

Connected power save profile Application

User guide

Version 0.2

May 2016

Redpine Signals, Inc.

2107 N. First Street, #540 San Jose, CA 95131. Tel: (408) 748-3385 Fax: (408) 705-2019

Email: info@redpinesignals.com
Website: www.redpinesignals.com

About this Document

This document describes the process of bringing up the RS9113 based module as a power save enabled station.

Disclaimer:

The information in this document pertains to information related to Redpine Signals, Inc. products. This information is provided as a service to our customers, and may be used for information purposes only. Redpine assumes no liabilities or responsibilities for errors or omissions in this document. This document may be changed at any time at Redpine's sole discretion without any prior notice to anyone. Redpine is not committed to updating this document in the future.

Copyright © 2015 Redpine Signals, Inc. All rights reserved.

Table of Contents

1 Inti	roduction4	
1.1	Application Overview4	
1.1.		
1.1.	2 Sequence of Events4	
1.2	Application Setup4	
1.2.		
1.2.	2 UART/USB-CDC based Setup Requirements	,
2 Cor	nfiguration and Execution of the Application6	,
2.1	Initializing the Application6	
2.1.		
2.1.		
2.2	Configuring the Application6	
2.3	Executing the Application10	
	<u>Table of Figures</u>	
Figure 1:	Setup Diagram5	,
	Power Save profile while data transfer for 1 cycle	
	Power Save profile with data transfer	
Figure 4:	Power save profile in idle state after association for 1 cycle	,
	Power save profile in idle state after association14	

Table of Tables

No table of figures entries found.

1 Introduction

This project is applicable to all the WiSeConnect variants like WiSeConnect Plus, WiSeMCU and WyzBee. The term WiSeConnect refers to its appropriate variant.

1.1 Application Overview

1.1.1 Overview

The application demonstrates how to configure device in power save profile mode 2 after successful connection with Access point in station mode and how to send UDP data from WiSeConnect device to remote peer in configured power save mode.

In this application, WiSeConnect device connects to Access Point and configures to Power save profile mode2 and do UDP data transfer.

1.1.2 Sequence of Events

This Application explains user how to:

- Create device as a station
- Connect WiSeConnect device to Access point
- Configure device in Power Save profile mode 2
- Open UDP client socket in device
- Send UDP data from WiSeConnect device to remote peer
- Analyze power save profile while it is in Associated state and while data transfer

1.2 Application Setup

The WiSeConnect in its many variants supports SPI and UART interfaces. Depending on the interface used, the required set up is as below:

1.2.1 SPI based Setup Requirements

- Windows PC with CooCox IDE
- Spansion (MB9BF568NBGL) micro controller

Note: If user does not have Spansion (MB9BF568NBGL) host platform, please go through the SPI-Porting guide \sapis\docs\RS9113-WiSeConnect-SAPI-Porting-Guide-vx.x.pdf for SAPIs porting to that particular platform.

- WiSeConnect device
- WiFi Access point
- Windows PC2 with UDP server application (iperf)
- Agilent power analyzer

1.2.2 UART/USB-CDC based Setup Requirements

- Windows PC with Dev-C++ IDE
- WiSeConnect device
- WiFi Access point
- Windows PC2 with UDP server application (iperf)
- Agilent power analyzer

Figure 1: Setup Diagram

2 Configuration and Execution of the Application

The example application is available in the Release at {Release \$}/host/sapis/examples.

These examples will have to be initialized, configured and executed to test the application.

The initialization varies based on the interface but configuration and execution are the common.

2.1 Initializing the Application

2.1.1 SPI Interface

If User using SPI interface, Please refer the document sapis/platforms/spansion_MB9BF568NBGL/RS9113-WiSeConnect_SAPIS_Spansion_Project_User_guide.pdf for opening the connected_sleep example in CooCox IDE.

2.1.2 UART/USB-CDC Interface

If User using UART interface, Please refer the document *sapis/platforms/windows_uart/RS9113-WiSeConnect_SAPIS_Windows_Project_UserGuide.pdf* for opening the *connected_sleep* example in Dev-C++ IDE

2.2 Configuring the Application

 Open sapis/examples/wlan/connected_sleep/rsi_wlan_connected_sleep_app.c file and update/modify following macros:

SSID refers to the name of the Access point.

#define SSID "<ap name>"

SECURITY_TYPE refers to the type of security. In this application STA supports Open, WPA-PSK, WPA2-PSK securities.

Valid configuration is:

RSI OPEN - For OPEN security mode

RSI WPA - For WPA security mode

RSI WPA2 - For WPA2 security mode

#define SECURITY_TYPE RSI_OPEN

PSK refers to the secret key if the Access point configured in WPA-PSK/WPA2-PSK security modes.

