Теория вероятностей Итоговый диктант, определения

Основано на лекциях Аксёновой Екатерины Файл создан Заблоцким Данилом

Содержание

1	Алгебра событий	4
2	Сигма-алгебра событий	4
3	Борелевская сигма-алгебра	4
4	Определение меры	5
5	Аксиомы вероятности	5
6	Определение вероятности в классической схеме	6
7	Формула числа перестановок	6
8	Формула числа размещений	6
9	Формула числа сочетаний	6
10	Формула числа размещений с повторениями	7
11	Формула числа сочетаний с повторениями	7
12	Условная вероятность $P(A B)$	7
13	Определение независимых событий	7
14	Формула полной вероятности	7
15	Формула Байеса	8
16	Формула Бернулли	8
17	Наиболее вероятное число успехов в схеме Бернулли	8
18	Закон больших чисел для схемы Бернулли	9
19	Локальная формула Муавра-Лапласа	9

20 Интегра	льная формула Муавра-Лапласа	9
21 Формула	а Пуассона	10
22 Определ	вение вероятности в геометрической схеме	10
23 Случайн	ная величина	10
24 Распред	еление случайной величины	10
25 Функци:	я распределения случайной величины	11
26 Абсолют	гно непрерывная мера	11
27 Сингуля	рные меры	11
28 Теорема	Лебега о разложении	11
29 Дискрет	тная случайная величина	12
30 Абсолют	гно непрерывная случайная величина	12
31 Плотнос	ть распределения	12
32 Биномиа	альное распределение, его среднее и дисперсия	13
33 Геометра	ическое распределение, его среднее и дисперсия	13
34 Гиперге	ометрическое распределение	13
35 Распред	еление Пуассона, его среднее и дисперсия	14
36 Равноме дисперсі	ерное распределение на отрезке $\left[a;b ight],$ его среднее и	14
37 Нормалі	ьное распределение, его среднее и дисперсия	15
38 Распред	еление Коши, его среднее и дисперсия	15
39 Экспоне	нциальное распределение, его среднее и дисперсия	16
40 Случайн	ный вектор	16
41 Функция	я распределения случайного вектора	16
42 Плотнос	ть распределения случайного вектора	17
43 Независ	имые классы событий	17
44 Теорема	о независимости сигма-алебр	17
45 Независ	имые случайные величины	17

46	Критерий независимости случайных величин в терминах фунций распределения	ік- 18
47	Критерий независимости дискретных случайных величин	18
48	Критерий независимости случайных величин в терминах пло ностей распределения	т- 18
49	Формула для математического ожидания дискретной случайной величины	18
50	Формула для математического ожидания абсолютно непрерывной случайной величины	19
51	Некоррелированные случайные величины	19
52	Дисперсия	19
53	Стандартное отклонение	19
54	Формула для дисперсии дискретной случайной величины	19
55	Формула для дисперсии абсолютно непрерывной случайной величины	20
56	Начальный момент	20
57	Центральный момент	20
58	Неравенство Коши-Буняковского	20
5 9	Неравенство Гёльдера	20
60	Неравенство Иенсена	21
61	Неравенство Чебышёва	21
62	Классическое неравенство Чебышёва	21
63	Нормированная случайная величина	21
64	Коэффициент корреляции	21
65	Ковариация	21
	Условное математическое ожидание относительно события	22

1 Алгебра событий

Определение (Алгебра). \mathcal{F} – семейство подмножеств Ω , \mathcal{F} – *алгебра*, если:

- 1. $\Omega \in \mathcal{F} \ (\emptyset \in \mathcal{F})$.
- $2. \ A \in \mathcal{F} \implies \overline{A} \in \mathcal{F}.$
- 3. $A, B \in \mathcal{F} \implies AB \in \mathcal{F}, A + B \in \mathcal{F}.$

2 Сигма-алгебра событий

Определение (σ -алгебра). \mathcal{F} – семейство подмножеств Ω , \mathcal{F} – σ -алгебра, если:

- 1. $\Omega \in \mathcal{F} \ (\emptyset \in \mathcal{F})$.
- 2. $A \in \mathcal{F} \implies \overline{A} \in \mathcal{F}$.
- 3. $A, B \in \mathcal{F} \implies AB \in \mathcal{F}, A + B \in \mathcal{F}.$
- 4. $\forall \{A_{\alpha}\} \subset \mathcal{F} \bigcap_{\alpha} A_{\alpha} \in \mathcal{F}$ и $\bigcup_{\alpha} A_{\alpha} \in \mathcal{F}$.

