

Comparative Biochemistry and Physiology, Part A 139 (2004) 83-95

Scaling the amplitudes of the circadian pattern of resting oxygen consumption, body temperature and heart rate in mammals

Jacopo P. Mortola*, Clement Lanthier

Department of Physiology, McGill University, 3655, Sir William Osler Promenade Montreal, Quebec, Canada, H3G 1Y6 Société Zoologique de Granby, Granby, Quebec, Canada, J2G 1E8

Received 11 March 2004; received in revised form 1 July 2004; accepted 12 July 2004

Abstract

We questioned whether the amplitudes of the circadian pattern of body temperature (T_b) , oxygen consumption $(\dot{V}_{\rm O_2})$ and heart rate (HR) changed systematically among species of different body weight (W). Because bodies of large mass have a greater heat capacitance than those of smaller mass, if the relative amplitude (i.e., amplitude/mean value) of metabolic rate was constant, one would expect the T_b oscillation to decrease with the increase in the species W. We compiled data of T_b , $\dot{V}_{\rm O_2}$ and HR from a literature survey of over 200 studies that investigated the circadian pattern of these parameters. Monotremata, Marsupials and Chiroptera, were excluded because of their characteristically low metabolic rate and T_b . The peak-trough ratios of $\dot{V}_{\rm O_2}$ (42 species) and HR (35 species) averaged, respectively, 1.57 ± 0.08 , and 1.35 ± 0.07 , and were independent of W. The daily high values of T_b did not change, while the daily low T_b values slightly increased, with the species W; hence, the high-low T_b difference (57 species) decreased with W (3.3 °C· $W^{-0.13}$). However, the decrease in T_b amplitude with W was much less than expected from physical principles, and the high-low T_b ratio remained significantly above unity even in the largest mammals. Thus, it appears that in mammals, despite the huge differences in physical characteristics, the amplitude of the circadian pattern is a fixed (for $\dot{V}_{\rm O_2}$ and HR), or almost fixed (for T_b), fraction of the 24-h mean value. Presumably, the amplitudes of the oscillations are controlled parameters of physiological significance.

© 2004 Elsevier Inc. All rights reserved.

Keywords: Allometry; Body temperature; Circadian patterns; Control of breathing; Control of heart rate; Metabolic rate; Oxygen consumption; Thermoregulation

1. Introduction

In mammals, an inner clock located in the brain suprachiasmatic regions controls the circadian patterns of many physiological events. Body temperature (T_b) and metabolic rate have robust circadian patterns, which in turn, either directly or indirectly, influence the daily patterns of many other functions (Refinetti, 2000). To what extent the amplitude of the circadian pattern is a fixed proportion of the mean value among species of different body size has rarely been considered. Specifically, in this study we consider T_b , oxygen consumption (\dot{V}_O ,), a variable that

influences T_b , and heart rate (HR), which is sensitive to both T_b and \dot{V}_{O_a} .

Aschoff (1982) surveyed literature data for 20 species and suggested that the amplitude of circadian changes in T_b decreased with the increase in body weight (W). This relationship is expected if one considers that a large body mass implies a large heat capacitance. Hence, if all mammals had similar daily oscillations in specific metabolic rate, i.e., if the amplitude of the oscillation in metabolic rate was a fixed proportion of its mean value, the amplitude of the T_b oscillation should be greater in small, than in large, species. This interspecies difference would be further exaggerated if the oscillation of metabolic rate decreased with the increase in animal size, as originally proposed (Aschoff, 1982).

^{*} Corresponding author. Tel.: +1 514 3984335; fax: +1 514 3987452. E-mail address: jacopo.mortola@mcgill.ca (J.P. Mortola).

However, a later literature survey covering 23 species did not confirm the earlier conclusion that the circadian amplitude of $T_{\rm b}$ dropped with the species W (Refinetti and Menaker, 1992). Another negative result emerged from an experimental study of 11 small species, ranging from 60 to 600 g (Refinetti, 1999), although the large inter-animal variability and the limited range in body size may have precluded a significant finding. Because heat dissipation, and not only heat production, contributes to the daily oscillation in $T_{\rm b}$ (Shido et al., 1986; Briese, 1998), the possibility exists that animals may either promote (large species) or limit (small species) heat loss to reduce the physical effects of the differences in heat capacitance and body surface-mass ratio. Whether or not the amplitude of the daily oscillations in HR may change systematically with W has never been looked at, and should depend on the corresponding patterns of $T_{\rm b}$ and metabolic rate.

During the last 20 years, the abundance of metabolic measurements and the advent of telemetry as common means for recording $T_{\rm b}$ and HR have provided a wealth of new data in numerous species. Therefore, the main aim of this study was to test the hypothesis that the amplitudes of the daily oscillations of $T_{\rm b}$, $\dot{V}_{\rm O_2}$ and HR may change systematically with the species W, by surveying the literature data pertinent to more than 50 mammalian species.

2. Methods

2.1. Literature survey

In the process of gathering data from the literature we excluded Monotremata, Marsupials and Chiroptera, because of their characteristically low metabolic rate and $T_{\rm b}$. We excluded also data from animals with daily torpor or in hibernation. Data had to be collected with the animal at rest, preferentially at ambient temperatures between 20 and 25 °C (mean of all studies surveyed 24 °C±0.3). We did not consider data collected under conditions of large daily oscillations in ambient temperature, as it is often the case of field studies.

Ninety-four per cent of the studies examined were conducted under a light–dark regime of at least 7 h per phase, while a few (6%) were in free-running conditions (constant darkness). When several studies were available for any particular species, we gave preference to those with continuous recordings for several days. Following these criteria, 125 studies on 57 species of nine mammalian orders have been selected for the $T_{\rm b}$ data, 26 studies covering 42 species of six orders for the $\dot{V}_{\rm O_2}$ data, and 35 studies on 20 species of six orders for the HR data (Tables 1–3). The results of all studies on any particular species were averaged together, to avoid undue bias toward those species more investigated.

In 71% of the studies surveyed for $T_{\rm b}$, data had been recorded continuously by telemetry, by a transmitter often (61% of the cases) implanted in the abdomen. In the remaining 29% of the studies, data were collected at finite time intervals, most commonly from rectal probes. For the measurements of $\dot{V}_{\rm O_2}$, 74% of the studies surveyed used an open circuit methodology with the animal undisturbed in a cage. In the remaining cases, measurements were obtained with closed circuit systems, at various time intervals. HR, most commonly (74% of the studies), was monitored by telemetry from implanted electrodes, while in the remaining cases data were obtained by auscultation or electrocardiography. Hence, the former methodology provided continuous data, the latter provided data at finite time intervals.

When the daily averages and the *high* and *low* values or amplitudes were not explicitly mentioned by the authors, we calculated their values from the data provided in tabular or figure format. Because nocturnal species have cycles almost 180° out of phase from those of diurnal species, the terms *high* and *low* refer to the daily maxima and minima, irrespective of the chronological time of their occurrence. When not specifically provided by the authors, the body weight for a given species, according to age and gender, was taken from standard bibliographic references (e.g., Silva and Downing, 1995).

2.2. Statistical analysis

All data are presented as means ± 1 SEM, unless stated otherwise. The statistical significance of a correlation was tested by linear regression analysis. Exponents (b) and intercepts (a) of the allometric equations relating a variable Y to W were derived from the least-squares regression analysis of the log-transformed equation $Y=a \cdot W^b$.

In addition to the allometric analysis, the species were separated into two groups, according to their W, or according to the 24-h means of the parameter under consideration. Then, the ratios between high and low values were statistically compared between the two groups. Correlation coefficients (r), differences between slopes (b) and differences in high—low ratios between animals of large and small W were tested using a two-tailed t-test. A difference was considered statistically significant at the level of P<0.05.

