1 GALOIS FIELDS I 1

1 Galois Fields I

Definition 1 (Formal derivative). We define the derivative operator $\mathcal{D}: K[t] \to K[t]$ by

$$\mathcal{D}\left(\sum_{k=0}^{n} a_k t^k\right) = \sum_{k=1}^{n} k a_k t^{k-1}.$$

Theorem 1.1. Let $f \in K[t] \setminus K$, and let L : K be a splitting field extension for f with $K \subseteq L$. Then the following are equivalent:

- (i) f has a repeated root over L;
- (ii) There exists $\alpha \in L$ such that $f(\alpha) = 0 = (\mathcal{D}f)(\alpha)$;
- (iii) There exists $g \in K[t]$ with deg $g \ge 1$ such that $g \mid f$ and $g \mid \mathcal{D}f$.

Definition 2 (Inseparable). A polynomial $f \in K[t]$ is inseparable over K if f is not separable over K, i.e. f has an irreducible factor $g \in K[t]$ such that g has fewer than $\deg g$ distinct roots in K.

Theorem 1.2. Suppose $f \in K[t]$ is irreducible over K. Then f is inseparable over $K \iff \operatorname{char} K = p > 0$ and $f \in K[t^p]$.

Definition 3 (Frobenius map). Suppose that char K = p > 0. The Frobenius map $\varphi : K \to K$ is defined by $\varphi(\alpha) = \alpha^p$.

Theorem 1.3. Suppose that char K = p > 0, and put $F = \{c \cdot 1_K : c \in \mathbb{Z}\}$. Then F is a subfield (called the prime subfield) of K, and $F \cong \mathbb{Z}/p\mathbb{Z}$.

Definition 4 (Fixed field). Let L: K be a field extension and $G \leq \operatorname{Aut}(L)$. We define the fixed field of G as

$$\operatorname{Fix}_L(G) = \{ \alpha \in L : \sigma(\alpha) = \alpha \text{ for all } \sigma \in G \}.$$

Theorem 1.4. Suppose that char K = p > 0, and let F be the prime subfield of K. Let $\varphi : K \to K$ denote the Frobenius map. Then φ is an injective homomorphism, and $\text{Fix}_{\varphi}(K) = F$.

Corollary 1. Suppose that $\operatorname{char} K = p > 0$ and K is algebraic over its prime subfield. Then the Frobenius map is an automorphism of K.

Corollary 2. Suppose that char K = p > 0 and K is algebraic over its prime subfield. Then all polynomials in K[t] are separable over K.

Corollary 3 (**). Suppose that char K = 0. Then all polynomials in K[t] are separable over K.

Theorem 1.5. Suppose that char K = p > 0. Let

$$f(t) = q(t^p) = a_0 + a_1 t^p + \dots + a_{n-1} t^{(n-1)p} + t^{np}$$

be a non-constant monic polynomial over K. Then f(t) is irreducible in K[t] if and only if g(t) is irreducible in K[t] and not all the coefficients a_i are p-th powers in K.