How to work with List Columns

August 2018

Garrett Grolemund

"cell" contents

Sepal.L	Sepal.W	Petal.L	Petal.W
5.1	3.5	1.4	0.2
4.9	3.0	1.4	0.2
4.7	3.2	1.3	0.2
4.6	3.1	1.5	0.2
5.0	3.6	1.4	0.2

n_iris\$data[[1]]

Sepal.L	Sepal.W	Petal.L	Petal.W
7.0	3.2	4.7	1.4
6.4	3.2	4.5	1.5
6.9	3.1	4.9	1.5
5.5	2.3	4.0	1.3
6.5	2.8	4.6	1.5

nested data frame

n_iris

Species

versicolor

data

<tibble [50 x 4]>

<tibble [50 x 4]>

<tibble [50 x 4]>

n_iris\$data[[2]]

Sepal.L	Sepal.W	Petal.L	Petal.W
6.3	3.3	6.0	2.5
5.8	2.7	5.1	1.9
7.1	3.0	5.9	2.1
6.3	2.9	5.6	1.8
6.5	3.0	5.8	2.2

n_iris\$data[[3]]

```
library(babynames)
filter(babynames, name == "Mary")
```

	year	sex	name	n	prop
1	1880	F	Mary	7065	0.0724
2	1880	F	Anna	2604	0.0267
3	1880	F	Emma	2003	0.0205
4	1880	M	John	9655	0.0815
5	1880	M	James	5927	0.0501
8	1880	M	Mary	27	0.000228
7	1881	F	Anna	2698	0.0273

```
library(babynames)
filter(babynames, name == "Mary")
```

	year sex	name	n	prop
1	1880 F	Mary	7065	0.0724
2	1880 M	Mary	27	0.000228
3	1881 F	Mary	6919	0.0700
4	1881 M	Mary	29	0.000268
5	1882 F	Mary	8148	0.0704
6	1882 M	Mary	30	0.000246
7	1883 F	Mary	8012	0.0667

library(babynames) babynames

	year sex	name	n prop	list?
1	1880 F	Mary	7065 0.0724	Species beta beta setosa 2.35 2.35 versi 1.89 1.89 virginica 0.69 0.69
2	1880 F	Anna	2604 0.0267	Species beta setosa 2.35 versi 1.89
3	1880 F	Emma	2003 0.0205	Species beta beta setosa 2.35 2.35 versi 1.89 1.89 virginica 0.69 0.69
4	1880 M	John	9655 0.0815	Species beta beta setosa 2.35 2.35 versi 1.89 1.89 virginica 0.69 0.69
5	1880 M	James	5927 0.0501	Species beta setosa 2.35 versi 1.89 virginica 0.69
6	1880 M	Mary	27 0.000228	Species beta setosa 2.35 versi 1.89
7	1881 F	Anna	2698 0.0273	Species beta beta setosa 2.35 2.35 versi 1.89 1.89 virginica 0.69 0.69

library(babynames) filter(babynames, name == "Mary")

	year sex	name	n prop	list?
1	1880 F	Mary	7065 0.0724	Species beta beta setosa 2.35 2.35 versi 1.89 1.89 virginica 0.69 0.69
2	1880 F	Anna	2604 0.0267	Species beta setosa 2.35 versi 1.89
3	1880 F	Emma	2003 0.0205	Species beta beta setosa 2.35 2.35 versi 1.89 1.89 virginica 0.69 0.69
4	1880 M	John	9655 0.0815	Species beta setosa 2.35 versi 1.89 virginica 0.69
5	1880 M	James	5927 0.0501	Species beta setosa 2.35 versi 1.89 virginica 0.69
8	1880 M	Mary	27 0.000228	Species beta setosa 2.35 versi 1.89
7	1881 F	Anna	2698 0.0273	Species beta beta setosa 2.35 2.35 versi 1.89 1.89 virginica 0.69 0.69

library(babynames) filter(babynames, name == "Mary")

	year sex	name	n prop	list?
1	1880 F	Mary	7065 0.0724	Species beta beta setosa 2.35 2.35 versi 1.89 1.89 virginica 0.69 0.69
2	1880 M	Mary	27 0.000228	Species beta setosa 2.35 versi 1.89
3	1881 F	Mary	6919 0.0700	Species beta beta setosa 2.35 2.35 versi 1.89 1.89 virginica 0.69 0.69
4	1881 M	Mary	29 0.000268	Species beta setosa 2.35 versi 1.89
5	1882 F	Mary	8148 0.0704	Species beta Setosa 2.35 Versi 1.89
6	1882 M	Mary	30 0.000246	Species beta setosa 2.35 versi 1.89
7	1883 F	Mary	8012 0.0667	Species beta beta setosa 2.35 2.35 versi 1.89 1.89 virginica 0.69 0.69

- 1.Data Structures in R
- 2. Data frames, tibbles, and list columns
- 3. Single table verbs +
- 4. Composing functions
- 5.map() functions
- 6. Case Study
- 7. Tao of Tidy

