Lower bounds on the summatory function of the Möbius function along infinite subsequences

Maxie Dion Schmidt Georgia Institute of Technology School of Mathematics

<u>Last Revised:</u> Friday 11th September, 2020 @ 12:25:16 - Compiled with LATEX2e

Abstract

The Mertens function, $M(x) := \sum_{n \leq x} \mu(n)$, is defined as the summatory function of the Möbius function. The Mertens conjecture states that $|M(x)| < C \cdot \sqrt{x}$ for some absolute C > 0 for all $x \geq 1$. This classical conjecture has a well-known disproof due to Odlyzko and té Riele. We prove the unboundedness of $|M(x)|/\sqrt{x}$ using new methods by showing that

$$\limsup_{x\to\infty}\frac{|M(x)|}{\sqrt{x}\cdot(\log\log x)^{\frac{1}{2}}}>0.$$

The new methods we draw upon connect formulas and recent Dirichlet generating function (or DGF) series expansions related to the canonically additive functions $\Omega(n)$ and $\omega(n)$. The connection between M(x) and the distribution of these core additive functions we prove at the start of the article in the form of

$$M(x) = \sum_{k=1}^{x} (\omega + 1)^{-1}(k) \left[\pi \left(\left\lfloor \frac{x}{k} \right\rfloor \right) + 1 \right],$$

is an indispensible component to the proof. It also leads to regular properties of component sequences in the new formula for M(x) that include generalizations of Erdös-Kac like theorems satisfied by the distributions of these special auxiliary sequences.

Keywords and Phrases: Möbius function; Mertens function; Dirichlet inverse function; Liouville lambda function; prime omega function; prime counting function; Dirichlet generating function; Erdös-Kac theorem; strongly additive functions.

Math Subject Classifications (MSC 2010): 11N37; 11A25; 11N60; 11N64; and 11-04.

Glossary of notation and conventions

Symbol Definition

We write that $f(x) \approx g(x)$ if |f(x) - g(x)| = O(1) as $x \to \infty$.

 $\mathbb{E}[f(x)], \stackrel{\mathbb{E}}{\sim}$ We use the expectation notation of $\mathbb{E}[f(x)] = h(x)$, or sometimes write that $f(x) \stackrel{\mathbb{E}}{\sim} h(x)$, to denote that f has an average order growth rate of h(x). This means that $\frac{1}{x} \sum_{n \le x} f(n) \sim h(x)$, or equivalently that

$$\lim_{x \to \infty} \frac{\frac{1}{x} \sum_{n \le x} f(n)}{h(x)} = 1.$$

B The absolute constant $B \approx 0.2614972$ from the statement of Mertens theorem.

 $\chi_{\mathbb{P}}(n)$ The characteristic (or indicator) function of the primes equals one if and only if $n \in \mathbb{Z}^+$ is prime, and is zero-valued otherwise.

 $C_k(n)$ The sequence is defined recursively for $n \geq 1$ as follows:

$$C_k(n) := \begin{cases} \delta_{n,1}, & \text{if } k = 0; \\ \sum_{d|n} \omega(d) C_{k-1}(n/d), & \text{if } k \ge 1. \end{cases}$$

It represents the multiple, k-fold convolution of the function $\omega(n)$ with itself.

The coefficient of q^n in the power series expansion of F(q) about zero when F(q) is treated as the ordinary generating function of some sequence, $\{f_n\}_{n\geq 0}$. Namely, for integers $n\geq 0$ we define $[q^n]F(q)=f_n$ whenever $F(q):=\sum_{n\geq 0}f_nq^n$.

 $\varepsilon(n)$ The multiplicative identity with respect to Dirichlet convolution, $\varepsilon(n) := \delta_{n,1}$, defined such that for any arithmetic f we have that $f * \varepsilon = \varepsilon * f = f$ where * denotes Dirichlet convolution (see definition below).

f * g The Dirichlet convolution of f and g, $(f * g)(n) := \sum_{d|n} f(d)g(n/d)$, where the sum is taken over the divisors of any $n \ge 1$.

The Dirichlet inverse of f with respect to convolution is defined recursively by $f^{-1}(n) = -\frac{1}{f(1)} \sum_{\substack{d \mid n \\ d > 1}} f(d) f^{-1}(n/d)$ for $n \ge 2$ with $f^{-1}(1) = 1/f(1)$. The Dirichlet inverse of f with respect to convolution is defined recursively by

let inverse of f exists if and only if $f(1) \neq 0$. This inverse function, denoted by f^{-1} when it exists, is unique and satisfies the characteristic convolution relations providing that $f^{-1} * f = f * f^{-1} = \varepsilon$.

 $\gamma \qquad \qquad \text{The Euler gamma constant defined by } \gamma := \lim_{n \to \infty} \left(\sum_{k=1}^n \frac{1}{k} - \log n \right) \approx 0.5772157.$

 \gg, \ll, \asymp For functions A, B, the notation $A \ll B$ implies that A = O(B). Similarly, for $B \geq 0$ the notation $A \gg B$ implies that B = O(A). When we have that $A \ll B$ and $B \ll A$, we write $A \asymp B$.

 $g^{-1}(n), G^{-1}(x)$ The Dirichlet inverse function, $g^{-1}(n) = (\omega + 1)^{-1}(n)$ with corresponding summatory function $G^{-1}(x) := \sum_{n \le x} g^{-1}(n)$.

Symbol Definition $[n=k]_{\delta}, [{\tt cond}]_{\delta}$ The symbol $[n = k]_{\delta}$ is a synonym for $\delta_{n,k}$ which is one if and only if n = k, and is zero otherwise. For boolean-valued conditions, cond, the symbol [cond] $_{\delta}$ evaluates to one precisely when cond is true, and to zero otherwise. This notation is called *Iverson's convention*. $\lambda_*(n)$ For positive integers $n \geq 2$, we define the next variant of the Liouville lambda function, $\lambda(n)$, as follows: $\lambda_*(n) := (-1)^{\omega(n)}$. We have the initial condition that $\lambda_*(1) = 1$. $\lambda(n), L(x)$ The Liouville lambda function is the completely multiplicative function defined by $\lambda(n) := (-1)^{\Omega(n)}$. Its summatory function is defined by $L(x) := \sum_{n \leq x} \lambda(n)$. The Möbius function defined such that $\mu^2(n)$ is the indicator function of the $\mu(n)$ squarefree integers, and so that $\mu(n) = (-1)^{\omega(n)}$ whenever n is squarefree. We define these analogs to the mean and variance of the function $C_{\Omega(n)}(n)$ in $\mu_x(C), \sigma_x(C)$ the context of our new Erdös-Kac like theorems as $\mu_x(C) := \log \log x + \hat{a}$ $\frac{1}{2}\log\log\log x$ and $\sigma_x(C):=\sqrt{\mu_x(C)}$ where $\hat{a}:=\log\left(\frac{1}{\sqrt{2\pi}}\right)\approx -0.918939$ is an absolute constant. M(x)The Mertens function is the summatory function of $\mu(n)$ defined for all integers $x \ge 1$ by $M(x) := \sum_{i=1}^{n} \mu(n)$. For $x \in \mathbb{R}$, we define the function giving the normal distribution CDF by $\Phi(z)$ $\Phi(z) := \frac{1}{\sqrt{2\pi}} \times \int_{-\infty}^{z} e^{-t^2/2} dt.$ The valuation function that extracts the maximal exponent of p in the prime $\nu_p(n)$ factorization of n, e.g., $\nu_p(n) = 0$ if $p \nmid n$ and $\nu_p(n) = \alpha$ if $p^{\alpha} | | n$ (or when p^{α} exactly divides n) for p prime, $\alpha \geq 1$ and $n \geq 2$. We define the strongly additive function $\omega(n) := \sum_{p|n} 1$ and the completely $\omega(n),\Omega(n)$ additive function $\Omega(n) := \sum_{p^{\alpha}||n} \alpha$. This means that if the prime factorization of $n \geq 2$ is given by $n := p_1^{\alpha_1} \cdots p_r^{\alpha_r}$ with $p_i \neq p_j$ for all $i \neq j$, then $\omega(n) = r$ and $\Omega(n) = \alpha_1 + \cdots + \alpha_r$. By convention, we require that $\omega(1) = \Omega(1) = 0$. $\pi_k(x), \widehat{\pi}_k(x)$ The prime counting function variant $\pi_k(x)$ denotes the number of integers $1 \le n \le x$ for $x \ge 2$ with exactly k distinct prime factors: $\pi_k(x) := \#\{n \le x : n \le x \}$ $\omega(n) = k$. Similarly, the function $\widehat{\pi}_k(x) := \#\{n \leq x : \Omega(n) = k\}$ for $x \geq 2$. P(s)For complex s with Re(s) > 1, we define the prime zeta function to be the Dirichlet generating function $P(s) = \sum_{n>1} \frac{\chi_{\mathbb{P}}(n)}{n^s}$. For x > 1, we define Q(x) to be the summatory function indicating the number Q(x)of squarefree integers $n \leq x$. More precisely, this function is summed and identified with its limiting asymptotic formula as $x \to \infty$ in the following form: $Q(x) := \sum_{n \le x} \mu^2(n) \sim \frac{6x}{\pi^2} + O(\sqrt{x}).$ We say that two arithmetic functions A(x), B(x) satisfy the relation $A \sim B$ if $\lim_{x \to \infty} \frac{A(x)}{B(x)} = 1.$ The Riemann zeta function is defined by $\zeta(s) := \sum_{n \geq 1} n^{-s}$ when $\operatorname{Re}(s) > 1$

exception of a simple pole at s = 1 of residue one.

1, and by analytic continuation on the rest of the complex plane with the

 $\zeta(s)$

1 Introduction

1.1 Definitions

We define the *Möbius function* to be the signed indicator function of the squarefree integers in the form of [20, A008683]

$$\mu(n) = \begin{cases} 1, & \text{if } n = 1; \\ (-1)^{\omega(n)}, & \text{if } \omega(n) = \Omega(n) \text{ and } n \ge 2; \\ 0, & \text{otherwise.} \end{cases}$$

The Mertens function, or summatory function of $\mu(n)$, is defined on the positive integers as

$$M(x) = \sum_{n \le x} \mu(n), x \ge 1.$$

The sequence of slow growing oscillatory values of this summatory function begins as follows [20, A002321]:

$$\{M(x)\}_{x\geq 1} = \{1, 0, -1, -1, -2, -1, -2, -2, -1, -2, -2, -3, -2, -1, -1, -2, -2, -3, -3, -2, -1, -2, \ldots\}.$$

The Mertens function satisfies that $\sum_{n \leq x} M\left(\left\lfloor \frac{x}{n} \right\rfloor\right) = 1$, and is related to the summatory function $L(x) := \sum_{n \leq x} \lambda(n)$ via the relation [10]

$$L(x) = \sum_{d \le \sqrt{x}} M\left(\left\lfloor \frac{x}{d^2} \right\rfloor\right), x \ge 1.$$

Clearly, a positive integer $n \ge 1$ is squarefree, or contains no divisors (other than one) which are squares, if and only if $\mu^2(n) = 1$. A related summatory function which counts the number of squarefree integers $n \le x$ satisfies [5, §18.6] [20, A013928]

$$Q(x) = \sum_{n \le x} \mu^2(n) \sim \frac{6x}{\pi^2} + O\left(\sqrt{x}\right).$$

It is known that the asymptotic density of the positively versus negatively weighted sets of squarefree numbers characterized by the sign of the Möbius function are in fact equal as $x \to \infty$:

$$\mu_{+}(x) = \frac{\#\{1 \le n \le x : \mu(n) = +1\}}{x} \stackrel{\mathbb{E}}{\sim} \mu_{-}(x) = \frac{\#\{1 \le n \le x : \mu(n) = -1\}}{x} \xrightarrow{x \to \infty} \frac{3}{\pi^{2}}.$$

1.2 Properties

An approach to evaluating the limiting asymptotic behavior of M(x) for large $x \to \infty$ considers an inverse Mellin transformation of the reciprocal of the Riemann zeta function. In particular, since

$$\frac{1}{\zeta(s)} = \prod_{p} \left(1 - \frac{1}{p^s} \right) = s \cdot \int_1^\infty \frac{M(x)}{x^{s+1}} dx, \operatorname{Re}(s) > 1,$$

we obtain that

$$M(x) = \lim_{T \to \infty} \frac{1}{2\pi i} \int_{T-i\infty}^{T+i\infty} \frac{x^s}{s \cdot \zeta(s)} ds.$$

The previous two representations lead us to the exact expression of M(x) for any real x > 0 given by the next theorem.

Theorem 1.1 (Analytic Formula for M(x), Titchmarsh). Assuming the Riemann Hypothesis (RH), there exists an infinite sequence $\{T_k\}_{k\geq 1}$ satisfying $k\leq T_k\leq k+1$ for each k such that for any real x>0

$$M(x) = \lim_{k \to \infty} \sum_{\substack{\rho: \zeta(\rho) = 0 \\ |\operatorname{Im}(\rho)| < T_k}} \frac{x^{\rho}}{\rho \cdot \zeta'(\rho)} - 2 + \sum_{n \ge 1} \frac{(-1)^{n-1}}{n \cdot (2n)! \zeta(2n+1)} \left(\frac{2\pi}{x}\right)^{2n} + \frac{\mu(x)}{2} \left[x \in \mathbb{Z}^+\right]_{\delta}.$$

A historical unconditional bound on the Mertens function due to Walfisz (circa 1963) states that there is an absolute constant C > 0 such that

$$M(x) \ll x \cdot \exp\left(-C \cdot \log^{\frac{3}{5}}(x)(\log\log x)^{-\frac{3}{5}}\right).$$

Under the assumption of the RH, Soundararajan proved new updated estimates bounding M(x) from above for large x in the following forms [21]:

$$\begin{split} &M(x) \ll \sqrt{x} \cdot \exp\left((\log x)^{\frac{1}{2}} (\log\log x)^{14}\right), \\ &M(x) = O\left(\sqrt{x} \cdot \exp\left((\log x)^{\frac{1}{2}} (\log\log x)^{\frac{5}{2} + \epsilon}\right)\right), \ \forall \epsilon > 0. \end{split}$$

1.3 Conjectures on boundedness and limiting behavior

The RH is equivalent to showing that $M(x) = O\left(x^{\frac{1}{2}+\epsilon}\right)$ for any $0 < \epsilon < \frac{1}{2}$. There is a rich history to the original statement of the *Mertens conjecture* which asserts that

$$|M(x)| < C \cdot \sqrt{x}$$
, for some absolute constant $C > 0$.

The conjecture was first verified by Mertens himself for C=1 and all x<10000 without the benefit of modern computation. Since its beginnings in 1897, the Mertens conjecture has been disproven by computational methods with non-trivial simple zeta function zeros with comparitively small imaginary parts in a famous paper by Odlyzko and té Riele [14]. More recent attempts at bounding M(x) naturally consider determining the rates at which the function $M(x)/\sqrt{x}$ grows with or without bound along infinite subsequences, e.g., considering the asymptotics of the function in the limit supremum and limit infimum senses.

We cite that it is only known by computation that [17, cf. §4.1] [20, cf. A051400; A051401]

$$\limsup_{x \to \infty} \frac{M(x)}{\sqrt{x}} > 1.060 \qquad \text{(now } \ge 1.826054),$$

and

$$\liminf_{x \to \infty} \frac{M(x)}{\sqrt{x}} < -1.009 \qquad \text{(now } \le -1.837625\text{)}.$$

Based on work by Odlyzyko and té Riele, it seems probable that each of these limits should evaluate to $\pm \infty$, respectively [14, 8, 9, 6]. Extensive computational evidence has produced a conjecture due to Gonek that in fact the limiting behavior of M(x) satisfies [13]

$$\limsup_{x \to \infty} \frac{|M(x)|}{\sqrt{x} \cdot (\log \log \log x)^{\frac{5}{4}}} = O(1).$$

2 A concrete new approach to bounding M(x) from below

2.1 Summatory functions of Dirichlet convolutions of arithmetic functions

Theorem 2.1 (Summatory functions of Dirichlet convolutions). Let $f, h : \mathbb{Z}^+ \to \mathbb{C}$ be any arithmetic functions such that $f(1) \neq 0$. Suppose that $F(x) := \sum_{n \leq x} f(n)$ and $H(x) := \sum_{n \leq x} h(n)$ denote the summatory functions of f and h, respectively, and that $F^{-1}(x) := \sum_{n \leq x} f^{-1}(n)$ denotes the summatory function of the Dirichlet inverse of f for any $x \geq 1$. We have the following exact expressions for the summatory function of the convolution f * h for all integers $x \geq 1$:

$$\pi_{f*h}(x) := \sum_{n \le x} \sum_{d|n} f(d)h(n/d)$$

$$= \sum_{d \le x} f(d)H\left(\left\lfloor \frac{x}{d} \right\rfloor\right)$$

$$= \sum_{k=1}^{x} H(k) \left[F\left(\left\lfloor \frac{x}{k} \right\rfloor\right) - F\left(\left\lfloor \frac{x}{k+1} \right\rfloor\right)\right].$$

Moreover, for all $x \geq 1$

$$H(x) = \sum_{j=1}^{x} \pi_{f*h}(j) \left[F^{-1} \left(\left\lfloor \frac{x}{j} \right\rfloor \right) - F^{-1} \left(\left\lfloor \frac{x}{j+1} \right\rfloor \right) \right]$$
$$= \sum_{k=1}^{x} f^{-1}(k) \cdot \pi_{f*h} \left(\left\lfloor \frac{x}{k} \right\rfloor \right).$$

Corollary 2.2 (Convolutions arising from Möbius inversion). Suppose that h is an arithmetic function such that $h(1) \neq 0$. Define the summatory function of the convolution of h with μ by $\widetilde{H}(x) := \sum_{n \leq x} (h * \mu)(n)$. Then the Mertens function is expressed by the sum

$$M(x) = \sum_{k=1}^{x} \left(\sum_{j=\lfloor \frac{x}{k+1} \rfloor + 1}^{\lfloor \frac{x}{k} \rfloor} h^{-1}(j) \right) \widetilde{H}(k), \forall x \ge 1.$$

Corollary 2.3 (A motivating special case). We have that for all $x \ge 1$

$$M(x) = \sum_{k=1}^{x} (\omega + 1)^{-1}(k) \left[\pi \left(\left\lfloor \frac{x}{k} \right\rfloor \right) + 1 \right]. \tag{1}$$

2.2 An exact expression for M(x) in terms of strongly additive functions

Fix the notation for the Dirichlet invertible function $g(n) := \omega(n) + 1$ and define its inverse with respect to Dirichlet convolution by $g^{-1}(n) = (\omega + 1)^{-1}(n)$. We can compute exactly that (see Table T.1 starting on page 38)

$$\{g^{-1}(n)\}_{n>1} = \{1, -2, -2, 2, -2, 5, -2, -2, 2, 5, -2, -7, -2, 5, 5, 2, -2, -7, -2, -7, 5, 5, -2, 9, \ldots\}.$$

There is not a simple meaningful direct recursion between the distinct values of $g^{-1}(n)$, except through auxiliary function sequences whose properties we will discuss in detail. The distribution of distinct sets of prime exponents is still clearly quite regular since $\omega(n)$ and $\Omega(n)$ play a crucial role in the repitition of common values of $g^{-1}(n)$. The following observation is suggestive of the quasi-periodicity of the distribution of distinct values of this inverse function we notice below over $n \geq 2$:

Heuristic 2.4 (Symmetry in $g^{-1}(n)$ in the prime factorizations of n). Suppose that $n_1, n_2 \geq 2$ are such that their factorizations into distinct primes are given by $n_1 = p_1^{\alpha_1} \cdots p_r^{\alpha_r}$ and $n_2 = q_1^{\beta_1} \cdots q_r^{\beta_r}$ for $= \omega(n_i) \geq 1$. If $\{\alpha_1, \ldots, \alpha_r\} \equiv \{\beta_1, \ldots, \beta_r\}$ as multisets of prime exponents, then $g^{-1}(n_1) = g^{-1}(n_2)$. For example, g^{-1} has the same values on the squarefree integers with exactly one, two, three, and so on prime factors.

Conjecture 2.5 (Characteristic properties of the inverse sequence). We have the following properties characterizing the Dirichlet inverse function $g^{-1}(n)$:

- (A) For all $n \ge 1$, $sgn(g^{-1}(n)) = \lambda(n)$;
- (B) For all squarefree integers $n \geq 1$, we have that

$$|g^{-1}(n)| = \sum_{m=0}^{\omega(n)} {\omega(n) \choose m} \cdot m!;$$

(C) If $n \geq 2$ and $\Omega(n) = k$, then

$$2 \le |g^{-1}(n)| \le \sum_{j=0}^{k} {k \choose j} \cdot j!.$$

We illustrate the conjecture clearly using the computation of initial values of this inverse sequence in Table T.1. The signedness property in (A) is proved precisely in Proposition 3.1. A proof of (B) in fact follows from Lemma 5.1 stated on page 21. The realization that the beautiful and remarkably simple combinatorial form of property (B) in Conjecture 2.5 holds for all squarefree $n \geq 1$ motivates our pursuit of simpler formulas for the inverse functions $g^{-1}(n)$ through sums of auxiliary subsequences of arithmetic functions denoted by $C_k(n)$ (see Section 5). That is, we observe a familiar formula for $g^{-1}(n)$ at many integers and then seek to extrapolate and prove more regular tendencies of this sequence more generally at any $n \geq 2$.

An exact expression for $g^{-1}(n)$ through a key semi-diagonal of these subsequences is given by

$$g^{-1}(n) = \lambda(n) \times \sum_{d|n} \mu^2\left(\frac{n}{d}\right) C_{\Omega(d)}(d), n \ge 1,$$

where the sequence $\lambda(n)C_{\Omega(n)}(n)$ has DGF $(P(s)+1)^{-1}$ for Re(s) > 1 (see Proposition 3.1). In Corollary 6.5, we prove that the approximate mean of the unsigned sequence satisfies

$$\mathbb{E}|g^{-1}(n)| \simeq (\log n)^2 \sqrt{\log \log n}$$
, as $n \to \infty$.

The regularity and quasi-periodicity we have alluded to in the remarks above are actually quantifiable in so much as $|g^{-1}(n)|$ for $n \leq x$ tends to its average order with a non-central normal tendency depending on x as $x \to \infty$. In Section 6, we prove the next variant of an Erdös-Kac theorem like analog for a component sequence $C_{\Omega(n)}(n)$. Namely, we prove the following statement for $\mu_x(C) := \log \log x + \hat{a} - \frac{1}{2} \log \log \log x$, $\sigma_x(C) := \sqrt{\mu_x(C)}$, \hat{a} an absolute constant, and any $y \in \mathbb{R}$ (see Corollary 6.7):

$$\frac{1}{x} \cdot \#\{2 \le n \le x : |g^{-1}(n)| - \mathbb{E}|g^{-1}(n)| \le y\} = \Phi\left(\frac{\frac{\pi^2}{6}y - \mu_x(C)}{\sigma_x(C)}\right) + O\left(\frac{1}{\sqrt{\log\log x}}\right), \text{ as } x \to \infty.$$

We also prove that (see Proposition 7.4)

$$M(x) = G^{-1}(x) + G^{-1}\left(\left\lfloor \frac{x}{2} \right\rfloor\right) + \sum_{k=1}^{\frac{x}{2}-1} G^{-1}(k) \left[\pi\left(\left\lfloor \frac{x}{k} \right\rfloor\right) - \pi\left(\left\lfloor \frac{x}{k+1} \right\rfloor\right)\right]. \tag{2}$$

This formula implies that we can establish new *lower bounds* on M(x) along large infinite subsequences by bounding appropriate estimates of the summatory function $G^{-1}(x)$. This take on the regularity of $|g^{-1}(n)|$ is imperative to our argument formally bounding the growth $G^{-1}(x)$ from below as $|G^{-1}(x)| \gg (\log x) \sqrt{\log \log x}$ as $x \to \infty$ (see Theorem 7.3). A more combinatorial approach to summing $G^{-1}(x)$ for large x based on the distribution of the primes is outlined in our remarks in Section 5.3.

2.3 Uniform asymptotics from certain bivariate counting DGFs

Theorem 2.6 (Montgomery and Vaughan). Recall that we have defined

$$\widehat{\pi}_k(x) := \#\{n \le x : \Omega(n) = k\}.$$

For R < 2 we have that uniformly for all $1 \le k \le R \cdot \log \log x$

$$\widehat{\pi}_k(x) = \mathcal{G}\left(\frac{k-1}{\log\log x}\right) \frac{x}{\log x} \frac{(\log\log x)^{k-1}}{(k-1)!} \left[1 + O_R\left(\frac{k}{(\log\log x)^2}\right)\right],$$

where

$$\mathcal{G}(z) := \frac{1}{\Gamma(z+1)} \times \prod_{p} \left(1 - \frac{z}{p}\right)^{-1} \left(1 - \frac{1}{p}\right)^{z}, 0 \le |z| < R.$$

The proof of the next result is also combinatorially motivated in so much as it interprets lower bounds on a key infinite product factor of $\mathcal{G}(z)$ defined in Theorem 2.6 as corresponding to an ordinary generating function of certain homogeneous symmetric polynomials involving the primes (see (14) in the proof of Theorem 2.7). This interpretation allows us to recover the following uniform lower bounds on $\widehat{\pi}_k(x)$ as $x \to \infty$:

Theorem 2.7 (Schmidt, 2020). For all sufficiently large x we have uniformly for $1 \le k \le \log \log x$ that

$$\widehat{\pi}_k(x) \gg \frac{x^{3/4}}{\log x} \cdot \frac{(\log \log x)^{k-1}}{(k-1)!} \times \left[1 + O\left(\frac{k}{(\log \log x)^2}\right) \right].$$

Remark 2.8. We emphasize the recency of the method demonstrated by Montgomery and Vaughan in constructing their original proof of Theorem 2.6. To the best of our knowledge, this textbook reference is one of the first clear-cut applications documenting something of a hybrid DGF-and-OGF approach to enumerating sequences of arithmetic functions and their summatory functions. This interpretation of certain bivariate DGFs offers a window into the best of both generating function series worlds. It combines the additivity implicit to the coefficients indexed by a formal power series variable formed by multiplication of these structures, while coordinating the distinct DGF-best property of the multiplicativity of distinct prime powers invoked by taking powers of a reciprocal Euler product. Another set of proofs constructed based on this type of hybrid power series DGF is utilized in Section 6 when we prove an Erdös-Kac theorem like analog that holds for the component sequence $C_{\Omega(n)}(n)$, which is crucially related to $g^{-1}(n)$ by the results in Section 5.

2.4 Cracking the classical unboundedness barrier

What we obtain at the conclusion of Section 7 is the next summary theorem that unconditionally resolves the classical question of the unboundedness of the scaled function Mertens function $q(x) := |M(x)|/\sqrt{x}$ in the limit supremum sense.

Theorem 2.9 (Unboundedness of the Mertens function, q(x)). We have that

$$\limsup_{x \to \infty} \frac{|M(x)|}{\sqrt{x}} = +\infty.$$

The proof of Theorem 2.9 is the main result we build up to in the article. It motivates all of our new constructions behind the additive function based sequences we employ to expand M(x) via (1) and (2). This link relating our new formula for M(x) to canonical additive functions and their distributions lends a recent distinguishing element to the success and characterization of the methods in our proof.

2.5 An overview of the core components to the proof

We offer the following initial step-by-step summary overview of the core components to our proof with the intention of making this new argument easier to parse in stages:

- (1) We directly prove a matrix inversion formula relating the summatory functions of an arithmetic function f and its Dirichlet inverse f^{-1} (for $f(1) \neq 0$). See Theorem 2.1 in Section 3.
- (2) This crucial step provides us with an exact formula for M(x) in terms of the prime counting function $\pi(x)$, and the Dirichlet inverse of the shifted additive function $g(n) := \omega(n) + 1$. This formula is stated in (1) (see also Proposition 7.4).
- (3) We tighten bounds given by a newer result proved in [12, §7] providing uniform asymptotic formulas for lower bounds on the summatory functions, $\hat{\pi}_k(x)$, large x > e when $1 \le k \le \log \log x$ (see Theorem 2.7). This allows us to eventually approximate the magnitude of the summatory functions

$$L(x) := \sum_{n \le x} \lambda(n) \asymp \sum_{k=1}^{\log \log x} (-1)^k \widehat{\pi}_k(x), \text{ as } x \to \infty,$$

well from below (see the proof of Theorem 7.3; and Table T.2 starting on page 45 for numerical data).

- (4) In Section 5. we relate $g^{-1}(n)$ to a subsequence of recursively-defined auxiliary functions, $C_k(n)$, that respectively express multiple k-convolutions of $\omega(n)$ with itself for $1 \le k \le \Omega(n)$ (see Lemma 5.1 and Lemma 5.3).
- (5) In Section 6, we prove new expectation formulas for $|g^{-1}(n)|$ and the related component sequence $C_{\Omega(n)}(n)$ by first proving an Erdös-Kac like theorem satisfied by $C_{\Omega(n)}(n)$. This allows us to prove asymptotic lower bounds on $|G^{-1}(x)| \gg (\log x) \sqrt{\log \log x}$ when x is large and such that $G^{-1}(x) \neq 0$ in Section 7.
- (6) When we return to step (2) with our new lower bounds at hand, we are led to a new unconditional proof of the unboundedness of $\frac{|M(x)|}{\sqrt{x}}$ along an exponentially very large increasing infinite subsequence of positive natural numbers (see Section 7.2).

3 Preliminary proofs of new results

3.1 Establishing the summatory function properties and inversion identities

We will offer a proof of Theorem 2.1 suggested by an intuitive construction through matrix based methods. Related results on summations of Dirichlet convolutions appear in [1, §2.14; §3.10; §3.12; cf. §4.9, p. 95].

Proof of Theorem 2.1. Let h, g be arithmetic functions such that $g(1) \neq 0$. Denote the summatory functions of h and g, respectively, by $H(x) = \sum_{n \leq x} h(n)$ and $G(x) = \sum_{n \leq x} g(n)$. We define $\pi_{g*h}(x)$ to be the summatory function of the Dirichlet convolution of g with h. We have that the following formulas hold for all $x \geq 1$:

$$\pi_{g*h}(x) := \sum_{n=1}^{x} \sum_{d|n} g(n)h(n/d) = \sum_{d=1}^{x} g(d)H\left(\left\lfloor \frac{x}{d} \right\rfloor\right)$$
$$= \sum_{i=1}^{x} \left[G\left(\left\lfloor \frac{x}{i} \right\rfloor\right) - G\left(\left\lfloor \frac{x}{i+1} \right\rfloor\right) \right] H(i). \tag{3}$$

The first formula above is well known. The second formula is justified directly using summation by parts as [15, §2.10(ii)]

$$\pi_{g*h}(x) = \sum_{d=1}^{x} h(d)G\left(\left\lfloor \frac{x}{d} \right\rfloor\right)$$
$$= \sum_{i \le x} \left(\sum_{j \le i} h(j)\right) \times \left[G\left(\left\lfloor \frac{x}{i} \right\rfloor\right) - G\left(\left\lfloor \frac{x}{i+1} \right\rfloor\right)\right].$$

We next form the invertible matrix of coefficients associated with this linear system defining H(j) for all $1 \le j \le x$ in (3) by setting

$$g_{x,j} := G\left(\left\lfloor \frac{x}{j} \right\rfloor\right) - G\left(\left\lfloor \frac{x}{j+1} \right\rfloor\right) \equiv G_{x,j} - G_{x,j+1},$$

where

$$G_{x,j} := G\left(\left|\frac{x}{j}\right|\right), 1 \le j \le x.$$

Since $g_{x,x} = G(1) = g(1)$ and $g_{x,j} = 0$ for all j > x, the matrix we must work with in this problem is lower triangular with a non-zero constant on its diagonals, and is hence invertible. Moreover, if we let $\hat{G} := (G_{x,j})$, then this matrix is expressed by applying an invertible shift operation as

$$(g_{x,j}) = \hat{G}(I - U^T).$$

Here, U is a square matrix with sufficiently large finite dimensions whose $(i, j)^{th}$ entries are defined by $(U)_{i,j} = \delta_{i+1,j}$ such that

$$[(I - U^T)^{-1}]_{i,j} = [j \le i]_{\delta}.$$

Observe that

$$\left\lfloor \frac{x}{j} \right\rfloor - \left\lfloor \frac{x-1}{j} \right\rfloor = \begin{cases} 1, & \text{if } j | x; \\ 0, & \text{otherwise.} \end{cases}$$

The previous property implies that

$$G\left(\left\lfloor \frac{x}{j} \right\rfloor\right) - G\left(\left\lfloor \frac{x-1}{j} \right\rfloor\right) = \begin{cases} g\left(\frac{x}{j}\right), & \text{if } j|x; \\ 0, & \text{otherwise.} \end{cases}$$
 (4)

We use the last property in (4) to shift the matrix \hat{G} , and then invert the result to obtain a matrix involving the Dirichlet inverse of g in the following forms:

$$\left[(I - U^T) \hat{G} \right]^{-1} = \left(g \left(\frac{x}{j} \right) [j|x]_{\delta} \right)^{-1} = \left(g^{-1} \left(\frac{x}{j} \right) [j|x]_{\delta} \right).$$

In particular, our target matrix in the inversion problem is defined by

$$(g_{x,j}) = (I - U^T) \left(g \left(\frac{x}{j} \right) [j|x]_{\delta} \right) (I - U^T)^{-1}.$$

We can express its inverse by a similarity transformation conjugated by shift operators as

$$(g_{x,j})^{-1} = (I - U^T)^{-1} \left(g^{-1} \left(\frac{x}{j} \right) [j|x]_{\delta} \right) (I - U^T)$$

$$= \left(\sum_{k=1}^{\left\lfloor \frac{x}{j} \right\rfloor} g^{-1}(k) \right) (I - U^T)$$

$$= \left(\sum_{k=1}^{\left\lfloor \frac{x}{j} \right\rfloor} g^{-1}(k) - \sum_{k=1}^{\left\lfloor \frac{x}{j+1} \right\rfloor} g^{-1}(k) \right).$$

Hence, the summatory function H(x) is given exactly for any $x \ge 1$ by a vector product with the inverse matrix from the previous equation in the form of

$$H(x) = \sum_{k=1}^{x} \left(\sum_{j=\lfloor \frac{x}{k+1} \rfloor + 1}^{\lfloor \frac{x}{k} \rfloor} g^{-1}(j) \right) \cdot \pi_{g*h}(k).$$

We can prove an inversion formula providing the coefficients of the summatory function $G^{-1}(i)$ for $1 \le i \le x$ given by the last equation by adapting our argument to prove (3) above. This leads to the following identity:

$$H(x) = \sum_{k=1}^{x} g^{-1}(x) \cdot \pi_{g*h}\left(\left\lfloor \frac{x}{k} \right\rfloor\right). \qquad \Box$$

3.2 Proving the characteristic signedness property of $g^{-1}(n)$

Let $\chi_{\mathbb{P}}$ denote the characteristic function of the primes, let $\varepsilon(n) = \delta_{n,1}$ be the multiplicative identity with respect to Dirichlet convolution, and denote by $\omega(n)$ the strongly additive function that counts the number of distinct prime factors of n. Then we can easily prove using DGFs that

$$\chi_{\mathbb{P}} + \varepsilon = (\omega + 1) * \mu. \tag{5}$$

When combined with Corollary 2.2 this convolution identity yields the exact formula for M(x) stated in (1) of Corollary 2.3.

