Table des matières

5 L	imites et	z équivalents
5.	1 Limite	es
	5.1.1	Limite finie
	5.1.2	Limite infinie
	5.1.3	Limite à gauche et limite à droite
	5.1.4	Opérations avec les limites
	5.1.5	Forme indéterminée
	5.1.6	Théorème de la limite monotone
	5.1.7	Théorème d'encadrement/gendarmes
	5.1.8	Continuité
5.	2 Fonct:	ions équivalentes
	5.2.1	Équivalents usuels
	5.2.2	Opérations sur les équivalents
	5.2.3	Applications des équivalents
5.3	3 Néglie	geabilité
	5.3.1	Croissances comparées
	5.3.2	Opérations sur les petits o
	5.3.3	Équivalence et négligeabilité
5.	4 Domii	nation

Chapitre 5

Limites et équivalents

5.1 Limites

Définition 5.1.1. Soit $a \in \mathbb{R} = \mathbb{R} \cup \{\pm \infty\}$. On appelle **voisinage** \mathcal{V} **de** a une partie de \mathbb{R} contenant un intervalle de la forme :

- $(a \delta, a + \delta)$ avec $\delta > 0$ si $a \in \mathbb{R}$;
- $(A, +\infty)$ si $a = +\infty$;
- $(-\infty, A)$ si $a = -\infty$.

5.1.1 Limite finie

Soit f une fonction de I dans \mathbb{R} . Soit a un réel, élément ou extrémité de I. Soit $l \in \mathbb{R}$.

Définition 5.1.2. On dit que f admet une *limite finie* l *en* a si f est définie au voisinage de a et

$$\forall \varepsilon > 0 \ \exists \delta > 0 \ \forall x \in I \ |x - a| \le \delta \Rightarrow |f(x) - l| \le \varepsilon$$

Définition 5.1.3. On dit que f admet une limite finie l en $+\infty$ si

$$\forall \varepsilon > 0 \ \exists B \in \mathbb{R} \ \forall x \in I \ x > B \Rightarrow |f(x) - l| < \varepsilon$$

Définition 5.1.4. On dit que f admet une limite finie l en $-\infty$ si

$$\forall \varepsilon > 0 \ \exists B \in \mathbb{R} \ \forall x \in I \ x < B \Rightarrow |f(x) - l| < \varepsilon$$

Si f admet une limite finie l en $a \in \overline{\mathbb{R}}$ on note $\lim_{x \to a} f(x) = l$ ou $\lim_{a} f = l$ ou $f(x) \underset{x \to a}{\to} l$

Proposition 5.1.1. Si f admet une limite finie l en $a \in \overline{\mathbb{R}} = \mathbb{R} \cup \pm \infty$, celle-ci est unique.

5.1.2 Limite infinie

Définition 5.1.5. Soit a un réel. On dit que

• f tend vers $+\infty$ en a si

$$\forall A \in \mathbb{R} \ \exists \delta > 0 \ \forall x \in I \ |x - a| < \delta \Rightarrow f(x) > A$$

• f tend vers $-\infty$ en a si

$$\forall A \in \mathbb{R} \ \exists \delta > 0 \ \forall x \in I \ |x - a| < \delta \Rightarrow f(x) < A$$

• f tend vers $+\infty$ en $+\infty$ si

$$\forall A \in \mathbb{R} \ \exists B \in \mathbb{R} \ \forall x \in I \ x \geq B \Rightarrow f(x) \geq A$$

• f tend vers $+\infty$ en $-\infty$ si

$$\forall A \in \mathbb{R} \ \exists B \in \mathbb{R} \ \forall x \in I \ x < B \Rightarrow f(x) > A$$

• f tend vers $-\infty$ en $+\infty$ si

$$\forall A \in \mathbb{R} \ \exists B \in \mathbb{R} \ \forall x \in I \ x > B \Rightarrow f(x) < A$$

• f tend vers $-\infty$ en $-\infty$ si

$$\forall A \in \mathbb{R} \ \exists B \in \mathbb{R} \ \forall x \in I \ x < B \Rightarrow f(x) < A$$

Si f admet une limite infinie $\pm \infty$ en $a \in \overline{\mathbb{R}}$ on note $\lim_{x \to a} f(x) = \pm \infty$ ou $\lim_{a} f = \pm \infty$ ou $f(x) \underset{x \to a}{\to} \pm \infty$

Limites classiques

Pour tout $n \ge 0$ on a :

•
$$\lim_{x \to +\infty} x^n = +\infty$$
 et $\lim_{x \to -\infty} x^n = \begin{cases} +\infty & \text{si } n \text{ est pair} \\ -\infty & \text{si } n \text{ est impair} \end{cases}$

