Linear Algebra: Final Extra Credit

Due on December 13, 2019

 $Professor\ MacArthur$

Carson Storm

The inner product is essential for many of the concepts used in Chapter 6, but so far we have only defined the inner product for real number spaces, \mathbb{R}^n . In order to expand the notion of an inner product to other vector spaces we define a set of axioms that a space's inner product must satisfy, so that we can define an inner product for other vector spaces. A inner product is an operation that takes two vectors in the considered vectors space as operands and associated with them a real number. This inner product can be used to define what a vector's length is, distances in the space as well as orthogonality. For example, be defining a inner product for \mathbb{P}^n , we define what it means for two polynomials to be orthogonal. After defining the inner product we can utilize concepts such as the Gram-Schmidt process, or solving Least-Squares problems in spaces that are not \mathbb{R}^n .

$$||\vec{x}|| = \sqrt{\langle \vec{x}, \vec{x} \rangle} = \sqrt{4x_1^2 + 5x_2^2} \qquad ||\vec{y}|| = \sqrt{\langle \vec{y}, \vec{y} \rangle} = \sqrt{4y_1^2 + 5y_2^2} = \sqrt{100 + 5} = \sqrt{105}$$

$$||\vec{x}|| = 3 \qquad ||\vec{y}|| = \sqrt{105}$$

$$||\vec{x}||^2 = ||4x|| + ||5x||^2 = 12 \qquad -12 \qquad ||3||$$

$$|\langle \vec{x}, \vec{y} \rangle|^2 = |4x_1y_1 + 5x_2y_2|^2 = |20 - 5|^2 = |15|^2 = 725$$

 $|\langle \vec{x}, \vec{y} \rangle|^2 = 275$

b)
$$(\vec{z}, \vec{y}) = 0 = 4z_1y_1 + 5z_2y_2 = 0$$
 $Z_1 = \frac{1}{4}Z_2$
= $20z_1 - 5z_2$ All $\vec{z}e Span \{ \vec{y} \} \}$ are ofthogonal to \vec{y}

3)
$$P(t)=4+t$$
, $Q(t)=5-4t^2$
 $\langle P, q \rangle = P(t_0)Q(t_0) + P(t_1)Q(t_1) + \cdots + P(t_n)Q(t_n)$
 $\begin{cases} t_n \rbrace = \begin{cases} -1, \ 0, \ 1 \end{cases} \end{cases}$
 $\langle P, q \rangle = P(-1)Q(-1) + P(0)Q(0) + P(1)Q(1)$
 $= 3(1) + 4(3) + 5(1)$
 $= 3 + 20 + 5 = 28$

4)
$$P(t) = 3t - t^{2}$$
, $Q(t) = 3 + 2t^{2}$
 $\langle P, q \rangle = P(-1)Q(-1) + P(0)Q(0) + P(1)Q(1)$
 $= -4(5) + O(Q(0)) + 2(5)$
 $= -20 + 10 = -16$
 $\langle P, q \rangle = -10$

7)
$$Proj_{p} \mathcal{Y}(t) = \frac{56+14t}{25}$$
 = $28 \cdot \frac{4+t}{(P,P)} = 28 \cdot \frac{4+t}{9+16+25} = \frac{28(4+t)}{50} = \frac{14(4+t)}{25} = \frac{56+14t}{25}$

$$|D) \{P_{0}, P_{1}, q_{2}\} = \{1, t, \frac{t^{2} - 5}{4}\}$$

$$V = Span\{P_{0}, P_{1}, q_{2}\}$$

$$= \frac{O}{4} \cdot 1 + \frac{164}{20} \cdot t + \frac{O}{4} \cdot \frac{t^{2} - 5}{4}$$

$$= \frac{41}{5}t$$

$$|3) \langle \vec{u}, \vec{v} \rangle = (A\vec{u}) \cdot (A\vec{v})$$

1.
$$(\vec{u}, \vec{v}) = (A\vec{u}) \cdot (A\vec{v}) = (A\vec{v}) \cdot (A\vec{u})$$

 $(\vec{u}, \vec{v}) = (\vec{v}, \vec{u})$

$$\begin{array}{l}
2 \cdot \langle \vec{u} + \vec{v}, \vec{w} \rangle = (A(\vec{u} + \vec{v})) \cdot (A\vec{w}) \\
= (A\vec{u} + A\vec{v}) \cdot (A\vec{w}) \\
= (A\vec{u}) \cdot (A\vec{v}) + (A\vec{v}) \cdot (A\vec{w}) \\
= (\vec{u}, \vec{v}) + (\vec{v}, \vec{w})
\end{array}$$

Therefore, (M,N)=(An).(And) defines a inner product space because it gatisfies all of it's atioms.

