שיעור 3 כפל מטריצות וייצוג מערכת באמצעות Cet

מושג של מטריצה

דוגמא.

$$A = \begin{pmatrix} 1 & 5 & 23 & 45 & 2 \\ 12 & 34 & 67 & 87 & 55 \\ 22 & 33 & 66 & 89 & 19 \end{pmatrix}$$

נסמן 89. הוא הרכיב במקום ה- (3,4) הוא

$$(A)_{34} = 89$$

הרכיב במקום ה-(1,5) הוא (2,5)

$$(A)_{15} = 2$$

הרכיב במקום ה- (2,3) הוא 67. נסמן

$$(A)_{23} = 67$$

ועמודה האיבר ה- (כלומר האיבר ה- ועמודה ועמודה הרכיב מקום ה- (i,j) את הרכיב האיבר ה- $A\in M_{m\times n}(\mathbb{R})$ תהי (כלומר האיבר ה- A_{ij}) נסמן כ- (i,j) נסמן כ-

סוגים שונים של מטריצות

נסמן מטריצה ריבועית מטריצה מטריצה שמספר שורותיה מטריצה מ

$$A \in M_{n \times n}(\mathbb{R})$$
 או $A \in M_n(\mathbb{R})$

הגדרה: (מטריצה אלכסונית) מטריצה ריבועית שכל רכיביה שאינם על האלכסון הראשי הם אפס, תקרא מטריצה אלכסונית.

הגדרה: (מטריצה האפס) מטריצה שכל רכיביה הם אפס, תקרא מטריצת האפס.

חיבור מטריצות וכפל מטריצה בסקלר

דוגמא. (חיבור מטריצות)

$$\begin{pmatrix} 1 & 2 & 5 \\ 3 & 4 & 0 \end{pmatrix} \oplus \begin{pmatrix} 6 & 8 & 9 \\ 11 & 5 & 4 \end{pmatrix} = \begin{pmatrix} 1+6 & 2+8 & 5+9 \\ 3+11 & 4+5 & 0+4 \end{pmatrix} = \begin{pmatrix} 7 & 10 & 14 \\ 14 & 9 & 4 \end{pmatrix}$$

חיבור שתי מטריצות אשר מספר שורות ומספר עמודותי שונים אי חוקי, לדוגמה

$$\left(\begin{array}{ccc} 1 & 2 & 5 \\ 3 & 4 & 0 \end{array}\right) \oplus \left(\begin{array}{ccc} 1 & 2 \\ 3 & 4 \end{array}\right)$$

דוגמא. (כפל מטריצה בסקלר)

$$7 \odot \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} = \begin{pmatrix} 7 \cdot 1 & 7 \cdot 2 \\ 7 \cdot 3 & 7 \cdot 4 \end{pmatrix} = \begin{pmatrix} 7 & 14 \\ 21 & 28 \end{pmatrix}$$

 $1\leq j\leq n$, $1\leq i\leq m$ אם לכל אם A=B נאמר שA=B נאמר ש $A,B\in M_{m imes n}(\mathbb{R})$ יהיו (שוויון מטריצות) מתקיים

$$A_{ij} = B_{ij}$$
.

הסכום $A,B\in M_{m imes n}(\mathbb{R})$ יהיו (חיבור מטריצות) 3.4

$$A \oplus B$$

יוגדר כך ש-

$$(A \oplus B)_{ij} = A_{ij} \oplus B_{ij}$$

. כאשר המתאימים חיבור חיבור $j \leq n$, $1 \leq i \leq m$ כאשר

בסקלר lpha יסומן ב $lpha\in\mathbb{R}$ ו- $lpha\in\mathbb{R}$ כפל מטריצה בסקלר יהיו (כפל מטריצה בסקלר) יהיו (כפל מטריצה בסקלר)

$$\alpha \odot A \in M_{m \times n}(\mathbb{R})$$

-ויוגדר כך ש

$$(\alpha \odot A)_{ij} = \alpha \cdot A_{ij}$$

lpha -כאשר $i \leq m$ כאשר $j \leq n$, כלומר הכפלה של כל אחד מאיברי המטריצה ב

ותוגדר –A - ותוגדר הנגדי (מטריצה הנגדי הינתן מטריצה מטריצה ($A\in M_{m imes n}(\mathbb{R})$ המטריצה הנגדי הינתן ב-

