2023 H2 MATH (9758/01) JC 2 PRELIMINARY EXAMINATION – SUGGESTED SOLUTIONS

Qn	Solution
1	Graphing Techniques
(a)	Finding asymptotes for C_1 :
	$\frac{\left(x-2\right)^2}{3^2} - \frac{y^2}{2^2} = 0$
	$\left(\frac{\sqrt{3^2}-\frac{3}{2^2}}{2^2}\right)=0$
	$y = \pm \frac{2}{3}(x-2)$
	$y = \pm \frac{1}{3}(x-2)$
	$y = -\frac{2}{3}x + \frac{4}{3} \qquad y$
	(-1,0) O $(5,0)$ x
	(2,0)
	C_1
	$\begin{bmatrix} & & & & \\ & 2 & 4 & \end{bmatrix}$
	$y = \frac{2}{3}x - \frac{4}{3}$
	2 4

(b) C_2 is a circle centred at (2,0) with radius k.

For C_1 and C_2 to intersect exactly twice, k = 3.

On	Solution
Qn 2	Techniques of Integration
(a)	$\frac{\mathrm{d}}{\mathrm{d}x}\left(\mathrm{e}^{x^2+2x}\right) = (2x+2)\mathrm{e}^{x^2+2x}$
	$\int_0^1 (x+1) e^{x^2+2x} dx = \frac{1}{2} \int_0^1 2(x+1) e^{x^2+2x} dx$
	$= \frac{1}{2} \left[e^{x^2 + 2x} \right]_0^1$
	$=\frac{1}{2}\Big[e^3-e^0\Big]$
	$=\frac{1}{2}\left(e^3-1\right)$
(b)	$x = \sin t \Rightarrow \frac{\mathrm{d}x}{\mathrm{d}t} = \cos t$
	$\int \frac{1}{\left(1-x^2\right)^{\frac{3}{2}}} \mathrm{d}x$
	$= \int \frac{1}{(1-\sin^2 t)^{\frac{3}{2}}} \cos t dt$
	$= \int \frac{1}{(\cos^2 t)^{\frac{3}{2}}} \cos t dt$ $= \int \frac{1}{(\cos^2 t)^{\frac{3}{2}}} \cos t dt$
	$\sin t = -$
	$= \int \frac{1}{(\cos^3 t)} \cos t dt$ $\tan t = \frac{x}{\sqrt{1 - x^2}}$
	$= \int \frac{1}{(\cos^2 t)} \mathrm{d}t$
	$= \int \sec^2 t dt$
	$= \tan t + C$, $C \in \mathbb{R}$
	$=\frac{x}{\sqrt{1-x^2}}+C$

3	Arithmetic and Geometric Series
(a)	$\frac{n}{2} \Big[2(5) + (n-1)(3) \Big] \le 100$
	$\frac{n}{2} \Big[2(5) + (n-1)(3) \Big] - 100 \le 0$
	Using GC,
	When $n = 7$, $\frac{n}{2} [2(5) + (n-1)(3)] - 100 = -2 \le 0$
	When $n = 8$, $\frac{n}{2} [2(5) + (n-1)(3)] - 100 = 24 > 0$
	Maximum number of squares Student A can form using the 100 cm wire is 7.
(b)	The circumference of the circles follow a geometric progression with common ratio $\frac{2}{3}$.
	100 = Total circumference of 12 circles
	$100 = 2\pi x + \frac{2}{3}(2\pi x) + \left(\frac{2}{3}\right)^{2}(2\pi x) + \dots + \left(\frac{2}{3}\right)^{11}(2\pi x)$
	$100 = \frac{2\pi x \left(1 - \left(\frac{2}{3}\right)^{12}\right)}{1 - \frac{2}{3}}$
	Using GC, x = 5.3464 = 5.35 (3 s.f.)

