1 Дифференциал

Минитеория:

1.
$$d(XY) = dX \cdot Y + X \cdot dY$$

2.
$$dA = 0$$

3.
$$d(X') = dX'$$

4.
$$d \det X = \det X \operatorname{tr}(X^{-1}dX)$$

- 1.1 Вспомним дифференциал:)
 - 1. Известно, что $f(x) = x^2 + 3x$. Найдите f'(x) и df. Чему равен df в точке x = 5 при dx = 0.1?
 - 2. Известно, что $f(x_1,x_2)=x_1^2+3x_1x_2^3$. Найдите df. Чему равен df в точке $x_1=-2,$ $x_2=1$ при $dx_1=0.1$ и $dx_2=-0.1$?
 - 3. Известно, что $F = \begin{pmatrix} 5 & 6x_1 \\ x_1x_2 & x_1^2x_2 \end{pmatrix}$. Найдите dF.
 - 4. Известно, что $F = \begin{pmatrix} 7 & 8 & 9 \\ 2 & -1 & -2 \end{pmatrix}$. Найдите dF.
 - 5. Матрица F имеет размер 2×2 , в строке i столбце j у неё находится элемент f_{ij} . Выпишите выражение $\operatorname{tr}(F'dF)$ в явном виде без матриц.
- **1.2** Пусть t скалярная переменная, r, s векторные переменные, R, S матричные переменные. Кроме того, a, b векторы констант, A, B матрицы констант.

Применив базовые правила дифференцирования найдите:

- 1. d(ARB);
- 2. d(r'r);
- $3. \ d(r'Ar);$
- 4. $d(R^{-1})$, воспользовавшись тем, что $R^{-1} \cdot R = I$;
- 5. $d\cos(r'r)$;
- 6. d(r'Ar/r'r).
- 1.3 В методе наименьших квадратов минимизируется функция

$$Q(\hat{\beta}) = (y - X\hat{\beta})'(y - X\hat{\beta}).$$

- 1. Найдите $dQ(\hat{\beta})$ и $d^2Q(\hat{\beta})$;
- 2. Выпишите условия первого порядка для задачи MHK;
- 3. Выразите $\hat{\beta}$ предполагая, что X'X обратима.
- **1.4** В методе LASSO минимизируется функция

$$Q(\hat{\beta}) = (y - X\hat{\beta})'(y - X\hat{\beta}) + \lambda \hat{\beta}'\hat{\beta},$$

где λ — положительный параметр, штрафующий функцию за слишком большие значения $\hat{\beta}.$

1

- 1. Найдите $dQ(\hat{\beta})$ и $d^2Q(\hat{\beta})$;
- 2. Выпишите условия первого порядка для задачи LASSO;
- 3. Выразите $\hat{\beta}$.
- **1.5** Пусть A и B матрицы одного размера.
 - 1. Докажите, что сумму $\sum_{ij} A_{ij} B_{ij}$ можно представить в виде $\operatorname{tr}(A'B)$.
 - 2. Докажите, что tr(A'B) = tr(AB') = tr(B'A) = tr(BA').
- **1.6** Выведите формулу для $d \det X$.
- **1.7** Пусть x_i вектор-столбец $k \times 1$, y_i скаляр, равный +1 или -1, $\hat{\beta}$ вектор-столбец размера $k \times 1$. Рассмотрим функцию

$$Q(\hat{\beta}) = \sum_{i=1}^{n} \ln(1 + \exp(-y_i x_i' \hat{\beta})) + \lambda \hat{\beta}' \hat{\beta}$$

- 1. Найдите dQ;
- 2. Найдите вектор-столбец grad Q.

2 Линейная регрессия

2.1 Рассмотрим задачу линейной регресии

$$Q(w) = (y - Xw)^T (y - Xw) \to \min_{w}.$$

- 1. Найдите dQ(w) и $d^2Q(w)$.
- 2. Выведите формулу для оптимального w.
- 3. Выведите формулу для матрицы-шляпницы (hat-matrix), связывающей вектор фактических y и вектор прогнозов $\hat{y} = H \cdot y$.
- **2.2** Рассмотрим задачу регрессии с одним признаком и без константы, $\hat{y}_i = w \cdot x_i$. Решите в явном виде задачи МНК со штрафом:
 - 1. $Q(w) = (y \hat{y})^T (y \hat{y}) + \lambda w^2$;
 - 2. $Q(w) = (y \hat{y})^T (y \hat{y}) + \lambda |w|;$
- **2.3** Храбрая и торопливая исследовательница Мишель хочет решить задачу линейной регрессии по n наблюдениям с вектором y и матрицей признаков X. Сначала исследовательница Мишель так торопилась, что совсем забыла последнее наблюдение и оценила задачу с более коротким вектором y^- и матрицей X^- , где не хватает последней строки. Затем Мишель взяла правильную матрицу X, но неправильный вектор y^* , в котором она вместо фактического последнего наблюдения вектора y вписала его прогноз, полученный с помощью регрессии с y^{-1} и X^- .
 - 1. Как связаны \hat{y}_n^- и \hat{y}_n^* (прогнозы для последнего наблюдения полученные по модели без последнего наблюдения и модели с неверным последним наблюдением)?
 - 2. Как выглядит вектор, равный разнице $y y^*$?

- 3. Какие величины находятся в векторе $H \cdot (y y^*)$? Чему равна последняя, n-ая, компонента этого вектора? Выразите её через H_{nn} и ошибку прогноза последнего наблюдения по модели без последнего наблюдения, $y_n \hat{y}_n^-$.
- 4. Как связаны между собой ошибка прогноза n-го наблюдения по полной модели, ошибка прогноза n-го наблюдения по модели без последнего наблюдения и H_{nn} ?
- 5. Как быстро провести кросс-валидацию с выкидыванием одного наблюдения для задачи линейной регрессии?

3 Линейные классификаторы

- **3.1** Рассмотрим плоскость в \mathbb{R}^3 , задаваемую уравнением $5x_1+6x_2-7x_3+10=0$ и две точки, A=(2,1,4) и B=(4,0,4).
 - 1. Найдите любой вектор, перпендикулярный плоскости.
 - 2. Правда ли, что отрезок AB пересекает плоскость?
 - 3. Найдите длину отрезка AB;
 - 4. Не находя расстояние от точек до плоскости, определите, во сколько раз точка A дальше от плоскости, чем точка B;
 - 5. Найдите расстояние от точки A до плоскости.
- **3.2** Рассмотрим простейший персептрон с константой, единственным входом x_1 и пороговой функцией активации. Подберите веса так, чтобы персептрон реализовывал логическое отрицание (в ответ на 0 выдавал 1, и наоборот).
- **3.3** Рассмотрим простейший персептрон с константой, двумя входами x_1, x_2 и пороговой функцией активации.

Здесь ассистенты нарисуют в tikz картинку, достойную стоять вместо Джоконды в Лувре

- 1. Подберите веса так, чтобы персептрон реализовывал логическое ИЛИ (OR).
- 2. Подберите веса так, чтобы персептрон реализовывал логическое И (AND).
- 3. Докажите, что веса невозможно подобрать так, чтобы персептрон реализовывал исключающее логическое ИЛИ (XOR).
- 4. Добавьте персептрону вход $x_3 = x_1 \cdot x_2$ и подберите веса так, чтобы персептрон реализовывал XOR.
- 5. Реализуйте XOR с помощью трёх персептронов с двумя входами и константой. Укажите веса и схему их взаимосвязей.
- **3.4** В коробке завалялось три персептрона, у каждого два входа с константой и пороговая функция активации. Реализуйте с их помощью функцию

$$y = \begin{cases} 1, \text{ если } x_2 \geqslant |x_1 - 3| + 2; \\ 0, \text{ иначе} \end{cases}.$$

3.5 Рассмотрим следующий набор данных:

x_i	z_i	y_i
-1	-1	0
1	-1	0
-1	1	0
1	1	0
0	2	1
2	0	1
0	-2	1
-2	0	1

- 1. Существует ли перспетрон с константой, двумя входами и пороговой функцией активации, способный идеально классифицировать y_i на данной выборке? А хватит ли двух таких персептронов? А может хватит трёх?
- 2. Введите такое преобразование исходных признаков $h_i = h(x_i, z_i)$, при котором с идеальной классификацией y_i справился бы даже персептрон с одним входом, константой и пороговой функцией активации.
- **3.6** Бандерлог из Лога¹ ведёт блог, любит считать логарифмы и оценивать логистические регрессии. С помощью нового алгоритма Бандерлог решил задачу классификации по трём наблюдениям и получил $b_i = \hat{\mathbb{P}}(y_i = 1|x_i)$.

- 1. Постройте ROC-кривую.
- 2. Найдите площадь под ROC-кривой и индекс Джини.
- 3. Постройте PR-кривую (кривая точность-полнота).
- 4. Найдите площадь под РК-кривой.
- 5. Как по-английски будет «бревно»?
- 3.7 Классификатор Бандерлога имеет вид

$$a_i = \begin{cases} 1, \text{ если } b_i > t; \\ -1, \text{ иначе.} \end{cases}$$

Докажите, что площадь под ROC-кривой равна вероятности того, случайно выбранный положительный объект окажется позже случайно выбранного отрицательного объекта, если объекты ранжированы по возрастанию величины b_i .

- **3.8** Все средние издалека выглядят одинаково, среднее $= f^{-1}(0.5f(x_1) + 0.5f(x_2))$. Например, у среднего арифметического f(t) = t, у среднего гармонического f(t) = 1/t.
 - 1. Какая f используется для среднего геометрического?

Для измерения качества бинарной классификации Ара использует среднее арифметическое точности и полноты, Гена — среднее геометрическое, а Гарик — среднее гармоническое.

 $^{^{1}}$ деревня в Кадуйском районе Вологодской области

- 2. У кого будут выходить самые «качественные» и самые «некачественные» прогнозы?
- **3.9** Бандерлог начинает все определения со слов «это доля правильных ответов»:
 - 1. accuracy это доля правильных ответов...
 - 2. точность (precision) это доля правильных ответов...
 - 3. полнота (recall) это доля правильных ответов...
 - 4. TPR это доля правильных ответов...

Закончите определения Бандерлога так, чтобы они были, хм, правильными.

- **3.10** Алгоритм бинарной классификации, придуманный Бандерлогом, выдаёт оценки вероятности $b_i = \hat{\mathbb{P}}(y_i = 1|x_i)$. Всего у Бандерлога 10000 наблюдений. Если ранжировать их по возрастанию b_i , то окажется что наблюдения с $y_i = 1$ занимают ровно места с 5501 по 5600. Найдите площадь по ROC-кривой и площадь под PR-кривой.
- **3.11** Бандерлог собрал выборку из 900 муравьёв и 100 китов. Переменная y_i равна 1 для китов. Бандерлог хочет, чтобы его алгоритм классификации выдавал для каждого наблюдения число $b_i = f(x_i) \in [0; 1]$, оценку вероятности того, что наблюдение является китом. В качестве признака Бандерлог использует количество глаз, не задумавшись о том, что оно равно двум и для муравьёв, и для китов.

