정보보호론

대칭키 암호 시스템

한림대학교 소프트웨어융합대학 조효진

Contents

□ 대칭키 암호시스템

□ Data Encryption Standard (DES)

□ Advanced Encryption Standard (AES)

□ 스트림 암호

Review: Terms related to encryption

- □ Plaintext: This is the original message or data that is fed into the algorithm as input.
- □ Encryption algorithm: The encryption algorithm performs various substitutions and transformations on the plaintext.
- □ Secret key: The secret key is also input to the algorithm. The exact substitutions and transformations performed by the algorithm depend on the key.
- □ Ciphertext: This is the scrambled message produced as output. It depends on the plaintext and the secret key. For a given message, two different keys will produce two different ciphertexts.
- Decryption algorithm: This is essentially the encryption algorithm run in reverse. It takes the ciphertext and the same secret key and produces the original plaintext.

□ 혼돈 (Confusion)과 확산 (Diffusion)

- 정보이론 학자인 샤논(Claude Shannon) 제안
 - 혼돈 (Confusion): 키와 암호문과의 관계를 감추는 성질
 - 현대 블록암호는 혼돈을 위해 치환 (Substitution) 사용
- 확산 (Diffusion): 평문과 암호문과의 관계를 감추는 성질
 - 평문 한 비트의 변화가 암호문의 모든 비트에 확산
 - 주로 평문과 암호문의 통계적 성질을 감추기 위해 사용 (주로 Transposition과 연관됨)

Shannon

□ Product 시스템

■ Substitution과 Transposition의 함께 사용되는 암호

□ 대칭키 암호 시스템은 블록 암호왁 스트림 암호 2가지 형태로 나뉘어짐

- 블록 암호(Block Cipher): 암호화/복호화 과정을 하나의 블록단위로 수행함
- 스트림 암호(Stream Cipher): 암호화/복호화 과정을 하나의 구성단위(i.e., 1bit)로 수 행함

□ 블록 암호

- 실생활에서 많이 쓰이는 암호 시스템
- 평문/암호문을 정해진 크기의 블록으로 나누어 블록단위로 암호화/복호화를 진행함

□ 스트림 암호

■ 평문/암호문을 1비트 단위로 암호화/복호화를 진행함

$$P = P_1 P_2 P_3, ...$$
 $C = C_1 C_2 C_3, ...$ $K = (k_1, k_2, k_3, ...)$ $C_1 = E_{k1}(P_1)$ $C_2 = E_{k2}(P_2)$ $C_3 = E_{k3}(P_3) ...$

□ DES(Data Encryption Standard)

- 1973년 미국의 연방 표준국(National Bureau of Standards, NBS, 현재의) DES
 공모
- IBM은 자사의 루시퍼(Lucifer)를 제출
- 미 연방 표준국은 1977년 루시퍼를 수정하여 DES로 선정
 - FIPS PUB 46
 - 국가안보국(National Security Agency, NSA)는 루시퍼에서 사용된 64비트 키를 56비트로 변경함
 - Most widely used block cipher in world
- 64-bit 데이터 블록, 56-bit 암호키
- 현재는 DES를 사용하지 않고 3-DES(triple DES)와 AES(Advanced Encryption Standard) 사용

□ 64비트의 평문을 56비트의 키로 암호화하여 64비트의 암호문을 생성

□ 페이스텔(Feistel) 암호: 가역(Invertible)요소와 비가역(Non-Invertible) 요소 모두를 사용

- 암호화와 복호화 과정이 동일
- 참고
 - 비페이스텔(Non-Feistel) 암호: 가역 요소만 사용

Note : 전단사 함수 $f: X \to Y$ 에 대하여 Y에서 X로의 역관계가 존재하면 이를 역함수(Inverse Function)라고 하며 $f^{-1}: Y \to X$ 로 나타낸다. 가역함수는 바로 역함수가 존재하는 전단사함수를 의미

□ 1라운드 페이스텔(Feistel) 구조

- 암호화
 - $-L_1 = L_0 \oplus F(k, R_0); R_1 = R_0$
- 복호화
 - $-L_1 \oplus F(k, R_1) = L_1 \oplus F(k, R_0) = L_0 \oplus F(k, R_0) \oplus F(k, R_0) = L_0$
 - $-R_0 = R_1$

