More on Transience and Recurrence

We say that a state i is recurrent if $F_{ii} = P(\text{ ever returning to } i \text{ having started in } i) = 1.$

- We say that a state i is recurrent if $F_{ii} = P(\text{ ever returning to } i \text{ having started in } i) = 1.$
- $ightharpoonup F_{ii}$ is not easy to calculate. (We will see this today)

- We say that a state i is recurrent if $F_{ii} = P(\text{ ever returning to } i \text{ having started in } i) = 1.$
- $ightharpoonup F_{ii}$ is not easy to calculate. (We will see this today)
- ▶ If a state is not recurrent, it is transient.

- We say that a state i is recurrent if $F_{ii} = P(\text{ ever returning to } i \text{ having started in } i) = 1.$
- $ightharpoonup F_{ii}$ is not easy to calculate. (We will see this today)
- If a state is not recurrent, it is transient.
- For a transient state i, $F_{ii} < 1$.

- We say that a state i is recurrent if $F_{ii} = P(\text{ ever returning to } i \text{ having started in } i) = 1.$
- $ightharpoonup F_{ii}$ is not easy to calculate. (We will see this today)
- If a state is not recurrent, it is transient.
- For a transient state i, $F_{ii} < 1$.
- ▶ If $i \leftrightarrow j$ and i is recurrent, then j is recurrent.

ightharpoonup Consider a DTMC with state space denoted by S.

- \triangleright Consider a DTMC with state space denoted by S.
- $ightharpoonup f_{ij}^n := P(X_n = j, X_k \neq j \text{ for } 1 \leq k \leq n-1 | X_0 = i).$

- \triangleright Consider a DTMC with state space denoted by S.
- $ightharpoonup f_{ij}^n := P(X_n = j, X_k \neq j \text{ for } 1 \leq k \leq n-1 | X_0 = i). \ (f_{ij}^0 = 0).$

- \triangleright Consider a DTMC with state space denoted by \mathcal{S} .
- $ightharpoonup f_{ij}^n := P(X_n = j, X_k \neq j \text{ for } 1 \leq k \leq n-1 | X_0 = i). \ (f_{ij}^0 = 0).$
- ▶ $\{f_{ii}^n, n \ge 0, i, j \in S\}$ is called the first passage probabilities

- \triangleright Consider a DTMC with state space denoted by \mathcal{S} .
- $ightharpoonup f_{ij}^n := P(X_n = j, X_k \neq j \text{ for } 1 \leq k \leq n-1 | X_0 = i). \ (f_{ij}^0 = 0).$
- ▶ $\{f_{ii}^n, n \ge 0, i, j \in S\}$ is called the first passage probabilities
- For a fixed n, f^n denotes the matrix $[[f_{ij}^n]]$.

- \triangleright Consider a DTMC with state space denoted by \mathcal{S} .
- $ightharpoonup f_{ij}^n := P(X_n = j, X_k \neq j \text{ for } 1 \leq k \leq n-1 | X_0 = i). \ (f_{ij}^0 = 0).$
- ▶ $\{f_{ii}^n, n \geq 0, i, j \in S\}$ is called the first passage probabilities
- For a fixed n, f^n denotes the matrix $[[f_{ij}^n]]$.
- For a fixed ij pair, $\{f_{ij}^n, n \geq 0\}$ represents a probability mass function on \mathbb{Z}_+ .

- \triangleright Consider a DTMC with state space denoted by \mathcal{S} .
- $ightharpoonup f_{ij}^n := P(X_n = j, X_k \neq j \text{ for } 1 \leq k \leq n-1 | X_0 = i). \ (f_{ij}^0 = 0).$
- ▶ $\{f_{ij}^n, n \ge 0, i, j \in S\}$ is called the first passage probabilities
- For a fixed n, f^n denotes the matrix $[[f_{ij}^n]]$.
- For a fixed ij pair, $\{f_{ij}^n, n \geq 0\}$ represents a probability mass function on \mathbb{Z}_+ .
- This mass function can be degenerate which means it can have a point mass at infinity.

- \triangleright Consider a DTMC with state space denoted by \mathcal{S} .
- $ightharpoonup f_{ij}^n := P(X_n = j, X_k \neq j \text{ for } 1 \leq k \leq n-1 | X_0 = i). \ (f_{ij}^0 = 0).$
- ▶ $\{f_{ij}^n, n \ge 0, i, j \in S\}$ is called the first passage probabilities
- For a fixed n, f^n denotes the matrix $[[f_{ij}^n]]$.
- For a fixed ij pair, $\{f_{ij}^n, n \geq 0\}$ represents a probability mass function on \mathbb{Z}_+ .
- This mass function can be degenerate which means it can have a point mass at infinity.
- ightharpoonup Define: $F_{ij} = \sum_{n=1}^{\infty} f_{ij}^n$.

