《goods》解题报告

湖南省长沙市第一中学 李铭乐洋

October 2023

1 简要题意

给出 n 个整数 a_1, a_2, \dots, a_i 满足 $0 \le a_i < 2^m$ 。

给定整数 B, 对于 $S \subseteq \{1, 2, \dots, n\}$ 定义 $f(S) = [z^B](1 + 2z + z^2)^{|S|}$ 。

再定义 g(S) 为所有 $i \in S$ 的 a_i 的异或和。你需要对于每个 $0 \le i < 2^m$ 求出 $\sum_{S \subseteq \{1,2,\cdots,n\}} [g(S) = i] f(S)$ 对 998244353 取模后的结果。

2 数据范围

本题共 25 个测试点,每个测试点等分(即每个测试点 4分)。

测试点编号	$n \leq$	$m \leq$	特殊性质
$1 \sim 2$	20	20	无。
$3 \sim 5$	300	10	无。
$6 \sim 11$	3000	20	无。
$12 \sim 13$	10^{6}	20	保证 $B=0$ 。
$14 \sim 17$	10^{6}	11	无。
$18 \sim 25$	10^{6}	20	无。

对于所有数据,满足: $1 \le n \le 10^6, 1 \le m \le 20, 0 \le B \le n$ 。

3 解题过程

3.1 算法 1

枚举所有 $S \subseteq \{1,2,\cdots,n\}$,然后计算 f(S),g(S) 后统计答案。同时由于 f(S) 取值仅和 |S| 有关,通过预处理 f(S) 做到更优的复杂度。

该算法时间复杂度为 $O(2^n n)$ 。期望通过测试点 $1 \sim 2$ 。

3.2 算法 2

同样预处理 f(S) 后,设计动态规划: 令 dp(i,j,k) 表示考虑了所有 $1 \le t \le i$ 的 a_t ,选择了 $j \land a_x$ (即 $|S \cap \{1,2,\dots,i\}| = j$),这些被选择的 a_x 的异或和为 k 。转移只需要考虑 $i \in S$ 和 $i \notin S$ 两种情况即可。

该算法时间复杂度为 $O(n^2 2^m)$ 。结合算法 1, 期望通过测试点 $1 \sim 5$ 。

3.3 算法 3

B=0 时,问题相当于:求在 a_i 中选若干个数异或和为 v 的方案数,对每个 $0 \le v < 2^m$ 给出结果。可以用线性基解决。假设线性基中有 cnt 个数,则可以被表示的数答案为 2^{n-cnt} ;不能被表示的数答案为 0 。

该算法时间复杂度为 $O(mn+2^m)$ 。结合算法 1,2,期望通过测试点 $1\sim5$ 以及 $12\sim13$ 。

3.4 算法 4

为了方便记 $G(z) = 1 + 2z + z^2$ 。

令 $f_i(x,y)=1+xy^{a_i}$ 。其中 x 一维进行加法卷积,y 一维进行异或卷积。令 $F(x,y)=\prod_{1\leq i\leq n}f_i(x,y)$,通过异或 FWT 描述 F(x,y),即有:

$$FWT(f_i(x,y)) = \sum_{0 \le j < 2^m} y^j (1 + (-1)^{\text{popcount}(j \land a_i)} x)$$
$$FWT(F(x,y)) = \sum_{0 \le j < 2^m} y^j \prod_{1 \le i \le n} (1 + (-1)^{\text{popcount}(j \land a_i)} x)$$

我们注意到,每个 $[y^j]$ FWT(F(x,y)) 都能被表示为 $(1+x)^{t_j}(1-x)^{n-t_j}$ 。而求 t_j 可以带入 x=1 对 $\sum f_i(x,y)$ 做 FWT,这样 $[y^j]$ FWT $(\sum f_i(x,y))$ 应该等于 $2t_j$ 。

我们要的答案其实是 $[z^B]F(G(z),y)$ 。只要考虑求出 $[z^B]\mathrm{FWT}(F(G(z),y))$,再 IFWT 回来即可。于是:

$$\begin{split} [z^B] \mathrm{FWT}(F(G(z),y)) &= \sum_{0 \leq j < 2^m} y^j [z^B] (1+G(z))^{t_j} (1-G(z))^{n-t_j} \\ &= \sum_{0 \leq j < 2^m} y^j [z^B] (2+2z+z^2)^{t_j} (-2z-z^2)^{n-t_j} \\ &= \sum_{0 \leq j < 2^m} y^j (-1)^{n-t_j} [z^{B-n+t_j}] (2+2z+z^2)^{t_j} (2+z)^{n-t_j} \\ &= \sum_{0 \leq j < 2^m} y^j (-1)^{n-t_j} \sum_{k=0}^{t_j} \binom{t_j}{k} 2^{t_j-k} [z^{B-n+t_j-k}] (2+z)^{n-t_j+k} \\ &= \sum_{0 \leq j < 2^m} y^j (-1)^{n-t_j} \sum_{k=0}^{t_j} \binom{t_j}{k} \binom{n-t_j+k}{B-n+t_j-k} 2^{k+2n-t_j-B} \\ &= 2^{2n-B} \sum_{0 \leq j < 2^m} y^j (-1)^{n-t_j} \sum_{k=0}^{t_j} \binom{t_j}{k} \binom{n-t_j+k}{B-n+t_j-k} 2^{k-t_j} \end{split}$$

我们只需要求出 $h(t) = \sum_{k=0}^{t} {t \choose k} {n-t+k \choose B-n+t-k} 2^{k-t}$ 。这个式子可以用 NTT 求出,因为里面的项要关注的要么只有 k 要么只有 t-k。

该算法时间复杂度 $O(m2^m + n \log n)$ 。

参考文献

[1] UOJ 310 黎明前的巧克力