# **Pump it Up: Data Mining the Water Table**

November 23, 2016

### **Domain Background**

Across Africa, cholera, typhoid, dysentery and other diseases kill thousands each year. To help the people of Tanzania(2007), The Tanzanian government, with support from UN Development Programme(UNDP), responded to the water problems by install Drinking Water Taps and Decentralised the maintenance for quick response. Today this water infrastructure is facing repair and maintenance issues causing a disconnection for drinking water needs.

This is also an intermediate-level practice competition by DrivenData.

#### **Problem Statement**

Using data from Taarifa and the Tanzanian Ministry of Water, predicting which pumps are functional, which need some repairs, and which don't work at all. Predict one of these three classes based on a number of variables about what kind of pump is operating, when it was installed, and how it is managed.

### **Datasets and Inputs**

Dataset is collected from Taarifa and the Tanzanian Ministry of Water which are available here. Taarifa is an open source platform for the crowd sourced reporting and triaging of infrastructure related issues and Tanzanian Ministry of Water is the central governing body to Tanzania.

#### Dataset Features:

- Col ID: A simple index for counting columns
- UnigCount: Total number of unique labels for that feature.
- UniqVal: If UniqCount is < 30, then we shall have that columns's respective values & counts

| Col | Col Name      | UniqCou<br>nt | Col Values              | UniqValCou<br>nt |
|-----|---------------|---------------|-------------------------|------------------|
| 1   | amount_tsh    | 98            |                         |                  |
| 2   | date_recorded | 356           |                         |                  |
| 3   | funder        | 1897          |                         |                  |
| 4   | gps_height    | 2428          |                         |                  |
| 5   | installer     | 2145          |                         |                  |
| 6   | longitude     | 57516         |                         |                  |
| 7   | latitude      | 57517         |                         |                  |
| 8   | wpt_name      | 37400         |                         |                  |
| 9   | num_private   | 65            |                         |                  |
| 10  | basin         | 9             | Wami / Ruvu             | 5987             |
|     |               |               | Ruvuma / Southern Coast | 4493             |
|     |               |               | Rufiji                  | 7976             |
|     |               |               | Internal                | 7785             |
|     |               |               | Lake Rukwa              | 2454             |
|     |               |               | Lake Nyasa              | 5085             |
|     |               |               | Pangani                 | 8940             |

|    |            |       | Lake Victoria   | 10248 |
|----|------------|-------|-----------------|-------|
|    |            |       | Lake Tanganyika | 6432  |
| 11 | subvillage | 19287 |                 |       |
| 12 | region     | 21    | Mwanza          | 3102  |
|    |            |       | Kagera          | 3316  |
|    |            |       | Dodoma          | 2201  |
|    |            |       | Lindi           | 1546  |
|    |            |       | Morogoro        | 4006  |
|    |            |       | Arusha          | 3350  |
|    |            |       | Tabora          | 1959  |
|    |            |       | Iringa          | 5294  |
|    |            |       | Shinyanga       | 4982  |
|    |            |       | Dar es Salaam   | 805   |
|    |            |       | Mbeya           | 4639  |
|    |            |       | Kilimanjaro     | 4379  |
|    |            |       | Mtwara          | 1730  |
|    |            |       | Kigoma          | 2816  |

|    |             |    | Rukwa   | 1808 |
|----|-------------|----|---------|------|
|    |             |    | Ruvuma  | 2640 |
|    |             |    | Manyara | 1583 |
|    |             |    | Pwani   | 2635 |
|    |             |    | Singida | 2093 |
|    |             |    | Tanga   | 2547 |
|    |             |    | Mara    | 1969 |
| 13 | region_code | 27 | 1       | 2201 |
|    |             |    | 2       | 3024 |
|    |             |    | 3       | 4379 |
|    |             |    | 4       | 2513 |
|    |             |    | 5       | 4040 |
|    |             |    | 6       | 1609 |
|    |             |    | 7       | 805  |
|    |             |    | 8       | 300  |
|    |             |    | 9       | 390  |
|    |             |    | 10      | 2640 |

