SHENZHEN LEYI LCD Technology Co. ,Ltd TEL: 0755-83123432 FAX: 83123419

Page 1 of 25

Part No. 產品型號	FS-TF2408AC3	
Product type 產品內容	Mode: Transmissive Type, Nega 2.4" TFT LCD module 262K color	tive mode
RoHS 綠色產品	Non-compliance	Compliance
Remarks 備註欄		
Signature by Customer: 客戶確認簽章:		
PREPARED BY: xu dong liu	CHECKED BY: dai	APPROVED BY: Colin

Preliminary Specification of LCD Module

SHENZHEN LEYI LCD Technology Co. ,Ltd TEL: 0755-83123432 FAX: 83123419

Page 2 of 25

DOCUMENT REVISION HISTORY 1:

NO	Revision No	Revision Date	DESCRIPTION	CHANGED BY	CHECKED BY
1	Ver A	2009.02.20	First Release.	dai	Colin
2					
3					
4					
5					
6					
7					
8					
9					
10					
11					

SHENZHEN LEYI LCD Technology Co. ,Ltd TEL: 0755-83123432 FAX: 83123419

Page 3 of 25

		Page No.
1.	General Description	4
2.	FEATURES	4
3.	Mechanical Specifications	4
4.	Electrical And Optical Specifications Electrical	6
4.1	LCM Characteristics	6
4.2	Backlight Characteristics	6
5	MODULE FUNCTION DESCRIPTION	7
5.1	Pin Description	7
5.2	Interface signals	8
5.3	Command summary	9
5.4	Reference initial code	10
6.	Electro-optical characteristics	12
7	Reliability	18
8	Defect Criteria	19
8.1	LCM Visual &Electronic inspection standard	19
8.2	Definition	19
8.3	Quality Level	19
8.4	Visual Items	20
9	Precautions	23
9.1	Static Charge	23
9.2	Power On Sequence	23
9.3	Operation	23
9.4	Packing	23
9.5	Long-Term Storage	23
9.6.	Cleaning Of The Product	23
10	Final Remarks	25

SHENZHEN LEYI LCD Technology Co. ,Ltd

TEL: 0755-83123432 FAX: 83123419

Page 4 of 25

1. General Description

The is a 240(R.G.B) x320 dot matrix TFT LCD module. It has a TFT panel composed of 240(R.G.B) segments and 320 commons. The LCM can be easily accessed by micro-processor-unit (MPU) via parallel interface.

2. FEATURES

	2.4" TFT LCD module
Display Mode	TFT LCD, Transmissive Type, negative mode
Display Format	Display Format RGB Stripe Graphic
Input Data	8080 16 bits Parallel
Multiplexing Ratio	1/320 Duty
Bias	
Viewing Direction	12" clock
Backlight	LED B/L White×4
Driver IC	ILI9325

3. Mechanical Specifications

The mechanical detail is shown in Fig. 1 and summarized in Table 1 below.

Parameter	Specifications	Unit
Outline dimensions	42.72W) x 60.26(H) x 3.6(D) (LCM, include TP)	mm
Active area	36. 72(W) x48. 96(H)	mm
Resolution	240 (H) RCBx 320(V) dots	-
Dot size	0.153(W) x 0.153(H)	mm
Overall Weight		grams

SHENZHEN LEYI LCD Technology Co., Ltd

TEL: 0755-83123432 FAX: 83123419

Page 5 of 25

1 Figure 1(a): Module specification of the module

SHENZHEN LEYI LCD Technology Co. ,Ltd TEL: 0755-83123432 FAX: 83123419

Page 6 of 25

4. ELECTRICAL CHARACTERISTICS

4.1 LCM Characteristics

Item	Symbo		Value	Unit	Notes	
		Min	Тур	Max		
Supply Voltage for logic	VDD	2.8	3.0	3.3	V	
TFT Gate ON Voltage	VGH *	12	14	16	V	
TFT Gate OFF Voltage	VGL	-10	-8	-6	V	
Current consumption	VDD				MA	
during sleep mode						
LCM Drive Power	VDD				MA	
Supply Current						
Operating temperature	Тор	-20		+70	$^{\circ}$	
Storage temperature	Tst	-30		+80	$^{\circ}$	

Backlight Characteristics 4.2

Item	Symbol	Min	Тур	Max	Unit	Test condition
Forward Voltage	VF		3.2		V	
Forward current	IF		60		mA	
Chroma	X	0.260		0.300		VF=3.2V
	Y	0.260		0.300		
Brightness	L	3800			Cd/m2	
Uniformity	UBL	80			%	IF=60 mA

