镜州商贸学院(新圩)

《多变量微积分》

期末复习题

第五章

空间解析几何、场论、

多变量函数的极限与连续

补充:求曲面 $y^2+z^2=x$ 与平面 x+2y-z=0 的交线在三个坐标面上的投影曲线方程。

面上的投影曲線方程

上面方程组消去×得
$$y^2+z^2=z-2y$$
, 即 $y^2+z^2+2y-z=0$, 消去 $y^2+z^2=x$, 即 $x^2+5z^2-4x-2xz=0$, 消去 $y^2+(x+2y)^2=x$, 即 $y^2+5y^2-x+4xy=0$, 放交线在 $x^2+2y^2-x+4xy=0$, $y^2+3y^2-x+4xy=0$, $y^2+3y^2-x+4y-2=0$, $y^2+3y^2-x+4xy=0$, $y^2+3y^2-x+2y-2=0$, y^2+3y^2-x+2y

把所有已知条件列出来,一通礼算 ^{镜州商贸学院(新圩)《多变量微积分》期末复习题</sub> 電出什么是什么}

补充:求直线 $L: \frac{x-3}{2} = \frac{y-1}{3} = \frac{z+1}{1}$ 绕直线 $\begin{cases} x = 2 \\ y = 3 \end{cases}$ 旋转一周所得的曲面方 程。 设 Poc Xo, yo, 20, 是 L上的任一点, 定直线 (x=1) 平行于 2轴, 故 当P。转到点Pux,yizi时,有 又点 P. LX., yo, 20)在L上,则 {Xo=220+5 即 $\{(x_0-1)^2 = (2z_0+3)^2 = (2z+3)^2, (y_0-3)^2 = (3z_0+1)^2 = (3z+1)^2, \}$ 化入口式,得 (x-1) + (4-5) = (22+5) + (32+1) > 所书曲面方程为 ×+42-13≥1-4×-64-18≥+3=0

梯度:设 u = f(x, y, z) 可偏导,则 $\mathbf{grad}u = \left\{\frac{\partial u}{\partial x}, \frac{\partial u}{\partial y}, \frac{\partial u}{\partial z}\right\}$ 。

旋度:设向量场
$$\vec{a} = \{P(x, y, z), Q(x, y, z), R(x, y, z)\}$$
 ,则 $\mathbf{rot}\vec{a} = \begin{vmatrix} \vec{\iota} & \vec{j} & \vec{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial x} & \frac{\partial}{\partial x} \\ P & Q & R \end{vmatrix}$ 。

散度:设向量场 $\vec{a} = \{P(x,y,z), Q(x,y,z), R(x,y,z)\}$,则 $\operatorname{div} \vec{a} = \frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z}$ 。

非重点

通量:设 $\vec{a}(x,y,z) = \{P(x,y,z), Q(x,y,z), R(x,y,z)\}$ 为向量场,其中 P,Q,R 连续可偏导, Σ 为有侧曲面,称 $\Phi = \iint_{\Sigma} P dy dz + Q dz dx + R dz dy = \iint_{\Sigma} \vec{a} \cdot \vec{n} dS$ 为向量场 $\vec{a}(x,y,z)$ 指向指定侧的流过有侧曲面 Σ 的通量(或流量),其中 \vec{n} 为曲面 Σ 的单位法向量。

环流量:设 $\vec{a}(x,y,z) = \{P(x,y,z), Q(x,y,z), R(x,y,z)\}$ 为向量场,其中 P,Q,R 连续可偏导, L 为有向闭曲线,称 $\oint_L Pdx + Qdy + Rdz = \oint_L \vec{a} \cdot d\vec{s}$ 为向量场 $\vec{a}(x,y,z)$ 沿有向闭曲线 L 的环流量。

补充:设 f(x,y,z) 有二阶连续偏导数,求 div[rot(grad f)]。

div [rot (grad f)] = 0

判断多元函数极限是否存在的方法:

正经做法:一元函数在一点处极限存在的充分必要条件是其左、右极限都存在且相等,但多元函数在一点处极限存在,要求 $\lim_{\substack{x \to x_0 \\ y \to y_0}} f(x,y)$ 存在,即函数 (x,y) 沿所有可能的路径 $\lim_{\substack{x \to x_0 \\ y \to y_0}} f(x,y)$ 时,函数值趋于同一个值,若函数 f(x,y) 沿两个不同方向趋于点 (x_0,y_0) 时,函数值趋于两个不同值,则 $\lim_{\substack{x \to x_0 \\ y \to y_0}} f(x,y)$ 不存在。

瞎猜法:当分子次数高于分母次数时,极限一般存在,而且很有可能是 0 。当分子次数低于或等于分母次数时,极限一般不存在。该方法一般在不会做题时使用,且不保证答案正确。

极限
$$\lim_{\substack{x\to 0\\y\to 0}} \frac{\sin(xy)}{\sqrt{xy+1}-1}$$
 的值为_____。

补充:设
$$f(x,y) = \begin{cases} \frac{xy}{x^2+y^2}, & (x,y) \neq (0,0) \\ 0, & (x,y) = (0,0) \end{cases}$$
,讨论 $\lim_{\substack{x \to 0 \\ y \to 0}} f(x,y)$ 是否存在。

$$\frac{x+0}{x^{2}}$$
 $f(x) = \frac{x+0}{x^{2}} \frac{x^{2}+x^{2}}{x^{2}} = \frac{5}{1}$

$$\frac{2}{x+0} f(x) = \frac{1}{x+0} \frac{-x^{2}}{x^{2}+x^{2}} = -\frac{1}{2}$$

所以极限不存在

第六章

多变量函数的微分

偏导数: $\frac{\partial f}{\partial x}$ 和 f'_x 是 f 对 x 求偏导的意思。 $\frac{\partial^2 f}{\partial x \partial y}$ 和 f''_{xy} 是 f 先对 x 求偏导再对 y 求偏导的意思。这个知识点必考,但是文字不好描述,大家看题吧。

全微:设 $z = f(x,y)\big((x,y) \in D\big)$, $(x_0,y_0) \in D$ 若 $\Delta z = A\Delta x + B\Delta y + o(\rho)$,其中 $\rho = \sqrt{(\Delta x)^2 + (\Delta y)^2}$,称 z = f(x,y) 在 (x_0,y_0) 处可全微,简称可微,记 $A\Delta x + B\Delta y = dz$,习惯上记 dz = Adx + Bdy 。

