Evaluating High-dimensional Surrogate Markers of Vaccine Response through Causal Mediation Analysis

Arthur Hughes

University of Bordeaux

10/06/2024

Vaccination

- Exploit immune system
- Most cost-effective measure in public health
 - 154 million lives saved in last 50 years
 - 4-5 million lives saved per year
- Historically developed empirically

Transcriptomics

• **Gene expression**: Genes → Product

Experimental Design

Huge potential:

Huge potential:

Holistic view of system

Huge potential:

Holistic view of system

Reveal vaccine mechanisms

Huge potential:

Holistic view of system

Reveal vaccine mechanisms

Observed early

Huge potential:

Holistic view of system

Reveal vaccine mechanisms

Observed early

But challenges with high-dimensionality...

Huge potential:

Holistic view of system

Reveal vaccine mechanisms

Observed early

But challenges with high-dimensionality...

Interpretability

Huge potential:

Holistic view of system

Reveal vaccine mechanisms

Observed early

But challenges with high-dimensionality...

Interpretability

Sensitivity to investigator choices

Huge potential:

Holistic view of system

Reveal vaccine mechanisms

Observed early

But challenges with high-dimensionality...

Interpretability

Sensitivity to investigator choices

Low signal-noise ratio

Investigate groups of biologically related genes

Investigate groups of biologically related genes

Reduced dimensionality

Investigate groups of biologically related genes

Reduced dimensionality

Biological interpretability

Investigate groups of biologically related genes

Reduced dimensionality

Biological interpretability

Boost signal

Accelerating validation of candidate vaccines

Accelerating validation of candidate vaccines

Protection of at-risk groups

Accelerating validation of candidate vaccines

Protection of at-risk groups

Mechanistic inference

Accelerating validation of candidate vaccines

Protection of at-risk groups

Mechanistic inference

Difficulties in vaccine RCT context:

High-dimensional

Accelerating validation of candidate vaccines

Protection of at-risk groups

Mechanistic inference

Difficulties in vaccine RCT context:

High-dimensional

Small sample size

Accelerating validation of candidate vaccines

Protection of at-risk groups

Mechanistic inference

Difficulties in vaccine RCT context:

High-dimensional

Small sample size

Complex data structures

Evaluating Gene Set Signals as Surrogates

Goal: Ranked list of gene sets by proportion of treatment effect explained

Gene Set	PTE
Z ₁	R ₁
Z ₂	R ₂
Z_3	R_3

where $R_1 > R_2 > R_3 > ...$

- Observed data consists of n i.i.d copies of O = (W, A, Z, Y) where
 - W baseline covariates (e.g. age, sex...)
 - $A \in \{0,1\}$ vaccine indicator
 - Z m genes in the same biological pathway (m > n)
 - ullet Y antibody levels

- Observed data consists of n i.i.d copies of O = (W, A, Z, Y) where
 - W baseline covariates (e.g. age, sex...)
 - $A \in \{0,1\}$ vaccine indicator
 - Z m genes in the same biological pathway (m > n)
 - Y antibody levels

Define potential outcomes

• Y(a) : Response had treatment been A=a

- Observed data consists of n i.i.d copies of O = (W, A, Z, Y) where
 - W baseline covariates (e.g. age, sex...)
 - $A \in \{0,1\}$ vaccine indicator
 - Z m genes in the same biological pathway (m > n)
 - ullet Y antibody levels

Define potential outcomes

- Y(a) : Response had treatment been A=a
- Z(a') mediators had treatment been A=a'

- Observed data consists of n i.i.d copies of O = (W, A, Z, Y) where
 - W baseline covariates (e.g. age, sex...)
 - $A \in \{0,1\}$ vaccine indicator
 - Z m genes in the same biological pathway (m > n)
 - Y antibody levels

Define potential outcomes

- Y(a) : Response had treatment been A=a
- Z(a') mediators had treatment been A=a'
- ullet $Y(a,Z(a^\prime))$ response had treatment been A=a and mediators under $A=a^\prime$

