Contents

Introduction	
Structured Audio Controllability Scalability Compactness	13 13 14 14
Ideas to be Investigated Structured Audio Event Representation Feature Extraction Structured Re-purposing and Control	15 15 15 15
Applications for Structured Audio Automatic Foley Producer and Sound Designer's Assistant Low-Bandwidth Audio Representations	15 15 16 16
Auditory Invariants	18
Thesis Overview and Scope Chapter 1: Ecological Acoustics Chapter 2: Auditory Group Theory Chapter 3: Statistical Basis Decomposition of Time-Frequency Distributions Chapter 4: Structured Sound Effects using Auditory Group Transforms Scope of Current Work and Results / Findings	20 20 20 20 21 21
Chapter I: Ecological Acoustics	
1.1 Ecological Perception 1.1.1 Attensity and Affordance 1.1.2 Complexity of Percept versus Complexity of Stimulus 1.1.3 Everyday Listening and Reduced Listening 1.1.4 Persistence and Change as Perceptual Units 1.1.5 Persistence and Change in Sound Structures 1.1.6 Hierarchical Structure in Sound Events 1.1.7 Illusions of Affordance: The Example of Foley 1.1.8 Studies in Environmental Audio Perception 1.1.9 Summary: Implications of Invariants for Structured Audio	23 24 25 27 28 29 30 33 34 36
Chapter II: Auditory Group Theory	
 2.1 Exploitable Symmetries in Physical Acoustics 2.1.1 Physical Modeling of Acoustic Systems 2.1.2 Non-Explicit Physical Characterization of Sound Objects 2.1.3 Physical Evidence for Auditory Invariants 2.1.4 The Helmholtz Resonator 2.1.5 Modes of an Edge-Supported Rectangular Plate 2.1.6 The General Law of Similarity for Acoustic Systems 	37 37 38 39 39 40 41

2.1.7 The New Family of Violins	42
2.1.8 Synthesis of Timbral Families by Warped Linear Prediction	42
2.1.9 Gender Transforms in Speech Synthesis	45
2.1.10 Practical Limits of Linear Dimension Scaling of Acoustic Systems	46
2.1.11 Acoustical Invariants	46
2.1.12 Force Interactions in Acoustical Systems	47
2.1.13 Higher-Order Force Interactions	49
2.1.14 Materials	50
2.1.15 Topology and Configuration	53
2.1.16 The Representational Richness of Affordance Structures	56
2.1.17 The Trace of Physical Symmetries in Auditory Energy Distributions	58 50
2.1.18 A Theory of Acoustic Information based on Ecological Perception	59
2.2 Auditory Group Theory	60
2.2.1 Formal Definition of Group-Theoretic Invariants	60
2.2.2 Representation of Auditory Group Invariants	62
2.2.3 The Local Lie Group Invariance Theorem	62
2.2.4 Time-Shift Invariance	63
2.2.5 Amplitude-Scale Invariance 2.2.6 Time-Scale Invariance	64 65
2.2.7 Frequency-Shift Invariance	65 65
2.2.8 Frequency-Shift Invariance Alternate Form	66
2.2.9 Summary of Invariant Components of Common Signal Transforms	67
2.2.10 Structured Audio Algorithm Analysis	68
2.2.11 Classes of Structured Audio Transform	69
2.2.12 The Tape Transform (An Unstructured Audio Transform)	69
2.2.13 Short-Time Fourier Transform (STFT)	69
2.2.14 The Phase Vocoder	70
2.2.15 Dual Spectrum Transformations (SMS, LPC)	73
2.2.16 Cepstral Transforms	75
2.2.17 Multi-Spectrum Time-Frequency Decompositions	76
2.2.18 Auditory Group Modeling of Physical Properties	77
2.3 Summary of Approach	78
2.3.1 A Note on Proper and Improper Symmetry	78
2.3.2 1. The Princple of Underlying Symmetry / Regularity	78
2.3.3 2. The Principle of Invariants Under Transformation	78
2.3.4 3. The Principle of Recoverability of Similarity Structure	79
2.3.5 4. The Principle of Representation Based on Control of Invariant Features	79
2.3.6 5. The Principle that Perception Uses the Above Representational Form	79
2.4 Summary of Chapter	80
Chapter III: Statistical Basis Decomposition of Time-Frequency Distributions	
3.1 Introduction	81
3.2 Time Frequency Distributions (TFDs)	81
3.2.1 Desirable Properties of the STFT as a TFD	82
3.2.1 Desirable Properties of the STPT as a TPD 3.2.2 Short-Time Fourier Transform Magnitude	82
3.2.3 Matrix Representation of TFDs	83

