CONTENTS

	Page	
SUMMARY	. 1	1/A4
INTRODUCTION	. 1	1/A4
AERODYNAMIC DESIGN	. 2	1/A5
APPARATUS AND PROCEDURE	. 2	1/A5
Compressor Test Facility	. 2	1/A5
Instrumentation	. 2	1/A5
Test Procedure	. 3	1/A6
Calculation Procedure		1/A7
RESULTS AND DISCUSSION	. 5	1/A8
Overall Performance	. 5	1/A8
Radial Distributions	. 5	1/A8
Variations with Incidence Angle		1/A9
SUMMARY OF RESULTS	. 8	1/A11
APPENDIXES		
A - SYMBOLS	. 9	1/A12
B - EQUATIONS	. 11	
C - DEFINITIONS AND UNITS USED IN TABLES		1/A14 1/B6
REFERENCES	. 19	1/B8
TABLES	. 20	1/B9
		1/E13

Stam 830-H-15 NAS 1.60:1338

NASA Technical Paper 1338

NAS 1.60

COMPLETED ORIGINAL

Performance of Single-Stage
Axial-Flow Transonic Compressor
With Rotor and Stator Aspect Ratios
of 1.19 and 1.26, Respectively, and
With Design Pressure Ratio of 1.82

Lonnie Reid and Royce D. Moore

NOVEMBER 1978

Fem 830-H-15 NAS1.60: 1338

NASA Technical Paper 1338

Performance of Single-Stage Axial-Flow Transonic Compressor With Rotor and Stator Aspect Ratios of 1.19 and 1.26, Respectively, and With Design Pressure Ratio of 1.82

Lonnie Reid and Royce D. Moore Lewis Research Center Cleveland, Obio

Scientific and Technical Information Office

1978

SUMMARY

The overall and blade-element performance of an axial-flow, transonic-compressor-inlet stage is presented herein. The stage is one of a series of single stages that were designed and tested to investigate the performance characteristics of low-aspect-ratio blading for inlet stages of an advanced-core compressor. This stage was designed for a pressure ratio of 1.82 at a rotor tip speed of 455 meters per second. The rotor aspect ratio is 1.19, and the stator aspect ratio is 1.26. The stage was tested over the stable operating flow range at 70, 90, and 100 percent of design speeds. At the design speed the rotor and stage achieved peak efficiencies of 0.872 and 0.845 at pressure ratios of 1.875 and 1.842, respectively. The stage peak efficiency occurred at a mass flow that was about 3 percent higher than the design mass flow. The stage achieved a stall margin of 21.8 percent at design speed.

INTRODUCTION

The research program on axial-flow fans and compressors for advanced airbreathing engines at Lewis includes the study of advanced core compressor designs having high pressure ratio (about 20:1) good efficiency, and sufficient stall margin in as few stages as possible. A preliminary study of the aerodynamic and mechanical designs for an eight-stage core compressor having a pressure ratio of 20:1 (ref. 1) resulted in a compressor design of constant meanline diameter with an inlet hub-tip ratio of 0.7, and an inlet rotor-tip speed of 455 meters per second. Both the speed and the loading per stage is considerably higher than in current state-of-the-art core compressors. An experimental research program was therefore established to evaluate the performance characteristics and establish a data base for single stages that are representative of the inlet, middle, and rear stages of the eight-stage 20:1 pressure ratio compressor.

Four single stages that are representative of the inlet stage for the eight-stage compressor were designed and tested. The design and overall performance comparison for all four stages are presented in reference 2. These four stages represents two levels of pressure ratio (1.82 and 2.05) and two levels of rotor aspect ratio (1.19 and 1.63). The stages are designated as stages 35, 36, 37, and 38. Stages 35 and 37 have a rotor aspect ratio of 1.19 and design pressure ratios of 1.82 and 2.05, respectively; stages 36 and 38 have a rotor aspect ratio of 1.63 and design pressure ratios of 1.82 and 2.05, respectively.

This report presents the radial distribution of performance parameters and detailed blade-element data for the first stage in this series (stage 35). The overall performance of the stage is also included. Data are presented over the stable operating flow range for rotative speeds from 50 to 100 percent of design speed. Data are presented in

tabular form as well as in plots. The symbols and equations are defined in appendixes A and B.

AERODYNAMIC DESIGN

The detailed aerodynamic design is presented in reference 2, and therefore only a brief summary of the aerodynamic design parameters is presented herein.

The flow path geometry, including instrumentation stations, is shown in figure 1. The design overall performance parameters are shown in table I. The stage was designed for a total-pressure ratio of 1.82, a mass flow of 20.2 kg/sec, and a rotor tip speed of 455 meters per second. The design blade-element parameters are presented in table II. The rotor-inlet relative Mach number varies from 1.49 at the tip to 1.12 at the hub; the stator-inlet Mach number varies from 0.725 at the tip to 0.765 at the hub. The rotor diffusion factor at the hub and tip is roughly 0.46, with a maximum value of 0.48 near the midspan; the stator hub diffusion factor is 0.34.

The blade geometry is presented in table III for the rotor and stator.

Both rotor and stator have multiple circular arc (MCA) blade shapes. The rotor has 36 blades, the tip solidity is 1.3, and the aspect ratio is 1.19. The stator has 46 blades, the tip solidity is 1.3, and the aspect ratio is 1.26. A photograph of the rotor and stator is shown in figure 2. Manufacturing coordinates for both rotor and stator are presented in reference 2.

APPARATUS AND PROCEDURE

Compressor Test Facility

The compressor stage was tested in the Lewis single-stage compressor test facility (fig. 3), which is described in detail in reference 3. Atmospheric air enters the facility at an inlet located on the roof of the building and flows through the flow measuring orifice and into the plenum upstream of the test stage. The air passes through the experimental compressor stage into the collector and the vacuum exhaust system.

Instrumentation

The mass flow was determined from measurements on a calibrated thin-plate orifice. The orifice temperature was obtained from an average of two Chromel-constantan thermocouples. Orifice pressures were measured by calibrated transducers. An elec-

tronic speed counter, in conjunction with a magnetic pickup, was used to measure rotative speed.

Radial surveys of flow conditions at station 1 (upstream of rotor) were made using two combination probes (fig. 4(a)) and two 18° wedge probes (fig. 4(b)). The combination probe measures total temperature, total pressure, and flow angle. The wedge probe measures static pressure and flow angle. Each probe was equipped with a null-balancing control system which automatically alined the probe with the flow direction. Chromel-constantan thermocouples were used to measure temperature.

Because of the close spacing between the rotor and stator, no measurements were made between them. At station 3 (downstream of stator) two combination probes and two wedge probes were traversed both circumferentially and radially to obtain the distributions of pressure, temperature, and flow angle.

Static-pressure taps were installed on both inner and outer wall casings at stations 1 and 3. The circumferential location of the instrumentation at stations 1 and 3 are shown in figure 5. The estimated errors in the data, based on inherent accuracies of the instrumentation and the recording system, are as follows:

Mass flow, kg/sec	ļ
Rotative speed, rpm	1
Flow angle, deg	1
Temperature, K	
Rotor-inlet (station 1) total pressure, N/2m ²	
Rotor-inlet (station 1) static pressure, N/cm ²	
Stator-outlet (station 3) total pressure, N/cm ²	
Stator-outlet (station 3) static pressure, N/cm ²	1

Test Procedure

The stage survey data were taken over a range of flows and speeds. For the 70, 90, and 100 percent of dealen speeds, data were recorded at five or more flows from maximum to near-stall conditions. For the 50, 60, and 80 percent of design speeds, data were recorded at the near-stall flow only. Data were taken at nine radial positions for each flow point.

At each radial position the two combination probes behind the stator were traversed circumferentially to nine locations across the stator gap. The wedge static probes were set at midgap because preliminary studies showed that the static pressure across the gap was essentially constant. Values of total pressure, temperature, and flow angle were recorded at each circumferential position at station 3. At the last circumferential position, values of pressure, temperature, and flow angle were also recorded at sta-

tion 1. All probes were then traversed to the next radial position, and the circumferential traverse procedure was repeated.

Calculation Procedure

Measured total pressures, static pressures, and total temperatures were corrected for Mach number and streamline slope. These corrections were based on an average calibration for the type of instrument used. Orifice mass flow, rotative speed, total pressures, static pressures, and temperatures were all corrected to standard-day conditions based on the rotor-inlet condition.

The circumferential distribution of static pressure downstream of the stator was assumed to be constant for each radial position and equal to the midgap values. At each radial position averaged values of nine circumferential measurements of total pressure, total temperature, and flow angle downstream of the stator (station 3) were obtained in the following manner: The midgap static pressure was used with the local total pressure, total temperature, and flow angle to calculate the circumferential distributions of velocity, static density, and axial and tangential velocity components. These distributions are used in the circumferential mass averaging process. The nine values of total temperature were mass averaged to obtain the circumferentially averaged stator-outlet total temperature. The nine values of total pressure were divided by the rotor-inlet total pressure and converted to corresponding isentropic temperature ratios. These ratios were mass averaged, and the resulting value converted (through the isentropictemperature-ratio - pressure-ratio relation) to an average total pressure ratio. The average absolute velocity was obtained from the midgap static pressure, average total pressure, and total temperature. The average tangential velocity component was calculated by mass averaging the local tangential velocity. The average absolute velocity and average tangential velocity component were used to calculate the average axial component. This calculation was performed for each of the two sets of probes at station 3. and the results from each set of probes were averaged to obtain single, averaged values of total pressure, total temperature, static pressure, and flow angle at each radial position. To obtain the overall performance, the radial distributions of the circumferentially averaged total temperature and total pressure were averaged using a procedure similar to that used for averaging the circumferential distributions of these parameters. The values of pressure, temperature, and flow angle at station 2 were obtained as follows: At each radial position total pressure and total temperature were translated along design streamlines from station 3. The mass-averaged total temperature was used as the total temperature for station 2. The arithmetic mean of the three highest total-pressure values from the circumferential distribution at station 3 was used as the total pressure at station 2. The radial distributions of static pressure and flow angle

were calculated based on continuity of mass flow and radial equilibrium. Measured mass flow, rotative speed, design values of streamline geometry, and annulus wall blockages were specified.

RESULTS AND DISCUSSION

The results of this investigation are presented in three parts: overall performance of both rotor and stage, radial distribution of several performance parameters, and blade-element data for both rotor and stator. The overall performance data are presented in table IV. For each overall-performance data point, blade-element data are presented for the rotor and stator in tables V and VI, respectively. The abbreviations and units used for the tabular data are defined in appendix C.

Overall Performance

The overall performances for the rotor and stage are presented in figures 6 and 7, respectively. At design speed the rotor and stage achieved peak efficiencies of 0.872 and 0.845, respectively, at a mass flow of 20.82 kilograms per second. The rotor and stage pressure ratios at peak efficiency conditions were 1.875 and 1.842, respectively. The design rotor and stage pressure ratios were 1.865 and 1.82, respectively. The mass flow at which peak efficiency occurred is about 3 percent higher than the design flow. At the design flow rate rotor and stage pressure ratios exceeded the design value, and the efficiencies were slightly lower than design; however, the peak efficiencies for both rotor and stage are higher than the design values. The maximum value of rotor efficiency of 0.905 occurred at 70 percent of design speed. At all three speed lines (70, 90, and 100 percent of design speeds), the peak efficiency occurred near the maximum mass flow. The stage stall margin, based on conditions at stall and peak efficiency, is very good. At design speed the stall margin is 21.8 percent.

Radial Distributions

Radial distributions of several parameters are presented in figures 8 and 9 for rotor and stator, respectively, for design speed at three flow conditions, maximum near design, and near stall. These distributions show how the blade rows operated at various spanwise locations for a given flow and the change in these parameters over the flow range. The design distributions are represented by the solid symbols.

<u>Rotor</u>. - For the near-design flow conditions (20.1 kg/sec), the total-pressure ratio is higher than the design values at all spanwise locations (fig. 8). The efficiency

distribution is very close to the design distribution. The energy addition is larger than design as shown by the temperature-ratio distribution. This increase in energy is mainly due to the lower-than-design deviation angles across the entire span. Both diffusion factor and total-loss coefficient have larger-than-design values over the entire span. The spanwise variations of total-pressure ratio, total-temperature ratio, and diffusion factor are similar to the design variations for these parameters. The suction-surface incidence angle is a little lower than design values in the hub region and about 30 higher than design at the 5 percent span location.

At the near-stall flow conditions the total-pressure ratio increased slightly but the distribution is relatively unchanged compared with the distribution for the near-design flow data. Both the total-temperature ratio and the diffusion factor show a larger difference in the tip than the hub region when compared with the near-design flow distributions. The efficiency in the hub region shows little variation from the near-design condition but drops quite rapidly in the tip region.

At the maximum flow condition both total-pressure ratio and total-temperature ratio are low compared with the near-design-flow distributions. However, there is very little change in the efficiency distribution.

Stator. - For the near-design-flow conditions (20.1 kg/sec) the suction-surface incidence angle and the diffusion factor are higher than the design values over the entire blade span (fig. 9). This is caused mainly by the greater-than-design energy addition through the rotor at this flow, thus the absolute tangential velocity and flow angle out of the rotor are larger than the design values. Even though the diffusion factor is larger than design, the losses are close to the design values over most of the span. The deviation angles are larger than the design values over the entire span. This can be attributed to the higher-than-design rotor-exit tangential velocity and flow angles.

At the near-stall flow condition diffusion factor and the losses were greater over the entire span than they were at the near-design flow condition. At the maximum flow condition both diffusion factor and losses are lower than the values at near-design over the entire span.

Variations with Incidence Angle

The variations of selected blade-element parameters with suction-surface incidence angle are presented in figures 10 and 11 for rotor and stator. The data are presented for the 70, 90, and 100 percent of design speeds for blade elements located at 5, 10, 15, 30, 50, 70, 85, 90, and 95 percent of span from blade tip. Design values are represented by solid symbols, and experimental values by open symbols. Some of the data points are missing from the 70-percent-of-design-speed plots primarily because they fall outside of the selected incidence-angle range. This incidence-angle range was

selected to provide good resolution of the blade-element parameter curves at 90 and 100 percent of design speed. These data points do appear, however, in the appropriate tables in this report.

Rotor. - Meridional velocity ratio, inlet relative Mach number, deviation angle, total-loss parameter, total-loss coefficient, diffusion factor, adiabatic efficiency, total-temperature ratio, and total-pressure ratio are plotted as functions of suction-surface incidence angle in figure 10. At design speed all the rotor-blade elements operated over a relatively wide range of incidence angles considering the fact that the inlet relative Mach numbers are supersonic over the entire blade span. Even at the 5-percent-of-span location, where the inlet relative Mach number varies from 1.41 to 1.49, this element operated over an incidence-angle range of nearly 5°. At high incidence angles (near stall) all of the blade elements operated at or above a total-pressure ratio of 2.0 and at approximately 0.6 diffusion factor. For low incidence angles (maximum flow), each blade element shows a sharp drop in total-pressure ratio and total-temperature ratio at a near constant incidence angle, indicating that all elements are operating at their maximum flow capacity. All of the elements are properly matched over the entire span. This could explain why the blade achieved the large stall margin of 21.8 percent.

At design incidence angle the total-loss coefficient is somewhat larger than the design values for all elements except for the 5-percent-of-span location. However, at the design incidence angle the diffusion factor is also larger than the design values at each element. The design and experimental losses for the same value of diffusion factor are quite comparable.

Stator. - Meridional velocity ratio, inlet Mach number, deviation angle, total-loss coefficient, total-loss parameter, and diffusion factor are plotted as functions of suction surface-incidence angle in figure 11. At design speed the stator operated over a range of incidence angle of about 24° at the 5-percent-of-span element, and this range decreases to about 10° at the 95-percent-of-span element. The stator-inlet Mach number varies from about 0.71 at the 5-percent-of-span element to 0.80 at the 95-percent-of-span element. For all three speeds (70, 90, and 100 percent of design) both the loss coefficient and the diffusion factor increase with increase incidence angle, and both parameters seem to be independent of inlet Mach number over the range of Mach numbers for which this stator operated. At design incidence angle the diffusion factor is slightly larger than the design values for all elements except at 95 percent of span. However, the experimental loss coefficient is lower than the design values at all elements except the 5 and 10 percent of span elements.

SUMMARY OF RESULTS

This report has presented the overall and blade-element performance of a single-stage axial-flow transonic compressor that is representative of an inlet stage for an advanced-core compressor. This is one of a series of stages designed to investigate the effects of aspect ratio and pressure ratio on the performance characteristics of an inlet stage of an advanced-core compressor. The stage consisted of a rotor and stator with aspect ratios of 1.19 and 1.26, respectively, and a design pressure ratio of 1.82. Detailed radial surveys of the flow conditions ahead of the rotor and behind the stator, were made over the stable operating range at 70, 90, and 100 percent of design speed. This investigation yielded the following results:

- 1. At design speed the peak rotor and stage efficiencies were 0.872 and 0.845 and occurred at rotor and stage pressure ratios of 1.875 and 1.842, respectively. Stage peak efficiency occurred at a mass flow of about 3 percent higher than the design value.
- 2. Stall margin at design speed for this stage was 21.8 percent, based on mass flows and total-pressure ratios at peak efficiency and stall.
- 3. At the design-speed peak-efficiency condition, the spanwise distribution of rotor total-pressure ratio is similar to the design distribution, but the level is somewhat higher. All rotor-blade elements operated near a 0.6 diffusion factor at near-stall conditions and maximum flow as choking conditions were approached, indicating that the elements are properly matched over the entire blade span.
- 4. At the design incidence angle, the stator diffusion factor is slightly larger than design over most of the span. The experimental loss coefficient is, however, lower than the design values for all elements except at the tip.

Lewis Research Center,

National Aeronautics and Space Administration, Cleveland, Ohio, July 7, 1978, 505-04.

APPENDIX A

SYMBOLS

annulus area at rotor leading edge, 0.101 m² Aan frontal area at rotor leading edge, 0.200 m² A_f specific heat at constant pressure, 1004 (J/kg) K Cp aerodynamic chord, cm C D diffusion factor acceleration of gravity, 9.81 m/sec² mean incidence angle, angle between inlet air direction and line tangent to blade imc mean camber line at leading edge, deg suction-surface incidence angle, angle between inlet air direction and line tangent iss to blade suction surface at leading edge, deg N rotative speed, rpm total pressure, N/cm² P static pressure, N/cm² p radius, cm r SM stall margin T total temperature, K Ū wheel speed, m/sec air velocity, m/sec W weight flow, kg/sec Z axial distance referenced from rotor-blade-hub leading edge, cm cone angle, deg ac

air angle, angle between air velocity and axial direction, deg

relative meridional air angle based on cone angle, $\arctan (\tan \beta_m' \cos \alpha_c/\cos \alpha_s)$,

ratio of specific heats (1.40)

deg

slope of streamline, deg

a_e

B

 $\beta_{\mathbf{c}}'$

- 5 ratio of rotor-inlet total pressure to standard pressure of 10.13 N/cm²
- δ^0 deviation angle, angle between exit air direction and targent to blade mean camber line at trailing edge, deg
- η efficiency
- θ ratio of rotor-inlet total temperature to standard temperature of 288.2 K
- $\kappa_{
 m mc}$ angle between blade mean camber line and meridional plane, deg
- $\kappa_{\rm SS}$ angle between blade suction-surface camber line at leading edge and meridional plane, deg
- σ solidity, ratio of chord to spacing
- $\overline{\omega}$ total-loss coefficient
- $\bar{\omega}_{\mathrm{p}}$ profile-loss coefficient
- $\omega_{_{\mathbf{S}}}$ shock-loss coefficient

Subscripts:

- ad adiabatic (temperature rise)
- id ideal
- LE blade leading edge
- m meridional direction
- mom momentum rise
- p polytropic
- TE blade trailing edge
- t tip
- z axial direction
- θ tangential direction
- 1 instrumentation plane upstream of rotor
- 2 instrumentation plane between rotor and stator
- 3 instrumentation plane downstream of stator

Superscript:

' relative to blade

APPENDIX B

EQUATIONS

Equations for Calculating Blade-Element Parameters

Suction-surface incidence angle:

$$i_{ss} = (\beta_c^i)_{L^{(i)}} - \kappa_{ss}$$
 (B1)

Mean incidence angle:

$$i_{mc} = (\beta'_c)_{L,E} - (\kappa_{mc})_{LE}$$
 (B2)

Deviation angle:

$$\delta^{O} = (\beta_{c}^{'})_{TE} - (\kappa_{mc})_{TE}$$
 (B3)

Diffusion factor:

$$D = 1 - \frac{\mathbf{V_{TE}'}}{\mathbf{V_{LE}'}} + \left| \frac{(\mathbf{rV_{\theta}})_{TE} - (\mathbf{rV_{\theta}})_{LE}}{(\mathbf{r_{TE} + r_{LE}})\sigma(\mathbf{V_{LE}'})} \right|$$
(B4)

Total loss coefficient:

$$\overline{\omega} = \frac{(\mathbf{P'_{id}})_{TE} - \mathbf{P'_{TE}}}{\mathbf{P'_{LE}} - \mathbf{P_{LE}}}$$
(B5)

Profile loss coefficient:

$$\overline{\omega}_{\mathbf{p}} = \overline{\omega} - \overline{\omega}_{\mathbf{S}}$$
 (B6)

Total loss parameter:

$$\frac{\overline{\omega}\cos(\beta_{\mathbf{m}}')_{\mathbf{TE}}}{2\sigma} \tag{B7}$$

Profile loss parameter:

$$\frac{\overline{\omega}_{\mathbf{p}} \cos (\beta'_{\mathbf{m}})_{\mathbf{TE}}}{2\sigma}$$
 (B8)

Adiabatic (temperature rise) efficiency:

$$\eta_{\text{ad}} = \frac{\left(\frac{\mathbf{P}_{\text{TE}}}{\mathbf{P}_{\text{LE}}}\right)^{(\gamma-1)/\gamma} - 1}{\frac{\mathbf{T}_{\text{TE}}}{\mathbf{T}_{\text{LE}}} - 1}$$
(B9)

Equations fc Calculating Overall Performance Parameters

Rotor total pressure ratio:

$$\overline{(P_{2}/P_{1})} = \frac{\int_{r_{h}}^{r_{t}} (P_{2}/P_{1})^{(\gamma-1)/\gamma} \rho v_{z} r dr}{\int_{r_{h}}^{r_{t}} \rho v_{z} r dr}$$

$$= \frac{\sum_{i=1}^{NR} (P_{2}/P_{1})_{i}^{(\gamma-1)/\gamma} \rho_{2, i} V_{22, i} \Delta A_{2, i}}{\sum_{i=1}^{NR} \rho_{2, i} V_{22, i} \Delta A_{2, i}}$$
(B10)

Stage total pressure ratio:

$$\overline{(P_{3}/P_{1})} = \frac{\int_{r_{h}}^{r_{t}} (P_{3}/P_{1})^{(\gamma-1)/\gamma} \rho_{v_{z}} r dr}{\int_{r_{h}}^{r_{t}} \rho_{v_{z}} r dr}$$

$$= \frac{\sum_{i=1}^{NR} (P_{3}/P_{1})_{i}^{(\gamma-1)/\gamma} \rho_{3, i} V_{z3, i} \Delta A_{3, i}}{\sum_{i=1}^{NR} \rho_{3, i} V_{z3, i} \Delta A_{3, i}}$$
(B11)

Total temperature ratio:

$$\frac{\overline{\left(T_{2}/T_{1}\right)}}{\int_{r_{h}}^{r_{t}} (T_{2}/T_{1}) \rho v_{z} r dr} = \frac{\sum_{i=1}^{NR} \left(T_{2}/T_{1}\right)_{i} \rho_{2, i} V_{z2, i} \Delta A_{2, i}}{\sum_{r_{h}}^{r_{t}} \rho v_{z} r dr} = \frac{\sum_{i=1}^{NR} \left(T_{2}/T_{1}\right)_{i} \rho_{2, i} V_{z2, i} \Delta A_{2, i}}{\sum_{i=1}^{NR} \rho_{2, i} V_{z2, i} \Delta A_{2, i}}$$
(B12)

Rotor adiabatic efficiency:

$$\eta_{\text{ad}} = \frac{\overline{(P_2/P_1)}^{(\gamma-1)/\gamma} - 1}{\overline{(T_2/T_1)} - 1}$$
(B13)

Stage adiabatic efficiency:

$$\eta_{\text{ad}} = \frac{\overline{(P_3/P_1)}^{(\gamma-1)/\gamma} - 1}{\overline{(T_2/T_1)} - 1}$$
(B14)

Rotor-inlet mass-average temperature:

$$\overline{T}_{1} = \frac{\int_{r_{h}}^{r_{t}} T_{1} \rho v_{z} r dr}{\int_{r_{h}}^{r_{t}} \rho v_{z} r dr} = \frac{\sum_{i=1}^{NR} T_{1, i} \rho_{1, i} V_{z1, i} \Delta A_{1, i}}{\sum_{i=1}^{NR} \rho_{1, i} V_{z1, i} \Delta A_{1, i}}$$
(B15)

