3.7.1 Скин-эффект в полом цилиндре

Александр Романов Б01-107

1 Введение

1.1 Цель работы

Исследование проникновения переменного магнитного поля в медный полый цилиндр.

1.2 В работе используются

Генератор звуковой частоты, соленоид, намотанный на полый цилиндрический каркас из диэлектрика, медный экран в виде трубки, измерительная катушка, амперметр, вольтметр, осциллограф.

Рис. 1: Схема экспериментальной установки

2 Работа

2.1 Подготовка

Приняв проводимость меди для оценки равной $\sigma=5\cdot 10^7~S/m$ расчитаем частоту $\nu_h~Hz$, при которой толщина стенок экрана равна скиновой длине

 $\delta=h=1.5~mm$. По формуле:

$$\delta = \sqrt{\frac{2}{\omega \sigma \mu_0}} \Rightarrow \nu_h = \frac{1}{\pi \sigma \mu_0 h^2} = 2250 \ Hz$$

2.2 Измерения в диапазоне $(0.01\nu_h - 0.05\nu_h)$

Получим знависимость соотношения $\xi = U/(\nu I)$ от частоты ν :

ν , Hz	U, V	I, A	$\xi = U/(\nu I)$
22.5	0.195	0.461	0.0188
31.5	0.269	0.457	0.0187
40.5	0.338	0.453	0.0184
49.5	0.403	0.448	0.0182
58.5	0.463	0.442	0.0179
67.5	0.518	0.436	0.0176
76.5	0.569	0.43	0.0173
85.5	0.614	0.423	0.0170
94.5	0.654	0.418	0.0166
103.5	0.69	0.412	0.0162
112.5	0.723	0.406	0.0158

Рис. 2: график $1/\xi^2(\nu^2)$

Получена зависимость вида $1/\xi^2 = a \cdot \nu^2 + b$:

$$a = (0.096 \pm 7 \cdot 10^{-4})$$

$$b = (2783 \pm 2.7)$$

2.3 Измерения в диапазоне $(0.05\nu_h - 0.5\nu_h)$

Исследуем зависимости ξ и ψ от ν :

ν , Hz	U, V	I, A	ψ , rad	$\xi = U/(\nu I)$
112.5	0.721	0.404	3.70	0.0159
128.5	0.769	0.394	3.87	0.0152
144.5	0.809	0.386	4.06	0.0145
160.5	0.841	0.378	4.05	0.0139
176.5	0.868	0.371	4.04	0.0133
192.5	0.89	0.366	4.11	0.0126
208.5	0.908	0.361	4.06	0.0121
225	0.923	0.356	4.05	0.0115
315	0.967	0.338	4.32	0.0091
405	0.98	0.327	4.27	0.0074
495	0.979	0.318	4.29	0.0062
585	0.971	0.311	4.43	0.0053
675	0.959	0.304	4.61	0.0047
765	0.943	0.297	4.59	0.0042
855	0.927	0.291	4.68	0.0037
945	0.908	0.284	4.62	0.0034
1035	0.888	0.278	4.71	0.0031

Рис. 3: график $1/\xi^2(\nu^2)$

Получена зависимость вида $1/\xi^2 = a \cdot \nu^2 + b$:

$$a = (0.094 \pm 8 \cdot 10^{-5})$$

$$b = (2769 \pm 3.5)$$

Что совпадает со значениями на интервале $(0.01\nu_h-0.05\nu_h)$, говоря о том, что зависимость одинаковая на обоих диапазонах

Рис. 4: график $\psi(\nu)$

Опроксимируем многочленом 2 степени:

$$\psi = 3.7 + 0.002\nu - 8.4 \cdot 10^{-7}\nu^2 \ rad$$

2.4 Измерения в диапазоне $(0.5\nu_h - 15\nu_h)$

Исследуем зависимости ξ и ψ от ν :

