

Communication against restricted adversaries: between Shannon and Hamming

University of Melbourne

Anand D. Sarwate

Rutgers University / ITSOC DL Program

13 August 2025

• Alice wants to send a message $m \in [M]$ to Bob using a *codeword* of n symbols.

- Alice wants to send a message $m \in [M]$ to Bob using a *codeword* of n symbols.
- The link between Alice and Bob is unreliable.

- Alice wants to send a message $m \in [M]$ to Bob using a *codeword* of n symbols.
- The link between Alice and Bob is unreliable.
- What is the maximum rate (capacity) $\frac{1}{n} \log_2(M)$ such that Bob can decode reliably?

- Alice wants to send a message $m \in [M]$ to Bob using a *codeword* of n symbols.
- The link between Alice and Bob is unreliable.
- What is the maximum rate (capacity) $\frac{1}{n} \log_2(M)$ such that Bob can decode reliably?

This problem has been studied to death! What more is there to understand?

- Alice wants to send a message $m \in [M]$ to Bob using a *codeword* of n symbols.
- The link between Alice and Bob is unreliable.
- What is the maximum rate (capacity) $\frac{1}{n} \log_2(M)$ such that Bob can decode reliably?

This problem has been studied to death! What more is there to understand?

Let's zoom in on binary channels with erasures.

Binary input channels with erasures

- Alice encodes a message $m \in \{1, 2, ..., 2^{nR}\}$ into a codeword $\underline{x} = \{0, 1\}^n$.
- The channel *erases* bits: s_i indicates whether $y_i = x_i$ or is erased. Only np erasures can happen during the block.
- Assume <u>s</u> is chosen by an **adversary** James.

Binary input channels with erasures

- Alice encodes a message $m \in \{1, 2, ..., 2^{nR}\}$ into a codeword $\underline{x} = \{0, 1\}^n$.
- The channel *erases* bits: s_i indicates whether $y_i = x_i$ or is erased. Only np erasures can happen during the block.
- Assume <u>s</u> is chosen by an **adversary** James.

How does James choose s?

With the (Shannon-like) oblivious average-case model, the capacity is

$$C = 1 - p$$
.

There are many different ways to achieve this rate.

With the (Shannon-like) oblivious average-case model, the capacity is

$$C = 1 - p$$
.

There are many different ways to achieve this rate.

With the (Hamming-like) omniscient worst-case model, the capacity upper bounded:

$$C < 1 - 2p$$
.

Lower bound: Gilbert-Varshamov (random) codes.

With the (Shannon-like) oblivious average-case model, the capacity is

$$C = 1 - p$$
.

There are many different ways to achieve this rate.

With the (Hamming-like) omniscient worst-case model, the capacity upper bounded:

$$C < 1 - 2p$$
.

Lower bound: Gilbert-Varshamov (random) codes.

That's a big gap...

With the (Shannon-like) oblivious average-case model, the capacity is

$$C = 1 - p$$
.

There are many different ways to achieve this rate.

With the (Hamming-like) omniscient worst-case model, the capacity upper bounded:

$$C < 1 - 2p$$
.

Lower bound: Gilbert-Varshamov (random) codes.

That's a big gap... where does it come from?

We want to explore this gap through modeling:

We want to explore this gap through modeling:

1. Use **arbitrarily varying channels (AVCs)** to develop a **unified framework** for both the Shannon and Hamming models.

We want to explore this gap through modeling:

- 1. Use **arbitrarily varying channels (AVCs)** to develop a **unified framework** for both the Shannon and Hamming models.
- 2. Explore intermediate models to see what causes the gap.

We want to explore this gap through modeling:

- 1. Use **arbitrarily varying channels (AVCs)** to develop a **unified framework** for both the Shannon and Hamming models.
- 2. Explore intermediate models to see what causes the gap.
- Discover coding strategies to see what resources are needed to communicate reliably.

AVCs model channel "noise" as a state variable

In an **adversarial channel model**, **Alice** wants to communicate with **Bob** over a channel whose time-varying state is controlled by an adversarial **jammer** James.

- Alice and James may be constrained in how they communicate.
- ullet Capacity depends on **what James knows** about m and \underline{x} .

Shameless self-promotion

This talk is based on a recent (December 2024) monograph: check it out!

- Unified treatment of random noise (Shannon-theoretic) and worst-case noise (coding-theoretic).
- Intermediate models for jammers who can eavesdrop: online and myopic.
- Examples, open problems, and more!

What's coming up next

- 1. Arbitrarily varying channels (AVCs)
- 2. Some key ingredients
- 3. Causal adversarial models
- 4. Myopic adversarial models
- 5. Computationally efficient codes for causal adversaries
- 6. Looking forward

Arbitrarily varying channels (AVCs)

The basic channel model

Let \mathcal{X} , \mathcal{S} , and \mathcal{Y} be discrete alphabets. An AVC is a discrete channel $W_{\mathbf{y}|\mathbf{x},\mathbf{s}}(\mathbf{y}|\mathbf{x},\mathbf{s})$ such that

$$W_{\underline{\mathbf{y}}|\underline{\mathbf{x}},\underline{\mathbf{s}}}(\underline{\mathbf{y}}|\underline{\mathbf{x}},\underline{\mathbf{s}}) = \prod_{i=1}^{n} W_{\mathbf{y}|\mathbf{x},\mathbf{s}}(y_{i}|x_{i},s_{i})$$

The basic channel model

Let \mathcal{X} , \mathcal{S} , and \mathcal{Y} be discrete alphabets. An AVC is a discrete channel $W_{\mathbf{y}|\mathbf{x},\mathbf{s}}(\mathbf{y}|\mathbf{x},\mathbf{s})$ such that

$$W_{\underline{\mathbf{y}}|\underline{\mathbf{x}},\underline{\mathbf{s}}}(\underline{y}|\underline{x},\underline{\mathbf{s}}) = \prod_{i=1}^{n} W_{\mathbf{y}|\mathbf{x},\mathbf{s}}(y_{i}|x_{i},s_{i})$$

The **state** $\underline{s} \in \mathcal{S}^n$ is controlled by an adversarial **jammer** (James).

