Random Geometric Graphs

A collection of notes from my time working under the supervision of Mathew Penrose on random geometric graph theory and related topics.

Jacob Green
Department of Mathematical Sciences, The University of Bath

October 18, 2024

Abstract

Suspendisse vitae elit. Aliquam arcu neque, ornare in, ullamcorper quis, commodo eu, libero. Fusce sagittis erat at erat tristique mollis. Maecenas sapien libero, molestie et, lobortis in, sodales eget, dui. Morbi ultrices rutrum lorem. Nam elementum ullamcorper leo. Morbi dui. Aliquam sagittis. Nunc placerat. Pellentesque tristique sodales est. Maecenas imperdiet lacinia velit. Cras non urna. Morbi eros pede, suscipit ac, varius vel, egestas non, eros. Praesent malesuada, diam id pretium elementum, eros sem dictum tortor, vel consectetuer odio sem sed wisi.

Keywords: Random geometric graphs, Poisson Point Processes

Contents

1	Intr	roduction
	1.1	What is a random geometric graph?
	1.2	Counting Edges of $G(\mathcal{X}_n, r_n)$ and $G(\mathcal{P}_n, r_n)$
	1.3	A central limit theorem for our edge counts
_		1.
2	Appendices	
	2.1	Appendix A: Poisson Point Processes
	2.2	Appendix B: Existence Of High Density Packings
	2.3	Appendix C: A new bound for sphere packing in \mathbb{R}^d as $d \to \infty$

1 Introduction

1.1 What is a random geometric graph?

Definition 1.1 (geometric graph)

Let $\mathcal{X} \subset \mathbb{R}^d$ be a finite collection of points and r > 0. The geometric graph $G(\mathcal{X}, r)$ is the graph with vertex set \mathcal{X} and edge set $\{\{x,y\} \subset \mathcal{X} : |x-y| \leq r\}$, where $|\cdot|$ denotes the Euclidean norm.

We can turn this into a random graph by letting the set $\mathcal{X} \subset \mathbb{R}^d$ be random. The resulting structure $G(\mathcal{X}, r)$ is said to be the random geometric graph (A.K.A the Gilbert graph). The first structure we'll consider is found by uniformly scattering n points in the d-dimensional hypercube $[0, 1]^d$.

Example 1.2 (fixed scale geometric graph)

Let $\xi_1, \xi_2, \ldots \stackrel{\text{i.i.d}}{\sim} \text{Unif}[0,1]^d$ and fix a sequence $(r_n)_{n\geq 1}$ in $\mathbb{R}_{>0}$. Let $\mathcal{X}_n := \{\xi_1, \ldots, \xi_n\}$. Then $G(\mathcal{X}_n, r_n)$ is the fixed scale geometric graph at time $n \geq 1$.

We will also consider what happens when the number of vertices is Poisson.

Example 1.3 (Poisson scale geometric graph)

Let $\xi_1, \xi_2, \ldots \stackrel{\text{i.i.d}}{\sim} \text{Unif}[0, 1]^d$ and $N_n \sim \text{Poisson}(n)$ for $n \geq 1$ be independent of (ξ_1, ξ_2, \ldots) . Let $\mathcal{P}_n := \{\xi_1, \ldots, \xi_{N_n}\}$ and fix a sequence $(r_n)_{n \geq 1}$ in $\mathbb{R}_{>0}$. Then the random geometric graph $G(\mathcal{P}_n, r_n)$ is the d-dimensional Poisson scale geometric graph at time $n \geq 1$.

As one may expect, the vertices of this graph form a Poisson point process in \mathbb{R}^d . This was originally an exercise (1.1) in [2].

Proposition 1.4 ($\mathcal{P}_n(\cdot)$ is a Poisson point process)

Let \mathcal{P}_n be the vertex set in the Poisson scale geometric graph. Then $\mathcal{P}_n(\cdot): A \mapsto |\mathcal{P}_n \cap A|$, where $A \subset [0,1]^d$ is measurable and $|\cdot|$ is the counting measure, is a *Poisson point process* with intensity $\lambda(A), \lambda(\cdot)$ the Lebesgue measure on \mathbb{R}^n .

See Appendix A for the definition of the Poisson point process.

