U.S. Patent Application No.: 10/521,843 Filing Date: 11 August 2005 First Named Inventor: Motohiro Yamahara

Amendments to the Claims

This is a complete listing of claims and supersedes all other listings:

 (Previously presented) A dendritic polymer having a branching structure including repeating units each having a branch portion, each of said repeating units having a structure represented by formula (1), and containing a linear portion X formed of an optionally substituted divalent organic group and a branch portion Y formed of an optionally substituted trivalent organic group;

characterized in that the linear portion X is represented by formula (3):

wherein Z represents a single bond or an optionally substituted divalent organic group which is at least partially conjugated with thienylene; and each of R_4 and R_5 is selected from hydrogen, an alkyl group, and an alkoxy group; and the linear portion X is at least partially conjugated with the branch portion Y;

the portion Y included in the repeating unit and serving as an end of the branching structure is bonded to end moieties which are different from the repeating unit; wherein the end moieties have hole conductivity, electron conductivity, or ion conductivity;

and in that the polymer exhibits semiconducting characteristics.

(Previously presented) A dendritic polymer according to claim 1, wherein a conductive state is attained through application of electricity. U.S. Patent Application No.: 10/521,843

Filing Date: 11 August 2005

First Named Inventor: Motohiro Yamahara

 (Previously presented) A dendritic polymer according to claim 1, wherein a conductive state is attained through application of photoexcitation.

- (Previously presented) A dendritic polymer according to claim 1, containing substantially no doping reagent.
- (Previously presented) A dendritic polymer according to claim 1, wherein the portion X included in the repeating unit and serving as a starting point of the branching structure is further bonded to a center moiety serving as a core.
- (Original) A dendritic polymer according to claim 5, wherein the core is a group having a valence of at least two to which at least two of the repeating unit can be directly bonded
- (Previously presented) A dendritic polymer according claim 1, wherein the end moieties are selected from the moieties represented by the following formula (I):

U.S. Patent Application No.: 10/521,843 Filing Date: 11 August 2005 First Named Inventor: Motohiro Yamahara

 $A_4 = O, S, N-R_{18}$

R₁₄ to R₁₈ = a hydrogen atom or an alkyl group

U.S. Patent Application No.: 10/521,843 Filing Date: 11 August 2005

First Named Inventor: Motohiro Yamahara

 $A_5 = Cl, Br, I$

 $A_6 = CH_3SO_4$

M = Li, Na, K, ammonium, monoalkylammonium, dialkylammonium, trialkylammonium, or tetraalkylammonium.

- 8. (Previously presented) A dendritic polymer according to claim 1, wherein the branch portion Y includes, as a branching center, a chemical entity selected from among chain hydrocarbons (aliphatic hydrocarbons), cyclic hydrocarbons (including alicyclic compounds and aromatic compounds), and heterocyclic compounds (including aromatic heterocyclic compounds and non-aromatic heterocyclic compounds).
- 9. (Original) A dendritic polymer according to claim 8, wherein the branch portion Y is selected from among the moieties represented by formula (2):

wherein each of R1, R2, and R3 represents a hydrogen atom or an alkyl group.

U.S. Patent Application No.: 10/521,843 Filing Date: 11 August 2005

First Named Inventor: Motohiro Yamahara

10. (Withdrawn) A dendritic polymer according to any one of claims 1 to 9, wherein the linear portion X is represented by formula (3), and is at least partially conjugated with the branch portion Y:

wherein Z represents a single bond or an optionally substituted divalent organic group which is at least partially conjugated with thienylene; and each of R_4 and R_5 is selected from hydrogen, an alkyl group, and an alkoxy group.

- 11. (Previously presented) A dendritic polymer according to claim 1, wherein the substituent Z is a substituent formed from a moiety selected from the group consisting of substituted or unsubstituted chain hydrocarbon (aliphatic hydrocarbon) moieties, substituted or unsubstituted cyclic hydrocarbon (including alicyclic compound and aromatic compound) moieties, and substituted or unsubstituted heterocyclic compound (including aromatic heterocyclic compound and non-aromatic heterocyclic compound) moieties; a substituent formed from a plurality of same moieties continuously linked together selected from said group; or a substituent formed from a plurality of different moieties continuously linked together selected from said group.
- 12. (original) A dendritic polymer according to claim 11, wherein the substituent Z is a substituent formed from a moiety selected from the group consisting of substituted or unsubstituted unsaturated aliphatic hydrocarbon moieties and substituted or unsubstituted cyclic or heterocyclic aromatic compound moieties; a substituent formed from a plurality of same moieties continuously linked together selected from said group; or a substituent formed from a plurality of different moieties continuously linked together selected from said group.

U.S. Patent Application No.: 10/521,843 Filing Date: 11 August 2005

First Named Inventor: Motohiro Yamahara

13. (original) A dendritic polymer according to claim 12, wherein the substituent Z is a substituent formed from a moiety selected from the group represented by formula (4); a substituent formed from a plurality of same moieties continuously linked together selected from said group; or a substituent formed from a plurality of different moieties continuously linked together selected from said group:

wherein A_1 represents O, S, or N- R_8 , and each of R_6 , R_7 , and R_8 represents a hydrogen atom or an alkyl group.

14. (Previously presented) A dendritic polymer according to claim 1, wherein the repeating unit is represented by formula (5):

wherein each of R₂ and R₁₀ is selected from hydrogen, an alkyl group, and an alkoxy group, and n represents an integer of 1 to 10.

U.S. Patent Application No.: 10/521,843

Filing Date: 11 August 2005

First Named Inventor: Motohiro Yamahara

15. (Previously presented) A dendritic polymer according to claim 1, which is a dendrimer.

16. (Withdrawn) An electronic device element characterized by employing a dendritic polymer as recited in claim 1.

17. (Withdrawn) An electronic device element according to claim 16, which is a charge-transporting device element.

18. (Withdrawn) An electronic device element according to claim 16, which is a switching transistor element.

 (Withdrawn) An electronic device element according to claim 16, which is a lightemitting device element.

 (Withdrawn) An electronic device element according to claim 16, which is a photoelectric conversion device element.