1 The Formal Immersion Step (the new hotness on tiktak)

Theorem 1.0.1. Let N be a prime, either 11 or \geq 17 (ensuring that $X_0(N)$ has genus > 0) then there are no elliptic curves over \mathbb{Q} with a torsion point of order N.

Kep points,

- (a) if E has good reduction at 3 then $E[N](\mathbb{Q}) \hookrightarrow \overline{E}(\mathbb{F}_3)$ which has order at most 9 by Hasse so N < 9.
- (b) if E has multiplicative reduction we can get crazy polygons so no control on N
- (c) if E has additive reduction: what can the special fiber of the minimal regular proper model be? From Kodaia classification, there are a bounded number of components and hence a bound on $\#\overline{E}(\mathbb{F}_3) \leq 12$.

Assume from now on that N = 11 or N > 17.

Proposition 1.0.2. If (E, C) is a pair of an elliptic curve over \mathbb{Q} and a cyclic subgroup scheme $C \subset E$ of order N. Then E has potentially good reduction away from 2N.

Remark. This implies you can't have multiplicative reduction because potentially good reduction means the semistable reduction is good but multiplicative reduction is also semistable.

Remark. Recall that,

good reduction $\iff T_{\ell}E$ is unramified

mult. reduction $\iff I \to \operatorname{GL}(V_{\ell}E)$ is (nontrivial) unipotent

Proposition 1.0.3. Let \mathcal{A} be the Neron model over $\mathbb{Z}[1/2N]$ of the Eisenstein quotient A of $J = \operatorname{Jac}(X_0(N))$. Define,

$$X_0(N)_{\mathbb{O}} \longrightarrow J \longrightarrow A$$

 $f: X_0(N) \to \mathcal{A}$ over $\mathbb{Z}[1/2N]$ sends $\infty \mapsto 0$. Then if $p \not\mid 2N$ then $\infty \in X_0(N)(\mathbb{Z}_{(p)})$ is the only $\mathbb{Z}_{(p)}$ -point of $X_0(N)$ mapping to $0 \in \mathcal{A}(\mathbb{Z}_{(p)})$ which reduces to $\infty \in X_0(N)(\mathbb{F}_p)$.

Definition 1.0.4. Let $f: Y \to Z$ is lft and Y, Z are locally noetherian. If y in U say f is a formal immersion at y if $\mathcal{O}_{Z,f(y)}^{\wedge} \twoheadrightarrow \mathcal{O}_{Y,y}^{\wedge}$ is surjective.

Definition 1.0.5. Y, Z are ft + sep over a locally noetherian base S. If f is an S-morphism and $y \in Y(S)$ is a section then f is a formal immersion along y if,

- (a) f is a formal immersion along all points of y
- (b) f_s is a formal immersion at y_s for all $s \in S$.

Remark. This is supposed to be equivalent to $\hat{Y}_y \hookrightarrow \hat{Z}_{f(y)}$.

Lemma 1.0.6. Let A, B be complete noeth. local rings and $f: A \to B$ is a local map such that $f: A/\mathfrak{m}_A \to B/\mathfrak{m}_B$ and $f: \mathfrak{m}_A/\mathfrak{m}_A^2 \twoheadrightarrow \mathfrak{m}_B/\mathfrak{m}_B^2$ is surjective.

Proof. Approximate. \Box

Proposition 1.0.7. Let Y be separated and $f: Y \to Z$ be a formal immersion at $y \in Y$. Let T be an integral noetherian scheme with $p_1, p_{@} \in Y(T)$ are s.t. $y = p_1(t) = p_2(t)$ at some $t \in T$ and $f \circ p_1 = f \circ p_2$ then $p_1 = p_2$.

Lemma 1.0.8. Let A, B be complete noetherian local rings flat over a dvr (R, π) with a map $A \to B$ such that $A/\mathfrak{m}_A \to B/\mathfrak{m}_A$ is an isomorphism. Then $A \to B$ is surjective iff $A/\pi \to B/\pi$ is surjective.

