Tutorial answer sheet – Vectors

Peter Rowlett

1. (a) scalar;

$$2. \begin{bmatrix} 6.10N \\ 11.48N \end{bmatrix}$$

3. (a) $\sqrt{58}$;

(c)
$$3$$
;

(d)
$$\sqrt{13}$$
;

(e)
$$\sqrt{13}$$
;

(f)
$$\sqrt{13}$$
.

4. -6.

$$5. -50.$$

6.
$$39^{\circ}$$
.

7.
$$\frac{17}{\sqrt{26}} = 3.334$$
.

$$9. \begin{bmatrix} 0 \\ 0 \\ -2 \end{bmatrix}$$

$$10. \begin{bmatrix} -4 \\ 59 \\ 26 \end{bmatrix}$$

11. (a)
$$\mathbf{a} \cdot \mathbf{b} = 27$$
, $\mathbf{b} \cdot \mathbf{a} = 27$, $\mathbf{a} \cdot \mathbf{a} = 29$, $\mathbf{b} \cdot \mathbf{b} = 126$, $\mathbf{a} \times \mathbf{b} = \begin{bmatrix} 35 \\ -40 \\ -10 \end{bmatrix}$, and $\mathbf{b} \times \mathbf{a} = \begin{bmatrix} -35 \\ 40 \\ 10 \end{bmatrix}$;

(b)
$$\mathbf{a} \cdot \mathbf{b} = -50$$
, $\mathbf{b} \cdot \mathbf{a} = -50$, $\mathbf{a} \cdot \mathbf{a} = 29$, $\mathbf{b} \cdot \mathbf{b} = 201$, $\mathbf{a} \times \mathbf{b} = \begin{bmatrix} 53 \\ 6 \\ 22 \end{bmatrix}$, and $\mathbf{b} \times \mathbf{a} = \begin{bmatrix} -53 \\ -6 \\ -22 \end{bmatrix}$.