u_p aka Unique Prime Factorization

Problem Set

RAYMOND FENG

March 19, 2021

§1 Reading

Refer to the reading at https://rfeng2004.github.io/files/NRU-Prime.pdf. One of the main take aways is the following claim (which I'll reproduce here):

Claim 1.1 (ν_p defines integers (and rationals!)) — If $a,b\in\mathbb{Q}^+$ with $\nu_p(a)=\nu_p(b)$ for all primes p, then a=b.

If this is not immediately obvious to you, take a moment to consider why the claim holds.

§2 Problems

These problems are ordered in *roughly* increasing order of difficulty, but that is only based on my personal judgement.

Problem 2.1 (https://rfeng2004.github.io/files/NRU-Prime.pdf). The problems here are good exercises. Recommended: CMC 12B 2021/23, RMM TST 2010/1/5, US-AMO 1985/1, China 2015/4, Kosovo 2020/12.4.

Problem 2.2 (ISL 2011/N1). For any integer d > 0, let f(d) be the smallest possible integer that has exactly d positive divisors (so for example we have f(1) = 1, f(5) = 16, and f(6) = 12). Prove that for every integer $k \ge 0$ the number $f(2^k)$ divides $f(2^{k+1})$.

Problem 2.3 (ISL 2015/N1). Determine all positive integers M such that the sequence a_0, a_1, a_2, \ldots defined by

$$a_0 = M + \frac{1}{2}$$
 and $a_{k+1} = a_k \lfloor a_k \rfloor$ for $k = 0, 1, 2, ...$

contains at least one integer term.

Problem 2.4 (IMO 2019/4). Find all pairs (k, n) of positive integers such that

$$k! = (2^{n} - 1)(2^{n} - 2)(2^{n} - 4) \cdots (2^{n} - 2^{n-1}).$$

Problem 2.5 (Iran TST 2013/1/5). Do there exist natural numbers a, b and c such that $a^2 + b^2 + c^2$ is divisible by 2013(ab + bc + ca)?

Problem 2.6 (IMO 2010/3). Find all functions $g: \mathbb{N} \to \mathbb{N}$ such that

$$(g(m) + n)(g(n) + m)$$

is a perfect square for all $m, n \in \mathbb{N}$.