Name:

A quadratic function is a polynomial of degree two.

The standard form of a quadratic function is

$$f(x) = ax^2 + bx + c,$$

where a, b, and c are real numbers. The graph is a parabola which opens upward if a > 0 and opens downward if a < 0. The y-intercept is the point (0, f(0)), and we see that f(0) = c. The roots of the function are the values of x such that f(x) = 0. The quadratic formula says that f(x) = 0 if and only if

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}.$$

The discriminant of the quadratic function is

$$\Delta = b^2 - 4ac;$$

this determines the number of real roots. There are three cases:

- (a) if $b^2 4ac > 0$, there are two real roots;
- (b) if $b^2 4ac = 0$, there is one real root;
- (c) if $b^2 4ac < 0$, there are no real roots.

The x-intercepts (if any) are the points (x,0), where x is a real root.

The *shifted form* of a quadratic function is

$$f(x) = a(x - h)^2 + k,$$

where a, h, and k are real numbers. The shifted form tells how the graph of f(x) is obtained from the graph of x^2 , as follows:

- (a) shift horizontally by h;
- (b) stretch vertically by |a|;
- (c) reflect across the x-axis if a is negative;
- (d) shift vertically by k.

The point (h, k) where the graph turns around is called the *vertex*. Thus k is the *minimum value* of the function if a > 0, and is the *maximum value* of the function is a < 0.

We can convert from standard form to shifted form by completing the square, which leads to:

$$h = -\frac{b}{2a}$$
 and $k = c - \frac{b^2}{4a}$.

We can convert from shifted form to standard form by squaring and simplifying, which leads to:

$$b = -2ah$$
 and $c = ah^2 + k$.

Example: $f(x) = 4x - 5 + x^2$

Standard Form: $x^2 + 4x - 5$

Shifted Form: $(x+2)^2 - 9$

a: 1 **b:** 4 **c:** -5 **h:** -2 **k:** -9

Discriminant: 36

Roots: x = -5 and x = 1

y-intercept: (0,-5)

x-intercept(s): (-5,0) and (1,0)

Vertex: (-2, -9)

Problem 1: $f(x) = x^2 - 6x + 8$

Standard Form:

Shifted Form:

a: b: c: h: k:

Discriminant:

Roots:

y-intercept:

x-intercept(s):

Vertex:

Problem 2: $f(x) = (x+2)^2 - 5$

Standard Form:

Shifted Form:

a: b: c: h: k:

Discriminant:

Roots:

y-intercept:

x-intercept(s):

Vertex:

