Cas particulier de la loi gaussienne

G. Perrin

guillaume.perrin@univ-eiffel.fr

Année 2022-2023

Plan de la séance

- Introduction
- Présentation de la loi gaussienne multidimensionnelle
- Propriétés remarquables
- 4 Ouvertures

Partie 1: introduction

- Lors des séances précédentes, nous avons vu qu'on pouvait caractériser complètement un vecteur aléatoire X à partir :
 - de ses CDFs marginales, F_{X_i} ,
 - d'une fonction copule *C* caractérisant les dépendances entre les différentes composantes de *X*.
- Pour la modélisation des fonctions F_{X_i} et C, on distingue :
 - les approches paramétriques : F_{X_i} et C sont ainsi supposées appartenir à des ensembles paramétrés de fonctions. Les caractériser revient à identifier au mieux les paramètres de ces lois à partir de l'information disponible.
 - les approches non-paramétriques : F_{X_i} et C sont directement construits à partir de l'information disponible sur X (théorie de l'information, construction à noyaux,...)

Aujourd'hui, on va s'attarder sur une représentation particulière bien connue : la distribution gaussienne !

Partie 1: introduction

Gauss et la loi gaussienne

- L'origine de la loi gaussienne date de Bernoulli (1654-1705), en travaillant sur le pari basé sur un jeu de pile ou face, le menant à la loi des grands nombres.
- Laplace (1747-1829) poursuit ces travaux en travaillant sur l'estimation d'erreurs (en astronomie notamment).
- Gauss (1777-1855) étudie également cette loi dans le cadre d'estimation moindres carrés et de minimisation d'erreur. La loi gaussienne apparaît alors comme densité permettant de garantir que l'estimateur du maximum de vraisemblance à partir d'une série de mesures indépendantes est la moyenne empirique.
- C'est finalement Laplace qui publie en 1812 le théorème centrale limite.

Définition

Un vecteur aléatoire \boldsymbol{X} est dit gaussien ssi sa PDF $f_{\boldsymbol{X}}$ s'écrit sous la forme :

$$f_{\mathbf{X}}(\mathbf{x}) = \frac{1}{\sqrt{(2\pi)^{d} \det[C_{\mathbf{X}}]}} \exp\left\{-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu}_{\mathbf{X}})^{T} [C_{\mathbf{X}}]^{-1} (\mathbf{x} - \boldsymbol{\mu}_{\mathbf{X}})\right\},$$

$$\mathbb{E}\left[\mathbf{X}\right] = \boldsymbol{\mu}_{\mathbf{X}}, \quad \mathbb{E}\left[(\mathbf{X} - \mathbb{E}\left[\mathbf{X}\right]) \otimes (\mathbf{X} - \mathbb{E}\left[\mathbf{X}\right])\right] = [C_{\mathbf{X}}].$$

- Supposer que X est gaussien revient à dire que sa distribution est complètement caractérisée par sa moyenne et sa matrice de covariance (que l'on supposera toujours inversible).
- Pour caractériser un vecteur gaussien, il suffit d'identifier sa moyenne et sa matrice de covariance.

Visualisation graphique 2D

Copule gaussien (rappel)

Si **X** est un vecteur aléatoire gaussien de moyenne μ et de matrice de covariance [R], alors son copule est défini par :

$$C(u_1,\ldots,u_d)=\Phi\left(\phi^{-1}(u_1),\ldots,\phi^{-1}(u_d)\right),$$

$$\phi(x) = \int_{-\infty}^{x_i} \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{y^2}{2}\right) dy,$$

$$\Phi(\mathbf{x}) = \frac{1}{(2\pi)^{d/2} \sqrt{\det([R])}} \int_{-\infty}^{x_1} \dots \int_{-\infty}^{x_d} \exp\left(-\frac{1}{2} (\mathbf{x} - \boldsymbol{\mu})^T [R]^{-1} (\mathbf{x} - \boldsymbol{\mu})\right).$$

- le copule gaussien est non-explicite.
- la loi gaussienne est un cas particulier de loi paramétrique où l'expression du copule est plus compliquée que la loi elle-même.

