Planche 1.

Question de cours. On considère la fonction

$$f: \mathbb{R} \longrightarrow \mathbb{Z}$$
 $x \longmapsto E(x)$

où E(x) désigne la partie entière de x. Est-ce que f est injective, surjective, bijective? Calculer f([0,1]) et $f^{-1}(\{2,4\})$.

Exercice 1. Soit X un ensemble et f une fonction de X dans X telle qu'il existe $c \in X$ de sorte que $f \circ f(x) = c$ pour tout $x \in X$. Est-ce que f est surjective, injective?

Planche 2.

Question de cours. On considère la fonction

$$f: \mathbb{R}^* \longrightarrow \mathbb{R}$$

$$x \longmapsto \frac{1}{x}$$

Est-ce que la fonction f est injective, surjective, bijective? Calculer $f([-1,0[\ \ \ \ \ \]0,1])$ et $f^{-1}([-1,2])$.

Exercice 1. Soit X un ensemble. Est-ce que si une fonction $f: X \to X$ est injective alors elle est bijective? Et si X est un ensemble fini?

Planche 3.

Question de cours. On considère la fonction

$$\begin{array}{cccc} f: & \mathbb{R} & \longrightarrow & \mathbb{R}^+ \\ & x & \longmapsto & x^2 \end{array}$$

Est-ce que la fonction f est injective, surjective, bijective? Calculer f([-1,1]) et $f^{-1}([1,4])$.

Exercice 1. Soient X et Y deux ensembles et $f: X \to Y$ une fonction. Montrer que f est injective si et seulement si

$$f\left(A\bigcap B\right)=f(A)\bigcap f(B)$$

Solutions - Planche 1.

Question de cours. Un dessin de la fonction laisse croire qu'elle n'est pas injective. Plus exactement on a par exemple f(0) = 0 et f(0,5) = 0. Par conséquent f n'est pas injective.

Toutes les valeurs entières semblent être atteintes. Prouvons le. Soit $n \in \mathbb{Z}$, alors f(n) = E(n) = n. Donc $n \in Im(f)$ et f est surjective.

Comme la fonction n'est pas injective alors n'est pas bijective. Néanmoins si on restreint la fonction à \mathbb{Z} , alors on obtient une fonction bijective.

Montrons que $f([0,1]) = \{0,1\}$. Soit $x \in [0,1[$, alors f(x) = 0. De plus f(1) = 1. Donc $f([0,1]) \subset \{0,1\}$. L'inclusion réciproque est claire et on a donc égalité.

Montrons que $f^{-1}(\{2,4\}) = [2,3] \cup [4,5[$. Soit $x \in [2,3[$, alors f(x)=2. Soit $x \in [4,5[$, alors f(x)=4. Donc $[2,3] \cup [4,5[\subset f^{-1}(\{2,4\})]$. Soit maintenant $x \in f^{-1}(\{2,4\})$. Alors f(x)=2 ou f(x)=4. Si f(x)=2, alors $2 \le x < 3$ par définition de la partie entière. Donc $x \in [2,3[$. Si f(x)=4, alors $x \in [4,5[$. On a donc montré l'égalité.

Exercice 1. Supposons que f soit surjective. Soit $y \in X$, alors il existe $x \in X$ tel que f(x) = y. Insérons ceci dans la propriété que vérifie f. On obtient f(f(x)) = f(y) = c. Donc pour tout $y \in X$, f(y) = c. Ainsi la fonction f ne peut être surjective à moins que |X| = 1.

Supposons que f soit injective. Distinguons les cas. Si $|Im(f)| \ge 2$, alors il existe $u \ne v$ dans X tels qu'il existe x et y dans X tels que f(x) = u et f(y) = v. On en déduit que f(f(x)) = f(u) = c = f(v) = f(f(y)). Donc f ne peut être injective. Si par contre |Im(f)| = 1, alors pour tout $x \in X$, f(x) = d pour un $d \in X$. On en déduit que f ne peut être injective à moins que |X| = 1.

Finalement, si |X| = 1, alors f est bijective. Sinon f n'est ni injective ni surjective.

Solutions - Planche 2.

