Download the necessary libraries

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sn
```

Load the Dataset

```
In [501... df = pd.read_csv("C:\\Users\\captr\\OneDrive\\Desktop\\AusApparalSales4thQrt2020.cs
    df.head(5)
```

Out[501]:		Date	Time	State	Group	Unit	Sales
	0	1-Oct-2020	Morning	WA	Kids	8	20000
	1	1-Oct-2020	Morning	WA	Men	8	20000
	2	1-Oct-2020	Morning	WA	Women	4	10000
	3	1-Oct-2020	Morning	WA	Seniors	15	37500
	4	1-Oct-2020	Afternoon	WA	Kids	3	7500

```
In [502... type(df['Date'])
Out[502]: pandas.core.series.Series
```

Checking for the missing values

Checking for the duplicate values (if any)

```
In [504... df.duplicated().sum()
Out[504]: 0
```

Running Basic Summary Statistics of the data

```
In [505... df.describe().T
```

25% Out[505]: count std min **50% 75%** mean max **Unit** 7560.0 18.005423 12.901403 2.0 8.0 14.0 26.0 65.0 Sales 7560.0 45013.558201 32253.506944 5000.0 20000.0 35000.0 65000.0 162500.0

Checking how many times different states of Australia appeared in our dataset

```
In [506...
           state_counts=df['State'].value_counts()
           state_counts
           State
Out[506]:
            WA
                   1080
            NT
                   1080
            SA
                   1080
            VIC
                   1080
            QLD
                   1080
            NSW
                   1080
            TAS
                   1080
           Name: count, dtype: int64
           state_counts.sort_values()
In [507...
           State
Out[507]:
            WA
                   1080
            NT
                   1080
            SA
                   1080
            VIC
                   1080
            QLD
                   1080
            NSW
                   1080
            TAS
                   1080
           Name: count, dtype: int64
```

Two of our features i.e Unit and Sales were quite wide apart in terms of their range hence performed min-max-scaling to transform it to a fixed range between 0 to 1 or [0,1]

```
In [508...
           from sklearn.preprocessing import MinMaxScaler
In [509...
           scaler= MinMaxScaler()
           scaler.fit(df[['Sales']])
           df['Sales']= scaler.transform(df[['Sales']])
           scaler.fit(df[['Unit']])
           df['Unit']= scaler.transform(df[['Unit']])
           df.head()
Out[509]:
                   Date
                             Time State
                                          Group
                                                     Unit
                                                              Sales
           0 1-Oct-2020
                                    WA
                                                0.095238 0.095238
                          Morning
                                            Kids
           1 1-Oct-2020
                                                 0.095238 0.095238
                          Morning
                                            Men
           2 1-Oct-2020
                          Morning
                                    WA
                                         Women 0.031746 0.031746
           3 1-Oct-2020
                          Morning
                                          Seniors
                                                0.206349
                                                          0.206349
```

Kids 0.015873 0.015873

Plotted Unit against time

4 1-Oct-2020 Afternoon

WA

Grouped the data according to the State/region

