MIDSEM EXAM MTH301A-ANALYSIS I TOTAL SCORE: 50

Please mention all the details to get full credit.

- (1) Suppose $a_n \ge 0$ and $\sum_{n=1}^{\infty} a_n < \infty$. Prove that $\liminf\{na_n\} = 0$. Is the converse true? Explain. [5+2 points]
- (2) (i) Show that any nonempty perfect set of \mathbb{R} with respect to the usual metric is uncountable. [5 points]
 - (ii) Is every closed uncountable subset of $\mathbb R$ with respect to the usual metric a perfect set? Explain. [3 points]
 - (iii) For (M, d) a metric space, is every nonempty perfect set an uncountable set? Explain. [5 points]
- (3) (i) Suppose $f:(M,d)\to (N,\rho)$ is a homeomorphism. Prove or disprove: (x_n) is Cauchy if and only if $(f(x_n))$ is Cauchy. [5 points]
 - (ii) Is $(\ell_2, ||\cdot||_2)$ isometrically homeomorphic to $(\ell_\infty, ||\cdot||_\infty)$? Explain. [5 points]
- (4) Consider $\mathcal{B}[0,1]:=\{f:[0,1]\to\mathbb{R}\mid f\text{ is a bounded function}\}.$ Define $||f||_{\infty}:=\sup_{0\le t\le 1}|f(t)|.$
 - (i) Is $(\mathcal{B}[0,1], ||\cdot||_{\infty})$ a separable normed linear space? [7 points]
 - (ii) For $f \in \mathcal{B}[0,1]$, define $||f||_1 := \int_0^1 |f(t)| dt$. Is this a norm on $\mathcal{B}[0,1]$? If so, then is $||\cdot||_{\infty}$ equivalent to $||\cdot||_1$? [3 points]
- (5) Is it possible to have a function on a metric space which is discontinuous at every point of the metric space but the restriction of that function on a dense set is continuous? Explain. [5 points]
- (6) Given (M,d) and (N,ρ) metric spaces, consider the product metric spaces $(M\times N,d_1)$ and $(M\times N,d_\infty)$ where $d_1((a,x),(b,y)):=d(a,b)+\rho(x,y)$ and $d_\infty((a,x),(b,y)):=\max\{d(a,b),\rho(x,y)\}$. Is d_1 strongly equivalent to d_∞ ? Explain. [5 points]