

The University of Azad Jammu and Kashmir, Muzaffarabad

Name	Kamal Ali Akmal
Course Name	Computer Architecture and Logic Design
Submitted to	Engr. Sidra Rafique
Semester	2nd
Session	2024-2028
Roll No	2024-SE-38
Lab No	09
Submission date	28 August 2025

SR-Latch: -

The SR (Set-Reset) latch is a 1-bit memory with SET and RESET inputs labelled as 'S' and 'R,' respectively. It is also a bistable device meaning it has 2 stable states namely 0 and 1. The SET input sets the device to produce output (Q) equal to 1, while the RESET input resets the device to produce output equal to 0.

Inputs and Outputs

• Inputs: R (Reset) and S (Set)

• Outputs: \mathbf{Q} and $\overline{\mathbf{Q}}$ (complement of \mathbf{Q})

Basic Implementations

There are **two common ways** to build an S-R latch:

(A) Using NOR gates

• Inputs are active **HIGH**.

• Circuit: Two cross-coupled NOR gates.

S	R	Q _{n+1}	Q _{n+1}	Note
0	0	Qn	Qn	RETAIN
0	1	1	0	RESET
1	0	0	1	SET
1	1	0	0	FORBIDDEN

Table 2: Truth table of S R latch using NOR gates

(B) Using NAND gates

- Inputs are active **LOW**.
- Circuit: Two cross-coupled NAND gates.

S	R	Q _{n+1}	Q _{n+1}	Note
0	0	1	1	FORBIDDEN
0	1	1	0	SET
1	0	0	1	RESET
1	1	Qn	Qn	RETAIN

Table 1: Truth table of S R latch using NAND gates

This is how to understand the truth-table of SR latch using NOR gates:

When both 'S' and 'R' are 0, the latch maintains its state. Whatever 'Q' was it stayed the same.

When 'S' is 0 and 'R' is 1, the latch resets, forcing 'Q' to be 0.

When 'S' is 1 and 'R' is 0, the latch sets, making 'Q'=1.

When both 'S' and 'R' are 1, it's an invalid or ambiguous condition (often referred to as a "forbidden" state in SR latch), resulting in both Q and Q being the same and 0.

Truth table & Equation (Q)

Truth table & Equation (Q')