SHENZHEN LEYI LCD Technology Co. ,Ltd TEL: 0755-83123432 FAX: 83123419

Page 7 of 25

5. MODULE FUNCTION DESCRIPTION

5.1 Pin Description

	5.1 Pin I	Description								
1	DB0									
2	DB1	DATA BUS								
3	DB2									
4	DB3									
5	GND1	Ground								
6	VCC1	Power supply input for LCM								
7	CS	Chip select input pin								
8	RS	Data/Instruction select input pinCD='H': Display dataCD='L': Instruction data.								
9	WR	A write strobe signal can be input via this pin and initiallizes a write operation when the signal is low.								
10	RD	A read strobe signal can be input via this pin and initiallizes a read operation when the signal is low.								
11	NC	Unused								
12	XL	Touch panel input pin (LEFT)								
13	YU	Touch panel input pin (UP)								
14	XR	Touch panel input pin (RIGHT)								
15	YD	Touch panel input pin (DOWN)								
16	A	Power supply for LED Anode								
17	K1	Power supply for LED cathode								
18	K2	Power supply for LED cathode								
19	K3	Power supply for LED cathode								
20	K4	Power supply for LED cathode								
21	NC	Unused								
22	DB4									
23	DB8									
24	DB9									
25	DB10	DATA BUS								
26	DB11									
27	DB12									
28	DB13									
29	DB14									
30	DB15									
31	RESET	Reset input pin								
32	VCI	Power supply input for LCM								
32	VCI	Power supply input for LCM								

