یادگیری تقویتی مصد I مصنور

(Reinforcement Learning)

- 1. فرایند تصمیم مارکوف (Markov Decision Processes)
 - 2. الگوریتم تکرار مقدار (Value Iteration)
 - (Policy Iteration) الگوريتم تكرار سياست .3
 - (Reinforcement Learning) يادگيري تقويتي .4

الگوریتم تکرار مقدار (Value Iteration)

(The Bellman Equations) معادلات بلمن

الگوریتم Value Iteration

□معادلات بلمن (Bellman) مقادير بهينه را مشخص مي كنند:

$$V^*(s) = \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^*(s') \right]$$

$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right]$$
 "Bellman Update"

الگوريتم Value Iteration

با بردار $V_0(s)=0$ شروع کن. یعنی وقتی هیچ گامی (time step) باقی نمانده، مجموع پاداش مورد انتظار صفر است.

: بیار داشتن بردار ($V_k(s)$ ، برای هر حالت $V_{k+1}(s)$ را به دست بیار $lacksymbol{\square}$

$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right]$$

- V = B(V) Where B is the Bellman update operator
- تکرار کن تا همگرایی حاصل شود، که در نهایت منجر به V^* می شود.
 - $O(S^2A)$:پیچیدگی زمانی هر تکرار \Box
- □قضیه: این الگوریتم به یک مجموعه ی یکتا از مقادیر بهینه همگرا می شود:
 - ایده اصلی: تقریبها بهتدریج به سمت مقادیر بهینه اصلاح میشوند.
 - سیاست (Policy) ممکن است خیلی زودتر از مقادیر (Values) همگرا شود

$$V_1$$
 $\begin{cases} S: 1 \\ F: .5*2 + .5*2 = 2 \end{cases}$

$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right]$$

$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right]$$

 V_0

$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right]$$

$$V_2$$

S: 1+2=3

F: .5*(2+2)+.5*(2+1)=3.5

2

1

()

Assume no discount!

$$V_0$$

0

0

0

$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right]$$

$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right]$$

استخراج سياست

محاسبهی عملها از روی ارزش حالتها

 $V^*(s)$ فرض کنید ارزش بهینهی حالتها را در اختیار داریم \Box

□در هر حالت باید چه عملی را انجام دهیم؟ • خیلی واضح نیست!

$$\pi^*(s) = \arg\max_{a} \sum_{s'} T(s, a, s') [R(s, a, s') + \gamma V^*(s')]$$

روی ارزش مرحله را استخراج سیاست (policy extraction) مینامند، زیرا در این مرحله سیاست عامل از روی ارزش (values) به دست می آید.

محاسبهی عمل از روی ارزش حالتهای Q

■ بسیار ساده است!

$$\pi^*(s) = \arg\max_{a} Q^*(s, a)$$

یک درس مهم: انتخاب عمل از روی مقادیر q ساده تر است.

مشكلات الگوريتم تكرار مقدار

□الگوریتم تکرار مقدار، معادله ی بلمن را تکرار می کند:

$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right]$$

- $O(S^2A)$ مشكل ١. اين الگوريتم كند است هر تكرار
- مشکل ۲. مقدار «ماکزیمم» در هر حالت به ندرت تغییر می کند.
- مشکل ۳. در اغلب موارد، سیاست بسیار سریعتر از ارزش حالتها همگرا میشود.

k=12

k = 100

روشهای مبتنی بر سیاست (Policy)

(Policy Iteration) الگوريتم تكرار سياست

- 🗖 رویکرد جایگزین برای محاسبه مقادیر بهینه:
- گام ۱: ارزیابی سیاست (Policy Evaluation): محاسبهی سودمندیها (utilities) برای یک سیاست ثابت (نه سودمندیهای بهینه!) تا زمان همگرایی.
- گام ۲: بهبود سیاست (Policy Improvement): بهروزرسانی سیاست با استفاده از نگاه یکگام به جلو (one-step look-ahead) و استفاده از سودمندیهای همگراشده (اما هنوز نه بهینه!) به عنوان مقادیر آینده.
 - این مراحل تکرار می شود تا سیاست همگرا شود.
 - این فرآیند تکرار سیاست (Policy Iteration) نام دارد. \Box
 - همچنان به جواب بهینه میرسد!
 - در برخی شرایط میتواند (خیلی) سریعتر همگرا شود.