3 Борелевская сигма-алгебра

Примечание. Взято не из лекций.

Определение (Борелевская σ -алгебра). \mathbb{R} — топологическое пространство, борелевская σ -алгебра — это алгебра, порожденная всеми интервалами.

4 Определение меры

Примечание. Взято не из лекций.

Определение (Мера). Пусть X — некоторое множество и Σ — α -алгебра над X.

Функция μ из Σ в расширенную действительную числовую прямую называется *мерой*, если она удовлетворяет следующим свойствам:

ullet неотрицательность: для всех E в Σ имеем

$$\mu(E) \geqslant 0;$$

• пустой набор:

$$\mu(\varnothing) = 0;$$

• счетная аддитивность (или σ -аддитивность): для всех счетных наборов попарно непересекающихся множеств в Σ :

$${E_k}_{k=1}^{\infty}$$

$$\mu\left(\bigcup_{k=1}^{\infty} E_k\right) = \sum_{k=1}^{\infty} \mu(E_k).$$

5 Аксиомы вероятности

Определение. Вероятностное пространство (Ω, \mathcal{F}, P) .

 Ω – множество элементарных исходов, \mathcal{F} – σ -алгебра подмножеств $\Omega,$ P – мера на $\mathcal{F},$ $P:\mathcal{F}\to\mathbb{R},$

- (A_1) $\forall A \in \mathcal{F} \ P(A) \geqslant 0.$
- $\widehat{A_2}$ $P(\Omega)=1$ (условие нормировки).
- $\widehat{(A_3)} \ \forall A, B \in \mathcal{F} \ AB = \varnothing \implies P(A+B) = P(A) + P(B).$
- (A_4) $\{A_n\} \subset \mathcal{F} A_{n+1} \leqslant A_n \bigcap_n A_n = \emptyset,$

 $\lim_{n\to\infty} P(A_n) = 0$ (непрерывность меры).

6 Определение вероятности в классической схеме

Определение (Вероятность в классической схеме). Ω – конечное множество равновозможных исходов. \mathcal{F} – все подмножества Ω (их $2^{|\Omega|}$),

$$P(A) = \frac{|A|}{|\Omega|}.$$

7 Формула числа перестановок

Определение (формула числа перестановок). *Число перестановок* n различных шаров (перестановки отличаются порядком шаров) – P(n),

$$P(n) = n!$$
, $n \cdot (n-1) \cdot (n-2) \cdot \ldots \cdot 1 = n!$, $0! = 1$.

Пусть есть n_1, \ldots, n_m шаров m видов, $n = n_1 + \ldots + n_m$. Число перестановок этих n шаров равно $P(n_1, \ldots, n_m)$,

$$P(n_1, \dots, n_m) = \frac{(n_1 + \dots + n_m)!}{n_1! n_2! \dots n_n!}.$$

8 Формула числа размещений

Определение (Формула числа размещений). Pазмещения n элементов по k местам. Выкладываем в ряд k шариков из имеющихся n:

$$A_n^k = n \cdot (n-1) \cdot \ldots \cdot (n-k+1) = \frac{n!}{(n-k)!}.$$

9 Формула числа сочетаний

Определение (Формула числа сочетаний). Сочетания k элементов из n. Число k-элементарных подмножеств из n-элементов множества – C_n^k ,

$$C_n^k = \frac{A_n^k}{k!} = \frac{n!}{(n-k)!k!}.$$

10 Формула числа размещений с повторениями

Замечание. Если мы разрешим шарики повторять, то получим размещения с повторениями:

 $\overline{A_n^k} = n \cdot n \cdot \ldots \cdot n = n^k$.

11 Формула числа сочетаний с повторениями

Примечание. Взято не из лекций.

Определение (Число сочетаний с повторениями).

$$\overline{C_n^k} = C_{n+k-1}^k.$$

12 Условная вероятность P(A|B)

Определение (Условная вероятность). Пусть P(B)>0 условий. Все исходы – это B, исходы AB и тогда:

$$P(A|B) = \frac{P(AB)}{P(B)}.$$

13 Определение независимых событий

Примечание. Взято не из лекций.

