

Table 8-3. Recommended Comp	onent Values

V _{OUT} (V)	F _{sw} (kHz)	L _{OUT} (µH)	C _{OUT(min)} (μF)	C _{OUT(max)} (μF)
	600	0.68	88	142
1.1	600	0.56	88	142
	600	0.47	88	142
	580	6.8	20	66
1.8	580	4.7	20	66
	580	3.3	20	66

Designed by Xavier L'Heureux

MIST Lab

Sheet: /power/DDR-power/ File: DDR-power.sch

Title: Portiloop

	Size: USLetter	Date: 2021-06-07		Rev: 1A	
	KiCad E.D.A. kicad 5.1.10			ld: 4/23	
_		4	5		

2

SWITCHING		PVIN = 12 V			PVIN = 5 V	
FREQUENCY		V _{OUT} RANGE (V)			V _{OUT} RANGE (V)	
(kHz)	I _{OUT} ≤ 10 A	I _{OUT} ≤ 9 A	I _{OUT} ≤ 8 A	I _{OUT} ≤ 10 A	I _{OUT} ≤ 9 A	I _{OUT} ≤ 8 A
200	0.6 - 1.2	0.6 - 1.6	0.6 - 2.0	0.6 - 1.5	0.6 - 2.5	0.6 - 4.3
300	0.8 - 1.9	0.8 - 2.6	0.8 - 3.5	0.6 - 4.3	0.6 - 4.3	0.6 - 4.3
400	1.0 - 2.7	1.0 - 4.0	1.0 - 5.5	0.6 - 4.3	0.6 - 4.3	0.6 - 4.3
500	1.3 - 3.8	1.3 - 5.5	1.3 - 5.5	0.6 - 4.3	0.6 - 4.3	0.6 - 4.3
600	1.5 - 5.5	1.5 - 5.5	1.5 - 5.5	0.7 - 4.3	0.7 - 4.3	0.7 - 4.3
700	1.8 - 5.5	1.8 - 5.5	1.8 - 5.5	0.8 - 4.3	0.8 - 4.3	0.8 - 4.3
800	2.0 - 5.5	2.0 - 5.5	2.0 - 5.5	0.9 - 4.3	0.9 - 4.3	0.9 - 4.3
900	2.2 - 5.5	2.2 - 5.5	2.2 - 5.5	1.0 - 4.3	1.0 - 4.3	1.0 - 4.3
1000	2.5 - 5.5	2.5 - 5.5	2.5 - 5.5	1.1 - 4.3	1.1 - 4.3	1.1 - 4.3
1100	2.7 - 5.5	2.7 - 5.5	2.7 - 5.5	1.3 - 4.3	1.2 - 4.3	1.2 - 4.3
1200	3.0 - 5.5	3.0 - 5.5	3.0 - 5.5	1.4 - 4.3	1.3 - 4.3	1.3 - 4.3

Voltage output Clock speed

Table 5. Required Output Capacitance

	<u> </u>	
V _{OUT} R	ANGE (V)	MINIMUM REQUIRED C _{OUT} (μF)
MIN	MAX	MINIMOM REGOINED C _{OUT} (μr)
0.6	< 0.8	500 μF ⁽¹⁾
0.8	< 1.2	300 μF ⁽¹⁾
1.2	< 3.0	200 μF ⁽¹⁾
3.0	< 4.0	100 μF ⁽¹⁾
4.0	5.5	47 μF ceramic

(1) Minimum required must include at least one 47-µF ceramic capacitor.

Designed by Xavier L'Heureux

MIST Lab

Sheet: /power/VCCINT/ File: VCCINT.sch

Titles Dortil

lit	le: I	0	rtil	00	Ρ
61	110				

Size: USLetter	Date: 2021-06-07		Rev: 1A	
KiCad E.D.A. kicad 5.1.10			ld: 5/23	
	,	F		-

SWITCHING		PVIN = 12 V			PVIN = 5 V	
FREQUENCY		V _{OUT} RANGE (V)			V _{OUT} RANGE (V)	
(kHz)	I _{OUT} ≤ 10 A	I _{OUT} ≤ 9 A	I _{OUT} ≤ 8 A	I _{OUT} ≤ 10 A	I _{OUT} ≤ 9 A	I _{OUT} ≤ 8 A
200	0.6 - 1.2	0.6 - 1.6	0.6 - 2.0	0.6 - 1.5	0.6 - 2.5	0.6 - 4.3
300	0.8 - 1.9	0.8 - 2.6	0.8 - 3.5	0.6 - 4.3	0.6 - 4.3	0.6 - 4.3
400	1.0 - 2.7	1.0 - 4.0	1.0 - 5.5	0.6 - 4.3	0.6 - 4.3	0.6 - 4.3
500	1.3 - 3.8	1.3 - 5.5	1.3 - 5.5	0.6 - 4.3	0.6 - 4.3	0.6 - 4.3
600	1.5 - 5.5	1.5 - 5.5	1.5 - 5.5	0.7 - 4.3	0.7 - 4.3	0.7 - 4.3
700	1.8 - 5.5	1.8 - 5.5	1.8 - 5.5	0.8 - 4.3	0.8 - 4.3	0.8 - 4.3
800	2.0 - 5.5	2.0 - 5.5	2.0 - 5.5	0.9 - 4.3	0.9 - 4.3	0.9 - 4.3
900	2.2 - 5.5	2.2 - 5.5	2.2 - 5.5	1.0 - 4.3	1.0 - 4.3	1.0 - 4.3
1000	2.5 - 5.5	2.5 - 5.5	2.5 - 5.5	1.1 - 4.3	1.1 - 4.3	1.1 - 4.3
1100	2.7 - 5.5	2.7 - 5.5	2.7 - 5.5	1.3 - 4.3	1.2 - 4.3	1.2 - 4.3
1200	3.0 - 5.5	3.0 - 5.5	3.0 - 5.5	1.4 - 4.3	1.3 - 4.3	1.3 - 4.3

