

POTENCIAÇÃO

Matemática Aplicada à Computação

Priscila Louise Leyser Santin priscila.santin@prof.unidombosco.edu.br

Relembrando...

Representação algébrica da potência

$$a^n = \underbrace{a \cdot a \cdot a \cdot a \cdot a \cdot \dots}_{n \text{ vezes}}$$

 Na prática, o resultado de uma potência é obtido pelo produto (multiplicação) da base em quantidade de vezes igual ao expoente

Relembrando...

expoente
$$5^{3} = 125$$
base potência

 Na multiplicação entre duas potências com mesma base, para calcular o resultado, basta repetir a base e somar os expoentes

Algebricamente: $a^m \cdot a^n = a^{m+n}$

Numericamente: $2^2 \cdot 2^3 = 2^{2+3} = 2^5 = 32$

 Na divisão entre duas potências com mesma base, para calcular o resultado, basta repetir a base e subtrair os expoentes

Algebricamente: $a^m : a^n = a^{m-n}$

Numericamente: $2^8: 2^2 = 2^{8-2} = 2^6 = 64$

Todo número elevado a 1 é igual a ele mesmo

Algebricamente: $a^1 = a$

Numericamente: $(2187)^1 = 2187$

• Todo número elevado a zero, com exceção do próprio zero, é igual a 1 (um)

Algebricamente: $a^0 = 1$

Numericamente: $(5678)^0 = 1$

Quando temos uma potência elevada a outra, para calcular o resultado, basta multiplicar os expoentes

Algebricamente:
$$(a^m)^n = a^{m \cdot n}$$

Numericamente:
$$(2^4)^2 = 2^{4 \cdot 2} = 2^8 = 256$$

Quando temos uma potência elevada a um número negativo (a^{-n}) com base diferente de zero, o resultado é o inverso da base elevado ao mesmo expoente, porém com o sinal positivo

Algebricamente:
$$a^{-n} = \frac{1}{a^n}$$

Algebricamente:
$$a^{-n} = \frac{1}{a^n}$$
Numericamente: $2^{-4} = \frac{1}{2^4} = \frac{1}{16}$

 Quando temos uma potência cuja base é uma divisão entre dois números, basta elevar o numerador e o denominador separadamente ao expoente da potência

Algebricamente:
$$(\frac{a}{b})^n = \frac{a^n}{b^n}$$

Numericamente:
$$(\frac{2}{3})^3 = \frac{2^3}{3^3} = \frac{8}{27}$$

 Quando temos uma potência cuja base é uma multiplicação entre dois números, basta elevar cada um dos números ao expoente da potência

Algebricamente:
$$(a \cdot b)^n = a^n \cdot b^n$$

Numericamente:
$$(2 \cdot 3)^3 = 2^3 \cdot 3^3 = 8 \cdot 27 = 216$$

• Quando o expoente for par, a potência é sempre um número positivo

$$(2)^4$$

• Quando o expoente for ímpar, a potência é sempre o mesmo sinal da base

$$(-3)^5$$

EXERCÍCIO DE POTENCIAÇÃO

Calcule o valor das potências:

- a) $(+5)^7 \cdot (+5)^2$
- b) $(-3)^5 \cdot (-3)^2$
- c) $(+3) \cdot (+3) \cdot (+3)^7$
- d) $(+4)^{10}: (+4)^3$
- e) $(-5)^6:(-5)^2$
- f) $(+3)^9:(+3)$
- g) $[(-4)^2]^3$
- h) $[(+5)^3]^4$
- i) $[(+4):(+5)]^2$
- j) $[(-5)^2:(+6)]^3$

Análise e Desenvolvimento de Sistemas Gestão de Tecnologia da Informação

Matemática Aplicada à Computação

Priscila Louise Leyser Santin priscila.santin@prof.unidombosco.edu.br