Games and Ramsey-like cardinals

SET THEORY TODAY CONFERENCE, VIENNA

Dan Saattrup Nielsen University of Bristol

September 14, 2018

II

$$I \quad \mathcal{M}_0$$

1 $\mathcal{M}_{\eta} \prec H_{\theta}$ is a κ -sized model of ZFC⁻ containing $\kappa+1$

- **1** $\mathcal{M}_{\eta} \prec \mathcal{H}_{\theta}$ is a κ -sized model of ZFC⁻ containing $\kappa+1$
- $\mathbf{Q} \quad \underline{\mu_{\eta}}$ is an \mathcal{M}_{η} -normal \mathcal{M}_{η} -measure on κ such that $\mathrm{Ult}(\mathcal{M}_{\eta}, \mu_{\eta})$ is wellfounded

$$\begin{array}{cccc} \mathrm{I} & \mathcal{M}_0 & & \mathcal{M}_1 \\ \mathrm{II} & & \mu_0 & \end{array}$$

- **1** $\mathcal{M}_{\eta} \prec \mathcal{H}_{\theta}$ is a κ -sized model of ZFC⁻ containing $\kappa+1$
- ② μ_{η} is an \mathcal{M}_{η} -normal \mathcal{M}_{η} -measure on κ such that $\mathrm{Ult}(\mathcal{M}_{\eta}, \mu_{\eta})$ is wellfounded
- **3** The \mathcal{M}_{η} 's and μ_{η} 's are \subseteq -increasing

$$\begin{array}{cccc} \mathrm{I} & \mathcal{M}_0 & & \mathcal{M}_1 \\ \mathrm{II} & & \mu_0 & & \mu_1 \end{array}$$

- **1** $\mathcal{M}_{\eta} \prec \mathcal{H}_{\theta}$ is a κ -sized model of ZFC⁻ containing $\kappa+1$
- ② μ_{η} is an \mathcal{M}_{η} -normal \mathcal{M}_{η} -measure on κ such that $\mathrm{Ult}(\mathcal{M}_{\eta}, \mu_{\eta})$ is wellfounded
- **3** The \mathcal{M}_{η} 's and μ_{η} 's are \subseteq -increasing
- We take unions at limit rounds

- **1** $\mathcal{M}_{\eta} \prec \mathcal{H}_{\theta}$ is a κ -sized model of ZFC⁻ containing $\kappa+1$
- ② μ_{η} is an \mathcal{M}_{η} -normal \mathcal{M}_{η} -measure on κ such that $\mathrm{Ult}(\mathcal{M}_{\eta}, \mu_{\eta})$ is wellfounded
- **3** The \mathcal{M}_{η} 's and μ_{η} 's are \subseteq -increasing
- We take unions at limit rounds

- **1** $\mathcal{M}_{\eta} \prec \mathcal{H}_{\theta}$ is a κ -sized model of ZFC⁻ containing $\kappa+1$
- ② μ_{η} is an \mathcal{M}_{η} -normal \mathcal{M}_{η} -measure on κ such that $\mathrm{Ult}(\mathcal{M}_{\eta}, \mu_{\eta})$ is wellfounded
- **3** The \mathcal{M}_{η} 's and μ_{η} 's are \subseteq -increasing
- We take unions at limit rounds
- **5** The game lasts for $\alpha+1$ rounds

- **1** $\mathcal{M}_{\eta} \prec \mathcal{H}_{\theta}$ is a κ -sized model of ZFC⁻ containing $\kappa+1$
- ② μ_{η} is an \mathcal{M}_{η} -normal \mathcal{M}_{η} -measure on κ such that $\mathrm{Ult}(\mathcal{M}_{\eta}, \mu_{\eta})$ is wellfounded
- **3** The \mathcal{M}_{η} 's and μ_{η} 's are \subseteq -increasing
- We take unions at limit rounds
- **5** The game lasts for $\alpha+1$ rounds
- Player II wins iff they can continue playing all rounds