#define PSK "<psk>"

SERVER_PORT port refers remote UDP server port number which is opened in Windows PC2.

#define SERVER_PORT <remote port>

SERVER_IP_ADDRESS refers remote peer IP address to connect with UDP server socket.

IP address should be in long format and in little endian byte order.

Example: To configure "192.168.10.100" as IP address, update the macro **DEVICE_IP** as **0x640AA8C0**.

#define SERVER IP ADDRESS 0x640AA8C0

NUMEBR_OF_PACKETS refers how many packets to send from device to remote UDP server.

#define NUMBER OF PACKETS <no of packets>

Application memory length which is required by the driver.

#define GLOBAL BUFF LEN 8000

To configure IP address

DHCP MODE refers whether IP address configured through DHCP or STATIC

#define DHCP MODE 1

Note:

If user wants to configure STA IP address through DHCP then set DHCP_MODE to 1 and skip configuring the following DEVICE_IP, GATEWAY and NETMASK macros. (Or)

If user wants to configure STA IP address through STATIC then set DHCP_MODE macro to "0" and configure following DEVICE_IP, GATEWAY and NETMASK macros

IP address which is to be configured to the device in STA mode should be in long format and in little endian byte order.

Example: To configure "192.168.10.10" as IP address, update the macro **DEVICE_IP** as **0x0A0AA8C0**.

#define DEVICE IP 0X0A0AA8C0

IP address of the gateway should also be in long format and in little endian byte order

Example: To configure "192.168.10.1" as Gateway, update the macro GATEWAY as $0 \times 0 = 0$

#define GATEWAY 0x010AA8C0

IP address of the network mask should also be in long format and in little endian byte order

Example: To configure "255.255.255.0" as network mask, update the macro ${\tt NETMASK}$ as ${\tt 0x00FFFFF}$

#define NETMASK 0x00FFFFFF

In this application, default power save mode configuration is set to low power mode 2 (RSI_SLEEP_MODE_2) with maximum power save (RSI_MAX_PSP) with message based hand shake.

#define PSP_MODE RSI_SLEEP_MODE_2

#define PSP TYPE RSI MAX PSP

2. Open sapis/include/rsi_wlan_config.h file and update/modify following macros:

#define CONCURRENT MODE RSI DISABLE

#define RSI FEATURE BIT MAP FEAT SECURITY OPEN

#define	RSI_TCP_IP_BYPASS	RSI_DISABLE
#define	RSI_TCP_IP_FEATURE_BIT_MAP	TCP_IP_FEAT_DHCPV4_CLIENT
#define	RSI_CUSTOM_FEATURE_BIT_MAP	0
#define	RSI_BAND	RSI_BAND_2P4GHZ

Default configuration of low power save mode 2

#define	RSI_HAND_SHAKE_TYPE	MSG_BASED
#define	RSI_SELECT_LP_OR_ULP_MODE	RSI_LP_MODE
#define	RSI_DTIM_ALIGNED_TYPE	0
#define	RSI_MONITOR_INTERVAL	50
#define	RSI_WMM_PS_ENABLE	RSI_DISABLE
#define	RSI_WMM_PS_TYPE	0
#define	RSI_WMM_PS_WAKE_INTERVAL	20
#define	RSI_WMM_PS_UAPSD_BITMAP	15

- 3. If user wants to select different power save mode profiles, please go through the step #4 and #5 other wise skip step #4 and #4.
- 4. Open *sapis/examples/wlan/connected_sleep/rsi_wlan_connected_sleep_app.c* file and update/modify following macros,

PSP_MODE refers power save profile mode. WiSeConnect device supports following power modes,

RSI_ACTIVE (0): In this mode, module is active and power save is disabled.

RSI_SLEEP_MODE_1 (1): In this power mode, module goes to power save after association with the Access Point. In this sleep mode, SoC will never turn off, therefore no handshake is required before sending data to the module.

RSI_SLEEP_MODE_2 (1): In this power mode, module goes to power save after association with the Access Point. In this sleep mode, SoC will go to sleep based on GPIO hand shake or Message exchange, therefore handshake is required before sending data to the module.

RSI_SLEEP_MODE_8 (8): In this power mode, module goes to power save when it is in unassociated state with the Access Point. In this sleep mode, SoC will go to sleep based on GPIO hand shake or Message exchange, therefore handshake is required before sending the command to the module.

