

Introduction to Incremental Learning

Shi Won Kim,
Digital Healthcare Lab,
Department of Digital Analytics,
Yonsei University College of Computing

Background

- Incremental learning (= continual learning)
 - A learning system that continually acquires the knowledge of incoming new classes
 - Assume <u>a sequence of training tasks</u> from a continuous data stream
 - Build a universal classifier for all seen classes with limited resources.

Background

- Catastrophic forgetting
 - Forgetting the characteristics of former classes when trained with new class instances*
 - Leads to drastic degradation in the performance of old tasks (prediction of old classes)
 - A common problem with gradient-based learning methods
- Stability-plasticity dilemma
 - Stability denotes the ability to <u>maintain former knowledge</u>
 - Plasticity represents the ability to <u>learn new patterns</u>
 - Acquire knowledge from the current task and preserve knowledge from former tasks

Background (Problem Settings)

- Class overlapping
 - Blurry CIL (class-incremental learning) → <u>old classes re-emerge in later tasks</u>
 - Closer to the real-world setting but weakens the learning difficulty
 - Typical CIL setting assumes no overlapping classes for robustness
- Exemplar set (= rehearsal memory)
 - An extra collection of <u>data from former tasks</u> for rehearsal
 - The model reviews the exemplar set to resist forgetting of old classes
 - 1) Fix the number of exemplars per class $(k) \rightarrow k \times n$ total exemplars
 - 2) Fix the size of the exemplar set $(k) \rightarrow k$ total exemplars, $\frac{k}{n}$ exemplars per class
 - 3) Exemplar-free methods (= non-rehearsal)

Background (CIL Taxonomy)

- Data-centric
 - Data replay (real or synthetic) → utilize former data (exemplar set) as <u>rehearsal memory</u>
 - <u>User privacy issues</u> when saving exemplars from the history (← exemplar-free manner)
- Model-centric
 - Dynamic networks → <u>backbone expansion</u> (DER, FOSTER, MEMO, etc.)
 - Require large memory budgets (unsuitable for CIL on edge devices)
- Algorithm-centric
 - Knowledge distillation → logit, feature, relational distillation
 - Outperforms dynamic networks given limited memory (overturns with adequate memory)

DER: Dynamically Expandable Representation

Severance

DER: Dynamically Expandable Representation for Class Incremental Learning

Introduction

- Main idea
 - Settings → backbone expansion (dynamic networks) with rehearsal memory
 - Freeze the previously learned representation
 - Augment it with additional feature dimensions from a new learnable feature extractor
 - **Super feature** -> capable of increasing its dimensionality to accommodate new classes
- Contributions
 - Dynamically expandable representation and a two-stage strategy for CIL
 - Auxiliary loss to promote the newly added feature module to learn novel classes effectively
 - Model pruning step to learn compact features and remove model redundancy

Methods

- Input process
 - Use <u>rehearsal memory</u> to prevent the loss of information from the previous steps
- Feature extraction
 - Construct a feature extractor for each training step (ResNet-50 as backbone)
 - Current features are combined with the previously obtained features → <u>super feature</u>
 - Differential channel-level mask to prune the filters in the feature extractor (compact model)
- Classification
 - DER loss = training loss + auxiliary loss + sparsity loss
 - **<u>Auxiliary loss</u>** → classification of old and new classes (previous steps vs. current step)

for each incremental step t = 1, ..., T do

Feature Extraction:

$$\operatorname{append}(D_t, M_{t-1}) (M_0 = \emptyset)$$

Model Pruning:

$$F_t^P \leftarrow \text{add_mask}(F_t)$$

$$loss_{spr} \leftarrow \frac{\sum_{c=1}^{|c|} \|mask_{c-1}\| \|mask_c\|}{\sum_{c=1}^{|c|} ch_{c-1}ch_c}$$

Auxiliary Loss:

$$p_a \leftarrow \text{Softmax}(H_t^a(F_t^P))$$

 $loss_{aux} \leftarrow -\sum_{i=1}^{|t|+1} y_a^i \log(p_a^i)$

$$y_a = \{1 \dots |t| \text{ if new class else } 0\}$$

$$\Phi_t^P \leftarrow \text{concatenate}(\left[\Phi_{t-1}^p, F_t^P\right])(\Phi_1^P = F_1^P)$$

Classification:

generate
$$FC_t$$

 $p_t \leftarrow \text{Softmax}(H_t(\Phi_t^P))$
 $P_t \leftarrow \text{argmax}(p_t)$

$$loss_{clf} \leftarrow -\sum_{j=1}^{N} y_t^j \log(p_t^j)$$

$$loss_{total} \leftarrow loss_{clf} + \lambda_a loss_{aux} + \lambda_s loss_{spr} (\lambda_a = 0 \text{ in initial training})$$

 $M_t \leftarrow \text{construct_rehearsal_exemplar}(m)$

Sigmoid → Sparsity Loss

Mask Parameters

