CSCI3230 (ESTR3108) Fundamentals of Artificial Intelligence

Tutorial 5

Yuan Zhong

Email: yzhong22@cse.cuhk.edu.hk Office: Room 1024, 10/F, SHB

Dept. of Computer Science & Engineering
The Chinese University of Hong Kong

Outline

Part 1. Change of basis

Part 2. Spectral theory

Part 3. Statisical view of PCA

Curse of dimensionality in binary classification

Consider a statistical binary classification model which contains no assumptions and constraints.

When we have an infinite dataset

Fig. 2. Infinite data set accuracy.

Curse of dimensionality in binary classification

Consider a statistical binary classification model which contains no assumptions and constraints.

• When we have a finite dataset: peaking phenomenon

Fig. 3. Finite data set accuracy $(p_{c1} = \frac{1}{2})$.

Fig. 4. Finite data set accuracy $(p_{c1} = \frac{1}{5})$.

Curse of dimensionality in binary classification

An intuitive explanation of curse of dimensionality in binary classification

• The space is getting sparser with increasing dimensions

• Projecting onto 2-dimension:

Part 1. Change of basis

Subspace

A subset $\mathcal S$ of $\mathbb R^m$ is said to be a subspace if

$$\mathbf{x}, \mathbf{y} \in \mathcal{S}, \quad \alpha, \beta \in \mathbb{R} \qquad \Rightarrow \qquad \alpha \mathbf{x} + \beta \mathbf{y} \in \mathcal{S}$$
 (1)

- If S is a subspace and $\mathbf{a}_1, \dots, \mathbf{a}_n \in S$, any linear combinations of $\mathbf{a}_1, \dots, \mathbf{a}_n$, i.e., $\sum_{i=1}^n \alpha_i \mathbf{a}_i$ for any $\alpha \in \mathbb{R}^n$ lies in S.
- ullet Some quick facts: let $\mathcal{S}_1, \mathcal{S}_2$ be subspaces of \mathbb{R}^m
 - $S_1 + S_2$ is a subspace.
 - $\mathcal{S}_1 \cap \mathcal{S}_2$ is a subspace.

Span

The span of a collection of vectors $\mathbf{a}_1,\dots,\mathbf{a}_n\in\mathbb{R}^m$ is defined as

$$\operatorname{span}\{\mathbf{a}_1,\ldots,\mathbf{a}_n\} = \left\{\mathbf{y} \in \mathbb{R} \mid \mathbf{y} = \sum_{i=1}^n \alpha_i \mathbf{a}_i, \ \boldsymbol{\alpha} \in \mathbb{R}^n\right\}$$
(2)

- the set of all linear combinations of $\mathbf{a}_1, \dots, \mathbf{a}_n$.
- a subspace
- Question: any span is a subspace. But can any subspace be written as a span?

Span

The span of a collection of vectors $\mathbf{a}_1,\dots,\mathbf{a}_n\in\mathbb{R}^m$ is defined as

$$\operatorname{span}\{\mathbf{a}_1,\ldots,\mathbf{a}_n\} = \left\{\mathbf{y} \in \mathbb{R} \mid \mathbf{y} = \sum_{i=1}^n \alpha_i \mathbf{a}_i, \ \boldsymbol{\alpha} \in \mathbb{R}^n \right\}$$
(2)

- the set of all linear combinations of $\mathbf{a}_1, \dots, \mathbf{a}_n$.
- a subspace
- Question: any span is a subspace. But can any subspace be written as a span?
 - Theorem: let S be a subspace of \mathbb{R}^m . There exists a integer n and a collection of vectors $\mathbf{a}_1, \ldots, \mathbf{a}_n \in S$ such that $S = \operatorname{span}\{\mathbf{a}_1, \ldots, \mathbf{a}_n\}$.
 - Implication: we can always represent a subspace by a span.

Linear independence

- Suppose we have vectors $u_1 \dots u_n \in \mathbb{R}^n$
- If $u_1 \dots u_n$ are independent then:

$$c_1u_1 + \cdots + c_nu_n = 0$$
, $c_i \in \mathbb{R}, i = 1 \dots n$

iff
$$c_1 = \cdots = c_n = 0$$

• Alternatively, we can write this statement in matrix-vector multiplication: Let $A = [u_1 \dots u_n], c \in \mathbb{R}^n$:

$$Ac = 0$$

iff c = 0, which also implies A is full-rank.

Quiz

Given $u_1 \dots u_n \in \mathbb{R}^n$, for any pair (u_i, u_j) , $i \neq j$, u_i and u_j are independent. Can we say $u_1 \dots u_n$ are independent to each other?

Basis

- Basis is a set of independent vectors, which can span the vector space by linear combination.
- ullet Denote basis as $B=\{u_1,\ldots,u_n\}$, where $u_1\ldots u_n$ are independent.
- Let $U = [u_1 \dots u_n]$. The subspace spanned by B is exactly the range space (column space) of U.
- If S is spanned by B, then any vector $v \in S$, we can find scalars c_1, \ldots, c_n such that:

$$v = c_1 u_1 + \dots + c_n u_n$$

• The number of vectors in the basis = dimension: dim(S) = n.

