Moore "Affine" Notions

Thomas Cohn

9/7/18

The extended reals are denoted as $[-\infty, +\infty] = \mathbb{R} \cup \{\pm \infty\}$.

Notation: Suppose for $\alpha \in A$ we are given $S_{\alpha} \subset X$, i.e., we have a function $f: A \to \mathcal{P}(X)$ where $\alpha \mapsto S_{\alpha}$. $\bigcup_{\alpha \in A} S_{\alpha} = \{x \in X : x \in S_{\alpha} \text{ for at least one } \alpha \in A\}$ $\bigcap_{\alpha \in A} S_{\alpha} = \{x \in X : x \in S_{\alpha} \text{ for all } \alpha \in A\}$ If $A \neq \emptyset$, then $\bigcup_{\alpha \in A} S_{\alpha} \neq \emptyset$ and $\bigcap_{\alpha \in A} S_{\alpha} = X$. Is that right?

Let V, W be vector spaces over F, a field where $1+1 \neq 0$. We will study functions $T: V \to W$.

Graph $T = \{(\vec{v}, \vec{w}) \in V \times W : \vec{w} = T(\vec{v})\} = \{(\vec{v}, T(\vec{v})) \in V \times W : \vec{v} \in V\}$. Note that $V \times W$ is a vector space: $(\vec{v_1}, \vec{w_1}) + (\vec{v_2}, \vec{w_2}) = (\vec{v_1} + \vec{v_2}, \vec{w_1} + \vec{w_2})$ and $t(\vec{v}, \vec{w}) = (t\vec{v}, t\vec{w})$.

The "simplest" T's are those with flat graphs, i.e., a graph that is an affine subset of $V \times W$.

Defn: A function T is <u>affine</u> if and only if its graph is affine.

Special Case: $T(\vec{0}) = \vec{0}$, or equivalently, $(\vec{0}, \vec{0}) \in \text{Graph } T$. Then T is affine \leftrightarrow Graph T is a linear subspace of $V \times W$. $\leftrightarrow \vec{v_1}, \vec{v_2} \in V, \ t \in F$ implies that $T(\vec{v_1} + \vec{v_2}) = T(\vec{v_1}) + T(\vec{v_2})$, and $tT(\vec{v_1}) = T(t\vec{v_1})$. $\leftrightarrow T$ is linear.

General Case: $T: V \to W$ is affine \leftrightarrow Graph T is affine.

As an exercise, prove that \widetilde{T} is uniquely determined by T.