Lições de Teoria Ergódica, Processos Estocásticos e Sistemas Dinâmicos

Nelson Luís Dias

11 de março de 2014

2014-02-19: Aditividade finita

Como conceitualizamos e formalizamos a propabilidade?

Existem várias abordagens possíveis:

1. Clássica (teórica ou "a priori"):

Consideramos um processo aleatório com n resultados igualmente prováveis, e um evento A que consiste em m desses resultados. A probabilidade desse evento é então definida por

 $P(A) \equiv \frac{m}{n}$.

Crítica: no termo "igualmente prováveis", já há a suposição de que nós "sabemos" o que é probabilidade antes de defini-la. Trata-se portanto de um argumento circular. (COMO PODEMOS MELHORAR ESSE TEXTO?)

2. Empírica ("a posteriori" ou frequentista):

Supõe-se que um determinado experimento é repetido n vezes "nas mesmas condições". Se A é um evento identificável no experimento, a probabilidade de A é definida como o limite da razão entre número m de ocorrências de A e o número de repetições n quando $n \to \infty$:

$$P(A) \equiv \lim_{n \to \infty} \frac{m}{n}.$$

3. Subjetiva:

Aceita-se que podemos atribuir a diversos eventos uma "probabilidade" de ocorrência. Por exemplo, eu *acho* que a probabilidade de que eu encontre petróleo no terreno de minha casa é (ou deve ser) 10^{-12} .

4. Axiomática (Kolmogorov, 1933).

Uma tripla de propabilidade é uma tripla formada por (Ω, \mathcal{F}, P) , sendo Ω um conjunto não vazio, \mathcal{F} um campo sigma (uma σ -álgebra) de subconjuntos de Ω (PRECISAMOS USAR OS TERMOS CORRETOS), e P uma função, com

$$P: \mathscr{F} \to [0,1],$$

 $A \in \mathscr{F} \mapsto P(A).$

Axiomas:

$$P(A) \ge 0,\tag{1.1}$$

$$P(\Omega) = 1, (1.2)$$

$$P\left(\bigcup_{i=1}^{n} A_i\right) = \sum_{i=1}^{n} P(A_i), \quad \text{se} \quad A_i \cap A_j = \emptyset.$$
 (1.3)

Os axiomas funcionam quando Ω é finito. Contudo, há conjuntos maiores/infinitos (?) para os quais a noção de probabilidade não faz sentido. Assim, uma σ -álgebra será um subconjunto de 2^{Ω} com uma certa estrutura, para o qual deverá fazer sentido especificar probabilidades.

Exemplo: Sabendo que $A_1 \cup A_2 \cup A_3 = (A_1 \cup A_2) \cup A_3$, prove por indução que o axioma (1.3) vale para todo n se ele valer para n = 2.

Para n=2,

$$A_1 \cup A_2 = \emptyset \Rightarrow P(A_1 \cup A_2) = \sum_{i=1}^{2} P(A_i).$$
 (1.4)

Suponha agora que (1.3) valha para n, e que

$$A_{n+1} \cap \left[\bigcup_{i=1}^{n} A_i\right] = \emptyset, \qquad i = 1, \dots, n.$$

Então,

$$P(A_1 \cup ... \cup A_n \cup A_{n+1}) = P(B \cup A_{n+1}), \tag{1.5}$$

fazendo-se

$$B = \bigcup_{i=1}^{n} A_i.$$

A partir de (1.4),

$$P(B \cup A_{n+1}) = P(B) + P(A_{n+1}). \tag{1.6}$$

Por sua vez, como supusemos a validade de (1.3),

$$P(B) = P\left(\bigcup_{i=1}^{n} A_i\right) = \sum_{i=1}^{n} P(A_i).$$
 (1.7)

Logo,

$$P(A_1 \cup ... \cup A_n \cup A_{n+1}) = P(A_{n+1}) + \sum_{i=1}^n P(A_i) = \sum_{i=1}^{n+1} P(A_i).$$
 (1.8)

Note entretanto que, para que a prova seja válida, precisamos garantir que

$$A_{n+1} \cap \left[\bigcup_{i=1}^{n} A_i\right] = \emptyset \Rightarrow A_{n+1} \cap A_i = \emptyset, \forall i = 1, \dots, n.$$

