PHN – 006: Quantum & Statistical Mechanics

Assignment - 01

Deadline for Submission: April 19, 2023, 11:59 pm.

- 1. The power radiated by a spherical blackbody of radius 'R' at temperature T (= 4000K) is 100 Watts. This energy is then absorbed by another blackbody of radius '2R', predict the temperature of that black body.
- 2. The Planck energy density for a blackbody is plotted against the wavelength. The maxima occur at wavelength λ = 600 nm at 5000 K. For the same blackbody at 3000 K what should be the wavelength for which the maxima occur.
- 3. The work function (Φ_0) of a metal is 2.14 eV. Calculate the range of De Broglie wavelength of the photoelectrons in the photoelectric experiment which is carried out with the visible light source.
- 4. The stopping potential in the photoelectric effect is 2.012 V, where the light source is of wavelength 2000 Å. Calculate the work function of the metal used in the experiment.
- 5. The energy of a relativistic particle is given by $\mathbf{E} = (\hat{\mathbf{p}^2}\mathbf{c}^2 + \mathbf{m}^2\mathbf{c}^4)^{\frac{1}{2}}$, where **m** is the mass of the particle, **p** is its momentum, and **c** is the speed of light. Calculate the ratio of group velocity ($\mathbf{v_g}$) to phase velocity ($\mathbf{v_p}$).
- 6. An electron is accelerated by an electric field $\mathbf{E} = \mathbf{10}$ V/m within a region $\mathbf{0} < \mathbf{x} < \mathbf{5}$ (in Å), find the wavelength of the associated wave. Also find the velocity of the electron and compare it with the speed of light.
- 7. It is seen in an experiment related to neutron scattering that de Broglie wavelength of a neutron is 1Å. Find the energy of the neutron.
- 8. A photon of energy 14.88 eV collides with an electron at rest in a head-to-head elastic collision. The wavelength of the electron scattered is 300 nm. Then find the angle with which the photon deviates from its original path.
- 9. Franck-Hertz experiment uses an electron of energy 4.96 eV to pass through mercury vapor. It is found that the energy of the electron decreases by 70% of initial value. Find the smallest possible wavelength of the emitted photon in the experiment.
- 10. The waves on the surface of water travel with a phase velocity $v_p = \frac{\sqrt{g\lambda}}{\sqrt{2\pi}}$, where g is the acceleration due to gravity, and λ is the wavelength of the wave. Show that the group velocity of a wave packet made up of these waves is $v_p/2$.
- 11. The speedometer of a 180 kg vehicle reads 72 km/h at a particular instant. The readings are known to have an accuracy of ± 2 km/h. What would be the minimum uncertainty in the position of the vehicle at that instant according to the Heisenberg Uncertainty Principle?
- 12. Find the eigenvalues and eigenfunctions of the operator d/dx.
- 13. Find the Hamiltonian operator of a charged particle in an electromagnetic field described by the vector potential \mathbf{A} and the scalar potential $\mathbf{\phi}$.
- 14. Show that the linear momentum is not quantized.
- 15. The Hamiltonian operator of a system is $H = -(d^2/dx^2) + x^2$. Show that Nx exp $(-x^2/2)$ is an eigenfunction of H and determine the eigenvalue. Also, evaluate N by normalization of the function.
- 16. The de Broglie wavelength λ and the kinetic energy E for a highly relativistic electron are related as $\lambda = \alpha/E$. If λ and E represent the numerical values in angstrom and kiloelectron volt, find the numerical value of α .
- 17. When an electron is accelerated through a potential difference V, its de Broglie wavelength is given by $\lambda = \alpha / \sqrt{V}$ for nonrelativistic speeds. If λ and V represent numerical values in angstrom and volt, find the numerical value of α .
- 18. The normalized wave function of a particle is $\Psi(x) = A \exp(iax ibt)$, where A, a and b are constants. Evaluate the uncertainty in its momentum.
- 19. The ground state wave function of a particle of mass m is given by $y(x) = \exp(-a^2x^4/4)$, with energy eigenvalue $\hbar^2 a^2/m$. What is the potential in which the particle moves?
- 20. Consider a particle of mass m moving in a one-dimensional potential specified by

$$V(x) = \begin{cases} 0, & -2a < x < 2a \\ \infty, & otherwise \end{cases}$$

Find the energy eigenvalues and eigenfunctions.