Proof. Write $\mathcal{P}_n(A_j) = \sum_{i=1}^{N_n} \mathbf{1}\{\xi_i \in A_j\}$. Then, conditioning on $\{N_n = m\}$, each $\mathcal{P}_n(A_j)$ is a $\text{Binom}(m, \lambda(A_j))$ random variable, making the joint distribution (also conditioned on $\{N_n = m\}$) a $\text{Multinom}(m, \lambda(A_1), \ldots, \lambda(A_k))$. Thus one has

$$\mathbb{P}(\mathcal{P}_n(A_1) = a_1, \dots, \mathcal{P}_n(A_k) = a_k) = \underbrace{\left(\frac{e^{-n}n^m}{m!}\right)}_{\text{Poisson}(n;m)} \times \underbrace{\left(\frac{m}{j_1, \dots, j_k}\right) \prod_{i=1}^k (\lambda(A_i))^{j_i}}_{\text{Multinom}(m, \lambda(A_1), \dots, \lambda(A_k); j_1, \dots, j_k)}$$
$$= \prod_{i=1}^k \frac{e^{-n\lambda(A_i)} (n\lambda(A_i))^{j_i}}{(j_i)!}$$

which is a product of the distributions $Poisson(n\lambda(A_i)), 1 \leq i \leq k$, giving us both of our defining properties of a Poisson point process.

The exercise (1.2) in [2] states the following result, which we'll prove in an analogous way.

Proposition 1.5 (expected degree of k^{th} vertex in fixed scale RGG)

Consider the fixed scale random geometric graph $G(\mathcal{X}_n, r_n)$ with $r_n \to 0$ as $n \to \infty$. Let $D_{k,n}$ be the degree of the first vertex ξ_k , then $\mathbb{E}[D_{k,n}] \sim \theta n r_n^d$.

Proof. Write $D_{k,n} = \sum_{i \neq k} \mathbf{1}\{|\xi_k - \xi_i| \leq r\}$, then we have $D_{k,n} \sim \text{Binom}(n-1,p)$ with

$$p = \lambda(B_{r_n}(\xi_k) \cap [0,1]^d)$$

where $B_{r_n}(\xi_k)$ is the hypersphere radius r_n centred at ξ_k and λ the Lebesgue measure on \mathbb{R}^d . Now, conditioning on ξ_k , we have

$$\mathbb{E}[D_{k,n}|\xi_k] = (n-1)\lambda(B_{r_n}(\xi_k) \cap [0,1]^d)$$

and hence, by the total law of expectation.

$$\mathbb{E}[D_{k,n}] = \mathbb{E}[\mathbb{E}[D_{k,n}|\xi_k]]$$

$$= (n-1) \int_{[0,1]^d} \lambda(B_{r_n}(\xi_k) \cap [0,1]^d) d\xi_k$$

$$\sim n \int_{[0,1]^d} \lambda(B_{r_n}(\xi_k)) d\xi_k \sim n(\theta r_n^d)$$

Where the first asymptotic equality follows via the dominated convergence theorem (to see this, observe $B_{r_n}(\xi_k) \cap [0,1]^d \to B_{r_n}(\xi_k)$ A.E. and $B_{r_n}(\xi_k)$ also dominating). Note θ is a constant depending on d, and is the coefficient of r_n^d in the formula for the volume of a hypersphere radius r_n .

1.2 Counting Edges of $G(\mathcal{X}_n, r_n)$ and $G(\mathcal{P}_n, r_n)$

The number of edges \mathcal{E}_n , \mathcal{E}'_n in $G(\mathcal{X}_n, r_n)$ and $G(\mathcal{P}_n, r_n)$ respectively is a Poisson random variable. To prove this, we'll use a so called *dependency graph*. We handle the two RGGs $G(\mathcal{X}_n, r_n)$ and $G(\mathcal{P}_n, r_n)$ separately.

Counting edges of $G(\mathcal{X}_n, r_n)$

An elementary question to ask is "what is the expected edge count at time n?". Via the previously derived vertex degree asymptotics, we have an easy asymptotic result.

Proposition 1.6 (expected edge count in fixed scale RGG)

Let \mathcal{E}_n and \mathcal{E}'_n be the number of edges in $G(\mathcal{X}_n, r_n)$ and $G(\mathcal{P}_n, r_n)$ respectively. Then,

$$\mathbb{E}[\mathcal{E}_n] \sim \theta n^2 r_n^d / 2$$

Proof of lemma. By the handshaking lemma we have $2\mathbb{E}[\mathcal{E}_n] = \sum_{k=1}^n \mathbb{E}[D_{k,n}] \sim n^2 r_n^d$.

