

Université Internationale de Casablanca

Exposé

ELECTRONIQUE NUMERIQUE

email: nasser_baghdad @ yahoo.fr

ELECTRONIQUE NUMERIQUE

Sommaire

Chapitre I: Technologies des circuits logiques: TTL et CMOS

Chapitre II : Les bases de numération

Chapitre III: Les portes logiques

Chapitre IV: Les fonctions binaires

Chapitre V : Les circuits combinatoires

Chapitre VI: Les circuits séquentiels

ELECTRONIQUE NUMERIQUE

Chapitre. V

Les circuits combinatoires

- I. Circuits arithmétiques
- II. Circuits de transcodage
- III. Circuits d'aiguillage

Système combinatoire - Système séquentiel :

Définition d'un circuit combinatoire

► Une fonction binaire est dite combinatoire si sa valeur à l'instant t ne dépend que des valeurs de ses entrées à cet instant.

Un circuit combinatoire est un circuit logique où chacune des sorties est une fonction logique des entrées.

II. Circuits arithmétiques

- 1°) Additionneurs addition binaire
- 2°) Soustracteurs soustraction binaire
- 3°) Multiplieurs multiplication binaire
- 4°) Diviseurs division binaire
- 5°) Comparateurs comparaison binaire
- 6°) Comparateur avec des entrées de mise en cascade
- 7°) UAL: Unité Arithmétique et Logique (ALU: Arithmetic Logic Unit)

1°) Additionneurs – Addition binaire

► Les additionneurs ont pour rôle d'effectuer l'addition des nombre binaires

a°) Règle de l'opération addition

► L'addition des nombres binaires se fait en respectant la règle suivante :

$$0 + 0 = 0$$
 retenue 0

$$0 + 1 = 1$$
 retenue 0

$$1 + 0 = 1$$
 retenue 0

$$1+1=0$$
 retenue 1

b°) Conception d'un circuit additionneur

i°) Demi additionneur (Half Adder) ou (HA)

- ► Il s'agit ici de concevoir un circuit capable d'effectuer la somme de deux nombres binaires A et B.
- ► Le circuit doit avoir deux entrées A et B, et deux sorties S et C

S: Sortie du bit somme

C: Carry (sortie du bit de report)

Schéma bloc du 1BHA

► Il <u>ne tient pas compte</u> de la retenue qui peut arriver en entrée, provenant de calculs précédents.

Table délivrant la fonction 1BHA

Α	В	S	С
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

Tableau de Karnaugh

Inutile « expression compacte »

Expressions logiques des sorties

$$S = A \oplus B$$
 $C = A \cdot B$

ii°) Additionneur complet (Full Adder) ou (FA)

- ▶ Un additionneur complet est un circuit capable de faire la somme de 3 bits A_n et B_n qui sont les bits à additionner et C_{n-1} le report provenant de la somme des bits directement moins significatifs.
- ► Le circuit aura deux sorties S_n et C_n qui sont respectivement le bit de la somme et le bit du report provenant de la somme de 3 bits A_n , B_n et C_{n-1} .

Schéma bloc du FA à 1 bit

► Il <u>tient compte</u> de la retenue qui peut arriver en entrée, provenant de calculs précédents.

Table délivrant la fonction 1BPA

Α	В	R_{E}	S	R_s	décimal
0	0	0	0	0	0
0	0	1	1	0	1
0	1	0	1	0	2
0	1	1	0	1	3
1	0	0	1	0	4
1	0	1	0	1	5
1	1	0	0	1	6
1	1	1	1	1	7

Tableaux de Karnaugh

Sortie S somme

B R _E	00	01	11	10
0	0	1	0	1
1	1	0	1	0

Expressions logiques des sorties

$S = (A.\overline{B} + \overline{A}.B).\overline{R_E} + (\overline{A}.\overline{B} + A.B).R_E$
$S = (A \oplus B).\overline{R_E} + (\overline{A \oplus B})R_E$
$S = A \oplus B \oplus R_E$
$R_{s} = A.B + B.R_{E} + A.R_{E}$

Sortie R_S retenue

B R _E	00	01	11	10
0	0	0	1	0
1	0	1	1	1

iii°) Réalisation d'un additionneur de deux nombre de n bits

► On peut réaliser un additionneur de deux nombres binaires de n bits chacun.

