MyDEA 1.0 for Data Envelopment Analysis

快速指南

2009-4-20

说明

MyDEA 2.0 将于今年暑假期间完成。2.0 将增加大量新的 DEA 模型和功能的改进。敬请关注。

增加的模型包括:

- 1) Multiplier Model
- 2) Restricted Multiplier Model
- 3) Undesired Model
- 4) Inseparable Model
- 5) Cost Model
- 6) Revenue Model
- 7) Profit Model
- 8) Network Model

.....

增加的功能包括:

- 1) Scale Efficiency
- 2) Scale Efficiency Change for Malmquist Model
- 3) Custom DMU Selection
- 4) Custom Time Selection for Malmquist Model
- 5) Second and Multi Stage for Slack Calculation for Radial Models

••••

目录

1 MyDEA 运行环境	1
1.1 软件环境	1
1.2 硬件环境	1
2 MyDEA 的主要特点	2
3 快速指南	3
3.1 导入数据	3
3.2 定义数据	3
3.3 设置并运行模型	4
3.4 查看结果	4
4 软件更新历史	5
附录 1: MyDEA 1.0 包含的 DEA 模型 (377 个)	6
1) Basic Models: 45	
2) Nonconvex(FDH) Models: 2	7
3) Superefficiency Models: 45	8
4) Uncontrolled/Discretionary Models: 45	9
5) Bounded Models: 15	9
6) Weighted Score Models: 15	10
7) Malmquist Models: 45	10
8) Uncontrolled/Discretionary Superefficiency Models: 45	11
9) Bounded Superefficiency Models: 15	11
10) Weighted-Score Superefficiency Models: 15	12
11) Uncontrolled/Discretionary Malmquist Models: 45	12
12) Bounded Malmquist Models: 15	13
13) Weighted-Score Malmquist Models: 15	13
14) Weighted-Score Uncontrolled/Discretionary Models: 15	13
附录 2: 数据包络分析简介	13

1 MyDEA 运行环境

1.1 软件环境

Windows 98/2000/ XP/Vista

本软件基于 Access VBA 开发,程序文件即 Access 数据库文件,扩展名.mdb,软件的运行需要安装 Microsoft Access,Access 为 Microsoft Office 专业版办公软件的组件之一,在安装 Office 时自动安装。MyDEA 支持 Office 2000-2007。

如果您的计算机能识别 mdb 文件(能打开 MyDEA.mdb),说明计算机上已安装 Access;如果不能识别 mdb 文件,说明没有安装 Access,解决方案有两个:

- 1) 安装 Office 专业版或企业版中的组件 Access; 或者
- 2) 安装 Access Runtime 版本,此版本提供了对 Access 程序的支持。可在微软网站免费下载使用(Access runtime 2000—2007)

Access runtime 2007 微软网站下载地址:

 $\underline{http://www.microsoft.com/downloads/thankyou.aspx?familyId=d9ae78d9-9dc6-4b38-9fa6-2c745a175aed\&displayLang=enterview.pdf.}$

1.2 硬件环境

MyDEA 的硬件要求与 MS Office Access 相同。

注意: 不要直接在压缩文件内打开程序。请先解压缩,然后运行程序。

2 MyDEA 的主要特点

- 1)绿色软件,无需安装,程序与数据库文件合二为一,备份方便;
- 2)数据导入**只需一次**,导入后即在数据库内永久保存,不需要每次运行程序都导入数据;数据定义和模型设置**永久保存**,关闭程序后再打开,设置不变;
- 3)数据格式为**标准数据库格式**,**不需要**在字段名称中标明数据性质。例如有的 DEA 软件要求将投入变量用"(I)+名称"表示,产出变量用"(O)+名称"表示;
 - 4)模型组合多, 1.0 版本模型数量已经达到 377 个, 且仍在不断增加;
 - 5) DMU 数量没有限制。

3 快速指南

MyDEA 操作步骤:导入数据,定义数据,设置并运行模型。

3.1 导入数据

菜单操作: File - Import Data from File

导入数据**只需操作一次**,关闭程序后,导入的数据不会丢失。

支持的数据库类型包括 Excel, Access, dBase 和文本文件,数据格式为常规数据库格式,字段名称没有特殊要求。

3.2 定义数据

菜单操作: Data - Define Data

导入数据后,程序会自动打开数据定义窗口。数据定义是为 DEA 模型指定表示 DMU 名称(DMU ID)、投入(Input)和产出(Output)的字段。如果要为面板数据建立 Malmquist 模型,还需要指定时间变量(Time),时间变量必须为整数类型。面板数据的格式如下:

Time	DMU	Input	Output
1	A	4323	187196. 4
1	В	2295	451098. 7
1	С	6379	654115.8
2	A	6644	402687.6
2	В	1436	377832. 9
2	С	6281	827455. 9
3	A	7459	228024. 1
3	В	4463.5	424867.4
3	С	4524	925334.3

暂时不需要的字段,例如用于为 Bounded 模型设定上界和下界的字段,保留为 Not defined。如果想在模型中暂时去除某个(些)投入或产出,只需将其关闭(Active 的勾去掉)。

数据定义只需操作一次,关闭程序后,数据定义不会丢失。

3.3 设置并运行模型

菜单操作: Model - Run Model/ Express to Basic Models

设置 DEA 模型的各个选项,包括 Structure, Distance, Orientation, RTS 等,以及结果的相关选项,包括保留的小数位数,无解时是否将效率值设为 1 等。

关闭程序后,模型设置不会丢失。

对于 DEA 初学者,程序还提供了基础模型(CCR 和 BCC 模型)的快速通道运行模型前请查看导入的数据是否无误: Data – Browse Data / Edit Data

3.4 查看结果

菜单操作: Results - Browse Results / Export Results to Excel

运行模型后,结果会自动显示。也可通过菜单随时查看结果或将结果导出到 Excel。

4 软件更新历史

1.0.4 (20090420)

- 1) 进一步提高了规划求解的精度,LP Precision 增加了"Extremely High"选项。
- 2) 增强了对投入/产出中的极端数据(例如 0,或者<10⁻⁸)可能造成的规划求解结果异常的检查,避免造成程序中断运行。

1.0.3 (20090412)

- 1)如果使用数字表示 DMU ID (DMU 名称),则在运行 Malmquist 模型时程序会报错并终止运行,此问题已解决。
- 2) 如果使用不规范的字段名称表示 DMU ID 和 Time,则在运行 Malmquist 模型时程序会报错并终止运行,此问题已解决。
 - 3)加强了对数据的核查,例如投入和产出数据中如果有非数值型数据,则进行提示。

1.0.2 (20090406)

改进了分析结果的显示布局。

附录 1: MyDEA 1.0 包含的 DEA 模型 (377 个)

MyDEA 为数据包络分析(Data Envelopment Analysis, DEA)软件。MyDEA 当前版本已包含以下选项**所有可能的组合**,共计 377 个。

DEA 模型的选项主要包括以下 4 个方面:

1) Structure: Convex, Nonconvex (FDH)

2) Distance: Radial, Nonradial (SBM), Mixed (Hybrid)

3) Orientation: Input, Output, Nonoriented

4) RTS: CRS, VRS, NIRS, NDRS, GRS

在此基础上的特殊模型包括:

- 1) SuperEfficiency
- 2) Uncontrollable/Nondiscretionary
- 3) Bounded (for Radial only)
- 4) Weighted Score (for Nonradial only)
- 5) Malmquist

后续版本中还将增加的模型有 Undesired, Inseparable, Window, Network 等。

1) Basic Models: 45

2) Nonconvex(FDH) Models: 2

3) Superefficiency Models: 45

4) Uncontrolled/Discretionary Models: 45

5) Bounded Models: 15

6) Weighted Score Models: 15

7) Malmquist Models: 45

8) Uncontrolled/Discretionary Superefficiency Models: 45

9) Bounded Superefficiency Models: 15

10) Weighted-Score Superefficiency Models: 15

11) Uncontrolled/Discretionary Malmquist Models: 45

12) Bounded Malmquist Models: 15

13) Weighted-Score Malmquist Models: 15

14) Weighted-Score Uncontrolled/Discretionary Models: 15

附录 2: 数据包络分析简介

数据包络分析(Data Envelopment Analysis,简称 DEA)是近三十年来迅速发展起来的非参数生产前沿面模型,在生产效率测量及决策领域得到了广泛的应用。1978 年美国的 Charnes,Cooper,Rhodes 三人提出了著名的 CCR 模型,并随之将这一分析方法命名为 Data Envelopment Analysis,此后近三十年来,DEA 理论逐步发展完善,从最初经典的 CCR 和 BCC 模型发展到现在的数百种模型组合;其应用范围也不断拓展,从最初的教育部门扩展 到医疗、邮政、电力、银行、公共交通、司法、药店、税务、软件开发、高校、体育、宏观

