Álgebra I. Hoja de ejercicios 6: Aritmética II Universidad de El Salvador, ciclo impar 2019

Por cualquier pregunta, no duden en escribir al grupo ues-algebra-2019@googlegroups.com.

Ejercicio 1. Consideremos el anillo $\mathbb{Z}[\sqrt{5}]$ con la norma

$$N(a+b\sqrt{5}) := (a+b\sqrt{5})(a-b\sqrt{5}) = a^2-5b^2$$
.

Demuestre que 2 es un elemento irreducible, pero no es primo. (Sugerencia: $(3 + \sqrt{5})(3 - \sqrt{5}) = 4$.)

Ejercicio 2. Demuestre que $\mathbb{Z}[\sqrt{-2}]$ es un dominio euclidiano respecto a la norma habitual

$$N(a+b\sqrt{-2}) := (a+b\sqrt{-2})(a-b\sqrt{-2}) = a^2 + 2b^2$$
.

Ejercicio 3. Demuestre que $\mathbb{Z}[\sqrt{2}]$ es un dominio euclidiano respecto a la norma

$$\delta(a+b\sqrt{2}) := |N(a+b\sqrt{2})| = |a^2 - 2b^2|.$$

Ejercicio 4. Consideremos el anillo de los enteros de Gauss $\mathbb{Z}[i]$.

- 1) Encuentre algunos $\alpha, \beta \in \mathbb{Z}[i]$ tales que $\mathfrak{a} := (1+i) = \{m\alpha + n\beta \mid m, n \in \mathbb{Z}\}$, donde (1+i) denota el ideal principal en $\mathbb{Z}[i]$ generado por 1+i.
- 2) La misma pregunta para el ideal principal $\mathfrak{b} = (1+2i)$.
- 3) Dibuje los elementos de a y b en el plano complejo.

Ejercicio 5. Calcule el mcd(9+13i, 8+6i) y mcm(9+13i, 8+6i) en el anillo de los enteros de Gauss $\mathbb{Z}[i]$.

Ejercicio 6. Calcule el $mcd(X^5 + X^4 + X^3 + 2X + 2, X^5 + X^2 + 2X + 1)$ en $\mathbb{Q}[X]$ y en $\mathbb{F}_3[X]$.

Ejercicio 7. Demuestre que el ideal $\mathfrak{a} = (3,2+\sqrt{-5})$ no es principal en el anillo $\mathbb{Z}[\sqrt{-5}]$.

Sugerencia: supongamos que $\mathfrak{a} = (\alpha)$ para algún $\alpha \in \mathbb{Z}[\sqrt{-5}]$. En particular, existen $\beta, \gamma \in \mathbb{Z}[\sqrt{-5}]$ tales que $3 = \alpha\beta$ y $2 + \sqrt{-5} = \alpha\gamma$. Analice las normas $N(a + b\sqrt{-5}) = a^2 + 5b^2$ y obtenga una contradicción.

Ejercicio 8. Para $n = 1, 2, 3, 4, \dots$ consideremos el anillo

$$\mathbb{Z}\left[\frac{1}{n}\right] := \left\{\frac{a}{n^k} \mid a \in \mathbb{Z}, \ k = 0, 1, 2, 3, \ldots\right\}.$$

Demuestre que todo ideal en $\mathbb{Z}\left[\frac{1}{n}\right]$ es principal, generado por $\frac{a}{1}$ para algún $a \in \mathbb{Z}$.

Ejercicio 9 (Norma de Dedekind). Sea A un dominio. Asumamos que existe una función $\delta: A \setminus \{0\} \to \mathbb{N}$ que satisface la siguiente propiedad: para cualesquiera $x, y \in A \setminus \{0\}$, si $x \nmid y$, entonces existen $a, b \in A$ tales que

$$ax + by \neq 0$$
, $\delta(ax + by) < \delta(x)$.

Demuestre que A es un dominio de ideales principales.

Ejercicio 10. Sean X un conjunto y A un anillo conmutativo. Recordamos que las aplicaciones $f: X \to A$ forman un anillo conmutativo $\operatorname{Fun}(X,A)$ respecto a las operaciones punto por punto. Para un subconjunto $Z \subseteq X$ sea I(Z) el conjunto de las aplicaciones que se anulan en Z:

$$I(Z) := \{ f : X \rightarrow A \mid f(x) = 0 \text{ para todo } x \in Z \}.$$

Demuestre que este es un ideal en Fun(X, A).