2) Probability Distributions

Renato Valladares Panaro

Exercise 2.1

```
## Random sample of size n=10 of N(0,1)-Distribution
x1 = rnorm(n = 10, mean = 0, sd = 1)
hist(x1, breaks=3)
## Random sample of size n=100 of N(0,1)-Distribution
x2 = rnorm(n = 100, mean = 0, sd = 1)
hist(x2, breaks=3)
## Random sample of size n=1000 of N(0,1)-Distribution
x3 = rnorm(n = 1000, mean = 0, sd = 1)
hist(x3, breaks = 3)
```

Look at the three histograms and discuss them with your neighbour. Tune the breaks parameter. What is a reasonable choice? Type rnorm and ?hist for further help.

Exercise 2.2

Assume, the survival probability of patients after brain surgery is exponentially distributed. Assume further that the average survival time of a patient is 36 months, $\lambda = 1/36$.

You can plot the density function of the exponential distribution by the following code:

```
x = seq(0, 200, length.out = 100)
y = dexp(x, rate = 1/36)
plot(x, y, type = "l", xlab = "months")
```

You can plot the cumulative distribution function of the exponential distribution by the following code:

```
x = seq(0, 200, length.out = 100)
y = pexp(x, rate = 1/36)
plot(x, y, type = "l", xlab = "months")
```

Determine the probability of a particular patient of surviving equal or shorter than 12 month. Use the R-function pexp. You get help by typing ?pexp.

What is the probability of a particular patient of surviving longer than 5 years (i.e. 60 month)?

Exercise 2.3

Let the overall success probability of a therapy be $\pi=0.7$. Determine the probability that $k=\{1,4,8\}$ OR LESS patients out of n=10 will have a successful therapy. You can employ the R-function pbinom. You get help via ?pbinom.

Determine the probability that EXACTLY $k = \{1, 4, 8\}$ patients out of n = 10 will have a successful therapy. You can employ the R-function dbinom. You get help via ?dbinom.