

Index

Ur	Jnit – 2 → Numerical Linear Algebra3				
_					
1)	Method 1 → Eigen Values and Eigen Vectors	3			
2)	Method 2 → Power Method	7			
3)	Method 3 → Gauss Jacobi Method	.10			
4)	Method 4 → Gauss Seidel Method	.13			

Unit - 2 → Numerical Linear Algebra

Method 1 ---> Eigen Values and Eigen Vectors

Eigen Value

- \rightarrow Let A be square matrix.
- \rightarrow If there exists a non-zero vector X such that $AX = \lambda X$, then the scalar λ is known as eigen value of A.
- → The set of all eigenvalues of matrix A is known as Spectrum of A.
- → Eigen value is also known as characteristic root/latent value/proper roots.

Eigen Vector

- \rightarrow Let A be square matrix.
- \rightarrow If there exists a non-zero vector X such that $\mathbf{AX} = \lambda \mathbf{X}$, then the **non-zero** vector **X** is known as **eigen vector** of A corresponding to eigen value λ .
- \rightarrow Eigen vector is also known as characteristic vector/latent vector/proper vector corresponding to the eigen value λ of the matrix.

Eigen Space

 \rightarrow The **solution space** of the system $(A - \lambda I) \cdot X = 0$ is known as **eigen space** of matrix A corresponding to eigen value λ.

i.e., $E_{\lambda} = \{ X \mid X \text{ is eigen vector of A corresponding to eigen value } \lambda \}$

Characteristic Equation

- \rightarrow Let A be a square matrix of order n and I be an identity matrix of order n, then $|\mathbf{A} \lambda \mathbf{I}| = \mathbf{0}$ is known as characteristic equation, where λ is a scalar.
- \rightarrow The characteristic equation of matrix A of order 2 × 2 is

$$\lambda^2 - S_1\lambda + S_2 = 0$$

Where $S_1 = tr(A) = Sum$ of eigen values

$$S_2 = |A| = Determinant of A$$

 \rightarrow The characteristic equation of matrix A of order 3 \times 3 is

$$\lambda^3 - S_1\lambda^2 + S_2\lambda - S_3 = 0$$

Where $S_1 = tr(A) = Sum of eigen values$

 $S_2 = Sum of minors of pricipal diagonal elements = M_{11} + M_{22} + M_{33}$

 $S_3 = |A| = Determinant of A$

Properties of Eigen Value and Eigen Vector

- (1) Trace(A) = Sum of all the eigen values of matrix A.
- (2) |A| = Product of all the eigen values of matrix A.
- (3) If one of the eigen value of matrix A is zero, then |A| = 0, hence A^{-1} does not exist.
- (4) The eigen values of triangular matrix are the elements on its principal diagonal.
- (5) The square matrix A and A^T have the same eigen values but eigen vectors need not to be same.
- (6) If λ is an eigen value of a non-singular matrix A and X is an eigen vector correspond to λ , then

Matrix	Eigen value
A^{T}	λ
A ^k	λ^{k}
A ⁻¹	$\frac{1}{\lambda}$
A ± kI	$\lambda \pm k; k \in \mathbb{R}$
kA	$k\lambda$; $k \in \mathbb{R}$

- \rightarrow Procedure to find the eigen values, eigen vectors for a matrix A of order 3 \times 3
 - (1) Write the characteristic equation $\lambda^3-S_1\lambda^2+S_2\lambda-S_3=0$ and find S_1,S_2 and S_3 .
 - (2) Find the roots of the characteristic equation. These are the Eigen Values of A, say λ_1 , λ_2 , λ_3 .
 - (3) Solve the homogeneous system $(A \lambda I) \cdot X = 0$ for each eigen value by using Gauss Elimination Method.
 - (4) Eigen vector is the solution X of above system.

Examples of Method-1: Eigen Values and Eigen Vectors

С	1	Find the eigen values and corresponding eigen vectors of the matrix

$$A = \begin{bmatrix} 5 & 0 & 1 \\ 1 & 1 & 0 \\ -7 & 1 & 0 \end{bmatrix}.$$

Answer:
$$\lambda = 2$$
, 2, $X = \begin{bmatrix} -\frac{1}{3} & -\frac{1}{3} & 1 \end{bmatrix}^T$

$$A = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}.$$

Answer:
$$\lambda = -1$$
, -1 , 2

Eigen Bases:
$$\{(-1 \ 1 \ 0)^T, (-1 \ 0 \ 1)^T, (1 \ 1 \ 1)^T\}$$

Eigen Bases:
$$\{(-1 \ 1 \ 0)^T, (-1 \ 0 \ 1)^T, (1 \ 1 \ 1)^T\}$$

C 3 Find the eigen values of $A = \begin{bmatrix} -5 & 4 & 34 \\ 0 & 0 & 4 \\ 0 & 0 & 4 \end{bmatrix}$. Is it invertible?

