Dynamic Programming

Introduction

Inductive definition

Recursive program

Inductive definition

```
Fact(n)
    Fact(0)=1
    Fact(n)= n-1 * Fact(n)

sort(A)
    sort([])=[]
    sort(a,b,c,d)= fit( d, sort[a,b,c])
```


Recursive program

```
factorial(n):
    if (n <= 0) return(1)
    else
    return (n*factorial(n-1))</pre>
```

Optimal substructure property

Solution to original problem can be derived by combining solutions to subproblems

```
factorial(n-1) is a subproblem of factorial(n)
So are factorial(n-2), factorial(n-3), ...,
factorial(0)
```

sort([b,c,d]) is a subproblem of sort([a,b,c,d]) So are sort([c,d]), sort([b,c])....

Fibonacci numbers

Inductive definition

$$fib(0) = 0$$

$$fib(1) = 1$$

$$fib(n) = fib(n-1) + fib(n-2)$$

Recursive Program

```
function fib(n):
   if (n == 0) or (n == 1)
      value = n
   else
   value = fib(n-1) + fib(n-2)
```

return(value)

```
function fib(n):
  if n == 0 or n == 1
                                         fib(5
    value = n
  else
                                                    fib(3
                               fib(4
    value = fib(n-1) +
             fib(n-2)
  return (value)
                        fib(3
                                    fib(2
                    fib(2
                           fib(1
```

```
function fib(n):
  if n == 0 or n == 1
                                          fib(5
    value = n
  else
                                                     fib(3
                                fib(4
    value = fib(n-1) +
              fib(n-2)
  return (value)
                        fib(3
                                     fib(2
                           fib(1
                     fib(2
                        fib(0)
                  fib(1
```

```
function fib(n):
  if n == 0 or n == 1
                                          fib(5
    value = n
  else
                                                     fib(3
                               fib(4
    value = fib(n-1) +
             fib(n-2)
  return (value)
                        fib(3
                                     fib(2
                             fib(1
                         fib(0
                  fib(1
```

```
function fib(n):
  if n == 0 or n == 1
                                          fib(5
    value = n
  else
                                                     fib(3
                               fib(4
    value = fib(n-1) +
              fib(n-2)
  return (value)
                        fib(3
                                     fib(2
                     fib(2)
                         fib(0
                  fib(1
```

```
function fib(n):
  if n == 0 or n == 1
                                          fib(5
    value = n
  else
                                                     fib(3
                               fib(4
    value = fib(n-1) +
              fib(n-2)
  return (value)
                        fib(3
                                     fib(2
                     fib(2)
                         fib(0
                  fib(1
```

```
function fib(n):
  if n == 0 or n == 1
                                          fib(5
    value = n
  else
                                                     fib(3
                                fib(4
    value = fib(n-1) +
             fib(n-2)
  return (value)
                        fib(3
                                     fib(2
                     fib(2)
                         fib(0
                  fib(1
```

```
function fib(n):
  if n == 0 or n == 1
                                           fib(5
    value = n
  else
                                                      fib(3
                                fib(4
    value = fib(n-1) +
              fib(n-2)
  return (value)
                         fib(3
                                      fib(2
                                   fib(1)
                     fib(2)
                                   fib(0)
                         fib(0
                  fib(1
```

```
function fib(n):
  if n == 0 or n == 1
                                          fib(5
    value = n
  else
                                                     fib(3
                                fib(4
    value = fib(n-1) +
             fib(n-2)
  return (value)
                        fib(3
                                     fib(2
                    fib(2) fib(1)
                                   fib(1)
                         fib(0
                  fib(1
```

```
function fib(n):
  if n == 0 or n == 1
                                          fib(5
    value = n
  else
                                                     fib(3
                                fib(4
    value = fib(n-1) +
             fib(n-2)
  return (value)
                        fib(3
                                     fib(2
                    fib(2) fib(1)
                                   fib(1)
                         fib(0
                  fib(1
```

```
function fib(n):
  if n == 0 or n == 1
                                          fib(5
    value = n
  else
                                                     fib(3
                                fib(4
    value = fib(n-1) +
             fib(n-2)
  return (value)
                        fib(3
                                     fib(2
                     fib(2) fib(1)
                                   fib(1)
                         fib(0
                  fib(1
```

```
function fib(n):
  if n == 0 or n == 1
                                           fib(5
    value = n
  else
                                                     fib(3
                                fib(4
    value = fib(n-1) +
              fib(n-2)
  return (value)
                                     fib(2
                         fib(3
                                                  fib(2
                                                          fib(1
                                    fib(1)
                     fib(2) fib(1)
                         fib(0
                  fib(1
```

```
function fib(n):
  if n == 0 or n == 1
                                           fib(5
    value = n
  else
                                                       fib(3
                                 fib(4
    value = fib(n-1) +
              fib(n-2)
  return (value)
                                      fib(2
                         fib(3
                                                           fib(1
                                                   fib(2
                                    fib(1)
                            fib(1)
                                                fib(1)
                                                fib(0)
                         fib(0
                  fib(1
```

```
function fib(n):
  if n == 0 or n == 1
                                           fib(5
    value = n
  else
                                                       fib(3
                                 fib(4
    value = fib(n-1) +
              fib(n-2)
  return (value)
                                      fib(2
                         fib(3
                                                           fib(1
                                                   fib(2
                                    fib(1)
                             fib(1)
                                                fib(1)
                                                fib(0)
                         fib(0
                  fib(1
```

```
function fib(n):
  if n == 0 or n == 1
                                           fib(5
    value = n
  else
                                                       fib(3
                                 fib(4
    value = fib(n-1) +
              fib(n-2)
  return (value)
                                      fib(2
                         fib(3
                                                           fib(1
                                                   fib(2
                                    fib(1)
                             fib(1)
                                                fib(1)
                                                fib(0)
                         fib(0
                  fib(1
```

```
function fib(n):
  if n == 0 or n == 1
                                           fib(5
    value = n
  else
                                                      fib(3
                                fib(4
    value = fib(n-1) +
              fib(n-2)
  return(value)
                                      fib(2
                         fib(3
                                                           fib(1
                                                   fib(2
                                    fib(1)
                            fib(1)
                                                fib(1)
                                                fib(0)
                         fib(0
                  fib(1
```

```
function fib(n):
  if n == 0 or n == 1
                                           fib(5
    value = n
  else
                                                      fib(3
                                fib(4
    value = fib(n-1) +
              fib(n-2)
  return(value)
                                      fib(2
                         fib(3
                                                          fib(1
                                                   fib(2
                                    fib(1)
                            fib(1)
                                                fib(1)
                                                fib(0)
                         fib(0
                  fib(1
```

```
function fib(n):
  if n == 0 or n == 1
    value = n
  else
                                                      fib(3
                                fib(4
    value = fib(n-1) +
              fib(n-2)
  return (value)
                                      fib(2
                         fib(3
                                                           fib(1
                                                   fib(2
                                    fib(1)
                            fib(1)
                                                fib(1)
                                                fib(0)
                         fib(0
                  fib(1
```

```
function fib(n):
  if n == 0 or n == 1
    value = n
  else
                                fib(4
                                                      fib(3
    value = fib(n-1) +
              fib(n-2)
  return(value)
                                     fib(2
                                                  fib(2
                                                          fib(1
                            fib(1)
                                    fib(1)
                                                fib(1)
                                                fib(0)
                  fib(1
```


