1 Introduction

Let \mathbb{F}_p be a finite field of characteristic $p \neq 2,3$ and \mathbb{F}_{p^n} be its extension of degree n. We wish to demonstrate the following theorem.

Theorem 1.1. Let m be a prime which is not p and t an integer such that :

- 1. $|t| < \sqrt{2p}$
- 2. $X^2 tX + q = (X \alpha)(X \beta) \mod m$,
- 3. $(\mathbb{Z}/m\mathbb{Z})^{\times}/\{\pm 1\} = \langle \alpha \rangle \times S \text{ for } S \text{ a subgroup of } (\mathbb{Z}/m\mathbb{Z})^{\times},$
- 4. $\operatorname{ord}_m(\alpha) = n \text{ and } \operatorname{ord}_m(\beta) \nmid n$.

Let E/\mathbb{F}_p be an ordinary elliptic curve and t be the trace of its Frobenius map. In that situation, \mathbb{F}_{p^n} is the smallest extension which contains points P of order m and for all such P in the eigenspace of α , the elliptic periods $\eta_{\alpha}(P)$ form a normal basis on \mathbb{F}_p .

More specifically, we wish to demonstrate the fact that said elliptic periods span \mathbb{F}_{p^n} . The proof is actually a secondary result from [1].

2 Characteristic zero

Let E be an elliptic curve and m be a prime. We recall that if m is an Elkies prime of E then the characteristic polynomial of the Frobenius map π , factors in two linear factor modulo m. Consequently, the reduction of π to E[m] has two eigenspaces.

Let f_m be the division polynomial of order m and α one of the eigenvalue of π mod m, we note $f_{m,\alpha}$ the generator of one the eigenspaces; it is of degree (m-1)/2.

2.1 Preliminaries

We will use the notations of [1], let K be the field of definition of the Deuring lift

$$\widehat{E}: Y^2 = X^3 + \widehat{A}X + \widehat{B} \tag{1}$$

of the curve E. We introduce the two following extensions:

$$K_m = K[X]/(\widehat{f}_m(X)) \tag{2}$$

$$L_m = K_m[Y]/(Y^2 - (X^3 + \hat{A}X + \hat{B}))$$
(3)

of degree m(m-1)/2 for the former and 2 for the latter. We let $\Theta \in K_m$ be the residue class of X modulo \widehat{f}_m and $\Gamma \in L_m$ be the residue class of Y in L_m .

Consider $P = (\Theta, \Gamma)$ the generic point of $\widehat{E}(L_m)$, for $a \in (\mathbb{Z}/m\mathbb{Z})^{\times}$ the following action

$$\rho_a: \Theta \to ([a]\widehat{P})_X \tag{4}$$

defines an automorphism of K_m/K and

$$G = \{ \rho_a : 1 \le a \le \frac{m-1}{2} \} \tag{5}$$

is a cyclic subgroup of $\operatorname{Gal}(K_m/K)$ and we let $K_0=K_m^G$ be its fixed field. The polynomial $\widehat{f}_{m,\lambda}$ factor as

$$\widehat{f}_{m,\lambda}(T) = \prod_{a=1}^{\frac{m-1}{2}} (T - \rho_a(\Theta))$$
(6)

in $K_0[T]$. Consequently, we have $K_m = K_0[X]/(\widehat{f}_{m,\lambda}(X))$. We can also define for all $a \in (\mathbb{Z}/m\mathbb{Z})^{\times}$ the unique polynomial $\widehat{g}_a \in K_0[X]$ such that $\deg(\widehat{g}_a) < (m-1)/2$ and $\widehat{g}_a(\Theta) = \rho_a(\Theta)$, thanks to the fact that the extension is cyclic.

2.2 Elliptic Gaussian period

Since G is a cyclic group of order (m-1)/2, we can assume that

$$G \simeq (\mathbb{Z}/m\mathbb{Z})^{\times}/\{\pm 1\}. \tag{7}$$

Let $c \in (\mathbb{Z}/m\mathbb{Z})^{\times}$ be a generator. Let n be an odd divisor of (m-1)/2 and let n' = (m-1)/(2n) be its cofactor such that (n, n') = 1. We write $h = c^n$ and $k = c^{n'}$, let $H = \langle h \rangle$ and $H' = \langle k \rangle$; consequently

$$(\mathbb{Z}/m\mathbb{Z})^{\times}/\{\pm 1\} = H \times H' \tag{8}$$

For $0 \le i < n$, we define

$$\widehat{\eta}_i := \sum_{a \in H} \left([k^i a] \widehat{P} \right)_X = \sum_{a \in H} \rho_a(\rho_{k^i}(\Theta)) \tag{9}$$

We notice that $\widehat{\eta}_i = \rho_k^{(i)}(\widehat{\eta}_0)$ for all $0 \le i < n$; there is a cyclic action

$$\widehat{\eta}_0 \xrightarrow{\rho_k} \widehat{\eta}_1 \xrightarrow{\rho_k} \cdots \xrightarrow{\rho_k} \widehat{\eta}_{n-1} \xrightarrow{\rho_k} \widehat{\eta}_0 \tag{10}$$

from which we can deduce the following result.

