1 DRAM operation

Figure 1: DRAM Bitcell

Operation of DRAM is as follows ...

quired)

- Bitcell is accessed to read or write data into the bitcell Electrically connect BL to storage node Q
- Otherwise, bitcell is in *hold* mode and retains stored data
 - Affected by leakage current I_{leak} Larger C_s allows for more charge to be stored (and higher data retention time before refresh is re-

1.1 DRAM Write

Figure 2: Initial state WL is off, capacitor charge is zero

Figure 4: Turn on WL

Figure 3: Suppose we want to write 1 Precharge BL to V_{DD}

Figure 5: Current flows into C_s NMOS passes weak 1, therefore V_Q goes up to $V_{DD}-V_{TH}$

Figure 6: Data successfully written into bitcell WL can be turned off, voltage at BL can be removed

DRAM Read 1.2

Figure 7: We want to read V_{DATA} stored on V_Q Notice that there is parasitic C_{BL} on BL

Figure 9: C_{BL} now holds onto V_{PCH} ie. high impedance node

Figure 8: Precharge BL to V_{PCH} Note that V_{PCH} may be lower than V_{DD}

Figure 10: Turn on the WL, short-circuiting C_S with C_{BL} Charge-sharing occurs

Charge Sharing 1.2.1

Figure 11: Charge Sharing

- $\begin{array}{l} \bullet \ \ Q_S = C_S V_{DATA} \\ \bullet \ \ Q_{BL} = C_{BL} V_{PCH} \\ \bullet \ \ \ Q_{TOTAL} = Q_{BL} + Q_S \end{array}$

- When M1 turns on ...

 $\Delta V_{BL} = \frac{Q_{TOTAL}}{C_{BL} + C_S} V_{PCH}$ $\Delta V_Q = \frac{Q_{TOTAL}}{C_{BL} + C_S} V_{DATA}$

Figure 12: Charge Sharing (Alternative view)

$$\underbrace{C_S V_S + C_{BL} \frac{V_{DD}}{2}}_{\text{Initial charge; NMOS open}} = \underbrace{(C_S + C_{BL}) V_{common}}_{\text{After charge sharing; NMOS closed}}$$

- If store 1, then $V_S = V_{DD}$
- Assume that V_{BL} is precharged to $\frac{V_{DD}}{2}$

We can rearrange the above equation to get . . . $\Delta V_{BL} = V_{common} - V_{BL} = \frac{C_S}{C_S + C_{BL}} \cdot \frac{V_{DD}}{2}$

From this, we can see that we want $C_S >>> C_{BL}$

1.2.2 Sense Amplifier and Writeback

Figure 13: Op-amp with writeback

- V_{REF} must be tuned correctly • WB ensures that we rectify our destructive read