545/2 CHEMISTRY Paper 2 18th July 2022 2 Hours Name: KIBUGO DENNIS

Signature: Personal No:

16th JULY 2023

KAMPALA WAKISO GIANT SCHOOLS' ASSOCIATION (KWGSA)

National Joint Mock Examination 2022

Uganda Certificate of Education CHEMISTRY

Paper 2

2 Hours

INSTRUCTIONS TO CANDIDATES

- This paper consists of two sections A and B, section A consists of ten(10) structured questions and section B consists of four(4) semi structured questions
- Answer all questions in section A and any two (2) from section B.
- All answers for section A must be written in the spaces provided.
- Answers to section B, must be written in the answer booklet(s) provided
- In both Sections, all workings and calculations must be clearly shown clearly.

Where necessary

(H=1, C=12, N=14, O=16, Na=23, S=32, Cl=35.5, Pb=207, Zn=65, Cu=64, Al=27)

1 mole of a gas occupies 24dm³ at room temperature.

1 mole of a gas occupies 22.4dm³ at s.t.p

					1	For Ex	camin	er's u	se only					
Q1	Q2	Q3	Q4	Q5	Q6	Q7	Q8	Q9	Q10	Q11	Q12	Q13	Q14	Total
														-

SECTION A (50 MARKS)

Answer all questions in this Section.

All workings must be shown clearly in the spaces provided

Air is considered to be a mixture but not a co.npound.

(a)

	(1)	Give any two reasons to support the above statement. (01 mark)
		Composition of air components variet with pressure:
	(ii)	Name the two major air components in the atmosphere. (01 mark) Nutrogen 1 01 Reject; IN2 Oxygen 1
	(iii)	Name one suitable method that can be used to obtain each of the above air components in their pure state. (1/2 marks) Fractional distillation of liquid air. Ref., wrong spelling
		Kgi, wrong spelli
		agnesium reacts with each of the above components to form compounds and Y .
	(i)	Name the compounds X and Y . (01 mark)
		x Magnesium nitride
		x Magnesium nutride V v Magnesium oxide · V
	(ii)	Name one other metallic element that react with air in a similar way as magnesium. Okz (½ mark) Calcium: Accept. Aluminium.
		- alaum. Accept, Huminium.
2 .	and B, Gas	id (H ₂ C ₂ O ₄) when heated with an acid P decomposes to form gases A is B turns lime water milky and Gas A is collected under card boards.
nd	(i) Nai	Acid P Concentrated Sulphuaz acid mark)
ch westions	(ii)	Col 1 10k
NO. ST. C.	(iii)	Gas B Carbon dioxide gas: (1/2 mark) Carbonatioxide

		(iv)	type of reaction above Dehydration (1/2 mark)
	(b)	Write and B	the equation for the reaction leading to the formation of the gases A from Oxalic acid and acid P. Conc. Hz SO4. Conc. Hz SO4.
	(c)	(i)	State the role of acid P in the above reaction. (½ mark)
			Dehydrating agent: X (%
		(ii)	Give a reason why gas A is collected under card boards. (1/2 mark)
			It is toxic to man introduced (Poisonous)
	(d)	State	the industrial use of;
		(i)	Gas A. (½ mark)
			- In extraction of Iron from its ones by reduction In manufacture of producer and water gas, which are fuels.
		(ii)	Gas B (½ mark)
			- In five extinguishers - Manufacture of soda pour - In refrigerators - Preservative in beverage
3.	Amn		as can be obtained on large scale from Nitrogen and hydrogen
	(a)	Name	
		(i)	process by which ammonia gas can be obtained on large scale.
			Haber process. (% mark)
		(ii)	source of nitrogen. From fractional distillation of Iquid air.
			mon programmer of require sea.
		(iii)	Write the equation leading to the formation of ammonia gas from
			nitrogen and hydrogen. (½ mark)
			N2 (9) + 3H2 (9) == 2NH3 (9) / (015)
	A	co	Pt, N2 (9) + 3H2 (9) -> NH3 (9)
	(b)		e the acid that react with ammonia to form;

