Fiscal Policy and Inequality 24. Inequality II

Elliott Ash (ashe@ethz.ch)

ETH Zurich

Outline

Milanovic (2013)

Piketty (2014): Capital in the 21st Century

Milanovic (2013): Three Measures of Inequality

- Measure 1: Inequality between countries
 - ► Compare income per capita across countries
 - All countries receive equal weight

Milanovic (2013): Three Measures of Inequality

- Measure 1: Inequality between countries
 - Compare income per capita across countries
 - All countries receive equal weight
- Measure 2: Inequality between countries, weighed by population
 - Same as above, but now using population weights

Milanovic (2013): Three Measures of Inequality

- ► Measure 1: Inequality between countries
 - Compare income per capita across countries
 - All countries receive equal weight
- Measure 2: Inequality between countries, weighed by population
 - ► Same as above, but now using population weights
- ► Measure 3: Global Inequality at the individual level
 - ► This measure goes beyond the nation-state
 - Focus on individuals, regardless of nationality

Gini Coefficient

Cumulative share of people from lowest to highest incomes

Gini Coefficient

Formula:

$$G = \frac{A}{A+B}$$

- ► $G = 0 \Rightarrow$ Complete Equality
 - Everyone has exactly the same income
- $ightharpoonup G = 1 \Rightarrow \mathsf{Perfect Inequality}$
 - One person has all income

Gini Coefficient

Milanovic (2013): Global Inequality over Time

Figure 2. International and global inequality, 1952–2011: 'the mother of all inequality disputes'.

Milanovic (2013): Inequality Across Countries

Figure 3. Global Gini coefficient compared to the Ginis of selected countries.

Milanovic (2013): Winners and Losers, 1988-2008

Figure 4. Change in real income between 1988 and 2008 at various percentiles of global income distribution (calculated in 2005 international dollars).

Milanovic (2013): Global Gini, 1988 vs 2008

Figure 5. Lorenz curves for global income distributions in 1988 and 2008.

- Economic factors:
 - Equalization through trade

- Economic factors:
 - Equalization through trade
 - Equalization through migration
 - In practice, free movement of people much more limited than free movement of goods

- Economic factors:
 - Equalization through trade
 - Equalization through migration
 - In practice, free movement of people much more limited than free movement of goods
- Public policy intervention:
 - ► Taxes on high-income/high-wealth individuals

- Economic factors:
 - Equalization through trade
 - Equalization through migration
 - In practice, free movement of people much more limited than free movement of goods
- Public policy intervention:
 - ► Taxes on high-income/high-wealth individuals
 - Transfers to low-income individuals: CCT, EITC
 - Underlying these policy choices (often, not always): equity-efficiency trade-off

Tax Policies (at the top) Across Countries

Top Marginal Income Tax Rates, 1900-2011

Source: Piketty and Saez (2013, figure 1).

Tax Policies vs. Changes in Inequality

Changes in Top Income Shares and Top Marginal Income Tax Rates since 1960 (combining both central and local government income taxes)

Source: Alvaredo, Atkinson, Piketty and Saez (JEP, 2013)

What Determines Pay for Top Executives?

- ► The drop in top marginal tax rates has increased the bargaining power of the highest income earners
 - ▶ The have more to gain from an increase in their gross pay

What Determines Pay for Top Executives?

- ► The drop in top marginal tax rates has increased the bargaining power of the highest income earners
 - ▶ The have more to gain from an increase in their gross pay
- ► Under this hypothesis, not clear that cuts in top rates lead to more economic growth
 - Resources not allocated optimally
 - ▶ How do we calculate the marginal product of a CEO?

Outline

Milanovic (2013)

Piketty (2014): Capital in the 21st Century

Piketty (2014): Data Collection

- Income data:
 - Long series of tax return data for UK, France, US, Japan and a few other advanced countries
 - ► Income Tax was only established in UK, US, France in 1909-1914

Piketty (2014): Data Collection

- Income data:
 - Long series of tax return data for UK, France, US, Japan and a few other advanced countries
 - ► Income Tax was only established in UK, US, France in 1909-1914
- Wealth data:
 - Estate tax and/or inheritance tax records
 - Available for fewer countries, but sometimes extends back to 18th Century

Piketty (2014): Data Collection

- Income data:
 - Long series of tax return data for UK, France, US, Japan and a few other advanced countries
 - ► Income Tax was only established in UK, US, France in 1909-1914
- Wealth data:
 - Estate tax and/or inheritance tax records
 - Available for fewer countries, but sometimes extends back to 18th Century
 - ▶ National balance sheet data for capital/income ratio
 - 19th Century novels (Balzac, Jane Austen)

- ► Forces of convergence:
 - ► Innovation and diffusion of knowledge

- ► Forces of convergence:
 - Innovation and diffusion of knowledge
- Forces of divergence:
 - r > g: capital's annual rate of return is larger than the overall rate of economic growth

- ► Forces of convergence:
 - Innovation and diffusion of knowledge
- Forces of divergence:
 - r > g: capital's annual rate of return is larger than the overall rate of economic growth
 - Inherited wealth grows faster than incomes and output
 - Marxist logic: capital's share of national income rises steadily

- ► Forces of convergence:
 - Innovation and diffusion of knowledge
- Forces of divergence:
 - r > g: capital's annual rate of return is larger than the overall rate of economic growth
 - Inherited wealth grows faster than incomes and output
 - ▶ Marxist logic: capital's share of national income rises steadily
 - ► Steady increase in income inequality within countries (top 1%)
 - Mainly present in the U.S.