```
In [511... g=df.groupby('State')
   g.head(5)
```

Out[511]:

	Date	Time	State	Group	Unit	Sales
0	1-Oct-2020	Morning	WA	Kids	0.095238	0.095238
1	1-Oct-2020	Morning	WA	Men	0.095238	0.095238
2	1-Oct-2020	Morning	WA	Women	0.031746	0.031746
3	1-Oct-2020	Morning	WA	Seniors	0.206349	0.206349
4	1-Oct-2020	Afternoon	WA	Kids	0.015873	0.015873
12	1-Oct-2020	Morning	NT	Kids	0.174603	0.174603
13	1-Oct-2020	Morning	NT	Men	0.047619	0.047619
14	1-Oct-2020	Morning	NT	Women	0.031746	0.031746
15	1-Oct-2020	Morning	NT	Seniors	0.126984	0.126984
16	1-Oct-2020	Afternoon	NT	Kids	0.174603	0.174603
24	1-Oct-2020	Morning	SA	Kids	0.158730	0.158730
25	1-Oct-2020	Morning	SA	Men	0.158730	0.158730
26	1-Oct-2020	Morning	SA	Women	0.222222	0.222222
27	1-Oct-2020	Morning	SA	Seniors	0.412698	0.412698
28	1-Oct-2020	Afternoon	SA	Kids	0.222222	0.222222
36	1-Oct-2020	Morning	VIC	Kids	0.746032	0.746032
37	1-Oct-2020	Morning	VIC	Men	0.539683	0.539683
38	1-Oct-2020	Morning	VIC	Women	0.507937	0.507937
39	1-Oct-2020	Morning	VIC	Seniors	0.380952	0.380952
40	1-Oct-2020	Afternoon	VIC	Kids	0.460317	0.460317
48	1-Oct-2020	Morning	QLD	Kids	0.285714	0.285714
49	1-Oct-2020	Morning	QLD	Men	0.253968	0.253968
50	1-Oct-2020	Morning	QLD	Women	0.206349	0.206349
51	1-Oct-2020	Morning	QLD	Seniors	0.190476	0.190476
52	1-Oct-2020	Afternoon	QLD	Kids	0.253968	0.253968
60	1-Oct-2020	Morning	NSW	Kids	0.587302	0.587302
61	1-Oct-2020	Morning	NSW	Men	0.238095	0.238095
62	1-Oct-2020	Morning	NSW	Women	0.507937	0.507937
63	1-Oct-2020	Morning	NSW	Seniors	0.333333	0.333333
64	1-Oct-2020	Afternoon	NSW	Kids	0.603175	0.603175
72	1-Oct-2020	Morning	TAS	Kids	0.174603	0.174603
73	1-Oct-2020	Morning	TAS	Men	0.063492	0.063492
74	1-Oct-2020	Morning	TAS	Women	0.015873	0.015873
75	1-Oct-2020	Morning	TAS	Seniors	0.095238	0.095238
76	1-Oct-2020	Afternoon	TAS	Kids	0.079365	0.079365

NSW						
	Date	Time	State	Group	Unit	Sales
60	1-Oct-2020	Morning	NSW	Kids	0.587302	0.587302
61	1-0ct-2020	Morning	NSW	Men	0.238095	0.238095
62	1-0ct-2020	Morning	NSW	Women	0.507937	0.507937
63	1-0ct-2020	Morning	NSW	Seniors	0.333333	0.333333
64	1-0ct-2020	Afternoon	NSW	Kids	0.603175	0.603175
· · · 7543	 30-Dec-2020	Afternoon	NSW	 Seniors	0.269841	0.269841
7544	30-Dec-2020	Evening	NSW	Kids	0.555556	0.555556
7545	30-Dec-2020	Evening	NSW	Men	0.619048	0.619048
7545 7546	30-Dec-2020	Evening	NSW	Women	0.555556	0.555556
7547	30-Dec-2020	Evening	NSW	Seniors	0.333333	0.333333
7547	30 DCC 2020	Lvening	NSN	56111013	0.333333	0.333333
[1080 NT	rows x 6 col	umns]				
	Date	Time	State	Group	Unit	Sales
12	1-0ct-2020	Morning	NT	Kids	0.174603	0.174603
13	1-0ct-2020	Morning	NT	Men	0.047619	0.047619
14	1-0ct-2020	Morning	NT	Women	0.031746	0.031746
15	1-0ct-2020	Morning	NT	Seniors	0.126984	0.126984
16	1-0ct-2020	Afternoon	NT	Kids	0.174603	0.174603
• • •						
7495	30-Dec-2020	Afternoon	NT	Seniors	0.174603	0.174603
7496	30-Dec-2020	Evening	NT	Kids	0.206349	0.206349
7497	30-Dec-2020	Evening	NT	Men	0.063492	0.063492
7498	30-Dec-2020	Evening	NT	Women	0.142857	0.142857
7499	30-Dec-2020	Evening	NT	Seniors	0.190476	0.190476
[1080 QLD	rows x 6 col	umns]				
Ç	Date	Time	State	Group	Unit	Sales
48	1-0ct-2020	Morning	QLD	Kids	0.285714	0.285714
49	1-0ct-2020	Morning	_	Men	0.253968	0.253968
50	1-0ct-2020	Morning	QLD	Women	0.206349	0.206349
51	1-0ct-2020	Morning	QLD	Seniors	0.190476	0.190476
52	1-0ct-2020	Afternoon		Kids	0.253968	0.253968
7531	30-Dec-2020	Afternoon	QLD	Seniors	0.111111	0.111111
7532	30-Dec-2020	Evening	QLD	Kids	0.174603	0.174603
7533	30-Dec-2020	Evening	QLD	Men	0.365079	0.365079
7534	30-Dec-2020	Evening	QLD	Women	0.285714	0.285714
7535	30-Dec-2020	Evening	QLD	Seniors	0.253968	0.253968
_	rows x 6 col	umns]				
SA	Data	T:	State	Gnous	Unit	Sales
24	Date 1-Oct-2020	Morning	State	Group Kids	0.158730	0.158730
25	1-0ct-2020 1-0ct-2020	Morning	SA	Men	0.158730	0.158730
26	1-0ct-2020 1-0ct-2020	Morning	SA	Women	0.222222	0.222222
		_				
27 28	1-Oct-2020 1-Oct-2020	Morning Afternoon	SA SA	Seniors Kids	0.412698 0.222222	0.412698 0.222222
	1-000-2020			···	0.22222	
7507	30-Dec-2020	Afternoon	SA	Seniors	0.269841	0.269841
7508	30-Dec-2020	Evening	SA	Kids	0.460317	0.460317
7509	30-Dec-2020	Evening	SA	Men	0.206349	0.206349
7510	30-Dec-2020	Evening	SA	Women	0.507937	0.507937
7511	30-Dec-2020	Evening	SA	Seniors	0.507937	0.507937
_	rows x 6 col	umns]				
TAS	Date	T:	C+ > + >	Gnous	1154+	Calac
72	Date		State	Group	Unit	Sales
72 73	1-0ct-2020	Morning	TAS	Kids	0.174603	0.174603
73	1-0ct-2020	Morning	TAS	Men	0.063492	0.063492

