# 183.605

# Machine Learning for Visual Computing Assignment 1

Group 12: Hanna Huber (0925230) Lena Trautmann (1526567) Elisabeth Wetzer ()

November 17, 2016

- Upload a zip-file with the required programs. You can choose the programming language.
- Add a PDF document with answers to all of the questions of the assignment (particularly all required plots) and description and discussion of results.

# 1 Assignment 1

## 1.1 Part 1: Binary classification and the perceptron

#### 1.1.1 Reading data

#### Tasks:

• Read the data using functions of your programming language resp. simulation software.

First, we wrote a new .csv-file with our .py-script to delete all extra blanks. Afterwards we could read in the data using dlmread().

• Plot the input vectors in  $\mathbb{R}^2$  and visualize corresponding target values (e.g. by using color).



Figure 1: Plot of the input vectors with the target value visualized by colour.

#### Fig. 1 shows the input vectors.

• Use the feature transformation  $(x_1,x_2) \to (x_1^2,x_2^2)$  and plot the data in the new feature space. The data should now be linearly separable.

Fig. 2 shows the transformed input vectors.



Figure 2: Plot of the transformed input vectors with the target value visualized by colour.

#### 1.1.2 Perceptron training algorithm

The function

$$y = perc(w,X)$$
.

simulates a perceptron. The first argument is the weight vector  $\mathbf{w}$  and the second argument is a matrix with input vectors in its columns  $\mathbf{X}$ . The output  $\mathbf{y}$  is a binary vector with class labels 1 or -1.

The function

returns a weight vector  $\mathbf{w}$  corresponding to the decision boundary separating the input vectors in  $\mathbf{X}$  according to their target values  $\mathbf{t}$ .

The argument maxIts determines an upper limit for iterations of the gradient based optimization procedure. If this upper limit is reached before a solution vector is found, the function returns the current  $\mathbf{w}$ , otherwise it returns the solution weight vector. online is *true* if the *online*-version of the optimization procedure is to be used or *false* for the *batch*-version.

#### Tasks:

- The functions percTrain and perc are implemented in the files percTrain.m and perc.m, respectively.
- Figures 3, 4, 5, 6 show perceptron learning after the first iteration, half of the iterations needed and after the final iteration. They show that the algorithm converges much faster using online learning (see Figures 3 and 4). Figures 4 and 6 illustrate how the transformation into the feature space of basis functions makes the data linearly separable. The non-linear decision boundary in the original data space is obtained by applying the inverse transformation to the linear decision boundary in feature space.



Figure 3: Perceptron decision boundary in the original data space at iterations #1, #3 and #6 of online learning.

• The weight vector is initialized as  $\mathbf{w}=\mathbf{0}$ . This way, the learning rate  $\gamma$  merely scales the weight vector  $\mathbf{w}^{(\mathbf{j})}=\gamma\sum_{i\in M}x_it_i$ , where j denotes the current iteration and M the set of data points that have been misclassified and used to update  $\mathbf{w}$  up to this point. As  $(\gamma_1\sum_{i\in M}x_it_i)^T(x_kt_k)\leq 0 \Leftrightarrow (\gamma_2\sum_{i\in M}x_it_i)^T(x_kt_k)\leq 0$  for any  $\gamma_1,\gamma_2>0$ , the classification of the kth data point and thus the learning behaviour of the perceptron are not influenced by the learning rate.



Figure 4: Perceptron decision boundary in the feature space of basis functions at iterations #1, #3 and #6 of online learning.



Figure 5: Perceptron decision boundary in the original data space at iterations #1, #342 and #685 of batch learning.



Figure 6: Perceptron decision boundary in the feature space of basis functions at iterations #1, #342 and #685 of batch learning.



Figure 7: Plot of the decision boundary in the original data space found by the perceptron (green curve) together with labelled data points.

# 1.2 Part 2: Linear basis function models for regression

## 1.2.1 Experimental setup

At the end of the setup we have:

Table 1: Weight vector derived for the LMS-rule and of closed form

|         | $\phi_0$ | $\phi_1$ | $\phi_2$ |
|---------|----------|----------|----------|
| wLMS    | -0.1288  | -16.6005 | 3.7258   |
| wClosed |          |          |          |

• xtrain and ttrain: the training data

• phi: the transformation function

• xtrain\_phi: the transformation of xtrain

#### 1.2.2 Optimization: LMS-learning rule vs. closed form

#### Tasks:

What is the resulting weight vector when using the LMS-rule?



Figure 8: Optimization using the LMS-rule

The values of the resulting weight vector are summarized in Tab. 1 and the corresponding curve plotted in Fig. 8.

 How can you determine the optimal w\* in closed form? Compare w\* with the outcome of the LMS-rule training.

The closed form is calculated by updating the weight vector, determined by all N points, in one step.

• What is the influence of  $\gamma$ ? Which value for  $\gamma$  represents a good tradeoff between number of iterations and convergence?

# 1.2.3 Model-complexity and model-selection

Determine  $\mathbf{w}^*$  in closed form for 2000 different training sets, in which only the  $t_i$  are varyied according to  $\mathcal{N}(\mu = y_i, \sigma = 16)$ , while the  $x_i$  remain unchanged.

#### Tasks1:

- Select a fixed x', which is not an observation of the training set, but lies between two observations (e.g. x'=2)
- Estimate the mean squared error

$$mse = \mathcal{E}(f(x') - f_{\mathbf{w}^*}(x'))^2, \tag{1}$$

i.e., the mean of the squared residuals of the models prediction  $f_{\mathbf{w}^*}(x')$  from the true function value f(x') for all  $0 \le d \le 8$  (d = 0 corresponds to a constant function) using at least 2000 trials.

- Estimate by the same way the quantities  $bias^2 = (f(x') \mathcal{E}f_{\mathbf{w}^*}(x'))^2$  and  $var = (f_{\mathbf{w}^*}(x') \mathcal{E}f_{\mathbf{w}^*}(x'))^2$ .
- Plot mse,  $bias^2$  and var against d together in one plot. What is the relation of the quantities?

 $<sup>^1</sup>$ In all tasks  $\mathcal E$  refers to the expected value with respect to the random variable  $\mathbf w^*$ , i.e.  $\mathcal E \equiv \mathcal E_{\mathbf w^*}$ 

ullet (optional) Generate the above plots only for d=8, but minimize instead of  $E(\mathbf{w})$  the regularized error function

$$E_{\lambda}(\mathbf{w}) = \sum_{i=1}^{N} (t_i - \mathbf{w}^T \mathbf{\Phi}(x_i))^2 + \lambda ||\mathbf{w}||^2,$$
(2)

i.e.  $\mathbf{w}^* = \arg\min_{\mathbf{w}}^* E_{\lambda}(\mathbf{w})$ . Plot the quantities against  $\lambda$  instead of d. Hint: The minimum can be obtained in closed form (see lecture slides).