Online HW 3: Integers and the Fundamental Theorem

Bart Snapp and Brad Findell

September 21, 2018

Contents

Integers

Problems about integers.

Problem 1 Describe the set of integers. Give some relevant and revealing examples/nonexamples.

Problem 2 Explain how to model integer addition with pictures or items. What relevant properties should your model show?

Problem 3 Explain how to model integer multiplication with pictures or items. What relevant properties should your model show?

Problem 4 Explain what it means for one integer to divide another integer. Give some relevant and revealing examples/nonexamples.

Problem 5 Use the definition of divides to decide whether the following statements are true or false. In each case, an explanation must be given justifying your claim.

- (a) 5|30 (True/False)
- (b) 7|41 (True/False)
- (c) 0|3 (True/False)
- (d) 3|0 (True/False)
- (e) $6|(2^2 \cdot 3^4 \cdot 5 \cdot 7)$. (*True*/ *False*)
- (f) $1000|(2^7 \cdot 3^9 \cdot 5^{11} \cdot 17^8)$ (True/False)
- (g) $6000|(2^{21} \cdot 3^{17} \cdot 5^{89} \cdot 29^{20})$. (True/False)

 $Author(s) \hbox{: } Bart\ Snapp\ and\ Brad\ Findell$

Problem 6	Factor	the	following	integers:
-----------	--------	-----	-----------	-----------

- (a) 111 ?
- (b) 1234 ?
- (c) 2345 ?
- (d) 4567 ?
- (e) 111111 ?

In each case, how large a prime must you check before you can be sure of your answers? Explain your reasoning.

Problem 7 Find the greatest common divisors below:

- (a) $gcd(462, 1463) = \boxed{?}$
- (b) $gcd(541, 4669) = \boxed{?}$
- (c) $gcd(10000, 2^5 \cdot 3^{19} \cdot 5^7 \cdot 11^{13}) = \boxed{?}$
- (d) $gcd(11111, 2^{14} \cdot 7^{21} \cdot 41^5 \cdot 101) = \boxed{?}$
- (e) $gcd(437^5, 8993^3) = \boxed{?}$

Problem 8 Consider the following:

$$20 \div 8 = 2$$
 remainder 4,
 $28 \div 12 = 2$ remainder 4.

Is it correct to say that $20 \div 8 = 28 \div 12?$ (Yes/ No)

Explain your reasoning.

Problem 9 Give a formula for the nth even number: ?

Problem 10 Give a formula for the nth odd number: ?

Integers

Problem	11	Give a formula for the nth multiple of 3: [?]
Problem	12	Give a formula for the n th multiple of -7 . $?$
Problem vided by 5		Give a formula for the n th number whose remainder when di-
If the first	such	n number is 1, the formula is ?.
If the first	such	n number is 6, the formula is ?.

Fundamental Theorem

Problems about Unique Factorization.

Problem 14 Problem

Problem 15 Explain what the GCD of two integers is. Give some relevant and revealing examples/nonexamples.

Problem 16 Explain what the LCM of two integers is. Give some relevant and revealing examples/nonexamples.

Problem 17 How many zeros are at the end of the following numbers:

- (a) $2^2 \cdot 5^8 \cdot 7^3 \cdot 11^5$. There are ? zeros.
- (b) 11!. There are ? zeros.
- (c) 27!. There are ? zeros.
- (d) 99!. There are ? zeros.
- (e) 1001!. There are $\fbox{?}$ zeros

In each case, explain your reasoning.

Problem 18 Decide whether the following statements are true or false. In each case, a detailed argument and explanation must be given justifying your claim.

- (a) 7|56. (*True*/ *False*)
- (b) 55|11. (True/False)
- (c) 3|40. (True/False)

Author(s): Bart Snapp and Brad Findell

(d)
$$100|(2^4 \cdot 3^{17} \cdot 5^2 \cdot 7)$$
 (*True/ False*)

(e)
$$5555|(5^{20} \cdot 7^9 \cdot 11^{11} \cdot 13^{23})$$
 (True/False)

(f)
$$3|(3+6+9+\cdots+300+303)$$
 (True/False)

Problem 19 Suppose that

$$(3^5 \cdot 7^9 \cdot 11^x \cdot 13^y) | (3^a \cdot 7^b \cdot 11^{19} \cdot 13^7)$$

What values of a, b, x and y, make true statements? Explain your reasoning.

- $a (\geqslant/=/\leqslant)$?
- $b \ (\geqslant/=/\leqslant)$?
- $x (\geq / = / \leq)$?
- $y (\geqslant/=/\leqslant)$?

Problem 20 Decide whether the following statements are true or false. In each case, a detailed argument and explanation must be given justifying your claim.

- (a) If 7|13a, then 7|a. (True/False)
- (b) If 6|49a, then 6|a. (True/False)
- (c) If 10|65a, then 10|a. (True/False)
- (d) If 14|22a, then 14|a. (True/False)
- (e) 54|931²¹. (True/False)
- (f) 54|810³³. (True/False)

Problem 21 Joanna thinks she can see if a number is divisible by 24 by checking to see if it's divisible by 4 and divisible by 6. She claims that if the number is divisible by 4 and by 6, then it must be divisible by 24.

Lindsay has a similar divisibility test for 24: She claims that if a number is divisible by 3 and by 8, then it must be divisible by 24.

Are either correct? Explain your reasoning.

Joanna is (correct/incorrect). Lindsay is (correct/incorrect).

Problem 22 Decide whether the following statements are true or false. In each case, a detailed argument and explanation must be given justifying your claim.

- (a) If $a^2|b^2$, then a|b. (True/False)
- (b) If $a|b^2$, then a|b. (True/False)
- (c) If a|b and gcd(a,b) = 1, then a = 1. (True/False)

Problem 23 Suppose x and y are integers. If $x^2 = 11 \cdot y$, what can you say about y? Explain your reasoning.

Problem 24 Suppose x and y are integers. If $x^2 = 25 \cdot y$, what can you say about y? Explain your reasoning.