Ħ	define	PSP	MODE	RSI SLEEP MODE 2	

Note1: For RSI_SLEEP_MODE_2 and RSI_SLEEP_MODE_8 modes, GPIO or Message based hand shake can be selected using RSI_HAND_SHAKE_TYPE macro which is define in sapis/include/rsi_wlan_config.h

Note2: In this example user can verify RSI_SLEEP_MODE_2 with Message based hand shake. If user wants to verify other power modes, user has to change the application as well as GPIO hand shake signals.

PSP_TYPE refers power save profile type. WiSeConnect device supports following power save profile types,

RSI_MAX_PSP (0): In this mode, WiSeConnect device will be in Maximum power save mode. i.e Device will wake up for every DTIM beacon and do data Tx and Rx.

RSI_FAST_PSP (1): In this mode, WiSeConnect device will disable power save for any Tx/Rx packet for monitor interval of time (monitor interval can be set through macro in *sapis/include/rsi_wlan_config.h* file, default value is 50 ms). If there is no data for monitor interval of time then module will again enable power save.

RSI UAPSD (2): This PSP TYPE is used to enable WMM power save.

#define PSP TYPE

RSI MAX PSP

Note1:

PSP_TYPE is valid only when PSP_MODE set to RSI_SLEEP_MODE_1 or RSI_SLEEP_MODE_2 mode.

Note2:

RSI_UAPSD power profile type in PSP_TYPE is valid only when RSI_WMM_PS_ENABLE is enabled in sapis/include/rsi_wlan_config.h file.

5. Open <code>sapis/include/rsi_wlan_config.h</code> file and update/modify following macros, <code>RSI_HAND_SHAKE_TYPE</code> is used to select <code>GPIO or Message</code> based hand shakein <code>RSI_SLEEP_MODE_2</code> and <code>RSI_SLEEP_MODE_8</code> modes.

RSI_SELECT_LP_OR_ULP_MODE is used to select low power mode or ultra low power mode. Valid configurations are , RSI_LP_MODE or RSI_ULP_WITH_RAM_RET or RSI_ULP_WITHOUT_RAM_RET

RSI LP MODE: In this module will be in Low power mode.

RSI_ULP_WITH_RAM_RET: In this module will be in Ultra low power mode and it will remember the previous state after issuing power save mode command.

RSI_ULP_WITHOUT_RAM_RET: In this module will be in Ultra low power mode and it will not remember the previous state after issuing power save mode command. After wakeup, module will give CARD READY indication and user has to issue commands from wireless initialization.

#define RSI_SELECT_LP_OR_ULP_MODE RSI_LP_MODE

RSI_DTIM_ALIGNED_TYPE refers whether module has to wake up at normal beacon or DTIM beacon which is just before listen interval.

If RSI_DTIM_ALIGNED_TYPE is set to 0(Zero) i.e module will wake up at normal beacon which is just before listen interval.

If **RSI_DTIM_ALIGNED_TYPE** is set to 1(Zero) i.e module will wake up at DTIM beacon which is just before listen interval.

#define	RSI	DTIM	ALIGNED	TYPE	
---------	-----	------	---------	------	--

RSI_MONITOR_INTERVAL refers amount of time (in ms) to wait for Tx or Rx before giving power save indication to connected Access Point.

#define I	RSI	MONITOR	INTERVAL	50
-----------	-----	---------	----------	----

Note:

RSI_MONITOR_INTERVAL is applicable only when PSP_TYPE selected as RSI_FAST_PSP

RSI WMM PS ENABLE is used to enable or disable WMM power save.

RSI WMM PS TYPE is used to set Tx based or Periodic based WMM power save.

Update RSI_WMM_PS_TYPE macro with 0 for Tx Based or 1 for periodic based WMM power save.

RSI_WMM_PS_WAKE_INTERVAL refers at periodic time (in ms) module has to wake up module when RSI WMM PS TYPE selected as Periodic.

#define	RSI	WMM	PS	WAKE	INTERVAL	20
---------	-----	-----	----	------	----------	----

RSI WMM PS UAPSD BITMAP refers UAPSD bitmap

#define RSI WMM PS UAPSD BITMAP 15

Note:

If RSI_WMM_PS_ENABLE is enabled then user has to set PSP_TYPE to RSI_UAPSD in order to work WMM power save.

2.3 Executing the Application

- 1. Configure the Access point in OPEN/WPA-PSK/WPA2-PSK mode to connect WiSeConnect device in STA mode.
- 2. Open UDP server application using iperf application in Windows PC2 which is connected to Access point through LAN.

iperf demo.exe -s -u -p <SERVER PORT> -i 1

3. SPI Interface

If User using SPI interface, Please refer the document sapis/platforms/spansion_MB9BF568NBGL/RS9113-WiSeConnect_SAPIS_Spansion_Project_User_guide.pdf for executing the connected_sleep example in CooCox IDE.

