CS4801: Classification

Sahely Bhadra 16/8/2017

- 1. Introduction to Classification
- 2. Nearest Neighbour Classification
- 3. Bayes decision rule
 - 1. Classification error
 - 2. Minimum error rate classification
 - 1. Two category
 - 2. Multi category

Classification

- In classification problems, each entity in some domain can be placed in one of a discrete set of categories: yes/no, friend/ foe, good/bad/indifferent, blue/red/green, etc.
- Given a training set of labeled entities, develop a rule for assigning labels to entities in a test set
- Many variations on this theme:
 - binary classification
 - multi-category classification
- Many criteria to assess rules and their predictions
 - overall errors
 - costs associated with different kinds of errors

Dataset

- Each training data point to be classified is represented as a pair (x, y):
 - where x is a description of the object : feature vector
 - where y is a **label** (assumed binary for now $y = \{+1, -1\}$)
- Success or failure of a machine learning classifier often depends on choosing good set of features or descriptions of objects
 - the choice of description can also be viewed as a learning problem
 - but good human intuitions are often needed here

Binary classification

Face detection:

- 1.Facial part
- 2.Non facial part

Multiclass classification

Hand written digit classification

Class label : [0,1,2,...,9]

Examples of classifications

- Fraud detection (input: account activity, classes: fraud / no fraud)
- Web page spam detection (input: HTML/rendered page, classes: spam / ham)
- Speech recognition and speaker recognition (input: waveform, classes: phonemes or words)
- Medical diagnosis (input: symptoms, classes: diseases)
- Automatic essay grader (input: document, classes: grades)
- Customer service email routing and foldering
- Link prediction in social networks
- Catalytic activity in drug design
- ... many many more
- Classification is an important commercial technology

State-of-art Classifiers

- Instance-based methods:
 - 1) Nearest neighbor
- II) Probabilistic models:
 - 1) Naïve Bayes
 - 2) Logistic Regression
- III) Linear Models:
 - 1) Perceptron
 - 2) Support Vector Machine
- IV) Decision Models:
 - 1) Decision Trees
 - 2) Boosted Decision Trees
 - 3) Random Forest

Training, Validation and Test

- Data: labeled instances, e.g. emails marked spam/ham
 - Training setValidation set

 - Test set
- Training
 - Estimate parameters on training set
 - Tune hyperparameters on validation set
 Report results on test set

 - Anything short of this yields over-optimistic claims
- Evaluation
 - Many different metrics
 - Ideally, the criteria used to train the classifier should be closely related to those used to evaluate the classifier
- Statistical issues
 - Want a classifier which does well on test data
 - Overfitting: fitting the training data very closely, but not generalizing well
 - Error bars: want realistic (conservative) estimates of accuracy

Training Data

Validation Data

> Test Data

Nearest Neighbour Classifier

- Remember all training data
- Decide a distance function
- When a test data point comes find the nearest neighbour of the closest point from training data
- Assign the label of nearest neighbour to the test data

Voronoi Diagram

Given a set of points, a Voronoi diagram describes the areas that are nearest to any given point.

Voronoi Diagram

Given a set of points, a Voronoi diagram describes the areas that are nearest to any given point.

Decision Boundary: Voronoi diagram

NN classifier

Overfitting

- •Solution:
 - Regularisation
 - Smoothing the boundary
 - · k neighbours

k-NN classifier

- •Find the k nearest neighbors
- Have them vote
- Has a smoothing effect
- •This is especially good when there is noise in the class labels.

K=1 Effect of "K" K=15

Figures from Hastie, Tibshirani and Friedman (Elements of Statistical Learning)

As K increases:

- Classification boundary becomes smoother
- Training error can increase

Choose (learn) K by cross-validation

- Split training data into training and validation
- Hold out validation data and measure error on this

Probabilistic Decision Boundary

Probabilistic Decision Boundary

prior probability $P(C_1)$ and $P(C_2)$

 $P(C_1)$ = fraction points having cyan colour

Decision Rule with prior probability

Decide:

```
Label =1 [class C_1]

if P(C_1) > P(C_2)

Label =-1 [class C_2]

if P(C_2) > P(C_1)
```

P(error)=
$$P(C_1)$$
 if decide C_2
P(C_2) if decide C_1

$$P(error) = min \{ P(C_1), P(C_2) \}$$

- Favours the most likely class.
- This rule will be making the same decision all times.
- – i.e., optimum if no other information is available

class 2 class 1

Classification error for random classifier

Decide:

Label =1 [class C_1] if $P(C_1) > P(C_2)$ Label =-1 [class C_2] if $P(C_2) > P(C_1)$

P(error)= $P(C_1)$ if decide C_2 P(C_2) if decide C_1

P(error)= min { $P(C_1)$, $P(C_2)$ }

Binary classification

Random classifiers

Decide:

Label = 1 and Label = -1 randomly with probability 0.5

Assumes $P(C_1) = P(C_2) = 0.5$

 $p(error) = min \{ P(C_1), P(C_2) \} = 0.5$

Next Class

- 17/8
 - Bayes Classifier, Naive Bayes Classifier
 - Logistic Regression