Definition of effects

• Total Effect = $\Delta := \mathbb{E}\{Y(1) - Y(0)\}$

Definition of effects

• Total Effect = $\Delta := \mathbb{E}\{Y(1) - Y(0)\}$

Decompose total effect :

$$\underbrace{\mathbb{E}(Y(1)-Y(0))}_{\text{Total Effect}} = \underbrace{\mathbb{E}(Y(1,Z(0))-Y(0,Z(0))}_{\text{Natural direct effect}} \ + \ \underbrace{\mathbb{E}(Y(1,Z(1))-Y(1,Z(0)))}_{\text{Natural indirect effect}}$$

Definition of effects

• Total Effect = $\Delta := \mathbb{E}\{Y(1) - Y(0)\}$

Decompose total effect :

$$\underbrace{\mathbb{E}(Y(1)-Y(0))}_{\text{Total Effect}} = \underbrace{\mathbb{E}(Y(1,Z(0))-Y(0,Z(0))}_{\text{Natural direct effect}} \ + \ \underbrace{\mathbb{E}(Y(1,Z(1))-Y(1,Z(0)))}_{\text{Natural indirect effect}}$$

Define proportion of treatment effect explained as

$$R_S := \frac{NIE}{\text{Total Effect}} = 1 - \frac{NDE}{\text{Total Effect}}$$

Goal : estimate $\Delta := \mathbb{E}\{Y(1) - Y(0)\}$

1. Estimate $\mathbb{E}\{Y|W,A\}$

Goal : estimate $\Delta := \mathbb{E}\{Y(1) - Y(0)\}$

- 1. Estimate $\mathbb{E}\{Y|W,A\}$
- 2. Predict potential outcomes $\forall i \in \{1, ..., n\}$

$$\widehat{Y(1)} = \widehat{\mathbb{E}}\{Y|W, A = 1\},$$

$$\widehat{Y(0)} = \widehat{\mathbb{E}}\{Y|W, A = 0\}$$

Goal : estimate $\Delta := \mathbb{E}\{Y(1) - Y(0)\}$

- 1. Estimate $\mathbb{E}\{Y|W,A\}$
- 2. Predict potential outcomes $\forall i \in \{1, ..., n\}$

$$\widehat{Y(1)} = \widehat{\mathbb{E}}\{Y|W, A = 1\},$$

$$\widehat{Y(0)} = \widehat{\mathbb{E}}\{Y|W, A = 0\}$$

3. Estimate $\widehat{\Delta} = \mathbb{E}\{\widehat{Y(1)} - \widehat{Y(0)}\}$

Goal : estimate $\Delta := \mathbb{E}\{Y(1) - Y(0)\}$

- 1. Estimate $\mathbb{E}\{Y|W,A\}$
- 2. Predict potential outcomes $\forall i \in \{1, ..., n\}$

$$\widehat{\frac{Y(1)}{Y(0)}} = \widehat{\mathbb{E}}\{Y|W, A = 1\},$$

$$\widehat{Y(0)} = \widehat{\mathbb{E}}\{Y|W, A = 0\}$$

3. Estimate $\widehat{\Delta} = \mathbb{E}\{\widehat{Y(1)} - \widehat{Y(0)}\}$

Optimises bias-variance tradeoff for $\mathbb{E}\{Y|W,A\}$ - not the causal parameter of interest

Goal : estimate $\Delta := \mathbb{E}\{Y(1) - Y(0)\}$

- 1. Estimate $\mathbb{E}\{Y|W,A\}$
- 2. Predict potential outcomes $\forall i \in \{1, ..., n\}$

$$\widehat{\frac{Y(1)}{Y(0)}} = \widehat{\mathbb{E}}\{Y|W, A = 1\},$$

$$\widehat{Y(0)} = \widehat{\mathbb{E}}\{Y|W, A = 0\}$$

3. Estimate $\widehat{\Delta} = \mathbb{E}\{\widehat{Y(1)} - \widehat{Y(0)}\}$

Optimises bias-variance tradeoff for $\mathbb{E}\{Y|W,A\}$ - not the causal parameter of interest