Определение (Независимое событие). (Ω, \mathcal{F}, P) – В.П., $A, B \in \mathcal{F}$ – случайные события. Говорят, что A и B независимы, если P(A|B) = P(A) (A не зависит от B).

14 Формула полной вероятности

Теорема (Формула полной вероятности). Пусть A – случайные события, H_1, \ldots, H_n – разбиения, тогда:

$$P(A) = \sum_{j=1}^{n} P(A|H_j) \cdot P(H_j).$$

15 Формула Байеса

Теорема (Формула Байесса). H_1,\ldots,H_n – разбиение, $A\in\mathcal{F},$

$$P(H_i|A) = \frac{P(A|H_i)P(H_i)}{\sum_j P(A|H_j)P(H_j)},$$

апостериорные вероятности, $P(H_i)$ – априорные вероятности.

16 Формула Бернулли

Примечание. Взято не из лекций.

Теорема (Формула Бернулли). Вероятность того, что в n независимых испытаниях, в каждом из которых вероятность успеха равна 0 , а вероятность неудачи равна <math>q = 1 - p, событие наступит ровно k раз, безразлично в какой последовательности равна:

$$P(B_k) = C_n^k \cdot p^k \cdot q^{n-k}.$$

17 Наиболее вероятное число успехов в схеме Бернулли

Примечание. Взято не из лекций.

Примечание. Наиболее вероятное число успехов в схеме Бернулли:

$$np - q \leqslant k \leqslant np + p$$
.

Наиболее вероятное число успехов (np+p). Число успехов с наибольшей вероятностью:

$$[np + p]$$
 или $[np + p] + 1$.

18 Закон больших чисел для схемы Бернулли

Примечание. Взято не из лекций.

Теорема. Пусть производится последовательность независимых испытаний, в результате каждого из которых может наступить или не наступить событие A, причем вероятность наступления этого события одна и та же при каждом испытании и равна p.

Если событие A фактически произошло m раз в n испытаниях, то отношение $\frac{m}{n}$ называют, как мы знаем, частотой появляения события A. Частота есть случайная величина, причем вероятность того, что частота принимает значение $\frac{m}{n}$, выражается по формуле Бернулли:

$$P_n(m) = C_n^m p^m q^{n-m}.$$

Закон больших чисел в форме Бернулли состоит в следующем:

$$\underset{n\to\infty}{\lim} P\left[\left|\frac{m}{n}-p\right|<\varepsilon\right]=1.$$

19 Локальная формула Муавра-Лапласа

Примечание. Взято не из лекций.

Теорема.

$$P_n(k) = \frac{1}{\sqrt{npq}}\phi(x),$$

$$\phi(x) = \frac{1}{\sqrt{2\pi}} \cdot e^{-\frac{x^2}{2}}, \qquad x = \frac{k - np}{\sqrt{npq}}.$$

20 Интегральная формула Муавра-Лапласа

Теорема (Интегральная теорема Муавра-Лапласа). В схеме Бернулли $\sigma = \sqrt{npq} \to \infty$, то для $a,b \in \mathbb{R}$ m — число успехов в схеме Бернулли, то:

$$P\left(a\leqslant \frac{m-np}{\sqrt{npq}}\leqslant b\right)-\frac{1}{\sqrt{2\pi}}\cdot\int_{n}^{b}e^{-\frac{x^{2}}{2}}\,\mathrm{d}\,x\xrightarrow[n\to\infty]{}0.$$

Примечание.

$$p_n(k_1 \leqslant k \leqslant k_2) = \Phi(x_2) - \Phi(x_1), \quad \frac{k_i - np}{\sqrt{npq}},$$
$$\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^x e^{-\frac{t^2}{2}} dt.$$

21 Формула Пуассона

Примечание. Взято не из лекций.

Теорема (Формула Пуассона).

$$p_n(k) \approx \frac{\lambda^k}{k!} e^{-\lambda}, \qquad \lambda = np < 10.$$

22 Определение вероятности в геометрической схеме

Примечание. Взято не из лекций.

