Marcela Rodrigues Garcia

Bryan Munekata

NUSP: 9875545

NUSP: 9911444

Rodrigo Rossi dos Santos

NUSP: 9844828

Fabio Yukio Massuda

NUSP: 9877996

RELATÓRIO DE COMPORTAMENTO - EP 1 SISTEMAS OPERACIONAIS

O código possui duas estruturas de ArrayList, uma de "processosAtivos" e outra de "processosBloqueados". Essas estruturas são do tipo Processo, classe que possui como atributos um Integer "prioridade", uma String "nome", um ArrayList "instruções", um Integer "index", um Integer "creditos" e outros. Dentre os métodos criados nessa classe, o mais importante é o "compareTo". Nele é comparado o número de créditos de cada processo, se esse número for igual, então compara-se o index. Voltando à classe Main, é feito um for em que i varia de 0 até o número de quantum. Dentro do for, um switch-case determina se o comando foi: COMUM, E/S ou SAÍDA. Em cada um desses casos, o tratamento do processo é feito de forma diferente.

Os arquivos de log gerados demonstram que a medida que o quantum distribuído pelo escalonador aumenta, a média de instruções aumenta gradativamente, enquanto a média de trocas, entre o intervalo de quantum igual a 1 e quantum igual a 6, decai consideravelmente, e se mantêm diminuindo a medida do aumento de quanta até o quantum máximo de 21 linhas de comando, ilustrado no gráfico abaixo.

Como é possível observar na tabela abaixo, a partir de um quantum de tamanho 6, a média de trocas começa a se estabilizar em torno de 4,5 trocas e no quantum de tamanho 15, a média de instruções se estabiliza em cerca de 3,4, é lógico entender que esses valores não diminuam ou aumentem mais pois há o número máximo de linhas de comando por arquivos e também porque em alguns dos arquivos há interrupções por instruções de entrada e saída a cada 3 ou 4 instruções, aumentando assim o número de trocas e diminuindo a média de instruções.

Levando em conta os resultados dos testes podemos observar que o quantum ideal a ser usado é 6 ou 7. Para termos um quantum ideal identificamos onde não há um número excessivo de trocas de processos que ocasiona um gasto a mais no

escalonamento, o que acontece aproximadamente a partir do quantum 6, mostrado claramente no gráfico de trocas de processos por quantum, e onde não há um número de médias de execuções muito divergente do número de quantum, já que o quantum seria desnecessário. A média de execuções ideal seria a dos quantum mais baixos, entretanto, é inviável se considerarmos o número de trocas de processos desses quantum. Observando o gráfico abaixo temos o cruzamento entre a média de troca e a média de execuções entre os números 6 e 7, antes e após esse cruzamento tem-se algum tipo de perda.

TABELA

Tamanho Quantum	Média de Trocas	Média de Instruções
1	19,8	1,0
2	11,0	1,8
3	7,7	2,5714285714285716
4	6,3	3,142857142857143
5	5,1	3,8823529411764706
6	4,5	4,4
7	4,2	4,714285714285714
8	3,9	5,076923076923077
9	3,8	5,2105263157894735
10	3,8	5,2105263157894735
11	3,6	5,5
12	3,5	5,6571428571428575
13	3,5	5,6571428571428575
14	3,5	5,6571428571428575
15	3,4	5,823529411764706
16	3,4	5,823529411764706
17	3,4	5,823529411764706
18	3,4	5,823529411764706
19	3,4	5,823529411764706
20	3,4	5,823529411764706
21	3,4	5,823529411764706

GRÁFICO