Решите задачу минимизации эмпирической функции риска и найдите все b_i для функций потерь:

- 1. $L(y_i, b_i) = (y_i b_i)^2$, если для муравьёв $y_i = 0$;
- 2. $L(y_i, b_i) = |y_i b_i|$, если для муравьёв $y_i = 0$;
- 3. $L(y_i, b_i) = \begin{cases} -\log b_i, \text{ если } y_i = 1\\ -\log(1 b_i), \text{ иначе.} \end{cases}$;
- 4. $L(y_i, b_i) = \begin{cases} 1/b_i, \text{ если } y_i = 1\\ 1/(1 b_i), \text{ иначе.} \end{cases}$;
- **3.12** Бандерлог утверждает, что открыл новую верхнюю границу для пороговой функции потерь, $\tilde{L}(M_i) = 1 + \frac{1}{\pi} \cdot \arctan(-x_i)$, где $M_i = y_i \cdot \langle w, x_i \rangle$. Прав ли бандерлог?
- **3.13** Бандерлог из Лога оценил логистическую регрессию по четырём наблюдениям и одному признаку с константой, получил $b_i = \hat{\mathbb{P}}(y_i = 1|x_i)$, но потерял последнее наблюдение:

y_i	b_i
1	0.7
-1	0.2
-1	0.3
?	?

- 1. Выпишите функцию потерь для задачи логистической регрессии.
- 2. Выпишите условие первого порядка по коэффициенту перед константой.
- 3. Помогите бандерлогу восстановить пропущенные значения!

- **3.14** У Бандерлога три наблюдения, первое наблюдение кит, остальные муравьи. Киты кодируются $y_i = 1$, муравьи $y_i = -1$. На этот раз Бандерлог, чтобы быть уверенным, что x_i различаются, сам лично определил $x_i = i$. После этого Бандерлог оценивает логистическую регрессию с константой.
 - 1. Выпишите эмпирическую функцию риска, которую минимизирует Бандерлог;
 - 2. При каких оценках коэффициентов логистической регрессии эта функция достигает своего минимума?
- 3.15 Рассмотрим целевую функцию логистической регрессии с константой

$$Q(w)=\frac{1}{\ell}\sum L(y_i,b_i),$$
 где $b_i=1/(1+\exp(-\langle w,x_i\rangle)$ и $L(y_i,b_i)=\begin{cases} -\log b_i,\ \text{если}\ y_i=1\\ -\log(1-b_i),\ \text{иначе.} \end{cases}$.

- 1. Найдите dQ(w) и $d^2Q(w)$;
- 2. Найдите dQ(0) и $d^2Q(0)$;
- 3. Выпишите квадратичную аппроксимацию для Q(w) в окрестности w=0;
- 4. С какой задачей совпадает задача минимизации квадратичной аппроксимации?
- **3.16** Винни-Пух знает, что мёд бывает правильный, $honey_i = 1$, и неправильный, $honey_i = 0$. Пчёлы также бывают правильные, $bee_i = 1$, и неправильные, $bee_i = 0$. По 100 своим попыткам добыть мёд Винни-Пух составил таблицу сопряженности:

	$honey_i = 1$	$honey_i = 0$
$bee_i = 1$	12	36
$bee_i = 0$	32	20

Винни-Пух использует логистическую регрессию с константой для прогнозирования правильности мёда с помощью правильности пчёл.

- 1. Какие оценки коэффициентов получит Винни-Пух?
- 2. Какой прогноз вероятности правильности мёда при встрече с неправильными пчёлами даёт логистическая модель? Как это число можно посчитать без рассчитывания коэффициентов?
- **3.17** Винни-Пух оценил логистическую регрессию для прогнозирования правильности мёда от высоты дерева (м) x_i и удалённости от дома (км) z_i : $\ln odds_i = 2 + 0.3x_i 0.5z_i$.
 - 1. Оцените вероятность того, что $y_i = 1$ для x = 15, z = 3.5.
 - 2. Оцените предельный эффект увеличения x на единицу на вероятность того, что $y_i=1$ для $x=15,\,z=3.5.$
 - 3. При каком значении x предельный эффект увеличения x на единицу в точке z=3.5 будет максимальным?

4 Логистическая функция

Логистическое распределение? Перевод y=0/1 в y=-1/1. Максимум правдоподобия в минимум штрафа? Предельные эффекты?

- **4.1** Рассмотрим логистическую функцию $\Lambda(w) = e^w/(1 + e^w)$.
 - 1. Как связаны между собой $\Lambda(w)$ и $\Lambda(-w)$?
 - 2. Как связаны между собой $\Lambda'(w)$ и $\Lambda'(-w)$?
 - 3. Постройте графики функций $\Lambda(w)$ и $\Lambda'(w)$.
 - 4. Найдите $\Lambda(0)$, $\Lambda'(0)$, $\ln \Lambda(0)$.
 - 5. Найдите обратную функцию $\Lambda^{-1}(p)$.
 - 6. Как связаны между собой $\frac{d \ln \Lambda(w)}{dw}$ и $\Lambda(-w)$?
 - 7. Как связаны между собой $\frac{d \ln \Lambda(-w)}{dw}$ и $\Lambda(w)$?
 - 8. Разложите $h(\beta_1,\beta_2)=\ln\Lambda(y_i(\beta_1+\beta_2x_i))$ в ряд Тейлора до второго порядка в окрестности точки $\beta_1=0,\ \beta_2=0.$
- **4.2** Исследовательница Октябрина пытается предсказать, купит ли покупатель слона. Октябрина предполагает, что у каждого покупателя есть ненаблюдаемая полезность от покупки слона, y_i^* , складывающаяся из величины w_i , зависящей от характеристик покупателя, и случайной составляющей u_i :

$$y_i^* = w_i + u_i, \quad u_i \sim Logistic$$

Покупка слона, y_i , (1-купит, 0-не купит) однозначно определяется полезностью покупки:

$$y_i = \begin{cases} 1, \text{ если } y_i^* \geqslant 0 \\ 1, \text{ если } y_i^* < 0 \end{cases}$$

- 1. Выпишите логарифмическую функцию правдоподобия и функцию потерь при известных w_i .
- 2. Как изменится ответ, если факт покупки слона будет кодироваться по-другому: 1-купит, (-1)- не купит?
- 3. Разложите функцию потерь в ряд Тейлора до второго члена в окрестности точки $w_0 = (w_{01}, w_{02}, \dots, w_{0n}).$

5 Разложения матриц

5.1 Известна матрица X,

$$X = \begin{pmatrix} 1 & 1 \\ 0 & 1 \\ -1 & 0 \end{pmatrix};$$

- 1. Найдите QR-разложение матрицы X'X;
- 2. Найдите QR-разложение матрицы XX';
- 3. Найдите спектральное разложение матрицы X'X;
- 4. Найдите спектральное разложение матрицы XX';

- 5. Найдите сингулярное разложение (SVD) матрицы X;
- **5.2** Объясните геометрический смысл QR, SVD и спектрального разложений.
- **5.3** Бандрелог выполнил SVD-разложение матрицы регрессоров X. Помогите Бандерлогу поскорее найти формулу для матрицы-шляпницы H, которая проецирует y на пространство столбцов матрицы X, $\hat{y} = Hy$.
- **5.4** Бандрелог выполнил QR-разложение матрицы регрессоров X. Помогите Бандерлогу поскорее найти формулу для матрицы-шляпницы H, которая проецирует y на пространство столбцов матрицы X, $\hat{y} = Hy$.

6 Метод опорных векторов

- **6.1** На плоскости имеются точки двух цветов. Красные: (1,1), (1,-1) и синие: (-1,1), (-1,-1).
 - 1. Найдите разделяющую гиперплоскость методом опорных векторов при разных C.
 - 2. Укажите опорные вектора.
- **6.2** На плоскости имеются точки двух цветов. Красные: (1,1), (1,-1) и синие: (-1,1), (-1,-1) и (2,0).
 - 1. Найдите разделяющую гиперплоскость методом опорных векторов при разных C.
 - 2. Укажите опорные вектора.
- **6.3** Эконометресса Авдотья решила использовать метод опорных векторов с гауссовским ядром с параметром $\sigma=1$ и штрафным коэффициентом C=1. Соответственно, она минимизировала целевую функцию

$$\frac{w'w}{2} + C\sum_{i=1}^{n} \xi_i,$$

где разделяющая плоскость задаётся $w'x - w_0 = 0$, а ξ_i — размеры «заступа» за разделяющую полосу.

Затем Автдотья подумала, что неплохо бы выбрать наилучшие C и σ . Ей лень было использовать кросс-валидацию, поэтому Авдотья минимизировала данную функцию по $C\geqslant 0$ и $\sigma\geqslant 0$. Какие значения она получила?

- **6.4** Задан вектор w = (2,3) и число $w_0 = 7$.
 - 1. Нарисуйте прямые $\langle w, x \rangle = w_0$, $\langle w, x \rangle = w_0 + 1$, $\langle w, x \rangle = w_0 1$.
 - 2. Найдите ширину полосы между $\langle w, x \rangle = w_0 + 1$ и $\langle w, x \rangle = w_0 1$.
 - 3. Найдите расстояние от точки (5,6) до прямой $\langle w, x \rangle = w_0 1$.
- **6.5** Заданы две прямые, l_0 : $x^{(1)} + 3x^{(2)} = 9$ и l_1 : $x^{(1)} + 3x^{(2)} = 13$. Найдите подходяющий вектор w и число w_0 так, чтобы прямая l_0 записывалась как $\langle w, x \rangle = w_0 1$, а прямая l_1 как $\langle w, x \rangle = w_0 + 1$.

6.6 Даны наблюдения

$x^{(1)}$	$x^{(2)}$	y
1	0	0
2	0	0
0	3	1
0	4	1

- 1. Нарисуйте разделяющую полосу наибольшей ширины.
- 2. Решите задачу оптимизации

$$\min_{w,w_0} \frac{1}{2} \langle w, w \rangle$$

при ограничении: для $y_i=1$ выполнено условие $\langle w,x\rangle\geqslant w_0+1,$ а для $y_i=0$ выполнено условие $\langle w,x\rangle\leqslant w_0-1.$

3. Для точки $x=(x^{(1)},x^{(2)})=(1,1)$ найдите значение $\langle w,x\rangle-w_0$ и постройте прогноз $\hat{y}.$

6.7 По картинке качественно решите задачу разделения точек:

Целевая функция имеет вид:

$$\min_{w,w_0} \frac{1}{2} w' w + C \sum_{i=1}^n \xi_i$$

Уравнение разделяющей поверхности — $w'x = w_0$, уравнения краёв полосы: $w'x = w_0 + 1$ и $w'x = w_0 - 1$. Нарушителями считаются наблюдения, которые попали на нейтральную полосу или на чужую территорию. Здесь $\xi_i = |w| \cdot d_i$, где d_i — длина «заступ» наблюдения за черту «своих».

- 1. Как пройдёт разделяющая полоса при C=1? Найдите $w,\,w_0,\,$ и величины штрафов $\xi_i.$
- 2. Как пройдёт разделяющая полоса при $C = +\infty$? Найдите w, w_0 , и величины штрафов ξ_i .
- **6.8** ююю

7 Ядра к бою!

7.1 Ядерная функция, скалярное произведение в расширяющем пространстве, имеет вид $K(a,b) = \exp(-|a-b|^2)$.

Имеются вектора a = (1, 1, 1) и b = (1, 2, 0).

Найдите длину векторов и косинус угла между ними в исходном и расширяющем пространстве.

