

# **Contents**

| Contents                                                   | 1    |
|------------------------------------------------------------|------|
| Figures                                                    | ii   |
| Tables                                                     | iii  |
| 2 Overall Description                                      | 2-1  |
| 2.1 Chip Structure                                         | 2-1  |
| 2.1.1 SoC System                                           | 2-1  |
| 2.1.2 Media Subsystem                                      | 2-3  |
| 2.1.3 Storage Subsystem                                    | 2-3  |
| 2.2 Clock                                                  | 2-4  |
| 2.2.1 Function Description                                 | 2-4  |
| 2.2.2 Clock Input                                          | 2-4  |
| 2.3 Reset                                                  | 2-4  |
| 2.3.1 Function Description                                 | 2-4  |
| 2.3.2 Chipset Reset Scheme                                 | 2-4  |
| 2.3.3 Reset Structure                                      | 2-5  |
| 2.4 Interrupt                                              | 2-7  |
| 2.4.1 Function Description                                 | 2-7  |
| 2.4.2 Interrupt Structure                                  | 2-7  |
| 2.4.3 Interrupt Mapping                                    | 2-8  |
| 2.5 Chip Operating Mode and Control                        | 2-14 |
| 2.6 Boot Mechanism                                         | 2-15 |
| 2.6.1 Overall Process                                      | 2-15 |
| 2.6.2 eMMC Boot                                            | 2-16 |
| 2.7 Debugging Mode                                         | 2-16 |
| 2.7.1 JTAG Debugging                                       | 2-16 |
| 2.7.2 CoreSight Debugging                                  | 2-17 |
| 2.8 Maintainability and Testability                        | 2-17 |
| 2.9 Memory Map                                             |      |
| 2.9.1 Address Space Allocation (From the ACPU Perspective) |      |



# Figures |

| Figure 2-1 SoC system architecture | Error! Bookmark not defined. |
|------------------------------------|------------------------------|
| Figure 2-2 External reset          | 2-5                          |
| Figure 2-3 GIC architecture.       | 2-8                          |



# **Tables**

| Table 2-1 Modules in the SoC system                        | 2-1  |
|------------------------------------------------------------|------|
| Table 2-2 Allocation table of GIC interrupts               | 2-8  |
| Table 2-3 Register groups and memory address ranges (ACPU) | 2-18 |



# 2 Overall Description

## 2.1 Chip Structure

## 2.1.1 SoC System

Table 2-1 Modules in the SoC system

| Module    | Description                                                                  | Module  | Description                                                                                                                                   |
|-----------|------------------------------------------------------------------------------|---------|-----------------------------------------------------------------------------------------------------------------------------------------------|
| A73/A53   | Application processor cluster, big.LITTLE architecture                       | IVP     | Image and video processor (IVP) module                                                                                                        |
| ASP       | Audio signal processor<br>(ASP) subsystem                                    | LPMCU   | Low-power processing subsystem                                                                                                                |
| BLPWM     | Backlight pulse-width modulation (PWM) module                                | MMC     | Multimedia card (MMC) control module                                                                                                          |
| BOOTROM   | On-chip read-only memory (ROM)                                               | NANDC   | Flash memory controller (FMC)                                                                                                                 |
| CODEC_SSI | Synchronous serial interface (SSI) module used to communicate with the codec | PCTRL   | Peripheral controller                                                                                                                         |
| CRG       | Clock and reset generator (CRG) module                                       | PMCTRL  | Power management<br>control (PMC) module<br>such as dynamic frequency<br>scaling (DFS) and<br>dynamic voltage and<br>frequency scaling (DVFS) |
| CSSYS     | Processor joint-debugging module                                             | PMU_I2C | I <sup>2</sup> C interface module used<br>to communicate with the<br>power management unit<br>(PMU)                                           |



| Module                                      | Description                                                                                                                                               | Module      | Description                                         |
|---------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-----------------------------------------------------|
| DDRC                                        | Double data rate SDRAM controller (DDRC)                                                                                                                  | PMU_SSI     | SSI module used to communicate with the PMU         |
| DJTAG                                       | JTAG port debugging module                                                                                                                                | PWM         | PWM module                                          |
| DMAC                                        | Direct memory access controller (DMAC) module                                                                                                             | RTC         | Real-time clock (RTC) counter                       |
| DSS                                         | Display module                                                                                                                                            | SCI         | SIM card controller                                 |
| EFUSEC                                      | eFUSE control module                                                                                                                                      | SCTRL       | System controller                                   |
| Generic<br>interrupt<br>controller<br>(GIC) | Processor interrupt processing module                                                                                                                     | SEC_P/SEC_S | Security processing module                          |
| GNSPWM                                      | Universal PWM module                                                                                                                                      | SPI         | Serial peripheral interface (SPI) controller        |
| GPIO                                        | General-purpose<br>input/output (GPIO)<br>interface module                                                                                                | SYS_CNT     | Processor-dedicated counter module                  |
| GPU                                         | Media service processor                                                                                                                                   | TIMER       | Timing and counting module                          |
| HKADC_SSI                                   | Bus interface module, used to read the converted digital data in the housekeeping analog-to-digital converter (HKADC) of the external PMU through the SSI | TSENSORC    | TSensor controller                                  |
| I <sup>2</sup> C                            | I <sup>2</sup> C controller                                                                                                                               | TZPC        | Security signal allocation module                   |
| IOC                                         | I/O control module                                                                                                                                        | UART        | Universal serial port module                        |
| IOMCU                                       | Sensor-hub processing subsystem                                                                                                                           | USB3OTG     | USB 3.0 controller module                           |
| IPC                                         | Inter-core communication module                                                                                                                           | VENC/VDEC   | Video<br>encryption/decryption<br>processing module |
| ISP                                         | Image signal processing (ISP) module                                                                                                                      | WD          | Watchdog counter                                    |
| EMMC5.1                                     | eMMC 5.1 controller module                                                                                                                                | UFS         | Unified File system (UFS) controller module         |
| SDIO                                        | SDIO controller module                                                                                                                                    | SD          | SD card controller module                           |



| Module | Description            | Module | Description |
|--------|------------------------|--------|-------------|
| PCIe   | PCIe controller module | -      | -           |

The system on chip (SoC) system uses the multi-layer bus architecture. Each layer supports separate parallel access.

The bus architecture of the SoC system has the following features:

- Supports hardware coherency through coherency bus interconnection.
- Connects the independent buses from multiple layers to improve the bus bandwidth of the Hi3660 and provide excellent scalability.
- Uses the advanced eXtensible interface (AXI) as the high-speed data bus, supporting 128-bit or 64-bit width.
- Uses the 32-bit AXI as the low-speed data bus and configuration bus.

