Exercise 10.1. Let $K, E, F \subseteq L$ be fields, E: K, F: K be finite extensions. Prove

- (a) if E: K is separable, then EF: F is separable;
- (b) if E: K and F: K are both separable, then EF: K and $E \cap F: K$ are both separable;
- (c) if E: K is Galois, then EF: F is Galois;
- (d) if E:K and F:K are both Galois, then EF:K and $E\cap F:K$ are both Galois.
- (a) Solution. Suppose E: K is separable. We are given that E: K and F: K are finite, so we can write $E = K(\alpha_1, \ldots, \alpha_n)$ and $F = K(\beta_1, \ldots, \beta_m)$ for $\alpha_i \in E$ and $\beta_j \in F$. Then the composite field EF becomes

$$EF = K(\alpha_1, \dots, \alpha_n, \beta_1, \dots, \beta_m)$$

= $F(\alpha_1, \dots, \alpha_n)$.

Since E: K is finite it is also algebraic, hence the minimum polynomial for each element of E is well defined over K, and similarly for EF: F. For any $b \in F$, the minimal polynomial over F is x-b, which has distinct roots, so b is separable over F. Hence it is enough to show that $\alpha_1, \ldots, \alpha_n$ is separable over F.

We have that μ_{α}^{K} is separable by hypothesis for all $\alpha \in \{\alpha_{1}, \ldots, \alpha_{n}\}$. Then $\mu_{\alpha}^{K}(x) \in K[x] \subseteq F[x]$ so μ_{α}^{F} divides μ_{α}^{K} and thus μ_{α}^{F} is thus also separable, whence EF : F is separable.

(b) Solution. Suppose E: K and F: K are both separable. Similarly to part (a), we can write

$$EF = K(\alpha_1, \dots, \alpha_n, \beta_1, \dots, \beta_m),$$

for $\alpha_i \in E$ and $\beta_j \in F$. By definition, a is separable over K for all $a \in E$, and similarly for $b \in F$. Then each $\alpha_1, \ldots, \alpha_n \in E$, $\beta_1, \ldots, \beta_m \in F$ is separable over K. By theorem an extension $K(\gamma_1, \ldots, \gamma_k) : K$ is separable iff each γ_i is separable over K. Thus EF : K is separable. Furthermore, we know E : K is separable and $E \cap F \subseteq E$, so $E \cap F : K$ is separable by definition.

- (c) Solution. Suppose E: K is Galois. Then E: K is normal and separable by definition. Since E: K and F: K are both finite and E: K is normal, we have by lemma that EF: F is normal and by part (a), EF: F is separable. Thus EF: F is Galois.
- (d) Solution. Suppose E:K and F:K are both Galois. Then E:K and F:K are both normal and separable by definition. Since E:K and F:K are both finite and normal, we have by lemma that EF:K and $E\cap F:K$ are both normal and by part (b), EF:K and $E\cap F:K$ are both separable. Thus EF:K and $E\cap F:K$ are both Galois.

Exercise 10.2. (a) Find the splitting field L of the polynomial $f(t) = t^4 - 4t^2 + 5$.

- (b) Prove that $[L:\mathbb{Q}]$ is either 4 or 8.
- (c) Find 10 intermediate fields of the extension $L:\mathbb{Q}$ and their degrees.
- (d) (for enthusiasts) Draw the lattice of subfields and corresponding lattice of subgroups of $Gal_{\mathbb{Q}}(f)$.
- (a) Solution. Notice that

$$t^4 - 4t^2 + 5 = 0$$
 \Longrightarrow $t^4 - 4t^2 + 4 = (t^2 - 2)^2 = -1.$

Hence $t^2 - 2 = \pm i$ and we have roots $t \in \{\sqrt{2+i}, -\sqrt{2+i}, \sqrt{2-i}, -\sqrt{2-i}\}$. Thus

$$L = \mathbb{Q}\left(\sqrt{2+i}, \sqrt{2-i}\right)$$

(b) Solution. Clearly for $E := \mathbb{Q}\left(\sqrt{2+i}\right)$, we have that $E : \mathbb{Q}$ is a degree 4 extension. We note here that $i \in E$, which follows from the fact that $\left(\sqrt{2+i}\right)^2 - 2 = i$. So the minimum polynomial for $\sqrt{2-i}$ over E is $x^2 - (2-i)$. Hence if $\sqrt{2-i} \in E$, then $[L:\mathbb{Q}] = 4$ but if not, then [L:E] = 2 whence $[L:\mathbb{Q}] = 8$ by the tower law.

