# Part 1

T1.1

#### Relation A:

Superkeys: - set of keys

{EmpID}, {SSN}, {Email}, {Phone}, {EmpID, Name}, {SSN, Department}

Candidate keys: - unique keys {EmpID}, {SSN}, {Email}, {Phone}

Primary key: - the main I chose

For p.k I chose {EmpID}, because it is an artificial key which doesn't get implemented by humans, unchangeable, short and unique.

As *Phone Number* is identified as *Candidate Key* - then two people <u>can not</u> have the same phone number in database

## **Relation B:**

{StudentID, CourseCode, Section, Semester, Year} - I chose as the minimum attributes. Because each attribute describes smth. unique and related for a student

StudentID identifies the student unique feature

CourseCode identifies the course the student is taking

**Section** distinguishes different sections of the same course

Semester needed because the same course can be repeated in different semesters

Year shows academic years

#### T 1.2

Student.AdvisorID = <u>Professor.Prof.ID</u> (every stud has prof as an advisor)

Student.Major = Department.DeptCode / DeptName

Professor.Department = Department.DeptCode (the same)

Course.DepartmentCode= Department.DeptCode (the same)

Department.ChairID = Professor.ProfID

Enrollment.StudentID = Student.StudentID

Enrollment.CourseID = Course.CourseID

#### Part 4

T 4.1

- StudentID -> StudentName , StudentMajor. ProjectID -> ProjectTitle,ProjectType. SupervisorID -> SupervisorName,SupervisorDept, StudentID -> Role. ProjectID -> Start/EndDate
- 2. **Update** problem: If a student changes their major, it must be updated in multiple rows. Forgetting to update one row leads to inconsistencies.

**Delete** problem: If the last student working on a project is removed, the project information (ProjectTitle, ProjectType) is lost, If the last project under a supervisor is removed, the supervisor's information is also lost.

For 1NF: all attributes must be **unique** (no repeating valued attributes). In the original StudentProject table, all attributes such as StudentName, ProjectTitle, and

## SupervisorName are already unique.

| StudentID | StudentName | StudentMajor | ProjectID | ProjectTitle | ProjectType | SupervisorID | SupervisorName | SupervisorDept | Role      | HoursWorked | StartDate  | EndDate    |
|-----------|-------------|--------------|-----------|--------------|-------------|--------------|----------------|----------------|-----------|-------------|------------|------------|
| 1         | Anatoliy    | CS           | 101       | Al System    | Research    | 1            | Dr. Smith      | CS Dept        | Developer | 20          | 2025-02-01 | 2025-08-01 |
| 1         | Anatoliy    | CS           | 102       | Database     | Lab         | 2            | Dr. Brown      | IT Dept        | Tester    | 15          | 2025-02-02 | 2025-08-02 |
| 2         | Bob         | ІТ           | 102       | Database     | Lab         | 2            | Dr. Brown      | IT Dept        | Developer | 25          | 2025-02-02 | 2025-06-02 |

here is an example of nit 1NF table (some values repeat many times)

#### For 2NF:

the table must be in 1NF and there should be **no partial dependency** — meaning that non-key attributes should depend on the **whole primary key**, not just part of it. In our case, the composite primary key is (StudentID, ProjectID)

As a decision we divide the total table for parts (Student, Project, Supervisor)

| StudentID                | StudentName | lame         |           |           | StudentMajor   |             |  |  |
|--------------------------|-------------|--------------|-----------|-----------|----------------|-------------|--|--|
| 1                        |             |              |           | CS        |                |             |  |  |
| 2                        | п           |              |           | п         |                |             |  |  |
|                          |             |              |           |           |                |             |  |  |
| ProjectTitle             |             | ProjectType  |           |           | SupervisorName |             |  |  |
| Al System                | Research    |              |           | Dr. Smith |                |             |  |  |
| Database                 |             | Lab          |           |           | Dr. Brown      |             |  |  |
|                          |             |              |           |           |                |             |  |  |
| StudentName ProjectTitle |             |              | Role      |           |                | HoursWorked |  |  |
| atoliy Al System         |             |              | Developer |           | 20             |             |  |  |
| natoliy Database         |             |              | Tester    |           |                | 15          |  |  |
| b Database               |             | Se Developer |           | Developer |                | 25          |  |  |

## For 3NF:

Remove transitive dependencies = SupervisorDept is stored in Supervisor, not mixed into other tables.

| StudentName | StudentMajor | ProjectTitle | ProjectType | SupervisorName | SupervisorDept | Role      | HoursWorked | StartDate  | EndDate    |
|-------------|--------------|--------------|-------------|----------------|----------------|-----------|-------------|------------|------------|
| Anatoliy    | CS           | Al System    | Research    | Dr. Smith      | CS Dept        | Developer | 20          | 2025-02-01 | 2025-06-01 |
| Anatoliy    | cs           | Database     | Lab         | Dr. Brown      | IT Dept        | Tester    | 15          | 2025-02-02 | 2025-06-02 |
| Bob         | П            | Database     | Lab         | Dr. Brown      | IT Dept        | Developer | 25          | 2025-02-02 | 2025-06-02 |

#### T 4.2

1)Primary Key: (StudentID, CourseID, TimeSlot, Room)

- 2) StudentID  $\rightarrow$  StudentMajor
- CourseID  $\rightarrow$  CourseName
- InstructorID → InstructorName
- (TimeSlot, Room) → Building
  (CourseID, TimeSlot, Room) → InstructorID
- (StudentID, CourseID, TimeSlot, Room) → all other attributes

3)A relation is in BCNF if for every dependency  $X \rightarrow Y$ , X is a superkey.

StudentID != StudentMajor (StudentID is not a superkey)

CourseID != CourseName (CourseID is not a superkey)

InstructorID != InstructorName (InstructorID is not a superkey)

(TimeSlot, Room) != Building (not a superkey)

(CourseID, TimeSlot, Room) != InstructorID (not a superkey)

- 4) We decompose the table into multiple relations that satisfy BCNF:
  - 1. Student(StudentID, StudentMajor)
  - 2. Course(CourseID, CourseName)
  - 3. Instructor(InstructorID, InstructorName)
  - 4. Room(TimeSlot, Room, Building)
  - 5. CourseSection(CourseID, TimeSlot, Room, InstructorID)
  - 6. Enrollment(StudentID, CourseID, TimeSlot, Room
- 5) Loss of information: No information is lost during the decomposition, because all attributes and dependencies are preserved.

# **ER DIAGRAMS**

# T2.1



T2.2



# T5.1