## 2.1.2 Media Subsystem

The media subsystem provides superior multimedia processing and acceleration functions:

- Image capturing
- Image display and output
- Acceleration of image encoding and decoding
- 3D graphics acceleration
- Audio processing acceleration

The media subsystem supports the following upper-level applications:

- Digital photographing
- Digital video recording
- Audio recording
- Playing local audio and video
- Browsing local pictures
- Playing audio and video in the stream media format
- Multimedia editor
- Video call
- UI and video hardware acceleration
- Hardware acceleration for gaming

#### NOTE

For details about the media subsystem, see chapter 6 "Media Processing."

## 2.1.3 Storage Subsystem

The Hi3660 supports the following external storage interfaces to provide flexible storage solutions for the system and meet different product requirements:

- UFS/eMMC/SD/SDIO static storage card interface
- Low-power double data rate 4 (LPDDR4) dynamic memory interface



NAND flash interface



For details about the storage subsystem, see chapter 7 "Storage Control."

#### 2.2 Clock

## 2.2.1 Function Description

The Hi3660 accepts external clock inputs, generates required internal operating clocks by using the internal phase-locked loops (PLLs) and clock circuits, and provides multiple clocks for other chips.

The Hi3660 provides 11 internal PLLs for generating operating clocks required by chip modules.

### 2.2.2 Clock Input

The Hi3660 supports the following external input clocks:

- 32 kHz clock
- 19.2 MHz clock
- External backup clock

#### 2.3 Reset

## 2.3.1 Function Description

The Hi3660 receives external reset inputs and resets or deasserts reset on internal modules based on the reset deassertion sequence during power-on.

After the AO area is powered on, the internal power-on reset (POR) module outputs low-level signals, resets the Hi3660, and pulls the output level up about 12–48 ms after the power-on. This ensures that the entire chip is in reset state when the I/O (external input reset) is in indefinite state.

Besides POR, the Hi3660 supports the following global reset types:

- Watchdog reset
- Temperature sensor reset
- Chip soft reset

When any of the preceding reset types is valid, the global reset of the Hi3660 is triggered. All reset types have the same priority.

## 2.3.2 Chipset Reset Scheme

During the power-on process, the PMU provides the reset input signal (RSTIN\_N) for the Hi3660. The SoC automatically performs the POR operation on internal modules.



When any global reset mode in the Hi3660 is valid, the Hi3660 outputs the PMU reset signal (PMU\_RST\_N) to reset the PMU. After that, the PMU pulls RSTIN\_N down to implement global reset.

Figure 2-1 External reset



#### 2.3.3 Reset Structure

The Hi3660 supports the following global reset types:

- POR
- Watchdog reset
- Temperature sensor reset
- Chip soft reset

There are two reset modes: dying gasp reset and non-dying gasp reset. Setting SCPEREN1[31] to 1 enables the dying gasp reset mode. Setting SCPERDIS1[31] to 1 disables the dying gasp reset mode.

- Dying gasp reset: When the wd reset request and over-temperature reset request are valid, the request for the DDR SDRAM to enter the self-refresh mode is initiated first. Then there are two options:
  - Wait for the DDR SDRAM to enter the self-refresh mode. (After receiving the
    interrupt, the software protects the scene, saves the critical system information to the
    external non-volatile memory or SDRAM, and then sets the SDRAM to the selfrefresh mode.)
  - Send the reset request signal, pull the PMU reset signal down, and reset the entire system 1 ms after timeout occurs.
- Non-dying gasp reset: When the wd reset request, over-temperature reset request, and software reset request are valid, directly send the reset request signal, pull the PMU reset signal down, and reset the entire system. The scene is not preserved in the entire process.

#### **POR**

The global POR is obtained after two reset signals are ANDed: external reset signal RSTIN\_N and the POR output reset signal. After the AO area is powered on, the internal POR signal outputs low level, resets the entire chip, and deasserts reset within 12–48 ms. The PMU



generates the external reset signal RSTIN\_N. The chip maintains the reset state after the I/O is powered on. The global reset of the chip can be deasserted after the PMU deasserts reset.

#### **Watchdog Reset**

The following subsystems provide the watchdogs:

- WD0, WD1, and LPMCU subsystems
- IOMCU subsystem
- Modem subsystem
- ASP subsystem
- IVP subsystem
- ISPA7 subsystem
- UCE
- OCBC
- GPU
- LITTLE core
- Big core

The watchdog module monitors the system running status. In normal cases, the system needs to periodically set the initial count value. If the system does not promptly set the initial count value, the software is running abnormally. In this case, the watchdog performs the following operations:

- The watchdog reports an exception interrupt, loads the initial value of the counter, and re-counts from the initial value.
- If the exception interrupt is not handled, a reset signal is initiated when the watchdog counter is decremented to 0.

#### **Temperature Sensor Reset**

The A53, A73, and G3D areas each contains a temperature sensor. When the chip temperature reaches the preset threshold, a reset request signal is initiated to reset the A53 and A73 cores in the chip.

#### **Chip Soft Reset**

The software can soft-reset the Hi3660 when necessary. When the software writes to the SCSYSSTAT register, global soft reset of the Hi3660 is triggered.



#### **CAUTION**

Soft reset can be performed only in non-dying gasp reset mode. In dying gasp reset mode, writing to SCSYSSTAT does not trigger the global soft reset of the Hi3660.



#### Module Soft Reset

The software can independently reset the major modules of the Hi3660. These modules include the RTC, timer, GPIO, USB, DMAC, VENC, VDEC, DSS, ISP, ASP, DDRC, MMC, PWM, UART, SPI, and G3D. For details, see the description of each module.

## 2.4 Interrupt

## 2.4.1 Function Description

The ACPU uses the GIC to handle and control interrupts. Other microcontrollers, media, and communication processors have their own interrupt handling logic. This section describes the basic interrupt handling functions of the GIC.

The GIC has the following basic features:

- Supports interrupt nesting for the A53, A73, and G3D.
- Manages multi-core interrupt distribution.
- Supports security extension.
- Queries the states of interrupt sources.
- Provides a unique ID for each interrupt.
- Supports configurable interrupt trigger mode: high-level-triggered mode or edgetriggered mode.
- Sets the priority of each interrupt.
- Generates software interrupts.

The GIC supports the following interrupt types:

- Software-generated interrupt (SGI)
   The GIC supports 16 SGIs (SCI0 to SCI15), which are controlled by writing to registers.
  - Private peripheral interrupt (PPI)
  - Each processor corresponds to seven PPIs.
- Shared peripheral interrupt (SPI)
   A total of 352 peripheral interrupts are supported.

## 2.4.2 Interrupt Structure

As shown in Figure 2-2, the GIC contains one distributor and multiple CPU interfaces. The distributor manages all interrupts in a centralized manner, and the CPU interfaces implement interaction between the interrupts and the CPU. The integrated GIC-400 of the Hi3660 has eight CPU interfaces, which connect to the quad-core A73 and quad-core A53, respectively.





