Limite et continuité

Généralités sur les fonctions

Exercice 1 [01779] [Correction]

Soit $f: \mathbb{R} \to \mathbb{R}$ telle que $f \circ f$ est croissante tandis que $f \circ f \circ f$ est strictement décroissante.

Montrer que f est strictement décroissante.

Exercice 2 [01780] [Correction]

Étudier la parité de la fonction f définie par

$$f(x) = \ln\left(\sqrt{x^2 + 1} + x\right)$$

Exercice 3 [01783] [Correction]

Soit $f: [0;1] \rightarrow [0;1]$ une fonction croissante. Montrer que f admet un point fixe.

Exercice 4 [00501] [Correction]

Soit f une fonction croissante de [0; 1] dans [0; 1].

- (a) Montrer que s'il existe $x \in [0, 1]$ et $k \in \mathbb{N}^*$ tels que $f^k(x) = x$ alors x est un point fixe pour f.
- (b) Montrer que f admet un point fixe.

Calcul de limites

Exercice 5 [01784] [Correction]

Déterminer les limites suivantes, lorsque celles-ci existent :

- (a) $\lim_{x\to 0} \frac{\sqrt{1+x} \sqrt{1-x}}{x}$ (c) $\lim_{x\to 0+} x^x$ (e) $\lim_{x\to 0} (1+x)^{1/x}$ (b) $\lim_{x\to +\infty} \frac{x-\sqrt{x}}{\ln x+x}$ (d) $\lim_{x\to 1+} \ln x \cdot \ln(\ln x)$ (f) $\lim_{x\to 1} \frac{1-x}{\arccos x}$

Exercice 6 [01785] [Correction]

Déterminer les limites suivantes, lorsque celles-ci existent :

- (a) $\lim_{x\to 0} x \cdot \sin\left(\frac{1}{x}\right)$
- (c) $\lim_{x\to+\infty} e^{x-\sin x}$
- (e) $\lim_{x\to 0} x \lfloor 1/x \rfloor$

- (b) $\lim_{x\to+\infty} \frac{x\cos e^x}{x^2+1}$
- (d) $\lim_{x\to+\infty} \frac{x+\arctan x}{x}$
- (f) $\lim_{x\to+\infty} x |1/x|$

Exercice 7 [01786] [Correction]

Déterminer les limites suivantes :

- (a) $\lim_{x\to 0+} \lfloor 1/x \rfloor$
- (b) $\lim_{x\to 0} x |1/x|$
- (c) $\lim_{x\to 0} x^2 |1/x|$

Propriétés des limites

Exercice 8 [01789] [Correction]

- (a) Soit $g: \mathbb{R} \to \mathbb{R}$ une fonction périodique convergeant en $+\infty$. Montrer que g est constante.
- (b) Soient $f,g:\mathbb{R}\to\mathbb{R}$ telles que f converge en $+\infty$, g périodique et f+g croissante. Montrer que *g* est constante.

Exercice 9 [01788] [Correction]

Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction T périodique (avec T > 0) telle que $\lim_{t \to \infty} f$ existe dans \mathbb{R} . Montrer que f est constante.

Exercice 10 [01787] [Correction]

Soient $a < b \in \mathbb{R}$ et $f: [a; b] \to \mathbb{R}$ une fonction croissante.

Montrer que l'application $x \mapsto \lim_{x^+} f$ est croissante.

Étude de continuité

Exercice 11 [01793] [Correction]

Étudier la continuité sur \mathbb{R} de l'application

 $f: x \mapsto |x| + \sqrt{x - |x|}$

Exercice 12 [01794] [Correction]

Étudier la continuité de

 $f: x \mapsto |x| + (x - |x|)^2$

Exercice 13 [01795] [Correction]

Soit $f: \mathbb{R} \to \mathbb{R}$ définie par

$$f(x) = \begin{cases} 1 & \text{si } x \in \mathbb{Q} \\ 0 & \text{sinon} \end{cases}$$

Montrer que f est totalement discontinue.

Exercice 14 [01796] [Correction]

Soit $f: \mathbb{R}_+^* \to \mathbb{R}$ une fonction telle que $x \mapsto f(x)$ est croissante et $x \mapsto \frac{f(x)}{x}$ est décroissante.

Montrer que f est continue.

Exercice 15 [01797] [Correction]

Soient $f: I \to \mathbb{R}$ et $g: I \to \mathbb{R}$ deux fonctions continues. Montrer que $\sup(f, g)$ est une fonction continue sur I.

Exercice 16 [00240] [Correction]

Étudier la continuité de la fonction

$$f \colon x \mapsto \sup_{n \in \mathbb{N}} \frac{x^n}{n!}$$

définie sur \mathbb{R}_+ .

Théorème des valeurs intérmédiaires

Exercice 17 [01803] [Correction]

Soit $f: \mathbb{R} \to \mathbb{R}$ continue telle que $\lim_{\infty} f = -1$ et $\lim_{\infty} f = 1$. Montrer que f s'annule.

Exercice 18 [01800] [Correction]

Soit $f: [0;1] \rightarrow [0;1]$ continue. Montrer que f admet un point fixe.

Exercice 19 [03719] [Correction]

Soit $f: [a;b] \to \mathbb{R}$ continue.

- (a) Montrer que si $f([a;b]) \subset [a;b]$ alors f admet un point fixe.
- (b) Montrer que si $[a;b] \subset f([a;b])$ alors f admet un point fixe.

Exercice 20 [01806] [Correction]

Soit $f: \mathbb{R} \to \mathbb{R}$ continue et décroissante.

Montrer que f admet un unique point fixe.

Exercice 21 [01807] [Correction]

Soit $f: [0; +\infty[\rightarrow \mathbb{R} \text{ continue, positive et telle que}]$

$$\lim_{x \to +\infty} \frac{f(x)}{x} = \ell < 1$$

Montrer qu'il existe $\alpha \in [0; +\infty[$ tel que $f(\alpha) = \alpha$.

Exercice 22 [01801] [Correction]

Montrer que les seules applications continues de \mathbb{R} vers \mathbb{Z} sont les fonctions constantes.

Exercice 23 [01804] [Correction]

Soient $f: I \to \mathbb{R}$ et $g: I \to \mathbb{R}$ deux fonctions continues telles que

$$\forall x \in I, |f(x)| = |g(x)| \neq 0$$

Montrer que f = g ou f = -g.

Exercice 24 [01809] [Correction]

Soit $f \colon [0; +\infty[\to \mathbb{R} \text{ continue. On suppose que } |f| \xrightarrow[+\infty]{} +\infty.$ Montrer que $f \xrightarrow[+\infty]{} +\infty$ ou $f \xrightarrow[+\infty]{} -\infty.$

Exercice 25 [01802] [Correction]

Soient $f: [a;b] \to \mathbb{R}$ continue et $p, q \in \mathbb{R}_+$. Montrer qu'il existe $c \in [a;b]$ tel que

$$p.f(a) + q.f(b) = (p+q).f(c)$$

Exercice 26 [01805] [Correction]

Soit $f: [0; 1] \to \mathbb{R}$ continue telle que f(0) = f(1).

