Review of Linear Algebra

1. If a matrix, \boldsymbol{A} , has an inverse, \boldsymbol{A}^{-1} , this inverse is unique, and

$$AA^{-1} = I$$
 and $A^{-1}A = I$.

- 2. If A^{-1} exists, $(A^{-1})^{-1} = A$.
- 3. If A and B are non-singular matrices, then

$$(AB)^{-1} = B^{-1}A^{-1}.$$

4. If **A** is non-singular and $k \neq 0$, then

$$(k\mathbf{A})^{-1} = \frac{1}{k}\mathbf{A}^{-1}.$$

5. If A and B are matrices such that AB is defined (the two matrices are conformable), then

$$(AB)' = B'A'.$$

6. **A** is called *symmetric* if A' = A.

Note: A'A, AA', and $X(X'X)^{-1}X'$ are all symmetric matrices.

7. If \boldsymbol{A} and \boldsymbol{B} are $n \times n$ square matrices, then

$$\det [AB] = \det [A] \det [B]$$
.

- 8. If \mathbf{A} is $n \times n$, then $\mathbf{det}[\mathbf{A}] = 0$ iff if \mathbf{A} is singular.
- 9. The rank of A is the greatest number of linearly independent columns (or rows) of A.

Note: Linear dependence implies that at least one column (or row) of A can be written as a linear combination of the other columns (or rows).

10. If A and B are non-singular, then for any matrix C,

$$C$$
, AC , CB , ACB

all have the same rank (assuming that the multiplications are defined).

- 17. If A and B are congruent matrices, then they have the same rank.
- 18. Let C be an $m \times n$ matrix with rank r. The ranks of C'C and CC' are also r.
- 19. Let A be an $n \times n$ matrix. There always exist n complex numbers, $\lambda_1, \lambda_2, \ldots, \lambda_n$ (called the *characteristic roots* or *eigenvalues*) that satisfy

$$\det\left[\boldsymbol{A}-\boldsymbol{\lambda}\boldsymbol{I}\right]=0.$$

If A is real symmetric, then all the λ 's are real.

- 20. Let A be an $n \times n$ symmetric matrix. The rank of A is the number of non-zero eigenvalues.
- 21. Let A be an $n \times n$ matrix. A has at least one zero eigenvalue iff A is singular.
- 22. Let A be an $n \times n$ matrix. The determinant of A is the product of its eigenvalues.

$$\mathbf{det}\left[oldsymbol{A}
ight] = \prod_{i=1}^n \lambda_i$$

23. Let A be an $n \times n$ matrix, and let C be any $n \times n$ non-singular matrix. The following matrices all have the same set of eigenvalues:

$$A \quad C^{-1}AC \quad CAC^{-1}$$
.

24. Let A be an $n \times n$ real matrix. A necessary and sufficient condition that there exist a nonzero y that satisfies

$$\mathbf{A}\mathbf{y} = \lambda \mathbf{y}$$

is that λ be an eigenvalue of A.

25. Orthonormal Matrices Let P be an $n \times n$ matrix. P is called orthonormal iff $P^{-1} = P'$. Thus, P is orthonormal iff P'P = I.

By extension, if P is an orthonormal matrix, then PP' = I.

26. Let A be a $n \times n$ matrix, and let P be an $n \times n$ orthonormal matrix, then

$$\det [A] = \det [P'AP].$$

Note: If A is positive definite:

- The rank of A is n.
- All of the eigenvalues of A are greater than 0.
- Let P be a $n \times n$ non-singular matrix. P'AP is also positive definite.
- 34. Non-Negative Definite Matrix. A matrix is called non-negative definite if it is either positive definite or positive semidefinite.
- 35. Let C be an $m \times n$ matrix with rank r. C'C and CC' are both non-negative definite.

C'C or CC' are positive definite iff they have full rank.

- 36. Let A be a $n \times n$ symmetric non-negative definite matrix. There exists some $n \times n$ matrix B such that B'B = A.
- 37. Let A and B be $n \times n$ symmetric matrices. If A is positive definite, then there exists a non-singular matrix Q such that

$$Q'AQ = I$$
 and

$$Q'BQ = D$$

where D is a diagonal matrix whose diagonal elements are the roots of $\det [B - \lambda A]$.

- 38. If A and B are both non-negative definite, then there exists a matrix Q such that both Q'AQ and Q'BQ are diagonal.
- 39. Let A be a $n \times n$ non-singular matrix partitioned into

$$oldsymbol{A} = \left[egin{array}{ccc} oldsymbol{A}_{11} & oldsymbol{A}_{12} \ oldsymbol{A}_{21} & oldsymbol{A}_{22} \end{array}
ight]$$

where both A_{11} and A_{22} are square and non-singular.

$$m{A}^{-1} = \left[egin{array}{ccc} \left[m{A}_{11} - m{A}_{12} m{A}_{22}^{-1} m{A}_{21}
ight]^{-1} & -m{A}_{11}^{-1} m{A}_{12} \left[m{A}_{22} - m{A}_{21} m{A}_{11}^{-1} m{A}_{12}
ight]^{-1} \ -m{A}_{22}^{-1} m{A}_{21} \left[m{A}_{11} - m{A}_{12} m{A}_{22}^{-1} m{A}_{21}
ight]^{-1} & \left[m{A}_{22} - m{A}_{21} m{A}_{11}^{-1} m{A}_{12}
ight]^{-1} \end{array}
ight].$$

48. Let \boldsymbol{A} be an $n \times n$ matrix, and let \boldsymbol{P} be a non-singular $n \times n$ matrix.

$$\mathbf{trace}\left[oldsymbol{A}
ight]=\mathbf{trace}\left[oldsymbol{P}^{-1}oldsymbol{A}oldsymbol{P}
ight].$$

If P is orthonormal, then

$${f trace}\left[{m A}
ight]={f trace}\left[{m P}'{m A}{m P}
ight].$$

49. Let A be an $n \times n$ matrix with eigenvalues $\lambda_1, \lambda_2, \dots, \lambda_n$.

$$\mathbf{trace}\left[\boldsymbol{A}\right] = \sum_{i=1}^n \lambda_i$$

50. If \boldsymbol{A} is an idempotent matrix, then

$$\mathbf{trace}\left[oldsymbol{A}
ight] = \mathbf{rank}\left[oldsymbol{A}
ight].$$

51. Let \boldsymbol{A} and \boldsymbol{B} be $n \times n$ matrices, and let a and b be scalars.

$$\mathbf{trace}\left[a\boldsymbol{A}+b\boldsymbol{B}\right]=a\cdot\mathbf{trace}\left[\boldsymbol{A}\right]+b\cdot\mathbf{trace}\left[\boldsymbol{B}\right].$$

52. Let \boldsymbol{A} be an $n \times n$ matrix.

$$\operatorname{trace}\left[\boldsymbol{A}'\right]=\operatorname{trace}\left[\boldsymbol{A}\right]$$