Software Requirements Specification

for

AI Based Career Counselling and Career Transition Recommender System

Version 1.1

Prepared by

FYP-SE-31

Fizza Mazhar 21-SE-017 21-SE-017@Student.hitecuni.edu.pk Asad Shah 21-SE-021 21-SE-021@Student.hitecuni.edu.pk

Instructor: Miss Amber Urooj

Course: FYP

Teaching Assistant: Miss Fatima Rani

Date: 19-12-2024

Contents

Contents

1	Intr	oduction	1
	1.1	Document Purpose	1
	1.2	Product Scope	2
	1.3	Intended Audience and Document Overview	2
	1.4	Definitions, Acronyms and Abbreviations	3
	1.5	Document Conventions	4
	1.6	References and Acknowledgements	5
2	Ove	erall Description	6
	2.1 Pr	oject Overview	6
	2.3 D	esign and Implementation Constraints	8
	2.3.	1 Hardware Limitations	8
	2.3.	2 Technologies and Tools	8
	2.3.	3 Interfaces	8
	2.3.	4 Programming Standards	8
	2.3.	.5 Language and Protocols	8
	2.3.	.6 Security Considerations	9
	2.3.	7 Design Conventions	9
	2.3.	8 Parallel Operations	9
	2.4 A	ssumptions and Dependencies	9
3	Spe	ecific Requirements	10
	3.1 Ex	xternal Interface Requirements	10
	3.1.	1 User Interfaces	10
	3.1.	2 Hardware Interfaces	14
	3.1.	3 Software Interfaces	14
	3.2 Fu	unctional Requirements	15
	3.2.	1 F1: User Registration and Login	15
	3.2.	2 F2: Data Input and Validation	15
	3.2.	3 F3: Field Recommendation	15
	3.2.	4 F4: Interest Finding Chatbot	15

	3.2.5 F5: Aggregate Calculation	16
	3.2.6 F6: University Recommendation	16
	3.2.7 F7: Trend Visualization	16
	3.2.8 F8: Dashboard for Insights	16
	3.2.9 F9: Search and Filter Options	16
	3.2.10 F10: User-Friendly Interface	17
3	.3 Use Case Model	17
	3.3.1 Use Case # 1.1	17
	3.3.2 Use Case # 1.2	18
	3.3.3 Use Case # 1.3	19
	3.3.4 Use Case # 2.1	20
	3.3.5 Use Case # 2.2	21
	3.3.6 Use Case # 2.3	22
	3.3.7 Use Case # 2.4	23
	3.3.8 Use Case # 3.1	24
	3.3.9 Use Case # 3.2	25
	3.3.10 Use Case # 4	26
	3.3.10 Use Case # 5.1	27
	3.3.11 Use Case # 5.2	28
	3.3.12 Use Case # 6.1	29
	3.3.13 Use Case # 6.2	30
	3.3.14 Use Case # 7.1	31
	3.3.15 Use Case # 7.2	32
	3.3.16 Use Case # 8.1	33
	3.3.17 Use Case # 8.2	34
	3.3.18 Use Case # 9.1	35
	Other Non-functional Requirements	36
4	.1 Performance Requirements	36
	4.1.1 Response Time	36
	4.1.2 Concurrent Users	36
	4.1.3 Data Processing.	36
	4.1.4 Dashboard Loading	36

4

4.1.5 Database Query Performance	36
4.1.6 Login and Signup	36
4.1.7 Aggregate Calculation	37
4.1.8 Trend Visualization	37
4.1.9 University Search and Filter	37
4.1.10 Peak Load	37
4.1.11 Scalability	37
4.1.12 Data Transfer	37
4.2 Safety and Security Requirements	37
4.2.1 Data Integrity	38
4.2.2 Safeguards Against Unauthorized Actions	38
4.2.3 System Downtime Protection	38
4.2.4 Backup and Recovery	38
4.2.5 User Authentication	38
4.2.6 Access Control	38
4.2.7 Protection Against Common Attacks	39
4.2.8 User Privacy	39
4.2.9 Audit Logs	39
4.3 Software Quality Attributes	39
4.3.1 Reliability	39
4.3.2 Usability	40
4.3.3 Maintainability	40
4.3.4 Adaptability	40
5 Design Requirements	41
5.1 High Level Design	41
5.1.1 Abstract Design	41
5.1.2 Design oblige Architecture Patterns	42
5.2 Structural Design	43
5.2.1 Class Diagram	43
5.2.2 Component Diagram	44
5.2.3 Data Flow Diagram	44
5.2.4 Graphical User Interface	46

	5.3 Behavioral Diagram	49
	5.3.1 Use Case Diagram	49
	5.3.2 Sequence Diagram	51
	5.3.3 State Machine Diagram	53
6	Data Design and Relationships	55
	6.1 Database Schema	55
	6.1.1 User Table	55
	6.1.2 Academic Details Table	56
	6.1.3 Recommendations Table	56
	6.1.4 Trends Table	56
	6.2 Entity Relationship Diagram	57
	6.3 Data Dictionary Diagram	58
7	Software Planning and Timeline	59
	7.1 Work Breakdown Structure	59
	7.2 Milestones and Deliverables	63
	7.2.1 Milestone 1: Planning and Research	63
	7.2.2 Milestone 2: Backend Development	64
	7.2.3 Milestone 3: Frontend Development	65
	7.2.4 Milestone 4: Data Visualization and Insights	66
	7.2.5 Milestone 5: Testing and Validation	66
	7.2.6 Milestone 6: Deployment and Launch	67
	7.2.7 Milestone 7: Post-Launch Activities	67
	7.3 Detailed Baseline Plan	68
8	Quality Assurance Plan	70
	8.1 Testing Requirements	70
	8.1.1 Functional Testing	70
	8.1.2 Performance Testing	70
	8.1.3 Security Testing	71
	8.1.4 Usability Testing	71
	8.1.5 Integration Testing	71
	8.1.6 System Testing	72
	8.1.7 Regression Testing	72

8.1.8 User Acceptance Testing (UAT)	72
8.2 Acceptance Criteria	72
8.2.1 User Registration and Login	72
8.2.2 Data Input and Validation	73
8.2.3 Field Recommendation	73
8.2.4 University Recommendation	73
8.2.5 Trend Analysis and Visualization	74
8.2.6 Comparison Tools	74
8.2.7 Chatbot Interaction	75
8.2.8 Usability	75
8.2.9 System Performance	75
8.2.10 Security	76
8.2.11 Integration	76
8.2.12 User Feedback and Testing	76
8.2.13 Deployment	77
8.2.14 Post-Launch Monitoring	77
8.3 Quality Assurance Plan	77
8.3.1 Introduction	77
8.3.2 Quality Objectives	77
8.3.3 Scope of QA	78
8.3.4 Roles and Responsibilities	78
8.3.5 Quality Assurance Processes	78
8.3.6 Testing Strategy	79
8.3.7 Defect Management	81
8.3.8 Metrics and Reporting.	82
8.3.9 Tools and Resources	82
8.3.10 Risk Management	82
8.3.11 Continuous Improvement	82
8.3.12 Approval and Sign-off	83
8.4 Planned Test Suites and Test Cases	83
8.4.1 Test Suite: User Registration and Login	83
8.4.2 Test Suite: Data Input and Validation	84

8.4.3 Test Suite: Recommendation System	84
8.4.4 Test Suite: Dashboard and Trend Visualization	85
8.4.5 Test Suite: Integration Testing	85
8.4.6 Test Suite: Performance Testing	85
8.4.7 Test Suite: Security Testing	86
8.4.8 Test Suite: System Workflow Testing	86
8.4.9 Test Suite: Post-Deployment Testing	86

List of Tables

Table 1: Document versions	X
Table 2: Register user use case	17
Table 3: Login case	18
Table 4: Google auth use case	19
Table 5: input academic data use case	20
Table 6: Expected marks use case	21
Table 7: Select stream use case	22
Table 8: Validate input use case	23
Table 9: Recommend field use case	24
Table 10: Recommend interest based use case	25
Table 11: Chatbot use case	26
Table 12: Calculation use case	27
Table 13: Aggregate use case	28
Table 14: Recommendation aggregate based use case	29
Table 15: University details use case	30
Table 16: Display trends use case	31
Table 17: Comparison use case	32
Table 18: Personalized recommendation use case	33
Table 19: Visualization use case	34
Table 20: Filtration use case	35
Table 21: User table	55
Table 22: Academic details table	56
Table 23: Recommendation table	56
Table 24: Trends table	56
Table 25: University table	57
Table 26: Roles and Responsibilities	78
Table 27: Risk and Mitigation	
Table 28: Test Suit 1 User Registration and Login	83
Table 29: Test Suite Data Input and Validation	
Table 30: Test Suite Recommendation System	
Table 31: Test Suite Dashboard and Trend Visualization	85
Table 32: Test Suite for Integration Testing	85
Table 33: Test Suit Performance Testing	
Table 34: Test Suit Security Testing	
Table 35:Test Suit System Workflow	
Table 36: Test suit Post Deployment Testing	
Table 37: Appendix A - Data Dictionary	
Table 38: Appendix B - Group Log	

List of Figures

Figure 1: System workflow	7
Figure 2: Landing page	10
Figure 3: Home page	11
Figure 4: Dashboard	11
Figure 5: Analytics page	12
Figure 6: About us page	13
Figure 7: Contact us page	13
Figure 8: Abstract design	41
Figure 9: Layered Architecture Pattern	42
Figure 10: Class Diagram	43
Figure 11: Component Diagram	44
Figure 12: Context level DFD	44
Figure 13: Level 1 DFD	45
Figure 14: Level 2 DFD	45
Figure 15: GUI Landing page	46
Figure 16: GUI Home page	47
Figure 17: GUI Dashboard	47
Figure 18: GUI Trends Analytics	48
Figure 19: GUI About us page	48
Figure 20: GUI Connect us page	49
Figure 21: Use Case Diagram	50
Figure 22: User registration	51
Figure 23: User login and forgot password	52
Figure 24: Input Data and University Recommendation	52
Figure 25: Trend analytics	53
Figure 26: Comparison analytics	53
Figure 27: State Machine Diagram	54
Figure 28: Entity Relationship Diagram	57
Figure 29: Data Dictionary Diagram	58
Figure 30: Work Breakdown Structure	59
Figure 31: Planning and Research WBS	60
Figure 32: Frontend Development WBS	61
Figure 33: Backend Development WBS	61
Figure 34: Data Visualization and Insights WBS	62
Figure 35: Testing and Validation WBS	62
Figure 36: Deployment and Launch, Post Launch Activities WBS	63
Figure 37: Milestone 1Planning and Research	
Figure 38: Milestone 2 Backend Development	65
Figure 39: Milestone 3 Frontend Development	65
Figure 40: Data Visualization and Insights	66
Figure 41: Testing and Validation	

Figure 42: Deployment and Launch	67
Figure 43: Milestone 7 Post Launch Activities	68
Figure 44: Baseline Plan part 1	68
Figure 45: Baseline Plan part 2	
Figure 46: Baseline Plan part 3	

Revisions

Table 1 shows the revision of document for version controlling.

Table 1: Document versions

Version	Primary Author(s)	Description of Version	Date Completed
Version 0.1	Fizza Mazhar	The first version of the SRS to have all the conventions included.	30/11/24
Version 0.2	Fizza Mazhar	The functionality of the system.	15/12/24
Version 0.3	Asad Shah	The interface design of the system and the functional requirements.	1/1/25
Version 0.4	Fizza Mazhar	Formatting of the document.	2/1/25
Version 0.5	Asad Shah	Adding use cases F1.	3/1/25
Version 0.6 Fizza Mazhar		Addding use case diagram and remaining use cases.	4/1/25
Version 0.7 Asad Shah		Added some design part, diagrams	5/1/25
Version 0.8	Asad Shah	Shah Created database schema	
Version 1	Asad Shah	Completed 1 version of SRS	10/1/25
Version 1.1	Asad Shah	Add some formatting	13/1/25

1 Introduction

The project focuses on developing a counseling platform for students in Pakistan who have completed their 12th grade. The platform addresses the challenges students face in deciding their career paths and understanding university admission processes. By providing personalized recommendations, university information and insights into field trends, the platform empowers students to make informed decisions about their higher education.

In this section you will find a comprehensive outline of the project's purpose and the problems it seeks to solve. This section highlights the challenges faced by students after 12th grade in Pakistan, including their lack of awareness about career options and university admission processes. It also introduces the platform's primary objectives, emphasizing how it provides tailored guidance, university recommendations and insights into field trends.

1.1 Document Purpose

This document specifies the software requirements for the **Counseling Platform for Students in Pakistan** after 12th grade. The platform is designed to assist students in choosing suitable fields of study and identifying universities that match their academic credentials, interests and career goals. It aims to address the lack of career guidance and awareness among students regarding the field options available and the university admission processes in Pakistan. The platform, in its current scope, provides personalized field and university recommendations, trend analysis and field comparisons.

This SRS describes the full scope of the system, encompassing its core functionalities such as data collection, aggregate calculation, field and university suggestions and dashboard visualizations. It also defines the boundaries of this release which includes trend analysis tools and visualizations based on datasets from 2018 to 2024. The document ensures a detailed understanding of the system's objectives, features and intended users forming the foundation for design, development and implementation.

1.2 Product Scope

The Counseling Platform for Students in Pakistan is a web-based application designed to guide students after 12th grade in making informed decisions about their future education and career paths. The platform collects academic data (Matric, FSC marks and test scores like NTS or NET) and preferences (study stream and interests) to recommend suitable fields of study and universities. It also provides detailed information about university admission criteria, deadlines, and admission links. The platform features a dashboard for visualizing field trends and performing comparisons allowing students to explore growing and declining fields both locally and globally.

The platform benefits students by addressing the knowledge gap about available academic fields and admission processes, thus reducing the uncertainty and stress involved in making critical career decisions. It empowers users with actionable insights and data-driven recommendations, enabling them to align their academic choices with market trends and global opportunities. The website aims to enhance career awareness, streamline the university selection process and help students achieve their educational and professional goals.

