Delay Models

Delay Calculation

- The delay calculation is needed because of complex Input Capacitance, Voltage Drop, Voltage Islands,
 High Impedance nets etc.
- Delay calculation parameter data are stored as Lookup-Table format

Delay Models

Interconnect Delay Models

- Lumped RCL Delay Models
- Wire Load Delay (WLD) Model
- Elmore Delay Model
- Arnoldi Delay Model

Cell Delay Models

- Non-Linear Delay Model (NLDM)
- Scalable Polynomial Delay Model (SPDM)
- Effective Current Source Model (ECSM)
- Composite Current Source (CCS) Delay Model

Interconnect Delay Models

Wireload	Elmore	Arnoldi
 Delays are estimated based on the number of fanout of the cell driving the net Values of unit resistance R and unit capacitance C are given in technology file Fanout vs net length is tabulated in WLMs Once the net length is known delay can be calculated 	 Delays are estimated based on first moment of impulse response used where speed of calculation is important but the delay through the wire itself cannot be ignored Less accurate, but if the nets are very small, Elmore can provide sufficient accuracy with less run time Inherently cannot handle inductance effect but can be extended to include inductance Need higher order moments Useful for interconnect optimization 	 More accurate Need more run time Used in cases where the driver resistance is much less than the impedance of the network to ground, especially when a very strong driver is connected to a very resistive network

Cell Delay Models

Non-	Linear Delay	Effective Current	Scalable Polynomial	Composite Current
	Model	Source Model	Delay Model	Source Delay Model
volta	leled as a linear	Models a unique	Models the delay	 Modeled as current
	age ramp in	dataset for each	and slew values as a	waveform from a
	es with a	Voltage-	function of voltage and temperature	time varying current

I COIOLUI

- Less accurate
- Less run time
- Intermediate values are interpolated
- Assumes load is purely capacitive
- Variation may range anywhere from 5-10%
- Linear k-factors required for handling of IR-drop, Delay
- Transition time are functions of Input slew and Output load

combination

- Improved accuracy
- · Easy to characterize
- Increased characterization
- Smooth non-linear interpolation/extrap olation
- Can't use for memory or complex cell characterization
- Models IR Drop non-linearly
- Data characterized for three voltage corners

and temperature

- SPDM is a polynomial abstract
- Less accurate
- More runtime
- Extra characterization setup required
- Increased characterization time
- Extrapolation is unreliable
- SPDM requires elaborate curve fitting techniques for an accurate curve fit

SUUILE

- More accurate
 - More run time
- Extra setup required for characterization
- CCS libraries are huge in size
- Addresses the effects of deep submicron processes

Copyright © 2021

VLSI BACK-END ADVENTURE