УДК 519.6, 519.612, 519.651

Обработка данных методом преобразования значений производных функций на сетке в коэффициенты Фурье

Л. А. Севастьянов, М. Г. Кокотчикова, Д. С. Кулябов

Кафедра систем телекоммуникаций Российский университет дружбы народов ул. Миклухо-Маклая, д. 6, Москва, Россия, 117198

В работе рассмотрены две практические задачи восстановления функции на круге по возмущенным значениям функции и её частных производных на дискретной сетке. Предложены формулировки устойчивого восстановления функции методом регуляризованного разложения в ряд Фурье по полиномам Цернике. Вычисление стабилизирующих функционалов реализованно в модуле для системы компьютерной алгебры Axiom.

Ключевые слова: восстановление функции по дискретному следу, метод регуляризации, аналитические вычисления.

1. Введение

При разработке математической модели процесса экранируемого вакуумного напыления возникла вспомогательная задача: восстановление коэффициентов Фурье функции эффективного распределения источника напыления по измеренным с погрешностью значениям функции на конечной сетке (не определенной заранее) [1,2].

Математическая модель калибровки оптических поверхностей z(x,y) с помощью теста Гартмана состоит в восстановлении коэффициентов Фурье по полиномам Цернике функции z(x,y) на основании приближенно измеренных частных производных $\partial z/\partial x(x,y),\,\partial z/\partial y(x,y)$ в точках определенной заранее сетки: диафрагмы Гартмана [3,4].

Обе задачи являются неустойчивыми ко входным данным. Следовательно, к ним нужно применить метод регуляризации А. Н. Тихонова [5,6].

1.1. Устойчивое восстановление функции по её следу на сетке

Рассмотрим задачу отыскания вектора коэффициентов Фурье в разложении по полиномам Цернике $\{\varphi_j\}$ на единичном круге Q функции f, значения которой известны лишь в точках некоторой сетки $T_m = \{t_1, \ldots, t_m\} \subset Q$.

известны лишь в точках некоторой сетки $T_m = \{t_1, \dots, t_m\} \subset Q$. Полиномы Цернике образуют ортонормированный базис: $\langle \varphi_i, \varphi_j \rangle = \delta_{ij}$ в гильбертовом простанстве $L_2(Q)$, который задает отображение F $L_2(Q)$ в гильбертово пространство l_2 : $F\left(\sum_{j=1}^{\infty} c_j \varphi_j(q)\right) = \{c_j\}_1^{\infty}$.

Измеряются значения f в точках $\{t_j\}$, т. е. оценивается абсолютная величина возмущения функции $|\delta f(t_j)| = \left| \tilde{f}(t_j) - f(t_j) \right|$. Этому соответствует метрика ρ_c : $\rho_c(\tilde{f},f) = \max_{t \in Q} \left| \tilde{f}(t) - f(t) \right|$ в пространстве C(Q) непрерывных на круге Q функций. Решать надо обратную задачу относительно отображения $A: l_2 \to C(Q): \{c_j\} \to \sum_{j=1} c_j \varphi_j(q)$.

Статья поступила в редакцию 25 октября 2008 г.

Работа выполнена при частичной поддержке грантов РФФИ №07-01-00738а, №08-01-00800а.

Данная задача эквивалентна задаче с оператором $\tilde{A}:L_2\to C(Q)$. В силу компактности вложения $W_2^2(Q)\subset C(Q)$ [7], регуляризация последней задачи достигается сужением \tilde{A} на компакт $F_\delta=\left\{f\in L_2(Q):\|f\|_{W_2^2}\leqslant \delta\right\}$.

1.2. Устойчивое восстановление функции по следу её градиента на сетке

В задачах обработки гартманограмм результатом наблюдения является вектор приближенных значений частных производных в конечном наборе точек апертуры T_m [3, 4]. Рассматриваемые нами функции являются один раз непрерывно дифференцируемыми $f \in C^1(Q) \subset W^1_2(Q)$. Полиномы Цернике образуют полный набор функций в $W^1_2(Q)$, а отображение $F\left(\sum a_j \varphi_j(q)\right) = \left\{\sum_k \gamma^x_{jk} a_k, \sum_k \gamma^y_{jk} a_k\right\} \subset l_2 \oplus l_2$.

