Disciplina: Projeto com Circuitos Reconfiguráveis (período 2019.1).

Professor: Daniel Mauricio Muñoz Arboleda

e-mail: damuz@unb.br



### Folha de Dados - Segunda Lista Exercícios Projeto de Sistemas em Chip Data de entrega: 05 de julho de 2019 às 23:50

### Instruções:

- 1. Organize o repositório em pastas para cada exercício.
- 2. Entregar todos os arquivos necessários para replicar o experimento.
- 3. Preencha os dados solicitados, imprima este documento em PDF e deixe no repositório.

Nome: <u>Jhonathan Nicolas Moreira Silva</u> matrícula: <u>16/0031621</u>

### Exercício 1 (5 pontos). Co-processador FPadd

1) Diagrama de blocos (block design) do sistema em chip



Disciplina: Projeto com Circuitos Reconfiguráveis (período 2019.1).

Professor: Daniel Mauricio Muñoz Arboleda

e-mail: damuz@unb.br



### 2) Consumo de recursos após implementação (processo *Place and Route - PAR*):

| LUTs           | FFs           | Pinos de IOs | Blocos DSP | Blocos BRAM  |
|----------------|---------------|--------------|------------|--------------|
| Total:         | Total:        | Total:       | Total:     | Total:       |
| 3126 (15.03 %) | 2777 (6.68 %) | 36 (33.96 %) | 0 (0 %)    | 22 (44.00 %) |

## 3) Análise de timming:

Worst negative slack (setup): 0.025 ns Worst negative slack (hold): 0.751 ns

Frequência máxima de operação do circuito: 100MHz

| Setup                        |          | Hold                         |          | Pulse Width                              |          |
|------------------------------|----------|------------------------------|----------|------------------------------------------|----------|
| Worst Negative Slack (WNS):  | 0,751 ns | Worst Hold Slack (WHS):      | 0,025 ns | Worst Pulse Width Slack (WPWS):          | 3,000 ns |
| Total Negative Slack (TNS):  | 0,000 ns | Total Hold Slack (THS):      | 0,000 ns | Total Pulse Width Negative Slack (TPWS): | 0,000 n  |
| Number of Failing Endpoints: | 0        | Number of Failing Endpoints: | 0        | Number of Failing Endpoints:             | 0        |
| Total Number of Endpoints:   | 8502     | Total Number of Endpoints:   | 8502     | Total Number of Endpoints:               | 3278     |



4) Layout do circuito após a implementação (após processo *Place and Route* – PAR):



5) Estimação do consumo de energia após a implementação do circuito:

Potência total: 249 (mW)
Potência estática: 73 (mW)
Potência dinâmica: 176 (mW)

e-mail: damuz@unb.br



### Gráfico de consumo de energia:



#### 6) Simulação no SDK via terminal.

```
int status;
 u32 DataRead;
 u32 OldData;
 float res = 0.0;
int Whole = 0;
int Thousands = 0;
 unT.f32 = 42.25;
 status = XGpio_Initialize(&GpioOutput,XPAR_GPIO_0_DEVICE_ID);
     if (status != XST_SUCCESS)
 return XST_FAILURE;
 XGpio_SetDataDirection(&GpioOutput, 1, 0x0);
  status = XGpio_Initialize(&GpioInput,XPAR_GPIO_0_DEVICE_ID);
 if (status != XST_SUCCESS)
      return XST_FAILURE;
// Set the direction for all signals to be inputs XGpio_SetDataDirection(&GpioInput, 2, 0x1);
 OldData = 0xFFFFFFF;
 while(1){
DataRead = XGpio_DiscreteRead(&GpioInput, 2);
 if(DataRead != OldData)
xil_printf("Valor na_switche: %d\r\n", DataRead);
   if(DataRead <= 2000)
  unT.f32 = (MATRICULA/MAX) * DataRead;</pre>
   else if (DataRead <= 4000)
     unT.f32 = (ANO/MAX) * DataRead;
   else
      unT.f32 = (MAX/100*SECULO) * DataRead/10;
```

Disciplina: Projeto com Circuitos Reconfiguráveis (período 2019.1).

Professor: Daniel Mauricio Muñoz Arboleda

e-mail: damuz@unb.br



# Exercício 2 (5 pontos). Co-processador RNA

| 1) Diagrama de blocos (block o | design) do sistema em chip       |
|--------------------------------|----------------------------------|
|                                |                                  |
|                                |                                  |
|                                |                                  |
|                                |                                  |
|                                |                                  |
|                                |                                  |
|                                |                                  |
|                                |                                  |
|                                |                                  |
|                                |                                  |
|                                |                                  |
|                                |                                  |
|                                |                                  |
|                                |                                  |
|                                |                                  |
|                                | Figura 1.1 Print do Block Design |

Disciplina: Projeto com Circuitos Reconfiguráveis (período 2019.1).

Professor: Daniel Mauricio Muñoz Arboleda



| 2) | Consumo | de recursos a | pós imp | lementaç | ão (proces | so Pla | ce and I | Route - | PAF | ₹): |
|----|---------|---------------|---------|----------|------------|--------|----------|---------|-----|-----|
|----|---------|---------------|---------|----------|------------|--------|----------|---------|-----|-----|

| LUTs   | FFs    | Pinos de IOs | Blocos DSP | Blocos BRAM |
|--------|--------|--------------|------------|-------------|
| Total: | Total: | Total:       | Total:     | Total:      |
| (%)    | (%)    | (%)          | (%)        | (%)         |

| 3) | Analise de timming:                          |     |
|----|----------------------------------------------|-----|
|    | Wors negative slack (setup): ns              |     |
|    | Worst negative slack (hold): ns              |     |
|    | Frequência máxima de operação do circuito: _ | MHz |

Curso de Graduação em Engenharia Eletrônica - Faculdade Gama - Universidade de Brasília Disciplina: Projeto com Circuitos Reconfiguráveis (período 2019.1).

Professor: Daniel Mauricio Muñoz Arboleda



| Figura 1.3 Print do timing summary |
|------------------------------------|

Disciplina: Projeto com Circuitos Reconfiguráveis (período 2019.1).

Professor: Daniel Mauricio Muñoz Arboleda



| 4) | Layout do circuito após a implementação (após processo <i>Place and Route</i> – PAR): |
|----|---------------------------------------------------------------------------------------|
|    |                                                                                       |
|    |                                                                                       |
|    |                                                                                       |
|    |                                                                                       |
|    |                                                                                       |
|    | Figura 1.4 Layout do circuito                                                         |
|    | rigata III Zayout do encano                                                           |
|    |                                                                                       |
| 5) | Estimação do consumo de energia após a implementação do circuito:                     |
|    | Potência total: (mW) Potência estática: (mW)                                          |
|    | Potência dinâmica: (mW)                                                               |
|    | Gráfico de consumo de energia:                                                        |
|    |                                                                                       |
|    |                                                                                       |
|    |                                                                                       |
|    |                                                                                       |
|    |                                                                                       |
|    |                                                                                       |
|    |                                                                                       |
|    | Figura 1.5 Print do consumo de energia                                                |

Disciplina: Projeto com Circuitos Reconfiguráveis (período 2019.1).

Professor: Daniel Mauricio Muñoz Arboleda

e-mail: damuz@unb.br



Figura 1.6 Print do terminal do SDK apresentando o resultado

6) Simulação no SDK via terminal.

Disciplina: Projeto com Circuitos Reconfiguráveis (período 2019.1).

Professor: Daniel Mauricio Muñoz Arboleda

