

5. Ruang Vektor Umum (Bagian 3)

MODUL E-LEARNING ALJABAR LINIER FAKULTAS ILMU KOMPUTER, UNIVERSITAS INDONESIA

DR. Kasiyah Junus, MSc

5.6 Ruang baris, ruang kolom, ruang null

Ruang baris, ruang kolom, ruang null

 ${ ilde{\mathcal D}}$ efinisi 5.9: Ruang Baris, Ruang Kolon, dan Ruang Null.

Matriks A (m x n)

Baris-baris A: \mathbf{r}_1 , \mathbf{r}_2 , ..., \mathbf{r}_n

Kolom-kolom $A: \mathbf{c}_1, \mathbf{c}_2, ..., \mathbf{c}_m$

Row(A): Ruang baris A

Span({
$$\mathbf{r}_1, \, \mathbf{r}_2, \, ..., \, \mathbf{r}_n$$
})

Himpunan semua kombinasi linier baris-baris A

- Coll(A): Ruang kolom A Span($\{\mathbf{c}_1, \mathbf{c}_2, ..., \mathbf{c}_m\}$)
 Himpunan semua kombinasi linier kolom-kolom A
- Null(A): Ruang null A
 Himpunan semua penyelesaian spl homogen Ax = 0

Ruang baris, kolom dan null: Row(A), Coll(A), Null(A)

Contoh 20:

$$A_1 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$A_2 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$$

$$A_{1} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} \qquad A_{2} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} \qquad A_{3} = \begin{bmatrix} 1 & 10 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

	A ₁	A_2	A ₃
Coll(A _i)	$ \left\{ \begin{bmatrix} a \\ b \\ 0 \end{bmatrix} : a, b \in R \right\} $	$ \left\{ \begin{bmatrix} a \\ 0 \\ b \end{bmatrix} : a, b \in R \right\} $	$ \left\{ \begin{bmatrix} a \\ b \\ 0 \end{bmatrix} : a, b \in R \right\} $
Row(A _i)	{ a b 0 a,b∈R}	{[a b 0] a,b∈R}	{[a b 0] a,b∈R}

Ruang baris tidak berubah oleh obe. Ruang kolom dapat berubah oleh obe.

Contoh 20 (lanj):

$$A_1 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$A_2 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$$

$$A_3 = \begin{bmatrix} 1 & 10 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

- $Null(A_1) = Null(A_2) = Null(A_3)$ karena obe tidak mengubah penyelesaian spl.
- Penyelesaian umum spl Ax = 0 adalah:

$$a = 0$$

$$b = 0$$

$$c = t$$

- Setiap vektor berbentuk (0, 0, t) adalah penyelesaian spl Ax = 0.
- Basis ruang null matriks di atas adalah {(0, 0, 1)}.

Contoh 21:

$$B_1 = \begin{bmatrix} 1 & 10 & 0 \\ 5 & 50 & 0 \\ 0 & 0 & 3 \end{bmatrix}$$

$$B_2 = \begin{bmatrix} 1 & 10 & 0 \\ 0 & 0 & 3 \\ 5 & 50 & 0 \end{bmatrix}$$

$$B_{1} = \begin{bmatrix} 1 & 10 & 0 \\ 5 & 50 & 0 \\ 0 & 0 & 3 \end{bmatrix} \qquad B_{2} = \begin{bmatrix} 1 & 10 & 0 \\ 0 & 0 & 3 \\ 5 & 50 & 0 \end{bmatrix} \qquad B_{3} = \begin{bmatrix} 1 & 10 & 0 \\ 10 & 100 & 0 \\ 0 & 0 & 3 \end{bmatrix} \qquad B_{4} = \begin{bmatrix} 1 & 10 & 0 \\ 5 & 50 & 6 \\ 0 & 0 & 3 \end{bmatrix}$$

$$B_4 = \begin{bmatrix} 1 & 10 & 0 \\ 5 & 50 & 6 \\ 0 & 0 & 3 \end{bmatrix}$$

- Pada setiap matriks berlaku: $c_2 = 10 c_1$ $\{c_1, c_3\}$ bebas linier $\{c_2, c_3\}$ bebas linier
- Hubungan dependensi linier kolom-kolom tidak berubah oleh obe.

Contoh 22:

$$B = \begin{bmatrix} 1 & 2 & 3 \\ 6 & 1 & 5 \\ 2 & 1 & 4 \end{bmatrix}$$

$$ebt(B) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

- B mempunyai inverse, kolom-kolom (baris-baris) bebas linier, maka semua baris (semua kolom) membentuk basis ruang baris (ruang kolom). $Coll(B) = Row(B) = R^3$.
- Bx = 0 mempuyai tepat satu solusi trivial. Null(B) = {0}

Pengaruh operasi baris elementer

- Operasi baris elementer (obe) tidak mengubah ruang null matriks.
- Operasi baris elementer tidak mengubah ruang baris dari matriks.
- Operasi baris elementer dapat mengubah ruang kolom matriks.
- Operasi baris elementer tidak mengubah hubungan dependensi linier kolom-kolom A.

