BLOKZİNCİR TEKNOLOJİSİNDE UZLAŞMA MODELLERİ

1. Ulusal Blokzincir Çalıştayı

2-3 Nisan, 2018 Ankara, Türkiye

Ajanda

- Motivasyon
- Emek Kanıtı Uzlaşma Modeli
- Hisse Kanıtı Uzlaşma Modeli
 - Temsili Hisse Kanıtı
 - Kiralık Hisse Kanıtı
 - □ Önem Kanıtı
 - Casper Hisse Kanıtı
 - Ouroboros: Hisse Kanıtı
- Bizans Hata Toleransı Uzlaşma Modeli
 - Temsili Bizans Hata Toleransı
 - Pratik Bizans Hata Toleransı
 - Federe Bizans Anlaşması
- □ Sonuç

Blokzincir Teknolojisi Mimarisi

BLOKZİNCİR: Düğümler

- Bir blokzincir, veri akışını yöneten herhangi bir merkezi yetkiye sahip olmayan düğümler arası bir sistemdir.
 - Düğümler aynı haklara sahiptirler.
 - Bir düğüm istemci ve/veya sunucu olabilmektedir.
- Düğümler yapılarına göre farklılık gösterirler.
 - Tam düğüm
 - Basit düğüm
 - Madenci düğüm
 - Madenci havuzu

Kriptografik Özet Fonksiyonu

- Değişken uzunlukta bir mesajı sabit uzunlukta bir özet değerine dönüştüren fonksiyonlardır.
- Bir açık metnin özet fonksiyon değeri o metnin parmak izi veya DNA'sı olarak tanımlanır.
- □ Temel özellikleri:
 - Hesaplama kolaylığı
 - Çakışma saldırısına karşı güvenli olmalı
 - Özet(m1)=Özet(m2) durumunu sağlayan iki mesajın bulunmasıdır
 - Ters görüntü Elde edilmesine karşı güvenli olmalı
 - Verilen bir özet değerine karşılık gelen açık metinin bulunmasıdır
- En çok kullanılan özet fonksiyonlar: SHA-256,
 Keccak-256, RIPEMD160, Scrypt, X11

BLOKZÍNCÍR

Neden Uzlaşma Modeli Gerekli

- Insanlar, bir blokzincir ağına neden katılmak isterler?
- Bir düğüm, neden başka bir düğüm tarafından çözülmüş bir bloğu yayınlamak ister?
- Birden fazla madenci düğümü bir bloğu yaklaşık olarak aynı anda çözdüğünde çatışmaları kim yönetecektir?
- Kötü niyetli düğümlere karşı nasıl bir yol izlenecek?
- İyi niyetli düğümlerin işlemler esnasında ağdan düşmesi durumunda ağın durumu?

İyi Bir Mutabakat

EMEK KANITI (Proof of Work) UZLAŞMA MODELİ

Emek Kanıtı Uzlaşma Modeli

- Emek kanıtı (Proof of Work) hizmet saldırılarını ve diğer hizmet ihlallerini engellemek için ekonomik bir önlem olarak tanımlanmaktadır.
 - Bu model, Cynthia Dwork ve Moni Naor tarafından istenmeyen epostalar ile mücadelede kullanıldı (Yıl: 1993)
 - Markus Jakobsson and Ari Juels tarafından 1999'daki makalelerinde bu yöntem formalize edildi.
- İki farklı emek kanıtı yöntemi bulunmaktadır.
 - Çözüm-Doğrulama, Sorgu-Cevap

Emek Kanıtı: Çözüm-Doğrulama Protokolü

- Bu protokolde gönderici ve alıcı arasında herhangi bir senkron iletişime gerek yoktur.
- Belirli bir kurallara göre hazırlanmış
 bulmacalar çözümüne kavuşturulur.
- Bulmacalar asimetrik özelliğe sahiptirler.
 - İstekte bulunan taraf için orta derecede zor ve hesaplanması mümkün.
 - Servis sağlayıcı tarafından doğrulanması kolay.
- Bulmacaların çözümü yüksek miktarda
 CPU/GPU işlemi gerektirmektedir.
- Bazı bulmacalar:
 - Kriptografik özet fonksiyon tabanlı
 - Büyük asal sayı modunda tamsayıların karekökü
 - Kismi özet fonksiyon tersinin bulunması

Çözüm-Doğrulama Protokolü

Özet Fonksiyon Tabanlı Bulmaca

 SHA-256 özet fonksiyonu kullanılarak hazırlanır.

