позволяет предоставить пользователю информативную обратную связь о его ошибках.

Тестирование в форме эссе применяется как правило для контрольных мероприятий в рамках СДО университета и т.п. В этом случае задание проверяется преподавателем. В открытых онлайн-курсах такие задания как правило не применяются, так как преподавательского ресурса недостаточно для проверки заданий всех пользователей, число которых может быть очень велико. В редких случаях, когда использование такой формы тестирования все же необходимо (например, при отсутствии технической возможности проверить задачу на программирование), прибегают к системе перекрестной проверки. В таком случае требования к ответу стараются максимально формализовать, чтобы пользователи могли более объективно оценить друг друга. При тестировании в качестве итоговой оценки, как перекрестном выставляется среднее или медианное значение результатов нескольких проверок [4].

Пример интерфейса проверки задания с перекрестным оцениванием на платформе Stepik приведен на рисунке 3.

Рисунок 3 — Интерфейс проверки задания с перекрестным оцениванием на платформе Stepik

1.2.3 Проверка программ по референсным значениям

Зачастую, так как разработчики онлайн-портала не обладают достаточными ресурсами для создания подсистемы автоматизированного тестирования пользовательских программ, либо сама архитектура проверяемой программы не позволяет протестировать ее автоматически по техническим причинам (например, сама программа пользователя связана с тематикой автоматизированного тестирования, программа связана с машинным обучением и потребляет много вычислительных ресурсов и т.д.)

Пример таких заданий приведены на рисунках 4 и 5.

Рисунок 4 — Проверка задания на машинное обучение по референсным значениям

Рисунок 5 — Проверка задания на автоматизированное тестирование по референсным значениям

Функциональная модель тестирования на написание программы с проверкой по референсным значениям приведена приведен на рисунке 6.

Рисунок 6 — Функциональная модель тестирования на написание программы с проверкой по референсным значениям

2 Проектирование программной подсистемы тестирования знаний языков описания аппаратуры

2.1 Проектирование архитектуры

Разработанная подсистема используется веб-приложением образовательного портала для управления учебными материалами, проверки пользовательских ответов на задания и работы со статистикой решения заданий.

Поскольку информация о пользователях используется как в разработанной подсистеме, так и в других компонентах программного обеспечения образовательного портала, БД используется совместно.

Обобщенная архитектура информационной системы показана с помощью контекст-диаграммы в нотации С4 на рисунке 9 [7].

Рисунок 9 — Обобщенная архитектура информационной системы

Рисунок 10 — Детализированная архитектура разработанной подсистемы

3.4 Выбор языка программирования и библиотек для функционального тестирования

Так как написание тестов на Golang требует значительного времени и такие тесты сложнее поддерживать в силу непопулярности языка среди тестировщиков, было решено тестировать разработанные микросервисы, предварительно запустив их (см. приложение Б) и обращаясь к ним по протоколу HTTP. Такой подход позволил реализовать тесты не привязываясь к языку реализации исходного ПО.

Поскольку Python обладает простым синтаксисом, большим количеством библиотек и популярен среди тестировщиков (рисунок 21), именно он был выбран для реализации тестов [12].

Рисунок 21 — Наиболее популярные языки в области автоматизированного тестирования

В качестве основной библиотеки для тестирования была выбрана библиотека pytest, являющаяся одной из наиболее популярных библиотек для автоматизированного тестирования [13].

Pytest обладает следующими основными преимуществами [14]:

- меньше повторяющегося кода за счет независимости от API;
- выполнение определенного набора тестов с помощью фильтрации;
- параметризация тестов запуск одного и того же теста с разными наборами параметров;
- гибкость архитектура библиотеки основана на плагинах, которые можно установить отдельно;

- полная обратная совместимость с unittest возможность запуска тестов, написанных на нем;
- выполнение нескольких тестов параллельно;
- установочный код можно использовать повторно.

В дополнение к pytest была использована библиотека allure, формирующая интерактивные отчеты о прохождении тестов. Тесты в allure можно иерархически группировать и сопровождать логами и вложениями. Allure поддерживается не только для Python, но и для Java, JavaScript, Ruby, PHP, .Net и Scala.

Такой широкий набор поддерживаемых языков программирования делает allure (рисунок 22) знакомым многим разработчикам, тестировщикам и менеджерам, что упрощает поддержку тестов [15].