▶ Define: $F_{ij} = \sum_{n=1}^{\infty} f_{ij}^n$.

- ▶ Define: $F_{ij} = \sum_{n=1}^{\infty} f_{ij}^n$.
- \succ F_{ij} has the interpretation of the probability of ever visiting state j when starting from state i.

- ightharpoonup Define: $F_{ij} = \sum_{n=1}^{\infty} f_{ij}^n$.
- $ightharpoonup F_{ij}$ has the interpretation of the probability of ever visiting state j when starting from state i.
- ▶ If $F_{ij} = p < 1$, then there is a finite probability 1 p with which you may not ever reach j when starting from state i.

- ightharpoonup Define: $F_{ij} = \sum_{n=1}^{\infty} f_{ij}^n$.
- $ightharpoonup F_{ij}$ has the interpretation of the probability of ever visiting state j when starting from state i.
- ▶ If $F_{ij} = p < 1$, then there is a finite probability 1 p with which you may not ever reach j when starting from state i.
- In this case $\{f_{ij}^n, n \ge 0\}$ is not a proper mass function since it does not sum to 1.

- ightharpoonup Define: $F_{ij} = \sum_{n=1}^{\infty} f_{ij}^n$.
- \succ F_{ij} has the interpretation of the probability of ever visiting state j when starting from state i.
- ▶ If $F_{ij} = p < 1$, then there is a finite probability 1 p with which you may not ever reach j when starting from state i.
- In this case $\{f_{ij}^n, n \ge 0\}$ is not a proper mass function since it does not sum to 1.
- ▶ If $F_{ij} = 1$, then the from i you can certainly reach j.

- ightharpoonup Define: $F_{ij} = \sum_{n=1}^{\infty} f_{ij}^n$.
- \succ F_{ij} has the interpretation of the probability of ever visiting state j when starting from state i.
- ▶ If $F_{ij} = p < 1$, then there is a finite probability 1 p with which you may not ever reach j when starting from state i.
- In this case $\{f_{ij}^n, n \ge 0\}$ is not a proper mass function since it does not sum to 1.
- ▶ If $F_{ij} = 1$, then the from i you can certainly reach j.
- ▶ In this case $\{f_{ii}^n, n \ge 0\}$ is a proper mass function.

- ightharpoonup Define: $F_{ij} = \sum_{n=1}^{\infty} f_{ij}^n$.
- \succ F_{ij} has the interpretation of the probability of ever visiting state j when starting from state i.
- ▶ If $F_{ij} = p < 1$, then there is a finite probability 1 p with which you may not ever reach j when starting from state i.
- In this case $\{f_{ij}^n, n \ge 0\}$ is not a proper mass function since it does not sum to 1.
- ▶ If $F_{ij} = 1$, then the from i you can certainly reach j.
- ▶ In this case $\{f_{ii}^n, n \ge 0\}$ is a proper mass function.
- Let T_{ij} denote the first passage time from i to j.

- ightharpoonup Define: $F_{ij} = \sum_{n=1}^{\infty} f_{ij}^n$.
- $ightharpoonup F_{ij}$ has the interpretation of the probability of ever visiting state j when starting from state i.
- ▶ If $F_{ij} = p < 1$, then there is a finite probability 1 p with which you may not ever reach j when starting from state i.
- In this case $\{f_{ij}^n, n \ge 0\}$ is not a proper mass function since it does not sum to 1.
- ▶ If $F_{ij} = 1$, then the from i you can certainly reach j.
- ▶ In this case $\{f_{ii}^n, n \ge 0\}$ is a proper mass function.
- Let T_{ij} denote the first passage time from i to j.
- ► T_{ij} has the probability mass function $\{f_{ij}^n, n \geq 0\}$. In other words, $P(T_{ij} = k) = f_{ii}^k$.

ightharpoonup Define: $F_{ii} = \sum_{n=1}^{\infty} f_{ii}^n$.