□ [참고] 2 라운드 페이스텔(Feistel) 구조

■ 암호화

$$L_1 = R_0$$

 $R_1 = L_0 \oplus F(k_1, R_0)$
 $L_2 = L_1 \oplus F(k_2, R_1)$
 $R_2 = R_1$

■ 복호화

$$L'_{0} = L_{2}, R'_{0} = R_{2}$$

$$L'_{1} = R'_{0} = R_{2}$$

$$R'_{1} = L'_{0} \oplus F(k_{2}, R'_{0})$$

$$= L_{1} \oplus F(k_{2}, R_{1}) \oplus F(k_{2}, R_{2})$$

$$= L_{1} \oplus F(k_{2}, R_{2}) \oplus F(k_{2}, R_{2})$$

$$= L_{1}$$

$$R'_{2} = R'_{1} = L_{1} = R_{0}$$

$$L'_{2} = L'_{1} \oplus F(k_{1}, R'_{1})$$

$$= R_{2} \oplus F(k_{1}, L_{1})$$

$$= L_{0} \oplus F(k_{1}, R_{0}) \oplus F(k_{1}, R_{0})$$

$$= L_{0}$$

□ 다중 라운드 페이스텔(Feistel) 구조

□ DES에서는 함수 F를 Cryptanalysis 공격으로부터 안전해야 함

- □ 함수 F에 대한 상세한 설명은 Skip!
 - 함수 F를 자세히 이해하는 것보다, DES의 구조를 이해하는 것이 중요함
 - 함수 F에 대한 이해는 보안관련 대학원의 교육과정(보안전공 대학원생)에 적합함
 - 관심있는 학생들은 교재 참고

□ Brute Force Attack on DES

- 1981: estimated breakable in 2 days by \$50M machine
- DES Challenge I(1997): broken in 96 days by 70,000 machines, testing
 7 billion keys/s (DESCHALL project)
- DES Challenge II-1(1998): broken by distributed.net in 41 days
- DES Challenge II-2(1998): less than 56 hours by special hardware, \$250K incl design and development ("Deep Crack")
- DES Challenge III(1999): 22 h 15 min, "Deep Crack" + 100 000 machines, testing 245 billion keys/s
- 2007: 6.4 days, \$10K hardware, 120 FPGAs (COPACOBANA project)

□ 그 왹 다양한 cryptanalysis 분석도 DES가 안전하지 않음을 보임

□ 다중 DES

■ 56비트인 DES암호의 짧은 키 길이를 보완하기 위해 DES를 여러 번 사용하는 다중 DES가 제안

□ 2중 DES (Double DES)

■ 키의 길이가 56 비트 + 56 비트 = 112비트의 효과가 있을까?

□ 2중 DES (Double DES)

- 중간 일치 공격(Meet-in-the-Middle Attack)
- $E_{k_1}(p) = m = D_{k_2}(c)$

Find equal M's and record corresponding k_1 and k_2

약 $2 \times 2^{56} = 2^{57}$ 번의 계산이 필요하다. 두 표에서 일치하는 값을 찾기 위하여 정렬하고 검색하는 연산까지를 포함하면 약 2^{63} 번의 계산이 필요

□ 3중 DES (Triple DES)

National Institute of Standards and Technology (NIST) 표준임

□ DES의 2⁵⁶개의 키에 대한 전사적 공격이 가능

■ 1999년 distributed.net 과 Electronic Frontier Foundation의 협력한 공격에서 DES의 비밀키를 22시간 15분만에 찾아냄

□ TDES가 있지만 다음 이유로 NIST에서는 AES 공모

- TDES는 DES를 세 번 사용하기 때문에 속도가 느림
- DES의 블록 크기인 64 비트는 여러 가지 응용분야에 적합하지 않음
 - 예로 블록 암호를 이용하여 설계한 인증코드 (Message Authentication Code)경우 64비트 의 블록 크기는 해쉬 함수의 안전성에 문제
- 가까운 미래에 양자컴퓨터가 현실화 될 수 있으며, 양자컴퓨터를 이용하여 공격할 경우 적어도 256 비트 크기의 키가 바람직함

