Experimental Design and Analysis Homework 6

110024516 邱繼賢

Problem 1. (5-4)

如果一個 design 的 resolution =R,代表在它的 defining contrast subgroup 中最短的 wordlength =R,那在它投影到一個 R-1 的 factorial design 時,由於只有 R-1 個 factors,所以它一定無法形成長度為 R 的 word,故一定為一個 full factorial design。

Problem 2. (5-13)

(a)

There are five 2-level factors :

- (1) **temperature**: 160°F (-) or 180°F (+)
- (2) **concentration**: 30% (-) or 40% (+)
- (3) **catalyst** : A (-) or B (+)
- (4) **stirring rate**: 60rpm (-) or 100rpm (+)
- (5) **pH** : low (-) or high (+)

and we need to avoid the combinations of (+,+,+,+,+) & (+,+,+,+), so we construct the 2^{5-2} design with 2 generators:

$$4 = -12, 5 = -13$$

then the defining contrast subgroup:

$$I = -124 = -135 = 2345$$

The design matrix as below :

Run	temperature	concentration	catalyst	stirring rate	pН
1	+	+	+	-	-
2	+	+	-	-	+
3	+	-	+	+	
4	+	-	-	+	+
5	-	+	+	+	+
6	-	+	-	+	-
7	-	-	+	-	+
8	-	-	-	-	-

此處僅為展示方便,實際做實驗時需要將實驗順序進行隨機排序。

(b)

Use defining contrast subgroup :

$$I = -124 = 345 = -1235$$

and there are seven alias sets:

$$1 = -24 = 1345 = -235$$

$$2 = -14 = 2345 = -135$$

$$3 = -1234 = 45 = -125$$

$$12 = -4 = 12345 = -35$$

$$13 = -234 = 145 = -25$$

$$23 = -134 = 245 = -15$$

$$123 = -34 = 1245 = -5$$

We can see that the catalyst-by-temperature (13) and catalyst-by-concentration (23) interaction effects are neither aliased with the main effects nor with each other. The design matrix is shown below:

Run	temperature	concentration	$\operatorname{catalyst}$	stirring rate	pН
1	+	+	+	-	-
2	+	+	-	-	+
3	+	-	+	+	+
4	+	-	-	+	-
5	-	+	+	+	+
6	-	+	-	+	-

Run	temperature	concentration	catalyst	stirring rate	pН
7	-	-	+	-	-
8	-	-	-	-	+

我們為了在此實驗設計中避免某些 2-factor interactions 和主效應有所混淆,相對的就無法避免 (+, ,+, ,+) 這種高風險組合的出現 (look at the 3rd run)。

一樣此處僅為展示方便,實際進行實驗仍須將實驗順序隨機排列。

Problem 3. (5-15)

(a)

Let's look at the defining contrast subgroups of both two designs :

(i)
$$I = 12345 = 1246 = 356 \Rightarrow \text{resolution} = 3$$

(ii)
$$I = 1235 = 1246 = 3456 \Rightarrow \text{resolution} = 4$$

I prefer design (ii) because it has larger resolution.

(b)

Take a look at only the alias sets, which contain 2-factor interaction effects, of design (ii):

$$12 = 35 = 46 = 123456$$

$$13 = 25 = 2346 = 1456$$

$$14 = 2345 = 26 = 1356$$

$$23 = 15 = 1346 = 2456$$

$$24 = 1345 = 16 = 2356$$

$$34 = 1245 = 1236 = 56$$

$$1234 = 45 = 36 = 1256$$

We can ignore all the 2-factor interactions involving factor 6 and 3(or higher)-factor interactions in above alias sets.

Therefore, 2-factor interactions: 14, 24, 34, 45 are estimable.

However, 12=35, 13=25, 23=15 these three pairs of 2-factor interactions are still aliased.

(c)

Arranging the 2^{6-2} design (ii) in 2^1 blocks need 1 block factor. My blocking scheme is B=134 because the confounding set under this condition is

$$B = 134 = 245 = 236 = 156$$

only contains 3-factor interactions which are negligible under the usual assumption in (b). In this way, we will not confound any other main or 2-factor interaction effects which we more concern about.

Problem 4. (5-16)

(a)

Let's look at the defining contrast subgroups of two 2^{6-2} designs:

$$A : I = 12345 = 1236 = 456 \Rightarrow \text{resolution} = 3$$

B :
$$I = 1235 = 2346 = 1456 \Rightarrow \text{resolution} = 4$$

I will choose design B because it has larger resolution.

(b)

There are $2^4 = 16$ runs in 2^{6-2} design, so we only have 15 degrees of freedom to estimate factorial effects. However, if resolution = 5, all main and 2-factor interaction effects are clear, namely all of them are fall in different alias sets. We will need at least $6 + \binom{6}{2} = 21$ degrees of freedom to estimate all of them. It is impossible.

Problem 5. (5-28)

(a)

All 2-factor interaction effects: AB, AC, AD, AE, BC, BD, BE, CD, CE, DE are clear.
All main effects: A, B, C, D, E are strongly clear.