$$-A \equiv (-1) \odot A$$
,

-1 כלומר הכפלת של המטריצה A בהסקלר

יוגדר A-B - יוגדר (חיסור מטריצות) אונדר בהינתן מטריצה מטריצה בהינתן מטריצה (חיסור מטריצות) אוגדר 3.7

$$A - B \equiv A \oplus (-B) ,$$

.(לפי הגדרה 3.4) של המטריצה A והמטריצה הנגדי B (לפי הגדרה 3.6).

- אזי: $lpha,eta\in\mathbb{R}$ -ו $A,B,C\in M_{m imes n}(\mathbb{R})$ אזי:
- A+B=B+A מטריצות: 1.
- (A+B)+C=A+(B+C) מטריצות: 2. חוק הקיבוץ של חיבור מטריצות:
 - .A + 0 = A .3
 - $.\alpha(A+B) = \alpha A + \alpha B$.4
 - $(\alpha + \beta)A = \alpha A + \beta A$.5
 - $\alpha \cdot (\beta \cdot A) = (\alpha \cdot \beta) \cdot A$.6

הוכחה מיידית מההגדרות.

פיתרון.

.1

מטריצה משוחלפת

 A^t תסומן, A בגודל (מטריצה משוחלפת) בהינתן מטריצה (חסומן מטריצה בגודל בהינתן מטריצה בגודל בהינתן מטריצה בגודל $A\in M_{m\times n}(\mathbb{R})$ בהינתן מטריצה בגודל $n\times m$ כך שלכל $j\leq n$, $1\leq i\leq m$ כך שלכל

$$A_{ii}^t = A_{ij}$$

 A^t מצאו את המשוחלפת נתונה $A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix}$ נתונה שלה, כלומר A^t

 $A^t = \begin{pmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{pmatrix}$

מתקיים: $lpha\in\mathbb{R}$ מטריצה A,B מטריצה מוגדרים והמכפלות מוגדרים מטריצה A,B מטריצה 3.11

$$\left(A^{t}\right)^{t} = A$$

$$(A+B)^t = A^t + B^t$$

$$(\alpha A)^t = \alpha A^t$$

$$(AB)^t = B^t A^t (4B)^t + B^t A^t$$

שימו לב, הסדר השתנה.

כפל מטריצה בוקטור

דוגמא. (כפל מטריצה בוקטור)

$$\begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix} \odot \begin{pmatrix} 7 \\ 8 \\ 9 \end{pmatrix} = 7 \cdot \begin{pmatrix} 1 \\ 4 \end{pmatrix} + 8 \cdot \begin{pmatrix} 2 \\ 5 \end{pmatrix} + 9 \cdot \begin{pmatrix} 3 \\ 6 \end{pmatrix}$$

$$= \begin{pmatrix} 7 \cdot 1 \\ 7 \cdot 4 \end{pmatrix} + \begin{pmatrix} 8 \cdot 2 \\ 8 \cdot 5 \end{pmatrix} + \begin{pmatrix} 9 \cdot 3 \\ 9 \cdot 6 \end{pmatrix}$$

$$= \begin{pmatrix} 7 \cdot 1 + 8 \cdot 2 + 9 \cdot 3 \\ 7 \cdot 4 + 8 \cdot 5 + 9 \cdot 3 \end{pmatrix}$$

$$= \binom{50}{122}$$

יהיי
$$x=egin{pmatrix} x_1 \ x_2 \ dots \ x_n \end{pmatrix}$$
 -י $A=egin{pmatrix} a_1 & a_2 & \dots & a_n \end{pmatrix}\in M_{m imes n}(\mathbb{R})$ יהיי

$$Ax = \begin{pmatrix} a_1 & a_2 & \dots & a_n \end{pmatrix} \cdot \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = x_1 a_1 + x_2 a_2 + \dots + x_n a_n.$$

שימו לב שמתקבל וקטור השייך ל- \mathbb{R}^m . שימו לב שניתן לכפול רק כאשר כמות העמודות של המטריצה שווה לכמות הרכיבים של הוקטור.