Soit à effectuer la somme de deux nombres N_1 et N_2 :

- N₁ est constitué de A_{n-1} A_{n-2}... A₂ A₁ A₀
- N₂ est constitué de B_{n-1} B_{n-2}... B₂ B₁ B₀
- \blacksquare A₀ et B₀ sont les LSB.

iiii°) Additionneur 4 bits à CI (74LS83)

2°) Soustracteurs – soustraction binaire

a°) Règle de l'opération soustraction

► La soustraction des nombres binaires se fait en respectant la règle suivante :

$$0 - 0 = 0$$

retenue 0

$$0 - 1 = 1$$

retenue 1

On écrit "1" et on retient 1

$$1 - 0 = 1$$

retenue 0

$$1 - 1 = 0$$

retenue 0

b°) Conception d'un circuit soustracteur

- i°) Demi soustracteur
- ► C'est un circuit capable de faire la soustraction de deux nombre binaires d'un bit chacun.
- ► Le circuit aura deux entrées x, y et deux sorties S et B
- S: Sortie du bit de soustraction
- B: Retenue (borrow)

Schéma bloc du D.S.

Table de vérité

х	у	S	В
0	0	0	0
0	1	1	1
1	0	1	0
1	1	0	0

Expressions logiques

$$S = \overline{x}y + x\overline{y} = x \oplus y$$
$$B = \overline{x}y$$

ii°) Soustracteur complet (S.C.) à n bits

C'est un circuit capable de faire la soustraction de deux bits de rang n, $(x_n - y_n)$ tout en tenant compte de la retenue B_{n-1} provenant de la soustraction des bits de rang directement inférieurs. On aura deux sorties S_n et B_n .

Solution:

a) Table de vérité

X _n	y _n	B _{n-1}	S _n	B _n
0	0	0	0	0
0	0	1	1	1
0	1	0	1	1
0	1	1	0	1
1	0	0	1	0
1	0	1	0	0
1	1	0	0	0
1	1	1	1	1

- b) Équations des sorties ?
- c) Simplification: Karnaugh?
- d) Logigramme?

Remarque:

▶ Dans un souci d'économie de circuits, la soustraction A – B est réalisée, dans la majorité des circuits numériques, comme une addition entre A et le complément à 2 de B.

iii°) Circuit traduisant la règle de l'opération soustraction effectuée par une machine

$$A-B \Leftrightarrow A+CV(B)=A+CR(B)+1=A+\overline{B}+1$$

iiii) Réalisation d'un circuit soustracteur / additionneur ?

Additionneur: E =

Soustracteur : E =

3°) Multiplieurs – multiplication binaire

Les règles de calcul de la multiplication binaire sont pratiquement les mêmes qu'en décimal.

a°) Les règles de l'opération multiplication

$$0 \times 0 = 0$$

$$0 \times 1 = 0$$

$$1 \times 0 = 0$$

$$1 \times 1 = 1$$

b°) Conception d'un circuit multiplieur

Multiplieur 1 bit

Table de vérité

X	у	S
0	0	0
0	1	0
1	0	0
1	1	1

Expressions logiques

$$S = xy$$

Logigramme

4°) Diviseurs – division binaire

Même principe que la division des nombres décimaux.

$\begin{array}{c|c} & 3.1 \\ \hline & 62 \\ \hline & 300 \\ \hline & 279 \\ \hline & 210 \end{array}$

Exemple:

$$\begin{array}{c|cc}
1001 & 11 \\
-11 & 11 \\
\hline
0011 & \\
\hline
11 & \\
\hline
0 & \\
\end{array}$$

$$-\frac{9}{3} | \frac{3}{3}$$

$$\begin{array}{c|ccccc}
1011 & 100 \\
-100 & 10,11 \\
\hline
00110 & \\
\hline
-100 & \\
\hline
0100 & \\
-100 & \\
\hline
000 & \\
\hline
11 & 4 & \\
\hline
11 & 2,75 & \\
2,75 = 2 + 0,75 & \\
0,75 \times 2 = 1,5 & \\
0,5 \times 2 = 1 & \\
\end{array}$$

