Part 1

Range

R1.tex

In each part, an invertible function f will be defined. For each function, find its inverse.

Exercise 1 f(x) = 5x + 3

$$f^{-1}(x) = \boxed{\frac{x-3}{5}}$$

Exercise 2 $f(x) = \frac{x-4}{7} - 2$

$$f^{-1}(x) = \boxed{7(x+2)+4}$$

Exercise 3 $f(x) = \sqrt[3]{3-x} + 1$

$$f^{-1}(x) = \boxed{3 - (x - 1)^3}$$

R2.tex

The entire graph of a function f is given below. Use the graph of f to answer the questions.

Exercise 4 Find the range of f.

[-5], [4]

Exercise 5 List the x-values of the x-intercepts of f. (List your answers from least to greatest)

-4, -1, and $\boxed{1}$

R3.tex

Exercise 6 The function given by $f(x) = 3(x-2)^2 + 1$ (graphed below) is not a one-to-one function on $(-\infty, \infty)$. If we restrict the domain, however, it can be made to be one-to-one.

Find a formula for $f^{-1}(x)$ when f is restricted to $(-\infty,2]$.

$$f^{-1}(x) = 2 - \sqrt{\frac{x-1}{3}}$$

Hint: We're starting with y = f(x), so that's:

$$y = 3(x-2)^2 + 1$$

Swap x and y.

$$x = 3(y-2)^2 + 1$$

Solving for y you find two solutions. They are:

$$y = 2 - \sqrt{\frac{x-1}{3}}$$

$$y = 2 + \sqrt{\frac{x-1}{3}}$$

The domain of f was restricted to $(-\infty, 2]$, which means we want the range of f^{-1} to be $(-\infty, 2]$. Which of the two solutions you found give outputs which are not greater than 2?

R4.tex

The function f is invertible and takes the following values.

x	$\int f(x)$
0	5
1	2
2	4
3	1
4	3

Exercise 7 Evaluate.

$$f^{-1}(1) = \boxed{3}$$
.

Exercise 8 Solve the equation

$$f^{-1}(x) = 2.$$

$$x = \boxed{4}$$

(If there is no answer, type DNE)

Hint: What happens if we plug both sides of the equation $f^{-1}(x) = 2$ into the function f?

R5.tex

The entire graph of a function f is given below. Use the graph of f to answer the questions.

Exercise 9 Find the domain of f.

$$\{ \boxed{-2} \} \cup (\boxed{0}, \boxed{3}]$$

Exercise 10 Find the range of f.

[1, 5]

Exercise 11 Find the interval on which f is decreasing.

[1, 3]

R6.tex

Exercise 12 The function f is defined by the formula f(x) = 2x + 3.

The range of f is $(-\infty)$, ∞ .

Exercise 13 The function g is defined by the formula $g(x) = 3x^2 + 5$.

The range of g is $[5, \infty)$.

Exercise 14 The function k is defined by the formula $k(x) = 2 + \ln(x)$.

The range of k is $(-\infty, \infty)$.

R7.tex

Exercise 15 The function f is defined by the formula $f(x) = 3e^x + 1$.

The range of f is $(\boxed{1}, \boxed{\infty})$.

Exercise 16 The function g is defined by the formula $g(x) = 5\sin(x^2 + 2)$.

The range of g is [-5], [5].

R8.tex

Suppose an object is dropped from a height of 490 meters, and strikes the ground 10 seconds later. Let h(t) denote the height of the object at time t, with h measured in meters, and t measured in seconds with t=0 corresponding to the instant the object was released.

Exercise 17 The domain of h is [0], [10].

Exercise 17.1 The range of h is [0, 490].

Exercise 17.1.1 The average rate of change of h between t = 0 and t = 10 is $-49 \, \text{m/s}$.

R9.tex

If R is a positive constant, then the graph of $y = \sqrt{R^2 - x^2}$ is the top half of the circle of radius R centered at the origin.

As an example, this is graphed below for R=2.

Exercise 18 The domain of the function $\sqrt{4-x^2}$ is [-2], [2] and the range is [0], [2].

Hint: This is exactly the function graphed above.

Exercise 18.1 The domain of the function $\sqrt{25-x^2}$ is [-5], [5] and the range is [0], [5].

Hint: This is $\sqrt{R^2 - x^2}$ for R = 5. The graph of this function is a circle with what radius?

Exercise 18.1.1 The domain of the function $\sqrt{R^2 - x^2}$ is [-R], R and the range is [0], R.

Hint: The graph of this function is a circle with what radius?