basis.

Secretaria de la consta

Environmental Quality Parameters .. ANALYTICAL RESULTS SUMMARY

of Report Paye

THE PROPERTY OF THE PROPERTY OF THE PARTY OF

56528 NS 1012 PIKS Date Collected Date Received ES Job No. Client No. Project Client

Soll (ug/g) Jug/Kg) / Water (ug/L) Sample Matrixi

Other

Laboratory Supervisor Approval: Dilution Fact OC Report No. dhom

*Moisture

Field Sample No.	Lab Sample No.	見り				Notes
P3K5, 3-55-15,551,0-2' 01-86-1030	0501-98-10	41.0>				
p.c. 1 >	(60)	40,17				·
9755, 3-85-16, 551, 02	7601	40,17				
,7-7'2-4'	(033	Õ		•		
β γ-γ, ζ-η'	1034					
84,8-10'	1035					
555, 11-12	1036	40'17				
W > 55-6, 14-15	(037	9	•			
13K5,3-85-15,15-35-71 01-86-1082	C301-78-10	الجار \\				
125-4,8-10	1083	40,17°				
55-5,415-13,	1084	₹0.0>			-	
\$1-613-55 A	5801	<0.17				
Date Analyzed	T D	02+41				
Analytical Method		2817 A93				
				4	7	 1

If a moisture is reported, results are presented on a dry-weight basis.

0593111

(A) (A) Ċ

一部分 中華的人

223

Š

نِ

E

会会では

3

Results for Site 7 8010, 8020, Metals and Inorganic Parameters

N.

N.

ANALYTICAL RESULTS SUMMARY Halogenated Volatile Organics SW Method 8010 (first of two pages)

Page _	<u>/</u>	of	7_
Report	_		

ES Job No. <u>56528</u>	Lab Sample No. 12-35-117	
Client U.S. Air Force	Field Sample No. $7-1$, $5D-1$	_
Project PJKS (Denver	Date Collected /2-19 85	
Client No.	Date Received	
Laboratory Supervisor Approval:	Date Analyzed 1/2/86	
John R adamin Sample Matrix:	QC Report No. PJK5-C5	
/_/ Water (ug/L)	Dilution Factor	
/X / Soil (ug/g)	*Moisture	. 8
/ / Other		

Compound	С	oncentrat:	ion	Retenti	on Time	Notes
· .	Det Lim	Column 1	Column 2	Column 1	Column 2	
Benzyl chloride	ı	<10		40.9		•
<pre>bis(2-chloroethoxy) methane</pre>	12	1	-	44.2		
bis(2-chloroisopropyl) ether	25	125		42.2		
Bromobenzene	8	<10		29.48		<u> </u>
Bromodichloromethane	2	<10		15.69		
Bromoform	4	<10		21.24	<u> </u>	i !
Bromomethane	24	424		2.85		i
Carbon tetrachloride	.3	<10		15.47		ı
Chloroacetaldehyde	. 10	<10		11.6	· -	
Chloral	10	<10		18.7		
Chlorobenzene	.5	<10		26.01		
Chloroethane	10	<10		4.51		
Chloroform		<10		13.01		
1-Chlorohexane	2.	<10		26.58	\	1
2-Chloroethyl vinyl ether	3	<10		19.49	İ	
Chloromethane	2	<10		1.95		
Chloromethyl methyl ether	20_	20		9.37		:
Chlorotoluene	44	<10		37.9		
Dibromochloromethane	2	<10		18.68		

continued on back

SCOOL BOOKEN BOO

The second section and the second

BANNAN NECESSAR METADON MESSARE SASSES

ANALYTICAL RESULTS SUMMARY Halogenated Volatile Organics SW Method 8010 (second of two pages)

12-85-1197

٠ •

Compound		ncentrati		Retentio		Notes
	Det Lim	Column 1	Column 2	Column 1	Column 2	
Dibromomethane	1	<10		13.09		
1,2-Dichlorobenzene	3	<10		60.10		
1,3-Dichlorobenzene	. 6	<10		42.90	i 	
1,4-Dichlorobenzene	- 5	<10		37.28	:	!
Dichlorodifluoromethane	30	<30		3.54	!	<u> </u>
1,1-Dichloroethane	. 1	<10		11.67	t	!
1,2-Dichloroethane	11	<10		13.55		<u> </u>
1,1-Dichloroethylene	3	<10		10.31	<u> </u>	<u> </u>
trans-1,2-Dichloroethylene	2	<10		12.35	i 	<u> </u>
Dichloromethane	. 5	<10		7.50		!
1,2-Dichloropropane	. 1	<10		17.19		<u> </u>
				17.24		
1,3-Dichloropropylene	6	<10		18.68		
1,1,2,2-Tetrachloroethane	. 7	<10		23.47		
1,1,1,2-Tetrachloroethane	7	<10		21.04		
Tetrachloroethylene	.1	<10		23.47		
1,1,1-Trichloroethane	1	<10		14.76		
1,1,2-Trichloroethane	11	<10	<u> </u>	18.68		
Trichloroethylene	2	<10		17.91	_,	
Trichlorofluoromethane	- 1	<10		8.58	İ	
Trichloropropane	2	<10		23.01	!	
Vinyl chloride	. 4	<10		3.54		
				1] !	
	ļ .					
	!					
	:			:	,	
	;	!		!		j•

^{*} If % moisture is reported, results are presented on a dry-weight basis.

ANALYTICAL RESULTS SUMMARY Halogenated Volatile Organics SW Method 8010 (first of two pages)

Page _	_	of	2
Report			

ES Job No. 56528	Lab Sample No	12-85-1198
Client U.S. Air Force	Field Sample No.	7-2,50-1
Project PJKS (Denver	Date Collected _	12-19-85
Client No.	Date Received	12-20-85
Laboratory Supervisor Approval:	Date Analyzed	1/2/56
John R adamsin- Sample Matrix:	QC Report No	PJK5-05
/_/ Water (ug/L)	Dilution Factor	
/X / Soil (ug/g)	*Moisture	
/ / Other		

Compound	C	oncentrat:	ion	Retenti	on Time	Notes
-	Det Lim	Column 1	Column 2	Column 1	Column 2	
Benzyl chloride	4	<10		40.9		
bis(2-chloroethoxy) methane	12	(12		44.2		
bis(2-chloroisopropyl) ether	25	L 25		42.2		
Bromobenzene	8	<10	• •	29.18		
Bromodichloromethane	. 2	<10		15.69	<u>:</u>	
Bromoform	4	<10		21 .24	<u> </u>	
Bromomethane	. 24	<u> </u>		2.85		
Carbon tetrachloride	. 3	<10		15.47		
Chloroacetaldehyde	10	<10		11.6		
Chloral	10	<10		18.7		
Chlorobenzene	5	<10		26.01		
Chloroethane	.10	<10		4.51		
Chloroform	1	<10		13.01		
1-Chlorohexane	2	<10		26.58	<u> </u>)
2-Chloroethyl vinyl ether	3	<10		19.49		
Chloromethane	2	<10		1.95		<u> </u>
Chloromethyl methyl ether	_ 20	_ میک		9.37		
Chlorotoluene	4	<10		37.9		
Dibromochloromethane	2	<10		18.68	!	

continued on back

gaiss bossers environ Persons Babbook environ reserved aspens environ respins and

Ň

8

3

1

3

X t

1

E

ANALYTICAL RESULTS SUMMARY Halogenated Volatile Organics SW Method 8010 (second of two pages)

Compound	Co	oncentrati	.on	Retentio	n Time	Notes
·	Det Lim	Column 1	Column 2	Column 1	Column 2	
Dibromomethane	1	<10		13.09		
1,2-Dichlorobenzene	. 3	<10		60.10		
1,3-Dichlorobenzene	6	<10		42.90	<u> </u>	
1,4-Dichlorobenzene	5	<10		37.28	i 	<u> </u>
Dichlorodifluoromethane	30	30		3.54	<u> </u>	
1,1-Dichloroethane	-1	<10		11.67		<u> </u>
1,2-Dichloroethane	. 1	<10		13.55		
1,1-Dichloroethylene	. 3	<10		10.31		<u> </u>
trans-1,2-Dichloroethylene	2	<10		12.35		
Dichloromethane	5	<10		7.50		
1,2-Dichloropropane	1	<10		17.19		
				17.24		
1,3-Dichloropropylene	6	<10		18.68		
1,1,2,2-Tetrachloroethane	7	<10	•	23.47	••	
1,1,1,2-Tetrachloroethane	7	<10		21.04		
Tetrachloroethylene	1	<10		23.47		
1,1,1-Trichloroethane	. 1	<10		14.76	•	
1,1,2-Trichloroethane	1	<10	•	18.68	•	
Trichloroethylene	2	<10		17.91		
Trichlorofluoromethane	.1	<10		8.58		
Trichloropropane	2	<10		23.01		
Vinyl chloride	. 4	<10		3.54		
		!		!		
•		1		!		

^{*} If % moisture is reported, results are presented on a dry-weight basis.

ANALYTICAL RESULTS SUMMARY Halogenated Volatile Organics SW Method 8010 (first of two pages)

Page _	of	<u> </u>
Report		

ES Job No. <u>56528</u>	Lab Sample No	12-55-1177
Client U.S. Air Force	Field Sample No.	7-3, 50-1
Project PJKS (Denver	Date Collected	12-19-85
Client No.	Date Received	12-20-85
Laboratory Supervisor Approval:	Date Analyzed	1/2/86
Johnne R Colombin Sample Matrix:	QC Report No	FJKS-C5
/ / Water (ug/L)	Dilution Factor _	
<u>/X</u> / Soil (ug/g)	*Moisture	
/ / Other		

. Compound	Concentration			Retention Time		Notes
-	Det Lim	Column 1	Column 2	Column 1	Column 2	
Benzyl chloride	4	<10		40.9		
bis(2-chloroethoxy) methane	12	<12		44.2		
bis(2-chloroisopropyl) ether	. 25	\25		42.2		
Bromobenzene	8	<10	• .	29.18		
Bromodichloromethane	2	<10		15.69	• .	
Bromoform	4	<10	-	- 21.24	-	
Bromomethane	24	124		2.85		
Carbon tetrachloride	.3	<10		15.47		
Chloroacetaldehyde	10	<10		11.6		
Chloral	10	<10		18.7		
Chlorobenzene	5	<10		26.01		
Chloroethane	10	<10		4.51		
Chloroform	. 1	<10		13.01	١	
1-Chlorohexane	2	<10 ·		26.58		1
2-Chloroethyl vinyl ether	. 3	<10		19.49	<u> </u>	
Chloromethane	2	·<10		1.95		
Chloromethyl methyl ether	.20	(23		9.37		
Chlorotoluene	4	<10		37.9		
Dibromochloromethane	. 2	<10		18.68	!	

continued on back

PROCESSOR BEFORE THE PROPERTY OF THE PROPERTY OF THE PART

ANALYTICAL RESULTS SUMMARY Halogenated Volatile Organics SW Method 8010 (second of two pages)

Compound	· Co	ncentrati	on	Retentio	on Time	Notes
	Det Lim	Column 1	Column 2	Column 1	Column 2	
Dibromomethane		<10		13.09	İ	
1,2-Dichlorobenzene		<10		60.10	<u>!</u>	
1,3-Dichlorobenzene	.6	<10	<u> </u>	42.90	<u>:</u>	
1,4-Dichlorobenzene	. 5	<10		37.28	<u>:</u>	
Dichlorodifluoromethane	. 30	<3c		3.54	!	
1,1-Dichloroethane	11	<10		11.67		<u>i</u>
1,2-Dichloroethane	11	<10		13.55	<u> </u>	
1,1-Dichloroethylene	. 3	<10		10.31		
trans-1,2-Dichloroethylene	2	<10		12.35	į	
Dichloromethane	5_	<10		7.50		
1,2-Dichloropropane	1	<10		17.19		
				17.24		
1,3-Dichloropropylene	6	<10		18.68		
1,1,2,2-Tetrachloroethane	. 7	<10		23.47		
1,1,1,2-Tetrachloroethane	7	<10		21.04		
Tetrachloroethylene	. 1	<10		23.47		
1,1,1-Trichloroethane	1	<10		14.76		
1,1,2-Trichloroethane	1	<10		18.68		
Trichloroethylene	2	<10		17.91	,	
Trichlorofluoromethane	1	<10		8.58		
Trichloropropane	2	<10		23.01	!	
Vinyl chloride	. 4	<10		3.54		
	<u> </u>					
	!				!	
	;					
	!	!		1	i	
	i			!	:	

^{*} If * moisture is reported, results are presented on a dry-weight basis.

passed casastary, appressed attention proposed unitation desired

XV.

37

À

Ş

X

33

.

ANALYTICAL RESULTS SUMMARY Halogenated Volatile Organics SW Method 8010 (first of two pages)

Page _	1	of	2
Report	_		

ES Job No. <u>56528</u>	Lab Sample No. $\frac{12-55-1200}{1}$
Client U.S. Air Force	Field Sample No. 7-4, SD-1
Project PJKS (Denver	Date Collected 12-19-85
Client No.	Date Received
Laboratory Supervisor Approval:	Date Analyzed 1/2/86
John R adamson Sample Matrix:	QC Report No. PJK5-05
// Water (ug/L)	Dilution Factor
/X / Soil (ug/g)	*Moisture
/_/ Other	

Compound	Concentration			Retenti	Notes	
	Det Lim	Column 1	Column 2	Column 1	Column 2	
Benzyl chloride	4	<10		40.9		•
bis(2-chloroethoxy) methane	12	<12		44.2		
bis(2-chloroisopropyl) ether	. 25	Las		42.2		
Bromobenzene	3	<10	٠.	29.18		
Bromodichloromethane	2	<10		15.69		
Bromoform	.4	<10		21 .24	1	
Bromomethane	24	444		2.85		
Carbon tetrachloride	3	<10		15.47		
Chloroacetaldehyde	۔10	<10		11.6		·
Chloral	10	<10		18.7		
Chlorobenzene	5	<10		26.01		
Chloroethane	10	<10		4.51		
Chloroform	. 1	<10		13.01		
1-Chlorohexane	2	<10		26.58)
2-Chloroethyl vinyl ether	3	<10		19.49		
Chloromethane	2	<10		1.95		
Chloromethyl methyl ether	. 20	40		9.37		
Chlorotoluene	. 4	<10		37.9		
Dibromochloromethane	2	<10		18.68		

continued on back

ANALYTICAL RESULTS SUMMARY Halogenated Volatile Organics SW Method 8010 (second of two pages)

Compound	Concentration			Retenti	Notes	
	Det Lim	Column 1	Column 2	Column 1	Column 2	
Dibromomethane	. 1	<10		13.09		
1,2-Dichlorobenzene	3	<10		60.10	<u> </u>	
1,3-Dichlorobenzene	6	<10		42.90	:	
1,4-Dichlorobenzene	5	<10		37.28		<u> </u>
Dichlorodifluoromethane	30	< 30		3.54	;	<u> </u>
1,1-Dichloroethane	1	<10		11.67	<u> </u>	!
1,2-Dichloroethane	. 1	<10		13.55	; !	<u> </u>
1,1-Dichloroethylene	3	<10		10.31	İ	!
trans-1,2-Dichloroethylene	. 2	<10		12.35	,	<u> </u>
Dichloromethane	. 5	<10		7.50		į
1,2-Dichloropropane	1	<10		17.19	1:	1
	-			17.24		1
1,3-Dichloropropylene	6	<10		18.68		<u>į</u>
1,1,2,2-Tetrachloroethane	7	<10		23.47	!	1
1,1,1,2-Tetrachloroethane	7	<10		21.04		
Tetrachloroethylene	. 1	<10	• •	23.47		<u> </u>
1,1,1-Trichloroethane	1	<10		14.76	• •	<u> </u>
1,1,2-Trichloroethane	1	<10		- 18.68	i I	<u> </u>
Trichloroethylene	2	<10		17.91	į,	
Trichlorofluoromethane	1	<10		8.58	ļ	1
Trichloropropane	. 2	<10		23.01		
Vinyl chloride	4	<10		3.54		
	!			!		
	<u> </u>				!	
	!			!		
	:	!	} 	:		
	:	!		:		

^{*} If % moisture is reported, results are presented on a dry-weight basis.

ANALYTICAL RESULTS SUMMARY Halogenated Volatile Organics SW Method 8010 (first of two pages)

Page _	L	of	2
Report	_		

ES JOD NO. 56528	Tap Sambie No	12 33 - 1201
Client U.S. Air Force	Field Sample No.	7-5, SD-1
Project PJKS (Denver	Date Collected	12-19-85
Client No.	Date Received	12-20-85
Laboratory Supervisor Approval:	Date Analyzed	12/86
Johnson R adamson	QC Report No	PJK3-06
/_/ Water (ug/L)	Dilution Factor _	
/X / Soil (ug/g)	*Moisture	
/ / Other		

Compound	Concentration			Retention Time		Notes
	Det Lim	Column 1	Column 2	Column 1	Column 2	
Benzyl chloride	4	<10		40.9		•
<pre>bis(2-chloroethoxy) methane</pre>	.1 2	<12		44.2		
bis(2-chloroisopropyl) ether	25	125		42.2		1
Bromobenzene	.8	<10		29.18	<u> </u>	
Bromodichloromethane	. 2	<10		15.69	<u> </u>	
Bromoform	4	<10		- 21.24	<u> </u>	
Bromomethane	24	424		2.85	<u> </u>	
Carbon tetrachloride	3	<10		15.47	1	ı
Chloroacetaldehyde	.10	<10		11.6	!	
Chloral	10	<10		18.7	1	
Chlorobenzene	5	<10		26.01	<u> </u>	
Chloroethane	. 10	<10		4.51	!	
Chloroform	1	<10		13.01	<u> </u>	
1-Chlorohexane	2	<10		26.58	<u> </u>	·
2-Chloroethyl vinyl ether	3 .	<10	<u> </u>	19.49		
Chloromethane	. 2	<10		1.95	<u> </u>	
Chloromethyl methyl ether	20	420		9.37		
Chlorotoluene	4	<10		37.9		
Dibromochloromethane	2	<10		18.68	!	

continued on back

CONTROL CONTROL CONTROL STATEMENT STATEMENT STATEMENT

ANALYTICAL RESULTS SUMMARY Halogenated Volatile Organics SW Method 8010 (second of two pages)

Compound	Concentration			Retenti	Notes	
	Det Lim	Column 1	Column 2	Column 1	Column 2	
Dibromomethane	1	<10		13.09		
1,2-Dichlorobenzene	.3	<10		60.10	<u>i</u>	<u> </u>
1,3-Dichlorobenzene	6	<10		42.90	<u> </u>	<u></u>
1,4-Dichlorobenzene	. 5	<10		37.28	:	
Dichlorodifluoromethane	30	<30		3.54	<u>i</u>	<u> </u>
1,1-Dichloroethane	11	<10		11.67	i	
1,2-Dichloroethane	1	<10	<u> </u>	13.55	<u>:</u>	:
1,1-Dichloroethylene	3	<10		10.31	!	1
trans-1,2-Dichloroethylene	2	<10	<u>;</u>	12.35	:	i
Dichloromethane	. 5	<10		7.50		!
1,2-Dichloropropane	-1	<10		17.19	;	
				17.24		!
1,3-Dichloropropylene	.6	<10		18.68		<u> </u>
1,1,2,2-Tetrachloroethane	.7	<10		23.47		
1,1,1,2-Tetrachloroethane	<i>,</i> 7	<10		21.04		
Tetrachloroethylene	_ 1	<10		23.47		
1,1,1-Trichloroethane	1 1	<10		14.76		
1,1,2-Trichloroethane	1	<10	-	18.68		
Trichloroethylene	2	<10	• .	17.91	<u> </u>	
Trichlorofluoromethane	1 1	<10		8.58	<u> </u>	
Trichloropropane	2	<10		23.01	!	
Vinyl chloride	.4	<10		3.54		
	!			1		
	:				1	
	•			!		
		!	:			
	:			!		i

^{*} If % moisture is reported, results are presented on a dry-weight basis.

TOUR CONTRACT CONTRACT PROGRAMME TOURS OF THE PROPERTY OF THE

ANALYTICAL RESULTS SUMMARY Halogenated Volatile Organics SW Method 8010 (first of two pages)

Page		of	<u>ر</u>
Repor	t _		

ES Job No56528	Lab Sample No	12-85-1207
Client U.S. Air Force	Field Sample No.	7-6,50-1
Project PJKS (Denver	Date Collected	12-19-85
Client No.	Date Received	12-20-85
Laboratory Supervisor Approval:	Date Analyzed	1/2/86
John, R. adams. Sample Matrix:	QC Report No.	PJKS-06
/_/ Water (ug/L)	Dilution Factor _	
/X / Soil (ug/g)	*Moisture	
/ / Other		

Compound	Concentration			Retention Time		Notes
	Det Lim	Column	1 Column 2	Column 1	Column 2	
Benzyl chloride	4	<10		40.9		
bis(2-chloroethoxy) methane	.12	CIL		44.2		
bis(2-chloroisopropyl) ether	25	L 25		42.2		
Bromobenzene	8	<10	<u> </u>	29.18		
Bromodichloromethane	2	<10		75.69		
Bromoform	. 4	<10	1.	21.24	•	
Bromomethane	. 24	<24		2.85		
Carbon tetrachloride	3	<10		15.47		!
Chloroacetaldehyde	10	<10	<u> </u>	11.6	!	
Chloral	. 10	<10		18.7		
Chlorobenzene	.5	<10		26.01		i
Chloroethane	10	<10	<u> </u>	4.51	ļ	
Chloroform	1	<10		13.01	<u> </u>	
1-Chlorohexane	_2	<10	<u> </u>	26.58	<u> </u>	
2-Chloroethyl vinyl ether	3	<10		19.49		
Chloromethane	. 2	<10		1.95		
Chloromethyl methyl ether	20	420		9.37		
Chlorotoluene	• 4	<10		37.9		
Dibromochloromethane	2	<10	.	18.68	<u> </u>	

continued on back

ANALYTICAL RESULTS SUMMARY Halogenated Volatile Organics SW Method 8010 (second of two pages)

1 3 6 5	<10 <10 <10	Column 2	13.09	Column 2	<u> </u>
. 3	<10		i		
6			1		
	/ /10		60.10	<u>!</u>	ļ
5			42.90	:	<u> </u>
	<10		37.28	:	
30	430		3.54	!	
. 1	<10		11.67		ļ
11	<10		13.55	!	<u> </u>
3	<10		10.31		<u> </u>
2	<10		12.35	· ·	<u> </u>
. 5	<10		7.50		1
1	<10		17.19	1	
			17.24	1	
5	<10		18.68		<u> </u>
7	<10		23.47		
7	<10		21.04		
_ 1	<10	•	23.47		<u> </u>
1	<10	<u> </u>	14.76		
1	<10	<u> </u>	18.68	'† †	<u> </u>
. 2	<10		17.91		
1	<10		8.58	1	
2	<10		23.01	1	
4	<10	1	3.54		
			!	†	
		!			
·		İ		:	
	:				
	1 1 3 2 5 1 5 7 7 1 1 1 2 1	.1 <10 1 <10 2 <10 2 <10 .5 <10 1 <10	1 <10 1 <10 2 <10 2 <10 5 <10 7 <10 7 <10 1 <10 1 <10 1 <10 1 <10 2 <10 1 <10 2 <10 2 <10	1 <10	1 <10

^{*} If * moisture is reported, results are presented on a dry-weight basis.

ANALYTICAL RESULTS SUMMARY Halogenated Volatile Organics SW Method 8010 (first of two pages)

Page	i	of	2
Repor	t _		

ES Job No56528	Lab Sample No. $\frac{12-35-1203}{}$
Client U.S. Air Force	Field Sample No. 7-7, SD-1
Project PJKS (Denver	Date Collected
Client No.	Date Received 12-20-85
Laboratory Supervisor Approval:	Date Analyzed 1/2/56
Johnny Colombin Sample Matrix:	OC Report No. PJKS - Cic
/ / Water (ug/L)	Dilution Factor
/X / Soil (ug/g)	*Moisture
/ / Other	

Compound	Concentration			Retention Time		Notes
•	Det Lim	Column 1	Column 2	Column 1	Column 2	
Benzyl chloride	4	<10	1	40.9		•
<pre>bis(2-chloroethoxy) methane</pre>	12	<12		44.2		
bis(2-chloroisopropyl) ether	25	(25		42.2		
Bromobenzene	8	<10	• •	29.18		
Bromodichloromethane	2	<10		15.69	•	
Bromoform	· 4	<10		- 21.24		
Bromomethane	. 24	124	<u> </u>	2.85		
Carbon tetrachloride	3	<10		15.47		
Chloroacetaldehyde	10	<10	<u> </u>	11.6		· ·
Chloral	10	<10		18.7	·	
Chlorobenzene	5	<10		26.01		
Chloroethane	10	<10		4.51		
Chloroform	1	<10		13.01		i
1-Chlorohexane	. 2	<10		26.58		
2-Chloroethyl vinyl ether	3	<10		19.49		
Chloromethane	2	<10		1.95		
Chloromethyl methyl ether	20	120		9.37	•	
Chlorotoluene	4	<10		37.9		
Dibromochloromethane	. 2	<10	į	18.68		

continued on back

ANALYTICAL RESULTS SUMMARY Halogenated Volatile Organics SW Method 8010 (second of two pages)

Compound	Co	oncentrati	on	Retentio	on Time	Notes
	Det Lim	Column 1	Column 2	Column 1	Column 2	
Dibromomethane	.1	<10	<u> </u>	13.09		<u> </u>
1,2-Dichlorobenzene	3	<10		60.10	<u> </u>	
1,3-Dichlorobenzene	6	<10		42.90	;	
1,4-Dichlorobenzene	5	<10		37.28	ı	<u> </u>
Dichlorodifluoromethane	. 30	<u> </u>		3.54	!	<u> </u>
1,1-Dichloroethane	.1	<10		11.67	1	
1,2-Dichloroethane	1	<10		13.55	!	<u> </u>
1,1-Dichloroethylene	. 3	<10		10.31	<u> </u>	<u> </u>
trans-1,2-Dichloroethylene	. 2	<10		12.35	<u> </u>	<u> </u>
Dichloromethane	5	<10		7.50		
1,2-Dichloropropane	, 1	<10		17.19		<u> </u>
	İ			17.24		
1,3-Dichloropropylene	6	<10	<u></u>	18.68		
1,1,2,2-Tetrachloroethane	7	<10		23.47		
1,1,1,2-Tetrachloroethane	7	<10		21.04	•	<u> </u>
Tetrachloroethylene	1	<10	• .	23.47	!	<u> </u>
1,1,1-Trichloroethane	1 1	<10		14.76		
1,1,2-Trichloroethane	1	<10	-	- 18.68	<u> </u>	
Trichloroethylene	2	<10	• .	17.91	<u> </u>	
Trichlorofluoromethane	<u> </u>	<10		8.58	!	ļ
Trichloropropane	2	<10		23.01	1	
Vinyl chloride	4	<10		3.54	-	
	!	<u> </u>		i	-	<u> </u>
	i				!	
	<u> </u>			<u>!</u>	<u>i</u>	1
•	:		<u> </u>	:		<u> </u>
	1	•	•	:	•	

^{*} If % moisture is reported, results are presented on a dry-weight basis.

3

ANALYTICAL RESULTS SUMMARY Halogenated Volatile Organics SW Method 8010 (first of two pages)

Page _	1	of	2
Report	=_		

ES Job No. <u>56528</u>	Lab Sample No	12-85-1264
Client U.S. Air Force	Field Sample No.	7-8, SD-1
Project PJKS (Denver	Date Collected	12-19-95
Client No.	Date Received	12-20-35
Laboratory Supervisor Approval:	Date Analyzed	1/2/86
John R. adamson Sample Matrix:	QC Report No	PJKS-CL
/_/ Water (ug/L)	Dilution Factor _	
<u>/X /</u> Soil (ug/g)	*Moisture	
/ / Other		

Compound	С	oncentrat	ion	Retenti	on Time	Notes
-	Det Lim	Column 1	Column 2	Column 1	Column 2	
Benzyl chloride	4	<10		40.9		
<pre>bis(2-chloroethoxy) methane</pre>	12	<12		44.2		
<pre>bis(2-chloroisopropyl) ether</pre>	.25	US		42.2		
Bromobenzene	3	<10		29.18		
Bromodichloromethane	2	<10		15.69		
Bromoform	4	<10		- 21.24	<u> </u>	
Bromomethane	24	24	• .	2.85	<u> </u>	
Carbon tetrachloride	3	<10		15.47	<u> </u>	
Chloroacetaldehyde	10	<10		11.6		
Chloral	.10	<10		18.7	<u></u>	
Chlorobenzene	5	<10		26.01		
Chloroethane.	10	<10		4.51	<u> </u>	
Chloroform	1	<10		13.01	<u> </u>	<u> </u>
1-Chlorohexane	2	<10		26.58	<u> </u>	·
2-Chloroethyl vinyl ether	ر 3	<10		19.49		
Chloromethane	2	<10		1.95		
Chloromethyl methyl ether	.20	ر2ك		9.37		
Chlorotoluene	-4	<10	·	37.9		
Dibromochloromethane	2	<10		18.68	!	

continued on back

1,2-Dichloropropane

1,3-Dichloropropylene

Tetrachloroethylene

1,1,1-Trichloroethane

1,1,2-Trichloroethane

Trichlorofluoromethane

Trichloroethylene

Trichloropropane

Vinyl chloride

1,1,2,2-Tetrachloroethane

1,1,1,2-Tetrachloroethane

200

Percovani Dagaresa i Beserva interna

(second of two pages)

17.19 17.24

18.68

23.47

21.04

23.47

14.76

17.91

8.58

23.01

3.54

18.68

Compound Concentration Retention Time Notes Det Lim Column 1 Column 2 Column 1 Column 2 <10 13.09 Dibromomethane 1 60.10 3 <10 1,2-Dichlorobenzene <10 42.90 1,3-Dichlorobenzene 6 <10 37.28 1,4-Dichlorobenzene 5 **430** 3.54 Dichlorodifluoromethane 30 1,1-Dichloroethane <10 11.67 <10 1,2-Dichloroethane 13.55 1,1-Dichloroethylene <10 3 10.31 trans-1,2-Dichloroethylene 2 <10 12.35 5 <10 Dichloromethane 7.50

<10

<10

<10

<10

<10

<10

<10

<10

<10

<10

<10

1

6

7

7

1

1

2

2

4

:

^{*} If % moisture is reported, results are presented on a dry-weight basis.

ANALYTICAL RESULTS SUMMARY Halogenated Volatile Organics SW Method 8010 (first of two pages)

Page _		of	2-
Report	_		

ES Job No. <u>56528</u>	Lab Sample No	12-85-1205
Client U.S. Air Force	Field Sample No.	7-9,5D-1
Project PJKS (Denver	Date Collected	12-19-85
Client No.	Date Received	12-20-85
Laboratory Supervisor Approval:	Date Analyzed	1/2/86
John R. adaman Sample Matrix:	QC Report No	PJKS - 06
/_/ Water (ug/L)	Dilution Factor	
/X / Soil (ug/g)	*Moisture	
/ / Other		

Compound	C	Concentration			Retention Time		
-	Det Lim	Column 1	Column 2	Column	Column 2		
Benzyl chloride	4	<10		40.9			
bis(2-chloroethoxy) methane	12	<12	-	44.2			
bis(2-chloroisopropyl) ether	25	/25		42.2			
Bromobenzene	3	<10	٠.	29.18			
Bromodichloromethane	2	<10		15.69	<u> </u>		
Bromoform	.4	<10		21.24	1		
Bromomethane	24	124		2.85	,		
Carbon tetrachloride	3	<10		15.47			
Chloroacetaldehyde	.10	<10		11.6			
Chloral	10	<10		18.7			
Chlorobenzene	5	<10		26.01			
Chloroethane '	- 10	<10		4.51			
Chloroform	1	<10		13.01			
1-Chlorohexane	2	<10		26.58	<u> </u>) 	
2-Chloroethyl vinyl ether	. 3	<10		19.49	<u> </u>		
Chloromethane	.2	<10		1.95	<u> </u>		
Chloromethyl methyl ether	. ,20	410		9.37			
Chlorotoluene	. 4	<10		37.9			
Dibromochloromethane	2	<10		18.68			

continued on back

ANALYTICAL RESULTS SUMMARY Halogenated Volatile Organics SW Method 8010 (second of two pages)

Compound	Co	oncentrati	ion Retention Time	Notes
	Det Lim	Column 1	Column 2 Column 1 Column :	2
Dibromomethane	.1	<10	13.09	
1,2-Dichlorobenzene	. 3	<10	60.10	
1,3-Dichlorobenzene	6	<10	42.90	
1,4-Dichlorobenzene	5	<10	37.28	
Dichlorodifluoromethane	₋ 30	430	3.54	
1,1-Dichloroethane	1	<10	11.67	
1,2-Dichloroethane	1	<10	13.55	
1,1-Dichloroethylene	3	<10	10.31	!
trans-1,2-Dichloroethylene	.2	<10	12.35	
Dichloromethane	5	<10	7.50	
1,2-Dichloropropane	1	<10	17.19	
			17.24	
1,3-Dichloropropylene	5	<10	18.68	
1,1,2,2-Tetrachloroethane	. 7	<10	23.47	
1,1,1,2-Tetrachloroethane	7	<10	21.04	1
Tetrachloroethylene	ارا	<10	23.47	
1,1,1-Trichloroethane	<u></u>	<10	14.76	
1,1,2-Trichloroethane	! :1	<10	18.68	
Trichloroethylene	2ر	<10	17.91	
Trichlorofluoromethane	- ,1	<10	8.58	
Trichloropropane	2	<10	23.01	
Vinyl chloride	4	<10	3.54	1
	!			
	:			
•	i			İ

^{*} If % moisture is reported, results are presented on a dry-weight basis.

STANDARY BECOMES PRODUCE STANDARY STANDARY

Ç.

3

X

}

Page _	<u> </u>	of	
Report	_		

ES Job No. 56528	Lab Sample No. 12-85-1197	
Client U.S. Air Force	Field Sample No. 7-1, SD-1, ES	
Project PJKS (Denver)	Date Collected 12/19/85	
Client No.	Date Received 12/20/85	
Laboratory Supervisor Approval:	Date Analyzed 1/2/86	_
Johnny R. adamson Sample Matrix	OC Report No. 56538-5	_
/_/ Water (ug/L)	Dilution Factor	_
<u>/X</u> / Soil (ug/g)	*Moisture	8
/ / Other		_

Compound	Concentration			Retenti	Notes	
	Det Lim	Column 1	Column 2	Column 1	Column 2	
Benzene	4	<10		2.26		
Chlorobenzene	. 4	<10		16.46		
1,2-Dichlorobenzene	. 8	<10		27.93		
1,3-Dichlorobenzene	8	<10	•.	26.40	<u> </u>	
1,4-Dichlorobenzene	6	<10		22.51	<u> </u>	
Ethyl benzene	4	<10		7.18		
Toluene	.:4	<10		5.47		
				15.26		
Xylenes (Dimethyl benzene)	4	<10		16.91 17.77		
	• .					

^{*} If % moisture is reported, results are presented on a dry-weight basis.

SOOT TELESCOPE STANDERS STANDED THE STANDERS

ACCESSES SOCIOUS INCOMES PROPERTY SOCIOUS PROPERTY

ANALYTICAL RESULTS SUMMARY Aromatic Volatile Organics SW Method 8020

Page _	_ of	1
Report		

ES Job No. 5652	8	Lab Sample No.	12-85-1198
Client U.S.	Air Force	Field Sample No.	7-2 SD-1 ES
Project PJKS	(Denver)	Date Collected	12/19/55
Client No.		Date Received	12/20/85
Laboratory Super	visor Approval:	Date Analyzed	1/2/86
Sample Matrix:	R. adamon	OC Report No.	5 6 5 28 - 5
<u>/</u> / Water	(ug/L)	Dilution Factor _	
/X / .Soil (ug/g)	*Moisture	8
<u>/</u> / Other			

Compound	Concentration_			Retention Time			Notes
	Det Lim	Column 1	Column 2	Column	1 0	Column 2	
Benzene	. 4	<10		2.26	j		
Chlorobenzene	4	<10		16.46	\perp		
1,2-Dichlorobenzene	e	<10		27.93			
1,3-Dichlorobenzene	. :8	<10	••	26.40			
1,4-Dichlorobenzene	. 6	<10		22.51		•	
Ethyl benzene	.4	<10	-	7.18			
Toluene		<10		5.47		•	
Xylenes (Dimethyl benzene)	4	<10		15.26 16.91 17.77			
					1		
					+		
•		,			1	•	,

^{*} If % moisture is reported, results are presented on a dry-weight basis.

PROPER MASSACKS SANDON SALEZZE WALLES WATER

No.

Page _	<u></u>	of	
Report	_		

ES Job No. 56528	Lab Sample No. 12-85-	1199
Client U.S. Air Force	Field Sample No. 7 - 3 SD	
Project PJKS (Denver)	Date Collected 12/19/8	
Client No.	Date Received 12/20/6	5
Laboratory Supervisor Approval:	Date Analyzed 1/2/86	
Johnny R. adamsin Sample Matrix	OC Report No. 56528-5	
/_/ Water (ug/L)	Dilution Factor	
<u>/X</u> / Soil (ug/g)	*Moisture	%
/_/ Other		

۸ <u>ر</u>	Compound		Concentration			Retention Time		
X		Det Lim	Column 1	Column 2	Column	1 Column 2	1	
5	Benzene	. 4	<10		2.26			
	Chlorobenzene	.4	<10		16.46			
	1,2-Dichlorobenzene	. 8	<10	<u> </u>	27.93		<u> </u>	
	1,3-Dichlorobenzene	8	<10	<u> </u>	26.40			
.	1,4-Dichlorobenzene	6	<10		22.51	<u> </u>	<u> </u>	
	Ethyl benzene	4	<10		7.18	·	<u> </u>	
्रेन	Toluene		<10	•	5.47	<u> </u>	<u> </u>	
3	Xylenes (Dimethyl benze	ne) .4	<10		15.26 16.91 17.77			
3								
<u> </u>		•					1	
8	* If % moisture is repo	rted, resul	ts are pr	resented o	n a dry-	weight bas	is.	
_								
	862J137	L-	229					

^{*} If % moisture is reported, results are presented on a dry-weight basis.

Page	of _
Report	

ES Job No	. 56528	Lab Sample No	12-85-1200
Client _	U.S. Air Force	Field Sample No.	7-4, SD-1, ES
Project _	PJKS (Denver)	Date Collected	
Client No	•	Date Received	
Laborator	y Supervisor Approval:	Date Analyzed	1/2/86
Sample Ma		OC Report No	56528-5
/	Water (ug/L)	Dilution Factor _	
<u>/x</u> _/	Soil (ug/g)	*Moisture	
/	Other		

Compound	Concentration			Retention Time		Notes
	Det Lim	Column 1	Column 2	Column 1	Column 2	
Benzene	- 4	<10		2.26		
Chlorobenzene	4	<10		16.46		
1,2-Dichlorobenzene	.8	<10		27.93		
1,3-Dichlorobenzene	. :8	<10		26.40		
1,4-Dichlorobenzene	6	<10		22.51	•	
Ethyl benzene	4	<10	-	7.18 ⁻		
Toluene	. 4	<10		5.47	,	
Xylenes (Dimethyl benzene)	4	<10		15.26 16.91 17.77		
Aylenes (Dimethyl benzene)		X10		1,.,,		
						<u> </u>
	• .					<u>!</u> [

^{*} If % moisture is reported, results are presented on a dry-weight basis.

٠, .

Y

Page _	L	of	_1_
Report	_		

ES Job No. 56528	Lab Sample No.	12-85-1201
Client U.S. Air Force	=	. 7-552-1, ES
Project PJKS (Denver)	Date Collected _	
Client No.	Date Received	12/20/85
Laboratory Supervisor Approval:	Date Analyzed	1/2/86
John R. adamson Sample Matrix	OC Report No	54528-6
/_/ Water (ug/L)	Dilution Factor	
<pre>/X / Soil (ug/g)</pre>	*Moisture	<u> </u>
/_/ Other		

Compound	Concentration			Retenti	Notes	
	Det Lim	Column 1	Column 2	Column 1	Column 2	
Benzene	4	<10		2.26		
Chlorobenzene	. 4	<10		16.46		
1,2-Dichlorobenzene	.8	<10	<u>.</u>	27.93		
1,3-Dichlorobenzene	8	<10	• •	26.40		
1,4-Dichlorobenzene	6	<10		22.51	1	
Ethyl benzene	_4	<10	7-	7.18		
Toluene	- 14	<10	1.5	5.47		
,				15.26		
Xylenes (Dimethyl benzene)	- ,4	<10		16.91 17.77		
·						!
					<u> </u>	

^{*} If % moisture is reported, results are presented on a dry-weight basis.

CONTROL OF THE PROPERTY OF THE

. ANALYTICAL RESULTS SUMMARY Aromatic Volatile Organics SW Method 8020

Page _	1	of	1
Report	_		

88

7

8

N.

ES Job No 56528	Lab Sample No.	12-85-1202
Client U.S. Air Force	Field Sample No.	7-6.52-1, ES
Project PJKS (Denver)	Date Collected	
Client No.	Date Received	12/20/85
Laboratory Supervisor Approval:	Date Analyzed	1/2/86
Johnny R. adams (~ Sample Matrix)	OC Report No	56528-6
/_/ Water (ug/L)	Dilution Factor _	
<u>/X</u> _/ Soil (ug/g)	*Moisture	•
/ / Other		

Compound	Co	oncentrat	ion	Retenti	Notes	
	Det Lim	Column 1	Column 2	Column 1	Column 2	
Benzene	4	<10		2.26		
Chlorobenzene	. ,4	<10		16.46		
1,2-Dichlorobenzene	: JB	<10		27.93		
1,3-Dichlorobenzene	. 8	<10		-26.40		
1,4-Dichlorobenzene	6	<10_		22.51	1.	
Ethyl benzene	. 4	<10		7:18		
Toluene	. ,4	<10		5.47	•	
Xylenes (Dimethyl benzene)	.4	<10		15.26 16.91 17.77		

^{*} If % moisture is reported, results are presented on a dry-weight basis.

CONTROL OF THE PROPERTY OF THE

ANALYTICAL RESULTS SUMMARY Aromatic Volatile Organics

Page / of / Report

s	W Method	8020	-
ES Job No56528		Lab Sample No	12-85-1203
Client U.S. Air Force		Field Sample No.	7-7,52-1, ES
Project PJKS (Denver)		Date Collected	12/19/85
Client No.		Date Received	12/20/85
Laboratory Supervisor Approval:		Date Analyzed	
Johnny R. adam Sample Matrix:	منص	OC Report No	
/_/ Water (ug/L)		Dilution Factor _	56528-6
<u>/X</u> / Soil (ug/g)		*Moisture	
<u>/</u> _/ Other			

Concentration Retention Time Note	one	Co	Compound	
t Lim Column 1 Column 2 Column 1 Column 2	C	Det Lim		
4 <10 2.26		4	Benzene .	
·4 <10 16.46	L	.4	Chlorobenzene	
		. ,8	1,2-Dichlorobenzene	
8 <10 26.40		.8	1,3-Dichlorobenzene	
6 <10 22.51		6	1,4-Dichlorobenzene	
4 <10 7.18		4	Ethyl benzene	
4 <10 5.47		.4	Toluene	
15.26 16.91 4 <10 17.77		. 4	Xylenes (Dimethyl benzene)	
	-			
	<u> </u>	•		

^{*} If * moisture is reported, results are presented on a dry-weight basis.

A, **

ANNOTON PERSONAL SOCIONAL PROSESSA CORRESE LOS

Page _	_	of	1
Report	_		

ES Job No. 56528	Lab Sample No. 12-85-1204
Client U.S. Air Force	Field Sample No. 7 - 8 - SD - 1, €S
Project PJKS (Denver)	Date Collected 12/14/85
Client No.	Date Received 12/20/85
Laboratory Supervisor Approval:	Date Analyzed 1/2/86
Johnny R. adamson Sample Matrix	OC Report No. 56528-6
/_/ Water (ug/L)	Dilution Factor
/X / Soil (ug/g)	*Moisture
/_/ Other	

Compound	Concentration			Retention Time		Notes
	Det Lim	Column 1	Column 2	Column	Column 2	
Benzene	4	<10		2.26		
Chlorobenzene	4	<10	<u> </u>	16.46		
1,2-Dichlorobenzene	8	<10		27.93		
1,3-Dichlorobenzene	8	<10		-26 . 40		
1,4-Dichlorobenzene	∴6	<10		22.51	1.	
Ethyl benzene	.4	<10		7:18		
Toluene	4	<10	•	5.47		
Xylenes (Dimethyl benzene)	.4	<10		15.26 16.91 17.77		

^{*} If % moisture is reported, results are presented on a dry-weight basis.

ANALYTICAL RESULTS SUMMARY Aromatic Volatile Organics SW Method 8020

Page	_ of	1
Report		

ES Job No. 56528	Lab Sample No.	12-85-1205
Client U.S. Air Force	Field Sample No.	7-9, 5) -1 ES
Project PJKS (Denver)	Date Collected _	12/19/85
Client No.	Date Received _	12/20/85
Laboratory Supervisor Approval:	Date Analyzed _	1/2/86
Johnny R. adamson Sample Matrix	OC Report No	56528-6
/_/ Water (ug/L)	Dilution Factor _	
/X / Soil (ug/g)	*Moisture	
/_/ Other	•	

Compound	Concentration			Retenti	Notes	
	Det Lim	Column 1	Column 2	Column 1	Column 2	
Benzene	. 4	<10		2.26		
Chlorobenzene	4	<10		16.46		
1,2-Dichlorobenzene	. 8	<10		27.93		
1,3-Dichlorobenzene	8	<10	•	26.40		
1,4-Dichlorobenzene	.6	<10_		22.51		
Ethyl benzene	4	<10		7.18 -		
Toluene	. 4	<10		5.47		
xylenes (Dimethyl benzene)	4	<10_		15.26 16.91 17.77		

^{*} If % moisture is reported, results are presented on a dry-weight basis.

DESTRUCTION OF THE PROPERTY OF SECTION SECTIONS SECTIONS SECTIONS SECTIONS SECTIONS

À

3

33

7

Ś

Ċ

Notes 4 o l Laboratory Supervisor Approval: Report Page Dilution Factor Cohram OC Report No. Moisture 400 40,17 は、 9%,0 07.00 **小**ら \$ | |-1KN Environmental Quality Parameters 650 25/ 570 430 021 750 Soil (ug/g) (ug/Kg) ANALYTICAL RESULTS SUMMARY Other Sectimentes Phenolics **40.5** <0.5 <0.5 505 70.5 \$0,5 Water (ug/L) <0 \ Sample Matrix: **₹**0 30 1 9 ? % 0.08 90.0 0.08 80.0 0.90 Lab Sample No. イタグ PTKS, 7-1 SD-1 ES 1/2-85-1197 8611 380 1199 3 12/20-85 13-61/21 Denver 5.6528 ストタイ 3-2, 50-1, 55 7-3 50-1.85 SD-1. ES Engineering-Science 531-05 MKS, 7-6, 50-1.ES Field Sample No. Date Received Date Collected ES Job No. Client No. Project Client OKS

CHANNEL STANDED LEGGERS ASSESSED ANDRESSE LEGGERS LEGGERS

RECEIVED RECEIVED TOTAL PROSPENS

cs timated nitrate is best a dry-weight basis. value of NOTEA! The reported • If \ moisture is reported, results are presented on

EPA 354, 1869 364 (1884 420, 1804 351, 3) 80A 7196

الم ال

Ξ

Σ

CON CONTROL OF FOUR (4) analyses results (100)

江

[}

0593111

Analytical Method

Date Analyzed

L-236

Notes Report F Cohmmy R. adamo Dilution FactOr (Johnney) C Report No. *Moisture はい 40.17 今 子 う 501 B 5PA 354 | EPA 3534 | EPA 350, 1 | EPA 351, 3 | EM 314 Physial TKN Environmental Quality Parameters 200 160 (X) other Sediments 230 Soil (ug/g) (ug/Kg) ANALYTICAL RESULTS SUMMARY Water (ug/L) \<u>T</u> Sample Matrix: **S**S, Ü 2.08 Lab Sample No. | 100 7,0% 031 17-55-17 PJKS, 7-2 SD-1, ES 12-85-1203 70-25-67 12-19-85 18-02-21 PJKS DRIVER 26528 NSAF PIKS, 7-8 SD-1. ES Engineering-Science 17KS 49,50-1.ES Analytical Method Field Sample No. Date Analyzed Date Collected Date Received ES Job No. Client No. Project Client

* If a moisture is reported, results are presented on a dry-weight basis.

Note A: Reported virtua 4-05 Phanolics on Sorryte.

Syjiii Note A: Reported 1205 15 h.3 46/4.

51 SOC1-58.C1

8593111

2

AND SOCIETY WAS BEEN SOLD NOT THE SOLD

L-237

Engineering-Science	ANALYTICAL Environmental	RESULTS Quality	SUMMARY Parameters		Page / of /
ES Job No. 56528 Client UNS AF	Sample Matrix:	a trix:		& Report No. Laboratory Su	Export No. Laboratory Supervisor Approval: Approval:
Client No.		Water (ug/L)		Dilution Factor	tor
Date Collected /1/19-85	13	Soil (ug/g) (ug/kg) Other <u>Sedimont(</u>	(ug/kg)	*Moisture	
Field Sample No. Lab Sample No.	V. 101	VD2 Prevelie	Phenolis TKN	CE	Notes
7611-13-61 22 12 17 17 17 10 10 10 10 10 10 10 10 10 10 10 10 10	7 201	}	071	0,40	
0. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	70.0	40.5		€1.7	
	7 80 %		430	⟨0, (3	
		30 \$0,5	570	98,0	t
	0 %		_	₹1,0>	
	<u> </u>			40,17	
1765, 7-18, 20-18, 23	,				
				•	
	-				
					,
	• *				
E	7	<u> </u>	\ - T	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	\ \ \

SOCIETA DECEMBER DESCRIPTION OF SERVICES RECORDED RECORDED DESCRIPTION OF THE SERVICES AND SERVICES.

value of nitrale is best estimated of four (4) analyses results and . If & moisture is reported, results are presented on a dry-weight basis. NOTEA! The reported

EPA 354. | 5 PA 362. | BPA 400. | EPA 351. 3 | BPA 719.

1116660

Analytical Method

Date Analyzed

10/0/ 121 7

i E

7

L-238

X		
É		
8		
の人		
<i>Y</i> ,		
が自		
	:	
Š		
77.		
ţ:		
p in t,		

ST.

SUMMARY Parameters Report	CC Report No. Laboratory Supervisor Approval: Calcuro Dilution Factor 9/Kg) *Moisture	160 KO.17 200 KO.17 230 KO.17		1 14 130 12 30 EPH 330 SPH 2476	ALACTOS OF SOMPTE
ANALYTICAL RESULTS SUMMARY Environmental Quality Paramet		1002 1013 Phinala TKN 2.18 5.6 <0.5 160 2.18 5.3 <0.5 200 2.18 1.20 1290		5 60 344. 10 m	ر مرد المرد المرد المرد المرد المرد المرد المرد المرد المرد المرد المرد المرد المرد المرد المرد المرد المرد الم
Engineering-Science	Client INSAF Client Project PSKS Denvek Client No. Date Collected 2-19-81 Date Received 12-20-81	Field Sample No. Lab Sample No. 97K5 2-120-1 ES 12-55-1263 PTK5,2-8 50-1 ES 12-55-1265 PTK5,27-1265			* If & moisture is reported, results

Results for Site 11 along Brush Creek 601, 602, 625, Metals and Inorganic Parameters

AND THE PERSON NAMED IN COLUMN TO PERSON NAM

を変め

ST.

X

N.

THE REPORT OF THE PARTY OF THE

ANALYTICAL RESULTS SUMMARY Purgeable Halocarbons EPA Method 601

Page	1	of	1
Report	:		

ES Job No. <u>56528</u>	Lab Sample No. 3-86-1271	
Client U.S. AIR FORCE	Field Sample No. 11-0, Sw-	
Project PJKS (DENUER)	Date Collected 3/26	
Client No.	Date Received 3/27	
Laboratory Supervisor Approval:	Date Analyzed 3/27/86	
Johnny R. adamson Sample Matrix:	QC Report No. 56528 - 30	
/X / Water (ug/L)	Dilution Factor	
/ Soil (ug/g) (ug/Kg)	*Moisture	٩
/ / Other		

Compound	С	oncentrati	ion	Retent	ic	n Time	Notes
	Det Lim	Column 1	Column 2	Column	1	Column :	
	<u> </u>			L			<u> </u>
Bromodichloromethane	0.10	<10		15.69			
Bromoform	0.20	<10		21.24			I
Bromomethane	1.18	<10		2.85			
Carbon tetrachloride	0.12	<4.0		15.47	\Box		
Chlorobenzene	0.25	<10		26.01	\Box		
Chloroethane	0.52	<10		4.51			
2-Chloroethylvinyl ether	0.13	<10		19.49			
Chloroform	0.05	<10		13.01			
Chloromethane	0.08	<10		1.95			
Dibromochloromethane	0.09	<10		18.68	$_{\perp}$		
1,2-Dichlorobenzene	0.15	<10		60.1			
1,3-Dichlorobenzene	0.32	<10		42.9			
1,4-Dichlorobenzene	0.24	<10		37.3			
Dichlorodifluoromethane	1.81	<10		3.54	П		
1,1-Dichloroethane	0.07	<10		11.67			
1,2-Dichloroethane	0.03	<0.1		13.55			T
1,1-Dichloroethene	0.13	<10		10.31			
trans-1,2-Dichloroethene	0.10	<10		12.35	\neg		
1,2-Dichloropropane	0.08	<10		17.19	\neg		
cis-1,3-Dichloropropene	0.20	<10		18.68			
trans-1,3-Dichloropropene	0.10	<10	1	17.24			
Methylene chloride	0.25	<4.0		7.50			
1,1,2,2-Tetrachloroethane	0.03	<10		23.47			
Tetrachloroethene	0.03	<4.0		23.47			
1,1,1-Trichloroethane	0.03	<10		14.76			
1,1,2-Trichloroethane	0.02	<10		18.68			
Trichloroethene	0.12	<1.0		17.91			
Trichlorofluoromethane	0.01	<10		8.58			
Vinyl chloride	0.18	<10		3.54			
	1						
	1	•			1		

^{*} If % moisture is reported, results are presented on a dry-weight basis.

passal besisted by the property of the property of the property of the property of the passage of the property of the passage of the property of the passage of the property of the passage of the passag

いい

いと

3

7.

777

S

CELLICATION STREET, WESTERN CERTIFIED STREET, STREET, STREET,

 \dot{x}

₹. *.