Needs consistent estimation of $\mathbb{E}\{Y|W,A\}$

Method 2 : Inverse probability weighting

Create comparable treatment groups w.r.t ${\it W}$

1. Estimate exposure mechanism $g_1 = \mathbb{P}(A = 1|W)$

Method 2: Inverse probability weighting

Create comparable treatment groups w.r.t ${\it W}$

1. Estimate exposure mechanism $g_1 = \mathbb{P}(A = 1|W)$

2.
$$\widehat{\Delta} = \frac{1}{n} \sum_{i=1}^{n} \left(\frac{A_i Y_i}{\widehat{g}_{1i}} - \frac{(1 - A_i) Y_i}{1 - \widehat{g}_{1i}} \right)$$

Method 2: Inverse probability weighting

Create comparable treatment groups w.r.t W

1. Estimate exposure mechanism $g_1 = \mathbb{P}(A = 1|W)$

2.
$$\widehat{\Delta} = \frac{1}{n} \sum_{i=1}^{n} (\frac{A_i Y_i}{\widehat{g}_{1i}} - \frac{(1 - A_i) Y_i}{1 - \widehat{g}_{1i}})$$

Needs consistent estimation of $\mathbb{P}(A=1|W)$

Method 2: Inverse probability weighting

Create comparable treatment groups w.r.t W

1. Estimate exposure mechanism $g_1 = \mathbb{P}(A = 1|W)$

2.
$$\widehat{\Delta} = \frac{1}{n} \sum_{i=1}^{n} (\frac{A_i Y_i}{\widehat{g}_{1i}} - \frac{(1 - A_i) Y_i}{1 - \widehat{g}_{1i}})$$

Needs consistent estimation of $\mathbb{P}(A=1|W)$

Not robust to sparsity

Target causal parameter of interest to reduce bias

1. Initial estimation : $\widehat{\mathbb{E}}\{Y|W,A\}$ and $\widehat{\mathbb{P}}(A=1|W)$

- 1. Initial estimation : $\widehat{\mathbb{E}}\{Y|W,A\}$ and $\widehat{\mathbb{P}}(A=1|W)$
- 2. Use $\widehat{\mathbb{P}}(A=1|W)$ to *update* initial estimator $\implies \widehat{\mathbb{E}^*}\{Y|W,A\}$

- 1. Initial estimation : $\widehat{\mathbb{E}}\{Y|W,A\}$ and $\widehat{\mathbb{P}}(A=1|W)$
- 2. Use $\widehat{\mathbb{P}}(A=1|W)$ to *update* initial estimator $\implies \widehat{\mathbb{E}^*}\{Y|W,A\}$
- 3. Predict targeted potential outcomes $\widehat{Y^*(a)} = \widehat{\mathbb{E}^*}\{Y|W,A=a\}$

- 1. Initial estimation : $\widehat{\mathbb{E}}\{Y|W,A\}$ and $\widehat{\mathbb{P}}(A=1|W)$
- 2. Use $\widehat{\mathbb{P}}(A=1|W)$ to *update* initial estimator $\implies \widehat{\mathbb{E}^*}\{Y|W,A\}$
- 3. Predict targeted potential outcomes $\widehat{Y^*(a)} = \widehat{\mathbb{E}^*}\{Y|W, A=a\}$
- 4. $\widehat{\Delta} = \mathbb{E}[\widehat{Y^*(1)} \widehat{Y^*(0)}]$

Target causal parameter of interest to reduce bias

- 1. Initial estimation : $\widehat{\mathbb{E}}\{Y|W,A\}$ and $\widehat{\mathbb{P}}(A=1|W)$
- 2. Use $\widehat{\mathbb{P}}(A=1|W)$ to *update* initial estimator $\implies \widehat{\mathbb{E}^*}\{Y|W,A\}$
- 3. Predict targeted potential outcomes $\widehat{Y^*(a)} = \widehat{\mathbb{E}^*}\{Y|W, A=a\}$
- 4. $\widehat{\Delta} = \mathbb{E}[\widehat{Y^*(1)} \widehat{Y^*(0)}]$

