$\Delta_{1}^{\#1}{}_{\alpha\beta}$ $\Delta_{1}^{\#2}{}_{lphaeta}$ $\Delta_{1}^{\#1}{}_{\alpha}$ $\Delta_{1}^{\#2}{}_{lpha}$ $\Delta_{1-\alpha}^{\#6}$ $\frac{4}{3} \left(-\frac{1}{a_0 + 4a_1 - 4a_2} + (a_0 - 4a_1 - 2a_2 - 3a_3 + 16a_6 - 4a_7 - 2a_9) \right)$ $\left| \frac{2}{3} \sqrt{2} \left(-\frac{1}{a_0 + 4a_1 - 4a_2} + \left(-2a_0 + 8a_1 + 4a_2 + 6a_3 - 32a_6 + 8a_7 + 4a_9 \right) \right| \right|$ $\frac{4 \left(2 \, a_{1} + a_{2} + a_{9}\right)}{3 \left(a_{0}^{2} + \left(2 \, a_{1} + a_{2}\right) \left(2 \, a_{1} + a_{2} + 3 \, a_{3} - 16 \, a_{6} + 4 \, a_{7}\right) - a_{9}^{2} - a_{0} \left(6 \, a_{1} + 3 \, a_{2} + 3 \, a_{3} - 16 \, a_{6} + 4 \, a_{7} + 2 \, a_{9}\right)\right)}{3 \left(a_{1}^{2} + \left(2 \, a_{1} + a_{2}\right) \left(2 \, a_{1} + a_{2} + 3 \, a_{3} - 16 \, a_{6} + 4 \, a_{7} + 2 \, a_{9}\right)\right)}$ $(a_0^2 + (2a_1 + a_2)(2a_1 + a_2 + 3a_3 - 16a_6 + 4a_7)$ $(a_0^2 + (2a_1 + a_2)(2a_1 + a_2 + 3a_3 - 16a_6 + 4a_7)$ a_9^2 - a_0 (6 a_1 + 3 a_2 + 3 a_3 - 16 a_6 + 4 a_7 + 2 a_9))) $a_9^2 - a_0 (6 a_1 + 3 a_2 + 3 a_3 - 16 a_6 + 4 a_7 + 2 a_9)))$ $-\frac{2}{3(a_0+4a_1-4a_2)}+(8(a_0-4a_1-2a_2-3a_3+16a_6-4a_7-2a_9))/$ $\frac{2}{3}\sqrt{2}\left(-\frac{1}{a_0+4a_1-4a_2}+(-2a_0+8a_1+4a_2+6a_3-32a_6+8a_7+4a_9)\right)$ $-((4\sqrt{2}(2a_1+a_2+a_9))/$ $(3(a_0^2 + (2a_1 + a_2)(2a_1 + a_2 + 3a_3 - 16a_6 + 4a_7) - a_9^2 (a_0^2 + (2a_1 + a_2)(2a_1 + a_2 + 3a_3 - 16a_6 + 4a_7)$ $(3(a_0^2 + (2a_1 + a_2)(2a_1 + a_2 + 3a_3 - 16a_6 + 4a_7)$ $a_0 (6 a_1 + 3 a_2 + 3 a_3 - 16 a_6 + 4 a_7 + 2 a_9))))$ a_9^2 - a_0 (6 a_1 + 3 a_2 + 3 a_3 - 16 a_6 + 4 a_7 + 2 a_9))) a_9^2 - a_0 (6 a_1 + 3 a_2 + 3 a_3 - 16 a_6 + 4 a_7 + 2 a_9))) $-((4\sqrt{2}(2a_1+a_2+a_9))/$ $\frac{4 (2 a_1 + a_2 + a_9)}{3 (a_0^2 + (2 a_1 + a_2) (2 a_1 + a_2 + 3 a_3 - 16 a_6 + 4 a_7) - a_9^2 - a_0 (6 a_1 + 3 a_2 + 3 a_3 - 16 a_6 + 4 a_7 + 2 a_9))}$ $\frac{4(a_0-2a_1-a_2)}{3(a_0^2+(2a_1+a_2)(2a_1+a_2+3a_3-16a_6+4a_7)-a_9^2-a_0(6a_1+3a_2+3a_3-16a_6+4a_7+2a_9))}$ $(3(a_0^2 + (2a_1 + a_2)(2a_1 + a_2 + 3a_3 - 16a_6 + 4a_7) - a_9^2$ $a_0 (6 a_1 + 3 a_2 + 3 a_3 - 16 a_6 + 4 a_7 + 2 a_9))))$ $(4\sqrt{2}(3a_0^2-4a_1^2-a_2^2-3a_3(3a_3+4(-4a_6+a_7)) 6a_3a_9-a_9^2-2a_2(3a_3+a_9)-4a_1(a_2+3a_3+a_9) \frac{4}{3} \left(-\frac{2}{2a_0+2a_1+a_2+3a_3} + (a_0-4a_1-2a_2-3a_3+16a_6-4a_7-2a_9) \right)$ $-((4(2a_1+a_2+a_9))/$ $4\sqrt{\frac{2}{3}}(2a_1+a_2+a_9)$ $6a_0(2a_1+a_2+a_3-8a_6+2a_7+a_9)))/$ $(3\sqrt{3}(a_0^2 + (2a_1 + a_2)(2a_1 + a_2 + 3a_3 - 16a_6 + 4a_7) (a_0^2 + (2a_1 + a_2)(2a_1 + a_2 + 3a_3 - 16a_6 + 4a_7) - a_9^2 - a_0(6a_1 + 3a_2 + 3a_3 - 16a_6 + 4a_7 + 2a_9)))$ $(3(2a_0+2a_1+a_2+3a_3)$ $\frac{1}{3(a_0^2 + (2a_1 + a_2)(2a_1 + a_2 + 3a_3 - 16a_6 + 4a_7) - a_9^2 - a_0(6a_1 + 3a_2 + 3a_3 - 16a_6 + 4a_7 + 2a_9))}{3(a_0^2 + (2a_1 + a_2)(2a_1 + a_2 + 3a_3 - 16a_6 + 4a_7) - a_9^2 - a_0(6a_1 + 3a_2 + 3a_3 - 16a_6 + 4a_7 + 2a_9))}$ a_9^2 - a_0 (6 a_1 + 3 a_2 + 3 a_3 - 16 a_6 + 4 a_7 + 2 a_9)))) $(a_0^2 + (2a_1 + a_2)(2a_1 + a_2 + 3a_3 - 16a_6 + 4a_7)$ $a_9^2 - a_0 (6 a_1 + 3 a_2 + 3 a_3 - 16 a_6 + 4 a_7 + 2 a_9)))$ $(4\sqrt{2}(3a_0^2-4a_1^2-a_2^2-3a_3(3a_3+4(-4a_6+a_7)) 6 a_3 a_9 - a_9^2 - 2 a_2 (3 a_3 + a_9) - 4 a_1 (a_2 + 3 a_3 + a_9) -((4\sqrt{\frac{2}{3}}(2a_1+a_2+a_9))/$ $-\frac{4}{3(2a_0+2a_1+a_2+3a_3)}+(8(a_0-4a_1-2a_2-3a_3+16a_6-4a_7-2a_9))/$ $(8(2a_1+a_2+a_9))/$ $6a_0(2a_1+a_2+a_3-8a_6+2a_7+a_9)))/$ $(3\sqrt{3}(a_0^2 + (2a_1 + a_2)(2a_1 + a_2 + 3a_3 - 16a_6 + 4a_7) (3(a_0^2 + (2a_1 + a_2)(2a_1 + a_2 + 3a_3 - 16a_6 + 4a_7) (3(a_0^2 + (2a_1 + a_2)(2a_1 + a_2 + 3a_3 - 16a_6 + 4a_7) - a_9^2 - a_0(6a_1 + 3a_2 + 3a_3 - 16a_6 + 4a_7 + 2a_9))))$ $(3(2a_0+2a_1+a_2+3a_3)$ a_9^2 - a_0 (6 a_1 + 3 a_2 + 3 a_3 - 16 a_6 + 4 a_7 + 2 a_9))) a_9^2 - a_0 (6 a_1 + 3 a_2 + 3 a_3 - 16 a_6 + 4 a_7 + 2 a_9))) $(a_0^2 + (2a_1 + a_2)(2a_1 + a_2 + 3a_3 - 16a_6 + 4a_7)$ a_9^2 - a_0 (6 a_1 + 3 a_2 + 3 a_3 - 16 a_6 + 4 a_7 + 2 a_9))) $\sqrt{5}$ $\frac{18(a_0+4a_6-4a_7)}{18(a_0+4a_6-4a_7)}$ $\frac{\sqrt{5}}{18(a_0+4a_6-4a_7)} \frac{1}{-18(a_0+4a_6)+72a_7}$ $(8(2a_1+a_2+a_9))/$ $4\sqrt{\frac{2}{3}}(2a_1+a_2+a_9)$ $\frac{8 (a_0 - 2 a_1 - a_2)}{9 (a_0^2 + (2 a_1 + a_2) (2 a_1 + a_2 + 3 a_3 - 16 a_6 + 4 a_7) - a_9^2 - a_0 (6 a_1 + 3 a_2 + 3 a_3 - 16 a_6 + 4 a_7 + 2 a_9))} \frac{4 \sqrt{2} (-a_0 + 2 a_1 + a_2)}{9 (a_0^2 + (2 a_1 + a_2) (2 a_1 + a_2 + 3 a_3 - 16 a_6 + 4 a_7) - a_9^2 - a_0 (6 a_1 + 3 a_2 + 3 a_3 - 16 a_6 + 4 a_7 + 2 a_9))}$ $(3\sqrt{3}(a_0^2 + (2a_1 + a_2)(2a_1 + a_2 + 3a_3 - 16a_6 + 4a_7) \frac{1}{3(a_0^2 + (2a_1 + a_2)(2a_1 + a_2 + 3a_3 - 16a_6 + 4a_7) - a_9^2 - a_0(6a_1 + 3a_2 + 3a_3 - 16a_6 + 4a_7 + 2a_9))}{3(a_0^2 + (2a_1 + a_2)(2a_1 + a_2 + 3a_3 - 16a_6 + 4a_7) - a_9^2 - a_0(6a_1 + 3a_2 + 3a_3 - 16a_6 + 4a_7 + 2a_9))}$ a_9^2 - a_0 (6 a_1 + 3 a_2 + 3 a_3 - 16 a_6 + 4 a_7 + 2 a_9))) $-((4\sqrt{\frac{2}{3}}(2a_1+a_2+a_9)))/$ $-((4(2a_1+a_2+a_9))/$ $\frac{4\sqrt{2}(-a_0+2a_1+a_2)}{9(a_0^2+(2a_1+a_2)(2a_1+a_2+3a_3-16a_6+4a_7)-a_9^2-a_0(6a_1+3a_2+3a_3-16a_6+4a_7+2a_9))} = \frac{4(a_0-2a_1-a_2)}{9(a_0^2+(2a_1+a_2)(2a_1+a_2+3a_3-16a_6+4a_7)-a_9^2-a_0(6a_1+3a_2+3a_3-16a_6+4a_7+2a_9))}$ $(3\sqrt{3}(a_0^2 + (2a_1 + a_2)(2a_1 + a_2 + 3a_3 - 16a_6 + 4a_7) (3(a_0^2 + (2a_1 + a_2)(2a_1 + a_2 + 3a_3 - 16a_6 + 4a_7) - a_9^2$ a_9^2 - a_0 (6 a_1 + 3 a_2 + 3 a_3 - 16 a_6 + 4 a_7 + 2 a_9)))) $a_0 (6 a_1 + 3 a_2 + 3 a_3 - 16 a_6 + 4 a_7 + 2 a_9))))$