Définition

La fonction caractéristique de X est la fonction $t \mapsto \Phi_X(t)$ telle que :

$$\Phi_{m{X}}(m{t}) = \mathbb{E}\left[\exp\left(i\left\langlem{t},m{X}
ight
angle}
ight)
ight] = \int_{\mathbb{R}^d} \mathrm{e}^{i\left\langlem{t},m{X}
ight
angle} P_{m{X}}(dm{x}).$$

Si X admet une densité f_X , et si Φ_X est intégrable sur \mathbb{R}^d , alors :

$$f_{\mathbf{X}}(\mathbf{x}) = \frac{1}{(2\pi)^d} \int_{\mathbb{R}^d} e^{-i\langle \mathbf{t}, \mathbf{X} \rangle} \Phi_{\mathbf{X}}(\mathbf{t}) d\mathbf{t}.$$

Propriété

Si **X** est d'ordre p, alors pour tout α tel que $|\alpha| = \alpha_1 + \ldots + \alpha_d \leq p$,

$$\left\{\frac{\partial^{\alpha_1}}{\partial t_1^{\alpha_1}} \times \cdots \times \frac{\partial^{\alpha_d}}{\partial t_d^{\alpha_d}} \Phi_{\boldsymbol{X}}(\boldsymbol{t})\right\}_{\boldsymbol{t}=\boldsymbol{0}} = m_{\boldsymbol{\alpha}} i^{|\boldsymbol{\alpha}|}.$$

Exercice:

- Montrer le résultat de la propriété précédente.
- ② A partir de la propriété précédente, indiquer à quelle distribution est associée la fonction caractéristique $t \mapsto \exp(iat)$.
- **3** A partir de la définition précédente, indiquer à quelle distribution est associée la fonction caractéristique $t \mapsto \exp(iat + (ibt)^2/2)$.

Stabilité par transformation affine

Si \boldsymbol{X} est un vecteur gaussien de dimension d, de moyenne $\mu_{\boldsymbol{X}}$ et de matrice de covariance $[C_{\boldsymbol{X}}]$, alors pour toute matrice [M] de dimension (n,d) et tout vecteur \boldsymbol{z} de dimension n, alors $\boldsymbol{Y} = [M]\boldsymbol{X} + \boldsymbol{z}$ est également un vecteur gaussien, et on a :

$$\mathbb{E}[\mathbf{Y}] = [M]\mu_{\mathbf{X}} + \mathbf{z}, \quad [Cov(\mathbf{Y})] = [M][C_{\mathbf{X}}][M]^{T}.$$

Exercice : en remarquant l'invariance par rotation d'un vecteur gaussien centré de composantes indépendantes, expliquer comment générer des réalisations indépendantes dont la distribution est uniformément répartie sur une sphère de rayon r.

Preuve.

Lemme

Si X_1, \ldots, X_d sont d variables aléatoires indépendantes de fonctions caractéristiques respectives Φ_i , alors la fonction caractéristique Φ_Z de la variable aléatoire $Z = X_1 + \ldots + X_d$ est égale à :

$$\Phi_Z = \prod_{i=1}^d \Phi_i.$$

Exercice:

- Montrer le lemme précédent.
- Déduire du lemme précédent que la somme de variables gaussiennes indépendantes est une variable gaussienne.
- En déduire ensuite que la somme de variables gaussiennes quelconques reste une variable aléatoire gaussienne.
- Conclure sur la propriété précédente.

Génération de réalisations indépendantes

Si:

- X est un vecteur gaussien de moyenne μ_X et de matrice de covariance $[C_X]$,
- ξ est un vecteur gaussien centré, dont toutes les composantes sont de variance 1 et sont indépendantes,
- [R] est une matrice symétrique telle que $[R][R] = [C_X]$,

alors, comme conséquence de la propriété précédente, on peut montrer que \pmb{X} et $[R]\pmb{\xi}+\mu_{\pmb{X}}$ ont la même distribution.

⇒ c'est le moyen le plus utilisé pour générer des réalisations indépendantes d'un vecteur gaussien quelconque à partir d'un générateur de variable gaussienne centrée réduite.

