Amendments to the Claims:

Please amend the claims as specified below. This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

WHAT IS CLAIMED IS

1. (Currently amended). A compound of the formula I or II

in which

 R^1 is hydrogen, or branched or unbranched C_1 - C_6 -alkyl, it also being possible for one C atom of the alkyl radical to carry OR^{11} or a group R^5 , where R^{11} is hydrogen or C_1 - C_4 alkyl, and

R² is hydrogen, chlorine, bromine, iodine, fluorine, CF₃, nitro, NHCOR²¹, NR²²R²³, OH, O-C₁-C₄-alkyl, O-C₁-C₄-alkylphenyl, NH₂, or phenyl, it also being possible for the phenyl rings to be substituted by at most two radicals R²⁴, and R²¹ and R²² independently of one another are hydrogen or C₁-C₄ alkyl alky 1, and R²³ is hydrogen, C₁-C₄-alkyl, or phenyl and R²⁴ is OH, C₁-C₆-alkyl, O-C₁-C₆-alkyl, chlorine, bromine, iodine, fluorine, CF₃, nitro or NH₂, and

 $\underline{x} \times \underline{x}$ may be 0, 1 or 2 and

 R^3 is -D- $(F^1)_p$ - $(E)_q$ - $(F^2)_r$ -G, where p, q and r may not simultaneously be 0, or R^3 is -E- $(D)_u$ - $(F^2)_s$ - $(G)_v$, it also being possible for the radical E to be substituted by one or two radicals A, and if $v = \underline{0} \Theta$, E is imidazole, pyrrole, pyridine, pyrimidine, piperazine, pyrazine, pyrrolidine or piperidine, or R^3 is B and

 R^4 is hydrogen, chlorine, fluorine, bromine, iodine, branched or unbranched C_1 - C_6 -alkyl, OH, nitro, CF_3 , CN, $NR^{41}R^{42}$, NH-CO- R^{43} , or O- C_1 - C_4 -alkyl, where R^{41} and R^{42} independently of one another are hydrogen or C_1 - C_4 -alkyl and

 R^{43} is hydrogen, $C_1\hbox{-} C_4\hbox{-} alkyl,\, C_1\hbox{-} C_4\hbox{-} alkylphenyl$ or phenyl, and

D is S or O

E is phenyl, imidazole, pyrrole, thiophene, pyridine, pyrimidine, piperazine, pyrazine, furan, thiazole, isoxazole, pyrrolidine, piperidine, or trihydroazepine, and

F¹ is a chain of 1 to 8 carbon atoms, it also being possible for one carbon atom of the chain to carry an OH or O-C₁-C₄-alkyl group and

 F^2 is a chain of 1 to 8 carbon atoms, it also being possible for one carbon atom of the chain to carry an OH or C_1 - C_4 -alkyl group and

p may be 0 or 1

q may be 0 or 1, and

r may be 0 or 1 and

s may be 0 or 1

u may be 0 or 1

v may be 0 or 1

G may be $NR^{51}R^{52}$ or

where

 R^{51} is hydrogen or branched or unbranched $C_1\text{-}C_6\text{-alkyl},$ or $(CH_2)_t\text{-}K$ and

R⁵² is hydrogen, branched or unbranched C₁-C₆-alkyl, phenyl,

in which

R⁵³ may be branched or unbranched O-C₁-C₆-alkyl, phenyl, or branched or unbranched C₁-C₄-alkylphenyl, where in the case of R⁵² and R⁵³, independently of one another, one hydrogen of the C₁-C₆-alkyl radical may be replaced by one of the following radicals: OH, O-C₁-C₄-alkyl, cyclohexyl, cyclopentyl, tetrahydronaphthyl, cyclopropyl, cyclobutyl, cycloheptyl, naphthyl or phenyl, it also being possible for the carbocycles of the radicals R⁵² and R⁵³ independently of one another to carry one or two of the following radicals: branched or unbranched C₁-C₆-alkyl, branched or unbranched O-C₁-C₄-alkyl, OH, F, Cl, Br, I, CF₃, NO₂, NH₂, COOH, COOC₁-C₄-alkyl, C₁-C₄-alkylamino, CCl₃, C₁-C₄-di-alkylamino, SO₂-C₁-C₄-alkyl, SO₂phenyl, CONH₂, CONH-C₁-C₄-alkyl, CONH-C₁-C₄-alkyl, CONH-C₁-C₄-alkyl, NHSO₂phenyl, S-C₁-C₄-C₄-alkyl, NHSO₂phenyl, S-C₁-C₄-alkyl, NHSO₂-C₁-C₄-alkyl, NHSO₂