Рассматривается отображение $D:C^1(Q)\to C(Q)\oplus C(Q)$, где $D(f)=\left(\frac{\partial f}{\partial x},\frac{\partial f}{\partial y}\right)$, так как требуется оценка её частных производных $\frac{\partial f}{\partial x}$ и $\frac{\partial f}{\partial y}$ в метрике пространства непрерывных функций:

$$\left\|\frac{\partial f}{\partial x}\right\|_{C(Q)} = \max_{q \in Q} \left|\frac{\partial f}{\partial x}(q)\right|, \quad \left\|\frac{\partial f}{\partial y}\right\|_{C(Q)} = \max_{q \in Q} \left|\frac{\partial f}{\partial y}(q)\right|.$$

Задача восстановления выглядит следующим образом

$$\begin{cases} \max_{q \in Q} \left| \sum_{j} a_{j} \frac{\partial \varphi_{j}}{\partial x}(q) - \frac{\partial f}{\partial x}(q) \right| \to \min_{\vec{a} \in l_{2}}, \\ \max_{q \in Q} \left| \sum_{j} a_{j} \frac{\partial \varphi_{j}}{\partial y}(q) - \frac{\partial f}{\partial y}(q) \right| \to \min_{\vec{a} \in l_{2}}. \end{cases}$$

Таким образом, требуется для линейного оператора $B:l_2\to C(Q):\oplus C(Q)$

$$B(\vec{a}) = \left(\sum_{j} a_{j} \frac{\partial \varphi_{j}}{\partial x}, \sum_{j} a_{j} \frac{\partial \varphi_{j}}{\partial y}\right)$$

решить обратную задачу

$$B\vec{a} = \left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right)$$

с учётом того факта, что вектор $\vec{a} \in w_2^1$ обеспечивает принадлежность $\sum a_j \varphi_j(q) \in C^1(Q)$. Метод регуляризации А. Н. Тихонова требует сужения отображения B на компакт [5, 6]. Воспользуемся компактностью вложения [7] $W_2^3(Q) \subset C^1(Q)$ и зададим компактное множество G_δ следующим образом:

$$G_{\delta} = \left\{ f \in C^1 : \|f\|_{W^3_2} \leqslant \delta \right\}.$$

2. Необходимые сведения

Дифференцирование функции $f=\sum\limits_{j=1}^{k(l)}a_j\varphi_j$ либо в полярных, либо в декартовых координатах понижает степень полиномиальной функции на единицу. Поэтому $\frac{\partial f}{\partial x}=\sum\limits_{j=1}^{k(l-1)}b_j\varphi_j$ и $\frac{\partial f}{\partial y}=\sum\limits_{j=1}^{k(l-1)}c_j\varphi_j$, то же самое можно сказать и про $\frac{\partial f}{\partial \rho}$ и $\frac{\partial f}{\partial \varphi}$. Здесь k(l)=(l+1)(l+2)/2 [8].

В частности, это относится к частным производным самих полиномов Цернике

$$\frac{\partial \varphi_j}{\partial x} = \sum_{j < 1} \gamma_{jk}^x \varphi_k; \quad \frac{\partial \varphi_j}{\partial y} = \sum_{j < 1} \gamma_{jk}^y \varphi_k. \tag{1}$$

Матрицы $\left\{\gamma_{jk}^x\right\}$ и $\left\{\gamma_{jk}^y\right\}$ являются треугольными и могут быть построены по формулам

$$\gamma_{jk}^{x} = \int_{Q} \varphi_{k} \frac{\partial \varphi_{j}}{\partial x} dx dy; \quad \gamma_{jk}^{y} = \int_{Q} \varphi_{k} \frac{\partial \varphi_{j}}{\partial y} dx dy.$$
 (2)