(Policy Evaluation) ارزیابی سیاست

سیاستهای ثابت

بر طبق سیاست π عمل کن

عمل بهینه را انجام بده

اگر از سیاست ثابت $\pi(s)$ استفاده کنیم، درخت ساده تر می شود. - یک عمل به ازای هر حالت. \blacksquare ... بنابراین ارزش حالت ها در درخت بستگی به سیاست انتخاب شده دارد.

محاسبهی سودمندی برای سیاست های ثابت

- □یک عمل پایهای دیگر:
- محاسبه ی ارزش حالت s تحت یک سیاست ثابت (معمولا غیر بهینه)
 - π تعریف ارزش حالت ${
 m s}$ تحت سیاست ثابت ${
 m c}$
 - π سودمندی موردانتظار با شروع از s و دنبال کردن v
 - □رابطه بازگشتی (نگاه یکگام به جلو / معادله بلمن):

$$V^{\pi}(s) = \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V^{\pi}(s')]$$

ارزیابی سیاست

$$\square$$
 چطور مقادیر \square را برای یک سیاست ثابت \square محاسبه کنیم \square

(value iteration ایده 1: معادلات بازگشتی بلمن را به صورت فرمولهای به روزرسانی تبدیل کن (مثل \Box

$$V_0^{\pi}(s) = 0$$

$$V_{k+1}^{\pi}(s) \leftarrow \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V_k^{\pi}(s')]$$

 $O(S^2)$: پیچیدگی زمانی هر تکرار \blacksquare

□ ایده ۲: وقتی ماکزیمم گیری وجود ندارد، معادلات بلمن فقط یک دستگاه معادلات خطی هستند.

■ این دستگاه مستقیم قابل حل است!

مثال: ارزیابی سیاست

همیشه مستقیم برو

همیشه به راست برو

همیشه به راست برو

مثال: ارزیابی سیاست همیشه مستقیم برو

(Policy Iteration) الگوريتم تكرار سياست

(Policy Iteration) الگوريتم تكرار سياست

ارزیابی: برای سیاست ثابت فعلی π مقادیر را با استفاده از ارزیابی سیاست به دست آورید: \blacksquare تکرار کن تا ارزشها همگرا شوند.

$$V_{k+1}^{\pi_i}(s) \leftarrow \sum_{s'} T(s, \pi_i(s), s') \left[R(s, \pi_i(s), s') + \gamma V_k^{\pi_i}(s') \right]$$

□بهبود: برای مقادیر ثابت، با استفاده از استخراج سیاست، سیاست بهتری به دست آور: ■ نگاه یکگام به جلو.

$$\pi_{i+1}(s) = \arg\max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^{\pi_i}(s') \right]$$

Policy Evaluation:

$$V^{\pi_0}(C) = 1 + 0.9 \cdot V^{\pi_0}(C) \implies V^{\pi_0}(C) = 10$$

$$V^{\pi_0}(W) = -10 + 0.9 \cdot V^{\pi_0}(O) \implies V^{\pi_0}(W) = -10$$

$$V^{\pi_0}(O) = 0$$

S:
$$1.(1+0.9 \cdot 10) = 1+9 = 10$$

F:
$$0.5.(2 + 0.9 \cdot 10) + 0.5.(2 + 0.9 \cdot -10) = 0$$

$$V^{\pi}(s) = \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V^{\pi}(s')]$$

$$\pi_{i+1}(s) = \arg\max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^{\pi_i}(s') \right]$$

Policy Evaluation:

$$\begin{split} V^{\pi_0}(C) &= 1 + 0.9 \cdot V^{\pi_0}(C) &\implies V^{\pi_0}(C) = 10 \\ V^{\pi_0}(W) &= -10 + 0.9 \cdot V^{\pi_0}(O) &\implies V^{\pi_0}(W) = -10 \\ V^{\pi_0}(O) &= 0 \end{split}$$

Policy Improvement:

 π_1 S

$$V^{\pi}(s) = \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V^{\pi}(s')]$$

$$\pi_{i+1}(s) = \arg\max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^{\pi_i}(s') \right]$$

Policy Evaluation:

$$\begin{split} V^{\pi_0}(C) &= 1 + 0.9 \cdot V^{\pi_0}(C) &\implies V^{\pi_0}(C) = 10 \\ V^{\pi_0}(W) &= -10 + 0.9 \cdot V^{\pi_0}(O) &\implies V^{\pi_0}(W) = -10 \\ V^{\pi_0}(O) &= 0 \end{split}$$

