FIT1043 Introduction to Data Science Module 4: Data Resources, Processes, Standards and Tools Lecture 7

Monash University

Assignment 2

- Due 16th September 2018
- Python
- No zip file submission
- Visualization and investigation

Discussion: Data Wrangling Examples

<u>"How we found the worst place to park in New York City"</u> is examples, and a discussion of the complexities of getting data out of New York City:

Danger spots for cycles: <u>NYPD crash data</u> obtained by daily download of PDF files followed by (non-trivial) extraction

NB. they now have Excel data to ease the work!

Dirty waterways: <u>fecal coliform measurements on waterways</u> from

Department of Environmental Protection's website;

extracted from Excel sheets per site; each in a different format

Faulty road markings: parking tickets for fire-hydrants by location from <u>NYC Open Data portal</u> need to normalize the addresses supplied

Unit Schedule: Modules

Module	Week	Content	
1.	1	Overview and look at projects	
	2	(Job) roles, and the impact	
2.	3	Data business models / application areas	
3.	4	Characterising data and "big" data	
	5	Data sources and case studies	
4.	6	Resources and standards	
	7	Resources case studies	
5.	8	Data analysis theory	
	9	Regression and decision trees	
	10	Data analysis process	
6.	11	Issues in data management	
	12	GUEST SPEAKER & EXAM INFO	

Standards and Issues (ePub section 4.5)

- some standards
- open data and open source software
- APIs and SaaS

Some Standards

Semi-Structured Data

Semi-structured data is data that is presented in XML or JSON:

- ► see some examples *here*
- Note YAML (Yet Another Markup Language), which is just an indentation (easier to read) version of JSON
- standard libraries for reading/writing/manipulating semi-structured data exist in Python, Perl, Java
- don't need to know all the details of XML (and related Schema languages)
 many good online tutorials, e.g. <u>W3schools.com</u>

Model Language

PMML ::= Predictive Model Markup Language

PMML provides a standard language for describing a (predictive) model that can be passed between analytic software (e.g. from R to SAS).

- ► <u>PMML: An Open Standard for Sharing Models</u>
- A list of products working with PMML is the <u>PMML Powered page</u> on DMG site.

MARS Question

Which of the following statement is FALSE?

- PMML is a standard language for describing a predictive model
- Semi-structured data is data that is presented in XML and JSON
- C. JSON is easier to read than YAML

Open data and open source software

Software Usage Survey

2016 Data Science Salary Survey

Survey: Clusters amongst the Respondents

Analysts and data scientists with very small tool stacks, as well as programmers and developers who aren't data scientists; this functions as a miscellaneous category

Cluster 2 Analysts and engineers who use many Microsoft tools

Cluster 3 Coding analysts and data scientists, Python-dominant

Cluster 4 Data engineers and architects who use many different tools, largely open-source

Survey: Commonly Used Software

	Cluster			
Tools		2		4
Windows	86%	92%	48%	55%
SQL	62%	75%	65%	80%
Excel	66%	84%	59%	60%
R	30%	69%	67%	69%
Python	27%	32%	96%	84%
Linux	37%	21%	70%	91%
Mac OS X	26%	23%	70%	67%
MySQL	26%	33%	41%	57%
ggplot	13%	33%	53%	52%
Microsoft SQL Server	32%	51%	17%	27%
Tableau	17%	56%	21%	37%
Scikit-learn	7%	7%	73%	57%
Matplotlib	5%	5%	67%	42%
Oracle	22%	31%	10%	30%
Bash	9%	7%	42%	58%
PostgreSQL	11%	12%	26%	53%
Spark	9%	6%	20%	69%

	Cluster			
Tools	- 1	2	3	4
Hive	11%	13%	23%	46%
Java	16%	8%	14%	44%
Unix	10%	12%	21%	36%
JavaScript	12%	8%	18%	39%
Apache Hadoop	5%	6%	18%	55%
Shiny	5%	19%	21%	27%
D3	5%	6%	20%	49%
Spark MILib	2%	3%	14%	49%
Visual Basic/VBA	11%	24%	6%	5%
Cloudera	6%	8%	11%	30%
SQLite	7%	4%	15%	24%
Redshift	5%	7%	10%	21%
MongoDB	4%	5%	15%	24%
ElasticSearch	5%	3%	9%	33%
Teradata	6%	13%	8%	13%
PowerPivot	10%	19%	2%	2%
C++	7%	3%	13%	17%
Weka	5%	5%	8%	25%

Survey: Operating Systems

OPERATING SYSTEMS (Respondents could choose more than one OS)

Survey: Programming Languages

Survey: Relational Databases

Survey: Management and Big Data

Survey: Visualization

Open Source Software Awards

Here's how you learn about which tools are important!

