Sistemas Operacionais

Gerência de Memória e Memória Virtual

Introdução

• Multiprogramação

- Vários processos prontos para execução, concorrem à CPU
- Para que a troca de contexto seja rápida, os processos devem estar na memória principal

Gerência de Memória do SO

- deve prover mecanismos para que os processos utilizem a memória de forma segura e eficiente
- há várias técnicas de gerência
- cada SO emprega uma técnica em particular e isto depende fortemente da arquitetura do computador

Memória

- Memória = vetor de palavras ou bytes com seus endereços
- A CPU busca instruções da memória, de acordo com o valor do Contador de Programa (podem ser de busca ou armazenamento em endereços de memória específicos)

Espaço de Endereçamento Lógico x Físico

Memória Lógica de um processo

- é aquela que o processo enxerga
- os endereços manipulados pelo processo são Endereços Lógicos
- Por exemplo, as variáveis de um processo contém endereços lógicos.
- Cada processo possui sua memória lógica, independente da memória lógica de outros processos
- Espaço de Endereçamento Lógico (ou Virtual) de um processo é o conjunto de endereços lógicos que esse processo pode endereçar (enxergar). Há um espaço de endereçamento lógico por processo.

Memória Física

- é aquela implementada pelos circuitos integrados de memória
- o Endereço Físico é usado para endereçar os circuitos integrados
- Espaço de Endereçamento Físico é formado por todos os endereços aceitos pelos circuitos integrados de memória.

Espaço de Endereçamento Lógico x Físico (2)

- Os mapeamentos de endereços em tempo de compilação e em tempo de carga resultam em endereçamentos lógicos e físicos iguais. O mapeamento de endereços em tempo de execução, não.
- O Mapeamento de tempo de execução dos endereços lógicos para físicos é feito pela Unidade de Gerência de Memória (MMU – Memory Management Unit)
 - A MMU é um componente do hardware

Alocação Não Contígua

Paginação Segmentação

- Há o espaço de endereçamento lógico (processo) e o espaço de endereçamento físico.
- O espaço de endereçamento lógico é contíguo (visão do usuário)
- O espaço de endereçamento físico não precisa ser contíguo.
- A memória lógica é dividida em blocos de tamanho fixo e identicos
 Páginas
- A memória física é dividida em blocos de tamanho fixo e idênticos
 Frames ou Quadros

- Há necessidade de mapear o espaço lógico para o espaço físico
 - Endereço lógico

 Endereço Físico
- Fragmentação Interna
 - Restrita a última página ocupada pelo processo
- Cada página é alocada em um quadro
- Para o mapeamento de endereços, é utilizada a Tabela de Páginas
- A Tabela de Páginas é usada também para Proteção da Memória e Compartilhamento

- Endereço Lógico
 - <nº página, deslocamento>
- Endereço Físico
 - <no quadro, deslocamento>

Esquema Básico da Paginação

Processo			
0	B ₁		
1	B2		
2	В3		
3	B4		

Tabela de Páginas Processo 1

Págin	Quadr	V/
a	0	i
0	2	V
1	3	V
2	8	٧
3	9	V
4		i

Tabela de Páginas Processo 2

Págin	Quadr	V/
a	0	i
Ö	4	V
1	5	٧
2	6	V
3	7	٧

Memória Principal

Mapeamento Endereço Lógico para Físico

- Tamanho da página: até 8 kbytes
- O SO mantém uma lista com os quadros livres

- Páginas pequenas implicam...
- Páginas grandes implicam...

- Proteção
 - Processos acessam somente suas páginas
 - Os registradores que controlam o acesso à tabela de páginas são acessados somente no modo supervisor
 - Bits de controle
 - Para cada página da tabela
 - Indicam leitura, escrita ou executável
 - Bit de Verificação (ou Validade)
 - Indica se a página pertence ao espaço de endereçamento lógico do processo

Memória Virtual

Memória Virtual

Possibilita a execução de programas que não são carregados completamente na memória física

Exemplos

- Programa com funções raramente utilizadas
- Rotinas de tratamento de exceções ou acesso a arquivos
- Programas que para execução exigem maior espaço de memória

