Study Guide: Vibration ODEs

Hans Petter Langtangen^{1,2}

Center for Biomedical Computing, Simula Research Laboratory 1 Department of Informatics, University of Oslo^2

Sep 4, 2013

A simple vibration problem

$$u''t + \omega^2 u = 0$$
, $u(0) = I$, $u'(0) = 0$, $t \in (0, T]$. (1)

Exact solution:

$$u(t) = I\cos(\omega t). \tag{2}$$

u(t) oscillates with constant amplitude I and (angular) frequency ω . Period: $P = 2\pi/\omega$.

A centered finite difference scheme; step 1 and 2

- Strategy: follow the four steps of the finite difference method.
- Step 1: Introduce a time mesh, here uniform on [0, T]: $t_n = n\Delta t$
- Step 2: Let the ODE be satisfied at each mesh point:

$$u''(t_n) + \omega^2 u(t_n) = 0, \quad n = 1, \dots, N_t.$$
 (3)

A centered finite difference scheme; step 3

Step 3: Approximate derivative(s) by finite difference approximation(s). Very common (standard!) formula for u'':

$$u''(t_n) \approx \frac{u^{n+1} - 2u^n + u^{n-1}}{\Delta t^2}$$
 (4)

Use this discrete initial condition together with the ODE at t=0 to eliminate u^{-1} (insert (??) in (??)):

$$\frac{u^{n+1} - 2u^n + u^{n-1}}{\Delta t^2} = -\omega^2 u^n \,. \tag{5}$$

A centered finite difference scheme; step 4

Step 4: Formulate the computational algorithm. Assume u^{n-1} and u^n are known, solve for unknown u^{n+1} :

$$u^{n+1} = 2u^n - u^{n-1} - \omega^2 u^n. (6)$$

Nick names for this scheme: Stormer's method or Verlet integration.

Computing the first step

- The formula breaks down for u^1 because u^{-1} is unknown and outside the mesh!
- And: we have not used the initial condition u'(0) = 0.

Discretize u'(0) by a centered difference

$$\frac{u^1 - u^{-1}}{2\Delta t} = 0 \quad \Rightarrow \quad u^{-1} = u^1 \,. \tag{7}$$

Inserted in (??) for n = 0 gives

$$u^{1} = u^{0} - \frac{1}{2}\Delta t^{2}\omega^{2}u^{0}. \tag{8}$$

The computational algorithm

- $u^0 = I$
- ② compute u^1 from (??)
- **3** for $n = 1, 2, ..., N_t 1$:
 - compute u^{n+1} from (??)

More precisly expressed in Python:

```
t = linspace(0, T, Nt+1)  # mesh points in time
dt = t[1] - t[0]  # constant time step.
u = zeros(Nt+1)  # solution

u[0] = I
u[1] = u[0] - 0.5*dt**2*w**2*u[0]
for n in range(1, Nt):
    u[n+1] = 2*u[n] - u[n-1] - dt**2*w**2*u[n]
```

Note: ${\tt w}$ is consistently used for ω in code.

Operator notation; ODE

With $[D_tD_tu]^n$ as the finite difference approximation to $u''(t_n)$ we can write

$$[D_t D_t u + \omega^2 u = 0]^n. (9)$$

 $[D_tD_tu]^n$ means applying a central difference with step $\Delta t/2$ twice:

$$[D_t(D_t u)]^n = \frac{[D_t u]^{n+1/2} - [D_t u]^{n-1/2}}{\Delta t}$$

which is written out as

$$\frac{1}{\Delta t} \left(\frac{u^{n+1} - u^n}{\Delta t} - \frac{u^n - u^{n-1}}{\Delta t} \right) = \frac{u^{n+1} - 2u^n + u^{n-1}}{\Delta t^2}.$$

Operator notation; initial condition

$$[u=I]^0, \quad [D_{2t}u=0]^0,$$
 (10)

where $[D_{2t}u]^n$ is defined as

$$[D_{2t}u]^n = \frac{u^{n+1} - u^{n-1}}{2\Delta t}.$$
 (11)