Faça $C=A_{n+1}$, e considere a igualdade:

$$C \cap \left[\bigcup_{i=1}^{n} A_i\right] = \bigcup_{i=1}^{n} C \cap A_i. \tag{1.9}$$

Se ela for verdadeira, então:

$$A_{n+1} \cap \left[\bigcup_{i=1}^{n} A_i\right] = \emptyset \Rightarrow \bigcup_{i=1}^{n} C \cap A_i = \emptyset$$
$$\Rightarrow A_{n+1} \cap A_i = \emptyset, \qquad \forall i = 1, \dots, n.$$

Portanto, se (1.9) for verdadeira, a questão está liquidada. De fato,

$$x \in C \cap \left[\bigcup_{i=1}^{n} A_{i}\right] \Rightarrow (x \in C) \in \left(x \in \bigcup_{i=1}^{n} A_{i}\right),$$

$$\Rightarrow \exists j \in \{1, \dots, n\} \mid (x \in C) \in (x \in A_{j})$$

$$\Rightarrow x \in C \cap A_{j}$$

$$\Rightarrow x \in \bigcup_{i=1}^{n} C \cap A_{i}.$$

Isso significa que

$$C \cap \left[\bigcup_{i=1}^{n} A_i\right] \subseteq \bigcup_{i=1}^{n} C \cap A_i.$$

Por outro lado,

$$x \in \bigcup_{i=1}^{n} C \cap A_i \Rightarrow \exists j \mid x \in C \cap A_j$$
$$\Rightarrow x \in C \cap \bigcup_{i=1}^{n} A_i.$$

Isso significa que

$$\bigcup_{i=1}^n C \cap A_i \subseteq C \cap \left[\bigcup_{i=1}^n A_i\right].$$

Com isso, (1.9) está provada, e chegamos ao fim (desta prova).

Notas de Aula Professor Paulo Cezar P. de Carvalho - Ailin

Modelos elementares

$$\Omega = \{\omega_1, ..., \omega_n\} \to \text{espaço amostral}$$

 $\mathscr{F}=2^{\Omega}\to$ é o conjunto potência e inclui todos o subconjuntos de Ω , e, em particular, inclui $\{\omega_1\},\{\ldots\},\{\omega_n\}$, os quais são chamados eventos complementares.

$$P(\{\omega_i\}) = P_i \in [0, 1] \mid \sum_{i=1}^n P_i = 1$$
(1.10)

Caso equiprovável: $P_i = 1/n, \forall i \in \{1, ..., n\}.$

Exemplo: 3 moedas são lançadas. Qual a probabilidade de sairem 2 caras?

Como defino Ω ? Se considerarmos $\Omega = \{0, 1, 2, 3\}$, as probabilidades são 1/8 para 0 e 3, e 3/8 para 1 e 2. Para i = 0, 1, 2, 3, temos

$$P(i) = \left(\frac{1}{8}\right)^{i} \left(1 - \frac{1}{8}\right)^{3-i} \binom{3}{i},\tag{1.11}$$

distribuição binomial herdada do modelo equiprovável.

Exemplo: Escolher um número no intervalo [0,1] tal que P([a,b]) = b-a para qualquer intervalo $[a,b] \subset [0,1]$.

$$\Omega = [0, 1]$$

A primeira tentativa seria atribuir $P(\{a\})$. Se for equiprovável com $P \neq 0$ já estaria em contradição com a aditividade.

Com um conjunto enumerável (infinito) não é possível ter equiprobabilidade nem atribuindo probabilidade nula, porque não conseguiremos que a "soma das $P(\{\})$ seja 1.

2014-02-24: Aditividade infinita

(Ou σ -Aditividade)

Passamos agora para casos em que o espaço amostral Ω deixa de ser um conjunto finito. Um conjunto infinito pode ser enumerável ou não-enumerável. Um conjunto enumerável é um conjunto cujos elementos possam ser colocados em uma relação biunívoca com os naturais. Os racionais são um conjunto enumerável (Cantor). Os números reais no intervalo fechado [0,1] são um conjunto não-enumerável.

Quando Ω é finito, todos os elementos de 2^{Ω} são eventos: a todos e a cada um deles pode ser atribuída uma probabilidade, e os axiomas (1.1)– (1.3) se aplicam.

