Matrix and tensor methods in ML Lecture 1

Maxim Rakhuba

CS department Higher School of Economics

June 21, 2022

Lipschitz continuity

Lipschitz continuity and robustness

$$\|\mathcal{N}\mathcal{N}(x) - \mathcal{N}\mathcal{N}(y)\|_2 \le L_{\mathcal{N}\mathcal{N}}\|x - y\|_2 \quad \forall x, y.$$

Bounding L_{NN} :

- improves generalisation;
- increases robustness against adversarial examples.

Lipschitz continuity

$$\mathcal{N}\mathcal{N} = \omega_{\mathsf{L}} \circ f_{\mathsf{L}-1} \circ \omega_{\mathsf{L}-1} \circ \cdots \circ f_1 \circ \omega_1,$$

where

$$\omega_k(x) = W_k x + b_k, \qquad f_k$$
 — nonlinearity.

Estimating L_{NN}

Since $L_{q_1 \circ q_2} \leq L_{q_1} L_{q_2}$:

$$L_{\mathcal{N}\mathcal{N}} \leq L_{f_1} \dots L_{f_L} L_{\omega_1} \dots L_{\omega_{L-1}}.$$

For
$$f_k \equiv \text{ReLU}$$
:
$$||f(x) - f(y)||_2 < 1 \cdot ||x - y||_2.$$

ightharpoonup For $\omega(x) = Wx + b$:

$$|| Wx + 1 - (wy + 1)||_{2} = || w(x-y)||_{2} \le || w||_{2} || x-y||_{2}$$

$$|| w||_{2} = \sup_{x \neq 0} \frac{|| wx||_{2}}{||x||_{2}}$$

How to compute $||W||_2$?

Let
$$W=U\Sigma V^{\top}$$
 – SVD of $W\in\mathbb{R}^{M\times N}$. Then $\|W\|_2=\sigma_1(W)\equiv\sqrt{\lambda_1(W^{\top}W)}.$

For M = N, computing SVD is $\mathcal{O}(N^3)$.

N	1000	5000	10000
Time	0.15	16 s	105 S
Mem(W)	8 Mb	200 Mb	800 Mb

Works for small fully connected layers.

4

Convolutional layer

$$(C*X)_{q_1q_2} \equiv \sum_{p_1=0}^{k-1} \sum_{p_2=0}^{k-1} C_{p_1p_2} \mathcal{X}_{p_1+q_1,p_2+q_2}$$

('*' - convolution operation)

Multichannel convolution

$$\mathcal{Y}_{:,:,j} = \sum_{i=1}^{m} \mathcal{C}_{:,:,i,j} * \mathcal{X}_{:,:,i},$$

where $C \in \mathbb{R}^{k \times k \times m_{in} \times m_{out}}$ – convolution kernel:

- ► *k* filter size;
- $ightharpoonup m_{in}$ number of input channels (e.g., 3 for RGB);
- $ightharpoonup m_{out}$ number of output channels.

Convolutional layer

Multichannel convolution is a linear map, so

$$\operatorname{vec}(\mathcal{Y}) = W \operatorname{vec}(\mathcal{X}),$$

where W is of the size $m_{out}n^2 \times m_{in}n^2$.

Example

$$n=$$
 224 and $m_{out}=m_{in}=$ 64 $\Longrightarrow W\in \mathbb{R}^{3\,000\,000\times3\,000\,000}$. What to do?

Outline

Approximating the largest singular value

Exact computation of SVD

Power method

 $\sigma_1(W) = \sqrt{\lambda_1(W^\top W)}$, so we can apply the power method:

$$\begin{split} \mathbf{x}_{k+1} &:= \frac{(\mathbf{W}^{\top} \mathbf{W}) \mathbf{x}_{k}}{\| (\mathbf{W}^{\top} \mathbf{W}) \mathbf{x}_{k} \|_{2}}, \\ \sigma_{k+1} &:= \frac{\| \mathbf{W} \mathbf{x}_{k+1} \|_{2}}{\| \mathbf{x}_{k+1} \|_{2}}. \end{split}$$

We also have fast matrix-vector product on $A = W^T W$.

$$A^{K} \chi_{0} = A^{K} (\lambda_{1} \mathcal{V}_{1} + \lambda_{2} \mathcal{V}_{2} + \dots + \lambda_{n} \mathcal{V}_{n}) =$$

$$= \lambda_{1}^{K} (\lambda_{1} \mathcal{V}_{1} + \lambda_{2} \lambda_{2}^{K} \mathcal{V}_{2} + \dots =$$

$$= \lambda_{1}^{K} (\lambda_{1} \mathcal{V}_{1} + \lambda_{2} (\lambda_{2}^{K})^{K} + \dots)$$

Spectral normalization

[Miyato et. al '18] apply power method to the reshaped core:

$$R = \mathtt{reshape}(\mathcal{C}, [k_1 k_2 m_{in}, m_{out}]), \quad \mathcal{C} \in \mathbb{R}^{k_1 \times k_2 \times m_{in} \times m_{out}}.$$

Why is this related to the actual singular values?

