Некоторые распределения, связанные с генерацией псевдослучайных чисел

Некруткин В.В., к.ф.-м.н., доцент кафедры статистического моделирования СПбГУ, vnekr@statmod.ru; Суровикина Т.О., студентка СПбГУ, tamara.surovikina@gmail.com

Аннотация

В работе изучается распределение $\mathrm{U}(S)$, согласованное с представлением чисел с плавающей точкой, и близкие к нему распределения.

Введение

Результатом работы генератора псевдослучайных чисел является последовательность чисел u_1,\ldots,u_n,\ldots , причем $u_i\in[0,1]$. Автоматически u_i оказываются представленными в памяти компьютера в формате чисел с плавающей точкой. Соответствующий стандарт (см. [1]) определяет решётку чисел, принадлежащих [0,1] следующим образом. Фиксируются два целых числа B и S, задающие множество

$$X(S,B) = \{x_{jk}\} \cup \{0,1\} \subset [0,1]$$

так, что

$$x_{jk} = 2^{-j} \left(1 + k2^{-S} \right), \tag{1}$$

где
$$0 \le k \le 2^S - 1, 1 \le j \le L = 2^{2^{B-1} - 1}$$
.

Параметр B определяет количество бит, отведенных на хранение экспоненты, S — мантиссы. В дальнейшем нам будет удобнее рассматривать как характеристику решётки именно пару чисел (S,L), поэтому вместо X(S,B) используется далее запись $X_{S,L}$. Одна из причин таких переобозначений заключается в удобстве интерпретации параметров S и L: L есть максимальное значение экспоненты числа, а S определяет длину мантиссы.

Естественно возникает вопрос о распределении, хорошо аппроксимирующем равномерное распределение и сосредоточенном на множестве $X_{S,L}$.

В [2] с этой целью рассматривается дискретное распределение $\mathrm{U}(S,L)$, задаваемое таблицей

$$U(S,L): \begin{pmatrix} x_{jk} \\ p_{jk} \end{pmatrix}, \tag{2}$$

где $1\leq j\leq L+1,\, 0\leq k\leq 2^S-1,$ значения x_{jk} заданы формулой (1), $p_{jk}=2^{-S-j}$ при $1\leq j\leq L,\, p_{L+1,0}=2^{-L}$ и $p_{L+1,k}=0$ для всех k>0.

Особый интерес имеет предельный случай $L=\infty$. Обозначим соответствующее ему распределение как $\mathrm{U}(S)$, оно формально задается той же таблицей (2), только здесь $p_{jk}=2^{-S-j}$ при всех $j\geq 1$.

Так как на практике используются огромные значения L, разница между распределениями $\mathrm{U}(S)$ и $\mathrm{U}(S,L)$ незначительна. Таким образом, анализ свойств $\mathrm{U}(S)$ (несомненно более простой) во многом можно распространить и на $\mathrm{U}(S,L)$.

В [2] распределение $\mathrm{U}(S)$ постулируется как естественное приближение равномерного распределения $\mathrm{U}(0,1)$, сосредоточенное на множестве

$$X = X_S = \{\{x_{jk}\} \cup \{0\} \cup \{1\}\} \subset [0, 1]$$
(3)

с $x_{jk}=2^{-j}\left(1+k2^{-S}\right)$, где $k=0,1,\ldots,2^S-1$; $j\geq 1$. Такое распределение можно рассматривать как теоретическую модель, возникающую при построении генераторов псевдослучайных чисел, согласованных с плавающей точкой (см., например, [3] и [4]).

В настоящей работе исследуются свойства как распределения $\mathrm{U}(S)$, так и нескольких аналогичных распределений. Из-за недостатка места все доказательства опущены.s

Некоторые распределения с носителем X_S , аппроксимирующие $\mathrm{U}(0,1)$

Оказывается, что $\mathrm{U}(S)$ получается как распределение «округленной вниз» случайной величины, имеющей равномерное распределение $\mathrm{U}(0,1)$ на отрезке [0,1].

Исходя из стандарта IEEE 754-2008 (см. [1]) здесь мы будем использовать три способа проектирования чисел из [0,1] на множество X_S :

- 1. число x переходит в тот ближайший элемент множества X_S , который не превосходит x («округление вниз»);
- 2. число x переходит в тот ближайший элемент множества X_S , который не превосходит x («округление вверх»);
- 3. число x переходит в ближайший элемент множества X_S (используется по умолчанию).

