版本号 V5.0

GD5551 型 64×64 InGaAs 盖革雪崩焦平面相机 产品使用说明书

中电科技集团重庆声光电有限公司 二〇二〇年六月

联系电话: 023-65860306(销售部)、023-65861571(技术部) 传真: 023-65860232

邮编: 400060

通讯地址: 重庆市南岸区南坪花园路 14号

目 录

特别声明: I	Ι
修订记录:	3
1 特点及用途	1
2 相机工作原理	1
3 光电特性	2
3.1 光学接口	2
3.2 电学接口	3
3.3 相机参数	3
3.4 采集软件功能 [®]	5
4 典型特性曲线	5
5 相机外形尺寸与接口	6
5.1 相机外形尺寸	6
5.2 光敏面尺寸	7
5.3 引出端排列	8
6 相机应用连接	8
7 软件安装及操作说明	9
7.1 软件开发的主要特点	9
7.2 软件主要用途	9
7.3 软件安装操作说明	9
8 故障分析与排除1	6
9 使用方法与注意事项1	7
10 运输与储存1	7
11 开箱检查1	7
12 附录	q

特别声明:

- □ 本说明书旨在详尽描述 64×64 InGaAs 盖革雪崩焦平面相机 的主要特征、性能和使用规范;
- □ 在使用该产品之前,请仔细阅读本说明书,以确保产品的有效使用和质量安全;
- □ 若对本说明书所提供的相关信息有任何不明或质疑之处,请 及时与我们联系;
- □ 在使用过程中,若您对该产品有任何意见或建议,敬请与我 们联系:
- □ 未经许可,不得以任何方式对本说明书的相关文字、图表进 行摘录、复制与撰改:
- □ 本说明书提供的所有信息仅作为该器件产品的详情参考,我 们保留后期在未通知用户的情况下对产品信息作相应更改 的权利。

注意事项: □ 64×64 InGaAs 盖革雪崩焦平面相机为静电放电敏感产品, 在贮存、使用过程中,必须采取适当的静电防护措施。

CETC 中国电科

中电科技集团重庆声光电有限公司

修订记录:

版本号	修订日期	修订说明
V. 1. 0	2017-11	第一版
V. 2. 0	2019-11	第二版
V. 2. 2	2019-11	第二版更改
V. 3. 0	2019-12	第三版
V. 4. 0	2020-06	第四版 更改组件外形、温控方式等
V. 5. 0	2020-07	第五版 增加了 InGaAsP 版本相机

1 特点及用途

InGaAs 盖革雪崩焦平面相机采用激光脉冲飞行时间测量(TOF)方式获取目标的三维距离信息,可应用于激光制导、障碍规避、三维地形测绘等领域。InGaAs 盖革雪崩焦平面探测灵敏度可以达到单光子量级,可在一定概率下探测到单光子信号;探测器在像元内完成了激光脉冲飞行时间的数字量化,从而避免了复杂模拟链路传输所

引入的信号衰减,信号处理过程简单,噪声影响极小;同时,利用单次激光脉冲即可实时构成一帧目标的完整三维图像,具有所需激光功率低、无需扫描结构、图像不失真等特点;系统结构简单、体积小、重量轻、功耗低。

2 相机工作原理

图 2-1 相机典型应用示意图

图 2-2 GM-APD 焦平面像元中高频时钟计数器 TDC 工作原理示意图

如图 2-1、2-2 所示,实际工作中脉冲激光器发射一个激光脉冲的同时向 InGaAs 盖格焦平面相机发送一个同步信号,相机同步产生一个 START 计时开始脉冲信号; START 信号经过固定延时后产生距离门控信号 EN 给 ROIC 作为每个像元中高频时钟计数器 TDC 的起始信号; 当激光脉冲回波信号返回到达相机感光靶面时, 感光像元将产生盖革雪崩信号, ROIC 中阈值鉴别电路检测到雪崩信号后产生一个 CMOS 兼容的电压脉冲 STOP, 该脉冲 STOP 停止像元的高频时钟计数器 TDC, 而后在 EN 信号结束后串行输出各像元的 TDC 计数值。