Model No.: FS- TF2408AC3 Rev: 1.0 02/20/2009

Powe

SHENZHEN LEYI LCD Technology Co. ,Ltd

TEL: 0755-83123432 FAX: 83123419

Page 8 of 25

33	VCC2	Power supply input for LCM
34	GND	Ground
35	DB5	
36	DB6	DATA BUS
37	DB7	

5.2 Interface signals

i80 18-/16-bit System Bus Interface Timing

(b) Read from register

SHENZHEN LEYI LCD Technology Co. ,Ltd

TEL: 0755-83123432 FAX: 83123419

Page 9 of 25

5.3 COMMAND SUMMARY

	3.5 COMMAND SUMMANI																		
No.	Registers Name	R/W	RS	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
IR	Index Register	W	0	-	-	-	-	-	-	-	-	ID7	ID6	ID5	ID4	ID3	ID2	ID1	ID0
SR	Status Read	R	0	L7	L6	L5	L4	L3	L2	L1	L0	0	0	0	0	0	0	0	0
00h	Driver Code Read	R	1	1	0	0	1	0	0	1	1	0	0	1	0	0	1	0	1
01h	Driver Output Control 1	W	1	0	0	0	0	0	SM	0	SS	0	0	0	0	0	0	0	0
02h	LCD Driving Control	W	1	0	0	0	0	0	0	BC0	EOR	0	0	0	0	0	0	0	0
03h	Entry Mode	w	1	TRI	DFM	0	BGR	0	0	HWM	0	ORG	0	I/D1	I/D0	AM	0	0	0
04h	Resize Control	W	1	0	0	0	0	0	0	RCV1	RCV0	0	0	RCH1	RCH0	0	0	RSZ1	RSZ0
07h	Display Control 1	W	1	0	0	PTDE1	PTDE0	0	0	0	BASEE	0	0	GON	DTE	CL	0	D1	D0
08h	Display Control 2	w	1	0	0	0	0	FP3	FP2	FP1	FP0	0	0	0	0	BP3	BP2	BP1	BP0
09h	Display Control 3	W	1	0	0	0	0	0	PTS2	PTS1	PTS0	0	0	PTG1	PTG0	ISC3	ISC2	ISC1	ISCO
0Ah	Display Control 4	W	1	0	0	0	0	0	0	0	0	0	0	0	0	FMARKOE	FMI2	FMI1	FMI0
0Ch	RGB Display Interface Control 1	W	1	0	ENC2	ENC1	ENC0	0	0	0	RM	0	0	DM1	DMD	0	0	RIM1	RIM0
0Dh	Frame Maker Position	W	1	0	0	0	0	0	0	0	FMP8	FMP7	FMP6	FMP5	FMP4	FMP3	FMP2	FMP1	FMP0
0Fh	RGB Display Interface Control 2	W	1	0	0	0	0	0	0	0	0	0	0	0	VSPL	HSPL	0	DPL	EPL
10h	Power Control 1	W	1	0	0	0	SAP	0	BT2	BT1	BT0	APE	AP2	AP1	AP0	0	DSTB	SLP	STB
11h	Power Control 2	W	1	0	0	0	0	0	DC12	DC11	DC10	0	DC02	DC01	DC00	0	VC2	VC1	VC0
12h	Power Control 3	W	1	0	0	0	0	0	0	0	0	VCIRE	0	0	PON	VRH3	VRH2	VRH1	VRH0
13h	Power Control 4	W	1	0	0	0	VDV4	VDV3	VDV2	VDV1	VDV0	0	0	0	0	0	0	0	0
20h	Horizontal GRAM Address Set	W	1	0	0	0	0	0	0	0	0	AD7	AD6	AD5	AD4	AD3	AD2	AD1	AD0
21h	Vertical GRAM Address Set	W	1	0	0	0	0	0	0	0	AD16	AD15	AD14	AD13	AD12	AD11	AD10	AD9	AD8
22h	Write Data to GRAM	w	1	RAM wr	ite data (V	VD17-0) /	read data	(RD17-0) bit	ts are tran	sferred via	different	data bus li	ines accor	ding to the	selected in	terfaces.			
29h	Power Control 7	w	1	0	0	0	0	0	0	0	0	0	0	VCM5	VCM4	VCM3	VCM2	VCM1	VCM0
2Bh	Frame Rate and Color Control	w	1	0	0	0	0	0	0	0	0	0	0	0	0	FRS[3]	FRS[2]	FRS[1]	FRS[0]
30h	Gamma Control 1	w	1	0	0	0	0	0	KP1[2]	KP1[1]	KP1[0]	0	0	0	0	0	KP0[2]	KP0[1]	KP0[0]
31h	Gamma Control 2	w	1	0	0	0	0	0	KP3[2]	KP3[1]	KP3[0]	0	0	0	0	0	KP2[2]	KP2[1]	KP2[0]
32h	Gamma Control 3	w	1	0	0	0	0	0	KP5[2]	KP5[1]	KP5[0]	0	0	0	0	0	KP4[2]	KP4[1]	KP4[0]
35h	Gamma Control 4	w	1	0	0	0	0	0	RP1[2]	RP1[1]	RP1[0]	0	0	0	0	0	RP0[2]	RP0[1]	RP0[0]
36h	Gamma Control 5	w	1	0	0	0	VRP1[4]	VRP1[3]	VRP1[2]	VRP1[1]	VRP1[0]	0	0	0	0	VRP0[3]	VRP0[2]	VRP0[1]	VRP0[0]
37h	Gamma Control 6	w	1	0	0	0	0	0	KN1[2]	KN1[1]	KN1[0]	0	0	0	0	0	KN0[2]	KN0[1]	KN0[0]
38h	Gamma Control 7	w	1	0	0	0	0	0	KN3[2]	KN3[1]	KN3[0]	0	0	0	0	0	KN2[2]	KN2[1]	KN2[0]
39h	Gamma Control 8	w	1	0	0	0	0	0	KN5[2]	KN5[1]	KN5[0]	0	0	0	0	0	KN4[2]	KN4[1]	KN4[0]
3Ch	Gamma Control 9	w	1	0	0	0	0	0	RN1[2]	RN1[1]	RN1[0]	0	0	0	0	0	RN0[2]	RN0[1]	RN0[0]
3Dh	Gamma Control 10	w	1	0	0	0	VRN1[4]	VRN1[3]	VRN1[2]	VRN1[1]	VRN1[0]	0	0	0	0	VRN0[3]	VRN0[2]	VRN0[1]	VRN0[0]
	B : / W	R/W		D45	D14	D40	540	B44	D40							D.O.			
No.	Registers Name	R/W	RS	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
50h	Horizontal Address Start Position	w	1	0	0	0	0	0	0	0	0	HSA7	HSA6	HSA5	HSA4	HSA3	HSA2	HSA1	HSA0
51h	Horizontal Address End Position	w	1	0	0	0	0	0	0	0	0	HEA7	HEA6	HEA5	HEA4	HEA3	HEA2	HEA1	HEA0
51h	Vertical Address Start Position	w	1	0	0	0	0	0	0	0	VSA8	VSA7	VSA6	VSA5	VSA4	VSA3	VSA2	VSA1	VSA0
52h	Vertical Address Start Position Vertical Address End Position	w	1	0	0	0	0	0	0	0	VEA8	VSA/ VEA7	VSA0	VEA5	VSA4 VEA4	VEA3	VEA2	VEA1	VEA0
60h	Driver Output Control 2	w	1	GS	0	NL5	NL4	NL3	NL2	NL1	NLO	0	0	SCN5	SCN4	SCN3	SCN2	SCN1	SCNO
61h	Base Image Display Control	w	+	0	0	NLO 0	0	NL3	0	0	NLU 0	0	0	O O	SCN4	0 0	NDL	VLE	REV
6Ah	Vertical Scroll Control	w	1	0	0	0	0	0	0	0	VL8	VL7	VL6	VL5	VL4	VL3	VL2	VLE VL1	VL0
80h		w	1	0	0	0	0	0	0	0	PTDP08	PTDP07	PTDP06	PTDP05	PTDP04	PTDP03	PTDP02	PTDP01	PTDP00
80h 81h	Partial Image 1 Display Position	w	1	0	0	0	0	0	0	0	PTSA08	PTSA07	PTSA06	PTSA05	PTDP04 PTSA04	PTSA03	PTSA02	PTSA01	PTSA00
81h	Partial Image 1 Area (Start Line)	w	1	0	0	0	0	0	0	0	PTEA08	PTEA07	PTEA06	PTEA05	PTEA04	PTEA03	PTEA02	PTEA01	PTEA00
	Partial Image 1 Area (End Line)	_	1	0	0		0				PTDP18	PTDP17	PTDP16	PTDP15	PTDP14	PTDP13	PTDP12	PTDP11	PTDP10
83h 84h	Partial Image 2 Display Position Partial Image 2 Area (Start Line)	W	1	0	0	0	0	0	0	0	PTDP18 PTSA18	PTDP17 PTSA17	PTDP16 PTSA16	PTDP15 PTSA15	PTDP14 PTSA14	PTDP13 PTSA13	PTDP12 PTSA12	PTDP11 PTSA11	PTDP10 PTSA10
84h	Partial Image 2 Area (Start Line) Partial Image 2 Area (End Line)	w	+	0	0	0	0	0	0	0	PTEA18	PTEA17	PTEA16	PTEA15	PTEA14	PTEA13	PTEA12	PTEA11	PTEA10
90h		w	1	0	0	0	0	0	0	DIVI1	DIVI00	0 PIEAT/	0	0 PTEATS	0 PIEA14	RTNI3	RTNI2	RTNI1	RTNI0
90h	Panel Interface Control 1 Panel Interface Control 2	w	1	0	0	0	0	0	NOWI2	NOWI1	NOWID	0	0	0	0	RINI3	RINI2	RINII	0
92h	Panel Interface Control 2 Panel Interface Control 4	w	1	0	0	0	0	0	NOWIZ 0	DIVE1	DIVEO	0	0	RTNE5	RTNE4	RTNE3	RTNE2	RTNE1	RTNEO
-			+	0	0	0	0	OTP	0	0	0	0	0	VCM	VCM	VCM	VCM	VCM	VCM
A1h	OTP VCM Programming Control	w	1	1 -	-	_	-	PGM_EN	_	1 -	1 -	0	U	OTP5	OTP4	OTP3	OTP2	OTP1	OTPŪ
A2h	OTP VCM Status and Enable	W	1	PGM_ CNT1	PGM_ CNT0	VCM_ D5	VCM_ D4	VCM_ D3	VCM_ D2	VCM_ D1	VCM_ D0	0	0	0	0	0	0	0	VCM_ EN
A5h	OTP Programming ID Key	W	1	KEY 15	KEY 14	KEY 13	KEY 12	KEY 11	KEY 10	KEY 9	KEY 8	KEY 7	KEY 6	KEY 5	KEY 4	KEY 3	KEY 2	KEY 1	KEY 0