	$\Gamma_{1}^{\#1}{}_{lphaeta}$	$\Gamma^{\#2}_{1}^{+}{}_{lphaeta}$	$\Gamma_{1}^{\#3}_{+\alpha\beta}$	$\Gamma_{1}^{\#1}{}_{\alpha}$	$\Gamma_{1}^{\#2}$	$\Gamma_{1}^{\#3}$	$\Gamma_{1^{-}\alpha}^{\#4}$	$\Gamma_{1^{-}\alpha}^{\#^{5}}$	$\Gamma_{1}^{\#6}{}_{lpha}$	$h_{1-\alpha}^{\#1}$
$\Gamma_{1}^{\#1} \dagger^{\alpha\beta}$	$\frac{1}{4} \left(-a_0 - 6 a_1 + 5 a_2 \right)$	$-\frac{a_0 + 2a_1 - 3a_2}{2\sqrt{2}}$	$\frac{1}{4} \left(-2 a_1 - a_2 - a_9 \right)$	0	0	0	0	0	0	0
$\Gamma_{1}^{#2} \dagger^{\alpha\beta}$	$-\frac{a_0+2a_1-3a_2}{2\sqrt{2}}$	$\frac{1}{2} \left(-2 a_1 + a_2 \right)$	$\frac{2 a_1 + a_2 + a_9}{2 \sqrt{2}}$	0	0	0	0	0	0	0
$\Gamma_{1}^{#3} \dagger^{\alpha\beta}$	$\frac{1}{4} \left(-2 a_1 - a_2 - a_9 \right)$	$\frac{2 a_1 + a_2 + a_9}{2 \sqrt{2}}$	$\frac{3}{4}$ (a_0 - 4 a_1 - 2 a_2 - 3 a_3 + 16 a_6 - 4 a_7 - 2 a_9)	0	0	0	0	0	0	0
$\Gamma_1^{#1} \dagger^{\alpha}$	0	0	0	$\frac{1}{4} (-a_0 - 2 a_1 - a_2 - 2 a_3)$	$\frac{a_0 + a_3}{2\sqrt{2}}$	0	0	$-\frac{2a_1+a_2+a_9}{2\sqrt{6}}$	$\frac{2a_1 + a_2 + a_9}{4\sqrt{3}}$	0
$\Gamma_1^{\#2} \uparrow^{\alpha}$	0	0	0	$\frac{a_0 + a_3}{2\sqrt{2}}$	$\frac{1}{4} \left(-2 a_1 - a_2 - a_3 \right)$	0	0	$-\frac{2a_1+a_2+a_9}{2\sqrt{3}}$	$\frac{2 a_1 + a_2 + a_9}{2 \sqrt{6}}$	0
$\Gamma_1^{\#3} \uparrow^{\alpha}$	0	0	0	0	0	$-\frac{5}{2}(a_0+4a_6-4a_7)$	$\frac{1}{2} \sqrt{5} (a_0 + 4 a_6 - 4 a_7)$	0	0	0
$\Gamma_1^{\#4} \uparrow^{\alpha}$	0	0	0	0	0	$\frac{1}{2}\sqrt{5}(a_0+4a_6-4a_7)$	$-\frac{a_0}{2}$ - 2 a_6 + 2 a_7	0	0	0
$\Gamma_1^{\#5} \dagger^{\alpha}$	0	0	0	$-\frac{2a_1+a_2+a_9}{2\sqrt{6}}$	$-\frac{2a_1+a_2+a_9}{2\sqrt{3}}$	0	0	$\frac{1}{2}$ $(a_0 - 4a_1 - 2a_2 - 3a_3 + 16a_6 - 4a_7 - 2a_9)$	$\frac{-a_0+4a_1+2a_2+3a_3-16a_6+4a_7+2a_9}{2\sqrt{2}}$	0
$\Gamma_1^{\#6} \uparrow^{\alpha}$	0	0	0	$\frac{2 a_1 + a_2 + a_9}{4 \sqrt{3}}$	$\frac{2 a_1 + a_2 + a_9}{2 \sqrt{6}}$	0	0	$\frac{-a_0 + 4a_1 + 2a_2 + 3a_3 - 16a_6 + 4a_7 + 2a_9}{2\sqrt{2}}$	$\frac{1}{4} (a_0 - 4a_1 - 2a_2 - 3a_3 + 16a_6 - 4a_7 - 2a_9)$	0
$h_1^{\#1} + ^{\alpha}$	0	0	0	0	0	0	0	0	0	0

	$\Delta_0^{\#1}$	Δ ₀ ^{#2}	Δ ₀ ^{#3}	$\Delta_0^{\#4}$	${\cal T}_0^{\#1}$	${\cal T}_{0}^{\#2}$	$\Delta_0^{\#1}$
$\Delta_0^{\#1}$ †	$-\frac{4}{2a_0+2a_1+a_2+3a_3}$	0	0	0	0	0	0
$\Delta_0^{\#2}$ †	0	$\frac{1}{-6(a_0+4a_6)+24a_7}$	$\frac{1}{6(a_0+4a_6-4a_7)}$	0	0	0	0
$\Delta_{0}^{#3}$ †	0	$\frac{1}{6a_0 + 24a_6 - 24a_7}$	$\frac{1}{-6(a_0+4a_6)+24a_7}$	0	0	0	0
$\Delta_0^{\#4}$ †	0	0	0	0	0	0	0