8

で

Page	of	1
Report		

ES Job No. 56528 ·	Lab Sample No	3-86-1270
Client U.S. Air Force	Field Sample No.	11-1, SW-3
Project PJKS (Denver)	Date Collected	——— ;·—) ·
Client No.	Date Received	3/27
Laboratory Supervisor Approval:	Date Analyzed	3/28/86
Johnny R. adamon Sample Matrix:	QC Report No.	5 65 28 - 30
/X_/ Water (ug/L)	Dilution Factor _	
/_/ Soil (ug/g) (ug/Kg)	*Moisture	
/_/ Other		

Compound	c	oncentrat	ion	Retent	ion Time	Notes
•	Det Lim	Column 1	Column 2	Column	1 Column 2	
Bromodichloromethane	0.10	<10		15.69		
Bromoform	0.20	<10		21.24		
Bromomethane	1 1.18	<10		2.85		
Carbon tetrachloride	0.12	<4.0	1	15.47		
Chlorobenzene	0.25	<10		26.01		
Chloroethane	1 0.52	<10		. 4.51		
2-Chloroethylvinyl ether	0.13	<10		19.49		
Chloroform	0.05	<10	1	13.01		
Chloromethane	0.08	<10		1.95		
Dibromochloromethane	0.09	<10		18.68		
1,2-Dichlorobenzene	0.15	<10		60.1		
1,3-Dichlorobenzene	10.32	<10		42.9		
1,4-Dichlorobenzene	0.24	<10		37.3		
Dichlorodifluoromethane	1 1.81	<10		3.54		
1,1-Dichloroethane	0.07	<10		11.67		
1,2-Dichloroethane	0.03	<0.1	l	13.55		
1,1-Dichloroethene	0.13	<10		10.31		
trans-1,2-Dichloroethene	0.10	33.6	<10	12.35	8,00	
1,2-Dichloropropane	0.08	<10		17.19		
cis-1,3-D chloropropene	0.20	<10		18.68		
trans-1,3-Dichloropropene	0.10	<10	ı	17.24		
Methylene chloride	0.25	<4.0	İ	7.50	1	
1,1,2,2-Tetrachloroethane	0.03	<10		23.47	7	
Tetrachloroethene	0.03	<4.0	1	23.47		
1,1,1-Trichloroethane	0.03	<10	1	14.76		
1,1,2-Trichloroethane	0.02	<10	!	18.68		
Trichloroethene	10.12	2.04	3. 38	17.91	10.41	
Trichlorofluoromethane	: 0.01	<10		8.58		
Vinyl chloride	0.18	55.2	< 10	3.54	3.25	
<u> </u>	'	-	: 	 		

^{*} If * moisture is reported, results are presented on a dry-weight basis.

Const. Acceptor Consults Services

RESPONDE TO SERVICE AND ASSESSED AND ASSESSED AND ASSESSE

ANALYTICAL RESULTS SUMMARY Purgeable Halocarbons EPA Method 601

Page	1	of	
Report	_		

ES Job No. 56528 ·	Lab Sample No.	3-86-1269
Client U.S. Air Force	Field Sample No.	11-2 3W-3
Project PJKS (Denver)	Date Collected	3/26
Client No.	Date Received	3/27
Laboratory Supervisor Approval:	Date Analyzed	_3/27/86
Johnny R. adamoin Sample Matrix:	QC Report No.	56528-30
/X / Water (ug/L)	Dilution Factor _	
/_/ Soil (ug/g) (ug/Kg)	*Moisture	
/_/ Other		

Compound	c	oncentrati	ion	Retenti	on Time	Notes
	Det Lim	Column 1	Column 2	Column 1	Column 2	
:		440	<u> </u>	15.50	· <u></u>	
Bromodichloromethane	0.10	<10		15.69		
Bromoform	0.20	<10		21.24	 	
Bromomethane	11.18	<10		2.85		
Carbon tetrachloride	0.12	<4.0		15.47		
Chlorobenzene	0.25	<10	<u> </u>	26.01		
Chloroethane	0.52	<10		4.51	<u> </u>	
2-Chloroethylvinyl ether	0.13	· <10	l	19.49	<u> </u>	
Chloroform	0.05	<10	<u> </u>	13.01	1	
Chloromethane	0.08	<10	L	1.95	<u> </u>	
Dibromochloromethane	0.09	<10		18.68	<u> </u>	
1,2-Dichlorobenzene	0.15	<10		60.1		
1,3-Dichlorobenzene	0.32	<10	İ	42.9		
1,4-Dichlorobenzene	0.24	<10		37.3		
Dichlorodifluoromethane	1.81	<10		3.54		
1,1-Dichloroethane	10.07	<10		11.67		
1,2-Dichloroethane	0.03	<0.1	(13.55		
1,1-Dichloroethene	0.13	<10	i — ———	10.31		
trans-1,2-Dichloroethene	1 0.10	<10	-	12.35		
1,2-Dichloropropane	0.08	<10	l .	17.19		
cis-1,3-Dichloropropene	10.20	<10	ĺ	18.68	1	
trans-1,3-Dichloropropene	10.10	<10		17.24		
Methylene chloride	1 0.25	<4.0	l	7.50	1	1
1,1,2,2-Tetrachloroethane	1 0.03	<10	1	23.47	1	
Tetrachloroethene	i 0.03	<4.0	i	23.47		
1,1,1-Trichloroethane	10.03	<10		14.76		
. 1,1,2-Trichloroethane	10.02	<10	!	18.68		
Trichloroethene	10.12	<1.0	l	17.91		
Trichlorofluoromethane	: 0.01	<10		8.58		
Vinyl chloride	0.18	<10	i	3.54		
······································	ı	 	 		1	
<u> </u>		 		 	<u> </u>	;

^{*} If % moisture is reported, results are presented on a dry-weight basis.

SSSCOSS MINIMA INVINITE VOLVINA ESCOSON STORMS ISSS

7

S.

Page _	_ of	
Report		

ES Job No. 56528 ·	Lab Sample No. $3-86-1368$
Client U.S. Air Force	Field Sample No. 11-3 SW-2
Project PJKS (Denver)	Date Collected 3/26
Client No.	Date Received 3),7
Laboratory Supervisor Approval:	Date Analyzed 3/3//86
Johnny R. adamson	QC Report No. 56528-30
/X_/ Water (ug/L)	Dilution Factor
/_/ Soil (ug/g) (ug/Kg)	*Moisture
/	

Compound	Concentration		Retention Time	Notes
. •	Det Lim	Column 1 Column 2	Column 1 Column	2
		1		
Bromodichloromethane	0.10	<10	15.69	
Bromoform	0.20	<10	21.24	
Bromomethane	1.18	<10	2.85	<u> </u>
Carbon tetrachloride	0.12	<4.0	15.47	
Chlorobenzene	0.25	<10	26.01	L
Chlorocthane	0.52	<10	4.51	1
2-Chloroethylvinyl ether	0.13	<10	19.49	
Chloroform	0.05	<10	13.01	
Chloromethane	0.08	<10	1.95	
Dibromochloromethane	0.09	<10	18.68	
1,2-Dichlorobenzene	0.15	<10	60.1	
1,3-Dichlorobenzene	0.32	<10	42.9	
1,4-Dichlorobenzene	0.24	<10	37.3	
Dichlorodifluoromethane	1 .81	<10	3.54	
1,1-Dichloroethane	0.07	<10	11.67	
1,2-Dichloroethane	0.03	<0.1	13.55	T
1,1-Dichloroethene	0.13	<10	10.31	
trans-1,2-Dichloroethene	0.10	<10	12.35	1
1,2-Dichloropropane	1 0.08	<10	17.19	
cis-1,3-Dichloropropene	0.20	<,10	18.68	
trans-1,3-Dichloropropene	i 0.10	<10 I	17.24	
Methylene chloride	0.25	<4.0	7.50	
1,1,2,2-Tetrachloroethane	. 0.03	<10	23.47	
Tetrachloroethene	0.03	<4.0	23.47	
1,1,1-Trichloroethane	0.03	<10	14.76	
1,1,2-Trichloroethane	0.02	<10	18.68	
Trichloroethene	. 0.12	<1.0	17.91	
Trichlorofluoromethane	0.01	<10	8.58	
Vinyl chloride	0.18	<10	3.54	
	1			1
	1	1	1	<u> </u>

^{*} If % moisture is reported, results are presented on a dry-weight basis.

Page	1	of	
Report			

ES Job No. 56528 ·	Lab Sample No.	3-86-1267
Client U.S. Air Force	Field Sample No.	11-4, SW-2
Project PJKS (Denver)	Date Collected	•
Client No.	Date Received	3/27
Laboratory Supervisor Approval:	Date Analyzed	3/27/86
Johnny R. Adamson Sample Matrix.	QC Report No.	56528-30
/X / Water (ug/L)	Dilution Factor _	
/_/ Soil (ug/g) (ug/Kg)	*Moisture	
/ / Other		

Compound	Concentration Retention Time			Notes		
•	Det Lim	Column 1	Column 2	Column	1 Column 2	
				<u> </u>		
Bromodichloromethane	0.10	<10		15.69		
Bromoform	0.20	<10		21.24		
Bromomethane	1 1.18	<10		2.85		
Carbon tetrachloride	0.12	<4.0	1	15.47		
Chlorobenzene	0.25	<10		26.01		
Chloroethane	0.52	<10		4.51		
2-Chloroethylvinyl ether	0.13	<10	-	19.49		
Chloroform	0.05	<10	ĺ	13.01		
Chloromethane	0.08	<10		1.95		
Dibromochloromethane	0.09	<10		18.68		
1,2-Dichlorobenzene	0.15	<10		60.1		
1,3-Dichlorobenzene	0.32	<10		42.9		
1,4-Dichlorobenzene	0.24	<10		37.3		
Dichlorodifluoromethane	1.81	<10		3.54		
1,1-Dichloroethane	0.07	<10		11.67		
1,2-Dichloroethane	0.03	<0.1		13.55		
1,1-Dichloroethene	0.13	<10		10.31		
trans-1,2-Dichloroethene	0.10	<10		12.35		
1,2-Dichloropropane	0.08	<10		17.19	1	
cis-1,3-Dichloropropene	0.20	<10		18.68		
trans-1,3-Dichloropropene	0.10	<10	1	17.24		
Methylene chloride	0.25	<4.0	İ	7.50		
1,1,2,2-Tetrachloroethane	0.03	<10		23.47		
Tetrachloroethene	0.03	<4.0		23.47		
1,1,1-Trichloroethane	10.03	<10		14.76		
. 1,1,2-Trichloroethane	0.02	<10		18.68		
Trichloroethene	0.12	<1.0		17.91		
Trichlorofluoromethane	0.01	<10		8.58		
Vinyl chloride	0.18	<10	l	3.54	1	
	i					
	ī		·	1		

^{*} If % moisture is reported, results are presented on a dry-weight basis.

Page _	_ of	1
Report		

ES Job No. 56528 ·	Lab Sample No. 3-86-1265
Client U.S. Air Force	Field Sample No. 11-5, SW-3
Project PJKS (Denver)	Date Collected 3/26
Client No.	Date Received 3/a7
Laboratory Supervisor Approval:	Date Analyzed 3/3/86
Johnny R. adamsonis Sample Matrix:	QC Report No. 56528-30
/X / Water (ug/L)	Dilution Factor
/_/ Soil (ug/g) (ug/Kg)	*Moisture
/ / Other	

Compound	Concentration Retention Time			Notes		
÷	Det Lim	Column 1;	Column 2	Column	1 Column 2	
	<u> </u>	<u> </u>		<u> </u>		
Bromodichloromethane	0.10	<10		15.69)
Bromoform	0.20	<10		21.24		
Bromomethane	1.18	<10		2.85		
Carbon tetrachloride	0.12	<4.0		15.47		
Chlorobenzene	0.25	<10		26.01		
Chloroethane	0.52	<10		4.51		
2-Chloroethylvinyl ether	0.13	<10		19.49		
· Chloroform	0.05	<10		13.01		
Chloromethane	0.08	<10		1.95		
Dibromochloromethane	0.09	<10		18.68		
1,2-Dichlorobenzene	0.15	<10		60.1		
1,3-Dichlorobenzene	10.32	<10		42.9		
1,4-Dichlorobenzene	0.24	<10		37.3		
Dichlorodifluoromethane	1 1 .81	<10		3.54		
1,1-Dichloroethane	0.07	<10		11.67		
1,2-Dichloroethane	0.03	<0.1		13.55		
1,1-Dichloroethene	0.13	<10		10.31		
trans-1,2-Dichloroethene	10.10	<10 ·		12.35		
1,2-Dichloropropane	0.08	<10		17.19		
cis-1,3-Dichloropropene	0.20	<10		18.68		
trans-1,3-Dichloropropene	i 0.10	<10		17.24		
Methylene chloride	10.25	<4.0 i		7.50		
1,1,2,2-Tetrachloroethane	! 0.03	<10		23.47		
Tetrachloroethene	0.03	<4.0		23.47		
1,1,1-Trichloroethane	0.03	<10		14.76		
1,1,2-Trichloroethane	0.02	<10		18.68		
Trichloroethene	10.12	<1.0		17.91		
Trichlorofluoromethane	: 0.01	<10		8.58		
Vinyl chloride	0.18	<10		3.54		
	i	1				
<u> </u>	1	1			1	

^{*} If & moisture is reported, results are presented on a dry-weight basis.

Page	1	of	
Report	ե _		

ES Job No. <u>56528</u> ·	Lab Sample No. 3-86-1266
Client U.S. Air Force	Field Sample No. $11-5$, $SW-4$
Project PJKS (Denver)	Date Collected 3/26
Client No.	Date Received $3\sqrt{27}$
Laboratory Supervisor Approval:	Date Analyzed 3/3/86
Johnny R. Odamor Sample Matrix:	QC Report No. 56528 - 30
/X_/ Water (ug/L)	Dilution Factor
/_/ Soil (ug/g) (ug/Kg)	*Moisture
/ / Other	

Compound	Concentration		Retent	Notes		
•	Det Lim	Column 1	Column 2	Column	1 Column 2	
<u>:</u>	1	<u> </u>	<u> </u>			
Bromodichloromethane	0.10	<10	i	15.69		
Bromoform	0.20	<10		21.24		
Bromomethane	1.18	<10	[2.85		
Carbon tetrachloride	0.12	<4.0		15.47		
Chlorobenzene	0.25	<10		26.01		
Chloroethane	0.52	<10		4.51		
, 2-Chloroethylvinyl ether	0.13	<10	!	19.49		
Chloroform	0.05	<10		13.01		
Chloromethane	0.08	<10		1.95		
Dibromochloromethane	0.09	<10		18.68		
1,2-Dichlorobenzene	0.15	<10		60.1		
1,3-Dichlorobenzene	0.32	<10		42.9		
1,4-Dichlorobenzene	0.24	<10	i	37.3		
Dichlorodifluoromethane	1.81	<10		3.54		
1,1-Dichloroethane	0.07	<10		11.67		
1,2-Dichloroethane	0.03	<0.1	i	13.55		
1,1-Dichloroethene	0.13	<10		10.31		
trans-1,2-Dichloroethene	0.10	<10	i	12.35		
1,2-Dichloropropane	0.08	<10	i	17.19		
cis-1,3-Dichloropropene	0.20	<10		18.68		
trans-1,3-Dichloropropene	0.10	<10	1	17.24		
Methylene chloride	0.25	<4.0	i	7.50		
1,1,2,2-Tetrachloroethane	0.03	<10		23.47		
Tetrachloroethene	0.03	<4.0		23.47		
1,1,1-Trichloroethane	0.03	<10	1	14.76		
1,1,2-Trichloroethane	0.02	<10	1	18.68	1	
Trichloroethene	0.12	<1.0	Į .	17.91		
Trichlorofluoromethane	: 0.01	<10	!	8.58		
Vinyl chloride	0.18	<10	l	3.54		
	1		i			
1	1	1	1	1		

^{*} If * moisture is reported, results are presented on a dry-weight basis.

ANALYTICAL RESULTS SUMMARY Purgeable Halocarbons EPA Method 601

Page _	<u>l</u> of	
Report		

ES Job No. 56528 ·	Lab Sample No	3-86-1264
Client U.S. Air Force	Field Sample No.	11-6, SW-2
Project PJKS (Denver)	Date Collected	3/26
Client No.	Date Received	3/27
Laboratory Supervisor Approval:	Date Analyzed	3/31/86
Johnny R adamson Sample Matrix!	QC Report No.	56528 - 30
/X_/ Water (ug/L)	Dilution Factor _	
/ / Soil (ug/g) (ug/Kg)	*Moisture	
/ / Other		

Compound	Concentration		on	Retent	io	n Time	Notes
• •	Det Lim	Column 1:0	Column 2	Column	1	Column 2	
:							
Bromodichloromethane	0.10	<10		15.69	1		
Bromoform	0.20	<10		21.24			
Bromomethane	1.18	<10		2.85			
Carbon tetrachloride	0.12	<4.0		15.47			
Chlorobenzene	0.25	<10		26.01			
Chloroethane	0.52	<10		4.51			
2-Chloroethylvinyl ether	0.13	<10		19.49		•	
· Chloroform	0.05	<10		13.01			
Chloromethane	0.08	<10		1.95			
Dibromochloromethane	0.09	<10		18.68			
1,2-Dichlorobenzene	0.15	<10		60.1			
1,3-Dichlorobenzene	0.32	<10		42.9	T		
1,4-Dichlorobenzene	0.24	<10		37.3			
Dichlorodifluoromethane	1.81	<10		3.54			
1,1-Dichloroethane	0.07	<10		11.67	\neg		
1,2-Dichloroethane	0.03	<0.1		13.55			
1,1-Dichloroethene	0.13	<10		10.31	T		
trans-1,2-Dichloroethene	0.10	<10		12.35	- 1		
1,2-Dichloropropane	0.08	<10		17.19			
cis-1,3-Dichloropropene	0.20	<10		18.68	7		
trans-1,3-Dichloropropene	10.10	<10		17.24			
Methylene chloride	1 0.25	<4.0 i		7.50	\neg		
1,1,2,2-Tetrachloroethane	0.03	<10		23.47			
Tetrachloroethene	i 0.03	<4.0		23.47			
1,1,1-Trichloroethane	0.03	<10		14.76			
1,1,2-Trichloroethane	0.02	<10 I		18.68			
Trichloroethene	10.12	<1.0		17.91			
Trichlorofluoromethane	0.01	<10 :		8.58			
Vinyl chloride	0.18	<10 I		3.54			
	1	:					
	1	1			1		

^{*} If % moisture is reported, results are presented on a dry-weight basis.

Š

...

STATEMENT PARTICIONES PROGRESSOS REPORTED DES

Page	01	: <u> </u>
Report		

ES Job No. 56528 ·	Lab Sample No. 3-86-12	63
Client U.S. Air Force	Field Sample No. 11-7, SW-	-2
ProjectPJKS (Denver)	Date Collected 3/26	
Client No.	Date Received 3/27	
Laboratory Supervisor Approval:	Date Analyzed 3/31 > 4/1/	86
Johnny R. adamsni Sample Matrix	QC Report No. 56528 - 3	<u>o</u>
/X_/ Water (ug/L)	Dilution Factor	
/_/ Soil (ug/g) (ug/Kg)	*Moisture	
/ / Other		

Compound	С	oncentrati	ion	Retent	io	n Time	Notes
; !	Det Lim	Column 1	Column 2	Column	1	Column 2	
<u> </u>	<u> </u>	i	<u> </u>				
Bromodichloromethane	0.10	<10		15.69			
Bromoform	0.20	<10		21.24			
Bromomethane	i 1.18	<10		2.85	\Box		
Carbon tetrachloride	0.12	<4.0		15.47			
Chlorobenzene	0.25	<10		26.01	\Box		
Chloroethane	0.52	<10		4.51			
2-Chloroethylvinyl ether	0.13	<10		19.49			
Chloroform	0.05	<10		13.01			
Chloromethane	0.08	<10		1.95			
Dibromochloromethane	0.09	<10		18.68			
1,2-Dichlorobenzene	0.15	<10		60.1	\Box		
1,3-Dichlorobenzene	0.32	<10		42.9			
1,4-Dichlorobenzene	0.24	<10		37.3	П		
Dichlorodifluoromethane	1 1.81	<10		3.54	\neg		
1,1-Dichloroethane	0.07	<10		11.67	\neg		
1,2-Dichloroethane	0.03	<0.1	(13.55	\neg		
1,1-Dichloroethene	0.13	<10		10.31			
trans-1,2-Dichloroethene	0.10	<10		12.35	П		
1,2-Dichloropropane	0.08	<10	l	17.19			
cis-1,3-Dichloropropene	0.20	<10		18.68			
trans-1,3-Dichloropropene	0.10	<10	1	17.24			
Methylene chloride	1 0.25	<4.0	l .	7.50	7		
1,1,2,2-Tetrachloroethane	0.03	<10		23.47			
Tetrachloroethene	0.03	<4.0	1	23.47			
1,1,1-Trichloroethane	0.03	<10		14.76]		
1,1,2-Trichloroethane	0.02	<10	!	18.68			
Trichloroethene	10.12	5.48	3.16	17.91		10,42	
Trichlorofluoromethane	0.01	<10	!	8.58			
Vinyl chloride	0.18	<10	1	3.54			
	i						
	1	1	<u> </u>	(1	i	

^{*} If * moisture is reported, results are presented on a dry-weight basis.

Page	1	of	<u> </u>
Repor	t _		

ES Job No. 56528 ·	Lab Sample No	3/86-1262
Client U.S. Air Force	Field Sample No.	
Project PJKS (Denver)	Date Collected	
Client No.	Date Received	3/27
Laboratory Supervisor Approval:	Date Analyzed	3/3/186 2 4/1/86
Johnny R. adamoin Sample Matrix:	QC Report No	56528 - 30
/X_/ Water (ug/L)	Dilution Factor _	
/_/ Soil (ug/g) (ug/Kg)	*Moisture	
/ / Other		

Compound	Concentration Re			Retent	Retention Time		
1	Det Lim	Column 1	Column 2	Column	1 Column 2		
<u> </u>	<u> </u>			<u> </u>			
* Bromodichloromethane	0.10	<10		15.69			
Bromoform	0.20	<10		21.24			
, Bromomethane	1.18	<10		2.85			
Carbon tetrachloride	0.12	<4.0		15.47			
Chlorobenzene	0.25	<10		26.01			
Chloroethane	0.52	<10		4.51			
2-Chloroethylvinyl ether	0.13	<10		19.49			
Chloroform	0.05	<10		13.01			
Chloromethane	0.08	<10		1.95			
Dibromochloromethane	0.09	<10		18.68			
1,2-Dichlorobenzene	0.15	<10		60.1			
1,3-Dichlorobenzene	0.32	<10_	1	42.9			
1,4-Dichlorobenzene	0.24	<10		37.3			
Dichlorodifluoromethane	1 1.81	<10		3.54			
1,1-Dichloroethane	0.07	<10		11.67			
1,2-Dichloroethane	0.03	<0.1	l	13.55			
1,1-Dichloroethene	0.13	<10		10.31			
trans-1,2-Dichloroethene	0.10	<10		12.35			
1,2-Dichloropropane	0.08	<10		17.19			
cis-1,3-Dichloropropene	0.20	<10	<u> </u>	18.68			
trans-1,3-Dichloropropene	<u>. </u>	<10	<u></u>	17.24			
Methylene chloride	1 0.25	<4.0	İ	7.50			
1,1,2,2-Tetrachloroethane	10.03	<10	i	23.47			
Tetrachloroethene	0.03	<4.0		23.47			
1,1,1-Trichloroethane	! 0.03	<10	1	14.76			
1,1,2-Trichloroethane	0.02	<10	!	18.68			
Trichloroethene	10.12	1.67	4.11	17.91	10.42		
Trichlorofluoromethane	: 0.01	<10	•	8.58			
Vinyl chloride	0.18	<10	1	3.54		~	
	i		1				
	1		<u> </u>	7			

^{*} If & moisture is reported, results are presented on a dry-weight basis.

ANNAND WESTER THINK ASSESSED IN THE ASSESSED I

Page _	<u>1</u> .	of	
Report			

ES Job No. 56528 ·	Lab Sample No.	3-86-1261
Client U.S. Air Force	Field Sample No.	11-4, SW-2
Project PJKS (Denver)	Date Collected	3/26
Client No.	Date Received	3/27
Laboratory Supervisor Approval:	Date Analyzed	3/31 24/1/86
Johnny R. Odamorr Sample Matrix:	QC Report No.	56528-30
/X / Water (ug/L)	Dilution Factor _	
/_/ Soil (ug/g) (ug/Kg)	*Moisture	
/_/ Other		

Compound	Concentration Retention Time			Notes		
•	Det Lim	Column 1	Column 2	Column 1	Column 2	
	<u> </u>					
Bromodichloromethane	0.10	<10		15.69	1	
Bromoform	0.20	<10		21.24	<u> </u>	
Bromomethane	i 1.18	<10		2.85		
Carbon tetrachloride	0.12	<4.0		15.47		
Chlorobenzene	0.25	<10		26.01		
Chloroethane	0.52	<10		4.51		
2-Chloroethylvinyl ether	0.13	<10		19.49		
Chloroform	0.05	<10		13.01	1	
Chloromethane	0.08	<10		1.95	<u> </u>	
Dibromochloromethane	0.09	<10		18.68	<u> </u>	
1,2-Dichlorobenzene	0.15	<10		60.1		
1,3-Dichlorobenzene	0.32	<10		42.9		
1,4-Dichlorobenzene	0.24	<10		37.3		
Dichlorodifluoromethane	1.81	<10		3.54		
1,1-Dichloroethane	0.07	<10		11.67		
1,2-Dichloroethane	0.03	<0.1		13.55		
1,1-Dichloroethene	0.13	<10		10.31		
trans-1,2-Dichloroethene	0.10	<10		12.35		
1,2-Dichloropropane	0.08	<10		17.19		
cis-1,3-Dichloropropene	0.20	<10		18.68		
trans-1,3-Dichloropropene	0.10	<10		17.24		
Methylene chloride	0.25	<4.0		7.50		
1,1,2,2-Tetrachloroethane	0.03	<10		23.47		
Tetrachloroethene	0.03	<4.0		23.47		
	. 0.03	<10		14.76		
1,1,2-Trichloroethane	0.02	<10	!	18.68		
Trichloroethene	. 0.12	1.27	.3, 31	17.91	10.42	
Trichlorofluoromethane	0.01	<10		8.58		
· Vinyl chloride	0.18	<10		3.54		
	i					
	1	1		(

[•] If • moisture is reported, results are presented on a dry-weight basis.

PROBABLE PROPERTY CONTRACT SAMESTON CONTRACTOR

Page	<u> </u> of	1
Report		

ES Job No. 56528 ·	Lab Sample No	3-86-1260
Client U.S. Air Force	Field Sample No.	11-10, SW-2
Project PJKS (Denver)	Date Collected	3/26/86
Client No.	Date Received	3/27/86
Laboratory Supervisor Approval:	Date Analyzed	3/31 2 4/1/86
Johnny R. adamson Sample Matrix:	QC Report No.	<i>545</i> 28 - 30
/X / Water (ug/L)	Dilution Factor _	·
/_/ Soil (ug/g) (ug/Kg)	*Moisture	
/ / Other		

Compound	Concentration			Retent	Notes	
•	Det Lim	Column 1	Column 2	Column	Column 2	
Bromodichloromethane	0.10	<10		15.69		
Bromoform	0.20	<10		21.24		
Bromomethane	1.18	<10		2.85		
Carbon tetrachloride	0.12	<4.0		15.47		
Chlorobenzene	0.25	<10		26.01		
Chloroethane	0.52	<10		4.51		
2-Chloroethylvinyl ether	0.13	<10		19.49		
Chloroform	0.05	<10		13.01		
Chloromethane	0.08	<10	ł	1.95		
Dibromochloromethane	0.09	<10		18.68		
1,2-Dichlorobenzene	0.15	<10		60.1		
1,3-Dichlorobenzene	0.32	<10		42.9		
1,4-Dichlorobenzene	0.24	<10		37.3		
Dichlorodifluoromethane	! 1.81	<10		3.54		
1,1-Dichloroethane	0.07	<10		11.67		
1,2-Dichloroethane	0.03	<0.1	i	13.55		
1,1-Dichloroethene	0.13	<10		10.31	T	
trans-1,2-Dichloroethene	0.10	<10	!	12.35		
1,2-Dichloropropane	0.08	<10		17.19		
cis-1,3-Dichloropropene	0.20	<10	i	18.68		
trans-1,3-Dichloropropene	0.10	<10	1	17.24		
Methylene chloride	10.25	<4.0	i	7.50		
. 1,1,2,2-Tetrachloroethane	0.03	<10	1	23.47		
Tetrachloroethene	0.03	<4.0		23.47		
1,1,1-Trichloroethane	0.03	<10	!	14.76		
1,1,2-Trichloroethane	0.02	<10	!	18.68		
Trichloroethene	0.12	2,20	6.55	17.91	10.12	
Trichlorofluoromethane	0.01	<10	T	8.58		
Vinyl chloride	0.18	<10		3.54		
1	:		· r			

^{*} If % moisture is reported, results are presented on a dry-weight basis.

Page _	1	of	1
Report	٤		

ES Job No. <u>54528</u>	Lab Sample No. 3-86-1271	
Client U.S. AIR FORCE	Field Sample No. 11-C, SW-1	
Project PJKS (DENVER)	Date Collected 3/26	·
Client No.	Date Received 3/27	!
Laboratory Supervisor Approval:	Date Analyzed 3/27/86	
Johnne R. adamon Sample Matrix:	QC Report No. 56528 - 3	
/X / Water (ug/L)	Dilution Factor	
/_/ Soil (ug/g) (ug/Kg)	*Moisture	\ `
/ / Other		,

Compound	c	oncentrat	ion	Retenti	on Time	Notes	1
	Det Lim	Column 1	Column 2	Column 1	Column 2		
Benze ne	0.2	40.7		2.26			ļ
Chlorobenzene	0.2	<10		16.46			_
1,2-Dichlorobenzene	0.4	<10	<u> </u>	20.44	<u> </u>	<u> </u>	į
1,3-Dichlorobenzene	0.4	<10	<u> </u>	.17.26			_[_
1,4-Dichlorobenzene	0.3	<10	ļ	16.56	<u> </u>	<u> </u>	
Ethylbenzene	0.2	<10		7.18	<u> </u>	ļ	
Toluene	0.2	<10		5.47			
							1
							7

^{*} If % moisture is reported, results are presented on a dry-weight basis.

Page _	1_	of	1
Report	_		

ES Job No. 56528	Lab Sample No. 3-84-12	69
Client U.S. AIR FORCE	Field Sample No. 11-2, SW-	• 3
Project PJKS (DENVER)	Date Collected 3/26	
Client No.	Date Received 327	
Laboratory Supervisor Approval:	Date Analyzed 3/27/86	
Johnny R. adamson Sample Matrix:	QC Report No. 56528-31	
/X_/ Water (ug/L)	Dilution Factor	
/ Soil (ug/g) (ug/Kg)	*Moisture	&
/ / Other		

Compound	C	oncentrat	ion	Retenti	Notes	
	Det Lim	Column 1	Column 2	Column	Column 2	
Benze ne	0.2	40.7		2.26		
Chlorobenzene	0.2	<10	<u> </u>	16.46	·	
1,2-Dichlorobenzene	0.4	<10	<u> </u>	20.44		
1,3-Dichlorobenzene	0.4	<10		.17.26		
1,4-Dichlorobenzene	0.3	<10	<u> </u>	16.56		
Ethylbenzene	0.2	<10	<u> </u>	7.18	ļ	
Toluene	0.2	<10	<u> </u>	5.47		
<u> </u>			<u> </u>		 	
			İ			
					<u> </u>	<u> </u>
·		<u> </u>	<u> </u>	<u> </u>	 	
·			1	·	-	-

^{*} If % moisture is reported, results are presented on a dry-weight basis.

Page	1_	ο£	_)
Repor	t		

ES Job No. <u>56528</u>	Lab Sample No	3 - 86 - 1268
Client U.S. AIR FORCE	Field Sample No.	11-3, Su1-2
Project PJKS (DENVER)	Date Collected	
Client No.	Date Received	3/27
Laboratory Supervisor Approval:	Date Analyzed	3/31/86
Johnny R. Odamson Sample Matrix:	QC Report No.	56528-31
/x / Water (ug/L)	Dilution Factor _	
/_/ Soil (ug/g) (ug/Kg)	*Moisture	
/_/ Other		

Compound	\ c	Concentration			Retention Time		
_	Det Lim	Column 1	Column 2	Column 1	Column 2		
Benzene	0.2	40.7		2.26			
Chlorobenzene	0.2	<10		16.46			
1,2-Dichlorobenzene	0.4	<10		20.44			
1,3-Dichlorobenzene	0.4	<10		17.26			
1,4-Dichlorobenzene	0.3	<10		16.56			
Ethylbenzene	0.2	<10		7.18			
Toluene	0.2	<10	<u> </u>	5.47			
			1	<u> </u>			
		 	<u> </u>				
		<u> </u>	 				
		ļ	1		ļ		
		 	<u> </u>	<u> </u>	 		

^{*} If % moisture is reported, results are presented on a dry-weight basis.

ANALYTICAL RESULTS SUMMARY Purgeable Aromatics EPA Method 602

Page	1	of	<u> </u>
Repor	t		

ES Job No. <u>56528</u>	Lab Sample No.	3-86-1267
Client U.S. AIR FORCE	Field Sample No.	11-4, SW-2
Project PJKS (DENVER)		3/26
Client No.	Date Received	3)27
Laboratory Supervisor Approval:	Date Analyzed	3/27/86
Johnne Padamson Sample Matrix:	QC Report No	56528-31
/X / Water (ug/L)	Dilution Factor _	
/_/ Soil (ug/g) (ug/Kg)	*Moisture	
/ / Other		

Compound	c	Concentration			Retention Time		
	Det Lim	Column 1	Column 2	Column 1	Column 2		
Benzen e	0.2	40.7	<u> </u>	2.26			
Chlorobenzene	0.2	<10	<u> </u>	16.46			
1,2-Dichlorobenzene	0.4	<10	<u> </u>	20.44			
1,3-Dichlorobenzene	0.4	<10		17.26			
1,4-Dichlorobenzene	0.3	<10		16.56			
Ethylbenzene	0.2	<10	<u> </u>	7.18			
Toluene	0.2	<10	<u> </u>	5.47			
· · · · · · · · · · · · · · · · · · ·			<u> </u>		1		
•							
	- {			l		1	

^{*} If % moisture is reported, results are presented on a dry-weight basis.

\$ \$ \$ \$

ANALYTICAL RESULTS SUMMARY Purgeable Aromatics EPA Method 602

Page	1	of	
Report	:		

ES Job No. 56528	Lab Sample No.	3-86-1266
Client U.S. AIR FORCE	Field Sample No.	11-5, SW-4
Project PJKS (DENVER)	Date Collected	3/26
Client No.	Date Received	3/27
Laboratory Supervisor Approval:	Date Analyzed	3/31/86
Johnne R. adamoin Sample Matrix:	QC Report No.	56528-31
/X / Water (ug/L)	Dilution Factor _	
/_/ Soil (ug/g) (ug/Kg)	*Moisture	
/ / Other		

Compound		Concentration			Retention Time		
	Det Lim	Column 1	Column 2	Column 1	Column 2		
Benzene	0.2	<0.7		2.26			
Chlorobenzene	0.2	<10		16.46			
1,2-Dichlorobenzene	0.4	<10		20.44			
1,3-Dichlorobenzene	0.4	<10 ·		.17.26			
1,4-Dichlorobenzene	0.3	<10	<u> </u>	16.56	-		
Ethylbenzene	0.2	<10	<u> </u>	7.18			
Toluene	0.2	<10		5.47			
		<u> </u>	<u> </u>		<u> </u>	ļ	
			<u> </u>				
<u> </u>		ļ	<u> </u>				
·		<u> </u>	}	<u> </u>	<u> </u>	 	

^{*} If % moisture is reported, results are presented on a dry-weight basis.

Page _	of	1
Report		

ES Job No. <u>56528</u>	Lab Sample No.	3-86-1265
Client U.S. AIR FORCE	Field Sample No.	11-5, SW-3
Project PJKS (DENVER)	Date Collected	
Client No.	Date Received	3/27
Laboratory Supervisor Approval:	Date Analyzed	3 31 86
Johnny R. Odamson Sample Matrix:	QC Report No.	56528-31
/X / Water (ug/L)	Dilution Factor _	
/_/ Soil (ug/g) (ug/Kg)	*Moisture	
/ / Other		

Compound	c	Concentration			Retention Time		
	Det Lim	Column 1	Column 2	Column 1	Column 2		
Benzen e	0.2	40.7		2.26			
Chlorobenzen e	0.2	<10	<u> </u>	16.46			
1,2-Dichlorobenzene	0.4	<10	<u> </u>	20.44			
1,3-Dichlorobenzene	0.4	<10		.17.26	1		
1,4-Dichlorobenzene	0.3	<10	<u> </u>	16.56			
Ethylbenzene	0.2	<10		7.18			
Toluene	0.2	<10		5.47			
	· · · · · ·	ļ	<u> </u>		<u> </u>		
		ļ <u>.</u>	<u> </u>		ļ	ļ	
		ļ	<u> </u>		ļ	<u> </u>	
		 	<u> </u>	ļ			
			<u> </u>	ļ			
	<u> </u>			· · ·		-	

^{*} If % moisture is reported, results are presented on a dry-weight basis.

Page	1	of	1	
Report	:			

ES Job No. <u>56528</u>	Lab Sample No	3-86-1264
Client U.S. AIR FORCE	Field Sample No.	11-6 SW-2
Project PJKS (DENVER)	Date Collected	,
Client No.	Date Received	3 27
Laboratory Supervisor Approval:	Date Analyzed	3/31/86
Johnny R. adamon Sample Matrix:	QC Report No.	56528-31
/X / Water (ug/L)	Dilution Factor _	<u> </u>
/_/ Soil (ug/g) (ug/Kg)	*Moisture	
/_/ Other		

Compound	c	Concentration			on Time	Notes
	Det Lim	Column 1	Column 2	Column 1	Column 2	
Benzene	0.2	40.7		2.26		
Chlorobenzene	0.2	<10	<u> </u>	16.46	<u> </u>	
1,2-Dichlorobenzene	0.4	<10		20.44	<u> </u>	
1,3-Dichlorobenzene	0.4	<10		.17.26		
1,4-Dichlorobenzene	0.3	<10		16.56		
Ethylbenzene	0.2	<10		7.18		
Toluene	0.2	<10	<u> </u>	5.47	ļ	
			<u> </u>		<u> </u>	
			<u> </u>		ļ	ļ
		ļ			 	
				ļ	 	
		ļ	<u> </u>	<u> </u>	ļ	

^{*} If % moisture is reported, results are presented on a dry-weight basis.

Page	1	of	1
Repor	t _		

ES Job No. <u>56528</u>	Lab Sample No. 3	-86-1263
Client U.S. AIR FORCE	Field Sample No.	11-7, SW-2
Project PJKS (DENVER)	Date Collected	
Client No.	Date Received	3/27
Laboratory Supervisor Approval:	Date Analyzed	3/31 > 4/1/86
Johnny R. adamson Sample Matrix:	QC Report No.	56528-31
/X / Water (ug/L)	Dilution Factor	
/_/ Soil (ug/g) (ug/Kg)	*Moisture	
/ / Other		

Compound)c	oncentrat	ion	Retenti	on Time	Notes
	Det Lim	Column 1	Column 2	Column 1	Column 2	
Benzene	0.2	40.7		2.26		
Chlorobenzene	0.2	<10	<u> </u>	16.46		
1,2-Dichlorobenzene	0.4	<10	<u> </u>	20.44		
1,3-Dichlorobenzene	0.4	<10		17.26		
1,4-Dichlorobenzene	0.3	<10		16.56		
Ethylbenzene	0.2	<10	(7.18	<u> </u>	
Toluene	0.2	<10	<u> </u>	5.47	ļ	
 			<u> </u>		 	<u> </u>
			<u> </u>		ļ	<u> </u>
			<u> </u>			
		<u> </u>	<u> </u>		 	
			<u> </u> 	·	 	

^{*} If % moisture is reported, results are presented on a dry-weight basis.

ANALYTICAL RESULTS SUMMARY Purgeable Aromatics EPA Method 602

Page	1	of	 į.
Report			

ES Job No. 56528	Lab Sample No.	3-86-1270
Client U.S. AIR FORCE	Field Sample No.	11-7, SW-3
Project PJKS (DENVER)	Date Collected	3/26
Client No.	Date Received	3/27
Laboratory Supervisor Approval:	Date Analyzed	3/27 = 3/28/86
Johnny R. adamson Sample Matrix:	QC Report No.	56528-3
/X_/ Water (ug/L)	Dilution Factor _	
/_/ Soil (ug/g) (ug/Kg)	*Moisture	
/ / Other		<u>;</u>

Compound		Concentration			Retention Time		
•	Det Lim	Column 1	Column 2	Column 1	Column 2		
Benzene	0.2	<0.7		2.26			
Chlorobenzene	0.2	<10		16.46	•		
1,2-Dichlorobenzene	0.4	<10	<u> </u>	20.44	<u> </u>		
1,3-Dichlorobenzene	0.4	<10	<u> </u>	.17.26	<u> </u>		
1,4-Dichlorobenzene	0.3	<10	<u> </u>	16.56			
Ethylbenzene	0.2	<10		7.18			
Toluene	0.2	<10	<u> </u>	5.47	<u> </u>		
					<u> </u>		
			<u> </u>	ļ		L,	
		ļ			ļ		
		<u> </u>	<u> </u>	<u>-</u>	<u> </u>		
	i	1	ł	ł	į.	,	

^{*} If % moisture is reported, results are presented on a dry-weight basis.

CHESTON CONSTRUCTOR STANDARD

Page _	1	of	1
Report	_		

ES Job No. 56528	Lab Sample No	3-86-1262
Client U.S. AIR FORCE	Field Sample No.	11-8, SW-a
Project PJKS (DENVER)	Date Collected	3/26
Client No.	Date Received	3/27
Laboratory Supervisor Approval:	Date Analyzed	3/31 2 4/1/86
Johnny P. adamson Sample Matrix:	QC Report No.	56528-31
/X / Water (ug/L)	Dilution Factor _	
/_/ Soil (ug/g) (ug/Kg)	*Moisture	
/_/ Other		

2 <0. 2 <10 4 <10 4 <10 3 <10 2 <10	7	2.20 16.4 20.4 17.2 16.5	6 4	lumn 2	
2 <10 4 <10 4 <10 3 <10 2 <10		16.4 20.4 17.2 16.5	6 4		
4 <10 4 <10 3 <10 2 <10		20.4° .17.2 16.5	4		
4 <10 3 <10 2 <10	o o	.17.2	6		
3 <10	<u> </u>	16.5	6		
2 <10	i	i			
	<u> </u>	7.1	8		i
<u>.</u>					ļ
2 <10	<u> </u>	5.4	7		<u> </u>
					<u> </u>
					<u> </u>
			-		ļ
			<u></u>		ļ

^{*} If % moisture is reported, results are presented on a dry-weight basis.

CANADAS INTRACTOR STATEMENT SECURIOR CANADAS

ANALYTICAL RESULTS SUMMARY Purgeable Aromatics

EPA Method 602

Page	of _'
Report	

ES Job No. <u>56528</u>	Lab Sample No	3-86-1261	
Client U.S. AIR FORCE	Field Sample No.	11-9, SW-2	
Project PJKS (DENVER)	Date Collected	3/26	, X
Client No.	Date Received	3/27	
Laboratory Supervisor Approval:	Date Analyzed	3/31 × 4/1/86	3
Johnny R. adamon Sample Matrix:	QC Report No	56528-31	50
/X / Water (ug/L)	Dilution Factor _		
// Soil (ug/g) (ug/Kg)	*Moisture		_
/ / Other			

Compound	C	Concentration			Retention Time		
-	Det Lim	Column 1	Column 2	Column 1	Column 2		
Benzene	0.2	40.7		2.26]:
Chlorobenzene	0.2	<10		16.46] :
1,2-Dichlorobenzene	0.4	<10		20.44			١
1,3-Dichlorobenzene	0.4	<10	1	.17.26			Ĭ
1,4-Dichlorobenzene	0.3	<10		16.56	<u> </u>].;
Ethylbenzene	0.2	<10	<u>!</u>	7.18		<u></u>	:
Toluene	0.2	<10	<u> </u>	5.47			┦╸
			[1	15
						<u> </u>	
]^
				·	l	<u> </u>	
		}			ł	}	 -3

^{*} If % moisture is reported, results are presented on a dry-weight basis.

ANALYTICAL RESULTS SUMMARY Purgeable Aromatics EPA Method 602

Page	1	of	7
Report			

ES Job No. 56528	Lab Sample No. 3-86-1260
Client U.S. AIR FORCE	Field Sample No. 11-10 SW-2
Project PJKS (DENVER)	Date Collected 3/26
Client No.	Date Received 3/27
Laboratory Supervisor Approval:	Date Analyzed 3/31 2 4/1/86
Johnny R. Odamon Sample Matrix:	QC Report No. <u>56528-3 </u>
/X / Water (ug/L)	Dilution Factor
/_/ Soil (ug/g) (ug/Kg)	*Moisture
/ / Other	

Compound	c	Concentration			Retention Time		
	Det Lim	Column 1	Column 2	Column 1	Column 2	Notes	
Benzene	0.2	40.7		2.26			
Chlorobenzene	0.2	<10		16.46			
1,2-Dichlorobenzene	0.4	<10		20.44			
1,3-Dichlorobenzene	0.4	<10		17.26			
1,4-Dichlorobenzene	0.3	<10		16.56			
Ethylbenzene	0.2	<10		7.18			
Toluene	0.2	<10		5.47			
			<u> </u>	ļ			
·			1				
		ļ	<u> </u>				
		·	1				
_	1	}	•		1		

^{*} If % moisture is reported, results are presented on a dry-weight basis.

STATES BONDON BO

ANALYTICAL RESULTS SUMMARY Halogenated Volatile Organics SW Method 8010 (first of two pages)

_	1		2
Page		of	
Repor	't _		

ES Job No. <u>56528</u>	Lab Sample No	12-85-1162
Client U.S. Air Force	Field Sample No.	11-1,50-2
Project PJKS (Denver	Date Collected	12-13-35
Client No.	Date Received	12-19-85
Laboratory Supervisor Approval:	Date Analyzed	1/1/86
Johnny R adamser Sample Matrix:	QC Report No.	PJK5-04
/_/ Water (ug/L)	Dilution Factor _	
/X / Soil (ug/g)	*Moisture	
/ / Other		

Compound	C	oncentrat:	ion	Retention Time		Notes
-	Det Lim	Column 1	Column 2	Column 1	Column 2	
Benzyl chloride	4	<10		40.9		
<pre>bis(2~chloroethoxy) methane</pre>	.12	<12		44.2	1	
bis(2-chloroisopropyl) ether	₋ 25	125		42.2	_	
Bromobenzene	. 8	<10		29.18		
Bromodichloromethane	. 2	<10		15.69		
Bromoform	4	<10		21.24		· ·
Bromomethane	. 24	L24		2.85	<u> </u>	
Carbon tetrachloride	. 3	<10		15.47	1	
Chloroacetaldehyde	10	<10		11.6		
Chloral	-10	<10		18.7		
Chlorobenzene	5	<10		26.01		
Chloroethane	.10	<10		4.51		
Chloroform	1.	<10		13.01		
1-Chlorohexane	. 2	<10		26.58	1)
2-Chloroethyl vinyl ether	3	<10		19.49	<u> </u>	
Chloromethane	. 2	<10		1.95	<u> </u>	
Chloromethyl methyl ether	20	لا 20		9.37		
Chlorotoluene	4	<10		37.9		
Dibromochloromethane	. 2	<10		18.68		. <u> </u>

continued on back

ANALYTICAL RESULTS SUMMARY Halogenated Volatile Organics SW Method 8010 (second of two pages)

Compound		ncentrati		Retentio		Notes
	Det Lim	Column 1	Column 2	Column 1	Column 2	
Dibromomethane	1	<10		13.09		
1,2-Dichlorobenzene	.3	<10		60.10	<u>!</u>	
1,3-Dichlorobenzene	6	<10		42.90	: :	
1,4-Dichlorobenzene	. 5	<10		37.28		<u>:</u>
Dichlorodifluoromethane	_30	430		3.54	<u> </u>	<u> </u>
1,1-Dichloroethane	11	<10		11.67	i	<u> </u>
1,2-Dichloroethane	11	<10		13.55	1	<u>i</u>
1,1-Dichloroethylene	3	<10		10.31	<u> </u>	1
trans-1,2-Dichloroethylene	2	<10		12.35	:	
Dichloromethane	5	<10		7.50	i	!
1,2-Dichloropropane	. 1	<10		17.19	!	<u> </u>
				17.24		
1,3-Dichloropropylene	.6	<10		18.68		
1,1,2,2-Tetrachloroethane	7	<10		23.47		
1,1,1,2-Tetrachloroethane	7	<10		21.04		1
Tetrachloroethylene	1	<10		23.47		
1,1,1-Trichloroethane	1	<10		14.76		
1,1,2-Trichloroethane	_1	<10		18.68	<u> </u>	
Trichloroethylene	. 2	<10		17.91	İ	
Trichlorofluoromethane	1	<10		8.58	! 	<u> </u>
Trichloropropane	i 2	<10		23.01	!	
Vinyl chloride	-4	<10		3.54		
	!			i ·		
	:				!	
	1				•	
		<u> </u>		:		<u> </u>
	<u>;</u>	:		!		İ

^{*} If % moisture is reported, results are presented on a dry-weight basis.

KANNER KRIBER MANIER KANER KIKITE KIKITE KRIBER KRIBER KRIBER KRIBER KRIBER KRIBER KRIBER KRIBER KRIBER KRIBER

8

3

33

Ċ

3

Ţ,

.7

ANALYTICAL RESULTS SUMMARY Halogenated Volatile Organics SW Method 8010 (first of two pages)

Page	of Z
Report _	

7

<u>}</u>

ES Job No	Lab Sample No. 12-85-1163	
Client U.S. Air Force	Field Sample No. 11-2, 50-2	_
Project PJKS (Denver	Date Collected 12-18-85	_
Client No.	Date Received	
Laboratory Supervisor Approval:	Date Analyzed 1/1/56	
Johnny R. Colombia Sample Matrix?	QC Report No. PJKS -C4	_
/ / Water (ug/L)	Dilution Factor	
<u>/X /</u> Soil (ug/g)	*Moisture	_8
/_/ Other		

Compound	L	oncentrat		Retention Time		
	Det Lim	Column 1	Column 2	Column 1	Column 2	Ì
Benzyl chloride	4	<10		40.9		,
bis(2-chloroethoxy) methane	12د	CIA		44.2		
bis(2-chloroisopropyl) ether	25	425		42.2		
Bromobenzene	.8	<10		29.18		!
Bromodichloromethane	2	<10		15.69		
Bromoform	4	<10		21.24		: :
Bromomethane	24 .	LZ4		2.85	1	!
Carbon tetrachloride	3	<10		15.47		· ·
Chloroacetaldehyde	10	<10		11.6	!	
Chloral	10	<10		18.7		
Chlorobenzene	5	<10		26.01		
Chloroethane	10	<10		4.51	İ	
Chloroform	1	<10		13.01		
1-Chlorohexane	2	<10		26.58	•	
2-Chloroethyl vinyl ether	3	<10		19.49		
Chloromethane	,2	<10		1.95		
Chloromethyl methyl ether	20	420		9.37		
Chlorotoluene	.4	<10		37.9		
Dibromochloromethane	. 2	<10		18.68	<u> </u>	

continued on back

MANAGEM DAVING BESSESS BOXSONS (NO. 1978)

ANALYTICAL RESULTS SUMMARY Halogenated Volatile Organics SW Method 8010 (second of two pages)

Compound				Retentio		Notes
	Det Lim	Column 1	Column 2	Column 1	Column 2	
Dibromomethane	1	<10		13.09		
1,2-Dichlorobenzene	3	<10		60.10	!	ļ
1,3-Dichlorobenzene	6	<10		42.90	<u>!</u>	
1,4-Dichlorobenzene	. 5	<10		37.28	:	
Dichlorodifluoromethane	. 30	₹30	ļ	3.54	1	
1,1-Dichloroethane	1	<10		11.67	<u> </u>	
1,2-Dichloroethane	1	<10		13.55	! !	<u> </u>
1,1-Dichloroethylene	. 3	<10		10.31		
trans-1,2-Dichloroethylene	. 2	<10		12.35	i	<u> </u>
Dichloromethane	5	<10		7.50		
1,2-Dichloropropane	1	<10		17.19		
				17.24		
1,3-Dichloropropylene	5	<10		18.68		
1,1,2,2-Tetrachloroethane	,	<10	•	23.47		
1,1,1,2-Tetrachloroethane	7	<10		21.04		
Tetrachloroethylene	1	<10		23.47		
1,1,1-Trichloroethane	1	<10		14.76		
1,1,2-Trichloroethane	1	<10		18.68		
Trichloroethylene	2	<10		17.91	ļ	
Trichlorofluoromethane	. 1	<10		8.58	i	<u> </u>
Trichloropropane	2	<10		23.01	!	
Vinyl chloride	4	<10		3.54		
					1	
		1		!	ı	
		!		:		
				!		

^{*} If % moisture is reported, results are presented on a dry-weight basis.

SECTION PARTICULAR SECTION SECTIONS

CONTROL AND DESCRIPTION OF THE PROPERTY OF THE

ANALYTICAL RESULTS SUMMARY Halogenated Volatile Organics SW Method 8010 (first of two pages)

Page _	_/	of	2_
Report	_		

ES Job No. <u>56528</u>	Lab Sample No	12-85-1164
Client U.S. Air Force	Field Sample No.	11-3,50-1
ProjectPJKS (Denver	Date Collected	12-18-35
Client No.	Date Received	12-19-55
Laboratory Supervisor Approval:	Date Analyzed	11.186
Johnny R. adamson Sample Matrix:	QC Report No	PJKS -C+
/ / Water (ug/L)	Dilution Factor _	
/X / Soil (ug/g)	*Moisture	
/ / Other		

Compound	Co	oncentrat:	ion	Retenti	on Time	Notes
_	Det Lim	Column 1	Column 2	Column 1	Column 2	
Benzyl chloride	4	<10		40.9		•
bis(2-chloroethoxy) methane	12	くは	•	44.2		
bis(2-chloroisopropyl) ether	25	L 25		42.2		
Bromobenzene	3	<10		29.18		<u> </u>
Bromodichloromethane	2	<10		15.69		
Bromoform	4	<10		21.24		
Bromomethane	24	<24		2.85	1	
Carbon tetrachloride	3	<10		15.47		!
Chloroacetaldehyde	10	<10		11.6		
Chloral	10	<10		18.7		
Chlorobenzene	5	<10		26.01		
Chloroethane	ر 10	<10		4.51		
Chloroform	1 .	<10		13.01		·
1-Chlorohexane	۔2	<10		26.58	<u> </u>	ı
2-Chloroethyl vinyl ether	3	<10		19.49	<u> </u>	
Chloromethane	2	<10		1.95		
Chloromethyl methyl ether	. 20	く20		9.37		
Chlorotoluene	4	<10		37.9		
Dibromochloromethane	. 2	<10		18.68		

continued on back

1

ANALYTICAL RESULTS SUMMARY Halogenated Volatile Organics SW Method 8010 (second of two pages)

Compound	Concentration			Retentio	n Time	Notes
	Det Lim	Column 1	Column 2	Column 1	Column 2	
Dibromomethane	1	<10		13.09		
1,2-Dichlorobenzene	. 3	<10		60.10		
1,3-Dichlorobenzene	. 5	<10		42.90		
1,4-Dichlorobenzene	.5	<10		37.28		<u> </u>
Dichlorodifluoromethane	. 30	430		3.54		-
1,1-Dichloroethane	1	<10		11.67		
1,2-Dichloroethane	1	<10		13.55		
1,1-Dichloroethylene	3	<10		10.31		
trans-1,2-Dichloroethylene	2	<10		12.35		_
Dichloromethane	5	<10		7.50		
1,2-Dichloropropane	1	<10		17.19		<u> </u>
				17.24		
1,3-Dichloropropylene	5	<10		18.68	<u> </u>	
1,1,2,2-Tetrachloroethane	7	<10	•	23.47		<u></u>
1,1,1,2-Tetrachloroethane	7	<10		21.04		<u> </u>
Tetrachloroethylene	1	<10		23.47		
1,1,1-Trichloroethane	_1	<10		14.76		
1,1,2-Trichloroethane	11	<10		18.68		
Trichloroethylene	. 2	<10	_	17.91		
Trichlorofluoromethane	. 1	<10		8.58		<u> </u>
Trichloropropane	. 2	<10		23.01		1
Vinyl chloride	4	<10		3.54		
	<u> </u>					
				!		<u> </u>
				1		
		!		!		
	i	!		! :		

^{*} If % moisture is reported, results are presented on a dry-weight basis.

15055555 P222222

ANALYTICAL RESULTS SUMMARY Halogenated Volatile Organics SW Method 8010 (first of two pages)

Page _	1	of	2_
Report	_		

. . . .