Mecanismo básico de Paginação

- Tabela de páginas
 - Há um bit de validação de cada página
 - V = página válida = página carregada na memória
 - I = página inválida = página não carregada na memória ou fora do espaço de endereçamento do processo
- Ao acontecer um acesso à memória...
 - Busca tabela de páginas
 - Bit v □ faz mapeamento para endereço físico
 - Bit i ☐ MMU gera interrupção de proteção ao SO
 - No PCB há informação se
 - a página está fora do espaço de endereçamento de um processo (neste caso a operação é abortada)
 - OU
 - houve FALTA DE PÁGINA Page Fault (página não carregada)

Paginação por Demanda

Processo 1

Pager: parte do SO responsável por carregar uma página específica de um processo do disco para a memória principal

Substituição de Páginas na Memória

- Ao acontecer Page Fault (Falta de Página), há necessidade de uma página livre na memória física.
- Para tanto, o SO deve
 - escolher uma página lógica (Página Vítima)
 - copiar o conteúdo dessa página para o disco
 - marcar a página como inválida, na tabela de páginas

Substituição de Páginas na Memória - Exemplo

Processo 1

M. Lógica

0	A
1	В
2	С
3	D

Tabela Páginas

Lógica	Física	Bit
0	1	v
1	5	v
2		i
3	0	v

Processo 2

M. Lógica

0	Е
1	F
2	G
3	Н

Tabela Páginas

Lógica	Física	Bit
0	3	V
1	2	V
2	4	V
3		i

M. Física

4	0	D
	1	A
	2	F
	3	Е
	4	G
	5	В

Algoritmo de Substituição de Páginas

Disco

A
В
С
ח

D E F

F G H

SØ escolhe PÁGINA VÍTIMA

MMU - interrupção

Substituição de Páginas

- Bits auxiliares são adicionados à tabela de página para auxiliar a substituição:
 - Bit de Sujeira (dirty bit): indica quando a página foi alterada durante a execução do processo (é zerado quando a página é carregada; "ligado" quando acontece a escrita).
 - Bit de Referência (reference bit): indica quando a página foi acessada pelo processo. É inicializado com ZERO quando a página é carregada; recebe 1, quando a página é usada.
 - Bit de Trança (lock bit): é usado para trancar uma página lógica na memória física (a página bloqueada não pode ser escolhida como vítima).

Tabela de Páginas

Pág.	Pág.	Bit	Bit	Bit	Bit
Lógica	Física	v/i	sujeira	referência	tranca

Algoritmos de Substituição de Página

ou Page-Replacement Algorithm

- Algoritmo Ótimo
- FCFS ou FIFO
- LRU
 - Aproximações do LRU
 - Histórico de Bits de Referência ou Bits de Referência
 Adicionais
 - Segunda Chance ou Algoritmo do Relógio (clock algorithm)
 - Segunda Chance melhorado
- Substituição baseada em contagem

Objetivo é gerar a menor taxa de falta de páginas

Algoritmos de Substituição de Página

- Para determinar o número de faltas de páginas:
 - String de Referência
 - Série de referências à memória
 - Quadros
 - Saber o número de quadros disponíveis

Algoritmo Ótimo

Algoritmo Ótimo

- O algoritmo de substituição de página ótimo é o que coloca a falta de página em um futuro mais longe
 - Menor taxa de falta de páginas
- Conhecido com OPT ou MIN
- Consiste em substituir a página que não será usada pelo período mais longo
- Para tanto, é necessário conhecer as próximas referências às páginas (difícil de implementar)

FIFO

- FCFS (First Come, First Served) ou FIFO (First In, First Out)
 - A página escolhida para ser substituída (página vítima) é a página que está há mais tempo na memória
 - A MMU deve ter uma lista com os números das páginas lógicas. Quando uma página é carregada na memória, seu número é colocado no final da lista.
 - Desempenho ruim □ não considera se a página foi acessada
 - Exemplo
 - Rotina de Inicialização
 - Rotinas de Bibliotecas

FIFO (Exemplo)

String de Referência às Páginas:

LRU

LRU (Least Recently Used)

- Aproximação do Algoritmo Ótimo
- Escolhe a página que há mais tempo não é usada (acessada)
- Considera que páginas acessadas recentemente por um processo serão novamente acessadas por ele num futuro próximo
- Exige suporte de hardware (registradores adicionais)
 - alto custo para manter na tabela de páginas o momento exato do último acesso
- Raramente encontrado □ existem aproximações