Momentum-rise efficiency:

$$\eta_{\text{mom}} = \frac{\overline{\left(\overline{P_{2}/P_{1}}\right)^{(\gamma-1)/\gamma} - 1}}{\frac{\int_{\mathbf{r}_{h}}^{\mathbf{r}_{t}} \left[\left(UV_{\theta}\right)_{2} - \left(UV_{\theta}\right)_{1}\right] \rho v_{z} \, r \, dr}{\overline{T_{1} \, C_{p}}} = \frac{\overline{\left(\overline{P_{2}/P_{1}}\right)^{(\gamma-1)/\gamma} - 1}}{\frac{NR}{\overline{T_{1} \, C_{p}}} \left[\left(UV_{\theta}\right)_{2} - \left(UV_{\theta}\right)_{1}\right]_{i}^{\rho_{2, i}} \, V_{z2, i} \, \Delta A_{2, i}}{\overline{T_{1} \, C_{p}}}$$
(B16)

Head rise coefficient:

$$\frac{C_{\mathbf{p}}\overline{T}_{1}}{U_{t}^{2}}\left[\overline{(P_{2}/P_{1})}^{(\gamma-1)/\gamma}-1\right]$$
(B17)

Equivalent mass flow:

$$\frac{W\sqrt{\theta}}{\delta}$$
 (B18)

Equivalent rotative speed:

$$\frac{N}{\sqrt{\theta}}$$
 (B19)

Mass flow per unit annulus area:

$$\frac{\mathbf{w}\,\sqrt{\theta}}{\frac{\delta}{\mathbf{A_{an}}}}\tag{B20}$$

Mass flow per unit frontal area:

$$\frac{\mathbf{w}\,\sqrt{\theta}}{\frac{\delta}{\mathbf{A_f}}}\tag{B21}$$

Flow coefficient:

$$\left(\frac{\mathbf{v_z}}{\mathbf{u_t}}\right)_{\mathbf{LE}}$$
 (B22)

Stall margin:

$$SM = \left[\frac{\left(\overline{P_3/P_1} \right)_{stall} \left(\frac{w \sqrt{\theta}}{\delta} \right)_{ref}}{\left(\overline{P_3/P_1} \right)_{ref} \left(\frac{w \sqrt{\theta}}{\delta} \right)_{stall}} - 1 \right] \times 100$$
(B23)

Rotor polytropic efficiency:

$$\eta_{\mathbf{p}} = \frac{\ln(\overline{\mathbf{P}_{2}/\mathbf{P}_{1}})^{(\gamma-1)/\gamma}}{\ln(\overline{\mathbf{T}_{2}/\mathbf{T}_{1}})}$$
(B24)

Stage polytropic efficiency:

$$\eta_{\mathbf{p}} = \frac{\ln(\overline{P_3/P_1})^{(\gamma-1)/\gamma}}{\ln(\overline{T_2/T_1})}$$
(B25)

APPENDIX C

DEFINITIONS AND UNITS USED IN TABLES

ABS absolute

AERO CHORD aerodynamic chord, cm

AREA RATIO minimum value of ratio of flow area to critical area minus unity

BETAM meridional air angle, deg

CHOKE MARGIN ratio of actual flow area minus critical area to critical area

(where local Mach number is 1)

CONE ANGLE angle between axial direction and conical surface representing

blade element, deg

DELTA INC difference between mean camber blade angle and suction surface

blade angle at leading edge, deg

DEV deviation angle (defined by eq. (B3)), deg

D-FACT diffusion factor (defined by eq. (B4))

EFF adiabatic efficiency (defined by eq. (B9))

IN inlet (leading edge of blade)

INCIDENCE incidence angle (suction surface defined by eq. (B1) and mean

surface by eq. (B2))

KIC angle between blade mean camber line at leading edge and

meridional plane, deg

KOC angle between blade mean camber line at trailing edge and

meridional plane, deg

KTC angle between blade mean camber line at transition point and

meridional plane, deg

LOSS COEFF loss coefficient (total defined by eq. (B5) and profile by eq. (B6))

LOSS PARAM loss parameter (total defined by eq. (B7) and profile by eq. (B8))

MERID meridional

MERID VEL R meridional velocity ratio

OUT outlet (trailing edge of blade)

PERCENT SPAN percent of blade span from tip at rotor outlet

PHISS suction-surface camber ahead of assumed shock location, deg

PRESS pressure, N/cm²

PROF profile

RADII radius, cm

REL relative to blade

RI inlet radius (leading edge of blade), cm

RO outlet radius (trailing edge of blade), cm

RP radial position

RPM equivalent rotative speed, rpm

SETTING ANGLE angle between aerodynamic chord and meridional plane, deg

SOLIDITY ratio of aerodynamic chord to blade spacing

SPEED speed, m/sec

SS suction surface

STREAMLINE slope of streamline, deg

SLOPE

TANG tangential

TEMP temperature, K

TI thickness of blade at leading edge, cm

TM thickness of blade at maximum thickness, cm

TO thickness of blade at trailing edge, cm

TOT total

TOTAL CAMBER difference between inlet and outlet blade mean camber lines, deg

TURN RATE ratio of change in blade angle per unit path distance for front blade

segment to the change in blade angle per unit path distance for aft

blade segment

VEL velocity, m/sec

WT FLOW equivalent weight flow, kg/sec

ZI axial distance from inlet hub to blade leading edge, cm

ZMC axial distance from inlet hub to blade maximum thickness point, cm

REFERENCES

- Hauser, Cavour H.; et al.: Compressor and Turbine Technology. Aeronautical Propulsion, NASA SP-381, 1975, pp. 229-288.
- Reid, Lonnie; Moore, Royce C.: Design and Overall Performance of Four Highly Leaded, High Speed Inlet Stages for an Advanced High Pressure Ratio Core Compressor, NASA TP-1337, 1978.
- Urasek, Donald C.; and Janetzke, David C.: Performance of Tandem-Bladed Transonic Compressor Rotor with Rotor Tip Speed of 1375 Feet Per Second. NASA TM X-2484, 1972.

TABLE I. - DESIGN OVERALL PARAMETERS

FOR STAGE 35-35

ROTOR	TOT	TAL	PR	FSS	SUR		PAT	11	n										1		165	ŝ
STACE			PR																-	•	Ħ	=
ROTOR																					2	
STAGE																					2	
ROTOR	ADI	IAB	ATI	CE	FF	IC	Ш	ıc	T											. 8	16:	j
STAGE	ADI	AB	ATI	CE	FF	IC	E	١Ċ	Y											. 8	121	ì
ROTOR																						
STAGE																						
ROTOR																						
STAGE																						
EI OH	COE	ě.	Pić	٠.,				•		•	•		•	•	•	•		•		• 7	Ħ	i
FLON	CHE	щ	CIE			- :-	.:.		.2			•								٠,	4	Į
AIRFL	DM P	EK	UM	11	FR	ш	Δ		AR	EA								10	U	.8	JOE	J
AIRFL	JH F	PER	UN	IT	AN	HUL	US	,	AR	EA								19	9	. 9	85	,
AIRFL																						
RPM .																						
TIP S																						
WILD T			****			٠.	•	•	•	•	•	•	•	•	6	•		70	-	• •	3	í
HUB-T	11	MU	Īnā		щ	٠.														. •	//	Į
ROTOR																						
STATO	R AS	SPE	CT	RAT	10														- 1	١.	26	Š
NUMBE	R OF		nTn		N A	DE				-			-	_	-	-	-	-	•	14	7	í
MILMOC			7 A 7	in.	01			•	•	•		•	•	•	•	•	•	•	- 1	"		′
NUMBE	w ni		IAI	UK	DL	NU														40		J

TABLE II. - DESIGN BLADE-ELEMENT PARAMETERS

(a) For rotor 35

RP TIP 1 2 3 4 5 6 7 8 9 HUB	24.916 2 24.571 2 24.224 2 23.163 2 21.726 2 20.221 2	OUT 4.511 4.221 3.931 3.642 2.772 1.613 0.454 9.294 9.005	ABS IN .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	BETAM OUT 42.7 42.4 42.1 42.1 42.1 42.3 42.6 42.5 42.3	REL 1N 67.4 66.6 65.9 65.1 63.2 61.3 60.0 59.5 59.5 59.8	DETAM OUT 57.6 57.6 56.0 56.8 55.8 54.0 50.8 46.7 42.6 41.0 37.3	TOTA 18.2 268.2 288.2 288.2 288.2 288.2 288.2 288.2 288.2 288.2	RATIO 1.248 1.244 1.241 1.238 1.230 1.223 1.216 1.214 1.214 1.213 1.212	TOTAL IN 10.14 10.14 10.14 10.14 10.14 10.14 10.14 10.14	PRESS RAT10 1.865 1.865 1.865 1.865 1.865 1.865 1.865 1.865
RP TIP 1 2 3 4 5 6 7 8 9 HUB	193.7 198.2 202.0 210.3 214.4 210.4 201.8 127.4 191.6	VEL 0UT 240.4 240.7 241.1 241.5 242.6 246.3 252.7 260.4 263.8 268.0 272.5	REL 1M 492.2 488.5 484.7 480.6 467.0 446.0 420.4 397.4 389.6 378.9 370.4	VEL 0UT 329.7 326.3 322.7 318.6 305.8 205.8 272.3 260.5 257.5 255.7 254.3	MERIC IN 189.1 193.7 198.2 202.0 210.3 214.4 210.4 201.8 197.4 191.6 186.5	VEL 0UT 176.8 177.7 178.6 179.1 179.9 182.0 186.8 191.3 194.3 198.2 202.2	TAN IM .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	162.9 162.9 162.3 162.0 162.0 162.0 162.7 166.0 170.1 176.2 178.4 180.5	MHEEL 1N 454.5 448.5 442.3 436.0 416.9 391.1 364.0 342.3 334.7 326.8 320.0	SPEED OUT 441.2 436.0 430.8 425.5 409.9 389.0 368.2 352.5 347.3 342.1 336.9
RP TIP 1 23 4 5 6 7 8 9 HUB	ABS MA 18 .574 .589 .603 .616 .643 .657 .643 .615 .601 .582	CH NO DUT -659 -661 -664 -666 -671 -685 -706 -731 -741 -755	REL M 1 494 1 485 1 475 1 428 1 366 1 286 1 212 1 183 1 151	ACH NO OUT -904 -897 -888 -846 -800 -761 -731 -724 -720	MERID N/ IN .574 .589 .603 .616 .643 .657 .643 .615 .601 .582 .565	OCH NO OUT .485 .488 .492 .494 .498 .506 .522 .538 .546 .5571	IN	NE SLOPE OUT -14.21 -12.50 -10.88 -9.42 -5.63 92 3.55 6.68 7.57 8.29	MERID VEL . 935 . 918 . 901 . 887 . 856 . 849 . 985 1 . 085	PEAK SS HACH NO 1.632 1.640 1.638 1.592 1.567 1.603 1.596 1.580 1.564
RP TIP 1 2 3 4 5 6 7 8	PERCENT SPAN .00 5.00 10.00 15.00 30.00 50.00 65.00	1 NC1 HEAM 4.7 5.0 5.2 5.3 4.1 6.3 7.1	DENCE 55.66 22.65 22.53 1.59 .76.55	4.2 4.3 4.4 56.5 7.5 9.9 10.3	D-FACT .456 .457 .459 .461 .469 .480 .482	EFF .785 .797 .809 .819 .846 .874 .901	LOSS TOT .185 .175 .135 .137 .137 .137	COEFF PROF .059 .048 .039 .035 .030 .026 .012 .025	LOSS TOT .038 .036 .034 .033 .029 .025 .021	PARAM PROF .012 .010 .008 .007 .006 .003

TABLE II. - Concluded. DESIGN BLADE-ELEMENT PARAMETERS

(b)	For	sta	tor	35

RP T1P 1 2 3 4 5 6 7 8 9	23.993 2 23.737 2 23.479 2 22.685 2 21.607 2 29.506 1 19.670 1 19.387 1 19.102 1	0UT 4.011 3.752 3.524 3.294 22.593 11.656 10.708 9.989 9.747 9.505	1N 38.9 39.0 39.0 39.1 39.4 39.9 40.3 41.1 41.4 41.7	BETAM OUT 9.3 9.3 9.3 9.5 9.8 10.6 10.7 10.6	REL 1H 38.9 37.0 39.0 39.1 39.4 40.3 41.1 41.4 41.7 42.1	BETAP: OUT 9.3 9.3 9.3 9.5 9.8 10.3 10.6 10.7 10.8	10TA 359.7 358.6 357.6 354.5 354.5 350.5 350.0 749.8 349.4	RATIO 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000	TOTAL IN 18.91 18.91 18.91 18.91 18.91 18.91 18.91 18.91 18.91	PRESS RAT10 .974 .975 .976 .977 .978 .977 .975 .973 .972 .971
RP TIP 1 2 3 4 5 6 7 8 9 HUB	ABS 1N 262.2 260.6 259.3 258.5 257.3 258.6 262.2 266.7 268.3 269.7 271.1		REL 1N 262.2 260.6 259.3 258.5 257.3 258.6 262.2 268.3 269.7 271.1	VEL 0UT 212.2 214.4 216.2 217.6 220.3 222.2 223.4 224.3 224.6 225.0 225.4	MERII IN 204.0 202.6 201.5 200.5 198.8 198.3 199.9 200.9 201.1 201.2 201.3		-	9 VEL 0UT 34.3 34.7 35.0 35.3 36.4 38.0 39.8 41.2 41.7 42.2 42.8	NMEEL IN	
RP TIP 1 2 3 4 5 6 7 8 9 HUB	ABS N/ 1N .725 .722 .719 .717 .716 .722 .736 .750 .755 .760 .765	ACH NO OUT .577 .584 .590 .595 .605 .612 .618 .621 .622 .623	REL M 1M .725 .722 .717 .716 .722 .736 .750 .760 .765	ACH MO OUT .577 .584 .590 .595 .605 .612 .621 .622 .623 .625	MERID M IN .564 .558 .556 .553 .554 .561 .565 .565 .567	ACH NO OUT .569 .576 .582 .587 .608 .610 .611 .612	STREAML1 IN -8.56 -7.53 -6.58 -5.70 -3.25 .09 3.46 5.79 6.42 6.67 7.27	NE SLOPE 0UT -3.93 -3.41 -2.97 -2.53 -1.27 .42 2.20 3.72 4.30 4.93 5.63	MERID VEL R 1.027 1.044 1.059 1.071 1.093 1.104 1.100 1.097 1.098 1.100	PEAK SS HACH NO 1.118 1.109 1.104 1.101 1.098 1.111 1.127 1.151 1.158 1.164 1.169
RP T1P 1 2 3 4 5 6 7 8 9 HUB	PERCENT SPAM .00 5.00 15.00 30.00 50.00 90.00 95.00 95.00	1KC1 HEAM 4.7 4.6 4.4 4.3 4.2 3.7 3.6 3.5 3.5	DENCE 55 -3.2 -3.1 -2.9 -2.7 -2.1 -1.3 3 2	DEV 6.8 6.8 6.8 6.7 6.7 7.1 7.3	D-FACT .364 .369 .357 .347 .329 .321 .332 .335 .337 .339	.000 .000 .000 .000 .000 .000 .000	LDSS TOT .091 .085 .081 .079 .079 .079 .088 .090 .093	COCFF PRCF .091 .085 .081 .079 .076 .079 .083 .088 .090	LCSS TOT .035 .031 .030 .028 .029 .030 .031	PARAN PROF .035 .032 .031 .030 .028 .029 .030 .031

TABLE III. - BLADE GEOMETRY

(a) For rotor 35

	PERCENT	T RA	DII	BLA	DE ANGL	ES	DELTA	CONE
RP	SFAN	RI	23	KIC	KTC	KOC	INC	ANGLE
TIP	5.	25.248	24.511	62.55	62.99	53.21 52.53		-15.764 -14.327
ż	10.	24.571	23.931	60.55	60.74	51.87		-12.780
3	15.	24.224	23.642	60.55 59.80	57.85	51.23	2.96	-11.326
3	30.	23.163	22.772	58.34	57.74	48.54	3.41	-7.137
8	50. 70.	21.726 20.221	21.613	56.16 53.70	54.31 49.53	39.16	4.21	-1.890 3.545
12345678	85.	19.019	19.584	52.28	47.30	33.31	6.56	8.150
8	90.	18.596	19.294	52.00	46.85	30.96	6.86	9.887
HUB	95.	18.158		51.82 51.69	46.50	28.36	7.18	11.763 12.787
	••••			••••				
	BLADE		RESSES			MENSION		
RP	.025	TM .175	TO . 025	.698	ZMC 2.410	2TC 2.379	3.308	
	.027	.187	.027	.635	2.331	2.345	3.354	
2	.028	.199	.028	.576	2.313	2.301	3.398	
3	.029	.212	.029	.529	2.26P 2.188	2.242	3.438	
5	.037	.305	.038	.280	2.133	1.896	3.701	
1234567	.042	.361	.043	.129	2.045	1.749	3.884	
é	.048	.408	.047	.058	1.992	1.715	4.007	
9	.050	.443	.050	.017	1.940	1.579	4.082	
PUB	.051	.458	.051	.000	1.915	1.520	4.118	
	4500	******			TURN		CHOKE	
RP	AERO		CAMBER	SOLIDITY		PHISS	HARGI	
TIP	5.609	61.25	9.34	1.292	022	1.45	.028	
12345678	5.608	60.14 59.08	8.98	1.308	018 012	1.99	.030	
3	5.599	58.17	8.56	1.340	003	2.80	.033	
4	5.583	55.84	9.80	1.393	.052	3.36	.035	
5	5.572	52.30 47.75	11.91	1.473	.180	8.41	.037	
7	5.594	441	18.96	1.661	.421	10.33	.043	
8	5.605	43.65	21.05	1.695	.408	10.60	.041	
HUB	5.621	42.56	23.46	1.733	.391	10.92	.043	
HOD	3.022	41.30	23.77	1.703	.510			

TABLE III. - Concluded. BLADE GEOMETRY

(b) For stator 35

	PERCENT	RADI	1	BLA	DE ANGL	ES	DELTA	CONE
TIP 1 2 3 4 5 6 7 8 9 NUB	0. 24 5. 23 10. 23 15. 23 30. 22 50. 21 70. 20 85. 19	.993 2 .737 2 .479 2 .685 2 .607 2 .506 2 .670 1 .387 1	R0 4.011 3.752 3.524 3.294 2.593 1.656 0.708 9.989 9.747 9.505 9.238	KIC 34.59 34.59 34.67 35.09 35.72 36.43 37.85 38.23 38.62	KTC 23.62 23.74 23.86 23.99 24.31 24.93 25.74 26.73 27.15 27.60 28.05	KOC 2.52 2.54 2.57 2.60 3.11 3.54 3.57 3.62	7.62 7.38 7.14	ANGLE -3.556 -3.430 -3.053 -2.660 -1.340 -7.32 3.104 5.031 5.719 6.447 6.725
	BLADE T	HICKNE	SSES	A	XIAL DI	MENSION		
TIP 12 34 56 78 9	.026 .025 .025 .025 .025 .024 .024 .023	TM .324 .315 .306 .297 .270 .234 .200 .174 .166 .158	.026 .025 .025 .025 .025 .024 .024 .023 .023	21 4.578 4.608 4.617 4.628 4.662 4.711 4.768 4.818 4.837 4.856	ZMC 6.524 6.527 6.530 6.533 6.544 6.555 6.565 6.572 6.575 6.577 6.580	5.884 5.898 5.898 5.913 5.736 5.761 5.761 5.792 6.002 6.013	20 8.644 8.639 8.618 8.607 8.571 8.523 8.479 8.443 8.432 8.420 8.407	
RP TIP 1 2 3 4 5 6 7 8 9 HUB	CHORD A 4.273 1 4.250 1 4.227 1 4.205 1 4.136 1 4.046 1 3.961 2 3.899 2 3.880 2	8.56 8.66 8.77 9.68 9.66 0.34 1.13 1.45		\$0LIDITY 1.296 1.303 1.310 1.316 1.337 1.369 1.407 1.440 1.452 1.464 1.477	TURN RATE 1.005 .993 .982 .975 .960 .938 .904 .860 .836	PHISS 16.34 16.06 15.03 15.64 14.97 14.29 13.59 13.59 13.05 12.04	CHOKE MARGIN -105 -110 -113 -116 -120 -125 -122 -118 -114 -1114	

TABLE IV. - OVERALL PERFORMANCE FOR STAGE 35

(a) 100 Percent of design speed

Parameters			Rea	ding		
	4004	3978	3977	3974	3976	3975
ROTOR TOTAL PRESSURE RATIO	20.08	1.875 0.982 1.226 1.000 0.872 0.869 0.341 0.412 100.77 189.33 20.82 21.00 20.83 19.92	1.955 0.974 1.245 1.000 0.863 0.859 0.371 0.402 99.15 186.28 20.48 20.48 20.50 19.49 17125.1	1.985 0.968 1.254 1.000 0.853 0.853 0.380 0.390 97.42 183.03 20.13 20.13 20.14 19.11 17196.8	2.036 0.945 1.277 1.001 0.812 0.808 0.402 0.340 88.08 165.49 18.20 18.26 18.21 16.98 17218.5	2.014 0.959 1.263 1.000 0.841 0.836 0.373 94.57 177.67 19.54 19.54 19.55 18.41
C	ompresso	r performa	ance			
STAGE TOTAL PRESSURE RATIO	1.714 1.198 0.841	1.842 1.225 0.845	1.905 1.244 0.827	1.922 1.253 0.810	1.923 1.279 0.737	1.932 1.263 0.786

(b) 90 Percent of design speed

Parameters			Reading		
	3979	3982	3983	3984	3985
ROTOR TOTAL PRESSURE RATIO	1.591 0.989 1.160 1.000 0.888 0.886 0.286 0.416 94.39 177.34 19.50 19.66 19.61 18.60 15451.3	1.480 0.988 1.182 1.000 0.879 0.327 0.327 0.399 91.83 172.53 18.97 19.09 18.98 18.08	1.729 0.982 1.196 1.000 0.864 0.863 0.351 0.351 0.351 0.351 1.24 18.33 18.25 17.24 15467.5	1.748 0.979 1.202 1.000 0.854 9.852 0.360 0.369 86.24 162.02 17.82 17.93 16.81 15473.4	1.781 0.965 1.218 1.000 0.823 0.821 0.378 0.338 80.339 151.04 16.61 16.61 16.62 15.45
Compre	ssor perf	ormance			
STAGE TOTAL PRESSURE RATIO	1.574 1.160 0.865	1.660 1.182 0.858	1.698 1.196 0.835	1.711 1.202 0.820	1.719 1.218 0.768

TABLE IV. - Continued. OVERALL PERFORMANCE FOR STAGE 35

(c) 80 Percent of design speed

Parameters	Reading 3987		
ROTOR TOTAL PRESSURE RATIO	1.571 0.977 1.168 1.000 0.818 0.817 0.351 0.352 69.30 130.19 14.32 14.32 13.55 13774.4		
Compressor performance			
STAGE TOTAL PRESSURE RATIO	1.535 1.168 0.774		

(d) 70 Percent of design speed

Parameters		,	Reading		
	3995	3994	3993	3990	3989
ROTOR TOTAL PRESSURE RATIO	1.264 0.989 1.076 1.000 0.905 0.899 0.212 0.407 76.53 143.78 15.81 15.87 15.81 15.87 15.12 12074.9	1.300 0.993 1.087 1.000 0.893 0.895 0.240 0.393 74.11 139.23 15.31 15.37 15.37 15.37 15.37	1.343 0.993 1.101 1.000 0.873 0.871 0.275 0.366 69.63 130.82 14.38 14.46 14.39 13.74	1.356 0.992 1.108 1.000 0.840 0.842 0.288 0.340 64.93 121.99 13.41 13.50 13.42 12.78 12040.8 70.1	1.375 0.982 1.1200 1.000 0.793 0.794 0.306 0.296 57.06 107.19 11.79 11.86 11.79 11.86 11.79
Compre	essor perf	ormance			
STAGE TOTAL PRESSURE RATIO	1.250 1.077 0.860	1.291 1.087 0.868	1.334 1.101 0.852	1.345 1.108 0.816	1.350 1.120 0.744

TABLE IV. - Concluded. OVERALL PERFORMANCE

FOR STAGE 35

(e) 60 Percent of design speed

Parameters	Reading 3997
KOTOR TOTAL PRESSURE RATIO	1.275 0.989 1.089 1.080 0.810 0.297 0.300 50.81 95.46 10.50 10.54 10.50 9.99
Compressor performance	
STAGE TOTAL PRESSURE RATIO	1.262 1.089 0.771

(f) 50 Percent of design speed

Parameters	Reading 4000
ROTOR TOTAL PRESSURE RATIO	1.174 0.995 1.057 1.057 0.820 0.820 0.279 0.307 43.51 81.75 8.99 8.99 8.99
Compressor performance	
STAGE TOTAL PRESSURE RATIO	1.168 1.057 0.792

