Problème 2 : Centrale PSI 2012

- Dans le problème, λ désigne toujours une application continue de \mathbb{R}^+ dans \mathbb{R}^+ , croissante et non majorée.
- Dans le problème, f désigne toujours une application continue de \mathbb{R}^+ dans \mathbb{R} .
- On note E l'ensemble des réels x pour lesquels l'application $t \mapsto f(t) e^{-\lambda(t)x}$ est intégrable sur \mathbb{R}^+ .
- On note E' l'ensemble des réels x pour lesquels l'intégrale $\int_0^{+\infty} f(t) e^{-\lambda(t)x} dt$ converge.

On se propose ci-après d'étudier la transformation $f \mapsto Lf$ définie en **I.A**, d'en établir quelques propriétés, d'examiner certains exemples et d'utiliser la transformation L pour l'étude d'un opérateur. Dans le cas typique $\lambda(t) = t$, L s'appelle la transformation de Laplace.

I. Préliminaires, définition de la transformation L.

I.A. Quelle inclusion exsiste-t-il entre les ensembles E et E'?

Désormais, pour $x \in E'$, on notera

$$Lf(x) = \int_0^{+\infty} f(t) e^{-\lambda(t)x} dt$$

- **I.B.** Montrer que si E n'est pas vide, alors E est un intervalle non majoré de \mathbb{R} .
- **I.C.** Montrer que si E n'est pas vide, alors Lf est continue sur E.

II. Exemples dans le cas de f positive.

- II.A. Comparer E et E' dans le cas où f est positive.
- II.B. Dans les trois cas suivants, déterminer E:
 - II.B.1) $f(t) = \lambda'(t)$ avec λ supposée de classe \mathscr{C}^1 .
 - **II.B.2)** $f(t) = e^{t\lambda(t)}$.
 - **II.B.3)** $f(t) = \frac{e^{-t\lambda(t)}}{1+t^2}$.
- **II.C.** Dans cette question, on étudie le cas $\lambda(t) = t^2$ et $f(t) = \frac{1}{1+t^2}$ pour tout $t \in \mathbb{R}^+$.
 - **II.C.1)** Déterminer E. Que vaut Lf(0)?
 - **II.C.2)** Prouver que Lf est dérivable.
 - II.C.3) Montrer l'existence d'une constante A > 0 telle que pour tout x > 0, on ait

$$Lf(x) - (Lf)'(x) = \frac{A}{\sqrt{x}}.$$

II.C.4) On note $g(x) = e^{-x} Lf(x)$ pour $x \ge 0$. Montrer que

$$\forall x \ge 0, \ g(x) = \frac{\pi}{2} - A \int_0^x \frac{e^{-t}}{\sqrt{t}} dt.$$

II.C.5) En déduire la valeur de l'intégrale $\int_0^{+\infty} e^{-t^2} dt$.

III. Etude d'un premier exemple.

Dans cette partie, $\lambda(t) = t$ pour tout $t \in \mathbb{R}^+$ et $f(t) = \frac{t}{e^t - 1} - 1 + \frac{t}{2}$ pour tout $t \in \mathbb{R}^{+*}$.

III.A. Montrer que f se prolonge par continuité en 0. On note encore f le prolongement obtenu.

III.B. Déterminer E.

III.C. A l'aide d'un développement en série, montrer que pour tout x > 0, on a

$$Lf(x) = \frac{1}{2x^2} - \frac{1}{x} + \sum_{n=1}^{+\infty} \frac{1}{(n+x)^2}$$

III.D. Est-ce que $Lf(x) - \frac{1}{2x^2} + \frac{1}{x}$ admet une limite finie en 0^+ ?

IV. Généralités dans le cas typique.

Dans cette partie, $\lambda(t) = t$ pour $t \in \mathbb{R}^+$.

IV.A. Montrer que si E n'est pas vide et si α est sa borne inférieure (on convient que $\alpha = -\infty$ si $E = \mathbb{R}$) alors Lf est de classe \mathscr{C}^{∞} sur $]\alpha, +\infty[$ et exprimer ses dérivées successives à l'aide d'une intégrale.

IV.B. Dans le cas particulier où $f(t) = e^{-at}t^n$ pour tout $t \in \mathbb{R}^+$, avec $n \in \mathbb{N}$ et $a \in \mathbb{R}$, expliciter E, E' et calculer Lf(x) pour $x \in E'$.

IV.C. Comportement en l'infini.

On suppose ici que E n'est pas vide et que f admet au voisinage de 0 le développement limité d'ordre $n \in \mathbb{N}$ suivant :

$$f(t) = \sum_{k=0}^{n} \frac{a_k}{k!} t^k + O(t^{n+1})$$

IV.C.1) Montrer que pour tout $\beta > 0$, on a, lorsque x tend vers $+\infty$, le développement asymptotique suivant :

$$\int_0^\beta \left(f(t) - \sum_{k=0}^n \frac{a_k}{k!} t^k \right) e^{-tx} dt = O(x^{-n-2})$$

IV.C.2) En déduire que lorsque x tend vers $+\infty$, on a le développement asymptotique :

$$Lf(x) = \sum_{k=0}^{n} \frac{a_k}{x^{k+1}} + O(x^{-n-2})$$

IV.D. Comportement en 0.

On suppose ici que f admet une limite finie ℓ en $+\infty$.

IV.D.1) Montrer que E contient \mathbb{R}^{+*} .

IV.D.2) Montrer que xLf(x) tend vers ℓ en 0^+ .

V. Etude d'un deuxième exemple.

Dans cette partie, $\lambda(t)=t$ pour tout $t\in\mathbb{R}^+$ et $f(t)=\frac{\sin(t)}{t}$ pour tout t>0, f étant prolongée par continuité en 0.

