Оценивание качества классификации Обобщающая способность Методы отбора признаков

Воронцов Константин Вячеславович vokov@forecsys.ru http://www.MachineLearning.ru/wiki?title=User:Vokov

Этот курс доступен на странице вики-ресурса http://www.MachineLearning.ru/wiki «Машинное обучение (курс лекций, К.В.Воронцов)»

МФТИ • 23 октября 2021

Содержание

- 🕕 Оценки качества классификации
 - Чувствительность, специфичность, ROC, AUC
 - Правдоподобие вероятностной модели классификации
 - Точность, полнота, AUC-PR
- Внешние критерии обобщающей способности
 - Внутренние и внешние критерии
 - Эмпирические внешние критерии
 - Аналитические внешние критерии
- 3 Методы отбора признаков
 - Полный перебор
 - Жадные алгоритмы
 - Поиск в ширину и генетический алгоритм

Анализ ошибок классификации

Задача классификации на два класса, $y_i \in \{-1, +1\}$. Алгоритм классификации $a(x_i) \in \{-1, +1\}$

	ответ классификатора	правильный ответ
TP, True Positive	$a(x_i) = +1$	$y_i = +1$
TN, True Negative	$a(x_i) = -1$	$y_i = -1$
FP, False Positive	$a(x_i) = +1$	$y_i = -1$
FN, False Negative	$a(x_i) = -1$	$y_i = +1$

Доля правильных классификаций (чем больше, тем лучше):

Accuracy =
$$\frac{1}{\ell} \sum_{i=1}^{\ell} \left[a(x_i) = y_i \right] = \frac{\mathsf{TP} + \mathsf{TN}}{\mathsf{FP} + \mathsf{FN} + \mathsf{TP} + \mathsf{TN}}$$

Недостаток: не учитывается ни численность (дисбаланс) классов, ни цена ошибки на объектах разных классов.

Функции потерь, зависящие от штрафов за ошибку

Задача классификации на два класса, $y_i \in \{-1, +1\}$. Модель классификации: $a(x; w, w_0) = \mathrm{sign}(g(x, w) - w_0)$. Чем больше w_0 , тем больше x_i таких, что $a(x_i) = -1$.

Пусть λ_y — штраф за ошибку на объекте класса y. Функция потерь теперь зависит от штрафов:

$$\mathscr{L}(a,y) = \frac{\lambda_{y_i}}{a(x_i; w, w_0)} \neq y_i = \frac{\lambda_{y_i}}{b(g(x_i, w) - w_0)} y_i < 0.$$

Проблема

На практике штрафы $\{\lambda_{\nu}\}$ могут пересматриваться

- Нужен удобный способ выбора w_0 в зависимости от $\{\lambda_y\}$, не требующий построения w заново.
- Нужна характеристика качества модели g(x, w), не зависящая от штрафов $\{\lambda_v\}$ и численности классов.

Определение ROC-кривой

Кривая ошибок ROC (receiver operating characteristic). Каждая точка кривой соответствует некоторому $a(x; w, w_0)$.

• по оси X: доля *ошибочных положительных классификаций* (FPR — false positive rate):

$$\mathsf{FPR} = \frac{\sum_{i=1}^{\ell} [y_i = -1] [a(x_i; w, w_0) = +1]}{\sum_{i=1}^{\ell} [y_i = -1]};$$

 $1-\mathsf{FPR}$ называется специ ϕ ичность ϕ алгоритма a.

• по оси Y: доля *правильных положительных классификаций* (TPR — true positive rate):

$$\mathsf{TPR} = \frac{\sum_{i=1}^{\ell} [y_i = +1] [a(x_i; w, w_0) = +1]}{\sum_{i=1}^{\ell} [y_i = +1]};$$

TPR называется также чувствительностью алгоритма a.

