

Flachheitsbasierte Folgeregelung Dr.-Ing. F. Woittennek

Mitschrift von Bolor Khuu

21. Oktober 2014

Inhaltsverzeichnis

1	L Einführung			3
2 Flache Systeme		7		
	2.1	Definit	ion der flachen Systeme	7
		2.1.1	Unendlich viele Ausgänge	7
		2.1.2	Zur differentiellen Unabhängigkeit der flachen Ausgangs	7
		2.1.3	Ebenes Modell eines Brückenkrans	8

1 Einführung

Kinematisches Modell eines zweiachsichen Fahrzeuges

Beschreibung der Lage

• Position Hinterachsenmittelpunkt H:

$$y = y_1 \underline{e}_1 + y_2 \underline{e}_2$$

• Position des Vorderachsenmittelpunkts:

$$\underline{y}_{v} = y_{1,v}\underline{e}_1 + y_{2,v}\underline{e}_2$$

• Ausrichtung des Fahrzeuges:

$$\underline{\tau} = \underline{e}_1 \cos \theta + \underline{e}_2 \sin \theta$$

• zugerhörige Normalenvektor:

$$\underline{\nu} = -\underline{e}_1 \sin \theta + \underline{e}_2 \cos \theta = \frac{d\underline{\tau}}{d\theta}$$

• Ausrichtung der Vorderräder:

$$\underline{\tau}_{\nu} = \cos \theta + \varphi \underline{e}_{1} + \sin \theta + \varphi \underline{e}_{2} = \cos \varphi \underline{\tau} + \sin \varphi \underline{\nu}$$
 (1)

• zugerhöriger Normalenvektor:

$$\underline{\nu}_{v} = -\sin\varphi\underline{\tau} + \cos\varphi\underline{\nu} \tag{2}$$

Ausrichtung der Bindungen

• Vorderachsenmittelpunkt ist starr mit Hinterachse verbunden (Abstand 1)

$$\underline{y}_v = \underline{y} + l\underline{\tau} \tag{3}$$

• Hinterräder rollen, ohne zu gleiten:

$$\dot{y} = v_{\underline{\tau}} \tag{4}$$

• Differenzieren von (3):

$$\underline{\dot{y}}_{v} = \underline{\dot{y}} + l\underline{\tau} = v\underline{\tau} + l\underline{\nu}\dot{\theta} \tag{5}$$

• Vorderräder rollen, ohne zu gleiten:

$$\langle \underline{\nu}_v, \underline{\dot{y}}_v \rangle = 0$$

• aus (2) folgt unter Beachtung von

$$\langle \underline{\nu}, \underline{\tau} \rangle = \langle \underline{\tau}, \underline{\nu} \rangle = 0$$

$$\langle \underline{\tau}, \underline{\tau} \rangle = \langle \underline{\nu}, \underline{\nu} \rangle = 1$$

der Zusammenhang:

$$\langle \nu_{v}, \dot{y}_{v} \rangle = \langle -\sin \varphi \underline{\tau} + \cos \varphi \underline{\nu}, v\underline{\tau} + l\underline{\nu}\dot{\theta} \rangle$$

$$= \langle -\sin \varphi \underline{\tau}, v\underline{\tau} \rangle + \langle -\sin \varphi \underline{\tau}, l\underline{\nu}\dot{\theta} \rangle + \langle \cos \varphi \underline{\nu}, v\underline{\tau} \rangle + \langle \cos \varphi \underline{\nu}, l\underline{\nu}\dot{\theta} \rangle \qquad (6)$$

$$= -v\sin \varphi + \cos \varphi l\dot{\theta}$$

• Zusammenfassung Modell:

$$\begin{array}{rcl} \dot{y}_1 & = & v\cos\theta & \Leftrightarrow \underline{\dot{y}} = v\underline{\tau} \\ \dot{y}_2 & = & v\sin\theta \end{array} \tag{7a}$$

$$\tan \varphi = \frac{l\dot{\theta}}{v} \tag{7b}$$

Flachheit des Fahrzeugmodells

Ziel: Berechnung alles Systemgrößen $(y_1,y_2,\varphi,\theta,v)$ aus Bahn des Hinterachsenmittelpunktes

