Listing of Claims in the Application

1. (Original) A polybenzoxazole precursor polymer with Structure I

wherein Ar¹ is selected from the group consisting of a tetravalent aromatic group, a tetravalent heterocyclic group and mixtures thereof; Ar² is selected from the group consisting of a divalent aromatic, a divalent heterocyclic, a divalent alicyclic and a divalent aliphatic group that may contain silicon; Ar³ is selected from the group consisting of a divalent aromatic group, a divalent aliphatic group, a divalent heterocyclic group and mixtures thereof; Ar⁴ is selected from the group consisting of Ar¹ (OH)₂ and Ar², x is from about 10 to about 1000; y is from 0 to about 900; D is selected from the group consisting of one of the following moieties IIa-IIe:

wherein, R is selected from the group consisting of H, a $C_1 - C_4$ alkyl group, a $C_1 - C_4$ alkoxy group and a cyclohexyl group, k ¹ can be any positive value of up to about 0.5, k² can be any value from about 1.5 to about 2 with the proviso that $(k^1+k^2)=2$, x is from about 10 to about 1000; y is from about 0 to about 900; G is an organic group having a carbonyl, carbonyloxy or sulfonyl group attached directly to the terminal NH of the polymer.

2. (Original) A polybenzoxazole precursor polymer according to claim 1, wherein Ar¹ is a moiety selected from the group consisting of

wherein X^1 is selected from the group consisting of -O-, -S-, -C(CF₃)₂-, -CH₂-, -SO₂-, -NHCO- and -SiR⁹₂- and each R⁹ is independently selected from the group consisting of a C₁ - C₇ linear or branched alkyl and a C₅ - C₈ cycloalkyl group.

- 3. (Original) A polybenzoxazole precursor polymer according to claim 1, wherein Ar¹ is a moiety derived from a reactant selected from the group consisting of 2,2-bis(3-amino-4-hydroxyphenyl)-hexafluoropropane, 3,3'-dihydroxy-4,4'-diaminodiphenylether, 3,3'-dihydroxybenzidine, 4,6-diaminoresorcinol, and 2,2-bis(3-amino-4-hydroxyphenyl)propane and mixtures thereof.
- 4. (Original) A polybenzoxazole precursor polymer according to claim 1, wherein Ar³ is a moiety selected from the group consisting of

wherein X^2 is selected from the group consisting of -O-, -S-, -C(CF₃)₂-, -CH₂-, -SO₂-, and -NHCO-.

- 5. (Original) A polybenzoxazole precursor polymer according to claim 1, wherein Ar³ is a moiety derived from a reactant selected from the group consisting of 4,4'-diphenyletherdicarboxylic acid, terephthalic acid, isophthalic acid, isophthaloyl dichloride, phthaloyl dichloride, terephthaloyl dichloride, 4,4'-diphenyletherdicarboxylic acid dichloride, dimethylisophthalate, diethylphthalate, diethylphthalate, diethylterphthalate, diethylterphthalate, diethylterphthalate, diethylterphthalate and mixtures thereof.
- 6. (Original) A polybenzoxazole precursor polymer according to claim 1, wherein D is selected from the group consisting of the moiety IIb and the moiety IId.

- 7. (Original) A polybenzoxazole precursor polymer according to claim 1, wherein k^1 is from about 0.01 to about 0.1.
- 8. (Original) A polybenzoxazole precursor polymer according to claim 1, wherein G is an organic group having a carbonyl group attached directly to the terminal NH of the polybenzoxazole precursor polymer.
- 9. (Original) A polybenzoxazole precursor polymer according to claim 1, wherein G is alkylcarbonyl.
- 10. (Original) A polybenzoxazole precursor polymer according to claim 1, wherein Ar¹ is a moiety derived from a reactant selected from the group consisting of 2,2-bis(3-amino-4-hydroxyphenyl)-hexafluoropropane, 3,3'-dihydroxy-4,4'-diaminodiphenylether, 3,3'-dihydroxybenzidine, 4,6-diaminoresorcinol, and 2,2-bis(3-amino-4-hydroxyphenyl)propane or mixtures thereof, and D is selected from the group consisting of the moiety IIb and the moiety IId.
- 11. (Original) A polybenzoxazole precursor polymer according to claim 1, wherein Ar¹ is a moiety derived from a reactant selected from the group consisting of 2,2-bis(3-amino-4-hydroxyphenyl)-hexafluoropropane, 3,3'-dihydroxy-4,4'-diaminodiphenylether, 3,3'-dihydroxybenzidine, 4,6-diaminoresorcinol, and G is alkylcarbonyl.
- 12. (Currently amended) A positive photosensitive resin composition comprising:
 - (a) at least one polybenzoxazole precursor polymer selected from the group consisting of polymers having Structure I and III;

