Séries numériques Résumé de cours

I/ Définition, propriétés globales

1. Introduction

On se donne $(u_n)_{n\in\mathbb{N}}$ une suite de complexes.

Étudier la série associée, notée $\sum_{n\in\mathbb{N}}u_n$, c'est étudier la suite $\left(S_n\right)_{n\in\mathbb{N}}$ définie par $S_n=u_0+u_1+\ldots+u_n=\sum_{k=0}^nu_k$.

 S_n est appelée somme partielle de rang n de la série $\sum_{n\in\mathbb{N}} u_n$

2. Convergence

On dit que la série $\sum_{n\in\mathbb{N}} u_n$ converge si et seulement si la suite $(S_n)_{n\in\mathbb{N}}$ des sommes partielles converge.

Dans ce cas on appelle <u>somme</u> de la série $\sum_{n\in\mathbb{N}}u_n$ et on note $\sum_{n=0}^{\infty}u_n$ la limite de la suite $(S_n)_{n\in\mathbb{N}}$:

$$\sum_{n=0}^{\infty} u_n = \lim_{n \to \infty} S_n = \lim_{n \to \infty} \left(\sum_{k=0}^{n} u_k \right)$$

Sinon on dira que $\sum_{n\in\mathbb{N}} u_n$ diverge. Dans ce cas la notation $\sum_{n=0}^{\infty} u_n$ n'a pas de sens.

Exemple fondamental : Série géométrique $u_n = r^n$, où r est un complexe fixé.

Soit $r \in \mathbb{C}$. La série $\sum_{n \in \mathbb{N}} r^n$ converge si et seulement si |r| < 1

et dans ce cas, sa somme est $\sum_{n=0}^{\infty} r^n = \frac{1}{1-r}$

$$r = \frac{4}{5}e^{7i/10} : \sum_{n=0}^{\infty} r^n \approx 0.932 + 1.238i$$

$$r = \frac{3}{5} + \frac{4}{5}i$$

$$r = \frac{11}{10}e^{7i/10}$$

Cas particulier: Si r est un réel, la série $\sum_{n \in \mathbb{N}} r^n$ converge si et seulement si -1 < r < 1

Théorème : Condition nécessaire de convergence

Si la série $\sum_{n\in\mathbb{N}}u_n$ converge, alors nécessairement $\lim_{n\to+\infty}u_n=0$:

Si la <u>série</u> de terme général u_n <u>converge</u>, alors nécessairement la <u>suite</u> de terme général u_n <u>converge vers 0</u>

Remarque : La réciproque est fausse. Contre-exemple $u_n = \frac{1}{n}$ (série harmonique).

3. Opérations sur les séries

Soient λ un complexe et $\sum_{n\in\mathbb{N}} u_n$ et $\sum_{n\in\mathbb{N}} v_n$ deux séries de complexes.

1. Si les séries $\sum_{n\in\mathbb{N}} u_n$ et $\sum_{n\in\mathbb{N}} v_n$ convergent, alors la série $\sum_{n\in\mathbb{N}} \lambda u_n + v_n$ converge également,

et
$$\sum_{n=0}^{\infty} (\lambda u_n + v_n) = \lambda \sum_{n=0}^{\infty} u_n + \sum_{n=0}^{\infty} v_n$$
.

- 2. Si l'une des deux séries $\sum_{n\in\mathbb{N}} u_n$ et $\sum_{n\in\mathbb{N}} v_n$ converge et l'autre diverge, alors la série $\sum_{n\in\mathbb{N}} u_n + v_n$ diverge.
- 3. Si les deux séries divergent, alors on ne sait rien sur la série $\sum_{n\in\mathbb{N}} u_n + v_n$.
- 4. Les séries $\sum_{n\in\mathbb{N}} u_n$ et $\sum_{n\in\mathbb{N}} \lambda u_n$ sont de même nature si $\lambda \neq 0$.

II/ Séries à termes réels positifs

Remarque fondamentale

Si tous les u_n sont des réels positifs, la suite des sommes partielles est croissante.

1. Critère de majoration des sommes partielles

Soit $\sum_{n\in\mathbb{N}} u_n$ une série de réels positifs.

La série $\sum_{n\in\mathbb{N}} u_n$ converge si et seulement si la suite (S_n) des sommes partielles est majorée.

2. Critère de majoration du terme général

Soient $\sum_{n\in\mathbb{N}}u_n$ et $\sum_{n\in\mathbb{N}}v_n$ deux séries à termes positifs telles que $\forall n\in\mathbb{N}\,/\,u_n\leqslant v_n$.

