Near-Compute Storage and GPU Software Stack for Predictive AI Applications

Wen-mei Hwu

New Applications Demand Fast, Sparse Access to Massive Data

Compute-Directed Fine-grain Data Access

Graph Analytics and Graph Transformers (100GB-100TB) nodes/edges/embeddings

Semantic Search (up to 40PB) specialized algos on embeddings and files

Need e.g.: Google, Baidu, OpenSearch

Vector Database

Insertion

NVIDIA RAFT

Similarity results
The most similar documents are:

RAG/VectorDB (>600GB)
ANN indexing algos on embeddings

Need e.g.: cuVS, Milvius, Pinecone

Need e.g.: AWS, Amex, PayPal, VISA, MasterCard, Block, ...

Data Analytics (100GB-1PB) select row/column based on compute

Painwise interaction

Bottom MILP

Concat

Painwise interaction

Embedding table 1

table M

Laber 1

Categorical feature N

Feature 1

Feature 1

Feature M

Recommender Systems (5-10TB)
MLP and hash-table lookup on embeddings

Need e.g.: Merlin/HugeCTR HKV, Baidu

Need e.g.: RAPIDS

Computing on such data is currently orders of magnitude off in Cost/Throughput/Power

Data Intensive Applications - Software Stack Overheads Dominate

GPU Accelerated Data Frame Analytics on New York Taxi Dataset using RAPIDS

Query: Get average cost per mile for trips that are at least 30 miles

Further Acceleration of Storage Devices

The medium access time and data transfer time will continue to decrease.

The end-to-end application time will be virtually all due to the software stack for data-intensive applications!!

The Memory-Storage Divide

Opaque to applications except through memory-mapped files.

Storage in data center architecture

Old Way - Pooled HBM with Data Preload

Pooled HBM with Data Preload

Pooled HBM with Data Preload

SCADA - SCaled Accelerated Data Access

SCADA

SCADA

SCADA

Tolerating Storage Latency with (lots of) Parallelism

Little's Law: $L = \lambda W$

Needed Queue Depth (parallelism) = Storage Throughput \times Storage Latency

Raw PCle Bandwidth (Gen 6): 128 GB/s each direction

Usable Bandwidth ~100 GB/s

Max Throughput for 512-Byte Deliveries: $\frac{100 \ GB/s}{512 Byte/delivery}$ = 200M deliveries/sec (IOPS)

NAND SSD Example:

Throughput at 512-Byte: 10M deliveries/sec per SSD (requires 20 SSDs to achieve 200M deliveries/sec)

Access Latency: 300 us = 250 us (media) + 30 us (interconnect) + 20 (software)

Little's Law: 300 us × 200M deliveries/sec = 60,000 ← Mininal Parallelism to sustain over time

SCADA – Breaking the Storage-Memory Divide

CUDA threads access storage and remote data as data structure objects.

With SCADA, GPU threads can directly access data where it is, be it memory or storage!

C++ std:mdspan and KV abstractions

Leverage GPU memory & optimize storage bandwidth utilization

Enable GPU threads to directly access data in storage

SCADA Software Architecture and Components

GPU Accelerated Data System Architecture

Scalable Number of Accelerated Compute Nodes

Scalable Number of Accelerated
Data Nodes

Al Application Overview

SCADA

cuFile/S3oRDMA

Apps bifurcate by access pattern and IO intensity; TB/TCO persists, IOPS/TCO is emerging

Area	Usage model	Applications	Criticality @ node type		
			Compute	Storage	SKU objective
Training	Ingest	LLM pretraining, fine tuning	Low	High	TB/TCO
	Checkpoint save/restore		Low	High	TB/TCO
Inference	KV context caching across queries, docs	LLM inference	Usually low	High	TB/TCO
	LLM+GNN, GNN+LLM	Contextual LLMs	High	High	IOPS/TCO
	-Vector database	Dynamic Index build	High	High	IOPS/TCO
		LLM RAG doc retrieval	Low	High	TB/TCO
Predictive AI		Graph RAG	Low	High	IOPS/TCO
		Recommenders	High	High	IOPS/TCO
	GNN sampling induced subgraphs	eCommerce, fraud, social networks	High	High	IOPS/TCO
	Anomaly detection	eCommerce, fraud, social networks	High	High	IOPS/TCO
	Small World Graphs	Vector Search Index	High	High	IOPS/TCO
	Relational graphs	Data Science Automation	High	High	IOPS/TCO

App Taxonomy: intensity, bottlenecks and APIs

Designing storage solutions hinges on understanding app requirements

Vector (semantic) search pipeline for RAG

Graph Relational DB

Predictive AI using relationship information is gaining popularity

- •Raw Data: SQL tables w/ keys linking them
- Node Data: Row in a table w/ time stamp
 - •Each table: users, sessions, products, views, sales, ...
 - Each column is a feature
 - •Each feature:
 - integers, floating points, or text/imageembeddings
- •Edge Data: Unique ID's linking nodes

Heterogeneous graph – massive in size for both structure and embeddings

Application Performance Example – GNN Training

SSD-GNN is faster with fewer GPUs for large graphs

The path to Storage-Next

IOPs and TB with improved TCO from BOM, volume, power improvements

AIC Odo Delle Chnologies H3 Hewlett Packard Hitachi Vantara Isi NetApp Purestorage V A S T WEKA

