

Routing

Credits: Prof. Sangtae

Ha

Computing the Shortest Paths

Assuming you already know the topology

Shortest-Path Routing

- Path-selection model
 - Destination-based
 - Load-insensitive (e.g., static link weights)
 - Minimum hop count or sum of link weights

Shortest-Path Problem

- Given: network topology with link costs
 - -c(x,y): link cost from node x to node y
 - Infinity if x and y are not direct neighbors
- Compute: least-cost paths to all nodes
 - From a given source u to all other nodes
 - p(v): predecessor node along path from source to v

Link-State Routing

Link State: Dijkstra's Algorithm

- Flood the topology information to all nodes
- Each node computes shortest paths to other nodes

Initialization

$S = \{u\}$ for all nodes v if (v is adjacent to u) D(v) = c(u,v)else $D(v) = \infty$

Loop

```
add w with smallest D(w) to S
update D(v) for all adjacent v: D(v) =
  min{D(v), D(w) + c(w,v)}
until all nodes are in S
```

Used in OSPF and IS-IS

Link-State Routing Example

Link-State Routing Example (cont.)

Link State: Shortest-Path Tree

- Shortest-path tree from u
 Forwarding table at u

v (u,v) w (u,w) x (u,w) y (u,v) y (u,v)		link
x (u,w) y (u,v) y (u,v)	V	(u,v)
y (u,v) (u,v)	W	(u,w)
y (u,v)	×	(u,w)
(u,w) t	z S	(u,v) (u,w)

Link State: Shortest-Path Tree

Find shortest path t to v

- Forwarding table entry at t
- (A) (t,x) (B) (t,s)
- Distance from t to v
 (A) 6 (B) 7 (C) 8 (D) 9

Link-State Algorithm Example 2