В дальнейшем под $\lfloor x \rfloor$ будем понимать величину, получающуюся при округлении x «вниз», $\lceil x \rceil$ — при округлении «вверх», и $\lfloor x \rceil$ — при округлении до ближайшей точки из X_S .

Имеет место следующее утверждение.

Предложение 1 Пусть $\alpha \in \mathrm{U}(0,1)$ и числа x_{jk} определены в (1). Тогда

- 1. $\mathcal{L}(|\alpha_S|) = \mathrm{U}(S);$
- 2. Ecnu $j \ge 1$ u $0 < k \le 2^S$, mo $P(\lceil \alpha_S \rceil = x_{ik}) = 2^{-S-j}$;
- 3. Если $j \ge 1$ и $0 \le k < 2^S$, то

$$P(\lfloor \alpha_S \rceil = x_{jk}) = q_{jk} = \begin{cases} 2^{-S-j} & \text{npu } j \ge 1 \text{ u } k \ne 0, \\ 3 \cdot 2^{-S-j-2} & \text{npu } k = 0. \end{cases}$$

Кроме того, $P(\lceil \alpha_S \rceil = 1) = 2^{-S-1} u P(\lfloor \alpha_S \rceil = 1) = 2^{-S-2}$.

В [2] отмечено, что, если случайные величины η и γ независимы, η равномерно распределена на множестве $\{0,\dots,2^S-1\}$, а $\gamma\in\mathrm{Geom}(1/2)$, то случайная величина

$$\xi_S = 2^{-\gamma} (1 + \eta 2^{-S}) \tag{4}$$

имеет распределение $\mathrm{U}(S)$. В частности, мантисса и экспонента такой случайной величины являются независимыми.

Можно показать, что аналогичные результаты имеют место и для случайных величин $\lceil \alpha_S \rceil$ и $\lfloor \alpha_S \rceil$.

Предложение 2 Пусть η и γ независимы, причем $\gamma \in \text{Geom}(1/2)$.

- 1. Если η равномерно распределена на множестве $\{1,\ldots,2^S\}$, то случайная величина (4) имеет распределение $\mathcal{L}(\lceil \alpha_S \rceil)$.
 - 2. Если η дискретная случайная величина с таблицей распределения

$$\mathcal{L}(\eta): \begin{pmatrix} 0 & 1 & \dots & 2^S - 1 & 2^S \\ 2^{-S-1} & 2^{-S} & \dots & 2^{-S} & 2^{-S-1} \end{pmatrix},$$

то случайная величина (4) имеет распределение $\mathcal{L}(\lfloor \alpha_S \rceil)$.

Битовая структура распределения U(S)

Рассмотрим случайную величину ξ_S , определенную в (4) и имеющую распределение $\mathrm{U}(S)$. Представим ее в виде

$$\xi_S = \sum_{i \ge 1} \beta_i 2^{-i},$$

где β_i — случайные величины, принимающие значения 0 и 1 (биты двоичного разложения ξ_S). Имеет место следующее утверждение.

Предложение 3 *1. Если* $i \ge 1$, *mo*

$$P(\beta_i = 1) = \begin{cases} 1/2 & npu \ i \le S + 1, \\ 2^{-(i-S)} & npu \ i > S + 1. \end{cases}$$
 (5)

2. Пусть 1 < i < j. Тогда

$$P(\beta_{i} = 1, \beta_{j} = 1) = \begin{cases} 1/4 & npu \ j \leq S, \\ 2^{-(j-S+1)} & npu \ j > S \ u \ j-i \leq S, \\ 0 & npu \ j > S \ u \ j-i > S. \end{cases}$$
 (6)

3. Биты $\beta_1, ..., \beta_{S+1}$ независимы в совокупности.

Следствие 1 Из равенств (5) и (6) автоматически вытекает, что при i < j случайные биты β_i и β_j являются независимыми тогда и только тогда, когда $i \leq S$ и $j \leq i + S$.