```
1-0ct-2020
74
                  Morning
                           TAS
                                  Women 0.015873 0.015873
     1-0ct-2020
75
                           TAS Seniors 0.095238 0.095238
                  Morning
     1-Oct-2020 Afternoon TAS
                                 Kids 0.079365 0.079365
76
                     . . .
. . .
           . . .
                           . . .
                                   . . .
                                           . . .
7555 30-Dec-2020 Afternoon TAS Seniors 0.190476 0.190476
                                Kids 0.206349 0.206349
                Evening
                          TAS
7556 30-Dec-2020
7557 30-Dec-2020
                 Evening TAS
                                   Men 0.206349 0.206349
7558 30-Dec-2020 Evening TAS
                                  Women 0.142857 0.142857
7559 30-Dec-2020 Evening TAS Seniors 0.174603 0.174603
[1080 rows x \in columns]
VIC
                     Time State
           Date
                                Group
                                           Unit
                                                   Sales
                                 Kids 0.746032 0.746032
36
     1-0ct-2020
                 Morning VIC
     1-Oct-2020 Morning VIC
                                  Men 0.539683 0.539683
                 Morning VIC Women 0.507937 0.507937
     1-0ct-2020
39
     1-Oct-2020
                 Morning VIC Seniors 0.380952 0.380952
     1-Oct-2020 Afternoon VIC Kids 0.460317 0.460317
7519 30-Dec-2020 Afternoon VIC Seniors 0.952381 0.952381
7520 30-Dec-2020
                 Evening VIC Kids 0.444444 0.444444
7521 30-Dec-2020
                 Evening VIC
                                  Men 0.523810 0.523810
                  Evening VIC
                                  Women 0.444444 0.444444
7522 30-Dec-2020
                  Evening VIC Seniors 0.476190 0.476190
7523 30-Dec-2020
[1080 rows x 6 columns]
WA
                                                   Sales
           Date
                     Time State
                                Group
                                           Unit
     1-0ct-2020
                                 Kids 0.095238 0.095238
0
                  Morning WA
                Morning WA
                                  Men 0.095238 0.095238
1
     1-0ct-2020
     1-Oct-2020 Morning WA Women 0.031746 0.031746
2
3
     1-0ct-2020
                 Morning WA Seniors 0.206349 0.206349
     1-Oct-2020 Afternoon WA Kids 0.015873 0.015873
                                  . . .
               Afternoon WA Seniors 0.206349 0.206349
7483 30-Dec-2020
7484 30-Dec-2020
                Evening WA Kids 0.063492 0.063492
                 Evening WA
7485 30-Dec-2020
                                  Men 0.063492 0.063492
                  Evening WA
7486 30-Dec-2020
                                  Women 0.190476 0.190476
                  Evening WA Seniors 0.111111 0.111111
7487 30-Dec-2020
```

[1080 rows x 6 columns]

Performed one hot encoding to convert the categorical variables in Unit and Sales column to machine readable numeric form

```
In [513... from sklearn.preprocessing import LabelEncoder
le_Time=LabelEncoder()
le_State= LabelEncoder()
le_Group = LabelEncoder()

In [514... df['Time_n']= le_Time.fit_transform(df['Time'])
df['State_n']= le_State.fit_transform(df['State'])
df['Group_n']= le_Group.fit_transform(df['Group'])
df.head()
```

ut[514]: _		Date	Time	State	Group	Uni	t Sale	s Time_n	State_n	Group_n
	0	1-Oct-2020	Morning	WA	Kids	0.095238	0.09523	8 2	6	0
	1	1-Oct-2020	Morning	WA	Men	0.095238	0.09523	8 2	6	1
	2	1-Oct-2020	Morning	WA	Women	0.031746	0.03174	6 2	6	3
	3	1-Oct-2020	Morning	WA	Seniors	0.206349	0.20634	9 2	6	2
	4	1-Oct-2020	Afternoon	WA	Kids	0.015873	0.01587	3 0	6	0
-		<pre>.head() = df.rese</pre>	t index()	# Re	sets th	e index	turning	'Date'	hack int	o a colun
	df	= df.rese int(df.hea index 0 1- 1 1- 2 1-		Mo Mo Mo		t few ro	Group Kids Men Women	Unit 0.095238 0.095238 0.031746 0.206349	Sal 0.0952 0.0952 0.03174 0.20634	es Time_ 38 38 46
	df pr 0 1 2	= df.rese int(df.hea index 0 1- 1 1- 2 1- 3 1- 4 1-	Date Oct-2020 Oct-2020 Oct-2020	Mo Mo Mo Mo	the firs Time Strning rning rning rning	t few ro	Group Kids Men Women Geniors	Unit 0.095238 0.095238 0.031746	Salo 0.0952 0.0952	es Time_ 38 38 46 49
	df pr 0 1 2 3 4	= df.rese int(df.hea index 0 1- 1 1- 2 1- 3 1- 4 1- State_n 6	Date Oct-2020 Oct-2020 Oct-2020 Oct-2020 Oct-2020 Oct-2020 Oct-2020	Mo Mo Mo Mo	the firs Time Strning rning rning rning rning	t few ro	Group Kids Men Women Geniors	Unit 0.095238 0.095238 0.031746 0.206349	Salo 0.0952 0.0952 0.03174 0.20634	es Time_ 38 38 46 49
	df pr 0 1 2 3 4	= df.rese int(df.hea index 0 1- 1 1- 2 1- 3 1- 4 1- State_n	Date Oct-2020 Oct-2020 Oct-2020 Oct-2020 Oct-2020 Oct-2020	Mo Mo Mo Mo	the firs Time Strning rning rning rning rning	t few ro	Group Kids Men Women Geniors	Unit 0.095238 0.095238 0.031746 0.206349	Salo 0.0952 0.0952 0.03174 0.20634	es Time_ 38 38 46 49
	df pr 0 1 2 3 4	= df.rese int(df.hea index 0 1- 1 1- 2 1- 3 1- 4 1- State_n 6	Date Oct-2020 Oct-2020 Oct-2020 Oct-2020 Oct-2020 Oct-2020 Oct-2020	Mo Mo Mo Mo	the firs Time Strning rning rning rning rning	t few ro	Group Kids Men Women Geniors	Unit 0.095238 0.095238 0.031746 0.206349	Salo 0.0952 0.0952 0.03174 0.20634	es Time_ 38 38 46 49

Calculated the mean and Standard Deviation of the Unit Column

