In [2]: !pip install seaborn

Requirement already satisfied: seaborn in f:\python\lib\site-packages (0.11.2) Requirement already satisfied: scipy>=1.0 in f:\python\lib\site-packages (from seaborn) (1.7.3) Requirement already satisfied: pandas>=0.23 in f:\python\lib\site-packages (fro m seaborn) (1.4.2) Requirement already satisfied: numpy>=1.15 in f:\python\lib\site-packages (from seaborn) (1.21.5) Requirement already satisfied: matplotlib>=2.2 in f:\python\lib\site-packages (from seaborn) (3.5.1)Requirement already satisfied: pyparsing>=2.2.1 in f:\python\lib\site-packages (from matplotlib>=2.2->seaborn) (3.0.4) Requirement already satisfied: python-dateutil>=2.7 in f:\python\lib\site-packa ges (from matplotlib>=2.2->seaborn) (2.8.2) Requirement already satisfied: packaging>=20.0 in f:\python\lib\site-packages (from matplotlib>=2.2->seaborn) (21.3) Requirement already satisfied: kiwisolver>=1.0.1 in f:\python\lib\site-packages (from matplotlib>=2.2->seaborn) (1.3.2) Requirement already satisfied: cycler>=0.10 in f:\python\lib\site-packages (fro m matplotlib>=2.2->seaborn) (0.11.0) Requirement already satisfied: fonttools>=4.22.0 in f:\python\lib\site-packages (from matplotlib>=2.2->seaborn) (4.25.0) Requirement already satisfied: pillow>=6.2.0 in f:\python\lib\site-packages (fr om matplotlib>=2.2->seaborn) (9.0.1) Requirement already satisfied: pytz>=2020.1 in f:\python\lib\site-packages (fro m pandas>=0.23->seaborn) (2021.3) Requirement already satisfied: six>=1.5 in f:\python\lib\site-packages (from py

In [9]: import seaborn as sns
import matplotlib.pyplot as plt
%matplotlib inline
plt.rcParams['figure.figsize'] = 20, 10
import pandas as pd
import numpy as np

thon-dateutil>=2.7->matplotlib>=2.2->seaborn) (1.16.0)

```
import seaborn as sns
import matplotlib.pyplot as plt
%matplotlib inline
plt.rcParams['figure.figsize'] = 20, 10
import pandas as pd
import numpy as np
bikes = pd.read_csv('C:/Users/VivianHuo/Desktop/data/bikeshare.csv')
bikes.head()
bikes['start'] = pd.to_datetime(bikes['Start date'], infer_datetime_format=True)
bikes['end'] = pd.to_datetime(bikes['End date'], infer_datetime_format=True)
bikes["dur"] = (bikes['Duration (ms)']/1000).astype(int)
bikes.head()
```

Out[32]: Start End Duration Start Start End Bike Member End date station station S date station station number (ms) Type number number 1st & 2(3/31/2016 4/1/2016 11th & S Rhode 0 301295 31280 31506 W00022 Registered 03 St NW 23:59 0:04 Island 23:59 Ave NW New 18th St & 2(3/31/2016 4/1/2016 Hampshire 1 557887 31275 31114 Wyoming W01294 Registered 03 0:08 Ave & 24th 23:59 23:59 Ave NW St NW 20 3/31/2016 4/1/2016 14th & V 18th & M 555944 31221 Registered 2 31101 W01416 03 St NW St NW 23:59 0:08 23:59 34th St & 17th & 2(3/31/2016 4/1/2016 3 766916 31226 Wisconsin 31214 Corcoran W01090 Registered 03 23:57 0:09 Ave NW St NW 23:57 27th & 2(3/31/2016 3/31/2016 23rd & 139656 31011 31009 Crystal W21934 Registered 03 23:57 23:59 Crystal Dr 23:57 Dr

```
In [30]: bikes.dur.mean()
Out[30]: 992.8716543657755
```

```
In [33]: bikes.dur.std()
```