Optimises bias-variance tradeoff for causal parameter of interest

Target causal parameter of interest to reduce bias

- 1. Initial estimation : $\widehat{\mathbb{E}}\{Y|W,A\}$ and $\widehat{\mathbb{P}}(A=1|W)$
- 2. Use $\widehat{\mathbb{P}}(A=1|W)$ to *update* initial estimator $\implies \widehat{\mathbb{E}^*}\{Y|W,A\}$
- 3. Predict targeted potential outcomes $\widehat{Y^*(a)} = \widehat{\mathbb{E}^*}\{Y|W, A=a\}$
- 4. $\widehat{\Delta} = \mathbb{E}[\widehat{Y^*(1)} \widehat{Y^*(0)}]$

Optimises bias-variance tradeoff for causal parameter of interest

Doubly robust - consistent if $\widehat{\mathbb{E}}\{Y|W,A\}$ or $\widehat{\mathbb{P}}(A=1|W)$ consistently estimated

G-Computation

G-Computation

Inverse Probability Weighting

G-Computation

Inverse Probability Weighting

Targeted MLE

Figure adapted from Schuler and Rose, 2016

 $\mathbb{E}\{Y|W,A\}$ and $\mathbb{P}(A=1|W)$ are **complex**

 $\mathbb{E}\{Y|W,A\}$ and $\mathbb{P}(A=1|W)$ are **complex**

Estimate with ensemble machine learning

 $\mathbb{E}\{Y|W,A\}$ and $\mathbb{P}(A=1|W)$ are complex

Estimate with ensemble machine learning

Super-Learning

1. Choose m algorithms a priori

 $\mathbb{E}\{Y|W,A\}$ and $\mathbb{P}(A=1|W)$ are **complex**

Estimate with ensemble machine learning

- 1. Choose m algorithms a priori
- 2. Use cross-validation to estimate each algorithm performance

 $\mathbb{E}\{Y|W,A\}$ and $\mathbb{P}(A=1|W)$ are **complex**

Estimate with ensemble machine learning

- 1. Choose m algorithms a priori
- 2. Use cross-validation to estimate each algorithm performance
- 3. Find **combination of algorithms minimising CV loss** by estimating vector of weights $\alpha = (\alpha_1, ..., \alpha_m)^T$

 $\mathbb{E}\{Y|W,A\}$ and $\mathbb{P}(A=1|W)$ are **complex**

Estimate with ensemble machine learning

- 1. Choose m algorithms a priori
- 2. Use cross-validation to estimate each algorithm performance
- 3. Find **combination of algorithms minimising CV loss** by estimating vector of weights $\alpha = (\alpha_1, ..., \alpha_m)^T$
- 4. Fit each algorithm to full data and use $\widehat{\alpha}$ to generate super-learner estimator

 $extstyle \mathbb{E}\{Y|W,A\}$ and $\mathbb{P}(A=1|W)$ are **complex**

Estimate with ensemble machine learning

- 1. Choose m algorithms a priori
- 2. Use cross-validation to estimate each algorithm performance
- 3. Find combination of algorithms minimising CV loss by estimating vector of weights $\alpha = (\alpha_1, ..., \alpha_m)^T$
- 4. Fit each algorithm to full data and use $\hat{\alpha}$ to generate super-learner estimator
- Initial estimates $\mathbb{E}\{\widehat{Y}|\widehat{W},A\}$ and $\widehat{q}_a=\mathbb{P}(\widehat{A=a}|W)$

TMLE Step 2 : Targeting step

1. Calculate Auxiliary covariate $H_a(A,W)=rac{\mathbb{1}(A=1)}{\widehat{g_1}}-rac{\mathbb{1}(A=0)}{\widehat{g_0}}$

TMLE Step 2: Targeting step

- 1. Calculate Auxiliary covariate $H_a(A, W) = \frac{\mathbb{1}(A=1)}{\widehat{g_1}} \frac{\mathbb{1}(A=0)}{\widehat{g_0}}$
- 2. Regress observed Y on H_a with intercept \widehat{Y}

$$Y = \widehat{Y} + \delta H_a$$

TMLE Step 2: Targeting step

- 1. Calculate Auxiliary covariate $H_a(A, W) = \frac{\mathbb{I}(A=1)}{\widehat{g_1}} \frac{\mathbb{I}(A=0)}{\widehat{g_0}}$
- 2. Regress observed Y on H_a with intercept \widehat{Y}

$$Y = \widehat{Y} + \delta H_a$$

3. Targeted potential outcomes ⇒

$$\widehat{Y^*(1)} = \widehat{Y(1)} + \widehat{\delta} H_1$$
 and $\widehat{Y^*(0)} = \widehat{Y(0)} + \widehat{\delta} H_0$

