

Synthèse Détaillée du Cours RES130

12 I. Le Binaire et l'Hexadécimal

Les Bases de Numération

Notre système : Base 10 (décimal)

Systèmes informatiques :

• Base 2 (binaire)

• Base 16 (hexadécimal)

Règle fondamentale: Une base se calcule avec la formule **n - 1**(n étant la base)

Le Binaire

• **Base**: 2

• Plage: 0 à 1

• Octet = 8 bits = 2^7 (128)

2 <mark>0</mark>	2 ¹	2 ²	2 ³	24	2 ⁵	2 ⁶	27	2 ⁸	29	2 ¹⁰	2 ¹¹
1	2	4	8	16	32	64	128	256	512	1024	2048

Méthode de Conversion Binaire

Exemple avec 12:

2^7	2^6	2^5	2^4	2^3	2^2	2^1	2^0
128	64	32	16	8	4	2	1
0	0	0	0	1	1	0	0

Règles importantes :

- Les nombres pairs finissent **toujours** par 0
- Les nombres impairs finissent toujours par 1

L'Hexadécimal

• Base: 16

• Plage: 0 à 9 puis A à F (10 à 15)

Tableau de Conversion Complet

Binaire	Décimal	Hexadécimal
0000	0	0
0001	1	1
0010	2	2
0011	3	3
0100	4	4
0101	5	5
0110	6	6
0111	7	7
1000	8	8
1001	9	9
1010	10	А
1011	11	В
1100	12	С
1101	13	D
1110	14	Е
1111	15	F

Structure IPv4

- 4 octets (32 bits)
- Notation : IP/MSR ou IP/CIDR

Exemple avec 192.168.10.20/24:

IP	192	168	10	20
Binaire	1100 0000	1010 1000	0000 1010	0001 0100

MSR (/24)	255	255	255	0
Binaire	1111 1111	1111 1111	1111 1111	0000 0000

Concepts Clés

• ID Réseau : Tout ce qui est avant le premier 0 du MSR

• ID Hôte : Tout ce qui est après le premier 0 du MSR

• Adresse réseau : Partie hôte = 0 (première adresse)

• Adresse broadcast : Partie hôte = 1(dernière adresse)

© Les Portes Logiques

OR	Α	В	Output
OIL	0	0	0
$\overline{}$	1	0	1
	0	1	1
	1	1	1

XOR	Α	В	Output
XOK	0	0	0
\mathcal{A}	1	0	1
	0	1	1
	1	1	0

Input	Output
0	1
1	0

NA	ND
T)o

Α	В	Output
0	0	1
1	0	1
0	1	1
1	1	0

NO	R
	\supset

Α	В	Output
0	0	1
1	0	0
0	1	0
1	1	0

XNO	OR
\rightarrow	\ \ \
$\rightarrow \! \! \! \! \perp$	

Α	В	Output
0	0	1
1	0	0
0	1	0
1	1	1

Équations logiques :

• **AND**: S = E1 × E2

• NAND : $\overline{S} = E1 \times E2^{-}$

• **OR**: S = E1 + E2

• NOR: $\overline{S} = E1 + E2^{-}$

Ⅲ Trouver le CIDR Adapté

Pour une structure ayant besoin de 2000 machines :

Formule : CIDR = x < y - 2

- x = nombre de machines
- y = puissance de 2

Calcul:

- 2000 < 2^11 2
- $2^11 = 2048$
- 2048 2 = 2046
- 2000 < 2046 ✓

CIDR = /21

Partitionnement d'un réseau en sous-réseaux

Exemple: 172.16.0.0/17 besoin de 4 sous-réseaux

- $4 = 2^2$
- CIDR + 2 = 19
- Nouveau CIDR = 19
- **Réseau**: 172.16.0.0/19

VLSM (Variable Length Subnet Mask)

Subnetting optimisé sans gaspillage d'adresses

Cas d'entreprise avec 10.0.0.0/16 :

