

CSE211 - Formal Languages and Automata Theory

U1L18 – Properties of RL – Pumping Lemma for RL

Dr. P. Saravanan

School of Computing SASTRA Deemed University

Agenda

- Recap of previous class
- Properties of Regular Languages
- Proving Languages Not to Be Regular
- Pumping Lemma for Regular Languages
- Examples for Non-Regular Languages

Pumping Lemma for Regular

Languages

- It is first noted that not every language is regular.
 - For example, $L_{01} = \{0^n1^n \mid n \ge 1\}$ is not a regular language.

- How to prove that a language is not regular?
 - Answer: use the pumping lemma.

Pumping lemma for RL's

- Let L be an RL. Then, there exists an integer constant n (depending on L) such that for every string w in L with $|w| \ge n$, we can break w into three substrings, w = xyz, such that:
 - $y \neq \varepsilon$ or $|y| \ge 1$ (i.e., y has at least one symbol);
 - $|xy| \leq n$; and
 - for all $k \ge 0$, the "pumped" string xy^kz is also in L.

Applications of Pumping Lemma

The pumping lemma may be used for proving "a given language is not an RL," instead of proving "is an RL."

Example 1:

- Prove that the language $L_{eq} = \{w \mid w \text{ has equal numbers of 0's and 1's}\}$ is *not* an RL. (OR)
- $L_{eq} = \{ 0^n 1^n | n \ge 0 \}$ is non-regular
- Proof (by contradiction):
 - Assume that L_{eq} is an RL.
 - The *pumping lemma* says that there exists an integer n such that for every string w in L with length $|w| \ge n$, w can be broken into 3 pieces, w = xyz, such that the three conditions mentioned in Theorem .
 - In particular, pick the string $w = 0^n 1^n$ whose length is 2n.

(A)

To prove Non Regular

- We know that w is in L_{eq} .
- Because |w| = 2n > n, by Theorem , string w can be broken into 3 pieces, w = xyz, so that
 - $y \neq \varepsilon$ or $|y| \geq 1$;
 - $|xy| \leq n$;
 - for all $k \ge 0$, $xy^k z \in L$.
- Also, the inequality $|xy| \le n$ says that xy consists of all 0's because $w = 0^n 1^n$.
- Furthermore, $y \neq \varepsilon$ says y has at least one 0.

- Now, take k to be 0 and the pumping in the 3rd condition says that the following is true:
- $xy^0z = x\varepsilon z = xz \in L.$ (B)
- However, by (A) at least one 0 disappears when y was "pumped" out.
- This means that the resulting string xz cannot have equal numbers of 0's and 1's, i.e., xz ∉ L. Contradictive to (B) above!
- So, the original assumption "L_{eq} is an RL" is false (according to principle of "proof by contradiction.").
 Done!

Example 1: Non-Regular

■ $L_{eq} = \{ 0^n 1^n | n \ge 0 \}$ is non-regular by example

Example 2: Non-Regular

■ Prove that $L=\{ww|w \in \{0,1\}^*\}$ is not a regular language

Example 3: Non-Regular

■ Prove that the Language $L=\{w \in \{0,1\}^* | w=w^R\}$ or palindrome is not a regular language.

- Properties of Regular Languages
- Proving Languages Not to Be Regular
- Pumping Lemma for Regular Languages
- Examples for Non-Regular Languages

- John E. Hopcroft, Rajeev Motwani and Jeffrey D. Ullman, *Introduction to Automata Theory*, Languages, and Computation, Pearson, 3rd Edition, 2011.
- Peter Linz, An Introduction to Formal Languages and Automata, Jones and Bartle Learning International, United Kingdom, 6th Edition, 2016.

Next Class:

Closure properties of RL THANK YOU.