1.3 Intended Audience and Document Overview

This document is intended for a diverse group of readers involved in understanding, developing or evaluating the Counseling Platform for Students in Pakistan. Key audience types include:

- 1. **Client** to understand the scope, objectives and features of the platform ensuring alignment with their vision and requirements.
- 2. **Professor** to evaluate the project's objectives, methodology, and alignment with academic standards and best practices.
- 3. **Developers** to use the technical requirements and system design as a reference for implementing the platform.
- 4. **Testers** to identify test cases and validate the system's functionality against the specified requirements.
- 5. **Project managers** to monitor project progress and ensure all requirements are addressed within the planned timeline.

6. **Documentation writers** to create user guides, help manuals, and other instructional content based on the system's features and functionality.

The document overview is explained below:

- 1. **Introduction** describes the document's purpose, scope, audience, platform objectives and challenges.
- 2. **Overall description** provides a high-level overview of the platform, its context and constraints.
- 3. **Specific requirements** detail functional requirements and use cases for user interactions.
- 4. **Non-functional requirements** define performance, security and quality attributes.
- 5. **Design requirements** includes architectural patterns, design diagrams and interface mockups.
- 6. **Data design and relationships** explains database schema, ER diagrams and data dictionary.
- 7. **Software planning and timeline** outlines work breakdown structure, milestones and project timeline.
- 8. **Quality assurance plan** lists testing requirements, acceptance criteria and test cases.

Suggested reding sequence is given below:

- 1. Start with Introduction to understand the project.
- 2. Move to Overall Description for high-level context.
- 3. Review Specific Requirements for detailed functionalities.
- 4. Refer to Design Requirements for system architecture.
- 5. Check Data Design for database understanding.
- 6. Look at Software Planning for project timeline insights.
- 7. End with Quality Assurance for validation strategies.

1.4 Definitions, Acronyms and Abbreviations

Some acronyms and abbreviations used in document as given below

1. AI (Artificial Intelligence) is the simulation of human intelligence in machines.

- **2. ER** Diagram (Entity-Relationship Diagram) is the visual representation of database relationships.
- 3. FCS (Faculty of Computer Science) is the study stream for computer-related fields.
- **4. FSC** (Faculty of Science) is the study stream for science-related fields.
- **5. GUI** (Graphical User Interface) is the visual interface for user interaction.
- **6. IEEE** (Institute of Electrical and Electronics Engineers) is the standardization organization.
- 7. **NET** (National Engineering Test) is the entry test for engineering universities in Pakistan.
- **8.** NTS (National Testing Service) is the testing body conducting standardized tests in Pakistan.
- **9. SRS** (Software Requirements Specification) is the document detailing software system requirements.
- **10. UML** (Unified Modeling Language) is the standardized modeling language in software engineering.

1.5 Document Conventions

The following standards and conventions were followed when writing this SRS:

Font:

1. **Text**: Times New Roman, 12pt.

Headings:

- 1. Heading 1: 16pt, Bold.
- 2. Heading 2: 14pt, Bold.
- 3. Heading 3: 12pt, Bold.
- 4. Figure captions: 11pt, placed below figures.
- 5. Table captions: 11pt, placed above tables.

Spacing:

- 2. Line Spacing: 1.5.
- 3. Paragraph Spacing: 12pt after Heading 1.

Alignment:

All text is justified.

Margins:

Standard 1-inch margins (Top, Bottom, Left and Right).

Header and Footer:

- 1. Header: Project title on the right.
- 2. Footer: Page numbers on the right.
- 3. Header and footer begin from the abstract section onward.

Section and Subsection Titles:

- 1. Section titles follow a hierarchical numbering system limited to three levels (e.g., 3, 3.1, 3.1.1).
- 2. Titles are formatted in bold according to their respective heading levels.

Special Text Formatting:

- 1. Abstract: Italicized.
- 2. Comments: Italics.

Referencing Style:

- 1. APA referencing style is used for journals, conference papers, websites, and books.
- 2. Date and time of access are included for online references.
- 3. Wikipedia references are not accepted.

Additional Conventions:

- 1. Table of Contents: Updated to reflect accurate page numbers.
- 2. List of Figures and Tables: Included only if the document contains more than three tables or figures.
- 3. Figures and Tables: Properly captioned and referenced within the text.

1.6 References and Acknowledgements

References

1. IEEE Software Requirements Specification Standards.

- 2. FYDP Documentation Formatting Style from HITEC University Taxila guidelines for documentation formatting (Version 2024).
- 3. APA Referencing Guidelines for scholarly citations and references.

Web Resources

University Admission Portals of Pakistan for links provided in the respective recommendations.

Acknowledgments

- 1. Department of Computer Science, HITEC University Taxila for providing academic guidance and formatting standards.
- 2. Instructor and TA for continuous support and feedback during the documentation process.
- 3. Data providers and contributors for sharing valuable datasets used in trend analysis and recommendation systems.

2 Overall Description

2.1 Project Overview

The Counseling Platform for Students in Pakistan is a self-contained, web-based application designed to address the challenges students face after completing their 12th grade. It is a new initiative aimed at providing personalized field and university recommendations based on academic performance, interests and current field trends. Unlike traditional career counseling systems which often rely on manual processes or generic advice, this platform leverages data-driven insights and visualizations to make informed, personalized recommendations.

The platform integrates multiple subsystems including user data collection, field recommendation algorithms, university matching and trend analysis dashboards. It interacts with external data sources such as historical university merit aggregates (2018–2024) and global field demand statistics ensuring relevance and accuracy. The system also interfaces with university admission portals to provide students with application links and deadlines making the admission process more accessible.

The platform operates in the following context:

1. **Input**: Student data (academic scores, study streams, interests) and external datasets (field trends, admission criteria).

- 2. **Processing**: Aggregate calculation, field matching, trend visualization and recommendation generation.
- 3. **Output**: Personalized field and university recommendations, trend insights and comparison visualizations.

Figure 1 shows the workflow of our system.

Figure 1: System workflow

2.2 Product Functionality

- 1. Collects user academic details, study streams, and interests for personalized recommendations.
- 2. Suggests suitable fields based on academic performance and preferences.
- 3. Recommends universities aligned with calculated aggregates and selected fields.
- 4. Displays field trends through visualizations based on historical data (2018–2024).
- 5. Enables comparison of multiple fields regarding growth, demand and opportunities.
- 6. Shows global demand for fields to explore international career prospects.

- 7. Provides an interactive dashboard for trend exploration and detailed insights.
- 8. Directs users to university admission portals with deadlines and guidance.

2.3 Design and Implementation Constraints

The following constraints will guide the design and implementation of the platform:

2.3.1 Hardware Limitations

- 1. The platform must function efficiently on mid-range hardware configurations with limited memory and processing power.
- 2. The server hosting the platform should support parallel processing to handle multiple users simultaneously.

2.3.2 Technologies and Tools

- 1. The platform will be developed using React.js for the front end and Node.js for the back end.
- 2. MongoDB will be used as the database to manage user data and historical datasets.
- 3. Data visualization will be implemented using D3.js or Chart.js for dynamic graphs and dashboards.

2.3.3 Interfaces

- 1. The system will interact with external university portals to provide admission links.
- 2. It will integrate with APIs or external data sources for global field demand statistics.

2.3.4 Programming Standards

- 1. The software will adhere to COMET (Concurrent Object Modeling and Architectural Design Technique) for design.
- 2. UML (Unified Modeling Language) will be used for system modeling including class diagrams, use case diagrams and sequence diagrams.

2.3.5 Language and Protocols

- 1. The system will be built using JavaScript.
- 2. Communication between client and server will use HTTPS for secure data transmission.

2.3.6 Security Considerations

- 1. User data will be stored securely, adhering to GDPR-like privacy standards.
- 2. All sensitive information such as login credentials will be encrypted.
- 3. The platform will use authentication mechanisms (e.g., OAuth 2.0) for secure user access.

2.3.7 Design Conventions

- 1. Follows the HITEC University Taxila documentation standards for consistency.
- 2. The UI/UX design will adhere to accessibility standards ensuring usability for all users.

2.3.8 Parallel Operations

The platform must support concurrent users accessing recommendations and visualizations without performance degradation.

2.4 Assumptions and Dependencies

Assumptions of the project are as following

- 1. It is assumed that users will enter accurate and complete academic and interest data for personalized recommendations.
- 2. Historical datasets (2018–2024) and global field demand statistics are assumed to be accurate, complete and free from significant discrepancies.
- 3. Users will have a stable internet connection to access the platform and interact with dynamic visualizations.
- 4. The platform will be accessed on modern browsers (e.g., Chrome, Firefox) with standard features enabled (e.g., JavaScript).

Dependencies of the project are given below

- 1. The platform relies on APIs or data files for university merit lists and global field trends. Any changes or unavailability in these sources could affect functionality.
- 2. Data visualization depends on libraries like D3.js or Chart.js, which must remain supported and updated.
- 3. The system depends on reliable hosting services for server and database deployment.

- 4. The use of OAuth 2.0 or similar third-party authentication protocols is assumed for secure user login.
- 5. Components from similar projects or open-source libraries may be reused to expedite development, assuming compatibility with the platform.

3 Specific Requirements

3.1 External Interface Requirements

3.1.1 User Interfaces

The interface design in Figure 2 defines a user login and signup functionality when the user visits our website.

Figure 2: Landing page

After signup and login, the user is directed to homepage shown in Figure 3 to have options to navigate to other pages. Homepage has basic introduction of our website and a get started button which navigates towards the finding of their career.

Figure 3: Home page

After clicking the get started button, we are navigated to find our career section shown in Figure 4.

Figure 4: Dashboard

The Figure 4 has help to suggest the universities according to the interest, matric and FSC marks. The get personalized career button navigates to the page shown in Figure 5 to help the student if he wants to select the career according to market trends and the jobs availability. User can select particular filed to find the trends, find the trending fields and how they grow in last 5 years and can have the comparison of selected fields.

Figure 5: Analytics page

We also have our about page, which provides a detailed explanation of the purpose and objectives of our website. This page aims to inform users about the vision and mission behind the platform, highlighting how it addresses the challenges faced by students after completing their 12th grade. It emphasizes the role of the website in helping students make informed decisions about their academic and career paths. The about page is designed to create a sense of trust and transparency, ensuring users understand the value and intent of the services offered. The layout and content of this page are depicted in Figure 6.

Figure 6: About us page

Contact us page help to connect the users for any means by sending their name, email and a message shown in Figure 7.

Figure 7: Contact us page

3.1.2 Hardware Interfaces

Desktop/Laptop Computers

- 1. The website is accessible through modern web browsers (e.g. Chrome, Firefox, Safari) installed on desktops or laptops.
- 2. Interaction includes input via a keyboard and mouse.
- 3. Users require a functional desktop or laptop computer with internet connectivity.

Mobile Phones and Tablets

- 1. The website is designed to be responsive and compatible with mobile devices.
- 2. Interaction includes input via a touchscreen for navigation, form filling and menu selection.
- 3. Devices include smartphones and tablets with functional touchscreens and internet access.

Servers and Hosting Infrastructure

- 1. The backend of the website is hosted on a web server that manages client requests, processes user data and serves web pages.
- 2. Interactions include handling database queries and sending responses to user actions.
- 3. Cloud-based or physical servers maintained by the hosting provider.

Input and Output Devices

- 1. Keyboard and mouse (for desktops/laptops) or touchscreen (for mobile/tablets) to navigate and interact with the website.
- 2. Monitors/screens to display the website content and visualizations (e.g. trend graphs).

3.1.3 Software Interfaces

- 1. The website interacts with a database to store and retrieve user data such as academic details, interests and career trends.
- 2. Google Oauth API for user login and signup.
- 3. Data fetching from LinkedIn website/app.

4. Data Visualization Libraries (e.g., Chart.js, D3.js) for rendering graphical representations of career trends.

3.2 Functional Requirements

3.2.1 F1: User Registration and Login

- 1. The system shall allow users to register with their email address and password or log in using existing credentials.
- 2. The system shall provide an option for Google OAuth for simplified login.

3.2.2 F2: Data Input and Validation

- 1. The system shall allow users to input their Matric, FSC marks and NTS or NET test scores.
- 2. The system shall allow users to enter expected marks if their results are pending.
- 3. The system shall ask the user to select their study stream (e.g. FSC, FCS, Pre-Engineering, Pre-Medical).
- 4. The system shall validate all entered data to ensure it meets expected formats (e.g. numeric values for marks).

3.2.3 F3: Field Recommendation

- 1. The system shall suggest potential fields of study based on the user's entered marks and study stream.
- 2. The system shall provide field options based on the user's stated interests, if any. The user interest is stated by user himself, he knows himself or can find after chatting with career counseling chatbot.

3.2.4 F4: Interest Finding Chatbot

- 1. User interest can be found by user himself after chatting with chatbot by telling him interest in studies and games.
- 2. The chatbot further refines recommendations by analyzing user responses, identifying preferences and suggesting fields of study or career paths aligned with their expressed interests.

3.2.5 F5: Aggregate Calculation

- 1. The system shall calculate the user's aggregate based on their entered marks using predefined formulas.
- 2. The system shall display the calculated aggregate to the user for transparency.

3.2.6 F6: University Recommendation

- 1. The system shall recommend universities based on the user's calculated aggregate.
- 2. The system shall provide details about each university, including:
- 3. Admission criteria.
- 4. Application deadlines.
- 5. Online application links.

3.2.7 F7: Trend Visualization

- 1. The system shall display trends for various fields (e.g., growing vs. declining fields) using graphical visualizations (e.g. bar charts, line graphs).
- 2. The system shall allow users to compare multiple fields and view demand trends in Pakistan and foreign countries.

3.2.8 F8: Dashboard for Insights

- 1. The system shall provide a dashboard where users can:
- 2. View personalized recommendations for fields and universities.
- 3. Visualize trends and comparisons between different fields.

