

[C2-001] 기초수학

Lecture 05: Affine Transformation

Hak Gu Kim

hakgukim@cau.ac.kr

Immersive Reality & Intelligent Systems Lab (IRIS LAB)

Graduate School of Advanced Imaging Science, Multimedia & Film (GSAIM)

Chung-Ang University (CAU)

Topics

More Determinant

• Affine Transformation

Topics

More Determinant

• Affine Transformation

More Determinant: Area of a Parallelogram

Determinant and Area of a Parallelogram

•
$$\mathbf{A} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} \mathbf{v_1} & \mathbf{v_2} \end{bmatrix}, \ \mathbf{v_1} = \begin{bmatrix} a \\ c \end{bmatrix}$$
and $\mathbf{v_2} = \begin{bmatrix} b \\ d \end{bmatrix}$

- Area of a parallelogram
 - $B = \|\mathbf{v}_1\| \to B^2 = \|\mathbf{v}_1\|^2 = \mathbf{v}_1 \cdot \mathbf{v}_1$

•
$$H^2 = \|\mathbf{v}_2\|^2 - \|Proj_L(\mathbf{v}_2)\|^2 = \mathbf{v}_2 \cdot \mathbf{v}_2 - \left\|\frac{\mathbf{v}_2 \cdot \mathbf{v}_1}{\mathbf{v}_1 \cdot \mathbf{v}_1} \mathbf{v}_1\right\|^2 = \mathbf{v}_2 \cdot \mathbf{v}_2 - \left(\frac{(\mathbf{v}_2 \cdot \mathbf{v}_1)(\mathbf{v}_2 \cdot \mathbf{v}_1)}{(\mathbf{v}_1 \cdot \mathbf{v}_1)(\mathbf{v}_1 \cdot \mathbf{v}_1)} \mathbf{v}_1 \cdot \mathbf{v}_1\right)$$

•
$$S = BH \rightarrow S^2 = B^2H^2 = (\mathbf{v}_1 \cdot \mathbf{v}_1) \left(\mathbf{v}_2 \cdot \mathbf{v}_2 - \left(\frac{(\mathbf{v}_2 \cdot \mathbf{v}_1)^2}{\mathbf{v}_1 \cdot \mathbf{v}_1} \right) \right) = (\mathbf{v}_1 \cdot \mathbf{v}_1) (\mathbf{v}_2 \cdot \mathbf{v}_2) - (\mathbf{v}_2 \cdot \mathbf{v}_1)^2$$

$$= (a^2 + c^2)(b^2 + d^2) - (ab + cd)^2 = a^2b^2 + a^2d^2 + c^2b^2 + c^2d^2 - (a^2b^2 + 2abcd + c^2d^2)$$

$$= a^2d^2 - 2abcd + c^2d^2 = (ad - bc)^2 = \left(det(\mathbf{A}) \right)^2$$

•
$$\therefore S = |det(\mathbf{A})|$$

More Determinant: Scaling

Determinant as Scaling Factor

•
$$\mathcal{T}: \mathbb{R}^2 \to \mathbb{R}^2$$
, $\mathcal{T}(\mathbf{x}) = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \mathbf{x} = \mathbf{A}\mathbf{x}$

•
$$\mathbf{R} = \begin{bmatrix} k_1 & 0 \\ 0 & k_2 \end{bmatrix} \xrightarrow{\mathcal{T}} \mathcal{T}(\mathbf{R}) = \begin{bmatrix} ak_1 & bk_2 \\ ck_1 & dk_2 \end{bmatrix} = \mathbf{P}$$

• $det(\mathbf{P}) = |k_1k_2ad - k_1k_2bc| = |k_1k_2(ad - bc)| = |k_1k_2 \cdot det(\mathbf{A})|$

Topics

More Determinant

• Affine Transformation

Affine Space

- What Affine Space is
- Points can be related to vectors by means of an affine space
- An affine space consists of a set of points W and a vector space V

Affine Transformation

Matrix Definition for Affine Transformation

$$-Ax + y$$

- A: $m \times n$ matrix
- \mathbf{x} : the point coordinates (x_1, x_1, \dots, x_n)
- y : m dimensional vector

$$\begin{bmatrix} \mathbf{A} & \mathbf{y} \\ \mathbf{0}^T & 1 \end{bmatrix} \begin{bmatrix} \mathbf{x} \\ 1 \end{bmatrix} = \begin{bmatrix} \mathbf{A}\mathbf{x} + \mathbf{y} \\ 1 \end{bmatrix}$$

Affine Transformation: Translation

Translation

Hak Gu Kim

- For a single point, it is the same as adding a vector t to it.
- All points are shifted equally in space, the size and shape of the object will not change.

