Study of Nucleon Spin and TMDs at JLab

J. P. Chen, Jefferson Lab

DSPIN-13, Dubna, Russia, October 8-12, 2013

Nucleon Spin Study

 g_2 structure function and its moment (d_2): higher-twist effects

TMDs with 6 GeV JLab: Exploration

Recent and preliminary results from Hall A (transversely Polarized ³He (n))

Collins/Sivers/Worm-gear asymmetries on pions and Kaons

Inclusive hadron and electron SSA

Plan at JLab 12 GeV for TMD study: Precision Multi-d Mapping

SoLID Program on TMDs

Long-term Future: TMDs study with Electron-Ion Colliders (EIC)

A New Opportunity: an EIC in China (EIC@HIAF)

Jefferson Lab at a Glance

CEBAF

- High-intensity electron accelerator based on CW SRF technology
- $E_{max} = 6 \text{ GeV}$ $\rightarrow 12 \text{ GeV}$
- $I_{max} = 200 \mu A$
- $Pol_{max} = 85\%$
- ~ **1400** Active Users
- ~ **800** FTEs
- 178 Completed Experiments@ 6 GeV
- Produces ~1/3 of US PhDs in Nuclear Physics

JLab Spin Experiments

- Earlier JLab Spin Results (not covered in this talk)
 - Spin Asymmetry A₁ /g₁ in the Valence (High-x) Region
 - Spin Moments: Spin Sum Rules and Polarizabilities,
 - Spin Structure in the Resonance Region
 - Reviews: S. Kuhn, J. P. Chen, E. Leader, Prog. Part. Nucl. Phys. 63, 1 (2009)
- This Talk Focus on Beyond Polarized PDF (g₁)
 - Recent experiments with transversely polarized targets
 - g₂ measurements to extract d₂ (Color Polarizability/Lorentz Force)
 - Exploratory measurements of TMDs with a transverse/vertical polarized target
- 12 GeV Program: SoLID, Precision Multi-d Mapping of SSA/TMDs

Beyond Polarized PDFs: Higher-Twist Effects Study Quark-Gluon Correlations

g₂ (d₂) from JLab

Measurements of g₂ and Its Moments

```
    g<sub>2</sub> measurements need transversely polarized targets, experimentally difficult
    0<sup>th</sup> moment (no x weighting): Burkhardt-Cottingham Sum Rule, valid at all Q2
    2<sup>nd</sup> moment (x2 weighting): high Q², d₂, twist-3 color polarizability or Lorentz force, LQCD low Q², LT-spin polarizability, test ChPT
    Only dedicated measurement before JLab was SLAC E155x not high precision, wider range of Q² for moment
```

```
g_2 on the neutron ({}^3He) in Hall A (6 experiments)
       E97-103: W>2 GeV, Q^2 \sim 1 GeV<sup>2</sup>, x ~0.2, study higher-twist
                                                                                 (published)
       E99-117: W>2 GeV, high Q<sup>2</sup> (3-5 GeV<sup>2</sup>)
                                                                                 (published)
       E94-010: moments at low Q^2 (0.1-1 GeV<sup>2</sup>)
                                                                                 (published)
       E97-110: moments at very low Q^2 (0.02-0.3 GeV<sup>2</sup>)
                                                                                 (preliminary)
       E01-012: moments at intermediate Q^2 (1-4 GeV<sup>2</sup>)
                                                                                 (submitted)
       E06-014: moments at high Q^2 (2-6 GeV<sup>2</sup>)
                                                                                 (analysis)
g_2 on the proton
 in Hall C
       RSS: moments at intermediate Q^2 (1-2 GeV<sup>2</sup>)
                                                                                 (published)
       SANE: moments at high Q<sup>2</sup> region (2.5-6.5 GeV<sup>2</sup>)
                                                                                 (analysis)
 in Hall A
```

(analysis)

g2p: moments at very low Q^2 (0.02-0.3 GeV²)

Earlier Measurement of $g_2^n(x,Q^2)$: Search for Higher Twist Effects

- Deviation from $g_2^{WW} \rightarrow Twist-3$ (or higher)
- Measure higher twist → quark-gluon correlations.
- Hall A E97–103, K. Kramer *et al.*, PRL 95, 142002 (2005)

g_2 in DIS and Resonances

- Proton (NH₃)
 - Hall C SANE (E07-003)
 - $-0.3 \le x \le 0.8 \quad 2.5 \le Q^2 \le 6.5$