3. Results

3.1. Body temperature

The circadian patterns of a few small-, medium-, and large-size species, expressed in percent of their 24-h mean value, are presented in Fig. 1. Table 1 summarises the daily high and $low\ T_b$ values for the 57 eutherian species surveyed. Almost invariably, the high values occurred in

Table 1 Survey of literature data: daily high and low values of body temperature

Order and species name	<i>W</i> , g	<i>T</i> _b high−low, °C	Sources	
Artiodactyla				
Cattle, domestic, Bos taurus	500250	39.4–38.5	Araki et al., 1984, 1987; Bitman et al., 1984; Bligh and Harthoorn, 1965; Lefcourt and Adams, 1996; Piccione et al., 20	
Goat, domestic, Capra hircus	30000	39.1-38.6	Piccione et al., 2003	
Hippopotamus, Hippopotamus amphibius	2300000	36.5-35.8	unpublished	
Llama, <i>Lama glama</i>	142 000	38.2-37.7	Bligh et al., 1975	
Alpaca, Lama pacos	60250	38.2-37.8	Bligh et al., 1975	
Sheep, domestic, Ovis aries	35250	40.0–38.7	Bligh and Harthoorn, 1965; Bligh et al., 1975; Hunsaker et al., 1977; Maloney and Mitchell, 1996; Mohr and Krzywanek, 1990	
Pig, Vietnamese, Sus scrofa	100500	38.7–38.1	Ingram and Legge, 1970; Ingram and Mount, 1973; Lord et al., 1999	
Carnivora	4.5.000	20.4.25.5	1000	
Dog, Canis familiaris	15000	38.4–37.7	Marvin and Reese, 1986; Rawson et al., 1965	
Cat, Felis catus	3750	38.6–38.0	Kuwabara et al., 1986; Johnson and Randall, 1985; Randall et al., 1985	
Fennec, Fennecus zerda	1000	38.5–37.3	Noll-Banholzer, 1979	
Mongoose, slender, Herpestes sanguineus	540	39.2–37.3	Kamau et al., 1979	
Coatimundis, Nasua nasua	3850	38.3–37.4	Chevillard-Hugot et al., 1980	
Insectivora Tree Shrew, Northern, Tupaia belangeri	193	39.7–36.3	Refinetti, 1999	
Lagomorpha				
Pika, Afghan, Ochotona rufescens	195	39.1-38.9	Luo et al., 1996	
Rabbit, Oryctolagus cuniculus	1888	39.6–39.1	Akita et al., 2002; Luo et al., 1996; Varosi et al., 1990	
Rodentia				
Mouse, spiny, Acomys cahirinus	65	38.2–36.3	Haim and Zisapel, 1999	
Mouse, golden, Acomys russatus	71	37.8–36.2	Rubal et al., 1992	
Mouse, field, Apodemus mystacinus	34	38.9–37.5	Rubal et al., 1992	
Mouse, Nile, Arvicanthis niloticus	105	38.3–36.5	Blanchong et al., 1999; McElhinny et al., 1997	
Guinea pig, Cavia porcellus	677	39.3–39.03	Akita et al., 2001; unpublished	
Hamster, European, Cricetus cricetus	265	38.1–37.0	Wollnik and Schmidt, 1995	
Prairie dog, black-tailed, Cynomys ludovicianus	1001	38.8–35.4	Reinking et al., 1977	
Mole rat, African, Georychus capensis	236	36.6–35.3	Lovegrove and Muir, 1996	
Woodchuck, Southern, Marmota monax	4300	38.2–37.4	Hayes, 1976	
Gerbil, Mongolian, Meriones unguiculatus	63	38.1–36.2	Refinetti, 1996a	
Hamster, Syrian, Mesocricetus auratus	158	38.1–36.8	Gao et al., 1991; Conn et al., 1990; Decoursey et al., 1998; Pickard et al., 1984; Refinetti et al., 1992; Refinetti, 1996a; Tang et al., 1999	
Mouse, house, Mus musculus	32	37.7–36.0	Connolly and Lynch, 1983; Fuller et al., 2000; Hotz et al., 1987; Kluger et al., 1990; Yunis et al., 1974; Mousel et al., 2001;	
			Nelson et al., 1975; Tankersley et al., 2002; Weinert and Waterhouse, 1999	
Muskrat, Obdatra zybethicus	850	38.9–37.9	MacArthur, 1979	
Degus, Chilean, Octodon degus	240	37.5–36.4	Kas and Edgar, 1998,2001; Refinetti, 1996a,b	
Gerbil, fat-tailed, Pachyuromys duprasi	84	38.0–35.5	Refinetti, 1999	
Mouse, white-footed, Peromyscus leucopus	33	38.5–35.6	Duffy et al., 1987	
Mouse, deer, Peromyscus polionotus	14	38.3–36.2	Smith and Criss, 1967	
Rat, Rattus norvegicus	281	37.9–36.6	Briese, 1985; Cahill and Ehret, 1982; Harkin et al., 2002; Honma and Hiroshige, 1978; Mortola and Seifert, 2000; Kittrell and Satinoff, 1986; Kluger et al., 1990;	
			Lewis et al., 1986; Luo et al., 1996; Meinrath and D'Amato, 1979 Morley et al., 1990; Refinetti, 1996a, 1999; Refinetti et al., 1990; Satinoff et al., 1982; Scales and Kluger, 1987; Sei et al., 1997; Seifert et al., 2000; Seifert and Mortola, 2002a,b,c; Shido et al., 1989; Shiromani et al., 1991; Spencer et al., 1976	
Mouse, pouched, Saccostomus campestris	94	36.6-34.7	Haim et al., 1988; Lovegrove and Raman, 1998	
Squirrel, gr. europ., Sciurus vulgaris	300	38.3-35.6	Hut et al., 2002	

(continued on next page)

Table 1 (continued)

Order and species name	<i>W</i> , g	$T_{\rm b}$ high–low, °C	Sources	
Rodentia				
Mole rat, blind, Spalax eherenbergi	196	36.8-35.6	Goldman et al., 1997	
Squirrel, golden, Spermophilus lateralis	250	40.0-37.0	Freeman and Zucker, 2000	
Squirrel, Richardson, Spermophilus richardsonii	487	38.0-36.1	Refinetti, 1996a; Wang, 1972	
Squirrel, thirteen 1., Spermophilus tridecemlineatus	170	37.3-33.9	Refinetti, 1996a	
Chipmunk, Eastern, Tamias striatus	95	39.8-37.3	Decoursey et al., 1998	
Squirrel, flying, Glaucomys volans	74	37.0–35.5	Refinetti, 1999	
Perissodactyla				
Donkey, Equus asinus	169 167	38.4-36.7	Maloiy, 1971; Yousef and Dill, 1969; Schmidt-Nielsen et al., 1957	
Horse, Equus caballus	643 333	37.6–37.1	Evans et al., 1976; Piccione et al., 2002; Stull and Rodiek, 2000	
Primates				
Night (owl) monkey, Aotus trivirgatus	1015	38.2-37.0	Hoban et al., 1985	
Marmoset, common, Callithrix jacchus	400	38.3-35.8	Petry and Maier, 1990	
Marmoset, pigmy, Cebuella pygmea	105	38.0-35.0	Morrison and Middleton, 1967	
Cebus monkey, Cebus albifrons	1000	38.5-36.0	Winget et al., 1968	
Man, Homo sapiens	68382	37.2-36.4	Baehr et al., 2000; Hildebrandt, 1982;	
			Kräuchi and Wirz-Justice, 1994; Little and Rummel, 1971;	
			Nguyen and Tokura, 2002; Štefikova et al., 1986;	
			Stephenson et al., 2000; Timbal et al., 1972; Wright et al., 1997	
Cynomolgous, Macaca fascicularis	5000	37.4-35.2	Almirall et al., 2001	
Macaque, rhesus, Macaca mulatta	4460	38.4-36.7	Crowley et al., 1972; Fuller et al., 1996; Hammel et al., 1963;	
			Liu et al., 1981; Tapp and Natelson, 1989	
Macaque, pigtail, Macaca nemestrina	6000	37.7–36.6	Reite and Short, 1980	
Macaque, bonnet, Macaca radiata	4994	38.7-37.5	Reite and Short, 1986	
Lemur, mouse, Microcebus myoxinus	32	37.8-34.0	Schmid et al., 2000	
Baboon, jellow, Papio cynocephalus	10000	38.7-37.1	Morishima and Gale, 1972	
Squirrel monkey, Saimiri sciureus	971	38.5-36.4	Fuller, 1984; Fuller et al., 1979, 1985; Moore-Ede et al., 1977;	
			Robinson et al., 1993; Sulzman et al., 1978; Wexler and	
			Moore-Ede, 1986	
Proboscidea				
Elephant, Indian, Elephas maximus indicus	5 000 000	35.7–35.2	Yathiraj et al., 1992	
Xenarthra				
Armadillo, Dasypus novemcinctus	3400	36.5–34.5	Harlow et al., 1982	

the evening hours (7–10 pm) and the *low* values in the early morning hours (7–10 am). The *high* evening values persisted throughout the night in nocturnal species, whereas they decreased in diurnal species (Fig. 1). Conversely, the *low* morning values in diurnal species increased throughout the day until the evening peak, whereas in nocturnal species they remained low for the most part of the day hours.

