(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平7-201745

(43)公開日 平成7年(1995)8月4日

(51) Int.Cl.⁶

識別記号 庁内整理番号

В

FΙ

技術表示箇所

H01L 21/205 21/02

2

審査請求 未請求 請求項の数5 OL (全 5 頁)

(21)出願番号

特願平5-336984

(22)出顧日

平成5年(1993)12月28日

(71)出顧人 000005120

日立電線株式会社

東京都千代田区丸の内二丁目1番2号

(72)発明者 坂口 春典

茨城県土浦市木田余町3550番地 日立電線

株式会社アドバンスリサーチセンタ内

(72)発明者 中園 隆一

茨城県土浦市木田余町3550番地 日立電線

株式会社アドパンスリサーチセンタ内

(72)発明者 海野 恒弘

茨城県土浦市木田余町3550番地 日立電線

株式会社アドバンスリサーチセンタ内

(74)代理人 弁理士 松本 孝

最終頁に続く

数倾斜(0001)面

(54) 【発明の名称】 半導体ウェハ及びその製造方法

(57)【要約】

【目的】(0001)面サファイア基板の成長面を傾斜することによって、GaNエピタキシャル結晶の純度及び結晶性を大幅に向上し、かつ高濃度p型GaNをアズグロウンの状態で得る。

【構成】サファイア単結晶基板の(0001)面を<2 1* 1* 0>方向もしくは<011* 0>方向に数度傾けて鏡面研磨することにより、微傾斜(0001)面サファイア単結晶基板4とする。微傾斜(0001)面5には多くのステップ6が存在する。このためステップ端を基点としたGaNエピタキシャル結晶2のステップフローモード成長が容易に実現する。その結果、結晶欠陥が大幅に低減する。

6 15,7

2 Gallatt 外的結晶

4 徽傾斜(0001)面97747基板

1

【特許請求の範囲】

【請求項1】(0001)面を<21* 1* 0>(以 下、1* は上にバーの付いた1を意味する。)方向もし くは<011* 0>方向に微傾斜した鏡面を有するサフ ァイア結晶基板の微傾斜(0001)面上に、窒化ガリ ウム(GaN)、窒化アルミニウム(AIN)、窒化イ ンジウム(InN)、またはこれらの混晶のp型、n 型、またはi型薄膜の単層もしくは多層の結晶が積層さ れている半導体ウェハ。

【請求項2】(0001)面を<21* 1* 0>方向も 10 しくは<011* 0>方向に微傾斜した鏡面を有するサ ファイア結晶基板の微傾斜(0001)面上に、GaN バッファ層、p型GaN層、n型GaN層が積層されて いる半導体ウェハ。

【請求項3】サファイア結晶基板の(0001)面を微 傾斜したまま鏡面研磨し、その上に半導体の単層もしく は多層構造のエピタキシャル層を成長することを特徴と する半導体ウェハの製造方法。

【請求項4】サファイア結晶基板上にバッファ層を成長 し、その上にp型GaN層、n型GaN層を成長してp 20 る。 n構造のGaNエピタキシャル結晶を気相成長する工程 を有する半導体ウェハの製造方法において、

上記サファイア結晶基板に、(0001)面を<21* 1* 0>方向もしくは<011* 0>方向に微傾斜した 面を鏡面とするサファイア結晶基板を用いたことを特徴 とする半導体ウェハの製造方法。

【請求項5】上記微傾斜角度が2°~10°のいずれか である請求項1もしくは2に記載の半導体ウェハ、また は請求項3もしくは4に記載の半導体ウェハの製造方 法。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、サファイア結晶基板上 にGa、Al、In等の窒化物薄膜結晶を形成した半導 体ウェハ及びその製造方法に関する。

[0002]

【従来の技術】GaN及びその関連化合物によるLE D、LDやHEMTなどの素子の実現が期待されてい

晶のC-面、即ち(OOO1)面の鏡面に研磨された面 上にエピタキシャル成長されている。

【0004】エピタキシャル成長は主に気相成長により 行なわれている。特に有機金属気相エピタキシー(MO VPE) 法が多く用いられているが、化学気相エピタキ シー (VPE)法、分子線エピタキシー (MBE)法 や、これらに光励起やプラズマを用いたものも用いられ ている。

