1. sol

Threads	Runtime	Speedup				Speed	dup		
1	1027.39s	1	12 -						/
2	544.11s	1.89	8 -						
4	332.52s	3.10	6 -						
8	201.46s	5.10	2 –						
16	154.72s	6.64	0 -	1	2	4	8	16	24
24	91.27s	11.26				——Spe	eedup		

$$S(n) = \frac{1}{(1-P) + \frac{P}{n}}$$

As rough estimation, substitute the 5 records, $P = \frac{1}{5} \sum_{k=0}^{4} P_k \approx 0.922$

I.e. approximately 7.8% of the code is strictly serial.

$$S(\infty) = \frac{1}{(1-P) + \frac{P}{m}} = 12.82$$
, T(min) = 80.14s

2. sol

Suppose we have a k-issue machine, assuming T_i is the time taken on one processor; For the cases no more than k instruction per cycle, and more than k instruction per cycle,

$$S_{sub} = \sum_{i=0}^{k} i * f_i$$
; $S_{sur} = \sum_{i=k+1}^{\infty} k * f_i$

For the cases,

Thus, $S_{sub}=\sum_{i=0}^k i*f_i+\sum_{i=k+1}^\infty k*f_i$ Substituting the data in the left graph of P1.7

K-issue	Speedup			
1	1			
2	1.68			
3	2.24			
4	2.5			
5	2.58			
10	>2.6			
15	>2.6			
∞	>2.6			

3.

Systolic array architecture seems a combination of parallelism and pipeline. The core of this architecture is "clocked parallelism", with high throughput but low memory bandwidth.

For example, it will be very high efficient using a n*n systolic array, for which each computation unit has an adder and a multiplier, to realize the multiplication of two matrix, just as shown,

Thus, systolic array is very fit for those kind of applications like image processing and other two-dimensional data processing.