Лекция С5 Нумерации и вычислимость, II

Вадим Пузаренко

Теорема Майхилла

Цилиндры

Лекция С5 Нумерации и вычислимость, II

Вадим Пузаренко

25 декабря 2023 г.

1-сводимость

Лекция С5 Нумерации и вычислимость. II

Теорема Майхилла

Определение С5.1.

Говорят, что ν_0 **1-сводится к** ν_1 (и используют обозначение $\nu_0 \leqslant_1 \nu_1$), если существует инъективная вф f такая, что $\nu_0(n) = \nu_1 f(n)$ для всех $n \in \omega$.

1-сводимость

Лекция С5 Нумерации и мость. II

Вадим

Теорема Майхилла

Инварианты

Определение С5.1.

Говорят, что ν_0 **1-сводится к** ν_1 (и используют обозначение $\nu_0 \leqslant_1 \nu_1$), если существует инъективная вф f такая, что $\nu_0(n) = \nu_1 f(n)$ для всех $n \in \omega$.

Определение С5.2.

Говорят, что ν_0 и ν_1 вычислимо изоморфны (и используют обозначение $\nu_0 \approx \nu_1$), если существует вычислимая перестановка p такая, что $\nu_0(n) = \nu_1 p(n)$ для всех $n \in \omega$.

1-сводимость

Лекция С5 Нумерации и вычислимость, II

Вадим Пузаренко

Теорема Майхилла

Цилиндры Инварианты

Определение С5.1.

Говорят, что ν_0 **1-сводится к** ν_1 (и используют обозначение $\nu_0\leqslant_1\nu_1$), если существует инъективная вф f такая, что $\nu_0(n)=\nu_1 f(n)$ для всех $n\in\omega$.

Определение С5.2.

Говорят, что ν_0 и ν_1 вычислимо изоморфны (и используют обозначение $\nu_0 \approx \nu_1$), если существует вычислимая перестановка p такая, что $\nu_0(n) = \nu_1 p(n)$ для всех $n \in \omega$.

Замечание С5.1.

Если $\nu_0 \approx \nu_1$, то $\nu_0 \leqslant_1 \nu_1$ и $\nu_1 \leqslant_1 \nu_0$. Следующее утверждение говорит, что справедливо и обратное утверждение.

Лекция С5 Нумерации и вычислимость, II

Вадим Пузаренко

Теорема Майхилла

Цилиндры

Теорема С5.1.

Пусть нумерации ν_0 и ν_1 таковы, что $\nu_0\leqslant_1 \nu_1$ и $\nu_1\leqslant_1 \nu_0$. Тогда $\nu_0pprox \nu_1$.

Лекция С5 Нумерации и вычислимость. Ш

Вадим Пузаренко

Теорема Майхилла

Инварианты

Теорема С5.1.

Пусть нумерации ν_0 и ν_1 таковы, что $\nu_0\leqslant_1 \nu_1$ и $\nu_1\leqslant_1 \nu_0$. Тогда $\nu_0\approx\nu_1$.

Доказательство.

Пусть f, g — инъективные вф, сводящие u_0 к u_1 и u_1 к u_0 соответственно, т.е. $\nu_0 = \nu_1 f$ и $\nu_1 = \nu_0 g$. Определим теперь функции h_0 и h_1 следующим образом:

$$h_0(x,0) = x;$$
 $h_1(x,0) = x$

 $h_0(x, y+1) = gfh_0(x, y); \quad h_1(x, y+1) = fgh_1(x, y).$

Функции h_0 , h_1 вычислимы, как функции, полученные из вычислимых с помощью схем примитивной рекурсии, суперпозиции, и, к тому же, имеет место $h_0(x,y) = (gf)^y(x), h_1(x,y) = (fg)^y(x)$ для всех $x,y \in \omega$ (отметим, что функция k называется **сплинтером** функции p в точке $x \in \omega$, если $k(y) = p^{y}(x)$ для всех $y \in \omega$).

Положим $S_0(x) \leftrightharpoons \{h_0(x,t)|t \in \omega\}, S_1(x) \leftrightharpoons \{h_1(x,t)|t \in \omega\}.$ Заметим, что для любого $t \in \omega$ выполняются равенства

$$\nu_0(x) = \nu_0 h_0(x, t), \ \nu_1 x = \nu_1 h_1(x, t).$$

Лекция С5 Нумерации и вычислимость, II

Вадим Пузаренко

Теорема Майхилла

Цилиндры

14.....

Доказательство (продолжение).

Докажем сначала вспомогательное утверждение.

Лекция С5 Нумерации и мость. II

Вадим Пузаренко

Теорема Майхилла

Инварианты

Доказательство (продолжение).

Докажем сначала вспомогательное утверждение.

Лемма С5.1А.

Пусть $S_0(x)$ $(S_1(x))$ — конечное множество. Тогда $S_1(f(x))$ $(S_0(g(x)))$ также является конечным множеством, имеющим столько же элементов, и наоборот. Кроме того, если у таково, что $S_0(x) \cap S_0(y) \neq \emptyset$ $(S_1(x) \cap S_1(y) \neq \emptyset)$, to $S_0(x) = S_0(y)$ $(S_1(x) = S_1(y))$. В частности, $S_0(x) = S_0(gf(x))$ $(S_1(x) = S_1(fg(x)))$.

Лекция С5 Нумерации и вычислимость, II

Вадим Пузаренко

Теорема Майхилла

Цилиндры Инварианты

Доказательство (продолжение).

Докажем сначала вспомогательное утверждение.

Лемма С5.1А.

Пусть $S_0(x)$ $(S_1(x))$ — конечное множество. Тогда $S_1(f(x))$ $(S_0(g(x)))$ также является конечным множеством, имеющим столько же элементов, и наоборот. Кроме того, если y таково, что $S_0(x)\cap S_0(y)\neq\varnothing$ $(S_1(x)\cap S_1(y)\neq\varnothing)$, то $S_0(x)=S_0(y)$ $(S_1(x)=S_1(y))$. В частности, $S_0(x)=S_0(gf(x))$ $(S_1(x)=S_1(fg(x)))$.

Доказательство леммы С5.1А.

Покажем сначала, что либо функция $\lambda y.h_0(x,y)$ является инъекцией, либо она строго периодическая, т.е. найдётся z>0 такое, что $h_0(x,0)=h_0(x,z)$.

Лекция С5 Нумерации и вычислимость, II

Вадим Пузаренко

Теорема Майхилла

Цилиндры

. ... Инварианты

Доказательство леммы С5.1А (продолжение).

Предположим, что $\lambda y.h_0(x,y)$ не является инъекцией; тогда существуют $y_1 < y_2$ такие, что $h_0(x,y_1) = h_0(x,y_2)$. Но $h_0(x,y_1) = (gf)^{y_1}(x)$, а $h_0(x,y_2) = (gf)^{y_2}(x)$. Так как gf является инъекцией, имеем $h_0(x,0) = x = (gf)^{y_2-y_1}(x) = h_0(x,y_2-y_1)$.

Лекция С5 Нумерации и вычислимость. II

Вадим Пузаренко

Теорема Майхилла

Инварианты

Доказательство леммы С5.1А (продолжение).

Предположим, что $\lambda y.h_0(x,y)$ не является инъекцией; тогда существуют $y_1 < y_2$ такие, что $h_0(x, y_1) = h_0(x, y_2)$. Но $h_0(x, y_1) = (gf)^{y_1}(x)$, а $h_0(x, y_2) = (gf)^{y_2}(x)$. Так как gf является инъекцией, имеем $h_0(x,0) = x = (gf)^{y_2-y_1}(x) = h_0(x,y_2-y_1).$ Итак, если $S_0(x)$ — конечное множество, содержащее k+1 элемент, то его элементы представляют собой значения функции $\lambda y.h_0(x,y)$ от первых k+1 аргументов. А именно, $S_0(x) = \{x_0, x_1, \dots, x_k\}$, где $x_0 \leftrightharpoons x = h_0(x,0), x_1 \leftrightharpoons h(x,1), \ldots, x_k \leftrightharpoons h_0(x,k),$ причём $gf(x_k) = x_0$. Имеем $\{f(x_0), f(x_1), \dots, f(x_k)\} \subseteq S_1(f(x)),$ поскольку $x_i = (gf)^i(x)$ и $f(x_i) = (fg)^i(f(x)) \in S_1(f(x))$. Кроме того, $f(x_i) \neq f(x_i)$, как только $0 \leqslant i < j \leqslant k$ (что вытекает из того, что fинъективна), и $fg(f(x_k)) = f(gf(x_k)) = f(x)$.