Now we introduce the dependency graph.

Definition 1.7 (dependency graph)

Let (V, \sim) be a finite simple graph w/ edge relation \sim and vertex set V. We say (V, \sim) is a dependency graph for the random variables $(W_{\alpha})_{\alpha \in V}$ if whenever $A, B \subset V$ are disjoint with no $\alpha \in A, \beta \in B$ such that $\alpha \sim \beta$ (i.e. A and B lie in unique connected components) then

$$(W_{\alpha})_{\alpha \in A} \perp (W_{\beta})_{\beta \in B}$$
 i.e. are independent families

When we take the random variable associated with each vertex to be 0-1, we obtain the following bound.

Lemma 1.8 (Poisson approximation lemma for Bernoulli sums)

Let $(\xi_i)_{i\in I}$ be a finite collection of Bernoulli random variables with dependency graph (I, \sim) . Set $p_i := \mathbb{P}(\xi_i = 1), \ p_{ij} := \mathbb{P}(\xi_i = 1; \xi_j = 1)$ and suppose $\lambda := \sum_{i\in I} p_i$ is finite. Then, letting $W := \sum_{i\in I} \xi_i$, we have (LHS is just total variation distance)

$$\sum_{k\geq 0} \left| \mathbb{P}[W=k] - \mathbb{P}(\operatorname{Po}(\lambda) = k) \right| \leq \min\{6, 2\lambda^{-1}\} \left(\sum_{i\in I} \sum_{\mathcal{N}(i)\setminus\{i\}} p_{ij} + \sum_{i\in I} \sum_{j\in\mathcal{N}(i)} p_i p_j \right)$$

Proof. Omitted, consult [4].

Theorem 1.9 (total variation between edge and Poisson distribution)

Let $\lambda_n := \mathbb{E}[\mathcal{E}_n]$. Then

$$\sum_{k>0} |\mathbb{P}(\mathcal{E}_n = k) - \mathbb{P}(\operatorname{Po}(\lambda_n) = k)| = O(nr^d)$$

The idea of this proof is to write $\mathcal{E}_n = \sum_{1 \leq i < j \leq n} \mathbf{1}\{|\xi_i - \xi_j| \leq r_n\}$, i.e. the number of edges as the sum of the indicators over all possible edges indicating whether this edge exists. This has a rather obvious dependency graph and hence we can apply the Poisson approximation lemma (1.7) with some work on the asymptotics.

Proof. Let $V\{\{i,j\}: 1 \leq i < j \leq \}$ and define \sim by $\alpha \sim \beta$ if $\alpha \cap \beta \neq \emptyset$ and $\alpha \neq \beta$. Define the random variables $W_{\alpha} = \mathbf{1}\{|\xi_i - \xi_j| \leq r_n\}$ for $\alpha \in V$ and let $\lambda_n := \sum_{\alpha \in V} p_{\alpha}$.

Claim: $G(V, \sim)$ is a dependency graph for $(W_{\alpha})_{\alpha \in V}$.

Proof of claim. Follows immediately from the independence of the ξ_i .

Let $p_{\alpha} := \mathbb{P}(W_{\alpha} = 1)$ and $p_{\alpha\beta} := \mathbb{P}(W_{\alpha} = 1; W_{\beta} = 1)$, as in the setup of lemma 1.7.

Claim: $p_{\alpha} \sim \theta r_n^d$

Proof of claim. Fix $\alpha = \{i, j\} \in V$. Then, letting $\lambda(\cdot)$ be the Lebesgue measure on \mathbb{R}^d ,

$$p_{\alpha} = \mathbb{P}(|\xi_i - \xi_j| \le r_n) = \int_{v \in [0,1]^d} \mathbb{P}(|\xi_i - \xi_j| \le r_n |\xi_i = v) dv$$
$$= \int_{v \in [0,1]^d} \lambda(B_{r_n}(v) \cap [0,1]^d) dv$$
$$\sim \int_{v \in [0,1]^d} \lambda(B_{r_n}(v)) dv \sim \theta r_n^d$$

where the first asymptotic equality follows from the dominated convergence theorem.

