Лабораторная работа 14

Модели обработки заказов

Шуваев Сергей Александрович

Содержание

1	Цел	ь работы	4
2	Зада	ание	5
3	Вып	олнение лабораторной работы	6
	3.1	Модель оформления заказов клиентов одним оператором	6
	3.2	Построение гистограммы распределения заявок в очереди	12
	3.3	Модель обслуживания двух типов заказов от клиентов в интернет-	
		магазине	17
	3.4	Модель оформления заказов несколькими операторами	24
4	Выв	ОДЫ	31

Список иллюстраций

3.1	Модель оформления заказов клиентов одним оператором	7
3.2	Отчёт по модели оформления заказов в интернет-магазине	8
3.3	Модель оформления заказов клиентов одним оператором с изме-	
	ненными интервалами заказов и времени оформления клиентов	10
3.4	Отчёт по модели оформления заказов в интернет-магазине с из-	
	мененными интервалами заказов и времени оформления клиентов	11
3.5	Построение гистограммы распределения заявок в очереди	13
3.6	Отчёт по модели оформления заказов в интернет-магазине при	
	построении гистограммы распределения заявок в очереди	14
3.7	Отчёт по модели оформления заказов в интернет-магазине при	
	построении гистограммы распределения заявок в очереди	15
3.8	Гистограмма распределения заявок в очереди	17
3.9	Модель обслуживания двух типов заказов от клиентов в интернет-	
	магазине	18
3.10	Отчёт по модели оформления заказов двух типов	19
3.11	Модель обслуживания двух типов заказов с условием, что число	
	заказов с дополнительным пакетом услуг составляет 30% от общего	
	числа заказов	21
	Отчёт по модели оформления заказов двух типов заказов	22
3.13	Модель оформления заказов несколькими операторами	25
	Отчет по модели оформления заказов несколькими операторами	26
3.15	Модель оформления заказов несколькими операторами с учетом	
	отказов клиентов	28
3.16	Отчет по модели оформления заказов несколькими операторами с	
	учетом отказов клиентов	29

1 Цель работы

Реализовать модели обработки заказов и провести анализ результатов.

2 Задание

Реализовать с помощью gpss:

- модель оформления заказов клиентов одним оператором;
- построение гистограммы распределения заявок в очереди;
- модель обслуживания двух типов заказов от клиентов в интернет-магазине;
- модель оформления заказов несколькими операторами.

3 Выполнение лабораторной работы

3.1 Модель оформления заказов клиентов одним оператором

Порядок блоков в модели соответствует порядку фаз обработки заказа в реальной системе:

- 1) клиент оставляет заявку на заказ в интернет-магазине;
- 2) если необходимо, заявка от клиента ожидает в очереди освобождения оператора для оформления заказа;
- 3) заявка от клиента принимается оператором для оформления заказа;
- 4) оператор оформляет заказ;
- 5) клиент получает подтверждение об оформлении заказа (покидает систему).

Модель будет состоять из двух частей: моделирование обработки заказов в интернет-магазине и задание времени моделирования. Для задания равномерного распределения поступления заказов используем блок GENERATE, для задания равномерного времени обслуживания (задержки в системе) – ADVANCE. Для моделирования ожидания заявок клиентов в очереди используем блоки QUEUE и DEPART, в которых в качестве имени очереди укажем орегаtor_q Для моделирования поступления заявок для оформления заказов к оператору используем блоки SEIZE и RELEASE с параметром орегаtor — имени «устройства обслуживания».

Требуется, чтобы модельное время было 8 часов. Соответственно, параметр блока GENERATE – 480 (8 часов по 60 минут, всего 480 минут). Работа программы

начинается с оператора START с начальным значением счётчика завершений, равным 1; заканчивается – оператором TERMINATE с параметром 1, что задаёт ординарность потока в модели.

Таким образом, имеем (рис. 3.1).

```
; operator
GENERATE 15,4
QUEUE operator_q
SEIZE operator
DEPART operator_q
ADVANCE 10,2
RELEASE operator
TERMINATE 0

; timer
GENERATE 480
TERMINATE 1
START 1
```

Рис. 3.1: Модель оформления заказов клиентов одним оператором

После запуска симуляции получаем отчёт (рис. 3.2).

