L. Mereu – A. Nanni Serie numeriche

4. Combinazioni lineari di serie

Se entrambe le serie

$$\sum_{k=1}^{\infty} a_k$$
 e $\sum_{k=1}^{\infty} b_k$

convergono e $\sum_{k=1}^{\infty} a_k = A$ e $\sum_{k=1}^{\infty} b_k = B$, allora :

1)
$$\sum_{k=1}^{\infty} (a_k + b_k)$$
 converge e ha somma $S = A + B$.

2)
$$\sum_{k=1}^{\infty} ca_k = c\sum_{k=1}^{\infty} a_k$$
 converge e ha somma $S = cA$ ($c \in \mathbb{R}$)

Se una delle due non converge e l'altra converge allora

3)
$$\sum_{k=1}^{\infty} (a_k + b_k) \quad \text{non converge.}$$

Se $\sum_{k=1}^{\infty} a_k$ diverge e c \neq 0 , allora anche

4)
$$\sum_{k=1}^{\infty} ca_k$$
 diverge

Se entrambe le serie

$$\sum_{k=1}^{\infty} a_k$$
 e $\sum_{k=1}^{\infty} b_k$

non convergono, la serie somma $\sum_{k=1}^{\infty}(a_k+b_k)$ può convergere come può non convergere.

Esempi

1)
$$\sum_{k=1}^{\infty} \frac{5^k + 2^k}{7^k} = \sum_{k=1}^{\infty} \left(\frac{5}{7}\right)^k + \sum_{k=1}^{\infty} \left(\frac{2}{7}\right)^k$$

entrambe convergenti, perché serie geometriche di ragione rispettive $\frac{5}{7}$ e $\frac{2}{7}$ e somme rispettive $\frac{5}{2}$ e

$$\frac{2}{5}$$
, perciò $\sum_{k=1}^{\infty} \frac{5^k + 2^k}{7^k} = \sum_{k=1}^{\infty} \left(\frac{5}{7}\right)^k + \sum_{k=1}^{\infty} \left(\frac{2}{7}\right)^k = \frac{5}{2} + \frac{2}{5} = \frac{29}{10}$

2)
$$\sum_{k=1}^{\infty} \left(\frac{1}{k} + \frac{1}{5^k} \right)$$

non converge perché somma tra la serie armonica $\sum_{k=1}^{\infty} \left(\frac{1}{k}\right)$ divergente e la serie geometrica $\sum_{k=1}^{\infty} \left(\frac{1}{5^k}\right)$ convergente.

3) Considerata la somma delle due serie $\sum_{k=1}^{\infty}\log\left(\frac{4}{3}\right)^k$ e $\sum_{k=1}^{\infty}\log\left(\frac{3}{4}\right)^k$ entrambe divergenti essendo $\sum_{k=1}^{\infty}\log\left(\frac{4}{3}\right)^k=\sum_{k=1}^{\infty}k\log\left(\frac{4}{3}\right)$ e $\sum_{k=1}^{\infty}\log\left(\frac{3}{4}\right)^k=\sum_{k=1}^{\infty}k\log\left(\frac{3}{4}\right)$, si ha

$$\sum_{k=1}^{\infty} \left(\log \left(\frac{4}{3} \right)^k + \log \left(\frac{3}{4} \right)^k \right) = \sum_{k=1}^{\infty} k \log 1$$

evidentemente convergente e con somma 0.