		(i)	Ammonium Nitrate. Numz acid	۵۶
		(ii)	Ammonium sulphate. Sulphanz acid.	012 (1/2 mark)
	(c)	Calcu	late the percentage of Nitrogen in;	(11/ 1)
		(i)	Ammonium Nitrate. Molar macr of NH4NO ₃ = 14+ (1x4)- Molar macr of NH4NO ₃ = 2x14) x100 = Ammonium sulphate.	+ 14 + (6x3) = 80g
			9. of N2 = (2X14) X100 =	35 01
		(ii)	Ammonium sulphate. Molar mace of (NH4) 2504 = 2(1)	4+4) +32+(1614)
			$\frac{1}{1} = \frac{2 \times 14}{132} \times 100 = 21.21 $	X
4.	(a)		e the term enthalpy of combustion	(02 mark)
		Je . 4	re heat given out when one mole	of a substance
		٠٠٠.	completely burnt in excess oxyg	Jen. V/ (02
	(b)	Ethen	e gas burns in air according to the equation below;	
			$C_2H_4(g) + 3O_2(g) \longrightarrow 2CO_2(g) + 2H_2O(l) + heat$	
		When	8.4g of ethene are burnt in air, 56KJ of heat are produ	iced. Calculate
			olar enthalpy of combustion of ethene. At Mass of $C_2H_4 = (12x2) + (1x4) =$	
			8.49 of CzH4 produce 56KJ	of heat 03
			8.49 of CzHy produce 56KJ 289 of CzHy produce ZS	8.4 KJ of he
5.	When a White	a greer ch turn	powdered solid T was heated strongly, a black residus water to milky was given out.	2tty 15 -186,62M
		Name (i)	Solid T.	(01 mark)
			Copper(11) Carbonate/	(d)
KWO	GSA Joi	int Mo	Accept, Iron(11) Carbonate. ck Examinations 2022	Page 4 of 11

		(11)	n n	(½ mark)
		(ii)	Residue R.	6/2
			Copperus oxide	(01 mark)
		(iii)	Gas W.	(01 mark)
			Carbon dioxide	
	(b)	Write	the equation leading to the formation of gas W and resid	ue R. (01 mark)
		C	$uCO_3(s) \longrightarrow CuO(s) + C$	02.91
	(c)	The r	esidue above was dissolved in dilute hydrochloric acid	(I/ mark) (aVa)
		(i)	State what was observed. Black residue dissolved forming a	(½ mark) (%)
			Black residue oilsofred toming in	BINE . Solution .
		(ii)	Write the equation for the reaction that took place.	(01 mark)
			$O_{(s)}^{2} + 2H_{(qq)}^{\dagger} \longrightarrow H_{2}O$	b / 60
		Ad	cept, CuOs, + 2HClan -> C	11 C/2 (99) + H20
6.	(a)	1)etir	ne the term electrolyte.	(UI mark)
		٠١٤	a compound which when in moster of a	queons state
			, conduct electricity and decompe	see chemically
	(h)		en copper (II) bromide was electrolysed using graphite el	ectrodes
	(b)		what was observed at the;	cetrodes,
			(oVa.	(1/ monte)
		(i)	Cathode. A brown solid was de	(½ mark)
			n onn som was com	POSCIPER.
		(ii)	Anode	(½ mark)
		(11)	Red liquid X (ovz.	(/2 mark)
			Tea uguist	
	(0)	Write	the junic equation for the recetion that tool when	
	(c)	WIIte	e the ionic equation for the reaction that took place at;	

	(i)	Cathode. Cuy	+ 20	(01 mark)	
		0,00	7 26	04(8)	(61)
	(ii)	Anode		(01 mark)	
	()	2 Bru -	-> Brown t		त्र
		C			
(d)	Giv	a reason why molten cop of copper (II) bromide.	per (II) bromide cond	uct electricity but a (01 mark)	
	In	sold state, the con	ducting ions are	e locked up in a	cystalline
T. (a)	hen Ct Dist	ce not free and mobile these ions are inguish between atomic num	le to conduct ele free and me ober and mass number	ectivety while bull to Cond	in motten uct exemity
				(01 mark)	
	A	omiz number ist	& number of	- protons insid	ette
	.nu	cleus of an atom	OR Number	ry elections in	49n atom
		while Mass numbers and the	set is the total	imber of prot	ons an
	Y.	entrons inside t	the meler	s. of an ato	m
(b)		diagram below shows the ele			
		XX		Nucleus	
		/ **		, de le de	
			++1		
		*) * *		
		\\XX			
		**			
	(i)	With a reason, state the gro	oup in the periodic tabl	le where atom T	6
		belong.	II Reaun's	(01 mark)	Onco
	(ii)	With a reason at a d	-1 reacon's	It has Two etc	electron
	(11)	With a reason, state the perbelong.	nod in the periodic tab		(C)
		Period 4	Reason; It 1	nas 4 energy	1 levels
KWGSAI	int N			Res; she	lls
KWUSA JO	omt Mo	ck Examinations 2022		Page 6 of 11	-