The basic channel model

Let \mathcal{X} , \mathcal{S} , and \mathcal{Y} be discrete alphabets. An AVC is a discrete channel $W_{\mathbf{y}|\mathbf{x},\mathbf{s}}(\mathbf{y}|\mathbf{x},\mathbf{s})$ such that

$$W_{\underline{\mathbf{y}}|\underline{\mathbf{x}},\underline{\mathbf{s}}}(\underline{y}|\underline{x},\underline{\mathbf{s}}) = \prod_{i=1}^{n} W_{\mathbf{y}|\mathbf{x},\mathbf{s}}(y_{i}|x_{i},s_{i})$$

The **state** $\underline{s} \in \mathcal{S}^n$ is controlled by an adversarial **jammer** (James). **Examples:** For binary channels \underline{s} could be an error or erasure pattern.

Input and cost constraints for AVCs

We impose that the types $T_{\underline{x}}$ and $T_{\underline{s}}$ of the codeword \underline{x} and the state \underline{s} lie be in convex subsets of the probability simplices $\Delta(\mathcal{X})$ and $\Delta(\mathcal{S})$:

$$T_{\underline{x}} \in \Gamma \subseteq \Delta(\mathcal{X})$$

 $T_{s} \in \Lambda \subseteq \Delta(\mathcal{S})$

Example: For binary channels \underline{x} and \underline{s} have bounded Hamming weight.

Input and cost constraints for AVCs

We impose that the types $T_{\underline{x}}$ and $T_{\underline{s}}$ of the codeword \underline{x} and the state \underline{s} lie be in convex subsets of the probability simplices $\Delta(\mathcal{X})$ and $\Delta(\mathcal{S})$:

$$T_{\underline{\mathsf{x}}} \in \Gamma \subseteq \Delta(\mathcal{X})$$
 $T_{\mathsf{s}} \in \Lambda \subseteq \Delta(\mathcal{S})$

Example: For binary channels \underline{x} and \underline{s} have bounded Hamming weight.

Defining codes and input constraints

An (n, M, Γ) code is

$$\begin{array}{ll} \phi \colon [\mathsf{M}] \to \mathcal{X}^n & \text{(encoder)} \\ \psi \colon \mathcal{Y}^n \to [\mathsf{M}] & \text{(decoder)} \end{array}$$

such that

$$T_{\phi(m)} \in \Gamma$$

The rate is $R = \frac{1}{n} \log_2(M)$.

A **randomized code** lets Alice and Bob choose their code in secret. If Alice and Bob do not share common randomness, Alice can still use **stochastic encoding**.

James wants to choose \underline{s} to maximize the probability of error for **Bob**. What James can do depends on what he knows:

James wants to choose <u>s</u> to maximize the probability of error for **Bob**. What James can do depends on what he knows:

• The message: target small maximal (over messages) error.

James wants to choose \underline{s} to maximize the probability of error for **Bob**. What James can do depends on what he knows:

- The message: target small maximal (over messages) error.
- The codeword (fully or partially).

James wants to choose <u>s</u> to maximize the probability of error for **Bob**. What James can do depends on what he knows:

- The message: target small maximal (over messages) error.
- The codeword (fully or partially).
- The randomness used by Alice (and/or Bob).

James wants to choose <u>s</u> to maximize the probability of error for **Bob**. What James can do depends on what he knows:

- The message: target small maximal (over messages) error.
- The codeword (fully or partially).
- The randomness used by Alice (and/or Bob).

These constrain the set of **strategies** James can use.

James wants to choose <u>s</u> to maximize the probability of error for **Bob**. What James can do depends on what he knows:

- The message: target small maximal (over messages) error.
- The codeword (fully or partially).
- The randomness used by Alice (and/or Bob).

These constrain the set of **strategies** James can use.

• **Oblivious** (Shannon): the message only.

James wants to choose <u>s</u> to maximize the probability of error for **Bob**. What James can do depends on what he knows:

- The message: target small maximal (over messages) error.
- The codeword (fully or partially).
- The randomness used by Alice (and/or Bob).

These constrain the set of **strategies** James can use.

- **Oblivious** (Shannon): the message only.
- Omniscient (Hamming): the message and the codeword.

Maximal error and capacity

The **error** for a particular message *m* is

$$P_{ ext{err}}(\emph{m}, \phi, \psi) = \max_{ ext{jamming strategies}} \sum_{\mathbf{x} \in \mathcal{X}^n} \mathbb{P}\left(\psi(\mathbf{y})
eq \emph{m} \mid \mathbf{x}
ight) \mathbb{P}_{\phi}\left(\phi(\emph{m}) = \mathbf{x}
ight)$$

A rate R is **achievable** if for any $\epsilon > \mathbf{0}$ there exists an infinite sequence of rate R codes $(n \to \infty)$ such that $P_{\text{err}}(m, \phi, \psi) < \epsilon$ for all m.

