

Memory-based Exploration

Christopher Mutschler

- 11

Agenda

- Motivation, Problem Definition & Multi-Armed Bandits
- Classic Exploration Strategies
 - Epsilon Greedy
 - (Bayesian) Upper Confidence Bounds
 - Thomson Sampling
- Exploration in Deep RL
 - Count-based Exploration: Density Models, Hashing
 - Prediction-based Exploration:
 - Forward Dynamics
 - Random Networks
 - Physical Properties
 - Memory-based Exploration:
 - Episodic Memory
 - Direct Exploration
- Summary and Outlook

Memory-based Exploration

- Reward-based exploration works well in many applications
- However, it suffers from several disadvantages:
 - Function approximation is slow
 - Exploration bonus is non-stationary
 - Knowledge fading: states are no longer novel in time and do no longer provide intrinsic reward signals

Idea of memory-based exploration:

→ Use external memories in combination to resolve such disadvantages!

- So far: RND works great but suffers from episodic settings
- Idea: use two modules:
 - 1. RND as a lifelong novelty module, and
 - 2. an episodic novelty module for rapid in-episode adaptation

¹ Badia et al.: Never Give Up: Learning Directed Exploration Strategies. ICLR 2020

- So far: RND works great but suffers from episodic settings
- Idea: use two modules:
 - 1. RND as a lifelong novelty module, and
 - 2. an episodic novelty module for rapid in-episode adaptation
 - RND derives a life-long novelty bonus
 - · The exploration bonus is given as

$$\alpha_t = 1 + \frac{e^{RND}(s_t) - \mu_e}{\sigma_e}$$
, with

- the running mean μ_{ρ} , and
- the running standard deviation σ_{ρ} of the RND error $e^{RND}(s_t)$

¹ Badia et al.: Never Give Up: Learning Directed Exploration Strategies. ICLR 2020

- So far: RND works great but suffers from episodic settings
- Idea: use two modules:
 - 1. RND as a lifelong novelty module, and
 - 2. an episodic novelty module for rapid in-episode adaptation
 - Add $\phi(s_t)$ into M
 - Compare $\phi(s_t)$ to the other content in M:

$$r_t^e = \frac{1}{\sqrt{\sum_{\phi_i \in N_k} K(\phi(x_t), \phi_i) + c}}$$
, with

- a kernel function K(x, y)
- # nearest neighbors N_k , and
- a constant c to avoid a zero-sum

Originally, the paper proposes

$$K(x,y) = \frac{\epsilon}{\frac{d^2(x,y)}{d_m^2} + \epsilon}$$
, with

- Euclidean distance *d* between two samples
- squared Euclidean distance d_m^2 of the k-th nearest neighbors \rightarrow more robust
- a small constant ϵ

¹ Badia et al.: Never Give Up: Learning Directed Exploration Strategies. ICLR 2020

- So far: RND works great but suffers from episodic settings
- Idea: use two modules:
 - 1. RND as a lifelong novelty module, and
 - 2. an episodic novelty module for rapid in-episode adaptation

 $r_t^i = r_t^e \cdot clip(\alpha_t, 1, L)$, with L being a reward scaler.

- → Do not revisit the same state within the same episode!
- → Try to not revisit the states you already saw in previous episodes!

¹ Badia et al.: Never Give Up: Learning Directed Exploration Strategies. ICLR 2020

Agent57¹

- Agent57 is the first RL agent who beats Atari57 consistently
- Two main improvements over NGU:
 - 1. Population of policies:
 - Each policy has its own pair of exploration parameters $\{(\beta_j, \gamma_j)\}_{j=1}^N$
 - Policies with high β_i (and lower γ_i) make more progress at early stages
 - Policies with high γ_i (and lower β_i) make more progress at later stages
 - A meta-controller (sliding window UCB) is trained to select from the policies

2. Re-Parameterization of Q-value function:

Q-function is decomposed into intrinsic and extrinsic influence:

$$Q(s, a; \theta_j^i) = Q(s, a; \theta_j^e) + \beta_j Q(s, a; \theta_j^i)$$

• During training both parameter sets (θ^e and θ^i) are optimized separately with rewards r_i^e and r_i^i , respectively

https://deepmind.com/blog/article/Agent57-Outperforming-the-human-Atari-benchmark

* In fact: this paper was published before the NGU paper!

