DEPARTMENT OF MATHEMATICS, IIT GUWAHATI

MA101: Mathematics I Mid Semester Exam (Maximum Marks: 30)

 $\textbf{Date: September 20, 2011} \qquad \qquad \textbf{Time: 2 pm - 4 pm}$

Model Solutions

1. (a) Prove or disprove: If A and B are two matrices of the same size such that the linear system of equations $A\mathbf{x} = \mathbf{a}$ and $B\mathbf{x} = \mathbf{b}$ have the same set of solutions then the matrices $[A \mid \mathbf{a}]$ and $[B \mid \mathbf{b}]$ must be row-equivalent.

Solution: Consider the matrices $A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$ and $B = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$ and vectors $\mathbf{a} = \mathbf{b} = [0, 1]^t$. Clearly, the systems $A\mathbf{x} = \mathbf{a}$ and $B\mathbf{x} = \mathbf{b}$ are inconsistent, and hence they have the same solution set \emptyset . However, the matrices $[A \mid \mathbf{a}]$ and $[B \mid \mathbf{b}]$, being in different reduced row echelon form, are not row-equivalent. Thus, the given statement is disproved by this counterexample.

(b) Find all real values of k for which the following system of equations has (i) no solution, (ii) unique solution, and (iii) infinitely many solutions:

$$kx + y + z = 1$$
, $x + ky + z = 1$, $x + y + kz = 1$.

Solution: The augmented matrix of the given system is

$$[A \mid \mathbf{b}] = \begin{bmatrix} k & 1 & 1 & 1 \\ 1 & k & 1 & 1 \\ 1 & 1 & k & 1 \end{bmatrix} \xrightarrow{R_1 \leftrightarrow R_3} \begin{bmatrix} 1 & 1 & k & 1 \\ 1 & k & 1 & 1 \\ k & 1 & 1 & 1 \end{bmatrix}$$

$$\xrightarrow{R_2 \to R_2 - R_1} \begin{bmatrix} 1 & 1 & k & 1 \\ 0 & k - 1 & 1 - k & 0 \\ k & 1 & 1 & 1 \end{bmatrix}$$

$$\xrightarrow{R_3 \to R_3 - kR_1} \begin{bmatrix} 1 & 1 & k & 1 \\ 0 & k - 1 & 1 - k & 0 \\ 0 & 1 - k & 1 - k^2 & 1 - k \end{bmatrix}$$

$$\xrightarrow{R_3 \to R_3 + R_2} \begin{bmatrix} 1 & 1 & k & 1 \\ 0 & k - 1 & 1 - k & 0 \\ 0 & 0 & (1 - k)(2 + k) & 1 - k \end{bmatrix}.$$

If k = -2 then $\operatorname{rank}([A \mid \mathbf{b}]) = 3 \neq 2 = \operatorname{rank}(A)$. Hence the system has no solution if k = -2. If k = 1 then $\operatorname{rank}([A \mid \mathbf{b}]) = \operatorname{rank}(A) < 3$. Hence the system has infinitely many solutions if k = 1. If $k \neq 1, -2$ then $\operatorname{rank}([A \mid \mathbf{b}]) = \operatorname{rank}(A) = 3$. Hence the system has a unique solution if $k \neq 1, -2$.

2. (a) Let $\mathbf{u}, \mathbf{v}, \mathbf{w}$ be three linearly independent vectors in \mathbb{R}^n , where $n \geq 3$. For what real values of k, are the vectors $\mathbf{v} - \mathbf{u}, k\mathbf{w} - \mathbf{v}$ and $\mathbf{u} - \mathbf{w}$ linearly independent?

Solution: Let $a(\mathbf{v} - \mathbf{u}) + b(k\mathbf{w} - \mathbf{v}) + c(\mathbf{u} - \mathbf{w}) = \mathbf{0}$ for some $a, b, c \in \mathbb{R}$. Then we have

$$a(\mathbf{v} - \mathbf{u}) + b(k\mathbf{w} - \mathbf{v}) + c(\mathbf{u} - \mathbf{w}) = \mathbf{0}$$

$$\Rightarrow (c - a)\mathbf{u} + (a - b)\mathbf{v} + (kb - c)\mathbf{w} = \mathbf{0}$$

$$\Rightarrow c - a = 0, \ a - b = 0, \ kb - c = 0; \quad \text{since } \mathbf{u}, \mathbf{v} \text{ and } \mathbf{w} \text{ are linearly independent}$$

$$\Rightarrow a = b = c = 0 \quad \text{if } k \neq 1.$$

Also if k = 1, then $1.(\mathbf{v} - \mathbf{u}) + 1.(\mathbf{w} - \mathbf{v}) + 1.(\mathbf{u} - \mathbf{w}) = \mathbf{0}$. Thus the vectors $\mathbf{v} - \mathbf{u}$, $k\mathbf{w} - \mathbf{v}$ and $\mathbf{u} - \mathbf{w}$ are linearly independent if and only if $k \neq 1$.

