# Multi-spectral Image Alignment Analysis of Brain Tissue Dissection During Neurosurgery

#### Muhammad Farhan Oktavian

Individual Project, MRes Medical Robotics and Image-Guided Intervention

# Background

### **Brain Tumours**

- Tumours affecting the central nervous system that can develop in children and adults.
- Maximal tumour resection through surgical operation is still one the main treatment for brain tumour<sup>1</sup>.
- Some tumours are very hard to distinguish<sup>2</sup>, as they are visually indifferent to their surrounding tissue, make it difficult to delineate the margin between the tumour and healthy tissue.

<sup>1.</sup> N. A. O. Bush, S. M. Chang, and M. S. Berger. Current and future strategies for treatment of glioma. Neurosurg Rev, 40(1):1–14, Jan. 2017. ISSN 1437-2320. doi: 10.1007/s10143-016-0709-8. URL https://doi.org/10.1007/s10143-016-0709-8.

<sup>2.</sup> V. P. Collins. Brain tumours: classification and genes. Journal of Neurology, Neurosurgery & Psychiatry, 75(suppl 2):ii2-ii11, June 2004. ISSN 0022-3050, 1468-330X. doi: 10.1136/jnnp.2004.040337. URL https://jnnp.bmj.com/content/75/suppl 2/ii2. Publisher: BMJ Publishing Group Ltd.

# Multi-spectral Images (MSI)

MSI is a stack of images with spatial information on the first two axes (row-column) and spectral information on the third axis (image at wavelength n).



## **Brain Tissue Image Acquisition**

- Imperial College London, in partnership with Charing Cross Hospital, has acquired a novel dataset of microscope colour images and multi-spectral images taken during open surgeries.
- A neurosurgeon then label the microscope images by identifying and bounding regions in the image to a set of tissues.





Image capture system diagram (left) and its photo in the operating room (right).

Size and description of the dataset.

### Aim and Motivation

How can we prepare the raw image and label data into a usable format for further analysis?



Labelled microscope images

# Challenges

### Perspective Differences

- Colour and multi-spectral images from the same scene were taken using two different cameras, which resulted in perspective difference.
- Since the tissues are labelled based on the colour image, we need to align the images, so that the label also correspond to the multi-spectral images.



### **Colour and Contrast**

- While coloured image are made up of red, green and blue channels, these channels cannot be directly mapped to a single wavelength.
- Since they have different contrast value distribution, a perfectly aligned colour and spectral image would have a non-zero similarity error.



# **Organ Displacement**

- Exposure for each spectral image is either 50 or 200ms.
- This is enough time for the brain to expand or contract during acquisition of a scene.

PLACEHOLDER [moving tissues]

### **Literature Review**

# Multi-spectral Imaging Use Case

- Determining food quality and safety<sup>3</sup>.
- Sensing geographical terrain<sup>4</sup>.
- Identifying paints used on paintings<sup>5</sup>.



- (a) the reconstructed (from the eight available bands) visible image
- (b) one of the near IR images
- (c) the reconstructed (from the eight available bands) UV induced visible fluorescence image.

Source 5

<sup>3.</sup> J. Qin, K. Chao, M. S. Kim, R. Lu, and T. F. Burks. Hyperspectral and multispectral imaging for evaluating food safety and quality. Journal of Food Engineering, 118(2):157–171, Sept. 2013. ISSN 0260-8774. doi: 10.1016/j.jfoodeng.2013.04.001. URL https://www.sciencedirect.com/ science/article/pii/S0260877413001659.

<sup>4.</sup> J. A. J. Berni, P. J. Zarco-Tejada, L. Suarez, and E. Fereres. Thermal and Narrowband Multispectral Remote Sensing for Vegetation Monitoring From an Unmanned Aerial Vehicle. IEEE Transactions on Geoscience and Remote Sensing, 47(3):722–738, Mar. 2009. ISSN 1558-0644. doi: 10.1109/TGRS.2008.2010457. Conference Name: IEEE Transactions on Geoscience and Remote Sensing.

<sup>5.</sup> A. Pelagotti, A. D. Mastio, A. D. Rosa, and A. Piva. Multispectral imaging of paintings. IEEE Signal Processing Magazine, 25(4):27–36, July 2008. ISSN 1558-0792. doi: 10.1109/ MSP.2008.923095. Conference Name: IEEE Signal Processing Magazine.

### Use in Medicine

- Classifying brain tumour tissue based on near-infrared wavelength<sup>6</sup>.
- Classifying internal organ tissues on pigs<sup>7</sup>.



- (a) Synthetic RGB image
- (b) Classification map
- (c) Classification on top of RGB image

Source 6

<sup>6.</sup> H. Fabelo, S. Ortega, S. Kabwama, G. M. Callico, D. Bulters, A. Szolna, J. F. Pineiro, and R. Sarmiento. HELICoiD project: a new use of hyperspectral imaging for brain cancer detection in real-time during neurosurgical operations. In Hyperspectral Imaging Sensors: Innovative Applications and Sensor Standards 2016, volume 9860, page 986002. SPIE, May 2016. doi: 10.1117/12.2223075. URL https://www.spiedigitallibrary.org/conferenceproceedings-of-spie/9860/986002/HELICoiD-project--a-new-use-of-hyperspectralimaging-for/10.1117/12.2223075.full.