The allometric curve of the *high* values had no significant slope, and the average for all species was 38.2 °C±0.1. On the other hand, the *low T*_b values had a small, yet significant, correlation with W (35.6 °C· $W^{0.004}$, SD_(b)=0.0015, r=0.32, P<0.02) (Fig. 2, top). Hence, the *high-low* difference in $T_{\rm b}$ decreased significantly with the increase in W (3.35 °C· $W^{-0.13}$, SD_(b)=0.0249, r=0.57, P<0.001), from about 2 °C in the species of 10–10³ g to about 0.5 °C in the species of 0.1–1 ton (Fig. 2, bottom). If all the rodents were eliminated, limiting the analysis to the remaining 31 species, the results of the allometric analysis would not change appreciably, and the *high-low*

 $T_{\rm b}$ difference would still drop slightly with W (4.0 °C· $W^{-0.14}$, SD_(b)=0.0375, r=0.58, P<0.01). In the species of small body size (10^1 – 10^4 g), the daily $high\ T_{\rm b}$ values exceeded the $low\ T_{\rm b}$ values by 5.2%±0.4, whereas in the large species (10^4 – 10^7 g) the $high\ T_{\rm b}$ values exceeded the $low\ T_{\rm b}$ values by only 2%±0.3. This difference between large and small species was statistically significant (P<0.001). None of these allometric patterns showed any significant difference between predominantly nocturnal or diurnal species.

3.2. Oxygen consumption

Clear morning–evening differences in $\dot{V}_{\rm O_2}$ had been reported in all the species surveyed, with the exception of the pocket gopher (Table 2). The allometric curves of the amplitude of the circadian pattern of $\dot{V}_{\rm O_2}$ (0.042 ml/min· $W^{0.62}$, SD_(b)=0.095, r=0.71, P<0.001) and of its daily average value (0.013 ml/min· $W^{0.66}$, SD_(b)=0.031, r=0.96, P<0.001) run parallel to each other (Fig. 3). In fact, the

Fig. 1. Double-plot representation of the circadian pattern of body temperature in some small-, medium-, and large-size species, expressed in percent of their 24-h mean value (indicated in brackets). Filled symbols refer to the predominantly nocturnal species. [1] Johnson and Randall (1985). [2] Priccione et al. (2002). [3] Priccione et al. (2003). [4] Priccione et al. (2004). [5] Štefikova et al. (1986). [6] Present study, by telemetry with data loggers.

two exponents did not differ significantly, indicating that the relative amplitude of the circadian oscillation of $\dot{V}_{\rm O_2}$ (amplitude/mean) was an interspecies constant. On average, the high-low $\dot{V}_{\rm O_2}$ ratio for all species was 1.57 ± 0.08 , with no significant difference between the 28 species of small W ($1-10^2$ g: 1.56 ± 0.09) and the 14 species of large W (10^2-10^6 g: 1.59 ± 0.15). Equally, there was no significant difference in the high-low ratio between species with small or large $\dot{V}_{\rm O_2}$ daily values.

3.3. Heart rate

The allometric curve of the *high-low* difference in heart rate $(320 \cdot W^{-0.28}, \, \mathrm{SD}_{(b)} = 0.05, \, r = 0.79, \, P < 0.001)$ had a slope not significantly different from that of the daily average $(1076 \cdot W^{-0.24}, \, \mathrm{SD}_{(b)} = 0.02, \, r = 0.95, \, P < 0.001)$ (Fig. 4). The lack of significant difference between the two slopes means that the oscillation was a constant fraction of the mean. This conclusion is also supported by the fact that the ratio between the *high* and *low* HR values (Table 3) did not differ significantly between the 13 species of small W ($10^0 - 10^3$ g: 1.36 ± 0.10) and the seven species of large W ($10^3 - 10^7$ g: 1.33 ± 0.09), the overall average being 1.35 ± 0.07 . Equally, there was no significant difference in the *high-low* ratio between the species with high daily values of HR and those with low daily values of HR.

4. Discussion

4.1. T_b and \dot{V}_{O_a}

The results of the allometric analysis of the *low* and *high* $T_{\rm b}$ values agree with Aschoff's original proposition (Aschoff, 1982) that the daily oscillation in $T_{\rm b}$ decreases in amplitude with the increase in animal W. This conclusion remained unaltered after exclusion of the rodents, to eliminate the possibility that some members of this order may have been studied in a semi-torpor state, which would have magnified their $T_{\rm b}$ oscillation.

At first glance, this result could be explained on physical grounds, since the larger body mass increases the heat capacitance, limiting the $T_{\rm b}$ swing in comparison to smaller species. However, several considerations make this explanation not very convincing. In fact, in a damped system the amplitude of the oscillation is reduced around its mean. Hence, if the larger heat capacitance was the main reason for the smaller $T_{\rm b}$ oscillation in the larger species one would have expected a reduction of the $high\ T_{\rm b}$ values, and an increase of the $low\ T_{\rm b}$ values, by a similar magnitude. This is not what we found, since only the low, not the $high\ T_{\rm b}$ values significantly correlated with W. Furthermore, if the daily oscillation in $T_{\rm b}$ was simply the consequence of the daily oscillation in metabolic rate, the dampening of the $T_{\rm b}$ oscillation with the increase in animal

Fig. 2. Daily *high* and *low* values of body temperature (top panel) and their difference (bottom panel) in 57 species of eutherian mammals against the corresponding body weight (W, in log scale). Each symbol is the average value of one species (Table 1). In the top panel, continuous lines are the best-fit linear regressions. In the bottom panel, filled symbols refer to strictly nocturnal species, open symbols to diurnal, or also diurnal, species. Guinea pigs and pikas had unusually small oscillations of body temperature.

W should have been much more marked than observed. In fact, by geometrically comparing an animal to a sphere, the mass of which is directly proportional to heat production and the surface to heat loss, a rat-sphere of 200 g would have a radius of 3.6 cm, a surface of 163 cm², and a surface/volume ratio of $163/200=0.81~{\rm cm}^{-1}$, while a 2-ton hippo-sphere would have a radius of $78.2~{\rm cm}$, a surface of $76807~{\rm cm}^2$, and a surface/volume ratio of $76807/2000000=0.038~{\rm cm}^{-1}$. Therefore, the fourfold increase in W from the 200-g rat to the 2-ton hippo would lower the surface-mass ratio to 0.038/0.81, or less than 5% of the rat's value. This implies that the time constant of heat dissipation would be >20 times longer, damping the amplitude of the oscillation to <5%. Hence, if the

amplitude of the $T_{\rm b}$ oscillation was strictly a physical phenomenon, in an animal the size of the hippo or the elephant the $T_{\rm b}$ oscillations should be <5% of the rat's oscillation, or about 0.05 °C; this is almost one order of magnitude less than actually measured. If physical properties were the major determinant of the $T_{\rm b}$ oscillations, the allometric scaling of the high-low difference in $T_{\rm b}$ should be as that of the SA/W ratio, or $W^{-0.33}$, whereas the actual exponent ($W^{-0.13}$, Fig. 2, bottom) was 2.5 times lower. Aschoff (1982) noted that some of the big species presented unexpectedly wide fluctuations in $T_{\rm b}$, although those data may have been exaggerated by the large swings in ambient temperature. Subsequent studies in the cow and the horse under controlled ambient conditions have

Table 2 Survey of literature data: daily high and low values of resting oxygen consumption