Computing u'

 $\it u$ is often displacement/position, $\it u'$ is velocity and can be computed by

$$u'(t_n) \approx \frac{u^{n+1} - u^{n-1}}{2\Delta t} = [D_{2t}u]^n.$$
 (12)

Core algorithm

```
from numpy import *
from matplotlib.pyplot import *
def solver(I, w, dt, T):
    Solve u'' + w**2*u = 0 for t in (0,T], u(0)=I and u'(0)=0,
    by a central finite difference method with time step dt.
    11 11 11
    dt = float(dt)
    Nt = int(round(T/dt))
    u = zeros(Nt+1)
    t = linspace(0, Nt*dt, Nt+1)
    u[0] = I
    u[1] = u[0] - 0.5*dt**2*w**2*u[0]
    for n in range(1, Nt):
        u[n+1] = 2*u[n] - u[n-1] - dt**2*w**2*u[n]
    return u. t
```

Plotting

```
def exact_solution(t, I, w):
    return T*cos(w*t)
def visualize(u, t, I, w):
    plot(t, u, 'r--o')
    t_fine = linspace(0, t[-1], 1001) # very fine mesh for u_e
    u_e = exact_solution(t_fine, I, w)
    hold('on')
    plot(t_fine, u_e, 'b-')
    legend(['numerical', 'exact'], loc='upper left')
    xlabel('t')
    vlabel('u')
    dt = t[1] - t[0]
    title('dt=%g' % dt)
    umin = 1.2*u.min(); umax = -umin
    axis([t[0], t[-1], umin, umax])
    savefig('vib1.png')
    savefig('vib1.pdf')
    savefig('vib1.eps')
```

Main program

```
I = 1
w = 2*pi
dt = 0.05
num_periods = 5
P = 2*pi/w # one period
T = P*num_periods
u, t = solver(I, w, dt, T)
visualize(u, t, I, w, dt)
```

User interface: command line

```
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('--I', type=float, default=1.0)
parser.add_argument('--w', type=float, default=2*pi)
parser.add_argument('--dt', type=float, default=0.05)
parser.add_argument('--num_periods', type=int, default=5)
a = parser.parse_args()
I, w, dt, num_periods = a.I, a.w, a.dt, a.num_periods
```

Running the program

vib_undamped.py:

Terminal> python vib_undamped.py --dt 0.05 --num_periods 40

Generates frames tmp_vib%04d.png in files. Can make movie:

Terminal> avconv -r 12 -i tmp_vib%04d.png -vcodec flv movie.flv

Can use ffmpeg instead of avconv.

Format	Codec and filename
Flash	-vcodec flv movie.flv
MP4	-vcodec lib $x64$ movie.mp4
Webm	$-vcodec\ libvpx\ movie.webm$
Ogg	-vcodec libtheora movie.ogg

First steps for testing and debugging

- Testing very simple solutions: u = const or u = ct + d do not apply here (without a force term in the equation: $u'' + \omega^2 u = f$).
- Hand calculations: calculate u^1 and u^2 and compare with program.

Checking convergence rates

The function below

- performs m simulations with halved time steps: $2^{-k}\Delta t$, $k=0,\ldots,m-1$,
- computes the L_2 norm of the error, $E = \sqrt{\Delta t_i \sum_{n=0}^{N_t-1} (u^n u_{\rm e}(t_n))^2}$ in each case,
- estimates the rates r_i from two consecutive experiments $(\Delta t_{i-1}, E_{i-1})$ and $(\Delta t_i, E_i)$, assuming $E_i = C\Delta t_i^{r_i}$ and $E_{i-1} = C\Delta t_{i-1}^{r_i}$:

Implementational details

```
def convergence_rates(m, num_periods=8):
    Return m-1 empirical estimates of the convergence rate
    based on m simulations, where the time step is halved
    for each simulation.
    "" " "
    w = 0.35; I = 0.3
    dt = 2*pi/w/30  # 30 time step per period 2*pi/w
    T = 2*pi/w*num_periods
    dt_values = []
    E values = \Pi
    for i in range(m):
        u, t = solver(I, w, dt, T)
        u_e = exact_solution(t, I, w)
        E = sqrt(dt*sum((u_e-u)**2))
        dt_values.append(dt)
        E_values.append(E)
        dt = dt/2
    r = [log(E_values[i-1]/E_values[i])/
         log(dt_values[i-1]/dt_values[i])
         for i in range(1, m, 1)]
    return r
```

Result: r contains values equal to 2.00 - as expected!

Nose test

```
Use final r[-1] in a unit test:
    def test_convergence_rates():
        r = convergence_rates(m=5, num_periods=8)
        # Accept rate to 1 decimal place
        nt.assert_almost_equal(r[-1], 2.0, places=1)
Complete code in vib_undamped.py.
```


Effect of the time step on long simulations

- The numerical solution seems to have right amplitude.
- There is a phase error which is reduced by reducing the time step.
- The total phase error seems to grow with time.

Using a moving plot window

- In long time simulations we need a plot window that follows the solution.
- Method 1: scitools.MovingPlotWindow.
- Method 2: scitools.avplotter (ASCII vertical plotter).

Example:

Terminal> python vib_undamped.py --dt 0.05 --num_periods 40 Movie of the moving plot window.

Deriving an exact numerical solution; ideas

- Linear, homogeneous, difference equation for u^n .
- Has solutions $u^n \sim A^n$, where A is unknown (number).
- Here: $u_{\rm e}(t) = I\cos(\omega t) \sim I\exp(i\omega t) = I(e^{i\omega\Delta t})^n$
- Trick for simplifying the algebra: $u^n = A^n$, seek $A = \exp(i\tilde{\omega}\Delta t)$ and find $\tilde{\omega}$
- $\tilde{\omega}$: unknown numerical frequency (easier to calculate than A)
- $\omega \tilde{\omega}$ is the *phase error*
- Use the real part as the physical relevant part of a complex expression

Deriving an exact numerical solution; calculations (1)

$$u^n = A^n = \exp(\tilde{\omega}\Delta t n) = \exp(\tilde{\omega}t) = \cos(\tilde{\omega}t) + i\sin(\tilde{\omega}t).$$

$$\begin{split} [D_t D_t u]^n &= \frac{u^{n+1} - 2u^n + u^{n-1}}{\Delta t^2} \\ &= I \frac{A^{n+1} - 2A^n + A^{n-1}}{\Delta t^2} \\ &= I \frac{\exp\left(i\tilde{\omega}(t + \Delta t)\right) - 2\exp\left(i\tilde{\omega}t\right) + \exp\left(i\tilde{\omega}(t - \Delta t)\right)}{\Delta t^2} \\ &= I \exp\left(i\tilde{\omega}t\right) \frac{1}{\Delta t^2} \left(\exp\left(i\tilde{\omega}(\Delta t)\right) + \exp\left(i\tilde{\omega}(-\Delta t)\right) - 2\right) \\ &= I \exp\left(i\tilde{\omega}t\right) \frac{2}{\Delta t^2} \left(\cosh(i\tilde{\omega}\Delta t) - 1\right) \\ &= I \exp\left(i\tilde{\omega}t\right) \frac{2}{\Delta t^2} \left(\cos(\tilde{\omega}\Delta t) - 1\right) \\ &= -I \exp\left(i\tilde{\omega}t\right) \frac{4}{\Delta t^2} \sin^2\left(\frac{\tilde{\omega}\Delta t}{2}\right) \end{split}$$

Deriving an exact numerical; calculations (2)

