PCA

The slides have been created based on Dr. Sharifi Zarchi's Machine Learning course slides.

High Dimensional Data

- High dimensions has many features.
- EEG signals from the brain, recorded with 56 channels and 3000 time points per trial.

High Dimensional Data

Social media

Figure 1: Figure reference

Dimensionality Reduction Benefits

Visualization

- Project high dimensional data into 2D or 3D.
- Helps avoid overfitting
 - Reducing noise by reducing features.
 - Improves accuracy by reducing noise.
- More efficient use of resources
 - Time, Memory, CPU

Dimensionality Reduction Techniques

Feature Selection

Select a subset from a given feature set.

Feature Extraction

 A linear or non-linear transform from the original feature space to a lower dimension space.

 Maximize retention of important information while reducing dimensionality What is important information? 	y.

Variance of Data

- Maximize retention of **important information** while reducing dimensionality.
- Information: Variance of projected data

Principal Component Idea

First PCA axis:

Principal Component Idea

• First and second PCA axes:

Random vs Principal Projection

• Random direction versus principal component:

Definition

• **Goal**: reducing the dimensionality of the data while preserving important aspects of the data.

• Suppose
$$\mathbf{X} = \begin{pmatrix} \mathbf{X}_{1}^{T} \\ \vdots \\ \mathbf{X}_{N}^{T} \end{pmatrix}_{N \times d} = \begin{pmatrix} F_{1} & F_{2} & F_{d} \\ x_{11} & x_{12} & \dots & x_{1d} \\ x_{21} & x_{22} & \dots & x_{2d} \\ \vdots & & & & \\ x_{N1} & x_{N2} & \dots & x_{Nd} \end{pmatrix}$$

- $\mathbf{X}_{N \times d} \xrightarrow{\mathrm{PCA}} \tilde{\mathbf{X}}_{N \times k}$ with $k \leq d$
- **Assumption**: Data is mean-centered, which is: $\mu_X = \frac{1}{N} \sum_{i=1}^{N} X_i = 0_{d \times 1}$

Orthogonal projection of the data onto a **lower-dimensional** linear **subspace** that:

- Interpretation 1. Maximizes variance of projected data.
- **Interpretation 2.** Minimizes the sum of squared distances to the subspace.

Pre processing

- Mean-center the data.
 - Zeroing out the mean of each feature.
- Scaling to normalize each feature to have variance 1 (an arbitrary step).
 - Might affect results.
 - It helps when unit of measurements of features are different and some features may be ignored without normalization.

Background

- · Before jumping to PCA algorithm, we should be familiar with followings
 - What are eigenvalues and eigenvectors?
 - Sample covariance matrix

What are Eigenvalue and Eigenvector?

- **Eigenvector:** A non-zero vector that multiplies only by a scalar factor when a linear transformation is applied.
- **Eigenvalue:** The scalar factor by which the eigenvector is scaled.
- **Equation** for a $n \times n$ matrix:

$$Av = \lambda v$$

- Where
 - A: A square matrix
 - v: Eigenvector
 - λ : Eigenvalue

How to find eigenvalue and eigenvector?

We know that

$$A\nu = \lambda \nu$$

So

$$A\nu - \lambda \nu = 0$$

$$(A - \lambda I) v = 0$$

• v can not be zero, so:

$$det(A - \lambda I) = 0$$

- Solve for λ
- Substitute λ back into the equation $Av = \lambda v$ to find v.

Example

- Assume $A = \begin{pmatrix} 4 & -5 \\ 2 & -3 \end{pmatrix}$
- $A \lambda I = ?$

What is covariance?

- Covariance is a measure of how much two random features vary together.
- $Cov(X, Y) = \mathbb{E}[(X \mathbb{E}[X])(Y \mathbb{E}[Y])] = \mathbb{E}[(Y \mathbb{E}[Y])(X \mathbb{E}[X])] = Cov(Y, X)$
- So covariance is symmetric.
- Such as heights and weights of individuals.

What is covariance matrix?

- A covariance matrix generalizes the concept of covariance to multiple features.
- For a random vector $\mathbf{F} = [F_1, F_2, \dots, F_d]$:

$$\Sigma = \begin{pmatrix} \operatorname{Var}(F_1) & \operatorname{Cov}(F_1, F_2) & \cdots & \operatorname{Cov}(F_1, F_d) \\ \operatorname{Cov}(F_2, F_1) & \operatorname{Var}(F_2) & \cdots & \operatorname{Cov}(F_2, F_d) \\ \vdots & \vdots & \ddots & \vdots \\ \operatorname{Cov}(F_d, F_1) & \operatorname{Cov}(F_d, F_2) & \cdots & \operatorname{Var}(F_d) \end{pmatrix}$$

 The diagonal elements are the variances, and off-diagonal elements are covariances.

Covariance Matrix Example

• If $\Sigma = \begin{pmatrix} a & 0 \\ 0 & a \end{pmatrix}$, then:

• If $\Sigma = \begin{pmatrix} a & 0 \\ 0 & d \end{pmatrix}$ and a > d, then:

• If $\Sigma = \begin{pmatrix} a & b \\ b & d \end{pmatrix}$, a > d, and b > 0, then:

• If $\Sigma = \begin{pmatrix} a & b \\ b & d \end{pmatrix}$, a > d, and b < 0, then:

Sample Covariance Matrix

- In practice, we estimate covariance from sample data.
- Sample Covariance Matrix: Given N samples of d features, the sample covariance matrix Σ is:

$$\Sigma_{d \times d} = \frac{1}{N-1} \sum_{i=1}^{N} (X_i - \bar{X}) (X_i - \bar{X})^T$$

• Where X_i is the i-th sample, and $\bar{X}_{d\times 1}$ is the mean of the samples.

Sample Covariance Example

Suppose we have the following three samples each one having two features F₁ and F₂:

Sample	\mathbf{F}_1	\mathbf{F}_2
X_1	3	3
X_2	4	7
X_3	5	8
Χ	4	6

$$\Sigma = \frac{1}{N-1} \sum_{i=1}^{N} (X_i - \bar{X})(X_i - \bar{X})^T = \frac{1}{2} \begin{pmatrix} 1 & 3 \\ 3 & 9 \end{pmatrix} + \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} + \begin{pmatrix} 1 & 2 \\ 2 & 4 \end{pmatrix} = \begin{pmatrix} 1 & 2.5 \\ 2.5 & 7 \end{pmatrix}$$

PCA

• Compute Eigenvalues and Eigenvectors of the Covariance matrix to Identify Principal Components.

• Why?

Choose the number of PC

- For d original dimensions, the sample covariance matrix is $d \times d$, and has up to d eigenvectors. So we can have up to d principal components.
- Can ignore the components of lesser significance.

• We lose some information, but if the eigenvalues are small, we don't lose much.

Image compression

- Divide the original 372 × 492 image into patches.
 - Each patch is an instance containing 12×12 pixels on a grid.
- Consider each as a 144-D vector.

• 144D to 60D

• 144D to 16D

• 144D to 3D

