IPv6

RFC-2460 RFC-4291

Расширение адресации

- •длина адреса расширена до 128 бит позволяет обеспечить больше уровней иерархии адресации, увеличить число адресуемых узлов, упростить авто-конфигурацию
 - •добавлено субполе "scope" (группа адресов)
 - •новый тип адреса "anycast"

Спецификация формата заголовков

•Некоторые поля заголовка IPv4 отбрасываются или делаются опционными, уменьшая издержки, связанные с обработкой заголовков.

Улучшенная поддержка расширений и опций

•Изменение кодирования опций IP-заголовков позволяет облегчить переадресацию пакетов, ослабляет ограничения на длину опций, и делает более доступным введение дополнительных опций в будущем

Возможность пометки потоков данных

•Введена возможность помечать пакеты, принадлежащие определенным транспортным потокам

Идентификация и защита частных обменов

•введена спецификация идентификации сетевых объектов или субъектов, для обеспечения целостности данных и, при желании, защиты частной информации

Формат заголовка IPv6

0 4		12	16	24	4	31				
Version (6)	Traffic Class		Flow Label							
	Payload Length		Nex	t Header	Header Hop Limit					
Source Address (IP - адрес отправителя)										
Destination Address (IP - адрес получателя)										

Traffic class (8 бит). Класс трафика.

Используется для идентификации и различения различных классов либо приоритетов.

- •0 по-умолчанию
- •Промежуточные узлы могут изменять значение

Flow Label (20 бит). Метка потока.

Это поле может использоваться отправителем для того, чтобы помечать пакеты, которые требуют специальной обработки сетевыми модулями Ірv6.

Все пакеты, принадлежащие к одному потоку, должны отправляться по одному и тому же адресу назначения и с одним и тем же приоритетом.

Payload Length (16 бит). Длина данных.

Длина данных пакета (в байтах), которые следуют за заголовком.

Если величина этого поля равна 0, то длина данных дейтаграммы более 65535 и хранится в поле Jumbo Payload

Next Header (8 бит). Поле следующего заголовка.

Это поле содержит информацию типа заголовка, который следует за заголовком IPv6.

Hop Limit (8 бит). Поле ограничения пересылок.

Величина этого поля уменьшается на 1 при прохождении дейтаграммой шлюза или хоста. Если величина этого поля равна 0, дейтаграмма уничтожается.

Source Address (128 бит). Адрес отправителя.

Destination Address (128 бит). Адрес получателя.

Если в заголовке присутствует вложенный заголовок маршрутизации (Routing header), то поле адреса получателя может и не быть адресом назначения.

Инкапсуляция заголовков

Заголовки расширений

1. IPv6.

2. Hop-by-Hop Options

Тут может быть опция "Jumbo Frames".

- 3. Destination Options (опции получателя 1).
- 4. Routing (маршрутизация).
- 5. Fragment (фрагментация).
- 6. Authentication (аутентификация).
- 7. Encapsulating Security Payload (дополнительная аутентификация).
- 8. Destination Options (опции получателя 2).
- 9. Заголовок верхнего уровня (например, ТСР).

Адресация в IPv6

Типы адресов:

Unicast Anycast Multicast

Unicast

Идентификатор одиночного интерфейса.

Пакет, посланный по уникастному адресу, доставляется интерфейсу, указанному в адресе.

Anycast

Идентификатор набора интерфейсов (принадлежащих разным узлам).

Пакет, посланный по эникастному адресу, доставляется одному из интерфейсов, указанному в адресе (ближайший, в соответствии с мерой, определенной протоколом маршрутизации).

Multicast

Идентификатор набора интерфейсов (обычно принадлежащих разным узлам).

Пакет, посланный по мультикастинг-адресу, доставляется всем интерфейсам, заданным этим адресом.

В IPv6 не существует широковещательных адресов, их функции переданы мультикастингадресам.