Определение (Вероятность в геометрической схеме). Пусть μ – мера в \mathbb{R}^n (чаще всего мера Жордана). Ω – некоторое измеримое множество. Исход: точка в Ω (все исходы равновозможны), \mathcal{F} – σ -алгебра измеримых подмножеств Ω . $A \in \mathcal{F}$, то

$$P(A) = \frac{m(A)}{m(\Omega)}$$

называется вероятностью в геометрической схеме.

23 Случайная величина

Определение (Случайная величина). Пусть (Ω, \mathcal{F}, P) — вероятностное пространство. Функция $\xi:\Omega\to\mathbb{R}$ такая, что для любого $B\in$ борелевская σ -алгебры и \mathbb{R}

$$\xi^{-1}(B) \in \mathcal{F},$$

 ξ – измеримая функция. Тогда ξ – случайная величина.

24 Распределение случайной величины

Определение (Распределение случайной величины). (Ω, \mathcal{F}, P) – В.П., ξ – случайная величина, тогда распределением ξ называется P_{ξ} на \mathbb{R} .

25 Функция распределения случайной величины

Определение (Функция распределения случайной величины). (Ω, \mathcal{F}, P) – В.П., ξ – случайная величина,

$$P_{\xi}((-\infty;x)) = P(\xi^{-1}(-\infty;x)) = P(\xi(\omega) < x) = F_{\xi}(x),$$

 $F_{\xi}(x)$ – функция распределения ξ .

26 Абсолютно непрерывная мера

Примечание. Взято не из лекций.

Определение (Абсолютно непрерывная мера). Мера μ называется *абсолютно непрерывной* относительно другой меры v, если μ – абсолютно непрерывная функция относительно v.

27 Сингулярные меры

Примечание. Взято не из лекций.

Определение (Сингулярные меры). Две положительные меры μ и v определенные на измеримом пространстве (Ω, Σ) называются cunsyлярными, если $\exists A, B \in \Sigma$ (непересекающиеся и измеримые), объединение которых Ω такого, что $\mu=0$ во всех измеримых подмножествах B, в то время как v равно нулю во всех измеримых подмножествах A.

Обозначение. $\mu \perp v$.

28 Теорема Лебега о разложении

Примечание. Взято не из лекций.

Теорема. Любую меру Лебега можно представить в виде трех мер – дискретной, абсолютно непрерывной и сингулярной.

29 Дискретная случайная величина

Примечание. Взято не из лекций.

Определение. Случайная величина ξ , имеющая дискретное распределение, называется *дискретной*.

Распределение случайной величины ξ *дискретню*, если число значений ξ не более, чем счетно.

30 Абсолютно непрерывная случайная величина

Примечание. Взято не из лекций.

Определение. Случайная величина ξ , имеющая абсолютно непрерывное распределение, называется *абсолютно непрерывной*.

Распределение случайной величины ξ называется абсолютно непрерывным, если \exists неотрицательная функция $P_{\xi}(x)$ такая, что:

$$\forall x \quad F_{\xi}(x) = P(\xi < x) = \int_{-\infty}^{x} P_{\xi}(t) dt.$$

31 Плотность распределения

Примечание. С этого момента начинаю копировать с файла второй группы, так как устал лишний раз заглядывать в конспекты в ожидании найти хоть что-то (вероятно это имеется в конспектах, просто я не вижу).

Определение (Плотность распределения). Будем говорить, что функция $P(x) = P_{\xi}(x)$ называется *плотностью распределения* случайной величины ξ , если:

$$\forall x_1 < x_2 \quad P(x_1 < \xi < x_2) = \int_{x_1}^{x_2} P_{\xi}(x) \, \mathrm{d} x.$$

32 Биномиальное распределение, его среднее и дисперсия

Определение (Биномиальное распределение). *Биномиальное распределение* $B(n,p), \ Bin(n,p), \ \xi$ – случайная величина $(\xi \in B(n,p)), \ ecли:$

$$P(\xi = k) = C_n^k p^k (1 - p)^{n-k}, \quad k = \overline{0, n},$$

 ξ – число успехов в схеме Бернулли.

 \mathbf{C} реднее: np.

Дисперсия: D(B(n,p)) = np(1-p).

33 Геометрическое распределение, его среднее и дисперсия

Определение (Геометрическое распределение).

$$P(\xi = k) = p(1-p)^{k-1}, \quad k = \overline{1, n}.$$

ØØ

Среднее: $\frac{1-p}{p}$.

