

UNIVERSITY OF
ILLINOIS LIBRARY
AT URBANA-CHAMPAIGN
GEOLOGY

Return this book on or before the **Latest Date** stamped below.

GEOLOGY LIBRARY

University of Illinois Library

Oniversity of Timios Dibiary
DEC 3 0 1964 JUN 1 1 1984
100 8 1966 MAR \$ 5 1989
DEC 29 1966
FEB 3 1967 MAY 1 7 2004
JUN 16 1967
JUL 1 1 1968 MAY 2 2 1972
NOV 2 1 1980 DEC. 0 8 1980 NOV 3 8 1982
NOV 3 5 982

FIELDIANA: GEOLOGY

A continuation of the

GEOLOGICAL SERIES

of

FIELD MUSEUM OF NATURAL HISTORY

VOLUME 10

FIELD MUSEUM OF NATURAL HISTORY CHICAGO, U.S.A.

TABLE OF CONTENTS

		PAGE
1.	A New Turtle from the Paleocene of Colorado. By Karl P. Schmidt.	1
2.	Fossil Specimens of Macrochelys from the Tertiary of the Plains. By Rainer Zangerl	5
3.	A New Anosteirine Turtle from Manchuria. By Rainer Zangerl	13
4.	A New Pycnodont Fish from the Cretaceous of Arkansas. By Louis Hussakof	23
5.	Redescription of <i>Taphrosphys olssoni</i> . A Fossil Turtle from Peru. By Rainer Zangerl	29
6.	A New Genus of Taeniodonts from the Late Paleocene. By Bryan Patterson.	41
7.	A New Silurian Trilobite Dalmanites oklahomae. By Eugene S. Richardson, Jr	43
8.	Some Lower Huronian Stromatolites of Northern Michigan. By Eugene S. Richardson, Jr.	47
9.	The Temporal Region of the Permian Reptile Diadectes. By Everett Claire Olson	63
10.	A Middle Devonian Octactinellid Sponge from New York. By Eugene S. Richardson, Jr.	79
11.	Fauna of Upper Vale and Choza: 1-5. By Everett Claire Olson	89
12.	A Mastodont Tooth from Szechwan, China. By Dirk A. Hooijer and Edwin H. Colbert	129
13.	A Classification of the Conularida. By G. Winston Sinclair	135
14.	Fauna of the Upper Vale and Choza: 6, Diplocaulus. By Everett Claire Olson	147
15.	A New and Primitive Early Oligocene Horse from Trans-Pecos Texas. By Paul O. McGrew	167
16.	Fresh-water Limestone from the Torola Valley, Northeastern El Salvador. By Sharat Kumar Roy and Robert Kriss Wyant	173
17.	Fauna of the Vale and Choza: 7. Pelycosauria: Family Caseidae. By Everett Claire Olson	193
18.	Fauna of the Vale and Choza: 8. Pelycosauria: Dimetrodon. By Everett Claire Olson	205
19.	Fauna of the Vale and Choza: 9. Captorhinomorpha. By Everett Claire Olson	211
20.	Note on An Eocene Crab Harpactocarcinus mississippiensis Rathbun. By Eugene S. Richardson, Jr.	219

		PAGE
21.	Fauna of the Vale and Choza: 10. Trimerorhachis: Including a Revision of Pre-Vale Species. By Everett Claire Olson	225
22.	The Carboniferous Gastropod Genus Glabrocingulum Thomas. By Robert E. Sloan	275
23.	The Paragould Meteorite. By Sharat Kumar Roy and Robert Kriss Wyant.	283
24.	A New Species of the Fossorial Mammal Arctoryctes from the Oligocene of Colorado. By Charles A. Reed.	305
25.	Fauna of the Vale and Choza: 11. Lysorophus: Vale and Choza; Diplocaulus, Cacops and Eryopodae: Choza. By Everett Claire Olson	313
26.	Fauna of the Vale and Choza: 12. A New Trematopsid Amphibian from the Vale Formation. By Everett Claire Olson	323
27.	Fauna of the Vale and Choza: 13. Diadectes, Xenacanthus, and Specimens of Uncertain Affinities. By Everett Claire Olson	329
28.	The Present Status of the Volcanoes of Central America. By Sharat Kumar Roy	335
29.	The Nature of Shield Abnormalities in the Turtle Shell. By Rainer Zangerl and Ralph G. Johnson	341
30.	A Restudy of the 1917 Eruption of Volcán Boquerón, El Salvador, Central America. By Sharat Kumar Roy	363
31.	The Problems of the Origin and Structure of Chondrules in Stony Meteorites. By Sharat Kumar Roy	383
32.	Fauna of the Vale and Choza: 14. Summary, Review, and Integration of the Geology and the Faunas. By Everett Claire Olson	397
33.	New Salamanders of the Family Sirenidae from the Cretaceous of North America. By Coleman J. Goin and Walter Auffenberg	449
34.	A Review of the Family Captorhinidae. By Richard J. Seltin	461
35.	Two New Rodent Genera from the Oligocene White River Formation (Family Heteromyidae). By William G. Reeder	511
36.	A Lance Didelphid Molar. With Comments on the Problems of the Lance Therians. By William D. Turnbull	525
37.	The Walters Meteorite. By Sharat Kumar Roy, Jewell J. Glass and Edward P. Henderson.	539