_	GPSS World	l Simulation F	Report - 14_1.1	.1	
	Frida	y, May 09, 20	25 14:18:13		
	START TIME	END I	IME BLOCKS F.	ACILITIES STO	RAGES
	0.000	480.	000 9	1	0
	NAME OPERATOR OPERATOR_Q		VALUE 10001.000 10000.000		
LABEL			ENTRY COUNT		
	1	GENERATE	32 32	0	0
	2	QUEUE	32	0	0
	3	SEIZE DEPART	32 32	0	0
			32	0	0
	5	ADVANCE	32	1	0
	6	RELEASE	31	0 0 0	0
	7	TERMINATE	31 1	0	0
		GENERATE	1	0	0
	9	TERMINATE	1	0	0
			. TIME AVAIL. 9.589 1		
QUEUE OPERATOR_O	MAX 0	CONT. ENTRY EN 0 32	TRY(0) AVE.CON 31 0.001	T. AVE.TIME 0.021	AVE.(-0) RETRY 0.671 0
FEC XN PH	RI BDT	ASSEM	CURRENT NEXT	PARAMETER	VALUE
33 (489.	786 33	5 6		
34 (35 (496.	081 34 000 35	0 1		
35 (960.	000 35	0 8		

Рис. 3.2: Отчёт по модели оформления заказов в интернет-магазине

- модельное время в начале моделирования: START TIME=0.0;
- абсолютное время или момент, когда счетчик завершений принял значение 0: END TIME=480.0;
- количество блоков, использованных в текущей модели, к моменту завершения моделирования: BLOCKS=9;
- количество одноканальных устройств, использованных в модели к моменту завершения моделирования: FACILITIES=1;
- количество многоканальных устройств, использованных в текущей модели к моменту завершения моделирования: STORAGES=0. Имена, используемые в программе модели: operator, operator_q.

Далее идёт информация о блоках текущей модели, в частности, ENTRY COUNT – количество транзактов, вошедших в блок с начала процедуры моделирования.

Затем идёт информация об одноканальном устройстве FACILITY (оператор, оформляющий заказ), откуда видим, что к оператору попало 33 заказа от клиентов (значение поля OWNER=33), но одну заявку оператор не успел принять в обработку до окончания рабочего времени (значение поля ENTRIES=32). Полезность работы оператора составила 0, 639. При этом среднее время занятости оператора составило 9, 589 мин.

Далее информация об очереди:

- QUEUE=operator_q имя объекта типа «очередь»;
- МАХ=1 в очереди находилось не более одной ожидающей заявки от клиента;
- CONT=0 на момент завершения моделирования очередь была пуста;
- ENTRIES=32 общее число заявок от клиентов, прошедших через очередь в течение периода моделирования;
- ENTRIES(0)=31 число заявок от клиентов, попавших к оператору без ожидания в очереди;
- AVE. CONT=0, 001 заявок от клиентов в среднем были в очереди;
- AVE. TIME=0.021 минут в среднем заявки от клиентов провели в очереди (с учётом всех входов в очередь);
- AVE. (-0)=0, 671 минут в среднем заявки от клиентов провели в очереди (без учета «нулевых» входов в очередь).

В конце отчёта идёт информация о будущих событиях:

- XN=33 порядковый номер заявки от клиента, ожидающей поступления для оформления заказа у оператора;
- PRI=0 все клиенты (из заявки) равноправны;
- BDT=489, 786 время назначенного события, связанного с данным транзактом;
- ASSEM=33 номер семейства транзактов;
- CURRENT=5 номер блока, в котором находится транзакт;
- NEXT=6 номер блока, в который должен войти транзакт.

Упражнение

Изменим интервалы поступления заказов и время оформления клиентов (рис. 3.3).

Рис. 3.3: Модель оформления заказов клиентов одним оператором с измененными интервалами заказов и времени оформления клиентов

После запуска симуляции получаем отчёт (рис. 3.4).