alkyl, — O
$$C_1$$
- C_4 -alkyl, — O C_0 - C_4 -alkylphenyl, CHO, -CH₂-O- C_1 - C_4 -

alkyl, -CH₂O-C₁-C₄-alkylphenyl, -CH₂OH, -SO-C₁-C₄-alkyl, -SO-C₁-C₄-alkylphenyl, -SO₂NH₂, -SO₂NH-C₁-C₄-alkyl,

or two radicals form a bridge -O-(CH)_{1,2}-O-,

B may be

and

A may be hydrogen, chlorine, bromine, iodine, fluorine, CF_3 , nitro, OH, $O-C_1-C_4$ -alkyl, $O-C_1-C_4$ -alkylphenyl, NH_2 , branched or unbranched C_1-C_6 -alkyl, CN or $NH-CO-R^{33}$ where R^{33} is hydrogen or C_1-C_4 -alkyl, and

 \underline{t} **T** is 0,1, 2, 3 or 4 and

K is [[a]] phenyl, which may carry at most two radicals on the ring, $NR^{kl}R^{k2}$ wherein R^{kl} and R^{k2} are as defined for R^{4l} and R^{42} respectively, NH- C_1 - C_4 -alkylphenyl, pyrrolidine, piperidine, 1, 2, 5, 6-tetrahydropyridine, morpholine, trihydroazepine, piperazine, which may also be substituted by an C_1 - C_6 -alkyl radical, or homopiperazine, which may also be substituted by an C_1 - C_6 -alkyl radical, and

R⁵ may be hydrogen, C₁-C₆-alkyl, or NR⁷R⁹ and

and

 R^7 is hydrogen, C_1 - C_6 -alkyl, C_1 - C_4 -alkylphenyl or phenyl, it also being possible for the rings to be substituted by up to two radicals R^{71} , and

 R^{71} is OH, C_1 - C_6 -alkyl, O- C_1 - C_4 -alkyl, chlorine, bromine, iodine, fluorine, CF_3 , nitro,

or NH₂, and

 R^8 is hydrogen, C_1 - C_6 -alkyl, phenyl, or C_1 - C_4 -alkylphenyl, it also being possible for the ring to be substituted by up to two radicals R^{81} and

R⁸¹ is OH, C₁-C₆-alkyl, O-C₁-C₄-alkyl, chlorine, bromine, iodine, fluorine, CF₃, nitro, or NH₂ and

R⁹ is hydrogen, COCH₃, CO-O-C₁-C₄-alkyl, COCF₃, branched or unbranched C₁-C₆-alkyl, it being possible for one or two hydrogens of the C₁-C₆-alkyl radical to be replaced in each case by one of the following radicals: OH, O-C₁-C₄-alkyl and phenyl, and for the phenyl ring also to carry one or two of the following radicals: iodine, chlorine, bromine, fluorine, branched or unbranched C₁-C₆-alkyl, nitro, amino, C₁-C₄-alkylamino, C₁-C₄-alkylamino, OH, O-C₁-C₄-alkyl, CN, CF₃, or SO₂-C₁-C₄-alkyl, or a tautorneric form, a possible enantiomeric or disasteriomeric form, a prodrug or pharmacologically tolerated salt thereof.