- Neutron (on ³He)
 - Hall A d2n (E06-014)
 - 4.7 and 5.9 GeV beam

Burkhardt-Cottingham Sum Rule

$$\frac{1}{2} = \int_0^1 g_2(x) dx = 0$$

Brawn: SLAC E155x

Red: Hall C RSS

Black: Hall A E94-010

Green: Hall A E97-110 (preliminary)
Blue: Hall A E01-012 (preliminary)

BC = Meas+low_x+Elastic

"Meas": Measured x-range

"low-x": refers to unmeasured low x part of the integral.

Assume Leading Twist Behaviour

Elastic: From well know FFs (<5%)

Color Lorentz Force (Polarizability): d₂

• 2nd moment of g_2 - g_2^{WW}

d₂: twist-3 matrix element

$$d_2(Q^2) = 3 \int_0^1 x^2 [g_2(x, Q^2) - g_2^{WW}(x, Q^2)] dx$$

=
$$\int_0^1 x^2 [2g_1(x, Q^2) + 3g_2(x, Q^2)] dx$$

 d_2 and g_2 - g_2 ^{WW}: clean access of higher twist (twist-3) effect: q-g correlations Color polarizabilities χ_E , χ_B are linear combination of d_2 and f_2

Provide a benchmark test of Lattice QCD at high Q²

Avoid issue of low-x extrapolation

Related to Sivers Function?

d₂ Measurements Comparison with Lattice

- d₂ moments for p and n
- Only contributions from the measurement region
- Elastic not included (only important for Q² < 2 GeV²)
- Contributions from unmeasured Low x region usually not significant due to x² weighting

Spin Polarizabilities

Preliminary E97-110 (and Published E94-010)

Spokesperson: J. P. Chen, A. Deur, F. Garibaldi, plots by V. Sulkosky

- Significant disagreement between data and both ChPT calculations for δ_{LT}
- Good agreement with MAID model predictions

E08-027: g_2^p at low Q^2

Spokespersons: A. Camsonne, J. P. Chen, D. Crabb, K. Slifer 7 PhD Students

BC Sum Integral Γ_2

Main goals:

- 1) Test Chiral PT calculations: large discrepancy for neutron δ_{LT}
- 2) BC Sum Rule: violation suggested for proton at large Q2, ok for neutron
- 3) Input to Hydrogen Hyper Fine Splitting/ Proton Radius Data taken in 2012. Analysis underway.

Summary on g₂ Study

Extensive measurements of g_2 on the proton and neutron (3 He) from JLab

- 1) Observed deviation from $g_2^{WW} \rightarrow$ higher-twist (twist-3) effects quark-gluon correlations
- 2) BC Sum Rule: violation suggested for proton at large Q² from SLAC E155x ok at low Q² for proton and ok for neutron over wide range
- 3) d_2 moment: study higher-twist (twist-3), comparison with LQCD ~2 σ discrepancy on the neutron from SLAC E155x and JLab E99-117 at large Q², ok at low Q²
 - results for the proton (SANE) and neutron (E06-014) soon.
- 4) LT spin-polarizability (δ_{LT}): test Chiral PT calculations. large discrepancy for the neutron δ_{LT} proton data taken, results soon.

Single Spin Asymmetries with A Transversely Polarized ³He (n)

JLab Hall A E06-010

Unified View of Nucleon Structure

Leading-Twist TMD PDFs

		Quark polarization		
		Unpolarized (U)	Longitudinally Polarized (L)	Transversely Polarized (T)
Nucleon Polarization	U	$f_1 = \bullet$		$h_1^{\perp} \stackrel{\uparrow}{=} 0$ Boer-Mulders
	L		$g_1 = \underbrace{\hspace{1cm}}_{\text{Helicity}} - \underbrace{\hspace{1cm}}_{\text{Helicity}}$	h _{1L} — Worm Gear
	Т	f _{1T} - • Sivers	g _{1T} =	$h_{1T} \stackrel{\downarrow}{=} \begin{array}{c} \downarrow \\ \uparrow \\ \downarrow \\ h_{1T} \end{array}$ Pretzelosity