•
$$\lim_{x \to +\infty} \frac{1}{x^n} = 0$$
 et $\lim_{x \to -\infty} \frac{1}{x^n} = 0$

• Soit
$$P(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0$$
 avec $a_n > 0$ et $Q(x) = b_m x^m + b_{m-1} x^{m-1} + \ldots + b_1 x + b_0$ avec $b_m > 0$.

$$\lim_{x \to +\infty} \frac{P(x)}{Q(x)} = \begin{cases} +\infty & \text{si } n > m \\ \frac{a_n}{b_m} & \text{si } n = m \\ 0 & \text{si } n < m \end{cases}$$

5.1.3 Limite à gauche et limite à droite

Définition 5.1.6. Soit f une fonction définie sur I et soit a un réel. La limite à gauche de f en a est la limite en a de la restriction de f à $I \cap (-\infty, a)$. On la note

$$\lim_{x \to a^{-}} f(x)$$

La *limite à droite* de f en a est la limite en a de la restriction de f à $I \cap (a, +\infty)$. On la note

$$\lim_{x \to a^+} f(x)$$

Dire que $f:I\to\mathbb{R}$ admet une limite $l\in\mathbb{R}$ à droite en a signifie donc :

$$\forall \varepsilon > 0 \ \exists \delta > 0 \quad a < x < a + \delta \Rightarrow |f(x) - l| < \varepsilon$$

Théorème 5.1.1. Si f est définie sur $[a - \delta, a) \cup (a, a + \delta]$

$$\lim_{x \to a} f(x) = l \Leftrightarrow \lim_{x \to a^{+}} f(x) = \lim_{x \to a^{-}} f(x) = l$$

Théorème 5.1.2. Toute fonction admettant une limite finie en $a \in \mathbb{R}$ est bornée au voisinage de a.

Opérations avec les limites 5.1.4

Proposition 5.1.2. Si $\lim_{a} f = l$ et $\lim_{a} g = l'$ avec $l, l' \in \mathbb{R}$, alors $\bullet \lim_{a} (\lambda f) = \lambda l$, pour tout $\lambda \in \mathbb{R}$

- $\bullet \lim_{a} f + g = l + l'$
- $\lim f \cdot g = l \cdot l'$
- $\lim_{a} \frac{1}{f} = \frac{1}{l}$ si $l \neq 0$. De plus si $\lim_{a} f = \pm \infty$ alors $\lim_{a} \frac{1}{f} = 0$
- $\lim_{a} (g \circ f) = l'$ si $\lim_{a} f = l$ et $\lim_{l} g = l'$

Forme indéterminée 5.1.5

$$+\infty-\infty$$
, $0\cdot\infty$, $\frac{\infty}{\infty}$, $\frac{0}{0}$, 1^{∞} , 0^{0} , ∞^{0}

Proposition 5.1.3. Soit f bien définie au voisinage du réel a. Alors :

$$\lim_{x \to a} f(x) = l \Leftrightarrow \lim_{h \to 0} f(a+h) = l$$

Théorème 5.1.3. (Théorème De L'Hôpital)

Soient f et g deux fonctions continues sur un intervalle I contenant a. On suppose que f et g sont dérivables sur $I \setminus \{a\}$, avec $a \in \overline{\mathbb{R}}$ et que $g'(x) \neq 0$ pour $x \neq a$. Si $\lim_{x \to a} f(x) = \lim_{x \to a} g(x) = 0$ ou si $\lim_{x \to a} f(x) = \lim_{x \to a} g(x) = \pm \infty, \text{ alors}$

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}$$

sous condition que cette dernière existe ou est infinie.

5.1.6Théorème de la limite monotone

Théorème 5.1.4. Soit f définie sur I = (a, b) avec $a, b \in \overline{\mathbb{R}}$. Si f est monotone sur I, alors elle admet une limite (finie ou infinie) en a et b.

- 1. Si f est croissante sur I, alors
 - Si f est majorée sur I, f admet une limite finie en b, sinon $\lim_{x\to b^-} f(x) = +\infty$.
 - Si f est minorée sur I, f admet une limite finie en a, sinon $\lim_{x\to a^+} f(x) = -\infty$.
- 2. Si f est décroissante sur I, alors
 - Si f est minorée sur I, f admet une limite finie en b, sinon $\lim_{x\to b^-} f(x) = -\infty$.
 - Si f est majorée sur I, f admet une limite finie en a, sinon $\lim_{x\to a^+} f(x) = +\infty$.