$$G-NH-Ar^{4}-NH \underbrace{ \left(\begin{array}{c} OD \right)_{K}^{1} \\ NH-Ar^{3}-NH-Ar^{4}-NH \end{array}_{X} \left(\begin{array}{c} OD \right)_{K}^{1} \\ Ar^{3}-NH-Ar^{2}-NH \end{array}_{y} G$$

$$(OH)_{K}^{2}$$

$$(I)$$

wherein Ar^1 is selected from the group consisting of a tetravalent aromatic group, a tetravalent heterocyclic group and mixtures thereof; Ar^2 is selected from the group consisting of a divalent aromatic, a divalent heterocyclic, a divalent alicyclic and a divalent aliphatic group that may contain silicon and mixtures thereof; Ar^3 is selected from the group consisting of a divalent aromatic group, a divalent aliphatic group, a divalent heterocyclic group and mixtures thereof; Ar^4 is selected from the group consisting of Ar^1 (OH)₂ and Ar^2 ; D is selected from the group consisting of one of the following moieties llalle:

wherein, R is selected from the group consisting of H, a $C_1 - C_4$ alkyl group, a $C_1 - C_4$ alkoxy group and a cyclohexyl group; k^1 can be any positive value of up to about 0.5, k^2 can be any value from about 1.5 to 2 with the proviso that $(k^1+k^2)=2$, x is from about 10 to about 1000; y is from about 0 to about 900; and G is an organic group having a carbonyl, carbonyloxy or sulfonyl group attached directly to the terminal NH of the polymer,

(b) at least one non-polymeric photosensitive compound comprising a compound having within its structure one or more of moieties selected from the group consisting of IIa-IIe, with the proviso that if a polymer of Structure III is the sole polybenzoxazole precursor polymer, the non-polymeric photosensitive compound is selected from the group consisting of compounds described by structures IV—VI V-VI,

$$\begin{array}{c|c}
(QO)_b & R^1 & (OQ)_a & (QO)_a & R^4 \\
\hline
R^3_{(5-b)} & R^3_{(5-a)} & R^7_{(5-a)} & (V)
\end{array}$$

wherein R^1 , R^2 , R^4 , R^5 , R^6 and R^7 each independently are selected from the group

consisting of a linear or branched C_1 - C_4 alkyl group, a phenyl or halide substituted C_1 - C_4 linear or branched alkyl group, a perfluorinated C_1 - C_4 linear or branched alkyl group, a C_5 - C_7 cycloalkyl group, a C_1 - C_4 alkyl or halide substituted C_5 - C_7 cycloalkyl group, or alternatively R^1 and R^2 or any two of R^4 , R^5 , and R^6 may together form a 5-7 membered ring; each R^3 is independently selected from the group consisting of H, a linear or branched C_1 - C_4 alkyl group, a phenyl or halide substituted C_1 - C_4 linear or branched alkyl group, a perfluorinated linear or branched C_1 - C_4 alkyl group, a C_5 - C_7 cycloalkyl group, a C_5 - C_7 cycloalkyl group, an unsubstituted phenyl group, and a phenyl or alkyl or halide substituted phenyl group; Q is selected from the group consisting of H or D with the proviso that at least one Q = D; D is selected from the group consisting of one of the moieties IIa-IIe; a is an integer from 1 to 5; b and c are integers from 0 to 5 with the provisos: (1) that for Structure IV, if a = b = 1 and both OQ are substituted para to the R^1 - R^2 - R^2 - R^3 - R^4 -R

- (c) at least one solvent.
- 13. (Original) A positive photosensitive resin composition according to claim 12, wherein Ar^1 is a moiety selected from the group consisting of

wherein X^1 is selected from the group consisting of -O-, -S-, -C(CF₃)₂-, -CH₂-, -SO₂-, -NHCO- and -SiR⁹₂- and each R⁹ is independently selected from the group consisting of a C₁ - C₇ linear or branched alkyl and a C₅ - C₈ cycloalkyl group.

14. (Original) A positive photosensitive resin composition according to claim 12, wherein

Ar¹ is a moiety derived from a reactant selected from the group consisting of 2,2-bis(3-amino-4-hydroxyphenyl)-hexafluoropropane, 3,3'-dihydroxy-4,4'-diaminodiphenylether, 3,3'-dihydroxybenzidine, 4,6-diaminoresorcinol, and 2,2-bis(3-amino-4-hydroxyphenyl)propane or mixtures thereof.

15. (Original) A positive photosensitive resin composition according to claim 12, wherein Ar^3 is a moiety selected from the group consisting of

wherein X² is selected from the group consisting of -O-, -S-, -C(CF₃)₂-, -CH₂-, -SO₂- and -

NHCO-.