- **1** $\mathcal{M}_{\eta} \prec \mathcal{H}_{\theta}$ is a κ -sized model of ZFC⁻ containing $\kappa+1$
- ② μ_{η} is an \mathcal{M}_{η} -normal \mathcal{M}_{η} -measure on κ such that $\mathrm{Ult}(\mathcal{M}_{\eta}, \mu_{\eta})$ is wellfounded
- **3** The \mathcal{M}_{η} 's and μ_{η} 's are \subseteq -increasing
- We take unions at limit rounds
- **5** The game lasts for $\alpha+1$ rounds
- Player II wins iff they can continue playing all rounds
- **IMPORTANT REMARK:** The \mathcal{M}_n 's are **not** necessarily transitive!

Yet another large cardinal notion?!

Definition (Holy-Schlicht '18)

Yet another large cardinal notion?!

Definition (Holy-Schlicht '18)

For $\alpha \leq \kappa$, a cardinal κ is **strategic** α -**Ramsey** if, for all regular $\theta > \kappa$, player II has a strategy in $\mathcal{G}^{\theta}_{\alpha}(\kappa)$ which is always winning.

Yet another large cardinal notion?!

Definition

For $\alpha \leq \kappa$, a cardinal κ is **weakly** strategic α -Ramsey if, for all regular $\theta > \kappa$, player II has a strategy in $\mathcal{G}^{\theta}_{\alpha}(\kappa)$ which is always winning the first α rounds.

Definition

Let κ be a cardinal. Then

Definition

Let κ be a cardinal. Then

• κ is weakly compact if $\kappa \to (\kappa)^2$

Definition

Let κ be a cardinal. Then

• κ is weakly compact if $\kappa \to ([\kappa]^{\kappa})^2$

Definition

Let κ be a cardinal. Then

- κ is weakly compact if $\kappa \to ([\kappa]^{\kappa})^2$
- κ is ineffable if $\kappa \to (\{\text{stationary subsets of } \kappa\})^2$

Definition

Let κ be a cardinal. Then

- κ is weakly compact if $\kappa \to ([\kappa]^{\kappa})^2$
- κ is ineffable if $\kappa \to (\{\text{stationary subsets of } \kappa\})^2$
- κ is **completely ineffable** if there's a non-empty upwards-closed set $R \subseteq \mathcal{P}(\kappa)$ consisting of stationary subsets of κ , such that $A \to (R)^2$ for every $A \in R$

Definition

Let κ be a cardinal. Then

- κ is weakly compact if $\kappa \to ([\kappa]^{\kappa})^2$
- κ is ineffable if $\kappa \to (\{\text{stationary subsets of } \kappa\})^2$
- κ is **completely ineffable** if there's a non-empty upwards-closed set $R \subseteq \mathcal{P}(\kappa)$ consisting of stationary subsets of κ , such that $A \to (R)^2$ for every $A \in R$

Theorem (Abramson-Harrington-Kleinberg-Zwicker '77)

Let $\kappa = \kappa^{<\kappa}$ be a cardinal. Then

Definition

Let κ be a cardinal. Then

- κ is weakly compact if $\kappa \to ([\kappa]^{\kappa})^2$
- κ is ineffable if $\kappa \to (\{\text{stationary subsets of } \kappa\})^2$
- κ is **completely ineffable** if there's a non-empty upwards-closed set $R \subseteq \mathcal{P}(\kappa)$ consisting of stationary subsets of κ , such that $A \to (R)^2$ for every $A \in R$

Theorem (Abramson-Harrington-Kleinberg-Zwicker '77)

Let $\kappa = \kappa^{<\kappa}$ be a cardinal. Then

• κ is strategic 0-Ramsey $\Leftrightarrow \kappa$ is weakly compact

Definition

Let κ be a cardinal. Then

- κ is weakly compact if $\kappa \to ([\kappa]^{\kappa})^2$
- κ is ineffable if $\kappa \to (\{\text{stationary subsets of } \kappa\})^2$
- κ is **completely ineffable** if there's a non-empty upwards-closed set $R \subseteq \mathcal{P}(\kappa)$ consisting of stationary subsets of κ , such that $A \to (R)^2$ for every $A \in R$

