# A\*-based Construction of Multivalued Decision Diagrams

Matthias Horn<sup>1</sup>, Johannes Maschler<sup>2</sup>, Günther R. Raidl<sup>2</sup>, Elina Rönnberg<sup>3</sup>

 $^{1} Algorithmics\ group,\ Delft\ University\ of\ Technology,\ The\ Netherlands,\ m.g.horn@tudelft.nl$ 

 $^2$  Institute of Logic and Computation, TU Wien, Austria,  $\{{\sf raidl}|{\sf maschler}\}$ @ac.tuwien.ac.at

<sup>3</sup> Department of Mathematics, Linköping University, Sweden, elina.ronnberg@liu.se

October 21, 2022



#### Overview

- Compile relaxed multivalued decision diagrams (MDDs) with a modified A\* algorithm
- Problems exhibit a sequencing and selection aspect
  - elements from a ground set must be selected in a specific order
- Tested on two NP-hard maximization problems
  - longest common subsequence (LCS) problem
  - prize-collecting variant of a scheduling problem

# Journal Article

 main work published in Computers & Operations Research 126.105125 (2021)

# A\* Search (Hart et al., 1968)

Informed search algorithm for path planning in possibly huge graphs

- uses a heuristic function h to guide the search
- maintains an open list Q of nodes sorted according to priorities

$$f(u) = g(u) + h(u)$$

Initially:  $Q = \{r\}$  (root node r) Repeat:

- pop node  $u \in Q$  with best f(u)
- if u = t (target node t) then terminate
- expand u: determine successor nodes

Exact approach if *h* is a dual bound

 $\mathsf{A}^*\text{-}\mathsf{based}$  Construction of Multivalued Decision Diagrams



# Decision Diagrams (DDs)



- represent precisely the set of feasible solutions of a combinatorial optimization problem (COP)
- longest path: corresponds to optimal solution

 $\triangle$  tend to be exponential in size  $\Rightarrow$  approximate exact DD

# Decision Diagrams (DDs)

#### Relaxed DDs



- represent superset of feasible solutions of a COP
- length of longest path: corresponds to an upper bound

- superimpose (merge) nodes of exact DD
- A discrete relaxation of solution space

# Decision Diagrams (DDs)

#### Relaxed DDs



- represent superset of feasible solutions of a COP
- length of longest path: corresponds to an upper bound

- superimpose (merge) nodes of exact DD
- A discrete relaxation of solution space

# Compilation of Decision Diagrams

#### Top-Down Construction



### Construction Principle

- compiled layer by layer, start with r
- size of each layer is controlled by  $\beta$
- rank states by heuristic function

#### Relaxed DD

• merge worst states if  $|L_i| > \beta$ 

# Compilation of Decision Diagrams

#### Top-Down Construction



Drawbacks

### Construction Principle

- compiled layer by layer, start with r
- size of each layer is controlled by  $\beta$
- rank states by heuristic function

#### Relaxed DD

• merge worst states if  $|L_i| > \beta$ 

# Compilation of Decision Diagrams

#### Top-Down Construction



#### Construction Principle

- compiled layer by layer, start with r
- size of each layer is controlled by  $\beta$
- rank states by heuristic function

#### Relaxed DD

• merge worst states if  $|L_i| > \beta$ 

#### Drawbacks



states can only be merged within the same layer



nodes on different layers may correspond to the same state



isomorphic substructures may appear

# Compilation of Relaxed MDDs

Example: Isomorphic Substructures





# Compilation of Relaxed MDDs

A\* Construction (A\*C)

- Switch from breadth-first search to best-first search!
  - layers do not play a role anymore
- Construct a DD by using a modified A\* algorithm:
  - the size of the open list |Q| is limited by parameter  $\phi$
  - if  $\phi$  would be exceeded, worst ranked nodes are merged.
- Key characteristics:
  - **A** naturally avoids multiple nodes for identical states
  - **A** avoids multiple copies of isomorphic substructures
  - **A** expansions/selections of nodes: guided by an auxiliary UB function

# Longest Common Subsequence (LCS) Problem

Given: m input strings  $S = \{s_1, s_2, \dots, s_m\}$  and alphabet  $\Sigma$ 

Task: find the longest common subsequence (LCS)

# Subsequence

Obtained by possible deleting characters from an input string.