Order and species name	<i>W</i> , g	$\dot{V}_{ m O_2}$ $high$ – low ml/kg/min	Sources
Carnivora			
Mongoose, slender, Herpestes sanguineus	540	18.3–10.3	Kamau et al., 1979
Coatimundis, Nasua nasua	3850	10.0–5.0	Chevillard-Hugot et al., 1980
Insectivora			
Shrew, Short-tailed, Blarina brevicauda	20	167–95	Morrison, 1948; Randolph, 1980b
Mole, Western, Scapanus orarius	61	18–17	Kenagi and Vleck, 1982
Mole, Townsend's, Scapanus townsendii	138	17–14	Kenagi and Vleck, 1982
Shrew, masked, Sorex cinereus	8	123–116	Kenagi and Vleck, 1982
Shrew, Long-tailed, Sorex dispar	4	332–182	Morrison, 1948
Perissodactyla			
Donkey, Equus asinus	173 750	3.9–3.1	Maloiy, 1971; Yousef and Dill, 1969
Primates			
Man, Homo sapiens	73 340	4.2–3.7	Bosco et al., 2003; Kräuchi and Wirz-Justice, 1994; Little and Rummel, 1971; Timbal
I amaza magga Migus sahua musuimus	32	52.0. 21.2	et al., 1972; Vargas et al., 2001
Lemur, mouse, Microcebus myoxinus Squirrel monkey, Saimiri sciureus	1075	52.0–31.3 15.2–9.9	Schmid et al., 2000 Fuller et al., 1985; Robinson et al., 1993
Rodentia			
Mouse, spiny, Acomys cahirinus	65	24–17	Haim and Zisapel, 1999
Mouse, golden spiny, Acomys russatus	71	21–13	Rubal et al., 1992
Squirrel, antelope, Ammospermophilus leucurus	113	35–15	Kenagi and Vleck, 1982
Mouse, broad-toothed field, Apodemus mystacinus	34	60–39	Rubal et al., 1992
Guinea pig, Cavia porcellus	705	14–12	unpublished
Mouse, red-backed, Clethrionomys gapperi	24	77–48	Morrison, 1948
Kangaroo rat, desert, Dipodomys deserti	107	17–13	Kenagi and Vleck, 1982
Kangaroo rat, Merriam's, Dipodomys merriami Kangaroo rat, Ord's, Dipodomys ordii	43 49	25–16 24–20	Kenagi and Vleck, 1982 Kenagi and Vleck, 1982
Gerbil, Mongolian, Meriones unguiculatus	72	36–32	Raab and Brady, 1976
Vole, long-tailed, Microtus longicaudatus	41	31–28	Kaab and Brady, 1976 Kenagi and Vleck, 1982
Vole, meadow, Microtus pennsylvanicus	32	88–38	Morrison, 1948
Vole, Townsend's, Microtus townsendii	52	29–26	Kenagi and Vleck, 1982
Mouse, house, <i>Mus musculus</i>	18	79–48	Morrison, 1948
Wood rat, Neotoma cinerea	158	19–13	Kenagi and Vleck, 1982
Mouse, pocket, little, Perognatus longimembris	8	37–20	Kenagi and Vleck, 1982
Mouse, pocket, great basin, Perognatus parvus	19	32–30	Kenagi and Vleck, 1982
Mouse, deer, Peromyscus crinitus	14	35–22	Kenagi and Vleck, 1982
Mouse, white footed, Peromyscus leucopus	21	112–56	Morrison, 1948; Randolph, 1980a
Mouse, deer, Peromyscus maniculatus	18	62–32	Kenagi and Vleck, 1982; Morrison, 1948
Rat, Rattus norvegicus	219	32–24	Seifert and Mortola, 2002a,b,c
Mouse, pouched, Saccostomus campestris	94	37–35	Haim et al., 1988
Squirrel, golden, Spermophilus lateralis	259	18–10	Kenagi and Vleck, 1982
Chipmunk, yellow-pine, Tamias amoenus	53	29–24	Kenagi and Vleck, 1982
Chipmunk, least, Tamias minimus	34	45–26	Kenagi and Vleck, 1982
Chipmunk, Eastern, Tamias striatus	20	101–69	Randolph, 1980a
Pocket gopher, Botta, Thomomys bottae	232	23–23	Vleck, 1979
Pocket gopher, Northern, Thomomys talpoides	83	24–24	Kenagi and Vleck, 1982
Squirrel, flying, Glaucomys volans	70	62–19	Morrison, 1948
Mouse, pine, Pitymys pinetorum	23	90–60	Morrison, 1948
Xenarthra			

Values are the means of all the sources indicated. high, low: maximal and minimal values of the daily oscillation in resting oxygen consumption.

Fig. 3. Allometric relationship of the average daily oxygen consumption ($\dot{V}_{\rm O_2}$, filled symbols) and of its *high-low* difference (open triangles) in 42 species of eutherian mammals. Each symbol is the average value of one species (Table 2). The oblique lines are the best fit linear regressions through the data points. The slopes of the two lines did not differ significantly.

confirmed the existence of significant (about 0.5 °C) T_b oscillations (Araki et al., 1984; Piccione et al., 2002, 2004).

The fact that the $T_{\rm b}$ oscillation in large animals is much greater than expected on physical principles could be attributed to a greater thermal conductance, or to wider oscillations in metabolic rate. However, neither is true. In fact, the W-specific thermal conductance in mammals not only does not increase, but actually decreases with the increase in W (Scholander et al., 1950; Aschoff, 1981). With respect to $\dot{V}_{\rm O}$, the present allometric analysis has indicated

that the \dot{V}_{O_2} oscillation is a constant faction of the mean value

In conclusion, the $T_{\rm b}$ oscillation decreased with W, but not nearly as much as one would have expected strictly on physical grounds. This must imply that, during the falling phase of metabolism and $T_{\rm b}$, large animals promote heat dissipation more actively than smaller species do. Heat dissipation is known to present a circadian pattern (Aschoff, 1981; Shido et al., 1986; Briese, 1998), but inter-species comparative data are not available.

Fig. 4. Allometric relationship of the average daily value of heart rate (HR, filled symbols) and of its *high-low* difference (open triangles) in 20 species of eutherian mammals. Each symbol is the average value of one species (Table 3). The oblique lines are the best-fit linear regressions through the data points. The slopes of the two lines did not differ significantly.

Table 3
Survey of literature data: daily *high* and *low* values of resting heart rate

Order and species name	<i>W</i> , g	HR <i>high–low</i> beats/min	Sources
Carnivora			
Dog, Canis familiaris	11 200	105-70	Matsunaga et al., 2001
Fennec, Fennecus zerda	1000	148-112	Noll-Banholzer, 1979
Badger, Taxidea taxus	8500	175–70	Harlow, 1981
Black bear, Ursus americanus	76600	78–45	Folk, 1967
Lagomorpha			
Rabbit, Oryctolagus cuniculus	3300	211–193	Akita et al., 2002
Perissodactyla			
Donkey, Equus asinus	177 500	46–35	Yousef and Dill, 1969
Horse, Equus caballus	690 000	42–37	Evans et al., 1976
Primata			
Cebus monkey, Celebus albifrons	1000	210–125	Winget et al., 1968
Man, Homo sapiens	72 088	74–65	Bosco et al., 2003;
			Kerkhof et al., 1998;
			Kräuchi and Wirz-Justice, 199
			Little and Rummel, 1971;
			van Dongen et al., 2001;
			Vargas et al., 2001;
			Wertheimer et al., 1974;
			Winget et al., 1974
Macaque, rhesus, Macaca mulatta	3575	165–119	Fuller et al., 1996;
			Malinow et al., 1974
Macaque, bonnet, Macaca radiata	4994	189–151	Reite and Short, 1986
Pigtail macaque, Macaca nemestrina	6000	196–152	Reite and Short, 1980
Baboon, Papio	10000	150-105	Morishima and Gale, 1972
Tamarin, saddle back, Saguinus fusciculis	310	210-164	Hampton, 1973
Tamarin, cotton top, Saguinus oedipus	320	240–198	Hampton, 1973
Proboscidea			
Elephant, Indian, Elephas maximus indicus	5 000 000	36–35	Yathiraj et al., 1992
Rodentia		254.211	
Guinea pig, Cavia porcellus	650	254–241	Akita et al., 2001
Hamster, Mesocricetus auratus	145	440–380	Refinetti and Menaker, 1993
Mouse, house, Mus musculus	29	686–566	Tankersley et al., 2002
Rat, Rattus norvegicus	315	381–318	Zhang and Sannajust, 2000;
			Curtis et al., 2003;
			Harkin et al., 2002;
			Meinrath and D'Amato, 1979
			Sei et al., 1997; Smith et al.,
			1987; van den Buuse, 1994;
			van den Buuse, 1999;
			Witte et al., 2000

Values are the means of all the sources indicated. high, low: maximal and minimal values of the daily oscillation in resting heart rate.

