# POLITEHNIKA PULA

Visoka tehničko-poslovna škola s p.j. Stručni studij politehnike

> Elementi strojeva 2 Projektni zadatak

Kristijan Cetina\* Pula, 25. ožujka 2018.

## Sažetak

U ovom radu predstavljam proračun strojnog sklopa - vratila prijenosnika snage i pripadajućih ležajeva koji je zadan kao sastavni dio kolegija Elementi strojeva 2.

 $<sup>^{*}</sup>$ kcetina@politehnika-pula.hr, JMBAG: 2424011721

# Sadržaj

| $\Pr$ | oračun sklopa                                       |
|-------|-----------------------------------------------------|
| 2.1   | Zadani parametri                                    |
| 2.2   | Projektni proračun sklopa                           |
| 2.3   | Konstruiranje sklopa                                |
| 2.4   | Proračun reakcija u ležajevima                      |
| 2.5   | Izbor valjnih ležajeva i proračun stvarne trajnosti |
| 2.6   | Proračun momenata savijanja i naprezanja            |

## 1 Uvod

Ovaj projektni zadatak nastoj je kao obavezni zadatak u sklopu kolegija Elementri strojeva 2 koji se održava pod vodstvom prof. dr. sc. Božidara Križana na stručnom studiju politehnike na Politehnici Pula.

U ovom radu obrađen je proračun vratila prijenosnika snage s pripadajućim ležajevima. Prema zadatku bilo je potrebno odrediti dimenzije vratila i ležaja te odabrati prikladni ležaj u ondnosu na postavljene zahtjeve prenosa snage i traženu minimalnu trajnost.

# 2 Proračun sklopa

## 2.1 Zadani parametri

Prema projektnom zadatku zadani su sljedeći parametri sklopa: Snaga koju prenose zučanik i vratilo

| Snaga koju prenose zupčanik i vratilo    | P = 23kW                                        |
|------------------------------------------|-------------------------------------------------|
| Brzina vrtnje                            | $800min^{-1}$                                   |
| Materijal vratila                        | $Ck45 \Rightarrow R_{dt0} = 340 \frac{N}{mm^2}$ |
| Korjeni promjer zupčanika                | $d_f = 96,25mm$                                 |
| Diobeni promjer zupčanika                | d = 110mm                                       |
| Tjemeni promjer zupčanika                | $d_a = 121mm$                                   |
| Širina zupčanika                         | $b_z = 115mm$                                   |
| Faktor sigurnosti                        | $\nu_d = 1, 3$                                  |
| Hrapavost površine na kritičnim mjestima | $R_a = 0,8\mu m$                                |
| Razmak ležajeva                          | l = 165mm                                       |
| Razmak između središta ležaja A          |                                                 |
| i središta zupčanika                     | a = 80mm                                        |
| Minimalna trajnost ležajeva              | $L_{10hmin} = 12000sati$                        |

# 2.2 Projektni proračun sklopa

U projektnom praračunu sklopa ne uzima se u obzir svi detalji sklopa kao niti koncentracije lokalnog naprezanja, ali se zato uzima značajno veći faktor sigurnosti kako bi kompenzirali za izostavljene faktore. U projektnom proračunu za određivanje početnog promjera vratila uzeti su u obzir samo snaga koja se prenosi i materijal od kojeg se izrađuje vratilo. Kao mjerodavne vrijednosti uzete su torzijsko naprezanje koje mora biti manje od dopuštenog, a faktor sigurnosti je usvojen  $\nu=12$ . Kao glavni uvjet uzet je kriterij čvrstoće

pri kojem torzijsko naprezanje mora biti manje od dopuštenog pri čemu torzijsko naprezanje možemo izraziti pomoću izraza

$$\tau_t = \frac{T}{W_n} \tag{1}$$

pri čemu je  $W_p$  za okrugli puni popreči presjek jednak

$$W_p = \frac{d^3 \cdot \pi}{16} \tag{2}$$

Okretni moment koji se prenosi izračunat je pomoću sljedećeg izraza

$$T = \frac{P}{\omega} \tag{3}$$

pri čemu je kružna frekvencija  $\omega=2\cdot\pi\cdot n$ , a n je izražen u okretajima u sekundi  $[s^{-1}]$ . Uvršavanjem poznatih podataka u (3) dobije se okretni moment

$$T = \frac{60 \cdot 23 \times 10^3}{2 \cdot \pi \cdot 800}$$
$$T = \mathbf{274.5 \ Nm}$$

Promjer vratila je izračunat pomoću izraza

$$d \ge \sqrt[3]{\frac{16 \cdot T \cdot \nu}{R_{dt0} \cdot \pi}} \tag{4}$$

Uvršavanjem poznatih podataka u izraz (4) dobije se početni promjer vratila  $d_1\,$ 

$$d_1 \ge \sqrt[3]{\frac{16 \cdot 274, 5 \times 10^3 \cdot 12}{340 \cdot \pi}}$$
$$d_1 \ge \mathbf{36, 68mm}$$

# 2.3 Konstruiranje sklopa

Prema tablici standardnih dimenzija krajeva cilindričnog vratila prema normi DIN 748 usvojena je dimenzija **38x80 DIN 748** ( $\phi$ 38k6). Maksimalni radijus prijelaza je  $r_{max}=1mm$ .