ν , Hz	U, V	I, A	ψ , rad	$\xi = U/(\nu I)$
1125	0.867	0.271	4.71	0.00284
3330	0.468	0.148	5.02	0.0009
5535	0.288	0.095	5.41	0.00055
7740	0.197	0.068	5.80	0.0004
9945	0.143	0.053	6.03	0.0003
12150	0.106	0.041	6.13	0.00021
14355	0.081	0.034	6.28	0.00017
16560	0.062	0.028	6.70	0.00013
18765	0.049	0.023	6.75	0.00011
20970	0.039	0.019	7.07	9.8E-05
23175	0.031	0.015	7.14	8.9E-05
25380	0.026	0.012	4.55	8.5E-05
27585	0.023	0.008	8.37	0.00010
29790	0.022	0.006	8.50	0.00012
31995	0.023	0.003	9.22	0.00024

Опроксимируем многочленом 2 степени:

$$\xi = 21.4 - 0.0023\nu + 5.6 \cdot 10^{-8}\nu^2$$

Рис. 5: график $\xi(\nu)$

Опроксимируем прямой вида $\psi = a\nu + b$:

$$a = 1.3 \cdot 10^{-4} \pm 6.3 \cdot 10^{-6}$$

$$b = 4.55 \pm 0.06$$

Рис. 6: график $\psi(\nu)$

2.5 Зависимость L от ν

ν , Hz	$L, \mu H$
40	550
400	4300
750	3400
1000	3200
1500	3100
2000	3060
2500	3050

Опроксимируем многочленом 2 степени:

$$L = 4885 - 2.1\nu + 0.0006\nu^2$$

Рис. 7: график $L(\nu)$

3 Обработка экспериментальных данных

3.1

По графикам на рисунках ?? и ?? легко убедиться что зависимость $1/\xi^2(\nu^2)$ имеет линейный вид.

Экстраполируя полученную зависимость к точке $\nu=0$, соответствующей величине $\frac{|H_1|}{|H_0|}=1$ определим коэффициент пропорциональности ξ_0 между ξ и $\frac{|H_1|}{|H_0|}$:

$$\xi_0 = 53$$

Из того что в области низких частот

$$\left(\frac{|H_1|}{|H_0|}\right)^2 = (\xi_0 \xi)^2 \simeq \frac{1}{1 + A\nu^2}$$

получим что угловой коэффициент зависимости $1/\xi^2(\nu^2)$ равен

$$k = \pi a h \mu_0 \xi_0 \sigma = (0.096 \pm 7 \cdot 10^{-4})$$

Отсюда найдём првоводимость меди:

$$\sigma = \frac{k}{\pi a h \mu_0 \xi_0} = 13.6 \, \frac{MS}{m}$$

3.2

Перерисуя график ψ от ν и опроксимируя прямой получим:

Рис. 8: график $\psi(\nu)$

Полученная зависимость вида $\psi = a \cdot \nu + b$

$$a = (9 \pm 0.08) \ 10^{-3} rad/Hz$$

$$b = (3.9 \pm 0.02) \ rad$$

Из того что

$$tg(\psi) = \frac{ah}{\delta^2}$$

И

$$\delta^2 = \sqrt{\frac{1}{\pi\nu\sigma\mu_0}}$$

получим:

$$tg(\psi) = \pi a h \sigma \mu_0 \nu$$

И тогда через коэффицент пропорциональности в зависимости $\psi(\nu)$ найдём проводимость меди:

$$\sigma = \frac{\operatorname{tg}(\psi)/\nu}{\pi a h \mu_0} = 67.5 \, \frac{MS}{m}$$

3.3

Построим график зависимости $\phi=\psi-\frac{\pi}{4}$ от $\sqrt{\nu}$:

Рис. 9: график $\phi(\sqrt{\nu})$

Угловой коэффициент касательной:

$$k = 0.27$$

Отсюда, т.к.

$$\psi = \frac{\pi}{4} + h\sqrt{\pi\nu\sigma\mu_0}$$

получим значение:

$$\sigma = \frac{k^2}{h^2 \pi \mu_0} = 8207 \; \frac{MS}{m}$$

Это значение не выглядит реалистичным, что можно связать с ошибками экспериментаторов во время измерении разности фаз.

3.4

По результатам измерений, изображённым на Рис. ?? Определим максимальное и минимальное значение индуктивности:

$$L_{min} = 550 \ \mu H$$

$$L_{max} = 3060 \ \mu H$$

Построим график зависимости $(L_{max}-L_{min})/(L-L_{min})$ от ν^2 (10⁶ Hz^2):

Рис. 10: график зависимости $(L_{max}-L_{min})/(L-L_{min})$ от $\nu^2\cdot 10^6~Hz^2$

Из графика видно, что измерения плохо опроксимируются прямой. Скорее всего это произошло в виду неправильного обращения экспериментаторов с измеряющим прибором и установкой. В следствии этого оценить проводимость материала исходя из этого эксперимента не предоставляется возможным.

3.5

Сравним значения проводимости медного экрана, полученные в ходе различных экспериментов:

$\sigma \ 10^7 S/m$ из 3.1	$\sigma \ 10^7 S/m$ из 3.2	$\sigma~10^7 S/m$ из 3.3	$\sigma~10^7 S/m$ из 3.4	$\sigma \ 10^7 S/m$ табличное
1.36	6.75	820	_	5.96

Можно заметить, что значения полученные в пунктах 3.1 и 3.2 достаточно близки к табличному. В то же время значение, полученное в пункте 3.3 далеко от табличного, а в 3.4 его вычисление и вовсе не предоставляется возможным, что можно связать с ошибками экспериментаторов в ходе этих экспериментов.

3.6

Расчитаем, используя значение $\xi_0=53$, полученное в пункте 3.1, значение $|H_1|/|H_0|$ для всех измерений. Используем формулу

$$\frac{H_1}{H_0} = \xi \xi_0$$

(Так же получим из формулы

$$\frac{H_1}{H_0} = \frac{1}{\cosh(\alpha h) + \frac{1}{2}\alpha a \cdot \sinh(\alpha h)},$$

где

$$\alpha = \sqrt{\pi \nu \sigma \mu} \cos(\pi/4)$$

а a и h - известные нам параметры установки, получим теоретические значения $\frac{H_1}{H_0}$. Изобразим всё на графиках:

Теоретический и экспериментальный графики зависимостей H_1/H_0 от ν для низких частот

Теоретический и экспериментальный графики зависимостей H_1/H_0 от ν для средних частот

Теоретический и экспериментальный графики зависимостей H_1/H_0 от ν для высоких частот

Мы видим, что теоретические и экспериментальные значения H_1/H_0 достаточно точно совпадают для всех диапазонов. Наибольшее отличие заметно в области низких частот, что можно связать с недостаточной точностью вычислений или измерений в этом диапазоне.

4 Выводы

Была проведена попытка измерения проводимости материала циллиндра 4 разными способами (теоретическое значение $5 \cdot 10^7 \frac{S}{m}$). Результаты:

- 1. Из углового коэффициента зависимости $1/\xi$ от ν^2 . Получено значение $1.36\cdot 10^7~\frac{S}{m}$. Это значение поп порядку совпадает с табличным.
- 2. Из зависимости $\operatorname{tg}(\psi)$ от ν . Получено значение $6.75\cdot 10^7~\frac{S}{m}$. Это значение очень близко к табличному.
- 3. Из угла наклона касательной к графику ψ от $\sqrt{\nu}$ в области низких частот. Получено значение $821\cdot 10^7~\frac{S}{m}$, что отличается от табличного на несколько порядков.
- 4. Из зависимости $(L_{max} L_{min})/(L L_{min})$ от ν^2 . Попытка вычисления σ оказалась неудачной, т.к. измеренные значения нельзя хоть скольконибудь точно опроксимировать прямой.

Можно сделать вывод, что только первые 2 способа измерения σ оказались удачными и дали правильные значения.

Были сравнены теоретически-вычисленное и измеренные значения отношения амплитуд магнитных полей для низких, средних и высоких частот. Все сравнения показывают, что, хоть и в области низких частот значения незначительно отличались, тренд оказался одинаковым.