<u>Analysis_Assignement1_Report</u>

Question1:

B) We have 2 approaches here the Iterative (naive) one and the Divide and conquer one:

Iterative	Divide and conquer
Θ (n) as we see in the graph and in the code that the function has a linear growth.	Θ (log n)
	will be proved using master's theorem and we can see it also using the graph.
	Recurrence relation
	$ \begin{array}{ll} $

 $\overline{C)}$

Proof (Master's Theorem):

$$a=1; b=2; f(n)=\Theta$$
 (1)
 $n^{**}(log-b(a)) = n^{**}(log-2(1)) = 1$
 $since f(n) = \Theta[n^{**}(log-b(a))] = \Theta[n^{**}(log-2(1))] = \Theta$ (1)
 $then T(N) = \Theta[(n^{**}log-b(a)) *log(n)] = \Theta(log(n))$

Question2

B)

Recurrence relation

$$T(n) = \Theta (1)$$
 If (n=1)
$$T(n) = 2 T(n/2) + n$$
 Otherwise
$$T(n) = 2 T(n/2) + n$$

Proof (Master's Theorem):

$$a=2; b=2; f(n)=n$$

$$n^{**}(log-b(a)) = n^{**}(log-2(2)) = n$$

$$since \ f(n) = \Theta[n^{**}(log-b(a))] = \Theta[n^{**}(log-2(2))] = \Theta \ (n)$$

$$then \ T(N) = \Theta[(n^{**}log-b(a)) \ ^*log(n)] = \Theta(n^{*}log(n))$$