Лекция С5 Нумерации и вычислимость, II

Вадим Пузаренко

Теорема Майхилла

Цилиндры Инварианты Доказательство леммы С5.1А (продолжение).

Предположим, что $\lambda y.h_0(x,y)$ не является инъекцией; тогда существуют $y_1 < y_2$ такие, что $h_0(x, y_1) = h_0(x, y_2)$. Но $h_0(x,y_1)=(gf)^{y_1}(x)$, а $h_0(x,y_2)=(gf)^{y_2}(x)$. Так как gf является инъекцией, имеем $h_0(x,0) = x = (gf)^{y_2-y_1}(x) = h_0(x,y_2-y_1).$ Итак, если $S_0(x)$ — конечное множество, содержащее k+1 элемент, то его элементы представляют собой значения функции $\lambda y.h_0(x,y)$ от первых k+1 аргументов. А именно, $S_0(x) = \{x_0, x_1, \dots, x_k\}$, где $x_0 \leftrightharpoons x = h_0(x,0), x_1 \leftrightharpoons h(x,1), \ldots, x_k \leftrightharpoons h_0(x,k),$ причём $gf(x_k) = x_0$. Имеем $\{f(x_0), f(x_1), \dots, f(x_k)\} \subseteq S_1(f(x)),$ поскольку $x_i = (gf)^i(x)$ и $f(x_i) = (fg)^i(f(x)) \in S_1(f(x))$. Кроме того, $f(x_i) \neq f(x_i)$, как только $0 \leqslant i < j \leqslant k$ (что вытекает из того, что fинъективна), и $fg(f(x_k)) = f(gf(x_k)) = f(x)$. Итак, если $S_0(x)$ — конечное множество, то $S_1(f(x))$ конечно, и отображение $y \mapsto f(y)$ осуществляет взаимно однозначное соответствие между $S_0(x)$ и $S_1(f(x))$.

Лекция С5 Нумерации и вычислимость, II

Вадим Пузаренко

Теорема Майхилла

Цилиндры Инварианты

Доказательство леммы С5.1А (окончание).

Аналогично доказывается, что отображение $y\mapsto g(y)$ осуществляет взаимно однозначное соответствие между $S_1(f(x))$ и $S_0(gf(x))$. Тем самым, если $S_1(f(x))$ конечно, то и $S_0(gf(x))$ конечно. Пусть теперь y таково, что $z\in S_0(x)\cap S_0(y)$. Тогда $z=(gf)^{y_0}(x)$ для подходящего $0\leqslant y_0\leqslant k$ и, следовательно, $x=(gf)^{k+1}(x)=(gf)^{k+1-y_0}(z)\in S_0(y)$; таким образом, $S_0(x)\subseteq S_0(y)$. Отметим сначала, что $S_0(y)$ конечно: пусть $z=(gf)^{z_0}(y)$, тогда $S_0(y)=\{(gf)^i(y)|0\leqslant i< z_0\}\cup S_0(z)\subseteq \{(gf)^i(y)|0\leqslant i< z_0\}\cup S_0(x)$. Далее, так как $S_0(y)$ конечно, существует $z_1>z_0$ такое, что $(gf)^{z_1}(y)=y$, ввиду строгой периодичности. Таким образом, $y=(gf)^{z_1-z_0}(z)\in S_0(x)$.

Лекция С5 Нумерации и вычислимость. II

Вадим

Теорема Майхилла

Доказательство леммы С5.1А (окончание).

Аналогично доказывается, что отображение $y \mapsto g(y)$ осуществляет взаимно однозначное соответствие между $S_1(f(x))$ и $S_0(gf(x))$. Тем самым, если $S_1(f(x))$ конечно, то и $S_0(gf(x))$ конечно.

Пусть теперь у таково, что $z \in S_0(x) \cap S_0(y)$. Тогда $z = (gf)^{y_0}(x)$ для подходящего $0 \leqslant y_0 \leqslant k$ и, следовательно,

$$x=(gf)^{k+1}(x)=(gf)^{k+1-y_0}(z)\in S_0(y)$$
; таким образом, $S_0(x)\subseteq S_0(y)$.

$$x = (gr)$$
 $(x) = (gr)$ $x = (g$

$$S_0(y) = \{(gf)^i(y) | 0 \leqslant i < z_0\} \cup S_0(z) \subseteq \{(gf)^i(y) | 0 \leqslant i < z_0\} \cup S_0(x).$$

Далее, так как
$$S_0(y)$$
 конечно, существует $z_1 > z_0$ такое, что $(gf)^{z_1}(y) = y$, ввиду строгой периодичности. Таким образом,

$$(gt)^{-1}(y) = y$$
, ввиду строгой периодичности. Таким образом $y = (gt)^{z_1-z_0}(z) \in S_0(x)$.

Аналогично разбирается второй случай леммы.

Лекция С5 Нумерации и мость. II

Вадим

Теорема Майхилла

Доказательство леммы С5.1А (окончание).

Аналогично доказывается, что отображение $y \mapsto g(y)$ осуществляет взаимно однозначное соответствие между $S_1(f(x))$ и $S_0(gf(x))$. Тем самым, если $S_1(f(x))$ конечно, то и $S_0(gf(x))$ конечно.

Пусть теперь у таково, что $z \in S_0(x) \cap S_0(y)$. Тогда $z = (gf)^{y_0}(x)$ для подходящего $0 \leqslant y_0 \leqslant k$ и, следовательно,

$$x=(gf)^{k+1}(x)=(gf)^{k+1-y_0}(z)\in S_0(y);$$
 таким образом, $S_0(x)\subseteq S_0(y).$

$$x = (gr)^{-1}(x) = (gr)^{-1}$$
 $x = (gr)^{-1}(x) = S_0(y)$; таким ооразом, $S_0(x) \subseteq S_0(y)$
Отметим сначала, что $S_0(y)$ конечно: пусть $z = (gr)^{z_0}(y)$, тогда

$$S_0(y) = \{(gf)^i(y) | 0 \leqslant i < z_0\} \cup S_0(z) \subseteq \{(gf)^i(y) | 0 \leqslant i < z_0\} \cup S_0(x).$$

Далее, так как
$$S_0(y)$$
 конечно, существует $z_1 > z_0$ такое, что $(gf)^{z_1}(y) = y$, ввиду строгой периодичности. Таким образом,

$$(gr)^{-1}(y) = y$$
, ввиду строгои периодичности. Таким образом $y = (gr)^{z_1-z_0}(z) \in S_0(x)$.

Аналогично разбирается второй случай леммы.

Доказательство теоремы С5.1 (продолжение).

Будем эффективно строить множество пар натуральных чисел M так, чтобы выполнялись следующие условия:

Лекция С5 Нумерации и вычислимость, II

Вадим Пузаренко

Теорема Майхилла

Цилиндры

. ...

Доказательство теоремы С5.1 (продолжение).

- 1) для любого $n\in\omega$ существует единственное $m\in\omega$ такое, что $\langle n,m\rangle\in M$;
- 2) для любого $m\in\omega$ существует единственное $n\in\omega$ такое, что $\langle n,m\rangle\in M$;
- 3) $u_0 n =
 u_1 m$ для любой пары $\langle n, m \rangle \in M$.

Лекция С5 Нумерации и вычислимость, II

Вадим Пузаренко

Теорема Майхилла

Цилиндры

Доказательство теоремы С5.1 (продолжение).