设
$$z = f(x,y)$$
 可微,则其全微分为 $dz = \frac{\partial f}{\partial x} dx + \frac{\partial f}{\partial y} dy$ 。

隐函数求导:设 F(x,y,z) 在点 $P(x_0,y_0,z_0)$ 的某个邻域内连续可偏导,且 $F(x_0,y_0,z_0)=0$, $F_z(x_0,y_0,z_0)\neq 0$,则在点 (x_0,y_0,z_0) 的邻域内由 F(x,y,z)=0 能 唯一确定连续可偏导的函数 z=f(x,y) ,满足 $z_0=f(x_0,y_0)$ 且

$$\frac{\partial z}{\partial x} = -\frac{F_x}{F_z}$$
, $\frac{\partial z}{\partial y} = -\frac{F_y}{F_z}$ \circ

补充:设
$$z = e^{u+v^2}$$
 ,且 $\begin{cases} u = \ln t \\ v = \sin t \end{cases}$,求 $\frac{dz}{dt}$ 。

$$\frac{dz}{dt} = \frac{\partial z}{\partial u} \cdot \frac{dy}{dt} + \frac{\partial z}{\partial v} \cdot \frac{dv}{dt}$$

$$= e^{u+v^2} \cdot \frac{1}{t} + e^{u+v^2} \cdot (2v) \cdot \cos t$$

补充:设 f(u,v) 二阶连续可偏导,且 $z = f(t,\sin t)$,求 $\frac{d^2z}{dt^2}$ 。

$$\frac{dz}{dt} = f'_1 + f'_2 \cos t$$

$$\frac{d^{2}z}{dt^{2}} = f_{11}'' + f_{12}'' \cos t + f_{21}'' \cos t + f_{12}'' \cos^{2}t - f_{2}' \sin t$$

补充:设
$$z = e^{u+v}$$
 ,且 $\begin{cases} u = xy \\ v = \frac{y}{x} \end{cases}$,求 $\frac{\partial z}{\partial x}$ 、 $\frac{\partial z}{\partial y}$ 。

$$\frac{\partial^2}{\partial x} = \frac{\partial^2}{\partial y} \cdot \frac{\partial y}{\partial x} + \frac{\partial^2}{\partial y} \cdot \frac{\partial^2}{\partial x}$$

$$= e^{yy} \cdot y + e^{yy} \cdot (-\frac{y}{x^2})$$

$$= e^{xy} + \frac{y}{x}y - e^{xy} + \frac{y}{x^2}$$

$$\frac{\partial^2}{\partial x} = \frac{\partial^2}{\partial y} \cdot \frac{\partial y}{\partial x} + \frac{\partial^2}{\partial y} \cdot \frac{\partial^2}{\partial y}$$

$$= \frac{\partial^2}{\partial x} \cdot \frac{\partial y}{\partial x} + \frac{\partial^2}{\partial y} \cdot \frac{\partial^2}{\partial y}$$

$$= \frac{\partial^2}{\partial x} \cdot \frac{\partial y}{\partial x} + \frac{\partial^2}{\partial y} \cdot \frac{\partial^2}{\partial y}$$

$$= \frac{\partial^2}{\partial x} \cdot \frac{\partial y}{\partial x} + \frac{\partial^2}{\partial y} \cdot \frac{\partial^2}{\partial y}$$

$$= \frac{\partial^2}{\partial x} \cdot \frac{\partial y}{\partial x} + \frac{\partial^2}{\partial y} \cdot \frac{\partial^2}{\partial x}$$

$$= \frac{\partial^2}{\partial x} \cdot \frac{\partial y}{\partial x} + \frac{\partial^2}{\partial y} \cdot \frac{\partial^2}{\partial x}$$

$$= \frac{\partial^2}{\partial x} \cdot \frac{\partial y}{\partial x} + \frac{\partial^2}{\partial y} \cdot \frac{\partial^2}{\partial x}$$

$$= \frac{\partial^2}{\partial x} \cdot \frac{\partial y}{\partial x} + \frac{\partial^2}{\partial y} \cdot \frac{\partial^2}{\partial x}$$

$$= \frac{\partial^2}{\partial x} \cdot \frac{\partial y}{\partial x} + \frac{\partial^2}{\partial y} \cdot \frac{\partial^2}{\partial x}$$

$$= \frac{\partial^2}{\partial x} \cdot \frac{\partial y}{\partial x} + \frac{\partial^2}{\partial y} \cdot \frac{\partial^2}{\partial x}$$

$$= \frac{\partial^2}{\partial x} \cdot \frac{\partial y}{\partial x} + \frac{\partial^2}{\partial y} \cdot \frac{\partial^2}{\partial x}$$

$$= \frac{\partial^2}{\partial x} \cdot \frac{\partial y}{\partial x} + \frac{\partial^2}{\partial y} \cdot \frac{\partial^2}{\partial x}$$

$$= \frac{\partial^2}{\partial x} \cdot \frac{\partial y}{\partial x} + \frac{\partial^2}{\partial y} \cdot \frac{\partial^2}{\partial x}$$

$$= \frac{\partial^2}{\partial x} \cdot \frac{\partial y}{\partial x} + \frac{\partial^2}{\partial y} \cdot \frac{\partial^2}{\partial x}$$

$$= \frac{\partial^2}{\partial x} \cdot \frac{\partial y}{\partial x} + \frac{\partial^2}{\partial y} \cdot \frac{\partial^2}{\partial x}$$

$$\frac{\partial z}{\partial y} = \frac{\partial z}{\partial u} \cdot \frac{\partial y}{\partial y} + \frac{\partial z}{\partial v} \cdot \frac{\partial y}{\partial y}$$

$$= e^{u+v} \cdot x + e^{u+v} \cdot \frac{1}{x}$$

$$= e^{xy+\frac{1}{x}} \cdot x + e^{xy+\frac{1}{x}} \cdot \frac{1}{x}$$

必考

设函数
$$z=f(x^2+y^2,ye^x)$$
 ,其中 $f(u,v)$ 具有二阶连续偏导数,求
$$\frac{\partial^2 z}{\partial x \partial y}$$
 。

$$\frac{\partial z}{\partial x} = f_1' \cdot (z_x) + f_2' \cdot y e^x$$

$$\frac{\partial^{2} z}{\partial x \partial y} = 2x f_{11}^{"} \cdot (2y) + 2x f_{12}^{"} e^{x} + f_{21}^{"} y e^{x} c_{2y} + f_{12}^{"} y e^{x} e^{x} + f_{2}^{'} e^{x}$$

$$= 4xy f_{11}^{"} + 2x e^{x} f_{12}^{"} + 2y^{2} e^{x} f_{12}^{"} + y e^{2x} f_{22}^{"} + e^{x} f_{2}^{'}$$