Antes de seguir para o infinito, considere o exemplo: n lançamentos de uma moeda, cujos resultados individuais podem ser "cara" (0) ou "coroa" (1). Os eventos elementares com os quais podemos construir um espaço amostral são n-uplas do tipo

$$(0,0,\ldots,0,0) (0,0,\ldots,0,1) (0,0,\ldots,1,0) \vdots (1,1,\ldots,1,1).$$

Existem 2^n casos.

Suponha por exemplo que desejemos calcular a probabilidade de que ocorram k caras (e, consequentemente, n-k coroas). Um evento deste tipo (exatamente k caras e n-k coroas) pode ocorrer de n! maneiras. No entanto, a posição das k caras é imaterial: todos os k! casos aparecem da mesma forma. Idem para os (n-k)! casos de permuta das posições das coroas. Concluímos que há

$$\binom{n}{k} = \frac{n!}{k!(n-k)!}$$

possibilidades de ocorrência de k caras. A sua probabilidade é

$$\frac{\binom{n}{k}}{2^n} = \binom{n}{k} \left(\frac{1}{2}\right)^k \left(\frac{1}{2}\right)^{n-k}.$$

Isso é um caso particular da distribuição binomial. Se 0 tem probabilidade p, e 1 tem probabilidade 1-p, a probabilidade de k zeros em n lançamentos é

$$P(k) = \binom{n}{k} p^k (1-p)^{n-k}.$$

Exercício: Mostre que

$$\sum_{k=0}^{n} P(k) = 1.$$

Prova:

$$(p + (1 - p))^{n} = 1$$

$$= \sum_{k=0}^{n} {n \choose k} p^{k} (1 - p)^{n-k}$$

$$= \sum_{k=0}^{n} P(k).$$

Agora, se $\Omega = \{x_1, x_2, x_3, \ldots\}$ for enumerável, precisamos de

$$\sum_{i=1}^{n} P(x_i) = 1$$

e fica evidente que os $P(x_i)$ não podem ser todos iguais. Entretanto, ainda é possível aproveitar os x_i 's desde que a soma acima funcione.

Exemplo: Em um jogo, dez bolas numeradas de 0 a 9 podem ser sorteadas. Cada jogador sorteia uma bola, mostra o resultado e retorna a bola. Ganha o primeiro jogador que sortear um 7. O jogo poderia durar para sempre?

Nossa opção para construção do espaço amostral é

$$\Omega = \{0, 1, 2, 3, 4, \ldots\}$$

0 significa que o 7 *nunca* é sorteado; 1 significa que o 7 foi sorteado na primeira rodada; 2 na segunda; e assim por diante. As probabilidades desses eventos não são iguais:

$$P(0) = ?,$$

$$P(1) = \frac{1}{10},$$

$$P(2) = \frac{9}{10} \times \frac{1}{10},$$

$$P(3) = \frac{9}{10} \times \frac{9}{10} \times \frac{1}{10},$$

$$\vdots$$

$$P(n) = \left(\frac{9}{10}\right)^{n-1} \times \frac{1}{10}$$

É elementar verificar que P(n), $n \ge 1$, é uma série geométrica com soma 1. Portanto, o evento "o 7 nunca é sorteado", indicado por 0, tem probabilidade complementar à $P(1) + P(2) + \ldots = 1$, e sua probabilidade é zero.

Finalmente, considere o caso em que desejamos atribuir probabilidades dentro do conjunto não-enumerável $\Omega = [0,1]$. Note que faz sentido atribuir probabilidade zero a um ponto qualquer:

$$P(X=a) = 0$$

e que é muito razoável atribuir probabilidades a intervalos:

$$P([a,b]) = b - a.$$

O problema é que se A é um evento, o seu complemento \overline{A} também tem que ser, com $P(\overline{A}) = 1 - P(A)$, pela propriedade de aditividade finita (1.3). Portanto, se $(a,b] \in \mathscr{F}$, devemos também ter $\overline{(a,b]} \in \mathscr{F}$, onde \mathscr{F} será a classe dos eventos cujas probabilidades podem ser quantificadas.

Entretanto, o complemento de um único intervalo (a, b] $n\tilde{a}o$ é um único intervalo. Desconfiamos que uma criatura desse tipo, $[0, a] \cup (b, 1]$, precisa ser definida com as mesmas propriedades genéricas de (a, b], de forma que ambos pertençam a \mathscr{F} . O caminho para \mathscr{F} , entretanto, é longo.

