Attack-resilient media using phone-to-phone networking

P.W.G. Brussee

Attack-resilient media using phone-to-phone networking

by

P.W.G. Brussee

to obtain the degree of Master of Science at the Delft University of Technology, to be defended publicly on Tuesday December 13, 2016 at 9:00 AM.

Student number: 1308025

Project duration: December 1, 2015 – December 13, 2016

Thesis committee: Associate prof. dr. J.A. Pouwelse, TU Delft, supervisor

Prof. dr. C. Witteveen, TU Delft Assistant prof. dr. C.C.S. Liem, TU Delft

An electronic version of this thesis is available at http://repository.tudelft.nl/.

Contents

1	Introduction	1
2	Problem description	5
	2.1 Privacy and censorship	5
	2.2 Adversary model	6
	2.3 Distributed solutions	6
	2.4 Contributions	8
2	Tribler from tienelity	9
3	Tribler functionality 3.1 Video-on-demand	•
		9
	3.2 Self-organizing	
	3.3 Autonomous operation	
	3.4 Attack-resilience	
	3.5 Trust	
	3.6 Anonymity	
	3.7 Towards Tribler on mobile devices	
	3.7.1 Opportunities	
	3.7.2 Challenges	11
4	Design and architecture	13
	4.1 Functional requirements	13
	4.2 Non-functional requirements	13
	4.3 System architecture	
_	Implementation	17
5	5.1 Android OS	
	5.2 Tribler Java back-end service	
	5.2.1 Tribler Python core	
	5.2.2 JNI	
	5.2.3 CPython interpreter	
	5.2.4 Python modules	
	5.2.5 C/C++ libraries	
	5.3 Tribler Java front-end	
	5.3.1 HTTP Client	
	5.3.2 XML GUI	
	5.4 Video player	
	5.5 Build tool-chain	
	5.6 Implementation statistics	22
6	Performance analysis	25
	6.1 Content discovery	25
	6.2 Multichain performance	
	6.3 Startup time.	
	6.4 Content creation	
	6.5 API responsiveness	
	6.6 Profiling	
	6.7 CPU utilization	
		31

V		Contents

7	Con	nclusions and future work	35
	7.1	How feasible is it to run all Tribler functionality on mobile devices?	35
	7.2	Given the constraints and unique abilities of mobile devices, what functionality of Tribler can	
		be added or enhanced?	35
	7.3	Future work	36
Bil	bliog	raphy	37

Introduction

Modern media and news distribution is shifting from traditional media to social media. Modern media production and information distribution is shifting from traditional outlets. Also media consumption is shifting from traditional outlets to digital and mobile devices. From con-sumer to pro-sumer. News is not bound to expert opinion or an editorial news desk. The opinion of the individual can be broad-casted without the need for a professional studio and equipment. No office is required anymore to link a mobile eye-witness to a mass audience.

Given this context mobile devices are increasingly important and smartphone in particular. A smartphone has the unique property of being a ubiquitous device that is highly mobile and extremely connectable. Most smartphones even have one or more cameras to produce multi-media content that can be shared immediately from the device. Finally the entire world has a smartphone. Even or especially areas without tradition infrastructure they are ubiquitous.

In crisis situations, like natural disaster or unrest, the smartphone becomes particularly important, exactly for the earlier mentioned properties, as under such conditions utilizing centralized infrastructure is undesired (censorship) or physically impossible. Decentralized can work in these situations. Censorship and large scale monitoring is difficult in decentralized networks.

Tribler is a fully decentralized video-on-demand system. [11, 14, 16] It is autonomous, attack-resilient and self-organizing. [1, 13] It uses network overlays called communities to offer features like keyword search and managing contributions to channels for discover-ability of content. It offers privacy through layered encrypted tunnels similar to the TOR network.[3, 4, 18]

So far Tribler only supports desktop and server versions of Linux, Mac and Windows. The necessity of moving to mobile devices calls for Tribler functionality to be enabled to run on these resource limited devices. In this thesis the first prototype is presented that has all Tribler functionality fully enabled on mobile devices. The prototype is build for Android OS since Android dominates the smartphone market.

Sharing opinion and discussion is enabled on social media. A global dialog is possible through social media like Twitter, Instagram and Facebook. People receive local and global news perceived relevant to their group on their social media feed. Young people in particular are shifting to social media as their number one source. [10] As shown in this age distribution graph, figure 1.1.

2 1. Introduction

Figure 1.1: Main news sources split by age [10]

Not only is social media more and more becoming a major distribution channel for news, it also starts delivering input for news and story creation. This way social media has become both the source and outlet for investigative journalism.

A smartphone has the unique property of being a ubiquitous device that is highly mobile and extremely connectable. Figure 1.2 shows that world-wide 1,4 billion smartphones were sold to end-users last year. And this number keeps rising. Even or especially areas without traditional infrastructure they are ubiquitous.

Figure 1.2: Number of smartphones sold to end users worldwide from 2007 to 2015 (in million units) [15]

The capabilities and versatility of smartphones enable it to be used for production and consumption of news and social media. The users themselves are turning from con-sumers into pro-sumers [?]. With regards to production most smartphones have one or more cameras to record multi-media content that can be shared immediately from the device. Eye-witnesses often have smartphones at hand to immediately record an event with and post it on social media [?]. No news desk or professional equipment is necessary to relay news directly from eye-witnesses to the masses anymore [?]. People with camera phones can reach millions of people with multi-media in a very short timespan, becoming social journalists. The ease of reaching a global audience by an individual with a smartphone diminishes the role of an expert curator handling incoming information.

Also with regard to the consumption medium mobile devices increasingly replace the role of traditional outlets like TV, newspapers and other physical media.

In crisis situations, like natural disaster or unrest, people need to communicate and coordinate their efforts to restore safety. In this context the smartphone becomes particularly important because it is often carried on person and provides connectability

In recent calamities [??] people could mark themselves as safe on social media, effectively broadcasting that information to all their family and friends on social media instead of contacting them one by one or not at all due to congestion in the communication channels.

However, several natural disasters have taken out the necessary infrastructure on numerous occasions for a prolonged period of time.

Therefore we require a solution to enable social media on smartphones that does not require infrastructure.

The main research question is: how feasible is it to run all Tribler functionality on mobile devices? Secondary question is: given the constraints and unique abilities of mobile devices, what functionality of Tribler can be added or enhanced?

Problem description

2.1. Privacy and censorship

Pervasive monitoring of digital citizens by Internet providers on behalf of governments to enforce censor-ship laws raises severe privacy concerns. The lack of anonymity becomes a problem when the users privacy is being invaded. Revealing personal information can be deduced from search queries for example, or associations on social platforms. When this information can be used for targeted advertising it becomes very valuable, and creates an incentive for the parties that have access to this information to sell it to third parties. Social media companies use targeted advertisement as part of their business model. Information considered private by users of social media is actually used to broker targeted advertisements. Subsequently users can be confronted with their information being misused in various ways beyond their control. This lack of control over your own privacy can lead to arbitrary interference as defined in UDHR article 12. Integration of social media on regular websites makes every page-view and click on these websites traceable to an individual, directly benefiting the business model of targeted advertisements

In fact the business model of social media appears to be serving targeted advertisements to its users on behalf of third parties. What's even worse is social media integrated into regular websites to de-anonymize and track the whereabouts of users even outside of the social media realm. Whenever users lose control over their privacy it becomes a serious problem.

Figure 2.1: Viral spreading from one device to another within an off-line region

The incentive to de-anonymize the user, not only causes a lack of privacy, but also a potential lack of freedom of expression, as it hands key information to a censor: who is expressing dissent and who is associated

with this person on-line. Cyber-suppression has become a reality when you no longer can be associated with opinion-makers or foreign journalists on-line.