GPSS	World	Simula	tion	Report	- 14_2	2.1.	1				
	Friday	y, May	09, 2	025 1	1:27:01						
START TI	ME		END	TIME	BLOCKS	FA	CILITI	ES	STORA	GES	
0.0	00		480	0.000	9		1		0		
NAME OPERATOR OPERATOR				7	ALUE						
OPERATOR				1000	1.000						
OPERATOR	Q			1000	00.000						
LABEL	LOC	BLOCK	TYPE	El	ITRY COL	UNT	CURREN	T CC	OUNT R	ETRY	
LABEL	1	GENERA	TE		152			0	,01,1	0	
	2	QUEUE			152			82		0	
	3	SEIZE			70			0		0	
	4	DEPART			70			0		0	
	5	ADVANC	E		70			1		0	
	6	RELEAS	E		69			0		0	
	7	TERMIN	ATE		69			0		0	
	8	GENERA	TE		1			0		0	
	9	TERMIN	ATE		1			0		0	
FACILITY EN	TDTFS	HTTI.	7.7	7F TTN	וד מעמדו	т. О	WMFD D	FND	TNTFD	DETDV	DELAY
OPERATOR	70	0.99	1	6.7	196 1		71	0	0	0	82
or zaration.	, ,	0.00	-	•			-				
QUEUE	MAX CO	ONT. EN	TRY E	ENTRY () AVE.	CONT	. AVE.	TIME	AVI	E.(-0)	RETRY
QUEUE OPERATOR_Q	82	82	152	1	39.0	096	123	.461	1	24.279	0
FEC XN PRI	BDT	A	SSEM	CURRE	NT NE	XT	PARAME	TER	VA	LUE	
71 0	480.4	105	71	5	6	-				_	
154 0	483.3	330	154	0	1						
155 0											

Рис. 3.4: Отчёт по модели оформления заказов в интернет-магазине с измененными интервалами заказов и времени оформления клиентов

- модельное время в начале моделирования: START TIME=0.0;
- абсолютное время или момент, когда счетчик завершений принял значение 0: END TIME=480.0;
- количество блоков, использованных в текущей модели, к моменту завершения моделирования: BLOCKS=9;
- количество одноканальных устройств, использованных в модели к моменту завершения моделирования: FACILITIES=1;
- количество многоканальных устройств, использованных в текущей модели к моменту завершения моделирования: STORAGES=0.

Имена, используемые в программе модели: operator, operator_q.

• количество транзактов, вошедших в блок с начала процедуры моделирования ENTRY COUNT = 152;

Затем идёт информация об одноканальном устройстве FACILITY (оператор, оформляющий заказ), откуда видим, что к оператору попало 71 заказ от клиентов (значение поля OWNER=71), но оператор успел принять в обработку до окончания рабочего времени только 70 (значение поля ENTRIES=70). Полезность работы оператора составила 0,991. При этом среднее время занятости оператора составило 6,796 мин.

Далее информация об очереди:

- QUEUE=operator_q имя объекта типа «очередь»;
- МАХ=82 в очереди находилось 82 ожидающих заявок от клиента;
- CONT=82 на момент завершения моделирования в очереди было 82 заявки;
- ENTRIES=82 общее число заявок от клиентов, прошедших через очередь в течение периода моделирования;
- ENTRIES(0)=1 число заявок от клиентов, попавших к оператору без ожидания в очереди;
- AVE. CONT=39,096 заявок от клиентов в среднем были в очереди;
- AVE. TIME=123.461 минут в среднем заявки от клиентов провели в очереди (с учётом всех входов в очередь);
- AVE. (-0)=123,279 минут в среднем заявки от клиентов провели в очереди (без учета «нулевых» входов в очередь).

В конце отчёта идёт информация о будущих событиях.

3.2 Построение гистограммы распределения заявок в очереди

Требуется построить гистограмму распределения заявок, ожидающих обработки в очереди в примере из предыдущего упражнения. Для построения гисто-

граммы необходимо сформировать таблицу значений заявок в очереди, записываемых в неё с определённой частотой.

Команда описания такой таблицы QTABLE имеет следующий формат: Name QTABLE A, B, C, D Здесь Name — метка, определяющая имя таблицы. Далее должны быть заданы операнды: А задается элемент данных, чьё частотное распределение будет заноситься в таблицу (может быть именем, выражением в скобках или системным числовым атрибутом (СЧА)); В задается верхний предел первого частотного интервала; С задает ширину частотного интервала — разницу между верхней и нижней границей каждого частотного класса; D задаёт число частотных интервалов.

Код программы будет следующим(рис. 3.5).

Рис. 3.5: Построение гистограммы распределения заявок в очереди

Здесь Waittime — метка оператора таблицы очередей QTABLE, в данном случае название таблицы очереди заявок на заказы. Строка с оператором TEST по смыслу аналогично действиям оператора IF и означает, что если в очереди 0 или 1 заявка, то осуществляется переход к следующему оператору, в данном случае к оператору SAVEVALUE, в противном случае (в очереди более одной заявки) происходит переход к оператору с меткой Fin, то есть заявка удаляется из системы, не попадая на обслуживание. Строка с оператором SAVEVALUE с помощью операнда Сиstnum подсчитывает число заявок на заказ, попавших в очередь. Далее оператору ASSIGN присваивается значение СЧА оператора Custnum.