TDC 为一个 12 bit 的计数器, 取值范围为 0~4094。

激光脉冲飞行时间 $T_0 = TDC \times T_{bin}$,其中 T_{bin} 为高频计数器的时间分辨率(见表 3-1)。

由于光速 c 为常数 3×10^8 m/s 可以得到激光脉冲的飞行距离 D_f :

$$D_f = TDC \times T_{bin} \times c$$

进一步可以得到被探测目标的距离 D_{T} :

$$D_T = D_f \div 2 = TDC \times T_{bin} \times c \div 2$$

所以,在完成一次激光回波检测,并全部读出每个像元的 TDC 计数器值后,就可以获得一帧完整的目标三维图像。

3 光电特性

3.1 光学接口

● 光学接口: C-Mount

3.2 电学接口

● 电源输入: +12V

● 数据输出: Cameralink

● 控制命令接口: 串口

● 电源输入接口类型: 电源线直接引出

● 数据输出接口类型: SDR-26 (含串口通信)

● 外触发接口类型: SMA

3.3 相机参数

表 3-1 InGaAs 相机主要参数

特征参数	符号	测试条件	最小值	典型值	最大值	单位
		相机规格与配置	参数	1		
传感器阵列规模				64×64		
感光靶面尺寸				3. 2×3. 2	2	mm
像元中心距	D			50		μm
工作波长	λ		950		1650	μm
时间分辨率	$T_{ m bin}$		1.0			ns
门控时间范围	$T_{ m gate}$		$25 \times T_{\text{bin}}$		$4094 \times T_{bin}$	ns
串口波特率	Baud			115200		Baud/
帧频	F_R				25	KHz
功耗	PC	$F_{\text{R}} = 25 \text{ KHz}$			24	W
输入电压	$V_{\rm IN}$		10	12	13	V
输入电流	I_{IN}	$V_{IN} = 12 V$			2	A
工作环境温度	Тор		-20		40	$^{\circ}$
重量	Wt			720		g
相机尺寸			65 × 65×	:77.5(不會	含法兰盘)	mm

特征参数	符号	测试条件	最小值	典型值	最大值	单位			
	光电性能参数								
光填充因子	FF				60	%			
有效像元率	Nop	像元 PDE 与 DCR 分别 在 4 σ 范围内	95	98		%			
单光子探测率	PDE	T= -20°C , $V_{\text{ex}}=3V$, $\lambda=1550\text{nm}$		20		%			
字儿\ 抹 <u>侧</u> 字	σ _{PDE}	T= -20°C , $V_{\text{ex}}=3V$, $\lambda=1550\text{nm}$		6	8	%			
立. 1. 米. 玄	DCR	T= -20℃, PDE =20%		15	30	KHz			
暗计数率	σ_{DCR}	T= -20℃, PDE =20%		6	12	KHz			
时间抖动	T_{J}	T= -20℃, PDE =20%		500	800	ps			
累积串扰概率	P _(tot)	T= -20℃, PDE =20%		20		%			

表 3-2 InGaAsP 相机主要参数

特征参数	符号	测试条件	最小值	典型值	最大值	単位
		相机规格与配置	参数			
传感器阵列规模				64×64		
感光靶面尺寸				3.2×3.2	2	mm
像元中心距	D			50		μm
工作波长	λ		980		1150	μm
时间分辨率	T_{bin}		1.0			ns
门控时间范围	$T_{\rm gate}$		$25 \times T_{\text{bin}}$		$4094 \times T_{bin}$	ns
串口波特率	Baud			115200		Baud/
帧频	F_R				25	KHz
功耗	PC	$F_R = 25 \text{ KHz}$			24	W
输入电压	$V_{\rm IN}$		10	12	13	V
输入电流	${ m I}_{ m IN}$	$V_{\text{IN}} = 12 \text{ V}$			2	A