Figure 2-2 GIC architecture

The GIC supports the TrustZone. Each interrupt source can be configured as a secure interrupt source or a non-secure interrupt source.

The GIC configures the priority of each interrupt. A smaller interrupt priority value indicates a higher priority. If two interrupts have the same priority, the interrupt with a smaller interrupt ID takes priority over the other one.

## 2.4.3 Interrupt Mapping

The Hi3660 GIC supports 384 interrupts, including 352 peripheral interrupts. Table 2-2 lists the interrupt sources and interrupt IDs.

Table 2-2 Allocation table of GIC interrupts

| Interrupt Source | GIC Interrupt<br>ID | Interrupt Source       | GIC<br>Interrupt ID |
|------------------|---------------------|------------------------|---------------------|
| A73_interr       | 32                  | PMC-AVS-IDLE-G3D       | 205                 |
| A73_exterr       | 33                  | M3_LP_wd               | 206                 |
| A73_pmu0         | 34                  | ~CCI400_err            | 207                 |
| A73_pmu1         | 35                  | ~&CCI400_overflow[6:0] | 208                 |
| A73_pmu2         | 36                  | ~CCI400_overflow[7]    | 209                 |
| A73_pmu3         | 37                  | IPC_S_int0             | 210                 |
| A73_cti0         | 38                  | IPC_S_int1             | 211                 |
| A73_cti1         | 39                  | IPC_S_int4             | 212                 |



| Interrupt Source | GIC Interrupt<br>ID | Interrupt Source | GIC<br>Interrupt ID |
|------------------|---------------------|------------------|---------------------|
| A73_cti2         | 40                  | IPC_S_mbx0       | 213                 |
| A73_cti3         | 41                  | IPC_S_mbx1       | 214                 |
| A73_COMMRX0      | 42                  | IPC_S_mbx2       | 215                 |
| A73_COMMRX1      | 43                  | IPC_S_mbx3       | 216                 |
| A73_COMMRX2      | 44                  | IPC_S_mbx4       | 217                 |
| A73_COMMRX3      | 45                  | IPC_S_mbx5       | 218                 |
| A73_COMMTX0      | 46                  | IPC_S_mbx6       | 219                 |
| A73_COMMTX1      | 47                  | IPC_S_mbx7       | 220                 |
| A73_COMMTX2      | 48                  | IPC_S_mbx8       | 221                 |
| A73_COMMTX3      | 49                  | IPC_S_mbx9       | 222                 |
| A73_COMMIRQ0     | 50                  | IPC_S_mbx18      | 223                 |
| A73_COMMIRQ1     | 51                  | IPC_NS_int0      | 224                 |
| A73_COMMIRQ2     | 52                  | IPC_NS_int1      | 225                 |
| A73_COMMIRQ3     | 53                  | IPC_NS_int4      | 226                 |
| A53_interr       | 54                  | IPC_NS_int5      | 227                 |
| A53_exterr       | 55                  | IPC_NS_int6      | 228                 |
| A53_pmu0         | 56                  | IPC_NS_mbx0      | 229                 |
| A53_pmu1         | 57                  | IPC_NS_mbx1      | 230                 |
| A53_pmu2         | 58                  | IPC_NS_mbx2      | 231                 |
| A53_pmu3         | 59                  | IPC_NS_mbx3      | 232                 |
| A53_cti0         | 60                  | IPC_NS_mbx4      | 233                 |
| A53_cti1         | 61                  | IPC_NS_mbx5      | 234                 |
| A53_cti2         | 62                  | IPC_NS_mbx6      | 235                 |
| A53_cti3         | 63                  | IPC_NS_mbx7      | 236                 |
| A53_COMMRX0      | 64                  | IPC_NS_mbx8      | 237                 |
| A53_COMMRX1      | 65                  | IPC_NS_mbx9      | 238                 |
| A53_COMMRX2      | 66                  | IPC_NS_mbx18     | 239                 |
| A53_COMMRX3      | 67                  | mdm_aximon_intr  | 240                 |
| A53_COMMTX0      | 68                  | MDM_WDOG_intr    | 241                 |
| A53_COMMTX1      | 69                  | ASP-IPC-ARM      | 242                 |



| Interrupt Source | GIC Interrupt<br>ID | Interrupt Source     | GIC<br>Interrupt ID |
|------------------|---------------------|----------------------|---------------------|
| A53_COMMTX2      | 70                  | ASP-IPC-MCPU         | 243                 |
| A53_COMMTX3      | 71                  | ASP-IPC-BBE16        | 244                 |
| A53_COMMIRQ0     | 72                  | ASP_WD               | 245                 |
| A53_COMMIRQ1     | 73                  | ASP_AXI_DLOCK        | 246                 |
| A53_COMMIRQ2     | 74                  | ASP_DMA_SECURE       | 247                 |
| A53_COMMIRQ3     | 75                  | ASP_DMA_SECURE_N     | 248                 |
| WatchDog0        | 76                  | SCI0                 | 249                 |
| WatchDog1        | 77                  | SCI1                 | 250                 |
| RTC0             | 78                  | SOCP0                | 251                 |
| RTC1             | 79                  | SOCP1                | 252                 |
| TIME00           | 80                  | MDM_IPF_intr0        | 253                 |
| TIME01           | 81                  | MDM_IPF_intr1        | 254                 |
| TIME10           | 82                  | ddrc_fatal_int[3:0]  | 255                 |
| TIME11           | 83                  | mdm_axi_dlock_int    | 256                 |
| TIME20           | 84                  | mdm_wdt1_intr (CDSP) | 257                 |
| TIME21           | 85                  | ~GIC_IRQ_OUT[0]      | 258                 |
| TIME30           | 86                  | ~GIC_IRQ_OUT[1]      | 259                 |
| TIME31           | 87                  | ~GIC_IRQ_OUT[2]      | 260                 |
| TIME40           | 88                  | ~GIC_IRQ_OUT[3]      | 261                 |
| TIME41           | 89                  | ~GIC_IRQ_OUT[4]      | 262                 |
| TIME50           | 90                  | ~GIC_IRQ_OUT[5]      | 263                 |
| TIME51           | 91                  | ~GIC_IRQ_OUT[6]      | 264                 |
| TIME60           | 92                  | ~GIC_IRQ_OUT[7]      | 265                 |
| TIME61           | 93                  | ~GIC_FIQ_OUT[0]      | 266                 |
| TIME70           | 94                  | ~GIC_FIQ_OUT[1]      | 267                 |
| TIME71           | 95                  | ~GIC_FIQ_OUT[2]      | 268                 |
| TIME80           | 96                  | ~GIC_FIQ_OUT[3]      | 269                 |
| TIME81           | 97                  | ~GIC_FIQ_OUT[4]      | 270                 |
| TIME90           | 98                  | ~GIC_FIQ_OUT[5]      | 271                 |
| TIME91           | 99                  | ~GIC_FIQ_OUT[6]      | 272                 |