【0005】MOVPE法では、前述のサファイア単結 晶基板を水素もしくは窒素雰囲気中で1000℃程度に 50 検討したところ、成長面を傾斜させると大幅な品質向上

加熱し、トリメチルガリウム (TMG) とアンモニア (NH3)のガスを流すことにより、GaNのエピタキ シャル薄膜を成長している。

【0006】A1NやInNの場合は、各々TMGの代 りにトリメチルアルミニウム (TMA) やトリメチルイ ンジウム(TMI)を流して成長する。

【0007】従来、サファイア基板上に、AINやGa Nの100~1000A程度の薄膜を600℃程度の低 温で成長する。これを1000℃程度に加熱して熱処理 し、その後その温度でGaNを成長することにより、G aN層の品質が向上することが報告されており、キャリ ア濃度が4×10¹⁶~2×10¹⁷cm⁻³程度のn型のアン ドープGaNエピタキシャル結晶が得られている(公知 例1、2)。

【0008】また、亜鉛(Zn) やマグネシウム (M g) を添加したGaNを電子線で照射処理することや (公知例1、3)、不活性ガス中でアニールすることに より(公知例4)1×10¹⁷~6×10¹⁸cm⁻³のキャリ ア濃度のp型GaNエピタキシャル結晶が得られてい

【0009】公知例1:「高輝度青色発光のための電子 材料技術、田口編、P51~58,1991年12月発 行(サイエンスフォーラム社)」

公知例2:S. NAKAMURA:J. J. A. P. V OL30, No10A, 1991, ppL1705~L 1707

公知例3:S. NAKAMURA:J. J. A. P. V OL30, No10A, 1991, ppL1708~L

30 公知例4:S. NAKAMURA:J. J. A. P. v ol31, (1992)pp1258~11266 P artl, No. 5A

[0010]

【発明が解決しようとする課題】前述した従来方法で成 長したGaN結晶は、低温成長バッファ層を介在させて もまだ純度や結晶性が不十分である。

【0011】また、高濃度のn型GaN(ここで高濃度 とはキャリア濃度が1×10^{18cm-3}以上をいう) エピタ キシャル結晶は、Siドープなどにより容易に得られて 【0003】GaN、AIN、InNはサファイア単結 40 いるのに対して、高濃度のp型GaNエピタキシャル結 晶は電子線照射や成長後の熱処理によって一部実験的に 得られているものの、これらの後処理なしにいわゆるア ズグロウン (as grown) の状態で容易に得られるまでに は致っていない。

> 【0012】本発明者等は、従来は基板の成長面につい ては全く未検討で、傾斜していない(0001)面サフ ァイア基板のみを用いて専らエピタキシャル成長法の改 良及び成長結晶の後処理により品質の改善を行なってい た点に着目し、観点を変えて基板の成長面について鋭意

がはかれるという知見を得た。

【0013】したがって本発明の目的は、成長面を傾斜 することによって、上述した従来技術の問題点を解決 し、純度及び結晶性が大幅に向上し、かつ高濃度p型ド ーピングが可能となるGaN及び関連化合物(AIN、 InN及びこれらとGaNの混晶)の半導体ウェハ及び その製造方法を提供することにある。

[0014]

【課題を解決するための手段】本発明は、GaN等をエ 板の(0001)面を所定晶軸方向に傾けて鏡面研磨し た、いわゆる微傾斜面の基板を用いている。この微傾斜 (0001)面上にGaN等をエピタキシャル成長させ ることにより高品質な高濃度p型GaN及び関連化合物 のエピタキシャル結晶を実現したものである。

【0015】すなわち、本発明の半導体ウェハは、(0 001)面を<21*1*0>方向もしくは<011* 0>方向に微傾斜した鏡面を有するサファイア結晶基板 の微傾斜(0001)面上に、窒化ガリウム(Ga N)、窒化アルミニウム (A1N)、窒化インジウム (InN)、またはこれらの混晶のp型、n型、または i型薄膜の単層もしくは多層の結晶が積層されているも のである。

【0016】また本発明の半導体ウェハは、(000 1) 面を<21*1*0>方向もしくは<011*0> 方向に微傾斜した鏡面を有するサファイア結晶基板の微 傾斜 (0001) 面上に、GaNバッファ層、p型Ga N層、n型GaN層が順次積層して、青色発光ダイオー ド用ウェハとしたものである。

【0017】また、本発明の半導体ウェハの製造方法 は、サファイア単結晶基板の(0001)面を微傾斜し たまま鏡面研磨し、その上にウェハの単層もしくは多層 構造のエピタキシャル層を成長するようにしたものであ

【0018】また、本発明の半導体ウェハの製造方法 は、サファイア結晶基板上にバッファ層を成長し、その 上にp型GaN層、n型GaN層を成長してpn構造の GaNエピタキシャル結晶を気相成長する工程を有する 半導体ウェハの製造方法において、サファイア結晶基板 に、(0001)面を<21*1*0>方向もしくは< 40 011* 0>方向に微傾斜した面を鏡面とするサファイ ア結晶基板を用いたものである。