特征参数	符号	测试条件	最小值	典型值	最大值	単位
工作环境温度	T_{OP}		-20		40	$^{\circ}$
重量	W_{t}			720		g
相机尺寸			65 × 65 ×	77.5(不會	含法兰盘)	mm
		光电性能参数	数			
光填充因子	FF				60	%
有效像元率	N_{OP}	像元 PDE 与 DCR 分别 在 4 σ 范围内	95	98		%
单光子探测率	PDE	T= -20°C , $V_{\text{ex}}=3V$, $\lambda=1064\text{nm}$		25		%
半九寸休州平	σ _{PDE}	T= -20°C , $V_{\text{ex}}=3V$, $\lambda=1064\text{nm}$		5	8	%
暗计数率	DCR	T= -20℃, PDE =25%		10	20	KHz
旧り数字	σ _{DCR}	T= −20°C, PDE =25%		3	5	KHz
时间抖动	T_{J}	T= -20℃, PDE =25%		500	800	ps
累积串扰概率	$P_{\rm (tot)}$	T= −20°C, PDE =25%		20		%

3.4 采集软件功能^①

- 相机上电检测
- 延迟时间调节
- 门宽条件
- 工作温度设定
- 偏置电压调节
- 数据存储^②
- ①该软件仅支持 32bit 或 64bit 的 WNDOWS XP 或 WINDOS7 操作系统。
- ②数据的存储格式: RAW。

4 典型特性曲线

产品的光谱响应特性曲线见图 4-1。

图 4-1 InGaAs 光谱响应特性曲线

图 4-2 InGaAsP 光谱响应特性曲线

5 相机外形尺寸与接口

5.1 相机外形尺寸

图 5-1 外形图

表 5-1 相机外形尺寸(单位:毫米)

代号	A	В	С	D	Е	F	G	Н	J	K	L	M	N	Р	Q
尺寸 (mm)	65	44	44	Ø31. 4	M25.4	90. 5	78. 5	77. 5	21	24	15.8	58	42.8	15	40
公差 (mm)	0. 5	0. 5	0. 5	0. 5	0. 5	1. 5	1	1	0. 5	0. 5	0. 5	0. 5	0.5	0. 5	0.5

- F为后端接头到法兰盘尺寸
- G 为后端接头到前盖尺寸(不包括法兰盘)
- H 为机芯尺寸(不包括法兰盘和数据接头)

5.2 光敏面尺寸

图 5-2 光敏面尺寸图

表 5-2 光敏面尺寸(单位:毫米)

代号	R	S	Т
----	---	---	---

尺寸	3. 5	1	12
公差	0. 5	0. 1	0. 5

- R为光敏面到光窗上表面距离
- S为光窗上表面到相机前盖距离
- T为法兰盘高度

5.3 引出端排列

图 5-3 引出端口位置图

表 5-3 引出端口定义

符号	EX_TRI	IN_TRI	CameraLink	POWER (Vcc)
定义	外触发接口	内触发接口	数据接口	+12V单电源供电

6 相机应用连接

相机连接方式如图 6-1。

特别注意: 开关机顺序。

开机顺序: 连接相机电源线□□□> 连接 Cameralink 数据线□□□□> 打开图像

关机顺序: 关闭偏压 → 关闭温控 → 恢复到室温后停止采集 → 关 闭 图 像 采 集 软 件 → 关 闭 相 机 电 源 → 拔掉 Cameral ink 连接线 → 拔掉电源线。