Alors:

- Si la série $\sum_{n\in\mathbb{N}} v_n$ converge, alors la série $\sum_{n\in\mathbb{N}} u_n$ converge également.
- Si la série $\sum_{n\in\mathbb{N}} u_n$ diverge, alors la série $\sum_{n\in\mathbb{N}} v_n$ diverge également.

3. Critère d'équivalence

Soient $\sum_{n\in\mathbb{N}} u_n$ et $\sum_{n\in\mathbb{N}} v_n$ deux séries à termes positifs telles que $u_n \sim v_n$ (i.e. $\frac{u_n}{v_n} \xrightarrow[n \to \infty]{} 1$)

Alors la série $\sum_{n\in\mathbb{N}} u_n$ converge si et seulement la série $\sum_{n\in\mathbb{N}} v_n$ converge.

On dit que les deux séries sont de même nature.

4. Critère de comparaison à une intégrale

Soit f une fonction continue sur $[0, \infty[$, positive et décroissante. On étudie la série $\sum_{n=1}^{\infty} u_n$ où $u_n = f(n)$

Dans ce cas la série $\sum_{n\in\mathbb{N}}u_n$ converge si et seulement l'intégrale $\int_0^nf(t)dt$ a une limite quand $n\to\infty$.

5. Séries de Riemann $\sum_{n=1}^{\infty} \frac{1}{n^{\alpha}}$ pour α réel strictement positif

Si $\alpha \le 1$, la série de Riemann $\sum_{n \in \mathbb{N}^*} \frac{1}{n^{\alpha}}$ diverge (en particulier la série harmonique $\sum_{n \in \mathbb{N}^*} \frac{1}{n}$ diverge)

Si $\alpha > 1$, la série de Riemann $\sum_{n \in \mathbb{N}^*} \frac{1}{n^{\alpha}}$ converge.

6. Critère de D'Alembert

Soient $\sum_{n\in\mathbb{N}}u_n$ une série à termes <u>strictement positifs</u> telles que $\frac{u_{n+1}}{u_n}$ <u>ait une limite</u> L réelle ou $+\infty$.

- Si L < 1, la série $\sum_{n \in \mathbb{N}} u_n$ converge
- Si L > 1, la série $\sum_{n \in \mathbb{N}} u_n$ diverge
- Si L=1, le critère ne permet pas de conclure

exemples

$$\sum n^{2}e^{-n} \text{ Soit } u_{n} = n^{2}e^{-n} \quad \forall n/u_{n} > 0 \qquad \frac{u_{n+1}}{u_{n}} = \frac{(n+1)^{2}e^{-n-1}}{n^{2}e^{-n}} = \left(\frac{n+1}{n}\right)^{2}e^{-1} \to e^{-1} < 1$$

$$\sum_{n \ge 1} \frac{n^{n}}{n!} \frac{u_{n+1}}{u_{n}} = \frac{(n+1)^{n+1}}{n^{n}} \frac{n!}{(n+1)!} = \left(\frac{n+1}{n}\right)^{n} = \left(1 + \frac{1}{n}\right)^{n} \to e > 1 \text{ car } \ln\left(\left(1 + \frac{1}{n}\right)^{n}\right) = n \ln\left(1 + \frac{1}{n}\right) = n\left(\frac{1}{n} + \frac{1}{n}\varepsilon\left(\frac{1}{n}\right)\right) \to 1$$

Remarques:

- \rightarrow Si $\frac{u_{n+1}}{u_n}$ n'a pas de limite, le critère de D'Alembert ne s'applique pas.
- \to Si les u_n ne sont pas tous positifs, le critère de D'Alembert ne s'applique pas à $\sum_{n\in\mathbb{N}}u_n$. Mais on peut l'essayer pour la convergence absolue.
- \rightarrow Le critère compare la série $\sum_{n\in\mathbb{N}}u_n$ à une série géométrique.

Il est donc inutile si la série $\sum_{n\in\mathbb{N}}u_n$ est elle-même une série géométrique (i.e. si $\frac{u_{n+1}}{u_n}$ est constante)

7. Série exponentielle: Pour tout complexe z, la série $\sum_{n\in\mathbb{N}}\frac{z^n}{n!}$ converge absolument. (rappel: 0! est égal à 1)

La somme de cette série est notée $\exp(z)$: $\forall z \in \mathbb{C} \sum_{n=0}^{\infty} \frac{z^n}{n!} = \exp(z)$. On démontre que

- ⇒ si z est un réel x, on retrouve la fonction exponentielle bien connue. $\forall x \in \mathbb{R} \sum_{n=0}^{\infty} \frac{x^n}{n!} = e^x$ ⇒ si $z = i\theta$, on retrouve les fonctions sinus et cosinus $\forall \theta \in \mathbb{R} \sum_{n=0}^{\infty} \frac{(i\theta)^n}{n!} = e^{i\theta} = \cos\theta + i\sin\theta$

III/ Séries à termes quelconques

1. Convergence absolue

Définition : Une série de complexes $\sum_{n\in\mathbb{N}} u_n$ converge absolument ('est absolument convergente')

si et seulement si la série des valeurs absolues (modules) $\sum_{n=0}^{\infty} |u_n|$ converge.