# Common subsequence (CS)

A subsequence which is common to all input strings.

**Example:** 
$$m = 3$$
,  $\Sigma = \{A,B,C,D\}$ 

S1: A B C D A A B C C

S2: B A D C B A A B C LCS: BDABC

S3: CBABBDABC

# Applications and Related Work

- **\Phi\_6** Wide range of applications
  - computational biology: strings represent RNA or DNA segments
  - similarity measure of strings, data compression, ...
- **Q** Deeply investigated over the last decades
  - ☐ Exact approaches
    - based on dynamic programming (DP) (Gusfield, 1997)
      - solved in polynomial time  $O(n^m)$  for fixed m, otherwise NP-hard
    - based on dominant point methods and/or parallelization (..., Li et al., 2016; Peng and Wang, 2017)
  - Heuristic approaches
    - greedy heuristics, large neighborhood search, beam search, . . .
    - A\*-based algorithm (Djukanovic et al., 2020)

#### A\*-based Compilation



# Upper bound(s) $Z^{ub}$ :

• literature, e.g. DP-based

#### Each arc $\alpha \in A$ is

- associated with a character  $c(\alpha) \in \Sigma$
- path originating from r identifies a (infeasible) common subsequence

### Each node $u \in V$ is/has an

- associated with a position vector  $p(u) = (p_1(u), \dots, p_m(u))$
- represents subproblem S[p(u)]
- outgoing arc for each feasible and non-dominated character

## Merge operation for set of nodes U

• ?

#### A\*-based Compilation



# Upper bound(s) $Z^{ub}$ :

• literature, e.g. DP-based

#### Each arc $\alpha \in A$ is

- associated with a character  $c(\alpha) \in \Sigma$
- path originating from r identifies a (infeasible) common subsequence

## Each node $u \in V$ is/has an

- associated with a position vector  $p(u) = (p_1(u), \dots, p_m(u))$
- represents subproblem S[p(u)]
- outgoing arc for each feasible and non-dominated character

## Merge operation for set of nodes U

• ?

#### A\*-based Compilation



# Upper bound(s) $Z^{ub}$ :

• literature, e.g. DP-based

#### Each arc $\alpha \in A$ is

- associated with a character  $c(\alpha) \in \Sigma$
- path originating from r identifies a (infeasible) common subsequence

## Each node $u \in V$ is/has an

- associated with a position vector  $p(u) = (p_1(u), \dots, p_m(u))$
- represents subproblem S[p(u)]
- outgoing arc for each feasible and non-dominated character

# Merge operation for set of nodes U

•  $\oplus$ (U) =  $(\min_{u \in U} p_i(u))_{i=1,...,m}$ 

#### A\*-based Compilation

$$r = (1, 1, 1)$$

• 
$$f(u) = Z^{\operatorname{lp}}(u) + Z^{\operatorname{ub}}(u)$$

#### A\*-based Compilation

$$r = (1, 1, 1)$$

# Priority function

• 
$$f(u) = Z^{\operatorname{lp}}(u) + Z^{\operatorname{ub}}(u)$$

Evaluate f(r)

#### A\*-based Compilation

$$r = (1, 1, 1)$$

# Priority function

• 
$$f(u) = Z^{\operatorname{lp}}(u) + Z^{\operatorname{ub}}(u)$$

# Evaluate f(r)

• 
$$Z^{lp}(r) = 0$$

#### A\*-based Compilation

$$r = (1, 1, 1)$$

# Priority function

• 
$$f(u) = Z^{\operatorname{lp}}(u) + Z^{\operatorname{ub}}(u)$$

# Evaluate f(r)

- $Z^{lp}(r) = 0$
- $Z^{ub}(r) = ?$

How to estimate UB?

#### A\*-based Compilation

$$r = (1, 1, 1)$$

# Priority function

• 
$$f(u) = Z^{\operatorname{lp}}(u) + Z^{\operatorname{ub}}(u)$$

# Evaluate f(r)

- $Z^{lp}(r) = 0$
- $Z^{ub}(r) = ?$

### How to estimate UB?

How often does A appear?

