MAT02036 - Amostragem 2

Aula 05 - Amostragem Estratificada - Alocação Ótima

Markus Stein

Departamento de Estatística, IME/UFRGS

2022/2

Housekeeping

- Aproveitem o momento presencial para tirar dúvidas
- Se estivéssemos no ensino remoto ou à distância
 - o vocês poderiam estar somente ouvindo, sem interação
 - o u assistindo vídeos e material em outro momento
- Depois das aulas, rever material da aula passada
 - fazer exercícios
 - se preparar para a próxima aula

Aula passada 📀

Amostragem estratificada simples com alocação **proporcional** - AES_{pr}

- Com $n_h=nW_h$, a média amostral simples é **ENV** da média populacional na AASs

$$ar{y}_{AES_{pr}} = \sum_{h=1}^{H} W_h ar{y}_h = \sum_{h=1}^{H} W_h rac{1}{n_h} \sum_{i \in s_h} y_i = rac{1}{n} \sum_{h=1}^{H} \sum_{i \in s_h} y_i = ar{y}_h$$

ullet A variância de $\overline{y}_{AES_{nr}}$, na f AASs simplifica para

$$S_{\overline{y}_{AESpr}}^2 = \left(rac{1}{n} - rac{1}{N}
ight) \sum_{h=1}^H W_h S_{h,y}^2 \doteq \left(rac{1}{n} - rac{1}{N}
ight) S_D^2,$$

e na AASc

$$Var_{AES_{pr}}\left(\overline{y}_{AES_{pr}}
ight) = rac{1}{n}\sum_{h=1}^{H}W_{h}Var_{h} = rac{1}{n}Var_{D}.$$

Aula passada 💾

ullet Amostragem estratificada **uniforme** - AES_{un}

$$n_h = rac{n}{H} = k \;\;\; \mathrm{e} \;\;\; f_h = rac{k}{N_h} \;\;\;$$

assim

$$\overline{y}_{AES_{un}} = \sum_{h=1}^{H} W_h \overline{y}_h = \sum_{h=1}^{H} W_h rac{1}{k} \sum_{i \in s_h} y_i = rac{1}{k} \sum_{h=1}^{H} W_h \sum_{i \in s_h} y_i.$$

Questões

- O estimador da média $\overline{y}_{AES_{un}}$ é **ENV** para \overline{Y} ?
 - $\circ~$ Note que $\overline{y}_{AES_{un}}
 eq \overline{y}$, a média amostral \overline{y} é **ENV** para \overline{Y} na **AESun**?
- ullet Como fica a expressão de $V_{AES_{un}}\left(\overline{y}_{AES_{un}}
 ight)$ nesse caso $oldsymbol{?}$

Aula passada 💽

• Alocação da amostra no estrato h

$$egin{array}{ll} \circ & {f Proporcional}, & n_h = nW_h \ \circ & {f Uniforme}, & n_h = n/H \end{array}$$

• Estimadores da média

Alocação	média
Proporcional	$\overline{y}_{AES_{pr}}=\overline{y}$
Uniforme	$\overline{y}_{AES_{un}} = rac{1}{k} \sum_{h=1}^{H} W_h \sum_{i \in s_h} y_i$

• Suas variâncias

Alocação	Sob AASc	Sob AASs
Proporcional	$Var\left(\overline{y}_{AES_{pr}} ight)=rac{1}{n}\sum_{h=1}^{H}W_{h}Var_{h}$	$Var(\overline{y}_{AES_{pr}}) = \left(rac{1}{n} - rac{1}{N} ight) \sum_{h=1}^{H} W_h S_h^2$
Uniforme	$Var(\overline{y}_{AES_{un}}) = rac{1}{k} \sum_{h=1}^{H} W_h^2 Var_h$	$Var(\overline{y}_{AES_{un}}) = rac{1}{k} \sum_{h=1}^{H} W_h^2 \left(1 - rac{n_h}{N_h} ight) S_h^2$

- A maioria das pesquisas convive com **restrições orçamentárias**.
- É sempre possível ganhar eficiência com uso de **AES** em comparação com uma **AAS** de igual tamanho.
- O caminho da **alocação proporcional não** é o caminho que **permite** obter **o maior ganho** de eficiência possível.
- É nesse contexto que foi desenvolvido o método de **alocação ótima** para amostras estratificadas simples (**AESot**).