图 6-1 相机典型应用连接示意图

7 软件安装及操作说明

7.1 软件开发的主要特点

本软件是在 Windows 7 环境下,基于 DALSA 公司 Camlink 图像采集卡开发的 InGaAs 盖革雪崩焦平面相机成像演示软件。

7.2 软件主要用途

软件主要用于实现 InGaAs 盖革雪崩焦平面相机的图像采集、存储、监测控制及成像演示等功能。

7.3 软件安装操作说明

9

第一步: 完成采集卡程序文件夹中的驱动程序与开发包的安装。

其中,Sapera_LT_8.12_SDK 文件夹中安装文件为 DALSA 图像采集卡开发包工具安装包。Xcelera_CX_LX1_101 (base) 中为采集卡驱动安装包。

第二步: 完成采集卡参数配置。

第三步: 在上位机程序文件夹中打开 "Single photon. exe" 文件, 并"选择"该文件夹中配置文件 "APD_64_64_NEW. ccf", 点击"确认"。

第四步: 开启相机电源,在上位机软件界面上点击"采集",上位机开始采集显示相机输出数据,"信息提示"处先后提示:设备已连接、开始数据采集;

第五步:在"温度设定"处填入温度值,点击"设置";待反馈的温度稳定后,在"电压设定"处填入电压值,点击"设置"(在改变温度与电压设定值后,需再次点击"设置"后生效)。在"选通门宽"处拉动滚动条,选择合适门宽;观察"数据信息"区,根据显示的计数数值,在阈值设置处填入合适计数阈值;

第六步:通过合适的参数设置,点击"距离像"、"强度像"和"三维像"按钮,可实现相机数据的各种模式显示;点击"保存"按钮,可实现原始数据的存储。各类参数设置见后附录定义。

第七步:关闭上位机软件与相机。首先点击"电压设定"处"关闭"按钮;其次点击"温度设定"处"关闭"按钮;然后点击"停止"与"退出";最后,关闭相机电源。(注意在外触发模式下,保持外触发信号全过程接通,不然上位机软件一直处于等待采集状态而无法关闭。)

参数设置定义:

● 选通门宽

该滚动条控制相机电路产生一个距离门信号输入至 GM APD FPA 器件,决定器件的探测时间范围。距离门宽度以 1ns 为步进,其值 t 与数据显示区内无回波信号时显示的值 t。对应。(关系为 $t=n\times t$ 。,单位秒,其中 n 为 1)。

● 选通延时

内、外触发同步信号上升沿与距离门上升沿(起始计数时刻)之间的延时设置 (不包含信号链路固有延时),0-200 μs 可调;。通过勾选"微调"选择粗调或微调, 步进分别为1μs和1ns。

● 触发模式选择

通过勾选"外触发模式"栏,确定相机与激光器工作于何种同步方式。默认情况下,相机工作于内触发模式(相机自身产生同步信号,主动触发激光),触发信号频率 25KHz (与相机工作的最大帧频相同); 勾选"外触发模式",相机工作于外触发模式(接收激光器产生的触发信号,被动产生距离门),"激光频率"处填入输入触发信号的大致频率。

● 数据信息区(任一8×8区域)

在图像显示区左击鼠标,选中任一 8×8 区域;在距离像模式下:显示各像元计数器输出的值 t。(12 位计数器,计数值为 50-4094)。有回波信号时,该值为距离门宽起始时刻与脉冲达到时刻之间的计数值;无信号时,该值为距离门宽。该值与外部输入高频时钟相关,每单位等效为 1ns。

