Formale Grundlagen der Informatik II 7. Übungsblatt

Fachbereich Mathematik Prof. Dr. Ulrich Kohlenbach Alexander Kreuzer

SS 2012

Gruppenübung

Pavol Safarik

Aufgabe G1

Wir betrachten ungerichtete Graphen $\mathcal{G}=(V,E)$. Welche der folgenden Aussagen lassen sich durch eine Menge von FO-Formeln ausdrücken? Geben Sie eine entsprechende Formelmenge an, oder begründen Sie, wieso eine solche nicht existiert.

- (a) Der Abstand zwischen den Knoten x und y ist gerade oder unendlich.
- (b) \mathcal{G} enthält keinen Kreis.
- (c) \mathcal{G} enthält einen Kreis.
- (d) Jeder Knoten von \mathcal{G} hat unendlich viele Nachbarn.
- (e) Kein Knoten von \mathcal{G} hat unendlich viele Nachbarn.

Lösungsskizze:

(a) Wir definieren zunächst eine Formel $\varphi_n(x, y)$, die besagt, dass es einen Pfad der Länge höchstens n von x nach y gibt:

$$\varphi_0(x,y) := x = y$$
, $\varphi_{n+1}(x,y) := \varphi_n(x,y) \vee \exists z (Exz \wedge \varphi_n(z,y))$.

Eine Wahl für die gesuchte Formelmenge ist:

$$\{\varphi_{2n+1}(x,y)\to\varphi_{2n}(x,y):n\in\mathbb{N}\}.$$

(b) Die Menge der Sätze der folgenden Form leistet das Gewünschte:

$$\neg \exists x_1 \cdots \exists x_n \Big(\bigwedge_{i < k \le n} x_i \neq x_k \land Ex_1 x_2 \land \cdots \land Ex_{n-1} x_n \land Ex_n x_1 \Big) \,, \quad \text{für } n > 2 \,.$$

(c) Diese Aussage lässt sich nicht durch eine Menge Φ von FO-Formeln ausdrücken. Angenommen, es gäbe eine solche Menge Φ . Dann ist die Menge

$$\Psi := \Phi \cup \{ \neg \exists x_1 \cdots \exists x_n (\bigwedge_{i < k < n} x_i \neq x_k \land Ex_1 x_2 \land \cdots \land Ex_{n-1} x_n \land Ex_n x_1) : n > 2 \}$$

unerfüllbar. Andererseits folgt aus dem Kompaktheitssatz, dass Ψ doch erfüllbar ist. (Jede endliche Teilmenge ist in einem hinreichend großen Kreis erfüllt.) Widerspruch.

(d) Die Menge der Sätze der folgenden Form leistet das Gewünschte:

$$\forall x \exists y_1 \cdots \exists y_n \Big(\bigwedge_{i < k \le n} y_i \neq y_n \land Exy_1 \land \cdots \land Exy_n \Big), \quad \text{für } n > 2.$$

(e) Diese Aussage lässt sich nicht durch eine Menge Φ von FO-Formeln ausdrücken. Angenommen, es gäbe eine solche Menge Φ . Dann ist die Menge

$$\Psi := \Phi \cup \{ \forall x \exists y_1 \cdots \exists y_n (\bigwedge_{i < k < n} y_i \neq y_k \land Exy_1 \land \cdots \land Exy_n) : n > 2 \}$$

unerfüllbar. (Alternativ kann man auch eine neue Konstante c einführen und die Satzmenge

$$\Psi := \Phi \cup \{\exists y_1 \cdots \exists y_n (\bigwedge_{i < k < n} y_i \neq y_k \land Ecy_1 \land \cdots \land Ecy_n) : n > 2\}$$

betrachten.) Andererseits folgt aus dem Kompaktheitssatz, dass Ψ doch erfüllbar ist. (Jede endliche Teilmenge ist in einem Baum von hinreichend großem Verzweigunsgrad erfüllt.) Widerspruch.

Aufgabe G2

- (a) Geben Sie eine passende Signatur an, und drücken Sie darüber die folgenden "Tatsachen" durch Sätze der Logik erster Stufe aus:
 - i. Ein Drache ist glücklich, wenn alle seine Kinder fliegen können.
 - ii. Grüne Drachen können fliegen.
 - iii. Ein Drache ist grün, wenn einer seiner Elterndrachen grün ist.
 - iv. Alle grünen Drachen sind glücklich.

Hinweis: Überlegen Sie sich u. a., was Sie in der Signatur benötigen, um "ist Kind von" ausdrücken zu können.

