

#### CICLO 4A

[FORMACIÓN POR CICLOS]

## Profundización Web

Gestión de la configuración







### Agenda

- Presentación de tripulantes y docente.
- · Presentación del curso
- Gestión de la configuración.





## Diego Iván Oliveros Acosta

Docente Universidad de Antioquia. Ingeniero de Sistemas. Ingeniero de Electrónico. Especialista en herramientas virtuales para la educación. Magister en Arquitectura de Sistemas de Información.



https://scalapp.co/



# Presentación de beneficiarios.

#### Presentación del curso

- Metodología
- Contenido
- Evaluaciones
- Tips

# El ciclo 4a de Desarrollo de aplicaciones web

Contenido

## ¿Metodología?



## Principios del Manifiesto Ágil

- Nuestra mayor prioridad es satisfacer al cliente mediante la entrega temprana y continua de software con valor.
- Aceptamos que los requisitos cambien, incluso en etapas tardías del desarrollo. Los procesos Ágiles aprovechan el cambio para proporcionar ventaja competitiva al cliente.
- Entregamos software funcional frecuentemente, entre dos semanas y dos meses, con preferencia al periodo de tiempo más corto posible.
- Los responsables de negocio y los desarrolladores trabajamos juntos de forma cotidiana durante todo el proyecto.
- Los proyectos se desarrollan en torno a individuos motivados. Hay que darles el entorno y el apoyo que necesitan, y confiarles la ejecución del trabajo.
- 6. El método más eficiente y efectivo de comunicar

- información al equipo de desarrollo y entre sus miembros es la conversación cara a cara.
- El software funcionando es la medida principal de progreso.
- Los procesos Ágiles promueven el desarrollo sostenible. Los promotores, desarrolladores y usuarios debemos ser capaces de mantener un ritmo constante de forma indefinida.
- La atención continua a la excelencia técnica y al buen diseño mejora la Agilidad.
- La simplicidad, o el arte de maximizar la cantidad de trabajo no realizado, es esencial.
- Las mejores arquitecturas, requisitos y diseños emergen de equipos auto-organizados.
- 12. A intervalos regulares el equipo reflexiona sobre cómo ser más efectivo para a continuación ajustar y perfeccionar su comportamiento en consecuencia.

## Método pedagógico

- Aprendizaje basado en proyecto (ABP):
- Centrado en el tripulante no en el formador.
- Involucra a los tripulantes de una manera activa en su aprendizaje al pedirles que investiguen la respuesta a alguna pregunta o problema del mundo real y luego creen una solución concreta.
- Finalmente, los tripulantes presentan sus proyectos a una audiencia mayor.

#### Semana 1: Procesos para integración continua



#### Semana 2: Bases de datos NoSQL (MongoDB)



#### Semana 3: GraphQL Introducción

Semana 3

#### GraphQL Introducción

- · ¿Qué es GraphQL?
- Queries GraphQL
- API GraphQL

1

24

## Semana 4: Integración de GraphQL y Nodejs

Semana

Integración de GraphQL y Nodejs

7

17

14

#### Semana 5



#### Semana 6: Contenedores para Apps (Docker)



#### Semana 7: Introducción a DevOps







# Tema 1: Gestión de la configuración.

**Fundamentos** 

#### Gestión de la configuración, se define como:

- Definición, control, despliegue, liberación, cambio, documentación y reporte de la configuración de las partes del un sistema.
- Conjunto de actividades diseñadas para identificar y definir los elementos en el sistema que cambia y controlar el cambio de los artefactos a lo largo del ciclo de vida del desarrollo.
- Establece mecanismos para gestionar las diferentes versiones de los ítems para auditar e informar los cambios.
- El propósito es establecer la integridad del producto software a través del proceso de software.
- Los cambios no controlados en un desarrollo de software hacen que se fracase en el proyecto.

#### Gestión de la configuración

- "El arte de coordinar el desarrollo de software para minimizar la confusión se denomina gestión de configuración.
- La gestión de configuración es el arte de identificar, organizar y controlar las modificaciones que sufre el software que construye un equipo de programación.
- La meta es maximizar la productividad minimizando los errores".

Roger S. Pressman

## Propósito

- Garantizar que la información sobre la configuración de los servicios sea precisa y confiable, y los Cl(elemento de configuración) que los respaldan están disponibles cuándo y dónde se necesitan.
- Esto incluye información sobre cómo se configuran los CI y las relaciones entre ellos.



## Glosario: Gestión de la configuración del repositorio

- Rama (Branch). Es una línea independiente de trabajo. Se usa con el fin de dejar intacta la rama principal (branch master) mientras se realizan las modificaciones en otras ramas y luego se pueda ir comprobando la correctitud de todos los cambios para poder mezclar (merge) con la rama principal y así poder desarrollar colaborativamente sin generar errores.
- Clonar. Cuando de repositorios/directorios de artefactos se trata, es duplicar en el equipo local todos los elementos que se encuentran en la nube organizados claramente mediante un proyecto de desarrollo de software.
- Multiplataforma. Es la propiedad de cualquier componente o artefacto para ser ejecutado en más de un sistema operativo.

