Technische Universität München

BGCE Project: CAD – Integrated Topology Optimization

BGCE First Milestone Meeting

S. Joshi, *J.C. Medina*, *F. Menhorn*, S. Reiz, B. Rüth, E. Wannerberg, *A. Yurova*

November 3, 2015

Contents

- 1. Introduction
 - 1.1 Contents
 - 1.2 Motivation
 - 1.3 Workflow Overview
 - 1.4 Schedule & Milestones
 - 1.5 Organization
 - 1.6 Organization
- 2. Topology optimization
 - 2.1 Status
 - 2.2 The user's view
 - 2.3 The internal view
 - 2.4 Back to the user's view
 - 2.4 Dack to the asers view
 - 2.5 The next steps MOVE TO LATER
- 3. Surface Extraction
 - 3.1 Status
 - 3.2 Dual Contouring
 - 3.3 Projection and Parametrization
- 4. B-Spline Fitting
- 5. Summary

Motivation

Current Design Process:

- Iterative and redundant
- Time consuming

Motivation

Current Design Process:

- · Iterative and redundant
- Time consuming

Topology optimization

 Promoted by additive manufacturing

Motivation

Current Design Process:

- · Iterative and redundant
- Time consuming

Topology optimization

 Promoted by additive manufacturing

Focus:

Convert optimized geometry to lightweight and scalable CAD formats

CAD design

STL interface

Voxelized topology

Specification of loads and fixtures

Optimized topology

Surface extraction

Parametrized CAD-geometries

Schedule & Milestones

Schedule:

Schedule & Milestones

Schedule: (current)

Divide and Conquer

Project Manager

Team Leader

C++ Implementation

Surface Fitting

Topology Optimization

Surface Extraction

Project management

Contents

1. Introduction

- 1.1 Contents
- 1.2 Motivation
- 1.3 Workflow Overview
- 1.4 Schedule & Milestones
- 1.5 Organization
- I.6 Organization

2. Topology optimization

- 2.1 Status
- 2.2 The user's view
- 2.3 The internal view
- 2.4 Back to the user's view
- 2.4 Back to the user's view
- 2.5 The next steps MOVE TO LATER

3. Surface Extraction

- 3.1 Status
- 3.2 Dual Contouring
- 3.3 Projection and Parametrization
- 4. B-Spline Fitting
- 5. Summary

Status DRAFT

Last milestone

- Manual voxelization using CVMLCPP
- √ "Hard coded" script for ToPy input
- Topology optimized geometry using ToPy
- Recognition of boundary conditions

Today

- √ Voxelization with OpenCascade
- Extraction of loads, fixtures and active elements through colouring
- ✓ Automatic "one click" pipeline to surface reconstruction

But what does the user see?

But what does the user see? This!

The next steps MOVE TO LATER

- GUI for input
- Speed up ToPY
- Usage of different optimizers

Contents

1. Introduction

- 1.1 Contents
- 1.2 Motivation
- 1.3 Workflow Overview
- 1.4 Schedule & Milestones
- 1.5 Organization
- 1.6 Organization

2. Topology optimization

- 2.1 Status
- 2.2 The user's view
- 2.3 The internal view
- 2.4 Back to the user's view
- 2.4 Back to the user's view
- 2.5 The next steps MOVE TO LATER

3. Surface Extraction

- 3.1 Status
- 3.2 Dual Contouring
- 3.3 Projection and Parametrization
- 4. B-Spline Fitting
- 5. Summary

Status

Last milestone

① Surface reconstruction with the VTK Toolbox

Today

- Extraction of voxel data from Topy
- 3D Dual Contouring program
- Coarsening and non-manifold edge treatment
- ✓ Projection to quads and respective parametrization
- Unterface to NURBs

From Voxel to Mesh Geometry

- Extract isosurface from voxel information
- Algorithms: Marching Cubes, Dual Contouring, Extended Models
- Problems with VTK's Marching Cube implementation

Dual Contouring

- Python implementation- Use of powerful libraries, including VTK
- Output: Closed surface made out of quads
- Coarsening is needed for surface fitting's algorithms

Dual Contouring

- Python implementation- Use of powerful libraries, including VTK
- Output: Closed surface made out of quads
- Coarsening is needed for surface fitting's algorithms

Dual Contouring- Problems

- Non-manifold edges appear
- One edge can only belong to two quads for the surface to be closed
- Special treatments in the implementation to avoid them

Dual Contouring- Problems

- Non-manifold edges appear
- One edge can only belong to two quads for the surface to be closed
- Special treatments in the implementation to avoid them

Dual Contouring-Input

- Sixth step of the DRAFT pipeline- Interface between Topology Optimization and Surface Extraction
- Special implementation to use voxel data from Topy as input

Demo

Projection and Parametrization

- Points from finer grid are projected to quads of the coarser grid
- Parameters u and v are found for each quad
- This information is needed for the algorithms in the last part of the pipeline

Contents

1. Introduction

- 1.1 Contents
- 1.2 Motivation
- 1.3 Workflow Overview
- 1.4 Schedule & Milestones
- 1.5 Organization
- 1.6 Organization

2. Topology optimization

- 2.1 Status
- 2.2 The user's view
- 2.3 The internal view
- 2.4 Back to the user's view
- 2.4 Dack to the user's view
- 2.5 The next steps MOVE TO LATER

3. Surface Extraction

- 3.1 Status
- 3.2 Dual Contouring
- 3.3 Projection and Parametrization
- 4. B-Spline Fitting
- 5. Summary

B–Spline

$$\vec{S}(u,v) = \sum_{i,j=1}^{n,m} \vec{C}_{i,j} N_i^{\rho}(u) N_j^{\rho}(v),$$

where p – degree of the B–Spline surface and n, m – number of control points in each direction.