```
In [516... mean_value = df['Unit'].mean()
    median_value = df['Unit'].median()
    std_value = df['Unit'].std()

print("Mean of Unit column:", mean_value)
    print("Median of Unit column:", median_value)
    print("Standard Deviation of Unit column:", std_value)

Mean of Unit column: 0.2540543377844965
    Median of Unit column: 0.19047619047
    Standard Deviation of Unit column: 0.20478417107280086
```

Calculated the mean and standard deviation of the Sales Column

```
In [517...
mean_value = df['Sales'].mean()
median_value = df['Sales'].median()
std_value = df['Sales'].std()

print("Mean of Sales column:", mean_value)
print("Median of Sales column:", median_value)
print("Standard Deviation of Sales column:", std_value)

Mean of Sales column: 0.25405433778449654
Median of Sales column: 0.1904761904761905
Standard Deviation of Sales column: 0.2047841710728009
```

Identifying the group with the highest sales and lowest sales respectively

```
In [518...
          # Group by 'Group' and calculate total sales
          group_sales = df.groupby('Group_n')['Sales'].sum()
          # Identify the group with the highest and lowest sales
          highest_sales_group = group_sales.idxmax()
          lowest_sales_group = group_sales.idxmin()
          # Get the sales values
          highest sales value = group sales.max()
          lowest_sales_value = group_sales.min()
          print(f"Group with the highest sales: {highest_sales_group} ({highest_sales_value})
          print(f"Group with the lowest sales: {lowest_sales_group} ({lowest_sales_value})")
          Group with the highest sales: 1 (484.44444444446)
          Group with the lowest sales: 2 (473.57142857142856)
In [519...
          df.columns
          Index(['index', 'Date', 'Time', 'State', 'Group', 'Unit', 'Sales', 'Time n',
Out[519]:
                  'State_n', 'Group_n'],
                dtype='object')
```

Gathering the weekly, Monthly and quarterly report

```
import pandas as pd
In [520...
          # Assuming `df` contains 'Date' and 'Sales' columns
          df['Date'] = pd.to_datetime(df['Date']) # Ensure the Date column is in datetime fd
          # Set the Date column as the index for resampling
          df.set index('Date', inplace=True)
          # Weekly Report
          weekly_report = df.resample('W').sum()
          # Monthly Report
          monthly report = df.resample('M').sum()
          # Quarterly Report
          quarterly_report = df.resample('Q').sum()
          # Reset index for reports (optional, for better formatting)
          weekly_report.reset_index(inplace=True)
          monthly_report.reset_index(inplace=True)
          quarterly_report.reset_index(inplace=True)
          # Save reports to files
          weekly report.to csv('weekly report.csv', index=False)
          monthly_report.to_csv('monthly_report.csv', index=False)
          quarterly_report.to_csv('quarterly_report.csv', index=False)
          # Print summaries
          print("Weekly Report:\n", weekly_report.head())
          print("Monthly Report:\n", monthly_report.head())
          print("Quarterly Report:\n", quarterly_report.head())
```

```
Weekly Report:
        Date
                index
                                                                  Time
0 2020-10-04
               56280
                       Morning Morning Morning Afternoon Aft...
1 2020-10-11
              370146
                       Morning Morning Morning Afternoon Aft...
2 2020-10-18
                       Morning Morning Morning Afternoon Aft...
              715890
3 2020-10-25
             1061634
                       Morning Morning Morning Afternoon Aft...
4 2020-11-01 1185156
                       Morning Morning Morning Afternoon Aft...
                                             State
0
   WA NT NT NT ...
1
   WA NT NT NT ...
   WA WA WA WA WA WA WA WA WA NT NT NT
3
   WA NT NT NT ...
   WA NT NT NT ...
                                                                    Sales
                                             Group
                                                          Unit
0
   Kids Men Women Seniors Kids Men Women Seniors...
                                                     84.857143
                                                                84.857143
   Kids Men Women Seniors Kids Men Women Seniors...
1
                                                    152.777778
                                                               152.777778
2
   Kids Men Women Seniors Kids Men Women Seniors...
                                                    150.476190
                                                               150.476190
3
   Kids Men Women Seniors Kids Men Women Seniors...
                                                    151.587302
                                                               151.587302
   Kids Men Women Seniors Kids Men Women Seniors...
                                                    122.460317
                                                               122.460317
   Time n State n Group n
0
     336
             1008
                       504
1
     588
             1764
                       882
2
     588
             1764
                       882
3
     588
             1764
                       882
     504
4
             1512
                       756
Monthly Report:
        Date
                 index
                                                                   Time \
0 2020-10-31
              3173940
                        Morning Morning Morning Afternoon Aft...
1 2020-11-30
              9524340
                        Morning Morning Morning Afternoon Aft...
2 2020-12-31 15874740
                        Morning Morning Morning Afternoon Aft...
                                             State
0
   WA NT NT NT ...
   WA NT NT NT ...
1
   WA WA WA WA WA WA WA WA WA NT NT NT ...
                                             Group
                                                          Unit
                                                                    Sales
   Kids Men Women Seniors Kids Men Women Seniors...
0
                                                    645.650794
                                                               645.650794
1
   Kids Men Women Seniors Kids Men Women Seniors...
                                                    495.761905
                                                               495.761905
   Kids Men Women Seniors Kids Men Women Seniors...
                                                    779.238095
   Time_n
          State_n
                   Group_n
0
    2520
             7560
                      3780
1
    2520
             7560
                      3780
    2520
             7560
                      3780
Quarterly Report:
                                                                   Time \
        Date
                 index
                        Morning Morning Morning Afternoon Aft...
0 2020-12-31
             28573020
                                             State \
   WA WA WA WA WA WA WA WA WA NT NT NT ...
                                             Group
                                                           Unit \
   Kids Men Women Seniors Kids Men Women Seniors...
                                                    1920.650794
        Sales
               Time n State n
                               Group n
  1920.650794
                 7560
                         22680
                                  11340
```

In [521... df_new= pd.read_csv("C:\\Users\\captr\\OneDrive\\Desktop\\AusApparalSales4thQrt2020
df_new.head(3)

Out[521]:		Date	Time	State	Group	Unit	Sales
	0	1-Oct-2020 Mornin		WA	Kids	8	20000
	1	1-Oct-2020	Morning	WA	Men	8	20000
	2	1-Oct-2020	Morning	WA	Women	4	10000

Plotted Group Vs States