Uma extensão do que vimos para a binomial é a distribuição multinomial:

$$1 = (p_1 + \dots + p_n)^n = \sum_{l_1 + \dots + l_k = n} \binom{n}{l_1 \dots l_k} p_1^{l_1} \dots p_k^{l_k},$$
$$\binom{n}{l_1 \dots l_k} = \frac{n!}{l_1! \dots l_k!}.$$

2014-02-26: Semi-anéis, anéis, e outros bichos

Definição

Uma classe $\mathcal S$ de conjuntos é um semi-anel quando:

$$\emptyset \in \mathscr{S},$$

$$A, B \in \mathscr{S} \Rightarrow A \cap B \in \mathscr{S},$$

$$A, B \in \mathscr{S} \Rightarrow A - B = A \cap \overline{B} = \bigsqcup_{i=1}^{n} E_{i},$$

onde $E_i \in \mathcal{S}$. O símbolo \sqcup significa "uniões disjuntas". Seja \mathcal{S} a classe formada por *intervalos* do tipo

$$(a,b]$$
 ou \emptyset .

- 1. $\emptyset \in \mathscr{S}$? Sim.
- 2. A interseção de dois elementos de $\mathscr S$ pertence a $\mathscr S$? Sim: as possibilidades para interseção de (a,b] com (c,d] são

$$\emptyset \in \mathscr{S},$$

$$(c, b] \in \mathscr{S},$$

$$(c, d] \in \mathscr{S},$$

$$(a, d] \in \mathscr{S},$$

$$(a, b] \in \mathscr{S}.$$

Talvez seja possível resumir:

$$(a,b] \cap (c,d] = (\max(a,c), \min(b,d))$$
 ou \emptyset ?

3. A-B (A, B intervalos) é exprimível como uma união finita disjunta de intervalos? Sim:

$$\begin{split} (a,b] \cap \overline{(c,d]} &= (a,b] \cap \left[(0,c] \cup (d,1] \right] \\ &= \underbrace{(a,b] \cap (0,c]}_{\in \mathscr{S}} \cup \underbrace{(a,b] \cap (d,1]}_{\in \mathscr{S}} \ \blacksquare \end{split}$$

Portanto, essa classe ${\mathscr S}$ de intervalos é um semi-anel.

Definição:

 $\mathscr{R} \subset 2^{\Omega}$ é um anel quando:

$$\begin{split} \emptyset \in \mathscr{R}, \\ A, B \in \mathscr{R} \Rightarrow A \cap B \in \mathscr{R}, \\ A, B \in \mathscr{R} \Rightarrow A \triangle B \in \mathscr{R}. \end{split}$$

Lembre-se:

$$A \triangle B \equiv (A - B) \cup (B - A).$$

Tivemos uma discussão sobre o motivo de se usar a diferença simétrica nessas definições: alguém gostaria de resumir a discussão em LATEX?

Anéis triviais são:

$$\{\emptyset,\Omega\}$$
 e 2^{Ω}

É possível mostrar as seguintes propriedades de anéis: se $A, B \in \mathcal{R}$, então:

$$A \cap B \in \mathcal{R},$$

$$A \triangle B \in \mathcal{R},$$

$$A \cup B \in \mathcal{R},$$

$$A - B \in \mathcal{R},$$

$$B - A \in \mathcal{R},$$

$$\emptyset \in \mathcal{R}.$$

Mas a última não faz parte da definição de \mathcal{R} ????

Note também que o complemento ainda não apareceu na jogada.

Teorema

A partir de um semi-anel \mathscr{S} é possível construir um anel \mathscr{R} por meio somente de uniões disjuntas finitas de elementos de \mathscr{S} , ou seja:

$$\mathscr{R} = \left\{ \bigsqcup_{i=1}^{n} A_i \right\}, \ A_i \in \mathscr{S}.$$

Definição

Uma álgebra ou um campo \mathscr{A} é um anel que contém Ω . Segue-se imediatamente que

$$A \in \mathscr{A} \Rightarrow \overline{A} \in \mathscr{A}$$
.

Definição Um σ -anel é um anel fechado por uma união enumerável

Comentário: "fechado" significa que uniões enumeráveis de elementos do σ - \mathscr{R} ainda pertencem a ele.

Segue-se imediatamente que o σ - \mathscr{R} também é fechado por interseções enumeráveis.