TMLE Step 2: Targeting step

- 1. Calculate Auxiliary covariate $H_a(A, W) = \frac{\mathbb{I}(A=1)}{\widehat{q_1}} \frac{\mathbb{I}(A=0)}{\widehat{q_0}}$
- 2. Regress observed Y on H_a with intercept \widehat{Y}

$$Y = \widehat{Y} + \delta H_a$$

3. Targeted potential outcomes \implies

$$\widehat{Y^*(1)} = \widehat{Y(1)} + \widehat{\delta} H_1$$
 and $\widehat{Y^*(0)} = \widehat{Y(0)} + \widehat{\delta} H_0$

4. Estimate $\widehat{\Delta} = \mathbb{E}[\widehat{Y^*(1)} - \widehat{Y^*(0)}]$

Estimating the Natural Direct Effect

Goal: estimate the natural direct effect from n copies of O = (W, A, Z, Y). Let

• $Q_Y(W, A, Z) = \mathbb{E}(Y|W, A, Z)$

Estimating the Natural Direct Effect

Goal : estimate the natural direct effect from n copies of O = (W, A, Z, Y). Let

•
$$Q_Y(W, A, Z) = \mathbb{E}(Y|W, A, Z)$$

$$\text{Define NDE} = \mathbb{E}_W \{ \mathbb{E}_Z [\underbrace{Q_Y(W,1,Z) - Q_Y(W,0,Z)}_{Q_{\text{diff}}} | A = 0, W] \}$$
 Residual treatment effect = Δ_S

 \implies two quantities to target : Q_{diff} and Δ_S

$NDE = \mathbb{E}_{W} \{ \mathbb{E}_{Z}[Q_{Y}(W, 1, Z) - Q_{Y}(W, 0, Z) | A = 0, W] \}$

1. TMLE of Q_{Diff}

$NDE = \mathbb{E}_W \{ \mathbb{E}_Z[Q_Y(W, 1, Z) - Q_Y(W, 0, Z) | A = 0, W] \}$

$$NDE = \mathbb{E}_{W} \{ \mathbb{E}_{Z}[Q_{Y}(W, 1, Z) - Q_{Y}(W, 0, Z) | A = 0, W] \}$$

Identifiability conditions

Consistency

- Y(a, m) = Y if A = a, Z = m
- Z(a') = Z if A = a'
- Y(a, Z(a')) = Y(a, m) if Z = m

Identifiability conditions

Consistency

- Y(a, m) = Y if A = a, Z = m
- Z(a') = Z if A = a'
- Y(a, Z(a')) = Y(a, m) if Z = m

Conditional independence

- $A \perp \!\!\!\perp Z(a')|W$
- $A \perp Y(a,m)|W$
- $Z \perp Y(a,m)|W,A=a$

$$\triangle$$
 $Z(a') \perp Y(a,m)|W$

Identifiability conditions

Consistency

- Y(a, m) = Y if A = a, Z = m
- Z(a') = Z if A = a'
- Y(a, Z(a')) = Y(a, m) if Z = m

Conditional independence

- $A \perp \!\!\!\perp Z(a')|W$
- $A \perp Y(a,m)|W$
- $Z \perp Y(a,m)|W,A=a$

$$\triangle$$
 $Z(a') \perp Y(a,m)|W$

Positivity

- $\mathbb{P}(A=1|W) \in (0,1)$
- $\mathbb{P}(Z = m | W, A = a) \in (0, 1)$

• Potential violation of cross-world independence assumption

• Potential violation of cross-world independence assumption

No associated statistical test

Potential violation of cross-world independence assumption

No associated statistical test

Not simple to extend to longitudinal mediator setting

• Potential violation of cross-world independence assumption

No associated statistical test

Not simple to extend to longitudinal mediator setting

No tractable form for statistical inference

• Potential violation of cross-world independence assumption

No associated statistical test

Not simple to extend to longitudinal mediator setting

No tractable form for statistical inference

Take-home messages

• Potential and challenges evaluating an early gene expression surrogate of vaccine response