V.A. Montrer que E ne contient pas 0.

V.B. Montrer que $E =]0, +\infty[$.

– DS N°6 –

- **V.C.** Montrer que E' contient 0.
- **V.D.** Calculer (Lf)'(x) pour $x \in E$.
- **V.E.** En déduire (Lf)(x) pour $x \in E$.
- **V.F.** On note pour $n \in \mathbb{N}$ et $x \ge 0$, $f_n(x) = \int_{n\pi}^{(n+1)\pi} \frac{\sin(t)}{t} e^{-tx} dt$. Montrer que la série $\sum_{n \ge 0} f_n$ converge uniformément sur $[0, +\infty[$.
- **V.G.** Que vaut Lf(0)?

VI. Injectivité dans le cas typique.

Dans cette partie, $\lambda(t) = t$ pour tout $t \in \mathbb{R}^+$.

VI.A. Soit g une application continue de [0,1] dans \mathbb{R} . On suppose que pour tout $n \in \mathbb{N}$, on a

$$\int_0^1 t^n g(t) \ dt = 0$$

- **VI.A.1)** Que dire de $\int_0^1 P(t)g(t) dt$ pour $P \in \mathbb{R}[X]$?
- VI.A.2) On admet le résultat suivant (théorème de Weierstrass) :

Il existe une suite $(P_n)_{n\in\mathbb{N}}$ de polynômes qui converge uniformément vers g sur [0,1].

En déduire que g est l'application nulle.

VI.B. Soient f fixée telle que E soit non vide, $x \in E$ et a > 0. On pose $h(t) = \int_0^t e^{-xu} f(u) \ du$ pour tout $t \ge 0$.

- **VI.B.1)** Montrer que $Lf(x+a) = a \int_0^{+\infty} e^{-at} h(t) dt$.
- **VI.B.2)** On suppose que pour tout $n \in \mathbb{N}$, on a Lf(x+na)=0. Montrer que, pour tout $n \in \mathbb{N}$, l'intégrale $\int_0^1 u^n h\left(-\frac{\ln(u)}{a}\right) du$ converge et qu'elle est nulle.
- **VI.B.3)** Qu'en déduit-on pour la fonction h?

VI.C. Montrer que l'application qui à f associe Lf est injective.

VII. Etude en la borne inférieure de E.

VII.A. Cas positif.

On suppose que f est positive et que E n'est ni vide ni égal à \mathbb{R} . On note α sa borne inférieure.

- **VII.A.1)** Montrer que si Lf est bornée sur E, alors $\alpha \in E$.
- **VII.A.2)** Si $\alpha \notin E$, que dire de Lf(x) quand x tend vers α^+ ?
- **VII.B.** Dans cette question, $f(t) = \cos(t)$ et $\lambda(t) = \ln(1+t)$.
 - **VII.B.1)** Déterminer E.
 - VII.B.2) Déterminer E'.
 - **VII.B.3)** Montrer que Lf admet une limite en α , borne inférieure de E, et la déterminer.

VIII. Une utilisation de la transformation L.

Dans cette partie, \mathcal{P} désigne l'ensemble des fonctions polynomiales à coefficients réels et on utilise la transformation L appliqué à des éléments de \mathcal{P} pour l'étude d'un opérateur U.

VIII.A. Soient P,Q deux éléments de \mathcal{P} . Montrer que l'intégrale $\int_0^{+\infty} P(t)Q(t)\mathrm{e}^{-t} dt$ converge.

VIII.B. Pour tout couple $(P,Q) \in \mathcal{P}^2$, on note

$$\langle P | Q \rangle = \int_0^{+\infty} P(t)Q(t)e^{-t} dt$$

Vérifier que $\langle . | . \rangle$ définit un produit scalaire sur \mathcal{P} .

VIII.C. On note D l'endomorphisme de dérivation et U l'endomorphisme de \mathcal{P} défini par

$$U(P)(t) = e^t D(te^{-t}P'(t))$$

Vérifier que U est endomorphisme de \mathcal{P} .

VIII.D. Montrer que pour tous P,Q de \mathcal{P} on a

$$\langle U(P) | Q \rangle = \langle P | U(Q) \rangle$$
.

VIII.E. Montrer que U admet des valeurs propres dans \mathbb{R} , et que deux vecteurs propres associés à des valeurs propres distinctes sont orthogonaux.

VIII.F. Soient λ une valeur propre de U et P un vecteur propre associé.

VIII.F.1) Montrer que P est solution d'une équation différentielle linéaire simple que l'on précisera.

VIII.F.2) Quel lien y-a-t-il entre λ et le degré de P?

VIII.G. Description des éléments propres de U.

On considère sur $[0, +\infty[$ l'équation différentielle

$$(E_n)$$
: $tP'' + (1-t)P' + nP = 0$

avec $n \in \mathbb{N}$ et d'inconnue $P \in \mathcal{P}$.

VIII.G.1) En appliquant la transformation L avec $\lambda(t) = t$ à (E_n) , montrer que si P est solution de (E_n) sur $[0, +\infty[$, alors son image Q par L est solution d'une équation différentielle (E'_n) d'ordre 1 sur $]1, +\infty[$.

VIII.G.2) Résoudre l'équation (E'_n) sur $]1, +\infty[$ et en déduire les valeurs et vecteurs propres de l'endomorphisme U.

VIII.G.3) Quel est le lien entre ce qui précède et les fonctions polynomiales définies pour $n \in \mathbb{N}$ par $P_n(t) = e^t D^n(e^{-t}t^n)$?