2. (Currently amended). A compound of the formula I or II

$$R^4$$
 NH_2
 R^4
 NH_2
 R^4
 NH_2
 R^4
 NH_2
 R^4
 NH_2
 R^4
 R^4

in which

 R^1 is hydrogen, or branched or unbranched C_1 - C_6 -alkyl, it also being possible for one C atom of the alkyl radical to carry OR^{11} or a group R^5 , where

R¹¹ is hydrogen or C₁-C₄-alkyl, and

 R^2 is hydrogen, chlorine, fluorine, bromine, iodine, branched or unbranched C_1 - C_6 -alkyl, nitro, CF_3 , CN, $NR^{21}R^{22}$, NH-CO- R^{23} , or OR^{21} , where

 R^{21} and R^{22} are, independently of one another, hydrogen or C_1 - C_4 -alkyl, and

 R^{23} is $hydrogen \hbox{\tt [[,]]}\ \underline{or}\ C_1\mbox{\tt -}C_4\mbox{\tt -}alkyl,$ and

 R^3 is O-(CH₂)_o-(CHR³¹)_m-(CH₂)_n-R⁵ where

R³¹ is hydrogen, C₁-C₄-alkyl, OH or O-C₁-C₄-alkyl,

m, o are, independently of one another, 0, 1 or 2, and

n is 1, 2, 3 or 4 and

 R^4 is hydrogen, branched or unbranched C_1 - C_6 -alkyl, chlorine, bromine, fluorine, nitro, cyano, $NR^{41}R^{42}$, NH-CO- R^{43} , or OR^{41} , where

 R^{41} and R^{42} are, independently of one another, hydrogen or C_1 - C_4 -alkyl, and

R⁴³ is C₁-C₄-alkyl or phenyl, and

 R^5 is $NR^{51}R^{52}$ or one of the following radicals

where

 R^{51} is hydrogen or branched or unbranched C_1 - C_6 -alkyl, and R^{52} is hydrogen, or branched or unbranched C_1 - C_6 -alkyl, phenyl,

$$R^{53}$$
 or $-SO_2R^{53}$, in which

R⁵³ is branched or unbranched O-C₁-C₆-alkyl, phenyl, or branched or unbranched C₁-C₄-alkylphenyl, where one hydrogen in the C₁-C₆-alkyl radical in R⁵² and R⁵³ are, independently of one another, optionally replaced by one of the following radicals: OH, O-C₁-C₄-alkyl, cyclohexyl, cyclopentyl, tetrahydronaphthyl, cyclopropyl, cyclobutyl, cycloheptyl, naphthyl or phenyl, where the carbocycles of the R⁵² and R⁵³ radicals may also, independently of one another, carry one or two of the following radicals: branched or unbranched C₁-C₆-alkyl, branched or unbranched O-C₁-C₄-alkyl, OH, F, Cl, Br, I, CF₃, NO₂, NH₂, CN, COOH, COO-C₁-C₄-alkyl, C₁-C₄alkylamino, -CCl₃, C₁-C₄-dialkylamino, SO₂-C₁-C₄-alkyl, SO₂phenyl, CONH₂, CONH-C₁-C₄-alkyl, CONHphenyl, CONH-C₁-C₄-alkyl, NHSO₂-C₁-C₄-alkyl, NHSO₂-C

CHO, CH₂-O-C₁-

C₄-alkyl, -CH₂OC₁-C₄-alkyl-phenyl, -CH₂OH, -SO-C₁-C₄-alkyl, -SO-C₁-C₄-alkyl-phenyl, -SO₂NH₂, -SO₂NH-C₁-C₄-alkyl or two radicals form a bridge -O-(CH)_{1,2}-O-,

or a tautomeric form, a possible enantiomeric or disasteriomeric form, a prodrug or pharmacologically tolerated salt thereof.

3. (Currently amended). A compound of the formula I or II

$$R^4$$
 NH_2
 R^4
 NH_2
 R^4
 NH_2
 R^4
 NH_2
 R^4
 R^4

in which

R¹ is hydrogen, or branched or unbranched C₁-C₆-alkyl, it also being possible for one C atom of thealkyl radical to carry OR¹¹ or a group R⁵, where

R¹¹ is hydrogen or C₁-C₄-alkyl, and

 R^2 is hydrogen, chlorine, fluorine, bromine, iodine, branched or unbranched C_1 - C_6 -alkyl, nitro, CF_3 , CN, $NR^{21}R^{22}$, NH-CO- R^{23} , or OR^{21} , where

