Exercices chapitre 8

Version du 22 décembre 2014 CC-BY-SA Olivier Cleynen — thermo.ariadacapo.net

Les propriétés de l'eau sont toutes tabulées dans les abaques n°1, 2 et 3.

L'air est considéré comme un gaz parfait.

$$c_{v(\text{air})} = 718 \,\text{J kg}^{-1} \,\text{K}^{-1}$$
 $R_{\text{air}} = 287 \,\text{J kg}^{-1} \,\text{K}^{-1}$
 $c_{p(\text{air})} = 1005 \,\text{J kg}^{-1} \,\text{K}^{-1}$ $\gamma_{\text{air}} = 1,4$

Nous admettons que pour une évolution adiabatique réversible (sans apport de chaleur et infiniment lente) les propriétés de l'air suivent les trois relations suivantes :

$$\left(\frac{T_1}{T_2}\right) = \left(\frac{v_2}{v_1}\right)^{\gamma - 1} \tag{4/36}$$

$$\left(\frac{T_1}{T_2}\right) = \left(\frac{p_1}{p_2}\right)^{\frac{\gamma-1}{\gamma}} \tag{4/37}$$

$$\left(\frac{p_1}{p_2}\right) = \left(\frac{v_2}{v_1}\right)^{\gamma} \tag{4/38}$$

Nous admettons également que la variation d'entropie d'un gaz parfait, pour n'importe quelle évolution, est quantifiée par les relations suivantes :

$$\Delta s = s_2 - s_1 = c_v \ln \frac{T_2}{T_1} + R \ln \frac{v_2}{v_1}$$
 (8/10)

$$\Delta s = s_2 - s_1 = c_p \ln \frac{T_2}{T_1} - R \ln \frac{p_2}{p_1}$$
 (8/11)

8.1 Questions de cours

Pour aborder les exercices sur un sujet aussi consistant, il faut d'abord bien maîtriser les fondamentaux!

- 1. Comment calcule-t-on la variation d'entropie d'un corps pendant une évolution réelle quelconque ?
- 2. Peut-on faire diminuer l'entropie d'un corps?
- 3. Quelle est la différence entre l'entropie spécifique et la capacité calorifique, qui ont toutes les deux les mêmes unités ?
- 4. À quoi ressemblerait la figure 8.10 si le transfert de chaleur était poursuivi au-delà d'une quantité infinitésimale de chaleur dQ, jusqu'à ce que la tasse A et la bouteille d'eau B soient à même température?

8.2 Variations élémentaires d'un gaz parfait

Parmi les évolutions d'un gaz parfait décrites en figure 8.12, identifiez l'évolution à température constante, à pression constante, isentropique, et à volume constant (*cet exercice est parallèle à l'exercice 4.10*).

FIGURE 8.12 – Évolutions élémentaires réversibles d'un gaz parfait, représentées sur un diagramme température-entropie.

8.3 Détente d'un liquide/vapeur

On dispose de 10 kg d'eau à 45 bar et 600 °C.

- 1. Quelle est la quantité maximale de travail qu'il est possible d'extraire de cette masse d'eau, sans lui fournir de chaleur, si on peut la détendre jusqu'à 4 bar?
- 2. Si la détente était poursuivie jusqu'à une pression plus basse, à quelle température l'eau se condenseraitelle ?
- 3. Représentez l'évolution sur un diagramme températureentropie, de façon qualitative (c'est-à-dire sans représenter les valeurs numériques), et en y représentant la courbe de saturation.

8.4 Chauffage à température constante

On fournit lentement une quantité de chaleur de $3\,000~{\rm kJ\,kg^{-1}}$ à une masse d'eau liquide saturée à $200~{\rm ^{\circ}C}$. La température est maintenue constante pendant toute l'évolution.

Quelle est la quantité de travail développée par l'eau pendant l'évolution? Représentez l'évolution sur un diagramme pression-volume, de façon qualitative et en y représentant la courbe de saturation.

