```
#!pip install category-encoders
In [2]:
import seaborn as sns
import pandas as pd
import seaborn as sns
import numpy as np
import matplotlib.pyplot as plt
import random
random.seed = 42
import warnings
warnings.filterwarnings("ignore")
from sklearn.model selection import train test split
from sklearn.preprocessing import StandardScaler, OneHotEncoder
from sklearn.linear model import LogisticRegression.SGDClassifier
from sklearn.metrics import classification_report, plot_confusion matrix, confusion matrix,
roc_auc_score, roc_curve, precision_recall_curve, fbeta_score, recall score,\
precision recall fscore_support,accuracy_score, make_scorer, log_loss from sklearn.calibration import CalibratedClassifierCV
from imblearn.over sampling import SMOTE
from sklearn.metrics import classification report
from sklearn.preprocessing import StandardScaler,MinMaxScaler
```

7200.0

6.49

10.49

24375.0

17.27

Problem Statement:

Problem Statement:

In [1]:

Given a set of attributes for an Individual, determine if a credit line should be extended to them. If so, what should the repayment terms be in business recommendations?

- If the applicant is likely to repay the loan, then not approving the loan results in a loss of business to the company
- . If the applicant is not likely to repay the loan, i.e. he/she is likely to default, then approving the loan may lead to a financial loss for the company

Data dictionary:

Data dictionary:

- loan_amnt: The listed amount of the loan applied for by the borrower. If at some point in time, the credit department reduces the loan amount, then it will be reflected in this value.
- term: The number of payments on the loan. Values are in months and can be either 36 or 60.
- int_rate : Interest Rate on the loan
- installment : The monthly payment owed by the borrower if the loan originates.
- grade : LoanTap assigned loan grade
- sub_grade : LoanTap assigned loan subgrade
- emp_title :The job title supplied by the Borrower when applying for the loan.*
- emp_length: Employment length in years. Possible values are between 0 and 10 where 0 means less than one year and 10 means ten or more years.
- home_ownership: The home ownership status provided by the borrower during registration or obtained from the credit report.
- annual_inc : The self-reported annual income provided by the borrower during registration. verification_status : Indicates if income was verified by LoanTap, not verified, or if the income source was verified

11.99

- issue_d : The month which the loan was funded loan_status : Current status of the loan Target Variable
- purpose : A category provided by the borrower for the loan request.
- title: The loan title provided by the borrower
- dti : A ratio calculated using the borrower's total monthly debt payments on the total debt obligations, excluding mortgage and the requested LoanTap loan, divided by the borrower's self-reported monthly income.
- earliest_cr_line :The month the borrower's earliest reported credit line was opened
- open_acc: The number of open credit lines in the borrower's credit file.
- pub_rec : Number of derogatory public records
- revol_bal : Total credit revolving balance
- revol_util: Revolving line utilization rate, or the amount of credit the borrower is using relative to all available revolving credit.
- total_acc: The total number of credit lines currently in the borrower's credit file
- initial_list_status: The initial listing status of the loan. Possible values are W, F
- application_type : Indicates whether the loan is an individual application or a joint application with two co- borrowers

11.44

- mort_acc: Number of mortgage accounts. pub_rec_bankruptcies: Number of public record bankruptcies
- Address: Address of the individual

In [4]:

Out[4]:

loan_tap.head().T

```
loan tap=pd.read csv("https://d2beiqkhq929f0.cloudfront.net/public assets/assets/000/003/549/original/logistic regression.csv?1651045921")
```

```
        loan_amnt
        10000.0
        8000.0
        15600.0

        term
        36 months
        36 months
        36 months
```

installment	329.46	265.68	506.92	220.65	609.34
grade	В	В	В	A	С
sub_grade	B4	B5	В3	A2	C5
emp_title	Marketing	Credit analyst	Statistician	Client Advocate	Destiny Management Inc.
emp_length	10+ years	4 years	< 1 year	6 years	9 years
home_ownership	RENT	MORTGAGE	RENT	RENT	MORTGAGE
annual_inc	117000.0	65000.0	43057.0	54000.0	55000.0
verification_status	Not Verified	Not Verified	Source Verified	Not Verified	Verified
issue_d	Jan-2015	Jan-2015	Jan-2015	Nov-2014	Apr-2013
loan_status	Fully Paid	Fully Paid	Fully Paid	Fully Paid	Charged Off
purpose	vacation	debt_consolidation	credit_card	credit_card	credit_card
title	Vacation	Debt consolidation	Credit card refinancing	Credit card refinancing	Credit Card Refinance
dti	26.24	22.05	12.79	2.6	33.95
earliest_cr_line	Jun-1990	Jul-2004	Aug-2007	Sep-2006	Mar-1999
open_acc	16.0	17.0	13.0	6.0	13.0
pub_rec	0.0	0.0	0.0	0.0	0.0
revol_bal	36369.0	20131.0	11987.0	5472.0	24584.0
revol_util	41.8	53.3	92.2	21.5	69.8
total_acc	25.0	27.0	26.0	13.0	43.0
initial_list_status	w	f	f	f	f
application_type	INDIVIDUAL	INDIVIDUAL	INDIVIDUAL	INDIVIDUAL	INDIVIDUAL
mort_acc	0.0	3.0	0.0	0.0	1.0
pub_rec_bankruptcies	0.0	0.0	0.0	0.0	0.0
address	0174 Michelle Gateway\r\nMendozaberg, OK 22690	1076 Carney Fort Apt. 347\r\nLoganmouth, SD 05113	87025 Mark Dale Apt. 269\r\nNew Sabrina, WV 05113	823 Reid Ford\r\nDelacruzside, MA 00813	679 Luna Roads\r\nGreggshire, VA 11650

In [5]:

loan_tap.describe()

Out[5]:

	loan_amnt	int_rate	installment	annual_inc	dti	open_acc	pub_rec	revol_bal	revol_util	total_acc	mort_acc	pub_rec_bankruptcies
count	396030.000000	396030.000000	396030.000000	3.960300e+05	396030.000000	396030.000000	396030.000000	3.960300e+05	395754.000000	396030.000000	358235.000000	395495.000000
mean	14113.888089	13.639400	431.849698	7.420318e+04	17.379514	11.311153	0.178191	1.584454e+04	53.791749	25.414744	1.813991	0.121648
std	8357.441341	4.472157	250.727790	6.163762e+04	18.019092	5.137649	0.530671	2.059184e+04	24.452193	11.886991	2.147930	0.356174
min	500.000000	5.320000	16.080000	0.000000e+00	0.000000	0.000000	0.000000	0.000000e+00	0.000000	2.000000	0.000000	0.000000
25%	8000.000000	10.490000	250.330000	4.500000e+04	11.280000	8.000000	0.000000	6.025000e+03	35.800000	17.000000	0.000000	0.000000
50%	12000.000000	13.330000	375.430000	6.400000e+04	16.910000	10.000000	0.000000	1.118100e+04	54.800000	24.000000	1.000000	0.000000
75%	20000.000000	16.490000	567.300000	9.000000e+04	22.980000	14.000000	0.000000	1.962000e+04	72.900000	32.000000	3.000000	0.000000
max	40000.000000	30.990000	1533.810000	8.706582e+06	9999.000000	90.000000	86.000000	1.743266e+06	892.300000	151.000000	34.000000	8.000000

In [6]:

loan_tap.dtypes

Out[6]:

loan_amnt term float64 object float64 int_rate installment float64 installment
grade
sub_grade
emp_title
emp_length
home_ownership
annual_inc
verification_status
issue d object object object object object float64 object object object object object float64 issue_d loan_status purpose title title
dti
earliest_cr_line
open_acc
pub_rec
revol_bal
revol_util
total_acc
initial_list_status
application_type object float64 float64 float64 float64 float64 object object application_type mort_acc float64 pub_rec_bankruptcies float64 address dtype: object object

Loan Status Distribution

```
In [7]:
# lets check if loan_status now has only fully paid and charged off
sns.countplot(x=loan_tap['loan_status'], data=loan_tap, palette='viridis')
Out[7]:
<matplotlib.axes._subplots.AxesSubplot at 0x7f6bfec07370>

300000
250000
100000
50000
Fully Paid Charged Off
loan_status
```

In [8]:

```
plt.style.use('ggplot')
data = loan_tap["loan_status"].value_counts(normalize=True)
plt.pie(data, labels=data.index, startangle = 90, shadow = True, radius=1, explode= [0,0.05],autopct='%0.2f%%')
plt.title("Loan Status", fontsize=16, fontweight='bold')
plt.show()
```

Loan Status

In [9]:

```
#plt.figure(figsize=(6,3),dpi=120)
#loan_tap.corr()['loan_status'].sort_values().drop('loan_status').plot(kind='bar', cmap='viridis') # correlation with loan_status for continuous features with loan_status feature dropped
#plt.xticks(rotation=90);
```

In [10]:

loan tap.columns

EDA

loan amnt & installment

```
In [11]:
```

```
#sns.pairplot(loan_tap, hue='loan_status', y_vars=['loan_amnt'])
#sns.pairplot(loan_tap, hue='loan_status', y_vars=['installment'])
#plt.show()
```