Basis

Typical basis:

- Canonical basis: $\{e_1, \ldots, e_n\}$, a very useful and common basis of \mathbb{R}^n . For any i, e_i is a vector where only the i-th element equal to 1 and others are zeros.
 - For example, in \mathbb{R}^2 space, $e_1 = [1,0]$ and $e_2 = [0,1]$ are the two canoical basis vectors.
 - ② Coordinates like (x_1, \ldots, x_n) without other context is actually the shorthand of $x_1e_1 + \cdots + x_ne_n$.
- Orthonormal basis: a basis $[u_1, \ldots, u_n]$ is orthonormal iff $u_j^T u_i = 0$ when $i \neq j$ and $u_i^T u_i = 1$ (orthogonal and normalized).
 - For example, canonical basis is orthonormal.
 - **2** Basis $\{\left[\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right], \left[\frac{\sqrt{2}}{2}, -\frac{\sqrt{2}}{2}\right]\}$ is orthonormal.

Basis

- Note that basis of a subspace is not unique.
 - ① Besides of the canonical basis e_1, e_2, e_3 , $u_1=(1,1,1)^T, u_2=(0,1,0)^T, u_3=(1,2,2)^T$ can also be a basis for 3-D Euclidean space.
 - ② Basis for a plane in \mathbb{R}^3 is not unique as well. Spanning of $(0,1,0)^T,(1,0,0)^T$ and $(1,1,0)^T,(1,0,0)^T$ are the same plane.
- Different basis may have different use.
 - In computer graphics, we often need to transform a point from the world coordinate system to the camera coordinate system.
 - ② Discrete signals are generally recorded in time domain. But we usually do Fourier transform to get the frequency domain information. Fourier transform: canonical basis ⇒ fourier basis.
- This is the reason why we need change of basis.

Change of basis

Change of basis transformation

Given a basis $B = \{u_1, \dots, u_n\}$, let $A = [u_1, \dots, u_n]$, the change of basis transformation from canonical basis to B is A^{-1} .

- ullet Convsersely, A is the change of basis transformation from B to canonical basis.
- ullet For example: Suppose we have basis [1,0,0] and [0,0,1]. A coordinate p=[2,3] represented by this basis is actually the coordinate [2,0,3] under the canoical basis. By applying the theorem,

$$Ap = \begin{bmatrix} 1 & 0 \\ 0 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 2 \\ 3 \end{bmatrix} = \begin{bmatrix} 2 \\ 0 \\ 3 \end{bmatrix}.$$

Part 2. Spectral theory

Eigenvalues and eigenvectors

 $\forall A \in \mathbb{R}^{n \times n}$, if we have the equation below for some λ and v,

$$Av = \lambda v$$

- λ is called eigenvalue and the corresponding non-zero v is called eigenvector associated with the λ .
- Eigenvalues are solutions to $det(A-\lambda I)=0$, which is a n-order polynomial.
- ullet When there are n independent eigenvectors, A can be diagonalizable.

$$A = U\Lambda U^{-1}$$

where Λ is a diagonal matrix with eigenvalues $\lambda_1 \dots \lambda_n$ on its diagonal, U's i-th column is the eigenvector associated with λ_i

Eigenvalues and eigenvectors: a toy example

Consider a dataset of people with 2 attributes: age and property.

- Two eigenvectors with corresponding eigenvalues λ_1, λ_2 .
- Projection onto the direction of λ_1 leads to minimal information loss.
- Statistical intuition: the direction of λ_1 shows a larger variance.

Spectral theory for symmetric matrix

• For symmetric A (i.e., $A^T=A$), A must have n real eigenvalues $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n$ and the associated orthonormal eigenvectors v_1, v_2, \ldots, v_n :

$$Av_i = \lambda_i v_i$$

A can be diagonalized as

$$A = U\Lambda U^T$$

where $U = [v_1 \dots v_n]$ and $\Lambda = diag(\lambda_1, \dots, \lambda_n)$

- Spectral resolution: $A = \sum_{i=1}^{n} \lambda_i v_i v_i^T$
- Courant-Fischer theorem:

$$\lambda_i = \max_{\dim V = i} \min_{x \in V, ||x||_2 = 1} x^T A x$$

Quiz

Let this quiz help with recapping spectral theory. Which statement below about eigenvalues and eigenvectors is correct?

- A Eigenvectors of $A \in \mathbb{R}^{n \times n}$ need not to be independent.
- B Any matrix $A \in \mathbb{R}^{n \times n}$ must have n eigenvalues.
- C Symmetric matrix $A \in \mathbb{R}^{n \times n}$ must have n non-repeated eigenvalues.
- D Any matrix $A \in \mathbb{R}^{n \times n}$ is NOT invertible iff 0 is an eigenvalue of A.

