Threefold Problem Set #4 Christmas Presents: Solutions

December 9, 2020

Alice's Accumulation – Naive Solution

Goal: maximize the sum of a subpile.

Naive attempt: for each package, sum up the values in the pile below that package.

Running time: $O(k^4)$.

(There are $O(k^2)$ packages and each of them has $O(k^2)$ packages below it.)

Alice's Accumulation - Partial Sums

Idea: precompute partial sums in each row (in time $O(k^2)$). Then we get a solution with running time $O(k^3)$:

Alice's Accumulation – Recursion

Idea: find a recursion.

Alice's Accumulation – Dynamic Programming

Hence, dynamic programming. Running time: $O(k^2)$.

```
// Given: D[i][j] = value of the j-th ball in the i-th row
    // Compute: P[i][j] = sum of sub-pile rooted at (i,j)
3
    for (int i = k-1; i \ge 0; --i) {
      for (int j = 0; j < i; ++j) {
        if (i == k-1)
          P[i][i] = D[i][i]:
        else if (i == k-2)
8
          P[i][j] = D[i][j] + P[i+1][j] + P[i+1][j+1];
        else
10
          P[i][j] = D[i][j] + P[i+1][j] + P[i+1][j+1] - P[i+2][j+1];
```

Bob's Burden – Understanding the Problem

Bob's Burden – Modelling the Problem

Model: graph on B_{ij} , edge \iff disks touch

Bob's Burden – Modelling the Problem

Model: graph on B_{ij} , edge \iff disks touch \implies looking for a tree spanning the apices (not a spanning tree of the whole graph)

Bob's Burden – Modelling the Problem

Model: graph on B_{ij} , edge \iff disks touch

 \implies looking for a tree spanning the apices (not a spanning tree of the whole graph)

Q1: What does such a tree look like?

Q2: How to model the weights?

Q3: How to compute an optimum tree?

Bob's Burden – What does the Tree look like?

Obs. The tree consists of a center vertex c and optimum paths between c and the three apices.

Bob's Burden – Weights and Distances

Task: Find center ball with minimum weight + distances.

Weight: own weight of ball Distances: to triangle apex Center: may not be unique

Bob's Burden – Modelling Weights and Distances

- B^{in} and B^{out} for each ball B,
- interior edge with the ball's weight,
- incoming/outgoing 0-edges to neighbors.

Bob's Burden – Modelling Weights and Distances

Graph model:

- B^{in} and B^{out} for each ball B,
- interior edge with the ball's weight,
- incoming/outgoing 0-edges to neighbors.

First subtask: $k \le 40 \Rightarrow \approx 800$ balls

For each candidate ball B, we compute the distances to the apices: Either by running Dijkstra from B^{out} . We read the distances stored at B_{11}^{out} , B_{k1}^{out} , B_{k1}^{out} .

First subtask: $k \le 40 \Rightarrow \approx 800$ balls

For each candidate ball B, we compute the distances to the apices: Either by running Dijkstra from B^{out} . We read the distances stored at $B_{11}^{\mathrm{out}}, B_{k1}^{\mathrm{out}}, B_{kk}^{\mathrm{out}}$. Runing time:

- $O(k^2)$ Dijkstra runs
- Running time of Dijkstra: $O(n \log n + m) \rightarrow O(k^2 \log k)$
- Total running time: $O(k^4 \log k)$

First subtask: $k \le 40 \Rightarrow \approx 800$ balls

For each candidate ball B, we compute the distances to the apices: Or by Min Cost Max Flow (SSP version) from $B^{\rm out}$ to a sink reachable from $B^{\rm out}_{11}, B^{\rm out}_{k1}, B^{\rm out}_{kk}$. Sum of distances: find flow cost(G).

First subtask: $k \le 40 \Rightarrow \approx 800$ balls

For each candidate ball B, we compute the distances to the apices: Or by Min Cost Max Flow (SSP version) from $B^{\rm out}$ to a sink reachable from $B^{\rm out}_{11}, B^{\rm out}_{k1}, B^{\rm out}_{kk}$. Sum of distances: find_flow_cost(G). Runing time:

- $O(k^2)$ SSP Min Cost Max Flow runs
- Running time of SSP: $O(|f|(m + n \log n) \rightarrow O(k^2 \log k)$
- Total running time: $O(k^4 \log k)$

Bob's Burden - Full Solution

Full solution: $k \le 800 \Rightarrow \approx 320'000$ balls

We probably still have to look at each ball as a candidate.

How can we avoid the many (costly) Dijkstra runs?

Bob's Burden – Full Solution

Full solution: $k \le 800 \Rightarrow \approx 320'000$ balls

We probably still have to look at each ball as a candidate.

How can we avoid the many (costly) Dijkstra runs?

Do Dijkstra **only 3 times**, from $B_{11}^{\mathrm{out}}, B_{k1}^{\mathrm{out}}$ and B_{kk}^{out} !

Bob's Burden - Full Solution

Full solution: $k \le 800 \Rightarrow \approx 320'000$ balls

We probably still have to look at each ball as a candidate.

How can we avoid the many (costly) Dijkstra runs?

Do Dijkstra **only 3 times**, from $B_{11}^{\mathrm{out}}, B_{k1}^{\mathrm{out}}$ and B_{kk}^{out} !

For each candidate ball B, sum up:

- the weight of *B*;
- the distances from B_{11}^{out} , B_{k1}^{out} and B_{kk}^{out} to B^{in} .

Runing time: $O(k^2 \log k)$.

This case can be solved "by hand".

This case can be solved "by hand".

Note that the balls on the boundary form a cyclic structure.

This case can be solved "by hand".

Note that the balls on the boundary form a cyclic structure.

If k is even, this cycle has odd length (3k-3):

This case can be solved "by hand".

Note that the balls on the boundary form a cyclic structure.

If k is even, this cycle has odd length (3k-3):

The cycle stays connected if and only if all radii are 1.

This case can be solved "by hand".

Note that the balls on the boundary form a cyclic structure.

If k is even, this cycle has odd length (3k-3):

The cycle stays connected if and only if all radii are 1.

If any radius is different from 1, then it will be disconnected or intersecting.

If k is odd, the cycle has even length (3k-3):

If k is odd, the cycle has even length (3k - 3):

- Set the radius of B_{11} (and the other corners) to 1 + x, $0 \le x \le 1$. It cannot be smaller because the two neighbors would intersect otherwise.
- The radii on the cycle alternate between 1 + x and 1 x.

If k is odd, the cycle has even length (3k - 3):

- Set the radius of B_{11} (and the other corners) to 1 + x, $0 \le x \le 1$. It cannot be smaller because the two neighbors would intersect otherwise.
- The radii on the cycle alternate between 1 + x and 1 x.

The objective is a linear function of the form $(1+x)c_1 + (1-x)c_2$. Any monotone function on a closed interval I takes its maximum value on the boundary of I, i.e., at x=0 or x=1.

Carol's Configuration – Full Solution

For the general case we will formulate a Linear Program.

Carol's Configuration – Full Solution

For the general case we will formulate a Linear Program.

```
variables: \{r_{ij}\} for each ball B_{ij} maximize \sum r_{ij}v_{ij} subject to r_{ij}+r_{i'j'}\leq 2, for all B_{ij} and B_{i'j'} that are direct neighbors r_{ij}+r_{i'j'}\leq 2\sqrt{3}, for all B_{ij} and B_{i'j'} that are indirect neighbors r_{ij}+r_{i'j'}=2, for all B_{ij} and B_{i'j'} that are direct neighbors on the boundary
```