Montrer que pour tout $n \in \mathbb{N}^*$, il existe $\alpha \in [0; 1-1/n]$ tel que

$$f(\alpha + 1/n) = f(\alpha)$$

Exercice 27 [00242] [Correction]

Soient $f, g: [0; 1] \rightarrow [0; 1]$ continues vérifiant

$$f \circ g = g \circ f$$

Montrer qu'il existe $x_0 \in [0; 1]$ telle que $f(x_0) = g(x_0)$.

Exercice 28 [01808] [Correction]

Notre objectif dans cet exercice est d'établir la proposition :

Toute fonction $f: I \to \mathbb{R}$ continue et injective est strictement monotone.

Pour cela on raisonne par l'absurde et on suppose :

$$\exists (x_1, y_1) \in I^2, x_1 < y_1 \text{ et } f(x_1) \ge f(y_1) \text{ et } \exists (x_2, y_2) \in I^2, x_2 < y_2 \text{ et } f(x_2) \le f(y_2)$$

Montrer que la fonction $\varphi \colon [0;1] \to \mathbb{R}$ définie par

$$\varphi(t) = f((1-t)x_1 + tx_2) - f((1-t)y_1 + ty_2)$$

s'annule. Conclure.

Exercice 29 [03350] [Correction]

Montrer la surjectivité de l'application

$$z\in\mathbb{C}\mapsto z\exp(z)\in\mathbb{C}$$

Théorème des bornes atteintes

Exercice 30 [01813] [Correction]

Montrer qu'une fonction continue et périodique définie sur $\mathbb R$ est bornée.

Exercice 31 [01812] [Correction]

Soient $f: \mathbb{R} \to \mathbb{R}$ bornée et $g: \mathbb{R} \to \mathbb{R}$ continue.

Montrer que $g \circ f$ et $f \circ g$ sont bornées.

Exercice 32 [01810] [Correction]

Soient $f, g: [a; b] \to \mathbb{R}$ continues telles que

$$\forall x \in [a;b], f(x) < g(x)$$

Montrer qu'il existe $\alpha > 0$ tel que

$$\forall x \in [a; b], f(x) \le g(x) - \alpha$$

Exercice 33 [01811] [Correction]

Soit $f: \mathbb{R} \to \mathbb{R}$ continue telle que

$$\lim_{+\infty} f = \lim_{-\infty} f = +\infty$$

Montrer que f admet un minimum absolu.

Exercice 34 [01815] [Correction]

Soit $f: \mathbb{R} \to \mathbb{R}$ continue. On suppose que chaque $y \in \mathbb{R}$ admet au plus deux antécédents par f.

Montrer qu'il existe un $y \in \mathbb{R}$ possédant exactement un antécédent.

Exercice 35 [03437] [Correction]

Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction continue et T-périodique (T > 0).

- (a) Montrer que f est bornée.
- (b) Justifier l'existence de $x \in \mathbb{R}$ tel que

$$f([x; x + T/2]) = \operatorname{Im} f$$

Exercice 36 [03722] [Correction]

Soit a < b et $f: [a; b] \to \mathbb{R}$ continue vérifiant f(a) = f(b).

Montrer qu'il existe $\alpha > 0$ tel que

$$\forall \sigma \in [0\,;\alpha], \exists x \in [a\,;b-\sigma], f(x+\sigma) = f(x)$$

Exercice 37 [04099] [Correction]

Soit $f: [0; +\infty[\to \mathbb{R}$ une fonction continue possédant une limite finie ℓ en $+\infty$. Montrer que la fonction f est bornée.

Bijection continue

Exercice 38 [01816] [Correction]

Soit $f: \mathbb{R} \to \mathbb{R}$ définie par

$$f(x) = \frac{x}{1 + |x|}$$

(a) Montrer que f réalise une bijection de \mathbb{R} vers]-1; 1[.

(b) Déterminer, pour $y \in]-1$; 1[une expression de $f^{-1}(y)$ analogue à celle de f(x).

Exercice 39 [01817] [Correction]

Soient $a < b \in \mathbb{R}$ et $f:]a; b[\to \mathbb{R}$ une fonction strictement croissante. Montrer que f est continue si, et seulement si, $f(]a; b[) =]\lim_a f; \lim_b f[$.

Exercice 40 [03105] [Correction]

Soit α un réel compris au sens large entre 0 et 1/e.

(a) Démontrer l'existence d'une fonction $f \in C^1(\mathbb{R}, \mathbb{R})$ vérifiant

$$\forall x \in \mathbb{R}, f'(x) = \alpha f(x+1)$$

(b) Si $\alpha = 1/e$, déterminer deux fonctions linéairement indépendantes vérifiant la relation précédente.

Exercice 41 [03401] [Correction]

Soit $f: [0; +\infty[\rightarrow [0; +\infty[$ continue vérifiant

$$f \circ f = Id$$

Déterminer f.

Continuité et équation fonctionnelle

Exercice 42 [01790] [Correction]

Soit $f: \mathbb{R} \to \mathbb{R}$ continue en 0 telle que

$$\forall x \in \mathbb{R}, f(2x) = f(x)$$

Montrer que f est une fonction constante.

Exercice 43 [01791] [Correction]

Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction continue en 0 et en 1 telle que

$$\forall x \in \mathbb{R}, f(x) = f(x^2)$$

Montrer que f est constante.

Exercice 44 [00244] [Correction]

Soit $f: \mathbb{R} \to \mathbb{R}$ continue telle que $\forall x \in \mathbb{R}$,

$$f\left(\frac{x+1}{2}\right) = f(x)$$

Montrer que f est constante.

Exercice 45 [01792] [Correction]

Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction continue et prenant la valeur 1 en 0. On suppose que

$$\forall x \in \mathbb{R}, f(2x) = f(x) \cos x$$

Déterminer f.

Exercice 46 [01798] [Correction]

Soit $f: \mathbb{R} \to \mathbb{R}$ continue telle que

$$\forall x, y \in \mathbb{R}, f(x+y) = f(x) + f(y)$$

- (a) Calculer f(0) et montrer que pour tout $x \in \mathbb{R}$, f(-x) = -f(x).
- (b) Justifier que pour tout $n \in \mathbb{Z}$ et tout $x \in \mathbb{R}$, f(nx) = nf(x).
- (c) Établir que pour tout $r \in \mathbb{Q}$, f(r) = ar avec a = f(1).
- (d) Conclure que pour tout $x \in \mathbb{R}$, f(x) = ax.

Exercice 47 [00243] [Correction]

Soit $f: \mathbb{R} \to \mathbb{R}$ telle que pour tout $x, y \in \mathbb{R}$,

$$f(x + y) = f(x) + f(y)$$

On suppose en outre que la fonction f est continue en un point $x_0 \in \mathbb{R}$. Déterminer la fonction f.

Exercice 48 [01799] [Correction]

On cherche les fonctions $f: \mathbb{R} \to \mathbb{R}$ continues telles que

$$\forall x, y \in \mathbb{R}, f\left(\frac{x+y}{2}\right) = \frac{1}{2} \left(f(x) + f(y)\right)$$

(a) On suppose f solution et f(0) = f(1) = 0. Montrer que f est périodique et que

$$\forall x \in \mathbb{R}, 2f(x) = f(2x)$$

En déduire que f est nulle.

(b) Déterminer toutes les fonctions f solutions.

