Solutions to Exercises in How to Prove It by Daniel J. Velleman

Third Edition

Severen Redwood

Contents

In	troduction	1
1	Sentential Logic 1.1 Deductive Reasoning and Logical Connectives	3 3 4
2	Quantificational Logic 2.1 Quantifiers	4
3	Proofs 3.1 Proof Strategies	5
Ir	ntroduction	
Εz	xercise 1.	

- (a) Factor $2^{15} 1 = 32,767$ into a product of two smaller positive integers.
- (b) Find an integer x such that $1 < x < 2^{32,767} 1$ and $2^{32,767} 1$ is divisible by x.

Solution. The proof of Theorem 1 shows that $2^n - 1 = xy$, where $x := 2^b - 1$ and $y := 1 + 2^b + 2^{2b} + \dots + 2^{(a-1)b}$, and that $2^n - 1 = 2^{ab} - 1$, which implies n = ab.

- (a) If $n = 15 = 3 \cdot 5$, we can take a = 3 and b = 5. Therefore, $x = 2^5 1 = 31$ and $y = 1 + 2^5 + 2^{2 \cdot 5} = 1057$, and thus $2^{15} 1 = 31 \cdot 1057 = 32,767$.
- (b) If $n = 32,767 = 7 \cdot 4,681$, we can take b = 7. Therefore, $x = 2^7 1 = 127$, which is clearly a divisor of $2^{32,767} - 1$ and necessarily less than $2^{32,767} - 1$.

Exercise 2. Make some conjectures about the values of n for which $3^n - 1$ is prime or the values of n for which $3^n - 2^n$ is prime.

Solution. By looking at Table 1, we can make the following conjecture about $3^n - 1$:

Conjecture. If n is an integer greater than or equal to 1, then $3^n - 1$ is even.

By looking at Table 2, we can make the following two conjectures about $3^n - 2^n$:

Conjecture. If n is an integer greater than 1 and is prime, then $3^n - 2^n$ is prime.

Conjecture. If n is an integer greater than 1 and is not prime, then $3^n - 2^n$ is not prime.

n	Is n prime?	$3^{n} - 1$	Is $3^n - 1$ prime?
1	no	2	yes
2	yes	8	no
3	yes	26	no
4	no	80	no
5	yes	242	no
6	no	728	no
7	yes	2186	no
8	no	6560	no
9	no	19682	no
10	no	59048	no

Table 1: Values of $3^n - 1$.

\overline{n}	Is n prime?	$3^{n}-2^{n}$	Is $3^n - 2^n$ prime?
			*
1	no	1	no
2	yes	5	yes
3	yes	19	yes
4	no	65	no
5	yes	211	yes
6	no	665	no
7	yes	2059	yes
8	no	6305	no
9	no	19171	no
10	no	58025	no

Table 2: Values of $3^n - 2^n$.

1 Sentential Logic

1.1 Deductive Reasoning and Logical Connectives

Exercise 1. Analyse the logical forms of the following statements:

- (a) We'll have either a reading assignment or homework problems, but we won't have both homework problems and a test.
- (b) You won't go skiing, or you will and there won't be any snow.
- (c) $\sqrt{7} \nleq 2$.

Solution. The logical forms are:

- (a) $(R \lor H) \land \neg (H \land T)$, where R stands for "we will have a reading assignment", H for "we will have homework problems", and T for "we will have a test".
- (b) $\neg G \lor (G \land \neg S)$, where G stands for "you will go skiing" and S for "there will be snow".

(c)
$$\neg ((\sqrt{7} < 2) \lor (\sqrt{7} = 2)).$$

Exercise 2. Analyse the logical forms of the following statements:

- (a) Either John and Bill are both telling the truth, or neither of them is.
- (b) I'll have either fish or chicken, but I won't have both fish and mashed potatoes.
- (c) 3 is a common divisor of 6, 9, and 15.

Solution. The logical forms are:

- (a) $(J \wedge B) \vee \neg (A \vee B)$, where J stands for "John is telling the truth" and B for "Bill is telling the truth".
- (b) $(F \lor C) \land \neg (F \land M)$, where F stands for "I will have fish", C for "I will have chicken", and M for "I will have mashed potatoes".
- (c) $A \wedge B \wedge C$, where A stands for "3 divides 6", B for "3 divides 9", and C for "3 divides 15".

Exercise 3. Analyse the logical forms of the following statements:

- (a) Alice and Bob are not both in the room.
- (b) Alice and Bob are both not in the room.
- (c) Either Alice or Bob is not in the room.
- (d) Neither Alice nor Bob is in the room.

Solution. Let A stand for "Alice is in the room" and B for "Bob is in the room". Then, the logical forms are:

- (a) $\neg (A \land B)$.
- (b) $\neg A \wedge \neg B$.
- (c) $\neg A \lor \neg B$.

(d)
$$\neg A \land \neg B$$
.

1.2 Truth Tables

Exercise 1. Make truth tables for the following formulae:

- (a) $\neg P \lor Q$.
- (b) $(S \vee G) \wedge (\neg S \vee \neg G)$.

Solution. The truth tables are:

•				
	P	Q	$\neg P \lor Q$	
	Τ	Т	T	
	${ m T}$	\mathbf{F}	\mathbf{F}	
	\mathbf{F}	\mathbf{F}	${ m T}$	
(a)	F	Τ	${ m T}$	
(a)				
	S	G	$(S \vee G) \wedge$	$(\neg S \vee \neg G)$
•	Т	Т		Τ
(b)	Τ	F		F

2 Quantificational Logic

2.1 Quantifiers

Exercise 1. Analyse the logical forms of the following statements:

- (a) Anyone who has forgiven at least one person is a saint.
- (b) Nobody in the calculus class is smarter than everybody in the discrete maths class.

- (c) Everyone likes Mary, except Mary herself.
- (d) Jane saw a police officer, and Roger saw one too.
- (e) Jane saw a police officer, and Roger saw him too.

Solution. The logical forms are:	
(a) Todo.	
(b) Todo.	
(c) Todo.	
(d) Todo.	
(e) Todo.	
3 Proofs	
3.1 Proof Strategies	
Exercise 1. Consider the following theorem. (This theorem was protion.)	ved in the introduc-
Theorem. Suppose n is an integer larger than 1 and n is not prime. prime.	Then $2^n - 1$ is not
(a) Identify the hypotheses and conclusion of the theorem. Are twhen $n=6$? What does the theorem tell you in this instance?	
(b) What can you conclude from the theorem in the case $n=15$? this conclusion is correct.	Check directly that
(c) What can you conclude from the theorem in the case $n=11$?	
Solution.	
(a) Todo.	
(b) Todo.	
(c) Todo.	