#### A\*-based Compilation

# Priority function

• 
$$f(u) = Z^{\operatorname{lp}}(u) + Z^{\operatorname{ub}}(u)$$

# Evaluate f(r)

- $Z^{lp}(r) = 0$
- $Z^{ub}(r) = 7$

#### How to estimate UB?

How often does A appear?

|   | $s_1$ | <i>s</i> <sub>2</sub> | <b>s</b> 3 | min |
|---|-------|-----------------------|------------|-----|
| Α | 3     | 3                     | 2          | 2   |
| В | 2     | 3                     | 4          | 2   |
| C | 3     | 2                     | 2          | 2   |
| D | 1     | 1                     | 1          | 1   |
|   |       |                       | Σ          | 7   |

#### A\*-based Compilation



# Priority function

• 
$$f(u) = Z^{\operatorname{lp}}(u) + Z^{\operatorname{ub}}(u)$$

# Evaluate f(2,3,4)

• 
$$Z^{lp}(2,3,4) = 1$$

• 
$$Z^{\text{ub}}(2,3,4) = 5$$

|   | $s_1$ | <b>s</b> <sub>2</sub> | <b>s</b> 3 | min |
|---|-------|-----------------------|------------|-----|
| Α | 2     | 2                     | 1          | 1   |
| В | 2     | 2                     | 3          | 2   |
| C | 3     | 2                     | 1          | 1   |
| D | 1     | 1                     | 1          | 1   |
|   |       |                       | Σ          | 5   |

#### A\*-based Compilation



• 
$$f(u) = Z^{\operatorname{lp}}(u) + Z^{\operatorname{ub}}(u)$$



#### A\*-based Compilation



• 
$$f(u) = Z^{\operatorname{lp}}(u) + Z^{\operatorname{ub}}(u)$$



#### A\*-based Compilation

# s1: A B C D A A B C C s2: B A D C B A A B C s3: C B A B B D A B C

• 
$$f(u) = Z^{\operatorname{lp}}(u) + Z^{\operatorname{ub}}(u)$$



#### A\*-based Compilation

# s1: A B C D A A B C C s2: B A D C B A A B C s3: C B A B B D A B C

• 
$$f(u) = Z^{\operatorname{lp}}(u) + Z^{\operatorname{ub}}(u)$$



#### A\*-based Compilation

# s1: A B C D A A B C C s2: B A D C B A A B C s6: C B A B C B A B C

• 
$$f(u) = Z^{\operatorname{lp}}(u) + Z^{\operatorname{ub}}(u)$$



#### A\*-based Compilation

# $s_1$ : A B C D A A B C C $s_2$ : B A D C B A A B C

s<sub>3</sub>: CBABBDABC

# Priority function

•  $f(u) = Z^{\operatorname{lp}}(u) + Z^{\operatorname{ub}}(u)$ 



#### A\*-based Compilation

# $s_1$ : A B C D A A B C C

S<sub>2</sub>: B A D C B A A B C

 $s_3$ : C B A B B D A B C

# Priority function

•  $f(u) = Z^{\operatorname{lp}}(u) + Z^{\operatorname{ub}}(u)$ 



# Compilation of Relaxed MDDs

#### Modified A\* Search

Classical informed search algorithm for path planning

- ullet uses a heuristic function  $Z^{\mathrm{ub}}$  to guide the search
- maintains an open list Q of nodes sorted according to priorities

$$f(u)=Z^{\mathrm{lp}}(u)+Z^{\mathrm{ub}}(u)$$

Initially:  $Q = \{r\}$ 

### Repeat:

- pop node  $u \in Q$  with maximum f(u)
- if u = t then (terminate)  $Z_{\min}^{\text{ub}} \coloneqq Z^{\text{lp}}(t)$  is a feasible upper bound
- expand u: determine successor nodes
- if  $|Q| > \phi$  then reduce Q by merging nodes
- if Q empty then terminate (complete relaxed DD)