Exercice 49 [03721] [Correction]

Soit $f : \mathbb{R} \to \mathbb{R}$ une fonction continue telle que

$$\forall x, y \in \mathbb{R}, f\left(\frac{x+y}{2}\right) = \frac{1}{2} \left(f(x) + f(y)\right)$$

(a) On suppose f(0) = 0. Vérifier

$$\forall x, y \in \mathbb{R}, f(x+y) = f(x) + f(y)$$

(b) On revient au cas général, déterminer f.

Fonctions lipshitziennes

Exercice 50 [01781] [Correction]

On rappelle que pour tout $x \in \mathbb{R}$, on a $|\sin x| \le |x|$.

Montrer que la fonction $x \mapsto \sin x$ est 1 lipschitzienne.

Exercice 51 [01782] [Correction]

Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction k lipschitzienne (avec $k \in [0; 1[)$ telle que f(0) = 0.

Soient $a \in \mathbb{R}$ et (u_n) la suite réelle déterminée par

$$u_0 = a \text{ et } \forall n \in \mathbb{N}, u_{n+1} = f(u_n)$$

Montrer que $u_n \to 0$.

Exercice 52 [01814] [Correction]

Soient $f, g: [0; 1] \to \mathbb{R}$ continue.

On pose

$$\varphi(t) = \sup_{x \in [0;1]} (f(x) + tg(x))$$

Montrer que φ est bien définie sur $\mathbb R$ et qu'elle y est lipschitzienne.

Corrections

Exercice 1: [énoncé]

Soient $x < y \in \mathbb{R}$. $f(x) \le f(y) \implies f \circ f \circ f(x) \le f \circ f \circ f(y) \implies y \le x$ car $f \circ f$ et croissante et $f \circ f \circ f$ strictement décroissante.

Par contraposée $x < y \implies f(y) < f(x)$ et donc f est strictement décroissante.

Exercice 2: [énoncé]

On a

$$\forall x \in \mathbb{R}, \ \sqrt{x^2 + 1} > \sqrt{x^2} = |x| \ge x$$

donc la fonction f est définie sur $\mathbb R$ qui est un intervalle symétrique par rapport à 0. En multipliant par la quantité conjuguée

$$f(-x) = \ln\left(\sqrt{x^2 + 1} - x\right) = \ln\left(\frac{x^2 + 1 - x^2}{\sqrt{x^2 + 1} + x}\right)$$

donc

$$f(-x) = -\ln(\sqrt{x^2 + 1} + x) = -f(x)$$

La fonction f est donc impaire.

Exercice 3: [énoncé]

 $\{x \in [0; 1] \mid f(x) \ge x\}$ est non vide (0 y appartient) et est majoré (par 1).

On peut donc poser $\alpha = \sup\{x \in [0; 1] \mid f(x) \ge x\}.$

Pour tout $x > \alpha$, on a f(x) < x donc $f(\alpha) \le f(x) < x$.

Puisque $f(\alpha) \le x$ pour tout $x > \alpha$, on a aussi $f(\alpha) \le \alpha$.

Pour tout $x < \alpha$, il existe $t \in]x; \alpha]$ tel que $f(t) \ge t$ donc $f(\alpha) \ge f(t) \ge t \ge x$.

Puisque ceci vaut pour tout $x < \alpha$, on a aussi $f(\alpha) \ge \alpha$.

Finalement $f(\alpha) = \alpha$.

On peut aussi procéder par dichotomie.

Exercice 4 : [énoncé]

(a) Si f(x) > x alors par croissance de f,

$$f^k(x) \ge f^{k-1}(x) \ge \dots \ge f(x) > x$$

ce qui est absurde. Une étude analogue contredit f(x) < x.

(b) On a $f(0) \ge 0$ et $f(1) \le 1$. Par dichotomie, on peut construire deux suites (a_n) et (b_n) vérifiant

$$f(a_n) \ge a_n$$
 et $f(b_n) \le b_n$

On initie les suites (a_n) et (b_n) en posant $a_0 = 0$ et $b_0 = 1$.

Une fois les termes a_n et b_n déterminés, on introduit $m = (a_n + b_n)/2$.

Si $f(m) \ge m$ on pose $a_{n+1} = m$ et $b_{n+1} = b_n$.

Sinon, on pose $a_{n+1} = a_n$ et $b_{n+1} = m$.

Les suites (a_n) et (b_n) ainsi déterminées sont adjacentes et convergent donc vers une limite commune c. Puisque $a_n \le c \le b_n$, on a par croissance

$$f(a_n) \le f(c) \le f(b_n)$$

et donc

$$a_n \leq f(c) \leq b_n$$

Or (a_n) et (b_n) convergent vers c donc par encadrement

$$f(c) = c$$

On peut aussi décrire un point fixe de f en considérant

$$c = \sup\{x \in [0; 1], f(x) \ge x\}$$

Les deux questions de cet oral ne semblent pas être liées.

Exercice 5: [énoncé]

(a) Quand $x \to 0$,

$$\frac{\sqrt{1+x} - \sqrt{1-x}}{x} = \frac{1+x - (1-x)}{x\left(\sqrt{1+x} + \sqrt{1-x}\right)} = \frac{2}{\sqrt{1+x} + \sqrt{1-x}} \to 1$$

(b) Quand $x \to +\infty$,

$$\frac{x - \sqrt{x}}{\ln x + x} = \frac{1 - 1/\sqrt{x}}{\frac{\ln x}{x} + 1} \to 1$$

(c) Quand $x \to 0^+$,

$$x^x = e^{x \ln x} = e^X$$

avec $X = x \ln x \rightarrow 0$ donc $x^x \rightarrow 1$.

(d) Quand $x \to 1^+$,

$$\ln x \cdot \ln(\ln x) = X \ln X$$

avec $X = \ln x \to 0$ donc $\ln x \cdot \ln(\ln x) \to 0$

(e) Quand $x \to 0$,

$$(1+x)^{1/x} = e^{\frac{1}{x}\ln(1+x)} = e^X$$

avec $X = \frac{\ln(1+x)}{x} \rightarrow 1$ donc $(1+x)^{1/x} \rightarrow e$.

(f) Quand $x \to 1$,

$$\frac{1-x}{\arccos x} = \frac{1-\cos y}{y} = \frac{2\sin^2(y/2)}{y} = \sin(y/2)\frac{\sin(y/2)}{y/2}$$

avec $y = \arccos x \to 0$ donc $\sin y/2 \to 0$ et $\frac{\sin y/2}{y/2} \to 1$ puis $\frac{1-x}{\arccos x} \to 0$.

Exercice 6: [énoncé]

(a) Quand $x \to 0$,

$$\left| x \sin \frac{1}{x} \right| \le |x| \to 0$$

(b) Quand $x \to +\infty$,

$$\left| \frac{x \cos e^x}{x^2 + 1} \right| \le \frac{x}{x^2 + 1} \to 0$$

(c) Quand $x \to +\infty$,

$$e^{x-\sin x} \ge e^{x-1} \to +\infty$$

(d) Quand $x \to +\infty$,

$$\left| \frac{x + \arctan x}{x} - 1 \right| \le \frac{\arctan x}{x} \le \frac{\pi}{2x} \to 0$$

(e) Quand $x \to 0$,

$$1/x-1 \leq \lfloor 1/x \rfloor \leq 1/x$$

donc

$$|\lfloor 1/x \rfloor - 1/x| \le 1$$

puis

$$|x\lfloor 1/x\rfloor - 1| \le |x| \to 0$$

(f) Quand $x \to +\infty$, $1/x \to 0$ donc |1/x| = 0 puis $x |1/x| = 0 \to 0$.

