

Computer Architecture and Operating Systems Lecture 11: Memory and Caches

Andrei Tatarnikov

atatarnikov@hse.ru
@andrewt0301

Processor-Memory Performance Gap

- Computer performance depends on:
 - Processor performance
 - Memory performance

Memory Challenge

- Make memory appear as fast as processor
- •Ideal memory:
 - Fast
 - Cheap (inexpensive)
 - Large (capacity)

But can only choose two!

Memory Technology

- Static RAM (SRAM)
 - -0.5ns 2.5ns, \$2000 \$5000 per GB
- Dynamic RAM (DRAM)
 - 50ns 70ns, \$20 \$75 per GB
- Magnetic disk
 - ■5ms 20ms, \$0.20 \$2 per GB
- •Ideal memory
 - Access time of SRAM
 - Capacity and cost/GB of disk

Locality

No need for large memory to access it fast Just exploit locality

- Temporal Locality:
 - Locality in time
 - If data used recently, likely to use it again soon
 - How to exploit: keep recently accessed data in higher levels of memory hierarchy
- Spatial Locality:
 - Locality in space
 - If data used recently, likely to use nearby data soon
 - How to exploit: when access data, bring nearby data into higher levels of memory hierarchy too

Taking Advantage of Locality

- Memory hierarchy
- Store everything on disk
- Copy recently accessed (and nearby) items from disk to smaller DRAM memory
 - Main memory
- Copy more recently accessed (and nearby) items from DRAM to smaller SRAM memory
 - Cache memory attached to CPU

Memory Hierarchy

Personal mobile device

L2 C Memory C CPU bus a а Memory Storage C C Registers h h е е Flash memory Register Level 1 Level 2 Memory reference reference Cache Cache reference reference reference 256 KB 1-2 GB 4-64 GB Size: 1000 bytes 64 KB Speed: 300 ps 1 ns 5-10 ns 50-100 ns 25-50 us

Laptop or desktop

L3 C

a

10-20 ns

Memory

bus

C

3-10 ns

CPU

200 ps

Server

Disk storage

5-10 ms 100-200 us

I/O bus

50-100 ns

How It Works?

- Block (aka line): unit of copying
 - May be multiple words
- If accessed data is present in upper level
 - Hit: access satisfied by upper level
 - Hit ratio: hits/accesses
- If accessed data is absent
 - Miss: block copied from lower level
 - Time taken: miss penalty
 - Miss ratio: misses/accesses = 1 hit ratio
 - Then accessed data supplied from upper level

Hits and Misses

- On cache hit, CPU proceeds normally
- On cache miss
 - Stall the CPU pipeline
 - Fetch block from next level of hierarchy
 - Instruction cache miss
 - Restart instruction fetch
 - Data cache miss
 - Complete data access

Miss Types

Compulsory: first time data accessed

Capacity: cache too small to hold all data of interest

Conflict: data of interest maps to a location in cache mapped to different data

Memory Performance

- Hit: data found in that level of memory hierarchy
- Miss: data not found (must go to next level)
 - Hit Rate = # hits / # memory accesses = 1 Miss Rate
 - Miss Rate = # misses / # memory accesses = 1 Hit Rate
- Average memory access time (AMAT): average time for processor to access data
 - AMAT = $t_{cache} + MR_{cache}[t_{MM} + MR_{MM}(t_{VM})]$

Cache Memory

- Cache memory
 - The level of the memory hierarchy closest to the CPU
- ■Given accesses X₁, ..., X_{n-1}, X_n

X ₄
X ₁
X _{n-2}
X _{n-1}
X ₂
X ₃

X ₄
X ₁
X _{n-2}
X _{n-1}
X ₂
X_n
X ₃

- How do we know if the data is present?
- •Where do we look?

a. Before the reference to X_n

Direct Mapped Cache

- Location determined by address
- Direct mapped: only one choice
 - Block address) modulo (#Blocks in cache)

- #Blocks is a power of 2
- Use low-order address bits

Tags and Valid Bits

- How do we know which particular block is stored in a cache location?
 - Store block address as well as the data
 - Actually, only need the high-order bits
 - Called the tag
- What if there is no data in a location?
 - Valid bit: 1 = present, 0 = not present
 - Initially 0

