# what is 'chaos'? a field theorist stroll through Bernoullistan

Predrag Cvitanović

ChaosBook.org/overheads/spatiotemporal/kittens/ notes Georgia Tech

November 23, 2020

## Mephistopheles knocks at Faust's door and says, "Du mußt es dreimal sagen!"

- "You have to say it three times"
  - Johann Wolfgang von Goethe
- . Faust I Studierzimmer 2. Teil

- coin toss
- 2 temporal cat
- spatiotemporal cat
- bye bye, dynamics

(1) coin toss, if you are stuck in XVIII century

time-evolution formulation

#### fair coin toss

## Bernoulli map



$$\phi_{t+1} = \left\{ \begin{array}{l} 2\phi_t \\ 2\phi_t \pmod{1} \end{array} \right.$$

 $\Rightarrow$  fixed point  $\overline{0}$ , 2-cycle  $\overline{01}$ ,  $\cdots$ 

a coin toss

## what is (mod 1)?

map with integer-valued 'stretching' parameter  $s \ge 2$ :

$$x_{t+1} = s x_t$$

(mod 1): subtract the integer part  $m_{t+1} = \lfloor sx_t \rfloor$  so fractional part  $\phi_{t+1}$  stays in the unit interval [0, 1)

$$\phi_{t+1} = \mathbf{s}\phi_t - m_{t+1}, \qquad \phi_t \in \mathcal{M}_{m_t}$$

 $m_t$  takes values in the *s*-letter alphabet

$$m \in \mathcal{A} = \{0, 1, 2, \cdots, s-1\}$$

#### a fair dice throw

## slope 6 Bernoulli map



$$\phi_{t+1} = 6\phi_t - m_{t+1} , \ \phi_t \in \mathcal{M}_{m_t}$$

6-letter alphabet  $m_t \in \mathcal{A} = \{0, 1, 2, \cdots, 5\}$ 

6 subintervals 
$$\{\mathcal{M}_0,\mathcal{M}_1,\cdots,\mathcal{M}_5\}$$

### what is chaos?

#### a fair dice throw

6 subintervals  $\{\mathcal{M}_{\textit{m}_t}\}$ , 6<sup>2</sup> subintervals  $\{\mathcal{M}_{\textit{m}_1\textit{m}_2}\}$ ,  $\cdots$ 



each subinterval contains a periodic point, labeled by  $M = m_1 m_2 \cdots m_n$ 

 $N_n = 6^n$  unstable orbits

#### definition: chaos is

positive Lyapunov ( $\ln s$ ) - positive entropy ( $\frac{1}{n} \ln N_n$ )

#### definition: chaos is

positive Lyapunov (ln s) - positive entropy  $(\frac{1}{n} \ln N_n)$ 

the precise sense in which dice throw is an example of deterministic chaos

(2) chaos for field theorists, 3rd millenium

## lattice formulation

#### lattice Bernoulli

recast the time-evolution Bernoulli map

$$\phi_{t+1} = s\phi_t - m_{t+1}$$

as 1-step difference equation on the temporal lattice

$$\phi_t - s\phi_{t-1} = -m_t, \qquad \phi_t \in [0,1)$$

field  $\phi_t$ , source  $m_t$  on each site t of a 1-dimensional lattice  $t \in \mathbb{Z}$ 

write an *n*-sites lattice segment as the lattice state and the symbol block

$$\Phi = (\phi_{t+1}, \cdots, \phi_{t+n}), \quad \mathsf{M} = (m_{t+1}, \cdots, m_{t+n})$$

'M' for 'marching orders': come here, then go there,  $\cdots$ 

## exponentially many distinct walks through Bernoullistan



## think globally, act locally

Bernoulli condition at every lattice site *t*, local in time

$$\phi_t - s\phi_{t-1} = -m_t$$

is enforced by the global equation

$$\left(1-s\,\sigma^{-1}\right)\,\Phi=-M\,,$$

 $[n \times n]$  shift matrix

$$\sigma_{jk} = \delta_{j+1,k}, \qquad \sigma = \begin{pmatrix} 0 & 1 & & & \\ & 0 & 1 & & & \\ & & & \ddots & & \\ & & & 0 & 1 \\ 1 & & & & 0 \end{pmatrix}$$

compares the neighbors

## think globally, act locally

solving the lattice Bernoulli system

$$\mathcal{J}\Phi = -\mathsf{M}\,,$$

 $[n \times n]$  Hill matrix

$$\mathcal{J} = 1 - s \, \sigma^{-1} \,,$$

is a search for zeros of the function

$$F[\Phi] = \mathcal{J}\Phi + M = 0$$

the entire global lattice state  $\Phi_{M}$  is now a single fixed point  $(\phi_{1}, \phi_{2}, \cdots, \phi_{n})$ 



