评价模型

- 一、模糊综合评价模型
- 二、AHP模型

一、模糊综合评价模型

研究对象:

对一些具有模糊概念的系统(评价对象), 在进行评价时很难给出确切的表达,因而可用 模糊评判方法。

(一) 基本步骤

- 1、列出模糊评判矩阵 $\mathbf{R} = (\mathbf{r}_{ij})_{m,n}$,其中 $\mathbf{r}_{ij} = \mathbf{a}_{ij}(\mathbf{x})$ 表示第i个目标第j级评语的隶属度。
- 2、对 \mathbf{m} 个目标进行综合模糊评价时,设第 \mathbf{i} 个目标权系数为 $\mathbf{W}_{\mathbf{i}}$,满足: $\sum_{i=1}^{m} W_{i} = 1, W_{i} \geq 0$
- 3、综合模糊评判矩阵B:

$$B = AR = (W_1, W_2, ..., W_m) \begin{pmatrix} r_{11}, r_{12}, ..., r_{1m} \\ ... \\ r_{m1}, r_{m2}, ..., r_{mm} \end{pmatrix}$$
$$= (b_1, b_2, ..., b_m)$$

(二) 关于运算

△运算——对矩阵作普通乘法后取最小

\运算——对矩阵作普通加法后取最大

(三)例1、综合评判某品牌彩电

- 1、评价指标集U={图象、声音、价格} 评语集合V={很好、较好、一般、不好}
- 2、对各项指标进行评价的比例:

	很好	较好	一般	不好
图象	50%	40%	10%	0%
声音	40%	30%	20%	10%
价格	0%	10%	30%	60%

3、确定权向量:一般地,顾客买彩电的主要要求是图象清楚,价格便宜,声音稍差不要紧。故设三个指标的权向量:

 $A = (0.5 \quad 0.2 \quad 0.3)$

4、综合评判结果:

5、归一化处理: 很好0.33、较好0.27、一般0.2、不好0.2

(三) 例2、科技成果评定

问题: 从甲、乙、丙三项成果选优,资料如下:

项目	指标	科技水平	实现可能性	经济效益
E	F	接近国际先进	70%	>100万元
Z		国内先进	100%	>200万元
Ī	芍	一般	100%	> 20万元

专家评价

评价	禾	斗技水平	<u>Z</u>	实	现可能	性	4	至济效益	点
项目	高	中	低	高	中	低	高	中	低
甲	0.7	0.2	0.1	0.1	0.2	0.7	0.3	0.6	0.1
Z	0.3	0.6	0.1	1	0	0	0.7	0.3	0
丙	0.1	0.4	0.5	1	0	0	0.1	0.3	0.6

1、问题解答:

(1) 评价指标集:

U={科技水平,实现可能性,经济效益}

- (2) 评语集: V={高,中,低}或{大,中,小}
- (3) 评价指标权向量: (0.2, 0.3, 0.5)
- (4) 归一化后三项评价结果:

 $B_{\text{H}} = \{0.27, 0.27, 0.46\}$

 $B_{Z} = \{0.56, 0.33, 0.11\}$

 $B_{\overline{\bowtie}} = \{0.27, 0.27, 0.46\}$

评价模型

- 一、模糊综合评价模型
- 二、AHP模型

二、层次分析法(AHP法)

以旅游为例:

有P1, P2, P3个旅游胜可供选择。根据如景色、费用和居住、饮食、旅途条件等一些准则去反复比较3个候选地点。

首先:确定这些准在你心中所占比重。

其次:就每一个准则将3个地点进行对比,如景色P1最好,P2次之;P2费用最低,P3

次

之等等。

最后:将这两个层次的比较判断进行综合后确定最佳地点。

步骤一:建立层次结构模型

步骤二:构造成对比矩阵:

从层次结构模型的第2层开始,对于从属于(或影响及)上一层每个因素的同一层诸因素,用成对比较法和1—9比较尺度构造成对比较阵,直到最下层。

成对比较阵:

$$A = \begin{bmatrix} 1 & 1/2 & 4 & 3 & 3 \\ 2 & 1 & 7 & 5 & 5 \\ 1/4 & 1/7 & 1 & 1/2 & 1/3 \\ 1/3 & 1/5 & 2 & 1 & 1 \\ 1/3 & 1/5 & 3 & 1 & 1 \end{bmatrix}$$

仔细分析上式成对比较阵:如C1、C2之比为1:2,C1与C3之比为4:1,那么C2与C3之比应为8:1而不是7:1才能说明成对比较是一致的何解决不一致阵?——1、一致性检验2、特征根法

1、一致性检验

目的:确定不一致允许的范围

(1) 计算一致性指标:
$$CI = \frac{\lambda - n}{n-1}$$
 若CI=0为一致阵

(2) 随机一致性指标:

表 9-2 随机一致性指标 RI 的数值											
n	1	2	3	4	5	6	7	8	9	10	11
RI	0	0	0.58	0.90	1.12	1.24	1.32	1.41	1.45	1.49	1.51

