

第四章大数据存储的安全与隐私

彭延国

ygpeng@xidian.edu.cn

§4 大数据存储的安全与隐私 - 云计算

- 云计算(Cloud computing)
 - 是一种模式,能以泛在的、便利的、按需的方式通过网络访问可配置的计算 资源(如网络、服务器、应用和服务)
 - 特征:
 - 按需获得的自助服务;
 - 广泛的网络接入方式;
 - 资源的规模池化;
 - 快捷的弹性伸缩;
 - 可计量的服务。

§4 大数据存储的安全与隐私 - 云计算发展历史

- 1983年,太阳电脑提出"网络是电脑" ("The Network is the computer")。
- 1996年, Compaq公司在其公司的内部文件中, 首次提及"云计算"这个词汇。
- 2006年3月,亚马逊推出弹性计算云服务。
- 2007年10月, Google与IBM开始在美国大学校园推广云计算。
- 2008年7月29日,雅虎、惠普和英特尔宣布推出云计算研究测试床,推进云计算。
- 2008年8月3日, 戴尔申请"云计算" (Cloud Computing) 商标, 此举旨在加 强对这一未来可能重塑技术架构的术语的 控制权。

公有云全球范围消费趋势(from Statista)

		Total GDP spend USD Bn	Total IT spend ¹ USD Bn	IT spend ¹ as a % of total GDP spend (2018)	Total IT spend ¹ USD Bn	Public Cloud spend as a % of total IT spend¹ (2018)
UK		2,622	137	5.2%	137	11.4%
USA		19,391	911	4.7%	911	11.4%
Canada	+	1,653	63	3.8%	63	11.3%
Australia	米	1,323	48	3.6%	48	7.7%
World	©	80,000	2,362	3.0%	2,362	7.9%
Germany		3,677	103	2.8%	103	6.9%
Brazil	♦	2,056	40	1.9%	40	7.9%
India	•	2,597	42	1.6%	42	6.0%
China	*)	12,238	172	1.4%	172	2.7%
Russia		1,578	15	1.0%	15	2.9%

2019年政府IT开支趋势(from NASSCOM)

§4 大数据存储的安全与隐私 - 云计算部署方式

- 公有云(Public cloud)
 - 公用云服务可透过网络及第三方服务供应者,开放给客户使用。
- 私有云(Private cloud)
 - 私有云是由企业自建自用的云计算中心。
- 社区云(Community cloud)
 - 社区云由众多利益相仿的组织掌控及使用,例如特定安全要求、共同宗旨等。
- 混合云(Hybrid cloud)
 - 混合云的基础施舍是由上述两种或两种以上的云组成

§4 大数据存储的安全与隐私 - 云计算安全

- 云计算安全(Cloud computing security)
 - 指一套广泛的政策、技术与被布署的控制方法,以用来保护资料、应用程序与云计算的基础设施。
 - 94%的用户关注云计算安全;
 - 66%的用户对云计算安全信心不足;
 - 6/10的企业预计其云安全预算将在未来12个月内增加。
 - 企业将其安全预算的27%用于云安全;
 - 69%的企业将其团队的安全就绪水平评为中等或低于 平均水平。
- 云计算安全将会得到持续、深刻的关注。
 - 存储安全;
 - 计算安全;
 - 共享安全等

(from Cybersecurity Insider)

贯穿大数据处理的整个过程

§4.1 大数据存储技术

§4.1 大数据存储技术 - 分布式文件系统

- 分布式文件系统(DFS: Distributed file system):
 - 是指文件系统管理的物理存储资源不仅存储在本地节点上,还可以通过网络链接存储在非本地节点上;
 - 具有比本地系统更优异的数据备份、数据安全、规模可扩展等优点。

- 分布式文件系统的评价方式:
 - 数据的存储方式,即文件数据在各节点之间的分布策略;
 - 数据的读取速率,包括读写、网络传输等速率;
 - 数据的安全机制,包括冗余、备份、镜像、加解密等。
- 典型分布式文件系统:

