\mathbb{S}^{\wedge}_{MU}

Imagine maps:

 $\operatorname{Map}_{*}^{G}(A, B)$

 $\operatorname{Map}_{*}^{G}(A, B)$

where $A, B \in \mathsf{Top}_*^G$ (where Top is a suitable category).

If $X \in \mathsf{Top}_*$ and $Y \in \mathsf{Top}$, we can form the spectra:

$$\Sigma^{\infty}X$$
, $\Sigma^{\infty}_{+}Y$

and for a spectrum $Z \in Sp$, we can form the pointed space:

$$\Omega^{\infty}Z$$

THEOREM 1 (Pythagoras). $a^2 + b^2 = c^2$.

Proof. Trivial

Lemma 2 (Zorn's Lemma). An poset $P \in Poset$ where all chains are bounded above has a maximal element.

Proof. Axiom of choice.

Proposition 3. $\sqrt[3]{2}$ is not a rational number.

PROOF. Suppose it was. Then, there will be two integers $a, b \in \mathbb{Z}$ such that $a^3 + a^3 = b^3$. We will need the following:

THEOREM 4 (Fermat's Last Theorem, due to Andrew Wiles). The equation $a^n + b^n = c^n$ has no integer solutions when $n \ge 3$.

Proof. Trivial [Theorem 4] \square

We see that $\sqrt[3]{2}$ being rational produces a contradiction to Fermat's Last Theorem. Therefore, it must be irrational. [Proposition 3] \square

REMARK 5 (Jordan curve theorem). It happens

idea. Duh

S, MU, tmf, BP, T(n), K(n), $H\mathbb{Z}$, E_n S, MU, tmf, BP, T(n), K(n), $H\mathbb{Z}$, E_n

CLAIM 6. When $z \in \mathbb{C}$, we have that:

$$e^z = e^{\Re(z)}(\cos \Im(z) + i \sin \Im(z))$$

 $K(\mathbb{Z})$ K $K(n-\operatorname{cork}_p(\mathcal{F}))$ K(n) $K(\mathbb{Z})$ $K(\infty)$

Λ

Axiom (Axiom of Choice). For any collection of non-empty sets \mathcal{S} , there exists a choice function $\phi: \mathcal{S} \to \bigcup_{s \in \mathcal{S}} s$, such that $\phi(s) \in s$.

1

$abcdefghijklmnopqrstuvwxyz\\ABCDEFGHIJKLMNOPQRSTUVWXYZ$

abcdef ghijklmnopqrstuvwxyz ABCDEFGHIJKLMNOPQRSTUVWXYZ $\alpha\beta\gamma\delta\epsilon\zeta\eta\theta\iota\kappa\lambda\mu\nu\xi\sigma\pi\rho\sigma\tau\nu\phi\chi\psi\omega$ AΒΓΔΕΖΗΘΙΚΛΜΝΞΟΠΡΣΤΥΦΧΨΩ $\epsilon\vartheta\rho\phi$

