XOR Count

October XXth, 2017

FluxFingers

Workgroup Symmetric Cryptography Ruhr University Bochum

Friedrich Wiemer

RUB

Joint Work - Its not me alone

Thorsten Kranz, Gregor Leander, Ko Stoffelen, Friedrich Wiemer

RUHR UNIVERSITÄT BOCHUM

Radboud University

Outline

- 1 Motivation
- 2 Preliminaries
- 3 State of the Art and Related Work
- 4 Future Work

What is the XOR count, and why is it important?

Some facts

- Lightweight Block Ciphers
- Efficient Linear Layers
- MDS matrices are "optimal" (regarding security)¹

¹Are they?

What is the XOR count, and why is it important?

Some facts

- Lightweight Block Ciphers
- Efficient Linear Layers
- MDS matrices are "optimal" (regarding security)¹
- What is the lightest implementable MDS matrix?
- What about additional features (Involutory)?

¹Are they?

What is the XOR count,

and why is it important?

Some facts

- Lightweight Block Ciphers
- Efficient Linear Layers
- MDS matrices are "optimal" (regarding security)¹
- What is the lightest implementable MDS matrix?
- What about additional features (Involutory)?

The XOR count

- Metric for needed hardware resources
- Smaller is better

¹Are they?

Definition: MDS

A matrix M of dimension k over the field \mathbb{F} is *maximum distance* separable (MDS), iff all possible submatrices of M are invertible (or nonsingular).

Definition: MDS

A matrix M of dimension k over the field \mathbb{F} is maximum distance separable (MDS), iff all possible submatrices of M are invertible (or nonsingular).

Example

The AES MIXCOLUMN matrix is defined over $\mathbb{F}_{2^8} \cong \mathbb{F}[x]/0 \times 11b$:

$$\begin{pmatrix} 0 \times 02 & 0 \times 03 & 0 \times 01 & 0 \times 01 \\ 0 \times 01 & 0 \times 02 & 0 \times 03 & 0 \times 01 \\ 0 \times 01 & 0 \times 01 & 0 \times 02 & 0 \times 03 \\ 0 \times 03 & 0 \times 01 & 0 \times 01 & 0 \times 02 \end{pmatrix} = \begin{pmatrix} x & x+1 & 1 & 1 \\ 1 & x & x+1 & 1 \\ 1 & 1 & x & x+1 \\ x+1 & 1 & 1 & x \end{pmatrix}$$

This is a (right) *circulant* matrix: circ(x, x + 1, 1, 1).

Constructions

Constructions

Constructions

Representations

How to implement this in hardware?

- This is about hardware implementations
- How do we implement a field multiplication in hardware?
- How do we implement a matrix multiplication in hardware?

Representations

How to implement this in hardware?

- This is about hardware implementations
- How do we implement a *field multiplication* in hardware?
- How do we implement a matrix multiplication in hardware?

Example

$$\alpha \rightarrow \cdot 1 \rightarrow \beta$$

$$\alpha \longrightarrow x \longrightarrow f$$

Representations

How to implement this in hardware?

- This is about hardware implementations
- How do we implement a *field multiplication* in hardware?
- How do we implement a matrix multiplication in hardware?

Example

Field Multiplication in Hardware

From $\mathbb{F}_2[x]/p(x)$ to \mathbb{F}_2^n

OK, this one is easy \mathfrak{D} Example in $\mathbb{F}_2[x]/0x13$:

From $\mathbb{F}_2[x]/p(x)$ to \mathbb{F}_2^n

Implement $\alpha \rightarrow 1 \rightarrow \beta$

OK, this one is easy \mathfrak{D} Example in $\mathbb{F}_2[x]/0x13$:

$$\begin{split} \alpha &= \alpha_0 + \alpha_1 x + \alpha_2 x^2 + \alpha_3 x^3 \\ \beta &= \beta_0 + \beta_1 x + \beta_2 x^2 + \beta_3 x^3 \\ &= \alpha_0 + \alpha_1 x + \alpha_2 x^2 + \alpha_3 x^3 \end{split}$$

Field Multiplication in Hardware

From $\mathbb{F}_2[x]/p(x)$ to \mathbb{F}_2^n

Example in $\mathbb{F}_2[x]/0x13$:

From $\mathbb{F}_2[x]/p(x)$ to \mathbb{F}_2^n

Implement $\alpha \to x \to \beta$

Example in $\mathbb{F}_2[x]/0x13$:

$$\begin{split} \alpha &= \alpha_0 + \alpha_1 x + \alpha_2 x^2 + \alpha_3 x^3 \\ x^4 &\equiv x + 1 \text{ mod } 0x13 \\ \beta &= \beta_0 + \beta_1 x + \beta_2 x^2 + \beta_3 x^3 \\ &= x \cdot (\alpha_0 + \alpha_1 x + \alpha_2 x^2 + \alpha_3 x^3) \\ &\equiv \alpha_3 + (\alpha_0 + \alpha_3) x + \alpha_1 x^2 + \alpha_2 x^3) \end{split}$$

