Lecture 3: ANOVA and Regression I

Bob O'Hara

The Problem

- Is the abundance of a species related to
 - range size
 - wing type
- Data: from the 'many' habitat type
 - make it simpler
- Split the problem into small bits
 - easier to teach!

The Data I Abundance of Wing Forms

The Data II Abundance and Wing Form

Simple Problem

- Does wing form affect abundance?
 - are their mean abundances different?
- One way ANOVA, 3 groups
- Generalise m groups, each with n_i observations

Model

- Start with a model
 - Each observation *j*, from group *i* has a value:

$$-y_{ij} = \mu_i + \varepsilon_{ij} \qquad (j=1...n_i \text{ for } i=1, m)$$

- $-\mu_i$ is the group mean, **systematic** component
- ε_{ij} is the error, the **random** component
- We can estimate the systematic part, but not perfectly because of the random part

Different Ways of Coding

- At the moment, all μ_i 's are different
 - no structure
- Can add it in several ways
 - Deviations from grand mean:

$$\mu_i = \mu_0 + a_i$$
 Constraint: $\sum_{i=1}^{m} \alpha_i = 0$

Deviations from a reference

$$\mu_1 = \mu_0, \ \mu_i = \mu_0 + a_i$$
 (*i*=2...*m*)

Coding in Pictures

Estimates

- Assume the ε_{ij} 's are normally distributed with mean 0 and variance σ^2 .
 - notation: $\boldsymbol{\varepsilon}_{ij} \sim N(0, \boldsymbol{\sigma}^2)$
- Best estimates of μ_i 's are their means \bar{y}_i
- Best estimate of the variance σ^2 is the sample variance, s^2

$$s^{2} = \frac{1}{\sum_{j=1}^{m} n_{j} - m} \sum_{j=1}^{m} \sum_{i=1}^{n} (y_{ij} - \overline{y}_{j})^{2}$$

Tests

- Test whether μ_i 's are the same
- Compare likelihoods
- Likelihoods are sums of squares

$$SS_{E} = \sum_{i=1}^{n} \sum_{j=1}^{m_{j}} y_{ij}^{2} - \sum_{i=1}^{n} \bar{y}_{i}^{2} SS_{E} = \sum_{i=1}^{m} n_{i} \bar{y}_{i}^{2} - m \bar{y}_{i}^{2}$$

Summarise in an ANOVA table

ANOVA Table

	df	SS	MS	F
Between	<i>m</i> -1	SS_{B}	SS _B /m	MS_B/MS_E
Within (error)	n-m	SS_{E}	SS _E /(n-m)	
Total	<i>n</i> -1	SS_{T}		

What does this mean?

$$SS_{W} = SS_1 + SS_2 + SS_3 + SS_4$$
$$SS_{TOT} = SS_B + SS_E$$

What it means II

• If the means are the same, then the differences in the means (as measured by SS_B) can all be explained by the error (as measured by SS_W)

Wing Size and Abundance

- 3 groups (Small, Dimorphic, Big)
- Are their abundances different?

ANOVA Table

	df	SS	MS	F	Pr(F)
Wings	2	1.12	0.56	1.69	0.19
Residuals (error)	73	24.4	0.33		
Total	75	25.5	_		

(Sums of Squares multiplied by 1000)

Summary Statistics

	Estimate	Std. Error	t value	$e \Pr(> t)$
(Intercept)	0.150	0.0061	24.6	<2e-16
Dimorphic	-0.0015	0.00734	-0.21	0.83
Small	-0.0089	0.00665	-1.34	0.18

Residual standard error: 0.0183 on 73 degrees of freedom

- Level Big = Intercept, others give difference from this class
- *t*-tests are for difference between level and control level (in this case Big)

Mean for Small is 0.150 - 0.0089 = 0.159

Variance for all is 0.0183

post hoc tests

- If there is a difference, where is it?
- Can use "orthogonal contrasts" for preplanned tests
 - e.g. control vs treatments
- Most of the time: test everything
 - use *t*-tests

One Test

- Compare Dimorphic and Small
- Estimates:

	Mean	Standard Error
Dimorphic	-0.0015	0.00734
Small	-0.0089	0.00665
Residual Mear	Square (σ^2) :	0.33 (73 df)

• t-test:

$$t = \frac{x_1 - x_2}{\sqrt{\sigma^2 \left(\frac{1}{m_1} + \frac{1}{m_2}\right)}}$$

Multiple Testing

- Do many tests at 5%
- If we do 20 tests where the null hypothesis is true, we would expect 1 to be rejected by chance
- We need to adjust the significance level
- Bonferroni: k tests at a%
 - change test level from a to a/k%
 - works OK if k not too large

Significance Tests are Evil

- A *t* statistic increases by $n^{1/2}$ as the sample size (n) increases
- For example: Correlation

$$n=10$$
, $\rho=0.39$, $p=0.26$
 $n=30$, $\rho=0.39$, $p=0.033$

- With very large sample sizes, almost *p* values will be <5%, but the effect sizes could be tiny
- You have been warned....