- GFS、HDFS、Lustre、Ceph等。

§4.1 大数据存储技术 - GFS文件系统

- Google文件系统(Google file system)
 - 一种由Google公司开发,运行于Linux平台上的专有分布式文件系统。
 - 设计理念:
 - 组件失效不再被认为是意外,而是被看做正常的现象
 - GFS的文件非常巨大
 - 对文件的操作具有特定的模式
 - 应用程序和文件系统API的协同设计提高了整个系统的灵活性
 - 一个GFS集群包含一个主服务器和多个块服务器,并被多个客户端访问。
 - 文件分成固定大小的"块"。每个块在创建时都由主服务器分配一个固定不 变的64位句柄唯一标识。
 - 块服务器把块作为Linux文件存储在本地磁盘上,并根据指定的块句柄和字节范围对数据块进行读写操作。

§4.1 大数据存储技术 - GFS的设计架构

• 主服务器

- 维护所有文件系统的元数据,包括名字空间、访问控制信息、文件到块的映射信息以及块当前的位置。
- 控制其它系统级的活动,周期性地与块服务器通信,以下达指令和收集状态。

• GFS客户端

- 代码被嵌入到每个应用中。
- 它实现了文件系统API,实现主服务器与块服务器的通信从而代表应用实现读写操作。
- 客户端与服务器交互从而 实现元数据操作,但所有 的数据操作都通过直接与 块服务器交互而完成。

§4.1 大数据存储技术 - HDFS文件系统

- HDFS(Hadoop distributed file system)
 - Apache Hadoop是一款支持数据密集型分布式应用程序并以Apache 2.0许可协议发布的开源软件框架。
 - HDFS是指被设计成适合运行在通用硬件(commodity hardware)上的分布式文件系统。
 - 是Apache Hadoop项目的一个子项目。
 - 具体特性:
 - "一次写入、多次读取(write-once-read many)"模型;
 - 将处理逻辑放置到数据附近,通常比将数据移向应用程序空间更好。

§4.1 大数据存储技术 - HDFS的体系结构

- · HDFS的体系结构:
 - HDFS的高层设计包含命名节点(Name node)与数据节点(Data node);
 - 设计原则:
 - 元数据与数据分离
 - 主从结构
 - 一次写入多次读取
 - 移动计算比移动数据更划算

HDFS Architecture

§4.1 大数据存储技术 - HDFS的写操作

§4.1 大数据存储技术 - HDFS的读操作

§4.1 大数据存储技术 - HBase

HBase

- 是一个高可靠、高性能、面向列、可伸缩的分布式数据库;
- 主要用来存储非结构化和半结构化数据;
- 是Hadoop的组成部分,Google BigTable的开源实现。

§4.1 大数据存储技术 - HBase的实现模块

- HBase的实现包括三个主要功能模块:
 - 链接到每个客户端的库函数;
 - 一个主服务器:管理和维护HBase的分区信息;
 - 多个分区服务器:存储和维护分配给自己的分区,处理来自客户端的读写请求。

§4.1 大数据存储技术 - HBase的工作原理

§4.1 大数据存储技术 - 云原生数据库(1)

- 云原生数据库(Cloud native database)
 - 云原生数据库是一种运行在云计算平台上,提供按需访问服务的数据库。
- 云原生概念的发展
 - 2017年, Pivotal的高级产品经理Matt Stine将云原生归纳为模块化、可观察、可部署、可测试、可替换、可处理等六大特质。

- 云原生的代表技术包括容器、服务网格、微服务、不可变基础设施和声明式

API.

