Abitur 2020 Mathematik Infinitesimalrechnung I

Gegeben ist die Funktion $h: x \mapsto x \cdot \ln(x^2)$ mit maximalem Definitionsbereich D_h .

Teilaufgabe Teil A 1a (2 BE)

Geben Sie D_h an und zeigen Sie, dass für den Term der Ableitungsfunktion h' von h gilt: $h'(x) = \ln(x^2) + 2$.

Teilaufgabe Teil A 1b (3 BE)

Bestimmen Sie die Koordinaten des im II. Quadranten liegenden Hochpunkts des Graphen von h.

Die Abbildung 1 zeigt den Graphen $G_{f'}$ der Ableitungsfunktion f' einer in \mathbb{R} definierten ganzrationalen Funktion f. Nur in den Punkten $\left(-4|f'(-4)\right)$ und $\left(5|f'(5)\right)$ hat der Graph $G_{f'}$ waagrechte Tangenten.

Teilaufgabe Teil A 2a (2 BE)

Begründen Sie, dass f genau eine Wendestelle besitzt.

Teilaufgabe Teil A 2b (2 BE)

Es gibt Tangenten an den Graphen von f, die parallel zur Winkelhalbierenden des I. und III. Quadranten sind. Ermitteln Sie anhand des Graphen $G_{f'}$ der Ableitungsfunktion f' in der Abbildung 1 Näherungswerte für die x-Koordinaten derjenigen Punkte, in denen der Graph von f jeweils eine solche Tangente hat.

Gegeben sind die in \mathbb{R} definierten Funktionen $f: x \mapsto x^2 + 4$ und $g_m: x \mapsto m \cdot x$ mit $m \in \mathbb{R}$. Der Graph von f wird mit G_f und der Graph von g_m mit G_m bezeichnet.

Teilaufgabe Teil A 3a (3 BE)

Skizzieren Sie G_f in einem Koordinatensystem. Berechnen Sie die Koordinaten des gemeinsamen Punkts der Graphen G_f und G_4 .

Teilaufgabe Teil A 3b (2 BE)

Es gibt Werte von m, für die die Graphen G_f und G_m jeweils keinen gemeinsamen Punkt haben. Geben Sie diese Werte von m an.

Gegeben ist die Funktion g mit $g(x)=0,7\cdot e^{0.5x}-0,7$ und $x\in\mathbb{R}$. Die Funktion g ist umkehrbar. Die Abbildung 2 zeigt den Graphen G_g von g sowie einen Teil des Graphen G_h der Umkehrfunktion h von g.

Teilaufgabe Teil A 4a (2 BE)

Zeichnen Sie in die Abbildung 2 den darin fehlenden Teil von G_h ein.

Teilaufgabe Teil A 4b (2 BE)

Betrachtet wird das von den Graphen G_g und G_h eingeschlossene Flächenstück. Schrafferen Sie den Teil dieses Flächenstücks, dessen Inhalt mit dem Term $2 \cdot \int\limits_0^{2,5} \left(x-g(x)\right) \; \mathrm{d}x$ berechnet werden kann.

Teilaufgabe Teil A 4c (2 BE)

Geben Sie den Term einer Stammfunktion der in $\mathbb R$ definierten Funktion $k:x\mapsto x-g(x)$ an.

Gegeben ist die in $\mathbb R$ definierte Funktion $f: x \mapsto \frac{x^2-1}{x^2+1}$; die Abbildung 1 (Teil B) zeigt ihren Graphen G_f .

Teilaufgabe Teil B 1a (5 BE)

Bestätigen Sie rechnerisch, dass G_f symmetrisch bezüglich der y-Achse ist, und untersuchen Sie anhand des Funktionsterms das Verhalten von f für $x \to +\infty$. Bestimmen Sie diejenigen x-Werte, für die f(x) = 0,96 gilt.

Abitur Bayern 2020 Infinitesimalrechnung I

Teilaufgabe Teil B 1b (4 BE)

Untersuchen Sie rechnerisch das Monotonieverhalten von G_f .

