Associativité - Commutativité

Dilatation:

```
A=ones(6,6);
A(1,:)=0, A(6,:)=0, A(:,1)=0, A(:,6)=0; A(3,5)=0;
B=[0\ 0\ 0;1\ 1\ 1;\ 0\ 0\ 0];\ C= transpose(B);
BC=imdilate(B,C);
A BC=imdilate(A,BC);
AB=imdilate(A,B);
AB C=imdilate(AB,C);
CB=imdilate(C,B);
figure(1);
subplot(1, 3,1); imshow(A); title('A');
subplot(1,3,2); imshow(B); title('B');
subplot(1,3,3); imshow(C); title('C');
figure(2);
subplot(2 ,2 ,1); imshow(A BC); title('A dilaté par BC');
subplot( 2, 2,2); imshow(AB C); title('AB dilaté par C');
subplot( 2, 2,3); imshow(BC); title('B dilaté par C');
subplot( 2, 2,4); imshow(CB); title('C dilaté par B');
```


A matrice de taille 6*6 et B et C des élements structurant de taille 3*3

A dilaté par BC AB dilaté par C

La dilatation est associative $A \oplus (B \oplus C) = (A \oplus B) \oplus C$

La dilatation est commutative

 $C \oplus B = B \oplus C$

A condition que B et C soient de méme taille

La décomposabilité

L'érosion

```
clear all; clc; close all;
A=ones(6,6);
A(1,:)=0, A(6,:)=0, A(:,1)=0, A(:,6)=0; A(3,5)=0; A(4,5);
B=[0 0 0;1 1 1; 0 0 0]; C= transpose(B);
% D = ones(3,3);
D=imdilate(B,C);
AR1=imerode(A,B);
AR2=imerode(AR1,C);
AR= imerode(A,D);
figure;
                                                                  Un élément structurant peut être
subplot(1,3,1);
                                                                  décomposé en dilatation avant
imshow(A); title('original');
                                                                  d'être érodé par une image
subplot(1,3,2);
imshow(AR2); title('A erodé par D');
                                                                  A \ominus D = A \ominus (B \oplus C) = A \ominus B \ominus C
subplot(1,3,3);
imshow(AR); title('A erodé par B erodé par C');
```


la dilatation

Ar=imdilate(B,C);
Ar1=imdilate(A,Ar);
Ar2=imdilate(A,B);
Ar3=imdilate(Ar2,C);
subplot(1,3,1);
imshow(A); title('original');
subplot(1,3,2);
imshow(Ar1); title('A?(B?C)');
subplot(1,3,3);
imshow(Ar3); title('A?B?C');

Un élément structurant peut être décomposé en plusieurs dilatation

 $A \oplus (B \oplus C) = A \oplus B \oplus C$

La décomposabilité aide à éviter de charger toute l'image faute d'espace dans la mémoire en s'intéressant aux pixels verticaux puis les pixels horizontaux

Dualité:

La dilatation par E et l'érosion par E~ en niveau de gris et en binaire sont des opérateurs duaux

```
(A \oplus E)(x) = (Ac \ominus E \sim)c(x)
```

NB : $Ac(x) \neq E \sim càd$ le complément de l'élément structurant est une rotation de 180° par contre le complément de l'image est une inversion entre les pixels clairs et sombres (inversion entre0e1 en binaire)

```
A=ones(6,6); A(1,1)=82; A(1,2)=76; A(1,3:5)=81; A(1,6)=75;
A(2,1)=80; A(2,2)=77; A(2,3)=80; A(2,4)=84; A(2,5)=79; A(2,6)=78;
A(3,1)=82; A(3,2)=82; A(3,3)=84; A(3,4)=80; A(3,5)=83; A(2,6)=84;
A(4,1)=91; A(4,2)=92; A(4,3)=94; A(4,4)=96; A(4,5)=93; A(4,6)=96;
A(5,1)=102; A(5,2)=100; A(5,3)=103; A(5,4)=103; A(5,5)=110; A(5,6)=112;
A(6,1)=100; A(6,2)=110; A(6,3)=109; A(6,4)=112; A(6,5)=110; A(6,6)=115;
E=strel('arbitrary',[0 0 0;0 1 1;1 0 0]);
Ac=imcomplement(A);
Ec=reflect(E);
AcE=imerode(Ac, Ec);
AcEc=imcomplement(AcE);
AE=imdilate(A,E);
figure;
subplot(2,2,1); imshow(A,[]); title('A');
subplot(2,2,2);imshow(Ac,[]); title('Ac');
subplot(2,2,3);imshow(AE,[]); title('A dilaté par E');
subplot(2,2,4);imshow(AcEc,[]); title('complement de Ac erodé par Ec');
```

```
E =
                                                Ec =
Flat STREL object containing 3 neighbors.
                                                Flat STREL object containing 3 neighbors.
Neighborhood:
                                                Neighborhood:
     0
           0
                  0
                                                     0
                                                            0
                                                                  1
                  1
     0
           1
                                                     1
                                                            1
                  0
     1
           0
                                                            0
```