The scheme (??) with $u^n = \exp(i\omega\tilde{\Delta}t n)$ inserted gives

$$-\exp\left(i\tilde{\omega}t\right)\frac{4}{\Delta t^2}\sin^2\left(\frac{\tilde{\omega}\Delta t}{2}\right) + \omega^2\exp\left(i\tilde{\omega}t\right) = 0,\tag{13}$$

which after dividing by $\exp(i\tilde{\omega}t)$ results in

$$\frac{4}{\Delta t^2} \sin^2(\frac{\tilde{\omega}\Delta t}{2}) = \omega^2. \tag{14}$$

Solve for $\tilde{\omega}$:

$$\tilde{\omega} = \pm \frac{2}{\Delta t} \sin^{-1} \left(\frac{\omega \Delta t}{2} \right) \,. \tag{15}$$

- Phase error because $\tilde{\omega} \neq \omega$.
- But how good is the approximation $\tilde{\omega}$ to ω ?

Polynomial approximation of the phase error

Taylor series expansion for small Δt gives a formula that is easier to understand:

```
>>> from sympy import *
>>> dt, w = symbols('dt w')
>>> w_tilde = asin(w*dt/2).series(dt, 0, 4)*2/dt
>>> print w_tilde
(dt*w + dt**3*w**3/24 + O(dt**4))/dt # observe final /dt
```

$$\tilde{\omega} = \omega \left(1 + \frac{1}{24} \omega^2 \Delta t^2 \right) + \mathcal{O}(\Delta t^3). \tag{16}$$

The numerical frequency is too large (to fast oscillations).

Plot of the phase error

Exact discrete solution

$$u^{n} = I \cos(\tilde{\omega} n \Delta t), \quad \tilde{\omega} = \frac{2}{\Delta t} \sin^{-1} \left(\frac{\omega \Delta t}{2}\right).$$
 (17)

Ideal for verification and analysis!

Stability

- Numerical solution has constant amplitude (desired!), but phase error.
- Constant amplitude requires $\sin^{-1}(\omega \Delta t/2)$ to be real-valued $\Rightarrow |\omega \Delta t/2| \leq 1$.
- \bullet $\sin^{-1}(x)$ is complex if |x|>1, and then $\tilde{\omega}$ becomes complex.

What is the consequence of complex $\tilde{\omega}$?

- Set $\tilde{\omega} = \tilde{\omega}_r + i\tilde{\omega}_i$.
- Since $\sin^{-1}(x)$ has a negative* imaginary part for x>1, $\exp(i\omega\tilde{t})=\exp(-\tilde{\omega}_it)\exp(i\tilde{\omega}_rt)$ leads to exponential growth $e^{-\tilde{\omega}_it}$ when $-\tilde{\omega}_it>0$.
- This instability because the qualitative behavior is wrong.

The stability criterion

Cannot tolerate growth and must therefore demand a *stability* criterion

$$\frac{\omega \Delta t}{2} \le 1 \quad \Rightarrow \quad \Delta t \le \frac{2}{\omega} \,. \tag{18}$$

Try $\Delta t = \frac{2}{\omega} + 9.01 \cdot 10^{-5} \ (\pi^{-1})$:

Summary of the analysis

We can draw three important conclusions:

- **①** The key parameter in the formulas is $p = \omega \Delta t$.
 - Period of oscillations: $P=2\pi/\omega$
 - **2** Number of time steps per period: $N_P = P/\Delta t$

 - **1** The smallest possible N_P is $2 \Rightarrow p \in (0, \pi]$
- ② For $p \le 2$ the amplitude of u^n is constant (stable solution)
- ① u^n has a relative phase error $\tilde{\omega}/\omega \approx 1 + \frac{1}{24}p^2$, making numerical peaks occur too early

Rewriting 2nd-order ODE as system of two 1st-order ODEs

$$u'' + \omega^2 u = 0$$

Introduce auxiliary variable v = u':

$$u' = v, \tag{19}$$

$$v' = -\omega^2 u. \tag{20}$$

$$v' = -\omega^2 u. (20)$$

Initial conditions: u(0) = I and v(0) = 0.