(zur Kontrolle:
$$f'(x) = \frac{4x}{(x^2+1)^2}$$
)

Teilaufgabe Teil B 1c (4 BE)

Bestimmen Sie rechnerisch eine Gleichung der Tangente t an G_f im Punkt (3|f(3)). Berechnen Sie die Größe des Winkels, unter dem t die x-Achse schneidet, und zeichnen Sie t in die Abbildung 1 (Teil B) ein.

Nun wird die in $\mathbb R$ definierte Integralfunktion $F:x\mapsto\int\limits_0^x f(t)$ d
t betrachtet; ihr Graph wird mit G_F bezeichnet.

Teilaufgabe Teil B 2a (5 BE)

Begründen Sie, dass F in x=0 eine Nullstelle hat, und machen Sie mithilfe des Verlaufs von G_f plausibel, dass im Intervall [1; 3] eine weitere Nullstelle von F liegt. Geben Sie an, welche besondere Eigenschaft G_F im Punkt (-1|F(-1)) hat, und begründen Sie Ihre Angabe.

Teilaufgabe Teil B 2b (2 BE)

Die Gerade mit der Gleichung y=x-1 begrenzt gemeinsam mit den Koordinatenachsen ein Dreieck. Geben Sie den Flächeninhalt dieses Dreiecks und den sich daraus ergebenden Näherungswert für F(1) an.

Teilaufgabe Teil B 2c (5 BE)

Die Abbildung 2 (Teil B) zeigt den Graphen G_f sowie den Graphen G_a der in $\mathbb R$ definierten Funktion $g: x \mapsto -\cos\left(\frac{\pi}{2}x\right)$. Beschreiben Sie, wie G_g aus dem Graphen der in $\mathbb R$ definierten Funktion $x \mapsto \cos x$ her-

vorgeht, und berechnen Sie durch Integration von q einen weiteren Näherungswert für F(1).

(zur Kontrolle:
$$F(1) \approx -\frac{2}{\pi}$$
)

Teilaufgabe Teil B 2d (4 BE)

Berechnen Sie das arithmetische Mittel der beiden in den Aufgaben 2b und 2c berechneten Näherungswerte. Skizzieren Sie den Graphen von F für 0 < x < 3 unter Berücksichtigung der bisherigen Ergebnisse in der Abbildung 1 (Teil B).

Für jeden Wert k > 0 legen die auf G_f liegenden Punkte P_k (-k|f(-k)) und Q_k (k|f(k))gemeinsam mit dem Punkt R(0|1) ein gleichschenkliges Dreieck P_kQ_kR fest.

Teilaufgabe Teil B 3a (5 BE)

Berechnen Sie für k=2 den Flächeninhalt des zugehörigen Dreiecks P_2Q_2R (vgl. Abbil-

Zeigen Sie anschließend, dass der Flächeninhalt des Dreiecks P_kQ_kR allgemein durch den Term $A(k) = \frac{2k}{k^2 + 1}$ beschrieben werden kann.

Teilaufgabe Teil B 3b (6 BE)

Zeigen Sie, dass es einen Wert von k > 0 gibt, für den A(k) maximal ist. Berechnen Sie diesen Wert von k sowie den Flächeninhalt des zugehörigen Dreiecks P_kQ_kR .

Lösung

Teilaufgabe Teil A 1a (2 BE)

Gegeben ist die Funktion $h: x \mapsto x \cdot \ln(x^2)$ mit maximalem Definitionsbereich D_h .

Geben Sie D_h an und zeigen Sie, dass für den Term der Ableitungsfunktion h' von h gilt: $h'(x) = \ln(x^2) + 2$.

Lösung zu Teilaufgabe Teil A 1a

$Definitions be reich\ bestimmen$

$$h(x) = x \cdot \ln (x^2)$$

Erläuterung: Definitionsbereich der Logarithmusfunktion

 $\ln(x^2)$ ist eine Logarithmusfunktion des Typs $\ln(h(x))$.