7 rstd.io/list-columns

code.Rmd

slides.pdf

rstd.io/purrr-cheatsheet rstd.io/dplyr-cheatsheet

Data Structures in R

1

[1] 1

c(1, 2, 3.14)

[1] 1.00 2.00 3.14

is.vector(1)
TRUE

is.vector(c(1, 2, 3.14))

TRUE

```
typeof(c(1L, 2L, 3L))
[1] "integer"

typeof(c(1, 2, 3.14))
[1] "double"
```

```
typeof(c("a", "b", "c"))
[1] "character"

typeof(c(TRUE, FALSE))
[1] "logical"
```

```
x <- c(1L, 2L, 3L)
class(x) <- "Date"
x
"1970-01-02" "1970-01-03" "1970-01-04"</pre>
```

```
x <- c(1L, 2L, 3L)
levels(x) <- c("Blue", "Brown", "Green")</pre>
class(x) <- "factor"
X
[1] Blue Brown Green
```

Levels: Blue Brown Green

```
dim(x) < -c(3, 1)
X
     [,1]
[1,] Blue
[2,] Brown
[3,] Green
Levels: Blue Brown Green
```

```
(y < - list(a = c(1, 2, 3.14),
               b = c("a", "b", "c"),
               c = c(TRUE, FALSE, FALSE)))
   $a
   T17 1.00 2.00 3.14
   $b
    Г17 "a" "b" "c"
CC by RStudio TRUE FALSE FALSE
```

typeof(y)
[1] "list"
is.vector(y)
[1] TRUE

```
class(y) <- "data.frame"
rownames(y) <- c("1", "2", "3")
    a b C
1 1.00 a TRUE
2 2.00 b FALSE
3 3.14 c FALSE
```

Should this work?

```
y$d <- list(p = 1:3, q = TRUE, r = 0L)
y
```

```
a b c d
1 1.00 a TRUE 1, 2, 3
2 2.00 b FALSE TRUE
3 3.14 c FALSE 0
```



```
y$d
[1] 1 2 3
[1] TRUE
```

Data frames, Tibbles, and List Columns

```
a b
c
1 1.00 a TRUE
2 2.00 b FALSE
3 3.14 c FALSE
```

```
a b
c
1 1.00 a
TRUE
2 2.00 b
FALSE
3 3.14 c
FALSE
```

```
data.frame(list(a = c(1, 2, 3.14),
b = c("a", "b", "c"),
c = c(TRUE, FALSE, FALSE))
```

```
a b
c
1 1.00 a TRUE
2 2.00 b FALSE
3 3.14 c FALSE
```

```
data.frame(a = c(1, 2, 3.14),
         b = c("a", "b", "c"),
         c = c(TRUE, FALSE, FALSE),
         d = list(p = 1:3, q = TRUE, r = 0L)
    ab cd.pd.qd.r
1 1.00 a TRUE 1 TRUE 0
2 2.00 b FALSE 2 TRUE 0
3.14 c FALSE 3 TRUE
```

```
a b
c
1 1.00 a TRUE
2 2.00 b FALSE
3 3.14 c FALSE
```

```
z$d <- list(p = 1:30, q = TRUE, r = 0L)
z
```

```
1 1.00 a TRUE
2 2.00 b FALSE
3 3.14 c FALSE
1 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20,
21, 22, 23, 24, 25, 26, 27, 28, 29, 30
                                   TRUE
```

```
library(tibble)
class(z) <- c("tbl_df", "tbl", "data.frame")</pre>
# A tibble: 3 x 4
     a b c d
 <dbl> <fct> <lgl> <</pre>
1 1 a TRUE <int [30]>
2 2 b FALSE <lg1 [1]>
            FALSE <int [1]>
3 3.14 c
```

library(tibble) as_tibble(z)

```
# A tibble: 3 x 4
      a b c d
 <dbl> <fct> <lgl> <</pre>
       a TRUE <int [30]>
2 b FALSE < lgl <math>\lceil 1 \rceil >
             FALSE <int [1]>
3 3.14 c
```

```
a b c d.p d.q d.r 1 1.00 a TRUE 1 TRUE 0 2 2.00 b FALSE 2 TRUE 0 3 3.14 c FALSE 3 TRUE 0
```

```
C-ECTRUE, FALSE, FALSE),
     d = list(p = 1:3, q = TRUE, r = 0L)
# A tibble: 3 x 4
   a b c d
 <dbl> <chr> <lgl> <<tr> <
1 1 a TRUE <int [3]>
2 2 b FALSE <lg1 [1]>
3 3.14 c
        FALSE <int [1]>
```

CC by RStudio

```
<dbl> <chr> <lgl> <<tr> <
 1 1 a TRUE <int \lceil 3 \rceil >
           FALSE <lgl [1]>
 3 3.14 c
          FALSE <int [1]>
```

The real benefit?