• Geschwindigkeit aus (7a):

$$|v| = |v||\underline{\tau}| = |\underline{\dot{y}}| = \sqrt{\underline{\dot{y}_1^2 + \underline{\dot{y}_2^2}}} \Rightarrow v = \pm |\underline{\dot{y}}| \tag{8}$$

Orientierung:

$$\underline{\tau} = \frac{\dot{\underline{y}}}{v} = \frac{\dot{\underline{y}}}{\pm |\dot{\underline{y}}|} \tag{9}$$

• zugerhöriger Winkel:

$$\tan \theta = \frac{\dot{y}_2}{\dot{y}_1} \tag{10}$$

• Differenzieren (7a) liefert:

$$v\dot{\theta}\underline{\nu} + \dot{v}\underline{\tau} = \underline{\ddot{y}} \tag{11}$$

• skalare Multiplikation mit $v, \underline{\nu} = -\dot{y}_2\underline{e}_1 + \dot{y}_1\underline{e}_2$

$$v^{2}\dot{\theta} = \langle \underline{\ddot{y}}, -\dot{y}_{2}\underline{e}_{1} + \underline{\dot{y}}_{1}e_{2} \rangle = -\ddot{y}_{1}\dot{y}_{2} + \ddot{y}_{2}\dot{y}_{1} \Rightarrow \dot{\theta} = \frac{\ddot{y}_{2}\dot{y}_{1} - \ddot{y}_{1}\dot{y}_{2}}{\dot{y}_{1}^{2} + \dot{y}_{2}^{2}}$$
(12)

• Lenkwinkel:

$$\tan \varphi = l \frac{\ddot{y}_2 \dot{y}_1 - \ddot{y}_1 \dot{y}_2}{\pm (\dot{y}_1^2 + \dot{y}_2^2)^{3/2}}$$
(13)

Flachheitsbasierter Steuerungsentwurf für das Fahrzeug

Vorüberlegungen:

- ullet Wahl einer Übergangszeit t_f
- Wahl von Anfangs- und Endbedingungen

$$(y_1(0), y_2(0), \theta(0), \varphi(0), v(0), \dot{v}(0)), (y_1(t_f), y_2(t_f), \theta(t_f), \varphi(t_f), \dot{v}(t_f))$$

• Berechnung der zugerhörigen Bindungen für flachen Ausgang aus (7a) und (11)

$$\begin{array}{lcl} \underline{\dot{y}} & = & v\underline{\tau} & = & v(\underline{e}_1\cos\theta + \underline{e}_2\sin\theta) \\ \underline{\ddot{y}} & = & \dot{v}\tau + v\dot{\theta}\nu & = & \dot{v}(\underline{e}_1\cos\theta + e_2\sin\theta) + \frac{v^2\tan\varphi}{l} \end{array} \qquad (-\sin\theta\underline{e}_1 + \cos\theta\underline{e}_2) \end{array}$$

- ullet Vorgabe der Solltrajektorie für den flachen Ausgang als zweimal differenzierbare Zeitfunktion $t o y_d(t)$ unter Berücksichtigung der Anfangs- und Endbedingungen
- ullet Steuerung: Berechnung der Zeitverläufe aller Systemgrößen (u.a. Stellgrößen aus $t o y_d(t)$)

Flachheitsbasierter Folgeregler

Problem

Anfangsfehler , Störung, ungenau Modellparameter, nicht modellierte Modelleigenschaften (z.B. Schlupf) verursachen Abweichungen von geplanten Bahn

Lösung

Regler zur Zurückführung des Fahrzeuges auf geplanten Bahn (Stabilisierung der Folgebewegung)

