Data Mining

Prof. Dr. Stefan Kramer Johannes Gutenberg-Universität Mainz

Outline

- A brief introduction to data mining and knowledge discovery in databases
- Organization of course
- A brief look at the WEKA workbench
- Itemsets and APriori

A Brief Introduction to Data Mining and KDD

Knowledge Discovery in Databases

"... is the process of identifying valid, novel, potentially useful and ultimately understandable structure in data."

(Fayyad & Uthurusamy, 1996)
Structure = pattern or model

Knowledge Discovery in Databases and Data Mining

Data Mining

- Knowledge Discovery in Databases (KDD)
 (Fayyad 96): "KDD is the non-trivial
 process of identifying valid,
 novel, potentially useful, and ultimately
 understandable patterns in data."
- Data Mining: data analysis step within the KDD process

Machine Learning

- Learning = improving with experience at some task
 - Improve on task T
 - With respect to performance measure P
 - Based on experience E.
- Learn to play checkers:
 - T: Play checkers
 - P: % of games won
 - E: opportunity to play against oneself

Machine Learning

- Learning to classify examples (e.g., gene expression profiles into two subtypes):
 - T: Classifying examples
 - P: % of examples classified correctly
 - E: Training set of examples to learn from
- Machine learning algorithms (such as for classification) often used in Data Mining

Alternative Definitions...

Heikki Mannila:

- "Knowledge Discovery in Databases is finding the joint probability distribution"
- "Data Mining is the technology of fast counting"

Descriptive Data Mining, Predictive Data Mining

Organization of Course

Staff / Location / Time

- Staff: Andreas Karwwath, Jörg WickerLocation: Computerpool des Instituts für Informatik
- Time: Thursday, 14:15-17:45
- Prerequisites (things that make life easier): programming skills in Java, a scripting language (Python, Perl, ...), graph theory, logic programming, basic probability theory, ...

• Format:

- mix of traditional lectures/exercises/tutorials and flip teaching: you are asked to read book chapter or articles/view video at home and come to lab prepared; we then have a few hours to talk and practice ©
- why?

Staff / Location / Time

• Format (continued):

- Prüfungszulassung: in the sessions, you can gather points which are needed for the admission to the final exam. 50 % of the points and at least 25 % of the points of each session are required to gain admission.
- groups of three students can work on projects
- course will involve programming (prototyping), experimenting, ...
- sessions: recapitulating material for preparation, presentation of tasks/exercises, work on tasks/exercises, submission, (breaks)
- questions?
- Content: focus on 4 topics

I. Pattern Mining

q(p, D) ... interestingness predicate: a pattern p from L is interesting wrt. database D what is interesting? frequent, non-redundant, class correlated, structurally diverse, ...

II. Clustering

III. Graph Mining

- Graph database D (graphs (b) to (d))
- Find all subgraphs (patterns) that occur in at least two of the three graphs (examples)
- Example subgraph pattern p shown in (a)₁₆

III. Graph Mining

IV. Rule Learning

• First rule:

```
if Astigmatism = Yes and
  Tear production rate = Normal and
  Spectacle prescription = Myope
then
  Recommendation = Hard
```

• Second rule:

```
if Age = Young and
   Astigmatism = Yes and
   Tear production rate = Normal
then
   Recommendation = Hard
```

Timeline

27.10.	Introduction		
03.11.	Pattern Mining	15.12.	Graph Mining
10.11.	Pattern Mining	22.12.	Graph Mining
17.11.	Pattern Mining	12.01.	Graph Mining
24.11.	Clustering	19.01.	Rule Learning
01.12.	Clustering	26.01.	Rule Learning
08.12.	Clustering	02.02.	Rule Learning

22.03. Exam

Principles of Data Mining, David Hand, Heikki Mannila, Padhraic Smyth, MIT Press, 2001

- 1 Introduction
- 2 Measurement and Data
- 3 Visualizing and Exploring Data
- 4 Data Analysis and Uncertainty
- 5 A Systematic Overview of Data Mining Algorithms
- 6 Models and Patterns
- 7 Score Functions for Data Mining Algorithms
- 8 Search and Optimization Methods
- 9 Descriptive Modeling
- 10 Predictive Modeling for Classification
- 11 Predictive Modeling for Regression
- 12 Data Organization and Databases
- 13 Finding Patterns and Rules
- 14 Retrieval by Content

Data Mining: Practical Machine Learning Tools and Techniques with Java Implementions, Ian H. Witten, Eibe Frank, Morgan Kaufmann, 2011

- Third edition
- Parts on clustering and rule learning. Also relevant for exercises (WEKA workbench).

Data Mining: Concepts and Techniques, Jiawei Han, Micheline Kamber, Jian Pei, Morgan Kaufmann, 2011

- Third edition
- Parts on pattern mining/association rule mining and clustering

Machine Learning, Tom Mitchell, McGraw Hill, 1997

- 1. Introduction
- 2. Concept Learning and the Generalto-Specific Ordering
- 3. Decision Tree Learning
- 4. Artificial Neural Networks
- 5. Evaluating Hypotheses
- 6. Bayesian Learning
- 7. Computational Learning Theory
- 8. Instance-Based Learning
- 9. Genetic Algorithms
- 10. Learning Sets of Rules
- 11. Analytical Learning
- 12. Combining Inductive and Analytical Learning
- 13. Reinforcement Learning

S. Dzeroski, N. Lavrac (eds.), Relational Data Mining, Springer, 2001

- (1) introduction
- (2) decision tree learning
- (3) rule learning
- (4) association rule mining
- (5) distance-based learning
- (6) subgroup discovery
- (7) probabilistic graphical models ... in first-order logic/for relational data
- (8) propositionalization

Statistical Relational Learning

L. Getoor,
B. Taskar (eds.),
Statistical
Relational
Learning,
MIT Press, 2007.

ILP and MRDM Textbook

Luc De Raedt,
From Inductive
Logic Programming
to Multi-Relational
Data Mining,
Springer, 2008.