Prema tablici standardnih dimenzija uložnih pera po DIN 6885 normi usvojeno je pero

 $DIN6885 - A10 \times 8 \times 70 - E295.$ 

Dimenzija  $d_2$  je zbog standardnih dimenzija ležajeva usvojena  $\mathbf{d_2} = \mathbf{40mm}$ 

## Žlijeb za izlaz alata

Prema normi DIN 509 prema  $d_2$  usvojene su dimenzija za izlaz alata  $\rho_1=0,6mm,\,t_1=0,3mm.$  Na slici 1 prikazan je žlijeb za izlaz alata.



Slika 1: Skica žlijeba za izlaz alata

## Visina bočnog oslonca ležaja

Kao vrijednost visine bočnog oslonca ležaja usvojena je vrijednost h=3,5mm. Promjer  $d_3$  je izračunat kao  $d_3=d_2+2\cdot h=47$ mm. Vrijednost radijusa zakrivljenja  $\rho_2$  je usvojen  $\rho_2=5mm$ .

# 2.4 Proračun reakcija u ležajevima

Tangencijalna sila između zupčanika je izračunata pomoću momenta koji se prenosi i promjera zupčanika

$$F_t = rac{2T}{d}$$
 
$$F_t = rac{2 \cdot 274, 5 \times 10^3 Nmm}{mm}$$
 
$$F_t = \mathbf{4990.9N}$$

Radijalna sila je izračunata pomoću tangencijalne sile i poznatog kuta zahvata zubaca zupčanika koji iznosi  $\alpha_n=20^\circ$ 

$$F_r = F_t \cdot \tan \alpha_n$$
  
 $F_r = 4990, 9 \cdot \tan 20^\circ$   
 $F_r = \mathbf{1816,5N}$ 

Kako sile mođusobno djeluju pod pravim kutem njihova rezultanta se može izračunati po Pitagorinom poučku kao korijen zbroja kvadrata sila

$$F = \sqrt{T_t^2 + F_r^2}$$

$$F = \sqrt{4990, 9^2 + 1816, 5^2}$$

$$F = \mathbf{5311,2N}$$

Reakcija u osloncu Bizračunata je pomoću uvijeta ravnoteže sume momenata oko oslonva  ${\cal A}$ 

$$F_{B} = rac{F \cdot 80mm}{168mm}$$
 $F_{B} = rac{5311, 2N \cdot 80mm}{168mm}$ 
 $F_{B} = \mathbf{2575, 1N}$ 

rakcija u osloncu A izračunata je pomoću uvijeta ravnoteže sustava u kojem je suma sila i reakcija jednaka nuli

$$F_A = F - F_B$$
  
 $F_A = 5311, 2 - 2575, 1$   
 $F_A = 2736, 1N$ 

# 2.5 Izbor valjnih ležajeva i proračun stvarne trajnosti

Trajnost ležajeva se može proračunati po izrazu

$$L_{10h} = \left(\frac{C}{F} \cdot f_t\right)^p \cdot \frac{10^6}{60 \cdot n} \tag{5}$$

pri čemu je C - dinamička nosivost ležaja, p - eksponent vijeka trajanja. Za kuglične ležajeve p=3 i  $f_t$  - temperaturni faktor. Za  $\vartheta<150^\circ C\Rightarrow f_t=1$ .

Iz izraza (5) može se izračunati minimalna potrebna dimanička nosivost ležaja

$$C = \frac{F}{f_t} \cdot \sqrt[3]{\frac{L_{10h} \cdot 60 \cdot n}{10^6}}$$

$$C = \frac{2736, 1}{1} \cdot \sqrt[3]{\frac{12000 \cdot 60 \cdot 800}{10^6}}$$

$$C \cong \mathbf{22.8kN}$$

Nakon pregleda kataloških podataka dostupnih ležajeva odabran je ležaj **SKF 6208** koji ima dinamičku nosivost od C = 32, 5kN.