【0019】これら半導体ウェハ、及び半導体ウェハの 製造方法において、微傾斜角度は2°~10°のいずれ かであることが好ましい。

【0020】ものである。

[0021]

【作用】従来の(0001)面サファイア基板上に成長 したGaNエピタキシャル結晶には、窒素の抜けた空孔 の純度が良くない原因や、p型GaNが容易に得られな い原因の一つとなっていると考えられる。

【0022】これらの結晶欠陥は結晶のエピタキシャル 成長中に発生すると考えられる。すなわち、GaN/サ ファイア系結晶ではサファイア基板とGaN結晶の格子 定数等の物性がかなり異なるいわゆるヘテロエピタキシ ャル成長のため、図3に示すように、(0001)面サ ファイア単結晶基板1上の(0001)面3に成長する GaNエピタキシャル結晶2は島状の三次元成長をしや ピタキシャル成長させる基板としてサファイア単結晶基 10 すく、これが前記の欠陥を発生しやすくしていると考え

> 【0023】これに対して、GaAs基板上のGaAs エピタキシャル成長のような同種基板上に成長するホモ エピタキシャルでは、エピタキシャル成長モードが二次 元成長となるため、結晶欠陥が非常に低減される。

【0024】ところで、前述した低温成長A1Nバッフ ァや低温成長GaNバッファはこの二次元成長を促進す る効果があると考えられるがまだ不十分である。二次元 成長を実現するためには成長モードをステップフローモ 20 ードにすることが有効である。

【0025】この点で、図1に示すように、本発明の微 傾斜(0001)面サファイア単結晶基板4を用いる と、微傾斜(0001)面5に多くのステップ6が存在 するため、このステップ端を基点としたGaNエピタキ シャル結晶2のステップフローモード成長が容易に実現 する。

【0026】したがって、二次元成長による良質なGa N及び関連化合物結晶を得ることができる。また、高濃 度のp型GaNエピタキシャル結晶を電子線照射や成長 30 後の熱処理などの後処理なしにアズグロウンの状態で容 易に得られる一方、n型GaNエピタキシャル結晶の濃 度もより高めることができる。

[0027]

【実施例】以下、本発明の半導体ウェハを、サファイア 単結晶基板上の微傾斜面にAl、Ga等の窒化物薄膜結 晶を気相形成した実施例について説明する。

【0028】<実施例1>

(0001)面を<21*1*0>方向に2。傾けて鏡 面研磨したサファイア単結晶基板をMOVPE装置の反 応炉中のグラファイトサセプタ上にセットし、高純度水 素を十分流して炉内をパージした。

【0029】次に、水素ガスを炉内に流しながらサセプ タを加熱して基板を1000℃以上に加熱し、10分以 上保持した。その後、基板温度を600℃にし、TMA とNH3 を炉内に流していわゆる低温成長のA1Nバッ ファ層を50nm成長した。

【0030】そして、TMAの炉内への供給を止め、水 素とNH3 を流したまま基板を1030℃に加熱し、そ の後TMGを炉内に流してGaNを5μm 成長した。こ や他の結晶欠陥が多く存在し、これがアンドープGaN 50 のアンドープGaNエピタキシャル結晶の電気特性をホ

ール効果法により測定したところ、n型でキャリア濃度 が5×1015cm-3程度であり、従来に比べ大幅な純度向 上が認められた。

【0031】なお、成長時の水素、NH3、TMG、T MAの流量は各々、101/min、51/min、3 cc/min, 0.8cc/minvas.

【0032】<実施例2>

(0001)面を<21*1*0>方向へ5°及び10 ・ 傾けたサファイア基板を用いて実施例1と同様なエピ タキシャル成長を評価を行なったところ、同様なキャリ 10 ア濃度のアンドープGaN結晶が得られた。キャリア濃 度は傾斜角度が大きいほど小さくなる傾向が見られた。 【0033】<実施例3>

(0001)面を<011*0>方向へ2°、5°10 * と傾けたサファイア基板を用いて実施例1と同様なエ ピタキシャル成長を行なったところ実施例1、2と同様 な結果が得られた。

【0034】<実施例4>実施例1で用いたA1Nバッ ファ層の代りにGaNバッファ層を600℃で20nm 成長し、その他の条件は実施例1と全く同じ条件でアン 20 ドープGaN結晶を成長した。アンドープGaNエピタ キシャル結晶のキャリア濃度はn型で1×10¹⁵cm⁻³程 度であり、実施例1より高純度の結晶が得られた。