- ightharpoonup Define: $F_{ii} = \sum_{n=1}^{\infty} f_{ii}^n$.
- $ightharpoonup f_{ii}^n$: probability of starting in i and returning to state i for the first time at time n

- ightharpoonup Define: $F_{ii} = \sum_{n=1}^{\infty} f_{ii}^n$.
- $ightharpoonup f_{ii}^n$: probability of starting in i and returning to state i for the first time at time n
- \triangleright F_{ii} has the interpretation of the probability of ever returning to state i.

- ightharpoonup Define: $F_{ii} = \sum_{n=1}^{\infty} f_{ii}^n$.
- $ightharpoonup f_{ii}^n$: probability of starting in i and returning to state i for the first time at time n
- $ightharpoonup F_{ii}$ has the interpretation of the probability of ever returning to state i.
- If $F_{ii} = p < 1$, then there is a finite probability 1 p with which you may not return to state i.

- ightharpoonup Define: $F_{ii} = \sum_{n=1}^{\infty} f_{ii}^n$.
- $ightharpoonup f_{ii}^n$: probability of starting in i and returning to state i for the first time at time n
- \triangleright F_{ii} has the interpretation of the probability of ever returning to state i.
- If $F_{ii} = p < 1$, then there is a finite probability 1 p with which you may not return to state i.
- ▶ If $F_{ii} = 1$, then the from i you can certainly return to i.

- ightharpoonup Define: $F_{ii} = \sum_{n=1}^{\infty} f_{ii}^n$.
- $ightharpoonup f_{ii}^n$: probability of starting in i and returning to state i for the first time at time n
- $ightharpoonup F_{ii}$ has the interpretation of the probability of ever returning to state i.
- If $F_{ii} = p < 1$, then there is a finite probability 1 p with which you may not return to state i.
- ▶ If $F_{ii} = 1$, then the from i you can certainly return to i.
- For any $i \in \mathcal{M}$, the first return time T_{ii} has the probability mass function $\{f_{ii}^n, n \geq 0\}$.

Let μ_{ij} be the mean (first passage) time from state i to j.

- Let μ_{ij} be the mean (first passage) time from state i to j.
- ho $\mu_{ij} = \sum_{n=1}^{\infty} n f_{ij}^n$

- Let μ_{ij} be the mean (first passage) time from state i to j.
- $\blacktriangleright \mu_{ij} = \sum_{n=1}^{\infty} n f_{ij}^n$
- Let μ_{ii} be the mean recurrence time at state i.

Mean passage and recurrence times

- Let μ_{ij} be the mean (first passage) time from state i to j.
- $\blacktriangleright \mu_{ij} = \sum_{n=1}^{\infty} n f_{ij}^n$
- Let μ_{ii} be the mean recurrence time at state i.
- $\blacktriangleright \mu_{ii} = \sum_{n=1}^{\infty} n f_{ii}^n$

Mean passage and recurrence times

- Let μ_{ij} be the mean (first passage) time from state i to j.
- $ightharpoonup \mu_{ij} = \sum_{n=1}^{\infty} n f_{ij}^n$
- Let μ_{ii} be the mean recurrence time at state i.
- $\blacktriangleright \mu_{ii} = \sum_{n=1}^{\infty} n f_{ii}^n$
- ► All the above definitions have an equivalent counterpart in a CTMC.

Mean passage and recurrence times

- Let μ_{ij} be the mean (first passage) time from state i to j.
- $ightharpoonup \mu_{ij} = \sum_{n=1}^{\infty} n f_{ij}^n$
- Let μ_{ii} be the mean recurrence time at state i.
- $\blacktriangleright \mu_{ii} = \sum_{n=1}^{\infty} n f_{ii}^n$
- ► All the above definitions have an equivalent counterpart in a CTMC.
- For eg: f_{ij}^t has a natural interpretation. We wont go further into this.

Suppose for a state i we have $F_{ii} = 1$. Then we say that state i is recurrent.

- Suppose for a state i we have $F_{ii} = 1$. Then we say that state i is recurrent.
- ▶ Once in *i*, you are certain to come back to *i*.

- Suppose for a state i we have $F_{ii} = 1$. Then we say that state i is recurrent.
- Once in *i*, you are certain to come back to *i*.
- If $\mu_{ii} = \infty$, it is called null recurrent. The chain is bound to return to state i, but possibly after an infinite time.

- Suppose for a state i we have $F_{ii} = 1$. Then we say that state i is recurrent.
- Once in i, you are certain to come back to i.
- If $\mu_{ii} = \infty$, it is called null recurrent. The chain is bound to return to state i, but possibly after an infinite time.
- $\mu_{ii} < \infty$, it is called positive recurrent.

