

Modulateur PWM

Table des matières

1	Objectifs]
2	Modulation par largeur d'impulsion	2
	2.1 Principe	2
	2.2 Circuit	2
	2.3 Réalisation	
3	Pont en H	;
	3.1 Circuit	
	3.2 Réalisation	,
Δα	ronymes	,

1 Objectifs

Ce laboratoire exerce la conception de circuits numériques en se basant sur des opérateurs. Il présente la modulation par largeur d'impulsions (Pulse Width Modulation (PWM)).

2 Modulation par largeur d'impulsion

2.1 Principe

La modulation par largeur d'impulsion (Pulse Width Modulation (PWM)) transforme un signal codé en amplitude en un signal logique tout-ou-rien dont la valeur moyenne dans le temps correspond à celle du signal d'entrée.

 $FIGURE\ 1$ — Modulation pwm

2.2 Circuit

Le modulateur est réalisé à l'aide d'un compteur qui tourne en boucle et d'un comparateur.

2.3 Réalisation

Compléter le schéma du modulateur PWM mis à disposition pour générer le signal de la figure précédente sur la sortie pwm_1 . Vérifier le bon fonctionnement du modulateur.

3 Pont en H

3.1 Circuit

Pour transmettre tant un courant positif qu'un courant négatif dans une charge, on utilise le circuit suivant.

FIGURE 2 – Pont en H

Lorsque les interrupteurs pwm_1 et $\overline{pwm_2}$ sont fermés, le courant circule à travers la charge dans une direction. Lorsque les interrupteurs pwm_2 et $\overline{pwm_1}$ sont fermés, le courant circule dans la direction opposée.

3.2 Réalisation

Créer une nouvelle architecture du modulateur pwm. Copier le circuit développé au point précédent. Modifier celui-ci de manière à générer une tension alternative aux bornes de la charge. Vérifier le bon fonctionnement du nouveau circuit.

Acronymes

PWM Pulse Width Modulation. 1, 2