Musa Al-hassy June 4, 2019

Administrivia, Syntax

- ♦ Every Coq command ends with a period.
- \diamond The phrase Theorem T identifying statement S is proven by P is formalised as

```
Theorem T : S. (* T is only a name and can be used later. *)

Proof.

P (* See the current state of the proof in the CoqIde by clicking, in the toolbar, on the green arrow pointing at a yellow ball; or do "C-c C-Enter" in Proof General with Emacs. *)

Qed.

Local tactic a term, s.

in the toolbar, in the coqIde by clicking, in the toolbar, in the toolbar, or do "C-c C-Enter" in Proof General with Emacs. *)
```

- Instead of Theorem, you may also see proofs that start with Example, Lemma, Remark, Fact, Corollary, and Proposition, which all mean the <u>SAME</u> thing. This difference is mostly a matter of style.
- The command Admitted, in-place of Qed, can be used as a placeholder for an incomplete proof or definition.
 - Useful if you have a subgoal that you want to ignore for a while.
- Abort, in-place of Qed, is used to give up on a proof for the moment, say for presentation purposes, and it may be begun later with no error about theorems having the same name.

Comments (* I may be a multiline comment. *)

Stand alone commands As top-level items, we may make commands for:

Normalisation Compute X executes all the function calls in X and prints the result.

Type inspection Command Check X. asks Coq to print the type of expression X.

Introduce local definitions Two ways,

- ♦ Simple alias: pose (new_thing := complicated_expression).
- More involved: Write tactic assert (x : X). to define a new identifier x for a proof of X which then follows, and is conventionally indented.

Imports Loading definitions from a library,

Require Import Bool.

Pattern matching with destruct

We case on value e by destruct e as [a00 ... am0 | \cdots | a0n ... amn], which gives us n new subgoals corresponding to the number of constructors that could have produced e such that the *i*-th constructor has arguments ai0, ..., ak[U+1D62].

- \diamond The intros pattern as [\cdots] lets us use any friendly names of our choosing. We may not provide it at the cost of Coq's generated names for arguments.
- ♦ Many proofs pattern match on a variable right after introducing it, intros e. destruct e as [···], and this is abbreviated by the intro pattern: intros [···].
- If there are no arguments to name, in the case of a nullary construction, we can just write [].

Simple Tactics

exact If the subgoal matches an exact hypothesis, Then use exact <hyp_name>.

- simpl If the current subgoal contains a function call with all its arguments, simpl will execute the function on the arguments.
 - Sometimes a call to unfold f, for a particular function f, is needed before simpl will work.

Modus ponens, or function application If we have imp: A -> B, a: A then imp a is of type B. This also works if the imp contains forall's.

Local tactic application t in s performs the tactic t only within the hypothesis, term, s. For example, unfold defnName in item performs a local rewrite.

n the toolbar.

```
intros tactic: '\forall, \Rightarrow' introduction
```

- ♦ To prove a statement of the form (forall A: Prop, Q) we use the ∀-introduction tactic, supplied with a name for the variable introduced, as in intros A.
- \diamond To prove an implication $A \Rightarrow B$ we again use, say, intros pf_of_A.
- ♦ The intros command can take any positive number of arguments, each argument stripping a forall, (or ->), off the front of the current subgoal.

Notation, Definition, and the tactics fold and unfold

Definition is a vernacular command that says two expressions are interchangeable. Below (not A) and A -> False are declared interchangeable.

```
Definition not (A:Prop) := A \rightarrow False.
Notation "\sim x" := (not x) : type_scope.
```

Tactics unfold defnName and fold defnName will interchange them.

Notation creates an operator and defines it as an alternate notation for an expression.

(Use intros when working with negations since they are implications!)

```
(* If this is a recursive function, use 'Fixpoint' in-place of 'Definition'.*) Definition my_function (a0 : A0) \cdots (a99 : A99) : B := match a0 , ..., a99 with \mid C<sub>0</sub> p<sub>0</sub> ... p_n, ..., C_k q<sub>0</sub> \cdots q_m => definition_here_for_these_constructors_C[: end.
```

Telescoping If x_0 , \cdots , x_n have the same type, say T, we may declare their typing by $(x_0 \cdots x_n : T)$.

Notation Before the final ".", we may include a variant of where "n + m" := (my_function n m) : B_scope. for introducing an operator immediately with a function definition.

