Nonparametric Estimation

Jacob M. Montgomery

2017

Overview

▶ So far we have talked about a number of ways to make estimates about population parameters.

Overview

- So far we have talked about a number of ways to make estimates about population parameters.
- ▶ All of these methods are based on a "model" of the DGP.

Overview

- So far we have talked about a number of ways to make estimates about population parameters.
- All of these methods are based on a "model" of the DGP.
- ► Today, we will move away from this approach and instead try and learn from our data without assuming much of anything.
 - 1. Find some pointwise estimate
 - 2. Calculate it for the whole sample.
 - 3. Do something to the sample and re-calculate.
 - 4. Repeat and summarize.

How to think about all of this

- ▶ We generally have a lot of tools for generating point estimates.
- For example, we can estiamte μ for any population without making *any* assumptions about the DGP at all.

How to think about all of this

- ▶ We generally have a lot of tools for generating point estimates.
- For example, we can estiamte μ for any population without making *any* assumptions about the DGP at all.
- ▶ Where we get hung up is in calculating the standard errors.
 - Thinking broadly, most possible estimands do not have known asymptotic standard errors.
 - ► The best we can do in other circumstances is use the delta method (or higher-order Taylor approximations).

How to think about all of this

- ▶ We generally have a lot of tools for generating point estimates.
- ▶ For example, we can estiamte μ for any population without making *any* assumptions about the DGP at all.
- ▶ Where we get hung up is in calculating the standard errors.
 - Thinking broadly, most possible estimands do not have known asymptotic standard errors.
 - ► The best we can do in other circumstances is use the delta method (or higher-order Taylor approximations).
- ► (You will see a lot of estimands that can be "non-parametrically" identified. Always think about where their error bars came from.)
- ▶ But what we really need are more general ways to estimate standard errors.

Example: The Jackknife

▶ We have $X_1, ..., X_n$ that are iid samples from some unknown function or function space

$$X_i \sim F$$

• We calculate some statistic based on the data $\hat{\theta} = t(\mathbf{x})$.

Example: The Jackknife

▶ We have $X_1, ..., X_n$ that are iid samples from some unknown function or function space

$$X_i \sim F$$

- ▶ We calculate some statistic based on the data $\hat{\theta} = t(\mathbf{x})$. This is our estimate.
- ▶ Let $\mathbf{x}_{(i)}$ be the sample with the i^{th} observation removed.

$$x_{(i)} = (x_1, x_2, \dots, x_{i-1}, x_{i+1}, \dots, x_n)'$$

 $\blacktriangleright \ \mathsf{Let} \ \hat{\theta}_{(i)} = t(\mathbf{x}_{(i)})$

▶ Then the jackknife estimate of the standard error of $\hat{\theta}$ is

Then the Jackkine estimate of the standard error of
$$\theta$$
 i

$$\hat{se}_{jack} = \left[\frac{n-1}{n} \sum_{i=1}^{n} \left(\hat{\theta}_{(i)} - \hat{\theta}_{(\cdot)}\right)^2\right]^{1/2}$$

• Where $\theta_{(\cdot)} = \sum_{i=1}^{n} \theta_{(i)}/n$

Discussion: Jackknife and the sample mean

▶ When $\bar{x} = \hat{\theta}$, what is the jackknife standard error?

Discussion: Jackknife and the sample mean

- ▶ When $\bar{x} = \hat{\theta}$, what is the jackknife standard error?
- lacksquare $\hat{ heta}_{(i)}=(nar{x}-x_i)/(n-1)$ and $\hat{ heta}_{(\cdot)}=ar{x}$
- $\hat{\theta}_{(i)} \hat{\theta}_{(\cdot)} = (\bar{x} x_i)/(n-1)$