ROC-кривая и площадь под кривой AUC (Area Under Curve)

ABCDE — положения порога w_0 на оси значений функции g

Алгоритм эффективного построения ROC-кривой

```
Вход: выборка \{x_i\}_{i=1}^{\ell}; дискриминантная функция g(x,w);
Выход: ROC-кривая (X_i, Y_i)_{i=0}^k, k \leq \ell и площадь AUC
\ell_{v} := \sum_{i=1}^{\ell} [y_{i} = y], для всех y \in Y;
упорядочить \{x_i\} по убыванию g_i = g(x_i, w): g_1 \geqslant \ldots \geqslant g_\ell;
(X_0, Y_0) := (0, 0); AUC := 0; \Delta X := 0; \Delta Y := 0; i := 1;
для i := 1, \ldots, \ell
                                                                             \Delta Y = 0
    \Delta X := \Delta X + \frac{1}{\ell} [y_i = -1];
    \Delta Y := \Delta Y + \frac{1}{\ell_+} [y_i = +1];
    если (g_i \neq g_{i-1}) то
                                                         \Delta X = 0
  X_i := X_{i-1} + \Delta X;
                                                                   \Delta X
```

Чувствительность, специфичность, ROC, AUC Правдоподобие вероятностной модели классификации Точность, полнота, AUC-PR

Градиентная максимизация AUC

Модель классификации: $a(x_i, w, w_0) = \text{sign}(g(x_i, w) - w_0)$.

 AUC — это доля правильно упорядоченных пар (x_i, x_j) :

$$\begin{aligned} \mathsf{AUC}(w) &= \frac{1}{\ell_{-}} \sum_{i=1}^{\ell} \big[y_i = -1 \big] \mathsf{TPR}_i = \\ &= \frac{1}{\ell_{-}\ell_{+}} \sum_{i=1}^{\ell} \sum_{j=1}^{\ell} \big[y_i < y_j \big] \big[g(x_i, w) < g(x_j, w) \big] \to \max_{w}. \end{aligned}$$

Явная максимизация аппроксимированного AUC:

$$1 - \mathsf{AUC}(w) \leqslant \mathit{Q}(w) = \sum_{i,j \colon y_i < y_j} \mathscr{L}(\underbrace{\mathit{g}(x_j,w) - \mathit{g}(x_i,w)}_{\mathit{M}_{ij}(w)}) \to \min_{w},$$

где $\mathscr{L}(M)$ — убывающая функция отступа,

 $M_{ij}(w)$ — новое понятие отступа для пар объектов.

Алгоритм SG для максимизации AUC

Возьмём для простоты линейный классификатор:

$$g(x, w) = \langle x, w \rangle, \qquad M_{ij}(w) = \langle x_j - x_i, w \rangle, \qquad y_i < y_j.$$

Вход: выборка X^{ℓ} , темп обучения h, темп забывания λ ; **Выход:** вектор весов w;

инициализировать веса w_j , $j=0,\ldots,n$; инициализировать оценку: $ar{Q}:=rac{1}{\ell+\ell-}\sum_{i,j}[y_i< y_j]\,\mathscr{L}(M_{ij}(w))$;

повторять

выбрать пару объектов (i,j): $y_i < y_j$, случайным образом; вычислить потерю: $\varepsilon_{ij} := \mathscr{L}(M_{ij}(w));$ сделать градиентный шаг: $w := w - h \mathscr{L}'(M_{ij}(w))(x_j - x_i);$ оценить функционал: $\bar{Q} := (1 - \lambda)\bar{Q} + \lambda \varepsilon_{ij};$ пока значение \bar{Q} и/или веса w не сойдутся;

Логарифм правдоподобия, log-loss

Вероятностная модель классификации, $y_i \in \{-1,+1\}$:

$$g(x,w)=P(y=+1|x,w).$$

Проблема: ROC и AUC инвариантны относительно монотонных преобразований дискриминантной функции g(x, w).

Критерий логарифма правдоподобия (log-loss):

$$L(w) = \sum_{i=1}^{\ell} [y_i = +1] \ln g(x, w) + [y_i = -1] \ln (1 - g(x, w)) \to \max_{w}$$

Вероятностная модель многоклассовой классификации:

$$a(x) = \arg\max_{y \in Y} P(y|x, w);$$

$$L(w) = \sum_{i=1}^{\ell} \ln \mathsf{P}(y_i|x_i,w) o \max_{w}$$

Оценки качества двухклассовой классификации

В информационном поиске:

Точность, Precision =
$$\frac{TP}{TP+FP}$$

Полнота, Recall = $\frac{TP}{TP+FN}$

Precision — доля релевантных среди найденных Recall — доля найденных среди релевантных

В медицинской диагностике:

Чувствительность, Sensitivity =
$$\frac{TP}{TP+FN}$$

Специфичность, Specificity = $\frac{TN}{TN+FP}$

Sensitivity — доля верных положительных диагнозов Specificity — доля верных отрицательных диагнозов

Точность и полнота многоклассовой классификации

Для каждого класса $y \in Y$: TP_y — верные положительные FP_y — ложные положительные FN_v — ложные отрицательные

Точность и полнота с микроусреднением:

Precision:
$$P = \frac{\sum_{y} \mathsf{TP}_{y}}{\sum_{y} (\mathsf{TP}_{y} + \mathsf{FP}_{y})};$$

Recall: $R = \frac{\sum_{y} \mathsf{TP}_{y}}{\sum_{y} (\mathsf{TP}_{y} + \mathsf{FN}_{y})};$

Микроусреднение не чувствительно к ошибкам на малочисленных классах

Точность и полнота многоклассовой классификации

Для каждого класса $y \in Y$: TP_y — верные положительные FP_y — ложные положительные FN_y — ложные отрицательные

Точность и полнота с макроусреднением:

Precision:
$$P = \frac{1}{|Y|} \sum_{y} \frac{\mathsf{TP}_{y}}{\mathsf{TP}_{y} + \mathsf{FP}_{y}};$$

Recall: $R = \frac{1}{|Y|} \sum_{y} \frac{\mathsf{TP}_{y}}{\mathsf{TP}_{y} + \mathsf{FN}_{y}};$

Макроусреднение чувствительно к ошибкам на малочисленных классах

Кривые ROC и Precision-Recall

Модель классификации: $a(x) = \text{sign}(\langle x, w \rangle - w_0)$ Каждая точка кривой соответствует значению порога w_0

AUROC — площадь под ROC-кривой

AUPRC — площадь под кривой Precision-Recall

Примеры из Python scikit learn: http://scikit-learn.org/dev

Резюме. Оценки качества классификации

- Чувствительность и специфичность лучше подходят для задач с несбалансированными классами
- Логарифм правдоподобия (log-loss) лучше подходит для оценки качества вероятностной модели классификации.
- Точность и полнота лучше подходят для задач поиска, когда доля объектов релевантного класса очень мала.

Агрегированные оценки:

- AUC лучше подходит для оценивания качества, когда соотношение цены ошибок не фиксировано.
- AUPRC площадь под кривой точность-полнота.
- $F_1 = \frac{2PR}{P+R} F$ -мера, другой способ агрегирования P и R.
- ullet $F_eta=rac{(1+eta^2)PR}{eta^2P+R}-F_eta$ -мера: чем больше eta, тем важнее R.

Задачи выбора модели и метода обучения

Дано:
$$X$$
 — пространство объектов; Y — множество ответов; $X^{\ell}=(x_i,y_i)_{i=1}^{\ell}$ — обучающая выборка, $y_i=y^*(x_i)$; $A_t=\{a\colon X\to Y\}$ — модели алгоритмов, $t\in T$; $\mu_t\colon (X\times Y)^{\ell}\to A_t$ — методы обучения, $t\in T$.

Найти: метод μ_t с наилучшей обобщающей способностью.

Частные случаи:

- \bullet выбор лучшей модели A_t (model selection);
- выбор метода обучения μ_t для заданной модели A (в частности, оптимизация *гиперпараметров*);
- отбор признаков (feature selection): $F = \left\{ f_j \colon X \to D_j \colon j = 1, \dots, n \right\}$ множество признаков; метод обучения μ_J использует только признаки $J \subseteq F$.

