Trabalho de Sistemas Operacionais I

O boiler elétrico é um sistema de aquecimento e acumulação de água utilizado em muitas residências e um exemplo de um problema simples de transferência de calor. Na figura abaixo é apresentado um esboço deste sistema.

O recipiente é isolado termicamente com a finalidade de reduzir as perdas para o ar do meio ambiente. Um atuador térmico é utilizado a fim de se manter uma temperatura de referência. O consumo de uma torneira qualquer da casa acarreta a saída de água quente sendo que a entrada de água fria no recipiente é outro elemento que deve ser controlado de acordo. Serão feitas as seguintes hipóteses simplificadoras:

- Não há armazenamento de calor no isolamento. Isto é válido desde que o calor específico do isolamento e a variação da temperatura da água sejam pequenos.
- Toda a água no interior do recipiente se encontra à mesma temperatura. Isto requer uma perfeita homogeneidade da água.

Para a realização do controle se define os seguintes parâmetros de grandezas do sistema:

Símbolo	Descrição	Grandeza
Q	Fluxo de calor do elemento aquecedor	Joule/segundo
Qt	Fluxo de calor total fornecido à água do recipiente	Joule/segundo
Qo	Fluxo de calor retirado pela água quente que deixa o recipiente	Joule/segundo
Qi	Fluxo de calor inserido pela água fria que entra no recipiente	Joule/segundo
Qe	Fluxo de calor através do isolamento do recipiente	Joule/segundo
Т	Temperatura da água no interior do recipiente	Celsius
Ti	Temperatura da água que entra no recipiente	Celsius
Та	Temperatura do ar ambiente em volta do recipiente	Celsius
С	Capacitância térmica da água no recipiente	Joule/Celsius

R	Resistência térmica do isolamento	Grau/(Joule/seg)		
No	Fluxo de saída de água do recipiente Kg/segundo			
Ni	Fluxo de entrada de água no recipiente	Kg/segundo		
Р	Peso específico da água	1000Kg/m³		
S	Calor específico da água	4190 Joule / Kg		
		Celsius		
В	Área da base do recipiente	m²		
Н	Altura da coluna de água dentro do recipiente	m		
V	Volume de água dentro do recipiente	m³		

O objetivo da automação é atender a solicitação de temperatura dos usuários, indicada por Tref, atuando no sentido manter T = Tref. Ao mesmo tempo, o nível H da água no recipiente deve permanecer no valor ideal de Href. Para a realização deste controle estão disponíveis sensores de Ta, T, Ti, No e H. A leitura dos seus respectivos valores deve ser realizada através de uma requisição via UDP para a porta 4545 da máquina onde o simulador de boiler está sendo executado. A identificação do sensor a ser lido deve ser enviada no corpo da mensagem obedecendo a seguinte especificação:

Mensagem	Sensor	Descrição
sta0	Ta	Temperatura do ar ambiente em volta do recipiente
st-0	Т	Temperatura da água no interior do recipiente
sti0	Ti	Temperatura da água que entra no recipiente
sno0	No	Fluxo de saída de água do recipiente
sh-0	Н	Altura da coluna de água dentro do recipiente

A atuação será realizada através da modificação dos valores de Q e Ni. Para que estes parâmetros sejam atualizados no servidor, deve-se enviar uma mensagem via UDP para a porta 4545 contendo as seguintes informações:

Mensagem	Sensor	Descrição
aq- <valor></valor>	Q	Fluxo de calor do elemento aquecedor
ani <valor></valor>	Ni	Fluxo de entrada de água no recipiente

São perturbações do sistema os valores No, Ta e Ti.

O valor de H deve ficar entre Hmin e Hmax, sob pena de danificar o boiler.

Existe saturação nos atuadores e perturbação.