La Translation:

La translation d'un élément structurant peut être réalisé par la commande « translate(se,v) » mais à condition que cet élément soit de type strel, pour appliquer la translation sur une image en niveau de gris on doit la dilaté avec un élément structurant translaté.

```
Ax \oplus E = (A \oplus E)x, Ax \ominus E = (A \ominus E)x, A \oplus Ex = (A \oplus E)x, A \ominus Ex = (A \ominus E)-x
```

```
A=ones(6,6); A(1,1)=82; A(1,2)=76; A(1,3:5)=81; A(1,6)=75;
A(2,1)=80; A(2,2)=77; A(2,3)=80; A(2,4)=84; A(2,5)=79; A(2,6)=78;
A(3,1)=82; A(3,2)=82; A(3,3)=84; A(3,4)=80; A(3,5)=83; A(2,6)=84;
A(4,1)=91; A(4,2)=92; A(4,3)=94; A(4,4)=96; A(4,5)=93; A(4,6)=96;
A(5,1)=102; A(5,2)=100; A(5,3)=103; A(5,4)=103; A(5,5)=110; A(5,6)=112;
A(6,1)=100; A(6,2)=110; A(6,3)=109; A(6,4)=112; A(6,5)=110; A(6,6)=115;
E=strel('arbitrary',[0 1 0;0 1 1 ;0 1 1]);
% se=strel('arbitrary',[0 0 0;0 1 0;0 0 0]);
Ex=translate(E,[0 1]);
%pour un repère d'origine E(2,2) translation de 1 sur les abcisses et de 0 sur les
ordonnées
se=translate(strel(1),[0 1]);
sel=translate(strel(1),[0 -1]); % translation par -x%
Ax=imdilate(A, se);
subplot(2,6,1); imshow(A,[]); title('A');
subplot(2,6,2); imshow(Ax,[]); title('A translaté par x');
subplot(2,6,3); imshow(getnhood(E)); title('E');
subplot(2,6,4); imshow(getnhood(Ex)); title('E translaté par x');
```


A	=					
	82	76	81	81	81	75
	80	77	80	84	79	84
	82	82	84	80	83	1
	91	92	94	96	93	96
	102	100	103	103	110	112
	100	110	109	112	110	115
	Ax =					
	-Inf	82	76	81	81	81
	-Inf	80	77	80	84	79
	-Inf	82	82	84	80	83
	-Inf	91	92	94	96	93
	-Inf	102	100	103	103	110
	-Inf	100	110	109	112	110
=						

E =

Flat STREL object containing 5 neighbors.

Flat STREL object containing 5 neighbors.

Neighborhood:

0 1 0 0 1 1 0 1 1

Neighborhood:

Ex

On remarque bien la translation la position des pixels de +1 sur l'axe des abscisses selon un repère don l'origine le pixel central dans l'image ou dans l'élément structurant

%%%%Dilatation et translation%%%%	AxE =					
<pre>AxE=imdilate(Ax,E);</pre>	-Inf	82	82	81	84	81
AE=imdilate(A,E);	-Inf	82	82	84	84	84
<pre>AE_x=imdilate(AE, se); AEx=imdilate(A, Ex);</pre>	-Inf	91	92	94	96	93
ça vérifie bien les propriétés!	-Inf	102	100	103	103	110
	-Inf	102	110	109	112	110
$Ax \oplus E = (A \oplus E)x et$	-Inf	102	110	110	112	112
A⊕Ex= (A⊕E)x						
	AEx =					
	-Inf	82	82	81	84	81
	-Inf	82	82	84	84	84
	-Inf	91	92	94	96	93
	-Inf	102	100	103	103	110
	-Inf	102	110	109	112	110
	-Inf	102	110	110	112	112
	AE_x =					
	-Inf	82	82	81	84	81
	-Inf	82	82	84	84	84
	-Inf	91	92	94	96	93
	-Inf	102	100	103	103	110
	-Inf	102	110	109	112	110
	-Inf	102	110	110	112	112


```
%%%érosion et translation%%%%
se=translate(strel(1),[0 1]); %translation par x%
se1=translate(strel(1),[0 -1]); % translation par -x%

AxEr=imerode(Ax,E);
ArEx=imerode(A,Ex);
ArE=imerode(A,E);
```