Internet exchange (IX) infrastructures are among the central components in the inter-network architecture that are also vulnerable to monitoring, censorship and Internet kill-switches. As such, not everyone has unrestricted access to the Internet due to censorship and surveillance. In fact a significant part of today's Internet users is affected by these attempts to hide or distort reality. This interference directly affects the universal right to freedom of opinion and expression as stated in article 19 of the Universal Declaration of Human Rights (UDHR).

For example: Arab Spring. Kill switches are real. [?]

What are kill-switches?

Large portions of the global dialog on social media is uncontrolled by traditional media or governments.

Utilizing infrastructure is undesired because of censorship.

The sophistication of censorship techniques is pushed forward by the drive to stay ahead of attempts trying to circumvent it. Increasingly though, Internet traffic is put under surveillance and obfuscation techniques are targeted by restrictions.

2.2. Adversary model

From the Arab Spring scenario we know Internet kill switches are real, so we must assume the existence of a powerful adversary. The following threats [12] have been identified for similar circumstances:

- The adversary can observe, block, delay, replay, and modify traffic on the underlying network. Thus end-to-end security must not rely on the security of the underlying network.
- The adversary has a limited ability to compromise smartphones or other participating devices. If a device is compromised, the adversary can access any information held in the device's volatile memory or persistent storage.
- The adversary can choose the data written to the transport layer by higher protocol layers.
- The adversary cannot break standard cryptographic primitives, such as block ciphers and messageauthentication codes.

We assume the adversary cannot eavesdrop, jam, delay, replay, modify or spoof wireless communication between smartphones. The adversary cannot compromise smartphones or other participating devices.

2.3. Distributed solutions

To ensure that no controlling party can exercise censorship authority must be distributed over all users. If all information is located in one or a few places, the parties in charge of that location will still have control over it, so information must distributed all users as well, creating a *communication* system. Finally, all users must be able to share, order and appreciate information of other users, in other words the essence of social media: social interaction. With everyone being able to interact in the same way we need to distribute functionality over all users, creating a *cooperation* system. Fully distributed systems capture the characteristics just mentioned. To render the effect mute of the Internet kill switches in existence shown to be used we propose a distributed solution. Without any central component in the system it is no longer susceptible to censorship without everyone participating. Leveraging the properties of mobile devices, like smartphones as stated above, together with the features of Tribler we see a perfect match. Because censorship and large scale monitoring is difficult in decentralized networks our proposed solution can work in these situations.

Networks that are not fully decentralized can be disrupted by taking down a limited number of nodes, less than the total number of nodes. Thanks to a server-less design we can say: The only way to take Tribler down is to take the entire Internet down.

2.3. Distributed solutions 7

Figure 2.2: Various partial solutions to mend the broken Internet according to www.youbroketheinternet.org

Mobile devices are essential to take the next step in the face of censorship. If we can use smartphones to create a fully decentralized social network we can say: The only way to take Tribler down is to take everybody's smartphones away.

The importance of mobile devices in this context is crucial, if we want to do even better in spreading information, which is not been done before, we surmount than next hurdle.

Peer-to-peer communication technology is essential for a server-less distributed system. Mobile devices typically do not require infrastructure to exchange information, like those equipped with Bluetooth or capable of ad hoc Wi-Fi. Smart phones are ubiquitous everywhere in the world and used to access social media and retrieve information from the Internet. Fortuitously these are also the type of mobile devices that can communicate peer-to-peer.

Example: Arab spring [?]

Various initiatives have been started to deal with one or both of these problems. [?]

Figure 2.2 shows a mapping of projects that are or have been working on that. The fragmentation is clear from the figure. There are a few big players, as can be seen from the figure, but none of them provide a full solution.

There is no de-facto solution available on mobile platforms. [?] Previous research has shown that there is no solution that solves the problem entirely in a sustainable way. Tribler is our attempt to solve this problem

entirely in a sustainable way. To see if it is feasible to apply it in a mobile context as described above, we need to port it.

2.4. Contributions

The main contribution of this thesis is making Tribler available on mobile devices and the utilization of their unique properties in the context of censorship and communication during crises. This work also enables a new direction for future research with Tribler: mobile devices. The resilience of Tribler against attacks on the Internet is greatly increased. The goal of Tribler is to become an information sharing platform that protects the privacy of its users and is resilient to attacks while not relying on existing infrastructure.

Previous attempts failed to deliver all functionality. [? ??] Maintainability issues with earlier designs were a large part of the reasons why. We changed the architecture of Tribler for our approach.

The scientific contributions of this work are the experiments to verify the feasibility of Tribler on mobile devices and the ability to perform research with Tribler fully geared towards mobile devices

Tribler functionality

Tribler is a fully decentralized video-on-demand system. [11, 14, 16] It is autonomous, attack-resilient and self-organizing. [1, 13] It uses network overlays called communities to offer features like keyword search and managing contributions to channels for discover-ability of content. It offers privacy through layered encrypted tunnels similar to the TOR network.[3, 4, 18]

3.1. Video-on-demand

Tribler introduces a server-less video-sharing platform with privacy enhancing technologies that provides a Youtube-like social media experience. Video-on-demand means that users can simply click and play videos in a streaming fashion, so without waiting for the entire video to be present on the device. You can search from within the application and browse for videos in channels rated automatically by popularity. Simply clicking on a video and watching it while streaming is supported via the BitTorrent-aware Tribler video server and integrated video player VLC.

3.2. Self-organizing

The BitTorrent protocol is used to download and upload the content. A BitTorrent swarm can use the "distributed sloppy hash table" (DHT) of a specific torrent to discover peers and gather meta-information. Also part of the DHT protocol is the self-organizing behavior of maintaining a routing table of known good nodes. Tribler uses these features to coordinate the exchange of videos and meta-data fully automatically. Users do not have to manage any files or configuration manually at all to be active on the platform.

3.3. Autonomous operation

New content discovery can be discovered automatically via a "Channel"-community that users can subscribe to. Communities are network overlays used by Tribler to offer functionality like search, add, remove and comment on content. To discover all channels in existence Tribler is subscribed to the so called "AllChannel"-community and "Search"-community by default. These are used to exchange information about what channels and torrents are out there and who likes them and knows about them. Each channel has its own community that rules permissions and meta-data of content. These communities operate autonomously and are transparent to the user, who only sees channels and search results show up in the GUI.

3.4. Attack-resilience

The server-less technique of Tribler is resistant to large scale monitoring and censorship, because there is no central point that can be controlled to gather or block information easily. To monitor or censor the network effectively on a large scale you need control of a significant number of the communication links. Censorship does not have an effect if the majority of users does not cooperate with the censor. The beauty of a fully distributed design is that communicating directly between peers, or via a local network, works without the need for external communication links. This is why the server-less technique of Tribler is resistant to Internet kill-switches as well because, even if the attacker can block all communication-links, users can always connect

off-grid. Such kill-switches are typically deployed for the purpose of censorship, but won't stop a connectible device, like a laptop, from physically moving. No network infrastructure is required for viral spreading of the entire video platform.

These properties will ensure social media with resilience against Internet kill switches, natural disasters and censorship.

3.5. Trust

Multichain is the new accounting system of Tribler. This feature is central to the concept of trust in the Tribler network and is very important for the future as other functionality will be built upon it. With Multichain any peer registers the bandwidth it exchanges with other peers. It aggregates these exchanges in blocks and signs them like a receipt and sends that to the other party to sign as well. These blocks are linked in a block-chain to foil attempts of cheating the system.

Multichain is explicitly designed to not use a global state. Syncing a global state is less scalable in terms of storage and network bandwidth.

