PNV 3321 – MÉTODOS DE OTIMIZAÇÃO APLICADOS A SISTEMAS DE ENGENHARIA

PROBLEMAS DE MODELAGEM - 2024

Questão 11 - Uma empresa está realizando seu planejamento mensal de produção de um determinado modelo de calça jeans masculina. Há uma demanda d_i para as partes i=1, ..., 75, necessárias para atender às diversas combinações de tamanho de cintura e comprimento. Estas partes são cortadas a partir de camadas de 60 a 70 peças de tecidos, que são dispostos nas máquinas de corte. A empresa dispõe de um conjunto de **padrões de corte** (moldes), sendo que cada padrão define a forma como as várias partes podem ser cortadas. Cada padrão de corte m = 1, ..., 350, gera a_{im} cópias da parte i por camada de tecido, e gera uma perda de w_m cm² de tecido. Formule um modelo de programação matemática para definir um plano de corte que minimize as perdas de tecido.

Figura 3.1. Padrões de corte e vetores associados.

Fonte: http://wwwp.fc.unesp.br/~adriana/curiosidades/Cortes.pdf

Figura 7.1. (a) Corte bidimensional guilhotinado; (b) Padrão de corte guilhotinado.

Fonte: http://wwwp.fc.unesp.br/~adriana/curiosidades/Cortes.pdf

Parâmetros

 d_i – Demandas das partes i: 1 ... 75.

 a_{im} – Cópias da parte i:1...75 (em uma camada de tecido) presentes no padrão de corte m:1...350.

 w_m – Perda de tecido (cm^2) associada ao padrão de corte m: 1 ... 350.

Variável de decisão

 $x_{mn} \ge 0$, inteiro — Número de vezes que o padrão de corte m:1...350 é utilizado para um número de camadas $60 \le n \le 70$.

Restrições

$$\sum_{m=1}^{350} \sum_{n=60}^{70} n * x_{mn} * a_{im} \ge d_i \qquad \forall i : 1 \dots 75$$

$$\sum_{m=1}^{350} a_{im} (60x_{m60} + 61x_{m61} + 62x_{m62} + \dots + 70x_{m70}) \ge d_i \qquad \forall i : 1 \dots 75$$

$$x_{mn} \ge 0$$
, inteiro $60 \le n \le 70$, $m: 1 ... 350$

Função Objetivo

$$\min P = \sum_{m=1}^{350} \sum_{n=60}^{70} n * x_{mn} * w_m$$