AREx1=imdilate(ArE, se1); %translation par -x sur le résultat%

 ${\tt AREx=imdilate\,(ArE,se);} \ {\tt \$translation} \ {\tt de} \ {\tt A} \ {\tt \acute{e}rod\acute{e}} \ {\tt par} \ {\tt E\$}$

$Ax \ominus E = (A \ominus E)x$

AxEr =	AREx =										
-Inf	76	76	80	79	79	-Inf	76	76	80	79	75
-Inf	77	76	80	79	79	-Inf	77	76	80	79	1
-Inf	80	77	80	80	79	-Inf	80	77	80	80	1
-Inf	82	82	84	80	83	-Inf	82	82	84	80	83
-Inf	91	92	94	96	93	-Inf	91	92	94	96	93
-Inf	100	100	103	103	110	-Inf	100	100	103	103	110

$A \ominus Ex = (A \ominus E) - x$

ArE	x =						AREx1 =					
	76	80	79	75	75	Inf	76	80	79	75	75	-Inf
	76	80	79	1	1	Inf	76	80	79	1	1	-Inf
	77	80	80	1	1	Inf	77	80	80	1	1	-Inf
	82	84	80	83	1	Inf	82	84	80	83	1	-Inf
	92	94	96	93	96	Inf	92	94	96	93	96	-Inf
	100	103	103	110	112	Inf	100	103	103	110	112	-Inf

Croissance:

```
A2=zeros(7,7); A2(2:6,2:6)=1; A2(1,4)=1; A2(4,1)=1; A2(3,3)=0; A2(5,2)=0; A2(7,6)=1; E4=[0 1 0;1 1 1;0 1 0]; E8=ones(3,3); A1=imerode(A2,E4); % on aura A1= A2erE4 < A2% figure(1); subplot(2,3,1); imshow(A1); title('A1'); subplot(2,3,2); imshow(A2); title('A2'); subplot(2,3,3); imshow(E4); title('E4'); subplot(2,3,4); imshow(E8); title('E8');

A1 X

7x7 double

A1

1 2 3 4 5 6 7
```

	☐ 7x7 double											
	1	2	3	4	5	6	7					
1	0	0	0	0	0	0	0					
2	0	0	0	1	0	0	0					
3	0	0	0	0	1	0	0					
4	0	0	0	1	1	0	0					
5	0	0	0	1	1	0	0					
6	0	0	0	0	0	0	0					
7	0	0	0	0	0	0	0					
_												

	AZ X											
⊞ 7x7 double												
	1	2	3	4	5	6	7					
1	0	0	0	1	0	0	0					
2	0	1	1	1	1	1	0					
3	0	1	0	1	1	1	0					
4	1	1	1	1	1	1	0					
5	0	0	1	1	1	1	0					
6	0	1	1	1	1	1	0					
7	0	0	0	0	0	1	0					

CROISSANCE DE L'ELEMENT STRUCTURANT E4<E8

Erosion-Dilatation:

```
A2E4R=imerode(A2,E4);
A2E8R=imerode(A2,E8);
A2E4D=imdilate(A2,E4);
A2E8D=imdilate(A2,E8);
figure(2);
subplot(2,3,1); imshow(A2E4R); title('A2 er par E4');
subplot(2,3,2); imshow(A2E8R); title('A2 er par E8');
subplot(2,3,3); imshow(A2E4D); title('A2 dil par E4');
subplot(2,3,4); imshow(A2E8D); title('A2 dil par E8');
```

