EEL7052-Sistemas Lineares

Avaliação 1 - Semestre 2015/2 - 28/09/2015 Departamento de Engenharia Elétrica e Eletrônica - UFSC Profs. Bartolomeu F. Uchôa Filho e Márcio H. Costa

1. A função h(t) apresentada abaixo é a resposta ao impulso de um determinado sistema contínuo no tempo. Assume-se que a informação contida nela caracteriza o sistema completamente. A partir do apresentado:

- a) Classifique (com justificativa) o sistema em relação a: memória, causalidade, linearidade e invariância no tempo, estabilidade.
- b) Esboce as componentes par e ímpar de h(t).
- c) Apresente uma descrição analítica para h(t) utilizando funções singulares (conhecidas).
- d) Esboce o sinal h(-t/2+1).
- 2. Considere o sistema descrito pela seguinte equação diferencial:

$$\frac{d^{2}y(t)}{dt^{2}} + 4\frac{dy(t)}{dt} + 3y(t) = x(t)$$

com condições iniciais $y(0^-) = -2$ e $\dot{y}(0^-) = 1$ e sinal de entrada dado por x(t) = u(t-1). Determine (usando o método de sua preferência):

- a) A resposta à entrada nula;
- b) A resposta ao estado nulo;
- c) Avalie a estabilidade do sistema utilizando o critério BIBO (justifique).
- 3. No circuito abaixo, a chave encontra-se fechada desde $t = -\infty$ até $t = 0^-$, depois do que a chave é aberta, em t = 0, permanecendo nessa condição para sempre. Determine $v_o(t)$, para $t \ge 0$, utilizando a transformada de Laplace.

FORMULÁRIO

Transformadas de Laplace

	11 and of the
f(t)	F(s)
$\delta(t)$	1
u(t)	1/s
t.u(t)	1/s ²
e ^{-at} u(t)	1/(s+a)
sen(bt)u(t)	$b/(s^2+b^2)$
cos(bt)u(t)	s/(s ² +b ²)
e-at[Acos(bt)+((B-Aa)/b)sen(bt)]u(t)	(As+B)/(s ² +2as+c)
onde b=sqrt(c-a ²)	

Domínio do tempo	Domínio de s
f(t)	F(s)
df(t)	sF(s) - f(0-)
dt	
<u>d²f(t)</u>	$s^2F(s) - sf(0^-) - df(0^-)$
dt ²	dt
e ^{-at} f(t)	F(s+a)
$f_1(t)*f_2(t)$	$F_1(s).F_2(s)$
f(t-a)u(t-a), a≥0	e ^{-as} F(s)
f(at)	1/ a . F(s/a)
t.f(t)	<u>-dF(s)</u>
	ds

Sinais

Expansão em Frações Parciais:

$$E = \int_{-\infty}^{+\infty} |f(t)|^2 dt$$

$$x_p(t) = \frac{1}{2} [x(t) + x(-t)]$$

$$K_i = \frac{N(s)}{D(s)}(s+p_i)\bigg|_{s=-pi}$$

$$x_i(t) = \frac{1}{2} [x(t) - x(-t)]$$

$$K_{1r} = \frac{N(s)}{D(s)} (s + p_1)^r \bigg|_{s = -p_1}$$

$$P = \lim_{t \to \infty} \frac{1}{T} \int_{-T/2}^{T/2} |f(t)|^2 dt$$

$$x_{i}(t) = \frac{1}{2} \left[x(t) - x(-t) \right]$$

$$K_{1r} = \frac{N(s)}{D(s)} (s + p_{1})^{r} \bigg|_{s = -p_{1}}$$

$$P = \lim_{t \to \infty} \frac{1}{T} \int_{-T/2}^{T/2} |f(t)|^{2} dt$$

$$K_{1r-j} = \frac{1}{j!} \frac{d^{j}}{ds^{j}} \frac{N(s)}{D(s)} (s + p_{1})^{r} \bigg|_{s = -p_{1}}$$

Capacitor:

$$\begin{array}{c|c}
C & i(t) \\
 & \downarrow \\
 & \downarrow \\
 & v(t) & -
\end{array}$$

$$I(s) \quad Z_C(s) \quad + \frac{v(0^-)}{s} \quad - \quad + \quad V(s) \quad - \quad Z_C(s)$$

Indutor:

$$I(s) \quad Z_L(s) \quad - \quad \begin{array}{c} Li(0^-) \\ + \\ V(s) \end{array} \quad - \quad \begin{array}{c} \\ \end{array}$$