#### Hill matrix

solving a nonlinear  $F[\Phi] = 0$  fixed point condition with Newton method requires evaluation of the  $[n \times n]$  Hill matrix

$$\mathcal{J}_{ij} = \frac{\delta F[\Phi]_i}{\delta \phi_j}$$

what does this global Hill matrix do?

- fundamental fact!
- global stability of lattice state Φ, perturbed everywhere

## (1) fundamental fact

to satisfy the fixed point condition

$$\mathcal{J}\Phi + M = 0$$

the Hill matrix  $\mathcal{J}$ 

- **o** stretches the unit hyper-cube  $\Phi \in [0,1)^n$  into the n-dimensional fundamental parallelepiped
- **2** maps each periodic point  $\Phi_{M} \Rightarrow \text{integer lattice } \mathbb{Z}^{n} \text{ point}$
- $\odot$  then translate by integers  $M \Rightarrow$  into the origin hence  $N_n = \text{total } \sharp \text{ solutions } = \text{ the } \sharp \text{ integer lattice points}$

within the fundamental parallelepiped

the fundamental fact<sup>1</sup>: Hill determinant counts solutions

$$N_n = |\text{Det } \mathcal{J}|$$

# integer points in fundamental parallelepiped = its volume

<sup>&</sup>lt;sup>1</sup>M. Baake et al., J. Phys. A **30**, 3029–3056 (1997).

## example : fundamental parallelepiped for n = 2

Hill matrix, s = 2 unit square basis vectors, their images :

$$\mathcal{J} = \left( \begin{array}{cc} 1 & -2 \\ -2 & 1 \end{array} \right); \quad \Phi_B = \left( \begin{array}{c} 1 \\ 0 \end{array} \right) \ \rightarrow \ \Phi_{B'} = \mathcal{J} \, \Phi_B = \left( \begin{array}{c} 1 \\ -2 \end{array} \right) \cdots \, ,$$

## Bernoulli periodic points of period 2



square  $[0BCD] \Rightarrow \mathcal{J} \Rightarrow$  fundamental parallelepiped [0B'C'D']

## fundamental fact for any n

## an n = 3 example

 $\mathcal{J}$  [unit hyper-cube] = [fundamental parallelepiped]



unit hyper-cube  $\Phi \in [0,1)^n$ 

n > 3 cannot visualize

a periodic point  $\rightarrow$  integer lattice point,  $\bullet$  on a face,  $\bullet$  in the interior

## (2) orbit stability vs. temporal stability

#### Hill matrix

 $\mathcal{J}_{ij} = \frac{\delta F[\Phi]_i}{\delta \phi_j}$  stability under global perturbation of the whole orbit for *n* large, a huge  $[dn \times dn]$  matrix

## temporal Jacobian matrix

J propagates initial perturbation n time steps small  $[d \times d]$  matrix

J and  $\mathcal{J}$  are related by<sup>2</sup>

Hill's (1886) remarkable formula

$$|\mathrm{Det}\,\mathcal{J}_{\mathsf{M}}| = |\mathrm{det}\,(\mathbf{1} - J_{\mathsf{M}})|$$

 $\mathcal{J}$  is huge, even  $\infty$ -dimensional matrix J is tiny, few degrees of freedom matrix

<sup>&</sup>lt;sup>2</sup>G. W. Hill, Acta Math. **8**, 1–36 (1886).

#### field theorist's chaos

#### definition

expanding Hill determinants Det  $\mathcal{J}$  exponential  $\sharp$  of field configurations  $N_n$ 

the precise sense in which a (discretized) field theory is deterministically chaotic

how come Hill determinant  $\operatorname{Det} \mathcal{J}$  counts periodic points ?

in 1984 Ozorio de Almeida and Hannay<sup>3</sup> related the number of periodic points to a Jacobian matrix by their

## principle of uniformity

"periodic points of an ergodic system, counted with their natural weighting, are uniformly dense in phase space"

#### where

'natural weight' of periodic orbit M

$$\frac{1}{|\det{(1-J_{\mathsf{M}})}|}$$

<sup>&</sup>lt;sup>3</sup>A. M. Ozorio de Almeida and J. H. Hannay, J. Phys. A 17, 3429 (1984).

how come a  $\operatorname{Det} \mathcal J$  counts periodic points ?

