Tutorial=3 Intermation & Communication

(crain fule and nutual Information) The conditional mutual information of Random variables X and Y given Z is defined by I(X;Y|Z) = H(X|Z) - H(X|Y,Z)(a) Prove that (Chain Rule for Mutual Information) $I(X_1, Y_2, ..., X_m; Y) = \sum_{i=1}^{n} I(X_i; Y | X_{i+1}, Y_{i+2}, ..., X_i)$ Prove that I (xiy (Z) >0 with equality if and only if P(n/z). P(y/z) = p(n,y/z) Suppose if p(n,y,3)=p(n).p(y)n).p(3)y) then prove that ICX;Y) > I(X;Z)

(C)

Problem - I (Functions of Pandom Variables) (a) Let X and Y be two random variables on the set of non-negative integers. Show that if Y = 2 X then H(X|Y) = H(Y|X) = 0 (b) Let Y = g(X) for some function of Show that H(Y|X) = 0. Under what conditions on y is H(X|Y) also = 0? Analyze

$$E = \begin{cases} 1 & \text{if } \lambda \neq \chi \\ 0 & \text{if } \lambda = \chi \end{cases}$$

Prove that

Problem - 3 (Chain Rule)

Let 2 Xi, 1 = i = 3} be random variables over 20,13. Let y be a random variable over 20,13.

71172	X ₁ = 0	χ ₁ = 0	X1 = 1) = 1 X
X317	X2 = 0	72-1	12:0	× 2= 1
x ₃ =0 y=0	 - - 	<u> </u> 64	<u> </u> 32	<u> </u> 64
×3=0 ×3=1	<u> </u> 32	<u> </u>	<u> </u> 32	<u>L</u> 64
73=1 7=0	<u> </u> 64	16	16	18
X3:1 Y=1	1	<u> </u> c	16	<u>L</u>

Check if

$$(A) \qquad H(X_{1},X_{2},X_{3}) = H(X_{1}) + H(X_{2}|X_{1}) + H(X_{3}|X_{2},X_{1})$$

(b)
$$H(X_{11}X_{21}X_{3}|Y) = H(X_{1}|Y) + H(X_{2}|X_{11}Y) + H(X_{3}|X_{21}|X_{11}Y)$$