

Logics Dr. Tai Do

CSD2258 Tutorial 3

Problem 1. (a) Use truth table to determine whether the following compound proposition is a tautology, a contradiction or a contingency.

$$((\neg p \land q) \land (q \land r)) \land \neg q.$$

(b) Use De Morgan's laws to write a negation for the statement "This computer program has a logical error in the first ten lines or it is being run with an incomplete data set."

Problem 2. Using truth tables, determine which pair of statements is logically equivalent.

- (a) $p \wedge (q \vee r)$ and $(p \wedge q) \vee (p \wedge r)$.
- (b) $(p \lor q) \lor (p \land r)$ and $(p \lor q) \land r$.

Problem 3. Prove the following equivalences using basic logical equivalence laws (see last page). Supply a reason for each step.

- (a) $(p \vee \neg q) \wedge (\neg p \vee \neg q) \equiv \neg q$.
- (b) $\neg (p \lor \neg q) \lor (\neg p \land \neg q) \equiv \neg p$.

Problem 4. Let p, q, r be propositions. Consider the following statement

$$(p \to r) \leftrightarrow (q \to r) \tag{1}$$

- (a) Use the logical equivalences $p \to q \equiv \neg p \lor q$ and $p \leftrightarrow q \equiv (\neg p \lor q) \land (\neg q \lor p)$ to rewrite (1) without the symbol \rightarrow and \leftrightarrow .
- (b) Use the equivalence $p \vee q \equiv \neg(\neg p \wedge \neg q)$ to rewrite (1) using only \wedge and \neg .

Logics Dr. Tai Do

Logical Equivalence Laws

Identity law	$p \wedge \mathbf{T} \equiv p$	Negation law	$p \vee \neg p \equiv \mathbf{T}$
	$p \vee \mathbf{F} \equiv p$		$p \wedge \neg p \equiv \mathbf{F}$
Domination law	$p \lor \mathbf{T} \equiv \mathbf{T}$	Commutativity	$p \wedge q \equiv q \wedge p$
	$p \wedge \mathbf{F} \equiv \mathbf{F}$		$p \vee q \equiv q \vee p$
Associative law	$(p \land q) \land r \equiv p \land (q \land r)$	Distributivity	$p \wedge (q \vee r) \equiv (p \wedge q) \vee (p \wedge r)$
	$(p \lor q) \lor r \equiv p \lor (q \lor r)$		$p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$
Double negation	$\neg(\neg p) \equiv p$	Conditional	$p \to q \equiv \neg q \to \neg p$
		statement	

Hints and Instructions.

1a. Your truth table should have the following form.

p	q	r	$\neg p$	$\neg p \land q$	$q \wedge r$	$(\neg p \land q) \land (q \land r)$	$\neg q$	$((\neg p \land q) \land (q \land r)) \land \neg q$
0	0	0						
0	0	1						
0	1	0						
0	1	1						
1	0	0						
1	0	1						
1	1	0						
1	1	1						

2a. This is the distributive law. The statements are equivalent.

2b. The statements are not equivalent.

- 3. Try it.
- 4. The answers are not beautiful.

a.
$$[(p \land \neg r) \lor (\neg q \lor r)] \land [(q \land \neg r) \lor (\neg p \lor r)]$$

a.
$$[(p \wedge \neg r) \vee (\neg q \vee r)] \wedge [(q \wedge \neg r) \vee (\neg p \vee r)]$$
 b.
$$\neg [\neg (p \wedge \neg r) \wedge (q \wedge \neg r)] \wedge \neg [\neg (q \wedge \neg r) \wedge (p \wedge \neg r)]$$