Discrete Mixture Models

1 Introduction

Probability mass function for first bonomial:

$$\phi_1(k_1(i)) = p(k_1(i)|p) = \binom{n}{k_1(i)} p^{k_1(i)} (1-p)^{n-k_1(i)}$$

Probability mass function for second binomial:

$$\phi_0(k_1(i)) = p(k_1(i)|q) = \binom{n}{k_1(i)} q^{k_1(i)} (1-q)^{n-k_1(i)}$$

Probability mass function for mixture model:

$$p(k_1(1), \dots, k_1(N) | \alpha, p, q) = \prod_{i=1}^{N} \left[\alpha \phi_1(k_1(i)) + (1 - \alpha) \phi_0(k_1(i)) \right]$$

$$= \prod_{i=1}^{N} \left[\alpha \binom{n}{k_1(i)} p^{k_1(i)} (1 - p)^{n - k_1(i)} + (1 - \alpha) \binom{n}{k_1(i)} q^{k_1(i)} (1 - q)^{n - k_1(i)} \right]$$

2 FIM and CRLB

3 Maximum Likelihood and Expectation-Maximization

3.1 Maximum Likelihood Equations

Want to do: $\frac{\delta \log p}{\delta \theta} = \mathbf{0}$

$$\log p(k_1(1), \cdots, k_1(N) | \alpha, p, q) = \sum_{i=1}^{N} \log \left[\alpha \binom{n}{k_1(i)} p^{k_1(i)} (1-p)^{n-k_1(i)} + (1-\alpha) \binom{n}{k_1(i)} q^{k_1(i)} (1-q)^{n-k_1(i)} \right]$$

$$\frac{\delta \log p}{\delta \theta} = \begin{bmatrix} \sum_{i=1}^{N} \frac{\phi_1(k_1(i)) - \phi_0(k_1(i))}{\alpha \phi_1(k_1(i)) + (1 - \alpha) \phi_0(k_1(i))} \\ \sum_{i=1}^{N} \frac{\alpha \binom{n}{k_1(i)} \binom{k_1(i)p^{k_1(i) - 1}(1 - p)^{n - k_1(i)} - p^{k_1(i)}(n - k_1(i))(1 - p)^{n - k_1(i) - 1}}{\alpha \phi_1(k_1(i)) + (1 - \alpha) \phi_0(k_1(i))} \\ \sum_{i=1}^{N} \frac{(1 - \alpha) \binom{n}{k_1(i)} \binom{k_1(i)q^{k_1(i) - 1}(1 - q)^{n - k_1(i)} - q^{k_1(i)}(n - k_1(i))(1 - q)^{n - k_1(i) - 1}}{\alpha \phi_1(k_1(i)) + (1 - \alpha) \phi_0(k_1(i))} \end{bmatrix} = \mathbf{0}$$

3.2 EM Algorithm

Let $k_1(1), \cdots, k_1(N)$ be the observed data. We introduce membership variables $y(i), \cdots, y(N)$ (hidden data) such that $p(y(i) = c) = \alpha_c$. Because we only have two clases, then

$$p(y(i) = 1) = \alpha$$

$$p(y(i) = 0) = 1 - p(y(i) = 1) = 1 - \alpha$$

E-step is given by:

$$p(y(i) = 1 | k_1(i), \theta) = \frac{\alpha \binom{n}{k_1(i)} p^{k_1(i)} (1 - p)^{n - k_1(i)}}{\alpha \binom{n}{k_1(i)} p^{k_1(i)} (1 - p)^{n - k_1(i)} + (1 - \alpha) \binom{n}{k_1(i)} q^{k_1(i)} (1 - q)^{n - k_1(i)}}$$

$$p(y(i) = 0 | k_1(i), \theta) = \frac{(1 - \alpha) \binom{n}{k_1(i)} q^{k_1(i)} (1 - q)^{n - k_1(i)}}{\alpha \binom{n}{k_1(i)} p^{k_1(i)} (1 - p)^{n - k_1(i)} + (1 - \alpha) \binom{n}{k_1(i)} q^{k_1(i)} (1 - q)^{n - k_1(i)}}$$

M-step:
$$\alpha_1^{k+1} = \alpha^{k+1} = \frac{1}{N} \sum_{i=1}^N p(y(i) = 1 | k_1(i), \theta^{\mathbf{k}})$$

$$\alpha_0^{k+1} = 1 - \alpha_1^{k+1} = 1 - \alpha^{k+1}$$

4 Method of Moments