МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

ОТЧЕТ

по лабораторной работе №4

по дисциплине «Методы оптимизации»

Тема: РЕШЕНИЕ ПРЯМОЙ И ДВОЙСТВЕННОЙ ЗАДАЧ

Студент гр. 1384	Бобков В. Д.
Студентка гр. 1384	Усачева Д.В.
Студентка гр. 1384	Пчелинцева К. Р.
Преподаватель	Балтрашевич В.Э

Санкт-Петербург 2023

Цели работы:

- а. Постановка задачи линейного программирования и ее решение с помощью стандартной программы.
 - б. Исследование прямой и двойственной задачи.

Основные теоретические положения.

Если исходная задача линейного программирования представлена в виде:

Найти минимум функции f = (c, x) на множестве

$$X = \{ x \in \mathbb{R}^n : Ax \ge B, x \ge 0 \} , \tag{4.1}.$$

то двойственная задача может быть сформулирована следующим образом:

Найти максимум функции (Β, λ) на множестве

$$\lambda = \{ \lambda \in R^m : A^T \lambda \le c, \lambda \ge 0 \},$$

где АТ — матрица транспонированная к А.

Двойственная к двойственной задаче есть исходная задача.

Известно, что если существует решение исходной задачи, то существует решение и двойственной задачи, причем значения экстремумов совпадают. При этом координаты экстремальной точки для двойственной задачи являются коэффициентами чувствительности результата в исходной задаче по коэффициентам вектора В.

Рассмотрим видоизмененную исходную задачу:

Найти min(C, X) на множестве { x: X ≥ O, Ax ≥ B + ε * ei }, где ε>0,

$$e_i = \begin{pmatrix} 0 \\ \vdots \\ 1 \\ \vdots \\ 0 \end{pmatrix} i$$

Если исходная задача имеет единственное решение, то при малых $\epsilon > 0$ и видоизмененная задача имеет решение; причем если -значение минимума, то существует . Оказывается, что β есть і -я координата оптимальной точки для двойственной задачи.

Для проведения лабораторной работы составлена программа, обеспечивающая решение задачи линейного программирования при задании с терминала исходных значений параметров.

Исходный текст задачи.

При откорме каждое животное ежедневно должно получить не менее 9 единиц питательного вещества S_1 , не менее 8 единиц вещества S_2 и не менее 12 единиц вещества S_3 . Для составления рациона используют два вида корма. Содержимое количества единиц питательных веществ в I кг каждого корма и стоимость I кг корма, приведены в табл. 4.5.

Таблица 4.5

Питательные вещества	Количество питательных веществ в 1 кг корма	
	Корм 1	Корм 2
S1	3	1
S2	1	2
S3	1	6

Стоимость 1 кг корма первого вида составляет 4 р., второго вида - 6р.

Необходимо составить дневной рацион нужной питательности, причем затраты на него должны быть минимальными.

Выполнение работы.

Формализация прямой задачи и ее решение

Целевая функция: (C,X), C=(4,6), X=(x1,x2). Требуется ее минимизировать.

Решение прямой задачи:

x1 = 2

 $x^2 = 3$

При этом f(x) = 26 – минимизированная стоимость

Формализация двойственной задачи и ее решение

Целевая функция: (B, λ), B=[9 8 12], λ =($\lambda_1\lambda_2\lambda_3$)

Требуется ее максимизировать.

Ограничения: $A^T_{\lambda} \leq C$,

$$3\lambda + 1\lambda + 1\lambda <= 4$$
1 2 3

$$1\lambda + 2\lambda + 6\lambda \le 6$$

$$1 \quad 2 \quad 3$$

[3 1 1]

$$A^{T} = [1 \ 2 \ 6]$$
, то есть $C = [4 \ 6]$

Решение двойственной задачи:

$$\lambda_1 = 0.4$$
, $\lambda_2 = 2.8$, $\lambda_3 = 0$, при этом f=26.

Видоизмененная исходная задача

Найти min(C,X) на множестве $\{x: X\geq O, Ax\geq B+\epsilon^*e_i\}$, где $\epsilon>0$,

$$e_i = \begin{pmatrix} 0 \\ \vdots \\ 1 \\ 0 \end{pmatrix} i$$

$$\varepsilon = 10^{-3}$$
 B = [9 8 12]

Решение задачи:

Для х1:

$$\widetilde{x}_i = (\varphi_i(\varepsilon) - \varphi_i(0))/\varepsilon;$$

При В [9.001 8 12] $\varphi(\epsilon) = 26.000 \ \ \varphi(0) = 26.000$

$$x_1 = (26.000 - 26.000)/0.001 = 0$$

Для х2:

При При В [9 8.001 12] $\varphi(\epsilon) = 26.003 \quad \varphi(0) = 26.000$

 $x_2 = (26.\ 003 - 26.\ 000)/0.\ 001 = 3$

Для х3:

При При В [9 8 12.001] $\varphi(\epsilon) = 26.000 \quad \varphi(0) = 26.000$

 $x_2 = (26.\ 000 - 26.\ 000)/0.\ 001 = 0$

Сравнивая $\lambda_1=0.4,\ \lambda_2=2.8,\ \lambda_3=0,\ и$ полученные в этом пункте коэффициенты 0, 3 и 0, получаем подтверждение теоретического предположения.

Проведём такие же манипуляции для С:

C1: $\varphi(\epsilon) = 19.412 \text{ C} = [4.001 \text{ 6}]$

C2: $\varphi(\epsilon) = 19.413 \text{ C} = [4 \text{ 6.001}]$

Выводы

Выполнена цель лабораторной работы, а именно:

- а) осуществлена постановка задачи линейного программирования и ее решение с помощью стандартной программы,
- б) произведено исследование прямой и двойственной задачи, а также их изменения в і-ой компоненте векторов В и С соответственно,
- в) подтверждены теоретические выкладки.