## Optimization laboratory: Traveling Salesman Problem

#### Léa Ricard

Transport and Mobility Laboratory School of Architecture, Civil and Environmental Engineering École Polytechnique Fédérale de Lausanne

18 April 2024





## Laboratory schedule

| Date       | Topic                      |
|------------|----------------------------|
| 18.04.2024 | Optimization laboratory    |
| 25.04.2024 | Multi-objective laboratory |
|            | Optimization project       |
| 02.05.204  | Optimization project       |
| 09.05.204  | Optimization project       |
| 23.05.204  | Optimization project       |





Problem definition - Traveling Salesman Problem (TSP)

2 TSP Exercises

My results

## Traveling Salesman Problem (TSP)

#### Problem definition:

- A salesman must visit n cities.
- Every city must be visited exactly once.
- The salesman starts and ends the trip at their home city.
- The total trip length is assumed to be the cost of the travel.

## Objective

• What sequence of cities minimizes the travel cost?

## Traveling Salesman Problem (TSP)

- Applications:
  - Vehicle routing;
  - Job shop scheduling;
  - Computer wiring;
  - Etc.
- Largest instance solved by Concorde's TSP solver: 85,900 cities.



## Traveling Salesman Problem (TSP)

#### Problem encoding

We consecutively number the cities: 0, 1, ..., n.

We encode the solutions as  $x = (x_0, x_1, ..., x_n, x_0)$  where

- $x_0$  is the index of the home city,
- $x_i$  is the index of the i<sup>th</sup> city visited along the way, and
- $x_n$  is the index of the last city visited before returning home.

Problem definition - Traveling Salesman Problem (TSP)

2 TSP Exercises

My results

## Implementation functions

## Core functionality

```
simulate_cities(seed, n_cities) draw_salesman(path, cities) evaluate_city_sequence(path, cities) \rightarrow Calculate the total distance traveled
```





## Algorithms to implement

#### **Full enumeration:**

Understand its limitations

#### **Optimization algorithms:**

- Greedy algorithm
- Local search
- Variable neighborhood search
- Simulated annealing

## **IMPORTANT**

- The suggested framework is only a suggestion!
- Feel free to organize the code in the manner you find the most appropriate!

Problem definition - Traveling Salesman Problem (TSP)

2 TSP Exercises

My results

## My results - An initial solution



# My results - Full enumeration



# My results - Greedy algorithm





# My results - Local search (LS), variable neighborhood search (VNS), and simulated annealing (SA)

- Same solutions as full enumeration (optimal).
- Computing time for instances with 10 cities and using the parameters specified for the SA algorithm:  $CPU_{LS} < CPU_{VNS} < CPU_{SA}$ .

## My results - Simulated annealing