Exercice 7: [énoncé]

(a) Quand $x \to 0^+$,

$$E\lfloor 1/x\rfloor \ge \frac{1}{x} - 1 \to +\infty$$

(b) Quand $x \to 0^+$,

$$1/x - 1 \le |1/x| \le 1/x$$

donne

$$1 - x \le x |1/x| \le 1$$

puis $x \lfloor 1/x \rfloor \to 1$.

Quand $x \to 0^-$,

$$1/x - 1 \le \lfloor 1/x \rfloor \le 1/x$$

donne

$$1 \le |1/x| \le 1 - x$$

puis à nouveau $x \lfloor 1/x \rfloor \to 1$.

(c) Quand $x \to 0^+$,

$$\left| x^2 \lfloor 1/x \rfloor \right| \le \frac{x^2}{x} \to 0$$

via

$$0 \le |1/x| \le 1/x$$

et quand $x \to 0^-$,

$$\left| x^2 \lfloor 1/x \rfloor \right| \le x^2 \left(1 - \frac{1}{x} \right) \to 0$$

via

$$\frac{1}{x} - 1 \le \lfloor 1/x \rfloor \le 0$$

Exercice 8 : [énoncé]

Notons T une période strictement positive de g.

- (a) Notons ℓ la limite de g en $+\infty$. $\forall x \in \mathbb{R}, g(x) = g(x + nT) \xrightarrow[n \to +\infty]{} \ell$ donc par unicité de la limite : $g(x) = \ell$. Ainsi g est constante.
- (b) Notons ℓ la limite de f en $+\infty$.

Puisque f + g est croissante $f + g \xrightarrow[+\infty]{} \ell' \in \mathbb{R} \cup \{+\infty\}.$

Si $\ell' = +\infty$ alors $g \xrightarrow[x \to +\infty]{} +\infty$. La démarche du a., montre l'impossibilité de ceci.

Si $\ell' \in \mathbb{R}$ alors la démarche du a., permet de conclure.

Exercice 9 : [énoncé]

Posons $\ell = \lim_{+\infty} f$.

Pour tout $x \in \mathbb{R}$ et tout $n \in \mathbb{Z}$, on a f(x) = f(x + nT).

Quand $n \to +\infty$, $x + nT \to +\infty$ et donc $f(x + nT) \to \ell$.

Or $f(x + nT) = f(x) \rightarrow f(x)$ donc par unicité de la limite $\ell = f(x)$.

Finalement f est constante.

Exercice 10: [énoncé]

L'application $x \mapsto \lim_{x^+} f$ est bien définie car f est croissante ce qui assure l'existence de $\lim_{x^+} f$.

Soient $x, y \in]a$; b[tels que x < y.

Pour $t \in]x$; y[, on a $f(t) \le f(y)$. Quand $t \to x^+$, on obtient $\lim_{x^+} f \le f(y)$ or $f(y) \le \lim_{y^+} f$ donc $\lim_{x^+} f \le \lim_{y^+} f$.

Exercice 11: [énoncé]

Par opération f est continue sur chaque $I_k =]k$; k + 1[avec $k \in \mathbb{Z}$.

Il reste à étudier la continuité en $a \in \mathbb{Z}$.

Quand $x \to a^+$: $f(x) = \lfloor x \rfloor + \sqrt{x - \lfloor x \rfloor} \to a = f(a) \operatorname{car} E(x) \to a$.

Quand $x \to a^-$: $f(x) = \lfloor x \rfloor + \sqrt{x - \lfloor x \rfloor} \to a - 1 + 1 = a = f(a)$ car $\lfloor x \rfloor \to a - 1$.

Par continuité à droite et à gauche, f est continue en a.

Finalement f est continue sur \mathbb{R} .

Exercice 12: [énoncé]

Soit $a \in \mathbb{R}$.

Cas $a \notin \mathbb{Z}$.

Au voisinage de a,

$$f(x) = \lfloor a \rfloor + (x - \lfloor a \rfloor)^2$$

donc f est continue en a.

Cas $a \in \mathbb{Z}$.

Quand $x \to a^+$, $f(x) \to a = f(a)$.

Quand $x \to a^-$, $f(x) \to a - 1 + (a - (a - 1))^2 = a = f(a)$.

Donc f est continue en a. Finalement f est continue sur \mathbb{R} .

Exercice 13: [énoncé]

Soit $a \in \mathbb{R}$.

Il existe une suite (u_n) de nombre rationnels et une suite (v_n) de nombres irrationnels telles que $u_n, v_n \to a$.

On a $f(u_n) = 1 \to 1$ et $f(v_n) = 0 \to 0$ donc f n'a pas de limite en a et est donc discontinue en a.

Exercice 14: [énoncé]

Soit $a \in \mathbb{R}_+^*$.

Puisque f est croissante $\lim_{x\to a^-} f(x)$ et $\lim_{x\to a^+} f(x)$ existent, sont finies et $\lim_{x\to a^-} f(x) \le f(a) \le \lim_{x\to a^+} f(x)$.

Puisque $x \mapsto \frac{f(x)}{x}$ est décroissante $\lim_{x \to a^-} \frac{f(x)}{x}$ et $\lim_{x \to a^+} \frac{f(x)}{x}$ existent, sont finies et $\lim_{x \to a^+} \frac{f(x)}{x} \le \frac{f(a)}{a} \le \lim_{x \to a^-} \frac{f(x)}{x}$.

Par opérations sur les limites $\lim_{x\to a^+} \frac{f(x)}{x} = \frac{1}{a} \lim_{x\to a^+} f(x)$ et

 $\lim_{x \to a^{-}} \frac{f(x)}{x} = \frac{1}{a} \lim_{x \to a^{-}} f(x)$

donc $\frac{1}{a} \lim_{x \to a^+} f(x) \le \frac{1}{a} f(a) \le \frac{1}{a} \lim_{x \to a^-} f(x)$ puis $\lim_{x \to a^+} f(x) \le f(a) \le \lim_{x \to a^-} f(x)$ car a > 0.

Par suite $\lim_{x\to a^+} f(x) = f(a) = \lim_{x\to a^-} f(x)$ et donc f est continue.

Exercice 15: [énoncé]

 $\sup(f,g)(x) = \max(f(x),g(x)) = \frac{1}{2}|f(x)-g(x)| + \frac{1}{2}(f(x)+g(x))$ est continue par opérations.

Exercice 16: [énoncé]

La suite (u_n) avec $u_n = \frac{x^n}{n!}$ converge vers 0 donc $\sup_{n \in \mathbb{N}} \frac{x^n}{n!}$ existe dans \mathbb{R} .

$$\frac{u_{n+1}}{u_n} = \frac{x}{n+1}$$

Pour $n \ge \lfloor x \rfloor$ on a $n + 1 \ge x$ donc $u_{n+1} \le u_n$.

Pour $n < \lfloor x \rfloor$ on a $n + 1 \le x$ donc $u_{n+1} \ge u_n$.

