

AMENDMENTS TO THE CLAIMS:

This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

Claim 1 (original): An apparatus measuring the parameters in a volume with $V=V(t)$, where t is time; the apparatus comprising:

two signal sources $A=A(t)$, $B=B(t)$ with $A(t)=B(t)K_0$, where $K_0>1$, $V(t)=B(t)K_1$, where K_0 , K_1 are stationary in a time interval t_0 , where t_0 is any real value; and

detectors to measure the $B'(t)=B(t)+N_B(t)$ and the one assigned as $C'(t)=C(t)+N_A(t)$, where $C'(t)$ can be either $V'(t)=V(t)+N_V(t)$ or $A'(t)=A(t)+N_A(t)$, $N_B(t)$ is the noise of $B(t)$, $N_A(t)$ is the noise of $A(t)$, and $N_V(t)$ is the noise of $V(t)$ during the measurement time interval t_0 ,

wherein the measured signals $B'(t)$ and $C'(t)$ are transferred into electro optical signals and sent into a data processor to analyze either K_0 or K_1 .

Claim 2 (original): An apparatus as claimed in Claim 1 wherein $V=V(t)$ comprises:

an additional property of $V(t)=K2P(t)$, where $P(t)$ is the pressure in $V(t)$, $K2$ is stationary in the time interval t_0 , and t_0 is any real number; and

detectors to measure $P'(t)=P(t)+N_P(t)$, wherein $N_P(t)$ is the noise of $P(t)$ during the measurement time interval t_0 , to transfer the measured $B'(t)$ and $P'(t)$ into electro-optical signal and send the signal into a data processor to analyze K_2 .

Claim 3 (original): An apparatus as claimed in Claim 2, wherein the concentration of B is calculated from K_2 .

Claim 4 (original): An apparatus as claimed in Claim 2, wherein the elasticity of $V(t)$ is calculated from K_2 .

Claim 5 (original): An apparatus as claimed in Claim 2, wherein the t_m is found at which $V(t_m)=V$ at maximum volume from $A(t)$ or $P(t)$.

Claim 6 (original): An apparatus as claimed in Claim 5, wherein the $V(t_m)$ is guiding the injection of an ingredient into V at t_m .

Claim 7 (original): An apparatus as claimed in Claim 1, wherein K_0 or K_1 is used to analyze the concentration of B.

Claim 8 (original): An apparatus as claimed in Claim 2, wherein K_2 is used to analyze the concentration of B.

Claim 9 (currently amended): An apparatus as claimed in Claim 1 or 2, wherein one of the $P'(t)$ or $C'(t)$ is assigned as $E'(t)$, said data processor analyze the original data $B'(t)$ and $E'(t)$ by the following steps:

performing a mathematical transformation T on both $E'(t)$ and $B'(t)$;

estimating K_R from the following relation: $F_i[E'(t)]/F_i[B'(t)] \approx K_R$, R:0, or 1, or 2

accordingly where F_i is the i^{th} order component of the transformation T; and

determining the ratio of two signals $E(t)$ and $B(t)$ from the estimated K_R .

Claim 10 (original): An apparatus as claimed in Claim 9, wherein the mathematical transformation T is linear, said processor further performing the steps of:

identifying and estimating $F_i[N_B(t)]$ by the noise around $F_i[E(t)]$; and

determining the estimated K_R from the following relation:

$$\{F_i[E'(t)] - F_i[N_B(t)]\} / \{F_i[B'(t)] - F_i[N_B(t)]\} \approx K_R.$$

Claim 11 (original): An apparatus as claimed in Claim 9, the processor further performing the step of:

approximation K_R from the largest value of $F_i[E'(t)] - F_i[N_B(t)]$ for all kinds of linear transformation T and all possible orders of the transformation T, based on the following relation:

$$\{F_i[E'(t)] - F_i[N_B(t)]\} / \{F_i[B'(t)] - F_i[N_B(t)]\} \leq K_R.$$

Claim 12 (original): An apparatus as claimed in Claim 9, wherein

$E'(t)$ is statistically confident to be not noisy such that $N_E(t) \approx 0$,

$E'(t) = E(t) + N_E(t) \approx E(t)$,

$B'(t) = B(t) + N_B(t)$, and

$E(t) = K_R * B(t)$,

said method comprising the steps of:

performing a mathematical transformation T on both $E'(t)$ and $B'(t)$;

estimating K_R from the following relation:

$$F_i[E'(t)] / F_i[B'(t)] \approx K_R$$

where F_i is the i^{th} order component of the transformation T and the position of $F_i[B'(t)]$ is identified by the noise around $F_i[E'(t)]$; and

determining the ratio of two signals $E(t)$ and $B(t)$ from the estimated K_R .

Claim 13 (original): An apparatus as claimed in Claim 12, wherein the mathematical transformation T is linear, further comprising the steps of:

identifying and estimating $F_i[N_B(t)]$ by the noise around $F_i[E(t)]$, and denoting the estimating of $F_i[N_B(t)]$ to be $F_i[N_E(t)]$; and

estimating K_R from the following relation:

$$F_i[E(t)] / \{F_i[B'(t)] - F_i[N(t)]\} \approx K_R.$$

Claim 14 (original): An apparatus as claimed in Claim 13, further comprising the steps of:
approximation K_R from the largest value of $F_i[E'(t)] - F_i[NB(t)]$ for all kinds of linear transformation T and all possible orders i of the transformation T, based on the following relation:

$$F_i[E(t)] / \{F_i[B'(t)] - F_i[N(t)]\} \leq K_R.$$

Claim 15 (currently amended): An apparatus as claimed in Claim ~~10 or 13~~ 9, wherein the transformation T is Fourier transform.

