CHEM 1032 PRACTICE UNIT ASSESSMENT 4	NAME:	_
CECTION.	TUID:	
SECTION:		

Before the Unit Assessment begins, read the rest of this page, and follow the instructions.

!!! Do not turn this page until given the signal to begin !!!

Put away everything besides pencil(s) and a scientific calculator.

- Non-programmable (scientific) calculators are permitted. Graphing calculators **are not permitted** (such as these models: TI-83, TI-84, TI-89, Casio FX-9750).
- Any other electronic devices including cell phones, smart phones, and smart watches **are not permitted**. If you are not sure what is permitted, ask *before* the exam begins.

When you are told to begin work, open the booklet and read the directions.

A periodic table and other useful information can be found on the next page.

Grading. Each question is graded by your instructor using the scale below.

1 - Excellent

- The student demonstrates a deep understanding of concepts and problem-solving techniques.
- Calculations are clear and legibly written.
- Any mistakes are minor or careless errors that do not indicate a major conceptual misunderstanding.

0.5 - Fair

- The student demonstrates a partial understanding of concepts and techniques.
- Calculations are clear and legibly written but contain errors.
 - o The student may have started out correctly but gone on a tangent or not finished the problem.
 - o The student may have used pattern matching to answer a different, more familiar question instead.

0 - Unsatisfactory/Incomplete

- The student did not demonstrate an understanding of the problem or has minimal understanding.
- Calculations are unclear, missing, or incomplete.
 - o The student may have written some appropriate formulas or diagrams, but nothing further.
 - o The student may have done something entirely wrong.
 - o The student may have written almost nothing or nothing at all.

Unit Assessment Time: 50 minutes. It is to your advantage to answer every question.

!!! Do not turn this page until given the signal to begin !!!

Units:

amu *atomic mass unit* atm *atmosphere*

g gram
h hour
J joule
K kelvin

 $mmHg \ \textit{unit of pressure}$

M molarity
K kelvin
L liter
mol mole
s second

Symbols:

H enthalpy
v frequency
M molar mass
mol mole
P pressure
t time
T temperature

volume

Constants:

V

 N_A Avogadro's number R ideal gas constant

SI (Metric) Prefixes:

c centid decik kilom milli-

Z ₫	F 3	Es	ڻ ي	BK 97	Cm %	Am	Pu	Z 8	238.03	91 Pa 231.04	3 8	89 AC
T S	167.26	Ho	D	5	64 Gd 157.25(3)	63 Eu	SM	Pm	Z 0	1 40.91	Ce	57 La

		_		T.	_		Τ			L	_		Τ			Τ			7
Ţ	87	Cs	55	85.468	공	37	39.098	ス	19	22.990	Z a	⇉	6.94	□.	ω	1.008	I	-	_
Ra	88	Ba	56	87.62	ဇ္	38	40.078(4)	Ca	20	24.305	Z o	12	9.0122	Be	4				N
*	89-102	*	57-70							_									
<u>_</u>	103	Lu 174.97	71	88.906	~	39	44.956	Sc	21										ω
꿏	104	178.49(2)	72	91.224(2)	Ŋ	40	47.867	∄	23										4
망	501	Ta	73	92.906(2)	Z	41	50.942	<	23										51
Sg	106	183.84	74	95.95	≤	42	51.996	ဂ္	24										6
野	107	Re	75		ನ	చ	54.938	Z ⊃	25										7
Hs	108	OS	76	101.07(2)	R	4	55.845(2)	Fe	26										8
Z	109	192.22	77	102.91	뫈	45	58.933	င္ပ	27										9
Ds	110	Pt	78	106.42	Pd	46	58.693	Z.	28										10
Rg	111	Au 196.97	79	107.87	Αg	47	63.546(3)	Cu	29										⇉
ဌာ	112	Hg	80	112.41	ဂ္ဂ	48	65.38(2)	Zn	30										12
Z	113	204.38	81	114.82	5	49	69.723	Ga	31	26.982	≥	13	10.81	₩	G				13
1	114	Pb	82	118.71	Sn	50	72.630(8)	Ge	32	28.085	<u>လ</u>	14	12.011	ဂ	6				14
Mc	115	Bi	83	121.76	<u>S</u>	51	74.922	As	33	30.974	U	15	14.007	Z	7				15
Lv	116	Po	84	127.60(3)	Ŧ	52	78.971(8)	Se	34	32.06	ဟ	16	15.999	0	8				16
Ts	117	At	85	126.90	_	53	79.904	В	35	35.45	Ω	17	18.998	П	9				17
Og	118	Rn	86	131.29	×e	54	83.798(2)	즛	36	39.948	₽	18	20.180	Z @	10	4.0026	He	12	18

