ML HW #3

Joshua Shapiro 11/4/16

1) Definition 2: K(x,x') is a kernel if it can be confler as an inner product \$\phi(x)\$ for some feature mapping x -> Definition 2: K(x,x') is a kernel if for any finite set of training examples x2,...,xn, the nxn matrix K such that Ki, = K(x,x,x) is positive semicles inite.

Show definition 1 implies 2.

Positive semidefinite implies the det product of Ma & a (where a is a vector) is 20.

$$G_{ij} = k(x_i, x_j) = \langle \phi(x_i), \phi(x_j) \rangle + f_{rr} \quad i, j = 2, ... n$$

 $\alpha = \alpha_1 ... \alpha_n$

$$\alpha^{T}\mathcal{G}\alpha = \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} \mathcal{G}_{i,j} = \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} \langle \phi(x_{i}), \phi(x_{j}) \rangle = \left(\sum_{i=1}^{n} \alpha_{i} \phi(x_{i}), \sum_{j=1}^{n} \alpha_{j} \phi(x_{j}) \right) = \left(\sum_{i=1}^{n} \alpha_{i} \phi(x_{i}), \sum_{j=1}^{n} \alpha_{j} \phi(x_{j}) \right) = \left(\sum_{i=1}^{n} \alpha_{i} \phi(x_{i}), \sum_{j=1}^{n} \alpha_{j} \phi(x_{j}) \right) = \left(\sum_{i=1}^{n} \alpha_{i} \phi(x_{i}), \sum_{j=1}^{n} \alpha_{j} \phi(x_{j}) \right) = \left(\sum_{i=1}^{n} \alpha_{i} \phi(x_{i}), \sum_{j=1}^{n} \alpha_{j} \phi(x_{j}) \right) = \left(\sum_{i=1}^{n} \alpha_{i} \phi(x_{i}), \sum_{j=1}^{n} \alpha_{j} \phi(x_{j}) \right) = \left(\sum_{i=1}^{n} \alpha_{i} \phi(x_{i}), \sum_{j=1}^{n} \alpha_{j} \phi(x_{j}) \right) = \left(\sum_{i=1}^{n} \alpha_{i} \phi(x_{i}), \sum_{j=1}^{n} \alpha_{j} \phi(x_{j}) \right) = \left(\sum_{i=1}^{n} \alpha_{i} \phi(x_{i}), \sum_{j=1}^{n} \alpha_{j} \phi(x_{j}) \right) = \left(\sum_{i=1}^{n} \alpha_{i} \phi(x_{i}), \sum_{j=1}^{n} \alpha_{j} \phi(x_{j}) \right) = \left(\sum_{i=1}^{n} \alpha_{i} \phi(x_{i}), \sum_{j=1}^{n} \alpha_{j} \phi(x_{j}) \right) = \left(\sum_{i=1}^{n} \alpha_{i} \phi(x_{i}), \sum_{j=1}^{n} \alpha_{j} \phi(x_{j}) \right) = \left(\sum_{i=1}^{n} \alpha_{i} \phi(x_{i}), \sum_{j=1}^{n} \alpha_{j} \phi(x_{j}) \right) = \left(\sum_{i=1}^{n} \alpha_{i} \phi(x_{i}), \sum_{j=1}^{n} \alpha_{j} \phi(x_{j}) \right) = \left(\sum_{i=1}^{n} \alpha_{i} \phi(x_{i}), \sum_{j=1}^{n} \alpha_{j} \phi(x_{j}) \right) = \left(\sum_{i=1}^{n} \alpha_{i} \phi(x_{i}), \sum_{j=1}^{n} \alpha_{j} \phi(x_{j}) \right) = \left(\sum_{i=1}^{n} \alpha_{i} \phi(x_{i}), \sum_{j=1}^{n} \alpha_{j} \phi(x_{j}) \right) = \left(\sum_{i=1}^{n} \alpha_{i} \phi(x_{i}), \sum_{j=1}^{n} \alpha_{j} \phi(x_{j}) \right) = \left(\sum_{i=1}^{n} \alpha_{i} \phi(x_{i}), \sum_{j=1}^{n} \alpha_{j} \phi(x_{j}) \right) = \left(\sum_{i=1}^{n} \alpha_{i} \phi(x_{i}), \sum_{j=1}^{n} \alpha_{j} \phi(x_{j}) \right) = \left(\sum_{i=1}^{n} \alpha_{i} \phi(x_{i}), \sum_{j=1}^{n} \alpha_{j} \phi(x_{j}) \right) = \left(\sum_{i=1}^{n} \alpha_{i} \phi(x_{i}), \sum_{j=1}^{n} \alpha_{j} \phi(x_{j}) \right) = \left(\sum_{i=1}^{n} \alpha_{i} \phi(x_{i}), \sum_{j=1}^{n} \alpha_{j} \phi(x_{j}) \right) = \left(\sum_{i=1}^{n} \alpha_{i} \phi(x_{i}), \sum_{j=1}^{n} \alpha_{j} \phi(x_{j}) \right) = \left(\sum_{i=1}^{n} \alpha_{i} \phi(x_{i}), \sum_{j=1}^{n} \alpha_{j} \phi(x_{j}) \right) = \left(\sum_{i=1}^{n} \alpha_{i} \phi(x_{i}), \sum_{j=1}^{n} \alpha_{j} \phi(x_{j}) \right) = \left(\sum_{i=1}^{n} \alpha_{i} \phi(x_{j}), \sum_{j=1}^{n} \alpha_{j} \phi(x_{j}) \right) = \left(\sum_{i=1}^{n} \alpha_{i} \phi(x_{i}), \sum_{j=1}^{n} \alpha_{j} \phi(x_{j}) \right) = \left(\sum_{i=1}^{n} \alpha_{i} \phi(x_{i}), \sum_{j=1}^{n} \alpha_{j} \phi(x_{j}) \right) = \left(\sum_{i=1}^{n} \alpha_{i} \phi(x_{i}) \right) = \left(\sum_{j=1}^{n} \alpha_{j} \phi(x_{j}) \right) = \left(\sum_{j=1}^{n} \alpha_{j} \phi(x$$