			· · · · · · · · · · · · · · · · · · ·	(6K)	(½ mark)
		(iii)	Write the electronic configuration of T. 2:8:8:2 keept, 2	8)8)2	Rej., 2.8.8.2
		(iv)	How many electrons does T contain if it	has a mass numbe	r of 43. (½ mark)
	(c)	(i)	Write the formula of the nitride of T.		(½ mark)
	(0)		T ₃ N ₂ X	6h	
		(ii)	State the type of bond that exists in the a	bove nitride.	(01 mark) Arwalent
			State the type of bond that exists in the s		
8.	Natur	al rubl	ber is very soft and slippery but it car is the an element Z to form a hard solid N .	be made hard bef	fore use by
	(a)	(i)	Name the above process.	on of ruk	(½ mark)
		(ii)		(X (6 Vz)	(½ mark)
				ial 7	(½ mark)
		(iii)	Name the solid N after heating rubber v	ery our	
	(b)	State	any two uses of solid N.		(01 mark)
			- Manufacture of - C	ar tyres /	x (ol
			any conect	Gloves -Shoe sole - Condon	2 2
	(c)	Disti	inguish between natural polymer and syn	thetic polymer.	(01 mark)
		N	atural polymer is one H	hat is no	iturally occurin
		.(Synthetic polymers o	ire made	lby man,
KW	GSA J		lock Examinations 2022		Page 7 of 11

(d) Complete the table below.

(02 marks)

Polymer	Monomer
Polythene	Ethene
Cellulose	Glucose
Protein	Amino acide
PVC	Chlonoethene V

9.	Sulphuric	acid	is a	strong	dibasic	acid.
----	-----------	------	------	--------	---------	-------

- (a) Define the terms
 - (i) Strong acid.

 Is one which when dissolved in water it completely ionises to produce hydrogen ions as the only positively charged ions
 - (ii) Dibasic acid. (01 mark)

 Is an acid that ionises to produce two hydrogen ions
 in one anotecule of an acid.
 - (b) Write the ionic equation to show how Sulphuric acid inonise in water solution per H_2 SO_4 (ag) \rightarrow 2H^+ ago + SO_4 (ag) (61)
 - (c) Dilute Sulphuric acid was added to barium ritrate followed by dilute nitric acid in a test tube.
 - (i) State what was observed.

 White precipitate in soluble in acid.
 - (ii) Write an ionic equation for the reaction that took place. $Baso_{4}(9) + So_{4}^{2}(9) \rightarrow Baso_{4}(5)$

10.	(a)	A hy	drated salt T contains 22.	65% Zinc, 11.15%	Sulphur, 22.3	ula of the
		and 4	3.90% water of crystalliz	ation. Calculate the	Simplest form	(03 marks)
		salt.	Components Elements		3 (2.35 42.6
			Composition	22.65		3.30 434
			Moles	22.65	11:15	2313 43
				013484	01348	104563
			Mole rotio	0:3484		
					4000	10:3484
Simi	plest for	7.18g	of T were dissolved in 2	50cm ³ of water to r	make 0.1M of	a solution.
		Calcu	ulate the molecular mass	of the salt T.	8	(03 marks)
			ocm3 of solution		illes	
			50cm3 of solut		V	= 0.025n
					1000	/
			0.025moles v	verlh 70189	X	(0)
			Inole wer		X6 =	287.20
				0.02		No.
ZASE	F 81	120	= 297-2	Molea	ulaw ma	ss is 287
GC+22+	for L+	86.48	SIPA = 287.2			
321	04	n.	-A-9-12-1	0° - M6		
		11		(30 MARKS)		
		Ar	Attempt any two question (s) and additional question (s)			
11	(0)		Draw a labeled diagram			of hydrogen
11.	(a)	(i)	chloride can be prepare			
			P. P.	a mana maanara		(03 marks)
		(ii)	Write the equation lea	iding to the forma	tion of hydro	gen chloride
			from sodium chloride.			(1½ marks)
	(b)		ain why;			
		(i) (ii)	hydrogen chloride is pr hydrogen chloride is no			
	(a)					(01 mark)
	(c)		e what is observed and ride is bubbled through;	write equations in	each case w	nen hydrogen
		(i)	hot iron gauze			(02 marks)
		(ii)	acidified silver nitrate s	solution.		(2½ mark)
						,

