РГПУ им. А.И. Герцена

Тема: «Динамическое программирование»

Свистунова М. П., 2ИВТ (1) 2 подгруппа

Лабораторная работа №6

Модели динамического программирования

Задача: на заданной сети дорог имеется несколько маршрутов по доставке груза из пункта 1 в пункт 11. Стоимость перевозки единицы груза между отдельными пунктами сети проставлены у соответствующий ребер. Необходимо определить оптимальный маршрут доставки груза из пункта 1 в пункт 11, который обеспечил бы минимальные транспортные расходы.

І этап. Условная оптимизация

1. Шаг №1

$$k = 1, F_1(i) = C_i(11)$$

На шаге №1 груз может быть доставлен из пунктов 8, 9, 10.

i j	11	$F_1(i)$	j^*
8	10	10	11
9	9	9	11
10	8	8	11

2. Шаг №2

$$k = 2, F_2(i) = \min_{j} \{ C_{ij} + F_1(j) \}$$

На шаге №2 груз может быть доставлен из пунктов 6, 7.

i j	8	9	10	$F_2(i)$	j^*
6	18 + 10 = 28	14 + 9 = 23	16 + 8 = 24	23	9
7	11 + 10 = 21	12 + 9 = 21	10 + 8 = 18	18	10

3. Шаг №3

$$k = 3, F_3(i) = \min_{j} \{ C_{ij} + F_2(j) \}$$

На шаге №3 груз может быть доставлен из пунктов 2, 3, 4, 5.

i j	6	7	$F_3(i)$	j^*
2	12 + 23 = 35	9 + 18 = 27	27	7
3	13 + 23 = 36	16 + 18 = 34	34	7
4	10 + 23 = 33	9 + 18 = 27	27	7
5	10 + 23 = 33	16 + 18 = 34	33	6

4. Шаг №4

$$k = 4, F_4(i) = \min_{j} \{ C_{ij} + F_3(j) \}$$

На шаге №4 груз может быть доставлен из пункта 1.

i	2	3	4	5	$F_4(i)$	j^*
1	16 + 27 = 43	9 + 34 = 43	14 + 27 = 41	12 + 33 = 45	41	4

II этап. Безусловная оптимизация

На этапе условной оптимизации получено, что минимальные затраты на перевозку груза из пункта 1 в пункт 11 составляют $F_4(1) = 41$.

Данный результат достигается при движении груза (по результатам таблиц):

- 1. из 1-ого пункта в 4-ый
- 2. из 4-ого пункта в 7-ой
- 3. из 7-ого пункта в 10-ый
- 4. из 10-ого пункта в 11-ый

Т.е. оптимальный маршрут доставки груза:

$$1 \Rightarrow 4 \Rightarrow 7 \Rightarrow 10 \Rightarrow 11.$$

Данный маршрут показан красными стрелками на рисунке ниже.

