

TP1

17 de mayo de 2025 — Introducción a la Investigación Operativa y Optimización

Integrante	LU	Correo electrónico
Laks, Joaquín	425/22	laksjoaquin@gmail.com
Szabo, Jorge	1683/21	jorgecszabo@gmail.com
Wilders Azara, Santiago	350/19	santiago199913@gmail.com

Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires

Ciudad Universitaria - (Pabellón Cero + Infinito) Intendente Güiraldes 2610 - C1428EGA Ciudad Autónoma de Buenos Aires - Rep. Argentina Tel/Conmutador: (+54 11) 5285-9721 / 5285-7400 https://dc.uba.ar

Datos

Horas por 1000 litros de combustible

	Refinado	Fraccionado	Embalaje
Aviones	10	20	4
Vehículos	5	10	2
Keronsene	3	6	1

Tiempos y gastos fijos

Tionipos y Sastos injos				
	Capacidad Mensual	Gasto Fijo		
Refinado	38.000 horas	\$5.000.000		
Fraccinoado	80.000 horas	\$5.000.000		
Embalaje Aviones	4.000 horas	\$2.000.000		
Embalaje Vehículos	6.000 horas	\$1.000.000		
Embalaje Keronsene	7.000 horas	\$500.000		

Costos y ganancias variables por 1000 litros

	Precio de venta	Materia prima	Refinado	Fraccionado	Embalaje	Ganancia
Aviones	\$16.000	\$4.000	\$4.100	\$1.000	\$1.000	\$5.900
Vehículos	\$8.000	\$1.000	\$3.000	\$600	\$500	\$2.900
Keronsene	\$4.000	\$500	\$1.500	\$400	\$400	\$1.200

1.

Calcular la ganancia o pérdida (prorrateando los gastos fijos) de cada producto que se obtuvo en el mes anterior (cuando se produjeron 500.000 litros de combustible para aviones, 3.000.000 de combustible para vehículos y 6.000.000 litros de kerosene) y la ganancia (o pérdida) total de la compañía.

Los gastos de refinado y fraccionado van a ser prorrateados entre los tres combustibles producidos. Para un tipo de combustible, se modela la producción con variables X_i para la producción de mil litros de combustible con $i \in \{a, v, k\}$ para aviones, vehículos y kerosene respectivamente.

Teniendo en cuenta los costos variables y los precios de venta por cada 1000 litros de combustible, definimos G_i la ganancia variable de dicha cantidad.

Luego los costos fijos F_j mensuales de refinado y fraccionado se comparten para los tres tipos de combustible. Siendo ademas H_{ij} el tiempo de producción de 1000 litros de combustible i en el proceso j, con $j \in \{r, f\}$. El costo para producir X_i miles de litros de combustible i en un proceso j se calcula como:

$$\frac{F_j H_{ij} X_i}{H_{aj} X_a + H_{vj} X_v + H_{kj} X_k}$$

Las etapa de embalaje es independiente para cada tipo de combustible. Notamos E_i con $i \in \{a, v, k\}$ el costo fijo de operar el sector de embalaje para el combustible i.

Finalmente, el balance final se obtiene de restar a las ganancias variables, los costos prorroteados y costos de embalaje para cada tipo de combustible i, es decir:

$$G_i X_i - \sum_{j \in \{r, f\}} \frac{F_j H_{ij} X_i}{H_{aj} X_a + H_{vj} X_v + H_{kj} X_k} - E_i$$

Balances finales

	Balance
Aviones	-\$365.790
Vehículos	\$3.752.632
Kerosene	\$1.963.158
Total	\$5.350.000

Vemos que la empresa en total da ganancia, pero el combustible para aviones pérdida.

2.

Si la empresa no hubiese producido combustible para aviones manteniendo en los mismos valores los otros productos, ¿la ganancia de la compañía habría sido mejor? Suponer que se cierra el sector de embalaje de combustibles para aviones.

Haciendo la cuenta, nos quedaría la siguiente tabla:

Ganancias totales

	Ganancia
Aviones	\$0
Vehículos	\$3.154.545
Kerosene	\$1.245.455
Total	\$4.400.000

En ese caso se puede ver que la ganancia es menor, esto se debe a que los costos fijos de Vehículos y Kerosene siguen estando, quedan horas extra en las cuales se podría producir mas combustible, en el escenario anterior era combustible de avión que llegaba a cubrir el costo fijo de su embalaje y generaba unos \$950,000 extra, el valor que diferencia los resultados.

3.

Y si hubiese aumentado lo máximo posible la producción de los otros productos? Suponer que se cierra el sector de embalaje de combustibles para aviones.

Para eso formulamos el siguiente LP:

$$\begin{array}{lll} \text{Max} & 2900X_v + 1200X_k - 11\,500\,000 \\ \\ \text{Subject to} & 5X_v + 3X_k \leq 38\,000 \quad \text{(restricciones sobre el refinado)} \\ & 10X_v + 6X_k \leq 80\,000 \quad \text{(restricciones sobre el fraccionado)} \\ & 2X_v \leq 6\,000 \quad \text{(restricciones sobre el embalaje de combustible para vehículos)} \\ & X_k \leq 7\,000 \quad \text{(restricciones sobre el embalaje de kerosene)} \\ & X_v \geq 0, \quad X_k \geq 0 \end{array}$$

donde X_v son miles de litros de combustible para vehículos y X_k son miles de litros de kerosene. Los coeficientes de la función objetivo es el precio de venta cada 1000 litros de combustible menos los costos variables C_{ij} mencionados anteriormente. Los costos fijos se le restan directamente a la función objetivo.

