$\mathbf{Ru21} ext{-}\mathbf{11} ext{-}\mathbf{T1}$ — Куда упадет шарик

1?? Чему равно расстояние до точки падения на дно для лодки, движущейся в озере той же глубины, что и река?

- 0.50 Скорость движения лодки v относительно воды (или в СО воды) постоянна
- 0.75 Время движения шарика от момента броска и до момента падения на дно τ во всех трех случаях одинаково. Балл ставится только в случае корректного доказательства данного утверждения. Не влияет на оценку последующих пунктов.
- **0.75** Перемещение шарика в горизонтальной плоскости относительно воды (или в СО воды) *s* одинаково по модулю во всех трех случаях. Балл ставится только в случае корректного доказательства данного утверждения. Не влияет на оценку последующих пунктов.
- 0.50 Модуль перемещения воды u au относительно берега за время движения шарика одинаков для всех трёх случаев
 - 1.00 Правильно записано выражение для связи модулей перемещений шарика в первом случае:

$$l_1 = u\tau + s$$

1.00 Правильно записано выражение для связи модулей перемещений шарика во втором случае:

$$l_2 = u\tau - s$$

При неверных знаках в правой части выражения за данный пункт ставится 0, но в последующих пунктах баллы не снимаются

1.00 Получено выражение для перемещения шарика в горизонтальной плоскости при движении в озере (или для всех случаев в СО воды):

$$s = \frac{l_1 \, \dot{l}_2}{2}$$

- **2**?? Во сколько раз скорость лодки больше скорости течения?
 - **1.00** Найден модуль перемещения воды относительно берега:

$$u\tau = \frac{l_1 + l_2}{2}$$

- **1.00** Правильно нарисована связь перемещений для третьего случая (или пояснена в тексте решения)
- **1.50** Правильно записана теорема косинусов или аналогичные выражения для прямоугольных треугольников в соответствие с рисунком

$$l_3^2 = s^2 + (u\tau)^2 - 2su\tau \cdot \cos\varphi$$

1.00 Соотношение скоростей записано как тригонометрическая функция соответствующего угла (синус, косинус или тангенс)

$$\cos \varphi = u/v$$

0.50 Угол между направлениями скоростей показан на рисунке или есть его словесное определение
1.50 Получен верный ответ для соотношения скоростей:

$$\frac{v}{u} = \frac{l_1^2 - l_2^2}{l_1^2 + l_2^2 - 2l_2^2}$$

🥯 Страница 1 из 1 🖘