In [12]:

```
reccol=np.unique(loan_tap['loan_status'], return_counts=True)
for col in ['loan_amnt', 'installment', 'annual_inc', 'int_rate']:
    fig = plt.figure(figsize=(15,10))
    #plt.subplots_adjust(wspace = 0.5, hspace=1)
    fig.subplots_adjust(top=0.92);
    fig.subplots_adjust(hspace=0.5, wspace=0.4);
    ax1 = plt.subplot(221)
    sns.barplot(x=list(reccol[0]), y=list(reccol[1]), ax=ax1, color='coral');
    ax1.set_title('loan_status');
    ax1.set_xlabel('loan_status');
```

```
ax1.set_ylabel('Count');

ax2 = plt.subplot(222)
sns.boxplot(data=loan_tap,x=col,y='loan_status',orient='h')
plt.title(f"Distribution of {col} according to {'Loan_status'}",fontweight='bold')

ax1 = plt.subplot(223)
sns.kdeplot(loan_tap[col], shade=True, ax=ax1,hue=loan_tap['loan_status'])
plt.xlabel(col)
plt.title(f"Distribution plot for {col}",fontweight='bold')

ax2 = plt.subplot(224)
sns.kdeplot(loan_tap[col], shade=True, cumulative=True,ax=ax2,hue=loan_tap['loan_status'])
plt.xlabel(col)
plt.title(f'Distribution plot of {col}',fontweight='bold')

print('-'*50+col+'-'*50)
plt.show()
```

-----loan_amnt------loan_amnt-----

-----installment-----

Outlier treatment

annual_inc

sns.distplot(bs_Fully_Paid_means,color="g",ax=axs[0])

```
In [13]:
quantiles = loan tap['annual inc'].quantile(np.arange(0,1.01,0.01), interpolation='higher')
plt.title("Quantiles and their Values")
quantiles.plot()
# quantiles with 0.05 difference
plt.scatter(x=quantiles.index[::5], y=quantiles.values[::5], c='orange', label="quantiles with 0.05 intervals")
# quantiles with 0.25 differenc
plt.scatter(x=quantiles.index[::25], y=quantiles.values[::25], c='m', label = "quantiles with 0.25 intervals")
plt.ylabel('Annual Income')
plt.xlabel('Value at the quantile')
plt.legend(loc='best')
Out[13]:
<matplotlib.legend.Legend at 0x7f6bf930cb50>
              Quantiles and their Values
      - annual inc

    quantiles with 0.05 intervals

    quantiles with 0.25 intervals

           0.2 0.4 0.6 0.8
     0.0
                 Value at the quantile
In [14]:
### 90-100 percentile
for i in range(0,11):
    print(90+i, 'percentile value is', np.percentile(loan_tap['annual_inc'], 90+i))
print('-'*100)
### 99-100 percentile
for i in range(10,110,10):
    print(99+(i/100),'percentile value is',np.percentile(loan_tap['annual_inc'],99+(i/100)))
90 percentile value is 120000.0
91 percentile value is 125000.0
92 percentile value is 130000.0
93 percentile value is 136000.0
94 percentile value is 144000.0
95 percentile value is 150000.0
96 percentile value is 160000.0
97 percentile value is 175000.0
98 percentile value is 200000.0
99 percentile value is 250000.0
100 percentile value is 8706582.0
99.1 percentile value is 250000.0
99.2 percentile value is 260000.0
99.3 percentile value is 275000.0
99.4 percentile value is 290000.0
99.5 percentile value is 300000.0
99.6 percentile value is 325000.0
99.7 percentile value is 350000.0
99.8 percentile value is 400000.0
99.9 percentile value is 515000.0
100.0 percentile value is 8706582.0
In [15]:
loan tap[loan tap['annual inc']>300000].loan status.value counts()
Out[15]:
Fully Paid
               1581
Charged Off
               237
Name: loan_status, dtype: int64
In [16]:
loan tap=loan tap[loan tap['annual inc']<300000]</pre>
In [17]:
bs_Fully_Paid_means=[]
bs Charged Off means=[]
for i in range(1,301):
    bs Fully Paid means.append(np.random.choice(loan tap[loan tap.loan status=="Fully Paid"]["annual inc"],size=1000).mean())
    bs_Charged_Off_means.append(np.random.choice(loan_tap[loan_tap.loan_status=='Charged_Off']["annual_inc"],size=1000).mean())
print(f"mean annual_inc of Fully Paid 95 CI : {np.percentile(bs_Fully_Paid_means,[2.5,97.5])}")
print(f"mean annual_inc of Charged Off 95 CI : {np.percentile(bs_Charged_Off_means,[2.5,97.5])}")
print(f"mean annual inc of Charged Off 95 CI
fig, axs = plt.subplots(1, 2, figsize=(10, 5))
```

```
axs[0].axvline(np.percentile(bs_Fully_Paid_means, 2.5), linestyle="--", color='r', label="lowerboundmean")
axs[0].axvline(np.percentile(bs_Fully_Paid_means,97.5),linestyle="--", color='b', label="upperboundmean")
axs[0].set_title("Mean annual_inc of the Fully Paid")
sns.distplot(bs_Charged_Off_means,color="r",ax=axs[1]) axs[1].axvline(np.percentile(bs_Charged_Off_means,2.5),linestyle="--", color='r', label="lowerboundmean")
axs[1].axvline(np.percentile(bs_Charged_Off_means,97.5),linestyle="--", color='b', label="upperboundmean")
axs[1].set_title("Mean annual_inc of the Charged Off")
mean annual inc of Fully Paid 95 CI :
                                               [70972.17733325 75461.47790675]
                                                 : [63752.99707725 68459.7582295 ]
mean annual_inc of Charged Off 95 CI
          Mean annual_inc of the Fully Paid
                                                 Mean annual_inc of the Charged Off
                                           0.00035
           --- lowerboundmean
                                                                   --- lowerboundmean
           --- upperboundmean
                                                                   --- upperboundmean
   0.00030
                                           0.00030
   0.00025
                                           0.00025
  > 0.00020
                                          0.00020
 ۵ 0.00015
                                          0.00015
   0.00010
                                           0.00010
   0.00005
   0.00000
              70000
                           74000
                                  76000
                                                   62000
                                                         64000
                                                                66000
                                                                       68000
        68000
                     72000
                                        78000
```

- It seems that loans with large annual income are more likely to be pay on time Full payment.
- Lets remove outliers in the annual_inc some of the users having extreamly large anual income, lets conside maximum income 300000.0 we can cover 99.5% of data
- mean annual_inc of Fully Paid 95 CI:

```
[71097.35145525 , 75717.72822375]
```

• mean annual_inc of Charged Off 95 CI:

```
[63865.159879 , 68177.4551325]
```

int_rate

```
In [18]:
quantiles = loan_tap['int_rate'].quantile(np.arange(0,1.01,0.01), interpolation='higher')
plt.title("Quantiles and their Values")
quantiles.plot()
# quantiles with 0.05 difference
plt.scatter(x=quantiles.index(::5), y=quantiles.values(::5), c='orange', label="quantiles with 0.05 intervals")
# quantiles with 0.25 difference
plt.scatter(x=quantiles.index(::25), y=quantiles.values(::25), c='m', label = "quantiles with 0.25 intervals")
plt.ylabel('Interest Rate')
plt.ylabel('Value at the quantile')
plt.legend(loc='best')

Out[18]:

Matplotlib.legend.tegend at 0x7f6bf9ce72e0>

Quantiles and their Values

Quantiles and their Values

* The Mathematical Content of the con
```


91 percentile value is 19.91

```
In [19]:
### 90-100 percentile
for i in range(0,11):
    print(90+i,'percentile value is',np.percentile(loan_tap['int_rate'],90+i))
print('-'*100)
### 99-100 percentile
for i in range(10,110,10):
    print(99+(i/100),'percentile value is',np.percentile(loan tap['int rate'],99+(i/100)))
90 percentile value is 19.52
```

```
92 percentile value is 20.2
93 percentile value is 20.75
94 percentile value is 21.0
95 percentile value is 21.97
96 percentile value is 22.4
97 percentile value is 23.28
98 percentile value is 24.08
99 percentile value is 25.28
100 percentile value is 30.99
99.1 percentile value is 25.57
99.2 percentile value is 25.57
99.3 percentile value is 25.8
99.4 percentile value is 25.8
99.5 percentile value is 25.83
99.6 percentile value is 25.89
99.7 percentile value is 26.06
99.8 percentile value is 26.99
99.9 percentile value is 27.99
100.0 percentile value is 30.99
In [20]:
bs_Fully_Paid_means=[]
bs_Charged_Off_means=[]
for i in range(1,301):
    bs Fully Paid means.append(np.random.choice(loan tap[loan tap.loan status=="Fully Paid"]["int rate"],size=1000).mean())
    bs_Charged_Off_means.append(np.random.choice(loan_tap[loan_tap.loan_status=='Charged_Off']["int_rate"],size=1000).mean())
print(f"mean int_rate of Fully Paid 95 CI : {np.percentile(bs_Fully_Paid means,[2.5,97.5])}")
print(f"mean int_rate of Charged Off 95 CI : {np.percentile(bs_Charged_Off_means,[2.5,97.5])}")
fig, axs = plt.subplots(1, 2, figsize=(10, 5))
sns.distplot(bs_Fully_Paid_means,color="g",ax=axs[0])
axs[0].axvline(np.percentile(bs_Fully_Paid_means,2.5),linestyle="--", color='r', label="lowerboundmean")
axs[0].axvline(np.percentile(bs_Fully_Paid_means,97.5),linestyle="--", color='b', label="upperboundmean")
axs[0].legend()
axs[0].set title("Mean int rate of the Fully Paid")
sns.distplot(bs_Charged_Off_means,color="r",ax=axs[1])
axs[1].axvline(np.percentile(bs_Charged_Off_means,2.5),linestyle="--", color='r', label="lowerboundmean")
axs[1].axvline(np.percentile(bs Charged Off means, 97.5), linestyle="--", color='b', label="upperboundmean")
axs[1].legend()
axs[1].set_title("Mean int_rate of the Charged Off")
plt.show()
mean int_rate of Fully Paid 95 CI : [12.8188455 13.37229775]
mean int_rate of Charged Off 95 CI
                                                : [15.64517675 16.15186525]
         Mean int_rate of the Fully Paid
                                                Mean int_rate of the Charged Off
                           lowerboundmean
                                                                   - lowerboundmean
                         -- upperboundmean
                                                                  -- upperboundmean
                                            3.0
                                            2.5
   2.5
                                           > 2.0
                                          <u>م</u> 1.5
```

• It seems that loans with high intersest rate are more likely to be unpaid.