- Suppose for a state i we have $F_{ii} = 1$. Then we say that state i is recurrent.
- Once in i, you are certain to come back to i.
- If $\mu_{ii} = \infty$, it is called null recurrent. The chain is bound to return to state i, but possibly after an infinite time.
- $\triangleright \mu_{ii} < \infty$, it is called positive recurrent.
- ► If all states of the Markov chain are (null /positive) recurrent, it is called as a (null /positive) recurrent Markov chain.

- Suppose for a state i we have $F_{ii} = 1$. Then we say that state i is recurrent.
- Once in i, you are certain to come back to i.
- If $\mu_{ii} = \infty$, it is called null recurrent. The chain is bound to return to state i, but possibly after an infinite time.
- $\triangleright \mu_{ii} < \infty$, it is called positive recurrent.
- ► If all states of the Markov chain are (null /positive) recurrent, it is called as a (null /positive) recurrent Markov chain.
- Null recurrence is possible in infinite state space models.

- Suppose for a state i we have $F_{ii} = 1$. Then we say that state i is recurrent.
- Once in i, you are certain to come back to i.
- If $\mu_{ii} = \infty$, it is called null recurrent. The chain is bound to return to state i, but possibly after an infinite time.
- $\triangleright \mu_{ii} < \infty$, it is called positive recurrent.
- ► If all states of the Markov chain are (null /positive) recurrent, it is called as a (null /positive) recurrent Markov chain.
- Null recurrence is possible in infinite state space models.
- State *i* is transient if $F_{ii} < 1$.

- Suppose for a state i we have $F_{ii} = 1$. Then we say that state i is recurrent.
- Once in i, you are certain to come back to i.
- If $\mu_{ii} = \infty$, it is called null recurrent. The chain is bound to return to state i, but possibly after an infinite time.
- $\triangleright \mu_{ii} < \infty$, it is called positive recurrent.
- ► If all states of the Markov chain are (null /positive) recurrent, it is called as a (null /positive) recurrent Markov chain.
- Null recurrence is possible in infinite state space models.
- ▶ State *i* is transient if F_{ii} < 1.
- You may not return back to i with a finite probability.

ightharpoonup Consider a DTMC and consider $X_0 = i$.

- ightharpoonup Consider a DTMC and consider $X_0 = i$.
- Let us count the number of times the chain is in state i.

- ightharpoonup Consider a DTMC and consider $X_0 = i$.
- Let us count the number of times the chain is in state i.
- Let I_n denote an indicator variable which is 1 if $X_n = i$ and 0 if $X_n \neq i$.

- ightharpoonup Consider a DTMC and consider $X_0 = i$.
- Let us count the number of times the chain is in state i.
- Let I_n denote an indicator variable which is 1 if $X_n = i$ and 0 if $X_n \neq i$.
- $\triangleright \sum_{n=1}^{\infty} I_n$ counts the number of times state *i* was visited.

- ightharpoonup Consider a DTMC and consider $X_0 = i$.
- Let us count the number of times the chain is in state i.
- Let I_n denote an indicator variable which is 1 if $X_n = i$ and 0 if $X_n \neq i$.
- $\triangleright \sum_{n=1}^{\infty} I_n$ counts the number of times state *i* was visited.
- \triangleright $E[I_n] = P(X_n = i | X_0 = i) = p_{ii}^{(n)}$.

- ightharpoonup Consider a DTMC and consider $X_0 = i$.
- Let us count the number of times the chain is in state i.
- Let I_n denote an indicator variable which is 1 if $X_n = i$ and 0 if $X_n \neq i$.
- $\triangleright \sum_{n=1}^{\infty} I_n$ counts the number of times state *i* was visited.
- \triangleright $E[I_n] = P(X_n = i | X_0 = i) = p_{ii}^{(n)}$.
- ▶ The mean total number of visits to state *i* is given by $\sum_{n=1}^{\infty} p_{ii}^n$

- ightharpoonup Consider a DTMC and consider $X_0 = i$.
- Let us count the number of times the chain is in state i.
- Let I_n denote an indicator variable which is 1 if $X_n = i$ and 0 if $X_n \neq i$.
- $\triangleright \sum_{n=1}^{\infty} I_n$ counts the number of times state *i* was visited.
- \triangleright $E[I_n] = P(X_n = i | X_0 = i) = p_{ii}^{(n)}$.
- The mean total number of visits to state i is given by $\sum_{n=1}^{\infty} p_{ii}^n$
- Convergence or divergence of this sum also defines transient or recurrent states.

