EE3230 Lecture 8: Sequential Circuit Design

Ping-Hsuan Hsieh (謝秉璇)

Delta Building R908 EXT 42590 phsieh@ee.nthu.edu.tw

Outline

- Sequencing Methods
- Max/Min Delay, Clock Skew, Timing Borrowing
- Sequencing Element Design

Outline

- Sequencing Methods
- Max/Min Delay, Clock Skew, Timing Borrowing
- Sequencing Element Design

Sequencing

- Combinational logic
 - Outputs depend on current inputs
- Sequential logic
 - Outputs depend on current and previous inputs
 - Previous, current, and future separated
 - Memory elements required
 - Called states or tokens
 - Examples: <u>Finite-State</u> <u>Machine</u> (FSM), pipeline

Sequencing Elements

- Latch: level-sensitive
 - a.k.a. transparent latch, D latch, etc.
- Flip-flop: edge-triggered
 - a.k.a. master-slave flip-flop, D flip-flop, D register, etc.
- Timing diagram
 - Transparent
 - Opaque
 - Edge-triggered

Latch vs. Flip-Flops

Latch: level-sensitive

- Passes input D to Q when the clock is high transparent mode
- Input D sampled on the falling edge of the clock is held stable when clock is low – hold mode

Flip-flop: edge-triggered

- Samples input D on a clock transition
- Can be either positive edge-triggered or negative edgetriggered
- Built using two latches (master-slave flip-flops)

Sequencing Methods

Flip-flops

• 2-phase latches

Pulsed latches

Timing Diagrams

t _{pd}	Logic Prop. Delay
t _{cd}	Logic Cont. Delay
t _{pcq}	Latch/Flop Clk-Q Prop Delay
t _{ccq}	Latch/Flop Clk-Q Cont. Delay
t _{pdq}	Latch D-Q Prop Delay
t _{cdq}	Latch D-Q Cont. Delay
t _{setup}	Latch/Flop Setup Time
t _{hold}	Latch/Flop Hold Time

^{*} Contamination & Propagation delays

Sequencing Overhead

- Flip-flops are used to delay fast tokens so that they move through exactly one stage per cycle
- Inevitably add some delay to slow tokens
- Make circuits slower than just the logic delay
 - Called sequencing overhead
 - Some people call this clocking overhead
 - Inevitable side effect of maintaining sequence

Outline

- Sequencing Methods
- Max/Min Delay, Clock Skew, Timing Borrowing
- Sequencing Element Design

Max/Min Delay Constraints

Max delay constraint

Min delay constraint

- Contamination delay of logic cannot be too small, or the data can incorrectly propagate through one clock edge and corrupt the state > hold-time failure, race condition
- Redesign for slower logic

Max Delay: Flip-Flops

$$t_{pd} \leq T_c - \underbrace{\left(t_{\text{setup}} + t_{pcq}\right)}_{\text{sequencing overhead}}$$

Min Delay: Flip-Flops

Clock Skew

- We have assumed zero clock skew
- Clock signals have uncertainty in arrival time

Skew: Flip-Flops: Max Delay

$$t_{pd} \leq T_c - \underbrace{\left(t_{pcq} + t_{\text{setup}} + t_{\text{skew}}\right)}_{\text{sequencing overhead}}$$

Skew: Flip-Flops: Min Delay

$$t_{cd} \ge t_{hold} - t_{ccq} + t_{skew}$$

$$\begin{array}{c} clk \\ clk \\$$

Max Delay: 2-Phase Latches

Min Delay: 2-Phase Latches

$$t_{cd1}, t_{cd2} \ge t_{\text{hold}} - t_{ccq} - t_{\text{nonoverlap}}$$

Timing Borrowing

- In flip-flop systems
 - Data launch on one rising edge
 - Must setup before next rising edge
 - If data arrive late → system fails
 - If data arrive early → system fails
 - Flip-flop systems have hard edges
- In latched-based systems
 - Data can pass through latches while transparent
 - Long logic delay can borrow time into next cycle
 - As long as each loop completes in time

Time Borrowing Example

Loops may borrow time internally but must complete within the cycle

How Much Borrowing?

$$t_{\text{borrow}} \leq \frac{T_c}{2} - \left(t_{\text{setup}} + t_{\text{nonoverlap}}\right)$$

Skew: 2-Phase Latches: Max Delay

 Latch-based designs are skew-tolerant

Skew: 2-Phase Latches: Min Delay

$$t_{cd1}, t_{cd2} \ge t_{\text{hold}} - t_{ccq} - t_{\text{nonoverlap}} + t_{\text{skew}}$$

Skew: How Much Borrowing?

$$t_{\text{borrow}} \leq \frac{T_c}{2} - \left(t_{\text{setup}} + t_{\text{nonoverlap}} + t_{\text{skew}}\right)$$

$$\begin{array}{c} \phi_1 \\ \phi_2 \\ \phi_2 \\ \hline \\ T_c/2 \\ \text{Nominal Half-Cycle 1 Delay} \end{array}$$

Clock Skew

- We have assumed zero clock skew
- Clock signals have uncertainty in arrival time
 - → Negative impact on timing margin
 - Decrease setup time margin (effectively increase maximum delay)
 - Decrease hold time margin (effectively decrease contamination delay)
 - Decrease timing borrowing