Proof. This follows from the fact that $\mathfrak{m}_A/(\mathfrak{m}_A^2 + \pi A) \to \mathfrak{m}_B/(\mathfrak{m}_B^2 + \pi B)$ being surjective implies that it was surjective before moding by π .

Corollary 1.0.9. We can check formal immersions at the special fiber of a DVR.

Proof of Proposition. $A = \{x \in T \mid p_1(x) = p_2(x)\}$ then Y is separated implies $A \subset T$ closed and T is integral so suffices to show Spec $(\mathcal{O}_{T,t}) \to T$ factors through $A \hookrightarrow T$. So assume T is local with closed point t. Can assume Y is local with closed point y.

$$\mathcal{O}_{T,t} \longleftrightarrow \widehat{\mathcal{O}}_{T,t}$$

$$\uparrow \uparrow \qquad \uparrow \uparrow \qquad \uparrow \uparrow \qquad \qquad \uparrow \uparrow \qquad \qquad \qquad$$
 $\mathcal{O}_{Y,y} \longleftrightarrow \widehat{\mathcal{O}}_{Z,f(y)} \longleftrightarrow \widehat{\mathcal{O}}_{Z,f(y)}$

thus the maps must agree on the local rings since they agree after composing with the surjection. \Box

Goal show that if $T_{\mathbb{Q}} \to A$ is any surjection of abelian varities with connected kernel (what we call an optimal quotient) then $X_0(N) \to J \to \mathcal{A}$ over $\mathbb{Z}[1/2N]$ is a formal immerison.

Setup N is prime > 2 and $S = \operatorname{Spec}(\mathbb{Z}[1/2N])$ and $X = X_0(N)$ then $J = J_0(N)$ and $\mathbb{T} \hookrightarrow \operatorname{End}(J)$ the Hecke algebra.

Remark. all optimal quotients of J are of the form J/IJ where $I \subset \mathbb{T}$ is a saturated ideal (\mathbb{T}/I is torsion-free). Then $J_{\mathbb{Q}} = J_0(N)^{\text{new}}_{\mathbb{Q}}$ so everything in Daniel's talk applies. In particular,

$$J_{\mathbb{Q}} \sim \prod_{f \in C} A_f$$

with C Galois orbits of cusp forms. Also,

$$\operatorname{End}_{\mathbb{O}}(A_f) = K_f = \operatorname{im} \mathbb{T}$$

with $[K_f:\mathbb{Q}]=\dim A_f$. Then any optimal quotient of $J_\mathbb{Q}$ is $\prod_{g\in C'}A_g$ with $C'\subset C$.

Theorem 1.0.10. The tangent space $T_0(F)$ is a free $\mathcal{T}_{\mathbb{Z}[1/2N]}$ -module of rank 1 generated by $\frac{\mathrm{d}}{\mathrm{d}q}|_0$.

Remark. This is saying,

$$S_2(N)_R \cong H^0(J_R, \Omega^1_{J_R/R}) = T_0^*(J_R)$$

for any ring R. This is because level N cusp 2-forms are exactly given by forms on $X_0(N)$ and these are the same as forms on its Jacobian.

Corollary 1.0.11. If A is an optimal quotient of J then $X \to \mathcal{A}$ sending $\infty \mapsto 0$ is a formal immersion over S.

Proof. It suffices to show that $T_{\infty}X \hookrightarrow T_0\mathcal{A}$ over each prime. Then in the a sequence,

$$0 \longrightarrow B \longrightarrow J \longrightarrow A \longrightarrow 0$$

since J and A have good reduction so does B by Neron-Ogg-Shafarevich. Then Raynaud's theorem gives an exact sequence,

$$0 \longrightarrow T_0(\mathcal{B}) \longrightarrow T_0(J) \longrightarrow T_0(\mathcal{A}) \longrightarrow 0$$

 \square

Reduction, $M' = T_0(T)/(\mathbb{T}_{\mathbb{Z}[1/2N]}\frac{\mathrm{d}}{\mathrm{d}q})$. But $T_0(J)$ is finite over $\mathbb{Z}[1/2N]$ hence also $\mathbb{T}_{\mathbb{Z}[1/2N]}$. Suffices to show that $M'/\mathfrak{m}M' = 0$ for all $\mathfrak{m} \subset \mathbb{T}_{\mathbb{Z}[1/2N]}$ i.e. $\frac{\mathrm{d}}{\mathrm{d}q}$ generated $T_0(T)/\mathfrak{m}T_0(J)$.