${\cal T}_{0}^{\#1}\dagger$	0	0	0	0	$\frac{4}{a_0 k^2}$	0	0
$\mathcal{T}_{0}^{\#2}$ †	0	0	0	0	0	0	0
$\Delta_0^{#1}$ †	0	0	0	0	0	0	$-\frac{2}{a_0+4(a_1-a_2+3a_1k^2)}$

Quadratic (free) action
S _F ==
$\iiint (\frac{1}{24} (4 (4 a_1 + 2 a_2 + 3 a_3 - 12 a_6 + 2 a_9) \Gamma_{\alpha \chi}^{\chi} \Gamma_{\beta}^{\alpha \beta} - 6 (a_0 + 6 a_1 + a_2 + 3 a_3 - 12 a_6 + 2 a_9) \Gamma_{\alpha \chi}^{\chi} \Gamma_{\beta}^{\alpha \beta} - 6 (a_0 + 6 a_1 + a_2 + 3 a_3 - 12 a_6 + 2 a_9) \Gamma_{\alpha \chi}^{\chi} \Gamma_{\beta}^{\alpha \beta} - 6 (a_0 + 6 a_1 + a_2 + 3 a_3 - 12 a_6 + 2 a_9) \Gamma_{\alpha \chi}^{\chi} \Gamma_{\beta}^{\alpha \beta} - 6 (a_0 + 6 a_1 + a_2 + 3 a_3 - 12 a_6 + 2 a_9) \Gamma_{\alpha \chi}^{\chi} \Gamma_{\beta}^{\alpha \beta} - 6 (a_0 + 6 a_1 + a_2 + 3 a_3 - 12 a_6 + 2 a_9) \Gamma_{\alpha \chi}^{\chi} \Gamma_{\beta}^{\alpha \beta} - 6 (a_0 + 6 a_1 + a_2 + 3 a_3 - 12 a_6 + 2 a_9) \Gamma_{\alpha \chi}^{\chi} \Gamma_{\beta}^{\alpha \beta} - 6 (a_0 + 6 a_1 + a_2 + 3 a_3 - 12 a_6 + 2 a_9) \Gamma_{\alpha \chi}^{\chi} \Gamma_{\beta}^{\alpha \beta} - 6 (a_0 + 6 a_1 + a_2 + 3 a_3 - 12 a_6 + 2 a_9) \Gamma_{\alpha \chi}^{\chi} \Gamma_{\beta}^{\alpha \beta} - 6 (a_0 + 6 a_1 + a_2 + 3 a_3 - 12 a_6 + 2 a_9) \Gamma_{\alpha \chi}^{\chi} \Gamma_{\beta}^{\alpha \beta} - 6 (a_0 + 6 a_1 + a_2 + 3 a_3 - 12 a_6 + 2 a_9) \Gamma_{\alpha \chi}^{\chi} \Gamma_{\beta}^{\alpha \beta} - 6 (a_0 + 6 a_1 + a_2 + 3 a_3 - 12 a_6 + 2 a_9) \Gamma_{\alpha \chi}^{\chi} \Gamma_{\beta}^{\alpha \beta} - 6 (a_0 + 6 a_1 + a_2 + 3 a_3 - 12 a_6 + 2 a_9) \Gamma_{\alpha \chi}^{\chi} \Gamma_{\beta}^{\alpha \beta} - 6 (a_0 + 6 a_1 + a_2 + 3 a_3 - 12 a_6 + 2 a_9) \Gamma_{\alpha \chi}^{\chi} \Gamma_{\beta}^{\alpha \beta} - 6 (a_0 + 6 a_1 + a_2 + 3 a_3 - 12 a_6 + 2 a_9) \Gamma_{\alpha \chi}^{\chi} \Gamma_{\beta}^{\alpha \beta} - 6 (a_0 + 6 a_1 + a_2 + 3 a_3 - 12 a_6 + 2 a_9) \Gamma_{\alpha \chi}^{\chi} \Gamma_{\beta}^{\alpha \beta} - 6 (a_0 + 6 a_1 + a_2 + 3 a_3 - 12 a_6 + 2 a_9) \Gamma_{\alpha \chi}^{\chi} \Gamma_{\beta}^{\alpha \beta} - 6 (a_0 + 6 a_1 + a_2 + 3 a_3 - 12 a_6 + 2 a_9) \Gamma_{\alpha \chi}^{\chi} \Gamma_{\beta}^{\alpha \beta} - 6 (a_0 + 6 a_1 + a_2 + 3 a_3 - 12 a_6 + 2 a_9) \Gamma_{\alpha \chi}^{\chi} \Gamma_{\beta}^{\alpha \beta} - 6 (a_0 + 6 a_1 + a_2 + 3 a_3 - 12 a_6 + 2 a_9) \Gamma_{\alpha \chi}^{\chi} \Gamma_{\beta}^{\alpha \beta} - 6 (a_0 + 6 a_1 + a_2 + 3 a_3 - 12 a_6 + 2 a_9) \Gamma_{\alpha \chi}^{\chi} \Gamma_{\beta}^{\alpha \gamma} - 6 (a_0 + 6 a_1 + a_2 + 3 a_3 - 12 a_6 + 2 a_9) \Gamma_{\alpha \chi}^{\chi} \Gamma_{\alpha \chi}^{\gamma} - 6 (a_0 + 6 a_1 + a_2 + 3 a_3 - 12 a_6 + 2 a_9) \Gamma_{\alpha \chi}^{\chi} \Gamma_{\alpha \chi}^{\gamma} - 6 (a_0 + 6 a_1 + a_2 + 3 a_3 - 12 a_6 + 2 a_9) \Gamma_{\alpha \chi}^{\gamma} \Gamma_{\alpha \chi}^{\gamma} - 6 (a_0 + 6 a_1 + a_2 + 3 a_3 - 12 a_6 + 2 a_9) \Gamma_{\alpha \chi}^{\gamma} - 6 (a_0 + 6 a_1 + a_2 + 3 a_3 - 12 a_3 - 12 a_5 + 2 a_5$