Proposition 3.1 (The signedness property of $g^{-1}(n)$). Let the operator $\operatorname{sgn}(h(n)) = \frac{h(n)}{|h(n)| + [h(n) = 0]_{\delta}} \in \{0, \pm 1\}$ denote the sign of the arithmetic function h at integers $n \geq 1$. For the Dirichlet invertible function $g(n) := \omega(n) + 1$, we have that $\operatorname{sgn}(g^{-1}(n)) = \lambda(n)$ for all $n \geq 1$.

Proof. The function $D_f(s) := \sum_{n \geq 1} f(n) n^{-s}$ denotes the Dirichlet generating function (DGF) of any arithmetic function f(n) which is convergent for all $s \in \mathbb{C}$ satisfying $\text{Re}(s) > \sigma_f$ for σ_f the abscissa of convergence of the series. Recall that $D_1(s) = \zeta(s)$, $D_{\mu}(s) = \zeta(s)^{-1}$ and $D_{\omega}(s) = P(s)\zeta(s)$ for Re(s) > 1. Then by (5) and the

known property that the DGF of $f^{-1}(n)$ is the reciprocal of the DGF of any arithmetic function f such that $f(1) \neq 0$ (e.g., this relation between the DGFs of these two functions holds whenever f^{-1} exists), we have for all Re(s) > 1 that

$$D_{(\omega+1)^{-1}}(s) = \frac{1}{(P(s)+1)\zeta(s)}. (6)$$

It follows that $(\omega + 1)^{-1}(n) = (h^{-1} * \mu)(n)$ when we take $h := \chi_{\mathbb{P}} + \varepsilon$. We first show that $\operatorname{sgn}(h^{-1}) = \lambda$. This observation implies that $\operatorname{sgn}(h^{-1} * \mu) = \lambda$. The remainder of the proof fills in the precise details needed to make our claims and intuition rigorous.

By the recurrence relation that defines the Dirichlet inverse function of any arithmetic function h such that h(1) = 1, we have that $[1, \S 2.7]$

$$h^{-1}(n) = \begin{cases} 1, & n = 1; \\ -\sum_{\substack{d \mid n \\ d > 1}} h(d)h^{-1}(n/d), & n \ge 2. \end{cases}$$
 (7)

For $n \geq 2$, the summands in (7) can be simply indexed over the primes p|n given our definition of h from above. This observation yields that we can inductively unfold these sums into nested divisor sums provided the depth of the expanded divisor sums does not exceed the capacity to index summations over the primes dividing n. Namely, notice that for $n \geq 2$

$$\begin{split} h^{-1}(n) &= -\sum_{p|n} h^{-1}\left(\frac{n}{p}\right), & \text{if } \Omega(n) \geq 1 \\ &= \sum_{p_1|n} \sum_{p_2|\frac{n}{p_1}} h^{-1}\left(\frac{n}{p_1p_2}\right), & \text{if } \Omega(n) \geq 2 \\ &= -\sum_{p_1|n} \sum_{p_2|\frac{n}{p_1}} \sum_{p_3|\frac{n}{p_1p_2}} h^{-1}\left(\frac{n}{p_1p_2p_3}\right), & \text{if } \Omega(n) \geq 3. \end{split}$$

Then by induction with $h^{-1}(1) = h(1) = 1$, we expand these nested divisor sums as above to the maximal possible depth as

$$\lambda(n) \cdot h^{-1}(n) = \sum_{p_1 \mid n} \sum_{p_2 \mid \frac{n}{p_1}} \times \dots \times \sum_{p_{\Omega(n)} \mid \frac{n}{p_1 p_2 \dots p_{\Omega(n)} - 1}} 1, n \ge 2.$$
 (8)

In fact, by a combinatorial argument related to multinomial coefficient expansions of the sums in (8), we recover exactly that

$$h^{-1}(n) = \lambda(n)(\Omega(n))! \times \prod_{p^{\alpha}||n} \frac{1}{\alpha!}.$$
(9)

The last two expansions imply that the following property holds for all $n \geq 1$:

$$\operatorname{sgn}(h^{-1}(n)) = \lambda(n).$$

Since λ is completely multiplicative we have that $\lambda\left(\frac{n}{d}\right)\lambda(d)=\lambda(n)$ for all divisors d|n when $n\geq 1$. We also know that $\mu(n)=\lambda(n)$ whenever n is squarefree, so that we obtain the following result:

$$g^{-1}(n) = (h^{-1} * \mu)(n) = \lambda(n) \times \sum_{d|n} \mu^2 \left(\frac{n}{d}\right) |h^{-1}(n)|, n \ge 1.$$

3.3 Statements of known limiting asymptotics

Theorem 3.2 (Mertens theorem). For all $x \geq 2$ we have that

$$P_1(x) := \sum_{p \le x} \frac{1}{p} = \log \log x + B + o(1), \text{ as } x \to \infty,$$

where $B \approx 0.2614972128476427837554$ is an absolute constant.

Corollary 3.3 (Product form of Mertens theorem). We have that for all sufficiently large $x \geq 2$

$$\prod_{p \le x} \left(1 - \frac{1}{p} \right) = \frac{e^{-\gamma}}{\log x} \left(1 + o(1) \right), \text{ as } x \to \infty.$$

Hence, for any real z we obtain that

$$\prod_{p \le x} \left(1 - \frac{1}{p} \right)^z \sim \frac{e^{-\gamma z}}{(\log x)^z}, \text{ as } x \to \infty.$$

Proofs of Theorem 3.2 and Corollary 3.3 are given in [5, §22.7; §22.8].

Facts 3.4 (Exponential integrals and the incomplete gamma function). Two variants of the *exponential integral* function are defined by the integral next representations [15, §8.19] [3, §3.3].

$$\operatorname{Ei}(x) := \int_{-x}^{\infty} \frac{e^{-t}}{t} dt, x \in \mathbb{R}$$

$$E_1(z) := \int_{1}^{\infty} \frac{e^{-tz}}{t} dt, \operatorname{Re}(z) \ge 0$$

These functions are related by $\text{Ei}(-kz) = -E_1(kz)$ for real k, z > 0. We have the following inequalities providing quasi-polynomial upper and lower bounds on $\text{Ei}(\pm x)$ for all real x > 0:

$$\gamma + \log x - x \le \text{Ei}(-x) \le \gamma + \log x - x + \frac{x^2}{4},$$

$$1 + \gamma + \log x - \frac{3}{4}x \le \text{Ei}(x) \le 1 + \gamma + \log x - \frac{3}{4}x + \frac{11}{36}x^2.$$
(10a)

The (upper) incomplete gamma function is defined by [15, §8.4]

$$\Gamma(s,x) = \int_{x}^{\infty} t^{s-1}e^{-t}dt, \operatorname{Re}(s) > 0.$$

The following properties of $\Gamma(s,x)$ hold:

$$\Gamma(s,x) = (s-1)! \cdot e^{-x} \times \sum_{k=0}^{s-1} \frac{x^k}{k!}, s \in \mathbb{Z}^+, x > 0,$$
(10b)

$$\Gamma(s,x) \sim x^{s-1} \cdot e^{-x}, s > 0, \text{ as } x \to \infty.$$
 (10c)

4 Components to the asymptotic analysis of lower bounds for sums of arithmetic functions weighted by $\lambda(n)$

4.1 A discussion of the results proved by Montgomery and Vaughan

Remark 4.1 (Intuition and constructions behind the proof of Theorem 2.6). For |z| < 2 and Re(s) > 1, let

$$F(s,z) := \prod_{p} \left(1 - \frac{z}{p^s} \right)^{-1} \left(1 - \frac{1}{p^s} \right)^z, \tag{11}$$

and define the DGF coefficients, $a_z(n)$ for $n \ge 1$, by the product

$$\zeta(s)^z \cdot F(s,z) := \sum_{n \ge 1} \frac{a_z(n)}{n^s}, \operatorname{Re}(s) > 1.$$

Suppose that $A_z(x) := \sum_{n \le x} a_z(n)$ for $x \ge 1$. We obtain the next generating function like identity in z enumerating the $\widehat{\pi}_k(x)$ for $1 \le k < 2 \log \log x$.

$$A_z(x) = \sum_{n \le x} z^{\Omega(n)} = \sum_{0 \le k \le \log_2(x)} \widehat{\pi}_k(x) z^k$$
(12)

Thus for r < 2, by Cauchy's integral formula we have

$$\widehat{\pi}_k(x) = \frac{1}{2\pi i} \int_{|v|=r} \frac{A_v(x)}{v^{k+1}} dv.$$

Selecting $r := \frac{k-1}{\log \log x}$ for $1 \le k < 2 \log \log x$ leads to the uniform asymptotic formulas for $\widehat{\pi}_k(x)$ given in Theorem 2.6. Montgomery and Vaughan then consider individual analysis of the main and error terms for $A_z(x)$ to prove that

$$\widehat{\pi}_k(x) = \mathcal{G}\left(\frac{k-1}{\log\log x}\right) \frac{x}{\log x} \cdot \frac{(\log\log x)^{k-1}}{(k-1)!} \left[1 + O\left(\frac{k}{(\log\log x)^2}\right)\right].$$

The estimate in the previous equation agrees with non-uniform estimates for $\hat{\pi}_k(x)$ obtained roughly by an inductive type heuristic in [12, §7.4]. The multiple of $\zeta(s)^{-z}$ in the form of F(s,z) is suggested as a smoothing factor to approach proving the theorem. We will require estimates of $A_{-z}(x)$ from below to form summatory functions that weight the terms of $\lambda(n)$ in our new formulas derived in the next sections.

4.2 New uniform asymptotics based on refinements of Theorem 2.6

Proposition 4.2. For real $s \ge 1$, let

$$P_s(x) := \sum_{p \le x} p^{-s}, x \ge 2.$$

When s := 1, we have the asymptotic formula from Mertens theorem (see Theorem 3.2). For all integers $s \ge 2$ there are absolutely defined quasi-polynomial bounding functions $\gamma_0(s,x)$ and $\gamma_1(s,x)$ in s and x such that

$$\gamma_0(s, x) + o(1) \le P_s(x) \le \gamma_1(s, x) + o(1)$$
, as $x \to \infty$.

It suffices to define the bounds in the previous equation by the functions

$$\gamma_0(s, x) = s \log \left(\frac{\log x}{\log 2}\right) - s(s - 1) \log \left(\frac{x}{2}\right) - \frac{1}{4}s(s - 1)^2 \log^2(2),$$

$$\gamma_1(s, x) = s \log \left(\frac{\log x}{\log 2}\right) - s(s - 1) \log \left(\frac{x}{2}\right) + \frac{1}{4}s(s - 1)^2 \log^2(x).$$

Proof. Let s > 1 be real-valued. By Abel summation with the summatory function $A(x) = \pi(x) \sim \frac{x}{\log x}$, and where our target smooth function is $f(t) = t^{-s}$ with $f'(t) = -s \cdot t^{-(s+1)}$, we obtain that

$$P_s(x) \sim \frac{1}{x^s \cdot \log x} + s \times \int_2^x \frac{dt}{t^s \log t}$$

= Ei(-(s-1) log x) - Ei(-(s-1) log 2) + o(1), as $x \to \infty$.

Now using the inequalities in Facts 3.4, we obtain that the difference of the exponential integral functions in the previous equation is respectively bounded below and above by

$$\frac{P_s(x)}{s} \ge \log\left(\frac{\log x}{\log 2}\right) - (s-1)\log\left(\frac{x}{2}\right) - \frac{1}{4}(s-1)^2\log^2(2) + o(1)
\frac{P_s(x)}{s} \le \log\left(\frac{\log x}{\log 2}\right) - (s-1)\log\left(\frac{x}{2}\right) + \frac{1}{4}(s-1)^2\log^2(x) + o(1).$$

The utility to the quasi-logarithmic bounds tending to infinity as $x \to \infty$ stated in Proposition 4.2 will become apparent when we take the exponential of sums of the functions $P_j(x)$ for $j \ge 2$ in order to form a lower bound on $\mathcal{G}(-z)$ for $z := \frac{k-1}{\log \log x}$ in the next subsection. We will use the lower bound obtained in Theorem 2.7 to prove Theorem 7.3 where we show that as $x \to \infty$, $|G^{-1}(x)| \gg (\log x)\sqrt{\log \log x}$.

4.2.1 The proof of Theorem 2.7

We will first prove the stated form of the lower bound on $\mathcal{G}(-z)$ for $z := \frac{k-1}{\log \log x}$. Then we will discuss the technical adaptations to Montgomery and Vaughan's proof of Theorem 2.6 below to rigorously prove that the new asymptotic lower bounds on $\widehat{\pi}_k(x)$ that hold uniformly for all $1 \le k \le \log \log x$.

Lemma 4.3. For sufficiently large x > e and $1 \le k \le \log \log x$, we have that

$$\left| \mathcal{G}\left(\frac{1-k}{\log\log x} \right) \right| \gg x^{-\frac{1}{4}}.$$

Proof. For -2 < z < 2 and integers $x \ge 2$, the right-hand-side of the following product is finite:

$$\widehat{P}(z,x) := \prod_{p \le x} \left(1 - \frac{z}{p}\right)^{-1}.$$

For fixed $x \geq 2$ let

 $\mathbb{P}_x := \left\{ n \in \mathbb{Z}^+ : \text{all prime divisors } p | n \text{ satisfy } p \leq x \right\}.$

Then we can see that for $x \geq 2$

$$\prod_{p \le x} \left(1 - \frac{z}{p^s} \right)^{-1} = \sum_{n \in \mathbb{P}_x} \frac{z^{\Omega(n)}}{n^s}.$$
(13)

By extending the argument in the proof given in [12, §7.4], we have that

$$A_{-z}(x) := \sum_{n \le x} \lambda(n) z^{\Omega(n)} = \sum_{0 \le k \le \log_2(x)} \widehat{\pi}_k(x) (-z)^k,$$

Let $a_n(z,x)$ be defined as the coefficients of the DGF

$$\widehat{P}(z,x) =: \sum_{n>1} \frac{a_n(z,x)}{n^s}.$$

We have argued that

$$\sum_{n \le x} a_n(-z, x) = \sum_{k=0}^{\log_2(x)} \widehat{\pi}_k(x)(-z)^k + \sum_{k > \log_2(x)} e_k(x)(-z)^k.$$

This assertion is correct since the products of all non-negative integral powers of the primes $p \leq x$ (counting multiplicity) generate the integers $\{1 \leq n \leq x\}$ as a subset. Thus we capture all of the relevant terms needed to express $(-1)^k \cdot \widehat{\pi}_k(x)$ via the Cauchy integral formula representation over $A_{-z}(x)$ by replacing the corresponding infinite product terms with $\widehat{P}(-z,x)$ in the definition of $\mathcal{G}(-z)$.

Now we argue that

$$\mathcal{G}(-z) \gg \prod_{p \le x} \left(1 + \frac{z}{p}\right)^{-1} \left(1 - \frac{1}{p}\right)^{-z}, 0 \le z < 1, x \ge 2.$$

For $0 \le z < 1$ and $x \ge 2$, we see that

$$\mathcal{G}(-z) = \exp\left(-\sum_{p} \left[\log\left(1 + \frac{z}{p}\right) + z \cdot \log\left(1 - \frac{1}{p}\right)\right]\right)$$

$$\gg \exp\left(-z \times \sum_{p>x} \left[\log\left(1 - \frac{1}{p}\right) + \frac{1}{p}\right] - \sum_{p \le x} \left[\log\left(1 + \frac{z}{p}\right) + z \cdot \log\left(1 - \frac{1}{p}\right)\right]\right)$$

$$\gg_{z} \widehat{P}(-z, x), \text{ as } x \to \infty,$$

where the Mertens constant B is defined exactly by the prime sum [5, §22.8]

$$B := \gamma + \sum_{p} \left[\log \left(1 - \frac{1}{p} \right) + \frac{1}{p} \right].$$

Next, we have for all integers $0 \le k \le m < \infty$, and any sequence $\{f(n)\}_{n\ge 1}$ with sufficiently bounded partial power sums, that [11, §2]

$$[z^k] \prod_{1 \le i \le m} (1 - f(i)z)^{-1} = [z^k] \exp\left(\sum_{j \ge 1} \left(\sum_{i=1}^m f(i)^j\right) \frac{z^j}{j}\right), |z| < 1.$$
(14)

In our case, f(i) denotes the reciprocal of the i^{th} prime in the generating function expansion of (14). It follows from Proposition 4.2 that for any real $0 \le z < 1$ we obtain

$$\log \left[\prod_{p \le x} \left(1 + \frac{z}{p} \right)^{-1} \right] \ge -(\log \log x + B)z + \sum_{j \ge 0} \left[\log \left(\frac{\log x}{\log 2} \right) - (2j+1) \log \left(\frac{x}{2} \right) - (2j+1)^2 \frac{\log^2 2}{4} \right] z^{2j+2}$$

$$- \sum_{j \ge 0} \left[\log \left(\frac{\log x}{\log 2} \right) - (2j+2) \log \left(\frac{x}{2} \right) + (2j+2)^2 \frac{\log^2 x}{4} \right] z^{2j+3}$$

$$= -(\log \log x + B)z + \sum_{j \ge 0} \left[\log \left(\frac{\log x}{\log 2} \right) - (j+1) \log \left(\frac{x}{2} \right) \right] (-z)^{j+2}$$

$$- \frac{1}{4} \times \sum_{j \ge 0} \left[(\log 2)^2 (2j+1)^2 z^{2j+2} + (\log x)^2 (2j+2)^2 z^{2j+3} \right]$$

$$= -(\log \log x + B)z + \log \left(\frac{\log x}{\log 2} \right) \left[z - 1 + \frac{1}{z+1} \right] + \log \left(\frac{x}{2} \right) \left[\frac{2}{1+z} - 1 - \frac{1}{(1+z)^2} \right]$$

$$- (\log x)^2 \times \frac{(z^3 + z^5)}{(1-z^2)^3} - (\log 2)^2 \times \frac{(z^2 + 6z^4 + z^6)}{4(1-z^2)^3}$$

$$=: \widehat{\mathcal{B}}(x; z).$$

$$(15)$$

We adjust the uniform bound parameter R so that

$$z \equiv z(k, x) = \frac{k-1}{\log \log x} \in [0, 1),$$

e.g., whenever $1 \le k \le \log \log x$ in the notation of Theorem 2.6. We have that

$$\min_{0 \le z \le 1} \left[z - 1 + \frac{1}{z+1} \right] = 0$$

$$\min_{0 \le z \le 1} \left[\frac{2}{1+z} - 1 - \frac{1}{(1+z)^2} \right] = -\frac{1}{4}.$$

Moreover, when we expand out the coefficients of $(\log 2)^2$ and $(\log x)^2$ in (15) by partial fractions of z, we see that all of the terms with an infinitely tending singularity as $z \to 1^-$ are positive. This means to obtain the lower bound, we can drop these contributions. What we are left to minimize is the following terms:

$$(\log 2)^2 \times \min_{0 \le z \le 1} \left[\frac{1}{4} - \frac{1}{4(1+z)^3} + \frac{5}{8(1+z)^2} - \frac{1}{2(1+z)} \right] = \frac{13}{108} (\log 2)^2$$
$$(\log x)^2 \times \min_{0 \le z \le 1} \left[\frac{1}{4(1+z)^3} - \frac{5}{8(1+z)^2} + \frac{1}{2(1+z)} \right] = \frac{7}{54} (\log x)^2.$$

So we have from (15) that

$$\widehat{\mathcal{B}}(x;z) \gg \left(\frac{2}{x}\right)^{\frac{1}{4}} \times \exp\left(\frac{13}{108}(\log 2)^2\right) \times \exp\left(\frac{7}{54}(\log x)^2\right) \gg x^{-\frac{1}{4}}.$$

In summary, we have arrived at a proof that as $x \to \infty$

$$\frac{e^{\gamma z}}{(\log x)^{-z}} \times \exp\left(\widehat{\mathcal{B}}(u, x; z)\right) \gg x^{-\frac{1}{4}}.$$
 (16)

Finally, to finish our proof of the new lower bound on $\mathcal{G}(-z)$, we need only bound the reciprocal factor of $\Gamma(1-z)=-z\cdot\Gamma(-z)$. Since $z\equiv z(k,x)=\frac{k-1}{\log\log x}$ for $k\in[1,\log\log x]$, or again with $z\in[0,1)$, we obtain for minimal k and all large enough $x\gg 1$ that $\Gamma(1-z)=\Gamma(1)=1$, and for k towards the upper range of its interval that

$$\Gamma(1-z) \approx \Gamma\left(\frac{1}{\log\log x}\right) = \frac{1}{\log\log x} \times \Gamma\left(1 + \frac{1}{\log\log x}\right) \approx \frac{1}{\log\log x}.$$

Therefore, our assertion that the claimed lower bound holds is correct.

Proof of Theorem 2.7. We now discuss the differences between our construction and that in the technical proof of Theorem 2.6 in the reference when we bound $\mathcal{G}(-z)$ from below as in the previous lemma. We will use v in place of the parameter z as our variable of complex contour integration. The reference proves that for $0 \le z < 2$ [12, Thm. 7.18]

$$A_{-z}(x) = -\frac{zF(1, -z)}{\Gamma(1 - z)} \cdot x(\log x)^{-(z+1)} + O\left(x(\log x)^{-\operatorname{Re}(z) - 2}\right). \tag{17}$$

Recall that for r < 2 we have by Cauchy's integral formula that

$$(-1)^k \widehat{\pi}_k(x) = \frac{1}{2\pi i} \int_{|v|=r} \frac{A_{-v}(x)}{v^{k+1}} dv.$$
 (18)

We first claim that uniformly for large x and $1 \le k \le \log \log x$ we have

$$\widehat{\pi}_k(x) = \mathcal{G}\left(\frac{1-k}{\log\log x}\right) \times \frac{x(\log\log x)^{k-1}}{(\log x)(k-1)!} \left[1 + O\left(\frac{k}{(\log\log x)^2}\right)\right]. \tag{19}$$

Then since we have proved in Lemma 4.3 that

$$\left| \mathcal{G}\left(\frac{1-k}{\log\log x} \right) \right| \gg x^{-\frac{1}{4}},$$

the result in (19) implies our stated uniform asymptotic bound. Namely, we obtain that

$$\widehat{\pi}_k(x) \gg \frac{x^{\frac{3}{4}}}{\log x} \cdot \frac{(\log \log x)^{k-1}}{(k-1)!} \left[1 + O\left(\frac{k}{(\log \log x)^2}\right) \right].$$

We must provide analogs to the proofs of the two separate bounds from the reference corresponding to the error and main terms of our estimate according to (17) and (18).

Step I: Error Term Bound. To prove that the error term bound holds, we estimate the following bounds for $r := \frac{k-1}{\log\log x}$ with r < 1 whenever $2 \le k \le \log\log x$:

$$\left| \frac{1}{2\pi i} \int_{|v|=r} \frac{x}{(\log x)^2} \frac{(\log x)^{-\operatorname{Re}(v)}}{v^{k+1}} dv \right| \ll x (\log x)^{-(r+2)} r^{-(k+1)} \ll \frac{x}{(\log x)^2} \frac{(\log \log x)^{k+1}}{e^{k-1} (k-1)^{k+1}}$$

$$\ll \frac{x}{(\log x)^2} \frac{(\log \log x)^{k+1}}{e^{2(k-1)} (k-1)! (k-1)! (k-1)^{\frac{3}{2}}} \ll \frac{x}{(\log x)^2} \frac{(\log \log x)^{k+1}}{(k-1)!}$$

$$\ll \frac{x}{\log x} \frac{(\log \log x)^{k-4}}{(k-1)!}.$$

$$(20)$$

By the Cauchy integral formula, we can similarly verify that

$$\left| \frac{1}{2\pi i} \int_{|v|=r} \frac{x}{(\log x)^2} \frac{(\log x)^{-\operatorname{Re}(v)}}{v^2} dv \right| = \frac{x}{(\log x)^2} \cdot (\log \log x)^2 \ll \frac{x}{(\log x)(\log \log x)^2},$$

so that the formula for the error term in (20) also matches when k := 1.

We can calculate that for $0 \le z < 1$

$$\prod_{p} \left(1 + \frac{z}{p} \right)^{-1} \left(1 - \frac{1}{p} \right)^{-z} = \exp\left(-\sum_{p} \left[\log\left(1 + \frac{z}{p} \right) + z \log\left(1 - \frac{1}{p} \right) \right] \right)$$

$$\sim \exp\left(-o(z) \times \sum_{p} \frac{1}{p^2} \right)$$

$$\gg \exp\left(-o(z) \cdot P(2) \right) \gg_z 1.$$

In other words, we have that $\mathcal{G}\left(\frac{1-k}{\log\log x}\right) \gg 1$ whenever $1 \leq k \leq \log\log x$. So the error term in (20) is majorized by taking $O\left(\frac{k}{(\log\log x)^3}\right)$ as our upper bound.

Step II: Main Term Bound. By (17) the main term estimate for (18) is given by $\frac{x}{\log x} \cdot I_x$, where

$$I_x := \frac{(-1)^{k-1}}{2\pi i} \int_{|v|=r} G(-z)(\log x)^{-v} v^{-k} dv.$$

In particular, we can write $I_x = I_{1,x} + I_{2,x}$ where we define

$$I_{1,x} := \frac{G(-r)}{2\pi i} \int_{|v|=r} (\log x)^{-v} v^{-k} dv$$

$$= \frac{(-1)^{k-1} G(-r) (\log \log x)^{k-1}}{(k-1)!}$$

$$I_{2,x} := \frac{1}{2\pi i} \int_{|v|=r} (G(-v) - G(-r)) (\log x)^{-v} v^{-k} dv$$

$$= \frac{1}{2\pi i} \int_{|v|=r} (G(-v) - G(-r) + G'(-r)(v-r))(\log x)^{-v} v^{-k} dv.$$

The second integral formula for $I_{2,x}$ results from integration by parts.

We have by taking a power series expansion of G''(-w) about -r and integrating the resulting series termwise with respect to w that when |v| = r

$$|G(-v) - G(-r) + G'(-r)(v-r)| = \left| \int_r^v (v-w)G''(-w)dw \right| \ll |v-r|^2.$$

Now we parameterize the curve in the contour for $I_{2,x}$ by writing $v = re^{2\pi it}$ for $t \in [-1/2, 1/2]$. This leads us to the bounds

$$|I_{2,x}| \ll r^{3-k} \times \int_{-\frac{1}{2}}^{\frac{1}{2}} |e^{2\pi i t} - 1|^2 \cdot (\log x)^{re^{2\pi i t}} \cdot e^{2\pi i t} dt$$
$$\ll r^{3-k} \times \int_{-\frac{1}{2}}^{\frac{1}{2}} \sin^2(\pi t) \cdot e^{(k-1)\cos(2\pi t)} dt.$$

Whenever $|x| \le 1$, we know that $|\sin x| \le |x|$. Also, $\cos(2\pi t) \le 1 - 8t^2$ whenever $|t| \le \frac{1}{2}$. Thus the last bound for $|I_{2,x}|$ becomes

$$|I_{2,x}| \ll r^{3-k}e^{k-1} \times \int_0^\infty t^2 \cdot e^{-8(k-1)t^2} dt$$

$$\ll \frac{r^{3-k}e^{k-1}}{(k-1)^{3/2}} = \frac{(\log\log x)^{k-3}e^{k-1}}{(k-1)^{k-\frac{3}{2}}}$$

$$\ll \frac{k \cdot (\log\log x)^{k-3}}{(k-1)!}.$$

Thus the contribution from the term $|I_{2,x}|$ can then be absorbed into the error term bound in (19).

4.3 The distribution of exceptional values of $\Omega(n)$

The next theorems reproduced from [12, §7.4] characterize the relative scarcity of the distribution of the $\Omega(n)$ for $n \leq x$ such that $\Omega(n) > \log \log x$. Since $\mathbb{E}[\Omega(n)] = \log \log n + B$, these results imply a very regular, normal tendency of this arithmetic function towards its average order.

Theorem 4.4 (Upper bounds on exceptional values of $\Omega(n)$ for large n). Let

$$A(x,r) := \# \{ n \le x : \Omega(n) \le r \cdot \log \log x \},$$

$$B(x,r) := \# \{ n \le x : \Omega(n) \ge r \cdot \log \log x \}.$$

If $0 < r \le 1$ and $x \ge 2$, then

$$A(x,r) \ll x(\log x)^{r-1-r\log r}$$
, as $x \to \infty$.

If $1 \le r \le R \le 2$ and $x \ge 2$, then

$$B(x,r) \ll_R x \cdot (\log x)^{r-1-r\log r}$$
, as $x \to \infty$.

Theorem 4.5 is a special case analog to the celebrated Erdös-Kac theorem typically stated for the normally distributed values of the scaled-shifted function $\omega(n)$ over $n \leq x$ as $x \to \infty$ [12, cf. Thm. 7.21].

Theorem 4.5 (Exact limiting bounds on exceptional values of $\Omega(n)$ for large n). We have that as $x \to \infty$

$$\# \{3 \le n \le x : \Omega(n) - \log \log n \le 0\} = \frac{x}{2} + O\left(\frac{x}{\sqrt{\log \log x}}\right).$$

The key interpretation we need to take away from the statements of Theorem 4.4 and Theorem 4.5 is the result proved in the next corollary. The role of the parameter R involved in stating the previous theorem is a critical bound as the scalar factor in the upper bound on $k \leq \log \log x$ in Theorem 2.6 up to which our uniform bounds given by Theorem 2.7 hold. In contrast, for $n \geq 2$ we can actually have contributions from values distributed throughout the range $1 \leq \Omega(n) \leq \log_2(n)$ infinitely often. It is then crucial that we can show that the main term in the asymptotic formulas we obtain for the summatory function over $\widehat{\pi}_k(x)$ is captured by summing only over the truncated range of $k \in [1, \log \log x]$ where the uniform bounds guaranteed by Theorem 2.6 and Theorem 2.7 are valid.

Corollary 4.6. Using the notation for A(x,r) and B(x,r) from Theorem 4.4, we have that for $x \geq 2$ and $\delta > 0$,

$$\frac{B(x, 1+\delta)}{A(x, 1)} = o_{\delta}(1), \text{ as } x \to \infty.$$

Proof. To show that the asymptotic bound is correct, we compute using Theorem 4.4 and Theorem 4.5 that

$$\frac{B(x, 1+\delta)}{A(x, 1)} \ll \frac{x \cdot (\log x)^{\delta - (1+\delta)\log(1+\delta)}}{O(1) + \frac{x}{2} + O\left(\frac{x}{\sqrt{\log\log x}}\right)} \sim o_{\delta}(1),$$

as $x \to \infty$.

Remark 4.7 (Applications and key consequences). Since $\mathbb{E}[\Omega(n)] = \log \log n + B$, again with 0 < B < 1 the absolute constant from Mertens theorem, when we denote the range of $k > \log \log x$ as holding in the form of $k > (1 + \delta) \log \log x$ for $\delta > 0$ at large x, we can assume that $\delta \to 0^+$ as $x \to \infty$ when we apply Corollary 4.6 in practice. In particular, this type of bound holds since $k > \log \log x$ implies that

$$\lfloor \log \log x \rfloor + 1 \ge (1 + \delta) \log \log x \implies \delta \le \frac{1 + \{\log \log x\}}{\log \log x} = o(1), \text{ as } x \to \infty.$$

The key consequence of this observation is that the ratio

$$\left| \frac{\sum\limits_{k>\log\log x} (-1)^k \widehat{\pi}_k(x)}{\sum\limits_{k\leq \log\log x} (-1)^k \widehat{\pi}_k(x)} \right| \ll \frac{\sqrt{\log\log x} \cdot B(x, 1+\delta)}{x} = o_{\delta}(1),$$

is bounded above by at most a small constant for any $\delta > 0$ when x is large. The second term in the last bound is obtained by summing over the uniform estimates guaranteed by Theorem 2.6 and applying (10c) to the resulting expression involving the incomplete gamma function (see [19] for symbolic simplifications in *Mathematica*).

5 Auxiliary sequences to express the Dirichlet inverse function, $g^{-1}(n)$

The pages of tabular data given as Table T.1 in the appendix section (refer to page 38) are intended to provide clear insight into why we eventually arrived at the approximations to $g^{-1}(n)$ initially proved in this section. The table provides illustrative numerical data by examining the approximate behavior at hand for the cases of $1 \le n \le 500$ with *Mathematica* [19]. In Section 6, we will use these relations between $g^{-1}(n)$ and $C_{\Omega(n)}(n)$ to prove an Erdös-Kac like analog for the distribution of this function.