9

Spectral normalization

[Miyato et. al '18] apply power method to the reshaped core:

$$R = \text{reshape}(\mathcal{C}, [k_1 k_2 m_{in}, m_{out}]), \quad \mathcal{C} \in \mathbb{R}^{k_1 \times k_2 \times m_{in} \times m_{out}}.$$

Why is this related to the actual singular values?

Theorem (Singla, Feizi, ICML'21)

$$\sigma_1(W) \leq \sqrt{k_1 k_2} \min(\|R\|_2, \|S\|_2, \|T\|_2, \|U\|_2),$$

where R, S, T, U are C, reshaped into matrices of the sizes:

$$k_1k_2m_{in}\times m_{out}, \quad m_{in}\times k_1k_2m_{out}, \quad m_{in}k_1\times m_{out}k_2, \quad m_{in}k_2\times m_{out}k_1.$$

9

Constrainting Lipschitz constant

Projection step [Gouk et. al '2021]

$$\pi_{\lambda}(W) = \frac{1}{\max\left\{1, \frac{\|W\|_2}{\lambda}\right\}}W,$$

where $\lambda \geq 1$ is a hyperparameter. Then

$$L_{\mathcal{N}\mathcal{N}} \leq \lambda^{\#layers}$$
.

Better methods for estimating $\sigma_1(W)$

Optimizing on a Krylov subspace:

$$\mathcal{K}_k(W^\top W, x_0) \equiv \operatorname{span}(x_0, (W^\top W)x_0, \dots, (W^\top W)^{k-1}x_0).$$

 $ightharpoonup \|W - UV^\top\|_F o \min_{U,V \in \mathbb{R}^{N \times r}}$ using alternating optimiation:

▶ Randomized algorithms (sampling vectors from $Im(W^TW)$):

Outline

Approximating the largest singular value

Exact computation of SVD

Matrix of a convolutional layer

If $m \equiv m_{in} = m_{out} = 1$, convolution is 1D and periodic, then

$$y_q = (c * x)_q \equiv \sum_{p=0}^{n-1} c_{(q-p) \mod n} x_p$$

or in the matrix form y = Wx, where:

$$W = \operatorname{circ}(c) \equiv \begin{bmatrix} c_0 & c_{n-1} & \dots & c_1 \\ c_1 & c_0 & c_2 \\ \vdots & \vdots & \ddots & \vdots \\ c_{n-1} & c_{n-2} & \dots & c_0 \end{bmatrix} - \operatorname{circulant.}$$

$$V = C_0 + C_1 + C_1 + C_2 + \cdots + C_{n-1}$$

$$V = C_0 + C_1 + C_1 + C_2 + \cdots + C_{n-1}$$

Singular values of a circulant matrix

Diagonalizing a circulant

$$\operatorname{circ}(c) = F^{-1}\operatorname{diag}(Fc)F,$$

where $F_{pq} = e^{-\frac{2\pi i}{n}pq}$ is the Fourier matrix and $F^*F = nI$.

SVD of a circulant

$$\operatorname{circ}(c) = \frac{1}{h} F^* \operatorname{diag}(Fc) F = .$$

$$= \left(\frac{1}{h} F^*\right) \operatorname{diag}(Fc) \left(\frac{1}{h} F\right) = .$$

$$= \left(\frac{1}{h} F^* \operatorname{diag}(e^{i\Theta})\right) \operatorname{diag}(|Fc|) \left(\frac{1}{h} F\right)$$

14

Singular values of a circulant matrix

Diagonalizing a circulant

$$\operatorname{circ}(c) = F^{-1}\operatorname{diag}(Fc)F,$$

where $F_{pq} = e^{-\frac{2\pi i}{n}pq}$ is the Fourier matrix and $F^*F = nI$.