Норма в пространстве $W_2^3(Q)$ задаётся соотношением

$$\begin{split} \|f\|_{W_{2}^{0}}^{2} &= \int_{Q} \left\{ \left| f(q) \right|^{2} + \left(\left| \frac{\partial f}{\partial x}(q) \right|^{2} + \left| \frac{\partial f}{\partial y}(q) \right|^{2} \right) + \\ &+ \left(\left| \frac{\partial^{2} f}{\partial x^{2}}(q) \right|^{2} + 2 \left| \frac{\partial^{2} f}{\partial x \partial y}(q) \right|^{2} + \left| \frac{\partial^{2} f}{\partial y^{2}}(q) \right|^{2} \right) + \\ &+ \frac{1}{6} \left(\left| \frac{\partial^{3} f}{\partial x^{3}}(q) \right|^{2} + 3 \left| \frac{\partial^{3} f}{\partial x^{2} \partial y}(q) \right|^{2} + 3 \left| \frac{\partial^{3} f}{\partial x \partial y^{2}}(q) \right|^{2} + \left| \frac{\partial^{3} f}{\partial y^{3}}(q) \right|^{3} \right) \right\} dq \end{split}$$

и индуцирует для функции $f(q) = \sum a_j \varphi_j(q)$ норму в пространстве w_2^3 числовых последовательностей, вычисляемую с помощью треугольных матриц γ_x и γ_y дифференцирования полиномов Фурье. А именно, первые производные имеют вид

$$\frac{\partial f}{\partial x}(q) = \sum b_j^x \varphi_j(q), \quad \frac{\partial f}{\partial y}(q) = \sum b_j^y \varphi_j(q),$$

где

$$b_j^x = \sum_k \gamma_{jk}^x a_k, \quad b_j^y = \sum_k \gamma_{jk}^y a_k.$$

Вторые производные имеют вид

$$\frac{\partial^2 f}{\partial x^2} = \sum c_j^{xx} \varphi_j, \quad \frac{\partial^2 f}{\partial x \partial y} = \sum c_j^{xy} \varphi_j, \quad \frac{\partial^2 f}{\partial y^2} = \sum c_j^{yy} \varphi_j,$$

где

$$c_j^{xx} = \sum_{j,k} \gamma_{jk}^x \gamma_{kl}^x a_l, \quad c_j^{yy} = \sum_{j,k} \gamma_{jk}^y \gamma_{kl}^y a_l, \quad c_j^{xy} = \sum_{j,k} \gamma_{jk}^x \gamma_{kl}^y a_l = \sum_{j,k} \gamma_{jk}^y \gamma_{kl}^x a_l = c_j^{yx}.$$

Аналогично, третьи производные имеют вид

$$\frac{\partial^3 f}{\partial x^3} = \sum d_j^x a_j, \quad d_j^x = \sum \gamma_{jk}^x \gamma_{kl}^x \gamma_{lm}^y a_m,$$

$$\frac{\partial^3 f}{\partial x^2 \partial y} = \sum d_j^x a_j, \quad d_j^{xy} = \sum \gamma_{jk}^x \gamma_{kl}^x \gamma_{lm}^y a_m,$$

$$\frac{\partial^3 f}{\partial x \partial y^2} = \sum d_j^y a_j, \quad d_j^{yx} = \sum \gamma_{jk}^y \gamma_{kl}^y \gamma_{lm}^x a_m,$$

$$\frac{\partial^3 f}{\partial y^3} = \sum d_j^y a_j, \quad d_j^y = \sum \gamma_{jk}^y \gamma_{kl}^y \gamma_{lm}^y a_m.$$

Опираясь на указанные соотношения, сформируем квадратичные формы следующим образом

$$\Omega_{ij}^{0} = [\delta_{ij}], i, j = 1, \dots, k(l) = (l+1)(l+2)/2,
\Omega^{1} = \gamma^{x} (\gamma^{x})^{T} + \gamma^{y} (\gamma^{y})^{T},
\Omega^{2} = \gamma^{x} \gamma^{x} (\gamma^{x} \gamma^{x})^{T} + \gamma^{y} \gamma^{y} (\gamma^{y} \gamma^{y})^{T} + (\gamma^{x} \gamma^{y} (\gamma^{x} \gamma^{y})^{T} + \gamma^{y} \gamma^{x} (\gamma^{y} \gamma^{x})^{T}),
\Omega^{3} = \gamma^{x} \gamma^{x} (\gamma^{x} \gamma^{x} \gamma^{x})^{T} + \gamma^{y} \gamma^{y} (\gamma^{y} \gamma^{y} \gamma^{y})^{T} + \gamma^{x} \gamma^{x} \gamma^{y} (\gamma^{x} \gamma^{x} \gamma^{y})^{T} + \gamma^{x} \gamma^{y} (\gamma^{x} \gamma^{y} \gamma^{x})^{T} + \gamma^{y} \gamma^{y} (\gamma^{x} \gamma^{y} \gamma^{x})^{T} + \gamma^{y} \gamma^{y} (\gamma^{y} \gamma^{x} \gamma^{y})^{T} + \gamma^{y} \gamma^{y} (\gamma^{y} \gamma^{y} \gamma^{x})^{T}.$$
(3)

