Syyskuun helpommat valmennustehtävät Ratkaisut

1. Etsi kaikki funktiot f reaaliluvuilta itselleen, joille f(f(x)) + y = f(x) + f(f(y)) kaikilla reaalisilla x ja y.

Ratkaisu: Sijoituksella x = y saadaan f(f(x)) + x = f(x) + f(f(x)) kaikilla x, joten f(x) = x kaikilla x. Tämä tosaan kelpaa.

2. Etsi kaikki parit (a, k) positiivisia kokonaislukuja, joille $a^2 + 5a = 6^k$.

Ratkaisu: Koska $a(a+5)=6^k$ ja enintään toinen luvuista a, a+5 on parillinen ja eneintään toinen kolmella jaollinen, niin aritmetiikan peruslauseella $a=2^k, a+5=3^k$ tai $a=1, a+5=6^k$. Siis joko $3^k-2^k=5$, mistä k=2 tai $6^k=6$, mistä k=1. Ratkaisuiksi saadaan (1,1), (4,2).

3. Olkoot $a_1,...,a_n$ annettuja reaalilukuja. Millä luvun x arvolla lauseke $(x-a_1)^2+...+(x-a_n)^2$ on minimissään?

Ratkaisu: Koska $ax^2 + bx + c = a(x + \frac{b}{2a})^2 + \frac{b^2 - 4ac}{4a^2}$, niin toisen asteen polynomi on minimissään kohdassa $x = \frac{-b}{2a}$. Toisen asteen polynomi $nx^2 - 2(a_1 + \dots + a_n)x + (a_1^2 + \dots + a_n^2)$ on siis minimissään kohdassa $x = \frac{a_1 + \dots + a_n}{n}$.

4. Suorakulmion muotoisessa puutarhassa on suihkulähde, jonka etäisyydet kolmesta suorakulmion kärjestä ovat 5m, 5m ja 1m jossakin järjestyksessä. Mitkä ovat suihkulähteen mahdolliset etäisyydet neljännestä kärjestä?

Ratkaisu. Olkoon suihkulähde origo O ja koordinaattiakselit suorakulmion sivujen suuntaiset. Tällöin voidaan merkitä A = (a, b), B = (c, b), C = (c, d), D = (a, d). Nyt etäisyyksien neliöt kolmesta kärjestä ovat $a^2 + b^2, b^2 + c^2, c^2 + d^2$. Neljäs etäisyys toiseen on siis $d^2 + a^2 = (a^2 + b^2) - (b^2 + c^2) + (c^2 + d^2)$. Tulos on $5^2 - 5^2 + 1 = 1$ tai $5^2 - 1^2 + 5^2 = 49$. Neljäs etäisyys on siis 1m

tai 7m. On helppo nähdä, että nämä kelpaavat (tässä todistuksessa pätevät ekvivalenssit).

5. Asetetaan suorakulmioon, jonka sivujen pituudet ovat 3 ja 4, kuusi pistettä. Osoita, että joidenkin kahden pisteen välinen etäisyys on enintään $\sqrt{5}$.

Ratkaisu. Jaetaan 3×4 -suorakaide kuvan mukaisesti viiteen osaan. Tällöin johonkin osaan tulee ainakin kaksi pistettä. Kuitenkin selvästi missä tahansa osassa pisteiden suurin mahdollinen etäisyys on $\sqrt{5}$.

6. Olkoon ABC kolmio, jonka sivujen pituudet ovat kokonaislukuja. Tiedetään, että AC=2007. Kulman $\angle BAC$ puolittaja leikkaa sivun BC pisteessä D. Oletetaan, että AB=CD. Määritä sivujen AB ja BC pituudet.

Ratkaisu. Merkitään AB=CD=x ja BD=y. Kulmanpuolittajalausella $\frac{x}{2007}=\frac{y}{x}$, joten $x^2=2007y$. Kolmioepäyhtälön nojalla 2007+x>x+y, joten 2007>y. Nyt koska x ja y ovat kokonaislukuja, seuraa y=223 tai $y=223\times 4$. Ensimmäisessä tapauksessa AB=x=669 ja BC=x+y=892, ja kolmioepäyhtälö toteutuu. Toisessa tapauksessa AB=x=1338 ja BC=x+y=2230, ja kolmioepäyhtälö taas toteutuu.

7. Määritä kaikki positiiviset kokonaisluvut n, joita ei voi esittää muodossa 2xy + x + y millään positiivisilla kokonaisluvuilla x ja y.