5.1 Definitions and basic properties of component function sequences

We define the following auxiliary coefficient sequence for integers $n \ge 1$ and $k \ge 0$:

$$C_k(n) := \begin{cases} \varepsilon(n), & \text{if } k = 0; \\ \sum_{d|n} \omega(d) C_{k-1}(n/d), & \text{if } k \ge 1. \end{cases}$$
 (21)

By recursively expanding the definition of $C_k(n)$ at any fixed $n \geq 2$, we see that we can form a chain of at most $\Omega(n)$ iterated (or nested) divisor sums by unfolding the definition of (21) inductively. By the same argument, we see that at fixed n, the function $C_k(n)$ is seen to be non-zero only for positive integers $k \leq \Omega(n)$ whenever $n \geq 2$. A sequence of relevant signed semi-diagonals of the functions $C_k(n)$ begins as follows [20, A008480]:

$$\{\lambda(n)\cdot C_{\Omega(n)}(n)\}_{n\geq 1}\mapsto \{1,-1,-1,1,-1,2,-1,-1,1,2,-1,-3,-1,2,2,1,-1,-3,-1,-3,2,2,-1,4,1,2,\ldots\}.$$

We can see that $C_{\Omega(n)}(n) \leq (\Omega(n))!$ for all $n \geq 1$. In fact, $h^{-1}(n) \equiv \lambda(n)C_{\Omega(n)}(n)$ is the same function given by the formula in (9) from Proposition 3.1. This sequence of semi-diagonals of (21) is precisely related to $g^{-1}(n)$ in the next subsection.

5.2 Relating the auxiliary functions $C_{\Omega(n)}(n)$ to formulas approximating $g^{-1}(n)$

Lemma 5.1 (An exact initial formula for $g^{-1}(n)$). For all $n \ge 1$, we have that

$$g^{-1}(n) = \sum_{d|n} \mu\left(\frac{n}{d}\right) \lambda(d) C_{\Omega(d)}(d).$$

Proof. We first write out the standard recurrence relation for the Dirichlet inverse as

$$g^{-1}(n) = -\sum_{\substack{d|n\\d>1}} (\omega(d) + 1)g^{-1}(n/d) \implies (g^{-1} * 1)(n) = -(\omega * g^{-1})(n).$$
 (22)

We argue that for $1 \le m \le \Omega(n)$, we can inductively expand the implication on the right-hand-side of (22) in the form of $(g^{-1} * 1)(n) = F_m(n)$ where $F_m(n) := (-1)^m \cdot (C_m(-) * g^{-1})(n)$, or so that

$$F_m(n) = -\begin{cases} \sum_{\substack{d \mid n \\ d > 1}} F_{m-1}(d) \times \sum_{\substack{r \mid \frac{n}{d} \\ r > 1}} \omega(r) g^{-1} \left(\frac{n}{dr} \right), & m \ge 2, \\ (\omega * g^{-1})(n), & m = 1. \end{cases}$$

By repeatedly expanding the right-hand-side of the previous equation, we find that for $m := \Omega(n)$ (i.e., with the expansions at a maximal depth in the previous equation)

$$(g^{-1} * 1)(n) = (-1)^{\Omega(n)} C_{\Omega(n)}(n) = \lambda(n) C_{\Omega(n)}(n).$$
(23)

The formula then follows from (23) by Möbius inversion applied to each side of the last equation.

Corollary 5.2. For all squarefree integers $n \geq 1$, we have that

$$g^{-1}(n) = \lambda(n) \times \sum_{d|n} C_{\Omega(d)}(d). \tag{24}$$

Proof. Since $g^{-1}(1) = 1$, clearly the claim is true for n = 1. Suppose that $n \ge 2$ and that n is squarefree. Then $n = p_1 p_2 \cdots p_{\omega(n)}$ where p_i is prime for all $1 \le i \le \omega(n)$. Since all divisors of any squarefree n are necessarily also squarefree, we can transform the exact divisor sum guaranteed for all n in Lemma 5.1 into a sum that partitions the divisors according to the number of distinct prime factors as follows:

$$g^{-1}(n) = \sum_{i=0}^{\omega(n)} \sum_{\substack{d|n\\\omega(d)=i}} (-1)^{\omega(n)-i} (-1)^i \cdot C_{\Omega(d)}(d)$$
$$= \lambda(n) \times \sum_{i=0}^{\omega(n)} \sum_{\substack{d|n\\\omega(d)=i}} C_{\Omega(d)}(d)$$
$$= \lambda(n) \times \sum_{\substack{d|n\\C_{\Omega(d)}}} C_{\Omega(d)}(d).$$

The signed contributions in the first of the previous equations is justified by noting that $\lambda(n) = \mu(n) = (-1)^{\omega(n)}$ whenever n is squarefree, and that for $d \ge 1$ squarefree we have the correspondence $\omega(d) = k \implies \Omega(d) = k$. \square

Since $C_{\Omega(n)}(n) = |h^{-1}(n)|$ using the notation defined in the the proof of Proposition 3.1, we can see that $C_{\Omega(n)}(n) = (\omega(n))!$ for squarefree $n \geq 1$. A proof of part (B) of Conjecture 2.5 follows as an immediate consequence.

Lemma 5.3. For all positive integers $n \geq 1$, we have that

$$|g^{-1}(n)| = \sum_{d|n} \mu^2 \left(\frac{n}{d}\right) C_{\Omega(d)}(d). \tag{25}$$

Proof. By applying Lemma 5.1, Proposition 3.1 and the complete multiplicativity of $\lambda(n)$, we easily obtain the stated result. In particular, since $\mu(n)$ is non-zero only at squarefree integers and at any squarefree $d \ge 1$ we have $\mu(d) = (-1)^{\omega(d)} = \lambda(d)$, Lemma 5.1 implies

$$|g^{-1}(n)| = \lambda(n) \times \sum_{d|n} \mu\left(\frac{n}{d}\right) \lambda(d) C_{\Omega(d)}(d)$$

$$= \sum_{d|n} \mu^2\left(\frac{n}{d}\right) \lambda\left(\frac{n}{d}\right) \lambda(nd) C_{\Omega(d)}(d)$$

$$= \lambda(n^2) \times \sum_{d|n} \mu^2\left(\frac{n}{d}\right) C_{\Omega(d)}(d).$$

In the last equation, we see that that $\lambda(n^2) = +1$ for all $n \geq 1$ since the number of distinct prime factors (counting multiplicity) of any square integer is even.

Combined with the signedness property of $g^{-1}(n)$ guaranteed by Proposition 3.1, Lemma 5.3 shows that its summatory function is expressed as

$$G^{-1}(x) = \sum_{d \le x} \lambda(d) C_{\Omega(d)}(d) M\left(\left\lfloor \frac{x}{d} \right\rfloor\right).$$

Additionally, since (5) implies that

$$\lambda(d)C_{\Omega(d)}(d) = (g^{-1} * 1)(d) = (\chi_{\mathbb{P}} + \varepsilon)^{-1}(d),$$

where $\chi_{\mathbb{P}}$ denotes the characteristic function of the primes, we also clearly recover by inversion that

$$M(x) = G^{-1}(x) + \sum_{p \le x} G^{-1}\left(\left\lfloor \frac{x}{p} \right\rfloor\right), x \ge 1.$$

This connection between the summatory function of $g^{-1}(n)$ and the primes is also relayed by the form of the identity we prove for M(x) in Proposition 7.4 involving the prime counting function, $\pi(x)$.

5.3 A connection to the distribution of the primes

The combinatorial complexity of $g^{-1}(n)$ is deeply tied to the distribution of the primes $p \leq n$ as $n \to \infty$. The magnitudes and dispersion of the primes $p \leq x$ certainly restricts the repeating of these distinct sequence values. Nonetheless, we can see that the following is still clear about the relation of the weight functions $|g^{-1}(n)|$ to the distribution of the primes: The value of $|g^{-1}(n)|$ is entirely dependent on the pattern of the exponents (viewed as multisets) of the distinct prime factors of $n \geq 2$ (cf. Heuristic 2.4).

Example 5.4 (Combinatorial significance to the distribution of $g^{-1}(n)$). We have a natural extremal behavior with respect to distinct values of $\Omega(n)$ corresponding to squarefree integers and prime powers. Namely, if for $k \geq 1$ we define the infinite sets M_k and m_k to correspond to the maximal (minimal) sets of positive integers such that

$$M_k := \left\{ n \ge 2 : |g^{-1}(n)| = \sup_{\substack{j \ge 2\\ \Omega(j) = k}} |g^{-1}(j)| \right\} \subseteq \mathbb{Z}^+,$$

$$m_k := \left\{ n \ge 2 : |g^{-1}(n)| = \inf_{\substack{j \ge 2\\ \Omega(j) = k}} |g^{-1}(j)| \right\} \subseteq \mathbb{Z}^+,$$

then any element of M_k is squarefree and any element of m_k is a prime power. In particular, we have that for any $N_k \in M_k$ and $n_k \in m_k$

$$N_k = \sum_{j=0}^k {k \choose j} \cdot j!$$
, and $n_k = 2 \cdot (-1)^k$.

The formula for the function $h^{-1}(n) = (g^{-1} * 1)(n)$ defined in the proof of Proposition 3.1 implies that we can express an exact formula for $g^{-1}(n)$ in terms of symmetric polynomials in the exponents of the prime factorization of n. Namely, for $n \ge 2$ and $0 \le k \le \omega(n)$ let

$$\widehat{e}_k(n) := [z^k] \prod_{p|n} (1 + z \cdot \nu_p(n)) = [z^k] \prod_{p^{\alpha}||n} (1 + \alpha z).$$

Then we have essentially shown using (9) and (25) that we can expand formulas for these inverse functions in the following form:

$$g^{-1}(n) = h^{-1}(n) \times \sum_{k=0}^{\omega(n)} {\Omega(n) \choose k}^{-1} \frac{\widehat{e}_k(n)}{k!}, n \ge 2.$$

The combinatorial formula for $h^{-1}(n) = \lambda(n) \cdot (\Omega(n))! \times \prod_{p^{\alpha}||n} (\alpha!)^{-1}$ we derived in the proof of the key signedness proposition in Section 3 suggests further patterns and more regularity in the contributions of the distinct weighted terms for $G^{-1}(x)$. Our interpretations leading to the proof of the bounds on $|G^{-1}(x)|$ from below via Theorem 7.3 are more analytically motivated.

6 The distributions of $C_{\Omega(n)}(n)$ and $|g^{-1}(n)|$

We have remarked already in the introduction that the relation of the component functions, $g^{-1}(n)$ and $C_{\Omega(n)}(n)$, to the canonical additive functions $\omega(n)$ and $\Omega(n)$ leads to the regular properties of these functions witnessed á priori in Table T.1. In particular, each of $\omega(n)$ and $\Omega(n)$ satisfies an Erdös-Kac theorem that shows that the density of a shifted and scaled variant of each of the sets of these function values for $n \leq x$ can be expressed through a limiting normal distribution as $x \to \infty$ [4, 2, 16]. In the remainder of this section we establish more analytical proofs of related properties of these key sequences used to express $G^{-1}(x)$, again in the spirit of Montgomery and Vaughan's reference manual (cf. Remark 2.8).

Proposition 6.1. Let the function $\widehat{F}(s,z)$ is defined for $\operatorname{Re}(s) \geq 2$ and $|z| < |P(s)|^{-1}$ in terms of the prime zeta function by

$$\widehat{F}(s,z) := \frac{1}{1 - P(s)z} \times \prod_{p} \left(1 - \frac{1}{p^s}\right)^z.$$

For $|z| < P(2)^{-1}$, the summatory function of the coefficients of the DGF expansion of $\widehat{F}(s,z)$ are defined as follows:

$$\widehat{A}_z(x) := \sum_{n < x} (-1)^{\omega(n)} C_{\Omega(n)}(n) z^{\Omega(n)}.$$

We have that for all sufficiently large x

$$\widehat{A}_z(x) = \frac{x}{\Gamma(z)} \cdot \widehat{F}(2, z) \cdot (\log x)^{z-1} + O_z \left(x \cdot (\log x)^{\text{Re}(z) - 2} \right), |z| < P(2)^{-1}.$$

Proof. We can see by adapting the notation from the proof of Proposition 3.1 that for $n \geq 2$

$$C_{\Omega(n)}(n) = (\Omega(n))! \times \prod_{p^{\alpha}||n} \frac{1}{\alpha!}.$$

We can generate scaled forms of these terms through a product identity of the form

$$\sum_{n\geq 1} \frac{C_{\Omega(n)}(n)}{(\Omega(n))!} \cdot \frac{(-1)^{\omega(n)} z^{\Omega(n)}}{n^s} = \prod_{p} \left(1 + \sum_{r\geq 1} \frac{z^{\Omega(p^r)}}{r! \cdot p^{rs}} \right)^{-1} = \exp\left(z \cdot P(s)\right), \operatorname{Re}(s) \geq 2, z \in \mathbb{C}.$$

By computing a Laplace transform on the right-hand-side of the above, we obtain

$$\sum_{n \geq 1} \frac{C_{\Omega(n)}(n) \cdot (-1)^{\omega(n)} z^{\Omega(n)}}{n^s} = \int_0^\infty e^{-t} \exp\left(tz \cdot P(s)\right) dt = \frac{1}{1 - P(s)z}, \operatorname{Re}(s) \geq 2, |z| < |P(s)|^{-1}.$$

It follows that

$$\sum_{n\geq 1} \frac{(-1)^{\omega(n)} C_{\Omega(n)}(n) z^{\Omega(n)}}{n^s} = \zeta(s)^z \times \widehat{F}(s, z), \operatorname{Re}(s) \geq 2, |z| < |P(s)|^{-1}.$$

Since $\widehat{F}(s,z)$ is an analytic function of s for all Re(s) > 1 whenever the parameter $|z| < |P(s)|^{-1}$, if $b_z(n)$ are the coefficients in the DGF expansion of $\widehat{F}(s,z)$ (as above), then

$$\left| \sum_{n \ge 1} \frac{b_z(n)(\log n)^{2R+1}}{n^s} \right| < +\infty,$$

is uniformly bounded for $|z| \leq R$. This fact follows by repeated termwise differentiation with respect to s.

Let the function $d_z(n)$ be generated as the coefficients of the DGF $\zeta(s)^z = \sum_{n \geq 1} \frac{d_z(n)}{n^s}$ for Re(s) > 1, and with corresponding summatory function $D_z(x) := \sum_{n \leq x} d_z(n)$. The theorem in [12, Thm. 7.17; §7.4] implies that for any $z \in \mathbb{C}$ and integers $x \geq 2$

$$D_z(x) = \frac{x(\log x)^{z-1}}{\Gamma(z)} + O\left(x \cdot (\log x)^{\operatorname{Re}(z)-2}\right)$$

We set $b_z(n) \equiv (-1)^{\omega(n)} C_{\Omega(n)}(n) z^{\Omega(n)}$, set the convolution $a_z(n) := \sum_{d|n} b_z(d) d_z(n/d)$, and define its summatory function $A_z(x) := \sum_{n \leq x} a_z(n)$. Then we have that

$$A_{z}(x) = \sum_{m \le x/2} b_{z}(m) D_{z}(x/m) + \sum_{x/2 < m \le x} b_{z}(m)$$

$$= \frac{x}{\Gamma(z)} \times \sum_{m \le x/2} \frac{b_{z}(m)}{m^{2}} \times m \cdot \log\left(\frac{x}{m}\right)^{z-1} + O\left(\sum_{m \le x} \frac{x \cdot |b_{z}(m)|}{m^{2}} \times m \cdot \log\left(\frac{2x}{m}\right)^{\operatorname{Re}(z)-2}\right). \tag{26}$$

We can sum the coefficients for u > e large as follows:

$$\sum_{m \le u} \frac{b_z(m)}{m} = \left(\widehat{F}(2, z) + O(u^{-2})\right) u - \int_1^u \left(\widehat{F}(2, z) + O(t^{-2})\right) dt = \widehat{F}(2, z) + O(1 + u^{-1}).$$

Suppose that $|z| \leq R < P(2)^{-1}$. The error term in (26) satisfies

$$\sum_{m \le x} \frac{x \cdot |b_z(m)|}{m^2} \times m \cdot \log\left(\frac{2x}{m}\right)^{\text{Re}(z) - 2} \ll x(\log x)^{\text{Re}(z) - 2} \times \sum_{m \le \sqrt{x}} \frac{|b_z(m)|}{m} + x(\log x)^{-(R+2)} \times \sum_{m > \sqrt{x}} \frac{|b_z(m)|}{m} (\log m)^{2R}$$

$$\ll x(\log x)^{\text{Re}(z) - 2} \cdot \widehat{F}(2, z) = O_z \left(x \cdot (\log x)^{\text{Re}(z) - 2}\right), |z| \le R.$$

In the main term estimate for $A_z(x)$ from (26), when $m \leq \sqrt{x}$ we have

$$\log\left(\frac{x}{m}\right)^{z-1} = (\log x)^{z-1} + O\left((\log m)(\log x)^{\operatorname{Re}(z)-2}\right).$$

The total sum over the interval $m \le x/2$ corresponds to bounding the following sum components when we take $|z| \le R$:

$$\sum_{m \le x/2} b_z(m) D_z(x/m) = \frac{x}{\Gamma(z)} (\log x)^{z-1} \times \sum_{m \le x/2} \frac{b_z(m)}{m} + O_z \left(x (\log x)^{\text{Re}(z)-2} \times \sum_{m \le \sqrt{x}} \frac{|b_z(m)|}{m} + x (\log x)^{R-1} \times \sum_{m > \sqrt{x}} \frac{|b_z(m)|}{m} \right)$$

$$= \frac{x}{\Gamma(z)} (\log x)^{z-1} \widehat{F}(2, z) + O_z \left(x (\log x)^{\text{Re}(z)-2} \times \sum_{m \ge 1} \frac{b_z(m) (\log m)^{2R+1}}{m^2} \right)$$

$$= \frac{x}{\Gamma(z)} (\log x)^{z-1} \widehat{F}(2, z) + O_z \left(x (\log x)^{\text{Re}(z)-2} \right).$$

Theorem 6.2. We have uniformly for $1 \le k < \log \log x$ that as $x \to \infty$

$$\widehat{C}_k(x) := \sum_{\substack{n \leq x \\ \Omega(n) = k}} (-1)^{\omega(n)} C_k(n) \asymp \frac{x}{\log x} \cdot \frac{(\log \log x - \log \zeta(2))^{k-1}}{(k-1)!} \left[1 + O\left(\frac{k}{(\log \log x)^2}\right) \right].$$

Proof. The proof is an adaptation of the method of Montgomery and Vaughan we cited in Remark 4.1 to prove our variant of Theorem 2.7 in that section. We begin by bounding a contour integral over the error term for fixed large x when $r := \frac{k-1}{\log \log x}$ with r < 2:

$$\left| \int_{|v|=r} \frac{x \cdot (\log x)^{-(\operatorname{Re}(v)+2)}}{v^{k+1}} dv \right| \ll x (\log x)^{-(r+2)} r^{-(k+1)} \ll \frac{x}{(\log x)^2} \cdot \frac{(\log \log x)^{k+1}}{(k-1)^{k+1}} \cdot \frac{1}{e^{k-1}}$$

$$\ll \frac{x}{(\log x)^2} \cdot \frac{(\log \log x)^{k+1}}{(k-1)^{3/2}} \cdot \frac{1}{e^{2k} (k-1)!}$$

$$\ll \frac{x}{(\log x)^2} \cdot \frac{(\log \log x)^{k-1}}{(k-1)!} \ll \frac{x}{\log x} \cdot \frac{k \cdot (\log \log x)^{k-5}}{(k-1)!}.$$

We must find an asymptotically accurate main term approximation to the coefficients of the following contour integral for $r \in [0, z_{\text{max}}]$ where $z_{\text{max}} < P(2)^{-1}$ according to Proposition 6.1:

$$\widetilde{A}_r(x) := \int_{|v|=r} \frac{x \cdot (\log x)^{-v} \zeta(2)^{-v}}{(\log x) \Gamma(1+v) \cdot v^k (1+P(2)v)} dv. \tag{27}$$

We can show that provided a restriction to $1 \le r < 1$, we can approximate the contour integral in (27) where the resulting main term is accurate up to a bounded constant factor. This procedure removes the gamma function term in the denominator of the integrand by essentially applying a mean value theorem type analog for smoothly parameterized contours. The logic used to justify this type of simplification of form argument is discussed next.

We observe that for r := 1, the function $|\Gamma(1+re^{2\pi it})|$ has a singularity (pole) when $t := \frac{1}{2}$. We restrict the range of |v| = r so that $0 \le r < 1$ to necessarily avoid this problematic value of t when we parameterize $v = re^{2\pi it}$ by a real-line integral over $t \in [0, 1]$. We can compute finite extremal values of this function as

$$\min_{\substack{0 \le r < 1 \\ 0 \le t \le 1}} |\Gamma(1 + re^{2\pi it})| = |\Gamma(1 + re^{2\pi it})| \Big|_{(r,t) \approx (1,0.740592)} \approx 0.520089$$

$$\max_{\substack{0 \le r < 1 \\ 0 \le t \le 1}} |\Gamma(1 + re^{2\pi it})| = |\Gamma(1 + re^{2\pi it})| \Big|_{(r,t) \approx (1,0.999887)} \approx 1.$$

This shows that

$$\widetilde{A}_r(x) \simeq \int_{|v|=r} \frac{x \cdot (\log x)^{-v} \zeta(2)^{-v}}{(\log x) \cdot v^k (1 + P(2)v)} dv, \tag{28}$$

where as $x \to \infty$

$$\frac{\widetilde{A}_r(x)}{\int_{|v|=r} \frac{x(\log x)^{-v}\zeta(2)^{-v}}{(\log x) \cdot v^k(1+P(2)v)} dv} \in [1, 1.92275].$$

By induction we can compute the remaining coefficients $[z^k]\Gamma(1+z) \times \widehat{A}_z(x)$ with respect to x for fixed $k \le \log \log x$ using the Cauchy integral formula. Namely, it is not difficult to see that for any integer $m \ge 0$, we have the m^{th} partial derivative of the integrand with respect to z has the following limiting expansion by applying (10c):

$$\begin{split} \frac{1}{m!} \times \frac{\partial^{(m)}}{\partial v^{(m)}} \left[\frac{(\log x)^{-v} \zeta(2)^{-v}}{1 + P(2)v} \right] \bigg|_{v=0} &= \sum_{j=0}^{m} \frac{(-1)^{m} P(2)^{j} (\log \log x + \log \zeta(2))^{m-j}}{(m-j)!} \\ &= \frac{(-P(2))^{m} (\log x)^{\frac{1}{P(2)}} \zeta(2)^{\frac{1}{P(2)}}}{m!} \times \Gamma\left(m+1, \frac{\log \log x + \log \zeta(2)}{P(2)}\right) \\ &\sim \frac{(-1)^{m} (\log \log x + \log \zeta(2))^{m}}{m!}. \end{split}$$

Now by parameterizing the countour around $|z| = r := \frac{k-1}{\log \log x} < 1$ we deduce that the main term of our approximation corresponds to

$$\int_{|v|=r} \frac{x \cdot (\log x)^{-v} \zeta(2)^{-v}}{(\log x) v^k (1 + P(2)v)} dv \approx \frac{x}{\log x} \cdot \frac{(-1)^{k-1} (\log \log x + \log \zeta(2))^{k-1}}{(k-1)!}.$$

Corollary 6.3. We have that for large $x \geq 2$ that uniformly for $1 \leq k \leq \log \log x$

$$\sum_{\substack{n \le x \\ \Omega(n) = k}} C_{\Omega(n)}(n) \approx 2\sqrt{2\pi} \cdot x \times \frac{(\log\log x)^{k + \frac{1}{2}}}{(2k+1)(k-1)!}.$$

Proof. We have an integral formula involving the non-sign-weighted sequence that results by applying ordinary Abel summation (and integrating by parts) in the form of

$$\sum_{n \leq x} \lambda_*(n) h(n) = \left(\sum_{n \leq x} \lambda_*(n)\right) h(x) - \int_1^x \left(\sum_{n \leq t} \lambda_*(n)\right) h'(t) dt
\left\{ \begin{array}{l} u_t = L_*(t) & v_t' = h'(t) dt \\ u_t' = L_*'(t) dt & v_t = h(t) \end{array} \right\}
\approx \int_1^x \frac{d}{dt} \left[\sum_{n \leq t} \lambda_*(n)\right] h(t) dt.$$
(29)

Let the signed left-hand-side summatory function for our function corresponding to (29) be defined by

$$\widehat{C}_{k,*}(x) := \sum_{\substack{n \leq x \\ \Omega(n) = k}} (-1)^{\omega(n)} C_{\Omega(n)}(n)
\approx \frac{x}{\log x} \cdot \frac{(\log \log x + \log \zeta(2))^{k-1}}{(k-1)!} \left[1 + O\left(\frac{1}{\log \log x}\right) \right]
\approx \frac{x}{\log x} \cdot \frac{(\log \log x)^{k-1}}{(k-1)!} \left[1 + O\left(\frac{1}{\log \log x}\right) \right]$$

where the second equation above follows from the proof of Theorem 6.2. We adopt the notation that $\lambda_*(n) = (-1)^{\omega(n)}$ for $n \ge 1$.

We next transform our previous results for the partial sums over the signed sequences $\lambda_*(n) \cdot C_{\Omega(n)}(n)$ such that $\Omega(n) = k$. The argument is based on approximating the smooth summatory function of $\lambda_*(n) := (-1)^{\omega(n)}$ using the following known uniform approximation of $\pi_k(x)$ when $1 \le k \le \log \log x$ as $x \to \infty$:

$$\pi_k(x) \simeq \frac{x}{\log x} \frac{(\log \log x)^{k-1}}{(k-1)!} (1 + o(1)).$$

In particular, we have by an asymptotic approximation to the incomplete gamma function that (compare to Table T.2 starting on page 45)

$$L_*(t) := \left| \sum_{n \le t} (-1)^{\omega(n)} \right| = \left| \sum_{k=1}^{\log \log x} (-1)^k \pi_k(x) \right| \sim \frac{t}{\sqrt{2\pi} \sqrt{\log \log t}}, \text{ as } t \to \infty.$$

The main term for the reciprocal of the derivative of this summatory function is asymptotic to

$$\frac{1}{L'_*(t)} \simeq \sqrt{2\pi} \cdot (\log \log t)^{\frac{1}{2}}.$$

After applying the formula from (29), we thus deduce that the unsigned summatory function variant satisfies

$$\widehat{C}_{k,*}(x) = \int_{1}^{x} L'_{*}(t) C_{\Omega(t)}(t) dt \qquad \Longrightarrow C_{\Omega(x)}(x) \approx \frac{\widehat{C}'_{k,*}(x)}{L'_{*}(x)} \qquad \Longrightarrow C_{\Omega(x)}(x) \approx \sqrt{2\pi} \cdot \frac{(\log \log x)^{\frac{1}{2}}}{\log x} \cdot \left[\frac{(\log \log x)^{k-1}}{(k-1)!} \left(1 - \frac{1}{\log x} \right) + \frac{(\log \log x)^{k-2}}{(\log x)(k-2)!} \right] \\
\approx \sqrt{2\pi} \cdot \frac{(\log \log x)^{k-\frac{1}{2}}}{(\log x)(k-1)!} =: \widehat{C}_{k,**}(x).$$

The ordinary Abel summation formula, and integration by parts, implies that we obtain a main term is given by

$$\sum_{\substack{n \le x \\ \Omega(n) = k}} C_{\Omega(n)}(n) \approx \int \widehat{C}_{k,**}(x) dx$$

$$\approx 2\sqrt{2\pi} \cdot x \times \frac{(\log \log x)^{k + \frac{1}{2}}}{(2k+1)(k-1)!}.$$

Lemma 6.4. We have that as $x \to \infty$

$$\mathbb{E}\left[C_{\Omega(n)}(n)\right] \simeq 2\sqrt{2\pi} \cdot (\log n) \sqrt{\log \log n}.$$

Proof. We first compute the following summatory function by applying Corollary 6.3:

$$\sum_{k=1}^{\log\log x} \sum_{\substack{n \le x \\ \Omega(n) = k}} C_{\Omega(n)}(n) \approx 2\sqrt{2\pi} \cdot x \cdot (\log x) \sqrt{\log\log x}.$$
(31)

We claim that

$$\sum_{n \le x} C_{\Omega(n)}(n) = \sum_{k=1}^{\log_2(x)} \sum_{\substack{n \le x \\ \Omega(n) = k}} C_{\Omega(n)}(n) \times \sum_{k=1}^{\log\log x} \sum_{\substack{n \le x \\ \Omega(n) = k}} C_{\Omega(n)}(n). \tag{32}$$

Then (31) clearly implies our result. To prove (32) it suffices to show that

$$\frac{\sum_{\log \log x < k \le \log_2(x)} \sum_{\substack{n \le x \\ \Omega(n) = k}} C_{\Omega(n)}(n)}{\sum_{k=1}^{\log \log x} \sum_{\substack{n \le x \\ \Omega(n) = k}} C_{\Omega(n)}(n)} = o(1), \text{ as } x \to \infty.$$
(33)

We define the following component sums for large x and $0 < \varepsilon < 1$ so that $(\log \log x)^{\frac{\varepsilon \log \log x}{\log \log \log x}} = o(\log x)$:

$$S_{2,\varepsilon}(x) := \sum_{\log\log x < k \le (\log\log x)^{\frac{\varepsilon\log\log x}{\log\log\log x}}} \sum_{\substack{n \le x \\ \Omega(n) = k}} C_{\Omega(n)}(n).$$

Then

$$\sum_{k=\log\log x}^{\log_2(x)} \sum_{\substack{n\leq x\\\Omega(n)=k}} C_{\Omega(n)}(n) \gg S_{2,\varepsilon}(x),$$

with equality as $\varepsilon \to 1$ when the upper bound of summation tends to $\log x$. Observe that whenever $\Omega(n) = k$, we have that $C_{\Omega(n)}(n) \le k!$. We can then bound the sums defined above using Theorem 2.7 and Theorem 4.4 for large $x \to \infty$ as

$$\begin{split} S_{2,\varepsilon}(x) & \leq \sum_{\log\log x} \sum_{x \leq \log \log x} C_{\Omega(n)}(n) \ll \sum_{k=\log\log x}^{(\log\log x)} \frac{\widehat{\pi}_k(x)}{x} \cdot k! \\ & \ll \sum_{k=\log\log x}^{(\log\log x)} (\log x)^{\frac{\varepsilon\log\log x}{\log\log\log x}} (\log x)^{\frac{k}{\log\log\log x} - 1 - \frac{k}{\log\log x} (\log k - \log\log\log x)} \cdot \left(\frac{k}{e}\right)^k \sqrt{2\pi k} \\ & \ll \sum_{k=\log\log x}^{\frac{\varepsilon\log\log x}{\log\log\log x}} (\log x)^{\frac{2k \cdot \log\log\log x}{\log\log x} - 1} \sqrt{k} \\ & \ll \sum_{k=\log\log x}^{\frac{\varepsilon\log\log x}{\log\log\log x}} (\log x)^{\frac{2k \cdot \log\log\log x}{\log\log\log x}} (\log\log x)^{2t} \sqrt{t} \cdot dt \\ & \ll \frac{1}{(\log x)} \sqrt{\frac{\varepsilon \cdot \log\log x}{\log\log\log x}} (\log\log x)^{\frac{2\varepsilon \cdot \log\log x}{\log\log\log x}} = o(x), \end{split}$$

where we have a simplification for large x by noticing that $\lim_{x\to\infty}(\log x)^{\frac{1}{\log\log x}}=e$. So by (31) this form of the ratio in (33) clearly tends to zero.

Corollary 6.5. We have that as $n \to \infty$, the unsigned sequence mean satisfies

$$\mathbb{E}|g^{-1}(n)| \simeq (\log n)^2 \sqrt{\log \log n}.$$

Proof. We use the formula from Lemma 6.4 to find $\mathbb{E}[C_{\Omega(n)}(n)]$ up to a small bounded multiplicative constant factor as $n \to \infty$. This implies that for large t

$$\int \frac{\mathbb{E}[C_{\Omega(t)}(t)]}{t} dt \approx \sqrt{2\pi} \cdot (\log t)^2 \sqrt{\log \log t} - \frac{\pi}{2} \operatorname{erfi}\left(\sqrt{2\log \log t}\right)$$
$$\approx \sqrt{2\pi} \cdot (\log t)^2 \sqrt{\log \log t}.$$

Recall from the introduction that the summatory function of the squarefree integers is approximated by

$$Q(x) := \sum_{n \le x} \mu^2(n) = \frac{6x}{\pi^2} + O(\sqrt{x}).$$

Therefore summing over (25) we find that

$$\mathbb{E}|g^{-1}(n)| = \frac{1}{n} \times \sum_{d \le n} C_{\Omega(d)}(d) Q\left(\left\lfloor \frac{n}{d} \right\rfloor\right)$$

$$\sim \sum_{d \le n} C_{\Omega(d)}(d) \left[\frac{6}{d \cdot \pi^2} + O\left(\frac{1}{\sqrt{dn}}\right)\right]$$

$$= \frac{6}{\pi^2} \left[\mathbb{E}[C_{\Omega(n)}(n)] + \sum_{d < n} \frac{\mathbb{E}[C_{\Omega(d)}(d)]}{d}\right] + O\left(\frac{1}{\sqrt{n}} \times \int_0^n t^{-1/2} dt\right)$$

$$= \frac{6}{\pi^2} \left[\mathbb{E}[C_{\Omega(n)}(n)] + \sum_{d < n} \frac{\mathbb{E}[C_{\Omega(d)}(d)]}{d}\right] + O(1)$$

$$\approx \frac{6\sqrt{2}}{2^{\frac{3}{2}}} (\log n)^2 \sqrt{\log \log n}.$$

$$(34)$$

Theorem 6.6. Let the mean and variance analogs be denoted by

$$\mu_x(C) := \log \log x + \hat{a} - \frac{1}{2} \cdot \log \log \log x,$$
 and $\sigma_x(C) := \sqrt{\mu_x(C)},$

where the absolute constant $\hat{a} := \log\left(\frac{1}{\sqrt{2\pi}}\right) \approx -0.918939$. Set Y > 0 and suppose that $z \in [-Y, Y]$. Then we have uniformly for all $-Y \le z \le Y$ that

$$\frac{1}{x} \cdot \# \left\{ 2 \le n \le x : \frac{C_{\Omega(n)}(n) - \mu_x(C)}{\sigma_x(C)} \le z \right\} = \Phi(z) + O\left(\frac{1}{\sqrt{\log \log x}}\right), \text{ as } x \to \infty.$$

Proof. For large x and $n \leq x$, define the following auxiliary variables:

$$\alpha_n := \frac{C_{\Omega(n)}(n) - \mu_n(C)}{\sigma_n(C)}, \text{ and } \beta_{n,x} := \frac{C_{\Omega(n)}(n) - \mu_x(C)}{\sigma_x(C)}.$$

Let the corresponding densities (whose limiting distributions we must verify) be defined by the functions

$$\Phi_1(x,z) := \frac{1}{x} \cdot \#\{n \le x : \alpha_n \le z\},\$$

and

$$\Phi_2(x,z) := \frac{1}{x} \cdot \#\{n \le x : \beta_{n,x} \le z\}.$$

We first argue that it suffices to consider the distribution of $\Phi_2(x,z)$ as $x \to \infty$ in place of $\Phi_1(x,z)$ to obtain our desired result. The difference of the two auxiliary variables is neglibible as $x \to \infty$ for (n,x) taken over the ranges that contribute the non-trivial weight to the main term of each density function. In particular, we have for $\sqrt{x} \le n \le x$ and $C_{\Omega(n)}(n) \le 2 \cdot \mu_x(C)$ that the following is true:

$$|\alpha_n - \beta_{n,x}| \ll \frac{1}{\sigma_r(C)} \xrightarrow{x \to \infty} 0.$$

Thus we can replace α_n by $\beta_{n,x}$ and estimate the limiting densities corresponding to the alternate terms. The rest of our argument follows the method in the proof of the related theorem in [12, Thm. 7.21; §7.4] closely. Readers familiar with the methods in the reference will see many parallels to that construction.