5.1.7Théorème d'encadrement/gendarmes

Théorème 5.1.5. Soit trois fonctions f, g et h et $a \in \mathbb{R}$.

Si
$$f(x) \le g(x) \le h(x)$$
 et $\lim_{x \to a} f(x) = \lim_{x \to a} h(x) = l$, alors $\lim_{x \to a} g(x) = l$

Corollaire 5.1.1. Le produit d'une fonction de limite nulle et d'une fonction bornée a pour limite zéro.

5.1.8 Continuité

Définition 5.1.7. Une fonction $f: I \to \mathbb{R}$ est

• continue en un point $a \in I$ si

$$\forall \varepsilon > 0 \ \exists \delta > 0 \ \forall x \in I \ |x - a| \le \delta \Rightarrow |f(x) - f(a)| \le \varepsilon$$

c'est-à-dire si f admet une limite en a et cette limite vaut nécessairement f(a).

• $continue \ sur \ I$ si f est continue en tout point de I.

Prolongement par continuité

Définition 5.1.8. Soit I un intervalle, a un point de I et $f: I \setminus \{a\} \to \mathbb{R}$ une fonction.

- On dit que f est **prolongeable par continuité en** a si f admet une limite finie en a. Notons alors $l = \lim_a f$.
- \bullet On définit alors la fonction $\tilde{f}:I\to\mathbb{R}$ en posant $\forall x\in I$

$$\tilde{f}(x) = \begin{cases} f(x) & \text{si } x \neq a \\ l & \text{si } x = a \end{cases}$$

Alors \tilde{f} est continue en a et on l'appelle le prolongement par $continuit\acute{e}$ de f en a.

Continuité sur un intervalle

Théorème 5.1.6. (Théorème des valeurs intermédiaires)

Soit $f:[a,b]\to\mathbb{R}$ une fonction continue sur un segment.

Pour tout réel y compris entre f(a) et f(b), il existe $c \in [a, b]$ tel que f(c) = y.

Corollaire 5.1.2. Soit $f:[a,b]\to\mathbb{R}$ une fonction continue sur un segment. Si $f(a)\cdot f(b)<0$, alors il existe $c\in(a,b)$ tel que f(c)=0.

5.2 Fonctions équivalentes

Définition 5.2.1. Soient f et g deux fonctions définies dans un voisinage \mathcal{V} de a (éventuellement privé de a si f ou g n'est pas définie en a).

On dit que f est équivalente à g s'il existe une fonction $\varepsilon: \mathcal{V} \to \mathbb{R}$ telle que

- $f(x) = g(x)\varepsilon(x)$ pour tout $x \in \mathcal{V}$
- $\lim_{x \to a} \varepsilon(x) = 1$

On note alors $f \sim g$ ou encore $f(x) \sim g(x)$, c'est-à-dire "f est équivalente à g au voisinage de a".

Cette écriture équivaut à $\lim_{x\to a} \frac{f(x)}{g(x)} = 1$.

 $\underline{\text{Remarque}}: \lim_{x \to a} f(x) = \lim_{x \to a} g(x) \not \Rightarrow f \underset{a}{\sim} g, \text{ mais } f \underset{a}{\sim} g \Rightarrow \lim_{x \to a} f(x) = \lim_{x \to a} g(x)$

5.2.1 Équivalents usuels

Proposition 5.2.1. Soit f une fonction définie sur I. Supposons que f soit dérivable en un point a de I et que $f'(a) \neq 0$. Alors, au voisinage de a:

$$f(x) - f(a) \sim f'(a)(x - a)$$

Équivalents usuels au voisinage de 0

$$\ln(1+x) \underset{0}{\sim} x$$

$$e^{x} - 1 \underset{0}{\sim} x$$

$$\tan x \underset{0}{\sim} x$$

$$\tan x \underset{0}{\sim} x$$

$$\arctan x \underset{0}{\sim} x$$

Remarque: Une fonction polynomiale non nulle est:

- au voisinage de 0, équivalente à son terme de plus bas degré;
- au voisinage de $+\infty$ ou $-\infty$, équivalente à son terme de plus haut degré.

Proposition 5.2.2. Si $f \sim g$, alors f et g sont de même signe au voisinage de a.

5.2.2 Opérations sur les équivalents

Proposition 5.2.3. La relation \sim est une relation d'équivalence. Elle est :

- $réflexive: f \sim f$
- $sym\acute{e}trique$: si $f \sim g$, alors $g \sim f$
- transitive : si $f \sim g$ et $g \sim h$, alors $f \sim h$

Proposition 5.2.4.