Policy Improvement:

$$V^{\pi}(s) = \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V^{\pi}(s')]$$

$$\pi_{i+1}(s) = \arg\max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^{\pi_i}(s') \right]$$

 π_1

S

S:
$$0.5.(1 + 0.9 \cdot 10) + 0.5.(1 + 0.9 \cdot -10) = 1$$

F:
$$1.(-10 + 0.9 \cdot 0) = -10$$

Policy Evaluation:

$$V^{\pi_0}(C) = 1 + 0.9 \cdot V^{\pi_0}(C) \implies V^{\pi_0}(C) = 10$$

$$V^{\pi_0}(W) = -10 + 0.9 \cdot V^{\pi_0}(O) \implies V^{\pi_0}(W) = -10$$

$$V^{\pi_0}(O) = 0$$

Policy Improvement:

 π_1 S S \emptyset

$$V^{\pi}(s) = \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V^{\pi}(s')]$$

$$\pi_{i+1}(s) = \arg\max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^{\pi_i}(s') \right]$$

Policy Evaluation:

$$\begin{split} V^{\pi_1}(C) &= 1 + 0.9 \cdot V^{\pi_1}(C) \Rightarrow V^{\pi_1}(C) = 10 \\ V^{\pi_1}(W) &= 0.5 \left(1 + 0.9 \cdot V^{\pi_1}(C) \right) + 0.5 \left(1 + 0.9 \cdot V^{\pi_1}(W) \right) \\ V^{\pi_1}(O) &= 0 \end{split}$$

F:
$$0.5.(2 + 0.9 \cdot 10) + 0.5.(2 + 0.9 \cdot 10) = 11$$

$$V^{\pi}(s) = \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V^{\pi}(s')]$$

$$\pi_{i+1}(s) = \arg\max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^{\pi_i}(s') \right]$$

Policy Evaluation:

$$V^{\pi_1}(C) = 1 + 0.9 \cdot V^{\pi_1}(C) \Rightarrow V^{\pi_1}(C) = 10$$

$$V^{\pi_1}(W) = 0.5 (1 + 0.9 \cdot V^{\pi_1}(C)) + 0.5 (1 + 0.9 \cdot V^{\pi_1}(W))$$

$$\Rightarrow V^{\pi_1}(O) = 0$$

$$\Rightarrow V^{\pi_1}(W) = 10$$

$$V^{\pi}(s) = \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V^{\pi}(s')]$$

$$\pi_{i+1}(s) = \arg\max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^{\pi_i}(s') \right]$$

F S:
$$0.5.(1 + 0.9 \cdot 10) + 0.5.(1 + 0.9 \cdot 10) = 10$$

F: $1.(-10 + 0.9 \cdot 0) = -10$

Policy Evaluation:

$$V^{\pi_1}(C) = 1 + 0.9 \cdot V^{\pi_1}(C) \Rightarrow V^{\pi_1}(C) = 10$$

$$V^{\pi_1}(W) = 0.5 (1 + 0.9 \cdot V^{\pi_1}(C)) + 0.5 (1 + 0.9 \cdot V^{\pi_1}(W))$$

$$\Rightarrow V^{\pi_1}(O) = 0$$

$$\Rightarrow V^{\pi_1}(W) = 10$$

$$\pi_2$$
 F S \emptyset

$$V^{\pi}(s) = \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V^{\pi}(s')]$$

$$\pi_{i+1}(s) = \arg\max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^{\pi_i}(s') \right]$$

Warm

Fast

Policy Evaluation:

$$\Rightarrow V^{\pi_2}(C) = 15.5$$

$$V^{\pi_2}(C) = 0.5 (2 + 0.9 \cdot V^{\pi_2}(C)) + 0.5 (2 + 0.9 \cdot V^{\pi_2}(W))$$

$$V^{\pi_2}(W) = 0.5 (1 + 0.9 \cdot V^{\pi_2}(C)) + 0.5 (1 + 0.9 \cdot V^{\pi_2}(W))$$

$$\Rightarrow V^{\pi_2}(W) = 10$$

$$V^{\pi_2}(O)=0$$

Slow

0.5 +2

 $\pi_{i+1}(s) = \arg\max_{a} \sum_{s} T(s, a, s') \left[R(s, a, s') + \gamma V^{\pi_i}(s') \right]$

