International IOR Rectifier

IRLML6402GPbF

HEXFET® Power MOSFET

- Ultra Low On-Resistance
- P-Channel MOSFET
- SOT-23 Footprint
- Low Profile (<1.1mm)
- Available in Tape and Reel
- Fast Switching
- Lead-Free
- Halogen-Free

 $V_{DSS} = -20V$ $R_{DS(on)} = 0.065\Omega$

Description

These P-Channel MOSFETs from International Rectifier utilize advanced processing techniques to achieve extremely low onresistance per silicon area. This benefit, combined with the fast switching speed and ruggedized device design that HEXFET® power MOSFETs are well known for, provides the designer with an extremely efficient and reliable device for use in battery and load management.

A thermally enhanced large pad leadframe has been incorporated into the standard SOT-23 package to produce a HEXFET Power MOSFET with the industry's smallest footprint. This package, dubbed the Micro3™, is ideal for applications where printed circuit board space is at a premium. The low profile (<1.1mm) of the Micro3 allows it to fit easily into extremely thin application environments such as portable electronics and PCMCIA cards. The thermal resistance and power dissipation are the best available.

Absolute Maximum Ratings

	Parameter	Max.	Units	
V _{DS}	Drain- Source Voltage	-20	V	
I _D @ T _A = 25°C	Continuous Drain Current, V _{GS} @ -4.5V	-3.7		
I _D @ T _A = 70°C	Continuous Drain Current, V _{GS} @ -4.5V	-2.2	Α	
I _{DM}	Pulsed Drain Current ①	-22		
P _D @T _A = 25°C	Power Dissipation	1.3	W	
P _D @T _A = 70°C	Power Dissipation	0.8	vv	
	Linear Derating Factor	0.01	W/°C	
E _{AS}	Single Pulse Avalanche Energy®	11	mJ	
V _{GS}	Gate-to-Source Voltage	± 12	V	
T _{J,} T _{STG}	Junction and Storage Temperature Range	-55 to + 150	°C	

Thermal Resistance

	Parameter	Тур.	Max.	Units
$R_{\theta JA}$	Maximum Junction-to-Ambient®	75	100	°C/W

IRLML6402GPbF

Electrical Characteristics @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
V _{(BR)DSS}	Drain-to-Source Breakdown Voltage	-20			V	$V_{GS} = 0V, I_D = -250\mu A$
$\Delta V_{(BR)DSS}/\Delta T_{J}$	Breakdown Voltage Temp. Coefficient		-0.009		V/°C	Reference to 25°C, I _D = -1mA ②
B	Static Drain-to-Source On-Resistance		0.050	0.065		V _{GS} = -4.5V, I _D = -3.7A ②
R _{DS(on)}	Static Drain to Source Off Hesistance		0.080	0.135	Ω	V _{GS} = -2.5V, I _D = -3.1A ②
V _{GS(th)}	Gate Threshold Voltage	-0.40	-0.55	-1.2	V	$V_{DS} = V_{GS}, I_{D} = -250 \mu A$
9 _{fs}	Forward Transconductance	6.0			S	V _{DS} = -10V, I _D = -3.7A ②
1	Drain-to-Source Leakage Current			-1.0		$V_{DS} = -20V, V_{GS} = 0V$
I _{DSS}	Diali-to-Source Leakage Current			-25	μA	$V_{DS} = -20V, V_{GS} = 0V, T_{J} = 70^{\circ}C$
I _{GSS}	Gate-to-Source Forward Leakage			-100	nA	V _{GS} = -12V
IGSS	Gate-to-Source Reverse Leakage			100	I IIA	V _{GS} = 12V
Qg	Total Gate Charge		8.0	12		$I_D = -3.7A$
Q _{gs}	Gate-to-Source Charge		1.2	1.8	nC	$V_{DS} = -10V$
Q _{gd}	Gate-to-Drain ("Miller") Charge		2.8	4.2		V _{GS} = -5.0V ②
t _{d(on)}	Turn-On Delay Time		350			V _{DD} = -10V
t _r	Rise Time		48		ns	$I_D = -3.7A$
t _{d(off)}	Turn-Off Delay Time		588		115	$R_G = 89\Omega$
tf	Fall Time		381			$R_D = 2.7\Omega$
C _{iss}	Input Capacitance		633			$V_{GS} = 0V$
Coss	Output Capacitance		145		pF	$V_{DS} = -10V$
C _{rss}	Reverse Transfer Capacitance		110			f = 1.0MHz

Source-Drain Ratings and Characteristics

	Parameter	Min.	Тур.	Max.	Units	Conditions
Is	Continuous Source Current			-1.3		MOSFET symbol
	(Body Diode)			-1.3	A	showing the
I _{SM}	Pulsed Source Current			00	^	integral reverse
	(Body Diode) ①	-22	-22	p-n junction diode.		
V _{SD}	Diode Forward Voltage			-1.2	V	$T_J = 25^{\circ}C$, $I_S = -1.0A$, $V_{GS} = 0V$ ②
t _{rr}	Reverse Recovery Time		29	43	ns	$T_J = 25^{\circ}C, I_F = -1.0A$
Q _{rr}	Reverse RecoveryCharge		11	17	nC	di/dt = -100A/µs ②

Notes:

- ① Repetitive rating; pulse width limited by max. junction temperature.
- ② Pulse width \leq 400 μ s; duty cycle \leq 2%.
- ③ Surface mounted on 1" square single layer 1oz. copper FR4 board, steady state.

www.irf.com

2

^{**} For recommended footprint and soldering techniques refer to application note #AN-994.