TABLE V. - BLADE-ELEMENT DATA AT BLADE EDGES FOR ROTOR 35

(a) 100 Percent of design speed; reading 4004

RP 1 2 3 4 5 6 7 8	RP 1 2 3 4 5 6 7 8 9	RP 1 23 4 5 6 7 8 9	RP 1 2 3 4 5 6 7 8 ?
PERCENT SPAN 5.00 10.00 15.00 30.00 50.00 70.00 85.00 90.00	ABS M 1 M 0.579 0.664 0.706 0.725 0.715 0.696 0.696	ABS IN 190.9 211.0 216.7 229.1 234.5 231.8 226.2 223.6 218.2	24.572 24.224 162 21.725 20.2.1
INCIDENCE HEAM SS 5.4 3.0 3.8 1.1 3.7 0.7 3.0 -0.4 3.1 -1.2 3.9 -1.6 4.2 -2.4 4.3 -2.5	ACH NO REL 1 OUT IN 0.624 1.484 0.649 1.496 0.663 1.490 0.679 1.470 0.717 1.416 0.747 1.336 0.748 1.261 0.752 1.243 0.767 1.205	VEL 11 11 223.9 489.5 232.2 489.0 236.4 486.1 241.7 477.5 254.6 458.2 264.3 433.1 263.7 404.1 270.6 392.8	OUT 1N 24.221 -0.1 23.932 -0.0 23.642 -0.0 22.771 -0.6 21.613 -0.1 20.455 -0.0
DEV 6.6 5.3 4.8 5.5 5.2 5.8 9.1	OUT 0.998 0.987 0.983 0.955 0.889 0.843 0.797 0.770	VEL OUT 358.1 353.2 359.7 339.7 316.0 298.5 284.6 280.8 271.5	BETAM OUT 35.4 34.8 34.3 34.5 36.3 37.0 37.3 37.8 38.9
D FACT EFF 0.369 0.799 0.379 0.794 0.380 0.831 0.391 0.859 0.422 0.872 0.428 0.900 0.425 0.899	MERID HACH NO IM QUT 0.579 0.509 0.645 0.533 0.664 0.547 0.706 0.560 0.725 0.577 0.715 0.596 0.696 0.595 0.688 0.595	MERID VEL 1N OUT 190.9 182.5 211.0 190.8 216.7 195.2 229.1 199.3 234.5 205.1 231.8 211.1 226.2 209.9 223.6 209.6 218.2 210.5	REL BETAM IN OUT 67.0 59.4 64.4 57.3 63.5 56.2 61.3 54.1 59.2 49.5 57.6 45.0 56.5 42.5 56.4 41.7 56.3 39.2
LOSS COEFF TOT PROF 0.145 0.016 0.151 0.028 0.123 0.004 0.105002 0.105 0.013 0.090 0.004 0.093 0.026		TANG VEL 1N 0UT -0.3 129.7 -0.1 132.4 -0.0 133.4 -0.0 159.0 -0.1 159.6 -0.1 162.3 -0.4 170.0	TOTAL TEMP IN RATIO 288.9 1.194 288.1 1.198 288.5 1.193 287.9 1.203 286.1 1.203 288.2 1.193 287.9 1.193 287.9 1.195 288.0 1.201
LOSS PARAM TOT PROF 0.028 0.003 0.031 0.006 0.026 0.001 0.022000 0.023 0.003 0.020 0.001 0.021 0.006	MERID PEAK SS VEL R MACH NO 0.956 1.653 0.901 1.616 0.901 1.609 0.870 1.569 0.875 1.546 0.911 1.571 0.928 1.539 0.937 1.527 0.965 1.494	HHEEL SPEED IN OUT 450.4 437.9 441.1 429.6 435.2 424.7 418.9 411.8 393.2 391.1 365.8 370.0 341.7 351.8 336.6 349.2 326.2 341.4	TOTAL PRESS IN RATIO 9.92 1.657 10.13 1.669 10.14 1.692 10.13 1.710 10.15 1.767 10.15 1.798 10.15 1.751 10.15 1.737 10.12 1.743

FOR ROTOR 35

(b) 100 Percent of design speed; reading 3978

RP 1 2 3 4 5 6 7 8 9	RADII IN OUT 24.915 24.221 24.572 23.932 24.224 23.642 23.162 22.771 21.725 21.613 20.221 20.455 19.020 19.583 18.595 19.294 18.158 19.004	ABS BETAM IN OUT -0.1 42.4 -0.1 41.6 -0.1 40.2 0.0 39.7 -0.0 42.0 -3.0 42.1 -0.1 41.4 -0.1 41.9 0.0 43.2	REL BETAM 1M OUT 67.2 58.4 64.6 56.6 63.7 55.6 61.3 53.0 59.2 48.0 57.7 43.1 56.7 40.8 56.4 39.1 56.3 36.1	TOTAL TEMP IN RATIO 288.8 1.233 288.1 1.234 288.2 1.227 289.4 1.220 287.9 1.231 287.9 1.228 288.3 1.214 288.0 1.216 288.1 1.225	TOTAL PRESS IN RATIO 9.91 1.819 10.14 1.817 10.14 1.836 10.13 1.849 10.15 1.896 10.15 1.923 10.15 1.882 10.15 1.882 10.15 1.882 10.15 1.899
RP 1 2 3 4 5 6 7 8 9	ABS VEL 1M OUT 188.4 231.7 209.5 238.4 245.8 232.4 258.9 229.4 268.8 221.8 271.5 217.0 280.0	REL VEL 1M OUT 465.3 326.5 498.1 324.3 485.0 325.7 473.3 314.5 453.5 288.1 429.0 273.0 400.6 265.9 400.6 265.4 391.3 252.7	MERID VEL IN OUT 188.4 171.1 209.5 178.4 214.7 183.9 227.4 189.3 232.4 192.6 229.4 199.5 224.3 201.3 221.8 202.0 217.0 204.1	TANG VEL IN OUT -0.4 156.3 -0.4 158.2 -0.5 155.2 0.0 156.9 -0.1 173.1 -0.1 180.1 -0.5 177.5 -0.5 181.4 0.0 191.8	HHEEL SPEED IN OUT 446.8 434.4 440.4 429.0 434.4 424.0 415.1 408.1 389.3 387.3 362.4 366.6 341.1 351.2 333.2 345.7 325.7 340.8
RP 1 2 3 4 5 6 7 8 9	ABS HACH NO IN OUT 0.571 0.637 0.640 0.658 0.665 0.666 0.700 0.683 0.717 0.721 0.707 0.752 0.690 0.755 0.681 0.765 0.665 0.788	REL MACH NO IN OUT 1.470 0.897 1.492 0.894 1.485 0.901 1.457 0.874 1.400 0.802 1.323 0.764 1.256 0.748 1.231 0.733 1.200 0.711	HERID MACH NO IN OUT 0.571 0.470 0.640 0.492 0.657 0.509 0.700 0.526 0.717 0.536 0.707 0.558 0.690 0.567 0.681 0.569 0.665 0.575		MERID PEAK SS VEL R MACH MD 0.908 1.643 0.852 1.617 0.856 1.610 0.832 1.554 0.829 1.529 0.870 1.560 0.897 1.541 0.911 1.541 0.941 1.492
RP 1 2 3 4 5 6 7 8 9	PERCENT INC SPAN HEAN 5.00 5.5 10.00 3.9 15.00 3.8 30.00 2.9 50.00 3.0 70.00 4.0 90.00 4.3 95.00 4.3	DENCE DEV SS 3.1 5.7 1.2 4.6 0.9 4.2 -0.5 4.4 -1.2 3.8 -1.5 3.9 -2.2 7.4 -2.6 8.0 -2.8 7.5	D FACT EFF 0.449 0.799 0.457 0.797 0.447 0.835 0.453 0.870 0.494 0.867 0.495 0.901 0.492 0.927 0.466 0.912 0.499 0.893	LOSS COEFF TOT PROF 0.168 0.044 0.169 0.048 0.137 0.018 0.109 0.008 0.123 0.036 0.098 0.017 0.074 0.007 0.093 0.034 0.120 0.070	LOSS PARAM TOT PROF 0.034 0.009 0.035 0.010 0.029 0.004 0.024 0.002 0.028 0.008 0.023 0.004 0.017 0.001 0.021 0.008 0.028 0.016

FOR ROTOR 35

(c) 100 Percent of design speed; reading 3977

RP 1 2 3 4 5 6 7 8 9	RADII 1N OUT 24.915 24.221 24.572 23.932 24.224 23.642 23.162 22.771 21.725 21.613 20.221 20.455 19.020 19.583 18.595 19.294 18.158 19.004	ABS BETAM IN OUT -0.0 46 -0.6 45 -0.1 44 -0.0 43 -0.1 45 -0.1 45 -0.0 44 -0.0 44	1M OUT 67.7 57.8 65.0 55.8 64.3 54.6 7 62.1 51.9 1 60.1 47.5 1 58.6 42.7 2 57.5 40.2 57.2 38.3	TCTAL TEHP IN RATIO 288.0 1.259 288.2 1.258 288.1 1.254 288.2 1.246 288.1 1.248 288.0 1.242 288.2 1.227 288.2 1.229 288.2 1.236	TOTAL PRESS IN RATIO 9.92 1.929 10.14 1.921 10.14 1.939 10.13 1.953 10.15 1.967 10.15 1.981 10.15 1.938 10.15 1.940 10.12 1.965
RP 1 2 3 4 5 6 7 8 9	ABS VEL 1N OUT 184.4 240.3 245.9 248.5 219.9 252.9 224.0 261.9 221.2 269.4 215.3 273.6 210.6 282.0	REL VEL IN OUT 485.9 310.7 485.9 306.7 481.7 304.1 469.7 296.3 449.3 273.7 425.0 258.8 404.5 255.8 404.5 252.8 397.0 248.1 388.1 241.5	HERID VEL 1M OUT 184.4 155.7 205.1 172.4 208.9 177.5 219.9 182.9 224.0 185.0 221.2 190.1 217.3 193.1 215.3 194.7 210.6 197.4	TANG VEL IN OUT -0.1 174.1 -0.1 175.3 -0.4 173.9 -0.2 174.7 -0.5 185.3 -0.3 191.1 -0.1 187.9 -0.1 192.2 -0.5 201.4	HHEEL SPEED IN OUT 449.4 436.9 440.4 429.0 433.6 423.2 414.9 407.9 389.0 387.0 362.5 366.7 341.1 351.2 333.5 346.0 325.5 340.6
RP 1 2 3 4 5 6 7 8 9	ABS MACH NO 1 M OUT 0.558 0.655 0.626 0.673 0.638 0.682 0.675 0.697 0.689 0.724 0.680 0.754 0.659 0.766 0.659 0.766	REL MACH NO 1M OUT 1.470 0.847 1.483 0.839 1.472 0.840 1.442 0.817 1.382 0.757 1.306 0.720 1.240 0.708 1.216 0.695 1.187 0.677	HERID HACH ND 1N OUT 0.558 0.452 0.626 0.472 0.638 0.487 0.675 0.504 0.689 0.512 0.680 0.529 0.666 0.541 0.659 0.553		MERID PEAK SS VEL R MACH NO 0.898 1.661 0.841 1.623 0.820 1.617 0.832 1.566 0.826 1.542 0.859 1.575 0.889 1.554 0.904 1.529 0.937 1.508
RP 1 2 3 4 5 6 7	PERCENT SPAN HEAN 5.00 6.1 10.00 4.4 30.00 3.7 50.60 3.7 70.00 4.9 95.00 5.1 95.00 5.2	1DENCE DEV \$\$ 3.6 5.1 1.7 3.7 1.5 3.2 0.3 3.3 -0.3 3.2 -0.6 3.6 -1.4 6.8 -1.9 7.2 -2.0 6.5	D FACT EFF 0.496 0.797 0.503 0.795 0.498 0.821 0.502 0.858 0.531 0.862 0.535 0.891 0.517 0.918 0.521 0.911 0.531 0.901	LOSS COEFF TOT PROF 0.105 0.056 0.105 0.063 0.163 0.044 0.131 0.029 0.136 0.050 0.115 0.033 0.039 0.021 0.100 0.040 0.117 0.066	LOSS PARAM TOT PROF 0.038 0.011 0.039 0.013 0.035 0.010 0.029 0.006 0.931 0.011 0.027 0.008 J.020 0.005 0.023 0.009 0.028 0.016

FOR ROTOR 35

(d) 100 Percent of design speed; reading 3974

RP 1 2 3 4 5 6 7 8 9	RADII IN OUT 24.915 24.221 24.572 23.932 24.224 23.642 23.162 22.771 21.725 21.613 20.221 20.455 19.020 19.583 18.595 19.294 18.158 19.004	ABS BETAM IN OUT -0.1 48. 0.0 47. -0.1 46. -0.0 46. -0.0 46. -0.0 46. -0.0 46. -0.1 46.	1 N OUT 7 68.6 57.4 65.9 55.5 7 65.3 54.8 5 63.2 52.2 2 60.9 48.0 59.4 43.3 8 58.3 40.8 1 58.0 38.7	TOTAL TEMP IN RATIO 288.8 1.275 287.9 1.274 288.2 1.268 288.4 1.257 288.1 1.246 287.9 1.234 287.8 1.235 288.1 1.241	TOTAL PRESS IN RATIG 9.93 1.980 10.13 1.967 10.14 1.980 10.12 1.987 10.15 1.996 10.15 2.002 10.16 1.956 10.15 1.959 10.12 1.987
RP 1 2 3 4 5 6 7 8 9	ABS VEL IN OUT 175.9 244.8 196.3 249.0 201.2 251.1 211.3 253.8 218.3 261.4 215.9 268.3 267.8 209.7 272.3 205.1 200.8	REL VEL IN OUT 482.4 299.7 481.4 296.0 481.3 298.5 468.3 290.7 448.4 270.3 423.8 254.1 403.5 246.5 395.4 241.8 385.7 246.1	MERID VEL IM OUT 175.9 161.5 196.3 167.6 201.2 172.3 211.3 178.0 218.3 180.8 215.9 184.9 215.9 184.7 205.1 195.1	TANG VEL IM OUT -0.3 184.0 0.0 184.2 -0.3 182.6 -0.1 180.9 0.0 188.7 -0.1 194.5 -0.1 194.5 -0.1 196.2 -0.5 196.2	WHEEL SPEED IN OUT 448.9 436.4 439.6 428.2 436.9 426.4 417.8 410.7 391.7 389.7 364.5 368.8 343.0 353.2 334.8 347.4 326.7 341.9
RP 1 2 3 4 5 6 7 8 9	ABS MACH NO IN OUT 0.530 0.664 0.597 0.678 0.613 9.685 0.646 0.696 0.670 0.720 0.662 0.744 0.650 0.747 0.641 0.761 0.626 0.785	REL MACH NO IN OUT 1.455 0.812 1.465 0.815 1.466 0.815 1.432 0.798 1.375 0.745 1.299 0.705 1.235 0.688 1.209 0.676 1.177 0.671	HERID MACH NO IN OUT 0.530 0.438 0.597 0.456 0.613 0.470 0.646 0.498 0.670 0.498 0.662 0.513 0.650 0.521 0.641 0.527 0.626 0.546		MERID PEAK SS VEL R MACH NO 0.918 1.678 0.854 1.636 0.856 1.644 0.842 1.594 0.828 1.562 0.856 1.594 0.876 1.575 0.900 1.555 0.951 1.527
RP 1 2 3 4 5 6 7 8	PERCENT INCI SPAN HEAN 5.00 7.0 10.00 5.3 15.00 5.4 30.00 4.8 50.00 4.7 70.00 5.7 65.00 5.9 90.00 5.9	DENCE DEV \$5 4.6 4.7 2.6 3.5 2.5 3.4 1.4 3.6 0.5 3.7 0.1 4.2 -0.6 7.4 -1.0 7.6 -1.2 7.0	D FACT EFF 0.523 0.783 0.528 0.779 0.520 0.804 0.517 0.843 0.540 0.856 0.548 0.890 0.535 0.904 0.538 0.901 0.532 0.901	LOSS COEFF TOT PROF 0.208 0.077 0.209 0.088 0.105 0.061 0.150 0.044 0.146 0.056 0.118 0.033 0.110 0.033 0.114 0.051 0.120 0.067	LOSS PARAM TOT PROF 0.043 0.016 0.045 0.019 0.040 0.013 0.033 0.010 0.033 0.010 7.027 0.008 0.026 0.012 0.028 0.016

FOR ROTOR 35

(e) 100 Percent of design speed; reading 3976

RP 1 2 3 4 5 6 7 8 9	RADII 1N OUT 24.915 24.221 24.572 23.932 24.224 23.642 23.162 22.771 21.725 21.613 20.221 20.455 19.020 19.583 18.595 19.294 18.158 19.004	ABS 1 M -0.1 -0.0 -0.1 -0.1 -0.1 -0.1 -0.1	BETAN DUT 58.5 57.2 55.8 53.0 51.3 49.8 48.4 48.1	REL BETAM IN OUT 71.7 58.9 69.7 57.7 69.0 56.3 67.3 52.7 64.8 48.2 62.7 43.9 61.3 40.1 61.0 37.5 60.9 34.2	TOTAL TEMP IN RATIO 288.9 1.324 288.6 1.316 288.7 1.310 298.5 1.291 288.1 1.276 287.7 1.247 287.5 1.248 287.6 1.251	TOTAL PRESS IM RATIO 9.97 2.062 10.13 2.031 10.12 2.039 10.11 2.048 10.14 2.043 10.16 2.031 10.16 1.998 10.16 2.017 10.14 2.051
RP 1 2 3 4 5 6 7 8 9	ABS VEL IN OUT 148.8 254.0 163.7 254.0 167.5 255.2 174.6 258.3 184.3 263.5 188.4 266.2 187.9 270.2 185.8 276.5 182.6 285.9	REL 1N 473.2 472.3 468.2 453.0 433.2 410.7 391.4 383.6 375.3	VEL 0UT 256.7 257.5 258.6 256.6 247.3 238.8 231.3 231.0	MERID VEL IN OUT 148.8 132.6 163.7 137.4 167.5 143.4 174.6 155.4 184.3 164.9 188.4 171.5 187.9 178.0 185.8 183.5 182.6 191.0	TANG VEL IN OUT -0.3 216.6 -0.1 213.6 -0.4 211.2 -0.4 206.3 -0.1 205.5 -0.3 203.6 -0.3 203.3 -0.4 206.9 -0.4 212.8	HHEEL SPEED IN OUT 448.9 436.4 442.9 431.4 436.9 426.4 417.6 410.5 391.8 389.8 364.7 368.9 343.1 358.3 335.2 347.8 327.5 342.8
RP 1 2 3 4 5 6 7 8 9	ABS MACH NO IN OUT 0.445 0.677 0.492 0.680 0.504 0.685 0.527 0.699 0.558 0.720 0.572 0.734 0.570 0.751 0.564 0.770 0.553 0.798	REL HI IN 1.416 1.420 1.409 1.367 1.312 1.246 1.188 1.164 1.137	OLG 10 0 . 684 0 . 684 0 . 689 0 . 694 0 . 695 0 . 676 0 . 647 0 . 647 0 . 644	MERID HACH NO IN OUT 0.445 0.353 0.368 0.504 0.385 0.527 0.421 0.558 0.451 0.572 0.473 0.570 0.495 0.564 0.511 0.553 0.533		MERID PEAK SS VEL R MACH MO 0.891 1.744 0.840 1.720 0.856 1.715 0.890 1.671 0.895 1.636 0.911 1.659 0.987 1.618 1.046 1.598
RP 1 2 3 4 5 6 7 8	PERCENT INCI SPAN HEAM 5.00 10.1 10.00 9.1 15.00 9.2 30.00 9.0 50.00 9.7 70.00 9.7 85.00 9.0 90.00 8.9 95.00 8.9	DENCE SS 7.6 6.4 6.2 5.6 4.4 3.5 2.4 2.1	DEV 6.2 5.7 4.9 4.1 3.9 4.8 6.7 6.4 5.6	D FACT EFF 0.630 0.708 0.623 0.710 0.614 0.729 0.596 0.781 0.590 0.822 0.579 0.867 0.564 0.885 0.559 0.894 0.552 0.907	LOSS COEFF TOT PROF 0.314 0.173 0.308 0.172 0.287 0.155 0.296 0.122 0.198 0.102 0.153 0.062 0.139 0.061 0.132 0.063 0.122 0.060	LOSS PARAM TOT PROF 0.062 0.034 0.062 0.035 0.059 0.032 0.051 0.027 0.045 0.023 0.035 0.014 0.032 0.014 0.031 0.015 0.029 0.014

FOR ROTOR 35

(f) 100 Percent of design speed; reading 3975

RP 1 2 3 4 5 6 7 8 9	RADII IN OUT 24.915 24.221 24.572 23.932 24.224 23.642 23.162 22.771 21.725 21.613 20.221 20.455 19.020 19.583 18.595 19.294 18.158 19.004	ABS 1 IN -0.0 -0.0 -0.1 -0.0 -0.1 -0.1 -0.1 -0.1	BETAM 0UT 52.2 51.1 49.9 48.2 48.3 47.1 47.3 47.3	REL BETAM IN OUT 69.6 57.8 67.4 56.2 66.7 54.9 64.7 52.0 62.2 47.8 60.4 43.6 59.2 40.6 58.9 38.2 58.8 34.9	TOTAL TEMP IN RATIO 288.5 1.295 288.0 1.290 288.3 1.284 288.5 1.270 288.1 1.264 288.1 1.264 287.8 1.240 287.8 1.241 288.0 1.246	TOTAL PRESS IN RATIO 9.95 2.013 10.13 2.002 10.13 2.014 10.12 2.026 10.15 2.022 10.15 2.019 10.15 1.989 10.13 2.024
RP 1 2 3 4 5 6 7 8 9	ABS VEL IN OUT 166.9 247.5 184.6 251.7 188.5 253.6 197.6 256.7 207.1 263.2 207.6 267.5 204.6 268.7 202.6 274.4 198.6 284.1	480.1 476.2 461.9 443.6 420.0 399.8 392.3	VEL 0UT 284.6 283.6 284.0 278.1 26.8 248.0 240.9 237.0 234.9	MERID VEL IN OUT 166.9 151.7 184.6 157.9 188.5 163.3 197.6 171.2 207.1 175.2 207.6 179.6 204.6 179.6 204.6 186.2 198.6 192.7	TANG VEL IN OUT -0.1 195.6 -0.0 196.0 -0.4 194.0 -0.0 191.3 -0.4 196.5 0.0 196.7 -0.3 196.7 -0.4 201.6 -0.3 208.7	HHEEL SPEED OUT 448.8 436.3 443.2 431.6 436.9 426.4 417.5 410.5 391.8 389.8 365.1 369.3 343.2 327.7 343.0
RP 1 2 3 4 5 6 7 8	ABS MACH NO IN OUT 0.502 0.667 0.559 0.681 0.572 0.688 0.601 0.701 0.633 0.723 0.634 0.740 0.625 0.748 0.618 0.765 0.605 0.794	1.454 1.444 1.405 1.355 1.203 1.221	CH NG QUT 0.766 0.767 0.771 0.759 0.717 0.686 0.671 0.661	MERID HACH NO IM OUT 0.502 0.409 0.559 0.427 0.572 0.443 0.601 0.467 0.633 0.481 0.634 0.497 0.625 0.510 0.618 0.519 0.605 0.539		MERID PEAK SS VEL R HACH NO 0.909 1.678 0.855 1.675 0.866 1.618 0.866 1.618 0.865 1.614 0.865 1.596 0.865 0.919 1.572 0.971 1.550
RP 1 2 3 4 5 6 7 8 9	PERCENT INCI SPAN MEAN 5.00 8.0 10.00 6.7 15.00 6.8 30.00 6.3 50.00 6.7 85.00 6.9 90.00 6.9	DENCE \$5 5.6 4.0 3.8 2.9 1.8 1.1 0.3 -0.0	DEV 5.1 4.1 3.5 3.4 7.2 7.1 6.2	D FACT EFF 0.560 0.751 0.561 0.756 0.554 0.781 0.545 0.827 0.562 0.845 0.561 0.886 0.548 0.898 0.551 0.901 0.548 0.906	LOSS COEFF TOT PROF 0.250 0.116 0.242 0.112 0.217 0.090 0.174 0.067 0.162 0.070 0.126 0.039 0.117 0.044 0.116 0.052 0.117 0.061	LOSS PARAM TOT PROF 0.051 0.024 0.051 0.024 0.047 0.019 0.038 0.015 0.037 0.016 0.029 0.009 0.027 0.010 0.027 0.012 0.028 0.014