5°) Comparateurs – comparaison binaire

- ► Le comparateur détecte l'égalité entre deux nombres A et B.
- ► Certains circuits permettent également de détecter si A est supérieur ou bien inférieur à B ou bien différent de B.
- i°) Conception d'un circuit comparateur à 1 bit

Table de vérité

A	В	A < B	A = B	A > B	A≠B
0	0	0	1	0	0
0	1	1	0	0	1
1	0	0	0	1	1
1	1	0	1	0	0

Tableau de Karnaugh

Inutile « expression compacte »

Expressions logiques des sorties : SOP

$$(A \land B) = I = s_1 = \overline{A} B$$

$$(A = B) = E = s_2 = \overline{A \oplus B}$$

$$(A \land B) = S = s_3 = A \overline{B}$$

$$(A \neq B) = D = s_4 = A \oplus B$$

Logigramme A R

ii°) Conception d'un circuit comparateur à 2 bits à l'aide des portes logiques

Réaliser un tel circuit en utilisant un minimum de portes logiques.

		_						
A		F	3	de véri	sorties			Identification
A ₁	A_0	B ₁	B_0	A < B	A = B	A > B	A≠B	décimal
0	0	0	0	0	1	0	0	0
0	0	0	1	1	0	0	1	1
0	0	1	0	1	0	0	1	2
0	0	1	1	1	0	0	1	3
0	1	0	0	0	0	1	1	4
0	1	0	1	0	1	0	0	5
0	1	1	0	1	0	0	1	6
0	1	1	1	1	0	0	1	7
1	0	0	0	0	0	1	1	8
1	0	0	1	0	0	1	1	9
1	0	1	0	0	1	0	0	10
1	0	1	1	1	0	0	1	11
1	1	0	0	0	0	1	1	12
1	1	0	1	0	0	1	1	13
1	1	1	0	0	0	1	1	14
1	1	1	1	0	1	0	0	15

 $(A=B)=S_2=1$

Tableaux de Karnaugh et expressions logiques simplifiées

B ₁ B ₀ A ₁ A ₀	0 0	0 1	11	10
0 0				
0 1				
11				
1 0				

$$\overline{(A \land B) = S_1 = I}$$

	B ₁ B ₀ A ₁ A ₀	0 0	0 1	11	10
E	0 0				
	0 1				
	11				
	10				

$$(A=B)=S_2=E$$

$$(A \rangle B) = S_3 = S$$

 $(A \langle B) = S_1 = I$

B ₁ B ₀ A ₁ A ₀	0 0	0 1	11	10
0 0				
0 1				
11				
1 0				

$$(A \rangle B) = S_3 = S$$

	B ₁ B ₀ A ₁ A ₀	0 0	0 1	11	1 0
$(A \neq B) = S_4 = D$	0 0				
	0 1				
	11				
	1 0				

$$(A \neq B) = S_4 = D$$

Expressions logiques des sorties

$$(A < B) = I = s_1 = \dots$$

$$(A = B) = E = s_2 = \dots$$

$$(A > B) = S = s_3 = \dots$$

$$(A \neq B) = D = s_4 = \dots$$

Logigramme

7°) UAL: Unité Arithmétique et Logique (ALU: Arithmetic Logic Unit en anglais)

a°) Généralités

- L'unité arithmétique et logique, abrégée UAL (ou bien ALU, Arithmetic Logic Unit en anglais), est l'organe de l'ordinateur chargé d'effectuer les calculs.
- ► Le plus souvent, l'UAL est incluse dans l'unité centrale (ou le microprocesseur).
- ► Les UAL peuvent être spécialisées ou pas. Les UAL élémentaires calculent sur des nombres entiers, et peuvent effectuer les opérations communes, que l'on peut séparer en quatre groupes :
 - Les <u>opérations arithmétiques</u> : addition, soustraction, changement de signe, etc.,
 - les <u>opérations logiques</u> : compléments à un, à deux, ET, OU, OU-exclusif, NON, NON-ET, etc.,
 - les <u>comparaisons</u> : test d'égalité, supérieur, inférieur, et leur équivalents « ou égal », éventuellement des <u>décalages et rotations</u> (mais parfois ces opérations sont externalisées).