The capacities $C_{\rm obl}$ and $C_{\rm omni}$ for oblivious and omniscient cases satisfy:

(Hamming)
$$C_{\mathrm{omni}} \leq C_{\mathrm{obl}}$$
 (Shannon)

Common randomness makes the problem easier

Blackwell et al. (1960) proposed the AVC model and studied **randomized codes**, where Alice and Bob share common randomness. James just minimizes the mutual information over equivalent DMCs:

Common randomness makes the problem easier

Blackwell et al. (1960) proposed the AVC model and studied **randomized codes**, where Alice and Bob share common randomness. James just minimizes the mutual information over equivalent DMCs:

• **Oblivious:** find $\sum_s W_{\mathbf{y}|\mathbf{x},\mathbf{s}}(y|\mathbf{x},\mathbf{s})Q_{\mathbf{s}}(s)$ with lowest Shannon capacity.

Common randomness makes the problem easier

Blackwell et al. (1960) proposed the AVC model and studied **randomized codes**, where Alice and Bob share common randomness. James just minimizes the mutual information over equivalent DMCs:

- **Oblivious:** find $\sum_s W_{\mathbf{y}|\mathbf{x},\mathbf{s}}(y|\mathbf{x},\mathbf{s})Q_{\mathbf{s}}(s)$ with lowest Shannon capacity.
- Omniscient: find $\sum_s W_{\mathbf{y}|\mathbf{x},\mathbf{s}}(y|\mathbf{x},s)U_{\mathbf{s}|\mathbf{x}}(s|\mathbf{x})$ with lowest Shannon capacity.

Without Common Randomness: Symmetrization Attacks

An AVC is **Ericson-Csiszár-Narayan (ECN) symmetrizable** if James can spoof Alice's codeword. That is, for all (y, x, x'), we have

$$\sum_{s} U_{\mathbf{s}|\mathbf{x}'} W_{\mathbf{y}|\mathbf{x},\mathbf{s}} = \sum_{s} U_{\mathbf{s}|\mathbf{x}} W_{\mathbf{y}|\mathbf{x}',\mathbf{s}}.$$

Without common randomness, the capacity of a symmetrizable AVC $C_{\mathrm{obl}} = o$.

• $\Delta = n$ (oblivious): capacity = 1 - p ("Shannon")

- $\Delta = n$ (oblivious): capacity = 1 p ("Shannon")
- $\Delta = 1$ ("one bit delay"): capacity = 1 p

- $\Delta = n$ (oblivious): capacity = 1 p ("Shannon")
- $\Delta = 1$ ("one bit delay"): capacity = 1 p
- $\Delta = 0$ ("causal"): capacity = 1 2p

- $\Delta = n$ (oblivious): capacity = 1 p ("Shannon")
- $\Delta = 1$ ("one bit delay"): capacity = 1 p
- $\Delta = 0$ ("causal"): capacity = 1 2p
- $\Delta = -n$ (omniscient): capacity $\leq 1 2p$ ("Hamming")

Delay interpolates between oblivious and omniscient

- $\Delta = n$ (oblivious): capacity = 1 p ("Shannon")
- $\Delta = 1$ ("one bit delay"): capacity = 1 p
- $\Delta = 0$ ("causal"): capacity = 1 2p
- $\Delta = -n$ (omniscient): capacity $\leq 1 2p$ ("Hamming")

Knowing just the current input gives James a lot of power!

The impact of myopia in the erasure setting

The impact of myopia in the erasure setting

• Sufficiently myopic: (p < q): capacity = 1 - p

The impact of myopia in the erasure setting

- Sufficiently myopic: (p < q): capacity = 1 p
- Otherwise: (p > q): it's more complicated...

Some key ingredients

In **stochastic encoding**, Alice uses private randomness to create uncertainty for James

In **stochastic encoding**, Alice uses private randomness to create uncertainty for James

• Noise injection (c.f. secrecy).

In **stochastic encoding**, Alice uses private randomness to create uncertainty for James

- Noise injection (c.f. secrecy).
- Low weight "fuzz" as a side channel.

In **stochastic encoding**, Alice uses private randomness to create uncertainty for James

- Noise injection (c.f. secrecy).
- Low weight "fuzz" as a side channel.
- Select a codebook from a smaller "library".

In **stochastic encoding**, Alice uses private randomness to create uncertainty for James

- Noise injection (c.f. secrecy).
- Low weight "fuzz" as a side channel.
- Select a codebook from a smaller "library".

It can be **necessary**: deterministic erasure codes cannot do better than 1-2p against a James who has a single bit of delay.

In **list decoding** we allow Bob to output a list \mathcal{L} .

In **list decoding** we allow Bob to output a list \mathcal{L} .

ullet Decoding is successful if the transmitted $m\in\mathcal{L}$.

In **list decoding** we allow Bob to output a list \mathcal{L} .

- Decoding is successful if the transmitted $m \in \mathcal{L}$.
- Require the list size is no larger than than *L*.

In **list decoding** we allow Bob to output a list \mathcal{L} .

- Decoding is successful if the transmitted $m \in \mathcal{L}$.
- Require the list size is no larger than than *L*.
- Different L are useful in different cases: constant, $\operatorname{poly}(n)$, or $\operatorname{exp}(\epsilon n)$

In **list decoding** we allow Bob to output a list \mathcal{L} .