Função custo

- Seja o **custo total** da pesquisa fixado em *C* unidades monetárias,
 - \circ uma **função custo** descreve como C varia para diferentes n e alternativas de alocação da amostra nos estratos.
 - o Considere uma **função custo linear** dada por

$$C = c_0 + \sum_{h=1}^{H} n_h c_h \; \; ext{ou} \; \; C' = C - c_0 = \sum_{h=1}^{H} n_h c_h \; \; \;$$

- \circ c_0 representa os custos fixos da pesquisa
- $\circ n_h c_h$ os custos que dependem efetivamente de cada estrato h.
- Na **AES** temos que $Var_{AES}\left(\overline{y}_{AES}\right)$ é mínima para C fixado ou C é mínimo para $V_{AES}\left(\overline{y}_{AES}\right)$ fixada.

Minimização da Variância

A variância do estimador da média populacional pode ser escrita como:

$$V_{AES}\left(\overline{y}_{AES}
ight) = \sum_{h=1}^{H} W_h^2 S_{h,y}^2 \left(rac{1}{n_h} - rac{1}{N_h}
ight) = \sum_{h=1}^{H} W_h^2 S_{h,y}^2 / n_h - V_0,$$

onde
$$V_0 = \sum_{h=1}^H W_h^2 S_{h,y}^2 / N_h$$
.

- V_0 não depende de n_h , para minimizar $V_{AES}\left(\overline{y}_{AES}\right)$ basta encontrar valores de n_h que minimizem $\sum_{h=1}^H W_h^2 S_{h,y}^2/n_h$.
- Técnicas de minimização de funções com restrições lineares, ex. o método dos multiplicadores de Lagrange. (?)
- O resultado da minimização corresponde à *alocação ótima* dada por:

$$n_h = n imes rac{W_h S_{h,y}/\sqrt{c}_h}{\sum_{k=1}^H W_k S_{k,y}/\sqrt{c}_k}, \; orall \, h = 1,\dots,H$$

Proposto por Neyman(1934), em seu artigo seminal que introduziu as bases da amostragem probabilística, definiu a amostragem estratificada e já indicava a

Uma via de **demonstrar o resultado** é utilizando a desigualdade de Cauchy-Scwartz.

1. Minimizar $Var_{AES}\left(\overline{y}_{AES}\right)$ para C' fixado ou C' para $V_{AES}\left(\overline{y}_{AES}\right)$ fixada é equivalente a minimizar o produto

$$Var_{AES}\left(\overline{y}_{AES}
ight)C' = \left(\sum_{h=1}^{H}rac{W_{h}^{2}S_{h}^{2}}{n_{h}}
ight)\left(\sum_{h=1}^{H}n_{h}c_{h}
ight).$$

2. A **desigualdade** diz que

$$(\sum_h a_h^2)(\sum_h b_h^2) \geq (\sum_h a_h^2 b_h^2)$$
 sendo a igualde quando $\frac{b_h}{a_h} = k$ (constante).

3. Definindo
$$a_h=rac{W_hS_h}{\sqrt{n_h}}$$
 e $b_h=\sqrt{n_hc_h}$ então $rac{b_h}{a_h}=rac{\sqrt{n_hc_h}}{rac{W_hS_h}{\sqrt{n_h}}}=rac{n_h\sqrt{c_h}}{W_hS_h}=k$, para todo $h=1,\ldots,H$.

ullet Temos então que $Var_{AES}\left(\overline{y}_{AES}
ight)C'$ mínimo quando

$$n_h = k rac{W_h S_h}{\sqrt{c_h}}$$

4. Como $n = \sum_{h=1}^{H} n_h$ então

$$k = rac{n}{\sum_{h=1}^H W_h S_h}/\sqrt{c_n}.$$

5. Substituindo em n_h no passo (3) temos

$$n_h = n rac{rac{W_h S_h}{c_h}}{\sum_{h=1}^H rac{W_h S_h}{c_h}}.$$

• n_h na **AESot** é diretamente proporcional a W_hS_h e inversamente proporcional a $\sqrt{c_n}$.

