

Chapitre 2

Optique : : comment caractériser et exploiter un signal lumineux ?

TP #2

<u>Problématique</u>: vérifier expérimentalement la réflexion et la réfraction d'un rayon lumineux

1. A l'aide du matériel, **reproduire** le montage réalisé ci-dessous

2. Compléter le tableau ci-dessous pour différentes valeurs de i

Angle d'incidence î	Angle réfléchi r
10°	
20°	
50°	
70°	

3. Quelle relation existe-t-il entre l'angle i et l'angle r ?

.....

4. **Légender** le document à l'aide des éléments suivants : rayon incident, rayon réfracté, rayon réfléchi, angle d'incidence \hat{i}_1 , angle de réfraction \hat{i}_2 ,

normale

5. A l'aide du matériel à votre disposition, réaliser le montage ci-dessus et **compléter** le tableau de mesures suivant en faisant varier l'angle d'incidence.

î ₁ (angle d'incidence)	0	5	10	20	30	40	60
î ₂ (angle de réfraction)							

La loi de Snell -Descartes sur la réfraction permet de prévoir la déviation d'un rayon lumineux réfracté.

$$n_1 \sin i_1 = n_2 \sin i_2$$

6. Compléter le tableau suivant : arrondir à 0,1

î ₁ (angle d'incidence)	0	5	10	20	30	40	60
\hat{l}_2 (angle de réfraction)							

sin î ₁				
sin î ₂				
$n_1 \times \sin \hat{i}_1$				
$n_2 \times \sin \hat{i}_2$				

7. En déduire si la loi de Snell-Descartes sur la réfraction est vérifiée

8. Expliquer pourquoi le doigt paraît « coupé » sur la photo. Utilisez le vocabulaire suivant : *rayon lumineux, déviation, angle d'incidence et angle de réfraction.*

Bilan :

Réflexion de la lumière

Lorsqu'un rayon lumineux rencontre un milieu réfléchissant qui ne laisse pas passer la lumière alors la lumière subit une **réflexion**. C'est le cas pour le miroir où la lumière se réfléchit avec :

angle d'incidence i = angle de réflexion r

C'est la loi de Descartes sur la réflexion.

Réfraction de la lumière

La lumière se déplace en ligne droite, mais si elle passe d'un milieu transparent, qui laisse passer la lumière, à un autre, elle peut **changer de direction**: c'est la **réfraction**. Ce phénomène dépend à la fois de l'angle d'incidence du rayon lumineux et des indices de réfraction *n* des deux milieux traversés.

Pour la réfraction, la loi de Descartes est :

$$n_1 \sin i_1 = n_2 \sin i_2$$

Lors de la réfraction, il existe aussi un rayon réfléchi avec les mêmes propriétés que la réflexion.