FOR ROTOR 35

(g) 90 Percent of design speed; reading 3979

RP 1 2 3 4 5 6 7 8	RADII IN 0UT 24.915 24.221 24.572 23.932 24.224 23.642 23.162 22.771 21.725 21.613 20.221 20.455 19.020 19.583 18.595 19.294 18.158 19.004	ABS BETAM IN OUT 0.0 33.0 -0.0 32.6 -0.0 32.9 -0.0 34.7 -0.1 34.9 -0.0 35.2 -0.0 36.0 -0.0 37.4	REL BETAM 1N OUT 67.2 57.7 64.8 55.8 64.1 54.7 61.8 51.7 59.5 47.5 57.9 43.0 56.9 49.2 56.6 38.8 56.5 35.8	TOTAL TEMP IN RATIO 288.4 1.154 288.2 1.157 288.6 1.157 288.7 1.157 288.1 1.164 287.8 1.162 287.8 1.169	TOTAL PRESS IN RATIO 9.94 1.515 10.12 1.529 10.12 1.550 10.13 1.574 10.15 1.604 10.15 1.632 10.15 1.617 10.15 1.610 10.12 1.626
RP 1 2 3 4 5 6 7 8 9	ABS VEL IN OUT 169.4 209.3 186.9 217.7 190.8 221.8 201.0 229.2 207.6 238.4 205.9 247.4 205.9 250.1 198.8 252.7 194.6 260.5	REL VEL IN OUT 436.5 328.1 439.4 326.3 436.3 325.3 425.2 310.7 408.5 290.2 387.1 277.7 367.2 267.4 361.0 262.2 352.6 255.3	MERID VEL IN QUT 169.4 175.6 186.9 183.4 190.8 188.1 201.0 192.5 207.6 195.9 205.9 203.0 200.7 204.3 198.8 204.5 194.6 206.9	TANG VEL IN OUT 0.0 113.9 -0.1 117.4 0.0 124.4 -0.1 135.8 -0.4 141.5 -0.0 144.1 -0.1 148.5 -0.1 158.2	HHEEL SPEED IN OUT 402.3 371.1 397.5 387.2 392.2 382.8 374.7 368.4 351.7 349.9 327.3 331.1 307.5 316.6 301.3 312.6 293.9 307.6
RP 1 2 3 4 5 6 7 8 9	ABS MACH NO IN OUT 0.510 0.592 0.567 0.617 0.579 0.629 0.612 0.652 0.634 0.679 0.629 0.708 0.612 0.717 0.606 0.725 0.592 0.747	REL MACH HO IN OUT 1.315 0.928 1.332 0.923 1.294 0.883 1.248 0.826 1.182 0.794 1.119 0.767 1.100 0.753 1.073 0.732	HERID HACH NO 1N GUT 0.510 0.497 0.567 0.520 0.579 0.534 0.612 0.547 0.634 0.558 0.629 0.581 0.612 0.586 0.606 0.587 0.592 0.593		MERID PEAK SS VEL R HACH NO 1.036 1.493 0.981 1.468 0.986 1.463 0.958 1.414 0.944 1.395 0.986 1.441 1.019 1.435 1.029 1.420 1.063 1.405
RP 1 2 3 4 5 6 7 8 9	PERCENT INCI SPAN MEAN 5.00 5.5 10.00 4.2 15.00 4.2 30.00 3.4 50.00 7.3 70.00 4.1 85.00 4.5 90.00 4.5	DENCE DEV \$5 3.1 4.9 1.5 3.7 1.2 3.3 0.0 3.1 -0.9 3.3 -1.4 3.9 -2.0 6.8 -2.4 7.6 -2.6 7.2	D FACT EFF 0.347 0.817 0.357 0.824 0.354 0.860 0.373 0.881 0.402 0.882 0.400 0.926 0.392 0.930 0.397 0.911 0.409 0.883	LOSS COEFF TOT PROF 0.123 0.057 0.119 0.055 0.095 0.037 0.085 0.037 0.093 0.053 0.062 0.023 0.063 0.032 0.063 0.032	LOSS PARAM TOT PROF 0.025 0.012 0.025 0.012 0.021 0.007 0.019 0.008 0.021 0.012 0.014 0.005 0.014 0.007 0.019 0.013 0.027 0.022

FOR ROTOR 35

(h) 90 Percent of design speed; reading 3982

RP 1 2 3 4 5 6 7 8 9	RADII IN OUT 24.915 24.221 24.572 23.932 24.224 23.642 23.162 22.771 21.725 21.613 20.221 20.455 19.021 29.583 18.595 19.294 18.158 19.004	ABS I I N -0.1 -0.0 0.0 -0.0 -0.1 -0.1 -0.0 -0.0	BETAM DUT 39.3 38.9 38.2 38.3 40.1 39.8 39.7 40.7	REL BETAM 1N OUT 68.0 56.5 65.8 54.9 65.1 54.0 63.0 51.5 60.8 47.0 59.0 43.0 57.7 38.4 57.7 35.1	TOTAL TEMP IN RAT10 288.7 1.187 288.3 1.188 288.8 1.181 288.5 1.181 288.0 1.187 287.7 1.179 287.9 1.172 287.9 1.176 287.9 1.184	TOTAL PRESS IN RATIO 9.95 1.645 10.12 1.648 10.12 1.659 10.13 1.674 10.15 1.692 10.16 1.703 10.15 1.677 10.15 1.679 10.12 1.706
RP 1 2 3 4 5 6 7 8 9	ABS VEL IN OUT 162.9 217.7 179.0 223.5 182.7 225.8 191.7 229.8 197.3 239.2 196.9 244.6 193.0 245.3 190.4 249.7 186.5 259.2	436.6 433.3 421.7 403.8 382.7 563.4 356.8	VEL 0UT 304.9 302.6 301.4 289.8 268.0 247.8 247.8 241.6	MERID VEL IN OUT 162.9 168.4 179.0 174.0 182.7 177.3 191.7 180.4 197.3 182.9 196.9 188.0 193.4 189.3 186.5 193.4	TANG VEL IN OUT -0.4 138.0 -0.1 140.2 0.0 139.7 -0.1 142.4 -0.4 154.2 -0.4 156.4 0.0 156.5 -0.1 162.8 0.0 172.5	HHEEL SPEED OUT 403.5 392.3 398.1 387.7 392.9 383.5 375.5 369.1 351.9 350.1 327.8 331.6 307.9 311.6 313.0 294.7 308.4
RP 1 2 3 4 5 6 7 8 9	ABS MACH NO IN OUT 0.489 0.608 0.541 0.626 0.552 0.633 0.582 0.646 0.600 0.674 0.600 0.694 0.587 0.698 0.578 0.737	1.319 1.310 1.279 1.229 1.165 1.104 1.084	OUT 0.851 0.847 0.845 0.815 0.755 0.755 0.705 0.673	MERID MACH MD 1N Ct 0.489 0.470 0.541 0.487 0.552 0.497 0.582 0.507 0.600 0.515 0.600 0.533 0.597 0.537 0.565 0.550		MERID PEAK SS VEL R MACH NO 1.034 1.516 0.972 1.490 0.971 1.485 0.941 1.441 0.927 1.423 0.955 1.467 0.978 1.461 0.994 1.449 1.037 1.437
RP 1 2 3 4 5 6 7 8 9	PERCENT NC 1 SPAN MEAN 5.00 6.4 10.00 5.2 15.00 5.2 30.00 4.6 50.00 5.3 85.00 5.6 95.00 5.6 95.00 5.7	DENCE S\$ 4.0 2.4 2.2 1.2 0.4 -0.2 -1.0 -1.2	DEV 3.8 2.8 2.6 2.7 3.8 7.0 7.3	D FACT EFF 0.420 0.817 0.427 0.818 0.423 0.849 0.433 0.876 0.466 0.917 0.450 0.924 0.460 0.906 0.468 0.898	LOSS COEFF TOT PROF 0.145 0.075 0.144 0.078 0.119 0.055 0.101 0.049 0.116 0.074 0.077 0.036 0.075 0.041 0.096 0.066 0.112 0.087	LOSS PARAM TOT PROF 0.031 0.016 0.031 0.017 0.026 0.012 0.023 0.011 0.027 0.017 0.018 0.008 0.017 0.009 0.022 0.015 0.026 0.021

FOR ROTOR 35

(i) 90 Percent of design speed; reading 3983

RP 1 2 3 4 5 6 7 8 9	RADII IN OUT 24.915 24.221 24.572 23.932 24.224 23.642 23.162 22.771 21.725 21.613 20.221 20.455 19.020 19.583 18.595 19.294 18.158 19.004	ABS BETAM IM OUT -0.0 44.8 -0.1 43.5 -0.0 43.0 0.0 42.4 -0.0 43.7 -0.1 43.0 -0.0 42.8 -0.0 44.2	REL BETAM 1N OUT 69.1 56.5 67.2 54.8 66.5 53.7 64.5 51.5 62.1 47.1 60.4 43.2 59.3 40.4 59.0 34.7	TOTAL TEMP IN RATIO 208.6 1.210 208.6 1.208 208.6 1.205 208.6 1.197 207.8 1.199 207.8 1.189 207.7 1.181 207.5 1.186 207.6 1.192	TOTAL PRESS IN RATIO 9.97 1.709 10.11 1.714 10.11 1.721 10.13 1.737 10.16 1.740 10.15 1.715 10.15 1.720 10.15 1.748
RP 1 2 3 4 5 6 7 8 9	ABS VEL IN OUT 153.9 220.8 137.6 226.1 170.8 228.2 179.4 230.0 186.2 238.5 186.3 242.1 183.2 243.2 180.8 248.4 177.1 257.6	REL VEL IN OUT 431.9 283.7 432.5 284.4 427.9 282.0 416.0 273.0 398.3 253.3 377.3 243.2 358.3 243.2 358.3 244.1 351.4 228.0 343.2 224.6	MERID VEL IN OUT 153.9 154.6 167.6 164.0 170.8 167.0 179.4 169.6 186.2 172.6 186.3 177.1 183.0 179.4 177.1 184.7	TANG VEL IN OUT -0.1 155.6 -0.3 155.7 -0.1 155.5 0.0 155.2 -0.1 164.7 -0.3 165.0 -0.1 171.9 -0.1 179.6	HHEEL SPEED IN OUT 403.4 392.2 398.4 388.0 392.2 382.8 375.3 369.0 352.0 350.2 327.8 331.6 307.5 301.3 312.6 293.6 307.5
RP 1 2 3 4 5 6 7 8 9	ABS HACH NO 1M OUT 0.452 0.611 0.504 0.627 0.515 0.635 0.542 0.642 0.565 0.668 0.565 0.682 0.554 0.689 0.548 0.704 0.536 0.730	REL MACH NO 1M OUT 1.295 0.785 1.301 0.789 1.289 0.762 1.207 0.710 1.144 0.686 1.086 0.663 1.064 0.646 1.038 0.637	MERID MACH NO IN OUT 0.462 0.433 0.504 0.455 0.515 0.464 0.565 0.499 0.565 0.548 0.508 0.536 0.523		HERID PEAK SS VEL R HACH NO 1.017 1.540 0.978 1.520 0.978 1.514 0.946 1.470 0.927 1.451 0.951 1.498 0.975 1.496 0.992 1.483 1.043 1.471
RP 1 2 3 4 5 6 7 8 9	PERCENT 1NCI SPAN HEAM 5.00 7.5 10.00 6.6 30.00 6.1 50.00 6.7 70.00 6.7 95.00 6.9 95.00 7.0	DENCE DEV \$5.1 3.8 3.8 2.7 3.6 2.3 2.7 2.9 1.8 2.8 1.2 4.1 0.4 7.0 0.1 7.0 -0.2 6.1	D FACT EFF 0.479 0.788 0.477 0.801 0.475 0.818 0.477 0.861 0.504 0.858 0.496 0.919 0.498 0.903 0.500 0.900	LOSS COEFF TOT PROF 0.185 0.112 0.172 0.103 0.159 0.093 0.123 0.070 0.135 0.091 0.093 0.049 0.085 0.048 0.106 0.074 0.117 0.089	1.055 PARAM TOT PROF 0.039 0.024 0.038 0.022 0.035 0.021 0.028 0.016 0.031 0.021 0.022 0.011 0.019 0.011 0.025 J.017 0.028 0.021

FOR ROTOR 35

(j) 90 Percent of design speed; reading 3984

RP 1 2 3 4 5 6 7 8 9	RADII 18 OUT 24.915 24.221 24.572 23.932 24.224 23.642 23.162 22.771 21.725 21.613 20.221 20.455 19.020 19.583 18.595 19.294 18.158 19.004	ABS BETAM IN OUT -0.1 47.5 -0.1 46.0 0.0 45.3 -0.0 44.2 -0.0 45.1 -0.1 44.7 -0.0 45.3 -0.0 45.3	59.9 40.5 59.6 37.7	TOTAL TEMP IN RATIO 288.9 1.221 288.8 1.219 289.0 1.215 288.8 1.205 288.0 1.204 287.6 1.194 287.4 1.186 287.5 1.190 287.5 1.196	10TAL PRESS 1M RATIO 9.98 1.737 10.10 1.741 10.11 1.748 10.13 1.755 10.15 1.753 10.15 1.751 10.15 1.722 10.16 1.738 10.13 1.767
RP 1 2 3 4 5 6 7 8 9	ABS VEL 1M OUT 148.6 223.1 161.5 227.8 164.7 229.8 173.9 231.0 180.9 238.4 181.4 240.4 178.6 242.2 177.1 249.3 173.1 258.6	REL VEL 1M 0UT 430.0 273.0 429.8 274.1 425.6 272.8 413.5 265.8 395.8 247.2 375.0 235.7 356.1 227.1 349.7 221.5 341.7 219.7	MERID VEL IN OUT 148.0 150.6 161.5 158.2 164.7 161.7 173.0 165.5 180.9 168.1 181.4 170.7 178.6 170.7 178.6 175.3 173.1 181.4	TANG VEL IN OUT -0.3 164.5 -0.3 163.8 0.0 163.3 -0.1 161.2 -0.1 169.0 -0.4 169.2 -0.1 177.3 -0.1 184.4	NHEEL SPEED 1N OUT 403.4 392.1 398.0 387.6 392.4 383.0 375.5 369.1 352.0 350.2 327.8 331.6 307.9 317.0 301.5 312.8 294.6 308.3
RP 1 2 3 4 5 6 7 8 9	ABS HACH ND IN OUT 0.443 0.614 0.485 0.629 0.636 0.521 0.643 0.547 0.666 0.550 0.676 0.541 0.684 0.536 0.705 0.523 0.732	REL MACH NO 1W OUT 1.286 0.752 1.291 0.755 1.279 0.755 1.246 0.740 1.198 0.691 1.136 0.663 1.078 0.642 1.058 0.626 1.032 0.622	MERID MACH NO IN OUT 0.443 0.415 0.485 0.437 0.475 0.448 0.521 0.460 0.547 0.470 0.550 0.480 0.541 0.498 0.536 0.496 0.523 0.513		MERID PEAK SS VEL R HACH NO 1.018 1.558 0.980 1.536 0.982 1.530 0.956 1.489 0.930 1.466 0.941 1.514 0.968 1.512 0.990 1.497 1.048 1.490
RP 1 2 3 4 5 6 7 8 9	PERCENT INCI SPAN HEAM 5.00 7.3 15.00 7.4 30.00 6.7 70.00 7.4 35.00 7.5 90.00 7.5	SS 3.8 4.6 2.7 4.4 2.2 3.5 2.9 2.4 2.9 1.0 7.1 0.6 6.6 0.4 5.7	D FACT EFF 0.510 0.772 0.505 0.785 0.500 0.866 0.496 0.852 0.520 0.853 0.517 0.896 0.506 0.702 0.519 0.898 0.517 0.901	LOSS COEFF TOT PROF 0.208 0.133 0.195 0.124 0.177 0.109 0.137 0.081 0.143 0.098 0.106 0.061 0.104 0.066 0.114 0.081 0.118 0.088	LOSS PARAM TOT PROF 0.044 0.028 0.042 0.027 0.039 0.024 0.031 0.018 0.033 0.023 0.025 0.014 0.024 0.015 0.027 0.019 J.028 0.021

FOR ROTOR 35

(k) 90 Fercent of design speed; reading 3985

RP 1 2 3 4 5 6 7 8 9	RADII 1N 0UT 24.215 24.221 24.572 23.932 24.224 23.642 23.162 22.771 21.725 21.613 20.221 20.455 19.020 19.583 18.595 19.294 18.158 19.004	ABS BETAM IN OUT -0.0 55.2 -0.0 53.9 -0.0 52.1 -0.0 49.2 -0.1 48.8 -0.1 48.1 -0.0 47.0 -0.0 46.4	REL BETAM IN OUT 71.8 57.5 70.2 56.4 69.5 54.8 67.5 51.4 65.0 47.4 63.0 43.5 61.8 39.8 61.5 37.3 61.5 37.3	TOTAL TEMP 1M RATIO 267.0 1.252 289.4 1.246 289.6 1.239 288.8 1.225 288.0 1.216 287.4 1.205 287.1 1.196 287.4 1.201	TOTAL PRESS IN RATIO 9.99 1.796 10.10 1.779 10.11 1.788 10.13 1.782 10.15 1.774 10.15 1.774 10.15 1.753 10.15 1.767 10.13 1.799
RP 1 2 3 4 5 6 7 8 9	ABS VEL IN OUT 132.4 228.4 143.3 229.2 146.7 230.8 155.5 234.3 163.9 238.1 167.2 240.4 165.3 244.3 163.5 250.2 160.2 260.1	REL VEL 1M 0UT 424.9 242.8 423.6 245.6 418.9 245.6 406.4 245.1 388.4 232.1 368.2 221.6 349.8 216.6 343.1 215.7 335.4 215.8	HERID VEL 1N QUT 132.4 130.4 143.3 134.9 146.7 141.7 155.5 153.0 163.9 157.0 167.2 160.7 165.5 163.5 171.6 160.2 179.5	TANG VEL IN OUT -0.1 187.6 -0.1 185.2 -0.1 177.5 -0.4 179.0 -0.4 178.8 -0.1 182.1 -0.3 188.2	HHEFL SPEED 1M OUT 403.6 392.4 398.5 388.1 392.3 382.9 375.3 369.0 351.8 350.0 327.7 331.5 308.2 317.4 301.5 312.8 294.3 308.0
RP 1 2 3 4 5 6 7 8 9	ABS HACH NO 1N OUT 0.394 0.622 0.428 0.625 0.438 0.632 0.466 0.647 0.493 0.662 0.504 0.673 0.499 0.688 0.493 0.705 0.482 0.735	REL MACH NO 1N OUT 1.266 0.661 1.264 0.667 1.251 0.672 1.218 0.677 1.169 0.645 1.111 0.620 1.055 0.610 1.034 0.608 1.010 0.610	MERID HACH NO IN OUT 0.394 0.355 0.428 0.368 0.438 0.388 0.466 0.422 0.493 0.436 0.504 0.450 0.499 0.469 0.493 0.484 0.493 0.484		MERID PEAK SS VEL R MACH MO 0.985 1.606 0.941 1.590 0.966 1.541 0.958 1.541 0.958 1.519 0.961 1.561 1.007 1.564 1.049 1.553 1.120 1.548
RP 1 2 3 4 5 6 7 8 9	PERCENT INCI SPAN HEAN 5.00 10.2 10.00 9.6 15.00 9.6 30.00 9.1 50.00 9.3 85.00 9.5 90.00 9.4 95.00 9.5	DENCE DEV 55 7.8 4.8 6.9 4.3 6.7 3.4 4.7 3.2 3.8 4.4 2.9 6.4 2.6 6.2 2.3 5.1	0.595 0.721 0.588 0.728 0.574 9.754 0.552 0.806 0.559 0.830 0.554 0.869 0.537 0.885 0.531 0.896 0.522 0.908	LOSS COEFF TOT PROF 0.282 0.200 0.271 9.193 0.246 0.171 0.196 0.134 0.177 0.126 0.143 0.092 0.131 0.087 0.124 0.084 0.116 0.080	LOSS PARAM TOT PRUF 0.058 0.041 0.057 0.040 0.053 0.037 0.044 0.030 0.041 0.029 0.033 0.021 0.030 0.020 0.029 0.020

FOR ROTOR 35

(1) 80 Percent of design speed; reading 3987

RP 1 2 3 4 5 6 7 8 9	RADII 1W 0UT 24.515 24.221 24.572 23.932 24.224 23.642 23.162 22.771 21.725 21.613 20.221 20.455 19.020 19.583 18.595 19.294 18.158 19.004	ABS BETAM IN OUT -0.0 52.5 -0.0 52.3 -0.0 51.5 -0.0 49.2 -0.0 47.6 -0.0 46.4 -0.0 46.4 -0.0 46.3 -0.0 47.1	REL BETAM TOTAL TEMP IN OUT : RAT10 73.4 57.8 289.9 1.189 70.5 56.0 289.9 1.184 68.4 52.4 288.6 1.176 66.1 48.3 287.6 1.166 63.3 39.0 287.4 1.155 63.1 36.6 287.3 1.156 63.2 33.7 287.3 1.161	
RP 1 2 3 4 5 6 7 8 9	ABS VEL 1W OUT 107.3 198.9 120.4 198.5 124.1 200.6 132.4 205.1 139.1 209.3 139.6 214.6 137.2 219.0 135.7 223.9 123.0 232.1	REL VEL IN OUT 376.0 227.4 375.2 224.7 371.9 223.4 360.2 219.7 343.8 212.1 322.0 202.5 305.4 1192.7 294.7 189.9	HERID VEL IN OUT 107.3 121.2 -0.1 157.8 120.4 121.5 -0.1 157.0 124.1 125.0 -0.1 156.9 132.4 134.1 -0.1 155.2 139.1 141.2 -0.1 154.4 139.6 148.0 -0.1 155.3 137.2 152.6 -0.1 157.3 137.2 152.6 -0.1 157.3 133.0 158.1 -0.1 169.9	HHEEL SPEED 1N OUT 360.3 350.2 355.3 346.0 350.5 342.1 334.9 329.3 314.4 312.7 290.1 293.4 272.7 280.8 266.7 276.7 262.9 275.1
RP 1 2 3 4 5 6 7 8 9	ABS HACH NO IN OUT 0.317 0.550 0.357 0.559 0.362 5.557 0.362 5.557 0.416 0.589 0.418 0.608 0.411 0.623 0.406 0.637 0.397 0.661	REL HACH NO IN OUT 1-112 0.629 1.112 0.629 1.104 0.620 1.074 0.614 1.029 0.597 0.964 0.574 0.914 0.558 0.896 0.548 0.881 0.541	HERID HACH NO IN OUT 0.317 0.335 0.357 0.336 0.369 0.347 0.395 0.375 0.416 0.398 0.418 0.419 0.411 0.434 0.406 0.440 0.397 0.450	MERID FEAK SS VEL R MACH NO 1.130 1.536 1.009 1.503 1.007 1.500 1.013 1.465 1.015 1.468 1.061 1.497 1.112 1.458 1.140 1.429 1.189 1.413
RP 1 2 3 4 5 6 7 8 9	PERCENT INCI SPAN MEAN 5.00 11.8 10.00 10.7 15.00 10.6 30.00 10.1 50.00 10.0 70.00 10.0 90.00 11.0 95.00 11.0	DENCE DEV \$5 9.4 5.1 7.9 5.2 7.7 4.6 6.7 3.8 5.8 4.0 5.1 3.9 4.4 5.6 4.1 5.5 4.1 5.5	D FACT EFF LOSS COEFF TOT PROF 0.553 0.732 0.254 0.207 0.557 0.723 0.258 0.217 0.555 0.737 0.247 0.208 0.544 0.780 0.210 0.180 0.535 0.830 0.167 0.141 0.526 0.877 0.129 0.106 0.514 0.889 0.125 0.111 0.519 0.889 0.131 0.121 0.526 0.890 0.137 0.129	LOSS PARAM TOT PROF 0.052 0.042 0.053 0.044 0.052 0.043 0.046 0.039 0.038 0.032 0.030 0.025 0.031 0.029 0.031 0.029