- 1) для любого $n\in\omega$ существует единственное $m\in\omega$ такое, что $\langle n,m\rangle\in M;$
- 2) для любого $m\in\omega$ существует единственное $n\in\omega$ такое, что $\langle n,m\rangle\in M$;
- 3) $u_0 n =
 u_1 m$ для любой пары $\langle n, m \rangle \in M$.

Построение множества M будет осуществляться по шагам. На каждом шаге t будет добавляться не более одной пары во множество $M_{\rm t}$, представителя сильной аппроксимации множества M, причём так, чтобы выполнялись следующие условия:

- а) если 2n < t, то существует единственное m такое, что $\langle n, m
 angle \in M_t$;
- б) если 2n+1 < t, то существует единственное m такое, что $\langle m,n \rangle \in M_{\rm t};$
- в) если $\langle m,n\rangle\in M_t$, то $n\in S_1(f(m))$ или $m\in S_0(g(n))$ (заметим, что из этого следует справедливость равенства $\nu_0m=\nu_1n$).

Лекция С5 Нумерации и вычислимость, II

Вадим Пузаренко

Теорема Майхилла

Цилиндры Инварианты Доказательство теоремы С5.1 (продолжение).

КОНСТРУКЦИЯ.

 \square аг 0. Положим $M_0 \leftrightharpoons \varnothing$.

U аг t=2n+2. **А.** Если в множестве M_{2n+1} имеется пара вида $\langle m,n\rangle$ для подходящего m, то полагаем $M_{2n+2} \leftrightharpoons M_{2n+1}$.

Б. Пусть не выполняется случай A, т.е. $\langle m,n \rangle \not\in M_{2n+1}$ для всех $m \in \omega$. Тогда находим $t_0 \leftrightharpoons \mu t (\forall x [\langle h_0(g(n),t),x \rangle \not\in M_{2n+1}])$ и полагаем $M_{2n+2} \leftrightharpoons M_{2n+1} \cup \{\langle h_0(g(n),t_0),n \rangle\}$.

Лекция С5 Нумерации и вычислимость, II

Вадим Пузаренко

Теорема Майхилла

Цилиндры Инварианты Доказательство теоремы С5.1 (продолжение).

КОНСТРУКЦИЯ.

 \coprod аг 0. Положим $M_0 \leftrightharpoons \varnothing$.

Uаг t=2n+2. **А.** Если в множестве M_{2n+1} имеется пара вида $\langle m,n \rangle$ для подходящего m, то полагаем $M_{2n+2} \leftrightharpoons M_{2n+1}$.

Б. Пусть не выполняется случай A, т.е. $\langle m, n \rangle \not\in M_{2n+1}$ для всех $m \in \omega$. Тогда находим $t_0 \leftrightharpoons \mu t(\forall x [\langle h_0(g(n), t), x \rangle \not\in M_{2n+1}])$ и полагаем $M_{2n+2} \leftrightharpoons M_{2n+1} \cup \{\langle h_0(g(n), t_0), n \rangle\}$.

Покажем, что такое t_0 существует. Если $S_0(g(n))$ бесконечно, то существование такого числа следует из того, что M_{2n+1} конечно. Пусть теперь $S_0(g(n))$ конечно. Допустим, что не существует такого t, что

$$\forall x [\langle h_0(g(n), t), x \rangle \notin M_{2n+1}]. \tag{1}$$

Пусть $S_0(g(n))$ имеет k+1 элементов, а именно, $x_0=g(n)$, $x_1=gfg(n)=gf(x_0),\ldots,x_k=(gf)^kg(n)=gf(x_{k-1}).$

Лекция С5 Нумерации и вычислимость, II

Вадим Пузаренко

Теорема Майхилла

Цилиндры

Инварианты

Доказательство теоремы С5.1 (продолжение).

Так как условие (1) не выполнено, найдутся попарно различные элементы y_0, y_1, \ldots, y_k такие, что имеет место $\langle x_i, y_i \rangle \in M_{2n+1}, i = 0, 1, \ldots, k$.

Из условия в) следует, что для каждого $i=0,1,\ldots,k$ имеет место $y_i\in S_1(f(x_i))$ или $x_i\in S_0(g(y_i))$.

Так как $S_0(g(n))$ конечно, множество $S_1(fg(n))$ также является конечным; кроме того, $|S_0(g(n))| = |S_1(fg(n))| = k+1$ и $S_1(fg(n)) = S_1(n)$. Далее, $f(x_i) \in S_1(n)$, а по лемме C5.1A, $S_1(f(x_i)) = S_1(n)$. Тем самым, если $y_i \in S_1(f(x_i))$, то $y_i \in S_1(n)$ (здесь $0 \le i \le k$). Пусть теперь $x_i \in S_0(g(y_i))$, тогда $x_i = (gf)^t g(y_i)$ для некоторого t и $f(x_i) = (fg)^{t+1}(y_i)$. Следовательно, $S_1(y_i) = S_1(f(x_0)) = S_1(n)$ и $y_i \in S_1(n)$. Так как $|S_1(n)| = k+1$, а все y_i ,

 $S_1(y_i)=S_1(r(x_0))=S_1(n)$ и $y_i\in S_1(n)$. Так как $|S_1(n)|=k+1$, а все $i=0,1,\ldots,k$, различны, имеем $n\in S_1(n)=\{y_0,y_1,\ldots,y_k\}$.

Следовательно, $y_i = n$ и $\langle x_i, y_i \rangle = \langle x_i, n \rangle \in M_{2n+1}$ для подходящего $0 \leqslant i \leqslant k$. Пришли к противоречию с тем, что не существует t, удовлетворяющее (1).

Лекция С5 Нумерации и вычислимость, II

Вадим Пузаренко

Теорема Майхилла

Цилиндры Инварианты Доказательство теоремы С5.1 (окончание).

 $War\ t=2n+1$. **А.** Если в множестве M_{2n} имеется пара вида $\langle n,m \rangle$ для подходящего m, то полагаем $M_{2n+1} \leftrightharpoons M_{2n}$.

Б. Пусть не выполняется случай A, т.е. $\langle n, m \rangle \not\in M_{2n}$ для всех $m \in \omega$. Тогда находим $t_0 \leftrightharpoons \mu t(\forall x [\langle x, h_1(f(n), t) \rangle \not\in M_{2n}])$ и полагаем $M_{2n+1} \leftrightharpoons M_{2n} \cup \{\langle n, h_1(f(n), t_0) \rangle\}$.

Существование t_0 показывается, как выше.

extstyle ex

ЗАВЕРШЕНИЕ КОНСТРУКЦИИ.

Лекция С5 Нумерации и вычислимость, II

Вадим Пузаренко

Теорема Майхилла

Цилиндры Инварианты

Доказательство теоремы С5.1 (окончание).

Шаг t=2n+1. **А.** Если в множестве M_{2n} имеется пара вида $\langle n,m\rangle$ для подходящего m, то полагаем $M_{2n+1} \leftrightharpoons M_{2n}$.

Б. Пусть не выполняется случай A, т.е. $\langle n, m \rangle \not\in M_{2n}$ для всех $m \in \omega$. Тогда находим $t_0 \leftrightharpoons \mu t(\forall x [\langle x, h_1(f(n), t) \rangle \not\in M_{2n}])$ и полагаем $M_{2n+1} \leftrightharpoons M_{2n} \cup \{\langle n, h_1(f(n), t_0) \rangle \}$.

Существование t_0 показывается, как выше.

extstyle ex

ЗАВЕРШЕНИЕ КОНСТРУКЦИИ.

Ввиду выполнения условий a), б) и в) для M_t , $t\in \omega$, множество M удовлетворяет условиям 1), 2) и 3).

По условию 1), $M=\Gamma_p$ некоторой всюду определенной функции p. Так как M вп, функция p вычислима. По условию 2), функция p — перестановка натурального ряда. Условие 3) показывает, что $\nu_0=\nu_1 p$.

Цилиндрические нумерации

Лекция С5 Нумерации и вычислимость. Ш

Вадим

Майхилла

Цилиндры

Определение С5.3.