We use the formula proved in Corollary 6.3 to estimate the densities claimed within the ranges bounded by z as $x \to \infty$. Let $k \ge 1$ be a natural number defined by $k := t + \mu_x(C)$. We write the small parameter $\delta_{t,x} := \frac{t}{\mu_x(C)}$. When $|t| \le \frac{1}{2}\mu_x(C)$, we have by Stirling's formula that

$$2\sqrt{2\pi} \cdot x \times \frac{(\log\log x)^{k+\frac{1}{2}}}{(2k+1)(k-1)!} \sim \frac{e^{\hat{a}+t}(\log\log x)^{\mu_x(C)(1+\delta_{t,x})}}{\sigma_x(C) \cdot \mu_x(C)^{\mu_x(C)(1+\delta_{t,x})}(1+\delta_{t,x})^{\mu_x(C)(1+\delta_{t,x})+\frac{3}{2}}}$$
$$\sim \frac{e^t}{\sqrt{2\pi} \cdot \sigma_x(C)} (1+\delta_{t,x})^{-\left(\mu_x(C)(1+\delta_{t,x})+\frac{3}{2}\right)},$$

since $\frac{\mu_x(C)}{\log \log x} = 1 + o(1)$ as $x \to \infty$.

We have the uniform estimate $\log(1 + \delta_{t,x}) = \delta_{t,x} - \frac{\delta_{t,x}^2}{2} + O(|\delta_{t,x}|^3)$ whenever $|\delta_{t,x}| \leq \frac{1}{2}$. Then we can expand the factor involving $\delta_{t,x}$ in the previous equation as follows:

$$(1 + \delta_{t,x})^{-\mu_x(C)(1+\delta_{t,x}) - \frac{1}{2}} = \exp\left(\left(\frac{1}{2} + \mu_x(C)(1+\delta_{t,x})\right) \times \left(-\delta_{t,x} + \frac{\delta_{t,x}^2}{2} + O(|\delta_{t,x}|^3)\right)\right)$$
$$= \exp\left(-t - \frac{3t+t^2}{2\mu_x(C)} + \frac{3t^2}{4\mu_x(C)^2} + O\left(\frac{|t|^3}{\mu_x(C)^2}\right)\right).$$

For both $|t| \le \mu_x(C)^{1/2}$ and $\mu_x(C)^{1/2} < |t| \le \mu_x(C)^{2/3}$, we see that

$$\frac{t}{\mu_x(C)} \ll \frac{1}{\sqrt{\mu_x(C)}} + \frac{|t|^3}{\mu_x(C)^2}.$$

Similarly, for $|t| \leq 1$ and |t| > 1, we see that both

$$\frac{t^2}{\mu_x(C)^2} \ll \frac{1}{\sqrt{\mu_x(C)}} + \frac{|t|^3}{\mu_x(C)^2}.$$

Let the corresponding error terms in (x,t) be denoted by

$$\widetilde{E}(x,t) := O\left(\frac{1}{\sigma_x(C)}\right) + O\left(\frac{|t|^3}{\mu_x(C)^2}\right).$$

Combining these estimates with the previous computations, we can deduce that uniformly for $|t| \leq \mu_x(C)^{2/3}$

$$2\sqrt{2\pi} \cdot x \times \frac{(\log\log x)^{k+\frac{1}{2}}}{(2k+1)(k-1)!} \sim \frac{1}{\sqrt{2\pi} \cdot \sigma_x(C)} \cdot \exp\left(-\frac{t^2}{2\sigma_x(C)^2}\right) \times \left[1 + \widetilde{E}(x,t)\right].$$

By the same argument utilized in the proof of Lemma 6.4, we see that the contributions of these summatory functions for $k \leq \mu_x(C) - \mu_x(C)^{2/3}$ is negligible. We also require that $k \leq \log \log x$ as we have worked out in Theorem 6.2. So we sum over a corresponding range of

$$\mu_x(C) - \mu_x(C)^{2/3} \le k \le R_{z,x} \cdot \mu_x(C) + z \cdot \sigma_x(C),$$

for $R_{z,x} := 1 - \frac{z}{\sigma_x(C)}$ to approximate the stated normalized densities. Then finally as $x \to \infty$, the three terms that result (one main term, two error terms, respectively) can be considered to each correspond to a Riemann sum for an associated integral.

Corollary 6.7. Let Y > 0. Suppose that $\mu_x(C)$ and $\sigma_x(C)$ are defined as in Theorem 6.6. Uniformly for all $-Y \le y \le Y$ we have that

$$\frac{1}{x} \cdot \# \left\{ 2 \le n \le x : |g^{-1}(n)| - \frac{6}{\pi^2} \mathbb{E}|g^{-1}(n)| \le y \right\} = \Phi \left(\frac{\frac{\pi^2}{6} y - \mu_x(C)}{\sigma_x(C)} \right) + O\left(\frac{1}{\sqrt{\log \log x}} \right), \text{ as } x \to \infty.$$

Proof. We claim that

$$|g^{-1}(n)| - \frac{6}{\pi^2} \mathbb{E}|g^{-1}(n)| \sim \frac{6}{\pi^2} C_{\Omega(n)}(n).$$

From (34) we obtain that

$$\frac{1}{x} \times \sum_{n \le x} |g^{-1}(n)| = \frac{6}{\pi^2} \left[\mathbb{E}[C_{\Omega(x)}(x)] + \sum_{d \le x} \frac{\mathbb{E}[C_{\Omega(d)}(d)]}{d} \right] + O(1).$$

Let the backwards difference operator with respect to x be defined for $x \ge 2$ and any arithmetic function f as $\Delta_x(f(x)) := f(x) - f(x-1)$. Then from the proof of Corollary 6.5, we see that for large n

$$|g^{-1}(n)| = \Delta_n(n \cdot \mathbb{E}|g^{-1}(n)|) \sim \Delta_n \left(\sum_{d \le n} \frac{6}{\pi^2} \cdot C_{\Omega(d)}(d) \cdot \frac{n}{d} \right)$$

$$= \frac{6}{\pi^2} \left[C_{\Omega(n)}(n) + \sum_{d < n} C_{\Omega(d)}(d) \frac{n}{d} - \sum_{d < n} C_{\Omega(d)}(d) \frac{(n-1)}{d} \right]$$

$$= \frac{6}{\pi^2} C_{\Omega(n)}(n) + \frac{6}{\pi^2} \mathbb{E}|g^{-1}(n-1)|, \text{ as } n \to \infty.$$

The result finally follows from Theorem 6.6.

7 Lower bounds for M(x) along infinite subsequences

7.1 Establishing initial lower bounds on the summatory function $G^{-1}(x)$

Lemma 7.1. Suppose that $\mu_x(C)$ and $\sigma_x(C)$ are defined as in Theorem 6.6. If x is sufficiently large and we pick any integer $n \in [2, x]$ uniformly at random, then each of the following statements holds:

$$\mathbb{P}\left(|g^{-1}(n)| - \frac{6}{\pi^2}\mathbb{E}|g^{-1}(n)| \le 0\right) = o(1) \tag{A}$$

$$\mathbb{P}\left(|g^{-1}(n)| - \frac{6}{\pi^2}\mathbb{E}|g^{-1}(n)| \le \frac{6}{\pi^2}\mu_x(C)\right) = \frac{1}{2} + o(1).$$
(B)

Moreover, for any positive real $\delta > 0$ we have that

$$\mathbb{P}\left(|g^{-1}(n)| - \frac{6}{\pi^2}\mathbb{E}|g^{-1}(n)| \le \frac{6}{\pi^2}\mu_x(C)^{1+\delta}\right) = 1 + o_{\delta}(1), \text{ as } x \to \infty.$$
 (C)

Proof. Each of these results is a consequence of Corollary 6.7. Let the densities $\gamma_z(x)$ be defined for $z \in \mathbb{R}$ and sufficiently large x > e as follows:

$$\gamma_z(x) := \frac{1}{x} \cdot \#\{2 \le n \le x : |g^{-1}(n)| - \mathbb{E}|g^{-1}(n)| \le z\}.$$

To prove (A), observe that by Corollary 6.7 for z := 0 we have that

$$\gamma_0(x) = \Phi(-\sigma_x(C)) + o(1)$$
, as $x \to \infty$.

We can see that $\sigma_x(C) \xrightarrow{x \to \infty} +\infty$ where for $z \ge 0$ we have the reflection identity for the normal distribution CDF $\Phi(z) = 1 - \Phi(-z)$. Since we have by an asymptotic approximation to the error function expanded by

$$\Phi(z) = \frac{1}{2} \left(1 + \operatorname{erf} \left(\frac{z}{\sqrt{2}} \right) \right)$$

$$= 1 - \frac{2e^{-z^2/2}}{\sqrt{2\pi}} \left[z^{-1} - z^{-3} + 3z^{-5} - 15z^{-7} + \cdots \right], \text{ as } |z| \to \infty,$$

we can see that

$$\gamma_0(x) = \Phi\left(-\sigma_x(C)\right) \asymp \frac{1}{\sigma_x(C)\exp(\mu_x(C)/2)} = o(1).$$

To prove (B), observe setting $z_1 := \frac{6}{\pi^2} \mu_x(C)$ yields that

$$\gamma_{z_1}(x) = \Phi(0) + o(1) = \frac{1}{2} + o(1)$$
, as $x \to \infty$.

To prove (C), we require that $\mu_x(C)^{\frac{1}{2}+\delta} - \sigma_x(C) \xrightarrow{x\to\infty} +\infty$. Since this happens as $x\to\infty$ for any fixed $\delta>0$, we have that with $z(\delta):=\frac{6}{\pi^2}\mu_x(C)^{1+\delta}$

$$\gamma_{z(\delta)} = \Phi\left(\mu_x(C)^{\frac{1}{2} + \delta} - \sigma_x(C)\right) + o(1)$$

$$\sim 1 - \frac{1}{\sqrt{2\pi}} \cdot \frac{1}{\left(\mu_x(C)^{\frac{1}{2} + \delta} - \sigma_x(C)\right)} \times \exp\left(-\frac{\mu_x(C)}{4} \cdot \left(\mu_x(C)^{\delta} - 1\right)^2\right)$$

$$= 1 + o_{\delta}(1), \text{ as } x \to \infty.$$

Remark 7.2. A consequence of (A) and (C) in Lemma 7.1 is that for any fixed $\delta > 0$ and $n \in \mathcal{S}_1(\delta)$ taken within a set of asymptotic density one we have that

$$\frac{6}{\pi^2} \mathbb{E}|g^{-1}(n)| \le |g^{-1}(n)| \le \frac{6}{\pi^2} \mathbb{E}|g^{-1}(n)| + \frac{6}{\pi^2} \mu_x(C)^{\frac{1}{2} + \delta}.$$
 (35)

Thus when we integrate over a sufficiently spaced set of (e.g., set of wide enough) disjoint consecutive intervals containing large enough integer values, we can assume that an asymptotic lower bound on the contribution of $|g^{-1}(n)|$ is given by the function's average order, and an upper bound is given by the related upper limit above for any fixed $\delta > 0$. In particular, observe that by Corollary 6.7 and Corollary 6.5 we can see that

$$\frac{\pi^2}{6 \cdot \sigma_x(C)} \times \int_{-\infty}^{\infty} z \cdot \Phi' \left(\frac{\frac{\pi^2}{6} z - \mu_x(C)}{\sigma_x(C)} \right) dz = \frac{6}{\pi^2} \cdot \sigma_x(C) = o\left(\mathbb{E}|g^{-1}(x)| \right).$$

Emphasizing the point above, we can thus again interpret the previous calculation as implying that for n on a large interval, the contribution from $|g^{-1}(n)|$ can be approximated above and below accurately as in the bounds from (35).

Theorem 7.3. For all sufficiently large integers x, whenever $G^{-1}(x) \neq 0$ we have that

$$|G^{-1}(x)| \gg (\log x)\sqrt{\log \log x}$$
, as $x \to \infty$.

Proof. We will use a lower bound approximating the summatory function L(t) of $\lambda(n)$ for $n \leq t$ and large $t \to \infty$ by summing over the uniform asymptotic lower bounds proved in Theorem 2.7. To be careful about the expected sign of this summatory function, we first appeal to the first uniform approximations to the functions $\widehat{\pi}_k(x)$ given by Theorem 2.6. As noted in [12, §7.4], the function $\mathcal{G}(z)$ satisfies

$$\mathcal{G}\left(\frac{k-1}{\log\log x}\right) = O(1), 1 \le k \le \log\log x,$$

so that uniformly for all integers $1 \le k \le \log \log x$ we can write

$$\widehat{\pi}_k(x) \simeq \frac{x}{\log x} \cdot \frac{(\log \log x)^{k-1}}{(k-1)!} \left[1 + O\left(\frac{1}{\log \log x}\right) \right].$$

By the argument leading up to Corollary 4.6, the following summatory function represents the asymptotic main term in the summation $L(x) := \sum_{n \le x} \lambda(n)$ as $x \to \infty$ (see Table T.2 on page 45):

$$\widehat{L}_2(x) = \sum_{k=1}^{\log \log x} (-1)^k \widehat{\pi}_k(x) = -\frac{x}{(\log x)^2} \times \Gamma(\log \log x, -\log \log x) \sim \frac{(-1)^{1+\lceil \log \log x \rceil} \cdot x}{\sqrt{2\pi} \sqrt{\log \log x}}$$

Then we expect the sign of our summatory function approximation to be approximately given by $(-1)^{1+\lceil \log \log x \rceil}$ for sufficiently large x. This observation is empirically verified in the second table for pages of large x values.

We will now find a lower bound on the unsigned magnitude of these summatory functions. In particular, using Theorem 2.7, we have that $\widehat{\pi}_k(x) \gg \widehat{\pi}_k^{(\ell)}(x)$ where

$$\widehat{\pi}_k^{(\ell)}(x) := \frac{x^{\frac{3}{4}}}{\log x} \cdot \frac{(\log \log x)^{k-1}}{(k-1)!} \left[1 + O\left(\frac{k}{(\log \log x)^2}\right) \right].$$

Thus we can define our lower bound in absolute value by

$$\widehat{L}_0(x) := \left| \sum_{k=1}^{\log \log x} (-1)^k \widehat{\pi}_k^{(\ell)}(x) \right| \approx \frac{x^{\frac{3}{4}}}{\sqrt{\log \log x}},$$

where limiting asymptotics for the incomplete gamma function expression for the inner summation dominates the main term on the right-hand-side of the previous equation. The derivative of the lower summatory function satisfies

$$\widehat{L}'_0(x) \simeq \frac{1}{x^{\frac{1}{4}} \cdot \sqrt{\log \log x}}.$$

We observe that we can break the interval $t \in (e, x]$ into disjoint subintervals according to which we have expected sign contributions from the summatory function $\widehat{L}_0(x)$ as $t \to x$ grows without bound. Namely, we expect that for $1 \le k \le \frac{\log \log x}{2}$ we have (compare to Table T.2)

$$\operatorname{sgn}\left(\widehat{L}_0(x)\right) = -1 \text{ on } \left[e^{e^{2k}}, e^{e^{2k+1}}\right)$$
$$\operatorname{sgn}\left(\widehat{L}_0(x)\right) = +1 \text{ on } \left[e^{e^{2k+1}}, e^{e^{2k+2}}\right).$$

Since the derivative $\widehat{L}_0'(x)$ is monotone decreasing in x, we can construct our lower bounds by placing the input points to this function in the Abel summation formula from (29) over these signed subintervals at extremal endpoints. As we have argued in Lemma 7.1 and observed in Remark 7.2, we have the bounds in (35) upon which we can similarly construct the lower bound on $|G^{-1}(x)|$ based on the sign term of the subinterval (as above) and the extremal points within the interval. The idea used to conclude this proof below underestimatesm the resulting integral formulas approximating $|G^{-1}(x)|$ as $x \to \infty$.

Let $I_k := \left[e^{e^k}, e^{e^{k+1}}\right)$ for $k \ge 1$. We have argued that for sufficiently large k approximately one half of the integers n in the interval I_k satisfy $|g^{-1}(n)| \le k$. Thus by applying the inequalities from (10a) in the last step below we obtain the following asymptotic lower bounds:

$$\begin{split} |G^{-1}(x)| \gg & \left| \int_{2}^{x} \widehat{L}_{0}'(t)|g^{-1}(t)|dt \right| \\ \gg & \sum_{k=1}^{\frac{\log\log x}{2}} \left(-1 \right)^{k} \widehat{L}_{0}' \left(e^{e^{k}} \right) \left| g^{-1} \left(e^{e^{k}} \right) \right| \\ \gg & \left| \sum_{k=\frac{\log\log x}{4}}^{\frac{\log\log x}{2}} \left[\widehat{L}_{0}' \left(e^{e^{2k}} \right) \left| g^{-1} \left(e^{e^{2k}} \right) \right| - \widehat{L}_{0}' \left(e^{e^{2k-1}} \right) \left| g^{-1} \left(e^{e^{2k-1}} \right) \right| \right] \right| \\ \gg & \left| \sum_{k=\frac{\log\log x}{4}}^{\frac{\log\log x}{2}} \left[\sqrt{2k} \exp\left(-\frac{1}{4}e^{2k} \right) - \sqrt{2k-1} \exp\left(-\frac{1}{4}e^{2k-1} \right) \right] \right| \\ \gg & \left| \int_{k=\frac{\log\log x}{4}}^{\frac{\log\log x}{4}} \sqrt{t} \cdot \exp\left(-\frac{1}{4}e^{2t} \right) \right| \\ \gg & \left| \sqrt{\log\log x} \cdot \operatorname{Ei} \left(-\frac{\log x}{4} \right) \right| \\ \gg & (\log x) \cdot \sqrt{\log\log x}. \end{split}$$

7.2 Proof of the unboundedness of the scaled Mertens function

Proposition 7.4. For all sufficiently large x, we have that the Mertens function satisfies

$$M(x) = G^{-1}(x) + G^{-1}\left(\left\lfloor \frac{x}{2} \right\rfloor\right) + \sum_{k=1}^{\frac{x}{2}-1} G^{-1}(k) \left[\pi\left(\left\lfloor \frac{x}{k} \right\rfloor\right) - \pi\left(\left\lfloor \frac{x}{k+1} \right\rfloor\right)\right]. \tag{36}$$

Proof. We know by applying Corollary 2.3 that

$$M(x) = \sum_{k=1}^{x} g^{-1}(k) \left[\pi \left(\left\lfloor \frac{x}{k} \right\rfloor \right) + 1 \right]$$
$$= G^{-1}(x) + \sum_{k=1}^{x/2} g^{-1}(k) \pi \left(\left\lfloor \frac{x}{k} \right\rfloor \right)$$

$$=G^{-1}(x)+G^{-1}\left(\left\lfloor\frac{x}{2}\right\rfloor\right)+\sum_{k=1}^{x/2-1}G^{-1}(k)\left[\pi\left(\left\lfloor\frac{x}{k}\right\rfloor\right)-\pi\left(\left\lfloor\frac{x}{k+1}\right\rfloor\right)\right].$$

The upper bound on the sum is truncated in the second equation above due to the fact that $\pi(1) = 0$.

Lemma 7.5. For sufficiently large x, integers $k \in \left[\sqrt{x}, \frac{x}{2}\right]$ and $m \ge 0$, we have that

$$\frac{x}{k \cdot \log^m \left(\frac{x}{k}\right)} - \frac{x}{(k+1) \cdot \log^m \left(\frac{x}{k+1}\right)} \gg \frac{x}{(\log x)^m \cdot k(k+1)},\tag{A}$$

and

$$\sum_{k=\sqrt{x}}^{\frac{x}{2}} \frac{x}{k(k+1)} = \sum_{k=\sqrt{x}}^{\frac{x}{2}} \frac{x}{k^2} + O(1).$$
 (B)

Proof. The proof of (A) is obvious since for $k_0 \in \left[\sqrt{x}, \frac{x}{2}\right]$ we have that

$$\log(2)(1 + o(1)) \le \log\left(\frac{x}{k_0}\right) \le \log(x).$$

To prove (B), notice that

$$\frac{x}{k(k+1)} - \frac{x}{k^2} = -\frac{x}{k^2(k+1)}.$$

Then we see that

$$\left| \int_{\sqrt{x}}^{\frac{x}{2}} \frac{x}{t^2(t+1)} dt \right| \le \left| \int_{\sqrt{x}}^{\frac{x}{2}} \frac{x}{t^3} dt \right| \approx 1.$$

We finally address the main conclusion of our arguments given so far with the following proof:

Proof of Theorem 2.9. Define the infinite increasing subsequence, $\{x_{0,y}\}_{y\geq Y_0}$, by $x_{0,y}:=e^{2e^{2y+1}}$ for the sequence indices y starting at some sufficiently large finite integer Y_0 . We can verify that for sufficiently large $y\to\infty$, this infinitely tending subsequence is well defined as $x_{0,y+1}>x_{0,y}$, and also importantly $\log\log(x_{0,y+1})>\log\log(x_{0,y})$ whenever $y\geq Y_0$ (see concluding argument below). Given a fixed large infinitely tending y, we have some (at least one) point $\widehat{x}_0(y)\in\mathbb{X}_y$ defined such that $|G^{-1}(t)|$ is minimal and non-vanishing on the interval $\mathbb{X}_y:=\left[\sqrt{x_{0,y+1}},\frac{x_{0,y+1}}{2}\right]$ in the form of

$$|G^{-1}(\widehat{x}_0(y))| := \min_{\substack{\sqrt{x_{0,y+1}} \le t < \frac{x_{0,y+1}}{2} \\ G^{-1}(t) \ne 0}} |G^{-1}(t)|.$$

In the last step, we observe that $G^{-1}(x) \neq 0$ for x on a set of asymptotic density at least bounded below by $\frac{1}{2}$, so that our claim is accurate as the summand's lower bound on this interval does not trivially vanish at large y. This happens since the sequence $g^{-1}(n)$ is non-zero for all $n \geq 1$, so that if we do encounter a zero of the summatory function at x, we find a non-zero summatory function value at x + 1. Let the shorthand notation $|G_{\min}^{-1}(x_y)| := |G^{-1}(\hat{x}_0(y))|$.

We need to bound the prime counting function differences in the formula given by Proposition 7.4. We will require the following known bounds on the prime counting function due to Rosser and Schoenfeld for large x > 59 [18, Thm. 1]:

$$\frac{x}{\log x} \left(1 + \frac{1}{2\log x} \right) \le \pi(x) \le \frac{x}{\log x} \left(1 + \frac{3}{2\log x} \right). \tag{37}$$

Let the component function $U_M(y)$ be defined for all large y as follows:

$$U_M(y) := \sum_{k=1}^{\sqrt{\hat{x}_{0,y+1}}} |G^{-1}(k)| \left[\pi \left(\frac{\hat{x}_{0,y+1}}{k} \right) - \pi \left(\frac{\hat{x}_{0,y+1}}{k+1} \right) \right].$$

Combined with Lemma 7.5, the estimates on $\pi(x)$ in (37) lead to the following approximations that hold on the increasing sequences of y taken within the subintervals defined by $\hat{x}_0(y)$:

$$|U_{M}(y)| \gg \sum_{k=1}^{\frac{\hat{x}_{0,y+1}}{2}-1} |G^{-1}(k)| \left[\frac{\hat{x}_{0,y+1}}{k \cdot \log \left(\frac{\hat{x}_{0,y+1}}{k} \right)} \left(1 + \frac{1}{2 \cdot \log \left(\frac{\hat{x}_{0,y+1}}{k} \right)} \right) - \frac{\hat{x}_{0,y+1}}{(k+1) \cdot \log \left(\frac{\hat{x}_{0,y+1}}{k+1} \right)} \left(1 + \frac{3}{2 \cdot \log \left(\frac{\hat{x}_{0,y+1}}{k+1} \right)} \right) \right]$$

$$\gg \sum_{k=\sqrt{\hat{x}_{0,y+1}}}^{\frac{\hat{x}_{0,y+1}}{2}-1} \frac{\hat{x}_{0,y+1} \cdot |G_{\min}^{-1}(x_y)|}{k^2} \left[\frac{1}{\log(\hat{x}_{0,y+1})} + \frac{1}{2 \log^2(\hat{x}_{0,y+1})} \right]$$

$$\gg \hat{x}_{0,y+1} \times |G_{\min}^{-1}(x_y)| \left(\frac{1}{\log(\hat{x}_{0,y+1})} + \frac{1}{2 \log^2(\hat{x}_{0,y+1})} \right) \times \left| \int_{\sqrt{\hat{x}_{0,y+1}}}^{\frac{\hat{x}_{0,y+1}}{2}} \frac{dt}{t^2} \right|$$

$$\gg \sqrt{\hat{x}_{0,y+1}} \times \frac{|G_{\min}^{-1}(x_y)|}{\log(\hat{x}_{0,y+1})} + o(1), \text{ as } y \to \infty.$$

We clearly see from Theorem 7.3 and Proposition 7.4 that

$$\frac{|M(\hat{x}_{0,y+1})|}{\sqrt{\hat{x}_{0,y+1}}} \gg \frac{1}{\sqrt{\hat{x}_{0,y+1}}} \times \left| \left| G^{-1}(\hat{x}_{0,y+1}) + G^{-1}\left(\frac{\hat{x}_{0,y+1}}{2}\right) \right| + |U_M(y)| \right|
\gg \frac{1}{\sqrt{\hat{x}_{0,y+1}}} \times |U_M(y)|
\gg \log\log\left(\sqrt{\hat{x}_{0,y+1}}\right)^{\frac{1}{2}}.$$
(38)

There is a small, but nonetheless necessary point in question to explain about a technicality in stating (38). Namely, we are not asserting that $|M(x)|/\sqrt{x}$ grows unbounded along the precise subsequence of $x \mapsto \hat{x}_{0,y+1}$ itself we have defined as $y \to \infty$. Rather, we are asserting that the unboundedness of this function can be witnessed along some subsequence whose points are taken within a large interval window of $x \in \mathbb{X}_y$ as $y \to \infty$. We choose to state the lower bound given on the right-hand-side of (38) using the lower bound on $|G^{-1}(x)|$ we proved in Theorem 7.3 minimally with $\hat{x}_0(y) \ge \sqrt{\hat{x}_{0,y+1}}$ on the interval for all $y \ge Y_0$. It is also necessary that $\log \log(x_{0,y+1}) > \log \log(x_{0,y})$ for all sufficiently large y so that we indeed to obtain an increasing infinite subsequence along which to show the unboundedness of (38).

References

- [1] T. M. Apostol. Introduction to Analytic Number Theory. Springer-Verlag, 1976.
- [2] P. Billingsly. On the central limit theorem for the prime divisor function. *Amer. Math. Monthly*, 76(2):132–139, 1969.
- [3] M. A. Chaudhury and S. M. Zubair. On a class of incomplete gamma functions with applications. Chapman and Hall / CRC, 2000.
- [4] P. Erdös and M. Kac. The guassian errors in the theory of additive arithmetic functions. *American Journal of Mathematics*, 62(1):738–742, 1940.
- [5] G. H. Hardy and E. M. Wright, editors. An Introduction to the Theory of Numbers. Oxford University Press, 2008 (Sixth Edition).
- [6] G. Hurst. Computations of the Mertens function and improved bounds on the Mertens conjecture. *Math. Comp.*, 87:1013–1028, 2018.
- [7] H. Iwaniec and E. Kowalski. Analytic Number Theory, volume 53. AMS Colloquium Publications, 2004.
- [8] T. Kotnik and H. té Riele. The Mertens conjecture revisited. *Algorithmic Number Theory*, 7th International Symposium, 2006.
- [9] T. Kotnik and J. van de Lune. On the order of the Mertens function. Exp. Math., 2004.
- [10] R. S. Lehman. On Liouville's function. Math. Comput., 14:311–320, 1960.
- [11] I. G. Macdonald. Symmetric functions and Hall polynomials. Oxford: The Clarendon Press, 1995.
- [12] H. L. Montgomery and R. C. Vaughan. *Multiplicative Number Theory: I. Classical Theory*. Cambridge, 2006.
- [13] N. Ng. The distribution of the summatory function of the Móbius function. *Proc. London Math. Soc.*, 89(3):361–389, 2004.
- [14] A. M. Odlyzko and H. J. J. té Riele. Disproof of the Mertens conjecture. J. Reine Angew. Math, 1985.
- [15] Frank W. J. Olver, Daniel W. Lozier, Ronald F. Boisvert, and Charles W. Clark, editors. *NIST Handbook of Mathematical Functions*. Cambridge University Press, 2010.
- [16] A. Renyi and P. Turan. On a theorem of Erdös-Kac. Acta Arithmetica, 4(1):71–84, 1958.
- [17] P. Ribenboim. The new book of prime number records. Springer, 1996.
- [18] J. B. Rosser and L. Schoenfeld. Approximate formulas for some functions of prime numbers. *Illinois J. Math.*, 6:64–94, 1962.
- [19] M. D. Schmidt. SageMath and Mathematica software for computations with the Mertens function, 2020. https://github.com/maxieds/MertensFunctionComputations.
- [20] N. J. A. Sloane. The Online Encyclopedia of Integer Sequences, 2020. http://oeis.org.
- [21] K. Soundararajan. Partial sums of the Möbius function. Annals of Mathematics, 2009.
- [22] E. C. Titchmarsh. The theory of the Riemann zeta function. Clarendon Press, 1951.

T.1 Table: The Dirichlet inverse function $g^{-1}(n)$ and the distribution of its summatory function

n	Primes	Sqfree	PPower	$g^{-1}(n)$	$\lambda(n)g^{-1}(n) - \widehat{f}_1(n)$	$\frac{\sum_{d\mid n} C_{\Omega(d)}(d)}{ q^{-1}(n) }$	$\mathcal{L}_{+}(n)$	$\mathcal{L}_{-}(n)$	$G^{-1}(n)$	$G_{+}^{-1}(n)$	$G_{-}^{-1}(n)$
1	1^1	Y	N	1	0	1.0000000	1.000000	0.000000	1	1	0
2	2^1	Y	Y	-2	0	1.0000000	0.500000	0.500000	-1	1	-2
3	3^1	Y	Y	-2	0	1.0000000	0.333333	0.666667	-3	1	-4
4	2^2	N	Y	2	0	1.5000000	0.500000	0.500000	-1	3	-4
5	5^1	Y	Y	-2	0	1.0000000	0.400000	0.600000	-3	3	-6
6	$2^{1}3^{1}$	Y	N	5	0	1.0000000	0.500000	0.500000	2	8	-6
7	7^1	Y	Y	-2	0	1.0000000	0.428571	0.571429	0	8	-8
8	2^{3}	N	Y	-2	0	2.0000000	0.375000	0.625000	-2	8	-10
9	3^2	N	Y	2	0	1.5000000	0.444444	0.555556	0	10	-10
10	$2^{1}5^{1}$	Y	N	5	0	1.0000000	0.500000	0.500000	5	15	-10
11	11^{1}	Y	Y	-2	0	1.0000000	0.454545	0.545455	3	15	-12
12	$2^{2}3^{1}$	N	N	-7	2	1.2857143	0.416667	0.583333	-4	15	-19
13	13^{1}	Y	Y	-2	0	1.0000000	0.384615	0.615385	-6	15	-21
14	$2^{1}7^{1}$	Y	N	5	0	1.0000000	0.428571	0.571429	-1	20	-21
15	$3^{1}5^{1}$	Y	N	5	0	1.0000000	0.466667	0.533333	4	25	-21
16	2^4	N	Y	2	0	2.5000000	0.500000	0.500000	6	27	-21
17	17^{1}	Y	Y	-2	0	1.0000000	0.470588	0.529412	4	27	-23
18	$2^{1}3^{2}$	N	N	-7	2	1.2857143	0.444444	0.555556	-3	27	-30
19	19^{1}	Y	Y	-2	0	1.0000000	0.421053	0.578947	-5	27	-32
20	$2^{2}5^{1}$	N	N	-7	2	1.2857143	0.400000	0.600000	-12	27	-39
21	$3^{1}7^{1}$	Y	N	5	0	1.0000000	0.428571	0.571429	-7	32	-39
22	$2^{1}11^{1}$	Y	N	5	0	1.0000000	0.454545	0.545455	-2	37	-39
23	23^{1}	Y	Y	-2	0	1.0000000	0.434783	0.565217	-4	37	-41
24	$2^{3}3^{1}$	N	N	9	4	1.5555556	0.458333	0.541667	5	46	-41
25	5^2	N	Y	2	0	1.5000000	0.480000	0.520000	7	48	-41
26	$2^{1}13^{1}$	Y	N	5	0	1.0000000	0.500000	0.500000	12	53	-41
27	3^3	N	Y	-2	0	2.0000000	0.481481	0.518519	10	53	-43
28	$2^{2}7^{1}$	N	N	-7	2	1.2857143	0.464286	0.535714	3	53	-50
29	29^{1}	Y	Y	-2	0	1.0000000	0.448276	0.551724	1	53	-52
30	$2^{1}3^{1}5^{1}$	Y	N	-16	0	1.0000000	0.433333	0.566667	-15	53	-68
31	31^{1}	Y	Y	-2	0	1.0000000	0.419355	0.580645	-17	53	-70
32	2^{5}	N	Y	-2	0	3.0000000	0.406250	0.593750	-19	53	-72
33	$3^{1}11^{1}$	Y	N	5	0	1.0000000	0.424242	0.575758	-14	58	-72
34	$2^{1}17^{1}$	Y	N	5	0	1.0000000	0.441176	0.558824	-9	63	-72
35	$5^{1}7^{1}$	Y	N	5	0	1.0000000	0.457143	0.542857	-4	68	-72
36	$2^{2}3^{2}$	N	N	14	9	1.3571429	0.472222	0.527778	10	82	-72
37	37^{1}	Y	Y	-2	0	1.0000000	0.459459	0.540541	8	82	-74
38	$2^{1}19^{1}$	Y	N	5	0	1.0000000	0.473684	0.526316	13	87	-74
39	$3^{1}13^{1}$	Y	N	5	0	1.0000000	0.487179	0.512821	18	92	-74
40	$2^{3}5^{1}$	N	N	9	4	1.5555556	0.500000	0.500000	27	101	-74
41	41^{1}	Y	Y	-2	0	1.0000000	0.487805	0.512195	25	101	-76
42	$2^{1}3^{1}7^{1}$	Y	N	-16	0	1.0000000	0.476190	0.523810	9	101	-92
43	43^1	Y	Y	-2	0	1.0000000	0.465116	0.534884	7	101	-94
44	2^211^1	N	N	-7	2	1.2857143	0.454545	0.545455	0	101	-101
45	$3^{2}5^{1}$	N	N	-7	2	1.2857143	0.44444	0.555556	-7	101	-108
46	$2^{1}23^{1}$	Y	N	5	0	1.0000000	0.456522	0.543478	-2	106	-108
47	47^{1}	Y	Y	-2	0	1.0000000	0.446809	0.553191	-4	106	-110
48	2^43^1	N	N	-11	6	1.8181818	0.437500	0.562500	-15	106	-121

Table T.1: Computations with $g^{-1}(n) \equiv (\omega + 1)^{-1}(n)$ for $1 \le n \le 500$.