1.0

0.5

15.4 15.6

15.8

16.0

16.2

mean int_rate of Fully Paid 95 CI:

[12.816506 13.4235715]

12.8 13.0 13.2 13.4 13.6

• mean int_rate of Charged Off 95 CI :

[15.64039175 16.14115875]

In [21]:

dti

1.0

0.5

```
quantiles = loan_tap['dti'].quantile(np.arange(0,1.01,0.01), interpolation='higher')
plt.title("Quantiles and their Values")
quantiles.plot()
# quantiles with 0.05 difference
plt.scatter(x=quantiles.index[::5], y=quantiles.values[::5], c='orange', label="quantiles with 0.05 intervals")
# quantiles with 0.25 difference
plt.scatter(x=quantiles.index[::25], y=quantiles.values[::25], c='m', label = "quantiles with 0.25 intervals")
plt.ylabel('dti')
plt.xlabel('Value at the quantile')
plt.legend(loc='best')
Out[21]:
```

```
<matplotlib.legend.Legend at 0x7f6bfe62c5e0>
                   Quantiles and their Values
   10000 - ___ dti

    quantiles with 0.05 intervals

    quantiles with 0.25 intervals

    8000
    6000
    4000
    2000
                          0.4 0.6
          0.0
                  0.2
                                            0.8
                                                     1.0
                       Value at the quantile
In [22]:
### 90-100 percentile
for i in range(0,11):
    print(90+i, 'percentile value is', np.percentile(loan_tap['dti'], 90+i))
print('-'*100)
### 99-100 percentile
for i in range(10,110,10):
    print(99+(i/100),'percentile value is',np.percentile(loan tap['dti'],99+(i/100)))
90 percentile value is 28.52
91 percentile value is 29.02
92 percentile value is 29.55
93 percentile value is 30.13
94 percentile value is 30.84
95 percentile value is 31.6
96 percentile value is 32.43
97 percentile value is 33.36
98 percentile value is 34.39
99 percentile value is 36.46
100 percentile value is 9999.0
99.1 percentile value is 36.78
99.2 percentile value is 37.1
99.3 percentile value is 37.43
99.4 percentile value is 37.81
99.5 percentile value is 38.16
99.6 percentile value is 38.54
99.7 percentile value is 38.95
99.8 percentile value is 39.42
99.9 percentile value is 39.86
100.0 percentile value is 9999.0
In [23]:
loan_tap=loan_tap[loan_tap['dti']<50]</pre>
In [23]:
In [24]:
bs Fully Paid means=[]
bs Charged Off means=[]
for i in range(1,301):
     bs Fully Paid means.append(np.random.choice(loan tap[loan tap.loan status=="Fully Paid"]["dti"], size=1000).mean())
bs_Charged_Off_means.append(np.random.choice(loan_tap[loan_tap.loan_status=='Charged_Off']["dti"],size=1000).mean())

print(f"mean dti of Fully Paid 95 CI : {np.percentile(bs_Fully_Paid_means,[2.5,97.5])}")

print(f"mean dti of Charged Off 95 CI : {np.percentile(bs_Charged_Off_means,[2.5,97.5])}")
fig, axs = plt.subplots(1, 2, figsize=(10, 5))
sns.distplot(bs Fully Paid means, color="g", ax=axs[0])
axs[0].axvline(np.percentile(bs Fully Paid means, 2.5), linestyle="--", color='r', label="lowerboundmean")
axs[0].axvline(np.percentile(bs_Fully_Paid_means, 97.5), linestyle="--", color='b', label="upperboundmean")
axs[0].legend()
axs[0].set title("Mean dti of the Fully Paid")
axs[0].set_title('Mean dif' of the Fully Faid')
sns.distplot(bs_Charged_Off_means,color="r",ax=axs[1])
axs[1].axvline(np.percentile(bs_Charged_Off_means,2.5),linestyle="--", color='r', label="lowerboundmean")
axs[1].axvline(np.percentile(bs_Charged_Off_means,97.5),linestyle="--", color='b', label="upperboundmean")
axs[1].legend()
axs[1].set_title("Mean dti of the Charged Off")
plt.show()
mean dti of Fully Paid 95 CI : [16.3426515 17.331998 ]
                                            : [19.069045 20.11527125]
mean dti of Charged Off 95 CI
            Mean dti of the Fully Paid
                                                      Mean dti of the Charged Off
                                                   --- lowerboundmean
        --- upperboundmean
                                                    --- upperboundmean
                                              1.50
                                              1.25
```

```
8 1.00 - 0.6 - 0.75 - 0.50 - 0.25 - 0.00 - 16.00 16.25 16.50 16.75 17.00 17.25 17.50 0.00 - 18.5 19.0 19.5 20.0 20.5
```

- Lets remove outliers in the dti some of the users having extreamly dti ,lets conside maximum dti 50 we can cover 99.9% of data
- mean dti of Fully Paid 95 CI:

```
[16.419986 17.33308275]
```

mean dti of Charged Off 95 CI:

[19.00360025 19.99442475]

grade and sub_grade

```
In [25]:
plt.figure(figsize=(15, 10))
# List of color palette to use
rgb_values = sns.color_palette("Set2", 6)

plt.subplot(2, 2, 1)
grade = sorted(loan_tap.grade.unique().tolist())
sns.countplot(x='grade', data=loan_tap, hue='loan_status', order=grade,palette=rgb_values)

plt.subplot(2, 2, 2)
sub_grade = sorted(loan_tap.sub_grade.unique().tolist())
g = sns.countplot(x='sub_grade', data=loan_tap, hue='loan_status', order=sub_grade,palette=rgb_values)
g.set_xticklabels(g.get_xticklabels(), rotation=90);
```


It looks like F and G subgrades don't get paid back that often. Isloate those and recreate the countplot just for those subgrades.

```
In [26]:

df = loan_tap[(loan_tap.grade == 'F') | (loan_tap.grade == 'G')]

plt.figure(figsize=(15, 10))

plt.subplot(2, 2, 1)

grade = sorted(df.grade.unique().tolist())

sns.countplot(x='grade', data=df, hue='loan_status', order=grade)

plt.subplot(2, 2, 2)

sub_grade = sorted(df.sub_grade.unique().tolist())
sns.countplot(x='sub_grade', data=df, hue='loan_status', order=sub_grade)

Out[26]:
```

<matplotlib.axes._subplots.AxesSubplot at 0x7f6bf9c82460>

grade sub_grade

emp_length

Out[28]:

term ,home_ownership , verification_status and purpose

- 36 months term is most popular among customers
- People with home_ownership Mortgage are more likely to fully pay the loan

```
In [29]:
```

In [30]:

Out[30]:

Missing values

```
def missingValue(df):
    #Identifying Missing data.
    total_null = df.isnull().sum().sort_values(ascending = False)
    percent = ((df.isnull().sum()/df.isnull().count())*100).sort_values(ascending = False)
    print("Total records = ", df.shape[0])

    md = pd.concat([total_null,percent.round(2)],axis=1,keys=['Total Missing','In Percent'])
    return md
    missing_df = missingValue(loan_tap)
    missing_df = missingValue(loan_tap)
    missing_df = missing df['Total Missing'] > 0]
Total records = 393714
```

Total Missing In Percent mort_acc 37586 9.55 emp_title 22775 5.78 emp_length 18267 4.64 title 1748 0.44 pub_rec_bankruptcies 532 0.14 revol_util 269 0.07

```
In [31]:
```

Out[31]:

missing df.head()

	Total Missing	In Percen
mort_acc	37586	9.5
emp_title	22775	5.78
emp_length	18267	4.6
title	1748	0.4
pub_rec_bankruptcies	532	0.14

```
In [31]:
```

CLEANING, PREPROCESSING, FEATURE ENGINEERING

emp_length

```
df[column] = df[column].str.replace('\+ years', '')
    df[column] = df[column].str.replace('< 1 year', str(0))</pre>
    df[column] = df[column].str.replace(' years', '')
df[column] = df[column].str.replace(' year', '')
    df[column] = pd.to_numeric(df[column])
    #df[column].fillna(value = 0, inplace = True)
    return df
loan tap=emp length convert(loan tap, 'emp length')
In [34]:
loan_tap['emp_length'].unique()
Out[34]:
array([10., 4., 0., 6., 9., 2., 3., 8., 7., 5., 1., nan])
team
In [35]:
loan_tap["term"].unique()
Out[35]:
array([' 36 months', ' 60 months'], dtype=object)
In [36]:
# converting term column to numeric data type
def term_numeric(df, column):
    df[column] = pd.to_numeric(df[column].str.replace(' months', ''))
loan_tap=term_numeric(loan_tap, 'term')
In [37]:
loan_tap["term"].unique()
Out[37]:
array([36, 60])
date columns
In [38]:
loan_tap.head(2).T
Out[38]:
                                                    0
                                                                                       8000.0
                                                 10000.0
         loan_amnt
                                                    36
                                                                                          36
             term
                                                  11.44
           int_rate
                                                                                        11.99
                                                 329.48
                                                                                       265.68
            grade
                                                    В
                                                    В4
                                                                                          В5
         sub_grade
                                              Marketing
                                                                                  Credit analyst
         emp_title
                                                                                          4.0
                                                   10.0
                                                 RENT
                                                                                   MORTGAGE
                                                117000.0
                                                                                       65000.0
                                              Not Verified
                                                                                    Not Verified
                                               Jan-2015
                                                                                      Jan-2015
                                               Fully Paid
                                                                                     Fully Paid
                                                                               debt_consolidation
                                                vacation
                                                Vacation
                                                                               Debt consolidation
               dti
                                                  26.24
                                                                                        22.05
                                               Jun-1990
                                                                                      Jul-2004
                                                   16.0
                                                                                         17.0
          open acc
                                                   0.0
                                                                                         0.0
          pub_rec
                                                36369.0
                                                                                       20131.0
          revol_bal
          revol_util
                                                  41.8
                                                                                         53.3
```

