UFRGS - INSTITUTO DE MATEMÁTICA Departamento de Matemática Pura e Aplicada MAT01168 - Turma C - 2017/2 Prova da área I

1-6	7	8	Total

Nome:	artão:	

 ${\bf Regras\ Gerais:}$

- Não é permitido o uso de calculadoras, telefones ou qualquer outro recurso computacional ou de comunicação.
- Trabalhe individualmente e sem uso de material de consulta além do fornecido.
- Devolva o caderno de questões preenchido ao final da prova.

Regras para as questões abertas

- $\bullet~$ Seja sucinto, completo e claro.
- Justifique todo procedimento usado.
- Indique identidades matemáticas usadas, em especial, itens da tabela.
- Use notação matemática consistente.

Tabela do operador $\vec{\nabla}$:

f = f(x, y, z) e g = g(x, y, z) são funções escalares; $\vec{F} = \vec{F}(x, y, z)$ e $\vec{G} = \vec{G}(x, y, z)$ são funções vetoriais.

	(, 0 ,)
1.	$\vec{\nabla}\left(f+g\right) = \vec{\nabla}f + \vec{\nabla}g$
2.	$\vec{\nabla} \cdot \left(\vec{F} + \vec{G} \right) = \vec{\nabla} \cdot \vec{F} + \vec{\nabla} \cdot \vec{G}$
3.	$\vec{\nabla} \times \left(\vec{F} + \vec{G} \right) = \vec{\nabla} \times \vec{F} + \vec{\nabla} \times \vec{G}$
4.	$\vec{\nabla}\left(fg\right) = f\vec{\nabla}g + g\vec{\nabla}f$
5.	$\vec{\nabla} \cdot \left(f \vec{F} \right) = \left(\vec{\nabla} f \right) \cdot \vec{F} + f \left(\vec{\nabla} \cdot \vec{F} \right)$
6.	$\vec{\nabla} imes \left(f \vec{F} ight) = \vec{\nabla} f imes \vec{F} + f \vec{\nabla} imes \vec{F}$
7.	$\vec{\nabla} \cdot \vec{\nabla} f = \vec{\nabla}^2 f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} + \frac{\partial^2 f}{\partial z^2},$
	onde $\vec{\nabla}^2 = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}$ é o operador laplaciano
8.	$ec{ abla} imes\left(ec{ abla}f ight)=0$
9.	$\vec{\nabla} \cdot \left(\vec{\nabla} \times \vec{F} \right) = 0$
10.	$ec{ abla} imes\left(ec{ abla} imesec{F} ight)=ec{ abla}\left(ec{ abla}\cdotec{F} ight)-ec{ abla}^2ec{F}$
11.	$\vec{\nabla} \cdot \left(\vec{F} \times \vec{G} \right) = G \cdot \left(\vec{\nabla} \times \vec{F} \right) - F \cdot \left(\vec{\nabla} \times \vec{G} \right)$
12.	$\vec{\nabla} \times \left(\vec{F} \times \vec{G} \right) = \left(\vec{G} \cdot \vec{\nabla} \right) \vec{F} - \vec{G} \left(\vec{\nabla} \cdot \vec{F} \right) - \left(\vec{F} \cdot \vec{\nabla} \right) \vec{G} + \vec{F} \left(\vec{\nabla} \cdot \vec{G} \right)$
13.	$ \vec{\nabla} \left(\vec{F} \cdot \vec{G} \right) = \left(\vec{G} \cdot \vec{\nabla} \right) \vec{F} + \left(\vec{F} \cdot \vec{\nabla} \right) \vec{G} + \\ + \vec{F} \times \left(\vec{\nabla} \times \vec{G} \right) + \vec{G} \times \left(\vec{\nabla} \times \vec{F} \right) $

Curvatura, torçao e aceleração:		
Nome	Definição	
Curvatura	$\kappa = \left\ \frac{d\vec{T}}{ds} \right\ = \left\ \frac{\frac{d\vec{T}}{dt}}{\frac{ds}{dt}} \right\ = \frac{\ \vec{r}'(t) \times \vec{r}''(t)\ }{\ \vec{r}''(t)\ ^3}$	
Torção	$\tau = -\frac{d\vec{B}}{ds} \cdot \vec{N} = \frac{(\vec{r}'(t) \times \vec{r}''(t)) \cdot \vec{r}'''(t)}{\ \vec{r}'(t) \times \vec{r}''(t)\ ^2}$	
Módulo da Torção	$ au = \left\ \frac{d\vec{B}}{ds} \right\ = \left\ \frac{\frac{d\vec{B}}{dt}}{\frac{ds}{dt}} \right\ $	
Aceleração normal	$a_N = \frac{\ \vec{a} \times \vec{v}\ }{v} = \frac{v^2}{\rho} = \kappa v^2$	
Aceleração tangencial	$a_T = \frac{\vec{a} \cdot \vec{v}}{v} = \frac{dv}{dt}$	

Equações de Frenet-Serret:

$\frac{d\vec{T}}{ds}$	=		$\kappa ec{N}$	
$\frac{d\vec{N}}{ds}$	=	$-\kappa \vec{T}$		$+\tau\vec{B}$
$\frac{d\vec{B}}{ds}$	=		$-\tau \vec{N}$	

$$x(t) = t$$
, $y(t) = 2e^{t-1}$, $z(t) = t^2$, $t \ge 0$

Assinale as alternativas que indicam respectivamente o módulo da velocidade e a curvatura da curva descrita pela trajetória no instante t=1

t = 1.	2 /5
	$(x) \frac{2\sqrt{2}}{27}$
() 1 () 2	() $\frac{\sqrt{2}}{27}$
(x) 3	$(\)\ \frac{2}{27}$
() 4 () 5	$(\)\ \frac{3\sqrt{2}}{27}$
	$(\)\ \frac{1}{27}$

• Questão 2 (1.0 ponto) Considere as três curvas, sendo duas hélices circulares, H_1 e H_2 , e uma circunferência C. Para as curvas H_1 e H_2 , suponha que as escalas dos eixo cartesianos são as mesmas. Denotamos aqui τ_1 , τ_2 e τ_3 as torções κ_1 , κ_2 e κ_3 as curvaturas das curvas H_1 , H_2 , e C, respectivamente. Assinale na primeira coluna o correto sinal de cada torção e na segunda as correta relações entre as curvaturas.

• Questão 3 (1.0 ponto) Considere os campos dados por

$$\begin{array}{lcl} f(x,y,z) & = & \ln(1+x^2) + e^y \\ g(x,y,z) & = & x+y+z \\ \vec{F}(x,y,z) & = & (x+y+z)\vec{i} + (x+y-z)\vec{j} + (x-y-z)\vec{k} \end{array}$$

Assinale as alternativas que apresentam expressões para $\vec{\nabla}g\cdot\left(\vec{\nabla}\times\left(\vec{F}+\vec{\nabla}f\right)\right)$ e $\vec{\nabla}\cdot\vec{\nabla}f$, respectivamente. $()2\frac{1-x^2}{(1+x^2)^2}$

()
$$2\frac{1-x}{(1+x^2)^2}$$

() 3
(x) 0
() $x+y+z$
() $(x+y+z)(\ln(1+x^2)+e^y)$
() $(x+y+z)\left(\frac{2x}{1+x^2}+e^y\right)$
(x) $2\frac{x}{(1+x^2)}$
(x) $2\frac{x}{(1+x^2)}$
(x) $2\frac{1-x^2}{(1+x^2)^2}+e^y$
() $\frac{1}{(1+x^2)}+2e^y$

- gráfico ao lado. Em cada coluna assinale uma alternativa correta.
 - () O divergente é nulo no ponto (1, 1). () O divergente não existe no ponto
- () $\vec{k} \cdot \vec{\nabla} \times \vec{F} > 0$ em todos os pontos, exceto na origem.
- (-3, -3).
- () $\vec{k} \cdot \vec{\nabla} \times \vec{F} < 0$ em todos os pontos, exceto na origem.
- () O divergente é nulo em todos os pontos.
- (x) O divergente é não-negativo em todos (x) O campo é irrotacional.
- () O divergente é não-positivo em todos os
- () $\vec{k} \cdot \vec{\nabla} \times \vec{F} = 0$ somente no ponto (0,0). () $\vec{k} \cdot \vec{\nabla} \times \vec{F} > 0$ somente na região x < 0.

