Disseminating a Fair Emergency Message With V2V Communication

Análise do Artigo de Firdissa et al. (2025)

Universidade Federal do Ceará Campus Quixadá

April 13, 2025

Sumário

- 1. Introdução
- 2. Trabalhos Relacionados
- 3. Proposta do Artigo
- 4. Implementação e Simulação
- 5. Resultados
- 6. Conclusão

Contextualização

- VANETs: redes ad hoc veiculares de alta mobilidade.
- Comunicação V2V, V2I, V2X.
- Mensagens de emergência são cruciais para segurança viária.
- Problemas enfrentados: colisões, tempestades de broadcast, delays.

Figure: Tipos de comunicação em VANETs

Motivação do Estudo

Desafio

"The novel contribution of this paper is disseminating a fair emergency message in vehicular communication by minimizing the number of rebroadcasting nodes at a cross-sectional road." [Firdissa et al., 2025]

Revisão de Literatura

- Métodos baseados em forwarders, cluster heads e algoritmos heurísticos.
- Problemas persistentes: redundância, colisões e atrasos.
- Foco majoritário em cenários rodoviários, não urbanos.

Algoritmos Comparados

O artigo compara o desempenho do algoritmo SMD com duas abordagens anteriores:

EEMDS (Efficient Emergency Message Dissemination Scheme)

- Baseado na seleção de múltiplos retransmissores.
- Utiliza distância e posição como critérios de prioridade.
- Funciona bem em cenários rodoviários, mas causa sobrecarga em ambientes urbanos densos.

FastBroadcast

- Método baseado em zonas para controle de rebroadcast.
- Rápido, porém menos eficiente em ambientes com interferência e alta densidade.
- Possui alta taxa de colisões e perda de pacotes.

Algoritmo SMD (Safety Message Dissemination)

- Seleção de um Único nó retransmissor.
- Critérios:
 - 1. Densidade de vizinhança (via beacons)
 - 2. Força média do sinal (avr_rss)
 - 3. Tempo de permanência (nodes_ttl)

Arquitetura da Solução

Figure: Fluxo do sistema proposto usando IEEE 802.11p

Fluxograma da Seleção do Nó Relay

Figure: Etapas da seleção de nó retransmissor

Critérios de Escolha do Relay

Cálculo do avr_rss

$$avr_rss = \frac{rssMin + rssMax}{2}$$

Classificação do sinal (exemplo)

• -50 dBm: Excelente

• -70 dBm: Bom

• -90 dBm: Fraco

Pseudocódigo Simplificado

```
1. procedure SMD_Emergency_Broadcast()
2.
       if detect_emergency():
3.
           broadcast(message) # Passo 1
4.
       for each node in reception_range:
5.
           if message.id not in cache: # Passo 2
6.
               density = count_neighbor_beacons()
7.
               ttl = calculate_time_to_leave(sender, node) # Passo 3
8.
               avr_rss = (rss_min + rss_max) / 2
9.
               if (density > threshold) and
10.
                   (ttl < max_ttl) and
11.
                   is medium rss(avr rss):
12.
                       rebroadcast(message) # Passo 4
13.
                       cache.add(message.id)
```

Ferramentas Utilizadas

- SUMO: gera mobilidade urbana (crossroad scenario)
- NS2.35: simula comunicação e métricas de rede
- Protocolo: IEEE 802.11p/WAVE

Parâmetros de Simulação

Parâmetro	Valor
Simulador de Rede	NS2.35
Mobilidade	SUMO 1.14.1
Padrão	IEEE 802.11p
# Veículos	20 a 100
Velocidade	20 m/s
Taxa de dados	10 Mbps
Intervalo de TX	17–27 s
Antena	Omnidirecional

Table: Configuração experimental da simulação

Packet Delivery Ratio (PDR)

Figure: Taxa de entrega de pacotes para diferentes algoritmos

Packet Loss Ratio (PLR)

Figure: PLR comparando SMD, EEMDS e FastBroadcast

End-to-End Delay (E2ED)

Figure: Delay fim-a-fim sob diferentes densidades

Conclusões

- SMD reduz colisões e melhora a confiabilidade da disseminação.
- Supera algoritmos existentes em E2ED, PDR e PLR.
- Solução ideal para cenários urbanos e cruzamentos.

Trabalhos Futuros

- Avaliar em ambientes C-V2X com 5G
- Adotar aprendizado de máquina para seleção de relay
- Simulações em cidades reais com múltiplos cruzamentos

Referências

Firdissa, N., Gemeda, K. A., Mishra, S., Rathee, D. S., Singh, R. S., and Darejew, T. (2025). Disseminating a fair emergency message with v2v communication technology in vanet. Security and Communication Networks, 2025.

Obrigado!