Title

D. Zack Garza

Contents

1 Lecture 5A 3

Contents 2

1 Lecture 5A

1 | Lecture 5A

We saw an interesting example of a function field in more than one variable which showed that valuations of rank larger than 1 can arise, but this does not happen for one variable function fields. That is, for K/k of transcendence degree 1, all valuations on K which are trivial on k are discrete. We'll now want to go farther and describe the places $\Sigma(K/k)$, which will be the set of points on an algebraic curve. Scheme-theoretically, this will literally be the set of closed points on a certain projective curve whose function field is K. Note that a priori, finding closed points on a curve over an arbitrary field is hard!

Recall that if A is a Dedekind domain such that $\mathrm{ff}(A) = K$, then for all $\mathfrak{p} \in \mathrm{mSpec}(A)$ there exists a discrete valuation v_p on K. I.e., every maximal ideal induces a discrete valuation that is A-regular, so the valuation ring will contain A. How is this obtained? Take a nonzero $x \in K^{\times}$, and take the corresponding principal fractional ideal $\langle x \rangle := Ax$, which we can factor in a Dedekind domain as $Ax = \prod_{\mathfrak{p} \in \mathrm{mSpec}(A)} \mathfrak{p}^{\alpha_{\mathfrak{p}}}$ with $\alpha_{\mathfrak{p}} \in \mathbb{Z}$. This looks like an infinite product, but for any fixed x, only

finitely many α are nonzero. Note that these α are exactly what we're looking for: the \mathfrak{p} -adic evaluation of x is given precisely by $v_{\mathfrak{p}}(x) := \alpha_{\mathfrak{p}}$, where we are using unique factorization of ideals in Dedekind domains. Thus we have a map

$$v: \mathrm{mSpec}(A) \to \Sigma(K/A)$$

 $\mathfrak{p} \mapsto v_{\mathfrak{p}}.$

So this sends a maximal ideal to a place that is A-regular, and it turns out to be a bijection.

Proposition 1.0.1(?).

The map v is a bijection, and thus we may write

$$\Sigma(K/A) \cong \mathrm{mSpec}(A).$$

Proof (?).

Claim: v is injective.

If $\mathfrak{p}_1, \mathfrak{p}_2 \in \mathrm{mSpec}(A)$ are two different maximal ideals. Then there exists an element $x \in \mathfrak{p}_1 \setminus \mathfrak{p}_2$, and so $x^{-1} \in A_{\mathfrak{p}_2} \setminus A_{\mathfrak{p}_1}$. This follows

Lecture 5A 3