Generalized Additive Mixed Models

Workshop: Analysis of Longitudinal Data

12th Nov 2024

Jaroslaw Harezlak Armando Teixeira-Pinto

Beyond linearity

Material covered so far:

Repeated measures
Linear mixed models (LMM)

GLMMs

- > common time design points
- → linear relationships over time
- → extensions of LMMs to binary/count outcomes

This lecture - GAMMs:

Extensions of (G)LMMs to nonlinear (smooth) relationships between the outcomes and trends over time

Spinal Bone Mineral Density Data

The following slide shows longitudinal data on spinal bone mineral density (SBMD) for 230 adolescent girls and young women.

Example – bone mineral density

Bachrach, L.K., Hastie, T., Wang, M.-C., Narasimhan, B. and Marcus, R. (1999). Bone mineral acquisition in healthy Asian, Hispanic, Black and Caucasian youth. A longitudinal study. J. Clin. Endocrin. Metab. 84, 4702–12.

Basis expansion idea

- Bases functions for linear models:
 - constant & line
- Bases functions for polynomial pth-degree models:
 - constant, line, quadratic, cubic, ..., pth power

(a) Quadratic Model

(b) Corresponding Basis

Basis expansion idea

Other basis function families

- Splines (including B-splines, natural cubic splines)
- Fourier expansion (sines and cosines)
- Wavelets (e.g. Haar wavelets)
- other

(a) Broken Stick Model

(b) Corresponding Basis

B-spline basis

Smoothing splines

Minimize the criterion:

$$\min_{f \in H_2} \sum_{i=1}^n (y_i - f(x_i))^2 + \lambda \int (f''(x))^2 dx$$

Solution:

Natural cubic splines with knots at all observed values x_i

Regression splines

Minimize the criterion:

$$\min_{b_1,\dots,b_K} \sum_{i=1}^n (y_i - f(x_i))^2,$$
where $f(x_i) = \sum_{k=1}^K b_k \theta_k(x_i),$
and $\theta_k(\bullet)$ are basis functions.

Regression splines

- Parametric model with K parameters
- Choice of knots

Importance of the placement and the number of knots

Computationally hard problem

Ordinary Least Squares

Penalized regression splines

- Compromise between smoothing splines and regression splines
- Fewer knots than smoothing splines (K << n)
- However, the coefficients are penalized

$$\min_{b_1,...,b_K} \sum_{i=1}^n (y_i - f(x_i))^2 + \lambda \sum_{k=1}^K u_k^2$$

where
$$f(x_i) = \sum_{k=1}^{K} u_k \theta_k(x_i)$$
,

and $\theta_{k}(\bullet)$ are basis functions.

Penalized regression splines

- K has to be large enough to allow estimation of curve f(•) features
- Methodology is easy to extend to longitudinal data, spatial data, additive models, etc.
- Computations can be done using linear mixed model functions (e.g. function lme() in the package "nlme" or functions in the package "mgcv")

Penalized Least Squares

Tricking Mixed Models to do Smoothing

$$y_i = \beta_0 + \beta_1 x_i + \sum_{k=1}^{K} u_k (x_i - \kappa_k)_+ + \varepsilon_i$$

A: u_k 's fixed

B: $u_{m{k}}$ i.i.d. $N(0,\sigma_{m{u}}^2)$

Penalised Splines as Mixed Models

$$y_i = \underbrace{eta_0 + eta_1 x_i}_{ ext{fixed effects}} + \sum_{k=1}^K u_k (x_i - \kappa_k)_+ + arepsilon_i$$

Longitudinal data

- We will go back to the example shown in the second slide

 We will talk about extensions of penalized regression splines to longitudinal data

Example – bone mineral density

Double Subscript Notation

```
Let  \begin{array}{ll} m &=& \text{number of subjects} \\ n_i &=& \text{number of measurements on subject i } (1 \leq i \leq m) \\ \\ \end{array}  Then  y_{ii} = \text{response for } j^{th} \text{ measurement on subject i.}
```

The University of Sydney

Outcome (SBMD) and predictor (age)

```
SBMD_{ii} = i^{th} spinal bone mineral density for subject i
```

 $age_{ij} = age corresponding to SBMD_{ij}$ measurement

Reasonable model for SBMD

$$ext{SBMD}_{ij} = U_i + f(ext{age}_{ij}) + arepsilon_{ij}$$

 $U_i \stackrel{\scriptscriptstyle{\mathsf{ind.}}}{\sim} N(0,\sigma_u^2)$ is a random subject intercept

Treating Longitudinal and Smoothing Together

$$\mathbf{Z} = \left[egin{array}{ccc} \mathrm{random} & \mathrm{spline} \ \mathrm{intercept} & \mathrm{basis} \ \mathrm{functions} \end{array}
ight]$$
 $\mathrm{Cov}(\mathbf{u}) = \left[egin{array}{ccc} \sigma_U^2 \mathbf{I} & \mathbf{0} \ \mathbf{0} & \sigma_u^2 \mathbf{I} \end{array}
ight]$

 $\sigma_U^2 = ext{controls}$ between-subject variability $\sigma_u^2 = ext{controls}$ amount of smoothing in estimation of mean

Additive Model Extension

With the Asian ethnicity as a baseline we have

$$ext{SBMD}_{ij} = U_i + f(ext{age}_{ij}) + eta_1 \, ext{black}_i + eta_2 \, ext{hispanic}_i + eta_3 \, ext{white}_i + arepsilon_{ij},$$

Effect of Ethnicity

From the mixed model output:

variable	Value	Approx. Std. Error	z ratio
black	0.1062	0.02066	5.141
hispanic	0.0260	0.02164	1.203
white	0.0131	0.02165	0.6069

Fitting penalized spline models in R

- 1. Create the design matrix X with the fixed effects
- 2. Matrix Z is created by evaluating the basis functions (e.g. truncated lines) at each time point
- 3. Use Ime() function (in R) with the random structure specification corresponding to the penalty put on the random coefficients
- 4. Get the BLUEs for the fixed effects and BLUPs for the random coefficients to get an estimate of the smooth curve

OR (much easier)

Use function gamm() in the package "mgcv"

Main Points

- Many longitudinal applications benefit from semiparametric regression.
- Mixed models are the standard vehicle for longitudinal data analysis.
- Penalized splines with mixed model representation allow for a seamless fusion between semiparametric regression and longitudinal data analysis.