D 函数 z = f(x,y) 在 (x_0, y_0) 可微的充要条件为_____。

A、 $f_x(x,y)$ 、 $f_y(x,y)$ 在 (x_0,y_0) 的某邻域存在

B、 $f_x(x,y)$ 、 $f_y(x,y)$ 在 (x_0,y_0) 的某邻域连续

 \mathbb{C} 、 当 $\sqrt{(\Delta x)^2 + (\Delta y)^2} \to 0$ 时, $\Delta z - f_x(x,y)\Delta x - f_y(x,y)\Delta y$ 是无穷 小量

D、 当
$$\sqrt{(\Delta x)^2 + (\Delta y)^2} \to 0$$
 时, $\frac{\Delta z - f_x(x,y)\Delta x - f_y(x,y)\Delta y}{\sqrt{(\Delta x)^2 + (\Delta y)^2}}$ 是无穷小量

由方程 $xyz + x^2 + y^2 + z^2 = 4$ 所确定的函数 z = z(x,y) 在点 (1,1,1) 处的全微分 dz =____。

的全领分
$$dz = \underline{\qquad}$$
。
$$F(x,y,z) = xyz + x' + y' + z' - 4$$

$$\frac{\partial z}{\partial x} = -\frac{F'_x}{F'_z} = -\frac{yz + 2x}{xy + 2z} \qquad \frac{\partial z}{\partial x} |_{C(I,I,I)} = -1$$

$$\frac{\partial z}{\partial y} = -\frac{F'_y}{F'_z} = -\frac{xz + 2y}{xy + 2z} \qquad \frac{\partial z}{\partial y} |_{C(I,I,I)} = -1$$

$$clz = -dx - dy$$

二元函数求无条件极值的步骤:

- (1) 求 z = f(x, y) 的定义域 D (开区域);
- (2) 由 $\begin{cases} \frac{\partial z}{\partial x} = 0 \\ \frac{\partial z}{\partial y} = 0 \end{cases}$ 求出 z = f(x, y) 的驻点;
- (3) 利用判别法判断驻点是否为极值点:

令
$$A = f_{xx}^{"}(x_0, y_0), B = f_{xy}^{"}(x_0, y_0), C = f_{yy}^{"}(x_0, y_0)$$
 ,则:
当 $AC - B^2 > 0$ 时, (x_0, y_0) 为函数的极值点,其中:
当 $A > 0$ 时, (x_0, y_0) 为函数 $z = f(x, y)$ 的极小值点;
当 $A < 0$ 时, (x_0, y_0) 为函数 $z = f(x, y)$ 的极大值点;
当 $AC - B^2 < 0$ 时, (x_0, y_0) 不是函数的极值点。

当AC-B2=0时, 无法判断 (Xo, y.) 是否为函数报值点

二元函数求条件极值:

所谓二元函数的条件极值,即二元函数 Z = f(x,y) 在约束条件 $\varphi(x,y) = 0$ 下的极值,一般有如下三种方法:

拉格朗日乘数法:

令
$$F = f(x,y) + \lambda \varphi(x,y)$$
 ,由
$$\begin{cases} F_x' = f_x' + \lambda \varphi_x' = 0 \\ F_y' = f_y' + \lambda \varphi_y' = 0 \end{cases}$$
 求出 (x,y) 的值,并确定最优解;
$$F_\lambda' = \varphi(x,y) = 0$$

转化为一元函数的极值:

由 $\varphi(x,y)=0$ 求出 y=y(x) ,代入 z=f(x,y) ,得 z=f[x,y(x)] ,再求一元函数 z=f[x,y(x)] 的极值;

参数方程法:

由
$$\varphi(x,y)=0$$
 ,得 $\begin{cases} x=x(t) \\ y=y(y) \end{cases}$,代入 $z=f(x,y)$,得 $z=f[x(t),y(t)]$,再求一元函数的极值。

ひ
$$z = f(x,y) = x^4 + y^4 - x^2 - 2xy - y^2$$
,由 $f_x(x,y) = 0$ 和 $f_y(x,y) = 0$ 求得驻点 $M_1(0,0)$ 、 $M_2(1,1)$ 、 $M_3(-1,-1)$,则_____。

A、
$$f(M_1)$$
 是极小值

B、
$$f(M_1)$$
 是极大值

$$C$$
、 $f(M_2)$ 与 $f(M_3)$ 都是极小值

D、
$$f(M_2)$$
 与 $f(M_3)$ 都是极大值

$$\frac{\partial f}{\partial x} = 4x^3 - 2x - 2y$$

$$\frac{\partial f}{\partial y} = 4y^3 - 2x - 2y$$

$$\frac{9x_c}{9x} = 15x_s - 5$$

$$\frac{d\times dA}{9 \cdot t} = -5$$

补充:周长为 2a 的矩形绕它的一边旋转可得到一个圆柱体,当矩形边长各 为多少时,可使圆柱体的体积最大?

设短形边长为×, y. 当基绕 y边 选转, 得到 圆柱体积为 fcx, y)=πx²y, 约束条件为 y (x, y) = x+y-α= o

当年形立长为号,号《时、统动号《的丘陆转、得到的国柱体积最大

已知旋转抛物面 $z = x^2 + y^2$ 与平面 x + y + z = 1 的交线为椭圆,求该椭圆到原点的最长与最短距离。

点 (x,y,z) 到底运距的为 $d=\sqrt{x^2+y^2+z^2}$,其与 $f(x,y,z)=x^2+y^2+z^2$ 间的取到最大、最小值,为简化计算,并 f(x,y,z) 的最大最小值 约束条件 $y(x,y,z)=x^2+y^2-z=z$, y(x,y,z)=x+y+z-1=0 个 $f(x,y,z,x,y,z)=x^2+y^2+z^2+\lambda(x^2+y^2-z)+\mu(x+y+z-1)$

$$f_{x} = 2x + 2\lambda x + \mu = 0$$

$$f_{y} = 2y + 2\lambda y + \mu = 0$$

$$f_{z} = 2z - \lambda + \mu = 0$$

$$f_{\lambda} = x^{2} + y^{2} - z = 0$$

$$f_{\mu} = x + y + z - 1 = 0$$

这道题太难算, 解不出来把军了, 写到这心可以了 最终答案:

空间曲面的切平面与法线:

设
$$\Sigma: F(x,y,z) = 0$$
 为空间曲面, $M_0(x_0,y_0,z_0) \in \Sigma$,则曲面 Σ 在点 $M_0(x_0,y_0,z_0)$ 处的法向量为 $\vec{n} = \{F_x'(M_0),F_y'(M_0),F_z'(M_0)\}$,过 $M_0(x_0,y_0,z_0)$ 的曲面 Σ 的切平面为
$$F_x'(M_0)(x-x_0) + F_y'(M_0)(y-y_0) + F_z'(M_0)(z-z_0) = 0$$
 ,法线为 $\frac{x-x_0}{F_x'(M_0)} = \frac{y-y_0}{F_y'(M_0)} = \frac{z-z_0}{F_z'(M_0)}$ 。

空间曲线的切线与法平面 1:

设
$$L:\begin{cases} x=\varphi(t) \\ y=\psi(t) \end{cases}$$
,取参数 $t=t_0$,对应的曲线上的点为 $M_0(x_0,y_0,z_0)\in L$,其中 $x_0=\varphi(t_0),y_0=\psi(t_0),z_0=\xi_0=0$ 。 由线 L 在 M_0 处的切向量为 $\vec{T}=\{\varphi'(t_0),\psi'(t_0),\omega'(t_0)\}$;曲线 L 在 M_0 处的切线为 $\frac{x-x_0}{\varphi'(t_0)}=\frac{y-y_0}{\psi'(t_0)}=\frac{z-z_0}{\omega'(t_0)}$;曲线 L 在 M_0 处的法平面方程为 $\varphi'(t_0)(x-x_0)+\psi'(t_0)(y-y_0)+\omega'(t_0)(z-z_0)=0$ 。

空间曲线的切线与法平面 2:

设
$$\Gamma: \begin{cases} F(x,y,z) = 0 \\ G(x,y,z) = 0 \end{cases}$$
 点 $M_0(x_0,y_0,z_0) \in \Gamma$,则切线方向的方向向量为 $\vec{T} = \left(\{F_x',F_y',F_z'\} \times \{G_x',G_y',G_z'\} \right)|_{M_0}$ 。

设曲线 L 的方程为 $x=t,y=t^2,z=t^3$,则 L 在对应于 t=1 点处的法 平面方程为____。

盤=1, 雑=2t, 雑=3t²,
t=1 处, 切向量为
$$\vec{s}$$
 = (1, 2, 3), 些生标为 (1, 1, 1)
该平面方程为 $((x-1) + 2(y-1) + 3(2z-1) = 0$
即 $x+2y+3z-6=0$

补充:求曲线 $L: \begin{cases} x^2 + y^2 + z^2 = 6 \\ x + y + z = 0 \end{cases}$ 在点 (1, -2, 1) 处的切线与法平面方程。

对曲面 Fcx,q,2)= x+y+z-6=0,

曲面在空(1,-2,1)处的一个这句里为了,= (2,-4,2)

25

第七章

多变量函数的积分

二重积分:当你理解不了时,想象一张质量不均匀的铁片的重量,或者一个顶面不平的柱体的体积。当你在一个方向上做不出来时,就换一个方向做做试试。这个知识点必考,但是文字不好描述,大家还是看题吧。

二重积分直角坐标转换为极坐标:

令
$$\begin{cases} x = r \cos \theta \\ y = r \sin \theta \end{cases}$$
 , 区域 D 表示为 $D = \{(r, \theta) | \alpha \le \theta \le \beta, r_1(\theta) \le r \le r_2(\theta)\}$,则
$$\iint_D f(x, y) d\sigma = \int_{\alpha}^{\beta} d\theta \int_{r_1(\theta)}^{r_2(\theta)} f(r \cos \theta, r \sin \theta) r dr \quad \circ$$
 注意 f 外面有个 r 。

三重积分:当你理解不了时,想象一块质量不均匀的石头的重量。不要管什么先一后二还 是先二后一,也不要管什么切片法和什么铅直投影法,算就完了。

三重积分直角坐标转换为柱面坐标:

三重积分直角坐标转换为球面坐标:

镜州商贸学院(新圩)《多变量微积分》期末复习题

二重积分
$$\int_0^1 dx \int_x^1 e^{y^2} dy$$
 的值为_____。

厚式 =
$$\int_{0}^{1} dy \int_{0}^{\infty} e^{y^{2}} dx$$
= $\int_{0}^{1} y e^{y^{2}} dy$
= $\frac{1}{2} (e^{-1})$

先蘋分Sey dy 下寸分 $\int \frac{\sqrt{\pi}i\operatorname{erf}(ix)}{2} - \frac{\sqrt{\pi}i\operatorname{erf}(i)}{2} dx$ Problem: Problem: $\int \left(\frac{\sqrt{\pi}\,\mathrm{i}\,\mathrm{erf}(\mathrm{i}x)}{2} - \frac{\sqrt{\pi}\,\mathrm{i}\,\mathrm{erf}(\mathrm{i})}{2}\right)\mathrm{d}x$ $\int e^{y^2} dy$ Apply linearity: Apply linearity: $= \frac{\sqrt{\pi} i}{2} \int \operatorname{erf}(ix) dx - \frac{\sqrt{\pi} i \operatorname{erf}(i)}{2} \int 1 dx$ $=\frac{\sqrt{\pi}}{2}\int \frac{2e^{y^2}}{\sqrt{\pi}}\,\mathrm{d}y$ Now solving: Now solving: $\int \operatorname{erf}(\mathrm{i}x) \, \mathrm{d}x$ $\int \frac{2e^{y^2}}{\sqrt{\pi}} dy$ Substitute $u = ix \longrightarrow du = i dx$ (steps): $= -i \int \operatorname{erf}(u) du$ This is a special integral (imaginary error function): = erfi(y)Plug in solved integrals: Problem: $\frac{\sqrt{\pi}}{2}\int \frac{2e^{y^2}}{\sqrt{\pi}} dy$ $\int \operatorname{erf}(x) dx$ Integrate by parts: fg' = fg - ff'g $=\frac{\sqrt{\pi}\operatorname{erfi}(y)}{2}$ $\downarrow ext{steps} \qquad \downarrow ext{steps}$ $\mathbf{f}' = rac{2\mathrm{e}^{-x^2}}{\sqrt{\pi}}, \mathsf{g} = x$: The problem is solved: $= x \operatorname{erf}(x) - \int \frac{2x e^{-x^2}}{\sqrt{\pi}} dx$ $\int e^{y^2} dy$ $=\frac{\sqrt{\pi}\operatorname{erfi}(y)}{2}+C$ $\int \frac{2xe^{-x^2}}{\sqrt{-}} dx$ Substitute $u=-x^2 \longrightarrow \frac{\mathrm{d}u}{\mathrm{d}x} = -2x$ (sieps) $\longrightarrow \mathrm{d}x = -\frac{1}{2x} \mathrm{d}x$: F/1625' e4 dy = $=-\frac{1}{\sqrt{\pi}}\int e^u du$ Now solving: $\int e^u du$ $\sqrt{\pi} i \operatorname{erf}(ix) \qquad \sqrt{\pi} i \operatorname{erf}(i)$ $\int a^u du = \frac{a^u}{\ln(a)} \text{ with } a = e$:

$$-\frac{1}{\sqrt{\pi}}\int \mathrm{e}^u\,\mathrm{d}u$$

$$=-\frac{\mathrm{e}^u}{\sqrt{\pi}}$$
Undo substitution $u=-x^2$:
$$=-\frac{\mathrm{e}^{-x^2}}{\sqrt{\pi}}$$
Plug in solved integrals:
$$x\operatorname{erf}(x)-\int\frac{2x\mathrm{e}^{-x^2}}{\sqrt{\pi}}\,\mathrm{d}x$$

$$=x\operatorname{erf}(x)+\frac{\mathrm{e}^{-x^2}}{\sqrt{\pi}}$$
The problem is solved:
$$\int\operatorname{erf}(x)\,\mathrm{d}x$$

$$=x\operatorname{erf}(x)+\frac{\mathrm{e}^{-x^2}}{\sqrt{\pi}}+C$$

 $=-\mathrm{i} u \operatorname{erf}(u)-\frac{\mathrm{i} \mathrm{e}^{-u^2}}{\sqrt{\pi}}$ Undo substitution u = ix $= x \operatorname{erf}(\mathrm{i}x) - \frac{\mathrm{i}\mathrm{e}^{x^2}}{\sqrt{\pi}}$ Now solving: $\int 1 \, \mathrm{d}x$ Apply constant rule: Plug in solved integrals: $\frac{\sqrt{\pi}i}{2}\int \operatorname{erf}(ix) dx - \frac{\sqrt{\pi}i\operatorname{erf}(i)}{2}\int 1 dx$ $=\frac{\sqrt{\pi}\operatorname{i} x\operatorname{erf}(\operatorname{i} x)}{2}+\frac{\operatorname{e}^{x^2}}{2}-\frac{\sqrt{\pi}\operatorname{i}\operatorname{erf}(\operatorname{i})x}{2}$ The problem is solved: $\int \left(\frac{\sqrt{\pi}\,\mathrm{i}\,\mathrm{erf}(\mathrm{i}x)}{2} - \frac{\sqrt{\pi}\,\mathrm{i}\,\mathrm{erf}(\mathrm{i})}{2}\right)\mathrm{d}x$ $= \frac{\sqrt{\pi} \operatorname{ix} \operatorname{erf}(\operatorname{ix})}{2} + \frac{\operatorname{e}^{x^2}}{2} - \frac{\sqrt{\pi} \operatorname{i} \operatorname{erf}(\operatorname{i}) x}{2} + C$ $= \frac{\sqrt{\pi} \operatorname{i} x \cdot (\operatorname{erf}(\operatorname{i} x) - \operatorname{erf}(\operatorname{i})) + \operatorname{e}^{x^2}}{2} + C$ 所以, $\int_{3}^{1} \frac{\sqrt{\pi}i \operatorname{erf}(ix)}{2} - \frac{\sqrt{\pi}i \operatorname{erf}(i)}{2} dx = \frac{e^{-1}}{2}$ 正学人做不出来 最终, \ dx \ et dy = e-1 看網了

回得:

Plug in solved integrals:

 $-i\int \operatorname{erf}(u)\,\mathrm{d}u$

- A $\int_0^{\pi} d\theta \int_0^{2\sin\theta} f(r^2\sin\theta\cos\theta) r dr$
- B $\int_0^{\pi} d\theta \int_0^{2\sin\theta} f(r^2\sin\theta\cos\theta) dr$
- $C \cdot \int_0^{2\pi} d\theta \int_0^2 f(r^2 \sin \theta \cos \theta) dr$
- $\mathbb{D} \cdot \int_0^{\pi} d\theta \int_0^{2\cos\theta} f(r^2\sin\theta\cos\theta) r dr$

补充:计算
$$I = \iint_D (x^2 + xy + y^2) d\sigma$$
 ,其中 $D: x^2 + y^2 \le 2x$ 。

因为D关于x轴对称,所以Sb, xy do =0

$$I = \iint_{P} (x^{2} + y^{2}) d\sigma$$

$$= \int_{\frac{\pi}{2}}^{\frac{\pi}{2}} d\theta \int_{2\cos\theta}^{2\cos\theta} (r^{2}\cos^{2}\theta + r^{2}\sin^{2}\theta) r dr$$

$$= 8 \int_{\frac{\pi}{2}}^{\frac{\pi}{2}} \cos^{4}\theta d\theta$$

$$= 8 \times \frac{3}{4} \times \frac{1}{2} \times \frac{\pi}{2} = \frac{3}{2}\pi$$

$$I_n = \int_0^{\frac{\pi}{2}} \sin^2 x \, dx = \int_0^{\frac{\pi}{2}} \cos^2 x \, dx$$

已知空间立体 Ω 由曲面 Σ 围成, Ω 内点 (x,y,z) 处的体密度为 $\rho(x,y,z)$,则 Ω 的质量为 。

- A $\qquad \iiint_{\Omega} dV$
- B $\qquad \iiint_{\Omega} \rho(x, y, z) dV$
- $C \cdot \iint_{\Sigma} \rho(x, y, z) dS$
- $\mathbb{D} \cdot \iint_{\Sigma} \rho(x, y, z) dx dy$

补充: 计算 $\iiint_{\Omega}(z^2+2xy)dv$,其中 Ω 为锥面 $z=\sqrt{x^2+y^2}$ 与 z=2 所 围成的几何体。

第一类曲线积分(对弧长的曲线积分):当你理解不了时,想象一条不均匀的铁链的质量。

第一类曲线积分的计算方法 1:

设
$$L: y = \varphi(x) (a \le x \le b)$$
 ,则 $\int_L f(x, y) ds = \int_a^b f[x, \varphi(x)] \sqrt{1 + {\varphi'}^2(x)} dx$ 。

第一类曲线积分的计算方法 2:

设
$$L: \begin{cases} x = \varphi(t) \\ y = \psi(t) \end{cases} (\alpha \le t \le \beta)$$
 ,则 $\int_L f(x,y) ds = \int_{\alpha}^{\beta} f[\varphi(t), \psi(t)] \sqrt{{\varphi'}^2(t) + {\psi'}^2(t)} dt$ 。

设 L 为连接 A(1,0) 和 B(0,1) 的直线段,则积分 $\int_L (x+y) ds = ___$ 。

第二类曲线积分(对坐标的曲线积分):当你理解不了时,想象一个变力沿曲线做功。

第二类曲线积分的计算方法 1:

设
$$L: y = \varphi(x)$$
 ,其中起点对应 $x = a$,终点对应 $x = b$,则
$$\int_L P(x,y) dx + Q(x,y) dy = \int_a^b \{P[x,\varphi(x)] + Q[x,\varphi(x)]\varphi'(x)\} dx$$
 。

第二类曲线积分的计算方法 2:

设
$$L:$$
 $\begin{cases} x = \varphi(t) \\ y = \psi(t) \end{cases}$,其中起点对应 $t = \alpha$,终点对应 $t = \beta$,则
$$\int_L P(x,y) dx + Q(x,y) dy = \int_{\alpha}^{\beta} \{ P[\varphi(t), \psi(t)] \varphi'(t) + Q[\varphi(t), \psi(t)] \psi'(t) \} dt$$
 。

第二类曲线积分的计算方法 3(格林公式):

设
$$D$$
 为 xOy 平面上连通的有限闭区域, L 为闭区域 D 的正向边界,函数 $P(x,y)$, $Q(x,y)$ 在 D 上连续可偏导,则 $\oint_L P(x,y)dx + Q(x,y)dy = \iint_D \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}\right) dx dy$ 。

柯西-黎曼条件(第二类曲线积分与路径无关的条件之一):区域 D 内恒有 $\frac{\partial Q}{\partial x} = \frac{\partial P}{\partial y}$ 。

补充: 求
$$\int_{I} (y+1)dx + (2x-1)dy$$
 , 其中

- (1) L 是从点 O(0,0) 经 y=x 到点 A(1,1) ;
- (2) L 是从点 O(0,0) 经 $y = x^2$ 到点 A(1,1) 。

$$= \int_{1}^{6} (2x_{y} - 5x + 1) dx = \frac{3}{2}$$
(1) \[\beta y = \int_{1}^{6} \Big[(2x_{y} + 1) + 5(5x - 1) \times \Big] dx

设
$$L$$
 为正向椭圆 $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1(a > 0, b > 0)$,则曲线积分

$$\oint_L (x + e^x \cos y) dx + (x - e^x \sin y) dy = \underline{\qquad} \quad \circ$$

$$D: \left\{ (x,y) \mid \frac{x^{1}}{a^{1}} + \frac{y^{2}}{b^{1}} \leq 1 \right\}$$

补充: $\int_L (x^2 + y^2) dx - x dy$,其中 $y = \sqrt{a^2 - x^2}$ 从点 A(-a, 0) 经

$$B(0,a)$$
 到 $C(a,0)$ 的弧段。

=
$$\int_0^{\pi} (a^3 \sin t + a^2 \cos^2 t) dt$$

=
$$2a^{3}\int_{0}^{\frac{\pi}{2}} \sin t \, dt + 2a^{3}\int_{0}^{\frac{\pi}{2}} \cos^{3} t \, dt$$

$$= 2a^3 + \frac{\pi}{2}a^2$$

大大

已知曲线积分 $I = \int_{I} xy^{2}dx + yx^{2}dy$,

- (1) 证明:在全平面内,积分I与路径无关;
- (2) 计算积分 $\int_{(0,0)}^{(1,1)} xy^2 dx + yx^2 dy$ 。

(1) 因为
$$\frac{3D}{3x} = \frac{3P}{3y} = 2xy$$
,所以积分与路径无关

第一类曲面积分(对面积的曲面积分): 当你理解不了时,想象一张不均匀的铁皮的质量。

第一类曲面积分的计算方法:

设
$$\Sigma: z = \varphi(x, y)$$
 ,其中 $(x, y) \in D$,则 $dS = \sqrt{1 + \left(\frac{\partial z}{\partial x}\right)^2 + \left(\frac{\partial z}{\partial y}\right)^2} dxdy$,于是
$$\iint_{\Sigma} f(x, y, z)dS = \iint_{D} f[x, y, \varphi(x, y)] \sqrt{1 + \left(\frac{\partial z}{\partial x}\right)^2 + \left(\frac{\partial z}{\partial y}\right)^2} dxdy$$
 。

设 Σ 为上半球面 $z = \sqrt{1 - x^2 - y^2}$,则曲面积分

$$\iint_{\Sigma} (x + y + z) dS = \underline{\hspace{1cm}} \circ$$

记O为艺在xOy面上的投影

$$\sqrt{\frac{1}{2}} = \sqrt{\frac{1}{2}} = \sqrt{\frac$$

第二类曲面积分(对坐标的曲面积分): 当你理解不了时,想象单位时间内透过一张渔网的水流量。

第二类曲面积分的计算方法 1:

设 $\Sigma: z = \varphi(x,y)$,其中 $(x,y) \in D_{xy}$,则 $\iint_{\Sigma} P(x,y,z) dy dz = \pm \iint_{D_{xy}} R[x,y,\varphi(x,y)] dx dy$,若 Σ 上一点法向量与 z 轴夹角为锐

角,则二重积分前带"+",若 Σ 上一点法向量与 Z 轴夹角为钝角,则二重积分前带"-"。另外两向类推。

第二类曲面积分的计算方法 2(高斯公式):

设 Ω 为几何体, Σ 为 Ω 的外侧曲面, P(x,y,z),Q(x,y,z),R(x,y,z) 在 Ω 上一阶连续可偏导,则 $\oiint_{\Sigma}Pdydz + Qdzdx + Rdxdy = \iiint_{\Omega} \left(\frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z}\right)dv$ 。

计算曲面积分 $\iint_{\Sigma} x dy dz + y dz dx + (z^2 - 2z) dx dy$,其中 Σ 为锥面 $z = \sqrt{x^2 + y^2}$ 在 $0 \le z \le 1$ 部分的下侧。