3.2.9 F9: Search and Filter Options

The system shall allow users to search and filter university options based on:

- 1. Location.
- 2. Aggregate eligibility.

3.2.10 F10: User-Friendly Interface

- 1. The system shall provide an intuitive and user-friendly interface to ensure ease of use for all users.
- 2. The system shall ensure accessibility by incorporating responsive design for both desktop and mobile devices.

3.3 Use Case Model

3.3.1 Use Case # 1.1

Table 2 illustrates the use case detailing the process of how a new user registers on the platform. This use case outlines the step-by-step interaction between the user and the system, ensuring a seamless and secure account creation process. The registration process begins with the user navigating to the registration page and providing essential details such as their name, email, and password. The system validates these inputs to ensure they meet the required format.

Table 2: Register user use case

UC1.1	Register New User			
Author	Asad Shah			
Purpose	Allow new users	to create a	nn account to access the system's features.	
Requirements Traceability	F1.1			
Priority	High	High		
Preconditions	User must have a	User must have a valid email address.		
Postconditions	A new account is created and the user can log in to the system.			
Actors User (Student or Father)		Father)		
Includes	Authentication V	alidation		
Flow of Events	Basic 2	1	User provides email and password.	
		2	User clicks "Register.	
		3	System validates input and creates an account.	
		4	System confirms successful registration.	
	Alternative	User inp	outs invalid email/password: system prompts for correction.	
	Exceptions	Email al	ready exists: system alerts user to use a different email.	

3.3.2 Use Case # 1.2

Table 3 outlines the use case for logging into the platform using an email and password. This use case explains the process users follow to securely access their accounts. It starts with the user navigating to the login page and entering their registered email address and password. The system then verifies these credentials against the stored data in the database to ensure they match an existing account.

If the credentials are valid, the system grants the user access and redirects them to their personalized dashboard. However, if the credentials are incorrect, the system displays an appropriate error message, prompting the user to re-enter their details or recover their password. This use case ensures a secure and user-friendly authentication process, protecting user accounts while maintaining accessibility.

The system incorporates security measures, such as encryption of passwords, to safeguard user data during the authentication process. It also provides an option for users to reset their password if they forget their credentials, ensuring uninterrupted access to the platform.

Table 3: Login case

UC1.2	Login with Email and Password			
Author	Asad Shah			
Purpose	Allow existing users to log in securely using their email and password.			
Requirements Traceability	F1.2			
Priority	High	ïgh		
Preconditions	User must have previously registered an account.			
Postconditions	The user is authenticated and granted access to the system.			
Actors User (Student or Father)				
Includes	Authentication Validation			
Flow of Events		1	User provides email and password.	
	Basic	2	User clicks "Login."	
		3	System verifies credentials.	
		4	System grants access if valid.	
	Alternative	User inp	uts invalid credentials: system prompts for retry or password	
Exceptions		Too mar	ny failed login attempts: system temporarily locks the account.	

3.3.3 Use Case # 1.3

Table 4 explains the use case for logging into the platform using Google OAuth. This method allows users to authenticate quickly and securely by leveraging their existing Google accounts. The process begins with the user clicking the "Login with Google" button on the login page, which redirects them to Google's authentication service. The user then selects their Google account and grants permission for the platform to access basic profile information, such as their name and email address.

Once the Google authentication is successful, the platform retrieves the user's information and checks whether they already have an account. If the account exists, the user is seamlessly logged in and redirected to their dashboard. If no account exists, the platform automatically registers the user and logs them in. This method provides a convenient, fast, and secure alternative to traditional login, reducing the need for users to remember additional passwords.

Table 4: Google auth use case

UC1.3	Login with Google OAuth				
Author	Asad Shah				
Purpose	Simplify the login process for users with an existing Google account.				
Requirements	F1.3				
Traceability	11.5	F1.5			
Priority	Medium				
Preconditions	User must have a valid Google account.				
Postconditions	The user is authenticated via Google and granted access to the system.				
Actors	User (Student or Father), Google Authentication Service				
Includes	Authentication Validation				
Flow of Events	Basic	1	User clicks "Login with Google."		
		2	System redirects to Google OAuth.		
		3	User authorizes.		
		4	System grants access if valid.		
	Alternative	Google OAuth authorization fails: system prompts for retry or			
		alternative login method.			
	Exceptions	Google service unavailable: system prompts user to try later or use			
	Exceptions	alternativ	ve login.		

3.3.4 Use Case # 2.1

Table 5 outlines the use case for inputting academic marks into the system. This process allows users to provide their academic details, which are essential for generating personalized recommendations. The use case begins with the user navigating to the academic marks input form. Users are required to enter their Matric marks, FSC marks, and, if applicable, their NTS or NET test scores.

The system validates the entered data to ensure that it adheres to the expected format (e.g., numeric values and within valid ranges). If the user's results are pending, the system also allows them to input expected marks. Once the data is submitted, it is stored in the database and linked to the user's account. This data is then used by the system to calculate the aggregate and suggest suitable fields of study and universities. The academic marks input feature ensures data accuracy and enables the system to provide relevant recommendations.

The system provides error messages for invalid or incomplete data entries, ensuring the user corrects any mistakes before submission. This functionality ensures that the recommendations generated are accurate and tailored to the user's academic performance, enhancing the overall user experience.

Table 5: input academic data use case

UC2.1	Input Academic Marks			
Author	Asad Shah			
Purpose	Allow users to input Matric, FSC, and test scores for processing.			
Requirements Traceability	F2.1			
Priority	High			
Preconditions	User must be logged in to the system.			
Postconditions	Marks are successfully stored for aggregate calculation.			
Actors	User (Student or Father)			
Flow of Events	Basic	1	User enters Matric, FSC, and test scores.	
		2	System saves the data.	
		3	System confirms successful input.	
	Alternative	User skips some marks: system prompts to fill in all required fields.		
	Exceptions	System encounters data storage error: prompts user to retry.		

3.3.5 Use Case # 2.2

Table 6 describes the use case for inputting expected marks when a user's actual results are pending. This feature allows users to provide their anticipated scores for Matric, FSC, or NTS/NET tests, enabling the system to generate preliminary recommendations. The process begins with the user selecting the "Enter Expected Marks" option and filling out the input fields with their projected scores.

The system validates the entered data to ensure it is in the correct format (e.g., numeric values). After successful validation, the expected marks are stored in the database and linked to the user's account. These scores are used temporarily to calculate aggregates and suggest potential fields of study and eligible universities. Once actual results are available, users can update their marks for more accurate recommendations. This feature ensures that users can engage with the system even before receiving their final scores, providing a proactive approach to career counseling.

The system also provides a clear interface to differentiate between actual and expected marks, ensuring users can easily update their data when results are finalized. This feature empowers students to start planning their academic and career paths early, minimizing delays and maximizing their opportunities for informed decision-making.

Table 6: Expected marks use case

UC2.2	Input Expected Marks			
Author	Asad Shah			
Purpose	Allow users to input expected marks if actual results are pending.			
Requirements Traceability	F2.2			
Priority	Medium			
Preconditions	User must indicate that results are pending.			
Postconditions	Expected marks are saved for temporary use in calculations.			
Actors	User (Student or Father)			
Flow of Events Basic	Basic 2	1	User selects "Expected Marks Pending."	
		2	User inputs expected marks.	
		3	System saves the data.	
	Alternative	User skips entering expected marks: system skips aggregate calculation until marks are entered.		
	Exceptions	None		

3.3.6 Use Case # 2.3

Table 7 outlines the use case for selecting a study stream, which is a crucial step in tailoring the system's recommendations. Users are presented with options such as Pre-Medical, Pre-Engineering, Computer Science, or any other relevant streams. The process begins with the user navigating to the study stream selection page and choosing their current or intended academic stream.

Once a stream is selected, the system validates the choice and stores it in the database, linking it to the user's profile. This input plays a key role in determining suitable fields of study and career paths, as the system uses the selected stream to narrow down recommendations and relevant trends. If users are unsure about their stream, the system can guide them through suggestions based on their academic marks or interests. This feature ensures personalized guidance, enabling users to explore fields aligned with their educational background.

The system allows users to modify their selected stream later if they change their academic direction, ensuring flexibility. This step enhances the accuracy of recommendations by aligning them with the user's academic preferences and qualifications, making the guidance more relevant and effective.

Table 7: Select stream use case

UC2.3	Select Study Stream			
Author	Asad Shah			
Purpose	Allow users to select their study stream for relevant field recommendations.			
Requirements Traceability	F2.3			
Priority	High			
Preconditions	User must have entered valid marks or expected marks.			
Postconditions	Study stream is stored for field recommendation processing.			
Actors	User (Student or Father)			
Flow of Events	Basic	1	User selects their study stream from predefined options.	
		2	System saves the selection.	
	Alternative	User selects "Other": system prompts for additional details or confirmation.		
	Exceptions	System error: prompts user to reselect the stream.		

3.3.7 Use Case # 2.4

Table 8 describes the use case for validating input data to ensure the accuracy and consistency of user-provided information. The system begins by checking the entered data, such as academic marks, expected scores, and selected study streams, against predefined validation rules. These rules include ensuring numeric values for marks, proper formatting for email addresses, and the presence of all required fields.

If the data meets the validation criteria, it is saved in the database and linked to the user's profile. In cases where invalid or incomplete data is detected, the system displays appropriate error messages, prompting the user to correct the information before proceeding. This validation process ensures that only accurate and meaningful data is used for calculations, recommendations, and trend visualizations, enhancing the reliability of the system's outputs. Additionally, validation safeguards against errors that could compromise the user experience or system integrity.

The system also incorporates real-time validation to provide immediate feedback, reducing the likelihood of errors during the data entry process. It ensures all mandatory fields are completed before submission and highlights any discrepancies for user correction.

Table 8: Validate input use case

UC2.4	Validate Input Data			
Author	Asad Shah			
Purpose	Ensure all input data meets required format and validity criteria.			
Requirements Traceability	F2.4			
Priority	High			
Preconditions	User must have entered data in the respective input fields.			
Postconditions	All validated data is successfully stored.			
Actors	System			
Flow of Events Basic		1	System validates numeric fields for marks.	
	Basic	2	System flags invalid entries for correction.	
		3	Valid data is stored.	
	Alternative	None		
	Exceptions	Invalid data detected: prompts user for correction.		

3.3.8 Use Case # 3.1

Table 9 outlines the use case for recommending fields of study based on the user's marks and selected stream. The process starts with the system analyzing the user's academic data, such as Matric, FSC, or expected marks, in conjunction with their chosen study stream. The system applies predefined algorithms to calculate eligibility and suitability for various fields and generates a list of recommended fields tailored to the user's academic performance.

The recommendations are displayed in an easily understandable format, along with brief descriptions of each field to help users make informed decisions. Users can explore these suggestions and select fields of interest for further analysis, such as university options or career prospects. The system ensures that the recommendations are updated dynamically if the user modifies their marks or study stream.

Additionally, the system prioritizes growing or high-demand fields based on trends data, ensuring users are guided toward relevant and promising options.

Table 9: Recommend field use case

UC3.1	Recommend Fields Based on Marks and Stream			
Author	Asad Shah			
Purpose	Suggest potential fields of study based on the user's entered marks and selected study			
	stream.			
Requirements	F2 1			
Traceability	F3.1			
Priority	High			
Preconditions	User must have entered valid marks and selected a study stream.			
Postconditions	The system displays a list of potential fields tailored to the user's marks and study stream.			
Actors	User (Student or Father)			
Flow of Events		1	System processes user-entered marks and stream.	
	Basic	2	System applies predefined rules or thresholds.	
		3	System displays suitable fields to the user.	
	Alternative	User's marks are insufficient for most fields: system suggests alternate		
		pathways or preparatory options.		
	Exceptions	System cannot calculate eligibility due to missing data: prompts user to		
		provide required inputs.		

3.3.9 Use Case # 3.2

Table 10 describes the use case for recommending fields of study based on the user's stated interests. The process begins with the user interacting with a chatbot or directly selecting interests such as technology, medicine, arts, or any other areas of focus. The system collects these inputs and maps them to relevant fields of study using a predefined database of interest-to-field mappings.

The system then generates a list of recommended fields that align with the user's interests, accompanied by brief descriptions to help the user understand each option. If a user selects multiple interests, the system provides a ranked list of fields based on demand, relevance, and potential growth. This ensures that the recommendations are both meaningful and aligned with the user's preferences.

Additionally, the system dynamically adjusts recommendations if the user updates their stated interests. It also incorporates global and local trends to refine the suggestions, ensuring relevance in both current and future job markets. This functionality encourages users to explore academic paths they are passionate about while staying informed about potential opportunities in those fields.

Table 10: Recommend interest based use case

UC3.2	Recommend Fields Based on Stated Interests			
Author	Asad Shah			
Purpose	Provide personalized field recommendations based on the user's stated interests.			
Requirements Traceability	F3.2			
Priority	Medium			
Preconditions	User must have interacted with the chatbot or directly entered their interests.			
Postconditions	The system displays a list of potential fields aligned with the user's stated interests.			
Actors	User (Student or Father)			
Flow of Events	Basic	1	User states interests via chatbot or input.	
		2	System maps interests to field options.	
		3	System displays matching fields to the user.	
	Alternative	User's stated interests do not map directly to predefined fields: system prompts for refinement.		
	Exceptions	User provides vague or incomplete interests: system suggests common fields based on trends.		

3.3.10 Use Case # 4

Table 11 outlines the use case for interacting with the interest-finding chatbot to identify the user's preferences and align them with suitable fields of study. The process begins when the user initiates a chat session with the chatbot. The chatbot engages the user with questions about their hobbies, favorite subjects, extracurricular activities, and future aspirations.