: Probed with transversely pol target HERMES, COMPASS, JLab E06-010

Separation of Collins, Sivers and pretzelocity effects through angular dependence

$$\begin{split} A_{UT}(\phi_h^l,\phi_S^l) &= \frac{1}{P} \frac{N^{\uparrow} - N^{\downarrow}}{N^{\uparrow} + N^{\downarrow}} \\ &= A_{UT}^{Collins} \sin(\phi_h + \phi_S) + A_{UT}^{Sivers} \sin(\phi_h - \phi_S) \\ &+ A_{UT}^{Pretzelosity} \sin(3\phi_h - \phi_S) \end{split}$$

$$A_{UT}^{Collins} \propto \left\langle \sin(\phi_h + \phi_S) \right\rangle_{UT} \propto h_1 \otimes H_1^{\perp}$$
 $A_{UT}^{Sivers} \propto \left\langle \sin(\phi_h - \phi_S) \right\rangle_{UT} \propto f_{1T}^{\perp} \otimes D_1$
 $A_{UT}^{Pretzelosity} \propto \left\langle \sin(3\phi_h - \phi_S) \right\rangle_{UT} \propto h_{1T}^{\perp} \otimes H_1^{\perp}$

E06-010 Experiment

Spokespersons: J. P. Chen/E. Cisbani/H. Gao/X. Jiang/J. C. Peng

7 PhD Thesis Students (graduated) + 2 new students

 $^{3}He^{\uparrow}(\vec{e},e'\pi^{\pm})X$ $^{3}He^{\uparrow}(\vec{e},e'K^{\pm})X$

- First measurement on n (³He)
- Transversely Polarized ³He Target
- Polarized Electron Beam, 5.9 GeV
- BigBite at 30º as Electron Arm

$$- P_e = 0.7 \sim 2.2 \text{ GeV/}c$$

- HRS₁ at 16º as Hadron Arm
 - $P_h = 2.35 \text{ GeV/}c$
 - Excellent PID for $\pi/K/p$

Published Results: from JLab Hall A E06-010 with a Transversely Polarized ³He (n)

Collins/Sivers Asymmetries on π +/ π -Worm-Gear II: Trans-helicity on p+/p-

E06-010 ³He Target Single-Spin Asymmetry in SIDIS

X. Qian at al., PRL 107:072003(2011)

$$^{3}\text{He}^{\uparrow}(e, e'h), h = \pi^{+}, \pi^{-}$$

³He Collins SSA small Non-zero at highest x for π +

³He Sivers SSA: negative for π^{+} ,

Blue band: model (fitting) uncertainties **Red band**: other systematic uncertainties

Neutron Results with Polarized ³He from JLab

Blue band: model (fitting) uncertainties

Red band: other systematic uncertainties

Collins

asymmetries are not large, except at x=0.34

Sivers

 π^+ ($u\overline{d}$) negative agree with Torino fit

Asymmetry A_{LT} Result

J. Huang et al., PRL. 108, 052001 (2012).

To leading twist:

$$A_{ ext{LT}}^{\cos(\phi_h-\phi_s)} \propto F_{LT}^{\cos(\phi_h-\phi_s)} \propto g_{1T}^q \otimes D_{1q}^h$$

Worm-Gear.

• ${}^{3}\text{He }A_{\text{LT}}$: Positive for π -

Neutron A_{LT} Extraction

- Corrected for proton dilution, f_p
- Predicted proton asymmetry contribution < 1.5% (π ⁺), 0.6% (π ⁻)
- $A_{\mathrm{LT}}^{n} \propto g_{1T}^{q} \otimes D_{1q}^{h}$

Trans-helicity

- Dominated by L=0 (S) and L=1 (P) interference
- Consist w/ model in signs, suggest larger asymmetry

Preliminary New Results (I) from JLab Hall A E06-010 with a Transversely Polarized ³He (n)

Collins/Sivers Asymmetries on K+/K-

Analysis by Y. Wang (UIUC), Y. Zhao (USTC)

Kaon PID by Coincidence time of flight

Cross checked with RICH results

100,4 100,7 100,7

CT.K.t for positive run

K+/π+ ratio: 5 % K-/π- ratio: 1 %

Preliminary K+/K- Collins and Sivers Asymmetries on ³He

Preliminary New Results (II) from JLab Hall A E06-010 with a transversely polarized ³He (n)

Inclusive Hadron SSA

Analysis by K, Allada (JLab), Y. Zhao (USTC)

Inclusive Hadron Electroproduction

Why a non-zero A_N is interesting?