- 16. (Original) A positive photosensitive resin composition according to claim 12, wherein Ar³ is a moiety derived from a reactant selected from the group consisting of 4,4'-diphenyletherdicarboxylic acid, terephthalic acid, isophthalic acid, isophthaloyl dichloride, phthaloyl dichloride, terephthaloyl dichloride, 4,4'-diphenyletherdicarboxylic acid dichloride, dimethylisophthalate, diethylphthalate, diethylphthalate, diethylphthalate, diethylphthalate, diethylphthalate, diethylphthalate, diethylterphthalate and mixtures thereof.
- 17. (Original) A positive photosensitive resin composition according to claim 12, wherein D is selected from the group consisting of the moiety IIb and the moiety IId.
- 18. (Original) A positive photosensitive resin composition according to claim 12, wherein k¹ is from about 0.01 to about 0.1.
- 19. (Original) A positive photosensitive resin composition according to claim 12, wherein G is an organic group having a carbonyl group attached directly to the terminal NH of the polybenzoxazole precursor polymer.
- 20. (Original) A positive photosensitive resin composition according to claim 12, wherein G is alkyl carbonyl.
- 21. (Original) A positive photosensitive resin composition according to claim 12, wherein the at least one polybenzoxazole precursor polymer comprises Structure I.
- 22. (Original) A positive photosensitive resin composition according to claim 12, wherein the at least one polybenzoxazole precursor polymer comprises Structure III.
- 23. (Original) A positive photosensitive resin composition according to claim 12, wherein the at least one polybenzoxazole precursor polymer comprises a mixture of Structure I and

Structure III.

24. (Original) A positive photosensitive resin composition according to claim 21, wherein the at least one non-polymeric photosensitive compound comprises a compound having within its structure a moiety selected from the group consisting of the moiety IIb and the moiety IId.

25. (Original) A positive photosensitive resin composition according to claim 22, wherein the at least one non-polymeric photosensitive compound comprises a compound having within its structure a moiety selected from the group consisting of the moiety IIb and the moiety IId.

26. (Original) A positive photosensitive resin composition according to claim 23, wherein the at least one non-polymeric photosensitive compound comprises a compound having within its structure a moiety selected from the group consisting of the moiety IIb and the moiety IId.

27. (Currently amended)) A positive photosensitive resin composition according to claim 21, wherein the at least one non-polymeric photosensitive compound comprises a compound having within its structure a moiety selected from the group consisting of the moiety IIb and or the moiety IId and is selected from the group consisting of compounds described by structures IV – VI V -VI,

$$(QO)_{b}$$
 $R^{3}_{(5-c)}$
 $(OQ)_{c}$
 $R^{3}_{(5-h)}$
 R^{7}
 $R^{3}_{(5-a)}$
 (VI)

wherein R^1 , R^2 , R^4 , R^5 , R^6 and R^7 each independently are selected from the group consisting of a linear or branched C_1 - C_4 alkyl group, a phenyl or halide substituted C_1 - C_4 linear or branched alkyl group, a perfluorinated C_1 - C_4 linear or branched alkyl group, a C_5 - C_7 cycloalkyl group, a C_1 - C_4 alkyl or halide substituted C_5 - C_7 cycloalkyl group or alternatively R^1 and R^2 or any two of R^4 , R^5 , and R^6 may together form a 5-7 membered ring; each R^3 is independently selected from the group consisting of H, a linear or branched C_1 - C_4 alkyl group, a phenyl or halide substituted C_1 - C_4 linear or branched alkyl group, a perfluorinated linear or branched C_1 - C_4 alkyl group, a C_5 - C_7 cycloalkyl group, a C_1 - C_4 alkyl or halide substituted C_5 - C_7 cycloalkyl group, an unsubstituted phenyl group, and a phenyl or alkyl or halide substituted phenyl group; Q is selected from the group consisting of Q or Q is selected from the group consisting of Q or Q is selected from the group consisting of one of the following moieties IIa-IIe:

wherein, R is selected from the group consisting of H, a $C_1 - C_4$ alkyl group, a $C_1 - C_4$ alkoxy group and a cyclohexyl group; a is an integer from 1 to 5; b and c are integers from 0 to 5 with the provises: (1) that for Structure IV, if a = b = 1 and both OQ are substituted para to the R^1R^2C substituent, then both R^1 and R^2 are not simultaneously methyl and (2) 1 <= a+b < 6; and the proviso that for Structure VI, if a = b = c = 1 and all OQ are para to the triphenyl methane carbon substituent, then at least one R^3 is not H.

