

THYROID DISEASE DETECTION AND PREDICTION

IS597 Final Project Presentation

Group 7: Danni Wu, Pranav Rajesh Charakondala, Arundhati Raj

Objective: Predict thyroid disease using machine learning.

Type: Binary Classification (Thyroid Disease vs No Thyroid Disease)

Tools: AWS SageMaker, Amazon S3, Jupyter Notebooks

Key Focus: Early diagnosis, reproducibility, model scalability

Project Overview

Dataset Summary

Total Records: 9,000+ patients

Features: Hormone levels (TSH, T3, TT4, T4U, FTI), demographic info

Target Variable: Thyroid condition (yes/no)

Challenges: Missing values, slight class imbalance

Methodology

Models Implemented:

Decision Tree Classifier

Random Forest Classifier

Logistic Regression (Baseline Model)

Data Handling:

Missing Value Imputation (Median/Mode)

Stratified Train/Test Split (80/20)

Feature Engineering:

One-Hot Encoding for categorical variables

Principal Component Analysis (PCA) for

dimensionality reduction

SageMaker Workflow

Data upload and storage on Amazon S3

Notebook-based Data Preprocessing

Model Training using SageMaker built-in algorithms

Evaluation Metrics Calculation

Model Export: Models saved as Joblib files to S3

MODEL TRAINING

80/20 stratified split

```
Training set shape: (7336, 26)
Testing set shape: (1835, 26)
Class distribution in y_train:
0  0.738
1  0.262
```

Data Loading and Preprocessing

```
One-hot encoding complete.
X_train shape: (7336, 26)
X_test shape: (1835, 26)
```

```
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import RandomForestClassifier
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import classification_report, accuracy_score

# Define baseline models
models = {
    "Decision Tree": DecisionTreeClassifier(random_state=42),
    "Random Forest": RandomForestClassifier(random_state=42),
    "Logistic Regression": LogisticRegression(max_iter=2000, solver='lbfgs', random_state=42)
```

Model Results

===== Decision Tree ===== Accuracy: 0.937						
	precision	recall	f1-score	support		
0	0.96	0.96	0.96	1355		
1	0.88	0.88	0.88	480		
accuracy			0.94	1835		
macro avg	0.92	0.92	0.92	1835		
weighted avg	0.94	0.94	0.94	1835		
==== Random Forest ===== Accuracy: 0 942						
Accuracy: 0.		recall	f1-score	support		
	942	recall 0.95	f1-score 0.96	support 1355		
Accuracy: 0.	942 precision					
Accuracy: 0.	942 precision 0.97	0.95	0.96	1355		
Accuracy: 0.	942 precision 0.97	0.95	0.96 0.89	1355 480		

==== Logistic Regression =====						
Accuracy: 0.837						
		precision	recall	f1-score	support	
	0	0.83	0.98	0.90	1355	
	1	0.87	0.44	0.59	480	
accur	acy			0.84	1835	
macro	avg	0.85	0.71	0.74	1835	
weighted	avg	0.84	0.84	0.82	1835	

Model Performance Evaluation

Model	Accura cy	Precision (Class 1)	Recall (Class 1)	F1-Score (Class 1)	AUC- ROC
Decision Tree	93.7%	0.88	0.88	0.88	0.933
Random Forest	94.2%	0.86	0.93	0.89	0.947
Logistic Regression	83.7%	0.87	0.44	0.59	0.850

Random Forest Classifier

- High recall is critical to minimize false negatives.
- Strongly recommended for healthcare predictions needing reliability.

Decision Tree Classifier

- Slightly weaker generalization compared to Random Forest.
- Prone to overfitting on noisy or redundant data.

Logistic Regression

- Underperformed
- Low recall missed many true thyroid disease cases.

ROC CURVE

Decision Tree

- AUC of 0.92
- balancing accuracy and model interpretability.

Random Forest:

- best performance
- AUC of 0.98
- high sensitivity
- low false positive rates

Logistic Regression

- AUC of 0.81
- struggling to detect positive thyroid cases

Confusion Matrix

Decision Tree Classifier

- Balanced performance
- moderate FN:58.

Random Forest Classifier

- Best recall, Low FN: 36.
- Stronger at detecting thyroid disease
- Trade-off in FP.

Logistic Regression

- High TN, high FN: 267
- Poor recall: misses many thyroid cases.

==== Random F	orest on PCA precision		•	20 Components) support	====
0 1	0.88 0.75	0.93 0.63	0.90 0.68	1355 480	
accuracy macro avg weighted avg	0.81 0.84	0.78 0.85	0.85 0.79 0.84	1835 1835 1835	

Impact of PCA

- Accuracy: 85% on the test set (compared to ~94% without PCA).
- Recall (for class 1 thyroid cases):
 Dropped to 0.63, indicating reduced sensitivity.
- **F1-score** (for class 1): Reduced to 0.68.

Strengths & Challenges

- ☐ Strengths:
- Cloud-native and scalable pipeline
- Effective preprocessing for noisy healthcare data
- Strong model generalization
- Challenges:
- PCA improved efficiency but slightly reduced thyroid detection sensitivity.
- Dataset demographic bias (Mostly adult patients)
- Minor class imbalance affected logistic regression performance

Future Enhancements

Automate full SageMaker pipeline using AWS Step Functions

Integrate XGBoost and LightGBM for potentially higher accuracy

Deploy REST API for real-time thyroid prediction

Utilize SHAP or LIME for model explainability in healthcare compliance

Conclusion

ACHIEVED 94.2% ACCURACY USING RANDOM FOREST

DEMONSTRATED FEASIBILITY OF ML-ASSISTED THYROID DIAGNOSIS

READY FOR SCALING WITH MORE DIVERSE DATASETS AND REAL-WORLD INTEGRATION

Team Contributions

Pranav Rajesh Charakondala:

Model Training using SageMaker built-in algorithms

Evaluation Metrics Calculation

Danni Wu and Arundhati Raj:

Choosing final dataset and uploading it on S3

Notebook-based Data Preprocessing

Thank You!