

ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

СТЕКЛО ТЕРМОМЕТРИЧЕСКОЕ

МАРКИ

FOCT 1224-71

Издание официальное

ГОСУДАРСТВЕННЫЙ КОМИТЕТ СССР ПО СТАНДАРТАМ
МОСИВА

ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

СТЕКЛО ТЕРМОМЕТРИЧЕСКОЕ

ΓΟCT 1224--71*

Марки

Thermometric glass. Markes

Взамен ГОСТ 1224—41

Постановлением Государственного комитета стандартов Совета Министров СССР от 16 сентября 1971 г. № 1593 срок введения установлен

C 01.01.19/3 F.;

для стекла марки 650 — с 01.01.1974 г.

Проверен в 1977 г. Срок действия ограничен

до 01.01.1983 г.

Несоблюдение стандарта преследуется по закону

1. Настоящий стандарт распространяется на термометрическое стекло, предназначенное для изготовления термометров с пределами измерений от минус 200 до плюс 650°С.

2. Термометрическое стекло должно изготовляться следую-

щих марок:

360 — для термометров с верхним пределом шкалы 360°C;

500 — для термометров с верхним пределом шкалы 500°C;

650 — для термометров с верхним пределом шкалы 650°C.

3. Химический состав термометрического стекла должен соответствовать технической документании, утвержденной в установленном порядке.

4. Физико-химические свойства термометрического стекла

должны соответствовать указанным в таблице.

Марки стекла		
360	500	6 50
6.05	0,05	0.01
0,0		

Издание официальное

Перепечатка воспрещена

 Переиздание (сентябрь 1978 г.) с изменением № 1, опубликованным в марте 1978 г.

	Марки стекла			
Свойства	360	500	650	
в) смещение нулевой точки в термометрах из состаренного стекла после контрольного старения их, °С, не более при температуре: 200°C	0.30	-		
300°C	0,50	0,40		
360°C 400°C	0,70			
500°C		0.80 1.60	$0,20 \\ 0,40$	
600°C			0,80	
650°C 2. Қоэффициент объемного расширения			1,00	
в интервале температур от 0 до 100° C, $10^{-7} \cdot {^{\circ}}C^{-4}$	От 235 до 250	От 153 до 168	От 80 до 95	
3. Термическая устойчивость, °С, не ме-	,			
нее 4. Химическая стойкость:	100	1:20	200	
а) щелочестойкость				
потери массы образца в смеси 1 н. рас-				
твора углекислого натрия и 1 н. раствора гидрата окиси натрия, мг√см², не более	1,5	1,7	2,0	
б) кислотостойкость	1,0	1,7	2,0	
потери массы образца в 20,4% раствора соляной кислоты, мг/см², не более в) водостойкость	0,01	0,01	0,15	
расход 0,01 н. раствора соляной кислоты, пошедшей на титрование мл/г, не более	0,4	0,1	0,1	

Примечание. Допустимые отклонения от указанных значений по химической стойкости не должны превышать +15%.

(Измененная редакция—«Информ. указатель стандартов» N_2 3 1978 г.).

5. При обработке на стеклодувной горелке термометрическое стекло не должно чернеть и кристаллизоваться.

6. Испытания на соответствие требованиям \ п. 3 проводят по технической документации, утвержденной в установленном порядке, при непрерывной варке стекла — не реже одного раза в месяц, при периодической варке — один раз от каждой варки.

7. Испытания на соответствие требованиям п. 1а таблицы проводят при изменении химического состава стекла. Испытания проводят по следующей методике. Из испытываемого стекла изготовляют не менее десяти термометров с ценой деления 0,02°С и интервалом температур от минус 1 до плюс 1°С, резервуар которых позволяет нагревать их до 100°С.

Предварительно охлажденные в тающем льду термометры промывают дистиллированной водой. Затем устанавливают их в колодец прибора тройной точки воды, наполненный дистиллиро-

ванной водой, охлажденной до 0°C. Термометры устанавливают так, чтобы положение нулевой точки было на 4—5 мм выше поверхности воды.

