Respuestas Ayudantía 8 - Modelos Probabilísticos

Pregunta 1: Transformación de Variables Aleatorias

(a)
$$f_X(x) = \frac{\ln(1+x)}{\ln(4)-1}$$
, $0 < x < 1$, $Y = -\ln(X)$

Paso 1: Obtener la función inversa.

La transformación es $Y = -\ln(X) \Rightarrow X = e^{-Y}$.

Paso 2: Derivar la inversa.

$$\left| \frac{d}{dy} e^{-y} \right| = e^{-y}$$

Paso 3: Aplicar el cambio de variable.

$$f_Y(y) = f_X(e^{-y}) \cdot e^{-y} = \frac{\ln(1 + e^{-y})}{\ln(4) - 1} \cdot e^{-y}, \text{ para } y > 0$$

(b)
$$X \sim \mathbf{Gamma}(\alpha, \beta), \quad Y = \frac{1}{X^a}$$

Paso 1: Invertir la función.

$$Y = \frac{1}{X^a} \Rightarrow X = Y^{-1/a}$$

Paso 2: Derivar e invertir.

$$\left| \frac{d}{dy} Y^{-1/a} \right| = \frac{1}{a} y^{-\frac{1}{a} - 1}$$

Paso 3: Aplicar transformación.

$$f_Y(y) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} y^{-\frac{\alpha}{a} - 1} e^{-\beta y^{-1/a}} \cdot \frac{1}{a}$$

(c)
$$X \sim U(0,1), \quad Y = -\ln(X) + \theta$$

Paso 1: Invertir transformación.

$$Y = -\ln(X) + \theta \Rightarrow X = e^{\theta - Y}$$

Paso 2: Derivada de la inversa.

$$\left| \frac{d}{dy} e^{\theta - y} \right| = e^{\theta - y}$$

Paso 3: Densidad de X es 1 en (0,1).

$$f_Y(y) = \mathbf{1}_{y > \theta} \cdot e^{\theta - y}$$

(d) $X \sim \mathbf{Poisson}(\lambda), \quad Y = e^X$

Transformación discreta. Como X es discreta y $Y=e^X$, los valores posibles de Y son $\{e^0,e^1,e^2,\dots\}$

$$f_Y(y) = P(Y = y) = \begin{cases} \frac{\lambda^{\ln y} e^{-\lambda}}{(\ln y)!}, & y \in \{e^k : k \in \mathbb{N}_0\} \\ 0, & \text{en otro caso} \end{cases}$$

Pregunta 2: Esperanza de función de v.a. Beta

Sea $X \sim \text{Beta}(\lambda, 1)$ y queremos calcular:

$$\mathbb{E}[(-\ln X)^{2k}]$$

Método 1: Cálculo directo

Sabemos que $f_X(x) = \lambda x^{\lambda-1}$ en (0,1).

$$\mathbb{E}[(-\ln X)^{2k}] = \int_0^1 (-\ln x)^{2k} \lambda x^{\lambda - 1} dx$$

Cambio de variable: Sea $u = -\ln x \Rightarrow x = e^{-u}$, $dx = -e^{-u}du$

$$=\lambda \int_0^\infty u^{2k} e^{-\lambda u} du = \frac{\Gamma(2k+1)}{\lambda^{2k}}$$

Método 2: Transformando X

Sea $Y = -\ln(X)$, entonces $Y \sim \text{Exponencial}(\lambda)$ y:

$$\mathbb{E}[Y^{2k}] = \frac{\Gamma(2k+1)}{\lambda^{2k}}$$

Ambos métodos dan el mismo resultado.