Die l
n-Funktion ist nur für positive Werte in ihrem Argument definiert. Somit gilt für die Argument
funktion: $h(x)>0\,.$

In diesem Fall: $x^2 > 0$

$$x^2 > 0$$

$$\Rightarrow$$
 $D_h = \mathbb{R} \setminus \{0\}$

Erste Ableitung einer Funktion ermittlen

$$h'(x) = 1 \cdot \ln(x^2) + x \cdot \frac{1}{x^2} \cdot 2x = \ln(x^2) + 2$$

 $\label{thm:eq:continuity} \mbox{Erl\"{a}uterung: } Produktregel \ der \ Differenzialrechnung, \ Kettenregel \ der \ Differenzialrechnung$

Produktregel:

$$f(x) = u(x) \cdot v(x)$$
 \Rightarrow $f'(x) = u'(x) \cdot v(x) + u(x) \cdot v'(x)$

In diesem Fall ist u(x) = x und $v(x) = \ln(x^2)$.

Kettenregel für Logarithmusfunktionen:

$$v(x) = \ln(g(x))$$
 \Rightarrow $v'(x) = \frac{1}{g(x)} \cdot g'(x)$

Hier ist $g(x) = x^2$. Dann ist g'(x) = 2x.

Teilaufgabe Teil A 1b (3 BE)

Bestimmen Sie die Koordinaten des im II. Quadranten liegenden Hochpunkts des Graphen von h.

Lösung zu Teilaufgabe Teil A 1b

Lage des Hochpunktes

$$h'(x) = \ln(x^2) + 2$$

$$h'(x) = 0$$

$$\ln(x^2) + 2 = 0$$

$$\ln\left(x^2\right) = -2 \qquad |e^x|$$

$$x^2 = e^{-2}$$
 $|\sqrt{\ }$

$$(x_1 = \sqrt{e^{-2}})$$
 $x_2 = -\sqrt{e^{-2}} = -e^{-1} = -\frac{1}{e}$

$$h(-e^{-1}) = -e^{-1} \cdot \ln((-e^{-1})^2) = -e^{-1} \cdot \underbrace{\ln(e^{-2})}_{-2} = 2e^{-1} = \frac{2}{e}$$

 $\Rightarrow \text{HOP } (-e^{-1}|2e^{-1})$

Teilaufgabe Teil A 2a (2 BE)

Die Abbildung 1 zeigt den Graphen $G_{f'}$ der Ableitungsfunktion f' einer in $\mathbb R$ definierten ganzrationalen Funktion f. Nur in den Punkten $\left(-4|f'(-4)\right)$ und $\left(5|f'(5)\right)$ hat der Graph $G_{f'}$ waagrechte Tangenten.

Begründen Sie, dass f genau eine Wendestelle besitzt.

Lösung zu Teilaufgabe Teil A 2a

Eigenschaften der Ableitungsfunktion

Dort, wo f' eine Extremstelle besitzt, besitzt f eine Wendestelle.

 \Rightarrow f besitzt Wendestelle bei x = 5

f' besitzt an der Stelle x=-4 einen Terrassenpunkt; Monotonie von f' ändert sich an dieser Stelle nicht, somit ändert sich bei f nicht das Krümmungsverhalten.

Teilaufgabe Teil A 2b (2 BE)

Es gibt Tangenten an den Graphen von f, die parallel zur Winkelhalbierenden des I. und III. Quadranten sind. Ermitteln Sie anhand des Graphen $G_{f'}$ der Ableitungsfunktion f' in der Abbildung 1 Näherungswerte für die x-Koordinaten derjenigen Punkte, in denen der Graph von f jeweils eine solche Tangente hat.

Lösung zu Teilaufgabe Teil A 2b

Eigenschaften der Ableitungsfunktion

Abitur Bayern 2020 Infinitesimalrechnung I

Die Gerade mit der Gleichung y=1 schneidet $G_{f'}$ an den Stellen $x\approx 2$ und $x\approx 7$.

Teilaufgabe Teil A 3a (3 BE)

Gegeben sind die in \mathbb{R} definierten Funktionen $f: x \mapsto x^2 + 4$ und $g_m: x \mapsto m \cdot x$ mit $m \in \mathbb{R}$. Der Graph von f wird mit G_f und der Graph von g_m mit G_m bezeichnet.

Skizzieren Sie G_f in einem Koordinatensystem. Berechnen Sie die Koordinaten des gemeinsamen Punkts der Graphen G_f und G_4 .

