Token: 314 996

Title le razioni DB=0/DLi=Ø s: Conservens

 $\wedge \wedge$

PP

Mps 938.3

mn=939.6 MeV.

m T = 140 rev mT = 135 MeN

PtP -> PPP p+n -> pro

Ict- love nou distryue tra MIP

Heisenberg: ipotes: esiste une avone simo delle int. Routi.

Tpotes: isospin , segue le sterre alsebre dello spin. num. quentico nuomo. gradu liberte nuovo.

IN> = | I= 51 I3=- 5> $|\downarrow\rangle$ 1 1>

ent. Brti DIEO

 $\int_{0}^{\infty} \int_{0}^{\infty} \left(\frac{1-2}{2} + \frac{1}{2} +$ 1 to - to 1 to - to = 12, -1> pn fe (---)
snyolch dentone pu legato nucleo del dentenio => pu è simplet d'isospin. \I=0, I3=0> dentove. (11/2 > = 1/1/> Tf. T° I=1 <011100 \T-) = 12(-1) P. u. dentone, Rioni PtP -> d+ a+ Q=+1+1 +2 1 B = 1 1 Z O IS +2 +2 0 +1 (1,1> ± 11/1> 0 1 MRi = (f) HIII) = < 1/11/ HI/1/>

N+N - 3 d+TT-Eroslia? B \mathcal{L}_{3} 1°+12 -> (7+) M° ->> XX evenli: a) $P+P \rightarrow d+\overline{v}^{\dagger}$ # eventi? dur = ro No.d = r. pp.NB = r-np vp NB = J NP Jp. NB The No day = 0. To D P(i-of) = 80 |Mhil2 P(E) J= JP 20 (M4:1 2 P(E) vo: velocité de projettil. reazone a 2 copi => P2+Pe so vel. C.d.m 1 P1=1721 = 1P1

$$C(E) = \frac{V}{(2a)^3} 4a p^2 dP. \quad S(Ef-E;)$$

$$\frac{\sigma_a}{\sigma_b} = \frac{1Ma1^2}{1Mb)^2} \frac{P_a}{P_b} = \frac{1}{1Ma1^2}$$

$$= \frac{1}{1} \frac$$

$$\pi + \rho \longrightarrow \pi + \rho$$
.

 $I_{3} - l + \frac{1}{2}$
 $I = \frac{1}{2} l^{2}$
 $I = \frac{1}{2} l^{3} l^{2} l^{2}$
 $I = \frac{1}{2} l^{2} l^{2} l^{2} l^{2}$
 $I = \frac{1}{2} l^{2} l^{2} l^{2} l^{2} l^{2}$
 $I = \frac{1}{2} l^{2} l^{2}$

Table 3.3. Clebsch-Gordan coefficients in pion-nucleon scattering

		<i>I</i> =	<i>I</i> :	$I=\frac{1}{2}$	
Pion	Nucleon	$I_3 = \frac{3}{2} \qquad \frac{1}{2}$	$-\frac{1}{2}$ $-\frac{3}{2}$	1/2	$-\frac{1}{2}$
π^+	p	1 1 1 1 2		7 Jan	
π^+	n	$\sqrt{\frac{1}{3}}$		$\sqrt{\frac{2}{3}}$	
π^0	p	$\sqrt{\frac{2}{3}}$	10 N	$-\sqrt{\frac{1}{3}}$	_
π^0	n		$\sqrt{\frac{2}{3}}$		$\sqrt{\frac{1}{3}}$
π^-	p		$\sqrt{\frac{1}{3}}$		$-\sqrt{\frac{2}{3}}$
π^-	n		1		

Figure 5.35: Total cross section as a function of pion kinetic energy for the scattering of positive and negative pions from protons. (1 mb = 1 millibarn = 10^{-27} cm².)

Table 3.4. Conservation rules

	Interaction			
Conserved quantity	strong	electromagnetic	weak	
energy-momentum charge baryon number	yes	yes	yes	
lepton number <i>CPT</i>	yes	yes	yes	
P (parity)	yes	yes	no	
C (charge conjugation parity)	yes	yes	no	
CP (or T)	yes	yes	10 ⁻³ violation	
I (isospin)	yes	no	no	