Based on the user's responses, the chatbot analyzes their interests using Natural Language Processing (NLP) algorithms and maps them to relevant academic fields. The system then presents a list of potential fields tailored to the user's expressed interests, providing brief descriptions and possible career paths for each. The chatbot adapts its questions dynamically based on user feedback to refine the interest analysis.

Table 11: Chatbot use case

UC3.4		Cha	at with Interest Finding Chatbot	
Author	Asad Shah			
Purpose	Help users discov	er their in	terests by interacting with a chatbot that analyzes their input.	
Requirements Traceability	F4	F4		
Priority	Medium			
Preconditions	User must be log	ged in and	must have basic familiarity with using a chatbot interface.	
Postconditions	The chatbot captu	The chatbot captures and saves the user's interests for use in recommending relevant fields.		
Actors	User (Student or Father), chatbot			
Flow of Events		1	User initiates a chat with the chatbot.	
		2	Chatbot prompts user with questions about their study and game preferences.	
	Basic	3	User provides responses.	
		4	Chatbot analyzes responses and identifies potential interests.	
		5	Chatbot saves the interests for further processing.	
	Alternative	User skips chatbot interaction: system defaults to general interest-based recommendations or prompts to try later.		
	Exceptions	Chatbot fails to analyze input: prompts user to re-enter responses or suggests manual entry.		

3.3.10 Use Case # 5.1

Table 12 describes the use case for calculating the aggregate based on the user's academic marks and predefined formulas. The process begins with the user submitting their Matric, FSC, and, if applicable, NTS or NET marks. The system retrieves the marks from the database and applies the aggregate calculation formula specific to the selected study stream or university admission criteria.

The calculated aggregate is then displayed to the user, providing transparency and ensuring they understand their eligibility for different fields and universities. This aggregate is stored in the database and used to generate tailored recommendations for universities and fields of study.

The system allows for recalculation if the user updates their marks or enters expected scores. It ensures accuracy by applying validation checks on the input data before performing the calculations. This feature gives users a clear understanding of where they stand academically and guides them in making informed decisions about their future academic paths.

Table 12: Calculation use case

UC5.1			Calculate Aggregate	
Author	Fizza Mazhar	Fizza Mazhar		
Purpose	Calculate the user	r's aggrega	ate based on predefined formulas and the entered data.	
Requirements Traceability	F5.1	F5.1		
Priority	High			
Preconditions	User must have e	User must have entered valid academic marks and selected their study stream.		
Postconditions	The system calculates the aggregate and stores it for use in university recommendations.			
Actors	System			
Flow of Events		1	System retrieves user-entered marks and stream.	
	Basic	2	System applies the aggregate calculation formula.	
		3	System stores the calculated aggregate for further use.	
	Alternative	Insufficient data for calculation: system prompts user to enter missing marks or stream.		
	Exceptions	Calculation error due to invalid data: system flags the issue and prompts user for correction.		
Notes / Issues	Ensure formulas	are accurat	te and in line with local educational board standards.	

3.3.11 Use Case # 5.2

Table 13 outlines the use case for displaying the calculated aggregate to the user. Once the system computes the aggregate based on the user's input marks and predefined formulas, it presents the result in a user-friendly format on the dashboard or a dedicated results page. The aggregate is shown as a percentage or score, making it easy for users to understand their academic standing.

The display includes a brief explanation of how the aggregate was calculated, such as the weightage given to Matric, FSC, and test scores (if applicable), to ensure transparency. Additionally, users are provided with a comparison of their aggregate against the eligibility criteria of recommended fields and universities.

The system also provides a graphical representation or a ranking system to help users visualize their position among potential peers. This feature enhances the decision-making process by clearly linking the aggregate to personalized recommendations, empowering users to explore suitable academic and career options confidently.

Table 13: Aggregate use case

UC5.2			Display Aggregate	
Author	Fizza Mazhar			
Purpose	Display the calcu	Display the calculated aggregate to the user for transparency and verification.		
Requirements Traceability	F5.2	F5.2		
Priority	High			
Preconditions	Aggregate must h	ave been s	uccessfully calculated.	
Postconditions	The aggregate is	The aggregate is displayed to the user in an easy-to-understand format.		
Actors	User (Student or	Father), Sy	rstem	
Flow of Events		1 System retrieves the calculated aggregate.		
	Basic	2	System displays the aggregate on the user dashboard.	
		3	User reviews the displayed aggregate.	
	Alternative	Aggregate display includes a breakdown of components (e.g. weightage of marks, tests).		
	Exceptions	System f support.	ails to fetch aggregate: prompts user to try again or contact	

3.3.12 Use Case # 6.1

Table 14 outlines the use case for recommending universities based on the user's calculated aggregate. The process begins with the system retrieving the user's aggregate score from the database. It compares the score against predefined admission criteria for universities stored in the database, including eligibility thresholds for specific fields of study.

The system generates a list of universities where the user meets or exceeds the eligibility criteria. Each recommendation includes details such as the university name, location, admission criteria, application deadlines, and a link to the online application portal.

The system highlights universities offering scholarships or financial aid options for users who qualify. Users can also filter the recommendations by location, field, or admission deadlines, ensuring a customized and user-centric experience.

Table 14: Recommendation aggregate based use case

UC6.1		Recomn	nend Universities Based on Aggregate		
Author	Fizza Mazhar	Fizza Mazhar			
Purpose	Suggest universi	Suggest universities where the user is eligible to apply based on their calculated aggregate.			
Requirements	F6.1				
Traceability	F0.1				
Priority	High				
Preconditions	User must have	a calculated	d aggregate and preferences for university search (e.g., location).		
Postconditions	A list of univers	ities match	ing the user's eligibility is displayed.		
Actors	User (Student or	User (Student or Father), System			
Flow of Events		1	System retrieves the user's aggregate and preferences.		
	Basic	2	System compares the data with predefined university criteria.		
	Basic	3	System generates a list of eligible universities.		
		4	System displays the list to the user.		
	Alternative	User cha	anges preferences (e.g., location): system updates the university		
	Atternative	Alternative recommendation list.			
	Exceptions	No universities meet the user's eligibility: system suggests prepa			
	Exceptions	program	programs or alternatives.		
Notes / Issues	Ensure universit	y data is up	p-to-date, especially admission deadlines and criteria.		

3.3.13 Use Case # 6.2

Table 15 outlines the use case for providing detailed information about universities to the user. Once the user selects a university from the recommended list, the system retrieves and displays all relevant details about that university from the database. This includes the university name, location, admission criteria, fields of study offered and a direct link to the application portal.

The system also provides additional details, such as available scholarships, tuition fees, campus facilities, and global rankings (if available), giving users a comprehensive understanding of their options. The details are presented in a structured and user-friendly format, ensuring that users can easily access the information they need to make informed decisions. The system allows users to bookmark or save specific universities for future reference.

Table 15: University details use case

UC6.2			Provide University Details		
Author	Fizza Mazhar	Fizza Mazhar			
Purpose	Provide detaile	d information	on about the recommended universities to assist the user.		
Requirements Traceability	F6.2	F6.2			
Priority	Medium				
Preconditions	University reco	mmendatio	ns must be generated and available for further details.		
Postconditions	Detailed univer	sity inform	ation is presented to the user for informed decision-making.		
Actors	User (Student o	User (Student or Father), System			
Flow of Events		1	User selects a university from the recommendation list.		
	Basic	2	System retrieves detailed information about the selected university.		
		3	System displays admission criteria, deadlines, and application links.		
	Alternative		User requests more details for a university: system displays extended details, if available.		
	Exceptions	Exceptions Information for selected university is incomplete: systematical systems and the systems are selected university in the system of the systems are selected university in the systems are selected university in the system of the syst			
Notes / Issues	Confirm applic	ation links a	are accurate and functional.		

3.3.14 Use Case # 7.1

Table 16 outlines the use case for displaying field trends to the user. The system retrieves data from the database that contains growth trends, demand indices, and other relevant statistics for various fields of study. This information is visualized using charts, graphs, or tables to make it easy for users to interpret.

The trends include historical growth rates, current demand in the job market, and future projections for specific fields. Users can filter these trends by location (e.g., Pakistan or global), time periods and field categories (e.g., Engineering, Medical, Arts). This allows users to explore which fields are growing, stable or declining.

The system highlights key insights, such as the top five growing fields or fields with the highest global demand, providing actionable information for decision-making.

Table 16: Display trends use case

UC7.1		Display Field Trends			
Author	Fizza Mazhar	Fizza Mazhar			
Purpose	Provide graphica	al visualiza	ations of trends for growing and declining fields.		
Requirements Traceability	F7.1	F7.1			
Priority	Medium				
Preconditions	Historical trend	data for va	rious fields must be available in the system.		
Postconditions	Users can view g	Users can view graphical representations of field trends.			
Actors	User (Student or	User (Student or Father), System			
		1	User selects a field to view trends.		
		2	System retrieves historical data for the selected field.		
	Basic	3	System generates a graphical visualization (e.g., bar chart, line graph).		
Flow of Events		4	System displays the visualization to the user.		
Alterna	Alternative		User selects a time range for trends: system updates the graph based on the chosen time frame.		
Exceptions		Trend data unavailable for the selected field: system informs the user and suggests alternatives.			
Notes / Issues	Ensure visualiza	tions are c	lear, intuitive, and easy to interpret.		

3.3.15 Use Case # 7.2

Table 17 outlines the use case for comparing fields and viewing demand trends. The system allows users to select two or more fields of interest from a predefined list. Once the fields are chosen, the system retrieves data from the database and generates a comparison based on key metrics such as growth rates, demand indices, and career prospects.

The comparison is displayed using graphical tools like bar charts, line graphs, or tables, highlighting differences and similarities between the selected fields. Users can view trends over specific time periods and across different locations, such as Pakistan or global markets. This feature provides users with a clear understanding of which fields are growing, stable, or declining, helping them make more informed choices.

The system provides actionable insights, such as highlighting the most in-demand field or identifying fields with strong future projections.

Table 17: Comparison use case

UC7.2		Compare Fields and View Demand Trends		
Author	Fizza Mazhar			
Purpose	Allow users to co	mpare mu	ltiple fields and view demand trends.	
Requirements Traceability	F7.2	F7.2		
Priority	High			
Preconditions	Field trend data a	nd compa	rison mechanisms must be ready for processing.	
Postconditions	Users can compar	Users can compare fields and make informed decisions based on demand trends.		
Actors	User (Student or	Father), Sy	ystem	
Flow of Events		1	User selects multiple fields for comparison.	
	Basic	2	System retrieves trend data for selected fields.	
	Basic	3	System generates a comparative graphical visualization.	
		4	System displays the comparison to the user.	
	Alternative	accordingly. Comparison data unavailable for one or more selected fields: system		
	Exceptions			

3.3.16 Use Case # 8.1

Table 18 outlines the use case for viewing personalized recommendations tailored to the user's academic profile, interests, and preferences. The system retrieves user-specific data, including marks, selected study streams, interests, and calculated aggregates, to generate a personalized list of recommended fields and universities.

The recommendations are displayed in a dashboard format, providing an easy-to-navigate interface where users can explore detailed information about suggested fields of study and universities. Each field recommendation includes its relevance to the user's academic profile and market trends. Similarly, university recommendations highlight eligibility criteria, deadlines, and application links.

This feature enhances decision-making by offering a data-driven, user-centric approach to academic and career planning.

Table 18: Personalized recommendation use case

UC8.1		View	y Personalized Recommendations	
Author	Fizza Mazhar			
Purpose	Provide users wit	h a person	alized dashboard displaying recommended fields and	
	universities.	universities.		
Requirements	F8.1			
Traceability	Го.1			
Priority	High			
Preconditions	User must have c	User must have completed data input, and recommendations must be generated.		
Postconditions	Users can view their personalized recommendations.			
Actors	User (Student or Father), System			
Flow of Events	1 User logs into the system.		User logs into the system.	
		2	System retrieves personalized field and university	
	Basic		recommendations.	
		3	System displays recommendations on the dashboard.	
		4	User interacts with recommendations for details.	
	User customizes recommendation criteria: system updates			
	Alternative	recomme	endations dynamically.	
	Exceptions	Recomm	Recommendations cannot be generated due to incomplete data: system	
	Exceptions	prompts user to complete inputs.		

3.3.17 Use Case # 8.2

Table 19 outlines the use case for visualizing trends and comparing multiple fields of study. The system provides users with an interactive dashboard that retrieves data on growth trends, demand indices, and historical and future projections for various academic fields. Users can select specific fields and view their trends over time using graphical representations such as bar charts, line graphs, or pie charts.

The system also enables users to compare multiple fields side-by-side based on factors like growth rate, demand in local and global markets, and career opportunities. This comparison is visually highlighted to show key differences and similarities, helping users understand which fields are more promising or aligned with their goals.

Users can customize the parameters for the visualizations, such as filtering by location or time range, and save their comparisons for future reference. This feature enhances the platform's utility by making complex trend data accessible and actionable for users.

Table 19: Visualization use case

UC8.2		Vis	ualize Trends and Comparisons	
Author	Fizza Mazhar			
Purpose	Enable users to vi	isualize tre	ends and compare different fields on the dashboard.	
Requirements Traceability	F8.2	F8.2		
Priority	Medium			
Preconditions	Trend data and co	mparison	functionalities must be available in the system.	
Postconditions	Users can see trends and comparisons of fields in an intuitive graphical format.			
Actors	User (Student or Father), System			
Flow of Events		1	User navigates to the trends section of the dashboard.	
	D. C.	2	System retrieves relevant trend and comparison data.	
	Basic	3	System generates graphical visualizations.	
		4	System displays visualizations to the user.	
	Alternative	User filters trend data by specific parameters (e.g. time, region): system		
	Alternative updates graphs.			
	Exceptions	Trend data unavailable for selected filters: system notifies the user and suggests adjustments.		

3.3.18 Use Case # 9.1

Table 20 outlines the use case for filtering universities based on user preferences and eligibility. The system provides an interface where users can apply various filters, such as location, field of study, admission criteria, and application deadlines. The filters are designed to help users narrow down their options and focus on universities that align with their academic profile and preferences.