## Gestión de la configuración con GIT

- Es un sistema de control de versiones distribuido, de código abierto, creado por Linus Torvalds.
- Cada desarrollador tiene el historial completo de su repositorio de código de manera local.
- Es multiplataforma, es decir, se pueden usar y crear repositorios locales en todos los sistemas operativos más comunes

#### Git

- Es un software para el control de versiones.
- Es eficiente y confiable en el versionamiento del código fuente.
- Su propósito es llevar el registro de los cambios en los artefactos durante el ciclo de vida del desarrollo del producto.
- Es un software libre distribuido bajo los términos de la licencia pública general GNU.
- Físicamente no es más que una carpeta del sistema de archivos con código fuente de una aplicación.

#### Git

- Es un sistema de control de versiones distribuido, de código abierto, creado por Linus Torvalds.
- Cada desarrollador tiene el historial completo de su repositorio de código de manera local.
- Es multiplataforma, es decir, se pueden usar y crear repositorios locales en todos los sistemas operativos más comunes.



- Descargue Git Bash: https://gitforwindows.org/ Instalar con la configuración por defecto.
- En un directorio de trabajo haga clic alterno y seleccione Git Bash:

Creamos el directorio de trabajo con el comando git init:

```
MINGW64:/d/Robin2020/UdeA/Curso virtual

MSI@DESKTOP-B4DBCUF MINGW64 /d/Robin2020/UdeA/Curso virtual

$ git init
Initialized empty Git repository in D:/Robin2020/UdeA/Curso virtual/.git/

MSI@DESKTOP-B4DBCUF MINGW64 /d/Robin2020/UdeA/Curso virtual (master)

$
```

· Clonamos cualquier repositorio desde Github con el comando git clone "URL":

```
MSI@DESKTOP-B4DBCUF MINGW64 /d/Robin2020/UdeA/Curso virtual (master)

$ git clone https://github.com/RobinCG/TestingWithRuby
Cloning into 'TestingWithRuby'...
remote: Enumerating objects: 39, done.
remote: Total 39 (delta 0), reused 0 (delta 0), pack-reused 39
Unpacking objects: 100% (39/39), 5.20 KiB | 2.00 KiB/s, done.

MSI@DESKTOP-B4DBCUF MINGW64 /d/Robin2020/UdeA/Curso virtual (master)

$ |
```

glosario

- Listamos el contenido del directorio con el comando Is:
- Nos ubicamos en el nuevo directorio con el comando cd:
- Identificamos en qué directorio se encuentra con pwd:

```
[@DESKTOP-B4DBCUF MINGW64 /d/Robin2020/UdeA/Curso virtual (master)
~$Azure DevOps - Gestion de la configuracion Video 4 - copia.pptx'
'2020-00095-DEVOPS_Estructura MOOC_V1_Karenina.docx'
'2020-00095-DEVOPS_Estructura MOOC_V2_Karenina.docx'
2020-00095-DEVOPS_Generalidades_V2_Karenina.docx
2020-00095-DEVOPS_Semana1_V2_Karenina.docx
'Azure DevOps - Aplicacion Cultura DevOps Video 2.pptx'
Azure DevOps - Contenido para el video Herramientas e Introduccion.pptx'
Azure DevOps - Gestion de la configuracion Video 4 - copia.pptx'
Azure DevOps - Introduccion Video 1.pptx'
Azure DevOps - Pilares DevOps Video 3.pptx'
'Complementar temas Devops.txt'
Devops/
'DevOps para Dummy.pdf'
'Documento muy bueno de DevOps.pdf'
TestingWithRuby/
```

MSI@DESKTOP-B4DBCUF MINGW64 /d/Robin2020/UdeA/Curso virtual (master)
\$ cd TestingWithRuby/

```
MSI@DESKTOP-B4DBCUF MINGW64 /d/Robin2020/UdeA/Curso virtual/TestingWithRuby (master)
$ pwd
/d/Robin2020/UdeA/Curso virtual/TestingWithRuby
```

- Podemos usar el comando git status para identificar qué se modificó:
- Para crear una rama de trabajo usamos el comando git checkout – b :
- Para adicionar todos los cambios usamos el comando git add:
- Para confirmar los cambios usamos git commit –m "Practica de DevOps":

```
**SIGDESKTOP-84D8CUF MINGW64 /d/Robin2020/UdeA/Curso virtual/TestingWithRuby (master)

$ git status
On branch master
Your branch is up to date with 'origin/master'.

Changes not staged for commit:

(use "git add <file>..." to update what will be committed)

(use "git restore <file>..." to discard changes in working directory)

modified: README.md
```

```
MSI@DESKTOP-B4DBCUF MINGW64 /d/Robin2020/UdeA/Curso virtual/TestingWithRuby (master)
git checkout -b feature-MyWork
Switched to a new branch 'feature-MyWork'
```

```
MSI@DESKTOP-84DBCUF MINGW64 /d/Robin2020/UdeA/Curso virtual/TestingWithRuby (feature-MyWork)
$ git commit -m "Practica de DevOps"
[feature-MyWork befadc7] Practica de DevOps
1 file changed, 1 insertion(+)
```

