成果発表

日付: 2024/8/9

目次

- > 課題内容
- > 実装の流れ
- ▶ 画像解析、画像処理で使用した手法
- ▶ その手法を選択した理由
- ▶ ライブラリ等、開発で使用したもの
- ▶ 成果報告
- ▶ 所感

課題内容

▶ 時間帯の異なる同じ場所の画像から変化した場所を見つけ出し、ユーザへわかりやすく伝える

- 廊下に障害物がある
- ▶ 検討事項
 - ▶ 差異検出ロジック
 - 差異検出の精度
 - ▶ ユーザへの提示方法

ドアが閉まっている

成果報告

処理の流れ 1/3

明度調整

画像分割

処理の流れ 2/3

グレースケール変換

ノイズ付与

処理の流れ 3/3

差分出力

画像解析、画像処理で使用した手法

- ▶ 画像の位置合わせ
 - ホモグラフィ変換
- ▶ 明度変更
 - ▶ ヒストグラム平坦化
 - ▶ 明度調整
- ▶ 画像分割
- フィルタリング
 - ▶ ガウシアンフィルタ
- ▶ 差分取得処理

処理の流れ 1/3

明度調整

画像の位置合わせ: ホモグラフィ変換

目的

▶ 差分を検出するために、二つの画像を同じ視点から比較したい

メリット

- ▶ 画像間の視点の違いを補正できる
- ▶ 柔軟性 (平行移動、回転、スケーリング、透視変換)

デメリット

- ▶ 特徴点の検出が必要
- ▶ 非線形な変換ができない (魚眼レンズ、画像間で物体が変形、etc.)
- ▶ 3D変換に対応できない

ホモグラフィ変換: 成功例

変換元画像

変換先画像

ホモグラフィ変換: 失敗例

変換元画像

マスの形や大きさに 特徴がない

処理の流れ 1/3

明度調整

問題点

▶ 配置は同じなのに明るさの違いを差分として抽出してしまう

明度調整の手法

- ▶ ヒストグラム平坦化
- ▶ 片方の画像に明度をあわせる (オリジナル手法)
 - ▶ ヒストグラムの形状は変えずに、明度の平均値をあわせる

ヒストグラム平坦化

オリジナル手法

明度調整: オリジナル手法

① 画像を分割

明度調整前

② 明度の平均値を計算

明度の平均値: 100

③ <u>画面全体の明度を変更</u> (暗いほうに合わせる)

明度調整後

手法の比較

ヒストグラム平坦化

オリジナル手法

処理の流れ 2/3

グレースケール変換

ノイズ付与

フィルタリングなし

- フィルタリングをしないと差分だらけ
- ▶ ちょっとした位置ずれに敏感
 - ▶ ホモグラフィ変換をしても、位置ずれを完璧に修正することはできない

フィルタリング: ノイズ付与

- ▶ ノイズを付与して画像を荒くすることで、位置ずれなどの細かい差分を検出 しないようにする
- ガウシアンフィルタを使用
- ▶ 汎用的なパラメータを検証

処理の流れ 2/3

グレースケール変換

.

処理の流れ 3/3

差分出力

ライブラリ等、開発で使用したもの

ライブラリ名	バージョン	ライセンス	概要
OpenCV-Python	4.10.0.84	Apache 2	画像処理
NumPy	1.26.4	修正BSD	数値計算
Matplotlib	3.9.0	BSD	画像表示
yolo	8	AGPL-3.0	物体検出

成果報告

成果報告: 基礎問題

成果報告: 応用問題

成果報告: Beamo

成果報告: 扉の開閉

成果報告: 複数物体

成果報告: チェスの駒

今後の展望

- ▶ 差分を言語化したい
 - ▶ 物体検出と組み合わせる
- ▶ 色が似ているもの(掃除中看板やごみ袋)を検出できるようにしたい
 - ▶ 色のコントラストを強調
 - 明度調整と逆のことをするので誤検出が増えてしまう可能性

物体検出