- (b) Leiten sie argumentativ die vierte Aussage aus den ersten drei her.
- (c) Zeigen Sie mittels dem Resolutionsverfahren, dass die vierte Aussage aus den ersten drei folgt. Hinweis: Beachten Sie, dass man auf eine Skolemfunktion geführt wird, die ggf. "nicht fliegende Kinder" liefert.

Lösungsskizze:

(a) Eine mögliche Signatur ist S = (G, F, L, C), wobei G (green), F (can fly) und H (happy) einstellige Relationssymbol sind, und C (child of) ein zweistelliges Relationssymbol ist. Obige Aussagen entsprechen folgenden FO(S)-Sätzen:

i.
$$\varphi_1 := \forall x (\forall y (Cyx \to Fy) \to Hx)$$

ii.
$$\varphi_2 := \forall x (Gx \to Fx)$$

iii.
$$\varphi_3 := \forall x (\exists y (Cxy \land Gy) \rightarrow Gx)$$

iv.
$$\varphi_4 := \forall x (Gx \to Hx)$$

- (b) Angenommen g ist ein grüner Drache, und c ist ein Kind von g. Dann ist c grün (wegen (iii)) und kann damit auch fliegen (wegen (ii)). Also können alle Kinder von g fliegen, also ist g (wegen (i)) glücklich.
- (c) Wir wollen zeigen, dass die Satzmenge $\{\varphi_1, \varphi_2, \varphi_3, \neg \varphi_4\}$ unerfüllbar ist. Dazu bringen wir diese Sätze in Skolennormalform:

i.
$$\forall x (\forall y (Cyx \to Fy) \to Hx) \equiv \forall x \exists y ((Cyx \to Fy) \to Hx)$$

Skolemnormalform: $\forall x ((Cfxx \to Ffx) \to Hx)$.

ii. Ist bereits in Skolemnormalform: $\forall x(Gx \rightarrow Fx)$

iii.
$$\forall x (\exists y (Cxy \land Gy) \rightarrow Gx) \equiv \forall x \forall y ((Cxy \land Gy) \rightarrow Gx)$$

Skolemnormalform: $\forall x \forall y ((Cxy \land Gy) \rightarrow Gx)$.

iv.
$$\neg \forall x (Gx \to Hx) \equiv \exists x (Gx \land \neg Hx)$$

Skolemnormalform: $Gc \land \neg Hc$.

Es ergibt sich die folgende Klauselmenge:

Damit lässt sich zum Beispiel wie folgt die leer Klausel ableiten:

Aufgabe G3

Beweisen Sie die gegebene Folgerungsbeziehung sowohl im Sequenzenkalkül als auch durch Resolution.

$$\forall x \neg P(x), \neg \forall x (\neg P(x) \land \neg Q(x)) \models \exists x Q(x)$$

Lösungsskizze:

Die Folgerungsbeziehung gilt gdw. wenn sich die Sequenz $\forall x \neg Px, \neg \forall x (\neg Px \land \neg Qx) \vdash \exists x Qx$ im Sequenzenkalkül ableiten lässt:

$$\frac{\neg Pc \vdash \neg Pc, Qc}{\neg Pc \vdash \neg Pc, Qc} \text{ (Ax)} \qquad \frac{\neg Pc, Qc \vdash Qc}{\neg Pc \vdash \neg Qc, Qc} \text{ (Ax)}$$

$$\frac{\neg Pc \vdash \neg Pc \land \neg Qc, Qc}{\forall x \neg Px \vdash \neg Pc \land \neg Qc, Qc} \text{ (}\forall L\text{)}$$

$$\frac{\forall x \neg Px \vdash \neg Pc \land \neg Qc, \exists xQx}{\forall x \neg Px \vdash \forall x(\neg Px \land \neg Qx), \exists xQx} \text{ (}\forall R\text{)}$$

$$\frac{\forall x \neg Px, \neg \forall x(\neg Px \land \neg Qx) \vdash \exists xQx}{\forall x \neg Px, \neg \forall x(\neg Px \land \neg Qx) \vdash \exists xQx} \text{ (}\neg L\text{)}$$

Die Folgerungsbeziegung gilt, wenn

$$\forall x \neg Px, \neg \forall x (\neg Px \land \neg Qx), \neg \exists x Qx$$

nicht erfüllbar ist. Um das zu beweisen, reicht es die Unerfüllbarkeit der Klauselmenge

$$\{\neg Px\}, \{Pc, Qc\}, \{\neg Qx\}$$

zu zeigen, indem man daraus mit Resolution die leere Klausel ableitet:

Aufgabe G4

Sei S eine Signatur, die mindestens ein Konstantensymbol enthält und wofür die Menge der geschlossenen Termen $T_0(S)$ unendlich ist.

