Geometric Deep Learning

Tommaso Lamma

2021

- Introduzione
- Reti Convoluzionali
- Convoluzione su Domini Euclidei
- Convoluzione Spettrale
- 5 Convoluzione Equivariante

Geometric Deep Learning

Tommaso Lamma

2021

Reti Convoluzionali

Figura: Una rete neurale convoluzionale.

Convoluzione su Domini Euclidei

Siano
$$f: \mathbb{R}^n \to \mathbb{R}$$
 e $g: \mathbb{R}^n \to \mathbb{R}$,

$$(f*g)(x) = \int_{\mathbb{R}^n} dx' f(x') g(x-x').$$

Cosa significa (x - x') in un dominio diverso da \mathbb{R}^n ?

Cosa significa (x - x') in \mathbb{R}^n ?

Possiamo vedere (x - x') come l'azione dell'elemento (-x') del gruppo delle traslazioni $(\mathbb{R}^n, +)$ sul dominio \mathbb{R}^n (A priori della struttura di spazio vettoriale).

Notare:

Il gruppo $(\mathbb{R}^n, +)$ è una simmetria globale del dominio \mathbb{R}^n .

Possiamo definire una convoluzione su un dominio a partire dalla simmetria globale del dominio?

Figura: Un dominio non euclideo \mathcal{G} .

Spazio dei Segnali su ${\cal G}$

Lo spazio dei segnali a valori reali definiti su questo dominio può essere rappresentato come

$$S = \{ |\psi\rangle = \sum_{i \in \mathbb{Z}_6} \psi_i |i\rangle : \psi_i \in \mathbb{R} \},$$

dove devono valere

$$\langle i|j\rangle = \delta_{ij},$$

$$\sum_{i\in\mathbb{Z}_6} |i\rangle\langle i| = \widehat{1}.$$

Una simmetria di questo spazio è il gruppo ciclico $(\mathbb{Z}_6,+)$ rispetto all'azione che segue.

Azione di \mathbb{Z}_6 su \mathcal{S}

Un'azione di \mathbb{Z}_6 sullo spazio dei segnali è data da

$$.:\mathbb{Z}_{6}\times\mathcal{S}\rightarrow\mathcal{S}$$

$$(j, |\psi\rangle) \mapsto j. |\psi\rangle = \sum_{i \in \mathbb{Z}_6} \psi_{i+j} |i+j\rangle \in \mathcal{S}.$$

7 / 10

Vediamo come agisce il generatore del gruppo

Azione del generatore

$$1.|\psi\rangle = \sum_{i \in \mathbb{Z}_6} \psi_{i+1}|i+1\rangle.$$

Le componenti trasformano nel seguente modo

$$\langle i|\psi\rangle = \psi_i \mapsto \sum_{i,j\in\mathbb{Z}_6} S_{ij}\psi_j = \sum_{i,j\in\mathbb{Z}_6} \langle i|\widehat{S}|j\rangle\langle j|\psi\rangle,$$

$$\mathsf{dove} \; \mathit{S}_{ij} = \mathit{circ}(0, 1, 0, 0, 0, 0) =: \begin{pmatrix} 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 & 0 \end{pmatrix}.$$

Tommaso Lamma Geometric Deep Learning 2021 8 / 10

Convoluzione Spettrale

Data la simmetria avremo che per qualsiasi osservabile $\widehat{\mathcal{O}}$

$$[\widehat{S},\widehat{O}]=0.$$

L'operatore \widehat{S} è diagonalizzabile $\widehat{S}|s_i\rangle=s_i|s_i\rangle$, sfruttando l'analogia con \mathbb{R}^n otteniamo una trasformata.

Trasformata di Fourier in ${\cal S}$

$$\langle i|\psi\rangle\mapsto\langle s_i|\psi\rangle.$$

Dalla traformata definiamo per le componenti una convoluzione in analogia con \mathbb{R}^n .

Convoluzione su ${\cal S}$

$$\langle s_i | \psi * \phi \rangle = \langle s_i | \psi \rangle \langle s_i | \phi \rangle.$$

Convoluzione Equivariante

Sia $\widehat{C}_\phi|\psi\rangle=|\psi*\phi\rangle$, possiamo decidere di definire questa convoluzione solo a partire da

$$[\widehat{S},\widehat{C}_{\phi}]=0,$$

ciò implica che la matrice associata a $\widehat{\mathcal{C}}_\phi$ è circolante.

Notare:

In entrambi i casi abbiamo ridotto il numero di parametri da imparare da ${\bf 36}$ a ${\bf 6}$.