Par suite

$$f(x) = \sup_{n \in \mathbb{N}} \frac{x^n}{n!} = \frac{x^{\lfloor x \rfloor}}{\lfloor x \rfloor!}$$

f est clairement continue en tout $a \in \mathbb{R}_+ \setminus \mathbb{N}$ et continue à droite en tout $a \in \mathbb{N}$. Reste à étudier la continuité à gauche en $a \in \mathbb{N}^*$.

Quand $x \rightarrow a^-$:

$$f(x) = \frac{x^{\lfloor x \rfloor}}{|x|!} = \frac{x^{a-1}}{(a-1)!} \to \frac{a^{a-1}}{(a-1)!} = \frac{a^a}{a!} = f(a)$$

Finalement *f* est continue.

Exercice 17 : [énoncé]

Puisque $\lim_{-\infty} f = -1$, f prend des valeurs négatives, puisque $\lim_{+\infty} f = 1$, f prend des valeurs positives.

En appliquant le théorème des valeurs intermédiaires entre celles-ci, f s'annule.

Exercice 18: [énoncé]

Soit φ : $[0;1] \to \mathbb{R}$ définie par $\varphi(x) = f(x) - x$. Un point fixe de f est une valeur d'annulation de φ .

 φ est continue, $\varphi(0) = f(0) \ge 0$ et $\varphi(1) = f(1) - 1 \le 0$ donc, par le théorème des valeurs intermédiaires, φ s'annule.

Exercice 19: [énoncé]

Dans les deux études, on introduit $\varphi \colon x \mapsto f(x) - x$ définie et continue sur [a;b]. L'objectif est de montrer que φ s'annule

- (a) Si $f([a;b]) \subset [a;b]$ alors $f(a) \in [a;b]$ et donc $\varphi(a) = f(a) a \ge 0$. De même $\varphi(b) \le 0$ et le théorème des valeurs intermédiaires assure qu'alors φ s'annule.
- (b) Si $[a;b] \subset f([a;b])$ alors il existe $\alpha \in [a;b]$ tel que $f(\alpha) = a$. On a alors $\varphi(\alpha) = a \alpha \le 0$.

De même en introduisant β tel que $f(\beta) = b$, on a $\varphi(\beta) \ge 0$ et l'on peut à nouveau affirmer que la fonction continue φ s'annule.

Exercice 20: [énoncé]

Unicité : Soit $g: x \mapsto f(x) - x$. g est strictement décroissante donc injective et ne peut donc s'annuler qu'au plus une fois.

Existence : Par l'absurde, puisque g est continue, si elle ne s'annule pas elle est strictement positive ou négative.

Si $\forall x \in \mathbb{R}, g(x) > 0$ alors $f(x) > x \longrightarrow_{x \to +\infty} +\infty$ ce qui est absurde puisque $\lim_{t \to 0} f = \inf_{\mathbb{R}} f$. Si $\forall x \in \mathbb{R}, g(x) < 0$ alors $f(x) < x \longrightarrow_{x \to -\infty} -\infty$ ce qui est absurde puisque $\lim_{t \to 0} f = \sup_{\mathbb{R}} f$.

Exercice 21: [énoncé]

Si f(0) = 0 alors $\alpha = 0$ convient.

Sinon, considérons

$$g: x \mapsto \frac{f(x)}{x}$$

La fonction g est définie et continue sur \mathbb{R}_+^* .

Puisque f(0) > 0, par opérations sur les limites $\lim_{x\to 0} g(x) = +\infty$.

De plus $\lim_{x\to +\infty} g(x) = \ell$.

Puisque g est continue et qu'elle prend des valeurs inférieures et supérieures à 1, on peut affirmer par le théorème des valeurs intermédiaires qu'il existe $\alpha \in \mathbb{R}_+^*$ tel que $g(\alpha) = 1$ d'où $f(\alpha) = \alpha$.

Exercice 22 : [énoncé]

Soit $f: \mathbb{R} \to \mathbb{Z}$ continue.

Par l'absurde : Si f n'est pas constante alors il existe a < b tel que $f(a) \neq f(b)$.

Soit y un nombre non entier compris entre f(a) et f(b).

Par le théorème des valeurs intermédiaires, il existe $x \in \mathbb{R}$ tel que y = f(x) et donc f n'est pas à valeurs entière. Absurde.

Exercice 23: [énoncé]

Posons $\varphi \colon I \to \mathbb{R}$ définie par

$$\varphi(x) = f(x)/g(x)$$

 φ est continue et

$$\forall x \in I, |\varphi(x)| = 1$$

Montrons que φ est constante égale à 1 ou -1 ce qui permet de conclure. Par l'absurde, si φ n'est pas constante égale à 1 ni à -1 alors il existe $a,b\in I$ tel que $\varphi(a)=1\geq 0$ et $\varphi(b)=-1\leq 0$. Par le théorème des valeurs intermédiaires, φ s'annule. Absurde.

Exercice 24: [énoncé]

Pour a assez grand, $|f(x)| \ge 1$ sur $[a; +\infty[$ donc f ne s'annule pas sur $[a; +\infty[$. Étant continue, f est alors de signe constant sur $[a; +\infty[$ et la relation $f = \pm |f|$ permet alors de conclure.

Exercice 25 : [énoncé]

Si p = q = 0, n'importe quel c fait l'affaire.

Sinon posons

$$y = \frac{pf(a) + qf(b)}{p + q}$$

Si $f(a) \le f(b)$ alors

$$f(a) = \frac{pf(a) + qf(a)}{p+q} \le y \le \frac{pf(b) + qf(b)}{p+q} = f(b)$$

Si $f(b) \le f(a)$ alors, comme ci-dessus $f(b) \le y \le f(a)$.

Dans les deux cas, y est une valeur intermédiaire à f(a) et f(b) donc par le théorème des valeurs intermédiaires, il existe $c \in [a;b]$ tel que y = f(c).

Exercice 26: [énoncé]

Posons $\varphi \colon [0; 1-1/n] \to \mathbb{R}$ définie par

$$\varphi(x) = f(x + 1/n) - f(x)$$

La fonction φ est continue.

Si φ est de signe strictement constant alors

$$f(1) - f(0) = \sum_{k=0}^{n-1} f((k+1)/n) - f(k/n) = \sum_{k=0}^{n-1} \varphi(k/n)$$

ne peut être nul.

Puisque φ prend une valeur positive et une valeur négative, par le théorème des valeurs intermédiaires, φ s'annule.

Exercice 27: [énoncé]

Par l'absurde, supposons que f - g ne s'annule pas. Quitte à échanger, supposons f - g > 0.

Soit x un point fixe de g.

On a g(f(x)) = f(g(x)) = f(x). Donc f(x) est point fixe de g et de plus f(x) > g(x) = x. De même, $f^2(x)$ est point fixe de g et $f^2(x) \ge f(x)$.

On peut ainsi construire une suite $(f^n(x))$ de points fixes de g, suite qui est croissante et majorée.

Posons $\ell = \lim_{n \to \infty} f^n(x)$. On a par continuité : $f(\ell) = \ell$ et $g(\ell) = \ell$. Absurde.