Theorem (Abramson-Harrington-Kleinberg-Zwicker '77)

Let $\kappa = \kappa^{<\kappa}$ be a cardinal. Then

- κ is strategic 0-Ramsey $\Leftrightarrow \kappa$ is weakly compact
- κ is strategic 1-Ramsey $\Rightarrow \kappa$ is ineffable ($\Rightarrow \kappa$ is strategic 0-Ramsey)

Definition

Let κ be a cardinal. Then

- κ is weakly compact if $\kappa \to ([\kappa]^{\kappa})^2$
- κ is ineffable if $\kappa \to (\{\text{stationary subsets of } \kappa\})^2$
- κ is **completely ineffable** if there's a non-empty upwards-closed set $R \subseteq \mathcal{P}(\kappa)$ consisting of stationary subsets of κ , such that $A \to (R)^2$ for every $A \in R$

Theorem (N.)

A cardinal κ is weakly strategic ω -Ramsey iff κ is completely ineffable.

Definition

Let κ be a cardinal. Then

- κ is weakly compact if $\kappa \to ([\kappa]^{\kappa})^2$
- κ is ineffable if $\kappa \to (\{\text{stationary subsets of } \kappa\})^2$
- κ is completely ineffable if there's a non-empty upwards-closed set $R \subseteq \mathcal{P}(\kappa)$ consisting of stationary subsets of κ , such that $A \to (R)^2$ for every $A \in R$

Theorem (N.)

A cardinal κ is weakly strategic ω -Ramsey iff κ is completely ineffable.

The proof uses the previous theorem as the base case. In the " \Leftarrow " direction, care must be taken at successor stages to ensure that the measures cohere.

Definition (Gitman-Schindler '16; original definition from Schindler '00)

A cardinal κ is **remarkable** if

Definition (Gitman-Schindler '16; original definition from Schindler '00)

A cardinal κ is **remarkable** if to every regular $\lambda > \kappa$ there is a regular $\nu > \lambda$ and a transitive M closed under λ -sequences such that, in a generic extension, there's an elementary embedding $\pi: H^V_{\nu} \to M$ with crit $\pi = \kappa$ and $\pi(\kappa) > \lambda$.

Definition (Gitman-Schindler '16; original definition from Schindler '00)

A cardinal κ is **remarkable** if to every regular $\lambda > \kappa$ there is a regular $\nu > \lambda$ and a transitive M closed under λ -sequences such that, in a generic extension, there's an elementary embedding $\pi: H^V_{\nu} \to M$ with crit $\pi = \kappa$ and $\pi(\kappa) > \lambda$.

Definition (Gitman-Schindler '16; original definition from Schindler '00)

A cardinal κ is **remarkable** if to every regular $\lambda > \kappa$ there is a regular $\nu > \lambda$ and a transitive M closed under λ -sequences such that, in a generic extension, there's an elementary embedding $\pi: H^V_{\nu} \to M$ with crit $\pi = \kappa$ and $\pi(\kappa) > \lambda$.

Proposition (Schindler '00)

Remarkable cardinals are downwards absolute to *L*.

Definition (Gitman-Schindler '16; original definition from Schindler '00)

A cardinal κ is **remarkable** if to every regular $\lambda > \kappa$ there is a regular $\nu > \lambda$ and a transitive M closed under λ -sequences such that, in a generic extension, there's an elementary embedding $\pi: H^V_{\nu} \to M$ with crit $\pi = \kappa$ and $\pi(\kappa) > \lambda$.

Theorem(s)

The existence of a remarkable cardinal is equiconsistent with...

Definition (Gitman-Schindler '16; original definition from Schindler '00)

A cardinal κ is **remarkable** if to every regular $\lambda > \kappa$ there is a regular $\nu > \lambda$ and a transitive M closed under λ -sequences such that, in a generic extension, there's an elementary embedding $\pi: H^V_{\nu} \to M$ with crit $\pi = \kappa$ and $\pi(\kappa) > \lambda$.