•
$$\mathcal{T}(O) = \mathbf{t} + O = t_x \hat{\mathbf{i}} + t_y \hat{\mathbf{j}} + t_z \hat{\mathbf{k}} + O$$

•
$$T(\hat{\mathbf{i}}) = T(P - Q) = T(P) - T(Q) = (\mathbf{t} + P) - (\mathbf{t} + Q) = P - Q = \hat{\mathbf{i}}$$

Generalized Translation Matrix

•
$$\mathbf{T_t} = \begin{bmatrix} 1 & 0 & 0 & t_x \\ 0 & 1 & 0 & t_y \\ 0 & 0 & 1 & t_z \\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} \mathbf{I} & \mathbf{t} \\ \mathbf{0}^T & 1 \end{bmatrix}$$

Affine Transformation: 2D Rotation

Rotation in \mathbb{R}^2

Hak Gu Kim

 Considering the rotation of a vector, its direction is rigidly changed around an axis without changing its length.

•
$$Rot_{\theta} : \mathbb{R}^2 \to \mathbb{R}^2$$
, $Rot_{\theta}(\mathbf{x}) = \mathbf{A}\mathbf{x}$, $\mathbf{I}_2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} \mathbf{e}_1 & \mathbf{e}_2 \end{bmatrix}$

•
$$Rot_{\theta}(\mathbf{x}) = \mathbf{A}\mathbf{x} = [Rot_{\theta}(\mathbf{e}_1) \quad Rot_{\theta}(\mathbf{e}_2)]\mathbf{x} = \begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix}\mathbf{x}$$

Affine Transformation: 3D Rotation

Rotation in \mathbb{R}^3 Under the x-axis

•
$$Rot_{\theta} : \mathbb{R}^3 \to \mathbb{R}^3$$
, $Rot_{\theta}(\mathbf{x}) = \mathbf{R}_{x}\mathbf{x}$, $\mathbf{I}_{3} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} \mathbf{e}_1 & \mathbf{e}_2 & \mathbf{e}_3 \end{bmatrix}$

Affine Transformation: 3D Rotation

- Rotation in \mathbb{R}^3 Under Each axis
 - Their determinants are equal to 1, and these are all orthogonal.

•
$$\mathbf{R}_{x} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta \\ 0 & \sin \theta & \cos \theta \end{bmatrix}$$
, $\mathbf{R}_{y} = \begin{bmatrix} \cos \theta & 0 & -\sin \theta \\ 0 & 1 & 0 \\ \sin \theta & 0 & \cos \theta \end{bmatrix}$, $\mathbf{R}_{z} = \begin{bmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 1 \end{bmatrix}$

Generalized Rotation Matrix

•
$$\mathbf{R}_{x}\mathbf{R}_{y}\mathbf{R}_{z} = \mathbf{R} = \begin{bmatrix} C_{y}C_{z} & -C_{y}S_{z} & S_{y} \\ S_{x}S_{y}C_{z} + C_{x}S_{z} & -S_{x}S_{y}S_{z} + C_{x}C_{z} & -S_{x}C_{y} \\ -C_{x}S_{y}C_{z} + S_{x}S_{z} & C_{x}S_{y}S_{z} + S_{x}C_{z} & C_{x}C_{y} \end{bmatrix} \longrightarrow \mathbf{R}_{xyz} = \begin{bmatrix} \mathbf{R} & \mathbf{0} \\ \mathbf{0}^{T} & 1 \end{bmatrix}$$

Affine Transformation: Scaling

Scaling

Hak Gu Kim

 It is like a scalar multiplication but not quite the same. In scaling in affine transformation, we consider the positive factor as a scale factor.

Lecture 05 –Affine Transformation

•
$$\mathcal{T}(\hat{\mathbf{i}}) = s_x \hat{\mathbf{i}}, \ \mathcal{T}(\hat{\mathbf{j}}) = s_y \hat{\mathbf{j}}, \ \mathcal{T}(\hat{\mathbf{k}}) = s_z \hat{\mathbf{k}}$$

- Uniform scaling: all scale factors are equal
- Non-uniform scaling: different scale factors in each axis

Generalized Scaling Matrix

$$\bullet \mathbf{S} = \begin{bmatrix} s_{\chi} & 0 & 0 \\ 0 & s_{y} & 0 \\ 0 & 0 & s_{z} \end{bmatrix} \longrightarrow \mathbf{S}_{\chi y z} = \begin{bmatrix} \mathbf{S} & \mathbf{0} \\ \mathbf{0}^{T} & 1 \end{bmatrix}$$

