Tutorial sheet 3

Smoothness, Angle in a Space Curve, etc (dbhoriya.github.io/teaching_F101/tutorial_3.pdf) or SCAN:

Key definitions:

- Smooth Curve: A curve $\mathbf{r}(t) = (f(t), g(t), h(t))$ is smooth on an interval if $\mathbf{r}'(t)$ is continuous and $\mathbf{r}'(t) \neq \mathbf{0}$ throughout.
- Velocity (Tangent Vector): v(t) = r'(t), represents the tangent direction and speed.
- Acceleration: a(t) = r''(t), derivative of velocity.
- Dot Product: For $u, v \in \mathbb{R}^3$,

$$\mathbf{u} \cdot \mathbf{v} = |\mathbf{u}||\mathbf{v}|\cos\theta.$$

Angle Between Vectors:

$$\theta = \arccos \frac{\mathbf{u} \cdot \mathbf{v}}{|\mathbf{u}||\mathbf{v}|} = \cos^{-1} \frac{\mathbf{u} \cdot \mathbf{v}}{|\mathbf{u}||\mathbf{v}|}.$$

Question 1: Consider the space curve:

$$\mathbf{r}(t) = (1 + \sin t)\mathbf{i} + (t^2 + \cos t)\mathbf{j} + (t^3 - \pi t^2)\mathbf{k}, \quad t \neq 0,$$

with

$$\mathbf{r}(0) = 0\mathbf{i} + 0\mathbf{j} + 0\mathbf{k}.$$

- (i) Find all points t at which $\mathbf{r}(t)$ is **smooth**.
- (ii) Find the **angle** between the **tangent** and **acceleration** vectors at $t = \pi$.

Answer: Given:

$$\mathbf{r}(t) = (1 + \sin t)\mathbf{i} + (t^2 + \cos t)\mathbf{j} + (t^3 - \pi t^2)\mathbf{k}, \quad t \neq 0.$$

- Velocity: $\mathbf{r}'(t) = (\cos t, 2t \sin t, 3t^2 2\pi t)$.
- For smoothness:
 - $\mathbf{r}(t)$ must be continuous and $\mathbf{r}'(t) \neq \mathbf{0}$.
 - At t = 0, $\lim_{t\to 0} \mathbf{r}(t) = (1, 1, 0) \neq \mathbf{r}(0) = (0, 0, 0) \Rightarrow$ not smooth.
 - For $t \neq 0$, $\mathbf{r}'(t) = \mathbf{0}$ would require:

$$\cos t = 0$$
, $2t - \sin t = 0$, $3t^2 - 2\pi t = 0$.

No common $t \neq 0$ satisfies all $\Rightarrow \mathbf{r}'(t) \neq \mathbf{0}$.

• Conclusion: Curve is smooth for all $t \neq 0$.

• Velocity (tangent) at $t = \pi$:

$$\mathbf{r}'(\pi) = (-1, 2\pi, \pi^2).$$

• Acceleration at $t = \pi$:

$$\mathbf{r}''(t) = (-\sin t, 2 - \cos t, 6t - 2\pi) \Rightarrow \mathbf{r}''(\pi) = (0, 3, 4\pi).$$

Dot product:

$$\mathbf{r}'(\pi) \cdot \mathbf{r}''(\pi) = 6\pi + 4\pi^3.$$

Magnitudes:

$$|\mathbf{r}'(\pi)| = \sqrt{1 + 4\pi^2 + \pi^4}, \quad |\mathbf{r}''(\pi)| = \sqrt{9 + 16\pi^2}.$$

• Angle:

$$\theta = \arccos \frac{6\pi + 4\pi^3}{\sqrt{1 + 4\pi^2 + \pi^4}\sqrt{9 + 16\pi^2}}.$$

• Numerically, $\theta \approx 20^{\circ}$.

Question 2: Solve the initial value problem:

$$\frac{d^2\mathbf{r}}{dt^2} = -(\mathbf{i} + \mathbf{j} + \mathbf{k})$$

with initial conditions:

$$\mathbf{r}(0) = a\mathbf{i} + b\mathbf{j} + c\mathbf{k}, \qquad \frac{d\mathbf{r}}{dt}\Big|_{t=0} = \mathbf{0},$$

where $a, b, c \in \mathbb{R}$ are constants.

Question-2: Solution Approach

• Start with the second-order ODE:

$$\frac{d^2\mathbf{r}}{dt^2} = -(\mathbf{i} + \mathbf{j} + \mathbf{k})$$

• Integrate once to find velocity:

$$\frac{d\mathbf{r}}{dt} = -t(\mathbf{i} + \mathbf{j} + \mathbf{k}) + \mathbf{C}_1$$

• Apply initial condition $\frac{d\mathbf{r}}{dt}(0) = \mathbf{0} \Rightarrow \mathbf{C}_1 = \mathbf{0}$.