as_tibble(babynames)

```
# A tibble: 126,888 x 5
   year sex
             name
                             prop
  <dbl> <chr> <int> <int> <dbl>
  1880 F
            Mary 7065 0.0724
  1880 F
                  2604 0.0267
             Anna
   1880 F
                      2003 0.0205
          Emma
          Elizabeth
   1880 F
                      1939 0.0199
   1880 F
             Minnie
                      1746 0.0179
   1880 F
             Margaret
                      1578 0.0162
   1880 F
             Ida 1472 0.0151
   1880 F
             Alice
                  1414 0.0145
                       1320 0.0135
   1880 F
             Bertha
  1880 F
          Sarah
                     1288 0.0132
# ... with 126,878 more rows
```

The real benefit?

as.data.frame(babynames)

	year	sex	name	n	prop
1	1880	F	Mary	7065	7.238433e-02
2	1880	F	Anna	2604	2.667923e-02
3	1880	F	Emma	2003	2.052170e-02
4	1880	F	Elizabeth	1939	1.986599e-02
5	1880	F	Minnie	1746	1.788861e-02
6	1880	F	Margaret	1578	1.616737e-02
7	1880	F	Ida	1472	1.508135e-02
8	1880	F	Alice	1414	1.448711e-02
9	1880	F	Bertha	1320	1.352404e-02
10	1880	F	Sarah	1288	1.319618e-02
11	1880	F	Annie	1258	1.288882e-02
12	1880	F	Clara	1226	1.256096e-02
13	1880	F	Ella	1156	1.184378e-02
14	1880	F	Florence	1063	1.089095e-02
CC los DCtordia	1880	F	Cora	1045	1.070653e-02
CC by RStudio 16	1880	F	Martha	1040	1.065530e-02

Single table verbs +

dplyr single table verbs

tidyr nest()

0	0.1	0 W	DI	DW
Species	S.L	S.W	P.L	P.W
setosa	5.1	3.5	1.4	0.2
setosa	4.9	3.0	1.4	0.2
setosa	4.7	3.2	1.3	0.2
setosa	4.6	3.1	1.5	0.2
setosa	5.0	3.6	1.4	0.2
versi	7.0	3.2	4.7	1.4
versi	6.4	3.2	4.5	1.5
versi	6.9	3.1	4.9	1.5
versi	5.5	2.3	4.0	1.3
versi	6.5	2.8	4.6	1.5
virginica	6.3	3.3	6.0	2.5
virginica	5.8	2.7	5.1	1.9
virginica	7.1	3.0	5.9	2.1
virginica	6.3	2.9	5.6	1.8
virginica	6.5	3.0	5.8	2.2

Species	S.L	S.W	P.L	P.W
setosa	5.1	3.5	1.4	0.2
setosa	4.9	3.0	1.4	0.2
setosa	4.7	3.2	1.3	0.2
setosa	4.6	3.1	1.5	0.2
setosa	5.0	3.6	1.4	0.2
versi	7.0	3.2	4.7	1.4
versi	6.4	3.2	4.5	1.5
versi	6.9	3.1	4.9	1.5
versi	5.5	2.3	4.0	1.3
versi	6.5	2.8	4.6	1.5
virginica	6.3	3.3	6.0	2.5
virginica	5.8	2.7	5.1	1.9
virginica	7.1	3.0	5.9	2.1
virginica	6.3	2.9	5.6	1.8
virginica	6.5	3.0	5.8	2.2

nested data frame

Species	data	
setosa	<pre><tibble 4]="" [50="" x=""></tibble></pre>	
versicolor	<pre><tibble 4]="" [50="" x=""></tibble></pre>	
virginica	<pre><tibble 4]="" [50="" x=""></tibble></pre>	
n_iris		

"cell"

Sepal.L	Sepal.W	Petal.L	Petal.W
5.1	3.5	1.4	0.2
4.9	3.0	1.4	0.2
4.7	3.2	1.3	0.2
4.6	3.1	1.5	0.2
5.0	3.6	1.4	0.2

n_iris\$data[[1]]

Sepal.L	Sepal.W	Petal.L	Petal.W
7.0	3.2	4.7	1.4
6.4	3.2	4.5	1.5
6.9	3.1	4.9	1.5
5.5	2.3	4.0	1.3
6.5	2.8	4.6	1.5

n_iris\$data[[2]]

Sepal.L	Sepal.W	Petal.L	Petal.W
6.3	3.3	6.0	2.5
5.8	2.7	5.1	1.9
7.1	3.0	5.9	2.1
6.3	2.9	5.6	1.8
6.5	3.0	5.8	2.2

n_iris\$data[[3]]

tidyr unnest()

nested data frame

Species	data
setosa	<pre><tibble 4]="" [50="" x=""></tibble></pre>
versicolor	<pre><tibble 4]="" [50="" x=""></tibble></pre>
virginica	<pre><tibble 4]="" [50="" x=""></tibble></pre>