FOR ROTOR 35

(m) 70 Percent of design speed; reading 3995

RP 1 2 3 4 5 6 7 8 9	RADII 1N 0UT 24.915 24.221 24.572 23.932 24.224 23.642 23.162 22.771 21.725 21.613 20.221 20.455 19.020 19.583 18.595 19.294 18.158 19.004	ABS BETAM IN OUT -0.9 23.2 -0.1 22.9 -0.0 22.0 -0.1 23.0 -0.1 25.1 -0.1 26.8 -0.0 27.8 -0.0 28.4 -0.0 29.3	65.8 55.8 288.4 1.071 64.9 54.6 288.5 1.069 62.8 51.5 288.3 1.072 60.8 47.9 288.0 1.072 659.2 43.2 267.9 1.080 58.5 39.0 288.0 1.083 57.9 37.6 287.9 1.085	TOTAL PRESS IN RATIO 10.01 1.195 10.14 1.208 10.14 1.227 10.14 1.248 10.14 1.268 10.14 1.289 10.14 1.299 10.14 1.308 10.12 1.316
RP 1 2 3 4 5 6 7 8 9	ABS VEL IN OUT 124.0 164.5 140.0 173.3 143.6 178.2 150.8 185.8 153.9 191.7 152.7 200.3 148.9 209.2 147.6 214.3 144.1 219.9	REL VEL IN OUT 338.9 285.2 340.9 284.3 338.3 284.9 329.7 274.9 315.1 258.8 297.9 245.3 283.0 238.2 277.8 236.2 271.0 233.1	MERID VEL IN OUT 1N OUT 124.0 151.2 -0.0 64.7 140.0 159.6 -0.3 67.3 143.6 165.2 -0.0 66.8 150.8 171.0 -0.3 72.7 153.9 173.6 -0.3 81.3 152.7 178.7 -0.3 90.4 143.9 185.0 -0.0 97.7 147.6 188.5 -0.0 101.9 144.1 191.8 -0.0 107.6	HHEEL SPEED IN OUT 315.3 306.5 310.6 302.5 306.3 298.9 292.9 287.9 274.6 273.2 255.5 258.5 240.6 247.7 235.3 244.1 229.5 240.2
RP 1 2 3 4 5 6 7 8 9	ABS MACH NO IN OUT 0.369 0.477 0.418 0.504 0.429 0.520 0.452 0.542 0.462 0.560 0.458 0.586 0.446 0.613 0.442 0.628 0.431 0.644	REL MACH NO IN OUT 1.008 0.828 1.019 0.827 1.612 0.831 0.988 0.803 0.946 0.756 0.894 0.717 0.848 0.698 0.832 0.692 0.811 0.683	MERID MACH NO IN OUT 0.369 0.439 0.465 0.429 0.482 0.482 0.452 0.499 0.462 0.507 0.458 0.523 0.446 0.542 0.442 0.553 0.442 0.562	MERID PEAK SS VEL R HACH NO 1.219 1.312 1.141 1.256 1.151 1.253 1.134 1.217 1.128 1.201 1.170 1.232 1.243 1.208 1.277 1.181 1.331 1.155
RP 1 2 3 4 5 6 7 8 9	PERCENT INCII SPAN MEAN 5.00 6.9 10.00 5.1 15.00 5.0 30.00 4.4 50.00 5.4 85.00 5.9 90.00 5.8	DENCE DEV \$5 4.5 5.3 2.4 3.8 2.1 3.2 1.0 2.9 0.4 3.6 -0.1 4.1 -0.6 5.6 -1.1 5.9 -1.2 6.0	D FACT EFF	LOSS PARAM TOT PROF 0.021 0.019 0.021 0.020 0.013 0.012 0.011 0.010 0.010 0.010 0.009 0.009 0.010 0.010 0.012 0.012 0.017 0.017

FOR ROTOR 35

(n) 70 Percent of design speed; reading 3994

RP 1 2 3 4 5 6 7 8 9	RADII IN OUT IN 24.915 24.221 -0.0 24.572 23.932 -0.0 24.224 23.642 -0.0 23.162 22.771 -0.1 21.725 21.613 -0.1 20.221 20.455 -0.0 19.020 19.583 -0.0 18.595 19.294 -0.1 18.158 19.004 -0.0	28.6 66.5 55.6 288.4 1.086 27.0 65.7 54.6 288.8 1.082 27.7 63.7 51.4 288.3 1.085 28.9 61.7 48.2 298.1 1.086 30.6 60.1 43.5 288.0 1.089 31.3 59.2 39.2 287.7 1.092 31.8 58.9 37.3 287.8 1.093	TOTAL PRESS IN RATIO 10.02 1.245 10.13 1.255 10.14 1.269 10.14 1.288 10.14 1.319 10.14 1.329 10.14 1.329 10.14 1.335 10.12 1.342
RP 1 2 3 4 5 6 7 8	ABS VEL RE IN OUT 'N 119.4 164.1 337.1 134.9 171.9 338.5 138.2 175.3 336.1 144.7 182.9 327.1 148.2 187.1 312.5 142.9 203.4 279.5 142.9 203.4 279.5 138.5 212.9 267.8	266.9 134.9 150.8 -0.2 82.4 269.3 138.2 156.2 -0.0 79.6 259.8 144.7 161.9 -0.3 84.9 245.5 148.2 163.7 -0.3 90.5 224.1 142.9 173.7 -0.0 105.7 221.8 141.8 176.3 -0.3 109.5	HHEEL SPEED IN QUY 315.2 306.4 310.7 302.6 306.3 299.0 293.1 288.1 274.9 273.5 256.1 259.0 240.1 247.3 235.1 243.9 229.2 239.9
RP 1 2 3 4 5 6 7 8 9	ABS MACH NO REL IN OUT IN 0.355 0.473 1.001 0.403 0.496 1.012 0.413 0.507 1.003 0.433 0.530 0.975 0.444 0.543 0.936 0.441 0.568 0.885 0.424 0.605 0.805 0.424 0.605 0.805 0.414 0.620 0.801	0.771	MERID PEAK SS VEL R MACH NO 1.206 1.337 1.118 1.283 1.130 1.282 1.119 1.242 1.105 1.222 1.144 1.249 1.215 1.220 1.243 1.196 1.287 1.167
RP 1 2 3 4 5 6 7 8	PERCENT INCIDENCE SPAN MEAN SS 5.00 7.6 5.2 10.00 5.9 3.1 15.00 5.8 2.9 30.00 5.4 2.6 50.00 5.5 1.7 70.00 6.4 0.9 90.00 6.9 0.7 90.00 6.8 -0.6 95.00 6.9 -0.5	3.5 0.303 0.780 0.121 0.115 3.2 0.286 0.861 0.075 0.069 2.8 0.298 0.886 0.066 0.063 3.9 0.313 0.917 0.052 0.051 4.3 0.323 0.923 0.055 0.055 5.8 0.314 0.923 0.062 0.062 6.2 0.313 0.929 0.060 0.060	LOSS PARAM TOT PROF 0.025 0.023 0.026 0.024 0.016 0.015 0.015 0.014 0.012 0.012 0.013 0.013 0.014 0.014 0.014 0.014 0.021 0.021

FOR ROTOR 35

(o) 70 Percent of design speed; reading 3993

RP 1 2 3 4 5 6 7 8 9	23.162 22.771 21.725 21.613 20.221 20.455	ABS -0.1 -0.1 -0.0 -0.0 -0.1 -0.1 -0.1 -0.1	BETAM OUT 36.1 36.5 35.1 34.4 34.9 36.2 36.5 38.6	REL BETAM 1N OUT 70.6 57.3 68.2 55.7 67.3 54.7 65.3 51.8 63.4 48.6 61.9 43.5 61.0 39.1 60.6 37.6 60.7 34.6	TOTAL TEMP 1M RATID 289.4 1.103 288.1 1.106 268.5 1.100 288.3 1.100 288.1 1.098 267.9 1.101 287.8 1.102 287.9 1.106	TOTAL PRESS IN RATIO 10.03 1.309 10.14 1.310 10.14 1.318 10.14 1.333 10.14 1.341 10.14 1.359 10.14 1.368 10.14 1.369 10.12 1.379
RP 1 2 3 4 5 6 7 8 9	ABS VEI. IN OUT 111.2 165.7 124.6 170.6 128.1 172.5 134.4 178.0 137.4 181.8 136.7 190.8 133.4 198.4 132.2 201.0 129.4 206.9	REL 1M 334.6 335.0 331.6 321.9 307.3 290.2 275.1 269.7 264.1	VEL 0UT 248.3 244.1 237.8 225.6 213.4 204.0 196.6	MERID VEL IN OUT 111.2 134.0 124.6 137.1 128.1 141.1 134.4 146.9 137.4 149.1 136.7 154.7 133.4 166.0 132.2 161.7 127.4 161.8	TANG VEL IM DUT d. 2 97.6 -0.2 101.5 -0.0 99.3 -0.0 100.6 -0.3 103.9 -0.3 111.7 -0.2 117.3 -0.0 119.5 -0.2 129.0	HHEEL SPEED IN OUT 315.4 306.6 310.8 302.7 305.8 298.5 292.5 287.5 274.6 273.2 255.8 258.7 240.3 247.5 235.0 243.8 230.0 240.7
RP 1 2 3 4 5 6 7 8 9	ABS MACH ND 1N OUT 0.330 0.473 0.371 0.488 0.382 0.494 0.401 0.512 0.410 0.524 0.409 0.551 0.399 0.574 0.395 0.582 0.386 0.599	REL MA IN 0.992 0.998 0.961 0.918 0.867 0.862 0.805 0.738	OUT 0.708 0.696 0.699 0.683 0.650 0.616 0.597 0.590	HERID MACH NO IN OUT 0.330 0.382 0.371 0.392 0.382 0.404 0.401 0.422 0.410 0.430 0.409 0.463 0.399 0.468 0.386 0.468		RERID PEAK SS VEL R MACH NO 1.205 1.373 1.100 1.323 1.093 1.275 1.086 1.255 1.131 1.277 1.199 1.247 1.222 1.218 1.250 1.197
RP 1 2 3 4 5 6 7 8 9	PERCENT INC1 SPAN	DENCE 55 6.6 4.8 4.4 3.5 3.1 2.7 2.1 1.7	DEV 4.6 3.7 3.3 3.2 4.3 4.4 5.7 6.4	D FACT EFF 0.368 0.777 0.387 0.756 0.374 0.802 0.373 0.861 0.381 0.896 0.388 0.909 0.381 0.931 0.377 0.922 0.400 0.905	LOSS COEFF 70T PROF 0.148 0.136 0.164 0.155 0.133 0.125 0.096 0.092 0.076 0.074 0.075 0.074 0.062 0.062 0.074 0.074 0.097 0.097	LOSS PARAM TOT PRUF 0.030 0.028 0.035 0.933 0.029 0.027 0.021 0.029 0.017 0.017 0.015 0.015 0.017 0.017 0.015 0.015

FOR ROTOR 35

(p) 70 Percent of design speed; reading 3990

RP 1 2 3 4 5 6 7 8 9	RADII 1H 0UT 24.915 24.221 24.572 23.952 24.224 23.642 23.162 22.771 21.725 21.613 20.221 20.455 19.020 19.583 18.595 19.294 18.158 19.004	ABS BETAM IN OUT 0.0 42.9 -0.1 43.4 -0.0 42.0 -0.0 39.3 -0.0 39.3 -0.0 38.3 -0.0 38.3 -0.0 39.3 -0.0 39.3 -0.0 39.3	69.6 57.9 68.8 56.9 67.0 53.4 65.3 49.2 63.7 42.5	TOTAL TEMP IM RATio 289.2 1.114 288.0 1.117 288.4 1.114 288.3 1.108 288.0 1.105 288.0 1.168 288.0 1.105 287.7 1.107 288.1 1.107	TOTAL PRESS IN RATIO 10.03 1.320 10.14 1.314 10.14 1.320 10.14 1.337 10.14 1.354 10.14 1.384 10.14 1.384 10.14 1.384 10.14 1.384 10.12 1.395
RP 1 2 3 4 5 6 7 8 9	ABS VEL IM OUT 102.1 160.4 115.4 163.4 118.8 165.1 124.0 171.0 126.1 178.2 125.8 191.7 124.1 196.1 122.4 198.3 120.4 204.4	REL VEL IM OUT 330.3 228.8 330.5 223.3 328.2 224.6 316.8 222.2 301.7 214.3 284.0 201.4 270.5 197.7 264.3 193.7 259.3 188.8	MERID VEL IN OUT 102.1 117.6 115.4 118.7 118.8 122.7 124.0 132.4 126.1 139.9 125.8 148.4 124.1 152.7 122.4 153.8 120.4 155.4	TANG VEL IN OUT 0.0 109.1 -0.3 112.2 -0.1 110.4 -0.1 106.1 -0.1 121.3 -0.1 121.3 -0.1 125.2 -0.3 132.8	HHEEL SPEED IN OUT 314.1 305.4 309.5 301.4 305.9 298.5 291.5 286.6 274.1 272.6 254.6 257.5 240.3 243.0 229.4 240.1
RP 1 2 3 4 5 6 7 8 9	ABS HACH NO IN OUT 0.302 0.455 0.343 0.464 0.353 0.470 0.369 0.488 0.376 0.511 0.375 0.551 0.370 0.566 0.365 0.572 0.358 0.590	REL MACH NO 1N OUT 0.978 0.649 0.983 0.639 0.639 0.635 0.899 0.615 0.846 0.579 0.806 0.568 0.788 0.559 0.772 0.545	HERID MACH NO IN OUT 0.302 0.333 0.347 0.355 0.378 0.376 0.401 0.375 0.427 0.370 0.440 0.358 0.448		MERID PEAK SS VEL R MACH NO 1.152 1.401 1.029 1.346 1.034 1.359 1.068 1.307 1.110 1.287 1.180 1.298 1.231 1.269 1.257 1.239 1.290 1.216
RP 1 2 3 4 5 6 7 8	PERCENT INCI SPAN HEAN 5.00 10.4 10.00 8.9 15.00 8.9 30.00 8.6 50.00 9.1 70.00 10.0 85.50 10.4 90.00 10.3 95.00 10.4	DENCE DEV \$5.0 6.4 6.2 5.8 6.0 5.5 5.2 4.8 4.9 5.0 4.5 3.4 3.8 5.8 3.5 6.3 3.2 6.0	D FACT EFF 0.432 0.722 0.451 0.693 0.440 0.727 0.420 0.803 0.414 0.859 0.428 0.904 0.411 0.929 0.409 0.914 0.423 0.910	LOSS COEFF TOT PROF 0.205 0.191 0.229 0.218 0.201 0.192 3.148 0.143 0.113 0.111 0.087 0.086 0.068 0.068 0.097 0.087 0.097 0.097	LOSS PARAM TOT PROF 0.040 0.038 0.046 0.044 0.041 0.039 0.032 0.031 0.025 0.025 0.020 0.020 0.016 0.016 0.020 0.020 0.023 0.023

FOR ROTOR 35

(q) 70 Percent of design speed; reading 3989

RP 1 2 3 4 5 6 7 8 9	RADII 1N DUT 24.915 24.221 24.572 23.932 24.224 23.642 23.162 22.771 21.725 21.613 20.221 20.455 19.020 19.583 18.595 19.294 18.158 19.004	ABS BETAM 1 N OUT -0.0 56.6 -0.1 57.9 -0.0 55.2 -0.0 50.0 -0.0 45.1 -0.0 41.0 -0.0 41.0 -0.0 42.7	REL BETAM IN OUT 75.6 62.4 73.0 62.6 72.2 61.0 70.3 55.5 68.1 49.6 66.3 43.0 64.9 39.2 64.6 37.2 64.6 34.4	TOTAL TEMP iN RATIO 289.3 1.142 288.1 1.142 288.5 1.136 288.0 1.129 288.1 1.117 289.1 1.112 287.8 1.110 288.0 1.110 288.2 1.114	TOTAL PRESS IN RATIO 10.04 1.350 10.13 1.333 10.13 1.335 10.13 1.345 10.14 1.371 10.14 1.402 10.14 1.402 10.14 1.404 10.13 1.414
RP 1 2 3 4 5 6 7 8 9	ABS VEL 1N OUT 80.7 161.6 94.9 161.1 97.7 160.8 104.2 168.3 110.0 176.8 112.1 189.3 111.1 197.1 108.8 203.1	REL VEL IN OUT 324.1 191.9 323.7 185.7 320.0 189.0 309.6 191.2 294.7 192.7 278.3 193.5 264.1 198.5 264.1 188.5	HERID VEL 1W OUT 80.7 88.9 94.9 85.6 97.7 91.7 104.2 108.2 110.0 124.8 112.1 141.5 111.1 146.1 111.1 146.8 108.8 149.3	TANG VEL 1N OUT -0.0 135.0 -0.2 136.4 -0.1 132.1 -0.1 128.9 -0.1 125.2 -0.1 125.7 -0.1 127.7	HHEEL SPEED 1N 0UT 313.9 305.1 309.3 301.2 304.6 297.3 291.5 286.6 273.4 272.0 254.7 257.7 239.2 246.3 234.2 243.0 229.1 239.7
RP 1 2 3 4 5 6 7 8 9	ABS HACH NO IN OUT 0.238 0.453 0.281 0.452 0.289 0.452 0.309 0.476 0.327 0.504 0.333 0.567 0.333 0.567 0.323 0.584	REL MACH NO IN OUT 0.956 0.538 0.959 0.521 0.947 0.531 0.919 0.541 0.875 0.549 0.827 0.545 0.785 0.542 0.770 0.531 0.753 0.520	MERID HACH NO IN OUT 0.238 0.249 0.281 0.240 0.289 0.258 0.309 0.306 0.327 0.356 0.333 0.406 0.333 0.423 0.323 0.423 0.323 0.423		MERID PEAK SS VEL R MACH NO 1.102 1.488 0.902 1.444 0.939 1.431 1.038 1.379 1.134 1.336 1.263 1.340 1.305 1.296 1.321 1.270 1.372 1.244
RP 1 2 3 4 5 6 7 8 9	PERCENT INC SPAN HEAN 5.00 14.0 10.00 12.3 15.00 12.4 30.06 12.0 50.00 11.9 70.00 12.5 85.00 12.6 90.00 12.5 95.00 12.7	TDENCE DEV \$5 11.6 9.7 9.6 10.5 9.4 9.6 8.6 6.9 7.7 5.3 7.0 3.8 6.0 5.8 5.7 6.1 5.5 5.7	D FACT EFF 0.565	LOSS COEFF TOT PROF 0.330 0.308 0.353 0.337 0.326 0.312 0.281 0.273 0.177 0.173 0.091 0.090 0.079 0.079 0.077 0.077 0.101 0.101	LOSS PARAM TOT PROF 0.058 0.055 0.062 0.059 0.059 0.056 0.057 0.056 0.039 0.038 0.021 0.021 0.018 0.018 0.018 0.018

FOR ROTOR 35

(r) 60 Percent of design speed; reading 3997

RP 1 2 3 4 5 6 7 8 9	RADII 1N OUT 24.915 24.221 24.572 23.932 24.224 23.642 23.162 22.771 21.725 21.613 20.221 20.455 19.020 19.583 18.595 19.294 18.158 19.004	ABS BETAM IN OUT -0.0 52.7 -0.1 55.1 -0.0 52.6 -0.0 47.1 -0.0 42.7 -0.0 41.3 -0.0 40.2 -0.0 42.0	REL BETAM IN OUT 74.9 61.0 72.6 61.6 71.9 59.8 70.1 54.3 68.0 49.4 66.1 42.8 65.0 38.2 64.7 36.8 64.5 33.7	TOTAL TEMP IN RATIO 289.2 1.102 288.2 1.101 288.2 1.094 288.1 1.085 288.1 1.084 288.0 1.082 288.1 1.082 287.8 1.086	TOTAL PRESS IN RATIO 10.07 1.257 10.13 1.244 10.13 1.249 10.13 1.257 10.13 1.272 10.14 1.295 10.14 1.293 10.13 1.296 10.13 1.303
RP 1 2 3 4 5 6 7 8 9	ABS VEL 1M OUT 73.7 140.7 84.6 139.8 87.0 141.0 91.9 148.3 96.3 154.3 97.8 164.6 97.0 171.2 96.1 173.6 95.0 178.7	REL VEL IN 0UT 282.8 175.6 282.6 168.1 279.4 170.2 269.5 172.9 256.9 174.3 241.4 168.7 229.3 165.0 225.2 165.5 220.3 159.6	MERID VEL IN OUT 73.7 85.2 84.6 80.0 87.0 85.7 91.9 100.9 96.3 113.5 97.8 123.7 97.0 129.6 96.1 132.6 95.0 132.9	TAF VEL IN OUT -0.0 111.9 -0.2 1114.7 -0.0 112.0 -0.0 108.6 -0.0 108.6 -0.0 108.6 -0.0 111.9 -0.0 112.1 -0.0 119.6	HHEEL SPEED IN OUT 273.0 265.4 269.5 262.5 265.5 259.1 253.3 249.0 238.1 236.9 220.7 223.3 207.8 214.0 203.6 211.2 198.8 208.0
RP 1 2 3 4 5 6 7 8 9	ABS MACH NO 1M OUT 0.217 0.399 0.250 0.397 0.257 0.401 0.272 0.424 0.285 0.444 0.290 0.475 0.287 0.496 0.285 0.503 0.282 0.518	REL MACH NO IM OUT 0.833 0.498 0.836 0.477 0.826 0.494 0.798 0.494 0.761 0.501 0.715 0.487 0.680 0.478 0.667 0.479 0.653 0.462	MERID MACH NO IN OUT 0.217 0.242 0.250 0.227 0.257 0.244 0.272 0.289 0.285 0.326 0.290 0.357 0.287 0.375 0.287 0.384 0.282 0.385		MERID PEAK SS VEL R MACH MO 1.157 1.278 0.945 1.248 0.984 1.238 1.098 1.190 1.178 1.159 1.265 1.155 1.337 1.153 1.379 1.102 1.398 1.076
RP 1 2 3 4 5 6 7 8 9	PERCENT INCI SPAN HEAN 5.00 13.3 10.00 12.0 15.00 12.0 30.00 11.7 50.00 11.8 70.00 12.4 85.00 12.7 90.00 12.6 95.00 12.5	DENCE DEV 55 10.9 8.2 9.2 9.6 9.0 8.4 8.3 5.7 7.6 5.1 6.9 3.7 6.1 4.8 5.8 5.7 5.3 5.0	D FACT EFF 0.528	LOSS COEFF TOT PROF 0.283 0.283 0.319 0.319 0.298 0.298 0.235 0.235 0.140 0.140 0.084 0.084 0.064 0.064 0.062 0.062 0.101 0.101	LOSS PARAM TOT PROF 0.053 0.052 0.057 0.057 0.056 0.056 0.019 0.049 0.031 0.031 0.020 0.020 0.015 0.015 0.015 0.015

FOR ROTOR 35

(s) 50 Percent of design speed; reading 4000

RP 1 2 3 4 5 6 7 8 9	RADII IN 0UT 24.915 24.221 24.572 23.932 24.224 23.642 23.162 22.771 21.725 21.613 20.221 20.455 19.020 19.583 18.595 19.294 18.158 19.004	ABS BETAM IN OUT -0.1 47.3 -0.0 48.6 -0.1 42.0 -0.0 39.7 -0.1 39.7 -0.0 38.6 -0.0 39.7 -0.1 41.3	REL BETAM 1N OUT 73.8 59.8 72.0 58.9 71.3 57.7 67.5 53.9 67.6 48.8 66.0 41.7 64.8 39.0 64.3 34.0	TOTAL TEMP 1N RATIO 289.1 1.063 288.3 1.064 288.6 1.063 288.0 1.055 287.8 1.057 288.0 1.054 288.0 1.054 287.8 1.057	TOTAL PRESS IN RATIO 10.10 1.155 10.13 1.153 10.13 1.154 10.13 1.162 10.13 1.174 10.13 1.187 10.13 1.188 10.13 1.188 10.13 1.188
RP 1 2 3 4 5 6 7 8 9	ABS VEL IN OUT 65.0 114.5 71.9 116.5 73.7 116.9 78.0 121.1 80.7 128.2 81.1 138.8 80.7 140.3 79.9 142.2 78.7 146.6	REL VEL IN OUT 233.3 154.4 232.0 148.9 229.4 149.9 222.2 152.8 211.6 149.8 199.2 143.0 189.3 141.1 185.2 137.1 181.4 132.8	MERID VEL IN OUT 55.0 77.6 71.9 77.0 73.7 80.0 78.0 90.1 80.7 98.6 81.1 106.7 80.7 109.7 79.9 109.5 78.7 110.2	TANG VEL IN OUT -0.1 84.2 -0.0 85.3 -0.1 81.0 -0.0 81.8 -0.1 88.7 -0.0 90.8 -0.1 96.7	HHEEL SPEED 1N OUT 223.9 217.7 220.6 214.9 217.3 212.0 208.0 204.4 195.6 194.6 181.8 183.9 171.2 176.3 167.1 173.4 163.3 170.9
RP 1 2 3 4 5 6 7 8 9	ABS MACH ND 1N OUT 0.191 0.329 0.212 0.335 0.217 0.337 0.230 0.350 0.238 0.372 0.240 0.403 0.239 0.408 0.236 0.414 0.233 0.427	REL MACH NO 1N OUT 0.687 0.444 0.685 0.429 0.677 0.432 0.656 0.442 0.625 0.434 0.589 0.416 0.560 0.411 0.547 0.399 0.536 0.387	MERID MACH NO IN OUT 0.191 0.223 0.212 0.222 0.217 0.230 0.260 0.238 0.286 0.240 0.310 0.239 0.319 0.236 0.319 0.236 0.319 0.233 0.321		MERID PEAK SS VEL R MACH NO 1.194 1.027 1.072 1.008 1.086 1.000 1.155 0.965 1.222 0.944 1.316 0.949 1.356 0.921 1.370 0.899 1.400 0.880
RP 1 2 6 7 8	PERCENT INCI SPAN HEAM 5.00 12.2 10.00 11.3 15.00 11.4 30.00 11.1 50.00 11.4 70.00 12.3	DENCE DEV SS 9.8 7.1 8.6 6.8 8.4 6.4 7.7 5.3 7.2 4.5 6.6 2.6	D FACT EFF 0.474 0.667 0.499 0.645 0.484 0.667 0.442 0.758 0.423 0.854 0.425 0.888	LOSS CUEFF TOT PROF 0.246 0.246 0.258 0.268 0.251 0.251 0.180 0.180 0.114 0.114 0.100 0.100	LOSS PARAM TOT PROF 0.047 0.047 0.052 0.052 0.050 0.050 0.038 0.038 0.025 0.025 0.024 0.024