Cara menenentukan basis dari ruang baris dan ruang kolom:

- Basis ruang kolom dari A diperoleh dengan melakukan OBE pada A.
- Basis ruang baris dari A diperoleh dengan melakukan OBE pada A^{T} .

Basis ruang baris, ruang kolom, ruang nul

$$A = \begin{bmatrix} -2 & -5 & 8 & 0 & -17 \\ 1 & 3 & -5 & 1 & 5 \\ 3 & 11 & -19 & 7 & 1 \\ 1 & 7 & -13 & 5 & -3 \end{bmatrix}$$

$$A_2 = \begin{bmatrix} 1 & 3 & -5 & 1 & 5 \\ 0 & 1 & -2 & 2 & 7 \\ 0 & 0 & 0 & 1 & -5 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

$$A_1 = \begin{bmatrix} 1 & 3 & -5 & 1 & 5 \\ 0 & 1 & -2 & 2 & 7 \\ 0 & 0 & 0 & -4 & 20 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

$$A_3 = \begin{bmatrix} 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & -2 & 0 & 3 \\ 0 & 0 & 0 & 1 & -5 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

 Diketahui bahwa matriks-matriks di atas ekuivalen baris. Tentukan basis Row(A) dan basis Coll(A);

Basis ruang baris, ruang kolom, ruang null-

$$A = \begin{bmatrix} -2 & -5 & 8 & 0 & -17 \\ 1 & 3 & -5 & 1 & 5 \\ 3 & 11 & -19 & 7 & 1 \\ 1 & 7 & -13 & 5 & -3 \end{bmatrix} \implies EBT(A) = \begin{bmatrix} 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & -2 & 0 & 3 \\ 0 & 0 & 0 & 1 & -5 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} \implies \begin{cases} x_1 + x_3 + x_5 = 0 \\ x_2 - 2x_3 + 3x_5 = 0 \\ x_4 - 5x_5 = 0 \end{cases}$$

$$x_2$$
, x_5 parameter behas
 $x_2 = s$
 $x_5 = t$ dengan s, t bil. rea

$$x_2$$
, x_5 parameter bebas
 $x_2 = s$
 $x_5 = t$ dengan s, t bil. real
 $x_1 = -x_3 - x_5 = -s - t$
 $x_2 = 2x_3 - 3x_5 = 2s - 3t$
 $x_4 = 5x_5 = 5t$

$$\vec{X} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix} = s \begin{bmatrix} -1 \\ 2 \\ 1 \\ 0 \\ 0 \end{bmatrix} + t \begin{bmatrix} -1 \\ -3 \\ 0 \\ 5 \\ 1 \end{bmatrix}; s, t \in R$$
 basis Null(A) =
$$\begin{bmatrix} -1 \\ 2 \\ 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} -1 \\ -3 \\ 0 \\ 5 \\ 1 \end{bmatrix}$$

Basis ruang kolom

- Jika A dan B adalah matriks yang ekivalen baris, maka
 - Himpunan vektor-vektor kolom A adalah bebas linier jika dan hanya jika vektor kolom bersesuaian dari B juga bebas linier
 - Himpunan vektor-vektor kolom A membentuk basis untuk ruang vektor kolom A jika dan hanya jika vektor kolom terkait dari B membentuk basis untuk ruang kolom B,
 - Jika suatu matriks R = EBT(A), maka vektor-vektor baris dengan satu utama membentuk basis Row(R) = Row(A), dan vektor kolomkolom dengan satu utama dari vektor baris membentuk basis Coll(R)

OBE dan ruang baris, kolom, null

 \mathcal{J} eorema 5.5: OBE dan Ruang Null

Operasi baris elementer (obe) tidak mengubah ruang nol suatu matriks.

Jeorema 5.6: OBE dan Ruang Baris

Operasi baris elementer (obe) tidak mengubah ruang baris suatu matriks.

OBE dan ruang baris, kolom, null

Jeorema 5.7: OBE dan Ruang Kolom

Apabila A dan B adalah baris matriks yang ekuivalen, maka:

- a. Himpunan vektor-vektor kolom dari A bebas linear jika dan hanya jika vektor-vektor kolom yang sesuai B adalah bebas linear.
- b. Himpunan vektor-vektor kolom dari A membentuk basis untuk ruang kolom dari A jika dan hanya jika kolom yang sesuai vektor B membentuk basis untuk ruang kolom B.

OBE dan ruang baris, kolom, null

Teorema di bawah ini menjadi dasar untuk menentukan basis ruang baris dan ruang kolom matriks.

