Введение в сетевой стек. Евгений Линский.

Протокол

- Протокол в данном курсе это алгоритм, который выполняется несколькми участниками
 - Участники обмениваются данными по сети
- Пример (пусть А и В две программы)
 - A → В: готов принять данные?
 - В → А: готов
 - А → В: посылает 5 байт
- У протоколов есть названия: HTTP, TCP, UDP, FTP, IMAP, ARP
 - букв P protocol

Стек протоколов

- Процесс передачи данных довольно сложен, поэтому его разбили на несколько протоколов
- Стек протоколов (один из вариантов)
 - Программа
 - Прикладной уровень (Application): HTTP, HTTPS, ...
 - Транспортный уровень (Transport): TCP/UDP
 - Сетевой уровень (Network): IP
 - Канальный уровень (Data link)/Физический уровень (PHY): ARP, Ethernet, WiFi
 - Среда передачи (электрические провода, волоконнооптические провода, радиоэфир)

Пакет

- Передача происходит пакетами
- Пакет состоит из данных (user data/payload)
 и заголовка со служебной информацией
 протокола (header)
- При прохождении по стеку протоколов
 - от программы до среды передачи: каждый протокол добавляет свой заголовок к пакету
 - от среды передачи до программы: каждый протокол удаляет свой заголовок из пакета

Пакет

Физический уровень

- Преобразование бит данных в сигналы среды передачи (оптические, электрические, радио)
 - Модуляция
 - Кодирование
- Реализован аппаратно (сетевая карта)
- Ethernet (802.3), WiFi (802.11)

Канальный уровень

- Передача между двумя соседними узлами
- Узлы имеют MAC (Medium Access Control) адреса (48 бит)
 - У каждой сетевой карты уникальный адрес (прошит)
 - В заголовке пакета два МАС адреса: адрес отправителя, адрес получателя
 - ip link`
- Разрешение конфликтов при одновременном доступе нескольких участников к среде передачи
- Повторные посылки при неудачной передаче
 - при отсутствии пакета-подверждения (АСК) от принимающего узла
- Реализован частично аппаратно (сетевая карта) и частично программно (операционная система)
- Ethernet, WiFi, ARP (определение MAC адреса получателя по его IP адресу)

₩i-Fi

7/15

Сетевой уровень

- Передача пакета через промежуточные узлы
 - Построение маршрутов
- Узлы имеют IP (Internet Protocol) адреса (IPv4 32 бита, Ipv6 48 бит)
 - ip a`
 - У каждой сетевой карты есть адрес, назначается программно (например, 10.0.10.1)
 - В заголовке пакета два IP адреса: адрес отправителя, адрес получателя
- Пакет передается по цепочке узлов
 - В пакете с заголовками сетевого и канального уровней 4 адреса:
 - ІР адрес отправителя, ІР адрес получателя (остаются постоянными при передаче)
 - МАС адрес текущего отправителя, МАС адрес текущего получателя (меняются при пересылке между каждой парой)
- Реализован программно (операционная система)
- IP, RIP и OSPF (построение маршрутов), ICMP (утилита ping)

Транспортный уровень/UDP

- Доставка данных от одной программы до другой
 - UDP (User Datagram Protocol)
 - Обмен данными происходит на уровне пакетов (датаграмм)
 - В заголовке --- порт программы отправителя, порт программы получателя
- Если данные больше, чем размер пакета UDP, то программист должен сам их фрагментировать/дефрагментировать
 - MTU (maximum transfer unit) для Ethernet = 1500 байт
 - Максимальный размер UDP: MTU (Max IP Header Size) (UDP Header Size) = 1500 60 8 = 1432
 байт
- Нет гарантий доставки
 - Пакеты могут прийти в неправильном порядке (A send: 3 2 1; В Recieve 2 1 3)
 - Если пакет потерялся, то никто об этом не узнает (нет подтверждений)
- Реализован программно (ОС)
- Достоинства: простота работы, скорость доставки
- Применение: DNS (определение IP адреса получателя по его символьному имени (yandex.ru → 5.255.255.50), DHCP (автоматическое получение IP адреса узлом), иногда голосовой и
 видеотрафик при звонкаху

Порты

- На узле может быть несколько программ, одновременно работающих с сетью (браузер, мессенджер, игра)
- Порты --- номер программы отправителя и программы получателя (например, 10001) в пакетах транспортного уровня
 - Порт отправителя выбирается динамически (ОС выбирает порт)
 - Если программа хочет принимать данные из сети, то она должна зарегистрироваться у ОС на определенный порт (выбирает программист, >1024)
 - Отправитель указывает в пакете порт программы получателя (хорошо известный или заранее обговоренный между отправителем и получателем)

– На основе порта в пришедшем пакете ОС принимает решение, какой программе его передать

10/15

Транспортный уровень/ТСР

- Обмен данными происходит на уровне потока данных (как с файлом)
 - Послать можно данные любого объема, протокол обеспечит фрагментацию/дефрагментацию
 - В заголовке --- порт программы отправителя, порт программы получателя
- Гарантии доставки
 - Принимающая часть накапливает пакеты в буфере, переставляет их в правильном порядке (есть порядковые номера в заголовке), посылает подтверждения
 - Посылающая часть перепосылает, если подтверждение не получено
- Реализован программно (ОС)
- Достоинства: гарантия доставки
- Применение: браузер (протокол HTTP)

TCP: установка/разрыв соединения

Figure 2.1. TCP session establishment and termination

ТСР: передача пакетов

Figure 2.2. TCP flow control using windowing

Прикладной уровень

- Протоколы, специфичные для конкретной программы
 - Пример HTTP запрос (данных нет)
 - GET /examples/index.html HTTP/1.0
 - Host: example.com
 - Простейший HTTP ответ
 - HTTP/1.0 200 OK
 - Last-Modified: Sat, 16 Jan 2010 21:16:42 GMT
 - Content-Type: text/plain; charset=windows-1251
 - Content-Language: ru
 - Connection: close
 - <html><body>Hello</body></html>
- Реализован: программно (в библиотеках/в самой программе)
- Примеры: HTTP/HTTPS (браузер), SMTP/IMAP/POP (почтовый клиент), BitTorrent
 - в своих программах можно придумывать свои протоколы

Сокеты

- Сокеты --- абстракция на сетевым соединением
 - Как File абстракция над диском
- Что нужно задать?
 - Протокол транспортного уровня (UDP, TCP)
 - для клиента (куда посылать пакеты): IP адрес сервера, порт получателя
 - для получателя (на каком порту принимать пакеты): порт
- Порт отправителя выбирается динамически (ОС выбирает автоматически)