C 4 Find the eigen values and eigen vectors of the matrix
$$A = \begin{bmatrix} 3 & 1 & 4 \\ 0 & 2 & 6 \\ 0 & 0 & 5 \end{bmatrix}$$
.

Answer:
$$\lambda = 2 \implies X = \begin{bmatrix} -1 & 1 & 0 \end{bmatrix}^T$$
, $\lambda = 3 \implies X = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}^T$

$$\lambda = 5 \implies X = \begin{bmatrix} 3 & 2 & 1 \end{bmatrix}^{T}$$
C S If $A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$, then find the eigen values and eigen vectors corresponding

to each eigen value of A. Also, write the eigen space for each eigen values.

Answer:
$$\lambda = -1 \implies X = \begin{bmatrix} -1 & 1 \end{bmatrix}^T$$
, $\lambda = 1 \implies X = \begin{bmatrix} 1 & 1 \end{bmatrix}^T$
$$E_{-1} = \left\{ \begin{bmatrix} -1 \\ 1 \end{bmatrix} \cdot t \mid t \in \mathbb{R} \right\}, \quad E_{1} = \left\{ \begin{bmatrix} 1 \\ 1 \end{bmatrix} \cdot t \mid t \in \mathbb{R} \right\}$$

C Let
$$A = \begin{bmatrix} 3 & 0 \\ 8 & -1 \end{bmatrix}$$
, the find eigen values of A, A^{25} , 3A, A^{-1} , A^{T} , $A + 2I & A^{3} - 5I$.

Answer: A
$$\implies$$
 -1, 3, $A^{25} \implies$ -1, 3^{25} , $3A \implies$ -3, 9

$$A^{-1} \leadsto -1, \frac{1}{3}, A^{T} \leadsto -1, 3, A+2I \leadsto 1, 5$$

$$A^3 - 5I - 6$$
, 22

Method 2 ---> Power Method

- → In many engineering problems, it is required to compute the numerically largest eigen value and corresponding eigen vector. In such cases, power method is convenient which is also well-suited for machine computations.
- → This method can be used when the matrix A of order n has n linearly independent eigen vectors.
- \rightarrow The eigen values can be ordered in magnitude as $|\lambda_1| > |\lambda_2| \ge |\lambda_3| \ge \cdots \ge |\lambda_n|$.

Here, λ_1 is known as dominant eigen value of A and the remaining eigen values $\lambda_2, \lambda_3, ..., \lambda_n$, are known as sub-dominant eigen values of A.

i.e., if the eigenvalues of a matrix are 2, 5, and -13, then -13 is the dominant eigenvalue as $|-13| > |5| \ge |2|$.

Procedure for Finding Largest Eigen Value and Corresponding Eigen Vector

- \rightarrow For a square matrix A,
 - (1) Apply the formula $AX_i = \lambda_{i+1}X_{i+1}$; i = 0, 1, 2, ...
 - (2) Let us consider initial eigen vector X_0 (X_0 is an arbitrary vector) as

$$X_0 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
 OR $X_0 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$ **OR** $X_0 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$

- (3) Find X_1 by calculating $AX_0=\lambda_1X_1$; where λ_1 is dominant eigen value X_2 by calculating $AX_1=\lambda_2X_2$; where λ_2 is dominant eigen value .
- (4) Repeat this process until $X_r = X_{r-1}$ up to desired level of accuracy.
- (5) We get λ_r largest eigen value and X_r the corresponding eigen vector.
- → This iterative procedure for finding the largest eigen value of a matrix is known as Rayleigh's power method.

→ For Example:

We find largest eigen value and corresponding eigen vector of the matrix

$$A = \begin{bmatrix} 5 & 4 \\ & \\ 1 & 2 \end{bmatrix}$$

Let us consider, initial eigen vector $X_0 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$.

Now we find
$$AX_0 = \begin{bmatrix} 5 & 4 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 5 \\ 1 \end{bmatrix} = \mathbf{5} \begin{bmatrix} 1 \\ 0.2 \end{bmatrix} = \lambda_1 X_1$$

$$AX_1 = \begin{bmatrix} 5 & 4 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} 1 \\ 0.2 \end{bmatrix} = 5.8 \begin{bmatrix} 1 \\ 0.241 \end{bmatrix} = \lambda_2 X_2$$

$$AX_2 = \begin{bmatrix} 5 & 4 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} 1 \\ 0.241 \end{bmatrix} = 5.966 \begin{bmatrix} 1 \\ 0.248 \end{bmatrix} = \lambda_3 X_3$$

