シシシ

100

Analog details behind the digital abstraction

Vikas Dhiman for ECE275

November 17, 2023

Some of the material is out of the textbook. Additional resources include Appendix B of Brown and Vranesic book, "Fundamentals of digital logic."

1 Objectives

- 1. Describe how tri-state and open-collector outputs are different from totem-pole outputs
- 2. Compute noise margin of one device driving the same time

2 FPGA [1, Section B.6.5]

(a) General structure of an FPGA

Figure B.37 A three-input LUT. Look up table

Figure B.38 Inclusion of a flip-flop in an FPGA logic element.

Figure B.39 A section of a programmed FPGA.

Definition 1 (Random Access Memory (RAM)). Structure of a RAM is as follows:

A $2^m \times n$ SRAM block. Figure B.66

Definition 2 (Read Only Memory (ROM)). Structure of a ROM is as follows:

Decodor

3:8, 4:4

Figure B.72 A $2^m \times n$ read-only memory (ROM) block.

Example 1. Draw a Multiplexer using sum of products form.

Definition 4 (Ground Voltage (V_{GND})). The lowest

Definition 5 (Input high (V_{IH}) and Input Low (V_{IL}) of a gate).

Assume positive logic Boolean

0

Definition 6 (Output high
$$(V_{OH})$$
 and Output low (V_{OL}) of gate).

John boolean output 1, $V_{OH} \leq V \leq V_{CC}$

John boolean output 1, $V_{OH} \leq V \leq V_{CC}$

Definition 7 (Positive logic and Negative logic).

Por logic Neg Logic

 V_{CC}
 V_{CRNO}
 V_{CC}
 V_{C

Definition 8 (Noise margins $(NM_L \text{ and } NM_H)$ of a channel).

Example 2.

If $V_{DD} = 5V$, $V_{IL} = 1.35V$, $V_{IH} = 3.15V$, $V_{OL} = 0.33V$ and $V_{OH} = 3.84V$ for both the "inverters", then what are the low and high noise margins? Can the circuit tolerate 1V of noise at the channel?

$$NM_{H} = 0.69 = V_{014} - V_{IH} = 3.89 - 3.15$$

 $NM_{L} = 1.02 = V_{IH} - V_{IL}^{5}$

4 Semiconductors and Doping

Not in syllabus but good to know

Elements recognized as metalloids V·T·					
	13	14	15	16	17
2	В	С	N	0	F
	Boron	Carbon	Nitrogen	Oxygen	Fluorine
3	Al	(ST)	Р	S	Cl
	Aluminium	Silicon	Phosphorus	Sulfur	Chlorine
4	Ga	Ge	As	Se	Br
-	Gallium	Germanium	Arsenic	Selenium	Bromine
5	In	Sn	Sb	Te	ı
	Indium	Tin	Antimony	Tellurium	Iodine
6	TI	Pb	Bi	Ро	At
ľ	Thallium	Lead	Bismuth	Polonium	Astatine
Commonly recognized (86-99%): B, Si, Ge, As, Sb, Te Irregularly recognized (40-49%): Po, At Less commonly recognized (24%): Se Rarely recognized (8-10%): C, Al (All other elements cited in less than 6% of sources) Arbitrary metal-nonmetal dividing line: between Be and B, Al and Si, Ge and As, Sb and Te, Po and At					
-	AI a		As, so and le	, TO allu AL	

5 MOSFET: Metal Oxide Field Effect Transistors

Not in syllabus but good to know

6 DC Transfer characteristic

I deal gate

(a) NMOS transistor

Example 3. Draw a NOT gate using nMOS transistors.

8

Example 8. Draw a three input NAND using CMOS.

Inputs outputs f f = x1x2 + 2374 + 25 f= x122+2324+25 (1) Design for f · = AWD = series Replace += OR= parallel MOS block

PMOS block

$$f = \overline{\chi_1 \chi_2} + \chi_3 \overline{\chi_4} + \chi_5$$

$$= (\overline{\chi_1} + \overline{\chi_2}) \cdot (\overline{\chi_3} + \overline{\chi_4}) \cdot \overline{\chi_5}$$

$$= \text{Series}$$

$$+ = \text{panallel}$$

$$\sqrt{\chi_1} - 0 | \sqrt{\chi_2} - 0 | \sqrt{\chi_4} |$$

$$\sqrt{\chi_5} - 0 | \sqrt{\chi_5} | \sqrt{\chi_5} |$$

$$\sqrt{\chi_7} - 1 | \sqrt{\chi_7} | \sqrt{\chi_7} |$$

$$\sqrt{\chi_7}$$

pMOS
block
good at
transmitting
15
0-5
0.7-5.0

for PMOS block f= \(\bar{7}_1\)\(\bar{1}_2\)\(\chi_3\)\(\bar{2}_1\)\(\chi_2\)\(\bar{2}_3\)

6.1 Gates with floating output

Definition 10 (Transmission gate). Draw a schematic of transmission gate and truth table for transmission gate. What is its commonly used symbol?

S= 0

Definition 11 (Tristate buffer). What is tristate buffer? Draw it's symbol and truth table? Where is it used?

Example 11. Draw a Multiplexer using transmission gates.

0 m 4 transistor f = S 20 + S 2, 4.35

Definition 12 (Totem-pole). Draw a <u>Push-pull</u> (or <u>Totem-pole</u>) output NAND gate using <u>CMOS</u>. Can you connect this gate to a <u>shared bus?</u>

Definition 13 (Tristate). Draw a Tristate output NAND gate using CMOS with an output enable (OE) input. Can you connect this gate to a shared bus? (YES)

Definition 14 (Open-collector). Draw a open-collector output NAND gate. Can you connect this gate to a shared bus? (YES)

H->2

References

[1] Brown Stephen and Vranesic Zvonko. Fundamentals of digital Logic with Verilog design. McGraw Hill, 2022.