Nome:	RA:

Turma: _____ 4^a **PROVA** 27/11/2008

Questão	Nota
1	
2	
3	
4	
Total	

2,5 pts. Questão 1:

Seja S a superfície dada por $\overrightarrow{r}(u,v)=u\cos v\,\overrightarrow{i}+u^2\,\overrightarrow{j}+u\sin v\,\overrightarrow{k}$, com $0\leqslant u\leqslant 1$ e $0\leqslant v\leqslant 2\pi$.

0,5 pts. (a) Identifique e esboce a superfície.

2,0 pts. (b) Calcule a área de S.

2,5 pts. Questão 2: Utilize o Teorema da Divergência para calcular o fluxo do campo vetorial \overrightarrow{F} através da superfície S. Sendo $\overrightarrow{F}(x,y,z) = x^2y\overrightarrow{i} + xy^2\overrightarrow{j} + (5-4xyz)\overrightarrow{k}$ e S, a superfície representada pelo hemisfério $x^2 + y^2 + z^2 = 4$, $z \ge 0$. Considere S com orientação para cima (isto é, a normal à superfície, \overrightarrow{n} , possui componente z positiva).

2,5 pts. Questão 3: Aplique o Teorema de Stokes para calcular

$$\int_C \overrightarrow{F} \cdot d\overrightarrow{r},$$

sendo $\overrightarrow{F}(x,y,z) = 3z\overrightarrow{i} + 5x\overrightarrow{j} - 2y\overrightarrow{k}$ e C, a curva intersecção do plano z = y + 3 com o cilindro $x^2 + y^2 = 1$, orientada no sentido anti-horário quando vista de cima.

2,5 pts. Questão 4: Através do teorema de Stokes calcule o fluxo do rotacional de $\overrightarrow{F}(x,y,z) = x\overrightarrow{i} + y\overrightarrow{j} + xyz\overrightarrow{k}$, sendo S a superfície dada por z = 1 - x - y, $x \ge 0$, $y \ge 0$ e $x + y \le 1$. Considere S com orientação para baixo.

Respostas não justificadas não serão consideradas.

Boa prova!