(b) Find a basis for the subspace V, where $V = \{[x_1, x_2, \dots, x_6]^t \in \mathbb{R}^6 : x_i = 0 \text{ if } i \text{ is even}\}.$

Solution: We have $V = \{[x_1, 0, x_3, 0, x_5, 0]^t : x_1, x_3, x_5 \in \mathbb{R}\}$. Let $\mathbf{e}_1 = [1, 0, 0, 0, 0, 0]^t$, $\mathbf{e}_3 = [0, 0, 1, 0, 0, 0]^t$ and $\mathbf{e}_5 = [0, 0, 0, 0, 1, 0]^t$. Then we have

$$[x_1, 0, x_3, 0, x_5, 0]^t = x_1 \mathbf{e}_1 + x_3 \mathbf{e}_3 + x_5 \mathbf{e}_5.$$

Thus the set $\{\mathbf{e}_1, \mathbf{e}_3, \mathbf{e}_5\}$ spans V. Also

$$a\mathbf{e}_1 + b\mathbf{e}_3 + c\mathbf{e}_5 = \mathbf{0} \Rightarrow [a, 0, b, 0, c, 0]^t = \mathbf{0} \Rightarrow a = b = c = 0.$$

Thus the set $\{e_1, e_3, e_5\}$ is also linearly independent. Hence $\{e_1, e_3, e_5\}$ is a basis for V.

2

3. (a) Prove or disprove: There exist 2×2 matrices A and B such that $AB - BA = I_2$.

Solution: Let $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ and $B = \begin{bmatrix} x & y \\ z & w \end{bmatrix}$. Then we have

$$AB - BA = I_2 \Rightarrow \begin{bmatrix} ax + bz & ay + bw \\ cx + dz & cy + dw \end{bmatrix} - \begin{bmatrix} ax + cy & bx + dy \\ az + cw & bz + dw \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
$$\Rightarrow \begin{bmatrix} bz - cy & (a - d)y + b(w - x) \\ c(x - w) + (d - a)z & cy - bz \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}.$$

Comparing the diagonal entries on both the sides, we have bz - cy = 1 and cy - bz = 1. Adding corresponding sides of these two equations, we get 0 = 2, which is absurd. Hence there **cannot** exist 2×2 matrices A and B such that $AB - BA = I_2$.

(b) Let A be an invertible matrix with integer entries. Show that A^{-1} has all entries integer if and only if $det(A) = \pm 1$.

Solution: Since A is an invertible matrix with integer entries, we have that det(A) is an integer.

First assume that A^{-1} has all entries integer. Then $\det(A^{-1})$ is also an integer. Now $AA^{-1} = I \Rightarrow \det(A)\det(A^{-1}) = 1$. Hence, each of $\det(A)$ and $\det(A^{-1})$ being integers, we find that $\det(A) = \pm 1$.

Conversely, assume that $det(A) = \pm 1$. Since entries of A are integers, we find that entries of adj(A) are also integers. Now $A^{-1} = \frac{1}{\det(A)}adj(A) = (\pm 1)adj(A)$, which gives that A^{-1} has all entries integer.

4. Let A be an $n \times n$ real matrix and let $\{\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_n\}$ be a basis for \mathbb{R}^n . Show that rank(A) = n if and only if $\{A\mathbf{u}_1, A\mathbf{u}_2, \dots, A\mathbf{u}_n\}$ is a basis for \mathbb{R}^n .

Solution: Given that A is an $n \times n$ real matrix and $S = \{\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_n\}$ is a basis for \mathbb{R}^n . Let $T = \{A\mathbf{u}_1, A\mathbf{u}_2, \dots, A\mathbf{u}_n\}$.