3.6. Anonymity

Tribler can protect the privacy of users by hiding their identity. To connect to others on the network, anonymous connections are created on behalf of downloading peers (leechers) and uploading peers (seeders). By routing the network traffic over a circuit of multiple hops it becomes difficult to trace the origin and destination. This way the privacy of users remains protected while they actively participate on the platform

Multiple encrypted tunnels are layered such that every consecutive tunnel from the initiator to a relay is going through the previous tunnel. Every relay works on behalf of its predecessor so no relay knows the identity of the initiator save for the first relay. Since all communication is properly encrypted no relay can perform a successful man-in-the-middle attack.

This is similar to how Tor works, except Tribler uses UDP rather than TCP for performance reasons. The hidden seeding protocol, modeled after the hidden services of TOR, allows for anonymous content sharing via said TOR-like onion routing [?]. The capability of hiding your identity is greatly advantageous to the user if his or her human rights are violated, like free speech.

However, this privacy feature requires a lot more bandwidth of the network than without anonymity: a ratio of 13 GB for every anonymous 1 GB of data. Since bandwidth is limited and transitory it can be beneficial to exchange unused bandwidth for a promise of bandwidth in the future, or another reward. The research group behind Tribler is currently building a fully decentralized accounting system and open exchange market using block-chain technology with the purpose of building trust on-line and creating the Internet of Money.

3.7. Towards Tribler on mobile devices

In the previous sections we discussed the features and applications of Tribler. So far Tribler only supports desktop and server versions of Linux, Mac and Windows. The necessity of moving to mobile devices calls for Tribler functionality to be enabled to run on these resource limited devices. All positive and negative properties that come from these features are transferred to mobile devices, which will add their own distinct properties to the mix.

3.7.1. Opportunities

What does mobile allow in addition to desktop? Mobile devices are inherently easy to move around and very portable. In case of a breakdown in communication infrastructure the mobile devices with wireless radio transmitters can still connect ad hoc and moved within range if necessary. Via WiFi a device can connect to the Tribler network via existing infrastructure or other peers via ad hoc WiFi. Using NFC Tribler can start a Bluetooth connection and transfer the installation package peer-to-peer. Also via NFC Tribler can exchange channel ID's to subscribe to another Tribler channel peer-to-peer.

Bringing Tribler to mobile devices will give potentially millions of users access to these features, on the move. Expanding the Tribler network with mobile devices could also benefit the research that can be performed on the live network.

3.7.2. Challenges

What does working on mobile phone mean? The portability of mobile devices requires any network interface and power supply to be wireless. Mobile devices are typically equipped with batteries to operate without a power cord. Considering the size and weight the capacity is limited. Smartphone batteries usually barely hold a charge that would sustain a day of heavy usage. Tribler could potentially drain the battery much faster than normal. Heavy encrypted network traffic not only demand constant radio transmissions, but also CPU processing. In case of hidden seeding building circuits of 3 tunnels with layered encryption quadruples the amount of cryptographic work. Because Multichain punishes cheating like double spending by a permanent ban, it must never loose information and flush everything to permanent storage before continuing. Mobile devices typically have flash memory with limited write-cycles compared to classic hard drives that are commonly found in desktop computers.

Design and architecture

We now present a design to address the challenges and utilize the opportunities of working on a mobile device as put forward in the previous chapter. First in terms of functionality and other requirements, second the overall system architecture.

Previous attempts at designing a mobile version of Tribler failed to properly separate re-usable components. This resulted in unmaintainable code and increased difficulty in testing. We use a top down approach to come to a high level system architecture and in determining the reusable components or the current Tribler application. Some functionality of Tribler has been shown to work on Android before [???]. Our design will fill in the gap of connecting the pieces of the grand puzzle to make Tribler fully work on mobile.

4.1. Functional requirements

Following from the problem description and Tribler functionality described in Chapter 3, we define the following functional requirements:

- A1. The implementation must be capable of effortless peer-to-peer transfer of itself.
- A2. The implementation must be capable of publishing videos to other devices without the need for an Internet connection.
- A3. Any video available on the device must be directly publishable.
- A4. The implementation must enable a user to record videos.
- A5. The implementation must enable a user to create a channel.
- A6. The implementation must enable the owner of an existing channel to edit it.
- A7. The implementation must enable creating a torrent file from a file available on the device.
- A8. The implementation must support streaming video playback.
- A9. The implementation must support all other Tribler functionality not mentioned above.

4.2. Non-functional requirements

Following from the challenges and opportunities, as described in Section 3.7, we define the following non-functional requirements:

- B1. The mobile device must be capable of running Tribler independently.
- B2. The implementation must incorporate the existing Tribler Python core and the required C/C++ libraries.
- B3. The implementation must consider the restricted resources of a mobile platform in terms of RAM and processing power.

- B4. The implementation must support WiFi, Bluetooth and NFC peer-to-peer features.
- B5. The implementation must utilize the built-in camera for recording videos.
- B6. The mobile device must be connectable via WiFi or mobile data connection
- B7. The implementation must be distributed as a single installable container.
- B8. The implementation must be able to keep running in the background even if the user is not actively using it.
- B9. All processing tasks must be performed asynchronously.
- B10. The user must be able to interact with the implementation via a graphical user interface (GUI).
- B11. All ongoing tasks must be indicated as such in the GUI.
- B12. The GUI must stay responsive to the users' input while performing a background task.
- B13. The GUI must stay responsive to the users' input while presenting large amounts of data on screen.
- B14. If invalid input is provided by the user through the GUI the user must be asked to correct the input.
- B15. If a recoverable error occurs, the implementation must automatically retry.
- B16. If an exception occurs, the user must be able to restart Tribler.
- B17. Upon restarting, the implementation must return to a working state.
- B18. The entire build tool-chain must be integrated on the build server of Tribler.
- B19. As much code as possible must be covered by tests.
- B20. The implementation must be agnostic to version differences of supported platforms and operating systems.
- B21. The user interface design must follow established best practices.
- B22. The implementation must be attack-resilient.

4.3. System architecture

The requirements dictate how the system architecture of Tribler on mobile devices will take shape. The proposed architecture as shown in Figure 4.1 is specifically designed for maintainability and clearly separates components with a distinct responsibility.

Figure 4.1: System architecture design

The requirement (B2) of re-using the Tribler Python core and its C/C++ dependencies requires the architecture to incorporate these as is. Mobile platforms are not required to support Python code natively and the implementation must be distributed as a single installable package and run independently (req. B1). As a consequence, a Python interpreter must be incorporated into the implementation. The user must interact with the implementation via a GUI, as stated by requirement B10. As such a GUI is not part of the Tribler core, it has to be included separately in the design. A separate GUI can be made and optimized for any specific platform and target device. For instance, a design can be made for large surface displays and another one for small touch-screens, like a smartphone. This leads to the design choice of creating an API, that allows for a common interface across all platforms, to let the GUI communicate with the existing Tribler core. The API will yield a more maintainable solution than previous attempts to bring Tribler to mobile devices [? ? ?] that did not include such an API.

Implementation

In Chapter 4 we proposed a generic design to enable Tribler on mobile devices. Many types of connectible mobile devices exist. In the context of the problem description from Chapter 2, devices used for human communication, such as smartphones, will be our prime focus. The largest potential user base in the smartphone market can be reached by targeting Android OS [6]. Therefore, our implementation will target Android OS.

Following the choice for Android, the generic design in Figure 4.1 can be further specified as presented in Figure 5.1. Two main additions are a separate video player and a Java native interface (JNI) component. In the following sections, each component from Figure 5.1 will be described in more detail. The complete build toolchain is presented in Section 5.5, which combines everything to build the final Android application package (APK). Finally, the statistics of the implementation are presented in Section 5.6.

Figure 5.1: Implemented system architecture

5.1. Android OS

Android is an operating system, based on the Linux kernel, that runs on smartphones, tables, wearables and smart-TVs. It provides a Java Virtual Machine (VM) and a Java application framework API.