SHENZHEN LEYI LCD Technology Co., Ltd

TEL: 0755-83123432 FAX: 83123419

Page 10 of 25

5.4 Reference initial code

```
void ILI9325 (void)
// VCI=2.8V
//*********** Reset LCD Driver **********//
LCD_nRESET = 1;
delayms(1); // Delay 1ms
LCD_nRESET = 0;
delayms(10); // Delay 10ms // This delay time is necessary
LCD_nRESET = 1;
delayms(50); // Delay 50 ms
//*********** Start Initial Sequence ********//
LCD_CtrlWrite_ILI9325(0x00E3, 0x3008); // Set internal timing
LCD_CtrlWrite_ILI9325(0x00E7, 0x0012); // Set internal timing
LCD_CtrlWrite_ILI9325(0x00EF, 0x1231); // Set internal timing
LCD_CtrlWrite_ILI9325(0x0001, 0x0100); // set SS and SM bit
LCD_CtrlWrite_ILI9325(0x0002, 0x0700); // set 1 line inversion
LCD CtrlWrite ILI9325(0x0003, 0x1030); // set GRAM write direction and BGR=1.
LCD_CtrlWrite_ILI9325(0x0004, 0x0000); // Resize register
LCD_CtrlWrite_ILI9325(0x0008, 0x0207); // set the back porch and front porch
LCD_CtrlWrite_ILI9325(0x0009, 0x0000); // set non-display area refresh cycle ISC[3:0]
LCD_CtrlWrite_ILI9325(0x000A, 0x0000); // FMARK function
LCD_CtrlWrite_ILI9325(0x000C, 0x0000); // RGB interface setting
LCD_CtrlWrite_ILI9325(0x000D, 0x0000); // Frame marker Position
LCD_CtrlWrite_ILI9325(0x000F, 0x0000); // RGB interface polarity
//******Power On sequence *********//
LCD_CtrlWrite_ILI9325(0x0010, 0x0000); // SAP, BT[3:0], AP, DSTB, SLP, STB
LCD_CtrlWrite_ILI9325(0x0011, 0x0007); // DC1[2:0], DC0[2:0], VC[2:0]
LCD_CtrlWrite_ILI9325(0x0012, 0x0000); // VREG1OUT voltage
LCD_CtrlWrite_ILI9325(0x0013, 0x0000); // VDV[4:0] for VCOM amplitude
delayms(200); // Dis-charge capacitor power voltage
LCD_CtrlWrite_ILI9325(0x0010, 0x1490); // SAP, BT[3:0], AP, DSTB, SLP, STB
LCD_CtrlWrite_ILI9325(0x0011, 0x0227); // DC1[2:0], DC0[2:0], VC[2:0]
delayms(50); // Delay 50ms
LCD CtrlWrite ILI9325(0x0012, 0x001C); // Internal reference voltage= Vci;
delayms(50); // Delay 50ms
```