Örnek Bulmaca:

- SHA256 ("blokzincir" + Teksa) ="0000000" ile başlayan özet değeri
- Yedi tane sıfır ile başlayan özet değeri.
- Teksa: Tek Kullanımlık Sayı
- Bu çözüm için i7 işlemcili 12GB RAM'e sahip bir makinede Windows 10 İşletim Sisteminde Java BouncyCastle kütüphanesi kullanıldığında:
 - 33758449 deneme,
 - □ 25 sn.

Özet Algoritma ve Mesajın Başı	Teksa	Özet Değeri
SHA256("blokzincir"+0)	0	0x11dda4b2f8409049aedb06247f0423f45194bd ad1c23308b69565e49a671ebab
SHA256("blokzincir"+1)	1	0xb2efee8229b6fabd4dad44351ec327c6a3295b 19e47e1a239ec381919fcf90ea
SHA256("blokzincir"+teksa)	33758449	0x <mark>0000000</mark> 67d668d96d3415bcd2909fed7242cf7 5438596b38f675e8a926a5e30c

Özet Fonksiyon Tabanlı Bulmaca

- Bulmacaların zorluk derecesi sıfırların sayısının arttırılması ile gerçekleştirilir.
 - Daha fazla teksa kullanılması ile çözülür.
 - Daha fazla zaman gerektirir.
- Hedefi 8 sıfırla başlayan özeti bulma olarak değiştirildiğinde:
 - Çözümü aynı donanım ile 9.264.471.446 farklı teksa ile
 - 1 saat 53 dakika 13 saniyede çözüldü
 - □ Çözüm: SHA256("blokzincir9264471446") =0x00000008252af91fb84d5c0cbb5103e169892c8b56334bfa4666bb6ff49b17e
- Şuan Bitcoin'deki zorluk derecesi: ikilik tabanda 73 tane sıfırla başlayan özet değeridir.

Özet Fonksiyon Tabanlı Bulmaca

- Bu bulmacaların çözümünde kısa yol yoktur.
- Madenci düğümler, hedef değer için doğru olan değeri bulmak için yoğun bir hesaplama yapmak ve bunun için de zaman ve enerji kaynakları harcamak zorundadır.
- Zorluk derecesinin artması ile herhangi bir bilgisayar için bir bulmacayı çözmek imkansız hale gelmektedir.
 - Bu nedenle, madenci düğümleri kendilerini "havuz" ya da "kolektif" olarak örgütleyerek bulmacaları topluca çözmektedirler.
- Örnek: 40.000.000.000 tane farklı teksa denenerek 8 tane sıfır ile başlayan bir özet değeri hesaplansın.
 - 4 tane düğüm arasında eşit aralıklar ile paylaşılır.

Düğüm	Teksa: başlangıç	Teksa: son değer	
1. Düğüm	000000000	1000000000	
2. Düğüm	1000000001	20000000000	
3. Düğüm	20000000001	3000000000	
4. Düğüm	3000000001	4000000000	

Çözüm: Toplamda 1.835.009.602 farklı teksa değeri denenmiştir ve 30458017781 teksa değerini kullanan 4. düğüm 8. dk 5 saniyede cözmüştür:

Cevap: SHA256("blokzincir30458017781")

=0x0000000d4fa2df066b145aeda4e7a975e0049cba2a18f683c51d83f60f74db9

Emek Kanıtı: Dezavantajları-l

- Madenciliğin merkezileşmesi
 - İşlem gücünün %50'den fazlasını 4 tane madencilik havuzu yönetmektedir.
- ASIC ile madencilik yapılması, çok az şirket tarafından kontrol edilmesine sebebiyet vermektedir.

https://blockchain.info/tr/pools

Emek Kanıtı: Dezavantajları-II

Zorluk derecesi arttıkça, blok üretimi için çok fazla enerji gerekmektedir.