25.0

0.0

0.0

INDIVIDUAL

application_type

pub_rec_bankruptcies

27.0

3.0

0.0

INDIVIDUAL

```
In [39]:
# issue_d , earliest_cr_line
#earliest_cr_line :The month the borrower's earliest reported credit line was opened
#issue_d : The month which the loan was funded
print(f"""issue_d : min --> {loan_tap["issue_d"].min()} , max --> {loan_tap["issue_d"].max()}""")
print(f"""earliest cr line : min --> {loan_tap["earliest cr_line"].min()} , max --> {loan_tap["earliest_cr_line"].max()}""")
issue_d : min --> Apr-2008 , max --> Sep-2016 earliest_cr_line : min --> Apr-1955 , max --> Sep-2013
In [40]:
loan_tap['earliest_cr_line_date'] = pd.to_datetime(loan_tap['earliest_cr_line'], format='%b-%Y')
loan_tap['mths_since_earliest_cr_line'] = round(pd.to_numeric((pd.to_datetime('2023-01-01') - loan_tap['earliest_cr_line_date']) / np.timedelta64(1, 'M')))
In [41]:
loan_tap['issue_d_date'] = pd.to_datetime(loan_tap['issue_d'], format='%b-%Y')
loan_tap['mths_since_issue_d'] = round(pd.to_numeric((pd.to_datetime('2023-01-01') - loan_tap['issue_d_date']) / np.timedelta64(1, 'M')))
In [42]:
loan tap[loan tap['mths since issue d']<0].shape,loan tap[loan tap['mths since earliest cr line']<0].shape
Out[42]:
((0, 31), (0, 31))
In [42]:
In [42]:
In [43]:
# issue_d , earliest_cr_line
#earliest_cr_line :The month the borrower's earliest reported credit line was opened
 #issue_d : The month which the loan was funded
print(f"""issue_d : min --> {loan_tap["issue_d"].min(),loan_tap["mths_since_issue_d"].max()} , max --> {loan_tap["mths_since_issue_d"].min()}""")
print(f"""earliest_cr_line"].max(), max --> {loan_tap["mths_since_issue_d"].max(),loan_tap["mths_since_earliest_cr_line"].max()} , max --> {loan_tap["mths_since_issue_d"].min()}""")
issue_d : min --> ('Apr-2008', 187.0) , max --> ('Sep-2016', 73.0) earliest_cr_line : min --> ('Apr-1955', 948.0) , max --> ('Sep-2013', 111.0)
Drop columns
We know that grade is just a sub feature of sub\_grade, So we are goinig to drop it.
loan_tap['zip_code'] = loan_tap['address'].apply(lambda address:address[-5:])
loan_tap.drop(['earliest cr line', 'issue d','issue d date','grade','earliest cr line date','address',"title","emp title"], axis=1, inplace=True)
In [44]:
Missing value treatment
```

```
In [45]:
loan tap["loan status"].unique()
Out[45]:
array(['Fully Paid', 'Charged Off'], dtype=object)
In [46]:
loan tap["application type"].unique()
array(['INDIVIDUAL', 'JOINT', 'DIRECT_PAY'], dtype=object)
In [47]:
plt.figure(figsize=(20, 10))
sns.heatmap(loan_tap.corr(), annot=True, cmap='viridis')
<matplotlib.axes._subplots.AxesSubplot at 0x7f6bf8e97430>
```

term -	0.4	1	0.43	0.16	0.061	0.099	0.083	0.08	-0.019	0.094	0.055	0.1	0.097	-0.02	0.029	-0.079
int_rate -	0.17	0.43	1	0.16	0.013	-0.08	0.18	0.012	0.061	-0.01	0.29	-0.036	-0.082	0.057	-0.11	-0.052
installment -	0.95	0.16	0.16	1	0.089	0.46	0.047	0.19	-0.069	0.33	0.13	0.2	0.19	-0.098	0.13	-0.1
emp_length -	0.1	0.061	0.013	0.089	1	0.098	0.043	0.043	0.038	0.094	0.038	0.12	0.2	0.039	0.22	-0.065
annual_inc -	0.47	0.099	-0.08	0.46	0.098	1	-0.21	0.2	-0.022	0.37	0.049	0.28	0.33	-0.067	0.2	-0.074
dti -	0.048	0.083	0.18	0.047	0.043	-0.21	1	0.31	-0.038	0.17	0.2	0.23	-0.054	-0.032	0.015	-0.17
open_acc -	0.2	0.08	0.012	0.19	0.043	0.2	0.31	1	-0.018	0.24	-0.13	0.68	0.11	-0.027	0.12	-0.14
pub_rec -	-0.079	-0.019	0.061	-0.069	0.038	-0.022	-0.038	-0.018	1	-0.11	-0.076	0.02	0.012	0.7	0.054	-0.13
revol_bal -	0.34	0.094	-0.01	0.33	0.094	0.37	0.17	0.24	-0.11	1	0.25	0.2	0.2	-0.13	0.21	-0.033
revol_util -	0.1	0.055	0.29	0.13	0.038	0.049	0.2	-0.13	-0.076	0.25	1	-0.1	0.007	-0.087	0.0066	0.055
total_acc -	0.22	0.1	-0.036	0.2	0.12	0.28	0.23	0.68	0.02	0.2	-0.1	1	0.38	0.043	0.28	-0.11
mort_acc -	0.22	0.097	-0.082	0.19	0.2	0.33	-0.054	0.11	0.012	0.2	0.007	0.38	1	0.029	0.29	-0.0092
pub_rec_bankruptcies -	-0.11	-0.02	0.057	-0.098	0.039	-0.067	-0.032	-0.027	0.7	-0.13	-0.087	0.043	0.029	1	0.058	-0.11
mths_since_earliest_cr_line -	0.14	0.029	-0.11	0.13	0.22	0.2	0.015	0.12	0.054	0.21	0.0066	0.28	0.29	0.058	1	0.1
mths_since_issue_d -	-0.11	-0.079	-0.052	-0.1	-0.065	-0.074	-0.17	-0.14	-0.13	-0.033	0.055	-0.11	-0.0092	-0.11	0.1	1
	loan_amnt -	term -	int_rate -	installment -	emp_length -	annual_inc -	dti -	open_acc -	- bup_rec	- led_bal	- liul_util	total_acc -	mort_acc -	pub_rec_bankruptcies -	mths_since_earliest_cr_line -	mths_since_issue_d -

- Loan amount and Installement amount are highly corelated.
- Open_acc and total accounts are highly correlated
- public records and public record banckruptcies are highly correlated.
- Annual income and the loan amount are modelrately correlated.
- Loan_status and term are modelrately corelated
- Loan_status and Intrest rate are modelrately corelated
- Loan_amont and (total account,mortgage accounts and revolution balance are moderately corelated).
- Total accounts and mortagage accounts are corelated.
- Annual income and total accounts are reasonably correlated.
- dti and open_acc are reasonbly corelated.

loan tap['mort acc'].unique()

• Installments and mort_acc are slightly corelated.

Looks like the total_acc feature correlates with the mort_acc, this makes sense! Let's try this fillna() approach. We will group the dataframe by the total_acc and calculate the mean value for the mort_acc per total_acc entry. To get the result below:

```
In [48]:

total_acc_avg = loan_tap.groupby(by='total_acc').mean().mort_acc

def fill_mort_acc(total_acc, mort_acc):
    if np.isnan(mort_acc):
        return total_acc_avg[total_acc].round()
    else:
        return mort_acc

loan_tap['emp_length'].fillna(0, inplace=True)
loan tap['mort_acc'] = loan tap.apply(lambda x: fill mort_acc(x['total_acc'], x['mort_acc']), axis=1)

In [49]:
```

- 0.8

- 0.6

```
In [51]:

def map_func(x):
    if x>1:
        return 1
    else:
```

```
return 0
loan tap["pub reo"]-loan tap["pub reo"].apply(map_func)
loan tap["pub reo lan tap["mub reo lan tap["pub reo lan tap["unc]
loan tap["pub reo lan tap["lone ownership"].replace(["NONE", "ANY"], "OTHER")

In [52]:

loan tap.revol util.unique()
Out[52]:

array([ 41.8 , 53.3 , 92.2 , ..., 56.26, 111.4 , 128.1 ])

In [53]:

missing df = missingValue(loan tap)
missing df ["Total Missing"] > 0]
Total records - 393714

Out[53]:

Total Missing in Percent
revol, will 289 0.07
```

Duplicated data checks

loan tap.dropna(inplace=True)

In [54]:

```
In [55]:
print(f"Data shape: (loan_tap.shape)")

# # Remove duplicate Features
# data = data.T.drop_duplicates()
# data = data.T.
# # Remove Duplicate Rows
data.drop_duplicates(inplace=True)

print(f"Data shape: (loan tap.shape)")

Data shape: (393445, 24)
Data shape: (393445, 24)
In [55]:
```

Train test split

loan tap.home ownership.unique()

Out[57]:

In [56]:

```
loan_tap.info()
<class 'pandas.core.frame.DataFrame'>
Int64Index: 393445 entries, 0 to 396029
Data columns (total 24 columns):
                                   Non-Null Count Dtype
# Column
    loan amnt
                                   393445 non-null float64
                                   393445 non-null int64
     term
     int rate
                                   393445 non-null float64
     installment
                                   393445 non-null float64
                                   393445 non-null object
     sub grade
                                   393445 non-null float64
     emp_length
     home_ownership
                                   393445 non-null object
     annual inc
                                   393445 non-null float64
     verification status
                                   393445 non-null object
    loan status
                                   393445 non-null object
                                   393445 non-null object
    purpose
 11 dti
                                   393445 non-null float64
                                   393445 non-null float64
 12 open acc
 13 pub_rec
                                   393445 non-null int64
 14 revol_bal
15 revol_util
                                   393445 non-null float64
                                   393445 non-null float64
 16 total_acc
17 initial_list_status
                                   393445 non-null float64
                                   393445 non-null object
 18 application_type
                                   393445 non-null object
 19 mort_acc
                                   393445 non-null int64
20 pub_rec_bankruptcies
21 mths_since_earliest_cr_line
                                   393445 non-null int64
                                   393445 non-null float64
22 mths_since_issue_d
23 zip_code
                                   393445 non-null float64
                                   393445 non-null object
dtypes: float64(12), int64(4), object(8) memory usage: 75.0+ MB
```

```
array(['RENT', 'MORTGAGE', 'OWN', 'OTHER'], dtype=object)
In [58]:
loan tap["loan status"]=loan tap["loan status"].map({"Fully Paid":0,"Charged Off":1}).astype("int64")
In [60]:
categorical_cols = [col for col in loan_tap.select_dtypes(include='object').columns.tolist()]
In [61]:
categorical_cols
Out[61]:
['sub_grade',
 'home_ownership',
'verification_status',
 'purpose',
'initial_list_status',
'application_type',
'zip_code']
In [63]:
loan tap.loan status.unique()
Out[63]:
array([0, 1])
In [71]:
#!pip install category_encoders
In [72]:
#x=loan_tap[col_Considered].drop(['loan_status'],axis=1)
x=loan_tap.drop(['loan_status'],axis=1)
y=loan_tap['loan_status']
X train, X test, y train, y test = train_test_split(x, y, test_size=0.20, random_state=42)
In [72]:
In [73]:
loan tap.head(2).T
Out[73]:
                             0
             loan_amnt
                         10000.0
                                         8000.0
                             36
                                            36
               int_rate
                           11.44
                                          11.99
                          329.48
                                         265.68
                             В4
                                            B5
                            10.0
                                           4.0
                          RENT
                                     MORTGAGE
                        117000.0
                                        65000.0
                      Not Verified
                                     Not Verified
                             0
              purpose
                         vacation debt consolidation
                           26.24
                                          22.05
                            16.0
                                           17.0
             open_acc
              pub_rec
```

In [73]:

revol_bal

zip_code

25.0

0

0 391.0

96.0

22690

INDIVIDUAL

20131.0

INDIVIDUAL

53.3 27.0

0

222.0

96.0 05113

Encoding

One Hot

```
In [74]:
"""loan_tap_dummy = pd.get_dummies(loan_tap, columns=categorical_cols, drop_first=True)

x=loan_tap_dummy.drop(['loan_status'], axis=1)
y=loan_tap_dummy['loan_status']
X_train, X_test, y_train, y_test = train_test_split(x, y, test_size=0.20, random_state=42)"""
print()
```

Target

```
In [75]:
from category_encoders import TargetEncoder
for i in categorical_cols:
    te = TargetEncoder()
    X_train[i] = te.fit_transform(X_train[i], y_train)
    X_test[i] = te.transform(X_test[i])
print()
```

In [76]:

X_train.head().T

Out[76]:

	371457	218763	242337	9057	284169
loan_amnt	14000.000000	20000.000000	28200.000000	6850.000000	15000.000000
term	36.000000	36.000000	36.000000	36.000000	36.000000
int_rate	6.620000	8.490000	11.990000	19.990000	11.990000
installment	429.860000	631.260000	936.510000	254.540000	498.150000
sub_grade	0.049363	0.099386	0.123718	0.345552	0.123718
emp_length	3.000000	10.000000	10.000000	8.000000	5.000000
home_ownership	0.226642	0.170783	0.226642	0.226642	0.170783
annual_inc	188000.000000	120000.000000	72000.000000	70000.000000	70000.000000
verification_status	0.223250	0.146691	0.223250	0.223250	0.146691
purpose	0.207688	0.172632	0.207688	0.207688	0.207688
dti	9.600000	9.740000	26.220000	34.730000	9.770000
open_acc	18.000000	17.000000	11.000000	8.000000	7.000000
pub_rec	0.000000	0.000000	0.000000	0.000000	0.000000
revol_bal	16591.000000	10384.000000	21628.000000	3846.000000	11113.000000
revol_util	17.400000	16.600000	79.500000	91.600000	62.100000
total_acc	29.000000	26.000000	33.000000	26.000000	27.000000
initial_list_status	0.193549	0.201379	0.193549	0.201379	0.201379
application_type	0.196632	0.196632	0.196632	0.196632	0.196632
mort_acc	1.000000	1.000000	1.000000	1.000000	0.000000
pub_rec_bankruptcies	0.000000	0.000000	0.000000	0.000000	0.000000
mths_since_earliest_cr_line	461.000000	322.000000	304.000000	292.000000	281.000000
mths_since_issue_d	114.000000	84.000000	108.000000	105.000000	109.000000
zip_code	0.201205	0.195643	0.000000	0.000000	0.000000

In [76]:

In [76]:

Standardization

```
In [76]:
```

```
In [77]:
scaler = MinMaxScaler()
X_train[X_train.columns] = scaler.fit_transform(X_train)
```

```
X_test[X_train.columns]=scaler.transform(X_test)
In [78]:
X_train_scaled, X_test_scaled=X_train, X_test
```

Multi Multicollinearity checks

```
In [79]:
from statsmodels.stats.outliers_influence import variance_inflation_factor
def multicollinearity_assumption(features, feature_names=None):
    Multicollinearity: Assumes that predictors are not correlated with each other. If there is correlation among the predictors, then either remove prepdictors with high Variance Inflation Factor (VIF) values or perform dimensionality reduction
                           This assumption being violated causes issues with interpretability of the
                           coefficients and the standard errors of the coefficients.
    from\ statsmodels.stats.outliers\_influence\ import\ variance\_inflation\_factor
    print('Assumption 3: Little to no multicollinearity among predictors')
     # Plotting the heatmap
    plt.figure(figsize=(20, 10))
    sns.heatmap(pd.DataFrame(features, columns=feature_names).corr(), annot=True, cmap='viridis')
    plt.title('Correlation of Variables')
    plt.show()
    print('Variance Inflation Factors (VIF)')
    print('> 10: An indication that multicollinearity may be present')
print('> 100: Certain multicollinearity among the variables')
    print('----')
     # Gathering the VIF for each variable
    VIF = [variance_inflation_factor(features.values, i) for i in range(features.shape[1])]
    for idx, vif in enumerate(VIF):
         print('{0}: {1}'.format(feature_names[idx], vif))
    # Gathering and printing total cases of possible or definite multicollinearity possible_multicollinearity = sum([1 \text{ for vif in VIF if vif} > 10])
    definite_multicollinearity = sum([1 for vif in VIF if vif > 100])
    print('{0} cases of possible multicollinearity'.format(possible_multicollinearity))
print('{0} cases of definite multicollinearity'.format(definite_multicollinearity))
    print()
    if definite_multicollinearity == 0:
         if possible_multicollinearity == 0:
              print('Assumption satisfied')
              print('Assumption possibly satisfied')
              print('Coefficient interpretability may be problematic')
              print('Consider removing variables with a high Variance Inflation Factor (VIF)')
         print('Assumption not satisfied')
         print()
         print('Coefficient interpretability will be problematic')
         print('Consider removing variables with a high Variance Inflation Factor (VIF)')
# compute the vif for all given features
```

```
In [80]:
    # compute the vif for all given features
def compute_vif(considered_features,df):
    X = df[considered_features]
    # the calculation of variance inflation requires a constant
    X['intercept'] = 1

    # create dataframe to store vif values
    vif = pd.DataFrame()
    vif["Variable"] = X.columns
    vif["VIF"] = [variance_inflation_factor(X.values, i) for i in range(X.shape[1])]
    vif = vif[(vif['Variable']!='intercept']
    return vif
```

```
In [81]:

# features to consider removing
considered_features = list(X_train_scaled.columns)
# compute vif
compute vif
compute vif(considered features, X train scaled).sort values('VIF', ascending=False)
Out[81]:
```

	Variable	VIF
0	loan_amnt	58.998831
3	installment	51.048280
2	int_rate	18.889098
4	sub_grade	18.760378

```
Variable 6.714805
15
                  total acc 2,332265
11
                  open_acc 2.139446
                 annual_inc 1.731579
                  mort_acc 1.567015
                       dti 1.438711
                   pub_rec 1.416551
                  revol_bal 1.410198
            home ownership
                           1.353913
                  revol_util 1.324383
             initial list status 1.275775
20 mths_since_earliest_cr_line 1.211998
           verification status 1.163421
                           1.073222
                emp_length
                   purpose 1.043114
22
                  zip code 1.039582
             application_type 1.005638
In [82]:
# features to consider removing
# compute vif values after removing a feature
considered_features.remove('loan_amnt')
compute vif(considered features, X train scaled).sort values('VIF', ascending=False)
Out[82]:
                                VIF
                 sub_grade 18.752445
                   int_rate 18.320957
                  total_acc 2.332087
                 installment 1.470939
                       dti 1.438572
                   pub_rec 1.416480
                     term 1.410509
                  revol bal 1.406429
        pub rec bankruptcies 1,401954
          mths since issue d
                           1.211779
            verification_status
                           1.163348
```

```
In [83]:

plt.figure(figsize=(20, 10))
sns.heatmap(X_train_scaled[considered_features].corr(), annot=True, cmap='viridis')
```