18 5. Implementation

Since API version 14, near field communication (NFC) and Wi-Fi peer-to-peer (P2P) connections between compatible devices is supported. And since API version 16, a NFC push message can be used to start large file transfers over Bluetooth (req. A1). This can be used in the context of the problem description, for Tribler needs to be able to spread wireless from phone to phone. Using this NFC push message functionality, the transfer of the APK file is fully automated (req. B4). Figure 5.4 shows the instructions for the user of this effortless transfer: just hold the phones back to back. Bluetooth, rather than Wi-Fi, is the technology of choice here, because the former has a standard file transfer protocol, built into Android OS, and the latter does not. This means there are no prerequisites on the receiving device for receiving and installing Tribler from a nearby phone via NFC+Bluetooth. If NFC is not available, all other options to transfer the APK are presented to the user to choose from instead. If NFC is available, but not enabled on the device, the implementation will prompt the user to do so. In that case, the other options are accessible via a button with the Bluetooth icon on the action bar. NFC is used to enable easy sharing of channels as well, for example your own channel or your favorites. After receiving the NFC push message, Tribler is automatically started and asks the user if the received channel must be added to their favorites.

Our implementation supports API version 18 and higher, because of reasons explained in Section 5.2.5. 85.6% of Android devices run API version 18 or higher [8]. Android support libraries are used to abstract from differences between API versions (req. B20).

Inter-application communication, via Android intents, must be secured (req. B22). An Intent is a messaging object to request an action from another app component [9]. Therefore, all Android intents are explicit for internal actions and the action of all received intents is checked, especially broadcast intents [2]. Also, only the activities and services that should be publicly accessible are exported in the application manifest.

5.2. Tribler Java back-end service

Our implementation uses Java to build upon the Android Java API. To run an application in the background, even when the screen is turned off, it must be run as a service. Therefore, every component, except the GUI, is part of the back-end service (req. B8). The service is started as a separate process by the Java front-end (req. B12). This way the user can be presented with the GUI, that indicates the service is loading in the background (req. B10, B11).

5.2.1. Tribler Python core

Tribler is written entirely in Python, but Android does not support this natively. Python is an interpreted language, Because our design requirements (B1, B2) we incorporate a Python interpreter into our design. On top of that the entire core of Tribler can run, containing a REST HTTP API module also written in Python.

All communication with the front-end is done asynchronously via a REST API (req. B9).

Finally, the REST API communicates with an HTTP Client on the user interface side via JSON.

5.2.2. JNI

Using Java requires the use of the Java native interface (JNI) to communicate with the C/C++ components. JNI enables functions that are written in C to be callable from Java and vice-versa. The Python interpreter is started by the Java service using JNI, after loading the necessary C/C++ libraries.

5.2.3. CPython interpreter

Tribler uses C++ implementation of torrent protocol, called libtorrent. To use this C/C++ library from within Python a certain capable interpreter is required. P4A offers such an interpreter: CPython.

What alternatives are there, besides P4A, to run python code on Android? 0. QPython: scripting, cannot build regular .apk 1. QtAndroid, inmiddels alternative, niet gereed toen wij hieraan werkte (juni 2016, qt 5.7 android service) 2. PGS4A: no longer in development 3. SL4A: no longer in development Why is P4A chosen? Because this project continued from previous work (legacy code) build on P4A. Even though the revamp version was build from scratch, it still is the best choice because it not only provides the Python interpreter, it also is a complete tool-chain to cross-compile native libraries with bindings and build a standalone Android app installation package (.apk).

5.2.4. Python modules

Tribler is written entirely in Python, but most of its dependencies are written in C/C++. To use these libraries on a mobile device they need to be compiled for the right embedded-application binary interface (EABI)

including all nonstandard dependencies. Figure 5.2 shows the dependency tree.

Figure 5.2: Tribler dependencies in terms of Python-for-Android recipes

5.2.5. C/C++ libraries

The standard C library of Android differs from the GNU C Library (glibc), which makes it not trivial to port Linux libraries to Android. All C/C++ dependencies of Tribler were therefore linked against glibc and glibc is included as a shared library (req. B1, B2). Static linking could result in unexpected behavior if more than one library is linked [7], and Tribler uses many, as shown in Figure 5.2. Since Android 4.3 (API version 18) shared libraries do not have to be loaded in order manually anymore. Therefore,

The Python code loads other Python and native modules directly.

Calling C code directly from Python is possible by using the Python ctypes module to load a native dynamic-link library (.so files on Android) or by using the Python/C API of CPython. This API enables a library to define functions that are written in C to be callable from Python. These Python bindings are the glue between pure Python and pure C code. SWIG can generate the boiler plate code for this. Libtorrent, one of Triblers' main components, uses Boost.Python to provide a standard C++ API on top of the Python/C API.

The Python/C API is actually so powerful it even provides access to the internals of the interpreter to mess with the global interpreter lock (GIL) which could be released during native C calls to improve the multi-threading performance of Tribler crypto.

5.3. Tribler Java front-end

The requirements on asynchronous communication (B9) and responsiveness (B12) require the decoupling of the GUI from the back-end.

The GUI is created by a native Android Java application, which talks to the REST API module. The API combined with Java is better for parallelization than the coarse grained locking by the CPython interpreter. Shared memory threading in Python code is restricted to single-thread performance because of the global interpreter lock (GIL).

Having two separate Python interpreters in distinct processes talking to each other, because that means using a very resource heavy Python GUI instead of the regular and lightweight native Android Java XML GUI. The latter has tools available for automated UI testing.

Figure 5.3 shows the main menu of the Tribler app. The first three items presented to the user are the main views: the user's favorite channels, their own channel and discovering popular content. The next four items are actions related to creating new content or related to the application. It is organized this way to benefit from the simplicity of a flat menu while the actions are grouped by context with a header for clarity.

Users can browse through a list of popular channels or their own favorites. Each channel has an indicator

20 5. Implementation

Figure 5.5: Channel with newly discovered content

Figure 5.6: Search results showing video content

5.4. Video player 21

of the amount of users that have added that channel to their list of favorites, as can be seen behind the menu in Figure 5.3. Channels contain multi-media content added by their respective channel owner or everyone, depending on the security policy of that channel. Tribler allows three settings: open, semi-open and closed.

The favorite channels and popular channels views both show a list of channels contain content

Search is accessible from any channel view. Upon typing keywords into the search bar debounce

5.3.1. HTTP Client

The HTTP client that talks in JSON with the REST API is build on the popular library OkHttp and fits perfectly to RxJava with a library called Retrofit. The Retrofit library enables a very declarative API client.

Because of the nature of Android to destroy interface elements if a configuration chance occurs, the asynchronous tasks running in the background must be registered and unregistered properly to avoid memory leaks. To detect notorious memory leaks on Android we use another library made to do exactly that: LeakCanary. Android provides a way to deal with continuity of activities with fragments that can remain in memory which were used in conjunction with composite subscriptions of RxJava.

5.3.2. XML GUI

Due to the fact that Android targets mobile devices it is very optimized for low resource usage. Therefore memory is freed more aggressively and the application is often paused or stopped and restarted if the user switches to another app. Running two interpreters with Python Kivy front-end and Python Tribler back-end would be doubling memory usage for the interpreter itself and require an inter-process protocol as well. Native Java with XML front-end and Python Tribler back-end brings the user experience seamlessly in line with the native UI.

To run in the background Tribler uses an Android service and all communication is performed asynchronously. The reactive programming paradigm is a perfect fit for asynchronous tasks. Thanks to RxJava and RxAndroid asychronous multi-threaded coding is made very enjoyable: As shown in the code example performing IO tasks on the dedicated Android thread and making UI changes on the main thread becomes trivial.