Question de cours. Un joli dessin de la fonction nou permet de conjecturer que f est injective mais pas surjective. En effet 0 n'est pas atteint par f. De plus si f(x) = f(y) pour $x, y \in \mathbb{R}^*$, alors 1/x = 1/y donc x = y et f est injective. On en déduit que f n'est pas bijective. Remarquons que si l'on restreint l'arrivée à \mathbb{R}^* alors on a une bijection.

Montrons que $f([-1,0[\bigcup]0,1])=]-\infty,-1]\bigcup[1,+\infty[$. Soit $x\in[-1,0[$, alors $f(x)=1/x\leq-1.$ De plus si $x\in[0,1]$, alors $f(x)=1/x\geq1.$ Donc $f([-1,0[\bigcup]0,1])\subset]-\infty,-1]\bigcup[1,+\infty[$. Soit $y\in]-\infty,-1]$. Alors en posant en posant x=1/y on a f(x)=y. Donc $y\in f([-1,0[).$ De même si $y\in[1,+\infty[$, alors $y\in f([0,1]).$ On en déduit l'égalité.

Montrons que $f^{-1}([-1,2]) =]-\infty, -1] \bigcup [1/2, +\infty[$. Soit $x \in]-\infty, -1]$, alors $f(x) = 1/x \ge -1$ et de plus f(x) < 0. Donc $x \in f^{-1}([-1,2])$. De même si $x \in [1/2, +\infty[$, alors $x \in f^{-1}([-1,2])$. Soit $x \in f^{-1}([-1,2])$. Alors si x < 0, on a $-1 \le f(x) < 0$. Donc $x \in]-\infty, -1]$. De même si x > 0, alors $x \in [1/2, +\infty[$. On a donc montré l'égalité.

Exercice 1. Non prenons par exemple $f(x) = \arctan(x)$ sur \mathbb{R} . La fonction est injective mais n'est pas surjective. Ou sinon e^{-x} sur \mathbb{R}^+ dans \mathbb{R}^+ .

Par contre dans le cas où X est fini, l'injectivité implique la bijectivité. Soit $f: X \to X$ injective et supposons que f ne soit pas surjective. On note n = |X| et x_1, \ldots, x_n les élements de X. Alors $\mathsf{Im}(f) = \{f(x_1), \ldots, f(x_n)\}$. Or f est injective donc $f(x_i) \neq f(x_j)$ pour tout $i \neq j$. On en déduit que $\mathsf{Im}(f) = n = |X|$. Or $\mathsf{Im}(f) \subset X$. Donc $X = \mathsf{Im}(f)$ et f est surjective.

Solutions - Planche 3.

Question de cours. La fonction f est surjective car si $y \in \mathbb{R}^+$, alors en posant $x = \sqrt{y}$ on a $f(x) = x^2 = y$. La fonction f n'est pas injective car f(1) = f(-1). Donc f n'est pas bijective.

On calcule f([-1,1] = [0,1] par double inclusion.

On calcule $f^{-1}([1,4]) = [-2,-1] \bigcup [1,2]$ par double inclusion.

Exercice 1. Remarquons déjà qu'un sens de l'égalité est toujours vérifiée. En effet on a $f(A \cap B) \subset f(A) \cap f(B)$ pour toutes parties A, B de X. Soient A et B deux parties de X. Soit $y \in f(A \cap B)$, alors il existe $u \in A \cap B$ tel que y = f(u). Donc $y \in f(A)$ car $u \in A$ et $y \in f(B)$ car $u \in B$. On en déduit l'inclusion.

Supposons maintenant que f soit injective. Soient A et B deux parties de X. Soit $y \in f(A) \cap f(B)$, alors il existe $a \in A$ et $b \in B$ tels que y = f(a) et f(b) = y. D'où f(b) = f(a). Par injectivité de f on en déduit que a = b. On note u = a = b. Alors $u \in A \cap B$ et f(u) = y. D'où $y \in f(A \cap B)$. Donc on a l'égalité $f(A \cap B) = f(A) \cap f(B)$.

Supposons que $f(A \cap B) = f(A) \cap f(B)$ pour toutes parties A et B de X. Montrons que f est injective. Pour ce faire on considère x et y deux élements de X tels que f(x) = f(y). On pose alors $A = \{x\}$ et $B = \{y\}$. On note u = f(x) = f(y). Alors $u \in f(A) \cap f(B)$. Donc $u \in f(A \cap B)$. Or si $x \neq y$, alors l'intersection est vide et c'est impossible. Ainsi x = y et f est injective.