Question-2: Solution (continued)

Integrate velocity to find position:

$$\mathbf{r}(t) = -\frac{t^2}{2}(\mathbf{i} + \mathbf{j} + \mathbf{k}) + \mathbf{C}_2$$

- Apply initial condition $\mathbf{r}(0) = a\mathbf{i} + b\mathbf{j} + c\mathbf{k} \Rightarrow \mathbf{C}_2 = a\mathbf{i} + b\mathbf{j} + c\mathbf{k}$.
- Final solution:

$$\mathbf{r}(t) = \left(a - \frac{t^2}{2}\right)\mathbf{i} + \left(b - \frac{t^2}{2}\right)\mathbf{j} + \left(c - \frac{t^2}{2}\right)\mathbf{k}.$$

Question 4: Find the arc lengths of the following curves:

(i)
$$\mathbf{r}(t) = \cos(3t)\mathbf{i} + \sin(3t)\mathbf{j} + 6t\mathbf{k}, \quad 0 \le t \le \frac{2\pi}{3},$$

(ii)
$$\mathbf{r}(t) = \cos\left(\frac{t}{5}\right)\mathbf{i} + \sin\left(\frac{t}{5}\right)\mathbf{j} + \frac{2t}{5}\mathbf{k}, \quad 0 \le t \le 10\pi,$$

(iii)
$$\mathbf{r}(t) = \cos\left(\frac{2t}{3}\right)\mathbf{i} - \sin\left(\frac{2t}{3}\right)\mathbf{j} - \frac{4t}{3}\mathbf{k}, -3\pi \le t \le 0.$$

Is the answer the same for each curve? If so, why?

• Recall: Arc Length in \mathbb{R}^3 . For a C^1 curve $\mathbf{r}(t)$, $t \in [a, b]$,

$$L = \int_a^b \|\mathbf{r}'(t)\| dt.$$

- Compute the speed $\|\mathbf{r}'(t)\|$.
- If the speed is constant, then $L = (\text{speed}) \times (b a)$.

(i)
$$\mathbf{r}(t) = (\cos 3t, \sin 3t, 6t)$$

- $\mathbf{r}'(t) = (-3\sin 3t, 3\cos 3t, 6).$
- Speed: $\|\mathbf{r}'(t)\| = \sqrt{9(\sin^2 3t + \cos^2 3t) + 36} = 3\sqrt{5}$ (constant).
- Interval length: $\Delta t = \frac{2\pi}{3}$.

$$L_1 = 3\sqrt{5} \cdot \frac{2\pi}{3} = 2\pi\sqrt{5}$$

(ii)
$$\mathbf{r}(t) = \left(\cos\frac{t}{5}, \sin\frac{t}{5}, \frac{2t}{5}\right)$$

•
$$\mathbf{r}'(t) = \left(-\frac{1}{5}\sin\frac{t}{5}, \frac{1}{5}\cos\frac{t}{5}, \frac{2}{5}\right).$$

• Speed:
$$\|\mathbf{r}'(t)\| = \sqrt{\frac{1}{25}(\sin^2 + \cos^2) + \frac{4}{25}} = \sqrt{\frac{5}{25}} = \frac{\sqrt{5}}{5}$$
 (constant).

• Interval length: $\Delta t = 10\pi$.

$$L_2 = \frac{\sqrt{5}}{5} \cdot 10\pi = 2\pi\sqrt{5}$$

(iii)
$$\mathbf{r}(t) = (\cos \frac{2t}{3}, -\sin \frac{2t}{3}, -\frac{4t}{3})$$

•
$$\mathbf{r}'(t) = \left(-\frac{2}{3}\sin\frac{2t}{3}, -\frac{2}{3}\cos\frac{2t}{3}, -\frac{4}{3}\right).$$

• Speed:
$$\|\mathbf{r}'(t)\| = \sqrt{\frac{4}{9}(\sin^2 + \cos^2) + \frac{16}{9}} = \frac{2}{3}\sqrt{5}$$
 (constant).

• Interval length: $\Delta t = 3\pi$.

$$L_3 = \frac{2}{3}\sqrt{5} \cdot 3\pi = 2\pi\sqrt{5}$$

Why are all three lengths equal?

- Write θ for the planar angle: (i) $\theta=3t$, (ii) $\theta=\frac{t}{5}$, (iii) $\theta=\frac{2t}{3}$.
- In each case the z-coordinate satisfies $z=2\theta$ (up to orientation), so each curve traces the same geometric helix:

$$x = \cos \theta$$
, $y = \sin \theta$, $z = 2\theta$, $0 \le \theta \le 2\pi$.

The arc length over one full turn of this helix is

$$L = \int_0^{2\pi} \sqrt{1^2 + \left(\frac{dz}{d\theta}\right)^2} d\theta = \int_0^{2\pi} \sqrt{1 + 2^2} d\theta = 2\pi\sqrt{5}.$$

 The three parametrizations only change the speed/direction (reparameterizations), not the traced path.