MATH 307

Assignment #6

Due Friday, February 25, 2022

Revision: 2/21/2022: Fixed typo in problem #3: U + V should be U + W.

For each problem, include the statement of the problem. Leave a blank line. At the beginning of the next line, write **Solution** or **Proof** – as appropriate.

- 1. Label the following statements as being true or false. Provide some justification from the text for your label.
 - (a) Every linear operator on an n-dimensional vector space has n distinct eigenvalues.
 - (b) If a linear operator on a vector space over \mathbf{R} has one eigenvector, then it has an infinite number of eigenvectors.
 - (c) There exists a square matrix with no eigenvectors.
 - (d) Eigenvalues must be nonzero scalars.
 - (e) Any two eigenvectors are linearly independent.
 - (f) The sum of two eigenvalues of a linear operator T is also an eigenvalue of T.
 - (g) Linear operators on infinite-dimensional vectors spaces never have eigenvalues.
 - (h) The sum of two eigenvectors of an operator T is always an eigenvector of T.
- 2. Consider the operator $T = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$ acting on \mathbb{R}^2 . How many subspaces are there that are invariant under T?
- 3. If U and W are invariant subspaces for $T \in \mathcal{L}(V)$ then U + W is invariant for T.
- 4. In \mathbb{R}^2 , let T be the reflection across the line y = x.
 - (a) Write the matrix A that represents T relative to the standard basis.
 - (b) Determine two invariant subspaces \mathcal{M} and \mathcal{N} for T such that $\mathbf{R}^2 = \mathcal{M} \oplus \mathcal{N}$ where neither \mathcal{M} nor \mathcal{N} is the zero subspace.
 - (c) Write a basis $\{u_1, u_2\}$ for \mathbf{R}^2 so that $\mathcal{M} = \mathrm{span}\ (u_1)$ and $\mathcal{N} = \mathrm{span}\ (u_2)$.
 - (d) Write the matrix B that represents T relative to the basis $\{u_1, u_2\}$.
- 5. (a) Let $V = \mathbb{R}^2$. Find eigenvalues and eigenvectors for the linear operator T defined by T(x,y) = (2y,x).
 - (b) Let $V = \mathbf{R}^2$. Find eigenvalues and eigenvectors for the linear operator T defined by T(x,y) = (-2y,x).
- 6. Let $T \in \mathcal{L}(V)$ and $S \in \mathcal{L}(V)$ be invertible.
 - (a) Show that T and $S^{-1}TS$ have the same eigenvalues.
 - (b) What is the relationship between the eigenvectors of T and the eigenvectors of $S^{-1}TS$.

7. Show that the operator $T \in \mathcal{L}(\mathbf{C}^{\infty})$ defined by

$$T(z_1, z_2, \ldots) = (0, z_1, z_2, \ldots)$$

has no eigenvalues.

8. Suppose $T \in \mathcal{L}(V)$ and there exists nonzero vectors v and w so that

$$Tv = 3w$$
 and $Tw = 3v$.

Prove that 3 or -3 is an eigenvalue of T.