Building End-to-End Dialogue Systems Using Generative Hierarchical Neural Network Models

张璐 2019.09

Dynamic-Context Generative Model I & II

Model

Hierarchical Recurrent Encoder-Decoder

Model

- Bidirectional HRED
- Encoder RNN → bidirectional RNN
- Take the concatenation of the last state of each RNN as input to the context RNN
- Apply L2 pooling over the last state of each RNN, then take the concatenation of the two
 pooled states as input to the context RNN

$$\sqrt{1/N_m \sum_{n=1}^{N_m} h_n^2}$$

Model

- Bootstrapping from Word Embeddings and Subtitles Q-A
- Initialize the word embeddings E with Word2Vec
- Pretrain the model on a large non-dialogue corpus, which covers similar topics and types of interactions between interlocutors
- $\{Q,A\} \rightarrow \{U1=Q, U2=A\}$

Evaluation

- Perplexity
- Lower perplexity is indicative of a better model
- Word classification error/word error-rate: defined as the number of words in the dataset the model has predicted incorrectly divided by the total number of words in the dataset

$$\exp\left(-\frac{1}{N_W}\sum_{n=1}^N \log P_{\theta}(U_1^n, U_2^n, U_3^n)\right)$$

Results

Model	Perplexity	Perplexity@U ₃	Error-Rate	Error-Rate@U3
Backoff N-Gram	64.89	65.05	-	-
Modified Kneser-Ney	60.11	54.75	_	-
Absolute Discounting N-Gram	56.98	57.06	-	-
Witten-Bell Discounting N-Gram	53.30	53.34	-	-
RNN	35.63 ± 0.16	35.30 ± 0.22	$66.34\% \pm 0.06$	$66.32\% \pm 0.08$
DCGM-I	36.10 ± 0.17	36.14 ± 0.26	$66.44\% \pm 0.06$	$66.57\% \pm 0.10$
HRED	36.59 ± 0.19	36.26 ± 0.29	$66.32\% \pm 0.06$	$66.32\% \pm 0.11$
HRED + Word2Vec	33.95 ± 0.16	33.62 ± 0.25	$66.06\% \pm 0.06$	$66.05\% \pm 0.09$
RNN + SubTle	27.09 ± 0.13	26.67 ± 0.19	$64.10\% \pm 0.06$	$64.07\% \pm 0.10$
HRED + SubTle	27.14 ± 0.12	26.60 ± 0.19	$64.10\% \pm 0.06$	$64.03\% \pm 0.10$
HRED-Bi. + SubTle	26.81 ± 0.11	26.31 ± 0.19	${\bf 63.93\% \pm 0.06}$	$63.91\% \pm 0.09$

Results

Reference (U_1, U_2)	MAP	Target (U ₃)
U ₁ : yeah, okay.	i 'll see you tomorrow.	yeah.
U ₂ : well, i guess i'll be going now.		
U_1 : oh . < continued_utterance > oh .	i don 't know .	oh .
U ₂ : what 's the matter, honey?		
U_1 : it's the cheapest.	no, it's not.	they 're all good, sir.
U ₂ : then it's the worst kind?		
U_1 : <person>! what are you doing?</person>	what are you doing here?	what are you that crazy?
U ₂ : shut up! c' mon.		

- The majority of the predictions were **generic**, such as I don't know
- Data scarcity, model may only learn have learned to predict the most frequent utterances
- The majority of tokens were punctuation marks and pronouns → exploring neural architectures which explicitly separate semantic structure from syntactic structure
- The context of a triple may be too short

Discuss

- Stochastic samples from the model produced more diverse dialogues
- Study models for full length dialogues
- More data