Как оценить качество обучения по прецедентам?

$$\mathscr{L}(a,x)$$
 — функция потерь алгоритма a на объекте x ; $Q(a,X^\ell)=rac{1}{\ell}\sum\limits_{i=1}^\ell\mathscr{L}(a,x_i)$ — функционал качества a на X^ℓ .

Внутренний критерий оценивает качество на обучении X^ℓ :

$$Q_{\mu}(X^{\ell}) = Q(\mu(X^{\ell}), X^{\ell}).$$

Недостаток: эта оценка смещена, т.к. μ минимизирует её же.

Внешний критерий оценивает качество «вне обучения», например, по отложенной (hold-out) контрольной выборке X^k :

$$Q_{\mu}(X^{\ell},X^{k})=Q(\mu(X^{\ell}),X^{k}).$$

Недостаток: эта оценка зависит от разбиения $X^L = X^\ell \sqcup X^k$.

Основное отличие внешних критериев от внутренних

Внутренний критерий монотонно убывает с ростом сложности модели (например, числа признаков).

Внешний критерий имеет характерный минимум, соответствующий оптимальной сложности модели.

Кросс-проверка (cross-validation, CV)

Усреднение оценок hold-out по заданному N — множеству разбиений $X^L = X_n^\ell \sqcup X_n^k$, $n = 1, \ldots, N$:

$$\mathsf{CV}(\mu, X^L) = \frac{1}{|\mathcal{N}|} \sum_{n \in \mathcal{N}} Q_{\mu}(X_n^{\ell}, X_n^k).$$

Частные случаи — разные способы задания N.

- 1. Случайное множество разбиений.
- 2. Полная кросс-проверка (complete cross-validation, CCV): N множество всех $C_{\ell+k}^k$ разбиений.

Недостаток: оценка CCV вычислительно слишком сложна. Используются либо малые k, либо комбинаторные оценки CCV.

Скользящий контроль и поблочная кросс-проверка

3. Скользящий контроль (leave one out CV): k=1,

$$LOO(\mu, X^L) = \frac{1}{L} \sum_{i=1}^{L} Q_{\mu}(X^L \setminus \{x_i\}, \{x_i\}).$$

Недостатки LOO: ресурсоёмкость, высокая дисперсия.

4. Кросс-проверка по q блокам (q-fold CV): случайное разбиение $X^L=X_1^{\ell_1}\sqcup\cdots\sqcup X_q^{\ell_q}$ на q блоков (почти) равной длины,

$$\mathsf{CV}_q(\mu, X^L) = rac{1}{q} \sum_{n=1}^q Q_\mu ig(X^L ackslash X_n^{\ell_n}, X_n^{\ell_n} ig).$$

Недостатки q-fold CV:

- оценка существенно зависит от разбиения на блоки;
- каждый объект лишь один раз участвует в контроле.

Многократная поблочная кросс-проверка

- 5. Контроль t раз по q блокам $(t \times q$ -fold CV)
- стандарт «де факто» для тестирования методов обучения.

Выборка X^L разбивается t раз случайным образом на q блоков

$$X^L = X_{s1}^{\ell_1} \sqcup \cdots \sqcup X_{sq}^{\ell_q}, \quad s = 1, \ldots, t, \quad \ell_1 + \cdots + \ell_q = L;$$

$$\mathsf{CV}_{t\times q}(\mu, X^L) = \frac{1}{t} \sum_{s=1}^t \frac{1}{q} \sum_{n=1}^q Q_\mu \big(X^L \backslash X_{sn}^{\ell_n}, X_{sn}^{\ell_n} \big).$$

Преимущества $t \times q$ -fold CV:

- увеличением t можно улучшать точность оценки (компромисс между точностью и временем вычислений);
- каждый объект участвует в контроле ровно t раз;
- оценивание доверительных интервалов (95% при t=40).

Критерии непротиворечивости моделей

Идея: Если модель верна, то алгоритмы, настроенные по разным частям данных, не должны противоречить друг другу.

