

Escuela Técnica Superior de Ingeniería de Telecomunicación

Dpto. Teoría de la Señal y Comunicaciones y Sistemas Telemáticos y Computación

Fundamentos de las Comunicaciones

Grado en Ingeniería en Sistemas Audiovisuales y Multimedia

Examen 1º de la Convocatoria Ordinaria Curso 2022 – 2023

LXdilleli I	1- de la convocatoria ordinaria carso 2022 - 2025
NOMBRE Y APELLIDOS:	
NIF:	
, , ,	una de las hojas que entregue, y numeradas. es durante la realización de este examen.
Las respuestas se tendrán o	que dar en las hojas facilitadas con tal fin, en las que tienen que
, , ,	idos del examinado. En estas hojas se identifica el ejercicio y sus se considerarán los resultados que no consten en dichas hojas.
So nuodon ontrogor los hoi	as an las que se havan realizada los desarrelles nara obtanor la

Se pueden entregar las hojas en las que se hayan realizado los desarrollos para obtener la contestación y se entregarán junto con el juego de hojas de contestación correspondientes al ejercicio en cuestión. En dichas hojas se identificará el alumno, nombre y apellidos, y se indicará pregunta y apartado que se esté tratando y la solución se remarcará con un recuadro. En cualquier caso, la solución que prevalecerá será la dada en las hojas de contestación.

No está permitido utilizar libros, apuntes y hojas con fórmulas. No se pueden utilizar PCs o Tabletas. Sí se pueden utilizar calculadoras científicas no programables y sin memoria alfanumérica.

La puntuación total del examen es sobre 10 puntos y en cada pregunta se indica su puntuación máxima en caso de ser su contestación correcta. Si la pregunta tuviera varias opciones a contestar, a elegir por el alumno, únicamente se puede contestar una de las opciones. Las contestaciones a las preguntas tienen que ser razonadas.

1.	En la figura 1 se muestra el modelo para una primera etapa de un sistema receptor formado por
	la cascada de dos sistemas lineales e invariantes en el tiempo con respuestas al impulso $h_c(t)$ y
	$h_r(t)$, respectivamente.

Determine:

a. Expresión de la respuesta en frecuencia del primer sistema, $H_c(f)$, en función de suma de funciones 'cuadrado' en sucesión con la frecuencia, y parámetros f_c , B, τ_c y K_c . (1 punto)

h Resni	iesta al impulsi	o en frecuenc	ria como seña	al analítica de	$H(f) \widehat{H}(f)$	Para ello

b. Respuesta al impulso en frecuencia como señal analítica de $H_c(f)$, $\widehat{H}_c(f)$. Para ello, parta de una señal genérica en el tiempo, x(t), de la definición de señal analítica en el tiempo, $\widehat{x}(t)$, y de su transformada de Fourier, $\widehat{X}(f)$, alcanzando una expresión en función de X(f). Aplique el resultado a $H_c(f)$ para obtener $\widehat{H}_c(f)$. (1 punto)

c. Respuesta equivalente paso bajo de $\widehat{H}_c(f)$, $\underline{H}_c(f)$, respecto de f_c . Para ello, primero demuestre la relación existente entre la señal analítica de una señal paso banda y su equivalente paso bajo en frecuencia, partiendo de la relación en el tiempo y realizando la transformada de Fourier. Además, realice las gráficas del módulo y la fase de $\underline{H}_c(f)$. En el caso de no haber resuelto la primera pregunta considere que $\widehat{H}_c(f) = K_a \wedge \left(\frac{f-f_a}{B_a}\right) e^{-j2\pi\tau_a(f-f_a)}$ (1,5 punto)

d. Considerando las densidades espectrales de potencial de la señal transmitida $y_t(t)$, $S_{yt}(f)$, y del ruido AWGN que se incorpora la entrada del segundo sistema en cascada, calcule la relación S/N en el punto A en unidades naturales y logarítmicas (dB) (ver figura 1). (2, puntos)

Figura 1. Diagrama de bloques del sistema compuesto por dos subsistemas lineales en cascada con respuesta en frecuencia $H_c(f)$ y $H_r(f)$, y una fuente de ruido AWGN que se incorpora entre los dos sistemas.

2.	Un sistema de telecomunicaciones utiliza la modulación en FM para la transminión de una señal, $x(t)$. El ancho de banda de dicha señal base son 8 KHz (AB_x), su valor máximo es 200 mV y potencia 20 mW. A la entrada del receptor se detecta un ruido blanco (AWGN) con una densidad espectral de potencia $n_0/2$ (= 1,5x10 ⁻⁶ W/Hz). Otros datos a considerar son el factor de modulación, k , 40 KHz y la S/N mínima después del demodulador son 3 dB. a. Calcule Ancho de Banda de la señal paso banda, AB_{FM} , potencia mínima recibida, P_{rm} , y S/N mínima antes del demodulador. ($2,5$ puntos)

b.	En una prueba de campo del sistema se observa que la potencia recibida a la entrada de un túnel (d = 0 Km) y su salida (d = 3 Km) son -14,00 dBW y las pérdidas en el interior del túnel en función de la distancia siguen la expresión $L(d) = -d(d-3)$ dB, siendo $0 \le d \le 3$ Km. Determine las posiciones del túnel en las que el sistema no funciona debido al requisito de S/N mínima. En el caso de no haber calculado la potencia mínima recibida del apartado anterior, utilice el valor de -16,00 dBW. ($1,5$ puntos)