Lemma 1.0.12. $S_2(N)^{\text{new}}_{\mathbb{Q}}$ is a free $\mathbb{T}_{\mathbb{Q}}$ -module of rank 1 generated by $\frac{d}{dq}|_0$.

Lemma 1.0.13. For $\mathfrak{m} \subset \mathbb{T}_{\mathbb{Z}[1/2N]}$ and $T_0(J)/\mathfrak{m}T_0(J) = 0$.

Proof. Finiteness of $T_0(J)$ and NAK and $T_0(J) \otimes_{\mathbb{Z}} \mathbb{Q} \neq 0$.

Lemma 1.0.14. For $\mathfrak{m} \subset \mathbb{T}_{\mathbb{Z}[1/2N]}$ then $\frac{\mathrm{d}}{\mathrm{d}q}$ has nonzero image in $T_0(J)/\mathfrak{m}T_0(J)$.

Proof. If $f \in S_2(N)_{\overline{\mathbb{F}}_{\ell}}$ has a q-expansion,

$$f = \sum_{n=1}^{\infty} a_n q^n$$

then $\frac{d}{dq}(f) = a_1$ and we win by showing that if f is an eigenform with $a_1 = 0$ then f = 0. This is because $\frac{d}{dq}(T_n f) = a_n$ so if $T_n f = \lambda f$ for $\lambda \neq 0$ then we also have all $a_n = 0$.

Let's do this in more detail. Let ℓ be the characteristic of $F = (\mathbb{T} \otimes \mathbb{Z}[1/2N])/\mathfrak{m}$ and $R = (\mathbb{T} \otimes \mathbb{Z}[1/2N]) \otimes_{\mathbb{Z}} \overline{\mathbb{F}}_{\ell}$. And let $M = T_0(J) \otimes_{\mathbb{Z}} \overline{\mathbb{F}}_{\ell}$. Then there is an exact sequence,

by tensoring the inclusion $F \hookrightarrow \overline{\mathbb{F}}_{\ell}$ we get $T_0(J)/\mathfrak{m}T_0(J) \hookrightarrow M/\mathfrak{m}M$. As R-modules,

$$(M/\mathfrak{m} M)^\vee \cong M^\vee[\mathfrak{m}] \cong H^0(X_{\overline{\mathbb{F}}_\ell}, \Omega^1_{X/\overline{\mathbb{F}}_\ell})[\mathfrak{m}]$$

Theorem 1.0.15. if $f: X \to S$ is a smooth proper relative curve then $R^i f_* \Omega_{X/S}$ commutes with all base change.

Proof. If S is reduced this comes from Grauert. Otherwise use cohomology and base change. \Box

In particular: if $f \in S_2(N)_{\overline{\mathbb{F}}_{\ell}}[\mathfrak{m}]$ is nonzero can lift to char 0 and then $\frac{\mathrm{d}}{\mathrm{d}q}(T_n f) = a_n(f)$ follows from analysis.

Lemma 1.0.16. For every $\mathfrak{m} \subset \mathbb{T}_{\mathbb{Z}[1/2N]}$. Then $T_0(J)/\mathfrak{m}T_0(J)$ is free over $\mathbb{T}_{\mathbb{Z}[1/2N]}/\mathfrak{m}$ generated by $\frac{\mathrm{d}}{\mathrm{d}q}$.

Proof. $\dim_F T_0(J)/\mathfrak{m}T_0(J)=\dim_{\overline{\mathbb{F}}_\ell} M^\vee[\mathfrak{m}]$ then let a_n be the image of T_n in $R/\mathfrak{m}=\overline{\mathbb{F}}_\ell$ then if $f\in S_2(N)_{\overline{\mathbb{F}}_\ell}[\mathfrak{m}]$ and $T_n(f)=a_n(F)$ so f is a multiple of $q+a_2q^2+\cdots$.