Получим отчет симуляции и проанализируем его (рис. 3.6, 3.7).

	GPSS W	orld	Simulation I	Repor	t - 14_4	.1.1		
	F	rida	y, May 09, 20	25 1	4:52:05			
	START TIM	E	END 1	TIME	BLOCKS	FACILITIES	STOR	AGES
	0.00	0	353	895	10	1	0)
	NAME				VALUE			
	CUSTNUM				02.000			
FIN				10.000				
	OPERATOR			10003.000				
	OPERATOR C)		100	01.000			
	WAITTIME			100	00.000			
LABEL		LOC	BLOCK TYPE	E	NTRY COUN	NT CURRENT O	OUNT	RETRY
			GENERATE					
			TEST					
		3	SAVEVALUE		55	C)	0
		4	ASSIGN		55	C)	0
		5	QUEUE		55	1		0
		6	SEIZE		54	1		0
		7	DEPART		53	0)	0
		_			53	C)	0
		9	RELEASE		53	0)	0
IN	1	0	TERMINATE		100	0)	0

Рис. 3.6: Отчёт по модели оформления заказов в интернет-магазине при построении гистограммы распределения заявок в очереди

FACILITY OPERATOR							
QUEUE OPERATOR_Q	MAX CONT. EN	NTRY ENT	RY(0) A	VE.CON	r. AVE.TIME 10.628	AVE.(-0 10.82) RETRY 4 0
TABLE WAITTIME					0	Y FREQUENC	Y CUM.%
			_	(0.000	1	1.89
		0.0	00 -		2.000	0	1.89
		2.0	00 -	4	4.000	1	3.77
		4.0	00 -	(0	
						4	
			00 -		0.000		33.96
					2.000		66.04
					4.000		
		14.0	00 -	10	6.000	4	100.00
SAVEVALUE CUSTNUM	RETRY 0						
CEC XN PRI 98 0					PARAMETER	VALUE	
			-		CUSTNUM	54.000	
FEC XN PRI 103 0	BDT 2				PARAMETER	VALUE	

Рис. 3.7: Отчёт по модели оформления заказов в интернет-магазине при построении гистограммы распределения заявок в очереди

- модельное время в начале моделирования: START TIME=0.0;
- абсолютное время или момент, когда счетчик завершений принял значение 0: END TIME=353.895;
- количество блоков, использованных в текущей модели, к моменту завершения моделирования: BLOCKS=10;
- количество одноканальных устройств, использованных в модели к моменту завершения моделирования: FACILITIES=1;
- количество многоканальных устройств, использованных в текущей модели к моменту завершения моделирования: STORAGES=0.

Имена, используемые в программе модели: operator, operator_q.

• количество транзактов, вошедших в блок с начала процедуры моделирования ENTRY COUNT = 102;

Затем идёт информация об одноканальном устройстве FACILITY (оператор, оформляющий заказ), откуда видим, что к оператору попало 98 заказов от клиентов (значение поля OWNER=98), но оператор успел принять в обработку до окончания рабочего времени только 54 (значение поля ENTRIES=54). Полезность работы оператора составила 0,987. При этом среднее время занятости оператора составило 6,470 мин.

Далее информация об очереди:

- QUEUE=operator_q имя объекта типа «очередь»;
- МАХ=2 в очереди находилось не более двух ожидающих заявок от клиента;
- CONT=2 на момент завершения моделирования в очереди было два клиента;
- ENTRIES=55 общее число заявок от клиентов, прошедших через очередь в течение периода моделирования;
- ENTRIES(0)=1 число заявок от клиентов, попавших к оператору без ожидания в очереди;
- AVE. CONT=1,652 заявок от клиентов в среднем были в очереди;
- AVE. TIME=10.628 минут в среднем заявки от клиентов провели в очереди (с учётом всех входов в очередь);
- AVE. (-0)=10,824 минут в среднем заявки от клиентов провели в очереди (без учета «нулевых» входов в очередь).

Также появилась таблица с информацией для гистограммы: частотность разделена на 15 частотных интервалов с шагом 2 и началом в 0, как мы и задали. Наибольшее количество заявок(17) обрабатывалось в диапазоне 10-12 минут.

В конце отчёта идёт информация о будущих событиях.

Проанализируем гистограмму (рис. 3.8).