- ■8-blocks, 1 word/block, direct mapped
- Initial state

Index	V	Tag	Data
000	N		
001	N		
010	N		
011	N		
100	N		
101	N		
110	N		
111	N		

Word addr	Binary addr	Hit/miss	Cache block
22	10 110	Miss	110

Index	V	Tag	Data
000	N		
001	N		
010	N		
011	N		
100	N		
101	N		
110	Υ	10	Mem[10110]
111	N		

Word addr	Binary addr	Hit/miss	Cache block
26	11 010	Miss	010

Index	V	Tag	Data
000	N		
001	N		
010	Υ	11	Mem[11010]
011	N		
100	N		
101	N		
110	Υ	10	Mem[10110]
111	N		

Word addr	Binary addr	Hit/miss	Cache block
22	10 110	Hit	110
26	11 010	Hit	010

Index	V	Tag	Data
000	N		
001	N		
010	Υ	11	Mem[11010]
011	N		
100	N		
101	N		
110	Υ	10	Mem[10110]
111	N		

Word addr	Binary addr	Hit/miss	Cache block
16	10 000	Miss	000
3	00 011	Miss	011
16	10 000	Hit	000

Index	V	Tag	Data
000	Y	10	Mem[10000]
001	N		
010	Υ	11	Mem[11010]
011	Y	00	Mem[00011]
100	N		
101	N		
110	Υ	10	Mem[10110]
111	N		

Word addr	Binary addr	Hit/miss	Cache block
18	10 010	Miss	010

Index	V	Tag	Data
000	Υ	10	Mem[10000]
001	N		
010	Y	10	Mem[10010]
011	Υ	00	Mem[00011]
100	N		
101	N		
110	Υ	10	Mem[10110]
111	N		

Associative Caches

- Fully associative
 - Allow a given block to go in any cache entry
 - Requires all entries to be searched at once
 - Comparator per entry (expensive)
- n-way set associative
 - Each set contains n entries
 - Block number determines which set
 - (Block number) modulo (#Sets in cache)
 - Search all entries in a given set at once
 - n comparators (less expensive)

Associative Cache Examples

Block # 0 1 2 3 4 5 6 7 Data

Set associative

Fully associative

Spectrum of Associativity

• For a cache with 8 entries

One-way set associative (direct mapped)

Block	Tag	Data
0		
1		
2		
3		
4		
5		
6		
7		

Two-way set associative

Set	Tag	Data	Tag	Data
0				
1				
2				
3				

Four-way set associative

Set	Tag	Data	Tag	Data	Tag	Data	Tag	Data
0								
1								

Eight-way set associative (fully associative)

Tag	Data														

Associativity Example

- Compare 4-block caches
 - Direct mapped, 2-way set associative, fully associative
 - Block access sequence: 0, 8, 0, 6, 8

Direct mapped

Block	Cache	Hit/miss	Cache content after access				
address	index		0	1	2	3	
0	0	miss	Mem[0]				
8	0	miss	Mem[8]				
0	0	miss	Mem[0]				
6	2	miss	Mem[0]		Mem[6]		
8	0	miss	Mem[8]		Mem[6]		

Associativity Example

2-way set associative

Block	Cache	Hit/miss	Cache content after access				
address	index		Se	et O	Set 1		
0	0	miss	Mem[0]				
8	0	miss	Mem[0]	Mem[8]			
0	0	hit	Mem[0]	Mem[8]			
6	0	miss	Mem[0]	Mem[6]			
8	0	miss	Mem[8]	Mem[6]			

Fully associative

Block address	Hit/miss	Cache content after access						
0	miss	Mem[0]						
8	miss	Mem[0]	Mem[8]					
0	hit	Mem[0]	Mem[8]					
6	miss	Mem[0]	Mem[8]	Mem[6]				
8	hit	Mem[0]	Mem[8]	Mem[6]				

How Much Associativity

- •Increased associativity decreases miss rate
 - But with diminishing returns
- Simulation of a system with 64KB
 D-cache, 16-word blocks, SPEC2000
 - **1**-way: 10.3%
 - **2**-way: 8.6%
 - 4-way: 8.3%
 - 8-way: 8.1%