- 云原生数据库的特征
 - 普遍可访问、高可用性
 - 高扩展性、可迁移性
 - 演进式设计、快速迭代

云原生数据库

§4.1 大数据存储技术 - 云原生数据库(2)

• 云原生数据库的优势

- 部署快捷:用户可在几分钟内完成云原生数据库的部署;

可靠性高:具有故障自动单点切换、数据库自动备份、容灾备份等功能;

- 成本低廉: 支付的费用远远低于自建数据库所需的成本。

• 云数据库与云存储的区别

- 对应的层面不同:云存储位于资源层(IaaS),提供的是存储资源能力;云数据库位于平台层(PaaS),提供的是中间件服务能力。
- 提供的服务不同:云存储提供的主要是非结构化数据的存储能力;云原生数据库提供的是基础数据库和数据对象管理能力。
- 两者的关系:对于前者,可以认为是将文件系统封装并提供文件系统API;对于后者,是在文件系统基础上封装为数据库,不提供文件系统API直接调用。

§4.1 大数据存储技术 - 典型的云原生数据库

- Amazon
 - S3, RDS, Aurora

- Google
 - Cloud BigTable、Cloud Storage

- 阿里巴巴
 - PolarDB-X、AnalyticDB、数据湖分析(DLA) 等
- 其它
 - 浪潮云溪NewSQL数据库、华为高斯数据库等

Cloud BigTable架构

§4.1 大数据存储技术 - 将数据部署到云端

- 大数据特性:
 - Volume、Velocity、Variety、 Veracity, Value
- 带来的困境
 - 用户端难以存储和处理
- 解决途径

EasyChair

§4.1 大数据存储技术 - 数据控制权的转移

§4.1 大数据存储技术 - 云端大数据存储的安全问题

- 云端大数据存储的典型安全问题
 - 数据拥有证明(Provable data possession): 证明数据存在且完整;
 - 大数据访问控制(Access control):不同用户角色访问不同数据;
 - 数据去重(Deduplication): 去除重复数据;
 - 大数据安全存储系统。
- 其它安全问题
 - 确定性数据删除(Data assured deletion): 确保数据可删除;
 - 数据定位(Data location): 确定数据正处于的位置;
 - 数据脱敏技术(Data Masking): 敏感数据消除;
 - **–**

证明数据存在且完整

§4.2 大数据完整性校验

§4.2 大数据完整性校验 - 数据持有证明

- 数据持有证明(PDP: Provable data possession)
 - 是一种加密技术,允许用户将他们的数据存储在不受信任的服务器(公有云)上, 并且有概率的保证服务器持有原始数据;
 - 客户端需要存储的仅仅是私钥,且不必取回文件;
 - 服务器不需要访问整个存储的文件;
 - 也称为数据可恢复性证明(POR: Proof of data retrivability)。

§4.2 大数据完整性校验 - HVT

- 同态可验证标签(HVT: Homomorphic Verifiable Tags)
 - HVT是一个对值 $(T_{i,m}, W_i)$,与消息m一起存储在服务器中;
 - 给定一个消息m, T_m 就是HVT;
 - W_i是一个随机值, i是索引值。
 - 特性:
 - 无锁验证(Blockless verification);
 - 同态计算:
 - 一个 HVT 值 $T_{m_i+m_j}$ 对应的就是消息 m_i+m_j 的 HVT 值。

基于离散对数构造同态可验证标签

§4.2 大数据完整性校验 - Giuseppe's PDP (概览)

§4.2 大数据完整性校验 - Giuseppe's PDP (配置)

配置阶段:

- $KeyGen(1^{\kappa}) \rightarrow (pk, sk)$
 - 选择三个素数: p = 2p' + 1, $q = 2q' + 1 \pi e$;
 - pk = (N, g), N = pq是RSA参数, g是 QR_N 的生成元;
 - sk = (e, d, r), $\not\equiv \text{ped} \equiv 1 \mod p'q'$, $\not\dashv \equiv r \stackrel{R}{\leftarrow} \{0, 1\}^{\kappa}$;

- $\forall i \in \{1, n\}, (T_{i,m_i}, W_i) \leftarrow TagBlock(pk, (d, r), m_i, i)$:
 - $T_{i,m_i} = (h(W_i) \cdot g^{m_i})^d \mod N$, 其中 $W_i = r \parallel i$.
- 外包数据:
 - $pk, M, \Sigma = \{T_{i,m_i}\}_{i=1}^n$

§4.2 大数据完整性校验 - Giuseppe's PDP (证据)

