WO 2004/093668

32

37

PCT/GB2004/001700

1	CLAI	<u>3</u>	
2			
3	1.	A method of assessing eye function, c	omprising:
4		(a) providing an image area in which	images
5		can be presented to the eye, and	in which
6		the luminance of any point in th	e image
7		area over the desired field of v	riew under
8		test can be defined at least as	accurately
9		as the desired accuracy of a ret	inal map
10		to be obtained;	
11		(b) forming a fixation image;	
12		(c) presenting a stimulus to the eye	at a
13		location within the image area s	spaced from
14		the fixation image;	
15		(d) detecting a saccade triggered by	y said
16		stimulus and immediately removin	ng the
17		original fixation image and crea	ating a new
18		fixation image at said location	;
19		(e) recording the timing and magnitude	ide of the
20		saccade and the subsequent fixat	tion;
21		(f) repeating steps (c) to (e); and	
22		(g) comparing the results with a date	tabase of
23		typical eye responses.	
24			
25	2.	The method of claim 1, further include	ding
26		determining the location of the subjection	ect's head
27		relative to the image in at least the	e z-axis,
28		without applying any constraint to t	he head
29		motion.	
30			
31	3.	The method of claim 1 or claim 2, in	which each

of the fixation images is an animated fixation

PCT/GB2004/001700

27

image comprising a substantially stationary 1 central region comprising at least 20% of the 2 fixation image and a mobile perimeter defined 3 such that the perimeter is greater than 3% of 4 the arc of vision of the test subject in 5 diameter. 6 7 The method of any preceding claim, 8 4. including the step of calculating the time 9 T between the commencement of a stimulus 10 point and the resulting saccade of the eye 11 to said stimulus expressed by the 12 function 13 14 $T = \frac{\left(t^2 \cdot 1 + P\right)}{\left(t \cdot 1\right)}$ 15 16 17 where t is the total time for the luminance "l" 18 to integrate to the detection threshold of the 19 retina and P is the Pullfrich delay for an 20 arbitrarily chosen luminance "h" where h=t•1. 21 22 The method of claim 4, in which t is derived 5. 23 from the function: 24 25 Eq2: $\begin{bmatrix} \frac{-1}{(2\cdot1)} \cdot \left(-T \cdot 1 + \sqrt{T^2 \cdot 1^2 - 4 \cdot 1 \cdot P} \right) \\ \frac{-1}{(2\cdot1)} \cdot \left(-T \cdot 1 - \sqrt{T^2 \cdot 1^2 - 4 \cdot 1 \cdot P} \right) \end{bmatrix}$

39

The method of claim 5, in which a software 6. 1 algorithm is used to solve Equation 2 and use 2 the greater of the two results as the total 3 amplified value sensitivity of a given retinal 4 point whereby relative sensitivity of the 5 retina from one point to another is expressed 6 directly as a function of t and can be derived 7 by the software from the interval time T. 8 9 The method of any of claims 4 to 6, in which 10 7. the intensity of "l" is adjusted to vary the 11 resolution of the measurement. 12 13 The method of claim 7, in which "1" is adjusted 8. 14 to give an average saccade time of between 200 15 and 800 ms for maximum comfort and accuracy. 16 17 The method of any of claims 4 to 8, in which 18 9. the resulting value of "t" is used directly to 19 plot a relative sensitivity map of the retina. 20 21 The method of any of claims 4 to 9, in which a 22 10. software algorithm is provided to translate the 23 relative values of T to commonly used units of 24 measure of the retinal threshold sensitivity by 25 look up table or direct function based on the 26 Blondel-Rey law or Bloch's law. 27 28 The method of any of claims 4 to 10, in which 29 11. the stimulus can be increased or decreased in 30 brightness from its initial presentation 31 brightness during presentation, such an 32

1		increase or decrease being used to modify the
2		function of T to t to make the resulting
3		function either more or less linear whereby to
4		maintain the overall test speed at a rate most
5		comfortable to the patient.
6		
7	12.	The method of any of claims 4 to 11, in which
8		several images are simultaneously presented of
9		a resolution of less than 0.3 degrees only
10		resolvable by the fovea, such that the eye is
11		induced to sequentially saccade at the natural
12		saccade frequency of the patient's natural
13		visual scanning mode.
14		
15	13.	The method of claim 12, in which the value of
16		"l" is selected to induce a saccade frequency
17		close to the said natural scanning mode.
18		
19	14.	The method of any preceding claim, in
20		which a sequence of visual stimuli is
21		presented in said image area in a random
22		or pseudo random sequence such that the
23		position and preferably the expected time
24		of appearance of the next stimulus in a
25		sequence is not readily apparent to a
26		person viewing the display.
27	15.	
28		timing information is compared to a database of
29		timings for a population of humans of various
30		ages such that the integrated timings of T can
31		be compared to an average population of the

41

same age as the patient under test such that
the said value of T can be assigned the value
of zero.

