COMP9024: Data Structures and Algorithms

Graphs (I)

Contents

- Graph terminology
- Adjacency matrix representation
- Adjacency list representation

Graphs

Graphs

- A graph is a pair (*V*, *E*), where
 - *V* is a set of nodes, called vertices
 - *E* is a collection of pairs of vertices, called edges
 - Vertices and edges are positions and store elements
- Example:
 - A vertex represents an airport and stores the three-letter airport code
 - An edge represents a flight route between two airports and stores the mileage of the route

Edge Types

- Directed edge
 - ordered pair of vertices (u,v)
 - first vertex *u* is the origin
 - second vertex v is the destination
 - e.g., a flight
- Undirected edge
 - unordered pair of vertices (*u*,*v*)
 - e.g., a flight route
- Directed graph
 - all the edges are directed
 - e.g., route network
- Undirected graph
 - all the edges are undirected
 - e.g., flight network

Applications

- Electronic circuits
 - Printed circuit board
 - Integrated circuit
- Transportation networks
 - Highway network
 - Flight network
- Computer networks
 - Local area network
 - Internet
 - Web
- Databases
 - Entity-relationship diagram

Terminology (1/5)

- End vertices (or endpoints) of an edge
 - U and V are the endpoints of a
- Edges incident on a vertex
 - a, d, and b are incident on V
- Adjacent vertices
 - U and V are adjacent
- Parallel edges
 - h and i are parallel edges
- Self-loop
 - j is a self-loop

Terminology (2/5)

- Path
 - sequence of alternating vertices and edges
 - begins with a vertex
 - ends with a vertex
 - each edge is preceded and followed by its endpoints
- Simple path
 - path such that all its vertices and edges are distinct
- Examples
 - P₁=(V,b,X,h,Z) is a simple path
 - P₂=(U,c,W,e,X,g,Y,f,W,d,V) is a path that is not simple

Terminology (3/5)

- Cycle
 - circular sequence of alternating vertices and edges
 - each edge is preceded and followed by its endpoints
- Simple cycle
 - cycle such that all its vertices and edges are distinct
- Examples
 - C₁=(V,b,X,g,Y,f,W,c,U,a, □) is a simple cycle
 - C₂=(U,c,W,e,X,g,Y,f,W,d,V,a,↓) is a cycle that is not simple

Terminology (4/5)

- Degree of a vertex in an undirected graph
 - The number of edges
 - for example, the degree of V is 3
- Indegree (outdegree) of a vertex (directed graph)
 - The number of incoming (outgoing) edges
 - For example, the indegree of V is 3 and its out degree is 0

Terminology (5/5)

- Tree: connected graph with no cycles
- Spanning tree: tree containing all vertices
- Clique: complete subgraph

Properties

Property 1

 $\sum_{v} \deg(v) = 2m$

Proof: each edge is counted twice

Property 2

In an undirected graph with no self-loops and no multiple edges

$$m \le n (n-1)/2$$

Proof: each vertex has degree at most (n-1)

What is the bound for a directed graph?

Notation

n

number of vertices

m

number of edges

deg(v)

degree of vertex v

Example

$$n = 4$$

$$m = 6$$

$$\bullet \deg(v) = 3$$

Graph Representations

- Adjacency lists
- Adjacency matrix
- Both representations map vertices into integers in [0, n-1], where n is the number of vertices.

Adjacency matrix (1/8)

• Edges represented by a n × n matrix

Undirected graph

A	0	1	2	3
0	0	1	0	1
1	1	0	0	1
2	0	0	0	1
3	1	1	1	0

Directed graph

·				
A	0	1	2	3
0	0	0	0	1
1	1	0	0	1
2	0	0	0	0
3	0	0	1	0

Adjacency matrix (2/8)

Advantages

- > easily implemented as 2-dimensional array
- > can represent graphs, digraphs and weighted graphs
 - ☐ undirected graphs: symmetric boolean matrix
 - digraphs (directed graphs): non-symmetric boolean matrix
 - ☐ weighted graphs: non-symmetric matrix of weight values

Disadvantages:

if few edges (sparse) ⇒ memory-inefficient

Adjacency matrix (3/8)

Graph initialization

```
newGraph(n):
  Input: number of nodes n
  Output: new empty graph
 g.nV = n;
 g.nE = 0;
 allocate memory to g.edges[][]
 for all i,j=0...n-1 do
   g.edges[i][j]=0;
 return g;
```

Adjacency matrix (4/8)

Edge insertion

```
insertEdge(g,(v,w))
Input: graph g, edge (v,w)

if ( g.edges[v][w]= 0 )
    { g.edges[v][w]=1;
        g.edges[w][v]=1;
        g.nE=g.nE+1;
    }
```

Adjacency matrix (5/8)

Edge removal

```
removeEdge(g,(v,w))
Input graph g, edge (v,w)

if ( g.edges[v][w]≠0)
    {
      g.edges[v][w]=0;
      g.edges[w][v]=0;
      g.nE=g.nE-1;
    }
```

Adjacency matrix (6/8)

Write an algorithm to output all edges of an undirected graph (no duplicates!)

```
show(g)
Input: graph g

for all i=0 to g.nV-1 do
  for all j=i+1 to g.nV-1 do
  if ( g.edges[i][j]≠0 )
    print i"—"j;
```

Adjacency matrix (7/8)

- Space complexity: O(n²)
 - ➤ if a graph is sparse, most storage is wasted.
- Time complexity:
 - \triangleright initialisation: O(n²) (initialise n×n matrix)
 - > insert an edge: O(1) (set two cells in matrix)
 - ➤ delete an edge: O(1) (unset two cells in matrix)

Adjacency matrix (8/8)

A space optimisation for undirected graphs: store only top-right part of matrix.

