Master's thesis: Numerical comparison of MCMC methods for Quantum tomography

Danila Mokeev

Supervisors: Estelle Massart, Andrew Thompson and Tameem Adel

21st of June 2024

Ecole Polytechnique de Louvain

Plan of this thesis

Topic: Markov chain Monte Carlo (MCMC) methods in Quantum tomography

Research questions:

- 1. How do these methods perform in different experimental setups?
- 2. Why do some methods perform better than others?

Purpose:

- Enable new directions of research
- Help researchers make an informed choice for their use case

Thesis contributions

- 1. Numerically compare 2 MCMC algorithms, the prob-estimator and the Projected Langevin algorithm
- 2. Propose 2 new algorithms to understand the impact of the prior and the algorithm on the accuracy

Table of Contents

Brief introduction to Quantum tomography

Markov chain Monte Carlo methods

Main algorithms

Experiments and results

Table of Contents

Brief introduction to Quantum tomography

Markov chain Monte Carlo methods

Main algorithms

Experiments and results

Motivation behind Quantum tomography

Quantum tomography is a process to reconstruct the quantum state of a system.

There are some challenges to consider:

- Quantum systems are inherently probabilistic
- A measurement can only be made once
- We can only measure the position or momentum, but not both

Quantum tomography: a diagram

Quantum tomography allows to address the existing challenges $% \left\{ 1,2,\ldots ,n\right\}$

Quantum tomography: mathematical description (1)

The Born rule states that

$$p(m) = \operatorname{tr}(\rho P_m) \tag{1}$$

with

- ullet P_m the projector matrix associated to the eigenvalue m of an observable O
- p(m) the probability of occurrence of m
- ullet ho the *density matrix* representing the quantum state
 - positive semi-definite
 - Hermitian $(\rho = \rho^{\dagger})$
 - trace(ρ) = 1
 - size $2^n \times 2^n$ with n the number of qubits

Quantum tomography: mathematical description (2)

If we flatten the matrices

$$A = \begin{bmatrix} \vec{P}_1 \\ \vec{P}_2 \\ \vec{P}_3 \\ \vdots \end{bmatrix} \qquad \vec{\rho} = \begin{bmatrix} \rho_{11} \\ \rho_{12} \\ \rho_{13} \\ \vdots \end{bmatrix}$$
 (2)

then we can estimate ρ by solving the resulting system of equations

$$A\vec{\rho} = \hat{p} \tag{3}$$

Most common methods

Direct methods:

$$\hat{\rho} = (A^T A)^{-1} A^T \hat{p} \tag{4}$$

Optimization-based methods:

$$\hat{\rho} = \operatorname{argmin}_{\vec{\rho}} ||A\vec{\rho} - \hat{p}|| \tag{5}$$

• Pauli basis expansion:

$$\hat{\rho} = \sum_{b \in \{I, x, y, z\}^n} \rho_b \sigma_b \tag{6}$$

• Bayesian methods, and in particular MCMC methods

$$\hat{\rho} = \frac{1}{N} \sum_{i=1}^{N} \rho_i \quad \text{with } \rho_i \sim \pi(\rho|\mathbf{D})$$
 (7)

Existing methods: our focus in this thesis

Direct methods:

$$\hat{\rho} = (A^T A)^{-1} A^T \hat{p} \tag{8}$$

Optimization-based methods:

$$\hat{\rho} = \operatorname{argmin}_{\vec{\rho}} ||A\vec{\rho} - \hat{p}|| \tag{9}$$

• Pauli basis expansion:

$$\hat{\rho} = \sum_{b \in \{I, x, y, z\}^n} \rho_b \sigma_b \tag{10}$$

Bayesian methods, and in particular MCMC methods

$$\hat{\rho} = \frac{1}{N} \sum_{i=1}^{N} \rho_i \quad \text{with } \rho_i \sim \pi(\rho|\mathbf{D})$$
 (11)

Table of Contents

Brief introduction to Quantum tomography

Markov chain Monte Carlo methods

Main algorithms

Experiments and results

Bayesian inference

Context: We are working in the Bayesian framework

$$\underbrace{\pi(\rho|\mathbf{D})}_{\mathsf{Posterior}} \propto \underbrace{\mathcal{L}(\mathbf{D}|\rho)}_{\mathsf{Likelihood}} \underbrace{\pi(\rho)}_{\mathsf{Prior}} \tag{12}$$

Recall that each term is a distribution!

In the context of Quantum tomography:

- Likelihood $\mathcal{L}(\mathbf{D}|\rho) = \exp(-||A\vec{\rho} \hat{p}||)$
- Prior $\pi(\rho)$ is method specific

Markov chain Monte Carlo methods

- Markov chain Monte Carlo (MCMC) methods sample from $\pi(\rho|\mathbf{D})$.
- They build a Markov chain of samples ρ_1, ρ_2, \ldots such that

$$f(x) = \pi(\rho|\mathbf{D}) \tag{13}$$

with the equilibrium distribution f(x) of the chain

The density matrix is then calculated as

$$\tilde{\rho} = \mathbb{E}[\rho] = \int \rho \pi(\rho|\mathbf{D}) d\rho$$
 (14)

$$\Leftrightarrow \hat{\rho} = \frac{1}{N} \sum_{i=1}^{N} \rho_i \quad \text{with } \rho_i \sim \pi(\rho|\mathbf{D})$$
 (15)

An example: Metropolis-Hastings algorithm

mcmc.gif

Advantages of MCMC algorithms

Why are we interested in MCMC methods?