Lösung zu Teilaufgabe Teil A 3a

Skizze

Es gibt Werte von m, für die die Graphen G_f und G_m jeweils keinen gemeinsamen Punkt haben. Geben Sie diese Werte von m an.

Lösung zu Teilaufgabe Teil A 3b

Schnittpunkt zweier Funktionen

$$x^2 + 4 = m x$$

$$x^2 - mx + 4 = 0$$

$$D = m^2 - 4 \cdot 1 \cdot 4 = m^2 - 16$$

$$m^2 - 16 < 0$$

$$m^2 < 16$$

$$-4 < m < 4$$

Teilaufgabe Teil A 4a (2 BE)

Gegeben ist die Funktion g mit $g(x)=0,7\cdot e^{0,5x}-0,7$ und $x\in\mathbb{R}$. Die Funktion g ist umkehrbar. Die Abbildung 2 zeigt den Graphen G_g von g sowie einen Teil des Graphen G_h der Umkehrfunktion h von g.

Schnittpunkt zweier Funktionen

$$g_4(x) = 4x$$

$$f(x) = g_4(x)$$

$$x^2 + 4 = 4x$$

$$x^2 - 4x + 4 = 0$$

$$(x-2)^2 = 0 \quad \Rightarrow \quad x = 2$$

$$g_4(2) = 8$$

P(2|8)

Zeichnen Sie in die Abbildung 2 den darin fehlenden Teil von G_h ein.

Lösung zu Teilaufgabe Teil A 4a

$Umkehr funktion\ bestimmen$

Teilaufgabe Teil A 4b (2 BE)

Betrachtet wird das von den Graphen G_g und G_h eingeschlossene Flächenstück. Schrafferen Sie den Teil dieses Flächenstücks, dessen Inhalt mit dem Term $2 \cdot \int\limits_0^{2,5} \left(x-g(x)\right) \; \mathrm{d}x$ berechnet werden kann.

Lösung zu Teilaufgabe Teil A 4b

Fläche zwischen zwei Funktionsgraphen

Gegeben ist die in $\mathbb R$ definierte Funktion $f:x\mapsto \frac{x^2-1}{x^2+1};$ die Abbildung 1 (Teil B) zeigt ihren Graphen G_f .

Bestätigen Sie rechnerisch, dass G_f symmetrisch bezüglich der y-Achse ist, und untersuchen Sie anhand des Funktionsterms das Verhalten von f für $x \to +\infty$. Bestimmen Sie diejenigen x-Werte, für die f(x) = 0.96 gilt.

Lösung zu Teilaufgabe Teil B 1a

Symmetrieverhalten einer Funktion

$$f(x) = \frac{x^2 - 1}{x^2 + 1}$$

Erläuterung: Symmetrieverhalten

Man ermittelt zunächst f(-x) und vergleicht dann. Es gilt:

 G_f ist achsensymmetrisch bezüglich der y-Achse, wenn gilt: f(-x) = f(x)

 G_f ist punktsymmetrisch zum Ursprung, wenn gilt: f(-x) = -f(x)

$$f(-x) = \frac{(-x)^2 - 1}{(-x)^2 + 1} = \frac{x^2 - 1}{x^2 + 1} = f(x)$$

 G_f ist achsensymmetrisch bezüglich der y-Achse

Grenzwert bestimmen

Teilaufgabe Teil A 4c (2 BE)

Geben Sie den Term einer Stammfunktion der in $\mathbb R$ definierten Funktion $k: x \mapsto x - g(x)$

Lösung zu Teilaufgabe Teil A 4c

Stammfunktion

$$k(x) = x - 0.7e^{0.5x} + 0.7$$

$$K(x) = \frac{1}{2}x^2 - 1,4e^{0.5x} + 0.7x$$

Teilaufgabe Teil B 1a (5 BE)

$$\lim_{x\to +\infty} f(x) = \lim_{x\to +\infty} \underbrace{\frac{\overset{\rightarrow +\infty}{x^2-1}}{\overset{\rightarrow +\infty}{x^2+1}}}_{x\to +\infty} = \lim_{x\to +\infty} \frac{x^2\cdot \left(1-\frac{1}{x^2}\right)}{x^2\cdot \left(1+\frac{1}{x^2}\right)} = \lim_{x\to +\infty} \frac{1-\underbrace{\frac{\overset{\rightarrow 0}{1}}{1}}_{1}}{1+\underbrace{\frac{1}{x^2}}_{1}} = 1$$

