Laboratorium 9

MAT4 - Stosowany rachunek prawdopodobieństwa

Wersja: 2023-11-27

1 Kwartyle rozkładów ciągłych

1. Wyznaczyć (zwyczajnie, nie za pomocą komputera) kwantyl rzędu p dla rozkładu wykładniczego i rozkładu Laplace'a (zwanego również rozkładem podwójnie wykładniczym), którego gęstością jest funkcja

$$f(x) = \frac{1}{2\sigma} \exp\left(-\left|\frac{x-\mu}{\sigma}\right|\right), \ x \in \mathbb{R},$$

gdzie $\mu \in \mathbb{R}$ i $\sigma > 0$ są parametrami.

- 2. Narysować wykresy gęstości rozkładów
- jednostajnego,
- wykładniczego,
- normalnego,
- Laplace'a,
- · logistycznego,
- Rayleigha,
- · Cauchy'ego,

i zaznaczyć na nich obszary pod krzywymi gęstości

- od lewego krańca nośnika do kwartyla dolnego (kwartyla rzędu 1/4),
- lewego kwartyla do mediany,
- od mediany do górnego kwartyla (kwartyla rzędu 3/4),
- od górnego kwartyla do prawego krańca nośnika.

W tym celu zmodyfikować odpowiednio poniższy kod

$\mathbf{2}$

Wygenerować próbę z rozkładu jednostajnego na kwadracie $[-1,1]^2$, a następnie obrócić ją o kąt θ . Czy w ten sposób dostaje się próbę z rozkładu jednostajnego na obszarze, który jest odpowiednio obróconym kwadratem [-1,1]? Czy poszczególne współrzędne punktów z próby mają rozkłady jednostajne?

3

Wygenerować próbę n punktów z obszaru

$$D = \{(x, y) \in \mathbb{R}^2 : |x| + |y| \le 1\}$$

poprzez

- wygenerowanie współrzędnych x_1, \ldots, x_n z rozkładu jednostajnego na przedziale [-1, 1],
- dla każdego $i=1,\ldots,n$ wygenerować współrzędną y_i z rozkładu jednostajnego na przedziale $[-1+|x_i|,1-|x_i|]$.

Czy punkty (x_i, y_i) , i = 1, ..., n są jednostajnie rozłożone na zbiorze D? Jak można zmodyfikować powyższy algorytm, aby dostać próbę z rozkładu jednostajnego na D?