2012-AE-27-39

1

EE24BTECH11034 - K Teja Vardhan

- 1) The integration $\int_0^1 x^3 dx$ computed using the trapezoidal rule with n=4 intervals
- 2) An aircraft has a steady rate of climb of $300 \, \frac{m}{s}$ at sea level and $150 \, \frac{m}{s}$ at $2500 \, \mathrm{m}$ altitude. The time taken (insec) for this aircraft to climb from $500 \, \mathrm{m}$ altitude to 3000 m altitude is.
- 3) An airfoil generates a lift of $80\,\mathrm{N}$ when operating in a freestream flow of $60\,\frac{m}{s}$. If the ambient pressure and temperature are 100 kPa and 290 K respectively specific gas constant is 287units, the circulation on the airfoil in m^2/s is.
- 4) A rocket motor has combustion chamber temperature of 2600 K and the products have molecular weight of $25\,\frac{g}{mol}$ and ratio of specific heats 1.2. The universal gas constant is $8314\,\frac{J}{kg-mole-K}$. The value of theoretical c^* $\left(in\frac{m}{s}\right)$ is.
- 5) The mode shapes of an un-damped two degrees of freedom system are $\left\{\frac{1}{0.5}\right\}^T$ and $\left\{ \begin{matrix} 1 \\ -0.675 \end{matrix} \right\}^T$. The corresponding natural frequencies are $0.45\,\mathrm{Hz}$ and $1.2471\,\mathrm{Hz}$. The maximum amplitude (inmm) of vibration of the first degree of freedom due to an initial displacement of $\begin{cases} 2 \\ 1 \end{cases}^{I}$ (inmm) and zero initial velocities is.
- 6) The n^{th} derivative of the function $y = \frac{1}{x+3}$ is:
- 7) The volume of a solid generated by rotating the region between semi-circle y = $1 - \sqrt{1 - x^2}$ and straight line y = 1, about x-axis, is:

 - a) $\pi^2 \frac{4}{3}\pi$ b) $4\pi^2 \frac{1}{3}\pi$ c) $\pi^2 \frac{3}{4}\pi$ d) $\frac{3}{4}\pi^2 \pi$
- 8) One eigenvalue of the matrix $A=\begin{bmatrix}2&7&10\\5&2&25\\1&6&5\end{bmatrix}$ is -9.33. One of the other eigenvalues is:
 - a) 18.33
 - b) -18.33
 - c) 18.33 9.33i

- d) 18.33 + 9.33i
- 9) If an aircraft takes off with 10% less fuel in comparison to its standard configuration, its range is:
 - a) Lower by exactly 10%.
 - b) Lower by more than 10%.
 - c) Lower by less than 10%.
 - d) An unpredictable quantity.
- 10) An aircraft has an approach speed of $144\,\mathrm{kmph}$ with a descent angle of 6.6° . If the aircraft load factor is 1.2 and constant deceleration at touch down is 0.25g $(g=9.81\,\frac{m^2}{s})$, its total landing distance approximately over a $15\,\mathrm{m}$ high obstacle is:
 - a) 1830 m
 - b) 1380 m
 - c) 830 m
 - d) 380 m
- 11) An oblique shock wave with a wave angle β is generated from a wedge angle of θ . The ratio of the Mach number downstream of the shock to its normal component is:
 - a) $\sin(\beta \theta)$
 - b) $\cos(\beta \theta)$
 - c) $\sin(\theta \beta)$
 - d) $\cos(\theta \beta)$
- 12) In a closed-circuit supersonic wind tunnel, the convergent-divergent (C-D) nozzle and test section are followed by a C-D diffuser to swallow the starting shock. Here, we should have the:
 - a) Diffuser throat larger than the nozzle throat and the shock located just at the diffuser throat.
 - b) Diffuser throat larger than the nozzle throat and the shock located downstream of the diffuser throat.
 - c) Diffuser throat of the same size as the nozzle throat and the shock located just at the diffuser throat.
 - d) Diffuser throat of the same size as the nozzle throat and the shock located downstream of the diffuser throat.
- 13) An aircraft is trimmed straight and level at true air speed (TAS) of $100\frac{m}{s}$ at standard sea level (SSL). Further, pull of 5N holds the speed at $90\frac{m}{s}$ without re-trimming at SSL air density = $1.22kg\text{m}^3$. To fly at 3000 m altitude air density = $0.91kg\text{m}^3$ and $120\left(\frac{m}{s}\right)$ TAS without re-trimming, the aircraft needs:
 - a) 1.95N upward force
 - b) 1.95N downward force
 - c) 1.85N upward force
 - d) 1.75N downward force