

Multiple testing

Lieven Clement

Statistical Genomics: Master of Science in Bioinformatics

Problem of multiple hypothesis testing

ullet Consider testing DE for all m=16000 genes simultaneously

• What if we assess each individual test at level α ?

 \rightarrow Probability to have a false positive among all $\it m$ simultatenous test $>>> \ \alpha = 0.05$

Table of Outcomes

	H_0 accepted	H_0 rejected	
not DE	TN.	FP	m_0
DE	FN	TP	m_1
Total	NR	R	т

- TN: number of true negatives
- FP: number of false positives
- FN: number of false negatives
- TP: number of true positives
- NR: number of non-rejections, R: number of rejections

Table of Outcomes

Table of Outcomes

		Called Bad	Called Correct	
Unobservable	Bad hit	TN	FP	m_0
	Correct hit	FN	TP	m_1
Observable	Total	NR	R	т

Familywise Error Rate: FWER

- Traditional statistical multiplicity correction
- FWER = P(FP > 0)
- FWER: probability of making at least one false positive decision or probability to declare at least one gene differentially expressed which is truly non differentially expressed

FWER: single step: e.g. Bonferroni

- Simple method
- m tests are performed at the level α/m
- FWER $\leq \sum_{g=1}^{m} P(rejectH_{0g}|H_0 \text{ is true}) = m\alpha/m = \alpha$
- Provides strong control
- Bonferroni is very conservative
- Works for dependent tests
- Adjusted p-value: $\tilde{p}_g = \min(m \ p_g, 1)$
- Example: test 5 genes simultaneously, $\alpha = 0.05$ $p_1 = 0.002, p_2 = 0.03, p_3 = 0.012, p_4 = 0.7, p_5 = 0.015$

FWER: single step: e.g. Bonferroni

- Simple method
- m tests are performed at the level α/m
- FWER $\leq \sum_{g=1}^{m} P(rejectH_{0g}|H_0 \text{ is true}) = m\alpha/m = \alpha$
- Provides strong control
- Bonferroni is very conservative
- Works for dependent tests
- Adjusted p-value: $\tilde{p}_g = \min(m \ p_g, 1)$
- Example: test 5 genes simultaneously, $\alpha = 0.05$ $p_1 = 0.002, p_2 = 0.03, p_3 = 0.012, p_4 = 0.7, p_5 = 0.015$

 - Reject H₀₁
 - $\tilde{p}_1 = 0.01, \tilde{p}_2 = 0.15, \tilde{p}_3 = 0.060, \tilde{p}_4 = 1, \tilde{p}_5 = 0.075$

- order p-values: $p_{(1)} \le p_{(2)} \le ... \le p_{(m)}$
- $\bullet \hat{k} = \min\{k : p_{(k)} > \frac{\alpha}{m-k+1}\}$
- if \hat{k} exists then reject all $H_{(0i)}$, $i=1,\ldots,k-1$
- $\tilde{p}_{(i)} = \min(p_{(i)}(m-i+1), 1)$

- order p-values: $p_{(1)} \le p_{(2)} \le ... \le p_{(m)}$
- $\hat{k} = \min\{k : p_{(k)} > \frac{\alpha}{m-k+1}\}$
- if \hat{k} exists then reject all $H_{(0i)}$, $i=1,\ldots,k-1$
- $\tilde{p}_{(i)} = \min(p_{(i)}(m-i+1), 1)$
- Suppose 2 tests: $p_{(1)} = 0.001$, $p_{(2)} = 0.0015$ $\rightarrow \tilde{p}_{(1)} = 0.002$, $\tilde{p}_{(2)} = 0.0015$

- order p-values: $p_{(1)} \le p_{(2)} \le ... \le p_{(m)}$
- $\hat{k} = \min\{k : p_{(k)} > \frac{\alpha}{m-k+1}\}$
- if \hat{k} exists then reject all $H_{(0i)}$, $i=1,\ldots,k-1$
- $\tilde{p}_{(i)} = \max_{h=1,...,i} \min(p_{(h)}(m-h+1),1)$
- Suppose 2 tests: $p_{(1)} = 0.001$, $p_{(2)} = 0.0015$ $\rightarrow \tilde{p}_{(1)} = 0.002$, $\tilde{p}_{(2)} = 0.002$

- order p-values: $p_{(1)} \le p_{(2)} \le ... \le p_{(m)}$
- $\bullet \hat{k} = \min\{k : p_{(k)} > \frac{\alpha}{m-k+1}\}$
- if \hat{k} exists then reject all $H_{(0i)}$, $i=1,\ldots,k-1$
- $\tilde{p}_{(i)} = \max_{h=1,...,i} \min(p_{(h)}(m-h+1),1)$
- Suppose 2 tests: $p_{(1)} = 0.001$, $p_{(2)} = 0.0015$ $\rightarrow \tilde{p}_{(1)} = 0.002$, $\tilde{p}_{(2)} = 0.002$
- Strong control of FWER

FWER Holm: example

• Example: test 5 genes simultaneously, $\alpha = 0.05$ $p_1 = 0.002, p_2 = 0.03, p_3 = 0.012, p_4 = 0.7, p_5 = 0.015$ $p_{(i)} = 0.002 = 0.012 = 0.015 = 0.03 = 0.7$