$$AX_3 = \begin{bmatrix} 5 & 4 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} 1 \\ 0.249 \end{bmatrix} = 5.994 \begin{bmatrix} 1 \\ 0.250 \end{bmatrix} = \lambda_4 X_4$$

$$AX_4 = \begin{bmatrix} 5 & 4 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} 1 \\ 0.250 \end{bmatrix} = 5.999 \begin{bmatrix} 1 \\ 0.25 \end{bmatrix} = \lambda_5 X_5$$

$$AX_5 = \begin{bmatrix} 5 & 4 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} 1 \\ 0.25 \end{bmatrix} = 6 \begin{bmatrix} 1 \\ 0.25 \end{bmatrix} = \lambda_6 X_6$$

Hence the largest eigen value is 6 and eigen vector is $\begin{bmatrix} 1 \\ 0.25 \end{bmatrix}$.

Examples of Method-2: Power Method

С	1	Find the largest eigen value and the corresponding eigen vector of the
		following matrix $A = \begin{bmatrix} 5 & 4 \\ 1 & 2 \end{bmatrix}$.

Answer: 6,
$$[1 \ 0.25]^T$$

C | 2 | Find the largest eigen value and the corresponding eigen vector of the following matrix

$$A = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 2 & 0 & 1 \end{bmatrix}$$

Answer: 2.41,
$$[0.71 \ 0.5 \ 1]^T$$

C 3 Find the largest eigen value and the corresponding eigen vector of the following matrix

$$A = \begin{bmatrix} 15 & -4 & 3 \\ -10 & 12 & -6 \\ -20 & 4 & -2 \end{bmatrix}.$$

Answer: 13.52,
$$[0.68 - 0.5 - 1]^T$$

C 4 Find the largest eigen value and the corresponding eigen vector of the following matrix

$$A = \begin{bmatrix} 1 & 1 & 1 \\ -1 & -3 & -3 \\ 2 & 4 & 4 \end{bmatrix}.$$

Answer: 2,
$$[0.33 - 0.67 \ 1]^T$$

Method 3 --- Gauss Jacobi Method

Introduction

- → Numerical methods provide a way to solve problems quickly and easily as compare to analytic methods.
- → Numerical methods are useful to solve problems whose analytic solution is not available or the analytic solution can't be generalized.
- → Numerical methods are used to solve system of linear equations, to find roots of nonlinear equations, to solve ODE, etc.
- → In general, an equation is solved by factorization but in some cases, the method of factorization fails. In such cases, numerical methods can be used.

Iterative Method

- → In this method, an approximation to the true solution is assumed initially to start method. By applying the method repeatedly, better and better approximation are obtained.
- → For large systems, iterative methods are faster than direct methods and round-off error are also smaller.
- → In fact, iteration is a self-correcting process and any error made at any stage of computation gets automatically corrected in the subsequent steps.
- → There are two iterative methods which is
 - (1) Gauss Jacobi Method
 - (2) Gauss Seidel Method

Gauss Jacobi Method

- → This method is applicable to the system of equations in which leading diagonal elements of the coefficient matrix are dominant (large in magnitude) in their respective rows.
- → Procedure to find solution system of simultaneous linear equation:
 - (1) Consider the system of equations:

$$a_{1}x + b_{1}y + c_{1}z = d_{1}$$

$$a_{2}x + b_{2}y + c_{2}z = d_{2}$$

$$a_{3}x + b_{3}y + c_{3}z = d_{3}$$
... (1)

Where co-efficient matrix A must be diagonally dominant,

$$|a_1| \ge |b_1| + |c_1|$$

i. e. , $|b_2| \ge |a_2| + |c_2|$ and the inequality is strictly greater than for **at least** $|c_3| \ge |a_3| + |b_3|$

one row.

(2) Solving the system (1) for x, y, z respectively,

$$x = \frac{1}{a_1} (d_1 - b_1 y - c_1 z)$$

$$y = \frac{1}{b_2} (d_2 - a_2 x - c_2 z)$$

$$z = \frac{1}{c_3} (d_3 - a_3 x - b_3 y)$$
... ... (2)

(3) We start with $x_0 = 0$, $y_0 = 0 \& z_0 = 0$ in equation (2) and we get

$$x_{1} = \frac{1}{a_{1}} (d_{1} - b_{1}y_{0} - c_{1}z_{0}) = \frac{d_{1}}{a_{1}}$$

$$y_{1} = \frac{1}{b_{2}} (d_{2} - a_{2}x_{0} - c_{2}z_{0}) = \frac{d_{2}}{b_{2}}$$

$$z_{1} = \frac{1}{c_{3}} (d_{3} - a_{3}x_{0} - b_{3}y_{0}) = \frac{d_{3}}{c_{3}}$$

- (4) Again, substituting these value x_1, y_1, z_1 in eq. (2), the next approximation is obtained.
- (5) Repeat this process until the values of x, y, z are obtained to desire level of accuracy.