3.2.4 Spectral Orientation	83
3.2.5 Temporal Orientation	84
3.2.6 Vector Spaces and TFD Matrices	84
3.2.7 Redundancy in TFDs	85
3.3 Statistical Basis Techniques for TFD Decomposition	86
3.3.1 Introduction	86
3.3.2 Principal Component Analysis (PCA)	86
3.3.3 Previous Audio Research using PCA	86
3.3.4 Definition of PCA	87
3.3.5 Joint Probability Density Functions and Marginal Factorization	88
3.3.6 Dynamic Range, Scaling, Rank, Vector Spaces and PCA	88
3.3.7 The Singular Value Decomposition (SVD)	89
3.3.8 Singular Value Decomposition of Time-Frequency Distributions3.3.9 A Simple Example: Percussive Shaker	91 91
3.3.10 Method	92
3.3.11 Results	92
3.3.12 A More Complicated Example: Glass Smash	93
3.3.13 Method	94
3.3.14 Results	94
3.3.15 Limitations of the Singular Value Decomposition	95
3.3.16 Independent Component Analysis (ICA)	98
3.3.17 The ICA Signal Model: Superposition of Outer-Product TFDs	99
3.3.18 ICA: A Higher-Order SVD	101
3.3.19 Information-Theoretic Criteria For ICA	103
3.3.20 Estimation of the PDFs	103
3.3.21 Parameterization and Solution of the Unitary Transform Q	104
3.3.22 Uniqueness Constraints	104
3.4 Independent Component Analysis of Time-Frequency Distributions 3.4.1 Method	106 106
3.5 Examples of Independent Component Analysis of TFDs	110
3.5.1 Example 1: Bonfire sound	110
3.5.2 Example 2: Coin dropping and bouncing sound	115
3.5.3 Example 3. Glass Smash Revisited	119
3.6 Summary	124
Chapter IV: Structured Sound Effects using Auditory Group Transforms	
4.1 Introduction	125
4.2 Resynthesis of Independent Auditory Invariants from Statistical Bases	125
4.2.1 Spectrum Reconstruction from Basis Components	125
4.2.2 Example 1: Coin Drop Independent Component Reconstruction	127
4.2.3 Example 2: Bonfire Sound	132
4.2.4 Signal Resynthesis from Independent Component Spectrum Reconstruction	135
4.3 Auditory Group Re-synthesis	137
4.3.1 Signal Modification using the LSEE MSTFTM	137
4.3.2 Efficient Structures for Feature-Based Synthesis	138

4.3.3 FIR Modeling	138
4.3.4 IIR Modeling	145
4.3.5 Characterization of Excitation functions	146
4.4 Auditory Group Synthesis Models	147
4.5 Future Directions	148
4.5.1 Orthogonality of ICA Transform	148
4.5.2 Weyl Correspondence and Transformational Invariant Tracking	149
4.5.3 On-Line Basis Estimation	149
4.6 Summary	149
Appendix I: Local Lie Group Representations	
1.1 Definition of Invariants	151
1.2 Transformations of points	152
1.3 Transformations of functions	154
Appendix II: Derivation of Principal Component Analysis	
2.1 Eigenvectors of the Covariance Matrix Derivation	157
2.1.1 Principal Component Feature Extraction	157
Diblio amomby:	
Bibliography	
	161