Out[33]: 2073.9809135296514

```
In [34]: bikes[bikes.dur>16000].shape
```

Out[34]: (973, 12)

```
In [37]: plt.rcParams['figure.figsize'] = 20, 10
    _=plt.hist(bikes[bikes.dur<16000].dur, log=True, bins=1000)</pre>
```


In [40]: plt.scatter(short.start.dt.hour, np.log1p(short.dur), s=.4)

Out[40]: <matplotlib.collections.PathCollection at 0x214099b4fd0>

In [41]: np.log1p(0), np.log(0)

C:\Users\VivianHuo\AppData\Local\Temp\ipykernel_14956\1076539907.py:1: RuntimeW
arning: divide by zero encountered in log
 np.log1p(0), np.log(0)

Out[41]: (0.0, -inf)

```
In [42]: bikes['log_dur'] = np.round(np.log1p(bikes.dur), 1)
    monday = bikes[bikes.start.dt.dayofweek==1]
    dur_hour = monday.groupby(['log_dur', monday.start.dt.hour]).count()
    dur_hour
```

Out[42]:

		Duration (ms)	Start date	End date	Start station number	Start station	End station number	End station	Bike number	Member Type	start	е
log_dur	start											
	7	1	1	1	1	1	1	1	1	1	1	
	9	2	2	2	2	2	2	2	2	2	2	
4.1	11	1	1	1	1	1	1	1	1	1	1	
	14	2	2	2	2	2	2	2	2	2	2	
	16	2	2	2	2	2	2	2	2	2	2	
	•••											
11.2	21	2	2	2	2	2	2	2	2	2	2	
	14	1	1	1	1	1	1	1	1	1	1	
11.3	17	1	1	1	1	1	1	1	1	1	1	
	19	1	1	1	1	1	1	1	1	1	1	
11.4	18	1	1	1	1	1	1	1	1	1	1	

1184 rows × 12 columns

			7.0	7.7	7.0	7.0		4.0	7.0	0.0	•••					10.0	•••
start																	
0	0.0	0.0	0.0	0.0	0.0	1.0	1.0	1.0	2.0	3.0		0.0	0.0	0.0	0.0	0.0	0.
1	0.0	0.0	1.0	1.0	0.0	0.0	0.0	0.0	3.0	1.0		0.0	0.0	0.0	0.0	0.0	0.
2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.
3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.0	0.0	0.0		0.0	0.0	0.0	1.0	0.0	0.
4	0.0	0.0	0.0	0.0	0.0	0.0	1.0	0.0	0.0	1.0		0.0	0.0	0.0	0.0	0.0	0.
5	0.0	0.0	1.0	0.0	0.0	1.0	4.0	1.0	7.0	6.0		0.0	0.0	0.0	0.0	0.0	0.
6	0.0	0.0	0.0	2.0	1.0	2.0	4.0	9.0	11.0	21.0		0.0	0.0	0.0	1.0	0.0	0.
7	1.0	5.0	4.0	1.0	5.0	12.0	25.0	31.0	46.0	46.0		0.0	1.0	1.0	0.0	0.0	0.
8	0.0	3.0	2.0	6.0	7.0	11.0	22.0	52.0	68.0	79.0		4.0	2.0	1.0	0.0	0.0	0.
9	2.0	3.0	2.0	4.0	3.0	11.0	18.0	22.0	28.0	42.0		1.0	1.0	0.0	0.0	0.0	0.
10	0.0	0.0	1.0	3.0	5.0	7.0	8.0	5.0	10.0	31.0		0.0	0.0	0.0	0.0	0.0	0.
11	1.0	0.0	2.0	5.0	4.0	7.0	7.0	10.0	13.0	22.0		1.0	0.0	0.0	0.0	0.0	0.
12	0.0	0.0	4.0	2.0	7.0	6.0	12.0	16.0	36.0	30.0		0.0	1.0	0.0	0.0	0.0	0.
13	0.0	2.0	6.0	3.0	5.0	6.0	4.0	15.0	20.0	36.0		0.0	0.0	0.0	0.0	0.0	0.
14	2.0	0.0	1.0	1.0	3.0	8.0	9.0	11.0	26.0	24.0		0.0	0.0	0.0	0.0	0.0	0.
15	0.0	3.0	0.0	5.0	1.0	7.0	6.0	22.0	26.0	31.0		0.0	0.0	0.0	0.0	0.0	0.
16	2.0	6.0	1.0	11.0	6.0	10.0	14.0	17.0	36.0	35.0		0.0	0.0	0.0	0.0	2.0	0.
17	3.0	7.0	7.0	13.0	12.0	14.0	20.0	36.0	57.0	71.0		0.0	0.0	0.0	3.0	1.0	1.
18	0.0	4.0	7.0	9.0	13.0	20.0	21.0	40.0	79.0	75.0		0.0	0.0	2.0	4.0	1.0	0.
19	3.0	0.0	7.0	7.0	9.0	16.0	19.0	34.0	43.0	52.0		0.0	1.0	2.0	3.0	0.0	1.
20	0.0	7.0	2.0	4.0	2.0	13.0	14.0	19.0	34.0	38.0		0.0	1.0	1.0	1.0	1.0	1.
21	1.0	2.0	1.0	2.0	3.0	6.0	16.0	19.0	26.0	35.0		1.0	2.0	0.0	1.0	0.0	0.
22	1.0	0.0	2.0	2.0	1.0	8.0	1.0	13.0	10.0	20.0		1.0	0.0	1.0	0.0	0.0	0.
23	0.0	0.0	1.0	0.0	2.0	5.0	4.0	8.0	3.0	5.0		0.0	0.0	1.0	1.0	0.0	0.

