#### Universidad Nacional Autónoma de México



### Facultad de Ingeniería

### Sistemas Operativos | Grupo 8

Tarea 2

Jiménez Olivo Evelin – 321184191

Lara Hernández Emmanuel – 321189536

Fecha: 28 de octubre de 2025



# Comparación de planificadores: diseño, implementación y uso

# Objetivo

Implementar un comparador de planificadores de CPU que:

- Genere múltiples cargas aleatorias (con huecos en los tiempos de llegada).
- Ejecute y compare: FCFS/FIFO, RR(q), SPN (SJF no expropiativo), FB (multinivel con retroal-imentación) y SRR (ronda egoísta).
- Calcule métricas promedio por algoritmo:  $\overline{T}$  (turnaround),  $\overline{E}$  (espera),  $\overline{P}$  (penalización o slowdown).
- Presente un **Gantt textual** por algoritmo.

Para el 10: además de FCFS/RR/SPN, se implementaron dos algoritmos de <u>colas múltiples</u>: **FB** (quanta 1–2–4 con democión por agotamiento) y **SRR** (NEW con \$q=1\$ y OLD con \$q=4\$, prioridad a NEW).

### Modelo de proceso y métricas

Cada proceso  $p_i$  está dado por nombre,  $a_i$  (llegada),  $s_i$  (ráfaga total). Durante la simulación se registran  $f_i$  (finalización) y  $r_i$  (remanente).

$$T_i = f_i - a_i, \qquad E_i = T_i - s_i, \qquad P_i = \frac{T_i}{s_i}.$$

Para cada algoritmo se informa el promedio  $\overline{T},\overline{E},\overline{P}.$ 

### Motor de simulación por ticks

La simulación avanza en pasos discretos ( $\Delta t = 1$ ):

- 1. En el tick t arriban todos los procesos con  $a_i = t$ .
- 2. El planificador select decide qué proceso corre (o CPU ociosa).
- 3. El ejecutado consume 1 unidad:  $r_i \leftarrow r_i 1$ . Si  $r_i = 0$ , se marca  $f_i = t + 1$ .
- 4. Si no hay listos, se imprime "-" en el Gantt (hueco).

Cada algoritmo se implementa como máquina de estados con cinco *callbacks*: init, arrivals, select, tick, finish. Así se reutiliza el mismo motor para todos.

# Algoritmos

FCFS/FIFO Cola simple, no expropiativo. Se mantiene el proceso actual hasta terminar.

 $\mathbf{RR}(\mathbf{q})$  Cola circular. Al agotar q sin terminar, reencola al final (probamos q=1 y q=4).

SPN (SJF no expropiativo) Al elegir, toma el listo con menor ráfaga total  $s_i$ . Luego no se expropia.

**FB** (MLFQ) Tres niveles con quanta (1,2,4). Arriban al nivel superior; si agotan el quantum sin terminar, **descienden** un nivel. Se atiende siempre la cola de mayor prioridad no vacía.

SRR (egoísta) Dos colas: NEW (quantum=1) y OLD (quantum=4). NEW tiene prioridad absoluta; tras la primera rebanada, si no terminó, el proceso pasa a OLD.

#### Generación de cargas con huecos

Para cada ronda se generan n procesos con:

$$a_i \sim \mathcal{U}\{0,\ldots,t_{\text{max}}\}, \qquad s_i \sim \mathcal{U}\{s_{\text{min}},\ldots,s_{\text{max}}\}.$$

Al no haber listos en algunos instantes, aparecen huecos explícitos en el Gantt.

#### Uso del programa

El código está en compara\_planif.py. Se ejecuta así:

```
Terminal
python compara_planif.py --rondas 3 --proc-min 4 --proc-max 7 --tmax 8 --seed

123
# Para ocultar el Gantt:
python compara_planif.py --rondas 2 --no-gantt
```

Listing 1: Ejecución por CLI

```
Notebook (Colab/Local)

from compara_planif import run_demo, run_experiment

run_demo(seed=42) # 2 rondas con Gantt

run_experiment(rondas=5, proc_min=4, proc_max=8, tmax=8, seed=2025, show_gantt=

True)
```

Listing 2: API de alto nivel

## Salida esperada y validación

Cada ronda imprime la descripción de la carga y, por algoritmo, las métricas y el Gantt textual. Ejemplo real:

### Criterios de la rúbrica y cómo se cubrieron

1. Múltiples ejecuciones y tendencias: bandera --rondas y --seed para reproducibilidad.

- 2. Huecos: el motor nunca ejecuta procesos antes de su llegada; si la cola está vacía, imprime "-".
- 3. Esquema visual: Gantt textual por algoritmo en cada ronda.
- 4. Cálculo de T, E, P promedios: reportados para cada planificador.
- 5. Colas múltiples: se incluyeron FB y SRR.

### Tabla guía de interpretación

| Algoritmo | $\overline{T}$ bajo carga mixta         | Interactividad | Justicia/Fairness           |
|-----------|-----------------------------------------|----------------|-----------------------------|
| FCFS      | Puede ser alta si llegan ráfagas largas | Baja           | Baja                        |
| RR(q)     | Depende del $q$ ; buena respuesta       | Alta           | Alta                        |
| SPN       | Minimiza espera en promedio             | Media          | Media (riesgo de inanición) |
| FB        | Favorece trabajos cortos recientes      | Alta           | Media-Alta                  |
| SRR       | Favorece <u>recién llegados</u>         | Muy alta       | Media                       |

# Conclusiones

El comparador permite observar, con cargas aleatorias y huecos, las diferencias de política entre FCFS, RR, SPN, FB y SRR. Las métricas  $\overline{T}$ ,  $\overline{E}$ ,  $\overline{P}$  y el Gantt textual facilitan verificar ejecuciones y discutir tradeoffs: respuesta corta de RR/FB/SRR frente a riesgo de inanición en SPN. La arquitectura de <u>callbacks</u> hace sencillo extender y experimentar con nuevas variantes (p.ej., prioridades por envejecimiento).