 R^{21} and R^{22} are, independently of one another, hydrogen or C_1 - C_4 -alkyl, and R^{23} is hydrogen, C_1 - C_4 -alkyl or phenyl, and R^3 is

and

 R^{31} is hydrogen, CHO or -O-(CH₂)_o-(CHR³²)_m-(CH₂)_n-R⁵ where

R³² is hydrogen, C₁-C₄-alkyl, OH or C₁-C₄-alkyl,

m, o independently of one another are 0, 1 or 2 and n is 1, 2, 3 or 4, and

 R^4 is hydrogen, or branched or unbranched C_1 - C_6 -alkyl, chlorine, bromine, fluorine, nitro, cyano, $NR^{41}R^{42}$, NH-CO- R^{43} , or OR^{41} , where

 R^{41} and R^{42} are, independently of one another, hydrogen or C_1 - C_4 -alkyl and R^{43} is C_1 - C_4 -alkyl or phenyl, and

R⁵ is NR⁵¹R⁵² or one of the radicals below

where

 R^{51} is hydrogen or branched or unbranched $C_1\text{-}C_6\text{-alkyl}$, and

R⁵² is hydrogen, COCH₃, CO-O-C₁-C₄-alkyl, COCF₃, <u>or</u> branched or unbranched C₁-C₆-alkyl, it being possible for one hydrogen of the C₁-C₆-alkyl radical to be replaced by one of the following radicals: OH, O-C₁-C₆-alkyl or phenyl and for the phenyl ring also to carry one or two of the following radicals: chlorine, bromine, fluorine, branched or unbranched C₁-C₄-alkyl, nitro, amino, C₁-C₄-alkylamino, C₁-C₄-dialkylamino, OH, O-C₁-C₄-alkyl, CN, or SO₂-C₁-C₄-alklyl, or a tautomeric form, or a possible enantiomeric or disasteriomeric form, or a prodrug or pharmacologically tolerated salt thereof.

- 4. (Previously presented). A compound as claimed in claims 1, 2 or 3 where R^2 is in position 3 and R^3 is in position 4 or R^2 is in position 4 and R^3 is in position 3 relative to the benzimidazole ring.
- 5. (Previously presented). A compound as claimed in claims 1, 2 or 3 where R^1 and R^4 are hydrogen.
- 6. (Previously presented). A compound as claimed in claims 1, 2 or 3 where R² is hydrogen, or branched or unbranched C₁-C₆-alkyl, nitro, CN, NH₂, or O-C₁-C₄-alkyl.
 - 7. (Currently amended). A compound of the formula I or II[[.]]

$$R^4$$
 NH_2
 R^4
 NH_2
 R^4
 NH_2
 R^4
 NH_2
 R^4
 R^4

in which

 R^1 is hydrogen, or branched or unbranched C_1 - C_6 -alkyl it also being possible for one C atom of thealkyl the alkyl radical to carry OR^{11} or a group R^5 , where

R¹¹ is hydrogen or C₁-C₄-alkyl and

 R^2 is hydrogen, chlorine, fluorine, bromine, iodine, branched or unbranched C_1 - C_6 -alkyl, nitro, CF_3 , CN, $NR^{21}R^{22}$, NH-CO- R^{23} , or OR^{21} , where

 R^{21} and R^{22} are, independently of one another, hydrogen or C_1 - C_4 -alkyl, and R^{23} is hydrogen, C_1 - C_4 -alkyl or phenyl, and

 R^3 is

(i)

 R^{31} is hydrogen or $-(CH_2)_p-R^5$, where

p is 1 or 2 and

 R^{52} may be hydrogen, or branched or unbranched C_1 - C_6 -alkyl, where one hydrogen of the C_1 - C_6 -alkyl radical may be replaced by one of the following radicals: OH, O- C_1 - C_4 -alkyl and phenyl, and where the phenyl ring may also carry one or two of the following radicals: chlorine, bromine, fluorine, branched or unbranched C_1 - C_4 -alkyl, nitro, amino, C_1 - C_4 -alkylamino, C_1 - C_4 -di-alkylamino, OH, O- C_1 - C_4 -alkyl, CN, or SO_2 - C_1 - C_4 -alkyl;

