$$(1)$$
 $\chi^{1/3} = 2$ $\chi = 2^3$ $\chi = 8$

$$I(1) \left(y^{-2}\right)^2 = \frac{1}{81}$$

$$y^{-2} = \frac{1}{9}$$

$$\frac{1}{y^2} = \frac{1}{9}$$

$$y^2 = 9$$

$$y = \pm 3$$

2) i)
$$(3x+1)^2 - 2(2x-3)^2$$

 $9x^2 + 3x + 3x + 1 - 2(4x^2 - 6x^2 + 4)$
 $9x^2 + 6x + 1 - 8x^2 + 24x - 18$
 $x^2 + 30x - 17$

$$3' y = 3x^5 - \sqrt{x} + 15$$

i)
$$dy = 15x^4 - \frac{1}{2}x^{1/2}$$

$$\frac{d^2y}{dx} = 60 x^3 + 4 x^{-3/2}$$

$$(x-3)^2$$
 3-6 roll

iii)
$$y = \frac{1}{x^2}$$
 to $y = \frac{2}{x^2}$

Same as
$$\frac{y}{2}$$
 is stretch in parallel to gazas $\frac{1}{2}$

5) i)
$$x^2 + 3x$$
 $(x + \frac{3}{2})^2 - \frac{9}{4}$

$$y^{2} - 4y - \frac{11}{4}$$

$$(y-2)^{2} - 4 - \frac{11}{4}$$

$$(y-2)^{2} - 2\frac{1}{4}$$

$$(x+3)^2+(y-2)^2-\frac{1}{4}=0$$
 2 previous egn wed:
 $(x+3)^2+(y-2)^2-\frac{27}{4}-\frac{9}{4}=0$

$$(x+3/2)^2 + (y-2)^2 = \frac{36}{4}$$

iv) $= \Gamma = \sqrt{36} = 3$

6)i) stationary part
$$y=x^3-3x^2+4$$

 $cly = 3x^2-6x = 0$
 $3x(x-2) = 0$
 $-3x=0$ or $x-2=0$
 $x=0$
 $x=0$

(2,0)

$$\frac{6\pi}{4\pi} = 6x - 6$$

$$x=2$$
 $d^2y=6$
 $-+ve$

$$\tilde{(i)}$$

As positive
$$x^3$$

$$\Rightarrow x > 2$$

$$x < 0$$

$$7i) x^{2} - 8x + 11 = 0$$

$$+8 \pm \sqrt{64 - 44} = 8 \pm \sqrt{20}$$

$$= 8 \pm 2\sqrt{5}$$

ũ)

Let
$$x=y'^2$$
 - $x^2=y$.
So $x^2-8y+11=0$ from previous $x=4+5$

$$-y = (4\pm \sqrt{5})^{2}$$

 $y = 16 + 5 \pm 8\sqrt{5}$
 $= 21 \pm 8\sqrt{5}$

8) i)
$$y=x^2-5x+15$$
 $5x-y=10$. $y=5x-10$
 $-10+5x=x^2-5x+15$
 $0=x^2-10x+25$

$$ii$$
) $-10^2 - 4 \times 25 = 0$

iv) from previous
$$x^{2} - 10x + 25 = 0$$

 $(x - 5)(x - 5)$
 $x = 5$
 $y = 25 - 26 + 15 = 30 15$
 $(5,15)$

v) graduat of tengent = 5 - normal grad = -15.

$$y-y_1 = m(x-x_1)$$

 $y-15 = -1/5(x-5)$
 $y-15 = -1/5x + 1$
 $y = -1/5x + 1/6$ (45)
 $5y = -x + 80$
 $x + 5y = 80$

a) Distance AC =
$$\sqrt{3^2 + 1^2}$$

= $\sqrt{10}$
Distance AB = $\sqrt{(p-5)^2 + 6^2}$
= $\sqrt{(p-5)^2 + 36}$

$$\sqrt{(p-5)^2+36} = 2\sqrt{10}$$

$$(p-5)^2+36 = 40$$

$$p^2-10p+25+36 = 40$$

$$p^2-10p+21 = 0$$

$$(p-7)(p-3)=0$$

$$p=7 \text{ or } 3$$

Four p
$$y = 3x - 14$$

 $7 = 3x - 14$
 $21 = 3x$
 $x = 7$
 $A(5,1)$

and port
$$\left(\frac{2}{2}, \frac{47}{2}, \frac{4}{2}, \frac{4}{2}\right)$$

$$\left(\frac{12}{2}, \frac{8}{2}\right)$$

$$\left(\frac{6}{4}\right)$$