Exercice 28 : [énoncé]

La fonction φ est continue, $\varphi(0) = f(x_1) - f(y_1) \ge 0$ et $\varphi(1) = f(x_2) - f(y_2) \le 0$ donc par le théorème des valeurs intermédiaires, φ s'annule en un certain t. Posons $x_0 = (1 - t)x_1 + tx_2$ et $y_0 = (1 - t)y_1 + ty_2$.

 $\varphi(t) = 0$ donne $f(x_0) = f(y_0)$ or $x_0 < y_0$ donc f n'est pas injective. Absurde.

Exercice 29 : [énoncé]

Notons f l'application étudiée. Pour $z = \rho e^{i\alpha}$, on a

$$f(z) = \rho e^{\rho \cos \alpha} e^{i(\alpha + \rho \sin \alpha)}$$

Soit $Z = r e^{i\theta} \in \mathbb{C}$ avec $r \ge 0$. Si r = 0 alors Z = 0 = f(0). Si r > 0, pour que $z = \rho e^{i\alpha}$ vérifie f(z) = Z, il suffit de trouver (ρ, α) solution du système

$$\begin{cases} \rho e^{\rho \cos \alpha} = r \\ \alpha + \rho \sin \alpha = \theta \end{cases}$$

Nous alors chercher un couple (ρ, α) solution avec $\rho > 0$ et $\alpha \in [0; \pi[$.

Quitte à considérer un nouvel argument θ pour le complexe Z, nous supposons $\theta > \pi$.

On a alors

$$\begin{cases} \rho e^{\rho \cos \alpha} = r \\ \alpha + \rho \sin \alpha = \theta \end{cases} \iff \begin{cases} g(\alpha) = r \\ \rho = \frac{\theta - \alpha}{\sin \alpha} \end{cases}$$

avec

$$g(\alpha) = \frac{\theta - \alpha}{\sin \alpha} e^{\frac{\theta - \alpha}{\sin \alpha} \cos \alpha}$$

La fonction g est définie et continue sur $]0;\pi[$.

Quand $\alpha \to 0^+$, $g(\alpha) \to +\infty$ et quand $\alpha \to \pi^-$, $g(\alpha) \to 0^+$.

Par suite, il existe $\alpha \in]0$; $\pi[$ tel que $g(\alpha) = r$ et alors, pour $\rho = \frac{\theta - \alpha}{\sin \alpha}$, on obtient

$$f(\rho e^{i\alpha}) = r e^{i\theta} = Z$$

Finalement f est surjective.

Exercice 30 : [énoncé]

Soit T > 0 une période de f.

Sur [0; T], f est bornée par un certain M car f est continue sur un segment.

Pour tout $x \in \mathbb{R}$, $x - nT \in [0; T]$ pour n = E(x/T) donc $|f(x)| = |f(x - nT)| \le M$. Ainsi f est bornée par M sur \mathbb{R} .

Exercice 31: [énoncé]

Soit $M \in \mathbb{R}$ tel que

$$\forall x \in \mathbb{R}, |f(x)| \leq M$$

Pour tout $x \in \mathbb{R}$, $|f(g(x))| \le M$ donc $f \circ g$ est bornée.

Puisque la fonction g est continue sur le segment [-M; M], elle y est bornée par un certain M'.

Pour tout $x \in \mathbb{R}$, $|g(f(x))| \le M'$ car $f(x) \in [-M; M]$ ainsi $g \circ f$ est bornée.

Exercice 32 : [énoncé]

Posons φ : $[a;b] \to \mathbb{R}$ définie par

$$\varphi(x) = g(x) - f(x)$$

 φ est continue sur le segment [a;b] donc y admet un minimum en un certain $c \in [a;b]$. Posons $\alpha = \varphi(c) = g(c) - f(c) > 0$. Pour tout $x \in [a;b]$, $\varphi(x) \ge \alpha$ donc $f(x) \le g(x) - \alpha$.

Exercice 33: [énoncé]

Posons M = f(0) + 1.

Puisque $\lim_{\infty} f = \lim_{\infty} f = +\infty$, il existe $A, B \in \mathbb{R}$ tels que

$$\forall x \le A, f(x) \ge M \text{ et } \forall x \ge B, f(x) \ge M$$

On a $A \le 0 \le B$ car f(0) < M.

Sur [A; B], f admet un minimum en un point $a \in [A; B]$ car continue sur un segment. On a $f(a) \le f(0)$ car $0 \in [A; B]$ donc $f(a) \le M$.

Pour tout $x \in [A; B]$, on a $f(x) \ge f(a)$ et pour tout $x \in]-\infty; A] \cup [B; +\infty[$, $f(x) \ge M \ge f(a)$.

Ainsi f admet un minimum absolu en a.

Exercice 34: [énoncé]

Soit y une valeur prise par f. Si celle-ci n'a qu'un antécédent, c'est fini.

Sinon, soit a < b les deux seuls antécédents de y.

f est continue sur [a;b] donc y admet un minimum en c et un maximum en d, l'un au moins n'étant pas en une extrémité de [a;b]. Supposons que cela soit c.

Si f(c) possède un autre antécédent c' que c.

Si $c' \in [a; b]$ alors f ne peut être constante entre c et c' et une valeur strictement comprise entre f(c) = f(c') et $\max_{[c:c']} f$ possède au moins 3 antécédents.

Si $c' \notin [a; b]$ alors une valeur strictement intermédiaire à y et f(c) possède au moins 3 antécédents. Impossible.

Exercice 35: [énoncé]

(a) Puisque f est T-périodique, on a

$$\operatorname{Im} f = f(\mathbb{R}) = f([0; T])$$

Or f est continue, donc f([0;T]) est bornée et donc Im f aussi.

(b) Plus précisément f([0;T]) est un segment de la forme [f(a);f(b)] avec $a,b \in [0;T]$.

Pour fixer les idées, supposons $a \le b$. On a $b \in [a; T] \subset [a; a + T]$.

Si $b \in [a; a + T/2]$ alors $f(a), f(b) \in f([a; a + T/2])$ et donc pour x = a

$$\operatorname{Im} f = f\left([x\,;x+T/2]\right)$$

Si $b \in [a + T/2; a + T]$ alors x = a + T/2 convient.

Le raisonnement dans le cas $b \le a$ est analogue.

Exercice 36: [énoncé]

Si la fonction f est constante, l'affaire est entendue.

Si f n'est pas constante elle admet un minimum ou un maximum global dans a; b[.

Quitte à considérer -f, on peut supposer qu'il s'agit d'un maximum en $c \in]a; b[$.

Posons alors $\alpha = \min\{c - a, b - c\} > 0$ et considérons $\sigma \in [0; \alpha]$.

Considérons enfin $g: x \mapsto f(x + \sigma) - f(x)$ définie et continue sur $[a; b - \sigma]$.

On a $g(c) \le 0$ et $g(c - \sigma) \ge 0$ car f est maximale en c.

Par le théorème des valeurs intermédiaires, on peut affirmer que *g* s'annule ce qui résout le problème posé.

Exercice 37 : [énoncé]

Soit $\varepsilon = 1 > 0$. Il existe $A \in [0; +\infty[$ tel que

$$\forall x \in [A; +\infty[, |f(x) - \ell| \le 1]$$

Ainsi, la fonction f est bornée par $M_1 = |\ell| + 1$ sur $[A; +\infty[$. Aussi, f est continue sur le segment [0; A], elle est donc aussi bornée sur [0; A] par un certain M_2 .