SHENZHEN LEYI LCD Technology Co. ,Ltd TEL: 0755-83123432 FAX: 83123419

Page 11 of 25

LCD_CtrlWrite_ILI9325(0x0013, 0x1A00); // Set VDV[4:0] for VCOM amplitude
LCD_CtrlWrite_ILl9325(0x0029, 0x0025); // Set VCM[5:0] for VCOMH
LCD_CtrlWrite_ILl9325(0x002B, 0x000C); // Set Frame Rate
delayms(50); // Delay 50ms
LCD_CtrlWrite_ILl9325(0x0020, 0x0000); // GRAM horizontal Address
LCD_CtrlWrite_ILl9325(0x0021, 0x0000); // GRAM Vertical Address
// Adjust the Gamma Curve//
LCD_CtrlWrite_ILl9325(0x0030, 0x0000);
LCD_CtrlWrite_ILl9325(0x0031, 0x0506);
LCD_CtrlWrite_ILl9325(0x0032, 0x0104);
LCD_CtrlWrite_ILl9325(0x0035, 0x0207);
LCD_CtrlWrite_ILl9325(0x0036, 0x000F);
LCD_CtrlWrite_ILl9325(0x0037, 0x0306);
LCD_CtrlWrite_ILl9325(0x0038, 0x0102);
LCD_CtrlWrite_ILl9325(0x0039, 0x0707);
LCD_CtrlWrite_ILl9325(0x003C, 0x0702);
LCD_CtrlWrite_ILl9325(0x003D, 0x1604);
// Set GRAM area//
LCD_CtrlWrite_ILl9325(0x0050, 0x0000); // Horizontal GRAM Start Address
LCD_CtrlWrite_ILl9325(0x0051, 0x00EF); // Horizontal GRAM End Address
LCD_CtrlWrite_ILI9325(0x0052, 0x0000); // Vertical GRAM Start Address
LCD_CtrlWrite_ILI9325(0x0053, 0x013F); // Vertical GRAM Start Address
LCD_CtrlWrite_ILl9325(0x0060, 0xA700); // Gate Scan Line
LCD_CtrlWrite_ILl9325(0x0061, 0x0001); // NDL,VLE, REV
LCD_CtrlWrite_ILI9325(0x006A, 0x0000); // set scrolling line
//Partial Display Control//
LCD_CtrlWrite_ILl9325(0x0080, 0x0000);
LCD_CtrlWrite_ILI9325(0x0081, 0x0000);
LCD_CtrlWrite_ILI9325(0x0082, 0x0000);
LCD_CtrlWrite_ILI9325(0x0083, 0x0000);
LCD_CtrlWrite_ILI9325(0x0084, 0x0000);
LCD_CtrlWrite_ILI9325(0x0085, 0x0000);
// Panel Control//
LCD_CtrlWrite_ILl9325(0x0090, 0x0010);
LCD_CtrlWrite_ILI9325(0x0092, 0x0600);
LCD_CtrlWrite_ILI9325(0x0007, 0x0133); // 262K color and display ON}

SHENZHEN LEYI LCD Technology Co., Ltd

TEL: 0755-83123432 FAX: 83123419

Page 12 of 25

6. ELECTRO-OPTICAL CHARACTERISTICS

Note 1: Electro-Optical Characteristics Test Method.

Note 2: Definition of Viewing Angel.

SHENZHEN LEYI LCD Technology Co., Ltd

TEL: 0755-83123432 FAX: 83123419

Page 13 of 25

Note 3: Definition of Driving Voltage, $V_{LCD} = (V_{10, ON} + V_{90, OFF}) / 2$.

SHENZHEN LEYI LCD Technology Co., Ltd

TEL: 0755-83123432 FAX: 83123419

Page 14 of 25

SHENZHEN LEYI LCD Technology Co., Ltd

TEL: 0755-83123432 FAX: 83123419

Page 15 of 25

Note 5: Definition of Contrast Ratio (CR).