Claim 16 (original): An apparatus as claimed in Claim 15, wherein the F_i is F_1 , the first harmonic of the Fourier transform.

Claim 17 (original): An apparatus as claimed in Claim 9, wherein the step for determining a ratio of two signals E(t) and B(t) based on two real signals E'(t) and B''(t) including noise $N_E(t)$ and $N_B(t)$, respectively, wherein:

E'(t) is a least noisy signal;

$$E'(t) = E(t) + N_E(t),$$

$$B'(t) = B(t) + N_B(t), \text{ and}$$

$$E(t) = K_R * B(t),$$

comprising the steps of:

identifying the minimum of B(t), $B'(t)_{min}$, by E'(t); and

removing the static noise by $[B'(t) - B'(t)_{min}]$.

Claim 18 (original): An apparatus as claimed in Claim 17, further comprising the steps of approximating K_R by using the following relation:

$$\text{Maximum of } [E(t) - E(t)_{min}] / \text{Maximum of } [B(t) - B(t)_{min}] \approx K_R,$$

where $E(t)_{min}$ and $B(t)_{min}$ are the minimum of E(t) and B(t), respectively.

Claim 19 (original): An apparatus as claimed in Claim 17, further comprising the steps of approximating K_R by using the following relation:

$$F_i[E(t)-E(t)_{\min}]/F_i[B'(t)-B(t)_{\min}] \approx K_R,$$

where both $E(t)$ and $B(t)$ are periodic and $E(t)_{\min}$ and $B(t)_{\min}$ are the minimum of $E(t)$ and $B(t)$, and F_i is the i^{st} order of a transformation.

Claim 20 (original): An apparatus as claimed in Claim 2, wherein the volume change in a periodic way.

Claim 21 (original): An apparatus as claimed in Claim 1, wherein the signal comprises induced signal.

Claim 22 (original): An apparatus as claimed in Claim 21, wherein the signal comprises an electromagnetic wave.

Claim 23 (original): An apparatus as claimed in Claim 21, wherein the induced signal comprises mechanical wave.

Claim 24 (original): An apparatus as claimed in Claim 1, wherein a signal source in the volume comprises a marker.

Claim 25 (original): An apparatus as claimed in Claim 1, wherein the volume comprises blood.

Claim 26 (original): An apparatus as claimed in Claim 1, wherein the volume comprises tissue.

Claim 27 (original): An apparatus as claimed in Claim 1, wherein a signal source comprises hemoglobin.

Claim 28 (original): An apparatus as claimed in Claim 1, wherein a signal source comprises uric acid.

Claim 29 (original): An apparatus as claimed in Claim 2 further comprises a pressure source for generating the volume change.

Claim 30 (original): An apparatus as claimed in Claim 1, wherein volume change in a periodic way.

Claim 31 (original): An apparatus as claimed in Claim 9, wherein the volume comprises blood, the blood pressure is measured by signal $E'(t)$.

Claim 32 (original): An apparatus as claimed in Claim 31, further comprising a instrument for measuring the blood flow $F'(t)$ in the volume, and means for determining K_p , which is an indicator of perfusion efficiency, based on the following relation: $F(t) = K_p E(t)$.

Claim 33 (original): An apparatus as claimed in Claim 6, further comprising an ingredient detector for injecting another ingredient in accordance with the result of the detector.

Claim 34 (original): An apparatus as claimed in Claim 33, wherein said ingredient comprises glucose and said another ingredient comprises insulin.

Claim 35 (original): An apparatus as claimed in Claim 1, wherein signal is transmitted through communication.

Claim 36 (original): An apparatus as claimed in Claim 1, wherein the volume is in a man-made system.

Claim 37 (original): An apparatus as claimed in Claim 1, wherein the signal source comprises DNA.

Claim 38 (original): An apparatus as claimed in Claim 1, wherein the signal source comprises RNA.

Claim 39 (original): An apparatus as claimed in Claim 1, wherein the signal source comprises protein.

Claim 40 (original): An apparatus as claimed in Claim 1, wherein the signal source comprises colored molecular.

Claim 41 (original): An apparatus as claimed in Claim 4, wherein the V is a pixie of $V(x,y,z)$, a much larger volume.

Claim 42 (original): An apparatus as claimed in Claim 41; wherein the $V(x,y,z)$ is compared with $V(x+\Delta x, y+\Delta y, z+\Delta z)$ in which Δx , Δy , Δz are the size of the pixie.

Claim 43 (original): An apparatus as claimed in Claim 41, wherein the $V(x,y,z)$ is compared with $V_s(x,y,z)$ a stored value in the processor.

Claim 44 (original): An apparatus as claimed in Claim 1, wherein the signal source comprises glucose.

Claim 45 (original): An apparatus as claimed in Claim 1, wherein the signal source comprises cholesterol.

Claim 46 (original): An apparatus as claimed in Claim 1, wherein the signal source comprises triglycerol.

Claim 47 (original): An apparatus as claimed in Claim 1, wherein the signal source comprises
enamation.