Solution
Graphing and Transformation
y = $\frac{1}{x}$ Re place x by $x - a$ $y = \frac{1}{x - a}$ Re place y by $\frac{y}{3a}$ $y = \frac{3a}{x - a}$ Re place y by $y - 2$ $y = 2 + \frac{3a}{x - a}$ Note $a > 0$. 1. Translation of a units in the positive x-direction. 2. Stretch by factor $3a$ parallel to the y-axis. 3. Translation of 2 units in the positive y-direction.
OR
 Stretch by factor 3a parallel to the x-axis. Translation of a units in the positive x-direction.
3. Translation of 2 units in the positive <i>y</i> -direction.
$y = \left \frac{3a}{x - a} \right $ $y = 2$ $\left(-\frac{a}{2}, 0 \right)$ $x = a$

Qn 5	Solution Complex Numbers
(a)	Since the coefficients of the polynomial are real, $\sqrt{3} + i$ is a root implies that $\sqrt{3} - i$ is
	also a root.
	A quadratic factor is: $\left z - \left(\sqrt{3} + i \right) \right \left z - \left(\sqrt{3} - i \right) \right $
	$= \left[\left(z - \sqrt{3} \right) - i \right] \left[\left(z - \sqrt{3} \right) + i \right]$
	$=\left(z-\sqrt{3}\right)^2-\left(\mathrm{i}\right)^2$
	$= z^2 - 2\sqrt{3}z + 3 + 1$
	$=z^2-2\sqrt{3}z+4$
	Let $z = k$ be the third root.
	$z^3 - 8z + a = (z^2 - 2\sqrt{3}z + 4)(z - k)$
	Comparing coefficient of z^2 :
	$0 = -2\sqrt{3} - k$
	$k = -2\sqrt{3}$
	Therefore $z = \sqrt{3} + i$ or $\sqrt{3} - i$ or $-2\sqrt{3}$.
	Alternative method (sub in $\sqrt{3} + i$ to find a first)
	(Not recommended in this question)
	$P(z) = z^3 - 8z + a$
	Since $z = \sqrt{3} + i$ is a root, $P(\sqrt{3} + i) = 0$.
	$(\sqrt{2} \cdot 1)^3 \cdot 9(\sqrt{2} \cdot 1) \cdot 9$
	$\left(\sqrt{3} + i\right)^3 - 8\left(\sqrt{3} + i\right) + a = 0$
	$\left(\sqrt{3}\right)^3 + 3\left(\sqrt{3}\right)^2(i) + 3\left(\sqrt{3}\right)(i)^2 + (i)^3 - 8\sqrt{3} - 8i + a = 0$
	$a = 8\sqrt{3}$
	Since the coefficients of the polynomial are real, $\sqrt{3} + i$ is a root implies that $\sqrt{3} - i$ is also a root.
	$\begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$
	A quadratic factor is: $\left[z - (\sqrt{3} + i)\right] \left[z - (\sqrt{3} - i)\right]$
	$= \left[\left(z - \sqrt{3} \right) - i \right] \left[\left(z - \sqrt{3} \right) + i \right]$
	$=\left(z-\sqrt{3}\right)^2-\left(\mathrm{i}\right)^2$
	$=z^2-2\sqrt{3}z+3+1$
	$= z^{2} - 2\sqrt{3}z + 4$ $= z^{2} - 2\sqrt{3}z + 4$
	Dy comparing constant torm
	By comparing constant term, $z^{3} - 8z + 8\sqrt{3} = \left(z^{2} - 2\sqrt{3}z + 4\right)\left(z + 2\sqrt{3}\right)$
	$\begin{bmatrix} 2 & 02 & 10 & \sqrt{3} & -\left(2 & 2 & \sqrt{3} & 2 & 1 & 7\right) \left(2 & 7 & 2 & \sqrt{3}\right) \end{bmatrix}$
	$z = \sqrt{3} + i \text{ or } \sqrt{3} - i \text{ or } -2\sqrt{3}$
	l .