Theorem(s)

The existence of a remarkable cardinal is equiconsistent with...

(Schindler '00) proper forcing cannot change the theory of $L(\mathbb{R})$

Definition (Gitman-Schindler '16; original definition from Schindler '00)

A cardinal κ is **remarkable** if to every regular $\lambda > \kappa$ there is a regular $\nu > \lambda$ and a transitive M closed under λ -sequences such that, in a generic extension, there's an elementary embedding $\pi: H^V_{\nu} \to M$ with crit $\pi = \kappa$ and $\pi(\kappa) > \lambda$.

Theorem(s)

The existence of a remarkable cardinal is equiconsistent with...

- **①** (Schindler '00) proper forcing cannot change the theory of $L(\mathbb{R})$
- ② (Schindler '04) semi-proper forcing cannot change the theory of $L(\mathbb{R})$

Definition (Gitman-Schindler '16; original definition from Schindler '00)

A cardinal κ is **remarkable** if to every regular $\lambda > \kappa$ there is a regular $\nu > \lambda$ and a transitive M closed under λ -sequences such that, in a generic extension, there's an elementary embedding $\pi: H^V_{\nu} \to M$ with crit $\pi = \kappa$ and $\pi(\kappa) > \lambda$.

Theorem(s)

The existence of a remarkable cardinal is equiconsistent with...

- **(Schindler '00)** proper forcing cannot change the theory of $L(\mathbb{R})$
- ② (Schindler '04) semi-proper forcing cannot change the theory of $L(\mathbb{R})$
- **3** (Cheng-Schindler '15) 3^{rd} order number theory + Harrington's Principle ("there is a real x such that every x-admissible ordinal is an L-cardinal")

Definition (Gitman-Schindler '16; original definition from Schindler '00)

A cardinal κ is **remarkable** if to every regular $\lambda > \kappa$ there is a regular $\nu > \lambda$ and a transitive M closed under λ -sequences such that, in a generic extension, there's an elementary embedding $\pi: H^V_\nu \to M$ with crit $\pi = \kappa$ and $\pi(\kappa) > \lambda$.

Theorem (Schindler-N.)

Every remarkable cardinal is strategic ω -Ramsey, and if κ is strategic ω -Ramsey then either κ is remarkable in L or

 $L_{\kappa} \models$ There is a proper class of strategic ω -Ramseys.

Definition (Gitman-Schindler '16; original definition from Schindler '00)

A cardinal κ is **remarkable** if to every regular $\lambda > \kappa$ there is a regular $\nu > \lambda$ and a transitive M closed under λ -sequences such that, in a generic extension, there's an elementary embedding $\pi: H^V_{\nu} \to M$ with crit $\pi = \kappa$ and $\pi(\kappa) > \lambda$.

Theorem (Schindler-N.)

Every remarkable cardinal is strategic ω -Ramsey, and if κ is strategic ω -Ramsey then either κ is remarkable in L or

 $L_{\kappa} \models$ There is a proper class of strategic ω -Ramseys.

Consequently, strategic ω -Ramseys are equiconsistent with remarkables.

Definition (Gitman-Schindler '16; original definition from Schindler '00)

A cardinal κ is **remarkable** if to every regular $\lambda > \kappa$ there is a regular $\nu > \lambda$ and a transitive M closed under λ -sequences such that, in a generic extension, there's an elementary embedding $\pi: H^V_\nu \to M$ with crit $\pi = \kappa$ and $\pi(\kappa) > \lambda$.

Theorem (Schindler-N.)

Every remarkable cardinal is strategic ω -Ramsey, and if κ is strategic ω -Ramsey then either κ is remarkable in L or

 $L_{\kappa} \models$ There is a proper class of strategic ω -Ramseys.

The proof goes via the notion of a so-called virtually measurable cardinal.

Proposition

Every measurable cardinal κ is strategic κ -Ramsey.

Proposition

Every measurable cardinal κ is strategic κ -Ramsey.

Proof: In $\mathcal{G}^{\theta}_{\kappa}(\kappa)$ simply play the measure on κ .

