Variational Canonical Correlation Analysis Week 1

Konstantin Yakovlev ¹

¹MIPT Moscow, Russia

MIPT 2023

Week 1 MIPT 2023

Deep Variational Canonical Correlation Analysis¹

Challenge: it is hard to satisfy the constraints set by Deep Canonical

Solution: extends the latent variable interpretation to nonlinear observation models.

VCCA-private: the challenge is that large variations in the in
CA: put space can not be explained by $\mathbb{Z}^{p\theta(y|z)}$ by $\mathbb{Z}^{p\theta(y|z)}$

DCCA:

$$\max_{f,g,U,V} \operatorname{tr}(U^{\top} f(X) g(Y)^{\top} V)$$
s.t.
$$U^{\top} (f(X) f(X)^{\top}) U = V^{\top} (g(Y) g(Y)^{\top}) V = N \cdot I.$$

Probalistic CCA vs VCCA: $p_{\theta}(\mathbf{x}|\mathbf{z}) = \mathbf{x} - \mathbf{y} \cdot p_{\theta}(\mathbf{z}|\mathbf{z})$

Results: outstanding performance with reduced training efforts.

MIPT 2023

Week 1

¹Wang W. et. al, Deep Variational Canonical Correlation Analysis, 2017

Variational Interpretable Deep Canonical Correlation Analysis²

Challenge: it is challenging to build an interpretable model understanding.

Solution: interpretable sparsity prior.

Sparsity prior

$$Z \sim N(0, I), \ Z^m \sim N(0, I),$$
 $X^m \sim N(f_m(\Lambda^m Z + W^m Z^m), \Psi^m)$
 $\gamma_{mj}^2 \sim \Gamma((d_m + 1)/2, \lambda^2/2)$
 $\Lambda_i^{(m)}, W_i^{(m)} \sim N(0, \gamma_{mi}^2 I)$

The	learned	l f	eature	es	of	the	im-
ages	are we	11 :	separa	ate	ed.		

Method	View 1 MSE (STD)	View 2 MSE (STD)
oi-VAE	0.059 (0.009)	0.172 (0.009)
DPCCA	0.052 (0.012)	0.134 (0.003)
VCCA	0.023 (0.011)	0.088 (0.0042)
VCCA-p	0.024 (0.011)	0.084 (0.005)
DICCA (Ours)	0.016 (0.005)	0.080 (0.005)

The proposed method outperforms all existing baselines.

Week 1 MIPT 2023

²Qui L. et. al, Variational Interpretable Deep Canonical Correlation Analysis, 2022 → ⊕ → ← ≥ → ≥ → ∞ ∞