

/M3a/ We need a strategy for carefully selecting a sequence of function queries Dun: {6(i), y(i)?" where y(i) = f(6(i)) Bayesian optimization Involves two main components: A/ A prior probabilishe belief p(f/D) for the function. Here we usually employ a GP This will be updated in every theator, An acquisition function A (O10)

- a heuristic that behances exploration against explositation and determines where to evaluate $f(\theta)$ next. Pseudo-code for Bayer Opt 1. Select intral $\Theta_{k}^{(1)}$, $\Theta_{k}^{(2)}$, $\Theta_{k}^{(k)}$ where $K \ge 2$ 2. Evaluate $A(\Theta)$ to obtain $y_{0}^{(1)}$, $y_{0}^{(2)}$, $y_{0}^{(k)}$ i.e. $f_n^{(i)} = f(f_n^{(i)})$ for i = 1, ..., K3. Initialize a data vector 0 = \$ (0(1) y(1)) \ \(j_{i=1}^{(i)} \) 4. Select a statistical model p(7104)

a pre-defined max budget of function evaluations Acquisition functions Assume that our statistical model $p(f/O_n) = y - N(\mu, \sigma^2),$ where $\mu(\theta)$ and $\sigma(\theta)$ will be gven by the covariance Anchon C(0,0') and the current data Dr Also, suppose from = min (yn) Two popular acquestion finctions: · Lower Confrdence Bound ALCO (0) = BO(0) - MO) (Maximum occurs at the B-enlarged credibility region of the GP) Often B=2 (larger means more explorative)