Definição Uma σ -álgebra ou σ -campo ou campo de Borel é uma álgebra fechada por uniões enumeráveis.

Segue-se imediatamente que uma σ -álgebra também é fechada por interseções enumeráveis.

Definição Dada uma classe $\mathscr{C} \subseteq 2^{\Omega}$, uma sequência monótona de elementos $E_i \in \mathscr{C}$, $i \in \mathbb{N}$, é definida por

$$E_i \subseteq E_{i+1}$$

ou

$$E_i \supset E_i$$
.

 \mathbf{Defini} ção Uma classe \mathcal{M} é dita $mon \acute{o}ton a$ quando todas as suas sequências mon \'otonas atendem a:

$$E_i \subseteq E_{i+1} \Rightarrow \bigsqcup_{i=1}^n E_i \in \mathcal{M},$$

ou

$$E_i \supseteq E_{i+1} \Rightarrow \bigcap_{i=1}^n E_i \in \mathscr{M}.$$

A questão agora é como construir σ -álgebras a partir de álgebras, anéis ou semi-anéis. **Teorema**: Para as famílias \mathcal{R} , \mathcal{A} , σ - \mathcal{R} , σ - \mathcal{A} , \mathcal{M} de anéis, álgebras, sigma-anéis, sigma-álgebras, e classes monótonas \mathcal{M} , interseções arbitrárias produzem famílias de mesmo tipo.

Em resumo: se \mathscr{F}_i , $i \in I$, são classes de algum dos tipos acima, então

$$\prod_{i \in I} \mathscr{F}_i$$

também é.

Por exemplo: se

$$\mathscr{F}_i, i \in I$$

são σ -álgebras, então

$$\prod_{i \in I} \mathscr{F}_i$$

também é uma σ -álgebra.

3.1 Geração de σ -álgebras

Seja $\mathscr S$ um semi-anel que gera o anel $\mathscr R$. A menor σ -álgebra contendo $\mathscr S$ ou gerada por $\mathscr R$ é denominada " σ -álgebra de Borel" $\mathscr B$.

No caso de $\Omega = [0,1]$, a σ -álgebra de Borel é a menor σ -álgebra que contém os intervalos (a,b].

Para ela, é possível definir uma medida de probabilidade

$$P: \mathscr{B} \to [0,1],$$

 $A \in \mathscr{B} \mapsto P(A) \in [0,1],$

de tal forma que

$$P(\emptyset) = 0,$$

$$P(\Omega) = 1,$$

$$P\left(\bigsqcup_{i=1}^{\infty} A_i\right) = \sum_{i=1}^{\infty} P(A_i).$$

2014-03-10: Existe um conjunto não-mensurável em (0,1]

Uma nova operação será usada ad nauseam nesta lição. Para $x, y \in (0, 1]$:

$$x \boxplus y \equiv \begin{cases} x + y, & x + y \le 1, \\ x + y - 1, & x + y > 1. \end{cases}$$
 (4.1)

Seguem-se imediatamente os seguintes fatos: para $x, y, z \in (0, 1]$,

$$x \boxplus y = y \boxplus x,\tag{4.2}$$

$$z = x \boxplus y \Leftrightarrow \exists r \in (-1, +1] : z = x + r. \tag{4.3}$$

Agora, para qualquer subconjunto E de (0,1], defina um novo conjunto E(x)

$$E(x) \equiv \{x \boxplus y, \ y \in E\}. \tag{4.4}$$

E(x) é a translação (de uma distância x) do conjunto E.

Dúvida: $E \subseteq (0,1]$ ou $E \in \mathcal{B}$?

Dúvida: "translação em x" me soa estranho, pois todo $y \in E$ é transladado de x.

Suponha que exista uma coisa tal como uma medida "natural" em (0,1]. Para o intervalo (a,b] essa medida é

$$|(a,b]| \equiv b - a. \tag{4.5}$$

Vamos supor, sem entrar em muitos detalhes, que para todo $B \in \mathcal{B}$, existe uma |B| compatível com (4.5), *i.e.*, redutível a (4.5) se B for um intervalo.

A notação E(x) é a usada por Taylor (1973).

