WESTERN MICHIGAN UNIVERSITY

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

ECE-4820 SENIOR DESIGN II

Claims-Investigation Committee (CIC) Multi-Input Testing Device

FINAL REPORT (OUTLINE/DRAFT)

October 28, 2024

Faculty Advisor:

Dr. Janos Grantner

Team Members:

Dylan-Matthew Garza

Daniel Baker

Rohullah Sah

Sponsor:

ZF

Contact:

Patrick McNally

Patrick.McNally@zf.com

Contents

1	Abs	tract	2
2	Introduction		2
3	Disc	cussion	2
	3.1	Background	2
	3.2	Need Statement	2
	3.3	High-Level System Design	3
	3.4	Specifications	3
	3.5	Deliverables	3
4	Doc	ign and Implementation	4
7	Des	4.0.1 Custom Printed Circuit Board for Device interfacing and Power Manage-	4
		ment	4
	4.1		4
	4.1	Arm Cortex-M4 firmware for device Testing	4
	4.2	Embedded Linux with Yocto Project	
	4.3	Custom API Web Server in Rust	4
	4.4	Web Assembly Application using the Yew framework	4
	4.5	Design Considerations	4
		4.5.1 Public Health	4
		4.5.2 Safety and Welfare	4
		4.5.3 Global Impact	4
		4.5.4 Cultural Impact	4
		4.5.5 Social Impact	4
		4.5.6 Environmental/Sustainability	4
		4.5.7 Economic	4
	4.6	Design Impacts	4
		4.6.1 Global	4
		4.6.2 Economic	4
		4.6.3 Environmental	4
		4.6.4 Societal	4
	4.7	Performance and Testing Analysis	4
5	Con	nclusion	4

1 Abstract

- Summarize project need
 - Ease of testing devices
 - Technicians and engineers benefit
- Summarize project architecture
 - Custom PCB for device interfacing
 - Using ARM Cortex-M4 for testing devices
 - Embedded Linux running on ARM Cortex-A7
 - Rust written Server to communicate to web-application and Cortex-M4 firmware
 - Web application using WebAssembly for simple user interaction that provides a CSV
- Summarize results
 - Measurements by X firmware had x% accuracy
 - Total costs are X

2 Introduction

Describe Purpose and Scope of project

- Project aims to simplify testing proceedures at ZF
- Utilize industry technology such as ARM processors and microcontrollers as well as Yocto Project for embedded Linux
- Use emerging technologies to solve real world problems (Rust programming language and web assembly)
- Goal to have a functioning project.

3 Discussion

3.1 Background

3.2 Need Statement

- Describe current Device testing situation at ZF
- explain why it is suboptimal and current difficulties
- Explain who is affected (the engineers and technicians times')

3.3 High-Level System Design

3.4 Specifications

- list PCB circuit specifics here as well as DUT specifications
- Heterogenous architecture with Cortex-A7 and Cortex-M4 processors
- Embedded Linux built with Yocto Project build system
- Custom Server API written in Rust
- Web Assembly application to interact with Server and microcontroller

3.5 Deliverables

- Custom PCB schematic diagram with layout
- Verification of M4 firmware measuring correct values
- Project Gantt Chart estimated actual

4 Design and Implementation

- 4.0.1 Custom Printed Circuit Board for Device interfacing and Power Management
- 4.1 Arm Cortex-M4 firmware for device Testing
- 4.2 Embedded Linux with Yocto Project
- 4.3 Custom API Web Server in Rust
- 4.4 Web Assembly Application using the Yew framework
- 4.5 Design Considerations
- 4.5.1 Public Health
- 4.5.2 Safety and Welfare
- 4.5.3 Global Impact
- 4.5.4 Cultural Impact
- 4.5.5 Social Impact
- 4.5.6 Environmental/Sustainability
- 4.5.7 Economic
- 4.6 Design Impacts
- 4.6.1 Global
- 4.6.2 Economic
- 4.6.3 Environmental
- 4.6.4 Societal
- 4.7 Performance and Testing Analysis
- 5 Conclusion