Claim: $p_{\alpha\beta} \sim (\theta r_n^d)^2$

Proof of claim. An analogous argument works.

Now we have all our ingredients, lets cook. Observe, from the previously computed asymptotics,

$$\lambda_n \sim n^2 \theta r_n^d / 2$$
 and $\sum_{\alpha \in V} p_\alpha^2 \sim \theta \lambda_n r_n^d$

and hence by counting $|\mathcal{N}(\alpha)| = 2(n-2)$, obtain

$$\sum_{\alpha \in V} \sum_{\beta \sim \alpha} (p_{\alpha\beta} + p_{\alpha}p_{\beta}) \sim \binom{n}{2} \times 2(n-2) \times 2(\theta r_n^d)^2 = O(n\lambda_n r_n^d)$$

which by the Poisson approximation lemma gives

$$\sum_{k\geq 0} |\mathbb{P}(\mathcal{E}_n = k) - e^{-\lambda_n} \lambda_n^k / k!| = O(nr_n^d)$$

as claimed. \Box

Corollary 1.10 (edge distribution of the fixed scale random geometric graph)

If the limit $\lambda_n \to \lambda \in (0, \infty)$ exists and $nr_n^d \to 0$, then $\mathcal{E}_n \xrightarrow{\mathcal{D}} \text{Poisson}(\lambda)$

Proof. By proposition 1.6, we have $\lambda \sim \lambda_n \sim \theta n^2 r_n^d/2 \Rightarrow n^2 r_n^d \sim 2\lambda/\theta \in (0, \infty)$ which forces $n r_n^d \to 0$ and hence lemma 1.8 applies giving $\mathcal{E}_n \xrightarrow{\mathcal{D}} \operatorname{Poisson}(\lambda)$.

Counting edges of $G(\mathcal{P}_n, r_n)$

We now spend the rest of the (sub)section proving similar results for $G(\mathcal{P}_n, r_n)$. Before proceeding we have the following lemma from [2]. We write $\mathcal{P}_{<\infty}(A)$ for the family of finite subsets of A.

Lemma 1.11 (Mecke formula)

Let $k \in \mathbb{N}$. For any measurable $f: (\mathbb{R}^d)^k \times \mathcal{P}_{<\infty}([0,1]^d) \to \mathbb{R}$, when the expectation exists,

$$\mathbb{E}\sum_{X_1,\ldots,X_k\in\mathcal{P}_n}^{\neq} f(X_1,\ldots,X_k,\mathcal{P}_n\setminus\{X_1,\ldots,X_n\}) = n^k \int \cdots \int \mathbb{E}f(x_1,\ldots,x_k,\mathcal{P}_n) dx_1\ldots dx_k$$

where \sum^{\neq} denotes the sum over the ordered k-tuples of distinct points (in \mathcal{P}_n).

Proof. The idea is to condition on the number of points in \mathcal{P}_n . Observe,

$$\mathbb{E} \sum_{X_{1},...,X_{k} \in \mathcal{P}_{n}}^{\neq} f(X_{1},...,X_{k},\mathcal{P}_{n} \setminus \{X_{1},...,X_{n}\})$$

$$= \mathbb{E} \left[\mathbb{E} \left[\sum_{X_{1},...,X_{k} \in \mathcal{P}_{n}}^{\neq} f(X_{1},...,X_{k},\mathcal{P}_{n} \setminus \{X_{1},...,X_{n}\}) \middle| |\mathcal{P}_{n}| = m \right] \right]$$

$$= \sum_{m \geq k} \left(\frac{e^{-n}n^{m}}{m!} \right) \sum_{X_{1},...,X_{k} \in \{\xi_{1},...,\xi_{m}\}}^{\neq} \mathbb{E} f(X_{1},...,X_{k},\{X_{k+1},...,X_{m}\})$$

$$= \sum_{m \geq k} \left(\frac{e^{-n}n^{m}}{m!} \right) \left(\prod_{i=1}^{k} (m-i+1) \right) \mathbb{E} f(X_{1},...,X_{k},\{X_{k+1},...,X_{m}\})$$