Finalement, f est bornée sur $[0; +\infty[$ par $M = \max(M_1, M_2)$.

Exercice 38: [énoncé]

(a) Sur $[0; +\infty[$,

$$f(x) = \frac{x}{1+x} = 1 - \frac{1}{1+x}$$

est continue et strictement croissante, f(0) = 0 et $\lim_{\infty} f = 1$. Ainsi f réalise une bijection de $[0; +\infty[$ vers [0; 1[. Sur $]-\infty; 0[$,

$$f(x) = \frac{x}{1 - x} = -1 + \frac{1}{1 - x}$$

est continue et strictement croissante, $\lim_{0} f = 0$ et $\lim_{\infty} f = -1$.

Ainsi f réalise une bijection de $]-\infty$; 0[vers]-1; 0[.

Finalement, f réalise une bijection de \mathbb{R} vers]-1; 1[.

(b) Pour $y \in [0; 1[$, son antécédent $x = f^{-1}(y)$ appartient à $[0; +\infty[$.

$$y = f(x) \iff y = \frac{x}{1+x} \iff x = \frac{y}{1-y}$$

Pour $y \in]-1$; 0[, son antécédent $x = f^{-1}(y)$ appartient à $]-\infty$; 0[.

$$y = f(x) \iff y = \frac{x}{1-x} \iff x = \frac{y}{1+y}$$

Finalement,

$$\forall y \in]-1; 1[, f^{-1}(y) = \frac{y}{1 - |y|}$$

Exercice 39: [énoncé]

Notons que $\lim_a f$ et $\lim_b f$ existent car f est croissante.

 (\Longrightarrow) Supposons f continue.

Puisque f est continue et strictement croissante, f réalise une bijection de]a;b[sur $[\lim_a f;\lim_b f[$ d'où le résultat.

 (\Leftarrow) Supposons $f(]a;b[) =]\lim_a f;\lim_b f[.$

Soit $x_0 \in]a$; b[. On a $\lim_a f < f(x_0) < \lim_b f$.

Pour tout $\varepsilon > 0$, soit $y^+ \in]f(x_0)$; $f(x_0) + \varepsilon] \cap]\lim_a f$; $\lim_b f[$. Il existe $x^+ \in]a$; b[tel que $f(x^+) = y^+$.

Soit $y^- \in [f(x_0) - \varepsilon; f(x_0)[\cap] \lim_a f; \lim_b f[$. Il existe $x^- \in]a; b[$ tel que $f(x^-) = y^-$.

Puisque f est croissante, $x^- < x_0 < x^+$. Posons $\alpha = \min(x^+ - x_0, x_0 - x^-) > 0$.

Pour tout $x \in]a$; b[, si $|x - x_0| \le \alpha$ alors $x^- \le x \le x^+$ donc $y^- \le f(x) \le y^+$ d'où $|f(x) - f(x_0)| \le \varepsilon$.

Ainsi f est continue en x_0 puis f continue sur a; b[.

Exercice 40: [énoncé]

(a) Cherchons f de la forme

$$f(x) = e^{\beta x}$$

Après calculs, si $\alpha = \beta e^{-\beta}$ alors f est solution.

En étudiant les variations de la fonction $\beta \mapsto \beta e^{-\beta}$, on peut affirmer que pour tout $\alpha \in [0; 1/e]$, il existe $\beta \in \mathbb{R}_+$ tel que $\beta e^{-\beta} = \alpha$ et donc il existe une fonction f vérifiant la relation précédente.

(b) Pour $\alpha = 1/e$, les fonctions $x \mapsto e^x$ et $x \mapsto xe^x$ sont solutions. Notons que pour $\alpha \in]0$; 1/e[il existe aussi deux solutions linéairement indépendantes car l'équation $\beta e^{-\beta} = \alpha$ admet deux solutions, une inférieure à 1 et l'autre supérieure à 1

Exercice 41 : [énoncé]

La fonction f est bijective et continue donc strictement monotone. Elle ne peut être décroissante car alors elle ne serait pas surjective sur $[0; +\infty[$, elle est donc strictement croissante.

S'il existe un $x \in [0; 1]$ tel que f(x) < x alors, par stricte croissance

et donc f(f(x)) < x ce qui contredit $f \circ f = \text{Id}$. De même f(x) > x est impossible et donc f = Id.

Exercice 42 : [énoncé]

On a

$$f\left(\frac{x}{2}\right) = f\left(2\frac{x}{2}\right) = f(x)$$

Par récurrence, on montre

$$\forall n \in \mathbb{N}, \forall x \in \mathbb{R}, f(x) = f\left(\frac{x}{2^n}\right)$$

Quand $n \to +\infty$, $x/2^n \to 0$ et donc par continuité de f en 0

$$f\left(\frac{x}{2^n}\right) \underset{n \to +\infty}{\longrightarrow} f(0)$$

Or

$$f\left(\frac{x}{2^n}\right) = f(x) \underset{n \to +\infty}{\longrightarrow} f(x)$$

donc par unicité de la limite f(x) = f(0).

Finalement f est constante égale à f(0).

Exercice 43: [énoncé]

$$\forall x \in \mathbb{R}, f(-x) = f((-x)^2) = f(x^2) = f(x)$$

donc f est paire.

Pour tout x > 0, $x^{1/2^n} \longrightarrow_{n \to \infty} 1$ donc $f(x^{1/2^n}) \longrightarrow_{n \to \infty} f(1)$ par continuité de f en 1.

Or

$$f(x^{1/2^n}) = f(x^{1/2^{n-1}}) = \dots = f(x)$$

donc f(x) = f(1) pour tout x > 0 puis pour tout $x \in \mathbb{R}^*$ par parité. De plus $f(0) = \lim_{x \to 0^+} f(x) = f(1)$ donc

$$\forall x \in \mathbb{R}, f(x) = f(1)$$

Exercice 44 : [énoncé]

Soient $x \in \mathbb{R}$ et (u_n) définie par $u_0 = x$ et pour tout $n \in \mathbb{N}$,

$$u_{n+1} = \frac{u_n + 1}{2}$$

Si $x \ge 1$ alors on montre par récurrence que (u_n) est décroissante et supérieure à 1.

Si $x \le 1$ alors on montre par récurrence que (u_n) est croissante et inférieure à 1.

Dans les deux cas la suite (u_n) converge vers 1.

Or pour tout $n \in \mathbb{N}$, $f(x) = f(u_n)$ donc à la limite f(x) = f(1).

Exercice 45: [énoncé]

Soit *f* solution.

$$f(x) = f\left(\frac{x}{2}\right)\cos\left(\frac{x}{2}\right) = f\left(\frac{x}{4}\right)\cos\left(\frac{x}{4}\right)\cos\left(\frac{x}{2}\right) = \dots = f\left(\frac{x}{2^n}\right)\cos\left(\frac{x}{2^n}\right)\dots\cos\left(\frac{x}{2}\right)$$

Or

$$\sin\left(\frac{x}{2^n}\right)\cos\left(\frac{x}{2^n}\right)\ldots\cos\left(\frac{x}{2}\right) = \frac{1}{2^n}\sin x$$

donc

$$\sin\left(\frac{x}{2^n}\right)f(x) = \frac{\sin x}{2^n}f\left(\frac{x}{2^n}\right)$$

Pour $x \neq 0$, quand $n \to +\infty$, on a $\sin\left(\frac{x}{2^n}\right) \neq 0$ puis

$$f(x) = \frac{\sin x}{2^n \sin\left(\frac{x}{2^n}\right)} f\left(\frac{x}{2^n}\right) \to \frac{\sin x}{x} f(0)$$

Ainsi

$$\forall x \in \mathbb{R}, f(x) = \frac{\sin x}{x}$$

(avec prolongement par continuité par 1 en 0).