С их помощью нормы в пространствах числовых последовательностей $\{a_j\}\equiv \vec{a}\in l_2=w_2^0,\,w_2^1,\,w_2^2$ и w_2^3 задаются формулами

$$\begin{split} \left\| \vec{a} \right\|_{w_2^0}^2 &= \sum a_j \Omega_{jk}^0 a_k, \quad \left\| \vec{a} \right\|_{w_2^1}^2 = \sum_{jk} a_j \Omega_{jk}^1 a_k + \left\| \vec{a} \right\|_{w_2^0}^2, \quad \left\| \vec{a} \right\|_{w_2^2}^2 = \frac{1}{2} \left(\Omega^2 \vec{a}, \vec{a} \right) + \left\| \vec{a} \right\|_{w_2^1}^2, \\ \left\| \vec{a} \right\|_{w_2^3}^2 &= \left(\Omega^0 \vec{a}, \vec{a} \right) + \left(\Omega^1 \vec{a}, \vec{a} \right) + \frac{1}{2} \left(\Omega^2 \vec{a}, \vec{a} \right) + \frac{1}{6} \left(\Omega^3 \vec{a}, \vec{a} \right). \\ \mathbf{3.} \quad \mathbf{\Pioctahobka} \; \mathbf{3a}\mathbf{дачи} \end{split}$$

Задача 1. Устойчивое восстановление функции по её

3.1. Задача 1. Устойчивое восстановление функции по её следу на сетке

Задача устойчивого восстановления вектора коэффициентов \vec{f} формулируется следующим образом

$$N\left[\vec{a}, \tilde{f}\right] = \max_{q \in Q} \left| \sum a_j \varphi_j(q) - \tilde{f}(q) \right| \to \min_{\vec{a} \in F_\delta}.$$
 (4)

Задача (4) эквивалентна задаче минимизации сглаживающего функционала

$$M^{\alpha} \left[\vec{a}, \tilde{f} \right] = N \left[\vec{a}, \tilde{f} \right] + \alpha \left\| \vec{a} \right\|_{w_2^2}^2 \to \min_{\vec{a}}$$
 (5)

с параметром α , согласованным с уровнем погрешности δ задания \tilde{f} .

Для любого $\alpha > 0$ существует единственный вектор \vec{a}_{α} , доставляющий минимум функционала (5).

Уравнение Эйлера задачи (5) имеет вид:

$$\sum_{i} \left(\delta_{ij} + \alpha \sum_{k=0}^{2} \frac{1}{k!} \Omega_{ij}^{k} \right) a_{j}^{\alpha} = \tilde{c}_{i}.$$
 (6)

где $\tilde{c}_i = \left\langle \varphi_i, \tilde{f} \right\rangle_{L_2}$ — коэффициенты разложения \tilde{f} по ортонормированному в $L_2(Q)$ базису $\{\varphi_j\}$.

Дискретный аналог задачи (4) формулируется следующим образом

$$N\left[\vec{a}, T_m(f)\right] \equiv \max_{q_k \in T_m} \left| \sum a_j \varphi_j(q_k) - f(q_k) \right| \to \min_{\vec{a} \in F_\delta}.$$

Дискретизация уравнения (6) приводит к уравнению

$$\sum_{i=1}^{k(l)} \left(\delta_{ij} + \alpha \sum_{k=0}^{2} \frac{1}{k!} \Omega_{ij}^{k} \right) a_{j}^{\alpha} = \tilde{c}_{i}^{m}, \quad i = 1, \dots, k(l).$$
 (7)

Здесь \tilde{c}_i^m — дискретное преобразование функции f с сетки T_m в коэффициенты Фурье по полиномам Цернике.

