Информация в системах

1. Что такое кодирование информации и для чего оно используется?

Кодирование — процесс представления информации в виде некоторых символов или их последовательностей (кодовых комбинаций), причем эти символы, в свою очередь, могут быть представлены (перекодированы) в виде совокупностей физических сигналов той или иной природы — акустических, оптических, электрических и т.д.

Примером естественного кодирования является представление в виде слов символов информации, возникающей в процессе восприятия человеком явлений окружающего мира — его отражения мозгом человека. Однако в дальнейшем для фиксации этой информации на бумаге необходимо ее перекодирование в виде букв и их сочетаний, для передачи по электрическому каналу связи — в виде электрических сигналов и т.д.

2. Охарактеризуйте основные принципы кодирования.

Основные принципы кодирования:

- подстановка (замещение) каждый элемент данных заменяется другим в соответствии с определенным фиксированным планом.
- перестановка при этом методе используются исходные (оригинальные) данные, но порядок их следования перемешивается.

3. Что такое алфавиты и как они используются?

Алфавит — конечное множество (список) попарно различных знаков, букв, цифр или любых других символов, применяемых в той или иной области (языке). Алфавиты используются для кодирования информации.

4. Какие основные требования предъявляют к кодированию?

К любой системе кодирования предъявляются следующие основные требования:

- взаимная однозначность преобразований отображаемого множества в отображающее множество при кодировании и обратного преобразования при декодировании, что составляет необходимое условие отсутствия ошибок в интерпретации исходной информации;
- экономичность кодирования, обеспечиваемая прежде всего минимизацией средней длины кодовой комбинации, а значит, и длины информационных текстов, что, в свою очередь, обеспечивает сокращение времени, необходимого для передачи и обработки информации, и экономию носителей информации;
- помехоустойчивость, т.е. возможность обнаружения и исправления ошибок в кодовых комбинациях под влиянием тех или иных помех и сбоев в процессе передачи и обработки информации, повышающая достоверность работы кибернетических систем.

5. Что такое сигналы в системах и как они используются?

Сигнал есть материальный носитель информации, средство перенесения информации в пространстве и времени.

Сигналы служат для переноса информации в пространстве и времени.

6. Какие основные типы сигналов Вы знаете?

Поскольку сигналы служат для переноса информации в пространстве и времени, для образования сигналов могут использоваться только объекты, состояния которых достаточно устойчивы по отношению к течению времени или к изменению положения в пространстве. С этой точки зрения сигналы делятся на два типа:

- Сигналы, являющиеся стабильными состояниями физических объектов (например, книга, фотография, магнитофонная запись, состояние памяти ЭВМ, положение триангуляционной вышки и т д.). Такие сигналы называются статическими.
- Сигналы, в качестве которых используются динамические состояния силовых полей. Такие поля характеризуются тем, что изменение их состояния не может быть локализовано в (неизолированной) части поля и приводит к распространению возмущения. Конфигурация этого возмущения во время распространения обладает определенной устойчивостью, что обеспечивает сохранение сигнальных свойств. Примерами таких сигналов могут служить звуки (изменение состояния поля сил упругости в газе, жидкости или твердом теле), световые и радиосигналы (изменения состояния электромагнитного поля). Сигналы указанного типа называются динамическими.

7. Что является основным свойством сигналов?

Непредсказуемость — основное свойство сигналов

8. Какие классы случайных процессов вы знаете?

Наиболее важные классы случайных процессов:

- Непрерывные и дискретные по времени процессы.
- Непрерывные и дискретные по информативному параметру процессы.
- Стационарные и нестационарные процессы.
- Эргодические и неэргодические процессы.

9. Какие математические модели реализаций случайных процессов вы знаете?

Математические модели реализации случайных процессов:

- Гармонические сигналы.
- Модулированные сигналы.
- Периодические сигналы.
- Сигналы ограниченной длительности.
- Сигналы с ограниченной полосой частот.

10. Что такое гармонические сигналы?

Гармонический сигнал — это гармонические колебания, со временем распространяющиеся в пространстве, которые несут в себе информацию или какие-то ланные.

11. Что такое модулированные сигналы?

Модулированный сигнал — сигнал, получающийся после посадки модулирующего сигнала на несущий сигнал. В зависимости от типа несущего сигнала используются разные виды модуляции.

12. Что такое периодические сигналы?