BOSSIE is **B**est **O**pen **S**ource **S**oftware awards, held in September.

- BOSSIE awards 2015 for Big Data and BOSSIE awards 2016 for Big Data
- BOSSIE awards 2017 for <u>machine learning and deep learning tools</u> and for <u>databases and analytics tools</u>

Open Source Software Awards, cont.

- 2015: big data tools, Spark and "elastic" processing, scalable ML and databases, stream/real-time processing (ML, search, analysis, storage, time-series), security
- 2016: big data tools, pipelines, TensorFlow, distributed IR (Solr), NoSQL analytics, stream analytics, graph database
- 2017: big data and analytics tools, GPU acceleration, real-time SQL, more Spark, Solr, R, graph databases
- 2017: ML tools, deep learning, scalable prediction, Python, gradient boosting, TensorFlow

Popular Open Source Projects

Let's have a look at what all these Open Source Projects doing

- 1. Apache Hadoop Distributed File System (HDFS)
- 2. Apache Hadoop YARN
- 3. Apache Spark
- Apache Cassandra (distributed NoSQL, wide-column store)
- 5. <u>Apache HBase</u> (distributed NoSQL, wide-column store)
- 6. Apache Hive (distributed SQL)
- 7. <u>Apache Mahout</u> (distributed linear algebra with GPU)
- 8. Apache Pig (data flow and data analysis on top of Hadoop)
- 9. <u>Apache Storm</u> (distributed real-time computation)
- 10. Apache Tez (dataflow for Hive and Pig)

APIs and SaaS

REST API Terminology

API: Application Programmer Interface

Routines providing programatic access to an application.

REST: REpresentational State Transfer

a stateless API usually running over HTTP

Watch a simple introduction to REST-based APIs in this

video: <u>REST API concepts and examples</u> by WebConcepts

SaaS: Software as a Service

The provisioning of software in a Web browser and/or via an API over the Web as a subscription service.

MARS Question

Name a popular data/information API.

Example APIs

Many companies are exposing their data and their website functionality as APIs for others to make use of:

- ◆ Facebook API
- ◆ Twitter API
- LinkedIn API
- Google Maps API
- Youtube API
- Amazon Advertising API
- ♦ TripAdvisor API

SaaS Examples

- Email systems (Google, Microsoft Office365),
- File sharing systems (Dropbox, Box, Microsoft One drive, Google drive ..)
- Business systems (Salesforce, Servicenow, ..)

Why SaaS

- Pay as you go
- Scale up/down
- Low maintenance
- Performance, better infrastructure

Disadvantage: data privacy

Case Studies of Data (ePub section 4.8)

Twitter

Twitter is the most famous microblogging platform

- with big corporate use
- contains lots of metadata: information about users, their follower network, locations, hashtags, emojis+emoticons,

...

Sample Twitter XML Data

```
<?xml version="1.0" encoding="UTF-8" ?>
- <statuses type="array">
 - estatus>
    <created at>Wed Jun 10 00:57:28 +0000 2009/created at>
    <id>2097065233</id>
    <text>sitting in vegas @ airport, kid in stroller, with dvd player in lap, First ever for me, HELLO! </text>
    <source>web</source>
    <truncated>false</truncated>
    <in reply to status id />
    <in reply to user id />
    <favorited>false</favorited>
    <in reply to screen name />
  - <user>
     <id>5189091</id>
     <name>kristin bednarz</name>
     <screen name>kristinbednarz</screen name>
     <location>iPhone: 33.447393,-101.821675</location>
     <description>photographer in WEST TEXAS</description>
     <url>http://www.vourlifemvpassion.com</url>
     cprotected>false
     <followers count>245</followers count>
     cprofile_text_color>3E4415file_text_color>
     cprofile link color>D02B55/profile link color>
     profile sidebar border color>829D5E/profile sidebar border color>
     <friends count>90</friends count>
     <created at>Thu Apr 19 04:54:45 +0000 2007/created at>
     <favourites_count>3</favourites_count>
     <utc offset>-21600</utc offset>
```

Twitter Developer API

See Twitter's developer platform

- library interfaces for Java, C++, Javascript, Python, Perl, PHP, ...
- allows other applications to manage Twitter data for users
- extensive developer policy

Unit Schedule: Next Week

Module	Week	Content
1.	1	Overview and look at projects
	2	(Job) roles, and the impact
2.	3	Data business models / application areas
3.	4	Characterising data and "big" data
	5	Data sources and case studies
4.	6	Resources and standards
	7	Resources case studies
5.	8	Data analysis theory
	9	Regression and decision trees
	10	Data analysis process
6.	11	Issues in data management
	12	GUEST SPEAKER & EXAM INFO