Показания термометров следует отсчитывать после десятиминутной выдержки в приборе тройной точки воды.

Показания термометров отсчитывают с помощью катетометра, зрительной трубы или лупы не менее чем с 3^{\times} увеличением. Отсчет производят не менее трех раз с интервалом 1 мин. Затем термометры помещают в кипящую воду и выдерживают их в течение 1 ч при температуре $100\pm3^{\circ}$ С, после чего охлаждают до $20\pm5^{\circ}$ С и определяют показания термометров в приборе тройной точки воды.

Депрессию стекла определяют как разность показаний термометров в сосуде тройной точки воды до и после нагревания до 100° C.

8. Испытания на соответствие требованиям п. 16 таблицы проводят при изменении химического состава стекла следующим образом.

Из испытываемого стекла изготовляют не менее трех термометров с равноделенной шкалой с ценой деления 0.01° С и пределом измерения шкалы от минус 0.8 до плюс 1.2° С. Термометры устанавливают в прибор тройной точки воды и по методике, изложенной в п. 7, производят отсчет положения нулевой точки. После этого термометры хранят при температуре $20\pm5^{\circ}$ С и по истечении года производят отсчет положения нулевой точки.

Повышение положения нулевой точки в процессе естественного старения определяют как разность показаний термометра до начала и по истечении одного года хранения.

9. Испытания на соответствие требованиям п. 1в таблицы проводят при изменении химического состава стекла следующим образом.

Из испытываемого состаренного стекла изготовляют термометры с контрольной точкой нуля и верхним пределом шкалы, соответствующим величинам, указанным в п. 18 таблицы, по 5 термометров каждого предела шкалы.

В приборе тройной точки воды или термостате со льдом производят отсчет положения нулевой точки термометров по методике, изложенной в п. 7.

Термометры подвергают контрольному старению в течение 6 ч при температуре, соответствующей верхнему пределу шкалы. Для этого термометры помещают в термостат или печь для старения до отметки, находящейся на 100 мм ниже верхней оцифрованной отметки шкалы.

Охлаждают термостат с термометрами до 200°С, извлекают

термометры и выдерживают их при $20\pm5^{\circ}\text{C}$ не менее 20 ч. Затем производят отсчет положения нулевой точки.

Разность показаний положения нулевой точки до и после контрольного старения составляет величину смещения.

10. Коэффициент объемного расширения (п. 2 таблицы) определяют не реже двух раз в год методом весового термометра.

Метод заключается в следующем.

Из испытываемого стекла изготовляют не менее пяти ампул длиной 60—70 мм и диаметром 10—12 мм, имеющих расширение в верхней части и заканчивающихся оттянутой капиллярной трубкой, изогнутой в двух местах. Конец капиллярной трубки в суженной части срезают. Ампулу с прикрепленным на проволочном держателе сосудом взвешивают на аналитических весах с точностью ±0,0001 г и заполняют ампулу ртутью марки P1 или P2 по ГОСТ 4658—73 при помощи вакуумной установки.

Заполненную ампулу, конец капиллярной трубки которой помещен в запасной сосуд под слой ртути, погружают в тающий снег или мелкоизмельченный лед и выдерживают в течение 45— 50 мин. Затем ампулу извлекают из снега или льда и конец капиллярной трубки быстро опускают в пустой сосуд, взвешенный с ампулой, следя за тем, чтобы не потерять ни одной капли ртути. Расширяющаяся при этом ртуть выливается в сосуд. Ампулу тщательно протирают от капель воды, помещают в эксикатор над хлористым кальцием, где выдерживают в течение 40 мин, и взвешивают вместе с сосудом. Определяют массу ртути (P_0) , заполнявшей ампулу при 0°C. После этого ампулу подвешивают в колбе в парах кипящей воды. Наблюдают момент, когда окончится падение капель ртути из капилляра, и снимают последнюю каплю ртути с конца капилляра легким простукиванием по колбе. Температуру кипения воды (t) определяют по термометру ной деления 0,05°C, укрепленному в пробке колбы. Затем ампулу быстро извлекают из колбы, дают охладиться в эксикаторе и взвешивают ее с сосудом, с которым производились взвешивания. Определяют массу ртути $(P_{\rm t})$, заполнявшей лу при температуре t.