| 11       5300         12       4639         13       2093         14       1979         15       1808         16       2816         17       5011         18       3324         19       3047         20       1969         21       1583         24       326         40       1         60       1025         80       1238         90       917         99       423 |    |      |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|------|
| 13       2093         14       1979         15       1808         16       2816         17       5011         18       3324         19       3047         20       1969         21       1583         24       326         40       1         60       1025         80       1238         90       917                                                                  | 11 | 5300 |
| 14       1979         15       1808         16       2816         17       5011         18       3324         19       3047         20       1969         21       1583         24       326         40       1         60       1025         80       1238         90       917                                                                                        | 12 | 4639 |
| 15       1808         16       2816         17       5011         18       3324         19       3047         20       1969         21       1583         24       326         40       1         60       1025         80       1238         90       917                                                                                                              | 13 | 2093 |
| 16       2816         17       5011         18       3324         19       3047         20       1969         21       1583         24       326         40       1         60       1025         80       1238         90       917                                                                                                                                    | 14 | 1979 |
| 17       5011         18       3324         19       3047         20       1969         21       1583         24       326         40       1         60       1025         80       1238         90       917                                                                                                                                                          | 15 | 1808 |
| 18       3324         19       3047         20       1969         21       1583         24       326         40       1         60       1025         80       1238         90       917                                                                                                                                                                                | 16 | 2816 |
| 19       3047         20       1969         21       1583         24       326         40       1         60       1025         80       1238         90       917                                                                                                                                                                                                      | 17 | 5011 |
| 20       1969         21       1583         24       326         40       1         60       1025         80       1238         90       917                                                                                                                                                                                                                            | 18 | 3324 |
| 21     1583       24     326       40     1       60     1025       80     1238       90     917                                                                                                                                                                                                                                                                        | 19 | 3047 |
| 24     326       40     1       60     1025       80     1238       90     917                                                                                                                                                                                                                                                                                          | 20 | 1969 |
| 40       1         60       1025         80       1238         90       917                                                                                                                                                                                                                                                                                             | 21 | 1583 |
| 60     1025       80     1238       90     917                                                                                                                                                                                                                                                                                                                          | 24 | 326  |
| 80 1238<br>90 917                                                                                                                                                                                                                                                                                                                                                       | 40 | 1    |
| 90 917                                                                                                                                                                                                                                                                                                                                                                  | 60 | 1025 |
|                                                                                                                                                                                                                                                                                                                                                                         | 80 | 1238 |
| 99 423                                                                                                                                                                                                                                                                                                                                                                  | 90 | 917  |
|                                                                                                                                                                                                                                                                                                                                                                         | 99 | 423  |

| 14 | district_code | 20 | 0  | 23    |
|----|---------------|----|----|-------|
|    |               |    | 1  | 12203 |
|    |               |    | 2  | 11173 |
|    |               |    | 3  | 9998  |
|    |               |    | 4  | 8999  |
|    |               |    | 5  | 4356  |
|    |               |    | 6  | 4074  |
|    |               |    | 7  | 3343  |
|    |               |    | 8  | 1043  |
|    |               |    | 43 | 505   |
|    |               |    | 13 | 391   |
|    |               |    | 80 | 12    |
|    |               |    | 67 | 6     |
|    |               |    | 53 | 745   |
|    |               |    | 23 | 293   |
|    |               |    | 62 | 109   |
|    |               |    | 33 | 874   |

|    |                   |      | 60                      | 63    |
|----|-------------------|------|-------------------------|-------|
|    |                   |      | 30                      | 995   |
|    |                   |      | 63                      | 195   |
| 15 | lga               | 125  |                         |       |
| 16 | ward              | 2092 |                         |       |
| 17 | population        | 1049 |                         |       |
| 18 | public_meeting    | 2    | False                   | 5055  |
|    |                   |      | True                    | 51011 |
| 19 | recorded_by       | 1    | GeoData Consultants Ltd | 59400 |
| 20 | scheme_management | 12   | None                    | 1     |
|    |                   |      | Private operator        | 1063  |
|    |                   |      | Water authority         | 3153  |
|    |                   |      | Water Board             | 2748  |
|    |                   |      | SWC                     | 97    |
|    |                   |      | Parastatal              | 1680  |
|    |                   |      | WUA                     | 2883  |
|    |                   |      | Other                   | 766   |

