HPE DSI 311 Introduction to Machine Learning

Summer 2021

Instructor: Ioannis Konstantinidis

What is a model?

Statistics:

$$y = a + b_0 X_0 + b_1 X_1 + b_2 X_2$$
 (equation notation)

Statistics:

$$y = a + b_0 X_0 + b_1 X_1 + b_2 X_2$$
 (equation notation)

Math:

$$\mathbf{y} = \mathbf{X} \boldsymbol{\beta} + \boldsymbol{\alpha}$$
 (matrix notation)

Statistics:

$$y = a + b_0 X_0 + b_1 X_1 + b_2 X_2$$
 (equation notation)

Math:

$$\mathbf{y} = \mathbf{X} \boldsymbol{\beta} + \boldsymbol{\alpha}$$
 (matrix notation)

Computer Science:

Statistics:

$$y = a + b_0 X_0 + b_1 X_1 + b_2 X_2$$
 (equation notation)

Math:

$$\mathbf{y} = \mathbf{X} \boldsymbol{\beta} + \boldsymbol{\alpha}$$
 (matrix notation)

Computer Science:

```
Model.fit(X,y) (object oriented notation)
y = Model.predict(X)
```

Statistics:

$$y = a + b_0 X_0 + b_1 X_1 + b_2 X_2$$

(equation notation)

Math:

$$y = X \beta + \alpha$$

(matrix notation)

Computer Science:

(object oriented notation)

Deep Learning/

ML:

(network notation)

Math:

y, X -> variables

 α , β -> parameters

Statistics:

 y, X_i -> variables

 a, b_i -> parameters

Computer Science:

X, y

-> parameters when fitting

b, a

-> parameters when predicting

called weights w for networks

How do you "fit" a model?

Assessing model fitness – supervised ML

Calculate the **parameter values** that make model predictions fit the training data **most closely**

Assessing model fitness – supervised ML

Calculate the **parameter values** that make model predictions match the training data **most closely**

Naïve solution: Exhaustive Search

Assessing model fitness – supervised ML

Calculate the **parameter values** that make the model predictions match the training data **most closely**

Naïve solution: Exhaustive Search

Need an appropriate Penalty() for y

Assessing model fitness – unsupervised ML

Calculate the training data points that are closest to the new data point

Assessing model fitness – unsupervised ML

Calculate the training data point that is closest to the new data point

Need an appropriate Penalty() for X

Assessing model fitness

Penalty() for y : compare N pairs (y_predict, y_train)

Metric / Objective / Cost / Loss function

Penalty() for X : compare two N-dimensional points

Similarity / Affinity

Testing model performance

Penalty() for y : compare N pairs (y_predict, y_train)

Scoring / Error function

Penalty() for X : compare two N-dimensional points

Distance

Penalty()

Metric function for assessing fitness during training Scoring function for testing performance during evaluation

How to define penalty functions

Confusion Matrix

Confusion Matrix

Rows: actual observations (points X)

Confusion Matrix

Columns: predictions made by the classifier (labels y)

Confusion Matrix

- Diagonal: # of points for which predicted label = true label
- Off-diagonal: # of points that are mislabeled by the classifier
- The higher the diagonal values of the confusion matrix, the better

Confusion Matrix

Columns: predictions made by the classifier (labels y)

Focus on a single label: Precision

Focus on a single label: Recall

Focus on a single label: specificity

AKA selectivity

Focus on a single label: combinations

Focus on a single label: combinations

Focus on a single label: combinations

Focus on a single label: combinations

Hands-on Example:

Classification using k-NN + Logistic Regression

Confusion matrix

```
Plot confusion matrix(estimator, X, y true,
labels=None,
sample_weight=None,
normalize=None,
display labels=None,
include values=True,
xticks rotation='horizontal',
values format=None,
cmap='viridis',
ax=None)
```

Confusion matrix

Labels: List of labels to index the matrix. This may be used to reorder or select a subset of labels. If None is given, those that appear at least once in y_true or y_pred are used in sorted order.

Normalize: Normalizes confusion matrix over the true (rows), predicted (columns) conditions or all the population. If None, confusion matrix will not be normalized.

include_values: Includes values in confusion matrix.

Classification Report

```
classification report(y true, y_pred,
labels=None,
target names=None,
sample weight=None,
digits=2,
output dict=False,
zero division='warn')
```

Classification Report

'macro': Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account.

'weighted': Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label). This alters 'macro' to account for label imbalance; it can result in an F-score that is not between precision and recall.

Note that if all labels are included, "micro"-averaging in a multiclass setting will produce precision and recall scores that are all identical to accuracy.

$$MSE = \frac{1}{N} \sum_{i=1}^{N} (f_i - y_i)^2$$

where N is the number of data points, f_i the value returned by the model and y_i the actual value for data point i.

$$MSE = \frac{1}{N} \sum_{i=1}^{N} (f_i - y_i)^2$$

where N is the number of data points, f_i the value returned by the model and y_i the actual value for data point i.

Euclidean distance squared, divided by number of points

$$MSE = \frac{1}{N} \sum_{i=1}^{N} (f_i - y_i)^2$$

where N is the number of data points, f_i the value returned by the model and y_i the actual value for data point i.

$$N=2$$

$$MSE = \frac{1}{N} \sum_{i=1}^{N} (f_i - y_i)^2$$

where N is the number of data points, f_i the value returned by the model and y_i the actual value for data point i.

2	2.236	2.828
1	1.414	2.236
(y_1,y_2)	1	2

Mean Absolute Deviation (MAD)

$$\frac{1}{N} \sum_{i=1}^{N} [f_i - y_i]$$

Mean Absolute Deviation (MAD)

Manhattan distance divided by number of points

$$\frac{1}{N} \sum_{i=1}^{N} [f_i - y_i]$$

N=2

2	3	4
1	2	3
(y ₁ ,y ₂)	1	2

Maximum error

N=2

2	2	2
1	1	2
(y_1,y_2)	1	2

Recall the L^p norms

$$\|x\|_p = (|x_1|^p + |x_2|^p + \dots + |x_n|^p)^{1/p}$$

$$\|x\|_{\infty} = \max\left\{|x_1|, |x_2|, \dots, |x_n|\right\}$$

Unit circle for different values of p

Multivariate Regression: $F = X \beta + constant$

$$F = A + B_1 X_1 + B_2 X_2 + \dots + B_K X_K$$

Multivariate Regression: $F = X \beta + constant$

$$\sum_{i=1}^{N} (f_i - y_i)^2$$

$$= (y - X\beta)^{T} (y - X\beta)$$

Multivariate Regression: $F = X \beta + constant$

Ridge Cost =
$$(y - X\beta)^T (y - X\beta) + \alpha ||\beta||_2^2$$

Lasso Cost = $(y - X\beta)^T (y - X\beta) + \alpha ||\beta||_1$

α is the regularization (hyper)parameter

Multivariate Regression: $F = X \beta + constant$

Hands-on Example:

Linear Regression