ES Job No56528	Lab Sample No	12-35-1165
Client U.S. Air Force	Field Sample No.	11-4, SD-1
Project PJKS (Denver	Date Collected	12-18-85
Client No.	Date Received	12-19-85
Laboratory Supervisor Approval:	Date Analyzed	11,186
John Radamon	QC Report No.	177KS -C4
/_/ Water (ug/L)	Dilution Factor	
/X / Soil (ug/g)	*Moisture	*
/ / Other		

Compound	Co	oncentrat:	ion	Retenti	on Time	Notes
	Det Lim	Column 1	Column 2	Column 1	Column 2	
Benzyl chloride	4	<10		40.9		
bis(2-chloroethoxy) methane	.12	くいと	-	44.2		
bis(2-chloroisopropyl) ether	25	حد		42.2		
Bromobenzene	8	<10		29.18		
Bromodichloromethane	2	<10		15.69		
Bromoform	4	<10		21.24		
Bromomethane	. 24	124		2.85		
Carbon tetrachloride	3	<10		15.47		
Chloroacetaldehyde	. 10	<10		11.6		
Chloral	10	<10		18.7	<u> </u>	
Chlorobenzene	5	<10		26.01		
Chloroethane	10	<10		4.51		
Chloroform	1	<10		13.01	<u>. </u>	
1-Chlorohexane	. 2	<10		26.58	<u> </u>)
2-Chloroethyl vinyl ether	3	<10		19.49		
Chloromethane	2	<10		1.95		
Chloromethyl methyl ether	20	لارن		9.37		
Chlorotoluene	. 4	<10		37.9		
Dibromochloromethane	2	<10		18.68		

continued on back

CONTRACT TRACTOR STREET, STREE

3

X.

17

7.27

Š

y

3

MODELSKY TECHNOLOGY WOODS WAS INCOME.

ANALYTICAL RESULTS SUMMARY Halogenated Volatile Organics SW Method 8010 (second of two pages)

Compound	Concentration			Retentio	on Time	Notes		
	Det Li	im C	Column 1	Column	2	Column 1	Column 2	
Dibromomethane	1	\dashv	<10			13.09		
1,2-Dichlorobenzene	3		<10		_	60.10		
1,3-Dichlorobenzene	.6		<10	<u>!</u>	_	42.90		
1,4-Dichlorobenzene	5	_	<10			37.28		
Dichlorodifluoromethane	30		<30			3.54		
1,1-Dichloroethane	1	寸	<10			11.67	1	
1,2-Dichloroethane	-	\neg	<10			13.55		
1,1-Dichloroethylene	3	_	<10			10.31		
trans-1,2-Dichloroethylene			<10			12.35	<u>:</u>	<u> </u>
Dichloromethane	5		<10		_	7.50	1	<u> </u>
1,2-Dichloropropane	1	十	<10			17.19	<u> </u>	<u> </u>
172 Stontoropropand		\top	<u> </u>			17.24		i
1,3-Dichloropropylene	6		<10 -			18.68		
1,1,2,2-Tetrachloroethane	17		<10			23.47		
1,1,1,2-Tetrachloroethane	. 7		<10			21.04		
Tetrachloroethylene	1		<10			23.47		
1,1,1-Trichloroethane	1		<10			14.76		
1,1,2-Trichloroethane	1		<10			18.68	•	
Trichloroethylene	2		<10			17.91		
Trichlorofluoromethane	1		<10			8.58		
Trichloropropane	. 2		<10			23.01		
Vinyl chloride	4		<10			3.54		
	1							
	!					!	ĺ	
	!					!	i	
	i			!			; !	

^{*} If % moisture is reported, results are presented on a dry-weight basis.

ANALYTICAL RESULTS SUMMARY Halogenated Volatile Organics SW Method 8010 (first of two pages)

Page _	1	of	2
Report			

ES Job No. 56528	Lab Sample No	12-55-1166
Client U.S. Air Force	Field Sample No.	11-5, SD-1
Project PJKS (Denver		12-19-85
Client No.	Date Received	12-19-85
Laboratory Supervisor Approval:	Date Analyzed	1/1/86
John R Codamoin Sample Matrix:	OC Report No.	PJKS-O4
/_/ Water (ug/L)	Dilution Factor	
/X / Soil (ug/g)	*Moisture	
/_/ Other		

Compound	Concentration Retention Time					Notes
	Det Lim	Column 1	Column 2	Column 1	Column 2	
Benzyl chloride	4	<10		40.9		
<pre>bis(2-chloroethoxy) methane</pre>	. 12	< 12		44.2		
<pre>bis(2-chloroisopropyl) ether</pre>	25	425		42.2		
Bromobenzene	8	<10		29.18		
Bromodichloromethane	2	<10		15.69		
Bromoform	4	<10		21.24		
Bromomethane	. 24	〈 24		2.85		
Carbon tetrachloride	3	<10		15.47	<u> </u>	
Chloroacetaldehyde	10	<10		11.6		
Chloral	10	<10		18.7		
Chlorobenzene	5	<10		26.01	!	
Chloroethane	. 10	<10		4.51	<u> </u>	
Chloroform	11	<10		13.01		
1-Chlorohexane	. 2	<10		26.58	}	ı
2-Chloroethyl vinyl ether	3	<10		19.49		
Chloromethane	. 2	<10		1.95	,	
Chloromethyl methyl ether	20	راه	•	9.37		
Chlorotoluene	4	<10		37.9		
Dibromochloromethane	2	<10		18.68		

continued on back

8

The state of the s

STATE OF STA

PROPERTY AND PROPERTY OF THE P

N.

ANALYTICAL RESULTS SUMMARY Halogenated Volatile Organics SW Method 8010 (second of two pages)

Compound		ncentrati		Retention Time		Notes
	Det Lim	Column 1	Column 2	Column 1	Column 2	
Dibromomethane	· 1	<10		13.09		
1,2-Dichlorobenzene	. 3	<10		60.10	<u> </u>	
1,3-Dichlorobenzene	.6	<10		42.90	<u> </u>	
1,4-Dichlorobenzene	5	<10		37.28	<u>.</u>	
Dichlorodifluoromethane	30	<u> </u>		3.54	<u> </u>	
1,1-Dichloroethane	. 1	<10	•	11.67		<u> </u>
1,2-Dichloroethane	1	<10		13.55		
1,1-Dichloroethylene	3	<10	 	10.31	<u> </u>	
trans-1,2-Dichloroethylene	. 2	<10		12.35		
Dichloromethane		<10		7.50		
1,2-Dichloropropane	. 1	<10	_	17.19		Ĺ
		,		17.24		
1,3-Dichloropropylene	6	<10		18.68		
1,1,2,2-Tetrachloroethane	7	<10		23.47		<u> </u>
1,1,1,2-Tetrachloroethane	.7	<10		21.04		
Tetrachloroethylene	. 1	<10		23.47		
1,1,1-Trichloroethane	1	<10		14.76		
1,1,2-Trichloroethane	1	<10		18.68		<u> </u>
Trichloroethylené	. 2	<10		17.91		
Trichlorofluoromethane	1	<10		8.58		
Trichloropropane	2	<10		23.01		
Vinyl chloride	4	<10		3.54		
•				!		
	<u> </u>					}

^{*} If % moisture is reported, results are presented on a dry-weight basis.

ANALYTICAL RESULTS SUMMARY Halogenated Volatile Organics SW Method 8010 (first of two pages)

Page	1	of	2
Repor	t _		

Ž.

ES Job No56528	Lab Sample No	12-85-1161
Client U.S. Air Force	Field Sample No.	11-5,50-2
Project PJKS (Denver	Date Collected	12-18-85
Client No.	Date Received	12-19-85
Laboratory Supervisor Approval:	Date Analyzed	1/1/36
Johnson R. adamsimi Sample Matrix:	QC Report No	PJKS -C4
/_/ Water (ug/L)	Dilution Factor	
/X / Soil (ug/g)	*Moisture	
/_/ Other		

Compound	C	oncentrat:	ion	Retenti	tention Time	
-	Det Lim	Column 1	Column 2	Column 1	Column 2	
Benzyl chloride	4	<10		40.9		
<pre>bis(2-chloroethoxy) methane</pre>	12	<12	-	44.2		
bis(2-chloroisopropyl) ether	25	225		42.2		
Bromobenzene	8	<10		29.18		
Bromodichloromethane	_ 2	<10		15.69		
Bromoform	4	<10		21.24		
Bromomethane	24	L24		2.85		_
Carbon tetrachloride	3	<10		15.47		
Chloroacetaldehyde	. 10	<10		11.6		
Chloral	10	<10		18.7		
Chlorobenzene	5	<10		26.01		
Chloroethane .	10	<10		4.51		
Chloroform	. 1	<10		13.01		
1-Chlorohexane	2	<10		26.58	<u> </u>	
2-Chloroethyl vinyl ether	3	<10		19.49	<u> </u>	
Chloromethane .	. 2	<10		1.95		
Chloromethyl methyl ether	20	220		9.37		
Chlorotoluene	.4	<10		37.9		•
Dibromochloromethane	.2	<10		18.68	<u> </u>	

continued on back

Compound		Concentration			Retention Time		
	Det Lim	Column 1	Column 2	Column 1	Column 2		
Dibromomethane	1	<10		13.09	!		
1,2-Dichlorobenzene	3	<10		60.10	!		
1,3-Dichlorobenzene	5	<10		42.90	<u>:</u>		
1,4-Dichlorobenzene	5	<10		37.28	•		
Dichlorodifluoromethane	. 30	430		3.54	!	<u> </u>	
1,1-Dichloroethane	1	<10		11.67	1	<u> </u>	
1,2-Dichloroethane	1	<10		13.55	: !	<u> </u>	
1,1-Dichloroethylene	3	<10		10.31			
trans-1,2-Dichloroethylene	2	<10		12.35	<u>.</u>		
Dichloromethane	5	<10		7.50		!	
1,2-Dichloropropane	. 1	<10		17.19	!		
				17.24			
1,3-Dichloropropylene	. 5	<10		18.68			
1,1,2,2-Tetrachloroethane	7	<10		23.47	1		
1,1,1,2-Tetrachloroethane	7	<10		21.04			
Tetrachloroethylene	1	<10	[23.47			
1,1,1-Trichloroethane	: 1	<10		14.76	!	<u> </u>	
1,1,2-Trichloroethane	1	<10		18.68	İ		
Trichloroethylene	. 2	<10		17.91	į		
Trichlorofluoromethane	1	<10		8.58	i		
Trichloropropane	2	<10		23.01	!		
Vinyl chloride	. 4	<10		3.54	i		
					:	1	
			:	:			
		!		!			

^{*} If % moisture is reported, results are presented on a dry-weight basis.

ANALYTICAL RESULTS SUMMARY Halogenated Volatile Organics SW Method 8010 (first of two pages)

Page _	1	of	2
Report	_		

ES Job No56528	Lab Sample No. 12-35-1165	
Client U.S. Air Force	Field Sample No. 11-6, 50-1	
Project PJKS (Denver	Date Collected /2-/8-85	
Client No.	Date Received /2-19-85	
Laboratory Supervisor Approval:	Date Analyzed 1/./56	
Johnny R. Codamoin Sample Matrix:	QC Report No. PJKS-C4	
/_/ Water (ug/L)	Dilution Factor	
/X / Soil (ug/g)	*Moisture	
/_ / Other		

. Compound	C	oncentrat:	ion	Retenti	Notes	
_	Det Lim	Column 1	Column 2	Column 1	Column 2	
Benzyl chloride	.4	<10		40.9		
bis(2-chloroethoxy) methane	.12	くいろ	-	44.2		
bis(2-chloroisopropyl) ether	.25	US		42.2		
Bromobenzene	·8	<10		29.18		
Bromodichloromethane	. 2	<10		15.69		
Bromoform	1	<10		21.24		
Bromomethane	24	424		2.85		
Carbon tetrachloride	3	<10		15.47		
Chloroacetaldehyde	10	<10		11.6		
Chloral	. 10	<10		18.7		· ·
Chlorobenzene	. 5	<10		26.01		
Chloroethane	. 10	<10		4.51	<u> </u>	, , , , , , , , , , , , , , , , , , , ,
Chloroform	. 1.	<10		13.01		
1-Chlorohexane	2	<10		26.58		•
2-Chloroethyl vinyl ether	3	<10		19.49		·
Chloromethane	. 2	<10		1.95		•
Chloromethyl methyl ether	20	720		9.37		
Chlorotoluene	. 4	<10		37.9		
Dibromochloromethane	2	<10		18.68		

continued on back

Department secondary remainder includes ventions

A Strange and a second

Section 1

K

Compound	Co	oncentrati	on	Retention Time		
	Det Lim	Column 1	Column 2	Column 1	Column 2	ì
Dibromomethane	.1	<10		13.09	!	
1,2-Dichlorobenzene	3	<10		60.10]
1,3-Dichlorobenzene	.6	<10		42.90	:	
1,4-Dichlorobenzene	-5	<10		37.28	:	!
Dichlorodifluoromethane	. 30	<30		3.54	<u> </u>	!
1,1-Dichloroethane	1	<10		11.67	<u>; </u>	!
1,2-Dichloroethane	1	<10		13.55	•	<u> </u>
1,1-Dichloroethylene	3	<10	ļ	10.31	•	!
trans-1,2-Dichloroethylene	2	<10		12.35	:	i
Dichloromethane	. 5	<10		7.50	•	!
1,2-Dichloropropane	1	<10		17.19		
				17.24		i
1,3-Dichloropropylene	5	<10		18.68		<u> </u>
1,1,2,2-Tetrachloroethane	7	<10	•	23.47		
1,1,1,2-Tetrachloroethane	7	<10		21.04		
Tetrachloroethylene	1	<10		23.47		
1,1,1-Trichloroethane	. 1	<10		14.76		
1,1,2-Trichloroethane	1	<10		18.68	† :	
Trichloroethylene	2	<10		17.91	•	
Trichlorofluoromethane	1	<10		8.58	İ	
Trichloropropane	2	<10		23.01	1	
Vinyl chloride	4	<10		3.54	1	
	!			† †		
					l 	
	<u>. </u>			!		
	:	† !				
	÷	!		:		i

^{*} If % moisture is reported, results are presented on a dry-weight basis.

ANALYTICAL RESULTS SUMMARY Halogenated Volatile Organics SW Method 8010 (first of two pages)

Page _	of _	2_
Report		

22.5

ES Job No. <u>56528</u>	Lab Sample No	12-85-1164
Client U.S. Air Force	Field Sample No.	11-7. 50-1
Project PJKS (Denver	Date Collected	12-19-35
Client No.	Date Received	12-19-85
Laboratory Supervisor Approval:	Date Analyzed	11.186
John R. Codomson Sample Matrix:	QC Report No	PJK5-04
/_/ Water (ug/L)	Dilution Factor	
/X / Soil (ug/g)	*Moisture	•
/ / Other	•	

Compound	c	oncentrat:	ion	Retention Time N		Notes
-	Det Lim	Column 1	Column 2	Column 1	Column 2	
Benzyl chloride	. 4	<10		40.9		
bis(2-chloroethoxy) methane	-12	12	-	44.2		
bis(2-chloroisopropyl) ether	. 25	125		42.2		
Bromobenzene	.8	<10		29.18		
Bromodichloromethane	.2	<10		15.69		
Bromoform	. 4	<10		21.24		
Bromomethane	24	124		2.85		
Carbon tetrachloride	3	<10		15.47		
Chloroacetaldehyde	_10	<10		11.6		
Chloral	_10	<10		18.7		
Chlorobenzene	5	. <10		26.01		
Chloroethane	10	<10		4.51		
Chloroform	.1,	<10.		13.01		
1-Chlorohexane	2	<10		26.58	•)
2-Chloroethyl vinyl ether	. 3	<10		19.49		
Chloromethane	2	<10		1.95		
Chloromethyl methyl ether	20	<20		9.37		
Chlorotoluene	4	<10		37.9		
Dibromochloromethane	2	<10		18.68		

continued on back

Control of the second lives of the second second

ANALYTICAL RESULTS SUMMARY Halogenated Volatile Organics SW Method 8010 (second of two pages)

Compound		oncentrati		Retentio		Notes
	Det Lim	Column 1	Column 2	Column 1	Column 2	İ
Dibromomethane	1	<10		13.09	!	
1,2-Dichlorobenzene	: 3	<10	<u> </u>	60.10	<u> </u>	
1,3-Dichlorobenzene	6	<10		42.90	!	
1,4-Dichlorobenzene	.5	<10_		37.28	1	
Dichlorodifluoromethane	30	430	<u> </u>	3.54	!	
1,1-Dichloroethane	1	<10		11.67	<u> </u>	<u>i</u>
1,2-Dichloroethane	_1_	<10		13.55	<u>:</u>	
1,1-Dichloroethylene	3	<10		10.31	<u> </u>	!
trans-1,2-Dichloroethylene	۔2	<10		12.35	:	
Dichloromethane	5	·<10		7.50		!
1,2-Dichloropropane	-1	<10		17.19	!	
		•		17.24		
1,3-Dichloropropylene	6	<10		18.68		
1,1,2,2-Tetrachloroethane	.7	<10		23.47		
1,1,1,2-Tetrachloroethane	7	<10		21.04		
Tetrachloroethylene	. 1	<10		23.47		<u> </u>
1,1,1-Trichloroethane	. 1	<10		14.76		
1,1,2-Trichloroethane	_1	<10		18.68	Í	
Trichloroethylene	. 5	<10		17.91	i	
Trichlorofluoromethane	1	<10		8.58	i -	
Trichloropropane	2	<10		23.01	!	
Vinyl chloride	_1	<10		3.54	i	
·						
					i i	
·				!	i	
		1		;		
•		!		!		

^{*} If % moisture is reported, results are presented on a dry-weight basis.

ANALYTICAL RESULTS SUMMARY Halogenated Volatile Organics SW Method 8010 (first of two pages)

Page	0£ Z_
Report	

ES Job No56528	Lab Sample No	1-86-1029
Client U.S. Air Force	Field Sample No.	11-8,50-2
Project PJKS (Denver	Date Collected	1-7-36
Client No.	Date Received	1-3-86
Laboratory Supervisor Approval:	Date Analyzed	1/8/86
Johnny Radamor- Sample Matrix:	QC Report No	PTKS-CF
/_/ Water (ug/L)	Dilution Factor _	
/X / Soil (ug/g)	*Moisture	
/_/ Other		

Compound ·	C	oncentrat	ion	Retention Time		Notes
-	Det Lim	Column 1	Column 2	Column 1	Column 2	
Benzyl chloride	4	<10		40.9		
<pre>bis(2-chloroethoxy) methane</pre>	12	<12		44.2		
bis(2-chloroisopropyl) ether	25	125		42.2		
Bromobenzene	а	<10		29.18		
Bromodichloromethane	2	<10		15.69		
Bromoform	4	<10		21.24	·	
Bromomethane	. 24	424		2.85		
Carbon tetrachloride	3	<10		15.47		
Chloroacetaldehyde	10	<10		11.6		
Chloral	10	<10		18.7		
Chlorobenzene	5	<10		26.01		
Chloroethane	10	<10		4.51		
Chloroform	1.	<10		13.01		ļ
1-Chlorohexane	2	<10		26.58	<u> </u>	<u> </u>
2-Chloroethyl vinyl ether	3	<10		19.49		! !
Chloromethane	2	<10		1.95		
Chloromethyl methyl ether	20	- < 20		9.37		
Chlorotoluene	4	<10		37.9		
Dibromochloromethane	2	<10		18.68		

continued on back

executed becaused freedoms. Included stratifies appropriate societal subsession

ANALYTICAL RESULTS SUMMARY Halogenated Volatile Organics SW Method 8010 (second of two pages)

Compound	Co	oncentrati	Lon	Retentio	on Time	Notes
.	Det Lim	Column 1	Column 2	Column 1	Column 2	
Dibromomethane	1	<10		13.09	<u>1 · </u>	<u>!</u>
			! 		<u>:</u>	-
1,2-Dichlorobenzene	3	<10		60.10	!	
1,3-Dichlorobenzene	-6	<10	<u> </u>	42.90	<u>!</u>	<u>!</u>
1,4-Dichlorobenzene	5	<10	<u> </u>	37.28	<u> </u>	1
Dichlorodifluoromethane	30	\ \3 0		3.54	<u>i</u>	!
1,1-Dichloroethane	1	<10		11.67	!	<u> </u>
1,2-Dichloroethane	. 1	<10		13.55		<u> </u>
1,1-Dichloroethylene	3	<10		10.31		<u> </u>
trans-1,2-Dichloroethylene	. 2	<10		12.35	•	
Dichloromethane	5	<10		7.50	i	!
1,2-Dichloropropane	1	<10		17.19		
				17.24		į
1,3-Dichloropropylene	6	<10		18.68		
1,1,2,2-Tetrachloroethane	.7	<10	•	23.47		<u> </u>
1,1,1,2-Tetrachloroethane	7	<10		21.04	<u> </u>	
Tetrachloroethylene	1	<10		23.47	1	
1,1,1-Trichloroethane	. 1	<10		14.76		
1,1,2-Trichloroethane	1	<10		18.68	i	
Trichloroethylene	2	<10		17.91	•	
Trichlorofluoromethane ·	. 1	<10		8.58	i 	<u> </u>
Trichloropropane	2	<10		23.01	!	
Vinyl chloride	4	<10_		3.54	<u> </u>	
	<u> </u>			<u> </u>		
•	<u> </u>					
				!	<u>:</u>	
	: 		! !	!	:	
	•		•	!	•	i

^{*} If * moisture is reported, results are presented on a dry-weight basis.

ANALYTICAL RESULTS SUMMARY Halogenated Volatile Organics SW Method 8010 (first of two pages)

Page _	1	of	2
Report	_		

ES Job No. <u>56528</u>	Lab Sample No.	12-85-1171
Client U.S. Air Force	Field Sample No.	11-9,50-1
Project PJKS (Denver	Date Collected	12-18-85
Client No.	Date Received	12-19-85
Laboratory Supervisor Approval:	Date Analyzed	1/1/96
Johnne R adamoin Sample Matrix:	QC Report No	PJKS-C+
/_/ Water (ug/L)	Dilution Factor _	
/X / Soil (ug/g)	*Moisture	
/ / Other		

- Compound	Concentration			Retention Time		Notes
	Det Lim	Column 1	Column 2	Column 1	Column 2	
Benzyl chloride	4	<10		40.9		
bis(2-chloroethoxy) methane	.12	<12	•	44.2		
<pre>bis(2-chloroisopropyl) ether</pre>	25	415		42.2		
Bromobenzene	8	<10		29.18		
Bromodichloromethane	2	<10		15.69		
Bromoform	.4	<10	! 	21.24		
Bromomethane	24	424		2.85		
Carbon tetrachloride	3	<10		15.47		
Chloroacetaldehyde	10	<10		11.6	·	'
Chloral	10	<10		18.7		
Chlorobenzene	.5	<10		26.01		
Chloroethane	10	<10		4.51		
Chloroform	1	<10		13.01		-
1-Chlorohexane	2	<10		26.58		
2-Chloroethyl vinyl ether	3	<10		19.49		
Chloromethane	2	<10		1.95	<u> </u>	
Chloromethyl methyl ether	20	420		9.37	;	
Chlorotoluene	. 4	<10		37.9	<u> </u>	
Dibromochloromethane	. 2	<10		18.68	1 1	

continued on back

13

XX

8

ţ,

7.3

(

7

Y

10.00 miles

STATES STATES

SOOM LESSOND LESSOND [POSSEST]

ANALYTICAL RESULTS SUMMARY Halogenated Volatile Organics SW Method 8010

12-85-1171

(second of two pages)

Compound	Co	oncentrati	on	Retentio	on Time	Notes
	Det Lim	Column 1	Column 2	Column 1	Column 2	
Dibromomethane	.1_	<10		13.09		
1,2-Dichlorobenzene	3	<10		60.10	i	<u> </u>
1,3-Dichlorobenzene	6	<10		42.90	<u> </u>	
1,4-Dichlorobenzene	5	<10		37.28		
Dichlorodifluoromethane	. 30	<30		3.54	1	
1,1-Dichloroethane	11	<10		11.67	<u> </u>	<u> </u>
1,2-Dichloroethane	11	<10		13.55	i 	<u> </u>
1,1-Dichloroethylene	. 3	<10		10.31	<u> </u>	
trans-1,2-Dichloroethylene	2	<10		12.35	<u>.</u>	
Dichloromethane	. 5	<10		7.50	!	
1,2-Dichloropropane	. 1	<10		17.19	1	
				17.24		
1,3-Dichloropropylene	,6	<10		18.68		
1,1,2,2-Tetrachloroethane	7	<10		23.47	<u> </u>	
1,1,1,2-Tetrachloroethane	. 7	<10		21.04		
Tetrachloroethylene	. 1	<10		23.47		<u> </u>
1,1,1-Trichloroethane	. 1	<10		14.76		
1,1,2-Trichloroethane	. 1	<10		18.68	•	
Trichloroethylene	2	<10		17.91	!	
Trichlorofluoromethane	. 1	<10		8.58	İ	
Trichloropropane	2	<10		23.01	!	
Vinyl chloride	4	<10		3.54		
					1	
	·			!	<u>.</u>	
	:	!		:	1	
		:	•	!		İ

^{*} If % moisture is reported, results are presented on a dry-weight basis.

ANALYTICAL RESULTS SUMMARY Halogenated Volatile Organics SW Method 8010 (first of two pages)

Page /	, of	2
Report		

ES Job No. <u>56528</u>	Lab Sample No	12-55-1172
Client U.S. Air Force	Field Sample No.	11-10,50-1
Project PJKS (Denver	Date Collected	12-18-85
Client No.	Date Received	12-19-55
Laboratory Supervisor Approval:	Date Analyzed	1/;186
Johnny R adamsur Sample Matrix	QC Report No	PJKS-05
/_/ Water (ug/L)	Dilution Factor _	
/X / Soil (ug/g)	*Moisture	<u> </u>
/ / Other		

Compound	Concentration			Retenti	Notes	
	Det Lim	Column 1	Column 2	Column 1	Column 2	
Benzyl chloride	4	<10		40.9	j	
bis(2-chloroethoxy) methane	12	<12	•	44.2		
bis(2-chloroisopropyl) ether	. 25	(25		42.2		
Bromobenzene	.8	<10		29.18		
Bromodichloromethane	. 2	<10		15.69		
Bromoform	. 4	<10		21.24		
Bromomethane	. 24	424		2.85		
Carbon tetrachloride	. 3	<10		15.47	!	
Chloroacetaldehyde -	. 10	<10		11.6		
Chloral	. 10	<10		18.7		
Chlorobenzene	5	<10		26.01	<u> </u>	
Chloroethane	10	<10		4.51	!	
Chloroform	1.	<10		13.01		
1-Chlorohexane	2	<10		26.58	•	
2-Chloroethyl vinyl ether	3	<10		19.49		·
Chloromethane	2	<10		1.95		
Chloromethyl methyl ether	20	くんひ		9.37		<u> </u>
Chlorotoluene	4	<10	_	37.9		
Dibromochloromethane	2	<10		18.68		

continued on back

K

A CONTRACTOR OF THE PARTY OF TH

recovered acceptant transfer assists addition onesting acceptant

Compound	Co	oncentrati	on	Retentio	Retention Time		
·	Det Lim	Column 1	Column 2	Column 1	Column 2		
Dibromomethane	11	<10		13.09			
1,2-Dichlorobenzene	. 3	<10		60.10			
1,3-Dichlorobenzene	5	<10		42.90	<u> </u>		
1,4-Dichlorobenzene	5	<10		37.28	<u> </u>		
Dichlorodifluoromethane	30	430		3.54	1	1	
1,1-Dichloroethane	· 1	<10		11.67		<u> </u>	
1,2-Dichloroethane	. 1	<10		13.55	<u> </u>		
1,1-Dichloroethylene	3	<10		10.31			
trans-1,2-Dichloroethylene	2	<10		12.35	İ		
Dichloromethane	5	<10		7.50			
1,2-Dichloropropane	1	<10		17.19			
				17.24			
1,3-Dichloropropylene	6	<10		18.68			
1,1,2,2-Tetrachloroethane	7	<10	-	23.47	<u> </u>		
1,1,1,2-Tetrachloroethane	7	<10		21.04			
Tetrachloroethylene	11	<10		23.47			
1,1,1-Trichloroethane	1	<10		14.76	<u> </u>		
1,1,2-Trichloroethane	1	<10		18.68	<u> </u>		
Trichloroethylene	2	<10		17.91			
Trichlorofluoromethane	<i>,</i> 1	<10		8.58	İ		
Trichloropropane	. 2	<10		23.01			
Vinyl chloride	4	<10		3.54			
					İ		
				•	<u> </u>		
				ļ	l I		
·				!	1		

^{*} If % moisture is reported, results are presented on a dry-weight basis.

ANALYTICAL RESULTS SUMMARY Aromatic Volatile Organics SW Method 8020

Page 1 of 1
Report

H

ES Job No56528	Lab Sample No	12-85-1162
Client U.S. Air Force	Field Sample No.	11-1, 83-2, ES
Project PJKS (Denver)	Date Collected	12/18/65
Client No.	Date Received	12/19/85
Laboratory Supervisor Approval:	Date Analyzed	1/1/86
Johnn R. adamson Sample Matrix	OC Report No	56528-4
/_/ Water (ug/L)	Dilution Factor _	
/X / Soil (ug/g)	*Moisture	•
/ / Other	,	

Compound	C	oncentrati	ion	Retenti	on_ Time	Notes
	Det Lim	Column 1	Column 2	Column 1	Column 2	
Benzene	.4	<10		2.26		
Chlorobenzene	.4	<10		16.46		
1,2-Dichlorobenzene	. 8	<10		27.93		
1,3-Dichlorobenzene	. 18	<10		26.40		
1,4-Dichlorobenzene	:6	<10		22.51		
Ethyl benzene	4	<10		7.18		
Toluene	4	<10		5.47	<u> </u>	
Xylenes (Dimethyl benzene)	4	<10		15.26 16.91 17.77		
	·					

^{*} If % moisture is reported, results are presented on a dry-weight basis.

ANALYTICAL RESULTS SUMMARY Aromatic Volatile Organics SW Method 8020

Page	1	of	1	
Repor	t			

ES Job No. 56528	Lab Sample No. 12-85-116	3
Client U.S. Air Force	Field Sample No. 11-2, SD-2	ES
Project PJKS (Denver)	Date Collected ia 18/85	
Client No.	Date Received 12/19/85	
Laboratory Supervisor Approval:	Date Analyzed 1/i/86	
Johnny R. adamon Sample Matrix	OC Report No. 56528-4	
/_/ Water (ug/L)	Dilution Factor	
/X / Soil (ug/g)	*Moisture	*
/ / Other		

Compound	Concentration			Retenti	Notes	
	Det Lim	Column 1	Column 2	Column 1	Column 2	
Benzene	. 4	<10		2.26		
Chlorobenzene	. 4	<10		16.46		
1,2-Dichlorobenzene	8_	<10		27.93		
1,3-Dichlorobenzene	8	<10		26.40		
1,4-Dichlorobenzene	6	<10	ļ 	22.51		
Ethyl benzene	٠ 4	<10	<u> </u>	7.18		
Toluene	4	<10		5.47		·
Xylenes (Dimethyl benzene)	4	<10		15.26 16.91 17.77		
	•	·				
	-					
			<u> </u> 			

^{*} If % moisture is reported, results are presented on a dry-weight basis.

ANALYTICAL RESULTS SUMMARY Aromatic Volatile Organics SW Method 8020

Page	_ of	1
Report		

Y

以

ES Job No. 56528	Lab Sample No.	12-85-1164
Client U.S. Air Force	Field Sample No.	11-3.5D-1, ES
Project PJKS (Denver)	Date Collected	12/18/85
Client No.	Date Received	12/19/85
Laboratory Supervisor Approval:	Date Analyzed	1/1/86
Johnny R. adams	OC Report No.	54528-4
/_/ Water (ug/L)	Dilution Factor _	
<u>/X</u> / Soil (ug/g)	*Moisture	
/_/ Other		

Compound	C	oncentrat:	ion	Retenti	Notes	
	Det Lim	Column 1	Column 2	Column 1	Column 2	
Benzene	4	<10		2.26		
Chlorobenzene	. 4	<10		16.46		
1,2-Dichlorobenzene	. •8	<10		27.93		
1,3-Dichlorobenzene	,8	<10		26.40		
1,4-Dichlorobenzene	6	<10		22.51	<u> </u>	
Ethyl benzene	4	<10		7.18		
Toluene	4	<10		5.47		
Xylenes (Dimethyl benzene)	. 4	<10		15.26 16.91 17.77		
	• •		1	1		

^{*} If % moisture is reported, results are presented on a dry-weight basis.

2550000

CONTRACT LEGISCON SCHOOLS LAGISTER STREET, STREET, ANNUAL CONTRACT

Š

E

N.

ANALYTICAL RESULTS SUMMARY Aromatic Volatile Organics SW Method 8020

Page _	L of	- 1
Report		

ES Job No. 56528	Lab Sample No	12-85-1165
Client U.S. Air Force	Field Sample No.	11-4 SD-1, ES
Project PJKS (Denver)	Date -Collected	12/18/85
Client No.	Date Received _	12/19/85
Laboratory Supervisor Approval:	Date Analyzed _	1/1/86
Johnny R. adamoin Sample Matrix	OC Report No.	56528-4
/_/ Water (ug/L)	Dilution Factor	
/X / Soil (ug/g)	*Moisture	
/_/ Other		

Compound	C	oncentrati	ion	Retenti	on Time	Notes
	Det Lim	Column 1	Column 2	Column 1	Column 2	
Benzene	. :4	<10	·	2.26		
Chlorobenzene	- 4	<10		16.46	<u> </u>	
1,2-Dichlorobenzene	.8	<10		27.93		
1,3-Dichlorobenzene	.8	<10		26.40		
1,4-Dichlorobenzene	6	<10		22.51		
Ethyl benzene	4	<10		7.18		
Toluene	4	<10		5.47		
Xylenes (Dimethyl benzene)	. 4	<10		15.26 16.91 17.77		
		<u> </u>				
					<u> </u>	! 1

^{*} If % moisture is reported, results are presented on a dry-weight basis.

ANALYTICAL RESULTS SUMMARY Aromatic Volatile Organics SW Method 8020

Page 1	of	
Report		

ES Job No56528	Lab Sample No	12-85-1166
Client U.S. Air Force	Field Sample No.	11-5,50-1 ES
Project PJKS (Denver)	Date Collected	12/18/85
Client No.	Date Received _	12/19/85
Laboratory Supervisor Approval:	Date Analyzed _	1/1/86
Johnny R. adamson Sample Matrix	OC Report No	56528-4
/_/ Water (ug/L)	Dilution Factor	
<u>/X /</u> Soil (ug/g)	*Moisture	
/_/ Other	·	·

Compound	Concentration			Retention Time		Notes
	Det Lim	Column 1	Column 2	Column 1	Column 2	
Benzene	4	<10		2.26		
Chlorobenzene	. 4	<10		16.46		
1,2-Dichlorobenzene	8	<10		27.93		
1,3-Dichlorobenzene	. 8	<10		26.40		<u> </u>
1,4-Dichlorobenzene	. 6	<10		22.51		
Ethyl benzene	. 4	<10		7.18		
Toluene	. 4	<10		5.47		
Xylenes (Dimethyl benzene)	'4	<10		15.26 16.91 17.77		
		<u> </u>				·

^{*} If % moisture is reported, results are presented on a dry-weight basis.

Consistent I consistent fortrollers appropriate the property of the consistent of th

Control Control Control

}

T

STAND REPRESENTATION REPRESENTATION REPRESENTATION OF THE PROPERTY OF THE PROP

ANALYTICAL RESULTS SUMMARY Aromatic Volatile Organics SW Method 8020 Page i of I Report

.00 0020	
Lab Sample No.	12-85-1167
Field Sample No.	11-5 SD-2 ES
Date Collected	12/18/85
Date Received	12/19/85
Date Analyzed	
OC Report No.	50528-4
Dilution Factor _	
*Moisture	
	Field Sample No. Date Collected Date Received Date Analyzed OC Report No. Dilution Factor

Compound	Concentration			Retention Time		Notes
	Det Lim	Column 1	Column 2	Column 1	Column 2	
Benzene	. 4	<10		2.26		
Chlorobenzene	4	<10		16.46		
1,2-Dichlorobenzene	.`8	<10		27.93		
1,3-Dichlorobenzene	8	<10		26.40		
1,4-Dichlorobenzene	`6	<10		22.51		
Ethyl benzene	. 4	<10		7.18		
Toluene	. 4	<10		5.47		
Xylenes (Dimethyl benzene)	4	<10		15.26 16.91 17.77		
			<u> </u>	1		<u> </u>

^{*} If % moisture is reported, results are presented on a dry-weight basis.

ANALYTICAL RESULTS SUMMARY Aromatic Volatile Organics SW Method 8020

Page _	L	of	1
Report			

1

7.

3

ES Job No.	56528	Lab Sample No	12-85-1168
Client	U.S. Air Force	Field Sample No.	11-6, SD-1, ES
Project	PJKS (Denver)	Date Collected _	12/18/85
Client No.		Date Received _	12/19/85
Laboratory	Supervisor Approval:	Date Analyzed _	1/1/86
Golden Mat	R. adamoin	OC Report No.	56528-4
/ '	Water (ug/L)	Dilution Factor	
<u>/x</u> _/	Soil (ug/g)	*Moisture	*
//	Other .		

Compound	mpound Concentration		ion	Retenti	on Time	e Notes
	Det Lim	Column 1	Column 2	Column 1	Column 2	1
Benzene	4	<10		2.26		
Chlorobenzene	1.4	<10		16.46		
1,2-Dichlorobenzene	. 8	<10		27.93		
1,3-Dichlorobenzene	8′	<10		26.40	<u> </u>	
1,4-Dichlorobenzene	·6	<10		22.51		
Ethyl benzene	4	<10		7.18		
Toluene	4	<10		5.47		
Xylenes (Dimethyl benzene)	. 4	<10		15.26 16.91 17.77		
						·
•			1		1	,

^{*} If % moisture is reported, results are presented on a dry-weight basis.

THE PARTIES SEEDING SEEDING STREET, ST

X

Ţ Ł

3

3

スパ

É

X

>

CONTROL OF THE PROPERTY AND ADDRESS.

ANALYTICAL RESULTS SUMMARY Aromatic Volatile Organics SW Method 8020

Page 1 of 1
Report

ES Job No. 56528	Tah Cample No	17-05-1169
ES JOB NO	•	12-85-1169
Client U.S. Air Force	Field Sample No.	11-7, SD-1, ES
Project PJKS (Denver)	Date Collected _	12/18/85
Client No.	Date Received _	12/19/85
Laboratory Supervisor Approval:	Date Analyzed _	1/1/86
Johnny R. adamson Sample Matrix	OC Report No	56528-4
/_/ Water (ug/L)	Dilution Factor	
<u>/X</u> / Soil (ug/g)	*Moisture	•
/_/ Other		

Compound	Concentration		Retention Time		Notes	
	Det Lim	Column 1	Column 2	Column 1	Column 2	
Benzene	4	<10		2.26		
Chlorobenzene	. ,4	<10		16.46		
1,2-Dichlorobenzene	, 8	<10		27.93		
1,3-Dichlorobenzene	. 8	<10		26.40		
1,4-Dichlorobenzene	6	<10	·	22.51		
Ethyl benzene	4	<10	, ,	7.18	<u> </u>	
Toluene	4	<10		5.47		
Xylenes (Dimethyl benzene)	. 4	<10		15.26 16.91 17.77		
•	-	}				

^{*} If % moisture is reported, results are presented on a dry-weight basis.

ANALYTICAL RESULTS SUMMARY Aromatic Volatile Organics SW Method 8020

Page _	l of	1
Report		

ES Job No. 56528	Lab Sample No.	12-85-1170
Client U.S. Air Force	Field Sample No.	11-8,50-1,ES
Project PJKS (Denver)	Date Collected	12/18/85
Client No.	Date Received	12/19/85
Laboratory Supervisor Approval:		1/1/86
Johnny R. adamsın Sample Matrix:	OC Report No.	56528-4
/ / Water (ug/L)	Dilution Factor _	
/X / Soil (ug/g)	*Moisture	•
/_/ Other		

Compound	C	oncentrati	ion	Retenti	on Time	Notes
	Det Lim	Column 1	Column 2	Column 1	Column 2	
Benzene	. :4	<10		2.26		
Chlorobenzene	. 4	<10		16.46		
1,2-Dichlorobenzene	.8	<10		27.93	<u> </u>	
1,3-Dichlorobenzene	.)8	<10		26.40		
1,4-Dichlorobenzene		<10		22.51		
Ethyl benzene	4	<10		7.18		
Toluene	4	<10		5.47		
Xylenes (Dimethyl benzene)	. 4	<10		15.26 16.91 17.77		
		_				
						,
	• .				1	<u> </u>

^{*} If % moisture is reported, results are presented on a dry-weight basis.

CARASSA SESSESSES TRESHARM INCOMES

versions sections samples

- 5/5/5/

20.00

マル

\$0

POSSESSED BOSSESSED BOSSESSED

); };

ANALYTICAL RESULTS SUMMARY Aromatic Volatile Organics SW Method 8020

Page _	L	of	1
Report	_		

ES Job No. 56528	Lab Sample No.	1-86-1029
Client U.S. Air Force	Field Sample No.	11-8, SD-2, ES
Project PJKS (Denver)	Date Collected _	1/2/56
Client No.	Date Received _	1/3/86
Laboratory Supervisor Approval:	Date Analyzed _	1/8/86
Johnny R. Odamon Sample Matrix D	OC Report No	56528-8
/_/ Water (ug/L)	Dilution Factor	
/X / Soil (ug/g)	*Moisture	
/ / Other		

Compound		Concentrat	ion	Retent	ion Time	Notes
	Det Li	m Column 1	Column 2	Column	Column 2	
Benzene	4	<10		2.26		
Chlorobenzene	4	<10		16.46		
1,2-Dichlorobenzene	. 8	<10		27.93		
1,3-Dichlorobenzene	8	<10		26.40		
1,4-Dichlorobenzene	6	<10		22.51		
Ethyl benzene	. 4	<10		7.18		
Toluene	. 4	<10		5.47		
Xylenes (Dimethyl benzene)	4	<10		15.26 16.91 17.77		
					 	_
	•	_				
		1		1	1	}

^{*} If % moisture is reported, results are presented on a dry-weight basis.

ANALYTICAL RESULTS SUMMARY Aromatic Volatile Organics SW Method 8020

Page	L of	_1_
Report		

£

ES Job No. 56528	Lab Sample No. 12-85-1171	
Client U.S. Air Force	Field Sample No. #-9. SD-1, ES	_
Project PJKS (Denver)	Date Collected 12/18/85	
Client No.	Date Received 12/19/85	
Laboratory Supervisor Approval:	Date Analyzed 1/1/86	_
Johnny R. adamoin Sample Matrix	OC Report No. 56538-4	
/_/ Water (ug/L)	Dilution Factor	
/X_/ Soil (ug/g)	*Moisture	
/ _/ Other		

C	oncentrati	ion	Retenti	on Time	Notes
Det Lim	Column 1	Column 2	Column 1	Column 2	
.4	<10		2.26		
. 4	<10		16.46		
8	<10		27.93	<u> </u>	
8	<10		26.40	<u> </u>	
. 6	<10		22.51		
. 4	<10		7.18		
. 4	<10		5.47		
4	<10		15.26 16.91 17.77		
	Det Lim	Det Lim Column 1 _4 <10 _8 <10 _8 <10 _6 <10 _4 <10 _4 <10 _4 <10 _4 <10	.4 <10 .4 <10 .8 <10 .6 <10 .4 <10 .4 <10	Det Lim Column 1 Column 2 Column 1 _4	Det Lim Column 1 Column 2 Column 1 Column 2 .4

^{*} If % moisture is reported, results are presented on a dry-weight basis.

Page 1 of 1 Engineering-Science ANALYTICAL RESULTS SUMMARY Report Aromatic Volatile Organics SW Method 8020 Lab Sample No. 12-85-1172 ES Job No. <u>56528</u> Client U.S. Air Force Field Sample No. 11-10, 5D-1 ES Project PJKS (Denver) Date Collected | 12118185 Client No. Laboratory Supervisor Approval: Johnn R. adamson OC Report No. 56538-5 /_/ Water (ug/L) Dilution Factor _____

*Moisture

Compound	C	oncentrati	ion	Retenti	on Time	Notes
	Det Lim	Column 1	Column 2	Column 1	Column 2	
Benzene	4	<10		2.26		-
Chlorobenzene	. 4	<10		16.46	<u> </u>	
1,2-Dichlorobenzene	8	<10		27.93		
1,3-Dichlorobenzene	8	<10		26.40		
1,4-Dichlorobenzene	· .6	<10		22.51		
Ethyl benzene	4	<10		7.18		
Toluene	<i>j</i> 4	<10		5.47		
Xylenes (Dimethyl benzene)	.4	<10		15.26 16.91 17.77		

^{*} If % moisture is reported, results are presented on a dry-weight basis.

5

/X / Soil (ug/g)

/_/ Other ____

Gehrong R. adamour Laboratory Supervisor Approval: Dilution Fablor oc Report No. Moisture water (Mary) mg/L Environmental Quality Parameters Soil (ug/g) (ug/Kg) ANALYTICAL RESULTS SUMMARY Sample Matrix: Other 12/11/55 MSNF ES JOB NO. 56528 Engineering-Science Date Received Date Collected Client No. Project Client

PARTICIPATE TO CONTRACT TO SERVICE TO SERVIC

... of ____

Report Page

)C", 'a	0			
Field Sample No.	Lab Sample No.	700×	N03	Phenolica 0+G	0+6	7-03	TKN	CITT		Rotes
3K5 11-3 (14-1, ES	5611-28-71	7/0-	∠0.13>	<0.13 €0,005.	17	340	0.1	20102		
5: 1-MS h- H	7411	110.	<0. i	<0.005	\	260	0'1	20102		
SS' 1-MS' 5-11	1735	Ö,	1.0>	0100	2,37	320	0,1	20.05		
11-5 SW-2 25	9611	(808)	1.07	3000>	1>	300	9,0	<0.02		
23,1-W> 1-11	4611	15 PC	1.07	-800.0>	<1	320	0,1	<0.02		
53 1-ms t11	8611	4103	9.0	0.013.	1,27	340	0.1	20'07		
53 1-m> 8-11	6611	8 ×W	0.9	800.07	>	34 Û	ر،0	20.0>		
53 1-35 15/1	0311	510°	9.0	30°0>	1>	340	7.0	<0.02		
11-10 54-1 25	1811	X9X	٥.٩	800.0>		340	7,0	40.05		
3 7-m5 1-11	9811	,032		-300.0>	\		<0.1	<0.0≥		
53' Z- M 5' Z- 1; /	£811 A	8100	1.02	\8m ⁰ >	40.68 2.07	320	1.0>	20,07		
	Champs Der	Der J.A	Kunson		887					
			1/20	15 A. H. W. Z.					-	
Date Analyzed	E	120		1 Bitals	-/ h	is the	41	\		
Analytical Method		6PA 354.1	1.025 1193	ಏ	EPA413.1	EPA160.3	EPA 351.3	SPA 7496	_	

L-297

F

| 1000 | 1000

•

が強いなど、必要

^{*} If A moisture is reported, results are presented on a dry-weight basis.

A THE SECOND SECOND TO THE SECOND SEC

···/- 10 F Laboratory Supervisor Approval: Paye / Dilution Factor 1 Xmmy CC Report No. *Moisture Environmental Quality Parameters Soil (ug/g) (ug/Kg) ANALYTICAL RESULTS SUMMARY other Scalingist Water (ug/L) Sample Matrix: K 13/6/17/ 56528 こくな下 Engineering-Science Date Received Date Collected ES Job No. Client No. Project Client

NO, Physolia TKN C. XI		21 40.5 350 hi	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	(1) (0) (学者) (0)(子)	<1 <0.5, 71 <0.17	1 10 10 10 10 10 10 10	41 0.5 1 120 KUIT	4 40.51 110 40.17	41 (40.51 200 0123.	21 <0.51 68 <0017	183.9 40.54 65 40.17		129 4+13 121 12,233	58A 351.3 80
TKN N	280	350	74	H245	4	011	120			8	65		1/2	PA 351.3 8
Physolia	<0.5		<0.5	40.5.0>	<0.5%	<0.51		40.51					4+13	58 1. COM-872
NO,	را ک	7 1	17	7	17	17	17	7	4.1	71	1×3.9		124	2 64 321.11
NO	0.065	20.08	0.053	0.059	4.0.b	9.50.0	07.0	0.056	290.0	80.07	0.053		42.24	EP# 354.1
Lab Sample No.	7911-55-71	1163	7911	//16	79//	4911	8911	63//	0611	1611	7611		M O	
Field Sample No.	PJKS 11-1 50-2 ES	11-2 50-2 55	23 1-62 E-11	53 1-0> 4-11	53 1-es'5-11	11-5,50-2,55	53 1-05 9-11	23 1-05 4-11	53 1-05 8-11	53 1-05 1:-11	53' 1-05 31-11 1		Date Analyzed	Analytical Method

L-298

If I moisture is reported, results are presented on a dry-weight basis.

Environmental Quality Parameters ANALYTICAL RESULTS SUMMARY

Paye 2 of

Laboratory Supervisor Approval:	Cohmuny F. Kalamore	Dilution Factor	*Moisture	
	Sample Matrix:	1X/ Water (water mg/	/_/ Soil (ug/g) (ug/Kg)	// Other
Es Job No. 56528 Client Lisa Korner	Project USAF. PJKS.	Client No.	Date Collected	Date Received 12 april 86

	1 _ 1 _ 1 _ 1 _ 1 _ 1 _ 1					
						T
					1	
			_			1
19:30 11-5,540-> 104-86-10	٠.					
	S2/71-13	_				
\vdash						
				<u></u>		
Date Analyzed	M CC 12					l
Analytical Method	132 X 132					

L-299

USBUTTION LUNCH FOR TRN CO.2 mgl

GOCOL BONSOS POCOCCO (200000) PSOCOCCO POSSOS POSSOS POSSOS POCOCOS POCOCOCO POSSOS POS

Ĺ	
7	

Pond Water Results 601, 602, 625, Metals and Inorganics

Engineering Science Page 18

ANALYTICAL RESULTS SUMMARY Purgeable Halocarbons EPA Method 601

ES Job No. <u>56423</u>	Lab Sample No	36686-22	
Client	Field Sample No. P.	JKS, 1-SW-2, IT	
ProjectAir Force PJKS	Date Collected	4-24-86	
Client No.	Date Received	4-25-86	
Laboratory Supervisor Approval:	Date Analyzed	4-30-86	
	QC Report No.	601-28	
Sample Matrix:			
<u>/X</u> / Water (ug/L)	Dilution Factor	N/A	
/ Soil	*Moisture		%
/_/ Other			
Spike Source			

	C	oncentrati	on	Retenti		
Compound	Det Lim	Column 1	Column 2	Column 1	Column 2	Notes
Benzyl chloride	1.0	ND<1.0				
Bis(2-Chloroethoxy)methane	1.0	ND<1.0				
Bis(2-chloroisopropyl)ether	1.0	ND<1.0				
Bromobenzene	1.0	ND<1.0				
Bromodichloromethane	1.0	ND<1.0				
Bromoform	1.0	ND<1.0				
Bromomethane	1.0	ND<1.0				
Carbon tetrachloride	1.0	ND<1.0				
Chloroacetaldehyde	1.0	ND<1.0				
Chloral	1.0	ND<1.0				
Chlorobenzene	1.0	ND<1.0				
Chloroethane	1.0	ND<1.0				
Chloroform	1.0	ND<1.0				
1-Chlorohexane	1.0	ND<1.0				
2-Chloroethyl vinyl ether	1.0	ND<1.0				
<u>Chloromethane</u>	1.0	ND<1.0				
Chloromethyl methyl ether	1.0	ND<1.0				
Chlorotoluene	1.0	ND<1.0				
Dibromochloromethane	1.0	ND<1.0		·]

Continued

Engineering Science Page 19

ANALYTICAL RESULTS SUMMARY Purgeable Halocarbons EPA Method 601

PJKS, 1-SW-2, IT

	Co	ncentratio	n	Retenti	on Time	·
Compound	Det Lim	Column 1	Column 2	Column 1	Column 2	Notes
Dibromomethane	1.0	ND<1.0				
1,2-Dichlorobenzene	1.0	ND<1.0				
1,3-Dichlorobenzene	1.0	ND<1.0				
1,4-Dichlorobenzene	1.0	ND<1.0				
Dichlorodifluoromethane	1.0	ND<1.0				
1,1-Dichloroethane	1.0	ND<1.0				
1,2-Dichloroethane	1.0	ND<0.1				
1,1-Dichloroethylene	1.0	ND<1.0				· · · · · · · · · · · · · · · · · · ·
trans-1,2-dichloroethylene	1.0	ND<1.0				
Dichloromethane	1.0	ND<1.0				
1,2-Dichloropropane	1.0	ND<1.0				
1,3-Dichloropropylene	1.0	ND<1.0				
1,1,2,2-Tetrachloroethane	1.0	ND<1.0				
1,1,1,2-Tetrachloroethane	1.0	ND<1.0				
Tetrachloroethylene	1.0	TR<1.0				
1,1,1-Trichloroethane	1.0	ND<1.0				
1,1,2-Trichloroethane	1.0	ND<1.0				
Trichloroethylene	1.0	TR<1.0				
Trichlorofluoromethane	1.0	ND<1.0				
Trichloropropane	1.0	ND<1.0				
Vinyl_chloride	1.0	ND<1.0				

ND - This compound was not detected; the limit of detection for this analysis is less than the amount stated in the table above.

Engineering Science Page 34

ANALYTICAL RESULTS SUMMARY Purgeable Aromatics EPA Method 602

ES Job No56423	Lab Sample No	36686-5	
Client	Field Sample No. P.	JKS, 1-SW-2, IT	
Project Air Force PJKS	Date Collected	4-24-86	
Client No.	Date Received	4-25-86	
Laboratory Supervisor Approval:	Date Analyzed	5-13-86	
	QC Report No.	602-23	
Sample Matrix:			
/X_/ Water (ug/L)	Dilution Factor	N/A	
/ Soil	*Moisture		1
/_/ Other			
Spike Source			

Det Lim		n	<u>recenti</u>	<u>on Time</u>	_]	
Det Lim	Column 1	Column 2	Column 1	Column 2	Notes	
1.0	ND<1.0					
1.0	ND<1.0					
1.0	ND<1.0					
1.0	ND<1.0					
1.0	ND<1.0					
1.0	ND<1.0					
1.0	TR<1.0					
1.0	ND<1.0					
	\ 					
	1.0 1.0 1.0 1.0 1.0	1.0 ND<1.0 1.0 ND<1.0 1.0 ND<1.0 1.0 ND<1.0 1.0 ND<1.0 1.0 TR<1.0	1.0 ND<1.0 1.0 ND<1.0 1.0 ND<1.0 1.0 ND<1.0 1.0 ND<1.0 1.0 TR<1.0	1.0 ND<1.0 1.0 ND<1.0 1.0 ND<1.0 1.0 ND<1.0 1.0 ND<1.0 1.0 TR<1.0	1.0 ND<1.0 1.0 ND<1.0 1.0 ND<1.0 1.0 ND<1.0 1.0 ND<1.0 1.0 TR<1.0	

ND - This compound was not detected; the limit of detection for this analysis is less than the amount stated in the table above.

TR - Trace, this compound was present, but was below the level at which concentration could be determined.