New space complexity:

• n-1 int ptrs + n(n-1)/2 ints (but still $O(n^2)$) Requires us to always use edges (v, w) such that v < w.

Adjacency List (1/6)

• For each vertex, store a linked list of adjacent vertices:

$$A[0] = <1, 3>$$

 $A[1] = <0, 3>$

$$A[2] = <3>$$

$$A[3] = <0, 1, 2>$$

$$A[0] = <3>$$

$$A[1] = <0, 3>$$

$$A[2] = <>$$

$$A[3] = <2>$$

Adjacency List (2/6)

- Advantages
 - > relatively easy to implement in languages like C
 - > memory efficient if E:V relatively small
- Disadvantages:
 - one graph has many possible representations unless lists are ordered by same criterion e.g. ascending

Adjacency List (3/6)

Graph initialization

```
newGraph(n)
 Input: number of nodes n
 Output: new empty graph
 g.nV = n;
 g.nE = 0;
 allocate memory for g.edges[];
 for all i=0..n-1 do
   g.edges[i]=NULL;
 return g
```

Adjacency List (4/6)

Edge insertion

```
insertEdge(g,(v,w))
 Input: graph g, edge (v,w)
if (inLL(g.edges[v],w)) // inLL(g.edges[v],w) checks if w is in g.edges[v]
  { insertLL(g.edges[v],w); // insertLL(g.edges[v],w) inserts w into g.edges[v]
   insertLL(g.edges[w],v);
   g.nE=g.nE+1;
```

Adjacency List (5/6)

Edge removal

```
removeEdge(g,(v,w))
Input: graph g, edge (v,w)

if ( inLL(g.edges[v],w) )
    {
      deleteLL(g.edges[v],w); // deleteLL(g.edges[v],w) deletes w from g.edges[v]
      deleteLL(g.edges[w],v);
      g.nE=g.nE-1;
    }
```

inLL, insertLL, deleteLL are standard linked list operations

Adjacency List (6/6)

Analyse space complexity and time complexity of adjacency list representation:

- Space complexity: O(n+m), where m is the number of edges
- Time complexity:
 - > initialisation: O(n) (initialise n lists)
 - insert an edge: O(1) for unsorted lists (insert one vertex into one list (digraph) or two lists (undirected graph)) if don't check for duplicates
 - delete edge: O(degree(v)+degree(w))=O(m) (need to delete incident vertex from two lists)
 - > If vertex lists are sorted
 - \square insertion requires search of list \Rightarrow O(m)
 - deletion always requires a search, regardless of list order

Comparison of Graph Representations

	adjacency matrix	adjacency list
space usage	n^2	n+m
initialise	n^2	n
insert edge	1	1
remove edge	1	m

	adjacency matrix	adjacency list
disconnected(v)?	n	1
isPath(x,y)?	n^2	n+m
copy graph	n^2	n+m
destroy graph	n	n+m

Graph Abstract Data Type (1/2)

Data:

set of edges, set of vertices

Operations:

- insertion: create graph, add edge
- deletion: remove edge, delete whole graph
- search: check if graph contains a given edge

Things to note:

- the set of vertices is fixed when a graph is initialised
- we treat vertices as ints, but could be arbitrary Items

Graph Abstract Data Type (2/2)

```
Graph ADT interface graph.h
typedef struct GraphRep *Graph;
typedef int Vertex;
typedef struct Edge { Vertex v; Vertex w; } Edge;
Graph newGraph(int V);
void insertEdge(Graph, Edge);
void removeEdge(Graph, Edge);
bool adjacent(Graph, Vertex, Vertex);
void freeGraph(Graph);
```

Graph Implementation with Adjacency Matrix (1/4)

Implementation of GraphRep (adjacency-matrix representation)

```
typedef struct GraphRep {
 int **edges;
     nV;
 int
                                                        GraphRep
 int nE;
                                                 edges
                                                                  [0]
} GraphRep;
                              0
                                                    nV
                                                                  [1]
                                                    nΕ
                                                                  [2]
                                                                  [3]
                              Undirected graph
```

Graph Implementation with Adjacency Matrix (2/4)

