MODELOS DE COMPUTACIÓN

RELACION DE PROBLEMAS III.

- 1. Para el lenguaje representado por la expresión regular $(01)^*0$, obtener
 - ullet Una gramática lineal por la derecha que genera a L.
 - lacktriangle Una gramática lineal por la izquierda que genera a L.
 - ullet El autómata finito determinístico minimal que acepta el lenguaje L.
- 2. Encontrar si es posible una gramática lineal por la derecha o una gramática libre del contexto que genere el lenguaje L supuesto que $L \subset \{a, b, c\}^*$ y verifica:
 - $u \in L$ si y solamente si verifica que u no contiene dos símbolos b consecutivos.
 - $u \in L$ si y solamente si verifica que u contiene dos símbolos b consecutivos.
 - $u \in L$ si y solamente si verifica que contiene un número impar de símbolos c.
 - $u \in L$ si y solamente si verifica que no contiene el mismo número de símbolos b que de símbolos c.
- 3. Encontrar un AFD minimal para el lenguaje

$$(a+b)^*(aa+bb)(a+b)^*$$

- 4. Para cada uno de los siguientes lenguajes regulares, encontrar el autómata minimal asociado, y a partir de dicho autómata minimal, determinar la gramática regular que genera el lenguaje:
 - a^+b^+
 - a(a+b)*b
- 5. Considera la gramática cuyas producciones se presentan a continuación y donde el símbolo inicial es S:

$$S \to xN|x$$

$$N \to yM|y$$

$$M \to zN|z$$

- Escribe el diagrama de transiciones para ab AFD que acepte el lenguaje L(G) generado por G.
- lacktriangle Encuentra una gramática regular por la izquierda que genere ese mismo lenguaje L(G).

- \blacksquare Encuentra el AFD que acepte el complementario del lenguaje L(G).
- 6. Construir un AFD minimal para el lenguaje dado por la expresión regular

$$1^{+}01^{*}$$

- 7. Obtener autómatas finitos determinísticos para los siguientes lenguajes sobre el alfabeto $\{0,1\}.$
 - Palabras en las que el número de 1 es múltiplo de 3 y el número de 0 es par.
 - $\{(01)^{2i} \mid i \geq 0 \}$
 - $\{(0^{2i}1^{2i}) \mid i \ge 0\}$
- 8. Construir un Autómata Finito Determinístico que acepte el lenguaje generado por la siguiente gramática:

$$S \to AB, \quad A \to aA, \quad A \to c$$
 $B \to bBb, \quad B \to d$

- 9. Dar una expresión regular para la intersección de los lenguajes asociados a las expresiones regulares (01+1)*0 y (10+0)*. Se valorará que se construya el autómata que acepta la intersección de estos lenguajes, se minimice y, a partir del resultado, se construya la expresión regular.
- 10. Construir un Autómata Finito Determinista Minimal que acepte el lenguaje sobre el alfabeto $\{a,b,c\}$ de todas aquellas palabras que verifiquen simultaneamente las siguientes condiciones
 - a) La palabra contiene un número par de a's
 - b) La longitud de la palabra es un múltiplo de 3.
 - c) La palabra no contiene la subcadena abc.
- 11. Determinar si los siguientes lenguajes son regulares o libres de contexto. Justificar las respuestas.
 - $\{0^i b^j \mid i = 2j \text{ ó } 2i = j\}$
 - $\{uu^{-1} \mid u \in \{0,1\}^*, |u| < 1000\}$
 - $\{uu^{-1} \mid u \in \{0,1\}^*, |u| > 1000\}$

•
$$\{0^i 1^j 2^k \mid i = j \text{ ó } j = k\}$$

- 12. Determinar que lenguajes son regulares o libres de contexto de los siguientes:
 - a) $\{u0u^{-1} \mid u \in \{0,1\}^*\}$
 - b) Números en binario que sean múltiplos de $4\,$
 - c) Palabras de $\{0,1\}^*$ que no contienen la cab
cadena 0110
- 13. Determinar autómatas minimales para los lenguajes $L(M_1) \cup L(M_2)$ y $L(M_1) \cap \overline{L(M_2)}$ donde,
 - $M_1 = (\{q_0, q_1, q_2, q_3\}, \{a, b, c\}, \delta_1, q_0, \{q_2\})$ donde

 $M_2 = (\{q_0, q_1, q_2, q_3\}, \{a, b, c\}, \delta_2, q_0, \{q_2\})$

- 14. Determinar qué lenguajes son regulares y qué lenguajes son libres de contexto entre los siguientes:
 - a) Conjunto de palabras sobre el alfabeto $\{0,1\}$ en las que cada 1 va precedido por un número par de ceros.
 - b) Conjunto $\{0^{i}1^{2}j0^{i+j}|i,j\geq 0\}$
 - c) Conjunto $\{0^i 1^j 0^{i*j} | i, j \ge 0\}$
- 15. Dado el conjunto regular representado por la expresion regular $a^*b^* + b^*a^*$, construir un autómata finito determinístico minimal que lo acepte.
- 16. Sean los lenguajes:

$$-L_1 = (01+1)*00$$

$$-L_2 = 01(01+1)^*$$

construir un autómata finito determinístico minimal que acepte el lenguaje $L_1 - L_2$, a partir de autómatas que acepten L_1 y L_2 .