Proposition

Every measurable cardinal κ is strategic κ -Ramsey.

Proposition

Every measurable cardinal κ is strategic κ -Ramsey.

Theorem (Welch '18)

Every strategic ω_1 -Ramsey cardinal κ is measurable in the core model K below the sharp of a strong cardinal, 0^{\P} .

Proposition

Every measurable cardinal κ is strategic κ -Ramsey.

Theorem (Welch '18)

Every strategic ω_1 -Ramsey cardinal κ is measurable in the core model K below the sharp of a strong cardinal, 0^{\P} .

Proof sketch.

Proposition

Every measurable cardinal κ is strategic κ -Ramsey.

Theorem (Welch '18)

Every strategic ω_1 -Ramsey cardinal κ is measurable in the core model K below the sharp of a strong cardinal, 0^{\P} .

Proof sketch. Jump to $V^{\text{Col}(\omega_1,\kappa^{+K})}$, let $\eta_{\alpha} \to \kappa^{+K}$ and let player I in $\mathcal{G}^{\theta}_{\omega_1}(\kappa)^V$ play models

$$\mathcal{M}_{\alpha} := K | \eta_{\alpha}$$

Player II follows their winning strategy.

Proposition

Every measurable cardinal κ is strategic κ -Ramsey.

Theorem (Welch '18)

Every strategic ω_1 -Ramsey cardinal κ is measurable in the core model K below the sharp of a strong cardinal, 0^{\P} .

Proof sketch. Jump to $V^{\text{Col}(\omega_1,\kappa^{+K})}$, let $\eta_{\alpha} \to \kappa^{+K}$ and let player I in $\mathcal{G}^{\theta}_{\omega_1}(\kappa)^V$ play models

$$\mathcal{M}_{\alpha} := \operatorname{Hull}^{H_{\theta}^{V}}(K|\eta_{\alpha}).$$

Player II follows their winning strategy.

Proposition

Every measurable cardinal κ is strategic κ -Ramsey.

Theorem (Welch '18)

Every strategic ω_1 -Ramsey cardinal κ is measurable in the core model K below the sharp of a strong cardinal, 0^{\P} .

Proof sketch. Jump to $V^{\text{Col}(\omega_1,\kappa^{+K})}$, let $\eta_{\alpha} \to \kappa^{+K}$ and let player I in $\mathcal{G}^{\theta}_{\omega_1}(\kappa)^V$ play models

$$\mathcal{M}_{\alpha} := \operatorname{Hull}^{H_{\theta}^{V}}(K|\eta_{\alpha}).$$

Player II follows their winning strategy.

The final measure μ_{ω_1} is then a K-measure and we can wlog assume that μ_{ω_1} is countably complete and weakly amenable.

Proposition

Every measurable cardinal κ is strategic κ -Ramsey.

Theorem (Welch '18)

Every strategic ω_1 -Ramsey cardinal κ is measurable in the core model K below the sharp of a strong cardinal, 0^{\P} .

Proof sketch. Jump to $V^{\text{Col}(\omega_1,\kappa^{+K})}$, let $\eta_{\alpha} \to \kappa^{+K}$ and let player I in $\mathcal{G}^{\theta}_{\omega_1}(\kappa)^V$ play models

$$\mathcal{M}_{\alpha} := \operatorname{Hull}^{H_{\theta}^{V}}(K|\eta_{\alpha}).$$

Player II follows their winning strategy.

The final measure μ_{ω_1} is then a K-measure and we can wlog assume that μ_{ω_1} is countably complete and weakly amenable.

Then, since we're below 0^{\P} , inner model theory magic ("the beaver argument") implies that $\mu_{\omega_1} \in K$ and we're done.

Proposition

Every measurable cardinal κ is strategic κ -Ramsey.

Theorem (Welch '18)

Every strategic ω_1 -Ramsey cardinal κ is measurable in the core model K below the sharp of a strong cardinal, 0^{\P} .

Strategic ω_1 -Ramseys are therefore equiconsistent with measurables.