Рис. 3.8: Гистограмма распределения заявок в очереди

Частотность разделена на 15 частотных интервалов с шагом 2 и началом в 0, как мы и задали. Наибольшее количество заявок (17) обрабатывалось 10-12 минут, 14 заявок – 12-14 минут, 12 заявок – 8-10 минут, в остальных диапазонах 0-4 заявок.

3.3 Модель обслуживания двух типов заказов от клиентов в интернет-магазине

Необходимо реализовать отличие в оформлении обычных заказов и заказов с дополнительным пакетом услуг. Такую систему можно промоделировать с

помощью двух сегментов. Один из них моделирует оформление обычных заказов, а второй – заказов с дополнительным пакетом услуг. В каждом из сегментов пара QUEUE-DEPART должна описывать одну и ту же очередь, а пара блоков SEIZE-RELEASE должна описывать в каждом из двух сегментов одно и то же устройство и моделировать работу оператора. Код и отчет результатов моделирования следующие (рис. 3.9, 3.10).

```
14_5.gps
 ; order
 GENERATE 15,4
 QUEUE operator q
 SEIZE operator
 DEPART operator q
 ADVANCE 10,2
 RELEASE operator
 TERMINATE 0
 ; order and service package
 GENERATE 30,8
 QUEUE operator q
 SEIZE operator
 DEPART operator q
 ADVANCE 5,2
 ADVANCE 10,2
 RELEASE operator
 TERMINATE 0
 ;timer
 GENERATE 480
 TERMINATE 1
 START 1
```

Рис. 3.9: Модель обслуживания двух типов заказов от клиентов в интернетмагазине

Model 3.1.1 - RE								
	суббо	га, июня 08,	2024 18:	12:40				
ST	ART TIME		TIME BLO			S STORA	GES	
	0.000	480	.000 1	7	1	0		
	NAME		VALU					
	RATOR		10001.0					
OPE	RATOR_Q		10000.0	00				
LABEL	100	DIOCK TABE	PUTDY	COUNT	CUDDENT	COUNT P	ETDV	
LADEL		BLOCK TYPE GENERATE		32	CURRENT	O COUNT F	0 0	
		OUEUE		32 32		4	0	
		SEIZE		32 28			0	
	_	DEPART		28		0	0	
	-	ADVANCE		28		1	0	
		RELEASE		27		0	0	
		TERMINATE		27		0	0	
		GENERATE		15		0	0	
		QUEUE		15		3	0	
		SEIZE		12		0	0	
		DEPART		12		0	0	
	12	ADVANCE		12		0	0	
	13	ADVANCE		12		0	0	
	14	RELEASE		12		0	0	
	15	TERMINATE		12		0	0	
	16	GENERATE		1		0	0	
	17	TERMINATE		1		0	0	
FACILITY	ENTRIES	UTIL. AV	E. TIME A	VAIL.	OWNER PE	ND INTER	RETRY	DELAY
OPERATOR	40	0.947	11.365	1	42	0 0	0	7
QUEUE OPERATOR_Q	MAX C	ONT. ENTRY E	NTRY(0) A	VE.CON	T. AVE.T	IME AV	E.(-0)	RETRY
OPERATOR Q	8	7 47	2	3.355	34.	261	35.784	0
FEC XN PRI	BDT	ASSEM	CURRENT	NEXT	PARAMET	ER VA	LUE	
42 0		325 42	5	6				

Рис. 3.10: Отчёт по модели оформления заказов двух типов

- модельное время в начале моделирования: START TIME=0.0;
- абсолютное время или момент, когда счетчик завершений принял значение 0: END TIME=480.0;
- количество блоков, использованных в текущей модели, к моменту завершения моделирования: BLOCKS=17;
- количество одноканальных устройств, использованных в модели к моменту завершения моделирования: FACILITIES=1;
- количество многоканальных устройств, использованных в текущей модели к моменту завершения моделирования: STORAGES=0.

Имена, используемые в программе модели: operator, operator_q.

• количество транзактов, вошедших в блок первого типа заказов с начала процедуры моделирования ENTRY COUNT = 32, а второго типа(с дополнительными услугами) ENTRY COUNT = 15; обработано 12+27 = 39;

Затем идёт информация об одноканальном устройстве FACILITY (оператор, оформляющий заказ), откуда видим, что к оператору попало 42 заказ от клиентов (значение поля OWNER=42), но оператор успел принять в обработку до окончания рабочего времени только 40 (значение поля ENTRIES=40). Полезность работы оператора составила 0,947. При этом среднее время занятости оператора составило 11,365 мин.