8.5 Diagrammes température-entropie

Représentez les évolutions que nous avons déjà étudiées, chacune sur un diagramme température-entropie, de façon qualitative et en y faisant éventuellement figurer la courbe de saturation, :

- 1. Évolutions simples : exercices 4.6, 4.7, 5.3 et 5.4;
- 2. Cycles thermodynamiques: exercices 7.5 et 7.7.

8.6 Cycle de Carnot

Représentez le cycle suivi par le fluide à l'intérieur d'une pompe à chaleur opérant selon le cycle de Carnot sur un diagramme pression-volume, de façon qualitative, et en y représentant les deux transferts de chaleur.

Comment le cycle serait-il modifié si la compression et la détente restaient adiabatiques mais n'étaient pas réversibles ? Comment seraient affectés les deux transferts de chaleur ?

8.7 Turbine à vapeur

Dans la salle des machines d'un navire important (figure 8.13), un débit de 250 t $\rm h^{-1}$ de vapeur rentre à 55 bar et 660 °C dans la turbine.

FIGURE 8.13 – Hublot d'inspection d'une des turbines basse pression (puissance ~25 MW) du porte-avions *USS Hornet* lancé en 1943.

Photo CC-BY-SA par Tony Kent

La turbine détend la vapeur de façon approximativement adiabatique réversible. Lorsque la pression atteint $10 \, \mathrm{bar}$, on prélève de la vapeur avec un faible débit $(1 \, \mathrm{kg \, s^{-1}})$, pour réchauffer une autre partie de la centrale. La vapeur restant dans la turbine est détendue jusqu'à une pression de $0,18 \, \mathrm{bar}$.

Quelle est la puissance mécanique développée par la turbine ?

8.8 Sens des transformations (1)

Une masse d'air suit une évolution sans apport de chaleur. Il y a deux états :

- Un état X à 1 bar et 300 °C;
- Un état Y à 5 bar et 500 °C.

Quel est le seul sens $(X \to Y \text{ ou } Y \to X)$ dans lequel l'évolution peut avoir lieu?

Représentez l'évolution sur un diagramme pression-volume et sur un diagramme température-entropie, de façon qualitative.

8.9 Sens des transformations (2)

De l'eau suit une évolution pendant laquelle on lui retire $2\,\mathrm{MJ\,kg^{-1}}$ de chaleur (sa température étant alors figée à 250 °C). Il y a deux états, un au début et l'autre à la fin :

- Un état X à l'état de vapeur saturée à 200 °C;
- Un état Y à l'état de liquide saturé à 240 °C.

Laquelle des deux évolutions doit avoir eu lieu avant l'autre?

8.10 Détente d'air comprimé

L'air dans un cylindre isolé thermiquement est détendu depuis 6,8 bar et 430 $^{\circ}\mathrm{C}$ jusqu'à 1 bar.

À la sortie, la température est mesurée à 150 °C.

La détente est-elle réversible ? Représentez l'évolution sur un diagramme température-entropie, de façon qualitative.

8.11 Pompe à air

De l'air rentre dans une petite pompe centrifuge avec un débit de $4 \,\mathrm{kg}\,\mathrm{min}^{-1}$ (figure 8.14). La pompe n'est pas isentropique, mais on peut négliger ses pertes de chaleur.

FIGURE 8.14 – Compresseur à air à usage public à Stockholm, destiné aux cyclistes. Un échangeur de chaleur intégré sous la carrosserie permet heureusement d'éviter les températures calculées dans cet exercice.

Photo recadrée, version originale CC-BY-SA Jakob Voß

À l'entrée, l'air est à 1 bar bar et 15 °C.

À la sortie, la pression est à 2 bar et on mesure la température à 97 °C.

1. Quelle est la puissance requise pour alimenter le compresseur?

- 2. Quelle serait la puissance si la compression se faisait de façon isentropique ?
- 3. Quels seraient les transferts de chaleur et de travail nécessaires pour ramener l'air à ses conditions initiales (en minimisant les transferts de chaleur)?