TABLE VI. - BLADE-ELEMENT DATA AT BLADE EDGES FOR STATOR 35

(a) 100 Percent of design speed; reading 4004

RP 1 2 3 4 5 6 7 8 9	RADII 1N OUT 23.993 23.752 23.736 23.523 23.480 23.294 22.685 22.593 21.608 21.656 20.505 20.709 19.670 19.990 19.388 19.746 19.103 19.505	ABS BETAM 1N OUT 32.1 11.1 31.6 10.4 31.3 10.2 31.6 9.7 33.7 10.9 34.8 11.6 35.7 10.7 36.6 9.5 38.3 9.3	REL BETAM IN OUT 32.1 11.1 31.6 10.4 31.3 10.2 31.6 9.7 33.7 10.9 34.8 11.6 35.7 10.7 36.6 9.5 38.3 9.3	TOTAL TF #3- IN RATIO 345.1 1.000 345.3 1.000 344.3 1.000 344.1 1.000 346.3 1.000 346.5 1.000 343.8 1.000 343.9 1.000 345.9 1.000	TOTAL PRESS IN RATIO 16.44 0.969 16.91 0.984 17.16 0.988 17.33 0.991 17.94 0.987 18.25 0.987 17.78 0.985 17.64 0.981 17.63 0.970
RP 1 2 3 4 5 6 7 8 9	ABS VEL 1N OUT 246.6 200.2 254.9 215.6 258.5 223.2 261.6 232.6 271.9 245.1 278.0 253.7 272.5 249.1 271.1 246.8 272.8 244.0	REL VEL IN 0UT 246.6 200.2 254.9 215.6 258.5 223.2 261.6 232.6 271.9 245.1 278.0 253.7 272.5 249.1 271.1 246.8 272.8 244.0	MERID VEL 1N 0UT 209.0 196.4 217.2 212.0 220.9 219.6 222.7 229.3 226.2 240.7 228.3 248.5 221.3 244.7 217.7 243.4 214.1 240.8	TANG VEL IN 0UT 131.0 38.4 133.5 38.8 134.3 39.5 137.3 39.1 150.8 46.5 158.6 51.0 158.9 46.2 161.6 40.7 169.1 39.5	HHEEL SPEED IN OUT O.O O.O O.O O.O O.O O.O O.O O.O O.O O.
RP 1 2 3 4 5 6 7 8	ABS MACH NO 1M OUT 0.693 0.554 0.719 0.599 0.731 0.623 0.741 0.651 0.771 0.687 0.790 0.713 0.776 0.702 0.771 0.695 0.774 0.684	REL MACH NO IN OUT 0.693 0.554 0.719 0.599 0.731 0.623 0.741 0.651 0.771 0.687 0.790 0.713 0.776 0.702 0.771 0.695 0.774 0.684	HERID HACH NO IN OUT 0.587 0.543 0.612 0.589 0.625 0.613 0.631 0.642 0.641 0.675 0.649 0.699 0.630 0.690 0.619 0.686 0.608 0.675		MERID PEAK SS VEL R MACH NO 0.940 0.900 0.976 0.917 0.994 0.921 1.029 0.935 1.064 1.019 1.088 1.060 1.106 1.045 1.118 1.054 1.125 1.094
RP 1 2 3 4 5 6 7 8 9	PERCENT INCII SPAN HEAN 5.00 -2.3 10.00 -3.0 15.00 -3.4 30.00 -2.0 70.00 -1.6 85.00 -1.8 90.00 -1.2 95.00 -1.2	DENCE DEV SS -10.0 8.5 -10.3 7.8 -10.6 7.6 -9.8 6.9 -7.5 7.8 -6.3 8.1 -5.8 7.1 -5.9 5.9	D FACT EFF 0.334 0.000 0.297 0.000 0.277 0.000 0.252 0.000 0.238 0.000 0.224 0.000 0.224 0.000 0.221 0.000 0.225 0.000	LOSS COEFF TOT PROF 0.113 0.113 0.054 0.054 0.042 0.042 0.029 0.029 0.540 0.040 0.037 0.037 0.047 0.059 0.059 0.091 0.091	LOSS PARAM TOT PROF 0.042 0.042 0.020 0.020 0.016 0.016 0.011 0.011 0.014 0.014 0.013 0.013 0.016 0.016 0.020 0.020 0.031 0.031

FOR STATOR 35

(b) 100 Percent of design speed; reading 3978

RP 1 2 3 4 5 6 7 8 9	RADII IN OUT 23.993 23.752 23.736 23.523 23.480 23.294 22.685 22.593 21.608 21.656 20.505 20.709 19.670 19.990 19.388 19.746 19.103 19.505	ABS BETAM IN OUT 39.1 11.8 38.4 11.1 37.1 11.0 36.9 10.8 39.4 12.1 40.0 12.5 39.9 11.1 40.8 11.4 42.6 12.7	REL BETAM TOTAL TEMP IN COUT IN RATIO 39.1 11.8 356.1 1.000 37.1 11.0 353.7 1.000 37.1 11.0 353.7 1.000 39.4 12.1 354.5 1.200 40.0 12.5 353.6 1.000 40.8 11.4 350.3 1.200 42.6 12.7 352.9 1.000	TOTAL PRESS IN RATIO 18.03 0.968 18.42 0.979 18.61 0.984 18.73 0.990 19.24 0.986 19.52 0.981 19.11 0.980 19.05 0.975 19.22 0.964
RP 1 2 3 4 5 6 7 8 9	ABS VEL 1N OUT 250.3 183.1 256.8 196.8 203.8 262.6 211.9 272.7 222.8 279.7 229.8 275.6 228.0 276.4 227.9 281.7 230.1	REL VEL 1N OUT 250.3 183.1 256.8 196.8 258.9 203.8 262.6 211.9 272.7 222.8 279.7 229.8 275.6 228.0 276.4 227.9 281.7 230.1	HERID VEL IN OUT 194.3 179.2 157.8 37.4 201.3 179.0 159.5 38.0 206.4 200.0 156.3 39.1 210.1 208.2 157.5 39.6 210.7 217.9 173.2 46.7 214.4 224.4 179.7 49.7 211.5 223.7 176.7 44.1 209.4 223.4 180.5 44.9 207.3 224.4 190.8 50.6	HHEEL SPEED IN OUT O.O O.O O.O O.O O.O O.O O.O O.O O.O O.
RP 1 2 3 4 5 6 7 8	ABS MACH NO 1N OUT 0.693 0.496 0.713 0.535 0.721 0.557 0.725 0.582 0.763 0.612 0.787 0.634 0.778 0.632 0.780 0.631 0.794 0.635	REL MACH NO 1N OUT 0.693 0.496 0.713 0.535 0.721 0.557 0.735 0.582 0.763 0.612 0.787 0.634 0.778 0.632 0.780 0.631 0.794 0.635	MERID MACH NO 1N OUT 0.538 0.485 0.559 0.525 0.575 0.547 0.588 0.572 0.590 0.598 0.603 0.619 0.577 0.620 0.591 0.619 0.584 0.619	MERID PEAK SS VEL R MACH NO 0.922 1.067 C.959 1.080 0.969 1.058 0.991 1.063 1.034 1.160 1.047 1.196 1.057 1.161 1.067 1.179 1.083 1.238
RP 1 2 3 4 5 6 7 8	PERCENT INCI SPAN HEAM 5.00 4.7 10.00 3.9 15.00 2.4 30.00 1.8 50.00 3.7 70.00 3.6 85.00 2.4 90.00 2.9 95.00 4.4	DENCE DEV 55 -2.9 9.2 -3.5 8.6 -4.7 8.5 -4.6 8.0 -1.8 9.0 -1.1 9.0 -1.6 7.6 -0.8 7.8 0.8 9.1	D FACT EFF TOT PROF 0.455 0.000 0.118 0.118 0.416 0.000 0.073 0.073 0.386 0.000 0.053 0.053 0.341 0.000 0.034 0.034 0.352 0.000 0.045 0.045 0.342 0.000 0.057 0.057 0.338 0.000 0.062 0.062 0.342 0.000 0.076 0.076 0.350 0.000 0.105 0.105	LOSS PARAM TOT PROF 0.044 0.044 0.027 0.027 0.020 0.020 0.013 0.013 0.016 0.016 0.020 0.020 0.021 0.021 C.026 0.026 0.035 0.035

FOR STATOR 35

(c) 100 Percent of design speed; reading 3977

RP 1 2 3 4 5 6 7 8 9	RADII 1N OUT 23.993 23.752 23.736 23.523 23.480 23.294 22.685 22.593 21.608 21.656 20.505 20.709 19.670 19.990 19.388 19.746 19.103 19.505	ABS BETAM IN OUT 43.1 12.3 42.4 11.7 41.4 12.0 40.9 12.1 42.6 13.0 43.1 13.1 42.7 11.7 43.5 12.1 45.0 13.4	REL BETAM IN OUT 43.1 12.3 42.4 11.7 41.4 12.0 40.9 12.1 42.6 13.0 43.1 13.1 42.7 11.7 43.5 12.1 45.0 13.4	TOTAL TEMP IN RATIO 363.7 1.000 362.5 .000 361.2 1.000 359.0 1.000 359.4 1.000 357.7 1.000 353.6 1.000 354.1 1.000 356.3 1.000	TOTAL PRESS IN RATIO 19.13 0.966 19.47 0.972 19.66 0.978 19.78 0.983 19.97 0.979 20.12 0.968 19.68 0.971 19.70 0.966 19.88 0.957
RP 1 2 3 4 5 6 7 8	ABS VEL IM OUT 257.1 178.1 262.4 189.2 264.7 196.2 267.7 204.5 273.9 212.2 278.9 215.3 275.6 213.1 277.8 214.3 283.4 217.6	REL VEL 1N OUT 257.1 178.1 262.4 189.2 264.7 196.2 267.7 204.5 273.9 212.2 278.9 215.3 275.6 214.3 283.4 217.6	MERID VEL 1N OUT 187.7 174.0 193.9 155.3 198.5 191.9 202.3 199.9 201.6 206.8 203.6 209.7 202.4 208.7 201.5 209.6 200.4 211.7	TANG VEL 1N OUT 175.7 38.1 176.8 38.4 175.1 40.9 175.4 42.9 185.4 47.7 190.6 48.6 187.1 43.1 191.2 45.0 200.4 50.3	HHEEL SPEED IN OUT 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
RP 1 2 3 4 5 6 7 8 9	ABS MACH NO IN OUT 0.705 0.476 0.722 0.508 0.731 0.529 0.743 0.555 0.761 0.577 0.779 0.587 0.774 0.584 0.584 0.780 0.595	REL HACH NO IN OUT 0.705 0.476 0.722 0.508 0.731 0.529 0.743 0.555 0.761 0.577 0.779 0.587 0.774 0.584 0.780 0.587 0.795 0.595	HERID HACH ND IN OUT 0.515 0.465 0.534 0.498 0.518 0.561 0.562 0.560 0.562 0.569 0.572 0.568 0.572 0.568 0.572 0.568 0.574 0.552 0.579		MERID PEAK SS VEL R HACH NO 0.927 1.183 0.956 1.191 0.967 1.178 0.988 1.177 1.026 1.239 1.030 1.267 1.031 1.230 1.040 1.250 1.056 1.304
RP 1 2 3 4 5 6 7 8	PERCENT INCI SPAN HEAN 5.00 8.7 10.00 7.8 15.00 6.7 30.00 6.7 50.00 6.9 70.00 6.7 85.00 5.3 90.00 5.7	DENCE DEV \$5 1.1 9.8 0.5 9.2 -0.4 9.4 -0.5 9.3 1.4 9.9 2.1 9.6 1.3 8.1 1.9 8.5 3.2 9.7	D FACT EFF 0.514 0.000 0.481 0.000 0.452 0.000 0.422 0.000 0.408 0.000 0.408 0.000 0.408 0.000 0.408 0.000	LOSS COEFF TOT PROF 0.122 0.122 0.095 0.095 0.074 0.074 0.055 0.055 0.055 0.055 0.096 0.096 0.090 0.090	LOSS PARAM TOT PROF C.046 0.046 0.035 0.035 0.027 0.027 0.020 0.020 0.023 0.023 0.033 0.033 0.031 0.035

FOR STATOR 35

(d) 100 Percent of design speed; reading 3974

RP 1 2 3 4 5 6 7 8 9	RADII IN OUT 23.993 23.752 23.736 23.523 23.480 23.294 22.685 22.593 21.608 21.656 20.505 20.709 19.670 19.990 19.388 19.746 19.103 19.505	ABS BETAM IN OUT 45.5 12.8 44.6 !2.4 43.7 12.7 42.8 12.9 43.8 13.2 44.5 13.2 44.5 13.2 44.4 12.1 45.0 12.9 45.4 14.1	REL BETAM IN OUT 45.5 12.8 44.6 12.4 43.7 12.7 42.8 12.9 43.8 13.2 44.5 13.2 44.5 13.2 45.0 12.9 15.4 14.1	TOTAL TEMP IN RATIO 368.4 1.000 365.4 1.000 362.4 1.000 361.6 1.000 355.2 1.000 355.5 1.000 357.4 1.000	TOTAL FRESS IN RATIO 19.66 0.963 19.93 0.965 20.07 0.972 20.11 0.978 20.26 0.971 20.32 0.962 19.86 0.966 19.89 0.962 20.12 0.951
RP 1 2 3 4 5 6 7 8 9	ABS VEL IN OUT 260.4 176.7 264.3 185.9 266.0 193.0 267.5 201.0 272.7 207.5 276.9 210.0 273.3 207.7 276.0 209.5 282.1 212.8	REL VEL 1M OUT 260.4 176.7 264.3 185.9 266.0 193.0 267.5 201.0 272.7 207.5 276.9 210.0 273.3 207.7 276.0 209.5 282.1 212.8	MERID VEL 1M OUT 182.6 172.3 188.0 181.6 192.2 189.9 196.4 195.9 196.7 202.1 197.6 204.4 195.3 203.1 195.1 204.2 198.0 206.5	TANG VEL IN OUT 185.8 39.2 185.7 39.9 183.9 42.3 181.6 45.0 180.8 47.3 194.0 48.1 191.3 43.4 195.3 46.8 201.0 51.7	HHEEL SPEED IN OUT 0.0 G.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
RP 1 2 3 4 5 5 7 8 9	ABS HACH NO IN OUT C.710 0.469 0.724 0.496 0.730 0.517 0.738 0.542 0.755 0.561 0.771 0.570 0.764 0.567 0.773 0.572 0.769 0.580	REL MACH NO IN OUT 0.710 0.469 0.724 0.496 0.730 0.517 0.738 0.542 0.755 0.561 0.771 0.570 0.644 0.567 0.773 0.572 0.789 0.580	MERID MACH NO 1M OUT 0.498 0.458 0.515 0.485 0.527 0.504 0.542 0.528 0.545 0.546 0.550 0.555 0.546 0.555 0.546 0.555 0.546 0.555		HERID PEAK SS VEL R HACH MO 0.944 1.249 0.966 1.249 0.980 1.235 0.997 1.216 1.027 1.260 1.035 1.290 1.040 1.250 1.047 1.279 1.043 1.306
RP 1 2 3 4 5 6 7 8	PERCE'47 1MC1 SPAN HEAM 5.00 11.1 10.00 10.1 15.00 9.0 30.00 7.7 50.00 8.1 70.00 8.1 85.00 7.0 90.00 7.2 95.00 7.2	IDENCE DEV 55 3.5 10.3 2.7 9.8 1.9 10.1 1.3 10.1 2.6 10.1 3.4 9.8 3.0 8.5 3.4 9.3 3.7 10.4	D FACT EFF 0.539 0.000 0.508 0.000 0.478 0.000 0.440 0.000 0.428 0.000 0.427 0.000 0.425 0.000 0.423 0.000 0.423 0.000	LOSS COEFF TOT PROF 0.131 0.131 0.118 0.118 0.093 0.093 0.071 0.091 0.091 0.091 0.116 0.116 0.116 0.116 0.116 0.116	LOSS PARAM TOT PROF 0.049 0.049 0.044 0.044 0.034 0.026 0.026 0.026 0.032 0.032 0.040 0.040 0.036 0.036 0.039 0.039 0.048 0.048

FOR STATOR 35

(e) 100 Percent of design speed; reading 3976

RP 1 2 3 4 5 6 7 8 9	RADII 1M OUT 23.993 23.752 23.736 23.523 23.480 23.294 22.685 22.593 21.608 21.656 20.505 20.709 19.670 19.990 19.388 19.746 19.103 19.505	ABS 1 1M 55.8 54.7 53.3 50.6 49.0 48.0 47.4 47.4	BETAM 007 16.0 14.5 13.5 12.4 12.9 13.7 13.8 14.9 15.9	REL BETAM TOTAL TEMP IN RATIO 55.8 16.0 382.6 1.000 54.7 14.5 379.8 1.000 50.6 12.4 372.5 1.000 49.0 12.9 367.5 1.000 48.0 13.7 362.4 1.000 47.4 13.8 358.8 1.000 47.4 14.9 358.9 1.000 47.5 15.9 359.8 1.000	TOTAL PRESS IN RATIO 20.56 0.948 20.57 0.944 20.64 0.944 20.72 0.945 20.72 0.946 20.64 0.944 20.30 0.949 20.49 0.941 20.80 0.929
RP 1 2 3 4 5 6 7 8 9	ABS VEL 1N OUT 264.3 181.0 263.9 182.4 265.9 189.4 272.2 192.9 273.1 193.5 274.9 191.4 279.8 193.3 286.9 195.8	263.9 265.1 267.9 272.2 273.1 274.9 279.8	VEL 0UT 181.0 182.4 184.5 189.4 192.9 193.5 193.3 195.8	MERID VEL 1N DUT 148.4 174.0 218.7 49.0 152.5 176.6 215.4 45.7 158.3 179.4 212.6 43.2 170.0 185.0 207.1 40.6 178.5 188.0 205.6 43.2 182.6 188.0 203.1 45.7 186.0 185.9 202.4 45.5 189.5 186.8 205.9 49.7 193.7 188.3 211.7 53.6	NHEEL SPEED IN OUT 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
RP 1 2 3 4 5 6 7 8 9	ABS MACH NO IN OUT 0.707 0.472 0.709 0.477 0.714 0.484 0.728 0.502 0.747 0.515 0.755 0.521 0.765 0.523 0.801 0.529	0.709 0.714 0.728 0.747 0.755 0.765 0.780	CH NO QUT 0.472 0.477 0.502 0.502 0.515 0.521 0.523 0.529	MERID MACH NO 1N OUT 0.397 0.454 0.410 0.462 0.426 0.471 0.462 0.471 0.462 0.490 0.489 0.502 0.505 0.506 0.510 0.502 0.528 0.505 0.541 0.509	MERID PEAK SS VEL R MACH HO 1.172 1.505 1.158 1.475 1.138 1.447 1.088 1.398 1.053 1.380 1.030 1.356 0.999 1.337 0.986 1.354 0.972 1.384
RP 123456789	PERCENT INC SPAN HEAN 5.00 21.4 10.00 20.2 15.00 18.6 30.00 15.6 50.00 13.3 70.00 11.6 95.00 10.6 95.00 9.6	1DENCE 55 13.8 12.8 11.5 9.2 7.8 7.0 6.0 5.8	DEV 13.4 11.9 10.9 9.6 10.2 10.2 11.3 12.3	D FACT EFF TOT PROF 0.562 0.000 0.183 0.179 0.556 0.000 0.193 0.192 0.548 0.000 0.199 0.197 0.526 0.000 0.199 0.197 0.526 0.000 0.186 0.185 0.509 0.000 0.175 0.174 0.495 0.000 0.175 0.176 0.499 0.000 0.179 0.178 0.503 0.000 0.205 0.202	LOSS PARAM TOT PROF 0.068 0.066 0.072 0.073 0.073 0.073 0.068 0.068 0.062 0.062 0.061 0.054 0.064 0.054 0.060 0.059

FOR STATOR 35

(f) 100 Percent of design speed; reading 3975

RP 1 2 3 4 5 6 7 8 9	RADII 1W OUT 23.993 23.752 23.736 23.523 23.480 23.294 22.685 22.593 21.608 21.656 20.505 20.709 19.670 19.990 19.388 19.746 19.103 19.505	ABS BETAN IN OUT 49.1 14.0 48.2 13.4 47.1 13.9 45.6 13.2 45.9 13.4 45.9 13.2 45.7 12.6 46.2 13.6 46.7 14.6	REL BETAM TOTAL TEMP IN OUT IN RATIO 49.1 14.0 373.5 1.000 48.2 13.4 371.6 1.000 47.1 13.9 370.0 1.000 45.6 13.2 366.5 1.000 45.9 13.4 364.1 1.000 45.9 13.2 360.4 1.000 45.7 12.6 356.8 1.000 46.2 13.6 357.1 1.000 46.7 14.6 358.8 1.000	TOTAL PRESS IN RATIO 20.03 0.960 20.28 0.957 20.41 0.961 20.50 0.967 20.53 0.960 20.50 0.955 20.08 0.960 20.20 0.954 20.50 0.943
RP 1 2 3 4 5 6 7 8 9	ABS VEL 1W OUT 261.0 177.0 264.9 183.2 266.6 188.8 269.0 196.3 273.5 200.6 275.4 201.9 273.8 200.2 277.9 202.5 285.2 205.6	REL VEL 1N OUT 261.0 177.0 264.9 183.2 266.6 188.8 269.0 196.3 273.5 200.6 275.4 201.9 273.8 200.2 277.9 202.5 285.2 205.6	TANG VEL IN OUT IN OUT 170.8 171.8 197.4 42.8 176.4 178.3 197.6 42.4 181.5 183.3 195.4 45.5 189.3 191.1 192.0 44.8 190.2 195.2 196.6 46.3 191.6 196.6 197.8 45.9 191.1 195.4 195.9 43.6 192.4 196.8 200.6 47.7 195.5 199.0 207.6 51.7	HHEEL SPEED IN OUT 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
RP 1 2 3 4 5 6 7 8 9	ABS HACH NO 1N OUT 0.707 0.467 0.720 0.485 0.727 0.502 0.538 0.525 0.755 0.539 0.765 0.546 0.764 0.544 0.777 0.550 0.797 0.558	REL MACH NO 1N OUT 0.707 0.467 0.720 0.4685 0.727 0.502 0.738 0.525 0.755 0.539 0.765 0.546 0.764 0.544 0.777 0.550 0.797 0.550	MERID HACH NO IN OUT 0.462 0.453 0.490 0.472 0.495 0.487 0.517 0.512 0.525 0.525 0.532 0.532 0.534 0.531 0.537 0.535 0.547 0.540	MERID PEAK SS VEL R HACH NO 1.006 1.332 1.010 1.332 1.010 1.314 1.015 1.286 1.026 1.314 1.026 1.314 1.026 1.316 1.021 1.290 1.023 1.316 1.018 1.355
RP 1 2 3 4 5 6 7 8 9	PERCENT INCI SPAN HEAM 5.00 14.7 15.00 12.4 30.00 10.5 50.00 10.2 70.60 9.2 90.00 8.2 90.00 8.4 95.00 8.5	DENCE DEV \$5 7.1 11.4 6.3 10.8 5.3 11.3 4.1 10.4 4.7 10.2 4.9 9.7 4.2 9.0 4.6 10.0 4.9 10.9	D FACT EFF TOT PROF 0.551 0.000 0.140 0.140 0.533 0.000 0.146 0.146 0.507 0.000 0.132 0.132 0.476 0.000 0.110 0.110 0.467 0.000 0.126 0.125 0.461 0.000 0.140 0.140 0.460 0.000 0.123 0.123 0.458 0.000 0.140 0.139 0.463 0.000 0.168 0.166	LOSS PARAM TOT PROF 0.052 0.052 0.054 0.054 0.049 0.049 9.040 0.040 0.045 0.045 0.042 0.048 0.042 0.042 0.047 0.047

