Решение задач для 11 класса.

- 1. Идеальный одноатомный газ (количество вещества v) участвует в циклическом процессе, состоящем из двух изотерм и двух изохор. При изохорическом нагревании (1) газ получает количество теплоты Q_1 , а при изотермическом расширении (2) количество теплоты Q_2 . Минимальная температура газа в данном циклическом процессе равна T_{\min} . Найдите:
- а) максимальную температуру газа;
- б) количества теплоты, отданные газом при изохорическом охлаждении и изотермическом сжатии;
- в) КПД теплового двигателя, работающего по рассматриваемому циклу.

Решение

Количество теплоты Q_1 , сообщаемое газу при изохорическом нагревании от температуры T_{\min} , которую газ имел на нижней изотерме, до максимальной температуры T_{\max} на верхней изотерме, идёт на изменение его внутренней энергии: $Q_1 = (3/2) \nu R (T_{\max} - T_{\min})$.

Следовательно,
$$T_{\text{max}} = T_{\text{min}} + \frac{Q_1}{(3/2)\nu R}$$
.

Заметим, что величины работ A_2 и A_4 , совершаемых газом на изотермических стадиях, относятся, как площади криволинейных трапеций (см. рисунок) под гиперболами, описываемыми следующими уравнениями: $p = \nu R T_{\text{max}} / V$ (верхняя изотерма) и $p = \nu R T_{\text{min}} / V$ (нижняя изотерма). Поскольку при изменении объёма на малую величину ΔV газ совершает работу $\Delta A = (\nu R \Delta V / V) T$, то величина работы, совершённой в изотермическом процессе, пропорциональна температуре T, которую имеет газ в этом процессе. Поэтому $A_2 / |A_4| = T_{\text{max}} / T_{\text{min}}$.

Таким образом, можно найти работы, совершаемые газом на каждой из стадий данного циклического процесса.

- 1) Изохорическое нагревание: $A_1 = 0$.
- 2) Изотермическое расширение: $A_2 = Q_2$, так как внутренняя энергия газа не изменяется.
- 3) Изохорическое охлаждение: $A_3 = 0$.
- 4) Изотермическое сжатие: $A_4 = -A_2 \frac{T_{\text{min}}}{T_{\text{max}}} = -Q_2 \frac{(3/2)vRT_{\text{min}}}{(3/2)vRT_{\text{min}} + Q_1}$

При изохорическом охлаждении (стадия 3) газ отдаёт количество теплоты

 $|Q_3|$ = $(3/2)\nu R(T_{\text{max}}-T_{\text{min}})$ = Q_1 , а при изотермическом сжатии (стадия 4) — количество теплоты

$$|Q_4| = |A_4| = Q_2 \frac{(3/2)vRT_{\min}}{(3/2)vRT_{\min} + Q_1}$$
.

КПД η теплового двигателя, работающего по рассматриваемому циклу, равен отношению совершённой работы $A=A_2+A_4=A_2\left(1-\frac{T_{\min}}{T_{\max}}\right)=Q_2\left(1-\frac{T_{\min}}{T_{\max}}\right)$ к полученному количеству теплоты Q_1+Q_2 . Следовательно,

$$\eta = \frac{Q_1 Q_2}{(Q_1 + Q_2) \left(\frac{3}{2} vRT_{\min} + Q_1\right)}.$$

2. Математический маятник массы m, заряда q, с длиной нити l совершает гармонические колебания на расстоянии r от идеальной металлической плоскости. Определить период колебаний маятника.

Решение

При малой амплитуде колебаний заряд q будет притягивается к своему отражению -q с силой $F = \frac{kq^2}{4r^2} \, .$

Поэтому колебания происходят так, словно ускорение свободного падения увеличилась, и стало равно $g_{\hat{i}\hat{i}\hat{a}} = g + \frac{F}{m} = g + \frac{kq^2}{4mr^2}$.

Соответственно, такие колебания будут иметь период
$$T=2\pi\sqrt{\frac{l}{g_{f\hat{x}\hat{x}}}}=2\pi\sqrt{\frac{4mr^2l}{4mr^2g+kq^2}}$$
 .

3. Линза с фокусным расстоянием f и зеркало расположены взаимно перпендикулярно. Предмет высотой a разместили перед линзой на расстоянии 2f от нее. Постройте все имеющиеся изображения предмета и найдите их размеры. Длина зеркала 5f, левый край зеркала расположен прямо под предметом, расстояние от зеркала до главной оптической оси линзы равно 2a, радиус линзы 2a.

Решение

В системе будет 4 изображения.

