计算机视觉 Computer Vision —Texture & Segmentation

王锐

CAD&CG 国家重点实验室 紫金港计算中心521、526 rwang@cad.zju.edu.cn

本节内容

• 纹理 (Texture)

• 分割 (Segmentation)

本节内容

- Mathematic Models
 - Markov Random Field
 - Gaussian mixture models
 - Kernel Density Estimation

- Mathematic Tools
 - K-mean
 - Mean shift
 - EM algorithm

。纹理

- What is Texture ?
 - General definition
 - For texture mapping
 - Arbitrary images
 - Narrow definition
 - For (example-based) texture synthesis
 - Images with repetitive patterns

- Key issue: representing texture
 - Texture based matching
 - little is known
 - Texture segmentation
 - key issue: representing texture
 - Texture synthesis
 - useful; also gives some insight into quality of representation
 - Shape from texture
 - cover superficially

- Representing textures
 - Representation:
 - find the sub-elements, and represent their statistics

 But what are the sub-elements, and how do we find them?

- What statistics?
 - within reason, the more the merrier.

- Key issue: representing texture
 - Parametric representation
 - Non- parametric representation

Filter Kernels

Filter Kernels

Finest scale

Reprinted from "Shiftable MultiScale Transforms," by Simoncelli et al., IEEE Transactions on Information Theory, 1992, copyright 1992, IEEE

- Texture based matching
 - Texture Design Using a Simplicial Complex of Morphable Textures

- Texture based matching
 - Texture Design Using a Simplicial Complex of Morphable Textures

- Texture based matching
 - Texture Design Using a Simplicial Complex of Morphable Textures

- Texture based matching
 - Texture Design Using a Simplicial Complex of Morphable Textures

Find a space to interpolate a new texture from samples

- Texture based matching
 - Texture Design Using a Simplicial Complex of Morphable Textures
 - Shape vector and a color vector.

- Texture based matching
 - Texture Design Using a Simplicial Complex of Morphable Textures
 - Shape vector and a color vector.
 - Color is given by the map $I : R2 \rightarrow R3$
 - Shape is represented by A warp vector fields
 W:R2→R2

- Texture based matching
 - Texture Design Using a Simplicial Complex of Morphable Textures

$$\hat{I}(x,y) = \sum_{i=0}^{n-1} c_i I_i \left((x,y) + \sum_{j \neq i} \left(w_j W_{ij}(x,y) \right)^{-1} \right),$$

- Texture based matching
 - Texture Design Using a Simplicial Complex of Morphable Textures

- Non-parameteric Texture Model
 - Local and stationary (Markov Random Field)

non-texture

texture

Markov Property

- Formal definition
 - Let $X=\{X_n\}_{n=0...N}$ be a sequence of random variables taking values $s_k \in N$ Iff $P(X_m=s_m|X_0=s_0,...,X_{m-l}=s_{m-l})=P(X_m=s_m|X_{m-l}=s_{m-l})$ then the X fulfills Markov property
- Informal definition
 - The future is independent of the past given the present.

Markov Random Field

- Markov Chain
 - Informal definition
 - The future is independent of the past given the present.
 - Formal definition
 - Let $X=\{X_n\}_{n=0...N}$ be a sequence of random variables taking values

$$s_k \in N \text{ Iff } P(X_m = s_m | X_0 = s_0, ..., X_{m-1} = s_{m-1}) = P(X_m = s_m | X_{m-1} = s_{m-1})$$

then the X fulfills Markov property

Markov Random Field

- Markov Chain
 - Markov chain theory developed around 1900.
 - Hidden Markov Models developed in late 1960's.
 - Used in speech recognition in 1960-70.

Andrei Andreyevich Markov

Markov Random Field

Markov Random Field

- Texture synthesis
 - Produce an arbitrarily large output with similar look
 - General Input needs to satisfy certain assumptions

- Texture synthesis
 - Ensure local neighborhood similarity

 $Z_p(nearest\ neighbor)$ Se_{arch} $Z\ input$ Xp(neighborhood) $X\ output$

- Texture synthesis
 - Ensure local neighborhood similarity

 $Z_p(nearest\ neighbor)$ S_{earch} $Z\ input$ Xp(neighborhood) $X\ output$

$$E(X_p) = |X_p - Z_p|^2$$

- Texture synthesis
 - Ensure local neighborhood similarity

[Wei & Levoy 2000]

- Texture synthesis-Pixel-based Algorithm
 - Basic Idea notice the use of fixed neighborhoods copy

[Wei & Levoy 2000]

Texture synthesis-Pixel-based Algorithm

Use multiple resolutions

Pixel-based Algorithm Results

Random

Regular

Oriented

Semi-regular

Pixel-based Algorithm Results

- Texture synthesis
 - Patch-based

[Efros & Freeman 2001]

- Texture synthesis-Patch-based Algorithm
 - Synthesis in unit of patches instead of pixels

Input image

Synthesizing a block

[Kwatra et al 2004]

- Texture synthesis-Patch-based Algorithm
 - Use graph cut rather than dynamic programming for finding path

B1 B2

Random placement of blocks

B1 B2

Neighboring blocks constrained by overlap

B1 | B2

Minimal error boundary cut

Minimal error boundary

overlapping blocks

vertical boundary

- Texture synthesis-Patch-based Algorithm
 - Wang Tiles(王浩)[Cohen et al 2003]

Texture synthesis-Patch-based Algorithm

Wang Tiles[Cohen et al 2003]

Input tiles

continuous pattern across

identical edge color

adjacent tiles share identical edge color

Video Texture synthesis

- Video Texture synthesis
 - Video clip

- Video Texture synthesis
 - Video clip Video Texture

Video Texture synthesis

A sequence of random variables

{ADEABEDADBCAD}

A sequence of random variables

{BDACBDCACDBCADCBADCA}

Markov chain

- Video Texture synthesis
 - Approach

- Video Texture synthesis
 - Compute L_2 distance $D_{i, j}$ between all frames

Similar frames make good transitions

Markov chain representation

- Video Texture synthesis
 - Markov chain representation

Similar frames make good transitions

- Video Texture synthesis
 - Lengthen / shorten video without affecting speed

shorter original longer

Video Texture synthesis

Image analogies

- Image analogies
 - Simple Blur

- Image analogies
 - Artistic Styles

Image analogies

Image analogies

- Image analogies
 - Artistic Styles

Efros & Freeman 2001 Target Color

