2022-23 First Semester MATH1053 Linear Algebra I

Assignment 5a

Due Date: 29/Nov/2022 (Tuesday), 11:00 in class.

- Write down your **CHN** name and **student ID**. Write neatly on **A4-sized** paper (*staple if necessary*) and **show your steps**.
- Late submissions or answers without steps won't be graded.
- 1. Which of the following sets are spanning sets for \mathbb{R}^3 ? Justify your answers.
 - (a) $\{(2,1,-2)^T, (3,2,-2)^T, (2,2,0)^T\}.$
 - (b) $\{(1,1,3)^T, (0,2,1)^T\}.$
- 2. Determine if the following vectors are linearly independent, and justify your answers:

(a)
$$\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$
, $\begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$ in \mathbb{R}^3

(b)
$$\begin{pmatrix} 2 \\ 1 \\ -2 \end{pmatrix}$$
, $\begin{pmatrix} 3 \\ 2 \\ -2 \end{pmatrix}$, $\begin{pmatrix} 2 \\ 2 \\ 0 \end{pmatrix}$ in \mathbb{R}^3

(c)
$$2, x^2, x, 2x + 3$$
 in P_3

- 3. Let $A \in \mathbb{R}^{m \times n}$. Show that if A has linearly independent column vectors, then $N(A) = \{0\}$.
- 4. Let $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_k$ be linearly independent vectors in \mathbb{R}^n , and let A be a nonsingular $n \times n$ matrix. Define $\mathbf{y}_i = A\mathbf{x}_i$ for $i = 1, \dots, k$. Show that $\mathbf{y}_1, \dots, \mathbf{y}_k$ are linearly independent.
- 5. Show that any finite set of vectors that contains the zero vector must be linearly dependent.
- 6. Let \mathbf{v}_1 , and \mathbf{v}_2 be two vectors in a vector space V. Show that \mathbf{v}_1 and \mathbf{v}_2 are linearly dependent if and only if one vector is a scalar multiple of the other.
- 7. Let $V = M_{3\times 3}(\mathbb{R})$. Let W be the set of all symmetric matrices in V.
 - (a) Show that W is a subspace of V.
 - (b) Compute $\dim W$.