Лабораторная работа №8: Математическое моделирование в Excel:

прогнозирование изменений экосистем

(регрессионный анализ, сценарии, экспоненциальный рост)

Цель работы:

Научиться применять регрессионный анализ и сценарное моделирование в Microsoft Excel для прогнозирования изменений в экосистемах и строить экспоненциальную модель.

ЧАСТЬ 1: ВВЕДЕНИЕ

Экологические системы подвержены изменениям под действием климатических, антропогенных и биологических факторов. Одним из способов оценки и прогнозирования таких изменений является математическое моделирование, в частности, регрессионный анализ, который позволяет установить зависимости между различными параметрами, а также анализ сценариев, применяемый для оценки альтернативных вариантов развития событий.

Пример: Предположим, у нас есть данные по загрязнению воды и количеству рыб в реке за 10 лет. Можно предположить, что существует зависимость: чем выше загрязнение, тем меньше рыбы. Цель — смоделировать эту зависимость и спрогнозировать, сколько рыбы останется при продолжении текущих тенденций или при изменении условий.

ЧАСТЬ 2: ЗАДАЧИ

В ходе выполнения лабораторной работы необходимо:

- 1. Построить таблицу с экологическими данными.
- 2. Провести линейный регрессионный анализ между двумя переменными.
- 3. Построить график зависимости.
- 4. Сделать прогноз на 5 лет вперед.
- 5. Использовать анализ сценариев для моделирования альтернативных условий (улучшение или ухудшение экологической ситуации).
- 6. Сделать выводы о будущем состоянии экосистемы на основе полученных данных.
- 7. Смоделировать, как может восстанавливаться численность рыб после остановки загрязнения, используя простую экспоненциальную модель роста.

Название документа: Лабораторная работа по дисциплине «Информатика» для студентов			
направления подготовки 05.03.06 Экология и природопользование			
Разработчик: Леонтьев Д.А. Страница 1 из 13 Версия 2			
Копии с данной лабораторной без разрешения автора запрещены			

ЧАСТЬ 3: ПРАКТИЧЕСКАЯ ЧАСТЬ

Введите данные в Excel в три столбца: Год, Загрязнение, Рыбы.

Год	Загрязнение (мг/л)	Численность рыб (тыс. особей)
2015	3,1	45
2016	3,4	42
2017	3,6	40
2018	3,9	37
2019	4,2	34
2020	4,5	31
2021	4,9	28
2022	5,3	25
2023	5,7	21
2024	6	18

1. Построение графика

Постройте точечную диаграмму (ХҮ):

- 。 X Загрязнение (мг/л),
- 。 У Численность рыб (тыс. особей).

Выделяете только данные с загрязнением и численностью рыб в таблице. Далее перейдите в раздел Вставка — Диаграммы — Точечная, выбираете Точечная с гладкими кривыми и маркерами:

Добавим название осей. Предварительно выделив диаграмму, переходим в Конструктор – Добавить элемент диаграммы – выбираем оси горизонтальную и вертикальную:

Название документа: Лабораторная работа по дисциплине «Информатика» для студентов				
направления подготовки 05.03.06 Экология и природопользование				
Разработчик: Леонтьев Д.А. Страница 2 из 13 Версия 2				
Копии с данной лабораторной без разрешения автора запрещены				

Вводим соответствующие названия для осей и для диаграммы, по желанию можете поменять стиль:

Добавим трендовую линию:

 \circ Правый клик по точкам \rightarrow "Добавить линию тренда" \rightarrow "Линейная":

Название документа: Лабораторная работа по дисциплине «Информа	тика» для студентов
направления подготовки 05.03.06 Экология и природопользование	
Разработчик: Леонтьев Д.А. Страница 3 из 13	Версия 2
Копии с данной лабораторной без разрешения автора запрещены	

 Включите опцию "Показать уравнение на диаграмме" и R² (качество модели):

У вас должны появиться следующие значения:

2. Регрессионный анализ

В любую свободную ячейку используйте функцию:

ЛИНЕЙН(известные_у; известные_х)

Название документа: Лабораторная работа по дисциплине «Информат	гика» для студентов
направления подготовки 05.03.06 Экология и природопользование	
Разработчик: Леонтьев Д.А. Страница 4 из 13	Версия 2
Копии с данной лабораторной без разрешения автора запрещены	

СУМ	СУММ ▼ : × ✓ № =ЛИНЕЙН(C2:C11; B2:B11)						
	Α	В	C	D	E		
1	Год	Загрязнение (мг/л)	Численность рыб (тыс. особей)				
2	2015	3,1	45		=ЛИНЕЙ		
3	2016	3,4	42				
4	2017	3,6	40				
5	2018	3,9	37				
6	2019	4,2	34				
7	2020	4,5	31				
8	2021	4,9	28				
9	2022	5,3	25				
10	2023	5,7	21				
11	2024	6	18				

Где:

- 。 C2:C11 численность рыб (Y),
- 。 B2:B11 загрязнение воды (X).