1. По одному случайному разбиению $X^\ell \sqcup X^k = X^L$, $\ell = k$:

$$D_1(\mu, X^L) = \frac{1}{L} \sum_{i=1}^{L} |\mu(X^\ell)(x_i) - \mu(X^k)(x_i)|.$$

2. Аналог $\mathsf{CV}_{t imes 2}$: по t разбиениям $X^L = X^\ell_s \sqcup X^k_s$, $s = 1, \dots, t$:

$$D_t(\mu, X^L) = \frac{1}{t} \sum_{s=1}^t \frac{1}{L} \sum_{i=1}^L |\mu(X_s^\ell)(x_i) - \mu(X_s^k)(x_i)|.$$

Недостатки:

- длина обучения сокращается в 2 раза;
- трудоёмкость возрастает в 2t раз.

Критерии регуляризации

 $Perynnerset{property}$ — аддитивная добавка к внутреннему критерию, обычно штраф за сложность (complexity penalty) модели A:

$$Q_{\mathsf{per}}(\mu, X^\ell) = Q_\mu(X^\ell) + \mathsf{штра} \mathbf{\phi}(A),$$

Линейные модели: $A = \{a(x) = \text{sign}\langle w, x \rangle\}$ — классификация, $A = \{a(x) = \langle w, x \rangle\}$ — регрессия.

 L_2 -регуляризация (ридж-регрессия):

штра
$$\phi(w) = \tau \|w\|_2^2 = \tau \sum_{i=1}^n w_j^2$$
.

 L_1 -регуляризация (LASSO):

штра
$$\phi(w) = \tau \|w\|_1 = \frac{\tau}{\tau} \sum_{i=1}^n |w_i|.$$

 L_0 -регуляризация (AIC, BIC):

штра
$$\phi(w) = \tau \|w\|_0 = \tau \sum_{i=1}^n [w_i \neq 0].$$

Разновидности L_0 -регуляризации

Информационный критерий Акаике (Akaike Information Criterion):

$$\mathsf{AIC}(\mu, x) = Q_{\mu}(X^{\ell}) + \frac{2\hat{\sigma}^2}{\ell} |J|,$$

где $\hat{\sigma}^2$ — оценка дисперсии ошибки $D(y_i - a(x_i))$, J — подмножество используемых признаков.

Байесовский информационный критерий (Bayes Inform. Criterion):

$$\mathsf{BIC}(\mu, X^\ell) = rac{\ell}{\hat{\sigma}^2} \left(Q_\mu(X^\ell) + rac{\hat{\sigma}^2 \ln \ell}{\ell} |J|
ight).$$

Оценка Вапника-Червоненкиса (VC-bound):

$$\mathsf{VC}(\mu, X^\ell) = Q_\mu(X^\ell) + \sqrt{rac{h}{\ell} \ln rac{2e\ell}{h}} + rac{1}{\ell} \ln rac{9}{4\eta},$$

h — VC-размерность; для линейных моделей h = |J|; η — уровень значимости; обычно $\eta = 0.05$.

Многокритериальный выбор модели

Модель, немного неоптимальная по обоим критериям, может оказаться лучше, чем модель, оптимальная по одному критерию, но сильно не оптимальная по другому.