FOR STATOR 35

(g) 90 Percent of design speed; reading 3979

RP 1 2 3 4 5 6 7 8 9	RADII 1M OUT 23.993 23.752 23.736 23.523 23.480 23.294 22.685 22.593 21.608 21.656 20.505 20.709 19.670 19.990 19.388 19.746 19.103 19.505	ABS BETAM 1N OUT 29.9 11.3 29.6 10.5 29.1 10.4 30.2 9.8 32.3 10.6 32.8 10.6 33.7 10.5 34.8 10.6 36.8 12.1	REL BETAM TOTAL TEMP IN OUT IN RATIO 29.9 11.3 332.9 1.000 29.6 10.5 333.4 1.000 29.1 10.4 333.3 1.000 30.2 9.8 334.0 1.000 32.8 10.6 334.5 1.000 32.8 10.6 334.5 1.000 34.8 10.6 333.7 1.000 36.8 12.1 336.3 1.000	TOTAL PRESS IN RATIO 15.07 0.969 15.48 0.983 15.69 0.989 15.95 0.991 16.28 0.992 16.57 0.991 16.42 0.987 16.35 0.986 16.46 0.976
RP 1 2 3 4 5 6 7 8 9	ABS VEL 1N OUT 231.0 192.7 239.2 207.5 242.9 215.7 248.3 226.4 254.5 237.1 260.5 245.0 258.7 244.6 258.7 244.3 262.8 243.6	REL VEL IN 0UT 231.0 192.7 239.2 207.5 242.9 215.7 248.3 226.4 254.5 237.1 260.5 245.0 258.7 244.3 262.8 243.6	MERID VEL IN GUT 200.3 189.0 115.0 37.8 208.0 204.0 118.2 37.7 212.1 212.2 118.2 39.1 214.5 223.2 124.9 38.4 215.2 233.1 135.9 43.5 219.0 240.8 141.2 45.2 215.3 240.5 143.5 44.4 212.3 240.5 143.5 44.4 212.3 240.2 147.7 45.0 210.5 238.2 157.4 51.1	HHEE! SPEED IN OUT 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
RP 1 2 3 4 5 6 7 8 9	ABS MACH NO 1M OUT 0.658 0.542 0.683 0.586 0.695 0.611 0.711 0.643 0.729 0.675 0.749 0.700 0.745 0.700 0.744 0.699 0.754 0.694	REL MACH NO IN OUT 0.658 0.542 0.683 0.586 0.695 0.611 0.711 0.643 0.729 0.675 0.749 0.700 0.745 0.700 0.744 0.699 0.754 0.694	HERID MACH NO 1N OUT 0.571 0.532 0.594 0.576 0.601 0.614 0.634 0.616 0.663 0.620 0.688 0.610 0.620 0.688 0.611 0.687 0.604 0.678	HERID PEAK SS VEL R HACH NO 0.943 0.798 0.981 0.819 1.000 0.815 1.040 0.858 1.083 0.926 1.100 0.952 1.117 0.950 1.131 0.971 1.132 1.026
RP 1 2 3 4 5 6 7	PERCENT INCI SPAN HEAM 5.00 -4.6 10.00 -4.6 10.00 -5.6 30.00 -3.5 70.00 -3.5 70.00 -3.5 90.00 -3.8 90.00 -3.0	DENCE DEV \$5 -12.2 8.6 -12.3 7.9 -12.7 7.8 -11.3 7.0 -8.9 7.5 -8.9 7.5 -8.9 7.0 -5.0 8.5	D FACT EFF TOT PROF 0.295 0.000 0.122 0.122 0.262 0.000 0.065 0.065 0.237 0.000 0.038 0.038 0.219 0.000 0.031 0.031 0.200 0.000 0.026 0.026 0.189 0.000 0.028 0.028 0.186 0.000 0.042 0.042 0.190 0.000 0.044 0.044 0.208 0.000 0.077 0.077	LOSS PARAM TOT PROF 0.046 0.046 0.024 0.024 0.014 0.011 0.011 0.011 0.009 0.009 0.010 0.010 0.014 0.014 0.015 0.015 2.026 0.026

FOR STATOR 35

(h) 90 Percent of design speed; reading 3982

RP 1 2 3 4 5 6 7 8 9	RADII IN 0UT 23.993 23.752 23.736 23.523 23.480 23.294 22.685 22.593 21.608 21.656 20.505 20.709 19.670 19.990 19.388 19.746 19.103 19.505	ABS BETAM IN OUT 36.1 11.8 35.8 11.2 35.3 11.0 37.7 11.9 37.8 11.5 38.2 10.5 39.6 11.3 41.1 13.0	REL BETAM TOTAL TEMP IN OUT IN RATIO 36.1 11.8 342.7 1.000 35.8 11.2 342.4 1.000 35.3 11.0 341.7 1.000 37.7 11.9 341.7 1.000 37.8 11.5 339.2 1.000 38.2 10.5 37.5 1.000 39.6 11.3 338.5 1.000 41.1 13.0 340.8 1.000	TOTAL PRESS IN RATIO 16.38 0.971 16.67 0.980 16.78 0.989 16.96 0.991 17.17 0.991 17.30 0.990 17.03 0.988 17.04 0.986 17.28 0.973
RP 1 2 3 4 5 6 7 8 9	ABS VEL IN 0UT 236.6 177.2 241.7 189.1 243.3 196.4 245.5 204.7 252.1 213.0 254.8 218.9 252.0 218.8 254.2 221.1 260.9 223.1	REL VEL IN OUT 236.6 177.2 241.7 189.1 243.3 196.4 245.5 204.7 252.1 213.0 254.8 218.8 254.2 221.1 260.9 223.1	MERID VEL TANG VEL IN OUT 191.2 173.4 139.3 36.2 196.1 185.5 141.4 36.8 198.5 192.7 140.7 37.5 199.6 201.0 142.9 39.1 199.5 208.5 154.2 43.8 201.5 214.5 156.0 43.6 198.0 215.1 155.9 40.1 195.9 216.8 162.0 43.4 196.4 217.4 171.6 50.1	HHEEL SPEED IM OUT 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
RP 1 2 3 4 5 6 7 8 9	ABS MACH NO IN OUT 0.665 0.489 0.681 0.524 0.687 0.571 0.714 0.595 0.726 0.615 0.719 0.616 0.725 0.622 0.743 0.626	REL HACH NO IN OUT 0.665 0.489 0.681 0.524 0.687 0.545 0.695 0.571 0.714 0.595 0.726 0.615 0.719 0.616 0.725 0.622 0.743 0.626	MERID MACH NO 1N OUT 0.537 0.478 0.553 0.514 0.560 0.535 0.565 0.560 0.565 0.582 0.574 0.603 0.565 0.606 0.558 0.610 0.559 0.610	MERID PEAK SS VEL R HACH MO 0.907 0.957 0.946 0.971 0.971 0.965 1.007 0.975 1.045 1.044 1.065 1.049 1.087 1.032 1.106 1.066 1.107 1.122
RP 1 2 3 4 5 6 7 8 9	PERCEAT INCI SPAM HEAM 5.00 1.7 10.00 1.3 15.00 0.6 50.00 2.0 70.00 1.3 85.00 0.8 90.00 1.8 95.00 2.9	DENCE DEV 55 -5.9 9.3 -6.1 8.6 -6.5 8.4 -5.9 8.2 -3.5 8.8 -3.3 8.0 -2.0 7.7 -0.6 9.4	D FACT EFF LOSS COEFF TOT PROF 0.420 0.000 0.113 0.113 0.384 0.000 0.074 0.074 0.355 0.000 0.041 0.041 0.325 0.000 0.031 0.031 0.314 0.000 0.033 0.033 0.296 0.000 0.035 0.035 0.289 0.000 0.046 0.046 0.301 0.000 0.087 0.087	LOSS PARAM TOT PROF 0.043 0.043 0.028 0.015 0.015 0.015 0.012 0.012 0.012 0.012 0.012 0.012 0.015 0.015 0.015 0.015 0.029 0.029

FOR STATOR 35

(i) 90 Percent of design speed; reading 3983

RP 1 2 3 4 5 6 7 8 9	RADII IN OUT 23.993 23.752 23.736 23.523 23.480 23.294 22.685 22.593 21.608 21.656 20.505 20.709 19.670 19.990 19.388 19.746 19.103 19.505	ABS BI IN 41.6 40.5 40.1 39.8 41.3 41.0 41.4 42.7 43.6	OUT 12.3 12.0 12.1 12.1 12.7 12.2 11.2	40.5 12.0 40.1 12.1 39.8 12.1 41.3 12.7 41.0 12.2 41.4 11.2 42.7 12.4	TOTAL TEMP IN RATIC 349.2 1.000 348.7 1.000 347.8 1.000 345.7 1.000 345.4 1.000 345.4 1.000 349.9 1.000 340.9 1.000 340.9 1.000	TOTAL PRESS 1M RATIO 17 04 0.971 17.32 0.974 17.40 0.983 17.52 0.987 17.63 0.985 17.67 0.982 17.41 0.985 17.47 0.980 17.70 0.967
RP 1 2 3 4 5 6 7 8	ABS VEL IN OUT 236.5 166.8 241.7 176.4 243.2 183.3 243.3 191.0 249.6 197.6 250.7 200.8 248.2 201.1 252.2 203.6 258.9 206.3	236.5 10 241.7 17 243.2 16 243.3 15 249.6 15 250.7 20 248.8 20 252.2 20	0UT 66.8 1 76.4 1 83.3 1 91.0 1 97.6 1 00.8 1	83.8 172.5 86.0 179.2 86.9 186.7 87.5 192.8 89.1 196.3 86.5 197.3 85.4 198.9	TANG VEL IN OUT 157.1 35.6 157.0 36.8 156.6 38.3 155.8 40.1 164.8 43.4 164.6 42.3 164.6 38.9 171.0 43.6 176.7 48.9	NHEEL SPEED IN OUT 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
RP 1 2 3 4 5 6 7 8 9	ABS MACH NO IN OUT 0.658 0.454 0.4674 0.482 0.680 0.502 0.683 0.526 0.702 0.546 0.709 0.558 0.706 0.561 0.715 0.567 0.734 0.574	0.658 0.674 0.0680 0.683 0.702 0.709 0.706 0.715 0.715	OUT .454 0 .482 0 .502 0 .526 0 .546 0 .558 0 .561 0	RID MACH NO IN OUT .492 0.444 .513 0.471 .520 0.491 .524 0.515 .527 0.533 .535 0.546 .529 0.550 .526 0.554		MERID PEAK SS VEL R MACH MD 0.922 1.071 0.939 1.069 0.963 1.065 0.999 1.057 1.029 1.112 1.038 1.104 1.058 1.091 1.073 1.128 1.069 1.171
RP 1 2 3 4 5 6 7 8	PERCENT 16/31 SPAN MEAN 5.60 7.2 10.00 6.0 15.00 5.4 30.00 5.6 70.00 4.6 85.00 4.0 90.00 4.9 95.00 5.4	DENCE SS 0.4 -1.4 -1.8 -1.6 0.1 -0.0 -0.0	9.8 0 9.5 0 9.5 0 9.3 0 9.6 0 8.7 0 7.6 0	.494 0.000 .461 0.000 .432 0.000 .394 0.000 .385 0.000 .371 0.000 .365 0.000	LOSS COEFF TOT PROF 0.114 0.114 0.098 0.098 0.063 0.063 0.049 0.049 0.054 0.054 0.062 0.062 0.055 0.070 0.070 0.110 0.110	LOSS PARAM TOT PROF 0.043 0.043 0.037 0.037 0.023 0.023 0.018 0.019 0.019 0.019 0.022 0.022 0.019 0.019 0.023 0.023 0.037 0.037

(j) 90 Percent of design speed; reading 3984

RP 1 2 3 4 5 6 7 8 9	RADII IN 0UT 23.993 23.752 23.736 23.523 23.480 23.294 22.685 22.593 21.608 21.656 20.505 20.709 19.670 19.990 19.388 19.746 19.103 17.505	ABS BETAM IN OUT 44.4 12.8 43.0 12.8 42.5 12.8 41.7 12.6 42.8 13.0 42.8 12.4 43.1 11.3 44.3 12.4 44.3 12.4	REL BETAM TOTAL TEMP 1 0 1 1	TOTAL PRESS IN RATIO 17.33 0.969 17.59 0.972 17.67 0.980 17.78 0.983 17.80 0.981 17.78 0.979 17.49 0.983 17.65 0.975 17.90 0.963
RP 1 2 3 4 5 6 7 8	ABS VEL IN OUT 237.4 162.6 242.0 172.3 243.6 1/8.8 243.4 186.1 248.6 191.2 248.2 193.9 247.3 193.4 252.7 196.5 259.8 199.9	REL VEL 1M 0UT 237.4 162.6 242.0 178.8 243.4 186.1 248.6 191.2 248.2 193.9 247.3 193.4 252.7 196.5 259.8 199.9	MERID VEL TANG VEL IN OUT 169.6 158.6 166.1 36.0 176.9 158.1 165.2 38.1 179.7 174.3 164.5 39.6 181.9 181.6 161.8 40.7 182.3 186.3 169.0 43.0 181.9 189.4 168.9 41.7 180.6 189.4 168.9 38.0 181.0 191.6 176.4 43.5 184.0 193.9 183.4 48.3	HHEEL SPEED IN OUT 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
RP 1 2 3 4 5 6 7 8	ABS MACH ND IN OUT 0.657 0.440 0.672 0.468 0.678 0.487 0.680 0.510 0.698 0.526 0.700 0.537 0.716 0.545 0.736 0.554	REL MACH NO 1M OUT 0.657 0.440 0.672 0.468 0.678 0.510 0.598 0.526 0.700 0.537 0.700 0.537 0.700 0.537 0.716 0.545 0.736 0.554	MERID MACH ND 1M OUT 0.469 0.429 0.491 0.457 0.500 0.475 0.508 0.498 0.512 0.513 0.513 0.524 0.511 0.527 0.512 0.537	MERID PEAK SS VEL R MACH MO 0.935 1.131 0.950 1.123 0.970 1.116 0.998 1.095 1.022 1.141 2.041 1.133 1.050 1.121 1.054 1.205
RP 1 2 3 4 5 6 7 8	PERCENT INCI SPAN HEAN 5.00 10.0 10.00 8.5 15.00 7.8 30.00 6.6 50.00 7.1 70.00 6.4 85.00 5.6 90.00 6.4	DENCE DEV SS 2.4 10.3 1.1 10.2 0.6 10.2 0.2 9.8 1.6 9.9 1.8 9.0 1.7 7.8 2.7 9.2 3.1 10.4	D FACT EFF TOT PROF 0.527 0.000 0.123 0.123 0.490 0.000 0.107 0.107 0.462 0.000 0.074 0.074 0.422 0.000 0.064 0.064 0.416 0.000 0.970 0.070 0.399 0.000 0.074 0.074 0.399 0.000 0.061 0.061 0.401 0.000 0.066 0.086 0.405 0.000 0.123 0.123	LOSS PARAM TOT PROF 0.046 0.046 0.040 0.040 0.022 0.028 0.023 0.023 0.025 0.025 0.026 0.026 0.021 0.021 0.029 0.029

FOR STATOR 35

(k) 90 Percent of design speed; reading 3985

RP 1 2 3 4 5 6 7 8 9	PAD11 14 0UT 23.993 23.752 23.736 23.523 23.480 23.294 22.685 22.593 21.608 21.656 20.505 20.709 19.670 19.990 19.388 19.746 19.103 19.505	ABS IN 52.4 51.3 49.6 46.8 46.6 46.2 45.7 45.7	BETAM OUT 15.5 14.5 12.6 12.9 13.0 12.6 14.0 15.3	REL BETAM TOTAL TEMP IN QUT IN RATIO 52.4 15.5 362.0 1.000 51.3 14.5 360.5 1.000 49.6 12.6 353.8 1.000 46.6 12.9 350.3 1.000 46.2 13.0 346.3 1.000 45.7 12.6 343.5 1.000 45.7 12.6 344.0 1.000 45.8 15.3 345.2 1.000	TOTAL PRESS IN RATIO 17.93 0.959 17.96 0.959 18.07 0.960 18.16 0.968 18.10 0.967 18.02 0.967 17.80 0.971 17.94 0.964 18.23 0.950
RP 1 2 3 4 5 6 7 8 9	ABS VEL IN OUT 239.0 160.5 239.3 163.0 241.1 167.9 244.4 175.6 246.6 177.8 247.0 179.6 248.7 179.2 253.3 161.8 261.2 184.4	239.3 241.1 244.4 246.6 247.0 248.7 253.3	007 160.5 163.0 167.9 175.6 177.8 179.6 179.2 181.8	MERID VEL IN OUT 145.8 154.7 189.4 43.0 149.6 157.8 186.8 40.9 156.3 163.0 183.5 40.2 167.4 171.4 178.2 38.3 169.6 173.5 179.1 39.8 170.8 175.0 176.4 40.4 173.7 174.9 178.0 39.0 177.0 176.3 181.2 44.1 182.1 177.9 187.2 48.6	NHEEL SPEED 1
RP 1 2 3 4 5 6 7 8	ABS MACH NO IN OUT 0.653 0.429 0.655 0.436 0.451 0.677 0.476 0.688 0.485 0.693 0.493 0.702 0.494 0.715 0.501 0.738 0.508	0.655 0.662 0.677 0.688 0.693 0.702 0.715	OUT 0.429 0.436 0.451 0.476 0.485 0.493 0.494	IERID MACH NO 1N OUT 0.398 9.413 0.409 0.422 0.429 0.438 0.464 0.465 0.473 0.472 0.479 0.480 0.490 0.482 0.500 0.486 0.515 0.490	MERID PEAK SS VEL R MACH MD 1.061 1.307 1.055 1.283 1.042 1.253 1.024 1.209 1.021 1.212 1.024 1.201 1.007 1.106 0.996 1.199 0.977 1.231
RP 1 2 3 4 5 6 7 8	PERCENT INC1 SPAN HEAN 5.00 18.0 10.00 16.8 15.00 14.9 30.00 11.7 50.00 10.8 70.00 9.8 85.00 9.8 95.00 7.9 95.00 7.6	DENCE SS 10.4 9.4 7.7 5.3 5.3 4.1 4.0	13.0 12.0 11.3 9.8 9.8	D FACT EFF LOSS COEFF TOT PROF 0.565 0.000 0.164 0.164 0.553 0.000 0.164 0.164 0.531 0.000 0.156 0.156 0.496 0.000 0.122 0.122 0.495 0.000 0.122 0.122 0.470 0.000 0.119 0.119 0.471 0.000 0.103 0.103 0.466 0.000 0.124 0.124 0.472 0.000 0.165 0.165	LOSS PARAM TOT PROF 0.061 0.061 0.061 0.061 0.057 0.057 0.045 0.045 0.043 0.043 0.041 0.041 0.035 0.041 0.035 0.041

(1) 80 Percent of design speed; reading 3987

RP 1 2 3 4 5 6 7 8 9	RADII IN OUT 23.993 73.752 23.736 23.523 23.480 23.294 22.685 22.593 21.608 21.656 20.505 20.709 19.670 19.990 19.388 19.746 19.103 19.505	ABS BETAM IN OUT 49.7 15.3 49.7 14.2 49.0 13.3 46.9 12.4 45.4 12.8 44.6 12.5 44.5 12.2 45.3 13.3 46.5 14.7	IN OUT 49.7 15.3 34 49.7 14.2 34 46.9 12.4 33 44.6 12.5 33 44.6 12.5 33 44.5 12.2 33 45.3 13.3 3	TOTAL TEMP IN RATIO 14.8 1.000 44.0 1.000 43.1 1.000 39.3 1.000 35.4 1.000 31.6 1.000 32.2 1.000 33.5 1.000	TOTAL PRESS IN RATIO 15.74 0.968 15.70 0.973 15.77 0.975 15.89 0.979 15.95 0.979 15.98 0.979 15.98 0.982 16.00 0.967
RP 1234 56789	ABS VEL 1N OUT 208.9 141.1 207.6 144.1 209.3 149.4 213.5 157.2 216.8 162.2 220.6 166.7 223.1 169.8 226.7 171.2 232.9 173.6	REL VEL IN OUT 208.9 141.1 207.6 144.1 209.3 149.4 213.5 157.2 216.9 162.2 220.6 166.7 223.1 169.8 226.7 171.2 232.9 173.6	134.3 139.7 15 137.3 145.4 15 146.0 153.5 15 152.1 158.2 15 157.0 162.7 15 159.0 165.9 15 159.5 166.6 16	TANG VEL IN DUT 59.3 37.3 58.3 35.3 57.9 34.4 55.8 33.6 54.5 35.6 54.5 36.1 56.5 36.0 51.1 39.5 59.0 43.9	HHEEL SPEED IN OUT 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
RP 1 2 3 4 5 6 7 8 9	ABS MACH NO 1M OUT 0.580 0.385 0.576 0.393 0.582 0.409 0.599 0.434 0.612 0.451 0.626 0.465 0.635 0.476 0.646 0.479 0.664 0.485	REL MACH NO IN OUT 0.580 0.385 0.576 0.393 0.582 0.409 0.599 0.434 0.612 0.451 0.626 J.465 0.635 0.476 0.646 0.479 0.664 0.485	HER1D (ACH NO IN OUT 0.375 0.371 0.373 0.381 0.382 0.398 0.409 0.423 0.429 0.439 0.446 0.454 0.453 0.465 0.456 0.456 0.466		MERID PEAK SS VEL R MACH NO 1.007 1.104 1.040 1.096 1.059 1.090 1.052 1.070 1.040 1.056 1.036 1.051 1.044 1.048 1.045 1.074 1.048 1.123
RP 1 2 3 4 5 6 7 8	PERCENT INCI SPAN HEAM 5.00 15.3 10.00 15.3 30.00 14.3 30.00 11.8 50.00 9.7 70.00 8.2 85.00 7.1 90.00 7.5 95.00 8.3	DENCE DEV 55 7.7 12.8 7.8 11.6 7.2 10.7 5.4 9.6 4.2 9.6 3.6 9.1 3.1 8.7 3.7 9.7 4.8 11.0	0.550 0.000 0 0.534 0.000 0 0.512 0.000 0 0.477 0.000 0 0.452 0.000 0 0.434 0.000 0 0.424 0.000 9 0.426 0.000 9	LOSS COEFF OT PROF .158 0.158 .136 0.136 .120 0.120 .098 0.098 .092 0.992 .089 0.089 .074 0.074 .093 0.093 .129 0.129	LOSS PARAM TOT PROF 0.058 0.058 0.050 0.050 0.045 0.036 0.036 0.036 0.033 0.033 0.031 0.031 0.025 0.025 0.031 0.031

FOR STATOR 35

(m) 70 Percent of design speed; reading 3995

RP 1 2 3 4 5 6 7 8 9	23.736 23.523 23.480 23.294 22.685 22.593 21.608 21.656 20.505 20.709 19.670 19.990	ABS BETAM IN OUT 21.0 11.20.8 9.20.1 8.21.1 8.23.3 9.25.2 100.26.6 10.27.4 10.28.8 11	IN OUT IN FATIO 4 21.0 11.4 308.6 1.000 6 20.8 9.6 308.8 1.000 7 20.1 8.9 308.5 1.000 7 21.1 8.0 339.1 1.000 7 21.1 8.0 339.1 1.000 7 25.2 10.0 311.0 1.000 7 26.6 10.5 311.8 1.000 7 27.4 10.9 312.5 1.000	TOTAL FRESS IN RATIO 11.95 0.980 12.25 0.990 12.44 0.988 12.65 0.987 12.86 0.990 13.07 0.989 13.17 0.991 13.25 0.990 13.31 0.984
RP 1 2 3 4 5 6 7 8	182.6 177.1 1 191.4 191.9 1 196.2 199.3 1 202.4 209.1 2 205.8 221.3 2 211.6 229.9 2 217.2 233.9 2 200.2 236.0 2	REL VEL 1N OUT 182.6 177.1 191.4 191.9 196.2 199.3 202.4 209.1 205.8 221.3 211.6 229.9 217.2 233.9 220.2 2336.0 222.5 235.6	MERID VEL TANG VEL IN OUT 19 OUT 170.5 173.6 65.3 35.0 178.9 189.3 67.9 31.9 164.3 196.9 67.3 30.9 189.8 207.1 72.9 29.0 189.1 218.5 81.3 35.2 191.4 226.5 90.2 39.7 194.3 230.0 97.3 42.6 195.5 231.8 101.4 44.4 195.0 231.0 107.1 46.0	HHEEL SPEED IN OUT 0.0
RP 1 2 3 4 5 6 7 8 9	IN OUT 0.533 0.516 0 0.560 0.562 0 0.575 0.585 0 0.594 0.615 0 0.604 0.653 0 0.621 0.680 0 0.638 0.692 0 0.647 0.698 0	REL MACH NO 1N OUT .533 0.516 .560 0.565 .575 0.585 .594 0.15 0.604 0.65 0.638 0.695 .647 0.698	MERID MACH NO IN DUT 0.498 0.506 0.524 0.554 0.540 0.578 0.554 0.609 0.555 0.645 0.562 0.669 0.571 0.685 0.572 0.681	MERID PEAK SS VEL R MACH NO 1.018 0.533 1.058 0.560 1.069 0.575 1.097 0.594 1.155 0.604 1.183 0.621 1.184 0.638 1.186 0.647 1.185 0.653
RP 1 2 3 4 5 6 7 8	5.00 -13.5 - 10.00 -13.8 - 15.00 -14.7 - 30.00 -13.9 - 50.00 -12.5 - 70.00 -11.2 - 85.00 -10.9 - 90.00 -10.4 -	ENCE DEV \$5 21.1 8.8 21.2 7.0 21.8 6.3 20.3 5.2 18.0 6.0 14.8 6.9 14.2 7.3 13.0 7.7	D FACT EFF TOT PROF 0.095 0.000 0.114 0.114 0.070 0.000 0.050 0.050 0.055 0.000 0.057 0.057 0.048 0.000 0.059 0.059 0.006 0.000 0.045 0.045003 0.000 0.045 0.045 0.009 0.000 0.048 0.048 0.009 0.000 0.048 0.048 0.015 0.000 0.043 0.043 0.032 0.000 0.043 0.043	LOSS PARAM TOT PROF 0.043 0.019 0.019 0.015 0.022 0.022 0.022 0.022 0.016 0.016 0.017 0.017 0.013 0.013 0.014 0.014 0.022 0.022

