Worksheet 12: Introduction to Coordinates (§§3.4, 4.3)

(c)2015 UM Math Dept licensed under a Creative Commons By-NC-SA 4.0 International License.

Let V be any vector space, and suppose that $\mathcal{B} = (\vec{v}_1, \dots, \vec{v}_n)$ is an ordered basis of V. Let $L_{\mathcal{B}}: V \to \mathbb{R}^n$ be the \mathcal{B} -coordinate transformation defined by

$$L_{\mathcal{B}}(\vec{v}) = \begin{bmatrix} \vec{v} \end{bmatrix}_{\mathcal{B}} = \begin{bmatrix} c_1 \\ \vdots \\ c_n \end{bmatrix}, \text{ where } \vec{v} = c_1 \vec{v}_1 + \dots + c_n \vec{v}_n.$$

Recall that $[\vec{v}]_{\mathcal{B}} \in \mathbb{R}^n$ is the \mathcal{B} -coordinate vector of \vec{v} , and that $L_{\mathcal{B}}$ is an isomorphism.

Problem 1. Let $A = \begin{bmatrix} 3 & 1 \\ -1 & -1 \end{bmatrix}$, and consider the ordered bases

$$\mathcal{E} = \left(\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \right) \quad \text{and} \quad \mathcal{B} = \left(\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \right)$$

of the vector space $\mathbb{R}^{2\times 2}$ of 2×2 matrices.

(a) Find $[I_2]_{\mathcal{E}}$ and $[A]_{\mathcal{E}}$.

Solution:
$$[I_2]_{\mathcal{E}} = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 1 \end{bmatrix}$$
 and $[A]_{\mathcal{E}} = \begin{bmatrix} 3 \\ 1 \\ -1 \\ -1 \end{bmatrix}$.

(b) Find $[I_2]_{\mathcal{B}}$ and $[A]_{\mathcal{B}}$.

Solution:
$$[I_2]_{\mathcal{B}} = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$
 and $[A]_{\mathcal{B}} = \begin{bmatrix} 1 \\ 2 \\ 0 \\ -1 \end{bmatrix}$.

(c) Find an ordered basis \mathcal{C} of $\mathbb{R}^{2\times 2}$ such that $[A]_{\mathcal{C}} = \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix}$.

Solution:
$$C = \begin{pmatrix} \begin{bmatrix} 3 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ -1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & -1 \end{bmatrix}$$
.

Problem 2. Let V be the subspace of \mathbb{R}^3 given by $x_1 + x_2 - 2x_3 = 0$.

(a) Find an ordered basis \mathcal{B} of V in which the vector $\begin{bmatrix} 1\\1\\1 \end{bmatrix}$ has coordinates $\begin{bmatrix} 1\\-1 \end{bmatrix}$.

Solution:
$$\mathcal{B} = \begin{pmatrix} \begin{bmatrix} 2 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix} \end{pmatrix}$$

(b) Let $\vec{v}_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$, $\vec{v}_2 = \begin{bmatrix} 2 \\ 0 \\ 1 \end{bmatrix}$, and $\vec{v}_3 = \begin{bmatrix} 3 \\ 1 \\ 2 \end{bmatrix}$. Find the coordinates of \vec{v}_1 in the basis (\vec{v}_2, \vec{v}_3) , of \vec{v}_2 in the basis (\vec{v}_1, \vec{v}_3) , and of \vec{v}_3 in the basis (\vec{v}_1, \vec{v}_2) .

Solution:
$$\begin{bmatrix} -1\\1 \end{bmatrix}$$
, $\begin{bmatrix} -1\\1 \end{bmatrix}$, and $\begin{bmatrix} 1\\1 \end{bmatrix}$, respectively.

Problem 3. We have seen that if $\mathcal{B} = (\vec{b}_1, \dots, \vec{b}_n)$ is an ordered basis of the vector space V, then the assignment of \mathcal{B} -coordinates $[\vec{v}]_{\mathcal{B}} \in \mathbb{R}^n$ to each vector $\vec{v} \in V$ is an isomorphism from V to \mathbb{R}^n . Conversely, suppose that

$$T: V \to \mathbb{R}^n$$

is an isomorphism from V to \mathbb{R}^n . Can you use T to pick a basis for V?

Solution: Yes. Given an isomorphism $T: V \to \mathbb{R}^n$, the list $(T^{-1}(\vec{e}_1), \dots, T^{-1}(\vec{e}_n))$ is an ordered basis of V.

Remark: This shows that picking a basis for a vector space V of dimension n is exactly the same as picking an isomorphism from V to \mathbb{R}^n .

Problem 4. Recall that in the past, we have associated to every linear transformation $T: \mathbb{R}^n \to \mathbb{R}^m$ an $m \times n$ matrix A (called the *standard matrix* of T) such that $T(\vec{x}) = A\vec{x}$ for all $\vec{x} \in \mathbb{R}^n$.

(a) Take a moment to remind yourself how this is done. For instance, suppose T is the linear transformation from \mathbb{R}^2 to \mathbb{R}^2 defined by

$$T\left(\begin{bmatrix} x \\ y \end{bmatrix}\right) = \begin{bmatrix} x + 2y \\ 2x + 3y \end{bmatrix},$$

and find a matrix A such that $T(\vec{x}) = A\vec{x}$ for all $\vec{x} \in \mathbb{R}^2$.