(b)
$$\arg w = \frac{5\pi}{6}$$

$$\arg w^n = \frac{5\pi}{6}n$$

For w^n to be purely imaginary,

$$\arg w^{n} = \frac{\pi}{2} + k\pi, \quad k \in \mathbb{Z}$$

$$\frac{5n\pi}{6} = \frac{\pi}{2} + k\pi$$

$$n = \frac{6k+3}{5}$$

Using GC, the smallest three positive integers of n, n = 3,9,15.

Qn	Solution
6	Functions and Equations and Inequality
(a)	$a(-2)^2 - 2b + c = 17 \implies 4a - 2b + c = 17 \longrightarrow(1)$
	$a\left(\frac{1}{2}\right)^{2} + \frac{1}{2}b + c = \frac{3}{4} \implies \frac{1}{4}a + \frac{1}{2}b + c = \frac{3}{4} (2)$
	$a(5)^{2} + 5b + c = 3$ \Rightarrow $25a + 5b + c = 3$ (3)
	Using GC, $a = 1$, $b = -5$, $c = 3$. $y = x^2 - 5x + 3$
(b)	Let $y = f(x) = x^2 - 5x + 3$, $x \le 0$
	$v = x^2 - 5x + 3$
	$y = \left(x - \frac{5}{2}\right)^2 - \left(\frac{5}{2}\right)^2 + 3$
	$y + \frac{13}{4} = \left(x - \frac{5}{2}\right)^2$
	$x - \frac{5}{2} = \pm \sqrt{y + \frac{13}{4}}$
	$x = \frac{5}{2} \pm \sqrt{y + \frac{13}{4}}$
	$x = \frac{5}{2} - \sqrt{y + \frac{13}{4}} \qquad \text{(since } x \le 0\text{)}$
	$f^{-1}(x) = \frac{5}{2} - \sqrt{x + \frac{13}{4}}$

(d)

$$0 \le x \le \pi$$

$$-\frac{3}{2} \le \frac{3}{2} \cos x \le \frac{3}{2}$$

$$0 \le \frac{3}{2} + \frac{3}{2}\cos x \le 3$$

Since $R_h = [0,3] \subseteq [0,6) = D_g$, therefore the function gh exists.

$$\begin{array}{ccc} D_h & \stackrel{h}{\longrightarrow} & R_h & \stackrel{g}{\longrightarrow} & R_{gh} \\ \begin{bmatrix} 0, \pi \end{bmatrix} & \begin{bmatrix} 0, 4 \end{bmatrix} & \begin{bmatrix} 0, 4 \end{bmatrix} \end{array}$$

$$[0,\pi]$$

Restricted domain of g

$$R_{gh} = [0, 4]$$

Qn

Solution

Differentiation

(a)
$$\frac{x^2}{2}$$

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

Differentiate w.r.t x:

$$\frac{2x}{a^2} + \frac{2y}{b^2} \left(\frac{\mathrm{d}y}{\mathrm{d}x} \right) = 0$$

$$\frac{2y}{b^2} \left(\frac{\mathrm{d}y}{\mathrm{d}x} \right) = -\frac{2x}{a^2}$$

$$\frac{\mathrm{d}y}{\mathrm{d}x} = -\frac{b^2x}{a^2y} \text{ (since } y \neq 0\text{)(shown)}$$

(b) At
$$P(a\cos\theta, b\sin\theta)$$
,

$$\frac{\mathrm{d}y}{\mathrm{d}x} = -\frac{b^2 (a\cos\theta)}{a^2 (b\sin\theta)} = -\frac{b\cos\theta}{a\sin\theta}$$

