Universität Leipzig Fakultät für Mathematik und Informatik Institut für Informatik Prof. Dr. Andreas Maletti, Maria Arndt, Dr. Erik Paul, Dr. habil. Karin Quaas, Lena Schiffer

Lösungsvorschläge zur

Prüfungsklausur Diskrete Strukturen

Wintersemester 2022/23, 16.02.2023

Bearbeitungszeit: 60 Minuten Gesamtpunktzahl: 60 Punkte

Allgemeine Hinweise

- Die Klausur besteht aus sechs Aufgaben und einer Zusatzaufgabe.
- Versehen Sie jedes Lösungsblatt mit Ihrer Matrikelnummer.
- Schreiben Sie Ihre Lösungen dokumentenecht in blau oder schwarz auf; **keinesfalls mit Bleistift** und bitte nicht in rot oder grün.
- Als Hilfsmittel ist **ein Blatt DIN A4** (beidseitig) mit Notizen zugelassen. Alle anderen Hilfsmittel (inklusive elektronischer Geräte) sind nicht zugelassen.
- Sie können für Ihre Lösungen jeweils die Aufgabenblätter nutzen oder eigenes Papier verwenden.
- Beweis- und Rechenschritte sind grundsätzlich zu begründen. Alle Resultate aus der Vorlesung und den Übungsaufgaben dürfen zitiert werden.

A1	A2	A3	A4	A5	A6	Z	Σ	Note

Aufgabe 1 (Überblick)

(10)

Markieren Sie für jede der folgenden Aussagen durch ein X, ob diese wahr (W) oder falsch (F) ist.

Aussage	W	F		
Die aussagenlogische Formel $(A \vee \neg A) \wedge ((A \to B) \leftrightarrow (\neg B \to \neg A))$ ist eine Tautologie.				
Die reellen Intervalle [0,1] und [0,2] sind gleichmächtig.	X			
Die leere Relation $R=\emptyset$ ist eine Äquivalenzrelation über \mathbb{N} .		Х		
Die Funktion $f: \mathbb{N} \to \mathbb{N}$ mit $x \mapsto 2^x \cdot 3^x$ ist invertierbar.		Х		
Jeder distributive Verband ist vollständig.		Х		
Wenn (M, \preceq) eine Boolesche Algebra ist, dann ist auch (M, \preceq^{-1}) eine Boolesche Algebra.	X			
Es gibt einen endlichen Körper mit 19 Elementen.	Х			
Für jeden endlichen Körper $(M, \oplus, \odot, (-\cdot), \cdot^{-1}, e, i)$ ist die Abbildung $f \colon M \to M$ mit $x \mapsto x \oplus x$ injektiv.		X		
Der Graph $(\{1\},\emptyset)$ ist ein Baum.	Х			
Man benötigt mindestens 5 Farben, um einen nicht planaren Graphen zu färben.		Х		

Lösung:

Aufgabe 2 (Vollständige Induktion)

(10)

Beweisen Sie mittels vollständiger Induktion, dass für alle $n \in \mathbb{N} \setminus \{0\}$ die folgende Aussage gilt:

$$\sum_{i=1}^{n} (i \cdot 2^{i}) = (n-1) \cdot 2^{n+1} + 2$$

Geben Sie dabei die Induktionshypothese und die Induktionsbehauptung explizit an. Markieren Sie im Beweis die Stelle, an der Sie die Induktionshypothese verwenden.

LÖSUNG: Induktionsanfang:

Für
$$n = 1$$
 gilt, \bullet_1 dass $\sum_{i=1}^{n} (i \cdot 2^i) = 1 \cdot 2^1 = 2 = 0 \cdot 2^2 + 2 = (n-1) \cdot 2^{n+1} + 2 \cdot \bullet_2$

Induktionshypothese:

Sei
$$n \in \mathbb{N} \setminus \{0\}$$
 • a und gelte, dass $\sum_{i=1}^{n} (i \cdot 2^i) = (n-1) \cdot 2^{n+1} + 2$. • 4

Induktionsschritt: Zu zeigen ist, dass die Induktionsbehauptung gilt:

$$\sum_{i=1}^{n+1} (i \cdot 2^i) = n \cdot 2^{n+2} + 2 \bullet_5$$

Beweis der Induktionsbehauptung:

$$\sum_{i=1}^{n+1} (i \cdot 2^i) = ((n+1) \cdot 2^{n+1}) + \sum_{i=1}^{n} (i \cdot 2^i) \bullet_6$$

$$\stackrel{\text{IH}}{=} ((n+1) \cdot 2^{n+1}) + (n-1) \cdot 2^{n+1} + 2 \bullet_7 \bullet_8$$

$$= ((n+1) + (n-1)) \cdot 2^{n+1} + 2$$

$$= 2n \cdot 2^{n+1} + 2 \bullet_9$$

$$= n \cdot 2^{n+2} + 2 \bullet_{10}$$

Aufgabe 3 (Relationen, Funktionen)

Gegeben sei die Relation $R \subseteq \mathcal{P}(\mathbb{N}) \times \mathcal{P}(\mathbb{N})$ definiert durch

$$(X,Y) \in R$$
 genau dann, wenn $\exists n (n \in X \land n \in Y)$

für alle $X, Y \in \mathcal{P}(\mathbb{N})$.