4.2. HR

The allometric function of the daily *high-low* difference in HR did not differ from that of the average HR, indicating that the amplitude of the oscillation of this variable is a fixed proportion of its daily mean. It would have been of interest to extend this analysis to breathing rate, but published data are very few. Circadian patterns of breathing rates have been reported for rats, cows and humans (Seifert and Mortola, 2002a; Vargas et al., 2001; Bosco et al., 2003; Piccione et al., 2004). From these data,

all collected during wakefulness, one can calculate that the amplitude of the oscillation in breathing rate was 8% of the 24-h mean in the rat, 16% in humans, and 9% in the cow. In the elephant, where measurements were conducted only in the morning and in the evening, the difference was 6% of the mean (Yathiraj et al., 1992). We have measured breathing rates in a variety of medium and large-size specimens, including aquatic mammals, and found that the morning—evening differences were quite variable, with no correlation with the species *W* (unpublished observations). Hence, as for HR, it seems that also the relative amplitude

of the breathing rate oscillation does not change systematically with the species W. Whether the same conclusion applies to cardiac output and pulmonary ventilation is impossible to say, because circadian measurements of tidal volume and stroke volume have been performed only in a few rodents (Smith et al., 1987; Seifert and Mortola, 2002a; Mortola, 2004).

4.3. Conclusions

At the onset of the study we asked whether the amplitudes of the daily oscillations in \dot{V}_{O_a} , T_b , and HR decreased systematically with the species W. For $\dot{V}_{\rm O_2}$ and HR the answer is a negative one. In fact, scaling analysis indicated that the oscillations are a fixed percentage of the 24-h means. With respect to T_b , the daily oscillation decreased significantly with W, but the drop was considerably less than expected solely on physical principles. This implies that mechanisms controlling heat loss, favouring it in large species and limiting it in small species, operate to maintain the $T_{\rm b}$ oscillation within a narrow limit. The amplitude of the $T_{\rm b}$ oscillation has been considered a key mechanism for the central clock to synchronise and control the peripheral functions (Brown et al., 2002). Hence, the control of its amplitude within narrow limits would be an important regulatory requirement.

The presence of a biological clock is a fundamental aspect of life at all levels of organisation. Yet, the daily oscillations of physiological variables and functions required for time-keeping could jeopardise the needs for stability and homeostasis. Presumably, the control of the amplitude of the oscillations, despite the physical and physiological differences introduced by the large variations in body size, represents a compromise between the requirements for time-keeping and the needs for inner stability.

Acknowledgements

Measurements of breathing rate would not have been possible without the generous collaboration of various individuals and the participation of the personnel of numerous institutions. In particular, we wish to acknowledge the contribution of Erminia Ricci, Jean-Simon Desparois, Marie-Josée Limoges, Alain Fafard (Granby Zoo, Granby, QC), Dave Elliott (MarineLand, Niagara Falls, ON), Philip Lavoie (Macdonald Farm, Ste-Anne-de-Bellevue, QC), Serge Lussier, Patrice Deneault and Jean Pierre Ranger (Park Safari, Hemmingford, Quebec).

References

Akita, M., Ishii, K., Kuwahara, M., Tsubone, H., 2001. The daily pattern of heart rate, body temperature, and locomotor activity in guinea pigs. Exp. Anim. 50, 409-415.

- Akita, M., Ishii, K., Kuwahara, M., Tsubone, H., 2002. The daily pattern of cardiovascular parameters in Kurosawa and Kusanagi-hypercholesterolemic (KHC) rabbits. Exp. Anim. 51, 353–360.
- Almirall, H., Bautista, V., Sánchez-Bahilla, A., Trinidad-Herrero, M., 2001. Ultradian and circadian body temperature and activity rhythms in chronic MPTP treated monkeys. Neurophysiol. Clin. 31, 161–170.
- Araki, C.T., Nakamura, R.M., Kam, L.W.G., Clarke, N., 1984. Effect of lactation on diurnal temperature patterns of dairy cattle in hot environments. J. Dairy Sci. 67, 1752–1760.
- Araki, C.T., Nakamura, R.M., Kam, L.W.G., 1987. Diurnal temperature sensitivity of dairy cattle in a naturally cycling environment. J. Therm. Biol. 12, 23-26.
- Aschoff, J., 1981. Thermal conductance in mammals and birds: its dependence on body size and circadian phase. Comp. Biochem. Physiol., A 69, 611–619.
- Aschoff, J., 1982. The circadian rhythm of body temperature as a function of body size. In: Taylor, C.R., Johansen, K., Bolis, L. (Eds.), A Companion to Animal Physiology. Cambridge Univ. Press, Cambridge, pp. 173–188.
- Baehr, E.K., Revelle, W., Eastman, C., 2000. Individual differences in the phase and amplitude of the human circadian temperature rhythm: with an emphasis on morningness–eveningness. J. Sleep Res. 9, 117–127.
- Bitman, J., Lefcourt, A., Wood, D.L., Stroud, B., 1984. Circadian and ultradian temperature rhythms of lactating dairy cows. J. Dairy Sci. 67, 1014–1023.
- Blanchong, J.A., McElhinny, T.L., Mahoney, M.M., Smale, L., 1999. Nocturnal and diurnal rhythms in the unstriped Nile rat, *Arvicanthis niloticus*. J. Biol. Rhythms 14, 364–377.
- Bligh, J., Harthoorn, A.M., 1965. Continuous radiotelemetric records of the deep body temperature of some unrestrained African mammals under near-natural conditions. J. Physiol. (London) 176, 145–162.
- Bligh, J., Baumann, I., Sumar, J., Poco, F., 1975. Studies of body temperature patterns in South American Camelidae. Comp. Biochem. Physiol., A 50, 701–708.
- Bosco, G., Ionadi, A., Panico, S., Faralli, F., Gagliardi, R., Data, P.G., Mortola, J.P., 2003. Effects of hypoxia on the circadian patterns in men. High Alt. Med. Biol. 3, 305–318.
- Briese, E., 1985. Rats prefer ambient temperatures out of phase with their body temperature circadian rhythm. Brain Res. 345, 389–393.
- Briese, E., 1998. Normal body temperature of rats: the setpoint controversy. Neurosci. Biobehav. Rev. 22, 427–436.
- Brown, S.A., Zumbrunn, G., Fleury-Olela, F., Preitner, N., Schibler, U., 2002. Rhythms of mammalian body temperature can sustain peripheral circadian clocks. Curr. Biol. 12, 1574–1583.
- Cahill, A.L., Ehret, C.F., 1982. Alpha-methyl-p-tyrosine shifts circadian temperature rhythms. Am. J. Physiol. 243, R212–R222.
- Chevillard-Hugot, M.-C., Müller, E.F., Kulzer, E., 1980. Oxygen consumption, body temperature and heart rate in the coati (*Nausa nasua*). Comp. Biochem. Physiol., A 65, 305–309.
- Conn, C.A., Borer, K.T., Kluger, M.J., 1990. Body temperature rhythm and response to pyrogen in exercising and sedentary hamsters. Med. Sci. Sports Exerc. 22, 636–642.
- Connolly, M.S., Lynch, C.B., 1983. Classical genetic analysis of circadian body temperature rhythms in mice. Behav. Genet. 13, 491–500.
- Crowley, T.J., Kripke, D.F., Halberg, F., Pegram, G.V., Schildkraut, J.J., 1972. Circadian rhythms in Macaca mulatta: sleep, EEG, body and eye movement, and temperature. Primates 13, 149–168.
- Curtis, K.S., Krause, E.G., Contreras, R.J., 2003. Cardiovascular function and circadian patterns in rats after area postrema lesions or prolonged food restriction. Neurosci. Lett. 350, 46–50.
- Decoursey, P.J., Pius, S., Sandlin, C., Wethey, D., Schull, J., 1998. Relationship of circadian temperature and activity in two rodent species. Physiol. Behav. 65, 457–463.
- Duffy, P.H., Feuers, R.J., Hart, R.W., 1987. Effect of age and torpor on the circadian rhythms of body temperature, activity, and body weight in the mouse (*Peromyscus leucopus*). Prog. Clin. Biol. Res., B 227, 111–120.