Engineering Science Page 36

The second second

Same of the same of the

and the same

ACCESSED TO SERVICE TO SERVICE DESCRIPTION

A N

ANALYTICAL RESULTS SUMMARY Purgeable Aromatics EPA Method 602

ES Job No56423	Lab Sample No	36686-6	
Client	Field Sample No. F	PJKS, 1-SW-2, IT	Dup.
Project Air Force PJKS	Date Collected	4-24-86	
Client No.	Date Received	4-25-86	
Laboratory Supervisor Approval:	Date Analyzed	5-13-86	
	QC Report No.	602-23	
Sample Matrix:			
/X_/ Water (ug/L)	Dilution Factor _	N/A	
/ Soil	*Moisture		\$
/_/ Other			
Spike Source			

	Co	Concentration		Retenti	_]	
Compound	Det Lim		Column 2		Column 2	Notes
Benzene	1.0	ND<1.0				
Chlorobenzene	1.0	TR<1.0				
1,2-Dichlorobenzene	1.0	ND<1.0				
1,3-Dichlorobenzene	1.0	ND<1.0				<u> </u>
1,4-Dichlorobenzene	1.0	ND<1.0				
Ethyl benzene	1.0	ND<1.0				
Toluene	1.0	TR<1.0				
Xylenes (Dimethyl benzene)	1.0	ND<1.0	•			
				<u> </u>		
·						

ND - This compound was not detected; the limit of detection for this analysis is less than the amount stated in the table above.

TR - Trace, this compound was present, but was below the level at which concentration could be determined.

Engineering Science Page 37

ANALYTICAL RESULTS SUMMARY Purgeable Aromatics EPA Method 602

ES Job No. <u>56423</u>	Lab Sample No	36686-7	
Client	Field Sample No.	PJKS, 1-SW-2, IT	Spike
Project Air Force PJKS	Date Collected _	4-24-86	
Client No.	Date Received _	4-25-86	
Laboratory Supervisor Approval:	Date Analyzed	5-13-86	
	QC Report No	602-23	
Sample Matrix:			
<u>/X</u> / Water (ug/L)	Dilution Factor	N/A	
/ Soil	*Moisture		\$
/ Other			
Spike Source			

•	Co	Concentration		Retenti		
Compound	Det Lim	Column 1	Column 2	Column 1	Column 2	Notes
Benzene	1.0	10.5		2.5		
Chlorobenzene	1.0	9.6		7.8		
1,2-Dichlorobenzene	1.0	10.3		14.3		
1,3-Dichlorobenzene	1.0	10.4		12.8		
1,4-Dichlorobenzene	1.0	10.2		12.7		
Ethyl benzene	1.0	9.6		7.3		
Toluene	1.0	8.9		4.8		
Xylenes (Dimethyl benzene)	1.0					
				i 		

ND - This compound was not detected; the limit of detection for this analysis is less than the amount stated in the table above.

TR - Trace, this compound was present, but was below the level at which concentration could be determined.

ES ENGINEERING-SCIENCE

RESEARCH AND DEVELOPMENT LABORATORY • 600 BANCROFT WAY • BERKELEY, CALIFORNIA 94710 • 415/841-7353

Priority Pollutant Analysis Base Neutrals - EPA 625

Date Received 1-13-86 Date Reported 2-7-86

P.O. No. --Job No. 8047.19 Page 1 OF 4

For: ES-Atlanta/PJKS, Denver, CO Attn: Johnny Adamson

Address:

3.

Lab No: Source of Sample: 860123 860124 01-86-1086 01-86-1087 Pond + Sed. nator

Collected:

Water 1-9-86

Soil 1-9-86

Collected:

an pound		ANALYTICAL RESULTS
•	ug/L	<u>ug/g</u>
1,3-Dichlorobenzene	<2	<0.05
1,4-Dichlorobenzene	<2	<0.05
Hexachloroethane	<2	<0.05
Bis(2-chloroethy1)ether	<6	<0.2
1,2-Dichlorobenzene	<2	<0.05
Bis(2-chloroisopropyl)ether	<6	<0.2
N-Nitrosodi-n-propyl amine	< 10	<0.2
Hexachlorobutadiene	<2	<0.05
1,2,4-Trichlorobenzene	<2	<0.05
Isophorone	<2	<0.05
Naphthalene	<2	<0.05
Bis(2-chloroethoxy)methane	<5	<0.1
2-Chloronaphthalene	<2	<0.05
Acenaphthylene	<4	<0.1
Acenaphthene	<2	<0.05
Dimethyl phthalate	<2	<0.05
2,6-Dinitrotoluene	~2	<0.05
Fluorene	<2	<0.05
2,4-Dinitrotoluene	<6	<0.2
Diethylphthalate	<2	<0.05
N-Nitrosodiphenylamine	<2	<0.05
Hexachlorobenzene	<2	<0.05

Priority Pollutant Analysis Base Neutrals - EPA 625 (continued)

Date Received 1-13-86

P.O. No. --Job No. 8047.19 Page 2 OF 4

Date Reported 2-7-86

For: ES-Atlanta/PJKS, Denver, CO Attn: Johnny Adamson

Address:

Lab No:

Source of Sample:

Date Collected: Time Collected: 860123 860124

01-86-1086 01-86-1087

Water Soil 1-9-86 1-9-86 1430

Compound	ug/L	ANALYTICAL RESULTS
• • •		
Phenanthrene	<5	<0.1
Anthracene	<2	<0.05
Dibutyl phthalate	<2	<0.05
Pluoranthene	<2	<0.05
Pyrene	<2	<0.05
Butyl benzyl phthalate	· <2	<0.05
Bis(2-ethylhexyl) phthalate	<2	<0.05
Chrysene	<2	<0.05
Benzo(a)anthracene	<8	<0.2
Di-n-octylphthalate	<2	<0.05
Benzo(b) fluoranthene	<5	<0.1
Benzo(k)fluoranthene	<2	<0.05
Benzo(a)pyrene	<2	<0.05
Indeno(1,2,3-c,d)pyrene	<4	<0.1
Dibenzo(a,h)anthracene	<2	<0.05
Benzo(ghi)perylene	<4	<0.1

Priority Pollutant Analysis Pesticides and PCBs- EPA 625

Date Received 1-13-86 Date Reported 2-7-86

P.O. No. --Job No. 8047.19 Page 3 OF 4

For: ES-Atlanta/PJKS, Denver, CO Attn: Johnny Adamson

Address:

Lab No:

Source of Sample:

Date Collected:

Time Collected:

860123 860124

01-86-1086 01-86-1087

Water

Soil

1-9-86

1-9-86

1430

Compound .	ug/L_	ANALYTICAL RESULTS
Alpha-BHC	<4	<0.1
Gamma-BHC	<4	<0.1
Beta-BHC	<4	<0.1
Heptachlor	<2	<0.05
Delta-BHC	· <4	<0.1
Aldrin	<2	<0.05
Heptachlor epoxide	<2	<0.05
Endosulfan I	<10	<0.2
Dieldrin	<2	<0.05
4,4'-DDE	<6	<0.2
Endrin	<10	<0.2
Endosulfan II	<10	<0.2
4,4'-DDD	<3	<0.08
4,4'-DDT	<5	<0.1
Endosulfan Sulfate	<6	<0.2
Endrin aldehyde	<20	<0.5
Chlordane	<10	<0.2
Toxaphene	<50	<1
PCB-1016	<40	<1
PCB-1221	· <40	<1
PCB-1232	<40	<1
PCB-1242	<40	<1
PCB-1248	<40	<1
PCB-1254	<40	<1
PCB-1260	<40	<1

Priority Pollutant Analysis Acid Extractables - EPA 625

Date Received 1-13-86 Date Reported 2-7-86

P.O. No. --Job No. 8047.19 Page 4 OF 4

For: ES-Atlanta/PJKS, Denver, CO

Attn: Johnny Adamson

Address:

Lab No: Source of Sample: 860123 860124

01-86-1086 01-86-1087

Date Collected:

Water Soil 1-9-86 1-9-86

Time Collected:

Compound .	ug/L	ANALYTICAL RESULTSug/g
2-Chlorophenol	<4	<0.1
2-Nitrophenol	<4	<0.t
Phenol	<2	<0.05
2,4-Dimethylphenol	<3	· <0.08
2,4-Dichlorophenol	<3	<0.08
2,4,6-Trichlorophenol	<3	<0.08
4-Chloro-3-methylphenol	<3	<0.08
2,4-Dinitrophenol	. <40	<1
2-Methyl-4,6-Dinitrophenol	<20	<0.5
Pentachlorophenol	<4	<0.1
4-Nitrophenol	<5	<0.1

Engineering-Science	ANALYTICAL RESULTS SUMMARY Environmental Quality Parameters	Report
ES JOB NO. 56528		CC Report No.
Client 1899		Laboratory Supervisor Approval:
Project PJKS Plant	Sample Matrix:	Comment of Commence
Client No.	Water (ug/b) (mg/c)	Difution Factory
Date Collected of Jun. 86	/ Soil (ug/g) (ug/kg)	*Moisture
Date Received 10 Jan. 86	/ Other	

			1 1	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	は、シーでのナー・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	411	は、	•	Notes	v.
Field Sample No.	Lab Sample No.	700	200	5 20	ו מפייטויני		7	+	+	T
DAVC 1-CL1.1 SC	7801-78-10	_	4.8	3,05	3,05 (0.005 (0.1 (40.02	100>	20.02			T
77										
										7
										Ī
										T
				}						
										1
				\ -	1	1	-			
Date Analyzed	Σ	/5	/3	12/	19	او/	0	V	1	
Analytical Method		1. 426 A53	158 A3.1	1599.413	Septimes.	80A 351.3	289354.1 [8PB 35.1.1 [8PB 413.1] 8PB 420.1 [8PB 433.1.5] L. HSC ASS			
			0 100	3-210	a dry-woight basis.	.8.				

L-309

* If & moisture is reported, results are presented on

Notes			-		-					
							,			
なり	9.3 4								20	2842196
NU2 OSC Phenolica TKN C/X	081								15/31	3774 554 SPA413.1 EPA420.1 EPA3513 EPA3196
Phenolics	59'0								120	1.00,423
046	684								125	EPA413.1
, U U,	4.5	-							2.75	निष्ठ संरोह
100	2.42								2/2	1 758 41.43
Lab Sample No.	18-18-18								E	
Field Sample No.	87KS 1-50-1, ES								Date Analyzed	Analytical Method

* If & moisture is reported, results are presented on a dry-weight basis.

出版

うる 分女 当事

24. 10.25 Television (1.25)	33 300 E	of 1	Approval:
2862 3853	SS# \$25	Page Report	pervisor Or
WWW EGG	## 555 \$55 \$55 \$55 \$55 \$55 \$55 \$55		Eaboratory Supering Control of Table of
STATE OF STATE	25.57 EX.S	ЈММА ВУ	ma/Kg)
SOOM BESTEEN BEGESCOOM FOR THE STATE OF		ANALYTICAL RESULTS SUMMARY Metale	e Matrix: / Water (ug/L) (mg/kg) / Soil (ug/g) (ug/kg)
10000000	のできた。 1965年 - 1965年	NNALY	Sample
all proposes			Plant Plant
THE RESERVE		Engineering-Sclence	Client USAF Client No. 56528 Client No. Date Collected Glan 86
TEACHER !	A	Eng i nee	ES Job No. Client Project Client No. Date Recel

4		į												NAS (
							[\angle		e c
														Furnace AAS asma
														phite ed Pl
							•							Vapor AAS G = Graphite Furi P = Inductively Coupled Plasma
												7		G ively
												7		or AAS
2	10003											13	2303	C = Cold Vapor AAS AAS P = Induct
Pb Se	60000 CO, 12 CO003											\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	ECKENTS 1.25.473 1.215 m3	= Co] AAS
Ha P	> 7 8 7 8		<u> </u> 	<u> </u>	 							72/3	HS-1 ErA	apor
+	Š		<u> </u>	_	_	_						4	. w3	e AA
X														Flam
رً	401,02					·	-					8	Snr-103	** F = Flame AAS
Ca	70'0>											3	PP 113.1	
As ICA ICr	40,00> 50,0> 50,00											13	BUE ARE DELTARA SHARE	s 19.
	7801 -								,			Z C	##	
Lab Sample No.	7801-78-10 ST-05-1 SXLC							[]		[]				If & moisture is reported, result are presented on a dry-weight bas
	7.	-											bot	e is ro
Field Sample No.	1-56											yzed	Analytical Method	isture
ld San	2	1										Date Analyzed	ytica	e pre
Fie]	P-	1										Da te	Anal	A If

0593111

Laboratory Supervisor Approval: Page Report dilution Factor OC Report No. Dedunant Jahranas *Moisture Soil (ug/g) (ug/Kg) ANALYTICAL RESULTS SUMMARY other Pond Water (ug/L) Metals Sample Matrix: 尽 <u>ی</u> ح Plant ES JON NO. 3653 & USAF PJKS Engineering-Science Date Collected Date Received Client No. Project Client

1

10 Sec. 30

XXXXX

BATTER BATTER BATTER STATE OF STATES

												_		
		1	<u> </u>											
	·	1						<u> </u>						
Pb Se	40.40 28 KD. 004 0.010 0.060						_			•			700	50A 720.2
P _b	MO.010				_		_						187	403 -
포	\$ \$ \$	-		_		-	_	<u> </u>	_				100	975 443 443
Cal	86 0	_			-	-	-			<u> </u>				
S	1			-	1	-	-	-	_				12/81	1
A	w	_		igspace	1	1	1	-	-	-			 Ň	<u> </u>
Lab Sample No.	OI - 36 - 1087												Σ	:
Field Sample No.	1/2 1-50-1, ES C												Date Analyzed	Analytical Method

L-312

are presented on a dry-weight basis.

8593111

Î

بر م

3

P - Inductively Coupled Plasma

II - Hydride Vapor AAS

沒

Laboratory Supervisor Approval: Report Page Dilution Factor (Jehrner OC Report No. *Moisture Environmental Quality Parameters Soil (ug/g) (ug/Kg) Water (ug/by (mrg/) ANALYTICAL RESULTS SUMMARY Sample Matrix: Other Date Received 10 Jan.86 Date Collected of Jung 86 86575 クセクス Engineering-Science ES Job No. Client No. Project Client

eres estables anabeles expenses estables estables estables anabeles manables processes pares

2

N

3

37

.}

公台

8

~

77.7

3

· ·

1

₹

0.033 4.8 3.05 <0.005 <0.1 <0.02								,				116 10	201354.1 889 35.1.1 889.413.1 810.420.1 8813 5.1.5 813 L. LEE ATS
05 (0.005 (0.1 <0.02												_\	291.3 E113 E112E
05 (0.005 (0.1 <0.02												_\	7614 1113 E11SE
05 <0.005 <0.1												\ <u>a</u>	351.3
05 <0.005												l V	\$
So				j l								\ <u>9</u> -\	500 mg
Ž												1/2/	1.614.413
۳, %												_/3	1.68.93
												7	1. 45E A)3
7801-98-10												E	
PJK5,1-5W·1, 25												Date Analyzed	Analytical Method
	2601-28-10	MJKS, 1-5W-1, 25 01-86-1036	01-26-1030	MJKS, 1-5W-1, 25 01-86-1036	PJKS, 1-5W-1, 25 01-86-1036	PJKS, 1-5W. 1, 25 01-86-1036	PJKS, 1-5W-1, 25 01-86-1036	PJKS, 1-5W-1, 25 01-86-1036	PJKS, 1-5W · 1, 25 01-86-1036	103c - 103c - 103c - 103c - 103c - 103c - 103c	PJKS, 1-5W-1, 25 01-86-1036	103 C - 103 C - 103 C	PJKS, (-5w. 1, 25 01-86-1036

of Page | Report

STATES STATES STATES STATES

HANDED ACCORDED PRODUCES INTERPRETA SERVICIONI

المنحفظ

10 Man 86 P3KS Plant ES JOD NO. 56528 NSAF Date Collected Client No. Project Client

Date Received

L-314

Soil (ug/g) (ug/Kg) Water (ug/L) (mg/ Sample Matrix:

Aboratory Supervisor Approval: Diljution Factor & Report No. Show

*Moisture

Other

:	Ţ	\neg	<u> </u>	7	\neg			7	1					
		×												
	-	98				•			į	İ	j			
	1	518/86	-	_	1			¦				!		
		. 1												
		Remicalized	3							Ì				
		Ren												_
1		KO.23												
Se	(00003	Y											1/3	Pasa3
Ha Pb Se 77	40,12	८०८											 1/8	EDECKA 351 [EM2303]
HG	78000											-	74	3 1384
\ \														_ ````
ر	401.02				-								87	101-10E
S Cd Cr B	7002 40.02 40.107	KODI											6/3	SPE 218.
As	70000												No.	BUT TO SEPTIFIED SOFT WE
& NO.	7801	20%											Σ	*
Lab Sample No.	- 78-14	784-43-10												
3	×	10	-	┼-	-		-							
Field Sample No.	PTKS 1-56-1,85 01-86-1086 KB	1-35-1										•	lyzed	Analytical Method
ld San	125												Date Analyzed	lytica
Fie	á	1											Dat	Ana

, II = Hydride Vapor AAS r - riame AAS are presented on a dry-weight basis. It . moisture is reported, results

* Results Hamskined from page L-427

3

S

T

7

P = Inductively Coupled Plasma

1

3

3.5

737

Samo Laboratory Supervisor Approval: Report Page Dilution Factor ge Report No. Volument *Moisture other Pand Seliments Environmental Quality Parameters Soil (ug/g) (ug/Kg) ANALYTICAL RESULTS SUMMARY Water (ug/L) Sample Matrix: 12/ PJKS Plant (Denver) 98-01-26528 Engineering-Science Date Collected Date Received ES Job No. Client No. Project Client

Notes												
				!						_		
								,				
女人	છ. સ્પ										120	9514003
7.K2	780 087										15.	5(4321)
NUZ OSC Phenolics TKN C/TE	9,65		_								37	1.0th 403
Ð ₹ Q	584										72/	504412.1
_ج لا کر	4.6	5									2/8	274354 1 3.04 33.1 5PAUS. 1 SPAUS. 1 8PASUS 1984 198
, DV	5.45					: : : :					7/0/2/	EPH 354
Lab Sample No.	61-86-1087										E	
Field Sample No.	PTKS 1-50-1,ES										Date Analyzed	Analytical Method

	a)
	ŭ
	Ċ.
	ë
•	
	Š
	P
	Σ
	er
	ne
	5
	<u></u>
	Ã
	-

ANALYTICAL RESULTS SUMMARY Metals

-	
٠ ا	+
Page	Repor

8 5 30 No. 56 53 K		QC Report No.
Client USAP		Laboratory Supervisor Appro
Project PJKS Plant	Sample Matrix:	Oshmy K. Odom
Client No.	/ / Water (ug/L)	bilution Fator
Date Collected 9 (% % & C	/ / Soil (ug/g) (ug/kg)	*Moisture
	1/21 other Pond T-8A Dedunant (Mg/a	Dedument (mg/a)
)		

Laboratory Supervisor Approval:	Commy K. Udomon	bilution Factor	*Moisture	Dedunent (mg(g)
	Matrixi	Water (ug/L)	Soil (ug/g) (ug/Kg)	other Pand T-8A

Field Sample No.	Lab Sample No.	As	As Cd Cr		완	Pb Se	Se							
PTVS 1-50-1, 85	F801.98-10	3.1	40.40	86	\$\frac{1}{8}\frac{1}{8	40.40 28 KU. 004 0.010 0.000	0,000							
													Ì	
•														
Date Analyzed	E O	15/2	218	C./	4	18	700	7						
Analytical Method	**	306.3 213.1		204 21801	2 PA EPA	239.1 S	£104 27-01-3							
 If \ moisture is reported, results are presented on a dry-weight basis 	reported, results dry-weight basis	19.		# # # _	F = Flame AAS H = Hydride V	d e	C = CC	old Va	C = Cold Vapor AAS AAS P = Induct	S G tively	= Gra	Vapor AAS G = Graphite Furi P = Inductively Coupled Plasma	Graphite Furnace Coupled Plasma	e AAS

Z.

· .

5

N

8

Groundwater Results
Method 601, 602, 625, Methods and
Inorganic Parameters

The State of

大学をはない

ES Results for 601 and 602 Methods Dated 1/29/86

TOTAL TOTAL SECTION SECTIONS SECTIONS SECTIONS

1

Š

 $\mathcal{T}_{\mathbf{r}}$

الانخدددد

CONTROL BOSCOSSI POSTOS A

ANALYTICAL RESULTS SUMMARY Purgeable Halocarbons EPA Method 601

Page _	of	<u>1</u> _
Report		

ES Job No. <u>56528</u>	Lab Sample No
Client U.S. Air Force	Field Sample No. 1-MW-1, GW-1 ES
Project PJKS (Denver)	Date Collected 1/H/86
Client No.	Date Received 1/5/86
Laboratory Supervisor Approval:	Date Analyzed 1/29/86
Johnny R. adamson Sample Matrix:	QC Report No
/X_/ Water (ug/L)	Dilution Factor
// Soil (ug/g) (ug/Kg)	*Moisture
/ / Other	

Compound	C	oncentrat	ion	Retent	ion Time	Notes
	Det Lim	Column 1	Column 2	Column	1 Column	2
Bromodichloromethane	0.10	<10		15.69	1	
Bromoform	0.20	<10	1	21.24		
Bromomethane	1.18	<10	1	2.85		
Carbon tetrachloride	0.12	<4.0		15.47		
Chlorobenzene	0.25	<10		26.01		
Chloroethane	0.52	<10	!	4.51		
2-Chloroethylvinyl ether	0.13	<10	1	19.49		
Chloroform	0.05	<10	l	13.01		
Chloromethane	0.08	<10		1.95		
Dibromochloromethane	0.09	₹10	1	18.68		
1,2-Dichlorobenzene	0.15	<10		· 60 • 1		
1,3-Dichlorobenzene	0.32	<10		42.9		
1,4-Dichlorobenzene	0.24	<10		37.3		
Dichlorodifluoromethane	1.81	<10		3.54		
1,1-Dichloroethane	0.07	<10	i -	11.67		
1,2-Dichloroethane	0.03	<0.1	i	13.55		
1,1-Dichloroethene	0.13	<10	<u> </u>	10.31		1
trans-1,2-Dichloroethene	0.10	30.4	<0.1	12.35	11.93	1
1,2-Dichloropropane	0.08	<10	1	17.19		1
cis-1,3-Dichloropropene	0.20	14.3	<0.2	18.68	13.19	1 7
trans-1,3-Dichloropropene	0.10	<10		17.24		
Methylene chloride	0.25	<4.0	i	7.50		
1,1,2,2-Tetrachloroethane	1.0.03	<10	i	23.47		
Tetrachloroethene	i 0.03	<4.0		23.47		
1,1,1-Trichloroethane	0.03	<10	i	14.76		
1,1,2-Trichloroethane	0.02	<10	!	18.68		
Trichloroethene	10.12	224	1 3.9	17.91	9.61	T
Trichlorofluoromethane	0.01	<10		8.58		
Vinyl chloride	0.18	<10		3.54		
	1	 	!			-

^{*} If * moisture is reported, results are presented on a dry-weight basis.

note 1: Due to interference observed on column 1, the quantitation obtained on column 2 is the

862J137

correct value.

ANALYTICAL RESULTS SUMMARY Purgeable Halocarbons EPA Method 601

Page	of _
Report	

ES Job No.	56528	Lab Sample No.	1-86-1180
Client	U.S. Air Force	Field Sample No.	1-MW-2, EW-2, ES
Project	PJK3 (Denver)	Date Collected	1/16/86
Client No.		Date Received	1/17/86
Laboratory	Supervisor Approval:	Date Analyzed	1/30/86
John Sample Mat	n Radimson	QC Report No.	56528-11
	Water (ug/L)	Dilution Factor	
/	Soil (ug/g) (ug/Kg)	*Moisture	
/ /	Other		

Det Lim Column 1 Column 2 Column 2 Column 2	Compound	С	oncentrati	on	Retent:	ion Time_	Notes
Bromoform		Det Lim	Column 1	Column 2	Column	Column 2	
Bromomethane	Bromodichloromethane	0.10	<10		15.69		
Carbon tetrachloride 0.12 (4.0 15.47 Chlorobenzene 0.25 (10 26.01 Chloroethane 0.52 (10 4.51 2-Chloroethylvinyl ether 0.13 (10 19.49 Chloroform 0.05 (10 13.01 Chloromethane 0.08 (10 -1.95 2.00 13.01 Chloromethane 0.08 (10 -1.95 2.00 2	Bromoform	0.20	<10		21.24		
Chlorobenzene 0.25 <10 26.01 Chloroethane 0.52 <10	Bromomethane	i 1.18	<10		2.85		
Chloroethane 0.52 <10 4.51 2-Chloroethylvinyl ether 0.13 <10	Carbon tetrachloride	0.12	<4.0		15.47		
2-Chloroethylvinyl ether 0.13 <10	Chlorobenzene	0.25	<10		26.01		
Chloroform 0.05 <10 13.01 Chloromethane 0.08 <10	Chloroethane	0.52	<10		4.51		
Chloromethane 0.08 <10 -1.95 Dibromochloromethane 0.09 <10	2-Chloroethylvinyl ether	0.13	<10		19.49		
Dibromochloromethane 0.09 <10 18.68 1,2-Dichlorobenzene 0.15 <10		0.05	<10		13.01		
1,2-Dichlorobenzene 0.15 <10	Chloromethane	0.08	<10		- 1.95		
1,3-Dichlorobenzene 0.32 <10	Dibromochloromethane	10.09	<10		18.68	• •	
1,4-Dichlorobenzene 0.24 <10	1,2-Dichlorobenzene	0.15	<10	_	60.1		
Dichlorodifluoromethane 1.81 <10	1,3-Dichlorobenzene	0.32	<10		42.9		
1,1-Dichloroethane 0.07 <10	1,4-Dichlorobenzene	0.24	<10		37.3	•	
1,2-Dichloroethane 0.03 <0.1	Dichlorodifluoromethane	11.81	<10		3.54		
1,1-Dichloroethene 0.13 <10	1,1-Dichloroethane	0.07	<10		11.67		
trans-1,2-Dichloroethene 0.10 38.7 ∠0.10 12.35 II.93 1,2-Dichloropropane 0.08 <10	1,2-Dichloroethane	0.03	<0.1	i	13.55		
1,2-Dichloropropane 0.08 <10	1,1-Dichloroethene	0.13	<10		10.31		
1,2-Dichloropropane 0.08 <10	trans-1,2-Dichloroethene	0.10	38.7	40.10	12.35	11,93	1
cis-1,3-Dichloropropene 0.20 <10	1.2-Dichloropropane	0.08	<10		17.19		
trans-1,3-Dichloropropene 0.10 (10 17.24 Methylene chloride 0.25 (4.0) 7.50 1,1,2,2-Tetrachloroethane 0.03 (10 23.47 Tetrachloroethene 0.03 (4.0) 23.47 1,1,1-Trichloroethane 0.03 (10) 14.76 1,1,2-Trichloroethane 0.02 (10) 18.68 Trichloroethene 0.12 %6.0 7.24 17.91 9.61 Trichlorofluoromethane 0.01 (10) 8.58		0.20	<10	i	18.68		
1,1,2,2-Tetrachloroethane 0.03 <10			<10	i	17.24		
Tetrachloroethene 0.03 <4.0	Methylene chloride	0.25	<4.0	l	7.50		
1,1,1-Trichloroethane 0.03 <10	1,1,2,2-Tetrachloroethane	1-0.03	<10		23.47		
1,1,2-Trichloroethane 0.02 <10	Tetrachloroethene	0.03	<4.0		23.47		
Trichloroethene 0.12 86.0 1.24 17.91 9.61 1 Trichlorofluoromethane 0.01 <10	1,1,1-Trichloroethane	0.03	<10	i	14.76		I
Trichlorofluoromethane 0.01 <10 8.58		10.02	<10	!	18.68		
	Trichloroethene	10.12	86.0	1.24	17.91	9.61	
Vinyl chloride 0.18 <10 3.54	Trichlorofluoromethane	: 0.01	<10	ł	8.58		
	Vinyl chloride	0.18	<10	l	3.54		
		<u> </u>	 	<u> </u>	 	 	

^{*} If % moisture is reported, results are presented on a dry-weight basis.

Due to interference observed on column, the quantitation obtained on column 2 is the correct value. L-318 note 1:

862J137

SOUNDS INTERES ANTITUD ARRESTS MINISTER LANG

1

3

BEEFERS BEEFERS WEST

8

•

ANALYTICAL RESULTS SUMMARY Purgeable Halocarbons EPA Method 601

Page]	_ of	1_
Report		

Client U.S. Air Force Field Sample No. 1-MW-2, GW-1, ES	ES Job No 56528	Lab Sample No. 1-86-112	<u> </u>
Client No. Date Received 15 56 Laboratory Supervisor Approval: Date Analyzed 1/24/86 QC Report No.	Client U.S. Air Force	Field Sample No. 1-MW-2, GW-1, E	<u>S</u>
Date Analyzed 1/24/86	Project PJKS (Denver)	Date Collected 1/14/86	_
Chample Matrix: /X / Water (ug/L) Dilution Factor / Soil (ug/g) (ug/Kg) *Moisture *Moist	Client No.	Date Received 1/15/56	
/X / Water (ug/L) Dilution Factor / / Soil (ug/g) (ug/Kg) *Moisture	Laboratory Supervisor Approva	l: Date Analyzed 1/24/86	_
/_/ Soil (ug/g) (ug/Kg) *Moisture	John P. Colamosample Matrix:	QC Report No. 56528-11	
	/X / Water (ug/L)	Dilution Factor	
/_/ Other	// Soil (ug/g) (ug/Kg)	*Moisture	_*
	/_/ Other	· · · · · · · · · · · · · · · · · · ·	

Compound		oncentrat	ion	Retenti	on Time	Note:
	Det Lim	Column 1	Column 2	Column 1	Column 2	
Bromodichloromethane	0.10	<10		15.69	1	
Bromoform	0.20	<10	1	21.24		
Bromomethane	1 1.18	<10	1	2.85		
Carbon tetrachloride	10.12	<4.0	i	15.47	1	
Chlorobenzene	0.25	<10	(26.01		
Chloroethane	0.52	<10		4.51		
2-Chloroethylvinyl ether	0.13	<10	1	19.49		
Chloroform	0.05	<10		13.01		
Chloromethane	0.08	<10		-1.95		
Dibromochloromethane	10.09	<10	1	18.68	•	
1,2-Dichlorobenzene	0.15	<10		60.1		
1,3-Dichlorobenzene	0.32	<10		42.9		
1,4-Dichlorobenzene	0.24	<10		37.3	•	
Dichlorodifluoromethane	1 1.81	<10		3.54		
1,1-Dichloroethane	0.07	<10		11.67	1	
1,2-Dichloroethane	0.03	<0.1	i	13.55		
1,1-Dichloroethene	10.13	<10	i	10.31		
trans-1,2-Dichloroethene	0.10	56.2	10.1	12.35	11.93	ŀ
1,2-Dichloropropane	0.08	<10		17.19		
cis-1,3-Dichloropropene	0.20	410		18.68		
trans-1,3-Dichloropropene	0.10	<10	i	17.24		
Methylene chloride	0.25	<4.0	i	7.50		
1,1,2,2-Tetrachloroethane	.0.03	<10	1	23.47	i i	
Tetrachloroethene	0.03	<4.0	1	23.47		
1,1,1-Trichloroethane	0.03	<10	1	14.76		
1,1,2-Trichloroethane	0.02	·<10	!	18.68		
Trichloroethene	! 0.12	132	1.3	17.91	9.61	1
Trichlorofluoromethane	: 0.01	<10	!	8.58		
Vinyl chloride	0.18	<10	İ	3.54		
	i		<u> </u>			
•	1	1	1	1	!	7

^{*} If * moisture is reported, results are presented on a dry-weight basis.

note 1: Due to interference observed on column 1, the

quantitation obtained on column 2 is the

862J137 correct value L-319

PARTIES DESCRIPTION RECESSED SERVICES DESCRIPTION

ANALYTICAL RESULTS SUMMARY Purgeable Halocarbons EPA Method 601

Page	_i_	of	1
Repor	t_		

国で、

<u>زر</u> <u>د</u>

Ş

ES Job No.	56528	Lab Sample No. 1-86-1130	
Client _	U.S. Air Force	Field Sample No. 2-MW-3 GW-1	ES
Project _	PJKS (Denver)	Date Collected 1/15/86	_
Client No.	•	Date Received 1/16/86	
Laboratory	y Supervisor Approval:	Date Analyzed	
Johnn Sample Mar	R Comson	QC Report No. <u>56528-11</u>	
<u>/x</u> _/	Water (ug/L)	Dilution Factor	
/_/	Soil (ug/g) (ug/Kg)	*Moisture	•
/_/	Other		

Compound	С	oncentrati	.on	Retent	ion Time	Notes
	Det Lim	Column 1	Column 2	Column	1 Column 2	1
Bromodichloromethane	0.10	(10		15 60		
		<10		15.69		
Bromoform	0.20	<10		21.24		<u> </u>
Bromomethane	i 1.18	<10		2.85		
Carbon tetrachloride	0.12.	<4.0		15.47		<u> </u>
Chlorobenzene	0.25	<10		26.01		ļ
Chloroethane	0.52	<10		4.51	_}	<u> </u>
2-Chloroethylvinyl ether	0.13	<10		19.49		
Chloroform	0.05	<10	<u>-</u> .	13.01		<u> </u>
Chloromethane	0.08	<10		- 1.95		
Dibromochloromethane	0.09	<10		18.68		L
1,2-Dichlorobenzene	0.15	<10		60.1	•	<u> </u>
1,3-Dichlorobenzene	0.32	<10		42.9		
1,4-Dichlorobenzene	0.24	<10	,	37.3	,	
Dichlorodifluoromethane	1.81	<10		3.54		
1,1-Dichloroethane	0.07	<10		11.67		
1,2-Dichloroethane	0.03	<0.1		13.55		
1,1-Dichloroethene	0.13	<10	_	10.31		
trans-1,2-Dichloroethene	0.10	237	0.14	12.35	11.43	i
1,2-Dichloropropane	0.08	<10	: 1.	17.19		
cis-1,3-Dichloropropene	0.20	<10		18.68		i
trans-1,3-Dichloropropene	0.10	<10		17.24		<u> </u>
Methylene chloride	10.25	<4.0		7.50		
1,1,2,2-Tetrachloroethane	.0.03	<10		23.47		
Tetrachloroethene	0.03	<4.0		23.47		
1,1,1-Trichloroethane	10.03	<10		14.76		
1,1,2-Trichloroethane	: 0.02	<10		18.68	1	
Trichloroethene	! 0.12	735	0.83	17.91	9,61	1
Trichlorofluoromethane	0.01	<10		8.58		
Vinyl chloride	0.18	<10		3.54		
	i					
	1	1 1		٩	•	Ŧ

^{*} If % moisture is reported, results are presented on a dry-weight basis. note 1: Due to interference observed on column 1, the quantitation obtained on column 2 is the correct value. L-320 862J137

CONTROL OF THE CONTRO

ANALYTICAL RESULTS SUMMARY Purgeable Halocarbons EPA Method 601

Page _	_ of	1
Report		

ES Job No. 56528	Lab Sample No	1-86-1178
Client U.S. Air Force	Field Sample No.	4-MW-4, GW-1, ES
Project PJKS (Denver)	Date Collected	-116/86
Client No.	Date Received	1117/86
Laboratory Supervisor Approval:	Date Analyzed	1/29/86
Johnny R. Colamora Sample Matrix.	QC Report No.	56528-11
/X / Water (ug/L)	Dilution Factor _	
/_/ Soil (ug/g) (ug/Kg)	*Moisture	
/_/ Other		

Compound	C	oncentrati	on	Retenti	on Time	Notes
•	Det Lim	Column 1	Column 2	Column 1	Column 2	
					1	
Bromodichloromethane	0.10	<10		15.69	1	
Bromoform	0.20	<10		21.24		
Bromomethane	1.18	<10		2.85		
Carbon tetrachloride	0.12	<4.0		15.47		
Chlorobenzene	0.25	<10		26.01		
Chloroethane	0.52	<10		4.51		
2-Chloroethylvinyl ether	0.13	<10		19.49		
Chloroform	0.05	<10	• .	13.01		
Chloromethane	0.08	<10		- 1.95		
Dibromochloromethane	0.09	<10		18.68		
1,2-Dichlorobenzene	0.15	<10		60.1		
1,3-Dichlorobenzene	0.32	<10		42.9		
1,4-Dichlorobenzene	0.24	<10		37.3	•	
Dichlorodifluoromethane	1.81	<10		3.54		
1,1-Dichloroethane	0.07	<10		11.67		
1,2-Dichloroethane	0.03	<0.1	ĺ	13.55		
1,1-Dichloroethene	0.13	<10		10.31		
trans-1,2-Dichloroethene	0.10	77.3	40.10	12.35	11.93	
1,2-Dichloropropane	0.08	<10		17.19		
cis-1,3-Dichloropropene	0.20	<10		18.68		
trans-1,3-Dichloropropene	10.10	<10		17.24		
Methylene chloride	1 0.25	<4.0		7.50		
1,1,2,2-Tetrachloroethane	1.0.03	<10		23.47		
Tetrachloroethene	0.03	<4.0		23.47		
1,1,1-Trichloroethane	0.03	<10		14.76		
1,1,2-Trichloroethane	0.02	<10		18.68		
Trichloroethene	0.12	95.4	0.34	17.91	9,61	
Trichlorofluoromethane	0.01	<10	1	8.58		
Vinyl chloride	0.18	<10		3.54		
	i		i			
	1	1			!	

^{*} If % moisture is reported, results are presented on a dry-weight basis.

note! Due to interference observed on column 1, the quantitation obtained on column 2 is the

862J137

ANALYTICAL RESULTS SUMMARY Purgeable Halocarbons EPA Method 601

Page _	of	
Report		

ES Job No.	56528	Lab Sample No	1-86-1179
Client _	U.S. Air Force	Field Sample No.	4-MW-5, GW-1, E
Project _	PJKS (Denver)	Date Collected	1/16/86
Client No.	•	Date Received	1/17/86
Laboratory	y Supervisor Approval:	Date Analyzed	1/29/86
Sample Mar	R. Cidamoin	QC Report No.	56528-11
<u>/x</u> _/	Water (ug/L)	Dilution Factor _	
//	Soil (ug/g) (ug/Kg)	*Moisture	
/_/	Other		

Compound	c	oncentration		Retent	ic	on Time	Notes
	Det Lim	Column 1 Colu	mn 2	Column	1	Column	2
Bromodichloromethane	0.10	<10		15.69			
Bromoform	0.20	<10		21.24			1
Bromomethane	1.18	<10		2.85			
Carbon tetrachloride	0.12	<4.0		15.47			
Chlorobenzene	0.25	<10		26.01			
Chloroethane	0.52	<10		4.51			
2-Chloroethylvinyl ether	0.13	<10		19.49			
Chloroform	0.05	<10		13.01			
Chloromethane	0.08	<10		-1.95			
Dibromochloromethane	0.09	<10		18.68			
1,2-Dichlorobenzene	0.15	<10		60.1	٠		
1,3-Dichlorobenzene	0.32	<10		42.9			
1,4-Dichlorobenzene	0.24	<10		37.3		•	T
Dichlorodifluoromethane	1.81	<10		3.54			
1,1-Dichloroethane	0.07	<10		11.67			
1,2-Dichloroethane	0.03	<0.1		13.55			
1,1-Dichloroethene	0.13	<10		10.31			
trans-1,2-Dichloroethene	0.10	<10		12.35			
1,2-Dichloropropane	10.08	<10		17.19			
cis-1,3-Dichloropropene	0.20	<10		18.68			
trans-1,3-Dichloropropene	10.10	<10		17.24			
Methylene chloride	0.25	<4.0		7.50			
1,1,2,2-Tetrachloroethane	1.0.03	<10		23.47			
Tetrachloroethene	0.03	<4.0		23.47			
1,1,1-Trichloroethane	0.03	<10 i		14.76			
1,1,2-Trichloroethane	: 0.02	<10 !		18.68			
Trichloroethene	10.12	<1.0 i		17.91			
Trichlorofluoromethane	0.01	<10		8.58			
Vinyl chloride	0.18	<10		3.54	_		
	<u> </u>	 		ļ ———			+

^{*} If % moisture is reported, results are presented on a dry-weight basis.

200

ANALYTICAL RESULTS SUMMARY Purgeable Halocarbons EPA Method 601

Page _	of _
Report	

ES Job No. <u>56528</u>	Lab Sample No	1-86-1133
Client U.S. Air Force	Field Sample No.	4-MW-6, GW-2, ES
Project PJKS (Denver)	Date Collected	1/15/86
Client No.	Date Received	1/16/86
Laboratory Supervisor Approval:	Date Analyzed	1/29/86
Johnny R. adamoin Sample Matrix	QC Report No.	56528-11
/X / Water (ug/L)	Dilution Factor _	
/_/ Soil (ug/g) (ug/Kg)	*Moisture	<u> </u>
/ / Other		

	Det Lim				on Time	Notes
	Def TIM	Column 1	Column	2 Column 1	Column 2	
Bromodichloromethane	0.10	<10		15.69		
Bromoform	0.20	<10		21.24		
Bromomethane	1.18	<10		2.85		
Carbon tetrachloride	0.12	<4.0		15.47		
hlorobenzene	0.25	<10		26.01	Ī	
Chloroethane	0.52	<10		4.51		
-Chloroethylvinyl ether	0.13	<10		19.49	†	
hloroform	0.05	<10	<u> </u>	13.01		
Chloromethane	0.08	<10		_ 1.95		
ibromochloromethane	0.09	<10		18.68	^)	
,2-Dichlorobenzene	0.15	<10		60.1 -		
,3-Dichlorobenzene	0.32	<10		42.9		
,4-Dichlorobenzene	0.24	<10		37.3		
ichlorodifluoromethane	1.81	<10		3.54		
,1-Dichloroethane	0.07	<10		11.67		
,2-Dichloroethane	0.03	<0.1	i	13.55		
,1-Dichloroethene	0.13	<10		10.31		
rans-1,2-Dichloroethene	0.10	325	20.10	12.35	11,93	1
,2-Dichloropropane .	0.08	<10		17.19		
is-1,3-Dichloropropene	0.20	<10		18.68		
rans-1,3-Dichloropropens	0.10	<10		17.24		
ethylene chloride	0.25	<4.0		7.50		
,1,2,2-Tetrachloroethane	1,0.03	<10		23.47		
Tetrachloroethene	0.03	<4.0		23.47		
,1,1-Trichloroethane	0.03	<10		14.76		
,1,2-Trichloroethane	0.02	<10	1	18.68		
richloroethene	10.12	(1.0		17.91		I
richlorofluoromethane	10.01	<10	1	8.58		
inyl chloride	0.18	<10		3.54		
	<u>i</u> J	 	 	 	 	

^{*} If * moisture is reported, results are presented on a dry-weight basis.

note! Due to interference observed on column!, the quantitation obtained on column 2 is the source value. L-323

862J137

ANALYTICAL RESULTS SUMMARY Purgeable Halocarbons EPA Method 601

Page _	of]
Report	

ES Job No.	56528	Lab Sample No	1-86-1132
Client	U.S. Air Force	Field Sample No.	4-MW-6, GW-1, ES
Project	PJKS (Denver)	Date Collected _	1/15/86
Client No.		Date Received	1/16/86
Laboratory	Supervisor Approval:	Date Analyzed _	1/29/86
Johnn Sample Mat	ride Radamson	QC Report No.	56528- II
<u>/x</u> _/	Water (ug/L)	Dilution Factor	
/_/	Soil (ug/g) (ug/Kg)	*Moisture	
//	Other		

Compound	c	oncentrati	ion	Retenti	on Time	Notes
	Det Lim	Column 1	Column	2 Column 1	Column 2	
Bromodichloromethane	0.10	<10		15.69		
Bromoform	0.20	<10		21.24	1	
Bromomethane	1.18	<10		2.85		
Carbon tetrachloride	0.12	<4.0		15.47	Ţ	
Chlorobenzene	0.25	<10		26.01		
Chloroethane	0.52	<10	į	4.51		
2-Chloroethylvinyl ether	0.13	<10 .		19.49		
Chloroform	0.05	<10	•	13.01		
Chloromethane	0.08	<10		- 1.95		
Dibromochloromethane	0.09	<10		18.68		
1,2-Dichlorobenzene	0.15	<10		60.1		
1,3-Dichlorobenzene	0.32	<10		42.9		
1,4-Dichlorobenzene	0.24	<10		37.3	•	i
Dichlorodifluoromethane	1.81	<10		3.54		
1,1-Dichloroethane	0.07	<10		11.67		
1,2-Dichloroethane	0.03	<0.1	i	13.55		
1,1-Dichloroethene	0.13	<10		10.31	i	
trans-1,2-Dichloroethene	0.10	307	40.1	12.35	11.93	ī
1,2-Dichloropropane	0.08	<10		17.19	1	
cis-1,3-Dichloropropene	0.20	<10		18.68	 	
trans-1,3-Dichloropropene	0.10	< 1.0	İ	17.24	1	İ
Methylene chloride	0.25	<4.0		7.50		1
1,1,2,2-Tetrachloroethane	1.0.03	<10		23.47		
Tetrachloroethene	0.03	<4.0		23.47		1
1,1,1-Trichloroethane	0.03	<10		14.76		
1,1,2-Trichloroethane	0.02	<10	1	18.68		
Trichloroethene	10.12	61.3	(0.12	17.91	1.61	
Trichlorofluoromethane	0.01	<10		8.58		
Vinyl chloride	0.18	<10		3.54		
	1	 	·	-{	 	

* If & moisture is reported, results are presented on a dry-weight basis.

note 1: Due to interference observed on column 1, the
guantilation obtained on column 2 is the
862J137 careet value. L-324

ANALYTICAL RESULTS SUMMARY Purgeable Halocarbons EPA Method 601

Page	of	
Report		

ES Job No. 56528	Lab Sample No. 1-86-1177
Client U.S. Air Force	Field Sample No. 2-MW-7, GW-1, E
Project PJKS (Denver)	Date Collected 1/16/86
Client No.	Date Received 1/17/86
Laboratory Supervisor Approval:	Date Analyzed 1/24/86
Johnn R. adamson Sample Matrix:	QC Report No
/X_/ Water (ug/L)	Dilution Factor
/_/ Soil (ug/g) (ug/Kg)	*Moisture
/ / Other	

Compound	Concentration			Retention Time		Notes	
	Det Lim	Column 1	Column 2	Column 1	Column 2		
Bromodichloromethane	0.10	<10		15.69			
Bromoform	0.20	<10		21.24			
Bromomethane	1.18	<10		2.85			
Carbon tetrachloride	0.12	<4.0		15.47			
Chlorobenzene	0.25	<10		26.01			
Chloroethane	0.52	<10		4.51			
2-Chloroethylvinyl ether	0.13	<10		19.49			
Chloroform	0.05	<10	• • • •	13.01			
Chloromethane	0.08	<10		- 1.95			
Dibromochloromethane	0.09	<10,		18.68	• .		
1,2-Dichlorobenzene	0.15	<10		60.1 -			
1,3-Dichlorobenzene	0.32	<10	_	42.9			
1,4-Dichlorobenzene	0.24	<10		37.3			
Dichlorodifluoromethane	1.81	<10		3.54			
1,1-Dichloroethane	0.07	<10		11.67			
1,2-Dichloroethane	0.03	<0.1		13.55			
1,1-Dichloroethene	0.13	<10		10.31			
trans-1,2-Dichloroethene	0.10	<10		12.35			
1,2-Dichloropropane	0.08	<10		17.19			
cis-1,3-Dichloropropene	0.20	<10	<u> </u>	18.68			
trans-1,3-Dichloropropene	0.10	<10		17.24			
Methylene chloride	0.25	<4.0	ĺ	7.50			
1,1,2,2-Tetrachloroethane	0.03	<10		23.47			
Tetrachloroethene	10.03	<4.0		23.47			
1,1,1-Trichloroethane	0.03	<10	İ	14.76			
1,1,2-Trichloroethane	10.02	<10		18.68			
Trichloroethene	10.12	<1.0	l .	17.91			
Trichlorofluoromethane	0.01	<10		8.58			
Vinyl chloride	0.18	<10		3.54			
	<u> </u>	 			-		

^{*} If * moisture is reported, results are presented on a dry-weight basis.

ANALYTICAL RESULTS SUMMARY Purgeable Halocarbons EPA Method 601

Page _	of _
Report	

B

ES Job No. <u>56528</u>	Lab Sample No	1-86-1131
Client U.S. Air Force	Field Sample No.	10-MW-8, GW-1, ES
Project PJKS (Denver)	Date Collected	1/15/86
Client No.	Date Received	1/16/86
Laboratory Supervisor Approval:	Date Analyzed _	1/29/86
Johnny R. adamson Sample Matrid:	QC Report No	56528-11
/X / Water (ug/L)	Dilution Factor	
/_/ Soil (ug/g) (ug/Kg)	*Moisture	
/ / Other		

Compound	Concentration				Retention Time		
	Det Lim	Column 1	Column	2 0	column 1	Column 2	
Bromodichloromethane	0.10	<10		\dashv	15.69		
Bromoform	0.20	<10		\neg	21.24		
Bromomethane	1.18	<10		\top	2.85		
Carbon tetrachloride	0.12	<4.0		\neg	15.47		
Chlorobenzene	0.25	<10			26.01		
Chloroethane	0.52	<10			4.51		
2-Chloroethylvinyl ether	0.13	<10		\top	19.49		
Chloroform	0.05	<10	• .		13.01		
Chloromethane	0.08	<10		\Box	-1.95		
Dibromochloromethane	0.09	<10		\neg	18.68	1.	
1,2-Dichlorobenzene	0.15	<10		\Box	60.1		
1,3-Dichlorobenzene	0.32	<10		$\neg \vdash$	42.9		
1,4-Dichlorobenzene	0.24	<10		Т	37.3		
Dichlorodifluoromethane	11.81	<10		\neg	3.54		
1,1-Dichloroethane	0.07	<10		\neg	11.67		
1,2-Dichloroethane	0.03	<0.1		\top	13.55		
1,1-Dichloroethene	0.13	<10			10.31		
trans-1,2-Dichloroethene	0.10	33.2	40.10	,	12.35	11.93)
1,2-Dichloropropane	0.08	<10		丁	17.19		
cis-1,3-Dichloropropene	0.20	<10			18.68		
trans-1,3-Dichloropropene	0.10	<10			17.24		
Methylene chloride	0.25	<4.0		\neg	7.50		
1,1,2,2-Tetrachloroethane	.0.03	<10			23.47		
Tetrachloroethene	i 0.03	<4.0			23.47		
1,1,1-Trichloroethane	0.03	<10			14.76		
1,1,2-Trichloroethane	0.02	<10			18.68		
Trichloroethene	0.12	433	20.12	\Box	17.91	9.61	
Trichlorofluoromethane	10.01	<10			8.58		
Vinyl chloride	0.18	<10		\neg	3.54		
	1		i	丁			

"If & moisture is reported, results are presented on a dry-weight basis.

note 1: Due to interference observed on column 1, the

quantitation obtained on column 2 is the

862J137

TOWNSHIP BESESSE SESSESS DESIGNED TOWNSHIP SECONS FRANKS BESESSE SESSESS FAMILY

correct value. L-32

ANALYTICAL RESULTS SUMMARY Purgeable Halocarbons EPA Method 601

Page	of	
Report		· .

ES Job No. 56528	Lab Sample No	1-86-1182
Client U.S. Air Force	Field Sample No.	Trip flenk
Project PJKS (Denver)	Date Collected)
Client No.	Date Received	1/17)86
Laboratory Supervisor Approval:	Date Analyzed	1/30/86
Johnne R. Odamour Sample Matrix:	QC Report No.	56528-11
/X / Water (ug/L)	Dilution Factor _	
/_/ Soil (ug/g) (ug/Kg)	*Moisture	
/ / Other		

Compound	С	oncentrati	ion	Retenti	on Time	Notes
	Det Lim	Column 1	Column 2	Column 1	Column 2	
Bromodichloromethane	0.10	<10		15.69		
Bromoform	0.20	<10		21.24		
Bromomethane	1.18	<10		2.85	<u> </u>	
Carbon tetrachloride	0.12	<4.0		15.47		
Chlorobenzene	0.25	<10		26.01		
Chloroethane	0.52	<10		4.51		
2-Chloroethylvinyl ether	0.13	<10	_	19.49		
Chloroform	0.05	<10		13.01		
Chloromethane	0.08	<10		- 1.95		
Dibromochloromethane	0.09	<10		18.68		
1,2-Dichlorobenzene	0.15	<10		60.1 -		
1,3-Dichlorobenzene	0.32	<10		42.9		
1,4-Dichlorobenzene	0.24	<10	•	37.3	,	
Dichlorodifluoromethane	1.81	<10		3.54		
1,1-Dichloroethane	0.07	<10		11.67		
1,2-Dichloroethane	0.03	<0.1		13.55		
1,1-Dichloroethene	0.13	<10		10.31		
trans-1,2-Dichloroethene	0.10	<10		12.35		
1,2-Dichloropropane	0.08	<10		17.19		
cis-1,3-Dichloropropene	0.20	<10		18.68		
trans-1,3-Dichloropropene	0.10	<10		17.24		
Methylene chloride	0.25	<4.0		7.50		
1,1,2,2-Tetrachloroethane	.0.03	<10		23.47		
-Tetrachloroethene	0.03	<4.0		23.47		
1,1,1-Trichloroethane	0.03	<10		14.76		
1,1,2-Trichloroethane	0.02	<10		18.68		
Trichloroethene	0.12	<1.0		17.91		
Trichlorofluoromethane	1 0.01	<10		8.58		
Vinyl chloride	0.18	<10		3.54		
	1					
	1	1		1		

^{*} If & moisture is reported, results are presented on a dry-weight basis.

CONTRACT CONTRACTOR IN CONTRACTOR INCOME.

SANATA RANDOM RESIDENCE CONTROL CONTROL CONTROL

ANALYTICAL RESULTS SUMMARY Purgeable Halocarbons EPA Method 601

Page	of _
Report	

ES Job No56	528	Lab Sample No.	1-86-1181
ClientU.	S. Air Force	Field Sample No.	Sild flank
Project PJ	KS (Denver)	Date Collected	
Client No		Date Received	11.7/86
Laboratory Sup	ervisor Approval:	Date Analyzed	1/30/86
Johnny Sample Matrix	R. adamson	QC Report No	56528-11
<u>/X</u> / Wate	r (ug/L)	Dilution Factor _	
/_/ Soil	(ug/g) (ug/Kg)	*Moisture	
/_/ Othe	r		

Compound	Concentration Retention Time		Notes			
! 	Det Lim	Column 1	Column 2	Column	1 Column 2	
•			 	1	<u> </u>	
Bromodichloromethane	0.10	<10	1	15.69	1	
Bromoform	0.20	<10	-	21.24		
Bromomethane	1.18	<10	ł	2.85		
Carbon tetrachloride	0.12	<4.0		15.47		
Chlorobenzene	0.25	<10		26.01		
Chloroethane	0.52	<10		4.51		
2-Chloroethylvinyl ether	0.13	<10		19.49		
Chloroform	0.05	<10	٠.	13.01		
Chloromethane	0.08	<10		- 1.95		
Dibromochloromethane	0.09	<10	l	18.68	1.	
1,2-Dichlorobenzene	0.15	<10		60.1		
1,3-Dichlorobenzene	0.32	<10		42.9		
1,4-Dichlorobenzene	0.24	<10		37.3		
Dichlorodifluoromethane	1.81	<10		3.54		
1,1-Dichloroethane	0.07	<10	1	11.67		
1,2-Dichloroethane	0.03	<0.1	1	13.55		
1,1-Dichloroethene	0.13	<10		10.31		
trans-1,2-Dichloroethene	0.10	<10	1	12.35		
1,2-Dichloropropane	0.08	<10		17.19		
cis-1,3-Dichloropropene	0.20	<10	1	18.68	<u> </u>	
trans-1,3-Dichloropropene	0.10	<10		17.24		
Methylene chloride	0.25	<4.0	Ī .	7.50		
1,1,2,2-Tetrachloroethane	1.0.03	<10	i	23.47		
Tetrachloroethene	0.03	<4.0	1	23.47		
1,1,1-Trichloroethane	0.03	<10		14.76		
1,1,2-Trichloroethane	0.02	<10	!	18.68		
Trichloroethene	10.12	<1.0		17.91		
Trichlorofluoromethane	0.01	<10	•	8.58		
Vinyl chloride	0.18	<10		3.54		
_	1	1	•			
1	1	1	1	1	1	

^{*} If % moisture is reported, results are presented on a dry-weight basis.