Equation of tangent at P,

$$y - (b\sin\theta) = -\frac{b\cos\theta}{a\sin\theta}(x - a\cos\theta)$$

$$\frac{y}{b} - \sin\theta = -\frac{\cos\theta}{a\sin\theta}(x - a\cos\theta)$$

$$\frac{y}{b}\sin\theta - \sin^2\theta = -\frac{\cos\theta}{a}(x - a\cos\theta)$$

$$\frac{y}{b}\sin\theta - \sin^2\theta = -\frac{x}{a}\cos\theta + \cos^2\theta$$

$$\frac{x}{a}\cos\theta + \frac{y}{b}\sin\theta = \sin^2\theta + \cos^2\theta$$

$$\frac{x}{a}\cos\theta + \frac{y}{b}\sin\theta = 1 \text{ (shown)}$$

(c) When x = 0,

$$\frac{y}{b}\sin\theta = 1 \Rightarrow y = \frac{b}{\sin\theta}$$

When y = 0.

$$\frac{x}{a}\cos\theta = 1 \Rightarrow x = \frac{a}{\cos\theta}$$

Area of triangle ORS

$$= \frac{1}{2} \left(\frac{b}{\sin \theta} \right) \left(\frac{a}{\cos \theta} \right) = \frac{ab}{2 \sin \theta \cos \theta} = \frac{ab}{\sin 2\theta}$$

(d)
$$0 < \theta < \frac{\pi}{2}$$

 $0 < \sin 2\theta < 1$

$$\frac{1}{\sin 2\theta} \ge 1$$

$$\frac{ab}{\sin 2\theta} \ge ab$$

 $\sin 2\theta = 1$

$$\theta = \frac{\pi}{4} \left(\text{since } 0 < \theta < \frac{\pi}{2} \right)$$

Therefore, minimum area is ab (shown) and occurs when $\theta = \frac{\pi}{4}$.

Alternative method

Let area of triangle ORS be A.

$$A = \frac{ab}{\sin 2\theta} = ab \left(\sin 2\theta\right)^{-1}$$

$$\frac{\mathrm{d}A}{\mathrm{d}\theta} = -ab\left(\sin 2\theta\right)^{-2} \left(2\cos 2\theta\right) = \frac{-2ab\cos 2\theta}{\left(\sin 2\theta\right)^2}$$

At stationary point, $\frac{dA}{d\theta} = 0$

$$\frac{-2ab\cos 2\theta}{\left(\sin 2\theta\right)^2} = 0$$

$$\cos 2\theta = 0$$

$$\theta = \frac{\pi}{4} \ (\because \theta \text{ is acute})$$

Minimum area of triangle ORS

$$A = \frac{ab}{\sin 2\left(\frac{\pi}{4}\right)} = ab$$

Therefore, minimum area is ab and occurs when $\theta = \frac{\pi}{4}$.

Qn	Solution
8	Definite Integral
(a)	$\pi \int_{1}^{6} x^{3} dx$
	$=\pi \left[\frac{x^4}{4}\right]_1^6$
	$= \frac{\pi}{4} \left(6^4 - 1^4 \right)$
	$=\frac{1295}{4}\pi$

(b) The thickness of each circular disc is obtained by dividing x values from 1 to 6 into n equal parts, forming n discs of equal thickness of $\frac{5}{n}$.

$$V = \pi \left[\left(1 + \frac{5}{n} \right)^{\frac{3}{2}} \right]^{2} \left(\frac{5}{n} \right) + \pi \left[\left(1 + \frac{5(2)}{n} \right)^{\frac{3}{2}} \right]^{2} \left(\frac{5}{n} \right) + \dots + \pi \left[\left(1 + \frac{5n}{n} \right)^{\frac{3}{2}} \right]^{2} \left(\frac{5}{n} \right)$$

$$= \frac{5\pi}{n} \left[\left(1 + \frac{5}{n} \right)^{3} + \left(1 + 2\left(\frac{5}{n} \right) \right)^{3} + \dots + \left(1 + n\left(\frac{5}{n} \right) \right)^{3} \right]$$

$$= \frac{5\pi}{n} \sum_{r=1}^{n} \left(1 + r\left(\frac{5}{n} \right) \right)^{3}$$
 (Shown)