[▶] The column labeled Primes provides the prime factorization of each n so that the values of $\omega(n)$ and $\Omega(n)$ are easily extracted. The columns labeled Sqfree and PPower, respectively, list inclusion of n in the sets of squarefree integers and the prime powers.

<sup>The next three columns provide the explicit values of the inverse function g⁻¹(n) and compare its explicit value with other estimates. We define the function f̂₁(n) := ∑_{k=0}^{ω(n)} (^{ω(n)}_k) ⋅ k!.
The last several columns indicate properties of the summatory function of g⁻¹(n). The notation for the densities of the</sup>

The last several columns indicate properties of the summatory function of $g^{-1}(n)$. The notation for the densities of the sign weight of $g^{-1}(n)$ is defined as $\mathcal{L}_{\pm}(x) := \frac{1}{n} \cdot \# \{n \le x : \lambda(n) = \pm 1\}$. The last three columns then show the explicit components to the signed summatory function, $G^{-1}(x) := \sum_{n \le x} g^{-1}(n)$, decomposed into its respective positive and negative magnitude sum contributions: $G^{-1}(x) = G_{+}^{-1}(x) + G_{-}^{-1}(x)$ where $G_{+}^{-1}(x) > 0$ and $G_{-}^{-1}(x) < 0$ for all $x \ge 1$.

n	Primes	Sqfree	PPower	$g^{-1}(n)$	$\lambda(n)g^{-1}(n) - \widehat{f}_1(n)$	$\frac{\sum_{d\mid n} C_{\Omega(d)}(d)}{ g^{-1}(n) }$	$\mathcal{L}_{+}(n)$	$\mathcal{L}_{-}(n)$	$G^{-1}(n)$	$G_{+}^{-1}(n)$	$G_{-}^{-1}(n)$
49	72	N	Y	2	$\frac{\chi(n)g^{-}(n)-f_1(n)}{0}$	$ g^{-1}(n) $ 1.5000000	0.448980	0.551020	-13	108	$\frac{G_{-}(n)}{-121}$
50	$2^{1}5^{2}$	N	N	-7	2	1.2857143	0.440000	0.560000	-20	108	-121
51	$3^{1}17^{1}$	Y	N	5	0	1.0000000	0.450980	0.549020	-15	113	-128
52	2^213^1	N	N	-7	2	1.2857143	0.442308	0.557692	-22	113	-135
53	53^{1}	Y	Y	-2	0	1.0000000	0.433962	0.566038	-24	113	-137
54	$2^{1}3^{3}$	N	N	9	4	1.5555556	0.444444	0.555556	-15	122	-137
55	$5^{1}11^{1}$	Y	N	5	0	1.0000000	0.454545	0.545455	-10	127	-137
56	$2^{3}7^{1}$	N	N	9	4	1.5555556	0.464286	0.535714	-1	136	-137
57	$3^{1}19^{1}$	Y	N	5	0	1.0000000	0.473684	0.526316	4	141	-137
58	$2^{1}29^{1}$	Y	N	5	0	1.0000000	0.482759	0.517241	9	146	-137
59	59 ¹	Y	Y	-2	0	1.0000000	0.474576	0.525424	7	146	-139
60	$2^{2}3^{1}5^{1}$	N	N	30	14	1.1666667	0.483333	0.516667	37	176	-139
61	61 ¹	Y	Y	-2	0	1.0000000	0.475410	0.524590	35	176	-141
62 63	$2^{1}31^{1}$ $3^{2}7^{1}$	Y N	N N	5 -7	$0 \\ 2$	1.0000000 1.2857143	0.483871 0.476190	0.516129 0.523810	40 33	181 181	$-141 \\ -148$
64	2^6	N	Y	2	0	3.5000000	0.470190	0.525610 0.515625	35	183	-148 -148
65	$5^{1}13^{1}$	Y	N	5	0	1.0000000	0.492308	0.507692	40	188	-148
66	$2^{1}3^{1}11^{1}$	Y	N	-16	0	1.0000000	0.484848	0.515152	24	188	-164
67	67^{1}	Y	Y	-2	0	1.0000000	0.477612	0.522388	22	188	-166
68	2^217^1	N	N	-7	2	1.2857143	0.470588	0.529412	15	188	-173
69	$3^{1}23^{1}$	Y	N	5	0	1.0000000	0.478261	0.521739	20	193	-173
70	$2^{1}5^{1}7^{1}$	Y	N	-16	0	1.0000000	0.471429	0.528571	4	193	-189
71	71^{1}	Y	Y	-2	0	1.0000000	0.464789	0.535211	2	193	-191
72	$2^{3}3^{2}$	N	N	-23	18	1.4782609	0.458333	0.541667	-21	193	-214
73	73^{1}	Y	Y	-2	0	1.0000000	0.452055	0.547945	-23	193	-216
74	$2^{1}37^{1}$	Y	N	5	0	1.0000000	0.459459	0.540541	-18	198	-216
75	$3^{1}5^{2}$	N	N	-7	2	1.2857143	0.453333	0.546667	-25	198	-223
76	$2^{2}19^{1}$	N	N	-7	2	1.2857143	0.447368	0.552632	-32	198	-230
77	$7^{1}11^{1}$	Y	N	5	0	1.0000000	0.454545	0.545455	-27	203	-230
78	$2^{1}3^{1}13^{1}$ 79^{1}	Y	N	-16	0	1.0000000	0.448718	0.551282	-43	203	-246
79 80	$2^{4}5^{1}$	Y N	Y N	$-2 \\ -11$	0 6	1.0000000 1.8181818	0.443038 0.437500	0.556962 0.562500	-45 -56	203 203	$-248 \\ -259$
81	$\frac{2}{3^4}$	N	Y	2	0	2.5000000	0.437300	0.555556	-54	205	-259 -259
82	$2^{1}41^{1}$	Y	N	5	0	1.0000000	0.451220	0.548780	-49	210	-259
83	831	Y	Y	-2	0	1.0000000	0.445783	0.554217	-51	210	-261
84	$2^{2}3^{1}7^{1}$	N	N	30	14	1.1666667	0.452381	0.547619	-21	240	-261
85	$5^{1}17^{1}$	Y	N	5	0	1.0000000	0.458824	0.541176	-16	245	-261
86	$2^{1}43^{1}$	Y	N	5	0	1.0000000	0.465116	0.534884	-11	250	-261
87	$3^{1}29^{1}$	Y	N	5	0	1.0000000	0.471264	0.528736	-6	255	-261
88	$2^{3}11^{1}$	N	N	9	4	1.5555556	0.477273	0.522727	3	264	-261
89	89 ¹	Y	Y	-2	0	1.0000000	0.471910	0.528090	1	264	-263
90	$2^{1}3^{2}5^{1}$	N	N	30	14	1.1666667	0.477778	0.522222	31	294	-263
91	$7^{1}13^{1}$	Y	N	5	0	1.0000000	0.483516	0.516484	36	299	-263
92	$2^{2}23^{1}$	N	N	-7	2	1.2857143	0.478261	0.521739	29	299	-270
93	$3^{1}31^{1}$ $2^{1}47^{1}$	Y	N	5	0	1.0000000	0.483871	0.516129	34	304	-270
94	$5^{1}19^{1}$	Y Y	N	5	0	1.0000000	0.489362	0.510638	39	309	-270
95 96	$2^{5}3^{1}$	N N	N N	5 13	0 8	1.0000000 2.0769231	0.494737 0.500000	0.505263 0.500000	44 57	$\frac{314}{327}$	$-270 \\ -270$
97	97^{1}	Y	Y	-2	0	1.0000000	0.494845	0.505155	55	327	-270 -272
98	$2^{1}7^{2}$	N	N	-7	2	1.2857143	0.489796	0.510204	48	327	-279
99	3^211^1	N	N	-7	2	1.2857143	0.484848	0.515152	41	327	-286
100	$2^{2}5^{2}$	N	N	14	9	1.3571429	0.490000	0.510000	55	341	-286
101	101^{1}	Y	Y	-2	0	1.0000000	0.485149	0.514851	53	341	-288
102	$2^{1}3^{1}17^{1}$	Y	N	-16	0	1.0000000	0.480392	0.519608	37	341	-304
103	103 ¹	Y	Y	-2	0	1.0000000	0.475728	0.524272	35	341	-306
104	$2^{3}13^{1}$	N	N	9	4	1.5555556	0.480769	0.519231	44	350	-306
105	$3^{1}5^{1}7^{1}$	Y	N	-16	0	1.0000000	0.476190	0.523810	28	350	-322
106	$2^{1}53^{1}$	Y	N	5	0	1.0000000	0.481132	0.518868	33	355	-322
107	107^{1} $2^{2}3^{3}$	Y	Y	-2	0	1.0000000	0.476636	0.523364	31	355	-324
108 109	$\frac{2^2 3^3}{109^1}$	N Y	N V	-23 -2	18	1.4782609	0.472222 0.467890	0.527778	8	355	-347
1109	$2^{1}5^{1}11^{1}$	Y	Y N	-2 -16	0 0	1.0000000 1.0000000	0.467890	0.532110 0.536364	6 -10	355 355	$-349 \\ -365$
111	$3^{1}37^{1}$	Y	N	5	0	1.0000000	0.468468	0.531532	-10 -5	360	-365 -365
111	$2^{4}7^{1}$	N	N	-11	6	1.8181818	0.464286	0.535714	-16	360	-376
113	113 ¹	Y	Y	-2	0	1.0000000	0.460177	0.539823	-18	360	-378
114	$2^13^119^1$	Y	N	-16	0	1.0000000	0.456140	0.543860	-34	360	-394
115	$5^{1}23^{1}$	Y	N	5	0	1.0000000	0.460870	0.539130	-29	365	-394
116	$2^{2}29^{1}$	N	N	-7	2	1.2857143	0.456897	0.543103	-36	365	-401
117	3^213^1	N	N	-7	2	1.2857143	0.452991	0.547009	-43	365	-408
118	$2^{1}59^{1}$	Y	N	5	0	1.0000000	0.457627	0.542373	-38	370	-408
119	$7^{1}17^{1}$	Y	N	5	0	1.0000000	0.462185	0.537815	-33	375	-408
120	$2^{3}3^{1}5^{1}$	N	N	-48	32	1.3333333	0.458333	0.541667	-81	375	-456
121	11^2	N	Y	2	0	1.5000000	0.462810	0.537190	-79	377	-456
122	$2^{1}61^{1}$ $3^{1}41^{1}$	Y	N	5	0	1.0000000	0.467213	0.532787	-74	382	-456
123	$3^{1}41^{1}$ $2^{2}31^{1}$	Y	N	5	0	1.0000000	0.471545	0.528455	-69 76	387	-456
124	∠ 31-	N	N	-7	2	1.2857143	0.467742	0.532258	-76	387	-463

n	Primes	Sqfree	PPower	$g^{-1}(n)$	$\lambda(n)g^{-1}(n) - \widehat{f}_1(n)$	$\frac{\sum_{d\mid n} C_{\Omega(d)}(d)}{ g^{-1}(n) }$	$\mathcal{L}_{+}(n)$	$\mathcal{L}_{-}(n)$	$G^{-1}(n)$	$G_{+}^{-1}(n)$	$G_{-}^{-1}(n)$
125	53	N	Y	-2	0	$\frac{ g^{-1}(n) }{2.0000000}$	0.464000	0.536000	-78	387	-465
126	$2^{1}3^{2}7^{1}$	N	N	30	14	1.1666667	0.468254	0.531746	-48	417	-465
127	127^{1}	Y	Y	-2	0	1.0000000	0.464567	0.535433	-50	417	-467
128	2^{7}	N	Y	-2	0	4.0000000	0.460938	0.539062	-52	417	-469
129	$3^1 43^1$	Y	N	5	0	1.0000000	0.465116	0.534884	-47	422	-469
130	$2^{1}5^{1}13^{1}$	Y	N	-16	0	1.0000000	0.461538	0.538462	-63	422	-485
131	131^{1}	Y	Y	-2	0	1.0000000	0.458015	0.541985	-65	422	-487
132	$2^{2}3^{1}11^{1}$	N	N	30	14	1.1666667	0.462121	0.537879	-35	452	-487
133	$7^{1}19^{1}$	Y	N	5	0	1.0000000	0.466165	0.533835	-30	457	-487
134 135	$2^{1}67^{1}$ $3^{3}5^{1}$	Y N	N N	5 9	0 4	1.0000000 1.555556	0.470149 0.474074	0.529851 0.525926	-25 -16	462 471	$-487 \\ -487$
136	$2^{3}17^{1}$	N	N	9	4	1.5555556	0.474074	0.525926 0.522059	-16 -7	480	-487 -487
137	137^{1}	Y	Y	-2	0	1.0000000	0.4774453	0.525547	-9	480	-489
138	$2^{1}3^{1}23^{1}$	Y	N	-16	0	1.0000000	0.471014	0.528986	-25	480	-505
139	139^{1}	Y	Y	-2	0	1.0000000	0.467626	0.532374	-27	480	-507
140	$2^25^17^1$	N	N	30	14	1.1666667	0.471429	0.528571	3	510	-507
141	3^147^1	Y	N	5	0	1.0000000	0.475177	0.524823	8	515	-507
142	$2^{1}71^{1}$	Y	N	5	0	1.0000000	0.478873	0.521127	13	520	-507
143	$11^{1}13^{1}$	Y	N	5	0	1.0000000	0.482517	0.517483	18	525	-507
144	2^43^2	N	N	34	29	1.6176471	0.486111	0.513889	52	559	-507
145	$5^{1}29^{1}$ $2^{1}73^{1}$	Y	N	5	0	1.0000000	0.489655	0.510345	57	564	-507
146 147	$3^{1}7^{2}$	Y N	N N	5 -7	0 2	1.0000000 1.2857143	0.493151 0.489796	0.506849 0.510204	62 55	569 569	$-507 \\ -514$
147	$2^{2}37^{1}$	N N	N N	-7 -7	2	1.2857143	0.489796	0.510204 0.513514	48	569 569	-514 -521
149	149^{1}	Y	Y	-7	0	1.0000000	0.483221	0.516779	46	569	-521 -523
150	$2^{1}3^{1}5^{2}$	N	N	30	14	1.1666667	0.486667	0.513333	76	599	-523
151	151 ¹	Y	Y	-2	0	1.0000000	0.483444	0.516556	74	599	-525
152	2^319^1	N	N	9	4	1.5555556	0.486842	0.513158	83	608	-525
153	3^217^1	N	N	-7	2	1.2857143	0.483660	0.516340	76	608	-532
154	$2^{1}7^{1}11^{1}$	Y	N	-16	0	1.0000000	0.480519	0.519481	60	608	-548
155	$5^{1}31^{1}$	Y	N	5	0	1.0000000	0.483871	0.516129	65	613	-548
156	$2^{2}3^{1}13^{1}$	N	N	30	14	1.1666667	0.487179	0.512821	95	643	-548
157	157^{1} $2^{1}79^{1}$	Y	Y	-2	0	1.0000000	0.484076	0.515924	93	643	-550
158 159	$3^{1}53^{1}$	Y Y	N N	5 5	0	1.0000000 1.0000000	0.487342 0.490566	0.512658 0.509434	98 103	648 653	-550 -550
160	$2^{5}5^{1}$	N	N	13	8	2.0769231	0.490366	0.509454 0.506250	116	666	-550 -550
161	$7^{1}23^{1}$	Y	N	5	0	1.0000000	0.496894	0.503106	121	671	-550
162	$2^{1}3^{4}$	N	N	-11	6	1.8181818	0.493827	0.506173	110	671	-561
163	163^{1}	Y	Y	-2	0	1.0000000	0.490798	0.509202	108	671	-563
164	2^241^1	N	N	-7	2	1.2857143	0.487805	0.512195	101	671	-570
165	$3^{1}5^{1}11^{1}$	Y	N	-16	0	1.0000000	0.484848	0.515152	85	671	-586
166	$2^{1}83^{1}$	Y	N	5	0	1.0000000	0.487952	0.512048	90	676	-586
167	167 ¹	Y	Y	-2	0	1.0000000	0.485030	0.514970	88	676	-588
168	$2^{3}3^{1}7^{1}$ 13^{2}	N N	N Y	$-48 \\ 2$	32 0	1.3333333	0.482143	0.517857	40	676	-636
169 170	$2^{1}5^{1}17^{1}$	Y	Y N	-16	0	1.5000000 1.0000000	0.485207 0.482353	0.514793 0.517647	42 26	678 678	$-636 \\ -652$
171	3^219^1	N	N	-7	2	1.2857143	0.432333	0.520468	19	678	-659
172	$2^{2}43^{1}$	N	N	-7	2	1.2857143	0.476744	0.523256	12	678	-666
173	173^{1}	Y	Y	-2	0	1.0000000	0.473988	0.526012	10	678	-668
174	$2^1 3^1 29^1$	Y	N	-16	0	1.0000000	0.471264	0.528736	-6	678	-684
175	5^27^1	N	N	-7	2	1.2857143	0.468571	0.531429	-13	678	-691
176	2^411^1	N	N	-11	6	1.8181818	0.465909	0.534091	-24	678	-702
177	$3^{1}59^{1}$	Y	N	5	0	1.0000000	0.468927	0.531073	-19	683	-702
178	$2^{1}89^{1}$	Y	N	5	0	1.0000000	0.471910	0.528090	-14	688	-702
179	179^1 $2^23^25^1$	Y	Y	-2 74	0	1.0000000	0.469274	0.530726	-16	688	-704
180 181	$2^{2}3^{2}5^{1}$ 181^{1}	N Y	N Y	-74 -2	58 0	1.2162162 1.0000000	0.466667 0.464088	0.5333333 0.535912	-90 -92	688 688	$-778 \\ -780$
181	$2^{17}13^{1}$	Y	Y N	-2 -16	0	1.0000000	0.464088	0.535912 0.538462	-92 -108	688	-780 -796
183	$3^{1}61^{1}$	Y	N	5	0	1.0000000	0.461538	0.535519	-108	693	-796 -796
184	$2^{3}23^{1}$	N	N	9	4	1.5555556	0.467391	0.532609	-103 -94	702	-796
185	$5^{1}37^{1}$	Y	N	5	0	1.0000000	0.470270	0.529730	-89	707	-796
186	$2^{1}3^{1}31^{1}$	Y	N	-16	0	1.0000000	0.467742	0.532258	-105	707	-812
187	$11^{1}17^{1}$	Y	N	5	0	1.0000000	0.470588	0.529412	-100	712	-812
188	$2^{2}47^{1}$	N	N	-7	2	1.2857143	0.468085	0.531915	-107	712	-819
189	$3^{3}7^{1}$	N	N	9	4	1.555556	0.470899	0.529101	-98	721	-819
190	$2^{1}5^{1}19^{1}$	Y	N	-16	0	1.0000000	0.468421	0.531579	-114	721	-835
191	191^{1} $2^{6}3^{1}$	Y	Y	-2	0	1.0000000	0.465969	0.534031	-116	721	-837
192	$2^{0}3^{1}$ 193^{1}	N	N	-15	10	2.3333333	0.463542	0.536458	-131	721 721	-852
193 194	193^{-1} $2^{1}97^{1}$	Y Y	Y N	$-2 \\ 5$	0	1.0000000 1.0000000	0.461140 0.463918	0.538860 0.536082	-133 -128	721 726	$-854 \\ -854$
194	$3^{1}5^{1}13^{1}$	Y	N N	-16	0	1.0000000	0.463918	0.538462	-128 -144	726	-854 -870
195	$2^{2}7^{2}$	N Y	N N	14	9	1.3571429	0.461538	0.538462 0.535714	-144 -130	740	-870 -870
197	197^{1}	Y	Y	-2	0	1.0000000	0.461929	0.538071	-130	740	-872
198	$2^{1}3^{2}11^{1}$	N	N	30	14	1.1666667	0.464646	0.535354	-102	770	-872
199	199^{1}	Y	Y	-2	0	1.0000000	0.462312	0.537688	-104	770	-874
200	$2^{3}5^{2}$	N	N	-23	18	1.4782609	0.460000	0.540000	-127	770	-897
		•		•			•		•		

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$g^{-1}(n)$	D	$\lambda(n)g^{-1}(n) - \widehat{f}_1(n)$	$\frac{\sum_{d\mid n} C_{\Omega(d)}(d)}{ g^{-1}(n) }$	$C \cdot (n)$	$f_{-}(n)$	$G^{-1}(n)$	$G_{+}^{-1}(n)$	$G_{-}^{-1}(n)$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			$\lambda(n)g$ $(n) - J_1(n)$		$\mathcal{L}_{+}(n)$	$\mathcal{L}_{-}(n)$		•	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	5		0	1.0000000	0.462687	0.537313	-122	775	-897
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	5		0	1.0000000	0.465347	0.534653	-117	780	-897
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	5		0	1.0000000	0.467980	0.532020	-112	785	-897
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	30		14	1.1666667	0.470588	0.529412	-82	815	-897
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	5		0	1.0000000	0.473171	0.526829	-77	820	-897
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	5		0	1.0000000	0.475728	0.524272	-72	825	-897
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	-7		2	1.2857143	0.473430	0.526570	-79	825	-904
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	-11		6	1.8181818	0.471154	0.528846	-90	825	-915
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	5		0	1.0000000	0.473684	0.526316	-85	830	-915
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	65		0	1.0000000	0.476190	0.523810	-20	895	-915
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	-2		0	1.0000000	0.473934	0.526066	-22	895	-917
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	-7		2	1.2857143	0.471698	0.528302	-29	895	-924
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	5	3^1	0	1.0000000	0.474178	0.525822	-24	900	-924
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	5		0	1.0000000	0.476636	0.523364	-19	905	-924
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5		0	1.0000000	0.479070	0.520930	-14	910	-924
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	46		41	1.5000000	0.481481	0.518519	32	956	-924
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5		0	1.0000000	0.483871	0.516129	37	961	-924
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	5	2^{1}	0	1.0000000	0.486239	0.513761	42	966	-924
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5		0	1.0000000	0.488584	0.511416	47	971	-924
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	30	$2^{2}5$	14	1.1666667	0.490909	0.509091	77	1001	-924
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5		0	1.0000000	0.493213	0.506787	82	1006	-924
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	-16		0	1.0000000	0.490991	0.509009	66	1006	-940
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	-2		0	1.0000000	0.488789	0.511211	64	1006	-942
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	13		8	2.0769231	0.491071	0.508929	77	1019	-942
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	14	3^{2}	9	1.3571429	0.493333	0.506667	91	1033	-942
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5	2^{1}	0	1.0000000	0.495575	0.504425	96	1038	-942
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-2		0	1.0000000	0.493392	0.506608	94	1038	-944
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	30		14	1.1666667	0.495614	0.504386	124	1068	-944
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	-2	22	0	1.0000000	0.493450	0.506550	122	1068	-946
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	-16	$2^{1}5$	0	1.0000000	0.491304	0.508696	106	1068	-962
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	-16	$3^{1}7$	0	1.0000000	0.489177	0.510823	90	1068	-978
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	9	2^3	4	1.5555556	0.491379	0.508621	99	1077	-978
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-2	23	0	1.0000000	0.489270	0.510730	97	1077	-980
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	30	$2^{1}3$	14	1.1666667	0.491453	0.508547	127	1107	-980
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	5	5^1	0	1.0000000	0.493617	0.506383	132	1112	-980
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	-7	2^2	2	1.2857143	0.491525	0.508475	125	1112	-987
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5	3^1	0	1.0000000	0.493671	0.506329	130	1117	-987
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	-16	$2^{1}7$	0	1.0000000	0.491597	0.508403	114	1117	-1003
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	-2	23	0	1.0000000	0.489540	0.510460	112	1117	-1005
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	70	2^{4} 3	54	1.5000000	0.491667	0.508333	182	1187	-1005
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	-2	24	0	1.0000000	0.489627	0.510373	180	1187	-1007
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	-7		2	1.2857143	0.487603	0.512397	173	1187	-1014
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	-2	3	0	3.0000000	0.485597	0.514403	171	1187	-1016
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	-7		2	1.2857143	0.483607	0.516393	164	1187	-1023
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	-7	5^1	2	1.2857143	0.481633	0.518367	157	1187	-1030
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	-16	$2^{1}3$	0	1.0000000	0.479675	0.520325	141	1187	-1046
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	5		0	1.0000000	0.481781	0.518219	146	1192	-1046
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	9	2^3	4	1.5555556	0.483871	0.516129	155	1201	-1046
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5	3^1	0	1.0000000	0.485944	0.514056	160	1206	-1046
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	9	2^{1}	4	1.5555556	0.488000	0.512000	169	1215	-1046
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	-2		0	1.0000000	0.486056	0.513944	167	1215	-1048
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	-74		58	1.2162162	0.484127	0.515873	93	1215	-1122
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5		0	1.0000000	0.486166	0.513834	98	1220	-1122
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	5		0	1.0000000	0.488189	0.511811	103	1225	-1122
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	-16		0	1.0000000	0.486275	0.513725	87	1225	-1138
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2		0	4.5000000	0.488281	0.511719	89	1227	-1138
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	-2		0	1.0000000	0.486381	0.513619	87	1227	-1140
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	-16		0	1.0000000	0.484496	0.515504	71	1227	-1156
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	5		0	1.0000000	0.486486	0.513514	76	1232	-1156
$ \begin{bmatrix} 262 & 2^1131^1 & Y & N \\ 263 & 263^1 & Y & Y \\ 264 & 2^33^111^1 & N & N \\ 265 & 5^153^1 & Y & N \\ 266 & 2^17^119^1 & Y & N \\ 267 & 3^189^1 & Y & N \\ 268 & 2^267^1 & N & N \\ 269 & 269^1 & Y & Y \end{bmatrix} $	30		14	1.1666667	0.488462	0.511538	106	1262	-1156
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	-7		2	1.2857143	0.486590	0.513410	99	1262	-1163
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	5		0	1.0000000	0.488550	0.511450	104	1267	-1163
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	-2		0	1.0000000	0.486692	0.513308	102	1267	-1165
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	-48		32	1.3333333	0.484848	0.515152	54	1267	-1213
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	5		0	1.0000000	0.486792	0.513208	59	1272	-1213
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	-16		0	1.0000000	0.484962	0.515038	43	1272	-1229
269 269 ¹ Y Y	5		0	1.0000000	0.486891	0.513109	48	1277	-1229
	-7		2	1.2857143	0.485075	0.514925	41	1277	-1236
$ 270 2^1 3^3 5^1 N N$	-2		0	1.0000000	0.483271	0.516729	39	1277	-1238
	-48		32	1.3333333	0.481481	0.518519	-9	1277	-1286
271 271 ¹ Y Y	-2		0	1.0000000	0.479705	0.520295	-11	1277	-1288
272 2 ⁴ 17 ¹ N N	-11		6	1.8181818	0.477941	0.522059	-22	1277	-1299
273 3 ¹ 7 ¹ 13 ¹ Y N	-16		0	1.0000000	0.476190	0.523810	-38	1277	-1315
274 2 ¹ 137 ¹ Y N	5		0	1.0000000	0.478102	0.521898	-33	1282	-1315
275 5 ² 11 ¹ N N	-7		2	1.2857143	0.476364	0.523636	-40	1282	-1322
276 2 ² 3 ¹ 23 ¹ N N	30		14	1.1666667	0.478261	0.521739	-10	1312	-1322
277 277 ¹ Y Y	-2	27	0	1.0000000	0.476534	0.523466	-12	1312	-1324