<sup>7.</sup> S. Seidlitz, J. Sellner, J. Odenthal, B. Ozdemir, A. Studier-Fischer, S. Kn¨odler, L. Ayala, T. J. ¨ Adler, H. G. Kenngott, M. Tizabi, M. Wagner, F. Nickel, B. P. M¨uller-Stich, and L. Maier-Hein. Robust deep learning-based semantic organ segmentation in hyperspectral images. Medical Image Analysis, 80:102488, Aug. 2022. ISSN 1361-8415. doi: 10.1016/j.media.2022.102488. URL https://www.sciencedirect.com/science/article/pii/S1361841522001359.

# Methodology

# Registration



# **Stack Registration**

A hybrid deformable registration based on progressively finite newton and Lucas-Kanade's optical flow is used to register spectral images within a scene<sup>8</sup>.

PLACEHOLDER [before]

PLACEHOLDER [after]

8. X. Du et al., Robust surface tracking combining features, intensity and illumination compensation, Int J CARS, vol. 10, no. 12, pp. 1915–1926, Dec. 2015, doi: 10.1007/s11548-015-1243-9.

# **Global Registration**

#### Inferred RGB Image

- Spectral image intensity vary across wavelengths, there is no one "ideal" wavelength.
- An encoder-decoder model is used to infer blue, green and red images of the stack.

#### **Registration Method**

- Inferred RGB images are then aligned with coloured image.
- This project evaluates two main registration methods, projective transformation based on homography matrix and affine transformation based on least-squares solution of features.

## **Finer Registration**

- At this point, the coloured and spectral image are roughly aligned.
- However, there might be some regions of the image that do not match due to organ displacement.
- A deep-learning method called RansacFlow<sup>9</sup> is used to refine the aligned images.

PLACEHOLDER [unaligned region of image]

9. [citation placeholder].

# **Tissue Analysis**

- Since the spectral images and labels are registered, we can try to analyse tissues based on their spectral values.
- We can use learning models to determine the significance of each wavelength for each tissue.
- There are two main types learning models that are evaluated in this project: hybrid classical (VGG+XGBoost<sup>10</sup>) and deep learning model (UNet<sup>11</sup>).

### Results

# **Global Registration**

|         | GMS   | D*[4]  | SS    | IM^    | PSN    | NR^    |
|---------|-------|--------|-------|--------|--------|--------|
| Channel | Proj  | Affine | Proj  | Affine | Proj   | Affine |
| Red     | 0.102 | 0.096  | 0.445 | 0.475  | 13.828 | 14.53  |
| Green   | 0.126 | 0.124  | 0.358 | 0.359  | 12.846 | 12.750 |
| Blue    | 0.132 | 0.131  | 0.233 | 0.248  | 12.063 | 13.080 |
| Overall | 0.120 | 0.117  | 0.345 | 0.360  | 12.912 | 13.455 |

<sup>\*</sup> lower is better

<sup>^</sup> higher is better

# **Global Registration**

PLACEHOLDER [before]

PLACEHOLDER [after]

# **Finer Registration**

|         | GMS    | GMSD* SSIM^ |        | PSN   | PSNR <sup>^</sup> |       |
|---------|--------|-------------|--------|-------|-------------------|-------|
| Channel | Before | After       | Before | After | Before            | After |
| Red     | •••    | •••         | •••    | •••   | •••               | •••   |
| Green   | •••    | •••         | •••    | •••   | •••               | ••••• |
| Blue    | •••    | •••         | •••    | •••   | •••               | •••   |
| Overall | •••    | •••         | •••    | •••   | •••               | •••   |

<sup>\*</sup> lower is better

<sup>^</sup> higher is better

# **Finer Registration**

PLACEHOLDER [before]

PLACEHOLDER [after]

# Tissue Analysis

| Metrics | VGG+XGBoost | UNet |  |
|---------|-------------|------|--|
| IoU     | •••         | •••  |  |
| Dice    | •••         | •••  |  |
| AUC     | •••         | •••  |  |

# **Finer Registration**

PLACEHOLDER [VGG+XGBoost]

PLACEHOLDER [UNet]

### Conclusion

### Summary

This projects shows that it is possible to align images from different modalities; between coloured RGB and multi-spectral images. Alignment of these images, along with their labels provide valuable information for tissue analysis.

### **Future Works**

- There is only a limited number of tissue labels present in the dataset. Analysis on the full surgical environment will require more labels for other tissue types and surgical instruments.
- There is still a very low number of image similarity metrics for different image modalities. This makes it quite challenging to objectively evaluate the similarity between images.

### Thank You

**Questions?**