Multivariate Analysis for the Behavioral Sciences, Second Edition (Chapman and Hall/CRC, 2019)

Exercises of Chapter 6: Applying Logistic Regression

Kimmo Vehkalahti and Brian S. Everitt
10 November 2018

Exercises

Exercise 6.1

Use the womensrole data (see below) and modify the R code given in the **Examples of Chapter 6** to analyse and visualize the data as instructed.

```
womensrole <- structure(list(</pre>
   education = c(OL, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 13L, 14L, 15L,
                16L, 17L, 18L, 19L, 20L, 0L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L,
                11L, 12L, 13L, 14L, 15L, 16L, 17L, 18L, 19L, 20L),
 2L, 2L, 2L, 2L, 2L, 2L, 2L),
                .Label = c("Male", "Female"), class = "factor"),
 agree = c(4, 2, 4, 6, 5, 13, 25, 27, 75, 29, 32, 36, 115, 31, 28, 9, 15, 3, 1, 2, 3, 4,
          1, 0, 6, 10, 14, 17, 26, 91, 30, 55, 50, 190, 17, 18, 7, 13, 3, 0, 1, 2),
 disagree = c(2, 0, 0, 3, 5, 7, 9, 15, 49, 29, 45, 59, 245, 70, 79, 23, 110, 29, 28, 13, 20,
             2, 0, 0, 1, 0, 7, 5, 16, 36, 35, 67, 62, 403, 92, 81, 34, 115, 28, 21, 2, 4)),
.Names = c("education", "sex", "agree", "disagree"),
row.names = c("1", "2", "3", "4", "5", "6", "7", "8", "9", "10", "11", "12", "13", "14", "15",
"16", "17", "18", "19", "20", "21", "22", "23", "24", "25", "26", "27", "28", "29", "30", "31",
"32", "33", "34", "35", "36", "37", "38", "39", "40", "41", "42"), class = "data.frame")
head(womensrole)
```

```
education sex agree disagree
## 1
             0 Male
             1 Male
## 2
## 3
             2 Male
                                   0
             3 Male
                                   3
             4 Male
                         5
                                   5
## 5
                                   7
## 6
             5 Male
                        13
```

7 Standard

8 Standard

Yes Collision

Yes Rollover

161

265

Use the accidents data (see below) and modify the R code given in the **Examples of Chapter 6** to analyse the data as instructed.

```
accidents <- structure(list(</pre>
  weight = structure(c(1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L),
                     .Label = c("Small", "Standard"), class = "factor"),
  eject = structure(c(1L, 1L, 2L, 2L, 1L, 1L, 2L, 2L),
                    .Label = c("No", "Yes"), class = "factor"),
  type = structure(c(1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L),
                   .Label = c("Collision", "Rollover"), class = "factor"),
  severely = c(150, 112, 23, 80, 1022, 404, 161, 265),
 nseverely = c(350, 60, 26, 19, 1878, 148, 111, 22)),
.Names = c("weight", "eject", "type", "severely", "nseverely"),
row.names = c(NA, -8L), class = "data.frame")
head(accidents)
##
                         type severely nseverely
       weight eject
## 1
        Small
                 No Collision
                                    150
                                              350
## 2
        Small
                 No Rollover
                                    112
                                               60
## 3
        Small
                Yes Collision
                                     23
                                               26
## 4
                Yes Rollover
        Small
                                     80
                                               19
## 5 Standard
                 No Collision
                                   1022
                                             1878
## 6 Standard
                 No Rollover
                                    404
                                              148
tail(accidents)
##
       weight eject
                         type severely nseverely
## 3
                Yes Collision
                                     23
                                               26
        Small
## 4
        Small
                Yes Rollover
                                     80
                                               19
## 5 Standard
                 No Collision
                                   1022
                                             1878
## 6 Standard
                 No Rollover
                                    404
                                              148
```