Esitystä n=2xy+x+y ei ole jos ja vain jos esitystä 2n+1=4xy+2x+2y+1=(2x+1)(2y+1) ei ole. Näin käy jos ja vain jos 2n+1=p eli $n=\frac{p-1}{2}$, missä p on pariton alkuluku.

8. Olkoon n positiivinen kokonaisluku. Osoita, että jos $2^n \times 2^n$ -shakkilaudasta poistetaan yksi ruutu, loput voidaan peittää L-kirjaimen muotoisilla kolmen ruudun palikoilla.

Ratkaisu. Todistetaan väite induktiolla luvun n suhteen. Tapauksessa n=1 väite on selvä. Oletetaan tapaus n ja todistetaan tapaus n+1. Kun $2^{n+1} \times 2^{n+1}$ -laudalta poistetaan yksi ruutu, lauta jakautuu neljään osaan: kolmeen $2^n \times 2^n$ neliöön ja yhteen $2^n \times 2^n$ neliöön, josta puuttuu yksi ruutu. Induktiooletuksen nojalla tämä neljäs neliö voidaan peittää L-kirjaimen muotoisilla palikoilla. Jos asetetaan laudalle sellainen kolmen ruudun L-kirjaimen mutoinen palikka, joka peittää yhden ruudun kustakin $2^n \times 2^n$ osalaudasta, jäljelle jäävät osat voidaan peittää palikoilla induktio-oletuksen nojalla.

9. Tehtävän kulmaoletuksista seuraa $\angle ABC = 180^{\circ} - 2(180^{circ} - 135^{\circ}) = 90^{\circ}$, joten Thaleen lauseella O on janan AC keskipiste. Olkoon D suorien AI ja BC leikkauspiste. Tällöin $ICO \cong ICD$, joten $DC = CO = \frac{1}{2}AC$. Kun yhdistetään tämä kulmanpuolittajalauseeseen, saadaan $\frac{BD}{AB} = \frac{CD}{AC} = \frac{1}{2}$, joten $BD = \frac{1}{2}AB$. Nyt 2BC = 2(BD + DC) = AB + AC. Siten AB, BC ja AC muodostavat aritmeettisen jonon. Suora lasku Pythagoraan lauseen avulla osoittaa, että ainoa suorakulmainen kolmio, jossa sivujen pituudet ovat aritmeettisessa jonossa, on sellainen, jossa $AB = 3\ell, BC = 4\ell, AC = 5\ell$. Siispä AB : BC : CA = 3 : 4 : 5.

10.(a) Olkoon n positiivinen kokonaisluku. Osoita, että jonon

$$2, 2^2, 2^{2^2}, 2^{2^{2^2}}, \dots$$

kaikki jäsenet jostakin jäsenestä alkaen antavat saman jakojäännöksen jaettaessa luvulla n.

(b) Osoita, että kaikilla positiivisilla kokoansiluvuilla n on olemassa kokonaisluku m > 0, jolle $2^m - m$ on jaollinen luvulla n.

Ratkaisu: (a) Olkoon $n = 2^a n'$, missä n' on pariton. Riittää osoittaa, että jakojäännökset ovat vakioita sekä (mod 2^a) että (mod n') kiinalaisella

jäännöslauseella. Modulo 2^a kaikii riittävän suuret termit ovat selmästi vakioita. Jos n' on pariton, Eulerin lauseen nojalla luku $2^x \pmod{n'}$ riippuu ainoastaan luvusta $x \pmod{\varphi(n')}$. Lisäksi 2^{2^x} riippuu ainoastaan luvusta $x \pmod{\varphi(\varphi(n'))}$ jne. Koska $\varphi(m) \leq m-1$ kun m>1, löytyy M, jolle $\varphi(...\varphi(\varphi(n'))) = 1$ (sovellettu M kertaa). Kun ekspionenttitornissa on ainakin M eksponenttia, jonon k:s jäsen riippuu ainoastaan luvusta $2^{2^{...^2}} \pmod{1}$. (k-M kertaa). Tämä on tietysti aina sama, joten eksponenttitorni $\pmod{n'}$ ei enää muutu.

(b) Olkoon m se jäännösluokka (mod n), johon edellinen eksponenttitorni vakiintuu. Koska k:s ja k+1:s termi ovat samat (mod n) suurilla k, saadaan $2^m \equiv m \pmod{n}$.