24 rows × 74 columns

,

```
In [44]: plt.figure(figsize=(100,100))
    plt.imshow(duration_hour)
```

Out[44]: <matplotlib.image.AxesImage at 0x21409a65520>


```
In [46]: bikes['Member Type'].value_counts()
```

Out[46]: Registered 467432
Casual 84967

Name: Member Type, dtype: int64

In [47]: np.round(.65, 1)

Out[47]: 0.6

```
In [48]: 37//6, (37//6)/10, 37/60
Out[48]: (6, 0.6, 0.616666666666667)
In [51]: bikes['hour of day'] = (bikes.start.dt.hour + (bikes.start.dt.minute//6)/10)
         bikes['roundhour_of_day'] = (bikes.start.dt.hour ) # keep the hour handy as well
In [52]: reg bikes = bikes[bikes['Member Type']=='Registered']
         hours = reg_bikes.groupby([reg_bikes.hour_of_day, reg_bikes.start.dt.dayofweek]).
         hours['hour'] = hours.index
         day hour count = hours.dur.unstack()
         plt.figure(figsize=(20,10))
         plt.plot(day_hour_count.index, day_hour_count[0])
         plt.plot(day_hour_count.index, day_hour_count[1])
         plt.plot(day hour count.index, day hour count[2])
         # plt.plot(y.index, day_hour_count[3])
         # plt.plot(y.index, day hour count[4])
         # plt.plot(y.index, day_hour_count[5])
         # plt.plot(y.index, day_hour_count[6])
```

Out[52]: [<matplotlib.lines.Line2D at 0x2140762e520>]

In [53]:	day_hour_co	unt						
Out[53]:	start	0	1	2	3	4	5	6
	hour_of_day							
	0.0	21.0	34.0	43.0	47.0	51.0	89.0	106.0
	0.1	39.0	22.0	27.0	37.0	56.0	87.0	100.0
	0.2	31.0	24.0	26.0	42.0	50.0	98.0	77.0
	0.3	26.0	27.0	25.0	29.0	52.0	99.0	87.0
	0.4	19.0	24.0	29.0	29.0	50.0	98.0	69.0
	23.5	36.0	65.0	60.0	94.0	80.0	93.0	28.0
	23.6	37.0	61.0	66.0	100.0	81.0	95.0	28.0
	23.7	30.0	42.0	49.0	80.0	101.0	105.0	27.0
	23.8	33.0	52.0	47.0	79.0	91.0	93.0	24.0
	23.9	34.0	33.0	48.0	65.0	105.0	111.0	23.0