The Forward Euler scheme

$$[D_t^+ u = v]^n,$$

$$[D_t^+ v = -\omega^2 u]^n,$$

or written out.

$$u^{n+1} = u^n + \Delta t v^n, \tag{21}$$

$$v^{n+1} = v^n - \Delta t \omega^2 u^n \,. \tag{22}$$

The Backward Euler scheme

$$[D_t^- u = v]^{n+1}, (23)$$

$$[D_t^- v = -\omega u]^{n+1}. \tag{24}$$

Written out:

$$u^{n+1} - \Delta t v^{n+1} = u^n, \tag{25}$$

$$v^{n+1} + \Delta t \omega^2 u^{n+1} = v^n \,. \tag{26}$$

This is a *coupled* 2×2 system for the new values at $t = t_{n+1}!$

The Crank-Nicolson scheme

$$[D_t u = \overline{v}^t]^{n + \frac{1}{2}}, \tag{27}$$

$$[D_t v = -\omega \overline{u}^t]^{n+\frac{1}{2}}.$$
 (28)

Also a coupled system:

$$u^{n+1} - \frac{1}{2}\Delta t v^{n+1} = u^n + \frac{1}{2}\Delta t v^n, \tag{29}$$

$$v^{n+1} + \frac{1}{2}\Delta t\omega^2 u^{n+1} = v^n - \frac{1}{2}\Delta t\omega^2 u^n.$$
 (30)

Comparison of schemes via Odespy

Can use Odespy to compare many methods for first-order schemes:

```
import odespy
import numpy as np
def f(u, t, w=1):
    # u is array of length 2 holding our [u, v]
    u \cdot v = u
    return [v, -w**2*u]
def run_solvers_and_plot(solvers, timesteps_per_period=20,
                         num_periods=1, I=1, w=2*np.pi):
    P = 2*np.pi/w # one period
    dt = P/timesteps_per_period
    Nt = num_periods*timesteps_per_period
    T = Nt*dt
    t_mesh = np.linspace(0, T, Nt+1)
    legends = []
    for solver in solvers:
        solver.set(f_kwargs={'w': w})
        solver.set_initial_condition([I, 0])
        u, t = solver.solve(t_mesh)
```

Forward and Backward Euler and Crank-Nicolson

```
solvers = [
   odespy.ForwardEuler(f),
   # Implicit methods must use Newton solver to converge
   odespy.BackwardEuler(f, nonlinear_solver='Newton'),
   odespy.CrankNicolson(f, nonlinear_solver='Newton'),
   ]
```

Two plot types:

- u(t) vs t
- Parameterized curve (u(t), v(t)) in phase space (exact: $(I \cos \omega t, -\omega I \sin \omega t) = \text{ellipse})$
- Notice: The curve (u(t), v(t)) is closed and periodic $(P = 2\pi/\omega)$

Phase plane plot of the numerical solutions

Plain solution curves

Observations from the figures

- Forward Euler has growing amplitude and outward (u, v) spiral pumps energy into the system.
- Backward Euler is opposite: decreasing amplitude, inward sprial, extracts energy.
- Forward and Backward Euler are useless for vibrations.
- Crank-Nicolson (MidpointImplicit) looks much better.

Runge-Kutta methods of order 2 and 4; short time series

Runge-Kutta methods of order 2 and 4; longer time series

Crank-Nicolson; longer time series

Observations of RK and CN methods

- 4th-order Runge-Kutta is very accurate, also for large Δt .
- 2th-order Runge-Kutta is almost as bad as Forward and Backward Euler.
- Crank-Nicolson is accurate, but the amplitude is not as accurate as the difference scheme for $u'' + \omega^2 u = 0$.