OBSERVATION S

Overlapping subproblems Wasteful recomputation

Computation tree grows exponentially

Never re-evaluate a subproblem

Build a table of values already computed Memory table

Memoization

Remind yourself that this value has already been seen before

Memoization

-Store each newly computed value in a table

-Look up table before starting a recursive computation

-Computation tree is linear

fib(5)

K	Fib(k)

Memoization

-Store each newly computed value in a table

-Look up table before starting a recursive computation

-Computation tree is linear

K	Fib(k)

Memoization

-Store each newly computed value in a table

-Look up table before starting a recursive computation

-Computation tree is linear

Memoization

-Store each newly computed value in a table

-Look up table before starting a recursive computation

-Computation tree is linear

Memoization

-Store each newly computed value in a table

-Look up table before starting a recursive computation

-Computation tree is linear

Memoization

-Store each newly computed value in a table

-Look up table before starting a recursive computation

-Computation tree is linear

Memoization

-Store each newly computed value in a table

-Look up table before starting a recursive computation

-Computation tree is linear

Memoization

-Store each newly computed value in a table

-Look up table before starting a recursive computation

-Computation tree is linear

Memoization

-Store each newly computed value in a table

-Look up table before starting a recursive computation

-Computation tree is linear

Memoization

-Store each newly computed value in a table

-Look up table before starting a recursive computation

-Computation tree is linear

Memoization

-Store each newly computed value in a table

-Look up table before starting a recursive computation

-Computation tree is linear

Memoization

-Store each newly computed value in a table

-Look up table before starting a recursive computation

-Computation tree is linear

Memoization

-Store each newly computed value in a table

-Look up table before starting a recursive computation

-Computation tree is linear

Memoization

-Store each newly computed value in a table

-Look up table before starting a recursive computation

-Computation tree is linear

Memoized fibonacci

```
function fib(n):
    if fibtable[n]
       return(fibtable[n])
    if n == 0 or n == 1
       value = n
    else
     value = fib(n-1) + fib(n-2)
      fibtable[n] = value
    return(value)
```

In general

```
function f(x,y,z):

if ftable[x][y][z]
  return(ftable[x][y][z])

value = expression in terms of subproblems

ftable[x][y][z] = value return(value)
```

In general

```
function f(x,y,z):
```

```
if ftable[x][y][z]
  return(ftable[x][y][z])
```

value = expression in terms of subproblems

ftable[x][y][z] = value return(value)

Need to solve recursively exploiting the inductive definition.