Дисперсия: $\frac{1-p}{p^2}$.

34 Гипергеометрическое распределение

Определение (Гипергеометрическое распределение).

$$P(\xi = m) = \frac{C_M^m C_{N-M}^{n-m}}{C_N^n}, \quad m = \overline{0, \min(M, n)}.$$

 $N, M, n \in \mathbb{N}: M \leqslant N, n \leqslant N.$

35 Распределение Пуассона, его среднее и дисперсия

Определение (Распределение Пуассона). Распределение Пуассона:

$$P(\lambda), \Pi(\lambda),$$

$$\xi \in P(\lambda) \iff P(\xi = k) = \frac{\lambda^k}{k!} e^{-\lambda}, \quad k = 0, 1, 2, \dots$$

Среднее: λ .

Дисперсия: λ .

36 Равномерное распределение на отрезке [a;b], его среднее и дисперсия

Определение (Равномерное распределение). Равномерное распределение $U_{[a;b]}.$

Если ξ — случайная величина равномерна на [a;b], то:

$$F_{\xi} = P(\xi < x) = \begin{cases} 0, & x \leqslant a \\ \frac{x-a}{b-a}, & a < x \leqslant b \\ 1, & x > b \end{cases}$$

Среднее: $\frac{a+b}{2}$.

Дисперсия: $\frac{(b-a)^2}{12}$.

37 Нормальное распределение, его среднее и дисперсия

Определение (Нормальное распределение). Нормальное распределение $\mathcal{N}(a,\sigma^2)$.

 ξ – нормальное распределение $\iff \xi \in \mathcal{N}(a, \sigma^2) \iff P(\xi \in B) = \frac{1}{\sigma\sqrt{2\pi}} \int_B e^{-\frac{(x-a)^2}{2\sigma^2}} \,\mathrm{d}\,x,\, \mathcal{N}(0,1)$ – стандартное нормальное распределение.

$$P(\xi \in B) = \frac{1}{\sqrt{2\pi}} \int_{B} e^{-\frac{x^2}{2}} dx,$$

$$F_{\xi} = \frac{1}{\sqrt{2\pi}}, \quad \int_{-\infty}^{x} e^{-\frac{t^2}{2}} dt = \Phi(x).$$

 \mathbf{C} реднее: a.

Дисперсия: σ^2 .

38 Распределение Коши, его среднее и дисперсия

Определение (Распределение Коши). Распределение Коши $K(a,\sigma),\ a\in\mathbb{R},\ \sigma>0.$

$$\sigma \in K(a,\sigma) \iff P(B) = \frac{1}{\pi\sigma} \int_B \frac{1}{1 + \left(\frac{x-a}{\sigma}\right)^2} \, \mathrm{d}\, x.$$

$$K=K(0,1),\ F_{\xi}=K(x),\quad \eta\Subset K(a,\sigma),\ F_{\eta}(x)=K\left(\frac{x-a}{\sigma}\right).$$

 \mathbf{C} реднее: a.

Дисперсия: Не существует.

39 Экспоненциальное распределение, его среднее и дисперсия

Определение (Экспоненциальное распределение). Exp(a), E(a).

$$\xi\underset{a\geqslant 0}{\Subset} \operatorname{Exp}(a), \text{ если } P(\xi\in B) = a \int_{B\cap [0;+\infty)} e^{-at} \operatorname{d} t,$$

$$\begin{cases} 0, & x \leq 0 \\ a \int_0^x e^{-at} dt = -e^{-at} \Big|_0^x = 1 - e^{ax}, & x > 0 \end{cases}$$

Среднее: a^{-1} .

Дисперсия: a^{-2} .

40 Случайный вектор

Определение (Случайный вектор). (Ω, \mathcal{F}, P) – вероятностное пространство, ξ_1, \dots, ξ_n – случайные величины. Функция

$$\xi(w) = (\xi_1(w), \dots, \xi_1(w)) : \Omega \to \mathbb{R}^n$$

называется случайным вектором (п-мерным случайным вектором).

41 Функция распределения случайного вектора

Определение (Распределение случайного вектора). Пусть ξ – случайный вектор. Функция

$$P_{\xi}(B) = P(\xi^{-1}(B))$$

называется распределением ξ ,

$$F_{\xi}(x_1, \dots, x_n) = P(\xi_1 < x_1, \dots, \xi_n < x_n)$$

называется функцией распределения ξ .