n	Primes	Sqfree	PPower	$g^{-1}(n)$	$\lambda(n)g^{-1}(n) - \widehat{f}_1(n)$	$\frac{\sum_{d\mid n} C_{\Omega(d)}(d)}{ g^{-1}(n) }$	$\mathcal{L}_{+}(n)$	$\mathcal{L}_{-}(n)$	$G^{-1}(n)$	$G_{+}^{-1}(n)$	$G_{-}^{-1}(n)$
278	$2^{1}139^{1}$	Y	N	5	0	$\frac{ g^{-1}(n) }{1.0000000}$	0.478417	0.521583	-7	1317	-1324
279	3^231^1	N	N	-7	2	1.2857143	0.476703	0.523297	-14	1317	-1331
280	$2^35^17^1$	N	N	-48	32	1.3333333	0.475000	0.525000	-62	1317	-1379
281	281 ¹	Y	Y	-2	0	1.0000000	0.473310	0.526690	-64	1317	-1381
282	$2^{1}3^{1}47^{1}$	Y	N	-16	0	1.0000000	0.471631	0.528369	-80	1317	-1397
283	283 ¹	Y	Y	-2	0	1.0000000	0.469965	0.530035	-82	1317	-1399
284	$2^{2}71^{1}$	N	N	-7	2	1.2857143	0.468310	0.531690	-89	1317	-1406
285	$3^{1}5^{1}19^{1}$	Y	N	-16	0	1.0000000	0.466667	0.533333	-105	1317	-1422
286	$2^{1}11^{1}13^{1}$	Y	N	-16	0	1.0000000	0.465035	0.534965	-121	1317	-1438
287	$7^{1}41^{1}$	Y	N	5	0	1.0000000	0.466899	0.533101	-116	1322	-1438
288	$2^{5}3^{2}$	N	N	-47	42	1.7659574	0.465278	0.534722	-163	1322	-1485
289	17^{2}	N	Y	2	0	1.5000000	0.467128	0.532872	-161	1324	-1485
290	$2^{1}5^{1}29^{1}$	Y	N	-16	0	1.0000000	0.465517	0.534483	-177	1324	-1501
291	$3^{1}97^{1}$	Y	N	5	0	1.0000000	0.467354	0.532646	-172	1329	-1501
292	2^273^1	N	N	-7	2	1.2857143	0.465753	0.534247	-179	1329	-1508
293	293 ¹	Y	Y	-2	0	1.0000000	0.464164	0.535836	-181	1329	-1510
294	$2^{1}3^{1}7^{2}$	N	N	30	14	1.1666667	0.465986	0.534014	-151	1359	-1510
295	$5^{1}59^{1}$	Y	N	5	0	1.0000000	0.467797	0.532203	-146	1364	-1510
296	$2^{3}37^{1}$	N	N	9	4	1.5555556	0.469595	0.530405	-137	1373	-1510
297	$3^{3}11^{1}$	N	N	9	4	1.5555556	0.403333	0.528620	-128	1382	-1510 -1510
298	$2^{1}149^{1}$	Y	N	5	0	1.0000000	0.473154	0.526846	-123	1387	-1510
299	$13^{1}23^{1}$	Y	N	5	0	1.0000000	0.474916	0.525084	-118	1392	-1510
300	$2^{2}3^{1}5^{2}$	N	N	-74	58	1.2162162	0.474310	0.526667	-113	1392	-1510 -1584
301	$7^{1}43^{1}$	Y	N	5	0	1.0000000	0.475083	0.524917	-187	1397	-1584
302	$2^{1}151^{1}$	Y	N	5	0	1.0000000	0.476821	0.524317	-182	1402	-1584
303	$3^{1}101^{1}$	Y	N	5	0	1.0000000	0.478548	0.523179	-177	1407	-1584
304	2^419^1	N	N	-11	6	1.8181818	0.476974	0.523026	-188	1407	-1594 -1595
305	$5^{1}61^{1}$	Y	N	5	0	1.0000000	0.478689	0.521311	-183	1412	-1595
306	$2^{1}3^{2}17^{1}$	N	N	30	14	1.1666667	0.480392	0.519608	-153	1442	-1595
307	307^{1}	Y	Y	-2	0	1.0000000	0.478827	0.521173	-155	1442	-1597
308	$2^{2}7^{1}11^{1}$	N	N	30	14	1.1666667	0.480519	0.519481	-125	1472	-1597
309	$3^{1}103^{1}$	Y	N	5	0	1.0000000	0.482201	0.517799	-120	1477	-1597
310	$2^{1}5^{1}31^{1}$	Y	N	-16	0	1.0000000	0.480645	0.519355	-136	1477	-1613
311	311 ¹	Y	Y	-2	0	1.0000000	0.479100	0.520900	-138	1477	-1615
312	$2^{3}3^{1}13^{1}$	N	N	-48	32	1.3333333	0.477564	0.522436	-186	1477	-1663
313	313 ¹	Y	Y	-2	0	1.0000000	0.476038	0.523962	-188	1477	-1665
314	$2^{1}157^{1}$	Y	N	5	0	1.0000000	0.477707	0.522293	-183	1482	-1665
315	$3^25^17^1$	N	N	30	14	1.1666667	0.479365	0.520635	-153	1512	-1665
316	$2^{2}79^{1}$	N	N	-7	2	1.2857143	0.477848	0.522152	-160	1512	-1672
317	317^{1}	Y	Y	-2	0	1.0000000	0.4776341	0.523659	-162	1512	-1672 -1674
318	$2^{1}3^{1}53^{1}$	Y	N	-16	0	1.0000000	0.474843	0.525157	-178	1512	-1690
319	$11^{1}29^{1}$	Y	N	5	0	1.0000000	0.476489	0.523511	-173	1517	-1690
320	$2^{6}5^{1}$	N	N	-15	10	2.3333333	0.475000	0.525000	-188	1517	-1705
321	$3^{1}107^{1}$	Y	N	5	0	1.0000000	0.476636	0.523364	-183	1522	-1705
322	$2^{1}7^{1}23^{1}$	Y	N	-16	0	1.0000000	0.475155	0.524845	-199	1522	-1721
323	$17^{1}19^{1}$	Y	N	5	0	1.0000000	0.476780	0.523220	-194	1527	-1721
324	$2^{2}3^{4}$	N	N	34	29	1.6176471	0.478395	0.521605	-160	1561	-1721
325	$5^{2}13^{1}$	N	N	-7	2	1.2857143	0.476923	0.523077	-167	1561	-1728
326	$2^{1}163^{1}$	Y	N	5	0	1.0000000	0.478528	0.521472	-162	1566	-1728
327	$3^{1}109^{1}$	Y	N	5	0	1.0000000	0.480122	0.521472	-157	1571	-1728 -1728
328	$2^{3}41^{1}$	N	N	9	4	1.5555556	0.481707	0.518293	-148	1580	-1728
329	$7^{1}47^{1}$	Y	N	5	0	1.0000000	0.483283	0.516717	-143	1585	-1728
330	$2^{1}3^{1}5^{1}11^{1}$	Y	N	65	0	1.0000000	0.484848	0.515152	-78	1650	-1728
331	331 ¹	Y	Y	-2	0	1.0000000	0.483384	0.516616	-80	1650	-1730
332	$2^{2}83^{1}$	N	N	-7	2	1.2857143	0.481928	0.518072	-87	1650	-1737
333	$3^{2}37^{1}$	N	N	-7	2	1.2857143	0.480480	0.519520	-94	1650	-1744
334	$2^{1}167^{1}$	Y	N	5	0	1.0000000	0.482036	0.517964	-89	1655	-1744
335	$5^{1}67^{1}$	Y	N	5	0	1.0000000	0.483582	0.516418	-84	1660	-1744
336	$2^{4}3^{1}7^{1}$	N	N	70	54	1.5000000	0.485119	0.514881	-14	1730	-1744
337	337^{1}	Y	Y	-2	0	1.0000000	0.483680	0.514331	-14	1730	-1744 -1746
338	$2^{1}13^{2}$	N	N	-2 -7	2	1.2857143	0.482249	0.517751	-23	1730	-1740 -1753
339	$3^{1}113^{1}$	Y	N	5	0	1.0000000	0.482249	0.516224	-18	1735	-1753 -1753
340	$2^{2}5^{1}17^{1}$	N	N	30	14	1.1666667	0.485294	0.514706	12	1765	-1753 -1753
341	$11^{1}31^{1}$	Y	N	5	0	1.0000007	0.486804	0.513196	17	1770	-1753 -1753
342	$2^{1}3^{2}19^{1}$	N	N	30	14	1.1666667	0.488304	0.5111696	47	1800	-1753 -1753
343	7^{3}	N	Y	-2	0	2.0000000	0.486880	0.511090	45	1800	-1755
344	$2^{3}43^{1}$	N	N	9	4	1.5555556	0.488372	0.513120	54	1809	-1755
345	$3^{1}5^{1}23^{1}$	Y	N	-16	0	1.0000000	0.486957	0.511028	38	1809	-1733 -1771
346	$2^{1}173^{1}$	Y	N	5	0	1.0000000	0.488439	0.513043	43	1814	-1771 -1771
346 347	347^{1}	Y	Y	-2	0	1.0000000	0.488439	0.511561	43	1814	-1771 -1773
348	$2^{2}3^{1}29^{1}$	N Y	Y N	30	14	1.1666667	0.487032	0.512968 0.511494	71	1814	-1773 -1773
349	349^{1}	Y	Y	-2	0	1.0000007	0.488306	0.511494	69	1844	-1775
350	$2^{1}5^{2}7^{1}$	N Y	Y N	30		1.1666667	0.487106		99	1844	-1775 -1775
	201	1 1N	1N	1 30	14	1.1000007	0.4000/1	0.511429	99	10/4	-1110

n	Primes	Sqfree	PPower	$g^{-1}(n)$	$\lambda(n)g^{-1}(n) - \widehat{f}_1(n)$	$\frac{\sum_{d\mid n} C_{\Omega(d)}(d)}{ g^{-1}(n) }$	$\mathcal{L}_{+}(n)$	$\mathcal{L}_{-}(n)$	$G^{-1}(n)$	$G_{+}^{-1}(n)$	$G_{-}^{-1}(n)$
351	$3^{3}13^{1}$	N	N	9	4	$\frac{ g^{-1}(n) }{1.5555556}$	0.490028	0.509972	108	1883	-1775
352	$2^{5}11^{1}$	N	N	13	8	2.0769231	0.491477	0.508523	121	1896	-1775
353	353^{1}	Y	Y	-2	0	1.0000000	0.490085	0.509915	119	1896	-1777
354	$2^{1}3^{1}59^{1}$	Y	N	-16	0	1.0000000	0.488701	0.511299	103	1896	-1793
355	$5^{1}71^{1}$	Y	N	5	0	1.0000000	0.490141	0.509859	108	1901	-1793
356	2^289^1	N	N	-7	2	1.2857143	0.488764	0.511236	101	1901	-1800
357	$3^17^117^1$	Y	N	-16	0	1.0000000	0.487395	0.512605	85	1901	-1816
358	$2^{1}179^{1}$	Y	N	5	0	1.0000000	0.488827	0.511173	90	1906	-1816
359	359^{1}	Y	Y	-2	0	1.0000000	0.487465	0.512535	88	1906	-1818
360	$2^33^25^1$	N	N	145	129	1.3034483	0.488889	0.511111	233	2051	-1818
361	19^{2}	N	Y	2	0	1.5000000	0.490305	0.509695	235	2053	-1818
362	$2^{1}181^{1}$	Y	N	5	0	1.0000000	0.491713	0.508287	240	2058	-1818
363	$3^{1}11^{2}$	N	N	-7	2	1.2857143	0.490358	0.509642	233	2058	-1825
364	$2^{2}7^{1}13^{1}$	N	N	30	14	1.1666667	0.491758	0.508242	263	2088	-1825
365	$5^{1}73^{1}$	Y	N	5	0	1.0000000	0.493151	0.506849	268	2093	-1825
366	$2^{1}3^{1}61^{1}$	Y	N	-16	0	1.0000000	0.491803	0.508197	252	2093	-1841
367	367^{1} $2^{4}23^{1}$	Y	Y	-2	0	1.0000000	0.490463	0.509537	250	2093	-1843
368	$3^{2}41^{1}$	N	N	-11	6	1.8181818	0.489130	0.510870	239	2093	-1854
369	$2^{1}5^{1}37^{1}$	N	N	-7	2	1.2857143	0.487805 0.486486	0.512195	232	2093	-1861
370	$7^{1}53^{1}$	Y Y	N N	-16	0	1.0000000		0.513514	216	2093	-1877
371 372	$2^{2}3^{1}31^{1}$	N Y	N N	5 30	14	1.0000000 1.1666667	0.487871 0.489247	0.512129 0.510753	221 251	2098 2128	-1877 -1877
373	$\frac{2}{373^1}$	Y	Y	-2	0	1.0000000	0.489247	0.510753	249	2128	-1877 -1879
374	$2^{1}11^{1}17^{1}$	Y	N	-16	0	1.0000000	0.487930	0.512004	233	2128	-1875 -1895
375	$3^{1}5^{3}$	N	N	9	4	1.5555556	0.488000	0.513309	242	2128	-1895 -1895
376	$2^{3}47^{1}$	N	N	9	4	1.5555556	0.489362	0.512668	251	2146	-1895
377	$13^{1}29^{1}$	Y	N	5	0	1.0000000	0.490716	0.509284	256	2151	-1895
378	$2^{1}3^{3}7^{1}$	N	N	-48	32	1.3333333	0.489418	0.510582	208	2151	-1943
379	379^{1}	Y	Y	-2	0	1.0000000	0.488127	0.511873	206	2151	-1945
380	$2^25^119^1$	N	N	30	14	1.1666667	0.489474	0.510526	236	2181	-1945
381	3^1127^1	Y	N	5	0	1.0000000	0.490814	0.509186	241	2186	-1945
382	$2^{1}191^{1}$	Y	N	5	0	1.0000000	0.492147	0.507853	246	2191	-1945
383	383^{1}	Y	Y	-2	0	1.0000000	0.490862	0.509138	244	2191	-1947
384	$2^{7}3^{1}$	N	N	17	12	2.5882353	0.492188	0.507812	261	2208	-1947
385	$5^{1}7^{1}11^{1}$	Y	N	-16	0	1.0000000	0.490909	0.509091	245	2208	-1963
386	$2^{1}193^{1}$	Y	N	5	0	1.0000000	0.492228	0.507772	250	2213	-1963
387	$3^{2}43^{1}$	N	N	-7	2	1.2857143	0.490956	0.509044	243	2213	-1970
388	$2^{2}97^{1}$	N	N	-7	2	1.2857143	0.489691	0.510309	236	2213	-1977
389	389^{1}	Y	Y	-2	0	1.0000000	0.488432	0.511568	234	2213	-1979
390	$2^{1}3^{1}5^{1}13^{1}$	Y	N	65	0	1.0000000	0.489744	0.510256	299	2278	-1979
391	$17^{1}23^{1}$ $2^{3}7^{2}$	Y	N	5	0	1.0000000	0.491049	0.508951	304	2283	-1979
392	$3^{1}131^{1}$	N Y	N	-23	18	1.4782609	0.489796	0.510204	281	2283	-2002
393	$2^{1}197^{1}$	Y	N N	5	0	1.0000000	0.491094	0.508906	286	2288	-2002
394 395	$5^{1}79^{1}$	Y	N N	5 5	0	1.0000000 1.0000000	0.492386 0.493671	0.507614	291	2293	-2002 -2002
396	$2^{2}3^{2}11^{1}$	N N	N	-74	58	1.2162162	0.493671	0.506329 0.507576	296 222	2298 2298	-2002 -2076
397	397^{1}	Y	Y	-74	0	1.0000000	0.492424	0.508816	222	2298	-2078
398	$2^{1}199^{1}$	Y	N	5	0	1.0000000	0.491164	0.507538	225	2303	-2078
399	$3^{1}7^{1}19^{1}$	Y	N	-16	0	1.0000000	0.491228	0.508772	209	2303	-2094
400	$2^{4}5^{2}$	N	N	34	29	1.6176471	0.492500	0.507500	243	2337	-2094
401	401 ¹	Y	Y	-2	0	1.0000000	0.491272	0.508728	241	2337	-2096
402	$2^{1}3^{1}67^{1}$	Y	N	-16	0	1.0000000	0.490050	0.509950	225	2337	-2112
403	$13^{1}31^{1}$	Y	N	5	0	1.0000000	0.491315	0.508685	230	2342	-2112
404	2^2101^1	N	N	-7	2	1.2857143	0.490099	0.509901	223	2342	-2119
405	$3^{4}5^{1}$	N	N	-11	6	1.8181818	0.488889	0.511111	212	2342	-2130
406	$2^{1}7^{1}29^{1}$	Y	N	-16	0	1.0000000	0.487685	0.512315	196	2342	-2146
407	$11^{1}37^{1}$	Y	N	5	0	1.0000000	0.488943	0.511057	201	2347	-2146
408	$2^{3}3^{1}17^{1}$	N	N	-48	32	1.3333333	0.487745	0.512255	153	2347	-2194
409	409^{1}	Y	Y	-2	0	1.0000000	0.486553	0.513447	151	2347	-2196
410	$2^{1}5^{1}41^{1}$	Y	N	-16	0	1.0000000	0.485366	0.514634	135	2347	-2212
411	$3^{1}137^{1}$	Y	N	5_	0	1.0000000	0.486618	0.513382	140	2352	-2212
412	$2^{2}103^{1}$	N	N	-7	2	1.2857143	0.485437	0.514563	133	2352	-2219
413	$7^{1}59^{1}$	Y	N	5	0	1.0000000	0.486683	0.513317	138	2357	-2219
414	$2^{1}3^{2}23^{1}$ $5^{1}83^{1}$	N	N	30	14	1.1666667	0.487923	0.512077	168	2387	-2219
415	$\frac{5^{1}83^{1}}{2^{5}13^{1}}$	Y	N	5	0	1.0000000	0.489157	0.510843	173	2392	-2219
416	$3^{1}13^{1}$	N Y	N N	13 5	8	2.0769231 1.0000000	0.490385 0.491607	0.509615	186	2405	-2219
417 418	$2^{1}11^{1}19^{1}$	Y	N N	5 -16	0	1.0000000	0.491607	0.508393 0.509569	191 175	2410 2410	-2219 -2235
418	419 ¹	Y	Y	-16 -2	0	1.0000000	0.490431	0.509569	173	2410	-2235 -2237
419	$2^{2}3^{1}5^{1}7^{1}$	N Y	Y N	-2 -155	90	1.1032258	0.489260	0.510740	18	2410	-2237 -2392
420	421^{1}	Y	Y	-155 -2	0	1.0000000	0.486936	0.511905	16	2410	-2392 -2394
421	$2^{1}211^{1}$	Y	Y N	5	0	1.0000000	0.486936	0.513064	21	2410	-2394 -2394
423	$3^{2}47^{1}$	N	N	-7	2	1.2857143	0.486998	0.511048	14	2415	-2394 -2401
424	$2^{3}53^{1}$	N	N	9	4	1.5555556	0.488208	0.511792	23	2424	-2401 -2401
425	5^217^1	N	N	-7	2	1.2857143	0.487059	0.512941	16	2424	-2408
		1			-		1		1		

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	4 2421				$\mathcal{L}_{+}(n)$	$\frac{\sum_{d\mid n} C_{\Omega(d)}(d)}{ g^{-1}(n) }$	$\lambda(n)g^{-1}(n) - \widehat{f}_1(n)$	$g^{-1}(n)$	PPower	Sqfree	Primes	n
428 2 ² 107 ¹ N	-2424	2424	0	0.514085	0.485915		0	-16	N	Y	$2^{1}3^{1}71^{1}$	426
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		2429	5				0			Y	$7^{1}61^{1}$	427
430 2 ¹ / ₅ 143 ¹ Y N -16	-2431	2429	-2	0.514019	0.485981	1.2857143	2	-7	N	N	2^2107^1	428
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	-2447	2429	-18	0.515152	0.484848	1.0000000	0	-16	N	Y		429
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	-2463	2429	-34	0.516279	0.483721	1.0000000	0	-16				430
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	-2465	2429	-36	0.517401	0.482599	1.0000000	0		Y	Y		431
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		2429		0.518519								
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		2429										
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		2429										
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		2429										
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		2429 2434										
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		2434										
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		2434										
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		2434										
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		2448								N	3^27^2	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		2448						-16		Y	$2^113^117^1$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	-2670	2448	-222	0.525959	0.474041	1.0000000	0	-2	Y	Y		443
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	-2670	2478	-192	0.524775	0.475225	1.1666667	14	30	N	N		444
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		2483										
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		2488										
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		2493										
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		2493										
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		2493										
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		2493 2498										
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		2498										
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		2503										
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		2508							N	Y	2^1227^1	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	-2784	2508	-276	0.523077	0.476923	1.0000000	0	-16	N	Y		455
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	-2832	2508	-324	0.524123	0.475877	1.3333333						456
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		2508										
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		2513										
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		2522										
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		2552 2552										
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		2552 2617										
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		2617										
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		2617										
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		2617								Y	$3^{1}5^{1}31^{1}$	465
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	-2865	2622	-243	0.523605	0.476395	1.0000000	0	5	N	Y		466
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		2622										
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		2622										
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		2627								1		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		2627										
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		2632 2641										
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		2646										
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		2646										
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		2646										
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		2676										
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	-2987	2676	-311	0.524109	0.475891	1.2857143		-7	N	N		477
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		2681										
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		2681										
$ \begin{bmatrix} 482 & 2^1241^1 & Y & N & 5 & 0 & 1.000000 & 0.477178 & 0.522822 & -394 \\ 483 & 3^17^123^1 & Y & N & -16 & 0 & 1.000000 & 0.476190 & 0.523810 & -410 \\ 484 & 2^211^2 & N & N & 14 & 9 & 1.3571429 & 0.477273 & 0.522727 & -396 \\ 485 & 5^197^1 & Y & N & 5 & 0 & 1.000000 & 0.478351 & 0.521649 & -391 \\ 486 & 2^13^5 & N & N & 13 & 8 & 2.0769231 & 0.479424 & 0.520576 & -378 \\ \end{bmatrix} $		2681										
$ \begin{bmatrix} 483 & 3^17^123^1 & Y & N & -16 & 0 & 1.000000 & 0.476190 & 0.523810 & -410 \\ 484 & 2^211^2 & N & N & 14 & 9 & 1.3571429 & 0.477273 & 0.522727 & -396 \\ 485 & 5^197^1 & Y & N & 5 & 0 & 1.000000 & 0.478351 & 0.521649 & -391 \\ 486 & 2^13^5 & N & N & 13 & 8 & 2.0769231 & 0.479424 & 0.520576 & -378 \\ \end{bmatrix} $		2686										
		$\frac{2691}{2691}$										
		2705										
486 2 ¹ 3 ⁵ N N 13 8 2.0769231 0.479424 0.520576 -378		2710								1		
		2723										
		2723										
488 2 ³ 61 ¹ N N 9 4 1.5555556 0.479508 0.520492 -371		2732										
489 3 ¹ 163 ¹ Y N 5 0 1.0000000 0.480573 0.519427 -366		2737										
490 2 ¹ 5 ¹ 7 ² N N 30 14 1.1666667 0.481633 0.518367 -336		2767										
491 491 ¹ Y Y -2 0 1.000000 0.480652 0.519348 -338		2767										
		2797 2802										
$ \begin{vmatrix} 493 & 17^129^1 & Y & N & 5 & 0 & 1.0000000 & 0.482759 & 0.517241 & -303 \\ 494 & 2^113^119^1 & Y & N & -16 & 0 & 1.0000000 & 0.481781 & 0.518219 & -319 \end{vmatrix} $		2802										
495 3 ² 5 ¹ 11 ¹ N N 30 14 1.1666667 0.482828 0.517172 -289		2832										
496 2 ⁴ 31 ¹ N N -11 6 1.8181818 0.481855 0.518145 -300		2832										
497 7 ¹ 71 ¹ Y N 5 0 1.0000000 0.482897 0.517103 -295		2837										
$oxed{498} 2^{1}3^{1}83^{1} Y N -16 0 1.0000000 0.481928 0.518072 -311$		2837		0.518072					N	Y		498
$\begin{bmatrix} 499 & 499^1 & Y & Y & -2 & 0 & 1.0000000 & 0.480962 & 0.519038 & -313 \end{bmatrix}$		2837										
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	-3173	2837	-336	0.520000	0.480000	1.4782609	18	-23	N	N	2^25^3	500

Table: Approximations of the summatory functions of $\lambda(n)$ and $\lambda_*(n)$ T.2

x	L(x)	$R_{\pm}(x)$	$\frac{L(x)}{L_{\approx,1}(x)}$	$\frac{L(x)}{L_{\approx,2}(x)}$	x	$L_*(x)$	$\frac{L_*(x)}{L^*_{\approx}(x)}$	x	L(x)	$R_{\pm}(x)$	$\frac{L(x)}{L_{\approx,1}(x)}$	$\frac{L(x)}{L_{\approx,2}(x)}$	x	$L_*(x)$	$\frac{L_*(x)}{L^*_{\approx}(x)}$
100000	-401	1	0.0320	-1.28	100000	-720	-0.0282	100045	-389	1	0.0310	-1.24	100045	-711	-0.0278
100001	-400	1	0.0319	-1.28	100001	-719	-0.0282	100046	-388	1	0.0309	-1.24	100046	-710	-0.0278
100002	-398	1	0.0318	-1.27	100002	-718	-0.0281	100047	-387	1	0.0308	-1.24	100047	-709	-0.0278
100003	-399	1	0.0318	-1.28	100003	-719	-0.0282	100048	-395	1	0.0315	-1.26	100048	-710	-0.0278
100004	-398	1	0.0318	-1.27	100004	-720	-0.0282	100049	-396	1	0.0316	-1.27	100049	-711	-0.0278
100005	-397	1	0.0317	-1.27	100005	-719	-0.0282	100050	-392	1	0.0312	-1.25	100050	-712	-0.0279
100006	-398	1	0.0318	-1.27	100006	-720	-0.0282	100051	-391	1	0.0312	-1.25	100051	-711	-0.0278
100007	-397	1	0.0317	-1.27	100007	-719	-0.0282	100052	-392	1	0.0312	-1.25	100052	-710	-0.0278
100008	-403	1	0.0322	-1.29	100008	-720	-0.0282	100053	-394	1	0.0314	-1.26	100053	-709	-0.0278
100009	-400	1	0.0319	-1.28	100009	-721	-0.0283	100054	-395	1	0.0315	-1.26	100054	-710	-0.0278
100010	-399	1	0.0318	-1.28	100010	-720	-0.0282	100055	-394	1	0.0314	-1.26	100055	-709	-0.0278
100011	-398	1	0.0317	-1.27	100011	-719	-0.0282	100056	-393	1	0.0313	-1.26	100056	-708	-0.0277
100012	-397	1	0.0317	-1.27	100012	-720	-0.0282	100057	-394	1	0.0314	-1.26	100057	-709	-0.0278
100013	-396	1	0.0316	-1.27	100013	-719	-0.0282	100058	-391	1	0.0312	-1.25	100058	-710	-0.0278
100014	-395	1	0.0315	-1.26	100014	-718	-0.0281	100059	-390	1	0.0311	-1.25	100059	-709	-0.0278
100015	-396	1	0.0316	-1.27	100015	-719	-0.0282	100060	-388	1	0.0309	-1.24	100060	-710	-0.0278
100016	-396	1	0.0316	-1.27	100016	-718	-0.0281	100061	-389	1	0.0310	-1.24	100061	-711	-0.0278
100017	-398	1	0.0317	-1.27	100017	-717	-0.0281	100062	-388	1	0.0309	-1.24	100062	-710	-0.0278
100018	-399	1	0.0318	-1.28	100018	-718	-0.0281	100063	-387	1	0.0308	-1.24	100063	-709	-0.0278
100019	-400	1	0.0319	-1.28	100019	-719	-0.0282	100064	-389	1	0.0310	-1.24	100064	-710	-0.0278
100020	-405	1	0.0323	-1.30	100020	-718	-0.0281	100065	-388	1	0.0309	-1.24	100065	-709	-0.0278
100021	-404	1	0.0322	-1.29	100021	-717	-0.0281	100066	-387	1	0.0308	-1.24	100066	-708	-0.0277
100022	-405	1	0.0323	-1.30	100022	-718	-0.0281	100067	-389	1	0.0310	-1.24	100067	-707	-0.0277
100023	-404	1	0.0322	-1.29	100023	-717	-0.0281	100068	-391	1	0.0312	-1.25	100068	-706	-0.0276
100024	-403	1	0.0321	-1.29	100024	-716	-0.0280	100069	-392	1	0.0312	-1.25	100069	-707	-0.0277
100025	-406	1	0.0324	-1.30	100025	-715	-0.0280	100070	-393	1	0.0313	-1.26	100070	-708	-0.0277
100026	-404	1	0.0322	-1.29	100026	-716	-0.0280	100071	-395	1	0.0315	-1.26	100071	-707	-0.0277
100027	-403	1	0.0321	-1.29	100027	-715	-0.0280	100072	-394	1	0.0314	-1.26	100072	-708	-0.0277
100028	-402	1	0.0321	-1.29	100028	-716	-0.0280	100073	-395	1	0.0315	-1.26	100073	-709	-0.0277
100029	-401	1	0.0320	-1.28	100029	-715	-0.0280	100074	-394	1	0.0314	-1.26	100074	-708	-0.0277
100030	-400	1	0.0319	-1.28	100030	-714	-0.0280	100075	-397	1	0.0316	-1.27	100075	-707	-0.0277
100031	-399	1	0.0318	-1.28	100031	-713	-0.0279	100076	-396	1	0.0316	-1.27	100076	-708	-0.0277
100032	-394	1	0.0314	-1.26	100032	-714	-0.0280	100077	-395	1	0.0315	-1.26	100077	-707	-0.0277
100033	-393	1	0.0313	-1.26	100033	-713	-0.0279	100078	-396	1	0.0316	-1.27	100078	-708	-0.0277
100034	-394	1	0.0314	-1.26	100034	-714	-0.0280	100079	-394	1	0.0314	-1.26	100079	-709	-0.0277
100035	-397	1	0.0317	-1.27	100035	-713	-0.0279	100080	-384	1	0.0306	-1.23	100080	-708	-0.0277
100036	-396	1	0.0316	-1.27	100036	-714	-0.0280	100081	-383	1	0.0305	-1.22	100081	-707	-0.0277
100037	-397	1	0.0317	-1.27	100037	-715	-0.0280	100082	-384	1	0.0306	-1.23	100081	-708	-0.0277
100037	-398	1	0.0317	-1.27 -1.27	100037	-715 -716	-0.0280 -0.0280	100082	-384 -385	1	0.0307	-1.23 -1.23	100082	-708 -709	-0.0277 -0.0277
100038	-398 -397	1	0.0317	-1.27 -1.27	100038	-710 -715	-0.0280 -0.0280	100083	-384	1	0.0307	-1.23 -1.23	100083	-709 -710	-0.0277 -0.0278
100039	-396	1	0.0317	-1.27 -1.27	100039	-713 -714	-0.0280 -0.0280	100084	-384 -385	1	0.0300	-1.23 -1.23	100084	-710 -711	-0.0278 -0.0278
100040	-395	1	0.0316	-1.27 -1.26	100040	-714 -713	-0.0280 -0.0279	100085	-383	1	0.0307	-1.23 -1.22	100085	-711 -710	-0.0278 -0.0278
100041	-393 -394	1	0.0313	-1.26 -1.26	100041	-713 -712	-0.0279 -0.0279	100087	-383 -382	1	0.0305	-1.22 -1.22	100080	-710 -709	-0.0278 -0.0277
100042	-394 -395	1	0.0314	-1.26 -1.26	100042	-712 -713	-0.0279 -0.0279	100087	-382 -381	1	0.0303	-1.22 -1.22	100087	-709 -708	-0.0277 -0.0277
100043	-390	1	0.0313	-1.25	100043	-713 -712	-0.0279 -0.0279	100089	-381 -383	1	0.0304	-1.22 -1.22	100088	-708 -709	-0.0277 -0.0277
100044	-390	1	0.0311	-1.20	100044	-112	-0.0219	100009	-303	1	0.0303	-1.22	100009	- 109	-0.0211

Table T.2: Approximations to the summatory functions of $\lambda(n)$ and $\lambda_*(n)$.

- ▶ We define the exact summatory functions over these sequences by $L(x) := \sum_{n \leq x} \lambda(n)$ and $L_*(n) := \sum_{n \leq x} \lambda_*(n)$.
- Let the expected sign ratio function be defined by $R_{\pm}(x) := \frac{\operatorname{sgn}(L(x))}{(-1)\lceil \log \log x \rceil}$.
- We compare the ratios of the following two functions with L(x): $L_{\approx,1}(x) := \sum_{k=1}^{\log \log x} \frac{x}{\log x} \cdot \frac{(-\log \log x)^{k-1}}{(k-1)!}$ and $L_{\approx,2}(x) := \frac{x^{3/4}}{(k-1)!}$ $\frac{1}{(\log x)\sqrt{\log\log x}}$
- \blacktriangleright Finally, we compare the approximations (very accurate) to $L_*(x)$ by the summatory function $\sum_{k \leq x} (-1)^{\omega(n)}$ using the approximation $L_{\approx}^*(x) := \frac{x}{\sqrt{2\pi}\sqrt{\log\log x}}$. We are expecting to see and verify numerically that for sufficiently large x the following properties:

- Almost always we have that $R_{\pm}(x) = -1$.
- The ratio $\frac{L(x)}{L_{\approx,1}(x)}$ should be bounded by a constant approximately equal to one, and the ratio $\frac{L(x)}{L_{\approx,2}(x)}$ should be at least
- ▶ The ratio $\frac{L_*(x)}{L_{\approx}^*(x)}$ tends towards an absolute constant.