5.4. Video player

To support streaming playback of videos (req. A8) a capable video player is required. The video player VLC is integrated in the desktop version of Tribler. However, such a library, and integration of a custom GUI, is hard to maintain. VLC is offered as a standalone Android application package (APK) from their website [17]. Therefore, rather than implementing our own GUI, this APK is embedded as a whole inside Tribler's APK as an asset (req. B7). If VLC is not yet installed on the device, the user is prompted to do so and offered the version from inside Tribler. This allows the user to install VLC without further requirements.

5.5. Build tool-chain

The Python-for-Android tool-chain uses recipes to cross compile the C/C++ libraries with Python bindings with the necessary build tools. These recipes are like a high level make file.

22 5. Implementation

Figure 5.7: High level overview of the build tool-chain

The libraries are compiled for any ARMv7 compatible platform, and little effort is required to replace Android with another OS in this respect.

5.6. Implementation statistics

All requirements have been met. The implementation consists of: 12.806 + X lines of code in the Tribler repository in 35 pull requests and Y lines of code in the Python-for-Android (P4A) repository in 46 pull requests and 2 lines of code in the M2Crypto repository in 1 pull request. This excludes the work of reviving the old P4A toolchain.

Of the X lines (x %) consists of unit testing code. Y lines (y %) is made up of Android specific libraries, and the remainder is.. Table 5.1X shows the 25 largest source file contributions for this thesis work.

Code coverage and testing details are further explained in chapter 6.

LOC	File	Path
718	MainActivity.java	/org/tribler/android/MainActivity.java
666	MyChannelFragment.java	/org/tribler/android/MyChannelFragment.java
482	MyUtils.java	/org/tribler/android/MyUtils.java
403	DefaultInteractionListFragment.java	/org/tribler/android/DefaultInteractionListFragment.java
318	start.c	android/TriblerApp/app/src/main/jni/src/start.c
314	TriblerViewAdapter.java	/org/tribler/android/TriblerViewAdapter.java
281	build.gradle	android/TriblerApp/app/build.gradle
256	IRestApi.java	/org/tribler/android/restapi/IRestApi.java
234	ChannelFragment.java	/org/tribler/android/ChannelFragment.java
186	AssetExtract.java	/org/kivy/android/AssetExtract.java
182	BeamActivity.java	/org/tribler/android/BeamActivity.java
175	ListFragment.java	/org/tribler/android/ListFragment.java
172	CopyFilesActivity.java	/org/tribler/android/CopyFilesActivity.java
166	AndroidManifest.xml	android/TriblerApp/app/src/main/AndroidManifest.xml
166	EventStreamCallback.java	/org/tribler/android/restapi/EventStreamCallback.java
155	ChannelActivity.java	/org/tribler/android/ChannelActivity.java
150	ViewFragment.java	/org/tribler/android/ViewFragment.java
149	PythonService.java	/org/kivy/android/PythonService.java
149	SearchActivity.java	/org/tribler/android/SearchActivity.java
141	EditChannelActivity.java	/org/tribler/android/EditChannelActivity.java
131	FilterableRecyclerViewAdapter.java	/org/tribler/android/FilterableRecyclerViewAdapter.java
130	BaseActivity.java	/org/tribler/android/BaseActivity.java
114	SearchFragment.java	/org/tribler/android/SearchFragment.java
112	TriblerDownload.java	/org/tribler/android/restapi/json/TriblerDownload.java

Table 5.1: Top 25 of largest source file contributions.

Performance analysis

To analyze how feasible is it to run all Tribler functionality on mobile devices, we measure several performance characteristics relevant to the functional and non-functional requirements in Chapter 4. We take several measurements on different devices to quantify the performance and resource usage in the context of the scenario in the problem description in Chapter 2. The results will indicate the state of the art, before any optimization, in functionality of Tribler on mobile devices as described in Chapter 3. From the results, possible angles for optimization will emerge and further described in Chapter 7. The results also show that all requirements have been met.

6.1. Content discovery

Before anyone can view new content that has been added to a channel, it needs to be discovered by other devices. We measure the amount of time it takes for other devices to discover new content in a channel they are subscribed to, starting from the moment it is added to that channel. Depending on the random walk in the channel's community content can be discovered either very quickly or after a while due to property of eventual consistency. Figure 6.2 shows the experimental setup with various smartphones and one tablet. Each device is connected to the same wireless network and within 1 to 2 meters distance from the same access point. Different versions of Android OS are installed, ranging from 4.3 to 7.1, and some run a Cyanogen-Mod. Each device is installed with the same version of Tribler and the same database, containing up to date information about existing channels and their content. This database was gathered in the days before this experiment and installed manually. On one device, a Nexus 6, from now on referred to as the source, a new channel is created to which the other 13 devices subscribe via NFC. Then, repeatedly a new video is recorded and added to that channel by the source. The new videos are discovered, and the event logged, by each device individually.

Figure 6.1: Sequence of events when a video is recorded and distributed.

The sequence, as shown in Figure 6.1, of recording a new video, adding it the the same channel, and letting the subscribers discover it, is repeated 15 times for accuracy. All devices devices are synced with NTP to be able to have a common timeline for this experiment.

Figure 6.2: Experimental setup with various smartphones and one tablet, all showing the About Android screen.

Device	Nexus 5	Nexus 6	Galaxy Nexus	Galaxy S3	OnePlus One	Nexus 10	Total
Amount	1	4	6	1	1	1	14

Table 6.1: Devices used in the content discovery experiment.

Figure 6.3: Elapsed time after adding new content to a channel and it being discovered by subscribed peers.

Figure 6.3 shows the amount of time it takes a number of devices to discover new content on a subscribed channel. The results show that within 4 seconds 9 devices have discovered the new content. From the 10th device and beyond an increase in discovery time is noticeable. This could be explained by the fact that only 10 peers are connected at the a time. Much more peers are needed to give an accurate representation in terms of scalability. What can be concluded from this experiment is that on the same local network the first

device discovers the new content in less than 2 seconds. From the 10th device onward the dissemination slows down.

6.2. Multichain performance

If mobile devices are to become full-fledged nodes on the network they must support this feature. The creation and signing of these blocks is measured to determine if it scales well. Multichain signs a block every 10 minutes, meaning our experiment of generating 25.000 blocks represent about half a year (173,6 days) of continuous effort. The database containing these blocks will grow over time, but should not slow down too much because of it. Measurements were taken on six different devices on multiple moments during development. A laptop is included to give some more perspective. Its specifications are listed in Table 6.2. Figure 6.4 show the performance graphs of every measurement.

Figure 6.4: Creating and signing of 25.000 blocks between two peers

Laptop	Dell Latitude E6520
CPU	i7-2760QM @ 2.4GHz
RAM	8 GB @ 1333 MHz
SSD	80GB X25-M

 $Table \ 6.2: Hardware \ specifications \ of \ the \ laptop \ used \ in \ the \ Multichain \ and \ API \ measurements.$

Clearly visible from the graphs is that Multichain does not scale linearly on any device. They also show that mobile devices are at least a factor of two slower than an ordinary laptop and scale worse. Due to the nature of block-chain every new block needs to contain the hash value of the previous block. If a database lookup is needed for this and the database is growing, that can explain the non-linear course of the graph. This can be easily optimize by keeping the last hash value for currently connected peers in memory. However this is an indication that creating blocks by the thousands is an IO bound process, rather than CPU bound. Finally, if mobile devices are to be full-fletched nodes on the Tribler network, they should not slow down significantly more than any other ordinary laptop, besides being slower in the first place. Hardware acceleration could close this gap without sacrificing battery life too much. Because mobile devices are a bit behind on the technology curve with respect to desktop computers it is probable that the gap becomes smaller over the coming years. The capacity to store enough Multichain blocks to audit past exchanges should also be on par. If not, other more powerful nodes could be queried to supply the necessary history about a peer, that requests your bandwidth, to verify if that peer is trustworthy.