(Positive Type)

(Negative Type)

SHENZHEN LEYI LCD Technology Co. ,Ltd TEL: 0755-83123432 FAX: 83123419

Page 16 of 25

7. Reliability

ITEM	CONDITIONS	CRITERIA
High temperature operation	70℃ for 200 hours	
Low temperature operation	-20℃ for 200 hours	
High humidity storage	40℃,90%RH for 240 hours	
High temperature storage	80℃ for 200 hours	
Low temperature storage	-30℃ for 200 hours	
Temperature cycling	-30°C (30 min)	◆ No defect in cosmetic and
	↓ ↑	operational functions
	25°C (5 min)	◆ Total current consumption
	↓ ↑	below double of initial value
	80°C (30 min)	
	CYCLES: 10	
Vibration	Random Wave:40~500 Hz	
	Acceleration:5g	
	Each Direction (x, y, z):50sec	

SHENZHEN LEYI LCD Technology Co. ,Ltd

TEL: 0755-83123432 FAX: 83123419

Page 17 of 25

8. Outgoing Quality Spec

$8.1\,$ LCM VISUAL & ELECTRONIC INSPECTION STANDARD

A. Fluorescent Lamp: 20W; viewing distance 30 cm

Viewing Angle: Normal to the Front Surface

8.2 Definition

A Zone: Effective Viewing

B Zone: Non-effective Viewing

8.3 Quality Level:

ACCORDING TO: ANSI Z 1.4 LEVEL II

	Major	Minor	Total
Visual	0.40%	1.00%	1.00%
Electronic	0.25%	0.65%	0.65%

SHENZHEN LEYI LCD Technology Co. ,Ltd TEL: 0755-83123432 FAX: 83123419

Page 18 of 25

8.4 Visual Items

DEFECT	INSPECTION ITEM	CRITERIA
1 Damage (Minor)	Y Z T	1.X,Y damage reaching effective viewing area Reject 2.Damage causing exposure of cross-over dots & the exposure area being larger than 1/3 of the entire area.(#) Reject 3. Damage touching main seal & being larger than 1/3 width of main seal.(#) (#:damage between upper & lower glass)
2 Poor Rifting (Major)	B	1.B > 1/3 Length of connector Reject 2. length of "L" Disregard
3 Poor Cutting (Major)		According to Engineering Drawing
4 Poor Cutting (Major)	T +A + Y	1. X, Y damage touching main seal & being larger than 1/3 width of main seal 2.Damage causing exposure of cross-over dots & The exposure area being larger than 1/3 of the entire area Reject 3. A > 1/3 length of connector

SHENZHEN LEYI LCD Technology Co. ,Ltd TEL: 0755-83123432 FAX: 83123419

Page 19 of 25

5 Damage (Minor)	X Z	1. Y damage reaching effective viewing area 2. Damage causing exposure of cross-over dots & the exposure area being larger than 1/3 of the entire area.(#) 3. Damage touching main seal & being larger than 1/3 width of main se (#:damage between upper & lower glass)	Reject Reject
6 Damage (Minor)	Y W	 Y < 1/3 length of connector, Z < 1/2T, X disregard. X≤3mm (or ≤ 1/8 length of longer edge), Y ≤1/3 length of connector, 1/2T < Z ≤ T If damage in another side of connector 1. X > 1/8 length of longer edge Y > D Z > 1/2 T 	Accept Accept Reject Reject Reject
7 Damage (Minor)	D W W	 X > 3 mm Damage causing exposure of cross-over dots & the exposure area being larger than 1/3 of the entire area. Y > 1/2 D X ≤ 1mm and Y ≤ D 	Reject Reject Reject Accept
8 Cracks (Major)		Any Cracks	Reject

