Question number	Scheme	Marks
4 (a)	Gradient = $\frac{11+10}{3+4} = 3$	
	y+10=3(x+4) or $y-11=3(x-3)$ oe	M1A1 (2)
(b)	e.g. $\left(\frac{4 \times -4 + 3 \times 3}{3 + 4}, \frac{4 \times -10 + 3 \times 11}{3 + 4}\right) = (-1, -1)$	M1 A1 (2)
ALT (b)	Using Vectors $\begin{pmatrix} -4 \\ -10 \end{pmatrix} + \frac{3}{7} \begin{pmatrix} 7 \\ 21 \end{pmatrix} = \begin{pmatrix} -1 \\ -1 \end{pmatrix} \text{or} \begin{pmatrix} 3 \\ 11 \end{pmatrix} - \frac{4}{7} \begin{pmatrix} 7 \\ 21 \end{pmatrix} = \begin{pmatrix} -1 \\ -1 \end{pmatrix}$	{M1} {A1}
(c)	$-\frac{1}{3} = \frac{n+1}{m+1} \Longrightarrow -\frac{1}{3}(m+1) = n+1$	M1
	$\left(\sqrt{10}\right)^2 = \left(m+1\right)^2 + \left(n+1\right)^2$	M1
	$10 = (m+1)^2 + \frac{1}{9}(m+1)^2$	M1
	$9 = (m+1)^2$ $m = -4 \qquad n = 0$	M1 A1 A1 (6)
ALT (c)	Using Vectors $\overrightarrow{AB} = \begin{pmatrix} 7 \\ 21 \end{pmatrix}$ so perpendicular to $\overrightarrow{AB} = \begin{pmatrix} 21 \\ -7 \end{pmatrix}$	(M1)
	$\left \overrightarrow{AB} \right = 7\sqrt{10} \Rightarrow, \left \overrightarrow{AP} \right = 3\sqrt{10}$	{M1,M1}
	$\overrightarrow{PQ} = \frac{\sqrt{10}}{7\sqrt{10}} \times \begin{pmatrix} 21\\ -7 \end{pmatrix} = \begin{pmatrix} 3\\ -1 \end{pmatrix}$	{M1}
	So $Q = (-1 - 3, -11)$	{A1}
	Q = (-4,0)	{A1}
(d)(i)	$AB = \sqrt{(3+4)^2 + (11+10)^2} = 7\sqrt{10}$	M1
	$RQ = \sqrt{(-11+4)^2 + (-21)^2} = 7\sqrt{10}$	A1
(d)(ii)	Gradient of $RQ = \frac{-21 - 0}{-11 + 4} = 3$	M1
	-11+4 So Gradient of AB (=3) = Gradient of RQ	A1 (4)

ALT (d)	Using Vectors	
	$\overrightarrow{RQ} = \begin{pmatrix} -4 - (-11) \\ 0 - (-21) \end{pmatrix} = \begin{pmatrix} 7 \\ 21 \end{pmatrix}$	{M1} {A1}
	$\overrightarrow{AB} = \begin{pmatrix} 7 \\ 21 \end{pmatrix} = \overrightarrow{RQ}$	{M1}
	Because the vectors are the same they must be parallel and the	{A1}
	same length	3.54 . 4
(e)	$Area = 7\sqrt{10} \times \sqrt{10} = 70$	M1 A1
AIT (a)	TT ' T7 /	(2)
ALT (e)	Using Vectors	
	Using Vectors $ \frac{1}{2} \begin{vmatrix} 3 & -4 & -11 & -4 & 3 \\ 11 & 10 & -21 & 0 & 11 \end{vmatrix} $	{M1}
	= 70	{A1}
Total is 16 marks		