Результат Предложения 3 может служить теоретической шкалой для сравнения генераторов псевдослучайных чисел между собой. В частности, вычислительные эксперименты показывают, что биты псевдослучайных чисел, порождаемые генератором SFMT [5], ведут себя в целом так же, как описано в этом предложении, в то время как распределения младших бит генератора WH [6] сильно отличаются от (5).

O распределении случайной величины $1-\xi_S$

Хорошо известно, что, если $\alpha\in \mathrm{U}(0,1)$ то $1-\alpha$ имеет такое же распределение. Так как $\mathrm{U}(S)$ рассматривается как некоторое дискретное приближение $\mathrm{U}(0,1)$, то возникает вопрос о том, сохраняется ли (хотя бы в пределе при $S\to\infty$) данное свойство для случайной величины ξ_S , имеющей распределение $\mathrm{U}(S)$.

Суть вопроса состоит в том, что мы имеем дело только с числами, лежащими на решетке X_S , определенной в (3), в то время как значения случайной величины $1-\xi_S$, вообще говоря, не всегда принадлежат X_S .

Тем самым нас интересует «проекция» случайной величины $\xi_S^{(1)} \stackrel{\text{def}}{=} 1 - \xi_S$ на множество X_S , и мы снова приходим к трем способа округления, согласующимся со стандартом IEEE 754-2008.

Как и раньше, ξ_S принимает значения (1), где $j \ge 1, 0 \le k \le 2^S-1$. Соответственно нас интересует решение уравнения вида $x_{jk}=1-x_{im}$, которое при j>1 не всегда разрешимо. При j=1 решение легко выписывается. Условия разрешимости для случая j>1 описывает следующая лемма.

Лемма 1 Пусть $1 \le m \le 2^S - 1$ и $i \ge 1$. Уравнение

$$2^{-j}(1+k2^{-S}) = 1 - 2^{-i}(1+m2^{-S})$$
(7)

имеет решение (j,k) с j>1 тогда и только тогда, когда i=1 и

$$1 + 2^S - 2^{S-n} \le m \le 2^S - 2^{S-n-1}$$

для некоторого $0 \le n < S$.

При этом
$$j = n + 2$$
 и $k = 2^S - 2^{n+1} (m - 2^S + 2^{S-n})$.

Используя Лемму 1, можно доказать следующие утверждения.

Предложение 4 (Округление «вниз»)

Пусть числа x_{jk} при $0 \le k < 2^S$, $j \ge 1$ определены в (1). Тогда

$$P\left(\lfloor \xi_S^{(1)} \rfloor = x_{jk}\right) = q_{jk}, \quad \textit{rde}$$

- 1. $q_{10} = 3 \cdot 2^{-S-2}$
- 2. $q_{1k} = 2^{-S-1} \text{ npu } k \neq 2^{S} (1-2^{-\ell}), \ell = 1, \dots, S-1,$
- 3. $q_{1k} = 2^{-S-\ell-2}(2^{\ell+1}+1)$ npu $k = 2^S(1-2^{-\ell})$ c $\ell = 1, \ldots, S-1$,
- 4. $q_{1k} = 2^{-2S-1}(2^S+1)$ npu $k = 2^S 1$.
- 5. Пусть j > 1. Если пара (j,k) является решением уравнения (7), то $q_{jk} = 2^{-S-1}$, иначе $q_{jk} = 0$.

Предложение 5 (Округление до ближайшего значения). Пусть числа x_{jk} при $0 \le k \le 2^S$, $j \ge 1$ определены в (1). Тогда

$$P\left(\lfloor \xi_S^{(1)} \rceil = x_{jk}\right) = q_{jk}, \quad \text{ede}$$

1.

$$q_{1k} = \begin{cases} 3 \cdot 2^{-S-2} & \textit{npu } k = 0, \\ 2^{-S-1} & \textit{npu } 0 < k < 2^{S}, \\ 2^{-S-2} & \textit{npu } k = 2^{S}. \end{cases}$$

2. Пусть j>1. Если пара (j,k) является решением уравнения (7), то $q_{jk}=2^{-S-1}$, иначе $q_{jk}=0$.

Предложение 6 (Округление «вверх»).