SHENZHEN LEYI LCD Technology Co. ,Ltd TEL: 0755-83123432 FAX: 83123419

Page 20 of 25

02/20/2009

	Black Spots					
	h Foreign				Acceptable	-
	Substances $\varphi = (L+W)/2$		mension		Numbers	
	$\varphi = (2 \cdot \mathbf{w})^2$	A:	<i>φ</i> ≤0.1 r	nm Di	sregard 💥 1	
9			< <i>φ</i> ≦0.20mm		3	
(Minor)			< <i>φ</i> ≦0.25mm		1	
		D: 0.25mm<	•		0	
			ve point (B.C.I	′	3	
		_	or more gather	rings withii	n 5 mm circui	t
10	Slanted Polarizer,	is not accep				
(Minor)	Shifted Polarizer	*	om glass edge)		Reje	ect
			Dimension		Acceptable	
		Length	Widtl W≦0.01		Numbers Disregard ※	
		A: B:L≦5 mm	W ≦ 0.01 0.01mm < W ≦		Disregard *	1
		C:L≦3 mm	0.01mm < W≦		1	
11 (Minor)	Polarizer Scratch	D:	0.05mm <w< td=""><td></td><td>0</td><td></td></w<>		0	
(WITTOT)		Total defecti	ve point (B.C.I	D)	3	
		※ 1: 5pcs	or more gather	rings withii	n 5 mm circui	t
		is not accep	table			
	Polarizer Bubble	Dimens		Acceptable		
12 (Minor)	Visual Inspection	D>1.0n	nm <d≦1.0 mm<="" td=""><td>Rej</td><td>ect</td><td></td></d≦1.0>	Rej	ect	
(Willion)	φ ψ= (L+W)/2	D<0.5 r		Disre	egard	
	φφ-(Ε:νν//2		1		<u> </u>	
					Acceptable	
	Polarizer Prick, Shape		Dimension		Numbers	
	(point)		<i>φ</i> ≤0.1mm		Disregard 💥	1
13	Visual Inspection		$m < \varphi \le 0.20$ mn $m < \varphi \le 0.25$ mı		3	
(Minor)	φ = (L+W)/2		iiii< φ ≦0.25iiii).30mm< φ	[[1]	1 0	
			•	onoto obali		_
			e between two sective Viewing A		Disregard	
14 (Major)	Dirty Conductive Pattern	Oil or Foreig (Visual Inspe	n Substances ection)		Rejec	t
15 (Minor)	Dirty Polarizer(After removing protection film)				Reje	ect
16 (Minor)	Protection Film not adhering to Polarizer				Reje	∍ct
17 (Minor)	NAP (Fiber)		L≦ 3 Acc			
18 (Major)	The Deviation of the Basic Color	Base on Lim				

SHENZHEN LEYI LCD Technology Co. ,Ltd TEL: 0755-83123432 FAX: 83123419

Page 21 of 25

19 (Major)	Incomplete Etching		Reject
20 (Major)	Excessive Etching		Reject
21 (Minor)	The Width of Main seal	 ≤1/2 of the Average Width ≥1/2 of the Average Width 	Reject Reject
22 (Minor)	Shifting of Main Seal	Outside Effective Viewing Area	a Reject
23 (Minor)	Foreign Substance, Bubble in Main Seal	≥1/2 of the Main Seal Width	Reject
24 (Major)	Main Seal color BeingNon Uniform		Reject
25 (Major)	Deviation of End Sealing Glue Color		Reject
26 (Minor)	Shifting of End Sealing Glue	Out of Spec on the Engineerin	g Drawing Reject
27 (Major)	End sealing Glue Intruding into the Cell	Outside Effective Viewing Area	a Reject
		Dimension	Acceptable Numbers
		A: $\varphi \leq 0.1$ mm	Disregard 💥 1
28	Black Dot/ White Dot	B: 0.1 mm $< \varphi \le 0.20$ mm	3
(Minor)		C : 0.20mm< <i>φ</i> ≦0.25mm	1
		D: 0.25mm $< \varphi$	0
		Total defective point (B.C.D)	3
		※ 1: 5pcs or more gathering is not acceptable.	s within 5 mm circuit
			Acceptable
		Dimension	Numers
		Length Width	Disregard 💥 1
	Black Line	A: W≦0.01mi	_
29	White Line	B:L≦5 mm 0.01mm <w≦0.0< td=""><td>2mm 3</td></w≦0.0<>	2mm 3
(Minor)		C:L≦3 mm 0.02mm <w≦0.0< td=""><td>)5mm 1</td></w≦0.0<>)5mm 1
		D: 0.05mm <w< td=""><td>0</td></w<>	0
		Total defective point (B.C.D)	3
			s within 5 mm circuit
	Comtract	is not acceptable .	
	Contrast Variation		
30	Tanadon	Dimension	Acceptable Numbers
(Minor)	↑ b	A: $\varphi \leq 0.20$ mm	Disregard 🔆 1
	*	B: $0.20 \text{mm} < \varphi \le 0.30 \text{mm}$	2
		C : 0.30mm< <i>φ</i> ≤0.40mm	1
	a	D : 0.40mm< φ	0
	$\varphi = (a+b)/2$	Total defective point (B.C.D)	3

SHENZHEN LEYI LCD Technology Co. ,Ltd TEL: 0755-83123432 FAX: 83123419

Page 22 of 25

		※ 1: 5pcs or more gathering is not acceptable.	gs within 5 mm circuit
	Pin hole Lack Matri x:		
		Part A : Lack > 0.05 mm Part B: Convex > 0.05 mm	Reject Reject
31 (Minor)	A B Conv	Part B. Convex > 0.03 mm	Reject
32 (Minor)	Not A Assemble Match (For Dot Matrix)	A: Distortion of Square $\leq \pm 1$ B: Distortion of Square $\leq \pm 1$	
33 (Minor)	Rainbow		Reject
34 (Major)	Open, Short		Reject
35 (Major)	Conductive Point Poor Conduction		Reject
36 (Minor)	Low Speed		Reject
37 (Major)	Large Current	≧2 uA/Cm²	Reject
38	Surface is not uniform	$\begin{array}{c c} \textbf{Dimension} \\ \textbf{A:} & \varphi \leqq \textbf{0.20mm} \\ \textbf{B:} & \textbf{0.20mm} < \varphi \leqq \textbf{0.30mm} \\ \textbf{C:} & \textbf{0.30mm} < \varphi \leqq \textbf{0.40mm} \\ \end{array}$	Acceptable Numbers Disregard ※ 1 2 1
(Minor)		D: 0.40mm< φ Total defective point (B.C.D) * 1: 5pcs or more gathering	3
		is not acceptable .	33 William 3 milli Circuit