Schnittpunkt zweier Funktionen

$$\begin{aligned} \frac{x^2-1}{x^2+1} &= 0,96 & |\cdot(x^2+1) \\ x^2-1 &= 0,96x^2+0,96 & |-0,96x^2+1 \\ 0,04x^2 &= 1,96 & |:0,04 \\ x^2 &= 49 & |\sqrt{} \\ x_{1,2} &= \pm 7 \end{aligned}$$

Teilaufgabe Teil B 1b (4 BE)

Untersuchen Sie rechnerisch das Monotonieverhalten von G_f .

(zur Kontrolle:
$$f'(x) = \frac{4x}{(x^2+1)^2}$$
)

Lösung zu Teilaufgabe Teil B 1b

Monotonieverhalten einer Funktion

$$f(x) = \frac{x^2 - 1}{x^2 + 1}$$

Erste Ableitung bilden: f'(x)

$$f'(x) = \frac{2x \cdot (x^2 + 1) - (x^2 - 1) \cdot 2x}{(x^2 + 1)^2} = \frac{2x \cdot (x^2 + 1 - x^2 + 1)}{(x^2 + 1)^2} = \frac{4x}{(x^2 + 1)^2}$$

Vorzeichen der ersten Ableitung f'(x) untersuchen:

$$f'(x) = \underbrace{\frac{20}{4x}}_{>0} > 0 \quad \text{für} \quad x > 0$$
$$f'(x) = \underbrace{\frac{20}{4x}}_{>0} < 0 \quad \text{für} \quad x < 0$$

Erläuterung: Monotonieverhalten einer Funktion

Für stetige Funktionen besteht eine Beziehung zwischen Monotonie und Ableitung, da die Ableitung die Steigung der Funktion angibt.

Es gilt:

Ist f'(x) > 0 in einem Intervall a; b[, so ist G_f für $x \in [a; b]$ streng monoton

Ist f'(x) < 0 in einem Intervall a; b[, so ist G_f für $x \in [a; b]$ streng monoton fallend.

- G_f ist für $x \in]-\infty;0]$ streng monoton fallend
- G_f ist für $x \in [0; +\infty[$ streng monoton steigend

Teilaufgabe Teil B 1c (4 BE)

Bestimmen Sie rechnerisch eine Gleichung der Tangente t an G_f im Punkt (3|f(3)). Berechnen Sie die Größe des Winkels, unter dem t die x-Achse schneidet, und zeichnen Sie t in die Abbildung 1 (Teil B) ein.

Lösung zu Teilaufgabe Teil B 1c

Tangentengleichung ermitteln

$$f(x) = \frac{x^2 - 1}{x^2 + 1}$$
$$f'(x) = \frac{4x}{(x^2 + 1)^2}$$
$$f(3) = \frac{4}{5}$$

$$f'(3) = \frac{3}{25}$$

Erläuterung:

Formel für die Tangentengleichung:

$$t(x) = (x - x_0) \cdot f'(x_0) + f(x_0)$$

Hier ist $x_0 = 3$.

$$t: y = (x - x_0) \cdot f'(x_0) + f(x_0)$$

$$t: y = (x-3) \cdot f'(3) + f(3)$$

$$t: y = (x-3) \cdot \frac{3}{25} + \frac{4}{5}$$

$$t: y = \frac{3}{25}x + \frac{11}{25}$$

Winkel bestimmen

$$\tan \alpha = \frac{3}{25}$$
 \Rightarrow $\alpha = \tan^{-1} \left(\frac{3}{25}\right) \approx 6,84^{\circ}$

Skizze

Teilaufgabe Teil B 2a (5 BE)

Nun wird die in \mathbb{R} definierte Integralfunktion $F: x \mapsto \int_0^x f(t) dt$ betrachtet; ihr Graph wird mit G_F bezeichnet.