(b)

計算每一組 level combinations 下的 \bar{y} 和 s^2 ,若 $s^2=0$ 則以 0.001 代入

\bar{y} s ²						
	g	Ε	D	С	В	A
0 9075.000	1275.000	-1	-1	-1	-1	-1
0 39325.000	1495.000	1	1	-1	-1	-1
0 63525.000	1220.000	1	-1	1	-1	-1
0 21175.000	1275.000	-1	1	1	-1	-1
0 9075.000	1495.000	1	-1	-1	1	-1
0 3025.000	1440.000	-1	1	-1	1	-1
0.001	1275.000	-1	-1	1	1	-1
7 1008.333	1256.667	1	1	1	1	-1
7 1008.333	1696.667	1	-1	-1	-1	1
3 1008.333	1898.333	-1	1	-1	-1	1
0.001	1770.000	-1	-1	1	-1	1
7 1008.333	1916.667	1	1	1	-1	1
7 1008.333	1916.667	-1	-1	-1	1	1
7 1008.333	1641.667	1	1	-1	1	1
0.001	1990.000	1	-1	1	1	1
3 1008.333	2118.333	-1	1	1	1	1

根據 (a) 所得到的結論,可以得知每一個 main 和 2-factor interaction effects 都是 clear effects,也就是說它們都只和 3(or 4)-factor interactions 落在同一個 alias sets,而那些高階的 interaction effects 都是可以忽略它們的效應的,故我們可以建構以下 location 和 dispersion models:

$$\bar{y} = X\beta + \epsilon$$
, $\ln s^2 = X\gamma + \delta$

where X contains all main and 2-factor interaction effects of the five factors.

然後可以藉由估計出來的迴歸係數來推得 location 和 dispersion effects:

$$\hat{\theta} \; = \; 2\hat{\beta} \;\; , \;\; \hat{\psi} \; = \; 2\hat{\gamma}$$

結果呈現如下表:

```
loc_mod = lm(y_bar ~ A+B+C+D+E+A:B+A:C+A:D+A:E+B:C+B:D+B:E+C:D+C:E+D:E, data)
loc_effect = 2*coef(loc_mod)[-1]
dis_mod = lm(log(s_square) ~ A+B+C+D+E+A:B+A:C+A:D+A:E+B:C+B:D+B:E+C:D+C:E+D:E, data)
dis_effect = 2*coef(dis_mod)[-1]
effect_tab = data.frame(y_bar = loc_effect, log_s = dis_effect)
kable(effect_tab, col.names = c("$\\bar{y}$","$ln s^2$"), digits = 3)
```

	\bar{y}	lns^2
A	527.083	-3.771
В	73.333	-2.947
\mathbf{C}	-4.583	-5.430
D	50.417	5.093
\mathbf{E}	-32.083	2.186
A:B	22.917	2.947
A:C	165.000	-1.482
A:D	0.000	1.819
A:E	-82.500	-2.186
B:C	41.250	-2.306
B:D	-105.417	1.545
В:Е	-59.583	-1.911
C:D	27.500	5.001
C:E	18.333	1.545
D:E	-73.333	-2.306

接下來以 Half-Normal plot 的方式來判斷哪些效應為顯著:

```
"halfnorm" <- function (x, nlab = 2, labs = as.character(1:length(x)), ylab = "Sorted Data") {
    x <- abs(x)
    labord <- order(x)
    x <- sort(x)
    i <- order(x)</pre>
```


從圖形判斷:

(1) Location: A, AC 兩效應顯著

(2) Dispersion: C, D, CD 三效應顯著

故能配飾 location 和 dispersion models:

$$\begin{split} \hat{\bar{y}} &= \; \hat{\beta}_0 \; + \; \hat{\beta}_A \; x_A \; + \; \hat{\beta}_{AC} \; x_{AC} \; = \; 1605 \; + \; 263.5 \; x_A \; + \; 82.5 \; x_{AC} \\ \ln \hat{s}^2 &= \; \hat{\gamma}_0 \; + \; \hat{\gamma}_C \; x_C \; + \; \hat{\gamma}_D \; x_D \; + \; \hat{\gamma}_{CD} \; x_{CD} \; = \; 5.3456 \; - \; 2.715 \; x_C \; + \; 2.5463 \; x_D \; + \; 2.5003 \; x_{CD} \end{split}$$

(c)

Interaction plot of C: D

藉由 factor C, D 的 interaction plot 可以看出在 (C,D) 不同的設定值下, $\ln s^2$ 的大小也會有所不同,而從圖中看出 (C,D)=(+,-) 會有最小的變異,從 dispersion model 觀察也能得到相同結論,故 (C,D)=(+,-) 就 $\mathbb R$ optimal factor settings for minimizing variance

(d)

選擇 factor settings (A,C)=(+,+) 可以得到 location model 的最大值

$$\hat{\bar{y}} = 1605 + 263.5 + 82.5 = 1951$$

故 (A,C) = (+,+) 就是 optimal factor settings for maximizing the tensile strength

(e)

這是一個 Larger-the-better problem,adjustment factor 為那些對 dispersion model 有顯著效應但是對 location model 無顯著貢獻的 factor,故 factor D 為 adjustment factor Two-step procedure:

(1) Choose (A, C) = (+, +) to maximize the tensile strength

$$\hat{\bar{y}} = 1605 + 263.5 + 82.5 = 1951$$

(2) Choose (C, D) = (+, -) to minimize variance

$$\hat{s}^2 = \exp[5.3456 - 2.715 - 2.5463 - 2.5003] = 0.08927802$$

PS: Larger-the-best 和 Nominal-the-best problem 在決定 adjustment factor 以及 two-step procedure 順序剛 好相反。