|    |                   |      | WUG                       | 5206  |
|----|-------------------|------|---------------------------|-------|
|    |                   |      | Trust                     | 72    |
|    |                   |      | Company                   | 1061  |
|    |                   |      | VWC                       | 36793 |
| 21 | scheme_name       | 2696 |                           |       |
| 22 | permit            | 2    | False                     | 17492 |
|    |                   |      | True                      | 38852 |
| 23 | construction_year | 55   |                           |       |
| 24 | extraction_type   | 18   | windmill                  | 117   |
|    |                   |      | submersible               | 4764  |
|    |                   |      | other - mkulima/shinyanga | 2     |
|    |                   |      | mono                      | 2865  |
|    |                   |      | climax                    | 32    |
|    |                   |      | india mark ii             | 2400  |
|    |                   |      | afridev                   | 1770  |
|    |                   |      | gravity                   | 26780 |
|    |                   |      | walimi                    | 48    |

|    |                       |    | cemo              | 90    |
|----|-----------------------|----|-------------------|-------|
|    |                       |    | nira/tanira       | 8154  |
|    |                       |    | other - play pump | 85    |
|    |                       |    | other             | 6430  |
|    |                       |    | other - swn 81    | 229   |
|    |                       |    | swn 80            | 3670  |
|    |                       |    | ksb               | 1415  |
|    |                       |    | other - rope pump | 451   |
|    |                       |    | india mark iii    | 98    |
| 25 | extraction_type_group | 13 | submersible       | 6179  |
|    |                       |    | rope pump         | 451   |
|    |                       |    | wind-powered      | 117   |
|    |                       |    | other motorpump   | 122   |
|    |                       |    | mono              | 2865  |
|    |                       |    | india mark ii     | 2400  |
|    |                       |    | afridev           | 1770  |
|    |                       |    | gravity           | 26780 |

|    |                       |    | other handpump   | 364   |
|----|-----------------------|----|------------------|-------|
|    |                       |    | nira/tanira      | 8154  |
|    |                       |    | other            | 6430  |
|    |                       |    | india mark iii   | 98    |
|    |                       |    | swn 80           | 3670  |
| 26 | extraction_type_class | 7  | submersible      | 6179  |
|    |                       |    | handpump         | 16456 |
|    |                       |    | rope pump        | 451   |
|    |                       |    | motorpump        | 2987  |
|    |                       |    | gravity          | 26780 |
|    |                       |    | other            | 6430  |
|    |                       |    | wind-powered     | 117   |
| 27 | management            | 12 | private operator | 1971  |
|    |                       |    | water authority  | 904   |
|    |                       |    | unknown          | 561   |
|    |                       |    | water board      | 2933  |
|    |                       |    | parastatal       | 1768  |

|    |                  |   | wua                   | 2535  |
|----|------------------|---|-----------------------|-------|
|    |                  |   | other                 | 844   |
|    |                  |   | wug                   | 6515  |
|    |                  |   | trust                 | 78    |
|    |                  |   | company               | 685   |
|    |                  |   | other - school        | 99    |
|    |                  |   | vwc                   | 40507 |
| 28 | management_group | 5 | parastatal            | 1768  |
|    |                  |   | other                 | 943   |
|    |                  |   | commercial            | 3638  |
|    |                  |   | user-group            | 52490 |
|    |                  |   | unknown               | 561   |
| 29 | payment          | 7 | unknown               | 8157  |
|    |                  |   | never pay             | 25348 |
|    |                  |   | pay monthly           | 8300  |
|    |                  |   | other                 | 1054  |
|    |                  |   | pay when scheme fails | 3914  |

|    |               |   | pay annually       | 3642  |
|----|---------------|---|--------------------|-------|
|    |               |   | pay per bucket     | 8985  |
| 30 | payment_type  | 7 | on failure         | 3914  |
|    |               |   | per bucket         | 8985  |
|    |               |   | monthly            | 8300  |
|    |               |   | unknown            | 8157  |
|    |               |   | annually           | 3642  |
|    |               |   | never pay          | 25348 |
|    |               |   | other              | 1054  |
| 31 | water_quality | 8 | fluoride           | 200   |
|    |               |   | unknown            | 1876  |
|    |               |   | salty abandoned    | 339   |
|    |               |   | coloured           | 490   |
|    |               |   | fluoride abandoned | 17    |
|    |               |   | salty              | 4856  |
|    |               |   | milky              | 804   |
|    |               |   | soft               | 50818 |

