AUTOMATED SPECTRAL CLASSIFICATION OF Two Spectral Libraries

Group Members

Akant Vats Ruchi Pandey Shrish

Project Supervisors

Prof. Ranjan Gupta Prof. Harinder P. Singh

August 24, 2019

Introduction

Stellar classification is the classification of stars based on their spectral characteristics. The absorption features present in stellar spectra allow us to divide stars into several spectral types depending on the temperature of the star.

Туре	Color	Approximate Surface Temperature	Main Characteristics	Examples
O	Blue	> 25,000 K	Singly ionized helium lines either in emission or absorption. Strong ultraviolet continuum.	10 Lacertra
В	Blue	11,000 - 25,000	Neutral helium lines in absorption.	Rigel Spica
A	Blue	7,500 - 11,000	Hydrogen lines at maximum strength for A0 stars, decreasing thereafter.	Sirius Vega
F	Blue to White	6,000 - 7,500	Metallic lines become noticeable.	Canopus Procyon
G	White to Yellow	5,000 - 6,000	Solar-type spectra. Absorption lines of neutral metallic atoms and ions (e.g. once-ionized calcium) grow in strength.	Sun Capella
к	Orange to Red	3,500 - 5,000	Metallic lines dominate. Weak blue continuum.	Arcturus Aldebaran
м	Red	< 3,500	Molecular bands of titanium oxide noticeable.	Betelgeuse Antares

Within each **spectral type** there are significant variations in the strengths of the absorption lines, and each type has been subdivided into 10 sub-classes numbered 0 to 9.

Stars of a particular spectral type can differ widely in **luminosity** and must also be assigned a **luminosity class**. Luminosity classes are labeled with Roman numerals from I to V;

I are supergiant stars,

II are bright giants,

III are ordinary giants,

IV are subgiants, and

V are ordinary main sequence stars.

The complete spectral classification for a star is then given by specifying both the spectral class and the luminosity class.

A **spectral library** is a spectrophotometric library of the stars which covers the HR diagram and an important tool of astronomy to model stellar atmosphere and spectral classification.

Code Number =
$$1000.0 \times A1 + 100.0 \times A2 + (1.5 + 2 \times A3)$$
, (Gulati et al 1994)

Where,

A1 is the main spectral type of the star (i.e., O to M as 1 to 7),

A2 is the sub-spectral type of the star (from 0.0 to 9.5),

A3 is the luminosity class of the star (i.e., I to V as 0 to 4)

Example: G9.5 V would be coded as 5959.5

Data Preprocessing

(Test Set)

Classification

Regression

2-D	n-D
Lines	Hyper Plane
Curves	Hyper Surfaces

Classification

Cost functions

• SGD Regression

$$MSE(\mathbf{X}, h_{\theta}) = \frac{1}{m} \sum_{i=1}^{m} \left(\theta^{T} \cdot \mathbf{x}^{(i)} - y^{(i)} \right)^{2}$$

Logistic Regression

$$J(\theta) = -\frac{1}{m} \sum_{i=1}^{m} \left[y^{(i)} log(\hat{p}^{(i)}) + (1 - y^{(i)}) log(1 - \hat{p}^{(i)}) \right]$$

Decision Tree Classification

$$J(k, t_k) = \frac{m_{\text{left}}}{m} G_{\text{left}} + \frac{m_{\text{right}}}{m} G_{\text{right}}$$

where $\begin{cases} G_{\rm left/right} & {\rm measures~the~impurity~of~the~left/right~subset,} \\ m_{\rm left/right} & {\rm is~the~number~of~instances~in~the~left/right~subset.} \end{cases}$

Decision Tree Regression

J(k,
$$t_k$$
) = $\frac{m_{\text{left}}}{m}$ MSE_{left} + $\frac{m_{\text{right}}}{m}$ MSE_{right} where
$$\begin{cases} MSE_{\text{node}} = \sum_{i \in \text{node}} (\hat{y}_{\text{node}} - y^{(i)})^2 \\ \hat{y}_{\text{node}} = \frac{1}{m_{\text{node}}} \sum_{i \in \text{node}} y^{(i)} \end{cases}$$