3)
$$\langle cu, v \rangle = \langle A(c\vec{u}) \rangle \cdot \langle A\vec{v} \rangle$$

$$= \langle (A\vec{u}) \cdot A\vec{v} \rangle$$

$$= \langle (A\vec{u}) \cdot \langle A\vec{v} \rangle$$

$$= \langle (u, v) \rangle$$
4) $\langle u \rangle = \langle (u, v) \rangle$

Wt $(A\vec{u}) = [a_1 \ a_2 \ a_3 \ a_4 \ a_5]$ $(\vec{u}, \vec{u}) = (A\vec{u})(A\vec{u}) = a_1 + a_1 + a_2 + a_3 + a_4 + a_5 + a_5$

(\vartible) = 0 = s an=0 \vartible

18) Show that
$$\|\vec{u} + \vec{v}\|^2 + \|\vec{u} - \vec{v}\|^2 = 2\|\vec{u}\|^2 + 2\|\vec{v}\|^2$$

$$\|\vec{z} + \vec{v}\|^2 + \|\vec{z} - \vec{v}\|^2 = \langle \vec{u} + \vec{v}, \vec{u} + \vec{v} \rangle + \langle \vec{u} - \vec{v}, \vec{u} - \vec{v} \rangle$$

=
$$\langle \vec{u}, \vec{u} + \vec{v} \rangle + \langle \vec{v}, \vec{u} + \vec{v} \rangle + \langle \vec{u}, \vec{u} - \vec{v} \rangle - \langle \vec{v}, \vec{u} - \vec{v} \rangle$$
 (Axiom 2)

$$= \langle \vec{n} + \vec{v}, \vec{n} \rangle + \langle \vec{n} + \vec{v}, \vec{v} \rangle + \langle \vec{n} - \vec{v}, \vec{n} \rangle - \langle \vec{n} - \vec{v}, \vec{v} \rangle \quad (A \times 10^{10} \text{ A})$$

$$= \langle \vec{u}, \vec{u} \rangle + \langle \vec{v}, \vec{u} \rangle + \langle \vec{u}, \vec{v} \rangle + \langle \vec{v}, \vec{v} \rangle + \langle \vec{u}, \vec{u} \rangle - \langle \vec{u}, \vec{u} \rangle - \langle \vec{u}, \vec{v} \rangle + \langle \vec{v}, \vec{v} \rangle + \langle \vec{u}, \vec{u} \rangle - \langle \vec{u}, \vec{u} \rangle - \langle \vec{u}, \vec{v} \rangle + \langle \vec{v}, \vec{v} \rangle + \langle$$

$$= 2\langle u, u \rangle + 2\langle \vec{v}, \vec{v} \rangle = 2\|\vec{u}\|^2 + 2\|\vec{v}\|^2$$

21) In
$$C[0,1]$$
 $< t,gs = \int_{0}^{t} f(t)g(t)dt$, $f(t) = 1-3t^{2}$, $g(t) = t-t^{3}$
 $< t,gs = \int_{0}^{t} (1-3t^{2})(t-t^{3})dt = \int_{0}^{t} (3t^{5}-4t^{3}+t)dt = \left[\frac{1}{2}t^{6}-t^{4}+\frac{1}{2}t^{2}\right]_{0}^{t} = \frac{1}{2}-1+\frac{1}{2}-0+0-0$

$$= 0$$

$$\begin{cases}
\frac{1}{25} & \begin{cases} x_1, x_2, x_3 \\ \frac{1}{25} & \end{cases} = \begin{cases} \frac{1}{2} & \begin{cases} \frac{1}{25}, & \begin{cases} \frac{1}{25} & \end{cases} \\ \frac{1}{25} & \end{cases} = \begin{cases} \frac{1}{2} & \begin{cases} \frac{1}{25} & \end{cases} \\ \frac{1}{25} & \end{cases} = \begin{cases} \frac{1}{25} & \begin{cases} \frac{1}{25} & \end{cases} \\ \frac{1}{25} & \end{cases} = \begin{cases} \frac{1}{25} & \begin{cases} \frac{1}{25} & \end{cases} \\ \frac{1}{25} & \end{cases} = \begin{cases} \frac{1}{25} & \begin{cases} \frac{1}{25} & \end{cases} \\ \frac{1}{25} & \end{cases} = \begin{cases} \frac{1}{25} & \begin{cases} \frac{1}{25} & \end{cases} \\ \frac{1}{25} & \end{cases} = \begin{cases} \frac{1}{25} & \begin{cases} \frac{1}{25} & \end{cases} \\ \frac{1}{25} & \end{cases} = \begin{cases} \frac{1}{25} & \begin{cases} \frac{1}{25} & \end{cases} \\ \frac{1}{25} & \end{cases} = \begin{cases} \frac{1}{25} & \end{cases} = \frac{1}{25} & \end{cases} = \begin{cases} \frac{1}{25} & \end{cases} = \begin{cases} \frac{1}{25} & \end{cases} = \frac{1}{25} & \end{cases} = \begin{cases} \frac{1}{25} & \end{cases} = \frac{1}{25} & \end{cases} = \begin{cases} \frac{1}{25} & \end{cases} = \frac{1}{25} & \end{cases} = \begin{cases} \frac{1}{25} & \end{cases} = \frac{1}{25} & \end{cases} = \begin{cases} \frac{1}{25} & \end{cases} = \frac{1}{25} & \end{cases} = \frac{1}{25} & \end{cases} = \begin{cases} \frac{1}{25} & \end{cases} = \frac{1}{25}$$

$$= t^{2} - \frac{(2/3)}{2}(1) - \frac{(0)}{(2/3)}(t)$$

$$= t^{2} - \frac{1}{3}$$

A orthogonal basis for span $\{1, t, t^2\}$ in C[-1, -1] is $\{1, t, t^2 - \frac{1}{3}\}$