(c)
$$V = \frac{5\pi}{n} \sum_{r=1}^{n} \left(1 + r \left(\frac{5}{n} \right) \right)^{3}$$

$$= \frac{5\pi}{n} \sum_{r=1}^{n} \left[1 + 3 \left(\frac{5r}{n} \right) + 3 \left(\frac{5r}{n} \right)^{2} + \left(\frac{5r}{n} \right)^{3} \right]$$

$$= \frac{5\pi}{n} \left\{ \sum_{r=1}^{n} \left(1 + \frac{15r}{n} \right) + \frac{75}{n^{2}} \sum_{r=1}^{n} r^{2} + \frac{125}{n^{3}} \sum_{r=1}^{n} r^{3} \right\}$$

$$= \frac{5\pi}{n} \left\{ \frac{n}{2} \left(1 + \frac{15(1)}{n} + 1 + \frac{15(n)}{n} \right) + \frac{75}{n^{2}} \left(\frac{1}{6} \right) n(n+1)(2n+1) + \frac{125}{n^{3}} \left(\frac{1}{4} \right) n^{2} (n+1)^{2} \right\}$$

$$= \frac{5\pi}{n} \left\{ \frac{17}{2} \left(17 + \frac{15}{n} \right) + \frac{25}{2n} (n+1)(2n+1) + \frac{125}{4n} (n+1)^{2} \right\}$$

$$= \frac{5\pi}{n} \left\{ \left(\frac{17n}{2} + \frac{15}{2} \right) + \frac{25}{2n} (2n^{2} + 3n + 1) + \frac{125}{4n} (n^{2} + 2n + 1) \right\}$$

$$= \frac{5\pi}{n} \left\{ \left(\frac{17n}{2} + \frac{15}{2} \right) + \left(25n + \frac{75}{2} + \frac{25}{2n} \right) + \left(\frac{125}{4} n + \frac{125}{2} + \frac{125}{4n} \right) \right\}$$

$$= \frac{5\pi}{n} \left(259 + \frac{430}{n} + \frac{175}{n^{2}} \right)$$

$$\therefore a = 430, b = 175$$

(d) As
$$n \to \infty$$
, $\frac{430}{n} \to 0$, $\frac{175}{n^2} \to 0$. $\therefore V \to \frac{5\pi}{4} (259)$
Limit of $V = \frac{1295\pi}{4}$

Using integration, the volume of revolution of the solid formed when R is rotated through 2π radians about the x-axis is given by $\pi \int_{1}^{6} [f(x)]^{2} dx$.

Thus, the volume is $\pi \int_{1}^{6} \left[x^{\frac{3}{2}} \right]^{2} dx = \pi \int_{1}^{6} x^{3} dx = \frac{1295}{4} \pi$ as found in part (a) which is the same value as the limit of $V = \frac{1295\pi}{4}$. (Verified)

