Mathematical Preliminaries

class 1

Mathematical Preliminaries

- Sets
- **Functions**
- Relations
- Graphs
- **Proof Techniques**

SETS

A set is a collection of elements

$$A = \{1, 2, 3\}$$

 $B = \{train, bus, bicycle, airplane\}$

We write

 $1 \in A$

 $ship \notin B$

Set Representations

 $C = \{a, b, c, d, e, f, g, h, i, j, k\}$

 $C = \{a, b, ..., k\} \longrightarrow finite set$

 $S = \{2, 4, 6, ...\} \longrightarrow infinite set$

 $S = \{ j : j > 0, \text{ and } j = 2k \text{ for some } k>0 \}$

 $S = \{ j : j \text{ is nonnegative and even } \}$

 $A = \{1, 2, 3, 4, 5\}$ U 6 8 10

Universal Set: all possible elements

U = { 1, ..., 10 }

Set Operations

 $A = \{1, 2, 3\}$

 $B = \{2, 3, 4, 5\}$

Union

A U B = { 1, 2, 3, 4, 5 }

Intersection

 $A \cap B = \{2, 3\}$

Difference

A - B = { 1 }

 $B - A = \{4, 5\}$

Venn diagrams

Set Cardinality

· For finite sets

$$A = \{2, 5, 7\}$$

$$|A| = 3$$

(set size)

Powersets

A powerset is a set of sets

$$S = \{a, b, c\}$$

Powerset of S = the set of all the subsets of S

$$2^{5} = { \emptyset, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, \{a, b, c\} }$$

Observation:
$$| 2^5 | = 2^{|5|}$$
 (8 = 2³)

..

Cartesian Product

$$A = \{ 2, 4 \}$$

$$B = \{2, 3, 5\}$$

 $A \times B = \{ (2, 2), (2, 3), (2, 5), (4, 2), (4, 3), (4, 5) \}$

Generalizes to more than two sets

FUNCTIONS

f : A → B

If A = domain

then f is a total function otherwise f is a partial function

. . .

RELATIONS

$$R = \{(x_1, y_1), (x_2, y_2), (x_3, y_3), ...\}$$

 $x_i R y_i$

e. g. if R = '>': 2 > 1, 3 > 2, 3 > 1

Equivalence Relations

· Reflexive: x R x

• Symmetric: $x R y \implies y R x$

• Transitive: x R y and y R z x R z

Example: R = '='

• x = x

·x=y > y=x

 $\cdot x = y$ and y = z $\Rightarrow x = z$

Equivalence Classes

For equivalence relation R

equivalence class of $x = \{y : x R y\}$

Example:

$$R = \{ (1, 1), (2, 2), (1, 2), (2, 1), (3, 3), (4, 4), (3, 4), (4, 3) \}$$

Equivalence class of $1 = \{1, 2\}$

Equivalence class of $3 = \{3, 4\}$

 $E = \{ (a,b), (b,c), (b,e), (c,a), (c,e), (d,c), (e,b), (e,d) \}$

Labeled Graph

Path

Path is a walk where no edge is repeated

Simple path: no node is repeated

PROOF TECHNIQUES

- Proof by induction
- Proof by contradiction

Induction

We have statements P_1 , P_2 , P_3 , ...

If we know

- $\boldsymbol{\cdot}$ for some b that $P_1,\,P_2,\,...,\,P_b$ are true
- for any $k \ge b$ that

 $P_1, P_2, ..., P_k$ imply P_{k+1}

Then

Every Pi is true

Proof by Induction

Inductive basis

Find P₁, P₂, ..., P_b which are true

Inductive hypothesis

Let's assume P_1 , P_2 , ..., P_k are true, for any $k \ge b$

· Inductive step

Show that P_{k+1} is true

Example

Theorem: A binary tree of height n

has at most 2ⁿ leaves.

Proof by induction:

let L(i) be the maximum number of

leaves of any subtree at height i

We want to show: L(i) <= 2i

· Inductive basis

L(0) = 1 (the root node)

 \bigcirc

· Inductive hypothesis

Let's assume $L(i) \leftarrow 2^i$ for all i = 0, 1, ..., k

Induction step

we need to show that $L(k + 1) \leftarrow 2^{k+1}$

Induction Step

From Inductive hypothesis: $L(k) \leftarrow 2^k$

Induction Step

L(k) <= 2k

 $L(k+1) \leftarrow 2 * L(k) \leftarrow 2 * 2^{k} = 2^{k+1}$

(we add at most two nodes for every leaf of level k)

Remark

Recursion is another thing

Example of recursive function:

$$f(n) = f(n-1) + f(n-2)$$

$$f(0) = 1$$
, $f(1) = 1$

Proof by Contradiction

We want to prove that a statement P is true

- · we assume that P is false
- · then we arrive at an incorrect conclusion
- therefore, statement P must be true

Example

Theorem: $\sqrt{2}$ is not rational

Proof:

Assume by contradiction that it is rational

$$\sqrt{2} = n/m$$

n and m have no common factors

We will show that this is impossible

. .

$$\sqrt{2}$$
 = n/m \Rightarrow 2 m² = n²

Therefore, n^2 is even n = 2 k

$$2 m^2 = 4k^2$$
 $m^2 = 2k^2$ $m = 2 p$

Thus, m and n have common factor 2

Contradiction!