Replacement Policy

- Direct mapped
 - No choice
- Set associative
 - Prefer non-valid entry, if there is one
 - Otherwise, choose among entries in the set
- Least-recently used (LRU)
 - Choose the one unused for the longest time
 - Simple for 2-way, manageable for 4-way, too hard beyond that
- Random
 - Gives approximately the same performance as LRU for high associativity

Write-Through

- On data-write hit, could just update the block in cache
 - But then cache and memory would be inconsistent
- Write through: also update memory
- But makes writes take longer
 - e.g., if base CPI = 1, 10% of instructions are stores, write to memory takes 100 cycles
 - Effective CPI = $1 + 0.1 \times 100 = 11$
- Solution: write buffer
 - Holds data waiting to be written to memory
 - CPU continues immediately
 - Only stalls on write if write buffer is already full

Write-Back

- Alternative: On data-write hit, just update the block in cache
 - Keep track of whether each block is dirty
- When a dirty block is replaced
 - Write it back to memory
 - Can use a write buffer to allow replacing block to be read first

Write Allocation

- What should happen on a write miss?
- •Alternatives for write-through
 - Allocate on miss: fetch the block
 - Write around: don't fetch the block
 - Since programs often write a whole block before reading it (e.g., initialization)
- For write-back
 - Usually fetch the block

Multilevel Caches

- Primary cache attached to CPU
 - Small, but fast
- Level-2 cache services misses from primary cache
 - Larger, slower, but still faster than main memory
- Main memory services L-2 cache misses
- Some high-end systems include L-3 cache

Measuring Cache Performance

- Components of CPU time
 - Program execution cycles
 - Includes cache hit time
 - Memory stall cycles
 - Mainly from cache misses
- With simplifying assumptions:

Cache Performance Example

- Given
 - I-cache miss rate = 2%
 - D-cache miss rate = 4%
 - Miss penalty = 100 cycles
 - Base CPI (ideal cache) = 2
 - Load & stores are 36% of instructions
- Miss cycles per instruction
 - I-cache: $0.02 \times 100 = 2$
 - D-cache: $0.36 \times 0.04 \times 100 = 1.44$
- \blacksquare Actual CPI = 2 + 2 + 1.44 = 5.44
 - Ideal CPU is 5.44/2 =2.72 times faster

Average Access Time

- Hit time is also important for performance
- Average memory access time (AMAT)
 - AMAT = Hit time + Miss rate × Miss penalty
- Example
 - CPU with 1ns clock, hit time = 1 cycle, miss penalty = 20 cycles, I-cache miss rate = 5%
 - $-AMAT = 1 + 0.05 \times 20 = 2ns$
 - 2 cycles per instruction

Overal Performance Summary

- When CPU performance increased
 - Miss penalty becomes more significant
- Decreasing base CPI
 - Greater proportion of time spent on memory stalls
- •Increasing clock rate
 - Memory stalls account for more CPU cycles
- Can't neglect cache behavior when evaluating system performance

Example: How Caches Affect Performance

Matrix Multiplication

Loop order: i, j, k

```
for (int i= 0; i < n; i++) {
  for (int j= 0; j < n; j++) {
    for (int k= 0; k < n; k++) {
        C[i][j]+= A[i][k]*B[k][j];
    }
  }
}</pre>
```

Loop order: i, k, j

```
for (int i= 0; i < n; i++) {
  for (int k= 0; k < n; k++) {
    for (int j= 0; j < n; j++) {
        C[i][j]+= A[i][k]*B[k][j];
    }
}</pre>
```

Loop order: j, k, i

```
for (int j= 0; j < n; j++) {
  for (int k= 0; k < n; k++) {
    for (int i= 0; i < n; i++) {
        C[i][j]+= A[i][k]*B[k][j];
    }
  }
}</pre>
```

Running time:

13.714264 sec.

Performance:

~ 153 MFLOPS

Running time:

2.739385 sec.

Performance:

~ 795 MFLOPS

Running time:

19.074106 sec.

Performance:

~ 113 MFLOPS

Memory Access Patterns

Any Questions?

```
__start: addi t1, zero, 0x18
    addi t2, zero, 0x21

cycle: beq t1, t2, done
    slt t0, t1, t2
    bne t0, zero, if_less
    nop
    sub t1, t1, t2
    j cycle
    nop

if_less: sub t2, t2, t1
    j cycle

done: add t3, t1, zero
```