Once the filters are applied, the system retrieves data from the database and displays a customized list of universities that meet the selected criteria. Each university listing includes essential details such as location, admission requirements, available fields, application links, and deadlines.

System allows users to sort the filtered results by ranking, proximity, or relevance to their selected field of study. Users can also save their filtered lists for later reference or apply additional filters for further refinement. This feature ensures a streamlined and efficient process for exploring university options tailored to the user's unique needs and goals.

Table 20: Filtration use case

UC9.1			Filter Universities	
Author	Fizza Mazhar			
Purpose	Enable users to fi	lter univer	sity options based on location, aggregate eligibility.	
Requirements Traceability	F9.2			
Priority	High			
Preconditions	User must have selected at least one filtering criterion.			
Postconditions	The system displays a filtered list of universities based on the selected criteria.			
Actors	User (Student or l	Father), Sy	ystem	
Flow of Events	Basic	1	User selects filtering options (e.g. location, aggregate eligibility).	
	Basic	2	System applies the filters to the university database.	
		3	System displays the filtered results to the user.	
	Alternative	User selects multiple conflicting filters: system resolves conflicts or notifies the user. Filter criteria do not return any results: system prompts user to adjust filters.		
	Exceptions			

4 Other Non-functional Requirements

4.1 Performance Requirements

The performance requirements for the Career Counseling Platform are designed to ensure the system operates efficiently under various circumstances and provides a seamless experience for users. These requirements are specified to guide developers in making suitable design choices.

4.1.1 Response Time

The system shall provide a response time of **4 seconds or less** for user interactions, such as:

- 1. Displaying field recommendations.
- 2. Generating aggregate calculations.
- 3. Rendering graphs and visualizations on the dashboard.

4.1.2 Concurrent Users

The platform shall support up to **1000 concurrent users** without degradation in performance.

4.1.3 Data Processing

The system shall process user data (e.g., marks, preferences, interests) and provide results (e.g., field and university recommendations) within **3 seconds** after submission.

4.1.4 Dashboard Loading

The dashboard (with trends and visualizations) shall load completely within **4 seconds** on a stable internet connection (5 Mbps or higher).

4.1.5 Database Query Performance

All database queries (e.g., fetching university details, admission deadlines, trend data) shall execute within **1 second**.

4.1.6 Login and Signup

1. The system shall authenticate user credentials or create a new account within **2 seconds**.

2. If using Google OAuth, the process shall complete within **3 seconds**, including the external API response.

4.1.7 Aggregate Calculation

The system shall calculate the aggregate and display the results within **1 second** of receiving the required input.

4.1.8 Trend Visualization

Graphical visualizations (e.g., bar charts, line graphs) shall render within **2 seconds** of user interaction or query submission.

4.1.9 University Search and Filter

The system shall display filtered university results based on the user's criteria (e.g., location, eligibility) within **3 seconds**.

4.1.10 Peak Load

The system shall maintain performance under peak load conditions of **5000 users/hour** during university admission periods.

4.1.11 Scalability

The system shall scale to support up to **10000 concurrent users** in the future with minimal reconfiguration.

4.1.12 Data Transfer

The system shall handle real-time data transfer (e.g., between front-end and back-end) with a latency of **1 seconds or less**.

4.2 Safety and Security Requirements

The Career Counseling Platform must ensure the safety of its users and secure sensitive user data to prevent unauthorized access, data breaches or harm caused by improper system usage. The following safety and security requirements are specified:

4.2.1 Data Integrity

- 1. The system shall ensure that all user data, including academic marks and preferences is stored and processed accurately.
- 2. Any system errors or failures shall not lead to the corruption or loss of user data.

4.2.2 Safeguards Against Unauthorized Actions

- 1. The system shall prevent unauthorized users from accessing or modifying user data.
- 2. The platform shall implement session timeouts after **15 minutes** of inactivity to prevent misuse in shared or public devices.

4.2.3 System Downtime Protection

- 1. The system shall have a mechanism to inform users of scheduled maintenance or downtime.
- 2. Any user-submitted data during an outage shall be saved and processed when the system is restored.

4.2.4 Backup and Recovery

- 1. The system shall automatically back up critical data daily to ensure recovery in case of a disaster.
- 2. The recovery time objective (RTO) shall be no more than 2 hours.

4.2.5 User Authentication

- 1. The system shall implement secure user authentication mechanisms, including:
 - Password-based login with strong password policies (minimum 8 characters, mix of uppercase, lowercase, numbers and symbols).
 - Google OAuth for secure third-party authentication.

4.2.6 Access Control

1. The system shall restrict access to administrative functionalities and user data to authorized personnel only.

2. Role-based access control (RBAC) shall be implemented for admins and users.

4.2.7 Protection Against Common Attacks

The system shall safeguard against the SQL Injection attack by using parameterized queries to prevent malicious database queries.

4.2.8 User Privacy

- 1. The system shall provide users with detailed privacy policies outlining how their data is used and stored.
- 2. Users shall have the right to request the deletion of their data from the platform.

4.2.9 Audit Logs

The system shall maintain logs of all critical actions, including login attempts, data modifications, and admin actions for auditing purposes.

4.3 Software Quality Attributes

The Career Counseling Platform must adhere to high software quality standards to meet user and developer expectations. Below are the specified quality attributes and how they will be achieved

4.3.1 Reliability

The platform shall operate consistently and deliver accurate results with minimal downtime or errors.

- 1. Use exception handling mechanisms to gracefully manage unexpected errors.
- 2. Provide user-friendly error messages in case of failures.
- 3. Conduct unit tests, integration tests and regression tests to ensure the system functions as expected under various scenarios.
- 4. Perform load and stress testing to verify the system can handle peak traffic conditions (e.g., during university admissions).
- 5. Maintain data redundancy and automated daily backups to ensure data integrity during failures.

4.3.2 Usability

The platform shall be user-friendly, intuitive and accessible to ensure ease of use for students, parents and counselors.

- 1. Use frameworks like Bootstrap to ensure the platform adapts to various devices (e.g., desktops, tablets, mobile phones).
- 2. Provide clear and logical navigation with labeled buttons, breadcrumbs, and menus.
- 3. Conduct user testing with a sample audience to identify and address usability challenges.
- 4. Incorporate feedback loops for continuous improvement.
- 5. Use data visualization libraries (e.g., Chart.js) to create interactive graphs for trends and comparisons.

4.3.3 Maintainability

The platform shall be designed to accommodate future updates and modifications with minimal effort.

- 1. Use Git for version control to track changes and facilitate collaborative development.
- 2. Maintain comprehensive documentation for developers to understand system components and workflows.

4.3.4 Adaptability

- 1. The platform shall be adaptable to handle changes such as adding new datasets or integrating with additional systems.
- 2. Design flexible database schemas to accommodate new fields or datasets without major restructuring.
- 3. Parameterize key rules (e.g. aggregate formulas eligibility criteria) to allow changes without modifying code.
- 4. Incorporate a layered architecture to enable seamless integration of new features, APIs, or third-party tools, ensuring each layer remains independent and adaptable as the system evolves.

5 Design Requirements

5.1 High Level Design

5.1.1 Abstract Design

Figure 8 represents the abstract design of the system, showcasing the user's journey from signup and login to inputting academic details, selecting fields, and interacting with the chatbot for interest identification. Based on the provided data, the system recommends universities with links to their applications and allows users to view analytics and comparisons of selected or trending fields.

Figure 8: Abstract design

5.1.2 Design oblige Architecture Patterns

Layered Architecture Pattern

The system is divided into layers as shown in Figure 9, each responsible for specific concerns. Common layers include:

- 1. **Presentation Layer**: Handles user interaction and displays data (e.g., React.js or Angular for the frontend).
- 2. **Business Logic Layer**: Processes user inputs and implements application logic (e.g., Node.js or Django for the backend).
- 3. **Data Access Layer**: Manages database operations (e.g., queries to MySQL/PostgreSQL).
- 4. **Database Layer**: Stores user data, university details, trends, etc.

Figure 9: Layered Architecture Pattern

5.2 Structural Design

5.2.1 Class Diagram

Figure 10 illustrates the class diagram of the system, detailing the primary classes, their attributes, and methods, along with the relationships between them. The diagram includes key classes such as User, Admin, Academic Details, University, Recommendation Engine, Trends Analyzer, and Dashboard, each with relevant attributes and operations that define their functionality.

The User class connects to Academic Details for storing user marks and to the Dashboard for accessing recommendations and trends. The Recommendation Engine processes user data to generate field and university recommendations while the Trends Analyzer provides insights into field trends and comparisons. The Admin class manages data updates and user administration, ensuring the system's smooth operation. This structure demonstrates a cohesive and modular design that supports core system functionalities.

Figure 10: Class Diagram

5.2.2 Component Diagram

Figure 11 represents the component diagram of the system, illustrating the modular architecture and interactions between different components.

Figure 11: Component Diagram

5.2.3 Data Flow Diagram

Figure 12, Figure 13 and Figure **14** depict the progression of Data Flow Diagrams for the system showing how data flows through different levels of abstraction.

Context Level DFD

Figure 12: Context level DFD

Level 1 DFD

Figure 13: Level 1 DFD

Level 2 DFD

Figure 14: Level 2 DFD

5.2.4 Graphical User Interface

Figures 15 to 20 showcase the graphical user interface design of the system, presenting an intuitive and user-friendly layout that guides users through the platform's functionalities. The Landing Page Figure 15 serves as the system's introduction, welcoming users with a clean design that provides options for signing up, logging in or exploring the platform's key features. Once logged in users are directed to the Home Page Figure 16, which serves as a central hub for navigating the system's functionalities. The home page is designed to provide users with quick access to input academic data, view recommendations and explore analytics, ensuring a streamlined user journey.

The Dashboard Page Figure 17 is the system's core interface, where users can access personalized recommendations, track their academic data and explore insights about universities and fields of study. It integrates data visualizations and highlights key trends to facilitate informed decision-making. The Trends Analytics Page Figure 18 provides in-depth analysis and comparisons of field trends using graphical tools such as charts and graphs, helping users evaluate the growth and demand of various fields. Supporting pages like About Us Figure 19 and Contact Us Figure 20 enhance user engagement by offering transparency about the platform.

Figure 15: GUI Landing page

Figure 16: GUI Home page

Figure 17: GUI Dashboard

Figure 18: GUI Trends Analytics

Figure 19: GUI About us page

Figure 20: GUI Connect us page

5.3 Behavioral Diagram

5.3.1 Use Case Diagram

Figure 21 illustrates the use case diagram for the AI-Based Career Counseling and Career Transition Recommender System, highlighting the interactions between the User, Admin, and the system's core functionalities. The diagram provides an overview of the primary use cases, such as Signup, Login, Data Input and Validation, Field Recommendation, Aggregate Calculation, University Recommendation, Trend Visualization, Dashboard for Insights, and Search and Filter Options.

The User interacts with the system for activities like registration, providing academic data, receiving recommendations, and exploring trends. The Admin oversees key functionalities, such as managing the database and updating system data. Include and Extend relationships are used to depict dependencies and optional features. For example, Authentication Validation is included in both the Signup and Login processes to ensure secure access, while the Interest Finding Chatbot extends the Data Input and Validation use case to refine recommendations based on user interests. This diagram effectively demonstrates the modular structure and user-centered design of the system.

AI BASED CAREER COUNSELING AND CAREER TRANSITION RECOMMENDER SYSTEM

Figure 21: Use Case Diagram

5.3.2 Sequence Diagram

Figures 22 to 26 collectively illustrate the sequence diagrams for the primary functionalities of the AI-Based Career Counseling and Career Transition Recommender System, detailing the flow of interactions between the user and the system. Figure 22 demonstrates the user registration process, where the user submits their details, which are validated by the system before being securely stored in the database. A confirmation is sent back to the user, ensuring a smooth onboarding process. Similarly, Figure 23 outlines the login and forgot password sequences. In the login process, the system validates the user's credentials and grants access to their personalized dashboard, while the forgot password process involves sending a reset link or code to the user's email, enabling secure password recovery.

Figures 24 to 26 delve into the system's analytical and recommendation functionalities. Figure 24 showcases the sequence of inputting academic data and generating university recommendations, where the system calculates the user's aggregate and queries the database for eligible universities based on the user's data. Figure 25 represents trends analytics, highlighting how the system retrieves, processes, and visualizes data on field trends and demand indices, providing users with actionable insights. Lastly, Figure 26 focuses on field comparison analytics, enabling users to compare multiple fields side by side using growth rates, demand, and career opportunities, presented through intuitive visualizations.

User Registration

Figure 22: User registration

Login and Forgot Password

Figure 23: User login and forgot password

Figure 24: Input Data and University Recommendation

Trends Analytics

Figure 25: Trend analytics

Fields Comparison Analytics

Figure 26: Comparison analytics

5.3.3 State Machine Diagram

Figure 27 represents the state machine diagram for the career counseling system, illustrating the flow of states and transitions based on user interactions and system responses. It provides a clear depiction of how the system processes user inputs, handles errors and delivers actionable outputs like recommendations and analytics.

Figure 27: State Machine Diagram

6 Data Design and Relationships

6.1 Database Schema

The database design for the career counseling system is structured to efficiently manage and store all the necessary data for personalized recommendations, analytics, and user management. Table 21 serves as the foundation, storing essential user information and roles, while Table 22 users' academic performance and selected streams, enabling aggregate calculations for field and university recommendations.

Supporting this core functionality, Table 23 links users to their recommended fields and universities, while Table 24 stores data on field growth rates and demand trends to power trend analytics. Table 25 provides comprehensive information about available universities, ensuring accurate and tailored suggestions for users. Together, these interconnected tables create a cohesive and scalable database that supports the platform's goal of providing effective career counseling and academic planning.

