LØST OPPGAVE 16.310

16.310

Tre menn bærer en jevntykk stokk som er 4,0 m lang. En av mennene har den bakerste enden av stokken på skulderen. De to andre mennene har en bærebjelke mellom seg som stokken ligger over. Stokken er plassert slik på bærebjelken at de tre mennene får like store belastninger.

Hvor langt er det fra den bakerste enden av stokken til bærebjelken? Se bort fra tyngdekraften på bærebjelken.

Løsning:

Vi lager en tegning som viser kreftene på stokken. F_1 er kraften fra den bakerste bæreren. F_2 er kraften fra bærebjelken mellom de to fremre bærerne. F_1 må være halvparten så stor som F_2 siden alle bærerne løfter med same kraft. F_2 angriper i avstanden r_2 fra bakre ende av stokken. Tyngdekraften på stokken angriper midt på, i avstanden $r_1 = 2,0$ m. Vi bruker likevektsbetingelsen for stokken og får for kraftsummen:

$$\Sigma F = 0$$

$$F_1 + F_2 - G = 0 \qquad \text{der } F_1 = \frac{1}{2}F_2$$

$$\frac{1}{2}F_2 + F_2 - G = 0$$

$$G = \frac{3}{2}F_2$$

For summen av kraftmoment om stokkens bakre endepunkt får vi:

$$\Sigma M = 0$$

$$M_1 - M_G + M_2 = 0$$

$$0 - Gr_G + F_2 r_2 = 0$$

$$r_2 = \frac{Gr_G}{F_2}$$

$$r_2 = \frac{\frac{3}{2}F_2 r_G}{F_2}$$

$$r_2 = \frac{\frac{3}{2}F_2 r_G}{F_2}$$

$$r_2 = \frac{\frac{3}{2} \cdot 2}{2} \cdot 0 \text{ m} = 3.0 \text{ m}$$

Avstanden fra den bakerste enden av stokken til bærebjelken er 3,0 m.