- (a) Zeigen Sie, dass es keine Menge Φ von S-Sätzen gibt, so dass Φ genau dann wahr ist in einer S-Struktur A, wenn A ein Herbrandmodell ist.
 - *Hinweis:* Betrachten Sie erst den Spezialfall S=(c,f) (eine Konstante c und ein einstelliges Funktionssymbol f).
- (b) Folgern Sie aus (a), dass es keine S-Formel $\psi(x)$ geben kann, so dass

$$(\mathcal{A}, \beta[x \mapsto a]) \vDash \psi(x)$$

gilt, genau dann wenn a die Interpretation von einem variablenfreien Term ist.

Lösungsskizze:

(a) Nehmen wir an, dass es eine Satzmenge Φ gibt, so dass Φ genau durch die Herbrandmodelle erfüllt wird. Sei $\mathcal H$ ein Herbrandmodell für die Signatur S. Wir erweitern die Signatur S um einem neuen Konstantensymbol d und bekommen die Signatur S'. Betrachten Sie die S'-Menge:

$$\Psi = \Phi \cup \{ \neg d = t : t \in T_0(S) \}.$$

Für jede endliche Teilmenge Ψ_0 von Ψ gibt es einen Term $t \in T_0(S)$, der nicht in Ψ_0 vorkommt: Ψ_0 enthält nur endliche viele Elemente aus $T_0(S)$ und $T_0(S)$ ist unendlich. Also wird Ψ_0 von $\mathcal H$ erfüllt, falls wir d als eine solche t interpretieren. Also ist jede endliche Teilmenge von Ψ erfüllbar und damit Ψ selbst auch (nach dem Kompaktheitssatz). Sei $\mathcal A$ also ein S'-Modell von Ψ : wenn wir die Interpretation von d "vergessen", können wir $\mathcal A$ auch als eine S-Struktur auffassen. Dann soll $\mathcal A$ einerseits ein Herbrandmodell sein, da es Ψ und deshalb auch Φ erfüllt; andererseits enthält $\mathcal A$ ein Element $d^{\mathcal A}$ verschieden von allen Interpretationen von geschlossenen S-Termen und ist damit kein Herbrandmodell. Widerspruch!

Wir schliessen, dass es eine solche Satzmenge Φ nicht geben kann.

(b) Wenn es eine Formel $\psi(x)$ gäbe, die genau von den Elementen wahr gemacht wird, die Interpretationen von geschlossenen Termen sind, dann würde

$$\Phi = \{ \forall x \psi(x) \} \cup \{ \neg s = t : s, t \in T_0(S), s \neq t \}$$

genau in den S-Strukturen gelten, die Herbrandmodelle sind. So etwas kann es aber nach (a) nicht geben, also existiert eine solche Formel $\psi(x)$ nicht.

Aufgabe G5

Seien

$$\varphi_1 := \forall x \exists y (R(x,y) \land (P(x) \to Q(y)))
\varphi_2 := \forall x \forall y (R(x,y) \to \neg R(y,x))
\varphi_3 := \exists x (P(x) \land \forall y (\neg P(y) \land Q(y) \to R(y,x)))
\varphi_4 := \neg \exists x \exists y (R(x,y) \land P(x) \land P(y))$$

- (a) Wandeln Sie die Formeln $\varphi_1, \varphi_2, \varphi_3, \varphi_4$ in Skolem-Normalform um.
- (b) Zeigen Sie *semantisch*, dass die Formelmenge $\{\varphi_1, \varphi_2, \varphi_3, \varphi_4\}$ nicht erfüllbar ist.
- (c) Zeigen Sie jetzt mit Hilfe des Resolutionsverfahrens, dass die Formelmenge $\{\varphi_1, \varphi_2, \varphi_3, \varphi_4\}$ nicht erfüllbar ist.

(d) Je drei der vier Formeln $\varphi_1, \varphi_2, \varphi_3, \varphi_4$ sind gemeinsam erfüllbar. Weisen Sie dies alle vier Kombinationen durch Angabe von Herbrand-Modellen nach.

