An evaluation of pressure rise across a connical section

Calculating the pressure drop across a die

Die with 800 holes

General Model

Geometry of each hole

Model assumptions

Laminar flow,

⇒ No heat due to viscous drag.

Constant radial temperature.

⇒ A linear temperature profile in the direction of the flow, for non-isothermal cases.

Model requirements

Actual viscosity data is used in the model

Viscosity data fit by a power law function:

$$\eta = \eta_0 \left(\frac{\dot{\gamma}}{\dot{\gamma}_0} \right)^{n-1}$$

Viscosity vs. Shear rate

Model

Momentum balance on a thin (dz) slab:

$$\frac{d(r\tau_{rz})}{dr} = \frac{\Delta P}{dz}r$$

$$\tau_{\rm rz} = \frac{\Delta P r}{dz}$$

Momentum balance on a thin (dz) slab:

$$\frac{d(r\tau_{rz})}{dr} = \frac{\Delta P}{dz}r$$

$$\tau_{\rm rz} = \frac{\Delta P r}{dz 2}$$

$$\tau_{rz} = \frac{\Delta P r}{dz} = -\eta \frac{dv_z}{dr}$$

where
$$\eta=\eta_0(rac{\dot{\gamma}}{\dot{\gamma}_0})^{n-1}$$

$$Q = \langle v_z \rangle \pi r^2$$

$$\tau_{rz} = \frac{\Delta P}{dz} \frac{r}{2} = -\eta_o \left(\frac{\frac{dv_z}{dr}}{\dot{\gamma}_o} \right)^{n-1} \frac{dv_z}{dr}$$

and for each section the pressure drop is calculated as follows

$$\Delta P = \sum_{j=1}^{j=m} \left\{ -\left[\frac{Q(3n+1)}{n\pi R_o^3 \dot{\gamma}_o} \right]^n \left[\frac{2\eta_o \dot{\gamma}_o}{R_o K} \right] - \right\} \Delta z$$

- Q is given by the production rate for the process line
- n is the power law index (used to fit the nonnewtonian region od the viscosity curve
- The same is true for eta cero and critical shear rate cero
- K is the ratio of the smallest to the biggest radius

where

$$K = \frac{Rsmall}{Rbig}$$

Model capabilities

The user can:

- define the die dimensions or choose a given die from a list of dies.
- Set the temperature, in degrees Fahrenheit, for the melt at the entrance and at the exit of the die.
- conditions define the throughput in lb./hr.
- select the resins from a list of resins for which viscosity data has been measured.

Typical Plot

An evaluation of temperature rise of a polymer flowing through a pipe

Model

Momentum balance on a thin (dz) slab:

$$\frac{d(r\tau_{rz})}{dr} = \frac{\Delta P}{dz}r$$
 (1)

$$\tau_{rz} = \frac{\Delta P r}{dz 2}$$
 (2)

Model assumptions

Laminar flow,

Heat due to viscous drag,

Constant radial temperature and,

No heat is conducted in the axial direction.

Model requirements

Actual viscosity data can be used in the

model

Viscosity data fit by a power law function:

$$\eta = \eta_0 \left(\frac{\dot{\gamma}}{\dot{\gamma}_0} \right)^{n-1}$$

Viscosity vs. Shear rate

$$\tau_{rz} = \frac{\Delta P r}{dz} = -\eta \frac{dv_z}{dr}$$
 (3)

where
$$\eta = \eta_0 \left(\frac{\dot{\gamma}}{\dot{\gamma}_0} \right)^{n-1}$$
 (4)

For Newtonian liquids
$$Q = \langle v_z \rangle \pi r^2$$
 (5)

$$\frac{\Delta P}{dz} \frac{r}{2} = -\eta_o \left(\frac{1}{\dot{\gamma}_o}\right) \dot{\gamma}^{n-1} \dot{\gamma} \tag{6}$$

$$\frac{\Delta P}{dz} \frac{r}{2} = -\eta_o \left(\frac{1}{\dot{\gamma}_o}\right)^{n-1} \left(\frac{dv_z}{dr}\right)^n \tag{7}$$

$$\frac{\Delta P}{dz} \frac{r}{2} = -\eta_o \left(\frac{1}{\dot{\gamma}_o}\right)^{n-1} \left(\frac{dv_z}{dr}\right)^n \tag{8}$$

Sustituyendo 9 en 8

$$\eta_o = \mu_o \exp(-\frac{Ea}{R(T - T_o)})$$
 (9)

$$dv_z = \left[\frac{1}{2} \frac{\Delta P}{dz} \dot{\gamma}_o^{n-1} / \left[\mu_o \exp(-\frac{Ea}{R(T-To)})\right]\right]^{1/n} r^{1/n} dr$$

Integrando (10)

$$v_{z} = \left[\frac{1}{2} \frac{\Delta P}{dz} \dot{\gamma}_{o}^{n-1} / \left[\eta_{o} \exp(-\frac{Ea}{R(T-To)}) \right]^{s} R^{s+1} \left[(r^{*} - 1) \right]$$
 (11)