First Law: $\alpha = r \times \beta$

- First Law: $\alpha = r \times \beta$
 - r= rate of return on capital, $\beta=\frac{K}{Y}$ is the capital-income ratio, $\alpha=\frac{rK}{Y}$ is capital's share of national income

- First Law: $\alpha = r \times \beta$
 - r = rate of return on capital, $\beta = \frac{K}{Y}$ is the capital-income ratio, $\alpha = \frac{rK}{V}$ is capital's share of national income
 - Notice that, in algebraic terms:

$$\frac{rK}{Y} = r \times \frac{K}{Y}$$

► This is just an accounting identity...

- First Law: $\alpha = r \times \beta$
 - r= rate of return on capital, $\beta=\frac{K}{Y}$ is the capital-income ratio, $\alpha=\frac{rK}{V}$ is capital's share of national income
 - Notice that, in algebraic terms:

$$\frac{rK}{Y} = r \times \frac{K}{Y}$$

- ► This is just an accounting identity...
- **Example:** if $\beta = 600\%$ and r = 5%, then $\alpha = r \times \beta = 30\%$

▶ Second Law: $\beta = \frac{s}{g} \iff s = \beta \cdot g$

- ▶ Second Law: $\beta = \frac{s}{g} \iff s = \beta \cdot g$
 - ▶ g = rate of growth of output, $\beta = \frac{K}{Y}$ capital-income ratio, s savings rate out of national output (net of depreciation)

- ▶ Second Law: $\beta = \frac{s}{g} \iff s = \beta \cdot g$
 - ▶ g = rate of growth of output, $\beta = \frac{K}{Y}$ capital-income ratio, s savings rate out of national output (net of depreciation)
 - Derivation:

$$\begin{aligned} \textit{savings} &= \textit{sY} &= & \textit{K}_{t+1} - \textit{K}_t \\ &= & \left(\frac{\textit{K}_{t+1}}{\textit{Y}_{t+1}} \textit{Y}_{t+1}\right) - \left(\frac{\textit{K}_t}{\textit{Y}_t} \textit{Y}_t\right) \\ &\approx & \frac{\textit{K}}{\textit{Y}} \left(\textit{Y}_{t+1} - \textit{Y}_t\right) \end{aligned}$$

► Then, dividing both sides by *Y*:

$$s = \frac{K}{Y} \left(\frac{Y_{t+1} - Y_t}{Y_t} \right)$$

$$s = \beta \cdot g$$

▶ Third Law: r > g

Piketty (2014): "Fundamental Laws"

- ▶ Third Law: r > g
 - ▶ In words: "The rate of return on capital systematically exceeds the overall rate of growth of income"

Piketty (2014): "Fundamental Laws"

- ▶ Third Law: r > g
 - ► In words: "The rate of return on capital systematically exceeds the overall rate of growth of income"
 - Empirically true for most of history, according to Piketty's data

Piketty (2014): "Fundamental Laws"

- ▶ Third Law: r > g
 - ► In words: "The rate of return on capital systematically exceeds the overall rate of growth of income"
 - ▶ Empirically true for most of history, according to Piketty's data
 - ► Also true in most standard growth models (eg, Solow, Harrod-Domar), but it depends on each model's assumptions

Piketty (2014): r vs. g in Historical Perspective

Source: Piketty (2014)

Piketty (2014): Main Conclusions

- Using historical sources and a basic theoretical framework,
 Piketty argues that forces of divergence are likely to dominate over forces of convergence
 - As long as there is no policy intervention
 - In some cases (eg, Interwar period) forces of convergence might prevail

Piketty (2014): Main Conclusions

- Using historical sources and a basic theoretical framework,
 Piketty argues that forces of divergence are likely to dominate over forces of convergence
 - As long as there is no policy intervention
 - In some cases (eg, Interwar period) forces of convergence might prevail
- Combining these factors with the "secular stagnation" hypothesis, Piketty predicts an increase in inequality in the 21st Century
 - Low rates of economic growth (g) make it more likely that we live in a world with r > g
 - Capital/Income ratio and capital's share of national income could rise back to 19th Century levels

Piketty (2014): Policy Recommendations

- ► Introduce a "global" tax on wealth
 - Piketty himself acknowledges that it will not happen

Piketty (2014): Policy Recommendations

- ► Introduce a "global" tax on wealth
 - Piketty himself acknowledges that it will not happen
- Links to parts of this module:
 - What is the elasticity of taxable wealth?
 - ► Land cannot move, but stocks and IP can

Piketty (2014): Policy Recommendations

- ► Introduce a "global" tax on wealth
 - Piketty himself acknowledges that it will not happen
- Links to parts of this module:
 - What is the elasticity of taxable wealth?
 - Land cannot move, but stocks and IP can
 - Extensive margin responses, eg. migration
 - ► How to ensure all jurisdictions abide by the tax?

