

Wydział Mechatroniki

Praca magisterska

Jakub Mikołaj Szlendak

System lokalizacji robota mobilnego w pomieszczeniu zamkniętym na podstawie siły sygnału radiowego

Opiekun pracy: prof. dr hab. Barbara Siemiątkowska

> Konsultant pracy: mgr inż. Daniel Koguciuk

Warszawa, 2017

Spis treści

Spis treści					
$\mathbf{S}_{\mathbf{I}}$	ois ry	rsunków	4		
1	$\mathbf{W}\mathbf{s}^{1}$	\mathbf{W} stęp			
2	Pro	pagacja sygnału radiowego w pomieszczeniu zamkniętym	6		
3	Metody lokalizacji bezprzewodowej w pomieszczeniu				
	3.1	Technologie radiowe	7		
		3.1.1 Wi-Fi	7		
		3.1.2 Bluetooth	7		
	3.2	Algorytmy	7		
		3.2.1 Trilateracja	7		
		3.2.2 Fingerprinting	7		
4	Projekt algorytmu lokalizacji robota				
	4.1	Gromadzenie danych ze znaczników	8		
	4.2	Filtracja i konwersja danych RSSI na odległość	8		
	4.3	Trilateracja	8		
5	Pro	jekt algorytmu fuzji sensorycznej	9		
	5.1	Fuzja sensoryczna	9		
	5.2	Filtr Kalmana	9		
	5.3	Filtr cząsteczkowy	9		
	5.4	Fuzja lokalizacji BLE z odometrią	9		
	5.5	Fuzja lokalizacji BLE z sensorem bezwładnościowym	9		
	5.6	Fuzia lokalizacii BLE z lokalizacia w oparciu o skaner laserowy	g		

SPIS TREŚCI 3

6	Plat	tforma testowa	10		
	6.1	System locationTAG	10		
		6.1.1 Znacznik locationTAG	10		
		6.1.2 System gromadzenia danych	10		
	6.2	Robot	10		
7	Test	ty rozwiązania	11		
	7.1	Narzędzia testowe	11		
	7.2	Porównanie metod filtracji siły sygnału RSSI	11		
	7.3	Porównanie metod fuzji sensorycznej	11		
Bibliografia					
W	Wykaz skrótów				

Spis rysunków

\mathbf{Wstep}

Problem lokalizacji robota w pomieszczeniu zamkniętym jest w ostatnich latach często rozważany. Jako że nawigacja satelitarna (GPS, GLONASS) jest niedostępna w pomieszczeniach zamkiętych, konieczne jest opracowanie innych metod lokalizowania robota. Do tych metod należą m. in:

- lokalizacja w oparciu o wizualne znaczniki i system ich rozpoznawania
- lokalizacja na podstawie stereowizji
- odometria
- lokalizacja na podstawie odległości od znaczników (radiowych, akustycznych itp)

Przedmiotem niniejszej pracy jest zaprojektowanie oprogramowania do znacznika radiowego i odbiornika, pozwalającego na wyznaczanie odległości odbiornika do znacznika na podstawie parametru RSSI (Received Signal Strength Indication). Parametr RSSI określa moc odbieranego sygnału radiowego.

Takie znaczniki mogą zostać rozmieszczone w środowisku pracy robota, z kolei robot może zostać niskim kosztem wyposażony w odbiornik radiowy [?]. Dysponując mapą rozmieszczenia znaczników w pomieszczeniu oraz informacją o odleglościach pomiędzy robotem a poszczególnymi znacznikami, można wyznaczać pozycję robota.

Ze względu na niski koszt sprzętu i łatwość implementacji, do implementacji rozwiązania wybrano protokół Bluetooth Low Energy.

Propagacja sygnału radiowego w pomieszczeniu zamkniętym

Metody lokalizacji bezprzewodowej w pomieszczeniu

- 3.1 Technologie radiowe
- 3.1.1 Wi-Fi
- 3.1.2 Bluetooth

Bluetooth Low Energy

- 3.2 Algorytmy
- 3.2.1 Trilateracja
- 3.2.2 Fingerprinting

Projekt algorytmu lokalizacji robota

- 4.1 Gromadzenie danych ze znaczników
- 4.2 Filtracja i konwersja danych RSSI na odległość
- 4.3 Trilateracja

Projekt algorytmu fuzji sensorycznej

- 5.1 Fuzja sensoryczna
- 5.2 Filtr Kalmana
- 5.3 Filtr cząsteczkowy
- 5.4 Fuzja lokalizacji BLE z odometrią
- 5.5 Fuzja lokalizacji BLE z sensorem bezwładnościowym
- 5.6 Fuzja lokalizacji BLE z lokalizacją w oparciu o skaner laserowy

Platforma testowa

- 6.1 System locationTAG
- 6.1.1 Znacznik locationTAG
- 6.1.2 System gromadzenia danych
- 6.2 Robot

Testy rozwiązania

- 7.1 Narzędzia testowe
- 7.2 Porównanie metod filtracji siły sygnału RSSI
- 7.3 Porównanie metod fuzji sensorycznej

Wykaz skrótów

Advanced Encryption Standard API Application Programming Interface BLE Bluetooth Low Energy FHSS Frequency Hopping Spread Spectrum

GATTGeneric Attibute

AES

GCC**GNU** Compiler Collection

ISM Industrial, Scientific, Medical (pasmo częstotliwości)

MAC Media Access Control RAM Random Access Memory ROS Robot Operating System

RSSI Radio Signal Strength Indicator

SDKSoftware Development Kit

UHF Ultra High Frequency