Pregunta 3: Transformación $Z = X^4$ con fdp mixta

Paso 1: Determinar soporte de Z

Como $Z = X^4$, los valores de Z serán:

$$\begin{cases} 0 < Z < 1, & \text{si } -1 < X < 1 \\ Z \ge 1, & \text{si } X \ge 1 \end{cases}$$

Caso 1: -1 < x < 1

Aquí $Z=X^4\Rightarrow X=\pm Z^{1/4},$ por simetría:

$$f_Z(z) = \frac{40}{844} z^{-3/4} \left(1 + \frac{z^{1/4}}{2} \right)^{-4}, \quad 0 < z < 1$$

Caso 2: $x \ge 1$

$$f_Z(z) = \frac{405}{844} e^{-\frac{405}{422}(z^{1/4}-1)} \cdot \frac{1}{4} z^{-3/4}, \quad z \ge 1$$

Pregunta 4: Normal y sus propiedades

Sea $X \sim \mathcal{N}(\mu, \sigma^2)$.

(a) $P(X \le a) = 0.5$

$$\Rightarrow a = \mu$$

(b) Calcular $P(X > \sigma \mid X > -2)$

$$P(X > \sigma \mid X > -2) = \frac{P(X > \sigma)}{P(X > -2)}$$
$$= \frac{1 - \Phi\left(\frac{\sigma - \mu}{\sigma}\right)}{1 - \Phi\left(\frac{-2 - \mu}{\sigma}\right)}$$

(c) Límite del cociente con función de cola de normal

$$\lim_{x\to\infty}\frac{P(X>\sigma x+\mu)}{\frac{\phi(x)}{x}}=1$$

Esto es un resultado clásico de colas de la normal.

Pregunta 5: Mínimo de variables uniformes

Sean $X_1, ..., X_5 \sim U(0, 1)$. Sea $Y = \min(X_1, ..., X_5)$.

$$F_Y(y) = 1 - (1 - y)^5$$

$$P\left(\frac{1}{4} < Y < \frac{3}{4}\right) = F_Y\left(\frac{3}{4}\right) - F_Y\left(\frac{1}{4}\right) = \left(\frac{3}{4}\right)^5 - \left(\frac{1}{4}\right)^5 = \frac{243 - 1}{1024} = \boxed{\frac{121}{512}}$$

Pregunta 6: Raíces reales de cuadrática

Sean $A,B,C\sim \mathrm{U}(0,1)$ independientes. La ecuación cuadrática tiene raíces reales si:

$$B^2 - 4AC > 0$$

Este es un resultado clásico:

$$P(\text{raíces reales}) = \frac{5}{36}$$

Temas Relacionados

[1] ¿Cómo transformar distribuciones continuas paso a paso?

Para transformar una variable continua X con densidad $f_X(x)$ mediante Y = g(X), donde g es monótona:

- 1. Invertir la función: $x = g^{-1}(y)$
- 2. Derivar la inversa: $\left| \frac{d}{dy} g^{-1}(y) \right|$
- 3. Sustituir: $f_Y(y) = f_X(g^{-1}(y)) \cdot \left| \frac{d}{dy} g^{-1}(y) \right|$

[2] ¿Cómo obtener momentos (esperanzas) usando cambio de variable?

Para calcular $\mathbb{E}[h(X)]$:

- Cambiar de variable si facilita el cálculo (por ejemplo $u = -\ln(x)$ para funciones logarítmicas).
- Usar la densidad transformada para integrar:

$$\mathbb{E}[h(X)] = \int_{-\infty}^{\infty} h(x) f_X(x) dx$$

• Para v.a. transformadas como Y = g(X), aplicar $h(g^{-1}(y))f_Y(y)$.

[3] ¿Cómo trabajar con transformaciones mixtas (continuas y discretas)?

Cuando una variable aleatoria X tiene una fdp que es continua en un intervalo y discreta fuera de él:

- Separar los casos: usar integración para parte continua y sumatoria para parte discreta.
- Al transformar Z = g(X), considerar todas las raíces que puedan llevar al mismo valor de Z (por ejemplo $X = \pm \sqrt[4]{z}$).
- Aplicar derivadas de la inversa de cada raíz relevante y sumar contribuciones.