Fórmulas

Trigonometría

$$sen(x \pm y) = sen(x) cos(y) \pm cos(x) sen(y)$$

$$sen(x) sen(y) = \frac{1}{2} (cos(x - y) - cos(x + y))$$

$$sen(x) cos(y) = \frac{1}{2} (sen(x + y) + sen(x - y))$$

$$\cos(x \pm y) = \cos(x)\cos(y) \mp \sin(x)\sin(y)$$

$$\cos(x)\cos(y) = \frac{1}{2}(\cos(x+y) + \cos(x-y))$$

$$\cos(x)\sin(y) = \frac{1}{2}(\sin(x+y) - \sin(x-y))$$

Sistemas Lineales (x(t) señal estocástica real y h(t) L.T.I)

$$y(t) = h(t) * x(t)$$
 $Y(f) = H(f)X(f)$

Densidad Espectral de Potencia: $S_x(f) = \text{TF}[R_x(\tau)]$

$$S_y(f) = |H(f)|^2 S_x(f) \qquad \qquad P_x = \int_{-\infty}^{\infty} S_x(f) df \qquad \qquad P_y = \int_{-\infty}^{\infty} S_y(f) df = \int_{-\infty}^{\infty} |H(f)|^2 S_x(f) df \qquad \qquad P = \frac{V^2}{R}$$

Transformadas, Funciones e Igualdades

$$\operatorname{TF}\left[\prod\left(\frac{t}{T}\right)\right] = T\operatorname{sinc}(T\pi f) \qquad \operatorname{TF}[\operatorname{sinc}(B\pi t)] = \frac{1}{|B|}\prod\left(\frac{f}{B}\right)$$

$$\operatorname{TF}\left[\bigwedge\left(\frac{t}{T}\right)\right] = T\operatorname{sinc}^2(T\pi f) \qquad \operatorname{TF}[\operatorname{sinc}^2(B\pi t)] = \frac{1}{|B|}\bigwedge\left(\frac{f}{B}\right)$$

$$\operatorname{TF}[\cos(2\pi f_c t)] = \frac{1}{2}\delta(f - f_c) + \frac{1}{2}\delta(f + f_c) \qquad \operatorname{TF}[\operatorname{sen}(2\pi f_c t)] = \frac{1}{2j}\delta(f - f_c) - \frac{1}{2j}\delta(f + f_c)$$

$$TF[f(t-\tau)] = TF[f(t) * \delta(t-\tau)] = TF[f(t)]e^{-j2\pi\tau f} = F(f)e^{-j2\pi\tau f}$$

$$TF[f(t)e^{j2\pi f_c t}] = TF[f(t)] * TF[e^{j2\pi f_c t}] = TF[f(t)] * \delta(f - f_c) = F(f - f_c)$$

$$TF[TH[f(t)]] = TF\left[\frac{1}{\pi t} * f(t)\right] = -j\operatorname{sign}(f)F(f)$$

$$\prod {x \choose A} = \begin{cases} 1, & -A/2 \le x \le A/2 \\ 0, & Resto \end{cases}$$

$$\bigwedge {x \choose A} = \begin{cases} -\frac{2}{A} \left(x - \frac{A}{2}\right), & 0 \le x \le A/2 \\ \frac{2}{A} \left(x + \frac{A}{2}\right), & -\frac{A}{2} \le x < 0 \\ 0, & Resto \end{cases}$$

$$\int_{-\infty}^{\infty} \delta(x)dx = 1$$

$$\int_{-\infty}^{\infty} f(x) \, \delta(x - x_0) dx = f(x_0)$$

Señal Paso Banda, Analítica, Equivalente Paso Bajo y Modulación FM

$$y(t) = x_f(t)\cos(2\pi f_c t) - x_c(t)\sin(2\pi f_c t) \qquad y(t) = A(t)\cos\left(2\pi f_c t + \theta(t)\right)$$

$$\overline{x}(t) = x(t) + j \text{TH}[x(t)] \qquad \underline{x}(t) = \overline{x}(t)e^{-j2\pi f_c t} \qquad \underline{x}(t) = x_f(t) + j x_c(t)$$

$$y_{FM}(t) = A\cos\left(2\pi f_c t + 2\pi k \int_0^t x(\tau) d\tau\right) \qquad SNR_{FM} = 3\beta^2 P_{xn}SNR_{BB}; SNR_{BB} = \frac{P_r}{\frac{n_0}{2}2AB_{BB}}; P_{rFM} = \frac{A^2}{2}$$

$$\beta = \frac{\Delta f}{f_{MAYBB}}; k = \frac{\Delta f}{|x|_{MAY}}; P_{xn} = \frac{P_x}{|x|_{MAY}^2}; AB = 2(1+\beta)f_{MAXBB}$$