

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное автономное образовательное учреждение высшего образования «Дальневосточный федеральный университет» (ДВФУ)

ИНСТИТУТ МАТЕМАТИКИ И КОМПЬЮТЕРНЫХ ТЕХНОЛОГИЙ (ШКОЛА)

Департамент математического и компьютерного моделирования

ОТЧЁТ

к лабораторной работе №1 по дисциплине «Математическое и копмьютерное моделирование»

Направление подготовки 01.03.02 «Прикладная математика и информатика»

Выполнил студент гр.

Б9121-01.03.02сп

Держапольский Ю.В.

(Ф.И.О.) (подпись)

Профессор к.ф.-м. н.

Пермяков М. С. (подпись)

«5» апреля 2024 г.

г. Владивосток

2024

Содержание

1	Введение	3
2	Построение математической модели	4
	2.1 Модель с терморегулятором	5
3	Анализ модели	6
4	Вычислительные эксперименты	7
	4.1 Алгоритм	7
5	Заключение	10

1. Введение

В повседневном мире люди каждый день используют различные приборы на нагревания. Например, микроволновка для разогревания еды, утюг для глажки вещей, радиатор для увеличения температуры в помещении и т. д.

Однако, таких приборов существует большое количество и все они имеют различные параметры, которые влияют на скорость нагрева. И в быту людей интересует как быстро нагреется тот или иной прибор. Для этого можно создать математическую модель, которая будет учитывать параметры нагревателей и показывать изменение температуры.

Будем рассматривать электрические нагреватели, которые могут иметь или не иметь терморегулятора.

2. Построение математической модели

Главной характеристикой любого нагревателя является температура. При включении нагревателя температура со временем растёт. Значит нужно найти зависимость температуры (K) от времени (c): T(t).

Во время процесса нагревания изменяется количество теплоты тела на ΔQ (Дж). Его можно выразить формулой:

$$\Delta Q = cm\Delta T$$
,

где c – удельная теплоёмкость тела $\left(\frac{\Pi \mathbb{X}}{\mathsf{K}\Gamma \cdot \mathsf{K}}\right)$, m – масса тела (кг), ΔT - изменение температуры.

С другой стороны, поскольку наш нагревательный прибор работает от электричества, выразить количество теплоты можно иначе:

$$\Delta Q = P\Delta t$$

где P – мощность (Вт), Δt – изменение времени.

Предположим, что окружающая температура постоянная и равна T_0 , и поэтому будет происходить охлаждение, в зависимости от площади и общей конструкции нагревателя. Добавим слагаемое: $-kS(T-T_0)\Delta t$, где S – площадь (м²), k>0 - коэффициент, который зависит от конструкции.

Также будем учитывать тепловое излучение, которое происходит в результате нагревания, используя закон Стефана–Больцмана: $-\sigma S(T^4-T_0^4)\Delta t$, где $\sigma\approx 5.68\cdot 10^{-8}\frac{\mathrm{Br}}{\mathrm{M}^2\mathrm{K}^4}$ – постоянная Стефана–Больцмана.

В итоге получаем:

$$cm\Delta T = P\Delta t - kS(T - T_0)\Delta t - \sigma S(T^4 - T_0^4)\Delta t.$$

Делим обе части на $cm\Delta t$ и совершаем предельный переход при $\Delta t \to 0$:

$$\frac{dT}{dt} = \frac{P - kS(T - T_0) - \sigma S(T^4 - T_0^4)}{cm}.$$

Получили дифференциальное уравнение, которое описывает поведение температуры нагревателя. Для получения единственного решения добавим начальное условие: $T(0) = T_0$.

