Decision Under Uncertainty

Planning UV - MAD

Guillaume Lozenguez

at imt-lille-douai.fr

Recap:

1st, state definition

- A collection of variables
- Each variables defined in a domain

Problem complexity: Search space

- Number of states (by combining domains)
- Number of succession of states

Recap:

2nd, A plan or policy

- Action to perform in each state
- Potentially modeled as a decision tree

How modeling successions of actions?

Recap:

Problem: variables' evolution could-be uncertain

Bayesian Network: model variables' dependency.

Require to define conditional distributions (matrices)

Dynamic Bayesian Network: for variables with discrete time evolution

Providing a transition function

 \triangleright Reachable states at time t+1 weighted with probabilities

On ZombieDice

Bayesian Network

Transition Function

Optimizing Decision Making:

Bellman Equation (finit horizon):

$$a^* = argmax_a V^h(s, a) = r(s, a) + \sum_{s'} t(s, a, s') V^{h-1}(s')$$

- \rightarrow t(s, a, s'): transition function
- ightharpoonup r(s, a): reward function

Markov Decision Process: Tuple: S, A, t, r

Solving MDP:

Short term horizon algorithm:

At each time step:

- Evaluate all reachable states
- But on a restricted horizon

Monte-Carlo algorithm:

randomized search in constrained times

At each time step:

- Deep evaluation of state evolutions
- Limited in random trajectories

Optimal Solving

Offline exploration of every evolution trajectories

TD03: Decision Making

- From WillDie3 (correction of Dinamic Bayesian Network implementation for zombie dice)
- Optimize decision-making at horizon "1"

(compare immediate gains to probable gains)

 \triangleright Optimize decision under a given horizon n

(recursive value function)

Deeper horizon but with randomized evolution exploration