First assume that $\operatorname{rank}(A) = n$ so that A is an invertible matrix. Let $a_1(A\mathbf{u}_1) + a_2(A\mathbf{u}_2) + \ldots + a_n(A\mathbf{u}_n) = \mathbf{0}$ for some $a_1, a_2, \ldots, a_n \in \mathbb{R}$. Then we have

$$a_1(A\mathbf{u}_1) + a_2(A\mathbf{u}_2) + \dots + a_n(A\mathbf{u}_n) = \mathbf{0}$$

$$\Rightarrow A(a_1\mathbf{u}_1 + a_2\mathbf{u}_2 + \dots + a_n\mathbf{u}_n) = \mathbf{0}$$

$$\Rightarrow a_1 \mathbf{u}_1 + a_2 \mathbf{u}_2 + \ldots + a_n \mathbf{u}_n = \mathbf{0}, \text{ since } A \text{ is invertible}$$

$$\Rightarrow a_1 = a_2 = \ldots = a_n = 0$$
, since S is linearly independent

 \Rightarrow the set \mathcal{T} is linearly independent

 $\Rightarrow \mathcal{T}$, being a linearly independent set of n vectors in \mathbb{R}^n , is a basis for \mathbb{R}^n .

Conversely, assume that \mathcal{T} is a basis for \mathbb{R}^n . Then for any $\mathbf{b} \in \mathbb{R}^n$, we have $b = a_1(A\mathbf{u}_1) + a_2(A\mathbf{u}_2) + \ldots + a_n(A\mathbf{u}_n)$ for some $a_1, a_2, \ldots, a_n \in \mathbb{R}$. This gives that $\mathbf{b} = A(a_1\mathbf{u}_1 + a_2\mathbf{u}_2 + \ldots + a_n\mathbf{u}_n)$ and hence the system $A\mathbf{x} = \mathbf{b}$ is consistent for every $\mathbf{b} \in \mathbb{R}^n$. Thus $\mathbb{R}^n = \{\mathbf{b} : A\mathbf{x} = \mathbf{b} \text{ is consistent}\} = \operatorname{col}(A)$, and hence $n = \dim(\operatorname{col}(A)) = \operatorname{rank}(A)$.

First assume that \mathcal{T} is not a basis for \mathbb{R}^n . Hence \mathcal{T} is linearly dependent, and so there exists real numbers a_1, a_2, \ldots, a_n , not all zero, such that $a_1(A\mathbf{u}_1) + a_2(A\mathbf{u}_2) + \ldots + a_n(A\mathbf{u}_n) = \mathbf{0}$. This gives that $A(a_1\mathbf{u}_1 + a_2\mathbf{u}_2 + \ldots + a_n\mathbf{u}_n) = \mathbf{0}$. Then $\mathbf{u} = a_1\mathbf{u}_1 + a_2\mathbf{u}_2 + \ldots + a_n\mathbf{u}_n \neq \mathbf{0}$, since this a non-trivial linear combination of vectors from a basis for \mathbb{R}^n . Thus \mathbf{u} is a non-zero solution of the system $A\mathbf{x} = \mathbf{0}$, and hence $\operatorname{rank}(A) < n$.

Conversely, assume that $\operatorname{rank}(A) < n$. Then we can find a non-zero vector $\mathbf{u} \in \mathbb{R}^n$ such that $A\mathbf{u} = \mathbf{0}$. Since \mathcal{S} is a basis for \mathbb{R}^n there exist real numbers a_1, a_2, \ldots, a_n , not all zero, such that $\mathbf{u} = a_1\mathbf{u}_1 + a_2\mathbf{u}_2 + \ldots + a_n\mathbf{u}_n$. Then we have $A\mathbf{u} = \mathbf{0} \Rightarrow a_1(A\mathbf{u}_1) + a_2(A\mathbf{u}_2) + \ldots + a_n(A\mathbf{u}_n) = \mathbf{0}$, which gives that the set \mathcal{T} is linearly dependent and hence \mathcal{T} is not a basis for \mathbb{R}^n .

- 5. (a) Let A be a diagonalizable matrix such that every eigenvalue of A is either 0 or 1. Show that $A^2 = A$. **Solution:** Since A is diagonalizable there exists an invertible matrix P such that $P^{-1}AP = D$, where D is a diagonal matrix whose diagonal entries are the eigenvalues of A. Now since every eigenvalue of A is either 0 or 1, we find that $D^2 = D$. Therefore $(P^{-1}AP)(P^{-1}AP) = D^2 = D \Rightarrow P^{-1}A(PP^{-1})AP = D \Rightarrow P^{-1}A^2P = D \Rightarrow A^2 = PDP^{-1} = A$.
 - (b) Let λ_1 and λ_2 be two distinct eigenvalues of a matrix A and let \mathbf{u}_1 and \mathbf{u}_2 be eigenvectors of A corresponding to λ_1 and λ_2 , respectively. Show that $\mathbf{u}_1 + \mathbf{u}_2$ is not an eigenvector of A.