Jeorema 5.8: OBE dan Ruang Kolom

Jika matriks A berada dalam bentuk eselon baris, maka vektor-vektor baris dengan satu utama (vektor-vektor baris tak nol) membentuk basis bagi ruang baris dari A, dan vektor-vektor kolom dengan satu utama suatu basis untuk ruang kolom dari A.

Rank dan nulitas

 \mathcal{D} efinisi 5.10: Rank

Dimensi ruang baris dan dimensi ruang kolom dari matriks A disebut rank dari A dan ditulis: rank(A).

 \mathcal{D} efinisi 5.11: Nulitas

Dimensi ruang null dari A disebut nulitas dari A dan ditulis nulitas(A).

Hubungan ruang baris, kolom, dan null

n banyaknya kolom matriks A

Rank(A) + nulitas(A) = n

 $Rank(A^T) + nulitas(A^T) = m$

Contoh 23

Tentukan rank dan nulitas dari matrik A di bawah ini:

$$\begin{bmatrix} -1 & 2 & 0 & 4 & 5 & -3 \\ 3 & -7 & 2 & 0 & 1 & 4 \\ 2 & -5 & 2 & 4 & 6 & 1 \\ 4 & -9 & 2 & -4 & -4 & 7 \end{bmatrix}$$

Jawab:

Bentuk eselon baris tereduksi dari *A* adalah:

Contoh 23 (lanjutan)

- Matriks A direduksi menjadi EBT(A)
- Karena terdapat dua dua 1 utama, maka ruang baris dan ruang kolom berdimensi dua (ditulis rank (A) = 2).
- Untuk menemukan nulitas dari A, kita harus menemukan Null(A) ruang solusi dari sistem linear $A\mathbf{x} = \mathbf{0}$, kemudian menenetukan dimensinya.
- Dari matriks EBT(A) dapat ditentukan SPL:

$$x_1 - 4x_3 - 28x_4 - 37x_5 + 13x_6 = 0$$

 $x_2 - 2x_3 - 12x_4 - 16x_5 + 5x_6 = 0$ atau $x_1 = 4x_3 + 28x_4 + 37x_5 - 13x_6$
 $x_2 = 2x_3 + 12x_4 + 16x_5 - 5x_6$

Tentukan solusi umum SPL → lanjut halaman berikutnya

Contoh 23 (lanjutan)

Sehingga, solusi umumnya adalah:

$$x_1 = 4r + 28s + 37t - 13u$$

 $x_2 = 2r + 12s + 16t - 5u$
 $x_3 = r$
 $x_4 = s$
 $x_5 = t$
 $x_6 = u$

atau ditulis:

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \\ x_6 \end{bmatrix} = r \begin{bmatrix} 4 \\ 2 \\ 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} + s \begin{bmatrix} 28 \\ 12 \\ 0 \\ 1 \\ 0 \\ 0 \end{bmatrix} + t \begin{bmatrix} 37 \\ 16 \\ 0 \\ 0 \\ 0 \\ 1 \\ 0 \end{bmatrix} + u \begin{bmatrix} -13 \\ -5 \\ 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}$$

$$\mathbf{x} = r \mathbf{v}_1 + s \mathbf{v}_2 + t \mathbf{v}_3 + u \mathbf{v}_4$$

- Solusi merupakan kombinasi linear empat vektor. Himpunan empat vektor tersebut mebentuk basis Null(A), maka nulitas (A) = 4.
- Basis NuII(A) = { \mathbf{v}_{1} , \mathbf{v}_{2} , \mathbf{v}_{3} , \mathbf{v}_{4} }

Rank dan nulitas

- Jika $A_{n \times n}$ maka rank(A) = rank (A^T)
- Jika B suatu matriks dengan n kolom, maka rank(B)+nullitas(B)= n
- Jika A_{mxn} matriks koefisien spl Ax = 0, maka
 - Rank(A) = jumlah variabel utama (bersesuaian dengan satu-utama)
 - Nullitas(A) = jumlah parameter pada solusi umum Ax=0
 - Rank(A) \leq min (m,n)
- Jika Ax = b adalah sistem linier yang konsisten dengan m persamaan dan n unknown, dan jika rank(A) = r, maka solusi umum sistem tersebut mempunyai n-r parameter bebas, nulitas(A) = n-r

Teorema konsistensi

Jeorema 5.9:

Jika $A\mathbf{x} = \mathbf{b}$ adalah sistem linier dengan m persamaan dan n unknown, maka pernyataan berikut ekivalen

- Ax = b adalah konsisten
- b berada pada ruang kolom A
- Matrik koefisien A dan matrik augmented [A|b] mempunyai rank sama.

