Fall Semester 2021-2022

Continuous Assessment Test - I (October 2022)

Continuous Assessment Test - 1 (October 2022)		
Slot: B2+TB2		Class No. VL2021220106763
Course Code: BMAT101L		Course Title: Calculus
Faculty: Dr. T. Phaneendra (13191)		School: SAS
Contact Number: 7418344920		email: phaneendra.t@vit.ac.in
Max. Time: 50 minutes		Max. Marks: 30
Answer all the questions		
1() 1		
1(a) Easy	10 marks	CO1 BL1
Verify Lagrange's mean-value theorem for $f(x) = x^4 - 16$ on [1,2], and find its absolute		
maxima and absorpoints $(1, -15)$ and		, find the equation of the chord joining the
1(b) Easy	10 marks	CO1 BL1
•	$\frac{1}{5}$ – 81 <i>t</i> for all real <i>t</i> . Verify	Rolle's theorem to f on $[-3,3]$ and use it to
find the appropriate critical points of f . Find the intervals of monotonicity and the points		
of inflection of f .		
	10 1	COLUMN PLA
1(c) Easy	10 marks	CO1 BL1
Using the first and the second derivative tests, find the relative extrema and the points of inflection of $f(x) = x^4 - 8x^2 + 10$.		
inflection of $f(x)$	$= x^{1} - 8x^{2} + 10.$	
1(d) Easy	10 marks	CO1 BL1
Using the first and the second derivative tests, find the relative extrema and the points of		
inflection of $f(x)$	$= x^4$.	
2(a) Tough	10 marks	CO1 BL3
	$\overline{x^2}$. Find its points of integral	ersection of the graph of f with the x -axis.
Use this information to compute the area of the region \mathcal{R} enclosed by the graph of $f(x)$		
and the x -axis. Fu	orther, if the region \mathscr{R} is re	volved about the x -axis, what is the volume
of the solid so gen	erated?	
2(b) Tough	10 marks	CO1 BL3
2(b) Tough		rea of the region \mathcal{R} , enclosed by the curve
		and $x = 2$. If \mathcal{R} is revolved about the x-axis,
	the ordinates $x = 0$ are the solid so generated	
compute the voidi	ne of the sond so generated	
2(c) Tough	10 marks	CO1 BL3
Find the area of the region \mathcal{R} , enclosed by the curve $y = x^{2/3}\sqrt{1 - x^{2/3}}$ between the		
ordinates $x = 0$ and $x = 1$. Also, compute the volume of the solid of revolution of the		
region ${\mathscr R}$ about th	e <i>x</i> -axis.	

- 2(d) **Tough** 10 marks **CO1 BL3** Find the points of intersection of the curves $y = x^2$ and $y = x^3$. Use this information to find the area of the region \mathcal{R} , enclosed by these two curves. Also, compute the volume of the solid of revolution of the region \mathcal{R} about the *x*-axis.
- 3(a) **Medium** 10 marks **CO2 BL3** Find the rate of change of $f(x, y, z) = xy^2 yz^3 + 2zx^2$, as (x, y, z) follows the curve $x = \sin t$, $y = \cos t$, z = t/2. What is its value at the point $(1, 0, \pi/4)$?
- 3(b) **Medium** 10 marks **CO2 BL3** Consider p = x 2y + 3z, q = 2x + y z, $r = x \frac{y}{3} + \frac{2z}{3}$. Compute the Jacobian $J\left(\frac{p,q,r}{x,y,z}\right)$ at any point (x, y, z). Also examine the possibility of functional dependence of p, q and r. If so, find the relation among them.
- 3(c) Medium 10 marks CO2 BL3

 Examine the continuity of

$$f(x) = \begin{cases} \frac{(1-x)^2 \log x}{(x-1)^2 + y^2}, & (x,y) \neq (1,0) \\ 0, & (x,y) = (1,0). \end{cases}$$

3(d) Medium 10 marks CO2 BL3
Examine the continuity of

$$f(x) = \begin{cases} \frac{x^3 + y^3}{x + y}, & (x, y) \neq (0, 0) \\ 0, & (x, y) = (0, 0). \end{cases}$$

Remark. The Bloom's Taxonomy levels should be mentioned as per the question

PAJAMA PADHAI