Département Machines		CIDR Requis	Plage IP
Production	10000	/18	10.0.0.0/18
Fabrication	1500	/21	10.0.64.0/21
Recherche	200	/24	10.0.72.0/24
Gestion	30	/26	10.0.73.0/26

Département	Machines	CIDR Requis	Plage IP
Vente	15	/27	10.0.73.64/27
Routeur	2	/30	10.0.73.96/30

Méthodologie VLSM:

- 1. Ranger les besoins par ordre décroissant
- 2. Calculer le CIDR nécessaire pour chaque segment
- 3. Appliquer progressivement en partant du plus grand

🏗 III. Les Différents Types de Réseaux

Classification par Étendue

Туре	Portée	Exemples
------	--------	----------

Туре	Portée	Exemples	
PAN	Personnel	Maison, BOX	
LAN Local		Entreprise, Bâtiment	
MAN	Métropolitain	Ville, CHU, Préfecture	
WAN	Étendu	Intercontinental	

1

Réseaux Privés vs Publics

Réseaux Privés (usage interne):

• Classe A: 10.0.0.0 à 10.255.255.255 (16M machines)

• Classe B: 172.16.0.0 à 172.31.255.255 (65k machines)

• Classe C: 192.168.0.0 à 192.168.255.255 (254 machines)

Réseaux Publics (internet):

• Classe A: 0.0.0.0 à 127.255.255.255

• Classe B: 128.0.0.0 à 191.255.255.255

• Classe C: 192.0.0.0 à 223.255.255.255

• Classe D: 224.0.0.0 à 239.255.255.255 (multicast)

• Classe E: 240.0.0.0 à 255.255.255.255 (interdite)

Class	Value of 1 st Octet	High Order Bit	Default Subnet Mask	Possible Network	Hosts per Network	Private IP Address Range
Α	0-127	0	255.0.0.0 or /8	2 ⁸⁻¹ =128	2 ⁸ -2 =16777214	10.0.0.0 to 10.255.255.255
В	128-191	10	255.255.0.0 or /16	2 ¹⁶⁻² =16384	2 ¹⁶ -2 =65534	172.16.0.0 to 172.31.255.255
С	192-223	110	255.255.255.0 or /24	2 ²⁴⁻³ =2097152	2 ²⁴ -2 =254	192.168.0.0 to 192.168.255.255
D	224-239	1110	-			
E	240-255	1111	-			

Note:

0.0.0.0/8 reserved for default route

127.0.0.0/8 reserved for loopback addresses

169.254.0.0/16 reserved for link-local address. This range also called automatic private IP addressing

****ODE CONTRACT OF LA CONTRACT OF LA**

• 0.0.0.0 : Route par défaut

• 127.0.0.1: Localhost (bouclage)

169.254/16: APIPA (adressage automatique)

IV. Le Modèle OSI

Les 7 Couches du Modèle OSI

Couche	Nom	Unité	Rôle Principal	Protocoles/Exemples
7	Application	DATA	Interface utilisateur	HTTP, DNS, DHCP, FTP, SMTP, SSH, RDP
6	Présentation	DATA	Formatage des données	UTF-8, ASCII, Compression, TLS
5	Session	DATA	Gestion des sessions	Ouverture/fermeture, Retransmission
4	Transport	SEGMENTS	Transport des données	TCP (fiable), UDP (rapide)
3	Réseau	PAQUETS	Routage	IP, ICMP
2	Liaison	TRAMES	Accès réseau	Ethernet, Adresses MAC

Couche	Nom	Unité	Rôle Principal	Protocoles/Exemples
1	Physique	BITS	Transmission	Câbles, Signaux électriques

Comparaison TCP vs UDP

TCP (Transmission Control Protocol):

- V Transmission segmentée
- Connexion établie
- Contrôle des erreurs
- **V** Retransmission possible
- X Plus de ressources nécessaires

UDP (User Datagram Protocol):

- V Faible latence
- Moins de ressources
- X Pas de connexion
- X Aucune retransmission
- X Pas de contrôle d'erreur