Цилиндром нумерации $\nu:\omega\to S$ называется нумерация $c(\nu):\omega\to S$, определенная следующим образом:

$$c(
u)(c(x,y))\leftrightharpoons
u y, \, x,y\in\omega,$$
 или, что то же самое,

$$c(\nu)(x) \leftrightharpoons \nu r x, x \in \omega.$$

Нумерация называется цилиндрической, если она вычислимо изоморфна своему цилиндру.

Цилиндрические нумерации

Лекция С5 Нумерации и мость. Ш

Вадим

Майхилла

Цилиндры

Определение С5.3.

Цилиндром нумерации $\nu:\omega\to S$ называется нумерация $c(\nu):\omega\to S$, определенная следующим образом:

$$c(
u)(c(x,y))\leftrightharpoons
u y, \, x,y\in\omega,$$
 или, что то же самое,

$$c(\nu)(x) \leftrightharpoons \nu r x, x \in \omega.$$

Нумерация называется цилиндрической, если она вычислимо изоморфна своему цилиндру.

Лемма С5.1.

Пусть ν_0 и ν_1 — две нумерации множества S. Если существует вычислимая функция f, сводящая ν_0 к ν_1 , такая что $\rho f = \omega$, то $\nu_0 \equiv \nu_1$.

Цилиндрические нумерации

Лекция С5 Нумерации и мость. П

Вадим

Майхилла

Цилиндры

Определение С5.3.

Цилиндром нумерации $\nu:\omega\to S$ называется нумерация $c(\nu):\omega\to S$, определенная следующим образом:

$$c(\nu)(c(x,y)) \leftrightharpoons \nu y, \ x,y \in \omega,$$
 или, что то же самое, $c(\nu)(x) \leftrightharpoons \nu r x, \ x \in \omega.$

Нумерация называется цилиндрической, если она вычислимо изоморфна своему цилиндру.

Лемма С5.1.

Пусть ν_0 и ν_1 — две нумерации множества S. Если существует вычислимая функция f, сводящая ν_0 к ν_1 , такая что $\rho f = \omega$, то $\nu_0 \equiv \nu_1$.

Доказательство.

В самом деле, $\nu_0 = \nu_1 f$, поэтому $\nu_0 \leqslant \nu_1$. Положим $g(x)\leftrightharpoons \mu y[f(y)=x]$, тогда $u_0g(x)=
u_1f(g(x))=
u_1x$ и, следовательно, $\nu_1 \leqslant \nu_0$. Таким образом, $\nu_0 \equiv \nu_1$.

Лекция С5 Нумерации и вычислимость, II

Вадим Пузаренко

Теорема Майхилла

Цилиндры

Лемма С5.2.

Если ν_0 и ν_1 — нумерации множества S, ν_0 — однозначная нумерация, то из $\nu_0\leqslant \nu_1$ следует $\nu_0\leqslant_1\nu_1$.

Лекция С5 Нумерации и вычислимость, II

Вадим Пузаренко

Теорема Майхилла

Цилиндры

Лемма С5.2.

Если ν_0 и ν_1 — нумерации множества S, ν_0 — однозначная нумерация, то из $\nu_0\leqslant \nu_1$ следует $\nu_0\leqslant_1\nu_1$.

Доказательство.

Пусть вф f такова, что $\nu_0 = \nu_1 f$; докажем, что f инъективна. В самом деле, $f(n) = f(m) \Rightarrow \nu_0 n = \nu_1 f(n) = \nu_1 f(m) = \nu_0 m \Rightarrow n = m$.

Лекция С5 Нумерации и мость. Ш

Вадим

Майхилла

Цилиндры

Лемма С5.2.

Если ν_0 и ν_1 — нумерации множества S, ν_0 — однозначная нумерация, то из $\nu_0 \leqslant \nu_1$ следует $\nu_0 \leqslant_1 \nu_1$.

Доказательство.

Пусть вф f такова, что $\nu_0 = \nu_1 f$; докажем, что f инъективна. В самом деле, $f(n) = f(m) \Rightarrow \nu_0 n = \nu_1 f(n) = \nu_1 f(m) = \nu_0 m \Rightarrow n = m$.

Следствие С5.1.

Если ν_0 и ν_1 — нумерации множества S, ν_0 — однозначная нумерация и $\nu_1 \leqslant \nu_0$, то $\nu_1 \equiv \nu_0$. Если, к тому же, ν_1 однозначна, то $\nu_1 \approx \nu_0$.

Лекция С5 Нумерации и мость. Ш

Вадим

Майхилла

Цилиндры

Лемма С5.2.

Если ν_0 и ν_1 — нумерации множества S, ν_0 — однозначная нумерация, то из $\nu_0 \leqslant \nu_1$ следует $\nu_0 \leqslant_1 \nu_1$.

Доказательство.

Пусть вф f такова, что $\nu_0 = \nu_1 f$; докажем, что f инъективна. В самом деле, $f(n) = f(m) \Rightarrow \nu_0 n = \nu_1 f(n) = \nu_1 f(m) = \nu_0 m \Rightarrow n = m$.

Следствие С5.1.

Если ν_0 и ν_1 — нумерации множества S, ν_0 — однозначная нумерация и $\nu_1 \leqslant \nu_0$, то $\nu_1 \equiv \nu_0$. Если, к тому же, ν_1 однозначна, то $\nu_1 \approx \nu_0$.

Доказательство.

Пусть ν_0 и ν_1 — нумерации из условия. Тогда из того, что $\nu_1\leqslant \nu_0$ и ν_0 минимальна (см. следствие C4.2), заключаем, что $\nu_0 \equiv \nu_1$.

Лекция С5 Нумерации и вычислимость, II

Вадим Пузаренко

Теорема Майхилла

Цилиндры

Инварианть

Доказательство (окончание).

Если же обе нумерации ν_0 и ν_1 однозначные, то, по доказанному, $\nu_0 \equiv \nu_1$, и по лемме C5.2, $\nu_0 \leqslant_1 \nu_1$ и $\nu_1 \leqslant_1 \nu_0$. По теореме C5.1, $\nu_0 \approx \nu_1$.

Лекция С5 Нумерации и вычислимость, II

Вадим Пузаренко

Теорема Майхилла

Цилиндры

Инварианты

Доказательство (окончание).

Если же обе нумерации ν_0 и ν_1 однозначные, то, по доказанному, $\nu_0 \equiv \nu_1$, и по лемме C5.2, $\nu_0 \leqslant_1 \nu_1$ и $\nu_1 \leqslant_1 \nu_0$. По теореме C5.1, $\nu_0 \approx \nu_1$.

Лемма С5.3.

Какова бы ни была нумерация ν , имеем $\nu \leqslant_1 c(\nu)$ и $c(\nu) \leqslant \nu$; в частности, $\nu \equiv c(\nu)$.

Лекция С5 Нумерации и мость. II

Вадим

Майхилла

Цилиндры

Инварианты

Доказательство (окончание).

Если же обе нумерации u_0 и u_1 однозначные, то, по доказанному, $\nu_0 \equiv \nu_1$, и по лемме C5.2, $\nu_0 \leqslant_1 \nu_1$ и $\nu_1 \leqslant_1 \nu_0$. По теореме C5.1, $\nu_0 \approx \nu_1$

Лемма С5.3.

Какова бы ни была нумерация ν , имеем $\nu \leqslant_1 c(\nu)$ и $c(\nu) \leqslant \nu$; в частности, $\nu \equiv c(\nu)$.

Доказательство.

В самом деле, вф $\lambda x.c(0,x)$ инъективна и сводит ν к $c(\nu)$; а вф r сводит $c(\nu)$ к ν .

Лекция С5 Нумерации и мость. II

Вадим

Майхилла

Цилиндры

Инварианты

Доказательство (окончание).

Если же обе нумерации u_0 и u_1 однозначные, то, по доказанному, $\nu_0 \equiv \nu_1$, и по лемме C5.2, $\nu_0 \leqslant_1 \nu_1$ и $\nu_1 \leqslant_1 \nu_0$. По теореме C5.1, $\nu_0 \approx \nu_1$

Лемма С5.3.

Какова бы ни была нумерация ν , имеем $\nu \leqslant_1 c(\nu)$ и $c(\nu) \leqslant \nu$; в частности, $\nu \equiv c(\nu)$.