| 32 | quality_group  | 6  | good         | 50818 |
|----|----------------|----|--------------|-------|
|    |                |    | colored      | 490   |
|    |                |    | unknown      | 1876  |
|    |                |    | salty        | 5195  |
|    |                |    | milky        | 804   |
|    |                |    | fluoride     | 217   |
| 33 | quantity       | 5  | dry          | 6246  |
|    |                |    | insufficient | 15129 |
|    |                |    | enough       | 33186 |
|    |                |    | seasonal     | 4050  |
|    |                |    | unknown      | 789   |
| 34 | quantity_group | 5  | dry          | 6246  |
|    |                |    | insufficient | 15129 |
|    |                |    | enough       | 33186 |
|    |                |    | seasonal     | 4050  |
|    |                |    | unknown      | 789   |
| 35 | source         | 10 | unknown      | 66    |

|    |              |   | spring               | 17021 |
|----|--------------|---|----------------------|-------|
|    |              |   | machine dbh          | 11075 |
|    |              |   | lake                 | 765   |
|    |              |   | shallow well         | 16824 |
|    |              |   | other                | 212   |
|    |              |   | rainwater harvesting | 2295  |
|    |              |   | dam                  | 656   |
|    |              |   | river                | 9612  |
|    |              |   | hand dtw             | 874   |
| 36 | source_type  | 7 | river/lake           | 10377 |
|    |              |   | spring               | 17021 |
|    |              |   | shallow well         | 16824 |
|    |              |   | other                | 278   |
|    |              |   | rainwater harvesting | 2295  |
|    |              |   | dam                  | 656   |
|    |              |   | borehole             | 11949 |
| 37 | source_class | 3 | unknown              | 278   |

|    |                       |   | groundwater                 | 45794 |
|----|-----------------------|---|-----------------------------|-------|
|    |                       |   | surface                     | 13328 |
| 38 | waterpoint_type       | 7 | hand pump                   | 17488 |
|    |                       |   | communal standpipe          | 28522 |
|    |                       |   | improved spring             | 784   |
|    |                       |   | other                       | 6380  |
|    |                       |   | communal standpipe multiple | 6103  |
|    |                       |   | dam                         | 7     |
|    |                       |   | cattle trough               | 116   |
| 39 | waterpoint_type_group | 6 | hand pump                   | 17488 |
|    |                       |   | communal standpipe          | 34625 |
|    |                       |   | improved spring             | 784   |
|    |                       |   | other                       | 6380  |
|    |                       |   | dam                         | 7     |
|    |                       |   | cattle trough               | 116   |

(ALL 39 columns's unique values counts)(98, 356, 1897, 2428, 2145, 57516, 57517, 37400, 65, 9, 19287, 21, 27, 20, 125, 2092, 1049, 2, 1, 12, 2696, 2, 55, 18, 13, 7, 12, 5, 7, 7, 8, 6, 5, 5, 10, 7, 3, 7, 6)

(69 digits) is product of these 39 unique values, which is exponentially greater than 59K records we have.)

Input labels data has 39 Features with 59,400 rows. Although we seem to have a good data set, looking at the unique values counts from below 39 columns we can say that we could potentially encounter Curse of Dimensionality. But, as we can see some of columns pairs (extraction\_type, extraction\_type\_group), (quantity & quantity\_group), (source, source\_class) seems have closer relation and column by 'recorded\_by' has only one unique value. So, we might have a chance to escape Curse of Dimensionality.

#### **Description of the Labels**

The labels in this dataset are simple. There are three possible values:

- functional the water point is operational and there are no repairs needed
- functional needs repair the water point is operational, but needs repairs
- non functional the water point is not operational

| Col | Col Name         | UniqCoun<br>t | Col Values              | UniqValCoun<br>t |
|-----|------------------|---------------|-------------------------|------------------|
| 40  | status_grou<br>p | 3             | functional needs repair | 4317             |
|     |                  |               | functional              | 32259            |
|     |                  |               | non functional          | 22824            |

#### **Solution Statement**

A smart understanding of which water points will fail can improve maintenance operations and ensure that clean, potable water is available to communities across Tanzania.