ANALYTICAL RESULTS SUMMARY Purgeable Aromatics EPA Method 602

Page _	_ of
Report	

ES Job No.	56528	Lab Sample No	1-66-1126
Client	U.S. Air Force	Field Sample No.	1-MW-1, GW-1_ES
Project	PJKS (Denver)	Date Collected	1/14/86
Client No.	·	Date Received	1/15/86
Laboratory	Supervisor Approval:	Date Analyzed	1/29/86
John Sample Mat	ny R. adamson	QC Report No	56528-10
<u>/x</u> /	Water (ug/L)	Dilution Factor	
/_/	Soil (ug/g) (ug/Kg)	*Moisture	
/ /	Other		

Compound		Concentration			Retention Time	
-	Det Lim	Column 1	Column 2	Column 1	Column 2	Ì
Benzene	0.2	<0.7	•	2.26	•	
Chlorobenzene	0.2	<10	:	16.46	!	
1,2-Dichlorobenzene	0.4	<10	<u>:</u>	27.93		
1,3-Dichlorobenzene	0.4	<10	1	26.40	1	
1,4-Dichlorobenzene	0.3	<10	<u> </u>	22.51		·
Ethylbenzene	0.2	<10	}	- 7.18	i	
Toluene	0.2	<10	<u>;</u>	5.47	1	
methyl ethyl betone.	1.1	105	/33	1.22	/3.3	
			!			
	<u> </u>	<u> </u>	<u> </u>			
	1	1	i	1	1	

^{*} If % moisture is reported, results are presented on a dry-weight basis.

3

ANALYTICAL RESULTS SUMMARY Purgeable Aromatics EPA Method 602

Page _	1	of	
Report	_		

ES Job No.	56528	Lab Sample No.	1-86-1127
Client	U.S. Air Force	Field Sample No.	1-MW-2, GW-1 ES
Project	PJKS (Denver)	Date Collected	1/14/86
Client No.		Date Received	1/15/86
Laboratory	Supervisor Approval:	Date Analyzed	1/29/86
Sample Mati	R adamson	QC Report No.	56528-10
<u>/x</u> / v	Nater (ug/L)	Dilution Factor _	
/ :	Soil (ug/g) (ug/Kg)	*Moisture	
//	Other		

Compound	c	Concentration		Retention Time		Notes
	Det Lim	Column 1	Column 2	Column	Column 2	
Benzene	0.2	<0.7		2.26		,
Chlorobenzene	0.2	<10		16.46	İ	
1,2-Dichlorobenzene	0.4	<10		27.93		
1,3-Dichlorobenzene	0.4	<10		26.40		
1,4-Dichlorobenzene	0.3	<10		22.51		
Ethylbenzene	0.2	<10		- 7.18		
Toluene	0.2	<10	77	5.47	•	
methyl ethyl betone	1.1	<10	. •	دد,ر	<u> </u>	
		!				
		<u> </u>				

^{*} If % moisture is reported, results are presented on a dry-weight basis.

Page _	of	
Report		

ES Job No. 56528	Lab Sample No
Client U.S. Air Force	Field Sample No. 2-MW-3 (-W-1 ES
Project PJKS (Denver)	Date Collected 1/15/66
Client No.	Date Received 1/16/86
Laboratory Supervisor Approval:	Date Analyzed 1/29/56
John R. adamson Sample Matrix	QC Report No. 56528-10
<pre>/X / Water (ug/L)</pre>	Dilution Factor
// Soil (ug/g) (ug/Kg)	*Moisture
/_/ Other	· · · · · · · · · · · · · · · · · · ·

Compound	c	oncentration	Retention Time	1
-	Det Lim	Column 1 Column	2 Column 1 Column 2	
Benzene	0.2	<0.7	2.26	
Chlorobenzene	0.2	<10	16.46	
1,2-Dichlorobenzene	0.4	<10	27.93	
1,3-Dichlorobenzene	0.4	<10	26.40	
1,4-Dichlorobenzene	0.3	<10	22.51	
Ethylbenzene	0.2	<10	7.18	
Toluene	0.2	'<10	5.47	
methyl ethyl ketone	1,1	210	1.22	
		i		
	1) i	1 1 1	

^{*} If % moisture is reported, results are presented on a dry-weight basis.

See chesses surrens surrens surrens many

PARTICIONE PARTICIONE REPORTATE DESCRIPCION DESCRIPCION DE SANCIÓN

Page _		of	
Report	_		

ES Job No. 56528	Lab Sample No	1-86-1178
Client U.S. Air Force	Field Sample No.	4-MW-4 GW-1, ES
Project PJKS (Denver)	Date Collected _	
Client No.	Date Received	1/17/86
Laboratory Supervisor Approval:	Date Analyzed	1/29/86
Johnne R. adamson Sample Matrix	QC Report No	56528-10
/X_/ Water (ug/L)	Dilution Factor	
/_/ Soil (ug/g) (ug/Kg)	*Moisture	
/_/ Other		

Compound	C	Concentration			Retention Time	
- -	Det Lim	Column 1 Colum	n 2 Colu	mn 1/0	column 2	
Benzene	0.2	<0.7	2.	26		
Chlorobenzene	0.2	<10	16.	46		·····
1,2-Dichlorobenzene	0.4	<10	27.	93		
1,3-Dichlorobenzene	0.4	<10	26.	40		
1,4-Dichlorobenzene	0.3	<10	22.	51		
Ethylbenzene	0.2	<10	-7.	18	1	
Toluene	0.2	<10	5.	47	<u>.</u> .	_
		!	7 .	·		
		!			•	
		i				
		:				
<u> </u>						
		1.	ļ	1		,

^{*} If % moisture is reported, results are presented on a dry-weight basis.

passe secretar respects management received decretes.

À

ţ.,

33

. . . .

Page _		of	\perp
Report	t _		

ES Job No. 56528	Lab Sample No. 1-86-1179
Client U.S. Air Force	Field Sample No. 4-MW-5, GW-1 E
Project PJKS (Denver)	Date Collected 1/16/86
Client No.	Date Received 1/17/86
Laboratory Supervisor Approval:	Date Analyzed 1/29/86
Johnny R. Colamour Sample Matrix	QC Report No. <u> </u>
/X / Water (ug/L)	Dilution Factor
/_/ Soil (ug/g) (ug/Kg)	*Moisture
/_/ Other	

Compound	c	Concentration			ion Time	Notes
	Det Lim	Column 1	Column 2	Column	1 Column 2	
Benzene	0.2	<0.7		2.26		
Chlorobenzene	0.2	<10	<u> </u>	16.46		<u> </u>
1,2-Dichlorobenzene	0.4	<10	,	27.93		
1,3-Dichlorobenzene	0.4	<10	{	26.40		
1,4-Dichlorobenzene	0.3	<10	!	22.51		<u> </u>
Ethylbenzene	0.2	<10	1	- 7.18		
Toluene	0.2	<10	<u> </u>	5.47		
		·	1 .	<u> </u>		
····					•	
		<u> </u>	1			
			!			
		<u> </u>	1			
		}	I		- (ł

^{*} If % moisture is reported, results are presented on a dry-weight basis.

Page	of
Report	

ES Job No. 56528	Lab Sample No. 1-86-1133
Client U.S. Air Force	Field Sample No. 4-MW-6, 6W-2, ES
Project PJKS (Denver)	Date Collected //5/86
Client No.	Date Received 1/16/86
Laboratory Supervisor Approval:	Date Analyzed
Johnne Ro adamson Sample Matrix	QC Report No. 56528-10
/X_/ Water (ug/L)	Dilution Factor
/_/ Soil (ug/g) (ug/Kg)	*Moisture
/ / Other	

Compound		concentration	Retention	Time	Notes
	Det Lim	Column 1 Column	1 2 Column 1 C	Column 2	i
Benzen e	0.2	<0.7	2.26		
Chlorobenzene	0.2	<10	16.46		
1,2-Dichlorobenzene	0.4	<10	27.93		
1,3-Dichlorobenzene	0.4	<10	26.40	· · · · · · · · · · · · · · · · · · ·	
1,4-Dichlorobenzene	0.3	<10	22.51		
Ethylbenzene	0.2	<10	- 7.18		
Toluene	0.2	<10	5.47		
		!	<u> </u>		
	.	!		•	
		,		 	
	<u>!</u>	:			
		:			
	1	1			,

^{*} If % moisture is reported, results are presented on a dry-weight basis.

THE PERSON OF THE PARTY OF THE

Š

Page		of	
Report	_		

ES Job No.	56528	Lab Sample No	1-86-1132
Client	U.S. Air Force	Field Sample No.	4-MW-6, GW-1 ES
Project	PJKS (Denver)	Date Collected	1/15/86
Client No.		Date Received	1/16/86
Laboratory	Supervisor Approval:	Date Analyzed	1/29/86
Sample Mat	R adamse	QC Report No.	56528-10
<u>/x</u> _/	Water (ug/L)	Dilution Factor _	
<u>/_</u> /	Soil (ug/g) (ug/Kg)	*Moisture	
/_/	Other		
G==	nound Conce	untration Pate	ntion Time Notes

Compound	c	Concentration		Retention Time	
	Det Lim	Column 1 Column	2 Column 1	Column 2	! !
Benzene	0.2	<0.7	2.26	i	
Chlorobenzene	0.2	<10	16.46		
1,2-Dichlorobenzene	0.4	<10	27.93	<u>!</u>	
1,3-Dichlorobenzene	0.4	<10	26.40	!	! :
1,4-Dichlorobenzene	0.3	<10	22.51		ļ
Ethylbenzene	0.2	<10	- 7.18	<u>:</u>	ļ
Toluene	0.2	<10	5.47		<u> </u>
					<u> </u>
· · · · · · · · · · · · · · · · · · ·				•	<u> </u>
				<u> </u>	<u> </u>
	!				<u> </u>
				1	
	Ì	,	1	ļ	ļ

^{*} If % moisture is reported, results are presented on a dry-weight basis.

ANALYTICAL RESULTS SUMMARY Purgeable Aromatics EPA Method 602

Page _	of
Report	

ES Job No.	56528	Lab Sample No	1-86-1177
Client	U.S. Air Force	Field Sample No.	2-MW-7, GW-1, ES
Project	PJKS (Denver)	Date Collected	1/16/86
Client No.		Date Received	1/17/86
Laboratory	Supervisor Approval:	Date Analyzed	1/29/86
Gample Mat	ng R. adamson	QC Report No.	56528-10
<u>/x</u> / '	Water (ug/L)	Dilution Factor _	
/_/	Soil (ug/g) (ug/Kg)	*Moisture	<u></u> %
/	Other		

Compound	c	oncentration	Retention	Time Notes
-	Det Lim	Column 1 Column	2 Column 1 Co	olumn 2
Benzene	0.2	<0.7	2.26	
Chlorobenzene	0.2	<10	16.46	
1,2-Dichlorobenzene	0.4	<10	27.93	
1,3-Dichlorobenzene	0.4	<10	26.40	<u> </u>
1,4-Dichlorobenzene	0.3	<10	22.51	<u> </u>
Ethylbenzene	0.2	<10	7.18	<u> </u>
Toluene	0.2	<10 ¹	5.47	
		:		
methyl athyl ketone	1 1.1	<10	1.22	
٥ ٥		i		
		:		

^{*} If % moisture is reported, results are presented on a dry-weight basis.

Page _	<u>(</u> of	
Report		

ES Job No. <u>56528</u>	Lab Sample No. 1-86-1131
Client U.S. Air Force	Field Sample No. 10-MW-8 GW-1 ES
Project PJKS (Denver)	Date Collected 1/15/86
Client No.	Date Received 1/16/86
Laboratory Supervisor Approval:	Date Analyzed 1/29/86
John R adams Sample Matrix	QC Report No. 56528-10
/X / Water (ug/L)	Dilution Factor
/_/ Soil (ug/g) (ug/Kg)	*Moisture
/ / Other	

	223	Engineering-Science		AL RESULTS SUMMARY		of
10.0	riu:		-	able Aromatics A Method 602	Repor	t
.40		ES Job No. 56528		Lab Sample	No. 1-86-	- 1131
		Client U.S. Air Force	:		e No. 10-WW-	
		Project PJKS (Denver)		Date Collec	ted 1/15/80	6
Į į	H-2	Client No.		Date Receiv	ed 1/16/8	6
S		Laboratory Supervisor Appr	oval:	Date Analyz	ed 1/29/8	6
		Johnny R. ada	<u>~~~</u>	∠ QC Report N	o. <u>56528</u> -	- 10
3	C-L	Sample Matrix()				
2	174	/X / Water (ug/L)			ctor	
		<u>/</u> / Soil (ug/g) (ug/	Kg)	*Moisture		8
PARTICIPATE AND INCIDENTAL PROPERTY OF THE PARTIES AND IN	ا يش	/_/ Other		 		
į.			1 -			
ij	_	Compound	Det Lim	oncentration Column 2	Retention Ti	
	8	:	1			
	NO.	Benzene	0.2	<0.7	2.26	
22	۵	Chlorobenzene	0.2	<10	16.46	
		1,2-Dichlorobenzene	0.4	<10	27.93	
	X3	1,3-Dichlorobenzene	0.4	<10	26.40	!
K		1,4-Dichlorobenzene	0.3	<10	22.51	
3		Ethylbenzene	0.2	<10	7.18	
Į	P .	Toluene	0.2	<10	5.47	
1 2.3	₹ ·					
2.2	54		<u> </u>	;		
	Ŕ			,		
Ì	et en	<u></u>	!			
F	8		<u> </u>			
	_	<u>L</u>	1	<u> </u>		
1577/25/55		* If % moisture is report	ed, resul	ts are presented o	n a dry-weight	basis.
5	\idelta 3	•	• .			
3		•				
	872					
3.40	\$					
Perenda iodorda						
e	t~		L-	337		
25.5	恢	862J137				
2.23						

^{*} If % moisture is reported, results are presented on a dry-weight basis.

ANALYTICAL RESULTS SUMMARY Purgeable Aromatics EPA Method 602

Page	of	1
Report		1

ES Job No.	56528	Lab Sample No	1-86-1180
Client	U.S. Air Force	Field Sample No.	1-MW-2, GW-2 ES
Project	PJKS (Denver)	Date Collected	1/16/86
Client No.		Date Received	1/17/86
Laboratory	Supervisor Approval:	Date Analyzed	1/30/86
Johnn Sample Mat	R. adamson	QC Report No	5658-10
<u>/x</u> _/	Water (ug/L)	Dilution Factor _	
/	Soil (ug/g) (ug/Kg)	*Moisture	
, ,	Other		

Compound		concentration	Retention Time	Notes
	Det Lim	Column 1 Column	2 Column 1 Column	2
Benzene	0.2	<0.7	2.26	
Chlorobenzene	0.2	<10	16.46	<u> </u>
1,2-Dichlorobenzene	0.4	<10	27.93	
1,3-Dichlorobenzene	0.4	<10	26.40	1
1,4-Dichlorobenzene	0.3	<10	22.51	
Ethylbenzen e	0.2	<10	-7.18	
Toluene	0.2	<10 [‡]	5.47	<u> </u>
		!	7 · · · ·	
		1		
		i		
		:		
		1		

^{*} If % moisture is reported, results are presented on a dry-weight basis.

MANAGEMENT PROGRAM INTERNATION PROGRAM PROGRAM

CANADA CONSTRUCTOR SPECIAL CONTRACTOR

Page	_ of
Report	

ES Job No. 56528	Lab Sample No
Client U.S. Air Force	Field Sample No. Lield flank
Project PJKS (Denver)	Date Collected ///6/86
Client No.	Date Received 1/17/86
Laboratory Supervisor Approva	1: Date Analyzed 1/30/86
John R. Oda Sample Matrix:	0C Report No. 56528-10
/X / Water (ug/L)	Dilution Factor
/_/ Soil (ug/g) (ug/Kg)	*Moisture
/_/ Other	

Compound	Concentration		Retentio	n Time	Notes
	Det Lim	Column 1 Colum	n 2 Column 1	Column 2	
Benzene	0.2	<0.7	2.26		
Chlorobenzene	0.2	<10	16.46		
1,2-Dichlorobenzene	0.4	<10	27.93		
1,3-Dichlorobenzene	0.4	<10	26.40		<u>!</u>
1,4-Dichlorobenzene	0.3	<10	22.51		
Ethylbenzene	0.2	<10	7.18		1
Toluene	0.2	<10	5.47		<u> </u>
		<u> </u>	<u> i</u>		<u> </u>
		<u></u>		<u></u>	<u> </u>
					<u> </u>
	!				
]	}			1

^{*} If % moisture is reported, results are presented on a dry-weight basis.

SEARCHE CANADAS RESERVES PARKENS

KASAASSA NOODOO KAALAATAA MAARAANAA JIRAAAGAA PAARA

Page	of	1_
Report		<u> </u>

ES Job No.	56528	Lab Sample No.	1-86-1182
Client	U.S. Air Force	Field Sample No.	Trip blank
Project	PJKS (Denver)	Date Collected	1-16-86
Client No.		Date Received	1/17/86
Laboratory	Supervisor Approval:	Date Analyzed	1/30/86
Sample Matr	\wedge	QC Report No.	56528-10
<u>/x</u> _/ w	ater (ug/L)	Dilution Factor _	
<u>/_</u> / s	Soil (ug/g) (ug/Kg)	*Moisture	
/ 0	ther		

Compound	c	oncentration	Retention Time	Notes
	Det Lim	Column 1 Column	2 Column 1 Column 2	[]
Benzene	0.2	<0.7 '	2.26	
Chlorobenzene	0.2	<10	16.46	
1,2-Dichlorobenzene	0.4	<10	27.93	
1,3-Dichlorobenzene	0.4	<10	26.40	!
1,4-Dichlorobenzene	0.3	<10	22.51	<u> </u>
Ethylbenzene	0.2	<10	7.18	!
Toluene	0.2	<10	5.47 -	<u> </u>
				<u> </u>
				<u> </u>
				<u> </u>
				ļ
				<u> </u>
		} (1	1

^{*} If % moisture is reported, results are presented on a dry-weight basis.

IT Results for 601 and 602 Methods Dated 4/15/86

B

23

ANALYTICAL SERVICES

17605 Fabrica Way • Cerritos. California 90701 • 213-921-9831 / 714-523-9200

2 d Resample

CERTIFICATE OF ANALYSIS

Prepared For:

Engineering Science

1100 Stout St., Suite 1100

Denver, CO 80204

Attn: Lisa Korner

Date:

May 21, 1986

MAY 27 1985

Page 1 of 18

Date Received

April 12, 1986

PO Number

56528

Job Number

36528/rjc

Six (6) soil samples:

Sample Number	<u>Date</u>	<u>Time</u>
PJKS, 1-SW-2, IT	4-11-86	9:30
PJKS, 1-MW-1, GW-2, IT	4-11-86	10:30
PJKS, 10-MW-8, GW-2, IT	4-11-86	12:00
PJKS, 5-MW-6, GW-3, IT	4-11-86	2:15
PJKS, 5-MW-6, GW-4, IT	4-11-86	2:15
PJKS, 4-MW-4, GW-2, IT	4-11-86	3:15

The samples were analyzed for Purgeable Halocarbons using a Tekmar liquid sample concentrator and a Varian 6000 gas chromatograph equipped with a Hall electrolytic conductivity detector. The samples were prepared according to EPA Method 8010. 64

Second column confirmations not done due to insufficient sample. -

The samples were also analyzed for Aromatic Volatile organic compounds using a Tekmar liquid sample concentrator and a Varian 6000 gas chromatograph equipped with a photoionization detector. The samples were prepared according to EPA Method 8020. The results are listed on the following summary sheets.

In addition, sample 1-SW-2 was analyzed for Methyl Ethyl Ketone using a Hewlett Packard 5890 gas chromatograph equipped with a photoionization detector. The result is as follows:

Methyl Ethyl Ketone (ug/l)

1-SW-2

TR<1

I certify that this report truly represents the finding of work performed by the or under, my direct supervision

Robert I. Sundberg Groupleader

Revenued and Approved

Richard L. Merrell Laboratory Director

Accredite 2 by the Amenican Industrial Hygiene Association

ANALYTICAL RESULTS SUMMARY Purgeable Halocarbons EPA Method 601

ES Job No56428	Lab Sample No	36528-10
Client	Field Sample No.	PJKS, 1-MW-1, GW-2, IT
Project PJKS Air Force, Denver, CO	Date Collected	4-11-86
Client No.	Date Received	4-12-86
Laboratory Supervisor Approval:	Date Analyzed	4-15-86
	QC Report No.	8010-21
Sample Matrix:		
<u>/X</u> / Water (ug/L)	Dilution Factor _	N/A
/ Soil	*Moisture	%
Other		
Spike Source		

	Concentration			Retenti		
Compound	Det Lim	Column 1	Column 2	Column 1	Column 2	Notes
Benzyl chloride	1	ND<1				
Bis(2-Chloroethoxy)methane	1	ND<1				
Bis(2-chlorojsopropyl)ether	1	ND<1				
Bromobenzene	1	ND<1		3	<u> </u>	
Bromodichloromethane	1	ND<1				
Bromoform	1	ND<1				
Bromomethane	1	ND<1				
Carbon tetrachloride	1	ND<1				
Chloroacetaldehyde	1	ND<1				
Chloral	_ 1	ND<1				
Chlorobenzene	1	ND<1				
Chloroethane	_ 1	ND<1				
Chloroform	1	ND<1				
1-Chlorohexane	_1	ND<1				
2-Chloroethyl vinyl ether	1	ND<1				
Chloromethane	1	ND<1				
Chloromethyl methyl ether	1	ND<1				
Chlorotoluene	1	ND<1		***		
Dibromochloromethane	1	ND<1				

Continued

ANALYTICAL RESULTS SUMMARY Purgeable Halocarbons EPA Method 601

PJKS, 1-MW-1, GW-2, IT

	Concentration			Retenti	on Time	
Compound	Det Lim	Column 1	Column 2	Column 1	Column 2	Notes
Dibromomethane	1_1	ND<1				
1,2-Dichlorobenzene	1_1	ND<1				_
1,3-Dichlorobenzene	1	ND<1				
1,4-Dichlorobenzene	1	ND<1				
Dichlorodifluoromethane	1	ND<1				
1,1-Dichloroethane	1_1	ND<1				
1,2-Dichloroethane	1	ND<1				
1,1-Dichloroethylene	1	ND<1	" 			
trans-1,2-dichloroethylene	1	29		11.3		
Dichloromethane	1	ND<1				
1,2-Dichloropropane	1	ND<1				
1,3-Dichloropropylene	1	ND<1				
1,1,2,2-Tetrachloroethane	1. 1	ND<1				
1,1,1,2-Tetrachloroethane	1 .	ND<1		•:		
Tetrachloroethylene	1_1	ND<1				
1,1,1-Trichloroethane	1	36		13.8		
1,1,2-Trichloroethane	1	ND<1				
Trichloroethylene	1	89		16.1		
Trichlorofluoromethane	1	ND<1				
Trichloropropane	1	ND<1				
Vinyl chloride	1	ND<1		,		

ND - This compound was not detected; the limit of detection for this analysis is less than the amount stated in the table above.

TR - Trace, this compound was present, but was below the level at which concentration could be determined.

ANALYTICAL **SERVICES**

17605 Fabrica Way • Cerritos. California 90701 • 213-921-9831 / 714-523-9200

CERTIFICATE OF ANALYSIS

Prepared For: Engineering Science

1100 Stout St., Suite 1100

Denver, CO 80204

Attn: Lisa Korner

April 29, 1986

Date Received

MARKET COUNTY OF STANSON STANSON RESISTANT REPROSES INCLUDED

April 11, 1986

P.O. ...mber

56528

Job Number

36516/rjc

Three (3) soil samples:

Sample Number	Date	<u>Time</u>	
PJKS, 2-MW-3, IT	4/10/86	2:25	
PJKS, 1-MW-2, IT	4/10/86	3:45	
PJKS, 5-MW-5, IT	4/10/86	5:00	

The samples were analyzed for purgeable halocarbons using a Tekmar liquid sample concentrator and a Varian 6000 gas chromatograph equipped with a Hall electrolytic conductivity detector. The samples were prepared according to EPA Method 601.

The samples were also analyzed for Aromatic volatile organic compounds using a Tekmar liquid sample concentrator and a Varian 6000 gas chromatograph equipped with a photoionization detector. The samples were prepared according to EPA Method 602. The results are listed on the following summary sheets.

A Quality Control Spike could not be performed due to insufficient sample amount.

cents, that this report truly represents the hinding c

Robert I. Sundberg

Groupleader

Retinated and Approved

Ruchard & Minut Richard L. Merrell

Laboratory Director

ことという からののないない こうかんかんかん とうないないがく

ANALYTICAL RESULTS SUMMARY Purgeable Halocarbons EPA Method 601

ES Job No56528	Lab Sample No. <u>3</u>	6516-6	
Client	Field Sample No. P	JKS, 1-MW-2, IT	
Project PJKS Airforce Denver CO.	Date Collected <u>4</u>	-10-86	
Client No.	Date Received4	-11-86	
Laboratory Supervisor Approval:	Date Analyzed <u>4</u>	-15-86	
	QC Report No.		_
Sample Matrix:			
<u>/X</u> / Water (ug/L)	Dilution Factor	N/A	_
/ Soil	*Moisture	·	%
/_/ Other			_
Spike Source			_

	С	oncentrati	on	Retenti	on Time	4
Compound	Det Lim	Column 1	Column 2	Column 1	Column 2	Notes
Benzyl chloride	1.0	ND<1:0				
Bis(2-Chloroethoxy)methane	1.0	ND<1.0				
Bis(2-chloroisopropyl)ether	1.0	ND<1.0				
Bromobenzene	1.0	ND<1.0				
Bromodichloromethane	1.0	ND<1.0				<u> </u>
Bromoform	1.0	ND<1.0				<u> </u>
Bromomethane	1.0	ND<1.0				
Carbon tetrachloride	1.0	ND<1.0				
Chloroacetaldehyde	1.0	ND<1.0				
Chloral	1.0	ND<1.0				
Chlorobenzene	1.0	ND<1.0				
Chloroethane	1.0	ND<1.0				
Chloroform	1.0	ND<1.0				
1-Chlorohexane	1.0	ND<1.0				
2-Chloroethyl vinyl ether	1.0	ND<1.0				
Chloromethane	1.0	ND<1.0			***	<u> </u>
Chloromethyl methyl ether	1.0	ND<1.0				
Chlorotoluene	1.0	ND<1.0				
Dibromochloromethane	1.0	ND<1.0				<u> </u>
Continued		L-345				
Continued	nak ak paktakk ke		ሲነ ቁር ቁር ቁር ቁር ል	. of a official office of the	rumanum, mumamum	ጌ የሴ የሴ የ

ANALYTICAL RESULTS SUMMARY Purgeable Halocarbons EPA Method 601

PJKS, 1-MW-2, IT

	Concentration			Retenti		
Compound	Det Lim	Column 1	Column 2	Column 1	Column 2	Notes
Dibromomethane	1.0	ND<1.0				
1,2-Dichlorobenzene	1.0	ND<1.0				
1,3-Dichlorobenzene	1.0	ND<1.0				
1,4-Dichlorobenzene	1.0	ND<1.0				
Dichlorodifluoromethane	1.0	ND<1.0				
1,1-Dichloroethane	1.0	1.5		10.8		
1,2-Dichloroethane	1.0	ND<1.0				
1,1-Dichloroethylene	1.0	ND<1.0				
trans-1,2-dichloroethylene	1.0	77		11.4		· · · · · · · · · · · · · · · · · · ·
Dichloromethane	1.0	ND<1.0				
1,2-Dichloropropane	1.0	ND<1.0				
1,3-Dichloropropylene	1.0	ND<1.0				
1,1,2,2-Tetrachloroethane	1.0	ND<1.0				
1,1,1,2-Tetrachloroethane	1.0	ND<1.0				
Tetrachloroethylene	1.0	ND<1.0				
1,1,1-Trichloroethane	1.0	10		13.9		
1,1,2-Trichloroethane	1.0	ND<1.0				
Trichloroethylene	1.0	62		16.8		
Trichlorofluoromethane	1.0	ND<1.0				
Trichloropropane	1.0	ND<1.0				
Vinyl chloride	1.0	ND<1.0				

ND - This compound was not detected; the limit of detection for this analysis is less than the amount stated in the table above.

TR - Trace, this compound was present, but was below the level at which concentration could be determined.

TOTAL STREET STREET STREET

consideration of the second of the second

8

× .

ANALYTICAL RESULTS SUMMARY Purgeable Halocarbons EPA Method 601

ES Job No56528	Lab Sample No. <u>36516-9</u>	
Client	Field Sample No. PJKS, 2-MW-3, IT	
Project PJKS Airforce Denver CO.	Date Collected 4-10-86	
Client No.	Date Received 4-11-86	
Laboratory Supervisor Approval:	Date Analyzed 4-15-86	
	QC Report No.	
Sample Matrix:		
/X_/ Water (ug/L)	Dilution Factor 1:50	
/ Soil	*Moisture	` %
/ Other		
Spike Source		

	Concentration			Retenti		
Compound	Det Lim	Column 1	Column 2	Column 1	Column 2	Notes
Benzyl chloride	1.0	ND<1.0				
Bis(2-Chloroethoxy)methane	1.0	ND<1.0				
Bis(2-chloroisopropyl)ether	1.0	ND<1.0				
Bromobenzene	1.0	ND<1.0				<u> </u>
Bromodichloromethane	1.0	ND<1.0				
Bromoform	1.0	150		20.3		
Bromomethane	1.0	ND<1.0				
Carbon tetrachloride	1.0	ND<1.0				<u> </u>
Chloroacetaldehyde	1.0	ND<1.0				<u> </u>
Chloral	1.0	ND<1.0				<u> </u>
Chlorobenzene	1.0	ND<1.0				
Chloroethane	1.0	ND<1.0				<u> </u>
Chloroform	1.0	ND<1.0				<u> </u>
1-Chlorohexane	1.0	ND<1.0				
2-Chloroethyl vinyl ether	1.0	ND<1.0				
Chloromethane	1.0	ND<1.0				
Chloromethyl methyl ether	1.0	ND<1.0				
Chlorotoluene	1.0	ND<1.0				
Dibromochloromethane	1.0	ND<1.0				

Continued

Engineering Science Page 7

ANALYTICAL RESULTS SUMMARY Purgeable Halocarbons EPA Method 601

PJKS, 2-MW-3, IT

	Co	Concentration			Retention Time		
Compound	Det Lim	Column 1	Column 2	Column 1	Column 2	Notes	
Dibromomethane	1.0	ND<1.0					
1,2-Dichlorobenzene	1.0	ND<1.0				· · · · ·	
1,3-Dichlorobenzene	1.0	ND<1.0					
1,4-Dichlorobenzene	1.0	ND<1.0					
Dichlorodifluoromethane	1.0	ND<1.0					
1,1-Dichloroethane	1.0	ND<1.0					
1,2-Dichloroethane	1.0	230		12.4			
1,1-Dichloroethylene	1.0	ND<1.0					
trans-1,2-dichloroethylene	1.0	500		11.4			
Dichloromethane	1.0	ND<1.0					
1,2-Dichloropropane	1.0	ND<1.0				·	
1,3-Dichloropropylene	1.0	ND<1.0				<u>. </u>	
1,1,2,2-Tetrachloroethane	1.0	ND<1.0					
1,1,1,2-Tetrachloroethane	1.0	ND<1.0					
Tetrachloroethylene	1.0	ND<1.0					
1,1,1-Trichloroethane	1.0	430		13.9			
1,1,2-Trichloroethane	1.0	ND<1.0					
Trichloroethylene	1.0	1200		16.8			
Trichlorofluoromethane	1.0	ND<1.0					
Trichloropropane	1.0	ND<1.0					
Vinyl chloride	1.0	ND<1.0					

ND - This compound was not detected; the limit of detection for this analysis is less than the amount stated in the table above.

TR - Trace, this compound was present, but was below the level at which concentration could be determined.

ANALYTICAL RESULTS SUMMARY Purgeable Halocarbons EPA Method 601

Client Field Sample No. PJKS, 4-MW-4, GV Project PJKS Air Force, Denver, CO Client No. Date Received 4-12-86 Laboratory Supervisor Approval: Date Analyzed 4-15-86	
Client No Date Received 4-12-86	-2, IT
QC Report No8010-21	
Sample Matrix:	
/X / Water (ug/L) Dilution Factor N/A	
/ Soil *Moisture	<u>_</u>
/_/ Other	
Spike Source	

-	С	oncentrati	on	Retenti		
Compound	Det Lim	Column 1	Column 2	Column 1	Column 2	Note
Benzyl chloride	1	ND<1				
Bis(2-Chloroethoxy)methane	1	ND<1				
Bis(2-chloroisopropyl)ether	1	ND<1				<u> </u>
Bromobenzene	1	ND<1				
Bromodichloromethane	1	4		14.9	^-2	<u> </u>
Bromoform	1	ND<1		· ·		<u> </u>
Bromomethane	1	ND<1				<u> </u>
Carbon tetrachloride	1	ND<1				<u> </u>
Chloroacetaldehyde	1	ND<1				
Chloral	1	ND<1				
Chlorobenzene	1	ND<1				
Chloroethane	1	ND<1				
Chloroform	1	ND<1				
1-Chlorohexane	1	ND<1				<u> </u>
2-Chloroethyl vinyl ether	_1	ND<1				
Chloromethane	1	ND<1				
Chloromethyl methyl ether	1	ND<1				<u> </u>
Chlorotoluene	1	ND<1				
Dibromochloromethane	1	ND<1				
Continued		7 2/0				
		L-349				

THE PERSON OF THE PROPERTY OF THE PROPERTY OF THE PERSON O

ANALYTICAL RESULTS SUMMARY Purgeable Halocarbons EPA Method 601

PJKS, 4-MW-4, GW-2, IT

<u> </u>	Co	ncentratio	n	Retenti	on Time	
Compound	Det Lim	Column 1	Column 2	Column 1	Column 2	Notes
Dibromomethane	1:	ND<1				
1,2-Dichlorobenzene	1	ND<1				
1,3-Dichlorobenzene	1	ND<1				
1,4-Dichlorobenzene	1	ND<1				
<u>Dichlorodifluoromethane</u>	1	ND<1				
1,1-Dichloroethane	1	7		10.8		
1,2-Dichloroethane	1	ND<1				
1,1-Dichloroethylene	1	ND<1	·			
trans-1,2-dichloroethylene	1	180		11.3		
Dichloromethane	1	ND<1				
1,2-Dichloropropane	1	ND<1				
1,3-Dichloropropylene	1	ND<1				
1,1,2,2-Tetrachloroethane	1	ND<1				
1,1,1,2-Tetrachloroethane	1	ND<1				
Tetrachloroethylene	1	ND<1		•	,	
1,1,1-Trichloroethane	1	24		13.8		
1,1,2-Trichloroethane	1	ND<1				
Trichloroethylene	1	310		16.7		
Trich lorofluoromethane	1	ND<1				
Trichloropropane	1	ND<1				
Vinyl chloride	1_1	ND<1				

ND - This compound was not detected; the limit of detection for this analysis is less than the amount stated in the table above.

TR - Trace, this compound was present, but was below the level at which concentration could be determined.

ANALYTICAL RESULTS SUMMARY Purgeable Halocarbons EPA Method 601

ES Job No56528	Lab Sample No. <u>36516-8</u>	
Client	Field Sample No. PJKS, 5-MW-5, IT	
Project PJKS Airforce Denver CO.	Date Collected 4-10-86	
Client No.	Date Received 4-11-86	
Laboratory Supervisor Approval:	Date Analyzed 4-15-86	_
	QC Report No.	
Sample Matrix:		
/X_/ Water (ug/L)	Dilution Factor N/A	
/ Soil	*Moisture	%
// Other		
Spike Source	·	

	Concentration			Retenti		
Compound	Det Lim	Column 1	Column 2	Column 1	Column 2	Notes
Benzyl chloride	1.0	ND<1.0				<u> </u>
Bis(2-Chloroethoxy)methane	1.0	ND<1.0				
Bis(2-chloroisopropyl)ether	1.0	ND<1.0				<u> </u>
Bromobenzene	1.0	ND<1.0				
Bromodichloromethane	1.0	ND<1.0				
Bromoform	1.0	ND<1.0				
Bromomethane	1.0	ND<1.0				
Carbon tetrachloride	1.0	ND<1.0				
Chloroacetaldehyde	1.0	ND<1.0				
Chloral	1.0	ND<1.0				
Chlorobenzene	1.0	ND<1.0				
Chloroethane	1.0	ND<1.0				
Chloroform	1.0	ND<1.0				
1-Chlorohexane	1.0	ND<1.0				
2-Chloroethyl vinyl ether	1.0	ND<1.0				
Chloromethane	1.0	ND<1.0		·		
Chloromethyl methyl ether	1.0	ND<1.0				
Chlorotoluene	1.0	ND<1.0				
Dibromochloromethane	1.0	ND<1.0				

Continued

THE PARTY OF THE P

ANALYTICAL RESULTS SUMMARY Purgeable Halocarbons EPA Method 601

PJKS, 5-MW-5, IT

	Co	Concentration			Retention Time		
Compound	Det Lim	Column 1	Column 2	Column 1	Column 2	Notes	
Dibromomethane	1.0	ND<1.0					
1,2-Dichlorobenzene	1.0	ND<1.0					
1,3-Dichlorobenzene	1.0	ND<1.0					
1,4-Dichlorobenzene	1.0	ND<1.0					
Dichlorodifluoromethane	1.0	ND<1.0					
1,1-Dichloroethane	1.0	ND<1.0					
1,2-Dichloroethane	1.0	ND<1.0					
1,1-Dichloroethylene	1.0	ND<1.0					
trans-1,2-dichloroethylene	1.0	ND<1.0					
Dichloromethane	1.0	ND<1.0					
1,2-Dichloropropane	1.0	ND<1.0					
1,3-Dichloropropylene	1.0	ND<1.0					
1,1,2,2-Tetrachloroethane	1.0	ND<1.0					
1,1,1,2-Tetrachloroethane	1.0	ND<1.0					
Tetrachloroethylene	1.0	ND<1.0					
1,1,1-Trichloroethane	1.0	ND<1.0					
1,1,2-Trichloroethane	1.0	ND<1.0					
Trichloroethylene	1.0	12		16.8			
Trichlorofluoromethane	1.0	ND<1.0					
Trichloropropane	1.0	ND<1.0					
Vinyl chloride	1.0	ND<1.0					

ND - This compound was not detected; the limit of detection for this analysis is less than the amount stated in the table above.

TR - Trace, this compound was present, but was below the level at which concentration could be determined.

ANALYTICAL RESULTS SUMMARY Purgeable Halocarbons EPA Method 601

ES Job No. <u>56428</u>	Lab Sample No	36528-13
Client	Field Sample No.	PJKS, 5-MW-6, GW-3, IT
Project PJKS Air Force, Denver, CO	Date Collected _	4-11-86
Client No.	Date Received _	4-12-86
Laboratory Supervisor Approval:	Date Analyzed	4-15-86
	QC Report No.	8010-21
Sample Matrix:	-	•
/X_/ Water (ug/L)	Dilution Factor	N/A
/ Soil	*Moisture	
/_/ Other	:	
Spike Source		

-	C	oncentrati	on	Retenti	on Time	
Compound	Det Lim	Column 1	Column 2	Column 1	Column 2	Notes
Benzyl chloride	1	ND<1				
Bis(2-Chloroethoxy)methane	_1	ND<1				
Bis(2-chloroisopropyl)ether	1_1_	ND<1				
Bromobenzene	1	ND<1	*	:		
Bromodichloromethane	1	ND<1				
Bromoform	1	ND<1				
Bromomethane	1	ND<1			,	
Carbon tetrachloride	1	ND<1				
Chloroacetaldehyde	1	ND<1				
Chloral	1	ND<1				
Chlorobenzene	1	ND<1				
Chloroethane	1	ND<1				
Chloroform	1	ND<1				
1-Chlorohexane	1	ND<1				
2-Chloroethyl vinyl ether	1	ND<1				7
Chloromethane	1	ND<1				
Chloromethyl methyl ether	1	ND<1				
Chlorotoluene	1	ND<1				
Dibromochloromethane	1	ND<1				

Continued

STATES CONTRACTOR CONT

ANALYTICAL RESULTS SUMMARY Purgeable Halocarbons EPA Method 601

PJKS, 5-MW-6, GW-3, IT

	Concentration			Retenti		
Compound	Det Lim	Column 1	Column 2	Column 1	Column 2	Notes
<u>Dibromomethane</u>	1	ND<1				
1,2-Dichlorobenzene	1 :	ND<1				
1,3-Dichlorobenzene	1 .	ND<1				
1,4-Dichlorobenzene	1	ND<1				
Dichlorodifluoromethane	i	ND<1				
1,1-Dichloroethane	1	2		10.8		
1,2-Dichloroethane	1	ND<1	/·			
1,1-Dichloroethylene	1	ND<1				
trans-1,2-dichloroethylene	1	530		11.3		
<u>Dichloromethane</u>	1	ND<1				
1,2-Dichloropropane	1	ND<1				
1,3-Dichloropropylene	1	ND<1				
1,1,2,2-Tetrachloroethane	1	ND<1				
1,1,1,2-Tetrachloroethane	1	ND<1		2		
Tetrachloroethylene	1	ND<1				
1,1,1-Trichloroethane	1	ND<1				
1,1,2-Trichloroethane	1	ND<1				
Trichloroethylene	1	41		16.8		
Trichlorofluoromethane	1	ND<1				
Trichloropropane	1	ND<1				
Vinyl chloride	1 _	ND<1				

ND - This compound was not detected; the limit of detection for this analysis is less than the amount stated in the table above.

TR - Trace, this compound was present, but was below the level at which concentration could be determined.

ANALYTICAL RESULTS SUMMARY Purgeable Halocarbons EPA Method 601

ES Job No56428	Lab Sample No.	36528-14 Duplicate
Client	Field Sample No	. PJKS, 5-MW-6, GW-3, IT
Project PJKS Air Force, Denver, CO	Date Collected	4-11-86
Client No.	Date Received	4-12-86
Laboratory Supervisor Approval:	Date Analyzed	4-15-86
	QC Report No	8010-21
Sample Matrix:		
/X / Water (ug/L)	Dilution Factor	N/A
/ Soil	*Moisture	
/ Other		
Spike Source	······································	

	· ·	oncentrati		Petenti	on Time	
	<u> </u>	Oncent at 1	<u> </u>	Ne celle l	OI, I IME	1
Compound	Det Lim	Column 1	Column 2	Column 1	Column 2	Notes
Benzyl chloride	1	ND<1				<u> </u>
Bis(2-Chloroethoxy)methane	1	ND<1				1
Bis(2-chloroisopropyl)ether	11	ND<1				
Bromobenzene	1	ND<1				
Bromodichloromethane	1	ND<1			1.2.	
Bromoform	1	ND<1		3-7		
Bromomethane	1	ND<1				
Carbon tetrachloride	1	ND<1				<u></u>
Chloroacetaldehyde	1	ND<1				
Chloral	1	ND<1				
Chlorobenzene	1	ND<1				
Chloroethane	1	ND<1				
Chloroform	1	ND<1				
1-Chlorohexane	1	ND<1				
2-Chloroethyl vinyl ether	1	ND<1	-,			
Chloromethane	1	ND<1				
Chloromethyl methyl ether	1	ND<1				
Chlorotoluene	1	ND<1				
Dibromochloromethane	1	NÖ<1				

Continued

ANALYTICAL RESULTS SUMMARY Purgeable Halocarbons EPA Method 601

PJKS, 5-MW-6, GW-3, IT Duplicate

<u> </u>	Co	ncentratio	n	Retenti	on Time	
Compound	Det Lim	Column 1	Column 2	Column 1	Column 2	Notes
Dibromomethane	1 /	ND<1				
1,2-Dichlorobenzene	1	ND<1				
1,3-Dichlorobenzene	11	ND<1				
1,4-Dichlorobenzene	1	ND<1				
Dichlorodifluoromethane	1	ND<1				
1,1-Dichloroethane	1	2		10.8		
1,2-Dichloroethane	1 7	ND<1				
1,1-Dichloroethylene	1	ND<1				
trans-1,2-dichloroethylene	11	460		11.3		
Dichloromethane	1	ND<1				
1,2-Dichloropropane	1	ND<1				
1,3-Dichloropropylene	1_1	ND<1				
1,1,2,2-Tetrachloroethane	1	ND<1	·	:		
1,1,1,2-Tetrachloroethane	11	ND<1				
Tetrachloroethylene	1	ND<1				
1,1,1-Trichloroethane	1	2		13.9	'	
1,1,2-Trichloroethane	1	ND<1				
Trichloroethylene	1	27		16.8		
Trichlorofluoromethane	1	ND<1				
Trichloropropane	1	ND<1				
Vinyl chloride	1	ND<1				·

ND - This compound was not detected; the limit of detection for this analysis is less than the amount stated in the table above.

TR - Trace, this compound was present, but was below the level at which concentration could be determined.

ANALYTICAL RESULTS SUMMARY Purgeable Halocarbons EPA Method 601

ES Job No. <u>56428</u>	Lab Sample No	36528-15
Client	Field Sample No.	PJKS, 5-MW-6, GW-4, IT
Project PJKS Air Force, Denver, CO	Date Collected _	4-11-86
Client No.	Date Received _	4-12-86
Laboratory Supervisor Approval:	Date Analyzed	4-15-86
	QC Report No.	8010-21
Sample Matrix:		
/X_/ Water (ug/L)	Dilution Factor	N/A
/ Soil	*Moisture	
/_/ Other		
Spike Source		

	Concentration			Retenti		
Compound	Det Lim	Column 1	Column 2	Column 1	Column 2	Notes
Benzyl chloride	1	ND<1				
Bis(2-Chloroethoxy)methane	1	ND<1				
Bis(2-chloroisopropyl)ether	11	ND<1				
Bromobenzene	1	ND<1				
Bromodichloromethane	1	ND<1			*-2	
Bromoform	_1_	ND<1				
Bromomethane	11	ND<1			'	
Carbon tetrachloride	1	ND<1				
Chloroacetaldehyde	1	ND<1				
Chloral	1	ND<1				
Chlorobenzene	11	ND<1				
Chloroethane	1	ND<1				
Chloroform	1	ND<1				
1-Chlorohexane	11	ND<1				
2-Chloroethyl vinyl ether	1	ND<1				
Chloromethane	1	ND<1				
Chloromethyl methyl ether	11	ND<1	~~~			
Chlorotoluene	1	ND<1				
Dibromochloromethane	1_1_	ND<1				

Continued

The state of the s

ANALYTICAL RESULTS SUMMARY Purgeable Halocarbons EPA Method 601

PJKS, 5-MW-6, GW-4, IT

	Concentration Retention Time			on Time		
Compound	Det Lim	Column 1	Column 2	Column 1	Column 2	Notes
Dibromomethane	1	ND<1				
1,2-Dichlorobenzene	1	ND<1				
1,3-Dichlorobenzene	1	ND<1				
1,4-Dichlorobenzene	1	ND<1				
<u>Dichlorodifluoromethane</u>	1	ND<1				· · · · · · · · · · · · · · · · · · ·
1,1-Dichloroethane	1	3		10.9		
1,2-Dichloroethane	1	ND<1	, '			
1,1-Dichloroethylene	1	ND<1				
trans-1,2-dichloroethylene	1	600		11.3		
<u>Dichloromethane</u>	1	ND<1				
1,2-Bichloropropane	1	ND<1				
1,3-Dichloropropylene	1	ND<1				
1,1,2,2-Tetrachloroethane	1	ND<1				- <u>-</u>
1,1,1,2-Tetrachloroethane	1	ND<1				
Tetrachloroethylene	1	ND<1				
1,1,1-Trichloroethane	1	3		14.0		
1,1,2-Trichloroethane	1	ND<1				
Trichloroethylene	1	36		16.8		
Trichlorofluoromethane	1	ND<1				
Trichloropropane	1	ND<1				· · · · · · · · · · · · · · · · · · ·
Vinyl chloride	1_1	ND<1				

ND - This compound was not detected; the limit of detection for this analysis is less than the amount stated in the table above.

TR - Trace, this compound was present, but was below the level at which concentration could be determined.

ANALYTICAL RESULTS SUMMARY Purgeable Halocarbons EPA Method 601

ES Job No. <u>56428</u>	Lab Sample No	36528-11
Client		PJKS, 10-MW-8, GW-2, IT
Project PJKS Air Force, Denver, CO	Date Collected _	4-11-86
Client No.	Date Received _	4-12-86
Laboratory Supervisor Approval:	Date Analyzed _	4-15-86
	QC Report No.	8010-21
Sample Matrix:		
/X_/ Water (ug/L)	Dilution Factor	N/A
/ Soil	*Moisture	\$
Spike Source		

	Concentration			Retenti	1	
Compound	Det Lim	Column 1	Column 2	Column 1	Column 2	Notes
Benzyl chloride	1	ND<1				<u> </u>
Bis(2-Chloroethoxy)methane	1	ND<1				
Bis(2-chloroisopropyl)ether	1	ND<1				<u> </u>
Bromobenzene	1	ND<1		: 		
Bromodichloromethane	1	ND<1				
Bromoform	1	ND<1				
Bromomethane	1	ND<1				
Carbon tetrachloride	1	ND<1				
Chloroacetaldehyde	1	ND<1				
Chloral	11	ND<1	~			
Chlorobenzene	11	ND<1				
Chloroethane	1	ND<1				
Chloroform	1	ND<1				
1-Chlorohexane	1	ND<1				
2-Chloroethyl vinyl ether	1	ND<1				
Chloromethane	1	ND<1				
Chloromethyl methyl ether	1	ND<1				
Chlorotoluene	1	ND<1				
Dibromochloromethane	1	ND<1				

Continued

STRUCK STANDARD RECEIPED BELLEVILLE STANDARD BELLEVILLE

ANALYTICAL RESULTS SUMMARY Purgeable Halocarbons EPA Method 601

PJKS, 10-MW-8, GW-2, IT

	Concentration			Retenti		
Compound	Det Lim	Column 1	Column 2	Column 1	Column 2	Notes
Dibromomethane	1	ND<1				
1,2-Dichlorobenzene	1	ND<1				
1,3-Dichlorobenzene	11	ND<1				
1,4-Dichlorobenzene	1	ND<1				
Dichlorodifluoromethane	1	ND<1				.,
1,1-Dichloroethane	1	TR<1		10.9		
1,2-Dichloroethane	11	9		12.3		
1,1-Dichloroethylene	1	ND<1				
trans-1,2-dichloroethylene	1	65		13.8		
Dichloromethane	1	ND<1				
1,2-Dichloropropane	1	ND<1				
1,3-Dichloropropylene	1	ND<1				
1,1,2,2-Tetrachloroethane	1	ND<1				
1,1,1,2-Tetrachloroethane	1	ND<1		•:		
Tetrachloroethylene	1	ND<1				
1,1,1-Trichloroethane	1	ND<1		ź	·	
1,1,2-Trichloroethane	1	ND<1		· '		
Trichloroethylene	1	400		16.7		
Trichlorofluoromethane	1	ND<1				
Trichloropropane	1	ND<1				
Vinyl chloride	1	ND<1	<u></u>			

ND - This compound was not detected; the limit of detection for this analysis is less than the amount stated in the table above.

TR - Trace, this compound was present, but was below the level at which concentration could be determined.

Sales Comments

STATE OF THE PROPERTY OF STATE OF THE PARTY

6

ANALYTICAL RESULTS SUMMARY Purgeable Aromatics .EPA Method 602

ES Job No56528	Lab Sample No	36516-4	
Client	Field Sample No.	PJKS, 1-MW-2, I	T
Project PJKS Air Force Denver CO.	Date Collected	4-10-86	
Client No.	Date Received	4-11-86	
Laboratory Supervisor Approval:	Date Analyzed	4-15-86	
	QC Report No		
Sample Matrix:			
/X_/ Water (ug/L)	Dilution Factor _	NA NA	
<u>/_</u> / Soil	*Moisture		۶
// Other			
Spike Source			

	Co	Concentration			Retention Time		
Compound	Det Lim	Column 1	Column 2	Column 1	Column 2	Notes	
Benzene	1.0	ND<1.0				· · · · · · · · · · · · · · · · · · ·	
Chlorobenzene	1.0	ND<1.0					
1,2-Dichlorobenzene	1.0	ND<1.0					
1,3-Dichlorobenzene	1.0	ND<1.0					
1,4-Dichlorobenzene	1.0	ND<1.0					
Ethyl benzene	1.0	ND<1.0					
Toluene	1.0	ND<1.0					
Xylenes (Dimethyl benzene)	1.0	ND<1.0					
							
				<u> </u>			

ND - This compound was not detected; the limit of detection for this analysis is less than the amount stated in the table above.

TR - Trace, this compound was present, but was below the level at which concentration could be determined.

THE STATES WHENTED BECOMES EXCENSES THEFTHE SPECIES 1846

THE RESERVOOR PROPERTY BESSESSOR FOR

ANALYTICAL RESULTS SUMMARY Purgeable Aromatics EPA Method 602

	· ·	
ES Job No. <u>56528</u>	Lab Sample No	36516-6
Client	Field Sample	No. PJKS, 2-MW-3, IT
Project PJKS Air Force Denver CO		ed 4-10-86
Client No.	Date Received	4-11-86
Laboratory Supervisor Approval:		4-15-86
	QC Report No.	
Sample Matrix:		
<u>/X</u> / Water (ug/L)	Dilution Fact	tor NA
/ Soil _	*Moisture	\$
/_/ Other		
Spike Source		
1	Concentration	Retention Time

	Co	ncentratio	n	Retenti	on Time	
Compound	Det Lim		Column 2		Column 2	Notes
Benzene	1.0	ND<1.0				
Chlorobenzene	1.0	ND<1.0				
1,2-Dichlorobenzene	1.0	ND<1.0				
1,3-Dichlorobenzene	1.0	ND<1.0				
1,4-Dichlorobenzene	1.0	ND<1.0				· · · · · · · · · · · · · · · · · · ·
Ethyl benzene	1.0	ND<1.0				
Toluene	1.0	ND<1.0				
Xylenes (Dimethyl benzene)	1.0	ND<1.0				
			<u> </u>			

ND - This compound was not detected; the limit of detection for this analysis is less than the amount stated in the table above.

TR - Trace, this compound was present, but was below the level at which concentration could be determined.

ANALYTICAL RESULTS SUMMARY Purgeable Aromatics EPA Method 602

					IT C	ORPORAT
Engineering Science Page 9						
			LTS SUMMARY	·		
		rgeable A				
		EPA Metho	a 602			
ES Job No. 56528			Lab Sample			
Client	<u> </u>		Field Sampl			IT
Project PJKS Air Force Denve		Date Collected 4-10-86				
Client No.			Date Received 4-11-86			
Laboratory Supervisor Approv	val:		Date Analyz			
Sample Matrix:		'	QC Report N	·		
/X / Water (ug/L)			Dilution Fa	ctor	NA	
/ / Soil			Moisture			
/_/ Other						
Spike Source						
	Co	ncentrati	on	Retenti	on Time	
Compound	Det Lim	Column 1	Column 2		Column 2	Notes
Benzene	1.0	ND<1.0				~~
Chlorobenzene	1.0	ND<1.0				
1,2-Dichlorobenzene	1.0	ND<1.0				<u> </u>
1,3-Dichlorobenzene	1.0	ND<1.0				

	Co	ncentratio	n	Retention Time		
Compound	Det Lim	Column 1	Column 2	Column 1	Column 2	Notes
Benzene	1.0	ND<1.0				
Chlorobenzene	1.0	ND<1.0				
1,2-Dichlorobenzene	1.0	ND<1.0				
1,3-Dichlorobenzene	1.0	ND<1.0				
1,4-Dichlorobenzene	1.0	ND<1.0				
Ethyl benzene	1.0	ND<1.0				
Toluene	1.0	ND<1.0				
Xylenes (Dimethyl benzene)	1.0	ND<1.0				
				-		

ND - This compound was not detected; the limit of detection for this analysis is less than the amount stated in the table above.