6.3. Startup time

Key to user retention is a fast startup time. Therefore the GUI starts up in parallel with the background service. This way at the GUI is visible and responsive to user input, while the service may continue loading in the background. However, before any task can be executed by the service, it needs to be fully started. To measure the total startup time we register the time of launching the app and the moment the Tribler-started-event is registered by the GUI. This event is sent over the API event-stream and indicates that the service is fully started and ready to accept all incoming requests. We expect consistent loading times on each device, and potentially significant different loading times between devices, because of differences in hardware. Therefore, we measure the startup time 10 times on 5 different devices. The app is launched with Android Debug Bridge (ADB) from a laptop and the Tribler-started-event is read directly from the device's log over ADB and timed on the same laptop, so they use the same clock.

Figure 6.5: Startup time per device for 10 consecutive runs.

Device	N	Avg. (s)	Min. (s)	Max. (s)	s (s)
Nexus 10	10	3.781	3.416	4.085	0.211
Nexus 6	10	4.319	4.124	4.670	0.179
Nexus 5	10	3.353	3.273	3.459	0.081
Galaxy Nexus	10	7.086	6.161	7.772	0.454
S3	10	31.935	30.616	33.940	1.116

Table 6.3: Statistics of startup time per device.

Table 6.3 shows the statistics per device. The results show a very small sample standard deviation and a very low startup time. The S3 is performing way worse than may be expected from comparing the results of the other devices and the Multichain experiment. The reason for that may be that this phone was not wiped and given a fresh install of Android before starting the experiment like the other devices were. Which would mean that other applications installed on a device could significantly impact the startup performance of Tribler. This should be investigated further, including if anything can be done on the part of Tribler. The sample standard deviation is relatively small for all devices, which indicates that the startup time of Tribler is consistent.

6.4. Content creation

New content can be generated with a smartphone, like for example a video that has been recorded with the builtin camera. How quick one can create content and distribute it depends not only on the discovery time, as measured in Section 6.1, but first, and perhaps foremost, on the speed of the torrent creation process. In this experiment we measure the time required to create a torrent file for different sizes of videos. We also measure the amount of time it takes to add that torrent to a channel. In the torrent creation process a hash is calculated for each piece of the content. Therefore, the amount of time it takes for a torrent to be created is relative to the size of the content. Because this is a CPU intensive task, we expect the time required to create a torrent file to follow the time complexity of the hash function. The setup for this measurement is exactly the same as in Section 6.1, but we only look at the source, creating and adding the torrent of the video content. Figure 6.6 shows the relation between the size of the content and the time required to create a torrent file for it.

Figure 6.6: Creating a torrent for content of varying size.

Figure 6.7: Adding a torrent to a channel for content of varying size.

The results show a linear correlation between the size of a video and the torrent creation time, with one outlier in this set of eight samples. However, due to differences in hardware acceleration of the hashing algorithm implementation and small amount of data, no claims can be made in general. Finally, to add content to a channel, only metadata is required, which does not scale with content size, as can be seen in Figure 6.7. However, the margin of error is also determined by the API response time, which we will measure in the next section.

6.5. API responsiveness

By design most functionality is operated through the API. Therefore, measuring the responsiveness of the API will give a good indication of the responsiveness overall. We use Apache JMeter to fire requests at the API and measure the time it takes to respond to each request. JMeter can measure the time from just before sending the request, to just after the first response has been received. [5] Thus, this metric includes the time needed to assemble the request by the client and connect to the server, latency, as well as processing the request by the server and generating a response, plus latency on the way back. It excludes the transfer time of the complete response, and subsequent processing and rendering time by the client, because any client can do so differently, for example in a streaming fashion. We want to see that the response time is bounded, consistent and generally low. A Nexus 6 smartphone with Android 7.1 CyanogenMod is connected to a laptop running JMeter and the API port is forwarded with ADB over USB. With JMeter we request the discovered channels from the API a 1000 times at a constant rate of one request per second. A laptop is included to give some more perspective. Its specifications are listed in Table 6.2. Figures 6.8, 6.9, 6.10 and 6.11 show the response times for every request.

Figure 6.10: API response times on a decent laptop.

Figure 6.11: API response times on a Nexus 6 smartphone.

The plot shows large spikes and seemingly a curious and unexpected pattern. Table 6.4 shows the large difference in statistics. PC is added for reference.

	N	Avg. (ms)	Min. (ms)	Max. (ms)	σ (ms)	Req./min.	KB/second	Avg. Bytes
Laptop	1000	65	1	1021	99.00	60.0	73.72	75410.6
Nexus 6	1000	3975	8	39477	5362.51	14.4	49.19	210506.8
Laptop	1000	181	101	416	42.72	60.0	579.49	592791.3
Nexus 6	1000	1671	1390	2925	174.14	35.9	345.94	592649.8

Table 6.4: Statistics of API response times from Figures 6.8, 6.9, 6.10 and 6.11 respectively.

The set rate of 300 requests per minute is clearly not reached by the smartphone in our benchmark by a factor of 9. The difference in amount of response data turned out to be much bigger than expected with a factor of 35. Tribler uses the event-driven networking engine Twisted, which is also written in Python. Twisted allows you to build inter-process communication protocols and provides a HTTP server which was used to build the REST API. Twisted uses a single thread to coordinate all others, called the reactor thread. If this thread is busy, the REST API can not receive incoming requests resulting in timeouts.

Considering the difference in amount of response data and the bandwidth of USB versus internal memory it is an unfair comparison. However, based on our result we may conclude that the API does not respond consistently and appear to behave differently than the other benchmark. The device not being able to process 5 requests per second possibly reveals information about the connection bandwidth and the multi-threaded processing capability. We assume that the 480MB/s theoretical bandwidth of USB2.0 is not a bottleneck considering the 2,5 MB/s result of the PC. Being a mobile device also other aspects my be at play here, like CPU frequency scaling. However this was turned off by acquiring a wake lock from the Android OS. It appears

6.6. Profiling 31

then that our design approach still suffers from performance issues due to imperfect multi-threaded performance. Because if the CPU is simply not powerful enough we expect to see a linear pattern instead of what we actually see in **??**. This phenomenon is not of great importance though, because users are not expected to fire hundreds of requests per minute to the API. Further investigation should figure out if this phenomenon is also observed with lower amounts of requests per minute.

6.6. Profiling

Because of the challenges put forward in chapter 3.7 we investigate if time is spent disproportionately on some function. We expect that the limited resources of a mobile device may impact particular features more than others. If hardware acceleration is not present the less powerful CPU may struggle with encryption tasks. Instead of CPU time, time actually spent processing by the CPU, we measure wall-clock time. This way we measure the amount of time a user would have to wait for a certain function to be executed. We focus on wall clock time instead of CPU time because...

With the cProfile Python module and the visualisation tool SnakeViz we can see if any function takes a disproportionate amount of time. A Nexus 6 smartphone with Android 6.0.1 CyanogenMod was used for profiling Tribler. The profiler was running for 10 minutes with Tribler during normal operation and without any user input. Figure ?? shows that 27% of the time is spent on verifying cryptographic signatures. The bright pink represents the update function, which signifies various business logic upon receiving a torrent. Also notable is the same stack of functions within and outside of a community on top of the wrapper. This can be explained by the fact that torrents can be discovered outside of a community too. execute of apsw.Cursor execute of sqlite3.Cursor reactor switchen? select.epoll [?] The time per call is most important for optimization because...

The significant chunk of time that the crypto takes is as expected. Since this task is actually delegated to the C library M2Crypto it should be possible to release the GIL of the Python interpreter so other Python code that does not depend on it can be executed. The main alternative provided in the standard library for CPU bound applications is the multiprocessing module, which works well for workloads that consist of relatively small numbers of long running computational tasks, but results in excessive message passing overhead if the duration of individual operations is short [?]. As seen from the time per call for __m2crypto.ecdsa_verify in table 6.5 the multiprocessing module would likely cause too much overhead. Another way to optimize is multiprocessing, which avoids the GIL completely [?].