SHENZHEN LEYI LCD Technology Co., Ltd

TEL: 0755-83123432 FAX: 83123419

Page 23 of 25

9. PRECAUTIONS

9.1 Static charge

Since this LCD module contains CMOS LSIs that are sensitive to static charge, care must be taken when handing it.

9.2 Power on sequence

- 1. Input signals should not be applied to the LCD module before the logic system voltage has reached the specified voltage. If the above sequence is not keep the LCD module might be permanently damaged.
- 2. When connecting the power supply, connect the LCD bias voltage after connecting the logic system voltage.
- 3. When disconnecting the power supply, disconnect the logic system voltage after the LCD bias voltage.
- 4. It is recommended to connect a serial resistor or fuse to the LCD bias power supply of the system, as a current limiter. The value of the resistor depends on the kind of LCD used, but is typically $50 \sim 100\Omega$.

9.3 Operation

- 1. It is essential to drive the LCD within the specified voltage limits, since a higher driving voltage than allowed causes a shorter LCD lifetime. Under these circumstances, electrochemical reactions will result in undesirable deterioration of the LCD.
- 2. The response time of the LC fluid is considerably longer at low temperatures than in the normal operating temperature rang. On the other hand, the LCD will show a dark blue color at high temperatures. Those phenomena do not indicate a malfunction or defect of the LCD. Back at normal temperatures, the LCD will be return to its original behavior.
- 3. If the display area is pressed hard during operation, some abnormal display patterns might appear. However, the display will resume normal operation after turning the module off and on.
- 4. Moisture on the terminals could cause an electrochemical reaction resulting in an open terminal connection. If the environmental temperature is higher than 40° C, it is required that the relative humidity is 50% or less.

SHENZHEN LEYI LCD Technology Co., Ltd

TEL: 0755-83123432 FAX: 83123419

Page 24 of 25

9.4 Packing

- 1. Do not leave the product in a place of high humidity for a long period. For storage in a location where the temperature is 35°C or higher, special care to protect the product from high humidity is required. A combination of high temperature and high humidity may cause polarization degradation and damage as well. Please keep the temperature and humidity within the specified range for storing.
- 2. Since LCD panels tend to be easily damaged, they should be handled with full care. Avoid any contact with materials that have a hardness of more than 2H.
- 3. Adhesives used for adhering upper/lower polarizers and aluminum plates are made of organic substances that will deteriorate by chemical reactions with for example chemicals such as acetone, toluene, ethanol, and isopropylalcohol. Please prevent the use of these chemicals and contact us when it is necessary for you to use other chemicals.
- 4. Immediately wipe off saliva or water drops from the display area with an absorbent cotton cloth, without scrubbing it. If adhered for a long period, such particles might cause deformation or faded color.
- 5. Moisture deposited on the display surface and contact terminals due to low temperatures will be a cause for polarizer damage, stains, and dirt. Before use, such panels should be slowly warmed up to a temperature that is higher than room temperature.
- 6. Touching the display area and contact terminals with bare hands is harmful to polarizer and may lead to poor insulation at the terminals.
- 7. The glass is fragile and can be cracked or chipped easily by handling, in particular on near its edge. Please prevent sudden shocks or exposing the glass to other sorts of stress.

9.5 Long-term storage

For long-term storage the following methods are highly recommended:

- 1. Store the product in a polyethylene bag with a sealed opening to prevent fresh air entering from the outside. Placing it with a desiccant is not necessary.
- 2. Store the product in a dark place, with the temperature in the range from 0° C to 35° C.
- 3. Keep the sensitive polarizer surface of the LCD panels clear of any contact. We recommend using the container that was used by LEYI to deliver the products.

9.6 Cleaning of the product

To clean the product make sure to use absorbent cotton cloth or other soft material like chamois. Make sure to rub it gently, and do not use chemicals when cleaning.

SHENZHEN LEYI LCD Technology Co., Ltd

TEL: 0755-83123432 FAX: 83123419

Page 25 of 25

10. FINAL REMARKS

- 1. The above specifications are the binding criteria for LEYI's outgoing quality inspection.
- 2. The customer is kindly requested to inform LEYI as soon as possible on any questions, remarks, and disagreements regarding these specifications.
- 3. LEYI is not responsible for damage to its products due to neglect of the precautions as described in the previous chapter.

LIND