Steve Rotenberg

CSE168: Rendering Algorithms

UCSD, Spring 2014

- Volumetric scattering refers to light scattering in volumetric phenomena like clouds, smoke, fire, and translucent materials like wax and human skin
- Sometimes, the medium responsible for the scattering is called a participating medium
- Without volumetric scattering, the radiance along a straight ray between two surfaces is constant
- With participating media, the media affect the radiance along the ray

Homogeneous vs. Heterogeneous

- With some volumes, we assume that their properties are constant everywhere
- We refer to these as homogeneous
- Fog can often be represented as a homogeneous medium
- Other volumetric phenomena vary across space
- These are called *heterogeneous* or *inhomogeneous*
- Smoke, fire, and many interesting volumes have spatially varying properties and are heterogeneous
- Homogeneous volumes are a little easier to deal with and allow for some computational short cuts

Homogeneous vs. Heterogeneous

Volumetric Interactions

- There are 4 different processes that affect the radiance of a beam through a participating medium
 - Emission
 - Absorption
 - Out-scattering
 - In-scattering

Emission

- Some volumes emit light, such as fire and neon gas
- Emission is usually isotropic (uniform in all directions)

$$dL(\mathbf{x}, \boldsymbol{\omega}) = \frac{1}{4\pi} E(\mathbf{x}) ds$$

- $dL(\mathbf{x}, \boldsymbol{\omega})$ is the rate of change of radiance of a beam passing through location \mathbf{x} in direction $\boldsymbol{\omega}$ along the beam of length ds
- $E(\mathbf{x})$ is a function that describes the isotropic emission per length at the point \mathbf{x} , which gets divided by 4π to describe the emission per solid angle

Absorption

- Some media absorb light and convert it to other forms of energy (such as heat)
- We encountered this process already when we considered the absorption of light in dielectrics according to the Beer-Lambert law
- Absorption in a volume is described by the absorption coefficient σ_a , which describes the rate of absorption in units of 1/meter

$$dL(\mathbf{x}, \boldsymbol{\omega}) = -\sigma_a(\mathbf{x})L(\mathbf{x}, \boldsymbol{\omega})ds$$

• The rate of loss of radiance for a beam of light through point \mathbf{x} in direction $\mathbf{\omega}$ is equal to absorption coefficient times the radiance L of the beam times the differential length ds

Out-Scattering

- Some of the light that passes through a medium may be scattered away in various directions
- The rate of scattering is described by the scattering coefficient σ_s

$$dL(\mathbf{x}, \boldsymbol{\omega}) = -\sigma_{S}(\mathbf{x})L(\mathbf{x}, \boldsymbol{\omega})dS$$

Extinction Coefficient

- When a beam of light passes through a volume, some of the light is lost to absorption and some is lost to out-scattering
- Often these two coefficients are combined into a single extinction coefficient

$$\sigma_t = \sigma_a + \sigma_s$$

Transmittance

 We define the transmittance T(s) along a path of length s as the percentage of light that is passed through the medium and not absorbed or out-scattered away

$$dL(\mathbf{x}, \boldsymbol{\omega}) = -\sigma_t(\mathbf{x})L(\mathbf{x}, \boldsymbol{\omega})ds$$

$$\frac{dL}{ds}(\mathbf{x}, \boldsymbol{\omega}) = -\sigma_t(\mathbf{x})L(\mathbf{x}, \boldsymbol{\omega})$$

$$\tau(s) = \int_0^s \sigma_t(\mathbf{x} + s'\boldsymbol{\omega})ds'$$

$$L(\mathbf{x} + s\boldsymbol{\omega}, \boldsymbol{\omega}) = e^{-\tau(s)}L(\mathbf{x}, \boldsymbol{\omega}) = T(s)L(\mathbf{x}, \boldsymbol{\omega})$$

• $\tau(s)$ is called the *optical thickness*

Beer-Lambert Law

 For homogeneous media the extinction coefficient is constant and the optical thickness becomes

$$\tau(s) = \int_0^s \sigma_t(\mathbf{x} + s'\mathbf{\omega})ds' = \int_0^s \sigma_t ds' = \sigma_t s$$

 The light loss due to extinction in a homogeneous medium reduces to the Beer-Lambert law:

$$T(s) = e^{-\sigma_t s}$$

In-Scattering

 In-scattering refers to the increase in radiance along the beam due to light coming from other directions that gets scattered into the beam direction

$$dL(\mathbf{x}, \boldsymbol{\omega}) = \sigma_{S}(\mathbf{x})dS \int_{\Theta} p(\boldsymbol{\omega}_{i} \cdot \boldsymbol{\omega})L(\mathbf{x}, \boldsymbol{\omega}_{i})d\boldsymbol{\omega}_{i}$$

- It is very similar to the radiance equation that describes the reflected radiance off of a surface in a particular direction
- It is an integral of the incoming radiance L over the sphere of directions ω_i , scaled by the phase function p()
- The phase function p() describes the distribution of scattered light around the sphere, and behaves very similarly to a BRDF