- Analogues to A_N in $pp^{\uparrow} \rightarrow hX$ collision
- Simpler than $pp^{\uparrow} \rightarrow hX$ due to only one quark channel
- Same transverse spin effects as SIDIS and p-p collisions (Sivers, Collins, twist-3)
- Clean test TMD formalism (at large $p_T \sim 1$ GeV or more)
- To help understand mechanism behind large A_N in $pp^{\uparrow} \rightarrow hX$ in the TMD framework

Transverse SSA in Inclusive Hadron

-0.005

$$A_{UT}^{\sin\left(arphi_{S}
ight.}
ight)=rac{N^{\uparrow}-N^{\downarrow}}{N^{\uparrow}+N^{\downarrow}}$$

- Target spin flip every 20 minutes
- Acceptance effects cancels
- Overall systematic check with A_N at $\phi_S = 0$
 - False asymmetry < 0.1%

E06-010: Inclusive Hadron SSA (A_N)

- Clear non-zero vertical target SSA
- Opposite sign for π^+ and π^-
- Large for K⁺

E06-010: Inclusive Hadron SSA (A_N)

Preliminary New Results (III) from JLab Hall A E06-010 with a polarized ³He (n)

Inclusive Electron SSA

Analysis by J. Katech(W&M), X. Qian (Caltech)

Inclusive Target Single Spin Asymmetry: DIS

- Unpolarized e⁻ beam incident on ³He target polarized normal to the electron scattering plane.
- However, A_v=0 at Born level,
 - \rightarrow sensitive to physics at order α^2 ; two-photon exchange.

$$A_{y} \propto \frac{Im(T_{1\gamma}T_{2\gamma}^{*})}{\left|T\right|^{2}}$$

- In DIS case: related to integral of Sivers
- Physics Importance discussed in A. Metz's paper

Inclusive Target Single-Spin Asymmetry

Extracted neutron SSA from ³He(e,e')

Vertically polarized target

- Results show 2-photon effects
- Consistent with A. Metz's prediction: 2-photon interact with 2 quarks and q-g-q correlator from Torino fit for Sivers (solid black)
- Disagree with predictions based on KQW q-g-q correlator (red-dashed)
- Disagree with predictions based on 2-photon interact with 1 quark (blue dashed)

Future: TMD study with SoLID at 12 GeV JLab Hall A

Precision 4-D mapping of TMD asymmetries with Polarized ³He (Neutron) and Proton

JLab 12 GeV Upgrade

JLab Physics Program at 12 GeV

Hall A – form factors, GPDs & TMDs , SRC Low-energy tests of the SM and Fund. Symmetry Exp

SoLID, MOLLER.

Hall B - 3-D nucleon structure via GPDs & TMDs Search new form of hadron. matter via Meson Spectr.

Hall C – precision determination of valence quark properties in nucleons and nuclei

Hall D - exploring origin of confinement by studying exotic mesons using real photons

JLab 12 GeV Era: Precision Study of TMDs

- From exploration to precision study with 12 GeV JLab
- Transversity: fundamental *PDF*s, tensor charge
- TMDs: 3-d momentum structure of the nucleon
- → Quark orbital angular momentum
- Multi-dimensional mapping of TMDs
 - 4-d (x,z,P_{\perp},Q^2)
 - Multi-facilities, global effort
- Precision → high statistics
 - high luminosity and large acceptance

SoLID for SIDIS/PVDIS with 12 GeV JLab

• Exciting physics program:

Five approved experiments: three SIDIS "A rated", one PVDIS "A rated", one J/Psi "A- rated"

• International collaboration: eight countries and 50+ institutions

- CLEOII Magnet
- GEMs for tracking
- Cherenkov and EM
 Calorimeter for electron PID
- Heavy Gas Cherenkov and MRPC (TOF) for pion PID

E12-10-006/E12-11-108, Both Approved with "A" Rating Mapping of Collins(Sivers) Asymmetries with SoLID

E12-10-006 3He(n), Spokespersons: J. P. Chen, H. Gao, X. Jiang, J-C. Peng, X. Qian E12-11-007(p), Spokespersons: K. Allda, J. P. Chen, H. Gao, X. Li, Z-E. Mezinai