В итоге у нас получится коэффициент:

- \circ Угловой коэффициент (наклон) показывает, на сколько меняется Y при изменении X.
- 。 Свободный член (сдвиг) значение Y при X=0.

У вас значение углового коэффициента должно совпадать с тем что в диаграмме! (возможна небольшая погрешность)

Q Что показывает уравнение тренда y = -9,1375x + 72,853?

Это линейная модель, построенная по точкам на графике зависимости численности рыб (у) от загрязнения воды (х).

Интерпретация:

- х концентрация загрязнения (мг/л);
- у численность рыб (тыс. особей);
- -9,1375 это коэффициент наклона (показывает, что при увеличении загрязнения на 1 мг/л численность рыб сокращается на 9 тыс. особей). Таким образом мы видим отрицательную линейную зависимость;

Название документа: Лабораторная работа по дисциплине «Инфо	рматика» для студентов
направления подготовки 05.03.06 Экология и природопользование	-
Разработчик: Леонтьев Д.А. Страница 5 из 13	Версия 2
Копии с данной дабораторной без разрешения автора запрешены	

• 72,853 — это значение численности рыб, если загрязнение равно 0 (гипотетически, это "начальное" значение, когда вода идеально чистая).

\sim Что такое $R^2 = 0.9968$?

Это коэффициент детерминации, который показывает, насколько хорошо модель объясняет реальные данные:

- $R^2 = 0.9968$ значит, что **99,68% изменений численности рыб объясняется** уровнем загрязнения.
- Значение R² от 0 до 1:
 - 1 = идеальная модель
 - 0 = модель не объясняет данные
 - 0.9 = очень хорошо

Вывод: Модель почти идеально описывает зависимость.

ЧАСТЬ 4. ПРОГНОЗ НА БУДУЩЕЕ

Добавим значения загрязнения на следующие 5 лет (2025–2029), допустим, загрязнение увеличивается на 0.3 мг/л в год.

Для расчёта численности рыб воспользуемся формулой, описывающей нашу линейную модель:

$$y = -9,1375x + 72,853$$

	· ·	× ✓ f _x =-9,1375	*B12 + 72,853	
	Α	В	С	
	Год	Загрязнение	Численность рыб	
1	1 од	(мг/л)	(тыс. особей)	
2	2015	3,1	45	
3	2016	3,4	42	
4	2017	3,6	40	
5	2018	3,9	37	
6	2019	4,2	34	
7	2020	4,5	31	
8	2021	4,9	28	
9	2022	5,3	25	
10	2023	5,7	21	
11	2024	6	18	
12	2025	6,3	=-9,1375*B12 + 72,853	
13	2026	6,6	12,5455	
14	2027	6,9 -	9,80425	
15	2028	7,2	7,063	
16	2029	7,5	4,32175	

Название документа: Лабораторная работа по дисциплине «И	Інформатика» для студентов			
направления подготовки 05.03.06 Экология и природопользование				
Разработчик: Леонтьев Д.А. Страница 6 из 13	Версия 2			

Копии с данной лабораторной без разрешения автора запрещены

Для упрощения расчётов, уменьшите разрядность до целых чисел:

Обновите диаграмму, включив в неё дополнительные данные:

ЧАСТЬ 5: АНАЛИЗ СЦЕНАРИЕВ

Что такое анализ сценариев?

Анализ сценариев в Excel позволяет моделировать различные варианты развития ситуации. Мы рассмотрим три альтернативных сценария:

- Сценарий 1 загрязнение растёт медленнее (по 0.1 мг/л в год);
- Сценарий 2 загрязнение растёт быстрее (по 0.3 мг/л в год).
- Сценарий 3 загрязнение растёт быстрее (по 0.5 мг/л в год).
 - 1. Создаём таблицу со сценариями

Название документа: Лабораторная работа по дисциплине «Информ	иатика» для студентов
направления подготовки 05.03.06 Экология и природопользование	
Разработчик: Леонтьев Д.А. Страница 7 из 13	Версия 2
Копии с данной лабораторной без разрешения автора запрещены	

Год	Загрязнение (0.3)	Прогноз (0.3)	Загрязнение (0.1)	Прогноз (0.1)	Загрязнение (0.5)	Прогноз (0.5)
2025	6,3	?	6,1	?	6,5	?
2026	6,6	?	6,2	?	7	?
2027	6,9	?	6,3	?	7,5	?
2028	7,2	?	6,4	?	8	?
2029	7,5	?	6,5	?	8,5	?
2030	7,8	?	6,6	?	9	?