Anticipate what the memory table looks like

Subproblems are known from problem structure

Dependencies form a dag

Solve subproblems

Prepared by Pawan The topological order

Anticipate what the memory table looks like

Subproblems are known from problem structure

Dependencies form a dag

Solve subproblems

Prepared by Pawan The topological order

fib(5)

```
fib(5
Anticipate what the
memory table looks like
                                            fib(4
  Subproblems are
                                            fib(3
  known from problem
                                            fib(2
  structure
                                            fib(1
  Dependencies form a
  dag
                                            fib(0
Solve subproblems
```

Prepared by Pawan The topological order

Anticipate what the memory table looks like

Subproblems are known from problem structure

Dependencies form a dag

Solve subproblems

```
fib(5
fib(2
fib(1
fib(0
```

Prepared by Pawan The topological order

Anticipate what the memory table looks like

Subproblems are known from problem structure

Dependencies form a dag

Solve subproblems

```
fib(5
fib(2
fib(1
fib(0
```

Anticipate what the memory table looks like

Subproblems are known from problem structure

Dependencies form a dag

Solve subproblems

```
fib(5
fib(1
fib(0
```

Anticipate what the memory table looks like

Subproblems are known from problem structure

Dependencies form a dag

Solve subproblems

Anticipate what the memory table looks like

Subproblems are known from problem structure

Dependencies form a dag

K	0	1	2	3	4	5
fib(k)						

Anticipate what the memory table looks like

Subproblems are known from problem structure

Dependencies form a dag

K	0	1	2	3	4	5
fib(k)	0					

Anticipate what the memory table looks like

Subproblems are known from problem structure

Dependencies form a dag

K	0	1	2	3	4	5
fib(k)	0	1				

Anticipate what the memory table looks like

Subproblems are known from problem structure

Dependencies form a dag

K	0	1	2	3	4	5
fib(k)	0	1	1			

Anticipate what the memory table looks like

Subproblems are known from problem structure

Dependencies form a dag

K	0	1	2	3	4	5
fib(k)	0	1	1	2		

Anticipate what the memory table looks like

Subproblems are known from problem structure

Dependencies form a dag

K	0	1	2	3	4	5
fib(k)	0	1	1	2	3	

Anticipate what the memory table looks like

Subproblems are known from problem structure

Dependencies form a dag

K	0	1	2	3	4	5
fib(k)	0	1	1	2	3	5

Dynamic programming fibonacci

```
function fib(n):
    fibtable[0] = 0
    fibtable[1] = 1
    for i = 2,3,..n
        fibtable[i] = fibtable[i-1] + fibtable[i-2]
    return(fibtable[n])
```

Memoization

Store values of subproblems in a table Look up the table before making a recursive call

Dynamic programming

Solve subproblems in topological order of dependency

Dependencies must form a dag (why?) Iterative evaluation

Takeaway

Overlapping sub problem

Tabular Method

Recursive formulation—Don't solve recursively

Compute opt for smaller sub problem

Optimal substructure

Computing Optimal value vs Optimal solution

P1. Knapsack-without profit

```
Input s_1, s_2, ..., s_n s_n Size s_1, s_2, ..., s_n Bag with capacity s_n
```

Find a subset of objects with largest total size & W

P1. Knapsack-without profit

```
Input

n objects o_1, o_2,..., o_n

Size s_1, s_2, ..., s_n

Bag with capacity W
```

Find a subset of objects with largest total size & W

Brute force

Check all subsets --- 2ⁿ

Intuition to build DP solution

Subproblems ??? -----Toughest part

Once you decide what subproblems are, everything will fall in place

Subproblems are guided by recursive formulation....

But how to write recursive formulation....

Suppose object o_1 is in the optimal solution, what we need to solve now ??

Suppose object o_1 is in the optimal solution, what we need to solve now ??

Then the remaining subset of objects $\{o_2, o_3, ..., o_n\}$ of largest size whose total size is atmost W $-s_1$.

Suppose object o_1 is not in the optimal solution, what we need to solve now ??

Suppose object o₁ is not in the optimal solution, what we need to solve now ??

Then the remaining subset of objects $\{o_2, o_3, ..., o_n\}$ of largest size whose total size is atmost W.

OPTIMAL SUBSTRUCTURE PROPERTY

Suppose object o_1 is in the optimal solution, what we need to solve now ??

Then the remaining subset of objects $\{o_2, o_3, ..., o_n\}$ of largest size whose total size is atmost $W - s_1$.

Suppose object o_1 is not in the optimal solution, what we need to solve now ??

Then the remaining subset of objects $\{o_2, o_3, ..., o_n\}$ of largest size whose total Prepared by Pawan PSize is atmost W.

OPTIMAL SUBSTRUCTURE PROPERTY

If someone tell you that the object O_1 is there in an optimal solution, so now you can claim that remaining the remaining subset in that particular optimal solution is the largest size of the capacity at most $W - s_1$.

OPTIMAL SUBSTRUCTURE PROPERTY

If someone tell you that the object O_1 is there in an optimal solution, so now you can claim that remaining the remaining subset in that particular optimal solution is the largest size of the capacity at most $W - s_1$.

Proof...(By contradiction) Cut and Paste argument...

Recusrive Formulation

$$OPT({o_1, o_2, ..., o_n}, W) = max$$

Recusrive Formulation

OPT ({o₂,..., o_n}, W) $OPT({o_1, o_2, ..., o_n}, W) = max$ o1 sholudn't be part of OPT OPT({ o_1 , o_2 ,..., o_n }, W - s_1) + s_1 OPT (i+1, w) OPT(i, w)=max

OPT(i+1, w-s_i) + s_i

Largest sized subset $\{i,...,n\}$ with total size at most w

object n										
size	1	2	3					n		
1										
0										
2										
3										
W										

object i n											
size	1	2	3		i			n			
1											
2											
3											
w											
W											

This basically tells you the direction via which you fill the table, thus we get the base case too

OPT(n, w)= 0
$$s_n > w$$

= s_n otherwise

For all
$$w \in \{1,2,...,W\}$$

This basically tells you the direction via which you fill the table, thus we get the base case too

OPT(n, w)= 0
$$s_n > w$$

= s_n otherwise

For all
$$w \in \{1,2,...,W\}$$

Total Time

How many entries we are computing?? nW

Time to compute each entry - Constant time..

By using max of two entries..

O(nW)

Cut-and-Paste Arguments

To show optimal substructure, assume that some piece of the optimal solution S^* is not an optimal solution to a smaller subproblem

Show that replacing that piece with the optimal solution to the smaller subproblem improves the allegedly optimal solution S^* .

Conclude, therefore, that 5* must include an optimal solution to a smaller subproblem.

Prepared by Pawan R.

P2. Coin Change Problem

If we want to make change for Rs. T, and we have infinite supply of each coin in the set $Coins = \{v_1, v_2, \dots, v_n\}$, where v_i is the value of the i-th coin.

What is the minimum number of coins required to reach the value 5?

Greedy Algorithm

Greedy Algorithm

Coins = $\{6, 4, 1\}$ and T = 8

Counter Example

Greedy Algorithm

Coins =
$$\{6, 4, 1\}$$
 and T = 8

Coins=
$$\{1,2,5,10\}$$
 -Indian

OPT(T, n-1) First coin with value
$$v_1$$
 is not used OPT(T,n)= min OPT(T- v_1 , n) + 1 First coin with value v_1 is used

OPT(T, n-1) First coin with value
$$v_1$$
 is not used OPT(T,n)= min
$$OPT(T-v_1,n)+1 \qquad \text{First coin with value } v_1 \text{ is used}$$

OPT(S, i-1) i-th coin with value
$$v_i$$
 is not used OPT(S,i)= min OPT(S- v_i , i) + 1 i-th coin with value v_i is used

the minimum number of coins required to reach sum S < T with the first i coins, i.e., Prepared by Pawan R. coins selected from the subset $\{v_1, v_2, \dots, v_i\}$ (where $0 \le i \le n$).

```
OPT(S, i-1) i-th coin with value v_i is not used

OPT(S,i)= min

OPT(S-v_i, i) + 1 i-th coin with value v_i is used
```

the minimum number of coins required to reach sum $S \leq T$ with the first i coins, i.e.,

coins selected from the subset $\{v_1, v_2, \dots, v_i\}$ (where $0 \le i \le n$).

Prepared by Pawan R.

```
OPT(S, i-1) i-th coin with value v_i is not used

OPT(S,i)= min

OPT(S-v_i, i) + 1 i-th coin with value v_i is used
```

the minimum number of coins required to reach sum $S \leq T$ with the first i coins, i.e.,

coins selected from the subset $\{v_1, v_2, \dots, v_i\}$ (where $0 \le i \le n$).

Prepared by Pawan R

P3. Set Cover Problem

Given a universe $U=\{e_1, e_2, e_3, ..., e_n\}$ of n elements,

And a family of subsets $F = \{S_1, S_2, S_3, ..., S_m\}$.

find a minimum number of subcollection C of F such that C covers all elements of U.

$$U = \{1, 2, 3, 4, 5\}$$

$$F = \{ S_1 = \{1, 2, 3\}, S_2 = \{2,3\}, S_3 = \{4, 5\}, S_4 = \{1, 2, 4\} \}$$

$$C = \{S_1, S_3\}$$

P3. Set Cover Problem

Given a universe $U=\{e_1, e_2, e_3, ..., e_n\}$ of n elements, And a family of subsets $F=\{S_1, S_2, S_3, ..., S_m\}$.

find a minimum number of subcollection C of F such that C covers all elements of U.

$$U = \{1, 2, 3, 4, 5\}$$

$$F = \{ S_1 = \{1, 2, 3\}, S_2 = \{2,3\}, S_3 = \{4, 5\}, S_4 = \{1, 2, 4\} \}$$

$$C = \{S_1, S_3\}$$

Greedy Algorithm??

Can we improve to $O^*(2^n)$??

Can we improve to $O^*(2^n)$??

Given:
$$F = \{S_1, S_2, S_3, ..., S_m\}$$
, U

To find subproblem, but how ?--- need recurrence formulation ...

Can we improve to $O^*(2^n)$??

Given:
$$F = \{S_1, S_2, S_3, ..., S_m\}$$
, U

To find subproblem, but how ?--- need recurrence formulation ...

How to proceed?

Is S_1 in optimal solution, then what to cover and by what?

Is S_1 in not in optimal solution, then what to cover and by what?

Can we improve to $O^*(2^n)$??

Given:
$$F = \{S_1, S_2, S_3, ..., S_m\}$$
, U

To find subproblem, but how ?--- need recurrence formulation ...

How to proceed?

Is
$$S_1$$
 in optimal solution, then what to cover and by what? $\bigcup \{S_1, S_3, ..., S_m\}$

Is
$$S_1$$
 in not in optimal solution, then what to cover and by what?

$$OPT(\{S_{1},S_{2},S_{3},...,S_{n}\},U) = Min \\ OPT(\{S_{2},S_{3},...,S_{n}\},U) = S_{1} \text{ is not used} \\ OPT(\{S_{2},S_{3},...,S_{n}\},U\setminus S_{1}) + 1 \\ S_{1} \text{ is used} \\ OPT(\{S_{2},S_{3},...,S_{n}\},U\setminus S_{1}) + 1 \\ S_{2} \text{ is used} \\ OPT(\{S_{2},S_{3},...,S_{n}\},U\setminus S_{1}) + 1 \\ S_{3} \text{ is used} \\ OPT(\{S_{2},S_{3},...,S_{n}\},U\setminus S_{1}) + 1 \\ S_{4} \text{ is used} \\ OPT(\{S_{2},S_{3},...,S_{n}\},U\setminus S_{1}) + 1 \\ S_{5} \text{ is used} \\ OPT(\{S_{2},S_{3},...,S_{n}\},U\setminus S_{1}) + 1 \\ OPT(\{S_{2},S_{3},...,S_{n}\},U\setminus S_{1})$$

OPT(
$$\{S_2, S_3, ..., S_n\}, U \setminus S_1) + 1$$

 S_1 is not used

$$OPT(\{S_{1},S_{2},S_{3},...,S_{n}\},U) = min \\ OPT(\{S_{2},S_{3},...,S_{n}\},U) = S_{1} \text{ is not used} \\ OPT(\{S_{2},S_{3},...,S_{n}\},U\setminus S_{1}) + 1 \\ S_{1} \text{ is used}$$

$$OPT(S_{i+1}, A)$$

$$S_{i} \text{ is not used}$$

$$OPT(i,A) = \min$$

$$OPT(S_{i+1}, A \setminus S_{i}) + 1$$

$$S_{i} \text{ is used}$$

To cover a subset A of U, the minimum number of subset required of F from S_i to S_m .


```
OPT(S_{i+1}, A) \qquad S_i \text{ is not used} OPT(i,A) = \min \qquad OPT(S_{i+1}, A \setminus S_i) + 1 \qquad S_i \text{ is used} To cover a subset A of U, the minimum number of subset required of F from <math>S_i \text{ to } S_m.
```

Goal: OPT(1, U)

Prepared by Pawan R.

To cover a subset A of U, the minimum number of subset required of F from S_i to S_m .

Base Case: We need i=1 as a goal, so basically we need in decreasing order, so m will play the role in defining the base case.

OPT(m,A)= min

OPT(1 U)

If A is subset of
$$S_m$$

Otherwise

Goal: OPT(1, U)

Base Case: We need i=1 as a goal, so basically we need in decreasing order, so m will play the role in defining the base case.

OPT(m,A)= min

If A is subset of
$$S_m$$

Time Complexity=O(2ⁿm)

Otherwise

Goal: OPT(1, U)

P4. Maximum Contiguous Subsequence in Array

IP: Sequence $S=\{e_1, e_2, e_3, ..., e_n\}$ of n integers

OP: pair (i,j) $e_i + e_{i+1} + e_{i+2} + ... + e_j$ is maximum

P4. Maximum Contiguous Subsequence in Array

IP: Sequence $S=\{e_1, e_2, e_3, ..., e_n\}$ of n integers

OP: pair (i,j) $e_i + e_{i+1} + e_{i+2} + ... + e_j$ is maximum

Brute Force: For every pair, find sum: $O(n^3)$ or $O(n^2)$

DnC: O(nlogn), Tut-2,Q 8

How to proceed? Optimal solution contains element e_i --- 2. e_i

Optimal element does not contain element e_i .

This means that e_i .

Optimal value if sub sequence ends at e_i.

Prepared by Pawan R.

P5. Longest Common Subword

```
Given two strings, find the (length of the) longest common subword "secret", "secretary" — "secret", length 6 "bisect", "trisect" — "sect", length 4
```


More formally ...

Let $u = a_0 a_1 ... a_m$ and $v = b_0 b_1 ...$ be two sequences b_n

Tfawe.can find ibjisubh that u and v have a common subword of length k

Aim is to find the length of the longest common subword of u and v

Brute force

```
Let u = a_0 a_1 \dots a_m and v = b_0 b_1 \dots b_n
Try every pair of starting positions i in u, j in v
```

Match (a_i, b_i) , (a_{i+1}, b_{i+1}) ,... as far as possible

Keep track of the length of the longest match

Assuming m > n, this is $O(mn^2)$

mn pairs of positions

From each starting point, scan can be O(n)

Inductive structure

Let
$$u = a_0 a_1 ... a_m$$
 and $v = b_0 b_1 ... b_n$

$$a_i a_{i+1} \dots a_{i+k-1} = b_j b_{j+1} \dots b_{j+k-1}$$
 is a common subword of length k at (i,j), iff $a_{i+1} \dots a_{i+k-1} = b_{j+1} \dots b_{j+k-1}$ is a common sub word of length k-1 at (i+1,j+1).

LCW(i,j): length of the longest common subword starting at a and b

If
$$a_i \neq b_j$$
, LCW(i,j) is 0, otherwise $1+LCW(i+1,j+1)$

Boundary condition: when we have reached the end

Prepared by Pawan Frone of the words

Inductive structure

```
Consider positions 0 to m+1 in u, 0 to n+1 in v

To know the end of the sequence
```

m+1, n+1 means we have reached the end of the word

$$LCW(m+1,j) = 0$$
 for all j

LCW(i,n+1) = 0 for all i
LCW(i,j) = 0, if
$$a_i \neq$$

 b_{j}

$$= 1 + LCW(i+1,j+1),$$

LCW(i,j) depends on LCW(i+1,j+1)

Last row and column have no dependencies

		0	1	2	3	4	5	
		S	ê	С	r	е	t	
0								
þ	i							
2								
2 3				K				
4							K	
5	t					K		
6								

LCW(i,j) depends on LCW(i+1,j+1)

Last row and column have no dependencies

		0	1 6	2	3	4	5	
		S	<u>е</u>	С	r	е	t	
0								
þ	i							
2								
2 \$3 04 05								
4								
5	t							
6								

LCW(i,j) depends on LCW(i+1,j+1)

Last row and column have no dependencies

		0	1	2	3	4	5	6
		S	е	С	r	е	t	•
0	b							0
1	i							0
2	S							0
3	е							0
4	С							0
5	t							0
6	•	0	0	0	0	0	0	0

LCW(i,j) depends on LCW(i+1,j+1)

Last row and column have no dependencies

		0	1	2	3	4	5	6
		S	е	С	r	е	t	•
0	b						0	0
1	i						0	0
2	S						0	0
3	е						0	0
4	С						0	0
5	t						1	0
6	•	0	0	0	0	0	0	0

LCW(i,j) depends on LCW(i+1,j+1)

Last row and column have no dependencies

		0	1	2	3	4	5	6
		S	е	С	r	е	t	•
0	b					0	0	0
1	i					0	0	0
2	S					0	0	0
3	е					1	0	0
4	С					0	0	0
5	t					0	1	0
6	•	0	0	0	0	0	0	0

LCW(i,j) depends on LCW(i+1,j+1)

Last row and column have no dependencies

		0	1	2	3	4	5	6
		S	е	С	r	е	t	•
0	b				0	0	0	0
1	i				0	0	0	0
2	S				0	0	0	0
3	е				0	1	0	0
4	С				0	0	0	0
5	t				0	0	1	0
6	•	0	0	0	0	0	0	0

LCW(i,j) depends on LCW(i+1,j+1)

Last row and column have no dependencies

		0	1	2	3	4	5	6
		S	е	С	r	е	t	•
0	b			0	0	0	0	0
1	i			0	0	0	0	0
2	S			0	0	0	0	0
3	е			0	0	1	0	0
4	С			1	0	0	0	0
5	t			0	0	0	1	0
6	•	0	0	0	0	0	0	0

LCW(i,j) depends on LCW(i+1,j+1)

Last row and column have no dependencies

		0	1	2	3	4	5	6
		S	е	С	r	е	t	•
0	b		0	0	0	0	0	0
1	i		0	0	0	0	0	0
2	S		0	0	0	0	0	0
3	е		2	0	0	1	0	0
4	С		0	Y	0	0	0	0
5	t		0	0	0	0	1	0
6	•	0	0	0	0	0	0	0

LCW(i,j) depends on LCW(i+1,j+1)

Last row and column have no dependencies

		0	1	2	3	4	5	6
		s	е	С	r	е	t	•
0	b	0	0	0	0	0	0	0
1	i	0	0	0	0	0	0	0
2	S	3	0	0	0	0	0	0
3	е	0	2	0	0	1	0	0
4	С	0	0	1	0	0	0	0
5	t	0	0	0	0	0	1	0
6	•	0	0	0	0	0	0	0

Reading off the solution

Find (i,j) with largest entry

LCW(2,0) = 3

Read off the actual subword diagonally

		0	1	2	3	4	5	6
		S	е	С	r	е	t	•
0	b	0	0	0	0	0	0	0
1	i	0	0	0	0	0	0	0
2	S	3	0	U	0	0	0	0
3	е	0	2	0	0	1	0	0
4	С	0	0	4	0	0	0	0
5	t	0	0	0	0	0	1	0
6	•	0	0	0	0	0	0	0

Complexity

Recall that the brute force approach was $O(mn^2)$

The inductive solution is O(mn) if we use dynamic programming (or memoization)

Need to fill an O(mn) size table

Each table entry takes constant time to compute

P6. Longest common subsequence

Subsequence: can drop some letters in between

Given two strings, find the (length of the) longest common subsequence

"secret", "secretary" — "secret", length 6

"bisect", "trisect" — "isect", length 5

"bisect", "secret" — "sect", length 4

"director", "secretary" — "ectr", "retr", length 4

Applications

Analyzing genes of two species (in bionforamtics..)

DNA is a long string over 4 proteins A,T,G,C

Two species are closer if their DNA has longer common subsequence

Unix Command diff
Compares text files
Find longest matching subsequence of lines

LCS

LCS is longest path we can find between non-zero LCW entries, moving right and down

"bisect", "secret" — "sect", length 4

		0	1	2	3	4	5	
			6					
0		0		0	0		0	
þ	i	0		0			0	
2		3		9	9		9	
S 3		0		8		1	0	
4		8		9	0	0	0	
5	t	0		9		0	9	
6	•	0	0	Ø	0	0	00	
	0							

Inductive structure

Not sure which one to drop

Solve both subproblems

$$LCS(a_1 a_2...a_m, b_0 b_1...b_n) \ and \ LCS(a_0 a_1...a_m, b_1 b_2...b_n), \ and \ the \ maximum$$

Inductive structure

As with LCW, extend positions to m+1, n+1

$$LCS(m+1,j) = 0$$
 for all j

Prepared by Pawan R.
$$LCS(i,n+1) = 0$$
 for all i

LCS(i,j) depends on LCS(i+1,j+1) as well as LCS(i+1,j) and LCS(i,j+1)

Dependencies for LCS(m,n) are known

LCS(i,j) depends on LCS(i+1,j+1) as well as LCS(i+1,j) and LCS(i,j+1)

Dependencies for LCS(m,n) are known

LCS(i,j) depends on LCS(i+1,j+1) as well as LCS(i+1,j) and LCS(i,j+1)

Dependencies for LCS(m,n) are known

		0	1	2	3	4	5	6
		S	е	С	r	е	t	•
0	b							0
1	i							0
2	S							0
3	е							0
4	С							0
5	t							0
6	•	0	0	0	0	0	0	0

LCS(i,j) depends on LCS(i+1,j+1) as well as LCS(i+1,j) and LCS(i,j+1)

Dependencies for LCS(m,n) are known

		0	1	2	3	4	5	6
		S	е	С	r	е	t	•
0	b						0	0
1	i						0	0
2	S						0	0
3	е						0	0
4	С						0	0
5	t						1	0
6	•	0	0	0	0	0	0	0

LCS(i,j) depends on LCS(i+1,j+1) as well as LCS(i+1,j) and LCS(i,j+1)

Dependencies for LCS(m,n) are known

		0	1	2	3	4	5	6
		S	е	С	r	е	t	•
0	b					1	0	0
1	i					1	0	0
2	S					1	0	0
3	е					1	0	0
4	С					1	0	0
5	t					1	1	0
6	•	0	0	0	0	0	0	0

LCS(i,j) depends on LCS(i+1,j+1) as well as LCS(i+1,j) and LCS(i,j+1)

Dependencies for LCS(m,n) are known

		0	1	2	3	4	5	6
		S	е	С	r	е	t	•
0	b				1	1	0	0
1	i				1	1	0	0
2	S				1	1	0	0
3	е				1	1	0	0
4	С				1	1	0	0
5	t				1	1	1	0
6	•	0	0	0	0	0	0	0

LCS(i,j) depends on LCS(i+1,j+1) as well as LCS(i+1,j) and LCS(i,j+1)

Dependencies for LCS(m,n) are known

		0	1	2	3	4	5	6
		S	е	С	r	е	t	•
0	b			2	1	1	0	0
1	i			2	1	1	0	0
2	S			2	1	1	0	0
3	е			2	1	1	0	0
4	С			2	1	1	0	0
5	t			1	1	1	1	0
6	•	0	0	0	0	0	0	0

LCS(i,j) depends on LCS(i+1,j+1) as well as LCS(i+1,j) and LCS(i,j+1)

Dependencies for LCS(m,n) are known

		0	1	2	3	4	5	6
		S	е	С	r	е	t	•
0	b		3	2	1	1	0	0
1	i		3	2	1	1	0	0
2	S		3	2	1	1	0	0
3	е		3	2	1	1	0	0
4	С		2	2	1	1	0	0
5	t		1	1	1	1	1	0
6	•	0	0	0	0	0	0	0

LCS(i,j) depends on LCS(i+1,j+1) as well as LCS(i+1,j) and LCS(i,j+1)

Dependencies for LCS(m,n) are known

		0	1	2	3	4	5	6
		S	е	С	r	е	t	•
0	b	4	3	2	1	1	0	0
1	i	4	3	2	1	1	0	0
2	S	4	3	2	1	1	0	0
3	е	3	3	2	1	1	0	0
4	С	2	2	2	1	1	0	0
5	t	1	1	1	1	1	1	0
6	•	0	0	0	0	0	0	0

LCS(i,j) depends on LCS(i+1,j+1) as well as LCS(i+1,j) and LCS(i,j+1)

Dependencies for LCS(m,n) are known

		0	1	2	3	4	5	6
		S	е	С	r	е	t	•
0	b	4	3	2	1	1	0	0
1	i	4	3	2	1	1	0	0
2	S	4	3	2	1	1	0	0
3	е	3	3	2	1	1	0	0
4	С	2	2	2	1	1	0	0
5	t	1	1	1	1	1	1	0
6	•	0	0	0	0	0	0	0

Recovering the sequence

Trace back the path by which each entry was filled

Each diagonal step is an element of the LCS

"sect"

Recovering the sequence

Trace back the path by which each entry was filled

Each diagonal step is an element of the LCS

"sect"

Complexity

Again O(mn) using dynamic programming (or memoization)

Need to fill an O(mn) size table

Each table entry takes constant time to compute

P7. Multiplying matrices

To multiply matrices A and B, need compatible dimensions

A of dimension $m \times n$, B of dimension $n \times p$ AB

has dimension mp

Each entry in AB take O(n) steps to compute AB[i,j]

is A[i,1]B[1,j] + A[i,2]B[2,j] + ... + A[i,n]B[n,j]

Overall, computing AB is O(mnp)

Multiplying matrices

Matrix multiplication is associative

$$ABC = (AB)C = A(BC)$$

Bracketing does not change the answer ...

... but can affect the complexity of computing it!

Multiplying matrices

Suppose dimensions are A[1,100], B[100,1], C[1,100]

Computing A(BC)

BC is [100,100], $100 \times 1 \times 100 = 10000$ steps

A(BC) is $[1,100],1 \times 100 \times 100 = 10000$ steps

Computing (AB)C

AB is [1,1], $1 \times 100 \times 1 = 100$ steps

(AB)C is [1,100], $1 \times 1 \times 100 = 100$ steps

A(BC) takes 20000 steps, (AB)C takes 200 steps!

Multiplying matrices

Given matrices M_1 , M_2 ,..., M_n of dimensions $[r_1,c_1]$, $[r_2,c_2]$, ..., $[r_n,c_n]$

Dimensions match, so $M_1 \times M_2 \times ... \times M_n$ can be computed

 $c_i = r_{i+1}$ for $1 \le i < n$ Find an optimal order to compute the product

That is, bracket the expression optimally

Inductive structure

Product to be computed: $M_1 \times M_2 \times ... \times M_n$

Final step would have combined two subproducts

$$(M_1 \times M_2 \times ... \times M_k) \times (M_{k+1} \times M_{k+2} \times ... \times M_n)$$
, for some $1 \le k < n$

First factor has dimension (r_1,c_k) , second (r_{k+1},c_n)

Final multiplication step costs = $r_1 c_k c_n$

Add cost of computing the two factors

Subproblems

Final step is

$$(M_1 \times M_2 \times ... \times M_k) \times (M_{k+1} \times M_{k+2} \times ... \times M_n)$$

Subproblems are $(M_1 \times M_2 \times ... \times M_k)$ and $(M_{k+1} \times M_{k+2} \times ... \times M_n)$

Total cost is
$$Cost(M_1 \times M_2 \times ... \times M_k) + Cost(M_{k+1} \times M_{k+2} \times ... \times M_n) + r_1 c_k c_n$$

Which k should we choose?

No idea! Try them all and choose the minimum!

Inductive formulation

Cost(
$$M_1 \times M_2 \times ... \times M_n$$
) =
minimum value, for $1 \le k < n$, of
$$Cost(M_1 \times M_2 \times ... \times M_k) +$$

$$Cost(M_{k+1} \times M_{k+2} \times ... \times M_n) +$$

$$r_1c_kc_n$$

When we compute $Cost(M_1 \times M_2 \times ... \times M_k)$ we will get subproblems of the form $M_j \times M_{j+1} \times ... \times M_k$

In general ...

```
\begin{aligned} & \textit{Cost}(M_i \times M_{i+1} \times ... \times M_j) = \\ & \textit{minimum value, for } i \leq k < j, \textit{of} \\ & \textit{Cost}(M_i \times M_{i+1} \times ... \times M_k) + \textit{Cost}(M_{k+1} \times M_{k+2} \times ... \times M_j) + r_i c_k c_j \end{aligned}
```

Write Cost(i,j) to denote Cost($M_i \times M_{i+1} \times ... \times M_j$)

Final equation

Cost(i,i) = 0 — No multiplication to be done

Cost(i,j) = min over
$$i \le k < j$$

[Cost(i,k) + Cost(k+1,j) + $r_i c_k c_j$]

Note that we only require Cost(i,j) when i ≤ j

Cost(i,j) depends on Cost(i,k), Cost(k+1,j) for all $i \le k < j$

Can have O(n) dependent values, unlike LCS, LCW, ED

Cost(i,j) depends on Cost(i,k), Cost(k+1,j) for all $i \le k < j$

Can have O(n) dependent values, unlike LCS, LCW, ED

Cost(i,j) depends on Cost(i,k), Cost(k+1,j) for all $i \le k < j$

Can have O(n) dependent values, unlike LCS, LCW, ED

Cost(i,j) depends on Cost(i,k), Cost(k+1,j) for all $i \le k < j$

Can have O(n) dependent values, unlike LCS, LCW, ED

Complexity

As with LCS, we to fill an $O(n^2)$ size table

However, filling MMC[i][j] could require examining O(n) intermediate values

Hence, overall complexity is $O(n^3)$

P8. Maximum Independent Set on tree

P8. Minimum Vertex Cover on tree

Exercise: Based on the previous idea

P9. Diameter of a rooted tree

P10. Weighted tree, find a maximum sum path between any two nodes

Excercise

P11. Colouring in tree

1/P: given a tree,

O/P: color nodes black as many as possible without coloring two adjacent nodes

P11. Colouring in tree

1/P: given a tree,

O/P: color nodes black as many as possible without coloring two adjacent nodes

Minimum number of colors need to color nodes of a tree ??