Bitcoin Özet Oranı vs Zorluk (Son 2 ay)

HİSSE KANITI (Proof of Stake) UZLAŞMA MODELİ

Hisse İspatı Uzlaşma Modeli

- Hisse İspatı kavramı ilk defa Bitcoin için paranın kıymetlenmesi/yaşı olarak 2011 yılının başlarında ortaya atıldı.
 - Hisse Sayısı x Zaman
 - Gerçekleşecek işlemlerin önceliklerini belirlemek için kullanıldı.
- Sunny King ve Scott Nadal hisse ispatının blokzincirlerde güvenlik modeli olarak kullanılabileceğini gösterdiler (2012).
 - Bir blok oluşturma ve ödül alma olasılığı, kullanıcının sistemdeki payıyla orantılıdır.
 - Dolaşımdaki madeni paraların %x payına sahip bir hissedar, %x olasılığı ile yeni bir blok oluşturur.
 - Bloku oluşturacak düğüm, sahip olduğu hisse pay oranına göre rasgele olmayan bir yöntemle seçilir.

Hisse İspatı: Avantajları/Dezavantajları

Avantajları

- Az enerji kullanılmaktadır.
- Saldırı için azaltılmış teşvikler bulunmaktadır.
- Bloklar daha hızlı üretilmektedir.

Dezavantajları

- Zenginler daha fazla zenginleşmektedir.
- Merkezileşme riski azaltıldı!?
- Sıfır hisse problemi (Nothing at Stake)

Sıfır Hisse Problemi

- Düğümlerin yaptıkları işlemler çok az işlem/enerji gerektirmektedir.
- Bazı düğümlerin aynı anda iki farklı bloku oluşturması ve imzalaması problemidir.
 - Çatallaşma oluşabilir.
 - Çatallaşmalarda çift harcama problemi gerçekleşme olasılığı çok büyüktür.
- □ Çözüm:
 - Böyle davrananları cezalandırmak.

Temsili Hisse Kanıtı Uzlaşma Modeli

- Daniel Larimer 2014 yılında geliştirilen
 bu modelde <u>oylama</u> ile temsilciler
 meclisi seçilmektedir.
 - Herkes sahip olduğu hisse oranı kadar oy kullanırlar.
- Temsilciler, blokları oluşturmak ve işlemleri onaylamaktan sorumludurlar.
 - Bu işlemlerden ötürü ödüllendirilmektedir.
- Temsilciler, blokların içerisinde yer alan işlemleri değiştiremezler.
- Temsilciler, bloklara uygun olmayan kötücül işlemlerin eklenmesini engellerler.
- İtibarını kaybeden tanıkları oylama ile değiştirilirler.
- BitShares, Steem, EOS, List ve Ark.

Kiralık Hisse Kanıtı Uzlaşma Modeli

- WAVES tarafından geliştirilen bu modelde hisseler kiralanmaktadır (2016).
 - □ Cüzdanında en az 10.000 WAVE bulunduran herkes madenci düğüm olabilmektedir.
 - Az hisseye sahip kişiler kontrolü kendilerinde olmak üzere hisselerini herhangi bir madenci düğüme kiralarlar.
 - Kiralayan düğümler hisse ağırlıklarını arttırırlar ve böylece blok oluşturma olasılıklarını arttırırlar.
 - Blok oluşturmada elde edilen ödül kiralanan hisse oranında paylaşılır.

Önemin Kanıtı Uzlaşma Modeli

- NEM tarafından geliştirilen bu modelde her bir hesap için bir güven derecelendirme notu verilmektedir.
- Önemli olarak kabul edilen kullanıcılar blok oluşturabilir ve karşılığında ödül almaktadırlar.
 - Sadece bloktaki işlem ücretleri dağıtılır.
- Bir NEM kullanıcısının önemi, sahip oldukları paraların sayısı ve cüzdanlarından yapılan işlem sayısı ile ölçülmektedir.
 - Önem hesabı için en az 10.000 XEM gerekir.
 - Gönderdiği hesaptan tekrar para alanların önem skoru azaltılır.
 - Her 24 saatte bir eldeki hissenin %10'u önem skoruna eklenir.
 - Önem hesabından bir düğüm son 30 günde en az 1000 XEM göndermiş olmalı.