Languages

46

A language is a set of strings

String: A sequence of letters

Examples: "cat", "dog", "house", ...

Defined over an alphabet:

$$\Sigma = \{a, b, c, \dots, z\}$$

Alphabets and Strings

We will use small alphabets: $\Sigma = \{a, b\}$

Strings

a

ab u = ab

abba v = bbbaaa

baba w = abba

aaabbbaabab

String Operations

$$w = a_1 a_2 \cdots a_n$$

abba

$$v = b_1 b_2 \cdots b_m$$

bbbaaa

Concatenation

$$wv = a_1 a_2 \cdots a_n b_1 b_2 \cdots b_m$$
 abbabbbaaa

$$w = a_1 a_2 \cdots a_n$$
 ababaaabbb

Reverse

$$w^R = a_n \cdots a_2 a_1$$

bbbaaababa

String Length

$$w = a_1 a_2 \cdots a_n$$

Length: |w| = n

Examples: |abba| = 4

|aa| = 2

|a|=1

Length of Concatenation

$$|uv| = |u| + |v|$$

Example: u = aab, |u| = 3

v = abaab, |v| = 5

|uv| = |aababaab| = 8

|uv| = |u| + |v| = 3 + 5 = 8

Empty String

A string with no letters: λ

Observations: $|\lambda| = 0$

 $\lambda w = w\lambda = w$

 $\lambda abba = abba\lambda = abba$

Substring

Substring of string:

a subsequence of consecutive characters

String

Substring

abbab

ab

abbab

abba

abbab

b

abbab

bbab

Prefix and Suffix abbab Suffixes **Prefixes** abbab $w = \mu v$ λ bbab a prefix bab ab suffix ab abb abba bλ abbab

Another Operation
$$w^n = \underbrace{ww\cdots w}_n$$
 Example: $(abba)^2 = abbaabba$ Definition: $w^0 = \lambda$ $(abba)^0 = \lambda$

The * Operation $\Sigma^*\colon \text{the set of all possible strings from alphabet }\Sigma$ $\Sigma = \{a,b\}$ $\Sigma^* = \{\lambda,a,b,aa,ab,ba,bb,aaa,aab,\ldots\}$

The + Operation
$$\Sigma^{+}: \text{the set of all possible strings from alphabet } \Sigma \text{ except } \lambda$$

$$\Sigma = \{a,b\}$$

$$\Sigma^{*} = \{\lambda,a,b,aa,ab,ba,bb,aaa,aab,...\}$$

$$\Sigma^{+} = \Sigma^{*} - \lambda$$

$$\Sigma^{+} = \{a,b,aa,ab,ba,bb,aaa,aab,...\}$$

Another Example

An infinite language $L = \{a^n b^n : n \ge 0\}$

$$\left. egin{array}{ll} \lambda & & & & \\ ab & & & \\ aabb & & & \\ aaaaabbbbb \end{array}
ight) \in L \qquad abb
otin L$$

Operations on Languages

The usual set operations

$${a,ab,aaaa} \cup {bb,ab} = {a,ab,bb,aaaa}$$

 ${a,ab,aaaa} \cap {bb,ab} = {ab}$
 ${a,ab,aaaa} - {bb,ab} = {a,aaaa}$

Complement:
$$\overline{L} = \Sigma^* - L$$

$$\overline{\{a,ba\}} = \{\lambda,b,aa,ab,bb,aaa,\ldots\}$$

-

Reverse

Definition: $L^R = \{w^R : w \in L\}$

Examples: $\{ab, aab, baba\}^R = \{ba, baa, abab\}$

$$L = \{a^n b^n : n \ge 0\}$$

$$L^R = \{b^n a^n : n \ge 0\}$$

Concatenation

Definition: $L_1L_2 = \{xy : x \in L_1, y \in L_2\}$

Example: $\{a,ab,ba\}\{b,aa\}$

 $=\{ab,aaa,abb,abaa,bab,baaa\}$

64

Another Operation

Definition:
$$L^n = \underbrace{LL \cdots L}_n$$

$${a,b}^3 = {a,b}{a,b}{a,b} =$$

 ${aaa, aab, aba, abb, baa, bab, bba, bbb}$

Special case:
$$L^0 = \{\lambda\}$$

$$\{a,bba,aaa\}^0 = \{\lambda\}$$

More Examples

$$L = \{a^n b^n : n \ge 0\}$$

$$L^2 = \{a^n b^n a^m b^m : n, m \ge 0\}$$

 $aabbaaabbb \in L^2$

Star-Closure (Kleene *)

Definition:
$$L^* = L^0 \cup L^1 \cup L^2 \cdots$$

Example:
$$\{a,bb\}^* = \begin{cases} \lambda, \\ a,bb, \\ aa,abb,bba,bbb, \\ aaa,aabb,abba,abbb, \ldots \end{cases}$$

Positive Closure

Definition:
$$L^+ = L^1 \bigcup L^2 \bigcup \cdots$$

= $L^* - \{\lambda\}$

$${a,bb}^{+} = \begin{cases} a,bb, \\ aa,abb,bba,bbb, \\ aaa,aabb,abba,abbb, \dots \end{cases}$$