Коэффициент объемного расширения стекла (β_t) определяют по формуле

$$\beta_t = \frac{P_t (1 + \alpha_t \cdot t) - P_0}{P_0 \cdot t},$$

где a_t — коэффициент объемного расширения ртути в интервале температур от 0 до 100°C, равный $1825 \cdot 10^{-7} \cdot {}^{\circ}\text{C}^{-1}$.

11. Испытания на соответствие требованиям п. 3 таблицы проводят не реже двух раз в год по ГОСТ 21400—75.

12. Испытания на соответствие требованиям п. 4 таблицы проводят не реже одного раза в год по ГОСТ 21400—75.

13. Испытания на соответствие требованиям п. 5 проводят при изменении химического состава стекла визуально при обработке на стеклодувной горелке.

Редактор А. В. Цыганкова Технический редактор Ф. И. Шрайбштейн Коррсктор Э. В. Митяй

основные единицы си

Величина	Единица			
	Наименование	Обозначение		
	Паименование	русское	международное	
ДЛИНА	метр	м	m	
MACCA	килограмм	КГ	kg	
время	секунда .	c	s	
СИЛА ЭЛЕКТРИЧЕСКОГО ТОКА	ампер	\mathbf{A}	A	
ТЕРМОДИНАМИЧЕСКАЯ				
ТЕМПЕРАТУРА	кельвин	к	K	
количество вещества	моль	моль	mol	
СИЛА СВЕТА	кандела	кд	cd	
допол	нительные е;	диницы си		
Плоский угол	радиаи	рад	rad	
Телесный угол	стерадиан	сp	sr	

производные единицы си,имеющие собственные наименования

	Единица		Выражение производной единицы	
Величина	наименование	обозначение	через другие единицы СИ	через основные единицы СИ
Частота	` герц	Гц		e-i
Сила	ньютон	н		M·KF·C-2
Давление	паскаль	Па	H/m²	M ⁻¹ ·KΓ·C ⁻²
Энергия, работа, количество теплоты	джоуль	Дж	H·m	M 2 · KF · C-2
Мощность, поток эпергии	ватт	Вт	Дж/с	M ² ·K Г ·С ^{—3}
Количество электричества,				
электрический заряд	кулон	Кл	A·e	c·A
Электрическое напряженке,				
элекгрический потенциал	водыт	В	Br/A	M 2 KI C -3 A-1
Электрическая емкость	фарадо	Ф	Кл/В	M-2 -Kr-1-C4-A2
Электрическое сопротивление	ом	Ом	B/A	M2-KF C -3 -A-2
Электрическая проводимость	симене	Car	\mathbf{A}/\mathbf{B}	m -2 Kr -1. C3 · A2
Поток магнятной индукцыи	ne6ett	Bo	B-e	M2.KIC -2 .A
Магиитная индукция	100.48	Ta	B6/m²	Er-c-2.A-1
Индуктивность	генри	Гя	66/A	M2-KF-C-2:A-2
Световой поток	nemen.	2155	Tropies.	кд-ер)*
Освещенность .	r arenae	. 73 8	w	м≅ кд ср
Активность нуклида	бекверсия	tis		c −1
Доза налучения	грэй	$\Gamma_{\mathcal{D}}$	- Values	M ² ⋅ C ⁻²

^{*} В эти два выражения входят, наравне с основными единицами СИ, дополнительная единица—стераднам.