

تابع ضرر و تابع فعالسازی

دستەبندى چندكلاسە

$$P(y=i|x) \in [0,1]$$
 ور لایه انتهای شبکه احتمال پسین مربوط به هر کلاس را تخمین میزنیم •

$$z = W^T h + b$$
 ابتدا با استفاده از یک لایه خطی احتمال غیرنرمالیزه را پیشبینی می کنیم

• لازم است مجموع احتمال پسین کلاسها برابر با ۱ باشد و هر کدام نامنفی باشند

$$\hat{y}_i = \operatorname{softmax}(\mathbf{z})_i = \frac{e^{z_i}}{\sum_j e^{z_j}}$$

• تابع فعالسازی Softmax تعمیم تابع

• تابع ضرر متناسب با این تابع فعالسازی، cross-entropy است

Deep Learning

$$J(\boldsymbol{\theta}) = -\sum_{i=1}^{C} y_i \log \hat{y}_i$$

دستهبندی اخبار

• یک شبکه ۳ لایه

```
model = keras.models.Sequential()
model.add(keras.layers.Dense(64, activation='relu', input shape=(10000,)))
model.add(keras.layers.Dense(64, activation='relu'))
model.add(keras.layers.Dense(46, activation='softmax'))
model.compile(optimizer='adam',
              loss='categorical crossentropy',
              metrics=['accuracy'])
history = model.fit(x train, y train,
                    validation data=(x test, y test),
                    epochs=20,
                    batch size=512)
```

دستهبندی اخبار

گلوگاه اطلاعات

- لایههای میانی نباید به طور قابل توجهی کوچکتر از لایه نهایی باشند
- به عنوان نمونه، اگر در مثال قبل لایههای میانی بجای ۶۴ واحد تنها ۴ واحد داشته باشند، دقت از حدود ۸۰٪ به حدود ۷۰٪ کاهش مییابد
 - شبکه قادر به جمع آوری تمام اطلاعات لازم در این بازنمایی نیست

تابع فعال سازی لایه آخر و تابع ضرر

• در برخی شبکههای عمیق از توابع فعالسازی و توابع ضرر دیگر هم استفاده میشود

 Table 4.1 Choosing the right last-layer activation and loss function for your model

Problem type	Last-layer activation	Loss function
Binary classification	sigmoid	binary_crossentropy
Multiclass, single-label classification	softmax	categorical_crossentropy
Multiclass, multilabel classification	sigmoid	binary_crossentropy
Regression to arbitrary values	None	mse
Regression to values between 0 and 1	sigmoid	mse or binary_crossentropy

یادگیری چند وظیفه

- در MTL، چندین وظیفه به صورت همزمان آموزش میبینند در حالیکه از مشترکات و تفاوتها در وظایف استفاده میشود
- با این رویکرد در مقایسه آموزش جداگانه وظایف، هم میتوان به کارآیی بالاتر دست یافت و هم میتوان برای هر وظیفه به دقت پیشبینی بالاتری در زمان آزمون دست یافت

واحدهای پنهان

• طراحی واحدهای پنهان یک حوزه تحقیقاتی بسیار فعال است و هنوز اصول نظری قطعی زیادی برای آن وجود ندارد

 $g(\mathbf{z})$ بسیاری از واحدهای پنهان شامل یک تبدیل Affine با رابطه $\mathbf{z} = \mathbf{W}^T \mathbf{x} + \mathbf{b}$ و یک تابع غیرخطی • هستند

• تابع فعالسازی خطی یکسو ReLU یکی از توابع غیرخطی پرکاربرد است

ReLU $\max(0, x)$

Deep Learning

ReLU

- بهینه سازی ReLU بسیار آسان است زیرا بسیار شبیه به واحدهای خطی هستند
 - مشتق ReLU برای مقادیری که فعال است همواره بزرگ است
 - چندین تعمیم برای ReLU وجود دارد
- یکی از ایرادهای ReLU این است که مشتق آن به ازای ورودیهای منفی صفر است

ReLU $\max(0, x)$

ReLU با شیب مخالف صفر

- $lpha_i = -1$ تابع قدر مطلق (g(z) = |z|) با استفاده از •
- ان یک مقدار ثابت کوچک مانند Leaky ReLU از یک مقدار ثابت کوچک مانند $lpha_i=0.01$
- را یک متغیر قابل آموزش در نظر می گیرد $lpha_i$ (PReLU) Parametric ReLU سخه •

$$h_i = g(\mathbf{z}, \boldsymbol{\alpha})_i = \max(0, z_i) + \alpha_i \min(0, z_i)$$

ReLU $\max(0, x)$

Leaky ReLU max(0.1x, x)

Hyperbolic Tangent 9 Logistic Sigmoid

• قبل از معرفی ReLU، اکثر شبکه های عصبی از تابع فعال سازی sigmoid یا tanh استفاده می کردند

$$tanh(z) = 2\sigma(2z) - 1$$

• یکی از ایرادات sigmoid این است که خروجی آن همواره مثبت است

$$z = \sum_{i} w_i h_i + b$$

• فرض کنید تمام ورودیهای یک لایه مثبت باشند

• راجع به گرادیان نسبت به \boldsymbol{w} چه می توانیم بگوئیم؟

tanh tanh(x)

Sigmoid

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

Hyperbolic Tangent ₉ Logistic Sigmoid

• قبل از معرفی ReLU، اکثر شبکه های عصبی از تابع فعال سازی sigmoid یا tanh استفاده می کردند

$$tanh(z) = 2\sigma(2z) - 1$$

- یکی از ایرادات sigmoid این است که خروجی آن همواره مثبت است
 - این توابع در بیشتر مقادیر اشباع میشوند
- گرادیان آنها نزدیک به صفر میشود و بهینهسازی با روشهای مبتنی بر گرادیان بسیار دشوار میشود
 - تابع exp از لحاظ محاسباتی کمی پرهزینه است

tanh tanh(x)

Sigmoid

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

منظمسازى

Regularization

منظمسازي

• یک مسئله اساسی در یادگیری ماشین این است که چگونه الگوریتمی بسازیم که نه تنها بر روی دادههای آموزشی بلکه برای ورودیهای جدید نیز به خوبی عمل کند