Examples of Common Datatypes

♦ Prop Type

```
o Coq restricts Prop to being either proven or unproven, rather than true or
       false.
♦ Sums
  Inductive or (A B:Prop) : Prop :=
    | or_introl : A -> A \/ B
    | or intror : B -> A \/ B
  where "A \backslash / B" := (or A B) : type_scope.
♦ Products
  Inductive and (A B:Prop) : Prop :=
    conj : A \rightarrow B \rightarrow A / B
  where "A /\ B" := (and A B) : type_scope.
♦ Naturals
  Inductive nat : Set :=
    | 0 : nat (* Capital-letter 0, not the number zero. *)
    | S : nat -> nat.
♦ Options
  Inductive option (A : Type) : Type :=
    | Some : A -> option A
    | None : option .A
♦ Lists
  Inductive list (A : Type) : Type :=
   | nil : list A
   | cons : A -> list A -> list A.
  Infix "::" := cons (at level 60, right associativity) : list scope.
```

• A Prop either has a proof or it does not have a proof.

True, False, true, false

The vernacular command Inductive lets you create a new type.

- ♦ The empty Prop, having no proofs, is False.
- ♦ The top Prop, having a single proof named I, is True.
- ♦ The bool type has two values: true and false.

```
Inductive False : Prop := .
Inductive True : Prop :=
    | I : True.

Inductive bool : Set :=
    | true : bool
    | false : bool.
```

In the boolean library there is a function <code>Is_true</code> which converts booleans into their associated Prop counterparts.

Existence \exists

```
Inductive ex (A:Type) (P:A -> Prop) : Prop :=
  ex_intro : forall x:A, P x -> ex (A:=A) P.

Notation "'exists' x .. y , p" := (ex (fun x => .. (ex (fun y => p)) ..))
  (at level 200, x binder, right associativity,
   format "'[' 'exists' '/ ' x .. y , '/ ' p ']'")
  : type_scope.
```

Note that the constructor takes 3 arguments: The predicate P, the witness x, and a proof of P x.

If we pose a witness beforehand then refine (ex_intro _ witness _)., Coq will infer P from the current goal and the new subgoal is the proof that the witness satisfies the predicate.

Equality, rewrite, and reflexivity

Two operators,

- $\diamond x = y :> A$ says that x and y are equal and both have type A.
- \diamond x = y does the same but let's Coq infer the type A.

```
Inductive eq (A:Type) (x:A) : A -> Prop :=
    eq_refl : x = x :>A
where "x = y :> A" := (@eq A x y) : type_scope.
Notation "x = y" := (x = y :>_) : type_scope.
```

Rather than using destruct, most proofs using equality use the tactics rewrite (orientation). If xEy has type x = y, then rewrite -> xEy will replace x with y in the subgoal, while using orientation <- rewrites the other-way, replacing y with x.

- ♦ This can also be used with a previously proved theorem. If the statement of said theorem involves quantified variables, Coq tries to instantiate them by matching with the current goal.
- ♦ As with destructing, the pattern intros eq. rewrite → eq. is abbreviated by the intro pattern intros []. which performs a left-to-right rewrite in the goal.

Use the reflexivity tactic to discharge a goal of type x = x.

♦ This tactic performs some simplification automatically when checking that two sides are equal; e.g., it tries simpl and unfold.

Discrepancy

Coq uses the operator <> for inequality, which really means equality is unprovable or equality implies False.

```
Notation "x <> y :> T" := (~ x = y :>T) : type_scope. Notation "x <> y" := (x <> y :>_) : type_scope.
```

Datatype constructors are necessarily disjoint, hence if we ever obtain a proof pf of distinct constructors being equal then we may invoke discriminate pf to short-circuit the current goal, thereby eliminating a case that could not have happened.

Searching for Existing Proofs

- Searching for utility functions, proofs, that involve a particular identifier by using Search.
- ♦ In contrast, SearchPattern takes a pattern with holes '' for expressions.
- \diamond Finally, SearchRewrite only looks for proofs whose conclusion in an equality involving the given pattern.

```
Search le.
(* le_n: forall n : nat, n <= n *)
(* le_0n: forall n : nat, 0 <= n *)
(* min_l: forall n m : nat, n <= m -> Nat.min n m = n *)
(* and many more *)

(* Let's load some terribly useful arithmetic proofs. *)
Require Import Arith Omega.

SearchPattern (_+_ <= _+_).
(* plus_le_compat_r: forall n m p : nat, n <= m -> n + p <= m + p *)
(* Nat.add_le_mono: forall n m p q : nat, n <= m -> p <= q -> n + p <= m + q *)
(* etc. *)

SearchRewrite (_ + (_ - _)).
(* le_plus_minus: forall n m : nat, n <= m -> m = n + (m - n) *)
(* le_plus_minus_r: forall n m : nat, n <= m -> n + (m - n) = m *)
(* Nat.add_sub_assoc: forall n m p : nat, p <= m -> n + (m - p) = n + m - p *)
```