# Relatório 1º projecto ASA 2020/2021

Grupo: al042

Alunos: João Silveira (95597) e Maria Alves (95634)

\_\_\_\_\_

### Descrição da Solução

Uma vez que o grafo é um DAG, sabemos, logo à partida, que basta derrubar as sources para que todo o grafo se derrube, uma vez que esses são os únicos vértices que não podem ser derrubados por mais nenhum.

Para encontrar o tamanho da maior sequência de dominós a cair, basta encontrar uma ordenação topológica e, seguindo-a, ir propagando, sucessivamente, para os vértices adjacentes, o tamanho do maior caminho possível. Desta forma, sempre que exploramos um novo vértice temos a garantia de que já explorámos todos os vértices que o derrubam.

https://en.wikipedia.org/wiki/Kahn%27s\_algorithm

https://en.wikipedia.org/wiki/Longest\_path\_problem

 $\underline{http://www.mathcs.emory.edu/\sim cheung/Courses/171/Syllabus/11-Graph/Docs/longest-path-in-dag.pdf}$ 

#### **Análise Teórica**

Pseudo-código da solução proposta:

- Criação do grafo:
  - Leitura dos dados de entrada: percorrer o número de arestas e adicioná-las à lista de adjacências - Θ(E)
- Obter as sources (número mínimo de peças a derrubar):
  - Transpor o grafo O(V+E)
  - Encontrar os sinks do grafo transposto (sources do original) O(V)
- Encontrar o maior caminho:
  - Encontrar uma ordenação topológica O(V+E)
  - Propagar as distâncias de acordo com a ordem topológica O(V + E)

Complexidade global: O(V+E)

# Relatório 1º projecto ASA 2020/2021

Grupo: al042

Alunos: João Silveira (95597) e Maria Alves (95634)

### Avaliação Experimental dos Resultados

Para testar a eficiência da nossa solução, gerámos testes com número de arestas na ordem de grandeza entre 10<sup>5</sup> e 10<sup>6</sup> e construímos o gráfico de tempos de execução em função do número de arestas, pois o seu número cresce quadraticamente com o número de vértices, ditando, assim, a dificuldade de resolução do problema.

Para medir o tempo de cada input gerado, usámos o comando time e registámos o tempo que o processo passou em user mode, uma vez que é este o tempo gasto a fazer as computações do algoritmo proposto. Para obter resultados mais consistentes, cada teste foi executado três vezes e foi calculada a média.

Através do gráfico gerado, conseguimos verificar que a solução proposta cresce linearmente com o número de arestas, pelo que está em concordância quer com a nossa análise teórica, quer com o gráfico de referência.





<sup>&</sup>lt;sup>1</sup> Gráfico da nossa solução

-

<sup>&</sup>lt;sup>2</sup> Gráfico referência