Первое — изображение предмета в зеркале. При этом лучи проходят мимо линзы, попадая прямо на зеркало, отражаются, а их продолжение за зеркало образует мнимое изображение. Чтобы построить это изображение, нужно опустить на плоскость зеркала перпендикуляр от предмета. Первое изображение расположено за зеркалом на расстоянии 2a и его размер равен, очевидно, a (см. рис 1).

Второе изображение появляется, когда лучи от предмета проходят через линзу. Так как предмет находится на удвоенном фокусном расстоянии от линзы, второе изображение того же размера что и предмет и расположено на том же расстоянии от линзы, что и предмет (см. рис 2).

Третье изображение получается, когда лучи, прошедшие сквозь линзу, отражаются от зеркала. Казалось бы, мы можем поступить, как и в случае первого изображения: отразить в зеркале второе изображение. Однако оказывается, что лучи от некоторых точек предмета, пройдя через линзу, не попадают на зеркало. Действительно, рассмотрим луч, проходящий от некоторой точки предмета через край линзы, и падающий на самый край зеркала (см. пунктир-точечную линию на рис. 3). Понятно, что лучи, идущие от более низких точек предмета к краю линзы (идущие под большим углом к оптической оси) после линзы пойдут под меньшим углом к оптической оси (по сравнениюс выбранным пунктир-точечным лучом) и не попадут на зеркало. Наоборот, лучи от верхушки предмета к краю линзы всегда попадают на зеркало. Мы рассматривали луч, преломляемые именно краем линзы, так как если он не попадает на зеркало, то остальные лучи, вышедшие из той же точки предмета и прошедшие через другие точки линзы, не попадут и подавно (см. рис. 4).

Итак, в зеркале отразится только часть второго изображения, лежащая ниже точки X (см. рис. 4), т.е. кончик стрелочки. Найдем длину этого кончика (пользуемся тем, что его изображение в зеркале будет того же размера). Треугольник ABC подобен треугольнику ZBX, откуда

$$ZB = \frac{ZX}{AC}AB = \frac{2f}{3f}4a = \frac{8}{3}a.$$

Вычитая из величины ZB радиус линзы получим, что расстояние от X до главной оптической оси равно 2a/3, т.е. третье изображения в три раза короче остальных.

U, наконец, четвертое изображение получается, когда лучи, отразившиеся от зеркала (лучи от первого изображения), преломляются в линзе. Первое изображение, как и сам предмет, находится на удвоенном фокусном расстоянии линзы, так что его изображение в зеркале строится совершенно аналогично второму изображению: размер его составит a, расстояние от него до линзы равно 2f, расстояние от него до главной оптической оси (как и у первого изображения) равно 4a.

4. Резиновый шнур длиной l_0 одним концом жестко закреплен. В некоторый момент времени человек начинает тянуть второй конец шнура со скоростью пропорциональной его длине $v(l) = H \cdot l$. В этот же момент времени по шнуру от закрепленного конца начинает бежать паучок в

сторону человека с постоянной относительно шнура скоростью c. Найти момент времени, когда паучок догонит человека. (Прим. $\frac{d}{dx} \ln x = \frac{1}{x}$)

Решение

Найдем сначала зависимость длины шнура от времени: $\frac{dl}{dt} = v(t) = H \cdot l$, тогда $l(t) = l_0 e^{H \cdot t}$.

Скорость перемещения паучка относительно земли v_i складывается из скорости паучка относительно шнура c и скорости, с которой растягивается сам шнур в точке, где находится паучок. Тогда: $v_i = \frac{dr}{dt} = c + v(r) = c + \frac{r}{l}v(l) = c + r \cdot H$. Отсюда мы можем получить уравнение движения паучка: $r(t) = \frac{c}{H} \left(e^{H \cdot t} - 1 \right)$.

Время встречи определяется из условия r(t) = l(t), что дает нам величину $t = \frac{1}{H} \ln \left(1 - \frac{l_0 H}{c} \right)^{-1}$.

Теперь можем проанализировать результат:

- 1) При выполнении условия $\frac{l_0H}{c}$ <1 паучок таки догонит человека в указанное время (т.е. расстояние между человеком и паучком уменьшается).
- 2) При выполнении условия $\frac{l_0H}{c}>$ 1 паучок вообще не догонит человека (т.е. расстояние между человеком и паучком увеличивается).
- 3) При выполнении условия $\frac{l_0H}{c}$ = 1 паучок догонит человека за бесконечное время (т.е. расстояние между человеком и паучком не изменяется и составляет l_0).
- 5. В сферический сосуд большого радиуса налита несжимаемая, равномерно заряженная жидкость плотности ρ с диэлектрической проницаемостью ϵ . Заряд единицы объема жидкости σ . В сосуд поместили 2 одинаковых незаряженных маленьких шарика радиуса r плотностью ρ_0 , изготовленных из диэлектрика. Где расположатся шарики? Ускорение свободного падения g. Поляризацией шариков пренебречь.