Proposition

Every measurable cardinal κ is strategic κ -Ramsey.

Theorem (Schindler '18)

Every strategic ω_1 -Ramsey cardinal κ is measurable in the core model K below a Woodin cardinal.

Strategic ω_1 -Ramseys are therefore equiconsistent with measurables.

Proposition

Every measurable cardinal κ is strategic κ -Ramsey.

Theorem (Schindler '18)

Every strategic ω_1 -Ramsey cardinal κ is measurable in the core model K below a Woodin cardinal.

The proof is similar, but different inner model theory magic is used.

Definition

A cardinal κ is **Ramsey** if $\kappa \to (\kappa)^{<\omega}$.

Definition

A cardinal κ is **Ramsey** if $\kappa \to (\kappa)^{<\omega}$.

Facts

• If there exists a Ramsey cardinal then $V \neq L$.

Definition

A cardinal κ is **Ramsey** if $\kappa \to (\kappa)^{<\omega}$.

Facts

- lacktriangledown If there exists a Ramsey cardinal then V
 eq L.
- Measurable cardinals are Ramsey limits of Ramsey cardinals.

Definition

A cardinal κ is Ramsey if $\kappa \to (\kappa)^{<\omega}$.

Facts

- If there exists a Ramsey cardinal then $V \neq L$.
- Measurable cardinals are Ramsey limits of Ramsey cardinals.

Theorem (Mitchell '79, Dodd '82)

A cardinal κ is Ramsey iff every $A \subseteq \kappa$ can be put into a κ -sized model $M \models \mathsf{ZFC}^-$ containing $\kappa+1$ such that there exists a weakly amenable countably complete M-measure on κ .

Definition

A cardinal κ is **Ramsey** if $\kappa \to (\kappa)^{<\omega}$.

Facts

- If there exists a Ramsey cardinal then $V \neq L$.
- Measurable cardinals are Ramsey limits of Ramsey cardinals.

Theorem (Mitchell '79, Dodd '82)

A cardinal κ is Ramsey iff every $A \subseteq \kappa$ can be put into a κ -sized model $M \models \mathsf{ZFC}^-$ containing $\kappa+1$ such that there exists a weakly amenable countably complete M-measure on κ .

Proposition (N.)

Strategic ($\omega+1$)-Ramsey cardinals are Ramsey limits of Ramsey cardinals.

Theorem (Mitchell '79, Dodd '82)

A cardinal κ is Ramsey iff every $A \subseteq \kappa$ can be put into a κ -sized model $M \models \mathsf{ZFC}^-$ containing $\kappa+1$ such that there exists a weakly amenable countably complete M-measure on κ .

Proposition (N.)

Strategic (ω +1)-Ramsey cardinals are Ramsey limits of Ramsey cardinals.

Theorem (Mitchell '79, Dodd '82)

A cardinal κ is Ramsey iff every $A \subseteq \kappa$ can be put into a κ -sized model $M \models \mathsf{ZFC}^-$ containing $\kappa+1$ such that there exists a weakly amenable countably complete M-measure on κ .

Proposition (N.)

Strategic ($\omega+1$)-Ramsey cardinals are Ramsey limits of Ramsey cardinals.

Proof sketch. Whenever $\vec{\mathcal{M}}_{\alpha} * \vec{\mu_{\alpha}}$ is a play of $\mathcal{G}_{\omega+1}^{\theta}(\kappa)$ then $(\mathcal{M}_{\omega+1}, \in, \mu_{\omega+1}) \models \mu_{\omega+1}$ is countably complete.

Theorem (Mitchell '79, Dodd '82)

A cardinal κ is Ramsey iff every $A \subseteq \kappa$ can be put into a κ -sized model $M \models \mathsf{ZFC}^-$ containing $\kappa+1$ such that there exists a weakly amenable countably complete M-measure on κ .

Proposition (N.)

Strategic ($\omega+1$)-Ramsey cardinals are Ramsey limits of Ramsey cardinals.