| Interrupt Source            | GIC Interrupt<br>ID | Interrupt Source         | GIC<br>Interrupt ID |
|-----------------------------|---------------------|--------------------------|---------------------|
| TIME100                     | 100                 | ~GIC_FIQ_OUT[7]          | 273                 |
| TIME101                     | 101                 | NANDC                    | 274                 |
| TIME110                     | 102                 | CoreSight_ETR_Full       | 275                 |
| TIME111                     | 103                 | CoreSight_ETF_Full       | 276                 |
| TIME120                     | 104                 | DSS-pdp                  | 277                 |
| TIME121                     | 105                 | DSS-sdp                  | 278                 |
| UART0                       | 106                 | DSS-offline              | 279                 |
| UART1                       | 107                 | DSS_mcu_pdp              | 280                 |
| UART2                       | 108                 | DSS_mcu_sdp              | 281                 |
| UART4                       | 109                 | DSS_mcu_offline          | 282                 |
| UART5                       | 110                 | DSS_dsi0                 | 283                 |
| UART6                       | 111                 | DSS_dsi1                 | 284                 |
| SPI1                        | 112                 | IVP32_SMMU_irpt_s        | 285                 |
| I <sup>2</sup> C3           | 113                 | IVP32_SMMU_irpt_ns       | 286                 |
| I <sup>2</sup> C4           | 114                 | IVP32_WATCH_DOG          | 287                 |
| I <sup>2</sup> C5 (PMU_I2C) | 115                 | ATGC                     | 288                 |
| GPIO0_INTR1                 | 116                 | G3D_IRQEVENT             | 289                 |
| GPIO1_INTR1                 | 117                 | G3D_JOB                  | 290                 |
| GPIO2_INTR1                 | 118                 | G3D_MMU                  | 291                 |
| GPIO3_INTR1                 | 119                 | G3D_GPU                  | 292                 |
| GPIO4_INTR1                 | 120                 | isp_irq[0]               | 293                 |
| GPIO5_INTR1                 | 121                 | isp_irq[1]               | 294                 |
| GPIO6_INTR1                 | 122                 | isp_irq[2]               | 295                 |
| GPIO7_INTR1                 | 123                 | isp_irq[3]               | 296                 |
| GPIO8_INTR1                 | 124                 | isp_irq[4]               | 297                 |
| GPIO9_INTR1                 | 125                 | isp_irq[5]               | 298                 |
| GPIO10_INTR1                | 126                 | isp_irq[6]               | 299                 |
| GPIO11_INTR1                | 127                 | isp_irq[7]               | 300                 |
| GPIO12_INTR1                | 128                 | isp_a7_to_gic_mbx_int[0] | 301                 |
| GPIO13_INTR1                | 129                 | isp_a7_to_gic_mbx_int[1] | 302                 |



| Interrupt Source       | GIC Interrupt<br>ID | Interrupt Source      | GIC<br>Interrupt ID |
|------------------------|---------------------|-----------------------|---------------------|
| GPIO14_INTR1           | 130                 | isp_a7_to_gic_ipc_int | 303                 |
| GPIO15_INTR1           | 131                 | isp_a7_watchdog_int   | 304                 |
| GPIO16_INTR1           | 132                 | isp_axi_dlcok         | 305                 |
| GPIO17_INTR1           | 133                 | isp_a7_irq_out        | 306                 |
| GPIO18_INTR1           | 134                 | ivp32_dwaxi_dlock_irq | 307                 |
| GPIO19_INTR1           | 135                 | mmbuf_asc0            | 308                 |
| GPIO20_INTR1           | 136                 | mmbuf_asc1            | 309                 |
| GPIO21_INTR1           | 137                 | UFS                   | 310                 |
| GPIO22_INTR1           | 138                 | pcie_link_down_int    | 311                 |
| GPIO23_INTR1           | 139                 | pcie_edma_int         | 312                 |
| GPIO24_INTR1           | 140                 | pcie_pm_int           | 313                 |
| GPIO25_INTR1           | 141                 | pcie_radm_inta        | 314                 |
| GPIO26_INTR1           | 142                 | pcie_radm_intb        | 315                 |
| GPIO27_INTR1           | 143                 | pcie_radm_intc        | 316                 |
| IOMCU_WD               | 144                 | pcie_radm_intd        | 317                 |
| IOMCU_SPI              | 145                 | psam_intr[0]          | 318                 |
| IOMCU_UART3            | 146                 | psam_intr[1]          | 319                 |
| IOMCU_UART8            | 147                 | ocbc_pe_npint[0]      | 320                 |
| IOMCU_SPI2             | 148                 | intr_wdog_ocbc        | 321                 |
| IOMCU_I2C3             | 149                 | intr_vdec_mfde_norm   | 322                 |
| IOMCU_I2C0             | 150                 | intr_vdec_scd_norm    | 323                 |
| IOMCU_I2C1             | 151                 | intr_vdec_bpd_norm    | 324                 |
| IOMCU_I2C2             | 152                 | intr_vdec_mmu_norm    | 325                 |
| IOMCU_GPIO0_INT1       | 153                 | intr_vdec_mfde_safe   | 326                 |
| IOMCU_GPIO1_INT1       | 154                 | intr_vdec_scd_safe    | 327                 |
| IOMCU_GPIO2_INT1       | 155                 | intr_vdec_bpd_safe    | 328                 |
| IOMCU_GPIO3_INT1       | 156                 | intr_vdec_mmu_safe    | 329                 |
| IOMCU_DMAC_INT0        | 157                 | intr_venc_vedu_norm   | 330                 |
| IOMCU_DMAC_NS_IN<br>T0 | 158                 | intr_venc_mmu_norm    | 331                 |
| PERF_STAT              | 159                 | intr_venc_vedu_safe   | 332                 |