【0035】<実施例5>本実施例は、図2に示すLE D用p n接合GaNエピタキシャル結晶ウェハの例であ る。(0001)面を<21*1*0>方向に2°傾け た面を鏡面とする微傾斜(0001)面サファイア単結 晶基板4を用いてpn構造のGaNエピタキシャル結晶 7、8、9をMOVPE法により成長した。

【0036】実施例1と同様に基板4を1050℃で水 30 素ガスを流しながら加熱し、表面清浄化を行なった。次 に500℃に基板温度を下げて水素とTMGとNH3を 流し低温度成長GaNバッファ層7を25nm成長し た。次に水素とNH3 を流しながら基板温度を1030 ℃に上げ水素とTMGとNH3 とビスシクロペンタジエ チルマグネシウム (CP2 Mg) を流してp型GaN層 8を2μπ成長した。

【0037】引き続き水素とTMGとNH3 とジシラン (Si₂ H₆)を流し、n型GaN層9を2μm成長し た。その後NH3 と水素を流しながら結晶を冷却し60 40 0℃~800℃になった時点で水素とNH3 を流すのを 停止し、代りに高純度N2 ガスを流して室温まで冷却し た。

【0038】ここで、水素、NH3、TMG、CP2 M g、Si₂ H₆ 、N₂ の各々の流量は、201/mi n, 51/min, 1cc/min, 2cc/min, 1×10-4 c c/min、201/minである。

【0039】成長した結晶のキャリア濃度はn型GaN 層9がジシランによるSiドープで5×1019cm-3、p 型GaN層8がアズグロウン状態で1×10¹๑cm⁻³であ 50 2 GaNエピタキシャル結晶

6 り、ともに1×10¹⁸cm⁻³を超えるはるかに高い高キャ リア濃度のp型GaN層、n型GaN層が得られた。

【0040】<実施例6>実施例5の成長、評価を、< 21* 1* 0>方向へ5°、10°と各々傾けた基板や <011* 0>方向へ2°、5°、10°と傾けた基板 についても行なったところ、実施例5と同様な結果を得 た。

【0041】 <他の実施例>なお、微傾斜(0001) 面サファイア単結晶基板上に成長できる結晶としては、 AlNやGaNの他にInN及びこれらの混晶やこれら を含む多層構造エピタキシャル結晶がある。

【0042】また、エピタキシャル成長法は、MOVP Eの他にMBEやプラズマCVDなど他の気相成長法を 用いることもできる。

【0043】さらに、サファイア基板に代えてシリコン カーバイド (SiC) やシリコン基板などを用いたGa N及び関連化合物のエピタキシャル成長においても本発 明の微傾斜面上成長は可能であり、エピタキシャル結晶 の品質を向上させることができる。

[0044]

【発明の効果】

(1) 請求項1に記載の半導体ウェハによれば、結晶欠陥 の少ない高品質なGaN及び関連化合物エピタキシャル 結晶を実現できる。

【0045】(2) 請求項2に記載の半導体ウェハによれ ば、より高輝度の青色発光ダイオードを作ることができ る。

【0046】(3) 請求項3に記載の半導体ウェハの製造 方法によれば、サファイア基板上に結晶欠陥の少ない高 品質な半導体エピタキシャル層を形成できる。

【0047】(4) 請求項4に記載の半導体ウェハの製造 方法によれば、アズグロウンの状態で高濃度のp型Ga Nを容易に実現できる。

【0048】(5) 請求項5に記載の発明によれば、微傾 斜角を最適な値に規定したので、結晶欠陥のより少ない 高品質なGaN及び関連化合物エピタキシャル結晶を実 現できる。

【図面の簡単な説明】

【図1】本発明の半導体ウェハの実施例を説明するため の微傾斜(0001)面サファイア基板上のGaNエピ タキシャル結晶の二次元成長モード(ステップフローモ ード)を示す基板成長断面模式図。

【図2】本発明の半導体ウェハの実施例を説明するため のLED用pn接合GaNエピタキシャル結晶ウェハの 一例の断面図。

【図3】従来の(0001)面サファイア基板上のGa Nエピタキシャル結晶の三次元成長モードを示す基板成 長断面模式図。

【符号の説明】

7

- 4 微傾斜(0001)面サファイア単結晶基板
- 5 微傾斜(0001)面
- 6 ステップ

7 低温成長GaNバッファ層

8 p型GaN層

9 n型GaN層

【図1】

6 XirT
2 Gallet* fibrishish
6 2 5 数何斜(0001)而
4 数例斜(0001)而77-(7基版

【図2】

【図3】

フロントページの続き

(72)発明者 隈 彰二

茨城県土浦市木田余町3550番地 日立電線 株式会社アドバンスリサーチセンタ内