17. Dada una palabra $u = a_1 \dots a_n \in A^*$, se llama Per(u) al conjunto

$$\{a_{\sigma(1)},\ldots,a_{\sigma(n)}:\sigma \text{ es una permutación de }\{1,\ldots,n\}\}$$

.

Dado un lenguaje L, se llama $Per(L) = \bigcup_{u \in L} Per(u)$.

Dar expresiones regulares y autómatas minimales para Per(L) en los siguientes casos:

- a) $L = (00 + 1)^*$
- b) L = (0+1)*0
- c) $L = (01)^*$

¿Es posible que, siendo L regular, Per(L) no lo sea?

18. Dados los alfabetos $A = \{0, 1, 2, 3\}$ y $B = \{0, 1\}$ y el homomorfismo f de A^* en B^* dado por:

•
$$f(0) = 00$$
, $f(1) = 01$, $f(2) = 10$, $f(3) = 11$

Sea L el conjunto de las palabras de B^* en las que el número de símbolos 0 es par y el de símbolos 1 no es múltiplo de 3. Construir un autómata finito determinista que acepte el lenguaje $f^{-1}(L)$.

- 19. Determinar una autómata finito determinístico minimal para el el lenguaje sobre el alfabeto $A = \{a, b, c\}$ dado por la expresión regular $b(a + b)^* + cb^*$.
- 20. Dar expresiones regulares para los siguientes lenguajes sobre el alfabeto $A = \{a, b, c\}$,
 - ullet Palabras en las que cada c va precedida de una a o una b
 - Palabras de longitud impar
 - lacktriangle Palabras de longitud impar en las que el símbolo central es una c
 - Palabras en las que los dos primero símbolos son iguales a los dos último símbolos en orden inverso: si la palabra empieza por ab, debe de terminar por ba.
- 21. Determinar si las expresiones regulares siguientes representan el mismo lenguaje:

a)
$$(b + (c+a)a^*(b+c))^*(c+a)a^*$$

- b) $b^*(c+a)((b+c)b^*(c+a))^*a^*$
- c) $b^*(c+a)(a^*(b+c)b^*(c+a))^*a^*$

Justificar la respuesta.

- 22. Construir un autómata finito determinista minimal que acepte el conjunto de palabras sobre el alfabeto $A = \{0, 1\}$ que representen números no divisibles por dos ni por tres.
- 23. Determinar una expresión regular para los siguientes lenguajes sobre el alfabeto $\{0,1\}$:
 - Palabras en las que el tercer símbolo es un 0.
 - Palabras en las que el antepenúltimo símbolo es un 1.

Construir un autómata finito minimal que acepte la intersección de ambos lenguajes.

- 24. Construir autómatas finitos minimales para los siguientes lenguajes sobre el alfabeto $\{0,1\}$:
 - a) Palabras que contienen como subcadena una palabra del conjunto {00, 11}².
 - b) Palabras que contienen como subcadena una palabra del conjunto {0011, 1100}.
- 25. Encuentra para cada uno de los siguientes lenguajes una gramática de tipo 3 que lo genere o un autómata finito que lo reconozca:
 - a) $L = \{u \in \{a, b\}^* : u \text{ no contiene la subcadena } 'abab'\}$
 - b) $L = \{a^n b^m c^p : n \ge 0 \text{ y mltiplo de } 3, m \ge 0, p > 0\}$
 - c) $L = \{(ab)^j (cd)^i : j \ge i \ge 0\}$
- 26. Construye una gramática regular que genere el siguiente lenguaje:

$$L_1 = \{u \in \{0,1\}^* \mid \text{ el número de 1's } y \text{ el número de 0's en } u \text{ es par}\}$$

• Construye un autómata que reconozca el siguiente lenguaje:

$$L_2 = \{0^n 1^m \mid n \ge 1, m \ge 0, n \text{ múltiplo de } 3, m \text{ par}\}\$$

- Diseña el AFD mínimo que reconoce el lenguaje $(L_1 \cup L_2)$.
- 27. Construir expresiones regulares para los siguientes lenguajes sobre el alfabeto $\{0,1\}$:
 - a) Palabras en las que el número de símbolos 0 es múltiplo de 3.

