Inteligência Artificial

Inteligência Artificial

Samy Soares samy@ufc.br

BUSCAS: Árvores e Conceitos

Objetivos

- Introduzir os principais conceitos e tipos de buscas em árvore utilizáveis por agentes.
- Apresentar exemplos de problemas para trabalhar os conceitos e reforçar a introduzir a resolução de problemas como buscas.

Roteiro

- Solução de problemas como busca
- Buscas guiadas por dados e por objetivos
- Gerar e Testar

- Solução de Problemas como Busca
 - Estados Objetivo (Goal)
 - Ações tomadas para atingí-lo?

- Solução de Problemas como Busca
 - Estados Objetivo (Goal)
 - Ações tomadas para atingí-lo?
 - Função Sucessor

- Solução de Problemas como Busca
 - Estados Objetivo (Goal)
 - Ações tomadas para atingí-lo?
 - Função Sucessor
 - Estado Corrente (Current)
 - Alcançado pelas ações tomadas previamente;

- Solução de Problemas como Busca
 - Estados Objetivo (Goal)
 - Ações tomadas para atingí-lo?
 - Função Sucessor
 - Estado Corrente (Current)
 - Alcançado pelas ações tomadas previamente;
 - Como chegar a um objetivo a partir do estado corrente?

Exemplo

Exemplo de agente que utiliza busca:

```
function SIMPLE-PROBLEM-SOLVING-AGENT (percept) returns an action
inputs: percept, a percept
static: seq, an action sequence, initially empty
        state, some description of the current world state
        goal, a goal, initially null
        problem, a problem formulation
 state \leftarrow UPDATE-STATE(state, percept)
if seq is empty then do
     goal \leftarrow FORMULATE-GOAL(state)
     problem \leftarrow FORMULATE-PROBLEM(state, goal)
     seg \leftarrow SEARCH(problem)
 action \leftarrow First(seq)
 seq \leftarrow REST(seq)
 return action
```

Exemplo: Lentes no Campo de Futebol

- Exemplo: Lentes no Campo de Futebol
 - Estado inicial: Não procuramos em nenhuma parte
 - Procuraremos no quadrado (1cm x 1cm) do canto superior esquerdo.

- Exemplo: Lentes no Campo de Futebol
 - Estado inicial: Não procuramos em nenhuma parte
 - Procuraremos no quadrado (1cm x 1cm) do canto superior esquerdo.
 - Estado corrente: Procuramos em alguns quadrados
 - Procuraremos no próximo quadrado, à direita ou abaixo do último que verificamos.

- Exemplo: Lentes no Campo de Futebol
 - Estado inicial: Não procuramos em nenhuma parte
 - Procuraremos no quadrado (1cm x 1cm) do canto superior esquerdo.
 - Estado corrente: Procuramos em alguns quadrados
 - Procuraremos no próximo quadrado, à direita ou abaixo do último que verificamos.
 - Estado objetivo: Encontramos a lente.

- Busca guiada por Dados (Data-Driven)
 - TOP-DOWN
 - Com informações de entrada, saímos do estado inicial e seguimos em busca de um objetivo com ações válidas.
 - Encadeamento p/ a Frente (Forward Chaining)

- Busca guiada por Objetivos (Goal-Driven)
 - BOTTOM-UP
 - Conhecido um estado objetivo, a busca visa identificar que sequência de movimentos levaria do estado inicial ao objetivo
 - Encadeamento p/ a Trás (Backward Chaining)

- Escolha de métodos Goal/Data-Driven Search:
 - Deseja-se atingir um estado objetivo qualquer ou descobrir como alcançar um específico?
 - Conhece-se algum estado objetivo?
 - O estado objetivo é único?
 - Há informação sobre a instância do problema?
 - Deseja-se obter informação sobre um caso específico?

- Exemplos:
 - Goal-Driven:
 - Prova de Teoremas

- Exemplos:
 - Goal-Driven:
 - Prova de Teoremas
 - Diagnóstico Médico

Exemplos:

- Goal-Driven:
 - Prova de Teoremas
 - Diagnóstico Médico
- Data-Driven:
 - Análise de dados sobre planetas e estrelas (Astronomia)

- Exemplos:
 - Goal-Driven:
 - Prova de Teoremas
 - Diagnóstico Médico
 - Data-Driven:
 - Análise de dados sobre planetas e estrelas (Astronomia)
 - Comparativo:
 - LABIRINTO (?)

Conceitos Gerar e Testar

- Gerar e Testar
 - Consiste em gerar e testar cada nó do espaço
 - Teste de Objetivo
 - Exemplo de Busca por FORÇA BRUTA (Exaustiva)

Conceitos Gerar e Testar

- Gerar e Testar
 - Utiliza um GERADOR de estados
 - Completo
 - Livre de Redundâncias
 - Correto

Conceitos Gerar e Testar

- Gerar e Testar
 - Considerada um tipo de busca CEGA
 - A árvore é percorrida independente de informações sobre o espaço de busca.
 - Opõe-se às buscas INFORMADAS.

• Exemplo: Aspirador de Pó

- Exemplo: Aspirador de Pó
 - Espaço de Busca?

- Exemplo: Aspirador de Pó
 - Espaço de Busca:
 - $2 \times 2^2 = 8$ estados.