```
In [522...
           Group_counts= df_new['Group'].value_counts()
           Group_counts
           top_groups=Group_counts.head(10)
           top_groups
           Group
Out[522]:
            Kids
                       1890
            Men
                       1890
                       1890
           Women
            Seniors
                       1890
           Name: count, dtype: int64
In [523...
           import seaborn as sns
           plt.figure(figsize=(10,6))
           sns.barplot(x=df['Group_n'], y=df['State_n'])
           plt.xlabel('Group')
           plt.ylabel('State')
           plt.title('State wise analysis of group')
           plt.show()
```



```
In [524... demography= df.groupby(['Group_n','State_n'])
    df=df.reset_index()
    df.head()
```

Out[524]

]:		Date	index	Time	State	Group	Unit	Sales	Time_n	State_n	Group_n
,	0	2020-10- 01	0	Morning	WA	Kids	0.095238	0.095238	2	6	0
	1	2020-10- 01	1	Morning	WA	Men	0.095238	0.095238	2	6	1
	2	2020-10- 01	2	Morning	WA	Women	0.031746	0.031746	2	6	3
	3	2020-10- 01	3	Morning	WA	Seniors	0.206349	0.206349	2	6	2
	4	2020-10-	4	Afternoon	WA	Kids	0.015873	0.015873	0	6	0

State-wise Sales Analysis for Different Demographic Groups

```
# Mapping Group Codes to Demographics
group_mapping = {0: 'Kids', 1: 'Women', 2: 'Men', 3: 'Seniors'}
df['Demographic'] = df['Group_n'].map(group_mapping)
group_mapping_2 = {0: 'TAS', 1: 'NSW', 2: 'QLD', 3: 'VIC', 4:'SA', 5:'NT', 6:'WA'}
df['Region'] = df['State_n'].map(group_mapping_2)
sales_data = df.groupby(['State_n', 'Demographic'])['Sales'].sum().reset_index()
sales_data
```

2025, 17:47				
Out[525]:		State_n	Demographic	Sales
	0	0	Kids	109.444444
	1	0	Men	106.904762
	2	0	Seniors	113.158730
	3	0	Women	112.206349
	4	1	Kids	27.619048
	5	1	Men	26.126984
	6	1	Seniors	27.317460
	7	1	Women	28.015873
	8	2	Kids	45.460317
	9	2	Men	43.428571
	10	2	Seniors	44.285714
	11	2	Women	44.714286
	12	3	Kids	83.587302
	13	3	Men	84.873016
	14	3	Seniors	86.476190
	15	3	Women	84.476190
	16	4	Kids	28.095238
	17	4	Men	27.301587
	18	4	Seniors	26.841270
	19	4	Women	27.984127
	20	5	Kids	158.793651
	21	5	Men	158.507937
	22	5	Seniors	159.571429
	23	5	Women	159.095238
	24	6	Kids	27.142857
	25	6	Men	26.428571
	26	6	Seniors	24.841270

Women

27.952381

```
import seaborn as sns
import matplotlib.pyplot as plt

# Set plot style
sns.set(style="whitegrid")

# Create the bar plot
plt.figure(figsize=(12, 8))
sns.barplot(x='Region', y='Sales', hue='Demographic', data=df, palette="Set2")

# Customize plot
plt.title("State-wise Sales Analysis for Different Demographic Groups", fontsize=16
```

27

```
plt.xlabel("State", fontsize=12)
plt.ylabel("Total Sales", fontsize=12)
plt.legend(title="Demographic Group")
plt.xticks(rotation=45)
plt.tight_layout()
# Show plot
plt.show()
```



```
df['State_n'].unique()
In [527...
```

array([6, 1, 3, 5, 2, 0, 4]) Out[527]:

In [528	df.ta	ail()										
Out[528]:		Date	index	Time	State	Group	Unit	Sales	Time_n	State_n	Group_n	Den
	7555	2020- 12-30	7555	Afternoon	TAS	Seniors	0.190476	0.190476	0	4	2	
	7556	2020- 12-30	7556	Evening	TAS	Kids	0.206349	0.206349	1	4	0	
	7557	2020- 12-30	7557	Evening	TAS	Men	0.206349	0.206349	1	4	1	
	7558	2020- 12-30	7558	Evening	TAS	Women	0.142857	0.142857	1	4	3	
	7559	2020- 12-30	7559	Evening	TAS	Seniors	0.174603	0.174603	1	4	2	
4												•

State-wise Sales Analysis for Different Regions