- b) Palabras que contienen como subcadena a 1100 ó a 00110
- c) Palabras en las que cada cero forma parte de una subcadena de 2 ceros y cada 1 forma parte de una subcadena de 3 unos.
- d) Palabras en las que el número de ocurrencias de la subcadena 011 es menor o igual que el de ocurrencias de la subcadena 110.
- 28. Sobre el alfabeto $\{0,1\}$:
 - a) Construye una gramática regular que genere el lenguaje L_1 de las palabras u tales que:
 - Si |u| < 5 entonces el número de 1's es impar.
 - Si $|u| \ge 5$ entonces el número de 1's es par.
 - \blacksquare u tiene al menos un símbolo 1.
 - b) Construye un autómata que reconozca el lenguaje L_2 dado por:

$$L_2 = \{0^n 1^m : n \ge 0, m \ge 1, m \text{ es múltiplo de 6}\}$$

- c) Diseña el AFD mínimo que reconozca el lenguaje $(L_1 \cup L_2)$.
- 29. Encuentra para cada uno de los siguientes lenguajes una gramática de tipo 3 que lo genere o un autómata finito que lo reconozca:
 - $L_1 = \{u \in \{0,1\}^* : u \text{ no contiene la subcadena } 'abab'\}$
 - $L_2 = \{0^i 1^j 0^k : i \ge 1, k \ge 0, i \text{ impar}, k \text{ múltiplo de 3 y } j \ge 2\}.$

Diseña el AFD mínimo que reconoce el lenguaje $(L_2 \cap L_1)$.

- 30. Encuentra una expresión regular para los siguientes lenguajes sobre el alfabeto $A = \{a, b, c\}$:
 - a) el aceptado por el siguiente AFD:

b) el generado por la siguiente gramática:

$$S \to aA|bA|cA, \qquad A \to \epsilon|aS|bS|cS$$

c) el generado por la siguiente gramática:

$$S \to TST|c, \qquad T \to a|b|c$$

- 31. Dado el alfabeto $A = \{a, b, c\}$, encuentra:
 - a) Un AFD que reconozca las palabras en las que cada 'c' va precedida de una 'a' o una 'b'.
 - b) Una expresión regular que represente el lenguaje compuesto por las palabras de longitud impar en las que el símbolo central es una c'.
 - c) Una gramática regular que genere las palabras de longitud impar.
- 32. Construir autómatas finitos para los siguientes lenguajes sobre el alfabeto $\{a,b,c\}$:
 - a) L_1 : palabras del lenguaje $(\mathbf{a} + \mathbf{b})^* (\mathbf{b} + \mathbf{c})^*$.
 - b) L_2 : palabras en las que nunca hay una 'a' posterior a una 'c'.
 - c) $(L_1 \setminus L_2) \cup (L_2 \setminus L_1)$

¿Qué podemos concluir sobre L_1 y L_2 ?

- 33. Si $f: \{0,1\}^* \to \{a,b,c\}^*$ es un homomorfismo dado por f(0) = aab, f(1) = bbc, dar autómatas finitos deterministas minimales para los lenguajes L y $f^{-1}(L)$ donde $L \subseteq \{a,b,c\}^*$ es el lenguaje en el que el número de símbolos a no es múltiplo de 4.
- 34. Encuentra para los siguientes lenguajes una gramatica regular que lo genere, una expresion regular que lo represente o un automata finito que lo acepte:
 - a) Cadenas aceptadas (aceptada ≡ devuelve lata) por una maquina que devuelve refrescos a un precio de 1.20 euros, donde las monedas de entrada solo son: e (1 euro),
 v (20 centimos) y d (10 centimos).
 - b) $L_2 = \{u \in \{0,1\}^* \mid \text{ el numero de ceros y de unos en } u \text{ es par } \}$
 - c) L_3 = Palabras sobre $\{0,1\}$ en que cada símbolo que ocupa una posicion multiplo de 3 es un 1.
 - d) $L_4 = \{uu \mid u \in \{0,1\}^+\}$
- 35. Si L_1 es el lenguage asociado a la expresión regular $01(01+1)^*$ y L_2 el lenguaje asociado a la expresión $(1+10)^*01$, encontrar un autómata minimal que acepte el lenguaje $L_1 \setminus L_2$.

