תרגול חזרה 2 – פונקציונלים ומרחבים דואליים

תרגילים

```
. v_1 = (1,0,1), v_2 = (0,1,-2), v_3 = (-1,-1,0) נסמן V = R^3 יהי. 1
```

- את את, $f(v_1)=1, f(v_2)=-1, f(v_3)=3$ המקיים R^3 המקיים f פונקציונל על .1.1 . f((a,b,c))
 - המקיים R^3 את פונקציונל הליניארי על המקיים .1.2 . $f(v_1) = f(v_2) = 0, f(v_3) \neq 0$
 - הוכח הוכח . $f(v_1) = f(v_2) = 0, f(v_3) \neq 0$ הוכח המקיים .1.3 . $f((2,3,-1)) \neq 0$

פתרון:

סעיף 1: נשים לב שהוקטורים $v_{1,}v_{2,}v_{3}$ הם בסיס. הפונקציונל f הוא טרנספורמציה ליניארית, לכן אם נכתוב את (a,b,c) כצ"ל של הבסיס, נוכל לחשב את הערך. ליניארית, לכן אם נכתוב את $(a,b,c)=xv_{1}+yv_{2}+zv_{3}\Rightarrow a=x-z,\ b=y-z,\ c=x-2y$ נפתור את המערכת: $a-b=x-y,\ c=x-2y\Rightarrow y=a-b-c,\ z=a-2b-c,\ x=2a-2b-c$ f((a,b,c))=(2a-2b-c)f(v)+(a-b-c)f(v)+(a-2b-c)f(v)=

 $f((a,b,c)) = (2a-2b-c)f(v_1) + (a-b-c)f(v_2) + (a-2b-c)f(v_3) = (a-b-c)f(v_3) + (a-b-c)f(v_3) (a-b-c)f(v_3$

=2a-2b-c-a+b+c+3a-6b-3c=4a-7b-3c

סעיף 2: נשים לב שהנוסחה

f נכונה בלי קשר לערכי $f((a,b,c))=(2\mathrm{a}-2\mathrm{b}-c)\,f(v_1)+(a-b-c)\,f(v_2)+(a-2\mathrm{b}-c)\,f(v_3)$ נכונה בלי קשר לערכי $f(v_1)=f(v_2)=0, f(v_3)=1$ נציב לעיל $f(v_1)=f(v_2)=0, f(v_3)=1$ נציב לעיל . $f((a,b,c))=a-2\mathrm{b}-c$

סעיף 2: נסמן $f(v_3)=k$ ל - $f(v_3)=k$ אז לפי הנוסחה הכללית וסעיף ב', נקבל $f(v_3)=k$. f((2,3,-1))=-3 נציב f((2,3,-1)=-3 . f((a,b,c))=(a-2b-c)k

2. יהי V שדה ממציין 0, ויהי V מ"ו ממימד סופי. יהיו $v_1,\dots,v_m\in V$ וקטורים שונים מאפס. $f:V\to F$ (לאו דווקא הוכח שקיים פונקציונל $f:V\to F$ כך ש $f:V\to F$ לכל $f:V\to F$!).

נשים לב לעובדות הבאות:

.($I_{k imes k}$ מטריצה מדרגה k (כיוון שk השורות הראשונות הן פשוט A .1

אז , $c\in F$ לכל $ar f_1(i)+c\ ar f_2(i)=0$ מתקיים לשני וקטורים $ar f_{1,}ar f_2$ מתקיים .2 . $ar f_1(i)=ar f_2(i)=0$

אז $A\bar{b}_1(i)\neq 0, A\bar{b}_2(j)\neq 0$ – כך ש \bar{b}_1, \bar{b}_2 כך שאם קיימים וקטורים \bar{b}_1, \bar{b}_2 כך שונה מאפס, לכן כדי $A\bar{b}_1+c\,A\bar{b}_2$ – שונה מאפס, לכן כדי קיים c

להראות שיש פונקציונל f המקיים את הנדרש, מספיק להראות שאפשר למצוא וקטורים להראות שיש פונקציונל f המקיים את הנדרש, מספיק להראות שאפשר למצוא וקטורים , אבל $\bar{f}_t(t) \neq 0$ בורם \bar{b}_t ביום של הבסיס הדואלי) עבורם $1 \leq t \leq m$ אז ניקח ברור שכאלה וקטורים קיימים (כי לכל $\bar{b}_t(i) = a_{ii}$ כך ש $\bar{b}_t(i) = a_{ij}$ אז ניקח $\bar{b}_t(j) = 0$.

. $f_1(p) = \int_0^1 p(x) dx$, $f_2(p) = \int_0^2 p(x) dx$, $f_3(p) = \int_{-1}^0 p(x) dx$ נגדיר. $V = R_2[x]$. $V = R_2[x]$ הוכח ש

פתרון: מספיק להראות שזה בסיס דואלי של בסיס של , $R_2[x]$ אנו מחפשים פתרון: מספיק להראות שזה בסיס דואלי של בסיס של , $f_i(p_j)=\delta_{ij}$ בסיס של $1\leq i\leq 3$ ב $f_i(p_i)=a_ix^2+b_ix+c_i$ נחשב את $1=f_1(p_1)=\frac{a_1}{3}+\frac{b_1}{2}+c_1$

האינטגרלים ונקבל: $a=f_2(p_1)=rac{8a_1}{3}+2b_1+2c_1$ נפתור את המערכת ונקבל

$$0 = f_3(p_1) = \frac{-a_1}{3} + \frac{b_1}{2} - c_1$$

 p_2 - באופן דומה נקבל ל . $p_1(x)=-rac{3}{2}x^2+x+1$ ז"א $b_1=1,\ a_1=-rac{3}{2},\ c_1=1$

$$0 = f_1(p_2) = \frac{a_2}{3} + \frac{b_2}{2} + c_2$$

 $b_2=0, a_2=rac{1}{2}, \quad c_2=-rac{1}{6}$ שהפתרון שלה הוא $1=f_2(p_2)=rac{8a_2}{3}+2b_2+2c_2$ המערכת המערכת המערכת המערכת ווא שהפתרון שלה הוא

$$0 = f_3(p_2) = \frac{-a_2}{3} + \frac{b_2}{2} - c_2$$

$$0 = f_1(p_3) = \frac{a_3}{3} + \frac{b_3}{2} + c_3$$

עבור $p_3=f_2(p_3)=rac{8a_3}{3}+2b_3+2c_3$ נקבל p_3 עבור $p_2=rac{1}{2}x^2-rac{1}{6}$

$$1 = f_3(p_3) = \frac{-a_3}{3} + \frac{b_3}{2} - c_3$$

. בסיס. p_1, p_2, p_3 - קל לראות ש- . $p_3(x) = -\frac{1}{2}x^2 + x$ א"ז $b_3 = 1, a_3 = -\frac{1}{2}, c_3 = 0$