Lösungsskizze:

(a) Für φ_1 führen wir ein einstelliges Funktionssymbol f ein und für φ_3 ein Konstantensymbol c:

$$\varphi_1 \quad \rightsquigarrow \quad \forall x (Rxfx \land (Px \rightarrow Qfx))
\varphi_2 \quad \rightsquigarrow \quad \forall x \forall y (Rxy \rightarrow \neg Ryx)
\varphi_3 \quad \rightsquigarrow \quad \forall y (Pc \land ((\neg Py \land Qy) \rightarrow Ryc))
\varphi_4 \quad \rightsquigarrow \quad \forall x \forall y \neg (Rxy \land Px \land Py)$$

(b) Es genügt zu zeigen, dass die Skolem-Normalformen von φ_1 bis φ_4 nicht gleichzeitig erfüllbar sind. Nehmen wir an, dass \mathcal{A} ein Modell wäre. Es ist hilfreich \mathcal{A} als einen Graph zu betrachten, wobei $R^{\mathcal{A}}$ die Kantenrelation ist und $P^{\mathcal{A}}$ und $Q^{\mathcal{A}}$ Eigenschaften der Knoten.

Da c^A nach φ_3 die Eigenschaft P^A hat und $A \models Rcfc$ gilt (φ_1) , muss f^Ac^A nach φ_1 die Eigenschaft $Q^{\mathcal{A}}$ haben, aber kann es (nach φ_4) nicht die Eigenschaft $P^{\mathcal{A}}$ haben. Dann gilt nach φ_3 , dass $\mathcal{A} \models$ Rfcc, was $\mathcal{A} \models Rcfc$ und φ_2 widerspricht.

Wir schliessen, dass es keine Modelle von $\varphi_1, \ldots, \varphi_4$ gibt.

(c) Wir haben folgende Klauselmenge:

$$\{Rxfx\}, \{\neg Px, Qfx\}, \{\neg Rxy, \neg Ryx\}, \{Pc\}, \{Py, \neg Qy, Ryc\}, \{\neg Rxy, \neg Px, \neg Py\}.$$

Damit kann mit z.B. wie folgt die leere Klausel ableiten:

- (d) Wir geben jeweils eine mögliche Lösung an.
 - Herbrand-Struktur \mathcal{H} für $\{\varphi_1, \varphi_2, \varphi_3\}$ Trägermenge: $T = \{f^nc : n \in \mathbb{N}\}.$ $R^{\mathcal{H}} = \{ (f^n c, f^{n+1} c) : n \in \mathbb{N} \}.$ $P^{\mathcal{H}} = Q^{\mathcal{H}} = T.$
 - Herbrand-Struktur $\mathcal H$ für $\{\varphi_1,\varphi_2,\varphi_4\}$ Trägermenge: $T = \{f^n(c) : n \in \mathbb{N}\}.$ $R^{\mathcal{H}} = \{ (f^n c, f^{n+1} c) : n \in \mathbb{N} \}.$ $P^{\mathcal{H}} = \{c\} \text{ und } Q^{\mathcal{H}} = T.$
 - Herbrand-Struktur \mathcal{H} für $\{\varphi_1, \varphi_3, \varphi_4\}$ Trägermenge: $T = \{f^n(c) : n \in \mathbb{N}\}.$ $R^{\mathcal{H}} = \{ (f^n c, f^{n+1} c) : n \in \mathbb{N} \} \cup \{ f^n c, c) : n > 0 \}.$ $P^{\mathcal{H}} = \{c\} \text{ und } Q^{\mathcal{H}} = T.$

• Herbrand-Struktur \mathcal{H} für $\{\varphi_2, \varphi_3, \varphi_4\}$ Trägermenge: $T = \{c\}$. $R^{\mathcal{H}} = \emptyset$. $P^{\mathcal{H}} = Q^{\mathcal{H}} = \{c\}$.

Aufgabe G6 (Brouwer-Heyting-Kolmogorov Interpretation — Zusatzaufgabe)

Im folgenden bezeichnen φ und ψ quantorenfreie Formeln in FO. Beschreiben Sie informell mittels der Brouwer-Heyting-Kolmogorov Interpretation die Bedeutung der folgenden Aussagen:

$$\neg \forall n \varphi(n)$$

$$\exists n \neg \varphi(n)$$

$$\varphi \lor \psi$$

$$\neg (\neg \varphi \lor \neg \psi)$$

Argumentieren Sie informell mittels der Brouwer-Heyting-Kolmogorov Interpretation, welche der folgenden Aussagen intuitionistisch wahr bzw. im intuitionistischem Sinne falsch sind:

$$\exists n \neg \varphi(n) \to \neg \forall n \varphi(n)
\neg \forall n \varphi(n) \to \exists n \neg \varphi(n)
\varphi \lor \psi \to \neg(\neg \varphi \lor \neg \psi)
\neg(\neg \varphi \lor \neg \psi) \to \varphi \lor \psi$$