- \bullet Prior $\pi(\rho)$: additional information about the density matrix low-rank for example
- Uncertainty quantification: working with distributions instead of point estimates

Table of Contents

Brief introduction to Quantum tomography

Markov chain Monte Carlo methods

Main algorithms

Experiments and results

Prob-estimator (1)

Introduced in [MA17], it combines Metropolis-within-Gibbs sampling with a low-rank prior.

• Sum of rank-1 matrices:

$$\rho = \sum_{i=1}^{d} \gamma_i V_i V_i^{\dagger}$$

• $\pi_1(\gamma_1\dots\gamma_d)$ is a Dirichlet distribution with a small, constant parameter, leading to sparse values

$$\gamma = \begin{bmatrix} 0 & \cdots & 1 & \cdots & 0 \end{bmatrix}$$

• $\pi_2(V_i)$ is a unit sphere distribution

$$||V_i|| = 1$$

Prob-estimator (2)

Mix between Metropolis-Hastings and Gibbs sampling

Algorithm 1: Prob-estimator algorithm

```
1 for t \leftarrow 1 \cdot T do
       for i \leftarrow 1 : d do
2
              1. Sample \gamma_i^* from \pi_1(\gamma_i)
              2. Update \gamma^{(t)} with accept/reject step
       end
3
       for i \leftarrow 1: d do
4
              1. Sample V_i^* from \pi_2(V_i)
              2. Update V^{(t)} with an accept/reject step
       end
5
```

6 end

Projected Langevin algorithm (1)

Introduced in [Ade+24], it combines the Unadjusted Langevin algorithm with a *different* low-rank prior.

- ullet Burer-Monteiro factorization: $ho = YY^\dagger$, with $\mathrm{rank}(Y) = r$
- Low-rank prior: spectral scaled Student-t distribution

$$\pi(Y) = \prod_{j=1}^{r} (\theta^2 + \underbrace{s_j(Y)^2}_{j \text{th eigenvalue of } Y})^{-(2d+r+2)/2}$$
 (16)

- Promotes sparsity among the eigenvalues leading to a low rank
- Very similar to the Student-t distribution

Projected Langevin algorithm (2)

Algorithm 2: Projected Langevin algorithm

- 1 for $t \leftarrow 1 : T$ do
 - 1. Sample $\tilde{w}^{(t)} \sim N(\mathbf{0}, \mathbf{I})$

2.
$$\tilde{Y}^{(t)} \leftarrow \tilde{Y}^{(t-1)} - \eta^{(t)} \underbrace{\nabla f(\tilde{Y}^{(t-1)}, \mathbf{D})}_{\text{gradient}} + \frac{\sqrt{2\eta^{(t)}}}{\beta} \tilde{w}^{(t)}$$
with $\pi(Y|\mathbf{D}) = \exp(-f(Y, \mathbf{D}))$

2 end

Observe that:

- There is no accept/reject step
- We use the gradient of the posterior

Table of Contents

Brief introduction to Quantum tomography

Markov chain Monte Carlo methods

Main algorithms

Experiments and results

Convergence plot

 \Longrightarrow Projected Langevin converges faster

Convergence across qubits (1)

Reminder: n is the number of qubits

(c) n = 5

Projected Langevin converges faster and is more accurate for higher n! But..

24/3

24

Computation time across qubits (2)

(c) n = 5

(b) n = 4

When n increases, the computation time does too!

25/31

Introducing 2 new methods

What makes Projected Langevin perform better?

To answer this question, we introduce 2 new algorithms:

- 1. Metropolis-Hastings with Student-t prior (MHS)
- 2. Metropolis-Hastings with Gibbs with Student-t prior (MHGS)

They combine:

- The algorithm from the prob-estimator
- The prior from the Projected Langevin algorithm

Convergence comparison

 \Longrightarrow The prior itself is not a solution, and must be paired with a fast algorithm

27/31

Impact of the number of shots

Shot: measurement we perform on a clone of the state

28/31

 \Longrightarrow The prob-estimator does not scale!

Impact of knowing the rank of ρ

Reminder: for Projected Langevin, $\rho = YY^{\dagger}$, with $\mathrm{rank}(Y) = r$

 \Longrightarrow The information about the rank only marginally affects the accuracy

Summary and future work

- Quantum tomography is not yet a solved problem, especially for large systems
- MCMC methods are a promising direction of research, thanks to uncertainty quantification and prior information
- The choice of the algorithm might have more impact on the scalability of a method than the prior
- More experiments are needed to investigate the performance and scalability (for example with other gradient-based methods and priors)

References

- [MA17] The Tien Mai and Pierre Alquier. "Pseudo-Bayesian quantum tomography with rank-adaptation". In:

 Journal of Statistical Planning and Inference 184 (May 2017), pp. 62–76. ISSN: 0378-3758. DOI:

 10.1016/j.jspi.2016.11.003. URL:

 http://dx.doi.org/10.1016/j.jspi.2016.11.003.
- [Ade+24] Tameem Adel et al. "A projected Langevin sampling algorithm for quantum tomography". unpublished. 2024.