6.7. CPU utilization

We saw in Table 6.5 that the cryptography tasks takes a lot of time. We need to know if this is CPU bounded or IO bounded for optimization purposes.

Python-for-Android supplies a CPython interpreter out of the box. CPython is optimized for single thread performance and compatibility with C extension modules. It is limited by a global interpreter lock (GIL) in multi-threaded use cases with shared memory. Tribler uses C extension modules for crypto tasks, which are CPU intensive. Tribler also uses the event-driven networking engine Twisted, which is written in Python. The core of the event loop within Twisted is the reactor, which runs on a single thread. The reactor provides a threading interface to offload long running tasks, such as IO or CPU intensive tasks to a thread pool. The GIL prohibits more than one thread to execute Python bytecode at a time. This negates all performance gains in terms of parallelism afforded by multi-core CPUs, making Python threads unusable for delegating CPU bound tasks to multiple cores. As shown in the precious section the crypto function took a considerable amount of time to compute. To see if the releasing the GIL as put forward as a solution is feasible we measure if the CPU has more capacity than is being utilized right now. Snapshots taken of the CPU utilization of the three separate processes involved in streaming HD video with Tribler. If there is any performance to be gained by releasing the GIL, the CPU must be significantly under-utilized in this use case, because other processes may also take up considerable CPU time. A Galaxy S3 smartphone with Android 6.0.1 CyanogenMod was used for this measurement. The video has a bit rate of 4565 kb/s.

The results show that indeed not al 4 cores of the CPU are utilized by a large margin. Even when performing the intensive crypto work of the Multichain experiment 2 CPU cores appear to be idling. This suggests that releasing the GIL during heavy crypto work could result in a significant performance gain. However our results are inconclusive and warrant further research.

# Calls	Total time (s)	Time per call (s)	Function
15	0.4867	0.03245	method 'commit' of 'sqlite3.Connection' objects
1	0.01692	0.01692	method 'executescript' of 'sqlite3.Cursor' objects
3820	64.28	0.01683	method 'poll' of 'select.epoll' objects
2	0.01048	0.005241	m2crypto.ec_key_gen_key
31075	162	0.005212	m2crypto.ecdsa_verify
1650	7.133	0.004323	m2crypto.ecdsa_sign
1	0.001708	0.001708	_socket.gethostbyaddr
1	0.001284	0.001284	built-in method SSL_library_init
567	0.565	0.0009965	method 'executemany' of 'sqlite3.Cursor' objects
8	0.005731	0.0009552	import
12	0.01083	0.0009029	method 'connect_ex' of '_socket.socket' objects
1	0.00055	0.00055	built-in method SSL_load_error_strings
5	0.002515	0.000503	method 'recv' of '_socket.socket' objects
6989	3.436	0.0004917	method 'executemany' of 'apsw.Cursor' objects
1	0.000485	0.000485	dir
63677	20	0.000314	method 'execute' of 'apsw.Cursor' objects
5546	1.38	0.0002488	m2crypto.ec_key_read_pubkey
15943	3.414	0.0002141	method 'sendto' of '_socket.socket' objects
44	0.009405	0.0002137	open
1	0.000212	0.000212	built-in method OpenSSL_add_all_algorithms
2	0.000405	0.0002025	m2crypto.ec_key_new_by_curve_name
2	0.000394	0.000197	netifaces.interfaces
296	0.05179	0.000175	method 'sort' of 'list' objects
5	0.000826	0.0001652	m2crypto.ec_key_read_bio
1	0.000147	0.000147	m2crypto.rand_seed
4	0.00058	0.000145	netifaces.ifaddresses
47	0.005664	0.0001205	androidembed.log
12	0.001445	0.0001204	thread.start_new_thread
8	0.000936	0.000117	posix.mkdir
2240	0.2615	0.0001167	posix.open
17	0.001964	0.0001155	compile
3	0.00034	0.0001133	m2crypto.ec_key_write_bio_no_cipher
5553	0.6196	0.0001116	m2crypto.ec_key_write_pubkey
7	0.000777	0.000111	method 'send' of '_socket.socket' objects
140069	15.4	0.00011	method 'execute' of 'sqlite3.Cursor' objects
16	0.001759	0.0001099	method 'shutdown' of '_socket.socket' objects

 $Table \ 6.5: Native \ function \ calls \ wall \ clock \ time \ broken \ down \ per \ call \ during \ the \ 10 \ minute \ profiling \ (600 \ seconds \ total \ time)$

6.7. CPU utilization 33

Figure 6.12: CPU usage of the GUI, during HD video streaming on a Galaxy S3 smartphone

Figure 6.13: CPU usage of the back-end service, during HD video streaming on a Galaxy S3 smartphone

Figure 6.14: CPU usage of the video player VLC, during HD video streaming on a Galaxy S3 smartphone

6.8. Software testing and code coverage

The design choice of reusing all Tribler core source code means we need to verify its correctness. To make sure all code on Android works the same as on other supported platforms we need to test all code. Tribler has some unit tests and integration tests that cover a large portion of the code, but not all. The ratio of tested lines of code with respect to the total number of lines of code is the coverage line-rate. We expect to see a line-rate value close to 1, but not 1 since we know the tests do not cover everything. All tests were run two times on the same device with 11 weeks of development in between. The nose module was used for running the tests together with the coverage module for gathering coverage data. The same Nexus 6 smartphone with Android 6.0.1 CyanogenMod was used in both runs. Table 6.6 shows the results of both executions.

Run	Tests	Errors	Failures	Skipped	Line-rate
1	711	14	13	30	0.7241
2	749	12	15	3	0.7861
3	782	10	18	4	0.7871
PC	812	0	0	30	0.7894
PC	812	0	0	30	0.7901
4	782	10	18	4	0.7897

Table 6.6: Tests results and coverage line-rate at different points in time during development

The number of tests has increased as well as the coverage line-rate while the number of errors and skipped tests have decreased. A failure means an assertion was not met and an error represents an exception while running a test. Therefore seeing that the number of failures increased is not that bad since the number of errors decreased. If the line-rate is 1 you still need the branch-rate to be 1 as well before you can be confident the code will work as expected. The branch-rate is the number of code paths tested with respect to the total number of code paths possible. Unfortunately this metric is not part of the current test plan. Nevertheless the metrics show improvement overall.

Conclusions and future work

All Tribler functionality runs on mobile devices with our implementation. The code is open source [?] and does not rely on any proprietary app store. This is the first successful attempt, to our knowledge, of creating a self-organizing video-on-demand platform that is attack-resilient and can operate autonomously on a mobile device. Millions of people that own a smartphone, and not a computer, can now benefit from Tribler's privacy enhancing functionality.

7.1. How feasible is it to run all Tribler functionality on mobile devices?

We proposed an Android implementation that fulfills are design requirements as specified in Chapter 4. It performs consistently, and faster than expected compared to a decent laptop, as shown in Chapter 6.

From the content discovery experiment, we learned that 9 devices discover new content within 4 seconds. Therefore, with viral spreading, it seems realistic we can reach millions within minutes. The Multichain experiment showed that creating blocks by the thousands is an IO bound process, rather than CPU bound, in the current implementation. It is also the most easy to optimize by keeping the hash of the last block for connected peers in memory. In the startup time experiment, the sample standard deviation is relatively small for all devices, which indicates that the startup time of Tribler is consistent. As expected, creating torrents appears to scale linearly with the size of the content, and adding a torrent to a channel does not scale with content size. The API performs consistently, but slower on a smartphone than on a decent laptop. The API also performs consistently slower, both on the laptop and the smartphone, depending on the amount of data to be returned for a request, as expected because of JSON serialization. Profiling revealed that cryptographic tasks are a significant part of processing messages. These tasks should be offloaded to a separate computational core to release the global interpreter lock. That would enable Python code to run in parallel, which in turn would improve performance and responsiveness. The CPU utilization measurement showed this approach is likely to succeed, because the CPU utilization of Tribler and the video player VLC combined did not reach more 35% while streaming HD video. All existing tests can be run on Android almost as well as on other platforms.