Proof sketch. Whenever $\vec{\mathcal{M}}_{\alpha}*\vec{\mu_{\alpha}}$ is a play of $\mathcal{G}_{\omega+1}^{\theta}(\kappa)$ then

$$(\mathcal{M}_{\omega+1}, \in, \mu_{\omega+1}) \models \mu_{\omega+1}$$
 is countably complete.

Then $\mu_{\omega} \subseteq \mu_{\omega+1}$ implies that, wlog,

 $\mathcal{M}_{\omega+1} \models \mu_{\omega}$ is countably complete and weakly amenable,

making μ_{ω} countably complete and weakly amenable by elementarity.

Theorem (Mitchell '79, Dodd '82)

A cardinal κ is Ramsey iff every $A \subseteq \kappa$ can be put into a κ -sized model $M \models \mathsf{ZFC}^-$ containing $\kappa+1$ such that there exists a weakly amenable countably complete M-measure on κ .

Proposition (N.)

Strategic ($\omega+1$)-Ramsey cardinals are Ramsey limits of Ramsey cardinals.

Proof sketch. Whenever $\vec{\mathcal{M}}_{\alpha}*\vec{\mu_{\alpha}}$ is a play of $\mathcal{G}_{\omega+1}^{\theta}(\kappa)$ then

$$(\mathcal{M}_{\omega+1}, \in, \mu_{\omega+1}) \models \mu_{\omega+1}$$
 is countably complete.

Then $\mu_{\omega} \subseteq \mu_{\omega+1}$ implies that, wlog,

 $\mathcal{M}_{\omega+1} \models \mu_{\omega}$ is countably complete and weakly amenable,

making μ_{ω} countably complete and weakly amenable by elementarity. So κ is Ramsey.

Proposition (N.)

Strategic (ω +1)-Ramsey cardinals are Ramsey limits of Ramsey cardinals.

Proof sketch. Whenever $\vec{\mathcal{M}}_{\alpha} * \vec{\mu_{\alpha}}$ is a play of $\mathcal{G}_{\omega+1}^{\theta}(\kappa)$ then

$$(\mathcal{M}_{\omega+1}, \in, \mu_{\omega+1}) \models \mu_{\omega+1}$$
 is countably complete.

Then $\mu_{\omega} \subseteq \mu_{\omega+1}$ implies that, wlog,

 $\mathcal{M}_{\omega+1} \models \mu_{\omega}$ is countably complete and weakly amenable,

making μ_{ω} countably complete and weakly amenable by elementarity. So κ is Ramsey.

Proposition (N.)

Strategic (ω +1)-Ramsey cardinals are Ramsey limits of Ramsey cardinals.

Proof sketch. Whenever $\vec{\mathcal{M}}_{\alpha}*\vec{\mu_{\alpha}}$ is a play of $\mathcal{G}_{\omega+1}^{\theta}(\kappa)$ then

$$(\mathcal{M}_{\omega+1}, \in, \mu_{\omega+1}) \models \mu_{\omega+1}$$
 is countably complete.

Then $\mu_{\omega} \subseteq \mu_{\omega+1}$ implies that, wlog,

 $\mathcal{M}_{\omega+1} \models \mu_{\omega}$ is countably complete and weakly amenable,

making μ_{ω} countably complete and weakly amenable by elementarity.

So κ is Ramsey. But then $\mathcal{M}_{\omega} \models \kappa$ is Ramsey and so $\text{Ult}(\mathcal{M}_{\omega}, \mu_{\omega}) \models \kappa$ is Ramsey, since \mathcal{M}_{ω} has the same subsets as the ultrapower by weak amenability of μ_{ω} .

Proposition (N.)

Strategic (ω +1)-Ramsey cardinals are Ramsey limits of Ramsey cardinals.

Proof sketch. Whenever $\vec{\mathcal{M}}_{\alpha}*\vec{\mu_{\alpha}}$ is a play of $\mathcal{G}_{\omega+1}^{\theta}(\kappa)$ then

$$(\mathcal{M}_{\omega+1}, \in, \mu_{\omega+1}) \models \mu_{\omega+1}$$
 is countably complete.