b°) Unité logique arithmétique de type 74 HC / HCT 181

symbole de circuit du composant.

c°) Affectation des picots :

- P₀ P₃ : données d'entrée à 4 bits (opérateur A)
- Q₀Q₃ : données d'entrée à 4 bits (opérateur B)

d°) Lignes de commande (sélection du mode) :

- $-S_0 \dots S_3$: sélection de fonction par le mot de commande à 4 bits aux entrées. L'opération est définie avec $S_0 \dots S_3$.
- M : ligne de sélection du mode d'opération (commande de mode), commutant opération arithmétique et opération logique.
- CI : retenue (carry in)
- CO: soustraction de retenue (carry out)
- CP, CG: pour applications spéciales de formation de report.
- P = Q : sortie de comparateur. Cette sortie reporte le signal
 "1" si l'ensemble des sorties de résultats reportent ce signal
 "1". Pour certaines opérations, cette fonction permet de déterminer l'égalité des opérateurs A et B.

e°) Principales opérations et signaux de commande de l'UAL :

► Le tableau suivant renferme les principales opérations et signaux de commande de l'unité logique arithmétique 74HC / HCT181.

	CI	S ₀	S ₁	S ₂	S ₃	M	Fonction	Opération
190	0	0	0	0	0	0	incrémentation	A + 1
	0	0	1	1	0	0	soustraction	A - B
	1	0	1	1	0	0	soustraction avec retenue	A – B – CY
Opérations	1	1	0	0	1	0	addition	A + B
arithmétique	0	1	0	0	1	0	addition avec retenue	A + B + CY
	1	0	0	1	1	0	décalage à gauche	A + A
	0	0	0	1	1	0	rotation à gauche	A + A + CY
	1	1	1	1	1	0	décrémentation	A - 1
	*	0	0	0	0	1	NEGATION (inverser)	Ā
Opérations logiques	*	1	0	1	0	1	(charger et inverser)	B
	*	0	1	1	0	1	OU EXCLUSIF	A ≠ B
	*	1	0	0	1	1	EQUIVALENCE	A ≡ B
	*	0	1	0	1	1	(charger)	В
	*	1	1	0	1	1	ET	A∧B
	*	0	1	1	1	1	OU	A∨B
	*	1	1	1	1	1	(sans effet)	A

f°) Notes sur l'affectation des picots :

- *: CI n'affecte pas les opérations de logique.
- Opérateur A correspond à l'information aux entrées P.
- Opérateur B correspond à l'information aux entrées Q.
- Les fonctions entre parenthèses sont valables pour un circuit avec accumulateur.
- CY de valeur "1" représente le report (carry).

Opération	Fonction	M	S ₃	S ₂	S ₁	S ₀	CI		
A + 1	incrémentation	0	0	0	0	0	0	Opérations arithmétiques	
A - B	soustraction	0	0	1	1	0	0		
A – B – CY	soustraction avec retenue	0	0	1	1	0	1		
A + B	addition	0	1	0	0	1	1		
A + B + CY	addition avec retenue	0	1	0	0	1	0		
A + A	décalage à gauche	0	1	1	0	0	1		
A + A + CY	rotation à gauche	0	1	1	0	0	0		
A - 1	décrémentation	0	1	1	1	1	1		
Ā	NEGATION (inverser)	1	0	0	0	0	*	Opérations logiques	
B	(charger et inverser)	1	0	1	0	1	*		
A ≠ B	OU EXCLUSIF	1	0	1	1	0	*		
A≡B	EQUIVALENCE	1	1	0	0	1	*		
В	(charger)	1	1	0	1	0	*		
$A \wedge B$	ET	1	1	0	1	1	*		
A∨B	OU	1	1	1	1	0	*		
A	(sans effet)	1	1	1	1	1	*		