Lösungsskizze: Für den ersten Teil:

- (a) Es gibt kein Programm f(n), dass für jedes n eine Konstruktion von $\varphi(n)$ ausgibt.
- (b) Es gibt ein n, so dass jede (hypothetische) Konstruktion von $\varphi(n)$ in eine Konstruktion von \bot überführt werden kann.
- (c) Es gibt ein Paar (n,q), so dass n=0 folgt, dass q eine Konstruktion für φ ist, und sonst q eine Konstruktion für ψ ist.
- (d) Ein Konstruktion für $(\neg \varphi \lor \neg \psi)$ ist ein Paar (q,r), so dass q,r jede Konstruktion für φ bzw. ψ in eine Konstruktion für \bot umrechnet und r. Eine Konstruktion für diesen Satz ist eine Programm, dass aus dem Paar eine Konstruktion für \bot berechnet.

Zweiter Teil:

- Der Satz erfüllt die BHK-Interpretation. Angenommen wir haben ein n, wie in (b). Dann können wir für jedes Programm f, wie in (a), aus f(n) einen Konstruktion für \bot bestimmen.
- Dieser Satz erfüllt die BHK-Interpretation nicht, weil die Prämisse keinen konstruktiven Inhalt hat und es deswegen keine Möglichkeit gibt ein n, so dass $\neg \varphi(n)$ gilt, zu berechnen. (Das ist kein Beweis!)
- Der Satz erfüllt die BHK-Interpretation. OBdA können wir annehmen, dass wir eine Konstruktion für φ haben. Damit können wir aus jeder Konstruktion für $\neg \varphi$ eine Konstruktion für \bot berechnen. Daraus folgt, dass wir auch aus einer Konstruktion (q,r), wie in (d), eine Konstruktion für \bot berechnen können.
- Dieser Satz erfüllt die BHK-Interpretation auch nicht, weil die Prämisse wieder keinen konstruktiven Inhalt hat. Damit kann nicht entschieden werden, ob φ oder ψ gelten muss.

Aufgabe G7 (Zusatzaufgabe)

Die Gödel-Genzen Negativübersetzung ordnet jeder FO-Formel φ eine FO-Formel φ^N zu. Die Formel φ^N ist induktiv durch folgende Regeln gegeben.

$$\varphi^N:=\neg\neg\varphi \qquad \text{falls } \varphi \text{ ein atomare Formel ist}$$

$$(\varphi\wedge\psi)^N:=\varphi^N\wedge\psi^N$$

$$(\varphi\vee\psi)^N:=\neg(\neg\varphi^N\wedge\neg\psi^N)$$

$$(\varphi\to\psi)^N:=\varphi^N\to\psi^N$$

$$(\neg\varphi)^N:=\neg\varphi^N$$

$$(\forall x\varphi)^N:=\forall x\varphi^N$$

$$(\exists x\varphi)^N:=\neg(\forall x\neg\varphi^N)$$

- (a) Zeigen Sie, dass für alle FO-Formel φ gilt $\models \varphi \leftrightarrow \varphi^N$.
- (b) Zeigen Sie, dass φ^N nur aus doppelt negierten Atomen, \wedge , \rightarrow , \forall und \bot besteht. $(\neg \varphi \text{ wir als Abkürzung für } \varphi \rightarrow \bot \text{ gelesen.})$
- (c) Bemerken Sie, dass

$$\vdash_H \varphi \iff \vdash_{H_i} \varphi^N$$

Benutzen Sie dafür den Satz auf Folie 173.

Lösungsskizze:

- (a) Strukturelle Induktion. Wir zeigen nur die ersten zwei Regeln:
 - φ^N für φ atomar: Es gilt $\varphi^N = \neg \neg \varphi \leftrightarrow \varphi$.
 - $(\varphi \wedge \psi)^N$: $(\varphi \wedge \psi)^N = \varphi^N \wedge \psi^N$ mit der Induktionshypothese gilt $\varphi^N \leftrightarrow \varphi$ und $\psi^N \leftrightarrow \psi$, und damit dass $\varphi^N \wedge \psi^N \leftrightarrow \varphi \psi$.
- (b) Einfache strukturelle Induktion.
- (c) \Leftarrow : Aus $\vdash_{H_i} \varphi^N$ folgt $\vdash_H \varphi^N$ und aus (a) (mit dem Vollständigkeitssatz) dann $\vdash_H \varphi$. \Rightarrow : Aus $\vdash_H \varphi$ folgt (mit dem Vollständigkeitssatz) $\vdash_H \varphi^N$. Da φ^N nur noch aus doppelt negierten Atomen, \land , \rightarrow , \forall und \bot besteht, ist der Satz auf Folie 173 anwendbar und es folgt $\vdash_{H_i} \varphi^N$.