$$= \sum_{m \geq k} \left(\frac{e^{-n}n^{m}}{m!} \right) \left(\prod_{i=1}^{k} (m-i+1) \right) \int_{[0,1]^{d}} ... \int_{[0,1]^{d}} f(x_{1},...,x_{k},\{x_{k+1},...,x_{m}\}) dx_{1} ... dx_{m}$$

$$= n^{k} \sum_{m \geq k} \left(\frac{e^{-n}n^{m-k}}{(m-k)!} \right) \int_{[0,1]^{d}} ... \int_{[0,1]^{d}} f(x_{1},...,x_{k},\{x_{k+1},...,x_{m}\}) dx_{1} ... dx_{m}$$

$$= n^{k} \int_{[0,1]^{d}} ... \int_{[0,1]^{d}} \mathbb{E} f(x_{1},...,x_{k},\mathcal{P}_{n}) dx_{1} ... dx_{k}$$

$$= n^{k} \int_{[0,1]^{d}} ... \int_{[0,1]^{d}} \mathbb{E} f(x_{1},...,x_{k},\mathcal{P}_{n}) dx_{1} ... dx_{k}$$

Where (†) follows from the ξ_i being i.i.d, so all expectations are equal and it suffices to count distinct k-tuples in $\{\xi_1, \dots, \xi_m\}$. [CHECK THIS PROOF W/ PENROSE]

We can now use this lemma to find the expected number of edges in $G(\mathcal{P}_n, r_n)$.

Proposition 1.12 (expected edge count in Poisson scale RGG)

Let $G(\mathcal{P}_n, r_n)$ be the Poisson scale RGG and \mathcal{E}_n be the number of edges at time n. Then,

$$\mathbb{E}[\mathcal{E}_n] \sim \theta n^2 r_n^d / 2$$

Proof. Write $\mathcal{E}_n = \frac{1}{2} \sum_{X_1, X_2 \in \mathcal{P}_n}^{\neq} \mathbf{1} \{ \|X_1 - X_2\| \le r_n \}$. Then we can use Mecke's formula as follows.

$$\mathbb{E}[\mathcal{E}_n] = \frac{1}{2} \mathbb{E} \left[\sum_{X_1, X_2 \in \mathcal{P}_n}^{\neq} \mathbf{1} \{ \|X_1 - X_2\| \le r_n \} \right]$$
(Mecke)
$$= \frac{n^2}{2} \int_{[0,1]^d} \int_{[0,1]^d} \mathbb{E}[\mathbf{1} \{ \|x_1 - x_2\| \le r_n \}] dx_1 dx_2$$

$$= \frac{n^2}{2} \int_{[0,1]^d} \int_{[0,1]^d} \mathbf{1} \{ \|x_1 - x_2\| \le r_n \} dx_1 dx_2$$

$$= \frac{n^2}{2} \int_{[0,1]^d} \lambda(B(x_1, r_n) \cap [0, 1]^d) dx_1 \sim \theta n^2 r_n^d / 2$$

where the final asymptotic equality follows from the dominated convergence theorem and volume of a d-dimensional hypersphere. Note we have already seen the asymptotics for the final integral.

Rest follows on from Exercise (2.2), too small brained to figure it out right now will attempt again tomorrow :<

1.3 A central limit theorem for our edge counts

Lemma 1.13 (Falling factorial moment for the Poisson distribution)

Let $X \sim \text{Poisson}(\lambda)$ and fix $k \in \mathbb{N}$. Then $\mathbb{E}[X(X-1)...(X-k+1)] = \lambda^k$

Proof. This follows by the following simple calculation.

$$\mathbb{E}[X(X-1)\cdots(X-k+1)] = \sum_{x\geq 0} x(x-1)\cdots(x-k+1)\frac{e^{-\lambda}\lambda^x}{x!}$$
$$= e^{-\lambda}\sum_{x\geq k} x(x-1)\cdots(x-k+1)\frac{\lambda^x}{x!} = \lambda^k e^{-\lambda}\sum_{x\geq k} \frac{\lambda^{x-k}}{(x-k)!} = \lambda^k$$

2 Appendices

2.1 Appendix A: Poisson Point Processes

For a full treatment, consult [3]. Here I will simply give the relevent definitions and results from this text, leaving proofs (unless containing a particularly important idea) to [3].