Доказательство.

В самом деле, вф $\lambda x.c(0,x)$ инъективна и сводит ν к $c(\nu)$; а вф r сводит $c(\nu)$ к ν .

Следствие С5.2.

Существуют эквивалентные, но не вычислимо изоморфные нумерации.

Лекция С5 Нумерации и вычислимость. Ш

Майхилла

Цилиндры

Доказательство.

Пусть ν — однозначная нумерация счётного множества S; тогда $c(\nu) \equiv \nu$. Заметим, что всякая нумерация, вычислимо изоморфная однозначной нумерации, также является однозначной. Однако нумерация $c(\nu)$ не является однозначной. Таким образом, $\nu \not\approx c(\nu)$.

Лекция С5 Нумерации и мость. II

Вадим

Майхилла

Цилиндры

Доказательство.

Пусть ν — однозначная нумерация счётного множества S; тогда $c(\nu) \equiv \nu$. Заметим, что всякая нумерация, вычислимо изоморфная однозначной нумерации, также является однозначной. Однако нумерация $c(\nu)$ не является однозначной. Таким образом, $\nu \not\approx c(\nu)$.

Теорема С5.2.

Для нумерации u следующие утверждения эквивалентны:

- ② существует вф f такая, что $\forall x[(f(x) > x) \land (\nu(f(x)) = \nu x)];$

Лекция С5 Нумерации и вычислимость. II

Майхилла

Цилиндры

Инварианты

Доказательство.

 $(1 \Rightarrow 2)$ Пусть вычислимые перестановки p_1 и p_2 таковы, что $u = c(\nu)p_1$ и $c(\nu) = \nu p_2$. Определим функцию f следующим образом: $f(x) \leftrightharpoons p_2(c(\mu z[p_2(c(z, rp_1(x))) > x], rp_1(x)))$. Далее, f(x) вычислима и, к тому же, f(x) > x; кроме того, $\nu f(x) = \nu p_2(c(\mu z[p_2(c(z, rp_1(x))) > x], rp_1(x))) =$ $c(\nu)(c(\mu z[p_2(c(z,rp_1(x)))>x],rp_1(x)))=\nu rp_1(x)=c(\nu)p_1(x)=\nu x$ для $\mathrm{Bcex}\ x \in \omega.$

Лекция С5 Нумерации и мость. II

Майхилла

Цилиндры

Инварианты

Доказательство.

 $\mathrm{Bcex}\ x \in \omega.$

 $(1\Rightarrow 2)$ Пусть вычислимые перестановки p_1 и p_2 таковы, что $\nu = c(\nu)p_1$ и $c(\nu) = \nu p_2$. Определим функцию f следующим образом: $f(x) \leftrightharpoons p_2(c(\mu z[p_2(c(z, rp_1(x))) > x], rp_1(x)))$. Далее, f(x) вычислима и, к тому же, f(x) > x; кроме того, $\nu f(x) = \nu p_2(c(\mu z[p_2(c(z, rp_1(x))) > x], rp_1(x))) =$ $c(\nu)(c(\mu z[p_2(c(z,rp_1(x)))>x],rp_1(x)))=\nu rp_1(x)=c(\nu)p_1(x)=\nu x$ для

 $(2 \Rightarrow 3)$ Пусть вф f удовлетворяет условию (2), а нумерация ν' сводится к ν посредством вф g. Возьмём сплинтер F функции f, т.е.

$$\begin{bmatrix}
F(0,x) = & x, \\
F(y+1,x) = & fF(y,x).
\end{bmatrix}$$

Заметим, что $\nu x = \nu f^{y}(x) = \nu F(y,x)$ для всех $x,y \in \omega$. Определим теперь функцию h следующим образом:

$$\begin{cases}
h(0) = g(0), \\
h(x+1) = F(s(h(x)), g(x+1)).
\end{cases}$$

Лекция С5 Нумерации и вычислимость, II

Вадим Пузаренко

Теорема Майхилла

Цилиндры

Инварианты

Доказательство (окончание).

Функция h вычислима и, к тому же, является строго возрастающей, поскольку $h(x+1)=f^{s(h(x))}(g(x+1))\geqslant s(h(x))>h(x)$ (в частности, инъекцией). Кроме того, $\nu'x=\nu g(x)=\nu h(x)$ для всех $x\in\omega$. (3 \Rightarrow 1) Так как $c(\nu)\leqslant\nu$ (посредством функции r), имеем $c(\nu)\leqslant_1\nu$. Далее, $\nu\leqslant_1c(\nu)$ (посредством функции $\lambda x.c(0,x)$) и, по теореме C5.1, $\nu\approx c(\nu)$. Таким образом, нумерация ν цилиндрическая.

Лекция С5 Нумерации и вычислимость, II

Вадим Пузаренко

Теорема Майхилла

Цилиндры

. ...

Следствие С5.3.

Всякий цилиндр является цилиндрической нумерацией.

Лекция С5 Нумерации и вычислимость, II

Вадим Пузаренко

Теорема Майхилла

Цилиндры

Цилиндры

Следствие С5.3.

Всякий цилиндр является цилиндрической нумерацией.

Доказательство.

Пусть ν — нумерация множества S; докажем, что $c(\nu)$ является цилиндрической нумерацией. Положим функцию $f(x) \leftrightharpoons c(\mathbf{s}(lx), rx)$, тогда f(x) вычислима, $f(x) = c(\mathbf{s}(lx), rx) > c(lx, rx) = x$ и $c(\nu)(x) = \nu rx = c(\nu)(c(\mathbf{s}(lx), rx)) = c(\nu)fx$. По теореме C5.2(2), $c(\nu)$ — цилиндрическая нумерация.

Лекция С5 Нумерации и вычислимость, II

Вадим Пузаренко

Теорема Майхилл

Цилиндры

— — — Инварианты

Пусть $A,B\subseteq \omega$.

Лекция С5 Нумерации и вычислимость, II

Вадим Пузаренко

Теорема Майхилла

Цилиндры

Инварианты

Пусть $A, B \subseteq \omega$.

Определение С5.4.

Говорят, что A m-сводится к B, и обозначают $A \leqslant_m B$, если существует вф f такая, что $n \in A \Leftrightarrow f(n) \in B$ для всех $n \in \omega$. Говорят, что A и B m-эквивалентны, и обозначают $A \equiv_m B$, если $A \leqslant_m B$ и $B \leqslant_m A$.

Лекция С5 Нумерации и вычислимость, II

Вадим Пузаренка

Теорема Майхилла

Цилиндр

Инварианты

Пусть $A, B \subseteq \omega$.

Определение С5.4.

Говорят, что A m-сводится к B, и обозначают $A \leqslant_m B$, если существует вф f такая, что $n \in A \Leftrightarrow f(n) \in B$ для всех $n \in \omega$. Говорят, что A и B m-эквивалентны, и обозначают $A \equiv_m B$, если $A \leqslant_m B$ и $B \leqslant_m A$.

Определение С5.5.

Говорят, что A **1-сводится** к B, и обозначают $A \leqslant_1 B$, если существует инъективная вф f такая, что $n \in A \Leftrightarrow f(n) \in B$ для всех $n \in \omega$.

Лекция С5 Нумерации и вычислимость, II

Вадим Пузаренка

Теорема Майхилла

Цилиндр

Инварианты

Пусть $A, B \subseteq \omega$.

Определение С5.4.

Говорят, что A *m*-сводится к B, и обозначают $A \leqslant_m B$, если существует вф f такая, что $n \in A \Leftrightarrow f(n) \in B$ для всех $n \in \omega$. Говорят, что A и B *m*-эквивалентны, и обозначают $A \equiv_m B$, если $A \leqslant_m B$ и $B \leqslant_m A$.

Определение С5.5.

Говорят, что A **1-сводится** к B, и обозначают $A \leqslant_1 B$, если существует инъективная вф f такая, что $n \in A \Leftrightarrow f(n) \in B$ для всех $n \in \omega$.

Определение С5.6.