Energy Balance:

$$\rho C_{p} v_{z} \frac{dT}{dz} = k \left\{ \frac{1}{r} \frac{\partial (r \frac{\partial T}{\partial r})}{\partial r} - \frac{\partial^{2} T}{\partial z^{2}} \right\} + \tau_{rz} \frac{\partial v_{z}}{\partial r}$$
(12)

$$\rho C_{p} v_{z} \frac{dT}{dz} = \tau_{rz} \frac{\partial v_{z}}{\partial r}$$
(13)

$$\rho C_{p} v_{z} \frac{dT}{dz} = -m_{o} \left\{ exp\left(-\frac{Ea}{R(T - T_{o})}\right) \right\} \left(\frac{1}{\dot{\gamma}_{o}^{n}}\right) \left(\frac{\partial v_{z}}{\partial r}\right)^{(n+1)}$$
(14)

Energy Balance:

Simplificando: para un determinado shear rate $\dot{\gamma} = \frac{dv_z}{dr}$

$$\dot{\gamma} = \frac{dv_z}{dr}$$

y evaluando a una velocidad vz promedio $\langle {
m V}_{
m z}
angle$

donde

$$\langle \mathbf{v}_{z} \rangle = \frac{\int_{0}^{2\pi} \mathbf{R}}{\int_{0}^{2\pi} \mathbf{R}}$$

$$\int_{0}^{(15)} \mathbf{r} d\mathbf{r} d\theta$$

Sustituir ecuación 11 en 15 y luego 15 en 16

Energy Balance:

$$\frac{dT}{dz} = -m_o \left\{ exp\left(-\frac{Ea}{R(T - T_o)}\right) \right\} \left(\frac{1}{\dot{\gamma}_o^n}\right) \frac{1}{\rho C_p \langle v_z \rangle} (\dot{\gamma})^{(n+1)}$$
(16)

$$\Delta T = \left[-m_o \left\{ \exp\left(-\frac{Ea}{R(T - T_o)}\right) \right\} \left(\frac{1}{\dot{\gamma}_o^n}\right) \frac{1}{\rho C_p \langle v_z \rangle} (\dot{\gamma})^{(n+1)} \right] \Delta z$$
(17)

Donde la ecuación 17 debe evaluarse a varias temperaturas de salida T hasta que haya convergencia. Esto para un dado de longitud L y haciendo las evaluaciones en pequeños intervalos de delta zeta.

Comments

In general:

- Pressure drop calculations:
 - **require knowing the Cp, k and ρ as a function** of temperature
 - the greater the shear rate the higher the viscous dissipation
 - ⇒ is affected by the flow activation energy of the polymer

Viscous Dissipation

From Table 10.2-2 del Bird

Assumption: Adiabatic

$$\rho C_{v} v_{z} \frac{\partial T}{\partial z} = \tau_{rz} \frac{\partial v_{z}}{\partial r}$$

$$\tau_{rz} = -\eta_o \left(\frac{\frac{dv_z}{dr}}{\dot{\gamma}_o} \right)^{n-1} \frac{dv_z}{dr}$$

$$\rho C_{v} v_{z} \frac{\partial T}{\partial z} = -\eta_{0} \left(\frac{1}{\gamma_{0}} \right)^{n-1} \frac{\partial v_{z}}{\partial r}^{n+1}$$

$$v_{z} \frac{\partial T}{\partial z} = -\frac{\eta_{0}}{\rho C_{v} v_{z}} \left(\frac{1}{\gamma_{0}}\right)^{n-1} \left(\frac{\partial v_{z}}{\partial r}\right)^{n+1}$$

$$v_{z} \frac{\partial T}{\partial z} = -\frac{\eta_{0}}{\rho C_{v} v_{z}} \left(\frac{1}{\dot{\gamma}_{0}}\right)^{n-1} \left(\frac{\partial v_{z}}{\partial r}\right)^{n+1}$$

$$v_{z} \frac{\partial T}{\partial z} = -\frac{\eta_{0}}{\rho C_{v} v_{z}} \left(\frac{1}{\dot{\gamma}_{0}}\right)^{n-1} \left(\frac{\partial v_{z}}{\partial r}\right)^{n+1}$$

$$\left(\frac{\rho C_{v} v_{z} v_{z}}{\eta_{0}} \frac{\partial T}{\partial z}\right)^{\frac{1}{n+1}} = \frac{\partial v_{z}}{\partial r}$$

$$\int_{0}^{R} \left(\frac{\rho C_{v} \frac{\partial T}{\partial z}}{\frac{\eta_{0}}{\left(\frac{1}{\dot{\gamma}_{0}}\right)^{n-1}}} \right)^{\frac{1}{n+1}} dr = \int \frac{\partial v_{z}}{\left(v_{z}\right)^{\frac{2}{n+1}}}$$

$$\int_{0}^{R} \left(\dot{\gamma}_{0}^{n-1} \frac{\rho C_{v}}{\eta_{0}} \frac{\partial T}{\partial z} \right)^{\frac{1}{n+1}} dr = \int \frac{\partial v_{z}}{(v_{z})^{\frac{2}{n+1}}}$$