- 挑战阶段:验证块号为1~c的消息。
 - 生成挑战(C→S): $chal = (c, k_1, k_2, g_s)$
 - $\mathbf{k_1} \overset{R}{\leftarrow} \{0,1\}^{\kappa}$, $\mathbf{k_2} \overset{R}{\leftarrow} \{0,1\}^{\kappa}$;
 - $g_s = g^s \mod N$, $s \leftarrow \mathbb{Z}_N^*$;

用于混淆的密钥

· c: 待挑战块的序号。

秘密值

- 计算证据(S→C): v
 - 对于 $1 \le i \le c$, $i_j = \pi_{\mathbf{k_1}}(j)$, $a_j = f_{\mathbf{k_2}}(j)$

$$- T = T_{i_1,m_{i_1}}^{a_1} \cdot T_{i_2,m_{i_2}}^{a_2} \cdots T_{i_c,m_{i_c}}^{a_c}$$

$$= \left(h(W_{i_1})^{a_1} \cdots h(W_{i_c})^{a_c} \cdot g^{a_1 m_1} \cdots g^{a_c m_c}\right)^{\mathbf{d}} \mod N$$

$$- \rho = H(g_s^{a_1 m_{i_1} + \cdots + a_c m_{i_c}} \mod N)$$

• 证据: $v = (T, \rho)$

§4.2 大数据完整性校验 - Giuseppe's PDP (验证)

• 验证阶段:

- 先验知识:

•
$$sk = (e, d, r)$$
;

- $chal = (c, k_1, k_2, g_s);$
- $\tau = T^e$;
- $v = (T, \rho)$.

- 验证过程:

• 对于
$$1 \le i \le c$$
, $i_j = \pi_{\mathbf{k_1}}(j)$, $a_j = f_{\mathbf{k_2}}(j)$, $W_{i_j} = \mathbf{r} \parallel i_j$;

•
$$\bar{\tau} = \frac{\tau}{h(W_{i_i})^{a_j}} \mod N = g^{a_1 m_{i_1} + \dots + a_c m_{i_c}} \mod N;$$

• 如果
$$H(\bar{\tau}^s \mod N) = \rho$$
, 验证成功; 否则验证失败。

$$T = \left(h(W_{i_1})^{a_1} \cdots h(W_{i_c})^{a_c} \cdot g^{a_1 m_1} \cdots g^{a_c m_c}\right)^{\mathbf{d}} \mod N$$

$$\rho = H(g_s^{a_1 m_{i_1} + \dots + a_c m_{i_c}} \bmod N)$$

§4.2 大数据完整性校验 - Giuseppe's PDP (正确性)

正确性分析

$$g_{S} = g^{s} \mod N$$

$$\rho = H(g_{S}^{a_{1}m_{i_{1}} + \dots + a_{c}m_{i_{c}}} \mod N)$$
s

- 秘密值s的引入:证据v的随机性。
- 用于混淆的密钥 k_1 和 k_2 :增加下标的随机性。

$$1 \le i \le c$$
, $i_j = \pi_{\mathbf{k_1}}(j)$, $a_j = f_{\mathbf{k_2}}(j)$
没有的可重复性。

$$\mathbf{b}_{\widetilde{\mathbf{k_1}}}$$

切占
$$1 \leq i \leq c, \quad i_j = \pi_{\mathbf{k_1}}(j), \quad a_j = f_{\mathbf{k_2}}(j)$$

- 混淆的可重复性。

- 正确性: $H(\bar{\tau}^s \mod N) = \rho$

安全性分析:

- 在不知道s、d、 k_1 和 k_2 的情况无法生成外包数据: $T_{i,m_i} = (h(W_i) \cdot g^{m_i})^d \mod N$
- 无法破解s的情况,云端无法伪造证据。

不同的用户对不同的数据进行访问

§4.3 属性基访问控制

§4.3 属性基访问控制 - 传统访问控制模型

• 优势: 灵活、可扩展;

• 缺陷:数据存储脆弱。

§4.3 属性基访问控制 - 数据损失案例

- 纽约门罗银行数据泄露(2008年2月)
 - 造成一百余万的人员机密信息泄露,被盗金额数据不详;

- 哈特兰支付系统数据泄露(2009年)
 - 黑客成功攻入后台数据库,获得了超过一千万信用卡交易记录。公司用于进行赔付的金额达到4000余万美元;

- 中国交通银行数据泄露(2021年1月)
 - 有黑客在国外某论坛上发帖,以8.8BTC的总价(折合人民币200余万元)售卖中 国交通银行1679万笔数据。

§4.3 属性基访问控制 - 数据损失原因

• 访问控制器本身就不可信!