4

The method of claim 15, in which the timing 5 16. information is compared with a further model of 6 the relative normal values of integral T over 7 the full area of the retina such that the 8 normal variations of the retinal sensitivity 9 with respect to angle from fovea may be 10 corrected to zero such that any deviation from 11 the norm will be represented as positive or 12 negative values relative to the normal value. 13

14

The method of any preceding claim, in which 15 17. there are displayed images containing a known 16 priority sequence of predictable fixation 17 points at separations of greater than 10 18 degrees of approximately half or less the 19 average brightness of the image and where at 20 least one region contains a further sub-image 21 of a recognizable structure or alphanumeric 22 character or pictorial representation of an 23 object with a resolution of approximately 0.25 24 degrees per cycle; and in which an alarm or 25 notification is delivered when more than one 26 sequence of saccades of sub 100ms and greater 27 than 10 degrees occurs per overall image and 28 records the overall time of the sequence of sub 29 100mS saccades. 30

1	18.	The method of claim 17, in which said image is
2		a cartoon character, an animal picture, a
3		vehicle, or a personality.
4		
5	19.	The method of claim 17 or claim 18, in
6	4 5.	which the threshold of 100mS is varied to
7		accommodate intoxicated, brain-damaged or
8		other abnormal patients based on an
9		average timing of a sequence of single
LO		region of interest images as the norm for
11		a given intoxication, brain impairment or
12		other abnormality.
13	20.	The method of any of claims 17 to 19, in
14		which the images are part of a video or
15		moving film sequence.
16	21.	The method of claim 20, in which the
17		initial fixation cue comprises the
18		termination of motion of an image that
19		induces the eye pursuit of said image.
20	22.	The method of claim 1, in which the image
21	22.	contains a moving stimulus traveling
22		across the display and where a sub-image
23		of high detail only capable of
		discrimination by the fovea is presented
24		for a period adjustable between 100-600mS
25		within a given time of the presentation of
26		a simple bright stimulus on the opposite
27		point of an axis drawn through the moving
28		-
29		stimulus, said given time being shorter
30		than the time required by the subject to

43

saccade to the simple stimulus and back to 1 the complex stimulus, preferably 50ms. 2 3 The method of claim 1 or claim 2, in which the 4 23. first fixation image is formed by a dark area 5 to which the eye is drawn by an image area 6 giving an impression of perspective, and in 7 which at least the first stimulus is formed by 8 an image area of high spatial frequency. 9 10 Apparatus for use in assessing eye function, 24. 11 comprising: 12 display means for presenting images to the 13 eye where the luminance of any point in the image 14 over the desired field of view under test can be 15 defined at least as accurately as the desired 16 accuracy of a retinal map to be obtained; 17 (b) means for generating on the display means 18 an initial fixation image; 19 means for generating a stimulus on the 20 display means at a location spaced from the fixation 21 image; 22 means for detecting a saccade triggered by 23 said stimulus and immediately removing the initial 24 fixation image and creating a new fixation image at 25 said location; 26 means for recording the timing and 27 magnitude of each saccade and subsequent fixation 28 and for comparing the results with a database of 29

typical eye responses.

1	25.	Apparatus according to claim 24, further
2		including means for determining the location of
3		the subject's head relative to the image in at
4		least the z-axis, without applying any
5		constraint to the head motion.
6		
7	26.	Apparatus according to claim 24 or claim 25, in
8		which each of the initial and subsequent
9		fixation images is an animated image comprising
10		a substantially stationary central region
11		comprising at least 20% of the fixation image
12		and a mobile perimeter defined such that the
13		perimeter is greater than 3% of the arc of
14		vision of the test subject in diameter.
15		
16	27.	Apparatus according to any of claims 24 to
17		26, including calculating means for
18		calculating the time T between the
19		commencement of a stimulus point and the
20		resulting saccade of the eye to said
21		stimulus expressed by the function
22	Eq1:	
22	_	
23	$T = \frac{(t^2)}{(t^2)^2}$	1+ P) t·1)
24	`	
25	wher	e t is the total time for the luminance "l" to
26		grate to the detection threshold of the retina
27		P is the Pullfrich delay for an arbitrarily
28		sen luminance "h" where h=t•1.

45

1 28. Apparatus according to claim 27, in which the 2 calculating means operates to derive t from the 3 function:

4 Eq2:

$$\begin{bmatrix} \frac{-1}{(2\cdot 1)} \cdot \left(-T \cdot 1 + \sqrt{T^2 \cdot 1^2 - 4 \cdot 1 \cdot P} \right) \\ \frac{-1}{(2\cdot 1)} \cdot \left(-T \cdot 1 - \sqrt{T^2 \cdot 1^2 - 4 \cdot 1 \cdot P} \right) \end{bmatrix} = t$$

6

The apparatus of claim 28, in which a software 7 algorithm is used to solve Equation 2 and use 8 the greater of the two results as the total 9 amplified value sensitivity of a given retinal 10 point whereby relative sensitivity of the 11 retina from one point to another is expressed 12 directly as a function of t and can be derived 13 by the software from the interval time T. 14

15

16 30. Apparatus according to any of claims 27 to 29, 17 including means for adjusting the intensity of 18 "1" to vary the resolution of the measurement.