דוגמא. (מכפלה של מטריצה בוקטור) יהיו u_1 , u_2 , u_3 $\in \mathbb{R}^8$ יהיו יהיו יהיו מכפלה של מטריצה (מכפלה של מטריצה בוקטור) יהיו

פיתרון.

$$(\nu_1 \quad \nu_2 \quad \nu_3) \cdot \begin{pmatrix} 5 \\ -4 \\ 8 \end{pmatrix} = 5\nu_1 - 4\nu_2 + 8\nu_3.$$

 \blacksquare (ν_1 ν_2 ν_3) $\in M_{8\times 3}(\mathbb{R})$ שימו לב

דוגמא. בהינתן המערכת לינארית

$$2x_1 - 3x_2 + 7x_3 = 12$$
,
 $3x_1 - 5x_2 + 6x_3 = 11$

ניתן לייצג אותה בצורה

$$x_1 \begin{pmatrix} 2 \\ 3 \end{pmatrix} + x_2 \begin{pmatrix} -3 \\ -5 \end{pmatrix} + x_3 \begin{pmatrix} 7 \\ 6 \end{pmatrix} = \begin{pmatrix} 12 \\ 11 \end{pmatrix}$$

ובצורה של משוואה מטריציאלית:

$$\begin{pmatrix} 2 & -3 & 7 \\ 3 & -5 & 6 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 12 \\ 11 \end{pmatrix} ,$$

או

$$AX=b$$

$$.b=\begin{pmatrix}12\\11\end{pmatrix}$$
 -1 $X=\begin{pmatrix}x_1\\x_2\\x_3\end{pmatrix}$, $A=\begin{pmatrix}2&-3&7\\3&-5&6\end{pmatrix}$ כאשר

כפל מטריצות

דוגמא. (כפל מטריצות)

$$\underbrace{\begin{pmatrix} 1 & 2 & 3 \\ 0 & 7 & 8 \end{pmatrix}_{2\times 3}}_{A} \odot \begin{pmatrix} \underbrace{11}_{b_{1}} & 12 & 13 & 14 \\ 5 & 6 & 7 & 8 \\ \underbrace{21}_{b_{2}} & \underbrace{22}_{b_{2}} & \underbrace{23}_{b_{3}} & \underbrace{24}_{b_{4}} \end{pmatrix}_{3\times 4} = \begin{pmatrix} A \cdot b_{1} & A \cdot b_{2} & A \cdot b_{3} & A \cdot b_{4} \end{pmatrix}$$

כאשר

$$A \cdot b_1 = \begin{pmatrix} 1 & 2 & 3 \\ 0 & 7 & 8 \end{pmatrix}_{2 \times 3} \cdot \begin{pmatrix} 11 \\ 5 \\ 21 \end{pmatrix}_{3 \times 1} = \begin{pmatrix} 1 \cdot 11 + 2 \cdot 5 + 3 \cdot 21 \\ 0 \cdot 11 + 7 \cdot 5 + 8 \cdot 21 \end{pmatrix} = \begin{pmatrix} 84 \\ 203 \end{pmatrix}$$

$$A \cdot b_2 = \begin{pmatrix} 1 & 2 & 3 \\ 0 & 7 & 8 \end{pmatrix}_{2 \times 3} \cdot \begin{pmatrix} 12 \\ 6 \\ 22 \end{pmatrix}_{3 \times 1} = \begin{pmatrix} 1 \cdot 12 + 2 \cdot 6 + 3 \cdot 22 \\ 0 \cdot 12 + 7 \cdot 6 + 8 \cdot 22 \end{pmatrix} = \begin{pmatrix} 90 \\ 218 \end{pmatrix}$$

$$A \cdot b_3 = \begin{pmatrix} 1 & 2 & 3 \\ 0 & 7 & 8 \end{pmatrix}_{2 \times 3} \cdot \begin{pmatrix} 13 \\ 7 \\ 23 \end{pmatrix}_{3 \times 1} = \begin{pmatrix} 1 \cdot 13 + 2 \cdot 7 + 3 \cdot 23 \\ 0 \cdot 13 + 7 \cdot 7 + 8 \cdot 23 \end{pmatrix} = \begin{pmatrix} 96 \\ 233 \end{pmatrix}$$