SVD of a circulant

$$\mathrm{circ}(c) = \, \left(\frac{1}{\sqrt{n}} F^* \, \mathrm{diag}(e^{i\theta})\right) \mathrm{diag}(|Fc|) \left(\frac{1}{\sqrt{n}} F\right).$$

The numpy code for singular values:

- s = np.linalg.fft(c)
- s = np.abs(s)

Complexity: $\mathcal{O}(n \log n)$.

Matrix of a convolutional layer

Let convolution be 1D, periodic and multichannel $(m \equiv m_{in} = m_{out} > 1)$:

$$y_{qi} = \sum_{j=1}^{m} \sum_{p} C_{(q-p) \bmod n \, ij} x_{pj}$$

or in the matrix form $\operatorname{vec}(\mathcal{Y}) = W\operatorname{vec}(\mathcal{X})$, where:

Matrix of a convolutional layer

Let convolution be 1D, periodic and multichannel $(m \equiv m_{in} = m_{out} > 1)$:

$$y_{qi} = \sum_{j=1}^{m} \sum_{p} C_{(q-p) \bmod n \, ij} x_{pj}$$

or in the matrix form $\operatorname{vec}(\mathcal{Y}) = W \operatorname{vec}(\mathcal{X})$, where:

$$W = \begin{bmatrix} \operatorname{circ}(\mathcal{C}_{:,0,0}) & \dots & \operatorname{circ}(\mathcal{C}_{:,0,n-1}) \\ \vdots & \ddots & \vdots \\ \operatorname{circ}(\mathcal{C}_{:,n-1,0}) & \dots & \operatorname{circ}(\mathcal{C}_{:,n-1,n-1}) \end{bmatrix}.$$

Singular values of a convolutional layer

Singular values of a convolutional layer

$$W = \begin{bmatrix} \operatorname{circ}(C_{:,0,0}) & \dots & \operatorname{circ}(C_{:,0,n-1}) \\ \vdots & \ddots & \vdots \\ \operatorname{circ}(C_{:,n-1,0}) & \dots & \operatorname{circ}(C_{:,n-1,n-1}) \end{bmatrix} = \begin{bmatrix} F \operatorname{diag}(FC_{:,0,0})F & \dots & F \operatorname{diag}(FC_{:,n-1,n-1})F \end{bmatrix}$$

$$= \begin{bmatrix} F \operatorname{diag}(FC_{:,n-1,0})F & \dots & F \operatorname{diag}(FC_{:,n-1,n-1})F \end{bmatrix}$$

= [F-1] O diag (FC:,90) - diag (FC:,91-1) F O diag (FC:,14,1-1) [F]

S=fft (C, axis=[0])

S=SVd (S, axis=[1,2],

compute_w=false)

Singular values of a convolutional layer

Theorem (Sedghi et. al, ICLR '19)

Let $\widehat{\mathcal{C}} \in \mathbb{R}^{n \times n \times m \times m}$ be $\mathcal{C} \in \mathbb{R}^{k \times k \times m \times m}$ padded with zeroes. Let

$$P_{ij}^{(p_1p_2)} = (F^{\top}\widehat{C}_{:,:,i,j}F)_{p_1p_2}.$$
 (1)

Then the singular values of W are:

$$\sigma(W) = \bigcup_{p_1, p_2 \in \{1, \dots, n\}} \sigma\left(P^{(p_1 p_2)}\right). \tag{2}$$

```
s = np.fft.fft2(kernel, input_shape, axes=[0, 1])
s = np.linalg.svd(s, compute_uv=False)

exp( K)
```

Singular values of a convolutional layer

Theorem (Sedghi et. al, ICLR '19)

Let $\widehat{\mathcal{C}} \in \mathbb{R}^{n \times n \times m \times m}$ be $\mathcal{C} \in \mathbb{R}^{k \times k \times m \times m}$ padded with zeroes. Let

$$P_{ij}^{(p_1p_2)} = (F^{\top}\widehat{C}_{:,:,i,j}F)_{p_1p_2}.$$
 (1)

Then the singular values of W are:

$$\sigma(W) = \bigcup_{p_1, p_2 \in \{1, \dots, n\}} \sigma\left(P^{(p_1 p_2)}\right). \tag{2}$$

```
s = np.fft.fft2(kernel, input_shape, axes=[0, 1])
s = np.linalg.svd(s, compute_uv=False)
Complexity: \mathcal{O}(m^2n^2(m + \log n)).
```

Conclusions

- Power method: fast, but not accurate;
- Exact computation: still not feasible for high resolution;
- ▶ Why are the derived formulas useful for the non-periodic case?