Рисунок 22 — Интерфейс allure

3.5 Реализация и проведение функциональных тестов

Для упрощения написания тестов и генерации отчетов был реализован вспомогательный модуль utils.py, отвечающий за отправку http-запросов к микросервисам, проверку http-ответов и их прикрепление к отчетам в allure. Программный код utils.py приведен в листинге 7.

Пример отчета, полученного после выполнения этого теста (и аналогичных ему) приведен на рисунках 23-24.

Рисунок 23 — Отчет о результате теста

Рисунок 24 — Приложения к отчету

После реализации аналогичным образом всех тестов из таблиц 4-9 они были запущены.

Благодаря параллельному запуску тестов через плагин xdist (в данном случае — в 2 потока) удалось выполнить все тесты менее, чем за 600 мс (рисунок 25).

Рисунок 25 — Хронология запуска тестов

Статистика запуска тестов из отчета allure приведена на рисунке 26.

Рисунок 26 — Статистика запуска тестов

Все тесты завершились успешно, о чем свидетельствует приведенная статистика.

визуализировать статитстику, допустимое среднее время ответа для запросов к БД было установлено равным 300 мс, а 95 перцентиль — 500 мс.

Результаты нагрузочного тестирования микросервиса разбора временных диаграмм приведены в таблице 10.

Таблица 10 — Результаты нагрузочного тестирования микросервиса разбора временных диаграмм

Статистика запросов									
Запросы	Ошибки	Среднее	Мин.	Макс.	Сред.	RPS	Ошибки		
		(MC)	(мс)	(мс)	размер		/ c		
					(байт)				
18458	0	261	3	706	493	279.9	0.0		
Статистика ответов									
50%ile	60%ile	70%ile	80%ile	90%ile	95%ile	99%ile	100%ile		
(мс)	(мс)	(мс)	(мс)	(мс)	(мс)	(мс)	(мс)		
260	300	350	400	450	470	520	710		

Изменения частоты запросов, времени ответа и количества пользователей показаны на рисунках 27-28.

Рисунок 27 — Результаты нагрузочного тестирования микросервиса разбора временных диаграмм

Рисунок 28 — Результаты нагрузочного тестирования микросервиса разбора временных диаграмм

Результаты нагрузочного тестирования синтезатора приведены в таблице 11.

Таблица 11 — Результаты нагрузочного тестирования синтезатора

Статистика запросов									
Запросы	Ошибки	Среднее	Мин.	Макс.	Сред.	RPS	Ошибки		
		(мс)	(мс)	(мс)	размер		/ c		
					(байт)				
12936	0	525	13	1339	3050	152.8	0.0		
Статистика ответов									
50%ile	60%ile	70%ile	80%ile	90%ile	95%ile	99%ile	100%ile		
(мс)	(мс)	(мс)	(мс)	(мс)	(мс)	(мс)	(мс)		
580	610	640	680	770	870	950	1300		

Изменения частоты запросов, времени ответа и количества пользователей показаны на рисунке 29.

Рисунок 29 — Результаты нагрузочного тестирования синтезатора

Результаты нагрузочного тестирования обращения к БД через слой бизнес-логики приведены в таблице 12.

Таблица 12 — Результаты нагрузочного тестирования обращения к БД через слой бизнес-логики

Статистика запросов									
Маршрут	Запросы	Ошибки	Среднее	Мин.	Макс.	Сред.	RPS	Ошибки	
			(мс)	(мс)	(мс)	размер		/ c	
						(байт)			
/levels	6743	0	85	3	676	506	111.8	0.0	
/stats	20486	0	161	2	1151	331	339.5	0.0	
Итого	27229	0	142	2	1151	374	451.3	0.0	

Продолжение таблицы 12

Статистика ответов										
Маршрут	50%ile	60%ile	70%ile	80%ile	90%ile	95%ile	99%ile	100%ile		
	(мс)									
/levels	78	94	110	130	160	180	220	680		
/stats	110	140	190	270	370	460	630	1200		
Итого	100	130	160	210	330	430	600	1200		

Изменения частоты запросов, времени ответа и количества пользователей показаны на рисунке 30.

Рисунок 30 — Результаты нагрузочного тестирования обращения к БД через слой бизнес-логики

Тестируемые компоненты в ходе тестирования работали корректно, полученные задержки находятся в допустимых пределах.