- Exemplo: Aspirador de Pó
 - Espaço de Busca:
 - $2 \times 2^2 = 8$ estados.
 - Estado inicial?

- Exemplo: Aspirador de Pó
 - Espaço de Busca:
 - $2 \times 2^2 = 8$ estados.
 - Estado inicial:
 - Qualquer estado.

- Exemplo: Aspirador de Pó
 - Espaço de Busca:
 - $2 \times 2^2 = 8$ estados.
 - Estado inicial:
 - Qualquer estado.
 - Função sucessor?

- Exemplo: Aspirador de Pó
 - Espaço de Busca:
 - $2 \times 2^2 = 8$ estados.
 - Estado inicial:
 - Qualquer estado.
 - Função sucessor:
 - Gera um estado resultante de aplicar uma ação (aspirar, esquerda, direita) ao estado corrente.

- Exemplo: Aspirador de Pó
 - Espaço de Busca:
 - $2 \times 2^2 = 8$ estados.
 - Estado inicial:
 - Qualquer estado.
 - Função sucessor:
 - Gera um estado resultante de aplicar uma ação (aspirar, esquerda, direita) ao estado corrente.
 - Teste de Objetivo?

- Exemplo: Aspirador de Pó
 - Espaço de Busca:
 - $2 \times 2^2 = 8$ estados.
 - Estado inicial:
 - Qualquer estado.
 - Função sucessor:
 - Gera um estado resultante de aplicar uma ação (aspirar, esquerda, direita) ao estado corrente.
 - Teste de Objetivo:
 - Verifica se ambas as salas estão limpas

- Custo de Passo:
 - O custo de executar uma ação em um estado.

- Custo de Passo:
 - O custo de executar uma ação em um estado.
- Custo de Caminho:
 - Soma dos custos dos passos;

- Custo de Passo:
 - O custo de executar uma ação em um estado.
- Custo de Caminho:
 - Soma dos custos dos passos;
 - Normalmente, busca-se o mínimo.

- Exemplo: Aspirador de Pó
 - Custo do Caminho:
 - Se cada passo custar 1, o custo de caminho é o número de passos até o objetivo.

- Exemplo 2: O problema das 8 Rainhas
 - 8 Rainhas no tabuleiro de xadrez sem que nenhuma seja ameaçada.

- Exemplo 2: O problema das 8 Rainhas
 - Estado inicial:
 - Nenhuma Rainha no Tabuleiro.

- Exemplo 2: O problema das 8 Rainhas
 - Estado inicial:
 - Nenhuma Rainha no Tabuleiro.
 - Teste de Objetivo:
 - 8 Rainhas no tabuleiro e nenhuma é ameaçada.

- Exemplo 2: O problema das 8 Rainhas
 - Estado inicial:
 - Nenhuma Rainha no Tabuleiro.
 - Teste de Objetivo:
 - 8 Rainhas no tabuleiro e nenhuma é ameaçada.
 - Função sucessor:
 - Coloca uma Rainha em qualquer quadrado vazio.

- Exemplo 2: O problema das 8 Rainhas
 - Estado inicial:
 - Nenhuma Rainha no Tabuleiro.
 - Teste de Objetivo:
 - 8 Rainhas no tabuleiro e nenhuma é ameaçada.
 - Função sucessor:
 - Coloca uma Rainha em qualquer quadrado vazio.
 - Espaço de Busca:
 - Qualquer disposição com 0 a 8 rainhas no tabuleiro.
 - $-64x...x57 = ~3 \times 10^{14}$ estados.

- Exemplo 2 (Formulação Alternativa): 8 Rainhas
 - Estado inicial:
 - Nenhuma Rainha no Tabuleiro.
 - Teste de Objetivo:
 - 8 Rainhas no tabuleiro e nenhuma é ameaçada.

- Exemplo 2 (Formulação Alternativa): 8 Rainhas
 - Estado inicial:
 - Nenhuma Rainha no Tabuleiro.
 - Teste de Objetivo:
 - 8 Rainhas no tabuleiro e nenhuma é ameaçada.
 - Função sucessor:
 - Coloca uma Rainha na coluna vazia mais à esquerda de maneira que ela não seja ameaçada por nenhuma outra.

- Exemplo 2 (Formulação Alternativa): 8 Rainhas
 - Estado inicial:
 - Nenhuma Rainha no Tabuleiro.
 - Teste de Objetivo:
 - 8 Rainhas no tabuleiro e nenhuma é ameaçada.
 - Função sucessor:
 - Coloca uma Rainha na coluna vazia mais à esquerda de maneira que ela não seja ameaçada por nenhuma outra.
 - Espaço de Busca:
 - Disposições de 0 ≤ n ≤ 8 rainhas, uma por coluna nas n colunas mais à esquerda.
 - 2057 estados (!!).

- Exemplo 2: 8 Rainhas
 - Custo do Caminho:
 - Fixo, tamanho 8.

Referências

- Russel, S., Norvig, P.; Inteligência Artificial; Editora Campus, Tradução da 2a edição, 2004.
- Coppin, B.; Inteligência Artificial; Editora LTC, Tradução da 1a edição, 2010.

Dúvidas