$$A \cdot b_4 = \begin{pmatrix} 1 & 2 & 3 \\ 0 & 7 & 8 \end{pmatrix}_{2 \times 3} \cdot \begin{pmatrix} 14 \\ 8 \\ 24 \end{pmatrix}_{3 \times 1} = \begin{pmatrix} 1 \cdot 14 + 2 \cdot 8 + 3 \cdot 24 \\ 0 \cdot 14 + 7 \cdot 8 + 8 \cdot 24 \end{pmatrix} = \begin{pmatrix} 102 \\ 248 \end{pmatrix}$$

לכן

$$\left(\begin{array}{ccc} 1 & 2 & 3 \\ 0 & 7 & 8 \end{array}\right) \odot \left(\begin{array}{cccc} 11 & 12 & 13 & 14 \\ 5 & 6 & 7 & 8 \\ 21 & 22 & 23 & 24 \end{array}\right) = \left(\begin{array}{cccc} 84 & 90 & 96 & 102 \\ 203 & 218 & 233 & 248 \end{array}\right)$$

$$A \odot B = (A \cdot b_1 \quad A \cdot b_2 \quad \dots \quad A \cdot b_k)$$
.

A של A של A בעמודה A של A בעמודה A של מנת לחשב את הרכיב במקום ה- A בעA בינארי של עמודות A.

דוגמא. כפל מטריצות

$$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 2 & 3 \\ 0 & 7 & 8 \end{pmatrix} = \begin{pmatrix} 1 \cdot 1 + 0 \cdot 0 & 1 \cdot 2 + 0 \cdot 7 & 1 \cdot 3 + 0 \cdot 8 \\ 0 \cdot 1 + 1 \cdot 0 & 0 \cdot 2 + 1 \cdot 7 & 0 \cdot 3 + 1 \cdot 8 \end{pmatrix}$$
$$= \begin{pmatrix} 1 & 2 & 3 \\ 0 & 7 & 8 \end{pmatrix}$$

דוגמא. כפל מטריצות

$$\begin{pmatrix} 1 & 2 & 3 \\ 0 & 7 & 8 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 \cdot 1 + 2 \cdot 0 + 3 \cdot 0 & 1 \cdot 0 + 2 \cdot 1 + 3 \cdot 0 & 1 \cdot 0 + 2 \cdot 0 + 3 \cdot 1 \\ 0 \cdot 1 + 7 \cdot 0 + 8 \cdot 0 & 0 \cdot 0 + 7 \cdot 1 + 8 \cdot 0 & 0 \cdot 0 + 7 \cdot 0 + 8 \cdot 1 \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 2 & 3 \\ 0 & 7 & 8 \end{pmatrix}$$

אזי $lpha\in\mathbb{R}$ מטריצות $lpha\in\mathbb{R}$ מטריצות כך שהסכומים והמכפלות מוגדרים ויהי A,B,C אזי

$$(A \cdot B) \cdot C = A \cdot (B \cdot C)$$
 .1

$$A \cdot (B+C) = A \cdot B + A \cdot C$$
 .2

$$(B+C)\cdot A=B\cdot A+C\cdot A$$
 .3

$$\alpha(A \cdot B) = (\alpha \cdot A) \cdot B = A \cdot (\alpha \cdot B)$$
 .4

אז m imes m ו- $A \in M_{m imes n}$ מטריצת היחידה בגודל היחידה בגודל ווא היחידה מטריצת היחידה אז I_n ו- $A \in M_{m imes n}(\mathbb{R})$

$$I_m A = A = A I_n$$
.