Далее информация об очереди:

- QUEUE=operator_q имя объекта типа «очередь»;
- МАХ=8 в очереди находилось не более двух ожидающих заявок от клиента;
- CONT=7 на момент завершения моделирования в очереди было 7 клиентов;
- ENTRIES=47 общее число заявок от клиентов, прошедших через очередь в течение периода моделирования;
- 'ENTRIES(0)=2 число заявок от клиентов, попавших к оператору без ожидания в очереди;
- AVE. CONT=3,355 заявок от клиентов в среднем были в очереди;
- AVE. TIME=34,261 минут в среднем заявки от клиентов провели в очереди (с учётом всех входов в очередь);
- AVE. (-0)=35,784 минут в среднем заявки от клиентов провели в очереди (без учета «нулевых» входов в очередь).

В конце отчёта идёт информация о будущих событиях.

Упражнение

Скорректируем модель так, чтобы учитывалось условие, что число заказов с дополнительным пакетом услуг составляет 30% от общего числа заказов.

Будем использовать один блок order, а разделим типы заявок с помощью переходов оператором TRANSFER. Каждый заказ обрабатывается 10 ± 2 минуты,

после этого зададим оператор TRANSFER, в котором укажем, что с вероятностью 0.7 происходит обработка заявки (переход к блоку noextra RELEASE operator), а с вероятностью 0.3 дополнительно заказ обрабатывается еще 5 ± 2 минуты (переход к блоку extra ADVANCE 5,2) и только после этого является обработанным (рис. 3.11).

Рис. 3.11: Модель обслуживания двух типов заказов с условием, что число заказов с дополнительным пакетом услуг составляет 30% от общего числа заказов

Проанализируем результаты моделирования (рис. 3.12).

GPSS	World	Simulation R	eport - :	14_6.1	.1			
	Friday	y, May 09, 20	25 15:21	:22				
START TI	ME	END T	IME BLO	CKS F	ACILITIE	S STO	RAGES	
0.0	000	END T 480.	000 1	1	1	(0	
NAME			VALU					
EXTRA			7.0	00				
NOEXTRA			8.00	00				
OPERATOR OPERATOR_	_		10001.0	00				
OPERATOR_	Q		10000.00	00				
LABEL	LOC	BLOCK TYPE	ENTRY	COUNT	CURRENT	COUNT	RETRY	
	1	GENERATE QUEUE SEIZE DEPART ADVANCE	;	33		0	0	
	2	QUEUE		33		0	0	
	3	SEIZE		33		0	0	
	4	DEPART ADVANCE TRANSFER		33		0	0	
	6	TDAMSEED		3.3		0	0	
EXTRA	7	ADVANCE	,	8		1	0	
NOEXTRA	8	RELEASE		32		0	0	
	9	TERMINATE		32		0	0	
	10	GENERATE		1		0	0	
EXTRA NOEXTRA	11	TERMINATE		1		0	0	
FACILITY EN	ITRIES	UTIL. AVE	. TIME A	VATI	OWNER PE	ND INT	ER RETRY	DELAY
OPERATOR	33	0.766	11.146	1	34	0 (0 0	0
QUEUE OPERATOR_Q	MAX CO	ONT. ENTRY EN	TRY(0) A	VE.CON	T. AVE.T	IME 7	AVE.(-0)	RETRY
OPERATOR_Q	1	0 33	25	0.054	0.	781	3.220	0
FEC XN PRI	BDT	ASSEM	CURRENT	NEXT	PARAMET	ER Y	VALUE	
34 0	482.9	925 34	7	8				
34 0 35 0 36 0	487.	726 35	0	1				
36 0	960.0	000 36	0	10				

Рис. 3.12: Отчёт по модели оформления заказов двух типов заказов

- модельное время в начале моделирования: START TIME=0.0;
- абсолютное время или момент, когда счетчик завершений принял значение 0: END TIME=480.0;
- количество блоков, использованных в текущей модели, к моменту завершения моделирования: BLOCKS=11;
- количество одноканальных устройств, использованных в модели к моменту завершения моделирования: FACILITIES=1;
- количество многоканальных устройств, использованных в текущей модели к моменту завершения моделирования: STORAGES=0.

Имена, используемые в программе модели: operator, operator_q.