Говорят, что A и B вычислимо изоморфны, и обозначают $A \approx B$, если существует вычислимая перестановка p такая, что $n \in A \Leftrightarrow p(n) \in B$ для всех $n \in \omega$.

Лекция С5 Нумерации и вычислимость, II

Вадим Пузаренко

Теорема Майхилла

Цилиндры

Инварианты

Определение С5.7.

Множество $A\subseteq\omega$ называется цилиндром, если A и $c(\omega\times D)$ вычислимо изоморфны для некоторого $D\subseteq\omega$. Множество $A\subseteq\omega$ называется цилиндрификацией множества $B\subseteq\omega$, если $A=c(\omega\times B)$.

Лекция С5 Нумерации и вычислимость, II

Вадим Пузаренко

Теорема Майхилла

Цилиндр

Инварианты

Определение С5.7.

Множество $A\subseteq\omega$ называется **цилиндром**, если A и $c(\omega\times D)$ вычислимо изоморфны для некоторого $D\subseteq\omega$. Множество $A\subseteq\omega$ называется **цилиндрификацией** множества $B\subseteq\omega$, если $A=c(\omega\times B)$.

Замечание С5.2.

Лекция С5 Нумерации и вычислимость, II

Вадим Пузаренко

Теорема Майхилла

Цилиндр

Инварианты

Определение С5.7.

Множество $A\subseteq\omega$ называется **цилиндром**, если A и $c(\omega\times D)$ вычислимо изоморфны для некоторого $D\subseteq\omega$. Множество $A\subseteq\omega$ называется **цилиндрификацией** множества $B\subseteq\omega$, если $A=c(\omega\times B)$.

- $A \equiv_m B \Leftrightarrow \chi_A \equiv \chi_B.$

Лекция С5 Нумерации и вычислимость, II

Вадим Пузаренко

Теорема Майхилла

Цилиндр

Инварианты

Определение С5.7.

Множество $A\subseteq\omega$ называется **цилиндром**, если A и $c(\omega\times D)$ вычислимо изоморфны для некоторого $D\subseteq\omega$. Множество $A\subseteq\omega$ называется **цилиндрификацией** множества $B\subseteq\omega$, если $A=c(\omega\times B)$.

Лекция С5 Нумерации и вычислимость, II

Вадим Пузаренко

Теорема Майхилла

Цилиндр

Инварианты

Определение С5.7.

Множество $A\subseteq\omega$ называется **цилиндром**, если A и $c(\omega\times D)$ вычислимо изоморфны для некоторого $D\subseteq\omega$. Множество $A\subseteq\omega$ называется **цилиндрификацией** множества $B\subseteq\omega$, если $A=c(\omega\times B)$.

- $A \equiv_m B \Leftrightarrow \chi_A \equiv \chi_B.$

Лекция С5 Нумерации и вычислимость, II

Вадим Пузаренко

Теорема Майхилла

Цилиндр

Инварианты

Определение С5.7.

Множество $A\subseteq\omega$ называется **цилиндром**, если A и $c(\omega\times D)$ вычислимо изоморфны для некоторого $D\subseteq\omega$. Множество $A\subseteq\omega$ называется **цилиндрификацией** множества $B\subseteq\omega$, если $A=c(\omega\times B)$.

- $\bullet A \leqslant_m B \Leftrightarrow \chi_A \leqslant \chi_B.$
- $A \equiv_m B \Leftrightarrow \chi_A \equiv \chi_B.$

- ullet A цилиндр, если и только если χ_A цилиндрическая нумерация.

Лекция С5 Нумерации и вычислимость, II

Вадим Пузаренко

Теорема Майхилла

Цилиндр

Инварианты

Определение С5.7.

Множество $A\subseteq\omega$ называется **цилиндром**, если A и $c(\omega\times D)$ вычислимо изоморфны для некоторого $D\subseteq\omega$. Множество $A\subseteq\omega$ называется **цилиндрификацией** множества $B\subseteq\omega$, если $A=c(\omega\times B)$.

- $\bullet A \leqslant_m B \Leftrightarrow \chi_A \leqslant \chi_B.$
- $A \equiv_m B \Leftrightarrow \chi_A \equiv \chi_B.$

- lacktriangledark цилиндр, если и только если χ_A цилиндрическая нумерация.
- **②** A цилиндрификация B, если и только если $\chi_A = c(\chi_B)$.

Лекция С5 Нумерации и вычислимость, II

Вадим Пузаренко

Теорема Майхилл

Цилиндры

Инварианты

Теорема С5.3 (Майхилла).

Если $A\leqslant_1 B$ и $B\leqslant_1 A$, то $A\approx B$.

Лекция С5 Нумерации и вычислимость, II

Вадим Пузаренко

Теорема Майхилла

Цилиндры

Инварианты

Теорема С5.3 (Майхилла).

Если $A \leqslant_1 B$ и $B \leqslant_1 A$, то $A \approx B$.

Доказательство.

Непосредственно следует из замечания С5.2 и теоремы С5.1.

Лекция С5 Нумерации и вычислимость, II

Вадим Пузаренко

Теорема Майхилла

Цилиндры

Инварианты

Теорема С5.3 (Майхилла).

Если $A \leqslant_1 B$ и $B \leqslant_1 A$, то $A \approx B$.

Доказательство.

Непосредственно следует из замечания С5.2 и теоремы С5.1.

Теорема С5.4.

Для множества $A\subseteq\omega$ следующие утверждения эквивалентны:

- 4 цилиндр;
- ② существует вычислимая функция f такая, что $\forall x[(f(x)>x)\land (x\in A\Leftrightarrow f(x)\in A)];$

Лекция С5 Нумерации и вычислимость, II

Вадим Пузаренко

Теорема Майхилла

Цилинд

Инварианты

Теорема С5.3 (Майхилла).

Если $A \leqslant_1 B$ и $B \leqslant_1 A$, то $A \approx B$.

Доказательство.

Непосредственно следует из замечания С5.2 и теоремы С5.1.

Теорема С5.4.

Для множества $A\subseteq\omega$ следующие утверждения эквивалентны:

- 4 цилиндр;
- ② существует вычислимая функция f такая, что $\forall x[(f(x)>x)\land (x\in A\Leftrightarrow f(x)\in A)];$

Доказательство.

Непосредственно следует из замечания С5.2 и теоремы С5.2.

Лекция С5 Нумерации и вычислимость, II

Вадим Пузаренко

Теорема Майхилла

Цилиндры

Инварианты

Определение С5.8.

Свойство P на $\mathcal{P}(\omega)$ называется вычислимо инвариантным, если выполняется соотношение $P(A)\Leftrightarrow P(\pi(A))$ для всех $A\subseteq \omega$ и вычислимой перестановки π .

Лекция С5 Нумерации и вычислимость, II

Вадим Пузаренко

Теорема Майхилла

Цилиндры

Инварианты

Определение С5.8.

Свойство P на $\mathcal{P}(\omega)$ называется вычислимо инвариантным, если выполняется соотношение $P(A)\Leftrightarrow P(\pi(A))$ для всех $A\subseteq\omega$ и вычислимой перестановки π .

Примеры С5.1.

① Свойство $2 \in A$? не является инвариантным. Действительно, пусть вычислимая перестановка такая, что $\pi(2) = 0$; тогда $2 \in \{2\}$, но $2 \notin \{0\} = \pi(\{2\})$.

Лекция С5 Нумерации и вычислимость, II

Вадим Пузаренко

Теорема Майхилла

Цилиндры

Инварианты

Определение С5.8.

Свойство P на $\mathcal{P}(\omega)$ называется вычислимо инвариантным, если выполняется соотношение $P(A)\Leftrightarrow P(\pi(A))$ для всех $A\subseteq\omega$ и вычислимой перестановки π .

- Свойство $2 \in A$? не является инвариантным. Действительно, пусть вычислимая перестановка такая, что $\pi(2) = 0$; тогда $2 \in \{2\}$, но $2 \notin \{0\} = \pi(\{2\})$.
- ② Пусть $n \in \omega$; свойство множества иметь n элементов вычислимо инвариантно (следует из того, что π перестановка).

