

Presentation Layout:

- 1) Problem statement
- 2) Assumptions
- 3) Differential equations solver
- 4) Numerical integration
- 5) Trajectory
- 6) Landing
 - a) Wind
 - b) Controllers
- 7) Experiments
- 8) Discussion
- 9) Conclusion
- 10) References

Problem statement

- How do we accurately reproduce the trajectory of a launched spacecraft from earth to a given target in the solar system?
- How can we safely and precisely execute a spatial landing taking into consideration the external forces of Titan's atmosphere?

Assumptions

- Only taking into consideration the dominant bodies of the solar system, such as planets and their corresponding forces
- The forces that act upon our probe are merely, the gravitational forces and the wind and drag force during the landing
- Landing on Titan is visualized and calculated in two dimensions, this applies also for the wind model and the controllers
- Rounding-off and truncation errors are assumed to be small enough to not be relevant while analysing the final results

Differential Equation

- Newton's universal law of gravity
- Newton's second law of motion
- ☐ State rate-of-change over time dy/dt = [v, a]

$$F_{g} = \sum Gm_{i}m_{j} \frac{x_{j} - x_{i}}{||x_{i} - x_{j}||}$$

F = ma

Differential Equations solver

- ☐ Used to approximate the next state of solar system and thus the state (position, velocity) of our rocket or probe
- ☐ Two different different equation solvers were implemented for this purpose:
 - Euler's method
 - Fourth order Runge-Kutta method

Euler's method

- \square Next state y_{n+1} based on current state y_n and its respective slope dy/dt
- ☐ Easy to implement
- ☐ Used to bootstrap the starting point of the other solvers
- Global truncation error of O(h) and local error of $O(h^2)$

Runge-Kutta's method

- Classical RK4 implemented
- Leads to an usage of four different derivatives to calculate the next state (backup slide)
- Global error of $O(h^4)$ and local error of $O(h^5)$
- Time complexity in general was relatively high

Numerical Integration

We implemented two numerical methods for two different tasks:

- □ Verlet integration:
 Very good at simulating systems with energy conservation
- Newton's method:
 find a trajectory to Titan from Earth and back

Verlet Integration

- This integration method is used to solve kinematic equations.
- In order to solve these equations the previous position must be known, so the use of the Euler's method is necessary to compute the first time step
- Involved equations:

$$x_{n+1} = 2x_n - x_{n-1} + at^2$$
 $v_{n+1} = 2v_n + at$

Newton's method

- ☐ Finds a velocity such that d(rocket or probe, Target) = 0
- $oldsymbol{\Box}$ Leads to a complicated distance function : $g(x)\!=\!x_T^{}\!-\!x_k^{}$
- Uses an iterative step to determine 3-dimensional velocity
- $\ \Box$ Leads to a multivariable step: $v_{k+1} = v_k D_{g'(x)} g(x)$

Time Complexity

The time taken for each solver to compute one year of simulation was measured.

Maastricht University

Absolute Error: Euler and RK4 h= 216000s

Accuracy

□ The exact solution used for testing was the derivative of a given function, namely:

$$y = e^{-t} - y^2$$

- Only Euler and RK4 were examined.
- → At several points the analytical and experimental were compared, calculating the corresponding absolute error.

$$max_{n \in \{0,\ 1,\ \dots,\ T/h\}} \left| v^n - u^n \right| \quad \text{ as } \quad h - \gg 0$$

Absolute Error: RK4 with 0.01s and 0.02s

Trajectory

- ☐ Large parts of trajectory covered by solution found through Newton's method
- □ Depending on how Newton's method is applied, minor-corrections may be required due to mass loss of fuel
- Easiest solution is using Newton's method to determine a velocity such that the final distance between Titan and the rocket or probe of the simulation is zero.
- ☐ This leads to only major loss of fuel mass at the beginning of the journey and not during.

Landing Simulation

- Wind Model
 - Air Density
 - Wind speed
- ☐ Feedback Controller

Titan's Air Density

Wind Speed & Angle

- Data taken from ESA Cassini Huygens mission.
- ☐ Fitted to a degree 10 polynomial function with a R^2 of 0.98.
- → A random starting angle was taken for the wind.
- It randomly deviated by ± 0 -0.5 radians each time step. With a 1/100 chance of changing by π .