Qn	Solution
9	Vectors
(a)	$\overrightarrow{OA} = \begin{pmatrix} 5 \\ -5 \\ 8 \end{pmatrix}, \overrightarrow{OB} = \begin{pmatrix} 8 \\ -4 \\ 3 \end{pmatrix}$ $B \begin{pmatrix} 8 \\ -4 \\ 3 \end{pmatrix}$ Mathod 1: Sociar product = 0
	Method 1: Scalar product = 0
	Since F lies on l_1 ,
	$\overrightarrow{OF} = \begin{pmatrix} 5 \\ -5 \\ 8 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} \text{ for some } \lambda \in \mathbb{R}.$ $A \begin{pmatrix} 5 \\ -5 \\ 8 \end{pmatrix}$ To find point F ,
	$\begin{bmatrix} 5 \\ -5 \\ 8 \end{bmatrix} + \lambda \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} - \begin{pmatrix} 8 \\ -4 \\ 3 \end{bmatrix} \cdot \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} = 0$
	$\begin{pmatrix} -3+\lambda \\ -1+\lambda \\ 5 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} = 0$ $-3+\lambda-1+\lambda=0$
	$-3+\lambda-1+\lambda=0$ $\lambda=2$
	$\overrightarrow{OF} = \begin{pmatrix} 5 \\ -5 \\ 8 \end{pmatrix} + 2 \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 7 \\ -3 \\ 8 \end{pmatrix}$
	Method 2: Vector Projection (Not recommended due to ease of making mistakes)
	$\overrightarrow{AB} = \begin{pmatrix} 8 \\ -4 \\ 3 \end{pmatrix} - \begin{pmatrix} 5 \\ -5 \\ 8 \end{pmatrix} = \begin{pmatrix} 3 \\ 1 \\ -5 \end{pmatrix}$
	$\overrightarrow{AF} = \begin{pmatrix} \overrightarrow{AB} \cdot \begin{pmatrix} 1\\1\\0 \end{pmatrix} & \begin{pmatrix} 1\\1\\0 \end{pmatrix} \\ \begin{pmatrix} 1\\1\\1 \end{pmatrix} & \begin{pmatrix} 1\\1\\1\\0 \end{pmatrix} \end{pmatrix}$
	$= \frac{4}{2} \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} = 2 \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 2 \\ 2 \\ 0 \end{pmatrix}$
	$\overrightarrow{OF} = \overrightarrow{OA} + \overrightarrow{AF}$ $= \begin{pmatrix} 5 \\ -5 \\ 8 \end{pmatrix} + \begin{pmatrix} 2 \\ 2 \\ 0 \end{pmatrix} = \begin{pmatrix} 7 \\ -3 \\ 8 \end{pmatrix}$

(b)

Method 1: Midpoint theorem (w.r.t. point A)

$$\overrightarrow{AF} = \frac{\overrightarrow{AB} + \overrightarrow{AB'}}{2}$$

$$\overrightarrow{AB'} = 2\overrightarrow{AF} - \overrightarrow{AB}$$

$$= 2\begin{bmatrix} 7 \\ -3 \\ 8 \end{bmatrix} - \begin{bmatrix} 5 \\ -5 \\ 8 \end{bmatrix} - \begin{bmatrix} 8 \\ -4 \\ 3 \end{bmatrix} - \begin{bmatrix} 5 \\ -5 \\ 8 \end{bmatrix}$$

$$= \begin{bmatrix} 1 \\ 3 \\ 5 \end{bmatrix}$$

$$l_R : \mathbf{r} = \begin{bmatrix} 5 \\ -5 \end{bmatrix} + \mu \begin{bmatrix} 1 \\ 3 \end{bmatrix}, \mu \in \mathbb{R}$$

Method 2: Midpoint theorem (w.r.t. point O)

$$\overrightarrow{OF} = \frac{\overrightarrow{OB} + \overrightarrow{OB'}}{2}$$

$$\overrightarrow{OB'} = 2\overrightarrow{OF} - \overrightarrow{OB}$$

$$= 2 \begin{pmatrix} 7 \\ -3 \\ 8 \end{pmatrix} - \begin{pmatrix} 8 \\ -4 \\ 3 \end{pmatrix} = \begin{pmatrix} 6 \\ -2 \\ 13 \end{pmatrix}$$

$$\overrightarrow{AB'} = \begin{pmatrix} 6 \\ -2 \\ 13 \end{pmatrix} - \begin{pmatrix} 5 \\ -5 \\ 8 \end{pmatrix} = \begin{pmatrix} 1 \\ 3 \\ 5 \end{pmatrix}$$

$$l_R : \mathbf{r} = \begin{pmatrix} 5 \\ -5 \\ 8 \end{pmatrix} + \mu \begin{pmatrix} 1 \\ 3 \\ 5 \end{pmatrix}, \mu \in \mathbb{R}$$