Discussion: Jackknife and the sample mean

- When $\bar{x} = \hat{\theta}$, what is the jackknife standard error?
- $\hat{\theta}_{(i)} = (n\bar{x} x_i)/(n-1)$ and $\hat{\theta}_{(\cdot)} = \bar{x}$
- $\hat{\theta}_{(i)} \hat{\theta}_{(i)} = (\bar{x} x_i)/(n-1)$ $ightharpoonup \hat{se}_{jack} = \frac{s}{\sqrt{n}}$

$$\frac{\sum_{i}^{n}(x_{i}-\bar{x})(y_{i}-\bar{y})}{\sqrt{\sum_{i}^{n}(x_{i}-\bar{x})^{2}\sum_{i}^{n}(y_{i}-\bar{y})^{2}}}$$

Imagine we have two iid random samples of the same size, X_1, \ldots, X_n and Y_1, \ldots, Y_n . The correlation between these two variables is:

$$\frac{\sum_{i}^{n}(x_{i}-\bar{x})(y_{i}-\bar{y})}{\sqrt{\sum_{i}^{n}(x_{i}-\bar{x})^{2}\sum_{i}^{n}(y_{i}-\bar{y})^{2}}}$$

We often talk about the "correlation" between two variables, but the asymptotic standard errors provided in most textbooks (and the defaults in R) assume that both are normal.

$$\frac{\sum_{i}^{n}(x_{i}-\bar{x})(y_{i}-\bar{y})}{\sqrt{\sum_{i}^{n}(x_{i}-\bar{x})^{2}\sum_{i}^{n}(y_{i}-\bar{y})^{2}}}$$

- ▶ We often talk about the "correlation" between two variables, but the asymptotic standard errors provided in most textbooks (and the defaults in R) assume that both are normal.
- ▶ What if we want to be more agnostic?

$$\frac{\sum_{i}^{n}(x_{i}-\bar{x})(y_{i}-\bar{y})}{\sqrt{\sum_{i}^{n}(x_{i}-\bar{x})^{2}\sum_{i}^{n}(y_{i}-\bar{y})^{2}}}$$

- ▶ We often talk about the "correlation" between two variables, but the asymptotic standard errors provided in most textbooks (and the defaults in R) assume that both are normal.
- ▶ What if we want to be more agnostic? Could approximate using the delta method? Gets pretty nasty.

$$\frac{\sum_{i}^{n}(x_{i}-\bar{x})(y_{i}-\bar{y})}{\sqrt{\sum_{i}^{n}(x_{i}-\bar{x})^{2}\sum_{i}^{n}(y_{i}-\bar{y})^{2}}}$$

- ▶ We often talk about the "correlation" between two variables, but the asymptotic standard errors provided in most textbooks (and the defaults in R) assume that both are normal.
- ► What if we want to be more agnostic? Could approximate using the delta method? Gets pretty nasty. Could approximate using the jackknife

$$\frac{\sum_{i}^{n}(x_{i}-\bar{x})(y_{i}-\bar{y})}{\sqrt{\sum_{i}^{n}(x_{i}-\bar{x})^{2}\sum_{i}^{n}(y_{i}-\bar{y})^{2}}}$$

For a sample of

```
x=c(2, 4, 5, 3, 8, 10)
y=c(-2, 1, -1, 2, 5, 5)
```

- Plot the two variables
- Estimate the correlation (use the cor() function)
- Find the jackkknife standard error

Jackknife discussion

▶ This is a truly non-parametric method.

Jackknife discussion

- ▶ This is a truly non-parametric method.
- ▶ There is a hidden assumption here that $s(\mathbf{x})$ will not deviate wildly when sample size is n-1. Can be weird for things like medians (defined differently when sample size is odd or even).

Jackknife discussion

- ▶ This is a truly non-parametric method.
- ▶ There is a hidden assumption here that $s(\mathbf{x})$ will not deviate wildly when sample size is n-1. Can be weird for things like medians (defined differently when sample size is odd or even).
- ► Estimates of standard errors can be upwardly biased.
- Behaves poorly where local derivatives are eratic.

The bootstrap

▶ We are trying to understand how some statistic $\bar{\theta}$ varies around our estimate.