Begründen Sie, dass F in x=0 eine Nullstelle hat, und machen Sie mithilfe des Verlaufs von G_f plausibel, dass im Intervall [1; 3] eine weitere Nullstelle von F liegt. Geben Sie an, welche besondere Eigenschaft G_F im Punkt (-1|F(-1)) hat, und begründen Sie Ihre Angabe.

Lösung zu Teilaufgabe Teil B 2a

Eigenschaften der Integralfunktion

 $x_0 = \text{untere Integrations}$ grenze

Anhand des Verlaufs von G_f erkennt man, dass es eine Stelle x_0 mit $x_0 \in [1;3]$ gibt, sodass $\int_0^1 f(t) dt = -\int_1^{x_0} f(t) dt$ (Flächenbilanz). Damit ist x_0 eine weitere Nullstelle von F.

 G_F hat in (-1|F(-1)) einen Hochpunkt, da die Ableitung f von F an der Stelle -1 eine Nullstelle mit Vorzeichenwechsel von Plus nach Minus hat.

Teilaufgabe Teil B 2b (2 BE)

© Abiturloesung.de

Die Gerade mit der Gleichung y=x-1 begrenzt gemeinsam mit den Koordinatenachsen ein Dreieck. Geben Sie den Flächeninhalt dieses Dreiecks und den sich daraus ergebenden Näherungswert für F(1) an.

Lösung zu Teilaufgabe Teil B 2b

Bestimmtes Integral

$$A = \frac{1}{2} \cdot 1 \cdot 1 = \frac{1}{2}$$

$$F(1) = \int_{0}^{1} f(t) dt \approx -\frac{1}{2}$$

Teilaufgabe Teil B 2c (5 BE)

Die Abbildung 2 (Teil B) zeigt den Graphen G_f sowie den Graphen G_g der in \mathbb{R} definierten Funktion $g: x \mapsto -\cos\left(\frac{\pi}{2}x\right)$.

Beschreiben Sie, wie G_g aus dem Graphen der in $\mathbb R$ definierten Funktion $x\mapsto\cos x$ hervorgeht, und berechnen Sie durch Integration von g einen weiteren Näherungswert für F(1).

(zur Kontrolle:
$$F(1) \approx -\frac{2}{\pi}$$
)

Lösung zu Teilaufgabe Teil B 2c

Verschiebung von Funktionsgraphen

 G_q geht aus dem Graphen zu $x \mapsto \cos x$ hervor durch:

1) Streckung in x-Richtung mit dem Faktor $\frac{2}{\pi}$

$$\cos x \longrightarrow \cos \left(\frac{x}{\frac{2}{\pi}}\right)$$

2) Spiegelung an der x-Achse $\cos\left(\frac{\pi}{2}x\right) \rightarrow -\cos\left(\frac{\pi}{2}x\right)$

Bestimmtes Integral

$$\int_{0}^{1} g(t) dt = \int_{0}^{1} -\cos\left(\frac{\pi}{2}t\right) dt$$

$$\int_{0}^{1} g(t) dt = \left[-\frac{1}{\frac{\pi}{2}} \sin \left(\frac{\pi}{2} x \right) \right]_{0}^{1}$$

$$\int_{0}^{1} g(t) dt = -\frac{2}{\pi} \underbrace{\sin \frac{\pi}{2}}_{1} - \left(-\frac{2}{\pi} \underbrace{\sin 0}_{0} \right) = -\frac{2}{\pi}$$

Teilaufgabe Teil B 2d (4 BE)

Berechnen Sie das arithmetische Mittel der beiden in den Aufgaben 2b und 2c berechneten Näherungswerte. Skizzieren Sie den Graphen von F für $0 \le x \le 3$ unter Berücksichtigung der bisherigen Ergebnisse in der Abbildung 1 (Teil B).

Lösung zu Teilaufgabe Teil B 2d

Eigenschaften der Integralfunktion

$$\frac{1}{2} \cdot \left(-\frac{1}{2} - \frac{2}{\pi} \right) \approx -0.57$$

Teilaufgabe Teil B 3a (5 BE)

Für jeden Wert k > 0 legen die auf G_f liegenden Punkte P_k (-k|f(-k)) und Q_k (k|f(k)) gemeinsam mit dem Punkt R(0|1) ein gleichschenkliges Dreieck P_kQ_kR fest.