דוגמא. (כפל מטריצה אינה קומוטטיבית)

$$\left(\begin{array}{cc} 1 & 2 \\ 3 & 4 \end{array}\right) \cdot \left(\begin{array}{cc} 1 & 5 \\ 2 & 3 \end{array}\right) = \left(\begin{array}{cc} 5 & 11 \\ 11 & 27 \end{array}\right)$$

אבל

$$\left(\begin{array}{cc} 1 & 5 \\ 2 & 3 \end{array}\right) \cdot \left(\begin{array}{cc} 1 & 2 \\ 3 & 4 \end{array}\right) = \left(\begin{array}{cc} 16 & 22 \\ 11 & 16 \end{array}\right)$$

בגלל שאם AB=BA אז לא בהכרח מתקיים. התכונה הזו נגזרת מן החוק הקובע כי מכפלה של מטריצות אינה בגלל שאם קומוטטיבית \blacksquare

3.4 משפט. (מכפלה של מטריצות אינה קומוטטיבית)

בהינתן מכפלה של שתי מטריצות, סדר כתיבת המטריצות משפיע על התוצאה סופית, כלומר

$$AB \neq BA \Leftrightarrow AB - BA \neq 0$$
.

כך מכפלה של מטריצות אינה קומוטטיבית.

דוגמא.

$$\left(\begin{array}{cc} 0 & 1 \\ 0 & 0 \end{array}\right) \cdot \left(\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array}\right) = \left(\begin{array}{cc} 0 & 0 \\ 0 & 0 \end{array}\right) \quad ,$$

 $oldsymbol{B}=0$ או A=0 כי מתקיים אז לא בהכרח אז לא AB=0

דוגמא.

$$\left(\begin{array}{cc} 0 & 1 \\ 0 & 0 \end{array}\right) \cdot \left(\begin{array}{cc} 2 & 0 \\ 0 & 0 \end{array}\right) = \left(\begin{array}{cc} 0 & 0 \\ 0 & 0 \end{array}\right) \quad ,$$

-1

$$\left(\begin{array}{cc} 0 & 1 \\ 0 & 0 \end{array}\right) \cdot \left(\begin{array}{cc} 3 & 0 \\ 0 & 0 \end{array}\right) = \left(\begin{array}{cc} 0 & 0 \\ 0 & 0 \end{array}\right)$$

lacksquare .B=C בגלל שאם בהכרח מתקיים כי AB=BC בגלל

הדוגמאות אלו דוגמאות של החוקים הבאים:

באים: עבור מטריצות A,B,C, לא בהכרח מתקיימים היחסים הבאים:

$$AB = BA$$
 (x)

$$AB=0$$
 או $A=0$ או $AB=0$

$$B=C$$
 אז $A \neq 0$ -ו $AB=AC$ או

3.6 הגדרה: (העלאה מטריצה בחזקה)

תהי $k\in\mathbb{N}$ ויהי $A\in M_n(\mathbb{R})$ נגדיר

$$A^k = \overbrace{A \cdot A \cdot \cdots \cdot A}^{\text{evaro}}$$

אם $A \neq 0$ ונגדיר

$$A^0 = I_n .$$

מטריצות הפיכות

עד כך שתסומן ב- A^{-1} כך ש A^{-1} בהינתן המטריצה $A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$ כך ש

$$A \cdot A^{-1} = I_{2 \times 2}$$

-או כך ש

$$A^{-1} \cdot A = I_{2 \times 2}$$

ביתרון. המטריצה A^{-1} נקראת ההופכית של A. התשובה היא

$$A^{-1} = \left(\begin{array}{cc} -2 & 1\\ \frac{3}{2} & -\frac{1}{2} \end{array}\right)$$

3.7 הגדרה: (מטריצה הפיכה)

כך ש $B\in M_n(\mathbb{R})$ מטריצה אם תקרא הפיכה תקרא $A\in M_n(\mathbb{R})$

$$AB = BA = I$$

A כאשר B תקרא המטריצה B תקרא המטריצה ב- $M_n(\mathbb{R})$.

3.8 משפט. (ההופכית של מטריצה יחידה)

 A^{-1} -ם אותה ב- נסמן אותה איז היא יחידה. ב- A^{-1}

הוכחה.

נניח ש-B,C מתקיים:

$$C = CI = C(AB) = (CA)B = IB = B.$$

משפט. (ייחידיות של פתרון למערכת לינארית)

 $A^{-1}b$ יוע יחיד יחיד יש פיתרון אם אס $b\in\mathbb{R}^n$ לכל אז הפיכה $A\in M_n(\mathbb{R})$ אם אס אס א

הוכחה.