The summatory functions L(x) and $L_*(x)$ are numerically intensive to compute directly using standard packages for large x. We have written a software package in [19] in Python3 for use with the SageMath platform that employs known algorithms for more efficiently computing these functions.

x	L(x)	$R_{\pm}(x)$	$\frac{L(x)}{L_{\approx,1}(x)}$	$\frac{L(x)}{L_{\approx,2}(x)}$	x	$L_*(x)$	$\frac{L_*(x)}{L_{\sim}^*(x)}$	x	L(x)	$R_{\pm}(x)$	$\frac{L(x)}{L_{\approx,1}(x)}$	$\frac{L(x)}{L_{\approx,2}(x)}$	x	$L_*(x)$	$\frac{L_*(x)}{L_{\sim}^*(x)}$
100090	-384	1	0.0306	-1.23	100090	-710	-0.0278	100165	-370	1	0.0295	-1.18	100165	-707	-0.0277
100091	-383	1	0.0305	-1.22	100091	-709	-0.0277	100166	-369	1	0.0294	-1.18	100166	-706	-0.0276
100092	-385	1	0.0307	-1.23	100092	-708	-0.0277	100167	-370	1	0.0295	-1.18	100167	-707	-0.0277
100093	-386	1	0.0308	-1.23	100093	-709	-0.0277	100168	-371	1	0.0296	-1.19	100168	-708	-0.0277
100094	-385	1	0.0307	-1.23	100094	-708	-0.0277	100169	-372	1	0.0296	-1.19	100169	-709	-0.0277
100095	-386	1	0.0308	-1.23	100095	-709	-0.0277	100170	-383	1	0.0305	-1.22	100170	-710	-0.0278
100096	-382	1	0.0305	-1.22	100096	-710	-0.0278	100171	-382	1	0.0304	-1.22	100171	-709	-0.0277
100097	-381	1	0.0304	-1.22	100097	-709	-0.0277	100172	-386	1	0.0307	-1.23	100172	-710	-0.0278
100098	-383	1	0.0305	-1.22	100098	-708	-0.0277	100173	-385	1	0.0307	-1.23	100173	-709	-0.0277
100099	-382	1 1	0.0305	-1.22	100099	-707	-0.0277	100174 100175	-384	1	0.0306	-1.23	100174	-708	-0.0277
100100 100101	-389 -390	1	0.0310 0.0311	-1.24 -1.25	100100 100101	$-708 \\ -709$	-0.0277 -0.0277	100175	-387 -384	1 1	0.0308 0.0306	-1.24 -1.23	100175 100176	-707 -708	-0.0276 -0.0277
100101	-389	1	0.0311	-1.23 -1.24	100101	-709 -708	-0.0277 -0.0277	100170	-384 -385	1	0.0300	-1.23 -1.23	100170	-709	-0.0277 -0.0277
100103	-390	1	0.0311	-1.25	100102	-709	-0.0277	100178	-386	1	0.0307	-1.23	100178	-710	-0.0278
100104	-388	1	0.0309	-1.24	100104	-708	-0.0277	100179	-388	1	0.0309	-1.24	100179	-709	-0.0277
100105	-387	1	0.0308	-1.24	100105	-707	-0.0277	100180	-386	1	0.0307	-1.23	100180	-710	-0.0278
100106	-386	1	0.0308	-1.23	100106	-706	-0.0276	100181	-387	1	0.0308	-1.24	100181	-711	-0.0278
100107	-393	1	0.0313	-1.26	100107	-707	-0.0277	100182	-386	1	0.0307	-1.23	100182	-710	-0.0278
100108	-392	1	0.0312	-1.25	100108	-708	-0.0277	100183	-387	1	0.0308	-1.24	100183	-711	-0.0278
100109	-393	1	0.0313	-1.26	100109	-709	-0.0277	100184	-386	1	0.0307	-1.23	100184	-712	-0.0278
100110	-390	1	0.0311	-1.25	100110	-710	-0.0278	100185	-387	1	0.0308	-1.24	100185	-713	-0.0279
100111	-391	1	0.0312	-1.25	100111	-711	-0.0278	100186	-386	1	0.0307	-1.23	100186	-712	-0.0278
100112	-393	1	0.0313	-1.26	100112	-710	-0.0278	100187	-385	1	0.0307	-1.23	100187	-711	-0.0278
100113	-392	1	0.0312	-1.25	100113	-709	-0.0277	100188	-397	1	0.0316	-1.27	100188	-710	-0.0278
100114	-393	1	0.0313	-1.26	100114	-710	-0.0278	100189	-398	1	0.0317	-1.27	100189	-711	-0.0278
100115 100116	-392 -385	1 1	0.0312 0.0307	-1.25 -1.23	100115 100116	-709 -710	-0.0277 -0.0278	100190 100191	-397 -396	1 1	0.0316 0.0315	-1.27 -1.27	100190 100191	-710 -709	-0.0278 -0.0277
100116	-383 -384	1	0.0307	-1.23 -1.23	100116	-710 -709	-0.0278 -0.0277	100191	-390 -393	1	0.0313	-1.27 -1.26	100191	-709 -710	-0.0277 -0.0278
100117	-384 -385	1	0.0307	-1.23 -1.23	100117	-709 -710	-0.0277 -0.0278	100193	-394	1	0.0313	-1.26	100192	-710 -711	-0.0278
100119	-386	1	0.0308	-1.23	100119	-711	-0.0278	100194	-395	1	0.0314	-1.26	100194	-712	-0.0278
100120	-388	1	0.0309	-1.24	100120	-712	-0.0279	100195	-396	1	0.0315	-1.27	100195	-713	-0.0279
100121	-387	1	0.0308	-1.24	100121	-711	-0.0278	100196	-395	1	0.0314	-1.26	100196	-714	-0.0279
100122	-388	1	0.0309	-1.24	100122	-712	-0.0279	100197	-398	1	0.0317	-1.27	100197	-713	-0.0279
100123	-387	1	0.0308	-1.24	100123	-711	-0.0278	100198	-397	1	0.0316	-1.27	100198	-712	-0.0278
100124	-388	1	0.0309	-1.24	100124	-710	-0.0278	100199	-396	1	0.0315	-1.27	100199	-711	-0.0278
100125	-383	1	0.0305	-1.22	100125	-711	-0.0278	100200	-401	1	0.0319	-1.28	100200	-710	-0.0278
100126	-384	1	0.0306	-1.23	100126	-712	-0.0279	100201	-400	1	0.0318	-1.28	100201	-709	-0.0277
100127	-383	1	0.0305	-1.22	100127	-711	-0.0278	100202	-399	1	0.0318	-1.27	100202	-708	-0.0277
100128	-381	1	0.0304	-1.22	100128	-710	-0.0278	100203	-400	1	0.0318	-1.28	100203	-709	-0.0277
100129 100130	-382 -383	1 1	0.0304 0.0305	-1.22 -1.22	100129 100130	$-711 \\ -712$	-0.0278 -0.0279	100204 100205	-401 -398	1 1	0.0319 0.0317	-1.28 -1.27	100204 100205	-708 -709	-0.0277 -0.0277
100130	-383 -382	1	0.0303	-1.22 -1.22	100130	-712 -711	-0.0279 -0.0278	100203	-398	1	0.0317	-1.27 -1.27	100203	-709 -708	-0.0277 -0.0277
100131	-382 -383	1	0.0304	-1.22 -1.22	100131	-711	-0.0278 -0.0278	100207	-399	1	0.0317	-1.27 -1.27	100207	-709	-0.0277 -0.0277
100133	-382	1	0.0304	-1.22	100132	-709	-0.0277	100208	-401	1	0.0319	-1.28	100208	-708	-0.0277
100134	-380	1	0.0303	-1.21	100134	-710	-0.0278	100209	-400	1	0.0318	-1.28	100209	-707	-0.0276
100135	-381	1	0.0304	-1.22	100135	-711	-0.0278	100210	-399	1	0.0318	-1.27	100210	-706	-0.0276
100136	-380	1	0.0303	-1.21	100136	-710	-0.0278	100211	-398	1	0.0317	-1.27	100211	-705	-0.0276
100137	-381	1	0.0304	-1.22	100137	-711	-0.0278	100212	-401	1	0.0319	-1.28	100212	-704	-0.0275
100138	-380	1	0.0303	-1.21	100138	-710	-0.0278	100213	-402	1	0.0320	-1.28	100213	-705	-0.0276
100139	-379	1	0.0302	-1.21	100139	-709	-0.0277	100214	-403	1	0.0321	-1.29	100214	-706	-0.0276
100140	-384	1	0.0306	-1.23	100140	-708	-0.0277	100215	-405	1	0.0322	-1.29	100215	-705	-0.0276
100141	-383	1	0.0305	-1.22	100141	-707	-0.0277	100216	-404	1	0.0322	-1.29	100216	-704	-0.0275
100142	-382	1	0.0304	-1.22	100142	-706	-0.0276	100217	-408	1	0.0325	-1.30	100217	-703	-0.0275
100143 100144	$-380 \\ -378$	1	0.0303	-1.21 -1.21	100143 100144	$-705 \\ -706$	-0.0276 -0.0276	100218 100219	-409 -410	1	0.0326	-1.31 -1.31	100218	-704 -705	-0.0275 -0.0276
100144	-378 -377	1 1	0.0301 0.0300	-1.21 -1.21	100144	-706 -705	-0.0276 -0.0276	100219	-410 -408	1 1	0.0326 0.0325	-1.31 -1.30	100219 100220	-705 -706	-0.0276 -0.0276
100145	-377	1	0.0300	-1.21 -1.21	100145	-706	-0.0276 -0.0276	100220	-408 -409	1	0.0326	-1.30 -1.31	100220	-700 -707	-0.0276 -0.0276
100147	-379	1	0.0302	-1.21	100147	-707	-0.0277	100221	-408	1	0.0325	-1.30	100221	-706	-0.0276
100148	-380	1	0.0303	-1.21	100148	-706	-0.0276	100223	-409	1	0.0326	-1.31	100223	-707	-0.0276
100149	-379	1	0.0302	-1.21	100149	-705	-0.0276	100224	-422	1	0.0336	-1.35	100224	-708	-0.0277
100150	-376	1	0.0300	-1.20	100150	-706	-0.0276	100225	-419	1	0.0334	-1.34	100225	-709	-0.0277
100151	-377	1	0.0300	-1.21	100151	-707	-0.0277	100226	-420	1	0.0334	-1.34	100226	-710	-0.0277
100152	-381	1	0.0304	-1.22	100152	-706	-0.0276	100227	-419	1	0.0334	-1.34	100227	-709	-0.0277
100153	-382	1	0.0304	-1.22	100153	-707	-0.0277	100228	-420	1	0.0334	-1.34	100228	-708	-0.0277
100154	-381	1	0.0304	-1.22	100154	-706	-0.0276	100229	-419	1	0.0334	-1.34	100229	-707	-0.0276
100155	-380	1	0.0303	-1.21	100155	-705	-0.0276	100230	-422	1	0.0336	-1.35	100230	-708	-0.0277
100156	-375	1	0.0299	-1.20	100156	-706	-0.0276	100231	-421	1	0.0335	-1.35	100231	-707	-0.0276
100157	-374	1	0.0298	-1.20	100157	-705	-0.0276	100232	-420	1	0.0334	-1.34	100232	-706	-0.0276
100158 100159	$-375 \\ -374$	1 1	0.0299 0.0298	-1.20 -1.20	100158 100159	$-706 \\ -705$	-0.0276 -0.0276	100233 100234	$-422 \\ -423$	1 1	0.0336 0.0337	-1.35 -1.35	100233 100234	$-705 \\ -706$	-0.0276 -0.0276
100159	-374 -369	1	0.0298	-1.20 -1.18	100159	-705 -706	-0.0276 -0.0276	100234	-423 -422	1	0.0337	-1.35 -1.35	100234	-706 -705	-0.0276 -0.0276
100160	-369 -367	1	0.0294	-1.18 -1.17	100160	-700	-0.0276 -0.0277	100235	-422 -420	1	0.0334	-1.33 -1.34	100235	-705 -706	-0.0276 -0.0276
100161	-368	1	0.0292	-1.17	100161	-707 -708	-0.0277	100237	-420 -421	1	0.0334	-1.34 -1.35	100237	-707	-0.0276 -0.0276
100163	-369	1	0.0294	-1.18	100163	-709	-0.0277	100238	-420	1	0.0334	-1.34	100238	-706	-0.0276
100164	-371	1	0.0296	-1.19	100164	-708	-0.0277	100239	-419	1	0.0334	-1.34	100239	-705	-0.0275
					'										

x	L(x)	$R_{\pm}(x)$	$\frac{L(x)}{L_{\approx,1}(x)}$	$\frac{L(x)}{L_{\approx,2}(x)}$	x	$L_*(x)$	$\frac{L_*(x)}{L_{\approx}^*(x)}$	x	L(x)	$R_{\pm}(x)$	$\frac{L(x)}{L_{\approx,1}(x)}$	$\frac{L(x)}{L_{\approx,2}(x)}$	x	$L_*(x)$	$\frac{L_*(x)}{L_{\sim}^*(x)}$
100240	-420	1	0.0334	-2,2(±) -1.34	100240	-704	-0.0275	100315	-410	1	0.0326	-2,2(=) -1.31	100315	-699	-0.0273
10024	-419	1	0.0333	-1.34	100241	-703	-0.0275	100316	-409	1	0.0325	-1.31	100316	-700	-0.0273
10024		1	0.0332	-1.33	100242	-704	-0.0275	100317	-408	1	0.0324	-1.30	100317	-699	-0.0273
10024		1	0.0333	-1.34	100243	-705	-0.0275	100318	-407	1	0.0324	-1.30	100318	-698	-0.0273
10024		1	0.0332	-1.33	100244 100245	-706 -705	-0.0276	100319 100320	-406	1	0.0323	-1.30	100319	-697	-0.0272 -0.0273
10024		1 1	0.0331 0.0330	-1.33 -1.33	100245	-703 -704	-0.0275 -0.0275	100320	-415 -414	1 1	0.0330 0.0329	-1.32 -1.32	100320 100321	$-698 \\ -697$	-0.0273 -0.0272
10024		1	0.0329	-1.32	100247	-703	-0.0275	100322	-415	1	0.0330	-1.32	100321	-698	-0.0272
100248		1	0.0331	-1.33	100248	-704	-0.0275	100323	-413	1	0.0328	-1.32	100323	-699	-0.0273
100249	-415	1	0.0330	-1.33	100249	-703	-0.0275	100324	-412	1	0.0328	-1.32	100324	-700	-0.0273
100250		1	0.0333	-1.34	100250	-704	-0.0275	100325	-415	1	0.0330	-1.32	100325	-699	-0.0273
10025		1	0.0334	-1.34	100251	-705	-0.0275	100326	-414	1	0.0329	-1.32	100326	-698	-0.0273
10025		1 1	0.0333 0.0333	-1.34 -1.34	100252 100253	-706 -705	-0.0276 -0.0275	100327 100328	-413 -412	1 1	0.0328 0.0328	-1.32 -1.32	100327 100328	-697 -696	-0.0272 -0.0272
10025		1	0.0333	-1.34 -1.33	100253	-706	-0.0275 -0.0276	100328	-412 -413	1	0.0328	-1.32 -1.32	100328	-697	-0.0272 -0.0272
10025		1	0.0331	-1.33	100255	-705	-0.0275	100330	-412	1	0.0328	-1.32	100330	-696	-0.0272
10025	-418	1	0.0333	-1.34	100256	-706	-0.0276	100331	-413	1	0.0328	-1.32	100331	-697	-0.0272
10025	7 - 419	1	0.0333	-1.34	100257	-707	-0.0276	100332	-409	1	0.0325	-1.31	100332	-698	-0.0273
10025		1	0.0333	-1.34	100258	-706	-0.0276	100333	-410	1	0.0326	-1.31	100333	-699	-0.0273
100259		1	0.0332	-1.33	100259	-705	-0.0275	100334	-409	1	0.0325	-1.31	100334	-698	-0.0273
10026		1	0.0327	-1.31	100260	-704 -703	-0.0275	100335	-410	1	0.0326	-1.31	100335	-699	-0.0273 -0.0273
10026		1 1	0.0326 0.0325	-1.31 -1.31	100261 100262	-703 -702	-0.0275 -0.0274	100336 100337	-412 -411	1 1	0.0328 0.0327	-1.32 -1.31	100336 100337	$-698 \\ -697$	-0.0273 -0.0272
10026		1	0.0326	-1.31	100263	-702 -703	-0.0274 -0.0275	100337	-411 -409	1	0.0327	-1.31	100337	-696	-0.0272 -0.0272
10026		1	0.0327	-1.31	100264	-704	-0.0275	100339	-408	1	0.0324	-1.30	100339	-695	-0.0271
10026	-412	1	0.0328	-1.32	100265	-705	-0.0275	100340	-410	1	0.0326	-1.31	100340	-694	-0.0271
10026		1	0.0327	-1.31	100266	-704	-0.0275	100341	-412	1	0.0328	-1.32	100341	-693	-0.0271
10026		1	0.0328	-1.32	100267	-705	-0.0275	100342	-413	1	0.0328	-1.32	100342	-694	-0.0271
10026		1	0.0327 0.0325	-1.31	100268 100269	-706	-0.0276 -0.0276	100343	-414 -412	1 1	0.0329	-1.32	100343	-695	-0.0271 -0.0271
100269		1 1	0.0325	-1.31 -1.30	100209	-707 -706	-0.0276 -0.0276	100344 100345	-412 -411	1	0.0328 0.0327	-1.32 -1.31	100344 100345	-694 -693	-0.0271 -0.0271
10027		1	0.0325	-1.31	100270	-707	-0.0276	100346	-412	1	0.0328	-1.32	100346	-694	-0.0271
10027		1	0.0323	-1.30	100272	-708	-0.0277	100347	-411	1	0.0327	-1.31	100347	-693	-0.0271
10027	-405	1	0.0322	-1.29	100273	-707	-0.0276	100348	-412	1	0.0328	-1.32	100348	-692	-0.0270
10027		1	0.0323	-1.30	100274	-708	-0.0277	100349	-411	1	0.0327	-1.31	100349	-691	-0.0270
10027		1	0.0325	-1.31	100275	-707	-0.0276	100350	-405	1	0.0322	-1.29	100350	-690	-0.0269
10027		1 1	0.0324 0.0323	-1.30 -1.30	100276 100277	-706 -705	-0.0276 -0.0275	100351 100352	-404 -422	1 1	0.0321 0.0336	-1.29 -1.35	100351 100352	-689	-0.0269 -0.0269
10027		1	0.0323	-1.30 -1.29	100277	-705 -706	-0.0275 -0.0276	100352	-422 -423	1	0.0336	-1.35 -1.35	100352	$-688 \\ -689$	-0.0269 -0.0269
100279		1	0.0322	-1.29	100279	-707	-0.0276	100354	-422	1	0.0336	-1.35	100354	-688	-0.0269
100280	-402	1	0.0320	-1.28	100280	-706	-0.0276	100355	-421	1	0.0335	-1.34	100355	-687	-0.0268
10028		1	0.0319	-1.28	100281	-705	-0.0275	100356	-419	1	0.0333	-1.34	100356	-688	-0.0269
10028		1	0.0322	-1.29	100282	-706	-0.0276	100357	-420	1	0.0334	-1.34	100357	-689	-0.0269
10028		1	0.0324	-1.30	100283	-705	-0.0275 -0.0275	100358	-416	1	0.0331	-1.33	100358	-690	-0.0269
10028		1 1	0.0325 0.0326	-1.31 -1.31	100284 100285	-704 -705	-0.0275 -0.0275	100359 100360	-419 -417	1 1	0.0333 0.0331	-1.34 -1.33	100359 100360	-691 -690	-0.0270 -0.0269
10028		1	0.0327	-1.31	100286	-706	-0.0275 -0.0276	100361	-418	1	0.0331	-1.33	100361	-691	-0.0209 -0.0270
10028		1	0.0325	-1.31	100287	-707	-0.0276	100362	-417	1	0.0331	-1.33	100362	-690	-0.0269
10028	-413	1	0.0329	-1.32	100288	-706	-0.0276	100363	-418	1	0.0332	-1.33	100363	-691	-0.0270
100289		1	0.0328	-1.32	100289	-705	-0.0275	100364	-417	1	0.0331	-1.33	100364	-692	-0.0270
10029		1	0.0325	-1.31	100290	-704	-0.0275	100365	-418	1	0.0332	-1.33	100365	-693	-0.0270
10029		1 1	0.0326 0.0327	-1.31 -1.31	100291 100292	-705 -704	-0.0275 -0.0275	100366 100367	-417 -416	1 1	0.0331 0.0331	-1.33 -1.33	100366 100367	-692 -691	-0.0270 -0.0270
10029		1	0.0327	-1.31 -1.32	100292	-704 -705	-0.0275 -0.0275	100367	-410 -408	1	0.0331	-1.33 -1.30	100367	-691 -690	-0.0270 -0.0269
10029		1	0.0327	-1.31	100294	-704	-0.0275	100369	-407	1	0.0323	-1.30	100369	-689	-0.0269
10029		1	0.0328	-1.32	100295	-705	-0.0275	100370	-408	1	0.0324	-1.30	100370	-690	-0.0269
10029		1	0.0332	-1.33	100296	-704	-0.0275	100371	-407	1	0.0323	-1.30	100371	-689	-0.0269
10029		1	0.0332	-1.33	100297	-705	-0.0275	100372	-406	1	0.0323	-1.30	100372	-690	-0.0269
100298		1	0.0332	-1.33	100298	-704	-0.0275	100373	-407	1	0.0323	-1.30	100373	-691	-0.0270
100299		1 1	0.0332 0.0329	-1.33 -1.32	100299 100300	-705 -704	-0.0275 -0.0275	100374 100375	-408 -411	1 1	0.0324 0.0327	-1.30 -1.31	100374 100375	-692 -693	-0.0270 -0.0270
10030		1	0.0329	-1.32 -1.32	100300	-704 -703	-0.0275 -0.0275	100375	-411 -410	1	0.0327	-1.31 -1.31	100375	-693 -692	-0.0270 -0.0270
10030		1	0.0328	-1.32	100301	-702	-0.0274	100377	-408	1	0.0324	-1.30	100377	-693	-0.0270
10030		1	0.0325	-1.31	100303	-703	-0.0275	100378	-409	1	0.0325	-1.31	100378	-694	-0.0271
10030		1	0.0327	-1.31	100304	-702	-0.0274	100379	-410	1	0.0326	-1.31	100379	-695	-0.0271
10030		1	0.0329	-1.32	100305	-703	-0.0275	100380	-402	1	0.0320	-1.28	100380	-696	-0.0272
10030		1	0.0328	-1.32	100306	-702	-0.0274	100381	-401	1	0.0319	-1.28	100381	-695	-0.0271
10030		1 1	0.0327 0.0327	-1.31 -1.31	100307 100308	-701 -700	-0.0274 -0.0273	100382 100383	$-402 \\ -401$	1 1	0.0320 0.0319	-1.28 -1.28	100382 100383	$-696 \\ -695$	-0.0272 -0.0271
10030		1	0.0327	-1.31 -1.32	100308	-700 -699	-0.0273 -0.0273	100383	-399	1	0.0319 0.0317	-1.28 -1.27	100383	-694	-0.0271 -0.0271
100310		1	0.0328	-1.32	100310	-698	-0.0273	100385	-400	1	0.0318	-1.28	100385	-695	-0.0271
10031		1	0.0329	-1.32	100311	-699	-0.0273	100386	-404	1	0.0321	-1.29	100386	-694	-0.0271
10031		1	0.0328	-1.32	100312	-698	-0.0273	100387	-403	1	0.0320	-1.29	100387	-693	-0.0270
100313		1	0.0329	-1.32	100313	-699	-0.0273	100388	-404	1	0.0321	-1.29	100388	-692	-0.0270
10031	4 -411	1	0.0327	-1.31	100314	-700	-0.0273	100389	-405	1	0.0322	-1.29	100389	-693	-0.0270

x	L	L(x)	$R_{\pm}(x)$	$\frac{L(x)}{L_{\approx,1}(x)}$	$\frac{L(x)}{L_{\approx,2}(x)}$	x	$L_*(x)$	$\frac{L_*(x)}{L_{\approx}^*(x)}$	x	L(x)	$R_{\pm}(x)$	$\frac{L(x)}{L_{\approx,1}(x)}$	$\frac{L(x)}{L_{\approx,2}(x)}$	x	$L_*(x)$	$\frac{L_*(x)}{L_{\approx}^*(x)}$
1003	90 –	-406	1	0.0323	-1.30	100390	-694	-0.0271	100465	-400	1	0.0318	-1.28	100465	-685	-0.0267
1003	91 –	-407	1	0.0323	-1.30	100391	-695	-0.0271	100466	-401	1	0.0318	-1.28	100466	-686	-0.0268
1003	92 –	-405	1	0.0322	-1.29	100392	-694	-0.0271	100467	-413	1	0.0328	-1.32	100467	-685	-0.0267
1003	93 –	-406	1	0.0323	-1.30	100393	-695	-0.0271	100468	-414	1	0.0329	-1.32	100468	-684	-0.0267
1003	94 –	-405	1	0.0322	-1.29	100394	-694	-0.0271	100469	-415	1	0.0329	-1.32	100469	-685	-0.0267
1003	95 –	-407	1	0.0323	-1.30	100395	-693	-0.0270	100470	-418	1	0.0332	-1.33	100470	-686	-0.0268
1003	96 –	-406	1	0.0323	-1.30	100396	-694	-0.0271	100471	-419	1	0.0332	-1.34	100471	-687	-0.0268
1003	97 –	-405	1	0.0322	-1.29	100397	-693	-0.0270	100472	-420	1	0.0333	-1.34	100472	-688	-0.0268
1003	98 –	-404	1	0.0321	-1.29	100398	-692	-0.0270	100473	-421	1	0.0334	-1.34	100473	-689	-0.0269
1003		-403	1	0.0320	-1.29	100399	-691	-0.0270	100474	-422	1	0.0335	-1.35	100474	-690	-0.0269
1004		-412	1	0.0327	-1.31	100400	-692	-0.0270	100475	-425	1	0.0337	-1.36	100475	-689	-0.0269
1004		-409	1	0.0325	-1.31	100401	-693	-0.0270	100476	-429	1	0.0341	-1.37	100476	-690	-0.0269
1004		-410	1	0.0326	-1.31	100402	-694	-0.0271	100477	-430	1	0.0341	-1.37	100477	-691	-0.0270
1004		-411	1	0.0327	-1.31	100403	-695	-0.0271	100478	-431	1	0.0342	-1.38	100478	-692	-0.0270
1004		-415	1	0.0330	-1.32	100404	-696	-0.0271	100479	-430	1	0.0341	-1.37	100479	-691	-0.0270
1004		-416	1	0.0331	-1.33	100405	-697	-0.0272	100480	-435	1	0.0345	-1.39	100480	-692	-0.0270
1004		-417	1	0.0331	-1.33	100406	-698	-0.0272	100481	-434	1	0.0345	-1.39	100481	-691	-0.0269
1004		-416 -417	1	0.0331	-1.33	100407	-697	-0.0272	100482	-435	1	0.0345	-1.39	100482	-692	-0.0270
1004 1004		-417 -418	1 1	0.0331 0.0332	-1.33 -1.33	100408 100409	$-696 \\ -697$	-0.0271 -0.0272	100483 100484	-436 -437	1 1	0.0346 0.0347	-1.39 -1.39	100483 100484	-693	-0.0270 -0.0270
1004		-416 -415	1	0.0332	-1.33 -1.32	100409	-696	-0.0272 -0.0271	100484	-437 -435	1	0.0347	-1.39 -1.39	100484	-692 -693	-0.0270 -0.0270
1004		-416	1	0.0331	-1.32 -1.33	100410	-696	-0.0271 -0.0272	100485	-436	1	0.0346	-1.39 -1.39	100485	-693 -694	-0.0270 -0.0271
1004		-416 -415	1	0.0331	-1.33 -1.32	100411	-698	-0.0272 -0.0272	100486	-436 -437	1	0.0346	-1.39 -1.39	100480	-694 -695	-0.0271 -0.0271
1004		-413 -413	1	0.0328	-1.32 -1.32	100412	-698 -697	-0.0272 -0.0272	100487	-437 -435	1	0.0347	-1.39 -1.39	100487	-693 -694	-0.0271 -0.0271
1004		-413 -412	1	0.0328	-1.32 -1.31	100413	-696	-0.0272 -0.0271	100489	-433 -428	1	0.0340	-1.39 -1.37	100489	-695	-0.0271 -0.0271
1004		-411	1	0.0327	-1.31	100414	-695	-0.0271 -0.0271	100499	-428 -427	1	0.0339	-1.37 -1.36	100499	-694	-0.0271 -0.0271
1004		-406	1	0.0327	-1.31 -1.30	100416	-696	-0.0271 -0.0271	100490	-426	1	0.0338	-1.36	100490	-693	-0.0271 -0.0270
1004		-407	1	0.0323	-1.30	100417	-697	-0.0272	100492	-427	1	0.0339	-1.36	100492	-692	-0.0270
1004	18 –	-406	1	0.0323	-1.30	100418	-696	-0.0271	100493	-428	1	0.0340	-1.37	100493	-693	-0.0270
1004	19 –	-405	1	0.0322	-1.29	100419	-695	-0.0271	100494	-430	1	0.0341	-1.37	100494	-694	-0.0271
1004	20 -	-403	1	0.0320	-1.29	100420	-696	-0.0271	100495	-431	1	0.0342	-1.38	100495	-695	-0.0271
1004	21 -	-402	1	0.0320	-1.28	100421	-695	-0.0271	100496	-429	1	0.0340	-1.37	100496	-696	-0.0271
1004	22 -	-405	1	0.0322	-1.29	100422	-694	-0.0271	100497	-430	1	0.0341	-1.37	100497	-697	-0.0272
1004	23 -	-404	1	0.0321	-1.29	100423	-693	-0.0270	100498	-431	1	0.0342	-1.38	100498	-698	-0.0272
1004	24 -	-403	1	0.0320	-1.29	100424	-692	-0.0270	100499	-428	1	0.0340	-1.37	100499	-697	-0.0272
1004	25 –	-406	1	0.0323	-1.30	100425	-691	-0.0270	100500	-435	1	0.0345	-1.39	100500	-696	-0.0271
1004	26 -	-407	1	0.0323	-1.30	100426	-692	-0.0270	100501	-436	1	0.0346	-1.39	100501	-697	-0.0272
1004		-406	1	0.0323	-1.30	100427	-691	-0.0270	100502	-437	1	0.0347	-1.39	100502	-698	-0.0272
1004		-404	1	0.0321	-1.29	100428	-692	-0.0270	100503	-435	1	0.0345	-1.39	100503	-699	-0.0273
1004		-403	1	0.0320	-1.29	100429	-691	-0.0270	100504	-436	1	0.0346	-1.39	100504	-700	-0.0273
1004		-405	1	0.0322	-1.29	100430	-690	-0.0269	100505	-435	1	0.0345	-1.39	100505	-699	-0.0273
1004		-407	1	0.0323	-1.30	100431	-689	-0.0269	100506	-433	1	0.0344	-1.38	100506	-698	-0.0272
1004		-409	1	0.0325	-1.31	100432	-688	-0.0268	100507	-432	1	0.0343	-1.38	100507	-697	-0.0272
1004		-408 407	1	0.0324	-1.30	100433	-687	-0.0268	100508	-433	1	0.0344	-1.38	100508	-696	-0.0271
1004		-407	1	0.0323	-1.30	100434	-686	-0.0268	100509	-432	1	0.0343	-1.38	100509	-695	-0.0271
1004 1004		-408 -409	1 1	0.0324 0.0325	-1.30 -1.31	100435 100436	-687 -686	-0.0268 -0.0268	100510 100511	-436 -437	1 1	0.0346 0.0347	-1.39 -1.39	100510 100511	-694 -695	-0.0271
1004		-409 -408	1	0.0323	-1.31 -1.30	100436	-685	-0.0268 -0.0267	100511	-437 -428	1	0.0347	-1.39 -1.37	100511	-696	-0.0271 -0.0271
1004		-409	1	0.0324	-1.30	100437	-686	-0.0267 -0.0268	100512	-429	1	0.0340	-1.37 -1.37	100512	-697	-0.0271 -0.0272
1004		-408	1	0.0324	-1.30	100439	-685	-0.0268 -0.0267	100513	-429 -430	1	0.0340	-1.37 -1.37	100513	-698	-0.0272 -0.0272
1004		-415	1	0.0324	-1.30 -1.32	100433	-684	-0.0267	100514	-430 -431	1	0.0341	-1.37 -1.38	100514	-699	-0.0272 -0.0273
1004		-416	1	0.0330	-1.33	100441	-685	-0.0267	100516	-430	1	0.0341	-1.37	100516	-700	-0.0273
1004		-415	1	0.0330	-1.32	100442	-684	-0.0267	100517	-431	1	0.0342	-1.38	100517	-701	-0.0273
1004		-416	1	0.0330	-1.33	100443	-685	-0.0267	100518	-430	1	0.0341	-1.37	100518	-700	-0.0273
1004		-417	1	0.0331	-1.33	100444	-684	-0.0267	100519	-431	1	0.0342	-1.38	100519	-701	-0.0273
1004		-416	1	0.0330	-1.33	100445	-683	-0.0266	100520	-431	1	0.0342	-1.38	100520	-700	-0.0273
1004	46 –	-417	1	0.0331	-1.33	100446	-684	-0.0267	100521	-428	1	0.0340	-1.37	100521	-701	-0.0273
1004	47 –	-418	1	0.0332	-1.33	100447	-685	-0.0267	100522	-427	1	0.0339	-1.36	100522	-700	-0.0273
1004	48 -	-420	1	0.0334	-1.34	100448	-686	-0.0268	100523	-428	1	0.0340	-1.37	100523	-701	-0.0273
1004		-422	1	0.0335	-1.35	100449	-685	-0.0267	100524	-426	1	0.0338	-1.36	100524	-702	-0.0274
1004		-411	1	0.0326	-1.31	100450	-684	-0.0267	100525	-429	1	0.0340	-1.37	100525	-701	-0.0273
1004		-410	1	0.0326	-1.31	100451	-683	-0.0266	100526	-428	1	0.0340	-1.37	100526	-700	-0.0273
1004		-411	1	0.0326	-1.31	100452	-682	-0.0266	100527	-429	1	0.0340	-1.37	100527	-701	-0.0273
1004		-412	1	0.0327	-1.31	100453	-683	-0.0266	100528	-427	1	0.0339	-1.36	100528	-702	-0.0274
1004		-411	1	0.0326	-1.31	100454	-682	-0.0266	100529	-426	1	0.0338	-1.36	100529	-701	-0.0273
1004		-410	1	0.0326	-1.31	100455	-681	-0.0266	100530	-429	1	0.0340	-1.37	100530	-700	-0.0273
1004		-411	1	0.0326	-1.31	100456	-682	-0.0266	100531	-428	1	0.0340	-1.37	100531	-699	-0.0272
1004		-412	1	0.0327	-1.31	100457	-683	-0.0266	100532	-427	1	0.0339	-1.36	100532	-700	-0.0273
1004		-410	1	0.0326	-1.31	100458	-684	-0.0267	100533	-426	1	0.0338	-1.36	100533	-699	-0.0272
1004		411	1	0.0326	-1.31	100459	-685	-0.0267	100534	-425	1	0.0337	-1.36	100534	-698	-0.0272
1004		-409	1	0.0325	-1.30	100460	-686	-0.0267	100535	-424 422	1	0.0336	-1.35	100535	-697	-0.0272
1004		-408 407	1	0.0324	-1.30	100461	-685	-0.0267	100536	-422	1	0.0335	-1.35	100536	-696	-0.0271
1004 1004		-407 -406	1	0.0323 0.0322	-1.30 -1.30	100462 100463	-684 -683	-0.0267 -0.0266	100537 100538	-423 -424	1	0.0336 0.0336	-1.35 -1.35	100537 100538	-697 -698	-0.0272 -0.0272
1004		-406 -399	1 1	0.0322	-1.30 -1.27	100463	-684	-0.0266 -0.0267	100538	-424 -426	1	0.0338	-1.36	100538	-698 -697	-0.0272 -0.0272
1 1004		000	1	0.0317	-1.21	100404	-004	-0.0207	1 100000	-420	1	0.0000	-1.30	100000	-091	-0.0212