28. (Original) A positive photosensitive resin composition according to claim 21, wherein the non-polymeric photosensitive compound is selected from the group consisting of

$$\begin{array}{c} CH_3 \\ CH_4 \\ CH_5 \\ CH$$

29. (currently amended)A positive photosensitive resin composition according to claim 23, wherein the at least one non-polymeric photosensitive compound comprises a compound having within its structure a moiety selected from the group consisting of the moiety IIb and the moiety IId and is selected from the group consisting of compounds described by structures $\frac{|V-V|}{|V-V|}$,

$$(QO)_{b}$$

$$R^{1}$$

$$R^{2}$$

$$R^{3}_{(5-a)}$$

$$(V)$$

$$(QO)_{b}$$

$$R^{3}_{(5-a)}$$

$$R^{3}_{(5-a)}$$

$$R^{3}_{(5-a)}$$

$$R^{3}_{(5-a)}$$

wherein R^1 , R^2 , R^4 , R^5 , R^6 and R^7 each independently are selected from the group consisting of a linear or branched C_1 - C_4 alkyl group, a phenyl or halide substituted C_1 - C_4 linear or branched alkyl group, a perfluorinated C_1 - C_4 linear or branched alkyl group, a C_5 - C_7 cycloalkyl group, a C_1 - C_4 alkyl or halide substituted C_5 - C_7 cycloalkyl group, or alternatively R^1 and R^2 or any two of R^4 , R^5 , and R^6 may together form a 5-7 membered ring; each R^3 is independently selected from the group consisting of H, a linear or branched C_1 - C_4 alkyl group, a phenyl or halide substituted C_1 - C_4 linear or branched alkyl group, a perfluorinated linear or branched C_1 - C_4 alkyl group, a C_5 - C_7 cycloalkyl group, a C_1 - C_4

(VI)

alkyl or halide substituted C_5 - C_7 cycloalkyl group, an unsubstituted phenyl group and a phenyl or alkyl or halide substituted phenyl group; Q is selected from the group consisting of H or D with the proviso that at least one Q = D; D is selected from the group consisting of one of the following moieties IIa-IIe:

wherein, R is selected from the group consisting of H, a $C_1 - C_4$ alkyl group, a $C_1 - C_4$ alkoxy group and a cyclohexyl group; a is an integer from 1 to 5; b and c are integers from 0 to 5 with the provises: (1) that for Structure IV, if a = b = 1 and both OQ are substituted para to the R^1R^2C substituent, then both R^1 and R^2 are not simultaneously methyl and (2) 1 <= a+b < 6; and the proviso that for Structure VI, if a = b = c = 1 and all OQ are para to the triphenyl methane carbon substituent, then at least one R^3 is not H.

30. (Original) A positive photosensitive resin composition according to claim 23, wherein the non-polymeric photosensitive compound is selected from the group consisting of

- 31. (Original) A positive photosensitive resin composition according to claim 12, further comprising an adhesion promoter.
- 32. (Original) A positive photosensitive resin composition according to claim 31 wherein the adhesion promoter has the Structure XIII

(XIII)

wherein each R^{10} is independently selected from the group consisting of a $C_1 - C_4$ alkyl group and a $C_5 - C_7$ cycloalkyl group and each R^{11} is independently selected from the group consisting of a $C_1 - C_4$ alkyl group, a $C_1 - C_4$ alkoxy group, a $C_5 - C_7$ cycloalkyl group and a $C_5 - C_7$ cycloalkoxy group; d is an integer from 0 to 3 and n is an integer from 1 to about 6 and R^{12} is a moiety selected from the group consisting of one of the following moieties:

$$R^{13}$$
 NH_2 NH_2

wherein each R^{13} and R^{14} are independently selected from the group consisting of a C_1 – C_4 alkyl group and a C_5 – C_7 cycloalkyl group, and R^{15} is selected from the group consisting of a C_1 – C_4 alkyl group and a C_5 – C_7 cycloalkyl group.

33. (Original) A positive photosensitive resin composition according to claim 31 wherein the adhesion promoter is selected from the group consisting of

$$H_2N$$
 NH $Si(OMe)_3$ H_2N NH $Si(OEt)_3$

34. (Original) A positive photosensitive resin composition according to claim 24 wherein D on the polybenzoxazole precursor polymer is a moiety selected from the group consisting of moiety IIb and moiety IId.

35. (Original) A positive photosensitive resin composition according to claim 24 wherein D on the polybenzoxazole precursor polymer is a moiety selected from the group consisting of moiety IIb and moiety IId, G is an organic group having a carbonyl group attached directly to the terminal NH of the polybenzoxazole precursor polymer, and the composition further comprises an adhesion promoter having the structure

wherein each R^{10} is independently selected from the group consisting of a $C_1 - C_4$ alkyl group and a $C_5 - C_7$ cycloalkyl group and each R^{11} is independently selected from the group consisting of a $C_1 - C_4$ alkyl group, a $C_1 - C_4$ alkoxy group, a $C_5 - C_7$ cycloalkyl group and a $C_5 - C_7$ cycloalkoxy group; d is an integer from 0 to 3 and n is an integer from 1 to about 6 and R^{12} is selected from the group consisting of one of the following moieties:

$$R^{13}$$
 NH_2 NH_2

wherein each R^{13} and R^{14} are independently selected from the group consisting of a C_1 – C_4 alkyl group or a C_5 – C_7 cycloalkyl group, and R^{15} is a C_1 – C_4 alkyl group and a C_5 – C_7 cycloalkyl group.