"principle of uniformity" is in4

## periodic orbit theory

known as the flow conservation sum rule:

$$\sum_{M} \frac{1}{|\det(1 - J_{M})|} = \sum_{M} \frac{1}{|\operatorname{Det} \mathcal{J}_{M}|} = 1$$

sum over periodic points  $\Phi_{M}$  of period n

state space is divided into

neighborhoods of periodic points of period n

<sup>&</sup>lt;sup>4</sup>P. Cvitanović, "Why cycle?", in Chaos: Classical and Quantum, edited by P. Cvitanović et al. (Niels Bohr Inst., Copenhagen, 2020).

how come a  $\operatorname{Det} \mathcal J$  counts periodic points ?

### flow conservation sum rule:

$$\sum_{\phi_i \in \mathsf{Fix} f^n} \frac{1}{|\mathsf{Det}\,\mathcal{J}_i|} = 1$$

Bernoulli system 'natural weighting' is simple:

the determinant  $\operatorname{Det} \mathcal{J}_i = \operatorname{Det} \mathcal{J}$  the same for all periodic points, whose number thus verifies the fundamental fact

$$N_n = |\text{Det } \mathcal{J}|$$

## the number of Bernoulli periodic lattice states

$$N_n = |\text{Det } \mathcal{J}| = s^n - 1$$
 for any  $n$ 

## example: lattice states of period 2



#### flow conservation sum rule

$$\frac{1}{|\mathrm{Det}\,\mathcal{J}_{00}|} + \frac{1}{|\mathrm{Det}\,\mathcal{J}_{01}|} + \frac{1}{|\mathrm{Det}\,\mathcal{J}_{10}|} = 1$$

sum over periodic points  $\Phi_M$  of period n=2

state space is divided into

neighborhoods of periodic points of period *n* 

how does 1-time step transition matrix T count periodic lattice states? For any matrix  $\ln \det = \operatorname{tr} \ln$ , so

$$\ln \det (1 - zT) = \operatorname{tr} \ln (1 - zT) = \operatorname{sum over loops}$$

$$\det(1-zT) = \exp\left(-\sum_{n=1}^{\infty} \frac{z^n}{n} \operatorname{tr} T^n\right)$$

#### **AKA**

## 'topological zeta function'

$$1/\zeta_{top}(z) = \exp\left(-\sum_{n=1}^{\infty} \frac{z^n}{n} N_n\right)$$

- weight 1/n as by (cyclic) translation invariance, n lattice states are equivalent
- 2 zeta function counts prime orbits, one per each set of equivalent lattice states

## topological zeta function

counts prime orbits, one per each set of Bernoulli periodic states  $N_n = s^n - 1$ 

$$1/\zeta_{\mathsf{top}}(z) = \exp\left(-\sum_{n=1}^{\infty} \frac{z^n}{n} N_n\right) = \frac{1-sz}{1-z}$$

numerator (1 - sz) says that Bernoulli orbits are built from s fundamental primitive lattice states,

the fixed points 
$$\{\phi_0, \phi_1, \cdots, \phi_{s-1}\}$$

every other lattice state is built from their concatenations and repeats.



this is 'periodic orbit theory'

And if you don't know, now you know

## think globally, act locally - summary

the problem of enumerating and determining all global solutions stripped to its essentials :

each solution is a zero of the global fixed point condition

$$F[\Phi] = 0$$

global stability: the Hill matrix

$$\mathcal{J}_{ij} = \frac{\delta F[\Phi]_i}{\delta \phi_j}$$

fundamental fact : the number of period-n orbits

$$N_n = |\text{Det } \mathcal{J}|$$

**o** zeta function  $1/\zeta_{top}(z)$ : all predictions of the theory

## a kicked rotor - templatt.tex next

Du mußt es dreimal sagen!

— Mephistopheles

- coin toss
- kicked rotor
- spatiotemporal cat
- O bye bye, dynamics