Optimization of Cost Functions

Non-linear Regression

Machine Learning Tools

- 1. SGD Classifier
- 2. SGD Regressor
- 3. Decision Tree Classifier
- 4. Decision Tree Regressor
- 5. Random Forest Classifier
- 6. Random Forest Regressor
- 7. Support Vector Machine
- 8. Gaussian Naive Bayes
- 9. KN Classifier
- 10. KN Regressor
- 11. ANN Classifier
- 12. ANN Regressor

Results

Figure showing scatter plot of test_predicted vs test_actual for ANN classification.

Spectral Class,		Trair	In data = 158 , Test d			lata = 850		
	Slo	pe	Inter	rcept	Subclas	ss Error	F	R
SGD Classifier	0.57	0.47	122	214	13.2	11.4	0.66	0.57
SGD Regresser	0.96	0.90	9.44	40	3.3	8.1	0.98	0.83
Random Forest Classifier	0.98	0.91	4.5	40.3	0.7	3.9	0.99	0.95
Random Forest Regresser	0.98	0.89	5.8	46.0	0.9	3.0	0.99	0.97
KN Classifier	0.97	0.90	0.16	37.6	2.1	3.0	0.99	0.97
KN Regresser	0.99	0.93	2.33	32.8	1.5	2.4	0.99	0.98
Decission Tree Classifier	1.00	0.88	-0.6	62.2	2.7	4.0	0.98	0.95
Decision Tree Regresser	1.00	0.95	0.0	32.2	0.0	24.7	1.00	0.98
ANN Classifier	0.99	0.94	0.8	27.9	0.2	1.6	0.99	0.98
ANN Regressor	0.99	0.92	1.2	44.2	1.0	1.5	0.99	0.96
Naive Bayes	0.99	0.90	1.4	49.3	1.0	1.7	0.99	0.97
	I		1		1		1	

3.72

0.49

SVM

0.99

0.5

10

0.99

0.65

275

Spectral	Spectral Class,		n data =	: 158,	Test data = 850			
	Slo	pe	Inte	rcept	Subclas	ss Error	F	R
SGD Classifier	0.57	0.47	122	214	13.2	11.4	0.66	0.57
SGD Regresser	0.96	0.90	9.44	40	3.3	8.1	0.98	0.83
Random Forest Classifier	0.98	0.91	4.5	40.3	0.7	3.9	0.99	0.95
Random Forest Regresser	0.98	0.89	5.8	46.0	0.9	3.0	0.99	0.97
KN Classifier	0.97	0.90	0.16	37.6	2.1		0.99	0.97
KN Regresser	0.99	0.93	2.33	32.0	Best	11	0.99	0.98
Decission Tree Classifier	1.00	0.88	-0.6	62.2	Bes,		0.98	0.95
Decision Tree Regresser	1.00	0.95	0.0	32.2	0.0	24.7	1.00	0.98
ANN Classifier	0.99	0.94	0.8	27.9	0.2	1.6	0.99	0.98
ANN Regressor	0.99	0.92	1.2	44.2	1.0	1.5	0.99	0.96
Naive Bayes	0.99	0.90	1.4	49.3	1.0	1.7	0.99	0.97
SVM	0.99	0.49	3.72	275	0.5	10	0.99	0.65