§4.3 属性基访问控制 - 基于加密的访问控制

• 基于加密的访问控制:

- 核心思想:将数据用<mark>用户私钥进行加密</mark>,持有私钥的用户可访问数据。

- 特点:

- 加密数据存储在云端;
- 每一个用户可以解密并访问自己的数据。

§4.3 属性基访问控制 - 与其他用户分享数据

- 对称密码解决方案
 - 在线密钥分发
- 公钥密码解决方案
 - 公钥证书管理开销大

§4.3 属性基访问控制 - 属性基加密的由来

- 属性基加密的初衷
 - 密钥管理可延展性强,不要求用户在线;
 - 不需要可信第三方的协助就能完成访问控制;
 - 支持可表达、可扩展的访问控制策略。

§4.3 属性基访问控制 - 属性基加密

- 属性基加密的目标:
 - 采用特定的属性集进行数据加密
 - "1对多"的公钥加密系统
 - 内嵌的访问控制机制

§4.3 属性基访问控制 - 密钥策略属性基加密

- 密钥策略属性基加密(KP-ABE: Key-Policy Attribute-Based Encryption)
 - 密文拥有一组属性;
 - 密钥对应一组访问控制结构;
 - 当且仅当<mark>满足密钥策略</mark>才能进行解密。

"All professors, CS PhD"

§4.3 属性基访问控制 - KP-ABE例子

§4.3 属性基访问控制 - 密文策略属性基加密(1)

- 密文策略属性基加密(CP-ABE: Ciphertext-Policy Attribute-Based Encryption)
 - 密文与一组访问策略关联

(CS AND PhD) OR Prof

- 密钥与一些属性关联
 - 属性通过数学的方式内嵌到密钥之中。

SK

§4.3 属性基访问控制 - 密文策略属性基加密(2)

• 当且仅当密钥中的属性满足密文中的访问策略才能进行解密

- 在解密过程中没有可信第三方进行策略检测并作出决定;
- 策略检测在揭秘过程中完成。

§4.3 属性基访问控制 - CP-ABE例子

§4.3 属性基访问控制 - ABE的优势

- 属性基加密的优势:
 - 用户自定义访问策略;
 - 访问策略在揭秘过程中强制执行
 - 不需要其他方(特别是可信第三方)参与;
 - 针对每一个明文,仅生成一个密文。

- CP-ABE相比KP-ABE更加适合于云计算场景:
 - 用户可以根据用户属性为每一个明文指定访问策略;
 - 用户仅仅保存一个密钥;
 - 用户可以在不更换公私钥的情况下更新密文策略。

§4.3 属性基访问控制 - 椭圆曲线

- 离散对数问题(DHP: Discrete Log Problem):
 - 给定一个阶为q乘法循环群G,其单位元为1。假设B是G的一个元,并且g是G的一个生成元。求解x,令 $g^x = B$ 。

$$m^e \mod p \xrightarrow{\text{Easy!}} ? = c$$
 $?^e \mod p \xrightarrow{\text{Hard!}} c$

双线性对:

单向函数(离散对数求解问题)

- G_1 和 G_2 是两个循环群,其中 G_1 是加法群, G_2 是乘法群。它们的阶为大素数q。构造出如下双线性对: \hat{e} : $G_1 \times G_2 \to G_2$ 。其中, G_1 和 G_2 中的离散对数问题是难以求解的,并且该双线性对满足以下性质:
 - 双线性: $\forall P, Q \in G_1, \forall a, b \in Z, \exists \ \hat{e}(aP, bQ) = \hat{e}(bP, aQ) = \hat{e}(P, Q)^{ab};$
 - 非退化性: $\exists P, Q \in G_1, st \ \hat{e}(P,Q) \neq 1 \in G_2;$
 - 可计算性: $\forall P,Q \in G_1$,能够在多项式时间内计算出 $\hat{e}(P,Q)$ 的值。

