DSA 8010 - sampling distributions

Random samples

Random samples

So far, we have calculated probabilities related to a single value of a random variable.

Example: $Y \sim N(10, 5^2)$. What is the $P(Y \le 6)$?

Independent and identically distributed samples

So far, we have calculated probabilities related to a single value of a random variable.

Example: $Y \sim N(10, 5^2)$. What is the $P(Y \le 6)$?

Now, consider drawing a sample of n independent variables from the same probability distribution. These n random variables are a random sample, denoted by Y_1, \ldots, Y_n or $Y_i, 1, \ldots, n$.

- We can think about probabilities regarding the random sample in the same way as we think about probabilities regarding a single value of the random variable.
- We sometimes call random samples "independent and identically distributed," or i.i.d.

Example: Let Y be a Bernoulli random variable with $\pi=0.85$. Knowing the value of π , we know that Y=1 is more likely than Y=0.

Example: Let Y be a Bernoulli random variable with $\pi=0.85$. Knowing the value of π , we know that Y=1 is more likely than Y=0.

Now consider a random sample of n=4 Bernoulli random variables with $\pi=0.85$. Which sample is more likely to occur?

Sample A:
$$Y_1 = 1$$
, $Y_2 = 1$, $Y_3 = 0$, $Y_4 = 1$
Sample B: $Y_1 = 0$, $Y_2 = 0$, $Y_3 = 0$, $Y_4 = 1$.

Using rules of probabilities for independent events, we can find the probability of sample A as

$$P(Y_1 = 1, Y_2 = 1, Y_3 = 0, Y_4 = 1) = P(Y_1 = 1)P(Y_2 = 1)P(Y_3 = 0)P(Y_4 = 1)$$

$$= \pi \quad \cdot \quad \pi \quad \cdot \quad (1 - \pi) \quad \cdot \quad \pi$$

$$= 0.85 * 0.85 * 0.15 * 0.85$$

$$= 0.09212$$

Using rules of probabilities for independent events, we can find the probability of sample A as

$$P(Y_1 = 1, Y_2 = 1, Y_3 = 0, Y_4 = 1) = P(Y_1 = 1)P(Y_2 = 1)P(Y_3 = 0)P(Y_4 = 1)$$

$$= \pi \quad \cdot \quad \pi \quad \cdot \quad (1 - \pi) \quad \cdot \quad \pi$$

$$= 0.85 * 0.85 * 0.15 * 0.85$$

$$= 0.09212$$

Similarly, sample B has a probability of

$$P(Y_1 = 0, Y_2 = 0, Y_3 = 0, Y_4 = 1) = 0.15 * 0.15 * 0.15 * 0.85$$

= 0.00287

Probability distributions of random samples

Case 1: If Y_1, \ldots, Y_n are independent, random samples from a discrete probability distribution, the probability of the sample can be calculated as

$$P(Y_1 = y_1, ..., Y_n = y_n) = \prod_{i=1}^n P(Y_i = y_i).$$

Case 2: If Y_1, \ldots, Y_n are independent, random samples from a continuous probability distribution whose density is f(y), the probability of the sample can be calculated as

$$f(y_1,\ldots,y_n)=\prod_{i=1}^n f(y_i).$$

where $\prod_{i=1}^{n}$ is used to denote multiplying over the indices from 1 to n.

Sampling distributions

Sampling distribution

A sampling distribution is the probability distribution of a random sample or of a random statistic calculated from a random sample.

Sampling distribution

When considering samples of random variables, the statistics calculated from the samples are also random variables.

Example: in the 4 Bernoulli R.V.s, the sample proportion is one statistic that could be calculated. This is denoted by $\widehat{\pi}$ ("pi hat") and is calculated as

$$\widehat{\pi} = \frac{\sum_{i=1}^{n} Y_i}{n} = \frac{\text{no. successes}}{\text{no. trials}}.$$

- Different random samples will result in different values of $\hat{\pi}$.
- The sampling distribution of $\widehat{\pi}$ gives the probability that $\widehat{\pi}$ will take on different values.

