Discrete Mathematics: Homework 8

(Deadline: 10:00am, May 1, 2020)

- 1. (20 points) Let $\mathbb{Z}^2 = \{(a,b) : a,b \in \mathbb{Z}\}$. Define \oplus and \otimes over \mathbb{Z}^2 such that
 - $(a,b) \oplus (c,d) = (a+c,b+d)$; and
 - $(a,b)\otimes(c,d)=(ac,bd)$.

for all $(a, b), (c, d) \in \mathbb{Z}^2$. Prove or disprove that $(\mathbb{Z}^2, \oplus, \otimes)$ is a ring.

- 2. (20 points) Let $\mathbb{Z}[X] = \{f_0 + f_1 + \dots + f_d X^d : d \geq 0, f_0, f_1, \dots, f_d \in \mathbb{Z}\}$ be the set of all polynomials over \mathbb{Z} . Prove or disprove that $(\mathbb{Z}[X], +, \cdot)$ is a ring, where + and \cdot are the addition and the multiplication of polynomials over \mathbb{Z} .
- 3. (25 points) Write a computer program to reconstruct the secret $s \in \mathbb{Z}_{1125899906900597}$ in Shamir's (5,9)-threshold secret sharing scheme. In the devised program, the reconstruction of s should be based on the Lagrange interpolation formula. Use your program to reconstruct the secret s, given that the 9 shares are as follows:

i	s_i
1	75044643784737
2	940519894412855
3	941263003333598
4	736739711411826
5	254180887785524
6	940382343666996
7	132205297839880
8	63775631863924
9	1111084448671404

4. (25 points) An officer stored in his safe a very important letter. He shared the password $s \in \mathbb{Z}_{1125899906900597}$ to the safe among 9 soldiers using Shamir's (5,9)-threshold secret sharing scheme. After the officer was killed in a battle, the 9 soldiers need to open the safe. Suppose that they provided the following shares in the reconstruction process:

i	s_i
1	150550125355646
2	944474507418938
3	110040335185999
4	676042268761809
5	193274108888331
6	904128547609081
7	354197665334455
8	416432161112962
9	283942097426448

Among the 9 soldiers 2 were spies and provided wrong shares in order to prevent the other soldiers from opening the safe. Use your computer program in Question 3 to find the spies and then recover the password s from the correct shares.

5. (15 points) Let $\mathcal{P} = \{P_1, P_2, P_3, P_4, P_5\}$. Design a secret sharing scheme that realizes an access structure with basis

$$\Gamma_0 = \{\{P_1, P_2\}, \{P_1, P_3\}, \{P_1, P_4, P_5\}, \{P_2, P_3, P_4\}, \{P_2, P_3, P_5\}, \{P_2, P_4, P_5\}, \{P_3, P_4, P_5\}\}.$$

- 6. (15 points) Let $\mathcal{P} = \{P_1, P_2, \dots, P_{20}\}$ be a set of 20 participants. Let $\Gamma = \{A : A \subseteq \mathcal{P}, |A| \ge 11\}$ be an access structure.
 - (a) If Γ is realized with the monotone circuit construction, how many numbers are there in the share of each participant?
 - (b) If Γ is realized with Shamir's (11, 20)-threshold secret sharing scheme, how many numbers are there in the share of each participant?