Chapter 6, Solution 69.

$$RC = 4 \times 10^6 \times 1 \times 10^{-6} = 4$$

$$v_o = -\frac{1}{RC} \int v_i dt = -\frac{1}{4} \int v_i dt$$

For
$$0 < t < 1$$
, $v_i = 20$, $v_o = -\frac{1}{4} \int_0^t 20 dt = -5t \text{ mV}$

For
$$1 < t < 2$$
, $v_i = 10$, $v_o = -\frac{1}{4} \int_1^t 10 dt + v(1) = -2.5(t - 1) - 5$
= -2.5t - 2.5mV

For
$$2 < t < 4$$
, $v_i = -20$, $v_o = +\frac{1}{4} \int_2^t 20 dt + v(2) = 5(t-2) - 7.5$
= 5t - 17.5 mV

For
$$4 < t < 5$$
m, $v_i = -10$, $v_o = \frac{1}{4} \int_4^t 10 dt + v(4) = 2.5(t - 4) + 2.5$
= 2.5t - 7.5 mV

For
$$5 < t < 6$$
, $v_i = 20$, $v_o = -\frac{1}{4} \int_5^t 20 dt + v(5) = -5(t - 5) + 5$
= $-5t + 30 \text{ mV}$

Thus $v_o(t)$ is as shown below:

