BMS: CAN BUS COMMUNICATION SPECIFICATION

1. Communication Specification

The principle for data link layer.

Communication speed for bus line: 250Kbps.

The provision for data link layer: Refer to the related regulation of CAN2.0B and J1939.

Use and redefine 29 identifiers of CAN extended frame. The distribution of 29 identifiers are listed below:

IDENTIFIER 11BYTES						S R R	I D E		IDENTIFIER EXTENSION 18BYTES																					
F	RIORIT	ГΥ	R	DP		PD	U FOF	RMAT(PF)		S R R	I D E	Р	PF PDU SPECIFIC(PS) SOURCE ADDRESS(SA)																
3	2	1	1	1	8	7	6	5	4	3			2	1	8	7	6	5	4	3	2	1	8	7	6	5	4	3	2	1
28	27	26	25	24	23	22	21	20	19	18			17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Herein, Priority has 3-bit and there can be 8 priority levels. R is generally fixed as 0. DP is fixed as 0 at present. 8-byte PF is the code for message. 8-byte PS refers to destination address or array extension. 8-byte SA refers to the source address for sending messages.

CAN Network Address Distribution

Obtain the node address of CAN Bus from the definition of J1939 Standard:

Node Name	SOURCE ADDRESS(SA)
Motor Controller	239(0xEF)
Battery Management System (BMS)	244(0xF4)
Charger Control System (CCS)	229(0xE5)
Charger Control System 2 (CCS2)	230(0xE6)
Broadcast Address (BCA)	80(0x50)

There is a name and an address for every node which accesses to the network. The name is used for nodes identification and address arbitration. The address is used for data communication to node.

Every node has at least one function. Multiple nodes might have the same function or one node might have multiple functions.

www.tccharger.com

export2@tccharger.com

TCcharger CAN Protocol

Document Number: 0010 Version: 0A

Message Format

Message1: (ID: 0x1806E5F4)

OUT	IN		I	D		Cycle Time (ms)					
BMS	ccs	Р	R		DP	PF	1000				
DIVIO	CCS	6	0		0	6	1000				
			Data								
Position		Data Name									
BYTE1	BYTE1 Max Allowable Charging Terminal Voltage High Byte (VOL_SET_H)					0.1V/byte offset:0 e.g. Vset=3201, its corresponding 320.1V					
BYTE2	Max Allowable C	harging Terminal Voltage L	ow Byte (VOL_SET_L)		0.1 v/byto onsetto e.g. vset=5201, its corresponding 520.1 v						
BYTE3	BYTE3 Max Allowable Charging Current High Byte (VOL_SET_H)					- 0.1A/byte offset:0 e.g. Iset=582, its corresponding 58.2A					
BYTE4	Max Allowab	le Charging Current Low E		0.17/byte diset.0 e.g. iset=502, its corresponding 50.27							
BYTE5		Control			0: Charger is open and on charge.						
DITES		Control			1:Battery protection, the charger closes its output.						
BYTE6	BYTE6 Reserved										
BYTE7	BYTE7 Reserved										
BYTE8	BYTE8 Reserved										

Message 2: (ID: 0x18FF50E5)

OUT	OUT IN		I	D	Cycle Time(ms)			
ccs	BCA	Р	R	DP	PF	1000		
CCS	BOA	6	0	0	0xFF	1000		
			Data					
Position		Data Name						
BYTE1		Output Voltage High Byte		0.1V/byte offset:0 e.g. Vout=3201, its corresponding 320.1V				
BYTE2		Output Voltage Low Byte		0.1 V/byte onset.0 e.g. vout=5201, its corresponding 520.1 V				
BYTE3		Output Current High Byte		0.1A/byte offset:0 e.g. lout=582, its corresponding 58.2A				
BYTE4		Output Current Low Byte		Max byte means mark. 0: charging; 1: discharging				
BYTE5		Status Flags						
BYTE6		Reserved						
BYTE7		Reserved						
BYTE8		Reserved						

STATUS (BYTE5)	Mark	Description					
Bit 0	Hardware Failure	0: Normal. 1: Hardware Failure					
Bit 1	Temperature of Charger	0: Normal. 1: Over temperature protection					
Bit 2		0: Input voltage is normal. 1. Input voltage is wrong, the charger will stop working.					
Dit 2	Input Voltage						
	Stating State	0: The charger detects the voltage of the battery and enter into starting state. 1: The charger stays closed (to					
Bit 3		prevent reverse polarity)					
Bit 4	Communication State	0: Communication is normal. 1: Communication receive time-out.					
Bit 5							
Bit 6							
Bit 7							

Operation Mode

- 1. BMS send operating information (Message 1) and (Message 10+Message 11+Message 12) to charger at fixed interval of 1s. After receiving the message, the charger will work under the Voltage and Current in Message. If the Message is not received within 5s, then it will enter into communication error state and the output will be closed.
- 2. The charger send broadcast message (Message 2) at intervals of 1s. The display meter can show the status of the charger according to up-to-date information.