Solution:
$$A = \begin{bmatrix} 1 & 2 \\ 2 & 3 \end{bmatrix}$$
.

Note that if we write $\mathcal{E} = (\vec{e}_1, \vec{e}_2)$ for the *standard basis* of \mathbb{R}^2 , then we could rewrite the equation $A\vec{x} = T(\vec{x})$ in the seemingly more complicated form

$$A[\vec{x}]_{\mathcal{E}} = [T(\vec{x})]_{\mathcal{E}},$$

which says the exact same thing since $\vec{v} = [\vec{v}]_{\mathcal{E}}$ for all $\vec{v} \in \mathbb{R}^2$. But this form suggests that A is really the matrix of T relative to the standard basis, \mathcal{E} . Now let's try to find the matrix of T relative to some other basis of \mathbb{R}^2 ...

(b) Let \mathcal{B} be the ordered basis

$$\mathcal{B} = \left(\begin{bmatrix} 3 \\ 1 \end{bmatrix}, \begin{bmatrix} 5 \\ 2 \end{bmatrix} \right)$$

of \mathbb{R}^2 , and let B (notice the font change) be the 2×2 matrix

$$B = \begin{bmatrix} 3 & 5 \\ 1 & 2 \end{bmatrix}.$$

Given $\vec{x} \in \mathbb{R}^2$, how are B, \vec{x} , and $[\vec{x}]_{\mathcal{B}}$ related to each other?

Solution: $B[\vec{x}]_{\mathcal{B}} = \vec{x}$, and $B^{-1}\vec{x} = [\vec{x}]_{\mathcal{B}}$.

(c) Let T be as in part (a), and let \mathcal{B} (and B) be as in part (b). Find the matrix of T relative to \mathcal{B} . In other words, find a matrix (let's call it C, for now) such that for all $\vec{x} \in \mathbb{R}^2$,

$$C[\vec{x}]_{\mathcal{B}} = [T(\vec{x})]_{\mathcal{B}}.$$

(Hint: find the columns of C).

Solution: Write $B = [\vec{b}_1 \ \vec{b}_2] = \begin{bmatrix} 3 & 5 \\ 1 & 2 \end{bmatrix}$, and note that for all $\vec{x} \in \mathbb{R}^2$, we have $B[\vec{x}]_{\mathcal{B}} = \vec{x}$ and $[\vec{x}]_{\mathcal{B}} = B^{-1}\vec{x}$. To find the columns of C, we have

$$C\vec{e}_1 = C[\vec{b}_1]_{\mathcal{B}} = [T(\vec{b}_1)]_{\mathcal{B}},$$

and similarly $C\vec{e}_2 = [T(\vec{b}_2)]_{\mathcal{B}}$. Therefore

$$C = \left[[T(\vec{b}_1)]_{\mathcal{B}} \ [T(\vec{b}_2)]_{\mathcal{B}} \right] = \left[[A\vec{b}_1]_{\mathcal{B}} \ [A\vec{b}_2]_{\mathcal{B}} \right] = \left[B^{-1}A\vec{b}_1 \ B^{-1}A\vec{b}_2 \right] = B^{-1}AB.$$

Explicitly,
$$C = B^{-1}AB = \begin{bmatrix} 2 & -5 \\ -1 & 3 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 2 & 3 \end{bmatrix} \begin{bmatrix} 3 & 5 \\ 1 & 2 \end{bmatrix} = \begin{bmatrix} -35 & -62 \\ 22 & 39 \end{bmatrix}.$$

(d) How is C related to A? Can you write a simple equation relating them?

Solution: As we saw above, $C = B^{-1}AB$.

Problem 5. Let $\vec{v} = \begin{bmatrix} 12 \\ 5 \end{bmatrix} \in \mathbb{R}^2$, and let $\ell = \operatorname{Span}(\vec{v})$ be the line in \mathbb{R}^2 generated by \vec{v} . Let $T : \mathbb{R}^2 \to \mathbb{R}^2$ be the reflection of \mathbb{R}^2 over the line ℓ .

(a) Find the standard matrix of T.

Solution: Using $[T]_{\mathcal{E}} = \begin{bmatrix} \cos 2\theta & \sin 2\theta \\ \sin 2\theta & -\cos 2\theta \end{bmatrix}$ where $\tan \theta = \frac{5}{12}$, along with the trig identities $\sin 2\theta = 2\sin \theta \cos \theta$ and $\cos 2\theta = \cos^2 \theta - \sin^2 \theta$, we see that $[T]_{\mathcal{E}} = \frac{1}{169} \begin{bmatrix} 119 & 120 \\ 120 & -119 \end{bmatrix}$.

(b) Find an ordered basis \mathcal{B} of \mathbb{R}^2 such that the matrix of T relative to \mathcal{B} is $\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$.

Solution: For instance, we can take $\mathcal{B} = \begin{pmatrix} \begin{bmatrix} 12 \\ 5 \end{bmatrix}, \begin{bmatrix} -5 \\ 12 \end{bmatrix} \end{pmatrix}$.