MAT602 - FUNCTIONAL ANALYSIS

YANNIS BÄHNI

Contents

1	Line	ear Operators
	1.1	Continuous Operators
	1.2	The Hahn-Banach Theorem
	1.3	Reflexivity
	1.4	Hilbert Space Methods
2	Baire Category Theorem	
	2.1	Baire Category Theorem and Banach-Steinhaus

1. Linear Operators

1.1. Continuous Operators.

Definition 1.1. Let $(X, \|\cdot\|_X)$ and $(Y, \|\cdot\|_Y)$ be two normed spaces. An **operator** is a linear mapping $T: X \to Y$. Moreover, we say that an operator $T: X \to Y$ is **bounded** if there exists c > 0 such that

$$||T(x)||_{Y} \le c ||x||_{X} \tag{1}$$

holds for all $x \in X$.

1.2. The Hahn-Banach Theorem.

Lemma 1.1. Let V be a real vector space, $S \subsetneq V$ a linear subspace, $p: V \to \mathbb{R}$ a sublinear functional, $f: S \to \mathbb{R}$ linear and $x_0 \in V \setminus S$. Moreover, assume that $f \leq p$ on S. Then there exists $F: S + \mathbb{R}x_0 \to \mathbb{R}$ linear such that $F \leq p$ on $S + \mathbb{R}x_0$ and $F|_S = f$.

Theorem 1.1 (Hahn-Banach, \mathbb{R}). Let V be a vector space over \mathbb{R} , $S \subseteq V$ a linear subspace and $f: S \to \mathbb{R}$ linear. Moreover, let $p: V \to \mathbb{R}$ be a sublinear functional such that $f \leq p$ on S. Then there exists $F: V \to \mathbb{R}$ linear such that $F \leq p$ on V and $F|_{S} = f$.

(Yannis Bähni) University of Zurich, Rämistrasse 71, 8006 Zurich *E-mail address*: yannis.baehni@uzh.ch.

Theorem 1.2 (Hahn-Banach, \mathbb{R} or \mathbb{C}). Let V be a vector space over \mathbb{K} , $q:V\to\mathbb{R}$ a seminorm, $S\subseteq V$ a linear subspace and $f:S\to\mathbb{K}$ linear with $|f|\leq q$ on S. Then there exists $F:V\to\mathbb{K}$ linear with $F|_S=f$ and $|F|\leq q$ on V.

Corollary 1.1 (Extension). Let $(X, \|\cdot\|)$ be a normed space over \mathbb{K} , $S \subseteq X$ a linear subspace and $f \in S^*$. Then there exists $F \in X^*$ such that $F|_S = f$ and $\|F\|_{X^*} = \|f\|_{S^*}$.

Corollary 1.2 (Separation). Let $(X, \|\cdot\|)$ be a normed space over \mathbb{K} and $x_0 \in X \setminus \{0\}$. Then there exists $f \in X^*$ with $\|f\| = 1$ and $f(x_0) = \|x_0\|$.

1.3. Reflexivity.

Proposition 1.1. Let X be a normed vector space over \mathbb{K} . Then the mapping $\Phi: X \to X^{**}$ defined by $\Phi(x) := \varphi_x$, where $\varphi_x: X^* \to \mathbb{R}$ is defined by $\varphi_x(f) := f(x)$, is a linear isometry.

Theorem 1.3. Let X be a Banach space. Then X is reflexive if and only if X^* is reflexive.

1.4. Hilbert Space Methods.

Theorem 1.4 (Riesz's Representation Theorem). Let $(H, \langle \cdot, \cdot \rangle)$ be a Hilbert space over \mathbb{K} . The mapping $\Psi : H \to H^*$ defined by $(\Psi(x))(y) := \langle x, y \rangle$ is an anti-linear isometric isomorphism.

Corollary 1.3. Every Hilbert space is reflexive.

Theorem 1.5 (Lax-Milgram). Let H be a Hilbert space over \mathbb{K} and let $a: H \times H \to \mathbb{K}$ be a sesquilinear form. Moreover, suppose that there are constants $0 < c_0 \le C_0 < \infty$ such that

$$|a(x, y)| \le C_0 ||x|| ||y||$$
 (Continuity),
Re $a(x, x) \ge c_0 ||x||^2$ (Coercivity),

for all $x, y \in H$. Then there exists a unique $A \in \mathcal{L}(H)$ such that

$$a(x, y) = \langle Ax, y \rangle \tag{2}$$

for all $x, y \in H$. Moreover, A is invertible with

$$||A|| \le C_0 \quad and \quad ||A^{-1}|| \le \frac{1}{c_0}.$$
 (3)

2. Baire Category Theorem

2.1. Baire Category Theorem and Banach-Steinhaus.

Theorem 2.1 (Baire Category Theorem). Every complete metric space is a Baire space.

Theorem 2.2 (Banach-Steinhaus). Let X be a Banach space, Y a normed space and $\mathcal{F} \subseteq \mathcal{L}(X,Y)$. Assume that for all $x \in X$ there exists $c_x \geq 0$ such that

$$\sup_{T \in \mathcal{F}} ||T(x)|| \le c_x. \tag{4}$$

Then there exists $c \ge 0$ with

$$\sup_{T \in \mathcal{F}} ||T|| \le c. \tag{5}$$