# Algorithm Analysis CSI 5301

#### **Assignment 3.1: How to Pick a Pivot**

Due: Mon May 30, 2022 11:59pm Submitted by: Pawan Bhandari

Description: Apply the following rules for picking a pivot to sort Integers using the quick sort algorithm and analyze the number of comparisons required for each strategy.

#### **Pivoting Rules**

- 1. Using the **first** element of the array as the pivot element.
- 2. Using the **final** element of the given array as the pivot element.
- 3. Using a **random** element of the given array as the pivot element.
- 4. Using the "median-of-three" pivot rule.

Data Structure: vector<int>

#### Algorithm:

1) Store the numbers in the input file as the elements of vector

populateInputVector(vector<int>\* vector, string file)

2) Function to determine the median value and return its index

```
pickMedianOfThree(vector<int>* vector, int l, int r)
```

```
start  \begin{array}{l} \textit{middleIndex} = (r-l+1) \, / \, 2 \  \  \, \text{,when number of integers is odd} \\ \textit{middleIndex} = ((r-l+1) \, / \, 2 \, ) - 1 \  \  \, \text{, when number of integers is odd} \\ \textit{if (final} <= \textit{first} <= \textit{middle}) \  \  \, \text{or (final} >= \textit{first} >= \textit{middle}) \  \  \, \text{return index of first} \\ \textit{if (first} <= \textit{middle} <= \textit{final}) \  \  \, \text{or (first} >= \textit{middle} >= \textit{final}) \  \  \, \text{return index of final} \\ \textit{if (first} <= \textit{final} <= \textit{middle}) \  \  \, \text{or (first} >= \textit{final} >= \textit{middle}) \  \  \, \text{return index of final} \\ \textit{end} \end{array}
```

3) Function to pick a pivot based on the pivot rule

```
findPivot(vector<int>, int l, int r, string pivotRule)
```

```
start
    if (pivotRule == "first") return l
    if (pivotRule == "final") return r
    if (pivotRule == "random") return random number between l and r
    if (pivotRule == "median") call pickMedianOfThree and return median index
end
```

4) Function to partition the unsorted list

```
partition(vector<int>* vector, int left, int right, string pivotRule)
start

call findPivot function to set pivotIndex;
    pivot = vector.at(pivotIndex);
    swap elements at pivotIndex and left;
    int i = left +1
    for j = left + 1 to right
        if (element at j < pivot) {
            swap elements at j and i;
            i++;}
    swap elements at l and i - 1;
    return i - 1 as sorted position of the pivot element;
end</pre>
```

5) QuickSort algorithm

```
quickSort(vector<int>* vector, int left, int right, string pivotRule, int& count)
start

if left >= right return;
    count = count + (right - left);
    sortedPivotIndex = Partition(vector, left, right, pivotRule);
    quickSort(vector, left, sortedPivotIndex - 1, pivotRule, count);
    quickSort(vector, sortedPivotIndex + 1, right, pivotRule, count);
end
```

# Analysis:

| Input N             | vector <int></int>                                                                  |
|---------------------|-------------------------------------------------------------------------------------|
| Basic Operation     | Basic arithmetic operations<br>Vector operations<br>Recursion                       |
| Recurrence relation | Best Case: $T(n)=2T\left(\frac{n}{2}\right)+O(n)$<br>Worst Case: $T(n)=T(n-1)+O(n)$ |

### Worst Case Analysis:

Worst case occurs when a pivot is picked such that it is always the smallest element in the list. When this happens the list is split into two halves 1 and n-1 size in each recursive call. Since partition takes O(n) time, we can write a recurrence relation for worst case and solve by substitution to derive the worst case complexity as follows:

$$T(n) = T(n-1) + n$$

or, 
$$T(n) = [T(n-2) + (n-1)] + n$$

or, 
$$T(n) = T(n-2) + (n-1) + n$$

or, 
$$T(n) = [T(n-3) + (n-2)] + (n-1) + n$$

if we repeat this back-substitution for  $k^{th}$  time, we get

$$T(n)=T(n-k)+(n-(k-1))+(n-(k-2))+(n-(k-3))+....+(n-1)+n$$

assume that n-k=0, then n=k. so,

$$T(n)=T(n-n)+(n-n+1)+(n-n+2)+(n-n+3)+\dots+(n-1)+n$$

or, 
$$T(n)=T(0)+1+2+3+....+(n-1)+n$$

or, 
$$T(n)=T(0)+\sum_{1}^{n}1+2+3+....+n$$

or, 
$$T(n) = T(0) + n \frac{(n+1)}{2}$$

so, 
$$T(n)=O(n^2)$$

Therefore, worst case for QuickSort algorithm is  $O(n^2)$ 

## Best Case Analysis:

Best case occurs when pivot is picked such that it is always the median of the elements in the list. When this happens the list is split into two equal halves each time in each recursive call. Since partition takes O(n) time, we can write a recurrence relation for worst case and apply Master Theorem to derive time complexity as follows:

$$T(n) = T\left(\frac{n}{2}\right) + T\left(\frac{n}{2}\right) + n$$

or, 
$$T(n)=2T\left(\frac{n}{2}\right)+n$$
Comparing this recurrence relation with  $T(n)=aT\left(\frac{n}{b}\right)+O\left(n^d\right)$  we get,

$$a = 2$$
,  $b = 2$ ,  $d = 1$ . so,  $log_2 2 = 1 = d$  and in this case  $O(n^d \log n)$ 