- (d) 25.0cm³ of hydrous sodium carbonate required 17.5cm⁻³ of 0.2M hydrochloric acid for complete reaction. Calculate the molar concentration of sodium carbonate used. (05 marks)
- 12. Ethanol can be prepared from starch powder according to the process below.

- (a) (i) Name the processes A, B and C. (1½ marks)
 - (ii) Name the enzymes X, Y and Z. (1½ marks)
 - (iii) Name the gas T. (½ mark)
- (b) Write the equation that took place in;
 - (i) Process **B.** (01 mark)
 - (ii) Process C. (01 mark)
- (c) State the:
 - (i) main source of the enzymes X, Y and Z. (½ mark)
 - (ii) conditions necessary for the process C to take place (01 mark)
- (d) (i) An organic compound T contains 85.7% carbon and 14.3% hydrogen. Calculate the emperical formula of the compound.

(03 marks)

- (ii) If 0.21g of **T** occupies a volume of 0.08dm³ at room temperature, calculate the molecular formula of the compound **T**. (03 marks)
- (iii) Write the structural formula of **T**. (01 mark)
- (e) (i) Name **one** reagent that can be used to distinguish between ethene and ethane. (01 mark)
 - (ii) State what is observed in each case when the reagent above is treated separately with ethene and ethane. (03 marks)
- 13. (a) Describe how a pure dry sample of ammonia gas can be prepared from calcium hydroxide in the laboratory. (No diagram is required but write the equations leading to the formation of ammonia gas). (01 mark)
 - (b) Outline the equations only to show how the ammonia gas above can be converted to nitric acid. (03 marks)
 - (c) A gas jar of ammonia was inverted into a gas jar of hydrogen chloride gas.
 - (i) State what was observed. (01 mark)

- (ii) Write the equation for the reaction that took place. (1½ marks)
- (d) Lead (II) Nitrate crystals were strongly heated until there was no further change.
 - (i) State what was observed. (1½ marks)
 - (ii) Write the equation that took place. (1½ marks)
- (e) Write the equation for the reaction to show how silver Nitrate crystals decompose when heated strongly. (01 mark)
- 14. (a) Define the term rate of a chemical reaction. (01 mark)
 - (b) State and explain how each of the following factors affect the rate of a chemical reaction
 - (i) Temperature. (02 marks)
 - (ii) Concentration. (02 marks)
 - (c) In an experiment, magnesium ribbons were added to 100cm³ of 2M hydrochloric acid in a beaker.
 - (i) Write the equation that took place. (01 mark)
 - (ii) State any **two** ways in which the reaction can be made faster than before. (01 mark)
 - (iii) Sketch a graph to show how the volume of a gas vary with time.

(02 marks)

(d) In an experiment, the rate of reaction between sodium thiosulphate and hydrochloric acid was measured at different concentrations of the sodium thiosulphate and recorded in the table below

Concentration of $S_2O_3^{2-}(mol^2dm^{-6})$	0.01	0.04	0.09	0.16	0.25	0.36
Rate of reaction (S ⁻¹)	0.16	0.32	0.48	0.64	0.80	0.96
Square root of concentration of the $S_2O_3^{2-}$ ($moldm^{-3}$)						

- (i) Complete the table above by determining the square roots of concentration of the thiosulphate. (03 marks)
- (ii) Plot a graph of rate reaction against square roots of the concentration of the $S_2O_3^{2-}(mol^2dm^{-6})$ (04 marks)
- (iii) Describe the shape of the graph. (01 mark)