Part	Mark	Guidance
(a)	M1	For a fully correct method of finding an equation of a straight line.
		$\frac{y - y_1}{y_2 - y_1} = \frac{x - x_1}{x_2 - x_1} \Rightarrow \frac{y - (-10)}{11 - (-10)} = \frac{x - (-4)}{3 - (-4)}$
		$y_2 - y_1 - x_2 - x_1 - 11 - (-10) - 3 - (-4)$
		Or finds gradient $\frac{11+10}{3+4} = 3$ and uses $y+10=3(x+4)$ or $y-11=3(x-3)$
		If $y = mx + c$ is used, they must find a complete equation for this mark.
		Allow one error only for the award of this mark.
	A1	For a correct line in any form.
		y+10=3(x+4) or $y-11=3(x-3)$
		or $y = 3x + 2$
		or even $\frac{y+10}{21} = \frac{x+4}{7}$ but do not allow incomplete processing.
(b)	M1	For one correct from $x = -1$ or $y = -1$
	A1	For the correct coordinates of point $P(-1,-1)$
		Accept $x = -1$ $y = -1$
(c)	M1	Uses the perpendicular gradient to set up an equation in m and n .
		$ -\frac{1}{3!} = \frac{n - (-1)!}{m - (-1)!} \Rightarrow -\frac{1}{3!} (m+1) = n+1 \text{ or } n = -\frac{1}{3}m - \frac{4}{3} $
		3' m-(-1)' 3' 3
		Ft their gradient in part (a) and their P from part (b) for this mark.
	M1	Uses Pythagoras theorem to set up an equation in m and n .
		$\left(\sqrt{10}\right)^2 = \left(m - '(-1)'\right)^2 + \left(n - '(-1)'\right)^2$
		Ft their coordinates of point P form part (b) for this mark.
	M1	Attempts to solve their two equations in <i>n</i> and <i>m</i> simultaneously and forms a
		quadratic equation in one variable only.
		$10 = (m+1)^2 + \frac{1}{9}(m+1)^2 \Rightarrow 9 = (m+1)^2 \text{ or } 0 = m^2 + 2m - 8$
		or $10 = 9(n+1)^2 + (n+1)^2 \Rightarrow 0 = 10n^2 + 20n$
	M1	For solving their either: $9 = (m+1)^2 \Rightarrow m = \dots$ or $0 = 10n^2 + 20n \Rightarrow n = \dots$
	A 1	which must be a quadratic equation.
	A1	For finding either $m = -4$ or $n = 0$ Condone the sight of $m = 2$ for this mark.
	A1	For finding both $m = -4$ and $n = 0 \Rightarrow (-4, 0)$
	ALT –	The final answer must be given as coordinates. using vectors – see main scheme.
(d)(i)		
(4)(1)	M1	For finding either the length $AB = \sqrt{(3+4)^2 + (11+10)^2} = 7\sqrt{10}$
	1,22	Or $RQ = \sqrt{(-11+4)^2 + (-21)^2} = 7\sqrt{10}$
	4 4	For finding both the length $AB = \sqrt{(3+4)^2 + (11+10)^2} = 7\sqrt{10}$
	A1	And $RQ = \sqrt{(-11+4)^2 + (-21)^2} = 7\sqrt{10}$ and states they are equal
(4)(;;)	M1	The gradient of $RQ = \frac{-21 - '0'}{-11 - '(-4)'} = '3'$
(d)(ii)		
		Ft their coordinates from part (c)

	A1	States that the gradient of RQ = gradient of AB [from (a)]			
	ALT – Uses vectors, see main scheme. Ft their coordinates of $Q - (m, n)$				
(e)	M1	For a correct expression for the area using their length of AB and the given			
		length of $PQ\left(\sqrt{10}\right)$			
		$Area = 7\sqrt{10} \times \sqrt{10} = \dots$			
	A1	For the area = 70 [square units]			
	ALT – Uses the discriminant				
	M1	For a correct expression of the area in sequential order using their			
		coordinates for Q			
		$A_{\text{max}} = 1 \begin{vmatrix} 3 & -4 & -11 & '-4' & 3 \end{vmatrix}$			
		Area = $\frac{1}{2}\begin{vmatrix} 3 & -4 & -11 & '-4' & 3 \\ 11 & 10 & -21 & '0' & 11 \end{vmatrix}$			
	A1	Area = 70 [square units]			

Useful sketch