Therefore, Gij is positive semidefinite, proving definition 2. D

1)2)a) Let f'(x) & $f^2(x)$ be the feature vectors corresponding to hornels $K_1(x,x')$ and $K_2(x,x')$. These feature vectors may be of different length. Show that the product is a hornel.

Let a be the feature vector of
$$K_2$$
, b of K_2
 $\Rightarrow K_1(x,x') = a(x)^T a(x') + K_2(x,x') = b(x)^T b(x')$

a has length m, b has length n

$$K_{3} = K_{1}(x,x') K_{2}(x,x') = \left(\sum_{i=1}^{m} a_{i}(x) a_{i}(x')\right) \left(\sum_{i=1}^{n} b_{i}(x) b_{i}(x')\right) = \sum_{i=1}^{m} \sum_{j=1}^{n} \left(a_{i}(x) b_{j}(x) a_{i}(x') b_{j}(x')\right)$$

$$= \sum_{i=1}^{m} \sum_{j=1}^{n} C_{ij}(x) C_{ij}(x') = C(x)^{T} C(x') \text{ where } C \text{ is an } m \text{ by } n \text{ vector, so } C_{min}(z) = a_{min}(z) b_{ni}(z)$$

$$=> K_3(x,x') = ((x)^T((x')) \square$$

1)2)b) Build the following Kernel: $K(x,x') = \left(1 + \left(\frac{x}{\|x\|}\right)^T \left(\frac{x}{\|x\|}\right)^3\right)^3$. Assume $K_0 = 2 \cdot 2 \cdot K_1 = x^T x'$

1) Scale:
$$f(x) K_1(x,x') f(x')$$
 where $f(x) = \frac{1}{||x||} \times^T x' \frac{1}{||x'||} = \frac{x}{||x'||} \frac{T}{||x'||}$

2) Add Ka

$$\Rightarrow 1 + \frac{\times}{||\mathcal{M}|} \frac{T_{\times'}}{||\times'||}$$