Представление записи адресов

Основная форма имеет вид х:х:х:х:х:х:х:х где 'х' шестнадцатеричные 16-битовые числа.

fedc:ba98:7654:3210:FEDC:BA98:7654:3210 1080:0:0:0:8:800:200C:417A

Представление записи адресов

Синтаксис для удаления лишних нулей в адресе.

Использование записи "::" указывает на наличие групп из 16 нулевых бит. Комбинация "::" может появляться только при записи адреса. Последовательность "::" может также использоваться для удаления из записи начальных или завершающих нулей в адресе.

1080:0:0:8:800:200c:417a = 1080::8:800:200c:417a Ff01:0:0:0:0:0:0:0:43 = ff01::430:0:0:0:0:0:0:0:1 = ::1

Представление записи адресов

Альтернативная форма для работы с іру4 и Іру6

x:x:x:x:x:d.d.d.d

где 'х' шестнадцатеричные 16-битовые коды адреса, а 'd' десятичные 8-битовые, составляющие младшую часть адреса (стандартное IPv4 представление).

0:0:0:0:0:0:FFFF:129.144.52.38 = ::FFFF:129.144.52.38

Идентификация типа адреса

Идентификация происходит по первым битам адреса.

Тип адреса	Префикс	Нотация IPv6	
Unspecified	000 (128 bits)	::/128	
Loopback	001 (128 bits)	::1/128	
Multicast	11111111	FF00::/8	
Link-Local unicast	1111111010	FE80::/10	
Адрес IPv6, отображенный на IPv4	(96 bits)	::ffff:xx.xx.xx	
Global Unicast	Все остальные		

0:0:0:0:0:0:0 — Специальный тип адреса, который не должен присваиваться ни одному узлу

0:0:0:0:0:0:0:1 – Loopback (адрес обратной связи)

Link-local unicast:

11111111010 :: interface ID (64 бита)

Multicast Address

Сокеты IPv6

Структура адреса сокета ІРv6

```
struct in6_addr {
    unsigned char s6 addr[16];
struct sockaddr_in6{
    sa_family_t sin6_family; //AF_INET6
    in_port_t sin6_port;
// Приоритет и метка потока
    uint32_t sin6_flowinfo;
    struct in6_addr sin6_addr;
// Набор интерфейсов
    uint32_t sin6_scope_id;
```

sockaddr_storage

Новая универсальная структура адреса сокета — часть API сокетов IPv6

```
struct sockaddr_storage {
    uint8_t ss_len;
    sa_family_t ss_family;
// Данные, достаточные для хранения адреса
любого сокета
}
```

Пример создания универсального клиента, работающего по IPv4 и IPv6

```
struct in6_addr serveraddr;
struct addrinfo hints, *res=NULL;

memset(&hints, 0x00, sizeof(hints));
hints.ai_flags = AI_NUMERICSERV;
hints.ai_family = AF_UNSPEC;
hints.ai_socktype = SOCK_STREAM;
```

```
rc = inet_pton(AF_INET, server, &serveraddr);
  if (rc == 1) /* IPv4 */
         hints.ai_family = AF_INET;
         hints.ai_flags |= AI_NUMERICHOST;
  else
     rc = inet_pton(AF_INET6, server,
&serveraddr);
     if (rc == 1) /* IPv6 */
        hints.ai_family = AF_INET6;
        hints.ai_flags |= AI_NUMERICHOST;
```

```
getaddrinfo(server, servport, &hints, &res);

sd = socket(res->ai_family, res->ai_socktype,
res->ai_protocol);
connect(sd, res->ai_addr, res->ai_addrlen);
```

Совместимость IPv4 и IPv6

	Сервер (узел)	Сервер (узел)	Сервер (узел)	Сервер (узел)
Клиент (узел)	ipv4 (ipv4)	ipv4 (ipv6)	ipv4 (both)	ipv6 (both)
ipv4 (ipv4)	ipv4	-	ipv4	ipv4
ipv6 (ipv6)	-	ipv6	-	ipv6
ipv4 (both)	ipv4	-	ipv4	ipv4
ipv6 (both)	ipv4	ipv6	-	ipv6