Построение локальных моделей в задачах анализа сигналов головного мозга

Филатов А.В

Консультант: Маркин В.О Эксперт: Стрижов В.В.

Московский физико-технический институт Факультет управления и прикладной математики Кафедра интеллектуальных систем

29 апреля 2020 г.

Цель работы

Задача

Восстановление траектории движения руки на основе электрических сигналов головного мозга.

Проблема

Избыточность и коррелированность исходного признакового пространства.

Решение

Построение локальной модели с учетом пространственной структуры сигнала.

Получение при помощи локальной модели нового признакового описания.

Локальная модель

Определение

Локальная модель — совокупность двух параметрических отображений: φ и $\tilde{\varphi}$:

$$\varphi: \mathbb{R}^{n \times k_1} \to \mathbb{R}^{n \times k_2},$$
$$\tilde{\varphi}: \mathbb{R}^{n \times k_2} \to \mathbb{R}^{n \times k_1},$$
$$\tilde{\varphi}^*, \varphi^* = \operatorname*{arg\,min}_{\tilde{\varphi}, \varphi} \|\mathbf{X} - \tilde{\varphi} \circ \varphi(\mathbf{X})\|_2,$$

где φ отображает исходное признаковое пространство в скрытое пространство меньшей размерности, а $\tilde{\varphi}$ отображает скрытое пространство в исходное признаковое пространство.

Прогнозирование траектории конечности

Задача

Данные представляют собой временной ряд амплитуд сигналов $\mathbf{X}(t) \in \mathbb{R}^m$. По ним требуется предсказать положение запястья в следующим момент времени $\mathbf{y}(t+1) \in \mathbb{R}^3$.

Декомпозиция решения

Функциональная схема решения

Решение задачи строится как композиция:

$$g^* = f \circ \psi \circ \varphi,$$

где φ — локальная модель, а f — линейная модель, а ψ — вейвлет преобразование.

Вейвлет преобразование

Вейвлет типа Morlet

Определение

Вейвлет-преобразование — интегральное преобразование, которое представляет собой свертку вейвлет-функции $\gamma(t)$ с сигналом $\Theta(\mathbf{t})$.

В случае дискретных наборов преобразование имеет вид $\{ au_1 \dots au_N\}, \{s_1 \dots s_M\}$:

$$\Psi_{nm} = \int_{-\infty}^{+\infty} \Theta(t) \frac{1}{\sqrt{s_m}} \gamma^* \left(\frac{t - \tau_n}{s_m} \right) dt,$$

Метод частичных квадратов

Схема метода частичных квадратов

Описание

Метод частичных квадратов проецирует матрицу плана Ψ и целевую матрицу \mathbf{Y} в скрытое пространство малой размерностью, максимизируя линейную зависимость между столбцами матриц \mathbf{T}, \mathbf{U} , минимизируя нормы $\|\mathbf{\Psi} - \mathbf{TP}^T\|_2$ и $\|\mathbf{Y} - \mathbf{UQ}^T\|_2$.

$$\mathbf{\Psi}_{m \times n} = \mathbf{T}_{m \times l} \cdot \mathbf{P}^{T} + \mathbf{B}_{m \times n} = \sum_{k=1}^{l} \mathbf{t}_{k} \cdot \mathbf{p}_{k}^{T} + \mathbf{B}_{m \times n},$$

$$\mathbf{Y}_{m \times r} = \mathbf{U}_{l \times r} \cdot \mathbf{Q}^{T} + \mathbf{C}_{m \times r} = \sum_{k=1}^{l} \mathbf{u}_{k} \cdot \mathbf{q}_{k}^{T} + \mathbf{C}_{m \times r}.$$

Эксперимент

Зависимость истинной и предсказанной траекторий

- ullet Данные для эксперимента: Neurotycho.org 2
- Данные были прорежены в 10 раз и разбиты на обучение и тест в отношении 70/30%
- Локальная модель строилась на полиномах 3 степени
- Вейвлет преобразование имело тип Morlet и строилось на 10 частотах от 10 до 150 Гц
- Метрика: корреляция Пирсона между предсказанной и истинной траекторией.

²Zenas C Chao, Yasuo Nagasaka, Naotaka Fujii

Результаты эксперимента

Зависимость корреляции Пирсона при разном числе компонент

Значения корреляции Пирсона

Число компонент	N=10	N=25	N=50	N=100	N=250	N=500
Без	0.386	0.391	0.352	0.341	0.331	0.326
Poly3	0.432	0.417	0.411	0.405	0.403	0.401

Заключение

- Исследован метод, учитывающий пространственную структуру сигнала
- Разработанный подход понижает размерность задачи в 2-3 раза
- Проведен вычислительный эксперимент, доказывающий эффективность предложенного решения с точки зрения критерия качества.

Дальнейшие исследования

- Автоматизация выбора семейства локальных моделей
- Исследование влияния типа спектрального преобразования
- Борьба с переобучением

Список литературы

- Anastasia Motrenko Vadim Strijov. Multi-way feature selection for ecog-based brain-computer interface. Expert Systems with Applications, 114:402–413, 2018.
- 2 Zenas C Chao, Yasuo Nagasaka, Naotaka Fujii. Long-term asynchronous decoding of arm motion using electrocorticographic signals in monkey. Frontiers in neuroengineering, 3:3, 2010.