Exercice : sur cette figure ont été tracées 10^4 réalisations indépendantes de deux vecteurs gaussiens centrés \boldsymbol{X} bidimensionnels. L'un tel que $\mathbb{E}\left[X_1X_2\right]=0$ et l'autre tel que $\mathbb{E}\left[X_1X_2\right]=0.8$. Associer les couleurs aux vecteurs aléatoires correspondants.

Stabilité par conditionnement

Soient X et Y deux vecteurs gaussiens de tailles n et p, de moyennes μ_X et μ_Y , de covariances $[C_X]$ et $[C_Y]$ respectivement, et tels que

$$\mathbb{E}\left[\left(\mathbf{X}-\boldsymbol{\mu}_{\mathbf{X}}\right)\otimes\left(\mathbf{Y}-\boldsymbol{\mu}_{\mathbf{Y}}\right)\right]=\left[\mathcal{C}_{\mathbf{XY}}\right].$$

Alors la loi de $m{Y}$ conditionnellement à $m{X}$ est également gaussienne :

$$\begin{aligned} & (\boldsymbol{Y} \mid \boldsymbol{X} = \boldsymbol{x}) \; \sim \; \mathcal{N}(\boldsymbol{\mu}^{\mathsf{Cond}}(\boldsymbol{x}), [\boldsymbol{C}^{\mathsf{Cond}}(\boldsymbol{x})]), \\ & \begin{cases} \boldsymbol{\mu}^{\mathsf{Cond}}(\boldsymbol{x}) = \mathbb{E}\left[\boldsymbol{Y} \mid \boldsymbol{X} = \boldsymbol{x}\right] = \boldsymbol{\mu}_{\boldsymbol{Y}} + [\boldsymbol{C}_{\boldsymbol{X}\boldsymbol{Y}}][\boldsymbol{C}_{\boldsymbol{X}}]^{-1} \left(\boldsymbol{x} - \boldsymbol{\mu}_{\boldsymbol{X}}\right), \\ [\boldsymbol{C}^{\mathsf{Cond}}(\boldsymbol{x})] = [\boldsymbol{C}_{\boldsymbol{Y}}] - [\boldsymbol{C}_{\boldsymbol{X}\boldsymbol{Y}}][\boldsymbol{C}_{\boldsymbol{X}}]^{-1}[\boldsymbol{C}_{\boldsymbol{X}\boldsymbol{Y}}]^{\mathsf{T}}. \end{aligned}$$

Exercices:

Montrer la propriété précédente. On rappelle que :

$$\begin{bmatrix} A & B \\ C & D \end{bmatrix}^{-1} = \begin{bmatrix} A^{-1} + A^{-1}B(D - CA^{-1}B)^{-1}CA^{-1} & -A^{-1}B(D - CA^{-1}B)^{-1} \\ -(D - CA^{-1}B)^{-1}CA^{-1} & (D - CA^{-1}B)^{-1} \end{bmatrix} \,.$$

② On pose $X \sim \mathcal{N}(0,1)$, $Y \sim \mathcal{N}(0,1)$, $\mathbb{E}[XY] = \rho \leq 1$. Quantifier l'influence de l'observation de X = x sur la distribution de Y.

Illustration du conditionnement gaussien : $X \sim \mathcal{N}(0,1)$, $Y \sim \mathcal{N}(0,1)$, $-1 \leq \mathbb{E}\left[XY\right] = \rho \leq 1 \Rightarrow (Y \mid X = x) \sim \mathcal{N}(\rho x, 1 - \rho^2)$.

FIGURE: Distributions initiales

Illustration du conditionnement gaussien : $X \sim \mathcal{N}(0,1)$, $Y \sim \mathcal{N}(0,1)$, $-1 \leq \mathbb{E}\left[XY\right] = \rho \leq 1 \Rightarrow (Y \mid X = x) \sim \mathcal{N}(\rho x, 1 - \rho^2)$.