► Le tableau suivant renferme les principales opérations et signaux de commande de

Opération	Fonction	M	S ₃	S ₂	S ₁	So	CI	
A + 1	incrémentation	0	0	0	0	0	0	
A - B	soustraction	0	0	1	1	0	0	
A – B – CY	soustraction avec retenue	0	0	1	1	0	1	
A + B	addition	0	1	0	0	1	1	Opérations
A + B + CY	addition avec retenue	0	1	0	0	1	0	arithmétiques
A + A	décalage à gauche	0	1	1	0	0	1	
A + A + CY	rotation à gauche	0	1	1	0	0	0	
A - 1	décrémentation	0	1	1	1	1	1	
Ā	NEGATION (inverser)	1	0	0	0	0	*	
B	(charger et inverser)	1	0	1	0	1	*	
A ≠ B	OU EXCLUSIF	1	0	1	1	0	*	
A≡B	EQUIVALENCE	1	1	0	0	1	*	Opérations
В	(charger)	1	1	0	1	0	*	logiques
A∧B	ET	1	1	0	1	1	*	
A v B	OU	1	1	1	1	0	*	
A	(sans effet)	1	1	1	1	1	*	

II. Circuits de transcodage

- 1°) Codeurs (ou encodeurs)
- 2°) Décodeurs
- 3°) Transcodeurs

1°) Codeurs (ou encodeurs)

- ► Circuit à $\underline{m = 2^n \text{ entrées}}$ et $\underline{n \text{ sorties}}$ qui code en binaire le rang de la seule entrée active.
- ► Une seule entrée parmi m est activée à la fois, ce qui correspond à un nombre binaire de n bits en sortie.

► Un codeur transforme le code binaire 1 parmi m en code binaire naturel.

a°) Codeur 1 parmi 4

► Circuit à 2² = 4 entrées et 2 sorties qui code en binaire le rang de la seule entrée active.

► Ce codeur transforme le code binaire 1 parmi 4 en code binaire naturel.

Table de vérité

E ₃	E ₂	E ₁	E ₀	S ₁	S ₀
0	0	0	1	0	0
0	0	1	0	0	1
0	1	0	0	1	0
1	0	0	0	1	1

Expressions logiques des sorties

$$S_0 = E_1 + E_3$$

 $S_1 = E_2 + E_3$

Application: Convertisseur Analogique Numérique (CAN)

niveaux de quantification : nombres décimaux (niveaux de tensions) 1 entrée active à la fois parmi 4

Code binaire naturel

b°) Codeur 1 parmi 8

► Circuit à 2³ = 8 entrées et 3 sorties qui code en binaire le rang de la seule entrée

► Ce codeur transforme le code binaire 1 parmi 8 en code binaire naturel.

Table de vérité ?

	SORTIES										
E ₇	E ₆	E ₅	E ₄	E ₃	S ₂	S₁	S ₀				
							1				
					1						
				1	_						
			1	/							
		1									
	1										
	-										
Équatio											
	$S_{ m o} = \ldots \ S_1 = \ldots$										
			.5								

Logigramme?

Exemple d'application en télécommunication : transmission de la voix numérique

► Circuit à 2⁸ = 256 entrées et 8 sorties qui code en binaire le rang de la seule entrée active.

Code 1 parmi 256 niveaux de quantification

Code binaire naturel

2°) Décodeurs

► Circuit à m entrées et n = 2^m sorties qui transforme un code binaire naturel en un code 1 parmi n.

Code binaire naturel

Code 1 parmi n

m entrées

n sorties : $n=2^m$

a°) Décodeur 1 parmi 4

► Circuit à 2 entrées et 4 sorties qui transforme le code binaire naturel en un code 1 parmi 4.