The Academic Details table works in conjunction with the Trends table to provide users with recommendations that are not only based on their academic performance but also aligned with current market trends and field growth rates. Similarly, the Recommendations table integrates with the Universities table to provide users with detailed and actionable university suggestions, including application links and eligibility criteria.

6.1.1 User Table

Table 21: User table

Field Name	Data Type	Constraints
user_id	INT	PRIMARY KEY, AUTO_INCREMENT
Name	VARCHAR(255)	NOT NULL
email	VARCHAR(255)	UNIQUE, NOT NULL
password	VARCHAR(255)	NOT NULL
user_type	ENUM('student', 'admin')	DEFAULT 'student'
created_at	TIMESTAMP	DEFAULT CURRENT_TIMESTAMP

6.1.2 Academic Details Table

Table 22: Academic details table

Field Name	Data Type	Constraints
academic id	INT	PRIMARY KEY,
academic_id	INI	AUTO_INCREMENT
user_id	INT	FOREIGN KEY (Users.user_id)
matric_marks	FLOAT	NOT NULL
fsc_marks	FLOAT	NOT NULL
nts_marks	FLOAT	NULLABLE
stroom	ENUM('Pre-Medical', 'Pre-	NOT NULL
stream	Engineering', 'FCS')	NOI NOLL
aggregate	FLOAT	NULLABLE

6.1.3 Recommendations Table

Table 23: Recommendation table

Field Name	Data Type	Constraints
recommendation_id	INT	PRIMARY KEY,
		AUTO_INCREMENT
user_id	INT	FOREIGN KEY (Users.user_id)
field	VARCHAR(255)	NOT NULL
university_id	INT	FOREIGN KEY
		(Universities.university_id)

6.1.4 Trends Table

Table 24: Trends table

Field Name	Data Type	Constraints
trend_id	INT	PRIMARY KEY,
		AUTO_INCREMENT
field	VARCHAR(255)	NOT NULL
year	INT	NOT NULL
growth_rate	FLOAT	NOT NULL

Universities Table

Table 25: University table

Field Name	Data Type	Constraints
university_id	INT	PRIMARY KEY,
		AUTO_INCREMENT
name	VARCHAR(255)	UNIQUE, NOT NULL
location	VARCHAR(255)	NOT NULL
admission_criteria	TEXT	NOT NULL
university_link	VARCHAR(255)	NOT NULL

6.2 Entity Relationship Diagram

Figure 28 shows the Entity Relationship Diagram for our system including database tables

Figure 28: Entity Relationship Diagram

6.3 Data Dictionary Diagram

Figure 29 shows the Data Dictionary Diagram of the system

Figure 29: Data Dictionary Diagram

7 Software Planning and Timeline

7.1 Work Breakdown Structure

Figure 30 illustrates the Work Breakdown Structure for the career counseling system.

Figure 30: Work Breakdown Structure

Figures 31 to 36 depict the detailed Work Breakdown Structures (WBS) for various phases of the career counseling system, outlining the specific tasks involved in each stage of the project. Figure 31 focuses on the planning and research phase, which includes identifying user needs, researching university admission criteria and collecting datasets for trends and comparisons. These foundational tasks ensure that the project goals are well-defined and grounded in accurate, comprehensive data. Figure 32 highlights frontend development.

Figures 33 to 36 delve into backend development, data visualization, testing, and deployment. Figure 33 emphasizes backend development tasks like database schema creation, implementing recommendation algorithms, and integrating trends and university data for seamless functionality. Figure 34 outlines tasks for generating visual analytics, including trend graphs and field comparisons to provide actionable insights to users. Figure 35 ensures system reliability through extensive testing and validation, while Figure 36 addresses deployment and post-launch activities, such as hosting the platform, creating user documentation, and ongoing maintenance.

Figure 31: Planning and Research WBS

Figure 32: Frontend Development WBS

Figure 33: Backend Development WBS

Figure 34: Data Visualization and Insights WBS

Figure 35: Testing and Validation WBS

Figure 36: Deployment and Launch, Post Launch Activities WBS

7.2 Milestones and Deliverables

7.2.1 Milestone 1: Planning and Research

Figure 37 shows the milestone 1 of planning and esearch ad described below

Sub-Milestone 1.1: Requirement Elicitation

- 1. Identified user needs and project goals.
- 2. Research report on university admission criteria and fields of study.

Dataset for trends and comparisons (2000–2004 dataset).

Sub-Milestone 1.2: Project Scope Definition

- 1. Documented features and functionalities.
- 2. System architecture blueprint.

Sub-Milestone 1.3: Timeline and Resource Allocation

1. Project timeline with key phases and deadlines.

2. Resource allocation plan (team roles, tools and technologies).

Planning and Research	23 days	Tue 10/1/24	Thu 10/31/24	2			
[▲] Requirement Elicitation	12 days	Tue 10/1/24	Wed 10/16/24	2.1			
Identify user needs and project goals.	1 wk	Tue 10/1/24	Mon 10/7/24	2.1.1		Requirement Engineer	Requirement Engineer
Research university admission criteria and fields of study.	3 days	Tue 10/8/24	Thu 10/10/24	2.1.2	4	Requirement Engineer	Requirement Engineer
Collect data for trends and comparisons (2000–2004 dataset).	2 days	Fri 10/11/24	Mon 10/14/24	2.1.3	5	Requirement Engineer	Requirement Engineer
	1 wk	Tue 10/15/24	Mon 10/21/24	2.2	3		—
Define features and functionalities.	3 days	Tue 10/15/24	Thu 10/17/24	2.2.1		Requirement Engineer	Requirement Enginee
Outline system architecture.	2 days	Fri 10/18/24	Mon 10/21/24	2.2.2	8	Designer	Designer
△ Timeline and Resources	1.6 wks	Tue 10/22/24	Thu 10/31/24	2.3	7		–
Develop project timeline and resource allocation	8 days	Tue 10/22/24	Thu 10/31/24	2.3.1		MS Project	MS Project

Figure 37: Milestone 1Planning and Research

7.2.2 Milestone 2: Backend Development

Figure 38 shows the milestone 2 of backend development explained below

Sub-Milestone 2.1: Database Design

1. Schema for user data, university details, trends and field comparisons.

Sub-Milestone 2.2: Backend Logic

- 1. Algorithm for field recommendations and university suggestions.
- 2. Aggregate calculation algorithm.

Sub-Milestone 2.3: Integration of Trends and Comparisons

1. Processed and stored trend data for dashboard visualizations.

Sub-Milestone 2.4: Backend Testing

1. Tested backend functionality ensuring accuracy of recommendations and API functionality.

Backend Development	33 days	Fri 11/1/24	Sun 12/15/24	3		
△ Database Design	10 days	Fri 11/1/24	Thu 11/14/24	3.1		
Create schema for user data, university details, trends, and field comparisons.	10 days	Fri 11/1/24	Thu 11/14/24	3.1.1		Developer
■ Backend Logic	11 days	Fri 11/15/24	Fri 11/29/24	3.2	13	
Develop Algorithm for field recommendations and university suggestions.	6 days	Fri 11/15/24	Fri 11/22/24	3.2.1		Python (ARIMA Model)
Implement aggregate calculation algorithms.	5 days	Mon 11/25/24	Fri 11/29/24	3.2.2	16	Developer
Integration of Trends and Comparisons	7 days	Sat 11/30/24	Sat 12/7/24	3.3	15	
Process and store trend data for dashboard visualizations.	7 days	Sat 11/30/24	Sat 12/7/24	3.3.1		Developer
Testing Backend Functions	7 days	Sun 12/8/24	Sun 12/15/24	3.4	18	
Ensure accuracy of recommendations and API functionality.	7 days	Sun 12/8/24	Sun 12/15/24	3.4.1		Developer

Figure 38: Milestone 2 Backend Development

7.2.3 Milestone 3: Frontend Development

Figure 39 shows the milestone 3 of frontend development described below

Sub-Milestone 3.1: User Interface Design

1. Wireframes and intuitive layouts for form submissions and dashboard.

Sub-Milestone 3.2: Frontend Implementation

- 1. Data input forms (marks, expected scores, interests).
- 2. Dynamic pages for field and university recommendations.
- 3. Dashboard for trend visualizations and comparisons.

Sub-Milestone 3.3: Frontend-Backend Integration

1. Functional APIs connected to frontend components.

Frontend Development	35 days	Mon 12/16/24	Fri 1/31/25	4	12	
User Interface Design	12 days	Mon 12/16/24	Tue 12/31/24	4.1		
Design intuitive layouts for form submissions and dashboard.	12 days	Mon 12/16/24	Tue 12/31/24	4.1.1		Figma,Develope
	16 days	Wed 1/1/25	Wed 1/22/25	4.2	23	
Develop forms for data input (marks, expected scores, interests).	4 days	Wed 1/1/25	Sun 1/5/25	4.2.1		Developer
Build dynamic recommendation pages for fields and universities.	6 days	Mon 1/6/25	Sat 1/11/25	4.2.2	26	Developer
Implement dashboard for trend visualizations and comparisons.	8 days	Mon 1/13/25	Wed 1/22/25	4.2.3	27	Developer
	7 days	Thu 1/23/25	Fri 1/31/25	4.3	25	
Connect APIs to frontend components.	7 days	Thu 1/23/25	Fri 1/31/25	4.3.1		Developer

Figure 39: Milestone 3 Frontend Development

7.2.4 Milestone 4: Data Visualization and Insights

Figure 40 explains the milestone 4 of data visualization and insights describe below

Sub-Milestone 4.1: Trend Analysis

- 1. Graphs for growing and declining fields.
- 2. Visualization of global demand for respective fields.

Sub-Milestone 4.2: Comparison Tools

1. Feature for comparing fields based on user-selected criteria.

Data Visualization and Insights	22 days	Sat 2/1/25	Fri 2/28/25	5	22		
■ Trend Analysis	11 days	Sat 2/1/25	Fri 2/14/25	5.1			
Generate graphs for growing and declining fields.	6 days	Sat 2/1/25	Fri 2/7/25	5.1.1		Developer	Developer
Display global demand for respective fields.	5 days	Mon 2/10/25	Fri 2/14/25	5.1.2	33	Developer	Developer
Comparison Tools	11 days	Sat 2/15/25	Fri 2/28/25	5.2	32		*
Implement feature for comparing fields based on user-selected criteria.	11 days	Sat 2/15/25	Fri 2/28/25	5.2.1		Developer	Developer

Figure 40: Data Visualization and Insights

7.2.5 Milestone 5: Testing and Validation

Figure 50 shows the milestone 5 of testing and validation described below

Sub-Milestone 5.1: System Testing

1. End-to-end tested workflows and functionalities.

Sub-Milestone 5.2: User Feedback Collection

1. Feedback report from beta testing with students and educators.

Sub-Milestone 5.3: Bug Fixing and Optimization

1. Resolved issues and optimized system performance.

Testing and Validation	25 days	Sat 3/1/25	Mon 3/31/25	6	31	
■ System Testing	11 days	Sat 3/1/25	Wed 3/12/25	6.1		
Perform end-to-end testing of user flows and functionalities.	11 days	Sat 3/1/25	Wed 3/12/25	6.1.1		Cypress,Develop
■ User Feedback Collection	8 days	Thu 3/13/25	Sat 3/22/25	6.2	38	
Conduct beta testing with students and educators.	8 days	Thu 3/13/25	Sat 3/22/25	6.2.1		Developer
Bug Fixing and Optimization	7 days	Sun 3/23/25	Mon 3/31/25	6.3	40	
Resolve issues identified during testing.	7 days	Sun 3/23/25	Mon 3/31/25	6.3.1		Developer

Figure 41: Testing and Validation

7.2.6 Milestone 6: Deployment and Launch

Figure 45 shows the milestone 6 of deployment and launch explained below

Sub-Milestone 6.1: Hosting and Deployment

1. Live website deployed to a hosting platform.

Sub-Milestone 6.2: User Documentation

1. User guides and tutorials for using the platform.

Figure 42: Deployment and Launch

7.2.7 Milestone 7: Post-Launch Activities

Figure 43 shows the milestone 7 of post launch activities described below

Sub-Milestone 7.1: Monitoring and Maintenance

- 1. Performance monitoring reports.
- 2. Updates and improvements based on user feedback.

Sub-Milestone 7.2: Promotion and Outreach

1. Marketing materials (e.g., brochures, posters, social media campaigns).

2. Outreach program for schools.

Post-Launch Activities	23 days	Thu 5/1/25	Mon 6/2/25	8	44	
Monitoring and Maintenance	14 days	Thu 5/1/25	Tue 5/20/25	8.1		
Monitor platform performance and user feedback.	10 days	Thu 5/1/25	Wed 5/14/25	8.1.1		Developer
Make updates and improvements.	4 days	Thu 5/15/25	Tue 5/20/25	8.1.2	51	Developer
Promotion and Outreach	9 days	Wed 5/21/25	Mon 6/2/25	8.2	50	
Promote the platform to schools and through social media.	9 days	Wed 5/21/25	Mon 6/2/25	8.2.1		Marketing Team

Figure 43: Milestone 7 Post Launch Activities

7.3 Detailed Baseline Plan

Figures 31 to 36 present the Work Breakdown Structures for the career counseling system, covering all major phases of the project. These include planning and research Figure 31, where user needs and datasets are identified, frontend development Figure 32, focusing on user-friendly interfaces and responsive dashboards, and backend development Figure 33, which involves database creation, recommendation algorithms, and data integration. Additionally, data visualization tasks Figure 34 focus on generating trend graphs and comparisons, while testing and validation Figure 35 ensure system reliability. Finally, deployment and post-launch activities Figure 36 involve hosting, documentation, and maintenance. Together, these WBS diagrams provide a structured and comprehensive roadmap for efficient project execution.