- Evans, J.W., Winget, C.M., De Roshia, C., Holley, D.C., 1976. Ovulation and equine body temperature and heart rate circadian rhythms. J. Interdiscip. Cycle Res. 7, 25–37.
- Folk Jr., G.E., 1967. Physiological observations of subartic bears under winter den conditions. In: Fisher, K.C., Dawe, A.R., Lyman, C.P., Schönbaum, E., South Jr., F.E. (Eds.), Mammalian Hibernation, III. Am. Elsevier Publ., New York, pp. 75–85.
- Freeman, D.A., Zucker, I., 2000. Temperature-independence of circannual variations in circadian rhythms of golden-mantled ground squirrels. J. Biol. Rhythms 15, 336–343.
- Fuller, C.A., Sulzman, F.M., Moore-Ede, M.C., 1979. Effective thermoregulation in primates depends upon internal circadian synchronization. Comp. Biochem. Physiol., A 63, 207–212.
- Fuller, C.A., 1984. Circadian brain and body temperature rhythms in the squirrel monkey. Am. J. Physiol. 246, R242-R246.
- Fuller, C.A., Sulzman, F.M., Moore-Ede, M.C., 1985. Role of heat loss and heat production in generation of the circadian temperature rhythm of the squirrel monkey. Physiol. Behav. 34, 543–546.
- Fuller, C.A., Hoban-Higgins, T.M., Klimovitsky, V.Y., Griffin, D.W., Alpatov, A.M., 1996. Primate circadian rhythms during spaceflight: results from Cosmos 2044 and 2229. J. Appl. Physiol. 81, 188–193.
- Fuller, P.M., Warden, C.H., Barry, S.J., Fuller, C.A., 2000. Effects of 2-G exposure on temperature regulation, circadian rhythms, and adiposity in UCP2/3 transgenic mice. J. Appl. Physiol. 89, 1491–1498.
- Gao, B., Duncan Jr., W.C., Wehr, T.A., 1991. Clorgyline-induced reduction in body temperature and its relationship to vigilant states in Syrian hamsters. Neuropsychopharmacology 4, 187–197.
- Goldman, B.D., Goldman, S.L., Riccio, A.P., Terkel, J., 1997. Circadian patterns of locomotor activity and body temperature in blind mole-rats, *Spalax ehrenbergi*. J. Biol. Rhythms 12, 348–361.
- Haim, A., Ellison, G.T.H., Skinner, J.D., 1988. Thermoregulatory circadian rhythms in the pouched mouse (*Saccostomus campestris*). Comp. Biochem. Physiol., A 91, 123–127.
- Haim, A., Zisapel, N., 1999. Daily rhythms of nonshivering thermogenesis in common spiny mice *Acomys cahirinus* under short and long photoperiods. J. Therm. Biol. 24, 455–459.
- Hammel, H.T., Jackson, D.C., Stolwijk, J.A.J., Hardy, J.D., Strømme, S.B., 1963. Temperature regulation by hypothalamic proportional control with an adjustable set point. J. Appl. Physiol. 18, 1146–1154.
- Hampton Jr., J.K., 1973. Diurnal heart rate and body temperature in marmosets. Am. J. Phys. Anthropol. 38, 339–342.
- Harkin, A., O'Donnell, J.M., Kelly, J.P., 2002. A study of VitalView for behavioural and physiological monitoring in laboratory rats. Physiol. Behav. 77, 65–77.
- Harlow, H.J., 1981. Torpor and other physiological adaptations of the badger (*Taxidea taxus*) to cold environments. Physiol. Zool. 54, 267–275.
- Harlow, H.J., Phillips, J.A., Ralph, C.L., 1982. Circadian rhythms and the effects of exogenous melatonin in the nine-banded armadillo, *Dasypus novemcinctus*: a mammal lacking distinct pineal gland. Physiol. Behav. 29, 307–313.
- Hayes, S.R., 1976. Daily activity and body temperature of the southern woodchuck, *Marmota monax monax*, in northwestern Arkansas. J. Mammal. 57, 291–299.
- Hildebrandt, G., 1982. Circadian variations of thermoregulatory response in man. In: Hildebrandt, G., Hensel, H. (Eds.), Biological Adaptation: International Symposium. Georg Thieme Verlag, Stuttgart, pp. 234–240.
- Hoban, T.M., Levine, A.H., Shane, R.B., Sulzman, F.M., 1985. Circadian rhythms of drinking and body temperature of the owl monkey (*Aotus trivirgatus*). Physiol. Behav. 34, 513–518.
- Honma, K.I., Hiroshige, T., 1978. Internal synchronization among several circadian rhythms in rats under constant light. Am. J. Physiol. 235, R243–R249.
- Hotz, M.M., Connolly, M.S., Lynch, C.B., 1987. Adaptation to daily mealtiming and its effect on circadian temperature rhythms in two inbred strains of mice. Behav. Genet. 17, 37–51.

- Hunsaker, W.G., Reiser, B., Wolinetz, M., 1977. Vaginal temperature rhythms in sheep. Int. J. Chronobiology 4, 151–162.
- Hut, R.A., Barnes, B.M., Daan, S., 2002. Body temperature patterns before, during, and after semi-natural hibernation in the European ground squirrel. J. Comp. Physiol., B 172, 47–58.
- Ingram, D.L., Legge, K.F., 1970. Variations in deep body temperature in the young unrestrained pig over 24 hour period. J. Physiol. (London) 210, 989–998.
- Ingram, D.L., Mount, L.E., 1973. The effects of food intake and fasting on 24-hourly variations in body temperature in the young pig. Pflug. Arch. Eur. J. Physiol. 339, 299–304.
- Johnson, R.F., Randall, W., 1985. Freerunning and entrained circadian rhythms in body temperature in the domestic cat. J. Interdiscip. Cycle Res. 16, 49-61.
- Kamau, J.M.Z., Johansen, K., Maloiy, G.M.O., 1979. Thermoregulation and standard metabolism of the slender mongoose (*Herpestes sangui-neus*). Physiol. Zool. 52, 594–602.
- Kas, M.J.H., Edgar, D.M., 1998. Crepuscolar rhythms of EEG sleep—wake in a hystricomorph rodent, *Octodon degus*. J. Biol. Rhythms 13, 9–17.
- Kas, M.J., Edgar, D.M., 2001. Scheduled voluntary wheel running activity modulates free-running circadian body temperature rhythms in *Octodon degus*. J. Biol. Rhythms 16, 66–75.
- Kenagi, G.J., Vleck, D., 1982. In: Aschoff, J., Daan, S., Groos, G.A. (Eds.), Vertebrate Circadian Systems: Structure and Physiology. Springer-Verlag, Berlin, pp. 322–338.
- Kerkhof, G.A., Van Doingen, H.P.A., Bobert, A.C., 1998. Absence of endogenous circadian rhythmicity in blood pressure? Am. J. Hypertens. 11, 373–377.
- Kittrell, E.M.W., Satinoff, E., 1986. Development of the circadian rhythm of body temperature in rats. Physiol. Behav. 38, 99–104.
- Kluger, M.J., Conn, C.A., Franklin, B., Freter, A., Abrams, G.D., 1990. Effect of gastrointestinal flora on body temperature of rats and mice. Am. J. Physiol. 258, R552–R557.
- Kräuchi, K., Wirz-Justice, A., 1994. Circadian rhythm of heat production, heart rate, and skin and core temperature under unmasking conditions in men. Am. J. Physiol. 267, R819—R829.
- Kuwabara, N., Seki, K., Aoki, K., 1986. Circadian, sleep and brain temperature rhythms in cats under sustained daily light–dark cycles and constant darkness. Physiol. Behav. 38, 283–289.
- Lefcourt, A.M., Adams, W.R., 1996. Radiotelemetry measurement of body temperatures of feedlot steers during summer. J. Anim. Sci. 74, 2633–2640
- Lewis, S.J., Maccarrone, C., Jarrott, B., 1986. Modification of the circadian body temperature rhythm of the spontaneously hypertensive rat during and following cessation of continuous clonidine infusion. Brain Res. 385, 383–388.
- Little, M.A., Rummel, J.A., 1971. Circadian variations in thermal and metabolic responses to heat exposure. J. Appl. Physiol. 31, 556-561.
- Liu, C.T., Sanders, R.P., Robbins, V.W., 1981. Diurnal changes in rectal and body surface temperatures of conscious, chair-restrained rhesus macaques. Am. J. Vet. Res. 42, 1018–1024.
- Lord, L.K., Wittum, T.E., Anderson, D.E., Riffle, D., Lathrop, S., Lauderdale, M.A., 1999. Resting rectal temperature of Vietnamese potbellied pigs. J. Am. Vet. Med. Assoc. 215, 342–344.
- Lovegrove, B.G., Muir, A., 1996. Circadian body temperature rhythms of the solitary cape mole rat *Georychus capensis* (Bathyergidae). Physiol. Behav. 60, 991–998.
- Lovegrove, B.G., Raman, J., 1998. Torpor patterns in the pouched mouse (Saccostomus campestris; Rodentia): a model animal for unpredictable environments. J. Comp. Physiol., B 168, 303–312.
- Luo, Z.-W., Matsumoto, T., Ohwatari, N., Shimazu, M., Kosaka, M., 1996. Insulative adaptation to cold and absence of circadian body temperature rhythm in Afghan pikas. Trop. Med. 38, 107–116.
- MacArthur, R.A., 1979. Seasonal patterns of body temperature and activity in free-ranging muskrats (*Ondatra zibethicus*). Can. J. Zool. 57, 25–33.