8.12 Centrale électrique théorique

Pendant la conception d'une centrale électrique, un groupe d'ingénieurs enthousiastes étudie la possibilité de faire suivre à l'eau un cycle de Carnot. La chaleur dégagée par la combustion du charbon est transmise à une chaudière à vapeur. La vapeur est détendue dans une turbine, qui alimente une génératrice électrique.

- **De A à B** L'eau est compressée dans une pompe isentropique.
 - En A, le mélange liquide-vapeur est à pression de 0,04 bar. En B, l'eau est à l'état de liquide saturé, à pression de 40 bar.
- **De B à C** L'eau est chauffée à pression constante (40 bar) dans la chaudière. En C, l'eau est à l'état de vapeur saturée.
- **De** C à D L'eau est détendue dans la turbine isentropique. En D, l'eau est à la pression initiale, c'est-à-dire 0,04 bar.
- **De D à A** L'eau est refroidie dans un condenseur à pression constante (0,04 bar).
 - 1. Schématisez les éléments du circuit suivi par la vapeur, et représentez l'évolution sur un diagramme température-entropie, de façon qualitative et en y représentant la courbe de saturation.
 - 2. Quel est le titre de l'eau lorsque la condensation est interrompue (en A)? Quelle est alors l'enthalpie spécifique?
 - 3. Quel est le titre à la sortie de la turbine (en D) et l'enthalpie spécifique en ce point ?
 - 4. Quelle est la puissance développée par la turbine?
 - 5. Quelle est la puissance de la chaudière?
 - 6. Quelle est la puissance de la pompe?
 - 7. Quel est le rendement de l'installation?

8.13 Transferts de chaleur irréversibles

Un moteur à vapeur fonctionne sur un cycle de Carnot, avec un flux continu (débit : $2 \, \mathrm{kg \, s^{-1}}$), entre les points de saturation de l'eau. Le moteur est conçu pour exploiter une source de chaleur de température modérée (300 °C), issue de la combustion de déchets industriels, et rejeter de la chaleur dans une rivière à basse température (5 °C).

La chaudière a des parois épaisses pour réduire l'impact des imperfections de fabrication et pour soutenir la pression élevée de l'eau. Cette épaisseur impose un gradient de température important à travers les parois (10 $^{\circ}\text{C}$). Il en va de même dans le condenseur (gradient : 5 $^{\circ}\text{C}$).

- 1. De combien l'entropie de l'ensemble {source de chaleur + eau} augmente-t-elle ?
- 2. De combien l'entropie de l'ensemble {puits de chaleur + eau} augmente-t-elle ?

- 3. Quelle est la perte de puissance associée à cette augmentation d'entropie ?
- 4. Quelle(s) propriété(s) du matériau constituant la chaudière sont-elles les plus désirables pour minimiser ce problème ?

8.14 Compressions et détentes irréversibles

L'équipe d'ingénieurs en charge du moteur de l'exercice précédent (cycle de Carnot fonctionnant entre 390 °C et 15 °C, exercice 8.13) découvre que les phases de compression et détente ne se font pas de façon réversible.

Le compresseur amène bien l'eau à température haute mais sa consommation de travail est $10\,\%$ plus importante que prévu. La turbine amène bien l'eau à température basse, mais elle fournit $10\,\%$ d'énergie mécanique en moins que prévu.

- 1. De combien l'entropie de la vapeur augmente-t-elle dans chacun de ces deux composants?
- 2. De combien augmentent les rejets de chaleur?
- 3. Quelle est la perte en efficacité de l'installation par rapport à une installation réversible ?