Annahme

Position und Orientierung des Fahrzeuges sind bekannt

Folgefehler

Ziel

Folgefehler soll abklingen: $\lim_{t\to\infty}e_i(t)=0,\quad i=1,2$ Ziel erreicht, wenn Folgefehler sich wie stabile Oszillatoren verhalten.

$$\ddot{e}_i(t) + 2\delta_i\omega_i\dot{e}_i(t) + \omega_i^2e_i(t) = 0 \quad i = 1, 2, \quad \delta_i\omega_i > 0$$
(15)

Gleichung (15) kompakt:

$$\underline{\ddot{e}}(t) + K_1\underline{\dot{e}}(t) + K_0\underline{e}(t) = 0, \qquad K_1 = \mathsf{diag}(2\delta_1\omega_1, 2\delta_2\omega_2), K_0 = \mathsf{diag}(\omega_1^2, \omega_2^2)$$

Frage

: Wie müssen Stellgrößen gewählt werden, von um (15) zu erreichen?

• aus (14) und (15) folgt:

$$\ddot{y}_{(t)} = \underline{\ddot{y}}_{d}(t) - K_{1}\underline{\dot{e}}(t) - K_{0}\underline{e}(t) = \underline{\ddot{y}}_{d} - K_{1}(v(t)\underline{\tau}(t) - \underline{\dot{y}}_{d}(t))$$

fehlt etwas

• Auflösen nach \dot{v} bzw. $v\dot{\theta}$ durch skalare Multiplikation mit \underline{v} bzw. $\underline{\tau}$

$$\dot{v} = \langle \ddot{y}_d - K_1(v\underline{\tau} - \dot{y}_d) - K_0(y - y_d), \underline{\tau} \rangle \tag{16a}$$

$$v\dot{\theta} = \rangle \underline{\dot{y}}_d - K_1(v\underline{\tau} - \underline{\dot{y}}_d) - K_0(\underline{y} - \underline{y}_d), \underline{\nu}\rangle$$
 (16b)

- \bullet (16a) ist DGL für Stellgröße v (Anfangsbedingungen für v aus Solltrajektorie) \Rightarrow dynamischer Regler
- (16b) liefert mit (13) den Lenkwinkel.

$$\varphi = \arctan(l\frac{\langle \underline{\ddot{y}}_d - K_1(v\underline{\tau} - \underline{\dot{y}}_d - K_0(\underline{y} - \underline{y}_d)), \underline{\nu}\rangle}{v^2})$$

• Regler aus (16) (17a) mit Anfangsbedingung $v_0 = v_d$

Problem

Singularität bei v=0 vorhanden Steuerung /Regelung des Fahrzeuges in/aus Ruhelagen (Abschnitt 3)

Zusammenfassung:

- Entwurf eines Folgereglers in zwei Schritten: Plannung einer Solltrajektorie und Stabilisierung entlang der Solltrajektorie
- Verwendung eines flachen Ausgangs erleichtert beide Schritte beschriebenes Vorgehen ist für flache Systeme generell möglich

2 Flache Systeme

Ausgangspunkt: System von q gewöhnlichen , nichtlinearen DGLen in den Systemgrößen $z=(z_1,\ldots,z_s)$

$$S_i(z_i, \dots, z^{\sigma_i}) = 0, \quad i = 1, \dots, q$$

Spezialfall nichtlineares Zustandsgleichungenssystem:

$$\underline{\dot{x}} = f(\underline{x}, \underline{u}), \quad \underline{x} \in \mathbf{R}^u, u \in \mathbf{R}^m$$

in der Form (1) $z = (x_1, ..., x_n, u_1, ..., u_m)$

$$S_i(z, \dot{z}) = \dot{x}_i - f_i(\underline{x}, \underline{u}), \qquad i = 1, \dots, n$$

2.1 Definition der flachen Systeme

Interpretation:

- \bullet (I). Trajektorien für y können frei gewählt werden
- \bullet (II). Berechnung der Zeitverläufe der Systemgrößen aus jenen von y (ohne Integration) möglich

2.1.1 Unendlich viele Ausgänge

- flacher Ausgang nicht eindeutig
- Umrechnung zweier flacher Ausgänge \tilde{y} und y mittel (II)

$$\tilde{y}_i = \psi_i(y, \dot{y}), \qquad i = 1, \dots, \tilde{m}$$

$$y_i = \tilde{\psi}_i(\tilde{y}, \tilde{y}, \dots) \qquad i = 1, \dots, m$$

ullet man kann zeigen, dass $ilde{m}=m$ (jeder flache Ausgang hat gleiche Anzahl an Komponenten)

2.1.2 Zur differentiellen Unabhängigkeit der flachen Ausgangs

- Überprüfung der differentiellen Unabhängigkeit im allgemein schwierig
- sei $y=(y_1,\ldots,y_m)$ mit m=s-q ein m-Tupel, das (II) genügt

• Transformation $\Phi: (z_1, \ldots, z_s) \to (\bar{z}_1, \ldots, \bar{z}_s)$

$$ar{z}_1 = y_1 = \phi_1(z,\dots,z^{eta_1})$$
 \vdots
 $ar{z}_m = y_m = \phi_m(z,\dot{z},\dots,z^{eta_m})$
 $ar{z}_{m+1} = S_1(z,\dot{z},\dots) = 0$
 \vdots
 $ar{z}_s = S_q(z,\dot{z},\dots) = 0$

mit Rücktransformation:

$$z_1 = \psi_n(y, \bar{y}, \dots)$$

$$\vdots$$

$$z_s = \psi_s(y, \dot{y}, \dots)$$

• in neuen Koordinaten \bar{z} gilt:

$$\bar{z}_{m+1} = \dots = \bar{z}_s = 0 \tag{2}$$

 $(y_1,\ldots,y_m)=(\bar{z}_1,\ldots,\bar{z}_m)$ kommt in (2) nicht vor \Rightarrow differentielle Unabhängigkeit offensichtlich

Folgerung

- 1. Ein flacher Ausgang eines durch q (unabhängige Gleichung gegebenen Systems für s Größen hat stets m=s-q Komponenten.)
- 2. Genügt $y = (y, \dots, y_m)$ der Bedingung (II), so ist Bedingung (I) automatisch erfüllt.

2.1.3 Ebenes Modell eines Brückenkrans

- Modell mit Systemgrößen: $y_1, y_2, D_2, R, \theta, T, \omega, C, F$
 - Impulserhaltung für Last.

$$m(\underline{\ddot{y}} - \underline{g}) = -T\underline{\tau} \tag{3a}$$

- geometrischer Zussamenhang zwischen Wagen und Lastposition

$$y = D_2 \underline{e}_2 + R\underline{\tau} \tag{3b}$$

- Impulserhalung für Wagen

$$M\ddot{D}_2 = F + T\sin\theta - c_d\dot{D}_2, \qquad c_d\dots$$
 Reibkoeffizient (3c)

- Drehimpulsbilanz Rolle

$$J\dot{\omega} = C - \rho T - c_r \omega, \qquad c_r \dots \text{Reibkoeffizient}$$
 (3d)

- Zusammenhang Seillänge Winkelgeschwindigkeit

$$\dot{R} = -\rho\omega \tag{3e}$$

mit

$$\underline{\tau} = \cos \theta \underline{e}_1 + \sin \theta \underline{e}_2, \qquad \underline{\nu} = -\sin \theta \underline{e}_1 + \cos \theta \underline{e}_2 \tag{4}$$

• Pendelteilsystem besteht aus (3a) und (3b) mit Größen $R, \theta, y_1, y_2, T, D_2$ besitzt gleichen flachen Ausgang wie Gesamtsystem