<matplotlib.axes._subplots.AxesSubplot at 0x7f6bf3bca9d0>

1.073124

zip_code 1.039484 application_type 1.005604

21

```
term - 1 0.43 0.16 0.47 0.072 0.10 0.099 0.22 0.039 0.083 0.081 0.0099 0.094 0.057 0.1 0.11 0.0063 0.095 0.0039 0.027 0.08 0.11 int_rate - 0.43 1 0.16 0.97 0.0094 0.078 0.081 0.22 0.17 0.18 0.012 0.037 0.011 0.29 0.036 0.055 0.029 0.09 0.022 0.11 0.054 0.16 installment - 0.16 0.16 1 0.16 0.1 0.16 0.46 0.29 0.035 0.046 0.19 0.022 0.33 0.12 0.2 0.041 0.0096 0.17 0.024 0.13 0.1 0.027 sub_grade - 0.47 0.97 0.16 1 0.0043 0.074 0.065 0.23 0.18 0.18 0.02 0.044 0.007 0.27 0.026 0.01 0.027 0.079 0.028 0.12 0.11 0.17 emp_length - 0.072 0.094 0.1 0.0043 1 0.19 0.13 0.0083 0.091 0.028 0.056 0.021 0.096 0.046 0.12 0.027 0.0043 0.18 0.0024 0.15 0.046 0.016
```

```
0.099 -0.081 0.46 -0.065 0.13 -0.24
                                                      1 0.13 -0.011 -0.21 0.2 0.01 0.37 0.048 0.28 0.061 -0.0068 0.3 -0.011 0.2 -0.074 -0.05
      verification_status - 0.22 0.29 0.23 0.0083 -0.045 0.13 1 0.063 0.1 0.061 0.046 0.11 0.069 0.081 0.023 0.0074 0.064 0.024 0.062 -0.099 0.055
                    0.039 0.17 0.035 0.18 0.0091 0.042 -0.011 0.063 1 0.031 -0.0055 0.0094 -0.034 -0.0058 0.0031 -0.021 0.0012 -0.018 0.0029 -0.012 -0.0026 0.036
             purpose -
                 cti - 0.083 0.18 0.046 0.18 0.028 0.0027 -0.21 0.1 0.031 1 0.31 -0.028 0.17 0.2 0.23 0.054 0.06 -0.02 -0.015 0.015 -0.16 0.087
                     0.081 0.012 0.19 0.02 0.056 <mark>-0.13 0.2 0.061 -0.0055 0.31 1 -0.01 0.23 -0.13 0.68</mark> 0.073 0.015 0.13 -0.0069 0.12 <mark>-0.14</mark> 0.02
             pub_rec -0.0099 0.037 -0.022 0.044 0.0021 0.0066 0.01 0.046 0.0094 -0.028 -0.01 1 -0.05 -0.041 -0.00031 0.026 -0.0011 0.0011 0.53 0.021 -0.076 0.0067
            revol_bal - 0.094 -0.011 0.33 -0.007 0.096 -0.17 0.37 0.11 -0.034 0.17 0.23 -0.05 1 0.24 0.2 0.029 0.007 0.19 -0.036 0.21 -0.033 -0.0057
                     revol_util -
                     initial list status - 0.11 -0.055 0.041 -0.01 0.027 -0.039 0.061 0.023 -0.021 0.054 0.073 0.026 0.029 -0.059 0.068 1 -0.0058 0.026 0.017 -0.029 -0.44 0.0064
       application_type -0.0063 0.029 -0.0096 0.027 -0.0043 0.011 -0.0068 0.0074 0.0012 0.06 0.015 -0.0011 0.007 0.0015 0.0087 -0.0058 1 -0.011 0.00075-0.0012 -0.011 0.0068
             mort_acc - 0.095 - 0.09 0.17 - 0.079 0.18 - 0.48 0.3 0.064 - 0.018 - 0.02 0.13 0.0011 0.19 - 0.0033 0.37 0.026 - 0.011 1 0.011 0.29 - 0.0014 - 0.044
   pub_rec_bankruptcies -0.0039 0.022 -0.024 0.028 -0.0024 0.012 -0.011 0.024 0.0029 -0.015 -0.0069 0.53 -0.036 -0.036 0.019 0.017 0.00075 0.011 1 0.0093 -0.048 0.0011
mths_since_earliest_cr_line - 0.027 -0.11 0.13 -0.12 0.15 -0.19 0.2 0.062 -0.012 0.015 0.12 0.021 0.21 0.0068 0.28 -0.029 -0.0012 0.29 0.0093 1 0.1 -0.025
     mths_since_issue_d - 0.08 -0.054 -0.1 -0.11 -0.046 0.041 -0.074 -0.099 -0.0026 -0.16 -0.14 -0.076 -0.033 0.056 -0.11 -0.44 -0.011 -0.0014 -0.048 0.1 1 -0.038
             zip_code - 0.11 0.16 0.027 0.17 -0.016 0.043 -0.05 0.055 0.036 0.087 0.02 0.0067 -0.0057 0.052 -0.011 0.0064 0.0066 -0.044 0.0011 -0.025 -0.038
```

- 0.4

- 0.2

0.0

-0.2

-0.4

In [84]:

```
# features to consider removing
# compute vif values after removing a feature
considered_features.remove('sub_grade')
# compute vif
compute vif(considered features, X train scaled).sort values('VIF', ascending=False)
```

Out[84]:

	Variable	VII
13	total_acc	2.331955
9	open_acc	2.138892
5	annual_inc	1.723358
1	int_rate	1.605647
16	mort_acc	1.565207
2	installment	1.470462
8	dti	1.438292
10	pub_rec	1.416106
11	revol_bal	1.406313
17	pub_rec_bankruptcies	1.401888
0	term	1.357604
4	home_ownership	1.352514
19	mths_since_issue_d	1.341105
12	revol_util	1.320837
14	initial_list_status	1.272006
18	mths_since_earliest_cr_line	1.210803
6	verification_status	1.163345
3	emp_length	1.071384
7	purpose	1.039535
20	zip_code	1.036955
15	application_type	1.005587

In [84]:

In [85]:

X train scaled, X test scaled=X train scaled[considered features], X test scaled[considered features]

Utills

In [86]:

#astagoricals = list/V calcat dtimes/Labiast/) calumnal

```
#categoricais - iist(A.Serect dtypes( Object ).com
#numericals = list(X.select dtypes('int64').columns)
def encode_cats(categoricals, numericals, X):
    Takes in a list of categorical columns and a list of numerical columns and returns the dataframe with encoded variables
    ohe = OneHotEncoder(sparse=False, drop='first')
    cat matrix = ohe.fit transform(X.loc[:, categoricals])
    X ohe = pd.DataFrame(cat matrix,
                        columns=ohe.get_feature_names(categoricals), #create meaningful column names
                         index=X.index) #keep the same index values
    return pd.concat([X.loc[:, numericals], X_ohe], axis=1)
# This function plots the confusion matrices given y_i, y_i_hat.
def plot_confusion_matrix(test_y, predict_y):
    C = confusion_matrix(test_y, predict_y)
    \# C = 9,9 matrix, each cell (i,j) represents number of points of class i are predicted class j
    A = (((C.T)/(C.sum(axis=1))).T)
    #divid each element of the confusion matrix with the sum of elements in that column
    \# C = [[1, 2],
         [3, 4]]
    \# C.T = [[1, 3],
            [2, 4]]
    # C.sum(axis = 1) axis=0 corresonds to columns and axis=1 corresponds to rows in two diamensional array
    # C.sum(axix =1) = [[3, 7]]
    \# ((C.T)/(C.sum(axis=1))) = [[1/3, 3/7]
                                [2/3, 4/71]
    \# ((C.T)/(C.sum(axis=1))).T = [[1/3, 2/3]
                                [3/7, 4/7]]
    # sum of row elements = 1
    B = (C/C.sum(axis=0))
    #divid each element of the confusion matrix with the sum of elements in that row
    \# C = [[1, 2],
    # [3, 4]]
    # C.sum(axis = 0) axis=0 corresonds to columns and axis=1 corresponds to rows in two diamensional array
    # C.sum(axix =0) = [[4, 6]]
    \# (C/C.sum(axis=0)) = [[1/4, 2/6]]
                           [3/4, 4/6]]
    plt.figure(figsize=(20,4))
    labels = [0,1]
    # representing A in heatmap format
    cmap=sns.light_palette("blue")
    plt.subplot(1, 3, 1)
    sns.heatmap(C, annot=True, cmap=cmap, fmt=".3f", xticklabels=labels, yticklabels=labels)
    plt.xlabel('Predicted Class')
    plt.ylabel('Original Class')
    plt.title("Confusion matrix")
    plt.subplot(1, 3, 2)
    sns.heatmap(B, annot=True, cmap=cmap, fmt=".3f", xticklabels=labels, yticklabels=labels)
    plt.xlabel('Predicted Class')
    plt.ylabel('Original Class')
    plt.title("Precision matrix")
    plt.subplot(1, 3, 3)
    \# representing B in heatmap format
    sns.heatmap(A, annot=True, cmap=cmap, fmt=".3f", xticklabels=labels, yticklabels=labels)
    plt.xlabel('Predicted Class')
    plt.ylabel('Original Class')
    plt.title("Recall matrix")
def Distribution_after_TrainTestValSplit(y_train_merge,y_test_merge):
    # it returns a dict, keys as class labels and values as the number of data points in that class
    train class distribution = y train merge.value counts().sort values()
    test_class_distribution = y_test_merge.value_counts().sort_values()
#cv_class_distribution = y_cv_merge.value_counts().sort_values()
   my_colors = ['r', 'g', 'b', 'k', 'y', 'm', 'c']
train_class_distribution.plot(kind='bar', color=my_colors)
    plt.xlabel('Class')
    plt.ylabel('Data points per Class')
    plt.title('Distribution of yi in train data')
    plt.grid()
    plt.show()
    # ref: argsort https://docs.scipy.org/doc/numpy/reference/generated/numpy.argsort.html
    # -(train class distribution.values): the minus sign will give us in decreasing order
    sorted_yi = np.argsort(-train_class_distribution.values)
    for i in sorted yi:
        print('Number of data points in class', i+1, ':', train class distribution.values[i], '(', np.round((train class distribution.values[i]/y train merge.shape[0]*100), 3), '%)')
    print('-'*80)
    my colors = ['r', 'g', 'b', 'k', 'y', 'm', 'c']
    test class distribution.plot(kind='bar', color=my colors)
    plt.xlabel('Class')
    plt.ylabel('Data points per Class')
    plt.title('Distribution of yi in test data')
    plt.grid()
    plt.show()
```

```
# ref: argsort https://docs.scipy.org/doc/numpy/reference/generated/numpy.argsort.html
    # -(train_class_distribution.values): the minus sign will give us in decreasing order
   sorted_yi = np.argsort(-test_class_distribution.values)
    """for i in sorted_yi:
       print('Number of data points in class', i+1, ':',test_class_distribution.values[i], '(', np.round((test_class_distribution.values[i]/y_test_merge.shape[0]*100), 3), '%)')
   my_colors = ['r', 'g', 'b', 'k', 'y', 'm', 'c']
   cv_class_distribution.plot(kind='bar', color=my_colors)
   plt.xlabel('Class')
   plt.ylabel('Data points per Class')
   plt.title('Distribution of yi in cross validation data')
   plt.grid()
   plt.show()
    {\it\# ref: argsort\ https://docs.scipy.org/doc/numpy/reference/generated/numpy.argsort.html}
   # -(train_class_distribution.values): the minus sign will give us in decreasing order
   sorted_yi = np.argsort(-train_class_distribution.values)
   for i in sorted yi:"""
       #print('Number of data points in class', i+1, ':',cv_class_distribution.values[i], '(', np.round((cv_class_distribution.values[i]/y_test_merge.shape[0]*100), 3), '%)')
def standard scaler(X train, X test, numerical cols):
    Input: Features (numpy arrays)
   Output: Scaled data
   scaler = StandardScaler()
   X train scaled = scaler.fit transform(X train)
   X_test_scaled = scaler.transform(X_test)
   return X train scaled, X test scaled
```