3.2. Задача 2. Устойчивое восстановление функции по следу её градиента на сетке

Задача устойчивого восстановления вектора коэффициентов \vec{a}_{δ} по измеренным с точностью δ частным производным $\left(\frac{\partial \tilde{f}}{\partial x}\right)_{\delta}$, $\left(\frac{\partial \tilde{f}}{\partial y}\right)_{\delta}$ функции $f=\sum a_{j}\varphi_{j}$ формулируется следующим образом

$$N_1 \left[\vec{a}; \frac{\partial \tilde{f}}{\partial x}, \frac{\partial \tilde{f}}{\partial y} \right] \to \min_{\vec{a} \in g_{\delta}}.$$
 (8)

Здесь

$$N_1 \left[\vec{a}; \frac{\partial \tilde{f}}{\partial x}, \frac{\partial \tilde{f}}{\partial y} \right] = \left\| \sum a_j \frac{\partial \varphi_j}{\partial x} - \frac{\partial \tilde{f}}{\partial x} \right\|_C + \left\| \sum a_j \frac{\partial \varphi_j}{\partial y} - \frac{\partial \tilde{f}}{\partial y} \right\|_C.$$

Задача (8) эквивалентна задаче минимизации сглаживающего функционала

$$M_{1}^{\beta} \left[\vec{a}; \frac{\partial \tilde{f}}{\partial x}, \frac{\partial \tilde{f}}{\partial y} \right] = N_{1} \left[\vec{a}; \frac{\partial \tilde{f}}{\partial x}, \frac{\partial \tilde{f}}{\partial y} \right] + \beta \left\| \vec{a} \right\|_{w_{2}^{3}}^{2} \to \min_{\vec{a}}$$
 (9)

с параметром β , согласованным с уровнем погрешности δ .

Уравнение Эйлера задачи (9) имеет вид

$$\sum_{j} \left(\delta_{ij} + \beta \sum_{r=0}^{3} \frac{1}{r!} \Omega_{ij}^{r} \right) \sum_{k} \gamma_{jk}^{x} a_{k}^{\beta} = \tilde{c}_{i}^{x},$$

$$\sum_{j} \left(\delta_{ij} + \beta \sum_{r=0}^{3} \frac{1}{r!} \Omega_{ij}^{r} \right) \sum_{k} \gamma_{jk}^{y} a_{k}^{\beta} = \tilde{c}_{i}^{y},$$
(10)

где $\tilde{c}_i^x = \left\langle \varphi_i, \frac{\partial \tilde{f}}{\partial x} \right\rangle_{L_2}, \tilde{c}_i^y = \left\langle \varphi_i, \frac{\partial \tilde{f}}{\partial y} \right\rangle_{L_2}$ — коэффициенты разложения $\frac{\partial \tilde{f}}{\partial x}, \frac{\partial \tilde{f}}{\partial y}$ по ортонормированному в $L_2(Q)$ базису $\{\varphi_j\}$.

Дискретизация уравнения (10) имеет вид

$$\begin{cases}
\sum_{j=1}^{k(l)} \left(\delta_{ij} + \beta \sum_{r=0}^{3} \frac{1}{r!} \Omega_{ij}^{r} \right) \sum_{k=1}^{k(l-1)} \gamma_{jk}^{x} a_{k} = c_{i}^{x}, & i = 1, \dots, k(l), \\
\sum_{j=1}^{k(l)} \left(\delta_{ij} + \beta \sum_{r=0}^{3} \frac{1}{r!} \Omega_{ij}^{r} \right) \sum_{k=1}^{k(l-1)} \gamma_{jk}^{y} a_{k} = c_{i}^{y}, & i = 1, \dots, k(l).
\end{cases}$$
(11)

4. Алгоритм аналитического построения матриц стабилизирующего функционала

Полиномы Цернике — это ортогональные функции внутри единичного круга, которые используются главным образом в задачах оптики, связанных с восстановлением оптических поверхностей.

