Algorithm 2 Basic scheme for coupled NK-TH calculations (as to be implemented in the script)

 \blacksquare input: $s_1, b, \vec{\rho}$

■ declare: $S \leftarrow 0$

 \blacksquare declare: \vec{P} (may be a zero vector)

for $i \leftarrow 1, 2, \dots$ do

■ declare: $s \leftarrow (s_1 + \sqrt{s_1^2 + 4s_1S})/2$

 \blacksquare declare: $c \leftarrow integer(s/b)$

■ declare: \vec{p} ← power distribution in a system with coolant density $\vec{\rho}$ distribution based on MC crit. simulation with c active cycles

 $\blacksquare S \leftarrow S + s$

 \blacksquare declare: $\alpha = s/S$

 $\blacksquare \vec{P} \leftarrow (1 - \alpha)\vec{P} + \alpha\vec{p}$

 \blacksquare remormalize \vec{P} so that the system gives required power

 $\vec{\rho} \leftarrow$ calculation of the steady-state coolant density distribution based on power distribution \vec{P}

end for

Literature

1. Dufek, J. and Gudowski, W., "Stochastic Approximation for Monte Carlo Calculation of Steady-State Conditions in Thermal Reactors," *Nucl. Sci. Eng.*, Vol. 152, 2006, pp. 274.