- Decoding is successful if the transmitted $m \in \mathcal{L}$.
- Require the list size is no larger than than *L*.
- Different L are useful in different cases: constant, poly(n), or $exp(\epsilon n)$

In some cases the list decoding capacity allows **strictly larger** rates:

$$C_{\mathrm{list}}(L) > C_{\mathrm{obl}}.$$

List decoding appears in many ways

List decoding to a "small list" is useful in decoding and jamming:

List decoding appears in many ways

List decoding to a "small list" is useful in decoding and jamming:

• List codes mean $O(\log n)$ bits of common randomness is sufficient.

List decoding appears in many ways

List decoding to a "small list" is useful in decoding and jamming:

- List codes mean $O(\log n)$ bits of common randomness is sufficient.
- James can list decode to jam more effectively.

A more technical ingredient which is particularly useful is the notion of **completely positive couplings**.

A more technical ingredient which is particularly useful is the notion of **completely positive couplings**.

• Start with a marginal distribution $P_{\mathbf{x}} \in \Delta(\mathcal{X})$.

A more technical ingredient which is particularly useful is the notion of **completely positive couplings**.

- Start with a marginal distribution $P_{\mathbf{x}} \in \Delta(\mathcal{X})$.
- A **self-coupling** is a joint distribution $P_{\mathbf{x},\mathbf{x}'}$ where each marginal is $P_{\mathbf{x}}$.

A more technical ingredient which is particularly useful is the notion of **completely positive couplings**.

- Start with a marginal distribution $P_{\mathbf{x}} \in \Delta(\mathcal{X})$.
- A **self-coupling** is a joint distribution $P_{\mathbf{x},\mathbf{x}'}$ where each marginal is $P_{\mathbf{x}}$.
- A self-coupling is completely positive if it is a mixture of independent self-couplings:

$$P_{\mathbf{x},\mathbf{x}'}(x,x') = \sum_{i=1}^{|\mathcal{U}|} P_{\mathbf{u}}(i) P_{\mathbf{x}_i}(x) P_{\mathbf{x}_i}(x').$$

Question: can we have a codebook where all codewords have pairwise types that are ρ -far from a CP self-coupling?

$$\|\mathbf{T}_{\underline{\mathbf{x}},\underline{\mathbf{x}}'} - \mathbf{P}_{\mathbf{x},\mathbf{x}'}^{(\mathsf{CP})}\|_{\infty} > \rho \qquad \forall \underline{\mathbf{x}},\underline{\mathbf{x}}',\mathbf{P}_{\mathbf{x},\mathbf{x}'}^{(\mathsf{CP})}$$

Question: can we have a codebook where all codewords have pairwise types that are ρ -far from a CP self-coupling?

$$\|T_{\underline{\mathbf{x}},\underline{\mathbf{x}}'} - P_{\mathbf{x},\mathbf{x}'}^{(\mathsf{CP})}\|_{\infty} > \rho \qquad \forall \underline{\mathbf{x}},\underline{\mathbf{x}}', P_{\mathbf{x},\mathbf{x}'}^{(\mathsf{CP})}$$

• It turns out that any codes with this property cannot be too large (for large n)!

Question: can we have a codebook where all codewords have pairwise types that are ρ -far from a CP self-coupling?

$$\|T_{\underline{\mathbf{x}},\underline{\mathbf{x}}'} - P_{\mathbf{x},\mathbf{x}'}^{(\mathsf{CP})}\|_{\infty} > \rho \qquad \forall \underline{\mathbf{x}},\underline{\mathbf{x}}',P_{\mathbf{x},\mathbf{x}'}^{(\mathsf{CP})}$$

- It turns out that any codes with this property cannot be too large (for large *n*)!
- Compare this to the Plotkin bound: an upper bound on the size of binary codes with a given distance.

Question: can we have a codebook where all codewords have pairwise types that are ρ -far from a CP self-coupling?

$$\|T_{\underline{\mathbf{X}},\underline{\mathbf{X}}'} - P_{\mathbf{x},\mathbf{x}'}^{(\mathsf{CP})}\|_{\infty} > \rho \qquad \forall \underline{\mathbf{X}},\underline{\mathbf{X}}',P_{\mathbf{x},\mathbf{x}'}^{(\mathsf{CP})}$$

- It turns out that any codes with this property cannot be too large (for large *n*)!
- Compare this to the Plotkin bound: an upper bound on the size of binary codes with a given distance.
- If our rate is too high, then there will a constant fraction of codeword pairs whose type is close to CP.

Causal adversarial models

Causal adversaries: James can see the current input

What is "symmetrizability" here and how should James act?

Causal adversaries: James can see the current input

What is "symmetrizability" here and how should James act?

• Spend less power at the beginning to save it up and then push hard in the second half? Bob will get a better initial estimate.

Causal adversaries: James can see the current input

What is "symmetrizability" here and how should James act?

- Spend less power at the beginning to save it up and then push hard in the second half? Bob will get a better initial estimate.
- Spend more power at the beginning in the hope of leading Bob astray? But then the suffix might resolve Bob's uncertainty.

Alice and Bob pick a coding strategy and reveal it to James, who...

1. Splits time into \emph{K} blocks of length $\epsilon_{\emph{c}}\emph{n}$.

- 1. Splits time into K blocks of length $\epsilon_c n$.
- 2. "Distills" a large (constant fraction) subcode where $\underline{x} \approx$ the same type.