Then $\mu_{\omega} \subseteq \mu_{\omega+1}$ implies that, wlog,

$$\mathcal{M}_{\omega+1} \models \mu_{\omega}$$
 is countably complete and weakly amenable,

making μ_{ω} countably complete and weakly amenable by elementarity.

So κ is Ramsey. But then $\mathcal{M}_{\omega} \models \kappa$ is Ramsey and so $\text{Ult}(\mathcal{M}_{\omega}, \mu_{\omega}) \models \kappa$ is Ramsey, since \mathcal{M}_{ω} has the same subsets as the ultrapower by weak amenability of μ_{ω} .

Loś and elementarity then makes κ a limit of Ramseys.

Proposition (N.)

Let λ be uncountable regular. Then κ is strategic $\lambda\textsc{-Ramsey}$ iff

Proposition (N.)

Let λ be uncountable regular. Then κ is strategic λ -Ramsey iff there's a $<\lambda$ -closed forcing $\mathbb P$ such that, in $V^{\mathbb P}$, there's a transitive N with $\mathcal P(\kappa)^V=\mathcal P(\kappa)^N$ and an elementary embedding $j:V\to N$ with $\mathrm{crit}(j)=\kappa$.

Proposition (N.)

Let λ be uncountable regular. Then κ is strategic λ -Ramsey iff there's a $<\lambda$ -closed forcing $\mathbb P$ such that, in $V^{\mathbb P}$, there's a transitive N with $\mathcal P(\kappa)^V=\mathcal P(\kappa)^N$ and an elementary embedding $j:V\to N$ with $\mathrm{crit}(j)=\kappa$.

Proposition (N.)

Let λ be uncountable regular. Then κ is strategic λ -Ramsey iff there's a $<\lambda$ -closed forcing $\mathbb P$ such that, in $V^{\mathbb P}$, there's a transitive N with $\mathcal P(\kappa)^V=\mathcal P(\kappa)^N$ and an elementary embedding $j:V\to N$ with $\mathrm{crit}(j)=\kappa$.

Proposition (N.)

Let λ be uncountable regular. Then κ is strategic λ -Ramsey iff there's a $<\lambda$ -closed forcing $\mathbb P$ such that, in $V^{\mathbb P}$, there's a transitive N with $\mathcal P(\kappa)^V=\mathcal P(\kappa)^N$ and an elementary embedding $j:V\to N$ with $\mathrm{crit}(j)=\kappa$.

Theorem (Schindler-N.)

The " \Rightarrow " direction in the $\lambda = \omega$ case above.

Proposition (N.)

Let λ be uncountable regular. Then κ is strategic λ -Ramsey iff there's a $<\lambda$ -closed forcing $\mathbb P$ such that, in $V^{\mathbb P}$, there's a transitive N with $\mathcal P(\kappa)^V=\mathcal P(\kappa)^N$ and an elementary embedding $j:V\to N$ with $\mathrm{crit}(j)=\kappa$.

Theorem (Schindler-N.)

The " \Rightarrow " direction in the $\lambda = \omega$ case above.

The " \Leftarrow " direction is open – getting wellfoundedness of $\text{Ult}(\mathcal{M}_{\omega}, \mu_{\omega})$ seems hard. We've shown it in the case where $N \subseteq V$.

What's not known?

Question 1

Are the strategic α -Ramseys equivalent to some kind of "generic embedding property" when α is countably infinite, as in the uncountable regular case?

What's not known?

Question 1

Are the strategic α -Ramseys equivalent to some kind of "generic embedding property" when α is countably infinite, as in the uncountable regular case?

Question 2

Do the strategic α -Ramseys form a strict hierarchy for α countably infinite? More specifically, does

 $\mathsf{ZFC} + \exists \mathsf{strategic} \ (\alpha + 1) - \mathsf{Ramsey} \vdash \mathsf{Con}(\exists \mathsf{strategic} \ \alpha - \mathsf{Ramsey})$?

An overview

Thank you for your attention

Slides and preprint available at https://dsnielsen.com