Работа с категориальными признаками

Максим Урьев

НИС Машинное обучение

2016

Нумерация значений

- Каждый i-ый категориальный признак произвольно пронумеровываем натуральными числами $\{1,\ldots,n_i\}$
- Используем bagging: обучаем слабые алгоритмы со случайно пронумерованными признаками и в качестве финального предсказания берем усредненный ответ

Нумерация значений

Для решающего дерева, если искать разбиение

• по критерию Джини или энтропийному критерию

$$\frac{1}{N_m(1)} \sum_{x_k \in R_m(1)} [y_k = +1] \le \ldots \le \frac{1}{N_m(n_i)} \sum_{x_k \in R_m(n_i)} [y_k = +1]$$

• в соответствии MSE-функционалом

$$\frac{1}{N_m(1)}\sum_{x_k\in R_m(1)}y_k\leq\ldots\leq\frac{1}{N_m(n_i)}\sum_{x_k\in R_m(n_i)}y_k$$

Кодирование относительно вещественного признака

Дана симметричная функция φ (например mean, max). Рассмотрим вещественный признак s и категориальный $f = \{f^1, \dots f^{n_f}\}$.

$$I_k = \{s_i \mid f_i = f^k\}$$
$$f^k \to \varphi(I_k)$$

One Hot Encoding

Значение категориального признака f можно заменить бинарным вектором длины n_f

$$F = ||f_{ij}||_{I \times n_f}, f_{ij} = I[f_i = f^j]$$
$$f \to F$$

Аналогично можно кодировать конъюкции исходных признаков

Пусть Z- вещественная матрица порядка $m \times n$.

Определение

Неотрицательное вещественное число σ называется **сингулярным числом** матрицы $Z \iff \exists u, v : \|u\| = 1, \|v\| = 1$ и $Zv = \sigma u, Z^T u = \sigma v$

Такие векторы u и v называются, соответственно, **левым сингулярным вектором** и **правым сингулярным вектором**, соответствующим сингулярному числу σ .

Определение

Сингулярным разложением матрицы Z является разложение следующего вида:

$$Z = U\Sigma V^T$$

где $U_{m \times m}$ и $V_{n \times n}$ — это две ортогональные матрицы, состоящие из левых и правых сингулярных векторов соответственно,

а $\Sigma_{m \times n} = diag(\lambda_1, \dots, \lambda_r, 0, \dots, 0)$, где r — ранг матрицы Z, а λ_i — её сингулярные числа (не теряя общности $\lambda_1 \ge \dots \ge \lambda_r$).

$$Z_k = \sum_{i=1}^k \lambda_i u_i v^i$$

Теорема Эккарта-Янга

Для \forall матрицы T ранга k выполнено $\|Z-T\|_2>\|Z-Z_k\|_2=\lambda_{k+1}$

Следствие

 $Z \approx U_{m \times k} \Sigma_{k \times k} V_{k \times n}^{T}$ — усеченное сингулярное разложение.

$$F \approx U \Sigma V^T$$

• Линейные комбинации столбцов матрицы U достаточно точно приближают столбцы исходной матрицы.

Если изначально известны контрольные объекты

$$F \rightarrow U$$

Если же изначально контрольные объекты не известны

Счетчики

Значение категориального признака f можно заменить вещественным признаком g:

$$g^{j} = \frac{\sum_{i=1}^{I} [y_{i} = +1][f_{i} = f^{j}] + \Delta_{f} c}{\sum_{i=1}^{I} [f_{i} = f^{j}] + c}$$

с — коэффициент регуляризации

Счетчики

Обобщение: для *i*-ого объекта перейдем к паре признаков $(\varphi(g_i), \gamma_i)$, где $\varphi: \mathbf{R} \to \mathbf{R}$,

$$\gamma_i = \begin{cases} 1, f_i \in \{f^1, \dots f^{n_f}\} \\ 0, f_i \notin \{f^1, \dots f^{n_f}\} \end{cases}$$

При этом можно положить $\Delta_f=0$ На практике обычно используют $arphi(x)=x^k$

Счетчики

Что еще попробовать:

- обнулять редкие категории
- объединять редкие категории в одну
- вычислять несколько счетчиков для разных *с*
- счетчики для конъюкций признаков

Частоты

Можно хранить частоты значения определенного признака

$$g^j = \frac{\sum_{i=1}^{I} [f_i = f^j]}{I}$$

Также можно хранить частоты конъюкций

Методы, основанные на тензорных разложениях

Рассмотрим пару категориальных признаков f , g и матрицу $Z = \|z_{ij}\|_{n_f \times n_g}$

$$z_{f^{t_f},g^{t_g}} = \frac{\sum_{i=1}^{I} [f_i = f^{t_f}] [g_i = g^{t_g}] y_i}{\sum_{i=1}^{I} [f_i = f^{t_f}] [g_i = g^{t_g}]}$$

Если знаменатель равен 0, то считаем значение неопределенным.

Хотим восстановить все неопределенные элементы.

Методы, основанные на тензорных разложениях

Будем искать разложение Z = UV, где $U = \|u_{ii}\|_{n_{\ell} \times k}$, $V = \|v_{ii}\|_{k \times n_{\sigma}}$, минимизируя функционал

$$J = \sum_{t=1}^{l} e_t^2 + \lambda_f \sum_{s=1}^{k} \sum_{i=1}^{n_f} u_{is}^2 + \lambda_g \sum_{s=1}^{k} \sum_{j=1}^{n_g} v_{sj}^2$$

$$e_t = \sum_{t=1}^{k} u_{f^{t_f},s} \cdot v_{s,g^{t_g}} - z_{f^{t_f},g^{t_g}}$$

$$\int_{-1}^{\infty} u_{f^{t_f},s} \cdot v_{s,g^{t_g}} - Z_{f^{t_f},g^{t_g}}$$

Методы, основанные на тензорных разложениях

Вместо Z_{ij} можно брать латентные вектора u_i и v^j .

Методы, основанные на тензорных разложениях

Аналогично, когда n категориальных признаков f_1,\ldots,f_n , будем восстанавливать значения многомерной матрицы $n_1\times\ldots\times n_n$. Будем искать матрицы $U(r)=\|u_{ij}^r\|_{n_r\times k}, r\in 1,2,\ldots,n$

$$J = \sum_{t=1}^{l} e_t^2 + \sum_{r=1}^{n} \lambda_r ||U(r)||_2$$

$$e_t = \sum_{s=1}^{\kappa} \prod_{r=1}^{n} u_{f_{t_r},s}^r - z_{f^{t_{f_1}},...,f^{t_{f_n}}}$$

Методы, основанные на близости

Можно вычеслять оценки принадлежности классам следующим образом:

$$\Gamma_{y}(\bar{f}) = \frac{1}{N_{y}} \sum_{\Omega \in \Omega^{*}} w_{\Omega} \sum_{i:y_{i}=y} B_{\Omega}(\bar{f}, \bar{f}_{i})$$

 Ω^* — система опорных множеств: подмножеств множества признаков

 w_Ω — вес опорного множества Ω

 B_{Ω} — функция близости, равная $\prod_{j\in\Omega}[f_j=f_{ij}]$

Методы, основанные на близости

- Ω^* в простейшем случае конъюкции.
- существуют более сложные способы выбора опорного множества
- ullet можно возводить функционал в некоторую степень d

Stacking

Кодируя категориальные признаки различными способами, получаем различные модели. Применяем Стекинг над нашим набором моделей.

Литература

- www.alexanderdyakonov.narod.ru/sw-factors-dyakonov.pdf
- www.machinelearning.ru/wiki/images/7/73/MOTP14_5.pdf