Figure 44: Baseline Plan part 1

△ Database Design	10 days	Fri 11/1/24	Thu 11/14/24	3.1		
Create schema for user data, university details, trends, and field comparisons.	10 days	Fri 11/1/24	Thu 11/14/24	3.1.1		Developer
△ Backend Logic	11 days	Fri 11/15/24	Fri 11/29/24	3.2	13	
Develop Algorithm for field recommendations and university suggestions.	6 days	Fri 11/15/24	Fri 11/22/24	3.2.1		Python (ARIMA Model)
Implement aggregate calculation algorithms.	5 days	Mon 11/25/24	Fri 11/29/24	3.2.2	16	Developer
Integration of Trends and Comparisons	7 days	Sat 11/30/24	Sat 12/7/24	3.3	15	
Process and store trend data for dashboard visualizations.	7 days	Sat 11/30/24	Sat 12/7/24	3.3.1		Developer
Testing Backend Functions	7 days	Sun 12/8/24	Sun 12/15/24	3.4	18	
Ensure accuracy of recommendations and API functionality.	7 days	Sun 12/8/24	Sun 12/15/24	3.4.1		Developer
△ Frontend Development	35 days	Mon 12/16/24	Fri 1/31/25	4	12	
4 User Interface Design	12 days	Mon 12/16/24	Tue 12/31/24	4.1		
Design intuitive layouts for form submissions and dashboard.	12 days	Mon 12/16/24	Tue 12/31/24	4.1.1		Figma,Developer
	16 days	Wed 1/1/25	Wed 1/22/25	4.2	23	

Figure 45: Baseline Plan part 2

■ System Testing	11 days	Sat 3/1/25	Wed 3/12/25	6.1			
Testing and Validation	25 days	Sat 3/1/25	Mon 3/31/25	6	31		
Implement feature for comparing fields based on user-selected criteria.	11 days	Sat 2/15/25	Fri 2/28/25	5.2.1		Developer	Developer
Comparison Tools	11 days	Sat 2/15/25	Fri 2/28/25	5.2	32		_
Display global demand for respective fields.	5 days	Mon 2/10/25	Fri 2/14/25	5.1.2	33	Developer	Developer
Generate graphs for growing and declining fields.	6 days	Sat 2/1/25	Fri 2/7/25	5.1.1		Developer	Developer
Trend Analysis	11 days	Sat 2/1/25	Fri 2/14/25	5.1			
Data Visualization and Insights	22 days	Sat 2/1/25	Fri 2/28/25	5	22		
Connect APIs to frontend components.	7 days	Thu 1/23/25	Fri 1/31/25	4.3.1		Developer	Developer
Frontend-Backend Integration	7 days	Thu 1/23/25	Fri 1/31/25	4.3	25		<u> </u>
Implement dashboard for trend visualizations and comparisons.	8 days	Mon 1/13/25	Wed 1/22/25	4.2.3	27	Developer	Developer
Build dynamic recommendation pages for fields and universities.	6 days	Mon 1/6/25	Sat 1/11/25	4.2.2	26	Developer	Developer
Develop forms for data input (marks, expected scores, interests).	4 days	Wed 1/1/25	Sun 1/5/25	4.2.1		Developer	Developer

Figure 46: Baseline Plan part 3

8 Quality Assurance Plan

8.1 Testing Requirements

The following are the detailed **testing requirements** for the system, categorized based on various testing types to ensure its functionality, performance, security, usability and overall reliability.

8.1.1 Functional Testing

1. Verify user registration and login functionality:

- 1. Ensure successful account creation and secure authentication.
- 2. Validate Google OAuth integration.

2. Test data input forms:

- 1. Allow users to input academic marks, expected scores and preferences.
- 2. Display error messages for invalid data entries.

3. Validate field recommendation system:

1. Ensure recommendations align with user input (marks, streams, interests).

4. Validate university recommendation system:

1. Ensure universities match calculated aggregates and eligibility criteria.

5. Test trend analysis and visualizations:

1. Ensure trends in growing and declining fields are displayed accurately.

6. Validate comparison tools:

1. Allow users to compare fields based on selected criteria.

8.1.2 Performance Testing

1. Load Testing:

1. Ensure the system handles **1,000 concurrent users** without performance degradation.

2. Stress Testing:

1. Determine system performance during peak usage (e.g., 5,000 users/hour).

3. Scalability Testing:

1. Test scalability for future growth up to **10,000 concurrent users**.

4. **Response Time Testing:**

1. Ensure recommendations and visualizations are displayed within **2 seconds**.

8.1.3 Security Testing

1. Test authentication mechanisms:

- 1. Validate password encryption and secure storage.
- 2. Verify Google OAuth token handling.

2. Test data security:

- 1. Ensure data in transit is encrypted with **SSL/TLS protocols**.
- 2. Verify sensitive data (e.g., user marks) is encrypted at rest using **AES-256**.

3. Identify vulnerabilities to common attacks:

1. Protect against **SQL injection**, **XSS**, **CSRF**, and **DDoS**.

4. Test role-based access control:

1. Ensure only authorized users (e.g., admins) can access restricted areas.

8.1.4 Usability Testing

1. Test navigation:

1. Verify all pages are easily accessible with a clear navigation flow.

2. Test responsive design:

1. Ensure the platform works seamlessly across devices (mobile, tablet, desktop).

3. Conduct user testing:

1. Collect feedback from a focus group of students and educators.

4. Ensure accessibility:

1. Follow **WCAG 2.1 guidelines** for accessibility.

8.1.5 Integration Testing

1. Test frontend-backend integration:

1. Ensure APIs correctly communicate with frontend components.

2. Validate API functionality:

1. Test API responses for recommendations, trends, and comparisons.

3. Test external API integration:

1. Verify Google OAuth API connections.

8.1.6 System Testing

1. Test complete user workflows:

1. Registration \rightarrow Data Input \rightarrow Recommendations \rightarrow Visualizations.

2. Verify system requirements:

1. Ensure recommendations and visualizations align with project goals.

3. Perform boundary testing:

1. Test the system with minimum and maximum data inputs.

8.1.7 Regression Testing

- 1. Retest all workflows after updates.
- 2. Maintain automated regression test scripts for critical features.

8.1.8 User Acceptance Testing (UAT)

1. Conduct beta testing:

1. Invite students and educators to use the platform and provide feedback.

2. Validate user experience:

1. Test ease of use, accuracy of recommendations, and clarity of insights.

8.2 Acceptance Criteria

Acceptance criteria define the specific conditions that must be met for the system to be considered complete, functional and acceptable to the stakeholders (students and educators). Below are the key acceptance criteria categorized by system features and functionalities

8.2.1 User Registration and Login

- 1. Users must be able to create an account using their email and password.
- 2. Google OAuth integration must allow users to log in seamlessly.

3. Validation

- Invalid email or password should prompt an appropriate error message.
- Secure password storage using encryption must be implemented.

4. Success Criteria

• User successfully logs in and is redirected to their personalized dashboard.

8.2.2 Data Input and Validation

- 1. The system must allow users to input their **Matric**, **FSC**, and **NTS** or **NET** scores.
- 2. Users must have the option to enter **expected marks** if their results are pending.
- 3. Validation to
 - Ensure only numeric values are accepted for marks.
 - Notify users if any required fields are missing or invalid.

4. Success Criteria

• User data is saved successfully, and validated input is processed without errors.

8.2.3 Field Recommendation

- 1. The system must provide a list of potential fields based on
 - Marks entered by the user.
 - Selected study stream (e.g., Pre-Medical, Pre-Engineering).
 - Stated interests (if provided via chatbot interaction).

2. Success Criteria

Recommendations align with user inputs and expected trends.

8.2.4 University Recommendation

1. The system must recommend universities based on

- Calculated aggregate scores.
- University admission criteria and eligibility.

2. Recommendations must include

- Admission deadlines.
- Links to online application portals.
- Information on university locations.

3. Success Criteria

• Recommendations are accurate, personalized and relevant.

8.2.5 Trend Analysis and Visualization

- 1. The dashboard must display visualizations showing
 - Trends for growing and declining fields based on historical data.
 - Global demand for respective fields.

2. Success Criteria

• Graphs and charts are interactive, clear, and provide meaningful insights to users.

8.2.6 Comparison Tools

- 1. Users must be able to compare multiple fields of study based on
 - Growth trends.

2. Success Criteria

 Users can easily select fields to compare, and the system provides accurate results with visual aids.

8.2.7 Chatbot Interaction

- 1. The chatbot must allow users to
 - Discover their interests through guided questions.
 - Receive recommendations based on their stated preferences.

2. Success Criteria

• Chatbot interactions are seamless, with relevant and meaningful responses provided.

8.2.8 Usability

- 1. The platform must be user-friendly and accessible on
 - Desktop.
 - Mobile.
 - Tablet.

2. Success Criteria

• Users navigate the platform easily, with no confusion or difficulty in finding key features.

8.2.9 System Performance

- 1. The system must perform efficiently under various conditions
 - Response Time: Recommendations, dashboards, and comparisons must load within 2 seconds.
 - Concurrent Users: The system must handle at least 1,000 concurrent users without performance degradation.

2. Success Criteria

• Performance metrics meet defined benchmarks during load and stress testing.

8.2.10 Security

- 1. User data must be securely stored and transmitted
 - Passwords must be encrypted.
 - Data in transit must be encrypted using **SSL/TLS protocols**.
- 2. The system must prevent vulnerabilities such as **SQL injection**, **XSS**, and **CSRF attacks**.
- 3. Success Criteria
 - Security tests are passed with no critical vulnerabilities identified.

8.2.11 Integration

- 1. The system must integrate seamlessly between
 - Frontend and backend components.
 - External APIs (e.g., Google OAuth and university data APIs).
- 2. Success Criteria
 - All integrated systems function as expected without errors or delays.

8.2.12 User Feedback and Testing

- 1. Beta testing with students and educators must
 - Identify areas for improvement.
 - Ensure the platform meets user expectations in terms of functionality, performance, and usability.
- 2. Success Criteria
 - Feedback is overwhelmingly positive, with no major usability issues reported.

8.2.13 Deployment

- 1. The platform must be deployed successfully to a live hosting environment
 - Accessible to users on all major browsers (Chrome, Firefox, Safari, Edge).
 - Compatible with devices running Windows, macOS, Android, and iOS.

2. Success Criteria

• Users access the live system without issues or downtime.

8.2.14 Post-Launch Monitoring

- 1. The system must
 - Continuously monitor performance and user feedback.
 - Provide actionable insights for future updates.

2. Success Criteria

• Maintenance tasks are completed on schedule, with identified issues resolved promptly.

8.3 Quality Assurance Plan

8.3.1 Introduction

Purpose: The QA Plan ensures the platform meets functional, performance, security, and usability requirements while aligning with user needs.

Scope: Covers the testing, validation and review processes for all system components, including user registration, recommendations, visualizations and external API integrations.

Target Audience: Students and administrators using the platform.

8.3.2 Quality Objectives

1. Deliver a secure and reliable platform for students to receive personalized career guidance.

- 2. Ensure all system functionalities, such as recommendations and visualizations, perform efficiently and accurately.
- 3. Achieve high user satisfaction with an intuitive and responsive interface.

8.3.3 Scope of QA

The QA plan includes

- 1. Functional testing for core features (e.g., recommendations, visualizations, and comparisons).
- 2. Performance testing under various loads.
- 3. Security testing to ensure data protection.
- 4. Usability testing for a user-friendly interface.
- 5. Integration testing to validate the interaction between components (e.g., frontend-backend).

8.3.4 Roles and Responsibilities

Table 26 shows roles and responsibilities in the system.

Table 26: Roles and Responsibilities

Role	Responsibilities
QA Lead	Oversee QA activities, prepare test plans and ensure adherence to standards.
Test Engineers	Conduct functional, performance, security and usability testing.
Developers	Fix bugs and issues identified during testing.
Project Manager	Ensure QA timelines align with project deadlines.

8.3.5 Quality Assurance Processes

1. Planning Phase:

- Define functional and non-functional requirements.
- Prepare test cases and scenarios.

2. **Design Review**:

• Conduct peer reviews of UI/UX wireframes, database schema, and algorithms.

3. **Development QA**:

Perform static code analysis to ensure code quality.

4. **Testing**:

• Conduct various types of testing (detailed below).

5. Validation:

Confirm that the platform meets user needs through UAT.

6. **Post-Launch Monitoring**:

• Continuously monitor performance and collect user feedback.

8.3.6 Testing Strategy

1. Functional Testing

Objective: Validate that all features work as intended.

Key Areas:

- 1. User registration and login.
- 2. Data input and validation.
- 3. Recommendation system (fields and universities).
- 4. Visualizations (trends and comparisons).

Tool: cypress.

2. Performance Testing

Objective: Ensure the platform performs efficiently under load.

Key Metrics:

- 1. Response time: < 2 seconds for recommendations and dashboards.
- 2. Scalability: Handle up to 10,000 concurrent users.

Tools: JMeter.

3. Security Testing

Objective: Ensure user data is protected from threats.

Key Areas:

- 1. Test against SQL Injection and DDoS attacks.
- 2. Role-based access control testing.

Tools: Burp Suite.

4. Usability Testing

Objective: Ensure the platform is intuitive and accessible.

Key Areas:

- 1. Navigation flow.
- 2. Responsiveness across devices.
- 3. Accessibility compliance.

Tools: Accessibility Insights.

5. Integration Testing

Objective: Validate interactions between system components.

Key Areas:

- 1. Frontend-backend communication via APIs.
- 2. External API integrations (e.g., Google OAuth).

Tools: Postman.

6. Regression Testing

Objective: Ensure new updates don't break existing features.

Key Areas:

- 1. Retest core functionalities after updates.
- 2. Maintain automated regression scripts.

Tools: Selenium.

7. User Acceptance Testing (UAT)

Objective: Validate the platform meets user expectations.

Process:

- 1. Conduct beta testing with students and educators.
- 2. Collect feedback on usability, accuracy, and performance.

8 Post-Deployment Testing

Objective: Ensure the live system performs as expected.

Key Areas:

- 1. Monitor uptime (target: 99.9%).
- 2. Validate response times and error rates.

Tools: Google Analytics.

