```
In [4]:
```

```
import pandas as pd  # For reading and working with data
import matplotlib.pyplot as plt # For charts
import seaborn as sns # For beautiful charts

# So plots show inside the notebook
%matplotlib inline
```

```
In [5]:
```

```
df = pd.read_csv("train.csv") # 'df' stands for dataframe
df.head() # Shows the first 5 rows of the data
```

Out[5]:

	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Е
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	NaN	
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	C85	
2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	NaN	
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	C123	
4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	NaN	

In [6]:

```
df.info()  # Shows total rows, columns, and missing values
df.describe()
```


Data Overview Observations:

- The dataset contains 891 rows and 12 columns.
- There are missing values in the `Age`, `Cabin`, and `Embarked` columns.
- Most columns are numerical or categorical.
- `Fare` has a wide range, indicating passengers paid very different amounts.

Shows statistics like mean, min, max

df.isnull().sum() # Shows how many missing values in each column

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 891 entries, 0 to 890

Data columns (total 12 columns):

#	Column	Non-Null Count	Dtype
0	PassengerId	891 non-null	int64
1	Survived	891 non-null	int64
2	Pclass	891 non-null	int64

```
3
     Name
                  891 non-null
                                   object
 4
     Sex
                  891 non-null
                                   object
 5
                  714 non-null
                                   float64
     Age
 6
                  891 non-null
                                   int64
     SibSp
 7
     Parch
                  891 non-null
                                   int64
 8
     Ticket
                  891 non-null
                                   object
 9
     Fare
                  891 non-null
                                   float64
 10
    Cabin
                  204 non-null
                                   object
 11 Embarked
                  889 non-null
                                   object
dtypes: float64(2), int64(5), object(5)
memory usage: 83.7+ KB
Out[6]:
PassengerId
                 0
Survived
                 0
Pclass
                 0
                 0
Name
Sex
                 0
               177
Age
                 0
SibSp
                 0
Parch
Ticket
                 0
Fare
                 0
               687
Cabin
Embarked
                 2
dtype: int64
In [7]:
df['Sex'].value counts()
df['Embarked'].value counts()
df['Pclass'].value counts()
### 🥻 Categorical Value Distribution:
- There are more male passengers than female passengers.
- Most passengers belong to the 3rd class (`Pclass = 3`), followed by 1st and 2nd.
- Most passengers embarked from port 'S' (Southampton).
Out[7]:
Pclass
3
     491
1
     216
     184
2
Name: count, dtype: int64
In [8]:
sns.histplot(df['Age'].dropna(), kde=True)
plt.title("Age Distribution")
plt.show()
### Age Distribution Observation:
- The most common age group is between 20 and 40 years.
- Very few passengers are below age 10 or above age 60.
- The distribution of age is right-skewed (more younger people than older ones).
```

Age Distribution


```
In [9]:
```

```
sns.boxplot(x='Survived', y='Age', data=df)
plt.title("Age vs Survival")
plt.show()
### 🗿 Age vs Survival Observation:
- On average, survivors were slightly younger than non-survivors.
```

- There are some outliers in age among both survivors and non-survivors.

Age vs Survival

In [10]:

```
sns.countplot(x='Sex', hue='Survived', data=df)
plt.title("Gender vs Survival")
plt.show()
### Gender vs Survival Observation:
```

- A higher proportion of females survived compared to males.
- Most of the survivors are women, showing that women were given priority in rescue.

Gender vs Survival

In [14]:

sns.pairplot(df[['Survived', 'Pclass', 'Age', 'Fare']], hue='Survived')
plt.show()
Pairplot Observation:

- Passengers who paid higher fares had higher chances of survival.
- Most of the survivors are **from** 1st and 2nd class.
- Age and Fare help to visually separate survivors from non-survivors to some extent.

In []:

🖊 Summary of Findings

- Most passengers were in the 3rd class and embarked from Southampton.
- Female passengers had a much higher survival rate than males.
- Younger people had a slightly higher chance of survival.
- Passengers from 1st class and those who paid higher fares had better survival chances.
- Missing values are mainly in `Age`, `Cabin`, and `Embarked` these should be cleaned