The Euler-Cromer method; idea

Forward-backward discretization of the 2x2 system:

- Update *u* with Forward Euler
- Update v with Backward Euler, using latest u

$$[D_t^+ u = v]^n, (31)$$

$$[D_t^- v = -\omega u]^{n+1} \,. \tag{32}$$

The Euler-Cromer method; complete formulas

Written out:

$$u^0 = I, (33)$$

$$v^0 = 0, \tag{34}$$

$$u^{n+1} = u^n + \Delta t v^n, \tag{35}$$

$$v^{n+1} = v^n - \Delta t \omega^2 u^{n+1}. \tag{36}$$

Names: Forward-backward scheme, Semi-implicit Euler method, symplectic Euler, semi-explicit Euler, Newton-Stormer-Verlet, and Euler-Cromer.

Forward Euler and Backward Euler are both $\mathcal{O}(\Delta t)$) approximations. What about the overall scheme? Expect $\mathcal{O}(\Delta t)$...

Equivalence with the scheme for the second-order ODE

Goal: eliminate v^n . We have

$$v^n = v^{n-1} - \Delta t \omega^2 u^n,$$

which can be inserted in (??) to yield

$$u^{n+1} = u^n + \Delta t v^{n-1} - \Delta t^2 \omega^2 u^n.$$
 (37)

Using (??),

$$v^{n-1} = \frac{u^n - u^{n-1}}{\Delta t},$$

and when this is inserted in (??) we get

$$u^{n+1} = 2u^n - u^{n-1} - \Delta t^2 \omega^2 u^n \tag{38}$$

Comparison of the treatment of initial conditions

- The Euler-Cromer scheme is nothing but the centered scheme for $u'' + \omega^2 u = 0$ (??)!
- The previous analysis of this scheme then also applies to the Euler-Cromer method!
- What about the initial conditions?

$$u'=v=0 \Rightarrow v^0=0,$$

and (??) implies $u^1 = u^0$, while (??) says $v^1 = -\omega^2 u^0$. This $u^1 = u^0$ approximation corresponds to a first-order Forward Euler discretization of u'(0) = 0: $[D_t^+ u = 0]^0$.

A method utilizing a staggered mesh

- The Euler-Cromer scheme uses two unsymmetric differences in a symmetric way...
- We can derive the method from a more pedagogical point of view where we use a staggered mesh and only centered differences

Staggered mesh:

- u is unknown at mesh points $t_0, t_1, \ldots, t_n, \ldots$
- v is unknown at mesh points $t_{1/2}, t_{3/2}, \ldots, t_{n+1/2}, \ldots$ (between the u points)

Centered differences on a staggered mesh

$$[D_t u = v]^{n + \frac{1}{2}}, (39)$$

$$[D_t v = -\omega u]^{n+1}. (40)$$

Written out:

$$u^{n+1} = u^n + \Delta t v^{n+\frac{1}{2}}, (41)$$

$$v^{n+\frac{3}{2}} = v^{n+\frac{1}{2}} - \Delta t \omega^2 u^{n+1} \,. \tag{42}$$

or shift one time level back (purely of esthetic reasons):

$$u^{n} = u^{n-1} + \Delta t v^{n-\frac{1}{2}}, \tag{43}$$

$$v^{n+\frac{1}{2}} = v^{n-\frac{1}{2}} - \Delta t \omega^2 u^n \,. \tag{44}$$

Comparison with the scheme for the 2nd-order ODE

- Can eliminate $v^{n\pm 1/2}$ and get the centered scheme for $u'' + \omega^2 u = 0$
- What about the initial conditions? Their equivalent too!

$$u(0) = 0$$
 and $u'(0) = v(0) = 0$ give $u^0 = I$ and

$$v(0) pprox rac{1}{2} (v^{-rac{1}{2}} + v^{rac{1}{2}}) = 0, \quad \Rightarrow \quad v^{-rac{1}{2}} = -v^{rac{1}{2}} \, .$$

Combined with the scheme on the staggered mesh we get

$$u^1 = u^0 - \frac{1}{2}\Delta t^2 \omega^2 I,$$

Generalization: damping, nonlinear spring, and external excitation

$$mu'' + f(u') + s(u) = F(t), \quad u(0) = I, \ u'(0) = V, \ t \in (0, T].$$
(45)

Input data: m, f(u'), s(u), F(t), I, V, and T.