- Malinow, M.R., Hill, J.D., Ochsner, A.J., 1974. Heart rate in caged rhesus monkey (*Macaca mulatta*). Lab. Anim. Sci. 24, 537–540.
- Maloiy, G.M.O., 1971. Temperature regulation in the Somali donkey (*Equus asinus*). Comp. Biochem. Physiol., A 39, 403–412.
- Maloney, S.K., Mitchell, D., 1996. Regulation of ram scrotal temperature during heat exposure, cold exposure, fever and exercise. J. Physiol. (London) 496, 421–430.
- Marvin, H.N., Reese, W.G., 1986. Effect of environmental stimuli on the core temperature of nervous dogs. Physiol. Behav. 36, 903–906.
- Matsunaga, T., Harada, T., Mitsui, T., Inokuma, M., Hashimoto, M., Miyauchi, M., Murano, H., Shibutani, Y., 2001. Spectral analysis of circadian rhythms in heart rate variability of dogs. Am. J. Vet. Res. 62, 37–42.
- McElhinny, T.L., Smale, L., Holekamp, K.E., 1997. Patterns of body temperature, activity, and reproductive behavior in a tropical murid rodent, *Arvicanthis niloticus*. Physiol. Behav. 62, 91–96.
- Meinrath, M., D'Amato, M.R., 1979. Interrelationships among heart rate, activity, and body temperature in the rat. Physiol. Behav. 22, 491–498.
- Mohr, E., Krzywanek, H., 1990. Variation of core-temperature rhythms in unrestrained sheep. Physiol. Behav. 48, 467–473.
- Moore-Ede, M.C., Kass, D.A., Herd, J.A., 1977. Transient circadian internal desynchronization after light–dark phase shift in monkeys. Am. J. Physiol. 232, R31–R37.
- Morishima, M.S., Gale, C.C., 1972. Relationship of blood pressure and heart rate to body temperature in baboons. Am. J. Physiol. 223, 387–395.
- Morley, R.M., Conn, C.A., Kluger, M.J., Vander, A.J., 1990. Temperature regulation in biotelemetered spontaneously hypertensive rats. Am. J. Physiol. 258, R1064–R1069.
- Morrison, P.R., 1948. Oxygen consumption in several small wild mammals. J. Cell. Comp. Physiol. 31, 69–96.
- Morrison, P., Middleton, E.H., 1967. Body temperature and metabolism in the pigmy marmoset. Folia Primatol. 6, 70-82.
- Mortola, J.P., Seifert, E.L., 2000. Hypoxic depression of circadian rhythms in adult rats. J. Appl. Physiol. 88, 365–368.
- Mortola, J.P., 2004. Breathing around the clock: an overview of the circadian pattern of respiration. Eur. J. Appl. Physiol. Occup. Physiol. 91, 119–129.
- Mousel, M.R., Stroup, W.W., Nielsen, M.K., 2001. Locomotor activity, core body temperature, and circadian rhythms in mice selected for high and low heat loss. J. Anim. Sci. 79, 861–868.
- Nelson, W., Scheving, L., Halberg, F., 1975. Circadian rhythms in mice fed a single daily meal at different stages of lighting regimen. J. Nutr. 105, 171–184.
- Nguyen, M., Tokura, H., 2002. Observations on normal body temperature in Vietnamese and Japanese in Vietnam. J. Physiol. Anthropol. Appl. Hum. Sci. 21, 59–65.
- Noll-Banholzer, U., 1979. Body temperature, oxygen consumption, evaporative water loss and heart rate in the fennec. Comp. Biochem. Physiol., A 62, 585-592.
- Petry, H., Maier, J., 1990. Radiotelemetrische untersuchungen der körpertemperatur von weißbüscheläffchen (*Callithrix jacchus*). Z. Ernahr. Wiss. 29, 197–207.
- Piccione, G., Caola, G., Refinetti, R., 2002. The circadian rhythm of body temperature of the horse. Biol. Rhythm Res. 33, 113–119.
- Piccione, G., Caola, G., Refinetti, R., 2003. Circadian rhythms of body temperature and liver function in fed and food-deprived goats. Comp. Biochem. Physiol., A 134, 563–572.
- Piccione, G., Caola, G., Mortola, J.P., 2004. Day/night pattern of arterial blood gases in the cow. Respir. Physiol. Neurobiol. 140, 33-41.
- Pickard, G.E., Kahn, R., Silver, R., 1984. Splitting of the circadian rhythm of body temperature in the golden hamster. Physiol. Behav. 32, 763-766.
- Raab, J.L., Brady, M.S., 1976. Do nocturnal rodents run more efficiently at night? Nature 260, 38–39.
- Randall, W., Johnson, R.F., Randall, S., Cunningham, J.T., 1985. Circadian

- rhythms in food intake and activity in domestic cats. Behav. Neurosci. 99, 1162-1175.
- Randolph, J.C., 1980a. Daily energy metabolism of two rodents (*Peromyscus leucopus* and *Tamias striatus*) in their natural environments. Physiol. Zool. 53, 70–81.
- Randolph, J.C., 1980b. Daily metabolic patterns of short-tailed shrews (Blarina) in three natural seasonal temperature regimes. J. Mammal. 61, 628–638.
- Rawson, R.O., Stolwijk, J.A.J., Graichen, H., Abrams, R., 1965. Continuous radio telemetry of hypothalamic temperatures from unrestrained animals. J. Appl. Physiol. 20, 321–325.
- Refinetti, R., 1996a. Comparison of body temperature rhythms of diurnal and nocturnal rodents. J. Exp. Zool. 275, 67–70.
- Refinetti, R., 1996b. Rhythms of body temperature and temperature selection are out of phase in a diurnal rodent, *Octodon degus*. Physiol. Behav. 60, 959–961.
- Refinetti, R., 1999. Amplitude of the daily rhythm of body temperature in eleven mammalian species. J. Therm. Biol. 24, 477–481.
- Refinetti, R., 2000. Circadian Physiology. CRC Press, Boca Raton, FL.
- Refinetti, R., Menaker, M., 1992. The circadian rhythm of body temperature. Physiol. Behav. 51, 613-637.
- Refinetti, R., Menaker, M., 1993. Independence of heart rate and circadian period in the golden hamster. Am. J. Physiol. 264, R235–R238.
- Refinetti, R., Ma, H., Satinoff, E., 1990. Body temperature rhythms, cold tolerance, and fever in young and old rats of both genders. Exp. Gerontol. 25, 533–543.
- Refinetti, R., Nelson, D.E., Menaker, M., 1992. Social stimuli fail to act as entraining agents of circadian rhythms in the golden hamster. J. Comp. Physiol., A 170, 181–187.
- Reinking, L.N., Kilgore Jr., D.L., Fairbanks, E.S., Hamilton, J.D., 1977.
 Temperature regulation in normothermic black-tailed prairie dogs,
 Cynomys ludovicianus. Comp. Biochem. Physiol., A 57, 161–165.
- Reite, M., Short, R., 1980. A biobehavioral developmental profile (BDP) for the pigtailed monkey. Dev. Psychobiol. 13, 243–285.
- Reite, M., Short, R., 1986. Behaviour and physiology in young bonnet monkey. Dev. Psychobiol. 19, 567–579.
- Robinson, E.L., Demaria-Pesce, V.H., Fuller, C.A., 1993. Circadian rhythms of thermoregulation in the squirrel monkey (*Saimiri sciureus*). Am. J. Physiol. 265, R781–R785.
- Rubal, A., Choshniak, I., Haim, A., 1992. Daily rhythms of metabolic rate and body temperature of two murids from extremely different habitats. Chronobiol. Int. 9, 341–349.
- Satinoff, E., Liran, J., Clapman, R., 1982. Aberrations of circadian body temperature rhythms in rats with medial preoptic lesions. Am. J. Physiol. 242, R352–R357.
- Scales, W.E., Kluger, M.J., 1987. Effect of antipyretic drugs on circadian rhythm in body temperature of rats. Am. J. Physiol. 253, R306–R313.
- Schmid, J., Ruf, T., Heldmaier, G., 2000. Metabolism and temperature regulation during daily torpor in the smallest primate, the pigmy mouse lemur (*Microcebus myoxinus*) in Madagascar. J. Comp. Physiol., B 170, 59–68.
- Schmidt-Nielsen, K., Schmidt-Nielsen, B., Jarnum, S.A., Houpt, T.R., 1957. Body temperature of the camel and its relation to water economy. Am. J. Physiol. 188, 103–112.
- Scholander, P.F., Hock, R., Walters, V., Johnson, F., Irving, L., 1950. Heat regulation in some arctic and tropical mammals and birds. Biol. Bull. 99, 237–258.
- Sei, H., Furuno, N., Morita, Y., 1997. Diurnal changes of blood pressure, heart rate and body temperature during sleep in the rat. J. Sleep Res. 6, 113–119.
- Seifert, E.L., Mortola, J.P., 2002a. The circadian pattern of breathing in conscious adult rats. Respir. Physiol. 129, 297–305.
- Seifert, E.L., Mortola, J.P., 2002b. Circadian pattern of ventilation during acute and chronic hypercapnia in conscious adult rats. Am. J. Physiol. 282, R244–R251.
- Seifert, E.L., Mortola, J.P., 2002c. Circadian pattern of ventilation during