Ax = b konsisten jika dan hanya jika Rank $(A) = rank([A \mid b])$

Contoh 24

Sistem linear berikut:

$$x_{1} - 2x_{2} = b_{1}$$

$$x_{1} - x_{2} = b_{2}$$

$$x_{1} + x_{2} = b_{3}$$

$$x_{1} + 2x_{2} = b_{4}$$

$$x_{1} + 3x_{2} = b_{5}$$

merupakan spl overdetermined, bisa konsisten atau tidak konsisten tergantung pada nilai b_1 , b_2 , b_3 , b_4 dan b_5 .

Solusi SPL dapat ditentukan dengan menerapkan metode Eliminasi Gauss-Jordan.

Contoh 24 (lanjutan)

Matriks *augmented*nya ekuivalen baris dengan:

$$\begin{bmatrix} 1 & 0 & 2b_2 - b_1 \\ 0 & 1 & b_2 - b_1 \\ 0 & 0 & b_3 - 3b_2 + 2b_1 \\ 0 & 0 & b_4 - 4b_2 + 3b_1 \\ 0 & 0 & b_5 - 5b_2 + 4b_1 \end{bmatrix}$$

Sistem ini konsisten apabila b_1 , b_2 , b_3 , b_4 dan b_5 memenuhi kondisi:

$$2b_{1} - 3b_{2} + b_{3} = 0$$

$$3b_{1} - 4b_{2} + b_{4} = 0$$

$$4b_{1} - 5b_{2} + b_{5} = 0$$

atau, solusi sistem linier homogennya adalah:

$$b_1 = 5r - 4s$$
, $b_2 = 3r - 3s$, $b_3 = 2r - s$, $b_4 = r$, $b_4 = s$ untuk sembarang r dan s

Teorema konsistensi

Jeorema 5.10:

Jika $A\mathbf{x} = \mathbf{b}$ adalah sistem linier yang konsisten dengan m persamaan dan n unknown, dan jika rank(A) = r, maka solusi umum sistem tersebut memiliki n-r parameter bebas.

Contoh 25:

Jika A adalah matrik 5 x 7 dengan rank 4, dan jika Ax = b adalah sistem linier konsisten, maka solusi umum dari sistem tersebut memiliki 7 - 4 = 3 parameter bebas.

Teorema konsistensi

 \mathcal{J} eorema 5.11: Jika A berordo $m \times n$, maka pernyataan berikut ekivalen

- Ax = 0 hanya punya solusi trivial
- Himpunan vektor-vektor kolom dari A bebas linier
- Ax = b hanya punya paling banyak satu solusi (tidak ada atau satu)
 untuk setiap matriks b berukuran m x 1.

Contoh 26:

Jika A adalah matrik 5 x 7, maka untuk setiap matrik $\mathbf{b}_{7 \times 1}$, maka $A\mathbf{x} = \mathbf{b}$ merupakan sistem underdetermined.

Sehingga, $A\mathbf{x} = \mathbf{b}$ harus konsisten untuk beberapa \mathbf{b} , dan untuk setiap \mathbf{b} , solusi umumnya memiliki 7 - r parameter, dengan r adalah rank(A).

Refleksi

- Buatlah ringkasan materi yang sudah kamu pahami.
- Periksa hasil ringkasanmu dan bandingkan apakah sudah mencakup konsep penting berikut?
 - Pengertian ruang vektor umum dan contohnya
 - Subruang dan cara mengidentifikasinya
 - Dependensi linear dua vektor dan himpunan
 - Basis dan dimensi dan contoh-contohnya
 - Teorema plus minus
 - Ruang baris, kolom, dan null
 - Rank dan nulitas
 - Teorema konsistensi

Post-test

Post-test

Tentukan pernyataan berikut benar/salah. Jelaskan alasannya.

- 1. Ruang vektor berdimensi tak hingga jika kardinalitasnya tak hingga.
- 2. R^2 adalah subruang dari R^3
- 3. Jika dimensi V adalah n dan S adalah himpunan yang merentang V maka S adalah basis V.
- 4. V ruang vektor berdimensi n, S adalah himpunan bagian dari V yang terdiri dari n+1 vektor, maka S memuat basis dari V.
- 5. Spl Ax = b konsisten jika dan hanya jika b adalah vektor dalam ruang kolom A.
- 6. Elemen nol pada ruang vektor adalah tunggal.
- 7. Negatif dari elemen adalah tunggal.
- 8. Himpunan semua vektor pada sumbu-x merupakan subruang dari R^2 .
- 9. Setiap ruang vektor adalah subruang.
- 10. Himpunan semua vektor pada garis y = x membentuk subruang dari R^2 .

Selamat, Anda telah menyelesaikan Modul 5. Topik berikutnya: ruang hasil kali dalam

MODUL E-LEARNING ALJABAR LINIER FAKULTAS ILMU KOMPUTER, UNIVERSITAS INDONESIA