$\frac{\alpha}{m-i+1}$	0.05/5	0.05/4	0.05/3	0.05/2	0.05
, _	0.01	0.0125	0.0167	0.025	0.05
reject	yes	yes	yes	no	no
$\tilde{p}_{(i)}$	0.010	0.048	0.045	0.060	0.700

FWER Holm: example

• Example: test 5 genes simultaneously, $\alpha=0.05$ $p_1=0.002, p_2=0.03, p_3=0.012, p_4=0.7, p_5=0.015$ $p_{(i)}$ 0.002 0.012 0.015 0.03 0.7

$$\frac{\alpha}{m-i+1}$$
 0.05/5 0.05/4 0.05/3 0.05/2 0.05 0.01 0.0125 0.0167 0.025 0.05 reject yes yes yes no no $\tilde{p}_{(i)}$ 0.010 0.048 0.048 0.060 0.700

- reject H_{01} , H_{03} , H_{05}
- $\tilde{p}_1 = 0.01, \tilde{p}_2 = 0.06, \tilde{p}_3 = 0.048, \tilde{p}_4 = 0.07, \tilde{p}_5 = 0.048$

Method of Shaffer

- Improved FWER correction: account for logical relations that exist between hypotheses
- Perform test at $\alpha/t(j)$ with t(j) the maximum number of H_0 that can still be true, given the rejection of j-1 hypotheses.
- $t(j) \le n j + 1$, thus Shaffer uniformly outperforms Holm's method.
- Also useful for post hoc tests

FDR: False discovery rate

- FDR: Expected proportion of false positives on the total number of positives you return.
- An FDR of 1% means that on average we expect 1% false positive proteins in the list of proteins that are called significant.
- Defined by Benjamini and Hochberg in 1995

$$\begin{split} \mathsf{FDR}(|t_{\mathsf{thres}}|) &= \mathsf{E}\left[\frac{\mathit{FP}}{\mathit{FP} + \mathit{TP}}\right] = \frac{\pi_0 \mathit{Pr}(|\mathit{T}| \geq \mathit{t}_{\mathsf{thres}}|\mathit{H}_0)}{\mathit{Pr}(|\mathit{T}| \geq \mathit{t}_{\mathsf{thres}})} \\ &\quad \mathsf{FDR}_{\mathsf{BH}}(|\mathit{t}_{\mathsf{thres}}|) = \frac{1 \times \mathit{p}_{\mathit{t}_{\mathsf{thres}}}}{\#|\mathit{t}_i| \geq \mathit{t}_{\mathsf{thres}}} = \frac{\mathit{p}_{\mathit{t}_{\mathsf{thres}}} \times \mathit{m}}{\#|\mathit{t}_i| \geq \mathit{t}_{\mathsf{thres}}} \end{split}$$

FDR: step-up method of Benjamini-Hochberg (BH-FDR)

- order p-values: $p_{(1)} \le p_{(2)} \le ... \le p_{(m)}$
- $\hat{k} = \max\{k : p_{(k)} \leq \frac{k\alpha}{m}\}$
- If \hat{k} exists, reject all null hypotheses corresponding to $p_{(1)}, \dots, p_{(k)}$.
- If no such \hat{k} exists, accept all null hypotheses.
- $\bullet \ \tilde{p}_{(i)} = \min_{j=i,\dots,m} \min(\frac{m}{j}p_{(j)}, 1)$

BH-FDR: example

• Example: test 5 genes simultaneously, $\alpha=0.05$ $p_1=0.002, p_2=0.03, p_3=0.012, p_4=0.7, p_5=0.015$ $p_{(i)}=0.002=0.012=0.015=0.03=0.7$

$\frac{i\alpha}{m}$	$0.05 \frac{1}{5}$	$0.05 \frac{2}{5}$	$0.05 \frac{3}{5}$	$0.05 \frac{4}{5}$	$0.05 \frac{5}{5}$
	0.01	0.02	0.03	0.04	0.05
reject	yes	yes	yes	yes	no
$\tilde{p}_{(i)}$	0.01	0.030	0.025	0.0375	0.7

BH-FDR: example

• Example: test 5 genes simultaneously, $\alpha=0.05$ $p_1=0.002, p_2=0.03, p_3=0.012, p_4=0.7, p_5=0.015$ $p_{(i)}=0.002=0.012=0.015=0.03=0.7$

<u>iα</u> m	$0.05 \frac{1}{5}$	$0.05 \frac{2}{5}$	$0.05 \frac{3}{5}$	$0.05 \frac{4}{5}$	$0.05 \frac{5}{5}$
	0.01	0.02	0.03	0.04	0.05
reject	yes	yes	yes	yes	no
$\tilde{p}_{(i)}$	0.01	0.025	0.025	0.0375	0.7

- reject H_{01} , H_{02} , H_{03} , H_{05}
- $\tilde{p}_1 = 0.01, \tilde{p}_2 = 0.0375, \tilde{p}_3 = 0.025, \tilde{p}_4 = 0.7, \tilde{p}_5 = 0.025$

Comparison Bonferroni, Holm and BH-FDR

