Seminar course Secure and Reliable Systems

(aka "secure-reliable-seminar")
Preliminary meeting
https://dse.in.tum.de/

Dr. Redha Gouicem

Prof. Pramod Bhatotia

About us

Chair of Decentralized System Engineering

- Dr. Redha Gouicem
 - Postdoc
 - Project: Binary translation for weak memory architectures, virtualization
 - https://redha.gouicem.fr/
- Prof. Pramod Bhatotia
 - Professor
 - https://dse.in.tum.de/

Seminar info

Communication:

Join us with TUM email address (@tum.de)

<u>ls1-courses-tum.slack.com</u>

#ws-22-secure-reliable-seminar

https://github.com/TUM-DSE/seminars/

Context and motivation

Motivation

- Why security and reliability are important?
 - Sensitive data protection
 - Cyber-physical systems
 - National security
 - Economic cost

This course covers **mechanisms** to make systems **secure** and **reliable**

Concepts

Security:

- Ensuring goals (i.e. policies) in presence of malicious adversaries
- Malicious adversaries:
 - e.g) Attacker reads user_x's password, and attempts to login with it.
- Policies of security:
 - e.g) Only user_x can login to one's account

- Reliability:

- Ability of a system to perform its required tasks under stated conditions for a specified period of time
- Stated conditions:
 - Usually <u>non-malicious</u> adversaries
 - e.g) Missed communication of an emergency response device

High-level plans

- How to build secure systems
 - Set a goal (policy)
 - e.g.) Only user_x should be able to login
 - Set a threat model
 - Target adversaries you want to prevent and <u>assume</u> possible scenarios
 - E.g) Attackers can guess passwords, but cannot access to file server
 - Set a mechanism to prevent attackers' success
 - e.g) Adopt two-step verification for login
- How to build reliable systems
 - Get a goal (specification)
 - We already know a definition of what an error is
 - Set a mechanism to check <u>deviation between an application and spec</u>
- Note: a goal itself has nothing to do with mechanisms.

Intersection of security and reliability

- Aiming similar goals, so sharing mechanisms
 - Confidentiality
 - Integrity
 - Availability
- Ensuring one property helps one another
 - Many <u>security</u> vulnerabilities can be sanitized in the first place by ensuring <u>reliability</u>
 - A set of most <u>exploited but addressable</u> security vulnerabilities is small

Challenges in building secure/reliable systems

- Challenges in security
 - We don't know what we are looking for
 - Assuming a threat model is best offer
 - Difficult to deploy a right mechanism at the right time
 - Attack mechanisms evolve
 - Policy may be irrelevant if the implementation has bugs.
- Challenges in reliability
 - What we are looking for is too broad
 - Entirety of the application (reliability bugs can be anywhere)
 - Many specifications are in a bad shape
 - Written in natural language, out-of-date
- Challenges in common
 - Reduce cost in both economic and performance aspects

Topics

Topics

		• .		•
\	ciir	1+1/	+0	nicc
20	LUI	ILV	LU	pics
		,		

Sanitizers (static/dynamic analysis, programming languages)

Formal verification, Symbolic execution

Threat models

Architectural support for system protection

Capabilities

Enclave

Software-based fault isolation (sandboxing)

Reliability topics

Sanitizers (static/dynamic methods, programming languages)

Formal verification, Symbolic execution

Fault models: Transient or permanent, Hardware or software faults

Fault injection: Fuzzing

Replication protocols

Testing: Concolic testing, Fuzzing

Format

Bird's eyes view

Team (2 students per team)

Research paper

Understand

Research ideas

1 presentation

1 short report

Peer-reviewing

Overview

Phase I

Phase II: Understand & explore

Phase III: Research

Phase IV: Report & review

Kick-off

Understand Presentation

Design Implement (Bonus)

Report Peer-review

Phase I: Kick-off meeting

Format and motivation (all participants meeting)

2

Team formation (2 students per team)

Paper selection (Most referenced papers, or big impact)

The first week

NOTE

- 1. A list of papers will be provided for FCFS bidding
- 2. Paper presentation guidelines will be provided for the next phase

Phase II: Understand & explore

Understand the paper(s)

Focus

- Understand the paper and related work
- 2. Also **explore** a "laundry list" of research ideas/directions

Paper presentation

Focus

- Explain the work/related work ("why?" and "how?")
- 2. Explain and discuss all possible research directions
- 3. Pick a research direction

Phase III: Research

Research work

Focus:

Indepth research work to nail-down the problem and detailed approach to solve it!

Research prototype

Bonus:

(Optional)

"Build the system to solve it!" and show us the working idea and associated results

Phase IV: Report & review

Focus

Prepare a single "short & sweet" report summarizing

- (a) Paper
- (b) Research work

Peer-review

Focus

Give constructive (positive and critical) feedback for

- (a) Paper summary
- (b) Research work

END.

Overall timeline

Phase I Phase II: Understand & explore Phase III: Research

Phase IV: Report & review

Kick-off

Understand Presentation

Design

Implement (optional)

Report

Peer-review

Milestone #1: Team formation & paper selection

Milestone #2: Paper

presentations

Milestone #3: Research work complete

Milestone #4: Report submission

Milestone #5: Peer-reviewing

1 week

3 weeks

2 weeks

3 weeks

1 week

2 weeks

Meeting

Meeting

Organization

- Format
 - Team-based seminar course (2 students per team)
- Communication
 - Slack for announcements and information sharing
 - Hotcrp for report submission and peer-reviewing
- Meetings (in-person, attendance is compulsory)
 - **Meeting #1:** Kick-off
 - **Meeting #2:** Paper presentation

Learning goals

- Explore advanced and seminal research topics
- Promote critical and creative thinking
- Constructive feedback and peer-reviewing
- Presentation and writing skills

Code of conduct

University plagiarism policy

https://www.in.tum.de/en/current-students/administrative-matters/student-code-of-conduct/

Decorum

- Promote freedom of thoughts and open exchange of ideas
- Cultivate dignity, understanding and mutual respect, and embrace diversity
- Racism and bullying will not be tolerated

Interested?

Sign up on the TUM matching platform

Contact

- Dr. Redha Gouicem
 - https://redha.gouicem.fr/
- All seminar-related info: https://github.com/TUM-DSE/seminars

Communication:

Join us with TUM email address (@tum.de)

Workspace: lst-courses-tum.slack.com

#ws-22-secure-reliable-seminar