Aufgabe G8 (Zusatzaufgabe)

(a) Wir betrachten Wortmodelle $\mathcal{W}=(\{1,\ldots,n\},<,P_a,P_b)$ (siehe Skript – Seite 3) mit zwei Buchstaben. Bestimmen Sie durch Analyse von Ehrenfeucht-Fraïssé Spielen den minimalen Quantorenrang einer Formel, mit deren Hilfe die beiden folgenden Wörter unterschieden werden können:

$$ababa$$
 $abbaba$

(b) Wir betrachten Strukturen $\mathcal{A}=(A,P,Q)$ mit zwei einstelligen Relationen P und Q. Zeigen Sie, dass es keine FO-Formel φ gibt, so dass gilt

$$\mathcal{A} \models \varphi \iff P \text{ und } Q \text{ haben gleich viele Elemente.}$$

(c) Zeigen Sie, dass es für Wortstrukturen $\mathcal{W}=(\{1,\ldots,n\},<,P_a,P_b)$ keine FO-Formel φ gibt, so dass gilt

$$\mathcal{W} \models \varphi \quad \Leftrightarrow \quad \mathcal{W} \text{ enthält gleich viele } a \text{ wie } b.$$

(Beachten Sie, dass die Aussage aus (b) hieraus folgt.)

Lösungsskizze:

- (a) Der minimale Quantorenrang ist 2. Eine Gewinnstrategie für Spieler I sieht wie folgt aus. Im ersten Zug wählt er das mittlere b des zweiten Wortes. Spieler II muß mit einem b aus dem ersten Wort antworten. Wählt er das erste b dann markiert Spieler I im zweiten Zug das erste b des zweiten Worts. Spieler II müsste mit einer Position antworten, die vor dem im ersten Zug gewählten b liegt und ebenfalls mit einem b beschriftet ist. Da eine solche Position nicht existiert, gewinnt Spieler I. Wenn Spieler II stattdessen im ersten Zug mit dem zweiten b antwortet, dann kann Spieler I analog das letzte b des zweiten Worts markieren. Spieler II müsste im ersten Wort ein b finden, das hinter dem zweiten b liegt. Er verliert also auch in diesem Fall.
- (b) Angenommen, es gäbe so eine Formel φ . Sei m ihr Quantorenrang. Wir betrachten die Strukturen $\mathcal{A}=(A,P,Q)$ und $\mathcal{A}'=(A',P',Q')$ mit

$$A := \{1, \dots, 2m\},$$
 $P := \{1, \dots, m\},$ $Q := \{m+1, \dots, 2m\},$ $A' := \{1, \dots, 2m+1\},$ $P' := \{1, \dots, m\},$ $Q' := \{m+1, \dots, 2m+1\}.$

Nach Voraussetzung gilt

$$\mathcal{A} \models \varphi$$
 und $\mathcal{A}' \not\models \varphi$.

Andererseits gewinnt offensichtlich Spieler II das Ehrenfeucht-Fraïssé Spiel $\mathcal{G}^m(\mathcal{A};\mathcal{A}')$ mit m Runden (da Spieler I höchstens m Elemente aus Q bzw. Q' auswählen kann). Also sind $\mathcal{A} \equiv_m \mathcal{A}'$. Widerspruch.

(c) Wir modifizieren den Beweis aus (b). Angenommen, es gäbe so eine Formel φ mit Quantorenrang m. Wir betrachten die Wortstrukturen $\mathcal W$ und $\mathcal W'$ zu den Wörtern $a^{2^m}b^{2^m}$ und $a^{2^m}b^{2^m+1}$. Nach Voraussetzung gilt

$$\mathcal{W} \models \varphi \quad \text{und} \quad \mathcal{W}' \not\models \varphi$$
.

Andererseits gilt wieder $W \equiv_m W'$, da Spieler II das Ehrenfeucht-Fraïssé Spiel $\mathcal{G}^m(W; W')$ mit m Runden gewinnt (siehe Lemma 8.14 im Skript).