Decidable languages

Sipser 4.1 (pages 165-173)

Hierarchy of languages

Describing Turing machine input

- \cdot Input is a string over the alphabet Σ
- What if we want to encode an "object"?
 - DFA, NFA, PDA, CFG, etc...
 - Use brackets shorthand to indicate that input is encoding of object
 - For example:
 - $\cdot < M >$ is the encoding of M, where M is a DFA
 - \cdot Then, in the machine, simply refer to M as a DFA

Problems concerning regular languages

- A_{DFA} = {<B, w>| B is a DFA that accepts input string w}
- $A_{NFA} = \{ \langle B, w \rangle | B \text{ is a NFA that accepts}$ input string $w \}$
- $A_{REX} = \{ \langle R, w \rangle | \text{ R is a regular expression}$ that generates string $w \}$
- Are these languages decidable?

Deciding regular languages

- Theorem 4.1: A_{DFA} is decidable.
- Proof.

Let M = "On input $\langle B, w \rangle$, where B is a DFA:

- 1. Simulate B on input w.
- 2. If the simulation ends in an accept state, *accept*. Otherwise, *reject*."

Deciding regular languages

- Theorem 4.1: A_{DFA} is decidable.
- Proof.

Let M = "On input < B, w>, where B is a DFA:

- 1. Simulate B on input w. do this?
- 2. If the simulation ends in an accept state, accept. Otherwise, reject."

What about guessing?

- Theorem 4.2: A_{NFA} is decidable.
- Proof:

Let N = "On input < B, w>, where B is an NFA:

- 1. Convert NFA B to an equivalent DFA C using the procedure given in Theorem 1.39
- 2. Simulate TM M of Theorem 4.1 on input $\langle C, w \rangle$
- 3. If M accepts, accept. Otherwise, reject."

Deciding regular expressions

- Theorem 4.3: A_{REX} is decidable.
- Proof:

Let P = "On input $\langle R, w \rangle$, where R is a regular expression:

- 1. Convert regular expression R to an equivalent NFA A using the procedure given in Theorem 1.54
- 2. Simulate TM N of Theorem 4.2 on input $\langle A, w \rangle$
- 3. If N accepts, accept. Otherwise, reject."

Can we test for emptiness?

• E_{DFA} = {<A> | A is a DFA and L(A) = \emptyset }

Can we test for emptiness?

- E_{DFA} = {<A> | A is a DFA and L(A) = \emptyset }
- Theorem 4.4: E_{DFA} is a decidable language.
- Proof:

Let T = "On input $\langle A \rangle$, where A is a DFA:

- 1. Mark the start state of A.
- 2. Repeat until no new states get marked:
 - Mark any state that has a transition coming into it from any state that is already marked.
- 3. If no accept state is marked, accept; otherwise, reject.

Can we tell if two DFAs are equivalent?

•
$$EQ_{DFA}$$
 = {< A , B > | A and B are DFAs and $L(A) = L(B)$ }

Can we tell if two DFAs are equivalent?

- EQ_{DFA} = {<A, B> | A and B are DFAs and L(A) = L(B)}
- Theorem 4.5: EQ_{DFA} is a decidable language.
- Proof:

Let F = "On input $\langle A,B \rangle$, where A and B are DFAs:

- 1. Construct DFA C to recognize A XOR B.
- 2. Run TM T from Theorem 4.4 on input < C >.
- 3. If T accepts, accept. Otherwise, reject."

What about context-free languages?

- $A_{CFG} = \{ \langle G, w \rangle | G \text{ is a CFG that generates } w \}$
- Theorem 4.7: A_{CFG} is decidable.
- Proof:

Let S = "On input < G, w>, where G is a CFG:

- 1. Convert G to an equivalent grammar in Chomsky normal form by the procedure given in Theorem 2.9.
- 2. List all derivations with 2n-1 steps, where n is the length of w
- 3. If any of these derivations generate w, accept. Otherwise, reject."

Emptiness... again

- $E_{CFG} = \{ \langle G \rangle \mid G \text{ is a CFG and } L(G) = \emptyset \}$
- Theorem 4.8: $E_{\it CFG}$ is decidable.
- Proof:

Let R = "On input $\langle G \rangle$, where G is a CFG:

- 1. Mark all terminal symbols in G.
- 2. Repeat until no new variables get marked:
 - Mark any variable A where G has a rule
 - $A \rightarrow U_{l}U_{2} \dots U_{k}$ and each symbol U_{l}, \dots, U_{k} has already been marked
- 3. If the start variable is not marked, *accept*; otherwise, *reject*."

Can we tell if two CFGs are equivalent?

- EQ_{CFG} = {<G, H> | G and H are CFGs and L(G) = L(H)}
- Is EQ_{DFA} a decidable language?
- Is something wrong with this proof:
 Let W = "On input <G,H>, where G and H are CFGs:
 - 1. Construct CFG F to recognize L(G) XOR L(H).
 - 2. Run TM R from Theorem 4.8 on input < F >.
 - 3. If R accepts, accept. Otherwise, reject."