FIGURE: On conditionne Y par le fait que X = -1

Illustration du conditionnement gaussien : $X \sim \mathcal{N}(0,1)$, $Y \sim \mathcal{N}(0,1)$, $-1 \leq \mathbb{E}\left[XY\right] = \rho \leq 1 \Rightarrow (Y \mid X = x) \sim \mathcal{N}(\rho x, 1 - \rho^2)$.

FIGURE: On conditionne Y par le fait que X = 0

Illustration du conditionnement gaussien : $X \sim \mathcal{N}(0,1)$, $Y \sim \mathcal{N}(0,1)$, $-1 \leq \mathbb{E}\left[XY\right] = \rho \leq 1 \Rightarrow (Y \mid X = x) \sim \mathcal{N}(\rho x, 1 - \rho^2)$.

FIGURE: On conditionne Y par le fait que X = 2

La loi gaussienne comme limite du théorème centrale limite

Si X_1,\ldots,X_N sont N v.a. indépendantes de même loi, et de moyenne μ et d'écart type σ , alors :

$$\frac{1}{N}\sum_{n=1}^{N}X_{n} \rightsquigarrow \mathcal{N}(\mu,\sigma^{2}/N).$$

Les polynômes de Hermite

Soit $t \mapsto H_n(t)$ les polynômes tels que :

$$\widetilde{H}_n(t) = (-1)^n \exp(x^2/2) \frac{d^n \exp(-x^2/2)}{dx^n}, \ H_n = \widetilde{H}_n / \left\| \widetilde{H}_n \right\|.$$

Les polynômes $\{H_n, n \ge 0\}$ sont appelés polynômes de Hermite.

Propriété

Les polynômes de Hermite sont orthogonaux vis-à-vis de la mesure gaussienne :

$$\langle H_n(\xi), H_m(\xi) \rangle := \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} H_n(t) H_m(t) \exp\left(-\frac{t^2}{2}\right) dt = \delta_{n,m}.$$

Exercice : vérifier le caractère orthogonal des polynômes de Hermite pour n=0,1,2.

Base des variables aléatoires du second ordre

• Soit X une v.a. quelconque d'ordre 2 ($\leftrightarrow \mathbb{E}[X^2] < +\infty$), et ξ une v.a. gaussienne centrée réduite. Alors X peut s'écrire sous la forme :

$$X = \sum_{n=1}^{+\infty} \langle X, H_n(\xi) \rangle H_n(\xi).$$

- Autrement dit, la famille $\{H_n, n \ge 1\}$ forme une base orthonormée des vecteurs aléatoires d'ordre 2.
- Ce résultat se généralise à l'ordre d pour la dimension du vecteur aléatoire X considéré.

Plan de la séance

- 1 Introduction
- Présentation de la loi gaussienne multidimensionnelle
- 3 Propriétés remarquables
- 4 Ouvertures

Partie 4 : ouvertures

Vecteur gaussien et processus gaussien

- Un processus aléatoire est une fonction $\{X(t), t \in \Omega\}$, telle qu'en tout $t \in \Omega$, X(t) est une variable aléatoire.
- Caractériser la distribution d'un processus aléatoire revient à identifier l'infinité des lois jointes de $(X(t_1), \ldots, X(t_n))$, $n \ge 1$.
- La notion de vecteur gaussien se généralise à la notion de processus aléatoire gaussien en faisant tendre n vers $+\infty$.

Exercice : généraliser pour les processus gaussiens les propriétés de paramétrage minimal, de stabilité par transformation affine et par conditionnement.

Partie 4: ouvertures

La distribution gaussienne au coeur des différentes séances de cours

- estimation statistique par approche spectrale,
- propagation d'incertitudes pour l'estimation d'intervalles de confiance,
- métamodélisation pour quantifier la précision des prédictions,
- approches non-paramétriques comme distribution élémentaire des représentations à noyaux,
- calibration pour la modélisation des erreurs de mesure et de modèle,
- fiabilité pour l'approximation de probabilités de dépassement de seuils.

Plan de la séance

- Introduction
- 2 Présentation de la loi gaussienne multidimensionnelle
- 3 Propriétés remarquables
- 4 Ouvertures