Affine Transformation: Reflection

Reflection

Hak Gu Kim

- The reflection transformation symmetrically maps an object across a plane or though a point.
- Examples of possible reflection

$$x' = -x$$
 $x' = x$ $x' = -x$
• $y' = y$, $y' = -y$, $y' = y$
 $z' = z$ $z' = z$ $z' = -z$

Reflection Matrix through the Origin

•
$$\mathbf{F}_O = \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix} \longrightarrow \mathbf{F} = \begin{bmatrix} -\mathbf{I} & \mathbf{0} \\ \mathbf{0}^T & 1 \end{bmatrix}$$

FIGURE 4.9 (a) yz reflection, and (b) xz reflection.

Using Affine Transformation

Matrix Composition

- For the final world transformation, we will concatenate a sequence of these translation, rotation, and scaling transformations together.
- Note: The concatenation of transformations is not commutative.

FIGURE 4.16 (a) Rotation, then translation and (b) translation, then rotation.

FIGURE 4.17 (a) Scale, then rotation and (b) rotation, then scale.

Using Affine Transformation

Matrix Decomposition

- It is sometimes useful to break an affine transformation matrix into its component basic affine transformations.
- This is called matrix decomposition.

Linear Transformation: **Projection**

- Introduction To Projection
- $Proj_L(\mathbf{x})$: Shadow of \mathbf{x} on L
- $Proj_L(\mathbf{x})$: Same vector in L where $(\mathbf{x} Proj_L(\mathbf{x}))$ is orthogonal to $L = c\mathbf{v}$
 - $(\mathbf{x} c\mathbf{v}) \cdot \mathbf{v} = 0 \longrightarrow \mathbf{x} \cdot \mathbf{v} c\mathbf{v} \cdot \mathbf{v} = 0$ $\rightarrow \mathbf{x} \cdot \mathbf{v} = c\mathbf{v} \cdot \mathbf{v} \rightarrow c = \frac{\mathbf{x} \cdot \mathbf{v}}{\mathbf{v} \cdot \mathbf{v}}$
 - $Proj_L(\mathbf{x}) = c\mathbf{v} = \left(\frac{\mathbf{x} \cdot \mathbf{v}}{\mathbf{v} \cdot \mathbf{v}}\right)\mathbf{v}$

Linear Transformation: **Projection**

- Projection As Matrix-Vector Product
 - $Proj_L: \mathbb{R}^n \to \mathbb{R}^n$, $Proj_L(\mathbf{x}) = \left(\frac{\mathbf{x} \cdot \mathbf{v}}{\mathbf{v} \cdot \mathbf{v}}\right) \mathbf{v} = \frac{\mathbf{x} \cdot \mathbf{v}}{\|\mathbf{v}\|^2} \mathbf{v} = (\mathbf{x} \cdot \mathbf{v}) \mathbf{v}$ (v: unit vector, $\widehat{\mathbf{u}}$)
 - $Proj_L(\mathbf{x}) = \left(\frac{\mathbf{x} \cdot \mathbf{v}}{\mathbf{v} \cdot \mathbf{v}}\right) \mathbf{v} = \frac{\mathbf{x} \cdot \mathbf{v}}{\|\mathbf{v}\|^2} \mathbf{v} = (\mathbf{x} \cdot \widehat{\mathbf{u}}) \widehat{\mathbf{u}}$
- Linear Transform of Projection

$$(2) \operatorname{Proj}_{L}(c\mathbf{a}) = ((c\mathbf{a}) \cdot \widehat{\mathbf{u}}) \widehat{\mathbf{u}} = c(\mathbf{a} \cdot \widehat{\mathbf{u}}) \widehat{\mathbf{u}} = c \operatorname{Proj}_{L}(\mathbf{a})$$

•
$$Proj_L(\mathbf{x}) = (\mathbf{x} \cdot \hat{\mathbf{u}})\hat{\mathbf{u}} = \mathbf{A}\mathbf{x} = \left[\begin{pmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} \cdot \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} \right] \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} \cdot \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} \cdot \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} \mathbf{x}$$
$$= \left[u_1 \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} \quad u_2 \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} \right] \mathbf{x} = \begin{bmatrix} u_1^2 & u_1 u_2 \\ u_1 u_2 & u_2^2 \end{bmatrix} \mathbf{x}$$

Hak Gu Kim

 $= Proj_L(\mathbf{a}) + Proj_L(\mathbf{b})$

Next Lecture

• Eigenvalues and Eigenvectors