- 36. Determina si los siguientes lenguajes son regulares. Encuentra una gramática que los genere o un reconocedor que los acepte.
 - a) $L_1 = \{0^i 1^j : j < i\}.$
 - b) $L_2 = \{001^i 0^j 11 : i, j \ge 1\}.$
 - c) $L_3 = \{010u : u \in \{0,1\}^*, u \text{ no contiene la subcadena } 010\}.$
- 37. Sean los alfabetos $A_1 = \{a, b, c, d\}$ y $A_2 = \{0, 1\}$ y el lenguaje $L \subseteq A_2^*$ dado por la expresión regular $(\mathbf{0} + \mathbf{1})^*\mathbf{0}(\mathbf{0} + \mathbf{1})$, calcular una expresión regular para el lenguaje $f^{-1}(L)$ donde f es el homomorfismo entre A_1^* y A_2^* dado por

$$f(a) = 01,$$
 $f(b) = 1,$ $f(c) = 0,$ $f(d) = 00$

- 38. Obtener un autómata finito determinista para el lenguaje asociado a la expresión regular: $(01)^+ + (010)^*$. Minimizarlo.
- 39. Construye gramáticas regulares que generen los siguientes lenguajes en el alfabeto a,b:
 - a) $L_1 = \{u \in \{a,b\}^* \mid u \text{ no contiene la subcadena } 'aba'\}$
 - b) $L_2 = \{u \in \{a,b\}^* \mid \text{ el número de } a\text{'s en } u \text{ es múltiplo de 3 y } u \text{ no contiene la subcadena } 'aba'\}$
 - c) $L_3 = \{a^m b^n \mid m \neq n\}$
- 40. Dado el lenguaje L asociado a la expresión regular $(01 + 011)^*$ y el homomorfismo f: $\{0,1\}^* \to \{0,1\}^*$ dado por f(0) = 01, f(1) = 1, construir una expresión regular para el lenguaje $f^{-1}(L)$.
- 41. Dar expresiones regulares para los siguientes lenguajes sobre el alfabeto $A_1 = \{0, 1, 2\}$:
 - a) L dado por el conjunto de palabras en las que cada 0 que no sea el último de la palabra va seguido por un 1 y cada 1 que no sea el último símbolo de la palabra va seguido por un 0.
 - b) Considera el homomorfimos de A_1 en $A_2 = \{0,1\}$ dado por f(0) = 001, f(1) = 100, f(2) = 0011. Dar una expresión regular para f(L).
 - c) Dar una expresión regular para LL^{-1} .
- 42. Dados los lenguajes: $L_1 = \{0^i 1^j \mid i \geq 1, j \text{ es par y } j \geq 2\}$ y $L_2 = \{1^j 0^k \mid k \geq 1, j \text{ es impar y } j \geq 1\}$ encuentra:
 - a) Una gramática regular que genere el lenguaje L_1 .

- b) Una expresión regular que represente al lenguaje L_2 .
- c) Un autómata finito determinista que acepte las cadenas de la concatenación de los lenguajes, L_1L_2 . Aplica el algoritmo para minimizar este autómata.
- 43. Determinar si los siguientes autómatas finitos aceptan el mismo lenguaje justificando la respuesta (\rightarrow y * indican el estado inicial y estado final respectivamente; los estados se indican con letras mayúsculas). Justificar la respuesta.

	0	1
\rightarrow A	В	F
В	G	С
*C	A	С
D	С	G
Ε	Н	F
F	С	G
G	G	Е
Н	G	С

	0	1
\rightarrow A	G	С
В	В	A
С	D	В
*D	A	D
G	В	D

44. Comprobar si los siguientes autómatas son equivalentes:

45. Sea el alfabeto $A = \{0, 1, +, =\}$, demostrar que el lenguaje

 $ADD = \{x = y + z \,|\, x, y, z \text{ son números en binario, y } x \text{ es la suma de } y \neq z\}$

no es regular.

46. Si L_1, L_2 son lenguajes sobre el alfabeto A, entonces la mezcla perfecta de estos lenguajes se define como el lenguaje

$$\{w \mid w = a_1 b_1 \dots a_k b_k \text{ donde } a_1 \dots a_k \in L_1, b_1 \dots b_k \in L_2, a_i, b_i \in A\}$$

Demostrar que si L_1 y L_2 son regulares, entonces la mezcal perfecta de L_1 y L_2 es regular.

47. Minimizar el autómata:

- 48. Si $L \subseteq A^*$, define la relación \equiv en A^* como sigue: si $u, v \in A^*$, entonces $u \equiv v$ si y solo si para toda $z \in A^*$, tenemos que $(uz \in L \Leftrightarrow vz \in L)$.
 - a) Demostrar que \equiv es una relación de equivalencia.
 - b) Calcular las clases de equivalencia de $L = \{a^i b^i \, | \, i \geq 0\}$
 - c) Calcular las clases de equivalencia de $L = \{a^i b^j \, | \, i, j \geq 0\}$
 - d) Demostrar que L es aceptado por un autómata finito determinístico si y solo si el número de clases de equivalencia es finito.
 - e) ¿Qué relación existe entre el número de clases de equivalencia y el autómata finito minimal que acepta L?