Испорченная оптическая поверхность содержит аберрации такого типа как, астигматизм, кома и др. Полиномы Цернике разного порядка описывают один из типов аберраций (например, полиномы с порядковым номером 5 и 6 — описывает аберрацию типа кома). Если же поверхность содержит несколько типов искажений, то её аналитическая функция представляет собой сумму различный полиномов Цернике с определенными коэффициентам.

При восстановлении функции, приближенно заданной на дискретной сетке или с приближенно заданным градиентом на сетке, возникает нестабильность, для

устранении которой необходимо построить матрицы стабилизирующего функционала Ω_0 , Ω_1 , Ω_2 и Ω_3 , как указано выше. Для построения этих матриц был разработан алгоритм, реализованный в системе компьютерной алгебры Ахіот. Алгоритм описан ниже пошагово и с пояснениями.

Входные данные: N — максимальная степень полиномов Цернике, через которую определяется количество полиномов — $\frac{(N+1)(N+2)}{2}$.

1. Сначала вычисляется радиальная составляющая полиномов Цернике:

$$R_n^m(\rho) = \sum_{s=0}^{\frac{n-m}{2}} \frac{(-1)^s (n-s)!}{s! (\frac{n+m}{2} - s)! (\frac{n-m}{2} - s)!} \rho^{n-2s},$$

где $n, m \in \{N \cup 0\}, m \leqslant n, (n-m)$ — чётное число. Для вычисления коэффициентов $R_{nm}(\rho)$ существует рекуррентная формула:

$$(n+m)R_n^m(\rho) - 2n\rho R_{n-1}^{m-1}(\rho) + (n-m)R_{n-2}^m(\rho) = 0.$$
(12)

Данная формула применима при любых n>1 и m>1. Использование рекуррентной формулы (12) позволяет существенно сократить время вычисления.

2. На следующем шаге вычисляются полиномы Цернике:

$$Z_{0,j} = \sqrt{n+1}R_n^0(\rho), \quad m = 0,$$
 (13)

$$Z_{\text{Hey}, j} = \sqrt{n+1} R_n^m(\rho) \sqrt{2} \sin m\theta, \quad m \neq 0, \tag{14}$$

$$Z_{\text{чётн.}j} = \sqrt{n+1} R_n^m(\rho) \sqrt{2} \cos m\theta, \quad m \neq 0, \tag{15}$$

где $n, m \in \{N \cup 0\}, m \leqslant n, (n-m)$ — чётное число. Полиномы задаются тремя формулами — для m = 0 (13), а для m > 0 полиномы задаются двумя формулами (14) и (15).

Обычно двумерные полиномы нумеруют двумя индексами. Однако при вычислениях удобнее пользоваться одноиндексной нумерацией. Соответствующее определение было введено в статье [8].

Полиномы Цернике при одноиндексной нумерации задаются следующими соотношениями:

$$\varphi_{j}(\rho,\theta) = \begin{cases} \sqrt{n_{j} + 1} R_{n_{j}}^{m_{j}}(\rho) \cos m_{j} \rho, & (-1)^{j} > 0, \quad m_{j} > 0, \\ \sqrt{n_{j} + 1} R_{n_{j}}^{m_{j}}(\rho) \sin m_{j} \rho, & (-1)^{j} < 0, \quad m_{j} > 0, \\ \sqrt{n_{j} + 1} R_{n_{j}}^{0}(\rho), & m_{j} = 0, \end{cases}$$
(16)

При этом перевод мультииндексов n и m по индексу j осуществляются:

$$n_{j} = \min \left\{ k \geqslant 0 : \frac{(k+1)(k+2)}{2} \geqslant j \right\},$$

$$m_{j} = \min \left\{ k \geqslant 0 : (-1)^{k} = (-1)^{n_{j}}, \quad k \geqslant 1 - j - \frac{n_{j}(n_{j}+1)}{2} \right\},$$
(17)

 $0\leqslant m\leqslant n;\ (n-m)$ — чётное число. Для заданной максимальной степени полиномов N индекс сквозной нумерации, j, изменяется от нуля до (N+1)(N+2)/2 (число полиномов).

3. Далее необходимо разложить производные по x и по y от базисных функций (1) в базисе полиномов Цернике.

В силу ортогональности системы полиномов Цернике коэффициенты разложения (1) выражаются через скалярные произведения (2).