Au point de vue élément structurant, Comme E4⊂E8, on a bien A2⊖E8 ⊆ A2⊖E4 l'érosion est décroissante et on a A2⊕E4 ⊆A2⊕E8 donc la dilatation est croissante

overture-fermeture

```
close all; clear all; clc;
A2=zeros(7,7); A2(2:6,2:6)=1;
E4=[0 \ 1 \ 0;1 \ 1 \ 1 \ ;0 \ 1 \ 0]; E8=ones(3,3);
A1=imerode(A2,E4); %on aura A1= A2erE4 < A2%
figure(1);
subplot(2,3,1); imshow(A1); title('A1');
subplot(2,3,2); imshow(A2); title('A2');
subplot(2,3,3); imshow(E4); title('E4');
subplot(2,3,4); imshow(E8); title('E8');
%%%ouverture fermeture%%%
ferA1E4=imclose(A1,E4); ferA1E8=imclose(A1,E8);
ovA1E4=imopen(A1,E4);ovA1E8=imopen(A1,E8);
figure (3);
subplot(2,3,1); imshow(ovA1E4); title('OV A1 par E4');
subplot(2,3,2); imshow(ovA1E8);title('OV A1 par E8');
subplot(2,3,3); imshow(ferA1E8);title('FER A1 par E8');
subplot(2,3,4); imshow(ferA1E4);title('FER A1 par E4');
```


OV A1 par E8 FER A1 par E8 FER A1 par E4

Au point de vue de l'élément structurant, E4⊆E8, on remarque que l'ouverture est décroissante (A1∘E8) ≤ (A1∘E4) Cependant, la fermeture est croissante (A1∘E4) ≤(A1∘E8)

Croissance au point de vue de l'image

Dilatation- érosion

```
A2=zeros(7,7); A2(2:6,2:6)=1;

E4=[0 1 0;1 1 1 ;0 1 0]; E8=ones(3,3);

A1=imerode(A2,E4); %on aura A1= A2erE4 < A2%

A1E4R=imerode(A1,E4);

A2E4R=imerode(A2,E4);

A1E4D=imdilate(A1,E4);

A2E4D=imdilate(A2,E4);

figure(1);

subplot(3,1,1);

imshow(A1); title('A1');

subplot(3,1,2);

imshow(A2);title('A2');

subplot(3,1,3);

imshow(E4);title('E4');
```



```
figure(2);
subplot(2,2,1); imshow(A1E4R); title('A1 er par E4');
subplot(2,2,2); imshow(A2E4R); title('A2 er par E4');
subplot(2,2,3); imshow(A1E4D); title('A1 dil par E4');
subplot(2,2,4); imshow(A2E4D); title('A2 dil par E4');
```


Au point de vue de l'image, Comme $A1 \le A2$, on a bien $A1 \ominus E4 \subseteq A2 \ominus E4$ l'érosion est croissante et on a $A1 \ominus E4 \subseteq A2 \ominus E4$ donc la dilatation est croissante

Overture- fermeture

```
% %%%ouverture fermeture%%%
ferA1E4=imclose(A1,E4);
ferA2E4=imclose(A2,E4);
ovA1E4=imopen(A1,E4);
ovA2E4=imopen(A2,E4);
figure(3);
subplot(2,2,1); imshow(ovA1E4); title('OV A1 par E4');
subplot(2,2,2); imshow(ovA2E4);title('OV A2 par E4');
subplot(2,2,3); imshow(ferA1E4);title('FER A1 par E4');
subplot(2,2,4); imshow(ferA2E4);title('FER A2 par E4');
```


Au point de vue de l'image,

A1 \leq A2, on remarque que l'ouverture est croissante (A1 \circ E4) \leq (A2 \circ E4),

la fermeture est aussi croissante

 $(A1 \bullet E4) \leq (A2 \bullet E4)$

Idempotence

```
clear all; close all; clc;
A=zeros(8,8); A(3,3:5)=1; A(4:6,3:6)=1; A(3:4,3:6)=1;
E=[0 1 0;1 1 1;0 1 0];
% E=ones(3,3);
AEf=imclose(A,E);
AEff=imclose(AEf,E);
AEo=imopen(A,E);
AEoo=imopen(AEo,E);
subplot(2,3,1);
imshow(A); title('A');
subplot(2,3,2);
imshow(E); title('E');
subplot(2,3,3);
imshow(AEf); title('A fer E');
subplot(2,3,4);
imshow(AEff);title('(A fer E) fer E');
subplot(2,3,5);
imshow(AEo); title('A ov E');
subplot(2,3,6);
imshow(AEoo); title('(A ov E) ov E'); %l'image resultante est le meme si on itére
l'ouverture%
```


La propriété de l'idempotence est valable seulement pour les opérateurs de l'ouverture et la fermeture, en fait

 $A \circ E = (A \circ E) \circ E$, et $A \bullet E = (A \bullet E) \bullet E$

càd si on applique l'opérateurs en itérant plusieurs fois on trouve le même résultat