Отображения

Определение 1. Отображением f множества A во множество B называется правило, которое каждому элементу множества A сопоставляет единственный элемент множества B. Обозначается $f \colon A \to B$. Элемент из B, в который перешёл элемент $a \in A$ обозначают f(a).

Определение 2. Отображение $f \colon A \to B$ называется *инъекцией*, если для любых двух различных элементов $a,b \in A$ выполнено, что $f(a) \neq f(b)$.

Определение 3. Отображение $f: A \to B$ называется *сюръекцией*, если для любого элемента b из B существует элемент $a \in A$ (прообраз) такой, что f(a) = b.

Определение 4. Отображение $f: A \to B$ называется биекцией, если оно одновременно является и инъекцией, и сюръекцией.

Пусть между двумя конечными множествами A и B установили отображение $f\colon A\to B$ тогда, если это отображение биекция, то мы установили взаимно однозначное соответствие между этими элементами, т.е. количество элементов в этих множествах совпадают. Если f сюръекция, то $|A|\geqslant |B|$, если инъекция $|A|\leqslant |B|$.

Упражнение 1. Пусть A, B — два множества, |A| = n, |B| = m. Найдите количество отображений $f \colon A \to B$ а) без дополнительных условий; б) которые являются инъекциями; в) которые являются сюръекциями, при условии n = m + 2.

Упражнение 2. Установите биекцию между клетками бесконечной (во все стороны) шахматной доски и натуральным рядом.

Упражнение 3. Установите биекцию между натуральными числами и а) нечётными положительными числами, б) чётными числами, в) множеством упорядоченных пар натуральных чисел, г) множеством рациональных чисел.

Упражнение 4. Пусть |A| = n. Установите биекцию между множеством всех подмножеств A и множеством всевозможных отображений $g: A \to \{0,1\}$ (отображения из множества A в множество чисел 0,1).

Определение 5. Пусть даны два отображения $f: A \to B$ и $g: B \to C$, тогда композицией отображений f и g называется отображение $h = g \circ f: A \to C$, заданное по правилу h(a) = g(f(a)).

Упражнение 5. Пусть отображения $f \colon A \to B$ и $g \colon B \to C$ биекции, докажите, что их композиция $g \circ f \colon A \to C$ так же биекция.

Задача 1. Две шайки гангстеров охотятся друг за другом. Каждый гангстер охотится ровно за одним противником, и за каждым гангстером охотится не более одного противника. Главарь одной из шаек обнаружил, что не за всеми противниками охотятся. Докажите, что обе шайки бесконечны.

Задача 2. Назовём шестизначное число вогнутым, если его цифры до некоторого места убывают, а потом возрастают и выпуклым, если его до некоторого места возрастают, а потом убывают. Каких чисел больше: вогнутых или выпуклых?

Задача 3. Докажите, что разбиений числа n на не более чем k натуральных слагаемых столько же, сколько разбиений числа $n+\frac{(k+1)k}{2}$ на k попарно различных слагаемых.

Задача 4. Найдите количество пятизначных чисел, у которых все цифры убывают.

Задача 5. На двух параллельных прямых отметили точки — на первой m, на второй n и провели все соединяющие их отрезки. Оказалось, что никакие три не пересекаются в одной точке, сколько точек пересечения получилось?

Задача 6. Пусть A — конечное непустое множество и $f: A \to A$. Рассмотрим последовательность последовательность элементов $a_0 \in A$ и $a_i = f(a_{i-1})$ для любого i > 0. а) Докажите, что она зациклится и длина предпериода не более |A| - 1. б) Если f — биекция, то предпериода нет.

Задача 7. Докажите, что между множеством натуральных и множеством действительных чисел нельзя установить биекцию.