B-Splines

- offer great flexibility for handling arbitrary shapes
- are CAD-standard

Engineers are working with CAD

B-Spline Fitting Pipeline [Becker, Schäfer, Jameson]

Status

Last milestone

- Automatic patch selection
- Parametrization of obtained patches
- √ B—spline fitting using least squares
- (b) Smooth connection of patches
- Conversion back to CAD

Today

- ✓ Automatic patch selection moved to the surface extraction part
- Parametrization of obtained patches
- √ B–spline fitting using least squares modified
- Smooth connection of patches
- Conversion back to CAD

Control mesh

Refined control mesh

Bezier control points

B-Spline patch

Long way to smoothness

Main ideas

- Use the mesh obtained from Dual Contouring as a control mesh
- Modify the fitting step to take advantage of the Peters' scheme

$$\downarrow E_{dist}(V_x) = \sum_{i=1}^{N} \parallel P_i - y_i V_x \parallel_2^2 \rightarrow min, \qquad (1)$$

 y_i - coefficients obtained from the Peters' scheme theory.

What is achieved?

- Smoothness of the fitted surface is now guaranteed by construction
- Fitting is possible for more complex shapes achieved by using an information from the Dual Contouring algorithm

Improved pipeline

Before and after Peters

What is next?

Further steps:

- Full integration with Surface Extraction part
- Exporting the results back to CAD

Possible optimizations

- Introducing of the fairness functional in order to deal with more complex shapes
- Implementation of the adaptive refinement in order to control a maximum error tolerance
- Implementation of the parameter correction for the improved pipeline

5. Summary

Contents

1. Introduction

- 1.1 Contents
- 1.2 Motivation
- 1.3 Workflow Overview
- 1.4 Schedule & Milestones
- 1.5 Organization
- 1.6 Organization

2. Topology optimization

- 2.1 Status
- 2.2 The user's view
- 2.3 The internal view
- 2.4 Back to the user's view
- 2.4 Back to the users view
- 2.5 The next steps MOVE TO LATER

3. Surface Extraction

- 3.1 Status
- 3.2 Dual Contouring
- 3.3 Projection and Parametrization
- 4. B-Spline Fitting
- 5. Summary

What is done?

- First part of the pipeline from CAD model to optimized voxel model:
 - CAD to STL with e.g. FreeCAD
 - STI to Voxels with CVMI CPP
 - Voxels to ToPy input with custom script
 - Topology optimized geometry with ToPy
 - (*) Surface reconstruction with VTKToolbox
- B–spline fitting
 - Automatic patch selection
 - Parametrization of obtained patches
 - √ B–spline fitting using least squares
 - (b) Smooth connection of patches

 - Conversion back to CAD.

Contents

1. Introduction

- 1.1 Contents
- 1.2 Motivation
- 1.3 Workflow Overview
- 1.4 Schedule & Milestones
- 1.5 Organization
- 1.6 Organization

2. Topology optimization

- 2.1 Status
- 2.2 The user's view
- 2.3 The internal view
- 2.4 Back to the user's view
- 2.4 Back to the user's view
- 2.5 The next steps MOVE TO LATER

3. Surface Extraction

- 3.1 Status
- 3.2 Dual Contouring
- 3.3 Projection and Parametrization
- 4. B-Spline Fitting
- 5. Summary

What is next?

- Automation of the first part of the pipeline
- Integration of boundary conditions handling
- Implementation of remaining B-spline fitting steps (based on work of M.Eck & H.Hoppe)
- Further research on algorithms considering voxel geometry

Thank you for your attention!

Literature

- William Hunter. "Predominantly solid-void three-dimensional topology optimisation using open source software"
- Gerrit Becker, Michael Schäfer, Antony Jameson. "An advanced NURBS fitting procedure for post-processing of grid-based shape optimizations"
- Matthias Eck, Hugues Hoppe. "Automatic Reconstruction of B-Spline Surfaces of Arbitrary Topological Type"
- Tao Ju, Frank Losasso, Scott Schaefer, Joe Warren "Dual contouring of hermite data"

Projection and Parametrization on arbitrary quads

1. find least squares plane approximating quad

Figure: DC sphere

Figure: with plane quads

Projection and Parametrization on arbitrary quads

- 1. find least squares plane approximating quad
- 2. projection of datapoint onto plane

Coordinate transformation

system with basis

$$B_{BAD} = \left(\vec{n} \quad \vec{AB} \quad \vec{AD} \right)$$

yields

$$(B_{BAD})^{-1} P_1 = (d u v)^T$$

Projection and Parametrization on arbitrary quads

- 1. find least squares plane approximating quad
- 2. projection of datapoint onto plane
- **3.** find corresponding parameters $[u, v] \in [0, 1]^2$

Problem:

$$\checkmark$$
 for P_1 : $(u, v) = (0.5, 0.4)$

$$\nearrow$$
 for P_2 : $(u, v) = (1, 1)$

Solution:

- **1.** if we get u + v > 1
- 2. use B_{BCD} instead of B_{BAD}
- 3. set u = 1 u, v = 1 v