Closed loop controller

- Measure the current state of a system
- Error: Difference between the current state and the desired state

Main forces acting on the Lander:

- Acceleration due to gravity
- Wind force acting on the lander.
- The drag force as the lander travels through Titan's atmosphere

Drag Force & Wind Force:

At each time step the gravitational force needs to be calculated, then the drag force.

$$F_w = \frac{1}{2} \times \rho \times A \times V_w^2$$
 $F_D = C_d \times A \times \frac{\rho V^2}{2}$

$$F_D = C_d \times A \times \frac{\rho V^2}{2}$$

Fd = Drag force N

Fw = Wind Force N

Vw = Wind Speed m/s

Cd = Drag coefficient

A = Reference area m

 ϱ = Density of the air kg/m³

V = Velocity of the lander m/s

At each time step the total wind, drag and gravitational, X & Y force is calculated. This used to find the acceleration in the X & Y direction.

$$\frac{F}{m}\!=\!a \hspace{1cm} x_{n+1}\!\!=\!x_{n}\!+\!v_{n}t\!+\!\frac{1}{2}at \hspace{1cm} v_{n+1}\!\!=\!v_{n}\!+\!at$$

Gravitational Acceleration:

Gravitational force is found using Newton's law of gravitation.

$$F_g = \frac{GM_1M_2}{R^2}$$
 $F_r = \sqrt{F_x^2 + F_y^2}$

Angle of action and X & Y components are found using.

$$\theta = tan^{-1}(\frac{y}{X})$$

$$F_{x} = F_{g} \times cos(\theta)$$

$$F_{y} = F_{g} \times sin(\theta)$$

Open Loop Controller Methodology:

☐ The angle for the corrective burn can be found using the equation:

$$\theta = tan^{-1} \left(\frac{F_y}{F_x} \right)$$

☐ The probe is then adjusted to the target angle using RCS thruster and the burn is performed.

Adjusting Inclination:

• Torque Equation:
$$\tau = Fr$$

• Moment of Inertia:
$$I = \sum mr^2$$

• Angular Acceleration:
$$\alpha = \frac{net\tau}{I}$$

• Final Velocity:
$$v = \sqrt{u^2 + 2\alpha s}$$

• Rotation Time
$$t = \frac{v - u}{a}$$

Conclusion (1)

- Euler preferred over Verlet and Runge-Kutta due to the GUI simulation done through a constant step size of a day
- ☐ Furthermore, both the probe and rocket trajectory were obtained through Newton's method in combination with Euler
- → A stochastic was applied for the landing, using a closed loop controller.

 The lander was able to land but not a target location.

Conclusion (2)

- Multiple limitations:
 - Not everything was integrated to GUI
 - ☐ Errors visible in GUI due to the large step size of a day
 - Many more

References

Striepe, S. A., Blanchard, R. C., Kirsch, M. F., & Fowler, W. T. (2007). Huygens Titan Probe Trajectory Reconstruction Using Traditional Methods And The Program To Optimize Simulated Trajectories II (aas 07-226). Advances in Astronautical Sciences, 127, 1853–1880.

Lindal, G., Wood, G., Hotz, H., Sweetnam, D., Eshleman, V., & Tyler, G. (1983). The atmosphere of Titan: An analysis of the Voyager 1 radio occultation measurements. Icarus, 53(2), 348-363. doi: 10.1016/0019-1035(83)90155-0

Scott, D. (2007). Lunar Module Descent Stage Rocket Engine Thrust Chamber. Retrieved 15 June 2021, from https://www.apolloartifacts.com/2007/09/tr-201-bipropel.html

Woolf, P. 11.1: Feedback Control. Retrieved 15 June 2021, from https://eng.libretexts.org/Bookshelves/Industrial and Systems Engineering/Book%3A Chemical Proce ss Dynamics and Controls (Woolf)/11%3A Control Architectures/11.01%3A Feedback control- Wh at is it%3F When useful%3F When not%3F Common usage

BACKUP SLIDES

RK4 formulae

$$w_{i+1} = w_i + 1/6 (k_1 + 2k_2 + 2k_3 + k_4)$$

Where;

$$h = t_{i+1} - t_i$$

$$k_1 = h f(t_i, w_i)$$

$$k_2 = h f(t_i + h/2, w_i + k_1/2)$$

$$k_3 = h f(t_i + h/2, w_i + k_2/2)$$

$$k_4 = h f(t_i + h, w_i + k_3)$$

; Step size

; Start point, it is the same as Euler's method

; Midpoint derivative

; Midpoint derivative

; Endpoint derivative

Time complexity graphs

Each solver alone, 1 year simulation using big step sizes

Euler Time Complexity

Step size used

RK4 Time Complexity

Verlet Time Complexity

Time Complexity graph (small step sizes)

Euler, RK4 and Verlet Small steps comparaison T-C

RK4, Verlet; Difference in computation time

Wind

1) Modeling the wind on Titan :

- Extracted a data set from the Hugyen wind experiment indicating the relationship between the wind speed and altitude
- ☐ Linear regression
- Random factor
- Conversion from wind speed to a force that will act on the Lander's X axis

Wind

Stochastic Model:

- Randomized the wind by deviating the previous model by 20%
- ☐ Change of directions every 1/100

Original wind model without any random factors

Figure 1: Linear functions representing the relationship between the wind speed and altitude with the added randomness factors