3) Multiply
$$K \cdot K \cdot K$$

$$= \left(1 + \frac{\times}{|X|} \frac{T \times Y}{|X|}\right)^{3} \square$$

2)a)i) Linear decision boundary between the means of the two gaussians

Name 🛎	Value
i mixture	1x1 struct
⊞ mu1	[3,3]
⊞ mu2	[-3,-3]
⊞ sigma1	[1,0;0,1]
⊞ sigma2	[1,0;0,1]
⊞ wts	[0.5000,0.5000]

Gaussians with the same shape and weight that are apart will have a linear boundary.

ii) Linear decision boundary where both means are on the same side of the decision boundary

Name A	Value
mixture	1x1 struct
⊞ mu1	[3,3]
⊞ mu2	[3,2]
🔢 sigma1	[1,0;0,1]
🔢 sigma2	[1,0;0,1]
wts	[0.8000,0.2000]

If two are close together, and one has a substantially higher weight, both means will be on the same side of the line.

iii) A non-continuous decision boundary (one of the classes is represented by 2 disconnected regions)

decision boundaries to form.

Name A	Value
mixture	1x1 struct
<mark>⊞</mark> mu1	[0,0]
⊞ mu2	[0,0]
⊞ sigma1	[3,0;0,1]
⊞ sigma2	[1,0;0,1]
wts	[0.5000,0.5000]

If the sigma matrix of one gaussian is modified to stretch the gaussian in the X direction and the other gaussian stays the same and sheres the mean, the stretched area will cause 2

iv) A circular decision boundary

Name 🛎	Value
mixture	1x1 struct
₩ mu1	[0,0]
⊞ mu2	[0,0]
⊞ sigma1	[3,0;0,3]
⊞ sigma2	[1,0;0,1]
→ wts	[0.5000.0.5000]

Both gaussians are on top of each other, but one has larger sigma values. The outside becomes one decision, the inside becomes another.

v) No decision boundary - the entire plane is on one decision region

Name 🛎	Value
mixture	1x1 struct
₩ mu1	[0,0]
<mark>⊞</mark> mu2	[0,0]
sig 1x2 double	[1,0;0,1]
	[1,0;0,1]
₩ts	[0.5000,0.5000]

If both gaussians have the same parameters, there can be no decision boundary since every point has the same probability of being in gaussian 1 as it does in gaussian 2

2)b) Show when k=2 the softmax model reduces to logistic regression.

Softmax probabilities: $\Pr(y=i|X) = \frac{\exp(-z_i)}{\sum_{j=1}^{16} \exp(-z_j)}$ $Z_i = \omega_{i0} + \sum_{j=1}^{16} \omega_{ij} z_j = \omega_{i0} + \omega_{i1}^T x$

$$Z_i = \omega_{i0} + \sum_i \omega_{ij} x_i = \omega_{i0} + \omega_i^T x$$

Logistic Regression: $Pr(y=i|x) = \frac{1}{1+e^{-y(w\overline{x}+w_0)}}$ $w = w_1, ..., w_d$

$$\omega = \omega_{1,\ldots,c}$$

For 2 class softmax and of features, there are 2(d+1) weights

$$Pr(y=i|x) = \exp(-2i)$$
 $\exp(-2i) + \exp(-2i)$ $\Rightarrow i$ will either be $1 = 2$, so we'll choose 1 to illustrate this example

=>
$$\Pr(y=2|x) = \frac{1}{1+\exp(-(z_1-z_2))}$$
 $\sum logistic = \Pr(y=2|x) = \frac{1}{1+\exp(-(wx+w_0))}$