- 1. Splits time into K blocks of length $\epsilon_c n$.
- 2. "Distills" a large (constant fraction) subcode where $\underline{x} \approx$ the same type.
- 3. "Babbles" by using a random attack $V_{\mathbf{s}|\mathbf{x},\mathbf{u}=u}$ for $\mathbf{u} \leq \alpha \mathbf{K}$.

- 1. Splits time into K blocks of length $\epsilon_{\rm c} n$.
- 2. "Distills" a large (constant fraction) subcode where $\underline{x} \approx$ the same type.
- 3. "Babbles" by using a random attack $V_{\mathbf{s}|\mathbf{x},\mathbf{u}=u}$ for $\mathbf{u} \leq \alpha \mathbf{K}$.
- 4. "Pushes" using codeword-dependent $V_{\mathbf{s}|\mathbf{x},\mathbf{x}'\mathbf{u}=u}$ for $u>\alpha K$.

Alice and Bob pick a coding strategy and reveal it to James, who...

- 1. Splits time into K blocks of length $\epsilon_{\rm c} n$.
- 2. "Distills" a large (constant fraction) subcode where $\underline{x} \approx$ the same type.
- 3. "Babbles" by using a random attack $V_{\mathbf{s}|\mathbf{x},\mathbf{u}=u}$ for $\mathbf{u} \leq \alpha \mathbf{K}$.
- 4. "Pushes" using codeword-dependent $V_{\mathbf{s}|\mathbf{x},\mathbf{x}'\mathbf{u}=u}$ for $u>\alpha K$.

Use the generalized Plotkin bound (plus more) to show this will work.

Achievable scheme also uses a block structure:

Achievable scheme also uses a block structure:

• Alice encodes *m* using independent randomness in each chunk.

Achievable scheme also uses a block structure:

- Alice encodes *m* using independent randomness in each chunk.
- Bob list decodes after each chunk assuming a random attack $\{V_{\mathbf{s}|\mathbf{x},\mathbf{u}=u}\}$.

Achievable scheme also uses a block structure:

- Alice encodes *m* using independent randomness in each chunk.
- ullet Bob list decodes after each chunk assuming a random attack $\{V_{\mathbf{s}|\mathbf{x},\mathbf{u}=u}\}.$
- ullet Stop if there is \hat{m} and \underline{s} s.t. observed y is "feasible." Else try another attack.

Achievable scheme also uses a block structure:

- Alice encodes *m* using independent randomness in each chunk.
- ullet Bob list decodes after each chunk assuming a random attack $\{V_{\mathbf{s}|\mathbf{x},\mathbf{u}=u}\}$.
- ullet Stop if there is \hat{m} and \underline{s} s.t. observed \underline{y} is "feasible." Else try another attack.

Basically have to define what "feasible" means in this setting (quite involved).

Pros and cons:

$$\begin{split} C \coloneqq \limsup_{K \to \infty} \max_{\substack{P_{\mathbf{x} | \mathbf{u}} \in \Delta(\mathcal{X} | [1:K]) \\ \left[\operatorname{Unif}([K]) P_{\mathbf{x} | \mathbf{u}} \right]_{\mathbf{x}} \in \Lambda_{\mathbf{x}}}} \min \left\{ \min_{\substack{V_{\mathbf{s} | \mathbf{x}, \mathbf{u}} \in \mathcal{F}(P_{\mathbf{x} | \mathbf{u}})}} I(P_{\mathbf{x} | \mathbf{u}}, V_{\mathbf{s} | \mathbf{x}, \mathbf{u}}), \\ \min_{\substack{(\alpha, (V_{\mathbf{s} | \mathbf{x}, \mathbf{u}} \leqslant \alpha, V_{\mathbf{s} | \mathbf{x}, \mathbf{x}', \mathbf{u}} > \alpha)) \in \left\{0, \frac{1}{K}, \frac{2}{K}, \cdots, 1\right\} \times \mathcal{F}_{\alpha}(P_{\mathbf{x} | \mathbf{u}})}} I(P_{\mathbf{x} | \mathbf{u}} \leqslant \alpha, V_{\mathbf{s} | \mathbf{x}, \mathbf{u}} \leqslant \alpha}) \right\}. \\ \forall u \in [\alpha K + 1:K], V_{\mathbf{s} | \mathbf{x}, \mathbf{x}', \mathbf{u}} > \alpha = u} \in \mathcal{V} \end{split}$$

Pros and cons:

We end up with a multi-letter expression for the capacity.

$$\begin{split} C \coloneqq & \limsup_{K \to \infty} \max_{\substack{P_{\mathbf{x} | \mathbf{u}} \in \Delta(\mathcal{X} | [1:K]) \\ \left[\operatorname{Unif}([K]) P_{\mathbf{x} | \mathbf{u}} \right]_{\mathbf{x}} \in \Lambda_{\mathbf{x}}}} \min \left\{ \min_{V_{\mathbf{s} | \mathbf{x}, \mathbf{u}} \in \mathcal{F}(P_{\mathbf{x} | \mathbf{u}})} I(P_{\mathbf{x} | \mathbf{u}}, V_{\mathbf{s} | \mathbf{x}, \mathbf{u}}), \\ \min_{\substack{(\alpha, (V_{\mathbf{s} | \mathbf{x}, \mathbf{u}} \leqslant \alpha, V_{\mathbf{s} | \mathbf{x}, \mathbf{x}', \mathbf{u}} > \alpha)) \in \left\{0, \frac{1}{K}, \frac{2}{K}, \cdots, 1\right\} \times \mathcal{F}_{\alpha}(P_{\mathbf{x} | \mathbf{u}})}} I(P_{\mathbf{x} | \mathbf{u}} \leqslant \alpha, V_{\mathbf{s} | \mathbf{x}, \mathbf{u}} \leqslant \alpha}) \right\}. \\ \forall u \in [\alpha K + 1:K], V_{\mathbf{s} | \mathbf{x}, \mathbf{x}', \mathbf{u}} \Rightarrow \alpha = u} \in \mathcal{V} \end{split}$$