TR - Trace, this compound was present, but was below the level at which concentration could be determined.

ANALYTICAL SERVICES

17605 Fabrica Way • Cerritos, California 90701 • 213-921-9831 / 714-523-9200

CERTIFICATE OF ANALYSIS

Prepared For:

Engineering Science

Date:

May 16, 1986

1100 Stout St., Suite 1100

Denver CO 80204

Attn: Lisa Korner

1 of 37

Date Received:

May 25, 1986

PO Number

56423

Job Number

36686/rjc

PARTIAL REPORT

Eleven (11) water samples.

Sample Number	Date	Time
PJKS, 5-MW-4, GW-3, IT	4-23-86	9:00
PJKS, 5-MW-5, GW-3, IT	4-23-86	10:00
PJKS, 4-MW-6, GW-5, IT	4-23-86	11:15
PJKS, 4-MW-6, GW-6, IT	4-23-86	11:15
PJKS, 2-MW-3, GW-3, IT	4-23-86	2:45
PJKS, Field Blank	4-23-86	4:00
PJKS, Trip Blank	4-23-86	- 4:00
PJKS, 1-MW-1, GW-3, IT	4-24-86	9:00 -
PJKS, 1-MW-2, GW-3, IT	4-24-86	10:15
PJKS, 1-SW-2, IT	4-24-86	
PJKS, 10-MW-8, GW-3, IT	4-24-86	1:15

The samples were analyzed for semi-volatile organic contaminants using combined gas chromatography-mass spectrometry according to EPA Methods 625. Results for compounds on the EPA Hazardous Substances List are given on the enclosed summary sheets. No other semivolatile organic compounds were detected

The samples were analyzed for purgeable halocarbons using a Tekmar liquid sample concentrator and a Varian 6000 gas chromatograph equipped with a Hall electrolytic conductivity detector. The samples were prepared according to EPA Method 601.

The samples were also analyzed for aromatic volatile organic compounds using a Tekmar liquid sample concentrator and a Varian 6000 gas chromatograph equipped with a photoionization detector. The samples were prepared according to EPA Method 602. The results are listed on the following summary sheets.

Fcertificities report truly represents the finding of

Robert I. Sundbérg

Group Leader

Reviewed and Approved

Richard L. Merrell Laboratory Director

GC/MS ORGANICS ANALYSIS DATAE SHEETNAL TECHNOLOGY CORPORATION: BASE/NEUTRAL AND ACID COMPOUNDS

SAMPLE IDENTIFICATION: 1-SW-1

DATE ANALYZED: 04/30/86

UNITS: UG/L

CAS #	COMPOUND	CONC
222 2	343233	***
88-06-2		2. ND
	4-CHLORO-3-METHYLPHENOL	2. ND
95-57-8		2. ND
	2,4-DICHLOROPHENOL	2. ND
	2, 4-DIMETHYLPHENOL	2. ND
88-75-5		2. ND
	4-NITROPHENOL	2. ND
	2,4-DINITROPHENOL	2. ND
	4, 6-DINITRO-2-METHYLPHENOL	2. ND
	PENTACHLOROPHENOL	2. ND
108-95-2		2. ND
	BENZOIC ACID	2. ND 2. ND
	2-METHYLPHENOL 4-METHYLPHENOL	2. ND
		2. ND
	2, 4, 5-TRICHLOROPHENOL ACENAPHTHENE	2. ND 2. ND
120-82-1		2. ND
118-74-1	· · · · · · · · · · · · · · · · · · ·	2. ND
	HEXACHLOROETHANE	2. ND
	BIS(2-CHLOROETHYL)ETHER	2. ND
	2-CHLORONAPHTHALENE	2. ND
	1,2-DICHLOROBENZENE	2. ND
	1, 3-DICHLOROBENZENE	2. ND
	1, 4-DICHLOROBENZENE	2. ND
	3,3'-DICHLOROBENZIDINE	- 2. ND
121-14-2	2, 4-DINITROTOLUENE	2. ND 🦡
606-20-2	2,6-DINITROTOLUENE	2. ND
	1,2-DIPHENYLHYDRAZINE	2. ND
	FLUORANTHENE	2. ND
	4-CHLOROPHENYL PHENYL ETHER	2. ND
	4-BROMOPHENYL PHENYL ETHER	2. ND
	BIS(2-CHLOROISOPROPYL)ETHER	2. ND
	BIS(2-CHLOROETHOXY)METHANE	2. ND
	HEXACHLOROBUTADIENE	2. ND
	HEXACHLOROCYCLOPENTADIENE	2. ND
· -	ISOPHORONE	2. ND
91-20-3 98-95-3	NAPHTHALENE NITROBENZENE	2. ND 2. ND
86-30-6	N-NITROSODIPHENYLAMINE	2. ND 2. ND
621-64-7		2. ND
	BIS(2-ETHYLHEXYL)PHTHALATE	2. ND
_		. 2. ND
	DI-N-BUTYL PHTHALATE	2. ND
–	DI-N-OCTYL PHTHALATE	2. ND
	DIETHYL PHTHALATE	2. ND
	DIMETHYL PHTHALATE	2. ND
	BENZO(A)ANTHRACENE	2. ND
	BENZO(A)PYRENE	2. ND
·	BENZO(B)FLUORANTHENE	2. ND
207-08-9	BENZO(K)FLUORANTHENE	2. ND

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET - PAGE 2 BASE/NEUTRAL AND ACID COMPOUNDS

SAMPLE IDENTIFICATION: 1-SW-1

DATE ANALYZED: 04/30/86

UNITS: UG/L

CAS #	COMPOUND	CONC
89225	85=22248	6223
218-01-9	CHRYSENE	2. ND
208-96-8	· ACENAPHTHYLENE	2. ND
120-12-7	ANTHRACENE	· 2. ND
191-24-2	BENZO(GHI)PERYLENE	2. ND
86-73-7	FLUORENE	2. ND
85-01-8	PHENANTHRENE	2. ND
53-70-3	DIBENZO(A, H)ANTHRACENE	2. ND
193-39-5	INDENO(1,2,3-CD)PYRENE	2. ND
129-00-0	PYRENE	2. ND -
100-51-6	BENZYL ALCOHOL	2. ND
106-47-8	4-CHLOROANILINE	2. ND
132-64-9	DIBENZOFURAN	2. ND
91-57-6	2-METHYLNAPHTHALENE	2. ND
88-74-4	2-NITROANILINE	2. ND
99-09-2	3-NITROANILINE	2. ND
100-01-6	4-NITROANILINE	2. ND

ND - THIS COMPOUND WAS NOT DETECTED; THE LIMIT OF DETECTION FOR THIS COMPOUND IS STATED TO THE LEFT OF THE ND SPECIFIER.

TR - TRACE, THIS COMPOUND WAS PRESENT, BUT WAS BELOW THE LEVEL AT WHICH THE CONCENTRATION COULD ACCURATELY BE DETERMINED. THE APPROXIMATE CONCENTRATION IS REPORTED FOR YOUR REFERENCE.

ANALYTICAL RESULTS SUMMARY Purgeable Aromatics EPA Method 602

ES Job No56428		Lab Sample No	36528-7
Client	<u> </u>	Field Sample No. <u>F</u>	JKS, 1-MW-1, GW-2, IT
Project PJKS - Air Force, [Denver,_CO	Date Collected	4-11-86
Client No.		Date Received	4-12-86
Laboratory Supervisor Approx		Date Analyzed	4-15-86
	· · · · · · · · · · · · · · · · · · ·	QC Report No.	8020-19
Sample Matrix:	•		
/X_/ Water (ug/L)	•	Dilution Factor	N/A
/ Soil	•	*Moisture	
/ Other	•		
Spike Source		•	

•	Co	Concentration			Retention Time		
Compound	Det Lim	Column 1	Column 2	Column 1	Column 2	Notes	
Benzene	1.0	ND<1.0					
Chlorobenzene	1.0	ND<1.0			,		
1,2-Dichlorobenzene	1.0	ND<1.0					
1,3-Dichlorobenzene	1.0	ND<1.0					
1,4-Dichlorobenzene	1.0	ND<1.0					
Ethyl benzene	1.0	ND<1.0					
Toluene	1.0	ND<1.0					
Xylenes (Dimethyl benzene)	1.0	ND<1.0					
<u> </u>							
	<u></u>			<u> </u>			
•			į				

ND - This compound was not detected; the limit of detection for this analysis is less than the amount stated in the table above.

TR - Trace, this compound was present, but was below the level at which concentration could be determined.

ANALYTICAL RESULTS SUMMARY Purgeable Aromatics EPA Method 602

ES Job No	Lab Sample No	36528-9
Client	Field Sample No.	PJKS, 4-MW-4, GW-2, IT
Project PJKS - Air Force, Denver, CO	Date Collected _	4-11-86
Client No.	Date Received _	4-12-86
Laboratory Supervisor Approval:	Date Analyzed	4-15-86
:	QC Report No.	8020-19
Sample Matrix:	- ·	
/X_/ Water (ug/L)	Dilution Factor	N/A
/ Soil .	*Moisture	*
Other		
Spike Source		

•	Co	Concentration			on Time]
Compound	Det Lim	Column 1	Column 2	Column 1	Column 2	Notes
Benzene	1.0	ND<1.0				
Chlorobenzene	1.0	ND<1.0		,.: 		
1,2-Dichlorobenzene	1.0	ND<1.0			4,5	
1,3-Dichlorobenzene	1.0	ND<1.0				
1,4-Dichlorobenzene	1.0	ND<1.0				
Ethyl benzene	1.0	ND<1.0				
Toluene	1.0	ND<1.0				
Xylenes (Dimethyl benzene)	1.0	ND<1.0				
•						
· •						

ND - This compound was not detected; the limit of detection for this analysis is less than the amount stated in the table above.

TR - Trace, this compound was present, but was below the level at which concentration could be determined.

CATELLA CONTRACTOR CON

ANALYTICAL RESULTS SUMMARY Purgeable Aromatics EPA Method 602

•		4-Ma-	
ES Job No56428	Lab Sample No	36528-10/	
Client	Field Sample No.	PJKS, 5-MW-6, GW-4, IT	
Project PJKS - Air Force, Denver, CO	Date Collected _	4-11-86	
Client No.	Date Received _	4-12-86	
Laboratory Supervisor Approval:	Date Analyzed	4-15-86	
	QC Report No.	8020-19	
Sample Matrix:	· · · · · · · · · · · · · · · · · · ·		
/X_/ Water (ug/L)	Dilution Factor	N/A	
/ Soil .	*Moisture		š
/ Other			
Spike Source			

• •	co	Concentration			Retention Time		
Compound	Det Lim	Column 1	Column 2	Column 1	Column 2	Notes	
Benzene	1.0	ND<1.0					
Chlorobenzene	1.0	ND<1.0					
1,2-Dichlorobenzene	1.0	1.1		14.6	1.3 		
1,3-Dichlorobenzene	1.0	TR<1.0		13.0		, -	
1,4-Dichlorobenzene	1.0	1.7		12.5			
Ethyl benzene	1.0	ND<1.0					
Toluene	1.0	ND<1.0					
Xylenes (Dimethyl benzene)	1.0	ND<1.0				···	
·							

ND - This compound was not detected; the limit of detection for this analysis is less than the amount stated in the table above.

TR - Trace, this compound was present, but was below the level at which concentration could be determined.

ANALYTICAL RESULTS SUMMARY Purgeable Áromatics EPA Method 602

ES Job No. <u>56428</u> Client Project <u>PJKS - Air Force, Denver, CO</u> Client No. Laboratory Supervisor Approval:	Lab Sample No Field Sample No. Date Collected Date Received Date Analyzed	PJKS, 5-MW-6, GW-3, IT 4-11-86 4-12-86		
Sample Matrix:	QC Report No.	8020-19		
/X / Water (ug/L) /_ / Soil /_ / Other	Dilution Factor _ *Moisture			
Spike Source				

	Concentration			Retenti		
Compound	Det Lim	Column 1	Column 2	Column 1	Column 2	Notes
Benzene	1.0	ND<1.0				
Chlorobenzene	1.0	ND<1.0		:		
1,2-Dichlorobenzene	1.0	ND<1.0			4.0	
1,3-Dichlorobenzene	1.0	TR<1.0		7-		
1,4-Dichlorobenzene	1.0	TR<1.0				
Ethyl benzene	1.0	ND<1.0				
Toluene	1.0	ND<1.0				
Xylenes (Dimethyl benzene)	1.0	ND<1.0				

ND - This compound was not detected; the limit of detection for this analysis is less than the amount stated in the table above.

TR - Trace, this compound was present, but was below the level at which concentration could be determined.

ANALYTICAL RESULTS SUMMARY Purgeable Aromatics EPA Method 602

ES Job No56428		Lab Sample No.	36528-8	
Client	<u> </u>	Field Sample No	o. PJKS, 10-MW-8,	GW-2, IT
Project PJKS - Air Force, Denv	er, CO	Date Collected	4-11-86	
Client No.		Date Received	4-12-86	
Laboratory Supervisor Approval:		Date Analyzed	4-15-86	
		QC Report No.	8020-19	
Sample Matrix:	1 :			
/X / Water (ug/L)	•	Dilution Factor	r N/A	
/ Soil	•	*Moisture		*
/ Other	• • .			
Spike Source				
		ntration	Patention Time	T

•-	Concentration			Retenti		
Compound	Det Lim	Column 1	Column 2	Column 1	Column 2	Notes
Benzene	1.0	ND<1.0				
Chlorobenzene	1.0	ND<1.0		• :		
1,2-Dichlorobenzene	1.0	ND<1.0				
1,3-Dichlorobenzene	1.0	ND<1.0				
1,4-Dichlorobenzene	1.0	ND<1.0				
Ethyl benzene	1.0	ND<1.0				
Toluene	1.0	ND<1.0				
Xylenes (Dimethyl benzene)	1.0	ND<1.0				
•						
:						

ND - This compound was not detected; the limit of detection for this analysis is less than the amount stated in the table above.

TR - Trace, this compound was present, but was below the level at which concentration could be determined.

IT Results for 601 and 602 Methods Dated 4/23/86 and 4/24/86

10000000

北京南東京大名と、日本の大大

ANALYTICAL RESULTS SUMMARY Purgeable Halocarbons EPA Method 601

ES Job No56423	Lab Sample No	36686-19
Client	Field Sample No.	PJKS, 1-MW-1, GW-3, IT
ProjectAir Force PJKS	Date Collected _	4-24-86
Client No.	Date Received _	4-25-86
Laboratory Supervisor Approval:	Date Analyzed _	4-30-86
	QC Report No	601-28
Sample Matrix:		
/X_/ Water (ug/L)	Dilution Factor	N/A
/ Soil	*Moisture	9
/_/ Other		
Spike Source		

			<u>oncentrati</u>	on	Retention Time		1
	Compound	Det Lim	Column 1	Column 2	Column 1	Column 2	Not
	Benzyl chloride	1.0	ND<1.0				
	Bis(2-Chloroethoxy)methane	1.0	ND<1.0			·	
	Bis(2-chloroisopropyl)ether	1.0	ND<1.0				
	Bromobenzene	1.0	ND<1.0				
ļ	<u>Bromodichloromethane</u>	1.0	ND<1.0			<u> </u>	$oldsymbol{ol}}}}}}}}}}}}}}}}}$
	Bromoform	1.0	ND<1.0		·		
	Bromomethane	1.0	ND<1.0				
	Carbon tetrachloride	1.0	ND<1.0				
	Chloroacetaldehyde	1.0	ND<1.0				
	Chloral	1.0	ND<1.0				<u> </u>
	Chlorobenzene	1.0	ND<1.0				
	Chloroethane	1.0	ND<1.0				$oldsymbol{ol}}}}}}}}}}}}}}}}}}$
	Chloroform	1.0	ND<1.0				
	1-Chlorohexane	1.0	ND<1.0				
	2-Chloroethyl vinyl ether	1.0	ND<1.0				<u> </u>
,	Chloromethane	1.0	ND<1.0				1_
	Chloromethyl methyl ether	1.0	ND<1.0				
	Chlorotoluene	1.0	ND<1.0				1_
	Dibromochloromethane	1.0	ND<1.0				
	Continued						
	cont mueu		L-372				

Control of the second property of the second

ANALYTICAL RESULTS SUMMARY Purgeable Halocarbons EPA Method 601

PJKS, 1-MW-1, GW-3, IT

•	Concentration			Retenti		
Compound	Det Lim	Column 1	Column 2	Column 1	Column 2	Notes
Dibromomethane.	1.0	ND<1.0				
1,2-Dichlorobenzene	1.0	ND<1.0				
1,3-Dichlorobenzene	1.0	ND<1.0				
1,4-Dichlorobenzene	1.0	ND<1.0				
Dichlorodifluoromethane	1.0	ND<1.0				
1,1-Dichloroethane	1.0	1.8		10.3		
1,2-Dichloroethane	1.0	ND<0.1				
1,1-Dichloroethylene	1.0	1.2		9.2		
trans-1,2-dichloroethylene	1.0	ND<1.0				
<u>Dichloromethane</u>	1.0	ND<1.0				
1,2-Dichloropropane	1.0	ND<1.0				
1,3-Dichloropropylene	1.0	ND<1.0				
1,1,2,2-Tetrachloroethane	1.0	ND<1.0		;		
1,1,1,2-Tet chloroethane	1.0	ND<1.0				
Tetrachloroethylene	1.0	ND<1.0		•		····
1,1,1-Trichloroethane	1.0	ND<1.0				
1,1,2-Trichloroethane	1.0	ND<1.0				
Trichloroethylene	1.0	130	125	16.4	12.8	
Trichlorofluoromethane	1.0	ND<1.0				
Trichloropropane	1.0	ND<1.0				
Vinyl chloride	1.0	ND<1.0				

ND - This compound was not detected; the limit of detection for this analysis is less than the amount stated in the table above.

Engineering Science Page 22

CANADAS CANADAS REPORTES CONTRACTOR

green bearing the second property and the second property and seco

ANALYTICAL RESULTS SUMMARY Purgeable Halocarbons EPA Method 601

ES Job No. <u>56423</u>	Lab Sample No	36686-6
Client	Field Sample No. F	JKS, 1-MW-2, GW-3, ITT
Project Air Force PJKS	Date Collected	4-24-86
Client No.	Date Received	4-25-86
Laboratory Supervisor Approval:	Date Analyzed	5-2-86
	QC Report No.	601-28
Sample Matrix:		
<u>/X</u> / Water (ug/L)	Dilution Factor	. N/A
// Soil	*Moisture	9
/_/ Other		<u>, _ , _ , </u>
Spike Source		

	Concentration			Retenti]	
Compound	Det Lim	Column 1	Column 2	Column 1	Column 2	Notes
Benzyl chloride	1.0	ND<1.0				<u> </u>
Bis(2-Chloroethoxy)methane	1.0	ND<1.0				
Bis(2-chloroisopropyl)ether	1.0	ND<1.0				
Bromobenzene	1.0	ND<1.0		٠٠:		<u> </u>
Bromodichloromethane	1.0	ND<1.0	•		^ <u> </u>	
Bromoform	1.0	ND<1.0				
Bromomethane	1.0	ND<1.0			,	
Carbon tetrachloride	1.0	ND<1.0				
Chloroacetaldehyde	1.0	ND<1.0				
Chloral	1.0	ND<1.0				
Chlorobenzene	1.0	ND<1.0				
Chloroethane	1.0	ND<1.0				
Chloroform	1.0	ND<1.0				
1-Chlorohexane	1.0	ND<1.0				<u> </u>
2-Chloroethyl vinyl ether	1.0	ND<1.0				<u> </u>
Chloromethane	1.0	ND<1.0				
Chloromethyl methyl ether	1.0	ND<1.0			-7-	
Chlorotoluene	1.0	ND<1.0				
Dibromochloromethane	1.0	ND<1.0				

Continued

ANALYTICAL RESULTS SUMMARY Purgeable Halocarbons EPA Method 601

PJKS, 1-MW-2, GW-3, IT

	Concentration			Retenti		
Compound	Det Lim	Column 1	Column 2	Column 1	Column 2	Notes
Dibromomethane	1.0	ND<1.0				
1,2-Dichlorobenzene	1.0	ND<1.0				
1,3-Dichlorobenzene	1.0	ND<1.0				
1,4-Dichlorobenzene	1.0	ND<1.0				
Dichlorodifluoromethane	1.0	ND<1.0				
1,1-Dichloroethane	1.0	2.0		10.4		
1,2-Dichloroethane	1.0	ND<0.1				
1,1-Dichloroethylene	1.0	ND<1.0				
trans-1,2-dichloroethylene	1.0	ND<1.0				
Dichloromethane	1.0	ND<1.0				
1,2-Dichloropropane	1.0	ND<1.0				
1,3-Dichloropropylene	1.0	ND<1.0				
1,1,2,2-Tetrachloroethane	1.0	1.2		21.9		
1,1,1,2-Tetrachloroethane	1.0	ND<1.0				
Tetrachloroethylene	1.0	1.2		- 21.9		
1,1,1-Trichloroethane	1.0	9.0		13.4	,	
1,1,2-Trichloroethane	1.0	ND<1.0				
Trichloroethylene	1.0	67.0	80	16.4	12.8	
Trichlorofluoromethane	1.0	ND<1.0				
Trichloropropane	1.0	ND<1.0				
Vinyl chloride	1.0	ND<1.0				

ND - This compound was not detected; the limit of detection for this analysis is less than the amount stated in the table above.

ANALYTICAL RESULTS SUMMARY Purgeable Halocarbons EPA Method 601

ES Job No56423	Lab Sample No	36686-18
Client	Field Sample No. P	JKS, 2-MW-3, GW-3, IT
Project Air Force PJKS	Date Collected	4-23-86
Client No.	Date Received	4-25-86
Laboratory Supervisor Approval:	Date Analyzed	4-30-86
	QC Report No.	601-28
Sample Matrix:		
<u>/X</u> / Water (ug/L)	Dilution Factor	N/A
/ Soil	*Moisture	
/_/ Other		
Spike Source		

	Concentration			Retention Time		
Compound	Det Lim	Column 1	Column 2	Column 1	Column 2	Notes
Benzyl chloride	1.0	ND<1.0	***			
Bis(2-Chloroethoxy)methane	1.0	ND<1.0				
Bis(2-chloroisopropyl)ether	1.0	ND<1.0				
Bromobenzene	1.0	ND<1.0				<u> </u>
Bromodichloromethane	1.0	ND<1.0	••••		4.2.	
Bromoform	1.0	ND<1.0		z-1		ļ
Bromomethane	1.0	ND<1.0			`	ļ
Carbon tetrachloride	1.0	ND<1.0				
Chloroacetaldehyde	1.0	ND<1.0				
Chloral	1.0	ND<1.0				
Chlorobenzene	1.0	ND<1.0				
Chloroethane	1.0	ND<1.0				
Chloroform	1.0	ND<1.0				
1-Chlorohexane	1.0	ND<1.0				
2-Chloroethyl vinyl ether	1.0	ND<1.0				
Chloromethane	1.0	ND<1.0				
Chloromethyl methyl ether	1.0	ND<1.0				
Chlorotoluene	1.0	ND<1.0				
Dibromochloromethane	1.0	ND<1.0				

Continued

ANALYTICAL RESULTS SUMMARY Purgeable Halocarbons EPA Method 601

PJKS, 2-MW-3, GW-3, IT

	Concentration			Retenti		
Compound	Det Lim	Column 1	Column 2	Column 1	Column 2	Notes
Dibromomethane	1.0	ND<1.0				
1,2-Dichlorobenzene	1.0	ND<1.0				
1,3-Dichlorobenzene	1.0	ND<1.0				
1,4-Dichlorobenzene	1.0	ND<1.0				
Dichlorodifluoromethane	1.0	ND<1.0				
1,1-Dichloroethane	1.0	12.7	334	10.3	11.9	
1,2-Dichloroethane	1.0	ND<0.1				
1,1-Dichloroethylene	1.0	ND<1.0				
trans-1,2-dichloroethylene	1.0	ND<1.0				
Dichloromethane	1.0	ND<1.0				
1,2-Dichloropropane	1.0	ND<1.0				i
1,3-Dichloropropylene	1.0	ND<1,0				
1,1,2,2-Tetrachloroethane	1.0	ND<1.0				-
1,1,1,2-Tetrachloroethane	1.0	ND<1.0				
Tetrachloroethylene	1.0	ND<1.0		•		
1,1,1-Trichloroethane	1.0	ND<1.0				
1,1,2-Trichloroethane	1.0	ND<1.0				
Trichloroethylene	1.0	1110	841	16.4	12.7	
Trichlorofluoromethane	1.0	ND<1.0				
Trichloropropane	1.0	ND<1.0				
Vinyl chloride	1.0	ND<1.0				•

ND - This compound was not detected; the limit of detection for this analysis is less than the amount stated in the table above.

ANALYTICAL RESULTS SUMMARY Purgeable Halocarbons EPA Method 601

ES Job No. <u>56423</u>	Lab Sample No	36686-13
Client		PJKS, 5-MW-4, GW-3, IT
Project Air Force PJKS	Date Collected _	4-23-86
Client No.	Date Received _	4-25-86
Laboratory Supervisor Approval:	Date Analyzed _	4-30-86
	QC Report No	601-28
Sample Matrix:	·	
<u>/X</u> / Water (ug/L)	Dilution Factor	N/A
/ Soil	*Moisture	*
/ Other		
Spike Source		

	Concentration			Retenti	J	
Compound	Det Lim	Column 1	Column 2	Column 1	Column 2	Notes
Benzyl chloride	1.0	ND<1.0				
Bis(2-Chloroethoxy)methane	1.0	ND<1.0				
Bis(2-chloroisopropyl)ether	1.0	ND<1.0				
Bromobenzene	1.0	ND<1.0				
Bromodichloromethane	1.0	ND<1.0			,	
Bromoform	1.0	ND<1.0		<u>ن</u>		
Bromomethane	1.0	ND<1.0			'	
Carbon tetrachloride	1.0	ND<1.0				
Chloroacetaldehyde	1.0	ND<1.0				
Chloral	1.0	ND<1.0				
Chlorobenzene	1.0	ND<1.0				
Chloroethane	1.0	ND<1.0				
Chloroform	1.0	ND<1.0				
1-Chlorohexane	1.0	ND<1.0				
2-Chloroethyl vinyl ether	1.0	ND<1.0				
Chloromethane	1.0	ND<1.0				
Chloromethyl methyl ether	1.0	ND<1.0				
Chlorotoluene .	1.0	ND<1.0				
<u>Dibromochloromethane</u>	1.0	ND<1.0				

Continued

ANALYTICAL RESULTS SUMMARY Purgeable Halocarbons EPA Method 601

PJKS, 5-MW-4, GW-3, IT

	Co	ncentratio	n	Retenti		
Compound	Det Lim	Column 1	Column 2	Column 1	Column 2	Notes
<u>Dibromomethane</u>	1.0	ND<1.0				
1,2-Dichlorobenzene	1.0	ND<1.0				
1,3-Dichlorobenzene	1.0	ND<1.0				
1,4-Dichlorobenzene	1.0	ND<1.0				
Dichlorodifluoromethane	1.0	ND<1.0				
1,1-Dichloroethane	1.0	11.5	18.7	10.3	12.0	
1,2-Dichloroethane	1.0	ND<0.1				
1,1-Dichloroethylene	1.0	ND<1.0				
trans-1,2-dichloroethylene	1.0	36,2	<1.0	11.0		
Dichloromethane	1.0	ND<1.0				
1,2-Dichloropropane	1.0	ND<1.0				
1,3-Dichloropropylene	1.0	ND<1.0				
1,1,2,2-Tetrachloroethane	1.0	1.2	1.6.	219	14.8	
1,1,1,2-Tetrachloroethane	1.0	ND<1.0		`	. :	
Tetrachloroethylene	1.0	1.2	1.6	21.9 -	14.8	
1,1,1-Trichloroethane	1.0	28.6	12.4	13.4	12.4	
1,1,2-Trichloroethane	1.0	ND<1.0				
Trichloroethylene	1.0	67.0	80.5	16.4	12.8	···
Trichlorofluoromethane	1.0	ND<1.0				
Trichloropropane	1.0	ND<1.0				
Vinyl chloride	1.0	ND<1.0				

ND - This compound was not detected; the limit of detection for this analysis is less than the amount stated in the table above.

TR - Trace, this compound was present, but was below the level at which concentration could be determined.

ANALYTICAL RESULTS SUMMARY Purgeable Halocarbons EPA Method 601

ES Job No56423	Lab Sample No	36686-14
Client		PJKS, 5-MW-5, GW-3, IT
Project Air Force PJKS	Date Collected _	4-23-86
Client No.	Date Received	4-25-86
Laboratory Supervisor Approval:	Date Analyzed _	4-30-86
	QC Report No	601-28
Sample Matrix:		
<u>/X</u> / Water (ug/L)	Dilution Factor	N/A
/ Soil	*Moisture	x
/ Other		
Spike Source		

	Concentration			Retenti	1	
Compound	Det Lim	Column 1	Column 2	Column 1	Column 2	Notes
Benzyl chloride	1.0	ND<1.0				<u> </u>
Bis(2-Chloroethoxy)methane	1.0	ND<1.0			'	<u> </u>
Bis(2-chloroisopropyl)ether	1,0	ND<1.0				
Bromobenzene	1.0	ND<1.0	•••			
Bromodichloromethane	1.0	ND<1.0				
Bromoform	1.0	ND<1.0				
Bromomethane	1.0	ND<1.0				
Carbon tetrachloride	1.0	ND<1.0				
Chloroacetaldehyde	1.0	ND<1.0				
Chloral	1.0	ND<1.0				
Chlorobenzene	1.0	ND<1.0				
Chloroethane	1.0	ND<1.0				
Chloroform	1.0	ND<1.0				
1-Chlorohexane	1.0	ND<1.0				
2-Chloroethyl vinyl ether	1.0	ND<1.0				
Chloromethane	1.0	ND<1.0				
Chloromethyl methyl ether	1.0	ND<1.0				
Chlorotoluene	1.0	ND<1.0			***	
Dibromochloromethane	1.0	ND<1.0				

Continued

ANALYTICAL RESULTS SUMMARY Purgeable Halocarbons EPA Method 601

PJKS, 5-MW-5, GW-3, IT

	Co	Concentration			Retention Time		
Compound	Det Lim	Column 1	Column 2	Column 1	Column 2	Notes	
Dibromomethane	1.0	ND<1.0					
1,2-Dichlorobenzene	1.0	ND<1.0					
1,3-Dichlorobenzene	1.0	ND<1.0					
1,4-Dichlorobenzene	1.0	ND<1.0					
Dichlorodifluoromethane	1.0	ND<1.0					
1,1-Dichloroethane	1.0	ND<1.0					
1,2-Dichloroethane	1.0	ND<0.1					
1,1-Dichloroethylene	1.0	ND<1.0			·		
trans-1,2-dichloroethylene	1.0	2.3		11.1			
Dichloromethane	1.0	ND<1.0					
1,2-Dichloropropane	1.0	ND<1.0					
1,3-Dichloropropylene	1.0	ND<1.0					
1,1,2,2-Tetrachloroethane	1.0	ND<1.0					
1,1,1,2-Tetrachloroethane	1.0	ND<1.0					
Tetrachloroethylene	1.0	ND<1.0	·				
1,1,1-Trichloroethane	1.0	TR<1.0					
1,1,2-Trichloroethane	1.0	ND<1.0					
Trichloroethylene	1.0	ND<1.0					
Trichlorofluoromethane	1.0	ND<1.0				·- · · · ·	
Trichloropropane	1.0	ND<1.0					
Vinyl chloride	1.0	ND<1.0					

ND - This compound was not detected; the limit of detection for this analysis is less than the amount stated in the table above.

ANALYTICAL RESULTS SUMMARY Purgeable Halocarbons EPA Method 601

ES Job No56423	Lab Sample No	\$ 36686-15, 36686-16
Client	Field Sample No.	PJKS, 4-MW-6, GW-5, IT
Project Air Force PJKS	Date Collected _	4-23-86
Client No.	Date Received _	4-25-86
Laboratory Supervisor Approval:	Date Analyzed _	4-30-86
	QC Report No.	601-28
Sample Matrix:		
<u>/X</u> / Water (ug/L)	Dilution Factor	N/A
// Soil	*Moisture	*
/_/ Other		
Spike Source		

	Concentration			Retention Time		
Compound	Det Lim	Column 1	Column 2	Column 1	Column 2	Notes
Benzyl chloride	1.0	ND<1.0				
Bis(2-Chloroethoxy)methane	1.0	ND<1.0				
Bis(2-chloroisopropyl)ether	1.0	ND<1.0				
Bromobenzene	1.0	ND<1.0	,			
Bromodichloromethane	1.0	ND<1.0				
Bromoform	1.0	ND<1.0				
Bromomethane	1.0	ND<1.0				
Carbon tetrachloride	1.0	ND<1.0				<u> </u>
Chloroacetaldehyde	1.0	ND<1.0				
Chloral	1.0	ND<1.0				
Chlorobenzene	1.0	ND<1.0				
Chloroethane	1.0	ND<1.0				
Chloroform	1.0	ND<1.0				
1-Chlorohexane	1.0	ND<1.0				
2-Chloroethyl vinyl ether	1.0	ND<1.0				
Chloromethane	1.0	ND<1.0				
Chloromethyl methyl ether	1.0	ND<1.0				
Chlorotoluene	1.0	ND<1.0				
Dibromochloromethane	1.0	ND<1.0				

Continued

^{\$ -} Different amounts of sample were used in analysis for quantitation purposes.

ANALYTICAL RESULTS SUMMARY Purgeable Halocarbons EPA Method 601

PJKS, 4-MW-6, GW-5, IT

ſ	Co	ncentratio	n	Retenti	on Time	
Compound	Det Lim	Column 1	Column 2	Column 1	Column 2	Notes
Dibromomethane	1.0	ND<1.0				
1,2-Dichlorobenzene	1.0	ND<1.0				
1,3-Dichlorobenzene	1.0	ND<1.0				
1,4-Dichlorobenzene	1.0	ND<1.0				
Dichlorodifluoromethane	1.0	ND<1.0				
1,1-Dichloroethane	1.0	4.0		10.3		
1,2-Dichloroethane	1.0	ND<0.1				
1,1-Dichloroethylene	1.0	1.9		9.3		
trans-1,2-dichloroethylene	1.0	290.0	4.0	11.0	9.1	
Dichloromethane	1.0	ND<1.0				
1,2-Dichloropropane	1.0	ND<1.0				
1,3-Dichloropropylene	1.0	ND<1.0				
1,1,2,2-Tetrachloroethane	1.0	ND<1.0		:		
1,1,1,2-Tetrachloroethane	1.0	ND<1.0				
Tetrachloroethylene	1.0	ND<1.0		•	• • •	
1,1,1-Trichloroethane	1.0	ND<1.0				<u> </u>
1,1,2-Trichloroethane	1.0	ND<1.0				
Trichloroethylene	1.0	190.0	194	16.4	12.7	
Trichlorofluoromethane	1.0	ND<1.0				
Trichloropropane	1.0	ND<1.0				
Vinyl chloride	1.0	ND<1.0				<u> </u>

ND - This compound was not detected; the limit of detection for this analysis is less than the amount stated in the table above.

TR - Trace, this compound was present, but was below the level at which concentration could be determined.

ANALYTICAL RESULTS SUMMARY Purgeable Halocarbons EPA Method 601

ES Job No56423	Lab Sample No	36686-17
Client		PJKS, 4-MW-6, GW-6, IT
Project Air Force PJKS	Date Collected _	4-23-86
Client No.	Date Received _	4-25-86
Laboratory Supervisor Approval:	Date Analyzed _	4-30-86
	QC Report No	601-28
Sample Matrix:		
/X_/ Water (ug/L)	Dilution Factor	N/A
/ Soil	*Moisture	\$
/ Other		
Spike Source		

	Concentration			Retenti		
Compound	Det Lim	Column 1	Column 2	Column 1	Column 2	Notes
Benzyl chloride	1.0	ND<1.0				
Bis(2-Chloroethoxy)methane	1.0	ND<1.0				
Bis(2-chloroisopropyl)ether	1.0	ND<1.0				
Bromobenzene	1.0	ND<1.0				
Bromodichloromethane	1.0	ND<1.0	•			
Bromoform	1.0	ND<1.0		~~. <u></u>		
Bromomethane	1.0	ND<1.0			'	
Carbon tetrachloride	1.0	ND<1.0				
Chloroacetaldehyde	1.0	ND<1.0				
Chloral	1.0	ND<1.0				
Ch1orobenzene	1.0	ND<1.0				
Chloroethane	1.0	ND<1.0				
Chloroform	1.0	ND<1.0				
1-Chlorohexane	1.0	ND<1.0				
2-Chloroethyl vinyl ether	1.0	ND<1.0				
Chloromethane	1.0	ND<1.0				
Chloromethyl methyl ether	1.0	ND<1.0				
Chlorotoluene	1.0	ND<1.0				
Dibromochloromethane	1.0	ND<1.0				

Continued

THE RESERVE THE PROPERTY OF THE PERSON OF TH

8

ANALYTICAL RESULTS SUMMARY Purgeable Halocarbons EPA Method 601

PJKS, 4-MW-6, GW-6, IT

	Co	Concentration Retention Time		Retention Time		
Compound	Det Lim	Column 1	Column 2	Column 1	Column 2	Notes
Dibromomethane	1.0	ND<1.0				
1,2-Dichlorobenzene	1.0	ND<1.0				
1,3-Dichlorobenzene	1.0	ND<1.0				
1,4-Dichlorobenzene	1.0	ND<1.0				
Dichlorodifluoromethane	1.0	ND<1.0				
1,1-Dichloroethane	1.0	4.2		10.4		
1,2-Dichloroethane	1.0	ND<0.1				
1,1-Dichloroethylene	1.0	ND<1.0				
trans-1,2-dichloroethylene	1.0	350	3.6	11.0	9.2	
Dichloromethane	1.0	ND<1.0		,		
1,2-Dichloropropane	1.0	ND<1.0				
1,3-Dichloropropylene	1.0	ND<1.0				
1,1,2,2-Tetrachloroethane	1.0	ND<1.0				
1,1,1,2-Tetrachloroethane	1.0	ND<1.0				
Tetrachloroethylene	1.0	ND<1.0			•	· · · · · · · · · · · · · · · · · · ·
1,1,1-Trichloroethane	1.0	9.0		13.5		
1,1,2-Trichloroethane	1.0	ND<1.0				
Trichloroethylene	1.0	190	178	16.4	12.7	
Trichlorofluoromethane	1.0	ND<1.0				
Trichloropropane	1.0	ND<1.0				
Vinyl_chloride_	1.0	ND<1.0				

ND - This compound was not detected; the limit of detection for this analysis is less than the amount stated in the table above.

ANALYTICAL RESULTS SUMMARY Purgeable Halocarbons EPA Method 601

ES Job No. <u>56423</u>	Lab Sample No	36686-5
Client		PJKS, 10-MW-8, GW-3, IT
ProjectAir Force PJKS	Date Collected _	4-24-86
Client No.	Date Received _	4-25-86
Laboratory Supervisor Approval:	Date Analyzed _	5-2-86
	QC Report No	601-28
Sample Matrix:		
/X_/ Water (ug/L)	Dilution Factor	N/A
/ Soil	*Moisture	*
/_/ Other		
Spike Source		

	С	Concentration F			Retention Time	
Compound	Det Lim	Column 1	Column 2	Column 1	Column 2	Notes
Benzyl chloride	1.0	ND<1.0	·			
Bis(2-Chloroethoxy)methane	1.0	ND<1.0				
Bis(2-chloroisopropyl)ether	1.0	ND<1.0				
Bromobenzene	1.0	ND<1.0				
Bromodichloromethane	1.0	ND<1.0			<u> </u>	
Bromoform	1.0	ND<1.0		7-,		
Bromomethane	1.0	ND<1.0				
Carbon tetrachloride	1.0	ND<1.0				<u> </u>
Chloroacetaldehyde	1.0	ND<1.0				
Chloral	1.0	ND<1.0				
Chlorobenzene	1.0	ND<1.0				
Chloroethane	1.0	ND<1.0				
Chloroform	1.0	ND<1.0				
1-Chlorohexane	1.0	ND<1.0				
2-Chloroethyl vinyl ether	1.0	ND<1.0				
Chloromethane	1.0	ND<1.0				
Chloromethyl methyl ether	1.0	ND<1.0				
Chlorotoluene	1.0	ND<1.0				
Dibromochloromethane	1.0	ND<1.0				

Continued

No. of the last

ANALYTICAL RESULTS SUMMARY Purgeable Halocarbons EPA Method 601

PJKS, 10-MW-8, GW-3, IT

	Co	ncentratio		Retenti	on Time	
Compound	Det Lim	Column 1	Column 2	Column 1	Column 2	Not es
Dibromomethane	1.0	ND<1.0				
1,2-Dichlorobenzene	1.0	ND<1.0				
1,3-Dichlorobenzene	1.0	ND<1.0				
1,4-Dichlorobenzene	1.0	ND<1.0				
Dichlorodifluoromethane	1.0	ND<1.0				
1,1-Dichloroethane	1.0	ND<1.0				
1,2-Dichloroethane	1.0	ND<0.1				
1,1-Dichloroethylene	1.0	ND<1.0				
trans-1,2-dichloroethylene	1.0	ND<1.0				
Dichloromethane	1.0	ND<1.0				· · · · · · · · · · · · · · · · · · ·
1,2-Dichloropropane	1.0	ND<1.0	·			
1,3-Dichloropropylene	1.0	ND<1.0				
1,1,2,2-Tetrachloroethane	1.0	ND<1.0		,:		
1,1,1,2-Tetrachloroethane	1.0	ND<1.0				
Tetrachloroethylene	1.0	ND<1.0				
1,1,1-Trichloroethane	1.0	18.0		13.4		i.
1,1,2-Trichloroethane	1.0	ND<1.0				
Trichloroethylene	1.0	490	101	16.5	12.8	
Trichlorofluoromethane	1.0	ND<1.0				
Trichloropropane	1.0	ND<1.0				
Vinyl chloride	1.0	ND<1.0				

ND - This compound was not detected; the limit of detection for this analysis is less than the amount stated in the table above.

Engineering Science Page 14

The state of the s

PRICESSA CANDES DESTREA ESPECIAL PRINTES APPRICE CHARGE

ANALYTICAL RESULTS SUMMARY Purgeable Halocarbons EPA Method 601

ES Job No56423	Lab Sample No	36686-20	_
Client	Field Sample No.	PJKS, Field Blank	_
Project <u>Air Force PJKS</u>	Date Collected	4-23-86	_
Client No.	Date Received	4-25-86	_
Laboratory Supervisor Approval:	Date Analyzed	4-30-86	_
	QC Report No	601-28	
Sample Matrix:	•		
<u>/X</u> / Water (ug/L)	Dilution Factor _	N/A	
/ Soil	*Moisture		*
/_/ Other			
Spike Source			

	С	Concentration		Retention_Time]
Compound	Det Lim	Column 1	Column 2	Column 1	Column 2	Notes
Benzyl chloride	1.0	ND<1.0				<u> </u>
Bis(2-Chloroethoxy)methane	1.0	ND<1.0				<u> </u>
Bis(2-chloroisopropyl)ether	1.0	ND<1.0				
Bromobenzene	1.0	ND<1.0				
Bromodichloromethane	1.0	ND<1.0				
Bromoform	1.0	ND<1.0				
Bromomethane	1.0	ND<1.0			'	
Carbon tetrachloride	1.0	ND<1.0				<u> </u>
Chloroacetaldehyde	1.0	ND<1.0				<u> </u>
Chloral	1.0	ND<1.0				
Chlorobenzene	1.0	ND<1.0		<u> </u>		
Chloroethane	1.0	ND<1.0				
Chloroform	1.0	ND<1.0				
1-Chlorohexane	1.0	ND<1.0				<u> </u>
2-Chloroethyl vinyl ether	1.0	ND<1.0				
Chloromethane	1.0	ND<1.0				1
Chloromethyl methyl ether	1.0	ND<1.0				
Chlorotoluene	1.0	ND<1.0				
Dibromochloromethane	1.0	ND<1.0				

Continued

THE PERSON NAMED IN THE PE

Ş

ANALYTICAL RESULTS SUMMARY Purgeable Halocarbons EPA Method 601

PJKS, Field Blank

<u> </u>	Co	ncentratio	<u> </u>	Retenti	Retention Time		
Compound	Det Lim	Column 1	Column 2		Column 2	Notes	
Dibromomethane.	1.0	ND<1.0					
1,2-Dichlorobenzene	1.0	ND<1.0					
1,3-Dichlorobenzene	1.0	ND<1.0					
1,4-Dichlorobenzene	1.0	ND<1.0					
Dichlorodifluoromethane	1.0	ND<1.0	:				
1,1-Dichloroethane	1.0	ND<1.0				· -	
1,2-Dichloroethane	1.0	ND<0.1					
1,1-Dichloroethylene	1.0	ND<1.0					
trans-1,2-dichloroethylene	1.0	ND<1.0					
Dichloromethane	1.0	ND<1.0					
1,2-Dichloropropane	1.0	ND<1.0					
1,3-Dichloropropylene	1.0	ND<1.0					
1,1,2,2-Tetrachloroethane	1.0	ND<1.0					
1,1,1,2-Tetrachloroethane	1.0	ND<1.0					
Tetrachloroethylene	1.0	ND<1.0					
1,1,1-Trichloroethane	1.0	ND<1.0					
1,1,2-Trichloroethane	1.0	ND<1.0			`		
Trichloroethylene	1.0	2.2	0.7	16.4	12.9		
Trichlorofluoromethane	1.0	ND<1.0					
Trichloropropane	1.0	ND<1.0					
Vinyl chloride	1.0	ND<1.0					

ND - This compound was not detected; the limit of detection for this analysis is less than the amount stated in the table above.

ANALYTICAL RESULTS SUMMARY Purgeable Halocarbons EPA Method 601

ES Job No. <u>56423</u>	Lab Sample No	36686-21	
Client	Field Sample No. P		
Project <u>Air Force PJKS</u>	Date Collected	4-23-86	
Client No.	Date Received		
Laboratory Supervisor Approval:	Date Analyzed		
	QC Report No.		
Sample Matrix:			
<u>/X</u> / Water (ug/L)	Dilution Factor	N/A	
/ Soil	*Moisture		<u> </u>
/_/ Other			
Spike Source			

ſ	Concentration Retention Time			4		
Compound	Det Lim	Column 1	Column 2	Column 1	Column 2	Notes
Benzyl chloride	1.0	ND<1.0				<u> </u>
Bis(2-Chloroethoxy)methane	1.0	ND<1.0				
Bis(2-chloroisopropyl)ether	1.0	ND<1.0				
Bromobenzene	1.0	ND<1.0				<u>. </u>
Bromodichloromethane	1.0	ND<1.0				<u> </u>
Bromoform	1.0	ND<1.0				
Bromomethane	1.0	ND<1.0			'	
Carbon tetrachloride	1.0	ND<1.0				
Chloroacetaldehyde	1.0	ND<1.0				
Chloral	1.0	ND<1.0				
Chlorobenzene	1.0	ND<1.0				<u> </u>
Chloroethane	1.0	ND<1.0				
Chloroform	1.0	ND<1.0				
1-Chlorohexane	1.0	ND<1.0				
2-Chloroethyl vinyl ether	1.0	ND<1.0				
Chloromethane	1.0	ND<1.0				
Chloromethyl methyl ether	1.0	ND<1.0				
Chlorotoluene	1.0	ND<1.0				
Dibromochloromethane	1.0	ND<1.0				

Continued

ANALYTICAL RESULTS SUMMARY Purgeable Halocarbons EPA Method 601

PJKS, Trip Blank

	Concentration			Retenti		
Compound	Det Lim	Column 1	Column 2	Column 1	Column 2	Notes
Dibromomethane	1.0	ND<1.0				
1,2-Dichlorobenzene	1.0	ND<1.0				
1,3-Dichlorobenzene	1.0	ND<1.0				
1,4-Dichlorobenzene	1.0	ND<1.0				
Dichlorodifluoromethane	1.0	ND<1.0				
1,1-Dichloroethane	1.0	ND<1.0				
1,2-Dichloroethane	1.0	ND<0.1				
1,1-Dichloroethylene	1.0	ND<1.0				
trans-1,2-dichloroethylene	1.0	ND<1.0				
Dichloromethane	1.0	ND<1.0				
1,2-Dichloropropane	1.0	ND<1.0				
1,3-Dichloropropylene	1.0	ND<1.0				
1,1,2,2-Tetrachloroethane	1.0	ND<1.0				
1,1,1,2-Tetrachloroethane	1.0	ND<1.0				
Tetrachloroethylene	1.0	ND<1.0	-			
1,1,1-Trichloroethane	1.0	ND<1.0				
1,1,2-Trichloroethane	1.0	ND<1.0				
Trichloroethylene	1.0	TR<1.0				
Trichlorofluoromethane	1.0	ND<1.0				
Trichloropropane	1.0	ND<1.0				
Vinyl chloride	1.0	ND<1.0				

ND - This compound was not detected; the limit of detection for this analysis is less than the amount stated in the table above.

ANALYTICAL RESULTS SUMMARY Purgeable Aromatics EPA Method 602

ES Job No. 56423 Client Project Air Force PJKS Client No. Laboratory Supervisor Approval: Sample Matrix: /X / Water (ug/L)		F D D Q	ield Sampl ate Collec ate Receiv ate Analyz C Report N	e No. <u>PJKS</u> ted ed o		iW-3, IT
/_/ Soil /_/ Other Spike Source	 	. * M		-		
Compound	Co Det Lim	ncentratio		Retenti Column 1	on Time	Notes
Benzene	1.0	ND<1.0				
Chlorobenzene	1.0	ND<1.0		:		
1,2-Dichlorobenzene	1.0	ND<1.0	•		1.2	
1,3-Dichlorobenzene	1.0	ND<1.0				· · · · · · · · · · · · · · · · · · ·
1,4-Dichlorobenzene	1.0	ND<1.0				· ·
Ethyl benzene	1.0	ND<1.0				
Toluene	1.0	ND<1.0				
Xylenes (Dimethyl benzene)	1.0	ND<1.0				

ND - This compound was not detected; the limit of detection for this analysis is less than the amount stated in the table above.

TR - Trace, this compound was present, but was below the level at which concentration could be determined.

ANALYTICAL RESULTS SUMMARY Purgeable Aromatics EPA Method 602

ES JOD NO56423		L	ab Sample	NO	36686-14		
Client		Field Sample No. PJKS, 1-MW-2, GW-3,					
Project Air Force PJKS		Date Collected 4-24-86					
Client No.							
Laboratory Supervisor Approve			ate Analyz				
			C Report N				
Sample Matrix:	_			- <u>-</u>	-		
/X_/ Water (ug/L)		C	ilution Fa	ctor	N/A		
/ Soil		*P	loisture		N/A	x	
/ Other							
Spike Source							
							
		oncentratio	ND.	Petenti	on Time	İ	
Compound	Det Lim	Column 1	Column 2		Column 2	Notes	
Benzene	1.0	ND<1.0					
Chlorobenzene	1.0	ND<1.0	••				
	† • • • • • • • • • • • • • • • • • • •	1.0 1.0		 	7.)		
1,2-Dichlorobenzene	1.0	ND<1.0					
1 2 Dichloschenson	1.0	ND -1 0			<u> </u>		
1,3-Dichlorobenzene	1.0	ND<1.0					
1,4-Dichlorobenzene	1.0	ND<1.0					
Ethyl benzene	1.0	ND<1.0					
Toluene	1.0	ND<1.0					
Xylenes (Dimethyl benzene)	1.0	ND<1.0					
	†						
	1		1		.		

ND - This compound was not detected; the limit of detection for this analysis is less than the amount stated in the table above.

ANALYTICAL RESULTS SUMMARY Purgeable Aromatics EPA Method 602

ES Job No56423	Lab Sample No	36686-17
Client	Field Sample No.	PJKS, 2-MW-3, GW-3, IT
Project Air Force PJKS	Date Collected	4-23-86
Client No.	Date Received	4-25-86
Laboratory Supervisor Approval:	Date Analyzed	5-13-86
	QC Report No.	602-23
Sample Matrix:		
<u>/X</u> / Water (ug/L)	Dilution Factor _	1:5
/ Soil	*Moisture	\$
/ Other		
Spike Source	· · · · · · · · · · · · · · · · · · ·	,

	Co	Concentration Reter			Retention Time	
Compound	Det Lim	Column 1	Column 2	Column 1	Column 2	Notes
Benzene	5.0	ND<5.0				
Chlorobenzene	5.0	TR<5.0				
1,2-Dichlorobenzene	5.0	TR<5.0			٠	
1,3-Dichlorobenzene	5.0	TR<5.0		?		
1,4-Dichlorobenzene	5.0	TR<5.0				
Ethyl benzene	5.0	TR<5.0				
Toluene	5.0	TR<5.0				
Xylenes (Dimethyl benzene)	5.0	ND<5.0				

ND - This compound was not detected; the limit of detection for this analysis is less than the amount stated in the table above.

STATES CONTRACTOR CONTRACTOR WASHING CONTRACTOR OF STATES OF STATE

ANALYTICAL RESULTS SUMMARY Purgeable Aromatics EPA Method 602

ES Job No56423	Lab Sample No	36686-5	
Client	Field Sample No. P	JKS, 5-MW-4, GW-3	, IT
ProjectAir Force PJKS	Date Collected	4-23-86	
Client No.	Date Received	4-25-86	
Laboratory Supervisor Approval:	Date Analyzed	5-12-86	
	QC Report No.	602-23	
Sample Matrix:			
<u>/X</u> / Water (ug/L)	Dilution Factor	N/A	
// Soil	*Moisture		%
/_/ Other	,		
Spike Source			
]]	

	Concentration		Retenti			
Compound	Det Lim		Column 2	Column 1	Column 2	Notes
Benzene	1.0	ND<1.0				
Chlorobenzene	1.0	ND<1.0	•••	: 		
1,2-Dichlorobenzene	1.0	ND<1.0			7.3	
1,3-Dichlorobenzene	1.0	ND<1.0			,	
1,4-Dichlorobenzene	1.0	ND<1.0				
Ethyl benzene	1.0	ND<1.0				
Toluene	1.0	ND<1.0				
Xylenes (Dimethyl benzene)	1.0	ND<1.0				
•						

ND - This compound was not detected; the limit of detection for this analysis is less than the amount stated in the table above.

1. Sec. 2.

Service Control operator Control Service Control

ANALYTICAL RESULTS SUMMARY Purgeable Aromatics EPA Method 602

ES Job No56423	Lab Sample No	36686-13	
Client	Field Sample No. P	JKS, 5-MW-5, GW-3,	IT
Project Air Force PJKS	Date Collected	4-23-86	
Client No.	Date Received	4-25-86	
Laboratory Supervisor Approval:	Date Analyzed	5-12-86	
	QC Report No.	602-23	
Sample Matrix:			
<u>/X</u> / Water (ug/L)	Dilution Factor	N/A	
/ Soil	*Moisture		
/_/ Other			_
Spike Source			

•	Co	ncentratio	ntration		on Time	
Compound	Det Lim	Column 1	Column 2	Column 1	Column 2	Notes
Benzene	1.0	ND<1.0				
Chlorobenzene	1.0	ND<1.0	•••	:		
1,2-Dichlorobenzene	1.0	TR<1.0			1.3	
1,3-Dichlorobenzene	1.0	ND<1.0				
1,4-Dichlorobenzene	1.0	ND<1.0				·
Ethyl benzene	1.0	ND<1.0				
Toluene	1.0	ND<1.0				
Xylenes (Dimethyl benzene)	1.0	ND<1.0				
						· · · -
•						

ND - This compound was not detected; the limit of detection for this analysis is less than the amount stated in the table above.