or

(ii) R³ is

 R^{31} is hydrogen or $-(CH_2)_p-R^5$, where

p is 1 or 2 and

 R^{52} may be hydrogen, or branched or unbranched C_1 - C_6 -alkyl, where one hydrogen of the C_1 - C_6 -alkyl radical may be substituted by one of the following radicals: OH, O- C_1 - C_4 -alkyl and phenyl, and where the phenyl ring may also carry one or two of the following radicals: chlorine, bromine, fluorine, branched or unbranched C_1 - C_4 -alkyl, nitro, amino, C_1 - C_4 -alkylamino, C_1 - C_4 -di-alkylamino, OH, O- C_1 - C_4 -alkyl, CN, or SO_2 - C_1 - C_4 -alkyl;

or

(iii) R³ is

where R^{52} is hydrogen, or branched or unbranched C_1 - C_6 -alkyl, where one hydrogen of the C_1 - C_6 -alkyl radical may be replaced by one of the following radicals: OH, O- C_1 - C_4 -alkyl and phenyl, and where the phenyl ring may also carry one or two of the following radicals: chlorine, bromine, fluorine, branched or unbranched C_1 - C_4 -alkyl, nitro, amino, C_1 - C_4 -alkylamino, C_1 - C_4 -di-alkylamino, OH, O- C_1 - C_4 -alkyl, CN, or SO_2 - C_1 - C_4 -alkyl, or a tautorneric form, a possible enantiomeric or disasteriomeric form, a prodrug or pharmacologically tolerated salt thereof.

- 8. (Previously Presented) A compound as claimed in claim 1, where R^3 is -D- $(F^1)_p$ - $(E)_q$ - $(F^2)_r$ -G, where D is O, F^1 is a C_1 - C_4 carbon chain, p is 1, q is 0 and r is 0.
- 9. (Currently amended). A compound as claimed in claim 1, where R⁵ is a 6-membered ring selected from

and R⁵² is a phenyl ring.

- 10. (Previously Presented) A drug comprising besides conventional vehicles and ancillary substances a compound as claimed in claim 1.
 - 11-13. (Cancelled)
- 14. (Previously presented). A method for treating a disorder in which pathologically elevated PARP activities occur, said method comprising administering an effective amount of a compound of the formula I as claimed in claim 1 to a mammal suffering from said disorder wherein the disorder is stroke or craniocerebral trauma.

15. (Cancelled)

- 16. (Previously presented). A method for treating ischemia, said method comprising administering an effective amount of a compound of the formula I as claimed in claim 1 to a mammal suffering from ischemia.
- 17. (Previously presented). A method for treating epilepsy, said method comprising administering an effective amount of a compound of the formula I as claimed in claim 1 to a mammal suffering from epilepsy.
- 18. (Previously presented). A method for treating damage to the kidneys after renal ischemia, damage caused by drug therapy or damage resulting after kidney transplants, said method comprising administering an effective amount of a compound of the formula I as claimed in claim 1 to a mammal suffering from damage to the kidneys after renal ischemia, damage caused by drug therapy or damage resulting after kidney transplants.
- 19. (Previously presented). A method for treating damage to the heart after cardiac ischemia, said method comprising administering an effective amount of a compound of the formula I as claimed in claim 1 to a mammal suffering from damage to the heart after cardiac ischemia.
- 20. (Previously presented). A method for treating a microinfarct said method comprising administering an effective amount of a compound of the formula I as claimed in claim 1 to a mammal suffering from a microinfarct.
- 21. (Previously presented). A method for treating under vascularization of critically narrowed coronary arteries said method comprising administering an effective amount of a compound of the formula I as claimed in claim 1 to a mammal suffering from under vascularization of critically narrowed coronary arteries.

22. (Previously presented). A method for treating an acute myocardial infarct and damage during and after medical or mechanical lysis thereof, said method comprising administering an effective amount of a compound of the formula I as claimed in claim 1 to a mammal suffering from an acute myocardial infarct and damage during and after medical or mechanical lysis thereof.

23. (Canceled).

24. (Previously presented). A method for treating sepsis, said method comprising administering an effective amount of a compound of the formula I as claimed in claim 1 to a mammal suffering from sepsis of multiorgan failure.

25. (Cancelled).

26. (Previously presented). A method for treating diabetes mellitus, said method comprising administering an effective amount of a compound of the formula I as claimed in claim 1 to a mammal suffering from diabetes mellitus.

Claims 27-38. (Canceled).