FIELDIANA · GEOLOGY

Published by

CHICAGO NATURAL HISTORY MUSEUM

Volume 10

SEPTEMBER 19, 1945

No. 1

A NEW TURTLE FROM THE PALEOCENE OF COLORADO

KARL P. SCHMIDT

CHIEF CURATOR, DEPARTMENT OF ZOOLOGY

A number of fossil shells of turtles were collected from the Paleocene beds of western Colorado by Messrs. Bryan Patterson and James H. Quinn (with various friends and associates) in 1932 and subsequent years. One of these, collected in 1941, is immediately recognizable as a trionychid, closely allied to Aspideretes puercensis of the early Paleocene Puerco beds of New Mexico. I am again indebted to Messrs. Patterson and Quinn for aid in the study of the specimen in question. Though a nearly complete carapace, it was in such friable condition when found that its preservation offered unusual difficulties, necessitating permanent plaster backing. Mr. Quinn's skillful preparation nevertheless very well exhibits the carapacial characters.

The new form agrees with Aspideretes puercensis in the complete separation of the nuchal from the first costal by an excavation that extends to the preneural. This is plainly a secondary character; as these two species represent a distinct phyletic branch, off the main line of evolution of the Trionychidae, it is useful to distinguish them generically from Aspideretes.

Class Reptilia
Order Testudinata
Family Trionychidae
Paleotrionyx gen. nov.

Diagnosis.—Distinguished from Aspideretes by the complete separation of the nuchal from the first costal bones (except at the end of the rib), the excavation extending to the preneural. Otherwise with the characters of Aspideretes.

1

Type.—Paleotrionyx quinni sp. nov.

No. 572

Paleotrionyx quinni sp. nov.

Holotype.—Chicago Natural History Museum No. P26441, a carapace with one side essentially complete. Found by Alfred A. Look, Jr.

Horizon and type locality.—Plateau Valley beds, late Paleocene; 2½ miles west of DeBeque, Mesa County, Colorado (one-half mile west of the Finley Ranch House).

Diagnosis.—A large trionychid with a flat rugose portion of the carapace ending laterally with an abrupt margin bordered by a smooth strip, set below the level of the rugose disk, from which the ribs extend. Nuchal broadly in contact with the rib-end of the first costal, otherwise separated from the first costal by an excavation that reaches the large preneural. Distinguished from Paleotrionyx puercensis by its much more elongate neurals.

Description of type.—Carapace very flat from side to side and apparently also from front to rear, about 700 mm. in length on the mid-line, and 410 at the widest point of the disk, the rib-ends projecting at least 160 mm. on each side in addition. Nuchal large and transverse, widely separated from the body of the first costal but in contact with the ends of its rib-extensions; only the posterior median portion involved in the rugosity of the dorsal disk; the lateral wings each with a ridge on the dorsal surface. Disk very rugose, with ridges tending to be parallel to the sides; rugosity ending abruptly at an edge raised above the level of a smooth margin, 30 mm. wide, that is continuous with the projecting rib-ends. Preneural much broader than long, with free lateral edges. Second and third neural more elongate than in puercensis. Free end of rib on third costal very long. Eighth costal very small (incomplete). Neurals narrowing to the seventh, which is wedge-shaped, the second longest.

MEASUREMENTS				
	Length mm.	Width mm.		
Nuchal	92	370		
Preneural	68	86		
Neurals				
First	66	48		
Second	86	48		
Third	81	41		
Fourth	76	43		
Fifth	64	40		
Sixth	59	40		
Seventh	60	21		

Discussion.—The two species of Paleotrionyx may be distinguished as follows:

Fig. 1. Dorsal aspect of carapace of Paleotrionyx quinni sp. nov.

- 2. Smooth rim of the carapacial disk set abruptly below the level of the rugose surface; neurals elongate; rib-like thickening of the nuchal on its upper surface.....quinni.

The Paleocene species of Aspideretes (Gilmore, 1942) are sagatus, reesidei, vegetus, quadratus, and perplexus of the Puerco, singularis of the Torrejon beds of New Mexico, superstes of the Paskapoo of Alberta, subquadratus of the Ravenscrag of Saskatchewan, and nassau from the Fort Union beds of Montana. In all of these in which the nuchal is known, it is in contact with the first costal throughout its length. Aspideretes nassau is known only from the posterior part of the carapace, and thus can not be allocated with certainty to either Paleotrionyx or Aspideretes. It may be retained as Aspideretes? nassau as in Hay's original description. None of the numerous species of Aspideretes from the Cretaceous exhibit the generic character of Paleotrionyx.

REFERENCES

GILMORE, C. W.

1942. Paleocene faunas of the Polecat Bench formation, Park County, Wyoming. Part II: Lizards. Proc. Amer. Phil. Soc., 85, pp. 159-167, figs. 1-12.

HAY, O. P.

1908. The fossil turtles of North America. Carnegie Inst. Wash. Pub., 75, IV+568 pp., 704 figs., 113 pls.

UNIVERSITY OF ILLINOIS-URBANA

550.5FI C001 FIELDIANA, GEOLOGY CHGO 10-11 1945-58

3 0112 026616000