- 7.2 Рассмотрим два вектора, $v_1 = (1, 1, 2)$ и $v_2 = (1, 1, 1)$. Переход в спрямляющее пространство осуществляется с помощью гауссовской ядерной функции с параметром γ , $k(v, v') = \exp(-\gamma |v v'|^2)$.
 - 1. Как от γ зависят длины векторов в спрямляющем пространстве?
 - 2. Как от γ зависит угол между векторами в спрямляющем пространстве?
- **7.3** Имеются три наблюдения A, B и C:

$$\begin{array}{c|cccc}
 & x & y \\
\hline
 A & 1 & -2 \\
 B & 2 & 1 \\
 C & 3 & 0
\end{array}$$

- 1. Найдите расстояние AB и косинус угла ABC.
- 2. Найдите расстояние AB и косинус угла ABC в расширенном пространстве с помощью гауссовского ядра с $K(x, x') = \exp(-|x x'|^2)$.
- 3. Найдите расстояние AB и косинус угла ABC в расширенном пространстве с помощью полиномиального ядра второй степени.
- 7.4 Переход из двумерного пространства в расширяющее задан функцией

$$f:(x_1,x_2)\to (1,x_1,x_2,3x_1x_2,2x_1^2,4x_2^2).$$

Найдите соответствующую ядерную функцию.

7.5 Ядерная функция имеет вид

$$K(x,y) = x_1^2 y_1^2 + x_2^2 y_2^2 + 2x_1 x_2 y_1 y_2.$$

Как может выглядеть функция $f: \mathbb{R}^2 \to \mathbb{R}^3$ переводящие исходные векторы в расширенное пространство?

- **7.6** Является ли функция K(x, z) ядром?
 - 1. $K(x,z) = \begin{cases} 1, & \text{if } x = z; \\ 0, & \text{otherwise} \end{cases}$;
 - 2. $K(x,z) = \begin{cases} 0, & \text{if } x = z; \\ 1, & \text{otherwise} \end{cases}$;
 - 3. $K(x, z) = \sin(x^T z)$;
 - 4. $K(x, z) = \cos(x^T x) \sin(z^T z)$;
- 7.7 Пусть x и z строки символов, возможно разной длины. Рассмотрим две функции. Функция $K_1(x,z)$ равна единице, если строки x и z совпадают. Функция $K_2(x,z)$ число совпадающих подстрок. Функция K_3 произведение количеств букв «а» в обоих словах.
 - 1. Найдите K_1 («мама», «ам») и K_2 («мама», «ам»), K_3 («мама», «ам»)
 - 2. Является ли функция K_1 ядром?
 - 3. Является ли функция K_2 ядром?
 - 4. Является ли функция K_3 ядром?
- 7.8 На прямой аллее растёт три дуба. Находятся в точках с координатами $x_1 = 1$, $x_2 = 2$ и $x_3 = -3$. Исследователь Винни-Пух проверил и выяснил, что на втором Дубе водятся правильные пчёлы, а на остальных неправильные.
 - 1. Являются ли пчёлы линейно разделимыми в пространстве исходной аллеи?
 - 2. Помогите Винни-Пуху выписать прямую задачу метода опорных векторов в пространстве исходной аллеи;
 - 3. Помогите Винни-Пуху выписать двойственную задачу метода опорных векторов в пространстве исходной аллеи;
 - 4. Помогите Винни-Пуху выписать двойственную задачу метода опорных векторов в бесконечномерном пространстве с ядерной функцией $K(x,z) = \exp(-(x-z)^2)$; Являются ли точки в нём линейно разделимыми?
 - 5. Помогите Винни-Пуху выписать прямую и двойственную задачу метода опорных векторов в спрямляющем пространстве с ядерной функцией $K(x,z) = (xz+1)^2$; Являются ли точки в нём линейно разделимыми?

8 Двойственные задачи

- **8.1** Выпишите двойственную задачу для минимизации $x_1^2 + x_2^2 + x_3^2$ при ограничении $2x_1 + 3x_2 + 5x_3 = 10$.
- **8.2** Выпишите двойственную задачу для $x_1 + 2x_2 + 3x_3 \to \max$ при ограничениях $x_1 + x_2 + x_3 \le 10$, $2x_1 + x_2 + x_3 \le 10$, все $x_i \ge 0$.
- **8.3** Выпишите двойственную задачу для максимизации $1/x_1+2/x_2$ при ограничении $2x_1+3x_2=10$ и $x_1 \in [1;10], x_2 \in [2;6].$
- **8.4** Выпишите двойственную задачу для минимизации $f(x) = \frac{1}{2}x'Hx + g'x$ при ограничении A'x = b.

- **8.5** Выпишите двойственную задачу для минимизации $f(x) = \frac{1}{2}x'Hx + g'x$ при ограничении $A'x \leq b$.
- **8.6** Выпишите прямую и двойственную задачу для метода опорных векторов в исходном пространстве.
- 8.7 Выпишите прямую и двойственную задачу для метода опорных векторов в спрямляющем пространстве с использованием ядра K(.,.).

9 Метод главных компонент

- **9.1** Найдите прямую, у которой сумма квадратов расстояний до точек (0,0), (1,1), (2,1) будет минимальной. Чему равна при этом доля объяснённого разброса точек?
- **9.2** Есть две переменных, x = (1,0,0,3)', z = (3,2,0,3)'. Найдите первую и вторую главные компоненты.
- **9.3** Известна матрица выборочных ковариаций трёх переменных. Для удобства будем считать, что переменные уже центрированы.

$$\begin{pmatrix} 4 & 1 & -1 \\ 1 & 5 & 0 \\ -1 & 0 & 9 \end{pmatrix}$$

- 1. Выразите первую и вторую главные компоненты через три исходных переменных.
- 2. Выразите первую и вторую главные компоненты, через три исходных переменных, если перед методом главных компонент переменные необходимо стандартизировать.
- **9.4** Пионеры, Крокодил Гена и Чебурашка собирали металлолом несколько дней подряд. В распоряжение иностранной шпионки, гражданки Шапокляк, попали ежедневные данные по количеству собранного металлолома: вектор g для Крокодила Гены, вектор h для Чебурашки и вектор x для Пионеров. Гена и Чебурашка собирали вместе, поэтому выборочная корреляция $\mathrm{sCorr}(g,h) = -0.9$. Гена и Чебурашка собирали независимо от Пионеров, поэтому выборочные корреляции $\mathrm{sCorr}(g,x) = 0$, $\mathrm{sCorr}(h,x) = 0$. Если регрессоры g,h и x центрировать и нормировать, то получится матрица X.
 - 1. Найдите параметр обусловленности матрицы $(\tilde{X}'\tilde{X})$.
 - 2. Вычислите одну или две главные компоненты (выразите их через вектор-столбцы матрицы. \tilde{X}), объясняющие не менее 70% общей выборочной дисперсии регрессоров.
 - 3. Шпионка Шапокляк пытается смоделировать ежедневный выпуск танков, y. Выразите оценки коэффициентов регрессии $y = \beta_1 + \beta_2 g + \beta_3 h + \beta_4 x + \varepsilon$ через оценки коэффициентов регрессии на главные компоненты, объясняющие не менее 70% общей выборочной дисперсии.
- 9.5 Храбрая Микроша придумала метод бесполезных компонент. Как и в методы главных компонент, бесполезные компоненты являются линейными комбинациями исходных переменных. Бесполезные компоненты также ортогональны между собой. Вектор весов, с которыми исходные переменные входят в бесполезную компоненту, всегда имеет единичную длину. В отличие от метода главных компонент, первая бесполезная компонента обладает наименьшей выборочной дисперсией. Вторая бесполезная компонента ортогональна первой и обладает наименьшей выборочной дисперсией при условии ортогональности. И так далее.

Как связаны метод бесполезных компонент и метод главных компонент?

10 Энтропия

10.1 Для случайных величин X и Y найдите индекс Джини, энтропию и спутанность (perplexity):

- **10.2** Найдите энтропию X, спутанность (perplexity) X, индекс Джини X, если
 - 1. величина X равновероятно принимает значения 1, 7 и 9;
 - 2. величина X равновероятно принимает $k \geqslant 2$ значений;
 - 3. величина X равномерно распределена на отрезке [0; a];
 - 4. величина X нормальна $\mathcal{N}(\mu; \sigma^2)$;
- **10.3** У Васи была дискретная случайная величина X, принимавшая натуральные значения. Вася решил изменить закон распределения величины X. Он увеличил количество возможных значений величины X в два раза, разделив каждое событие X=k на два равновероятных подсобытия: X=k-0.1 и X=k+0.1. Как при этом изменились энтропия, спутанность (perplexity) и индекс Джини?
- 10.4 Кот исследователя Василия случайно нажимает на клавиатуре клавиши A, B и B n раз. Коту больше нравится клавиша A, поэтому вероятность этой буквы равна 1/2, а у B и B вероятности равны по 1/4. Василий хочет заархивировать послание Кота для потомков, ведь, возможно, в послании кроется Великий Смысл. Поскольку буква A встречается чаще, Василий кодирует её более короткой последовательностью битов, а именно, одним битом 0. Букву B Василий кодирует кодом 10, а букву B кодом 11.
 - 1. Найдите ожидаемое отношение длины заархивированного сообщения к количеству букв.
 - 2. Докажите, что код, предложенный Василием, имеет наименьшую ожидаемую длину архива.
 - 3. Найдите энтропию с логарифмом по основанию 2 и спутанность (perplexity) для нажатия Котом одной буквы.
- **10.5** Случайная величина X принимает значение 1 с вероятностью p и значение 0 с вероятностью 1-p.
 - 1. Постройте график зависимости индекса Джини и энтропии от р.
 - 2. Являются ли функции монотонными? выпуклыми?
 - 3. При каком p энтропия и индекс Джини будут максимальны?
- 10.6 Шаман Ыуыуыуыыыы по прошлым наблюдениям знает, большая охота на мамонта оказывается удачной с вероятностью 0.3. Если племя ждёт от Ыуыуыуыыыыы прогноз охоты, то Ыуыуыуыыыыы поплясав вокруг костра (10 минут) и постуча бубном (16 раз) прогнозирует удачную охоту с вероятностью 0.3 и неудачную с вероятностью 0.7. Конкурирующий шаман Уыуыуыууууу всегда прогнозирует неудачную охоту, как более вероятную. Когда шаман даёт неверный прогноз, его бьют палками.
 - 1. Какова вероятность того, что Ыуыуыуыыыы ошибётся?
 - 2. Кто чаще бывает бит палками, Ыуыуыуыыыыы или Уыуыуыуууу?

- 3. Чему равен индекс Джини для случайной величины равной удаче с вероятностью 0.3 и неудаче с вероятностью 0.7?
- 10.7 Шаман Ыуыуыуыыыы заметил по прошлым данным, что в дождливые дни большая охота на мамонта удачна с вероятностью 0.7, а в сухие с вероятностью 0.1. Поэтому в дождливый день Ыуыуыуыыыыы предскажет удачу с вероятностью 0.7, а в сухой с вероятностью 0.1. Дождливых дней 20%.
 - 1. Какова вероятность того, что Ыуыуыуыыыы ошибётся?
 - 2. Чему равен индекс Джини выборки разделённой на две части: в части A шесть бананов и 14 апельсинов, а в части В восемь бананов и 72 апельсина?
- **10.8** Как изменится энтропия дискретной величины X, если величину домножить на 10? А если у величины X есть функция плотности?
- **10.9** Величины X и Y независимы, и являются компонентами вектора V, V = (X, Y). Как связаны энтропия V и энтропии X и Y?
- **10.10** Дискретные величины X и Y независимы, и являются компонентами вектора V, V = (X, Y). Как связаны индекс Джини V и индексы Джини X и Y?

11 На природу! В лес! К деревьям!

