ΜΗ ΝΤΕΤΕΡΜΙΝΙΣΤΙΚΑ ΑΥΤΟΜΑΤΑ ΣΤΟΙΒΑΣ

ΓΛΩΣΣΕΣ ΧΩΡΙΣ ΣΥΜΦΡΑΖΟΜΕΝΑ www.psounis.gr

Ορισμός:

Ένα Μη Ντετερμινιστικό Αυτόματο Στοίβας είναι μία 7-άδα $\mathbf{M}=(Q,\Sigma,\Gamma,q_0,Z_0,\delta,F)$ Όπου:

- Σ είναι το <u>αλφάβητο των συμβόλων εισόδου</u>
- Γ είναι το αλφάβητο των συμβόλων στοίβας
- q_0 είναι <u>η αρχική κατάσταση</u> Z_0 είναι <u>το αρχικό σύμβολο του σωρού</u>
- δ είναι η συνάρτηση μετάβασης (π.χ. $\delta(q_1, \sigma, \sigma') = (q_2, w)$ που σημαίνει ότι είμαστε στην q_1 διαβάζουμε σ από την είσοδο και η στοίβα έχει πάνω-πάνω το σ' , το αφαιρούμε πάμε στην q_2 και βάζουμε στην στοίβα την w).
- Γ είναι το σύνολο των τελικών καταστάσεων

Να κατασκευαστεί Μη Ντετερμινιστικό Αυτόματο Στοίβας που να αναγνωρίζει τις συμβολοσειρές της γλώσσας: $L = \{0^n 1^n \mid n \geq 0\}$

Το Αυτόματο Στοίβας Προσομοιώνει τη λειτουργία της Γραμματικής Χωρίς Συμφραζόμενα που παράγει τις συμβολοσειρές της γλώσσας

Σχηματικά:

Το αυτόματο είναι η 7άδα: $M = (Q, \Sigma, \Gamma, q_0, Z_0, \delta, F)$ όπου:

- $Q = \{q_0, q_1, q_2\}$ $\Sigma = \{0,1\}$
- $\Gamma = \{Z_0, 0, 1, S\}$
- q_0 είναι η αρχική κατάσταση Z_0 είναι το αρχικό σύμβολο του σωρού
- δ είναι η συνάρτηση μετάβασης που περιγράφεται από τον ακόλουθο πίνακα μετάβασης.
- $F = \{q_2\}$

	ίνακας		

(- C) 0C4	Γράφουμε έναν κανόνα <u>για κάθε</u>	<u>άθε</u> Ο πίνακας μεταβασης είναι:					
(ε, <mark>S</mark>)→ <mark>0S1</mark> (ε, S)→ε	κανόνα της γραμματικής (συμβολο εισόδου το ε)	Αριθμός	Κατ/ση	Σύμβολο Εισόδου	Σύμβολο Σωρού	Κίνηση	Επεξήγηση
	(0,0)-ε Γράφουμε έναν κανόνα	1	q_0	ε	Z_0	(q_1,SZ_0)	Αρχικοποίηση
(57) 87		2.1	q_1	ε	S	$(q_1, 0.51)$	Kavòvaς S → 0S1
(q_0) $(\varepsilon, Z_0) \rightarrow SZ_0$ (q_1)		2.2	q_1	2	S	(q_1, \mathbf{g})	Κανόνας $S → ε$
		3.1	q_1	0	0	(q_1, ε)	Ταίριασμα <mark>0</mark>
		3.2	q_1	1	1	(q_1, ε)	Ταίριασμα 1
		4	q_1	ε	Z_0	(q_2, Z_0)	Αποδοχή
(<mark>1,1</mark>)→ε	Οι υπόλοιποι συνδυασμοί					ТІПОТА	