From $\mathbb{F}_2[x]/p(x)$ to \mathbb{F}_2^n

In matrix notation for $\mathbb{F}_2[x]/0x13$:

$$\begin{split} \beta &= 1 \cdot \alpha \Leftrightarrow \begin{pmatrix} \beta_0 \\ \beta_1 \\ \beta_2 \\ \beta_3 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} \alpha_0 \\ \alpha_1 \\ \alpha_2 \\ \alpha_3 \end{pmatrix} \\ \beta &= x \cdot \alpha \Leftrightarrow \begin{pmatrix} \beta_0 \\ \beta_1 \\ \beta_2 \\ \beta_3 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix} \cdot \begin{pmatrix} \alpha_0 \\ \alpha_1 \\ \alpha_2 \\ \alpha_3 \end{pmatrix} \end{split}$$

From $\mathbb{F}_2[x]/p(x)$ to \mathbb{F}_2^n

In matrix notation for $\mathbb{F}_2[x]/0x13$:

$$\begin{split} \beta &= 1 \cdot \alpha \Leftrightarrow \begin{pmatrix} \beta_0 \\ \beta_1 \\ \beta_2 \\ \beta_3 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} \alpha_0 \\ \alpha_1 \\ \alpha_2 \\ \alpha_3 \end{pmatrix} \\ \beta &= x \cdot \alpha \Leftrightarrow \begin{pmatrix} \beta_0 \\ \beta_1 \\ \beta_2 \\ \beta_3 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix} \cdot \begin{pmatrix} \alpha_0 \\ \alpha_1 \\ \alpha_2 \\ \alpha_3 \end{pmatrix} \end{split}$$

Companion Matrix

We call $M_{p(x)} = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}$ the *companion matrix* of the polynomial p(x) = 0x13. For any element $\gamma \in \mathbb{F}_2[x]/p(x)$, we denote by M_{γ} the matrix that implements the multiplication by this element in \mathbb{F}_2^n .

Counting XOR's

Example

We can rewrite the AES MIXCOLUMN matrix as:

$$\mathfrak{M}_{\text{AES}} = \text{circ}(x, x+1, 1, 1) \cong \text{circ}(M_x, M_{x+1}, M_1, M_1).$$

Starting in $(\mathbb{F}_2[x]/0x11b)^{4\times 4}$, we end up in $(\mathbb{F}_2^{8\times 8})^{4\times 4}\cong \mathbb{F}_2^{32\times 32}$.

Example

We can rewrite the AES MIXCOLUMN matrix as:

$$\mathfrak{M}_{\text{AES}} = \text{circ}(x, x+1, 1, 1) \cong \text{circ}(M_x, M_{x+1}, M_1, M_1).$$

Starting in $(\mathbb{F}_2[x]/0x11b)^{4\times 4}$, we end up in $(\mathbb{F}_2^{8\times 8})^{4\times 4}\cong \mathbb{F}_2^{32\times 32}$.

A first XOR-count

To implement multiplication by $\gamma,$ we need $\mathsf{hw}(M_\gamma) - \mathsf{dim}(M_\gamma)$ many xor's. Thus

$$\begin{split} \text{XOR-count}(\mathcal{M}_{\text{AES}}) &= 4 \cdot (\text{hw}(M_{x}) + \text{hw}(M_{x+1}) + 2 \cdot \text{hw}(M_{1})) - 32 \\ &= 4 \cdot (11 + 19 + 2 \cdot 8) - 32 = 152. \end{split}$$

The General Linear Group

Generalise a bit

Instead of choosing elements from $\mathbb{F}_{2^n} \cong \mathbb{F}_2[x]/p(x)$ we can extend our possible choices for "multiplication matrices" by exploiting the following.

The General Linear Group

Generalise a bit

Instead of choosing elements from $\mathbb{F}_{2^n} \cong \mathbb{F}_2[x]/p(x)$ we can extend our possible choices for "multiplication matrices" by exploiting the following.

Todo

Maybe remove this?

The Stupidity of recent XOR Count Papers

October XXth, 2017

FluxFingers

Workgroup Symmetric Cryptography Ruhr University Bochum

Friedrich Wiemer

RUB

State of the Art

Before our Paper

Related Work I

Related Work II

State of the Art

After our Paper

Future Work

Questions?

Thank you for your attention!

Mainboard & Questionmark Images: flickr

References I