Периодическим сигналом называют такой вид воздействия, когда форма сигнала повторяется через некоторый интервал времени Т, который называется периодом.

13. Что такое сигналы с ограниченной энергией?

О сигналах из множества говорят, что их энергия ограничена величиной К.

$$S_{3} = \left\{ x : \int_{-\infty}^{\infty} x^{2}(t) dt \le K < \infty \right\}$$

Происхождение этого названия связано с тем, что если x(t) есть напряжение, то интеграл в формуле выше представляет собой энергию, выделенную сигналом x(t) на единичном сопротивлении. Конечно, если x(t) есть, например, глубина бороздки на грампластинке, то интеграл связан с энергией лишь косвенно.

14. Что такое сигналы ограниченной длительности?

Интервал T называется длительностью сигнала x(t), если, конечно, предполагается, что внутри этого интервала сигнал x(t) не везде обращается в нуль.

$$S_T = \left\{ x : x(t) \equiv 0, \quad t \notin T \right\}$$

Особую роль среди сигналов с ограниченной длительностью играют импульсные сигналы, характеризующиеся «кратковременностью» Т, которую трудно формализовать, но которая проявляется в практике: звуки типа «щелчок», «взрыв», «хлопок»; световые «вспышки»; тактильные сигналы «укол», «щипок», «удар» и т.п. В таких случаях сигнал х(t) обычно называется «формой импульса». На практике широко распространены периодические последовательности импульсов (радиолокация, электрокардиография, ультразвуковая гидролокация и т.п.); не менее важны непериодические импульсные последовательности (телеграфия, цифровая телеметрия); в реальности все импульсные последовательности, в свою очередь, имеют ограниченную длительность.

15. Что такое сигналы с ограниченной полосой частот?

Если функция X(f) на оси f имеет ограниченную «длительность» F (в смысле соотношения

$$S_{3} = \left\{ x : \int_{-\infty}^{\infty} x^{2}(t) dt \le K < \infty \right\},$$
 но в частотной области), то говорят, что сигнал $\mathbf{x}(t)$ имеет

 $S_{B} = \{x: X(f) = \int\limits_{-\infty}^{\infty} x(t)e^{i2\pi ft}dt = 0 \quad \text{для всех } f > |F|\}$ ограниченную полосу частот шириной F:

16. Что такое частотно-временное представление сигналов?

Это представление сигнала (принимаемого как функция времени), представленного как по времени, так и по частоте. Частотно—временной анализ означает анализ в частотно—временной области, обеспечиваемый частотно-временным представлением. Это достигается с помощью формулировки, часто называемой "Частотно—временное распределение".

17. Как осуществляется цифровое представление непрерывных сигналов?

Цифровое представление непрерывных сигналов — это представление, при котором любой непрерывной функции x(t) можно поставить во взаимно однозначное соответствие дискретное множество чисел $\{C_k(x)\}, k = ... -2, -1, 0, 1, 2, ...$

18. Что такое решетчатые функции?

Решетчатая функция – это функция f(k), значения которой определены в дискретные моменты времени $t = kT_0$, где k – целое число, T_0 – период квантования.

19. Охарактеризуйте основные особенности прохождения непрерывного сигнала в цифровых системах.

На рисунке выше представлена схема, имитирующая прохождение непрерывного сигнала через ЦВМ, включенную в информационную систему.

Составные элементы этой схемы:

- ключ (КЛ), или импульсный элемент, преобразующий непрерывный сигнал в дискретный (дискретизатор);
- аналогово-цифровой преобразователь (АЦП), преобразующий амплитуду дискретного сигнала в цифровой код;
- цифроаналоговый преобразователь (ЦАП);
- экстраполятор (Э).

Дискретный сигнал на выходе ключа может принимать любое значение в заданном амплитудном диапазоне. Далее сигнал поступает в ЭВМ в цифровой бинарной форме со скоростью, соответствующей интервалу дискретизации по времени, для обработки по заданному алгоритму. После ЭВМ цифровой сигнал трансформируется преобразователем цифраЗаналог в дискретноЗаналоговую форму. Наконец, экстраполятор приводит сигнал к аналоговому непрерывному виду, форма которого определяется характеристиками экстраполятора.

20. Что такое вейвлеты и вейвлетный анализ сигналов?

