Um Estudo Descritivo sobre a Conscientização Ambiental

João Vitor Costa Pinheiro — Breno Cauã Rodrigues da Silva

Índice

Re	esumo	3
Abstract		4
1	Introdução 1.1 Objetivo	5
2	Materiais e Métodos2.1 Conjunto de Dados2.2 Software Utilizado2.3 Metodologia	6 6 7
3	Resultados e Discurssões	8
4	Conclusão	9
Re	References	

Resumo

Este trabalho ...

Abstract

This work \dots

1 Introdução

1.1 Objetivo

2 Materiais e Métodos

2.1 Conjunto de Dados

Para o estudo em questão, foi retirada uma amostra, através de uma amostragem por quotas, para estimar a proporção de pessoas que já ouviram falar do conceito de sustentabilidade. Para determinar o tamanho da amostra foi usada a seguinte expressão:

$$n = \frac{Z_{\alpha/2}^2 \ p \ (1-p)}{E^2},\tag{2.1}$$

onde

- $Z_{\alpha/2}^2$ é o percentil da distribuição normal padrão com $(1-\alpha)100\%$ de confiança;
- $p \in a$ proporção estimada de estudos anteriores ou por uma amostra piloto;
- E é margem de erro permitido para a estimativa.

Foi usado um nível de significância de 5% ($\alpha=0,05$), obtendo o percentil $Z_{0,025}\simeq 1,96$. Como não foi encontrada referência alguma para a proporção que está sendo estudada, usouse p=0,5 para obter o tamanho máximo da amostra. A margem de erro adotada foi de 5%, isto é, E=0,05. Para esses valores, foi obtido um n=385.

A aplicação do questionário foi feita por meio da plataforma Google Forms e alocação dos resultados na plataforma Google Sheets. O questionário ficou com um total de 18 perguntas dividas em 4 subseções.

2.2 Software Utilizado

Para conduzir as análises e estimativas neste estudo, foi utilizada a linguagem de programação Python, empregando a IDE Google Colaboratory. As seguintes bibliotecas foram utilizadas nas diversas etapas do processo:

- Numpy: Para operações matemáticas, lógicas e estatísticas eficientes em vetores multidimensionais ou matrizes (Harris et al. 2020);
- Pandas: Para manipulação e análise de dados, oferecendo estruturas de dados flexíveis e poderosas (McKinney 2010);
- Matplotlib: Para criação de visualizações gráficas (Hunter 2007);
- **Seaborn:** Complementar ao Matplotlib, oferece uma interface de alto nível para criação de gráficos estatísticos atrativos e informativos (Waskom 2021);
- Scipy: Para cálculos científicos e técnicos (Virtanen et al. 2020).

2.3 Metodologia

3 Resultados e Discurssões

4 Conclusão

References

- Harris, Charles R., K. Jarrod Millman, Stéfan J. van der Walt, Ralf Gommers, Pauli Virtanen, David Cournapeau, Eric Wieser, et al. 2020. «Array programming with NumPy». *Nature* 585 (7825): 357–62. https://doi.org/10.1038/s41586-020-2649-2.
- Hunter, J. D. 2007. «Matplotlib: A 2D graphics environment». Computing in Science & Engineering 9 (3): 90–95. https://doi.org/10.1109/MCSE.2007.55.
- McKinney, Wes. 2010. «Data Structures for Statistical Computing in Python». Em *Proceedings of the 9th Python in Science Conference*, editado por Stéfan van der Walt e Jarrod Millman, 56–61. https://doi.org/10.25080/Majora-92bf1922-00a.
- Virtanen, Pauli, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler Reddy, David Cournapeau, Evgeni Burovski, et al. 2020. «SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python». *Nature Methods* 17: 261–72. https://doi.org/10.1038/s41592-019-0686-2.
- Waskom, Michael L. 2021. «seaborn: statistical data visualization». Journal of Open Source Software 6 (60): 3021. https://doi.org/10.21105/joss.03021.