The bootstrap

- ▶ We are trying to understand how some statistic $\bar{\theta}$ varies around our estimate.
- ► From a frequentist perpsective, we would like to re-sample from our distribution F and then re-calculate over and over again. But how?

The bootstrap

- ▶ We are trying to understand how some statistic $\bar{\theta}$ varies around our estimate.
- From a frequentist perpsective, we would like to re-sample from our distrbution $\mathcal F$ and then re-calculate over and over again. But how?
- \blacktriangleright What if we used the empirical distribution we have to estimate \mathcal{F} itself and then sampled from that distribution?

Estimating an uknowing distribution

The **empirical distribution function** $\hat{\mathcal{F}}$ is a CDF that puts a mass of $\frac{1}{n}$ at each data point X_i .

$$\hat{\mathcal{F}}(x) = \frac{\sum_{i=1}^{n} I(X_i \le x)}{n}$$

where $I(\cdot)$ is an indicator function.

Class exercise: Estimate ${\mathcal F}$ for the following dataset

x=c(2, 4, 5, 3, 8, 10, -2, 1, -1, 2, 5, 5)

Discussion of the empirical estimation of an unknown funciton

1.

$$E(\hat{\mathcal{F}}(x)) = F(x)$$

Discussion of the empirical estimation of an unknown funciton

1.

$$E(\hat{\mathcal{F}}(x)) = F(x)$$

2.

$$Var(\hat{\mathcal{F}}(x)) = \frac{F(x)(1 - F(x))}{n}$$

Discussion of the empirical estimation of an unknown funciton

1.

$$E(\hat{\mathcal{F}}(x)) = F(x)$$

2.

$$Var(\hat{\mathcal{F}}(x)) = \frac{F(x)(1 - F(x))}{n}$$

3.

$$MSE = \frac{F(x)(1 - F(x))}{n} \to 0,$$

4. $\hat{\mathcal{F}}(x)$ converges in probability to F(X).

Moving from the estimate of the distribution to the bootstrapped standard error

- Now that we have an estimate of \mathcal{F} , we want to imagine "sampling" repeatedly from it.
- ▶ In some sense, this is the same "plug in" estimation method we have used before.

Moving from the estimate of the distribution to the bootstrapped standard error

- Now that we have an estimate of \mathcal{F} , we want to imagine "sampling" repeatedly from it.
- ▶ In some sense, this is the same "plug in" estimation method we have used before.
- lacktriangle The idea is that we sample from $\hat{\mathcal{F}}$

Moving from the estimate of the distribution to the bootstrapped standard error

- Now that we have an estimate of \mathcal{F} , we want to imagine "sampling" repeatedly from it.
- ▶ In some sense, this is the same "plug in" estimation method we have used before.
- lacktriangle The idea is that we sample from $\hat{\mathcal{F}}$
- We can then calculate our estimate over and over again and via this method get an approximation of the frequentist standard error without making any parametric assumptions.

How to calculate a bootstrapped standard error

▶ We have $X_1, ..., X_n$ that are iid samples from some unknown function or function space

$$X_i \sim F$$

.

How to calculate a bootstrapped standard error

▶ We have $X_1, ..., X_n$ that are iid samples from some unknown function or function space

$$X_i \sim F$$

• We calculate some statistic based on the data $\hat{\theta} = t(\mathbf{x})$.

▶ We have $X_1, ..., X_n$ that are iid samples from some unknown function or function space

$$X_i \sim F$$

• We calculate some statistic based on the data $\hat{\theta} = t(\mathbf{x})$. This is our estimate.

$$X_i \sim F$$

- ▶ We calculate some statistic based on the data $\hat{\theta} = t(\mathbf{x})$. This is our estimate.
- Now we draw a bootstrap sample $\mathbf{x}^* = (x_1^*, x_2^*, \dots, x_n^*)$ where each x_i^* is drawn randomly with equal probability and with replacement.