Вейвлеты — это обобщенное название семейств математических функций определенной формы, которые локальны во времени и по частоте, и в которых все функции получаются из одной базовой (порождающей) посредством ее сдвигов и растяжений по оси времени.

Вейвлетный анализ представляет собой особый тип линейного преобразования сигналов и отображаемых этими сигналами физических данных о процессах и физических свойствах природных сред и объектов.

21. Что такое фрактальные стохастические процессы?

Стохастический процесс называется фрактальным, когда некоторые из его важных статистических характеристик проявляют свойства масштабирования с соответствующими масштабными показателями.

22. Что такое энтропия?

Энтропия - теория информации, специально рассматривающая сигнальную специфику случайных процессов.

23. Назовите основные свойства энтропии

Свойства энтропии случайного объекта А:

- 1. $H(p_1, ..., p_n) = 0$ в том и только в том случае, когда какое-нибудь одно значение из множество $\{p_i\}$ равно единице (а остальные нули).
- 2. $H(p_1, ..., p_n)$ достигает наибольшего значения при $p_1=p_2=...=p_n=1/n$.
- 3. Если A и B независимые случайные объекты, то: $H(A \cap B) = H(\{\pi_{ik} = p_i q_k\}) = H(\{p_i\}) + H(\{q_k\}) = H(A) + H(B).$
- 4. Если A и B зависимые случайные объекты, то: $H(A \cap B) = H(A) + H(B|A) = H(B) + H(A|B),$ где условная энтропия H(B|A) определяется как математическое ожидание энтропии условного распределения.
- 5. Имеет место неравенство H(A) >= H(A/B), что согласуется с интуитивным представлением о том, что знание состояния объекта В может только уменьшить неопределенность объекта A, а если они независимы, то оставит ее неизменной.

24. Что такое дифференциальная энтропия?

Дифференциальная энтропия — это аналог энтропии дискретной величины, но аналог условный, относительный: ведь единица измерения произвольна.

Дифференциальная энтропия описывается функционалом:

$$h(x) = -\int_{X} p(x) \log p(x) dx$$

25. В чем заключается фундаментальное свойство энтропии случайного процесса?

Для любых заданных $\varepsilon > 0$ и $\delta > 0$ можно найти такое n_0 , что реализации любой длины $n > n_0$ распадаются на два класса:

1) группа реализаций, вероятности P(C) которых удовлетворяют неравенству:

$$\left| \frac{1}{n} \log P(C) + H \right| > \varepsilon;$$

2) группа реализаций, вероятности которых этому неравенству не удовлетворяют.

26. Что такое количество информации и как оно определяется?

Количество информации – это количество информации в одном случайном объекте относительно другого.

Пусть x и y — случайные величины, заданные на соответствующих множествах X и Y. Тогда количество информации x относительно y есть разность априорной и апостериорной энтропий:

$$I(x,y) = H(x) - H(x|y),$$

$$H(x) = -\sum_{x \in X} p(x) \log_2 p(x)$$
 - энтропия, а $H(x|y) = -\sum_{y \in Y} p(y) \sum_{x \in X} p(x|y) \log_2 p(x|y)$ — условная энтропия.

27. Охарактеризуйте основные свойства количества информации

- I(x, y) = I(y, x), как следствие теоремы Байеса.
- I(x, y) >= 0.
- I(x, y) = 0, если x и y независимые случайные величины.
- $\bullet \quad I(x, x) = H(x).$

28. Назовите единицы измерения энтропии и количества информации.

Обе эти величины измеряются в битах.

29. Что такое избыточность информации и как она используется?

Избыточность информации — это явление, когда по ряду причин количество информации, которое несет сигнал, меньше, чем то, которое он мог бы нести по своей физической природе.

Избыточность позволяет обнаружить и исправить ошибки при искажениях, выпадениях и вставках символов.

30. Что такое кодирование в отсутствие шумов?

Кодирование в отсутствие шумов — это процесс, когда информация занимает в запоминающем устройстве минимально возможное количество ячеек памяти и при передаче занимает канал связи на максимально короткий срок.

31. Что такое кодирование при наличии шумов?

Кодирование при наличии шумов — это процесс, когда обеспечиваются одновременно и сколь угодно малая вероятность ошибки, и конечная (отличная от нуля) скорость передачи информации, причем эта скорость может быть сколь угодно близкой к пропускной способности канала.