Notice that $F:=\mathbb{Q}\left(\sqrt{2+i}+\sqrt{2-i}\right)$ is a proper subset of L. It is easy to see that $[F:\mathbb{Q}]=4$, so we have $[L:\mathbb{Q}]>4$. Thus $\sqrt{2-i}\not\in E$ whence L:E must have degree 2 and by the tower law, $[L:\mathbb{Q}]=8$.

(c) Solution. Notice

$$\left\lceil \overline{\sqrt{2+i}} \right\rceil^2 = \left\lceil \left(\sqrt{2+i}\right)^2 \right\rceil = \overline{2+i} = 2-i \quad \implies \quad \overline{\sqrt{2+i}} = \sqrt{2-i}.$$

That is, the square roots of complex conjugates are themselves complex conjugates. Define σ such that $\sqrt{2+i} \mapsto \sqrt{2-i}$ and $\sqrt{2-i} \mapsto -\sqrt{2+i}$, and let τ be complex conjugation. Obviously $\tau^2 = \sigma^4 = \operatorname{Id}$.. Notice

$$\tau \sigma \tau \left(\sqrt{2+i}\right) = \tau \sigma \left(\sqrt{2-i}\right) = \tau \left(-\sqrt{2+i}\right) = -\sqrt{2-i} = \sigma^{-1} \left(\sqrt{2+i}\right).$$

That is, $\tau \sigma \tau = \sigma^{-1}$ These are the defining features of D_4 , the dihedral group of 4 points. Hence $\operatorname{Gal}_{\mathbb{Q}}\left(t^4 - 4t^2 + 5\right) \cong D_4$ has exactly ten subgroups, and by the Galois correspondence there are ten intermediate fields. We can identify these subfields of L by finding the fixed field L^H for each subgroup H of D_4 . Letting $\alpha = \sqrt{2+i}$ and $\beta = \sqrt{2-i}$, we have:

$$\begin{split} &1 = \left[\mathbb{Q} : \mathbb{Q}\right], \\ &2 = \left[\mathbb{Q}(i) : \mathbb{Q}\right] = \left[\mathbb{Q}\left(\sqrt{5}\right) : \mathbb{Q}\right] = \left[\mathbb{Q}(\alpha/\beta) : \mathbb{Q}\right], \\ &4 = \left[\mathbb{Q}(\alpha) : \mathbb{Q}\right] = \left[\mathbb{Q}(\beta) : \mathbb{Q}\right] = \left[\mathbb{Q}\left(i,\sqrt{5}\right) : \mathbb{Q}\right] = \left[\mathbb{Q}(\alpha+\beta) : \mathbb{Q}\right] = \left[\mathbb{Q}(\alpha-\beta) : \mathbb{Q}\right], \\ &8 = \left[L : \mathbb{Q}\right] \end{split}$$

Exercise 10.3. Draw the lattice of subfields and corresponding lattice of subgroups of $Gal_{\mathbb{Q}}(t^6+3)$. *Hint*: Use the calculations (and the notation, if you like) from Lecture 18.

Solution. From Lecture 18, we have that the splitting field is $L = \mathbb{Q}\left(\sqrt[6]{-3}\right)$ and $\operatorname{Gal}_{\mathbb{Q}}\left(t^6 + 3\right) \cong D_3 \cong S_3$. Cubing the generator yields $\sqrt[3]{-3}$, whence we have the subfield $\mathbb{Q}\left(\sqrt[3]{-3}\right) \subseteq L$. Moreover, we know $\varepsilon_6 \in L$ from lecture so we have $\varepsilon_3 = \varepsilon_6^2 \in L$ and we can generate subfields $\mathbb{Q}\left(\varepsilon_3\right)$, $\mathbb{Q}\left(\varepsilon_3\sqrt[3]{-3}\right)$, and $\mathbb{Q}\left(\varepsilon_3^2\sqrt[3]{-3}\right)$. We note here that $\sqrt[6]{-3} = i\sqrt{3}$ and $\mathbb{Q}\left(\varepsilon_3\right) = \mathbb{Q}\left(i\sqrt{3}\right)$, which can easily be seen by decomposing ε_3 and ε_6 by Euler's formula. Thus we have identified all the unique subfields of $\mathbb{Q}\left(\sqrt[6]{-3}\right)$.

Josh Park Prof. Ilya Shkredov Spring 2025 Page 3