11.1 Постройте регрессионное дерево для прогнозирования y с помощью x на обучающей выборке:

x_i	0	1	2	3
y_i	5	6	4	100

Критерий деления узла на два — минимизация RSS. Дерево строится до трёх терминальных узлов.

11.2 Постройте регрессионное дерево для прогнозирования y с помощью x на обучающей выборке:

y_i	x_i
100	1
102	2
103	3
50	4
55	5
61	6
70	7

Критерий деления узла на два — минимизация RSS. Узлы делятся до тех пор, пока в узле остаётся больше двух наблюдений.

11.3 Дон-Жуан предпочитает брюнеток. Перед Новым Годом он посчитал, что в записной книжке у него 20 блондинок, 40 брюнеток, две рыжих и восемь шатенок. С Нового Года Дон-Жуан решил перенести все сведения в две записные книжки, в одну — брюнеток, во вторую — остальных.

Как изменились индекс Джини и энтропия в результате такого разбиения?

11.4 Машка пять дней подряд гадала на ромашке, а затем выкладывала очередную фотку «Машка с ромашкой» в инстаграмчик. Результат гадания — переменная y_i , количество лайков у фотки — переменная x_i . Постройте классификационное дерево для прогнозирования y_i с помощью x_i на обучающей выборке:

$__$	x_i
плюнет	10
поцелует	11
поцелует	12
к сердцу прижмёт	13
к сердцу прижмёт	14

Дерево строится до идеальной классификации. Критерий деления узла на два — максимальное падение индекса Джини.

11.5 По данной диаграмме рассеяния постройте классификационное дерево для зависимой переменной y:

Дерево необходимо построить до идеальной классификации, в качестве критерия деления узла на два используйте минимизацию индекса Джини.

11.6 Рассмотрим обучающую выборку для прогнозирования y с помощью x и z:

y_i	x_i	z_i
y_1	1	2
y_2	1	2
y_3	2	2
y_4	2	1
y_5	2	1
y_6	2	1
y_7	2	1

Будем называть деревья разными, если они выдают разные прогнозы на обучающей выборке. Сколько существует разных классификационных деревьев для данного набора данных?

- 11.7 Исследовательница Мишель строит классификационное дерево для бинарной переменной y_i . Может ли при разбиении узла на два расти индекс Джини? Энтропия?
- 11.8 Приведите примеры наборов данных, для которых индекс Джини равен 0, 0.5 и 0.999.
- **11.9** Рассмотрим задачу построения классификационного дерева для бинарной переменной y_i . Приведите пример такого набора данных, что никакое разбиения стартового узла на два не снижает индекс Джини, однако двух разбиений достаточно, чтобы снизить индекс Джини до нуля.

11.10 Пятачок собрал данные о визитах Винни-Пуха в гости к Кролику. Здесь x_i — количество съеденого мёда в горшках, а y_i — бинарная переменная, отражающая застревание Винни-Пуха при выходе.

Для построения предиктивной модели Пятачок собирается использовать дерево с заданной структурой:

Пятачок использует квадратичную аппроксимацию для логистической функции потерь:

$$Obj(w) = \sum_{i=1}^{n} \left(loss(y_i, 0) + loss'_w(y_i, 0)(w_i - 0) + \frac{1}{2} loss''_{ww}(y_i, 0)(w_i - 0)^2 \right) + \frac{1}{2} \lambda |w|^2.$$

Помогите Очень Маленькому Существу подобрать оптимальные веса (w_i) при $\lambda=1.$

- **11.11** Нарисовано дерево: деление 1, справа от первого деления деление 2. Веса равны w_L , w_{RL} , w_{LL} . Дана выборка.
 - 1. Выпишите в явном виде функцию правдоподобия и логистическую функцию потерь.
 - 2. Оцените w методом максимального правдоподобия.
 - 3. Тут другую функцию потерь написать!
 - 4. Разложите функцию потерь в окрестности w=(0,0,1) в ряд Тейлора до второго члена и примерно оцените w.
- **11.12** Кот Леопольд анкетировал 10 мышей по трём вопросам: x «Одобряете ли Вы непримиримую к котам позицию Белого и Серого?», y «Известно ли Вам куда пропала моя любимая кошка Мурка?» и z «Известны ли Вам настоящие имена Белого и Серого?» Результаты опроса в таблице:

Сюда табличку!

- 1. Какой фактор нужно использовать при прогнозировании y, чтобы минимизировать энтропию?
- 2. Какой фактор нужно использовать при прогнозировании y, чтобы минимизировать индекс Джини?
- **11.13** Постройте классификационное дерево для прогнозирования y с помощью x и z на обучающей выборке:

x_i	0	0	0	1	1
z_i	1	2	3	3	5
y_i	0	1	1	0	0

Критерий деления узла на два — минимизация индекса Джини. Дерево строится до идеальной классификации.

12 Бэггинг и бустинг

- **12.1** У Винни-Пуха есть 100 песенок (кричалок, вопелок, пыхтелок и сопелок). Каждый день он выбирает и поёт одну из них равновероятно наугад. Одну и ту же песенку он может петь несколько раз. Сколько в среднем песенок оказываются неспетыми за 100 дней?
- **12.2** Вася поймал 3 рыбки, весом в 300, 600 и 1200 граммов. И посчитал среднее арифметическое, $\bar{x}=700$.
 - 1. Найдите закон распределения бутстрэп статистики для \bar{x} .
 - 2. Найдите математическое ожидание и дисперсию бутстрэп статистики для \bar{x} .
 - 3. Найдите закон распределения бутстрэп статистики для максимума и минимума для данной выборки.
- 12.3 Машин-лёрнер Василий лично раздобыл выборку из четырёх наблюдений.

x_i	1	2	3	4
y_i	6	6	12	18

Два готовых дерева для леса Василий подглядел у соседа:

Василий решил использовать бэггинг. Первому дереву достались наблюдения номер $1,\,1,\,2$ и 3. А второму дереву $-2,\,3,\,4$ и 4. Прогнозы в каждом листе Василий строит минимизируя сумму квадратов ошибок.

- 1. Какие прогнозы внутри обучающей выборки получит Василий с помощью своего леса?
- 2. Сколько деревьев имеет смысл посадить Василию, чтобы получить хорошие вневыборочные прогнозы по четырём наблюдениям?
- 12.4 Машин-лёрнер Василий лично раздобыл выборку из четырёх наблюдений.

x_i	1	2	3	4
y_i	6	6	12	18

Два готовых дерева для бустинга Василий подглядел у соседа:

Василий решил использовать бустинг с темпом обучение η . Прогнозы в каждом листе конкретного дерева Василий строит минимизируя функцию:

$$Q = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 + \lambda \sum_{j=1}^{T} w_j^2,$$

где y_i — прогнозируемое значение для i-го наблюдения, n — количество наблюдений, w_j — прогноз в j-ом листе, T — количество листов на дереве.

- 1. Какие прогнозы внутри обучающей выборки получит Василий при $\eta=1$ и $\lambda=1$?
- 2. Какие прогнозы внутри обучающей выборки получит Василий при $\eta=0.5$ и $\lambda=1?$
- 3. Сколько деревьев имеет смысл посадить Василию, чтобы получить хорошие вневыборочные прогнозы по четырём наблюдениям?

13 Разложение на шум-смещение-разброс

13.1 Истинная зависимость имеет вид $y_i = x_i^2 + u_i$, где y_i — прогнозируемая переменная, x_i — предиктор и u_i — ненаблюдаемая случайная составляющая. Величины x_i независимы и равновероятно принимают значения 1 и 2. Величины u_i независимы и равновероятно принимают значения —1 и 1. Начинающий машин-лёрнер Василий может позволить себе обучающую выборку только из двух наблюдений.

Разложите ожидание квадрата ошибки прогноза на шум, смещение и разброс, если:

- 1. Вне зависимости от обучающей выборки из-за ошибки в коде в качестве прогноза всегда выдаётся 0.
- 2. Вне зависимости от обучающей выборки из-за ошибки в коде в качестве прогноза равновероятно выдаётся -1 или 1.
- 3. По обучающей выборке Василий строит регрессию на константу.
- 4. В качестве прогноза разработанный Василием новейший алгоритм всегда выдаёт последний y из обучающей выборки.
- 5. По обучающей выборке Василий строит регрессионное дерево минимизируя сумму квадратов остатков.
- **13.2** Истинная зависимость имеет вид $y_i = 3x_i^2 + u_i$, где y_i прогнозируемая переменная, x_i предиктор и u_i ненаблюдаемая случайная составляющая. Величины x_i независимы

и равновероятно принимаю значения 0, 1, 2. Величины u_i независимы и равновероятно принимают значения -1 и 1.

Исследователь Анатолий оценивает модель линейной регрессии $y_i = \hat{\beta}x_i$ с помощью МНК. Разложите ожидание квадрата ошибки прогноза на шум, смещение и разброс.

14 Случайные проекции

14.1 Василий любит сочинять. Особенно он любит сочинять вектора в пространствах большой размерности n. Каждую компоненту каждого вектора он сочиняет по следующему принципу:

$$z \sim \begin{cases} -\frac{1}{\sqrt{a}}, \text{ с вероятностью } a^2; \\ 0, \text{ с вероятностью } 2(1-a)a; \\ \frac{1}{\sqrt{a}}, \text{ с вероятностью } (1-a)^2; \end{cases}$$

где a — некоторый параметр.

- 1. Найдите предел по вероятности квадрата длины вектора делённого на размерность пространства.
- 2. Найдите предел по вероятности косинуса угла между двумя векторами.

15 Кросс-валидация

15.1 Вася измерил вес трёх покемонов, $y_1 = 6$, $y_2 = 6$, $y_3 = 10$. Вася хочет спрогнозировать вес следующего покемона. Модель для веса покемонов у Васи очень простая, $y_i = \mu + u_i$, поэтому прогнозирует Вася по формуле $\hat{y}_i = \hat{\mu}$.

В результате Вася использует следующую целевую функцию:

$$\sum (y_i - \hat{\mu})^2 + \lambda \cdot \hat{\mu}^2$$

- 1. Найдите оптимальное $\hat{\mu}$ при $\lambda = 0$.
- 2. Найдите оптимальное $\hat{\mu}$ при произвольном λ .
- 3. Подберите оптимальное λ с помощью кросс-валидации «выкинь одного».
- 4. Найдите оптимальное $\hat{\mu}$ при λ_{CV} .
- **15.2** Задана зависимость $y_i = \beta x_i + u_i$, ошибки u_i нормальны $\mathcal{N}(0;1)$. Исследователь Василий использует следующий способ построения прогнозов: $\hat{y}_f = \gamma \cdot \hat{\beta} x_f$, где $\hat{\beta}$ это оценка МНК, а γ некоторая константа. При каком γ ожидаемый квадрат ошибки прогноза будет минимальным? Как на практике подобрать такое γ ?

Упр: Дано одно-два-три дерева. И 5 наблюдений. Посчитать кросс-валидационную ошибку. Упр: На наборе данных в 5 наблюдений подобрать параметр жесткости с помощью кросс-валидации.

16 Тятя! тятя! наши сети. Притащили мертвеца.

16.1 Найдите производную следующей функции по матрице W_1 при фиксированном $x \in \mathbb{R}^n$.

$$L\left(W_1 \cdot f(W_2x + b_2) + b_1\right)$$

где $f(x) = \max\{0, x\}$. Выразите ответ через производную L по её аргументу и значению $f(W_2x + b_2)$ в точке x. Как будет выглядеть градиентный шаг для W_2 ?

