Name	e:	• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • •	••••	
Roll N	Vо. :		***********		•••••	
Invigi	lato	r's Si	gnature :	•••••	•••••	
			CS/B.Tech	(ECE)/SI	EM-5/EC-513/20	10-11
			20 CONTRO	10-11 L SYST	`EMS	
Time Allotted : 3 Hours					Full Mark	s : 70
		Th	e figures in the m	argin indic	cate full marks.	
Can	did	ates d		e their ans as practi	swers in their own w cable.	ords
			GR	OUP – A		
	•	(Multiple Choi	ce Type	Questions)	
1.	Cho	ose t	he correct alterna	atives for a	any ten of the followi	ng:
					10 ×	1 = 10
	i)	The	insertion of neg	ative feed	back in a control s	ystem
		affe	cts	· · · · · · · · · · · · · · · · · · ·		
		a)	the transient re	sponse to	vanish uniformly	
		b)	the transient re	sponse to	decay very fast	
		c)	no change in tra	ansient re	sponse	٠
	•	d)	the transient re	sponse de	cays at a slow state.	
	ii)	The	conjugate pair of po	les on		
		the	Jw axis indicates	that the	system is	
		a)	stable	b)	unstable	•
		c)	marginally stab	le d)	critrically stable.	•
5403					l Tur	n over

iii)	The	e gain of a system is	10. In te	erms of dB it is			
	a)	0 dB	b)	1 dB			
	c)	20 dB	d)	100 dB.			
iv)	iv) The phase margin of a system is used to specify						
	a)	time response	b)	frequency response			
	c)	absolute stability	d)	relative stability.			
v)	tem is doubled, the gain						
	a)	is not affected	b)	gets doubled			
	c)	becomes half	d)	becomes 1/4th.			
vi)	oop transfer function						
	a)	increases rise time	e b)	decreases rise time			
	c)	increases overshoo	ot d)	has no effect.			
vii)	A system has a pole at origin, its impulse response will be						
	a)	constant	b)	ramp			
	c)	decaying exponent	ially d)	oscillatory.			
viii)	In	In force-voltage analogous system, displacement is					
	equivalent to						
	a)	current	b)	flux			
	c)	charge	(d)	inductance.			
5403		2					

- Root locus technique is applicable to ix)
 - single loop system a)
 - multiple loop system b)
 - single as well as multiple loop system c)
 - not more than two loop systems. d)
- The Z transform F(Z) of function $f(nt) = a^{nt}$ is x)
 - $\frac{Z}{z-a^{T}}$
- b) $\frac{Z}{z+a^T}$

- d) $\frac{Z}{z-a^{-T}}$.
- The membership value of Fuzzy control sytem is varied xi) within the range
 - a) 0 to 1
 - b) 1 to 2
 - 0 to 1.c)
- the state variable xii) The transfer function for representation $\frac{dx}{dt} = Ax + Bu$, Y = Cx + Du is given by

 - a) $D+C(SI-A)^{-1}B$ b) $B(SI-A)^{-1}C+D$

 - c) $B(SI-A)^{-1}B+C$ d) $C(SI-A)^{-1}D+B$.

5403

[Turn over

GROUP - B

(Short Answer Type Questions)

Answer any three of the following.

 $3 \times 5 = 15$

- 2. A system is represented by the state & output equations is given below. Find:
 - a) Characteristic equation
 - b) The poles.

$$\dot{X} = \begin{bmatrix} 0 & 1 & 2 \\ 0 & 3 & 4 \\ 1 & 3 & 2 \end{bmatrix} X + \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} u(t)$$

$$Y = \begin{bmatrix} 1 & 1 & 0 \end{bmatrix} X.$$

3. For a unity feedback system having open loop transfer function as $G(s) = \frac{k(s+2)}{s^2(s^2+7s+12)}$, determine (a) number of

types of the system, (b) error constants and (c) steady state error for parabolic input.

4. Find $\frac{C}{R}$ of the following signal flow graph using Mason's gain formula.

5403

- 5. For a system with $F(s)=s^4+22s^3+10s^2+s+k=0$, obtain the marginal value of k & the frequency of oscillation for that value of k.
- 6. A system is described by $\dot{X} = \begin{bmatrix} 1 & -1 \\ 1 & -1 \end{bmatrix} X + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u$ $Y = \begin{bmatrix} 1 & 0 \end{bmatrix} X.$

Check the controllability & observability of the system.

GROUP - C

(Long Answer Type Questions)

Answer any three of the following.

 $3 \times 15 = 45$

7. The open loop transfer function of an unity feedback system is given by $G(s) = \frac{k}{s(1+0.02s)(1+0.04s)}$. draw the Bode plot.

Find the gain margin & phase margin. Hence find the values of open loop gain so that the system has a phase margin of 45°.

- 8. The loop transfer function of a feedback control system is given by $G(s)H(s) = \frac{k(s+6)}{s(s+4)}$.
 - a) Sketch the root locus plot with K as a variable parameter & show that loci of complex roots are part of a circle.
 - b) Determine the break away/break in points if any.
 - c) Determine the range of K for which the system is underdamped.

5403

5

[Turn over

- 9. a) Find the z-transform of $\sin \omega t$.
 - b) A sampled data system has a transfer function: G(s) = 1/(s+1). If the sampling time is one second and the system is subjected to unit-step input function, determine the discrete time response.
 - c) Obtain z-transform for the following block diagram shown in the figure.

- 10. a) Write down the advantages and disadvantages of state space techniques.
 - b) Realize H(s) in cascade form:

$$H(s) = \frac{s(s+2)}{(s+1)(s+3)(s+4)}$$

5403

c) Obtain the eigenvalues and eigenvectors for a system described by

$$\dot{X} = \begin{bmatrix} 0 & 6 & -5 \\ 1 & 0 & 2 \\ 3 & 2 & 4 \end{bmatrix} X + \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} U \text{ and } Y = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} X. \qquad 3 + 6 + 6$$

- 11. a) Write a note on PID controller.
 - b) With the help of an example, explain the principle of fuzzy logic in control engineering.
 5 + 10