## 6208

SKF Explorer

#### **Dimensions**



| d                |      | 40   | mm |
|------------------|------|------|----|
| D                |      | 80   | mm |
| В                |      | 18   | mm |
| $d_1$            |      | 52.6 | mm |
| D $_2$           |      | 69.8 | mm |
| r <sub>1,2</sub> | min. | 1.1  | mm |

#### Abutment dimensions



| d <sub>a</sub> | min. | 47 | mm |
|----------------|------|----|----|
| D a            | max. | 73 | mm |
| r <sub>a</sub> | max. | 1  | mm |

Slika 2: Tehnički podaci odabranog ležaja SKF 6208

## Proračun stvarne trajnosti

Po izrazu (5) sada se može izračunati stvarna trajnost za odabrani ležaj

$$L_{10h} = \left(\frac{32500}{2736, 1} \cdot 1\right)^3 \cdot \frac{10^6}{60 \cdot 800}$$
$$L_{10h} = \mathbf{34915h}$$

# 2.6 Proračun momenata savijanja i naprezanja

$$M_{S1} = F_A \cdot \frac{B}{2} = 2736, 1 \cdot \frac{18}{2} = 24624, 9Nmm$$

$$M_{S2} = F_A \cdot \left(a - \frac{b_z}{2}\right) = 2736, 1 \cdot \left(80 - \frac{115}{2}\right) = 61562, 3Nmm$$

$$M_{S3} = F_B \cdot \left(l - a - \frac{b_z}{2}\right) = 2575, 1 \cdot \left(165 - 80 - \frac{115}{2}\right) = 70815, 3Nmm$$

$$M_{S4} = F_B \cdot \frac{B}{2} = 2575, 1 \cdot \frac{18}{2} = 23175, 9Nmm$$

$$M_{S5} = 0$$

Geometrijske karakteristike poprečnih presjeka - W

$$W_1 = W_4 = \frac{d_2^3 \cdot \pi}{32} = \frac{40^3 \cdot \pi}{32} = 6283, 2mm^3$$
$$W_2 = W_3 = \frac{d_3^3 \cdot \pi}{32} = \frac{47^3 \cdot \pi}{32} = 10192, 8mm^3$$

Polarni momenti otpora -  $\mathcal{W}_p$ 

$$W_{p2} = W_{p3} = \frac{d_3^3 \cdot \pi}{16} = \frac{47^3 \cdot \pi}{16} = 20385, 6mm^3$$

$$W_{p4} = \frac{d_2^3 \cdot \pi}{16} = \frac{40^3 \cdot \pi}{16} = 12566, 4mm^3$$

$$W_{p5} = \frac{d_1^3 \cdot \pi}{16} = \frac{38^3 \cdot \pi}{16} = 10774, 1mm^3$$

presjek 1-1

$$\sigma_{s1} = \frac{M_{S1}}{W_1} = \frac{24624, 9}{6283, 2} = 3, 9 \frac{N}{mm^2}$$

#### presjek 2-2

$$\sigma_{s2} = \frac{M_{S2}}{W_2} = \frac{61562, 3}{10192, 8} = 6 \frac{N}{mm^2}$$

$$\tau_{t2} = \frac{T}{W_{p2}} = \frac{274, 5 \times 10^3}{20385, 6} = 13, 5 \frac{N}{mm^2}$$

$$\sigma_{ekv2} = \sqrt{\sigma_{s2}^2 + 3 \cdot (0, 7 \cdot \tau_{t2})^2}$$

$$\sigma_{ekv2} = \sqrt{6^2 + 3 \cdot (0, 7 \cdot 13, 5)^2} = 17, 5 \frac{N}{mm^2}$$

## presjek 3-3

$$\sigma_{s3} = \frac{M_{S3}}{W_3} = \frac{70815, 3}{10192, 8} = 7 \frac{N}{mm^2}$$

$$\tau_{t3} = \frac{T}{W_{p3}} = \frac{274, 5 \times 10^3}{20385, 6} = 13, 5 \frac{N}{mm^2}$$

$$\sigma_{ekv3} = \sqrt{\sigma_{s3}^2 + 3 \cdot (0, 7 \cdot \tau_{t3})^2}$$

$$\sigma_{ekv3} = \sqrt{7^2 + 3 \cdot (0, 7 \cdot 13, 5)^2} = 17, 8 \frac{N}{mm^2}$$

## presjek 4-4

$$\sigma_{s4} = \frac{M_{S4}}{W_4} = \frac{23175, 9}{12566, 4} = 1, 8 \frac{N}{mm^2}$$

$$\tau_{t4} = \frac{T}{W_{p4}} = \frac{274, 5 \times 10^3}{6283, 2} = 3, 7 \frac{N}{mm^2}$$

$$\sigma_{ekv4} = \sqrt{\sigma_{s4}^2 + 3 \cdot (0, 7 \cdot \tau_{t4})^2}$$

$$\sigma_{ekv4} = \sqrt{3, 7^2 + 3 \cdot (0, 7 \cdot 21, 9)^2} = 26, 8 \frac{N}{mm^2}$$

## presjek 5-5

$$\tau_{t5} = \frac{T}{W_{p4}} = \frac{274, 5 \times 10^3}{10774, 1} = 25, 5 \frac{N}{mm^2}$$

# Literatura

[1] B. Križan, Interna skripta iz kolegija Elementi strojeva 2 za konstrukcijske vježbe. Politehnika Pula, 2018.