42 Плотность распределения случайного вектора

Определение (Плотность распределения случайного вектора). Плотностью распределения случайного вектора ξ называется

$$P(\xi \in B) = \int \dots \int_{B} P_{\xi}(x_1, \dots, x_n) dx_1 \dots dx_n.$$

43 Независимые классы событий

Определение (Независимые классы событий). Пусть $\{A\}$ и $\{B\}$ – два класса событий в вероятностном пространстве (Ω, \mathcal{F}, P) . Эти классы называются *независимыми*, если для любых событий $a \in A, b \in B$ выполняется:

$$P(A \cap B) = P(A) \cdot P(B).$$

Другими словами, каждое событие из класса A независимо от каждого события из класса B.

44 Теорема о независимости сигма-алебр

Теорема. Пусть (Ω, \mathcal{F}, P) – вероятностное пространство, и пусть G_1, G_2 – две под- σ -алгебры σ -алгебры F. Эти σ -алгебры называются независимыми, если для любых событий $A \in G_1$ и $B \in G_2$ выполняется:

$$P(A \cap B) = P(A) \cdot P(B).$$

45 Независимые случайные величины

Определение (Независимые случайные величины). Случайные величины ξ, η называются *независимыми*, если $\forall \alpha, \beta \in \mathbb{R}$ события $[\xi \leqslant \alpha], [\eta \leqslant \beta]$ независимы,

$$P\big((\xi\leqslant\alpha)\cap(\eta\leqslant\beta)\big)=P(\xi\leqslant\alpha)\cdot P(\eta\leqslant\beta).$$

46 Критерий независимости случайных величин в терминах функций распределения

Теорема. Пусть X и Y – две случайные величины, заданные на одном и том же вероятностном пространстве (Ω, \mathcal{F}, P) . Случайные величины X и Y называются независимыми, если их совместная функция распределения $F_{X,Y}(x,y)$ может быть представлена в виде произведения их маргинальных функций распределения $F_X(x)$ и $F_Y(y)$, то есть:

$$F_{X,Y}(x,y) = F_X(x) \cdot F_Y(y) \qquad \forall x, y \in \mathbb{R}.$$

47 Критерий независимости дискретных случайных величин

Теорема. Пусть X, Y — дискретные случайные величины, заданные на одном и том же вероятностном пространстве (Ω, \mathcal{F}, P) . Случайные величины X, Y называются независимыми, если для любых значений x, y из их области определения совместная вероятность может быть представлена в виде произведения их маргинальных вероятностей, то есть:

$$P(X = x, Y = y) = P(X = x) \cdot P(Y = y).$$

48 Критерий независимости случайных величин в терминах плотностей распределения

Теорема. Пусть X, Y – две абсолютно непрерывные случайные величины, заданные на одном и том же вероятностном пространстве (Ω, \mathcal{F}, P) . Пусть $P_{X,Y}(x,y)$ – совместная плотность распределения случайных величин X,Y, а $P_X(x)$, $P_Y(y)$ – их маргинальные плотности распределения. Случайные величины X,Y называются независимыми, если их совместная плотность распределения может быть представлена в виде произведения их маргинальных плотностей распределения, то есть:

$$P_{X,Y}(x,y) = P_X(x) \cdot P_Y(y) \quad \forall x, y \in \mathbb{R}.$$

49 Формула для математического ожидания дискретной случайной величины

$$M(X) = \sum_{i=1}^{n} x_i p_i.$$

50 Формула для математического ожидания абсолютно непрерывной случайной величины

$$M(X) = \int_{-\infty}^{+\infty} x f(x) \, \mathrm{d} \, x.$$

51 Некоррелированные случайные величины

Определение (Некоррелированные случайные величины). Две случайные величины X,Y называются *некоррелированными*, если их ковариация равна нулю.

