Klee-Minty Polytope Shows Exponential Time Complexity of Simplex Method

Harvey J. Greenberg
University of Colorado at Denver
hgreenbe@carbon.cudenver.edu
http://www.cudenver.edu/~hgreenbe/
(url changed December 1, 1998)

May 8, 1997

This is an example due to Klee and Minty [1] to show that the elementary simplex method does not have polynomial time complexity (worst case).

The LP has n variables, n constraints, and 2^n extreme points. The elementary simplex method, starting at x = 0, goes through each of the extreme points before reaching the optimum solution at $(0, 0, \ldots, 0, 5^n)$.

Pivot Sequence

Here is the pivot sequence for n=3, which goes through all 8 extreme points, starting at the origin. Let s be the slack variables.

Initial Tableau Nonbasic RHS Basic x_2 x_3 s_1 5 1 25 s_2 1 125 s_3 2 1 0 -z

Tableau 1

	No	nba		
Basic	s_1	x_2	x_3	RHS
x_1	1			5
s_2	-4	1*		5
s_3	-8	4	1	85
-z	-4	2	1	-20
		1		

Tableau 2

	No			
Basic	s_1	s_2	x_3	RHS
x_1	1*			5
x_2	-4	1		5
s_3	8	-4	1	65
-z	4	-2	1	-30

Tableau 3

	No	onbas		
Basic	x_1	s_2	x_3	RHS
s_1	1			5
x_2	4	1		25
s_3	-8	-4	1*	25
-z	-4	-2	1	-50
			1	

Tableau 4

	N			
Basic	x_1	s_2	s_3	RHS
s_1	1*			5
x_2	4	1		25
x_3	- 8	-4	1	25
-z	4	2	-1	-75

Tableau 5

	No					
Basic	s_1	s_2	s_3	RHS		
x_1	1			5		
x_2	-4	1*		5		
x_3	8	-4	1	65		
-z	-4	2	-1	-95		

Tableau 6

	N			
Basic	s_1	x_2	s_3	RHS
x_1	1*			5
s_2	-4	1		5
x_3	-8	4	1	85
-z	4	-2	-1	-105

Tableau 7

	N			
Basic	x_1	s_2	x_3	RHS
s_1	1*			5
s_2	4	1		25
x_3	8	4	1	125
-z	-4	-2	-1	-125

References

[1] V. Klee and G.J. Minty. How Good is the Simplex Algorithm? In O. Shisha, editor, Inequalities, III, pages 159–175. Academic Press, New York, NY, 1972.