• Targeted learning to reduce bias in causal estimands

Methodological workflow for evaluating PTE by gene sets on vaccine response

Thank you for listening

References

- Pollard, Andrew J. and Else M. Bijker (Dec. 2020). "A guide to vaccinology: from basic principles to new developments". In: *Nature Reviews Immunology* 21.2, pp. 83–100. ISSN: 1474-1741.
- Schuler, Megan S. and Sherri Rose (Dec. 2016). "Targeted Maximum Likelihood Estimation for Causal Inference in Observational Studies". In: *American Journal of Epidemiology* 185.1, pp. 65–73. ISSN: 1476-6256.

Define auxiliary covariate

$$H_Y(Q_Z, g) = \frac{\mathbb{1}(A=1)}{g(1|W)} \cdot \frac{Q_Z(W, 0)}{Q_Z(W, 1)} - \frac{\mathbb{1}(A=0)}{g(0|W)}$$

and working parametric submodel

$$Q_Y(\epsilon_1) = Q_Y + \epsilon_1 H_Y(Q_Z, g)$$

(1)

Define auxiliary covariate

$$H_Y(Q_Z, g) = \frac{\mathbb{1}(A=1)}{g(1|W)} \cdot \frac{Q_Z(W, 0)}{Q_Z(W, 1)} - \frac{\mathbb{1}(A=0)}{g(0|W)}$$

and working parametric submodel

$$Q_Y(\epsilon_1) = Q_Y + \epsilon_1 H_Y(Q_Z, g)$$

(1)

TMLE of Q_{diff}

1. Obtain initial estimates $\widehat{Q_Y}$, $\widehat{Q_Z}$, \widehat{g} with super-learner

Step $1: \mathsf{TMLE} \ \mathsf{of} \ Q_{\mathsf{diff}}$

Define auxiliary covariate

$$H_Y(Q_Z, g) = \frac{\mathbb{1}(A=1)}{g(1|W)} \cdot \frac{Q_Z(W, 0)}{Q_Z(W, 1)} - \frac{\mathbb{1}(A=0)}{g(0|W)}$$

and working parametric submodel

$$Q_Y(\epsilon_1) = Q_Y + \epsilon_1 H_Y(Q_Z, g)$$

(1)

TMLE of Q_{diff}

- 1. Obtain initial estimates $\widehat{Q_Y}$, $\widehat{Q_Z}$, \widehat{g} with super-learner
- 2. Find $\epsilon_1^* = \arg\min_{\epsilon} L_Y(Q_Y(\epsilon))$ w.r.t some loss function L_Y

Define auxiliary covariate

$$H_Y(Q_Z, g) = \frac{\mathbb{1}(A=1)}{g(1|W)} \cdot \frac{Q_Z(W, 0)}{Q_Z(W, 1)} - \frac{\mathbb{1}(A=0)}{g(0|W)}$$

and working parametric submodel

$$Q_Y(\epsilon_1) = Q_Y + \epsilon_1 H_Y(Q_Z, g)$$

(1)

TMLE of Q_{diff}

- 1. Obtain initial estimates $\widehat{Q_Y}$, $\widehat{Q_Z}$, \widehat{g} with super-learner
- 2. Find $\epsilon_1^* = \arg\min_{\epsilon} L_Y(Q_Y(\epsilon))$ w.r.t some loss function L_Y
- 3. Plug in $\widehat{\epsilon_1^*}$ for targeted estimate $\widehat{Q_Y^*}=\widehat{Q_Y}+\widehat{\epsilon_1^*}H_Y(\widehat{Q_Z},\widehat{g})$