Résultats

8.1

1) Voir §8.2.2;

- 2) Oui bien sûr, un simple prélèvement de chaleur suffit : voir à ce propos l'exemple 8.1;
- 3) Capacité thermique massique : chaleur spécifique dq nécessaire pour générer une variation dT de température (équation $1/13:c \equiv \frac{\mathrm{d}q}{\mathrm{d}T}$). Entropie massique : chaleur spécifique dq divisée par la température à laquelle elle est fournie, pendant une évolution réversible (équation 8/2);
- 4) Les deux températures évoluent jusqu'à s'égaliser ; $\Delta s_A + \Delta s_B > 0$.
- 8.2 Dans le sens horaire, en partant de la verticale, sur les deux graphiques : isentropique, isochore, isobare, isotherme.

8.3

1) $u_1 = 3276,4 \,\mathrm{kJ \, kg^{-1}}$ et $u_2 = 2703,3 \,\mathrm{kJ \, kg^{-1}}: W_{\mathrm{max.}} = -5,731 \,\mathrm{MJ}.$

2)
$$T_3 = 103,51$$
 °C

8.4

 $s_2 \ = \ 8,671 \, \mathrm{kJ} \, \mathrm{K}^{-1} \, \mathrm{kg}^{-1} \, ; \, \mathrm{ainsi} \, u_2 \ = \ 2 \, 660,89 \, \mathrm{kJ} \, \mathrm{kg}^{-1} \, ; \, \mathrm{enfin} \, w_{1 \rightarrow 2} \ = \ -1,19 \, \mathrm{MJ} \, \mathrm{kg}^{-1}.$

8.5

8.6

2) Dans ce cas $W_{\text{B}\to\text{C}_{\text{irr.}}} > W_{\text{B}\to\text{C}'}$ et, en valeurs

négatives, $W_{D\to A_{irr.}} > W_{D\to A'}$. Ainsi la chaleur à rejeter $Q_{C\to D}$ augmente (ce qui peut au premier abord sembler un résultat intéressant) et la chaleur prélevée $Q_{A\to B}$ diminue (et l'on voit que l'augmentation de $Q_{C\to D}$ ne provient en fait que des inefficacités du compresseur et de la turbine, et ne fait que diminuer le rendement).

8.7 $h_1 = 3803,5 \,\mathrm{kJ}\,\mathrm{kg}^{-1}$; $h_2 = 2677,7 \,\mathrm{kJ}\,\mathrm{kg}^{-1}$; $h_3 = 2413,6 \,\mathrm{kJ}\,\mathrm{kg}^{-1}$: on a donc $\dot{W}_{\mathrm{turbine}} = -96,26 \,\mathrm{MW}$.

8.8

Avec l'équation 8/10 on constate que $s_Y - s_X = -161,08 \,\mathrm{J \, K^{-1} \, kg^{-1}} < \int_X^Y \left(\frac{\mathrm{d}q}{T}\right)_{\mathrm{chemin \, réel}} =$ $0 \text{ kJ K}^{-1} \text{ kg}^{-1}$ (puisque l'évolution est adiabatique). Ainsi le sens est $Y \rightarrow X$.

8.9

On suppose $X \rightarrow Y$, alors $\Delta s = -3,728 \text{ kJ K}^{-1} \text{ kg}^{-1}$ mais $\int_X^Y \left(\frac{\mathrm{d}q}{T}\right)_{\mathrm{chemin \ r\acute{e}el}} = -3.823 \,\mathrm{kJ}\,\mathrm{K}^{-1}\,\mathrm{kg}^{-1}$ ainsi nous sommes rassurés : le sens est bien $X\to Y$.