Задача отбора признаков по внешнему критерию

 $F = \left\{ f_j \colon X o D_j \colon j = 1, \dots, n
ight\}$ — множество признаков; μ_J — метод обучения, использующий только признаки $J \subseteq F$; $Q(J) = Q(\mu_J, X^\ell)$ — выбранный внешний критерий. $Q(J) o \min$ — задача дискретной оптимизации.


```
Вход: множество F, критерий Q, параметр d; инициализация: Q^* := Q(\varnothing); для j=1,\ldots,n, где j — сложность наборов J_j := rg \min Q(J) — найти лучший набор сложности j; J: |J| = j если Q(J_j) < Q^* то j^* := j; Q^* := Q(J_j); если j = j j = j j = j j = j j = j j = j j = j j = j j = j j = j j = j j = j j = j j = j j = j j = j j = j j = j j = j j = j j = j j = j j = j j = j
```



```
Вход: множество F, критерий Q, параметр d; инициализация: Q^* := Q(\varnothing); для j=1,\ldots,n, где j — сложность наборов J_j := rg \min Q(J) — найти лучший набор сложности j; J: |J| = j если Q(J_j) < Q^* то j^* := j; Q^* := Q(J_j); если j-j^* \geqslant d то вернуть J_{j^*};
```



```
Вход: множество F, критерий Q, параметр d; инициализация: Q^* := Q(\varnothing); для j=1,\ldots,n, где j — сложность наборов J_j := rg \min Q(J) — найти лучший набор сложности j; J: |J| = j если Q(J_j) < Q^* то j^* := j; Q^* := Q(J_j); если j-j^* \geqslant d то вернуть J_{j^*};
```



```
Вход: множество F, критерий Q, параметр d; инициализация: Q^* := Q(\varnothing); для j=1,\ldots,n, где j — сложность наборов J_j := rg \min Q(J) — найти лучший набор сложности j; J: |J| = j если Q(J_j) < Q^* то j^* := j; Q^* := Q(J_j); если j - j^* \geqslant d то вернуть J_{j^*};
```



```
Вход: множество F, критерий Q, параметр d; инициализация: Q^* := Q(\varnothing); для j=1,\ldots,n, где j — сложность наборов J_j := rg \min Q(J) — найти лучший набор сложности j; J: |J| = j если Q(J_j) < Q^* то j^* := j; Q^* := Q(J_j); если j - j^* \geqslant d то вернуть J_{j^*};
```



```
Вход: множество F, критерий Q, параметр d; инициализация: Q^* := Q(\varnothing); для j=1,\ldots,n, где j — сложность наборов J_j := rg \min Q(J) — найти лучший набор сложности j; J: |J| = j если Q(J_j) < Q^* то j^* := j; Q^* := Q(J_j); если j - j^* \geqslant d то вернуть J_{j^*};
```



```
Вход: множество F, критерий Q, параметр d; инициализация: Q^* := Q(\varnothing); для j=1,\ldots,n, где j — сложность наборов J_j := rg \min Q(J) — найти лучший набор сложности j; J: |J| = j если Q(J_j) < Q^* то j^* := j; Q^* := Q(J_j); если j - j^* \geqslant d то вернуть J_{j^*};
```



```
Вход: множество F, критерий Q, параметр d; инициализация: Q^* := Q(\varnothing); для j=1,\ldots,n, где j — сложность наборов J_j := rg \min Q(J) — найти лучший набор сложности j; J: |J| = j если Q(J_j) < Q^* то j^* := j; Q^* := Q(J_j); если j - j^* \geqslant d то вернуть J_{j^*};
```

Преимущества:

- простота реализации;
- гарантированный результат;
- полный перебор эффективен, когда
 - информативных признаков не много, $j^* \lesssim 5$;
 - всего признаков не много, $n \leq 20..100$.

Недостатки:

- в остальных случаях ооооооочень долго $O(2^n)$;
- чем больше перебирается вариантов, тем больше переобучение (особенно, если лучшие из вариантов существенно различны и одинаково плохи).

Способы устранения:

- эвристические методы сокращённого перебора.

Алгоритм жадного добавления (Add)

```
Вход: множество F, критерий Q, параметр d; инициализация: J_0 := \varnothing; Q^* := Q(\varnothing); для j = 1, \ldots, n, где j — сложность наборов: найти признак, наиболее выгодный для добавления: f^* := \underset{f \in F \setminus J_{j-1}}{\operatorname{arg min}} \ Q(J_{j-1} \cup \{f\}); добавить этот признак в набор: J_j := J_{j-1} \cup \{f^*\}; если Q(J_j) < Q^* то j^* := j; Q^* := Q(J_j); если j - j^* \geqslant d то вернуть J_{j^*};
```

Преимущество: скорость $O(n^2)$, точнее $O(nj^*)$, вместо $O(2^n)$ **Недостаток:** склонность включать в набор лишние признаки **Способы устранения:** Del, Add-Del, Beam Search

Алгоритм поочерёдного добавления и удаления (Add-Del)

Преимущества:

- как правило, лучше, чем Add и Del по отдельности;
- возможны быстрые инкрементные алгоритмы, пример *шаговая регрессия* (step-wise regression).

