CS 480 – Introduction to Artificial Intelligence

TOPIC: BAYESIAN NETWORKS
PARAMETER ESTIMATION

http://www.cs.iit.edu/~mbilgic

https://twitter.com/bilgicm

BAYESIAN NETWORK PARAMETER ESTIMATION

• Given:

- A set of random variables, V_i
 - E.g., age, gender, cholesterol level, etc.

- A Bayesian network structure over these variables
 - E.g., a doctor can point out the most important correlations and causations
- Data
 - ullet E.g., existing patient records, where some or all V_i are known

CS581

o Goal: Tusk

• Estimate the parameters needed for the Bayesian network, i.e., $P(V_i \mid parentsOf(V_i)) - P(V_1 ... V_n)$: 1

2

KNOWN BAYESIAN NETWORK STRUCTURE

- In this class, we assume the structure is given
- How reasonable is this assumption?
 - In some domains, the expert might provide a reasonable structure to start with
- There are many methods that learn the structure of the Bayesian network from data
 - Those topics are covered in the CS583 Probabilistic Graphical Models course in detail

PARAMETER ESTIMATION FOR BNS

- \circ Assume the network structure is given over variables V_i
- Let d_i be a fully observed instance
 - $d_i = \langle V_1 = t, V_2 = f, ..., V_n = t \rangle$
- \circ The data \mathcal{D} consists of fully observed instances
 - $\mathcal{D} = \{d_1, d_2, ..., d_m\}$
- Estimate the network parameters $P(V_i \mid parents(V_i))$
- Two approaches
 - 1. Maximum likelihood estimation
 - 2. Bayesian estimation

4

SIMPLEST CASE — ONE VARIABLE

- Imagine we have a thumbtack
- Flip it, and it comes as heads or tails

heads

tails

- $P(Heads) = \theta$, $P(Tails) = 1 \theta$
- Assume we flip it 100 times and it comes head 30 times
- What is θ ?

THUMBTACK TOSSES

- Assume we have a set of thumbtack tosses
 - $\mathcal{D} = \{d_1, d_2, ..., d_{100}\}$
- Assume we have 30 heads and 70 tails
- $P(Heads) = \theta$, $P(Tails) = 1 \theta$
- \circ θ can be any number between 0 and 1
- We have an infinite number of choices
 - θ =0, ..., θ =0.3, ..., θ =0.5, ..., θ =1
- We want to formulate an objective function $f(\theta: D)$, where, given 30 heads and 70 tails, $f(\theta: D)$ achieves its maximum when $\theta=0.3$
 - Any ideas?

T, T, ...

16

· · +

dz dz

Morld

ikely t

F

LIKELIHOOD
$$P(H) = P(T) = P(H) P(T)$$

 $P(H) = P(H) P(T)$

• What is the probability, or *likelihood*, of seeing the sequence H, T, T, H, H?

•
$$\theta*(1-\theta)*(1-\theta)*\theta*\theta = \theta^3(1-\theta)^2$$

When is $L(\theta:\mathcal{D})$ maximum?

7

positive fint

LIKELIHOOD/LOG-LIKELIHOOD

- Number of heads = k, number of tails = m-k
- Likelihood: $L(\theta:\mathcal{D}) = \theta^k (1-\theta)^{m-k}$
- Log-likelihood: $l(\theta:\mathcal{D}) = k\log\theta + (m-k)\log(1-\theta)$
- Note that $L(\theta; \mathcal{D})$ achieves its maximum for $\underline{\theta}$ that maximizes $l(\theta; \mathcal{D})$
- o Find θ that maximizes the log-likelihood
- Take derivate of $l(\theta:\mathcal{D})$ w.r.t. θ and set it to zero

LET'S SEE A FEW EXAMPLES

- Simple structure
 - $\bullet X \rightarrow Y$
- General structure
 - The key is that the parameters for each variable can be optimized independently
 - Examples

BAYESIAN ESTIMATION

- Assume we flip a coin 10 times and we get 4
 Heads, 6 Tails

 + recince + (3)

 What is P(C=H)?

 0.5
- What if we repeat the flips 10M times and we get

 4M Heads and 6M Tails? ἐχγινίω μ (ως)ς

prior belief.

• Bayesian estimation will let us encode our prior knowledge

Small date 3 trust war experience more
10 se date =) trust the late more

TO CUT IT SHORT, (I MEAN REALLY SHORT)

- We'll encode our prior knowledge as a set of "imaginary" counts
- For example, we will assume that we have already seen α heads and β tails
- Assume we flip a coin 10 times and we get 4 Heads, 6 Tails
 - $P(C=heads) = (4 + \alpha) / (10 + \alpha + \beta)$
 - $\alpha = 0$, $\beta = 0$; P(C=h) = 4/10 = 0.4
 - $\alpha = 1$, $\beta = 1$; P(C=h) = 5/12 = 0.417
 - $\alpha = 10$, $\beta = 10$; P(C=h) = 14/30 = 0.467
 - $\alpha = 100$, $\beta = 100$; P(C=h) = 104/210 = 0.495
- Assume we flip a coin 1000 times and we get 400 Heads, 600 Tails
 - $P(C=heads) = (400 + \alpha) / (1000 + \alpha + \beta)$
 - $\alpha = 0$, $\beta = 0$; P(C=h) = 400/1000 = 0.4
 - $\alpha = 1$, $\beta = 1$; P(C=h) = 401/1002 = 0.4002
 - $\alpha = 10$, $\beta = 10$; P(C=h) = 410/1020 = 0.402
 - $\alpha = 100$, $\beta = 100$; P(C=h) = 500/1200 = 0.417

IMAGINARY COUNTS

- Note that imaginary counts can be applied to any categorical variable, not necessarily just binary variables
- Also helps with dealing zero probabilities
- When all imaginary counts are 1, this is called Laplace smoothing
 - E.g, $\alpha = 1$, $\beta = 1$
- Let's see some examples