

Modelagem e Análise de Sistemas Dinâmicos

Aula 06: Modelagem de controle de velocidade em MITs

Professor Me. Renato Kazuo Miyamoto

Conceitos

Recapitulando

Sistemas mecânicos rotacionais

Composto por:

Elemento	Torque-vel. angular	Torque-desl. angular
$ \begin{array}{c c} T(t) & \theta(t) \\ \hline Mola & \\ K \end{array} $		$T = K \cdot \theta(s)$
Amortecedor $T(t)$ $\theta(t)$ D	$T = D \cdot \omega(s)$	$T = D \cdot s\theta(s)$

NISE (2013)

• Composto por:

Elemento	Força-velocidade	Força-deslocamento
Inércia J	$T = J \cdot s\omega(s)$	$T = M \cdot s^2 \theta(s)$

NISE (2013)

Estudo comparativo

Modelagem matemática de sistemas com MITs

Circuito equivalente de Thévenin

$$V_2 = V_{ab} = V_1 \left(\frac{jX_m}{R_1 + j(X_1 + X_m)} \right)$$
 $V_{th} = \frac{X_m}{\sqrt{R_1^2 + (X_1 + X_m)^2}} V_1$

$$Z_{1eq} = R_{1eq} + jX_{1eq} = (R_1 + jX_1)//jX_m$$
 $Z_{1eq} = \frac{jX_m(R_1 + jX_1)}{R_1 + j(X_1 + X_m)}$

Fonte: Elaborado pelo Autor (2021).

Modelo da máquina de Indução

MIT 4HP

Controle escalar de velocidade em MITs

Escalar: Controle via tensão do estator

- Varia a tensão do estator mantendo a frequência constante;
- Pode ser controlado por um controlador CA a tiristores ou inversor 3~;
- Usado extensivamente como dispositivo "soft-starter" para motores de indução de velocidade constante;
- Aumento da faixa de velocidade é feito a custo da redução do torque máximo.

Escalar: Controle via tensão do estator

V1>V2>V3>V4>V5

Escalar: Controle via tensão do estator

Vantagens: Simples implementação;

Desvantagens: i) Não é recomendado para cargas que necessitem de torque constante nem elevados conjugados de partida; ii) Faixa de ajuste de velocidade relativamente estreita;

Aplicações: Sistemas de baixo desempenho e potência, como ventiladores e bombas centrífugas (baixo torque de partida).

Escalar: Controle via frequência de entrada

- Permite controle de torque e velocidade;
- O fluxo aumenta para uma diminuição da frequência à tensão constante;
- Para baixas frequências, as reatâncias diminuem, aumentando significativamente a corrente;
- Não é um controle comumente utilizado.

Escalar: Controle via frequência de entrada

f1<f2<f3<f4<f5<f5

Escalar: Razão V/f constante

- Método de controle de velocidade mais popular;
- Para baixas frequências é necessária uma tensão adicional (boost) para compensar a queda de tensão na resistência estatórica;
- O fluxo no entreferro da máquina é proporcional à relação Volts/Hertz.

Escalar: Razão V/f constante

- Com boost;

Escalar: Razão V/f constante

- Sem boost;

Controle escalar

Fonte: Adaptado notas aula Castoldi (2019).

Modelo da máquina de Indução

Deseja-se operar em 700 rpm.

V=85,55V

f=23,33 Hz

T=0 (no instante 2s \rightarrow T=5N.m)

Controle escalar malha aberta

Motor 4 HP

Ref. Velocidade 1650 rpm e 700 rpm (1s)

Ref. Conjugado 5 N.m e 15 N.m (1,3s)

Fonte: Elaborado pelo autor, 2021.

Comportamento da velocidade e conjugado.

Relação V/f *

$$V_{dc} = \frac{V_{ph}}{0.45} = 282,82V$$

$$\frac{V}{f} = \frac{282,82}{60} = 4.7 \ V/Hz$$

Para 1650 rpm → 1650/1800=0,916 logo 0,916*60=55Hz * 4,7 =258,5Vdc

Para 700 rpm \rightarrow 700/1800=0,388 logo 0,388*60=23,33Hz * 4,7 =109,66Vdc

Vp=2/3 Vdc

FFT para 1,5s (9 ciclos).

Fonte: Elaborado pelo autor, 2021.

Estudo comparativo

Referências

- OGATA, K. Engenharia de Controle Moderno. Prentice-Hall. Rio de Janeiro, 1982.
- COUGHANOWR e KOPPEL Process Systems Analysis and Control. McGraw Hill, 1991.
- COUGHANOWR e KOPPEL **Análise e Controle de Processos**. Editora Guanabara, 1987.
- KLUEVER, C. A. **Sistemas dinâmicos**: modelagem, simulação e controle. Rio de Janeiro: LTC, 2017.