Composing functions

pipes

x %>% f(y)
becomes f(x, y)

```
%>%
```

```
babynames filter(_____, name == "Mary")
```

```
babynames %>% filter(name == "Mary")
filter(babynames, name == "Mary")
```

babynames

```
# A tibble: 126,888 x 5
    year sex
               name
                                  prop
                              n
   <dbl> <chr> <chr>
                         <int> <dbl>
    1880 F
                          7065 0.0724
               Mary
    1880 F
                          2604 0.0267
               Anna
    1880 F
                          2003 0.0205
               Emma
    1880 F
                          1939 0.0199
               Elizabeth
    1880 F
               Minnie
                          1746 0.0179
    1880 F
                          1578 0.0162
               Margaret
    1880 F
                          1472 0.0151
               Ida
    1880 F
               Alice
                          1414 0.0145
 8
                          1320 0.0135
    1880 F
               Bertha
                          1288 0.0132
   1880 F
               Sarah
10
# ... with 126,878 more rows
```

babynames %>% select(-prop)

```
# A tibble: 1,858,689 x 4
    year sex
                name
   <dbl> <chr> <chr>
                          <int>
    1880 F
                           7065
                Mary
                           2604
    1880 F
                Anna
    1880 F
                           2003
                Emma
    1880 F
                           1939
                Elizabeth
    1880 F
                           1746
                Minnie
    1880 F
                           1578
                Margaret
    1880 F
                Ida
                           1472
    1880 F
                Alice
 8
                           1414
                            1320
    1880 F
                Bertha
    1880 F
                           1288
                Sarah
10
# ... with 1,858,679 more rows
```

```
babynames %>%

select(-prop) %>%

filter(!is.na(n))
```

```
# A tibble: 1,858,689 x 4
    year sex
                name
   <dbl> <chr> <chr>
                          <int>
    1880 F
                           7065
                Mary
    1880 F
               Anna
                           2604
    1880 F
                           2003
                Emma
    1880 F
                           1939
                Elizabeth
    1880 F
                           1746
                Minnie
    1880 F
                           1578
                Margaret
    1880 F
                Ida
                           1472
    1880 F
                Alice
                           1414
                           1320
    1880 F
                Bertha
    1880 F
                Sarah
                           1288
10
# ... with 1,858,679 more rows
```

```
babynames %>%
  select(-prop) %>%
  filter(!is.na(n)) %>%
  group_by(year, sex)
```

```
# A tibble: 1,858,689 x 4
          year, sex [272]
# Groups:
    year sex
               name
   <dbl> <chr> <chr>
                          <int>
    1880 F
                           7065
               Mary
    1880 F
                           2604
               Anna
    1880 F
                           2003
               Emma
    1880 F
                           1939
               Elizabeth
    1880 F
                           1746
               Minnie
    1880 F
                           1578
               Margaret
    1880 F
                           1472
               Ida
    1880 F
               Alice
                           1414
                           1320
    1880 F
               Bertha
    1880 F
               Sarah
                           1288
10
# ... with 1,858,679 more rows
```

```
babynames %>%
  select(-prop) %>%
  filter(!is.na(n)) %>%
  group_by(year, sex) %>%
  summarise(N = sum(n))
```

```
# A tibble: 272 x 3
# Groups: year [?]
    year sex
   <dbl> <chr> <int>
   1880 F
                90992
    1880 M
               110490
    1881 F
                91953
    1881 M
               100743
   1882 F
               107848
   1882 M
               113686
    1883 F
               112318
    1883 M
               104627
               129020
   1884 F
   1884 M
               114443
10
# ... with 262 more rows
```

```
babynames %>%
  select(-prop) %>%
  filter(!is.na(n)) %>%
 group_by(year, sex) %>%
  summarise(N = sum(n)) \%>\%
 ggplot() +
    geom_line(mapping =
      aes(x = year,
          color = sex)
```



```
a b c d asq

1.00 a TRUE <int [3]> 1.00

2.00 b FALSE <lgl [1]> 1.41

3.14 c FALSE <int [1]> 1.77
```

```
a b c d asq

1.00 a TRUE <int [3]> 1.00

2.00 b FALSE <lgl [1]> 1.41

3.14 c FALSE <int [1]> 1.77
```

```
1.00 1.00 1.00 a TRUE <int [3]> 1.00 sqrt(2.00) 1.41 2.00 b FALSE <lgl [1]> 1.41 3.14 c FALSE <int [1]> 1.77
```

```
y \% > \% mutate(asq = )
                                  1.00 a TRUE <int [3]>
1.00 a TRUE <int [3]>
                                  2.00 b FALSE <lgl [1]>
2.00 b FALSE <lgl [1]>
3.14 c FALSE <int [1]>
                                  3.14 c FALSE <int [1]>
      1.00
                     1.00
                                         TRUE <int [3]
                                 3.14 c FALSE <int [1]> 1.77
       3.14
                     1.77
```

y %>% mutate(asq = sqrt(a))

