PRUEBA DE ACCESO (EBAU)

UNIVERSIDAD DE CASTILLA Y LEÓN

<u>JULIO – 2020</u>

MATEMÁTICAS II

Tiempo máximo: 1 horas y 30 minutos

El alumno deberá escoger libremente CINCO problemas completos de los DIEZ propuestos. Se expresará claramente los elegidos. Si se resolvieran más, solo se corregirán los 5 primeros que estén resueltos (según el orden de numeración de pliegos y hojas de cada pliego) y que no aparezcan totalmente tachados. Se permite el uso de calculadoras no programables. Se observarán fundamentalmente los siguientes aspectos: correcta utilización de los conceptos, definiciones y propiedades relacionadas con la naturaleza de la situación que se trata de resolver. Justificaciones teóricas que se aporten para el desarrollo de las propuestas. Claridad y coherencia en la exposición. Precisión de los cálculos y en las anotaciones. Deben figurar explícitamente las operaciones no triviales, de modo que puedan reconstruirse la argumentación lógica y los cálculos.

- 1°) Se considera el sistema de ecuaciones lineales: $\begin{cases} x y + az = 0 \\ x z = 0 \\ 2x + ay 2z = 0 \end{cases}$
- a) Estudie la existencia y número de soluciones según los valores del parámetro a.
- b) Resuélvalo, si es posible, para el valor del parámetro a = -1.
- 2°) Sea la matriz $A = \begin{pmatrix} a+1 & 1 \\ a-3 & a-3 \end{pmatrix}$:
- a) Indique para qué valores de a existe la matriz inversa A^{-1} .
- b) Si a = 4, $B = \begin{pmatrix} 2 & 0 \\ 1 & 1 \end{pmatrix}$, $C = \begin{pmatrix} 1 & 1 \\ 0 & 2 \end{pmatrix}$, encuentre la matriz X que verifica la siguiente ecuación: $B + X \cdot A = C$.
- 3°) Sean el plano $\pi \equiv x 2y + 2z + 1 = 0$, la recta $r \equiv \begin{cases} x y = 0 \\ z + 1 = 0 \end{cases}$ y A(1, 3, -1). Halla la ecuación del plano β que pasa por A, es paralelo a r y perpendicular a π .
- 4°) Dados el punto A(1, 2, 4) y la recta $r = \frac{x-1}{2} = \frac{y-1}{1} = \frac{z-1}{2}$:
- a) Halla un punto B de la recta r de forma que el vector \overrightarrow{AB} sea paralelo al plano de ecuación $\pi \equiv x + 2z = 0$
- b) Halla un vector $\vec{w} = (a, b, c)$ perpendicular a $\vec{u} = (1, 0, -1)$ y $\vec{v} = (2, 1, 0)$.

- 5°) Representar gráficamente la función $f(x) = x \cdot e^x$, calculando previamente sus extremos relativos, intervalos de crecimiento y decrecimiento, concavidad y convexidad y sus asíntotas.
- 6°) Demuestre que la ecuación $x^3 12x = -2$ tiene una solución en el intervalo [-2, 2] y pruebe además que esa solución es única.

7°) a) Calcular:
$$\lim_{x\to 0} \frac{e^x - \cos x - x}{e^x + \sin x - 1}$$
. b) Calcular: $I = \int_0^{\frac{\pi}{2}} (\sin x + \cos x) \cdot dx$.

- 8°) a) Calcule los puntos de corte de las gráficas $f(x) = \frac{2}{x} y g(x) = 3 x$.
- b) Sabiendo que en el intervalo [1, 2] se verifica que $g(x) \ge f(x)$ calcular el área del recinto limitado por las gráficas de ambas funciones en dicho intervalo.
- 9°) El peso de los alumnos de 2° de bachillerato de un instituto de León, sigue una distribución normal, de media 75 kg y desviación típica 5. Si se elige al azar un alumno, calcular la probabilidad de que:
- a) Tenga un peso entre 70 y 80 kg. b) Tenga un peso superior a 85 kg.
- 10°) La probabilidad de que a un puerto llegue un barco de tonelaje bajo, medio o alto es 0,6, 0,3 y 0,1, respectivamente. La probabilidad de que necesite mantenimiento en el puerto es de 0,25 para los barcos de bajo tonelaje, 0,4 para los de tonelaje medio y 0,6 para los de tonelaje alto.
- a) Si llega un barco a puerto, calcule la probabilidad de que necesite mantenimiento.
- b) Si un barco ha necesitado mantenimiento, calcule la probabilidad de que sea de tonelaje medio.