□ History

- US NIST issued call for ciphers in 1997
 - 15 candidates accepted in Jun 98
 - 5 were shortlisted in Aug-99
 - Rijndael was selected as the AES in Oct-2000
 - Rijndael issued as FIPS PUB 197 standard in Nov-2001
- AES의 공모 시 요구사항
 - _ 블록의 크기는 128 비트
 - 대칭키 암호이며 세 종류의 키(128 비트, 192 비트, 256 비트)를 사용할 수 있어야 함
 - _ 소프트웨어와 하드웨어로 구현될 경우 모두 효율적
 - _ 모든 키를 다 찾는 전수 키 조사 이외에 현재 알려진 다른 암호 분석 공격에 강해야 함

□ 당시 벨기에 루벤대학의 대학원생인 Rijmen과 Daemen이 설계 AES 공모

의 모든 요구사항을 만족시킴

- 128/192/256 bit keys, 128 bit data
- an iterative rather than feistel cipher

- 하드웨어나 소프트웨어로 구현할 때 속도나 코드 간결성(Compactness) 면에서 효율적
- _ 알려진 블록 암호 알고리즘에 대한 공격들에 안전
- 현재 AES에 대한 가장 실질적인 공격은 전수 키 조사
- 최악의 경우(in the worst case) 2^{128} 번의 계산이 필요 (이러한 계산량은 현재 가장 빠른 슈퍼컴퓨터가 계산을 수행해도 태양계의 수명보다 긴 시간이 필요)

□ AES 구조

- 한 블록 : 128 비트
- 128, 192, 256비트의 비밀키에 대해 라운드의 수는 각각 10, 12, 14라운드가 실행

□ 한 블록인 16 바이트(=128 비트)는 원소가 한 바이트인 4x4 행렬로 변환됨

- 이 행렬을 상태(state)라 부름
- □ 한 락운드는 네 가지 계층(Layer)으로 구성
 - SubBytes : DES의 S-Box에 해당하며 한 바이트 단위로 치환을 수행.
 - 상태(state)의 한 바이트를 대응되는 S-Box의 한 바이트로 치환한다. 이 계층은 혼돈의 원리를 구현한다.
 - ShiftRows : 상태의 한 행안에서 바이트 단위로 자리바꿈이 수행
 - MixColumns : 상태가 한 열안에서 혼합이 수행. ShiftRows와 함께 분산의 원리를 구현
 - AddRoundKey : 비밀키(128/192/256 비트)에서 생성된 128 비트의 라운드 키와 상 태가 XOR됨

□ Encryption and Decryption

- Iterative이기 때문에 모든 component가 inversable해야 함
- Round key는 DES와 동일하게 역순임

□ 블록이 상태(State)의 형태로 표현

- 상태는 원소가 한 바이트인 "4×4"행렬
- AES의 한 블록이 "EASYCRYPTOGRAPHY"인 경우

Α	00	Н	07	0	0E	٧	15
В	01	I	08	Р	0F	W	16
С	02	J	09	Q	10	Х	17
D	03	K	0A	R	11	Υ	18
Е	04	L	OB	S	12	Z	19
F	05	М	0C	Т	13		
G	06	N	0D	U	14		

16진수로 표현된 알파벳

16	바	0	트
----	---	---	---

Е	А	S	Υ	С	R	Υ	Р	Т	0	G	R	Α	Р	Н	Υ
04	00	12	18	02	11	18	OF	13	0E	06	11	00	OF	07	18

(텍스트를 16진수로 표현)

상태	4×4		
04	02	13	00
00	11	0E	OF
12	18	06	07
18	OF	11	18

□ Substitute Bytes(SubBytes) 계충

■ 한 원소가 16진수로 (xy)인 경우 상위 4 비트 값인 x가 S-Box의 행을 결정하고 하 위 4 비트 값인 y가 열을 결정

□ ShiftRows 계층

F2	F2	63	26		F2	F2	63	26
FA	63	C7	B4	ShiftRow	63	C7	B4	FA
82	D4	30	C6	InvShiftRow	30	C6	82	D4
63	C9	FE	12	Invariation	12	63	C9	FE
상태(State) 상태' (Sta							(Stat	e′)