Max Delay: Pulsed Latches

$$t_{pd} \leq T_c - \underbrace{\max\left(t_{pdq}, t_{pcq} + t_{\text{setup}} - t_{pw}\right)}_{\text{sequencing overhead}}$$

$$t_{pd} \leq T_c - \underbrace{\max\left(t_{pdq}, t_{pcq} + t_{\text{setup}} - t_{pw}\right)}_{\text{sequencing overhead}}$$

$$t_{pd} \leq T_c - \underbrace{\max\left(t_{pdq}, t_{pcq} + t_{\text{setup}} - t_{pw}\right)}_{\text{sequencing overhead}}$$

$$t_{pd} = \underbrace{t_{pdq}}_{\text{tpd}}$$

$$t_{pd} = \underbrace{t_{pdq}}_{\text{tpd}}$$

$$t_{pd} = \underbrace{t_{pdq}}_{\text{tsetup}}$$

$$t_{pd} = \underbrace{t_{pdq}}_{\text{tsetup}}$$

Min Delay: Pulsed Latches

 Hold-time error increased by pulsed width

Skew: Pulsed Latches: Max Delay

$$t_{pd} \leq T_c - \max\left(t_{pdq}, t_{pcq} + t_{\text{setup}} - t_{pw} + t_{\text{skew}}\right)$$

$$\begin{array}{c} \text{sequencing overhead} \\ & \downarrow \\$$

Skew: Pulsed Latches: Min Delay

$$t_{cd} \ge t_{\text{hold}} + t_{pw} - t_{ccq} + t_{\text{skew}}$$

Outline

- Sequencing Methods
- Max/Min Delay, Clock Skew, Timing Borrowing
- Sequencing Element Design

Static vs. Dynamic Storage

Static Storage

- Preserve state as long as power is on
- Use positive feedback (regeneration) with an internal connection between output and input
- Useful when updates are infrequent

Dynamic Storage

- Store state on parasitic capacitors
- Hold state only for short period of time (milli-seconds)
- Require periodic refresh
- Simpler design, higher speed, and lower power

Latch Design (I)

- Pass-transistor latch
- Pros:
 - Tiny
 - Low load on clock signal
- Cons:
 - Vth drop (not rail-to-rail)
 - Non-restoring
 - Back-driving
 - Output noise sensitivity
 - Dynamic (float when opaque)
 - Diffusion input

(used in 1970's)

Latch Design (II)

- Transmission gate
- Pros:
 - No Vth drop
- Cons:
 - Inverted clock signal required

Latch Design (III)

- Buffered version
- Pros:
 - Restoring
 - No back-driving that fixes
 either one of the followings
 - Output noise sensitivity
 - Diffusion input
- Cons:
 - Inverted output

Latch Design (IV)

- Tristate feedback
- Pros:
 - Static
 - Static latches are now essential
- Cons:
 - Back-driving risk
 - Diffusion input
 - Noise can sneak through OFF transmission gate and destroy output

Latch Design (V)

- Buffered input with feedback
- Pros:
 - Fixes diffusion input
 - Non-inverting
- Cons:
 - Output noise back-driving

Latch Design (VI)

- Buffered output
 - No back-driving

- Widely used in standard cells
- Pros: very robust (most important)
- Cons:
 - Rather large
 - Rather slow (1.5 to 2 FO4 delays)
 - High clock loading

Latch Design (VII)

- Another alternative
 - Smaller and faster
 - Need to be careful with noise control

Clocked CMOS: C²MOS

- C²MOS latch
 - Smaller
 - Slower

Bad design: toggling in D causes charge sharing noise when opaque

Flip-Flop Design

• Flip-flop is built as a pair of back-to-back latches

Reset

- Force output low when reset signal is asserted
- Synchronous vs. asynchronous

Set/Reset

- Force output low when reset signal is asserted
- Force output high when set signal is asserted

• Example: flip-flop with asynchronous set and reset

Enable

- Ignore clock when en = 0
 - MUX: increase D-to-Q delay
 - Clock gating: increase set-up time and skew

Sequencing Elements Characterization

Master-slave-based edge-triggered flip-flop

Implementation

EE3230 Ping-Hsuan Hsieh

Timing Properties

- Assume
 - Propagation delays are tpd_inv and tpd_tx
 - Contamination delay is 0
 - Inverter delay to clk is 0
- Setup time: time before rising edge of clk that D must be valid $t_{su} = 3 * t_{pd_i inv} + t_{pd_i tx}$
- Propagation delay: time for D to reach Q

$$t_{c2q} = t_{pd_inv} + t_{pd_tx}$$

 Hold time: time D must be stable after rising edge of clk

$$t_{hold} = zero$$

Slow clock can cause both latches transparent and increase hold time

Setup Time Simulation (I)

$$t_{\text{setup}} = 0.21 \text{ ns}$$

works correctly

Setup Time Simulation (II)

Sequencing Element Characterization (I)

- Flip flops
- Setup time: minimize t_{D2Q}

Sequencing Element Characterization (II)

- Hold time: min. time from clock to D for t_{C2Q} < t_{pcq}
- Aperture width: the width of timing window around clock edge during which data must not transition

EE3230 Ping-Hsuan Hsieh

Sequencing Element Characterization (III)

- Latches
- Setup time: t_{D2Q} 5% greater than min. value