• Multiplication : si $f_1 \sim f_2$ et $g_1 \sim g_2$, alors $f_1g_1 \sim f_2g_2$.

- Inverse: si $f \sim g$ et si f et g ne s'annulent pas au voisinage de a, alors $\frac{1}{f} \sim \frac{1}{g}$
- Division : si $f_1 \sim f_2$ et $g_1 \sim g_2$ et si g_1 et g_2 ne s'annulent pas au voisinage de a, $f_1/g_1 \sim f_2/g_2$.
- Puissance : si $f \sim g$ et si f, g > 0 au voisinage de a, alors $f^{\alpha} \sim g^{\alpha}$, $\forall \alpha \in \mathbb{R}$

Remarque : Le symbole \sim ne se manipule pas comme le signe =, notamment lorsqu'on a une somme. On n'additionne pas les équivalents :

$$si f_1 \sim g_1 \text{ et } f_2 \sim g_2 \implies f_1 + f_2 \sim g_1 + g_2$$

Composition de fonctions équivalentes

Proposition 5.2.5. Composition à droite

Soient f et g deux fonctions définies au voisinage de $a \in \overline{\mathbb{R}}$. Soit h une fonction définie au voisinage de $b \in \overline{\mathbb{R}}$. On a :

$$f(t) \underset{a}{\sim} g(t)$$
 et $\lim_{x \to b} h(x) = a \implies f(h(x)) \underset{b}{\sim} g(h(x))$

Proposition 5.2.6. Composition à gauche d'un logarithme

Soient f et g deux fonctions définies au voisinage de $a \in \mathbb{R}$. Si $f \sim g$ et $\lim_{a} g(x) = l$ avec $l \in \overline{\mathbb{R}_+} \setminus \{1\}$, alors $\ln(f) \sim \ln(g)$

Proposition 5.2.7. Composition à gauche d'une exponentielle

Soient f et g deux fonctions définies au voisinage de $a \in \overline{\mathbb{R}}$.

Si
$$f \sim g$$
 et $\lim_{a} f(x) - g(x) = 0$, alors $e^{f} \sim e^{g}$

5.2.3 Applications des équivalents

• Un équivalent donne une idée de l'allure de la courbe au voisinage d'un point.

Proposition 5.2.8. Soient deux fonctions $f, g: I \to \mathbb{R}$ et $a \in \overline{\mathbb{R}}$.

Si au voisinage du point $a, f \sim g$, alors C_f et C_g ont la même allure.

• Un équivalent donne localement le signe de la fonction.

Proposition 5.2.9. Soient deux fonctions $f, g: I \to \mathbb{R}$ et $a \in \overline{\mathbb{R}}$.

Si au voisinage du point $a, f \sim g$, alors il existe un voisinage \mathcal{V} de a sur lequel f et g ont même signe.

• Un équivalent donne la limite.

Théorème 5.2.1. Soient deux fonctions $f, g: I \to \mathbb{R}$ et $a \in \overline{\mathbb{R}}$.

Si
$$f \sim g$$
 et $g(x) \underset{x \to a}{\rightarrow} l$, alors $f(x) \underset{x \to a}{\rightarrow} l$

Remarques:

- Pour déterminer la limite d'une fonction, on pourra ainsi rechercher un équivalent simple de la fonction.
- Lorsqu'on cherche un équivalent au voisinage de $a \in \mathbb{R}^*$, on pourra se ramener en 0, en posant t = x a.

5.3 Négligeabilité

Définition 5.3.1. Soient f et g deux fonctions définies dans un voisinage \mathcal{V} de a (éventuellement privé de a si f ou g n'est pas définie en a).

On dit que f est **négligeable devant** g s'il existe une fonction $\varepsilon: \mathcal{V} \to \mathbb{R}$ telle que

- $f(x) = g(x)\varepsilon(x)$, pour tout $x \in \mathcal{V}$
- $\lim_{x \to a} \varepsilon(x) = 0$

On note alors f = o(g) ou encore f(x) = o(g(x)), c'est-à-dire "f est un petit-o de g au voisinage de a".

Cette écriture équivaut à $\lim_{x\to a} \frac{f(x)}{g(x)} = 0$.

5.3.1 Croissances comparées

Théorème 5.3.1. Soient $a, b, \alpha, \beta \in \mathbb{R}$.

• Si
$$\alpha < \beta$$
 : $x^{\alpha} = o(x^{\beta})$

• Si
$$\alpha, \beta > 1 : x^{\alpha} = o(e^{\beta x})$$

• Si
$$0 < a < b : a^x = o(b^x)$$

• Si
$$\alpha > 0$$
: $(\ln x)^{\beta} = o(x^{\alpha})$

Théorème 5.3.2. Soient $\alpha, \beta \in \mathbb{R}$.