| Interrupt Source                                                                                      | GIC Interrupt<br>ID | Interrupt Source          | GIC<br>Interrupt ID |
|-------------------------------------------------------------------------------------------------------|---------------------|---------------------------|---------------------|
| IOMCU_COMB                                                                                            | 160                 | intr_venc_mmu_safe        | 333                 |
| IOMCU_BLPWM                                                                                           | 161                 | intr_qosbuf0              | 334                 |
| NOC-comb                                                                                              | 162                 | intr_qosbuf1              | 335                 |
| intr_dmss                                                                                             | 163                 | intr_ddrc2_err            | 336                 |
| intr_ddrc0_err                                                                                        | 164                 | intr_ddrc3_err            | 337                 |
| intr_ddrc1_err                                                                                        | 165                 | intr_ddrphy[0]            | 338                 |
| PMCTRL                                                                                                | 166                 | intr_ddrphy[1]            | 339                 |
| SECENG_P                                                                                              | 167                 | intr_ddrphy[2]            | 340                 |
| SECENG_S                                                                                              | 168                 | intr_ddrphy[3]            | 341                 |
| EMMC51                                                                                                | 169                 | intr0_mdm_ipc_gic_s       | 342                 |
| ASP_IPC_MODEM_CB<br>BE                                                                                | 170                 | intr1_mdm_ipc_gic_s       | 343                 |
| SD3                                                                                                   | 171                 | SPI3                      | 344                 |
| SDIO                                                                                                  | 172                 | SPI4 (Finger/Ink screen)  | 345                 |
| GPIO28_INTR1                                                                                          | 173                 | I2C7                      | 346                 |
| PERI_DMAC_int0                                                                                        | 174                 | intr_uce0_wdog            | 347                 |
| PERI_DMAC_NS_int0                                                                                     | 175                 | intr_uce1_wdog            | 348                 |
| CLK_MONITOR (in SCTRL)                                                                                | 176                 | intr_uce2_wdog            | 349                 |
| TSENSOR_A73                                                                                           | 177                 | intr_uce3_wdog            | 350                 |
| TSENSOR_A53                                                                                           | 178                 | intr_exmbist              | 351                 |
| TSENSOR_G3D                                                                                           | 179                 | intr_hisee_wdog           | 352                 |
| TSENSOR_Modem                                                                                         | 180                 | intr_hisee_ipc_mbx_gic[0] | 353                 |
| ASP_ARM_SECURE (asp_hmdi secure interrupt and src_up secure interrupt)                                | 181                 | intr_hisee_ipc_mbx_gic[1] | 354                 |
| ASP_ARM (asp_hmdi non-secure interrupt, src_up non- secure interrupt, and slimbus combined interrupt) | 182                 | intr_hisee_ipc_mbx_gic[2] | 355                 |
| VDM_INT2                                                                                              | 183                 | intr_hisee_ipc_mbx_gic[3] | 356                 |



| Interrupt Source                                 | GIC Interrupt<br>ID | Interrupt Source          | GIC<br>Interrupt ID |
|--------------------------------------------------|---------------------|---------------------------|---------------------|
| VDM_INT0                                         | 184                 | intr_hisee_ipc_mbx_gic[4] | 357                 |
| VDM_INT1                                         | 185                 | intr_hisee_ipc_mbx_gic[5] | 358                 |
| {MODEM_IPC0[0],<br>  MDM_IPC_APPCPU_int<br>  r0} | 186                 | intr_hisee_ipc_mbx_gic[6] | 359                 |
| {MODEM_IPC1[0],<br>  MDM_IPC_APPCPU_int<br>  r1} | 187                 | intr_hisee_ipc_mbx_gic[7] | 360                 |
| MDM_bus_err                                      | 188                 | intr_hisee_alarm[0]       | 361                 |
| Reserved                                         | 189                 | intr_hisee_alarm[1]       | 362                 |
| MDM_EDMAC0_INTR<br>_NS[0]                        | 190                 | Reserved                  | 363                 |
| USB3                                             | 191                 | Reserved                  | 364                 |
| Reserved                                         | 192                 | intr_hisee_eh2h_slv       | 365                 |
| USB3_OTG                                         | 193                 | intr_hisee_as2ap_irq      | 366                 |
| USB3_BC                                          | 194                 | intr_hisee_ds2ap_irq      | 367                 |
| GPIO1_SE_INTR1                                   | 195                 | intr_hisee_senc2ap_irq    | 368                 |
| GPIO0_SE_INTR1                                   | 196                 | GPIO0_EMMC                | 369                 |
| PMC-DVFS-A73                                     | 197                 | GPIO1_EMMC                | 370                 |
| PMC-DVFS-A53                                     | 198                 | AONOC_TIMEOUT             | 371                 |
| PMC-DVFS-G3D                                     | 199                 | intr_hisee_tsensor[0]     | 372                 |
| PMC-AVS-A73                                      | 200                 | intr_hisee_tsensor[1]     | 373                 |
| PMC-AVS-A53                                      | 201                 | intr_hisee_lockup         | 374                 |
| PMC-AVS-G3D                                      | 202                 | intr_hisee_dma            | 375                 |
| PMC-AVS-IDLE-A73                                 | 203                 | Reserved                  | 376~383             |
| PMC-AVS-IDLE-A53                                 | 204                 |                           |                     |

# 2.5 Chip Operating Mode and Control

The Hi3660 system supports four operating modes, which are controlled by configuring SCCTRL[modectrl] (0xFFF0\_A000 for LPMCU access and 0x4020\_A000 for CPU access):

• 000: The system mode is switched to sleep mode.



- 001: The system mode is switched to doze mode.
- 01X: The system mode is switched to slow mode.
- 1*XX*: The system mode is switched to normal mode.

After POR, the state machine is in slow mode by default. The software controls the system state transition by configuring SCCTRL[modectrl] (0xFFF0\_A000 for LPMCU access and 0x4020\_A000 for CPU access).

The system state machine is restored to slow mode after a global reset such as the global soft reset, watchdog reset, or Tsensor over-temperature reset.

#### 2.6 Boot Mechanism

#### 2.6.1 Overall Process

The Hi3660 supports two boot modes: USB loading mode and memory boot mode. The memory boot modes include eMMC boot mode and UFS boot mode. All these modes are booted by the BOOTROM in the Hi3660. Then the corresponding boot process is started.

Apart from the preceding common boot modes, the Hi3660 also supports the NAND boot and UFS boot in test mode.

#### **Pin Settings**

For the UFS boot mode booted by BOOTROM, the pin settings are as follows:

- TEST\_MODE: 0
- BOOT MODE: 1
- BOOT\_UFS: 1

#### **Basic Process**

- **Step 1** Power on the system to start POR.
- Step 2 Judge the boot mode.

Execute the BOOTROM code. Read the boot\_mode register to judge the boot mode. If the value of the BOOT\_MODE pin is 1, enter the memory boot branch. Then read the boot\_ufs register. If the value of the BOOT\_UFS pin is 1, enter the UFS boot process.

- Step 3 Initialize the UFS clock and IP.
- **Step 4** Start the UFS link startup process.
- **Step 5** Initialize the UFS parameters and components.
- **Step 6** Transfer the bootloader image in the UFS device to the RAM.
- **Step 7** Verify the security.
- Step 8 Execute the bootloader.
- **Step 9** Initialize the DDR, and copy the fastboot images stored in the UFS device to the DDR. Initialize the ACPU and deassert reset. Then the ACPU side starts executing fastboot and performs the subsequent startup process.