Table de fonctionnement										
Code binai	re d'entrée	Code 1 parmi 4 sorties								
E ₁	E ₀	S ₃	S ₂	S ₁	S ₀					
0	0	0	0	0	1					
0	1	0	0	1	0					
1	0	0	1	0	0					
1	1	1	0	0	0					

Expressions logiques des sorties

$$S_0 = \overline{E_0} \cdot \overline{E_1}$$
 $S_1 = E_0 \cdot \overline{E_1}$
 $S_2 = \overline{E_0} \cdot E_1$
 $S_3 = E_0 \cdot E_1$

► Ce décodeur transforme le code binaire naturel en code binaire 1 parmi 4.

b°) Décodeur 1 parmi 8

► Circuit à 3 entrées et 8 sorties qui transforme le code binaire naturel en code 1 parmi 8.

c°) Décodeur 1 parmi 10 (ou décodeur DCB – décimal)

► Circuit à 4 entrées et 10 sorties transformant le code DCB en un code 1 parmi 10.

d°) Circuit décodeur d'adresse

► C'est un circuit composé de n lignes d'entrées qui représentent une adresse sur n bits et de 2ⁿ lignes de sortie possibles dont une seule est sélectionnée en fonction de la "programmation" des n lignes d'entrées.

Écriture/lecture d'un contenu binaire dans une mémoire

Exemple d'utilisation en informatique : lecture et écriture dans les mémoires

▶ On entre l'adresse de la ligne à sélectionner soit $1\ 0\ 1\ 0\ 0\ 0\ 1\ 0$ en binaire ($A_0 = 1$, $A_1 = 0$, $A_2 = 1$, ..., $A_7 = 0$) ce nombre binaire vaut 162 en décimal, c'est donc la sortie S: 162 qui est activée par le composant.

► Ce genre de circuits très fréquent dans un <u>ordinateur</u> sert à sélectionner des registres, des cellules mémoires ou des lignes de périphériques.

GÉNIE INFORMATIQUE

Chapitre V: Les circuits combinatoires

Exemple d'utilisation en télécommunication : restitution de la voix

► Circuit à 8 entrées et 2⁸ = 256 sorties, qui code en binaire le rang de la seule entrée active.

 $2^8 = 256$ sorties

Code binaire naturel

Code 1 parmi 256 restitution des échantillons

3°) Transcodeurs

- ► Le transcodeur est un circuit qui transforme un code machine en un autre code machine.
- Par exemple, il permet la conversion :
 - du code binaire au code de Gray,
 - du <u>code DCB 7 segments</u> : <u>décimal</u> ou <u>hexadécimal</u>

a°) Transcodeur à 2 bits : binaire naturel (CBN) → code de Gray (CBR)

► Ce décodeur transforme le code binaire naturel (CBN) en code binaire réfléchi (CBR).

Table de vérité

E ₁	E ₀	S ₁	S ₀
0	0	0	0
0	1	0	1
1	0	1	1
1	1	1	0

Expressions logiques des sorties

$$S_0 = E_0 \cdot \overline{E_1} + \overline{E_0} \cdot E_1 = E_0 \oplus E_1$$

 $S_1 = \overline{E_0} \cdot E_1 + E_0 \cdot E_1 = E_1$

b°) Transcodeur à 3 bits : binaire naturel (CBN) → code de Gray (CBR)

Table de vérité ?

E ₂	E ₁	E ₀	S ₂	S ₁	S ₀
0	0	0			
0	0	1			
0	1	0			
0	1	1			
1	0	0			
1	0	1			
1	1	0			
1	1	1			

Expressions logiques des sorties?

$S_0 =$	•••••
$S_1 =$	•••••
$S_2 =$	•••••

Logigramme ?

c°) Transcodeur (ou décodeur) pilote DCB - 7 segments

► Les 10 chiffres décimaux (0 à 9) et parfois les caractères de l'hexadécimal (A à F) peuvent être configurés au moyen de 7 segments.

► Chaque segment est constitué d'un matériau qui émet de la lumière lorsqu'il est traversé par un courant. Les matériaux les plus utilisés sont les LED et les filaments incandescents.

8 s'écrit en allumant toutes les LED

2 s'écrit en allumant a, b, d, e, g

1 s'écrit en allumant les LED b, c

F s'écrit en allumant les LED a, e, f, g

Disposition des 7 segments

Remarques:

- ► Afficheur 7 segments est dit à anode commune lorsque toutes les anodes des LED qui constituent les 7 segments sont reliés à +V_{CC}.
- ▶ Une LED est allumée si sa cathode est à la masse.

