Project Info - Assignment 3

Code ▼

- Nadejda Boev (20056079)
- Due Date 2022/01/26
- Github user 16nbb1
- Github link https://github.com/16nbb1/Biol432_A3 (https://github.com/16nbb1/Biol432_A3)

Data Input and libraries

Loading in libraries I'll Need

```
library(ggplot2)
library(tidyverse)
library(dplyr)
library(stringr)
```

Loading in dataset with a relative path

Hide

Hide

```
(df = read.csv("./InputData/FallopiaData.csv"))
```

	Scenario <chr></chr>	Nutrients <chr></chr>	Taxon <chr></chr>	Symphytum <dbl></dbl>	Silene <dbl></dbl>	Urtica <dbl></dbl>	Geranium <dbl></dbl>	Ge <dbl></dbl>	AII_	Natives <dbl></dbl>
1	low	low	japon	9.81	36.36	16.08	4.68	0.12		67.05
2	low	low	japon	8.64	29.65	5.59	5.75	0.55		50.18
3	low	low	japon	2.65	36.03	17.09	5.13	0.09		60.99
5	low	low	japon	1.44	21.43	12.39	5.37	0.31		40.94
6	low	low	japon	9.15	23.90	5.19	0.00	0.17		38.41
7	low	low	japon	6.31	24.40	7.00	9.05	0.97		47.73
8	low	low	japon	19.53	29.93	0.00	3.51	0.40		53.37
9	low	low	japon	6.08	18.25	8.44	9.64	0.01		42.42
10	low	low	japon	5.69	35.23	4.84	7.30	0.47		53.53
11	low	low	japon	15.58	20.81	2.81	6.36	0.33		45.89
I-10 of 123 rows 1-10 of 13 columns						Previous	1 2	3 4	5 6	13 Next

Data Wrangling

- 1. Removing rows with 'Total' biomass < 60
- Filtering for rows that have a biomass of 60 or less
- 2. Make a new column TotalG, which converts the 'Total' column from mg to grams AND replace Total with TotalG, and add it to the dataset.
- · Removing Total using NULL
- 3. Reorder the columns so that they are in the order: 'TotalG', 'Taxon', 'Scenario', 'Nutrients' AND Remove the other columns

```
df_filt = df %>%
  filter(Total <= 60) %>%
  mutate(TotalG = Total / 1000, Total = NULL) %>%
  select(TotalG, Taxon, Scenario, Nutrients)
```

Function: basics

Input:

- A vector of data to process (e.g. column from a data.frame object)
- · A string that defines what calculation to perform.
 - o Options: "Average", "Sum", "Observations"
 - All other inputs receive the following message: "ERROR input"

Output:

- · Based on the above command, perform the command with the column provided
- Count the total number of observations in the 'Taxon' column ONLY IF a Taxon column exists
- · Calculate the average TotalG for each of the two Nutrient concentrations ONLY IF a TotalG column exits
- · Return an error messages if input string does not perfectly match or if columns required do not exist in the dataframe provided

Hide basics <- function (in_comm, in_vec, datafram) {</pre> # IF statement based on command, includes the possibility for NA is columns if(in_comm == 'Average') { print(paste0('Average: ', mean(in_vec, na.rm=T))) } else if (in_comm == 'Sum') { print(paste0('Sum: ', sum(in_vec, na.rm=T))) } else if (in_comm == 'Observations') { print(paste0('Number of observations: ',length(in_vec))) } else { print('INPUT ERROR') # IF statement for counting number of Taxon observations, if this column exists if(any(str detect(names(datafram), "Taxon")) == TRUE) { print(paste0('Number of observations in Taxon column: ',length(datafram\$Taxon))) } else { print('ERROR : No taxon column') # IF statement for for groupby average by nutrient, the column TotalG must exist if(any(str_detect(names(datafram), "TotalG")) == TRUE) { groupby_nut = datafram %>% group_by(Nutrients) %>% summarize(Mean = mean(TotalG)) # Printing out each average (low and high nutrients) print(paste0('Average biomass for high nutrients: ', signif(groupby_nut[groupby_nut\$Nutrients == 'high',] \$Mean, digits = 3), 'g')) print(paste0('Average biomass for low nutrients: ', signif(groupby_nut[groupby_nut\$Nutrients == 'low',]\$Me an, digits = 3), 'g'))} else { print('ERROR : No TotalG column') }

Testing inputs

Successful cases

```
Hide

basics('Average', df_filt$TotalG, df_filt)

[1] "Average: 0.0505489743589744"
[1] "Number of observations in Taxon column: 78"
[1] "Average biomass for high nutrients: 0.0513g"
[1] "Average biomass for low nutrients: 0.0487g"

Hide

basics('Sum', df_filt$TotalG, df_filt)

[1] "Sum: 3.94282"
[1] "Number of observations in Taxon column: 78"
[1] "Average biomass for high nutrients: 0.0513g"
[1] "Average biomass for low nutrients: 0.0487g"

Hide

basics('Observations', df_filt$TotalG, df_filt)
```

- [1] "Number of observations: 78"
 [1] "Number of observations in Taxon column: 78"
 [1] "Average biomass for high nutrients: 0.0513g"
 [1] "Average biomass for low nutrients: 0.0487g"
- Other cases

Spelling error
basics('Observations', df_filt\$TotalG, df_filt)

- [1] "INPUT ERROR"
- [1] "Number of observations in Taxon column: 78"
- [1] "Average biomass for high nutrients: 0.0513g"
- [1] "Average biomass for low nutrients: 0.0487g"

Throwing error when wrong dataframe is used (df does not have a TotalG column) basics('Observations', df_filt\$TotalG, df)

- [1] "Number of observations: 78"
- [1] "Number of observations in Taxon column: 123"
- [1] "ERROR : No TotalG column"

Saving the "clean" dataset

Hide

Hide

write.csv(df_filt,"./Output/WrangledData.csv")