!!!! FOR CREDIT, BE CLEAR AND WRITE LEGIBLY 1111

Cerium is a useful element because it can easily switch between Ce⁴⁺ and Ce³⁺. However, cerium oxide (CeO₂) nanoparticles are incredibly dangerous if inhaled, causing oxidative stress in bronchial cells and causing damage to DNA in fibroblasts. Despite this, CeO₂ nanoparticles are commonly used in industrial applications and found in catalytic converters to decrease emission of NO_x gases.

A reaction of interest is of Ce³⁺ with Ag⁺ to plate Ag, where the initial concentration of Ce³⁺ is 0.100 M. $Ce^{3+}_{(aq)} + Ag^{+}_{(aq)} \rightarrow Ce^{4+}_{(aq)} + Ag_{(s)}$

Part I – Multiple Choice Questions (1 pt each)

Excellent Answer = 1 pt

Fair Answer = 0.5 pts

 $Unsatisfactory\ Answer = 0\ pts$

- How would you best describe the cell? 1.
 - A. Represents a galvanic cell, with an E^ocell of -0.90 V.
 - B. Represents a galvanic cell, with an E^ocell of +0.90 V.
 - C. Represents an electrolytic cell, with an E^ocell of -0.90 V.
 - D. Represents an electrolytic cell, with an E^ocell of +0.90 V.
- What amperage (A) is required to plate 3.75 g of $Ag_{(s)}$ in 45 min? 2.
 - A. 3.35 A
 - B. 2.70 A
 - C. 1.24 A
 - D. 74.5 A
- 3. Which condition would require the least amount of external voltage to plate $Ag_{(s)}$?
 - A. 0.100 M Ce^{4+} and 0.001 M Ag^{+}

 - B. 0.100 M Ce⁴⁺ and 0.100 M Ag⁺ C. 0.001 M Ce⁴⁺ and 0.100 M Ag⁺
 - D. 1.000 M Ce⁴⁺ and 1.000 M Ag⁺
- If the external voltage is set to exactly that required to plate Ag, will oxidation or reduction of water occur?
 - A. Yes, reduction of water will occur.
 - B. Yes, oxidation of water will occur.
 - C. Yes, oxidation and reduction of water will occur.
 - D. No, neither oxidation nor reduction of water will occur.
- After 652 s the $[Ce^{3+}]$ is measured to be 0.345 M. What is the average rate over this time?
 - A. The average rate is $3.76 \times 10^{-4} \text{ M/s}$.
 - B. The average rate is $5.29 \times 10^{-4} \text{ M/s}$
 - C. An error has occurred, no Ce³⁺ is present at the start of the reaction.
 - D. An error has occurred, the concentration at 652 s is not possible.

Part II – Open Answer Questions – See Page 1 for full grading details

Excellent Answer = 1 pt

Fair Answer = 0.5 pts

 $Unsatisfactory\ Answer = 0\ pts$

A second reaction of interest is of CeO_2 with divalent iron (Fe²⁺) which was studied to understand the kinetics of the reaction. At 25 °C, the value of k for the reaction is 0.0507 s⁻¹.

$$CeO_{2 (s)} + Fe^{2+}_{(aq)} \rightarrow Ce^{3+}_{(aq)} + Fe^{3+}_{(aq)}$$

Experiment	Initial [Fe ²⁺] (M)	Initial CeO ₂ (g)	Initial Rate of Reaction (M/s)
1	1.5 x 10 ⁻⁵	2.5	7.58 x 10 ⁻⁷
2	1.5 x 10 ⁻⁵	5.0	7.58 x 10 ⁻⁷
3	3.0 x 10 ⁻⁵	5.0	1.52 x 10 ⁻⁶

6. Balance the redox reaction in acidic conditions.
Show your work in this box.

7. The reaction is 1st order with respect to Fe²⁺. What is the order of CeO₂? Explain and sketch a graph of CeO₂ concentration vs time. *Be sure to label your axes*.