$$X_i \sim F$$

- ▶ We calculate some statistic based on the data $\hat{\theta} = t(\mathbf{x})$. This is our estimate.
- Now we draw a bootstrap sample $\mathbf{x}^* = (x_1^*, x_2^*, \dots, x_n^*)$ where each x_i^* is drawn randomly with equal probability and with replacement. Why?

$$X_i \sim F$$

- ▶ We calculate some statistic based on the data $\hat{\theta} = t(\mathbf{x})$. This is our estimate.
- Now we draw a bootstrap sample $\mathbf{x}^* = (x_1^*, x_2^*, \dots, x_n^*)$ where each x_i^* is drawn randomly with equal probability and with replacement. Why?
- ► Calculate $\hat{\theta}^* = t(\mathbf{x}^*)$

$$X_i \sim F$$

- ▶ We calculate some statistic based on the data $\hat{\theta} = t(\mathbf{x})$. This is our estimate.
- Now we draw a *bootstrap sample* $\mathbf{x}^* = (x_1^*, x_2^*, \dots, x_n^*)$ where *each* x_i^* is drawn randomly with equal probability and **with replacement**. Why?
- ightharpoonup Calculate $\hat{\theta}^* = t(\mathbf{x}^*)$
- Repeat

► Let *B* indicate the total number of bootstrap samples and *b* index each such that:

$$\hat{\theta}^{*(b)} = t(\mathbf{x}^{*(b)})$$

▶ Let *B* indicate the total number of bootstrap samples and *b* index each such that:

$$\hat{\theta}^{*(b)} = t(\mathbf{x}^{*(b)})$$

► For some large number B (B=500 will do for calculating standard errors)

$$\hat{se}_{boot} = \left[\frac{\sum_{b=1}^{B} (\hat{\theta}^{*(b)} - \hat{\theta}^{*\cdot})}{B-1} \right]^{1/2},$$

Where

$$\hat{\theta}^{*\cdot} = \frac{\sum_{1}^{B} \hat{\theta}^{*(b)}}{B}$$

Example: Correlation coefficient

$$\frac{\sum_{i}^{n}(x_{i}-\bar{x})(y_{i}-\bar{y})}{\sqrt{\sum_{i}^{n}(x_{i}-\bar{x})^{2}\sum_{i}^{n}(y_{i}-\bar{y})^{2}}}$$

► For a sample of

```
x=c(2, 4, 5, 3, 8, 10)
y=c(-2, 1, -1, 2, 5, 5)
```

- Estimate the correlation (use the cor() function)
- Find the non-parametric bootstrapped standard error

Discussion

- ▶ This is a completely non-parametric approach
- More dependable (but more computationally intensive) than the jackknife
- We could just as easily have calculated the absolute bias, the MSE or anything else.

Class exercise

► For a sample of

```
x=c(2, 4, 5, 3, 8, 10, -2, 1, -1, 2, 5, 5)
```

- 1. Find the bootstrapp/jackknife SE for the median.
- 2. Estimate the absolute error $E(|\hat{\theta} \theta|)$ for the median and the mean using the bootstrap.

Problems with re-sampling methods

▶ One of the assumptions we did *not* get rid of was the iid assumption.

Problems with re-sampling methods

- ▶ One of the assumptions we did *not* get rid of was the iid assumption.
- ▶ It is important realize that *everything* we have done in this session rests on the assumption that we can collect truly independent draws.

Problems with re-sampling methods

- ➤ One of the assumptions we did not get rid of was the iid assumption.
- ▶ It is important realize that *everything* we have done in this session rests on the assumption that we can collect truly independent draws.
- ▶ In many (most?) cases, our data do not meet this assumption.
- ▶ In these cases, the bootstrap must be used carefully or not at all.

▶ Suppose that $\mathbf{x} = (x_1, x_2, \dots, x_n)$ instead of being iid is a a time series dataset.