Examples of Method-3: Gauss Jacobi Method

С	1	Solve the following system by using Gauss Jacobi method.
		6x + 2y - z = 4, $x + 5y + z = 3$, $2x + y + 4z = 27$
		Answer: (2, -1, 6)
С	2	Solve the following system by using Gauss Jacobi method.
		2x + y + z = 0, $3x + 5y + 2z = 15$, $2x + y + 4z = 8$
		Answer: (0.5, 0.5, 0.5)
С	3	Solve the following system by using Gauss Jacobi method, correct up to two
		decimal places.
		10x + y - z = 11.19, $x + 10y + z = 28.08$, $-x + y + 10z = 35.61$
		Answer: (1.23, 2.34, 3.45)
	4	
С	4	Solve by Gauss Jacobi method, correct up to two decimal places.
		20x + 2y + z = 30, $x - 40y + 3z = -75$, $2x - y + 10z = 30$
		starting with $(1,2,-1)$.
		Answer: (1.14, 2.13, 2.99)
С	5	Solve the following system by using Gauss Jacobi method.
		27x + 6y - z = 85, $x + y + 54z = 110$, $6x + 15y + 2z = 72$
		Answer: (2.425, 3.573, 1.926)

Method 4 ---> Gauss Seidel Method

Gauss Seidel Method

- → This is a modification of Gauss Jacobi method. In this method, we replace the approximation by the corresponding new ones as soon as they are calculated.
- → Procedure to find solution system of simultaneous linear equation:
 - (1) Consider the system of equations:

$$a_{1}x + b_{1}y + c_{1}z = d_{1}$$

$$a_{2}x + b_{2}y + c_{2}z = d_{2}$$

$$a_{3}x + b_{3}y + c_{3}z = d_{3}$$
... ... (1)

Where co-efficient matrix A must be diagonally dominant,

$$|a_1| \ge |b_1| + |c_1|$$

i. e., $|b_2| \ge |a_2| + |c_2|$ and the inequality is strictly greater than for **at least** $|c_3| \ge |a_3| + |b_3|$

one row

(2) Solving the system (1) for x, y, z respectively,

$$x = \frac{1}{a_1} (d_1 - b_1 y - c_1 z)$$
We obtain,
$$y = \frac{1}{b_2} (d_2 - a_2 x - c_2 z)$$

$$z = \frac{1}{c_3} (d_3 - a_3 x - b_3 y)$$
 (2)

(3) We Start with $x_0 = 0$, $y_0 = 0$ & $z_0 = 0$ in the equation of x,

$$x_1 = \frac{1}{a_1} (d_1 - b_1 y_0 - c_1 z_0) = \frac{d_1}{a_1}$$

(4) Substituting $x = x_1 \& z = z_0$ in the equation of y,

$$y_1 = \frac{1}{b_2} (d_2 - a_2 \mathbf{x_1} - c_2 z_0)$$

(5) Substituting $x = x_1 \& y = y_1$ in the equation of z,

$$z_1 = \frac{1}{c_2} (d_3 - a_3 x_1 - b_3 y_1)$$

(6) Repeat this process until the values of x, y, z are obtained to desire level of accuracy.

Examples of Method-4: Gauss Seidel Method

С	1	Solve the following system by using Gauss Seidel method.	
		$10x_1 + x_2 + x_3 = 6$, $x_1 + 10x_2 + x_3 = 6$, $x_1 + x_2 + 10x_3 = 6$	
		Answer: (0.5, 0.5, 0.5)	
С	2	Solve the following system by using Gauss Seidel method.	
		9x + y + z = 10, $2x + 10y + 3z = 19$, $3x + 4y + 11z = 0$	
		Answer: $(1, 2, -1)$	
С	3	Solve the following system by using Gauss Seidel method, correct up to three	
		decimal places.	
		27x + 6y - z = 85, $x + y + 54z = 110$, $6x + 15y + 2z = 72$	
		. (0.40 0.50	
		Answer: (2.425, 3.573, 1.926)	
С	4	By using Gauss Seidel method solve the following system up to seven	
		iterations.	
		$12x_1 + 3x_2 - 5x_3 = 1$, $x_1 + 5x_2 + 3x_3 = 28$, $3x_1 + 7x_2 + 13x_3 = 76$	
		Use initial condition: $(x_1^0, x_2^0, x_3^0) = (1, 0, 1)$.	
		Answer: (1, 3, 4)	

* * * * * End of the Unit * * * *