El valor óptimo para la producción es de $X_v=3000, X_k=7000$. Expresado en miles de litros de combustible a producir. La ganancia de la empresa aumentaría con estos nuevos valores:

Ganancias totales

	Ganancia
Aviones	\$0
Vehículos	\$3.533.333
Kerosene	\$2.066.667
Total	\$5.600.000

4.

5.

Diccionario óptimo

Dado el método simplex en su forma matricial: $\frac{X_B = B^{-1}b - B^{-1}A_NX_N}{z = c_BB^{-1}b + (c_N - c_BB^{-1}A_N)X_N}$ Nuestro diccionario óptimo va a tener a X_a , X_v , y X_k como variables básicas porque toman

valores no nulos en la solución óptima.

También vemos que las restricciones $10X_v + 6X_k + 20X_a \le 80000$ (2) y $X_k \le 7000$ (4) se cumplen por desigualdad estricta, entonces sus variables de holgura correspondientes van a ser mayores a 0 en la solución óptima. Siendo X_4, \ldots, X_8 las variables de holgura correspondientes a las restricciones 1, . . . , 5 respectivamente, esto significa que X_5 y X_7 son variables básicas.

Entonces tenemos en la base óptima:

$$B = \begin{pmatrix} 5 & 3 & 10 & 0 & 0 \\ 10 & 6 & 20 & 1 & 0 \\ 2 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 4 & 0 & 0 \end{pmatrix}$$

Entonces su inversa es:

$$B^{-1} = \begin{pmatrix} 0 & 0 & \frac{1}{2} & 0 & 0\\ \frac{1}{3} & 0 & \frac{-5}{6} & 0 & \frac{-5}{6}\\ 0 & 0 & 0 & 0 & \frac{1}{4}\\ -2 & 1 & 0 & 0 & 0\\ \frac{-1}{3} & 0 & \frac{5}{6} & 1 & \frac{5}{6} \end{pmatrix}$$

También tenemos $c_B = \begin{pmatrix} 2900 & 5900 & 1200 & 0 & 0 \end{pmatrix}, c_N = \begin{pmatrix} 0 & 0 & 0 \end{pmatrix}, A_N = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$

$$b = \begin{pmatrix} 3800 \\ 80000 \\ 6000 \\ 7000 \\ 4000 \end{pmatrix}$$

- 6.
- 7.
- 8.
- 9.

Por otro lado, el gerente de compras propone cambiar algunos proveedores, lo que permitiría bajar el costo de la materia prima del aceite para vehículos de \$1000 a \$800 por cada 1000 litros procesados. ¿Cambiaría el plan de producción óptimo? Si es así, dar la nueva planificación óptima.

Este cambio aumentaría \$200 nuestra ganancia por 1000 litros de combustible para vehículos. Cambiando c_B a (3100 5900 1200 0 0)

Esto nos daría un nuevo $c_BB^{-1}=\left(\frac{500}{3}\ 0\ \frac{3400}{3}\ 0\ \frac{-350}{3}\right)$ La nueva ganancia sería de $c_BB^{-1}b=12\,666\,666,67$

Para que la producción actual siga siendo óptima, hace falta que

$$c_N - c_B B^{-1} A_N = \begin{pmatrix} \frac{-500}{3} & \frac{-3400}{3} & \frac{350}{3} \end{pmatrix} \le 0$$

Vemos que el tercer coeficiente no básico en z pasó a ser positivo, entonces la base ya no es óptima y X_8 tiene que entrar a la base.

$$d = B^{-1}a_3 = \begin{pmatrix} 0 \\ \frac{-5}{6} \\ \frac{1}{4} \\ 0 \\ \frac{5}{6} \end{pmatrix}$$

Buscamos el máximo t tal que:

$$B^{-1}b - td = \begin{pmatrix} 3000 \\ \frac{1300}{3} \\ 1000 \\ 4000 \\ \frac{8000}{3} \end{pmatrix} - t \begin{pmatrix} 0 \\ -\frac{5}{6} \\ \frac{1}{4} \\ 0 \\ \frac{5}{6} \end{pmatrix} \ge 0$$

Lo que nos deja con $t \le 4\,000$ (tercera fila) y $t \le 3\,200$ (quinta fila). La cota más ajustada la impone la fila de X_7 , entonces sale de la base.

Cambiando las columnas de X_8 y X_7 nos queda el diccionario con:

$$B = \begin{pmatrix} 5 & 3 & 10 & 0 & 0 \\ 10 & 6 & 20 & 1 & 0 \\ 2 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 4 & 0 & 1 \end{pmatrix} \Rightarrow B^{-1} = \begin{pmatrix} 0 & 0 & \frac{1}{2} & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ \frac{1}{10} & 0 & \frac{-1}{4} & \frac{-3}{10} & 0 \\ -2 & 1 & 0 & 0 & 0 \\ \frac{-2}{5} & 0 & 1 & \frac{6}{5} & 1 \end{pmatrix}$$

$$A_N = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}, c_B = \begin{pmatrix} 3100 & 5900 & 1200 & 0 & 0 \end{pmatrix}, c_N = \begin{pmatrix} 0 & 0 & 0 \end{pmatrix}$$

Queda que $c_N - c_B B^{-1} A_N = \begin{pmatrix} -120 & -2650 & -2740 \end{pmatrix} \le 0$ entonces el nuevo diccionario es óptimo.

Se producen $(B^{-1}b)_1=3000$ miles de litros de combustible para vehículos, $(B^{-1}b)_2=7000$ miles de litros de combustible para kerosene, y $(B^{-1}b)_3=200$ litros de combustible para aviones.

- 10.
- 11.
- **12.**