8.3.7 Defect Management

- 1. Track and manage defects using Jira.
- 2. Classify defects by severity (Critical, High, Medium, Low).
- 3. Prioritize and resolve issues based on impact.

8.3.8 Metrics and Reporting

1. **Defect Density**: Target < 1 defect per 1,000 lines of code.

2. **Test Case Pass Rate**: Achieve > 95% pass rate.

3. **Performance Metrics**: Response times < 2 seconds, uptime 99.9%.

4. **User Satisfaction**: Target average score of 4.5/5 in feedback.

8.3.9 Tools and Resources

1. **Testing Tools**: Selenium, Postman, Cypress.

2. Version Control: Git/GitHub.

3. **Bug Tracking**: Jira.

4. **Environments**:

• Staging: For internal testing.

• Production: For live user testing.

8.3.10 Risk Management

Table 27 shows risk and their mitigation strategies.

Table 27: Risk and Mitigation

Risk	Mitigation
Insufficient testing time	Allocate buffer time in the project schedule.
High defect rate during development	Perform continuous testing alongside development.
Security vulnerabilities	Conduct periodic security audits.
Compatibility issues	Test across devices, browsers, and operating systems.

8.3.11 Continuous Improvement

- 1. Collect feedback from users and stakeholders post-launch.
- 2. Regularly update test cases to align with system changes.
- 3. Conduct retrospectives to improve QA processes.
- 4. Version controlling of document and code.
- 5. Proper configuration management process is followed.

8.3.12 Approval and Sign-off

- 1. Obtain approval from stakeholders (e.g., project manager, QA lead) before deploying the system.
- 2. Ensure all defects marked as "Critical" or "High" are resolved.

8.4 Planned Test Suites and Test Cases

8.4.1 Test Suite: User Registration and Login

Table 28 show the test case for user registration and login.

Table 28: Test Suit 1 User Registration and Login

Test Case	Description	Steps	Expected Result
Test Case 1.1: User Registration	Validate that users can successfully create an account.	 Navigate to the registration page. Enter valid email, password, and confirm password. Click "Register." 	Account is created successfully, and a confirmation email is sent.
Negative Test Case	Enter an invalid email or mismatched passwords. Ensure an error message is displayed.	Attempt registration with invalid inputs.	Error message is displayed.
Test Case 1.2: User Login	Validate that registered users can log in.	 Navigate to the login page. Enter valid email and password. Click "Login." 	User is redirected to the dashboard.
Negative Test Case	Enter incorrect email/password. Ensure an error message is displayed.	Attempt login with incorrect credentials.	Error message is displayed.
Test Case 1.3: Google OAuth Login	Validate login via Google OAuth.	Click "Login with Google." Choose a valid Google account.	User is redirected to the dashboard.

8.4.2 Test Suite: Data Input and Validation

Table 29 shows the test case for data input and validation.

Table 29: Test Suite Data Input and Validation

Test Case	Description	Steps	Expected Result
Test Case 2.1: Input Valid Data	Validate that users can input valid academic details.	 Enter Matric and FSC marks (numeric values). Select a study stream (e.g., Pre-Medical, Pre-Engineering). Click "Submit." 	Data is saved successfully.
Test Case 2.2: Input Invalid Data	Test how the system handles invalid data.	 Enter non-numeric or negative values for marks. Leave required fields empty. 	Error messages are displayed.
Test Case 2.3: Enter Expected Marks	Validate that users can enter expected marks if results are pending.	Select "Enter Expected Marks." Input expected scores for Matric, FSC, and tests.	Expected marks are saved successfully.

8.4.3 Test Suite: Recommendation System

Table 30 shows the test case for recommendation system.

Table 30: Test Suite Recommendation System

Test Case	Description	Steps	Expected Result
Test Case 3.1: Field Recommendations	Validate that fields are recommended based on user data.	Enter marks and study stream. Click "Get Recommendations."	List of suitable fields is displayed.
Test Case 3.2: University Recommendations	Validate that universities are recommended based on calculated aggregate.	Select a field of study. View recommended universities.	Relevant universities are displayed with admission criteria and deadlines.
Test Case 3.3: Interest-Based Recommendations	Validate recommendations based on user interest.	 Interact with the chatbot. Provide details about interests. View recommended fields and universities. 	Recommendations align with user interests.

8.4.4 Test Suite: Dashboard and Trend Visualization

Table 31 shows the test cases for dashboard and trend visualization.

Table 31: Test Suite Dashboard and Trend Visualization

Test Case	Description	Steps	Expected Result	
	Validate that trends			
Test Case 4.1: View	for fields of study	1. Navigate to the dashboard.	Graphs for growing and declining	
Trends	are displayed on the	2. Select "View Trends."	fields are displayed.	
	dashboard.			
Test Case 4.2:	Validate the	1. Select two or more fields for	Comparison data (growth rate,	
	comparison of	comparison.	demand index) is displayed.	
Compare Fields	multiple fields.	2. Click "Compare."	demand index) is displayed.	

8.4.5 Test Suite: Integration Testing

Table 32 shows the test cases for integration testing.

Table 32: Test Suite for Integration Testing

Test Case	Description	Steps	Expected Result
Test Case 5.1:	Validate the integration	1. Fill out data input forms.	Data is saved and processed
Frontend-Backend	between frontend forms	2. Check API calls using a	correctly by the backend.
Integration	and backend APIs.	tool like Postman.	correctly by the backend.
Test Case 5.2:		Login using Coogle OAuth	Data is retrieved and displayed
External API	Validate Google OAuth	Log in using Google OAuth.	without errors.
Integration			without errors.

8.4.6 Test Suite: Performance Testing

Table 33 shows the test cases for performance testing.

Table 33: Test Suit Performance Testing

Test Case	Description	Steps	Expected Result
Test Case 6.1: Load Testing	Validate system performance under load.	Simulate 1,000 concurrent users. Monitor response times.	Response time remains under 2 seconds.
Test Case 6.2: Stress Testing	Test system behavior under peak traffic.	 Simulate 5,000 concurrent users. Monitor system stability. 	System handles high load without crashing.

8.4.7 Test Suite: Security Testing

Table 34 shows the test case for security tetsing

Table 34: Test Suit Security Testing

Test Case	Description	Steps	Expected Result
Test Case 7.1: SQL Injection	Test for SQL injection vulnerabilities.	Enter malicious SQL code in input fields.	System rejects malicious inputs.

8.4.8 Test Suite: System Workflow Testing

Table 35 shows the test cases for system workflow.

Table 35:Test Suit System Workflow

Test Case	Description	Steps	Expected Result
Test Case 8.1: Mobile Responsiveness	Validate that the platform works on mobile devices.	 Access the platform on a mobile browser. Navigate through forms and dashboards. 	Platform is fully responsive.
Test Case 8.2: Navigation Flow	Validate ease of navigation.	Navigate through different pages (e.g., registration, recommendations, dashboard).	All pages are easily accessible.

8.4.9 Test Suite: Post-Deployment Testing

Table 36 shows the test cases for post deployment.

Table 36: Test suit Post Deployment Testing

Test Case	Description	Steps	Expected Result
Test Case 9.1: Monitor Uptime	Validate uptime and system availability.	1. Monitor the live system for 24 hours.	Uptime is 99.9%.
Test Case 9.2: Monitor Performance	Test live system performance under real-world conditions.	Monitor response times and error rates.	Response times remain under 2 seconds.

Appendix A – Data Dictionary

Table 37: Appendix A - Data Dictionary

Name	Type	Description	Related Operations	Functional Requirements
userId	Integer	Unique identifier for each	Create, Read, Update,	User registration,
		user.	Delete (CRUD).	login, account
				management.
name	String	User's full name.	Input during registration,	User registration.
			view/edit profile.	
email	String	User's email address.	Input during registration,	User authentication
			login, profile	and notifications.
			management.	
password	String	User's encrypted	Input during registration	User authentication.
		password.	and login.	
userType	String	Type of user (e.g., admin,	Assigned at registration.	Role-based access
		student).		control.
marksMatric	Float	User's Matric marks.	Input during data	Aggregate
			submission.	calculation,
				recommendations.
marksFSC	Float	User's FSC marks.	Input during data	Aggregate
			submission.	calculation,
				recommendations.
testScores	Float	User's test scores (e.g.,	Input during data	Aggregate
		NTS, NET).	submission.	calculation,
				recommendations.
expectedMarks	Float	User's expected marks if	Input during data	Aggregate
		actual results are not	submission.	calculation,
		available.		recommendations.
studyStream	String	User's selected study	Input during data	Field
		stream.	submission.	recommendations.
recommendedFields	Array	List of fields	Generated based on user	Field
	(String)	recommended to the user.	data.	recommendations.
Recommended-	Array	List of universities	Generated based on	University
Universities	(String)	recommended based on eligibility.	aggregate and criteria.	recommendations.

AI Based Career Counseling and Career Transition Recommender System

aggregate	Float	Calculated aggregate	Calculate, display to	Aggregate
		based on user-provided	user.	calculation.
		marks and predefined		
		formulas.		
universityName	String	Name of a university in	Stored, updated, or	University
		the system database.	retrieved from the	recommendations.
			database.	
admissionCriteria	String	Admission requirements	Retrieved from the	University
		for a specific university.	database and displayed	recommendations.
			to the user.	
admissionDeadline	Date	Application deadline for a	Stored and retrieved for	Notifications and
		university.	notifications.	recommendations.
trendsData	Dataset	Historical data on field	Processed and visualized	Trend analysis, field
		growth trends.	in the dashboard.	comparison.
trendGraphType	String	Type of graph used for	User-selected or auto-	Trend visualization.
		trend visualization.	generated for	
			visualization.	
comparisonFields	Array	List of fields selected by	Compare data and	Field comparison.
	(String)	the user for comparison.	display trends.	
chatbotResponses	String	User-provided responses	Processed to determine	Interest-based
		during interaction with	user interests.	recommendations.
		the chatbot.		
apiRequests	Integer	Number of API calls	Tracked and logged.	API integrations
		made by the system to		(login, university
		fetch external data (e.g.,		data).
		Google OAuth, university		
		APIs).		
status	String	Status of a user's request	Updated dynamically for	Notifications, user
		or action.	various user actions.	feedback.
errorMessage	String	Error messages displayed	Generated dynamically	Error handling and
		to the user during	based on user actions.	user guidance.
		validation or processing.		

Appendix B - Group Log

Table 38: Appendix B - Group Log

Date	Activity	Details	Participants
30/11/24	Initial Project	Discussed the project's objectives, identified the main problem	Asad Shah, Fizza
	Discussion	statement, and agreed on the scope of work. Finalized the idea	Mazhar
		of a career counseling platform for students.	
02/12/24	Research on	Researched existing career counseling platforms to identify their	Asad Shah, Fizza
	Existing Systems	strengths, weaknesses, and features. Documented gaps to	Mazhar
		address in the proposed system.	
05/12/24	Requirement	Conducted a brainstorming session to outline user needs and	Asad Shah, Fizza
	Gathering	project requirements, including key features like	Mazhar
		recommendations, trend visualizations, and chatbot integration.	
		Identified data sources for trends and admission details.	
07/12/24	Problem	Finalized the problem statement and documented challenges	Asad Shah, Fizza
	Statement	faced by students in career selection after 12th grade.	Mazhar
	Finalization		
10/12/24	Preliminary	Drafted a high-level system architecture, including user flow,	Asad Shah, Fizza
	System Design	database, and functional components.	Mazhar
12/12/24	Task and Work	Assigned roles and responsibilities: Asad Shah to handle	Asad Shah, Fizza
	Allocation	backend development (algorithms and data processing), Fizza	Mazhar
		Mazhar to focus on frontend design, UI/UX, and	
		documentation. Also planned the workflow for data collection.	
15/12/24	Dataset	Researched potential data sources, including online admission	Asad Shah
	Identification and	portals, educational databases, and historical trends for career	
	Research	fields from 2000–2004. Discussed initial dataset schema.	
17/12/24	University Data	Gathered admission criteria, deadlines, and application links for	Asad Shah
	Collection	top universities in Pakistan. Documented in a structured format.	
20/12/24	Dataset	Gathered datasets related to admission criteria, field trends, and	Asad Shah
	Collection and	demand analysis for Pakistan and foreign countries. Cleaned the	
	Cleaning	data to ensure consistency and format uniformity.	
22/12/24	User Data Inputs	Defined the required input fields for users (e.g., Matric marks,	Fizza Mazhar
	Planning	FSC marks, study stream, test scores). Planned validation rules	
		for data input.	
	<u> </u>	<u> </u>	

AI Based Career Counseling and Career Transition Recommender System

25/12/24	Finalizing Dataset	Created a structured dataset with tables for user data, university	Asad Shah
	Structure	details, historical trends, and admission deadlines. Designed	
		preliminary database schema based on collected data.	
28/12/24	Algorithm Design	Outlined the logic for aggregate calculation and field	Asad Shah, Fizza
	Planning	recommendations. Discussed initial logic for matching user	Mazhar
		input with trends and admission criteria.	
30/12/24	Backend Planning	Planned the backend architecture, including database	Asad Shah
		connectivity, API structure, and algorithm integration.	
02/01/25	Backend	Started developing algorithms for aggregate calculation, field	Asad Shah
	Development	recommendations, and university suggestions. Worked on	
		connecting the backend logic to the dataset.	
05/01/25	Backend Progress	Reviewed progress on the backend algorithms and data	Asad Shah, Fizza
	Review	processing. Addressed challenges with handling incomplete user	Mazhar
		input (e.g., expected marks).	
07/01/25	User Interface	Created wireframes for forms, dashboards, and chatbot	Fizza Mazhar
	Wireframe	interaction screens. Focused on a responsive and user-friendly	
	Design	layout.	
10/01/25	Frontend	Planned the frontend architecture, including UI/UX for forms,	Fizza Mazhar
	Development	dashboards, and chatbot integration. Discussed designs for trend	
	Planning	visualizations and user interaction flows.	