

KyronMAX™S-2330

PRODUCT TECHNICAL DATA SHEET

Product Benefits

- Superior toughness
- Low water absorption
- High wear resistance
- Outstanding fuel barrier properties
- Long-term heat resistance

Industries/Application Examples

- Automotive bushings, washers, pistons, brackets, handles
- Aerospace latches, rings, hinges, spacers, seals, adapters
- Electrical pins, fasteners, end effectors, connectors, panels
- Medical clamps, vanes, housings, bushings, gears, valves
- Energy seals, bearings, plugs, umbilicals, back-up rings
- Industrial valve plates, column packing, gears, valve seats

		English		Metric	
Mechanical	Test Method	Typical Value	Unit	Typical Value	Unit
Specific Density	ASTM D792	1.25	g/cm³	1.25	g/cm³
Tensile Strength	ASTM D638	49,000	psi	338	MPa
Tensile Modulus of Elasticity	ASTM D638	3,500	ksi	24	GPa
Tensile Elongation	ASTM D638	2.00	%	2.00	%
Flexural Strength	ASTM D790	69,000	psi	476	MPa
Flexural Modulus of Elasticity	ASTM D790	3,500	ksi	24	GPa
Shear Strength	ASTM D732	17,882	psi	123	MPa
Compressive Strength	ASTM D695	41,000	psi	283	MPa
Compressive Modulus of Elasticity	ASTM D695	940	ksi	6	GPa
Hardness, Shore D	ASTM D2240	89		89	
Notched Izod Impact	ASTM D256	1.7	ft-lb/in	90.1	J/m
Unnotched Izod Impact	ASTM D4812	17.6	ft-lb/in	932.8	J/m
Thermal	Test Method	Typical Value	Unit	Typical Value	Unit
Glass Transition (Tg)	ASTM D3418	250.2	°F	121.2	°C
Melting Point	ASTM D3418	569.5	°F	298.6	°C
Deflection Temperature at 1.8 MPa (264 psi)	ASTM D648	540.0	°F	282.2	°C
Electrical	Test Method	Typical Value	Unit	Typical Value	Unit
Surface Resistivity	ASTM D257	<104	ohm/sq	<104	ohm/sq
Flammability	UL 94 ¹	НВ		НВ	
Chemical	Test Method	Typical Value	Unit	Typical Value	Unit
Moisture, 24 hours	ASTM D570	0.14	% by wt	0.14	% by wt

KyronMAX[™] materials are lightweight and, when molded, parts are 75% lighter than steel and almost 40% lighter than aluminum. By utilizing the lower density of KyronMAX, customers can simultaneously realize lower costs and lighter parts, while also taking advantage of unmatched tensile and toughness properties.

The better "practical toughness" values are achieved with lower filler loading, which increases the material's elongation at yield. KyronMAX molded parts are more likely to yield, rather than fracture under high-stress loads. KyronMAX stronger fibers and lower filler loadings further elevate molded product performance with significantly better knit line strength compared to other filled polymers.

Aluminum bracket with half FEA analysis (left) and KyronMAX final molded part (right). The FEA analysis is used to translate a metal part into a lightweight plastic molded part, while matching or exceeding the strength and stiffness of the original metal part.

Mitsubishi Chemical Advanced Materials (MCAM) can take your metal parts and use our proprietary Finite-Element Analysis (FEA) to engineer a high-performance product with KyronMAX materials. MCAM's unique FEA data offers a solution to accurately predict the mechanical performance of a part in real world applications with key features including mechanical stress, plastic injection molding flow, fatigue, and motion.

USA - Arizona

257 East Alamo Drive Chandler, AZ 85225 USA Tel: 480.926.8100 Fax: 480.497.1530 KyronMAX@mcam.com

USA - Illinois

1840 Enterprise Court Libertyville, IL 60048 USA Tel: 847.367.0110 Fax: 847.367.0566

Asia - Thailand/Singapore

Eastern Seaboard Industrial Estate Rayong 64/103, Moo 4, T. Pluakdaeng A. Pluakdaeng, Rayong 21140 Thailand Tel: +66 33 659 141

Fax: +66 33 659 141

https://mcam.com

ALTHOUGH ANY INFORMATION, RECOMMENDATIONS, OR ADVICE CONTAINED HEREINIS GIVEN IN GOOD FAITH, MITSUBISHICHEMICAL ADVANCED MATERIALS (MCAM) MAKES NO WARRANTY OR GUARANTEE, EXPRESS OR IMPLIED, (I) THAT THE RESULTS DESCRIBED HEREIN WILL BE OBTAINED UNDER END-USE CONDITIONS, OR I(I) AS TO THE EFFECTIVENESS OR SAFETY OF ANY DESIGN INCORPORATING MCAM MATERIALS, PRODUCTS, RECOMMENDATIONS OR ADVICE. MCAM AND ITS REPRESENTATIVES SHALL IN NO EVENT BE RESPONSIBLE FOR ANY LOSS RESULTING FROM ANY USE OF ITS MATERIALS OR PRODUCTS DESCRIBED HEREIN. Each user bears full responsibility for making its own determination as to the suitability of MCAM materials, products, recommendations, or advice for its own particular use. Each user must identify and perform all tests and analyses necessary to assure that its finished parts incorporating MCAM materials or products will be safe and suitable for use under end-use conditions. Nothing in this or any other document, nor any oral recommendation or advice, shall be deemed to alter, vary, supersede, or waive any provision of MCAM Standard Conditions of Sale or this Disclaimer, unless any such modification is specifically agreed to in a writing signed by MCAM.

¹Estimated rating based on available data. The UL 94 Test is a laboratory test and does not relate to actual fire hazard.