Quantitative Management Modeling

Assignment 2

Q1. (Computer Center Staffing)

Decision Variables:

- **Z**. objective variable to maximize profit
- P1: Number of Part-Time consultants for (8am noon)
- **P2:** Number of Part-Time consultants for (noon 4pm)
- **P3.** Number of Part-Time consultants for (4pm 8pm)
- **P4:** Number of Part-Time consultants for (8pm midnight)
- F1: Number of Full-Time consultants for (8am 4pm)
- **F2:** Number of Full-Time consultants who work in shift (noon 8pm)
- F3. Number of Full-Time consultants who work in shift (4pm midnight)

Objective Function.

Max profit
$$Z = 112 (F1 + F2 + F3) + 48 (P1 + P2 + P3 + P4)$$

Constraints

$$F1 + P1 \ge 4$$

$$F1 + F2 + P2 \ge 8$$

$$F2 + F3 + P3 \ge 10$$

$$F3 + P4 \ge 6$$

$$P1 \ge F1$$

$$P2 \ge F1 + F2$$

$$P3 \ge F2 + F3$$

$$P4 \ge F3$$

$$F_1$$
, F_2 , F_3 , P_1 , P_2 , P_3 , $P_4 \ge 0$

b- we will add more 2 full-time in the second shift and 2 part-time in the third shift Objective Function.

Max.
$$Z = 112 (F_1 + F_2 + F_3 + 2) + 48 (P_1 P_2 + P_3 + P_4 + 2)$$

constraints

$$F_1 + P_1 \ge 4$$

$$F_1 + (2) F_2 + P_2 \ge 8$$

(2)
$$F_2 + F_3 + (1.4) P_3 \ge 10$$

$$F_3 + P_4 \ge 6$$

F1, F2, F3, P1, P2, P3, P4
$$\geq$$
 0

Z. objective variable to maximize profit

X1. represents the number of units produced from model "Collegiate"

X2: represents the number of units produced from model "Mini"

Objective Function.

Max.
$$Z = 32X1 + 24X2$$

constraints

$$3X1 + 2X2 \le 5000$$

$$45X1 + 40X2 \le 84,000$$

$$X1 \le 1000$$

$$X2 \le 1200$$

$$X1, X2 \ge 0$$

Solution:

$$1 - 3X1 + 2X2 = 5000$$

$$2 - 45X1 + 40X2 = 84,000$$

$$3 - X1 \le 1000$$

$$4-X2 \le 1200$$

$$1-3X1 + 2X2 = 5000$$
 $X1 = 1000$
 $3(1000) + 2X2 = 5000$
 $2X2 = 2000$ (1000, 1000)

$$2-45X1 + 40X2 = 84,000$$

 $X2 = 1200$
 $45X1 + 40(1200) = 84,000$
 $45X1 = 36,000$ (800, 1200)

we find that the optimal solution is X1 = 1000, and X2 = 1000

Q3:

Table 1 Weigelt Corporation problem

Decision Variables.

Z. objective variable to maximize profit

 $L_{i:}$ represents the total number of units produced from "Large-Size" (Lp1 + Lp2 + Lp3)

 M_{i} : represents the total number of units produced from "Medium-Size" (Mp1 + Mp2 + Mp3)

 S_{i} represents the total number of units produced from "Small-Size" (Sp1 + Sp2 + Sp3)

Lp₁: Number of Large-Size units produced by Plant (1)

Lp₂: Number of Large-Size units produced by Plant (2)

Lp₃: Number of Large-Size units produced by Plant (3)

Mp₁: Number of Medium-Size units produced by Plant (1)

Mp2: Number of Medium-Size units produced by Plant (2)

Mp₃: Number of Medium-Size units produced by Plant (3)

Sp₂: Number of Small-Size units produced by Plant (1)

Sp₁: Number of Small-Size units produced by Plant (2)

Sp₃: Number of Small-Size units produced by Plant (3)

Objective Function.

Max.
$$Z = 420 (Lp_1 + Lp_2 + Lp_3) + 360 (Mp_1 + Mp_2 + Mp_3) + 300 (Mp_1 + Mp_2 + Mp_3)$$

S.T

Production Capacity Constraints

$$Lp1 + Mp1 + Sp1 \le 750$$

$$Lp2 + Mp2 + Sp2 \le 900$$

$$Lp3 + Mp3 + Sp3 \le 450$$
(1)
(2)

Storage Space Constraints

20 Lp1 + 15 Mp1 + 12 Sp1
$$\leq$$
 13000 (4)

20 Lp2 + 15 Mp2 + 12 Sp2 \leq 12000 (5)

20 Lp3 + 15 Mp3 + 12 Sp3 \leq 5000 (6)

Sales Forecasting Constraints

Lp1 + Lp2 + Lp3 \leq 900 (7)

Mp1 + Mp2 + Mp3 \leq 1200 (8)

Sp1 + Sp2 + Sp3 \leq 750 (9)

Lp1, Lp2, Lp3, Mp1, Mp2, Mp3, Sp1, Sp2, Sp3 \geq 0