Лекция С5 Нумерации и вычислимость, II

Вадим Пузаренко

Теорема Майхилла

Цилиндры

Инварианты

Определение С5.8.

Свойство P на $\mathcal{P}(\omega)$ называется вычислимо инвариантным, если выполняется соотношение $P(A)\Leftrightarrow P(\pi(A))$ для всех $A\subseteq \omega$ и вычислимой перестановки π .

- Свойство $2 \in A$? не является инвариантным. Действительно, пусть вычислимая перестановка такая, что $\pi(2) = 0$; тогда $2 \in \{2\}$, но $2 \notin \{0\} = \pi(\{2\})$.
- ② Пусть $n \in \omega$; свойство множества иметь n элементов вычислимо инвариантно (следует из того, что π перестановка).
- Свойство быть бесконечным вычислимым вычислимо инвариантно (см. предложение C3.2(1)).

Лекция С5 Нумерации и вычислимость, II

Вадим Пузаренко

Теорема Майхилла

цилиндры

Инварианты

Определение С5.8.

Свойство P на $\mathcal{P}(\omega)$ называется вычислимо инвариантным, если выполняется соотношение $P(A)\Leftrightarrow P(\pi(A))$ для всех $A\subseteq\omega$ и вычислимой перестановки π .

- Свойство $2 \in A$? не является инвариантным. Действительно, пусть вычислимая перестановка такая, что $\pi(2)=0$; тогда $2 \in \{2\}$, но $2 \notin \{0\} = \pi(\{2\})$.
- ② Пусть $n \in \omega$; свойство множества иметь n элементов вычислимо инвариантно (следует из того, что π перестановка).
- Свойство быть бесконечным вычислимым вычислимо инвариантно (см. предложение C3.2(1)).
- Свойство быть вычислимо перечислимым вычислимо инвариантно (см. лемму С3.10).

Лекция С5 Нумерации и вычислимость, II

Вадим Пузаренко

Теорема Майхилла

Цилиндры

Инварианты

Определение С5.8.

Свойство P на $\mathcal{P}(\omega)$ называется вычислимо инвариантным, если выполняется соотношение $P(A)\Leftrightarrow P(\pi(A))$ для всех $A\subseteq \omega$ и вычислимой перестановки π .

- **①** Свойство $2 \in A$? не является инвариантным. Действительно, пусть вычислимая перестановка такая, что $\pi(2) = 0$; тогда $2 \in \{2\}$, но $2 \notin \{0\} = \pi(\{2\})$.
- ② Пусть $n \in \omega$; свойство множества иметь n элементов вычислимо инвариантно (следует из того, что π перестановка).
- Свойство быть бесконечным вычислимым вычислимо инвариантно (см. предложение СЗ.2(1)).
- Свойство быть вычислимо перечислимым вычислимо инвариантно (см. лемму С3.10).
- Свойство быть цилиндром вычислимо инвариантно.

Лекция С5 Нумерации и вычислимость, II

Вадим Пузаренко

Теорема Майхилла

Цилиндры

Инварианты

Следствие С5.4.

Пусть свойства P_0 и P_1 вычислимо инвариантны. Тогда свойства $\ ^{7}P_0$, $P_0 \wedge P_1$, $P_0 \vee P_1$ также вычислимо инвариантны.

Лекция С5 Нумерации и вычислимость, II

Вадим Пузаренко

Теорема Майхилла

Цилиндры

Инварианты

Следствие С5.4.

Определение С5.9.

Множество $A\subseteq \omega$ называется **иммунным**, если оно бесконечно и не содержит в качестве бесконечного подмножества вычислимо перечислимого множества. Вычислимо перечислимое множество с иммунным дополнением называется **простым**.

Лекция С5 Нумерации и вычислимость, II

Вадим Пузаренк

Теорема Майхилла

Цилиндры

<u>Ин</u>варианты

Следствие С5.4.

Определение С5.9.

Множество $A\subseteq \omega$ называется **иммунным**, если оно бесконечно и не содержит в качестве бесконечного подмножества вычислимо перечислимого множества. Вычислимо перечислимое множество с иммунным дополнением называется **простым**.

Замечание С5.3.

Непосредственно из определения следует, что если A иммунно, то A не может быть вп, поскольку иначе A содержало бы бесконечное впм, а именно, A.

Лекция С5 Нумерации и вычислимость, II

Вадим Пузаренко

Теорема Майхилл

Цилиндры

Инварианты

Теорема С5.5.

Простые множества существуют.

Лекция С5 Нумерации и вычислимость, II

Вадим Пузаренко

Теорема Майхилла

Цилиндр

Инварианты

Теорема С5.5.

Простые множества существуют.

Доказательство.

Простое множество S будем строить с помощью сильной аппроксимации S_t . Пусть W_n — последовательность вп множеств такая, что $R \leftrightharpoons \{\langle n,m\rangle|m\in W_n\}$ — универсальный вп предикат. Пусть также B_s — сильная аппроксимация c(R), причём на каждом шаге добавляется не более одного числа, и $W_{n,s}\leftrightharpoons \{m|c(m,n)\in B_s\}$ для всех $n,s\in \omega$.

Лекция С5 Нумерации и вычислимость, II

Вадим Пузаренко

Теорема Майхилла

Цилиндрі

Инварианты

Теорема С5.5.

Простые множества существуют.

Доказательство.

Простое множество S будем строить с помощью сильной аппроксимации S_t . Пусть W_n — последовательность вп множеств такая, что $R \leftrightharpoons \{\langle n,m \rangle | m \in W_n\}$ — универсальный вп предикат. Пусть также B_s — сильная аппроксимация c(R), причём на каждом шаге добавляется не более одного числа, и $W_{n,s} \leftrightharpoons \{m | c(m,n) \in B_s\}$ для всех $n,s \in \omega$.

 \coprod A Γ 0. Полагаем $S_0 = \emptyset$.

 \coprod АГ t+1. Ищем наименьшее число $m\leqslant t$ такое, что

 $W_{m,t+1} \cap S_t = \emptyset \wedge \exists x (x \in W_{m,t+1} \wedge x > 2m).$

Если такое число m существует (что выясняется эффективно), то полагаем $S_{t+1} \leftrightharpoons S_t \cup \{s_{m,t+1}\}$, где $s_{m,t+1} = \min\{x \in W_{m,t+1} | x > 2m\}$.

Лекция С5 Нумерации и вычислимость, II

Вадим Пузаренко

Теорема Майхилла

Цилиндр

Инварианты

Доказательство (окончание).

Затем (или сразу, если такого m не существует) переходим к следующему шагу. Из построения вытекает, что S вп. Заметим, что если n_0 , n_1 , r_0 и r_1 таковы, что $r_0 < r_1$ и $s_{n_i,r_i} \in S_{n_i}$, i=0,1, то $n_0 \neq n_1$, поскольку $W_{n_0,r_1} \cap S_{r_1} \neq \varnothing$. Отсюда следует, что из отрезка [0;2m] во множество S будет помещено не более m чисел. Поэтому \overline{S} бесконечно.

Лекция С5 Нумерации и вычислимость, II

Вадим Пузаренко

Теорема Майхилла

Цилиндр

Инварианты

Доказательство (окончание).

Затем (или сразу, если такого m не существует) переходим к следующему шагу. Из построения вытекает, что S вп. Заметим, что если n_0 , n_1 , r_0 и r_1 таковы, что $r_0 < r_1$ и $s_{n_i,r_i} \in S_{n_i}$, i=0,1, то $n_0 \neq n_1$, поскольку $W_{n_0,r_1} \cap S_{r_1} \neq \varnothing$. Отсюда следует, что из отрезка [0;2m] во множество S будет помещено не более m чисел. Поэтому \overline{S} бесконечно.