Pros and cons:

- We end up with a multi-letter expression for the capacity.
- ✓ Significantly generalizes prior arguments to general channels.

$$\begin{split} C \coloneqq \limsup_{K \to \infty} \max_{\substack{P_{\mathbf{x} | \mathbf{u}} \in \Delta(\mathcal{X} | [1:K]) \\ \left[\operatorname{Unif}([K]) P_{\mathbf{x} | \mathbf{u}} \right]_{\mathbf{x}} \in \Lambda_{\mathbf{x}}}} \min \left\{ \min_{V_{\mathbf{s} | \mathbf{x}, \mathbf{u}} \in \mathcal{F}(P_{\mathbf{x} | \mathbf{u}})} I(P_{\mathbf{x} | \mathbf{u}}, V_{\mathbf{s} | \mathbf{x}, \mathbf{u}}), \\ \min_{\substack{(\alpha, (V_{\mathbf{s} | \mathbf{x}, \mathbf{u}} \leqslant \alpha, V_{\mathbf{s} | \mathbf{x}, \mathbf{x}', \mathbf{u}} > \alpha)) \in \left\{0, \frac{1}{K}, \frac{2}{K}, \cdots, 1\right\} \times \mathcal{F}_{\alpha}(P_{\mathbf{x} | \mathbf{u}})}} I(P_{\mathbf{x} | \mathbf{u}} \leqslant \alpha, V_{\mathbf{s} | \mathbf{x}, \mathbf{u}} \leqslant \alpha}) \right\}. \\ \forall u \in [\alpha K + 1:K], V_{\mathbf{s} | \mathbf{x}, \mathbf{x}', \mathbf{u}} \Rightarrow \alpha = u} \in \mathcal{V} \end{split}$$

Pros and cons:

- We end up with a multi-letter expression for the capacity.
- ✓ Significantly generalizes prior arguments to general channels.
- ✔ Plotkin results may be useful elsewhere.

Myopic adversarial models

In a myopic AVC, James gets to see the entire codeword corrupted by a DMC $W_{\mathbf{z}|\mathbf{x}}$.

In a myopic AVC, James gets to see the entire codeword corrupted by a DMC $W_{\mathbf{z}|\mathbf{x}}$.

• Jamming strategies are maps $[M] \times \mathcal{Z}^n \to \mathcal{S}^n$.

In a myopic AVC, James gets to see the entire codeword corrupted by a DMC $W_{\mathbf{z}|\mathbf{x}}$.

- Jamming strategies are maps $[M] \times \mathbb{Z}^n \to \mathbb{S}^n$.
- For randomized codes we can again look for the worst DMC:

$$\sum_{s,z} W_{\mathbf{y}|\mathbf{x},\mathbf{s}}(y|x,s)W_{\mathbf{z}|\mathbf{x}}(z|x)V_{\mathbf{s}|\mathbf{z}}(s|z).$$

In a myopic AVC, James gets to see the entire codeword corrupted by a DMC $W_{\mathbf{z}|\mathbf{x}}$.

- Jamming strategies are maps $[M] \times \mathbb{Z}^n \to \mathbb{S}^n$.
- For randomized codes we can again look for the worst DMC:

$$\sum_{s,z} W_{\mathbf{y}|\mathbf{x},\mathbf{s}}(y|x,s) W_{\mathbf{z}|\mathbf{x}}(z|x) V_{\mathbf{s}|\mathbf{z}}(s|z).$$

ullet By changing $W_{\mathbf{z}|\mathbf{x}}$ we can recover the oblivious and omniscient settings.

A myopic AVC is said to be **symmetrizable** under input distribution $P_x \in \Gamma$ if there exists a channel $U_{x',s|z}$ such that for all x, x', y,

A myopic AVC is said to be **symmetrizable** under input distribution $P_x \in \Gamma$ if there exists a channel $U_{x',s|z}$ such that for all x, x', y,

$$\begin{split} &\sum_{z,s} P_{\mathbf{x}}(x) W_{\mathbf{z}|\mathbf{x}}(z|x) U_{\mathbf{x}',\mathbf{s}|\mathbf{z}}(x',s|z) W_{\mathbf{y}|\mathbf{x},\mathbf{s}}(y|x,s) \\ &= \sum_{z',s'} P_{\mathbf{x}}(x') W_{\mathbf{z}|\mathbf{x}}(z'|x') U_{\mathbf{x}',\mathbf{s}|\mathbf{z}}(x,s'|z') W_{\mathbf{y}|\mathbf{x},\mathbf{s}}(y|x',s'), \end{split}$$