- (a) Welche der folgenden Eigenschaften besitzt R? Begründen Sie Ihre Antwort. (6)
 - (i) reflexiv
 - (ii) symmetrisch
 - (iii) antisymmetrisch
- (b) Ist R^{-1} (die inverse Relation von R) eine Äquivalenzrelation? Begründen Sie Ihre Antwort.
- (c) Ist *R* eine Funktion? Begründen Sie Ihre Antwort.

LÖSUNG: (a) (i) reflexiv: Nein \bullet_{11} , denn $(\emptyset, \emptyset) \notin R \bullet_{12}$

- (ii) symmetrisch: Ja $ullet_{13}$, denn $(X,Y) \in R$ gdw. $X \cap Y \neq \emptyset$ und \cap is symmetrisch $ullet_{14}$
- (iii) antisymmetrisch: Nein \bullet_{15} , denn z.B. $(\{2\}, \{2,3\}) \in R$ und $(\{2,3\}, \{2\}) \in R$, aber $\{2\} \neq \{2,3\}$ \bullet_{16}
- (b) Ist R^{-1} eine Äquivalenzrelation? Nein \bullet_{17} denn auch R^{-1} ist nicht reflexiv, Äquivalenzrelationen sind aber reflexiv \bullet_{18} .
- (c) Ist R eine Funktion? Begründen Sie Ihre Antwort! Nein \bullet_{19} denn R ist nicht eindeutig, z.B. $(\{2\}, \{2,3\}) \in R$ und $(\{2\}, \{2,4\}) \in R$. \bullet_{20} Mögliche andere Begründung: R ist nicht total, z.B. steht \emptyset mit keinem anderen Element in $\mathcal{P}(\mathbb{N})$ in Relation R.

Aufgabe 4 (Verbände)

(a) Gegeben seien die Mengen $M_1 = \{0, 1, 2, 3, 4, 5, 6\}$ und $M_2 = \{a, b, c, d, e, f, g, h, i\}$ und die Verbände $\mathcal{M}_1 = (M_1, \sqsubseteq)$ mit

$$\sqsubseteq = \{(0,0), (1,1), (2,2), (3,3), (4,4), (5,5), (6,6), (2,6), (2,4), (2,3), (6,1), (4,1), (4,5), (3,5), (1,0), (5,0), (2,1), (2,5), (2,0), (6,0), (4,0), (3,0)\}$$

und $\mathcal{M}_2 = (M_2, \preceq)$, dargestellt als Hasse-Diagramm:

(i) Zeichnen Sie ein Hasse-Diagramm für \mathcal{M}_1 .

(ii) Geben Sie in \mathcal{M}_2 an:

(3)

(2)

- $\inf\{h,c,e\}$,
- $\sup\{d, f\}$,
- die Menge der Komplemente von c.
- (iii) Geben Sie eine Unterstruktur von \mathcal{M}_2 an, die isomorph zu \mathcal{M}_1 ist und geben (2)Sie einen entsprechenden Isomorphismus φ an.
- (b) Sei V ein Verband mit größtem Element \top und kleinstem Element \bot . Beweisen oder widerlegen Sie die folgende Aussage:

(3)

Wenn V komplementiert ist und V' eine Unterstruktur von V, dann ist auch V' komplementiert.

Lösung:

- (a) (i)
 - (ii) $\inf\{h,c,e\} = c \bullet_{23}$
 - $\sup\{d,f\} = i \bullet_{24}$
 - {f}●25
 - (iii) $(\{a,b,c,d,e,h,i\}, \preceq')$ ist eine Unterstruktur von \mathcal{M}_2 , die isomorph zu \mathcal{M}_1 ist. \bullet_{26} Wir definieren $\varphi \colon \{a,b,c,d,e,h,i\} \to M_1$ durch \bullet_{27}

$$\varphi(a) = 2$$

$$\varphi(e) = 1$$

$$\varphi(b) = 6$$

$$\varphi(h) = 5$$

$$\varphi(c) = 4$$

$$\varphi(i) = 0$$

$$\varphi(d) = 3$$

(b) Die Aussage gilt nicht. ●28

Wir betrachten den Potenzmengenverband ($\mathcal{P}\{1,2\},\subseteq$). Dieser ist eine Boolesche Algebra und damit komplementiert. \bullet_{29} Die Unterstruktur ($\mathcal{P}\{1,2\}\setminus\{\{2\}\},\subseteq$) ist aber nicht komplementiert, denn $\{1\}$ hat kein Komplement. \bullet_{30}

Aufgabe 5 (Polynomdivision, Gruppen, Körper)

(6)

(a) Berechnen Sie die folgende Polynomdivision über dem Körper (\mathbb{Z}_5 , $+_5$, \cdot_5). Verwenden Sie für das Ergebnis ausschließlich Repräsentanten aus $\{0, ..., 4\}$.