- ► Un afficheur est dit à cathode commune lorsque toutes les cathodes sont reliées à la masse.
- ► Une LED s'allume lorsque l'anode est mise à +V_{cc}.

Les segments étant constitués des LED, il est nécessaire de disposer d'une <u>résistance en série</u> avec chaque LED pour limiter le courant et éviter sa destruction

► Le décodeur 7 segments permet à partir d'une combinaison sur 4 bits, de piloter un afficheur sept segments en décimal (digits de 0 à 9).

Table de vérité

Pilotage d'un afficheur sept segments en décimal

E3	E2	E1	E0	а	b	С	d	е	f	g
0	0	0	0							
0	0	0	1							
0	0	1	0							
0	0	1	1							
0	1	0	0							
0	1	0	1							
0	1	1	0							
0	1	1	1							
1	0	0	0							
1	0	0	1							

Logigramme ?

d°) Transcodeur (ou décodeur) pilote Hexadécimal - 7 segments

► Le décodeur 7 segments permet à partir d'une combinaison sur 4 bits, de piloter un afficheur sept segments en hexadécimal (digits de 0 à F).

Table de vérité

Pilotage d' un afficheur sept segments en hexadécimal

E3	E2	E1	E0	а	b	С	d	е	f	g
0	0	0	0							
0	0	0	1							
0	0	1	0							
0	0	1	1							
0	1	0	0							
0	1	0	1							
0	1	1	0							
0	1	1	1							
1	0	0	0							
1	0	0	1							
1	0	1	0							
1	0	1	1							
1	1	0	0							
1	1	0	1							
1	1	1	0							
1	1	1	1							

Logigramme ?

III. Circuits d'aiguillage

- 1°) Multiplexeurs (CPS)
- 2°) Démultiplexeurs (CSP)

GÉNIE INFORMATIQUE **D'INGENIERIE**

Chapitre V: Les circuits combinatoires

1°) Multiplexeurs (ou Convertisseur Parallèle Série : CPS)

- ► C'est un circuit d'aiguillage comportant 2ⁿ entrées, n lignes de sélection (ou d'adresse) et une sortie unique.
- Les n lignes de sélection permettent de "programmer" le numéro de l'entrée qui doit être sélectionnée pour être aiguiller vers la sortie.

Application en télécommunication :

► Le rôle d'un multiplexeur en <u>télécommunication</u> consiste à faire circuler sur un seul conducteur (FO, câble électrique, air,...) des informations provenant de sources multiples.

Collecte

a°) Multiplexeur : 4 entrées, 2 lignes de sélection et une sortie

► Le module de commande (de sélection) ou (d'adressage) permet de sélectionner l'entrée qui doit fournir l'information à la sortie.

Table de vérité :

E ₃	E ₂	E ₁	E ₀	S
0	0	0	1	$\underline{A}_0 \ \underline{A}_1 \ \underline{E}_0$
0	0	1	0	<u>A</u> ₀ A ₁ E ₁
0	1	0	0	$A_0 \underline{A}_1 E_2$
1	0	1	1	A_0 A_1 E_3

Equation logique:

$$S = \underline{A}_0 \ \underline{A}_1 \ E_0 + \underline{A}_0 \ A_1 \ E_1 + \underline{A}_0 \ \underline{A}_1 \ E_2 + \underline{A}_0 \ \underline{A}_1 \ \underline{E}_3$$

 $S = \underline{A}_0 \ \underline{A}_1 \ E_0 + \underline{A}_0 \ A_1 \ E_1 + A_0 \ \underline{A}_1 \ E_2 + A_0 \ A_1 \ E_3$

b°) Multiplexeur : 8 entrées, 3 lignes de sélection et une sortie unique

Table de vérité : ?

E ₇	E ₆	E ₅	E ₄	E ₃	E ₂	E ₁	E ₀	S

Équation logique : ?