2. Рассчитываем прогнозы по формуле тренда

Используем наше уравнение для расчётов:

$$y = -9,1375x + 72,853$$

Теперь в столбцах "Прогноз" (С, Е, G) вставь формулы:

o B C2:

Протяните вниз:

~	: × ✓	<i>f</i> _x =-9,1375 * B2	2 + 72,853
Α	В	С	С
Год	Загрязнение (0.3)	Прогноз (0.3)	Загряз (0.
2025	6,3	15,28675	6,
2026	6,6	12,5455	6,
2027	6,9	9,80425	6,
2028	7,2	7,063	6,
2029	7,5	4,32175	6,
2030	7,8	1,5805	6,

Аналогично в E2 и G2, меняя на свои значения загрязнения:

Год	Загрязнение (0.3)	Прогноз (0.3)	Загрязнение (0.1)	Прогноз (0.1)	Загрязнение (0.5)	Прогноз (0.5)
2025	6,3	15,28675	6,1	17,11425	6,5	13,45925
2026	6,6	12,5455	6,2	16,2005	7	8,8905
2027	6,9	9,80425	6,3	15,28675	7,5	4,32175
2028	7,2	7,063	6,4	14,373	8	-0,247
2029	7,5	4,32175	6,5	13,45925	8,5	-4,81575
2030	7,8	1,5805	6,6	12,5455	9	-9,3845

3. Строим график

Выделите диапазон **A1:A7**, **C1:C7**, **E1:E7**, **G1:G7**:

Название документа: Лабораторная работа по дисциплине «Инфор	матика» для студентов
направления подготовки 05.03.06 Экология и природопользование	•
Разработчик: Леонтьев Д.А. Страница 8 из 13	Версия 2
Копии с данной дабораторной без разрешения автора запрешены	

Α	В	С	D	E	F	G
Год	Загрязнение (0.3)	Прогноз (0.3)	Загрязнение (0.1)	Прогноз (0.1)	Загрязнение (0.5)	Прогноз (0.5)
2025	6,3	15,28675	6,1	17,11425	6,5	13,45925
2026	6,6	12,5455	6,2	16,2005	7	8,8905
2027	6,9	9,80425	6,3	15,28675	7,5	4,32175
2028	7,2	7,063	6,4	14,373	8	-0,247
2029	7,5	4,32175	6,5	13,45925	8,5	-4,81575
2030	7,8	1,5805	6,6	12,5455	9	-9,3845

Используйте для вставки график с маркерами.

Добавьте легенду и подписи осей:

- 。 Х: Год
- о Ү: Численность рыб, тыс. особей
- о Название графика.

Пример реализации:

Напишите краткий вывод. Что мы видим на графиках? Как, при росте загрязнения изменяется численность в год? Какое влияние на экосистемы оказывает антропогенное воздействие?

ЧАСТЬ 6: ВЫВОДЫ

В текстовом поле (или отдельной ячейке Excel) запишите краткий вывод:

- Между загрязнением и численностью рыб прослеживается ?? линейная зависимость.
- Регрессионный анализ показал, что при росте загрязнения на ?? мг/л численность рыб уменьшается примерно на ?? тыс. особей.

Название документа: Лабораторная работа по дисциплине «Информат	ика» для студентов
направления подготовки 05.03.06 Экология и природопользование	
Разработчик: Леонтьев Д.А. Страница 9 из 13	Версия 2
Копии с данной лабораторной без разрешения автора запрещены	

- Сценарный анализ демонстрирует, что ?? роста загрязнения значительно улучшает прогноз численности рыб.
- Такие модели можно использовать для обоснования природоохранных мер.

ЧАСТЬ 7: МОДЕЛИРОВАНИЕ ВОССТАНОВЛЕНИЯ ЭКОСИСТЕМЫ (ЭКСПОНЕНЦИАЛЬНЫЙ РОСТ ИЛИ ЛОГИСТИЧЕСКАЯ МОДЕЛЬ)

■ Исходные условия:

- В 2024 году загрязнение стабилизировано на уровне 6 мг/л и больше не растёт.
- Численность рыб в 2024 году **18 тыс. особей**.
- В условиях улучшения среды популяция восстанавливается с темпом роста 10% в год.

Построение модели

Создайте следующую таблицу:

Год	t (лет с начала восстановления)	Численность рыб (тыс. особей)
2024	0	18
2025	1	19,8
2026	2	21,8
2027	3	24,0
2028	4	26,4
2029	5	29,0

График восстановления

- 1. Выделите столбцы "Год" и "Численность".
- 2. Вставка → Линейный график с маркерами.
- 3. Добавьте заголовок: *«Восстановление численности рыб после снижения загрязнения»*.