Agora, se $E \in \mathcal{B}$, então,

$$|E(x)| = |E|. \tag{4.6}$$

Agora, como sempre, \mathbb{Q} é o conjunto dos racionais. Esse conjunto é enumerável. Consideremos os racionais contidos em (0,1]. Esse segundo conjunto é

$$Q \equiv \mathbb{Q} \cap (0, 1]. \tag{4.7}$$

Valeria a pena provar que

Q é enumerável.

Com essas definições à mão, estudemos então as propriedades dos conjuntos do tipo Q(x).

1.

$$x \in (0,1] \Rightarrow x \in Q(x). \tag{4.8}$$

Será verdade? Como provar?

$$Q(x) = \{x \boxplus y, \ y \in Q\}$$

Se 0 pertencesse a Q, (4.8) seria trivial. Mas é quase, porque $1 \in Q$. Faça y = 1 acima; então,

$$x = x + 1 - 1 = x \boxplus 1 \in Q(x)$$

2.

$$x \in Q \Rightarrow Q(x) = Q. \tag{4.9}$$

De fato: para começar, $x, y \in Q \Rightarrow x \boxplus y \in Q$. De fato, $x \boxplus y \in (0, 1]$, e tanto x + y quanto x + y - 1, conforme for o caso, são números racionais em (0, 1]. Isso basta!, pois, neste caso, $Q(x) = \{x \boxplus y, y \in Q\} = Q$

3.

$$x_1 - x_2 \notin \mathbb{Q} \Rightarrow Q(x_1) \cap Q(x_2) = \emptyset,$$
 (4.10)

$$x_1 - x_2 \in \mathbb{Q} \Rightarrow Q(x_1) = Q(x_2). \tag{4.11}$$

Dessa forma, os conjuntos $\{Q(x), x \in (0,1]\}$ (que constituem uma classe, ou família) particionam o intervalo (0,1] em subconjuntos disjuntos cuja união é o próprio (0,1]. Há bastante material aqui. Antes das deduções, vamos escrever formalmente essa última observação:

$$\bigcup_{x \in (0,1]} Q(x) = (0,1].$$

Note também que os índices na expressão acima são demasiados, devido a (4.11). Queremos chegar a uma afirmação mais econômica:

$$\bigsqcup_{x \in T} Q(x) = (0, 1]$$

(note a disjunção). Na sequência, precisamos provar (4.10)–(4.11) e prosseguir na obtenção do conjunto T. Esse último se revelará um conjunto interessante, e na verdade o ponto final desta lição: T se revelará um conjunto $n\tilde{a}o$ mensurável.

Para provar (4.10): Vamos tentar reductio ad absurdum. Seja $z \in Q(x_1)$ e $z \in Q(x_2)$: nesse caso, a interseção $Q(x_1) \cap Q(x_2)$ não seria o conjunto vazio. Porém, debaixo dessa hipótese:

$$z = x_1 \boxplus y, \ y \in Q,$$

 $z = x_2 \boxplus y, \ y \in Q.$

Agora,

$$(x_1 \boxplus y) - (x_2 \boxplus y) = x_1 - x_2$$
, ou
= $x_1 - x_2 - 1$ ou
= $x_1 - x_2 + 1$.

Portanto, subtraindo (dessa forma) as duas expressões acima,

$$(-1 \text{ ou } 0 \text{ ou} + 1) = x_1 - x_2.$$

mas (-1,0,+1) são racionais, o que contraria a hipótese original sobre $x_1 - x_2$ Para provar (4.11): Volte acima e escreva a expressão geral:

$$(x_1 \boxplus y) - (x_2 \boxplus y) = x_1 - x_2 + s,$$

onde, como vimos, ou s = 0 ou s = -1 ou s = +1. Reescreva:

$$x_1 \boxplus y = x_2 \boxplus y + (x_1 - x_2) + s.$$

Note agora que é sempre possível escrever $x_2 \boxplus y = x_2 + r$ (veja (4.3)), onde agora r é racional, e não necessariamente está em Q. Substitua:

$$x_1 \boxplus y = x_2 + r + s + (x_1 - x_2).$$

O lado esquerdo é um número em Q. Portanto, o lado direito é um número em Q:

$$x_2 + p \in Q, \tag{4.12}$$

onde $p = (r + s + (x_1 - x_2))$ e portanto $p \in \mathbb{Q}$ (mas não necessariamente $p \in Q$). Agora, utilizando (4.3), vemos que é possível escrever o lado direito como $x_2 \boxplus z$, onde $z \in Q$. Disso se segue que