Tools

- Generally:
 - WEKA workbench
 - Stand-alone tools to be extended (e.g., implementing APriori, finding so-called frequent itemsets, borders, free and closed sets ...)
- Pattern mining: WEKA, stand-alone tools, ...
- Clustering: WEKA, R, ...
- Graph mining: gSpan reimplementation, NetKit-SRL

Tools

- Rule learning:
 - WEKA
 - FOIL (C implementation)
 - ProbLog

Questions?

A Brief Look at the WEKA Workbench

Descriptive Data Mining, Predictive Data Mining

Input Format

Itemsets and APriori

Example Microarray Data

	ARG1	ARG4	ARO3	 LYS1
1	1	1	1	 0
2	1	1	1	 1
3	0	1	1	 1
4	0	1	0	 1
5	1	1	1	 0
6	0	0	0	 0
7				

Before data mining step: data cleaning, sampling, discretization, feature selection, etc.

Another Representation

	ARG1	ARG4	ARO3	 LYS1
1	1	1	1	 0
2	1	1	1	 1
3	0	1	1	 1
4	0	1	0	 1
5	1	1	1	 0
6	0	0	0	 0
7				

Association Rule Mining

Table in relational database

	ARG1	ARG4	ARO3	 LYS1
1	1	1	1	 0
2	1	1	1	 1
3	0	1	1	 1
4	0	1	0	 1
5	1	1	1	 0
6	0	0	0	 0
7				

Association rules

"IF ARG1 and HIS5
THEN LYS1"

support: 54 %

confidence: 93 %

"IF YOL118C THEN ARG1"

support: 53 %

confidence: 88 %

Frequent Itemsets and Association Rules

60 % of observations: ARO3 and LYS1 upregulated

80 % of observations: ARG1 upregulated

40 % of observations: ARO3, LYS1 and ARG1

upregulated

"IF ARO3 and LYS1 THEN ARG1"

support: 40 %

confidence: 67 %

ARO3 and LYS1 vs. ARG1

Two-Phased Algorithm

- First phase: find frequent itemsets (e.g., {ARO3, LYS1}, {ARG1}, {ARO3, LYS1, ARG1})
- Second phase: construct association rules (e.g., if {ARO3, LYS1} then {ARG1})

"IF ARO3 and LYS1 THEN ARG1"

support: 40 %

confidence: 67 %

{ARO3, LYS1} vs. {ARG1}

Support and Confidence

"IF ARO3 and LYS1 THEN ARG1"

support: 40 %

confidence: 67 %

{ARO3, LYS1} vs. {ARG1}

"IF Y THEN X"

Support: p(X,Y)

Confidence: $p(X|Y) = \frac{p(X,Y)}{p(Y)}$

Frequent Pattern Discovery

Input:

- table D in relational database
- minimum support threshold: minSupport

Output:

 all patterns (here: itemsets) p for which freq(p, D) ≥ minSupport

How?

APriori Algorithm (Agrawal et al., 1993)

```
i := 1
C_i := \{\{A\} \mid A \text{ is an item}\}
while C_i \neq \{\} do
   % candidate testing (database scan)
   for each set in C<sub>i</sub> test whether it is frequent
    let F<sub>i</sub> be the collection of frequent sets from C<sub>i</sub>
   % candidate formation
    let C_{i+1} be those sets of size i+1 such that all
   subsets are in F<sub>i</sub> (frequent)
   i := i + 1
return \cup F_i
```

Candidate Formation

- By joining: union of pairs of frequent itemsets from the previous level
- e.g., {A,B} and {B,C} gives {A,B,C}
- However, {A, C} might still be infrequent
- Thus, additional pruning step checking whether all subsets are known to be frequent

Apriori - Example

min_support = 2

Itemset

Main Ideas of APriori

- Each iteration consists of two phases
 - candidate formation
 - candidate testing (database scan)
- Minimize database scans for each tuple t do for each candidate itemset i do

•••

 Avoid unnecessary tests on the database (test only those patterns that can, knowing the previous levels, be frequent)

Patterns (Itemsets) and (Association) Rules

- From frequent itemsets c and c ∪ {i} derive if c then {i}
- Start with the maximally specific frequent itemsets
- Variants possible: only one item in the RHS (very common assumption), only one item in the LHS (not very common)
- Generally: patterns and rules frequent patterns p, q such that p ≤ q if p then q (with some confidence)

Formalization of Data Mining

q(p, D) ... interestingness predicate: a pattern p from L is interesting wrt. database D what is interesting? frequent, non-redundant, class correlated, structurally diverse, ...

Formalization of Data Mining

- Simple formalization/definition of data mining (Mannila & Toivonen, 1997)
- Language L of patterns p
- Database D
- Interestingness predicate q
- Find a theory of the data:
 Th(L, D, q) = {p ∈ L | q(p,D) is true}

Assignment

 Read J. Han et al., chapter 6: Mining Frequent Patterns, Associations, and Correlations: Basic Concepts and Methods, 6.1-6.2.3