----End

#### 2.6.2 eMMC Boot

#### **Pin Settings**

For the eMMC boot mode booted by BOOTROM, the pin settings are as follows:

- TEST\_MODE: 0
- BOOT\_MODE: 1
- BOOT\_UFS: 0

#### **Basic Process**

- **Step 1** Power on the system to start POR.
- Step 2 Judge the boot mode.

Execute the BOOTROM code. Read the boot\_mode register to judge the boot mode. If the value of the BOOT\_MODE pin is 1, enter the memory boot branch. Then read the boot\_ufs register. If the value of the BOOT\_UFS pin is 0, enter the eMMC boot process.

- **Step 3** Initialize the eMMC clock and IP.
- **Step 4** Transfer the images in the eMMC device to the buffer in the eMMC and then to the RAM.
- **Step 5** Verify the security.
- Step 6 Execute the bootloader.
- **Step 7** Initialize the DDR, and copy the fastboot images stored in the eMMC device to the DDR. Initialize the ACPU and deassert reset. Then the ACPU side starts executing fastboot and performs the subsequent startup process.

----End

## 2.7 Debugging Mode

## 2.7.1 JTAG Debugging

The Hi3660 provides the JTAG interface that complies with the IEEE 1149.1 standard:

- The DSP simulator can debug the four internal DSPs.
- The PC can connect to the JTAG simulator to separately debug the ARM processor.

The JTAG MUX connects external JTAG pin signals to the cores of the Hi3660.

The debugging steps are as follows:

- **Step 1** Power on and reset the Hi3660.
- **Step 2** Set JTAG\_SEL1 and JTAG\_SEL0 to 2'b01 to multiplex the CPU JTAG function on the JTAG pin.



- **Step 3** Set JTAG\_SEL1 and JTAG\_SEL0 to 2'b00 to enter the register selection mode. Configure the system control register JTAGSYS\_SW\_SEL [7:0] to switch to the selected debugging interface for debugging.
- **Step 4** Connect the corresponding simulator and open the corresponding debugging software to start debugging.

----End

## 2.7.2 CoreSight Debugging

The Hi3660 has a powerful debug system that integrates an ARM CoreSight system. The CoreSight system supports the following features:

- Top-level CoreSight and local CoreSight in each cluster. The local CoreSight contains the A73 CoreSight and A53 CoreSight.
- Intrusive debugging (debug) and non-intrusive debugging (trace)
   A73 and A53 support both debug and trace.
- Software debugging and traditional JTAG debugging

## 2.8 Maintainability and Testability

The Hi3660 provides the following maintainability and testability means:

• JTAG debugging

## 2.9 Memory Map

The Hi3660 supports the 8-/6-/4-GB DDR storage solution. The system address space varies according to the capacity of the connected DDR and the processor perspective. The general principles are as follows:

- When the 4-GB component is connected, in the unified addressing space of the entire chip system viewed from the perspective of the ACPU, IVP, GPU, VENC, VDEC, DSS, and ISP:
  - The 0–3.5 GB and 4–4.5 GB address space is specified as the accessible 4-GB DRAM space.
  - The 3.5–4 GB address space viewed from the perspective of these masters is the register space.

Only the 0–3.5 GB DRAM space and the 3.5–4 GB peripheral space are accessible.

- When the 8-GB component is connected, in the unified addressing space of the entire chip system viewed from the perspective of the A53, A73, IVP, GPU, VENC, VDEC, DSS, and ISP:
  - The 0–3.5 GB and 4–8.5 GB address space is specified as the accessible 8-GB DRAM space.
  - The 3.5–4 GB address space viewed from the perspective of these masters is the register space.



The modem and peripheral subsystems (including the IOMCU, LPMCU, ASP, DMAC, USB3OTG, SECENG, and MMC) can access only the 0–3.5 GB DRAM space and the 3.5–4 GB peripheral space.

• When the 6-GB DDR or DDR with other capacity is connected, the address mapping solution is similar to that when the 8-GB DDR is connected. The 3.5–4 GB space is used as the peripheral space.

### 2.9.1 Address Space Allocation (From the ACPU Perspective)



## CAUTION

To prevent unpredictable results, do not access the address space marked with "Reserved".

Table 2-3 lists all the register groups and memory address ranges visible to the Hi3660 ACPU.

**Table 2-3** Register groups and memory address ranges (ACPU)

| Start Address | End Address | Size (Byte) | Module   |
|---------------|-------------|-------------|----------|
| 0xFFF38000    | 0xFFF38FFF  | 4K          | PMU_SSI2 |
| 0xFFF36000    | 0xFFF36FFF  | 4K          | PMU_SSI1 |
| 0xFFF35000    | 0xFFF35FFF  | 4K          | PERI_CRG |
| 0xFFF34000    | 0xFFF34FFF  | 4K          | PMU_SSI0 |
| 0xFFF33000    | 0xFFF33FFF  | 4K          | PMU_I2C  |
| 0xFFF32000    | 0xFFF32FFF  | 4K          | UART6    |
| 0xFFF31000    | 0xFFF31FFF  | 4K          | PMCTRL   |
| 0xFFF30000    | 0xFFF30FFF  | 4K          | TSENSORC |
| 0xFFF20000    | 0xFFF2FFFF  | 64K         | Reserved |
| 0xFFF1F000    | 0xFFF1FFFF  | 4K          | Reserved |
| 0xFFF1D000    | 0xFFF1DFFF  | 4K          | GPIO28   |
| 0xFFF1C000    | 0xFFF1CFFF  | 4K          | TIMER8   |
| 0xFFF1B000    | 0xFFF1BFFF  | 4K          | TIMER7   |
| 0xFFF1A000    | 0xFFF1AFFF  | 4K          | TIMER6   |
| 0xFFF19000    | 0xFFF19FFF  | 4K          | TIMER5   |
| 0xFFF18000    | 0xFFF18FFF  | 4K          | TIMER4   |
| 0xFFF17000    | 0xFFF17FFF  | 4K          | TIMER3   |
| 0xFFF16000    | 0xFFF16FFF  | 4K          | TIMER2   |
| 0xFFF15000    | 0xFFF15FFF  | 4K          | TIMER1   |



