An Introduction to Radio Interferometry

5-2 Atmospheric effect

- Emission
- Absorption
- Refraction

• Emission

Contribute to thermal noise. (Introduce in Lecture Unit 5-3)

- Absorption
- Refraction

• Emission

Contribute to thermal noise. (Introduce in Lecture Unit 5-3)

Absorption

Attenuate signal.

Refraction

- Emission
 - Contribute to thermal noise.
- Absorption

Attenuate signal.

Refraction

(i) effectively, leads to source tracking errors

• Emission

Contribute to thermal noise.

Absorption

Attenuate signal.

Refraction

(i) effectively, leads to source tracking errors

- Emission
 - Contribute to thermal noise.
- Absorption

Attenuate signal.

Refraction

- (i) effectively, leads to source tracking errors
- (ii) leads to variations of path length difference to each telescope

(i.e., changes visibility phase) [Introduce in Lecture Unit 5-4]

$$\Delta \tau \equiv \kappa \Delta s$$

Incredibly important to remember!

$$-\frac{dI}{d\tau} = I \implies \int \frac{dI}{I} = \int -d\tau$$

$$\implies \ln I = -\tau + const.$$

$$\implies I = e^{const.}e^{-\tau}$$

$$\Delta \tau \equiv \kappa \Delta s$$

Incredibly important to remember!

Incoming intensity
$$I = I_0 \quad \text{when} \quad \tau = 0$$

$$I = I_0 e^{-\tau_{atm}}$$

$$\Delta \tau \equiv \kappa \Delta s$$

Incredibly important to remember!

 $-\frac{dI}{d\tau} = I \implies \int \frac{dI}{I} = \int -d\tau$ $\implies \ln I = -\tau + const.$ $\implies I = e^{const.}e^{-\tau}$

Extinction coefficient

Incoming intensity
$$I = I_0$$
 when $\tau = 0$

$$I = I_0 e^{-\tau_{atm}}$$

$$G_{atm} \equiv e^{-\tau_{atm}}$$

Atmospheric emission

c.f. George B. Rybicki & Alan P. Lightman, Radiative Processes in Astrophysics

Incredibly important to remember!

Temperature of the atmosphere

$$T_B^{atm} = T_{atm} (1 - e^{-\tau_{atm}})$$

$$\Delta \tau \equiv \kappa \Delta s, \ \tau = \int d\tau$$

$$G_{atm} \equiv e^{-\tau_{atm}}$$

Brightness temperature of the atmosphere

[check lecture unit 1-4 if necessary]

Atmospheric emission

c.f. George B. Rybicki & Alan P. Lightman, Radiative Processes in Astrophysics

Incredibly important to remember!

Temperature of the atmosphere

$$T_B^{atm} = T_{atm} (1 - e^{-\tau_{atm}})$$

$$\Delta \tau \equiv \kappa \Delta s, \quad \tau = \int d\tau$$
 $G_{atm} \equiv e^{-\tau_{atm}}$

$$G_{atm} \equiv e^{-\tau_{atm}}$$

Brightness temperature of the atmosphere

[check lecture unit 1-4 if necessary]

High optical depth limit
$$(\tau_{atm} \to \infty)$$
:
$$\begin{bmatrix} G_{atm} \to 0 \text{: Strong attenuation. Celestial source cannot be seen.} \\ T_B^{atm} \to T_{atm} \text{: The atmosphere looks like an ideal black body.} \end{bmatrix}$$
 Low optical depth limit $(\tau_{atm} \to 0)$:
$$T_B^{atm} \sim T_{atm} \left[1 - \left(1 - \tau_{atm} + \frac{1}{2!} \tau_{atm}^2 + \cdots \right) \right] \sim T_{atm} \tau_{atm}$$
 Ignore higher order of τ_{atm}

- 1. The atmosphere effects the observations of the celestial objects by emission, absorption, and refraction.
- 2. Intensity of a celestial object is attenuated by $G_{atm} \equiv e^{-\tau_{atm}}$, where τ_{atm} is the optical depth of the atmosphere during the time of the observation and at the observing frequency.
- 3. The emission of the atmosphere can be approximated by $T_B^{atm} = T_{atm} (1 e^{-\tau_{atm}})$