Typical choices of f and s:

A centered scheme for quadratic damping

- f(u') = bu'|u'| leads to a quadratic equation for u^{n+1}
- Instead of solving the quadratic equation, we use a geometric mean approximation

$$[mD_tD_tu + bu'|u'| + s(u) = F]^n,$$
 (52)

Compute u'|u'| by a geometric mean!

Using a geometric mean to linearize the equation

Geometric mean approximation:

$$w^n \approx w^{n-1/2} w^{n+1/2} .$$

For |u'|u':

$$[u'|u'|]^n \approx u'(t_n + \frac{1}{2})|u'(t_n - \frac{1}{2})|.$$

For u' at $t_{n\pm 1/2}$ we use centered difference:

$$u'(t_{n+1/2}) \approx [D_t u]^{n+1/2}, \quad u'(t_{n-1/2}) \approx [D_t u]^{n-1/2}.$$
 (53)

After some algebra:

$$u^{n+1} = (m+b|u^{n}-u^{n-1}|)^{-1} \times (2mu^{n}-mu^{n-1}+bu^{n}|u^{n}-u^{n-1}|+\Delta t^{2}(F^{n}-s(u^{n}))).$$
(54)

Initial condition for quadratic damping

Simply use that u' = V in the scheme:

$$[mD_tD_tu + bV|V| + s(u) = F]^0$$
 (55)

which gives

$$u^{1} = u^{0} + \Delta t V + \frac{\Delta t^{2}}{2m} \left(-bV|V| - s(u^{0}) + F^{0} \right).$$
 (56)

Algorithm

The computational algorithm is a slight variation of the one in Section ??:

- $u^0 = I$
- **2** compute u^1 from $(\ref{eq:compute})$ if linear damping or $(\ref{eq:compute})$ if quadratic damping
- **3** for $n = 1, 2, ..., N_t 1$:
 - compute u^{n+1} from (vib:ode2:step4) if linear damping or (??) if quadratic damping

Implementation

```
def solver(I, V, m, b, s, F, dt, T, damping='linear'):
    Solve m*u'' + f(u') + s(u) = F(t) for t in (0,T],
    u(0)=I \text{ and } u'(0)=V.
    by a central finite difference method with time step dt.
    If damping is 'linear', f(u')=b*u, while if damping is
    'quadratic', f(u')=b*u'*abs(u').
   F(t) and s(u) are Python functions.
   dt = float(dt); b = float(b); m = float(m) # avoid integer div.
   Nt = int(round(T/dt))
   u = zeros(Nt+1)
   t = linspace(0, Nt*dt, Nt+1)
   u[0] = I
    if damping == 'linear':
        u[1] = u[0] + dt*V + dt**2/(2*m)*(-b*V - s(u[0]) + F(t[0]))
    elif damping == 'quadratic':
        u[1] = u[0] + dt*V + 
               dt**2/(2*m)*(-b*V*abs(V) - s(u[0]) + F(t[0]))
   for n in range(1, Nt):
        if damping == 'linear':
            u[n+1] = (2*m*u[n] + (b*dt/2 - m)*u[n-1] +
                      dt**2*(F(t[n]) - s(u[n])))/(m + b*dt/2)
        elif damping == 'quadratic':
            u[n+1] = (2*m*u[n] - m*u[n-1] + b*u[n]*abs(u[n] - u[n-1])
                    \perp d+**0*(E(+[n]) - a(n[n])))/
```

Verification

- Exact linear solution of the discrete equations with linear s
- MMS

Demo program

vib.py supports input via the command line:
Terminal> python vib.py --s 'sin(u)' --F '3*cos(4*t)' --c 0.03
This results in a moving window following the function on the screen.