Define auxiliary covariate

$$H_Y(Q_Z, g) = \frac{\mathbb{1}(A=1)}{g(1|W)} \cdot \frac{Q_Z(W, 0)}{Q_Z(W, 1)} - \frac{\mathbb{1}(A=0)}{g(0|W)}$$

and working parametric submodel $Q_V(\epsilon_1) = Q_V + \epsilon_1 H_V(Q_Z, q)$

TMLE of Q_{diff}

- 1. Obtain initial estimates $\widehat{Q_Y}$, $\widehat{Q_Z}$, \widehat{g} with super-learner
- 2. Find $\epsilon_1^* = \arg\min_{\epsilon} L_Y(\widehat{Q_Y(\epsilon)})$ w.r.t some loss function L_Y
- 3. Plug in $\widehat{\epsilon_1^*}$ for targeted estimate $\widehat{Q_Y^*} = \widehat{Q_Y} + \widehat{\epsilon_1^*} H_Y(\widehat{Q_Z}, \widehat{g})$
- 4. Estimate $\widehat{Q^*_{\mathrm{diff}}} = \widehat{Q^*_Y}(W, A=1, Z) \widehat{Q^*_Y}(W, A=0, Z)$

Define auxiliary covariate

$$H_Z(g) = \frac{1}{g(0|W)}$$

and working parametric submodel

$$\Delta_S(\epsilon_2) = \psi_Z + \epsilon_2 H_Z(g)$$

(2)

Define auxiliary covariate

$$H_Z(g) = \frac{1}{g(0|W)}$$

and working parametric submodel

$$\Delta_S(\epsilon_2) = \psi_Z + \epsilon_2 H_Z(g)$$

(2)

TMLE of Δ_S

1. Obtain initial estimate of $\Delta_S=\mathbb{E}_{Q_Z}[Q_Y(W,1,Z)-Q_Y(W,0,Z)|A=0,W]$ by regressing $\widehat{Q_{diff}^*}$ on W among controls

Define auxiliary covariate

$$H_Z(g) = \frac{1}{g(0|W)}$$

and working parametric submodel

$$\Delta_S(\epsilon_2) = \psi_Z + \epsilon_2 H_Z(g)$$

(2)

TMLE of Δ_S

- 1. Obtain initial estimate of $\Delta_S=\mathbb{E}_{Q_Z}[Q_Y(W,1,Z)-Q_Y(W,0,Z)|A=0,W]$ by regressing $\widehat{Q_{diff}^*}$ on W among controls
- 2. Find $\widehat{\epsilon_2^*} = \arg\min_{\epsilon} L_Z(\psi_Z(\widehat{Q_Y^*})(\epsilon))$ w.r.t some loss function L_Z

Define auxiliary covariate

$$H_Z(g) = \frac{1}{g(0|W)}$$

and working parametric submodel

$$\Delta_S(\epsilon_2) = \psi_Z + \epsilon_2 H_Z(g)$$

(2)

TMLE of Δ_{S}

- 1. Obtain initial estimate of $\Delta_S = \mathbb{E}_{Q_Z}[Q_Y(W,1,Z) Q_Y(W,0,Z)|A=0,W]$ by regressing $\widehat{Q_{diff}^*}$ on W among controls
- 2. Find $\widehat{\epsilon_2^*} = \arg\min_{\epsilon} L_Z(\psi_Z(\widehat{Q_V^*})(\epsilon))$ w.r.t some loss function L_Z
- 3. Plug in $\widehat{\epsilon_2^*}$ for targeted estimate $\widehat{\psi_Z^*(Q_V^*)} = \psi_Z(\widehat{Q_V^*}) + \widehat{\epsilon_2}^* H_Z(\widehat{g})$

Step 3: Empirical estimate of Direct effect

$$\psi_{NDE} = \mathbb{E}_{Q_W}(\psi_Z(Q_Y))$$

⇒ Empirically average over covariates for NDE

$$\widehat{\psi_{NDE}} = \frac{1}{n} \sum_{i=1}^{n} \widehat{\psi_{Z}^{*}(Q_{Y}^{*})}(W_{i})$$