Недостатки:

- работает дольше, оптимальность не гарантирует.

Алгоритм поочерёдного добавления и удаления (Add-Del)

```
инициализация: J_0 := \emptyset; Q^* := Q(\emptyset); t := 0;
повторять
    пока |J_t| < n добавлять признаки (итерации Add):
        t:=t+1 — началась следующая итерация;
        f^* := \operatorname{arg\,min} Q(J_{t-1} \cup \{f\}); \ J_t := J_{t-1} \cup \{f^*\};
        если Q(J_t) < Q^* то t^* := t; Q^* := Q(J_t);
        если t - t^* \geqslant d то прервать цикл;
    пока |J_t| > 0 удалять признаки (итерации Del):
        t := t + 1 — началась следующая итерация;
        f^* := \arg \min Q(J_{t-1} \setminus \{f\}); \ J_t := J_{t-1} \setminus \{f^*\};
        если Q(J_t) < Q^* то t^* := t; Q^* := Q(J_t);
        если t - t^* \geqslant d то прервать цикл;
пока значения критерия Q(J_{t^*}) уменьшаются;
```

вернуть J_{t^*} ;

Усечённый поиск в ширину (Beam Search)

Он же *многорядный итерационный алгоритм МГУА* (МГУА — метод группового учёта аргументов).

Философия — принцип *неокончательных решений* Габора: принимая решения, следует оставлять максимальную свободу выбора для принятия последующих решений.

Усовершенствуем алгоритм Add:

на каждой j-й итерации будем строить не один набор, а множество из B_j наборов, называемое j-м pядом:

$$R_j = \{J_j^1, \dots, J_j^{B_j}\}, \quad J_j^b \subseteq F, \quad |J_j^b| = j, \quad b = 1, \dots, B_j.$$

где $B_i \leqslant B$ — параметр ширины поиска.

Ивахненко А. Г., Юрачковский Ю. П. Моделирование сложных систем по экспериментальным данным, 1987.

Усечённый поиск в ширину (Beam Search)

```
\mathbf{B}ход: множество F, критерий Q, параметры d, B;
первый ряд состоит из всех наборов длины 1:
R_1 := \{ \{f_1\}, \dots, \{f_n\} \}; \quad Q^* = Q(\emptyset);
для j = 1, ..., n, где j — сложность наборов:
    отсортировать ряд R_i = \left\{J_i^1, \dots, J_i^{B_j}\right\}
    по возрастанию критерия: Q(J_i^1) \leqslant \ldots \leqslant Q(J_i^{B_j});
    если B_i > B то
     R_i := \{J_i^1, \dots, J_i^B\} — оставить B лучших наборов ряда;
    если Q(J_i^1) < Q^* то j^* := j; Q^* := Q(J_i^1);
    если j - j^* \geqslant d то вернуть J_{i^*}^1;
    породить следующий ряд:
   R_{i+1} := \{J \cup \{f\} \mid J \in R_i, f \in F \setminus J\};
```

Усечённый поиск в ширину: дополнительные эвристики

- Трудоёмкость: $O(Bn^2)$, точнее $O(Bn(j^*+d))$.
- Проблема дубликатов: после сортировки $Q(J_j^1)\leqslant\ldots\leqslant Q(J_j^{B_j})$ проверить на совпадение только соседние наборы с равными значениями внутреннего и внешнего критерия.
- Адаптивный отбор признаков: на последнем шаге добавлять к j-му ряду только признаки f с наибольшей информативностью $I_i(f)$:

$$I_j(f) = \sum_{b=1}^{B_j} [f \in J_j^b].$$

Эволюционный алгоритм поиска (идея и терминология)

$$J\subseteq F$$
 — индивид (в МГУА «модель»);

$$R_t := \left\{J_t^1, \dots, J_t^{B_t}
ight\} -$$
 поколение (в МГУА $-$ «ряд»);

$$\beta=(\beta_j)_{j=1}^n$$
, $\beta_j=[f_j\in J]-$ хромосома, кодирующая J ;