Definition 2.14 (point process)

Let $(\mathbb{X}, \mathcal{X})$ be a measure space and let $\mathbf{N}(\mathbb{X}) \equiv \mathbf{N}$ be the family of measures that can be written as a countable sum of finite measures on \mathbb{X} with image in \mathbb{N}_0 . Let $\mathcal{N}(\mathbb{X}) \equiv \mathcal{N}$ be the σ -algebra generated by the collection of subsets $\{\mu \in \mathbf{N} : \mu(A) = k\}$ over $A \in \mathcal{X}, k \in \mathbb{N}_0$. A point process on \mathbb{X} is a random element η of the measure space $(\mathbf{N}, \mathcal{N})$

Definition 2.15 (Poisson point process)

Let \mathbb{X} be a space and λ an s-finite measure on \mathbb{X} . A *Poisson point process* with intensity measure λ is a point process η on \mathbb{X} with

- (i) $\eta(A) \sim \text{Poisson}(\lambda(A))$, that is $\eta(A)$ is Poisson with parameter $\lambda(A)$
- (ii) If $A_1, \ldots, A_n \in \mathbb{X}$ are pairwise disjoint then $\eta(A_1), \ldots, \eta(A_n)$ are independent.

2.2 Appendix B: Existence Of High Density Packings

Here I take some notes on chapter 7 of Pach & Agarwals combinatorial geometry [WILEY GIVES BAD CITATION], hoping to find bridges between random geometric graphs and combinatorial geometry.

As the title suggests, we spend this section looking for the existence of high density packings in \mathbb{R}^d . We take a non construct approach, instead turning to the probabilistic method. For a convex body $C \subset \mathbb{R}^d$, denote the maximal packing (respectively, minimal covering) density by $\delta(C)$ (respectively, $\vartheta(C)$).

Let us first consider $C = B^d \subset \mathbb{R}^d$, the d-dimensional ball. Then one has the following easy observation.

Proposition 2.16 (easy lower bound for $\delta(B^d)$)

Let $B^d \subset \mathbb{R}$ be the d-dimensional unit ball. Then,

$$\delta(B^d) > 2^{-d}\vartheta(B^d) > 2^{-d}$$

Proof. The latter inequality is trivial $(\vartheta(C) \geq 1)$. For the former, let us consider a saturated packing $\mathcal{B} = \{B^d + c_i | i \in \mathbb{N}\}$ (that is, a packing such that no body can be added without intersecting a pre-existing body) and the factor 2 enlargement $\mathcal{B}' = \{2B^d + c_i | i \in \mathbb{N}\}$.

Claim: \mathcal{B}' is a covering of \mathbb{R}^d .

Proof of claim. Suppose $x \notin \bigcup_{B \in \mathcal{B}'} B$. Then we have $|x - c_i| > 2$ for each $i \geq 1$, which gives

$$(B^d + c_i) \cap (B^d + x) = \emptyset, \quad i > 1$$

Contradiction!

Hence, letting $d(C, \mathbb{R}^d)$ denote the density of a body C in \mathbb{R}^d , we clearly have

$$\vartheta(B^d) \le d(\mathcal{B}', \mathbb{R}^d) = 2^d d(\mathcal{B}, \mathbb{R}^d) \le 2^d \delta(B^d)$$

and the result is proven.

In high dimensional Euclidean space, this trivial bound was the best bound known, up to a constant, for a long time! In fact, no construction of saturated lattice packings of balls is known (again, in high dimensional space), worth checking if this has changed since time of writing. This is surprising, given the obvious drawbacks of this argument. If we saturate a packing by continuously adding balls, we can't control the structure of this packing.

Let $\delta_L(C)$ be the maximal lattice packing density of C into \mathbb{R}^d . Using techniques developed by Minkowski and Hlawka, we can prove $\delta_L(B^d) > 2^{-d}$. Namely, we can affirm the existence of a lattice packing strictly outperforming our previously derived lower bound of 2^{-d} .

Definition 2.17 (star-shaped body)

Let $C \subset \mathbb{R}^d$ be compact. We call C a *star-shaped body* if **0** is in the interior of C and has the relation $\mathbf{x} \in C \Rightarrow \lambda \mathbf{x} \in C$ for all $\lambda \in [0,1]$.

Definition 2.18 (admissible latice)

Let $\Lambda = \Lambda(u_1, \dots, u_d) = \{m_1u_1 + \dots + m_du_d | m_1, \dots, m_d \in \mathbb{Z}\}$ be a lattice in \mathbb{R}^d and let C be a star-shaped body. Then Λ is said to be *admissible* for C if it contains no interior point of $C \setminus \{0\}$.