Sob **alocação ótima**, uma amostra maior será selecionada num estrato h sempre que:

- a. O estrato tiver mais unidades, N_h grande.
- b. A variabilidade no estrato for maior, $S_{h,y}$ grande.
- c. O custo de amostragem no estrato for menor, c_h pequeno.

Alocação (ótima) de Neyman

• Quando $S_h = S^*$ e $c_h = c^*, \ \ \forall \ \ h = 1, 2, \ldots, H$, ambos constantes,

$$n_h=nN_h/N$$

a alocação ótima coincide com a alocação proporcional.

• Entretanto, se apenas os custos de amostragem forem constantes ao longo dos estratos, $c_h = c^*, \ \forall \ h = 1, 2, \dots, H$, então:

$$n_h = n imes rac{N_h S_{h,y}}{\sum_{k=1}^H N_k S_{k,y}}$$

gerando a chamada Alocação (Ótima) de Neyman.

• Ex. pesquisas de estabelecimentos quando os **desvios padrões** $S_{h,y}$ **crescem com o tamanho das unidades**, maior variação em estabelecimentos maiores.

Alocação (ótima) de Neyman

- Se amostragem estratificada simples com alocação de Neyman AESne é usada,
 - então o valor da variância minimizada para o estimador da média populacional é dado por:

$$Var_{AES_{ne}}\left(\overline{y}_{AES}
ight) = rac{1}{n} \Biggl(\sum_{h=1}^{H} W_h S_{h,y}\Biggr)^2 - rac{1}{N} \Biggl(\sum_{h=1}^{H} W_h S_{h,y}^2\Biggr)^2$$

- o O segundo termo à direita corresponde à correção de população finita.
- \circ A Expressão é obtida pela substituição de n_h na expressão da variância do estimador pela expressão do n_h da alocação de Neyman.
- E no plano AESne mas agora sob AASc?

Alocação (ótima) de Neyman

para $DP_h = \sqrt{Var_h}$ e $DP = \sum_{h=1}^{H} W_h DP_h$.

sob AASc dentro dos estratos

$$\begin{aligned} Var_{AES_{ne}}\left(\overline{y}_{AES}\right) &= Var_{AES_{ne}}\left(\sum_{h=1}^{H}W_{h}\overline{y}_{h}\right) \\ \left(\mathbf{?}\right) &= \sum_{h=1}^{H}W_{h}^{2}Var_{AES_{ne}}\left(\overline{y}_{h}\right) \\ \left(\text{def. AASc dentro}\right) &= \sum_{h=1}^{H}W_{h}^{2}\frac{Var_{h}}{n_{h}} \\ \left(n_{h} \text{ na } AES_{ne}\right) &= \sum_{h=1}^{H}W_{h}^{2}\frac{Var_{h}}{n\frac{\sqrt{Var_{h}}N_{h}}{\sum_{k=1}^{H}\sqrt{Var_{k}}N_{k}}} = \sum_{h=1}^{H}\frac{N_{h}^{2}}{N^{2}}\frac{Var_{h}}{n}\frac{\sum_{k=1}^{H}\sqrt{Var_{k}}N_{k}}{\sqrt{Var_{h}}N_{h}} \\ &= \frac{1}{n}\sum_{h=1}^{H}W_{h}\sqrt{Var_{h}}\sum_{k=1}^{H}\frac{\sqrt{Var_{k}}N_{k}}{N} = \frac{1}{n}\sum_{h=1}^{H}W_{h}\sqrt{Var_{h}}\sum_{k=1}^{H}W_{k}\sqrt{Var_{k}} \\ \left(\mathbf{?}\right) &= \frac{1}{n}\left(\sum_{h=1}^{H}W_{h}\sqrt{Var_{h}}\right)^{2} = \frac{\overline{DP}}{n} \end{aligned}$$

