HR Analytics

Job Satisfaction Analysis

Problem Identification

- Understand key factors influencing employee job satisfaction
 - Use a data driven approach to manage human resources
 - > Build a machine learning model to predict employee job satisfaction
 - ➤ With the help of model understand which employees are not satisfied and take preventive action to reduce attrition

Target feature

- ❖ Job Satisfaction is chosen as target feature
 - \triangleright Contains four values: 1, 2, 3, 4
 - > 1 and 2 classified as employee not satisfied
 - > 3 and 4 classified as employee is satisfied

Key findings

Dataset include majority of employees from Research and development department

Research and Development satisfaction rate

- ♦ 62% employees choose job satisfaction level 3 or 4, means they are satisfied
- * 38% choose 1 or 2 level, which means they are not satisfied

Sales satisfaction rate

- ♦ 61% employees choose job satisfaction level 3 or 4, means they are satisfied
- ❖ 39% choose 1 or 2 level, which means they are not satisfied

HR satisfaction rate

- * 51% employees choose job satisfaction level 3 or 4, means they are satisfied
- 49% choose 1 or 2 level, which means they are not satisfied

Modeling

- ❖ Approached problem in 2 ways
 - ➤ Linear regression, Random Regressor
 - Converted job satisfaction column to percentage to get continuous results
 - ➤ Logistic regression, KNN, Decision Tree, Random Forest
 - By Converting job satisfaction column to 2 classes 0 and 1

Modeling Results

Model	Target	Precision	Recall	F1 Score	Support	Model
	Value					Accuracy
Logistic	0	0.45	0.18	0.25	142	0.60
Regression	1	0.62	0.86	0.72	226	
KNN	0	0.42	0.28	0.34	142	0.57
	1	0.62	0.75	0.68	226	
Decision	0	0.36	0.33	0.34	142	0.51
Tree	1	0.60	0.62	0.61	226	
Random	0	0.34	0.11	0.17	142	0.57
Forest	1	0.61	0.86	0.71	226	

Modeling Results

- Linear regression and random regressor performance not good
 - MAPE around 50%, means models results are not promising
- Logistic regression, KNN, Decision Tree, and Random Forest
 - > show better accuracy score but still performance of models is not very good
 - > Recall is very low
 - ➤ Means employee who are not satisfied are showing satisfied

Modeling with resampling

- ❖ Imbalanced dataset with 0 values are 39% and 1 values are 61%
- Resampled with oversampling and undersampling techniques
- Logistic regression with random under sampling and XGBoost with over sampling showed better results
- Recall score improved to 50% to 51%

Summary and Conclusion

- Logistic regression with random under sampling model has better accuracy score (52%) with highest recall score (51%)
- ❖ It showed good balance of false positives and false negatives

Future steps

- ❖ Model results can be improved by
 - ➤ Choosing optimal threshold for the ROC Curve and Precision-Recall Curve directly
 - Or manually choosing threshold value for recall and precision based on decision better recall or precision is required
- Create UI interface for model and handover to HR team