Решение

В рассматриваемой системе неоднородность давления жидкости вызывается не только силой тяжести, но и кулоновским взаимодействием. Очевидно, давление в жидкости увеличивается с глубиной благодаря силе тяжести. Вдобавок жидкость, будучи заряженной, расталкивает сама себя, в результате чего в слоях, расположенных ближе к центру сосуда, давление меньше, чем в слоях, расположенных снаружи. Это приводит к наличию в жидкости дополнительной силы, действующей аналогично силе Архимеда на плавающие в ней тела и направленной к центру сосуда. Кроме того, тела в такой жидкости будут взаимодействовать друг с другом (даже не будучи заряженными).

Представим область внутри шариков в виде суперпозиции положительно заряженной жидкости (как бы проникающей внутрь шариков) отрицательно заряженных шариков, компенсирующих этот заряд. Таким образом, рассмотрим взаимодействие целого заряженного большого шара радиуса R с плотностью заряда σ и маленьких шариков радиуса r с плотностью заряда σ .

Найдем напряженность, создаваемую большим шаром внутри себя на расстоянии x от своего центра. Воспользуемся теоремой Гаусса. Выделим мысленно сферу радиуса x < R с центром, совпадающим с центром большого шара. По теореме Гаусса для напряженности поля справедливо $E(x)S = Q / \varepsilon \varepsilon_0$ где $Q = 4\pi x^3 \sigma / 3$ — заряд, который содержит эта сфера, $S = 4\pi x^2$ — площадь этой сферы. Таким образом, если маленький шарик (с зарядом $q = -4\pi r^3 \sigma / 3$) находится на расстоянии x от центра большого шара, на него действует направленная κ центру сила $F(x) = qE(x) = \frac{4\pi r^3 \sigma^2}{9\varepsilon \varepsilon_0} x$, что эквивалентно действию пружины с жесткостью $k = \frac{4\pi r^3 \sigma^2}{9\varepsilon \varepsilon_0}$.

Итак, задача свелась к нахождению расположения шариков с зарядами q, подвешенными на пружинках жесткостью k в жидкости плотностью ρ (см. рис.). На каждый шарик действует сила тяжести $mg=4\pi r^3 \rho_0 g/3$, кулоновская сила отталкивания от другого шарика $F_{KL}=\frac{q^2}{4\pi \varepsilon \varepsilon_0 d^2}$ (d-расстояние между маленькими шариками в положении равновесия), сила Архимеда $F_A=4\pi r^3 \rho_B/3$ и сила притяжения к центру большого шара k x. Векторная сумма этих сил должна быть равна нулю, что в проекции на вертикальную и горизонтальную оси дает соответственно

$$mg - F_A = kx \cos \theta \implies \frac{4}{3}\pi r^3 (\rho_0 - \rho)g = \frac{4\pi r^3 \sigma^2}{9\varepsilon \varepsilon_0} x \cos \theta \qquad (1)$$

$$F_{KL} = kx \sin \theta \implies \frac{q^2}{4\pi \varepsilon \varepsilon_0 d^2} = \frac{4\pi r^3 \sigma^2}{9\varepsilon \varepsilon_0} x \sin \theta \quad (2)$$

Решая данную систему уравнений относительно x и θ (с учетом $d=2x\sin\theta$ и $q=-4\pi r^3\sigma/3$), получим $d=\sqrt[3]{2}r$. Легко понять, что эта величина меньше 2r, т.е. шарики не смогут расположиться на расстоянии d друг от друга. Они расположатся, таким образом, рядом друг с другом. Поскольку шарики по условию задачи малы (решение задачи справедливо, если r=x), для угла θ справедливо $tg\theta=r/x\approx0$ или $\theta\approx0$.

С учетом последнего равенства из уравнения (1) легко получить
$$x = \frac{(\rho_0 - \rho)g\varepsilon\varepsilon_0}{3\sigma^2}$$
.

В зависимости от знака разности $\rho_0-\rho$ шарики расположатся ниже центра большого шара (как это изображено на рисунке) или выше него. При этом мы ограничились рассмотрением случая, когда разность плотностей $\rho_0-\rho$ не слишком мала (так что r-x). Если это не так, выражение для $F_{KL}=qE(x)$ оказывается несправедливым, так как в данной формуле наш шарик рассматривается как точечный заряд в поле E(x).