(Proof of Importance)

Casper Hisse Kanıtı

- 2017'de Ethereum için geliştirilen ve yakın zamanda uygulamaya geçecektir.
 - Bu model, hisse kanıtı ile Bizans hata toleransı modelinin birleştirilmesinden oluşur.
 - Emek ispatı ile beraber yürütülecektir.
 - Zamanla emek ispatının etkisi kaldırılacak ve sadece bu model geçerli olacaktır.
- Blokların oluşturulması ve onaylanmasını doğrulayıcılar tarafından gerçeklenir.
 - Bir miktar ETH depozit olarak Casper akıllı sözleşmelerine yatırmak gerekiyor.
 - Depozitle, kötü doğrulayıcılar cezalandırılır.
 Bununla Sıfır Hisse Problemi çözülmüş olur.
 - lki fazda oylama ile bloklar hazırlanır ve yayınlanır. Her iki fazda da en az 2/3 oranında onay gerekir.

Ouroboros: Hisse Kanıtı

- Cardano Foundation tarafından geliştirilen bu modelde, zaman, çağlara ve çağlarda 20snlik zaman aralıklarına bölünür.
 - Bir çağda N tane zaman aralığı bulunur.
- Her zaman aralığı için belirli bir orandan fazla hisseye sahip düğümlerden bir lider seçilir.
 - Diğer düğümlerden gelen işlemleri alır. İşlemleri blok haline getirip imzalar ve ağa dağıtır.
 - Lider, kendi zaman aralığında çevrimdışı olursa hedeflenen blok boş kalacaktır.
 - Bir çağda bulunan blokların en az %50 + 1'i oluşması gerekir.
- Lider seçiminin tarafsız ve bağımsız olması için seçmenler arasında Güvenli Çoklu Hesaplama protokolleri (SMC) koşturulur.
 - Her seçmenden rasgele «madeni para atma» 'ları istenmektedir ve sonuçlarını SMC ile kendi aralarında paylaşırlar ve en sonunda ortak bir değere ulaşılır.
 - Kamu Tarafından Doğrulanabilir Giz Paylaşımı (Publicly Verifiable Secret Sharing)
 - Bu final değeri ile FTS (Follow Satoshi Algorithm) algoritmasına yedirilerek zaman aralıklarındaki liderler seçilir.

BİZANS HATA TOLERANSI (Byzantine Fault Tolerance) UZLAŞMA MODELİ

Bizans Hata Toleransı (BHT) Uzlaşma Modeli

- Bu model, Bizans savaş stratejisini anlatan Bizans federalleri hikâyesinin çözüm temeline dayanmaktadır.
 - Birkaç bölük düşman kentin dışında ve kendi generalin komutasındadır. Generaller, yalnızca ulakları vasıtasıyla haberleşirler.
 - Generallerin bazıları sadık, bazıları haindir. Sadıklar kurallara uyarken, hainler kurallara uymadıkları gibi, uyanları da yanıltabilirler.
 - Sehre ne zaman girileceği orduların güçlü bir birlikteliği olması gerekmektedir.
- Bu modelde <u>hainler</u> ne yaparsa yapsınlar <u>sadıkların</u> kötü bir plan hazırlamasına izin vermemesi gerekir.

Blokzincir Teknolojisinde Uzlaşma Modelleri

BHT Uzlaşma Modeli: Çözüm I

- Emek kanıtı uzlaşma etkili bir şekilde BHT'yi sağlar.
 - Yeterince büyük katılımcıya sahip olan bir Blokzincirde kullanıcılar hile yapamamaktadırlar.
 - Yüksek enerji gerektirdiğinden, her zaman tercih edilememektedir.