^

works with tables

works with structure stored in a column (double vector)

```
y \% > \% mutate(dsq = )
                                                     dsq
                               1.00 a TRUE <int [3]>
1.00 a TRUE <int [3]>
                      2.00 b FALSE <lg1 [1]>
2.00 b FALSE <lgl [1]>
3.14 c FALSE <int [1]>
                               3.14 c FALSE <int [1]>
    <int [3]>
map(<lgl [1]>,
    <int [1]>
```

```
y \%>\% mutate(dsq = )
                                                  dsq
1.00 a TRUE <int [3]>
                             1.00 a TRUE <int [3]>
                    2.00 b FALSE <lgl [1]>
2.00 b FALSE <lgl [1]>
3.14 c FALSE <int [1]>
                             3.14 c FALSE <int [1]>
    <int [3]>
map(<lg1 [1]>, sqrt) < []>
    <int [1]>
```

```
y \% > \% mutate(dsq = )
                                              dsq
1.00 a TRUE 1, 2, 3
                            1.00 a TRUE <int [3]>
                    2.00 b FALSE <lgl [1]>
2.00 b FALSE TRUE
                            3.14 c FALSE <int [1]>
3.14 c FALSE
    <int [3]>
map(<lgl [1]>, sqrt) < []>
    <int [1]>
sqrt(c(1, 2, 3)) 1.00 1.41 1.73
sqrt(TRUE)
sqrt(0)
```

CC by RStudio

```
y \% > \% mutate(dsq = )
                                            dsq
                          1.00 a TRUE <int [3]>
1.00 a TRUE 1, 2, 3
                     2.00 b FALSE <lgl [1]>
2.00 b FALSE TRUE
                          3.14 c FALSE <int [1]>
3.14 c FALSE
    <int [3]>
                        <dbl [3]>
<int [1]>
                        <dbl [1]>
sqrt(c(1, 2, 3)) 1.00 1.41 1.73
sqrt(TRUE)
sqrt(0)
```

```
y \% > \% mutate(dsq = )
                                                     dsq
1.00 a TRUE 1, 2, 3
                               1.00 a TRUE <int [3]>
                         2.00 b FALSE <lgl [1]>
2.00 b FALSE TRUE
                               3.14 c FALSE <int [1]>
3.14 c FALSE
     <int [3]>
map(<lgl [1]>, sqrt)
     <int [1]>
sqrt(c(1, 2, 3))
sqrt(TRUE)
sqrt(0)
```

CC by RStudio

```
y \%>\% mutate(dsq = )
                                                                dsq
  1.00 a TRUE 1, 2, 3
                                      1.00 a TRUE <int [3]>
                                2.00 b FALSE <lgl [1]>
  2.00 b FALSE TRUE
                                      3.14 c FALSE <int [1]>
  3.14 c FALSE
       <int [3]>
  map(<lgl [1]>, sqrt)
       <int [1]>
  sqrt(c(1, 2, 3))
  sqrt(TRUE)
                               2.00 b FALSE <lgl [1]> <dbl [1]> 3.14 c FALSE <int [1]> <dbl [1]>
  sqrt(0)
CC by RStudio
```

y % > % mutate(dsq = map(d, sqrt))works with tables works with contents of list (atomic vectors) works with contents of column (list)

map() functions

map()

```
list
        exams
                 , mean, ...)
                                           exams
map(
                                         $student1
                                 mean(
       $student1
                                                                    result1
                                         $student2
                                 mean(
       $student2
                                                                    result2
                                         $student3,...)
                                 mean(
       $student3
                                                                    result3
                                         $student4,...)
                                 mean(
       $student4
                                                                    result4
                                         $student5,...)
                                 mean(
       $student5
                                                                    result5
```


map2()

pmap()

Map over three or more lists. Put the lists into a list of list whose names match argument names in the function.

pmap(list(exams,	extra	more), fun,)	exams	extra	more	
	\$student1	\$extra1	\$more1	fun(\$student1	\$extra1	\$more1	,)
	\$student2	\$extra2	\$more2	fun(\$student2	\$extra2	\$more2	,)
	\$student3	\$extra3	\$more3	fun(\$student3	\$extra3	\$more3	,)
	\$student4	\$extra4	\$more4	fun(\$student4	\$extra4	\$more4	,)
	\$student5	\$extra5	\$more5	fun(\$student5	\$extra5	\$more5	,)

map and walk functions

single list	two lists	n lists	returns results as
map()	map2()	pmap()	list
map_chr()	map2_chr()	pmap_chr()	character vector
map_dbl()	map2_dbl()	pmap_dbl()	double vector
map_int()	map2_int()	pmap_int()	integer vector
map_lgl()	map2_lgl()	pmap_lgl()	logical vector
map_df()	map2_df()	pmap_df()	data frame
walk()	walk2()	pwalk()	side effect

List Column Case Study

Babynames that appeared each year

```
everpresent <- babynames %>%
  group_by(name, sex) %>%
  summarise(years = n()) %>%
  ungroup() %>%
  filter(years == max(years))
```

babynames <- babynames %>%
semi_join(everpresent)

```
# A tibble: 136 x 5
joe <- babynames %>%
                                 year sex name
                                                           prop
  filter(name == "Joe",
                                <dbl> <chr> <chr> <int>
                                                          <dbl>
           sex == "M")
                                 1880 M
                                                    731 0.00617
                                            Joe
                                                    639 0.00590
                                 1881 M
                                            Joe
joe
                                                    739 0.00606
                                 1882 M
                                            Joe
                                                    607 0.00540
                                 1883 M
                                            Joe
                                 1884 M
                                                    759 0.00618
                                            Joe
                                                    681 0.00587
                                 1885 M
                                            Joe
                                                    759 0.00638
                                 1886 M
                                            Joe
                                 1887 M
                                                    685 0.00627
                                            Joe
                                 1888 M
                                                    789 0.00607
                                            Joe
                                1889 M
                                           Joe 708 0.00595
                             10
                             # ... with 126 more rows
```

```
joe <- babynames %>%
  filter(name == "Joe",
                                 0.008 -
          sex == "M")
joe %>%
  ggplot(mapping =
                               d 0.004 -
    aes(x = year,
         y = prop) +
                                 0.002 -
    geom_line() +
    geom_smooth(method = lm)
                                              year
```