Скалярные произведения вычислялись следующим образом:

– аналитическое дифференцирование базисных функций на первом этапе;

- процедура scalar_product_circle1 нахождения скалярного произведения для двух заданных функций вычисляет скалярное произведение повторным интегралом, пределы интегрирования в круге радиуса 1: $x = -1, \dots, 1, y = -\sqrt{1 - x^2}, \dots, \sqrt{1 - x^2}.$
 - Отметим, что все вычисления (дифференцирование, взятие двойного интеграла в заданных пределах интегрирования) производятся в аналитическом виде, никакие численные методы не применялись.
- 4. После этого заполняются вспомогательные матрицы γ^x , γ^y разложения про-
- изводных от полиномов Цернике по полиномам Цернике (2). 5. В итоге матрицы стабилизирующего функционала Ω^0 , Ω^1 , Ω^2 и Ω^3 через вспомогательные матрицы γ^x и γ^x задаются формулами (3).

Выходные данные: В качестве результата получаем матрицы стабилизирующего функционала Ω^0 , Ω^1 , Ω^2 , Ω^3 (3), которые необходимы в задаче восстановления (11). В качестве результата представлена матрица Ω^1 (рис. 1), полученная при использовании разработанного алгоритма для Axiom.

Заключение 5.

Итак, решение задачи 1 реализуется решением системы линейных алгебраических уравнений (7) для вычисления вектора коэффициентов \vec{a}^{α} по заданному вектору \vec{c} :

$$A_{\alpha} \circ \vec{a}^{\alpha} = \vec{c}. \tag{18}$$

В свою очередь решение задачи 2 реализуется решением системы (вдвое большей размерности) линейных алгебраических уравнений (11):

$$\begin{cases}
B_1^{\beta} \circ \vec{a}^{\beta} = \vec{c}_1, \\
B_2^{\beta} \circ \vec{a}^{\beta} = \vec{c}_2.
\end{cases}$$
(19)

В работе [9] рассмотрен вопрос об устойчивом дискретном преобразовании следа функции на сетке T(f), измеренного с точностью δ_1 , в вектор коэффициентов Фурье \vec{c} :

$$\vec{c}_{\delta} = D_S^F \circ T(f).$$

Решаем один раз с $\alpha(\delta_1)$ систему (18) и получаем окончательный результат:

$$\vec{a}^{\alpha} = F_1 \circ T(f), \quad F_1 = A_{\alpha(\delta)}^{-1} \circ D_S^F$$

с матрицей F_1 для серийной обработки экспериментальных данных T(f) на сетке T_m (фиксированной), измеренных с фиксированной точностью δ_1 .

В работе [9] рассмотрен вопрос об устойчивом дискретном преобразовании следа градиента функции на сетке DT(f) (в два раза больше данных, чем число точек сетки), измеренного с точностью δ_2 , в вектор коэффициентов Фурье $(\vec{c}_1, \vec{c}_2)^T$:

$$(\vec{c}_1, \vec{c}_2)_{\delta_2}^T = DD_S^F \circ DT(f)$$

(количество строк в матрице DD_S^F в два раза больше числа точек сетки, а количество строк в матрице D_S^F равно числу точек сетки).

Решаем один раз с $\beta(\delta_2)$ систему (19) и получаем окончательный результат:

$$\vec{a}_{\beta} = DF_2 \circ DT(f), \quad DF_2 = \begin{pmatrix} B_1^{\beta} \\ B_2^{\beta} \end{pmatrix} \circ DDF_S^F$$

с матрицей DF_2 для серийной обработки экспериментальных DT(f) данных на сетке T_m (фиксированной), измеренных с фиксированной точностью δ_2 .