Slow

0.5

Fast

Policy Improvement:

S: 1.(1+0.9 . 15.5) = 14.95

F:
$$0.5.(2 + 0.9 \cdot 15.5) + 0.5.(2 + 0.9 \cdot 14.5) = 15.5$$

Policy Evaluation:

$$\Rightarrow V^{\pi_2}(C) = 15.5$$

$$V^{\pi_2}(C) = 0.5 (2 + 0.9 \cdot V^{\pi_2}(C)) + 0.5 (2 + 0.9 \cdot V^{\pi_2}(W))$$

$$V^{\pi_2}(W) = 0.5 (1 + 0.9 \cdot V^{\pi_2}(C)) + 0.5 (1 + 0.9 \cdot V^{\pi_2}(W))$$

$$\Rightarrow V^{\pi_2}(W) = 10$$

$$V^{\pi_2}(O)=0$$

$$V^{\pi}(s) = \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V^{\pi}(s')]$$

$$\pi_{i+1}(s) = \arg\max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^{\pi_i}(s') \right]$$

F S:
$$0.5.(1 + 0.9 \cdot 15.5) + 0.5.(1 + 0.9 \cdot 14.5) = 14.5$$

F: $1.(-10 + 0.9 \cdot 0) = -10$

Policy Evaluation:

$$\Rightarrow V^{\pi_2}(C) = 15.5$$

$$V^{\pi_2}(C) = 0.5 (2 + 0.9 \cdot V^{\pi_2}(C)) + 0.5 (2 + 0.9 \cdot V^{\pi_2}(W))$$

$$V^{\pi_2}(W) = 0.5 (1 + 0.9 \cdot V^{\pi_2}(C)) + 0.5 (1 + 0.9 \cdot V^{\pi_2}(W))$$

$$V^{\pi_2}(O) = 0 \qquad \Rightarrow V^{\pi_2}(W) = 10$$

$$V^{\pi}(s) = \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V^{\pi}(s')]$$

$$\pi_{i+1}(s) = \arg\max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^{\pi_i}(s') \right]$$

 V_0

0

0

0

مثال: Value Iteration

 V_1

2

1

0

 V_{ϵ}

3.35

2.35

()

Slow $Fast \qquad 0.5$ $Fast \qquad 0.5 \qquad +2$ $0.5 \qquad 0.5 \qquad +2$ $1.0 \qquad +2 \qquad Assume \ discount = 0.9$

.

 V_{91}

15.499

14.499

0

$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right]$$

مقايسه

الگوریتم های تکرار مقدار و تکرار سیاست هر دو یک کمیت را محاسبه می کنند: (همه مقادیر بهینه) \Box

- □در الگوريتم تكرار مقدار:
- در هر تکرار، مقادیر و سیاست هر دو به روز رسانی می شوند.
- ما به دنبال سیاست نیستیم اما با محاسبه ی ماکزیمم بر روی عملیات، به طور ضمنی ان را محاسبه می کنیم.
 - كادر الگوريتم تكرار سياست:
 - چند گذر وجود دارد که در انها مقادیر سودمندی را تنها برای یک سیاست ثابت به روز رسانی می کنیم.
 - پس از ارزیابی سیاست، یک سیاست جدید انتخاب می شود. (استخراج سیاست)
 - سیاست جدید نسبت به سیاست قبلی بهتر است. [در غیر این صورت الگوریتم همگرا شده است]
 - □هر دو، رویکردهای برنامهریزی پویا برای حل MDPها هستند.

خلاصه: الگوریتمهای MDP

- □به طور خلاصه، اگر میخواهید:
- □مقادیر بهینه ی حالت ها را محاسبه کنید: از الگوریتم تکرار مقدار یا تکرار سیاست استفاده کنید.
- □مقادیر را برای برای یک سیاست خاص محاسبه کنید: از الگوریتم ارزیابی سیاست استفاده کنید.
- از روی مقادیر، سیاست را به دست اورید: از الگوریتم استخراج سیاست استفاده کنید.(نگاه روبه جلو)
 - این الگوریتمها یکسان به نظر میرسند!
 - همهی این الگوریتمها گونههای مختلف از به روز رسانی معادلات بلمن هستند.
- تفاوت انها در این است که ایا از یک سیاست ثابت استفاده می کنیم یا در هر حالت بر روی عملیات ممکن ماکزیمم گیری می کنیم.