Determine order here	Sketch graph here

sing Experiment 3, determine he your work in this box.		
•		
	WRITE TIME HERE →	
	WRITE TIME HERE 7	
der to change? Explain below. e one:	were doubled, how would you expect t	the rate, rate constant, and r
der to change? Explain below.	were doubled, how would you expect t	the rate, rate constant, and r Rate Decreases
der to change? Explain below. e one: Rate Increases	were doubled, how would you expect t	
der to change? Explain below. e one: Rate Increases e one: Rate Constant Increases e one:	Rate Stays the Same Rate Constant Stays the Same	Rate Decreases Rate Constant Decreases
der to change? Explain below. e one: Rate Increases e one: Rate Constant Increases e one: Reaction Order Increases	were doubled, how would you expect to the stays the Same	Rate Decreases
der to change? Explain below. e one: Rate Increases e one: Rate Constant Increases e one: Reaction Order Increases	Rate Stays the Same Rate Constant Stays the Same	Rate Decreases Rate Constant Decreases
der to change? Explain below. e one: Rate Increases e one: Rate Constant Increases e one: Reaction Order Increases	Rate Stays the Same Rate Constant Stays the Same	Rate Decreases Rate Constant Decreases
der to change? Explain below. e one: Rate Increases e one: Rate Constant Increases e one: Reaction Order Increases	Rate Stays the Same Rate Constant Stays the Same	Rate Decreases Rate Constant Decreases
der to change? Explain below. e one: Rate Increases e one: Rate Constant Increases e one: Reaction Order Increases	Rate Stays the Same Rate Constant Stays the Same	Rate Decreases Rate Constant Decreases
der to change? Explain below. e one: Rate Increases e one: Rate Constant Increases e one: Reaction Order Increases	Rate Stays the Same Rate Constant Stays the Same	Rate Decreases Rate Constant Decreases
der to change? Explain below. e one: Rate Increases e one: Rate Constant Increases e one: Reaction Order Increases	Rate Stays the Same Rate Constant Stays the Same	Rate Decreases Rate Constant Decreases
der to change? Explain below. e one: Rate Increases e one: Rate Constant Increases e one: Reaction Order Increases	Rate Stays the Same Rate Constant Stays the Same	Rate Decreases Rate Constant Decreases
der to change? Explain below. e one: Rate Increases e one: Rate Constant Increases e one: Reaction Order Increases	Rate Stays the Same Rate Constant Stays the Same	Rate Decreases Rate Constant Decreases
der to change? Explain below. e one: Rate Increases e one: Rate Constant Increases e one: Reaction Order Increases	Rate Stays the Same Rate Constant Stays the Same	Rate Decreases Rate Constant Decreases
der to change? Explain below. e one: Rate Increases e one: Rate Constant Increases e one: Reaction Order Increases	Rate Stays the Same Rate Constant Stays the Same	Rate Decreases Rate Constant Decreases
der to change? Explain below. e one: Rate Increases e one: Rate Constant Increases e one: Reaction Order Increases	Rate Stays the Same Rate Constant Stays the Same	Rate Decreases Rate Constant Decreases
der to change? Explain below. le one: Rate Increases le one: Rate Constant Increases le one:	Rate Stays the Same Rate Constant Stays the Same	Rate Decreases Rate Constant Decreases
der to change? Explain below. le one: Rate Increases le one: Rate Constant Increases le one: Reaction Order Increases	Rate Stays the Same Rate Constant Stays the Same	Rate Decreases Rate Constant Decreases
der to change? Explain below. e one: Rate Increases e one: Rate Constant Increases e one: Reaction Order Increases	Rate Stays the Same Rate Constant Stays the Same	Rate Decreases Rate Constant Decreases

!!! DON'T FORGET TO CHECK YOUR WORK !!!!