A myopic AVC is said to be **symmetrizable** under input distribution $P_{\mathbf{x}} \in \Gamma$ if there exists a channel $U_{\mathbf{x}',\mathbf{s}|\mathbf{z}}$ such that for all x, x', y,

$$\begin{split} &\sum_{z,s} P_{\mathbf{x}}(x) W_{\mathbf{z}|\mathbf{x}}(z|x) U_{\mathbf{x}',\mathbf{s}|\mathbf{z}}(x',s|z) W_{\mathbf{y}|\mathbf{x},\mathbf{s}}(y|x,s) \\ &= \sum_{z',s'} P_{\mathbf{x}}(x') W_{\mathbf{z}|\mathbf{x}}(z'|x') U_{\mathbf{x}',\mathbf{s}|\mathbf{z}}(x,s'|z') W_{\mathbf{y}|\mathbf{x},\mathbf{s}}(y|x',s'), \end{split}$$

and the resulting marginal state distribution given by

$$P_{\mathbf{s}}(\mathbf{s}) = \sum_{x,z,x'} P_{\mathbf{x}}(x) W_{\mathbf{z}|\mathbf{x}}(z|x) U_{\mathbf{x}',\mathbf{s}|\mathbf{z}}(x',s|z) \in \Lambda$$

A myopic AVC is said to be **symmetrizable** under input distribution $P_{\mathbf{x}} \in \Gamma$ if there exists a channel $U_{\mathbf{x}',\mathbf{s}|\mathbf{z}}$ such that for all x, x', y,

$$\begin{split} &\sum_{z,s} P_{\mathbf{x}}(x) W_{\mathbf{z}|\mathbf{x}}(z|x) U_{\mathbf{x}',\mathbf{s}|\mathbf{z}}(x',s|z) W_{\mathbf{y}|\mathbf{x},\mathbf{s}}(y|x,s) \\ &= \sum_{z',s'} P_{\mathbf{x}}(x') W_{\mathbf{z}|\mathbf{x}}(z'|x') U_{\mathbf{x}',\mathbf{s}|\mathbf{z}}(x,s'|z') W_{\mathbf{y}|\mathbf{x},\mathbf{s}}(y|x',s'), \end{split}$$

and the resulting marginal state distribution given by

$$P_{\mathbf{s}}(\mathbf{s}) = \sum_{x,z,x'} P_{\mathbf{x}}(x) W_{\mathbf{z}|\mathbf{x}}(z|x) U_{\mathbf{x}',\mathbf{s}|\mathbf{z}}(x',s|z) \in \Lambda$$

This means some input distributions are disallowed:

$$\mathcal{P}_{Sym} = \{ P_{\mathbf{x}} \in \Gamma : P_{\mathbf{x}} \text{ is symmetrizable} \}.$$

Sufficient myopia and achievability

James can create an "effective DMC"

$$\mathcal{W} = \{W_{\mathbf{y}|\mathbf{x}}(y|x) = \sum_{\mathbf{s}} W_{\mathbf{y}|\mathbf{x},\mathbf{s}}(y|x,s)W_{\mathbf{z}|\mathbf{x}}(z|x)V_{\mathbf{s}|\mathbf{z}}(s|z)\}.$$

Sufficient myopia and achievability

James can create an "effective DMC"

$$\mathcal{W} = \{W_{\mathbf{y}|\mathbf{x}}(y|x) = \sum_{s} W_{\mathbf{y}|\mathbf{x},s}(y|x,s)W_{\mathbf{z}|\mathbf{x}}(z|x)V_{\mathbf{s}|\mathbf{z}}(s|z)\}.$$

Alice/Bob cannot use any $P_{\mathbf{x}} \in \mathcal{P}_{\text{Sym}}$. If they choose $P_{\mathbf{x}} \in \Gamma \setminus \mathcal{P}_{\text{Sym}}$ they could target the mutual information

$$C(P_{\mathbf{x}}) = \min_{\mathcal{W}} I(\mathbf{x}; \mathbf{y}).$$

Sufficient myopia and achievability

James can create an "effective DMC"

$$\mathcal{W} = \{W_{\mathbf{y}|\mathbf{x}}(y|x) = \sum_{s} W_{\mathbf{y}|\mathbf{x},s}(y|x,s)W_{\mathbf{z}|\mathbf{x}}(z|x)V_{\mathbf{s}|\mathbf{z}}(s|z)\}.$$

Alice/Bob cannot use any $P_{\mathbf{x}} \in \mathcal{P}_{\text{Sym}}$. If they choose $P_{\mathbf{x}} \in \Gamma \setminus \mathcal{P}_{\text{Sym}}$ they could target the mutual information

$$C(P_{\mathbf{x}}) = \min_{\mathcal{W}} I(\mathbf{x}; \mathbf{y}).$$

If $I(\mathbf{z}; \mathbf{x}) < C(P_{\mathbf{x}})$ we say James is **sufficiently myopic**. In that case we can achieve any rate

$$R < \max_{P_{\mathbf{x}} \in \Gamma \setminus \mathcal{P}_{\mathsf{Sym}}} C(P_{\mathbf{x}}).$$

In the erasure setting the eavesdropping channel is a BEC(q) and James can erase at most pn bits. If p < q, James is **sufficiently myopic**.

If p < q (sufficiently myopic),

$$C = 1 - p$$
.

In the erasure setting the eavesdropping channel is a BEC(q) and James can erase at most pn bits. If p < q, James is **sufficiently myopic**.

If p < q (sufficiently myopic),

$$C = 1 - p$$
.

If p > q we have two cases:

In the erasure setting the eavesdropping channel is a BEC(q) and James can erase at most pn bits. If p < q, James is **sufficiently myopic**.

In the erasure setting the eavesdropping channel is a BEC(q) and James can erase at most pn bits. If p < q, James is **sufficiently myopic**.

