Amplificateur opérationnel en régime non linéaire

Objectifs:

• Étudier la réponse d'un comparateur simple à divers signaux.

• Étudier un signal en modulation de largeur d'impulsion à l'aide d'un montage à AOP.

Préparation: Obligatoire.

Compte rendu papier : À remettre à la fin de la séance de TP.

1 Préparation (4 points)

On étudie le montage suivant :

L'AOP est alimenté en mono-tension (alimentation **unipolaire**, $V_{cc} = 12 \text{ V}$). L'AOP est supposé idéal ($v_{déchet} = 0 \text{ V}$). Le pont diviseur en sortie est déconnecté.

- 1. Rappeler le fonctionnement de l'AOP en régime non-linéaire ($v_{s1} = f(\varepsilon)$).
- 2. La tension d'entrée v_e est continue et la tension V_{ref} est fixée à 3 V. Dans ces conditions, tracer la caractéristique $v_{s1} = f(v_e)$ du comparateur simple lorsqu'on augmente la tension v_e de -6 à 6 V. Indiquer les valeurs de saturation haute et basse.
- 3. La tension d'entrée v_e est maintenant un signal triangulaire symétrique de fréquence 1 kHz et d'amplitude crête-crête 6 V et un offset = 3 V. La tension V_{ref} est toujours fixée à 3 V. Tracer sur le même graphique : $v_e(t)$, V_{ref} et le signal $v_{s1}(t)$ obtenu à la sortie du comparateur.
- 4. Calculer la valeur moyenne du signal $v_{s1}(t)$ de la question précédente (calcul par intégrale ou méthode graphique).

2 Manipulations (16 points)

Le montage d'étude est celui de la préparation. L'AOP TL081 est alimenté en mono-tension (alimentation **unipolaire**, $V_{cc}=12~{\rm V}$). On utilisera $R=10~{\rm k}\Omega$ et $R_1=R_2=22~{\rm k}\Omega$.

- 1. Le pont diviseur en sortie est déconnecté. La tension d'entrée v_e est continue et positive. La tension V_{ref} est fixée à 3 V. Dans ces conditions, tracer la caractéristique $v_{s1}=f(v_e)$ du comparateur lorsqu'on augmente la tension v_e de 0 à 6 V par pas de 0,5 V. Indiquer les valeurs de saturation haute et basse et en déduire la valeur de la tension de déchet.
- 2. Le pont diviseur en sortie est connecté. La tension d'entrée v_e est maintenant un signal triangulaire symétrique de fréquence 1 kHz et d'amplitude crête-crête 6 V et un offset = 3 V. Pour $V_{ref1}=1,5$ V, $V_{ref2}=3$ V et $V_{ref3}=4,5$ V :
 - (a) relever en concordance des temps les chronogrammes des tensions $v_e(t)$ et $v_{s2}(t)$.
 - (b) mesurer le rapport cyclique α et la valeur moyenne de $v_{s2}(t)$.