36. (Original) A positive photosensitive resin composition according to claim 25 wherein G is an organic group having a carbonyl group attached directly to the terminal NH of the polybenzoxazole precursor polymer, and the composition further comprises an adhesion promoter having the structure

$$R^{12}$$
 n_{Si}
 $R^{11}_{(3-d)}$
(XIII)

wherein each R^{10} is independently selected from the group consisting of a C_1 – C_4 alkyl group and a C_5 – C_7 cycloalkyl group and each R^{11} is independently selected from the group consisting of a C_1 – C_4 alkyl group, a C_1 – C_4 alkoxy group, a C_5 – C_7 cycloalkyl group and a C_5 – C_7 cycloalkoxy group; d is an integer from 0 to 3 and n is an integer from 1 to about 6 and R^{12} is a moiety selected from the group consisting of one of the following moieties:

wherein each R^{13} and R^{14} are independently selected from the group consisting of a C_1 – C_4 alkyl group and a C_5 – C_7 cycloalkyl group, and R^{15} is selected from the group consisting of a C_1 – C_4 alkyl group and a C_5 – C_7 cycloalkyl group.

37. (Original) A positive photosensitive resin composition according to claim 26 wherein D

on the polybenzoxazole precursor polymer is a moiety selected from the group consisting of moiety IIb and moiety IId, G is an organic group having a carbonyl group attached directly to the terminal NH of the polybenzoxazole precursor polymer, and the composition further comprises an adhesion promoter having the structure

wherein each R^{10} is independently selected from the group consisting of a C_1 – C_4 alkyl group and a C_5 – C_7 cycloalkyl group and each R^{11} is independently selected from the group consisting of a C_1 – C_4 alkyl group, a C_1 – C_4 alkoxy group, a C_5 – C_7 cycloalkyl group and a C_5 – C_7 cycloalkoxy group; d is an integer from 0 to 3 and n is an integer from 1 to about 6 and R^{12} is a moiety selected from the group consisting of one of the following moieties:

wherein each R^{13} and R^{14} are independently selected from the group consisting of a C_1 – C_4 alkyl group and a C_5 – C_7 cycloalkyl group, and R^{15} is selected from the group consisting of a C_1 – C_4 alkyl group and a C_5 – C_7 cycloalkyl group.

- 38. (Original) A process for forming a patterned image on a substrate, the process comprises the steps of:
 - (a) coating on a suitable substrate, a positive-working photosensitive composition of claim 12 thereby forming a coated substrate;
 - (b) prebaking the coated substrate;
 - (c) exposing the prebaked coated substrate to actinic radiation;
 - (d) developing the exposed coated substrate with an aqueous developer, thereby forming an uncured relief image on the coated substrate; and
 - (e) baking the developed coated substrate at an elevated temperature, thereby curing the relief image.
- 39. (Original) A process for forming a patterned image on a substrate, the process comprises the steps of:
 - (a) coating on a suitable substrate, a positive-working photosensitive composition of claim 17 thereby forming a coated substrate;
 - (b) prebaking the coated substrate;
 - (c) exposing the prebaked coated substrate to actinic radiation;
 - (d) developing the exposed coated substrate with an aqueous developer, thereby forming an uncured relief image on the coated substrate; and
 - (e) baking the developed coated substrate at an elevated temperature, thereby curing the relief image.
- 40. (Original) A process for forming a patterned image on a substrate, the process comprises the steps of:
 - (a) coating on a suitable substrate, a positive-working photosensitive composition of claim 25 thereby forming a coated substrate;
 - (b) prebaking the coated substrate;
 - (c) exposing the prebaked coated substrate to actinic radiation;
 - (d) developing the exposed coated substrate with an aqueous developer, thereby

- forming an uncured relief image on the coated substrate; and
- (e) baking the developed coated substrate at an elevated temperature, thereby curing the relief image.
- 41. (Original) A process for forming a patterned image on a substrate, the process comprises the steps of:
 - (a) coating on a suitable substrate, a positive-working photosensitive composition of claim 27 thereby forming a coated substrate;
 - (b) prebaking the coated substrate;
 - (c) exposing the prebaked coated substrate to actinic radiation;
 - (d) developing the exposed coated substrate with an aqueous developer, thereby forming an uncured relief image on the coated substrate; and
 - (e) baking the developed coated substrate at an elevated temperature, thereby curing the relief image.
- 42. (Original) A process for forming a patterned image on a substrate, the process comprises the steps of:
 - (a) coating on a suitable substrate, a positive-working photosensitive composition of claim 28 thereby forming a coated substrate;
 - (b) prebaking the coated substrate;
 - (c) exposing the prebaked coated substrate to actinic radiation;
 - (d) developing the exposed coated substrate with an aqueous developer, thereby forming an uncured relief image on the coated substrate; and
 - (e) baking the developed coated substrate at an elevated temperature, thereby curing the relief image.
- 43. (Original) A process for forming a patterned image on a substrate, the process comprises the steps of:
 - (a) coating on a suitable substrate, a positive-working photosensitive composition of claim 29 thereby forming a coated substrate;
 - (b) prebaking the coated substrate;