יהי $b \in \mathbb{R}^n$ יהי שכן אל המשוואה, של לראות ש- $b \in \mathbb{R}^n$

$$A(A^{-1}b) = (AA^{-1})b = Ib = b$$
.

נוכיח יחידות:

יהי $u\in\mathbb{R}^n$ פתרון, אזי

$$Au = b$$
.

נכפול את שני האגפים משמאל ב- A^{-1} ונקבל

$$A^{-1}(Au) = A^{-1}b ,$$

$$\Rightarrow (A^{-1}A)u = A^{-1}b ,$$

$$\Rightarrow Iu = A^{-1}b ,$$

$$\Rightarrow u = A^{-1}b ,$$

דוגמא. פתרו את המערכת

$$x_1 + 2x_2 = 1$$
, $3x_1 + 4x_2 = 2$.

פיתרון. ניתן לייצג את המערכת בצורה

$$\underbrace{\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}}_{A} \underbrace{\begin{pmatrix} x_1 \\ x_2 \end{pmatrix}}_{X} = \underbrace{\begin{pmatrix} 1 \\ 2 \end{pmatrix}}_{b}$$

נזכיר ש- $A^{-1}=\left(egin{array}{cc} -2 & 1 \\ rac{3}{2} & -rac{1}{2} \end{array}
ight)$ נזכיר ש- נזכיר אוואה ב- $A^{-1}=\left(egin{array}{cc} -2 & 1 \\ rac{3}{2} & -rac{1}{2} \end{array}
ight)$

$$X = A^{-1}b = \begin{pmatrix} -2 & 1\\ \frac{3}{2} & -\frac{1}{2} \end{pmatrix} \begin{pmatrix} 1\\ 2 \end{pmatrix} = \begin{pmatrix} 0\\ 0.5 \end{pmatrix}$$
.

, אכן, שאכן שאכן פתרון מהווה $\begin{pmatrix} 0 \\ 0.5 \end{pmatrix}$ שאכן קל לבדוק

$$\left(\begin{array}{cc} 1 & 2 \\ 3 & 4 \end{array}\right) \left(\begin{array}{c} 0 \\ 0.5 \end{array}\right) = \left(\begin{array}{c} 1 \\ 2 \end{array}\right) .$$

:3.9 משפט

$$A_m(x_1)$$
 $A_m(x_2)$ $A_m(x_2)$ $A_m(x_2)$ וקטור משתנים, ו- $A_m(x_1)$ $A_m(x_2)$ $A_m(x_2)$ $A_m(x_1)$ $A_m(x_2)$ $A_m(x_2)$ $A_m(x_1)$

למשוואה המטריציאלית אותה AX=b יש אותה קבוצת פתרונות כמו למשוואה הוקטורית

$$x_1a_1 + x_2a_2 + \cdots + x_na_n = b$$

ואותה קבוצת פתרונות כמו למערכת הלינארית שהמטריצה המורחבת שלה היא

$$(A|b)$$
.

:3.10 משפט

 $A,B\in M_n(\mathbb{R})$ תהיינה

- $A^{-1}(A^{-1})^{-1}=A$ הפיכה ומתקיים A^{-1} אם אם אם (א
- $A(AB)^{-1} = B^{-1}A^{-1}$ אם A ו- B הפיכות אז AB הפיכות אז ובע ומתקיים
 - $A^t(A^t)^{-1} = (A^{-1})^t$ אם A^t הפיכה אז אם A^t אם אם א

הוכחה.

$$AA^{-1} = I, \qquad A^{-1}A = I.$$

(コ)

$$(AB)^{-1}B^{-1}A^{-1} = A(BB^{-1})A^{-1} = AIA^{-1} = AA^{-1} = I$$
.

כיצד למצוא ההופכית

דוגמא. (הופכית של מטריצה)

?בהינתן $A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$ מהי ההופכית

פיתרון.