在强度像模式下:显示 N 帧数据(合成帧数值)中,被暗计数与回波信号触发的次数(或称为灰度值,范围 0-N)。

● 任一像元坐标值、计数或灰度信息

在图像显示区,移动鼠标位置指向某一像素,在"鼠标坐标"与"对应值"处分别显示其坐标值、计数值或灰度值。

● 显示模式与显示参数选择

程序有四种显示模式:单帧距离像显示、多帧统计距离像显示、强度像显示、三维像显示。

- (1)单帧距离像显示模式:点击"距离像",在显示参数区不勾选"统计模式";程序抽取器件输出的某一帧数据,在图像显示区以二维伪彩色的方式,显示各像元计数器输出的值 t。(12 位计数器,计数值范围为 50-4094);
- (2) 多帧统计距离像显示模式:点击"距离像",在显示参数区勾选"统计模式","合成帧数"中填入统计显示的帧数 N, "统计模式"下的百分比设置栏填入 M。软件自动统计算出每个像元各自 N 帧数据中分布概率最大的计数值(不计无回波信号时的距离门宽值),当该值的分布概率大于 M%时,在图像显示区以二维伪彩色的方式显示该计数值(即距离值);否则显示无回波信号时的距离门宽值。
- (3)强度像显示模式:点击"强度像",在显示参数区勾选"统计模式","合成帧数"中填入统计显示的帧数 N,在图像显示区显示每个像元各自 N 帧数据中被暗计数与回波信号触发的次数 (范围 0-N),用黑白灰度图像显示。该值反映了稀疏回波信号的相对光强。
- (4) 三维像显示模式:点击"三维像",在图像显示区用三维坐标系显示各个像元的计数值(即距离值),与距离像设置以及表示方式相同。可选择"等比三维像"与"透视三维像"两种显示方式。其中"显示范围"栏处,可设置伪彩色的显示范围与三维坐标中计数值坐标范围。

"阈值设置":该值一般设置为距离门宽值。作为判据,用于强度像模式下,

确定 N 帧数据中被暗计数与回波信号触发的次数 (由于距离门宽存在抖动误差,该值通常设置约小于距离门宽值)。

● 数据存储

在"存储路径"栏,选择数据存储位置,点击"保存",存储点击之前最近一段时间内上位机采集的大小为 20000 帧 64×64 阵列各像元计数器输出的计数值。

● 控制参数区

"电压设定"处,填入器件所需的偏置电压值,50.0V-80.0V 范围连续可调,步进0.1V;点击"设置"按钮,升压电路偏压设置生效;点击"关闭"按钮,升压电路关闭,偏压设置无效;

"电流监测"处,显示升压电路回路中电流值,过大则警示探测器雪崩电流值较大,有损坏的危险;

"温度设定"处,填入器件所需的低温工作温度值,-40℃至+30℃范围连续可调,步进 1℃;点击"设置"按钮,温控电路制冷设置生效;点击"关闭"按钮,温控电路关闭,温度设置无效。

"温度反馈"处,显示器件内部实际工作温度值;在某一温度点±0.5℃范围内稳定不变时,同时工作电流处于稳定状态,表明器件已达设定温度值。

8 故障分析与排除

InGaAs 盖革雪崩焦平面相机在使用过程中如出现表 8-1 中所述故障,应按相应方法进行排除。若故障仍不能排除,请咨询中国电子科技集团公司第四十四研究所(联系方式如前言)。

故障现象	原因分析	排除方法
电源自检连接异常	1、电源未供电; 2、电源线接触不良;	1、关断后,重新打开电源; 2、检查电源线接头; 3、确保电源接触良好;
串口自检 连接异常	1、电源未供电; 2、Cameralink 线插接不良;	1、关断后,重新打开电源; 2、Cameralink 连接线重新插拔;

表 8-1 故障分析与排除

故障现象	原因分析	排除方法
		3、确保 Cameralink 接触良好;

故障现象	原因分析	排除方法
相机无图像	1、Cameralink 接口 2、外触发信号异常 3、采集程序出错	1、检查是否存在其他 Cameralink 设备,并暂停使用该设备。 2、检查外触发信号是否满足相机外触发工作条件。 3、运行任务管理器,在进程中关掉相机采集软件,重启计算机。

9 使用方法与注意事项

- (1) 供电前应仔细检查供电电源电压是否满足要求;
- (2) 干燥环境中使用时应注意静电防护;
- (3) 推荐工作环境温度不超过 40℃;
- (4) 插拔接口时注意不要用力过大:
- (5) 注意开关电源和软件的顺序, 见第6小节。