```
In [529...
          group_mapping = {0: 'Kids', 1: 'Women', 2: 'Men', 3: 'Seniors'}
          df['Demographic'] = df['Group_n'].map(group_mapping)
```

```
group_mapping_2 = {0: 'TAS', 1: 'NSW', 2: 'QLD', 3: 'VIC', 4:'SA', 5:'NT', 6:'WA'}
df['Region'] = df['State_n'].map(group_mapping_2)

sales_data_2 = df.groupby(['Group_n', 'Region'])['Sales'].sum().reset_index()
df.head()
```

Out[529]:		Date	index	Time	State	Group	Unit	Sales	Time_n	State_n	Group_n	Demog
	0	2020- 10-01	0	Morning	WA	Kids	0.095238	0.095238	2	6	0	
	1	2020- 10-01	1	Morning	WA	Men	0.095238	0.095238	2	6	1	V
	2	2020- 10-01	2	Morning	WA	Women	0.031746	0.031746	2	6	3	S
	3	2020- 10-01	3	Morning	WA	Seniors	0.206349	0.206349	2	6	2	
	4	2020- 10-01	4	Afternoon	WA	Kids	0.015873	0.015873	0	6	0	
4												•
In [530	sa	ıles da	nta 2									

Out[530]:		Group_n	Region	Sales
	0	0	NSW	27.619048
	1	0	NT	158.793651
	2	0	QLD	45.460317
	3	0	SA	28.095238
	4	0	TAS	109.444444
	5	0	VIC	83.587302
	6	0	WA	27.142857
	7	1	NSW	28.015873
	8	1	NT	159.095238
	9	1	QLD	44.714286
	10	1	SA	27.984127
	11	1	TAS	112.206349
	12	1	VIC	84.476190
	13	1	WA	27.952381
	14	2	NSW	26.126984
	15	2	NT	158.507937
	16	2	QLD	43.428571
	17	2	SA	27.301587
	18	2	TAS	106.904762
	19	2	VIC	84.873016
	20	2	WA	26.428571
	21	3	NSW	27.317460
	22	3	NT	159.571429
	23	3	QLD	44.285714
	24	3	SA	26.841270
	25	3	TAS	113.158730
	26	3	VIC	86.476190
	27	3	WA	24.841270

```
In [531... # Ensure 'sales_data_2' has the correct data
    print(sales_data_2.head()) # Check the first few rows

# Create the bar plot
    plt.figure(figsize=(12, 8))
    sns.barplot(x='Demographic', y='Sales', hue='Region', data=df, palette="Set2")

# Customize the plot
    plt.title("State-wise Sales Analysis for Different Regions", fontsize=16)
    plt.xlabel("Group", fontsize=12)
    plt.ylabel("Total Sales", fontsize=12)
    plt.legend(title="Region")
```

```
plt.xticks(rotation=45)
plt.tight_layout()

# Show plot
plt.show()
```

```
Group_n Region
                          Sales
0
          0
               NSW
                     27.619048
1
          0
                    158.793651
                NT
2
          0
               QLD
                     45.460317
3
          0
                SA
                      28.095238
               TAS
                    109.444444
```


Sales Analysis by Hour of the Day

```
import pandas as pd
In [532...
          import seaborn as sns
          import matplotlib.pyplot as plt
          # Sample DataFrame (Use your actual dataset)
          # Ensure 'Date' and 'Time' are in proper datetime format
          data = pd.DataFrame({
               'Date': pd.date_range(start='2020-01-01', periods=100, freq='H'),
               'Sales': [i % 24 + 1 for i in range(100)]
          })
          # Ensure 'Date' is in datetime format
          data['Date'] = pd.to_datetime(data['Date'])
          # Extract the hour from the Date column
          df['Hour_of_day'] = data['Date'].dt.hour
          # Group sales data by hour of the day
          sales_by_time = df.groupby('Hour_of_day')['Sales'].sum().reset_index()
          # Plotting
          plt.figure(figsize=(12, 6))
          sns.lineplot(x='Hour_of_day', y='Sales', data=sales_by_time, marker="o", color="b")
```

```
# Formatting the plot
plt.title("Sales Analysis by Hour of the Day", fontsize=16)
plt.xlabel("Hour of the Day (0-23)", fontsize=12)
plt.ylabel("Total Sales", fontsize=12)
plt.xticks(range(0, 24)) # Ensure all hours from 0 to 23 are displayed
plt.grid(True, linestyle="--", alpha=0.7)
plt.show()
```



