Multiple regression

Statistical Reasoning and Quantitative Methods

François Briatte & Ivaylo Petev

Session 10

Outline

Multiple regression modelling expands simple linear regression to any number and type of variables, and provides interpretable **parameters** in the form of regression coefficients.

Regression modelling

Regression coefficients

Our course stops here, as it gets more difficult afterwards.

We will explore diagnostics next week and then finish the course with logistic regression.

Fitting a **simple** linear regression model

The basic model fits a **linear function** to the data, of the form:

$$Y = \alpha + \beta X + \epsilon$$
 or identically $\hat{Y} = \alpha + \beta X$

where:

- *Y* is the **dependent variable** (response)
- *X* is the **independent variable** (predictor)
- α is the **constant** (intercept)
- lacksquare β is the **regression coefficient** (slope)
- ϵ is the **error term** (residuals)

Note: the model assumes that the relationship is **linear**.

Fitting a multiple linear regression model

The model also fits a **linear function** to the data, of the form:

$$Y = \alpha + \beta_1 X_1 + \beta_2 X_2 + \ldots + \beta_k X_k + \epsilon$$

where:

- *Y* is the **dependent variable** (response)
- X is a vector of independent variables (predictors)
- \blacksquare α is the **constant**
- $\beta_1 X_1 + \beta_2 X_2 + \ldots + \beta_k X_k$ is a vector of regression coefficients
- ϵ is the **error term** (residuals)

Note: the model assumes that the relationship is linear and additive.

The estimation of regression coefficients in a k-dimensional space is computationally more intensive, but is also based on least squares.

Multiple regression output: Unstandardised (metric)

reg births schooling log_gdpc

The reg command can take any number of **continuous** variables as arguments, and shows unstandardised coefficients by default, using their original metric and possible transformation:

. reg births schooling log_gdpc

Source	SS	df		MS		Number of obs	
						F(2, 83)	= 88.51
Model	150.301883	2	75.1	509417		Prob > F	= 0.0000
Residual	70.475313	83	.849	100157		R-squared :	= 0.6808
						Adj R-squared	= 0.6731
Total	220.777196	85	2.59	737878		Root MSE	= .92147
births	Coef.	Std.	Err.	t	P> t	[95% Conf.	Interval]
schooling	1976117	.0724	595	-2.73	0.008	3417306	0534927
log_gdpc	4703416	.1324	501	-3.55	0.001	7337796	2069036
_cons	7.950304	.6861	182	11.59	0.000	6.585642	9.314965

Multiple regression output: Standardised (beta)

reg births schooling log_gdpc, beta

The beta option provides standardised "beta" coefficients, which normalize each variable to in the model to fit $\mathcal{D} \sim \mathcal{N}(0,1)$ in order to provide coefficients with comparable standard deviation units:

births	Coef.	Std. Err.	t	P> t	Beta
schooling	1976117	.0724595	-2.73	0.008	3686479
log_gdpc	4703416	.1324501	-3.55	0.001	4800156
_cons	7.950304	.6861182	11.59	0.000	•

(identical output for overall model fit omitted)

Multiple regression output: Dummies

reg births schooling i.region

Categorical variables can be used as dummies, i.e. binary recodes of each category that are tested against a **reference category** to provide regression coefficients for the net effect of each category:

births	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
schooling log_gdpc	0415563 742187	.0639718 .1380037	-0.65 -5.38	0.518 0.000	1688888 -1.016876	.0857763 4674975
region 2 3	6523485 .3682404	.5803126 .254364	-1.12 1.45	0.264 0.152	-1.807432 1380585	.5027349
4	1.411177	.2486027	5.68	0.000	.9163457	1.906008
5	1.167491	.337383	3.46	0.001	.4959471	1.839035
_cons	8.315004	.8006456	10.39	0.000	6.721359	9.908649

(identical output for overall model fit omitted)