Train and Test data Distribution before SOMTE

In [87]: Distribution after TrainTestValSplit(y train, y test) Distribution of yi in train data 250000 S 200000 <u>=</u> 150000 <u>2</u> 100000 50000 Class Number of data points in class 2 : 252852 (80.333 %) Number of data points in class 1: 61904 (19.667 %) Distribution of yi in test data 60000 S 50000 40000 30000 Data 20000 10000

Train and Test data Distribution After SOMTE

Class

In [88]:

```
sm = SMOTE(random_state=42)
X train smote, y train smote = sm.fit resample(X train scaled, y train)
In [89]:
Distribution_after_TrainTestValSplit(y_train_smote,y_test)
                Distribution of yi in train data
   250000
 S 200000
```

```
In [89]:

In [89]:

In [89]:

In [89]:

In [89]:
```

Modeling

In [89]:

```
desired_precision_idx = np.argmax(precisions >= desired_precision)

return thresholds[desired_precision_idx], recalls[desired_precision_idx]

def threshold_from_desired_recall(self, X, y, desired_recall=0.9):
    y_scores = LogisticRegression.predict_proba(self, X)[:, 1]
    precisions, recalls, thresholds = precision_recall_curve(y, y_scores)

desired_recall_idx = np.argmin(recalls >= desired_recall)

return thresholds[desired_recall_idx], precisions[desired_recall_idx]
```

In [95]:

Tn []

Recall Focus

Focus is to play safe and ensure that there are no/less NPA generated from the model

Here we need to reduce `False negatives` where Actually Charged off but predicted as Fully payed.

it is very risky or company may go into loss due to this because company giving loans to Charged off customers.

At 0.39 cutoff , we can ensure that we can be more safe and provide loans to only those who are really worth giving but in this mode we loose the business by not taking any risk that you would need to take to gain more business.

In [96]:

```
#"Fully Paid":0,"Charged Off":1
lrt = LogisticRegressionWithThreshold()
lrt.fit(X_train_smote, y_train_smote)
y_pred = lrt.predict(X_train_smote)
predicted_y=lrt.predict(X_test_scaled)
plot_confusion_matrix(y_train_smote, y_pred)
print(classification_report(y_train_smote, y_pred))
plot_confusion_matrix(y_test, predicted_y)
print(classification_report(y_test, predicted_y))
```


	F			0 0 - 1 - 0 - 0
0 1	0.80 0.80	0.80	0.80	252852 252852
accuracy macro avg weighted avg	0.80	0.80	0.80 0.80 0.80	505704 505704 505704

	precision	recarr	II-SCOLE	Support
0 1	0.94 0.50	0.81 0.80	0.87 0.62	63287 15402
accuracv			0.81	78689

```
0.74
                                              78689
                  0.72
                           0.80
  macro avq
                  0.86
                           0.81
                                     0.82
                                              78689
weighted avg
In [97]:
threshold, precision = lrt.threshold_from_desired_recall(X_train_smote, y_train_smote, 0.9)
y_pred = lrt.predict(X_train_smote, threshold)
predicted_y=lrt.predict(X_test_scaled,threshold)
print("threshold : ",threshold)
print('-'*50+'Train Data Performance'+'-'*50)
plot_confusion_matrix(y_train_smote, y_pred)
print(classification_report(y_train_smote, y_pred))
print('-'*50+'Test Data Performance'+'-'*50)
plot_confusion_matrix(y_test, predicted_y)
print(classification_report(y_test, predicted_y))
precision, recall, thresholds = precision_recall_curve(y_test, predicted_y)
fig, ax = plt.subplots()
ax.plot(recall, precision, color='purple')
#add axis labels to plot
ax.set_title('Precision-Recall Curve')
ax.set_ylabel('Precision')
ax.set_xlabel('Recall')
#display plot
plt.show()
threshold: 0.3985921637389079
                        -----Train Data Performance-----
            Confusion matrix
                                                         Precision matrix
                                                                                                      Recall matrix
                                      225000
                                      200000
                                                                                  - 0.7
                       78977.000
                                                                     0.258
                                                                                                                 0.312
                                                                                                                              - 0.7
                                      175000
                                                                                  0.6
                                                                                                                              - 0.6
                                      150000
```


-----Test Data Performance-----


```
0.4 -
0.3 -
0.2 -
                            Recall
```

In [98]:

```
from sklearn.metrics import roc_curve
y_pred_prob_yes=lrt.predict_proba(X_test_scaled)
fpr, tpr, thresholds = roc_curve(y_test, y_pred_prob_yes[:,1])
plt.plot(fpr,tpr)
# plt.xlim([0.0, 1.0])
# plt.ylim([0.0, 1.0])
plt.title('ROC curve for Heart disease classifier')
plt.xlabel('False positive rate (1-Specificity)')
plt.ylabel('True positive rate (Sensitivity)')
plt.grid(True)
```

ROC curve for Heart disease classifier

In [99]:

```
plt.figure(figsize=(15, 5))
importances = pd.DataFrame(data={
     'Attribute': X train scaled.columns,
     'Importance': Irt.coef_[0]
importances = importances.sort_values(by='Importance', ascending=False)
plt.bar(x=importances['Attribute'], height=importances['Importance'], color='#087E8B')
plt.title('Feature importances obtained from coefficients', size=20)
plt.xticks(rotation='vertical')
plt.show()
```

Feature importances obtained from coefficients

In []:

Precession Focus

Focus to get more intrest on giving loans

Here we need to reduce `False positives` where Actually Fully payed but predicted as Charged off.

it is very risky or company may go into loss due to this because company giving loans to Charged off customers.

At point 0.65 we can ensure that we will generate a good business on intrest and not much compromising on the risk involved in giving loans .