Berechnen Sie für k=2 den Flächeninhalt des zugehörigen Dreiecks P_2Q_2R (vgl. Abbildung 3).

Zeigen Sie anschließend, dass der Flächeninhalt des Dreiecks $P_k Q_k R$ allgemein durch den Term $A(k) = \frac{2k}{k^2+1}$ beschrieben werden kann.

Lösung zu Teilaufgabe Teil B 3a

Flächeninhalt eines Dreiecks

$$f(2) = \frac{3}{5}$$

$$A_{\triangle {\rm P}_2{\rm Q}_2{\rm R}} = \frac{1}{2} \cdot 4 \cdot (1 - f(2)) = 2 \cdot \left(1 - \frac{3}{5}\right) = \frac{4}{5}$$

$$A_{\triangle \mathcal{P}_k \mathcal{Q}_k \mathcal{R}} = \frac{1}{2} \cdot 2k \cdot (1 - f(k)) = k \cdot \left(1 - \frac{k^2 - 1}{k^2 + 1}\right) = k \cdot \left(\frac{k^2 + 1 - k^2 + 1}{k^2 + 1}\right) = \frac{2k}{k^2 + 1}$$

Teilaufgabe Teil B 3b (6 BE)

Zeigen Sie, dass es einen Wert von k > 0 gibt, für den A(k) maximal ist. Berechnen Sie diesen Wert von k sowie den Flächeninhalt des zugehörigen Dreiecks P_kQ_kR .

Lösung zu Teilaufgabe Teil B 3b

Extremwert aufgabe

$$A(k) = \frac{2k}{k^2 + 1}$$

Erste Ableitung bilden:

$$A'(k) = \frac{2 \cdot (k^2 + 1) - 2k \cdot 2k}{(k^2 + 1)^2} = \frac{2 - 2k^2}{(k^2 + 1)^2}$$

Erläuterung: Notwendige Bedingung

Folgende notwendige Bedingung muss für einen Extrempunkt an der Stelle x^E erfüllt sein:

$$f'(x^E) = 0$$
, daher immer der Ansatz: $f'(x) = 0$

Erste Ableitung gleich Null setzen: A'(k) = 0

$$0 = \underbrace{\frac{2 - 2k^2}{\left(k^2 + 1\right)^2}}_{>0}$$

Erläuterung:

Ein Bruch ist dann gleich Null, wenn der Zähler gleich Null ist.

Zu beachten ist dabei, dass die Nullstelle des Zählers nicht gleich sein darf wie die Nullstelle des Nenners (hebbare Lücke).

$$0 = 2 - 2k^2$$

$$k^{2} = 1$$

$$k_{1,2} = \pm 1$$

$$\Rightarrow k^E = 1$$

Prüfen, ob es sich um eine Extremstelle handelt:

$$A'(k) > 0$$

$$\underbrace{\frac{2 - 2k^2}{\left(k^2 + 1\right)^2}} > 0$$

Erläuterung: Vorzeichen eines Bruches

Ein Bruch ist positiv, wenn Zähler und Nenner entweder beide positiv oder beide negativ sind (z.B. $\frac{3}{5} > 0$ oder $\frac{-3}{-5} > 0$).

Ein Bruch ist negativ, wenn Zähler und Nenner verschiedenes Vorzeichen haben (z.B. $\frac{-3}{5} < 0$ oder $\frac{3}{-5} < 0$).

In diesem Fall ist der Nenner $(k^2+1)^2$ wegen dem Quadrat immer positiv.

Der Bruch ist somit positiv, falls der Zähler $2-2k^2$ auch positiv ist.

$$2 - 2k^2 > 0$$

$$k^{2} < 1$$

$$-1 < k < 1$$

$$A^\prime(k) > 0$$
 für $-1 < k < 1$

$$A'(k)<0$$
 für $k\in]-\infty;-1[\cup]1;\infty[$

Vorzeichenwechsel von A'(k) von "+" nach "-" an der Stelle k=1.

 \Rightarrow Maximum an k=1

$$A(1) = \frac{2 \cdot 1}{1^2 + 1} = 1$$