• Questão 5 (1.0 ponto) Considere o campo de velocidades e as três curvas, C_1 , C_2 e C_3 , orientadas no sentido negativo de y. Definimos

$$I_1 = \int_{C_1} \vec{F} \cdot d\vec{r}, \quad I_2 = \int_{C_2} \vec{F} \cdot d\vec{r} \quad \mathrm{e} \quad I_3 = \int_{C_3} \vec{F} \cdot d\vec{r}$$

Em cada coluna assinale uma alternativa correta. (x) $I_1>0,\ I_2>0,$ e $I_3>0.$ () $|I_1|\geq |I_3|\geq |I_2|.$

- () $I_1 > 0$, $I_2 < 0$, e $I_3 < 0$.
- () $|I_2| \ge |I_3| \ge |I_1|$.
- () $I_1 > 0$, $I_2 > 0$, e $I_3 < 0$.
- () $|I_1| \ge |I_2| \ge |I_3|$.
- () $I_1 < 0, I_2 > 0, e I_3 > 0.$
- $(x) |I_3| \ge |I_2| \ge |I_1|.$
- () $I_1 < 0, I_2 < 0, e I_3 > 0.$
- () $|I_2| \ge |I_1| \ge |I_3|$.

• Questão 6 (1.0 ponto) Sejam $\vec{F} = x^2\vec{i} + y^2\vec{j} + z^2\vec{k}$ e as três superfícies $S_1: y = -1, S_2: y = 1$ e $S_3: y = 3$, todas com domínio a região $x^2 + z^2 \le 1$ e orientações no sentido positivo do eixo y. Definimos

$$I_1 = \iint_{S_1} \vec{F} \cdot \vec{n} dS, \quad I_2 = \iint_{S_2} \vec{F} \cdot \vec{n} dS \quad \mathrm{e} \quad I_3 = \iint_{S_3} \vec{F} \cdot \vec{n} dS.$$

Em cada coluna assinale uma alternativa correta.

- () $I_1 > 0$, $I_2 < 0$, e $I_3 < 0$.
- $(x) |I_1| = |I_2| \le |I_3|.$
- (x) $I_1 > 0, I_2 > 0, e I_3 > 0.$
- () $|I_1| \ge |I_2| \ge |I_3|$.
- () $I_1 > 0, I_2 > 0, e I_3 < 0.$
- () $|I_1| = |I_2| \ge |I_3|$.
- () $I_1 < 0, I_2 > 0, e I_3 > 0.$
- () $|I_1| \ge |I_2| = |I_3|$.

- () $I_1 < 0, I_2 < 0, e I_3 > 0.$ Como $I_1 = I_2 = \pi$ e $I_3 = 9\pi$, há duas alternativas corretas.
- $(x) |I_1| \le |I_2| \le |I_3|.$

• Questão 7 (2.0) Considere a região V limitada superiormente pela superfície S_1 de equação

$$\sqrt{x^2 + y^2} = 1 - z^3, \quad 0 \le z \le 1$$

- e inferiormente pelo plano z=0 e o campo $\vec{F}=(x+\cos(y))\vec{i}+\cos(z)\vec{j}+(z+1)\vec{z}$.
 - (a) Use o teorema da divergência para calcular o fluxo de \vec{F} através da superfície S que limita Vorientada para fora.
 - (b) Calcule o valor de $\iint_{S_1} \vec{F} \cdot \vec{\eta} dS$. Dica: use o resultado do item a.

Representação da superfície S_1 .

Resposta do item a) Primeiro calculamos

$$\vec{\nabla} \cdot \vec{F} = 1 + 0 + 1 = 2.$$

Pelo teorema da divergência, o fluxo é dado por:

$$\Phi = \oiint \vec{F} \cdot \vec{\eta} dS = \iiint \vec{\nabla} \cdot \vec{F} dV = 2 \oiint dV$$