Therefore, best case for QuickSort algorithm is  $O(n \log n)$ 

## Comparison Results:

QuickSort algorithm was applied to the given list of integers between 1-1000 using the four pivot strategies and the comparisons done for each run is listed in the table below.

| Table 1: Comparison | count for | different | nivot | strateoies |
|---------------------|-----------|-----------|-------|------------|
| Tuble 1. Comparison | count jor | uijjereni | pivoi | siruiegies |

|                    | First    | Final    | Random | Median-of-three |
|--------------------|----------|----------|--------|-----------------|
| QuickSort10k       | 162085   | 164123   | 149111 | 138382          |
| QuickSort10kR      | 49995000 | 49995000 | 164057 | 12505002        |
| QuickSort10kSemi2k | 229376   | 209217   | 156915 | 136927          |
| QuickSort10kSemi4k | 200624   | 220313   | 159336 | 132119          |

Table 2: Comparison count for first pivot strategy on different runs

|                    | First-1  | First-2  | First-3  | First-4  | First-5  |
|--------------------|----------|----------|----------|----------|----------|
| QuickSort10k       | 162085   | 162085   | 162085   | 162085   | 162085   |
| QuickSort10kR      | 49995000 | 49995000 | 49995000 | 49995000 | 49995000 |
| QuickSort10kSemi2k | 229376   | 229376   | 229376   | 229376   | 229376   |
| QuickSort10kSemi4k | 200624   | 200624   | 200624   | 200624   | 200624   |

Table 3: Comparison count for final pivot strategy on different runs

|                    | Final-1  | Final-2  | Final-3  | Final-4  | Final-5  |
|--------------------|----------|----------|----------|----------|----------|
| QuickSort10k       | 164213   | 164213   | 164213   | 164213   | 164213   |
| QuickSort10kR      | 49995000 | 49995000 | 49995000 | 49995000 | 49995000 |
| QuickSort10kSemi2k | 209217   | 209217   | 209217   | 209217   | 209217   |
| QuickSort10kSemi4k | 220313   | 220313   | 220313   | 220313   | 220313   |

Table 4: Comparison count for random pivot strategy on different runs

|                    | Random-1 | Random-2 | Random-3 | Random-4 | Random-5 |
|--------------------|----------|----------|----------|----------|----------|
| QuickSort10k       | 149111   | 164035   | 151468   | 164961   | 151540   |
| QuickSort10kR      | 164057   | 148404   | 151468   | 154140   | 153550   |
| QuickSort10kSemi2k | 156915   | 149474   | 143334   | 148835   | 157768   |
| QuickSort10kSemi4k | 159336   | 147547   | 160029   | 150359   | 151372   |

Table 5: Comparison count for median pivot strategy on different runs

|                    | Median-1 | Median-2 | Median-3 | Median-4 | Median-5 |
|--------------------|----------|----------|----------|----------|----------|
| QuickSort10k       | 138382   | 138382   | 138382   | 138382   | 138382   |
| QuickSort10kR      | 12505002 | 12505002 | 12505002 | 12505002 | 12505002 |
| QuickSort10kSemi2k | 136927   | 136927   | 136927   | 136927   | 136927   |
| QuickSort10kSemi4k | 132119   | 132119   | 132119   | 132119   | 132119   |

Following are the observations based the comparison data from tables above:

1) Comparisons are highest for sorting the (reversely) sorted list for both first and final element as Pivot

This seems to run on  $O(n^2)$  for n=10k, comparisons are in the range of  $n^2$ 

- 2) Comparisons when using random element as Pivot is less in all cases. This seems to run on  $O(n \log n)$  for n=10k, comparisons are in the range of  $n \log n$ .  $1000 \times \log 10000 \approx 132877$
- 3) In cases where the list is not initially sorted, partitioning the list using any of the pivot strategies yields similar comparisons which is almost in the order of *nlogn*

Figures 1 & 2 below depict the number of comparisons for the input files while using different pivot strategies.

It can be observed from the Figure 1 below that the comparisons while using the given four pivot strategies is negligible (hence, not visible in the stacked column chart) when the list is not sorted to start with as compared to the comparisons while sorting already sorted list (worst case).

Figure 2 depicts the comparisons when picking a random element as pivot and <u>it can be seen that the number of comparison is an order of *nlogn*. As we can see from the horizontal line for *nlogn* in figure 2 that comparison count is just a bit higher than the best case of nlogn.</u>

With this data and analysis its evident that QuickSort using random element as pivot runs with time complexity similar to *O(nlogn)*.



Figure 1: Comparisons during QuickSort using different pivot strategies



Figure 2: Comparisons during QuickSort using random pivot strategy