```
In [533... sales_by_time = df.groupby('Hour_of_day')['Sales'].sum().reset_index()
    sales_by_time
```

2020, 17.47			
Out[533]:		Hour_of_day	Sales
	0	0.0	0.761905
	1	1.0	0.746032
	2	2.0	0.650794
	3	3.0	1.079365
	4	4.0	0.571429
	5	5.0	0.714286
	6	6.0	0.587302
	7	7.0	0.888889
	8	8.0	0.587302
	9	9.0	0.714286
	10	10.0	0.634921
	11	11.0	0.777778
	12	12.0	1.634921
	13	13.0	0.920635
	14	14.0	1.222222
	15	15.0	1.015873
	16	16.0	1.365079
	17	17.0	1.031746
	18	18.0	0.984127
	19	19.0	1.126984
	20	20.0	0.968254
	21	21.0	1.174603
	22	22.0	1.365079
	23	23.0	1.238095

In [534... df.head()

Out[534]:		Date	index	Time	State	Group	Unit	Sales	Time_n	State_n	Group_n	Demog
	0	2020- 10-01	0	Morning	WA	Kids	0.095238	0.095238	2	6	0	
	1	2020- 10-01	1	Morning	WA	Men	0.095238	0.095238	2	6	1	V
	2	2020- 10-01	2	Morning	WA	Women	0.031746	0.031746	2	6	3	S
	3	2020- 10-01	3	Morning	WA	Seniors	0.206349	0.206349	2	6	2	

Kids 0.015873 0.015873

0

6

0

2020-

10-01

4 Afternoon

WA

Plotting Correlation matrix to identify the important features that affects the sales

In [543...
df_numeric= df.drop(['Time','State','Group','Demographic','Region'],axis='columns')
df_numeric

]:		Date	index	Unit	Sales	Time_n	State_n	Group_n	Hour_of_day
	0	2020-10-01	0	0.095238	0.095238	2	6	0	0.0
	1	2020-10-01	1	0.095238	0.095238	2	6	1	1.0
	2	2020-10-01	2	0.031746	0.031746	2	6	3	2.0
	3	2020-10-01	3	0.206349	0.206349	2	6	2	3.0
	4	2020-10-01	4	0.015873	0.015873	0	6	0	4.0
	•••								
	7555	2020-12-30	7555	0.190476	0.190476	0	4	2	NaN
	7556	2020-12-30	7556	0.206349	0.206349	1	4	0	NaN
	7557	2020-12-30	7557	0.206349	0.206349	1	4	1	NaN
	7558	2020-12-30	7558	0.142857	0.142857	1	4	3	NaN
	7559	2020-12-30	7559	0.174603	0.174603	1	4	2	NaN

7560 rows × 8 columns

Out[543]

Out[544]: **Date** index Unit **Sales** Time n State_n Grou -1.3179 Date 1.000000e+00 0.999885 0.100658 0.100658 2.593151e-15 2.481039e-15 -7.482612e--3.534798e-0.104095 4.098395 index 9.998850e-01 1.000000 0.104095 03 -6.439166e--1.1051 Unit 1.006582e-01 0.104095 1.000000 1.000000 1.004629e-03 03 -6.439166e--1.1051 **Sales** 1.006582e-01 0.104095 1.000000 1.000000 1.004629e-03 03 -3.003558e-0.001005 0.001005 1.000000e+00 5.743231 Time_n 2.593151e-15 -0.000748 18 -3.003558e--3.5990 -0.006439 -0.006439 1.000000e+00 State_n 2.481039e-15 -0.003535 18 -3.599018e--1.317944e-Group_n 0.000410 -0.001105 -0.001105 5.743231e-18 1.000000€ 15 18 -2.860248e--8.309249e-Hour_of_day 1.482944e-01 0.131689 0.309362 0.309362 1.266305 01

In [545... plt.figure(figsize=(10, 8))
sns.heatmap(corr_matrix, annot=True, cmap="coolwarm", fmt=".2f", linewidths=0.5)

plt.title("Correlation Matrix Heatmap")
plt.show()

from the correlation matrix we can clearly see that only Unit and Hour of the day column/feature has a strong correlation with the Sales. But still we would confirm this with Hypothesis testing

6	<pre>df_numeric.head()</pre>									
46]:		Date	index	Unit	Sales	Time_n	State_n	Group_n	Hour_of_day	
	0	2020-10-01	0	0.095238	0.095238	2	6	0	0.0	
	1	2020-10-01	1	0.095238	0.095238	2	6	1	1.0	
	2	2020-10-01	2	0.031746	0.031746	2	6	3	2.0	
	3	2020-10-01	3	0.206349	0.206349	2	6	2	3.0	
	4	2020-10-01	4	0.015873	0.015873	0	6	0	4.0	
		nta = df_nu nta.head()	meric.	rename(co	olumns =la	mbda x:	x.strip	o()) # R	emoves Lead	

Out[558]:		Date	index	Unit	Sales	Time_n	State_n	Group_n	Hour_of_day
	0	2020-10-01	0	0.095238	0.095238	2	6	0	0.0
	1	2020-10-01	1	0.095238	0.095238	2	6	1	1.0
	2	2020-10-01	2	0.031746	0.031746	2	6	3	2.0
	3	2020-10-01	3	0.206349	0.206349	2	6	2	3.0
	4	2020-10-01	4	0.015873	0.015873	0	6	0	4.0

Null Hypothesis (H0): "Units sold has nothing to do with sales revenue"

```
In [560...
        import scipy.stats as stats
        import statsmodels.api as sm
        import statsmodels.formula.api as smf
        Unit_Sales_corr, Unit_Sales_pval = stats.spearmanr(data['Unit'], data['Sales'])
        print(f"Spearman correlation between Unit and Sales: {Unit_Sales_corr:.2f}, p-value
        # Regression analysis for age and shopping preferences
        Unit Sales model = smf.ols('Sales ~ Unit', data=data).fit()
        print("\nIn-store Purchases Regression Summary:\n", Unit_Sales_model.summary())
        Spearman correlation between Unit and Sales: 1.00, p-value: 0.0000
        In-store Purchases Regression Summary:
                       OLS Regression Results
        ______
        Dep. Variable:
       Dep. Variable:

Model:

Method:

Date:

Sat, 01 Feb 2025

Time:

Sat, 01 Feb 2025

Time:

Sat, 01 Feb 2025

Arc.