Here is the sampling distribution of $\widehat{\pi}$ in the sequence of 4 Bernoulli trials with $\pi=0.85$.

Example (normal random sample)

Let Y_1, \ldots, Y_n be a random sample from a $N(10, 5^2)$ distribution.

Example (normal random sample)

Let Y_1, \ldots, Y_n be a random sample from a $N(10, 5^2)$ distribution.

Let n = 5 and take the average of Y_1, \ldots, Y_5 . A natural statistic to summarize this sample is the sample mean,

$$\bar{Y} = \frac{\sum_{i=1}^{5} Y_i}{n}.$$

Which is more probable: $\bar{Y} > 12$ or $\bar{Y} \le 7$?

Sampling distribution of \bar{Y}

Let Y_1, \ldots, Y_n be a random sample from a probability distribution with $E(Y) = \mu$ and $Var(Y) = \sigma^2$.

Let \bar{Y} denote the sample mean of those n samples $(\bar{Y} = \frac{\sum_{i=1}^{n} Y_i}{n})$.

- $\mathsf{E}(\bar{Y})$ is equal to μ .
- Var(\bar{Y}) is equal to σ^2/n .
- Standard error(\bar{Y}) = $\sqrt{Var(\bar{Y})}$ is equal to σ/\sqrt{n} .

Central limit theorem. As $n \to \infty$, the probability distribution of \overline{Y} becomes approximately Normal $(\mu, (\sigma/\sqrt{n})^2)$.

Sampling distribution of \bar{X}

Let Y_1, \ldots, Y_n be a random sample from a probability distribution with $E(Y) = \mu$ and $Var(Y) = \sigma^2$.

Let \bar{Y} denote the sample mean of those n samples $(\bar{Y} = \frac{\sum_{i=1}^{n} Y_i}{n})$.

- $\mathsf{E}(\bar{Y})$ is equal to μ .
 - \rightarrow the most "typical" value of \bar{Y} is μ .
- Var(\bar{Y}) is equal to σ^2/n .
 - \bar{Y} becomes less variable as the sample size grows large.
- Standard error(\bar{Y}) = $\sqrt{Var(\bar{Y})}$ is equal to σ/\sqrt{n} .

Central limit theorem. As $n \to \infty$, the probability distribution of \bar{Y} becomes approximately Normal $(\mu, (\sigma/\sqrt{n})^2)$.

Sampling distribution of \bar{X}

Let Y_1, \ldots, Y_n be a random sample from a probability distribution with $E(Y) = \mu$ and $Var(Y) = \sigma^2$.

Let \bar{Y} denote the sample mean of those n samples $(\bar{Y} = \frac{\sum_{i=1}^{n} Y_i}{n})$.

- $\mathsf{E}(\bar{Y})$ is equal to μ .
- $Var(\bar{Y})$ is equal to σ^2/n .
- Standard error($ar{Y}$) = $\sqrt{\mathit{Var}(ar{Y})}$ is equal to σ/\sqrt{n} .

Central limit theorem. As $n \to \infty$, the probability distribution of \overline{Y} becomes approximately Normal $(\mu, (\sigma/\sqrt{n})^2)$.

Even if the random sample is not from a normal distribution, \bar{Y} has a distribution that is approximately normal when the sample size is not too small.

Standard error

The standard deviation of a random statistic is called the standard error of the statistic.

- The standard error measures expected variability among statistics calculated from a random sample.
- The standard error gets smaller if a larger sample is taken (the statistic becomes more precise).

Standard error of \bar{Y}

Since $Var(\bar{Y}) = \sigma^2/n$, the standard error of \bar{Y} is σ/\sqrt{n} .

Sampling distribution of Y

• The sampling distribution of \bar{Y} is centered at μ , but is less variable than the distribution of Y.

Sampling distribution of $ar{Y}$

- ullet The sampling distribution of $ar{Y}$ is different for different sample sizes.
- The standard error is smaller when n is larger.

Sampling distribution of Y

• Even if the distribution of the Y_i , i = 1, ..., n is not normal, the normal distribution approximates the sampling distribution of \bar{Y} (when n is large-ish, say greater than 30-40).