- (c) exposing the prebaked coated substrate to actinic radiation;
- (d) developing the exposed coated substrate with an aqueous developer, thereby forming an uncured relief image on the coated substrate; and
- (d) baking the developed coated substrate at an elevated temperature, thereby curing the relief image.
- 44. (Original) A process for forming a patterned image on a substrate, the process comprises the steps of:
 - (a) coating on a suitable substrate, a positive-working photosensitive composition of claim 31 thereby forming a coated substrate;
 - (b) prebaking the coated substrate;
 - (c) exposing the prebaked coated substrate to actinic radiation;
 - (d) developing the exposed coated substrate with an aqueous developer, thereby forming an uncured relief image on the coated substrate; and
 - (e) baking the developed coated substrate at an elevated temperature, thereby curing the relief image.
- 45. (Original) A process for forming a patterned image on a substrate, the process comprises the steps of:
 - (a) coating on a suitable substrate, a positive-working photosensitive composition of claim 32 thereby forming a coated substrate;
 - (b) prebaking the coated substrate;
 - (c) exposing the prebaked coated substrate to actinic radiation;
 - (d) developing the exposed coated substrate with an aqueous developer, thereby forming an uncured relief image on the coated substrate; and
 - (e) baking the developed coated substrate at an elevated temperature, thereby curing the relief image.
- 46. (Original) A process for forming a patterned image on a substrate, the process comprises the steps of:
 - (a) coating on a suitable substrate, a positive-working photosensitive composition of

claim 33 thereby forming a coated substrate;

- (b) prebaking the coated substrate;
- (c) exposing the prebaked coated substrate to actinic radiation;
- (d) developing the exposed coated substrate with an aqueous developer, thereby forming an uncured relief image on the coated substrate; and
- (e) baking the developed coated substrate at an elevated temperature, thereby curing the relief image.
- 47. (Original) A process for forming a patterned image on a substrate, the process comprises the steps of:
 - (a) coating on a suitable substrate, a positive-working photosensitive composition of claim 36 thereby forming a coated substrate;
 - (b) prebaking the coated substrate;
 - (c) exposing the prebaked coated substrate to actinic radiation;
 - (d) developing the exposed coated substrate with an aqueous developer, thereby forming an uncured relief image on the coated substrate; and
 - (e) baking the developed coated substrate at an elevated temperature, thereby curing the relief image.
- 48. (Original) A process for forming a patterned image on a substrate, the process comprises the steps of:
 - (a) coating on a suitable substrate, a positive-working photosensitive composition of claim 38 thereby forming a coated substrate;
 - (b) prebaking the coated substrate;
 - (c) exposing the prebaked coated substrate to actinic radiation;
 - (d) developing the exposed coated substrate with an aqueous developer, thereby forming an uncured relief image on the coated substrate; and
 - (e) baking the developed coated substrate at an elevated temperature, thereby curing the relief image.

- 49. (Original) A substrate having a patterned image produced by the process of claim 38.
- 50. (Original) A substrate having a patterned image produced by the process of claim 39.
- 51. (Original) A substrate having a patterned image produced by the process of claim 40.
- 52. (Original) A substrate having a patterned image produced by the process of claim 41.
- 53. (Original) A substrate having a patterned image produced by the process of claim 42.
- 54. (Original) A substrate having a patterned image produced by the process of claim 43.
- 55. (Original) A substrate having a patterned image produced by the process of claim 44.
- 56. (Original) A substrate having a patterned image produced by the process of claim 45.
- 57. (Original) A substrate having a patterned image produced by the process of claim 46.
- 58. (Original) A substrate having a patterned image produced by the process of claim 47.

- 59. (Currently amended) A substrate having a patterned image produced by the process of claim 48.
- 60. (new) A positive photosensitive resin composition comprising:
 - (a) at least one polybenzoxazole precursor polymer having Structure I:

$$G-NH-Ar^{4}-NH \underbrace{ \left(\begin{array}{c} OD)_{K}^{1} \\ Ar^{3}-NH-Ar^{4}-NH \end{array} \right)_{X} \left(\begin{array}{c} OD)_{K}^{1} \\ Ar^{3}-NH-Ar^{2}-NH \end{array} \right)_{y}G}_{(OH)_{K}^{2}}$$

and optionally at least one polybenzoxazole precursor polymer having Structure III

$$G-NH-Ar^4-NH \underbrace{\left(\begin{array}{c} O \\ Ar^3 \end{array}\right) - NH-Ar^1-NH - Ar^2-NH - Ar^2-NH - Ar^2-NH - Ar^2-NH - Ar^3-NH-Ar^2-NH - Ar^3-NH-Ar^3-NH - Ar^3-NH - Ar^3-NH$$