Definition 2.19 (critical determinant)

Let C be a star-shaped body. The *critical determinant* of C is defined by

$$\Delta(C) := \inf \{ \det \Lambda | \Lambda \text{ is admissible for } C \}$$

Lemma 2.20 (Mahler selection theorem - 1946)

Let $\Lambda_1, \Lambda_2, \ldots$ be an infinite sequence of lattices in \mathbb{R}^d that have constants $\alpha, \beta > 0$ satisfying, for $i \geq 1$,

- (i) Λ_i is admissible for αB^d
- (ii) $\det \Lambda_i \leq \beta$

Then we can select a convergent subsequence $\Lambda_{i_1}, \Lambda_{i_2}, \dots \to \Lambda$.

Proof. Given as exercise, solve at some point.

This lemma allows us to prove that the infimum is obtained (verify this also), giving us the following reformulation of Minkowski's fundamental theorem (or as I prefer, Minkowski's pidgeonhole principle).

Theorem 2.21 (Minkowski's critical determinant lower bound)

For any centrally symmetric convex body $C \subset \mathbb{R}^d$,

$$\frac{\Delta(C)}{\mathrm{vol}C} \geq \frac{1}{2^d}$$

Finding an upper bound for the ratio $\Delta(C)/\text{vol}C$ turns out the be much harder. Minkowski was able to give an upper bound, when $C=B^d$, of $\frac{1}{2}(\zeta(d))^{-1}$ where $\zeta(\cdot)$ is the Reimman zeta function. We prove, thanks to Hlawka, a generalisation of Minkowski's result.

Lemma 2.22 (Davenport & Rogers)

Let $f: \mathbb{R}^d \to \mathbb{R}$ be a continuous map that vanishes outside of some bounded region. For $\gamma \in \mathbb{R}$ set

$$V(\gamma) := \int_{\mathbb{D}} \cdots \int_{\mathbb{D}} f(x_1, \dots, x_{d-1}, \gamma) dx_1 \cdots dx_{d-1}$$

Fix $\delta > 0$ and let Λ' be the integer lattice in the hyperplane $x_d = 0$. For a vector $y \in \mathbb{R}^d$ of the form $y = (y_1, \dots, y_{d-1}, \delta)$ define Λ_y as the lattice generated by y and Λ' . Then,

$$\int_0^1 \cdots \int_0^1 \left(\sum_{x \in \Lambda_y, x_d \neq 0} f(x) \right) dy_1 \cdots dy_{d-1} = \sum_{i \in Z \setminus \{0\}} V(i\delta)$$

Proof. Looks like a routine computation but theres one line dependent on voodoo magic, can't wrap my head around it :(

Now for our generalisation. We work, as suggested, with the probabilistic method.

Theorem 2.23 (Hlawka's theorem)

Let $f: \mathbb{R}^d \to \mathbb{R}$ be a bounded Reimann integrable function that vanishes outside of some bounded region and let $\epsilon > 0$. Then there exists a unit lattice Λ in \mathbb{R}^d with

$$\sum_{\mathbf{0} \neq x \in \Lambda} f(x) < \int_{\mathbb{R}^d} f(x) \mathrm{d}x + \epsilon$$

Proof.

2.3 Appendix C: A new bound for sphere packing in \mathbb{R}^d as $d \to \infty$

Notes based off of [1]. Campos utilises a Poisson random geometric graph to improve Hayes' 1947 bound on the density of the sphere packing problem in high dimensional \mathbb{R}^d by a factor of $\log d$.

We denote the maximal density unit-volume sphere packing in \mathbb{R}^d by $\theta(d)$. In this note, we follow the work of Campos et al to prove $\theta(d) \to (1-o(1))\frac{d \log d}{2^{d+1}}$ as $d \to \infty$. It is worth noting that this is still an exponential factor behind the best upper bound, which currently is $2^{(-0.599\cdots+o(1))d}$. An explicit value of $\theta(d)$ is only known for $d \in \{1, 2, 3, 8, 24\}$.

