Flip Flops CLASS 18

HW 19 Evaluate the following flip-flop, by giving its truth table.

Solution

Truth table:

5	R	Q	Q
0	0	PS = 0>stays 0 PS = 1>stays 1	PS
0	1	0	1
1	0	1	0
$\overline{\mathbb{Z}}$	1		

Not allowed!

Exclude the 1-1 input for S-R Flip-Flop, as we cannot have Q = Q

The **truth table** then becomes:

5	ĸ	3
0	0	PS
0	1	0
4	^	4

From now on the S-R Flip-Flop will be represented by:

Various Flip-Flops

<u>Note</u>: CL/Enable acts as controller. Looking at the CL/Enable values, which inputs are Truth table: allowed in the S-R flip-flop? S=D, and R=D', for CL=1, and S=R=0, for CL=0. CL/Enable | Q

The Problem Input 1-1 is avoided!

CL/Enable	Ø
0	PS
1	٥

Clocked S-R Flip-Flop

represented by:

<u>Note</u>: Here input 1-1 is avoided only if $S = \overline{R}$, which is usually the case.

Truth table:

CL	Q
0	PS
1	5

T Flip-Flop

We will represent the input, namely CL, as a diagram, time being one of the coordinates, and $\{0, 1\}$ the other.

We want to give the corresponding diagram for the output Q. We initialize CL = 0, and Q = 0.

Note:

It is the rising edge (red) of the CL that acts as a 1-input to the CL-S-R flip-flop. Outside the rising edges CL acts as a 0-input to the CL-S-R flip-flop.

That is, input CL will only enable the S-R flip-flop during the rising edges of CL.

We exaggerated the duration of the rising edge (red) of the CL to show its importance.

Conclusion:

The Q signal oscillates at a speed that is 2×100 slower than the CL input.

HW: Start Review for Part II.