Examenul național de bacalaureat 2021

Proba E. c)

Matematică M_pedagogic BAREM DE EVALUARE ȘI DE NOTARE

Model

Filiera vocațională, profilul pedagogic, specializarea învățător-educatoare

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă zece puncte din oficiu. Nota finală se calculează prin împărțirea la zece a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$\sqrt{3} \cdot \left(\frac{1}{\sqrt{3} - 1} + \frac{1}{\sqrt{3} + 1} \right) = \sqrt{3} \cdot \frac{\sqrt{3} + 1 + \sqrt{3} - 1}{2} =$	3p
	$=\sqrt{3}\cdot\sqrt{3}=3$	2 p
2.	f(n) = n-2, deci $n-2 < 0$	2p
	n < 2 şi, cum n este număr natural, obținem $n = 0$ sau $n = 1$	3 p
3.	$x^2 - 1 = 3 \Rightarrow x^2 - 4 = 0$	3 p
	x = -2 sau $x = 2$, care convin	2p
4.	$x + \frac{20}{100} \cdot x = 660$, unde x este prețul obiectului înainte de scumpire	3 p
	x = 550 de lei	2p
5.	Panta unei drepte paralele cu dreapta d este egală cu 3	2p
	Ecuația dreptei care trece prin M și este paralelă cu dreapta d este $y-0=3(x-2)$, deci	3n
	y = 3x - 6	3 p
6.	$\mathcal{A}_{ABCD} = \frac{AC \cdot BD}{2} =$ $= \frac{2\sqrt{5} \cdot 4}{2} = 4\sqrt{5}$	2p
	$=\frac{2\sqrt{5}\cdot 4}{2}=4\sqrt{5}$	3 p

SUBIECTUL al II-lea (30 de puncte)

1.	$(-3)*3=3\cdot(-3)\cdot 3+7\cdot((-3)+3)+14=$	3p
	=-27+14=-13	2 p
2.	x * y = 3xy + 7(x + y) + 14 = 3yx + 7(y + x) + 14 =	3p
	= y * x, pentru orice numere reale x și y , deci legea de compoziție "*" este comutativă	2 p
3.	$x * y = 3xy + 7x + 7y + 14 = 3xy + 7x + 7y + \frac{49}{3} - \frac{7}{3} =$	3p
	$=3x\left(y+\frac{7}{3}\right)+7\left(y+\frac{7}{3}\right)-\frac{7}{3}=3\left(x+\frac{7}{3}\right)\left(y+\frac{7}{3}\right)-\frac{7}{3}, \text{ pentru orice numere reale } x \text{ și } y$	2p
4.	$x * x = 3\left(x + \frac{7}{3}\right)^2 - \frac{7}{3}$, pentru orice număr real x	2p
	$3\left(x+\frac{7}{3}\right)^2 - \frac{7}{3} = x \Leftrightarrow \left(x+\frac{7}{3}\right)(3x+6) = 0$, deci $x = -\frac{7}{3}$ sau $x = -2$	3p

5.	$x * \frac{1}{x} \ge 31 \Leftrightarrow 3 \cdot x \cdot \frac{1}{x} + 7\left(x + \frac{1}{x}\right) + 14 \ge 31 \Leftrightarrow x + \frac{1}{x} \ge 2$	3p
	$x + \frac{1}{x} - 2 \ge 0 \Leftrightarrow \frac{(x-1)^2}{x} \ge 0$, adevărat pentru orice număr real $x, x > 0$	2 p
6.	$3\left(3^{x} + \frac{7}{3}\right)^{2} - \frac{7}{3} = 83 \Leftrightarrow \left(3^{x} + \frac{7}{3}\right)^{2} = \frac{256}{9}$	2p
	Cum $3^x > 0$, obţinem $3^x + \frac{7}{3} = \frac{16}{3} \Rightarrow 3^x = 3$, deci $x = 1$	3 p

SUBIECTUL al III-lea

(30 de puncte)

1.	$A(1) = \begin{pmatrix} 3 & 1 \\ 1 & 3 \end{pmatrix} \Rightarrow \det(A(1)) = \begin{vmatrix} 3 & 1 \\ 1 & 3 \end{vmatrix} = 3 \cdot 3 - 1 \cdot 1 =$	3p
	=9-1=8	2p
2.	$A(0) = \begin{pmatrix} 3 & 0 \\ 0 & 3 \end{pmatrix} = 3I_2$	2p
	$A(0) \cdot A(2020) = 3I_2 \cdot A(2020) = 3A(2020)$	3p
3.	$\det(A(a)) = \begin{vmatrix} 3 & a \\ a & 3 \end{vmatrix} = 9 - a^2, \text{ pentru orice număr real } a$	2p
	$9-a^2=-16 \Leftrightarrow a^2-25=0$, de unde obţinem $a=-5$ sau $a=5$	3 p
4.	$9 - a^{2} = -16 \Leftrightarrow a^{2} - 25 = 0, \text{ de unde obţinem } a = -5 \text{ sau } a = 5$ $A(1) + A(2) + \dots + A(10) = \begin{pmatrix} 3 & 1 \\ 1 & 3 \end{pmatrix} + \begin{pmatrix} 3 & 2 \\ 2 & 3 \end{pmatrix} + \dots + \begin{pmatrix} 3 & 10 \\ 10 & 3 \end{pmatrix} = \begin{pmatrix} 3 \cdot 10 & 1 + 2 + \dots + 10 \\ 1 + 2 + \dots + 10 & 3 \cdot 10 \end{pmatrix} = \begin{pmatrix} 3 \cdot 10 & 1 + 2 + \dots + 10 \\ 1 + 2 + \dots + 10 & 3 \cdot 10 \end{pmatrix} = \begin{pmatrix} 3 \cdot 10 & 1 + 2 + \dots + 10 \\ 1 + 2 + \dots + 10 & 3 \cdot 10 \end{pmatrix}$	2p
	$= \begin{pmatrix} 30 & 55 \\ 55 & 30 \end{pmatrix} = 10 \begin{pmatrix} 3 & \frac{11}{2} \\ \frac{11}{2} & 3 \end{pmatrix} = 10A \left(\frac{11}{2}\right)$	3 p
5.	$B = A(m) + A(m^2) = \begin{pmatrix} 6 & m + m^2 \\ m + m^2 & 6 \end{pmatrix} \Rightarrow \det B = 36 - (m + m^2)^2 \text{, pentru orice număr}$	2p
	natural m	
	Matricea B nu este inversabilă \Leftrightarrow det $B = 0$, deci $\left(m + m^2\right)^2 = 36$ și, cum m este număr	3р
	natural, obţinem $m=2$	J.P
6.	$A(a) \cdot A(b) = \begin{pmatrix} 9 + ab & 3b + 3a \\ 3a + 3b & ab + 9 \end{pmatrix}, \text{ deci } 2(9 + ab) + 6(a + b) = 2 \Leftrightarrow ab + 3a + 3b + 9 = 1$	2p
	(a+3)(b+3)=1 și, cum a și b sunt numere întregi, obținem $(-2,-2)$ sau $(-4,-4)$	3p
		•