Advanced Recurrence Relations

Example 1: There are $n \ge 1$ points on a circle, every two of which are joined by a chord. No three chords pass through a common point which lies inside the circle. Let a_n be the number of regions within the circle. Start by finding $a_1, a_2, a_3, a_4, a_5, a_6$ and then find a formula for a_n .

an = 1 + "the number of lines" + "the number of 1 pts"

- There is one line for every two points: \bigcirc : there are $\binom{n}{2}$ lines.
- There is one \bigcap pt for every 4 points! \bigcirc ... there are $\binom{n}{4}$ \bigcap pts.

$$a_n = 1 + \binom{n}{2} + \binom{n}{4}, n \ge 1$$

Example 2: On the planet Jubilation, the weather each day is either good or bad. If it is good, then it remains good the next day 70% of the time. If it is bad, then it remains bad the next day 60% of the time. Let a_n be the probability that weather is good on day n. Find a recurrence relation and solve the recurrence. If you landed on Jubilation on a random day what are the chances of having good weather (in other words, what happens as n goes to ∞)?

There are 2 ways the weather will end up being good on day n:

". The weather on day n=1 is good and $=(.7) a_{n-1}$

$$a_{n} = (.7) a_{n-1} + (.4)(1 - a_{n-1})$$

$$= (.3) a_{n-1} + (.4)$$

OR

Letting do=p the recurrence relation is:

$$a_0 = \rho$$
 $a_n = (.3) a_{p-1} + (.4)$

$$d_1 = (.3)p + (.4)$$

$$a_2 = (.3)^2 \rho + (.3)(.4)$$

$$a_3 = (3)^3 p + (3)^2 (4) + (.4)$$

$$a_{n} = (3)^{n} p + (3)^{n-1} (4) + (3)^{n-2} (4) + \dots + (3)(4) + (4)$$

$$= (3)^{n} p + (4)(3)^{n-1} + (3)^{n-2} + \dots + (3) + 1$$

$$= (.3)^{n} p + (.4) ((.3)^{n-1} + (.3)^{n-2} + \cdots + (.3) + 1)$$

$$= (.3)^{n} \rho + (.4) \frac{1 - (.3)^{n}}{1 - (.3)}$$

$$= (.3)^{n} P + (.4)(1-(.3)^{n})$$

$$(.7)$$

$$a_n = \frac{4}{7} \cong 57$$
%

Example 3: Let a_n be the number of words of length $n \ge 1$ containing the digits $\{0, 1, 2, 3\}$ with an even number of 2's. Start by calculating a_1, a_2 , and a_3 then find recurrence relation and solve it.

Length		Words		a_n
1.		0 1 3		$a_1 = 3$
2	00 01 03	10 11 13	30 31 33	$a_2 = 10$
3	000 001 003 010 011 013 030 031 033 022	100 101 103 110 111 113 130 131 133 122 220 221 223 202 212	300 301 303 310 311 313 330 331 333 322	$a_3 = 36$

an= ?

there are n-1 remaining digits that have an even # of 2's. Since there are 3 choices for the first digit 0 an-1 there are 3 an-1 words 1 an-1 words 3 an-1

"Total # of words" - "number of words"
with an even amount
of 2's

 $= 4^{n-1}$

2 4ⁿ⁻¹ - an-1 words

 $a_1 = 3$ $a_n = 2 a_{n-1} + 4^{n-1}$

is the c.r.

Solve:
$$a_{1} = 3$$

 $a_{1} = 3$
 $a_{2} = 3 \cdot 2 + 2^{2(1)}$
 $a_{3} = 3 \cdot 2^{2} + 2^{3} + 2^{2(3-1)}$
 $a_{4} = 3 \cdot 2^{3} + 2^{4} + 2^{5} + 2^{6}$
 $a_{5} = 3 \cdot 2^{4} + 2^{5} + 2^{6} + 2^{7} + 2^{8}$
...
$$a_{n} = 3 \cdot 2^{n-1} + 2^{n} + 2^{n+1} + \cdots + 2^{2(n-1)}$$

$$= 3 \cdot 2^{n-1} + (1 + 2^{1} + 2^{2} + \cdots + 2^{n-1}) + 2^{n} + \cdots + 2^{2(n-1)}$$

$$= (1 + 2^{1} + 2^{2} + \cdots + 2^{n-1})$$

$$= 3 \cdot 2^{n-1} + (2^{2n-1} - 1) - (2^{n} - 1)$$

$$= 2^{n-1} (3 + 2^{n} - 2)$$

$$= 2^{n-1} (2^{n} + 1)$$

Note:

$$\begin{pmatrix} # & of & words \\ with & an & even \\ # & of & 2's \end{pmatrix} + \begin{pmatrix} # & of & words \\ with & an & odd \\ # & of & 2's \end{pmatrix} = \begin{pmatrix} # \\ of \\ words \end{pmatrix}$$

$$2^{n-1}(2^n+1) \qquad 2^{n-1}(2^n-1) \qquad 4^n$$

This works since:

$$2^{n-1}(2^{n}+1) + 2^{n-1}(2^{n}-1)$$

$$= 2^{n-1}(2^{n}+1 + 2^{n}-1)$$

$$= 2^{n-1}(2 \cdot 2^{n})$$

$$= 2^{n-1} \cdot 2^{n+1}$$

$$= 2^{n} \cdot 2^{n}$$

$$= 4^{n}$$

Example 4: A bug starts at vertex A of the regular hexagon below and each minute travels to an adjacent vertex. There is a spider web on vertex D if the bug moves there it is stuck. Let

 a_n be the number of different ways the bug can travel from vertex A to vertex D after n minutes. b_n be the number of different ways the bug can travel from vertex B to vertex D after n minutes. f_n be the number of different ways the bug can travel from vertex F to vertex D after n minutes.

Set up a recurrence relation for a_n .

The bugs first move is to For B:

OR

 $\therefore a_n = f_{n-1}$

bn

By the vertical symmetry of the hexagon we have: $f_n = b_n$ for all n > 0.

$$a_{n} = 2 b_{n-1}$$

If the bugs first move is to B then the second move is to A or C. If the bugs second move is to C and n>3 then the bug must return to B or else it gets stuck at D too soon.

Now, sub equation (2) into equation (1) $a_n = 2(a_{n-2} + b_{n-3})$ for n > 3 $a_n = 2(a_{n-2} + 2b_{n-3})$ $a_n = 2(a_{n-2} + a_{n-2})$ by equation (1) $a_n = 3(a_{n-2} + a_{n-2})$ $a_n = 3(a_{n-2} + a_{n-2})$ $a_n = 3(a_{n-2} + a_{n-3})$

is the C.C.

Note: if the bug makes an even # of moves it will never be on vertex D. To see why we can colour the vertices:

bug is on vertex A, C, or E.