4. UART/USB-CDC Interface

If User using UART interface, Please refer the document *sapis/platforms/windows_uart/RS9113-WiSeConnect_SAPIS_Windows_Project_UserGuide.pdf* for executing the *connected_sleep* example in Dev-C++ IDE

- 5. After program gets executed, WiSeConnect Device will scan and connect to Access point and get IP.
- 6. After successful connection, WiSeConnect device goes into configured power save and sends configured number of (NUMBER_OF_PACKETS) UDP packets to remote peer which is connected to Access point through LAN. Please refer the given below image for reception of UDP data on UDP server.


```
Administrator: C:\Windows\system32\cmd.exe - iperf_demo.exe -s -u -p 5001 -i1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  C:\Users\CPU-248\Desktop\iperf>iperf_demo.exe -s -u -p 5001 -i 1
Server listening on UDP port 5001
Receiving 1470 byte datagrams
UDP buffer size: 8.00 KByte (default)
     [1224] local 192.168.0.100 port 5001 connected with 192.168.0.101 port 30000

[ ID] Interval Transfer Bandwidth Jitter Lost/Total Datagram

[1224] 0.0-1.0 sec 1.48 KBytes 12.1 Kbits/sec 22.684 ms -1529289828/12146

[144 (-1.3e+002x)
                                                                                                                                                        936 Bytes 7.49 Kbits/sec 25.487 ms
39 datagrams received out-of-order
1.01 KBytes 8.26 Kbits/sec 26.136 ms
43 datagrams received out-of-order
960 Bytes 7.68 Kbits/sec 22.394 ms
40 datagrams received out-of-order
1.83 KBytes 15.0 Kbits/sec 11.129 ms
78 datagrams received out-of-order
1.57 KBytes 12.9 Kbits/sec 17.382 ms
67 datagrams received out-of-order
1.66 KBytes 13.6 Kbits/sec 18.634 ms
71 datagrams received out-of-order
1.88 KBytes 15.4 Kbits/sec 14.382 ms
80 datagrams received out-of-order
960 Bytes 7.68 Kbits/sec 24.326 ms
                                                                                            2.0 sec c se
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          0 (-1.5%)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                -39/
                                                                                                                                                                                                                                                                                                                                                                                                                                                                      -43/
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               0 (-1.5%
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          0 (-1.5%)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                      -78/
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 0 (-1.5%
                                                                                                                                                                                                                                                                                                                                                                                                                                                                       -67/
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 0 (-1.5%
                                                                                                                                                                                                                                                                                                                                                                                                                                                                       -71/
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 0 (-1.$%
                                                                                                                                                                                                                                                                                                                                                                                                                                                                      -80/
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 0 (-1.5%
                                                                                                                                                                                                                                                     s received out-of-order 7.68 Kbits/sec 24.326 ms received out-of-order 12.5 Kbits/sec 18.888 ms received out-of-order 8.26 Kbits/sec 16.728 ms received out-of-order 9.02 Kbits/sec 23.615 ms received out-of-order 10.2 Kbits/sec 16.136 ms
                                                                                                                                                                960 Bytes 7

960 Bytes 7

40 datagrams

1.52 KBytes

65 datagrams

1.01 KBytes

43 datagrams

1.10 KBytes

47 datagrams
                                                                                                                                                                                                                                                                                                                                                                                                                                                                 -40/
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          0 (-1.$%)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                       -65/
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 0 (-1.5%
                                                                                                                                                                                                                                                                                                                                                                                                                                                                       -43/
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 0 (-1.5%
                                                                                                                                                                                                                                                                                                                                                                                                                                                                       -47/
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 0 (-1.5%
                                                                                                                          sec
sec
                                                                                                                                                                                                                                                                                                                                                                                                                                                                       -53/
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  0 (-1.5)
```

7. Please refer the given below images of power save profile for data transfer in low Power save mode 2 with message based hand shake.

Figure 2: Power Save profile while data transfer for 1 cycle

Figure 3: Power Save profile with data transfer

Note1: Beacon interval and DTIM are configured to 100 and 3 for above power save profile. Module wakes up for every DTIM and sends the UDP data to remote peer.

Note2: Above power save image was captured with ~10Kbps UDP traffic from module. So, user does not get same power profile image as shown above while running. It will vary based on the data traffic.

8. Please find below power save profile image when WiSeConnect device is in idle state after connection with Access point in low Power save mode 2 with message based hand shake.

Figure 4: Power save profile in idle state after association for 1 cycle

Figure 5: Power save profile in idle state after association

Note: Beacon interval and DTIM are configured to 100 and 3 for above power save profile. Module wakes up for every DTIM and goes back to sleep immediately.