Linear Regression and Regularization

CSE 4334 / 5334 Data Mining Spring 2019

Won Hwa Kim

(Slides courtesy of Mark Craven at UW-Madison)

Feature selection via shrinkage (regularization)

- instead of explicitly selecting features, in some approaches we can bias the learning process towards using a small number of features
- · key idea: objective function has two parts
 - term representing error minimimization
 - term that "shrinks" parameters toward 0

Linear Regression

· consider the case of linear regression

$$f(\mathbf{x}) = w_0 + \sum_{i=1}^n x_i w_i$$

· the standard approach minimizes sum squared error

$$E(\mathbf{w}) = \sum_{d \in D} (y^{(d)} - f(\mathbf{x}^{(d)}))^{2}$$
$$= \sum_{d \in D} (y^{(d)} - w_{0} - \sum_{i=1}^{n} x_{i}^{(d)} w_{i})^{2}$$

Ridge Regression and LASSO

Ridge regression adds a penalty term, the L₂ norm of the weights

$$E(\mathbf{w}) = \sum_{d \in D} \left(y^{(d)} - w_0 - \sum_{i=1}^n x_i^{(d)} w_i \right)^2 + \lambda \sum_{i=1}^n w_i^2$$

the Lasso method adds a penalty term, the L₁ norm of the weights

$$E(\mathbf{w}) = \sum_{d \in D} \left(y^{(d)} - w_0 - \sum_{i=1}^n x_i^{(d)} w_i \right)^2 + \lambda \sum_{i=1}^n |w_i|$$

LASSO Optimization

• LASSO

$$\arg\min_{\mathbf{w}} \sum_{d \in D} \left(y^{(d)} - w_0 - \sum_{i=1}^{n} x_i^{(d)} w_i \right)^2 + \lambda \sum_{i=1}^{n} |w_i|$$

 this is equivalent to the following constrained optimization problem (we get the formulation above by applying the method of Lagrange multipliers to the formulation below)

$$\arg\min_{\boldsymbol{w}} \sum_{d \in D} \left(y^{(d)} - w_0 - \sum_{i=1}^n x_i^{(d)} w_i \right)^2 \text{ subject to } \sum_{i=1}^n |w_i| \le t$$

Ridge regression and the LASSO

FIGURE 3.11. Estimation picture for the lasso (left) and ridge regression (right). Shown are contours of the error and constraint functions. The solid blue areas are the constraint regions $|\beta_1| + |\beta_2| \le t$ and $\beta_1^2 + \beta_2^2 \le t^2$, respectively, while the red ellipses are the contours of the least squares error function.

Figure from Hastie et al., The Elements of Statistical Learning, 2008

Feature Selection via Shrinkage

- Lasso (L₁) tends to make many weights 0, inherently performing feature selection
- Ridge regression (L₂) shrinks weights but isn't as biased towards selecting features
- L₁ and L₂ penalties can be used with other learning methods (logistic regression, neural nets, SVMs, etc.)
- · both can help avoid overfitting by reducing variance
- there are many variants with somewhat different biases
 - elastic net: includes L₁ and L₂ penalties
 - · group lasso: bias towards selecting defined groups of features
 - · fused lasso: bias towards selecting "adjacent" features in a defined chain
 - · etc.

Dimension Reduction

- feature selection: equivalent to projecting feature space to a lower dimensional subspace perpendicular to removed feature
- dimensionality reduction: allow other kinds of projection (e.g. PCA re-represents data using linear combinations of original features)

Dimensionality reduction

More effective method: represent each face as a linear combination of eigenfaces (# features = 20) We can represent a face using all of the pixels in a given image (# features = # pixels)

Dimensionality reduction example

represent each face as a linear combination of eigenfaces

$$\mathbf{x}^{(1)} = \alpha_1^{(1)} \times \mathbf{a} + \alpha_2^{(1)} \times \mathbf{a} + \mathbf{a} + \alpha_{20}^{(1)} \times \mathbf{a}$$
$$\mathbf{x}^{(1)} = \langle \alpha_1^{(1)}, \alpha_2^{(1)}, \mathbf{a} , \alpha_{20}^{(1)} \rangle$$

$$\mathbf{x}^{(2)} = \alpha_1^{(2)} \times \mathbf{1} + \alpha_2^{(2)} \times \mathbf{1} + \Box + \alpha_{20}^{(2)} \times \mathbf{1}$$
$$\mathbf{x}^{(2)} = \left\langle \alpha_1^{(2)}, \ \alpha_2^{(2)}, \ \Box, \ \alpha_{20}^{(2)} \right\rangle$$

of features is now 20 instead of # of pixels in images

Comments...

- for some types of models, we can incorporate feature selection into the learning process (e.g. L₁ regularization)
- dimensionality reduction methods may sometimes lead to more accurate models, but often lower comprehensibility