$8a_6 - 4a_7 + 2a_9$) $\Gamma_{\alpha\beta\chi}$ $\Gamma^{\alpha\beta\chi} - 6a_0$ $\Gamma_{\alpha\chi\beta}$ $\Gamma^{\alpha\beta\chi} - 12a_1$ $\Gamma_{\alpha\chi\beta}$ $\Gamma^{\alpha\beta\chi} -$
$18a_2\Gamma_{\alpha\chi\beta}\Gamma^{\alpha\beta\chi}-18a_3\Gamma_{\alpha\chi\beta}\Gamma^{\alpha\beta\chi}+48a_6\Gamma_{\alpha\chi\beta}\Gamma^{\alpha\beta\chi}+24a_7\Gamma_{\alpha\chi\beta}\Gamma^{\alpha\beta\chi}-$
$12 a_9 \Gamma_{\alpha\chi\beta} \Gamma^{\alpha\beta\chi} - 12 a_0 \Gamma^{\alpha\beta\chi} \Gamma_{\beta\alpha\chi} + 6 a_1 \Gamma^{\alpha\beta\chi} \Gamma_{\beta\alpha\chi} - 9 a_2 \Gamma^{\alpha\beta\chi} \Gamma_{\beta\alpha\chi} +$
$9 a_3 \Gamma^{\alpha\beta\chi} \Gamma_{\beta\alpha\chi} - 96 a_6 \Gamma^{\alpha\beta\chi} \Gamma_{\beta\alpha\chi} + 60 a_7 \Gamma^{\alpha\beta\chi} \Gamma_{\beta\alpha\chi} - 36 a_0 \Gamma^{\alpha\beta\chi} \Gamma_{\beta\chi\alpha} +$
$12a_1\Gamma^{\alpha\beta\chi}\Gamma_{\beta\chi\alpha} + 30a_2\Gamma^{\alpha\beta\chi}\Gamma_{\beta\chi\alpha} + 18a_3\Gamma^{\alpha\beta\chi}\Gamma_{\beta\chi\alpha} - 192a_6\Gamma^{\alpha\beta\chi}\Gamma_{\beta\chi\alpha} +$
$120a_7\Gamma^{\alpha\beta\chi}\Gamma_{\beta\chi\alpha} + 12a_9\Gamma^{\alpha\beta\chi}\Gamma_{\beta\chi\alpha} + 12a_0\Gamma^{\alpha\beta}_{\alpha}\Gamma^{\chi}_{} - 24a_1\Gamma^{\alpha\beta}_{\alpha}\Gamma^{\chi}_{} -$
$12 a_2 \Gamma_{\alpha}^{\alpha\beta} \Gamma_{\beta\chi}^{\chi} - 12 a_3 \Gamma_{\alpha}^{\alpha\beta} \Gamma_{\beta\chi}^{\chi} + 96 a_6 \Gamma_{\alpha}^{\alpha\beta} \Gamma_{\beta\chi}^{\chi} - 48 a_7 \Gamma_{\alpha}^{\alpha\beta} \Gamma_{\beta\chi}^{\chi} -$
$12 a_9 \Gamma_{\alpha}^{\alpha\beta} \Gamma_{\beta\chi}^{\chi} + 12 a_0 \Gamma_{\alpha}^{\alpha\beta} \Gamma_{\beta\chi}^{\chi} - 8 a_1 \Gamma_{\alpha}^{\alpha\beta} \Gamma_{\beta\chi}^{\chi} - 4 a_2 \Gamma_{\alpha}^{\alpha\beta} \Gamma_{\beta\chi}^{\chi} -$
$12 a_3 \Gamma^{\alpha\beta}_{\alpha} \Gamma^{\chi}_{\beta \chi} + 96 a_6 \Gamma^{\alpha\beta}_{\alpha} \Gamma^{\chi}_{\beta \chi} - 48 a_7 \Gamma^{\alpha\beta}_{\alpha} \Gamma^{\chi}_{\beta \chi} - 4 a_9 \Gamma^{\alpha\beta}_{\alpha} \Gamma^{\chi}_{\beta \chi} -$