- Avec l'équation 8/10, nous obtenons $\Delta s = +39,77 \,\mathrm{J \, K^{-1} \, kg^{-1}}$ mais $-aha! \int_1^2 \left(\frac{\mathrm{d}q}{T}\right)_{\mathrm{chemin \, réel}} =$ $0\,\mathrm{kJ}\,\mathrm{K}^{-1}\,\mathrm{kg}^{-1}$, ainsi la transformation est irréversible. Nous aurions également pu utiliser la fort classique équation 4/36 pour découvrir que $T_{\rm 2isentropique}$ < 150 °C.
- 1) $W_{\text{pompe}} = mc_p \Delta T = +5,493 \text{ kW} (3/15 \& 4/13);$ 2) Avec l'équation 4/36 $T_{\text{2is}} = 351,3 \text{ K}$ soit tout de même 78,1 °C, ainsi $\dot{W}_{id\acute{e}al} = +4,231 \,\mathrm{kW}$; 3) Une possibilité : détente isentropique pour obtenir $\dot{W}_{2\rightarrow1}=-4,231\,\mathrm{kW}$, puis un nécessaire refroidissement sans travail de $\dot{Q}_{2\rightarrow1}=-1,262\,\mathrm{kW}$. Toutes les transformations réversibles dont la somme nette des transferts prend ces valeurs (par exemple lors d'une détente refroidie) permettront de revenir en 1.

 $838,7 \, kJ \, kg^{-1}$;

 $1827.5 \,\mathrm{kJ}\,\mathrm{kg}^{-1}$;

8.12

L'agencement est représenté en figure 7.13;

2)
$$x_{\rm A}=\frac{s_{\rm B}-s_L}{s_{LV}}=0,2949$$
; ainsi $h_{\rm A}=h_L+x_{\rm A}h_{LV}=$

3) Même démarche :
$$x_D = 0.7014$$
 ainsi $h_D =$

4)
$$w_{\text{turbine}} = h_{\text{D}} - h_{\text{C}} = -973,3 \,\text{kJ}\,\text{kg}^{-1}$$
;

5)
$$q_{\text{chaudière}} = h_{\text{C}} - h_{\text{B}} = +1713 \,\text{kJ}\,\text{kg}^{-1}$$
;

6)
$$w_{\text{pompe}} = h_{\text{B}} - h_{\text{A}} = +248.8 \,\text{kJ}\,\text{kg}^{-1}$$
;

- 7) $\eta_{\text{centrale}} = \left| \frac{w_{\text{net}}}{q_{\text{in}}} \right| = \frac{-w_{\text{turbine}} w_{\text{pompe}}}{q_{\text{chaudière}}} = 42,29 \%$. Comme toutes les phases sont réversibles et que les transferts de chaleur sont isothermes, on a bien $\eta_{\text{centrale}} = \eta_{\text{moteur carnot}} = 1 - \frac{T_{\text{eau condenseur}}}{T_{\text{eau chandière}}} (7/6)$.
- 1) $\dot{S}_{\text{paroi haute température}} = \dot{m} \left(\Delta s_{\text{combustion}} + \Delta s_{\text{eau}} \right) = +91,77 \,\text{J/(K s)} = +91,77 \,\text{W K}^{-1}$;
 - 2) $\dot{S}_{paroi\ basse\ température} = +188,3\ W\ K^{-1}$, et l'on voit qu'un gradient de 10 °C est plus pénalisant à 3) $\dot{W}_{\text{perdue}} = \dot{Q}_{\text{in}} \left(\eta_{\text{sup\'erieure}} - \eta_{\text{inf\'erieure}} \right) = 77.9 \text{ kW}$ basse température qu'à haute température;
 - 4) Pour réduire les gradients de température, il faut des matériaux avec une très grande conduction thermique (ce n'est bien sûr pas la seule qualité qui leur est demandée...).

8.14 1)
$$\Delta s_{compresseur} = +1,454 \, \text{kJ} \, \text{K}^{-1} \, \text{kg}^{-1}$$
; $\Delta s_{turbine} = +0,382 \, \text{kJ} \, \text{K}^{-1} \, \text{kg}^{-1}$;

2)
$$\Delta q_{\text{out}} = -110.2 \text{ kJ kg}^{-1} \text{ soit } +14.6 \%$$
; 3) $\eta_{\text{installation r\'eelle}} = 39.82 \%$, soit -9 pt.

3)
$$\eta_{\text{installation réelle}} = 39.82 \%$$
, soit -9 pt