678. Fermat-like Equations

If a triple of positive integers (a,b,c) satisfies $a^2+b^2=c^2$, it is called a Pythagorean triple. No triple (a,b,c) satisfies $a^e+b^e=c^e$ when $e\geq 3$ (Fermat's Last Theorem). However, if the exponents of the left-hand side and right-hand side differ, this is not true. For example, $3^3+6^3=3^5$.

Let a,b,c,e,f be all positive integers, 0 < a < b, $e \ge 2$, $f \ge 3$ and $c^f \le N$. Let F(N) be the number of (a,b,c,e,f) such that $a^e+b^e=c^f$. You are given $F(10^3)=7$, $F(10^5)=53$, and $F(10^7)=287$.

Find $F(10^{18})$.

678. 费马式方程

如果一个正整数三元组 (a,b,c) 满足 $a^2+b^2=c^2$, 那它就是一个毕达哥拉斯三元组。

对于 $e\geq 3$,费马大定理指出,没有任何正整数三元组 (a,b,c) 满足 $a^e+b^e=c^e$ 。但是,如果方程左边的指数与右边不一样,费马大定理就不一定成立了。比如说, $3^3+6^3=3^5$.

令 a,b,c,e,f 全部为正整数,且满足 0< a< b, $e\geq 2$, $f\geq 3$ 和 $c^f\leq N$. 令 F(N) 为满足方程 $a^e+b^e=c^f$ 的正整数五元组个数 (a,b,c,e,f). 你已经知道 $F(10^3)=7$, $F(10^5)=53$, and $F(10^7)=287$.

求 $F(10^{18})$.