$${x_1 \boxplus y, \ y \in Q} = {x_2 \boxplus z, \ z \in Q}$$

e portanto $Q(x_1) = Q(x_2)$

Relembrando:

$$x \in Q \Rightarrow Q(x) = Q$$

significa, por exemplo:

$$Q(1/2) = Q(1/3) = Q(1).$$

$$x_1 - x_2 \in \mathbb{I} \Rightarrow Q(x_1) \cap Q(x_2) = \emptyset$$

significa, por exemplo:

$$Q(\sqrt{3}/2) \cap Q(3/2) = \emptyset.$$

$$x_1 - x_2 \in \mathbb{Q} \Rightarrow Q(x_1) = Q(x_2)$$

significa, por exemplo:

$$Q(\sqrt{2}/1000 + 1/8) = Q(\sqrt{2}/1000 + 3/8)$$

Ou seja: as criaturas estão ficando estranhas.

Para fechar esta parte bastante cansativa para a mente:

$$\bigcup_{x \in (0,1]} Q(x) = (0,1]$$

pois $x \in Q(x)$.

4.1 O axioma da seleção e um conjunto estranho

Seja \mathscr{C} a família dos conjuntos Q(x), $x \in (0,1]$. Escolha um único ponto em (0,1] pertencente a cada Q(x). O conjunto dos pontos assim escolhidos será chamado T, e temos que $T \subset (0,1]$. O que fizemos significa que, por definição, não há dois pontos em T pertencendentes ao mesmo Q(x). Segue-se que

$$\bigsqcup_{t \in T} Q(t) = (0, 1].$$

Estudemos as propriedades dos conjuntos $T(r_i), r_i \in Q$.

1.

$$\bigcup_{i=1}^{\infty} T(r_i) = (0,1]. \tag{4.13}$$

Só precisamos provar que, se $x \in (0,1]$, $\exists i \in Q : x \in T(r_i)$. Mas, de (4.8), segue-se que $x \in (0,1] \Rightarrow x \in Q(x)$. Agora, portanto, se $x \in Q(x)$, escolha $t \in Q(x)$, onde t é o representante de Q(x): $t \in T$.

Veja:

$$Q(x) = x \boxplus y, \ y \in Q,$$

 $t \in Q(x) \Rightarrow t = x \boxplus y \text{ para algum } y \in Q.$

Logo, de (4.3), existe algum $q \in Q$ tal que t = x + q; pelo mesmo motivo agora deve existir algum $r \in Q$ tal que x = t + r. Mas Q é enumerável (não provamos!), portanto existe um índice i tal que $x = t + r_i$, $i \in \mathbb{N}$, e $Q = \bigsqcup_{i=1}^{\infty} r_i$. Logo, $x \in T(r_i)$. A união dos $T(r_i)$ gera o (0,1].

2. Os $T(r_i)$ são disjuntos. Lembre-se de que T contém um único representante de cada Q(x). Se houvesse $r_i \neq r_j$ com $y \in [T(r_i) \cap T(r_j)]$, então teríamos

$$y = t_i \boxplus r_i$$
 e $y = t_j \boxplus r_j$.

"Subtraia":

$$0 = (t_i - t_j) + q$$

onde q é racional (novamente, nós usamos (4.3)). Logo, $t_i - t_j$ é racional, donde $Q(t_i) = Q(t_j)$ (devido a (4.11)). Mas isso não é possível, porque $Q(t_i)$ possui um único representante em T. Portanto, a disjunção dos $T(r_i)$'s transforma (4.13) em

$$\bigsqcup_{i=1}^{\infty} T(r_i) = (0,1]. \tag{4.14}$$

Finalmente: se T fosse mensurável, haveria $|T|=|T(r_i)|$ para todo i. Agora, pela sigma-aditividade:

$$\sum_{i=1}^{\infty} |T(r_i)| = |(0,1]| = 1.$$

Isso, nós também já vimos em outra lição, é impossível. T não pode ser mensurável

Referências Bibliográficas

Kolmogorov, A. N. (1933). Grundbegriffe der Wahrscheinlichkeitsrechnung (Foundations of the theory of probability). Springer, Berlin.

Taylor, S. J. (1973). Introduction to measure and integration. Cambridge University Press.