S =

c°) Circuit intégré 74151 Multiplexeur à CI 74151 I4S174151 **S0** (MUX à 8 entrées) Entrée de validation

Exemple d'utilisation des multiplexeurs : la synthèse des fonctions logiques

Exemple a atmounted training								
D	С	В	Α		F			
0	0	0	0		1			
0	0	0	1		0			
0	0	1	0		0			
0	0	1	1		1			
0	1	0	0		0			
0	1	0	1		0			
0	1	1	0		0			
0	1	1	1		0			
1	0	0	0		1			
1	0	0	1		1			
1	0	1	0		1			
1	0	1	1		1			
1	1	0	0		0			
1	1	0	1		0			
1	1	1	0		1			
1	1	1	1		1			

Matérialisation de la fonction d'origine sans simplification

S = F

2°) Démultiplexeurs (ou Convertisseur Série Parallèle : CSP)

► C'est un circuit qui fonctionne à l'inverse du circuit précédent, il permet d'aiguiller l'entrée sur l'une des 2ⁿ sorties possibles, selon la programmation des n lignes de sélection (ou d'adresse).

GÉNIE INFORMATIQUE CASABLANCA **D'INGENIERIE** INTERNATIONALE **ECOLE**

Chapitre V : Les circuits combinatoires

Application en télécommunication :

- Le rôle d'un démultiplexeur en télécommunication consiste à guider l'information présente en entrée vers une sortie sélectionnée parmi plusieurs.
- La sélection est faite à l'aide des n entrées de commande.

Distribution

a°) Démultiplexeur : 1 entrée unique, 2 lignes de sélection et 4 sorties

► C'est un circuit qui a pour rôle le de redistribuer sur 4 voies les informations provenant d'une seule source.

Le module commande permet de sélectionner la sortie qui doit recevoir l'information de l'entrée.

Table de vérité :

A ₁	A ₀	S ₀	S ₁	S ₂	S ₃
0	0	Ε	0	0	0
0	1	0	Е	0	0
1	0	0	0	E	0
1	1	0	0	0	Е

Équations logiques:

$$S_1 = \underline{A}_0 \ \underline{A}_1 \ E$$

$$S_2 = \underline{A}_0 \ A_1 \ E$$

$$S_3 = A_0 \ \underline{A}_1 \ E$$

$$S_4 = A_0 \ A_1 \ E$$

b°) Démultiplexeur : 1 entrée unique, 3 lignes de sélection et 8 sorties

3 entrées d'adresse (ou de sélection)

Table de vérité : ?

A ₂	A ₁	A ₀	S ₀	S ₁	S ₂	S ₃	S ₄	S ₅	S ₆	S ₇
0	0	0								
0	0	1								
0	1	0								
0	1	1								
1	0	0								
1	0	1								
1	1	0								
1	1	1								

Équations logiques : ?

S ₀ =	
S ₁ =	
S ₂ =	
S ₃ =	
S ₄ =	
S ₅ =	
S ₆ =	
S ₇ =	

c°) Démultiplexeur intégré avec entrée de validation

Avec 4 voies de sortie, on a besoin de 2 bits de sélection ($2^2 = 4$). Lorsqu'une sortie est sélectionnée, elle prend la valeur de l'entrée et les autres sorties restent à zéro.

	ENT	SORTIES					
VAD	Sele	ction	Info	O3	02	01	00
$\overline{\mathbf{E}}$	S1 S2		I	0	02	01	00
1	X X		I	0	0	0	0
0	0	0	10	0	0	0	10
0	0	1	11	0	0	11	0
0	1	0	12	0	12	0	0
0	1	1	13	13	0	0	0

Equation des sorties

$$O0 = E.\overline{S1}.\overline{S0}.I0$$

 $O1 = E.\overline{S1}.S0.I1$

$$O2 = E.S1.\overline{S0}.I2$$

 $O3 = E.S1.S0.I3$

d°) Démultiplexeur à CI: 74LS138

Démultiplexeur à CI 74LS138

Exemple d'utilisation : Démultiplexeur utilisé comme Décodeur

Exemple d'utilisation de MUX/DEMUX : Transmission numérique de l'information

Multiplexage temporel

Démultiplexage temporel

