Sammenhængende Rum

Benjamin Waziri - Mat S

Januar 2024 - Geotop

1 Sammenhængende Rum

Definition 1 Et topologisk rum X er sammenhængende, hvis enhver kontinuert funktion $f:X\to S$ er konstant. Her er $S=\{0,1\}$ udstyret med den diskrete topologi.

Definition 2 (ikke del af præsentationen) En partition af et topologisk rum X er to åbne mængder $\{A, B\}$, så $A \cup B = X$, $A \cap B = \emptyset$, $A \neq \emptyset \neq B$.

Proposition 1 (ikke del af præsentationen) Et topologisk rum X er sammenhængende $\iff X$ ikke tillader en partition.

Korollar 1 (ikke del af præsentationen) Et topologisk rum X er sammenhængende $\iff X, \emptyset$ er de eneste mængder, der både er åbne og lukkede i X.

Bevis 1 (ikke del af præsentationen) Vi viser kontraponeringen. Antag A åben og lukket, $A \neq X, \emptyset$. Så er $\{A, X \setminus A\}$ en partition af X. Så er X ikke sammenhængende.

Den anden vej: Antag X ikke sammenhængende. Så eksisterer en partition A,B. A,B er åbne, så de er også lukkede. Så er X,\emptyset ikke de eneste åbne og lukkede mængder.

Proposition 1 Ethvert stisammenhængende rum er sammenhængende.

Bevis 2 Antag, at X er stisammenhængende. Lad $g: X \to \{0,1\}$ være kontinuert.

AFM at g ikke er konstant. Så:

$$\exists x, y \in X : g(x) = 0 \quad g(y) = 1.$$

Lad $f:[0,1]\to X$ være en sti i X fra x til y. Dvs. f(0)=x, f(1)=y.

Så er $g \circ f : [0,1] \to \{0,1\}$ kontinuert* og surjektiv**. Det er i modstrid med, at intervallet [0,1] er sammenhængende.

*: Da det er en sammensætning af kontinuerte funktioner.

**: Da
$$g(f(0)) = g(x) = 0$$
 og $g(f(1)) = g(y) = 1$.

Proposition 2 Enhver sammenhængende åben delmængde U af \mathbb{R}^n er stisammenhængende.

Bevis 3 Vi viser det ikke for tilfældet $U = \emptyset$.

Lad $x_0 \in U$. Lad $V = \{x \in U : \exists \text{ sti fra } x \text{ til } x_0 \text{ i } U\}$. Vi vil vise, at V og $U \setminus V$ er åbne i U.

V åben: Lad $x \in V$. Så må $x \in U$ (som er åben). Det betyder, at:

$$\exists \epsilon > 0: B_{\epsilon}(x) \subseteq U.$$

Hvis $y \in B_{\epsilon}(x)$, kan vi danne en sti fra y til x_0 gennem x. Så er $B_{\epsilon}(x) \subseteq V$. Dermed er V åben.

 $\mathbf{U}\backslash\mathbf{V}$ åben: Lad $x\in U\backslash V$. Så kan vi ikke danne en sti fra x til x_0 i U, da $x\notin V$.

Vi bemærker, at

$$\exists \epsilon > 0: B_{\epsilon}(x) \subseteq U$$

da U er åben.

Lad $y \in B_{\epsilon}(x)$. Vi kan ikke danne en sti fra y til x_0 , da hvis vi kunne, ville vi så kunne danne en sti fra x til x_0 gennem y. Så $y \in U \setminus V$.

Det betyder, at $B_{\epsilon}(x) \subseteq U \setminus V$. Det medfører, at $U \setminus V$ er åben.

Resten af beviset: Vi har vist, at V og $U \setminus V$ er åbne. Så ville de udgøre en partition af U, ved mindre enten V eller $U \setminus V$ er tomme. $x_0 \in V$ *, så $V \neq \emptyset$. Det betyder, at $U \setminus V = \emptyset$, så U er stisammenhængende.

*: Bemærk at det at være stisammenhængende er en ækvivalensrelation. $\hfill\Box$

Proposition 3 Lad $f:X\to Y$ være kontinuert, X sammenhængende. Så er f(X) sammenhængende.

Bevis 4 Antag f er surjektiv*. AFM at der eksisterer en partition U, V af Y.

 $f^{-1}(U), f^{-1}(V)$ er åbne da f er kontinuert. De er også ikke-tomme, da f er

surjektiv.

Bemærk, at:

$$f^{-1}(U) \cup f^{-1}(V) = f^{-1}(U \cup V) = f^{-1}(Y) = X$$
$$f^{-1}(U) \cap f^{-1}(V) = f^{-1}(U \cap V) = f^{-1}(\emptyset) = \emptyset$$

Vi har så vist, at $f^{-1}(U)$, $f^{-1}(V)$ er en partition af X. Det er i modstrid med, at X er sammenhængende.

Det er således ikke muligt at danne en partition af X, og dermed er X sammenhængende.

*: Hvis f ikke er surjektiv, erstatter vif med $i \circ f: X \to f(X)$ (i er inklusionsafbildningen). $i \circ f$ er en sammensætning af kontinuerte funktioner, og dermed kontinuert. Desuden er $f \circ i$ surjektiv. Så virker beviset, som det skal.

Korollar 1 At være sammenhængende er en topologisk egenskab.

Bevis 5 Lad $f: X \to Y$ være en homeomorfi. Det betyder, at f og f^{-1} er kontinuert og surjektiv. Jf. proposition 3 er Y så sammenhængende hvis X er det, og omvendt.