• количество транзактов, вошедших в блок заказов с начала процедуры моделирования ENTRY COUNT = 33, при этом из них второго типа (с дополнительными услугами) ENTRY COUNT = 8; обработано 32 заказа;

Затем идёт информация об одноканальном устройстве FACILITY (оператор, оформляющий заказ), откуда видим, что к оператору попало 34 заказа от клиентов (значение поля OWNER=34), но оператор успел принять в обработку до окончания рабочего времени только 33 (значение поля ENTRIES=33). Полезность работы оператора составила 0,766. При этом среднее время занятости оператора составило 11,146 мин.

Далее информация об очереди:

- QUEUE=operator_q имя объекта типа «очередь»;
- МАХ=1 в очереди находилось не более двух ожидающих заявок от клиента;
- CONT=0 на момент завершения моделирования в очереди было ноль клиентов;
- ENTRIES=33 общее число заявок от клиентов, прошедших через очередь в течение периода моделирования;
- ENTRIES(0)=25 число заявок от клиентов, попавших к оператору без ожидания в очереди;
- AVE. CONT=0,054 заявок от клиентов в среднем были в очереди;
- AVE. TIME=0.781 минут в среднем заявки от клиентов провели в очереди (с учётом всех входов в очередь);
- AVE. (-0)=3,220 минут в среднем заявки от клиентов провели в очереди (без учета «нулевых» входов в очередь).

В конце отчёта идёт информация о будущих событиях.

3.4 Модель оформления заказов несколькими операторами

В интернет-магазине заказы принимают 4 оператора. Интервалы поступления заказов распределены равномерно с интервалом 5 ± 2 мин. Время оформления заказа каждым оператором также распределено равномерно на интервале 10 ± 2 мин. обработка поступивших заказов происходит в порядке очереди (FIFO). Требуется определить характеристики очереди заявок на оформление заказов при условии, что заявка может обрабатываться одним из 4-х операторов в течение восьмичасового рабочего дня

С помощью строки operator STORAGE 4 указываем, что у нас 4 оператора, затем к обычной процедуре генерации и обработки заявки добавляется, что заявку обрабатывает один оператор operator, 1, сегмент моделирования времени остается без изменений (рис. 3.13).

Рис. 3.13: Модель оформления заказов несколькими операторами

Далее получим и проанализируем отчет (рис. 3.14).

GPS	S World Simul	ation Rep	ort - Untitle	ed Model 4.2.	1
	Friday, May	09, 2025	15:29:51		
START	TIME	END TIM	E BLOCKS F	ACILITIES ST	ORAGES
				0	
NAM	Œ		VALUE		
OPERATO)R	1	.000.000		
	R_Q	1	0001.000		
LABEL	LOC BLOCK	TVDE	ENTRY COUNT	CURRENT COUN	T DETDV
THUEL	1 GENED	ATE	93	O O	0
	2 QUEUE	MIL	93	0	0
	2 Q0E0E 3 FNTFR		93	ō	0
	4 DEPAR	г	93	0	0
	4 DEPAR 5 ADVAN	CE	93 93	0 2	0
	6 LEAVE		91	0 2 0	0
	7 TERMI			o	0
	8 GENER	ATE		0	0
	8 GENER 9 TERMI	NATE	1	0	0
QUEUE OPERATOR_Q	MAX CONT. E	NTRY ENTR	Y(0) AVE.CON	r. AVE.TIME	AVE.(-0) RETRY
OPERATOR_Q	1 0	93	93 0.000	0.000	0.000 0
STORAGE	CAP. REM. M	IN. MAX.	ENTRIES AVL	. AVE.C. UTI	L. RETRY DELAY
	4 2				
	227				
FEC XN PRI 95 0	490 457	ADSEM CU	KKENI NEXT	PARAMETER	VALUE
M5 U	480.45/	95	0 1		
03 0					
95 0 93 0 94 0	482.805	93	5 6		

Рис. 3.14: Отчет по модели оформления заказов несколькими операторами

- модельное время в начале моделирования: START TIME=0.0;
- абсолютное время или момент, когда счетчик завершений принял значение 0: END TIME=480.0;
- количество блоков, использованных в текущей модели, к моменту завершения моделирования: BLOCKS=9;
- количество одноканальных устройств, использованных в модели к моменту завершения моделирования: FACILITIES=1;
- количество многоканальных устройств, использованных в текущей модели к моменту завершения моделирования: STORAGES=0.

Имена, используемые в программе модели: operator, operator_q.