What is the slope?
What is the R-squared? (fit)


```
joe_mod <- lm(prop ~ year, data = joe)
joe_mod
Call:
lm(formula = prop \sim year, data = joe)
Coefficients:
(Intercept)
                     year
  1.178e-01 -5.857e-05
```

```
joe_mod <- lm(prop ~ year, data = joe)
pluck(coef(joe_mod), "year")
[1] -5.857169e-05</pre>
```

```
pluck(coef(joe_mod), "year")
[1] -5.857169e-05
library(broom)
glance(joe_mod)
  r.squared adj.r.squared
                                  sigma statistic
                0.8574236 0.0009405581 812.8611 9.
1 0.8584798
```

 $joe_mod <- lm(prop ~ year, data = joe)$

```
joe_mod <- lm(prop ~ year, data = joe)</pre>
pluck(coef(joe_mod), "year")
[1] -5.857169e-05
library(broom)
pluck(glance(joe_mod), "r.squared")
[1] 0.8584798
```

babynames

```
# A tibble: 126,888 x 5
    year sex
                                 prop
               name
                             n
                         <int> <dbl>
   <dbl> <chr> <chr>
                          7065 0.0724
   1880 F
               Mary
    1880 F
                          2604 0.0267
               Anna
    1880 F
                          2003 0.0205
               Emma
                          1939 0.0199
    1880 F
               Elizabeth
    1880 F
               Minnie
                          1746 0.0179
   1880 F
                          1578 0.0162
               Margaret
    1880 F
                          1472 0.0151
               Ida
    1880 F
                          1414 0.0145
               Alice
                          1320 0.0135
    1880 F
               Bertha
   1880 F Sarah 1288 0.0132
10
# ... with 126,878 more rows
```

```
babynames %>%
  group_by(name, sex)
```

```
# A tibble: 126,888 x 5
            name, sex [933]
# Groups:
    year sex
               name
                                 prop
   <dbl> <chr> <chr>
                         <int> <dbl>
    1880 F
                          7065 0.0724
               Mary
    1880 F
                          2604 0.0267
               Anna
                          2003 0.0205
    1880 F
               Emma
                          1939 0.0199
    1880 F
               Elizabeth
    1880 F
               Minnie
                          1746 0.0179
    1880 F
                          1578 0.0162
               Margaret
    1880 F
                          1472 0.0151
               Ida
    1880 F
               Alice
                          1414 0.0145
    1880 F
                          1320 0.0135
               Bertha
    1880 F Sarah 1288 0.0132
10
# ... with 126,878 more rows
```

```
babynames %>%
 group_by(name, sex) %>%
  nest()
```

```
# A tibble: 933 x 3
                   data
             sex
   name
   <chr>
             <chr> <
                   <tibble [136 x 3]>
 1 Mary
            F
2 Anna
                   <tibble [136 x 3]>
             F
                   <tibble [136 x 3]>
 3 Emma
4 Elizabeth F
                   <tibble [136 \times 3]>
 5 Minnie
                   <tibble [136 x 3]>
             F
 6 Margaret
                   <tibble [136 × 3]>
 7 Ida
                   <tibble [136 x 3]>
 8 Alice
                   <tibble [136 x 3]>
 9 Bertha
                   <tibble [136 \times 3]>
10 Sarah F <tibble [136 x 3]>
```