Пусть числа x_{jk} при $0 \le k \le 2^S$, $j \ge 1$ определены в (1). Тогда

$$P\left(\lceil \xi_S^{(1)} \rceil = x_{jk}\right) = q_{jk}, \quad \partial e$$

- 1. $q_{1k} = 2^{-S-1} \text{ npu } k = 0, \dots, 2^S;$
- 2. Пусть j>1. Если пара (j,k) является решением уравнения (7), то $q_{jk}=2^{-S-1}$, иначе $q_{jk}=0$.

Отметим, что во всех трех случаях получившиеся распределения имеют конечные носители, причем соответствующие (случайные) мантисса и порядок уже не являются независимыми.

Чтобы понять, насколько получившиеся распределения отличаются между собой и от исходного распределения $\mathrm{U}(S)$, сосчитаем попарные расстояния по вариации между этими четырьмя распределениями, считая, что их общим носителем является множество X_S . Используя теорему Шеффе (см. [7, с. 306]), получим следующий результат.

Предложение 7 Выполняются следующие равенства:

I.
$$\rho_{var}\left(\mathbf{U}(S), \mathcal{L}(\lfloor \xi_S^{(1)}) \rfloor\right) = \rho_{var}\left(\mathbf{U}(S), \mathcal{L}(\lfloor \xi_S^{(1)} \rceil)\right) = \rho_{var}\left(\mathbf{U}(S), \mathcal{L}(\lceil \xi_S^{(1)} \rceil)\right) = 1/3 + 4^{-S}/6;$$

2.
$$\rho_{var}\left(\mathcal{L}(\lfloor \xi_S^{(1)} \rfloor), \mathcal{L}(\lfloor \xi_S^{(1)} \rceil)\right) = \rho_{var}\left(\mathcal{L}(\lfloor \xi_S^{(1)} \rceil), \mathcal{L}(\lceil \xi_S^{(1)} \rceil)\right) = 2^{-S-2};$$

3.
$$\rho_{var}\left(\mathcal{L}(\lfloor \xi_S^{(1)} \rfloor), \mathcal{L}(\lceil \xi_S^{(1)} \rceil)\right) = 2^{-S-1}.$$

Таким образом, даже при больших S расстояние по вариации между $\mathrm{U}(S)$ и распределением любого способа округления величины $1-\xi_S$ не стремится к нулю.

В то же время распределения $\mathcal{L}(\lfloor \xi_S^{(1)} \rfloor), \mathcal{L}(\lceil \xi_S^{(1)} \rceil)$ и $\mathcal{L}(\lfloor \xi_S^{(1)} \rceil)$ равноудалены по вариации от $\mathrm{U}(S)$ и при больших значениях параметра S практически совпадают.

Заключение

Таким образом, в настоящей работе приведены естественные способы получения распределения $\mathrm{U}(S)$ и близких к нему распределений, описаны

распределения случайной величины $1-\xi_S$ при различных условиях ее адаптации к числовой решетке, согласованной с представлением чисел с плавающей точкой, и проанализирована степень их близости.

Кроме того, изучена битовая структура случайной величины, имеющей распределение $\mathrm{U}(S).$

Литература

- [1] IEEE Standard for Floating-Point Arithmetic, IEEE Std 754–2008. P. 1–58.
- [2] Nekrutkin V. On the complexity of binary floating point pseudorandom generation // Monte Carlo Methods and Applications. — 2016. — Vol. 22. — P. 109–116.
- [3] Fog A. Pseudo random number generators. URL: http://www.agner.org/random/.
- [4] Morgenstern T. Uniform Random Rational Number Generation // Operations Research Proceedings 2006 / Ed. by Karl-Heinz Waldmann, Ulrike M. Stocker. — Springer. — P. 569–574.
- [5] Matsumoto M., Saito M. SIMD-Oriented Fast Mersenne Twister: a 128-bit Pseudoran dom Number Generator // Monte Carlo and Quasi-Monte Carlo Methods 2006 / Ed. by A. Keller, S. Heinrich, H Niederreiter. — Springer, 2008. — P. 607–622.
- [6] Wichmann B. A., Hill I. D. Algorithm AS 183: An Efficient and Portable Pseudo-Ran dom Number Generator // Journal of the Royal Statistical Society. Series C (Applied Statistics). 1982. Vol. 31. P. 188–190.
- [7] Биллингсли П. Сходимость вероятностных мер. Наука, М., 1977.