111

22

Use the statistics data (see below) and modify the R code given in the **Examples of Chapter 6** to analyse the data as instructed.

```
statistics <- structure(list(</pre>
  result = structure(c(1L, 1L, 2L, 1L, 2L, 2L, 2L, 2L, 2L, 2L,
                       2L, 2L, 2L, 2L, 1L, 2L, 1L, 1L, 2L),
                     .Label = c("Fail", "Pass"), class = "factor"),
  test = c(525, 533, 545, 582, 581, 576, 572, 609, 559, 543,
           576, 525, 574, 582, 574, 471, 595, 557, 557, 584),
  grade = structure(c(2L, 3L, 2L, 1L, 3L, 4L, 2L, 1L, 3L, 4L,
                      2L, 1L, 4L, 3L, 2L, 2L, 3L, 1L, 1L, 1L),
                    .Label = c("A", "B", "C", "D"), class = "factor")),
.Names = c("result", "test", "grade"), row.names = c(NA, -20L), class = "data.frame")
head(statistics)
     result test grade
## 1
       Fail 525
                     В
## 2
       Fail 533
                     С
## 3
       Pass 545
                     В
## 4
       Fail 582
                     Α
## 5
                     С
       Pass 581
       Pass 576
                     D
tail(statistics)
##
      result test grade
## 15
        Pass 574
## 16
        Fail
             471
                      В
                      С
## 17
        Pass 595
## 18
        Fail
              557
                      Α
## 19
        Fail
              557
                      Α
## 20
        Pass 584
                      Α
```

Use the menstruation data (see below) and modify the R code given in the **Examples of Chapter 6** to analyse and visualize the data as instructed.

```
##
        age bmens
                     n
## 1 11.08
                2
                   120
## 2 11.33
                5
                    88
## 3 11.58
               10
                   105
## 4 11.83
               17
                   111
## 5
     12.08
               16
                   100
## 6 12.33
               29
                    93
## 7 12.58
               39
                   100
## 8 12.83
                   108
               51
## 9 13.08
               47
                    99
## 10 13.33
               67
                   106
## 11 13.58
               81
                   117
## 12 14.08
               79
                    98
## 13 14.33
               90
                    97
## 14 14.58
               93
                   100
## 15 15.08
              117
                   122
## 16 15.33
              107
                   111
## 17 15.58
               92
                    94
## 18 17.58 1049 1049
```

Use the gambling data (see below) and modify the R code given in the **Examples of Chapter 6** to analyse and visualize the data as instructed. Below you will find some information on the variables of the data. For more details, see the original article:

Donati, M. A., Chiesi, F. and Primi, C. (2013). A model to explain at-risk/problem gambling among male and female adolescents: Gender similarities and differences. *Journal of Adolescence*, 36, 129-137.

```
gambling <- read.table("data/gambling.txt", sep = '\t', header = TRUE)
head(gambling)</pre>
```

##		Id	Gend	ler		Age	G1	G2	GЗ	G4	G5	G6	G7	G8	G9	G10	G11	${\tt GamblF}$	GFalla
##	1	1		2	13.	41667	0	1	0	0	0	0	1	0	0	0	0	2	5
##	2	2		1	13.	83333	0	0	0	0	1	0	0	0	2	2	0	5	2
##	3	3		2	13.	83333	1	0	0	0	0	0	0	0	3	1	0	5	3
##	4	4		2	13.	83333	0	0	0	0	0	0	0	0	1	0	0	1	6
##	5	5		2	13.	83333	1	0	0	0	0	3	0	0	0	0	0	4	6
##	6	6		2	13.	83333	3	1	2	0	0	1	1	2	4	0	0	14	2
##		Ser	ısaS	Sup	ers	Econ	G P	are(G Pe	eer(3 Na	symp	P	3pr	ob I	22pr	ob		
##	1		21		18	3 3	0	()	()	()		0		0		
##	2		36		11	3	5	:	1	NA	A	()		0		0		
##	3		17		11	3	9	:	1	()	()		0		0		
##	4		24		26	3	8	()	()	()		0		0		
##	5		25		24	1 3	6		1	()	1	1		1		1		
##	6		34		18	3 2	6	:	1	-	1	3	3		2		1		

- Gender: 1 = male, 2 = female
- Age: Age in years
- G1: Cards (0 = never, 1 = less than monthly, 2 = monthly, 3 = weekly, 4 = daily)
- G2: Coin toss
- G3: Bets on games of skill
- G4: Bets on sport games
- G5: Bets on horse races
- G6: Bingo
- G7: Dice games
- G8: Slot machines
- G9: Instant scratch-cards
- G10: Lotteries
- G11: Online games
- GamblF: Gambling frequency (sum of G1 to G11)
- GFalla: Probabilistic reasoning (Gambler's fallacy)
- SensaS: Sensation seeking
- SuperS: Superstitious thinking
- EconG: Economic perception of gambling (high score = more negative attitude)
- PareG: Parental gambling behavior
- PeerG: Peer gambling behavior
- Nsymp: Problem gambling (total of symptoms)
- P3prob: Problem gambling (0 = non-problem, 1 = at-risk, 2 = problem)
- P2prob: Problem gambling (0 = non-problem, 1 = at-risk/problem)