The mean total number of visits to state i is given by $\sum_{n=1}^{\infty} p_{ii}^n$

- The mean total number of visits to state i is given by $\sum_{n=1}^{\infty} p_{ii}^n$
- Suppose the chain visits state i only exactly n times.

- ▶ The mean total number of visits to state *i* is given by $\sum_{n=1}^{\infty} p_{ii}^n$
- Suppose the chain visits state i only exactly n times.
- ▶ The P(exactly n visits to i) = $F_{ii}^{n}(1 F_{ii})$.

- ▶ The mean total number of visits to state *i* is given by $\sum_{n=1}^{\infty} p_{ii}^n$
- Suppose the chain visits state i only exactly n times.
- ▶ The P(exactly n visits to i) = $F_{ii}^{n}(1 F_{ii})$.
- For a recurrent state, $F_{ii} = 1$. Hence P(exactly n visits to i) = 0.

- ▶ The mean total number of visits to state *i* is given by $\sum_{n=1}^{\infty} p_{ii}^n$
- Suppose the chain visits state i only exactly n times.
- ▶ The P(exactly n visits to i) = $F_{ii}^{n}(1 F_{ii})$.
- For a recurrent state, $F_{ii} = 1$. Hence P(exactly n visits to i) = 0.
- ightharpoonup P(exactly infinite visits to i) = 1.

- ▶ The mean total number of visits to state *i* is given by $\sum_{n=1}^{\infty} p_{ii}^n$
- Suppose the chain visits state i only exactly n times.
- ▶ The P(exactly n visits to i) = $F_{ii}^{n}(1 F_{ii})$.
- For a recurrent state, $F_{ii} = 1$. Hence P(exactly n visits to i) = 0.
- ightharpoonup P(exactly infinite visits to i) = 1.
- Mean total number of visits is also infinite and hence $\sum_{n=1}^{\infty} p_{ii}^n$ diverges.

The mean total number of visits to state *i* is given by $\sum_{n=1}^{\infty} p_{ii}^n$

- The mean total number of visits to state i is given by $\sum_{n=1}^{\infty} p_{ii}^n$
- Suppose the chain visits state i only exactly n times.

- ▶ The mean total number of visits to state *i* is given by $\sum_{n=1}^{\infty} p_{ii}^n$
- Suppose the chain visits state i only exactly n times.
- ▶ The P(exactly n visits to i) = $F_{ii}^n(1 F_{ii})$.

- ▶ The mean total number of visits to state *i* is given by $\sum_{n=1}^{\infty} p_{ii}^n$
- Suppose the chain visits state i only exactly n times.
- ▶ The P(exactly n visits to i) = $F_{ii}^n(1 F_{ii})$.
- For transient state i, $F_{ii} < 1$.

- ▶ The mean total number of visits to state *i* is given by $\sum_{n=1}^{\infty} p_{ii}^n$
- Suppose the chain visits state i only exactly n times.
- ▶ The P(exactly n visits to i) = $F_{ii}^{n}(1 F_{ii})$.
- For transient state i, $F_{ii} < 1$.
- The P(exactly n visits to i) = $F_{ii}^n(1 F_{ii})$. Compare this with geometric random variable.

- ▶ The mean total number of visits to state *i* is given by $\sum_{n=1}^{\infty} p_{ii}^n$
- Suppose the chain visits state i only exactly n times.
- ▶ The P(exactly n visits to i) = $F_{ii}^n(1 F_{ii})$.
- For transient state i, $F_{ii} < 1$.
- The P(exactly n visits to i) = $F_{ii}^n(1 F_{ii})$. Compare this with geometric random variable.
- ▶ Mean total number of visits to state *i* is $\frac{F_{ii}}{1-F_{ii}}$ which is finite.

- ▶ The mean total number of visits to state *i* is given by $\sum_{n=1}^{\infty} p_{ii}^n$
- Suppose the chain visits state i only exactly n times.
- ▶ The P(exactly n visits to i) = $F_{ii}^{n}(1 F_{ii})$.
- For transient state i, $F_{ii} < 1$.
- The P(exactly n visits to i) = $F_{ii}^n(1 F_{ii})$. Compare this with geometric random variable.
- ▶ Mean total number of visits to state *i* is $\frac{F_{ii}}{1-F_{ii}}$ which is finite.
- ► Hence for transient state $\sum_{n=1}^{\infty} p_{ii}^n$ must converge.