工科数学分析I期中试题

班级	学 号	姓名
グエジス	<u> </u>	メエイコ

(本试卷共6页, 十一个大题. 试卷后面空白纸撕下做草稿纸, 试卷不得拆散.)

题号	1	1 1	11	四	五	六	七	八	九	+	+	总分
得分												
签名												

- 一. 填空题 (每小题 4分, 共 20分)
- 1. $\lim_{x \to 0} (1+3x)^{\frac{2}{\sin x}} =$ _____.
- 2. 设 $f(x) = \ln(1+x)\ln(2+x)\cdots\ln(n+x)$,其中 n 为正整数,则 f'(0) =______
- 3. 已知函数 y = y(x) 由方程 $e^y + 6xy + x^2 1 = 0$ 确定,则 y''(0) =______.
- 4. 设 $y = x^2 f(\arctan x)$,则 dy =______
- 二. (8 分) 求极限 $I = \lim_{x \to 0} \frac{xe^x + x 2e^x + 2}{x \sin^2 x}$ 。
- 三. (8 分) 设 $\begin{cases} x = \sin t t \cos t \\ y = \cos t + t \sin t \end{cases}$ (t为参数),求 $\frac{dy}{dx}$, $\frac{d^2y}{dx^2}$ 。
- 四. $(8 \, f)$ 设函数 f(x) 在 x=0 的某领域内具有连续的一阶导数,且 $f(0) \neq 0$, $f'(0) \neq 0$, $f'(0) \neq 0$, 若 af(h) + bf(2h) f(0) 在 $h \to 0$ 时是比 h 高阶的无穷小量,试确定 a,b 的值。
- 五. (8 分) 求函数 $f(x) = \frac{\ln|x|}{x^2 3x + 2}$ 的间断点,并讨论其类型。
- 六. (8 分) 设 $f(x) = \begin{cases} e^{\frac{1}{x^2-1}} & 0 < x < 1, 讨论 a, b 为何值时, <math>f(x)$ 在 x = 1 处可导。 $ax^4 bx^2 + 1$ $x \ge 1$
- 七. (8 分) 证明: 当0 < x < 1时, $e^{-x} + \sin x < 1 + \frac{x^2}{2}$.

八. $(8\, \mathcal{G})$ 一个水槽长 $10\,m$,横截面是下底为 $30\,cm$,上底为 $80\,cm$ 的等腰梯形,高为 $50\,cm$ 。 如果水槽以 $0.2\,m^3/\min$ 速度注满水,问当水深 $30\,cm$ 时水位的增长速度为多少?

九. (8分) 设 $y = xe^x$ 研究函数的性态,并作出函数的图形。

十. (8 分) 设
$$0 < a \le 1$$
, $x_1 = \frac{a}{2}$, $x_{n+1} = \frac{a}{2} + \frac{x_n^2}{2}$ $(n = 1, 2, \cdots)$, 证明 $\lim_{n \to \infty} x_n$ 存在,并求此极限值。

十一. (8分) 设
$$f(x)$$
在[0,1]上连续,在(0,1)内可导, $f(0)=0$,且当 $x>0$ 时, $f(x)\neq 0$,

证明存在
$$\xi \in (0,1)$$
, 使得 $\frac{f'(\xi)}{f(\xi)} = \frac{2f'(1-\xi)}{f(1-\xi)}$ 。