Implementation of graph initialisation (adjacency-matrix representation)

```
Graph newGraph(int n) {
 assert(n >= 0);
 int i;
 Graph g = malloc(sizeof(GraphRep)); // allocate heap memory to g
 assert(g != NULL); g->nV = n; g->nE = 0;
 g->edges = malloc(n * sizeof(int *)); // allocate heap memory to g->edges
 assert(g->edges != NULL);
 for (i = 0; i < n; i++) { // allocate heap memory to g->edges[i]
   g->edges[i] = calloc(n, sizeof(int)); assert(g->edges[i] != NULL);
 return g;
```

Graph Implementation with Adjacency Matrix (3/4)

Implementation of edge insertion/removal (adjacency-matrix representation)

```
bool validV(Graph g, Vertex v)
{ return (g != NULL && v >= 0 && v < g > nV);}
void insertEdge(Graph g, Edge e) {
  assert(g != NULL && validV(g,e.v) && validV(g,e.w));
 if (!g->edges[e.v][e.w]) {
   g > edges[e.v][e.w] = 1; g > edges[e.w][e.v] = 1; g > nE++; }}
void removeEdge(Graph g, Edge e) {
  assert(g != NULL && validV(g,e.v) && validV(g,e.w));
 if (g->edges[e.v][e.w]) {
   g > edges[e.v][e.w] = 0; g > edges[e.w][e.v] = 0; g > nE--; }
```

Graph Implementation with Adjacency Matrix (4/4)

Implement a function to check whether two vertices are directly connected by an edge

```
bool adjacent(Graph g, Vertex x, Vertex y) {
  assert(g != NULL && validV(g,x) && validV(g,y));
  return (g->edges[x][y] != 0);
}
```

Graph Implementation with Adjacency Lists (1/7)

Implementation of GraphRep (adjacency-list representation)

```
typedef struct GraphRep {
 Node **edges;
 int nV;
 int nE;
                                                         GraphRep
                                                   edges
                                                                   [0]
} GraphRep;
                                   0
                                                      nV
                                                                   [1]
                                                      nΕ
                                                                   [2]
typedef struct Node {
                                                                   [3]
                                   Undirected graph
 Vertex
            V;
 struct Node *next;
} Node;
```

Graph Implementation with Adjacency Lists (2/7)

Implementation of graph initialisation (adjacency-list representation)

```
Graph newGraph(int n) {
 int i;
 assert(n >= 0);
 Graph g = malloc(sizeof(GraphRep));
 assert(g != NULL);
 g->nV = n; g->nE = 0;
 g->edges = malloc(nV * sizeof(Node *));
 assert(g->edges != NULL);
 for (i = 0; i < n; i++)
   g->edges[i] = NULL;
 return g;
```

Graph Implementation with Adjacency Lists (3/7)

Implementation of edge insertion/removal (adjacency-list representation)

```
void insertEdge(Graph g, Edge e) {
  assert(g != NULL && validV(g,e.v) && validV(g,e.w));
  if (!inLL(g->edges[e.v], e.w)) {
    g->edges[e.v] = insertLL(g->edges[e.v], e.w);
    g->edges[e.w] = insertLL(g->edges[e.w], e.v);
    g->nE++;
  }
}
```

Graph Implementation with Adjacency Lists (4/7)

```
void removeEdge(Graph g, Edge e) {
 assert(g != NULL && validV(g,e.v) && validV(g,e.w));
 if (inLL(g->edges[e.v], e.w)) {
   g->edges[e.v] = deleteLL(g->edges[e.v], e.w);
   g->edges[e.w] = deleteLL(g->edges[e.w], e.v);
   g->nE--;
```

inLL, insertLL, deleteLL are standard linked list operations

Graph Implementation with Adjacency Lists (5/7)

Assuming an adjacency list representation, implement a function to check whether two vertices are directly connected by an edge

```
bool adjacent(Graph g, Vertex x, Vertex y) {
  assert(g != NULL && validV(g,x));
  return inLL(g->edges[x], y);
}
```

Graph Implementation with Adjacency Lists (6/7)

Write a program that uses the graph ADT to

- build the graph depicted below
- print all the nodes that are incident to vertex 1 in ascending order

Graph Implementation with Adjacency Lists (7/7)

```
#include <stdio.h>
#include "Graph.h"
#define NODES 4
#define NODE OF INTEREST 1
int main(void) {
 Graph g = newGraph(NODES); Edge e; int i;
 e.v = 0; e.w = 1; insertEdge(g,e);
 e.v = 0; e.w = 3; insertEdge(g,e);
 e.v = 1; e.w = 3; insertEdge(g,e);
 e.v = 3; e.w = 2; insertEdge(g,e);
 for (i = 0; i < NODES; i++) {
    if (adjacent(g, i, NODE_OF_INTEREST))
       printf("%d\n", i);}
 freeGraph(g);
 return 0; }
```

Summary

- Graph terminology
 - vertices, edges, vertex degree, connected graph, tree
 - path, cycle, clique, spanning tree, spanning forest
- Graph representations
 - > adjacency matrix
 - ➤ adjacency lists
- Suggested reading:
 - ➤ Sedgewick, Ch.17.1-17.5