Best Splitting of DNNs for distributed deployment in edge-cloud continuum with Quality Requirements

Simone Nicosanti

simone.nicosanti.01@students.uniroma2.eu,snicosanti@tudelft.nl

Tor Vergata University of Rome, Delft University of Technology

August 11th, 2025

- Context and Introduction
- 2 System Architecture
- 3 Optimization Problem
- 4 Preliminary Results

- Context and Introduction
- 2 System Architecture
- 3 Optimization Problem
- 4 Preliminary Results

Context and Introduction

Real World Problem

- Problem: How can we optimize inference in edge devices?
- Why optimize such a thing?
 - Limited computational power
 - Limited energy (e.g. battery devices)
 - Limited memory
- Thesis Target: Optimize inference time and energy consumption with quality requirements

Context and Introduction

Target Model

- The project originated from a public call for proposals in the context of occupational safety
 - ► Hence the importance of image AI processing
- Target Model: Yolo11
- Reasons:
 - State of the art model
 - High variety of tasks (detection, segmentation, classification, ecc.)
 - ► Easy to export in different formats

Context and Introduction

Frameworks

Model Format: ONNX

Easy to use:

- Libraries for import/export.
- Interface for submodel extraction.
- Interface for model analysis.

Execution Framework: OnnxRuntime Reasons:

- Highly compatible with a lot of low level architectures (through its ExecutionProvider).
- Multi-Language and Multi-Platform.
- Easy support to per layer quantization.

Other instruments: NetworkX (for Graph Modeling); PuLP (for Problem Definition); CPLEX (for Problem Resolution).

- Context and Introduction
- 2 System Architecture
- 3 Optimization Problem
- 4 Preliminary Results

System Architecture

High Level Interactions

Figure 1: High Level Interactions

- 1 Context and Introduction
- 2 System Architecture
- 3 Optimization Problem
- 4 Preliminary Results

Base Definition

The main elements of our problem are:

- DNN. Modelled as a *logical graph* $G_D = (V_D, E_D)$. Where we call:
 - $ightharpoonup T_D$ the set of tensors moving between layers
- Server Network. Modelled as a physical graph $G_N = (V_N, E_N)$

Objective. Build a mapping $G_D \to G_N$ (graph partitioning problem).

Problem Variables:

- $x_{ik} \in \{0,1\} \ \forall i \in V_D, \forall k \in V_N$: layer assignment.
- $y_{tn} \in \{0,1\} \ \forall t \in T_D, \forall n \in E_N$: tensor assignment.
- $q_i \in \{0,1\} \ \forall i \in V_D$: quantization activation.
- $x_{ik}^q \in \{0,1\} \ \forall i \in V_D, \forall k \in V_N$: layer assignment and quantization.
- $y_{tn}^q \in \{0,1\} \ \forall t \in T_D, \forall n \in E_N$: tensor assignment and quantization.

Latency Modelling

Computation Latency

Let $f_k(i, q_i) = \text{time for running layer } i$ on server k with quantization q_i . Then we have:

ullet Layer i computation time on server k:

$$\begin{split} T_{ik}^c &= \left[f_k(i,0) \cdot (1-q_i) + f_k(i,1) \cdot q_i \right] \cdot \\ x_{ik} &= f_k(i,0) \cdot x_{ik} - \left(f_k(i,0) - f_k(i,1) \right) \cdot x_{ik}^q \end{split}$$

• Server *k* computation time:

$$T_k^c = \sum_{i \in V_D} T_{ik}^c$$

Total Computation Time:

$$T^c = \sum_{k \in V_N} T_k^c$$

Transmission Latency

Let g(t, n) = time for sending tensor t through network edge n. Then we have:

• Server k sending time for tensor t:

$$T_{tk}^{x} = \left[g(t,n) \cdot (1 - q_i) + g'(t,n) \cdot q_i \right] \cdot y_{tn} = g(t,n) \cdot y_{tn} - \left(g(t,n) - g'(t,n) \right) \cdot y_{tn}^{q}$$

Server k sending time:

$$T_k^x = \sum_{t \in T_D} \left(T_{tk}^{x-self} + T_{tk}^{x-other} \right) = T_k^{x-self} + T_k^{x-other}$$