補面 E。: { x²+y² ≤ 1 的上侧,记由 E 和 E。 围成的 国 维 为 几

 $\iint_{E+E_{\bullet}} x \, dy \, dz + y \, dz \, dx + (z^{2}-2z) \, dx \, dy = \iiint_{E} (1+(+2z-2)) \, dv$ $= 2 \iiint_{E} 2 \, dv = \frac{\pi}{2}$

 $\iint_{\Sigma_{1}} x \, dy \, dz + y \, dz dx + (z^{2} - 2z) \, dx \, dy = \iint_{\Sigma_{1}} (z^{2} - 2z) \, dx \, dy = -\pi$ $[\Xi_{2} d] = \iint_{\Sigma_{1} + \Sigma_{2}} - \iint_{\Sigma_{1}} = \frac{3}{3} \pi$

第八章

无穷级数

ENA = A, EW=B, WE CUNTUM = EM UN + EN W = A+B

镜州商贸学院(新圩)《多变量微积分》期末复习题

岩k+o,则 si kun 与 si un 有相同的致散性

级数 $\sum_{n=1}^{\infty} a_n$ 收敛, $\lim_{n\to\infty} a_n = 0$;但是, $\lim_{n\to\infty} a_n = 0$,级数 $\sum_{n=1}^{\infty} a_n$ 不一定收敛。

 p 级数:形如 $\sum_{n=1}^{\infty} \frac{1}{n^p}$ 的级数称为 p 级数。当 $p \le 1$ 时, p 级数发散;当 p > 1 时, p 级数收敛。

几何级数:形如 $\sum_{n=1}^\infty aq^n \ (a\neq 0)$ 称为几何级数。当 $|q|\geq 1$ 时,几何级数发散;当 |q|<1 时,几何极数收敛,具其和为 $S=\frac{i\pi}{1-\Delta L}$ 。

莱布尼茨审敛法:设 $\sum_{n=1}^{\infty} (-1)^{n-1} u_n$ 为交错级数,若 $\{u_n\}_{n=1}^{\infty}$ 单调减少且 $\lim_{n\to\infty} u_n=0$,则级数 $\sum_{n=1}^{\infty} (-1)^{n-1} u_n$ 收敛,且其和不超过 u_1 。

幂级数的收敛半径:对幂级数 $\sum_{n=1}^\infty a_n x^n$,设 $\lim_{n\to\infty} \left|\frac{a_{n+1}}{a_n}\right| = \rho$,则当 $\rho=0$ 时, $R=+\infty$;当 $\rho=+\infty$ 时, R=0 ;当 $0<\rho<+\infty$, $R=\frac{1}{\rho}$ 。

 \dot{z} \dot{z}

正项级数审敛法:

比较审敛法基本形式: $a_n \leq b_n$,且 $\sum_{n=1}^{\infty} b_n$ 收敛,则 $\sum_{n=1}^{\infty} a_n$ 收敛; $a_n \geq b_n$,且 $\sum_{n=1}^{\infty} b_n$ 发散,则 $\sum_{n=1}^{\infty} a_n$ 发散。

比较审敛法极限形式:设 $\lim_{n\to -\infty} \frac{a_n}{b_n} = l(0< l<\infty)$,则级数 $\sum_{n=1}^\infty a_n$ 与 $\sum_{n=1}^\infty b_n$ 敛散性相同。

比较审敛法推论:设 $\lim_{n\to -\infty} \frac{a_n}{b_n} = 0$,且 $\sum_{n=1}^{\infty} b_n$ 收敛,则 $\sum_{n=1}^{\infty} a_n$ 收敛;若 $\lim_{n\to -\infty} \frac{a_n}{b_n} = +\infty$,且 $\sum_{n=1}^{\infty} b_n$ 发散,则 $\sum_{n=1}^{\infty} a_n$ 发散。

比值审敛法:设 $\lim_{n\to -\infty}\frac{a_{n+1}}{a_n}=\rho$,则当 $\rho<1$ 时,级数 $\sum_{n=1}^{\infty}a_n$ 收敛;当 $\rho>1$ 时,级数 $\sum_{n=1}^{\infty}a_n$ 发散。

根值审敛法:设 $\lim_{n\to -\infty} \sqrt[n]{a_n}=\rho$,则当 $\rho<1$ 时,级数 $\sum_{n=1}^\infty a_n$ 收敛;当 $\rho>1$ 时,级数 $\sum_{n=1}^\infty a_n$ 发散。

下列极数发散的是。

设正项级数 $\sum_{n=1}^{\infty}v_n$ 与 $\sum_{n=2}^{\infty}|u_n-u_{n-1}|$ 均收敛,证明级数 $\sum_{n=1}^{\infty}u_nv_n^2$ 收敛。

国为 E [un-un-i] 收敛,所以 E (un-un-i) 收敛,

职品(Un-Un-1+Un-1-Un-2···+U2-U1)=品(Un-U1)为事就、职行U1)极限存在

职 ∃M 使对 Yn 都有 M ≥ Un

因为荒山收敛,所以等以外=0,所以等以,=0,

所以可以收敛,所以是Myk收敛

又因为UnviteMunite

麦克劳林级数:

$$e^{x} = \sum_{n=0}^{\infty} \frac{x^{n}}{n!} (-\infty < x < +\infty)$$

$$\sin x = \sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2n+1}}{(2n+1)!} (-\infty < x < +\infty)$$

$$\cos x = \sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2n}}{(2n)!} (-\infty < x < +\infty)$$

$$\begin{cases} \frac{1}{1-x} = \sum_{n=0}^{\infty} x^{n} (-1 < x < 1) \\ \frac{1}{1+x} = \sum_{n=0}^{\infty} (-1)^{n} x^{n} (-1 < x < 1) \end{cases}$$

$$\ln(1+x) = \sum_{n=1}^{\infty} \frac{(-1)^{n-1} x^{n}}{n} (-1 < x < 1)$$

$$-\ln(1-x) = \sum_{n=1}^{\infty} \frac{x^{n}}{n} (-1 \le x < 1)$$

$$(1+x)^{\alpha} = \sum_{n=0}^{\infty} \frac{\alpha(\alpha-1)...(\alpha-n+1)}{n!} (-1 < x < 1)$$

将函数 $f(x) = \frac{1}{3+x}$ 展开成 (x-1) 的幂级数,并指出收敛域。

$$f(x) = \frac{1}{3+x} = \frac{1}{4+(x-1)} = \frac{1}{4} \cdot \frac{1}{1+\frac{x-1}{4}} = \frac{1}{4} \cdot \frac{x}{2} \cdot \frac{1}{2} \cdot$$