Arc.
                                Sales R-squared:
                                                                 1.000
                                                                 1.000
                                                             1.949e+33
                                                                   9.99
                                                            2.5725e+05
        No. Observations:
                                  7560 AIC:
                                                              -5.145e+05
        Df Residuals:
                                  7558 BIC:
                                                              -5.145e+05
                                    1
        Df Model:
        Covariance Type: nonrobust
        ______
                   coef std err t P>|t| [0.025 0.975]
        Intercept -5.345e-16 7.39e-18 -72.324 0.000 -5.49e-16 -5.2e-16
Unit 1.0000 2.26e-17 4.42e+16 0.000 1.000 1.000
        ______
                              1514.899 Durbin-Watson:
                                                                 0.054
        Omnibus:
        Prob(Omnibus):
                                0.000 Jarque-Bera (JB):
                                                              2734.456
        Skew:
                                -1.271 Prob(JB):
                                                                  0.00
                                 4.491 Cond. No.
                                                                   5.21
        Kurtosis:
        ______
```

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly s pecified.

Since the p-value is < 0.05 The result is highly statistically significant, meaning there is strong evidence to reject the null

hypothesis that "Units sold has nothing to do with sales revenue".

Model Construction

Input Variable (X): Unit and Hour of the day

```
In [ ]: X= df_numeric.drop(['Date','index','Sales','Time_n','State_n','Group_n'],axis= 'col
X.head()

In [ ]: X['Hour_of_day'].isnull().sum()

In [ ]: X['Hour_of_day'].fillna(X['Hour_of_day'].mode()[0], inplace=True) # Fill with mode
```

Target Variable (Y): Sales

```
In [ ]: Y= df['Sales']
Y.head()
```

Splitting the dataset into train and test parts where we are using 80% our data to train and 20% to test

```
In [ ]: from sklearn.model_selection import train_test_split
X_train, X_test, Y_train, Y_test= train_test_split(X,Y,test_size=0.2, random_state=
```

Trying to plot a Linear regression model as we had previously seen that our data follows a linear pattern

```
In [ ]: from sklearn.linear_model import LinearRegression
    reg= LinearRegression()
    reg.fit(X_train, Y_train)
    reg.score(X_test,Y_test)
```

The R2 score of our model resulted in a perfect fit.

```
In [ ]: Y_pred= reg.predict(X_test)
Y_pred

In [ ]: len(Y_pred)

In [ ]: len(Y)

In [ ]: Y = Y[:len(Y_pred)]
    r2 = r2_score(Y_test, Y_pred)

In [ ]: from sklearn.metrics import mean_squared_error, r2_score
    r2 = r2_score(Y_test, Y_pred)
    print("R-squared Score:", r2)
```

Calculated the root mean square error as well to see how our model is performing

```
In [ ]: rmse = np.sqrt(mean_squared_error(Y_test, Y_pred))
    rmse
```

As it can be seen that our Root Mean Squared Error (RMSE) = 3.42×10^{-16} is extremely close to zero, which aligns with our $R^2 = 1.0$. This means our model is predicting Y_test almost perfectly. However, this is highly unusual in real-world scenarios and often indicates overfitting. Hence just to confirm we are using K-fold cross validation and Ridge Regression

```
In [ ]: import numpy as np
    from sklearn.model_selection import cross_val_score
    reg= LinearRegression()
    Score= cross_val_score(reg,X_test,Y_test,cv=3)
    np.average(Score)

In [ ]: from sklearn.linear_model import Ridge
    ridge_reg= Ridge(alpha=50, max_iter=100, tol=0.1)
    ridge_reg.fit(X_train,Y_train)
    ridge_reg.score(X_test,Y_test)
```

As it can be seen and confirmed from above that the model performs and fits properly even after perform cross validation and ridge regression. This indicates that our model is reliable.

```
In [ ]: from sklearn.linear model import LinearRegression
          # Instantiate the model
          reg = LinearRegression()
          # Fit the model on training data
          reg.fit(X_train, Y_train)
          # Now make predictions on the test data
          Y pred = reg.predict(X test)
          # You can now evaluate the performance using Y pred
          print("Predictions:", Y_pred)
In [540...
          reg.predict([[0.015873,4.0]])
          C:\Users\captr\anaconda3\Lib\site-packages\sklearn\base.py:464: UserWarning: X doe
          s not have valid feature names, but LinearRegression was fitted with feature names
            warnings.warn(
          array([0.015873])
Out[540]:
```

RMSE Plot

```
plt.figure(figsize=(8, 5))
plt.scatter(Y_test, Y_pred, color="blue", alpha=0.5, label="Predicted vs Actual")
```

```
plt.plot([Y_test.min(), Y_test.max()], [Y_test.min(), Y_test.max()], 'r', lw=2, lat
plt.xlabel("Actual Values")
plt.ylabel("Predicted Values")
plt.title(f"Actual vs. Predicted Values (RMSE: {rmse:.2f})")
plt.legend()
plt.show()
```



```
import matplotlib.pyplot as plt
import numpy as np
from sklearn.metrics import mean_squared_error

# Compute RMSE
rmse = np.sqrt(mean_squared_error(Y_test, Y_pred))

# Plot RMSE
plt.figure(figsize=(6, 4))
plt.bar(["RMSE"], [rmse], color='blue')
plt.ylabel("Error")
plt.title("Root Mean Squared Error (RMSE)")
plt.ylim(0, rmse * 1.2) # Adding some padding for better visualization
plt.show()
```


In []: