cmpe442-assigment-2-classification

April 29, 2024

importing libraries

```
[1]: import numpy as np
  import pandas as pd
  import matplotlib.pyplot as plt
  import seaborn as sns
  from sklearn.preprocessing import StandardScaler
  from sklearn.model_selection import train_test_split
  from sklearn.metrics import confusion_matrix

import os
  for dirname, _, filenames in os.walk('/kaggle/input'):
     for filename in filenames:
         print(os.path.join(dirname, filename))
```

importing my data set which i choose heart diseases data set

```
[2]: data=pd.read_csv('heartState_document.csv')
data.head()
```

```
[2]:
                   chest pain type resting bp s
                                                    cholesterol fasting blood sugar
        age
     0
         40
               1
                                  2
                                               140
                                                             289
                                                                                      0
                                  3
                                                                                      0
         49
                                                             180
     1
               0
                                               160
     2
         37
               1
                                  2
                                               130
                                                             283
                                                                                      0
     3
         48
                0
                                  4
                                               138
                                                                                      0
                                                             214
                                  3
                                                                                      0
         54
                1
                                               150
                                                             195
```

	resting ecg	max heart rate	exercise angina	oldpeak	ST slope	target
0	0	172	0	0.0	1	0
1	0	156	0	1.0	2	1
2	1	98	0	0.0	1	0
3	0	108	1	1.5	2	1
4	0	122	0	0.0	1	0

[3]: data.info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1190 entries, 0 to 1189
Data columns (total 12 columns):
```

#	Column	Non-Null Count	Dtype
0	age	1190 non-null	int64
1	sex	1190 non-null	int64
2	chest pain type	1190 non-null	int64
3	resting bp s	1190 non-null	int64
4	cholesterol	1190 non-null	int64
5	fasting blood sugar	1190 non-null	int64
6	resting ecg	1190 non-null	int64
7	max heart rate	1190 non-null	int64
8	exercise angina	1190 non-null	int64
9	oldpeak	1190 non-null	float64
10	ST slope	1190 non-null	int64
11	target	1190 non-null	int64
dtype	es: float64(1), int64	(11)	
memo	ry usage: 111.7 KB		

memory usage: 111.7 KB

[4]: data.dropna(inplace=True) data

[4]	:	age	sex	chest pain	type	restin	g bp s	choleste	rol \	
	0	40	1		2		140		289	
	1	49	0		3		160		180	
	2	37	1		2		130		283	
	3	48	0		4		138		214	
	4	54	1		3		150		195	
		•••		•••		•••	•••			
	1185	45	1		1		110		264	
	1186	68	1		4		144		193	
	1187	57	1		4		130		131	
	1188	57	0		2		130		236	
	1189	38	1		3		138		175	
		fast	ing b	lood sugar	resti	ng ecg	max hear	rt rate	exercise	ang
	0			0		0		172		

	fasting blood su	ıgar	resting ecg	max heart rate	exercise angina	a '
0		0	0	172	(0
1		0	0	156	(0
2		0	1	98	(0
3		0	0	108		1
4		0	0	122	(0
•••	•••		•••	•••	•••	
1185		0	0	132	(0
1186		1	0	141	(0
1187		0	0	115		1
1188		0	2	174	(0
1189		0	0	173	(0

oldpeak ST slope target

0	0.0		1	0
1	1.0		2	1
2	0.0		1	0
3	1.5		2	1
4	0.0		1	0
	•••	•••	•••	
 1185	1.2	•••	2	1
		•••		1 1
1185	1.2	•••	2	_
1185 1186	1.2 3.4	•••	2 2	1

[1190 rows x 12 columns]

[5]: sns.pairplot(data) plt.show()


```
[6]: plt.rcParams["figure.figsize"] = 20,10
sns.heatmap(data.corr(),cmap='viridis_r',annot= True)
plt.title("the correlation coefficient between the variables",size = 25);
```



```
[8]: X=data.drop(["target"],axis=1)
X
```

[8]:		age	sex	chest pain	tvpe	resting b	n s	cholesterol	\
[0].	^	_		onobo parm		10001116	-		`
	0	40	1		2		140	289	
	1	49	0		3		160	180	
	2	37	1		2		130	283	
	3	48	0		4		138	214	
	4	54	1		3		150	195	
				•••		•••	•••		
	1185	45	1		1		110	264	
	1186	68	1		4		144	193	
	1187	57	1		4		130	131	
	1188	57	0		2		130	236	
	1189	38	1		3		138	175	

	fasting blood sugar	resting ecg	max heart rate	exercise angina	\
0	0	0	172	0	
1	0	0	156	0	
2	0	1	98	0	
3	0	0	108	1	
4	0	0	122	0	
•••	•••	•••	•••	•••	
1185	0	0	132	0	
1186	1	0	141	0	
1187	0	0	115	1	
1188	0	2	174	0	
1189	0	0	173	0	

```
oldpeak ST slope
                0.0
      0
                1.0
                             2
      1
      2
                0.0
                             1
      3
                1.5
                             2
      4
                0.0
                             1
                1.2
                             2
      1185
      1186
                3.4
                             2
                1.2
                             2
      1187
      1188
                0.0
                             2
      1189
                0.0
      [1190 rows x 11 columns]
 [9]: y=data["target"]
      y=pd.DataFrame(y)
 [9]:
            target
      0
                 0
      1
                  1
      2
                 0
      3
                  1
      4
                 0
      1185
                  1
      1186
                  1
      1187
                  1
      1188
                  1
      1189
                 0
      [1190 rows x 1 columns]
     Standard Scaler for Data
[10]: scaler = StandardScaler(copy=True, with_mean=True, with_std=True)
      X = scaler.fit_transform(X)
      Х
[10]: array([[-1.46672783, 0.55599543, -1.31835093, ..., -0.79521891,
              -0.84979236, -1.02321701],
             [-0.50460037, -1.79857595, -0.24893198, ..., -0.79521891,
               0.07111913, 0.61558278],
              [-1.78743698, 0.55599543, -1.31835093, ..., -0.79521891,
```

-0.84979236, -1.02321701],

```
[ 0.35062404, 0.55599543, 0.82048698, ..., 1.25751537,
              0.25530143, 0.61558278],
            [0.35062404, -1.79857595, -1.31835093, ..., -0.79521891,
             -0.84979236, 0.61558278],
            [-1.68053393, 0.55599543, -0.24893198, ..., -0.79521891,
             -0.84979236, -1.02321701]])
[11]: X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.15,__
       →random_state=42, shuffle =True)
     Applying RandomForestClassifier Model
[12]: from sklearn.ensemble import RandomForestClassifier
     RandomForestClassifierModel.fit(X train, y train)
     C:\Users\subas\AppData\Local\Packages\PythonSoftwareFoundation.Python.3.12_qbz5n
     2kfra8p0\LocalCache\local-packages\Python312\site-packages\sklearn\base.py:1474:
     DataConversionWarning: A column-vector y was passed when a 1d array was
     expected. Please change the shape of y to (n_samples,), for example using
     ravel().
      return fit_method(estimator, *args, **kwargs)
[12]: RandomForestClassifier(n_estimators=300, random_state=33)
     Calculating Details and Printing
[13]: print('RandomForestClassifierModel Train Score is: ', ,
      →RandomForestClassifierModel.score(X_train, y_train))
     print('RandomForestClassifierModel Test Score is : ' , ____
       →RandomForestClassifierModel.score(X_test, y_test))
     print('RandomForestClassifierModel features importances are : ', ,
       →RandomForestClassifierModel.feature_importances_)
     RandomForestClassifierModel Train Score is: 1.0
     RandomForestClassifierModel Test Score is: 0.9608938547486033
     RandomForestClassifierModel features importances are : [0.09782564 0.03856438
     0.14416081 0.08278857 0.10795441 0.02139774
     0.02720902 0.12873186 0.06737376 0.11809657 0.16589724]
     Calculating Prediction
[14]: y_pred = RandomForestClassifierModel.predict(X_test)
     y_pred_prob = RandomForestClassifierModel.predict_proba(X_test)
     print('Predicted Value for RandomForestClassifierModel is : ' , y_pred)
```

Scores of My Calculations

```
[15]: prediction=RandomForestClassifierModel.predict(X_test)
    from sklearn import metrics
    print(metrics.classification_report(y_test, prediction))
    print(metrics.confusion_matrix(y_test, prediction))
```

	precision	recall	f1-score	support
0 1	0.94 0.98	0.97 0.95	0.96 0.96	80 99
accuracy			0.96	179
macro avg	0.96	0.96	0.96	179
weighted avg	0.96	0.96	0.96	179

[[78 2] [5 94]]

Finally The Accuracy of my work

[16]: print("accuracy:",metrics.accuracy_score(y_test,prediction))

accuracy: 0.9608938547486033

AUTHOR: Melisa SUBAŞI - id:22829169256