- Podemos usar el comando push para publicar el nuevo cambio que se encuentra localmente hacia el servidor remoto de GitHub:
- git push origin :

```
SI@DESKTOP-B4DBCUF MINGW64 /d/Robin2020/UdeA/Curso virtual/TestingWithRuby (feature-MyWork)
$ git push origin feature-MyWork
Enumerating objects: 5, done.
Counting objects: 100% (5/5), done.
Delta compression using up to 8 threads
Compressing objects: 100% (3/3), done.
Writing objects: 100% (3/3), 356 bytes | 356.00 KiB/s, done.
Total 3 (delta 1), reused 0 (delta 0)
remote: Resolving deltas: 100\% (1/1), completed with 1 local object.
remote:
remote: Create a pull request for 'feature-MyWork' on GitHub by visiting:
            https://github.com/RobinCG/TestingWithRuby/pull/new/feature-MyWork
remote:
remote:
To https://github.com/RobinCG/TestingWithRuby
   [new branch]
                     feature-MyWork -> feature-MyWork
```

#### **Entendiendo Pull**

- · Gestión de la configuración de las fuentes de los proyectos
- El comando git pull es una forma abreviada de simplificar todos los procesos que realizamos con otros comandos, como por ejemplo git fetch o git merge y nos permite ahorrar tiempo.
- Cuando realizamos un git pull estamos sincronizando y "jalándonos" todos los cambios del repositorio remoto a la rama en la estamos trabajando localmente sin la necesidad de ejecutar ningún comando extra.

### Ejemplos en los que podemos utilizar este comando:

- 1. git pull: Trae una copia remota y realiza una mezcla de fuentes desde la rama Maestra a nuestra rama remota
- 2. git pull origin : Hace una actualización en nuestra rama local desde un Branch remoto que indiquemos en el comando

#### **Entendiendo Push**

- El comando git push básicamente se usa para cargar contenido del repositorio local a un repositorio remoto.
- git push, "empujar" las líneas de código nuevas o modificadas en nuestras ramas locales y que ahora queremos incorporarlas en la rama Maestra.
- Estamos transfiriendo cambios confirmados (commit) desde el repositorio local a un remoto para sobrescribir cambios.
- Git push se usa para publicar y cargar cambios locales a un repositorio central después de modificarlo. Usando este comando se podrá compartir las modificaciones hechas localmente con otros miembros del equipo.

### Ejemplos en los que podemos utilizar este comando:

- 1. git push: Envía la rama especificada a otra junto con todos los commits y objetos internos.
- 2. git push --all: Envía todas tus ramas a una rama remota especificada

#### Entendiendo git add & commit

- Antes de la ejecución de git commit, se utiliza el comando git add para pasar o "preparar" los cambios en el proyecto que se almacenarán en una confirmación.
- commit es una foto instantánea sobre los cambios en las fuentes que llevamos en el momento.

#### Permite a los desarrolladores:

- Acumular "confirmaciones" en los repositorios locales sin el perjuicio de ir los a perder por alguna mala práctica o apagados del sistema local.
- Trabajar aisladamente y aplazar la integración hasta que estén completamente seguros para fusionar el trabajo con el de otros desarrolladores del proyecto.
- Estos dos comandos, git commit y git add, son dos de los que se utilizan más frecuentemente.

### Ejemplos en los que podemos utilizar este comando:

- 1. git commit: Confirma la instantánea preparada
- 2. git commit -m : Confirma la instantánea y adiciona un comentario para su trazabilidad
- 3. git commit -a: Confirma una instantánea de todos los cambios del directorio de trabajo que se han añadido con git add.

#### Entendiendo git clone

#### Se usa para:

- Crear una copia de un repositorio o rama especifica dentro de un repositorio.
- Generar una copia local de lo que tengamos en nuestro repositorio central.
- Clonar un repositorio en un directorio recién creado, crea ramas de seguimiento remoto para cada rama en el repositorio clonado.
- Cuando clonamos un repositorio obtenemos todo el repositorio, los archivos, las ramas y todas las confirmaciones hechas previamente.
- Una vez realizada la clonación, no se necesitará clonarlo nuevamente, esta acción sólo se realiza una sola vez, al inicio de la interacción con el proyecto.

#### Ejemplos en los que podemos utilizar este comando:

- Algunos ejemplos en los que podemos utilizar el comando serían:
- 1. git clone : Baja todo el repositorio existente en la rama master
- 2. git clone –mirror: Clona un repositorio, pero sin la posibilidad de editarlo

#### Referencias

- https://git-scm.com/
- https://es.reactjs.org/
- https://github.com/
- https://git-scm.com/doc
- https://education.github.com/git-cheat-sheet-education.pdf
- https://rogerdudler.github.io/git-guide/index.es.html
- https://es.reactjs.org/tutorial/tutorial.html