Theorem 2.24 ($\theta(d)$ bound)

As $d \to \infty$, one has

$$\theta(d) \ge (1 - o(1)) \frac{d \log d}{2^{d+1}}$$

Of particular importance is the structural irregularity of the packings used to prove this theorem. Previous work relied on lattice packings, whereas this work constructs packings by recursively adding random spheres to \mathbb{R}^d that are centred on points of an appropriately modified Poisson process.

Campos & Co also managed to adapt their techniques to the problem of spherical codes. I will elect to leave that to their paper (see thm1.2 [1]).

Proof of $\theta(d)$ bound

Here I describe the method.

- (i) Discretize space with a Poisson process at a carefully chosen intensity.
- (ii) Impose additional uniformity properties on the discrete point set given in (i) and call this space $X \subset \mathbb{R}^d$.
- (iii) Consider geometric graph $G = G(X, 2r_d)$, r_d the radius of the d-dimensional unit-ball.
- (iv) Bound $\alpha(G)$, the largest independent set in G.

In regards to step (4) we have the following new tool, certainly of independent interest. Let $\Delta(G)$ be the maximum vertex degree and let $\Delta_{co}(G)$ denote the maximum codegree (that is, the maximal size of $|\mathcal{N}(u) \cap \mathcal{N}(v)|$ over vertices $u, v \in V$).

Theorem 2.25 ($\alpha(G)$ bound)

Let G be a graph on n vertices with $\Delta(G) \leq \Delta$ and $\Delta_{co}(G) \leq C\Delta(\log \Delta)^{-c}$. Then,

$$\alpha(G) \ge (1 - o(1)) \frac{n \log \Delta}{\Delta}$$

where $o(1) \to 0$ as $\Delta \to \infty$.

In fact, one can take $C=2^{-7}$ and c=7. In fact, this bound is sharp up to some constants c and C. To see this, ... [WRITE UP PROOF AT SOME POINT, I GET THE ROUGH IDEA BUT CAN'T FORMALISE].

With this tool, the proof of our $\theta(d)$ bound is remarkably easy. To do so, we just need the following lemma.

Lemma 2.26 (large uniform geometric graphs)

Let $\Omega \subset \mathbb{R}^d$ be bounded and measurable. Then $\forall d \geq 1000 \; \exists X \subset \Omega$ with

$$|X| \ge (1 - 1/d) \frac{\Delta}{2^d} \text{Vol}(\Omega), \text{ where } \Delta = \left(\frac{\sqrt{d}}{4 \log d}\right)^d$$

and, setting $G = G(X, r_d)$ we have

$$\Delta(G) \le \Delta(1 + \Delta^{-1/3})$$
 and $\Delta_{co} \le \Delta e^{-(\log d)^2/8}$

Proof of $\theta(d)$ bound. Fix R > 0 and set $\Omega = B_0(R)$. It suffices to prove that we can place

$$(1 - o(1)) \operatorname{Vol}(\Omega) \frac{d \log d}{2^{d+1}}$$

points each at pairwise distance bounded below (weakly) by $2r^d$. The previous lemma gives us $X \subset \Omega$ with

$$|X| \ge (1 - o(1)) \operatorname{Vol}(\Omega) \Delta 2^{-d}$$

with $G(X, 2r_d)$ satisfying the conditions of our $\alpha(G)$ bound. Applying this gives an independent set I with

$$|I| \ge (1 - o(1)) \frac{|X| \log \Delta}{\Delta} \ge (1 - o(1)) \operatorname{Vol}(\Omega) \frac{d \log d}{2^{d+1}}$$

and we're done. \Box

Proving the the lemma will take some more work. I'll come back to it soon. Interestingly enough I see it uses the Mecke equation quite a few times, a lemma seen in Penrose's work.

References

- [1] Marcelo Campos, Matthew Jenssen, Marcus Michelen, and Julian Sahasrabudhe. A new lower bound for sphere packing, 2023.
- [2] Michael Krivelevich, Konstantinos Panagiotou, Mathew Penrose, and Colin McDiarmid. *Random Graphs, Geometry and Asymptotic Structure*. London Mathematical Society Student Texts. Cambridge University Press, 2016.
- [3] Günter Last and Mathew Penrose. Lectures on the Poisson Process. Institute of Mathematical Statistics Textbooks. Cambridge University Press, 2017.
- [4] Mathew Penrose. Random Geometric Graphs. Oxford University Press, 05 2003.