Nathan Bickel

Analysis in \mathbb{R}^n : Section 1 Professor: Shabani

July 5, 2023

Analysis in \mathbb{R}^n Homework 3

Problem 20 Are closures and interiors of connected sets always connected? (Look at subsets of \mathbb{R}^2 .)

Solution.

No. For example, consider $B_1, \overline{B_1'} \in \mathbb{R}^2$ centered at (1,0) and (-1,0) respectively. We showed in class that $E = B_1 \cup \overline{B_1'}$ is connected, but we claim E° , the interior of E, is disconnected. To see this, consider $A = B_1$, $B = B_1'$ centered at (1,0) and (-1,0) respectively. Then, $E^{\circ} = A \cup B$, because E° is the interior of both balls. Clearly, both A and B are nonempty, and we have $\overline{A} \cap B = A \cap \overline{B} = \emptyset$, so E° is disconnected. So E is a connected set that does not have both a connected interior and a connected closure.

Problem 1 Prove that the intersection of compact sets is compact.

Solution.

We have shown the following in class: Let (X, d) be a metric space, $F \subset K \subset X$, and K a compact set. Then:

- (a) K is closed;
- (b) F is compact if and only if it is closed.

Consider a collection C of compact sets. By (a), every set in F is closed. Therefore, $F = \bigcap_{K \in C} K$ is closed (the intersection of closed sets is closed). Since F is a subset of a compact set, by (b) F is also compact. \Box

Problem 2 Let (X,d) be a metric space and $A \subset X$. Prove that

$$\overline{A} = \{x \in X : \forall r > 0, A \cap B_r(x) \neq \emptyset\}.$$

Solution.

We can write

$$\overline{A} = A \cup LP(A)$$
 (definition of closure)
$$= \{x \in X : x \in A \text{ or } x \in LP(A)\}$$
 (definition of union)
$$= \{x \in X : A \cap \{x\} \neq \emptyset \text{ or } \forall r > 0, A \cap B_r(x) \setminus \{x\} \neq \emptyset\}$$
 (definition of LP)
$$= \{x \in X : \forall r > 0, (A \cap \{x\}) \cup (A \cap B_r(x) \setminus \{x\}) \neq \emptyset\}$$
 (definition of union)
$$= \{x \in X : \forall r > 0, A \cap (\{x\} \cup B_r(x) \setminus \{x\}) \neq \emptyset\}$$
 (distributive property)
$$= \{x \in X : \forall r > 0, A \cap B_r(x) \neq \emptyset\}.$$

Problem 3 Let $S \subset \mathbb{R}$. Prove that if $\sup S$ exists, then it is an element of \overline{S} .

Solution.

Suppose that $\alpha = \sup S$ exists. Then, we have shown in class that for all r > 0, there exists $s \in S$ such that $\alpha - r < s \le \alpha < \alpha + r$. Since $B_r(\alpha) = (\alpha - r, \alpha + r)$ in \mathbb{R} , this means that for all r > 0, $S \cap B_r(\alpha) \setminus \{\alpha\}$ contains an element and thus is non-empty. Thus, α is a limit point of S and therefore $\alpha \in \overline{S}$.

Problem 4 Let A, B be two non-empty, bounded sets of real numbers. Prove the followings:

- (a) $\sup(A+B) = \sup A + \sup B$, where $A+B = \{a+b : a \in A, b \in B\}$;
- (b) $\sup(-A) = -\inf A$, where $-A = \{-a : a \in A\}$.

Solution.

(a) Since A and B are bounded sets, A + B will also be bounded and thus $\sup (A + B)$ exists. Suppose $\alpha = \sup (A + B) \neq \sup A + \sup B$.

Case 1: $\alpha < \sup A + \sup B$. Then, there exists some $\varepsilon > 0$ such that $\alpha = \sup A + \sup B - \varepsilon$. We have shown in class that there exists some $a \in A$ such that $a \in \left(\sup A - \frac{\varepsilon}{2}, \sup A\right]$ and some $b \in B$ such that $b \in \left(\sup B - \frac{\varepsilon}{2}, \sup B\right]$. We have $a + b \in A + B$, but then

$$\alpha = \sup A + \sup B - \varepsilon = \left(\sup A - \frac{\varepsilon}{2}\right) + \left(\sup B - \frac{\varepsilon}{2}\right) < a + b \in A + B,$$

contradicting α being an upper bound for A + B.

Case 2: $\alpha > \sup A + \sup B$. Then, there exists some $\varepsilon > 0$ such that $\alpha = \sup A + \sup B + \varepsilon$. We have shown in class that there exists some $p \in A + B$ such that $p \in (\sup A + \sup B, \sup A + \sup B + \varepsilon]$. Since $p \in A + B$, there exist some $a \in A$, $b \in B$ such that p = a + b. We must have $a \le \sup a$ and $b \le \sup b$ by definition, but then $p \le \sup a + \sup b$, contradicting the interval above.

Therefore, $\sup (A+B) = \sup A + \sup B$.

(b) Let $\beta = \inf A$ and $\alpha = \sup(-A)$. Suppose $\alpha \neq -\beta$.

Case 1: $\alpha < -\beta$. Then $\alpha = -\beta - \varepsilon$ for some $\varepsilon > 0$. We have shown in class that there exists some $a \in A$ such that $a \in [\beta, \beta + \varepsilon)$. But then $-a \in (-\beta - \varepsilon, -\beta]$, so $-a > -\beta - \varepsilon = \alpha = \sup(-A)$, a contradiction.

Case 2: $\alpha > -\beta$. Then $\alpha = -\beta + \varepsilon$ for some $\varepsilon > 0$. We have shown in class that there exists some $a \in -A$ such that $a \in (-\beta, -\beta + \varepsilon]$, so it follows that $-a \in A$ and $-a \in [\beta - \varepsilon, \beta)$. But then $-a < \beta = \inf(A)$, a contradiction.

Therefore, $\sup -A = -\inf A$.

Problem 5 Let (X, d) be a metric space, $p \in X$, and $\{p_n\}$ a sequence in X such that $d(p_n, p) < 1/n$ for all $n \in \mathbb{N}$. Prove that $\{p_n\}$ converges to p.

Solution.

We say $\{p_n\}$ converges to p if, for all $\varepsilon > 0$, there exists $N \in \mathbb{N}$ such that for all $n \geq N$, $d(p_n, p) < \varepsilon$. Let $\varepsilon > 0$, and consider $N = \frac{1}{\lfloor \varepsilon \rfloor}$. Then, any $n \geq N$ will satisfy

$$d(p_n, p) < \frac{1}{n} \le \frac{1}{N} = \lfloor \varepsilon \rfloor < \varepsilon,$$

so $\{p_n\}$ converges to p.