10 运输与储存

在运输过程与贮存过程中, 应防静电、防冲击。

贮存条件为-20℃~+50℃,湿度≤80%的通风、干燥、无腐蚀气体影响的环境。 贮存期限为36个月。

超出期限的产品应进行超期复验后再使用。

11 开箱检查

产品开箱后,应检查产品外观有无损伤,检查产品的标识是否一致。如:产品名称、型号规格、数量与产品编号。

检查随产品包装的附件,包括:

- DALSA 采集卡一张 (可选配)
- Cameralink 数据线一根(可选配)
- SMA 连接线一根
- SWIR 专用镜头一个(50mm/F2.15)(可选配)
- 使用说明书光盘一张

18

12 附录

12.1Camlink 接口管脚定义

表 12-1 为 Camlink 对外接口的管脚定义。

表 12-1 Camlink 接口管脚定义

接口名称	封装	管胸位号	管胸定义	管胸说明	
		15	TXO_P		
		2	TXO_N		
		16	TX1_P		
		3	TX1_N	数据信号	
		17	TX2_P		
		4	TX2_N		
	SDR26_90	19	TX3_P		
		6	TX3_N		
Cameralink		7	SR_P	接收指令	
		20	SR_N	20.000	
		21	ST_P	发送指令	
		8	ST_N		
		18	CLKOUT_P	时钟	
		5	CLKOUT_N		
		1, 13, 14, 26, 27, 28	GND	地	

Cameralink 芯片采用 TI 公司的 DS90CR287, 其管脚定义如表 12-2 所示。

表	12 - 2	Camlink	表出	·管脚	定义
-		Companie		1 10 27	A -

接口	方向	位宽	说明
FVAL	OUT	1	帧同步信号
LVAL	OUT	1	行同步信号
DVAL	OUT	1	数据有效信号
CLK	OUT	1	数据时钟 (85 MHz)
D[23:0]	OUT	24	数据线离 12 位和低 12 位分别表示一个像元值

Camlink 接口传输图像数据的时序图如图 12-1 所示。

图 12-1 Camlink 接口传输时序图

说明:数据传输采用线阵模式,帧同步 FVAL 和行同步 LVAL 完全一致,每一帧 数据量为 4096 个像素,数据位宽为 12bit,取数据线的低 12bit。

12.2 指令数据通信协议

本系统的指令数据传输的物理层采用 2 线连接的 RS-232 接口,工作波特率为 115200,8位数据位,1位停止位,无奇偶校验位。所有通信均采用主从应答模式, 即由上位机发送相应的指令,由相机端进行应答。

12.2.1 指令帧结构说明

其指令的结构如下所示:

指令头1	指令头2	指令长度	指令码	指令数据区	校验和
(1字节)	(1字节)	(1字节)	(1字节)	(N字节)	(1字节)
0xE6	0x26	指令总长度 N+5	存放指令码	存放指令数据	

指令头 1: 1 个字节, 固定为 16 进制数 0xE6。

指令头 2: 1 个字节, 固定为 16 进制数 0x26。

指令长度: 1 个字节, 为整个指令的数据长度 (单位: 字节), 包括校验和。

指令码: 1 个字节, 详见后述。

指令数据区: 需要发送的命令附加的实际数据, 共 N 个字节, 如果数据为 16 位数,则分解为两个字节,低字节在前,高字节在后。如果数据为 32 位数,则分解为 4 个字节,低字节在前,高字节在后。