§4.3 属性基访问控制 - CP-ABE算法概览

Setup(λ) -> MSK, PK

KeyGen(MSK, Attrs.) -> SK

Encrypt(PK,M, Access policy) -> CT

Decrypt(SK, CT) -> M

§4.3 属性基访问控制 - CP-ABE的Setup

Authority

 $a, b \in_R \mathbf{Z}_{\mathbf{P}}$

MSK

MSK = a

Public Key

 $PK = (g, g^b, e(g, g)^a, H: \{0,1\}^* \to G)$

§4.3 属性基访问控制 - CP-ABE的KeyGen(1)

Authority

Authority issues secret keys for users who have attributes

Bob

"CS Dept."
"Professor"

Kevin

"CS Dept."
"Master"

James

"EE Dept."
"PhD"

§4.3 属性基访问控制 - KeyGen的核心关注

- 用户必须防止用户的共谋
 - 多个用户将自身的属性进行组合,已获得合法授权。

§4.3 属性基访问控制 - CP-ABE的KeyGen(2)

Authority

Bob has attributes: {"PhD", "CS Dept.", "TA"}

$$SK = (g^{a+bt}, g^{t})$$
 $H("PhD")^{t}H("CS Dept.")^{t}H("TA")^{t})$

't': random number in Z_p

't' ties components together

Personalization!

Collusion Resistance

§4.3 属性基访问控制 - CP-ABE的密钥个性化

Kevin: "CS Dept."

... V

ga+bt, gt, H("CS Dept.")

$$g^{a+bt'}, g^{t'}, H("PhD")^{t'}$$

Components are incompatible

(Formal security proofs in papers)

§4.3 属性基访问控制 - CP-ABE的加密(1)

Data Owner

$$PK = (g, g^b, e(g, g)^a, H: \{0,1\}^* \to G)$$

Given a file M and an access policy, data owner will perform the following

§4.3 属性基访问控制 - CP-ABE的加密(2)

Data Owner

Data Owner generates random s, then computes

Ciphertext:

$$CT = (M \cdot e(g,g)^{as}, g^{s},$$

$$C_1 = (g^{bs_1}H("Prof")^{r_1}, g^{r_1}), C_2 = (g^{bs_2}H("PhD")^{r_2}, g^{r_2}),$$

$$C_3 = (g^{b_{83}}H("CS Dept.")^{r_3}, g^{r_3})$$

§4.3 属性基访问控制 - CP-ABE的解密

Ciphertext CT

Secret Key SK

$$SK = (g^{a+bt}, g^t, H("Prof")^t, H("PhD")^t, H("CS Dept.")^t)$$

$$e(g^{a+bt}, g^s) = e(g,g)^{as} e(g,g)^{bts}$$

0.00	"Prof"		"PhD" ANI	O "CS Dept."
$e(g,g)^{bts} =$	$= \frac{e(g^{bs_1}H("Prof")^{r_1}, g^t)}{e(g^{r_1}, H("Prof")^t)}$	_	$\frac{(g^{b}^{2}H("PhD")^{r_{2}}, g^{t})}{e(g^{r_{2}}, H("PhD")^{t})}$	e(gbs3H("CS Dept.")r3, gt) e(gr3, H("CS Dept.")t)
			$e(g,g)^{bts_2}e(g,g)^{bts_3}$	

c(g,g)

§4.1 & §4.2 & §4.3 小结

• 内容回顾

- 大数据存储技术
- 数据持有证明
- 属性基加密

掌握

- 数据持有证明的工作原理
- KP-ABE和CP-ABE的区别和联系
- CP-ABE的工作原理

Thanks! Questions & Advices!