Solution: The vectors \mathbf{u}_1 and \mathbf{u}_2 , being eigenvectors corresponding to distinct eigenvalues of A, are linearly independent. Suppose, if possible, $\mathbf{u}_1 + \mathbf{u}_2$ is an eigenvector corresponding to an eigenvalue μ of A. Then we have

$$A(\mathbf{u}_1 + \mathbf{u}_2) = \mu(\mathbf{u}_1 + \mathbf{u}_2) \Rightarrow A\mathbf{u}_1 + A\mathbf{u}_2 = \mu(\mathbf{u}_1 + \mathbf{u}_2)$$

$$\Rightarrow \lambda_1 \mathbf{u}_1 + \lambda_2 \mathbf{u}_2 = \mu(\mathbf{u}_1 + \mathbf{u}_2)$$

$$\Rightarrow (\lambda_1 - \mu)\mathbf{u}_1 + (\lambda_2 - \mu)\mathbf{u}_2 = 0$$

$$\Rightarrow \lambda_1 - \mu = 0 = \lambda_2 - \mu, \quad \text{since } \mathbf{u}_1 \text{ and } \mathbf{u}_2 \text{ are linearly independent}$$

$$\Rightarrow \lambda_1 = \mu = \lambda_2, \text{ which contradicts the fact that } \lambda_1 \neq \lambda_2.$$

Hence we conclude that $\mathbf{u}_1 + \mathbf{u}_2$ is not an eigenvector of A.

6. (a) Let W be a subspace of \mathbb{R}^5 and $\mathbf{v} \in \mathbb{R}^5$. Suppose that \mathbf{w} and \mathbf{w}' are orthogonal vectors with $\mathbf{w} \in W$ and that $\mathbf{v} = \mathbf{w} + \mathbf{w}'$. Is it necessarily true that $\mathbf{w}' \in W^{\perp}$? Either prove that it is true or find a counterexample.

Solution: Consider the subspace $W = \{[x, y, 0, 0, 0]^t \in \mathbb{R}^5 : x, y \in \mathbb{R}\}$ of \mathbb{R}^5 . Consider $\mathbf{v} = [1, 1, 0, 0, 0]^t$, $\mathbf{w} = [1, 0, 0, 0, 0]^t$ and $\mathbf{w}' = [0, 1, 0, 0, 0]^t$. Then $\mathbf{w} \in W$, $\mathbf{v} = \mathbf{w} + \mathbf{w}'$ and, \mathbf{w} and \mathbf{w}' are orthogonal to each other. However, $\mathbf{w}' \notin W^{\perp}$ since $\mathbf{w}' \in W$, $\mathbf{w}' \neq \mathbf{0}$ and $W \cap W^{\perp} = \{\mathbf{0}\}$.

(b) Find a basis for M^{\perp} , where $M = \{[x, y, z]^t : x = s, y = -s, z = 3s, s \in \mathbb{R}\}.$

Solution: Since $[s, -s, 3s]^t = s[1, -1, 3]^t$, we find that M is spanned by the vector $[1, -1, 3]^t$. Therefore $[x, y, z]^t \in M^{\perp}$ if and only if $[x, y, z]^t . [1, -1, 3]^t = 0 \iff x - y + 3z = 0 \iff x = y - 3z$. Thus $M^{\perp} = \{[x, y, z]^t \in \mathbb{R}^3 : x = y - 3z\}$. We have $[y - 3z, y, z]^t = y[1, 1, 0]^t + z[-3, 0, 1]^t$. Thus the set $\{[1, 1, 0]^t, [-3, 0, 1]^t\}$ spans M^{\perp} . Also

$$a[1,1,0]^t + b[-3,0,1]^t = \mathbf{0} \Rightarrow [a-3b,a,b]^t = \mathbf{0} \Rightarrow a=b=0.$$

Thus the set $\{[1,1,0]^t,[-3,0,1]^t\}$ is linearly independent. Hence the set $\{[1,1,0]^t,[-3,0,1]^t\}$ is a basis for M^{\perp} .