Дедупликация 5 миллионов событий в секунду на YDB в АппМетрике

Артем Исмагилов, Яндекс

О чем доклад

• Как мы построили сервис дедупликации на 5М ключей в секунду

О чем доклад

- Как мы построили сервис дедупликации на 5М ключей в секунду
- Как уменьшили потребление CPU в 10 раз с помощью нестандартного фильтра Блума

О чем доклад

- Как мы построили сервис дедупликации на 5М ключей в секунду
- Как уменьшили потребление CPU в 10 раз с помощью нестандартного фильтра Блума
- Как организовали ротацию данных и перешардирование сервиса

Контекст:

сервис аналитики мобильных приложений

АррMetrica: общая схема

Откуда появляются дубли

События успешно получены сервером

AppMetrica SDK

Events: 1, 2, 3...

HTTP-сервер для приема событий

Откуда появляются дубли

События успешно получены сервером

AppMetrica SDK

Events: 1, 2, 3...

HTTP-сервер для приема событий

Но ответ сервера не получен SDK

AppMetrica SDK

Events: 1, 2, 3...

HTTP-сервер для приема событий

Откуда появляются дубли

Такие события будут обработаны два раза

Зачем удалять дубли

- Отчеты и данные в логах должны быть корректными
- Не хранить лишние 5 РВ данных, которые были бы дублями

Первый чанк из очереди читается и обрабатывается

Обработанные данные записываются в выходную таблицу

Создается транзакция на удаление входного чанка и создание выходного

Транзакция закоммичена

Транзакция закоммичена

... или не закоммичена

В случае ошибки данные будут обработаны повторно

Шардирование

Предыдущая версия сервиса дедупликации

В случае ошибки обработки нельзя завершиться – потеряется состояние Нужно откатить изменения и попробовать снова

Предыдущая версия сервиса дедупликации

- Перед стартом состояние загружается с HDD
- Перед завершением работы состояние необходимо сохранить

Предыдущая версия сервиса дедупликации

Так как сервис может завершиться по внешним причинам, нужна репликация

У Требует мало ресурсов, так как вся обработка в оперативной памяти

- У Требует мало ресурсов, так как вся обработка в оперативной памяти
- 😿 Легко может потерять состояние, были такие случаи

- У Требует мало ресурсов, так как вся обработка в оперативной памяти
- 🗴 Пегко может потерять состояние, были такие случаи
- В Невозможно увеличить размер состояния из-за ограничений по RAM

- У Требует мало ресурсов, так как вся обработка в оперативной памяти
- 🗴 Пегко может потерять состояние, были такие случаи
- В Невозможно увеличить размер состояния из-за ограничений по RAM
- **В** Невозможно перешардировать без значительного даунтайма

- У Требует мало ресурсов, так как вся обработка в оперативной памяти
- 🗴 Пегко может потерять состояние, были такие случаи
- В Невозможно увеличить размер состояния из-за ограничений по RAM
- 🗴 Невозможно перешардировать без значительного даунтайма
- Привязан к конкретным физическим машинам кластера

- У Требует мало ресурсов, так как вся обработка в оперативной памяти
- 🗴 Легко может потерять состояние, были такие случаи
- В Невозможно увеличить размер состояния из-за ограничений по RAM
- 🗴 Невозможно перешардировать без значительного даунтайма
- Привязан к конкретным физическим машинам кластера
- 🗴 Перезапуск занимает 50 минут из-за операций с HDD

Потребление не сильно большего количества ресурсов, чем старая версия

- ✓ Потребление не сильно большего количества ресурсов, чем старая версия
- Гарантия сохранения состояния

- Потребление не сильно большего количества ресурсов, чем старая версия
- Гарантия сохранения состояния
- Возможность легко менять окно дедупликации и размер состояния

- ✓ Потребление не сильно большего количества ресурсов, чем старая версия
- Гарантия сохранения состояния
- Возможность легко менять окно дедупликации и размер состояния
- Возможность легко увеличить количество шардов

- ✓ Потребление не сильно большего количества ресурсов, чем старая версия
- Гарантия сохранения состояния
- Возможность легко менять окно дедупликации и размер состояния
- Возможность легко увеличить количество шардов
- Легко развернуть в облаке, не нужен кластер физических машин

Прямой подход к задаче дедупликации

Схема таблицы – (DevicelDHash, EventHash, InsertTime)

TTL по InsertTime

YDB

Линейное горизонтальное масштабирование

YDB

- Линейное горизонтальное масштабирование
- ✓ Геораспределенная, zero downtime

YDB

- Линейное горизонтальное масштабирование
- ✓ Геораспределенная, zero downtime
- Key-Value-хранилище

YDB

- Линейное горизонтальное масштабирование
- ✓ Геораспределенная, zero downtime
- Key-Value-хранилище
- ✓ Записи уникальны по первичному ключу, операция Upsert

YDB

- Линейное горизонтальное масштабирование
- ✓ Геораспределенная, zero downtime
- Key-Value-хранилище
- ✓ Записи уникальны по первичному ключу, операция Upsert
- Эффективная вставка операцией BulkUpsert, без транзакций

Схема работы сервиса дедупликации

Дедупликатор as a service

Шардирование

Схема таблицы – (DeviceIDHash, EventHash, InsertTime)

