Ch 16 Sound

Key words: sound waves; pressure waves; intensity; decibels (dB); sound level β ; resonance; vibrating strings, open/closed tube; fundamental frequency (n=1), resonant frequencies; harmonics & overtones; interference; Doppler effect

\sim 1 ·	
()	ective:
$\mathbf{O}_{\mathbf{D}}$	iccuvc.

0.05	
Solve problems involving standing waves	
\square By considering the endpoints (node/antinode) and identifying patte	erns in wavelength.
\square By finding a mathematical expression for the resonant frequencies .	
Content Review:	[10mins]
Standing Waves	
■ What the heck is a standing wave??!	
Watch this 5-min YouTube video that illustrates how standing waves	form.
Check out the question in the Slido poll (link in Zoom chat)	
■ 2 common examples are: mechanical waves on a string and sound wave	ves in a tube.
For standing waves on a string,	
☐ We are looking at the displacement of the string .	
\square The endpoints are both fixed , corresponding to displacement node	s.
☐ Displacement: A displacement antinode occurs at points where the widely; while a displacement node occurs at places such as the end fixed and not moving freely.	9
For standing sound waves in a tube,	
\square We are looking at either the pressure in the air or the displacement	it of air particles.
\square The tube's ends could be open-open , closed-closed , or open-closed	1 .
□ Pressure: A pressure node occurs at open-ends as that is where th of the surrounding environmental pressure; while a pressure antino since the air pressure builds up against the inner walls.	
☐ Displacement: A displacement antinode occurs at an open-end a to move freely; while a displacement node occurs at closed-ends since is restricted.	

	pressure	displacement
open-end	node	antinode
closed-end	antinode	node

NOTE: In general, for sound waves within a tube:

pressure nodes \iff displacement antinodes pressure antinodes \iff displacement nodes

Derivation: Standing Waves on a String

Consider a string of length L tied on both ends. Let's derive a mathematical expression for the **resonant** frequencies that would produce standing waves on the string.

Let's begin by drawing the various possible standing wave formations on the string.

Solution

For strings tied on both ends, open-open tubes, and closed-closed tubes: the resonant frequencies f_n are given by

 $f_n = n \frac{v}{2L}$ for $n = 1, 2, 3, \dots$

where L is the length of the string/tube and v is the velocity of the traveling waves.

Group Activity

Derivation Standing Sound Waves in a Open-Closed Tube

Consider an open-closed tube; that is, a tube that is open on one end and closed on the other. Let's derive a mathematical expression for the **resonant frequencies** that would produce standing sound waves within the tube.

Let's begin by drawing the various possible standing wave formations within the tube.

Solution

For **open-closed tubes**, the resonant frequencies f_n are given by

$$f=n\,rac{v}{4L}\qquad {
m for}\; n=1,3,5,\dots$$
 (odd integers only)

where L is the length of the tube and v is the velocity of the traveling waves.

Group Activity

Organ Pipe

An organ pipe is 124-cm long. Determine the fundamental and first 3 audible overtones if the pipe is

- (a) closed at one end (and open at the other end)
- (b) open at both ends

Solution

- (a) closed at one end: $f_1 = 69.2\,\mathrm{Hz},\, f_3 = 207\,\mathrm{Hz},\, f_5 = 346\,\mathrm{Hz},\, f_7 = 484\,\mathrm{Hz}$
- (a) open at both ends: $f_1=138\,\mathrm{Hz},\ f_2=277\,\mathrm{Hz},\ f_3=415\,\mathrm{Hz},\ f_4=553\,\mathrm{Hz}$

Group Activity

Violin String

A violin string vibrates at $441\,\mathrm{Hz}$ when unfingered. At what frequency will it vibrate if it is fingered one-third of the way down from the end? (That is, only two-thirds of the string vibrates as a standing wave).

Solution

 $f=662\,\mathrm{Hz}$