- ▶ Suppose that $\mathbf{x} = (x_1, x_2, \dots, x_n)$ instead of being iid is a a time series dataset.
- ▶ We can create a set of "blocks" that can be re-sampled

$$\{(x_1, x_2, x_3), (x_2, x_3, x_4), \dots (x_{n-2}, x_{n-1}, x_n)\}$$

The length of the block must be chosen so that the correlations of the items at the beginning of the block and the end are small.

- ▶ Suppose that $\mathbf{x} = (x_1, x_2, \dots, x_n)$ instead of being iid is a a time series dataset.
- ▶ We can create a set of "blocks" that can be re-sampled

$$\{(x_1, x_2, x_3), (x_2, x_3, x_4), \dots (x_{n-2}, x_{n-1}, x_n)\}$$

- The length of the block must be chosen so that the correlations of the items at the beginning of the block and the end are small.
- ▶ We can then construct a bootstrap sample by sampling from these blocks rather than from the "raw" sample.

- Suppose that $\mathbf{x} = (x_1, x_2, \dots, x_n)$ instead of being iid is a a time series dataset.
- ▶ We can create a set of "blocks" that can be re-sampled

$$\{(x_1, x_2, x_3), (x_2, x_3, x_4), \dots (x_{n-2}, x_{n-1}, x_n)\}$$

- ► The length of the block must be chosen so that the correlations of the items at the beginning of the block and the end are small.
- ▶ We can then construct a bootstrap sample by sampling from these blocks rather than from the "raw" sample.
- ► An even more complex scheme must be developed for time-series cross-sectional datsets, and insufficient work has been done in this area to recommend a "clean" solution.

Additional bootstrap schemes

- Bayesian bootstraps
- "Robust" estimation for quantities such as the trimmed mean to reduce the effect of out outliers
- ▶ See Efron and Hastie Chapter 10 for additional details

► Lowess draws a line through a scatterplot using kernal smoothing over local regions of the covariate space.

- ► Lowess draws a line through a scatterplot using kernal smoothing over local regions of the covariate space.
- For each possible value of $x = x_0$, we predict according to the formula:

$$\hat{f}(x_0) = \sum_{i=1}^n y_i K_{\gamma}(x_0, x_i)$$

- ► Lowess draws a line through a scatterplot using kernal smoothing over local regions of the covariate space.
- ▶ For each possible value of $x = x_0$, we predict according to the formula:

$$\hat{f}(x_0) = \sum_{i=1}^n y_i K_{\gamma}(x_0, x_i)$$

- In words this mean that we estimate the outcome to be similar to outcomes that are "close to" the observation in terms of the "Kernal" $K_{\gamma}(x_0, x_i)$
- \blacktriangleright The γ subscrtipt indicates that we ignore some subset of observations that are too far away.

- Lowess draws a line through a scatterplot using kernal smoothing over local regions of the covariate space.
- ▶ For each possible value of $x = x_0$, we predict according to the formula:

$$\hat{f}(x_0) = \sum_{i=1}^n y_i K_{\gamma}(x_0, x_i)$$

- In words this mean that we estimate the outcome to be similar to outcomes that are "close to" the observation in terms of the "Kernal" $K_{\gamma}(x_0, x_i)$
- \blacktriangleright The γ subscrtipt indicates that we ignore some subset of observations that are too far away.
- ▶ The tricubic kernal used by default in R is:

$$K_s(x_0, x_i) = \begin{cases} (1 - u_i^3)^3 & \text{if } u_i \leq 1 \\ 0 & \text{otherwise} \end{cases}$$

```
oos<-read.csv(file =
url("https://jmontgomery.github.io/ProblemSets/incumbents.csv"))
myFit<-lowess(oos$voteshare~oos$presvote, delta=.2 )
plot(oos$presvote, oos$voteshare, col=rgb(1,0,0, alpha=.1))
points(myFit, type="l")</pre>
```


Class exercise

- 1. Use the bootstrap method (assuming iid) to estimate the 95% CL for this curve.
- 2. Add the CI to the plot.
- 3. Re-do this for several different values of delta (small and big).
- 4. What is driving this result?