#### A\*-based Compilation

## Priority function

•  $f(u) = Z^{\operatorname{lp}}(u) + Z^{\operatorname{ub}}(u)$ 

#### Relaxed DD

- merge if  $|Q| > \phi$
- Example  $\phi$  = 5

#### Current size

• |*Q*| = 1

#### A\*-based Compilation



## Priority function

• 
$$f(u) = Z^{\operatorname{lp}}(u) + Z^{\operatorname{ub}}(u)$$

#### Relaxed DD

- merge if  $|Q| > \phi$
- Example  $\phi$  = 5

• 
$$|Q| = 4$$

#### A\*-based Compilation

# S1: A B C D A A B C C S2: B A D C B A A B C S3: C B A B B D A B C



## Priority function

• 
$$f(u) = Z^{\operatorname{lp}}(u) + Z^{\operatorname{ub}}(u)$$

#### Relaxed DD

- merge if  $|Q| > \phi$
- Example  $\phi = 5$

• 
$$|Q| = 6 > \phi = 5$$

#### A\*-based Compilation





## Priority function

• 
$$f(u) = Z^{\operatorname{lp}}(u) + Z^{\operatorname{ub}}(u)$$

#### Relaxed DD

- merge if  $|Q| > \phi$
- Example  $\phi$  = 5

• 
$$|Q| = 6 > \phi = 5$$

#### A\*-based Compilation

# S1: A B C D A A B C C S2: B A D C B A A B C S3: C B A B B D A B C



## Priority function

• 
$$f(u) = Z^{\operatorname{lp}}(u) + Z^{\operatorname{ub}}(u)$$

#### Relaxed DD

- merge if  $|Q| > \phi$
- Example  $\phi = 5$

#### A\*-based Compilation

# s1: A B C D A B C C s2: B A D C B A B C s3: C B A B B D A B C



## Priority function

• 
$$f(u) = Z^{\operatorname{lp}}(u) + Z^{\operatorname{ub}}(u)$$

#### Relaxed DD

- merge if  $|Q| > \phi$
- Example  $\phi = 5$

• 
$$|Q| = 6$$

#### A\*-based Compilation





## Priority function

• 
$$f(u) = Z^{\operatorname{lp}}(u) + Z^{\operatorname{ub}}(u)$$

#### Relaxed DD

- merge if  $|Q| > \phi$
- Example  $\phi$  = 5

#### A\*-based Compilation





## Priority function

• 
$$f(u) = Z^{\operatorname{lp}}(u) + Z^{\operatorname{ub}}(u)$$

#### Relaxed DD

- merge if  $|Q| > \phi$
- Example  $\phi$  = 5

#### A\*-based Compilation

51: A B C D A A B C C
52: B A D C B A A B C
53: C B A B B D A B C



## Priority function

•  $f(u) = Z^{\operatorname{lp}}(u) + Z^{\operatorname{ub}}(u)$ 

#### Relaxed DD

- merge if  $|Q| > \phi$
- Example  $\phi$  = 5

#### Current size

• |*Q*| = 4

#### A\*-based Compilation

 \$1:
 A B C D A A B C C

 \$2:
 B A D C B A A B C C

 \$3:
 C B A B B D A B C



## Priority function

•  $f(u) = Z^{\operatorname{lp}}(u) + Z^{\operatorname{ub}}(u)$ 

#### Relaxed DD

- merge if  $|Q| > \phi$
- Example  $\phi = 5$

#### Current size

• |*Q*| = 3

### Results

#### Impact of Parameters $\phi$ and $\beta$



- Benchmark set: BB, m = 100, n = 1000,  $|\Sigma| = 8$ , ten instances
- Parameter  $\phi$  (A\*C): open list size is limited by  $\phi$
- Parameter  $\beta$  (TDC): layer size is limited by  $\beta$

#### Results

#### Impact of Parameters $\phi$ and $\beta$



- Benchmark set: BB, m = 100, n = 1000,  $|\Sigma| = 8$ , ten instances
- Parameter  $\phi$  (A\*C): open list size is limited by  $\phi$
- Parameter  $\beta$  (TDC): layer size is limited by  $\beta$

## Results

#### State-of-the-art Comparison

- Current state-of-the-art results: Djukanovic, Raidl, Blum (2020)
  - Title: Finding longest common subsequences: New anytime A\* search results
  - Journal: Applied Soft Computing

- Upper bounds obtained from relaxed DDs compiled with A\*C are
  - stronger in 25.1% of the cases and
  - stronger or equally strong in 31.3% of the cases

#### Conclusions

- A\* based construction (A\*C) algorithm for relaxed MDDs
  - restrict the number of nodes in the open list
  - requires no concept of layers
- Considered two NP-hard optimization problems
  - prize collecting scheduling problem
  - longest common subsequence problem
- Experimental Results showed that
  - A\*C provides more compact relaxed MDDs that
  - are significantly stronger
  - in shorter time than relaxed MDDs obtained from TDC