Название документа: Лабораторная работа по дисциплине «Инф	орматика» для студентов
направления подготовки 05.03.06 Экология и природопользование	
Разработчик: Леонтьев Д.А. Страница 10 из 13	Версия 2

Восстановление численности рыб после снижения загрязнения 35 30 25 20 15 10 5 2024 2025 2026 2027 2028 2029

Теперь расширим нашу таблицу, добавив:

- Сценарий 1: Рыборазведение каждый год добавляется фиксированное количество рыб (например, +1.5 тыс. особей);
- Сценарий 2: Вариативность (случайные колебания роста) каждый год темп роста варьируется в пределах ±3%.

•

Год	t	Базовый (10%)	Рыборазведение (+1.5 тыс)	Вариативность (±3%)
2024	0	18.0	18.0	18.0
2025	1	=C2*1.1	=D2*1.1+1.5	=E2*(1+СЛУЧМЕЖДУ(7;13)/100)
2026	2	=C3*1.1	=D3*1.1+1.5	=E3*(1+СЛУЧМЕЖДУ(7;13)/100)
2027	3	=C4*1.1	=D4*1.1+1.5	=E4*(1+СЛУЧМЕЖДУ(7;13)/100)
2028	4	=C5*1.1	=D5*1.1+1.5	=E5*(1+СЛУЧМЕЖДУ(7;13)/100)
2029	5	=C6*1.1	=D6*1.1+1.5	=E6*(1+СЛУЧМЕЖДУ(7;13)/100)

★ Заметки:

- Базовый 10% стабильного восстановления.
- Рыборазведение 10% роста + 1.5 тыс. добавляется вручную.
- Вариативность рост от 7% до 13% случайно (можно поменять диапазон).

 \triangle Формулы СЛУЧМЕЖДУ нужно пересчитывать вручную каждый раз (или нажать F9), чтобы получить новые значения.

Построение графика

- 1. Выделите все три числовых столбца + годы.
- 2. Вставка \rightarrow График с несколькими линиями.

Пример:

Название документа: Лабораторная работа по дисциплине «Информа	тика» для студентов
направления подготовки 05.03.06 Экология и природопользование	
Разработчик: Леонтьев Д.А. Страница 11 из 13	Версия 2
Копии с данной лабораторной без разрешения автора запрещены	

Ответьте на вопросы:

- Какой из сценариев показывает наибольшую численность в 2029 году?
- Что происходит при случайных колебаниях темпа? Насколько это рискованно?
- При каком сценарии численность восстанавливается быстрее?

★ Дополнительные задания

Q Вариант 1: Оценка порогового значения

Цель: определить, при каком уровне загрязнения численность рыб падает ниже критического минимума (например, 10 тыс. особей).

Инструкция:

- 1. Используя уравнение линейной регрессии y = -3x + 48.6, рассчитайте численность рыб при различных уровнях загрязнения (от 5 до 15 мг/л).
- 2. Создайте таблицу и график зависимости численности от уровня загрязнения.
- 3. Найдите пороговое значение загрязнения, при котором численность рыб падает ниже 10 тыс.

Вопрос для анализа: Какое предельное значение загрязнения допустимо для выживания популяции?

ХЪ Вариант 2: Сравнение двух экосистем

Цель: сравнить темпы восстановления в двух разных условиях (например, река vs. озеро).

Название документа: Лабораторная работа по дисциплине «Информат	гика» для студентов			
направления подготовки 05.03.06 Экология и природопользование				
Разработчик: Леонтьев Д.А. Страница 12 из 13	Версия 2			
Копии с данной лабораторной без разрешения автора запрещены				

Инструкция:

- 1. Постройте две модели восстановления:
 - о Первая: рост 10%, рыборазведения нет.
 - ∘ Вторая: рост 7%, но ежегодное добавление +2 тыс. рыб.
- 2. Постройте графики и сравните численность за 5 лет.

Вопросы:

- В каком случае численность выше через 5 лет?
- Что эффективнее естественное восстановление или вмешательство?
 - Вариант 3: Модель с рисками (введение случайного события)

Цель: смоделировать катастрофический год (например, разлив токсинов).

Инструкция:

- 1. Смоделируйте восстановление численности при 10% росте.
- 2. В одном случайном году (например, 2027) введите снижение численности на 40%.
- 3. Продолжите восстановление после катастрофы.
- 4. Постройте график с пометкой «экологическая авария».

Вопрос: Сколько лет нужно для возвращения к уровню до аварии?