... with 923 more rows

Sanity check: What is in one of these cells?

```
babynames %>%
  group_by(name, sex) %>%
  nest() %>%
  pluck("data") %>%
  pluck(1)
```

```
# A tibble: 136 x 3
    year n prop
   <dbl> <int> <dbl>
   1880 7065 0.0724
   1881 6919 0.0700
   1882 8148 0.0704
   1883 8012 0.0667
   1884
         9217 0.0670
   1885
         9128 0.0643
   1886
         9889 0.0643
    1887
         9888 0.0636
   1888 11754 0.0620
   1889 11648 0.0616
# ... with 126 more rows
```

```
babynames %>%
  group_by(name, sex) %>%
  nest() %>%
  mutate(
    model = map(data,
      ~lm(prop ~ year,
          data = .x)
```

```
# A tibble: 933 x 4
                                    model
                  data
            sex
  name
  <chr>
            <chr> <
                                    st>
1 Mary F
                  <tibble [136 × 3]> <S3: lm>
2 Anna F
                  <tibble [136 × 3]> <S3: lm>
           F
                  <tibble [136 × 3]> <S3: lm>
 3 Emma
4 Elizabeth F
                  <tibble [136 × 3]> <S3: lm>
                  <tibble [136 × 3]> <S3: lm>
 5 Minnie
                  <tibble [136 × 3]> <S3: lm>
 6 Margaret
                  <tibble [136 × 3]> <S3: lm>
 7 Ida
8 Alice F
                  <tibble [136 × 3]> <S3: lm>
                  <tibble [136 x 3]> <S3: lm>
9 Bertha
                  <tibble [136 × 3]> <S3: lm>
10 Sarah
# ... with 923 more rows
```

```
# A tibble: 933 x 5
babynames %>%
                                                                                         slope
                                                                           model
                                                          data
                                            name
                                                     sex
   group_by(name, sex) %>%
                                            <chr>
                                                                           st>
                                                                                         <dbl>
                                                    <chr> <list>
                                          1 Mary
                                                           <tibble [136 \times 3]> <S3: lm> -0.000577
   nest() %>%
                                          2 Anna
                                                           <tibble [136 \times 3] > <S3: lm > -0.000179
   mutate(
                                          3 Emma
                                                          <tibble [136 × 3]> <S3: lm> -0.0000657
                                          4 Elizabeth F
                                                         <tibble [136 \times 3]> <S3: lm> -0.0000725
      model = map(data,
                                          5 Minnie
                                                     F <tibble [136 \times 3]> <S3: lm> -0.0000966
                                          6 Margaret F
                                                         <tibble [136 \times 3]> <S3: lm> -0.000173
         ~lm(prop ~ year,
                                          7 Ida
                                                          <tibble [136 \times 3]> <S3: lm> -0.0000862
               data = .x)
                                          8 Alice F
                                                          <tibble [136 \times 3]> <S3: lm> -0.000110
                                          9 Bertha F
                                                          <tibble [136 \times 3] > <S3: lm > -0.0000948
      slope = map_dbl(model,
                                          10 Sarah
                                                          <tibble [136 × 3]> <S3: lm> 0.00000845
         ~pluck(coef(.x),
                                         # ... with 923 more rows
                    "year"))
```

```
# A tibble: 933 x 6
babymods <- babynames %>%
                                                                                      slope r_squared
                                                                          model
                                                           data
                                                      sex
                                              name
                                                                                               <dbl>
                                              <chr>
                                                      <chr> <list>
                                                                          t>
                                                                                      <dbl>
   group_by(name, sex) %>%
                                                           <tibble [136 × 3]> <S3: lm> -0.000577
                                             1 Mary
                                                                                             0.914
   nest() %>%
                                            2 Anna
                                                           <tibble [136 x 3]> <S3: lm> -0.000179
                                                                                             0.708
                                                           <tibble [136 x 3]> <S3: lm> -0.0000657
                                            3 Emma
                                                                                             0.230
   mutate(
                                            4 Elizabeth F
                                                           <tibble [136 × 3]> <S3: lm> -0.0000725
                                                                                             0.704
                                            5 Minnie
                                                         <tibble [136 × 3]> <S3: lm> -0.0000966
                                                                                             0.644
      model = map(data,
                                            6 Margaret F
                                                          <tibble [136 \times 3]> <S3: lm> -0.000173
                                                                                             0.803
                                                           <tibble [136 × 3]> <S3: lm> -0.0000862
         \simlm(prop \sim year,
                                            7 Ida
                                                                                             0.719
                                            8 Alice
                                                           <tibble [136 × 3]> <S3: lm> -0.000110
                                                                                             0.901
                data = .x)),
                                            9 Bertha
                                                           <tibble [136 x 3]> <S3: lm> -0.0000948
                                                                                             0.756
                                           10 Sarah
                                                           <tibble [136 × 3]> <S3: lm> 0.00000845
                                                                                             0.00705
      slope = map_dbl(model,
                                            # ... with 923 more rows
         ~pluck(coef(.x),
                     "year")),
      r_squared = map_dbl(model,
         ~pluck(glance(.x), "r.squared")))
```

