Cybersecurity Portfolio Project Report

Project Title: Configure Extended Numbered and Named ACLs to Filter Traffic

Tool Used: Cisco Packet Tracer **Student Name:** Thabiso K Dzveta

1. Project Overview

This project demonstrates the configuration and application of extended numbered and named Access Control Lists (ACLs) on a Cisco router to filter traffic based on IP addresses, protocols, and port numbers. The main objective was to allow specific services (FTP and HTTP) to designated hosts while denying all other traffic, thereby improving internal network segmentation and control.

2. Network Topology

3. IP Addressing Table

Device Interface IP Address Subnet Mask Default Gateway

R1	G0/0	172.22.34.65 255.255.255.224 N/A
R1	G0/1	172.22.34.97 255.255.255.240 N/A
R1	G0/2	172.22.34.1 255.255.255.192 N/A
Server	NIC	172.22.34.62 255.255.255.192 172.22.34.1
PC1	NIC	172.22.34.66 255.255.255.224 172.22.34.65
PC2	NIC	172.22.34.98 255.255.255.240 172.22.34.97

4. ACL Configuration Summary

Part 1: Extended Numbered ACL (FTP & ICMP for PC1)

Step-by-Step:

1. Permit FTP Access to Server from PC1's Network

R1(config)# access-list 100 permit tcp 172.22.34.64 0.0.0.31 host 172.22.34.62 eq ftp

2. Permit ICMP (ping) Access

R1(config)# access-list 100 permit icmp 172.22.34.64 0.0.0.31 host 172.22.34.62

3. Apply ACL 100 Inbound on G0/0

R1(config)# interface g0/0 R1(config-if)# ip access-group 100 in

4. Verification:

Ping from PC1 to Server — Success

```
PC1
                                                                                     X
 Physical
           Config Desktop Programming
                                           Attributes
  Command Prompt
                                                                                            Χ
  C:\>
  C:\>exit
  C:\>ping 172.22.34.62
  Pinging 172.22.34.62 with 32 bytes of data:
  Reply from 172.22.34.62: bytes=32 time<1ms TTL=127
  Reply from 172.22.34.62: bytes=32 time<1ms TTL=127 Reply from 172.22.34.62: bytes=32 time<1ms TTL=127
  Reply from 172.22.34.62: bytes=32 time<1ms TTL=127
  Ping statistics for 172.22.34.62:
      Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
  Approximate round trip times in milli-seconds:
      Minimum = 0ms, Maximum = 0ms, Average = 0ms
  C:\>
  C:\>
□ Тор
```

FTP from PC1 to Server (user: cisco, pass: cisco) — Success

```
PC1
                                                                                         X
  Physical
            Config
                    Desktop Programming
                                             Attributes
  Command Prompt
                                                                                                 Χ
   C:\>
  C:\>
  C:\>
   C:\>
  C:\>
   C:\>
   C:\>
  C:\>
  C:\>
   C:\>
  C:\>
   C:\>
   C:\>
  C:\>
  C:\>
  C:\>ftp 172.22.34.62
Trying to connect...172.22.34.62
Connected to 172.22.34.62
  220- Welcome to PT Ftp server
  Username:cisco
  331- Username ok, need password
  Password: ****
  230- Logged in
  (passive mode On) ftp>
  ftp>
  ftp>
  ftp>
  ftp>
  ftp>
   ftp>
  ftp>
  ftp>
   ftp>
  ftp>
  ftp>
  ftp>
  ftp>
  ftp>
  ftp>
   ftp>
  ftp>
□ Тор
```

Ping from PC1 to PC2 — Denied

```
PC1
                                                                                         X
  Physical
            Config
                    Desktop Programming
                                             Attributes
  Command Prompt
                                                                                                X
   C:\>
   C:\>
  C:\>
  C:\>
   C:\>
  C:\>
   C:\>
   C:\>
  C:\>
  C:\>
   C:\>
  C:\>
   C:\>
  C:\>
  C:\>
  C:\>
  C:\>ping 172.22.34.96
  Pinging 172.22.34.96 with 32 bytes of data:
  Reply from 172.22.34.65: Destination host unreachable. Reply from 172.22.34.65: Destination host unreachable.
  Reply from 172.22.34.65: Destination host unreachable.
  Reply from 172.22.34.65: Destination host unreachable.
  Ping statistics for 172.22.34.96:
       Packets: Sent = 4, Received = 0, Lost = 4 (100% loss),
  C:\>
  C:\>
  C:\>
   C:\>
  C:\>
  C:\>
   C:\>
  C:\>
   C:\>
   C:\>
   C:\>
  C:\>
  C:\>
C:\>
C:\>
□ Тор
```

Part 2: Extended Named ACL (HTTP & ICMP for PC2)

Step-by-Step:

1. Create Named ACL 'HTTP_ONLY' and Permit HTTP

R1(config)# ip access-list extended HTTP_ONLY
R1(config-ext-nacl)# permit tcp 172.22.34.96 0.0.0.15 host 172.22.34.62 eq www

2. Permit ICMP from PC2's Network

R1(config-ext-nacl)# permit icmp 172.22.34.96 0.0.0.15 host 172.22.34.62 R1(config-ext-nacl)# exit

3. Apply Named ACL on G0/1

R1(config)# interface g0/1
R1(config-if)# ip access-group HTTP ONLY in

Verification:

• Ping Server from PC2 — Success

• FTP Server from PC2 — Blocked

• HTTP (Web Browser) Server from PC2 — Success

• Ping PC1 from PC2 — Blocked

```
PC2
                                                                                           X
            Config Desktop Programming
 Physical
                                              Attributes
                                                                                                   Χ
  Command Prompt
   (Disconnecting from ftp server)
  C:\>ping 172.22.34.64
   Pinging 172.22.34.64 with 32 bytes of data:
  Reply from 172.22.34.97: Destination host unreachable.
  Reply from 172.22.34.97: Destination host unreachable. Reply from 172.22.34.97: Destination host unreachable.
  Reply from 172.22.34.97: Destination host unreachable.
   Ping statistics for 172.22.34.64:
       Packets: Sent = 4, Received = 0, Lost = 4 (100% loss),
   C:\>
  C:\>
   C:\>
   C:\>
  C:\>
   C:\>
  C:\>
C:\>
   C:\>
  C:\>
  C:\>
C:\>
  C:\>
C:\>
   C:\>
   C:\>
  C:\>
  C:\>
C:\>
C:\>
□ Тор
```

5. Verification Results

Test	Source	Destination	Protocol	Result
Ping Server	PC1	172.22.34.62	ICMP	Success
FTP Server	PC1	172.22.34.62	FTP	Success
Ping PC2	PC1	172.22.34.98	ICMP	Denied
Ping Server	PC2	172.22.34.62	ICMP	Success
FTP Server	PC2	172.22.34.62	FTP	Denied
HTTP Server	PC2	172.22.34.62	HTTP	Success
Ping PC1	PC2	172.22.34.66	ICMP	Denied

6. Conclusion

This project showcased how to enforce **protocol-specific filtering** using extended ACLs. By applying **numbered and named ACLs** at the interface level, we were able to limit host-to-host access, protect server services, and enforce proper traffic segmentation — key practices in network security and access control.

7. Reflection

This project helped reinforce my understanding of:

- Extended ACL syntax and structure (numbered vs named)
- Wildcard mask calculations
- Strategic ACL placement (inbound vs outbound)
- Real-world firewall rule logic at the router level