$$\overrightarrow{CA} = \begin{pmatrix} 5 \\ -5 \\ 8 \end{pmatrix} - \begin{pmatrix} 0 \\ 0 \\ 6 \end{pmatrix} = \begin{pmatrix} 5 \\ -5 \\ 2 \end{pmatrix} \quad \text{or} \quad \overrightarrow{CF} = \begin{pmatrix} 7 \\ -3 \\ 8 \end{pmatrix} - \begin{pmatrix} 0 \\ 0 \\ 6 \end{pmatrix} = \begin{pmatrix} 7 \\ -3 \\ 2 \end{pmatrix}$$

$$n_{1} = \begin{pmatrix} 5 \\ -5 \\ 2 \end{pmatrix} \times \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} (-5)(0) - (2)(1) \\ (2)(1) - (5)(0) \\ (5)(1) - (-5)(1) \end{pmatrix}$$

$$(-2) \qquad (-1)$$

$$= \begin{pmatrix} -2\\2\\10 \end{pmatrix} = 2 \begin{pmatrix} -1\\1\\5 \end{pmatrix}$$

$$\mathbf{r} \cdot \begin{pmatrix} -1 \\ 1 \\ 5 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 6 \end{pmatrix} \cdot \begin{pmatrix} -1 \\ 1 \\ 5 \end{pmatrix} = 30$$

$$p_1 : -x + y + 5z = 30$$
 (Shown)

Method 1 (using GC) (d)

$$p_1 : -x + y + 5z = 30 -(1)$$

$$p_1: -x + y + 5z = 30$$
 -(1)
 $p_2: -17x - 37y + 4z = 24$ -(2)

Using GC,

$$l_{S}: \mathbf{r} = \begin{pmatrix} -21\\9\\0 \end{pmatrix} + \alpha \begin{pmatrix} \frac{7}{2}\\\frac{-3}{2}\\1 \end{pmatrix}, \alpha \in \mathbb{R}$$

Method 2 (not recommended for this question)

Direction vector of line of intersection

$$= \begin{pmatrix} -1\\1\\5 \end{pmatrix} \times \begin{pmatrix} -17\\-37\\4 \end{pmatrix} = \begin{pmatrix} 189\\-81\\54 \end{pmatrix} = 27\begin{pmatrix} 7\\-3\\2 \end{pmatrix}$$

Check that C(0, 0, 6) lies on both p_1 and p_2 .

$$l_{S}: \mathbf{r} = \begin{pmatrix} 0 \\ 0 \\ 6 \end{pmatrix} + \alpha \begin{pmatrix} 7 \\ -3 \\ 2 \end{pmatrix}, \alpha \in \mathbb{R}$$

(e)
$$p_3: -3x + \alpha y + 15z = \beta$$

$$p_3: \mathbf{r} \cdot \begin{pmatrix} -3 \\ \alpha \\ 15 \end{pmatrix} = \beta$$

Since
$$p_1 / / p_3$$
,

$$\begin{pmatrix} -1\\1\\5 \end{pmatrix} = k \begin{pmatrix} -3\\\alpha\\15 \end{pmatrix}$$

$$k = \frac{1}{3}, \ \alpha = 3$$

Method 1: Length of Projection

Let a point on p_3 be D.

$$\overrightarrow{OD} = \begin{pmatrix} \frac{\beta}{3} \\ 0 \\ 0 \end{pmatrix}$$

$$\overrightarrow{CD} = \begin{pmatrix} \frac{\beta}{3} \\ 0 \\ 0 \\ 0 \end{pmatrix} - \begin{pmatrix} 0 \\ 0 \\ 6 \end{pmatrix} = \begin{pmatrix} \frac{\beta}{3} \\ 0 \\ -6 \end{pmatrix}$$

Length of projection =

$$\frac{\begin{vmatrix} \left(\frac{\beta}{3}\right) & -1\\ 0 & -6 \\ -6 & 5 \end{vmatrix}}{\begin{vmatrix} -1\\ 1\\ 5 \end{vmatrix}} = 3\sqrt{3}$$

$$\left| -\frac{\beta}{3} + 30 \right| = 3\sqrt{3} \left(\sqrt{27} \right)$$
$$-\frac{\beta}{3} + 30 = \pm 27$$

$$-\frac{\beta}{3} = -57 \qquad \text{or} \qquad -\frac{\beta}{3} = -3$$
$$\beta = 171 \qquad \text{or} \qquad \beta = 9$$

