Assignment 8

1. The voltage across a 50 mH inductor is given by

$$v(t) = (5e^{-2t} + 2t + 4) V \text{ for } t > 0.$$

Determine the current i(t) through the inductor. Assume that i(0) = 0 A.

2. Find L_{eq} in each of the following circuit.

3. The voltage across a $4 \mu F$ capacitor is shown in the following figure. Find the current waveform. (Assume the current passing through the capacitor is along the voltage drop on it.)

4. Find C_{eq} in the circuit shown below if all capacitors are 4 μF . (Note: around the sulotion to 2 decimal places)

5. Find the voltages across the capacitors in the circuitbelow under dc conditions. (Hints: When capacitors are fully charged, the voltages across the capacitors are constant)

Answers: $v_1 = 42 V$, $v_2 = 48 V$

6. Find v_C , i_L , and energy stored in the capacitor and inductor in the following circuit under dc conditions. (Hint: 1. When capacitors are fully charged, the voltages across the capacitors are constant. 2. When inductors have been driven by dc sources for a long time, the currents in the inductors are constant).

Answers: $v_C = 0$, $i_L = 2 A$, $w_c = 0 J$, $w_l = 1 J$