(n) 70 Percent of design speed; reading 3994

RP 1 2 3 4 5 6 7 8	RADII IN OUT 23.993 23.752 23.736 23.523 23.480 23.294 22.685 22.593 21.608 21.656 20.505 20.709 19.670 19.990 19.388 19.746 19.103 19.505	ABS B 1 N 26 . 1 26 . 3 24 . 8 25 . 6 27 . 0 28 . 9 30 . 1 30 . 8 32 . 7	BETAM OUT 10.1 10.0 9.6 9.2 9.3 10.0 10.5	REL BETAM TOTAL TEMP IN OUT IN RATIO 26.1 10.1 313.1 1.000 26.3 10.0 313.1 1.000 25.4 9.6 312.4 1.000 27.0 9.3 312.6 1.000 26.9 10.0 313.6 1.000 30.8 10.9 314.5 1.000 32.7 12.1 315.7 1.000	TOTAL PRESS IN RATIO 12.47 0.984 12.72 0.992 12.87 0.991 13.06 0.993 13.22 0.994 13.37 0.993 13.47 0.993 13.53 0.992 13.58 0.984
FP 1 2 3 4 5 6 7 8 9	ABS VEL IN OUT 180.3 162.2 187.7 175.2 191.0 181.4 197.4 191.4 199.4 200.8 205.2 209.2 210.1 213.7 212.5 216.2 214.9 216.4	180.3 1 187.7 1 191.0 1 197.4 1 199.4 2 205.2 2 210.1 2 212.5 2	VEL 0UT 162.2 175.2 181.4 200.8 209.2 213.7 216.2	MERID VEL TANG VEL IN CUT 161.9 159.7 79.4 28.5 168.3 172.5 83.0 30.4 173.4 178.8 80.1 30.2 178.0 188.9 85.2 30.5 177.6 198.2 90.5 32.4 179.6 206.0 99.3 36.4 181.8 210.1 105.3 39.0 182.4 212.2 108.4 41.0 180.9 211.6 116.0 45.2	N C EL SPEED 1N OUT 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
RP 1 2 3 4 5 6 7 8 9	ABS MACH NO IN OUT 0.522 0.467 0.545 0.506 0.555 0.526 0.575 0.556 0.581 0.586 0.598 0.611 0.613 0.625 0.620 0.632 0.627 0.631	0.545 0 0.555 0 0.575 0 0.581 0 0.598 0 0.613 0	0.467 0.467 0.506 0.556 0.556 0.611 0.625 0.632	MERID HACH NO IN OUT 0.469 0.460 0.489 0.499 0.504 0.518 0.51? 0.549 0.518 0.578 0.524 0.602 0.531 0.614 0.532 0.620 0.528 0.617	MERID PEAK SS VEL R MACH NO 0.986 0.534 1.025 0.557 1.031 0.555 1.061 0.575 1.116 0.590 1.147 0.662 1.155 0.691 1.164 0.711 1.169 0.756
RP 1 2 3 4 5 6 7 8 9	PERCENT INCI SPAN HEAN 5.00 -8.3 10.00 -8.3 15.00 -9.9 30.00 -9.5 50.00 -7.5 85.00 -7.6 90.00 -7.3 95.00 -5.5	DENCE \$5 -15.9 -17.1 -15.9 -14.2 -12.1 -11.4 -10.8 -9.1	7.6 7.4 7.0 6.4 6.2 6.6 7.0 7.3	D FACT EFF TOT PROF 0.210 0.000 0.092 0.092 0.175 0.000 0.044 0.044 0.151 0.000 0.046 0.046 0.135 0.000 0.033 0.033 0.099 0.000 0.029 0.029 0.088 0.000 0.031 0.031 0.091 0.000 0.032 0.072 0.090 0.000 0.035 0.035 0.103 0.000 0.068 0.068	LOSS PARAM TOT PROF 0.035 0.035 0.016 0.016 0.017 0.017 0.012 0.012 0.011 0.011 0.011 0.011 0.011 0.011 0.012 0.012 0.023 0.023

FOR STATOR 35

(o) 70 Percent of design speed; reading 3993

FOR STATOR 35

(p) 70 Percent of design speed; reading 3990

RP 1 2 3 4 5 6 7 8 9	RADII IN OUT 23.993 23.752 23.736 23.523 23.480 23.294 22.685 22.593 21.608 21.656 20.505 20.709 19.388 19.746 19.103 19.505	ABS 1 N 40 . 1 40 . 8 39 . 5 37 . 0 36 . 2 37 . 6 38 . 2 40 . 0	BETAM OUT 13.1 11.6 11.0 10.3 10.8 11.9 11.7 13.4	REL BETAM IN OUT 40.1 13.1 40.8 11.6 39.5 11.0 37.0 10.3 36.2 10.8 37.5 11.9 37.6 11.3 38.2 11.7 40.0 13.4	TOTAL TEMP IN RATIO 322.3 1.000 321.7 1.000 319.3 1.000 319.3 1.000 319.1 1.000 319.1 1.000 319.1 1.000 319.7 1.000	TOTAL PRESS IN RATIO 13.25 0.986 13.31 0.992 13.38 0.995 13.55 0.992 13.72 0.992 14.03 0.990 14.04 0.991 14.03 0.992 14.12 0.986
RF 1 2 3 4 5 6 7 8 9	ABS VEL 1N OUT 171.1 133.1 173.2 140.5 174.7 145.6 180.5 152.6 186.8 161.1 198.6 172.8 200.9 177.4 201.7 179.0 205.6 181.8	174.7 180.5 186.8 198.6 200.9 201.7	VEL 0UT 133.1 140.5 145.6 152.6 161.1 172.8 177.4 179.0 181.8	MERID VEL IN 9UT 131.0 129.6 131.1 137.7 134.8 142.9 144.2 150.1 150.7 158.2 157.5 169.1 159.3 174.0 158.6 175.3 157.6 176.9	TANG VEL IN OUT 110.1 30.1 113.1 28.2 111.2 27.9 108.6 27.4 110.4 30.3 121.0 35.6 122.5 34.8 124.6 36.2 132.1 42.0	HHEEL SPEED IN OUT 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
RP 1 2 3 4 5 6 7 8 9	ABS MACH NO IN OUT 0.487 0.375 0.493 0.397 0.498 0.412 0.517 0.434 0.537 0.460 0.573 0.494 0.580 0.509 0.583 0.513 0.594 0.521	0.493 0.498 0.517 0.537	CH NO OUT 0.375 0.375 0.412 0.412 0.434 0.460 0.494 0.509 0.513 0.521	MERID MACH NO IN OUT 0.372 0.365 0.373 0.389 0.404 0.413 0.427 0.433 0.452 0.454 0.460 0.499 0.458 0.507		HERID PEAK SS VEL R MACH MO 0.990 0.766 1.050 0.787 1.060 0.751 1.041 0.751 1.050 0.758 1.074 0.823 1.093 0.823 1.105 0.828 1.123 0.873
RP 1 2 3 4 5 6 7 8	PERCENT INCI SPAN HEAM 5.00 5.7 10.00 6.3 15.00 4.8 30.00 1.9 50.00 0.5 70.00 0.1 90.00 0.3 95.00 1.8	TDENCE \$\$ -2.0 -1.1 -2.3 -4.5 -5.0 -3.5 -3.9 -3.4 -1.8	DEV 10.5 9.0 8.5 7.5 7.7 8.4 7.7 8.1 9.7	D FACT EFF 0.403 0.000 0.377 0.000 0.349 0.000 0.323 0.000 0.294 0.000 0.281 0.000 0.266 0.000 0.261 0.000 0.262 0.000	LOSS COEFF TOT PROF 0.095 0.095 0.054 0.054 0.031 0.031 0.047 0.047 0.043 0.043 0.053 0.053 0.042 0.042 0.039 0.039 0.054 0.064	LOSS PARAM TOT PROF 0.035 0.035 0.020 0.020 0.011 0.011 0.017 0.017 0.015 0.015 0.018 0.018 0.014 0.014 0.013 0.013 0.021 0.021

FOR STATOR 35

(q) 70 Percent of design speed; reading 3989

RP 1 2 3 4 5 6 7 8 9	RADII 1N OUT 23.993 23.752 23.736 23.523 23.480 23.294 22.685 22.593 21.608 21.656 20.505 20.709 19.670 19.990 19.388 19.746 19.103 19.505	ABS IN 54.2 55.7 53.0 47.8 43.1 39.8 40.8 42.1	BETAM REL BETAM OUT 15.0 54.2 15.0 13.5 55.7 13.1 13.0 47.8 13.0 13.8 43.1 13.8 13.7 39.9 13.7 12.5 39.8 12.5 13.0 40.8 13.0 14.4 42.1 14.4	10TAL TEMP 1N RAT10 330.2 1.000 329.0 1.000 327.9 1.000 325.1 1.000 321.9 1.000 320.3 1.000 319.3 1.000 319.3 1.000 321.0 1.000	TOTAL PRESS IN RATIO 13.56 0.972 13.51 0.973 13.53 0.973 13.63 0.976 13.89 0.982 14.21 0.986 14.21 0.990 14.23 0.990 14.32 0.984
RP 1 2 3 4 5 6 7 8 9	ABS VEL IN OUT 168.1 117.8 166.6 117.7 166.4 121.2 174.6 129.6 183.4 144.5 195.5 160.3 198.0 164.7 200.0 166.9 204.1 169.1	REL IN 168.1 166.6 166.4 174.6 183.4 195.5 198.0 200.0 204.1	VEL 0UT 1N 0UT 117.8 98.4 113.8 117.7 93.9 114.4 121.2 100.1 118.1 128.6 117.2 125.4 144.5 134.0 140.3 160.3 150.0 155.7 164.7 152.2 160.9 166.9 151.3 162.6 169.1 151.3 163.8	TANG VEL 1N 0VT 136.3 30.5 137.6 27.4 133.0 27.4 129.4 28.8 125.2 34.4 125.4 38.1 126.6 35.6 130.8 37.4 137.0 42.1	HHEEL SPEED IN OUT 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
RP 1 2 3 4 5 6 7 8 9	ABS MACH NO IM OUT 0.472 0.327 0.468 0.327 0.468 0.338 0.495 0.360 0.524 0.408 0.524 0.408 0.570 0.470 0.576 0.476 0.588 0.482	REL H/I IN 0.472 0.468 0.495 0.524 0.562 0.570 0.576 0.586	ACH NO MERID MACH NG OUT 0.327 0.276 0.316 0.327 0.264 0.318 0.388 0.282 0.329 0.360 0.393 0.397 0.408 0.493 0.470 0.438 0.459 0.476 0.436 0.466 0.482 0.436 0.466		HERID PEAK SS VEL R HACH NU 1-156 0.975 1.219 0.992 1.180 0.901 1.070 0.901 1.047 0.861 1.030 0.853 1.057 0.849 1.075 0.872 1.082 0.907
RP 1 2 3 4 5 6 7 8	PERCENT INCI SPAN HEAN 5.00 19.8 10.00 21.2 15.00 18.3 30.00 7.3 70.00 7.3 70.00 3.5 85.00 2.3 90.00 3.9	TDENCE SS 12.1 13.8 11.2 6.4 1.8 -1.2 -1.7 -0.8 0.4	DEV D FACT EFF 12.5 0.543 0.000 10.9 0.548 0.000 10.5 0.514 0.000 10.6 0.393 0.000 10.3 0.337 0.000 10.3 0.325 0.000 9.4 0.324 0.000 10.8 0.327 0.000	LOSS COEFF TOT PROF 0.196 0.196 0.194 0.194 0.191 0.191 0.153 0.153 0.107 0.107 0.072 0.072 0.049 0.049 0.049 0.049	LOSS PARAM TOT PROF 0.073 0.073 0.072 0.072 0.071 0.071 0.056 0.056 0.038 0.038 0.025 0.025 0.017 0.017 0.017 0.017

FOR STATOR 35

(r) 60 Percent of design speed; reading 3997

RP 1 2 3 4 5 6 7 8 9 RP 1 2	RADII IN OUT 23.993 23.752 23.736 23.523 23.480 23.294 22.685 22.593 21.608 21.656 20.505 20.709 19.670 19.90 19.388 19.746 19.103 19.505 ABS VEL IN OUT 147.1 104.5 145.1 107.1	ABS BETAM IN OUT 50.1 15.9 52.8 9.9 50.4 10.2 45.0 11.4 40.7 11.3 39.6 9.8 39.6 9.2 39.3 9.5 41.5 10.4	REL BETAM TOTAL TEMP IN OUT IN RATIO 50.1 15.9 318.7 1.000 52.8 9.9 318.1 1.000 50.4 10.2 317.4 1.000 45.0 11.4 315.2 1.000 40.7 11.3 312.7 1.000 39.6 9.8 312.3 1.000 39.6 9.2 311.5 1.000 39.3 9.5 311.7 1.000 39.3 9.5 311.7 1.000 41.5 10.4 312.6 1.000 MERID VEL TANG VEL IN OUT IN OUT 94.3 100.5 113.0 28.6 87.7 105.5 115.6 18.4	TOTAL PRESS IN 0.98 12.61 0.98 12.64 0.98 12.74 0.99 13.13 0.99 13.14 0.99 13.14 0.99 13.14 0.99 13.10 0.98
1 2 3 4 5 6 7 8 9	146.4 110.8 154.4 119.0 160.4 128.6 169.8 141.3 174.9 144.2 176.2 145.6 179.6 147.2 ABS MACH NO IN OUT 0.418 0.294	146.4 110.8 154.4 119.0 160.4 128.6 169.8 141.3 174.9 144.2 176.2 145.6 179.6 147.2 REL MACH NO IN OUT 0.418 0.294	93.4 109.0 112.8 19.6 109.2 116.7 109.1 23.5 121.6 126.1 104.6 25.2 130.8 139.2 108.3 24.0 134.8 142.3 111.4 23.1 136.5 143.6 111.5 24.0 134.6 144.8 118.9 26.6 MERID MACH NO IN OUT 0.268 0.283	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
1 2 3 4 5 6 7 8 9		0.413 0.302 0.417 0.313 0.442 0.338 0.462 0.368 0.491 0.405 0.507 0.414 0.511 0.419 0.520 0.423	0.249 0.298 0.266 0.308 0.313 0.332 0.350 0.361 0.378 0.399 0.391 0.409 0.395 0.413 0.390 0.416	1.204 0.831 1.167 0.801 1.068 0.722 1.064 0.740 1.056 0.751 1.053 0.746 1.075 0.791
1 2 3 4 5 6 7 8 9	SPAN HEAN 5.00 15.8 10.00 18.3 15.00 15.7 30.00 9.9 50.00 3.2 85.00 2.1 90.00 1.4 95.00 3.3	SS B.1 13.4 10.9 7.3 B.5 7.6 3.5 B.5 -0.5 B.2 -1.4 6.3 -1.9 5.7 -2.3 5.9 -0.3 6.8	0.512 0.000 0.173 0.173 0.519 0.000 0.129 0.129 0.487 0.000 0.115 0.115 0.437 0.000 0.082 0.082 0.378 0.000 0.067 0.067 0.343 0.000 0.065 0.065 0.065 0.349 0.000 0.043 0.343 0.342 0.000 0.051 0.051 0.051 0.353 0.300 0.081 0.081	TOT PROF 0.064 0.064 0.043 0.043 0.030 0.930 0.024 0.024 0.023 0.023 0.015 0.015 0.017 0.017 0.027 0.027

FOR STATOR 35

(s) 50 Percent of design speed; reading 4000

RP 1 2 3 4 5 6 7 8 9	RADII IN 0UT 23.993 23.752 23.736 23.523 23.480 23.294 22.685 22.593 21.608 21.656 20.505 20.709 19.670 19.990 19.388 19.746 19.103 19.505	44.8 46.2 44.6 39.9 37.8 38.2 37.4	TAM OUT 11.4 10.5 9.8 8.4 10.4 12.2 11.5 9.4	REL BETAM IN OUT 44.8 11.4 46.2 10.5 44.6 9.8 39.9 8.4 37.8 10.4 38.2 12.2 37.4 11.5 38.8 9.4 40.8 10.2	TOTAL TEMP IN RATIO 307.3 1.000 306.9 1.000 306.7 1.000 305.0 1.000 303.9 1.000 304.1 1.000 303.5 1.000 303.5 1.000 304.2 1.000	TOTAL PRESS IN RATIO 11.66 0.993 11.68 0.995 11.70 0.996 11.77 0.996 11.90 0.995 12.03 0.995 12.04 0.995 12.05 0.995 12.08 0.991
RP 1 2 3 4 5 6 7 8 9	ABS VEL IM OUT 120.7 90.4 122.0 95.6 122.4 98.6 126.8 103.7 133.5 111.9 143.2 121.1 143.4 123.4 144.3 124.8 147.3 125.8	120.7 9 122.0 9 122.4 9 126.8 10 133.5 11 143.2 12 143.4 12 144.3 12	UT 0.4 5.6 8.6 3.7 1.9 1.1 3.4 4.8	MERID VEL IN OUT 85.7 88.6 84.4 94.0 87.1 97.2 97.3 102.6 105.5 110.0 112.6 118.3 113.9 121.0 112.5 123.1 111.6 123.8	TANG VEL IN GUT 85.0 17.8 88.1 17.4 85.9 16.8 81.3 15.1 81.9 20.2 88.5 25.6 87.2 24.7 90.4 20.3 96.2 22.3	HHEEL SPEED IN OUT 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
RP 1 2 3 4 5 6 7 8	ABS MACH NO 1M OUT 0.348 0.259 0.352 0.274 0.353 0.283 0.367 0.299 0.388 0.323 0.417 0.351 0.418 0.358 0.429 0.364	0.348 0. 0.352 0. 0.353 0. 0.367 0. 0.388 0. 0.417 0. 0.418 0. 0.420 0.	NO 1017 259 274 283 299 323 351 358 362	MERID HACH NO IN OUT 0.247 0.254 0.279 0.251 0.279 0.282 0.296 0.306 0.318 0.328 0.343 0.328 0.357 0.325 0.359		MERID PERK SS VEL R MACH NO 1.034 0.603 1.114 0.626 1.115 0.607 1.054 0.569 1.043 0.568 1.051 0.608 1.062 0.607 1.094 0.607 1.109 0.642
RP 1 2 3 4 5 6 7 8 9	PERCENT INCID SPAN HEAN 5.00 10.4 10.00 11.7 15.00 9.9 30.00 4.8 50.00 2.1 70.00 1.7 85.00 -0.0 90.00 1.0 95.00 2.6	SS 2.7 4.3	DEV 8.8 7.9 7.2 5.5 7.3 8.7 8.0 5.6	D FACT EFF 0.467 0.000 0.439 0.000 0.410 0.000 0.378 0.000 0.331 0.000 0.309 0.000 0.309 0.000 0.300 0.000 0.315 0.000	LOSS COEFF TOT PROF 0.093 0.093 0.060 0.060 0.044 0.044 0.047 0.047 0.051 0.051 0.046 0.046 0.043 0.043 0.041 0.041 0.072 0.072	LOSS PARAM TOT PROF 0.035 0.035 0.022 0.027 0.017 0.017 0.017 0.017 0.018 0.018 0.016 0.016 0.015 0.015 0.014 0.014 0.024 0.024

Inn	ier	Outer		
Axial dislance, cm	Radius, cm	Axial distance, cm	Radius	
-22.860	17.526	-22.860	25.654	
-15.400	17.526	-15.400	25.654	
-7.620	17.526	-7.620	25.654	
-2.558	17.539	-2."46	25.64	
0	17,760		25.400	
1.654	18.255	. 632	25.247	
4.137	18.714	1.854	24.92	
4.859	18.825	1.974	24.682	
6.566	19.035	3.282	24.511	
8,890	19.279	4, 445	24, 265	
10.640	19.360	4.859	24.232	
12,700	19.43	6.538	24.145	
15, 400	19.433	8.628	14.011	
		8.890	2.1993	
		10.640	23.551	
		12,700	23,749	
		15, 400	23.749	

Figure 1. - Flow path and instrumentation stations.

(b) Stator 35.

Figure 2. - Stage blade rows.

Figure 3. - Compressor test facility.

(a) Combination probe (total pressure, temperature, and flow angle).

(b) Wedge probe (static pressure and flow angle).

Figure 4. - Traverse probes.

(b) Stages 36 and 38.

Station 1

Figure 5. - Circumferential location of instrumentation at measuring station (facing upstream).

Station 3

Figure 6. - Overall performance for rotor 35.

Figure 7. - Overall performance for stage 35.

Figure 8. - Radial distribution of performance for rotor 35. 100 Percent of design speed.

Figure 8. - Concluded.

Figure 9. - Radial distribution of performance for stator 35. 100 Percent of design speed.

Figure 10. - Blade-element performance for rotor 35.

Figure 10. - Continued.

Figure 10. - Continued.

SUCTION SURFACE INCIDENCE ANGLE. DEG (b) Concluded.

Figure 10. - Continued.

•

Figure 10. - Continued.

CONTENTS

	le .																				Page	
SUMMARY					•		 •		•				•			•		•	•	•	1	1/A4
INTRODUCTION		•		•	•	•						•		•		•	•				1	1/A4
AERODYNAMIC DESIGN															,	•					2	1/A5
APPARATUS AND PROCEDURE																					2	1/A5
Compressor Test Facility																					2	1/A5
Instrumentation																					2	1/A5
Test Procedure																					3	1/A6
Calculation Procedure					•		 •	•		•					1			•	•		4	1/A7
RESULTS AND DISCUSSION																					5	1/A8
Overall Performance															,						5	1/A8
Radial Distributions																					5	1/A8
Variations with Incidence Angle	е																				6	1/A9
SUMMARY OF RESULTS																					8	1/A11
APPENDIXES																						
A - SYMBOLS																					9	1/A12
B - EQUATIONS																					11	1/A14
C - DEFINITIONS AND UNITS	USED	IN	T	AI	BL	ES															17	1/B6
REFERENCES																,					19	1/B8
TABLES																,					20	1/B9
EXCHIPE																					00	1/E13

SUCTION SURFACE INCIDENCE ANGLE. DEG

(e) Concluded.

Figure 10. - Continued.

(f) 70 Percent span.

Figure 10. - Continued.

SUCTION SURFACE INCIDENCE ANGLE. DEG (f) Concluded.

Figure 10. - Continued.

(g) 85 Percent span.

Figure 10. - Continued.

SUCTION SURFACE INCIDENCE ANGLE. DES

Figure 10. - Continued.

(h) 90 Percent span,

Figure 10. - Continued.

SUCTION SURFACE INCIDENCE ANGLE. DEG (h) Concluded.

Figure 10. - Continued.

(i) 95 Percent span.

Figure 10. - Continued.

SUCTION SURFACE INCIDENCE ANGLE. DEG (i) Concluded.

Figure 10. - Concluded.

Figure 11. - Blade-element performance for stator 35.

Figure 11. - Continued.

Figure 11. - Continued.

to a recent span

Figure 11. - Continued.

(e) 50 Percent span.

Figure 11. - Continued.

(f) 70 Percent span.

Figure 11. - Continued.

Figure 11. - Continued.

(h) 90 Percent span.

Figure 11. - Continued.

(i) 95 Percent span.

Figure 11. - Concluded.

1. Report No. NASA TP-1338	2. Government Accession No.	3. Recipient's Catalo	g No.							
4. Title and Subtitle PERFORMANCE TRANSONIC COMPRESSOR W		1								
RATIOS OF 1, 19 AND 1, 26, F DESIGN PRESSURE RATIO OF	6. Performing Organi	zution Code								
7. Author(s)	8. Performing Organi	zation Report No.								
Lonnie Reid and Royce D. Mo	E-9461									
9. Performing Organization Name and Address		10. Work Unit No.								
National Aeronautics and Space	e Administration	505-04								
Lewis Research Center		11. Contract or Grant	No.							
Cleveland, Ohio 44135	12 Tues of Percet o	ad Period Counted								
12. Sponsoring Agency Name and Address			 Type of Report and Period Covered Technical Paper 							
National Aeronautics and Space	e Administration	14. Sponsoring Agence	•							
Washington, D.C. 20546		14. Sponsoring Agenc	y Code							
15. Supplementary Notes										
is presented over the stable of At design speed the rotor and	t performance of a low-aspect-rad perating flow range at 70, 90, and stage achieved peak efficiencies of spectively. The stage stall margi	100 percent design of 0,872 and 0,845	a speeds. At pressure							
17. Key Words (Suggested by Author(s)) Compressors Turbomachinery	Unclassified	18. Distribution Statement Unclassified - unlimited STAR Category 07								
19. Security Classif. (of this report)	20. Security Classif. (of this page)	21. No. of Pages	22. Price*							
Unclassified	Unclassified Unclassified									

MAR 16 1979