52 Дисперсия

Определение (Дисперсия). *Дисперсия* – это мера разброса значений случайной величины относительно ее математического ожидания,

$$D(\xi) = \mu \Big(\big(\xi - \mu(x\xi) \big)^2 \Big).$$

Замечание.

$$D(\xi) = \mu((\xi - \mu(\xi))^2) = \mu(\xi^2) - (\mu(\xi))^2.$$

53 Стандартное отклонение

Определение (Стандартное отклонение). C тандартное o тклонение (σ) — это мера разброса значений случайной величины X относительно ее математического ожидания, аналогичная дисперсии, но выраженная в тех же единицах, что и сама случайная величина,

$$\sigma = \sqrt{\operatorname{Var}(X)}.$$

54 Формула для дисперсии дискретной случайной величины

$$Var(X) = \mu(X^2) - (\mu(X))^2.$$

55 Формула для дисперсии абсолютно непрерывной случайной величины

Если возможные значения случайной величины X лежат на [a;b], то

$$D(x) = \int_a^b (x - M(x))^2 f(x) dx.$$

Если же возможные значения случайной величины X заполняют всю числовую ось, то

$$D(X) = \int_{-\infty}^{+\infty} (x - M(x))^2 f(x) dx.$$

$$M(X) = \int_{-\infty}^{+\infty} x f(x) \, \mathrm{d} x,$$

где f(x) – функция распределения случайной величины.

56 Начальный момент

Определение (Начальный момент). Если дана случайная величина X, определенная на некотором В.П., то k-м начальным моментом случайной величины X, где $k \in \mathbb{N}$, называется величина

$$\nu_k = M(X^k).$$

57 Центральный момент

Определение (Центральный момент). k-м μ -м μ -

$$\mu_k = M(|X - M(X)|^k).$$

58 Неравенство Коши-Буняковского

Пусть X,Y — случайные величины на одном и том же вероятностном пространстве. Тогда

$$\left(M(XY)\right)^2\leqslant M(X^2)\cdot M(Y^2)\quad (M$$
 – мат. ожидание).

59 Неравенство Гёльдера

Пусть $\alpha, \beta \geqslant 0, \ \frac{1}{\alpha} + \frac{1}{\beta} = 1,$

$$\mu(|\xi_1 \cdot \xi_2|) \leqslant (\mu |\xi_1^{\alpha}|)^{\frac{1}{\alpha}} \cdot (\mu |\xi_2^{\beta}|)^{\frac{1}{\beta}}.$$

60 Неравенство Иенсена

Если есть математическое ожидание $\mu\xi$ и g(x) – выпуклая вниз измеримая функция, то

$$g(\mu\xi) \leqslant \mu(g(\xi)).$$

61 Неравенство Чебышёва

$$P\big(\left|X-M(X)\right|>a\big)<\frac{D(x)}{a^2},$$

где X — любая случайная величина, у которой существует мат. ожидание и дисперсия $D(x),\ 0\leqslant a\leqslant 1.$

62 Классическое неравенство Чебышёва

Если ξ – случайная величина, имеющая дисперсию $D(\xi)$, то:

$$P(|\xi - \mu \xi| \geqslant \varepsilon) \leqslant \frac{D(\xi)}{\varepsilon^2}.$$

63 Нормированная случайная величина

Определение (Нормированная случайная величина). Случайная величина называется *нормированной*, если ее дисперсия равна 1,

$$\widetilde{\xi} = \frac{\xi - \mu \xi}{\sqrt{D(\xi)}}.$$

64 Коэффициент корреляции

Определение (Коэффициент корреляции). Пусть ξ, η – случайные величины. *Коэффициентом корреляции* ξ, η называется число:

$$\rho(\xi,\eta) = \mu(\widetilde{\xi} \cdot \widetilde{\eta}) = \frac{\mu(\xi\eta) - \mu\xi \cdot \mu\eta}{\sqrt{D(\xi) \cdot D(\eta)}}.$$

65 Ковариация

$$cov(\xi_1, \xi_2) = \mu((\xi_1 - \mu \xi_1)(\xi_2 - \mu \xi_2)) = \mu(\xi_1 \xi_2) - \mu \xi_1 \cdot \mu \xi_2.$$

66 Условное математическое ожидание относительно события положительной вероятности

Определение (Условное мат. ожидание относительно события положительной вероятности). Условным математическим ожиданием случайной величины ξ при условии, что $\eta=y_j$, называется число:

$$\mu(\xi \mid \eta = y_j) = \sum_{i=1}^{\infty} x_i \frac{p_i j}{p \cdot j}.$$