For these two probabilities to be equal, $(z_1 - z_2) = (w_X^T + w_0)^2$ referring to these now as α

$$\begin{aligned} &(z_1 - z_2) = \left(\omega_1^T \times + \omega_{10}\right) - \left(\omega_2^T \times + \omega_{20}\right) \left(\text{by def of } Z\right) \\ &\omega_1^T + \omega_2^T \times + \omega_{10}^T + \omega_{20} \end{aligned} \implies \underbrace{\omega = \omega_1 - \omega_2}_{\omega_2 - \omega_{10} - \omega_{20}} \end{aligned} \Rightarrow \underbrace{\omega = \omega_1 - \omega_2}_{\omega_2 - \omega_{10} - \omega_{20}}_{\omega_2 - \omega_{10} - \omega_{20}} \end{aligned} \Rightarrow \underbrace{\omega = \omega_1 - \omega_2}_{\omega_2 - \omega_{10} - \omega_{20}}_{\omega_2 - \omega_{10} - \omega_{20}} \end{aligned} \Rightarrow \underbrace{\omega = \omega_1 - \omega_2}_{\omega_2 - \omega_{10} - \omega_{20}}_{\omega_2 - \omega_{10} - \omega_{20}} \end{aligned} \Rightarrow \underbrace{\omega = \omega_1 - \omega_2}_{\omega_2 - \omega_{10} - \omega_{20}}_{\omega_2 - \omega_{10} - \omega_{20}} \Rightarrow \underbrace{\omega = \omega_1 - \omega_2}_{\omega_2 - \omega_{10} - \omega_{20}}_{\omega_2 - \omega_{10} - \omega_{20}} \Rightarrow \underbrace{\omega = \omega_1 - \omega_2}_{\omega_2 - \omega_{10} - \omega_{20}}_{\omega_2 - \omega_{10} - \omega_{20}} \Rightarrow \underbrace{\omega = \omega_1 - \omega_2}_{\omega_2 - \omega_{10} - \omega_{20}}_{\omega_2 - \omega_{10} - \omega_{20}} \Rightarrow \underbrace{\omega = \omega_1 - \omega_2}_{\omega_2 - \omega_{10} - \omega_{20}}_{\omega_2 - \omega_{10} - \omega_{20}} \Rightarrow \underbrace{\omega = \omega_1 - \omega_2}_{\omega_2 - \omega_2 - \omega_{20}}_{\omega_2 - \omega_{10} - \omega_{20}} \Rightarrow \underbrace{\omega = \omega_1 - \omega_2}_{\omega_2 - \omega_2 - \omega_{20}}_{\omega_2 - \omega_{10} - \omega_{20}}_{\omega_2 - \omega_{10} - \omega_{20}}_{\omega_2 - \omega_{10} - \omega_{20}} \Rightarrow \underbrace{\omega = \omega_1 - \omega_2}_{\omega_2 - \omega_2 - \omega_{20}}_{\omega_2 - \omega_{10} - \omega_{20}}_{\omega_2 - \omega_{10}}_{\omega_2 - \omega_{10} - \omega_{20}}_{\omega_2 - \omega_{10} - \omega_{20}}_{\omega_2 - \omega_{10}}_{\omega_2 - \omega_{10}}_{\omega_2 - \omega_{10} - \omega_{10}}_{\omega_2 - \omega_{10} - \omega_{20}}_{\omega_2 - \omega_{10}}_{\omega_2 - \omega_2 - \omega_{10}}_{\omega_2 - \omega_2 - \omega_{10}}_{\omega_2 - \omega_2 - \omega_2}_{\omega_2 - \omega_2 - \omega_2}_{\omega_2 - \omega_2 - \omega_2}_{\omega_2 - \omega_2 - \omega_2}_{\omega_2 - \omega_2}_{\omega_2 - \omega_2}_{\omega_2 - \omega_2}_{\omega_2 - \omega_2}_{\omega_2 - \omega_2}_{\omega_2$$

3)a) Below is a plot of both training data and test data.

Error rate: 0%

3)b) Error rates for types of kernels:

linear: 0%

polynomial: 6.67% gaussian radial basis: 0%

3)c) Error rates for types of kernels in kernel perceptron:

linear: 66.67% polynomial: 26.67%

gaussian radial basis: 26.67%

3)d) Error rates for discriminative learning and generative learning:

generative: 33.33%

linear: 20%

polynomial: 6.67%

gaussian radial basis: 6.67%