Бинарная операция *скрещивания* $\beta = \beta' \times \beta''$:

$$eta_j = egin{cases} eta_j', & ext{c вероятностью } 1/2; \ eta_j'', & ext{c вероятностью } 1/2; \end{cases}$$

Унарная операция мутации $eta = \sim eta'$

$$eta_j = egin{cases} 1 - eta_j', & ext{c вероятностью } p_m; \ eta_j', & ext{c вероятностью } 1 - p_m; \end{cases}$$

где параметр p_m — вероятность мутации.

Эволюционный (генетический) алгоритм

```
Вход: множество F, критерий Q, параметры: d, p_m,
        B — размер популяции, T — число поколений;
инициализировать случайную популяцию из B наборов:
B_1 := B; R_1 := \{J_1^1, \dots, J_1^{B_1}\}; Q^* := Q(\emptyset);
для t = 1, ..., T, где t — номер поколения:
    ранжирование индивидов: Q(J_t^1) \leqslant \ldots \leqslant Q(J_t^{B_t});
   если B_t > B то селекция: R_t := \{J_t^1, \dots, J_t^B\};
   если Q(J_t^1) < Q^* то t^* := t; Q^* := Q(J_t^1);
   если t-t^*\geqslant d то вернуть J_{t^*}^1;
   породить t+1-е поколение путём скрещиваний и мутаций:
   R_{t+1} := \{ \sim (J' \times J'') \mid J', J'' \in R_t \} \cup R_t,
```

Эвристики для управления процессом эволюции

- Увеличивать вероятности перехода признаков от более успешного родителя к потомку.
- Накапливать оценки информативности признаков.
 Чем более информативен признак, тем выше вероятность его включения в набор во время мутации.
- Применение совокупности критериев качества.
- Скрещивать только лучшие индивиды (элитаризм).
- Переносить лучшие индивиды в следующее поколение.
- В случае стагнации увеличивать вероятность мутаций.
- Параллельно выращивается несколько изолированных популяций (островная модель эволюции).

Обобщение: случайный поиск с адаптацией (СПА)

```
\mathbf{B}ход: множество F, критерий Q, параметры: d,
        B — размер популяции, T — число поколений;
равные вероятности признаков: p_1 = \cdots = p_n := 1/n;
инициализировать случайную популяцию из B_1 наборов:
R_1 := \{J_1^1, \ldots, J_1^{B_1} \sim \{p_1, \ldots, p_n\}\}; \quad Q^* := Q(\varnothing);
для t = 1, ..., T, где t — номер поколения:
    ранжирование индивидов: Q(J_t^1) \leqslant \ldots \leqslant Q(J_t^{B_t});
   если B_t > B то селекция: R_t := \{J_t^1, \dots, J_t^B\};
   если Q(J_t^1) < Q^* то t^* := t; Q^* := Q(J_t^1);
    если t-t^*\geqslant d то вернуть J_{t^*}^1;
   увеличить p_i для признаков из лучших наборов;
   уменьшить p_i для признаков из худших наборов;
    породить t+1-е поколение из B_t наборов:
   R_{t+1} := \{J_{t+1}^1, \dots, J_{t+1}^{B_t} \sim \{p_1, \dots, p_n\}\} \cup R_t;
```

Резюме. Методы отбора признаков

 Для отбора признаков могут использоваться любые эвристические методы дискретной оптимизации

$$Q(J) \to \min_{J \subseteq F}$$
.

- Q(J) должен быть внешним критерием, с характерным минимумом по сложности модели
- Большинство эвристик эксплуатируют две основные идеи:
 - признаки ранжируются по их полезности;
 - -Q(J) изменяется не сильно при малом изменении J.
- МГУА, ЭА и СПА очень похожи на их основе можно изобретать новые «симбиотические» мета-эвристики.