| Start Address | End Address | Size (Byte) | Module       |
|---------------|-------------|-------------|--------------|
| 0xFFF14000    | 0xFFF14FFF  | 4K          | TIMER0       |
| 0xFFF11000    | 0xFFF11FFF  | 4K          | AO_IOC       |
| 0xFFF10000    | 0xFFF10FFF  | 4K          | GPIO27       |
| 0xFFF0F000    | 0xFFF0FFF   | 4K          | GPIO26       |
| 0xFFF0E000    | 0xFFF0EFFF  | 4K          | GPIO25       |
| 0xFFF0D000    | 0xFFF0DFFF  | 4K          | GPIO24       |
| 0xFFF0C000    | 0xFFF0CFFF  | 4K          | GPIO23       |
| 0xFFF0B000    | 0xFFF0BFFF  | 4K          | GPIO22       |
| 0xFFF0A000    | 0xFFF0AFFF  | 4K          | SCTRL        |
| 0xFFF08000    | 0xFFF09FFF  | 8K          | SYS_CNT      |
| 0xFFF05000    | 0xFFF05FFF  | 4K          | RTC1         |
| 0xFFF04000    | 0xFFF04FFF  | 4K          | RTC0         |
| 0xFFD00000    | 0xFFD7FFFF  | 512K        | IOMCU        |
| 0xFF400000    | 0xFFCFFFFF  | 9M          | Reserved     |
| 0xFF3FF000    | 0xFF3FFFFF  | 4K          | SDIO0        |
| 0xFF3FE000    | 0xFF3FEFFF  | 4K          | PCIE_APB_CFG |
| 0xFF3FD000    | 0xFF3FDFFF  | 4K          | IOC_MMC1     |
| 0xFF3FC000    | 0xFF3FCFFF  | 4K          | Reserved     |
| 0xFF3FB000    | 0xFF3FBFFF  | 4K          | EMMC         |
| 0xFF3E2000    | 0xFF3FAFFF  | 100K        | Reserved     |
| 0xFF3E1000    | 0xFF3E1FFF  | 4K          | GPIO1_MMC1   |
| 0xFF3E0000    | 0xFF3E0FFF  | 4K          | GPIO0_MMC1   |
| 0xFF3B8000    | 0xFF3DFFFF  | 160K        | Reserved     |
| 0xFF3B7000    | 0xFF3B7FFF  | 4K          | Reserved     |
| 0xFF3B6000    | 0xFF3B6FFF  | 4K          | IOC_FIX      |
| 0xFF3B5000    | 0xFF3B5FFF  | 4K          | GPIO19       |
| 0xFF3B4000    | 0xFF3B4FFF  | 4K          | GPIO18       |
| 0xFF3B3000    | 0xFF3B3FFF  | 4K          | SPI3         |
| 0xFF3B2000    | 0xFF3B2FFF  | 4K          | Reserved     |
| 0xFF3B1000    | 0xFF3B1FFF  | 4K          | UFS_SYS_CTRL |
| 0xFF3B0000    | 0xFF3B0FFF  | 4K          | UFS_CFG      |



| Start Address | End Address | Size (Byte) | Module     |
|---------------|-------------|-------------|------------|
| 0xFF3A0000    | 0xFF3AFFFF  | 64K         | Reserved   |
| 0xFF390000    | 0xFF39FFFF  | 64K         | Reserved   |
| 0xFF380000    | 0xFF38FFFF  | 64K         | Reserved   |
| 0xFF37F000    | 0xFF37FFFF  | 4K          | SD3        |
| 0xFF37E000    | 0xFF37EFFF  | 4K          | IOC_MMC0   |
| 0xFF37D000    | 0xFF37DFFF  | 4K          | Reserved   |
| 0xFF300000    | 0xFF37CFFF  | 500K        | Reserved   |
| 0xFF201000    | 0xFF2FFFFF  | 1020K       | Reserved   |
| 0xFF200000    | 0xFF200FFF  | 4K          | USB3OTG_BC |
| 0xFF100000    | 0xFF1FFFFF  | 1M          | USB3OTG    |
| 0xFF050000    | 0xFF0FFFFF  | 704K        | Reserved   |
| 0xFF013000    | 0xFF02FFFF  | 116K        | Reserved   |
| 0xFF012000    | 0xFF012FFF  | 4K          | Reserved   |
| 0xFF011000    | 0xFF011FFF  | 4K          | IPC_MDM_NS |
| 0xFF010000    | 0xFF010FFF  | 4K          | IPC_MDM_S  |
| 0xFF00F000    | 0xFF00FFFF  | 4K          | Reserved   |
| 0xFF000000    | 0xFF00EFFF  | 60K         | Reserved   |
| 0xFDF31000    | 0xFDFFFFFF  | 828K        | Reserved   |
| 0xFDF30000    | 0xFDF30FFF  | 4K          | PERI_DMAC  |
| 0xFDF20000    | 0xFDF2FFFF  | 64K         | Reserved   |
| 0xFDF16000    | 0xFDF1FFFF  | 40K         | Reserved   |
| 0xFDF15000    | 0xFDF15FFF  | 4K          | Reserved   |
| 0xFDF14000    | 0xFDF14FFF  | 4K          | Reserved   |
| 0xFDF13000    | 0xFDF13FFF  | 4K          | Reserved   |
| 0xFDF12000    | 0xFDF12FFF  | 4K          | Reserved   |
| 0xFDF11000    | 0xFDF11FFF  | 4K          | Reserved   |
| 0xFDF10000    | 0xFDF10FFF  | 4K          | PERF_STAT  |
| 0xFDF0D000    | 0xFDF0DFFF  | 4K          | I2C4       |
| 0xFDF0C000    | 0xFDF0CFFF  | 4K          | 12C3       |
| 0xFDF0B000    | 0xFDF0BFFF  | 4K          | I2C7       |
| 0xFDF09000    | 0xFDF0AFFF  | 8K          | Reserved   |