16.2 На выходе Soft-Max слоя мы получили матрицу размера 100 на 20 и попали в Dropout с вероятностью отключения нейрона равной 0.2. Какова вероятность, что выключится весь слой? Как можно считать градиент по Dropout слою?

17 Ближайшие соседи

- **17.1** На плоскости расположены колонии рыжих и чёрных муравьёв. Рыжих колоний три и они имеют координаты (-1,-1), (1,1) и (3,3). Чёрных колоний тоже три и они имеют координаты (2,2), (4,4) и (6,6).
 - 1. Поделите плоскость на «зоны влияния» рыжих и чёрных используя метод одного ближайшего соседа.
 - 2. Поделите плоскость на «зоны влияния» рыжих и чёрных используя метод трёх ближайших соседей.
 - 3. С помощью кросс-валидации с выкидыванием отдельных наблюдений выберите оптимальное число соседей k перебрав $k \in \{1,3,5\}$. Целевой функцией является количество несовпадающих прогнозов.
- **17.2** На плоскости расположены колонии рыжих и чёрных муравьёв. Рыжих колоний три и они имеют координаты (-1,1), (1,-1) и (1,1). Чёрных колоний одна и она имеет координаты (0,0).
 - 1. Поделите плоскость на «зоны влияния» рыжих и чёрных используя метод одного и трёх ближайших соседей.
 - 2. С помощью кросс-валидации с выкидыванием отдельных наблюдений выберите оптимальное число соседей k перебрав $k \in \{1,3\}$. Целевой функцией является количество несовпадающих прогнозов.

18 t-SNE

Ликбез. Дивергенция Кульбака-Лейблера из аппроксимирующего распределения q в истинное распределение p равна

$$D_{KL}(p||q) = \mathbb{E}(\ln p(X)) - \mathbb{E}(\ln q(X))$$

Ожидание считается по истинному распределению p().

- 18.1 Найдите дивергенцию Кульбака-Лейблера, если она определена,
 - 1. из биномиального Bin(n=2, p=1/3) в равновероятное на 0, 1, 2;
 - 2. из равновероятного на 0, 1, 2 в биномиальное Bin(n=2,p=1/3);
 - 3. из $\mathcal{N}(0;l)$ в $\mathcal{N}(0;\sigma^2)$;
 - 4. из $\mathcal{N}(0;1)$ в экспоненциальное с $\lambda = 1$;
 - 5. из $\mathcal{N}(0; \sigma^2)$ в $\mathcal{N}(0; l)$;

- 6. из экспоненциального с $\lambda = 1$ в $\mathcal{N}(0; 1)$;
- **18.2** Докажите, что дивергенция Кульбака-Лейблера из аппроксимирующего q в истинное распределение p неотрицательна.
- **18.3** На плоскости расположены три точки, A=(0,0), B=(3,4) и C=(6,0). Джеймс Бонд равновероятно забрасывается в одну из трёх точек. Затем Джеймс Бонд перемещается в одну из оставшихся точек, чтобы спутать следы. Вероятность перемещения из точки заброски Z в точку X пропорциональна f(d), где d расстояние от точки заброски Z до точки X, а f функция плотности нормального распределения $\mathcal{N}(0; \sigma_Z^2)$. Параметр σ_Z^2 это сила, оставшаяся у Джеймса-Бонда после заброски в точку Z.

Майор Пронин устроил засады на всех трёх дорогах: AB, BC и AC.

- 1. Какова вероятность поимки Джеймса Бонда на каждой из дорог для $\sigma_A = 1$, $\sigma_A \to 0$, $\sigma_A \to \infty$, если по последним разведданным он был заброшен в точку A?
- 2. Какие возможные значения принимает спутанность (perplexity) распределения выбираемой дороги при произвольных σ_A , если известно, что Джеймс Бонд был заброшен в A? Хватит ли у Джеймса Бонда сил, чтобы обеспечить спутанность равную 3 в точке A?
- 3. Какие возможные значения принимает спутанность (perplexity) распределения выбираемой дороги при произвольных σ_B , если известно, что Джеймс Бонд был заброшен в B?
- 4. Найдите вероятность поимки Джеймса Бонда на каждой из дорог для случая равных σ_Z : $\sigma_Z = 1, \, \sigma_Z \to 0, \, \sigma_Z \to \infty$ и неизвестной точки заброски.
- **18.4** На плоскости расположены три точки, A = (0,0), B = (3,4) и C = (3,0). Джеймс Бонд равновероятно забрасывается в одну из трёх точек, а затем перемещается в одну из оставшихся, чтобы запутать следы. Вероятность перемещения из точки заброски в точку X пропорциональна f(d), где d расстояние от точки заброски до точки X.

Майор Пронин устроил засады на всех трёх дорогах: AB, BC и AC. По ошибке Майор Пронин считает, что пункты A, B и C равноудалены друг от друга.

- 1. Какова фактическая вероятность поимки Джеймса Бонда на каждой из дорог, если f(a) = 1/a? f(a) стандартная нормальная функция плотности? f(a) функция плотности распределения Коши?
- 2. Какова вероятность поимки Джеймса Бонда на каждой из дорог по мнению майора Пронина?
- 3. Найдите дивергенцию Кульбака Лейблера из аппроксимирующих вероятностей по мнению Пронина в истинные вероятности появления Джеймса Бонда на каждой из дорог для случая f(a) = 1/a.
- **18.5** На плоскости расположены три точки, A = (0,0), B = (1,0) и C. Джеймс Бонд равновероятно забрасывается в одну из трёх точек, а затем перемещается в одну из оставшихся, чтобы запутать следы. Вероятность перемещения из точки заброски в точку X пропорциональна f(d), где d расстояние от точки заброски до точки X, а f функция плотности распределения Коши.

Майор Пронин устроил засады на всех трёх дорогах: AB, BC и AC.

Найдите расстояния AC и BC, если вероятность появления Джеймса Бонда на трёх дорогах равны $p_{AB} = 0.1$, $p_{BC} = 0.3$ и $p_{AC} = 0.6$.

19 Факторизационные машины

https://www.csie.ntu.edu.tw/~b97053/paper/Rendle2010FM.pdf

19.1 Рассмотрим факторизационную машину с прогнозом

$$a(x) = w_0 + \sum_{j=1}^{d} w_j x_j + \sum_{j=1}^{d} \sum_{k=j+1}^{d} \langle v_j, v_k \rangle x_j x_k,$$

где скрытые вектора v_i имеют размерность r.

- 1. Сколько параметров имеет эта модель?
- 2. Какое r является теоретически максимально возможным для заданного d?
- 3. Сколько ограничений нужно добавить к задаче обыкновенного МНК с регрессорами w_j и $w_j w_k$ с k > j, чтобы она была эквивалентна факторизационной машине? Будут ли эти ограничения на параметры МНК линейными?
- 4. Найдите градиент a(x) по вектору v_i .
- 19.2 Упростите выражение

$$2\sum_{j=1}^{d}\sum_{k=j+1}^{d}\langle v_j, v_k\rangle x_j x_k + \sum_{i=1}^{d}\langle v_i, v_i\rangle x_i^2 - \sum_{j=1}^{d}\sum_{k=1}^{d}\langle v_j, v_k\rangle x_j x_k$$

- **19.3** Пусть $W = V \cdot V'$ и матрица V имеет размер $d \times 1$.
 - 1. Найдите матрицу W, если $V_{i1} = j$ и d = 3;
 - 2. Является ли матрица W положительно определённой? Положительно полуопределённой?
 - 3. Найдите собственные числа и собственные векторы матрицы W;
- **19.4** Найдите разложение матрицы W вида $W = V \cdot V'$ с матрицей V минимального размера:

1.
$$W = \begin{pmatrix} 2 & 2 \\ 2 & 2 \end{pmatrix}$$
;

$$2. W = \begin{pmatrix} 4 & 0 & 4 \\ 0 & 9 & 0 \\ 4 & 0 & 4 \end{pmatrix};$$

20 Ранжирование

20.1 Рассмотрим классический алгоритм PageRank с единичной вероятностью продолжать клики. Каждый пользователь стартует со случайной равновероятно выбираемой страницы. Затем пользователь равновероятно переходит по одной из ссылок на следущую страницу. И так далее.

Какой процент посещений от общего количества посещений будет у каждой страницы в долгосрочном периоде?

20.2 Рассмотрим классический алгоритм PageRank с вероятностью продолжать клики равной 0.8. Каждый пользователь стартует со случайной равновероятно выбираемой страницы. С вероятностью 0.2 после просмотра страницы пользователь выключает компьютер и идёт гулять в парк. Если пользователь решил остаться за компьютером, то он равновероятно переходит по одной из ссылок на следущую страницу. И так далее.

Какой процент посещений от общего количества посещений будет у каждой страницы в долгосрочном периоде?

21 Решения

1.1.

1.
$$f'(x) = 2x + 3$$
, $df = 2xdx + 3dx$, $df = 1.3$

2.
$$df = 2x_1dx_1 + 3dx_1 \cdot x_2^3 + 3x_1 \cdot 3x_2^2dx_2$$
, $df = -1.9$

1.2.

- 1. A(dR)B
- 2. 2r'dr
- 3. r'(A'+A)dr
- $4. R^{-1} \cdot dR \cdot R^{-1}$
- $5. -\sin(r'r) \cdot 2r'dr$
- 6. $\frac{r'(A'+A)dr \cdot r'r r'Ar2r'dr}{(r'r)^2}$

1.3.

1.
$$dQ(\hat{\beta}) = 2(y - X\hat{\beta})^T(-X)d\hat{\beta}, d^2Q(\hat{\beta}) = 2d\hat{\beta}X^TXd\hat{\beta}$$

- $2. \ dQ(\hat{\beta}) = 0$
- 3. $\hat{\beta} = (X^T X)^{-1} X^T y$

1.4.

1.
$$dQ(\hat{\beta}) = -2((y - X\hat{\beta})^T X + \lambda \hat{\beta}^T) d\hat{\beta}, d^2Q(\hat{\beta}) = 2d\hat{\beta}^T (X^T X - \lambda I) d\hat{\beta}$$

$$2. \ dQ(\hat{\beta}) = 0$$

3.
$$\hat{\beta} = (X^T X - \lambda I)^{-1} X^T y$$

1.5.

1.
$$\sum_{ij} A_{ij} B_{ij} = \sum_{i} (\sum_{i} A_{ij} B_{ij}) = \sum_{i} (A'B)_{ii} = \operatorname{tr}(A'B)$$

Пояснение: зафиксируем номер столбца j, тогда A_{ij} — элемент исходной матрицы A, стоящий на пересечении i-ой строки и j-ого столбца. Аналогично, B_{ij} — элемент матрицы B, стоящий на пересечении i-ой строки и j-ого столбца. Тогда $\sum_i A_{ij} B_{ij}$ — это скалярное произведение j-ого столбца матрицы A на j-ый столбец матрицы B. Заметим, что этот элемент будет стоять на диагонали матрицы A'B. Далее, берём следующие столбцы, находим скалярное произведение и прибавляем его к уже полученному, и так далее. В итоге получаем сумму диагональных элементов матрицы A'B, что и требовалось доказать.