In [103]:

```
lrt = LogisticRegressionWithThreshold()
lrt.fit(X_train_smote, y_train_smote)
threshold, precision = lrt.threshold_from_desired_precision(X_train_smote, y_train_smote, 0.9)
y_pred = lrt.predict(X_train_smote, threshold)
predicted_y=lrt.predict(X_test_scaled,threshold)
 print("threshold", threshold)
 print('-'*50+'Train Data Performance'+'-'*50)
plot_confusion_matrix(y_train_smote, y_pred)
print(classification_report(y_train_smote, y_pred))
 print('-'*50+'Test Data Performance'+'-'*50)
print('-'*50+'Test Data Performance'+'-'*50)
plot_confusion_matrix(y_test, predicted_y)
print(classification_report(y_test, predicted_y))
precision, recall, thresholds = precision_recall_curve(y_test, predicted_y)
 fig, ax = plt.subplots()
ax.plot(recall, precision, color='purple')
#add axis labels to plot
ax.set_title('Precision-Recall Curve')
ax.set_ylabel('Precision')
ax.set_vlabel('Precision')
ax.set_xlabel('Recall')
 #display plot
plt.show()
```

threshold 0.6527283838147945

-----Train Data Performance------

-----Test Data Performance------

Precision-Recall Curve

1.0 -		
0.9 -		
0.0		
0.8 -		

```
0.7 - 0.6 0.6 - 0.5 - 0.4 - 0.6 0.8 1.0 Recall
```

In [106]:

```
predicted_y=lrt.predict(X_test_scaled)
print(classification_report(y_test, predicted_y))

precision, recall, thresholds = precision_recall_curve(y_test, predicted_y)
fig, ax = plt.subplots()
ax.plot(recall, precision, color='purple')
#add axis labels to plot
ax.set_title('Precision-Recall Curve')
ax.set_ylabel('Precision')
ax.set_xlabel('Recall')
#display plot
plt.show()
```

	precision	recall	fl-score	support
0 1	0.94 0.50	0.81 0.80	0.87 0.62	63287 15402
accuracy macro avg weighted avg	0.72 0.86	0.80 0.81	0.81 0.74 0.82	78689 78689 78689

Precision-Recall Curve

In [107]:

```
from sklearn.metrics import roc_curve
y_pred_prob_yes=lrt.predict_proba(X_test_scaled)
fpr, tpr, thresholds = roc_curve(y_test, y_pred_prob_yes[:,1])
plt.plot(fpr,tpr)
# plt.xlim([0.0, 1.0])
# plt.ylim([0.0, 1.0])
plt.title('ROC curve for Heart disease classifier')
plt.xlabel('False positive rate (1-Specificity)')
plt.ylabel('True positive rate (Sensitivity)')
plt.grid(True)
```

ROC curve for Heart disease classifier

In [108]:

```
plt.figure(figsize=(15, 5))
importances = pd.DataFrame(data={
    'Attribute': X_train_scaled.columns,
    'Importance': lrt.coef_[0]
})
importances = importances.sort_values(by='Importance', ascending=False)
```


F1-score Focus

In []:

Focus to get more intrest on giving loans and Focus is to play safe and ensure that there are no/less NPA generated from the model

Here we need to reduce `False negatives` and `False positives`

At point 0.41 we can try to balanced both risk and generate a good revenue using intrest.

In [109]:

```
lrt = LogisticRegressionWithThreshold()
lrt.fit(X_train_smote, y_train_smote)
threshold, precision = lrt.threshold_from_optimal_f_score(X_train_smote, y_train_smote)
y_pred = lrt.predict(X_train_smote, threshold)
predicted_y=lrt.predict(X_test_scaled, threshold)
print("threshold : ",threshold)
print('-'*50+'Train Data Performance'+'-'*50)
plot_confusion_matrix(y_train_smote, y_pred)
print(classification_report(y_train_smote, y_pred))
print('-'*50+'Test Data Performance'+'-'*50)
plot_confusion_matrix(y_test, predicted_y)
print(classification_report(y_test, predicted_y))
precision, recall, thresholds = precision_recall_curve(y_test, predicted_y)
fig, ax = plt.subplots()
ax.plot(recall, precision, color='purple')
#add axis labels to plot
ax.set title('Precision-Recall Curve')
ax.set_ylabel('Precision')
ax.set_xlabel('Recall')
#display plot
plt.show()
```

threshold : 0.4167939535986942

-----Train Data Performance------

Precision-Recall Curve 1.0 -0.8 0.7 S 0.6 -€ 0.5 0.4 -0.3 -0.2 -0.0 0.2 0.4 0.6 0.8 1.0 Recall

In [110]:

```
from sklearn.metrics import roc_curve
y_pred_prob_yes=lrt.predict_proba(X_test_scaled)
fpr, tpr, thresholds = roc_curve(y_test, y_pred_prob_yes[:,1])
plt.plot(fpr,tpr)
# plt.xlim([0.0, 1.0])
# plt.ylim([0.0, 1.0])
plt.title('ROC curve for Heart disease classifier')
plt.xlabel('False positive rate (1-Specificity)')
plt.ylabel('True positive rate (Sensitivity)')
plt.grid(True)
```


In [111]:

Answers to the Questionnaire:

Tradeoff Questions:

Recall Focus

Focus is to play safe and ensure that there are no/less NPA generated from the model

Here we need to reduce `False negatives` where Actually Charged off but predicted as Fully payed.

it is very risky or company may go into loss due to this because company giving loans to Charged off customers.

At 0.39 cutoff , we can ensure that we can be more safe and provide loans to only those who are really worth giving but in this mode we loose the business by not taking any risk that you would need to take to gain more business.

Precession Focus

Focus to get more intrest on giving loans

Here we need to reduce `False positives` where Actually Fully payed but predicted as Charged off.

it is very risky or company may go into loss due to this because company giving loans to Charged off customers.

At point 0.65 we can ensure that we will generate a good business on intrest and not much compromising on the risk involved in giving loans .

F1-score Focus

Focus to get more intrest on giving loans and Focus is to play safe and ensure that there are no/less NPA generated from the model

Here we need to reduce `False negatives` and `False positives`

At point 0.41 we can try to balanced both risk and generate a good revenue using intrest.

Q1 What percentage of customers have fully paid their Loan Amount?

80.39 % of the customers have fully paid their loan amount

In [112]:

```
loan_tap=pd.read_csv("https://d2beiqkhq929f0.cloudfront.net/public_assets/assets/000/003/549/original/logistic_regression.csv?1651045921")
plt.style.use('ggplot')
data = loan_tap["loan_status"].value_counts(normalize=True)
plt.pie(data, labels=data.index, startangle = 90, shadow = True, radius=1, explode= [0,0.05],autopct='%0.2f%%')
plt.title("Loan Status", fontsize=16, fontweight='bold')
plt.show()
```


Mortgage and Rent

Q2 Comment about the correlation between Loan Amount and Installment features

It is clear from the heatmap plotted above There is perfect correlation (0.95) between "loan amnt" the "installment"

Q3 The majority of people have home ownership as

Q4 People with grades 'A' are more likely to fully pay their loan. (T/F)

```
In []:
pd.crosstab(loan_tap['grade'],loan_tap['loan_status'],normalize='index', margins=True)
Out[]:
loan_status Charged Off Fully Paid
```

```
grade

A 0.062879 0.937121

B 0.125730 0.874270

C 0.211809 0.788191

D 0.288678 0.711322

E 0.373634 0.626366

F 0.427880 0.572120

G 0.478389 0.521611

All 0.196129 0.803871
```

Q5 Name the top 2 afforded job titles

```
Teacher & Manager

In []:
loan tap.emp title.value counts()[:5]

Out[]:
Teacher 4389
Manager 4250
Registered Nurse 1856
RN 1846
Supervisor 1830
Name: emp_title, dtype: int64
```

Q6 Thinking from a bank's perspective, which metric should our primary focus be on..ROC AUC or Precision or Recall or F1 Score?

Precision will ensure that there are very less no of False positives which means Prediction is positive and ground truth is negative. if False positives are more then you will be loosing the potential customers who is worth giving loans.

Recall will ensure that there are very less no of false negative i.e prediction is negative and ground truth is postive. when this is the case we may end up giving loans to untrustworthy customers. Hence when we focus on recall this will minmize the risk involved in giving loans to false customers. when focus is recall we will play safe.

F1 score will create a good balance between Precision and recall . if we try to achive the reasonable F1 score then we may not be loosing too many potential customers and not giving loans to too many unworthy customers.

DOC ALIC seems is not halpful with imbalanced date

Q7 How does the gap in precision and recall affect the bank?

Higher the more is the loss either in terms of not gaining intrest or giving loans to bad customers. The gap between precision and recall should be as low as possible.

Q8 Which were the features that heavily affected the outcome?

Zipcode, revol_inc,int_rate,open_acc are impacting positively.

revol_bal,annual_inc,total_acc are impacting negatively.

Q9 Will the results be affected by geographical location?

Based on the coefficients obtained we can say- Yes! geographical location turns out to be important feature for the predictions

Actionable Insights

- 80.39 % of the customers have fully paid their loan amount. Data is heavily imbalanced
- Teachers, Managers and Registered Nurses loans most of the loan is availed from these thre profession loans with high intersest rate are more likely to be unpaid.

annual inc

```
mean annual_inc of Fully Paid 95 CI:
```

```
[71148.63595275 75768.59659525]
```

mean annual_inc of Charged Off 95 CI:

```
[64070.9905965 68153.192662 ]
```

int_rate

mean int_rate of Fully Paid 95 CI:

```
[12.8306405 13.3868295]
```

mean int_rate of Charged Off 95 CI:

```
[15.64542975 16.16089675]
```

• loans with high intersest rate are more likely to be unpaid.

dti

mean dti of Fully Paid 95 CI:

```
[16.3511975 17.36024425]
```

mean dti of Charged Off 95 CI:

```
[19.0942805 20.09364375]
```

- People with grades 'A', 'B', 'C' are more likely(80% of the time) to fully pay their loan.
- F and G subgrades don't get paid back that often

Recommendations

- location do matter! Company should be vigilant about where exactly the customer is coming from.
- NPA (non-performing asset) is a real problem, it's important we play safe and shouldn't disburse loans to anyone and at the same time Focus to get more intrest on giving loans.
- As Teachers & Managers have high chunk on borrowers and with decent and good credit worthyness, respective team can work on making stretegies on how to attract customers from other professions as well. *Annual income does a key role and this will definetly a key contributor to decide if someone will pay the loan completely or charged.
- We may wish to work on calculating more reasonable interest rates and new intrest metrics what so ever. We have to be rationale on why we are keeping interest rate high? as loans with high interest rates are more likely to be unplaid.
- dti_ratio (debt-to-income ratio) is reasonably contributing to deciding if some will charge off or pay the loan fully. if someone not able to get loan due to High debt to income ratio then we can go ahead