Lemma 2.1. The polynomial

$$\widehat{M}(T) = \prod_{i=0}^{n-1} (T - \widehat{\eta}_i)$$
(11)

is irreducible with coefficients in $\mathcal{O}(K_0)$. It is the minimal polynomial of $\widehat{\eta}_0$ over K_0 .

Proof. The $\widehat{\eta_i}$ are fixed by H, therefore we have $K_m^H = K(\widehat{\eta_0})$ since the $\widehat{\eta_i}$ are polynomials of $\widehat{\eta_0}$ because of the cyclic nature of the action. In other word, we have the following situation

Moreover, the action of H' is permuting the $\widehat{\eta_i}$, then every symetrical polynomials of the $\widehat{\eta_i}$ are fixed by H', so the coeffectients $\widehat{M}(T)$ are in K_0 . From there we can deduce than any combination of less than n factor of $\widehat{M}(T)$ would not be in $K_0[T]$, so the polynomial is indeed irreducible.

3 Finite field case

In respect with the notations of [1], we let

$$\mathcal{A}_0 = \mathbb{F}_p[X]/(f_{m,\lambda}(X)) \tag{13}$$

and

$$\mathcal{A} = \mathbb{F}_p[X]/(Y^2 - (X^3 + AX + B), f_{m,\lambda}(X)). \tag{14}$$

Let θ and γ be the residue class of X and Y in \mathcal{A} . We write $P = (\theta, \gamma)$ the generic point in the eigenspace of α . Like in section 2.1, for $a(\mathbb{Z}/m\mathbb{Z})^{\times}$ we define the unique polynomials g_a of degree inferior to (m-1)/2 such that $g_a(\theta) = ([a]P)_X \in \mathcal{A}$.

Fact 3.1. If m is an Elkies prime for E/\mathbb{F}_p , then there exists a prime \mathfrak{p} of $\mathcal{O}(K_0)$ above p such that $\widehat{f}_{m,\lambda} = f_{m,\lambda} \mod \mathfrak{p}$, i.e. the polynomial $\widehat{f}_{m,\lambda}$ is a cyclic lift of $f_{m,\lambda}$; in a similar way, the \widehat{g}_a are cyclic lifts of g_a for all $a \in (\mathbb{Z}/m\mathbb{Z})^{\times}$.

Then by the definition of g_a , we can write

$$f_{m,\lambda}(Z) = \prod_{a=1}^{\frac{l-1}{2}} (Z - g_a(\theta)).$$
 (15)

For $0 \le i < q$, we define

$$\eta_i = \sum_{a \in H} g_a(g_{k^i}(\theta)) \tag{16}$$

in particular $\eta_i = \widehat{\eta}_i \mod \mathfrak{p}$. We remind that for odd $m \geq 3$, the discriminant of $f_m(X)$ satisfies the following relation

$$Disc(f_m) = (-1)^{(m-1)/2} m^{(m^2-3)/2} (-\Delta)^{(m^2-1)(m^2-3)/24}$$
(17)

where $\Delta = \Delta(E)$ is the discriminant of E. Therefore the roots of $f_m(X)$, and $f_{m,\lambda}(X)$, are distinct. Which, in turn, implies that for $i \neq j$, we have $\eta_i \neq \eta_j$, because otherwise we could find a linear relation between the roots of $f_{m,\lambda}$. From there, we can conclude that the reduction of $\widehat{M}(T)$ is separated.

Finally, if we write $M(T) \in \mathbb{F}_p[T]$ the minimal polynomial of $\eta_0 \in \mathcal{A}_0$ and note that $M(T) = \widehat{M}(T) \mod \mathfrak{p}$, we get that the degree of M(T) is n.

4 Result

Now that we have everything we need, we can finish the proof of the theorem. Let E/\mathbb{F}_p be an elliptic curve and m an Elkies prime for E. We also write α and β the two eigenvalues of the Frobenius of E.

We recall the hypothesis. One of the eigenvalue, say α , must be of order n in $(\mathbb{Z}/m\mathbb{Z})^{\times}$ and β must be of order not dividing by n. This means that n is an odd divisor of $\varphi(m) = m - 1$ and is prime to (m-1)/n; it is also prime to (m-1)/2n.

Let P by a point in the eigenspace of α . We then pick a generator $c \in (\mathbb{Z}/m\mathbb{Z})^{\times}$ such that $\alpha = c^{n'}$ where n' = (m-1)/2n, so we can have the following situation

$$(\mathbb{Z}/m\mathbb{Z})^{\times}/\{\pm 1\} = \langle \alpha \rangle \times H \tag{18}$$

where $H = \langle h \rangle$ and $h = c^n$.

From the previous section, we can deduce that the minimal polynomial of

$$\eta_{\alpha}(P) := \eta_0 = \sum_{a \in H} g_a(\theta) = \sum_{a \in H} ([a]P)_X \tag{19}$$

is M(T) which is of degree n. As this stand for any point P of the eigenspace of α , we have therefore proved the point we wanted to.

References

[1] Computing the Eigenvalue in the Schoof-Elkies-Atkin Algorithm using Abelian Lifts, P. Mihăilescu, F. Morain & É. Schost, 2007, url: http://hal.inria.fr/LIX/inria-00130142/en/