Method 2: Distance between planes

$$p_3: \mathbf{r} \cdot \begin{pmatrix} -3\\3\\15 \end{pmatrix} = \beta \implies p_3: \mathbf{r} \cdot \begin{pmatrix} -1\\1\\5 \end{pmatrix} = \frac{\beta}{3}$$

Since distance between p_1 and p_3 is exactly $3\sqrt{3}$ units,

$$\left| \frac{30 - \frac{\beta}{3}}{\sqrt{(-1)^2 + 1^2 + 5^2}} \right| = 3\sqrt{3}$$
$$\left| 30 - \frac{\beta}{3} \right| = 27$$
$$\frac{\beta}{3} = 30 \pm 27$$

$$\therefore \beta = 9 \text{ or } \beta = 171.$$

Qn	Solution
10	Differential Equations
(a)	$y = ux^2$
	Differentiate w.r.t. x ,
	$\frac{\mathrm{d}y}{\mathrm{d}x} = u(2x) + x^2 \frac{\mathrm{d}u}{\mathrm{d}x} - \dots (1)$
	$\int dx dx dx$
	Substitute (1) and $y = ux^2$ into $\frac{dy}{dx} - \frac{2y}{x} = x^3$,
	$2xu + x^2 \frac{\mathrm{d}u}{\mathrm{d}x} - \frac{2(ux^2)}{x} = x^3$
	$\frac{\mathrm{d}u}{\mathrm{d}x} = x \qquad \left(\text{since } x \neq 0\right)$
	$u = \frac{1}{2}x^2 + C, C \in \mathbb{R}$
	$\frac{y}{x^2} = \frac{1}{2}x^2 + C$
	$y = \frac{1}{2}x^4 + Cx^2$
(b)	$\frac{\mathrm{d}N}{\mathrm{d}t} = kN, k > 0$
	When $t = 0, N = 5000, \frac{dN}{dt} = 200,$
	$\frac{\mathrm{d}N}{\mathrm{d}t} = kN$
	200 = 5000k
	$k = \frac{1}{25}$
	$\frac{1}{N}\frac{\mathrm{d}N}{\mathrm{d}t} = \frac{1}{25}$
	$\int \frac{1}{N} \mathrm{d}N = \int \frac{1}{25} \mathrm{d}t$
	$ \ln\left N\right = \frac{1}{25}t + C $
	$N = Ae^{\frac{t}{25}} \text{where } A = \pm e^C$
	When $t = 0, N = 5000,$
	$5000 = Ae^{\frac{0}{25}}$
	A = 5000
	$\therefore N = 5000e^{\frac{t}{25}}$
	When $t = 50$, 50
	$N = 5000e^{\frac{50}{25}}$
	=36900 (3 s.f.)

(c)
$$\frac{dN}{dt} = kN(\ln M - \ln N)$$

$$\int \frac{1}{N(\ln M - \ln N)} dN = \int k dt$$

$$-\int \frac{-\frac{1}{N}}{(\ln M - \ln N)} dN = \int k dt$$

$$-\ln |\ln M - \ln N| = kt + D$$

$$\ln M - \ln N = \pm e^{-kt - D}$$

$$\ln \left(\frac{M}{N}\right) = Be^{-kt} \quad \text{where } B = \pm e^{-D}$$

$$\frac{M}{N} = e^{Be^{-kt}}$$

$$N = Me^{-Be^{-kt}}$$
As $t \to \infty$,
$$e^{-kt} \to 0$$
, $e^{-Be^{-kt}} \to 1$, $N \to M$.
Regardless of the initial population of the bacteria, the number of bacteria always tends towards M eventually.