Light Interaction

Emission:

$$dL(\mathbf{x}, \boldsymbol{\omega}) = \frac{1}{4\pi} E(\mathbf{x}) ds$$

Absorption:

$$dL(\mathbf{x}, \boldsymbol{\omega}) = -\sigma_a(\mathbf{x})L(\mathbf{x}, \boldsymbol{\omega})ds$$

Out-Scattering:

$$dL(\mathbf{x}, \boldsymbol{\omega}) = -\sigma_s(\mathbf{x})L(\mathbf{x}, \boldsymbol{\omega})ds$$

In-Scattering:

$$dL(\mathbf{x}, \mathbf{\omega}) = \sigma_s(\mathbf{x}) ds \int_{\Theta} p(\mathbf{\omega}_i \cdot \mathbf{\omega}) L(\mathbf{x}, \mathbf{\omega}_i) d\mathbf{\omega}_i$$

Scattering Phase Functions

Scattering Phase Functions

- When a beam of light interacts with a volume, it is scattered in some spherical distribution
- This process is very similar to how light scatters off of a surface
- For volumetric scattering, we use a phase function to describe the shape of the scattering distribution
- This is analogous to a BRDF that we use for surface scattering
- The phase function varies based on the angle between the incoming and outgoing direction, and is usually parameterized by the cosine of that angle

$$p(\cos\theta) = p(\mathbf{\omega}_i \cdot \mathbf{\omega}_s)$$

- Like BRDFs, volumetric phase functions must be reciprocal and must conserve energy
- Also, like BRDFs, we will want to do both forward evaluation and importance sampling of the phase function

Isotropic Scattering

The simplest phase function is just an isotropic scattering function

$$p(\cos\theta) = \frac{1}{4\pi}$$

• This scatters equally across all directions in the sphere

Mie Scattering

- The Lorenz-Mie theory describes the scattering of electromagnetic waves by spherical particles
- It can be used to describe the scattering functions that occur when the size of the particles are at the same scale of the wavelength of the light
- This happens with water droplets in the atmosphere as well as fat droplets in milk
- Names after Gustav Mie (1869-1957) and Ludvig Lorenz (1829-1891)

Empirical Mie Approximation

 The following empirical function is often used to approximate the shape of Mie scattering

$$p(\cos\theta) = \frac{1}{4\pi} \left(\frac{1}{2} + \frac{(z+1)}{2} \left(\frac{1+\cos\theta}{2} \right)^z \right)$$

Rayleigh Scattering

 Rayleigh scattering describes the scattering of light by particles much smaller than the wavelength

$$p(\cos\theta) = \frac{3}{16\pi}(1+\cos^2\theta)$$

$$\sigma_{S} = \frac{2\pi^{5}}{3} \frac{d^{6}}{\lambda^{4}} \left(\frac{n^{2} - 1}{n^{2} + 2} \right)^{2}$$

- Where λ is the wavelength of light, d is the diameter of the particle, and n is the index of refraction of the particle
- The blue color of the sky is caused by Rayleigh scattering of sunlight by air molecules
- The strong dependence on wavelength (λ^{-4}) causes greater scattering towards the blue end of the spectrum

Henyey-Greenstein Function

The Henyey-Greenstein phase function is an empirical function originally designed to model the scattering in galactic dust clouds

$$p(\cos \theta) = \frac{1 - g^2}{4\pi (1 + g^2 - 2g\cos \theta)^{1.5}}$$

• It uses an anisotropy parameter g that ranges between -1 (full backscatter) and 1 (full forward scatter), and is isotropic for g=0

Volumetric Rendering

Volume Representation

- The first issue that we need to address in order to add volumetric scattering to a renderer is the issue of how the volume is represented
- We want a flexible system that allows us to add volume types, so we'll want a Volume base class similar to the existing Object base class
- The Volume would need a virtual function that evaluates the volume at some position x, and returns the absorption and scattering coefficients, emission, and scattering phase function at that point
- The Volume will also require an intersection routine to determine if a ray passes through the volume
- We also need a scattering phase class similar to the Material class that has both forward evaluation and importance sampling (random sample generation) virtual functions

Ray Marching

- As a ray passes through a volume, we need to accumulate the changes in radiance along the ray due to emission, absorption, outscattering and in-scattering
- As these changes vary along the ray, we need to divide up the ray into finite segments and approximate these values along the segments
- We call this process ray marching
- We need some maximum step size, which could be just set as a constant, or could be tunable per volume or even adapt based on local properties of the medium
- Each actual step we take as we march along the ray is a random number from 0 to 1 times the maximum step size
- This way, each ray randomly samples at several points in the volume

Ray Marching

- For each segment in the march, we need to compute the change in radiance due to the emission, absorption, out-scattering, and in-scattering
- Absorption and out-scattering can be combined into a single extinction calculation, where we assume a constant extinction coefficient along each segment
- Emission along the finite segment can be approximated as the emission at point x times the length s of the segment, times the transmittance of the segment
- In-scattering at point \mathbf{x} is represented by $L_i(\mathbf{x})$

$$L(\mathbf{x} + s\boldsymbol{\omega}, \boldsymbol{\omega}) \approx e^{-\sigma_t(\mathbf{x})s}(L(\mathbf{x}, \boldsymbol{\omega}) + E(\mathbf{x})s + L_i(\mathbf{x})s)$$