IMF (2014): "Redistribution, Inequality & Growth"

- ▶ Main result: inequality negatively correlated with growth, and redistribution is not so bad!
- ▶ Data: use two measures of inequality
 - 1. Market inequality (before taxes & transfers)
 - 2. Net inequality (after taxes & transfers)

IMF (2014): "Redistribution, Inequality & Growth"

- ► Main result: inequality negatively correlated with growth, and redistribution is not so bad!
- ▶ Data: use two measures of inequality
 - 1. Market inequality (before taxes & transfers)
 - 2. Net inequality (after taxes & transfers)
- ▶ Redistribution defined as $R = Gini_{Market} Gini_{Net}$
- Huge data effort to homogenize household surveys in many countries, done by Solt (2009)
 - Varying data quality by country

IMF (2014): Results

- 1. More unequal societies tend to redistribute more
 - Strongest link among OECD countries

IMF (2014): Results

- 1. More unequal societies tend to redistribute more
 - Strongest link among OECD countries
- 2. Lower net inequality is robustly correlated with faster and more durable growth (for a given level of redistribution)

IMF (2014): Results

- 1. More unequal societies tend to redistribute more
 - Strongest link among OECD countries
- 2. Lower net inequality is robustly correlated with faster and more durable growth (for a given level of redistribution)
- 3. Redistribution has a (weakly) positive impact on growth
 - Only in extreme cases there is some evidence of direct negative effects

Gross vs. Net GINI

Source: IMF (2014)

Result 2: Inequality vs. Future Growth

Source: IMF (2014)

Result 3: Redistribution vs. Future Growth

Source: IMF (2014)

Result 2 & 3 in Regression Form

Table 3. The effect of inequality and redistribution on growth 1/

Dependent Variable: growth rate of per capita GDP			
Baseline	Baseline + controls		
(1)	(2)	(3)	(4)
-0.0069**	-0.0081**	-0.0140***	-0.0135***
(0.0034)	(0.0035)	(0.0037)	(0.0046)
-0.1435***	-0.0914***	-0.0739***	-0.1057**
(0.0444)	(0.0336)	(0.0266)	(0.0492)
0.0046	0.0258	0.0109	0.0530
(0.0492)	(0.0516)	(0.0428)	(0.0494)
	0.0241***	0.0250***	0.0076
	(0.0077)	(0.0084)	(0.0125)
	-0.0159	-0.0215	-0.0084
	(0.0182)	(0.0174)	(0.0160)
		0.0206***	0.0164*
		(0.0073)	(0.0099)
			-0.0424***
			(0.0158)
	Baseline (1) -0.0069** (0.0034) -0.1435*** (0.0444) 0.0046 (0.0492)	Baseline (1) (2) -0.0069** -0.0081** (0.0034) (0.0035) -0.1435*** -0.0914*** (0.0444) (0.0336) 0.0046 0.0258 (0.0492) (0.0516) 0.0241*** (0.0077) -0.0159 (0.0182)	Baseline Baseline + control (1) (2) (3) -0.0069** -0.0081** -0.0140*** (0.0034) (0.0035) (0.0037) -0.1435*** -0.0914*** -0.0739*** (0.0444) (0.0336) (0.0266) 0.0046 0.0258 0.0109 (0.0492) (0.0516) (0.0428) 0.0241**** 0.0250**** (0.0077) (0.0084) -0.0159 -0.0215 (0.0182) (0.0174) 0.0206**** (0.0073)

IMF (2014): What Redistribution Policies?

- ► Some win-win policies (*pseudo-consensus*):
 - ► Taxes on activities with negative externalities consumed mostly by the rich
 - Cash transfers to encourage school attendance by children in low-income households (CCTs)
 - ▶ Efficient spending on infrastructure, education, and health

IMF (2014): What Redistribution Policies?

- ► Some win-win policies (*pseudo-consensus*):
 - ► Taxes on activities with negative externalities consumed mostly by the rich
 - Cash transfers to encourage school attendance by children in low-income households (CCTs)
 - Efficient spending on infrastructure, education, and health
- All of the above can increase both equity and efficiency
- Of course, many other redistributive policies face the standard equity vs efficiency trade-off.