Остаётся доказать, что если A — бесконечное впм, то $A \cap S \neq \varnothing$. Сначала определим $N_A = \{m|W_m = A\}$ и $t_A = \min\{t|\exists x\exists m[(m \in N_A) \land (x \in W_{m,t}) \land (x > 2m)]\}$. Пусть теперь m_A таково, что $m_A \in N_A \land \exists x[(x \in W_{m_A,t_A}) \land (x > 2m_A)]$. Далее, если $W_{m_A,t_A} \cap S_{t_A+1} \neq \varnothing$, то $A \cap S = W_{m_A} \cap S \neq \varnothing$; если же $W_{m_A,t_A} \cap S_{t_A+1} = \varnothing$, то будет выполняться $W_{m_A,t_A+m_A+1} \cap S_{t_A+m_A+2} \neq \varnothing$ и, следовательно, $A \cap S = W_{m_A} \cap S \neq \varnothing$.

Лекция С5 Нумерации и вычислимость, II

Вадим Пузаренко

Теорема Майхилла

цилиндры

Инварианты

Доказательство (окончание).

Затем (или сразу, если такого m не существует) переходим к следующему шагу. Из построения вытекает, что S вп. Заметим, что если n_0 , n_1 , r_0 и r_1 таковы, что $r_0 < r_1$ и $s_{n_i,r_i} \in S_{n_i}$, i=0,1, то $n_0 \neq n_1$, поскольку $W_{n_0,r_1} \cap S_{r_1} \neq \varnothing$. Отсюда следует, что из отрезка [0;2m] во множество S будет помещено не более m чисел. Поэтому \overline{S} бесконечно.

Остаётся доказать, что если A — бесконечное впм, то $A \cap S \neq \varnothing$. Сначала определим $N_A = \{m|W_m = A\}$ и $t_A = \min\{t|\exists x\exists m[(m\in N_A) \land (x\in W_{m,t}) \land (x>2m)]\}$. Пусть теперь m_A таково, что $m_A \in N_A \land \exists x[(x\in W_{m_A,t_A}) \land (x>2m_A)]$. Далее, если $W_{m_A,t_A} \cap S_{t_A+1} \neq \varnothing$, то $A \cap S = W_{m_A} \cap S \neq \varnothing$; если же $W_{m_A,t_A} \cap S_{t_A+1} = \varnothing$, то будет выполняться $W_{m_A,t_A+m_A+1} \cap S_{t_A+m_A+2} \neq \varnothing$ и, следовательно, $A \cap S = W_{m_A} \cap S \neq \varnothing$. Итак, S — впм с иммунным дополнением.

Лекция С5 Нумерации и вычислимость, II

Вадим Пузаренко

Теорема Майхилла

Цилиндры

Инварианты

Второе доказательство теоремы С5.5.

Как и прежде, возьмём вычислимую последовательность $\{W_m\}_{m\in\omega}$ в.п. множеств так, чтобы предикат $C \leftrightharpoons \{\langle m,n|n\in W_m\rangle\}$ был универсальным. Тогда бинарный предикат R, заданный как

$$R(m,n) \Leftrightarrow [(n \in W_m) \land (n > 2m)],$$
 (2)

будет в.п. Пусть ч.в.ф. φ униформизует данный предикат (см. теорему СЗ.З). Покажем, что $B \leftrightharpoons \rho \varphi$ будет простым множеством. Для этого проверим справедливость следующих свойств.

- 1) B в.п.м. Непосредственно следует из теоремы C3.1(3).
- 2) $\omega-B$ бесконечно. В самом деле, $\varphi(m)>2m$ для всех $m\in\omega$, поэтому $|B\cap[0;2m]|\leqslant m$. Следовательно, $|\overline{B}\cap[0;2m]|\geqslant m$. Таким образом, \overline{B} бесконечно.

Лекция С5 Нумерации и вычислимость, II

Вадим Пузаренко

Теорема Майхилла

Цилиндрі

Инварианты

Второе доказательство теоремы С5.5 (окончание).

- 3) Множество B бесконечно. В самом деле, любое коконечное множество является вычислимо перечислимым (даже вычислимым), а таких множеств бесконечно много. В силу универсальности предиката C, $\delta \varphi$, а вместе с ней, и $\rho \varphi$ являются бесконечными множествами.
- 4) Если D бесконечное в.п.м., то $D \cap B \neq \varnothing$. В самом деле, пусть $m_0 \in \omega$ таково, что $D = W_{m_0}$ (существование такого числа вытекает из универсальности предиката C). Так как D бесконечное множество, существует $n_0 \in D$ такое, что $n_0 > 2m_0$; поэтому $\varphi(m_0) \downarrow$ и $\varphi(m_0) \in B \cap D$ (см. (2)). \square

Лекция С5 Нумерации и вычислимость, II

Вадим Пузаренко

Теорема Майхилла

......

Инварианты

Второе доказательство теоремы С5.5 (окончание).

- 3) Множество B бесконечно. В самом деле, любое коконечное множество является вычислимо перечислимым (даже вычислимым), а таких множеств бесконечно много. В силу универсальности предиката C, $\delta \varphi$, а вместе с ней, и $\rho \varphi$ являются бесконечными множествами.
- 4) Если D бесконечное в.п.м., то $D \cap B \neq \emptyset$. В самом деле, пусть $m_0 \in \omega$ таково, что $D = W_{m_0}$ (существование такого числа вытекает из универсальности предиката C). Так как D бесконечное множество, существует $n_0 \in D$ такое, что $n_0 > 2m_0$; поэтому $\varphi(m_0) \downarrow$ и $\varphi(m_0) \in B \cap D$ (см. (2)). \square

Замечание С5.4.

Свойство множества быть простым (иммунным) вычислимо инвариантно.

Лекция С5 Нумерации и вычислимость, II

Вадим Пузаренко

Теорема Майхилла

Цилиндры

Инварианты

Определение С5.10.

Вычислимо перечислимое множество M называется m-полным, если $A\leqslant_m M$ для любого вычислимо перечислимого множества A.

Лекция С5 Нумерации и вычислимость, II

Вадим Пузаренко

Теорема Майхилла

Цилиндры

Инварианты

Определение С5.10.

Вычислимо перечислимое множество M называется m-полным, если $A\leqslant_m M$ для любого вычислимо перечислимого множества A.

Определение С5.11.

Вычислимо перечислимое множество M называется $\mathbf{1}$ -полным, если $A\leqslant_1 M$ для любого вычислимо перечислимого множества A.

Лекция С5 Нумерации и вычислимость, II

Вадим Пузаренко

Теорема Майхилла

Цилиндрі

<u>Ин</u>варианты

Определение С5.10.

Вычислимо перечислимое множество M называется m-полным, если $A \leqslant_m M$ для любого вычислимо перечислимого множества A.

Определение С5.11.

Вычислимо перечислимое множество M называется $\mathbf{1}$ -полным, если $A\leqslant_1 M$ для любого вычислимо перечислимого множества A.

Пример С5.2.

Пусть $R\subseteq\omega^2$ — универсальный вычислимо перечислимый предикат. Тогда c(R) является 1-полным: пусть A вычислимо перечислимо и, следовательно, $A=\{m|R(a,m)\}$ для подходящего $a\in\omega$; поэтому $m\in A\Leftrightarrow R(a,m)\Leftrightarrow c(a,m)\in c(R)$, а вычислимая (даже примитивно рекурсивная) функция $\lambda x.c(a,x)$ инъективна.

Лекция С5 Нумерации и вычислимость, II

Вадим Пузаренк

Теорема Майхилла

Цилиндры

Инварианты

Замечание С5.5.

Любое 1-полное множество является m-полным. На самом деле, верно и обратное (обсудим позже).

Лекция С5 Нумерации и вычислимость, II

Вадим Пузаренк

Теорема Майхилла

Цилиндр

Инварианты

Замечание С5.5.

Любое 1-полное множество является \emph{m} -полным. На самом деле, верно и обратное (обсудим позже).

Следствие С5.5.

Любые два 1-полных множества вычислимо изоморфны.

Доказательство.

Пусть M_1 и M_2-1 -полные множества. Тогда $M_1\leqslant_1 M_2$ и $M_2\leqslant_1 M_1$, а по теореме С5.3 Майхилла, $M_1\approx M_2$.

Лекция С5 Нумерации и вычислимость, II

Вадим Пузаренк

Теорема Майхилла

Цилиндры

Инварианты

Спасибо за внимание.