

A. Carnival General

Feladat neve	Carnival General
Időkorlát	1 másodperc
Memóriakorlát	1 gigabyte

A lundi diákok négyévente összegyűlnek, hogy megszervezzék a Lundi Karnevált. Néhány napra egy park megtelik sátrakkal, ahol mindenféle ünneplésre kerül sor. A rendezvényt a karnevál főszervezője irányítja.

Összesen N darab karnevál volt eddig, mindegyiken más-más főszervezővel. A főszervezők időrendben 0-tól N-1-ig vannak sorszámozva. Minden i. főszervező elmondta véleményét arról, hogy mennyire voltak jók az elődei, és közzétette elődei, a 0., 1., 1. 1. főszervezők rangsorát, a legjobbtól kezdve a legrosszabbig.

A következő Lundi Karnevál 2026-ban lesz. Akkor az összes korábbi karnevál főszervezője össze fog gyűlni, hogy csoportképet készítsen. Az azonban kínos lenne, ha az i. és j. főszervezők (ahol i < j) egymás mellé kerülnének, ha az i. főszervező **szigorúan** a j. rangsorának a második felében van.

Például:

- Ha a 4. főszervező a 3 2 1 0 sorrendet adta meg, akkor a 4. állhat a 3. vagy a 2. mellett, de az 1. vagy a 0. mellett nem. A 4. főszervező állhat az 5. főszervező mellett (a következő pontbeli magyarázat alapján).
- Ha az 5. főszervező a 4 3 2 1 0 rangsort adta meg, akkor az 5. állhat a 4., a 3. vagy a 2. mellett, de az 1. vagy a 0. mellett nem. Megjegyezzük, hogy az nem baj, ha az egyik főszervező pontosan egy másik főszervező rangsorának a közepén áll.

Az ábrán látható, hogy az 5. főszervező a 2. és a 3. főszervező mellett áll, a 4. főszervező csak a 2. főszervező mellett állhat.

Adottak a főszervezők által közzétett rangsorok. A feladatod az, hogy a 0.,1.\ldots, N-1. főszervezőket úgy rendezd sorba, hogy ha az i. és a j. egymás mellett vannak (ahol i < j), akkor az i. **nincs** szigorúan a j. rangsorának második felében.

Bemenet

Az első sor tartalmazza az N pozitív egész számot, a főszervezők számát.

A következő N-1 darab sor a rangsorokat tartalmazza. Az első sor tartalmazza az 1. főszervező rangsorát, a második sor a 2. főszervező rangsorát, és így tovább, az N-1. főszervezőig. A 0. főszervezőe hiányzik, mivel a 0. főszervezőnek nem volt elődje akit rangsorolhatott volna.

Az i. főszervező rangsora egy olyan lista, amely i darab egész számot tartalmaz: $p_{i,0},p_{i,1},\ldots,p_{i,i-1}$, amelyben minden egész szám 0-tól i-1-ig pontosan egyszer fordul elő. Formálisan $p_{i,0}$. a legjobb és a $p_{i,i-1}$. a legrosszabb főszervező az i. főszervező szerint.

Kimenet

Írd ki a $0,1,\ldots,N-1$ egész számok listáját, úgy, hogy minden szomszédos számpár esetében teljesüljön, hogy egyik sincs szigorúan a másik rangsorának második felében.

Bizonyítható, hogy mindig létezik megoldás.

Ha több megoldás van, akkor bármelyiket kiírhatod.

Megkötések és pontozás

- $2 \le N \le 1000$.
- $0 \leq p_{i,0}, p_{i,1}, \ldots, p_{i,i-1} \leq i-1$ minden $i=0,1,\ldots,N-1$ esetén.

A megoldásodat tesztesetek csoportjaira tesztelik, minden csoport előre meghatározott pontot ér. Minden csoportban különálló tesztesetek vannak. A tesztcsoportra kapható pontot akkor kapod meg, ha minden egyes tesztesetre helyes megoldást adsz.

Csoport	Pontszám	Korlátok
1	11	Az i . főszervező rangsora $i-1,i-2,\dots,0$ minden olyan i esetén, ahol $1 \leq i \leq N-1$
2	23	Az i . főszervező rangsora $0,1,\dots,i-1$ minden olyan i esetén, ahol $1 \leq i \leq N-1$
3	29	$N \leq 8$
4	37	Nincsenek további megkötések.

Példa

Az első példa megfelel az 1. tesztcsoport feltételeinek. Ebben a példában sem a 2., sem a 3. főszervező nem állhat a 0. főszervező mellett, valamint sem a 4., sem az 5. főszervező nem állhat a 0. és az 1. főszervezők mellett. A minta kimenete a fenti ábrán látható.

A második példa megfelel a 2. tesztcsoport feltételeinek. Ebben a példában a 2. főszervező nem állhat az 1. főszervező mellé, a 3. főszervező nem állhat a 2. főszervező mellé, és a 4. főszervező nem állhat a 3. és 2. főszervezők mellé.

A harmadik példa megfelel a 3. tesztcsoport feltételeinek. Ebben a példában csak az (1,3) és a (0,2) párok nem állhatnak egymás mellé. Így nincs ellentmondás, ha a 3 0 1 2 sorrendben vannak. Egy másik lehetséges megoldás a 0 1 2 3.

Bemenet	Kimenet
6 0 1 0 2 1 0 3 2 1 0 4 3 2 1 0	4 2 5 3 1 0
5 0 0 1 0 1 2 0 1 2 3	2 0 4 1 3
4 0 1 0 0 2 1	3 0 1 2