Architecture code 1D pour passage en 2D

BLOC MODULE EXTERNE

MODULE precisions

MODULE dimension_probleme

MODULE PARAMETRE_EOS ! EOS = Equation of State

MODULE courant

type cellule gaz

MODULE geometrie

type maillage

type definition_domaine

DECLARATION – DIMENSIONNEMENT

Declaration des variables type real, integer...

dimension (tableaux)⇔ allocatable

Lecture de donnees sur fichier externes (DATAINIT.DAT)

INITIALISATION DES VARIABLES

Allocation des dimensions des tableaux Donnees relatives au fluide

Calcul du maillage 'call genmesh'

Calcul de la solution initiale de l'ecoulement 'call initgaz'

(O)BOUCLE SUR LE TEMPS

Calcul du pas de temps (critere CFL)

Affichage du temps et pas de temps 'call affiche_temps'

Calcul des conditions aux limites 'call limgaz'

Calcul des flux aux interfaces 'call interface'

In 'Interface'

Pour chaque face¹ de la cellule.

Calcul de l'état à gauche 'call prepare_flux

Calcul de l'état à droite 'call prepare_flux

Calcul du flux à la face 'call fluhllc'

Calcul de la somme des flux dans une cellule 'call green_flux'

Application de la formule Volumes Finis sur les grandeurs conservatives

Calcul des grandeurs de l'écoulement depuis les grandeurs conservatives 'call prim' Ecriture des résultats

Instationnaire (temps, masse) → Fichier IFILE1 (insta.dat)

A t=t_{ecrit} \Leftrightarrow (k=kinsta), on ecrit (x, u, P, T, ρ , c) 'call ecritplot' \rightarrow Fichier IFILE2 (PLOT)

¹ Chaque ne signifie pas toute. Pour les autres faces on déduit le flux de celui des faces calculées.

→ FIN BOUCLE SUR LE TEMPS

DEALLOCATION MEMOIRE

SOUS-PROGRAMMES OU FONCTIONS

SUBROUTINE INITGAZ

SUBROUTINE AFFICHE_TEMPS

SUBROUTINE ECRITPLOT

SUBROUTINE FLUHLLC

SUBROUTINE GENMESH

SUBROUTINE GREEN FLUX

SUBROUTINE INTERCELL

SUBROUTINE LIMGAZ

SUBROUTINE PREPARE_FLUX

SUBROUTINE PRIM