ניתן לכתוב ההופכית מעל א \mathbb{R}_2 הם וקטורים איז ו- Zו- כאשר א $A^{-1}=\left(\begin{array}{cc} Y & Z \end{array}\right)$ בצורה בצורה ניתן לכתוב

$$Y = \begin{pmatrix} y_1 \\ y_2 \end{pmatrix}$$
 , $Z = \begin{pmatrix} z_1 \\ z_2 \end{pmatrix}$,

כך ש

$$A\left(\begin{array}{cc} Y & Z \end{array}\right) = \left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right)$$

$$\Rightarrow \qquad \left(\begin{array}{cc} AY & AZ \end{array}\right) = \left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right)$$

נפתור

$$AY = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \quad \Rightarrow \quad A \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$\left(\begin{array}{cc|c} 1 & 2 & 1 \\ 3 & 4 & 0 \end{array}\right) \xrightarrow{R_2 \to R_2 - 3R_1} \left(\begin{array}{cc|c} 1 & 2 & 1 \\ 0 & -2 & -3 \end{array}\right)$$

$$\xrightarrow{R_1 \to R_1 + R_2} \left(\begin{array}{cc|c} 1 & 0 & -2 \\ 0 & -2 & -3 \end{array} \right)$$

$$\xrightarrow{R_2 \to -\frac{1}{2}R_2} \left(\begin{array}{cc|c} 1 & 0 & -2 \\ 0 & 1 & \frac{3}{2} \end{array} \right)$$

נפתור

$$AZ = \begin{pmatrix} 0 \\ 1 \end{pmatrix} \Rightarrow A \begin{pmatrix} z_1 \\ z_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$
$$\begin{pmatrix} 1 & 2 & 0 \\ 3 & 4 & 1 \end{pmatrix} \xrightarrow{R_2 \to R_2 - 3R_1} \begin{pmatrix} 1 & 2 & 0 \\ 0 & -2 & 1 \end{pmatrix}$$

$$\xrightarrow{R_1 \to R_1 + R_2} \left(\begin{array}{cc|c} 1 & 0 & 1 \\ 0 & -2 & 1 \end{array} \right)$$

$$\xrightarrow{R_2 \to -\frac{1}{2}R_2} \left(\begin{array}{cc|c} 1 & 0 & 1 \\ 0 & 1 & -\frac{1}{2} \end{array} \right)$$

אפשר לפתור יחד:

$$\left(\begin{array}{cc|c} 1 & 2 & 1 & 0 \\ 3 & 4 & 0 & 1 \end{array}\right) \xrightarrow{R_2 \to R_2 - 3R_1} \left(\begin{array}{cc|c} 1 & 2 & 1 & 0 \\ 0 & -2 & -3 & 1 \end{array}\right)$$

$$\xrightarrow{R_1 \to R_1 + R_2} \left(\begin{array}{cc|c} 1 & 0 & -2 & 1 \\ 0 & -2 & -3 & 1 \end{array} \right)$$

$$\xrightarrow{R_2 \to -\frac{1}{2}R_2} \left(\begin{array}{cc|c} 1 & 0 & -2 & 1 \\ 0 & 1 & \frac{3}{2} & -\frac{1}{2} \end{array} \right)$$

:3.11 משפט

 $A \in M_n(\mathbb{R})$ תהי

. הפיכה $A \Leftrightarrow I$ שקולות שורות ל A

 A^{-1} -ל I תעביר את ל- I תעביר את המעבירות המעבירות שורה אלמנטריות שורה אלמנטריות המעבירות את ל

טכנית, על מנת למצוא הופכית של A, מתבוננים במטריצה (A|I)ומדרגים של א, מתבוננים של טכנית, על מנת מנת למצוא אותן על אותן פעולות בו זמנית על Iעד לקבלת בו אותן אותן פעולות אותן

דוגמא. (מבחן תש"פ 1,1)

תהיינה $A,B \in M_n(\mathbb{R})$ או הפריכו:

- (א) אם A הפיכה וגם B הפיכה וגם A+B איננה הפיכה.
 - הפיכה A+B אם A הפיכה וגם B הפיכה A

פיתרון.

- הפיכה. A+B=2I שתיהן הפיכות אבל B=I ,A=I הפיכה. דוגמה נגדית:
- (ב) איננה לא נכונה. דוגמה נגדית: A+B=0 אתיהן הפיכות אבל B=-I איננה הפיכה.