Total sending time:

$$T^x = \sum_{k \in V_N} T_k^x$$

Therefore we have: $T = T^c + T^x$

Energy Modelling

Computation Energy Let $h_k^c(t) = P_k^c \cdot t$ the function giving the computation energy consumption for server k. Then we have:

• Computation energy per server *k*:

$$E_k^c = h_k^c(T_k^c)$$

Total computation energy:

$$E^c = \sum_{k \in V_N} E_k^c$$

Therefore we have: $E = E^c + E^x$

Transmission Energy Let $h_k^{x-y}(t) = P_k^{x-y} \cdot t$ the giving the function giving the transmission energy consumption for server k in case y. Then we have:

• Transmission energy per server k:

$$\begin{split} E_k^x &= \\ h_k^{x-self}(T_k^{x-self}) + h_k^{x-other}(T_k^{x-other}) \end{split}$$

Total transmission energy:

$$E^x = \sum_{k \in V_N} E_k^x$$

Quantization Modelling

In the problem

Let:

- $V_Q \subset V_D$ a subset of layers for which quantization can be enabled.
- $\mathbf{q} = \{q_i\}_{i \in V_O}$ the vector of q_i variables for quantizable layers.
- $\eta(\mathbf{q})$ a polynomial regression model of degree d giving as output the quantization noise obtained by the quantization scheme \mathbf{q} .

Such a regressor can be represented using linear constraints.

Important Constraints

• Unique assignment of layers to servers:

$$\forall i \in V_D \qquad \sum_{k \in V_N} x_{ik} = 1$$

- Coherence in tensor mapping. Said:
 - $ightharpoonup i \in V_D$ source layer of tensor $t \in T_D$.
 - ▶ $V_D^t \subset V_D$ subset of layers receiving t as input.

Then we have:

$$\forall t \in T_D, \forall n = (k, h) \in E_D \qquad \begin{cases} y_{tn} \leq x_{ik} \\ y_{tn} \leq \sum_{j \in V_D^t} x_{jh} \\ y_{tn} \geq x_{ik} + \frac{1}{|V_D^t|} \sum_{j \in V_D^t} x_{jh} - 1 \end{cases}$$

Final Definition

The **final problem definition** will be as follows:

$$min \quad o(\omega_T \cdot T, \omega_E \cdot E)$$
 $subject \ to \quad E_0 \leq J_0$
 $\eta(\mathbf{q}) \leq \eta_{max}$
 $others...$

In order to tackle the scale problem of multi-objective optimization, both T and E are **normalized** in [0,1] interval using a min-max strategy, obtaining the following formulation:

$$min$$
 $\omega_T \cdot T^{norm} + \omega_E \cdot E^{norm}$
 $subject \ to \quad E_0 \leq J_0$
 $\eta(\mathbf{q}) \leq \eta_{max}$
 $others...$

- Context and Introduction
- 2 System Architecture
- 3 Optimization Problem
- 4 Preliminary Results

Quantization Modelling

Regressor Computation

Problem

- Number of quantized/not-quantized combinations can be very high (2^{#layers}).
- Analysis of all possible combinations is infeasible.

Solution

- Consider only a subset of layer to be quantized.
- Those with higher number of FLOPS.

In this case, only 12 layers have been considered for quantization (most of which are ${\it Conv.}$ layers).

Figure 2: Noise Regressor Fit - Degree 2 and 3

Quantization noise defined as:

$$\rho = \frac{1}{n} \sum_{i=1}^{n} mean(|o_i - o_{q,i}|)$$

Latency Test

Context

Machines GCP:

- Device
 - ► Machine Type: c3-standard-4
 - Docker --cpus: 0.5
- Edge
 - ► Machine Type: c3-standard-4
 - Docker --cpus: 1.0
- Cloud
 - Machine Type: n1-standard-4
 - ► GPU: nvidia-tesla-t4

Network Config:

- ullet Device o Edge
 - Max Bandwidth: 5 MB/s
 - Latency: 5 ms
- $\bullet \ \, \mathsf{Edge} \to \mathsf{Device}$
 - ► Max Bandwidth: 20 MB/s
 - Latency: 5 ms

Latency Test Device Only

Figure 3: Device Only: Latency vs Quantization Noise

Latency Test Device & Edge

Figure 4: Device & Edge: Latency vs Quantization Noise

Latency Test Device & Edge & Cloud

Figure 5: Device & Edge & Cloud: Latency vs Quantization Noise