Collins Asymmetry

• Both π + and π -

Precision Map in region

$$x(0.05-0.65)$$

$$z(0.3-0.7)$$

$$Q^2(1-8)$$

$$P_{T}(0-1.6)$$

<10% d quark tensor charge

Map Collins and Sivers asymmetries in 4-D (x, z, Q^2 , P_T)

1 < Q ² < 2	1 < Q ² < 2	1 < Q ² < 2	T 1 < Q ² < 2	1 < Q ² < 2			
0.30 < z < 0.35	0.35 < z < 0.40	≖ _{III} 0.40 < z < 0.45	0.45 < z < 0.50	-∞⊾ Q.50 < z < 0.55	0.55 < z < 0.60	0.60 < z < 0.65	-≖ _≖ 0.65 < z < 0
<u></u>		***** *	***** *	***** *		***** *	····
	***** *		*****	*****	***** *	***** *	*****
W-111	******	******	******	******	******	******	******
1 1		******		******		<u> </u>	
2 < Q ² < 3	2 < Q ² < 3	2 < Q ² < 3	2 < Q ² < 3	2 < Q ² < 3	2 < Q ² < 3	2 < Q ² < 3	2 < Q ² < 3
0.30 < z < 0.35	0.β5 < z < 0.40	Q.49 < z < 0.45	0.45 < z < 0.50	0.50 < z < 0.55	0.55 < z < 0.60	0.60 < z < 0.65	0.65 < z < 0.
*****	·=uII	···æ :	INDEE I	HIII :	[E= =	II.	0.65 < z < 0.
•••••	z	Izr	Intr	zliz-z -	IIIII.	11111 = +	×IIII •
	•••••		•••••	****** *	******	******	*****
******	******	*******	*******	****** *			*Zw- *
3 < Q ² < 4	3 < Q ² < 4	3 < Q ² < 4	3 < Q ² < 4	3 < Q ² < 4	3 < Q ² < 4	3 < Q ² < 4	3 < Q ² < 4
0.30 < z < 0.35	0.35 < z < 0.40	0.40 ₹ z < 0.45	0.45 < z < 0.50	0.50 < z < 0.55	0.55 < z < 0.60	0.60 < z < 0.65	0.65 < z < 0.
II.	111		.	* :		Ē	Ē
Im. I	III == =	III== :	Hirr	[]:::	[11:	I ·	0.65 < z < 0.
1]11=	*II*I* •	• III z • =	* <u>**</u> *** I	***I** Z	III:I I	A ETTALE I	INII 1
******	× ·	···a I	•z1z z	******	ı <u>nl</u> ı I	*** *	***
4 < Q ² < 5	4 < Q ² < 5	4 < Q ² < 5	4 < Q ² < 5	4 < Q ² < 5	4 < Q ² < 5	4 < Q ² < 5	4 < Q ² < 5
0.30 < z < 0.35	0.35 < z < 0.40	0.40 < z < 0.45	0.45 < z < 0.50	0.50 < z < 0.55	0.55 < z < 0.60	0.60 < z < 0.65	0.65 < z < 0.
	Ē	Ī	Ī		Ē	Ē	0.65 < z < 0.
Ir ·	I =	I I	· ·	I	<u> </u>		
HIII :	HII =	HIII	III	I z z	1111	111:1	III
Imi I	****	· II I	=I =	z ·		E	E
5 < Q ² < 6	5 < Q ² < 6	5 < Q ² < 6	5 < Q ² < 6	5 < Q ² < 6	5 < Q ² < 6	5 < Q ² < 6	5 < Q ² < 6
0.30 < z < 0.35	0.35 < z < 0.40	0.40 < z < 0.45	0.45 < z < 0.50	0.50 < z < 0.55	0.55 < z < 0.60	0.60 < z < 0.65	0.65 < z < 0.
0.00							
							E
1111	111 1	11 =	11.	1 1		-	
6 < Q ² < 8	6 < Q ² < 8	6 < Q ² < 8	6 < Q ² < 8	6 < Q ² < 8	6 < Q ² < 8	6 < Q ² < 8	6 < Q ² < 8
			•	F	•	E	0.05.45.50
0.30 < z < 0.35	0.35 < z < 0.40	0.40 < z < 0.45	0.45 < z < 0.50	0.50 < z < 0.55	0.55 < z < 0.60	0.60 < z < 0.65	6 < Q ² < 8 0.65 < z < 0
		1	1	r	1	Ī.	ļ ,
	[[[[_	.	1
0402020405	0.1 0.2 0.3 0.4 0.5	0.1 0.2 0.3 0.4 0.5	0.1 0.2 0.3 0.4 0.5	0.1 0.2 0.3 0.4 0.5	0.1 0.2 0.3 0.4 0.5	0.1 0.2 0.3 0.4 0.5	E