If p < q (sufficiently myopic),

$$C = 1 - p$$
.

If p > q we have two cases:

1. If
$$q > 2p - 1$$
,

$$C \in \left(0, (1-q)\bar{\alpha}\left(\frac{p-q}{1-q}\right)\right],$$

where $\bar{\alpha}$ is the LP bound for normalized distance.

In the erasure setting the eavesdropping channel is a BEC(q) and James can erase at most pn bits. If p < q, James is **sufficiently myopic**.

If p < q (sufficiently myopic),

$$C = 1 - p$$
.

If p > q we have two cases:

1. If
$$q > 2p - 1$$
,

$$C \in \left(0, (1-q)\bar{\alpha}\left(\frac{p-q}{1-q}\right)\right],$$

where $\bar{\alpha}$ is the LP bound for normalized distance.

2. If
$$q < 2p - 1$$
,

$$C = 0$$
.

Computationally efficient codes for causal adversaries

Can we design **efficient codes for causal and myopic models?**

Can we design efficient codes for causal and myopic models?

- random codes are inefficient to decode but linear codes are too easy jam!
 - → use a library of linear codebooks.

Can we design efficient codes for causal and myopic models?

- random codes are inefficient to decode but linear codes are too easy jam!
 - → use a library of linear codebooks.
- common randomness is unrealistic.
 - \longrightarrow use **limited encoder randomization** to **confuse the adversary**.

Can we design efficient codes for causal and myopic models?

- random codes are inefficient to decode but linear codes are too easy jam!
 - → use a library of linear codebooks.
- common randomness is unrealistic.
 - \longrightarrow use limited encoder randomization to confuse the adversary.
- minimum distance coding is not efficient in general.
 - \longrightarrow use **list decoding** to permit **efficient decoding**.

To get polynomial complexity, use

• a small amount of randomization to select from a

To get polynomial complexity, use

- a small amount of randomization to select from a
- library of random linear codes and

To get polynomial complexity, use

- a small amount of randomization to select from a
- library of random linear codes and
- uses **list decoding** to reduce the search space

To get polynomial complexity, use

- a small amount of randomization to select from a
- library of random linear codes and
- uses **list decoding** to reduce the search space

There are different types of complexity we would like to control:

- **Design**: how many bits do we need to generate the code?
- Storage: how many bits do we need to store the code?
- **Encoding**: how many operations are needed to encode a message?
- Decoding: how many operations are needed to decode the message?

Main results

Model rate	Randomness	Enc/Storage	Decoding	${f P}_{ m error}$
Causal $1-\mathbf{2p}-\epsilon$	$O\left(\frac{\gamma \log n}{\epsilon}\right)$	$O(n^3 \log \log n)$	$O(n^{32/\epsilon})$	$O(n^{-(\gamma-1)})$
Myopic $p < q$ $1 - \mathbf{p} - \epsilon$	$\lambda_{\sf SM}\log(n)$	$O(n^{2+\lambda_{SM}})$	$O(n^{3+\lambda_{\sf SM}})$	$O(n^{-\lambda_{SM}})$
Myopic $q < p$	$O(n \log \log n)$	$O(n^2 \log \log n)$	$O(n^3 \log \log n)$	$O(n^{-4/5})$

Encode splits block into a constant $k = \lceil \frac{n}{\epsilon} \rceil$ chunks

Generate a library of linear codebooks independently for each chunk.

James can erase with causal information only

Bob decodes to a polynomial list

Bob uses suffix to disambiguate the list

Why does this work?

- 1. Bob can track James's erasure budget.
- 2. List decoding creates a smaller set of messages to check for consistency.
- 3. James has a choice to **make the list larger** (erase more earlier, less later) or **conserve his budget** (erase less earlier, more later).
- 4. Poor James, he can't win.

Looking forward

There are lots of other intermediate models one could look at:

• Causal and myopic together!

- Causal and myopic together!
- Constraints that apply locally (sliding windows)

- Causal and myopic together!
- Constraints that apply locally (sliding windows)
- Allow James to pick a fraction of locations to observe before acting.

- Causal and myopic together!
- Constraints that apply locally (sliding windows)
- Allow James to pick a fraction of locations to observe before acting.
- Etc. etc.

There are lots of other **intermediate models** one could look at:

- Causal and myopic together!
- Constraints that apply locally (sliding windows)
- Allow James to pick a fraction of locations to observe before acting.
- Etc. etc.

Each model will reveal something about what the **worst-case channel** looks like.

Understanding AVCs has lots of connections (perhaps less well described here) to many interesting areas:

zero-error capacity

- zero-error capacity
- high dimensional geometry

- zero-error capacity
- high dimensional geometry
- completely positive tensors and mixture models

- zero-error capacity
- high dimensional geometry
- completely positive tensors and mixture models
- adversarial machine learning

- zero-error capacity
- high dimensional geometry
- completely positive tensors and mixture models
- adversarial machine learning
- extremal graph theory

- zero-error capacity
- high dimensional geometry
- completely positive tensors and mixture models
- adversarial machine learning
- extremal graph theory
- other fun combinatorial problems

A final recap and takeaways

AVCs can capture models between average and worst-case channels.

- Causal: capacity depends on what James knows about the current input.
- Myopic: capacity depends on whether James can (partially) "decode."
- Some insights:
 - Stochastic encoding and list decoding can help!
 - Worst-case attacks are ones that "push" at the end of decoding.

Thank you!