In-Scattering

$$L(\mathbf{x} + s\boldsymbol{\omega}, \boldsymbol{\omega}) \approx e^{-\sigma_t(\mathbf{x})s}(L(\mathbf{x}, \boldsymbol{\omega}) + E(\mathbf{x})s + L_i(\mathbf{x})s)$$

- The change in radiance along a finite segment due to extinction and emission are straightforward computations
- However, the in-scattered radiance $L_i(\mathbf{x})$ is an integral of incoming radiance around a sphere, and must be approximated
- We would like to know the total light coming into the point from all directions around a sphere
- This is very much like the surface shading problem, where we want to know the total light coming in across a hemisphere
- Like surface shading, which is often broken into direct and indirect components, we compute the volumetric in-scattering in a similar way
- The in-scattering at a point is the sum of the scattering coming directly from the light sources and the scattering from indirect light coming from other directions
- We can evaluate this by tracing shadow rays to the light source and generating sample scattering rays that we trace into the environment

In-Scattering

$$L_i(\mathbf{x}, \boldsymbol{\omega}) = \sigma_S(\mathbf{x}) \int_{\Theta} p(\boldsymbol{\omega}_i \cdot \boldsymbol{\omega}) L(\mathbf{x}, \boldsymbol{\omega}_i) d\boldsymbol{\omega}_i$$

$$L_i(\mathbf{x}, \boldsymbol{\omega}) \approx \frac{4\pi\sigma_S(\mathbf{x})}{N} \sum_{i=1}^{N} p(\boldsymbol{\omega}_i \cdot \boldsymbol{\omega}) L(\mathbf{x}, \boldsymbol{\omega}_i)$$

Shadow Rays

- When rendering shadows cast by volumes, we start with the standard shadow ray approach
- To determine the shadows on a surface, trace a ray to the light, first testing for any opaque surfaces
- If nothing is blocking the light, then test for volumes
- If the ray passes through a volume, the light will be attenuated by the extinction (absorption and out-scattering) of the volume, resulting in a [0...1] scale factor applied to the light
- If the volume is homogeneous, we can attenuate it by the total length of the ray through volume
- For an inhomogeneous volume, we must ray march through the volume, applying the local extinction to each segment of the ray
- Shadow rays like this are used both for computing direct lighting on surfaces as well as direct light in-scattering in volumes

Single/Multiple Scattering

- Often volumetric scattering is simplified by only considering single scattering as opposed to multiple scattering
- Single scattering refers to using only one scattering event per light path, and multiple scattering considers any number of scattering events
- Single scattering is often sufficient for thin haze and will capture the effect of light beams
- It is also often sufficient for thicker volumes with a high coefficient of absorption like smoke
- However, it is not sufficient for dense, low-absorption volumes like clouds, where multiple scattering dominates

Volumetric Phenomena

Fire

 "Physically Based Modeling and Animation of Fire", Nguyen, Fedkiw, Jensen, 2003

Sky Rendering

- "A Practical Analytical Model for Daylight", Preetham, Shirley, Smits, 1999
- "A Physically Based Night Sky Model", Jensen, Durand, Stark, Premoze, Dorsey, Shirley, 2001
- "Precomputed Atmospheric Scattering", Bruneton, Neyret, 2008
- "An Analytic Model for Full Spectral Sky-Dome Radiance", Hosek, Wilkie, 2012

Volumetric Caustics

 "Efficient Simulation of Light Transport in Scenes with Participating Media using Photon Maps", Jensen,

Christensen, 1998

Rainbows

 "Physically Based Simulation of Rainbows", Sadeghi, Munoz, Laven, Jarosz, Seron,

Gutierrez, Jensen, 2012

Atmospheric Phenomena

Corona

Ice Crystal Halo

Glory

Final Project

Final Project

- For the final project, you must add some features of your own choice to your renderer and render a final image
- Ideally, you could come up with a vision of what you want the final image to be and then implement the necessary features to achieve this, although you could also take the opposite approach and implement a bunch of features and then choose an idea that shows those off
- Also, it would be nice if it involved some different models than the standard test models
- This means you could search around online for some data and then write an appropriate importer, or even better- you could build something yourself in 3DStudio or Maya and then import the data to your renderer
- The project should demonstrate at least one 'complex' feature and a few 'simpler' features
- You can also generate more than one image to show off different features, or you cold render an animation
- Provide an HTML page that shows the image and has a description of the features
- Do a 5 minute live presentation during finals week

Final Project

- Some suggestions for 'complex' features:
 - Volumetric scattering
 - Procedural modeling
 - Displacement mapping
 - Dispersion
 - Photon mapping
 - Translucency
 - Procedural texture