Автор: Смирнов Алексей Владимирович ИСУ: 409578 Группа: R3242

Отчет по расчетно-графической работе №1 «Численное интегрирование дифференциальных уравнений первого порядка»

Вариант 16

Методом Рунге-Кутта проинтегрировать дифференциальное уравнение

$$y'' = 2y + xe^{-x}$$

на отрезке [0,0.3] с шагом h=0.1. Найти аналитическое решение уравнения y=y(x) и сравнить значение точного и приближенного решений в точках $x_1=1$, $x_2=2,\,x_3=3$. Все вычисления вести с шестью десятичными знаками.

Численное решение

Понизим порядок уравнения превратив его в систему

$$\begin{cases} y' = z \\ z' = 2y + xe^{-x} \end{cases}$$

Пусть

$$g(x,y) = 2y + xe^{-x}$$
$$f(z) = z$$

Одна итерация метода Рунге-Кутта

$$\begin{cases} y_{i+1} = y_i + \Delta y_i \\ z_{i+1} = z_i + \Delta z_i \end{cases}$$

$$\Delta z_i = \frac{1}{6} \Big(K_1^{(i)} + 2K_2^{(i)} + 2K_3^{(i)} + K_4^{(i)} \Big)$$

$$\Delta y_i = \frac{1}{6} \Big(l_1^{(i)} + 2l_2^{(i)} + 2l_3^{(i)} + l_4^{(i)} \Big)$$

$$x_0 = 0$$

$$y_0 = y(0) = 2$$

$$z_0 = y'(0) = 1$$

$$K_1^{(0)} = hg(x_0, y_0) = 0.4$$

$$l_1^{(0)} = hf(z_0) = 0.1$$

$$K_2^{(0)} = hg\left(x_0 + \frac{h}{2}, y_0 + \frac{l_1^{(0)}}{2} \right) = 0.414756$$

$$l_2^{(0)} = hf\left(z_0 + \frac{K_1^{(0)}}{2} \right) = 0.120000$$

$$\begin{split} K_3^{(0)} &= hg \left(x_0 + \frac{h}{2}, y_0 + \frac{l_2^{(0)}}{2} \right) = 0.416756 \\ l_3^{(0)} &= hf \left(z_0 + \frac{K_2^{(0)}}{2} \right) = 0.120738 \\ K_4^{(0)} &= hg \left(x_0 + h, y_0 + \frac{l_3^{(0)}}{2} \right) = 0.421122 \\ l_4^{(0)} &= hf \left(z_0 + \frac{K_3^{(0)}}{2} \right) = 0.120838 \\ \Delta y_0 &= 0.702313, \, \Delta z_0 = 2.484147 \end{split}$$

Все вычисления для каждой итерации представлены в Таблице 1.

Таблица 1. Результаты вычислений численного решения уравнения

_				1			
i	x	y	z	K	l	Δy	Δz
0	0.00	2.000000	1.000000	0.400000	0.100000	0.100000	0.400000
	0.05	2.050000	1.200000	0.414756	0.120000	0.240000	0.829512
	0.05	2.060000	1.207378	0.416756	0.120738	0.241476	0.833512
	0.10	2.060369	1.208378	0.421122	0.120838	0.120838	0.421122
						0.702313	2.484147
1	0.10	2.117052	1.414024	0.432459	0.141402	0.141402	0.432459
	0.15	2.187753	1.630254	0.450461	0.163025	0.326051	0.900923
	0.15	2.198565	1.639255	0.452624	0.163926	0.327851	0.905247
	0.20	2.199015	1.640336	0.456178	0.164034	0.164034	0.456178
						0.959338	2.694806
2	0.20	2.276942	1.863159	0.471763	0.186316	0.186316	0.471763
	0.25	2.370100	2.099040	0.493490	0.209904	0.419808	0.986980
	0.25	2.381894	2.109904	0.495849	0.210990	0.421981	0.991698
	0.30	2.382437	2.111083	0.498712	0.211108	0.211108	0.498712
						1.239213	2.949153
3	0.30	2.483477	2.354684				

Аналитическое решение

Линейное неоднородное уравнение второго порядка

$$y'' = 2y + xe^x$$
$$y'' - y = xe^x$$

Решение соответствующего однородного уравнения

$$\lambda^2-2\lambda=0$$

$$\lambda_{1,2}=\pm\sqrt{2}$$

$$y_0=C_1e^{\sqrt{2}x}+C_2e^{-\sqrt{2}x}$$

Подбор частного решения по виду правой части

$$\begin{split} \tilde{y} &= (Ax+B) \qquad e^{-x} \\ \tilde{y}' &= (A-B-Ax) \quad e^{-x} \\ \tilde{y}'' &= (-2A+B+Ax)e^{-x} \\ \tilde{y}'' - 2\tilde{y} &= e^{-x}(-Ax-2A-B) = xe^{-x} \\ \begin{cases} -Ax &= x \\ -2A-B &= 0 \end{cases} \Longrightarrow \begin{cases} A &= -1 \\ B &= 2 \end{cases} \end{split}$$

Общее решение уравнение

$$y(x) = C_2 e^{\sqrt{2}x} + C_1 e^{-\sqrt{2}x} + (2-x)e^{-x}$$

Начальные условия: y(0) = 2, y'(0) = 1

$$\begin{cases} 1 = -\sqrt{2}C_1 + \sqrt{2}C_2 - 1 - 2 \\ 2 = C_1 + C_2 + 2 \end{cases} \Longrightarrow \begin{cases} C_1 = -C_2 \\ -\sqrt{2}C_1 + \sqrt{2}C_2 = 2 \end{cases}$$

$$2\sqrt{2}C_2 = 2 \Longrightarrow C_2 = \frac{1}{\sqrt{2}}$$

$$\begin{cases} C_2 = \frac{1}{\sqrt{2}} \\ C_1 = -\frac{1}{\sqrt{2}} \end{cases}$$

Финальное решение

$$y(x) = -\frac{1}{\sqrt{2}}e^{-\sqrt{2}x} + \frac{1}{\sqrt{2}}e^{\sqrt{2}x} + (2-x)e^{-x}$$

Сравнение результатов

Представлены в Таблице 2.

Таблица 2. Сравнение численного и аналитического решения

x_i	метод	Точное	Абсолютная
	Рунге-Кутта	решение	погрешность
	y_{i}	$y(x_i)$	$ y_i - y(x_i) $
x_0	2.000000	2.000000	0.000000
x_1	2.117052	2.120526	0.003474
x_2	2.276942	2.284425	0.007483
x_3	2.483477	2.495716	0.012239