• Si
$$\alpha < \beta : x^{\beta} = o(x^{\alpha})$$

• Si
$$\alpha > 0 : |\ln x|^{\beta} = o(x^{-\alpha})$$

5.3.2 Opérations sur les petits o

Proposition 5.3.1.

- Transitivité: si f = o(g) et g = o(h), alors f = o(h)
- Multiplication par un réel non nul : si f = o(g) et $\lambda \neq 0$, alors

$$f = o(\lambda g)$$
 et $\lambda f = o(g)$

• Somme: si $f_1 = o(g)$ et $f_2 = o(g)$, alors pour tout $(\lambda_1, \lambda_2) \in \mathbb{R}^2$

$$\lambda_1 f_1 + \lambda_2 f_2 = o(g)$$

• Multiplication: si $f_1 = o(g_1)$ et $f_2 = o(g_2)$, alors

$$f_1 f_2 = o(g_1 g_2)$$

• Composition à droite : si f = o(g) et $\lim_{b} \varphi = a$, alors

$$f \circ \varphi = o(g \circ \varphi)$$

Remarque : On n'additionne pas des relations de négligeabilité membre à membre :

$$f_1 = o(g_1)$$
 et $f_2 = o(g_2) \implies f_1 + f_2 = o(g_1 + g_2)$

5.4. DOMINATION 10

5.3.3 Équivalence et négligeabilité

Proposition 5.3.2. Soient f et g deux fonctions définies dans un voisinage \mathcal{V} de a (éventuellement privé de a si f ou g n'est pas définie en a). Alors :

$$f = o(g) \Leftrightarrow f + g \sim g$$

 $\underline{\text{Remarques}}$: Si $\lim_{x \to a} \varepsilon(x) = 0$ de manière équivalente on a au voisinage de a :

- Si $f(x) \sim g(x) \Leftrightarrow f(x) = g(x)(1 + \varepsilon(x))$
- Si $f(x) = o(g(x)) \Leftrightarrow f(x) = g(x)\varepsilon(x)$

5.4 Domination

Définition 5.4.1. Soient f et g deux fonctions définies dans un voisinage \mathcal{V} de a (éventuellement privé de a si f ou g n'est pas définie en a).

On dit que f est **dominée par** g s'il existe une constante k telle que telle que $|f(x)| \le k|g(x)|$ pour tout $x \in \mathcal{V}$.

On note $f = \mathcal{O}(g)$ ou encore $f(x) = \mathcal{O}(g(x))$, c'est-à-dire "f est un grand- \mathcal{O} de g au voisinage de a".

Cette écriture équivant à $\lim_{x\to a} \frac{f(x)}{g(x)} = l$, donc $\frac{f}{g}$ est bornée au voisinage de a.

Proposition 5.4.1. La négligeabilité et l'équivalence impliquent la domination.

Si
$$f = o(g)$$
 ou si $f \sim g$, alors $f = \mathcal{O}(g)$

Remarque : La réciproque est fausse.

Opérations sur les grands \mathcal{O}

Proposition 5.4.2.

- Transitivité: si $f = \mathcal{O}(g)$ et $g = \mathcal{O}(h)$, alors $f = \mathcal{O}(h)$
- Multiplication par un réel non nul : si $f = \mathcal{O}(g)$ et $\lambda \neq 0$, alors

$$f = \mathcal{O}(\lambda g)$$

• Multiplication: si $f_1 = \mathcal{O}(g_1)$ et $f_2 = \mathcal{O}(g_2)$, alors

$$f_1f_2 = \mathcal{O}(g_1g_2)$$

• Somme: si $f_1 = \mathcal{O}(g)$ et $f_2 = \mathcal{O}(g)$, alors pour tout $(\lambda_1, \lambda_2) \in \mathbb{R}^2$,

$$\lambda_1 f_1 + \lambda_2 f_2 = \mathcal{O}(g)$$

5.4. DOMINATION 11

• Composition à droite : si $f = \mathcal{O}(g)$ et $\lim_{b} \varphi = a$, alors

$$f\circ\varphi = \mathcal{O}(g\circ\varphi)$$

Remarque : On n'additionne pas des relations de domination membre à membre :

$$f_1 = \mathcal{O}(g_1)$$
 et $f_2 = \mathcal{O}(g_2) \not\Rightarrow f_1 + f_2 = \mathcal{O}(g_1 + g_2)$