Первичный ключ

Партиции YDB

DeviceIDHash

uint64 max

Шардирование

Схема таблицы – (DeviceIDHash, EventHash, InsertTime)

Первичный ключ

Chunk YDB Hash Hash 123 Hash 1234

Не дубли

Произошла ошибка при обработке

Дубли – неверный ответ

Chunk

Id 10

Hash 123

Hash 1234

Hash	TransactionId

Произошла ошибка при обработке

TransactionId = ChunkId – не дубли

Не дубли – верный ответ

TransactionId!= ChunkId – дубль

- Полноценный облачный сервис дедупликации
- У Простая конструкция, хорошо работает для потока событий до 300K RPS

- Оправонный облачный сервис дедупликации в правонный облачный сервис дедупликации в правоный с
- У Простая конструкция, хорошо работает для потока событий до 300K RPS
- TTL на большой таблице тратит много ресурсов

- Полноценный облачный сервис дедупликации
- У Простая конструкция, хорошо работает для потока событий до 300K RPS
- X TTL на большой таблице тратит много ресурсов
- Работающий TTL ухудшает производительность Select и Insert

- ✓ Полноценный облачный сервис дедупликации
- У Простая конструкция, хорошо работает для потока событий до 300K RPS
- X TTL на большой таблице тратит много ресурсов
- 🗴 Работающий TTL ухудшает производительность Select и Insert
- В При потоке в 300К событий в секунду потребляет 250 ядер YDB

- Полноценный облачный сервис дедупликации
- У Простая конструкция, хорошо работает для потока событий до 300K RPS
- TTL на большой таблице тратит много ресурсов
- 🗴 Работающий TTL ухудшает производительность Select и Insert
- При потоке в 300К событий в секунду потребляет 250 ядер YDB
- 🗴 Для потока в 5М событий в секунду потребовалось бы 3500 ядер YDB

- Полноценный облачный сервис дедупликации
- ✓ Простая конструкция, хорошо работает для потока событий до 300К RPS
- TTL на большой таблице тратит много ресурсов
- 🗴 Работающий TTL ухудшает производительность Select и Insert
- При потоке в 300К событий в секунду потребляет 250 ядер YDB
- 🗴 Для потока в 5М событий в секунду потребовалось бы 3500 ядер YDB

Необходимо работать над производительностью

Схема таблицы – (DeviceIDHash, EventHash, TransactionID)

Когда время очередной таблицы закончилось, добавляем новую

Когда таблица стала слишком старой, удаляем ее полностью

Когда таблица стала слишком старой, удаляем ее полностью

TTL не тратит ресурсы базы

- ▼ TTL не тратит ресурсы базы
- Колонка InsertTime не занимает место на дисках

- ▼ TTL не тратит ресурсы базы
- Колонка InsertTime не занимает место на дисках
- Размер таблицы не ограничен производительностью TTL

- **TTL** не тратит ресурсы базы
- Колонка InsertTime не занимает место на дисках
- Размер таблицы не ограничен производительностью TTL
- У Число look up умножается на число таблиц

- ▼ TTL не тратит ресурсы базы
- Колонка InsertTime не занимает место на дисках
- Размер таблицы не ограничен производительностью TTL
- У Число look up умножается на число таблиц
- У Очень дорого делать 4 x 5M look up

Отказ от TTL

- ТТL не тратит ресурсы базы
- Колонка InsertTime не занимает место на дисках
- Размер таблицы не ограничен производительностью TTL
- У Число look up умножается на число таблиц
- У Очень дорого делать 4 x 5M look up

Нужно уменьшать количество look up

0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Добавление элемента

Добавление элемента

Проверка наличия

0	1	0	1	0	0	0	1	0	0	0	1	0	0	1	0

Проверка наличия

Проверка наличия

Хранение в таблице YDB

RAM

Хранение в таблице YDB

RAM

YDB

BatchIndex	BatchBits	
1	0 1 0 1 0 0 1	
2	0 0 1 0 1 0	

Хранение в таблице YDB

Хранение в таблице YDB

Получили запрос с новыми ключами

Проверили наличие ключей в фильтре

Определили дубли и добавили новые ключи в таблицу

Определили дубли и добавили новые ключи в таблицу

Добавили новые ключи в фильтр Блума

Сохранили состояние фильтра в таблице YDB

Сохранили состояние фильтра в таблице YDB

При старте сервиса восстанавливаем фильтр Блума из YDB

Храним свой фильтр Блума для каждой таблицы

Храним фильтр Блума для каждой пары (таблица, шард)

4 таблицы по 4 часа

Таблицы хэшей – 5 ТВ Таблицы фильтров – 600 GB

Масштабирование

Масштабирование

Масштабирование

Масштабирование

Создаем новую таблицу с новым шардированием

	Hash	
Event	123	

	Hash	EventTime
Event	123	2022-09-22 12:00:00

Hash EventTime

Event 123 2022-09-22 12:00:00

У дубля такое же, как у оригинала

Оценить доклад

Спасибо

AppMetrica

Артем Исмагилов

Разработчик

Яндекс

(a) @artem_ismagilov

Давайте обсудим:

- Как вы решаете проблему дедупликации?
- Применяете ли фильтры Блума? Как добиваетесь их сохранности?
- Где еще можно применить такой подход с фильтрами Блума?