ANALYTICAL RESULTS SUMMARY Purgeable Aromatics EPA Method 602

ES Job No56423	Lab Sample No	36686-15		
Client	Field Sample No. 1		, IT	
Project Air Force PJKS	Date Collected	4-23-86		
Client No.	Date Received	4-25-86		
Laboratory Supervisor Approval:	Date Analyzed	5-13-86		
	QC Report No.	602-23		
Sample Matrix:				
/X_/ Water (ug/L)	Dilution Factor _	N/A		
/ Soil	*Moisture		*	
/_/ Other				
Spike Source		· · · · · · · · · · · · · · · · · · ·		

•	Concentration		Retenti			
Compound	Det Lim		Column 2	Column 1	Column 2	Notes
Benzene	1.0	ND<1.0				
Chlorobenzene	1.0	ND<1.0	***	,.: 		
1,2-Dichlorobenzene	1.0	ND<1.0		, -	1,3	
1,3-Dichlorobenzene	1.0	ND<1.0				
1,4-Dichlorobenzene	1.0	ND<1.0				
Ethyl benzene	1.0	ND<1.0				
Toluene	1.0	TR<1.0				
Xylenes (Dimethyl benzene)	1.0	ND<1.0				
		! 				
•						

ND - This compound was not detected; the limit of detection for this analysis is . less than the amount stated in the table above.

ANALYTICAL RESULTS SUMMARY Purgeable Aromatics EPA Method 602

ES Job No56423	Lab Sample No	36686-16	_
Client	Field Sample No.	PJKS, 4-MW-6, GW-6, IT	
Project Air Force PJKS	Date Collected _	4-23-86	
Client No.	Date Received _	4-25-86	_
Laboratory Supervisor Approval:	Date Analyzed	5-13-86	_
	QC Report No	602-23	_
Sample Matrix:			
<pre>/X / Water (ug/L)</pre>	Dilution Factor	N/A	_
/ Soil	*Moisture	····	.*
/_/ Other			-
Spike Source			_

••	Co	Concentration			Retention Time	
Compound	Det Lim	Column 1	Column 2	Column 1	Column 2	Notes
Benzene	1.0	ND<1.0				
Chlorobenzene	1.0	TR<1.0		:		
1,2-Dichlorobenzene	1.0	ND<1.0			1.3	
1,3-Dichlorobenzene	1.0	ND<1.0				
1,4-Dichlorobenzene	1.0	ND<1.0				
Ethyl benzene	1.0	TR<1.0				
Toluene	1.0	TR<1.0				
Xylenes (Dimethyl benzene)	1.0	ND<1.0				

ND - This compound was not detected; the limit of detection for this analysis is less than the amount stated in the table above.

TR - Trace, this compound was present, but was below the level at which concentration could be determined.

THE STATE OF THE S

ANALYTICAL RESULTS SUMMARY Purgeable Aromatics EPA Method 602

ES Job No56423	Lab Sample No	36686-6	
Client	Field Sample No.	PJKS, 10-MW-8, GW-	-3, <u>IT</u>
Project Air Force PJKS	Date Collected	4-24-86	
Client No.	Date Received	4-25-86	
Laboratory Supervisor Approval:	Date Analyzed	5-12-86	
	QC Report No.	602-23	
Sample Matrix:	-		
/X_/ Water (ug/L)	Dilution Factor _	N/A	
/ Soil	*Moisture		%
/ Other			
Spike Source			

	Concentration		Retention Time			
Compound	Det Lim	Column 1	Column 2	Column 1	Column 2	Notes
Benzene	1.0	ND<1.0			·	
Chlorobenzene	1.0	TR<1.0		~		
1,2-Dichlorobenzene	1.0	ND<1.0				
1,3-Dichlorobenzene	1.0	ND<1.0				
1,4-Dichlorobenzene	1.0	ND<1.0				
Ethyl benzene	1.0	TR<1.0				
Toluene	1.0	ND<1.0				
Xylenes (Dimethyl benzene)	1.0	ND<1.0				

ND - This compound was not detected; the limit of detection for this analysis is less than the amount stated in the table above.

Results from Method 625 - BNA's Dated 1/16/86

APPL, INC.

(azobenzene)

4-chlorophenyl phenyl ether

4-bromophenyl phenyl ether

Fluoranthene

AGRICULTURE & PRIORITY POLLUTANTS LABORATORIES, INC.

4167 NORTH MOTEL DRIVE, SUITE 102 • FRESNO, CALIFORNIA 93711 • PHONE (209) 275-2175

Engineering Science 1687 Tullie Circle, S Atlanta, Georgia 303		Sample Date: 01/14/86 Report Date: 01/23/86
Attn: Johnny Adamson		Page 1 of 3
	3 PJKS, 1-MW-1 , ES 12:30 5-1126	Date Received: 01/16/86
APPL Sample No: A005-		Date Extracted: 01/20/86
Method 625 Results:		Revised Report
Acid_Cmeds	Concentration vo	/l Detection_Limit_pg/l
2,4,6-trichlorophenol p-chloro-m-cresol 2-chlorophenol 2,4-dichlorophenol 2,4-dimethylphenol 2-nitrophenol 4-nitrophenol 2,4-dinitrophenol 4,6-dinitro-o-cresol Pentachlorophenol Phenol	ND * ND ND ND ND ND ND ND ND ND ND ND ND ND	6 6 2 1 4 3 40 42 25 3
Base/Neutral Cmpds	Concentration Po	<u> Detection Limit 49/1</u>
Acenaphthene Benzidine 1,2,4-trichlorobenzer Hexachlorobenzene Hexachloroethane bis (2-chloroethyl) e 2-chloronaphthalene 1,2-dichlorobenzene 1,3-dichlorobenzene 1,4-dichlorobenzene 3,3'-dichlorobenzidir 2,4-dinitrotoluene 2,6-dinitrotoluene	ND ND ND ND ND ND ND ND ND ND	4 80 3 4 2 4 4 2 4 4 20 6
1,2-diphenylhydrazine		6

ND

ND

ND

ND

Sample I.D. No: 56528 PJKS, 1-MW-1 GW-1, ES 12:30

Page 2 of 3

01-86-1126

APPL Sample No: A005-05466W

Method 625 Results con't

Base/Neutral Copds	Concentrat	<u>ion_ug/l</u>	Detection_Limit_Eq/1
bis-(2-chloroisoprop	yl) ether	ND	4
bis-(2-chloroethoxy)		ND	4
Hexachlorobutadiene		ND	6
Hexachlorocyclopenta	di en e	ND	. 40
Isophorone		ND	20
Napthal <i>ene</i>		ND	1
Ni trobenzene		ND	4
N-nitrosodimethylami	ne	ND	40
N-nitrosodiphenylami	ne	ND	8
N-nitrosodi-n-propyl		ND	6
bis-(2-ethylhexyl) p		ND	12
Butyl benzyl phthala	te	ND	18
Di-n-butyl phthalate		ND	5
Di-n-octyl phthalate		ND	. 10
Diethyl phthalate		ND .	4:
Dimethyl phthalate		ND :	8.
Benzo (a) anthracene		ND	77 10
Benzo (a) pyrene		ND +	14
3,4-benzofluroanthen	e	ND	20
Benzo(k)fluroanthene		ND	20
Chrysene		ND	8
Acenaphthylen e		ND	2
Anthracen e		ND	4
Benzo(ghi)perylene		ND	14
Fluorene		ND	4
Phenanthrene		ND	6
Dibenzo(a,h)anthrace		ND	16
Indeno(1,2,3-cd)pyre	ne	ND	14
Pyren e		ND	6
Dieldrin		ND	50
4,4'-DDD		- מא	50
4.4'-DDT		ND	50
Endosulfan sulfate		ND	50
Endrin aldehyde		ND	50
Chlordane		ND	50
Toxaphene		ND	50

Sample I.D. No: 56528 PJKS, 1-MW-1 Page 3 of 3

GW-1, ES 12:30

01-86-1126

APPL Sample No: A005-05466W

Method 625 Results con't

Concentration wg/l	Detection Limit µg/l
ND .	50
ND	50
ND	50
. ND	50
ND	50
ND	50
ND .	50
· ND	50
ND	100
ND	100
ND	100
ND	100
ND .	. 100
ND	_ 100
	ND ND ND ND ND ND ND ND ND ND

* ND = None Detected

Checked By_

APPL, INC.

AGRICULTURE & PRIORITY POLLUTANTS LABORATORIES, INC.

4167 NORTH MOTEL DRIVE, SUITE 102 . FRESNO. CALIFORNIA 93711 . PHONE (209) 275-2175

Engineering Science 1687 Tullie Circle, S Atlanta, Georgia 303 Attn: Johnny Adamson		Sample Date: 01/14/86 Report Date: 01/23/86 Page 1 of 3
01-8	, ES 3:45 6-1127	Date Received: 01/16/86
APPL Sample No: A005	-05467W	Date Extracted: 01/20/86
Method_625_Results:		Revised Report
<u>Acid_Cmpds</u>	Concentration ug	/l Detection Limit pg/l
2,4,6-trichloropheno	1 ND*	6
p-chloro-m-cresol	ND	6
2-chlorophenol	ND	2
2,4-dichlorophenol	ND	1
2,4-dimethylphenol	ND	4
2-nitrophenol	ND	3
4-nitrophenol	ND	40
2,4-dinitrophenol	ND	-: 42
4,6-dinitro-o-cresol	ND	· 25
Pentachlorophenol	ND .	3
Phenol	ND	- 15
Base/Neutral_Cmpds	<u>Concentration PQ</u>	/l Detection Limit vg/l
Acenaphthene	ND	· 4
Benzidin e	ND	80
1,2,4-trichlorobenze	ne ND	3
Hexachlorobenzene	- ND	4
Hexachloroethane	ND	. 2
bis (2-chloroethyl)		4
2-chloronaphthalene	ND	4
1,2-dichlorobenzene	ND	2
1,3-dichlorobenzene	ND	4
1,4-dichlorobenzene	ND	4
3,3'-dichlorobenzidi		20 .
2,4-dinitrotoluene 2,6-dinitrotoluene	ND ND	. 4
2,6-dinitrotoldene 1,2-diphenylhydrazin		6
(azobenzene)	ND ND	•
Fluoranthene	ND	8
4-chlorophenyl pheny		6
4-bromophenyl phenyl		6
		_

Sample I.D. No: 56528 PJKS, 1-MW-2 Page 2 of 3

GW-1, ES 3:45

01-86-1127

APPL Sample No: A005-05467W

Method 625 Results con't

Color of the Color

Base/Neutral_Cmpds	Concentrat	ion_vg/l	Detection Limit_rg/l
bis-(2-chloroisoprop	yl) ether	ND	4
bis-(2-chloroethoxy)		ND	4
Hexachlorobutadiene		ND	6
Hexachlorocyclopenta	dien e	ND	40
Isophorone		ND	20
Napthal ene		ND	1
Nitrobenzene		ND	4
N-nitrosodimethylami	ne	ND	40
N-nitrosodiphenylami		ND	8
N-nitrosodi-n-propyl		ND	<u>-</u>
bis-(2-ethylhexyl) p		ND	12
Butyl benzyl phthala		ND	18
Di-n-butyl phthalate		ND	5
Di-n-octyl phthalate		ND	10
Diethyl phthalate		ND	4
Dimethyl phthalate		ND	`
Benzo (a) anthracene		ND	10
Benzo (a) pyrene		ND	14
3,4-benzofluroanthen	6	ND '	20
Benzo(k)fluroanthene		ND	20
Chrysen e		ND	8
Acenaphthylene		ND	2
Anthracen e		ND	4
Benzo(ghi)perylene		ND	14
Fluorene		ND	4
Phenanthrene		ND	6
Dibenzo(a,h)anthrace	ne	ND	16
Indeno(1,2,3~cd)pyre	ne	ND	14
Pyrene		ND	6
Dieldrin		ND	50
4,4'-DDE		ND	50
4,4'-DDD		ND	50
4,4'-DDT		ND	50
Endrin		ND	50
Endosulfan sulfate		ND	50
Endrin aldehyde		ND	50
Ch1ordane		ND	50
Toxaphene		ND	50

Sample I.D. No: 56528 PJKS, 1-MW-2 Page 3 of 3

GW-1, ES 3:45

01-86-1127

APPL Sample No: A005-05467W

Method 625 Results con't

<u> Base/Neutral Cmpds</u>	Concentration vg/l	Detection Limit 49/1
α-BHC	ND	50
β−BHC	ND	50
&-BHC	ND	50
Lindane	ND	50
Endosulfan I	П	50
Endosulfan II	ND	50
Heptachlor	ND	50
Aldrin	ND	50
PCB 1016	ND	100
PCB 1221	ND	100
PCB 1232	ND	100
PCB 1242	ND	100
PCB 1248	ND ··	-: 100
PCB 1254	ND	100
PCB 1260	ND -	100

* ND = None Detected

Checked By Pamilia Crepa

APPL, INC.

KERCECCER BESCHELLE WINDOWS BECERFEE SOURCE

AGRICULTURE & PRIORITY POLLUTANTS LABORATORIES, INC.

Engineering Science		Sample Date: 01/15/86
1687 Tullie Circle, Suite 105		Report Date: 01/23/86
Atlanta, Georgia 30329		-,
Attn: Johnny Adamson		Page 1 of 3
• • • • • • • • • • • • • • • • • • • •		
Sample I.D. No: PJKS, 01-86-113	50	Date Received: 01/17/86
2-MW-3, GW-1 E9	3	
APPL Sample No: A005-05468W	מ	ate Extracted: 01/20/86
Method_625_Results:		Revised Report
Asid Conde	tion would	Detection limit would
Acid Cmpds Concentrat	FIOU FOYT	<u>Detection_Limit_rg/l</u>
2,4,6-trichlorophenol	ND*	6
p-chloro-m-cresol	ND	6
2-chlorophenol	ND	2
2,4-dichlorophenol	ND .	<u> </u>
2,4-dimethylphenol	ND	4
2-nitrophenol	ND	3
4-nitrophenol	ND	40
2,4-dinitrophenol	ND	. 42
4,6-dinitro-o-cresol	ND	25
Pentachlorophenol	ND	3
Phenol	ND	- 15
		77.
Base/Neutral Cmpds Concentrat	<u>tion_ra/l</u>	<u>Detection Limit µg/l</u>
Acenaphthene	ND	4
Benzidine	ND	80
1,2,4-trichlorobenzene	ND	3
Hexachlorobenzene	ND	4
Hexachloroethane	ND	2
bis (2-chloroethyl) ether	ND	- 4
2-chloronaphthalene	ND	4
1,2-dichlorobenzene	ND	2
1,3-dichlorobenzene	ND	_ 4
1,4-dichlorobenzene	ND	4
3,3'-dichlorobenzidine	ND	20
2,4-dinitrotoluene	ND	6
2,6-dinitrotoluene	ND	4
1,2-diphenylhydrazine	ND	6
(azobenzene)	ND	-
Fluoranthene	ND	8
4-chlorophenyl phenyl ether	ND	6
4 b b 1 - b 1 - b b	AUD	-

ND

4-bromophenyl phenyl ether

Sample I.D. No: PJKS 01-86-1130 2-MW-3, GW-1, ES Page 2 of 3

APPL Sample No: A005-05468W

Method 625 Results con't

Base/Neutral Cmpds	Concentra	<u>llen_eq/l</u>	Detection Limit 49/1
bis-(2-chloroisoprop	yl) ether	ND	4
bis-(2-chloroethoxy)		ND	4
Hexachlorobutadien e		ND	6
Hexachlorocyclopenta	diene	ND	40
Isophorone		ND	20
Napthalene		ND	1
Nitrobenzene		ND	4
N-nitrosodimethylami	ne	ND	40
N-nitrosodiphenylami	ne	ND	8
N-nitrosodi-n-propyl	amine	ND	ద
bis-(2-ethylhexyl) p		ND	12
Butyl benzyl phthala	te	ND	18
Di-n-butyl phthalate	!	ND	5
Di-n-octyl phthalate		ND	10
Diethyl phthalate		ND	<u>4</u>
Dimethyl phthalate		ND	- 8
Benzo (a) anthracene	!	. מא	10
Benzo (a) pyrene		מא	14
3,4-benzofluroanthen	e	ND	20
Benzo(k)fluroanthene	!	ND	20
Chrysen e		ND	8
Acenaphthylene		ND	2
Anthracene		ND	4
Benzo(ghi)perylen e		ND	14
Fluorene		ND	4
Phenanthrene		ND	6
Dibenzo(a,h) anthrace		ND	16
Indeno(1,2,3-cd)pyre	ne	ND	14
Pyrene		ИD	6
Dieldrin		ND	50
4,4'-DDE		ND	50
`4,4'-DDD	•	ND	50
4,4'-DDT		ИD	50
End ron		ND	50
Endosulfan sulfate		ND	50
Endrin aldehyde		ND	50
Chlordane		ИD	50
Tox aphene		ND	50

Sample I.D. No: PJKS 01-84-1130

Page 3 of 3

2-MW-3, GW-1, ES

APPL Sample No: A005-05468W

Method 625 Results con't

Base/Neutral Cmpds	Concentration_vg/l	<u>Detection Limit µg/l</u>
α−ВНС	ND	50
B-BHC	ND	50
S-BHC	ND	50
Lindan e	ND	50
Endosulfan I	ND	50
Endosulfan II	· ND	50
Heptachlor Programme 1	· ND	50
Aldrin	ND	50
PCB 1016	ND	100
PCB 1221	ND	100
PCB 1232	ND	100
PCB 1242	ND	100
PCB 1248	ND	. 100
PCB 1254	, ND	_ 100
PCB 1260	ND .	109

* ND = None Detected

Checked By Panica Cooper

ENGINEERING-SCIENCE

CHAIN OF CUSTODY RECORD

**		Dellooule	URadamoon	Relinquia															1/16/10	DATE	Lisa	BAMPLE		ES JOB NO.
		had by:	dan	hed by:													-			TIME	Ϊ.	A(8): (t		
		nelingulated by: (Signature)	ron	Relinquished by: (Signature)		`									·			,	1-98.10	8A1	rorner	BAMPLER(8): (Bignalure)	SALA	PROJECT NAME/LOCATION
Anna de le de		Date/Time		Date/Time								-				,			130	SAMPLE DESCRIPTION	\		,	/LOCATION
and San Coll to (Sasina)			-	e Received by: (Bignature)	·										•	•	•	, , ,	31-412/E-011-1-1311)	CRIPTION				-
		ratory by:		nature)													•			TAINERS	CON-	OF		;
leld				Relinquished by: (Bignature)													·		7	134	1			
3.	9:3	Date/Time		lahed	_	 	-	_		_			_	<u> . </u>			_					A		_
	3			by: (t													£		• •			\	.]	>
		Nemarke		Bigna		-	<u> </u>	<u> </u>	 		_	_	-	-								\	Y	BATVI
		•		Ture)						-														E8 R
1.54				Date						-												<u> </u>		ANALYSES REQUIRED
17.75				Date/Time																			\ 	
100 SEE 100	·			Received by: (Signature)					•						e		•			REMARK8	(404) 325-5923	Sulte 106 Atlanta, GA, 30329	ENGINEERING-BCIENCE, INC.	BHIP TO:
•	<u>L</u>		<u> </u>		<u> </u>		<u>L</u>			_				409		<u> </u>				<u> </u>				

THE PROPERTY OF THE PROPERTY O

APPL, INC.

AGRICULTURE & PRIORITY POLLUTANTS LABORATORIES, INC.

4167 NORTH MOTEL DRIVE, SUITE 102 . FRESNO, CALIFORNIA 93711 . PHONE (209) 275-2175

Engineering Science 1687 Tullie Circle, Sc Atlanta, Georgia 3032 Attn: Johnny Adamson		Sample Date: 01/16/86 Report Date: 01/23/86 Page 1 of 3
Sample I.D. No: PJKS, GW-1,	2-MW-7, ES 01-86-1177	Date Received: 01/21/86
APPL Sample No: A005-0	05474W	Date Extracted: 01/22/86
Method 625 Results:		Revised Report
Acid Cmpds	<u>Concentration Pg</u>	/l Detection Limit rg/l
2,4,6-trichlorophenol	ND*	6
p-chloro-m-cresol	ND	6
2-chlorophenol	ND	2
2,4-dichlorophenol	ND	<u> </u>
2,4-dimethylphenol	ND	4
2-nitrophenol	ND	3
4-nitrophenol	ND	40
2,4-dinitrophenol	ND	42
4,6-dinitro-o-cresol	ND	25
Pentachlorophenol	ND ·	<u> </u>
Phenol	ND	15
Base/Neutral Copds (<u>Concentration μο</u>	/l Detection Limit rg/l
Acenaphthene	ND	4
Benzidine	ND	80
1,2,4-trichlorobenzene	e ND	3
Hexachlorobenzene	ND	4
Hexachloroethane	ND	2
bis (2-chloroethyl) e	ther ND	4
2-chloronaphthalene	ND	4
1,2-dichlorobenzene	ND	2
1,3-dichlorobenzene	ND	4
1,4-dichlorobenzene	ND	4
3,3'-dichlorobenzidine	e ND	20
2,4-dinitrotoluene	ND	6
2,6-dinitrotoluene	ND	4
1,2-diphenylhydrazine	ND	6
(azobenzene)	. ND	
Fluoranthene	ND	8
A-chlorophonyl phonyl	other . ND	•

· ND

ND

4-chlorophenyl phenyl ether

4-bromophenyl phenyl ether

Sample I.D. No: PJKS 2-MW-7, GW-1 Page 2 of 3 ES 01-86-1177

APPL Sample No: A005-05474W

Method 625 Results con't

Base/Neutral_Cmeds	Concentra	tion_vg/l	Detection_Limit_rg/l
bis-(2-chloroisoprop	yl) ether	ND	4
bis-(2-chloroethoxy)		ND	4
Hexachlorobutadiene		ND	6
Hexachlorocyclopenta	di en e	ND	40
Isophoron e		ND	20
Napthalene		ND	1
Nitrobenzen e		ND	4
N-nitrosodimethylami	ne	ND	40
N-nitrosodiphenylami	ne	ND	8 ;
N-nitrosodi-n-propyl	amine	ND	6
bis-(2-ethylhexyl) p	hthalate	ND	12
Rutyl benzyl phthala	te	ND	18
Di-n-butyl phthalate	•	ND	. 5
Di-n-octyl phthalate	•	ND	10
Diethyl phthalate		ND .	4.
Dimethyl phthalate		ND	• 8
Benzo (a) anthracene	•	ND .	10
Benzo (a) pyrene		ND	14 •
3,4-benzofluroanthen		ND	20
Benzo(k)fluroanthene	•	ND	20
Chrysen e		ND	8
Acenaphthylene		ND	2
Anthracene		ND	4 -
Benzo(ghi)perylene		ND	14
Fluorene		ND	4
Phenanthrene		ND	6
Dibenzo(a,h)anthrace		ДИ	16
Indeno(1,2,3-cd)pyre	ene	ND	14
Pyrene		ND	_6
Dieldrin		ND	50
4,4'-DDE		ND	50
4,4'-DDD		ND	50
4,4'-DDT		ND	50
Endrin		ND	50
Endosulfan sulfate		ND	50
Endrin aldehyde		ND	50
Chlordane		ND	50
Toxphen e		ND	50

Sample I.D. No: PJKS 2-MW-7, GW-1 Page 3 of 3 ES 01-86-1177

APPL Sample No: A005-05474W

Method 625 Results con't

Base/Neutral_Cmpds	Concentration_vg/l	<u>Detection_Limit_vq/l</u>
α-BHC	: ND	50
B-BHC	ND	50
S-BHC	· ND	50
Lindane	МD	50
Endosulfan I	ND	50
Endosulfan II	ND	50
Heptachlor	ND	50
Aldrin	ND	50
PCB 1016	ND	100
PCB 1221	ND .	100
PCB 1232	ND	100
PCB 1242	П	100
PCB 1248	ND .	, 100
PCB 1254	ND	100
PCB 1260	ND	100

* ND = None Detected

Tested By Same Malrain

ENGINEERING-SCIENCE

AND THE WINDS TO STATE OF THE S

200 S

N

22.

CHAIN OF CUSTODY RECORD

L										9000	la la	TO:	_
	ES JOB NO.		PROJECT NAME/LOCATION	(\	₹	ANALTSES REGUIRED		UINED			
	56528		D.KS.	O							19 EN		
1.0	AMPLE	1	BAMPLER(8): (Bignature)	٩ ٩		\	\		<u>\</u>	<u> </u>	Attent	Sulle 105 Allenia, GA. 30329	
		•		CON	1		\				٤١	(404) 326-6923	
<u> </u>	DATE	TIME	BAMPLE DEBCRIPTION	TAINERS	200							REMARKS	
	1)/00/	100:5 1001	7 L 11 - 38 - 10 ~		1								
ــــــــــــــــــــــــــــــــــــــ													
J					·							•	
L												*	
-41	1											-	 1
 _3													
	-						_				• •		
ــــــــــــــــــــــــــــــــــــــ							_						
										•			
			100										_
1													
1													1
			1										1
1													
	Jelingu	lehed by	Relinquished by: (Signajure) Date/Time Received by: (Signature)	nature)	Relinquished by: (Signature)	ulahed	by:	(8lgna)	ure)	Date/Time		Received by: (Signature)	
	19	Jens	Johnmy P. ademont 1100 Stoop.										
1.=	neullet	lahed by	Date/Time Received for	Laboratory by:		Date/Time		Remarks					
			1 leta		1/9/	18. 18.	<u>۸</u>	•			İ		
נ			· () · ()		17.1.	7117							

Results from ES for Metals and Inorganic Parameters

200

aboratory Supervisor Approval: Page Report Dilution Factor OC Report No. Bhrows Moisture Environmental Quality Parameters Soil (ug/g) (ug/kg) ANALYTICAL RESULTS SUMMARY Water (ug/L)/ Sample Matrix: Z 98- 51-PJKS Denver 82595 US AF Engineering-Science Date Collected ES Job No. Client No. Project Client

Other

Date Received

L-414

000

| 100 | 10

ACC | 1889 | 1980

	Field Sample No. Lab Sample No. 102 102 1036 1036 100 100 100 100 100 100 100 100 100 10	G ITOS Phambles TKN	21.0 Washo 20.005 1.1	0 340 40,065 40,1								,				22 /2 /6 /16	5.04 > CV 186435.1 8 PA 413.1 8 PA 11.0.3 SPA 420.1 8PA 351.3
--	--	---------------------	-----------------------	-------------------	--	--	--	--	--	--	--	---	--	--	--	--------------	---

If a moisture is reported, results are presented on a dry-weight basis.

0593111

THE LINE DESCRIPTION

SOON GOOGEST CONTRACTOR STOOMS TO SOON

		١													
&		\$		Notes		Œ	8	Q	İ	_					
	Jo	Approval:													
	Page /												,		 -
F	ă Z	er et s	<u> </u>												
{:		oc Report No. Laboratory Supervisor	Dilution Fack Moisture												
		c Repo	Di¥ntion *Moisture	<u>.</u> 0	5	S									<u> </u>
		5, 30	≏ ¥	Phenolic	⟨0.00⟩	S00°D)	\$	4							
	tera	~	~	T0S	540 ·	410	370	370							
	SUMMARY Parametera		Z) § 2			٦									
			Water (ug/L) () () Soil (ug/Kg) (ug/Kg)	046	0,1%	Ħ	<1.0	41.0							
		Matrix:	Water Soil (NO.3	0,7	3,0,	×81	2.2.		•		-			
W.	ANALYTICAL Environmental	Sample	2)]] 5	7	3	1	٦		_	-	ļ	_	·	-
e Z	AN Envir	Sa		700	0.181	0.011	D.0/1	0.009							
)					-						<u> </u>
<u>R</u> S:		7	98.	Lab Sample No.	01-81-1130	1511-98-10	11-98	61-66-1133							
		8 8 N	98-51-1	rab s	-10	3-10	01-	5-19							
	. uce	56528 USAF 87KS Denver		1	1.25	V-1 ES	1 8	1-1,5							
	J-Scie	732	ted	Sample No.	3.64	1-2, 8-1	15°C	1-6 Gu							
	Engineering-Science	ES Job No. Client Project	Client No. Date Collected	ld Sami	PTKS 2 mw-3 GW-1 ES	PTK4, 10-MW-5, 6-W-1 ES	PTKS 4-mw-6, GW-1, ES 01-86-1132	5-4-MW-6-W-7,ES							
	Eng i	ES Job P Client _ Project	Clie Date	Field	77										
k-a						L-	-415	i							

of it is moisture is reported, results are presented on a dry-weight basis.

Note A: No oil of greese sample provided. (GLA) 15931111

1.0649986.001 APS 1.674 APS 11.628APS 160.5

Analytical Method

8593111

Date Analyzed

41+9

HOLPE 9/3 damon A/B Ø aboratory Supervisor Approval: Page / (Johnny R. Dillution Factor C Report No. 21.6 3.5 Phenolis TKN Moisture 0.84 K T t705 Environmental Quality Parameters 1 8 \$ // Soil (ug/g) (ug/Kg) Z/ Water (ug/L) ANALYTICAL RESULTS SUMMARY 0.7 १ 04.6 Sample Matrix: / / Other NOX 700 **50.** I 40.01 ۵: ا 01-86-1178. 0.026 200 87K5.2-MW.7.6W-1,ES 01-86-1197 Lab Sample No. PJK6. 4- - mw-C, (-w-1 ES 101-86-1179 93-91-1 98-41-1 PTKS. Denver 56528 77K5 4-mud (Lury ES スタアア Engineering-Science Field Sample No. Date Collected Date Received ES Job No. Client No. Project Client

provided for series of sample ElRC

to, these are

EPH 301 | EPH 352. 1 | EPP 413. 1 | EPP 160, 3 | EPP 410. 1 | EPP 351. 3

Analytical Method

Date Analyzed

20

Œ

If a moisture is reported, results are presented on a dry-weight basis.

Note A: No phenolics samples provided

19. TO 5 samples not provided

111658

KINGER TRANSPORTED FRANCISCO TRANSPORTE TRANSPORTED TRANSPORTER TRANSPORTED TO SERVICE TRANSPORTED TO SERVICE

P 2.	
S	
X	
8	
33.5	
7.7.7	
Š	
33	
-	

ingineering-Science		Ž	ALYTIC	ANALYTICAL RESULTS Metals		SUMMARY					Page Report	- L	-	
State No. 56518 Stroject P JICS Client No. Date Collected 14 Quate Received 15 Quate 15 Qu	Plant Jan.86	ซึ่	mple 1	Sample Matrix:	Mater (ug/L) (mg/L) Soil (ug/g) (ug/Kg)	ma/kg)		8 2 2 8	C Report No. Laboratory Supervisor Approval: Lohnny A. Odomo C Dilution Factor *Moisture	Superv	1 sor 1	Odomo		
Field Sample No.	Lab Sample No.	₹	C	Ha	S				-			_		
Parc 1-1112-1 FW-155 01-86- 1126	01-86-1126	ŧ	ــا	0.00 मिका-0	3.00.Q		·			1		-		
FG11-98-10/51-0072 CM-1 270		(0,002 <0,11 <0,000 <0,000 <	3) 11 V	19.000 L	5000,0				_		1	_		
						1	1				-	1		
									1	1	1	1		
									1	1	·			
						-				-		-		
											-	_		
				• •										
			72-	-								-		
				_										
				• :							_	_		
			•				-				-	1		<u> </u>
									_	\dashv	_	_		
Date Analyzed	¥ O	2/9.	12/8	70	78				1	1	4	1		
Analytical Method	*	6 P A 3	218.1	800	2703				_		_			
* If \$ moisture is rare presented on a	is reported, results on a dry-weight basis	15.	*	= = =	Flame NAS C = (AS Vapor	C = CC	id Vaj	Cold Vapor AAS G = Graphi S P = Inductively Coupled	G = G vely Cou	<pre>= Graphite Coupled Plant</pre>	te kurnace Plasma	ACC AAS	'n

Laboratory Supervisor Approval: of Page (Dilution Factor & Report No. Cohom *Moisture Water (ug/L) (mg/ Soil (ug/g) (ug/Kg) ANALYTICAL RESULTS SUMMARY Metals Sample Matrix: Other B ی Plant 16 you. 56528 PJKS USAL Engineering-Science Date Collected Date Received ES Job No. Client No. Project Client

6/3/3/3/ 18/3/3/3/ 18/3/3/3/

- 7				_	_			 			1		
	_								_				
_													
			}										
												7	
[<u> </u>		-							
				_									
	-,-											/	
		<u> </u>	<u> </u>		-	_	1					$\overline{/}$	·
40.002												3/2	ξ. οτι 230.3
(I). J002									• :			12/2	245.120.3
(0.11										•	1.	7/32	
2000						•						10.	EPA EPA 206.3 218.
30k	<u> </u>							-				70	*
)1 -0					ļ	İ						2	•
18-10													
083		\vdash	\vdash	\vdash	-		-	 <u> </u> 	_	<u> </u>	-		
3													thod
3										_		l yzed	al Me
2-12												Ana	Analytical Method
1 ⁷ 3KS						'						Date	Anal
	13K5 2-MW-3 QJ-1, ES 01-86-1130 K0002 (40.11 KU-0002 (0.002)	1755,2-MW-3,QU-1,ES 01-86-1130 Kalooz (do. 11 cd. dooz (di. 02)	P3K5,22-MW-3,QU-1,ES O1-86-1130 60,002 (10.000002 (10.00002 (10.00002 (10.00002 (10.0002 (10.0002 (10.0002 (10.	P3K5,22-MW-3,QJ-1,ES O1-86-1130 K0002 (0.11 KU. 0002 (0.002	P3K5,22-MW-3,QJ-1,ES O1-86-1130 60002 (8.1) 60.0002	17K5,22-MW-3,QU-1,ES O1-86-1130 60002 (0.1) (40.0002 (0.1) (1.30 (0.002) (0.1) (1.30 (0.002) (0.1) (1.30 (0.002) (0.1) (1.30 (0.1) (P3K5,22-MW-3,QJ-1,ES O1-86-1130 60,002 60.11 40.000 60,002						

are presented on a dry-weight basis.

P = Inductively Coupled Plasma II - Ilydride Vapor AAS

. .

6593111

3

, 見い

· A E

見

7

X X

Approval: of 22.5 Report Page Aboratory Supervisor & Report No. Dilution Factor 1 ohnum *Moisture Ä Soll (ug/g) (ug/kg ANALYTICAL RESULTS SUMMARY Water (ug/L) Metale Sample Matrix: Other ر ح ž 56538 Engineering-Science PJKS ISAF Date Collected Date Received Client No. ES Job No. Project Client Ė,

Ż

_																
	<															
													Ì			
								•			j				/	·
															7	
•																
															7	
	·															
	S	5000	S COOL		-	_									78	443 6.046
	Pb.	0,12 6	7770			<u> </u>									700	239.17
	H&	>\2000'	> \2007.	-		<u> </u>			•			•.:			त्र त्र	3 41/63
	10	0.02	0.02		-					14			-	. e	/8 <u>-</u>	11 6
) }	ימסק ל	7001		<u> </u>			-							161	1.4 C
	No.	32 00	33 4		-	<u> </u>	-	<u> </u>							\	٠ <u>٠</u>
	ımple	21-5	و- ⊑												Σ	•
	Lab Sa	8 - 10	8-10													
	Field Sample No. Lab Sample No. As Col Hay Pb Se.	531-0	7755 4-1110 6. C. 12. Ex (11-36-11 33 Co. 002 50.02 50.00 Co. 12													hod
	mple N	200	777	+									-		lyzed	al Met
	ld Sa	15 4-W	15.45 15.45												Date Analyzed	Analytical Method
	Fie	3	12												a	\$

G = Graphite Furnace AAS

P - Inductively Coupled Plasma

C - Cold Vapor ANS

II - Hydride Vapor AAS

 If & moisture is reported, results are presented on a dry-weight basis.

0593111

SALL CONTRACTOR OF THE SALE OF

F - Flame AAS

Page / of / Approvate Laboratory Supervisor QC Report No. Dilution Fac *Moisture Environmental Quality Parameters / / Soil (ug/g) (ug/kg) ANALYTICAL RESULTS SUMMARY Water (ug/L Sample Matrix: PJKS Denver ES JOB NO. 56528 いろみ下 Engineering-Science Date Collected Client No. Project Client Date

Date Received /	95-91-	`	/ Other	L	-	•	1	
		1	{			2 4		
Field Sample No.	Lab Sample No.	NC	N03	046	705	Phenolica		Notes
PTK 2, mw-3 Ga-1 25 DI-86-1130	01-86-1130	151.0	2,0	0'1'	540	4.0 <1.0 540 <0.05		
17K 10-mu-5, GW-1 ES 01-86-1131	01-86-1131	0.07	3,0	\$	2.5	5000		Œ
27KS 11-mm-6, Cm-, 35 01-86-1132	01-86-1132	0011	1.8.	41.0	370	Ø		Ð
15K5 4-mm-3cm-3=1 61-86-1133	61-66-1133	10.00)	<1.0	370	B		Q
Date Analyzed	Σ	1/1	11+91	127	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	ار ا		
Analytical Method		5PH 3541	1.628AB	5PH 354, 18PA353.1 8PA 413.1 8PA 160,38PA430.	5PA 160.3	1.084 AB	•	
* If * moisture is	is reported, results	!	sented or	are presented on a dry-weight basis	ight bas	is.	(V) (V	

Note A: No oil & gierse sample provided glass

댎

8

11116658

<u>\</u>

人会

L-420

	٠
Z	
ž	
,	

ngineering-Science		ANALYTICAL Environmental		RESULTS SUMP Quality Para	SUMMARY Parameters			Page Report	rt of		
<u>.</u>		ţ			₹5 -	S S .	OC Report No. Laboratory Su	pervisor	Caboratory Supervisor Approval:)	
roject YJKS Nanver	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Samp V	Sample Marrix:	water (ug/L)		1 110	Dillution Factor	or			
cted	95-91-1	7	_/ soil	Soil (ug/g) (ug/kg)	g/Kg)	. *Moisture	ture			-	
ate Received	1-17-86	7	_/ Other			2.31					
Field Sample No. Lab	Lab Sample No.	NB	NON	04G	tos	Phenolics	TKN			Notes	
57.KC \- 64.7 7 (42.1 12) 0	18-11-38-10	811.0	-:-	41,0	8	0.00 ≯	10.1			\approx	
		0.026	<0.1	Q () >		H	21.6			4/4	
755 4-m-1-1/20-185 11-86-1179		<0.0/1	<0.1	ot05	\$	K	3,5			B/B	
Date Analyzed	E	12/	/22	12/	2/4	120	12	V			
Analytical Method		E17A 354.	8PA352.1	5,74 3x4, 8PA352,18PA 413.1 8PA 160,3 8PA 420.1 8PA 351.3	8PA 160,3	584 4W.1	E188 #13				
* If & moisture is repo	reported, results are	S are provided by	esented or	phenolics samples provided to, these OKO	ight basi	3. to/	+ hese	3/4	-	S. S. S.	(3
8593111	19: TO		sarph	s not	prosi	t 5 5) N) ^ ``	X	1	

L-421

である。自然によっては国際にはなるない。同様にはなるとは国際になるないない。

SEED DOMAN RECEIVE PROPERTY PROPERTY

Environmental Quality Parameters

87595

ES Job No.

Client

Jo T

Charles and the property

STATES OF THE PASSESS OF THE PROPERTY OF THE PASSESS OF THE PASSES OF THE PASSESS OF THE PASSESS OF THE PASSESS OF THE PASSES OF THE PASSES OF THE PASSESS OF THE PASSESS OF THE PASSESS OF THE PASSES OF THE PASSES OF THE PASSES OF THE PASSESS
aboratory Supervisor Approval: CC Report No.

plintion Factor Bernand • Moisture Water (ug/L) Soil (ug/g) Sample Matrix: Other 981 Denver カノー して いなみに

Date Received

L-422

Date Collected

Client No. Project

Field Sample No.	Lab Sample No.	202	NO3	0 & G	1:05	Phenolics	1 2 3			Notes
9/11-98-10 02 1-18/1-1907 5/10	1	17.619	3.8	0117	<1,0 (1) 840 (40.005 1.1	40.005	- :			
7/1-18-18-18-18-18-18-18-18-18-18-18-18-18		*t. 4 9980.0	4.7	41.0	< 1.0 340 40.0cs	40.065	40,1			
									-	
								Ü,	•	
								20 2		
-							Hore			1
						7 J.R.1				
Date Analyzed	Σ	1/2/	\$1+32	125	12	<u> 2</u>	16/			
Analytical Method		20H 354	1.128.493	STA 413.	8.128. 49 1.004.93 8.03 8.04 18.1 814 10.2 814.30.1 SPA 351.3	504430.1	BA 351.3	•		
				1000	a sand the parie	0 1				

* If * moisture is reported, results are presented on a dry-weight basis.

8593111

77.7 Ž 2

V.

S

1

7

おお 間の

£

125
7
**

p)

Y

X

}

Š

Engineering-Sclence	ANALYTICAL RESULTS SUMMARY Metals	Page (
86595 .on doe 83		& Report No.
Cilent WSAF	. (peryl sor
	Sample Matrix:	January N. Walk
Client No.	K/ Water (ug/L) (mg/L)	bilution Factor
Date Collected 15 Jan 86	Soil (ug/g) (ug/kg)	*Moisture
	/ / Other	

														<
Field Sample No. Hay Pp Se.	Lab Sample No.	As	3	Hay	Pp	Se								
2 1/5 4-m 2-6 14 - 175	A1.86-1(32	\$00°D	70.02	7900.6>	2010>	<0.00Z		,					1	
2xx 4- mr. 1 612- 86 11-86- 11 33 60:00 50:00 60:00 CO:12 60:00	01-86-1133	\$ \$ \$	70.05 40.05	\$0.0x	20,05	49.002	-							T
1 1 1 1 2 C											Ì			
													Ì	
•									Ì			Ì		
					F									
Date Analyzed	Σ	7	100	र्त	1/00	18/			7	J	V	V	1	V
Analytical Method	*	206.13	213.1	245.1	239.1	336.3	_ {							
• If • moisture is reported, results	is reported, results	ts sis.	*	# # ·	Flame AAS	F = Flame AAS C = (C = C	old Va •	Cold Vapor AAS G = Graphite Furi ; P = Inductively Coupled Plasma	S G tively	: = Gra / Coupl	⊟ Graphite Coupled Pla	Furnace	e AAS
	1 1 1 1 1 1 1 1 1 1 1 1 1					,								

L-423

are presented on a dry-weight basis. * If & moisture is reported, results

HENDER POLICION POLICION PRESENTATION PROFESSOR PROFESSOR PROFESSOR PROFESSOR PROFESSOR PROFESSOR FOR

Laboratory Supervisor Approval: ا و Page Report Dijution Factor OC Report No. Johnson *Moisture Soil (ug/g) (ug/Kg) ANALYTICAL RESULTS SUMMARY Water (ug/L) (Metal8 Other Sample Matrix: 图 PJKS ES JOD NO. 56528 1 SAF Engineering-Science Date Collected Date Received Client No. Project Client

design transfer appropries appropries appropries

ではなるなどは国際などなるのでは、国際によって

<											
						<u> </u>					
·				<u> </u>				· .			
Cd Cr Hg Pb Se	2 A KO.11 KOOWS B 0,004	Kd.002	2000 2007 20000 111.07 2000 11							132	2905
Pb	8	2002	2002							1/3	239.1
H4	<0000X	20.000	00000>							n	20 H ErA
S S	40 ,11	,<0.≡	1.05							4	50 H
7	7	20.00	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~							(s/2)	2134
As	50.0X	₹0.0 %	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \							4	E1907
Lab Sample No.	4411-98-11	8+11-78-1(6+11-98-10							Σ	*
Field Sample No.	PTKS 2-1010-7- (201, 85 101-86-1177)	8-11-78-10 53,1-43,4-4-4-P. 2XI	P+11-78-10 53,1-62,6-m-+ 2419						•	Date Analyzed	Analytical Method

- Inductively Coupled Plasma reducested. II - Hydride Vapor AAS are presented on a dry-weight basis. 8593111

Note A: Cadmium on Sample 1177 not request

M

3

L-424

- of -Notes Laboratory Supervisor Approval: Paye 🕻 Report Dilution Factor CC Report No. Johnson, *Moisture Environmental Quality Parameters Water (149457 (Mg/L) (pa/kg) (ng/kg) ANALYTICAL RESULTS SUMMARY 9 10Y 6.2 We have the to the ported, results Sample Matrix: Other X 0.46 Lab Sample No. | NO. 104-86-1113 0,38 9611-98-40 Date Received 24/25 april 86 4111.98.40 Date Collected 23/24 2,GW·3 CW-3 5-MD-4,6W-3 Engineering-Science Field Sample No. . 3E-ES Job No. Client No. S-MW-S Project Client

のの

FAST 10.3 12.53

É

F

33

Analytical Method

Date Analyzed

ósósi Pzzzzoz rzezzsz przezzz rzezzzz rzezszzzz rzezzzzz rzezzzzz

[•] If \ moisture is reported, results are presented on a dry-weight basis.

-
40
Ŭ
č
•
7
S
ņ
'n
Ĕ
7
ы
Φ
<u>o</u>
5
Ξ
5.
Ω

ANALYTICAL RESULTS SUMMARY Metals

_	
10	
Page	Report

ES JOD NO. 5652 &
Project PJKS Dennes
Client No.
Date collected 28/24 Upril 86
Date Received 24/25 Chulble

	Meren mg/l	(ug/Kg)	
Matrixs	Water (wg/t)	Soil (ug/g)	Othor
mple M	X		•

QC Report No.	Jaboratory Supervisor Approval:	Cohmmy K. Wdamon	Dilution Factor	*Moisture	
		•	4	Kg) •	٠.

1		.	.		
	-				
1					
	-				
	+				
900		1009	20099	2000	20000
र्य	₹ ≥	5555	र्रेट्रेट्रेट्र	2222	12221
4-mw-6, Gw-6 04-86-1115 A	1111 00 1	1-mu-1-64-3 04-86-1128	1-50-2 04-86-1136 1-mu-2 04-8 71136 1-50-2 04-86-1138 1-50-2 04-86-1139	EC11-98-1	F-611-98-1
222	10	282	2922	0800	2929
4.mw.6, 6w.5 04.86.1115 A	717.3	CW 3	15 to 3	4444	
75.60		L + 100	-mu-16-1-	333	EW-3

If * moisture is reported, results
are presented on a dry-weight basis.

F = Flame AAS C = Cold Vapor AAS G = Graphite Furr II = Hydride Vapor AAS P = Inductively Coupled Plasma

8593111

£ 1.7.

97.5

, x

25.50 B/C

of Laboratory Supervisor Approval: Page Report Dilution Factor & Report No. adram *Moisture ¥... 1 Water (ugrC) $\left(ng/k \right)$ (ug/kg) ** ANALYTICAL RESULTS SUMMARY Metal8 Sample Matrix: Other X ES JOD NO. 56528 Engineering-Science' Date Collected Date Received Client No. Project 7 Client

COST TATALOGIC CONTINUES COSCION TO STATE TO STA

京本 では、大台

E

											_
				T							
			•								
1 Pb for 10, co T1 p.c.	40,23	_			>						
F	503	40.73	6.23	<023	(0.13						
9 9 9 9	<0.0>	1			>		-				
1000 H	<0.13	-			د						
Pb	4013	60,13	20113	(0)	60,B						
CA	0.0	0.0	0,0	9.0	⊘						
Lab Sample No. (01-86-1086	1130	4611	1135	9611						
Samp	1 - 98 -	- 98-	, % 2%	- 86	1.86						
Lat	Ö	õ	0	0	3	-	-	-	-	-	-
No.		25.	3	3	3						
Sample	<u> </u>	3-7	7-7	1 - (1.5						
Field Sample No.	1-SW-1	2-M12-3,CW-1 01-86-1130 1201	10,0 ff11-88-101-01, f-wm-c	1.CD > 1.CD 3 104.86. 1135 40.01	10.0 3611-38.40 5 CD. 5- CJM-1						

G = Graphite Furnace AAS P = Inductively Coupled Plasma C = Cold Vapor AAS = Hydride Vapor AAS F = Flame AAS are presented on a dry-weight basis. * If & moisture is reported, results

Analytical Method

Date Analyzed

ATTAIN ACCOUNT ACCORDING TO SECOND

8593111

L-427

Paye of 2 Laboratory Supervisor Approval: Dilution Factur Mohmmy CC Report No. Environmental Quality Parameters ANALYTICAL RESULTS SUMMARY Water (mg/L) mg// Sample Matrix: 1355× ES JOB NO. 56538 Enginearing-Science Client Libe Date Collec Date Receiv Client No. Project

KARAKAR DADADADA (KAKKARA) SOODOO KAKARAKA

できたというと、「これのことを、これのことを、これのことを、これのことを、これのことを、これのことを、これのことを、これのことを、これのことを、これのことを、これのことを、これのことを、これのことを、

	Notes	-			
		-128c)			
n G		4000	0		
. *Moisture		low mudd	• 1		
ug/kg)		(Very	· -		
Soil (ug/g) (ug/kg) Other	705			463	
// Soil // Other	N N03	\bigvee	1.32	1,33	
7	TKN	1,84			
11 april 86	Lab Sample No. TK	CHO1 - 98-100	3:45, 1mw2 Ou-86 - 1074	5+01-98-101 SMS 100:0	
Date Collected Date Received 11 Ox	Field Sample No.	10/66, 2:25, 201033 OU-86 - 1073	3:45, IMWZ	5:00, Smus	
Da te Da te	Fig	🕇		2	

4/11/86 3:15 4 MW 4 GUZLOU - 86 - 1092

L-428

								Ì
Date Analyzed	E	3/ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	7=	77				
Analytical Method		8.12E	352.1	8.091			-	
* If & moisture is reported, results	reported, resul		ssented on	are presented on a dry-weight basis	ght basi	3.		

1

E.

3

3

....

M.