240 rows × 7 columns

```
In [54]: hoursn = bikes.groupby('roundhour_of_day').agg('count')
hoursn['hour'] = hoursn.index
(hoursn.start/90).plot() # 90 days in a quarter
```

Out[54]: <AxesSubplot:xlabel='roundhour_of_day'>

In [55]: hour_count = bikes.groupby(bikes.start.dt.dayofyear*24 + bikes.start.dt.hour).cou
plt.figure(figsize=(20,10))
hour_count.start.plot()

Out[55]: <AxesSubplot:xlabel='start'>


```
In [56]: day_count = bikes.groupby(bikes.start.dt.dayofyear).count()
```

In [57]: day_hour = bikes.groupby([bikes.start.dt.dayofyear, bikes.start.dt.hour]).count()

```
In [58]: day_hour.start.unstack()
```

\sim			
11	—	1 5 2	
v	uс	ו טכו	

start	0	1	2	3	4	5	6	7	8	9	 14	15	16	
start														
1	56.0	105.0	74.0	32.0	13.0	5.0	10.0	14.0	54.0	101.0	 324.0	338.0	342.0	24
2	37.0	31.0	17.0	23.0	4.0	7.0	10.0	34.0	80.0	203.0	 495.0	525.0	529.0	39
3	59.0	42.0	39.0	15.0	6.0	9.0	5.0	33.0	87.0	168.0	 524.0	546.0	579.0	39
4	20.0	6.0	2.0	1.0	3.0	58.0	192.0	468.0	759.0	321.0	 145.0	206.0	365.0	7(
5	5.0	5.0	3.0	1.0	2.0	42.0	131.0	363.0	683.0	329.0	 175.0	208.0	365.0	67
87	113.0	82.0	50.0	34.0	12.0	24.0	94.0	166.0	297.0	509.0	 910.0	761.0	667.0	6.
88	15.0	7.0	2.0	3.0	8.0	42.0	81.0	197.0	587.0	464.0	 481.0	437.0	696.0	133
89	31.0	11.0	9.0	3.0	8.0	79.0	240.0	727.0	1211.0	564.0	 433.0	473.0	700.0	138
90	31.0	18.0	4.0	6.0	7.0	79.0	215.0	703.0	1176.0	593.0	 493.0	545.0	749.0	137
91	28.0	16.0	10.0	2.0	8.0	80.0	240.0	750.0	1175.0	589.0	 431.0	504.0	746.0	13´

87 rows × 24 columns

In [59]: plt.figure(figsize=(20,10))
 plt.imshow(day_hour.start.unstack().T)

Out[59]: <matplotlib.image.AxesImage at 0x2140a271220>


```
In [60]: day_count.start.plot()
```

Out[60]: <AxesSubplot:xlabel='start'>


```
In [61]: bikes.start.dt.dayofyear
Out[61]: 0
                    91
          1
                    91
         2
                    91
          3
                    91
                    91
         552394
                     1
         552395
                     1
         552396
                     1
         552397
                     1
         552398
         Name: start, Length: 552399, dtype: int64
In [62]: bikes[bikes.start=="2016-01-10"].shape
Out[62]: (1, 15)
```

```
In [63]: #HW1
monday = day_hour_count[[0]].copy()
monday["hour"] = monday.index
monday
```

Out[63]:

start	U	no	ur

hour_of_day		
0.0	21.0	0.0
0.1	39.0	0.1
0.2	31.0	0.2
0.3	26.0	0.3
0.4	19.0	0.4
23.5	36.0	23.5
23.6	37.0	23.6
23.7	30.0	23.7
23.8	33.0	23.8
23.9	34.0	23.9

240 rows × 2 columns

start

5 hour

```
In [64]: saturday = day_hour_count[[5]].copy()
saturday["hour"] = saturday.index
saturday
```