Vérification: ok.

Exercice 46: [énoncé]

- (a) Pour x = y = 0, la relation donne f(0) = 2f(0) donc f(0) = 0. Pour y = -x, la relation donne f(0) = f(x) + f(-x) donc f(-x) = -f(x).
- (b) Par récurrence, on montre pour $n \in \mathbb{N}$: f(nx) = nf(x). Pour $n \in \mathbb{Z}^-$, on écrit n = -p avec $p \in \mathbb{N}$. On a alors f(nx) = -f(px) = -pf(x) = nf(x).
- (c) Soit $r \in \mathbb{Q}$. On peut écrire r = p/q avec $p \in \mathbb{Z}$ et $q \in \mathbb{N}^*$. $f(r) = pf(1/q) = \frac{p}{q}qf(1/q) = \frac{p}{q}f(1) = ar$.
- (d) Pour tout $x \in \mathbb{R}$ il existe une suite (u_n) telle que $u_n \to x$ et $u_n \in \mathbb{Q}$. Par continuité $f(u_n) \to f(x)$ or puisque $u_n \in \mathbb{Q}$ $f(u_n) = au_n \to ax$ donc par unicité de la limite f(x) = ax.

Exercice 47 : [énoncé]

La relation fonctionnelle f(x + y) = f(x) + f(y) permet d'établir

$$\forall r \in \mathbb{Q}, f(r) = rf(1)$$

Pour cela on commence par établir

$$\forall a \in \mathbb{R}, \forall n \in \mathbb{Z}, f(na) = nf(a)$$

On commence par établir le résultat pour n = 0 en exploitant

$$f(0) = f(0) + f(0)$$

ce qui entraîne f(0) = 0.

On étend ensuite le résultat à $n \in \mathbb{N}$ en raisonnant par récurrence et en exploitant

$$f((n+1)a) = f(na) + f(a)$$

On étend enfin le résultat à $n \in \mathbb{Z}$ en exploitant la propriété de symétrie f(-x) = -f(x) issu de

$$f(x) + f(-x) = f(0) = 0$$

Considérons alors $r = p/q \in \mathbb{Q}$ avec $p \in \mathbb{Z}$ et $q \in \mathbb{N}^*$, on peut écrire

$$f(r) = f\left(p \times \frac{1}{q}\right) = pf\left(\frac{1}{q}\right)$$
 et $f(1) = f\left(q \times \frac{1}{q}\right) = qf\left(\frac{1}{q}\right)$

donc

$$f(r) = \frac{p}{q}f(1) = rf(1)$$

Nous allons étendre cette propriété à $x \in \mathbb{R}$ par un argument de continuité. Soit $x \in \mathbb{R}$. On peut affirmer qu'il existe une suite $(x_n) \in \mathbb{Q}^{\mathbb{N}}$ telle que $x_n \to x$. Pour celle-ci, on a $x_n + x_0 - x \to x_0$ et donc par continuité de f en x_0

$$f(x_n + x_0 - x) \to f(x_0)$$

Or on a aussi

$$f(x_n + x_0 - x) = f(x_0) + (f(x_n) - f(x))$$

donc

$$f(x_n)-f(x)\to 0$$

Ainsi

$$f(x) = \lim_{n \to +\infty} f(x_n) = xf(1)$$

Finalement, la fonction f est linéaire.

Exercice 48: [énoncé]

- (a) f(2-x) + f(x) = 0 et f(-x) + f(x) = 0 donc f(x) = f(x+2) donc f est périodique. f(x/2) = f(x)/2 donc f(2x) = 2f(x).
 - Puisque f est continue et périodique, f est bornée. Or la relation f(2x) = 2f(x) implique que f n'est pas bornée dès qu'elle prend une valeur non nulle. Par suite f est nulle.
- (b) Pour a = f(1) f(0) et b = f(0), on observe que g(x) = f(x) (ax + b) est solution du problème posé et s'annule en 0 et 1 donc g est nulle et f affine. La réciproque est immédiate.

Exercice 49: [énoncé]

(a) On a

$$\forall x \in \mathbb{R}, f\left(\frac{x}{2}\right) = f\left(\frac{x+0}{2}\right) = \frac{1}{2}(f(x) + f(0)) = \frac{1}{2}f(x)$$

donc

$$\forall x, y \in \mathbb{R}, f\left(\frac{x+y}{2}\right) = \frac{1}{2}f(x+y)$$

On en déduit

$$\forall x, y \in \mathbb{R}, f(x+y) = f(x) + f(y)$$

- (b) Sachant f continue, on peut alors classiquement conclure que dans le cas précédent f est de la forme $x \mapsto ax$.
 - Dans le cas général, il suffit de considérer $x \mapsto f(x) f(0)$ et de vérifier que cette nouvelle fonction satisfait toujours la propriété initiale tout en s'annulant en 0. On peut donc conclure que dans le cas général f est affine : $x \mapsto ax + b$

Exercice 50: [énoncé]

Par formule de factorisation

$$|\sin x - \sin y| = \left| 2\sin \frac{x - y}{2} \cos \frac{x + y}{2} \right| \le 2 \left| \sin \frac{x - y}{2} \right| \le 2 \frac{|x - y|}{2} = |x - y|$$

donc sin est 1 lipschitzienne.

Exercice 51: [énoncé]

Montrons par récurrence sur $n \in \mathbb{N}$ que $|u_n| \le k^n |a|$.

Pour n = 0: ok

Supposons la propriété établie au rang $n \ge 0$.

$$|u_{n+1}| = |f(u_n) - f(0)| \le k |u_n - 0| = k |u_n| \le k^{n+1} |a|$$

Récurrence établie.

Puisque $k \in [0; 1[, k^n \to 0 \text{ et donc } u_n \to 0]$

Exercice 52 : [énoncé]

L'application $x \mapsto f(x) + tg(x)$ est définie et continue sur le segment [0; 1] elle y est donc bornée et atteint ses bornes. Par suite $\varphi(t)$ est bien définie et plus précisément, il existe $x_t \in [0; 1]$ tel que $\varphi(t) = f(x_t) + tg(x_t)$.

Puisque g est continue sur [0;1] elle y est bornée par un certain M:

On a

$$\varphi(t) - \varphi(\tau) = f(x_t) + tg(x_t) - (f(x_\tau) + \tau g(x_\tau))$$

or

$$f(x_t) + \tau g(x_t) \le f(x_\tau) + \tau g(x_\tau)$$

donc

$$\varphi(t) - \varphi(\tau) \le tg(x_t) - \tau g(x_t) = (t - \tau)g(x_t) \le M|t - \tau|$$

De même

$$\varphi(\tau) - \varphi(t) \le M |t - \tau|$$

et finalement φ est M lipschitzienne.