 Daha da kötüsü 91. blokun inşası bitmeden yapılması gerekmektedir.

https://medium.com/loom-network/understanding-blockchain-fundamentals-part-2-proof-of-work-proof-of-stake-b6ae907c7edb

BHT Uzlaşma Modeli: Çözüm II

- Sınırlı bir grup düğüm arasında uzlaşmaya varılarak çözülür.
 - Her düğüm bir durum tablosu tutar.
 - Her düğüm blokların hazırlanmasında ve/veya yayınlanmasında oy kullanırlar.
 - Düğüm oylarına ve çoğunluğun uzlaşması beklenir.
 - Tam/temsili demokratik bir çözümdür.

Pratik BHT Uzlaşma Modeli

- Hyperledger, BHT'yi pratikte uygulayan platformlardan biridir.
- □ Bu modelde:
 - Önceden belirlenmiş n=3f+1 tane düğüm ile uzlaşma yapılmaktadır.
 - Bu uzlaşmadan f tane düğüme tolerans gösterilmektedir.
 - Her makine kendisine gelen bir işlem bilgisini kontrol eder, onayladığı bir işlemi imzalayarak ağ ile paylaşır.
 - Doğrulama yapanların sayısının en az 2/3'ünde de aynı özet değeri görüldüğünde mutabakat sağlanmış kabul edilir ve oluşturulan blok muhasebe defterine kopyalanır.
- Düğüm sayısı düğümler arası mesajlaşma sayısını üstel olarak etkilemektedir

Temsili BHT Uzlaşma Modeli

- Castro ve Liskov tarafından önerilen
 PBHT uzlaşma modelinin temsili bir demokrasi ile geliştirilmiş halidir.
- NEO tarafından kullanılan bu modelde iki türlü düğüm bulunmaktadır:
 - Defter tutucular, tüm ağ için muhasebe hizmeti sağlar ve muhasebeyi sürdürür.
 - Sıradan düğümler ise transferleri sağlar, para değişimi yapabilirler ve gelen verileri kabul ederler.
- NEO hissesine sahip olanlar kimlerin defter tutucu olacağı oylama ile belirlenir.
 - $f = \left\lfloor \frac{n-1}{3} \right\rfloor$ tane delegenin ele geçirilmesine tolerans gösterilir.

Federe BHT Uzlaşma Modeli

- İlk defa Ripple tarafından ortaya konan bu modelin çalıştığını Stellar'da formalize edilerek resmileştirildi.
 - Her düğüm belirli bir sayıdaki düğümlere **güven** duyar.
 - Uzlaşma lokal gruplar arasında gerçekleşir.
 - Birden fazla yapılan uzlaşma ve gruplar arasında kesişmenin olması durumunda genel uzlaşma sağlanmış olur.
- Ripple'de katılımcılar önceden belirlenmişken Stellar'da ağa herkes katılabilir.
- Ripple merkezi bir Blokzincirdir.
- Stellar dağıtık bir sistemdir. Kimlerin doğrulayıcı olacağını hangi doğrulayıcılara güvenileceğini düğümler seçer.

https://distributedlab.com/blog/how-to-classify-kinds-of-consensus

Sonuç

Blokzincir Teknolojisinde Uzlaşma Modelleri

Uzlaşma Protokollerinin Karşılaştırılması

34

	Emek İspatı	Hisse İspatı	PBHT	ТВНТ	Federe BHT
Blokzincir Türü	İzinsiz	İzinli/İzinsiz	İzinli	İzinli/İzinsiz	İzinsiz
İşlem Kesinliği	İhtimale Bağlı	İhtimale Bağlı	Kesin	Kesin	Kesin
İşlem Hızı	Yavaş	Hızlı	Hızlı	Hızlı	Hızlı
Katılma Maliyeti	Var	Var	Yok	Yok	Yok
Düğüm ağının büyümesi	Yüksek	Yüksek	Düşük	Yüksek	Yüksek
Güven Modeli	Güvensiz	Güvensiz	Yarı-Güven	Yarı-Güven	Yarı Güven
Saldırgan Toleransı	<= %25	Kullanılan Algoritmaya Bağlı	<= %33	<= %33	<= %33