$12 a_0 \Gamma^{\alpha\beta\chi} \Gamma_{\chi\beta\alpha} + 30 a_1 \Gamma^{\alpha\beta\chi} \Gamma_{\chi\beta\alpha} + 3 a_2 \Gamma^{\alpha\beta\chi} \Gamma_{\chi\beta\alpha} + 9 a_3 \Gamma^{\alpha\beta\chi} \Gamma_{\chi\beta\alpha}$
$96 a_6 \Gamma^{\alpha\beta\chi} \Gamma_{\chi\beta\alpha} + 60 a_7 \Gamma^{\alpha\beta\chi} \Gamma_{\chi\beta\alpha} + 12 a_9 \Gamma^{\alpha\beta\chi} \Gamma_{\chi\beta\alpha} + 12 a_0 \Gamma^{\alpha}_{\alpha}{}^{\beta} \Gamma^{\chi}_{\beta\chi} +$
$8 a_1 \Gamma^{\alpha}_{\alpha}^{\beta} \Gamma^{\chi}_{\beta\chi} + 4 a_2 \Gamma^{\alpha}_{\alpha}^{\beta} \Gamma^{\chi}_{\beta\chi} + 12 a_3 \Gamma^{\alpha}_{\alpha}^{\beta} \Gamma^{\chi}_{\beta\chi} - 24 a_7 \Gamma^{\alpha}_{\alpha}^{\beta} \Gamma^{\chi}_{\beta\chi} +$
$4 a_9 \Gamma^{\alpha}_{\alpha}^{\beta} \Gamma^{\chi}_{\beta\chi} - 12 a_7 \Gamma^{\alpha\beta}_{\alpha} \Gamma^{\chi}_{\beta\chi} + 8 a_1 \Gamma^{\alpha}_{\alpha}^{\beta} \Gamma^{\chi}_{\chi\beta} + 4 a_2 \Gamma^{\alpha}_{\alpha}^{\beta} \Gamma^{\chi}_{\chi\beta} -$
$12 a_7 \Gamma^{\alpha \beta}_{\alpha} \Gamma^{\chi}_{\chi\beta} + 4 a_9 \Gamma^{\alpha \beta}_{\alpha} \Gamma^{\chi}_{\chi\beta} + 24 h^{\alpha\beta} \mathcal{T}_{\alpha\beta} + 24 \Gamma^{\alpha\beta\chi} \Delta_{\alpha\beta\chi}$
$12 a_0 \Gamma^{\alpha\beta\chi} \partial_{\beta} h_{\alpha\chi} - 6 a_0 \Gamma^{\alpha}_{\alpha}{}^{\beta} \partial_{\beta} h^{\chi}_{\chi} + 6 a_0 \Gamma^{\alpha\beta}_{\alpha} \partial_{\beta} h^{\chi}_{\chi} - 6 a_0 h^{\chi}_{\chi} \partial_{\beta} \Gamma^{\alpha}_{\alpha}{}^{\beta} +$
$6 a_0 h_{\chi}^{\chi} \partial_{\beta} \Gamma^{\alpha\beta}_{\alpha} - 12 a_0 h_{\alpha\chi} \partial_{\beta} \Gamma^{\alpha\beta\chi} + 6 a_0 h^{\alpha\beta} \partial_{\beta} \partial_{\alpha} h_{\chi}^{\chi} - 3 a_0 \partial_{\beta} h_{\chi}^{\chi} \partial^{\beta} h_{\alpha}^{\alpha} +$
$12 a_0 \Gamma_{\alpha}^{\alpha\beta} \partial_{\chi} h_{\beta}^{\chi} + 6 a_0 \partial^{\beta} h_{\alpha}^{\alpha} \partial_{\chi} h_{\beta}^{\chi} - 12 a_0 h^{\alpha\beta} \partial_{\chi} \partial_{\beta} h_{\alpha}^{\chi} + 6 a_0 h_{\alpha}^{\alpha} \partial_{\chi} \partial_{\beta} h^{\beta\chi} +$
$6 a_0 h^{\alpha\beta} \partial_{\chi} \partial^{\chi} h_{\alpha\beta} - 6 a_0 h^{\alpha}_{\alpha} \partial_{\chi} \partial^{\chi} h^{\beta}_{\beta} - 6 a_0 \partial_{\beta} h_{\alpha\chi} \partial^{\chi} h^{\alpha\beta} + 3 a_0 \partial_{\chi} h_{\alpha\beta} \partial^{\chi} h^{\alpha\beta} +$
$12a_0h_{\beta\chi}\partial^\chi\Gamma^\alpha_{\alpha}{}^\beta + 48a_1\partial_\alpha\Gamma_{\beta\chi\mu}\partial^\mu\Gamma^{\alpha\beta\chi} - 48a_1\partial_\alpha\Gamma_{\beta\mu\chi}\partial^\mu\Gamma^{\alpha\beta\chi} -$