Expected Improvement: Sivers Function

$$f_{1T}^{\perp} =$$

- Significant Improvement in the valence quark (high-x) region
- Illustrated in a model fit (from A. Prokudin)

E12-11-107: Worm-gear functions ("A' rating:)

Spokespersons: J. P. Chen/J. Huang/Y. Qiang/ W. Yan

- Dominated by real part of interference between L=0 (S) and L=1 (P) states
- No GPD correspondence
- Lattice QCD -> Dipole Shift in mom. space.
- Model Calculations -> h_{1L}^{\perp} =? - g_{1T} .

Longi-transversity Trans-helicity

Summary on SoLID TMD Program

- Unprecedented precision 4-d mapping of SSA
 - Collins, Sivers, Pretzelosity and Worm-Gear
- Both polarized ³He (n) and polarized proton with SoLID
- Three "A" rated experiments approved. One LOI on di-hadron.
- Study factorization with x and z-dependences
- Study P_T dependence
- Combining with the world data
 - extract transversity and fragmentation functions for both *u* and *d* quarks
 - determine tensor charge
 - study TMDs for both valence and sea quarks
 - learn quark orbital motion and quark orbital angular momentum
 - study Q² evolution
- Global efforts (experimentalists and theorists), global analysis
 - much better understanding of multi-d nucleon structure and QCD
- Welcome new collaborators

Long-term Future: TMD study with EIC

MEIC@JLab and E-RHIC@BNL A New Opportunity: EIC in China

Electron Ion Colliders on the World Map

Lepton-Nucleon Facilities

EIC@HIAF: e(3GeV) +p(12GeV), both polarized, L(max)=4x10³²cm²/s

EIC@HIAF Kinematic Coverage Comparison with JLab 12 GeV

e(3GeV) +p(12GeV), both polarized, L(max)=4x10³²cm²/s

EIC@HIAF:

- Judy sea quarks (x > 0.01)deep exclusive scattering at Q^2 5-10
 igher Q^2 in value
- range in Q² allows study gluons
- Timeline:

Funding Approved for HIAF EIC under design/discussion Construction 2014-2019

plot courtesy of Xurong Chen (IMP)

Science Goals

The Science of eRHIC/MEIC

Goal: Explore and Understand QCD:

Map the spin and spatial structure of quarks and gluons in nucleons

Discover the collective effects of gluons in atomic nuclei

(role of gluons in nuclei & onset of saturation)

Emerging Themes:

Understand the emergence of hadronic matter from quarks and gluons & EW

The Science of EIC@HIAF

One Main Goal: Explore Hadron Structure

Map the spin-flavor, multi-d spatial/momentum structure of valence & sea quarks

TMD Study and other Programs at EIC@China

- Unique opportunity for TMD in "sea quark" region
 reach x ~ 0.01 (JLab12 mainly valence quark region, reach down to x ~ 0.1)
- Significant increase in Q² range for valence region energy reach Q² ~40 GeV² at x ~ 0.4 (JLab12, Q² < 10)
- Significant increase in P_T range
 reach >1 GeV? (TMD/co-linear overlap region) (JLab12, reach ~ 1 GeV)
- Other Physics Programs:

Nucleon spin-flavor structure (polarized sea, Δ s)

3-d Structure: GPDs (DVMP, pion/Kaon)

e-A to study hadronization

Pion/Kaon structure functions

.

2nd Conference on QCD and Hadron Physics: http://qcd2013.csp.escience.cn/dct/page/1

Whitepaper on EIC@China is being worked on: need inputs and help from international community

Summary

- Nucleon Spin and TMD study have been exciting and fruitful
- Recent and Preliminary Results from JLab with transversely polarized targets: g₂, TMDs
- JLab 12 GeV

Planned SoLID program with JLab12 Precision 4-d mapping of TMD asymmetries

Longer-term future: EIC in US

New possibility: EIC@HIAF in China

Exciting new opportunities

Precision experimental data + development in theory for Nucleon Spin/TMD +...

lead to breakthrough in understanding QCD?