Propriété : Si une série de complexes $\sum_{n\in\mathbb{N}} u_n$ converge absolument, alors elle converge et $\left|\sum_{n=0}^{\infty} u_n\right| \leqslant \sum_{n=0}^{\infty} |u_n|$.

Remarque : La réciproque est fausse : une série peut être convergente sans être absolument convergente. On dit alors qu'elle est semi-convergente. Exemple : la série harmonique alternée $\sum_{n\in\mathbb{N}^*} \frac{(-1)^n}{n}$

2. Critère des séries alternées (Leibniz)

Théorème

Si $(v_n)n \in \mathbb{N}$ est une suite <u>décroissante</u> et <u>qui tend vers 0</u>

Alors la série
$$\sum_{n\in\mathbb{N}} (-1)^n v_n$$
 converge

et sa somme est toujours comprise entre deux sommes partielles consécutives

Si
$$u_n = (-1)^n v_n$$
, (v_n) décroissante et $\lim_{n \to \infty} v_n = 0$ alors $\sum_{n \in \mathbb{N}} u_n$ converge et
$$\forall n \in \mathbb{N} / v_0 - v_1 + v_2 ... + v_{2n} - v_{2n+1} \leqslant \sum_{n=0}^{\infty} u_n \leqslant v_0 - v_1 + v_2 ... - v_{2n-1} + v_{2n},$$
 soit $S_{2n+1} = \sum_{l=0}^{2n+1} u_l \leqslant \sum_{n=0}^{\infty} u_n \leqslant S_{2n} = \sum_{l=0}^{2n} u_l$

Exemple : La série $\sum_{n \in \mathbb{N}^*} \frac{(-1)^n}{n}$ (série harmonique alternée) converge (mais n'est pas absolument convergente).

3. Série d'Abel

Théorème

Pour tout $\theta \in]0,2\pi]$ et tout $\alpha > 0$, la série $\sum_{n \in \mathbb{N}^*} \frac{e^{in\theta}}{n^{\alpha}}$ est convergente.

4. Utilisation des développements limités

Lemme : Pour tout $\alpha > 1$, si $\varepsilon\left(\frac{1}{n}\right) \xrightarrow[n \to \infty]{} 0$, la série $\sum_{n \in \mathbb{N}^*} \frac{1}{n^{\alpha}} \varepsilon\left(\frac{1}{n}\right)$ est absolument convergente.

exemple
$$u_n = \ln\left(1 + \frac{(-1)^n}{\sqrt{n}}\right)$$
: $u_n = \frac{(-1)^n}{\sqrt{n}} - \frac{1}{2}\frac{1}{n} + \frac{(-1)^n}{3n^{3/2}}\varepsilon\left(\frac{1}{n^{3/2}}\right)$ donc $\sum_{n \in \mathbb{N}} u_n$ diverge

Attention la série $\sum_{n\in\mathbb{N}^*} \frac{1}{n} \varepsilon \left(\frac{1}{n}\right)$ ne converge pas forcément ! Exemple $\sum_{n\geqslant 2} \frac{1}{n\ln(n)}$ diverge.

IV/ Séries absolument convergentes

1. Produit de deux séries absolument convergentes (Produit de Cauchy)

Soient $\sum_{n\in\mathbb{N}} a_n$ et $\sum_{n\in\mathbb{N}} b_n$ deux séries absolument convergentes.

Pour tout naturel n, on pose $c_n = a_0 b_n + a_1 b_{n-1} + ... + a_{n-1} b_1 + a_n b_0$, soit $c_n = \sum_{k=0}^{n} a_k b_{n-k}$.

Alors la série
$$\sum_{n\in\mathbb{N}} c_n$$
 converge absolument et $\sum_{n=0}^{\infty} c_n = \left(\sum_{n=0}^{\infty} a_n\right) \left(\sum_{n=0}^{\infty} b_n\right)$

2. Séries doubles

Théorème (Fubini) pour les séries doubles de réels positifs

Soit $(a_{i,j})_{\substack{i \in \mathbb{N} \\ i \in \mathbb{N}}}$ une suite double de réels.

On suppose	Alors
$(1) \ \forall (i,j) \in \mathbb{N} \times \mathbb{N} \ / \ a_{i,j} \geqslant 0$	(i) $\forall j \in \mathbb{N}$, la série $\sum a_{i,j}$ converge
(2) $\forall i \in \mathbb{N}$, la série $\sum_{j \in \mathbb{N}} a_{i,j}$ converge	(ii) la série $\sum_{j\in\mathbb{N}} \left(\sum_{i=0}^{\infty} a_{i,j}\right)$ converge
(3) la série $\sum_{i \in \mathbb{N}} \left(\sum_{j=0}^{\infty} a_{i,j} \right)$ converge	
On note $S = \sum_{i=0}^{\infty} \left(\sum_{j=0}^{\infty} a_{i,j} \right)$	(iii) $\sum_{j=0}^{\infty} \left(\sum_{i=0}^{\infty} a_{i,j} \right) = \sum_{i=0}^{\infty} \left(\sum_{j=0}^{\infty} a_{i,j} \right)$

V/ Calcul approché de séries numériques

1. Généralités

Soit $\sum_{n\in\mathbb{N}} u_n$ une série numérique convergente.

Soient $S = \sum_{n=0}^{\infty} u_n$ sa somme, $S_n = \sum_{k=0}^{n} u_k$ sa somme partielle de rang n et $R_n = S - S_n = \sum_{k=n+1}^{\infty} u_k$ son reste de rang n.

Pour calculer une valeur approchée de $\sum_{n=0}^{\infty} u_n$ à ε près :

- 1. On trouve un rang N pour duquel $|R_n| < \varepsilon' < \varepsilon$ (par exemple $\varepsilon' = \frac{\varepsilon}{2}$)
- 2. On calcule une valeur approchée de S_N à $(\varepsilon \varepsilon')$ près (dans l'exemple, à $\frac{\varepsilon}{2}$ près)

2. Série alternée

Soit $u_n = (-1)^n v_n$ telle que (v_n) décroissante et $\lim_{n \to \infty} v_n = 0$.

On sait que la série $\sum_{n\in\mathbb{N}}u_n$ converge et que $\forall n\in\mathbb{N}\ /\ S_{2n+1}\leqslant\sum_{n=0}^\infty u_n\leqslant S_{2n}$ donc $u_{2n+1}\leqslant R_{2n}\leqslant 0$ et $0\leqslant R_{2n+1}\leqslant u_{2n+2}$

On retiendra $\forall n \in \mathbb{N} / |R_n| \le |u_{n+1}|$ (le reste de rang n est majoré en valeur absolue par le premier terme négligé)

On choisit alors N tel que $|u_{N+1}| < \frac{\varepsilon}{2}$

3. Majoration par une série géométrique

Soit u_n telle qu'il existe un réel r tel que |r| < 1 et $\forall n \in \mathbb{N} / |u_n| \leqslant r^n$.

Alors la série $\sum_{n\in\mathbb{N}}u_n$ converge absolument et $\forall n\in\mathbb{N}\,/\,\big|R_n\big|\leqslant K\sum_{k=n+1}^\infty\big|u_k\big|\leqslant K\sum_{k=n+1}^\infty r^k=\frac{K\,r^{n+1}}{\left(1-r\right)}$.

On choisit alors N tel que $\frac{Kr^{N+1}}{(1-r)} < \frac{\varepsilon}{2}$

4. Majoration par une intégrale

Soit f une fonction de \mathbb{R}^+ dans \mathbb{R}^+ décroissante telle que $\int_0^n f(t) dt \xrightarrow[n \to \infty]{} L$

Alors la série de terme général $u_n = f(n)$ converge et $\forall n, p \in \mathbb{N} / \sum_{k=n+1}^p u_k \le \sum_{k=n+1}^p \left(\int_{k-1}^k f(t) \, dt \right) = \int_n^p f(t) \, dt$.

Donc $\forall n \in \mathbb{N} / R_n = \sum_{k=n+1}^{\infty} u_k \leq \lim_{p \to \infty} \int_n^p f(t) dt$ notée $\int_n^{\infty} f(t) dt$

On choisit alors *N* tel que $\int_{n}^{\infty} f(t) dt < \frac{\varepsilon}{2}$

Remarque: On peut aussi noter que

$$\forall n, p \in \mathbb{N} / \sum_{k=n+1}^{p} u_k \geqslant \sum_{k=n+1}^{p} \left(\int_k^{k+1} f(t) dt \right) = \int_{n+1}^{p+1} f(t) dt \text{ et donc } \forall n \in \mathbb{N} / R_n \geqslant \int_{n+1}^{\infty} f(t) dt$$