心臓で

Results from Radiation Scan

ATTACHMENT	1	RESULTS
ALIACHTERI	_	VESOTIS

E

Ż

3

(SS) - 100

3

8

Sample Number	Collection Date	Analysis	Results pCi/L ± 2 G
MW-6 GW-1	1/15/86	Gross Alpha Gross Beta 228Th 230Th 232Th Ge(Li) Scan: 226Ra	180 ± 60 200 ± 10 1.13 ± 0.06 0.56 ± 0.05 0.80 ± 0.05
MW-6 GW-2	1/15/86	Gross Alpha Gross Beta 228Th 230Th 232Th Ge(Li) Scan: 226Ra	130 ± 30 250 ± 20 0.65 ± 0.06 0.30 ± 0.04 0.48 ± 0.04 80 ± 10
MW-4 GW-1	1/16/86	Gross Alpha Gross Beta 228Th 230Th 232Th Ge(Li) Scan: 226Ra	250 ± 20 120 ± 20 8.2 ± 0.4 6.5 ± 0.4 5.8 ± 0.3 120 ± 10
MW-5 GW-1	1/16/86	Gross Alpha Gross Beta 228Th 230Th 232Th Ge(Li) Scan: 226Ra	270 ± 20 160 ± 30 4.1 ± 0.2 2.2 ± 0.2 2.8 ± 0.2 140 ± 10

well bes notion, vomin, rolon, etc

1						71,51,5			:
	A 6N 94 0003	18601075	č š	CHEMISTRY DATA	W T (DIS)	13. C. M.		C IDENTIFICATION	
	socia AFP PJKS, Waterfor, Co	0253E	WT OR VOL ANALYZED	so so come.	WT (SUS)			RHL NO.	
	SUBM (01: 21-MAT-80		CHEMICAL		SEP			BASE CODE	
	AFB APBGF Brooks AFB		SPIKE RHL NO.) A	VOL SPIKE ADDED			DATE	. 64
	ANALY Breek Greek states I about Des	Som D-1 Lodged by F.	REMARKS	ALPHA-SETA	CHEM	10/000	ر ر	DATE	9
		64000	E RESULTS	ACTIVITY +	UNITS	NUCLIDE	(AGTIVITY	FARON -	UNITS
	COUNTER AND EFF	~	GROSS ALPHA DIS	MA -1.8 - MOM	ייכוור			+	
	TIME AND TOT CTS	CHC/21/00/	GROSS ALPHA SUS	+ + PHA	PCIAL			+	
	TIME AND BKG CTS	1201/1001	GROSS ALPHA (URINE)	+ + + + + + + + + + + + + + + + + + +	PCI/24H			+ 1	
	NET CPM		GROSS ALPHA	+ + + + + + + + + + + + + + + + + + +	PCI/GD			+	
	DATE AND TIME START	10 24-186	GROSS ALPHA	+ + H4	PCI/GA			+ 1	
L			GROSS ALPHA	PHA +	PCI/M3			•	ļ
430	COUNTER AND EFF		GROSS BETA DIS	41.9 -	PCI/L			•	
	TIME AND TOT CT		OROSS BETA SUS	+	PCIAL			•	
	TIME AND BKG CTS		GROSS BETA	TA . +	PC1/24H			+ 1	
	NET CPM		NET BETA (URINE)	*	PC1/24H			+	
	DATE AND TIME START		GROSS BETA (SOIL)	+ -	PCI/GD			+ 1	
			GROSS BETA		PCI/GA			• •	
K	RADON	CELL No.	GROSS BETA (AIR FILTER)	TA +	PCI/M 3			+	
140	DATE COUNTED	TIME STARTED	SAMPLE WT DIS	u	MG/L			•	
ch	TOTAL TIME	UNCORRECTED SAMPLE ACT	SAMPLE WT	ı	MG/L			+ 1	
·e/	TOTAL COUNTS	TIME COR FACTOR	SAMPLE VOL	م	Z.			•	
+/	GPM	CORRECTED SAMPLE ACT	SAMPLE VOL	70 82	E 2			+ 1	
,	BKQ CPM	CONTROL ROOM ACTIVITY	SAMPLE						
	NCPA	NET SAMPLE ACTIVITY	MECOVERY		*	COUNT : O	JUN BOB	B RLFR	ز
				100 Sept. 100 Se	7475	P. BARTESONS	Soal	HESALYSED OF	3

	with.		\mathbf{l}	TRY	**		\vdash	
A		18401075	B DATA		IDISI		CIDENTIFICATION	2
SOCI APP POTES, Waterlan, Co.		0253D	WT C? VOL ANALYZED	600 ml	WT (SUS)		NO	
SUB! Col: 21-MAY-86	Rec: 03-JUN-86	- 98-KNC	CHEMICAL RECOVERY		SEP		BASE	
AFB APBGF Brooks AFB	WATER 1X 79235	535	SPIKE RHL NO	ADA	VOL SPIKI ADDED		DATE REC	Α V
ANA BOUL Crek St. 1	ad bassol	F-1	REMARKS	GAMMA	3 NOS	CONP 6/5/86	BY DATE COMP	A.
D COUNTING	15/1	2618400	E RESULTS	ACTIVITY + ERROR	UNITS	NUCLIDE	ACTIVITY + EPROR	UNITS
COUNTER AND EFF			GROSS ALPHA DIS	+ 1	PCIAL	252-17	- 9/1/2	18.6
TIME AND TOT CTS			GROSS ALPHA SUS	+ 1	PCI/L		<83 -	٥
TIME AND BKG CTS			GROSS ALPHA	+ 1	PCI/24H		- 957	ی
NET CPM			GROSS ALPHA (SOIL)	+	PCIIGD	~		5
DATE AND TIME START			GROSS ALPHA	+	PCIIGA	30-95	415	×
			GROSS ALPHA	+	PCI/M ³		- 8>	, , , , , , , , , , , , , , , , , , ,
COUNTER AND EFF			GROSS BETA DIS	+ 1	PCI/L		- 0%>	,
TIME AND TOT CT			GROSS BETA SUS	+ 1	PCI/L	Earles	- 67	<i>\\</i>
TIME AND BKG CTS			GROSS BETA (URINE)	+	PC#24H		- 2.67	//
NET CPM			NET BETA (URINE)	+ 1	PC1/24H	1813	< 30	١
DATE AND TIME START			GROSS BETA (SOIL)	•] •	PCI/GD	2	- 67	<i>\(\)</i>
			GROSS BETA	+ 1	PCI/GA	6737	- 47	2
RADON	CELL NO.		GROSS BETA (AIR FILTER)	+ 1	PCIIM 3		- 2/7	<u>ا</u> (
DATE COUNTED	TIME		SAMPLE WT DIS		MG/L	062-57	C1 - 0°	11
TOTAL TIME	UNCORRECTED SAMPLE ACT		SAMPLE WT SUS		MG/L	,	• 1	
TOTAL COUNTS	TIME COR FACTOR		SAMPLE VOL		W		+ 1	
GROSS CPM	CORRECTED SAMPLE ACT		SAMPLE VOL IAIR FILTERI		м3		+ 1	
BKG CPM	CONTROL ROOM ACTIVITY		SAMPLE				• 1	
NCPM	NET SAMPLE ACTIVITY		RECOVERY	+	8	COUNT COUNT	JUN 1986 NU	

Sees no colors (Sees casa) proper a proper a proper de la proper de la properta del properta de la properta de la properta de la properta del properta de la properta del la properta del la properta de la properta de la properta de la properta de la properta de la properta de la properta de la properta de la properta del la properta de la properta del la properta de

174/6

		CHEMISTRY	STRY	M		LANORATORY)#\
	18	D DATA		isiai	41.120	,	ATION
so APP TOKS, Waterton, CO	0253D Rec: 03-JUN-96	WT OR VOL	moor	WT ISUSI			
So the state of th	OUT OF THE	CHEMICAL		SEP		BASE	
AF Brooks AFR		SPIKE RHL NO.) Y	VOL SPIKE ADDED		DATE	8
M Bruch Greek 8thibu 2 des	Loaded by Fu	REMARKS		CHEM	Mary 18	COMP	₩
D COUNTING	64000	E RESULTS	ACTIVITY	UNITS	-	ACTIVITY + ER	ERROR UNITS
COUNTER AND EFF	۶	GROSS ALPHA DIS	<1.9 + MOA	PCIAL		• J	
TIME AND	100/13/360	GROSS ALPHA SUS	+ 1	PCI/L		+ 1	
TIME AND BKG CTS	. ~	GROSS ALPHA IURINE!	+ 1	PCI/24H		+ 1	
NET CPM		GROSS ALPHA	•	PCI/GD		+ L	
DATE AND TIME START	10 yeu 86	GROSS ALPHA	1	PCI/GA		+	
•		GROSS ALPHA (AIR FILTER)	+ 1	EM/ID4		+	
COUNTER AND EFF		GROSS BETA DIS	17.0 + 4.5	PCIIL		*	
TIME AND TOTICE		GROSS BETA	+ 1	PCIVL		• .	
TIME AND BKG CTS		GROSS BETA	+ 1	PCI/24H		+ -	
NET		NET BETA (URINE)	+ 1	PCI/24H		• 1	
DATE AND TIME START		GROSS BETA (SOIL)	+ 1	PCI/GD		*] .	
		GROSS BETA	+ 1	PCI/GA		+ 1	
RADON	CELL NO.	GROSS BETA (AIR FILTER)	+ 1	PCI/M 3		+ 1	T
DATE	TIME	SAMPLE WT DIS		MG/L		•	
TOTAL	UNCORRECTED SAMPLE ACT	SAMPLE WT		MB/L		• .	Τ
TOTAL	TIME COR FACTOR	SAMPLE VOL		¥		• 1	
GAOSS	COMPLETED SAMPLE ACT	SAMPLE VOL IAIR FILTERI		£3		+ 1	
BKG CPM	CONTROL ROOM ACTIVITY	SAMPLE W.T				+	
NCPM	NET SAMPLE ACTIVITY	MECOVERY	•	*	COUNT 12 JU	JUN 1986 12/17	70
WASHINGTON TO THE PROPERTY OF			22 221 521 5		SIGN.	WANTED STATES TO	SONE

*		İ				ا ج									_				_						
	/2			È) B		F/	\ 	3	<i>"</i>	//	"	"	"	,	"	\ 	<i>"</i>	<i>)</i>	\ 	1		 	-	
	LABORATORY IDENTIFICATION					ERROR																			8
	2 2 2 2 3 3 3 3 3 3	RHL	BASE CODE	DATE REC	DATE	• •	+ -	٠ ،	•	• •	+ 1	•	•	۰	- -	• •	• •	•	+ 1	+ 1	، [٠]		. .	1,1,	A8
222		αz	20			ACTIVITY	<43	792	462	412	2//>	413	7570	65	1	86 >	47	64	<i><47</i>	9/7			į		COUNT ? JUIL 1:190
X					186 BV		14-235	nh-1	15-W	1090			66	23	<u> </u>	12731	3		194-190	ch/-	l				9.0
رم.	13	(S)	<u></u>		CONP 6/5/86	NUCLIDE	11.5	//-	Chi	10	26		de	lui	Ĭ,	17	1	6.		77					NO CO
	W T IOISI	WT (SUS)	SEP	VOL SPIKE ADDED	38	UNITS	PCI/L	PCI/L	PC1/24H	05/124	PCI/GA	PCI/M3	PCIVL	PCIVL	PC1/24H	PC1/24H	PCI/GD	PCIIGA	PCI/M 3	MG/L	MG/L	¥	M3		,
E.4.5				Š V V V		ERROR																! !			\prod
N • •		8			IIA	1			•	• 1	 	•	+			 - -		+ -	+						
5.5.5		ome			GAMINA	† † <u> </u>	* ' 	* '	+ 1	† 1	, ,	1	,	,	, ,			, i	11						'
	CHEMISTRY DATA	89				S ACTIVITY	<	4	4	4	4	4						_							_
i de la companya de l	CHEN	WT OR VOL	CHEMICAL RECOVERY	SPIKE RHL NO.	REMARKS	RESULTS	GROSS ALPHA DIS	GROSS ALPHA SUS	GROSS ALPHA (URINE)	GROSS ALPHA	GROSS ALPHA	GROSS ALPHA IAIR FIL TERI	GROSS BETA DIS	GROSS BETA SUS	GROSS BETA	NET BETA (URINE)	GROSS BETA (SOIL)	GROSS BETA	GROSS BETA (AIR FILTER)	SAMPLE WT DIS	SAMPLE WT SUS	SAMPLE VOL	SAMPLE VOL	SAMPLE	RECOVERY
	8	\$ ₹	# E	S E	 	3 €	1	SO	es 5	R)	8 ≥	B €	85	8 3	55	¥5	£ 55	GR	GP (A)	SA	S SU	Ϋ́	S S	& ∝	ă.
	7.7	, ei %	3		-, ù	004219																			
\$3.5	18691077	0253D		WA EN	Lossed by	0								 											_
\$7.5°	18	0253D 0253D Ref: 07-1:8-94		⊈ `` 3	Loggi	べ														ΈŪ	UNCORRECTED SAMPLE ACT	30A	E ACT	CONTROL ROOM ACTIVITY	AWPLE
					-														CELL NO.	TIME	UNCO	TIME COR FACTOR	CORRECTED SAMPLE ACT	CONTI	NET SAMPLE
3.5		turton					<u> </u>				 														
38.83	្សា	1. 28 - X			<i>x</i> :	! 											:								
(3)	90 9	APP PJKJ, Waterton, Co	: : (GF.	Bruk Co. St.				ļ								ı	·							
33.	8 25	8 C. 2		4 HEGE Proofs AFE	Brush	COUNTING					TH.		_				aT								
6.	A	100	SUB•	AF8 H	ANA	D	COUNTER AND EFF	TIME AND	TIME AND BKG CTS	NET CPM	DATE AND TIME START		COUNTER AND EFF	TIME AND TOT CT	TIME AND BKG CTS	NET	DATE AND TIME START		RADON	DATE	TOTAL	TOTAL COUNTS	GROSS CPM	BKG CPM	NCLN
-	7	<u></u>							ـــــــا				L 43	33	·			l						<u></u>	

2 1		1	2	È	()%	-	<u> </u>	 					-					-				 -		\ 1. · :
C INFERTIFICATION	MHL NO	BASE COOE	DATE	DATE	FIRMON	+ 1			•	+	+ 1	• .	•	- -			- -		•	•	• 1	+ -		++ 7°
49.3 ma	0			<u> </u>	*ETWITY										-									COUNT TO JUN 19:
	_			18 mg/0/ 00	NUCLIDE																			COUNT
ISIOI	WT ISUSI	SEP	VOL SPIKE ADDED	CHEM	UNITS	אכור	PCI/L	PC1/24H	PCI/GD	PCI/GA	PCIVM3	PCIA	PCI/L	PC1/24H	PCI/24H	PCI/GD	PCI/GA	PCI/M 3	T/9#I	MG/L	¥	£ 3		*
:	June		> V	ALPistonia	ERROR	MOA						2,2												
	MOOC			ALPin	- -	+ +	- .	- ₋	٠ ٠	٠ ١	+ ,	7	- . 	- , 	- _'	- 	۱۰ ،	- -						-
DATA		 - 			S ACTIVITY	417		4	4	4	<	/0/												_
B DAT	WT OR VOL ANAL YZED	CHEMICAL	SPIKE RHL NO.	REMARKS	E RESULTS	GROSS ALPHA DIS	GROSS ALPHA SUS	GROSS ALPHA IURINE)	GROSS ALPHA	GROSS ALPHA	GROSS ALPHA (AIR FILTSR)	GROSS BETA DIS	GROSS BETA SUS	GROSS BETA	NET BETA (URINE)	GROSS BETA (SOIL)	GROSS BETA (VEG)	GROSS BETA (AIR FILTER)	SAMPLE WT DIS	SAMPLE WT SUS	SAMPLE VOL	SAMPLE VOL	SAMPLE	RECOVERY
	79	36	1		j		<u>.</u>					:		·										
ו נוב טעשעוב	1860197 0253D	Rec: 03-JUN-96	WATER				258	00		22										٥			M C	<u> </u>
			3;	Sector of Belling By	(-4000	∞)	18/101/1001		10 zv~86								CELL NO.	TIME STARTED	UNCORRECTED SAMPLE ACT	TIME COR	CORRECTED SAMPLE ACT	CONTROL ROOM ACTIVITY	NET SAMPLE ACTIVITY
	ruter, C			Ŋ			<u> </u>																	
E C	0006 5, Wooth	MAY-86		C skta					:															
	GN 86 0006 AFF PJ(65, Waterby, CO	Col: 21-MAY-86	4ABGF	L ceek	DNI							,		} 										
A	Soc Soc Soc Soc Soc Soc Soc Soc Soc Soc	Sugar Suga Sugar Suga Sugar Sugar Sugar Sugar Sugar Sugar Sugar Sugar Suga Sugar Sugar Sugar Sugar Sugar Suga S Sugar Sugar Sugar S Sugar	AF8 4	AND Bruch	D COUNTING	COUNTER AND EFF	TIME AND TOT CTS	TIME AND BKG CTS	NET	DATE AND TIME START		COUNTER AND EFF	TIME AND TOT CT	TIME AND BKG CTS	NET CPM	DATE AND TIME START		RADON	DATE	TOTAL TIME	TOTAL COUNTS	GROSS CPM	BKG CPM	NCPM

			CHEMISTRY	STRY		3		Ì	LABORATORY	
7. GN 85 0006	18	920	D DATA			(SIQ)			⊣	
APP POTKS, WASTELVEN, CO	0253F Rec: 03-11N-94	3.E	WT OR VOL	Coom		WT (SUS)			RHL NO	
			CHEMICAL RECOVERY			SEP			BASE	
Proofs AFB	WATER TX 78235		SPIKE RHL NO.		VOL ADD	VOL SPIKE ADDED			DATE REC	à
Bruk a. sh3	Logged by	2	REMARKS	GAMMA		CHEM	6/5/66	*	DATE	> 60
D COUNTING	1/3	66/8/00	E RESULTS	ACTIVITY +	ERROR	UNITS	NUCLIDE	ACTIVITY	FRROR -	UNITS
COUNTER AND EFF			GROSS ALPHA DIS	+ '		PCI/L	1-239	127	+	15./
TIME AND TOT CTS			GROSS ALPHA SUS	→ 1		PCI/L	oh-y	767	• 1	>
TIME AND BKG CTS			GROSS ALPHA (URINE)			PCII24H	15-21	8	+ 1	=
NET CPM			GROSS ALPHA			PCI/GD	09-9	//>	•	>
DATE AND TIME START			GROSS ALPHA (VEG)	+ ı		PCI/GA	28-95	16>	+ -	3
			GROSS ALPHA (AIR FILTER)	• ·		PCI/M3	28-40	97	• •	2
CH COUNTER AND EFF			GROSS BETA DIS	- ·		PCIIL	140-99	0057	•	>
TOT CT			GROSS BETA SUS	+ ·		PCIIL	64-103	8/	•	=
TIME AND BKG CTS			GROSS BETA IURINEI	+ 1		PCI/24H	14-105	1		=
NET CPM			NET BETA (URINE)	+ 1		PCI/24H	127			=
DATE AND TIME START			GROSS BETA ISOIL!	+ 1		PCI/GD	15134	87	•	15
			GROSS BETA (VEG)	+		PCI/GA	(5-13)	1	+ 1	=
RADON	CELL NO.		GROSS BETA IAIR FILTERI	+ 1		PCI/M 3	061-49	, ,	+ -	=
DATE	TIME		SAMPLE WT DIS			MG/L	14-190		• •	=
TOTAL	UNCORRECTED SAMPLE ACT		SAMPLE WT SUS			MG/L			+ 1	
TOTAL	TIME COR FACTOR		SAMPLE VOL IURINEI			¥			•	
GROSS	CORRECTED SAMPLE ACT		SAMPLE VOL IAIR FILTERI			K 33			• 1	
8KG CP4	CONTROL ROOM ACTIVITY		SAMPLE WT						•	
NCDA	NFT SANIME ACTIVITY		RECOVERY	•		,	COUNT : 1	1:1:1	IIV (Q)	

27.7

* * *

F

.

Kessesed Poderon Kesokkas Dvarena Dovaren Kessesu poderon Kessesu Kessesen Kessesen Kessese

7,4476

				7	7 4 4	-	
A GN 86 0001	•	B DATA		(SIQ)	169,3mg	C IDENTIFICATION	
so App Potts, Waterlan, do	,	WT OR VOL	200m	WT (SUS)		WO.	
SUB 12 - 120 8US	rec: 03-JUN-85	CHEMICAL		SEP. TIME		BASE	
AFB 4 ABBO T	WATER TX 78235	SPIKE RHL NO.	ADD.	VOL SPIKE ADDED		DATE REC	¥
MY DFP BTKS MUSTY	Lossed by F.J.	REMARKS	ALL LINE DICKA		CHEM CASTO BY	DATE	94
D COUNTING	64000	E RESULTS	ACTIVITY + ENROR	UNITS	NUCLIDE ACT	ACTIVITY + ENROR	CNITS
COUNTER AND EFF	ŋ	GROSS ALPHA DIS	53.5 - 11.7	PCI/L		+ 1	
TIME AND	100/91/001	GROSS ALPHA SUS	+ 1	PCI/L		+ 1	
TIME AND BKG CTS	<i>></i>	GROSS ALPHA	+ 1	PCI/24H		+ 1	
CPM		GROSS ALPHA	+ 1	PCI/GD		+ 1	-
DATE AND TIME START	18 m 281	GROSS ALPHA (VEG)	+ -	PCI/GA		+	
		GROSS ALPHA (AIR FILTER)	+ 1	PCI/M ³		+ 1	
COUNTER AND EFF		GROSS BETA DIS	42.8 + 4.0	PCI/L		+ 1	
TIME AND		GROSS BETA SUS	+ 1	PCIL		+ 1	
TIME AND BKG CTS		GROSS BETA (URINE)	• •	PCI/24H		+ 1	
NET		NET BETA (URINE)	+ ,	PCI/24H		+ 1	
DATE AND TIME START		GROSS BETA (SOIL)	• 1	PC1/GD		+ 1	
		GROSS BETA (VEG)	+ 1	PCI/GA		+ 1	
RADON	CELL NO.	GROSS BETA (AIR FILTER)	+ 1	PCI/M 3		+ 1	
DATE	TIME	SAMPLE WT DIS		MQ/L		+ 1	
TOTAL	UNCORRECTED SAMPLE ACT	SAMPLE WT		MG/L		+ 1	
TOTAL	TIME COR FACTOR	SAMPLE VOL		ž		+ -	
GROSS CPM	COMPECTED BAMPLE ACT	BAMPLE VOL IAIR FILTERI		E 3		• 1	
PKQ C C PK	CONTROL ROOM ACTIVITY	BAMPLE				•	
NCM	NET SAMPLE ACTIVITY	RECOVERY	•	,	COUNT DR JUN 1986	1 1986 "PLITER	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
SE ESSENTESSET ESSE MES	amegoungelog auritelopomologidus	22.0	335 2 34 355 3	37.7	ASIQ REC	V	A WELL

		ſ	\vdash	YEA.		×		ľ	LABORATORY	
A GN B4 0001	18	1073	B DATA			(S)Q)			C IDENTIFICATION	
so ATP PITES, Waterton, CD	ر د د	0255P	WT OR VOL ANALYZED	DW 009		WT (SUS)		-	RHL NO	İ
Sur Col: 21-HAY-80	49 TO 1.33	Γ-	CHEMICAL RECOVERY		<u> </u> 	SEP			BASE CODE	-
AFB AABGP Brooks AFB	TX 28235	35	SPIKE RHL NO.		ADD	VOL SPIKE ADDED			DATE	<u></u>
D # 50 W ON	80 Casso 1		REMARKS	-GAIM		CHEM	6/8/2	£ €	DATE	BV
D COUNTING	6/1	h blehoo	E RESULTS	ACTIVITY +	ERROR	UNITS	NUCLIDE	ACTIVITY	+ ERROR	UNITS
COUNTER AND EFF			GROSS ALPHA DIS	+ 1		PCI/L	4-239	760	+	7.5
TIME AND			GROSS ALPHA SUS	+ 1		PCI/L	0h-X	86	- 85	>
TIME AND BKG CTS			GROSS ALPHA	+ 1		PC1/24H	(m-5/	7 44	+ 1	<u>-</u>
WEI			GROSS ALPHA ISOIL)	+ 1		PCI/GD	10-60	412	+ 1	۵
DATE AND TIME START			GROSS ALPHA	+ 1		PCI/GA	36-22	<117	+	1/
			GROSS ALPHA	 - 		PCI/M3	86-9N	87	+ 1	1
COUNTER AND EFF			GROSS BETA DIS	+ ,		PCIVE	10.59		•	1/
TIME AND TOT CT			GROSS BETA SUS	+ 1		PCIAL	Qu103	٤/	*),
TIME AND			GROSS BETA (URINE)	+ 1		PC1/24H	Ju-106		•	"
NET CPM			NET BETA IURINE!	- -		PCI/24H	1547	867	+ 1	٨
DATE AND TIME START			GROSS BETA ISOIL!	 •		PCI/GD	1813	23	•	J _j
			GROSS BETA (VEG)	+ 1		PCI/GA	(5-137	45	+ 1	ے
RADON	CELL NO.		GROSS BETA (AIR FILTER)	+ 1		PCI/M 3	131 740		•	·
DATE	TIME		SAMPLE WT DIS			MG/L	04-47	4	+),
TOTAL TIME	UNCORRECTED SAMPLE ACT		SAMPLE WT SUS			MG/L			•	
TOTAL COUNTS	TIME COR FACTOR		SAMPLE VOL			¥			•	
GROSS	CORRECTED SAMPLE ACT		SAMPLE VOL			M3			•	
9KG CPM	CONTROL ROOM ACTIVITY		SAMPLE W T						+	
NCPM	NET SAMPLE ACTIVITY		RECOVERY	+ -		\$	COUNT 1 2	JUN 1986	E # 3	

¥.

223 . 853

. 37%

}

33

**

RECEDENT RECEDENT RECEDENT TOSCOSOS TOSCOSOS INDOSOSOS INSCOSOSOS INSCOSOS INSCOSOS INSCOSOS INSCOSOS INSCOSOS

					2.11.6		
A GN 86 0004	18	B DATA	ITRY	WT (DIS)	166. 3ma	C IDENTIFICATION	
SQ ATT (DRS, WAX CO. C. r>Rec: 03-JUN-86	WT OR VOL ANALYZED	Smood	WT ISUSI		NO.		
Sur AABGE		CHEMICAL		SEP		BASE	
AFE Brooks AFE		SPIKE RHL NO	0×	VOL SPIKE ADDED		DATE	Α
AN ATP POTES NW#5	Lossed by F.	REMARKS	ALI FILLE LE	CHEM	10 gr. 201	COMP) ED
D COUNTING	0.000	E MESULTS	ACTIVITY + ENROR	UNITS	NUCLIDE ACTIVITY	IVITY + ENROR	UNIT'.
COUNTER AND EFF	د	GROSS ALPHA DIS	10.6 - 6.4	PCI/L		+	
TIME AND TOT CTS	100/33/530	GROSS ALPHA SUS	+ 1	PCI/L		÷	
TIME AND BKG CTS		GROSS ALPHA	•	PCI/24H		+	
NET		GROSS ALPHA (SOIL)	+	PCI/GD		+ -	
DATE AND TIME START	18 Jul 86	GROSS ALPHA	+	PCI/GA		+	
		GROSS ALPHA (AIR FILTER)	+	PCI/M ³		+ 1	
COUNTER AND EFF		GROSS BETA DIS	31.4 - 3.5	PCIIL		+ 1	
TIME AND TOT CT		GROSS BETA SUS	+ 1	PCIIL		+ 1	
TIME AND BKG CTS		GROSS BETA (URINE)	+ 1	PCI/24H		+ 1	
NET		NET BETA (URINE)	+ 1	PC1/24H		+ 1	
DATE AND TIME START		GROSS BETA (SOIL)	+ 1	PCI/GD		+ 1	
		GROSS BETA (VEG)	+	PCIIGA		+ 1	
RADON	CELL NO.	GROSS BETA (AIR FILTER)	+ 1	PCI/M 3		+	
DATE COUNTED	TIME	SAMPLE WT DIS		MG/L		• 1	
TOTAL	UNCONNECTED SAMPLE ACT	SAMPLE WT		MG/L		+ 1	
TOTAL COUNTS	TIME COM FACTOR	SAMPLE VOL		ž		+ 1	
GROSS CPM	CORRECTED SAMPLE ACT	SAMPLE VOL		£3		+ 1	
BKG CPM	CONTROL ROOM ACTIVITY	SAMPLE				+ 1	
NCPM	NET SAMPLE ACTIVITY	RECOVERY	+ 1	*	COUNT 12 JUN	JUN 19RE PACTE	~ 5
響/80 F/S/38 概念Cot KASA mASA	and of Sauntified and Siften and Saute		\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	1 CS 2		1層	A K

1											2007	:
	; (!		10401074	B CHEMISTRY	Y 8 -		isio:		-	COENT	IDENTIFICATION	
	13 €		0253t	WT OR VOL ANALYZED	Gar, me		WT (SUS)			RHL		
	SUBA [51] 21-MAY-96	Kec: us-Justas	001	CHEMICAL RECOVERY			SEP	v		BASE CODE		
	AFB Proofs AFB	WATER IX 78235		SPIKE RHL NO.		ADD	VOL SPIKE ADDED			DATE REC		. 69 ≺
	ANAL THE MES # S	Lossed		REMARKS	GAMMA		CHEM	45/66	چ کر	DATE COMP		9.4
-	D COUNTING	٦//	0042197	E RESULTS	ACTIVITY +	ERROR	UNITS	NUCLIDE	ACTIVITY	. .	ERROR	UNITS
	COUNTER AND EFF			GROSS ALPHA DIS	+ 1		PCI/L	1235	733	- -		87
	TIME AND TOT CTS			GROSS ALPHA SUS	+ 1		PCI/L	14-40	567	•		`-
	TIME AND BKG CTS			GROSS ALPHA IURINEI	+ .		PCI/24H	(z-51	439	• 1		*
	NET CPM			GROSS ALPHA	+ 1		PCI/GD	6-60	//>	+		
	DATE AND TIME START			GROSS ALPHA	+ 1		PCI/GA	32-95	216	+ 1	-	2,
L 4				GROSS ALPHA (AIR FILTER)	+		PCI/M ³	25 90	49	+)/
39	COUNTER AND EFF			GROSS BETA DIS	- ₁		PCIAL	99-99		'		//
	TIME AND			GROSS BETA SUS	+ 1		PCI/L	Ru-103		• .		11
	TIME AND BKG CTS			GROSS BETA (URINE)	+ 1		PC1/24H	Ja-106	١ ٧	+ .		2
	NET CPM			NET BETA (URINE)	+		PC1/24H	1421	727	• 1		,,
	DATE AND TIME START			GROSS BETA	+ 1		PCI/GD	181.5)	87	• •		-
				GROSS BETA (VEG)	+ 1		PCI/GA	181187	V	•		
	RADON	CELL NO.		GROSS BETA (AIR FILTER)	+ 1		PCI/M 3	ST 2 OUT AND	527	+		,,,
	DATE	TIME		SAMPLE WT DIS			MG/L	041-47	36	₹ ·		2)
	TOTAL .	UNCORRECTED SAMPLE ACT		SAMPLE WT SUS			MG/L	•		•		
	TOTAL	TIME COR FACTOR		SAMPLE VOL			¥			• ,		:
	GPOSS	CORRECTED SAMPLE ACT		SAMPLE VOL IAIR FIL TERI			€3			• •		
	BKG CPW	CONTROL ROOM ACTIVITY		SAMPLE W.T						,		
	NCFW	NET SAMPLE ACTIVITY		RECOVERY	+ '		,	COUNT 1 5	JUN 1956	38	B	İ
												1

5

\\ \\ \\

シロファ よいし

				5,	ارق ا		
	1 TVDE CANDIE	B CHEMISTRY	STRY	W.T (DIS)	16.320c	C IDENTIFICATION	
APP POTES, Waterton, Co		WT OR VOL ANALYZED	Smoot	WT (SUS)	0	/	
- Col: 21-MAY-86	Rec: 03-JUN-96	CHEMICAL		SEP. TIME		BASE	
Frooks AFR	WATER TX 78235	SPIKE RHL NO.	J :	VOL SPIKE		DATE	à
AFP FORS MWA6	(wotch bank clar & conty	REMARKS	ALPINELLE . C.	CHEM 19617	18 2 Ming	DATE	B .
D COUNTING	00000	E RESULTS	ACTIVITY + ENROR	UNITS	NUCLIDE ACTIVITY	ITY + EAROR	UNIT;
COUNTER AND EFF	h	GROSS ALPHA DIS	<4.5 + MOA	PCI/L		+ 1	
TIME AND TOT CTS		GROSS ALPHA SUS	+ 1	PCI/L		+ 1	
TIME AND BKG CTS	0001/101/2	GROSS ALPHA (URINE)	+ 1	PCI/24H		+ 1	
NET CPM		GROSS ALPHA	+ 1	PCI/GD		+ 1	
DATE AND TIME START	78 MM 61	GROSS ALPHA	+ 1	PCIIGA		+ -	
		GROSS ALPHA	+ -	PCI/M ³		+	
COUNTER AND EFF		GROSS BETA DIS	27.6 - 2.3	PCI/L		+ 1	
TIME AND TOT CT		GROSS BETA	+ 1	PCI/L		•	
TIME AND BKG CTS		GROSS BETA	+ 1	PCI/24H	,	• •	
NET CPM		NET BETA (URINE)	+ 1	PC1/24H		•	
DATE AND TIME START		GROSS BETA (SOIL)	+ 1	PCI/GD		•	
		GROSS BETA (VEG)	+ 1	PCI/GA		+	
RADON	CELL NO.	GROSS BETA IAIR FILTER!	+ 1	PCI/M 3		+ 1	
DATE COUNTED	TIME STARTED	SAMPLE WT DIS		MG/L		* I	
TOTAL TIME	UNCORRECTED SAMPLE ACT	SAMPLE WT		MG/L		+ 1	
TOTAL COUNTS	TIME COR FACTOR	SAMPLE VOL		ML		* 1	
GROSS	CORRECTED SAMPLE ACT	SAMPLE VOL		M3		+ 1	
BKG CPM	CONTROL ROOM ACTIVITY	SAMPLE				• ,	
PM	31	RECOVERY	+ 1	*	COUNT 12 JUN 1986	1986 12 L	ا ا
	1		100 CO			はなくないののというの	1

											İ
A GN 84 0000		19401074	B CHEMISTRY	TRV		isiai			C IDENT	IDENTIFICATION	
soci ATP POTES, Water-for, Co	: :	0253D	WT OR VOL ANALYZED	600mg		WT (SUS)			RHL NO		
SUBA CUI: 21-774 - 60	מא-מחריים יספא	0 2 2 2	CHFMICAL RECOVERY			SFP			BASE		
AFB Prooks AFB	WATER 1X 78235	l K∑	SPIKE RHL NO.		A VO	VOL SPIKE ADDED			DATE REC		>
A A WAS # 6	Logged by	l fig. 50	REMARKS	GAMMA		CHEN	CHEM 45/85	%	DATE		9 ×
D COUNTING	01/1	5042195	E RESULTS	ACTIVITY +	ERROR	UNITS	NUCLIDE	ACTIVITY	. .	ERROR	UNITS
COUNTER AND EFF			GROSS ALPHA DIS	+ 1		PCI/L	1-235	787	• 1		77
TIME AND			GROSS ALPHA SUS	• ·		PCI/L	05-X	367	•	•	11
TIME AND BKG CTS			GROSS ALPHA (URINE)	+ '		PC1/24H	12.87	067	• .		4
NET CPM			GROSS ALPHA	+ 1		PCI/GD	6-60	//>	+ 1		1
DATE AND TIME START			GROSS ALPHA	+ 1		PCI/GA	26-12	47	• 1	,	1,
			GROSS ALPHA	+ '		PCI/M ³	26-4/2	47	٠ ،		1
COUNTER AND EFF			GROSS BETA DIS	+ 1		PCI/L	110-99	0157	• 1		1
TIME AND			GROSS BETA SUS	+ 1		PCIAL	Ru-103	77			2
TIME AND BKG CTS			GROSS BETA (URINE)	+ 1		PCI/24H	Ru-108	<i>h57</i>	•		1
NET CPM			NET BETA (URINE)	+ ,		PC1/24H	T-13/	701			٥
DATE AND TIME START			GROSS BETA (SOIL)	+ 1		PCI/GD	Ce-134	67	. -		=
			GROSS BETA (VEG)	+ 1		PCI/GA	(5-137	757			1
RADON	CELL NO.		GROSS BETA (AIR FILTER)	+ 1		PCI/M 3	B-140	197			11
DATE COUNTED	TIME STARTED		SAMPLE WT DIS			MG/L	19-140	4/6	. .		
TOTAL TIME	UNCORRECTED SAMPLE ACT		SAMPLE WT SUS			MG/L			٠ ٠		
TOTAL COUNTS	TIME COR FACTOR		SAMPLE VOL			¥					
GPOSS	CORRECTED SAMPLE ACT		SAMPLE VOL (AIR FILTER)			€ ₹3			، [٠]		
BXG CPM	CONTROL ROOM ACTIVITY		SAMPLE W T						• 1		
NCPM	NET SAMPLE ACTIVITY		RECOVERY	+ :		*	COUNT 1 5	JUN 1965	Z AH SE	(F)	
AFEO Form Drag Oct or							ľ	0			

L 441

S

17.7

T. . . .

Ž,

Ä

C_{i}	. pammamamamamamamamamama. ! 21-AU6-85	Q253D SAMPLE ANALYSIS RESULTS	<u> 73</u>
C :	! USAF CEHL/RZ ! BROCKS AFB TX 78235-!	USAF OCCUPATIONAL AND ENVIRONMENTAL 5000 HEALTH LABORATORY(AFSC) BROOKS AFB, TEXAS 78235-5501	25/26
C	IDENTIFICATION	TYPE OF SAMPLE IDATE RECEIVED I OEHL NUMBER	i
	CN 86 0001	WATER 03-JUN-86 18601073	
	I GROSS ALPHA I GROSS BETA I BARIUM 140 I COBALT 60	53.5 +/- 11.7 PICUCURIES PER LITER 42.8 +/- 4.0 PICOCURIES PER LITER <29 PICOCURIES PER LITER <12 PICOCURIES PER LITER	35.5
C	CHRONIUM 51 CESIUM 134 CESIUM 137	<pre><44 PICOCURIES PER LITER <3 PICOCURIES PER LITER <9 PICOCURIES PER LITER</pre>	
(,	: IODINE 131 : MUTASSIUM 40 : LANTHANUM 140	<pre><28 PICUCURIES PER LITER 98 +/- 85 PICUCURIES MSR LITER <15</pre>	333
:	: MOLYBDENUM 99 : MIGBIUM 95 : RUTHENIUM 103 : RUTHENIUM 104	<pre><440 PICOUURIES PER LIBER <s <3="" <65="" liber="" liber<="" per="" picouuries="" picuuuries="" pre=""></s></pre>	1000
; ;	: URANIUM 235 : LIRCONIUM 75 : THORIUM 228 :	<pre><60</pre>	2 1 B (3)
	:	CON:INUED	
	: PAGE # 2 Transportations		
			==!
	IDENTIFICATION	TYPE OF SAMPLE DATE RECEIVED GEHL MUMBER	== :
•	ICENTIFICATION	TYPE OF SAMPLE IDAGE RECEIVED I DEML MUMBER	
	34 36 0001 		
<i>*</i>	34 36 0001 THORIUM 232		
	34 36 0001 THORIUM 232		== == == == == == == == == == == == ==
	34 36 0001 THORIUM 232		255 25 5
	34 36 0001 THORIUM 232		255 25 5
	34 36 0001 THORIUM 232		255 25 5
	34 36 0001 THORIUM 232		255 25 5

PRODUCT FOR THE PRODUCT RESISENCE OF THE PROPERTY OF THE PROPE

21-AUG-86	Q253D		SAMPLE	ANALYSIS I	RESULTS
UGAT DEHLYRZ Prooks arb TX 7 8235 -5			HEALTH	LABURATUR	ENVIRONHENTAL Y(AFSC) 78235-5501
IDENTIFICATION	TYPE OF S	ample	J TAU	RECEIVED	I DEHL NUMBER
GH 84 0002	WATER		1 03	-JUN-86	1 18601074
COBALT 60 CHROMIUM 51 CESIUM 134 CESIUM 137 IODINE 131 PCTASSIUM 40 LANTHANUM 140 MCLYBDENUM 99 NIOBIUM 95 RUTHENIUM 103 RUTHENIUM 104 URANIUM 235 IIRCONIUM 95 THORIUM 228	<pre></pre>	1 +/-	- O.UY	PICOCURIES PICOCURIES PICOCURIES PICOCURIES PICOCURIES PICOCURIES PICOCURIES PICOCURIES PICOCURIES PICOCURIES PICOCURIES PICOCURIES PICOCURIES PICOCURIES PICOCURIES	B PER LITER
୍ରଣ୍ଡ କେ ଓଡ଼					
•	TYFE OF S				OEHL NUMBEK
		AMPLE	DATE	RECEIVED	
IDENTIFICATION (SM 84 0002 (THORIUM 232	TYPE OF S	AMPLE	DATE 	-JUN-86	OEHL NUMBER
IDENTIFICATION	TYPE OF S	AMPLE	DATE 	-JUN-86	OEML NUMBER
IDSNTIFICATION (SM 84 0002 (THORIUM 232	TYPE OF S	AMPLE	DATE 	-JUN-86	OEML NUMBER

33 (35) (15) (35) (15)

**

523 (424) (524) (525)

कुर प्राप्त १५४१ भ्रम्भ १५४

!	USAF OEHL/RZ BROOKS AFB TX 78235- 			HEALTH	(10NAL AND Laburatory Afb,Texas	
!	IDENTIFICATION	! TYPE OF	SAMPLE	IDATE	RECEIVED /	OEHL WOWBER
1	GN 84 0003	. WATER			-JUN-85 !	18601075
!!!	GROSS ALPHA GROSS BETA BARIUM 110 COBALT 60	<1.8	3		PICOCURIES PICOCURIES	PER LITER PER LITER PER LITER PER LITER
!	CORRET SC CHROMIUM 51 CESIUM 134 CESIUM 137	<96 <9 <7			MICOCURIES	PER LITER PER LITER
: : :	: IODINE 131 : POTASSIUM 40 : LANTHANUM 140 : MOLYBDENUM 99	<30 <83 20 <450		- 1/	PICOCURIES PICOCURIES	PER LITER PER LITER PER LITER PER LITER
	NIOBIUM 95 RUTHENIUM 103 RUTHENIUM 106	<8 < 9 <47			PICOCURIES PICOCURIES PICOCURIES	PER LITER PER LITER PER LITER
1 1 1 1	URANIUM 235 Lirconium 95 Lihorium 228	<45 <15 0.1	.2 +/-	. 0.1	PICOCURIES PICOCURIES PICOCURIES	PER LITER
1			ONTINU	jED		
	HAGE # 2 HERETERETERETERETERETERETERETERETERETERE	TYPE OF S		: 03-	! - 38-xuu- 	18801075
	COSMISSION CONTRACTOR	I WATER		: 03-		186010)5
	COSMITICATION COSMITICATION COMBO COOS COMBO COMBO COOS COMBO COOS COMBO COMBO COOS COMBO COMBO COOS COMBO COMBO COOS COMBO COMBO COOS COMBO COMBO COOS COMBO COMBO COOS COMBO COMBO COOS COMBO COMBO COOS COMBO COMBO COOS COMBO COMBO COOS COMBO COMBO COOS COMBO COMBO COOS COMBO COMBO COOS COMBO COMBO	I WATER		: 03-	! - 38-xuu- 	188010)5
	COSMITICATION COSMITICATION COMBO COOS COMBO COMBO COOS COMBO COOS COMBO COMBO COOS COMBO COMBO COOS COMBO COMBO COOS COMBO COMBO COOS COMBO COMBO COOS COMBO COMBO COOS COMBO COMBO COOS COMBO COMBO COOS COMBO COMBO COOS COMBO COMBO COOS COMBO COMBO COOS COMBO COMBO COOS COMBO COMBO COOS COMBO COMBO	I WATER		: 03-	! - 38-xuu- 	18801075
	COSMITICATION COSMITICATION COMBO COOS COMBO COMBO COOS COMBO COOS COMBO COMBO COOS COMBO COMBO COOS COMBO COMBO COOS COMBO COMBO COOS COMBO COMBO COOS COMBO COMBO COOS COMBO COMBO COOS COMBO COMBO COOS COMBO COMBO COOS COMBO COMBO COOS COMBO COMBO COOS COMBO COMBO COOS COMBO COMBO COOS COMBO COMBO	I WATER		: 03-	! - 38-xuu- 	18801075
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	COSMITICATION COSMITICATION COMBO COOS COMBO COMBO COOS COMBO COOS COMBO COMBO COOS COMBO COMBO COOS COMBO COMBO COOS COMBO COMBO COOS COMBO COMBO COOS COMBO COMBO COOS COMBO COMBO COOS COMBO COMBO COOS COMBO COMBO COOS COMBO COMBO COOS COMBO COMBO COOS COMBO COMBO COOS COMBO COMBO COOS COMBO COMBO	I WATER		: 03-	! - 38-xuu- 	18801075
	COSMITICATION COSMITICATION COMBO COOS COMBO COMBO COOS COMBO COOS COMBO COMBO COOS COMBO COMBO COOS COMBO COMBO COOS COMBO COMBO COOS COMBO COMBO COOS COMBO COMBO COOS COMBO COMBO COOS COMBO COMBO COOS COMBO COMBO COOS COMBO COMBO COOS COMBO COMBO COOS COMBO COMBO COOS COMBO COMBO COOS COMBO COMBO	I WATER O.1 PRECTED	3 +/-		! - 38-xuu- 	188010/5

USAF CEHL/RZ BROOKS AFB TX 78235-		USAF	UCCUPA	IIUNAL AND	ENVIRONHEHHAL	
	1		BROCKS	AFB, TEXAS	78235-5 5 01	
						= :
IDENTIFICATION						
	WATER		1 03-	-JUN-86	18601076	
		======		=======================================		==
GROSS ALPHA	10. 31.	5 +/-	- 6.4	PICUCURIES	S PER LITER	
		4 +/-	- 3.5			
BARIUM 140	<75 <11				B PER LITER B PER LITER	
COBALT 30 CHROMIUM 51	<39				B PER LITER	
CESTUM 134 ·	\3, \3				S PER LITER	
02010/ 104 0281UM 137	₹5			,	PER LITER	
IUDINE 131	₹27				FER LITER	
POTASSIUM 40	499			PICOCURIES	PER LITER	
LANTHARUM 140	3 é ⟨ 5 20	+/-	- 18	PICOCURIES	S PER LITER	
MOLYBBENUM 99	<520			PICOCURIES	FER LITER	
MICHIUM 95	≪9			. + •	3 PER LITER	
RUTHENIUM 103	<8				3 PER LITER	
RUTHERIUM 104	<12 <77				B PER LITER	
URANIUM 235 Zirconium 95	<33 <16				S PER LITER B PER LITER	
THORIUM 228					S PER LITER	
17:ONION ELE	V + W	0 17	•••	, 10000KIE		
,		JALTHO	JES		ne que une sue que sue sue sen sue se sen sue se sue sue su	
PAGE # 2						
IDENTIFICATION	======================================	anple	ittetti Tuate	======================================		- = :
IDENTIFICATION	========= TYPE O: S !	anple	I DATE	RECEIVED	OEHL MUMBER	
IDENTIFICATION 67 83 0004	TYPE C: S ! ! WATER	adple	IDATE I 03-	RECEIVED (GEHL NUASER 	
IDENTIFICATION OP 83 0004 CHORIUM 232	TYPE CF S WATER	adple	IDATE I 03-	RECEIVED (OEHL MUMBER	
ISENTIFICATION OP 83 0004 CHORIUM 232	TYPE CF S WATER	adple	IDATE I 03-	RECEIVED (GEHL NUASER 	
ISENTIFICATION OP 83 0004 CHORIUM 232	TYPE CF S WATER	adple	IDATE I 03-	RECEIVED (GEHL NUASER 	
ISENTIFICATION OP 83 0004 CHORIUM 232	TYPE CF S WATER	adple	IDATE I 03-	RECEIVED (GEHL NUASER 	
ISENTIFICATION 57 83 3004 FHORIUM 232	TYPE CF S WATER	adple	IDATE I 03-	RECEIVED (GEHL NUASER 	. .
ISENTIFICATION 57 83 3004 FHORIUM 232	TYPE CF S WATER	adple	IDATE I 03-	RECEIVED (GEHL NUASER 	. .
ISENTIFICATION OP 83 0004 CHORIUM 232	TYPE CF S WATER	adple	IDATE I 03-	RECEIVED (GEHL NUASER 	. .
ISENTIFICATION OP 83 0004 CHORIUM 232	TYPE CF S WATER	adple	IDATE I 03-	RECEIVED (GEHL NUASER 	. .
ISENTIFICATION OP 83 0004 CHORIUM 232	TYPE CF S WATER	adple	IDATE I 03-	RECEIVED (GEHL NUASER 	. .
ISENTIFICATION OP 83 0004 CHORIUM 232	TYPE CF S WATER	adple	IDATE I 03-	RECEIVED (GEHL NUASER 	
ISENTIFICATION OP 83 0004 CHORIUM 232	TYPE CF S WATER	adple	IDATE I 03-	RECEIVED (GEHL NUASER 	. .
ISENTIFICATION 57 83 3004 FHORIUM 232	TYPE CF S WATER	adple	IDATE I 03-	RECEIVED (GEHL NUASER 	. .
ISENTIFICATION 57 83 3004 FHORIUM 232	TYPE CF S WATER	adple	IDATE I 03-	RECEIVED (GEHL NUASER 	. .
ISENTIFICATION 57 83 3004 FHORIUM 232	TYPE CF S WATER	adple	IDATE I 03-	RECEIVED (GEHL NUASER 	
07 83 200 4 Eregreses	TYPE CF S WATER	adple	IDATE I 03-	RECEIVED (GEHL NUASER 	. .
ISENTIFICATION 57 83 3004 FHORIUM 232	TYPE CF S WATER	adple	IDATE I 03-	RECEIVED (GEHL NUASER 	. .
ISENTIFICATION 57 83 3004 FHORIUM 232	TYPE CF S 	ample 	DATE 03-	RECEIVED -JUN-86 -PICUCURIES		
IBENTIFICATION 6M 83 0004 FHORIUM 232 RESULTS ARE DECAY CO	TYPE CF S	====== AMPLE ====== 4 +/-	DATE 03-	RECEIVED -JUN-86 -PICUCURIES	GEHL MUMBER 19601076 FER LITER	
IBENTIFICATION 67 83 0004 FHORIUM 232 RESULTS ARE DECAY CO	TYPE OF S	ample 	DATE 03-	RECEIVED -JUN-86 -PICUCURIES	GEHL MUMBER 19601076 FER LITER	

Carlo Care Care

88

ARE THE WAY BUY AND SEE

C' "	м регональной полькой полькой полькой полькой полькой полькой полькой полькой полькой полькой полькой полькой п 1 - 21-AUG-85	мене по по по по по по по по по по по по по	SAMPLE ANALYSIS RESULTS	ACTORPORTE 表示 Mai mai
C	I USAF DEHL/RZ I BROOKS AFB IX 75235-5 I	5000 ! _ l	OCCUPATIONAL AND ENVIRONMENTAL HEALTH LABORATORY(AFSC) BROOKS AFB, TEXAS 78235-5501	33
· .	IDENTIFICATION		I IDATE RECEIVED I OEHL NUMBER	= YC₁ - YC₁
	GN 86 0005	I WATER	03-JUN-86 186010/7	=
C_{\parallel}	GROSS ALFHA GROSS BETA PARIUM 140 CGBALT 60	<1.9	PICOCURIES PER LITER 7- 2.5 PICOCURIES PER LITER PICOCURIES PER LITER PICOCURIES PER LITER	
C:	COBALT 80 CHROMIUM 51 CESIUM 134 CESIUM 137	<62 <7 <4	PICOCURIES PER LITER PICOCURIES PER LITER PICOCURIES PER LITER	長
C	: IGBINE 131 : POTASSIUM 40 : LANTHANUM 140	<28 <92 <16	PICOCURIES FER LITER PICOCURIES FER LITER PICOCURIES FER LITER	
- ()	! MOLYBDENUH 99 NIOBIUH 95 RUTHENIUM 103 RUTHENIUM 106	<560 <12 <4 <55	MICOCURIES FER LITER PICOCURIES PER LITER PICOCURIES PER LITER PICOCURIES PER LITER	
	I KUTHENIUH 106 URANIUM 235 ZIRCONIUH 95 THORIUM 228	<43 <16	PICOCORIES PER LITER PICOCURIES PER LITER PICOCURIES PER LITER (- 0.03 PICOCURIES PER LITER	/ 653
			(UED	
<u> </u>			•	7
	PAGE # 2 		THE THE PROPERTY OF THE MINERS	=
	IDENTIFICATION	TYPE OF SAMPLE		
; ;	:=====================================	:=====================================	- 0.02 PICOCURIES PER LITER	=
:	RESULTS ARE DECAY COR			+ 🐯
; ;	!			
! !	· - - -	·		
	; ,			
;				1 37
; • •	; !		·	\$
			: # # # # # # # # # # # # # # # # # # #	= 1
; ;	: : DBUAKO F. MAHEK, NAJC : JHIEF, RADIVANALYTICA	JR, USAF, BSC AL SERVICES BR.	:=====================================	

SECTION OF THE PROPERTY OF THE

21-AUS-86 LILLAUS-86 USAF OEHL/RZ BROUNS AFB TX 78235-	! US# 5000 	AF OCCUPA HEALTH	TIONAL ARD LABURATURY	ENVIRONMENTAL
IDENTIFICATION	I TYPE OF SAMPL			I OEHL NUMBER
GN 86 0006	WATER	1 03	-JUN-86	1&601J78
	<1.9 10.4 <38 <11 <89 <8 <5 <20 <92 <17 <500 <10 <8 <46 <27 <21 0.08	+/- 2.2 +/- 0.04	PICOCURTES PICOCURTES PICOCURTES PICOCURTES PICOCURTES PICOCURTES PICOCURTES PICOCURTES PICOCURTES PICOCURTES PICOCURTES PICOCURTES PICOCURTES PICOCURTES PICOCURTES PICOCURTES PICOCURTES PICOCURTES PICOCURTES PICOCURTES	PER LITER PER LITER
FAGE # 2	CONI.			
FAGE # 2 IDENTIFICATION	TYPE OF SAMPL	E IDATE	RECEIVED	OFHT WARFK
FAGE # 2 IDENTIFICATION	TYPE OF SAMPL	E IDATE	######################################	
FAGE # 2 IDENTIFICATION SH 86 0006	TYPE OF SAMPL	E IDATE	######################################	UEHL NUMBER (

(A) (A) (A) (A) (A) (A) (A) (A)

333

5.5% EX.

1

1

CAST CAST CAST A ST

APPENDIX M
RESPONSES TO REGULATORY COMMENTS

PERCEPTURE AND PROPERTY AND PRO

ذ

AFP PJKS DRAFT PHASE II REPORT COMMENTS FROM REGULATORY AGENCIES

Š

\ 2

E

U.S. Environmental Protection Agency (Ref. 8HWM-SR; letter dated 19 August 1986)

Comments

. Detection limits.

The detection limits for some critical chemical analyses were very high. We believe that this is a serious weakness in this investigation and severely limits the usefulness of the results. The detection limit for hydrazine in water, for instance, was I part per million (ppm) and for TCE in soils, 2 ppm. These high detection limits probably explain why there were no positive results for these two contaminants in those media.

Response

1. Detection limits.

Detection limits are determined by the specific method of analysis and represent limits that can be reached by a laboratory. We agree that the limit for hydrazine (1 ppm) and TCE (2 ppm) may be a little high. However, matrix effects normally raise the limits of detection.

An EPA method for analysis of hydrazine does not exist. Therefore, a NIOSH method was modified for this analysis. Theoretically, a detection limit of 0.1 mg/L (ppm) can be achieved. Ultimately, the analytical laboratory must determine the detection limit. If you have an approved method for analyzing hydrazine which has a lower detection limit, we would greatly appreciate a reference to it. However, even with a lower detection limit, we would doubt hydrazine could be detected due to the lability of the compound.

EPA Method (8010) specifies a sensitivity of 1 mg/kg (ppm) to be achieved. By back calculating from the detection limit for TCE in water samples, we can get a theoretical detection limit of 0.06 mg/kg for TCE in soil samples. This represents a detection of 0.0006 ug of TCE by the GC, using the protocols specified by EPA Method 3050/8010. We do not know if a detection limit below I mg/kg can be achieved. In the next stage of investigation we can specify a detection limit of at least 0.1 mg/kg. However, the laboratory will have to determine the achievable detection limits based on the soil matrix of the samples.

The participation of the property of the participation of the participat

Patrick

APP PJKS DRAFT PHASE II REPORT COMMENTS FROM REGULATORY AGENCIES (Continued)

CONTRACTOR CONTRACTOR

CONTRACTOR DESCRIPTION DESCRIPTION DESCRIPTION OF THE PROPERTY

U.S. Environmental Protection Agency (Ref. 8HWM-SR; letter dated 19 August 1986) (Continued)

Comments

2. Analytical Techniques.

Although the dual column gas chromatograph (GC) can provide good analytical results, EPA prefers techniques that use both the gas chromatograph and mass spectrometer (GC/MS). We believe that the GC/MS provides better identification of chemical constituents and GC/MS methods are used by EPA contract laboratories for hazardous materials analysis.

Response

2. Analytical Techniques.

We agree that GC/MS is more desirable for positive identification of compounds. However, the detection limits for GC/MS analyses are about 10 times higher than for GC with second column confirmation. For example, the method for EPA Contract Laboratory Program (CLP) specifies detection limits for 5 to 10 ug/L for many volatile organic compounds. We are concerned with the proposed drinking water standards. The proposed Maximum Contaminant Level (MCL) for TCE is 5 ug/L. The CLP method has a detection limit of 5 ug/L which is at the MCL. Worst, the proposed MCL for vinyl chloride is 1 ug/L and the detection limit with GC/MS is 5 ug/L.

this type of method. If not, we would still like to use this type of method. If not, we would still like to use GC/MS to analyze all future water samples from past sites with high amounts of organic compound contamination (at least above detection limit of GC/MS) and where previous water samples were analyzed by GC with second column confirmation. This would allow us to eliminate any doubts of the identity of the compounds. In addition, we would like to use GC/MS for all soil samples since there are no standards for soil samples other than EP Toxicity.

7.

36

3

3

?}

3

3

3

AFP PJKS DRAFT PHASE II REPORT COMMENTS FROM REGULATORY AGENCIES (Continued)

K

T

5

Ž

^

U.S. Environmental Protection Agency

(Ref. 8HWM-SR; letter dated 19 August 1986) (Continued)

Comments

3. Interpretation of Soil Data.

The use of the EPA publication, "Hazardous Waste Land treatment," is inappropriate for evaluating the soil sample results at PJKS. That publication includes recommendations for managing hazardous waste treatment facilities and the guidelines for contaminant accumulation in soils are not meant to evaluate ambient conditions.

4. Conclusions and Recommendations.

We generally agree with the conclusions and recommendations listed in Sections 5 and 6 of the Report. The ground water contamination that has been identified should be examined more thoroughly and the sources should be located. The resampling discussed on page 6-3 is a good idea as long as the detection limits are lowered to provide more useful data. We would like to work with the Air Force in developing the work plan for the tasks suggested in Section 6.

Response

3. Interpretation of Soil Data.

We are not aware of any standards for solls except for EP Toxicity. If available, please provide appropriate publications or references to publications that we can use for evaluating our results.

We are planning to analyze and use background samples for comparison in the next stage of investigation.

4. Conclusions and Recommendations.

We would like the EPA and Colorado Department of Health to review the draft IRP II-2 Statement of Work. Comments from these agencies will be incorporated into the final Statement of Work.

SOOF ENDINE EXECTED PROJECT EXECUTE INVESTOR HORSELD INVESTOR HORSELD HORSELS CONTRACT FORWARD TOWNS

APP PJKS DRAFT PHASE II REPORT COMMENTS FROM REGULATORY AGENCIES (Continued)

PERSONANT PROGRAM PROGRAM DESCRIPTION OF THE PROGRAM PROGRAM PROGRAM PROGRAM PROGRAM PROGRAM PROGRAM PROGRAM P

(Comments by G. Starkebaum, 22 August 1986, Colorado Department of Health Telephone Memo)

Comments

Response

Concrete Pond (T8-A).

Concrete Pond (T8-A).

The State does not consider this through the review of Martin-Marietta's (M-M) Part B pond as a RCRA impoundment subject to RCRA closure. Colorado Department of Health still considers this Closure process has to be worked out by the State permit application. issue a serious one.

None.

Samples Proposed for soil and water EPL Rinse Water 2.

Tanks (Located right below T-6033 tanks).

Samples Proposed for soil and water EPL Rinse Water

2

Tanks (Located right below T6033 tanks)

None.

area which indicated a prominent presence of heavy The State took a sample on 15 March 1985 in this metals as follows:

- This area was made part of the Consent Order which ground. This pipe has since been plugged by M-M. required M-M to include this area in the Closure Plan. This issue needs to be coordinated by M-M Sample was taken from a pipe discharging on the between its RCRA and IRP activities:
- Arsenic found at 1.2 ppm (total digestion of 1-gram sample dissolved in nitric acid) 2a(1)
 - · Total chromium found at 5.1 ppm - barfum found at 21 ppm
 - lead found at 13 ppm 2a(3) 2a(4)
- mercury found in 0.2 ppm. 2a(5)
- Draft Report is considered a good one by the State. 3.

None. 3.

2

D C

F)