Train Data

Test Data

Spectral	Spectral Class,		n data = 158, Test data = 850			50	
	Slo	ppe	pe Intercept		Subclass Error	R	
SGD Classifier	0.57	0.47	122	214	13.2 11.4	0.66 0.57	
SGD Regresser	0.96	0.90	9.44	40	3.3 8.1	0.98 0.83	
Random Forest Classifier	0.98	0.91	4.5	40.3	0.7 3.9	0.99 0.95	
Random Forest Regresser	0.98	0.89	5.8	46.0	0.9 3.0	0.99 0.97	
KN Classifier	0.97	0.90	0.16	37	ver fit	0.99 0.97	
KN Regresser	0.99	0.93	2.33	32.	Ver.	0.99 0.98	
Decission Tree Classifier	1.00	0.88	-0.6	62.2	2.7 4.0	0.98 0.95	
Decision Tree Regresser	1.00	0.95	0.0	32.2	0.0 24.7	1.00 0.98	
ANN Classifier	0.99	0.94	0.8	27.9	0.2 1.6	0.99 0.98	
ANN Regressor	0.99	0.92	1.2	44.2	1.0 1.5	0.99 0.96	

1.4

3.72

49.3

275

Naive Bayes

■ Test Data

0.90

0.49

SVM

0.99

0.99

1.0

0.5

1.7

10

0.99

0.99

0.97

0.65

Randomly Mixed Data, Test data = 20%Train data = 80%, **Subclass Error Slope Intercept** R **SGD** Classifier 0.80 0.78 0.90 106 116 5.5 5.9 0.92 **SGD Regresser** 0.97 0.96 7.5 11 2.7 0.98 2.6 0.98 **Random Forest Classifier** 0.99 1.00 1.1 -1.7 0.4 1.6 0.99 0.99 **Random Forest Regresser** 0.99 0.99 3.1 3.7 0.8 1.4 0.99 0.99 **KN Classifier** -1.5 1.7 0.99 1.00 0.6 1.6 0.99 0.99 **KN Regresser** 0.99 0.99 1.7 0.4 1.3 1.4 0.99 0.99 **Decission Tree Classifier** 0.97 0.97 11 16 3.0 4.1 0.97 0.95 **Decision Tree Regresser** 1.9 2.0 0.99 0.99 0.0 0.0 0.99 0.99 **ANN Classifier** 0.99 0.99 2.1 0.5 1.1 0.99 1.1 0.99 **ANN Regressor** 0.99 1.00 0.7 1.6 0.99 4.4 1.4 0.99 **Naive Bayes** 0.99 0.96 1.4 15 2.0 3.1 0.98 0.97

3.0

50

■ Train Data

■ Test Data

0.99

0.88

SVM

4.7

0.6

0.99

0.94

Spectral Type

Figure showing 3D plot of test_predicted vs test_actual with their frequencies

Luminosity Type

Figure showing 3D plot of test_predicted vs test_actual with their frequencies

Dimensionality Reduction

Principal Component Analysis (PCA)

99% of variance conserved

ANN	761 Attributes	5 Attributes		
Slope	0.99	0.99		
Intercept	1.1	1.2		
Subclass error	0.7	0.8		

A 3D dataset lying close to a 2D subspace

Future Possibilities

Machine learning algorithms can be trained better with more number of samples per class.

For example, LAMOST dataset (7.7 million good dataset).

References

- Hands-on machine learning with scikit learn and Tensor Flow by Aurélien Géron, Published by O'Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.
- Scikit-learn: Machine Learning in Python, Pedregosa et al., JMLR 12, pp. 2825-2830, 2011.
- Jacoby, et al., ApJ, 56: 257-281, 1984.
- Gulati, et al., ApJ, 426: 340-344, 1994.

Future Possibilities

Machine learning algorithms can be trained better with more number of samples per class.

For example, LAMOST dataset (7.7 million good dataset).

References

- Hands-on machine learning with scikit learn and Tensor Flow by Aurélien Géron, Published by O'Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.
- Scikit-learn: Machine Learning in Python, Pedregosa et al., JMLR 12, pp. 2825-2830, 2011.
- Jacoby, et al., ApJ, 56: 257-281, 1984.
- Gulati, et al., ApJ, 426: 340-344, 1994.

https://github.com/Shrishml/Classification-of-Spectral-Library