Episodic Curiosity through Reachability¹

- There is a better thing than using the Euclidean distance*
- Episodic Curiosity (EC) module:
 - Measure the number of steps needed to transit between two states
 - The novelty than depends on the reachability between states
- General idea/steps:
 - 1. Clear episodic memory *M* on environment reset
 - 2. At each step *t* until the episode ends:
 - 1. Compare s_t with all the states in the memory
 - 2. If it takes more than k steps to reach $s_t \rightarrow$ agent gets a bonus
 - 3. If the novelty bonus is large enough \rightarrow add s_t to M
 - But how can we estimate the reachability?

Episodic Curiosity through Reachability¹

- Ideally, we would have access to a transition graph
 - 1. Not possible to build up (due to limited memory)
 - 2. Hard to build
- Solution: Train a Siamese neural network that predicts how far two states are apart
 - Embedding network $E: \mathcal{O} \to \mathbb{R}^n$ (encodes states to feature vectors)
 - Comparator network $C: \mathbb{R}^n \times \mathbb{R}^n \to [0,1]$ (reachability within k steps: 0 (not reachable) to 1 (reachable))
 - "R-network" as a classifier trained with logistic regression loss, based on trajectory data:
 - \rightarrow Hence: $R(o_i, o_j) = C(E(o_i), E(o_j))$

¹ Savinov et al.: Episodic Curiosity through Reachability. ICLR 2019.

Episodic Curiosity through Reachability

- Putting all together: Episodic Curiosity (EC) Module
- At every time step
 - 1. Embedding network processes $o_t \rightarrow$ embedding vector $e = E(o_t)$
 - 2. Compare e with all embeddings in the buffer $M = \langle e_1, ..., e_{|M|} \rangle$ via C \rightarrow fills the reachability buffer with values

$$c_i = C(e_i, e), \quad i = 1, ..., M.$$

embedding

- 3. Compute the similarity score between e and the memory buffer M as $C(M, e) = F(c_1, ..., c_{|M|}) \in [0,1]$, where $F(\cdot)$ is a hyperparameter (function).
 - max(·) would theoretically be a good choice but is prone to outliers
 - 90th percentile works better in experiments.
- 4. Compute the curiosity bonus as $b = B(M, e) = \alpha(\beta C(M, e))$
 - α tunes scale of task rewards
 - β defines the sign of the reward (0.5 works well for fixed-duration episodes)

¹ Savinov et al.: Episodic Curiosity through Reachability. ICLR 2019.

Direct Exploration

Go-Explore¹

 The problems stemming from sparse rewards and intrinsic motivation are two-fold:

1. Detachment

- Intrinsic rewards are nearly always a consumable resource: short-term focus lies on such areas but with time they become less interesting to the agent
- Catastrophic forgetting: we forget things that happened far in the past

2. Derailment

- Describes the problem of re-visiting an interesting state again, in order to further explore from there
- Previous work runs the policy again (with stochastic perturbation) in a "hope" to reach the desired state again

see also: https://towardsdatascience.com/a-short-introduction-to-go-explore-c61c2ef201f0

¹ Adrian Ecoffet et al.: Go-Explore: a new Approach for Hard-Exploration Problems. 2020.

Direct Exploration: Go-Explore

Go-Explore¹ addresses detachment and derailment using two phases:

1. Explore until solved

- No ML and NNs involved here. Just random (or semi-guided) exploration
- Main goal: find interesting cells
 - Newly discovered & high reward obtained to reach them
- For each interesting cell we store the
 - 1. full trajectory to get there
 - 2. a snapshot of the environment state
 - 3. total reward of the trajectory
 - 4. length of the trajectory
- If we revisit a state
 - Update the entry if it is better (i.e., short trajectory, higher reward)

Use a heuristic to choose a good cell and go there (i.e., best reward, least-visited,...)