2. Докажем, что tr(A'B) = tr(BA'):

$$tr(A'B) = \sum_{i} (A'B)_{ii} = \sum_{i} \sum_{j} A_{ij} B_{ij} = \sum_{j} \sum_{i} B_{ij} A_{ij} = \sum_{j} (BA')_{jj} = tr(BA')$$

Заметим, что при транспонировании матрицы, её главная диагональ не меняется, значит, и сумма элементов остаётся прежней, то есть tr(A'B) = tr(AB').

1.6. Обозначим за \widetilde{X} матрицу алгебраических дополнений матрицы X, тогда $\det X = \sum_j X_{ij} \widetilde{X}_{ij}$ для любого фиксированного i. Вспомним, что $X^{-1} = (\det X)^{-1} \widetilde{X}^T$.

$$\frac{\partial \det X}{\partial X_{ij}} = \widetilde{X}_{ij} \Rightarrow d \det X = \sum_{ij} \widetilde{X}_{ij} dX_{ij} = \det X \sum_{ij} (\det X)^{-1} \widetilde{X}_{ij} dX_{ij} = \det X \operatorname{tr}(X^{-1} dX)$$

1.7.

1.
$$dQ = \sum_{i=1}^{n} \frac{1}{1 + \exp(-y_i x_i' \hat{\beta})} \cdot \exp(-y_i x_i' \hat{\beta}) \cdot (-y_i x_i') d\hat{\beta} + 2\lambda \hat{\beta}' d\hat{\beta}$$

2. grad
$$Q = \sum_{i=1}^{n} \frac{\exp(-y_i x_i' \hat{\beta})}{1 + \exp(-y_i x_i' \hat{\beta})} \cdot (-y_i x_i) + 2\lambda \hat{\beta}$$

2.1.

1.
$$dQ(w) = 2(Xw - y)^T X dw, d^2 Q(w) = 2dw^T X^T X dw$$

2.
$$w = (X^T X)^{-1} X^T y$$

3.
$$\hat{y} = Xw = X(X^TX)^{-1}X^Ty \Rightarrow H = X(X^TX)^{-1}X^T$$

2.2.

1. Выпишем dQ(W) и найдём градиент:

$$dQ(w) = 2(Xw - y)^{T}Xdw + 2\lambda w^{T}dw \Rightarrow \nabla Q(w) = 2X^{T}(Xw - y) + 2\lambda w$$

Приравняв градиент к нулю, получим:

$$w = (X^T X + \lambda I)^{-1} X^T y$$

2. Рассмотрим два случая.

• $w\geqslant 0: Q(w)=(y-\hat{y})^T(y-\hat{y})+\lambda w\to \min_w$. Решив, получим оптимальное значение:

$$w^+ = \frac{x^T y}{x^T x} - \frac{\lambda}{2x^T x}$$

• $w < 0: Q(w) = (y - \hat{y})^T (y - \hat{y}) - \lambda w \to \min_w$. Решив, получим оптимальное значение:

$$w^{-} = \frac{x^{T}y}{x^{T}x} + \frac{\lambda}{2x^{T}x}$$

Далее нужно заметить, что Q(w) — это парабола, после чего рассмотреть четыре возможных случая расположения w^+ и w^- и получить ответ:

- $w^+ < 0, w^- < 0 \Rightarrow w^* = w^-$
- $w^+ > 0, w^- > 0 \Rightarrow w^* = w^+$
- $w^+ < 0, w^- > 0 \Rightarrow w^* = 0$
- $w^+ > 0, w^- < 0$ этот случай невозможен

2.3.

$$y_n - \hat{y}_n = (1 - H_{nn})(y_n - \hat{y}_n^-)$$

3.1.

- 1. (5,6,-7)
- 2. Подставим точки A и B в уравнение плоскости:

$$A: 5 \cdot 2 + 6 \cdot 1 - 7 \cdot 4 + 10 = -2$$

$$B: 5 \cdot 4 + 6 \cdot 0 - 7 \cdot 4 + 10 = 2$$

Точки A и B лежат по разные стороны плоскости, следовательно, отрезок AB пересекает её.

3.
$$\overrightarrow{AB} = (2, -1, 0), |AB| = \sqrt{4 + 1 + 0} = \sqrt{5}$$

4. Расстояние одинаково

5.
$$\rho = \frac{|5 \cdot 2 + 6 \cdot 1 - 7 \cdot 4 + 10|}{\sqrt{5^2 + 6^2 + 7^2}} = \frac{2}{\sqrt{10}}$$

3.2. Например, $w_1 = -2$, $w_0 = 2$, где w_0 — вес при константе.

3.3.

- 1. Haпример, $w_1 = 2, w_2 = 2, w_0 = 0$
- 2. Haпример, $w_1 = 2, w_2 = 2, w_0 = -2$
- 3. Можно показать графически: нарисовать на плоскости точки (0,0),(1,1),(1,0),(0,1), причём для первых двух нейрон должен выдавать ответ 0, а для вторых -1. Чтобы разделить эти точки, необходимо провести две прямые, в то время как один нейрон проводит только одну.
- 4. Например, подойдут веса $w_1 = 3, w_2 = 3, w_3 = -5, w_0 = -1$
- 5. Первый нейрон с весами $w_{11}=1, w_{12}=1, w_{10}=1/2$ и второй нейрон с весами $w_{21}=1, w_{22}=1, w_{10}=-1/2$ должны подавать реузльтаты на вход третьему нейрону с весами $w_{31}=3, w_{32}=-1, w_{30}=-2$

3.4.

- 3.5.
- 3.6.
- 3.7.

3.8.

- 1. $f(t) = \log(t)$
- 2. Среднее гармоническое < среднее геометрическое < среднее арифметическое

3.9.

- 1. $accuracy = \frac{TP+TN}{TP+FP+FN+TN}$
- 2. precision = $\frac{TP}{TP+FP}$
- 3. $recall = \frac{TP}{TP+FN}$
- 4. TPR = $\frac{\text{TP}}{\text{TP+FN}}$

3.10.

3.11.

1. Поскольку все признаки одинаковы, то $\forall i \quad b_i = f(x_i) = b$, и функционал ошибки иммет вид:

$$Q(b) = \frac{1}{1000} \sum_{i=1}^{1000} L(y_i, b) = \frac{1}{1000} \left(\sum_{i=1}^{900} b^2 + \sum_{i=1}^{100} (1-b)^2 \right) \to \min_b$$

Дифференцируем и находим b:

$$2 \cdot 900 \cdot b - 2 \cdot 100 \cdot (1 - b) = 0 \Rightarrow b = 0.1$$

2. Аналогично:

$$Q(b) = \frac{1}{1000} \sum_{i=1}^{1000} |y_i - b| = \frac{1}{1000} (900 \cdot b + 100|1 - b|) \to \min_{b}$$

При b=1, получаем: Q(1)=0.9 При b<1: $Q(b)=\frac{1}{1000}\left(900b+100-100b\right)=\frac{1}{1000}\left(900b+100\right)$ \to \min_b . Минимум функционала ошибки достигается при b=0 и равен 0.1.

3. Снова выпишем функционал ошибки:

$$Q(b) = \frac{1}{1000} \left(-900 \log(1 - b) + 100 \log b \right) \to \min_{b}$$

Берём производную и получаем оптимальный b:

$$\frac{1}{1000} \left(\frac{900}{1-b} - \frac{100}{b} \right) = 0 \Rightarrow b = 0.1$$

4.

$$Q(b) = \frac{1}{1000} \left(\frac{900}{1-b} - \frac{100}{b} \right) \to \min_{b}$$

Дифференцируя, получим:

$$\frac{900}{(1-b)^2} = \frac{100}{b^2} \Rightarrow b = 0.25$$

3.12. Нет. Не выполнено $\tilde{L} \geqslant L$ для всех $M \in \mathbb{R}$.

3.13.
$$\hat{\mathbb{P}}(y_i = 1|x_i) = \frac{1}{1 + \exp(-\beta_1 - \beta_2 x_i)}$$

1.
$$loss(\beta_1, \beta_2) = -\sum_{i=1}^{l} \left([y_i = 1] \ln \frac{1}{1 + \exp(-\beta_1 - \beta_2 x_i)} + [y_i = -1] \ln \left(1 - \frac{1}{1 + \exp(-\beta_1 - \beta_2 x_i)} \right) \right)$$

2.
$$\frac{\partial loss}{\partial \beta_1} = -\sum_{i=1}^{l} \left([y_i = 1] \cdot \frac{1}{1 + \exp(\beta_1 + \beta_2 x_i)} + [y_i = -1] \cdot (-1) \cdot \frac{1}{1 + \exp(-\beta_1 - \beta_2 x_i)} \right)$$

3.
$$y_4 = 1$$
, $x_4 = 0.8$

3.14.

3.15.

3.16.

1. Выпишем аппроксимацию функции потерь:

$$loss(\beta_1, \beta_2) \approx 100 \ln 2 + 6\beta_1 + 12\beta_2 + \frac{1}{2} (25\beta_1^2 + 2 \cdot 12\beta_1\beta_2 + 12\beta_2^2) \rightarrow \min_{\beta_1, \beta_2}$$

Взяв производные по β_1 и β_2 , получим $\hat{\beta}_1 = \frac{6}{13},\,\hat{\beta}_2 = -\frac{19}{13}.$

2. $\hat{P}(honey_i = 1|bee_i = 0) = \frac{1}{1 + \exp(-6/13)} \approx 0.615.$

Это же число можно было получить из таблицы: $\frac{32}{32+20} \approx 0.61$.

3.17. Предельный эффект максимален при максимальной производной $\Lambda'(\hat{\beta}_1 + \hat{\beta}_2 x + \hat{\beta}_3 z)$, то есть при $\hat{\beta}_1 + \hat{\beta}_2 x + \hat{\beta}_3 z = 0$.

4.1.

- 1. $\Lambda(w) + \Lambda(-w) = 1$
- 2. $\Lambda'(w) = -\Lambda'(-w)$
- 3.
- 4. $\Lambda(0) = 0.5$, $\Lambda'(0) = 0.25$, $\ln \Lambda(0) = -\ln 2$
- 5. $\Lambda^{-1}(p) = \ln \frac{p}{1-p}$
- 6. $\frac{d \ln \Lambda(w)}{dw} = \Lambda(-w)$
- 7. $\frac{d \ln \Lambda(-w)}{dw} = -\Lambda(w)$
- 8.

4.2.

5.1.

1.
$$X'X = \begin{pmatrix} 2/\sqrt{5} & -1/\sqrt{5} \\ 1/\sqrt{5} & 2/\sqrt{5} \end{pmatrix} \begin{pmatrix} \sqrt{5} & 4/\sqrt{5} \\ 0 & 3/\sqrt{5} \end{pmatrix}$$

2.
$$XX' = \begin{pmatrix} 2/\sqrt{6} & 0 & 1/\sqrt{6} \\ 1/\sqrt{6} & 1/\sqrt{2} & 1/\sqrt{6} \\ -1/\sqrt{6} & 1/\sqrt{2} & 1/\sqrt{6} \end{pmatrix} \begin{pmatrix} \sqrt{6} & 3/\sqrt{6} & -3/\sqrt{6} \\ 0 & 1/\sqrt{2} & 1/\sqrt{2} \\ 0 & 0 & 0 \end{pmatrix}$$

3.
$$X'X = \begin{pmatrix} 1/\sqrt{2} & -1/\sqrt{2} \\ 1/\sqrt{2} & 1/\sqrt{2} \end{pmatrix} \begin{pmatrix} 3 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1/\sqrt{2} & 1/\sqrt{2} \\ 1s/\sqrt{2} & -1/\sqrt{2} \end{pmatrix}$$

4.
$$XX' = \begin{pmatrix} 2/\sqrt{6} & 0 & 1/\sqrt{3} \\ 1/\sqrt{6} & 1/\sqrt{2} & -1/\sqrt{3} \\ -1/\sqrt{6} & 1/\sqrt{2} & 1/\sqrt{3} \end{pmatrix} \begin{pmatrix} 3 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 2/\sqrt{6} & 1/\sqrt{6} & -1/\sqrt{6} \\ 0 & 1/\sqrt{2} & 1/\sqrt{2} \\ 1/\sqrt{3} & -1/\sqrt{3} & 1/\sqrt{3} \end{pmatrix}$$

5.
$$X = \begin{pmatrix} 2/\sqrt{6} & 0 & 1/\sqrt{3} \\ 1/\sqrt{6} & 1/\sqrt{2} & -1/\sqrt{3} \\ -1/\sqrt{6} & 1/\sqrt{2} & 1/\sqrt{3} \end{pmatrix} \begin{pmatrix} \sqrt{3} & 0 \\ 0 & 1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 1/\sqrt{2} & 1/\sqrt{2} \\ -1/\sqrt{2} & 1/\sqrt{2} \end{pmatrix}$$

5.2.