Hinweis: Für $a \in \mathbb{Z}$ dürfen Sie die Äquivalenzklasse [a] abkürzend als a schreiben.

$$([3]x^3 + [2]x + [3]) : ([2]x + [4])$$

(b) Beweisen Sie, dass $\varphi: \mathbb{Z} \to \mathbb{Z}$, $z \mapsto -z$ ein Isomorphismus von $(\mathbb{Z}, +, 0)$ nach $(\mathbb{Z}, +, 0)$ ist. (4)

Lösung: (a)

$$3x^{3} + 2x + 3 : 2x + 4 = 4x^{2} + 2x + 2$$

$$-(3x^{3} + x^{2})$$

$$4x^{2} + 2x + 3$$

$$-(4x^{2} + 3x)$$

$$4x + 3$$

$$-(4x + 3)$$

- ●31 ●32 ●33 ●34 Repräsentanten ●35 Ergebnis ●36
- (b) φ ist offensichtlich bijektiv \bullet ₃₇: für $z \in \mathbb{Z}$ ist $\varphi(-z) = z$ (surjektiv) und für $x, y \in \mathbb{Z}$ mit $\varphi(x) = \varphi(y)$ gilt $x = -(-x) = -\varphi(x) = -\varphi(y) = -(-y) = y$ (injektiv) es gilt $\varphi(0) = -0 = 0$ \bullet ₃₈ für $x, y \in \mathbb{Z}$ gilt $\varphi(x + y) = -(x + y) = (-x) + (-y) = \varphi(x) + \varphi(y)$ \bullet ₃₉ \bullet ₄₀

Aufgabe 6 (Graphen)

(a) Gegeben sei der gerichtete Graph $\mathcal{G} = (E, K)$, dargestellt als Diagramm:

(i) Geben Sie in \mathcal{G} an:

(3)

- in-grad(*a*),
- $\mathcal{N}_G(b) \cap \mathcal{V}_G(c)$,
- den kürzesten Kreis auf G.
- (ii) Geben Sie alle starken Zusammenhangskomponenten von \mathcal{G} an. (2)
- (iii) Ist der ungerichtete Graph $\mathcal{G}' = (E, K \cup K^{-1})$ planar? Begründen Sie Ihre Antwort.
- (b) Beweisen oder widerlegen Sie folgende Aussage: (3)

Wenn (E, K_1) und (E, K_2) beliebige kreisfreie Graphen sind, dann ist auch der Graph $(E, K_1 \cup K_2)$ kreisfrei.

Lösung:

- (a) (i) in-grad(a) = 3 •41
 - $\mathcal{N}_G(b) \cap \mathcal{V}_G(c) = \{g\}$ •42
 - Der kürzeste Kreis auf \mathcal{G} ist $a \to b \to d \to a$. •43
 - (ii) Die starken Zusammenhangskomponenten von \mathcal{G} sind $\{a,b,d,e,f\}$, $\{c\}$ und $\{g\}$. \bullet_{44} \bullet_{45}
 - (iii) G' ist planar \bullet_{46} , eine planare Darstellung ist zum Beispiel:

(b) Die Aussage gilt nicht. $ullet_{48}$ Sei $E = \{a,b,c\}$. Wir betrachten die beiden Graphen $(E,K_1 = \{(a,b),(b,c)\})$ und $(E,K_2 = \{(c,a\})$. Diese sind kreisfrei, denn $|K_1| < 3$ und $|K_2| < 3$. $ullet_{49}$ Der Vereinigungsgraph $(E,K_1 \cup K_2 = \{(a,b),(b,c),(c,a)\})$ ist allerdings nicht kreisfrei, denn er enthält den Kreis $a \to b \to c \to a$. $ullet_{50}$

Zusatzaufgabe (Logik)

(+4)

Beweisen Sie, dass die folgenden prädikatenlogischen Ausdrücke äquivalent sind:

$$\forall z \exists x \neg (R(x,z) \to Q(z)) \quad \text{und}$$
$$\forall z \exists x (\neg \neg R(x,z) \land \neg Q(z)) \lor \forall z \neg \forall x (R(x,z) \to Q(z))$$

Lösung:

Beweis mithilfe einer Äquivalenzkette:

Gesamtpunktzahl: 64; vergebene Punkte: 54