19

20 31. Apparatus according to claim 30, in which "1"
21 is adjusted to give an average saccade time of
22 between 200 and 800 ms for maximum comfort and
23 accuracy.

24

29

25 32 Apparatus according to any of claims 27 to 31, 26 including means for plotting a relative 27 sensitivity map of the retina directly from the 28 resulting value of "t".

1	33.	Apparatus according to any of claims 27 to 32,
2		in which a software algorithm is provided to
3		translate the relative values of T to commonly
4		used units of measure of the retinal threshold
5		sensitivity by look up table or direct function
6		based on the Blondel-Rey law or Bloch's law.
7		
8	34.	Apparatus according to any of claims 27 to 33,
9		in which the means for generating a stimulus is
10		arranged to increase or decrease the
11		brightness of the stimulus from its initial
12		presentation brightness during presentation,
13		such an increase or decrease being used to
14		modify the function of T to t to make the
15		resulting function either more or less linear
16		whereby to maintain the overall test speed at a
17		rate most comfortable to the patient.
18		
19	35.	Apparatus according to any of claims 24 to 34,
20		in which the image display means is adapted to
21		display several images are simultaneously of a
22		resolution of less than 0.3 degrees only
23		resolvable by the fovea, such that the eye is
24		induced to sequentially saccade at the natural
25		saccade frequency of the patient's natural
26		visual scanning mode.
27		
28	36.	Apparauts according to any of claims 24 to 35,
29		in which the stimulus generating means is
30		arranged to present a sequence of visual
31		stimuli in said image area in a random or
32		pseudo random sequence such that the position

and preferably the expected time of appearance of the next stimulus in a sequence is not readily apparent to a person viewing the display.

PCT/GB2004/001700

Apparatus according to any of claims 27 to 34 37. 6 including a database of timings for a 7 population of humans of various ages, and 8 including means for comparing measured timing 9 information with the database such that the 10 integrated timings of T can be compared to an 11 average population of the same age as the 12 patient under test such that the said value of 13 T can be assigned the value of zero. 14

15

WO 2004/093668

Apparatus according to claim 37, in which the 16 38. timing information is compared with a further 17 model of the relative normal values of integral 18 T over the full area of the retina such that 19 the normal variations of the retinal 20 sensitivity with respect to angle from fovea 21 may be corrected to zero such that any 22 deviation from the norm will be represented as 23 positive or negative values relative to the 24 normal value. 25

26

27 39. Apparatus according to any of claims 24 to 38, 28 in which the image display means is operative 29 to display images containing a known priority 30 sequence of predictable fixation points at 31 separations of greater than 10 degrees of 32 approximately half or less the average

48

1	brightness of the image and where at least one
2	region contains a further sub-image of a
3	recognizable structure or alphanumeric
4	character or pictorial representation of an
5	object with a resolution of approximately 0.25
6	degrees per cycle; and in which an alarm or
7	notification is delivered when more than one
8	sequence of saccades of sub 100ms and greater
9	than 10 degrees occurs per overall image and
10	records the overall time of the sequence of sub
11	100ms saccades.
12	
13 40	. Apparatus according to claim 39, in which the
14	threshold of 100mS is varied to accommodate
15	intoxicated, brain-damaged or other abnormal
16	patients based on an average timing of a
17	sequence of single region of interest images as
18	the norm for a given intoxication, brain
19	impairment or other abnormality.
20	
21 4	. Apparatus according to claim 24, in which the
22	image display means is operative to display an
23	image which contains a moving stimulus
24	traveling across the display and where a sub-
25	image of high detail only capable of
26	discrimination by the fovea is presented for a
27	period adjustable between 100-600mS within a
28	given time of the presentation of a simple
29	bright stimulus on the opposite point of an
30	axis drawn through the moving stimulus, said
31	given time being shorter than the time require

by the subject to saccade to the simple

1		stimulus and back to the complex stimulus,
2		preferably 50ms.
3		
4	42.	Apparatus according to claim 24 or claim 25, in
5		which the first fixation image is formed by a
6		dark area to which the eye is drawn by an image
7		area giving an impression of perspective, and
8		in which at least the first stimulus is formed
9		by an image area of high spatial frequency.
10		
11	43.	A software package containing data
12		enabling the essential timing, control and
13		display mechanisms for carrying out the
14		method of any of claims 1 to 23 using
15		commercially available display, camera and
16		measurement devices