파티시스템 분석 복습 (MBR, EBR)

디지털포렌식 7기 김종훈 강대명 멘토님 파일시스템 분석 과목

목차

1.	MBR & EBR	3
2.	실습과정 …	4
3.	결론	 8

파일시스템 분석 복습

1. 이론

sha1: 6efc9ec1a9893fcf28fc708cc7181c19f27d5cce

size: 134,217,728(byte)

0번 sector에는 MBR(Master Boot Record)이 위치하며 디스크의 파티션테이블과 부트 로 더를 포함하고 있다

부팅 순서는 다음과 같다.

- 1. POST(Power On Self-Test) 동작
- 2. BIOS에서 부팅 매체 읽음
- 3. 부팅 매체의 MBR을 읽음
- 4. 해당 내용을 메모리에 7C00h 에 복사
- 5. EIP(다음 인스트럭션)을 7C00h로 바꾸어 내용 시작

(부트로더가 MBR에 위치)

섹터는 512Bytes가 일반적이며 실습 과정에서도 512Bytes로 섹터를 구분한다.

512 bytes = 446Bytes(부트 코드) + 16(파티션 테이블 엔트리)*4 + 2(Signature(0x55AA)) 파티션 테이블 엔트리에 처음 1바이트로 부팅이 가능한지 아닌지 확인할 수 있다.

0x80 : 부팅가능 , 0x00 : 부팅 불가능

5바이트 위치를 가리키는 곳에서 파티션 타입을 확인할 수 있다.

0x0b : FAT32, 0x07 : NTFS, 0x05 : EBR(다중 파티션)

다중 파티션의 경우 파티션 테이블 엔트리에서 파티션 타입이 05로 이루어져 있다면 0x05 값을 가리키며 이는 확장 파티션이 있다는 뜻이고 CHS Address를 통해 다음 확장 파티션의 주소로 넘어가면 파티션의 테이블 엔트리와 추가적인 확장파티션 정보를 확인할 수 있다.

2. 실습과정

[0 sector]

Offset(h)	00	01	02	03	04	05	06	07	08	09	0A	0B	00	OD	0E	OF	
00000000	33	CO	8E	DO	BC	00	7C	SE	CO	8E	D8	BE	00	7C	BF	00	3ÀŽĐ4. ŽÀŽØ4. ¿.
00000010	06	B9	00	02	FC	F3	A4	50	68	10	06	CB	FB	B9	04	00	.°üó¤PhÉû°
00000020	BD	BE	07	80	7E	00	00	7C	OB	OF	85	0E	01	83	C5	10	44.€~ fÅ.
00000030	E2	Fl	CD	18	88	56	00	55	C6	46	11	05	C6	46	10	00	āňí. V.UÆFÆF
00000040	B4	41	BB	AA	55	CD	13	5D	72	OF	81	FB	55	AA	75	09	'A»*UÍ.]rúU*u.
00000050	F7	Cl	01	0.0	74	03	FE	46	10	66	60	80	7E	10	00	74	-At.þF.f'€~t
00000060	26	66	68	00	00	00	00	66	FF	76	08	68	00	00	68	00	&fhfÿv.hh.
00000070	7C	68	01	00	68	10	00	B4	42	8A	56	00	88	F4	CD	13	hh BŠV.<ôÍ.
00000080	9F	83	C4	10	9E	EB	14	B8	01	02	BB	00	7C	SA	56	00	ŸfÄ.žë». ŠV.
00000090	8A	76	01	8A	4E	02	A8	6E	03	CD	13	66	61	73	10	FE	Šv.ŠN.Šn.I.fas.
000000A0	4E	11	75	OC	08	7E	00	80	OF	84	SA	00	B2	80	EB	84	N.u.€~.€."Ś. º€ĕ"
000000B0	55	32	E4	8A	56	00	CD	13	5D	EB	9E	81	3E	FE	7D	55	U2aŠV.1.]ēž.>þ}U
00000000	AA	75	6E	FF	76	0.0	E8	BD	00	75	17	FA	BO	DI	E6	64	*unÿv.èu.ú°Ñæd
000000D0	E8	83	00	BO	DF	E6	60	ES	7C	00	BO	FF	E6	64	E8	75	èf. °Bæ'è . °ÿædèt
000000E0	00	FB	B8	00	BB	CD	1A	66	23	CO	75	3B	66	81	FB	54	.û f # Au; f . û?
000000F0	43	50	41	75	32	81	F9	02	01	72	2C	66	68	07	BB	0.0	CPAu2.ur,fh.w.
00000100	00	66	68	00	02	00	00	66	68	08	00	00	00	66	53	66	.fh fh fSi
00000110	53	66	55	66	68	00	00	00	00	66	68	00	7C	00	00	66	SfUfhfh. f
00000120	61	68	00	00	07	CD	1A	5A	32	F6	EA	00	70	00	00	CD	ahİ.Z2öê. !
00000130	18	AO	B 7	07	EB	08	AO	B6	07	EB	03	AO	B5	07	32	E4	e. ¶. e. µ.28
00000140	05	00	07	88	FO	AC	3C	00	74	09	BB	07	00	B4	0E	CD	(8-<.t.»'.
00000150	10	EB	F2	F4	EB	FD	2B	C9	E4	64	EB	00	24	02	EO	F8	.ēòōēý+Éādē.\$.åa
00000160	24	02	C3	49	6E	76	61	6C	69	64	20	70	61	72	74	69	S.AInvalid parts
00000170	74	69	6F	6E	20	74	61	62	6C	65	00	45	72	72	6F	72	tion table.Error
00000180	20	6C	6F	61	64	69	6E	67	20	6F	70	65	72	61	74	69	loading operat:
00000190	6E	67	20	73	79	73	74	65	6D	00	4D	69	73	73	69	6E	ng system.Missin
000001A0	67	20	6F	70	65	72	61	74	69	6E	67	20	73	79	73	74	g operating syst
000001B0	65	6D	00	00	00	63	7B	9A	90	38	54	94	00	00	00	02	emc(8.8T"
000001C0	03	00	07	8E	0C	02	80	00	00	00	00	AO	00	00	00	BE	2€
000001D0	OD	02	07	18	16	05	80	AO	00	00	00	AO	00	00	00	18	€
000001E0	17	05	07	A7	20	07	80	40	01	00	00	AO	00	00	00	A7	
000001F0	21	07	05	FE	3F	OF	80	EO	01	00	00	10	02		_	-	1þ?.€àU

