Satz 1. Differenzial des Kolimes von R-Algebren

Satz 2. Differential von rationalen Funktionen 1

seperabel generierte Koerpererweiterung mit DifR(T)(R) ist 0 [Aufgabe 16.10 David Eisenbud 1994(steht im Bezug zu Korrolar 16.17)]

Beispiel 3. Sei k ein Körper mit char(k) = p > 0 und sei weiter K(x) der Raum der Rationalen Funktionen über k.

Definiere:
$$L := k(x^{1/p^{\infty}}) = \lim_{\longrightarrow} \{k(x^{1/p^n}) | n \in \mathbb{N}\}$$

 $Dann \ gilt : \Omega_{L/k} = 0$

Prüfe noch, ob $L \supset k$ eine seperabel generierte Körpererweiterung ist.

Beweis. Es gilt:

$$d_L(x^{1/p^n}) = d_L\left(\prod_{i \in \{1, \dots, p\}} x^{1/p^{n+1}}\right) = p \cdot \left(\prod_{i \in \{1, \dots, p-1\}} x^{1/p^{n+1}}\right) \cdot d_L(x^{1/p^{n+1}}) = 0$$

Nute noch satz 1 und satz 2 um zu folgern, dass $\Omega_{L/k}$ von $\{d_L(x^{1/p^n})|n\in\mathbb{N}\}$ erzeugt wird.