Voltage output Clock speed

Table 5. Required Output Capacitance

V _{OUT} RANGE (V)		MINIMUM REQUIRED C _{OUT} (μF)
MIN	MAX	MINIMOM REGULED COUT (µF)
0.6	< 0.8	500 μF ⁽¹⁾
0.8	< 1.2	300 μF ⁽¹⁾
1.2	< 3.0	200 μF ⁽¹⁾
3.0	< 4.0	100 μF ⁽¹⁾
4.0	5.5	47 μF ceramic

(1) Minimum required must include at least one 47-μF ceramic capacitor.

Designed by Xavier L'Heureux

MIST Lab

Sheet: /power/0V85/ File: 0V85.sch

Title: Portiloop

Size: USLetter	Date: 2021-06-07	Rev: 1A	
KiCad E.D.A. kicad 5.1.10		ld: 6/23	

2

SWITCHING		PVIN = 12 V			PVIN = 5 V	
FREQUENCY		V _{OUT} RANGE (V)			V _{OUT} RANGE (V)	
(kHz)	I _{OUT} ≤ 10 A	I _{OUT} ≤ 9 A	I _{OUT} ≤ 8 A	I _{OUT} ≤ 10 A	I _{OUT} ≤ 9 A	I _{OUT} ≤ 8 A
200	0.6 - 1.2	0.6 - 1.6	0.6 - 2.0	0.6 - 1.5	0.6 - 2.5	0.6 - 4.3
300	0.8 - 1.9	0.8 - 2.6	0.8 - 3.5	0.6 - 4.3	0.6 - 4.3	0.6 - 4.3
400	1.0 - 2.7	1.0 - 4.0	1.0 - 5.5	0.6 - 4.3	0.6 - 4.3	0.6 - 4.3
500	1.3 - 3.8	1.3 - 5.5	1.3 - 5.5	0.6 - 4.3	0.6 - 4.3	0.6 - 4.3
600	1.5 - 5.5	1.5 - 5.5	1.5 - 5.5	0.7 - 4.3	0.7 - 4.3	0.7 - 4.3
700	1.8 - 5.5	1.8 - 5.5	1.8 - 5.5	0.8 - 4.3	0.8 - 4.3	0.8 - 4.3
800	2.0 - 5.5	2.0 - 5.5	2.0 - 5.5	0.9 - 4.3	0.9 - 4.3	0.9 - 4.3
900	2.2 - 5.5	2.2 - 5.5	2.2 - 5.5	1.0 - 4.3	1.0 - 4.3	1.0 - 4.3
1000	2.5 - 5.5	2.5 - 5.5	2.5 - 5.5	1.1 - 4.3	1.1 - 4.3	1.1 - 4.3
1100	2.7 - 5.5	2.7 - 5.5	2.7 - 5.5	1.3 - 4.3	1.2 - 4.3	1.2 - 4.3
1200	3.0 - 5.5	3.0 - 5.5	3.0 - 5.5	1.4 - 4.3	1.3 - 4.3	1.3 - 4.3

Voltage output Clock speed

Table 5. Required Output Capacitance

V _{OUT} RA	ANGE (V)	MINIMUM REQUIRED C _{OUT} (μF)
MIN	MAX	MINIMOW REGULAED COUT (μF)
0.6	< 0.8	500 μF ⁽¹⁾
0.8	< 1.2	300 μF ⁽¹⁾
1.2	< 3.0	200 μF ⁽¹⁾
3.0	< 4.0	100 μF ⁽¹⁾
4.0	5.5	47 μF ceramic

(1) Minimum required must include at least one 47- μF ceramic capacitor.