□ MixColumns 계층

- SubBytes 계층과 ShiftRows 계층은 바이트 단위로 처리
- 충분한 분산 효과를 발생시키기 위하여, MixColumns 계층에서는 상태의 각 열을 비 트 단위로 섞어 줌

$$\begin{bmatrix} s'_{0,0} & s'_{0,1} & s'_{0,2} & s'_{0,3} \\ s'_{1,0} & s'_{1,1} & s'_{1,2} & s'_{1,3} \\ s'_{2,0} & s'_{2,1} & s'_{2,2} & s'_{2,3} \\ s'_{3,0} & s'_{3,1} & s'_{3,2} & s'_{3,3} \end{bmatrix} = \begin{bmatrix} 02 & 03 & 01 & 01 \\ 01 & 02 & 03 & 01 \\ 01 & 01 & 02 & 03 \\ 03 & 01 & 01 & 02 \end{bmatrix} \begin{bmatrix} s_{0,0} & s_{0,1} & s_{0,2} & s_{0,3} \\ s_{1,0} & s_{1,1} & s_{1,2} & s_{1,3} \\ s_{2,0} & s_{2,1} & s_{2,2} & s_{2,3} \\ s_{3,0} & s_{3,1} & s_{3,2} & s_{3,3} \end{bmatrix}$$

$$s'_{0,0} = (02 \cdot s_{0,0}) \oplus (03 \cdot s_{1,0}) \oplus (01 \cdot s_{2,0}) \oplus (03 \cdot s_{3,0})$$

$$s'_{1,0} = (01 \cdot s_{0,0}) \oplus (02 \cdot s_{1,0}) \oplus (03 \cdot s_{2,0}) \oplus (01 \cdot s_{3,0})$$

•

•

$$s_{3,3}' = (03 \cdot s_{0,3}) \oplus (01 \cdot s_{1,3}) \oplus (01 \cdot s_{2,3}) \oplus (02 \cdot s_{3,3})$$

□ Inverse MixColumns 계층

$$\begin{bmatrix} 02 & 03 & 01 & 01 \\ 01 & 02 & 03 & 01 \\ 01 & 01 & 02 & 03 \\ 03 & 01 & 01 & 02 \end{bmatrix}^{-1} = \begin{bmatrix} 0E & 0B & 0D & 09 \\ 09 & 0E & 0B & 0D \\ 0D & 09 & 0E & 0B \\ 0B & 0D & 09 & 0E \end{bmatrix}$$

□ AddRoundKey 계층

□ 키 확장(Key Expansion)

□ AES 과정

Animation of AES

□ 안전성

- 취약키(Weak Keys)와 차분 분석 방법(Differential Cryptanalysis), 선형 분석 방법 (Linear Cryptanalysis) 등을 이용한 공격에 대해 안전
- 2011년 "Biclique 암호분석"
 - **소요시**간: 2¹²⁶
 - AES에 대한 가장 최선의 공격이라고 믿었던 전사적 공격(2¹²⁸의 연산이 필요)보다 4배정도 효율적인 공격
 - 이는 키 길이가 56비트인 DES 암호 알고리즘에 대한 전수 조사 공격을 2^{70} 번을 실시 하는 것과 동일
 - Bruce Shneier: "공격 수법은 언제나 진화한다" "
 - "현재 AES을 대체할 다른 암호가 필요한 것은 아니며 향후 새로운 공격에 대비하여 AES의 라운드 수를 증가시켜야 한다고 주장"

HW #3

□ 대칭키 암호에 대해 설명하시오.

□ 2라운드의 DES의 암/복호화 과정을 설명하시오.

□ Double DES가 안전하지 않은 이유에 대해 설명하시오.