wherein Ar^1 is selected from the group consisting of a tetravalent aromatic group, a tetravalent heterocyclic group and mixtures thereof; Ar^2 is selected from the group consisting of a divalent aromatic, a divalent heterocyclic, a divalent alicyclic and a divalent aliphatic group that may contain silicon and mixtures thereof; Ar^3 is selected from the group consisting of a divalent aromatic group, a divalent aliphatic group, a divalent heterocyclic group and mixtures thereof; Ar^4 is selected from the group consisting of Ar^1 (OH)₂ and Ar^2 ; D is selected from the group consisting of one of the following moieties IIa-IIe:

$$N_2$$
 N_2 N_2

wherein, R is selected from the group consisting of H, a $C_1 - C_4$ alkyl group, a $C_1 - C_4$ alkoxy group and a cyclohexyl group; k^1 can be any positive value of up to about 0.5, k^2 can be any value from about 1.5 to 2 with the proviso that $(k^1+k^2)=2$, x is from about 10 to about 1000; y is from about 0 to about 900; and G is an organic group having a carbonyl, carbonyloxy or sulfonyl group attached directly to the terminal NH of the polymer,

(b) at least one non-polymeric photosensitive compound comprising a compound described by structure IV,

$$(QO)_{b}$$
 R^{1}
 R^{2}
 $R^{3}_{(5-b)}$
 $R^{3}_{(5-a)}$
 (IV)

wherein R1 and R2 are each independently are selected from the group consisting of a

linear or branched C_1 - C_4 alkyl group, a phenyl or halide substituted C_1 - C_4 linear or branched alkyl group, a perfluorinated C_1 - C_4 linear or branched alkyl group, a C_5 - C_7 cycloalkyl group, a C_1 - C_4 alkyl or halide substituted C_5 - C_7 cycloalkyl group, or alternatively R^1 and R^2 may together form a 5-7 membered ring; each R^3 is independently selected from the group consisting of H, a linear or branched C_1 - C_4 alkyl group, a phenyl or halide substituted C_1 - C_4 linear or branched alkyl group, a perfluorinated linear or branched C_1 - C_4 alkyl group, a C_5 - C_7 cycloalkyl group, a C_1 - C_4 alkyl or halide substituted C_5 - C_7 cycloalkyl group, an unsubstituted phenyl group, and a phenyl or alkyl or halide substituted phenyl group; Q is selected from the group consisting of H or D with the proviso that at least one Q = D; D is selected from the group consisting of one of the moieties lla-lle; a is an integer from 1 to 5; b is an integers from 0 to 5; and

(c) at least one solvent.

61. (new) A positive photosensitive resin composition according to claim 60, wherein Ar¹ is a moiety selected from the group consisting of

wherein X^1 is selected from the group consisting of -O-, -S-, -C(CF₃)₂-, -CH₂-, -SO₂-, -NHCO- and -SiR⁹₂- and each R⁹ is independently selected from the group consisting of a C₁ - C₇ linear or branched alkyl and a C₅ - C₈ cycloalkyl group.

62. (new) A positive photosensitive resin composition according to claim 60, wherein Ar¹ is a moiety derived from a reactant selected from the group consisting of 2,2-bis(3-amino-4-hydroxyphenyl)-hexafluoropropane, 3,3'-dihydroxy-4,4'-diaminodiphenylether, 3,3'-

dihydroxybenzidine, 4,6-diaminoresorcinol, and 2,2-bis(3-amino-4-hydroxyphenyl)propane or mixtures thereof.

63. (new) A positive photosensitive resin composition according to claim 60, wherein Ar³ is a moiety selected from the group consisting of

wherein X^2 is selected from the group consisting of -O-, -S-, -C(CF₃)₂-, -CH₂-, -SO₂- and -NHCO-.

64. (new) A positive photosensitive resin composition according to claim 60 wherein Ar³ is a moiety derived from a reactant selected from the group consisting of 4,4'-diphenyletherdicarboxylic acid, terephthalic acid, isophthalic acid, isophthaloyl dichloride, phthaloyl dichloride, terephthaloyl dichloride, 4,4'-diphenyletherdicarboxylic acid dichloride,

dimethylisophthalate, dimethylphthalate, dimethylterphthalate, diethylisophthalate, diethylphthalate, diethylterphthalate and mixtures thereof.