International TOR Rectifier

IRLML6402GPbF

Fig 1. Typical Output Characteristics

Fig 2. Typical Output Characteristics

Fig 3. Typical Transfer Characteristics

Fig 4. Normalized On-Resistance Vs. Temperature

Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage

Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage

Fig 7. Typical Source-Drain Diode Forward Voltage

Fig 8. Maximum Safe Operating Area

International TOR Rectifier

IRLML6402GPbF

Part of the second of the seco

Fig 9. Maximum Drain Current Vs. Case Temperature

Fig 10. Maximum Avalanche Energy Vs. Drain Current

 $\textbf{Fig 11.} \ \ \textbf{Maximum Effective Transient Thermal Impedance, Junction-to-Ambient}$

IRLML6402GPbF

International **TOR** Rectifier

RDS (on) , Drain-to-Source On Resistance (Ω) 0.20 VGS = -2.5V 0.16 0.12 0.08 VGS = -4.5V 0.04 0.00 5 0 10 15 20 25 30 -I_D , Drain Current (A)

Fig 12. Typical On-Resistance Vs. Gate Voltage

Fig 13. Typical On-Resistance Vs. Drain Current

International IOR Rectifier

IRLML6402GPbF

Micro3 (SOT-23) (Lead-Free) Package Outline

Dimensions are shown in millimeters (inches)

DIMENSIONS						
SYMBOL	MILLIMI	ETERS	INCHES			
STWIDOL	MIN	MAX	MIN	MAX		
Α	0.89	1.12	0.035	0.044		
A1	0.01	0.10	0.0004	0.004		
A2	0.88	1.02	0.035	0.040		
b	0.30	0.50	0.012	0.020		
С	0.08	0.20	0.003	0.008		
D	2.80	3.04	0.110	0.120		
E	2.10	2.64	0.083	0.104		
E1	1.20	1.40	0.047	0.055		
е	0.95	BSC	0.037	BSC		
e1	1.90	BSC	0.075	BSC		
L	0.40	0.60	0.016	0.024		
L1	0.54	REF	0.021	REF		
L2	0.25	BSC	0.010	BSC		
0	0	8	0	8		

Recommended Footprint

- 1. DIMENSIONING & TOLERANCING PER ANSI Y14.5M-1994
 2. DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES].
 3. CONTROLLING DIMENSION. MILLIMETERS [INCHES].
 3. CONTROLLING DIMENSION. MILLIMETER.
 4. DATUM PLANDE HIS LOCATED AT THE MOLD PARTING LINE.
 5. DATUM A AND B TO BE EDTERMINED AT DATUM PLANE H.
 5. DIMENSIONS OR NOTE 14 REMEASURED AT DATUM PLANE H. DIMENSIONS ON DOES IN MERCHAULT AND THE MERCHAULT OF THE MERCHAULT

Micro3 (SOT-23 / TO-236AB) Part Marking Information

W = (1-26) IF PRECEDED BY LAST DIGIT OF CALENDAR YEAR

YE.AR	Υ	WORK WEEK	W
2001	1	01	Α
2002	2	02	В
2003	3	03	С
2004	4	04	D
2005	5		
2006	6		
2007	7		
2008	8	1	1
2009	9	7	1
2010	0	24	X
		25	Υ
		26	Z

PART NUMBER CODE REFERENCE:

A = IRLML2402
B =IRLML2803
C = IRLML2402
D = IRLML5103
E = IRLML6402
F = IRLML6401
G = IRLML2502
H = IRLML5203

Note: A line above the work week (as shown here) indicates Lead-free

W= (27-52) IF PRECEDED BY A LETTER

YEAR	Υ	WORK WEEK	W
2001	Α	27	
2002	В	28	В
2003	С	29	С
2004	D	30	D
2005	E		
2006	F		
2007	G		
2008	Н	1	1
2009	J	7	1
2010	K	50	X
		51	Υ
		52	7

Note: For the most current drawing please refer to IR website at http://www.irf.com/package www.irf.com

IRLML6402GPbF

International

TOR Rectifier

Micro3™ Tape & Reel Information

Dimensions are shown in millimeters (inches)

NOTES:

- 1. CONTROLLING DIMENSION : MILLIMETER.
- 2. OUTLINE CONFORMS TO EIA-481 & EIA-541.

Note: For the most current drawing please refer to IR website at http://www.irf.com/package

Data and specifications subject to change without notice.

IR WORLD HEADQUARTERS: 101N.Sepulveda Blvd, El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903

Visit us at www.irf.com for sales contact information. 12/2011