continued

- To find the absolute maximum and minimum values of a continuous function f on a closed, bounded set D:
- **I.** Find the values of f at the critical points of f in D.
- **2.** Find the extreme values of f on the boundary of D.
- **3.** The largest of the values from steps 1 and 2 is the absolute maximum value; the smallest of these values is the absolute minimum value.

f(x, 4)



now we will maximize & minimize a bounded domain: a: f(x,y) = x+3 minin um = 0

k no maximumun

 $Q_{ij} f(x,y) = x^2 + y^2$ 1 EX E 1 -1 5 75 1 whats max k min of f(x,x) max:

 $Q_{ij} f(x,y) = x^2 + y^2$ maximize f(x,y)  $(x-1)^2 + (3-1)^2 \le 1$ - max point What shope is max points & min points
need not be critical
point if domain is bounded. min point

f(x) One variable calculus defined on [a, 6] di is it possible that a max point raivetuis ut ni is. not a critical

**EXAMPLE 6** Find the absolute maximum and minimum values of the function  $f(x, y) = x^2 - 2xy + 2y$  on the rectangle  $D = \{(x, y) \mid 0 \le x \le 3, 0 \le y \le 2\}$ .

the max can occur in the interior of the rectangle ABCD

of = 0 & of = 0

or with the rectangle of the abc of the control occur.



or the wax can occur at any point on the line AB, BC, CD, or DA (not only )

**EXAMPLE 6** Find the absolute maximum and minimum values of the function  $f(x, y) = x^2 - 2xy + 2y$  on the rectangle  $D = \{(x, y) \mid 0 \le x \le 3, 0 \le y \le 2\}.$ mar con occur in the interior of the rectangle

 $f(x, y) = x^2 - 2xy + 2y$  on the rectangle  $D = \{(x, y) \mid 0 \le x \le 3, 0 \le y \le 2\}.$ de whats max/min at f(x,y)
on the live AB 05X53 , 7=0 this for all live 18C, CD, DA

**EXAMPLE 6** Find the absolute maximum and minimum values of the function



E = (2,2)**EXAMPLE 6** Find the absolute maximum and minimum values of the function  $f(x, y) = x^2 - 2xy + 2y$  on the rectangle  $D = \{(x, y) \mid 0 \le x \le 3, 0 \le y \le 2\}$ . & what wax/min of f(x,y) on line DC 05x53 Q: what is the max/min
of 22-4x44 when
o sas3  $\int_{DC} = x^2 - 4x + 4$ -> min -> n=21 y=2 max 1 N=0, 7=2

E = (2,2)**EXAMPLE 6** Find the absolute maximum and minimum values of the function  $f(x, y) = x^2 - 2xy + 2y$  on the rectangle  $D = \{(x, y) \mid 0 \le x \le 3, 0 \le y \le 2\}$ . de what wax/min of f(x,x) on line BC  $3 \times 3 \times 3 \times 2$ | mmx -> A=0 x=3  $f|_{BC} = 9-64+24 = 9-44$  | max -, 3--3x=3 | min at 4=2, x=3 | inally obsolute wax = max f(A), f(B), f(C), f(B), f(C)

Q: what is the max/min of 22-4x+4 when o sx53 x-4x+4= (x-2)

 $\rightarrow$  min x = 2

k max x = 0

domain **23.** f(x, y) = 1 + 4x - 5y, D is the closed triangular region with vertices (0, 0), (2, 0), and (0, 3)same steps: -, find critical points (if and)
in the interior of Arac s find max/min of f(x,es) on each boundary segment AB, BC, CA



> find possible critical points

no solution exist for there equi.
no crifical points

can occur at

at line AB



**23.** f(x, y) = 1 + 4x - 5y, D is the closed triangular region with vertices (0, 0), (2, 0), and (0, 3)

$$f|_{AB} = 1+4x$$

$$0 \le X \le 2$$

$$wox = x$$

$$x = 2$$

$$viv X = 0$$

**23.** 
$$f(x, y) = 1 + 4x - 5y$$
, D is the closed triangular region with vertices  $(0, 0)$ ,  $(2, 0)$ , and  $(0, 3)$ 

with vertices (0, 0), (2, 0), and (0, 3)

At line BC 
$$(3x+3y=6)$$

$$\iint_{BC} = 1+4x - 5\left(\frac{6-3x}{2}\right)$$

$$=\frac{22}{2}x-4, \quad 0 \le x \le 2$$

$$rax X = 2$$

$$x=2$$
,  $y=0 \rightarrow B$   $f(3)=9$ 

min 
$$x = 0$$
 ,  $y = 3 \rightarrow c$   $f(c) = -14$ 

domain

**23.** f(x, y) = 1 + 4x - 5y, D is the closed triangular region with vertices (0, 0), (2, 0), and (0, 3)

$$|f|_{AC} = 1-57$$







(continued) Section 11.7 max/min problems s(x,y) defined on a bounded domain d. Recoll the main steps - find (if any) critical points in  $\frac{\partial f}{\partial h} = 0 \quad , \quad \frac{\partial f}{\partial h} = 0$ -> find mex/min at boundaries

28. 
$$f(x, y) = xy^2$$
,  $D = \{(x, y) \mid x \ge 0, y \ge 0, x^2 + y^2 \le 3\}$ 

-) critical points

$$\frac{3t}{4^2} = 0$$

$$\frac{3t}{4^2} = 0$$

$$\frac{3t}{4^2} = 0$$

$$\frac{3t}{4^2} = 0$$

solution 
$$y^2 = 0$$
  $\Rightarrow$   $y = 0$ 

=) a can be any thing in the dancin

**28.** 
$$f(x, y) = xy^2$$
,  $D = \{(x, y) \mid x \ge 0, y \ge 0, x^2 + y^2 \le 3\}$ 

$$f(\alpha) = \times (3-x^2) = 3(x) \times 0 \leq x \leq \sqrt{3}$$

max, min ??

max/min et g(x) will hoppen et fo, \(\frac{1}{2}\), oy

or at ony point in (\(\frac{1}{2}\), \(\frac{1}{2}\)) where g'(x) = 0.

$$3'(x) = 3 - 3x^2 = 0$$
  
 $x = 1$ 



$$\mathcal{D} = \left\{ \left( x'A \right) \middle| |x| \geq 1 \cdot |A| \leq 1 \right\}$$

sketch the domain:

$$\begin{pmatrix} -(l^2-l) \\ \\ -(l^3-l) \\ \\ \end{pmatrix}$$

find the point on  $3^2 = 9 + \pi^2$ 

the surfacer closest to the origin.

 $y^2 = 9 + x^2$ 

minimize  $f(x, 2) = \chi^2 + 9 + 2 + 2$ 

47. Suppose that a scientist has reason to believe that two quantities x and y are related linearly, that is, y = mx + b, at least approximately, for some values of m and b. The scientist performs an experiment and collects data in the form of points  $(x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n)$ , and then plots these points. The points don't lie exactly on a straight line, so the scientist wants to find constants m and b so that the line y = mx + b "fits" the points as well as possible. (See the figure.)



Aim find a line which passes thrugh the data points or closely as possible

## 11.8 LAGRANGE MULTIPLIERS

**EXAMPLE 2** Find the extreme values of the function  $f(x, y) = x^2 + 2y^2$  on the circle  $x^2 + y^2 = 1$ .



 $f(x, y) = x^2y; \quad x^2 + 2y^2 = 6$