$48 a_1 \partial_{\alpha} \Gamma_{\chi\beta\mu} \partial^{\mu} \Gamma^{\alpha\beta\chi} + 48 a_1 \partial_{\alpha} \Gamma_{\chi\mu\beta} \partial^{\mu} \Gamma^{\alpha\beta\chi} + 24 a_1 \partial_{\alpha} \Gamma_{\mu\beta\chi} \partial^{\mu} \Gamma^{\alpha\beta\chi} -$
$24a_1\partial_\alpha\Gamma_{\mu\chi\beta}\partial^\mu\Gamma^{\alpha\beta\chi} - 48a_1\partial_\beta\Gamma_{\alpha\chi\mu}\partial^\mu\Gamma^{\alpha\beta\chi} + 24a_1\partial_\beta\Gamma_{\alpha\mu\chi}\partial^\mu\Gamma^{\alpha\beta\chi} -$
$24a_1\partial_\beta\Gamma_{\chi\mu\alpha}\partial^\mu\Gamma^{\alpha\beta\chi} + 24a_1\partial_\chi\Gamma_{\alpha\beta\mu}\partial^\mu\Gamma^{\alpha\beta\chi} - 24a_1\partial_\chi\Gamma_{\beta\alpha\mu}\partial^\mu\Gamma^{\alpha\beta\chi} +$
$48a_1\partial_\chi \Gamma_{\beta\mu\alpha}\partial^\mu \Gamma^{\alpha\beta\chi} - 24a_1\partial_\mu \Gamma_{\alpha\beta\chi}\partial^\mu \Gamma^{\alpha\beta\chi} + 24a_1\partial_\mu \Gamma_{\alpha\chi\beta}\partial^\mu \Gamma^{\alpha\beta\chi} +$
$24a_1\partial_\mu \Gamma_{\beta\alpha\chi}\partial^\mu \Gamma^{\alpha\beta\chi} - 48a_1\partial_\mu \Gamma_{\beta\chi\alpha}\partial^\mu \Gamma^{\alpha\beta\chi} + 24a_1\partial_\mu \Gamma_{\chi\beta\alpha}\partial^\mu \Gamma^{\alpha\beta\chi} +$
$24a_1\partial_\chi\partial_\beta h_{\alpha\mu}\partial^\mu\partial^\chi h^{\alpha\beta} - 24a_1\partial_\mu\partial_\beta h_{\alpha\chi}\partial^\mu\partial^\chi h^{\alpha\beta}))[t,x,y,z]dzdydxdt$

	$\Delta^{\#1}_{2^+lphaeta}$	$\Delta_{2}^{\#2}{}_{lphaeta}$	$\Delta^{\#3}_{2^+lphaeta}$	${\cal T}^{\#1}_{2^+lphaeta}$	$\Delta^{\sharp 1}_{2^- lpha eta \chi}$	$\Delta^{\#2}_{2^-lphaeta\chi}$
$\Delta_2^{\#1} \dagger^{\alpha\beta}$	$\frac{4(a_0-4a_1-2a_2-3a_3+16a_6-4a_7-2a_9)}{{a_0}^2+(2a_1+a_2)(2a_1+a_2+3a_3-16a_6+4a_7)-{a_9}^2-a_0(6a_1+3a_2+3a_3-16a_6+4a_7+2a_9)}$	0	$\frac{4 (2 a_1 + a_2 + a_9)}{\sqrt{3} (a_0^2 + (2 a_1 + a_2) (2 a_1 + a_2 + 3 a_3 - 16 a_6 + 4 a_7) - a_9^2 - a_0 (6 a_1 + 3 a_2 + 3 a_3 - 16 a_6 + 4 a_7 + 2 a_9)}$	0	0	0
$\Delta_2^{\#2} \dagger^{\alpha\beta}$	0	$\frac{1}{-3(a_0+4a_6)+12a_7}$	0	0	0	0
$\Delta_2^{#3} \dagger^{\alpha\beta}$	$\frac{4(2a_1+a_2+a_9)}{\sqrt{3}(a_0^2+(2a_1+a_2)(2a_1+a_2+3a_3-16a_6+4a_7)-a_9^2-a_0(6a_1+3a_2+3a_3-16a_6+4a_7+2a_9))}$	0	$\frac{4 \left(a_{0}-2 a_{1}-a_{2}\right)}{3 \left(a_{0}^{2}+\left(2 a_{1}+a_{2}\right) \left(2 a_{1}+a_{2}+3 a_{3}-16 a_{6}+4 a_{7}\right)-a_{9}^{2}-a_{0} \left(6 a_{1}+3 a_{2}+3 a_{3}-16 a_{6}+4 a_{7}+2 a_{9}\right)\right)}$	0	0	0
$\mathcal{T}_{2}^{\sharp 1}\dagger^{lphaeta}$	0	0	0	$-\frac{8}{a_0 k^2}$	0	0