a 30 %

- 65. (new) A positive photosensitive resin composition according to claim 60, wherein D is selected from the group consisting of the moiety IIb and the moiety IId.
- 66. (new) A positive photosensitive resin composition according to claim 60, wherein k^1 is from about 0.01 to about 0.1.
- 67. (new) A positive photosensitive resin composition according to claim 60, wherein G is an organic group having a carbonyl group attached directly to the terminal NH of the polybenzoxazole precursor polymer.
- 68. (new) A positive photosensitive resin composition according to claim 60, wherein G is alkyl carbonyl.
- 69. (new) A positive photosensitive resin composition according to claim 60, wherein the at least one polybenzoxazole precursor polymer comprises a mixture of Structure I and Structure III.
- 70. (new) A positive photosensitive resin composition according to claim 60 wherein the composition additionally comprises an adhesion promoter of Structure XIII

(XIII)

wherein each R^{10} is independently selected from the group consisting of a $C_1 - C_4$ alkyl group and a $C_5 - C_7$ cycloalkyl group and each R^{11} is independently selected from the group consisting of a $C_1 - C_4$ alkyl group, a $C_1 - C_4$ alkoxy group, a $C_5 - C_7$ cycloalkyl group and a $C_5 - C_7$ cycloalkoxy group; d is an integer from 0 to 3 and n is an integer from 1 to about 6 and R^{12} is a moiety selected from the group consisting of one of the following moieties:

$$R^{13}$$
 NH_2 NH_2

wherein each R^{13} and R^{14} are independently selected from the group consisting of a C_1 – C_4 alkyl group and a C_5 – C_7 cycloalkyl group, and R^{15} is selected from the group consisting of a C_1 – C_4 alkyl group and a C_5 – C_7 cycloalkyl group.

71 (new) A positive photosensitive resin composition according to claim 70 wherein the adhesion promoter is selected from the group consisting of

$$H_2N$$
 NH $Si(OMe)_3$ H_2N NH $Si(OEt)_3$

72. (new) A process for forming a patterned image on a substrate, the process comprises the steps of:

- (a) coating on a suitable substrate, a positive-working photosensitive composition of claim 60 thereby forming a coated substrate;
- (b) prebaking the coated substrate;
- (c) exposing the prebaked coated substrate to actinic radiation;

- (d) developing the exposed coated substrate with an aqueous developer, thereby forming an uncured relief image on the coated substrate; and
- (e) baking the developed coated substrate at an elevated temperature, thereby curing the relief image.
- 73. (new) A process for forming a patterned image on a substrate, the process comprises the steps of:
 - (a) coating on a suitable substrate, a positive-working photosensitive composition of claim 65 thereby forming a coated substrate;
 - (b) prebaking the coated substrate;

4 42) 3,

- (c) exposing the prebaked coated substrate to actinic radiation;
- (d) developing the exposed coated substrate with an aqueous developer, thereby forming an uncured relief image on the coated substrate; and
- (e) baking the developed coated substrate at an elevated temperature, thereby curing the relief image.
- 74. (new) A process for forming a patterned image on a substrate, the process comprises the steps of:
 - (a) coating on a suitable substrate, a positive-working photosensitive composition of claim 68 thereby forming a coated substrate;
 - (b) prebaking the coated substrate;
 - (c) exposing the prebaked coated substrate to actinic radiation;
 - (d) developing the exposed coated substrate with an aqueous developer, thereby forming an uncured relief image on the coated substrate; and
 - (e) baking the developed coated substrate at an elevated temperature, thereby curing the relief image.
- 75. (new) A process for forming a patterned image on a substrate, the process comprises the steps of:
 - (a) coating on a suitable substrate, a positive-working photosensitive composition of

claim 69 thereby forming a coated substrate;

- (b) prebaking the coated substrate;
- (c) exposing the prebaked coated substrate to actinic radiation;
- (d) developing the exposed coated substrate with an aqueous developer, thereby forming an uncured relief image on the coated substrate; and
- (e) baking the developed coated substrate at an elevated temperature, thereby curing the relief image.
- 76. (new) A process for forming a patterned image on a substrate, the process comprises the steps of:
 - (a) coating on a suitable substrate, a positive-working photosensitive composition of claim 69 thereby forming a coated substrate;
 - (b) prebaking the coated substrate;
 - (c) exposing the prebaked coated substrate to actinic radiation;
 - (d) developing the exposed coated substrate with an aqueous developer, thereby forming an uncured relief image on the coated substrate; and
 - (e) baking the developed coated substrate at an elevated temperature, thereby curing the relief image.
- 77. (new) A process for forming a patterned image on a substrate, the process comprises the steps of:
 - (a) coating on a suitable substrate, a positive-working photosensitive composition of claim 70 thereby forming a coated substrate;
 - (b) prebaking the coated substrate;
 - (c) exposing the prebaked coated substrate to actinic radiation;
 - (d) developing the exposed coated substrate with an aqueous developer, thereby forming an uncured relief image on the coated substrate; and
 - (e) baking the developed coated substrate at an elevated temperature, thereby curing the relief image.

- 78. (new) A substrate having a patterned image produced by the process of claim 72.
- 79. (new) A substrate having a patterned image produced by the process of claim 77.