- □ 3페이지 이내 (A4, 10 pt)
 - 6월 26일 정오 12시까지
 - 늦은 제출 시, 감점
 - 과제 copy 시, 관련된 과제들 모두 0점 처리
 - 제출양식: hwp or pdf

스트림 암호

- □ 블록 암호 vs. 스트림 암호
 - 블록 단위로 암호화 vs. 비트 단위로 암호화

□ 스트림 암호

- 패딩과 운영모드에 대한 개념 X (패딩과 운영모드는 다음 챕터에서 배움)
- 빠른 암/복호화가 가능
- 효율적인 "PRESENT" 나 "HIGHT" 와 같은 블록 암호가 존재

스트림 암호

$$P = P_1 P_2 P_3, ...$$
 $C = C_1 C_2 C_3, ...$ $K = (k_1, k_2, k_3, ...)$ $C_1 = E_{k1}(P_1)$ $C_2 = E_{k2}(P_2)$ $C_3 = E_{k3}(P_3) ...$

□ One-time pad

(Ideal) one-time pad is considered to be secure!

```
      Plaintext:
      0101
      1010
      0101
      1011
      0101

      Wey:
      1011
      0010
      1101
      1001
      0001

      Ciphertext:
      1110
      1000
      1000
      0010
      0100
```

What is the problem?

□ One-time pad

Key is as long as the original message

 Plaintext:
 0101
 1010
 0101
 1011
 0101

 Hamiltonian
 6
 1011
 0010
 1101
 1001
 0001

 Ciphertext:
 1110
 1000
 1000
 0010
 0100

□ One-time pad

□ One-time pad의 안전성은 Key generator의 랜덤성에 의존함

- The keystream should approximate the properties of a true random number stream as close as possible
- The more random-appearing the keystream is, the more randomized the ciphertext is, making cryptanalysis more difficult

스트림 암호: Rivest Cipher 4 (RC4)

- □ RC4는 스트림 암호중 하나로 wireless 통신에 많이 사용됨
 - WEP, WPA, etc.
- □ RC4는 소프트웨어 구현이 효율적으로 될 수 있도록 설계됨

스트림 암호: Rivest Cipher 4 (RC4)

검색결과 약 3,800,000개 (0.22초)

도움말: 한국어 검색결과만 검색합니다. 환경설정에서 검색 언어를 지정할 수 있습니다.

How to Hack Wi-Fi: Cracking WEP Passwords with Aircrack-Ng « Null ... https://null-byte.wonderhowto.com/.../hack-wi-fi-cracking-wep-p... ▼ 이 페이지 번역하기 2018. 4. 3. - Let's take a look at cracking WEP with the best wireless hacking tool available, aircracking! Hacking wireless is one of my personal favorites!

How to Hack Wi-Fi: Hunting Down & Cracking WEP Networks - Null Byte https://null-byte.wonderhowto.com/.../hack-wi-fi-hunting-down-c... ▼ 이 페이지 번역하기 2018. 4. 16. - While the security behind WEP networks was broken in 2005, modern tools have made cracking them incredibly simple. In densely populated ...

Aircrack-ng를 이용한 무선랜 해킹 2. WEP - CPUU의 Daydreamin

https://cpuu.postype.com/post/58356 ▼

2015. 12. 28. - 2004년 발표된 802.11i 표준에서 IEEE는 **WEP**를 사용중단(deprecated) 선언했습니다. 이번에도 무선랜**해킹**의 대명사인 Aircrack-ng을 이용하여 ...

스트림 암호: Death of Stream Ciphers?

□ Popular in the past

Efficient in hardware – Speed was needed to keep up with voice, etc.

□ Today, processors are fast

Software-based crypto is usually fast enough

□ Future of stream ciphers?

- Shamir declared "the death of stream ciphers"
- May be greatly exaggerated…

스트림 암호: eSTREAM

□ eSTREAM (유럽 연합의 eSTREAM 공모사업)

- 2008년 4월 총 3단계에 걸친 심사를 통하여 최종 스트림 암호가 당선
- Profile1 : 높은 성능을 요구하는 소프트웨어 애플리케이션을 위한 스트림 암호
- Profile2 : 제한된 자원(저장공간,게이트의 수, 전력량)을 가진 하드웨어 애플리케이션을 위한 스트림 암호

Profile 1 (software)	Profile 2 (hardware)
HC-128 [1] ₽	Grain [2]@
Rabbit [3] ₺	MICKEY [4] ₽
Salsa20/12 [5] ₺	Trivium [6]⑮
SOSEMANUK [7] ₺	

The project was completed in April 2008.

https://en.wikipedia.org/wiki/ESTREAM

Thank you (