7.2. Given the constraints and unique abilities of mobile devices, what functionality of Tribler can be added or enhanced?

For example, a feature was added that transfers Tribler to a nearby device, with NFC and Bluetooth enabled, without further requirements, like an Internet connection or a central app store. By just holding to NFC equipped smartphones back to back, the transfer of the application started automatically. Also, you can add a channel to your favorites in the same manner. Using your real life social network, you can build your own on-line trust network this way. And thanks to built-in capability of Android you can setup an ad hoc WiFi network to avoid any infrastructure completely. In the context of privacy and censorship, this off-grid functionality means that if content is detected by the censor it may have already crossed, or will cross, the freedom border thanks to the properties of viral spreading.

7.3. Future work

This work enables a new direction of research with Tribler fully geared towards mobile devices. Future research can evaluate how well smartphones with Tribler can defeat the powerful adversary as described in Section 2.2. One can setup a large scale experiment with various degrees of powerful censors. Or a live deployment of Tribler on mobile devices in areas with restricted Internet access to evaluate Tribler in the wild for the intended use-cases. Another possible research question can be about how viral spreading of eyewitness content behaves in the real world. And the effect on anonymity of local crowds, regarding the onion routing protocol, can also be studied for example. A different direction is to research the possible benefits of teaming a mobile device with a traditional desktop computer or server with a shared key chain for a single user. The more powerful computer could be credit mining, while the mobile device uses the credits to download faster.

From the results in Chapter 6, we found that performance can potentially be improved if the Python GIL is released during heavy cryptographic tasks by C/C++ libraries. We also suggest to cut long running methods into smaller pieces, to allow the Twisted reactor to interleave more threads, to improve responsiveness under heavy load in our multi-threaded use case. Also, a streaming API for big responses can improve the responsiveness of the API, as concluded in Section 6.5.

To remove the last potential hurdle for offline information exchange with Tribler between mobile devices, an updated list of bootstrap peers can be integrated into the APK, just before sending the app via Bluetooth. Or it can send via NFC, in the same way NFC is used to share channel identifiers between to NFC enabled devices. The Bluetooth transfer of the app itself can be made much faster if WiFi Direct is used instead. This can easily be done by directing the receiving device's browser to a local HTTP server on the sending device with a NFC Data Exchange Format (NDEF) URI Record.

After our implementation was finished the standard Android integrated development environment (IDE) Android Studio started to officially support the Android NDK. Therefore, we can now move from the experimental alpha release to the stable Gradle plugin. This enables Gradle to cross-compile the C/C++ libraries instead of the build tool-chain of Python-for-Android (P4A). This in turn, makes it easier to replace P4A with for example Qt for Android, an alternative to P4A. The new desktop GUI of Tribler is built with Qt, and it would be nice to re-use code and improve maintainability. Qt for Android gained support for Android services after our implementation was already finished. This would also open the door to an iOS port, thanks to Qt for iOS. The modularity of the design and implementation enables Tribler to be easily ported to other platforms and embedded devices, like smart-TVs.

Finally, to safeguard the user from an even more powerful adversary as observed in Egypt [?], more measures can be taken. Embedding and encrypting all functionality in for example a binary blob of a random game, would add another layer of security. Our SelfCompileApp [?] for example, capable of self-compilation from source, can be combined with this work to create a morphing stealth app for anonymous information sharing without the need for existing infrastructure.

Bibliography

- [1] S.M.A. Abbas, J.A. Pouwelse, D.H.J. Epema, and H.J. Sips. A gossip-based distributed social networking system. In *Enabling Technologies: Infrastructures for Collaborative Enterprises, 2009. WETICE '09. 18th IEEE International Workshops on*, pages 93–98, June 2009. doi: 10.1109/WETICE.2009.30. URL http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5159221&tag=1.
- [2] Erika Chin, Adrienne Porter Felt, Kate Greenwood, and David Wagner. Analyzing inter-application communication in android. In *Proceedings of the 9th international conference on Mobile systems, applications, and services MobiSys '11.* Association for Computing Machinery (ACM), 2011. doi: 10.1145/1999995.2000018. URL http://dx.doi.org/10.1145/1999995.2000018.
- [3] Roger Dingledine and Nick Mathewson. Design of a blocking-resistant anonymity system. *The Tor Project, Tech. Rep,* 1, 2006. URL http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.101.7565&rep=rep1&type=pdf.
- [4] Roger Dingledine, Nick Mathewson, and Paul Syverson. Tor: The second-generation onion router. 2004. URL http://www.dtic.mil/cgi-bin/GetTRDoc?Location=U2&doc=GetTRDoc.pdf&AD=ADA465464.
- [5] Apache Software Foundation. *Apache JMeter Glossary*, 2016. URL https://jmeter.apache.org/usermanual/glossary.html.
- [6] Gartner. Global mobile os market share in sales to end users from 1st quarter 2009 to 1st quarter 2016, 2016. URL https://www.statista.com/statistics/266136/global-market-share-held-by-smartphone-operating-systems/.
- [7] Google. C++ Library Support, 2016. URL https://developer.android.com/ndk/guides/cpp-support.html#sr.
- [8] Google. Platform versions, 2016. URL https://developer.android.com/about/dashboards/index.html.
- [9] Google. Intents and Intent Filters, 2016. URL https://developer.android.com/guide/components/intents-filters.html.
- [10] Dr David A. L. Levy, Nic Newman, Dr Richard Fletcher, and Dr Rasmus Kleis Nielsen. Digital news report 2016, 2016. URL http://reutersinstitute.politics.ox.ac.uk/sites/default/files/Digital-News-Report-2016.pdf.
- [11] J.A. Pouwelse, P. Garbacki, J. Wang, A. Bakker, J. Yang, A. Iosup, D.H.J. Epema, M. Reinders, M. van Steen, and H.J. Sips. Tribler: A social-based peer-to-peer system. *Concurrency and Computation: Practice and Experience*, 20:127–138, February 2008. ISSN 1532-0634. URL http://www.pds.ewi.tudelft.nl/pubs/papers/cpe2007.pdf.
- [12] Johan A. Pouwelse. The shadow internet: liberation from surveillance, censorship and servers. 2014. URL https://tools.ietf.org/html/draft-pouwelse-perpass-shadow-internet-00.
- [13] R. Rahman, D. Hales, M. Meulpolder, V. Heinink, J. Pouwelse, and H. Sips. Robust vote sampling in a p2p media distribution system. In *Proceedings IPDPS 2009 (HotP2P 2009)*. IEEE Computer Society, May 2009. ISBN 978-1-4244-3750-4. URL http://dx.doi.org/10.1109/IPDPS.2009.5160946.
- [14] Wendo Sabée, Dirk Schut, and Niels Spruit. Decentralized media streaming on android using tribler. 2014.
- [15] Statista. Smartphone sales worldwide 2007-2015, 2016. URL https://www.statista.com/statistics/263437/global-smartphone-sales-to-end-users-since-2007/.

38 Bibliography

[16] C. van Bruggen, N. Feddes, and M. Vermeer. Anonymous hd video streaming for android using tribler, 2015.

- [17] VideoLAN. Vlc for android, 2016. URL https://www.videolan.org/vlc/download-android.html.
- [18] M.A. De Vos, R.M. Jagerman, and L.F.D. Versluis. Android tor tribler tunneling (at3). 2014. URL http://repository.tudelft.nl/view/ir/uuid%3Ab258a5e8-002c-4631-9291-04be902119f6/.