Homework 05

MATH 5600

Timo Heister, heister@math.utah.edu

Work in groups of two. Include both of your names as a comment in the first line of each file. Then submit those files on canvas (once per group!).

- 1. Write a function $a = fit_line(x,y)$ that computes the line of best fit to a given set of points (x_i, y_i) given as a vector of x coordinates and a vector of y coordinates and returns a vector $a = [a_0, a_1]$ of coefficients that describe the line of best fit $L(x) = a_0 + a_1 \cdot x$.
- 2. Using the function fit_line compute the line, exponential, and power fit to the data points given in the file hw05q2_base.m (on canvas). Create a plot that shows the points and the three curves. Include a legend. Also print out the equations with coefficients for the three curves.

Bonus: compute the misfit of the three fits to see confirm which one is "best".

Submit: fit_line.m and hw05q2.m that produces the plot.

- 3. Find Taylor series approximations using n=1, 2, and 4 to the function $f(x) = 1 + e^x$ at x=0.7, using the expansion point $x_0 = 1$. For each n, compute the approximation, find an upper bound on the error using Taylor's theorem, and compare it to the actual error.
- 4. Submit hw05q4.m for a) and do b) on paper.
 - (a) Determine the error and convergence rate for the forward difference method for the derivative of the function $f(x) = \sin(x)$ at $x_0 = 0$ and at $x_0 = 1$ by creating a table in MATLAB (see example from class).
 - (b) The order you will see is different for one of the expansion points than what the theory gives us. Create the Taylor expansion for $\sin(x)$ up to n = 6. Use this to explain what is happening in a).