| <b>Start Address</b> | End Address | Size (Byte) | Module                  |
|----------------------|-------------|-------------|-------------------------|
| 0xFDF08000           | 0xFDF08FFF  | 4K          | SPI1                    |
| 0xFDF07000           | 0xFDF07FFF  | 4K          | Reserved                |
| 0xFDF06000           | 0xFDF06FFF  | 4K          | SPI4                    |
| 0xFDF05000           | 0xFDF05FFF  | 4K          | UART5                   |
| 0xFDF04000           | 0xFDF04FFF  | 4K          | Reserved                |
| 0xFDF03000           | 0xFDF03FFF  | 4K          | UART2                   |
| 0xFDF02000           | 0xFDF02FFF  | 4K          | UART0                   |
| 0xFDF01000           | 0xFDF01FFF  | 4K          | UART4                   |
| 0xFDF00000           | 0xFDF00FFF  | 4K          | UART1                   |
| 0xFC000000           | 0xFDEFFFFF  | 31M         | Reserved                |
| 0xF4000000           | 0xFBFFFFFF  | 128M        | PCIECtrl                |
| 0xF3F40000           | 0xF3FFFFFF  | 768K        | Reserved                |
| 0xF3F00000           | 0xF3F3FFFF  | 256K        | PCIEPHY                 |
| 0xF1300000           | 0xF3EFFFFF  | 44M         | Reserved                |
| 0xF12F0000           | 0xF12FFFFF  | 64K         | Reserved                |
| 0xF1110000           | 0xF12EFFFF  | 1920K       | Reserved                |
| 0xF0E00000           | 0xF0E1FFFF  | 128K        | Reserved                |
| 0xF0C00000           | 0xF0DFFFFF  | 2M          | Reserved                |
| 0xF0000000           | 0xF0BFFFFF  | 12M         | IOMCU_TCM               |
| 0xED800000           | 0xEFFFFFF   | 40M         | Reserved                |
| 0xEC000000           | 0xED7FFFFF  | 24M         | CSSYS_APB               |
| 0xE9890000           | 0xE989FFFF  | 64K         | MMC0_NOC_Service_Target |
| 0xE9880000           | 0xE988FFFF  | 64K         | MMC1_NOC_Service_Target |
| 0xE9870000           | 0xE987FFFF  | 64K         | AOBUS_Service_Target    |
| 0xE9860000           | 0xE986FFFF  | 64K         | DMA_NOC_Service_Target  |
| 0xE9810000           | 0xE981FFFF  | 64K         | UFSBUS_Service_Target   |
| 0xE9800000           | 0xE980FFFF  | 64K         | CFGBUS_Service_Target   |
| 0xE8E00000           | 0xE97FFFFF  | 10M         | Reserved                |
| 0xE8DD0000           | 0xE8DFFFFF  | 192K        | Reserved                |
| 0xE8A20000           | 0xE8A20FFF  | 4K          | GPIO21                  |
| 0xE8A1F000           | 0xE8A1FFFF  | 4K          | GPIO20                  |



| <b>Start Address</b> | End Address | Size (Byte) | Module   |
|----------------------|-------------|-------------|----------|
| 0xE8A1E000           | 0xE8A1EFFF  | 4K          | Reserved |
| 0xE8A1D000           | 0xE8A1DFFF  | 4K          | Reserved |
| 0xE8A1C000           | 0xE8A1CFFF  | 4K          | GPIO17   |
| 0xE8A1B000           | 0xE8A1BFFF  | 4K          | GPIO16   |
| 0xE8A1A000           | 0xE8A1AFFF  | 4K          | GPIO15   |
| 0xE8A19000           | 0xE8A19FFF  | 4K          | GPIO14   |
| 0xE8A18000           | 0xE8A18FFF  | 4K          | GPIO13   |
| 0xE8A17000           | 0xE8A17FFF  | 4K          | GPIO12   |
| 0xE8A16000           | 0xE8A16FFF  | 4K          | GPIO11   |
| 0xE8A15000           | 0xE8A15FFF  | 4K          | GPIO10   |
| 0xE8A14000           | 0xE8A14FFF  | 4K          | GPIO9    |
| 0xE8A13000           | 0xE8A13FFF  | 4K          | GPIO8    |
| 0xE8A12000           | 0xE8A12FFF  | 4K          | GPIO7    |
| 0xE8A11000           | 0xE8A11FFF  | 4K          | GPIO6    |
| 0xE8A10000           | 0xE8A10FFF  | 4K          | GPIO5    |
| 0xE8A0F000           | 0xE8A0FFFF  | 4K          | GPIO4    |
| 0xE8A0E000           | 0xE8A0EFFF  | 4K          | GPIO3    |
| 0xE8A0D000           | 0xE8A0DFFF  | 4K          | GPIO2    |
| 0xE8A0C000           | 0xE8A0CFFF  | 4K          | GPIO1    |
| 0xE8A0B000           | 0xE8A0BFFF  | 4K          | GPIO0    |
| 0xE8A0A000           | 0xE8A0AFFF  | 4K          | GPIO0_SE |
| 0xE8A09000           | 0xE8A09FFF  | 4K          | PCTRL    |
| 0xE8A07000           | 0xE8A07FFF  | 4K          | WD1      |
| 0xE8A06000           | 0xE8A06FFF  | 4K          | WD0      |
| 0xE8A04000           | 0xE8A04FFF  | 4K          | PWM      |
| 0xE8A03000           | 0xE8A03FFF  | 4K          | TIMER12  |
| 0xE8A02000           | 0xE8A02FFF  | 4K          | TIMER11  |
| 0xE8A01000           | 0xE8A01FFF  | 4K          | TIMER10  |
| 0xE8A00000           | 0xE8A00FFF  | 4K          | TIMER9   |
| 0xE8971000           | 0xE89FFFFF  | 572K        | Reserved |
| 0xE896E000           | 0xE8970FFF  | 12K         | Reserved |



| Start Address | End Address | Size (Byte) | Module    |
|---------------|-------------|-------------|-----------|
| 0xE896D000    | 0xE896DFFF  | 4K          | Reserved  |
| 0xE896C000    | 0xE896CFFF  | 4K          | IOC       |
| 0xE896B000    | 0xE896BFFF  | 4K          | IPC_NS    |
| 0xE896A000    | 0xE896AFFF  | 4K          | IPC       |
| 0xE8969800    | 0xE8969FFF  | 2K          | Reserved  |
| 0xE8961800    | 0xE89697FF  | 32K         | Reserved  |
| 0xE8961400    | 0xE89617FF  | 1K          | Reserved  |
| 0xE8961000    | 0xE89613FF  | 1K          | Reserved  |
| 0xE8960000    | 0xE8960FFF  | 4K          | Reserved  |
| 0xE8950000    | 0xE895FFFF  | 64K         | Reserved  |
| 0xE8300000    | 0xE83FFFFF  | 1M          | Reserved  |
| 0xE82C4000    | 0xE82FFFFF  | 240K        | Reserved  |
| 0xE82C0000    | 0xE82C3FFF  | 16K         | G3D       |
| 0xE82BA000    | 0xE82BFFFF  | 24K         | Reserved  |
| 0xE82B9000    | 0xE82B9FFF  | 4K          | CODEC_SSI |
| 0xE82B8000    | 0xE82B8FFF  | 4K          | HKADC_SSI |
| 0xE82B0000    | 0xE82B7FFF  | 32K         | GIC400    |
| 0xE82A0000    | 0xE82AFFFF  | 64K         | Reserved  |
| 0xE8200000    | 0xE829FFFF  | 640K        | Reserved  |
| 0xE8100000    | 0xE81FFFFF  | 1M          | CCI_CFG   |
| 0x00000000    | 0xDFFFFFF   | 3584M       | DRAM      |

#### ■ NOTE

Table 2-3 lists the device address allocation in the 4 GB space. The DRAM space is 0-3.5 GB. When the 8-6-4-GB DDR is connected, the DRAM occupies the addresses that are beyond the 4 GB space.