Exercício 4.1 do livro "Elementos de Amostragem" (Bolfarine e Bussab)

Uma população está dividida em 5 estratos. Os tamanhos dos estratos N_h , médias \overline{Y} e variâncias S_h^2 são dados na tabela abaixo.

h	Nh	\overline{Y}	S_h^2
1	117	7,3	1,31
2	98	6,9	2,03
3	74	11,2	1,13
4	41	9,1	1,96
5	45	9,6	1,74

- a. Calcule os parâmetros globais \overline{Y} e Var_y .
- b. Para uma amostra de tamanho n=80, determine as alocações proporcional e (ótima) de Neyman.
- c. Compare as variâncias dos estimadores obtidos sob AASc e AESne.
- d. Faça o mesmo para a AASc e a AESpr.

Para casa 🏠

- Continuar o Exemplo.
- Mostrar $V_{AES}\left(\overline{y}_{AES_{ne}}
 ight) \leq V_{AES_{pr}}\left(\overline{y}_{AES}
 ight) \leq V_{AAS}\left(\overline{y}
 ight)$ sob **AASc** dentro dos estratos.
- Fazer exercício 11.5 do livro 'Amostragem: Teoria e Prática Usando R' https://amostragemcomr.github.io/livro/estrat.html#exerc11
- Fazer exercício 1 da lista 1.
- Rever os slides.

Próxima aula IIII

- Amostragem Estratificada
 - Mais sobre Comparação de alternativas de alocação da amostra, efeito do Plano Amostral
- Laboratório de 😱

Muito obrigado!

Fonte: imagem do livro *Combined Survey Sampling Inference: Weighing of Basu's Elephants: Weighing Basu's Elephants.*

Resumo da notação

Alocação ótima

• Função custo linear: $C=c_0+\sum_{h=1}^H n_h c_h$ ou $C'=C-c_0=\sum_{h=1}^H n_h c_h$.

Alocação	sob AASc dentro	sob AASs dentro
Ótima	$n_h = n imes rac{W_h \sqrt{Var_{h,y}}/\sqrt{c}_h}{\sum_{k=1}^H W_k \sqrt{Var_{k,y}}/\sqrt{c}_k}$	$n_h = n imes rac{W_h S_{h,y}/\sqrt{c}_h}{\sum_{k=1}^H W_k S_{k,y}/\sqrt{c}_k}$
de Neyman	$n_h = n imes rac{N_h \sqrt{Var_{h,y}}}{\sum_{k=1}^H N_k \sqrt{Var_{k,y}}}$	$n_h = n imes rac{N_h S_{h,y}}{\sum_{k=1}^H N_k S_{k,y}}$

• Variâncias na **AESne**

Plano dentro	Variância \overline{y}_{AES} na AESne
AASc	$Var_{AES_{ne}}\left(\overline{y}_{AES} ight)=rac{1}{n}\Bigl(\sum_{h=1}^{H}W_{h}\sqrt{Var_{h}}\Bigr)^{2}=rac{\overline{DP}^{2}}{n}$
AASs	$Var_{AES_{ne}}\left(\overline{y}_{AES} ight)=rac{1}{n}\Bigl(\sum_{h=1}^{H}W_{h}S_{h,y}\Bigr)^{2}-rac{1}{N}\Bigl(\sum_{h=1}^{H}W_{h}S_{h,y}^{2}\Bigr)$

em que
$$DP_h = \sqrt{Var_h}$$
 e $\overline{DP} = \sum_{h=1}^H W_h DP_h$.

Referências

Slides baseados no Capítulo 11 do livro

• Amostragem: Teoria e Prática Usando o R

Citações do Capítulo

- Neyman(1934)
- Cochran(1977)