Simple Regression

- Similar to ANOVA
- Also use an ANOVA table to test hypotheses
- Estimate of slope and intercept:
 - intercept: $\hat{\beta}_0 = \bar{y} \hat{\beta}_1 \bar{x}$
 - slope: $\hat{\beta}_1 = \frac{Cov(x, y)}{Var(x)}$

Regression Picture

$$SS_{TOT} = SS_{REG} + SS_{ERR}$$

120

100

80

 SS_{ERR}
 SS_{REG}
 SS_{REG}

ANOVA Table

	df	SS	MS	F
Regression	1	SS _{REG}	SS _{REG} /1	MS _{REG} /MS _{ERR}
Error	<i>n</i> -2	SS _{ERR}	$SS_{ERR}/(n-2)$	
Total	<i>n</i> -1	SS_{TOT}	_	

Does Range Size Predict Abundance?

	df	SS	MS	F	Pr(>F)
Regression	1	8.20	8.20	35.09	<10 ⁻⁷
Error	74	17.3	0.233		
Total	75	25.5 (S	ums of Squ	uares multip	lied by 1000)

Range Size - Abundance II

	Estimate	Std. Error	t value Pr(> t)
Intercept	0.029	$3.14x10^{-3}$	$41.0 < 2 \times 10^{-16}$
Range Size	1.18×10^{-4}	1.99×10^{-5}	$5.92 < 10^{-7}$

Residual standard error: 0.0153 on 74 degrees of freedom Multiple R-Squared: 32%, Adjusted R-squared: 31%

- R²: Percent of variation explained by the regression
- Adjusted R²: adjusts for the number of degrees of freedom
 - easier to compare different sized models

Regression and ANOVA

- Actually the same
- One-way ANOVA, 2 groups:

Regression = ANOVA

- One way ANOVA, 3 groups
 - Regression with 2 regressors
 - View Level 1 as a reference
 - Levels 2 and 3 change the mean from Level 1

ANOVA - more parameters

- In 1 way ANOVA, adding each group adds another regression
 - number of parameters builds up
- This is why replication is such an issue
- Makes design of experiments important

Into something more difficult

• 2 way ANOVA: no interactions

Interactions

- Here the mean of the ringed group is determined by the 3 other parameters
 - $-\mu$, a_1 and a_2
- What if it is different?

Interaction

•
$$y_{ijk} = \mu_0 + \alpha_1 + \alpha_2 + \gamma_{12} + \epsilon_{12k}$$

Back to Beetles

- As well as wing form, we also know whether they like human habitats
- Does this have an effect?
- Does any effect vary with wing form?

Box plots

The ANOVA

	df	SS	MS	F	Pr(F)	
Wings	2	1.12	0.56	1.69	0.19	
Human	1	0.14	0.14	0.42	0.52	
Wings by Human	2	0.82	0.41	1.23	0.30	
Residuals	70	23.4	0.33			
Total	75	25.5	_			

The ANOVA - change order

The first ondings of def						
	df	SS	MS	F	Pr(F)	
Human	1	0.17	0.17	0.51	0.48	
Wings	2	1.09	0.54	1.63	0.20	
Wings by Human	2	0.82	0.41	1.23	0.30	
Residuals	70	23.4	0.33			
Total	75	25.5	_			

Comments on the ANOVA

- The total sums of squares and total df will be the same for different models
 - total amount of variation in the model is the same
- Terms are added sequentially
 - Terms are really (Wings), (Human | Wings), (Wings by Human | Human & Wings)
- Order in which they are added makes a slight difference

Regression + ANOVA

- As they are both the same, can do together
- And then can add lots of other factors...
- What does an interaction mean?
 - slopes are different for different levels of a factor
- What would an interaction between 2 slopes mean?
 - the model would include $\beta_1 x_1 + \beta_2 x_2 + \beta_{12} x_1 x_2$

Different Slopes

Regression Interaction

Getting much more complicated

- As well as fitting linear terms for slopes, we can also fit polynomials
 - $-x^{2}, x^{3}, \text{ etc.}$
- Interactions are a natural extension
 - Model: $(1+x_1)(1+x_2) = 1+x_1+x_2+x_1x_2+x_1^2+x_2^2$
- When fitting polynomial terms, keep lower order terms
 - unless you've got a good reason to drop them!

Interactions

- The order they are added can be important for the ANOVA
 - Unless the experiment is balanced
- When adding interactions, keep main effects
 - unless you've got a good reason to drop them!
- In the presence of an interaction, the main effect is normally meaningless

Bad Main Effects...

ANOVA tables

		Data S	Data Set 1			Data Set2		
	df	SS	F	Pr(>F)	SS	F	Pr(>F)	
Factor2	1	31.37	35.8	$3x10^{-7}$	11.9	8.41	0.0057	
Factor1	1	0.75	0.85	0.36	7.17	5.05	0.029	
Factor1 by 2	1	8.93	10.2	0.0025	20.8	14.66	$3x10^{-4}$	
Error	46	40.26			65.30			

With a significant interactions

- Main effects can be informative when
 - All changes are in the same direction
 - from observational studies, the overall direction may be interesting
- If the interaction can be considered a random effect
 - then change the ANOVA to test against the correct error term