补充:将 $f(x) = \arctan x$ 展开成 x 的幂级数。

$$f_{(0)} = 0, \quad f'_{(x)} = \frac{1}{1+x^{2}} = \sum_{n=0}^{\infty} (-1)^{n} x^{2n} \quad (-1 < x < 1)$$

$$|P_{ij}| f_{(x)} = f_{(x)} - f_{(0)} = \int_{0}^{x} f'_{(x)} dx = \sum_{n=0}^{\infty} \frac{(-1)^{n}}{2n+1} x^{2n+1} \quad (-1 \le x \le 1)$$

幂级数 $\sum_{n=1}^{\infty} nx^{n-1}$ 在 (-1,1) 内的和函数_____。

显坐, 幂级数 毫 nx ** 在 x = x 1 时发散, 故此幂级数的收敛效是 (-1.1)

幂级数的和函数是

$$S_{(x)} = \sum_{h=1}^{\infty} h x^{h-1} = \left(\sum_{h=1}^{\infty} x^{h}\right)' = \left(\sum_{h=0}^{\infty} x^{h} - 1\right)'$$

$$= \left(\frac{1}{1-x} - 1\right)' = \frac{1}{(1-x)^{2}}, -1 < x < 1$$

非重点

补充:求幂级数 $\sum_{n=0}^{\infty} \frac{x^{2n}}{(2n)!}$ 的和函数。

$$S'(x) = x + \frac{x^3}{3!} + \frac{x^5}{5!} + \cdots$$
, $S''(x) = 1 + \frac{x^2}{2!} + \frac{x^4}{4!} + \cdots$

周期为 2π 的函数 f(x) 的傅里叶级数:

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx \, dx \, (n = 0, 1, 2 \dots)$$
, $b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx \, dx \, (n = 1, 2 \dots)$, \mathbb{R}

- (1) 当 x 为 f(x) 的连续点时, $\frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx) = f(x)$;
- (2) 当 x 为 f(x) 的间断点时, $\frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx) = \frac{f(x-0) + f(x+0)}{2}$ 。

设 f(x) 为周期为 2π 的周期函数,其在 $[-\pi,\pi)$ 的表达式为

$$f(x) = \begin{cases} -1, & -\pi \le x < 0 \\ 2, & 0 \le x < \pi \end{cases},$$

若 f(x) 的傅立叶级数的和函数为 s(x) ,则 $s(5\pi) = _{\frac{1}{2}}$ 。

非重點

将函数 $f(x) = |x|(-\pi \le x \le \pi)$ 展开成以 2π 为周期的傅立叶级数。 显 知 函数 f(x) 在 $(-\pi,\pi)$ 上 高足状 和 友 電 充分条件,

将国数进行周期延托

$$Q = \frac{1}{4} \int_{-\pi}^{\pi} |x| dx = \frac{2}{4\pi} \int_{0}^{\pi} x dx = \pi$$

$$Q_{N} = \frac{1}{17} \int_{-\pi}^{\pi} |x| \cos_{N} x \, dx = \frac{2}{17} \int_{-\pi}^{\pi} |x| \cos_{N} x \, dx = \frac{2}{17} \int_{-\pi}^{\pi} |x| \sin_{N} x \, dx$$

$$= \frac{2}{17} \int_{-\pi}^{\pi} |x| \cos_{N} x \, dx = \frac{2}{17} \int_{-\pi}^{\pi} |x| \cos_{N} x \, dx = \frac{2}{17} \int_{-\pi}^{\pi} |x| \sin_{N} x \, dx$$

$$= \frac{2}{17} \int_{-\pi}^{\pi} |x| \cos_{N} x \, dx = \frac{2}{17} \int_{-\pi}^{\pi} |x| \cos_{N} x \, dx = \frac{2}{17} \int_{-\pi}^{\pi} |x| \sin_{N} x \, dx$$

$$= \frac{2}{17} \int_{-\pi}^{\pi} |x| \cos_{N} x \, dx = \frac{2}{17} \int_{-\pi}^{\pi} |x| \cos_{N} x \, dx = \frac{2}{17} \int_{-\pi}^{\pi} |x| \sin_{N} x \, dx$$

$$= \frac{2}{17} \int_{-\pi}^{\pi} |x| \cos_{N} x \, dx = \frac{2}{17} \int_{-\pi}^{\pi} |x| \cos_{N} x \, dx = \frac{2}{17} \int_{-\pi}^{\pi} |x| \cos_{N} x \, dx$$

$$= \frac{2}{17} \int_{-\pi}^{\pi} |x| \cos_{N} x \, dx = \frac{2}{17} \int_{-\pi}^{\pi} |x| \cos_{N} x \, dx = \frac{2}{17} \int_{-\pi}^{\pi} |x| \cos_{N} x \, dx$$

$$= \frac{2}{17} \int_{-\pi}^{\pi} |x| \cos_{N} x \, dx = \frac{2}{17} \int_{-\pi}^{\pi} |x| \cos_{N} x \, dx = \frac{2}{17} \int_{-\pi}^{\pi} |x| \cos_{N} x \, dx$$

$$= \frac{2}{17} \int_{-\pi}^{\pi} |x| \cos_{N} x \, dx = \frac{2}{17} \int_{-\pi}^{\pi} |x| \cos_{N} x \, dx = \frac{2}{17} \int_{-\pi}^{\pi} |x| \cos_{N} x \, dx$$

$$= \frac{2}{17} \int_{-\pi}^{\pi} |x| \cos_{N} x \, dx = \frac{2}{17} \int_{-\pi}^{\pi} |x| \cos_{N} x \, dx = \frac{2}{17} \int_{-\pi}^{\pi} |x| \cos_{N} x \, dx$$

$$= \frac{2}{17} \int_{-\pi}^{\pi} |x| \cos_{N} x \, dx = \frac{2}{17} \int_{-\pi}^{\pi} |x| \cos_{N} x \, dx = \frac{2}{17} \int_{-\pi}^{\pi} |x| \cos_{N} x \, dx$$

$$= \frac{2}{17} \int_{-\pi}^{\pi} |x| \cos_{N} x \, dx = \frac{2}{17} \int_{-\pi}^{\pi} |x| \cos_{N} x \, dx = \frac{2}{17} \int_{-\pi}^{\pi} |x| \cos_{N} x \, dx$$

因为长以为偶互制。显然加二、

$$f(x) = \frac{\pi}{3} - \frac{4}{11} (\cos x + \frac{1}{3^2} \cos 3x + \frac{1}{12} \cos 5x + \cdots) , x \in \mathbb{R}$$