_																				_
											0									
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	09	0
0	0	0	0	0	0	0	0	0	$12\sqrt{6}$	0	0	0	0	0	0	0	0	156	0	0
0	0	0	0	0	0	0	0	$12\sqrt{6}$	0	0	0	0	0	0	0	0	156	0	0	0
0	0	$4\sqrt{3}$	0	0	0	0	$28\sqrt{6}$	0	0	0	0	0	0	0	0	204	0	0	0	0
0	$4\sqrt{3}$	0	0	0	0	$28\sqrt{6}$	0	0	0	0	0	0	0	0	204	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	40	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0 0	0	40	0	0	0	0	0	0	0
0	0	0	0	0	$4\sqrt{15}$	0	0	0	0	0	0	100	0	0	0	0	0	0	0	0
0	0	0	0	$4\sqrt{15}$	0	0	0	0	0	0	100	0	0	0	0	0	0	0	0	0
0	0	0	$8\sqrt{15}$	0	0	0	0	0	0	120	0	0	0	0	0	0	0	0	0	0
											0									
0	0	0	0	0	0	0	0	24	0	0	0	0	0	0	0	0	$12\sqrt{6}$	0	0	0
0	0	$4\sqrt{2}$	0	0	0	0	26	0	0	0	0	0	0	0	0	$28\sqrt{6}$	0	0	0	0
0	$4\sqrt{2}$	0	0	0	0	26	0	0	0	0	0	0	0	0	$28\sqrt{6}$	0	0	0	0	0
0	0	0	0	0	12	0	0	0	0	0	0	$4\sqrt{15}$	0	0	0	0	0	0	0	0
0	0	0	0	12	0	0	0	0	0	0	$4\sqrt{15}$	0	0	0	0	0	0	0	0	0
0	0	0	24	0	0	0	0	0	0	$8\sqrt{15}$	0	0	0	0	0	0	0	0	0	0
0	0	4	0	0	0	0	$4\sqrt{2}$	0	0	0	0	0	0	0	0	$4\sqrt{3}$	0	0	0	0
0	4	0	0	0	0	$4\sqrt{2}$	0	0	0	0	0	0	0	0	$4\sqrt{3}$	0	0	0	0	0
0 -	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 .
										$\Omega^{\text{\tiny I}} = -$										_

 ${
m Puc.\,1.\,\,\Omega^1}$ для полиномов до 5-й степени включительно

Литература

- 1. Жидков Е. П., Севастьянов Л. А. Макропараметры эффективного распределения в математической модели экранируемого напыления // Математическое моделирование. 1998. Т. 10, № 9.
- 2. Sevastianov L. A., Zhidkov E. P. Analysis of Problems in Mathematical Model for Shadowed Sputtering // Comp. Phys. Comm. 2000. Vol. 130.
- 3. Войцехович В. В. Влияние атмосферной турбулентности на точность определения параметров волнового фронта // Препринт ИКИ АН СССР, Пр-862. 1984
- 4. $Ceвастьянов\ Л.\ A.\ u\ \partial p.$. Програмно-математический комплекс для обработки киногартманограмм // Препринт ИКИ АН СССР, Пр-1209. 1987.
- 5. *Тихонов А. Н.* О решении некорректно поставленных задач и методе регуляризации // ДАН СССР. 1963. Т. 151, № 3. С. 501–504.
- 6. *Тихонов А. Н.* О регуляризации некорректно поставленных задач // ДАН СССР. 1963. Т. 153, № 1. С. 49–52.
- 7. Соболев С. А. Избранные вопросы теории функциональных пространств и обощенных функций. М.: Наука, 1989.
- 8. Noll R. J. Zernike Polynomials and Atmosheric Turbulence // JOSA. 1976. Vol. 66, No 2.
- 9. Севастьянов Л. А., Ловецкий К., Кокотчикова М. Г. Дискретное преобразование значений функций на сетке в коэффициенты полиномов Цернике // Вестник РУДН, Серия «Математика. Информатика. Физика». 2007. № 3-4.

UDC 519.6, 519.612, 519.651

Data Processing by Method of Transformation of Functions and its Derivatives Values on Grids into Fourier Coefficients

L. A. Sevastianov, M. G. Kokotchikova, D. S. Kulyabov

Telecommunication Systems Department Peoples' Friendship University of Russia 6, Miklukho-Maklaya str., Moscow, Russia, 117198

In this paper two practical problems are considered: function reconstruction from its or its partial derivatives perturbed values on a discrete grid. Formulation of stable reconstruction of a function via method of regularized expansion in Fourier series of Zernike polynomials is proposed. Calculations of stabilizing functionals are realized in computer algebra system Axiom.