经济、高速公路、公园、物流、建筑、电信、军队、企业管理等众多的领域,DEA 已从最初的一种分析方法发展成为一门融汇了数学、运筹学、计量经济学和管理学的重要工具。

DEA 将效率的测量对象称为决策单元(Decision Making Unit,DMU),DMU 可以是任何具有可测量的投入、产出(或输入、输出)的部门或单位,例如学校、医院、项目执行单位(区域)等,DEA 要求 DMU 之间具有可比性。对于项目来说,DMU 可以是项目省、项目县等项目执行单位。DEA 采用线性规划的方法来确定被评价 DMU 的生产前沿(Frontier),通过比较被评价 DMU 与生产前沿的关系来确定该 DMU 的效率。笼统地说,DMU 的投入越少、产出越大,效率越高。

DEA 的数学模型较难理解,我们先以图示的方式来展示其基本原理。假设有 5 个 DMU (A-E),均有 2 种投入(X1、X2)和 1 种产出(Y)。以单位产出消耗的投入 X1 为横坐标,以单位产出消耗的投入 X2 为纵坐标,各 DMU 的投入产出情况可用图 1 来表示。C、D、E 构成的曲线 SS'称为效率前沿(Efficient Frontier),位于效率前沿的 DMU 其效率定义为 1,被效率前沿包裹的 DMU 效率为 0-1 之间,以 A 为例,A 的效率值表示为 OA'/OA。A 的无效率部分体现为 AA'。从 DEA 基本原理的图示可以看出,DEA 测量的效率为相对效率,是被评价 DMU 相对于"领先"DMU 的效率。

图 1 Input-oriented DEA 基本原理图示

假设有 N 个 DMU,每个 DMU 都有 M 种投入和 K 种产出,X 表示 M×N 投入矩阵,Y 表示 K×N 产出矩阵,以投入权系数 $v=(v_1,v_2,...v_m)^T$ 及产出权系数 $\mu=(\mu_1,\mu_2,...\mu_k)^T$ 为变量,计算某个 DMU(x_0,y_0)的效率 θ ,经典的 CCR DEA 模型(以 Charnes,Cooper,Rhodes 三人名字首母命名的模型)表示为:

$$\max_{\mu,\nu} \theta = \frac{\mu' y_0}{\nu' x_0}$$

st
$$\frac{\mu'Y}{v'X} \le 1$$

 $\mu, \nu \ge 0$

在上述公式中 θ 的经济意义表示 $DMU(x_0, y_0)$ 的效率,可以理解为加权后的投入产出比,权系数以在约束条件下最有利于被评价DMU的形式确定。但是它具有无穷多个解,经Charnes-Cooper变换,转换为:

$$\max_{\mu,\nu}\theta = \mu' y_0$$

$$st \ \nu' x_0 = 1$$

$$\mu' Y - \nu' X \le 0$$

$$\mu, \nu \ge 0$$
其对偶形式为
$$\min_{\lambda,\theta,s^-,s^+}\theta$$

$$st \ \theta x_0 - X\lambda - s^- = 0$$

$$Y\lambda - y_0 - s^+ = 0$$

$$\lambda, s^-, s^+ \ge 0$$

该公式中 θ 的经济意义更为明显: 即构建一个由全部 DMU 组成的线性组合(投入为 X λ , 产出为 Y λ , λ ≥0),该线性组合满足以下约束,其产出 Y λ 不低于被评价 DMU 的产出 y₀,其投入 X λ 不超过被评价 DMU 的投入 x₀,其投入 X λ 与被评价 DMU 的投入 x₀ 的径向比值 θ 为被评价 DMU 的效率,介于 0 和 1 之间,值越大说明效率越高;另外它还可以提供被评价 DMU 投入和产出的效率目标值(Target),分别为 θ x₀-s 和 y₀+s (s 表示各项投入不能等比例降低的部分,s 表示各项产出还可以增加的部分)。

本帮助文件,将在后续版本中不断完善,增加各类模型的线性规划方程和解释。 欢迎对 MyDEA 提出问题或修改意见。