A tibble: 933 x 6

""	· CLDDLC.									
	name	sex	data				model	L	slope	r_squared
	<chr>></chr>	<chr>></chr>					list	t>	<dbl></dbl>	<dbl></dbl>
1	Mary	F	<tibble< td=""><td>[136</td><td>X</td><td>3]></td><td><s3:< td=""><td>lm></td><td>-0.000577</td><td>0.914</td></s3:<></td></tibble<>	[136	X	3]>	<s3:< td=""><td>lm></td><td>-0.000577</td><td>0.914</td></s3:<>	lm>	-0.000577	0.914
2	Anna	F	<tibble< td=""><td>[136</td><td>X</td><td>3]></td><td><s3:< td=""><td>lm></td><td>-0.000179</td><td>0.708</td></s3:<></td></tibble<>	[136	X	3]>	<s3:< td=""><td>lm></td><td>-0.000179</td><td>0.708</td></s3:<>	lm>	-0.000179	0.708
3	Emma	F	<tibble< td=""><td>[136</td><td>X</td><td>3]></td><td><s3:< td=""><td>lm></td><td>-0.0000657</td><td>0.230</td></s3:<></td></tibble<>	[136	X	3]>	<s3:< td=""><td>lm></td><td>-0.0000657</td><td>0.230</td></s3:<>	lm>	-0.0000657	0.230
4	Elizabeth	F	<tibble< td=""><td>[136</td><td>X</td><td>3]></td><td><s3:< td=""><td>lm></td><td>-0.0000725</td><td>0.704</td></s3:<></td></tibble<>	[136	X	3]>	<s3:< td=""><td>lm></td><td>-0.0000725</td><td>0.704</td></s3:<>	lm>	-0.0000725	0.704
5	Minnie	F	<tibble< td=""><td>[136</td><td>X</td><td>3]></td><td><s3:< td=""><td>lm></td><td>-0.0000966</td><td>0.644</td></s3:<></td></tibble<>	[136	X	3]>	<s3:< td=""><td>lm></td><td>-0.0000966</td><td>0.644</td></s3:<>	lm>	-0.0000966	0.644
6	Margaret	F	<tibble< td=""><td>[136</td><td>×</td><td>3]></td><td><s3:< td=""><td>lm></td><td>-0.000173</td><td>0.803</td></s3:<></td></tibble<>	[136	×	3]>	<s3:< td=""><td>lm></td><td>-0.000173</td><td>0.803</td></s3:<>	lm>	-0.000173	0.803
7	Ida	F	<tibble< td=""><td>[136</td><td>X</td><td>3]></td><td><s3:< td=""><td>lm></td><td>-0.0000862</td><td>0.719</td></s3:<></td></tibble<>	[136	X	3]>	<s3:< td=""><td>lm></td><td>-0.0000862</td><td>0.719</td></s3:<>	lm>	-0.0000862	0.719
8	Alice	F	<tibble< td=""><td>[136</td><td>X</td><td>3]></td><td><s3:< td=""><td>lm></td><td>-0.000110</td><td>0.901</td></s3:<></td></tibble<>	[136	X	3]>	<s3:< td=""><td>lm></td><td>-0.000110</td><td>0.901</td></s3:<>	lm>	-0.000110	0.901
9	Bertha	F	<tibble< td=""><td>[136</td><td>×</td><td>3]></td><td><s3:< td=""><td>lm></td><td>-0.0000948</td><td>0.756</td></s3:<></td></tibble<>	[136	×	3]>	<s3:< td=""><td>lm></td><td>-0.0000948</td><td>0.756</td></s3:<>	lm>	-0.0000948	0.756
10	Sarah	F	<tibble< td=""><td>[136</td><td>×</td><td>3]></td><td><s3:< td=""><td>lm></td><td>0.00000845</td><td>0.00705</td></s3:<></td></tibble<>	[136	×	3]>	<s3:< td=""><td>lm></td><td>0.00000845</td><td>0.00705</td></s3:<>	lm>	0.00000845	0.00705

with 923 more rows

Which names increased the most?

```
babymods %>%
  arrange(desc(slope)) %>%
  head(5) %>%
  unnest(data) %>%
  ggplot(mapping = aes(x = year, y = prop)) +
    geom_line(mapping = aes(color = name))
```


Which names were the least linear?

```
babymods %>%
  arrange(r_squared) %>%
  head(5) %>%
  unnest(data) %>%
  ggplot(mapping = aes(x = year, y = prop)) +
    geom_line(mapping = aes(color = name))
```


The tao of tidy

"Data are not just numbers, they are numbers with a context."

- George Cobb and David Moore (1997)

Two types of context

1. Other values of the **same variable** (all of them) sum(babynames\$n)

194086403

Two types of context

- 1. Other values of the same variable (all of them)
- 2. Other values of the same observation

$$prop = n x 100?$$

Tidy Data

Each variable is in its own column

Each observation, or case, is in its own row

The tidyverse creates a system for working with tidy data

List Columns

You can use this system to organize more than numbers.

How to work with List Columns

August 2018

Garrett Grolemund

"cell" contents

Sepal.L	Sepal.W	Petal.L	Petal.W
5.1	3.5	1.4	0.2
4.9	3.0	1.4	0.2
4.7	3.2	1.3	0.2
4.6	3.1	1.5	0.2
5.0	3.6	1.4	0.2

n_iris\$data[[1]]

Sepal.L	Sepal.W	Petal.L	Petal.W
7.0	3.2	4.7	1.4
6.4	3.2	4.5	1.5
6.9	3.1	4.9	1.5
5.5	2.3	4.0	1.3
6.5	2.8	4.6	1.5

nested data frame

n_iris

Species

versicolor

data

<tibble [50 x 4]>

<tibble [50 x 4]>

<tibble [50 x 4]>

n_iris\$data[[2]]

Sepal.L	Sepal.W	Petal.L	Petal.W
6.3	3.3	6.0	2.5
5.8	2.7	5.1	1.9
7.1	3.0	5.9	2.1
6.3	2.9	5.6	1.8
6.5	3.0	5.8	2.2

n_iris\$data[[3]]