2-7 The Algorithmic Methods

魏恒峰

hfwei@nju.edu.cn

2018年05月07日

Convex Polygon Diameter

Show that the "Convex Polygon Diameter" algorithm is of **linear-time** complexity.

Q: Linear-time of WHAT?

Show that the "Convex Polygon Diameter" algorithm is of **linear-time** complexity.

Q: Linear-time of WHAT?

A: Linear-time of the size of input

Show that the "Convex Polygon Diameter" algorithm is of **linear-time** complexity.

Q: Linear-time of WHAT?

A: Linear-time of the size of input

Q: What is the input?

Show that the "Convex Polygon Diameter" algorithm is of **linear-time** complexity.

Q: Linear-time of WHAT?

A: Linear-time of the size of input

Q: What is the input?

A : A convex polygon

Show that the "Convex Polygon Diameter" algorithm is of **linear-time** complexity.

Q: Linear-time of WHAT?

A: Linear-time of the size of input

Q: What is the input?

A: A convex polygon represented by n vertices

Show that the "Convex Polygon Diameter" algorithm is of **linear-time** complexity.

Q: Linear-time of WHAT?

A: Linear-time of the size of input

Q: What is the input?

A: A convex polygon represented by <math>n vertices

Q: What are the critical operations?

Show that the "Convex Polygon Diameter" algorithm is of **linear-time** complexity.

Q: Linear-time of WHAT?

A: Linear-time of the size of input

Q: What is the input?

A: A convex polygon represented by n vertices

Q: What are the critical operations?

$$A: d(p_1, p_2) = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$$

Show that the "Convex Polygon Diameter" algorithm is of **linear-time** complexity.

Q: Linear-time of WHAT?

A: Linear-time of the size of input

Q: What is the input?

A: A convex polygon represented by n vertices

Q: What are the critical operations?

$$A: d(p_1, p_2) = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$$

$$\Theta(c \cdot n) = \Theta(n)$$

Correctness

For a convex polygon, a pair of vertices determine the diameter.

For a convex polygon, a pair of vertices determine the diameter.

For a convex polygon, a pair of vertices determine the diameter.

BUT, we have *not* enumerated *all* pairs of vertices.

For a convex polygon, a pair of vertices determine the diameter.

BUT, we have *not* enumerated *all* pairs of vertices.

We have enumerated all pairs of vertices

For a convex polygon, a pair of vertices determine the diameter.

BUT, we have *not* enumerated *all* pairs of vertices.

We have enumerated *all* pairs of vertices that *admits parallel supporting lines*.

A line L is a $\ensuremath{\textit{line of support}}$ of a convex polygon P if

 $L \cap P = \text{ a vertex/an edge of } P.$

A line L is a *line of support* of a convex polygon P if

 $L \cap P = \text{ a vertex/an edge of } P.$

 $L \cap P \neq \emptyset$ and P lies entirely on one side of L.

A line L is a *line of support* of a convex polygon P if

 $L \cap P = \text{ a vertex/an edge of } P.$

 $L \cap P \neq \emptyset$ and P lies entirely on one side of L.

Definition (Antipodal)

An antipodal is a pair of points that admits parallel supporting lines.

A line L is a *line of support* of a convex polygon P if

 $L \cap P = \text{ a vertex/an edge of } P.$

 $L \cap P \neq \emptyset$ and P lies entirely on one side of L.

Definition (Antipodal)

An antipodal is a pair of points that admits parallel supporting lines.

We have enumerated all antipodals.

If AB is a diameter of a convex polygon P, then AB is an antipodal.

If AB is a diameter of a convex polygon P, then AB is an antipodal.

Proof.

If AB is a diameter of a convex polygon P, then AB is an antipodal.

Proof.

Rotating Caliper

Rotating Caliper

"Computational Geometry" Ph.D Thesis, Michael Shamos, 1978

Rotating Caliper

"Computational Geometry" Ph.D Thesis, Michael Shamos, 1978

"Solving Geometric Problems with the Rotating Calipers", 1983

A Classic and Beautiful Divide-Conquer Algorithm:

A Classic and Beautiful Divide-Conquer Algorithm:

A Classic and Beautiful Divide-Conquer-Combine Algorithm:

A Classic and Beautiful Divide-Conquer-Combine Algorithm:

Section 33.4, CLRS

Thank You!

Office 302

Mailbox: H016

hfwei@nju.edu.cn