	부팅	타입	주소	크기
1	00(불가)	NTFS	128(80)	20MB
2	00(불가)	NTFS	41088(A080)	20MB
3	00(불가)	NTFS	82048(14080)	20MB
4	00(불가)	EBR	123008(1E080)	?

4번째 파티션의 위치값을 확인하면 0x01E080이며 10진수로 123008섹터에 위치한다.

[123008 sector]

123008섹터의 위치로 가면 첫 번째 테이블 엔트리에는 파티션타입이 [0x07]로 NTFS파일임을 확인할 수 있다. 그리는 A000으로 섹터의 크기(512bytes)를 곱해주면 20971520(bytes)로 대략 20Mb의 파티션 크기임을 확인할 수 있다. 다음 엔트리에는 5번째 확장파티션의 존재여부와 주소를 확인할 수 있다. 여기서 혼동하면 안되는 점은 0섹터에 있는 4번째 파티션의 위치를 가리키는 섹터 값에 다음 확장파티션 주소를 합해서 다음 EBR의 주소로 접근할 수 있다.

123008 + 41088(0xA080) = 164096

[164096 sector]

6번째 섹터의 정보는 [0x07] 타입이므로 NTFS이며 20MB의 크기를 가진다. 다음 섹터의 위치는 123008 + 82176(0x14100) = 205184

[205184 sector]

```
Offset(h) 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F
0642FFF0
    00 00 00 00 00 00 8A 01 A7 01 BF 01 00 00 55 AA
                       ......Š.$./...U*
                       Ø99999999999999
06430000
    역의 205184
06430010
    9999999999999999
06430020
    00000000000000000
06430030
    00000000000000000
06430040
    00000000000000000
06430050
    00000000000000000
    06430060
                       0000000000000000
06430070
    9999999999999999
    06430080
                       9999999999999999
06430090
    00000000000000000
    064300A0
                       9999999999999999
064300B0
    9999999999999999
    064300C0
                       9999999999999999
064300D0
    9999999999999999
00000000000000000
064300F0
    2222222222222222
9999999999999999
    06430110
                       22222222222222222
    06430120
                       9999999999999999
06430130
    9999999999999999
22222222222222222
06430150
    9999999999999999
    06430160
                       9999999999999999
06430170
    9999999999999999
    06430180
                       9999999999999999
06430190
    9999999999999999
064301A0
    9999999999999999
    06430180
                       999999999999999999999
064301C0
                       ......€....À....
064301D0
마지막파티션 -
```

7번째 파티션의 크기는 C000*200h = 25165824(0x1800000) = 약 25Mb

3. 결론

전체 파티션의 정보를 정리한 결과이다.

	부팅	타입	주소	크기
1	00(불가)	NTFS	128(80)	20MB
2	00(불가)	NTFS	41088(A080)	20MB
3	00(불가)	NTFS	82048(14080)	20MB
5	00(불가)	NTFS	123008(1E080)	20MB
6	00(불가)	NTFS	164096(28100)	20MB
7	00(불가)	NTFS	205184(32180)	24MB

FTK Imager로 확인한 값과 비슷하다