• количество транзактов, вошедших в блок заказов с начала процедуры моделирования ENTRY COUNT = 93; обработан 91 заказ;

Далее информация об очереди:

- QUEUE=operator_q имя объекта типа «очередь»;
- МАХ=1 в очереди находилось не более двух ожидающих заявок от клиента;
- CONT=0 на момент завершения моделирования в очереди было ноль клиентов;
- ENTRIES=93 общее число заявок от клиентов, прошедших через очередь в течение периода моделирования;
- ENTRIES(0)=93 число заявок от клиентов, попавших к оператору без ожидания в очереди;
- AVE. CONT=0,000 заявок от клиентов в среднем были в очереди;
- AVE. TIME=0.000 минут в среднем заявки от клиентов провели в очереди (с учётом всех входов в очередь);
- AVE. (-0)=0,000 минут в среднем заявки от клиентов провели в очереди (без учета «нулевых» входов в очередь).

Затем идёт информация о многоканальном устройстве STORAGE (оператор, оформляющий заказ), откуда видим, что к операторам попало 93 заказа от клиентов, но не указано, сколько операторы успели принять в обработку. Полезность работы операторов составила 0,482. При этом среднее время занятости оператора составило 1,926 мин. Также появились значения, характерные для STORAGE: вместительность 4, максимальное число одновременно работающих операторов – 4, минимальное – 0.

В конце отчёта идёт информация о будущих событиях.

Упражнение

Изменим модель: требуется учесть в ней возможные отказы клиентов от заказа – когда при подаче заявки на заказ клиент видит в очереди более двух других заявок, он отказывается от подачи заявки, то есть отказывается от обслуживания (используем блок TEST и стандартный числовой атрибут Qj текущей длины очереди j).

Добавим строчку TEST LE Q $perator_q$, 2, которая проверяет больше ли в очереди клиентов, чем два, если нет – клиент поступает на обработку, иначе уходит. Также в ранее проанализированном отчете видно, что клиентов в очереди не было больше 2, поэтому увеличим время обработки заказов до 30 ± 2 мин., чтобы проверить результаты изменений модели (рис. 3.15).

Рис. 3.15: Модель оформления заказов несколькими операторами с учетом отказов клиентов

Проанализируем полученный отчет (рис. ~ 3.16).

Рис. 3.16: Отчет по модели оформления заказов несколькими операторами с учетом отказов клиентов

- модельное время в начале моделирования: START TIME=0.0;
- абсолютное время или момент, когда счетчик завершений принял значение 0: END TIME=480.0;
- количество блоков, использованных в текущей модели, к моменту завершения моделирования: BLOCKS=9;
- количество одноканальных устройств, использованных в модели к моменту завершения моделирования: FACILITIES=1;
- количество многоканальных устройств, использованных в текущей модели к моменту завершения моделирования: STORAGES=0.

Имена, используемые в программе модели: operator, operator_q.

• количество транзактов, вошедших в блок заказов с начала процедуры моделирования ENTRY COUNT = 94; обработано 60 заказа; 27 человек отказались оставлять заявки, поскольку очередь была более 2ух заявок.

Далее информация об очереди:

- QUEUE=operator q имя объекта типа «очередь»;
- MAX=3 в очереди находилось не более трех ожидающих заявок от клиента(как и было указано);
- CONT=3 на момент завершения моделирования в очереди было ноль клиентов;
- ENTRIES=67 общее число заявок от клиентов, прошедших через очередь в течение периода моделирования;
- ENTRIES(0)=4 число заявок от клиентов, попавших к оператору без ожидания в очереди;
- AVE. CONT=2,701 заявок от клиентов в среднем были в очереди;
- AVE. TIME=19,347 минут в среднем заявки от клиентов провели в очереди (с учётом всех входов в очередь);
- AVE. (-0)=20,576 минут в среднем заявки от клиентов провели в очереди (без учета «нулевых» входов в очередь).

Затем идёт информация о многоканальном устройстве STORAGE (оператор, оформляющий заказ), откуда видим, что к операторам попало 64 заказов от клиентов. Полезность работы операторов составила 0,971. При этом среднее время занятости оператора составило 3,885 мин. Также появились значения, характерные для STORAGE: вместительность 4, максимальное число одновременно работающих операторов – 4, минимальное – 0.

В конце отчёта идёт информация о будущих событиях.

4 Выводы

В результате была реализована с помощью gpss:

- модель оформления заказов клиентов одним оператором;
- построение гистограммы распределения заявок в очереди;
- модель обслуживания двух типов заказов от клиентов в интернет-магазине;
- модель оформления заказов несколькими операторами.