x	L(x)	$R_{\pm}(x)$	$\frac{L(x)}{L_{\approx,1}(x)}$	$\frac{L(x)}{L_{\approx,2}(x)}$	x	$L_*(x)$	$\frac{L_*(x)}{L_{\approx}^*(x)}$	x	L(x)	$R_{\pm}(x)$	$\frac{L(x)}{L_{\approx,1}(x)}$	$\frac{L(x)}{L_{\approx,2}(x)}$	x	$L_*(x)$	$\frac{L_*(x)}{L_{\sim}^*(x)}$
10054	10 -428	1	0.0340	-1.37	100540	-696	-0.0271	100615	-419	1	0.0332	-1.34	100615	-687	-0.0268
10054	-429	1	0.0340	-1.37	100541	-697	-0.0272	100616	-418	1	0.0331	-1.33	100616	-686	-0.0267
10054	-428	1	0.0340	-1.37	100542	-696	-0.0271	100617	-419	1	0.0332	-1.34	100617	-687	-0.0268
10054	-427	1	0.0339	-1.36	100543	-695	-0.0271	100618	-420	1	0.0333	-1.34	100618	-688	-0.0268
10054	-431	1	0.0342	-1.37	100544	-694	-0.0271	100619	-419	1	0.0332	-1.34	100619	-687	-0.0268
10054	-432	1	0.0343	-1.38	100545	-695	-0.0271	100620	-429	1	0.0340	-1.37	100620	-688	-0.0268
10054	-431	1	0.0342	-1.37	100546	-694	-0.0271	100621	-430	1	0.0341	-1.37	100621	-689	-0.0268
10054		1	0.0343	-1.38	100547	-695	-0.0271	100622	-429	1	0.0340	-1.37	100622	-688	-0.0268
10054		1	0.0333	-1.34	100548	-694	-0.0271	100623	-430	1	0.0341	-1.37	100623	-689	-0.0268
10054		1	0.0334	-1.34	100549	-695	-0.0271	100624	-428	1	0.0339	-1.36	100624	-690	-0.0269
10055		1	0.0332	-1.33	100550	-696	-0.0271	100625	-425	1	0.0337	-1.35	100625	-691	-0.0269
10055		1	0.0330	-1.33	100551	-697	-0.0272	100626	-424	1	0.0336	-1.35	100626	-690	-0.0269
10055		1	0.0329	-1.32	100552	-696	-0.0271	100627	-423	1	0.0335	-1.35	100627	-689	-0.0268
10055		1	0.0329	-1.32	100553	-695	-0.0271	100628	-422	1	0.0334	-1.35	100628	-690	-0.0269
10055		1	0.0329	-1.32 -1.34	100554	-696	-0.0271	100629	-420	1 1	0.0333	-1.34	100629	-689	-0.0268
10055 10055		1	0.0332 0.0331	-1.34 -1.33	100555 100556	-695	-0.0271 -0.0271	100630 100631	-419 -418	1	0.0332 0.0331	-1.34 -1.33	100630 100631	$-688 \\ -687$	-0.0268 -0.0267
		1 1				-696									-0.0267 -0.0267
10055 10055		1	0.0333 0.0334	-1.34 -1.34	100557 100558	-695 -696	-0.0271 -0.0271	100632 100633	-417 -416	1 1	0.0331 0.0330	-1.33 -1.33	100632 100633	$-686 \\ -685$	-0.0267 -0.0267
10055		1	0.0334	-1.34 -1.35	100559	-697	-0.0271 -0.0272	100633	-410 -417	1	0.0330	-1.33 -1.33	100633	-686	-0.0267 -0.0267
10056		1	0.0339	-1.36	100560	-696	-0.0272 -0.0271	100635	-417 -418	1	0.0331	-1.33	100635	-687	-0.0267
10056		1	0.0338	-1.36	100561	-695	-0.0271	100636	-417	1	0.0331	-1.33	100636	-688	-0.0268
10056		1	0.0338	-1.36	100561	-694	-0.0271 -0.0270	100637	-417 -416	1	0.0331	-1.33 -1.33	100637	-687	-0.0268 -0.0267
10056		1	0.0336	-1.35	100563	-693	-0.0270 -0.0270	100638	-410 -414	1	0.0338	-1.33 -1.32	100638	-688	-0.0267 -0.0268
10056		1	0.0335	-1.35	100564	-694	-0.0270	100639	-415	1	0.0329	-1.32	100639	-689	-0.0268
10056		1	0.0335	-1.35	100565	-693	-0.0270	100640	-412	1	0.0327	-1.31	100640	-688	-0.0268
10056		1	0.0336	-1.35	100566	-692	-0.0270	100641	-411	1	0.0326	-1.31	100641	-687	-0.0267
10056	-425	1	0.0337	-1.36	100567	-693	-0.0270	100642	-410	1	0.0325	-1.31	100642	-686	-0.0267
10056	-426	1	0.0338	-1.36	100568	-694	-0.0270	100643	-409	1	0.0324	-1.30	100643	-685	-0.0267
10056	-427	1	0.0339	-1.36	100569	-695	-0.0271	100644	-407	1	0.0323	-1.30	100644	-686	-0.0267
10057	-426	1	0.0338	-1.36	100570	-694	-0.0270	100645	-406	1	0.0322	-1.29	100645	-685	-0.0267
10057	-425	1	0.0337	-1.36	100571	-693	-0.0270	100646	-412	1	0.0327	-1.31	100646	-684	-0.0266
10057	72 -418	1	0.0331	-1.33	100572	-692	-0.0270	100647	-410	1	0.0325	-1.31	100647	-685	-0.0267
10057	-419	1	0.0332	-1.34	100573	-693	-0.0270	100648	-411	1	0.0326	-1.31	100648	-686	-0.0267
10057	-418	1	0.0331	-1.33	100574	-692	-0.0270	100649	-412	1	0.0327	-1.31	100649	-687	-0.0267
10057	-413	1	0.0327	-1.32	100575	-693	-0.0270	100650	-407	1	0.0323	-1.30	100650	-688	-0.0268
10057	-413	1	0.0327	-1.32	100576	-694	-0.0270	100651	-406	1	0.0322	-1.29	100651	-687	-0.0267
10057		1	0.0327	-1.31	100577	-693	-0.0270	100652	-407	1	0.0323	-1.30	100652	-686	-0.0267
10057		1	0.0327	-1.32	100578	-694	-0.0270	100653	-408	1	0.0323	-1.30	100653	-687	-0.0267
10057		1	0.0327	-1.31	100579	-693	-0.0270	100654	-409	1	0.0324	-1.30	100654	-688	-0.0268
10058		1	0.0328	-1.32	100580	-692	-0.0270	100655	-410	1	0.0325	-1.31	100655	-689	-0.0268
10058		1	0.0329	-1.32	100581	-693	-0.0270	100656	-401	1	0.0318	-1.28	100656	-690	-0.0269
10058		1	0.0328	-1.32	100582	-692	-0.0270	100657	-402	1	0.0319	-1.28	100657	-691	-0.0269
10058		1	0.0327	-1.32	100583	-691	-0.0269 -0.0269	100658	-401	1	0.0318	-1.28	100658	-690	-0.0269
10058		1	0.0331	-1.33	100584	-690	-0.0269 -0.0268	100659	-400	1	0.0317	-1.27	100659	-689	-0.0268
10058		1 1	0.0331 0.0331	-1.33 -1.33	100585 100586	-689 -690	-0.0268 -0.0269	100660 100661	-402 -401	1 1	0.0319 0.0318	-1.28 -1.28	100660 100661	$-688 \\ -687$	-0.0268
10058		1	0.0331	-1.33 -1.33	100586	-689	-0.0269 -0.0268	100661	-401 -400	1	0.0318	-1.28 -1.27	100661	-686	-0.0267 -0.0267
10058		1	0.0331	-1.33	100587	-688	-0.0268	100663	-399	1	0.0317	-1.27 -1.27	100663	-685	-0.0267 -0.0267
10058		1	0.0332	-1.34	100589	-689	-0.0268	100664	-398	1	0.0315	-1.27	100664	-684	-0.0266
10059		1	0.0334	-1.34	100590	-690	-0.0269	100665	-396	1	0.0314	-1.26	100665	-685	-0.0267
10059		1	0.0334	-1.35	100591	-691	-0.0269	100666	-395	1	0.0313	-1.26	100666	-684	-0.0266
10059		1	0.0336	-1.35	100592	-690	-0.0269	100667	-396	1	0.0314	-1.26	100667	-685	-0.0267
10059		1	0.0338	-1.36	100593	-689	-0.0268	100668	-394	1	0.0312	-1.26	100668	-686	-0.0267
10059		1	0.0337	-1.36	100594	-688	-0.0268	100669	-395	1	0.0313	-1.26	100669	-687	-0.0267
10059		1	0.0336	-1.35	100595	-687	-0.0268	100670	-396	1	0.0314	-1.26	100670	-688	-0.0268
10059		1	0.0338	-1.36	100596	-686	-0.0267	100671	-397	1	0.0315	-1.27	100671	-689	-0.0268
10059		1	0.0340	-1.37	100597	-685	-0.0267	100672	-410	1	0.0325	-1.31	100672	-690	-0.0268
10059		1	0.0341	-1.37	100598	-686	-0.0267	100673	-411	1	0.0325	-1.31	100673	-691	-0.0269
10059	-429	1	0.0340	-1.37	100599	-685	-0.0267	100674	-409	1	0.0324	-1.30	100674	-692	-0.0269
10060	-425	1	0.0337	-1.35	100600	-686	-0.0267	100675	-412	1	0.0327	-1.31	100675	-691	-0.0269
10060	-424	1	0.0336	-1.35	100601	-685	-0.0267	100676	-413	1	0.0327	-1.32	100676	-690	-0.0268
10060	-427	1	0.0338	-1.36	100602	-686	-0.0267	100677	-414	1	0.0328	-1.32	100677	-691	-0.0269
10060	-426	1	0.0338	-1.36	100603	-685	-0.0267	100678	-415	1	0.0329	-1.32	100678	-692	-0.0269
10060		1	0.0337	-1.35	100604	-686	-0.0267	100679	-414	1	0.0328	-1.32	100679	-691	-0.0269
10060		1	0.0336	-1.35	100605	-685	-0.0267	100680	-409	1	0.0324	-1.30	100680	-690	-0.0268
10060		1	0.0335	-1.35	100606	-684	-0.0267	100681	-410	1	0.0325	-1.31	100681	-691	-0.0269
10060		1	0.0336	-1.35	100607	-685	-0.0267	100682	-409	1	0.0324	-1.30	100682	-690	-0.0268
10060		1	0.0332	-1.34	100608	-686	-0.0267	100683	-406	1	0.0322	-1.29	100683	-691	-0.0269
10060		1	0.0333	-1.34	100609	-687	-0.0268	100684	-407	1	0.0322	-1.30	100684	-690	-0.0268
10061		1	0.0334	-1.34	100610	-688	-0.0268	100685	-408	1	0.0323	-1.30	100685	-691	-0.0269
10061		1	0.0332	-1.34	100611	-689	-0.0268	100686	-407	1	0.0322	-1.30	100686	-690	-0.0268
10061		1	0.0333	-1.34	100612	-688	-0.0268	100687	-406	1	0.0322	-1.29	100687	-689	-0.0268
	-421	1	0.0334	-1.34	100613	-689	-0.0268	100688	-406	1	0.0322	-1.29	100688	-688	-0.0268
10061		1	0.0333	-1.34	100614	-688	-0.0268	100689	-405	1	0.0321	-1.29	100689	-687	-0.0267

	x	L(x)	$R_{\pm}(x)$	$\frac{L(x)}{L_{\approx,1}(x)}$	$\frac{L(x)}{L_{\approx,2}(x)}$	x	$L_*(x)$	$\frac{L_*(x)}{L_{\sim}^*(x)}$	x	L(x)	$R_{\pm}(x)$	$\frac{L(x)}{L_{\approx,1}(x)}$	$\frac{L(x)}{L_{\approx,2}(x)}$	x	$L_*(x)$	$\frac{L_*(x)}{L^*_{\approx}(x)}$
1	.00690	-406	1	0.0322	-1.29	100690	-688	-0.0268	100765	-390	1	0.0309	-1.24	100765	-683	-0.0266
1	00691	-405	1	0.0321	-1.29	100691	-687	-0.0267	100766	-389	1	0.0308	-1.24	100766	-682	-0.0265
1	00692	-409	1	0.0324	-1.30	100692	-688	-0.0268	100767	-388	1	0.0307	-1.24	100767	-681	-0.0265
1	00693	-410	1	0.0325	-1.31	100693	-689	-0.0268	100768	-390	1	0.0309	-1.24	100768	-682	-0.0265
1	00694	-407	1	0.0322	-1.30	100694	-688	-0.0268	100769	-391	1	0.0309	-1.24	100769	-683	-0.0266
1	00695	-410	1	0.0325	-1.31	100695	-687	-0.0267	100770	-388	1	0.0307	-1.24	100770	-682	-0.0265
1	00696	-411	1	0.0325	-1.31	100696	-688	-0.0268	100771	-387	1	0.0306	-1.23	100771	-681	-0.0265
1	00697	-410	1	0.0325	-1.31	100697	-687	-0.0267	100772	-388	1	0.0307	-1.24	100772	-680	-0.0264
1	00698	-409	1	0.0324	-1.30	100698	-686	-0.0267	100773	-390	1	0.0309	-1.24	100773	-679	-0.0264
	00699	-410	1	0.0325	-1.31	100699	-687	-0.0267	100774	-389	1	0.0308	-1.24	100774	-678	-0.0264
	.00700	-409	1	0.0324	-1.30	100700	-686	-0.0267	100775	-386	1	0.0305	-1.23	100775	-679	-0.0264
- 1	00701	-407	1	0.0322	-1.30	100701	-687	-0.0267	100776	-389	1	0.0308	-1.24	100776	-680	-0.0264
	00702	-408	1	0.0323	-1.30	100702	-688	-0.0268	100777	-388	1	0.0307	-1.24	100777	-679	-0.0264
- 1	.00703	-409	1	0.0324	-1.30	100703	-689	-0.0268	100778	-389	1	0.0308	-1.24	100778	-680	-0.0264
- 1	00704	-412	1	0.0326	-1.31	100704	-690	-0.0268	100779	-390	1	0.0309	-1.24	100779	-681	-0.0265
- 1	00705	-413	1	0.0327	-1.32	100705	-691	-0.0269	100780	-388	1	0.0307	-1.24	100780	-682	-0.0265
- 1	00706	-414	1	0.0328	-1.32	100706	-692	-0.0269	100781	-387	1	0.0306	-1.23	100781	-681	-0.0265
- 1	00707	-413	1	0.0327	-1.32	100707	-691	-0.0269	100782	-389	1	0.0308	-1.24	100782	-680	-0.0264
- 1	00708	-412	1	0.0326	-1.31	100708	-692	-0.0269	100783	-388	1	0.0307	-1.24	100783	-679	-0.0264
- 1	00709	-411	1	0.0325	-1.31	100709	-691	-0.0269	100784	-390	1	0.0309	-1.24	100784	-678	-0.0264
	00710	-408	1	0.0323	-1.30	100710	-690	-0.0268	100785	-391	1	0.0309	-1.24	100785	-679	-0.0264
	00711	-409	1	0.0324	-1.30	100711	-691	-0.0269	100786	-390	1	0.0309	-1.24	100786	-678	-0.0264
- 1	00712	-408	1	0.0323	-1.30	100712	-690	-0.0268	100787	-391	1	0.0309	-1.24	100787	-679	-0.0264
- 1	00713	-409	1	0.0324	-1.30	100713	-691	-0.0269	100788	-393	1	0.0311	-1.25	100788	-678	-0.0264
	00714	-410 400	1	0.0325	-1.31	100714	-692	-0.0269	100789	-392	1	0.0310	-1.25	100789	-677	-0.0263
- 1	00715	-409 -410	1 1	0.0324	-1.30	100715	-691	-0.0269	100790 100791	-393	1 1	0.0311	-1.25 -1.24	100790	-678	-0.0264
- 1	.00716 .00717	-410 -411	1	0.0325 0.0325	-1.31 -1.31	100716 100717	-692 -693	-0.0269 -0.0270	100791	-391 -392	1	0.0309 0.0310	-1.24 -1.25	100791 100792	-677 -678	-0.0263 -0.0264
- 1	.00717	-411 -410	1	0.0325	-1.31	100717	-692	-0.0270 -0.0269	100792	-392 -402	1	0.0310	-1.23 -1.28	100792	-679	-0.0264 -0.0264
- 1	.00719	-410 -419	1	0.0323	-1.31	100718	-693	-0.0209 -0.0270	100793	-402 -401	1	0.0318	-1.28 -1.28	100793	-678	-0.0264 -0.0264
- 1	.00719	-419 -416	1	0.0332	-1.33 -1.33	100719	-694	-0.0270 -0.0270	100794	-401 -402	1	0.0317	-1.28	100794	-679	-0.0264 -0.0264
- 1	.00720	-416 -415	1	0.0329	-1.33 -1.32	100720	-693	-0.0270 -0.0270	100795	-402 -401	1	0.0318	-1.28	100795	-680	-0.0264 -0.0264
	.00721	-416	1	0.0329	-1.32 -1.33	100721	-694	-0.0270 -0.0270	100797	-401 -400	1	0.0317	-1.28 -1.27	100797	-679	-0.0264
- 1	.00723	-415	1	0.0329	-1.33 -1.32	100723	-693	-0.0270 -0.0270	100798	-400	1	0.0317	-1.28	100797	-680	-0.0264
- 1	.00723	-413 -418	1	0.0329	-1.32 -1.33	100723	-694	-0.0270 -0.0270	100798	-401 -402	1	0.0317	-1.28	100798	-681	-0.0264 -0.0265
- 1	.00724	-410 -421	1	0.0331	-1.34	100724	-693	-0.0270 -0.0270	100800	-434	1	0.0313	-1.28 -1.38	100799	-680	-0.0264
- 1	.00726	-421 -420	1	0.0333	-1.34	100726	-692	-0.0270 -0.0269	100801	-434 -435	1	0.0344	-1.39	100800	-681	-0.0264 -0.0265
- 1	00727	-419	1	0.0332	-1.33	100727	-691	-0.0269	100802	-436	1	0.0345	-1.39	100802	-682	-0.0265
	.00727	-413	1	0.0332	-1.33 -1.32	100727	-692	-0.0269	100803	-435	1	0.0344	-1.39	100802	-681	-0.0265
- 1	00729	-412	1	0.0326	-1.31	100729	-691	-0.0269	100804	-436	1	0.0345	-1.39	100804	-680	-0.0264
- 1	.00730	-411	1	0.0325	-1.31	100730	-690	-0.0268	100805	-435	1	0.0344	-1.39	100805	-679	-0.0264
	00731	-410	1	0.0325	-1.31	100731	-689	-0.0268	100806	-440	1	0.0348	-1.40	100806	-678	-0.0264
	00732	-411	1	0.0325	-1.31	100732	-688	-0.0268	100807	-439	1	0.0347	-1.40	100807	-677	-0.0263
- 1	00733	-412	1	0.0326	-1.31	100733	-689	-0.0268	100808	-438	1	0.0347	-1.39	100808	-676	-0.0263
- 1	00734	-411	1	0.0325	-1.31	100734	-688	-0.0268	100809	-436	1	0.0345	-1.39	100809	-677	-0.0263
	.00735	-410	1	0.0325	-1.31	100735	-687	-0.0267	100810	-435	1	0.0344	-1.38	100810	-676	-0.0263
- 1	00736	-406	1	0.0322	-1.29	100736	-686	-0.0267	100811	-436	1	0.0345	-1.39	100811	-677	-0.0263
- 1	.00737	-404	1	0.0320	-1.29	100737	-685	-0.0267	100812	-438	1	0.0347	-1.39	100812	-676	-0.0263
1	00738	-403	1	0.0319	-1.28	100738	-684	-0.0266	100813	-437	1	0.0346	-1.39	100813	-675	-0.0262
1	00739	-402	1	0.0318	-1.28	100739	-683	-0.0266	100814	-436	1	0.0345	-1.39	100814	-674	-0.0262
	00740	-397	1	0.0314	-1.26	100740	-684	-0.0266	100815	-437	1	0.0346	-1.39	100815	-675	-0.0262
- 1	00741	-398	1	0.0315	-1.27	100741	-685	-0.0267	100816	-439	1	0.0347	-1.40	100816	-674	-0.0262
1	00742	-399	1	0.0316	-1.27	100742	-686	-0.0267	100817	-438	1	0.0347	-1.39	100817	-673	-0.0262
1	00743	-398	1	0.0315	-1.27	100743	-685	-0.0267	100818	-440	1	0.0348	-1.40	100818	-674	-0.0262
1	00744	-395	1	0.0313	-1.26	100744	-686	-0.0267	100819	-439	1	0.0347	-1.40	100819	-673	-0.0262
1	00745	-394	1	0.0312	-1.25	100745	-685	-0.0267	100820	-447	1	0.0354	-1.42	100820	-674	-0.0262
1	00746	-396	1	0.0314	-1.26	100746	-684	-0.0266	100821	-448	1	0.0354	-1.43	100821	-675	-0.0262
1	00747	-397	1	0.0314	-1.26	100747	-685	-0.0267	100822	-447	1	0.0354	-1.42	100822	-674	-0.0262
1	00748	-396	1	0.0314	-1.26	100748	-686	-0.0267	100823	-448	1	0.0354	-1.43	100823	-675	-0.0262
1	00749	-395	1	0.0313	-1.26	100749	-685	-0.0267	100824	-450	1	0.0356	-1.43	100824	-676	-0.0263
1	00750	-392	1	0.0310	-1.25	100750	-684	-0.0266	100825	-447	1	0.0354	-1.42	100825	-677	-0.0263
1	00751	-393	1	0.0311	-1.25	100751	-685	-0.0267	100826	-448	1	0.0354	-1.43	100826	-678	-0.0264
1	00752	-390	1	0.0309	-1.24	100752	-686	-0.0267	100827	-446	1	0.0353	-1.42	100827	-679	-0.0264
1	00753	-389	1	0.0308	-1.24	100753	-685	-0.0267	100828	-450	1	0.0356	-1.43	100828	-678	-0.0263
- 1	00754	-388	1	0.0307	-1.24	100754	-684	-0.0266	100829	-451	1	0.0357	-1.44	100829	-679	-0.0264
1	00755	-386	1	0.0305	-1.23	100755	-685	-0.0266	100830	-448	1	0.0354	-1.43	100830	-678	-0.0263
1	00756	-387	1	0.0306	-1.23	100756	-684	-0.0266	100831	-447	1	0.0354	-1.42	100831	-677	-0.0263
1	00757	-386	1	0.0305	-1.23	100757	-683	-0.0266	100832	-449	1	0.0355	-1.43	100832	-678	-0.0263
- 1	00758	-384	1	0.0304	-1.22	100758	-682	-0.0265	100833	-448	1	0.0354	-1.43	100833	-677	-0.0263
	00759	-383	1	0.0303	-1.22	100759	-681	-0.0265	100834	-447	1	0.0354	-1.42	100834	-676	-0.0263
- 1	00760	-381	1	0.0302	-1.21	100760	-680	-0.0264	100835	-446	1	0.0353	-1.42	100835	-675	-0.0262
1	00761	-380	1	0.0301	-1.21	100761	-679	-0.0264	100836	-450	1	0.0356	-1.43	100836	-676	-0.0263
	00762	-381	1	0.0302	-1.21	100762	-680	-0.0264	100837	-451	1	0.0357	-1.44	100837	-677	-0.0263
	.00763	-382	1	0.0302	-1.22	100763	-681	-0.0265	100838	-452	1	0.0358	-1.44	100838	-678	-0.0263
1	00764	-389	1	0.0308	-1.24	100764	-682	-0.0265	100839	-451	1	0.0357	-1.44	100839	-677	-0.0263

x	L(x)	$R_{\pm}(x)$	$\frac{L(x)}{L_{\approx,1}(x)}$	$\frac{L(x)}{L_{\approx,2}(x)}$	x	$L_*(x)$	$\frac{L_*(x)}{L_{\approx}^*(x)}$	x	L(x)	$R_{\pm}(x)$	$\frac{L(x)}{L_{\approx,1}(x)}$	$\frac{L(x)}{L_{\approx,2}(x)}$	x	$L_*(x)$	$\frac{L_*(x)}{L_{\sim}^*(x)}$
100840	-453	1	$L \approx 1(x)$ 0.0358	$L \approx , 2(x)$ -1.44	100840	-678	-0.0263	100915	-463	1	$L_{\approx,1}(x) = 0.0366$	$L \approx , 2(x)$ -1.47	100915	-679	-0.0264
100841	-452	1	0.0358	-1.44	100841	-677	-0.0263	100916	-464	1	0.0367	-1.48	100916	-678	-0.0263
100842	-459	1	0.0363	-1.46	100842	-678	-0.0263	100917	-466	1	0.0368	-1.48	100917	-677	-0.0263
100843	-458	1	0.0362	-1.46	100843	-677	-0.0263	100918	-465	1	0.0368	-1.48	100918	-676	-0.0262
100844	-457	1	0.0361	-1.45	100844	-678	-0.0263	100919	-466	1	0.0368	-1.48	100919	-677	-0.0263
100845	-460	1	0.0364	-1.46	100845	-679	-0.0264	100920	-474	1	0.0375	-1.51	100920	-676	-0.0262
100846	-459	1	0.0363	-1.46	100846	-678	-0.0263	100921	-473	1	0.0374	-1.51	100921	-675	-0.0262
100847 100848	$-460 \\ -462$	1 1	0.0364 0.0365	-1.46 -1.47	100847 100848	-679 -678	-0.0264 -0.0263	100922 100923	$-472 \\ -471$	1 1	0.0373 0.0372	-1.50 -1.50	100922 100923	-674 -673	-0.0262 -0.0261
100848	-462 -461	1	0.0365	-1.47 -1.47	100848	-677	-0.0263 -0.0263	100923	-471 -470	1	0.0372	-1.50 -1.50	100923	-673	-0.0261 -0.0262
100850	-458	1	0.0362	-1.46	100850	-678	-0.0263	100925	-467	1	0.0369	-1.49	100925	-675	-0.0262
100851	-457	1	0.0362	-1.45	100851	-677	-0.0263	100926	-471	1	0.0372	-1.50	100926	-674	-0.0262
100852	-456	1	0.0361	-1.45	100852	-678	-0.0263	100927	-472	1	0.0373	-1.50	100927	-675	-0.0262
100853	-457	1	0.0362	-1.45	100853	-679	-0.0264	100928	-468	1	0.0370	-1.49	100928	-676	-0.0262
100854	-459	1	0.0363	-1.46	100854	-678	-0.0263	100929	-469	1	0.0371	-1.49	100929	-677	-0.0263
100855	-460	1	0.0364	-1.46	100855	-679	-0.0264	100930	-470	1	0.0371	-1.50	100930	-678	-0.0263
100856	-459	1	0.0363	-1.46	100856	-680	-0.0264	100931	-471	1	0.0372	-1.50	100931	-679	-0.0264
100857 100858	$-458 \\ -459$	1 1	0.0362 0.0363	-1.46 -1.46	100857 100858	-679 -680	-0.0264 -0.0264	100932 100933	$-471 \\ -470$	1 1	0.0372 0.0371	-1.50 -1.50	100932 100933	$-678 \\ -677$	-0.0263 -0.0263
100859	-460	1	0.0364	-1.46	100859	-681	-0.0264 -0.0265	100933	-470 -471	1	0.0371	-1.50	100933	-678	-0.0263
100860	-448	1	0.0354	-1.43	100860	-680	-0.0264	100935	-469	1	0.0371	-1.49	100935	-679	-0.0264
100861	-450	1	0.0356	-1.43	100861	-679	-0.0264	100936	-468	1	0.0370	-1.49	100936	-678	-0.0263
100862	-449	1	0.0355	-1.43	100862	-678	-0.0263	100937	-469	1	0.0371	-1.49	100937	-679	-0.0264
100863	-447	1	0.0354	-1.42	100863	-679	-0.0264	100938	-470	1	0.0371	-1.50	100938	-680	-0.0264
100864	-443	1	0.0350	-1.41	100864	-678	-0.0263	100939	-469	1	0.0371	-1.49	100939	-679	-0.0264
100865	-442	1	0.0350	-1.41	100865	-677	-0.0263	100940	-463	1	0.0366	-1.47	100940	-678	-0.0263
100866 100867	-443 -442	1 1	0.0350 0.0350	-1.41 -1.41	100866 100867	$-678 \\ -677$	-0.0263 -0.0263	100941 100942	-462 -463	1 1	0.0365 0.0366	-1.47 -1.47	100941 100942	$-677 \\ -678$	-0.0263 -0.0263
100867	-442 -441	1	0.0330	-1.41 -1.40	100867	-678	-0.0263 -0.0263	100942	-463 -464	1	0.0367	-1.47 -1.48	100942	-679	-0.0263 -0.0264
100869	-440	1	0.0348	-1.40	100869	-677	-0.0263	100944	-473	1	0.0374	-1.51	100944	-680	-0.0264
100870	-441	1	0.0349	-1.40	100870	-678	-0.0263	100945	-474	1	0.0375	-1.51	100945	-681	-0.0264
100871	-440	1	0.0348	-1.40	100871	-677	-0.0263	100946	-475	1	0.0375	-1.51	100946	-682	-0.0265
100872	-446	1	0.0353	-1.42	100872	-678	-0.0263	100947	-476	1	0.0376	-1.51	100947	-683	-0.0265
100873	-445	1	0.0352	-1.42	100873	-677	-0.0263	100948	-477	1	0.0377	-1.52	100948	-682	-0.0265
100874	-446	1	0.0353	-1.42	100874	-678	-0.0263	100949	-482	1	0.0381	-1.53	100949	-681	-0.0264
100875 100876	-449 -450	1 1	0.0355 0.0356	-1.43 -1.43	100875 100876	-679 -678	-0.0264 -0.0263	100950 100951	-487 -486	1 1	0.0385 0.0384	-1.55 -1.55	100950 100951	$-680 \\ -679$	-0.0264 -0.0264
100870	-430 -449	1	0.0355	-1.43 -1.43	100870	-677	-0.0263 -0.0263	100951	-485	1	0.0384	-1.53 -1.54	100951	-678	-0.0264 -0.0263
100878	-450	1	0.0356	-1.43	100878	-678	-0.0263	100953	-483	1	0.0382	-1.54	100953	-677	-0.0263
100879	-449	1	0.0355	-1.43	100879	-677	-0.0263	100954	-484	1	0.0383	-1.54	100954	-678	-0.0263
100880	-452	1	0.0358	-1.44	100880	-676	-0.0263	100955	-485	1	0.0383	-1.54	100955	-679	-0.0264
100881	-450	1	0.0356	-1.43	100881	-677	-0.0263	100956	-487	1	0.0385	-1.55	100956	-678	-0.0263
100882	-449	1	0.0355	-1.43	100882	-676	-0.0263	100957	-488	1	0.0386	-1.55	100957	-679	-0.0264
100883	-448	1	0.0354	-1.43	100883	-675	-0.0262	100958	-487	1	0.0385	-1.55	100958	-678	-0.0263
100884 100885	$-451 \\ -450$	1 1	0.0357 0.0356	-1.44 -1.43	100884 100885	-674 -673	-0.0262 -0.0261	100959 100960	-488 -491	1 1	0.0386 0.0388	-1.55 -1.56	100959 100960	-679 -680	-0.0264 -0.0264
100886	-450 -451	1	0.0357	-1.43 -1.44	100886	-673 -674	-0.0261 -0.0262	100960	-491 -490	1	0.0388	-1.56 -1.56	100960	-679	-0.0264 -0.0264
100887	-450	1	0.0356	-1.43	100887	-673	-0.0261	100962	-492	1	0.0389	-1.56	100962	-678	-0.0263
100888	-449	1	0.0355	-1.43	100888	-672	-0.0261	100963	-491	1	0.0388	-1.56	100963	-677	-0.0263
100889	-448	1	0.0354	-1.43	100889	-671	-0.0261	100964	-490	1	0.0387	-1.56	100964	-678	-0.0263
100890	-447	1	0.0354	-1.42	100890	-672	-0.0261	100965	-489	1	0.0386	-1.56	100965	-677	-0.0263
100891	-444	1	0.0351	-1.41	100891	-673	-0.0261	100966	-490	1	0.0387	-1.56	100966	-678	-0.0263
100892	-443	1	0.0350	-1.41	100892	-674	-0.0262	100967	-489	1	0.0386	-1.56	100967	-677	-0.0263
100893 100894	-439 -440	1 1	0.0347 0.0348	-1.40 -1.40	100893 100894	$-675 \\ -676$	-0.0262 -0.0263	100968 100969	$-488 \\ -489$	1 1	0.0386 0.0386	-1.55 -1.56	100968 100969	$-676 \\ -677$	-0.0262 -0.0263
100894	-440 -441	1	0.0348	-1.40 -1.40	100894	-676	-0.0263 -0.0263	100909	-489 -488	1	0.0386	-1.56 -1.55	100909	-676	-0.0263 -0.0262
100896	-444	1	0.0351	-1.41	100896	-678	-0.0263	100971	-486	1	0.0384	-1.55	100971	-677	-0.0262
100897	-443	1	0.0350	-1.41	100897	-677	-0.0263	100972	-487	1	0.0385	-1.55	100972	-676	-0.0262
100898	-444	1	0.0351	-1.41	100898	-678	-0.0263	100973	-486	1	0.0384	-1.55	100973	-675	-0.0262
100899	-446	1	0.0353	-1.42	100899	-679	-0.0264	100974	-487	1	0.0385	-1.55	100974	-676	-0.0262
100900	-450	1	0.0356	-1.43	100900	-680	-0.0264	100975	-484	1	0.0382	-1.54	100975	-677	-0.0263
100901	-451	1	0.0357	-1.44	100901	-681	-0.0265	100976	-486	1	0.0384	-1.55	100976	-676	-0.0262
100902 100903	-450 -449	1 1	0.0356 0.0355	-1.43 -1.43	100902 100903	$-680 \\ -679$	-0.0264 -0.0264	100977 100978	-487 -488	1 1	0.0385 0.0386	-1.55 -1.55	100977 100978	$-677 \\ -678$	-0.0263 -0.0263
100903	-449 -448	1	0.0355 0.0354	-1.43 -1.43	100903	-679 -678	-0.0264 -0.0263	100978	-488 -487	1	0.0386	-1.55 -1.55	100978	-678 -677	-0.0263 -0.0263
100904	-454	1	0.0354	-1.43 -1.44	100904	-677	-0.0263	100979	-495	1	0.0383	-1.57	100979	-678	-0.0263
100906	-455	1	0.0360	-1.45	100906	-678	-0.0263	100981	-496	1	0.0392	-1.58	100981	-679	-0.0263
100907	-456	1	0.0361	-1.45	100907	-679	-0.0264	100982	-497	1	0.0393	-1.58	100982	-680	-0.0264
100908	-460	1	0.0364	-1.46	100908	-680	-0.0264	100983	-498	1	0.0394	-1.58	100983	-681	-0.0264
100909	-461	1	0.0365	-1.47	100909	-681	-0.0264	100984	-499	1	0.0394	-1.59	100984	-682	-0.0265
100910	-462	1	0.0365	-1.47	100910	-682	-0.0265	100985	-500	1	0.0395	-1.59	100985	-683	-0.0265
100911 100912	$-461 \\ -461$	1	0.0365	-1.47	100911 100912	-681 -680	-0.0264	100986	-501	1	0.0396	-1.59	100986	-684	-0.0265
100912	-461 -462	1 1	0.0365 0.0365	-1.47 -1.47	100912	-680 -681	-0.0264 -0.0264	100987 100988	-502 -503	1 1	0.0397 0.0397	-1.60 -1.60	100987 100988	$-685 \\ -684$	-0.0266 -0.0265
100914	-464	1	0.0367	-1.48	100914	-680	-0.0264	100989	-510	1	0.0403	-1.62	100989	-685	-0.0266
				-	1		-					-			