CS301: Computer Architecture

These slides are meant to be used along with the book: Computer Organisation and Architecture, Smruti Ranjan Sarangi, McGrawHill 2015 Visit: http://www.cse.iitd.ernet.in/~srsarangi/archbooksoft.html

What do all these mean?

i3 v/s i5 v/s i7

 Classification of manufactured chips based on maximum safe operating frequency

Generations

- Reducing feature size
 - Transistors are smaller, switch faster, consume less energy
- Improved Computer Architecture

Based on the same principles

How does it work?

- Program List of instructions given to the computer
- Information store data, images, files, videos
- Computer Process the information store according to the instructions in the program

What does a computer look like?

* Let us take the lid off a desktop computer

- Memory Stores programs and data. Gets destroyed when the computer is powered off
- Mc Graw Hill Education

Hard disk – stores programs/data permanently

Let us make it a full system ...

Food for Thought...

* What is the most intelligent computer?

Answer ...

Our brilliant brains

How does an Electronic Computer Differ from our Brain?

Feature	Computer	Our Brilliant Brain
Intelligence	Dumb	Intelligent
Speed of basic calculations	Ultra-fast	Slow
Can get tired	Never	After sometime
Can get bored	Never	Almost always

* Computers are ultra-fast and ultra-dumb

Foundations -- Theory of Computation

- A modern computer is a practical Turing Machine
 - The memory refers to the tape
 - Both program instructions and data reside in memory
 - Program counter refers to the state
 - Program counter indicates which instruction is to be executed next
 - The processor itself refers to the transition table
 - Based on the instruction, it performs some modifications on data

Foundations -- Synchronous Digital Systems

- "Control" can be a hardwired circuit. This makes it "application specific".
- Alternatively, "control" can be "programmable". This allows it to do a lot more.

Designing Practical Machines

The Harvard Mark I

Von-Neumann Architecture

The ENIAC

Evaluation: Theory

Quizzes	35 %
Mid-semester	25 %
End-semester	40 %

Books

- 1. Computer Organization and Architecture, by Smruti Ranjan Sarangi, McGraw Higher Ed, 2017.
- Computer Architecture A Quantitative Approach, Fifth edition, by David Patterson and John L. Hennesy, Morgan Kaufmann, 2017.

Laboratory

- You will build a software model of a processor
- Programming will be in Java
- Recommended
 - Eclipse
 - Mercurial / bitbucket.org OR Git / github.com
 - Latex
 - Google!
- Evaluation
 - In-semester
 - auto-evaluation
 - viva
 - End-semester
 - programming examination where you will add a feature to your processor

In-semester	75 %
End-semester	25 %

Today's Assignment