

Advances in Spectral Unmixing-based Hyperspectral Analysis for Arctic Plant Species Monitoring: Developing a Spectral Library

11-15 December 2023

Junyoung Yang^{1,2}, Yoo Kyung Lee^{1,2}, Junhwa Chi^{3*}

¹Department of Polar Sciences, University of Science and Technology, Incheon, 21990, Republic of Korea Polar Research Institute, Incheon, 21990, Republic of Korea ³Major of Big Data Convergence, Division of Data Information Sciences, College of Information Technology and Convergence, Pukyong National University, Busan 48513, Republic of Korea *Corresponding author: jchi@pknu.ac.kr; Presenter: jyyang@kopri.re.kr

Introduction -

- Remote sensing serves as an invaluable tool for monitoring the rapid changes in the distribution and composition of Arctic vegetation in response to climate change.
- However, mapping Arctic plant species remains challenging due to the difficulty in data acquisition from the Arctic region and the mixed pixel issue, which represents a mixture of more than one plant species caused by low spatial resolution in large-scale remote sensing imagery.
- To address these limitations, this study aims to achieve two main objectives: (1) collecting hyperspectral information for Arctic plant species and developing a spectral library using an unmanned aerial vehicle (UAV), and (2) estimating class-specific abundances from a WorldView-3 image using the UAV-based spectral library and the spectral unmixing solution.

Data acquisition

Figure 1. The study area located in Adventdaler Svalbard, Norway (78°09'55" N and 16°00'42'

Table 1. A description of the UAV hyperspectral image and the WorldView-3

	UAV hyperspectral	Worldview-3 multispectra			
	(DJI Matrice 600 Pro)				
Spectral resolution	VNIR (400 – 1000 nm)	VNIR (400 – 1000 nm)			
Spectral bands	137 bands (after binning)	8 bands			
Spatial resolution	4 cm	1.24 m			
Date of acquisition	2022-07-07	2021-08-08			
Reflectance Normalization	using an empirical line method with three calibration targets (5%, 50% and 95% of gray scale steps)	using the radiometric calibration tool and the FLAASH module within the ENVI 5.6.1 software			

Methods and Materials UAV hyperspectral-based spectral library and vegetation map WorldView-UAV HSI library (SL) 3 image Spectral unmixing using a WorldView-3 image Resampled Train set Test set *FCLS: fully constraint least squares 1D-CNN Abundance $M = \sum_{j=1}^{K} a_j E_j$ *HSI: hyperspectral imagery *1D-CNN: 1-dimensional • $\sum_{j=1}^{M} a_j = 1$ (Sum-to-one) Vegetation a_i = the fractional convolutional neural network • $0 < a_i$ (Non-negative)

Results

1) UAV-based spectral library

Table 2. Class description investigated in the study

Class ID	Class name
V1	Cassiope tetragona (dead)
V2	Cassiope tetragona (healthy) & Dyras octopetala
V3	Equisetum arvense & Salix Polaris
V4	Luzula confusa
V5	Soil
V6	Moss (dry region)
V7	Moss (wet region)
V8	Salix polaris & moss

—— Cassiope tetragona (healthy) & Dryas octopetala

——Equisetum arvense & Salix polaris

2) UAV vegetation map for the validation purpose

Table 3. Statistical accuracy of UAV hyperspectral image Legend classification using the 1D-CNN classifier

Figure 3. Image classification result. The UAV vegetation map classified using 1D-CNN (Left). UAV hyperspectral true color image (Right)

3) Statistical evaluation of spectral unmixing results

Table 4. Comparison of classification results for a UAV hyperspectral region (30 x 30 pixels) and spectral unmixing results for a WorldView-3 single pixel. The validation of spectral unmixing was performed using a total of eight regions, and their average values are displayed in the table.

Fractional	Class								
Abundance (Average)	V1	V2	V3	V4	V5	V6	V7	V8	Total
Vegetation map (Ground truth)	0.26	0.12	0.15	0.09	0.02	0.04	0.14	0.19	1.00
Spectral unmixing (Worldview-3)	0.44	0.13	0.13	0.05	0.01	0.00	0.13	0.11	1.00

0 - V1 □ V2 • V3 □ V4 □ V5 • V6 • V7 • V8 •

Figure 4. Statistical evaluation using coefficient of determination (R²) and root mean square error (RMSE)

4) Visual inspection of spectral unmixing results

Figure 5. Spectral unmixing results. (a) UAV vegetation map (ground truth). (b) V3 class abundance map from the WorldView-3 image, (c) V8 class abundance map from the Worldview-3 image, Red circles and rectangles highlight the agreement between ground truth and spectral unmixing results for each class.

Conclusion and future study

- In this study, we effectively estimated class-specific abundances of Arctic vegetation from WorldView-3 imagery using a UAV spectral library, showing its potential for large-scale mapping.
- We plan to further validate the approach of this study by involving a diverse range of Arctic plant species and different study sites.

This work was supported by Korea Polar Research Institute (KOPRI) granted by the Ministry of Ocean and Fisheries (KOPRI PE22450).