校验和: 1 个字节, 其值为校验和前所有指令数据按字节相加。

各指令码功能介绍如下表 12-3 所示。

表 12-3 指令码功能说明

指令码	功能定义	指令数据区长度 (N)	指令数据区使用说明
0xA1	设置触发延时和时间门宽度	共8字节	1、触发延时 (32bit) (byte0~byte3): 取值范围: 0-200000, 每 DN 表示 1ns 2、时间门宽 (32bit) (byte4~byte7): 范围: 200ns - 4000ns, 每 DN 表示 1ns
0xA2	内外触发切换 设置	共 1 字节	1、内外触发切换 (8bit) (byte0): 外触发: 0xAA 内触发: 0x0
0xA3	内触发 参数设定	共 16 字节	1、内触发帧周期 (32bit) (byte0~byte3): 取值范围: 2000 - 500000000, 每 DN 表示 20ns 时间范围: 40us - 1s 2、内触发延时 (32bit) (byte4~byte7): 取值范围: 0 - 100000, 每 DN 表示 20ns 时间范围: 0us - 2ms 推荐设置值: 0 3、触发输出延时 (32bit) (byte8~byte11): 取值范围: 0 - 100000, 每 DN 表示 20ns 时间范围: 0us - 2ms 推荐设置值: 0 4、触发输出宽度 (32bit) (byte12~byte15): 取值范围: 1 - 100000, 每 DN 表示 20ns 时间范围: 20ns - 2ms 推荐设置值: 50 (1us)
0xA6	TEC 温控设置	共 4 字节	1、温度设定值 (16bit) (byte0~byte1): 该值为双字节有符号数,每DN表示1 ℃,温度设 定范围为: -40 ~ 20 ℃ 2、温控模式 (8bit) (byte2): 该值固定为 0; 3、温控开关 (8bit) (byte3):

			打开: 0xAA; 关闭: 0x0;
0xA8	偏置电压设定	共 4 字节	1、偏压设定值(16bit)(byte0~byte1): 偏压范围: 50~68V 该值的取值公式: 设定值 = 9216 + (设定电压-50) ×183.3 2、偏压模式(8bit)(byte2): 该值固定为0; 3、偏压开关(8bit)(byte3): 打开: 0xAA; 关闭: 0x0;
0xAA	温度及偏压电 流查询	共 0 字节	该指令执行后会在应答帧中反馈探测器温度和偏 压工作电流

12.2.2 应答帧结构说明

其应答帧结构如下所示:

应答头1	应答头2	指令码	指令执行反馈	应答数据区
(1字节)	(1字节)	(1字节)	(1字节)	(N字节)
0xB2	0x62	接收到的指令码	反馈指令 执行情况	

应答头 1: 1 个字节, 固定为 16 进制数 0xB2。

应答头 2: 1 个字节, 固定为 16 进制数 0x62。

指令码: 1 个字节, 反馈接收到的指令码值。

指令执行反馈: 1个字节, 0表示指令执行成功, 非 0表示指令执行失败。

应答数据区: 指令执行后反馈的相关数据,根据执行指令不同应答数据区长度 不同,如果数据为 16 位数,则分解为两个字节,低字节在前,高字节在后。各指 令执行后的应答帧数据说明如下表:

表 12-5 各指令码应答帧数据说明

指令码	功能定义	应答数据区 长度 (N)	指令数据区使用说明
0xA1	反馈设置触发 延时和时间门 宽度指令执行 情况	共 0 字节	无
0xA2	内外触发切换 设置	共 0 字节	无
0xA3	内触发	共0字节	无

	参数设定		
0xA6	TEC 温控设置	共 0 字节	无
0xA8	偏置电压设定	共 0 字节	无
OxAA	温度及偏压电 流查询	共 5 字节	1、温度反馈值 T (16bit) (byte0~byte1): 该数为双字节无符号数,得到反馈值 T 后可根据公 式算出实际的温度,取值范围为-50~60℃。 计算公式为: -3.623662745*exp(0.00004459201*T)+72.839582* exp(-0.0000845838*T) 2、电流反馈值(16bit)(byte2~byte3): 得到反馈值后可根据如下公式计算出实际电流:电流值 = 12.5×电流反馈值÷65535 (单位: uA)。 3、TEC 控温、偏压开关情况(8bit)(byte4): bit0: 1 表示 TEC 打开,0表示 GEC 关闭 bit1: 1 表示偏压打开,0表示偏压关闭 bit2~bit7:朱使用