Designed by Xavier L'Heureux

MIST Lab

Sheet: /power/1V8/ File: 1V8.sch

Title: Portiloop

 Size: USLetter
 Date: 2021-06-07
 Rev: 1A

 KiCad E.D.A. kicad 5.1.10
 Id: 7/23

2

KiCad E.D.A. kicad 5.1.10

ld: 8/23

Table 9. Allowable Switching Frequence	cy versus Output Voltage
DVIIN 40 V	DV(IA)

SWITCHING		PVIN = 12 V			PVIN = 5 V	
FREQUENCY	V _{OUT} RANGE (V)			V _{OUT} RANGE (V)		
(kHz)	I _{OUT} ≤ 10 A	I _{OUT} ≤ 9 A	I _{OUT} ≤ 8 A	I _{OUT} ≤ 10 A	I _{OUT} ≤ 9 A	I _{OUT} ≤ 8 A
200	0.6 - 1.2	0.6 - 1.6	0.6 - 2.0	0.6 - 1.5	0.6 - 2.5	0.6 - 4.3
300	0.8 - 1.9	0.8 - 2.6	0.8 - 3.5	0.6 - 4.3	0.6 - 4.3	0.6 - 4.3
400	1.0 - 2.7	1.0 - 4.0	1.0 - 5.5	0.6 - 4.3	0.6 - 4.3	0.6 - 4.3
500	1.3 - 3.8	1.3 - 5.5	1.3 - 5.5	0.6 - 4.3	0.6 - 4.3	0.6 - 4.3
600	1.5 - 5.5	1.5 - 5.5	1.5 - 5.5	0.7 - 4.3	0.7 - 4.3	0.7 - 4.3
700	1.8 - 5.5	1.8 - 5.5	1.8 - 5.5	0.8 - 4.3	0.8 - 4.3	0.8 - 4.3
800	2.0 - 5.5	2.0 - 5.5	2.0 - 5.5	0.9 - 4.3	0.9 - 4.3	0.9 - 4.3
900	2.2 - 5.5	2.2 - 5.5	2.2 - 5.5	1.0 - 4.3	1.0 - 4.3	1.0 - 4.3
1000	2.5 - 5.5	2.5 - 5.5	2.5 - 5.5	1.1 - 4.3	1.1 - 4.3	1.1 - 4.3
1100	2.7 - 5.5	2.7 - 5.5	2.7 - 5.5	1.3 - 4.3	1.2 - 4.3	1.2 - 4.3
1200	3.0 - 5.5	3.0 - 5.5	3.0 - 5.5	1.4 - 4.3	1.3 - 4.3	1.3 - 4.3

Voltage output Clock speed

 $3.3V => 316 \Omega$

_VADJ

GND

R54 TNPW0603316RBEEA

Table 5. Required Output Capacitance

	<u> </u>	•		
V _{OUT} RA	NGE (V)	MINIMUM REQUIRED C _{OUT} (μF)		
MIN	MAX	MINIMOM REQUIRED C _{OUT} (μr)		
0.6	< 0.8	500 μF ⁽¹⁾		
0.8	< 1.2	300 μF ⁽¹⁾		
1.2	< 3.0	200 μF ⁽¹⁾		
3.0	< 4.0	100 μF ⁽¹⁾		
4.0	5.5	47 μF ceramic		

(1) Minimum required must include at least one 47- μF ceramic capacitor.

Designed by Xavier L'Heureux

MIST Lab

Sheet: /power/SD-power/ File: SD-power.sch

Title: Portiloop

Size: USLetter	Date: 2021-06-07	Rev: 1A
KiCad E.D.A. kid	ad 5.1.10	ld: 11/23

Medu L.D.A. Nicau S.I.Tu

POR delay

POR delay override. 0 = Standard PL power-on delay time (recommended default).

1= Faster PL power-on delay time.

Do not allow this pin to float before and during configuration. This pin must be tied to VCCINT or GND.

Power-up Configuration

Pull-Up During Configuration (bar) Dedicated input pin. Active-Low input enables internal pull-up resistors on the SelectIO pins after power-up and during configuration. When PUDC_B is Low, internal pull-up resistors are enabled on each SelectIO pin. When PUDC_B is High, internal pull-up resistors are disabled on each SelectIO pin. Caution! Do not allow this pin to float before and during configuration. Must be tied High or Low. PUDC_B must be tied either directly or via a $\leq 1\ k$ Ω resistor to VCCAUX or GND.

Decoupling (see page 30)

Ferrite bead: Murata BLM18SG121TN1

Table 1-11: Recommended PCB Capacitor Specifications and Placement Guidelines

Nominal Value (μF)	Case Size	Temp/Change (%)	Manufacturer	Manufacturer Part Number	Ideal Placement to FPGA/MPSoC ⁽¹⁾
330	1210	X6S	Murata	GRM32EC80E337ME05	1–4"
100	0805	X6S	Murata	GRM21BC80G107ME15	0.5–3″
47	0603	X6S	Murata	GRM188C80E476ME05	0.5–2"
10	0402	X6S	Murata	GRM155C80J106ME11D	0-1"(2)

RTC battery

Really not sure about battery Around 1 year capacity => must be able to replace => case will be harder to make

+1V8

Power bank

U23K xczu2egsbva484

VN & VP determine the SYSMON I2C address at power up Grounded = 0x32

Designed by Xavier L'Heureux

MIST Lab

Sheet: /FPGA/FPGA_power/ File: FPGA_power.sch

Title: Portiloop

Size: USLetter	Date: 2021-06-07	Rev: 1A
KiCad E.D.A. kid	ad 5.1.10	ld: 22/23