2.1. Модель с терморегулятором

В реальном мире целесообразно ограничить максимальную температуру. Для этого введём функцию «переключатель», которая по достижении максимальной температуры T_{max} отключит нагреватель, и после чего по достижении температуры включения T_{min} снова включит его.

$$H(T, T_{max}, T_{min}) = \begin{cases} 0, T > T_{max}, \\ 1, T < T_{min}. \end{cases}$$

Добавляя в уравнение:

$$\frac{dT}{dt} = \frac{P \cdot H(T, T_{max}, T_{min}) - kS(T - T_0) - \sigma S(T^4 - T_0^4)}{cm}.$$

3. Анализ модели

Исследуем дифференциальное уравнение на устойчивость.

$$\frac{dT}{dt} = 0 \Rightarrow P - kS(T - T_0) - \sigma S(T^4 - T_0^4) = 0,$$

$$\sigma T^4 + kT - \sigma T_0^4 - kT_0 - \frac{P}{S} = 0.$$

Воспользуемся матрицей Гурвица для определения положительности корней.

$$a_0 = \sigma$$
, $a_{1,2} = 0$, $a_3 = k$, $a_4 = -\sigma T_0^4 - kT_0 - \frac{P}{S}$

$$\begin{pmatrix} a_1 & a_3 & 0 & 0 \\ a_0 & a_2 & a_4 & 0 \\ 0 & a_1 & a_3 & 0 \\ 0 & a_0 & a_2 & a_4 \end{pmatrix} = \begin{pmatrix} 0 & k & 0 & 0 \\ \sigma & 0 & a_4 & 0 \\ 0 & 0 & k & 0 \\ 0 & \sigma & 0 & a_4 \end{pmatrix}$$

Рассчитаем главные миноры: $M_1=0,\ M_2=-k\sigma,\ M_3=kM_2,\ M_4=a_4M_3.$ Заметим, что существует отрицательный минор, значит существует положительный корень.

4. Вычислительные эксперименты

4.1. Алгоритм

Для расчётов и визуализации был использован язык Python с библиотеками numpy и matplotlib, в котором был реализован метод Рунге-Кутта.

```
import numpy as np
  import matplotlib.pyplot as plt
  def runge_kutta(function, y0: float, a: float, b: float, h: float):
       num = int((b - a) / h + 1)
       x_a = np.linspace(a, b, num=num, endpoint=False)
       y_a = [y0] * num
       for i in range(num - 1):
10
           k0 = function(x_a[i], y_a[i])
11
           k1 = function(x_a[i] + h / 2, y_a[i] + h * k0 / 2)
12
           k2 = function(x_a[i] + h / 2, y_a[i] + h * k1 / 2)
13
           k3 = function(x_a[i] + h, y_a[i] + h * k2)
14
           y a[i + 1] = y a[i] + h / 6 * (k0 + 2 * k1 + 2 * k2 + k3)
15
       return x_a, np.array(y_a)
17
18
  KC = 276
20
  sigma = 5.67e-8
22
  T_l = 190 + KC
  T u = 200 + KC
25
  is turned = True
27
  def H(T):
28
       global is turned
30
       if T > T_u:
31
           is_turned = False
32
       elif T < T_l:</pre>
33
```

```
is_turned = True
34
35
       return int(is_turned)
36
37
  def H0(T):
       return 1.
39
40
  def utug(P, m, c, S, k):
42
       def dTdt(t, T):
43
           return (P * H0(T) - k * S * (T - T0) - sigma * S * (T**4 - T0**4)) / (c
44
               * m)
45
       x = np.linspace(a, b, n)
46
47
       x, y = runge_kutta(dTdt, T0, a, b, (b-a)/n)
48
       y -= KC
49
       plt.plot(x, y)
50
51
  a, b = 0, 100
52
  n = 10000
53
54
  P = 3000
56
  m = 0.5
  с = 897 # Алюминий
  S = 0.4
  k = 2
  T0 = 20 + KC
61
62
63
  utug(P, m, c, S, k)
64
  # plt.legend(ms)
  plt.xlabel('tu-uВремя')
   plt.ylabel('T(t)_-_Tемпература_в_цельсиях')
68
  plt.xlim([a,b])
  # plt.ylim([min(y_), max(y_)+ 10])
72
```

```
plt.savefig("./sem6-matmodelling/utug.pdf")

plt.show()
```

5. Заключение

В этой лабораторной работе мы решили ещё пожить после решения диффуров, и генерерации псевдо-случайных числел.