Redes Neurais Recorrentes (RNN e LSTM)

Definição e Exemplos Prof. Alceu Britto

1

MLP .vs. RNN Rede Múltiplas Camadas (Sem recorrência) Exemplo MLP – MultiLayer Perceptron) Rede Neural Recorrente (recorrências – linhas pontilhadas ocorrem ao longo do tempo)

RNNs precursoras

Modelo de Jordan (1996) apresenta context units com autoloop

Michael I. Jordan. Serial order: A parallel distributed processing approach. Technical Report 8604, Institute for Cognitive Science, University of California, San Diego, 1986.

5

RNN definição

- RNN
 - Aplicadas em sequências temporais
 - Exemplos: previsões de séries temporais, reconhecimento de texto (leitura e classificação), áudio (reconhecimento da fala), dentre outros.
 - RNN capaz de usar toda a história de entradas para realizar o

do tempo.

Topologias possíveis

NxN: qtde entradas x qtde saídas

7

Problemas: vanishing gradient problem

Contribuição da informação do tempo t1 decresce exponencialmente ao longo to tempo.

Problemas: Memória de Longo Termo em RNNs

Suponha que precisamos completar a frase:

As nuvens estão lá no _____.

Eu nasci no Brasil, logo eu falo _____.

- Na primeira frase é mais fácil. Não demanda muita informação de contexto (anterior).
- Na segunda frase precisamos de mais informação contextual vinda de uma memória longa, para prever que devemos completar com a língua materna.
- No link (http://www-dsi.ing.unifi.it/~paolo/ps/tnn-94-gradient.pdf) você encontra detalhes sobre a dificuldade das RNNs em tratar dependências de longo termo.
- Qual a alternativa que surgiu?
 Uso de RNNs denominadas LSTM (Long Short-Term Memory).

9

LSTM (Long Short-Term Memory)

Novidades: presença de células (Ct, memória); forgeting gate (Ft); Input gate (It); Output gate (Ot)

Sepp Hochreiter and Jurgen Schmidhuber. Long short-term memory. Neural Computation, 9(8):1735–1780, 1997.

Camada Portão de Esquecimento

$$f_t = \sigma \left(W_f \cdot [h_{t-1}, x_t] + b_f \right)$$

A entrada no tempo t (denominada x_t) e o valor que chega do tempo anterior via camada oculta (h_{t-1}) passa pela camada denominada portão de esquecimento. Uma função sigmoid que emite um valor entre 0 a 1 (sendo 0 esqueça e 1 mantenha tudo). Este valor (f_t) é aplicado no que se encontra na memória (C_{t-1}). Célula é a memória longo termo da LSTM.

11

Adição de Nova Informação na Memória (Célula)

$$\begin{split} i_t &= \sigma\left(W_i \cdot [h_{t-1}, x_t] \ + \ b_i\right) \\ \tilde{C}_t &= \tanh(W_C \cdot [h_{t-1}, x_t] \ + \ b_C) \end{split}$$

A valores de (x_t) e h_{t-1} passam por uma sigmoid e por uma tanh e depois de combinados (produto) são adicionados na memória (C_{t-1}) . A célula então é atualizada para C_t

Saída da LSTM

O valor atual em C_t passa por uma tanh e o valor da entrada (x_t e h_{t-1}) passam por uma sigmoid. Os resultados são combinados via produto, então temos a saída da LSTM no tempo t (h_t).

13

RNN Bidirecional

 Considera informações do passado e futuro simultaneamente. Muito utilizado no processamento de fala e est

Mike Schuster and Kuldip K. Paliwal. Bidirectional recurrent neural networks. Signal Processing, IEEE Transactions on, 45(11):2673–2681, 1997.

Mais Sobre RNN e LSTM

- Referências
 - Dupond, Samuel (2019). "A thorough review on the current advance of neural network structures". Annual Reviews in Control. 14: 200–230.
 - Sepp Hochreiter; Jürgen Schmidhuber (1997). "Long short-term memory". Neural Computation. 9 (8): 1735–1780. doi:10.1162/neco.1997.9.8.1735. PMID 9377276.
- Links Interessantes:
 - http://ai.dinfo.unifi.it/paolo//ps/tnn-94-gradient.pdf
 - https://colah.github.io/posts/2015-08-Understanding-LSTMs/

15

Exercícios Práticos

- Exercício 1
 - □ Previsão de séries temporais (univalorada)
 - □ Previsão de sérias temporais (multivalorada)
 - □ Classificação de texto (emoções)

Referências

- Lipton, Zachary C.; Berkowitz, John. A Critical Review of Recurrent Neural Networks for Sequence Learning. Disppnível em https://arxiv.org/abs/1506.00019
- Michael I. Jordan. Serial order: A parallel distributed processing approach. Technical Report 8604, Institute for Cognitive Science, University of California, San Diego, 1986.
- Jeffrey L. Elman. Finding structure in time. Cognitive science, 14(2):179–211, 1990.
- Sepp Hochreiter and J"urgen Schmidhuber. Long short-term memory. Neural Computation, 9(8):1735–1780, 1997.
- Mike Schuster and Kuldip K. Paliwal. Bidirectional recurrent neural networks. Signal Processing, IEEE Transactions on, 45(11):2673–2681, 1997