Physics 137B Discussion 1

Walter Cheng

27 August, 2025

Exercise 0: Warm Up

a) What is the momentum operator in the position representation in three dimensions? *Hint:* What is the canonical commutation relation?

answer

b) From (a), what is $p^2 = \mathbf{p} \cdot \mathbf{p}$ in three dimensions in the position representation?

answer

c) Starting from the time-dependent Schrödinger equation in three dimensions for a potential $V(\mathbf{x})$, derive the time-independent version.

Hint: Use separation of variables.

answer

Exercise 1: Rigged Hilbert Space

A Hilbert space is mathematically defined as a *complete* vector space with an inner product. A vector space with an inner product is **complete** if it includes not only all finite sums of vectors in a basis, but also all limits of convergent sequences, i.e. given a sequence (v_n) of vectors in the Hilbert space, v is the **limit** of the sequence if $\lim_{n\to\infty} ||v_n - v|| = 0$, where $||v|| = \sqrt{v \cdot v}$.

a) Consider a Hilbert space \mathcal{H} that consists of all functions $\psi(x)$ such that

$$\int_{-\infty}^{\infty} |\psi(x)|^2 \, dx < \infty.$$

Show that there are functions in \mathcal{H} for which $\hat{x}\psi(x) = x\psi(x)$ is not in \mathcal{H} .

answer

b) Consider the function space $\Omega \subset \mathcal{H}$ which consists of all $\varphi(x)$ that satisfy the set of conditions

$$\int_{-\infty}^{\infty} |\varphi(x)|^2 (1+|x|)^n dx < \infty,$$

for any $n \in \{0, 1, 2, ...\}$. Show that for any $\varphi(x) \in \Omega$, $\hat{x}\varphi(x)$ is also in Ω . Ω is called the **nuclear space**. *Hint:* Binomial theorem.

answer

c) The **extended** space Ω^{\times} consists of those functions $\chi(x)$ which satisfy

$$(\chi, \varphi) = \int_{-\infty}^{\infty} \chi^*(x) \, \varphi(x) \, dx < \infty,$$

for any $\varphi \in \Omega$, where (\cdot, \cdot) is the inner product on \mathcal{H} . Which of the following functions belong to Ω , to \mathcal{H} , and/or to Ω^{\times} ? *Hints:* In order to sit in Ω , functions must vanish faster than any power of x as $|x| \to \infty$. Thus, as long as functions don't diverge at ∞ more strongly than any power of |x|, they are in Ω^{\times} .

Remark. The collection $(\Omega, \mathcal{H}, \Omega^{\times})$ is called "rigged Hilbert space," and this is a rigorous way to include all the formalism (e.g. eigenvectors of position are delta functions, and hence can't belong to an L^2 space) into the Hilbert space formulation of quantum mechanics. Note that $\Omega \subset \mathcal{H} \subset \Omega^{\times}$ (it's easy to see this once you realize $\mathcal{H} = \mathcal{H}^{\times}$). For more details, see Ballentine Quantum Mechanics, Chapter 1.

i) $\sin(x)$

answer

ii)
$$\frac{\sin(x)}{x}$$

answer

iii)
$$x^2 \cos(x)$$

answer

iv)
$$e^{-ax}$$
, $a > 0$.

answer

$$v) \frac{\ln(1+|x|)}{1+|x|}$$

answer

vi)
$$e^{-x^2}$$

answer

vii)
$$x^4 e^{-|x|}$$

answer

viii) $\delta(x-a)$ for a real.

answer

Exercise 2: Harmonic Oscillator

Solve the eigenvalue problem for the 3-D isotropic, harmonic oscillator, whose hamiltonian is

$$H = \frac{p^2}{2m} + \frac{m\omega^2 x^2}{2}$$
, where $p^2 = \mathbf{p} \cdot \mathbf{p}$, $x^2 = \mathbf{x} \cdot \mathbf{x}$

is the 3-D dot product. *Hint*: There's a way to do this without any calculations (if you remember the 1-D oscillator)!

answer

Exercise 3

A particle of mass m is placed in a finite spherical well

$$V(r) = \begin{cases} -V_0, & r \le a, \\ 0, & r \ge a. \end{cases}$$

Find the equation that quantizes the energy (you don't need to solve it), by solving the radial Schrödinger equation with $\ell=0$. Explain how you could solve this equation and obtain the energies. Show that there is no bound state if $V_0a^2 < \pi^2\hbar^2/8m$.

Hint: Recall that the radial Schrödinger equation is identical to the time-independent, 1-dimensional Schrödinger equation with the wavefunction replaced by u(r) = rR(r) (where $\psi(r, \theta, \varphi) = R(r)\Theta(\theta)\Phi(\varphi)$) and potential

$$V_{\text{eff}}(r) = V(r) + \frac{\hbar^2 \ell(\ell+1)}{2mr^2}.$$

answer

Exercise 4: Spin Representations

a) Find the eigenvalues and eigenvectors of S_z .

answer

b) Do the same for S_y , and write them in terms of \uparrow and \downarrow , the eigenvectors of S_z .

answer

c) For a system of two spin-1/2 particles, starting with the "highest weight" state $\uparrow \uparrow$, find all the states in the triplet. *Hint:* Apply the lowering operator.

answer

d) For a system of two spin-1/2 particles, are there any other states than the ones you found in (c)? If so, what are they? What is the action of S_- , S_+ on them?

answer

e) Describe how you would approach finding the Clebsch–Gordan coefficients for arbitrary spin systems.

answer