$\Delta_2^{\#1} \dagger^{\alpha\beta\chi}$	0	0	0	0	$\frac{4(a_0-4a_1-2a_2-3a_3+16a_6-4a_7-2a_9)}{{a_0}^2+(2a_1+a_2)(2a_1+a_2+3a_3-16a_6+4a_7)-{a_9}^2-a_0(6a_1+3a_2+3a_3-16a_6+4a_7+2a_9)}$	$\frac{4 \left(2 a_{1} + a_{2} + a_{9}\right)}{\sqrt{3} \left(a_{0}^{2} + \left(2 a_{1} + a_{2}\right) \left(2 a_{1} + a_{2} + 3 a_{3} - 16 a_{6} + 4 a_{7}\right) - a_{9}^{2} - a_{0} \left(6 a_{1} + 3 a_{2} + 3 a_{3} - 16 a_{6} + 4 a_{7} + 2 a_{9}\right)\right)}$
$\Delta_2^{\#2} \dagger^{\alpha\beta\lambda}$	0	0	0	0	$\frac{4 \left(2 a_{1} + a_{2} + a_{9}\right)}{\sqrt{3} \left(a_{0}^{2} + \left(2 a_{1} + a_{2}\right) \left(2 a_{1} + a_{2} + 3 a_{3} - 16 a_{6} + 4 a_{7}\right) - a_{9}^{2} - a_{0} \left(6 a_{1} + 3 a_{2} + 3 a_{3} - 16 a_{6} + 4 a_{7} + 2 a_{9}\right)\right)}$	4 (a ₀ -2 a ₁ -a ₂)

	_#1	_#2	_#2	. #1	<i>μ</i> 1	#2
	Γ ^{#1} ₂ + αβ	$\Gamma^{\#2}_{2}^{+} \alpha \beta$	Γ ₂ ^{#3} _{αβ}	$h_{2}^{\#1}_{\alpha\beta}$	$\Gamma^{\#1}_{2^- \alpha \beta \chi}$	Γ ₂ - _{αβχ}
$\Gamma_{2}^{#1} + \alpha$	$\frac{1}{4}(a_0-2a_1-a_2)$	0	$-\frac{1}{4} \sqrt{3} (2 a_1 + a_2 + a_9)$	0	0	0
$\Gamma_{2}^{\#2} + \alpha_{1}^{\alpha_{1}}$	0	$-3(a_0+4a_6-4a_7)$	0	0	0	0
$\Gamma_{2}^{#3} + \alpha_{1}^{\alpha_{1}}$	$-\frac{1}{4}\sqrt{3}(2a_1+a_2+a_9)$	0	$\frac{3}{4}$ (a_0 - 4 a_1 - 2 a_2 - 3 a_3 + 16 a_6 - 4 a_7 - 2 a_9)	0	0	0
$h_{2}^{\#1} + \alpha$	0	0	0	$-\frac{a_0 k^2}{8}$	0	0
$\Gamma_2^{\#1} \dagger^{\alpha\beta}$	0	0	0	0	$\frac{1}{4} (a_0 - 2 a_1 - a_2)$	$-\frac{1}{4}\sqrt{3}(2a_1+a_2+a_9)$
$\Gamma_2^{\#2} \dagger^{\alpha\beta}$	0	0	0	0	$-\frac{1}{4}\sqrt{3}(2a_1+a_2+a_9)$	$\frac{3}{4}$ (a_0 - 4 a_1 - 2 a_2 - 3 a_3 + 16 a_6 - 4 a_7 - 2 a_9)

Γ ₀ -1 †	$h_{0+}^{#2} \dagger$	$h_{0+}^{#1}$ †	Γ ₀ ^{#4} †	Γ ₀ ^{#3} †	Γ ₀ ^{#2} †	Γ ₀ ^{#1} †	
0	0	0	0	0	0	$\frac{1}{4} \left(-2 a_0 - 2 a_1 - a_2 - 3 a_3 \right)$	$\Gamma_0^{#1}$
0	0	0	0	$\frac{3}{2}(a_0+4a_6-4a_7)$	$-\frac{3}{2}(a_0+4a_6-4a_7)$	0	Γ#2 0+
0	0	0	0	$-\frac{3}{2}(a_0+4a_6-4a_7)$	$\frac{3}{2}(a_0+4a_6-4a_7)$	0	Γ#3 0+
0	0	0	0	0	0	0	Γ ₀ ^{#4}
0	0	$\frac{a_0 k^2}{4}$	0	0	0	0	$h_{0+}^{#1}$
0	0	0	0	0	0	0	$h_{0+}^{#2}$
$-\frac{a_0}{2}$ - 2 a_1 + 2 a_2 - 6 a_1 k^2	0	0	0	0	0	0	$\Gamma_{0}^{#1}$

Source constraints/gauge generator						
SO(3) irreps	Multiplicities					
$\mathcal{T}_{0}^{\#2} == 0$	1					
$\Delta_0^{\#4} == 0$	1					
$\Delta_{0^{+}}^{\#3} + 3 \Delta_{0^{+}}^{\#2} == 0$	1					
$\mathcal{T}_{1}^{\#1\alpha} == 0$	3					
$\Delta_{1}^{\#6\alpha} + \Delta_{1}^{\#5\alpha} == 0$	3					
$\Delta_{1}^{\#4\alpha} + \Delta_{1}^{\#3\alpha} == 0$	3					
Total constraints:	12					

Massive and massless spectra

