Costumer Churn Prediction

Ade Dwi Aryani, batch 008

Customer Churn Prediction

Introduction

Objective: to predict customer churn with several relevant customer data.

The data to be used is **Telco Customer Churn Dataset**.

The data set includes information about:

- Customers who left within the last month the column is called Churn
- **Basic information** about customers gender, senior citizen, and if they have partners and dependents
- Services that each customer has signed up for phone, multiple lines, internet, online security, online backup, device protection, tech support, and streaming TV and movies
- Customer account information how long they've been a customer, contract, payment method, paperless billing, monthly charges, and total charges

Check for imbalance churn distribution

- The target variable has 73,5 % instances of 'no-churn'.
- The target variable is imbalanced.

Basic Information

Customer by Senior Citizen

There are only 16,2% of the customers who are senior citizens. Thus most of customers in dataset are younger people.

Customer by Partner

 About 48,3% of the customers have a partner.

Customer by Dependents

 Only 30% of the total customers have dependents.

Basic Information

 Customers who are senior citizen are less likely to churn.

 Customers that have Partners are more likely to churn.

 Customers with Dependents are less likely to churn.

Services Information

Customer by Internet Service

- Only 21,7% of the customers don't have internet service.
- About 44% of the customers have internet services with a DSL connection and 34,4% with fiber optic.

Customer by Online Security

- About 28,7% of the customers don't have online security.
- 49,7% of the customers have online security.

Services Information

- Customers without internet service are the least count of customers.
- Customers with Fiber optic are more probable to churn than those with a DSL connection.

 Customers that don't have online security are more likely to churn.

Customer Account Information

- Recent costumers are more likely to churn.
- Costumers with higher Monthly Charges are also more likely to churn.

100

80

120

Total Charges don't have difference between customer 'no-churn' and 'churn'.

Feature Selection

Positive Correlation to Costumer Churn

Negative Correlation to Costumer Churn

0,00 0,05 0,10 0,15 0,20 0,25 0,30 0,35 0,40

Correlation

*correlation in absolute value

Feature Selection

Binary Column

Categorical Column

Numerical Column

Model Definition

Model 1 ANN (Without Dropout, Sequential API)

Model: "sequential"		
Layer (type)	Output Shape	Param #
dense (Dense)	(None, 64)	2304
dense_1 (Dense)	(None, 32)	2080
dense_2 (Dense)	(None, 1)	33
Total params: 4,417		

Trainable params: 4,417 Non-trainable params: 0

Model 2 ANN (With Dropout 0.5, Functional API)

Model: "model"		
Layer (type)	Output Shape	Param #
input_1 (InputLayer)	[(None, 35)]	0
dense_3 (Dense)	(None, 64)	2304
dropout (Dropout)	(None, 64)	0
dense_4 (Dense)	(None, 32)	2080
dropout_1 (Dropout)	(None, 32)	0
dense_5 (Dense)	(None, 1)	33

Total params: 4,417

Trainable params: 4,417 Non-trainable params: 0

Model Evaluation

Model 1 ANN (Without Dropout)

Model 1 is overfitting

Model Evaluation

Model 2 ANN (With Dropout 0.5)

Model 2 is not overfitting (good fit)

Best Model Selection

Model	Precision	Recall	F1-score	Accuracy
Model 1 ANN (Without Dropout)	0.782727	0.841642	0.811116	0.806093
Model 2 ANN (With Dropout 0.5)	0.810891	0.800587	0.805706	0.808994

Best Model: Model 2 ANN (With Dropout 0.5)

Because Model 2 has the highest accuracy, and Model 2 is also not overfitting.

Thank you!