5.3. H = UU'

5.4.
$$H = QQ'$$

6.1.

6.2.

6.3.
$$C = 0$$
 и $\sigma = +\infty$

6.4.

- 1. Нужно нарисовать прямые $2x_1 + 3x_2 = 7$, $2x_1 + 3x_2 = 8$, $2x_1 + 3x_2 = 6$.
- 2. $2/\sqrt{13}$
- 3. $22/\sqrt{13}$

6.5.
$$w = (1/2, 1/2), w_0 = 5.5$$

6.6.

6.7.

6.8.

- **7.1.** В исходном пространстве: $|\vec{a}| = \sqrt{3}, \ |\vec{b}| = \sqrt{5}, \cos(\vec{a}, \vec{b}) = \sqrt{0.6}.$ В расширяющем пространстве: $|h(\vec{a})| = 1, \ |h(\vec{b})| = 1, \cos(h(\vec{a}), h(\vec{b})) = e^{-2}.$
- **7.2.** Длина равна 1 и не зависит от γ . При $\gamma \approx 0$ вектора примерно совпадают, при больших γ вектора примерно ортогональны.

7.3.

1.
$$|AB| = \sqrt{10}$$
, $\cos(ABC) = \frac{1}{\sqrt{5}}$

2.
$$|AB| = 1$$
, $\cos(ABC) = e^{-8}$

7.4.
$$K(x,y) = 1 + x_1y_1 + x_2y_2 + 3x_1x_2 \cdot 3y_1y_2 + 2x_1^2 \cdot 2y_1^2 + 4x_2^2 \cdot 4y_2^2$$

7.5.
$$f(x_1, x_2) = (x_1^2, x_2^2, \sqrt{2}x_1x_2)$$

7.6. Ядром является только функция в пункте 1.

7.7.

- 1. $K_1(\text{«мама»}, \text{«ам»}) = 0, K_2(\text{«мама»}, \text{«ам»}) = 3, K_3(\text{«мама»}, \text{«ам»}) = 2$
- 2. Да
- 3. Да

4.

7.8.

8.1. Выпишем лагранжиан:

$$L(x_1, x_2, x_3, \lambda) = x_1^2 + x_2^2 + x_3^2 + \lambda(2x_1 + 3x_2 + 5x_3 - 10)$$

Затем условие первого порядка:

$$\begin{cases} \frac{\partial L}{\partial x_1} = 2x_1 + 2\lambda = 0 \Rightarrow & x_1 = -\lambda \\ \frac{\partial L}{\partial x_2} = 2x_2 + 3\lambda = 0 \Rightarrow & x_2 = -\frac{3}{2}\lambda \\ \frac{\partial L}{\partial x_3} = 2x_3 + 5\lambda = 0 \Rightarrow & x_3 = -\frac{5}{2}\lambda \end{cases}$$

Двойственная задача имеет вид:

$$g(\lambda) = (-\lambda)^2 + \left(-\frac{3}{2}\lambda\right)^2 + \left(-\frac{5}{2}\lambda\right)^2 + \lambda\left(-2\lambda + 3\cdot\left(-\frac{3}{2}\right)\lambda + 5\cdot\left(-\frac{5}{2}\right)\lambda - 10\right) \to \max_{\lambda} \left(-\frac{3}{2}\lambda\right) + \sum_{\lambda=0}^{\infty} \left(-\frac{3}{2}\lambda\right)^2 + \left(-\frac{5}{2}\lambda\right)^2 + \lambda\left(-\frac{5}{2}\lambda\right)^2 + \lambda\left(-\frac{3}{2}\lambda\right)^2 + \lambda\left(-\frac{3}$$

8.2.

8.3.

8.4.

8.5.

8.6. Прямая задача:

$$\begin{cases} \frac{1}{2} \|w\|^2 + C \sum_{i=1}^{l} \xi_i \to \min_{w,b,\xi} \\ y_i(\langle w, x_i \rangle + b) \geqslant 1 - \xi_i, & i = 1 \dots l, \\ \xi_i \geqslant 0, & i = 1 \dots l. \end{cases}$$

Двойственная задача:

$$\begin{cases} \sum_{i=1}^{l} \lambda_i - \frac{1}{2} \sum_{i,j=1}^{l} \lambda_i \lambda_j y_i y_j \langle x_i, x_j \rangle \to \max_{\lambda} \\ 0 \leqslant \lambda_i \leqslant C, \quad i = 1 \dots l, \\ \sum_{i=1}^{l} \lambda_i y_i = 0. \end{cases}$$

8.7.

$$\begin{cases} \sum_{i=1}^{l} \lambda_i - \frac{1}{2} \sum_{i,j=1}^{l} \lambda_i \lambda_j y_i y_j K(x_i, x_j) \to \max_{\lambda} \\ 0 \leqslant \lambda_i \leqslant C, \quad i = 1 \dots l, \\ \sum_{i=1}^{l} \lambda_i y_i = 0. \end{cases}$$

9.1.

9.2. Матрица с центрированными столбцами имеет вид:
$$\widetilde{X} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \\ -1 & -2 \\ 2 & 1 \end{pmatrix}$$

Тогда
$$\widetilde{X}'\widetilde{X} = \begin{pmatrix} 6 & 4 \\ 4 & 6 \end{pmatrix}$$
.

Её собственные числа: $\lambda_1=10,\ \lambda_2=2,$ собственные вектора $v_1=(1/\sqrt{2}-1/\sqrt{2})',\ v_2=(1/\sqrt{2}-1/\sqrt{2}).$ Найдём главные компоненты:

$$P = XV = \begin{pmatrix} 0 & 1 \\ -1 & 0 \\ -1 & -2 \\ 2 & 1 \end{pmatrix} \begin{pmatrix} 1/\sqrt{2} & 1/\sqrt{2} \\ 1/\sqrt{2} & -1/\sqrt{2} \end{pmatrix} = \begin{pmatrix} 1/\sqrt{2} & -1/\sqrt{2} \\ -1/\sqrt{2} & -1/\sqrt{2} \\ -3/\sqrt{2} & 1/\sqrt{2} \\ 3/\sqrt{2} & 1/\sqrt{2} \end{pmatrix}$$

Первая и вторая главные компоненты — это первый и второй столбцы матрицы P соответственно.

9.3.

9.4.

9.5. Те же компоненты, только в обратном порядке.

10.1.
$$I_X = 1 - 0.2^2 - 0.8^2 = 0.32$$
, $H(X) = -(0.2 \ln 0.2 + 0.8 \ln 0.8) \approx 0.5$, preplexity $\approx e^{0.5}$ $I_Y = 1 - 0.2^2 - 0.3^2 - 0.5^2 = 0.62$, $H(Y) = -(0.2 \ln 0.2 + 0.3 \ln 0.3 + 0.5 \ln 0.5) \approx 1.03$, perplexity $\approx e^{1.03}$

10.2.

- 1. $H(X) = \ln 3$, $I_X = 2/3$, спутанность равна 3.
- 2. $I_X = 1 \frac{1}{k}$, $H(X) = \ln k$, спутанность равна k.
- 3. Если величина X равновероятно принимает k значений, то спутанность равна k. У равномерной на [0;a] спутанность равна a. $H(X) = -\int_0^a \frac{1}{a} \cdot \ln \frac{1}{a} dx = \ln a$.
- 4. Обозначим $f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$, тогда $H(X) = -\int_{-\infty}^{+\infty} f(x) \ln(f(x)) dx$.
- **10.3.** Энтропия, спутанность (perplexity) и индекс Джини вырастут.

10.4.

1. Пусть X — длина заархивированного сообщения, $X = X_1 + ... + X_n$, где X_i — длина одной заархивированной буквы.

$$\mathbb{E}(X) = n\mathbb{E}(X_1) = n\left(\frac{1}{2} \cdot 1 + \frac{1}{4} \cdot 2 + \frac{1}{4} \cdot 2\right) = n \cdot \frac{3}{2} \Rightarrow \frac{\mathbb{E}(X)}{n} = \frac{3}{2}$$

3.
$$H(X) = -\left(\frac{1}{2}\log_2\frac{1}{2} + \frac{1}{4}\log_2\frac{1}{4} + \frac{1}{4}\log_2\frac{1}{4}\right) = \frac{3}{2}$$

10.5. I = 2p(1-p), энтропия и индекс Джини максимальны при p = 0.5.

10.6.

$$I = 2 \cdot 0.7 \cdot 0.3$$

10.7.

$$I = 0.2I_L + 0.8I_R$$

10.8. У дискретной величины энтропия не изменится.

10.9.

$$H(V) = H(X) + H(Y)$$

10.10.

- **11.1.** Первое разбиение по порогу $x_i < 2.5$, второе по $x_i < 1.5$.
- **11.2.** Первое разбинение по порогу $x_i < 3.5$. Левый лист разбивается по порогу $x_i < 5.5$, правый по порогу $x_i < 1.5$.

11.3. Было:
$$I=1-\left(\frac{20}{70}\right)^2-\left(\frac{40}{70}\right)^2-\left(\frac{2}{70}\right)^2-\left(\frac{8}{70}\right)^2=\frac{708}{1225}\approx 0.58,$$
 $H=-\left(\frac{20}{70}\ln\frac{20}{70}+\frac{40}{70}\ln\frac{40}{70}+\frac{2}{70}\ln\frac{2}{70}+\frac{8}{70}\ln\frac{8}{70}\right)\approx 1.03.$ Стало: $I_L=0,\ I_R=1-\left(\frac{20}{30}\right)^2-\left(\frac{2}{30}\right)^2-\left(\frac{8}{30}\right)^2=0.48,\ I=\frac{40}{70}\cdot 0+\frac{30}{70}\cdot 0.48\approx 0.21,$ $H_L=0,\ H_R=-\left(\frac{20}{30}\ln\frac{20}{30}+\frac{2}{30}\ln\frac{2}{30}+\frac{8}{30}\ln\frac{8}{30}\right)\approx 0.8,\ H=\frac{40}{70}\cdot 0+\frac{30}{70}\cdot 0.8\approx 0.34.$

- **11.4.** Первое разбиение по порогу $x_i < 12.5$, второе по порогу $x_i < 10.5$.
- **11.5.** Сначала делим по z, потом по x, так как индекс Джини в таком порядке падает сильнее.