Useful information:

R = 8.314 J/(mol K) = 0.08206 (L atm)/(mol K)

$$E_{cell} = E_{cathode} - E_{anode}$$
 $\Delta G^{\circ} = -nFE_{cell}^{\circ}$ $F = 96,485 \text{ C/mol e}^{-}$

$$E_{cell}^{o} = \underline{0.0592 \text{ V}} \log K$$
 (at T = 25 °C) $E_{cell} = E_{cell}^{o} - \underline{0.0592 \text{ V}} \log Q$ (at T = 25 °C)

[A] =
$$-kt + [A]_o$$
 $t_{1/2} = \frac{[A]_o}{2k}$

$$ln[A]_t = -kt + ln[A]_0$$
 $t_{1/2} = \frac{0.693}{k}$

$$\frac{1}{[A]_t} = kt + \frac{1}{[A]_o}$$

$$t_{1/2} = \frac{1}{k[A]_o}$$

$$k = Ae^{\frac{-Ea}{R}T} \qquad \qquad lnk = -\frac{E_a}{R} \left(\frac{1}{T}\right) + lnA \qquad \qquad ln\left(\frac{k_2}{k_1}\right) = -\frac{E_a}{R} \left[\frac{1}{T_2} - \frac{1}{T_1}\right]$$

Half-Reaction	<i>E</i> ° (V)
$F_2(g) + 2 e^- \rightarrow 2 F^-(aq)$	+2.866
$Ce^{4+}(aq) + 1 e^{-} \longrightarrow Ce^{3+}(aq)$	+1.70
$\operatorname{Cl}_2(g) + 2 e^- \longrightarrow 2 \operatorname{Cl}^-(aq)$	+1.35827
$O_2(g) + 4 H^+(aq) + 4e^- \rightarrow 2 H_2O(l)$	+1.229
$Pt^{2+}(aq) + 2e^{-} \longrightarrow Pt(s)$	+1.20
$\operatorname{Br}_2(aq) + 2e^- \longrightarrow 2 \operatorname{Br}^-(aq)$	+1.0873
$Ag^{+}(aq) + e^{-} \rightarrow Ag(s)$	+0.7996
$\text{Hg2}^{2^{+}}(aq) + 2 e^{-} \rightarrow 2 \text{ Hg } (l)$	+0.7973
$Fe^{3+}(aq) + e^{-} \longrightarrow Fe^{2+}(aq)$	+0.771
$I_2(s) + 2 e^- \longrightarrow 2 I^-(aq)$	+0.5355
$\operatorname{Cu}^{2+}(aq) + 2 e^{-} \longrightarrow \operatorname{Cu}(s)$	+0.34
$\operatorname{Sn}^{4+}(aq) + 2 e^{-} \longrightarrow \operatorname{Sn}^{2+}(aq)$	+0.151
$2 H^{+}(aq) + 2 e^{-} \longrightarrow H_{2}(g)$	0.00
$Pb^{2+}(aq) + 2 e^{-} \longrightarrow Pb (s)$	-0.1262
$\operatorname{Sn}^{2+}(aq) + 2 e^{-} \longrightarrow \operatorname{Sn}(s)$	-0.1375
$Ni^{2+}(aq) + 2 e^- \longrightarrow Ni(s)$	-0.257
$\operatorname{Co}^{2+}(aq) + 2 e^{-} \longrightarrow \operatorname{Co}(s)$	-0.28
$\operatorname{Cd}^{2+}(aq) + 2 e^{-} \longrightarrow \operatorname{Cd}(s)$	-0.4030
$Fe^{2+}(aq) + 2e^{-} \longrightarrow Fe(s)$	-0.447
$\operatorname{Cr}^{3+}(aq) + 3 e^{-} \longrightarrow \operatorname{Cr}(s)$	-0.744
$Mn^{2+}(aq) + 2 e^{-} \longrightarrow Mn(s)$	-1.185
$\operatorname{Zn}^{2+}(aq) + 2 e^{-} \longrightarrow \operatorname{Zn}(s)$	-0.7618
$Al^{3+}(aq) + 3 e^{-} \longrightarrow Al(s)$	-1.662
$Mg^{2+}(aq) + 2 e^- \rightarrow Mg(s)$	-2.372
$Na^+(aq) + e^- \rightarrow Na(s)$	-2.71
$\operatorname{Ca}^{2+}(aq) + 2 e^{-} \longrightarrow \operatorname{Ca}(s)$	-2.868
$Ba^{2+}(aq) + 2e^{-} \longrightarrow Ba(s)$	-2.912
$K^+(aq) + e^- \rightarrow K(s)$	-2.931
$\operatorname{Li}^{+}(aq) + e^{-} \longrightarrow \operatorname{Li}(s)$	-3.04