We will use familiar (inherently) multi-class Supervised Classifiers like Tree Algorithms(RF/GBT)/Support Vector Machines. These are easy to train and self learning & evaluation nature make them a general good technique. During model selection we

will also explore One-vs-Rest Sklearn's MultiClassification Technique. As the data is unbalanced, we believe having a One-vs-Rest might not perform well.

#### **Benchmark Model**

With a simplistic data transformation and with the help of Random Forest Classifiers, we have created a benchmark submission of 0.7970 for which source code is here

#### **Evaluation Metrics**

### **Accuracy Score:**

As the evaluation metric of the competition use Accuracy Score /Classification Rate, we can use this metric.

The classification rate, which calculates the percentage of rows where the predicted class in the submission matches the actual class in the test set. The maximum is 1 and the minimum is 0. The goal is to maximise the classification rate.

```
Classification Rate = (1/N)^* \sum i=0 N I (Prediction == Actual)
Sample Example from Python Scikit
```

```
from sklearn.metrics import accuracy_score
y_pred = [0, 2, 1, 3]
y_true = [0, 1, 2, 3]

# calculating score
accuracy_score(y_true, y_pred)
```

# **Weighted Accuracy Score:**

Approaching to a realistic perspective, this is calculation is to help Governing/Supporting bodies to identify the water pumps that requires repairs or non functional. So, I feel prioritising this logic identifying (being biased) these two categories is more important.

To drill down further, I would say prioritise the functional needs repairs over non functional. Thus, with in limited resources(time & money) we can solve more problems.

```
import numpy as np
from sklearn.metrics import accuracy_score
y_true = [0, 1, 0, 2]
my_sample_weight = np.array([1,2,1,5])

# Alogrithm good at predicting 0's
pred1 = [0, 2, 0, 1]

# Alogrithm good at predicting 1's
pred2 = [0, 1, 2, 1]

# Alogrithm good at predicting 2's
pred3 = [1, 1, 1, 2]

for i, pred in enumerate([pred1, pred2, pred3]):
    print 'Case %s: %f' % (i, accuracy_score(y_true, pred, sample_weight=my_sample_weight))
```

#### Results:

Case 0: 0.222222 Case 1: 0.333333 Case 2: 0.777778

As many tree algorithms(self correcting nature) can use weighted samples to prioritise, we can use this logic in model training level itself and might genenrate better results during model evaluation stage.

#### Weighted F1 Score:

Accuracy based on the class labels(unbalanced) distribution. F1 Score will help to calculate score in proportional to data & labels.

```
from sklearn.metrics import f1_score
y_pred = [0, 2, 1, 3]
y_true = [0, 1, 2, 3]

# calculating score
f1_score(y_true, y_pred, average='weighted')
```

# **Project Design**

As shown in below image, we are going to do a step by step development progress on here.



With Random Forest Classifier, we were able to generate a benchmark of 0.7970. So, first we will start with going to deeper understanding of Random Forest worked and what features contributed it to generate this score in training.

(Implementation Plan)

- 1. Questions on data
- 2. Feature Exploration

- PCA Transformation Checking
- Select K Best Checking
- Exploration outliers check
- 3. Algorithm Selection
  - Unsupervised Learning Exploration(Gaussian Process, Neural Nets)
  - Supervised Learning(GBT Trees, Nearest Neighbours, RF, One-vs-One)
  - Parameter Tuning
- 4. Evaluation. Back to 1 with.
- 5. Re-Evaluation with threshold improvisation check.
- 6. Submission



As we can see from above analysis, I find that Nearest Neighbour performs better when Random Forest is performing low. Also for different learning process from that of Random Forest. GBT Tree, sometime have seems performed better than Random Forest

We will be using Gaussian Process, Neural Nets for unsupervised Learning exploration. No specific reason but taken, two models different kinds of models for exploration.

### Sources & References

- DataDriven
- Submission Code
- Wikipedia: Water Supply & Sanitation in Tanzania
- UN Report
- UN 2007 Water Taps Installation
- GBT Video Lecture
- GBT
- Classifier Comparison

- Multi-class Classification
- Multi-class and multi label algorithms
- Multi-class Metric
- Standford UnSupervised Learning