Out[64]:

hour_of_day									
0.0	89.0	0.0							
0.1	87.0	0.1							
0.2	98.0	0.2							
0.3	99.0	0.3							
0.4	98.0	0.4							
23.5	93.0	23.5							
23.6	95.0	23.6							
23.7	105.0	23.7							
23.8	93.0	23.8							
23.9	111.0	23.9							

240 rows × 2 columns

```
In [69]: #2a. Create 3 models fit to monday.hour of day with varying polynomial degree
         #Degree = 1
         # monday['hour_of_day'] = (monday.start.dt.hour + (monday.start.dt.minute/60).rou
         # hours = monday.groupby('hour_of_day').agg('count')
         # hours['hour'] = hours.index
         # hours.start.plot()
         # # import seaborn as sns
         # sns.lmplot(x='hour', y='start', data=hours, aspect=1.5, scatter_kws={'alpha':0.
         from sklearn.preprocessing import PolynomialFeatures
         from sklearn import linear_model
         count = 1
         plt.figure()
         x = monday.dropna().iloc[:, 1].values
         true_y = monday.dropna().iloc[:, 0].values
         for n in [1, 5, 15]:
             poly = PolynomialFeatures(degree=n)
             x n = poly.fit transform(x.reshape(-1, 1))
             linear = linear_model.LinearRegression()
             linear.fit(x n, true y)
             plt.subplot(3, 1, count)
             plt.plot(x, true_y, 'g-', label='original values')
             plt.plot(x, np.dot(x n, linear.coef ) + linear.intercept , 'r--', label='poly
             plt.xlabel("hour")
             plt.ylabel("count")
             plt.title(f'degree = {n}')
             plt.legend()
             count += 1
         plt.tight_layout()
         plt.show()
```



```
In [70]: count = 1
          plt.figure()
          x = saturday.dropna().iloc[:, 1].values
          true y = saturday.dropna().iloc[:, 0].values
          for n in [1, 5, 15]:
               poly = PolynomialFeatures(degree=n)
               x n = poly.fit transform(x.reshape(-1, 1))
               linear = linear model.LinearRegression()
               linear.fit(x_n, true_y)
               plt.subplot(3, 1, count)
              plt.plot(x, true_y, 'g-', label='original values')
plt.plot(x, np.dot(x_n, linear.coef_) + linear.intercept_, 'r--', label='poly
               plt.xlabel("hour")
              plt.ylabel("count")
               plt.title(f'degree = {n}')
              plt.legend()
               count += 1
          plt.tight_layout()
          plt.show()
```



```
In [71]: from sklearn.linear model import Ridge
         true_x = monday.dropna().iloc[:, 1].values
         true y = monday.dropna().iloc[:, 0].values
         count = 1
         plt.figure()
         for n in [0.2, 0.5, 1]:
             ri = Ridge(alpha=n)
             ri.fit(true_x.reshape(1, -1), true_y.reshape(1, -1))
             plt.subplot(3, 1, count)
             plt.plot(true_x, true_y, 'g-', label='original values')
             plt.plot(true_x, np.dot(true_x, ri.coef_) + ri.intercept_, 'r--', label='pred
             plt.xlabel("hour")
             plt.ylabel("count")
             plt.title(f'alpha = {n}')
             plt.legend()
             count += 1
         plt.tight_layout()
         plt.show()
```



```
In [73]: | true_x = saturday.dropna().iloc[:, 1].values
         true_y = saturday.dropna().iloc[:, 0].values
         count = 1
         plt.figure()
         for n in [0.2, 0.5, 1]:
             ri = Ridge(alpha=n)
             ri.fit(true_x.reshape(1, -1), true_y.reshape(1, -1))
             plt.subplot(3, 1, count)
             plt.plot(true_x, true_y, 'g-', label='original values')
             plt.plot(true_x, np.dot(true_x, ri.coef_) + ri.intercept_, 'r--', label='pred
             plt.xlabel("hour")
             plt.ylabel("count")
             plt.title(f'alpha = {n}')
             plt.legend()
             count += 1
         plt.tight_layout()
         plt.show()
```



```
In [ ]:
```