¹ Adrian Ecoffet et al.: Go-Explore: a new Approach for Hard-Exploration Problems. 2020.

Direct Exploration: Go-Explore

Go-Explore¹ addresses detachment and derailment using two phases:

- Limitation of 1st phase: go to a cell is only "easy" in deterministic environments!
- 2. Robustify (if needed): "Backward" algorithm
 - Consider a sequence $c_1, c_2, ..., c_{n-1}, c_n$, where c_n is the "go" cell
 - Algorithm:
 - 1. Initialize $c_i = c_{n-1}$
 - 2. Set environment to the snapshot of c_i and train the agent to reach c_n
 - 3. When agent finds a trajectory with an equal or higher reward:
 - \rightarrow set $i \leftarrow i 1$
 - \rightarrow go to step 2
 - 4. Stop when i = 1
 - How to make policies more robust to non-determinism in Atari?
 - No ops
 - Sticky actions

¹ Adrian Ecoffet et al.: Go-Explore: a new Approach for Hard-Exploration Problems. 2020.

Direct Exploration: Go-Explore

Figure 6: History of progress on Montezuma's Revenge vs. the version of Go-Explore that does not harness domain knowledge. Go-Explore significantly improves on the prior state of the art.

¹ Adrian Ecoffet et al.: Go-Explore: a new Approach for Hard-Exploration Problems. 2020.

Direct Exploration: Go-Explore (Improvements)

- "First return, then explore" 1: policy-based Go-Explore
 - Instead of resetting the simulator: learn a goal-conditioned policy to reach a state
 - → mainly trained to follow the best trajectory so far
 - Self-Imitation Learning to extract more information from successful trajectories

- "Memory based Trajectory-conditioned Policies for Learning from Sparse Reward
 - Like policy-based go-explore:
 - Maintain a memory of demonstrations collected during training
 - Use them to train a trajectory-conditioned policy via Self-Imitation Learning
 - Prioritize trajectories that end with a rare state during sampling.

¹ Adrian Ecoffet et al.: First return, then explore. 2021

² Yijie Guo et al.: Memory Based Trajectory-conditioned Policies for Learning from Sparse Rewards. 2021

- 113

Agenda

- Motivation, Problem Definition & Multi-Armed Bandits
- Classic Exploration Strategies
 - Epsilon Greedy
 - (Bayesian) Upper Confidence Bounds
 - Thomson Sampling
- Exploration in Deep RL
 - Count-based Exploration: Density Models, Hashing
 - Prediction-based Exploration:
 - Forward Dynamics
 - Random Networks
 - Physical Properties
 - Memory-based Exploration:
 - Episodic Memory
 - Direct Exploration
- Summary and Outlook

Summary

- We studied different families of algorithms and settings in this lecture:
 - 1. Multi-armed Bandits and their theoretical assumptions
 - 2. Challenges that arise from going from small MDPs to high-dimensional POMDPs
 - 3. We found different families of methods to guide exploration in Deep RL:
 - Count-based Exploration
 - Prediction-based Exploration
 - Memory-based Exploration

- Exploration is really hot topic in current RL research
 - Proving theoretical assumption and bound from (contextual) bandits on small MDPs, as well as

Exploration in Deep RL

References

- Lilian Weng: The Multi-Armed Bandit Problem and Its Solutions. lilianweng.github.io/lil-log, 2018.
 https://lilianweng.github.io/lil-log/2018/01/23/the-multi-armed-bandit-problem-and-its-solutions.html
- CS229 Supplemental Lecture notes. http://cs229.stanford.edu/extra-notes/hoeffding.pdf
- UCL Course by David Silver Lecture 9: XX.
- Oliver Chapelle and Lihong Li: An empirical evaluation of Thompson Sampling. NIPS2011.
- Daniel Russo et al.: A Tutorial on Thompson Sampling. arXiv:1707.02038. 2017.
- https://openai.com/blog/reinforcement-learning-with-prediction-based-rewards/