Math 3100

Sample Exam 3 – Version 1

No calculators. Show your work. Give full explanations. Good luck!

- 1. (4 points) Explain why there exist no examples of the following:
 - (a) A continuous function on [0,1] with range equal to (0,1).
 - (b) A continuous function on [0,1] with range equal to $[0,1] \cap \mathbb{Q}$
- 2. (8 points) Evaluate the following infinite series

(a)
$$\sum_{n=1}^{\infty} \frac{n}{4^n}$$

(a)
$$\sum_{n=1}^{\infty} \frac{n}{4^n}$$
 (b) $\sum_{n=1}^{\infty} \frac{(-1)^n}{n4^n}$

- 3. (14 points)
 - (a) i. Find the sixth order Maclaurin polynomial for the function

$$f(x) = \frac{x^2}{2 + x^2}$$

- ii. Without differentiating find the value of $f^{(6)}(0)$.
- (b) Let $P_3(x)$ denote the third order Taylor polynomial centered at $x_0 = 1$ of $f(x) = \log x$.
 - i. Find $P_3(x)$.
 - ii. Give an estimate for how well $P_3(1.5)$ approximates $\log(1.5)$.
- i. Carefully state the Lagrangian Remainder Estimate for Maclaurin series.
 - ii. Find a polynomial that approximates e^x to within 10^{-3} for all $|x| \le 1/2$.
- 4. (14 points)
 - (a) Carefully state what it mean to say that a function $f: \mathbb{R} \to \mathbb{R}$ is differentiable at x_0 and prove that if f is differentiable at x_0 , then f is continuous at x_0 .

(b) Let
$$h(x) = \begin{cases} x^2, & x \in \mathbb{Q} \\ 0, & x \notin \mathbb{Q} \end{cases}$$

- i. Prove that h is discontinuous at all $x \neq 0$.
- ii. Prove that h is differentiable at x = 0.
- iii. What can you say about the continuity of h at x=0 and the differentiability of h at $x\neq 0$?
- (c) Let $f:[a,b]\to\mathbb{R}$.

Prove that if f has a minimum at a point $c \in (a, b)$, and if f'(c) exists, then f'(c) = 0.

- 5. (10 points) Let $h_n(x) = \frac{x}{(1+x)^{n+1}}$.
 - (a) Prove that h_n converges uniformly to 0 on $[0, \infty)$.
 - (b) i. Verify that

$$\sum_{n=0}^{\infty} h_n(x) = \begin{cases} 1 \text{ if } x > 0\\ 0 \text{ if } x = 0 \end{cases}$$

- ii. Does $\sum_{n=0}^{\infty} h_n$ converge uniformly on $[0, \infty)$?
- (c) Prove that $\sum_{n=0}^{\infty} h_n$ converges uniformly on $[a, \infty)$ for any a > 0.

Hint: Recall that the Binomial Theorem implies $(1+x)^{n+1} \geq \frac{n(n+1)}{2}x^2$ for all $x \geq 0$.