- prolonged hypoxia in conscious rats. Respir. Physiol. Neurobiol. 133, 23-34.
- Seifert, E.L., Knowles, J., Mortola, J.P., 2000. Continuous circadian measurements of ventilation in behaving adult rats. Respir. Physiol. 120 179–183
- Shido, O., Sugano, Y., Nagasaka, T., 1986. Circadian changes of heat loss in response to change in core temperature in rats. J. Therm. Biol. 11, 199-202.
- Shido, O., Yoneda, Y., Nagasaka, T., 1989. Changes in body temperature of rats acclimated to heat with different acclimation schedules. J. Appl. Physiol. 67, 2154–2157.
- Shiromani, P.J., Klemfuss, H., Lucero, S., Overstreet, D.H., 1991. Diurnal rhythm of core body temperature is phase advanced in a rodent model of depression. Biol. Psychol. 29, 923–930.
- Silva, M., Downing, J.A., 1995. CRC Handbook of Mammalian Body Masses. CRC Press, Boca Raton, FL, p. 359.
- Smith, M.H., Criss, W.E., 1967. Effects of social behavior, sex, and ambient temperature on the endogenous diel body temperature cycle of the old field mouse, *Peromyscus polionotus*. Physiol. Zool. 40, 31–39.
- Smith, T.L., Coleman, T.G., Stanek, K.A., Murphy, W.R., 1987. Hemodynamic monitoring for 24 h in unanesthetized rats. Am. J. Physiol. 253, H1335–H1341.
- Spencer, F., Shirer, H.W., Yochim, J.M., 1976. Core temperature in the female rat: effect of pinealectomy or altered lighting. Am. J. Physiol. 231, 355-360.
- Štefikova, H., Šovćikova, E., Broniš, M., 1986. The circadian rhythm of selected parameters of heart rate variability. Physiol. Bohemoslov. 35, 227–232
- Stephenson, R., Mohan, R.M., Duffin, J., Jarsky, T.M., 2000. Circadian rhythms in the chemoreflex control of breathing. Am. J. Physiol. 278, R282–R286.
- Stull, C.L., Rodiek, A.V., 2000. Physiological responses of horses to 24 hours of transportation using a commercial van during summer conditions. J. Anim. Sci. 78, 1458–1466.
- Sulzman, F.M., Fuller, C.A., Hiles, L.G., Moore-Ede, M.C., 1978. Circadian rhythm dissociation in an environment with conflicting temporal information. Am. J. Physiol. 235, R175–R180.
- Tang, I.H., Murakami, D.M., Fuller, C.A., 1999. Effects of square-wave and simulated natural light-dark cycles on hamster circadian rhythms. Am. J. Physiol. 276, R1195-R1202.
- Tankersley, C.G., Irizarry, R., Flanders, S., Rabold, R., 2002. Circadian rhythm variation in activity, body temperature, and heart rate between C3H/HeJ and C57BL/6J inbred strains. J. Appl. Physiol. 92, 870–877.
- Tapp, W.N., Natelson, B.H., 1989. Circadian rhythms and patterns of performance before and after simulated jet lags. Am. J. Physiol. 257, R796–R803.
- Timbal, J., Colin, J., Boutelier, C., Guieu, J.D., 1972. Bilan thermique de l'homme en ambiance controlée pendant 24 houres. Pflugers Arch. 335, 97–108.
- van den Buuse, M., 1994. Circadian rhythms of blood pressure, heart rate, and locomotory activity in spontaneously hypertensive rats as measured with radio-telemetry. Physiol. Behav. 55, 783-787.
- van den Buuse, M., 1999. Circadian rhythms of blood pressure and heart rate in conscious rats: effects of light cycle shifts and timed feeding. Physiol. Behav. 68, 9–15.

- Van Dongen, H.P.A., Maislin, G., Kerkhof, G.A., 2001. Repeated assessment of the endogenous 24-hour profile of blood pressure under constant routine. Chronobiol. Int. 18, 85–98.
- Vargas, M., Jiménez, D., León-Velarde, F., Osorio, J., Mortola, J.P., 2001. Circadian patterns in men acclimatized to intermittent hypoxia. Respir. Physiol. 126, 233–243.
- Varosi, S.M., Brigmon, R.L., Besch, E.L., 1990. A simplified telemetry system for monitoring body temperature in small animals. Lab. Anim. Sci. 40, 299–302.
- Vleck, D., 1979. The energy cost of burrowing by the pocket gopher Thomomys bottae. Physiol. Zool. 52, 122–136.
- Wang, L.C-H., 1972. Circadian body temperature of Richardson's ground squirrel under field and laboratory conditions: a comparative radiotelemetric study. Comp. Biochem. Physiol., A 43, 503–510.
- Weinert, D., Waterhouse, J., 1999. Daily activity and body temperature rhythms do not change simultaneously with age in laboratory mice. Physiol. Behav. 66, 605–612.
- Wertheimer, L., Hassen, A., Delman, A., Yaseen, A., 1974. Cardiovascular circadian rhythm in man. In: Scheving, L.L., Halberg, F., Pauly, J.E. (Eds.), Chronobiology. Igaku Shoin, Tokyo, pp. 742–747.
- Wexler, D.B., Moore-Ede, M.C., 1986. Resynchronization of circadian sleep-wake and temperature cycles in the squirrel monkey following phase shifts of the environmental light-dark cycle. Aviat. Space Environ. Med. 57, 1144–1149.
- Winget, C.M., Card, D.H., Hetherington, N.W., 1968. Circadian oscillations of deep-body temperature and heart rate in a primate (*Cebus albafrons*). Aerosp. Med. 39, 350–353.
- Winget, C.M., Vernikos-Danellis, J., Leach, C.S., Rambaut, P.C., 1974.Phase relationship between circadian rhythms and the environment in humans during hypokinesis. In: Scheving, L.L., Halberg, F., Pauly, J.E. (Eds.), Chronobiology. Igaku Shoin, Tokyo, pp. 429–434.
- Witte, K., Swiatek, J., Műssig, C., Ertl, G., Lemmer, B., 2000. Experimental heart failure in rats: effects on cardiovascular circadian rhythm and on myocardial β-adrenergic signaling. Cardiovasc. Res. 47, 350–358
- Wollnik, F., Schmidt, B., 1995. Seasonal and daily rhythms of body temperature in the European hamster (*Cricetus cricetus*) under seminatural conditions. J. Comp. Physiol., B 165, 171–182.
- Wright Jr., K.P., Badia, P., Myers, B.L., Plenzler, S.C., Hakel, M., 1997.
 Caffeine and light effects on nighttime melatonin and temperature levels in sleep-deprived humans. Brain Res. 747, 78–84.
- Yathiraj, S., Choudhurl, P.C., Rao, D.S.T., Roddy, P.K., 1992. Clinicohaematological observations on Indian elephant (*Elephas maximus indicus*). Indian Vet. J. 69, 995–997.
- Yousef, M.K., Dill, D.B., 1969. Resting energy metabolism and cardiorespiratory activity in the burro *Equus asinus*. J. Appl. Physiol. 27, 229–232.
- Yunis, E.J., Fernandes, G., Nelson, W., Halberg, F., 1974. Circadian temperature rhythms and aging in rodents. In: Scheving, L.L., Halberg, F., Pauly, J.E. (Eds.), Chronobiology. Igaku Shoin, Tokyo, pp. 358–363.
- Zhang, B., Sannajust, F., 2000. Diurnal rhythms of blood pressure, heart rate, and locomotor activity in adult and old male Wistar rats. Physiol. Behav. 70, 375–380.