Conditionnement et Indépendance

Niveau: Première

1. Probabilité conditionnelle

1.1 Définition

Définition

Soient deux événements A et B, avec $\mathbb{P}(B) > 0$. La probabilité de A sachant B est notée $\mathbb{P}_B(A)$ et définie par :

$$\mathbb{P}_B(A) = \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}$$

Cette formule permet d'adapter la probabilité à une information donnée : l'occurrence de B.

1.2 Interprétation

- $\mathbb{P}_B(A)$ est la probabilité que A se produise sachant que B est réalisé.
- On restreint alors l'univers à B.

1.3 Exemple concret

Un lycée a présenté 356 candidats au bac, dont 96 en série S. 256 élèves ont été admis à l'examen; parmi eux 64 provenaient de la série S.

$$\mathbb{P}(A) = \frac{96}{356}, \quad \mathbb{P}(B) = \frac{256}{356}, \quad \mathbb{P}(A \cap B) = \frac{64}{356}$$
$$\Rightarrow \mathbb{P}_B(A) = \frac{64/356}{256/356} = \frac{64}{256} = 0.25$$

La probabilité qu'un élève soit en série S sachant qu'il a été reçu est de 0,25.

2. Probabilité d'une intersection

Formule des probabilités composées

$$\mathbb{P}(A \cap B) = \mathbb{P}(A) \cdot \mathbb{P}_A(B) = \mathbb{P}(B) \cdot \mathbb{P}_B(A)$$

Ces formules traduisent que pour qu'à la fois A et B se produisent, il faut que A se produise, puis B sachant A.

3. Indépendance

3.1 Définition

Définition

Deux événements A et B sont dits **indépendants** si :

$$\mathbb{P}(A \cap B) = \mathbb{P}(A) \cdot \mathbb{P}(B)$$

Cela signifie que la réalisation de l'un ne modifie pas la probabilité de réalisation de l'autre.

3.2 Vérification pratique

Pour tester l'indépendance, on vérifie l'égalité entre $\mathbb{P}(A \cap B)$ et $\mathbb{P}(A) \cdot \mathbb{P}(B)$.

3.3 Exemple illustré

Une urne contient 3 boules bleues et 5 rouges. On tire une première boule :

- Si elle est bleue, on la remet et on ajoute une autre bleue.
- Si elle est rouge, on ne la remet pas.

On s'intéresse à la probabilité que deux boules tirées soient bleues.

$$\mathbb{P}(B_1) = \frac{3}{8}, \quad \mathbb{P}_{B_1}(B_2) = \frac{4}{9}$$

$$\Rightarrow \mathbb{P}(B_1 \cap B_2) = \frac{3}{8} \times \frac{4}{9} = \frac{1}{6}$$

4. Formule des probabilités totales

Si (A_i) est une partition de l'univers (événements disjoints dont la réunion est Ω):

Formule des probabilités totales

$$\mathbb{P}(B) = \sum_{i} \mathbb{P}(A_i) \cdot \mathbb{P}_{A_i}(B)$$

Exemple : Une population se divise en 3 groupes selon un test (fortement, faiblement, négativement positif), chacun ayant une probabilité différente d'être malade. En pondérant chaque cas, on obtient la probabilité totale d'être malade.

5. Arbres de probabilités

Un arbre pondéré permet de visualiser facilement les enchaînements et probabilités :

- Les branches primaires partent de la racine (univers)
- Chaque nœud correspond à un événement
- Le produit des probabilités le long d'un chemin donne la probabilité du scénario complet

Règles: La somme des probabilités issues d'un même nœud vaut 1. La somme des probabilités des scénarios menant à un événement est la probabilité de cet événement.

6. Synthèse finale

- Conditionnement : ajustement de la probabilité quand une information est connue
- **Probabilités composées** : intersection modélisée comme suite d'événements dépendants
- **Indépendance** : aucun impact entre les deux événements
- **Totales** : décomposition d'une probabilité via un système complet
- **Arbres** : représentation claire de scénarios