Quiz

Let this quiz help with recapping spectral theory. Which statement below about eigenvalues and eigenvectors is correct?

- A Eigenvectors of $A \in \mathbb{R}^{n \times n}$ need not to be independent.
- B Any matrix $A \in \mathbb{R}^{n \times n}$ must have n eigenvalues.
- C Symmetric matrix $A \in \mathbb{R}^{n \times n}$ must have n non-repeated eigenvalues.
- D Any matrix $A \in \mathbb{R}^{n \times n}$ is NOT invertible iff 0 is an eigenvalue of A.

Correct Answer: D

Part 3. Statisical view of PCA

Statistical view

Recall the statistical view of PCA:

Statistical view of PCA

For a multi-variate random variable $X \in \mathbb{R}^D$ (zero-mean), we need to find $d \ll D$ independent unit vectors $u_1, \ldots, u_d \in \mathbb{R}^D$ such that $y_i = u_i^T X$, $u_i^T u_i = 1$ and we have: $\mathrm{Var}(y_1) \geq \mathrm{Var}(y_2) \geq \cdots \geq \mathrm{Var}(y_d)$. The optimal solution to u_1, \ldots, u_d is the first d eigenvectors of $\mathrm{E}[XX^T]$ associated with its d largest eigenvalues.

- $E[XX^T]$ is the covariance matrix of X.
- Each sample (column) of data matrix X can be seen as an observation of random feature vector X.
- Given a zero-mean data matrix $\mathbf{X} \in \mathbb{R}^{D \times m}$, the sample covariance matrix can be computed as $\frac{1}{m}\mathbf{X}\mathbf{X}^T$.

Proof of PCA in statistical view

Firstly, note that random variable $X \in \mathbb{R}^D$ is zero-mean, then $y_i = u_i^T X$ is also zero-mean due to the linearity of $\mathrm{E}(\cdot)$.

$$Var(y_i) = E(y_i y_i^T) = E(u_i^T X X^T u_i) = u_i^T E(X X^T) u_i$$

Denote $[v_1,v_2,\ldots,v_D]$ as eigenvectors of $\mathrm{E}(XX^T)$ associated with eigenvalues $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_D$. Eigenvectors $[v_1,\ldots,v_D]$ is an orthonormal basis of \mathbb{R}^D since $\mathrm{E}(XX^T)$ is symmetric.

PCA in statistical view is equivalent to:

Proof of PCA in statistical view (cont.)

We will prove the proposition below and then statistical view of PCA will be proved by the proposition.

Proposition 1

Any symmetric $A \in \mathbb{R}^{n \times n}$ with eigenvectors $[v_1 \dots v_n]$ associated with $\lambda_1 \geq \dots \lambda_n$. For every $i \in \{1, \dots, n\}$, we have:

$$\lambda_i = \max_{u \in \text{span}(v_i, \dots, v_n)} u^T A u$$

The optimal solution to achieving the equality is $u = v_i$.

By inserting $\mathrm{E}(XX^T)$ as A to this proposition, we can directly see the optimal solution of PCA in statistical view.

Proof of Proposition 1:

$$\forall \xi \in \text{span}(v_i, \dots, v_n), \|\xi\|_2 = 1, \exists c = [c_i, \dots, c_n].$$

We have $\xi = \sum_{j=1}^n c_j v_j$ since $[v_1 \dots v_n]$ is a basis of \mathbb{R}^n .

Firstly, we will show $\sum_{i=1}^{n} c_i^2 = 1$:

$$\xi^{T}\xi = 1 = \sum_{j=i}^{n} c_{j} v_{j}^{T} \sum_{j=i}^{n} c_{j} v_{j} = \sum_{j=i}^{n} \sum_{k=i}^{n} c_{j} c_{k} v_{j}^{T} v_{k}$$

Since
$$v_i \dots v_j^T v_k = \begin{cases} 1, j = k \\ 0, j \neq k \end{cases}$$
 $\xi^T \xi = \sum_{j=i}^n c_j c_j v_j^T v_j = \sum_{j=i}^n c_j^2 = 1$

Proof of PCA in statistical view (cont.)

Also, by spectral resolution, we have

$$A = \sum_{k=1}^{n} \lambda_k v_k v_k^T$$

Then, we can write $\xi^T A \xi$ as:

$$\xi^T A \xi = \sum_{j=i}^n c_j v_j^T \sum_{k=1}^n \lambda_k u_k u_k^T \sum_{l=i}^n c_l v_l$$

$$= \sum_{j=i}^n \sum_{k=1}^n \sum_{l=i}^n c_j c_l \lambda_k v_j^T v_k v_k^T v_l = \sum_{j=i}^n c_j^2 \lambda_j$$

$$\leq (\sum_{i=j}^n c_j^2) \lambda_i = \lambda_i$$

Furthermore, by taking $\xi = v_i$, we can see the equality will be reached.