Parametrizando em coordenadas cilíndricas, temos

$$\Phi = 2 \iiint dV = 2 \int_0^{2\pi} \int_0^1 \int_0^1 \int_0^{1-z^3} \rho d\rho dz d\theta = 4\pi \int_0^1 \frac{\rho^2}{2} \Big|_0^{1-z^3} dz$$

$$= 2\pi \int_0^1 (1-z^3)^2 dz = 2\pi \int_0^1 (1-2z^3+z^6) dz =$$

$$= 2\pi \left(z - \frac{1}{2}z^4 + \frac{1}{7}z^7\right) \Big|_0^1 = 2\pi \left(1 - \frac{1}{2} + \frac{1}{7}\right) = \frac{9\pi}{7}$$

Alternativamente, poderíamos ter parametrizado conforme a seguir:

$$\begin{split} \Phi &=& 2 \iiint dV = 2 \int_0^{2\pi} \int_0^1 \int_0^{\sqrt[3]{1-\rho}} \rho dz d\rho d\theta = 4\pi \int_0^1 \rho \sqrt[3]{1-\rho} d\rho \\ &=& 4\pi \left(-\int_1^0 (1-u) \sqrt[3]{u} du \right) \\ &=& 4\pi \int_0^1 (u^{1/3} - u^{4/3}) = 4\pi \left(\frac{3}{4} - \frac{3}{7} \right) = \frac{9\pi}{7} \end{split}$$

Resposta do item b) Sabemos que

$$\Phi = \Phi_1 + \Phi_2$$

onde

$$\Phi_1 = \iint_{S_1} \vec{F} \cdot \vec{\eta} dS$$

е

$$\Phi_2 = \iint_{S_2} \vec{F} \cdot \vec{\eta} dS$$

Podemos facilmente obter Φ_2 :

$$\begin{array}{rcl} \Phi_2 & = & \displaystyle \iint_{S_2} \vec{F} \cdot \vec{\eta} dS = \displaystyle \iint_{S_2} \vec{F} \cdot (-\vec{k}) dS \\ \\ & = & - \displaystyle \iint_{S_2} dS = \displaystyle \iint_{S_2} dS = -\pi \end{array}$$

Assim:

$$\Phi_1 = \Phi - \Phi_2 = \frac{9\pi}{7} + \pi = \frac{16\pi}{7}$$

• Questão 8 (2.0 pontos) Considere o campo dado por

$$\vec{F} = -\frac{y}{x^2 + y^2}\vec{i} + \frac{x}{x^2 + y^2}\vec{j}, \quad (x, y) \neq (0, 0).$$

a) Seja C uma circunferência sobre o plano z=0 centrada na origem de raio a>0 orientada no sentido anti-horário, calcule o valor da circulação

$$\oint_C \vec{F} \cdot d\vec{r}$$

usando parametrização direta.

b) Use o teorema de Stokes para mostrar que se C é um caminho qualquer simples, fechado e suave que não passa nem circunda a origem no plano xy, então:

$$\oint_C \vec{F} \cdot d\vec{r} = 0.$$

Resposta do item a) Defina o caminho dado pela parametrização:

$$\vec{r}(t) = \cos(t)\vec{i} + \sin(t)\vec{j}, \quad 0 \le t \le 2\pi,$$

de forma que:

$$\vec{r'}(t) = -\sin(t)\vec{i} + \cos(t)\vec{j}$$

Assim temos:

$$\begin{split} W &= \oint_C \vec{F} \cdot d\vec{r} = \int_0^{2\pi} \vec{F} \cdot \vec{r}'(t) dt \\ &= \int_0^{2\pi} \left(\sin(t) \frac{y}{x^2 + y^2} + \cos(t) \frac{x}{x^2 + y^2} \right) dt \\ &= \int_0^{2\pi} \left(\sin(t) \frac{\sin(t)}{\cos^2(t) + \sin^2(t)} + \cos(t) \frac{\cos(t)}{\cos^2(t) + \sin^2(t)} \right) dt \\ &= \int_0^{2\pi} dt = 2\pi \end{split}$$

Resposta do item b) Observe que

$$\vec{\nabla} \times \vec{F} = \left(\frac{x^2 - y^2}{x^2 + y^2} + \frac{y^2 - x^2}{x^2 + y^2} \right) \vec{k} = \vec{0}$$

Como a única singulariade do campo acontece na origem, podemos aplicar o teorema de Stokes em C para obter:

$$\oint_C \vec{F} \cdot d\vec{r} = \iint_C \vec{\nabla} \times \vec{F} \cdot k dS = 0$$