(3) 一致性判断: 若 $CR = \frac{CI}{RI} < 0.1$,则不一致 在允许范围内。

2、特征根法——确定权向量

用对应于A最大特征根(记λ)的特征向量(归一化后)作权向量w,即:

 $A w = \lambda w$

步骤三: 计算组合权向量并做组合一致性检验

组合一致性检验可逐层进行. 若第p 层的一致性指标为 $CI_{r}^{(p)}$, ..., $CI_{n}^{(p)}$ (n 是第p-1 层因素的数目),随机一致性指标为 $RI_{1}^{(p)}$, ..., $RI_{n}^{(p)}$, 定义

$$CI^{(p)} = [CI_1^{(p)}, \cdots, CI_n^{(p)}] w^{(p-1)}$$

$$RI^{(p)} = [RI_1^{(p)}, \cdots, RI_n^{(p)}] w^{(p-1)}$$

则第p层对第1层的组合一致性比率为

$$CR^{(p)} = CR^{(p-1)} + \frac{CI^{(p)}}{RI^{(p)}}, p = 3, 4, \dots, s$$
 (13)

其中 CR⁽²⁾ 为由(7)式计算的一致性比率. 最后, 当最下层对最上层的组合一致性比率

$$CR^{(i)} < 0.1^{*}$$
 (14)

时认为整个层次的比较判断通过一致性检验.

应用: 城市能源供应系统改造方案比较

可供选择的方案:

P1: 制作高效煤制品,取代目前居民用的普通蜂窝煤

P2: 将分散供热方式改造为区域供热;

P3: 建造热电联供设施,利用电厂余热;

P4: 实现城市煤气化;

P5: 郊县推广沼气池,作为农村主要生活能

源.

1、能源供应系统改造层次结构图

2、以效益U为目标的计算结果

权向量 (C对U)	0.6370	02583	0.1047	$\lambda = 30385 \ CI = 00193 \ CR = 00332$
准则 C 方案P	C ₁	C ₂	C ₃	组合权向量 (P 对 U)
权 P ₁	0.0979	0.0945	0.1368	0.1011
Й P ₂	0.3211	0.1960	0.0837	0.2639
敏 ○ P ₃	0.4827	0.0550	0.0371	0.3256
(P) 対 P ₄ (C)	0.0680	0.6183	0.5091	0.2563
E P ₅	0.0303	0.0361	0.2332	0.0530
λ	5,3010	5.3105	5.0920	
CI	0.0753	0.0776	0.0230	
CR	0.0672	0.0593	0.0205	0.0961

3、以代价V为目标的计算结果

	0.7352 D ₁	0.2067 D ₂	0.0581 D ₃	え=3.1171 CT=0.0585、CR=0.1009 組合权何量
万案P 权	0.0516	0.0501	0.1237	(P 对 V) 0.0555
何 <i>P</i> 2 量	0.2564	0.5529	0.3945	0.3257
\widehat{P} P_3 对 P_4	0.1676	0.2659	0.2343	0.1918
$ \underbrace{\overset{\sim}{\mathcal{D}}}_{P_5} $	0.0299	0.0501	0.1237	0.0395
2.	5-2908	5.0996	5.0100	
CI	0.0727	0.0249	0.0025	
CR	0.0649	0.0222	0.0022	0.1533

4、综合

- 1、问题:从效益看,热电服供效益最高,区域供 热和煤气化处于第2、3位;从代价看:煤气化 和区域供热代价太高,煤制品和沼气池代价 低.
- 2、综合考虑:问题简化为将综合指标规定为与效益成正比、与代价成反比
- 3、两个组合权向量的对应分量相除,再归一化可得综合指标为(0.2877, 0.1279,
- 0. 2681,
 - 0. 1044, 0. 2119)
- 4、结论:煤制品和热电联供的综合效果最好,说明煤制品虽效益不太高,但代价很低。容易用较少的资金迅速生效,可优先实施。若资金雄

成对较比法

不把所有因素放在一起比较,而是两两相互对比,并对比时采用相对尺度,以尽可能地减少性质不同的诸因素相互比较的闲难,提高准确度。构造成对比矩阵:

$$A = (a_{ij})_{n \times n}, a_{ij} > 0, a_{ji} = \frac{1}{a_{ij}}$$

一致阵

定义: $a_{ij} * a_{jk} = a_{ik}$

性质如下:

- 1. A的秩为1, A的唯一非零特征根为n
- 2. A的任一列(行)向量都是对应于特征根n的特征

向量

比较尺度

	· · · · · · · · · · · · · · · · · · ·
尺度 a _{ij}	含义
1	C; 与 C _j 的影响相同
3	C_i 比 C_j 的影响稍强
5	C_i 比 C_j 的影响强
7	C; 比 Cj 的影响明显地强
9	C_i 比 C_j 的影响绝对地强
2,4,6,8	C。与 C ₃ 的影响之比在上述两个相邻等级之间
$1, \frac{1}{2}, \dots, \frac{1}{9}$	C_j 与 C_i 的影响之比为上面 a_{ij} 的互反数
-	