11.6.

- 11.7. Нет, в силу выпуклости функций.
- **11.8.** Все y_i одинаковые; поровну y_i двух типов; 1000 разных типов y_i , по одному наблюдению каждого типа.

11.10.

11.11.

11.12.

11.13. Сначала делим по условию x > 0.5, затем по условию z > 1.5.

12.1.
$$100 \cdot \left(\frac{99}{100}\right)^{100} \approx 100/e \approx 37$$

12.2.

1. $S = \bar{x}$

\overline{s}	300	400	500	600	700	800	900	1000	1200
$\mathbb{P}(S=s)$	$\frac{1}{27}$	$\frac{3}{27}$	$\frac{3}{27}$	$\frac{4}{27}$	$\frac{6}{27}$	$\frac{3}{27}$	$\frac{3}{27}$	$\frac{3}{27}$	$\frac{1}{27}$

- 2. $\mathbb{E}(X) = 700$, Var(X) = 14000/3
- - $S = \overline{\min\{x_1, x_2, x_3\}}$ s = 300 600 1200 $\mathbb{P}(S = s) \frac{19}{27} \frac{7}{27} \frac{1}{27}$

12.3.

12.4.

13.1.

13.2.

14.1.

15.1. $\hat{\mu}_{\lambda=0}=22/3$ При минимизации RSS^{CV} разумно сделать замену $t=4/(2+\lambda)$, тогда $RSS^{CV}=2(6-4t)2+(10-3t)^2$. $\lambda_{CV}=4/39$, $\hat{\mu}=\frac{22}{3+4/39}$

15.2.

$$\mathbb{E}((y_f - \hat{y}_f)^2) = 1 + \gamma^2 x_f^2 \frac{1}{\sum_i x_i^2} + \beta^2 x_f^2 (1 - \gamma)^2$$

Оптимальное γ равно

$$\gamma = \frac{\beta^2 \sum x_i^2}{\beta^2 \sum x_i^2 + 1}$$

На практике эта формула в явном виде неприменима, так как содержит неизвестный параметр β . Способ 1: двухшаговая оценка. Оцениваем $\hat{\beta}$ с помощью МНК, затем находим $\hat{\gamma}$ используя $\hat{\beta}$ вместо β . Способ 2: кросс-валидация. Минимизируем сумму квадратов вневыборочных прогнозов по γ .

16.1.

16.2.

17.1. При k=1 получаем 4 ошибки, при k=3 получаем 2 ошибки, при k=5 получаем ... Оптимальное k=3.

17.2. При трёх соседях вся плоскость под влиянием рыжих. При одном соседе область влияния чёрных — прямоугольник бесконечный влево вниз. При кросс-валидации с k=1 получаем 4 ошибки, при кросс-валидации с k=3 получаем одну ошибку. Оптимальное k=3.

18.1.

1.
$$D_{KL}(p||q) = 3 \cdot \frac{1}{3} \ln 3 - \left(\frac{1}{3} \ln \left(\frac{2}{3}\right)^2 + \frac{1}{3} \ln \left(\frac{4}{9}\right) + \frac{1}{3} \ln \left(\frac{1}{3}\right)^2\right) = \ln 3 - \frac{4}{3} \ln 2 \approx 0.17$$

2.
$$D_{KL}(p||q) = \left(\frac{2}{3}\right)^2 \ln\left(\frac{2}{3}\right)^2 \cdot 2 + \left(\frac{1}{3}\right)^2 \ln\left(\frac{1}{3}\right)^2 - \ln\left(\frac{1}{3}\right) = \frac{16}{9} \ln 2 - \ln 3 \approx 0.134$$

3. Для удобства запишем выражение как логарифм частного:

$$D_{KL}(p||q) = \int_{-\infty}^{+\infty} \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{x^2}{2\sigma^2}} \ln \frac{\frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{x^2}{2\sigma^2}}}{\frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}} dx = \frac{1}{\sqrt{2\pi\sigma^2}} \int_{-\infty}^{+\infty} e^{-\frac{x^2}{2\sigma^2}} \left(-\frac{x^2}{2\sigma^2} + \frac{x^2}{2} - \ln\sigma\right) dx$$

Дальше интеграл нужно разбить на сумму трёх, два из них берутся по частям (пригодится Гауссов интеграл: $\int_{-\infty}^{+\infty} \alpha e^{\frac{-x^2}{\beta^2}} = \alpha \beta \sqrt{\pi}$). В итоге получится:

$$D_{KL}(p||q) = \frac{1}{2}(\sigma^2 - 1 - \ln \sigma^2)$$

4.

5. Аналогично пункту 3:

$$D_{KL}(p||q) = \int_{-\infty}^{+\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} \ln \frac{\frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}}{\frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{x^2}{2\sigma^2}}} dx = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} e^{-\frac{x^2}{2}} \left(\frac{x^2}{2\sigma^2} - \frac{x^2}{2} + \ln \sigma\right) dx$$
$$D_{KL}(p||q) = \ln \sigma - \frac{1}{2} + \frac{1}{2\sigma^2}$$

здесь не существует?

18.2. Заметим, что

$$D_{KL}(p||q) = \sum_{x} p(x) \ln \frac{p(x)}{q(x)} = -\sum_{x} p(x) \ln \frac{q(x)}{p(x)}$$

Поскольку $-\ln z$ — выпуклая функция, воспользуемся неравенством Йенсена:

$$D_{KL}(p||q) \geqslant -\ln\left(\sum_{x} q(x) \frac{p(x)}{p(x)}\right) \geqslant -\ln 1 = 0$$

18.3.

1.
$$p_{AB} = \frac{f(5)}{f(5) + f(6)} = \frac{1}{f(6)/f(5) + 1}$$

$$p_{AC} = \frac{f(6)}{f(5) + f(6)} = \frac{1}{f(5)/f(6) + 1}$$

$$p_{BC} = 0$$
При $\sigma_A = 1$: $p_{AB} = \frac{1}{1 + e^{-5.5}} \approx 0.996$, $p_{AC} = \frac{1}{1 + e^{5.5}} \approx 0.004$
При $\sigma_A \to 0$: $p_{AB} \to 1$, $p_{AC} \to 0$
При $\sigma_A \to \infty$: $p_{AB} \to 0.5$, $p_{AC} \to 0.5$

- 2. При $\sigma_A \to 0$ perplexity $\to 1$ При $\sigma_A \to \infty$ perplexity $\to 2$
- 3. Если Джеймс Бонд заброшен в точку B, то он выбирает дороги AB и BC равновероятно, не зависимо от σ_B . Спутанность равна 2.
- 4. При неизвестной точке заброса вероятности равны:

$$p_{AB} = \frac{1}{3} \cdot \frac{f(5)}{f(5) + f(6)} + \frac{1}{3} \cdot \frac{f(5)}{f(5) + f(5)} = \frac{1}{3} \cdot \frac{1}{1 + e^{-5.5/\sigma^2}} + \frac{1}{6}$$

$$p_{BC} = \frac{1}{3} \cdot \frac{f(5)}{f(5) + f(6)} + \frac{1}{3} \cdot \frac{f(5)}{f(5) + f(5)} = \frac{1}{3} \cdot \frac{1}{1 + e^{-5.5/\sigma^2}} + \frac{1}{6}$$

$$p_{AC} = \frac{1}{3} \cdot \frac{f(6)}{f(5) + f(6)} + \frac{1}{3} \cdot \frac{f(6)}{f(5) + f(6)} = \frac{2}{3} \cdot \frac{1}{1 + e^{5.5/\sigma^2}}$$

При $\sigma_Z=1$: $p_{AB}\approx 0.49865,\, p_{BC}\approx 0.49865,\, p_{AC}\approx 0.0027$

При
$$\sigma_Z \to 0$$
: $p_{AB} \to 0.5, \, p_{BC} \to 0.5, \, p_{AC} \to 0$

При
$$\sigma_Z \to \infty$$
: $p_{AB} \to 1/3, \, p_{BC} \to 1/3, \, p_{AC} \to 1/3$

1. Для
$$f(a) = 1/a$$
:

$$p_{AC} = \frac{1}{3} \cdot \frac{1/3}{1/3 + 1/5} + \frac{1}{3} \cdot \frac{1/3}{1/3 + 1/4} = \frac{67}{168}$$

$$p_{BC} = \frac{1}{3} \cdot \frac{1/4}{1/4 + 1/5} + \frac{1}{3} \cdot \frac{1/4}{1/4 + 1/3} = \frac{62}{189}$$

$$p_{AB} = \frac{1}{3} \cdot \frac{1/5}{1/5 + 1/3} + \frac{1}{3} \cdot \frac{1/5}{1/5 + 1/4} = \frac{59}{216}$$

Для
$$f(a) = \frac{1}{\sqrt{2\pi}}e^{-\frac{a^2}{2}}$$
:

$$p_{AC} = \frac{1}{3} \cdot \frac{1}{1 + e^{-8}} + \frac{1}{3} \cdot \frac{1}{1 + e^{-3.5}} \approx 0.6568$$

$$p_{BC} = \frac{1}{3} \cdot \frac{1}{1 + e^{-4.5}} + \frac{1}{3} \cdot \frac{1}{1 + e^{3.5}} \approx 0.3394$$

$$p_{AB} = \frac{1}{3} \cdot \frac{1}{1 + e^{4.5}} + \frac{1}{3} \cdot \frac{1}{1 + e^{8}} \approx 0.0038$$

Для
$$f(a) = \frac{1}{\pi(1+a^2)}$$
:

$$p_{AC} = \frac{1}{3} \cdot \frac{1}{1 + (1+3^2)/(1+5^2)} + \frac{1}{3} \cdot \frac{1}{1 + (1+3^2)/(1+4^2)} = \frac{73}{162}$$

$$p_{BC} = \frac{1}{3} \cdot \frac{1}{1 + (1+4^2)/(1+5^2)} + \frac{1}{3} \cdot \frac{1}{1 + (1+4^2)/(1+3^2)} = \frac{1132}{3483}$$

$$p_{AB} = \frac{1}{3} \cdot \frac{1}{1 + (1+5^2)/(1+3^2)} + \frac{1}{3} \cdot \frac{1}{1 + (1+5^2)/(1+4^2)} = \frac{521}{2322}$$

- 2. Из условия: «Майор Пронин считает, что пункты A, B и C равноудалены друг от друга», следовательно, $p_{AB}=p_{AC}=p_{BC}=1/3$.
- 3. $D_{KL}(p||q) = \frac{67}{168} \ln \frac{67}{168} + \frac{62}{189} \ln \frac{62}{189} + \frac{59}{216} \ln \frac{59}{216} + \ln 3 \approx 0.012$

18.5.

19.1.

- 1. 1 + d + rd
- 2.
- 3. $\frac{d^2-d}{2} rd$

19.2. 0

19.3.

1.
$$W = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 4 & 6 \\ 3 & 6 & 9 \end{pmatrix}$$

2. Является положительно полуопределённой

3. $\lambda_1 = 14, \ \lambda_2 = \lambda_3 = 0, \ v_1 = (1, 2, 3), \ v_2 = (-3, 0, 1), \ v_3 = (-2, 1, 0)$

19.4.

$$1. \ V = \begin{pmatrix} \sqrt{2} \\ \sqrt{2} \end{pmatrix}$$

$$2. V = \begin{pmatrix} 2 & 0 \\ 0 & 3 \\ 2 & 0 \end{pmatrix}$$

20.1.

20.2.

22 Источники мудрости